Tendência temporal do consumo de carne no Município de São Paulo: estudo de base populacional – ISA Capital 2003/2008

Aline Martins de Carvalho

Dissertação apresentada ao Programa de Pós-Graduação Nutrição em Saúde Pública para obtenção do título de Mestre em Ciências.

Área de concentração: Nutrição em Saúde Pública

Orientadora: Profª Assoc. Dirce Maria Lobo Marchioni

São Paulo
2012
Tendência temporal do consumo de carne no Município de São Paulo: estudo de base populacional – ISA Capital 2003/2008

Aline Martins de Carvalho

Dissertação apresentada ao Programa de Pós-Graduação Nutrição em Saúde Pública para obtenção do título de Mestre em Ciências.

Área de concentração: Nutrição em Saúde Pública

Orientadora: Profª Assoc. Dirce Maria Lobo Marchioni

São Paulo

2012
É expressamente proibida a comercialização deste documento, tanto na sua forma impressa como eletrônica. Sua reprodução total ou parcial é permitida exclusivamente para fins acadêmicos e científicos, desde que na reprodução figure a identificação do autor, título, instituição e ano da dissertação.
Dedicatória

Dedico este trabalho a toda população de São Paulo, que financiou meus estudos e que estes resultados sejam revertidos em políticas públicas para promoção de alimentação saudável e ambientalmente sustentável.

Dedico também a minha família e amigos que me ajudaram com seus pensamentos e palavras de incentivo.
Agradecimentos

Agradeço imensamente a Deus por ter me dado a oportunidade de continuar estudando em uma das melhores Universidades do país, e descobrir uma das minhas paixões, a pesquisa, além de me proporcionar conhecer pessoas maravilhosas que vou levar pra sempre comigo.

Aos meus pais pelo incentivo financeiro e moral, pela paciência, amor, carinho, incentivo e orgulho que sentem da sua primogênita.

Aos meus lindos avós, que mesmos esquecidos pela idade, me amam mais que tudo no mundo e me proporcionaram equilíbrio espiritual, me fazendo sempre refletir sobre as coisas importantes da vida.

À Fanti, minha eterna irmã adolescente, que me deu altas dicas de moda e ensinou gírias descoladas hehe. Apesar disso, sempre se orgulhou e me incentivou muito!

Aos meus padrinhos Celso e Cleide, pelo amor, incentivo de sempre!

À minha orientadora Dirce Marchioni que se tornou uma mãe nesse período, uma excelente orientadora e pesquisadora, além de uma ótima pessoa. Realmente inspira seus alunos a seguirem seus caminhos com ética, trabalho, dedicação e respeito! É um exemplo a ser seguido!

Aos professores Regina Fisberg e Rafael Claro pelos ensinamentos e contribuições na qualificação e pré-banca.

À Anelise e Catarina pelo apoio, amizade, pelos risos e choros, pelo equilíbrio espiritual que me proporcionaram nesse período.

À companheira de aulas e de todos os momentos, Sô, por acreditar em todas as minhas ideias, pelo apoio incondicional, pelo amor, carinho, por me ajudar a trilhar meu caminho na seara do bem e do amor, com ética, dignidade e amor próprio. Você é um ponto geométrico, pequeninho, mas infinito, que representa muito no desenho da minha vida!

À companheira de salinha, de danças, de cafés, churrascos, viagens, enfim, de todos os momentos, Jô, que sempre me deu muitos conselhos, me colocando na terra, quando muitas vezes imaginava o céu, e muitas vezes, viajava ao céu comigo.
também. Obrigada pelo discernimento, pelo carinho, apoio, caronas e infinitos momentos de alegria.

Às novas amigas que se aproximaram mais no fim da linha do mestrado Aline Mendes, Michelle e Camila, que me ajudaram em momentos cruciais!

Ao Rafa, pelo apoio, compreensão, momentos de diversão, ensinamentos, conversas, danças e carinho com essa pessoa às vezes tão indecisa e confusa.

Aos amigos de sempre: Samantha, Mayara, Nathalia e Carla!

Aos amigos de graduação Aline, Pamela, Ana Luiza, Fernanda, Patrícia, Mariana, Maria Helena, Maria Carol que se mantiveram presentes apesar das correrias do dia a dia.

Aos amigos juniores que apesar do pouco contato me tornaram uma pessoa especialmente melhor, mais dedicada e mais eficiente: Hage, Vini, Hugo, Sarinha, Phil, Allan, Simone e Higa.

Ao Tadao, pela compreensão, incentivo, conversas infinitas, corridas, danças, ligações e apoio de sempre para continuar na batalha, além dos ensinamentos em Excel e lógica.

Aos amigos dançantes da salsa: Leo, Marvin, Jeff, Yordanka, Ciro, Jenny, Rosa, Alemão e Russel, que animaram minhas quintas-feiras.

Aos amigos dançantes do forró: Ícaro, Marvin (de novo), Márcio, Vizinho, Adriana, Patrícia pelos domingos de Dona Zefa e algumas sextas de Bicho de Pé, que me mantiveram animada!

Aos amigos da gafieira: Rafa, Máximo, Anna, Yuri, Jeff, Bia, Carol, Thiago, Maike e Silvia pelos croquetes de toda segunda-feira, pela viagem para Joãoópolis e por alegrarem muito a minha vida, se tornando amigos de verdade.

À amiga de infância Cinthia Madeira e seus pais, pelas conversas, risadas, viagens, incentivo, por me verem crescer e contribuírem na minha formação como pessoa.

Ao GAC: Agatha, Bartira, Diva, Gabriela, menina Roberta, Jack, Jaqueline, Roberta, Samantha, Valéria, Nathalia, Paula, Karoline, Raíssa, Síbele, Wellington, Isabel, Andréia e Lívia, pela companhia na salinha, pelos momentos de café e descontração, pelos ensinamentos, por trabalhar com uma equipe tão grande e unida.
Ao ex-GAC e agora professor, Eliseu, pelas contribuições na dissertação, pelos ensinamentos de estatística e de vida, pelas cervejas, risadas e exemplo...

A toda equipe do Segunda Sem Carne na FSP: Joyce, Bruna, Camila, Adriana, Caroline, Daniele, Vini, Daniela, Rafael, em especial a Joyce e Camila, que trabalharam muito e me ajudaram ao extremo para a realização e sucesso do projeto.

A todos que ajudaram para realização desse sonho do SSC na FSP: SAS, Selma, Luana, Carmen, Miriam, pessoal do TIC que foi incrivelmente prestativo e ajudou muito na divulgação: Marcellus, Adilson, Fernanda e Daniel, ao Jornal do Campus pela matéria, e ao Segunda Sem Carne Brasil pela oportunidade de aprendizado e reflexão (Guilherme e Mônica).

A todos que ajudaram no ISA: Danilo Steluti que fez o site que facilitou muito a vida; Bruno, Seu Boni e Luciana, pelas coletas; Eurico, Carol, Aleix, que compartilharam seus conhecimentos com todo o grupo.

Aos funcionários da FSP, em especial a Vânia e Eduardo, que foram extremamente atenciosos e eficientes.

À Secretaria Municipal da Saúde de São Paulo, FAPESP e CNPq pelo apoio financeiro ao projeto, e a CAPES pela bolsa de estudos.

Ao Beto, Sopro Voluntário e Um teto para meu país, que mantiveram em mim a chama viva de querer ajudar e a permanecer buscando soluções para melhorar esse mundo.

Aos outros tantos colegas, amigos e familiares que torceram por mim!

Enfim, a todos: muito obrigada!!
RESUMO

Carvalho AM. Tendência temporal do consumo de carne no Município de São Paulo: estudo de base populacional – ISA Capital 2003/2008. [Dissertação de Mestrado]. São Paulo: Faculdade de Saúde Pública da Universidade de São Paulo; 2012.

Introdução. As carnes são boas fontes nutricionais para o homem, porém devem ser consumidas com moderação, pois seu consumo excessivo tem sido relacionado ao aumento do risco de doenças crônicas. Além de agravos à saúde, a carne promove grande impacto no meio ambiente a partir da sua produção. No Brasil, a disponibilidade de carnes vem aumentando na alimentação domiciliar, entretanto, dados de consumo alimentar individual de carnes são escassos no país. Objetivo. Descrever a tendência de consumo individual de carne em São Paulo na última década, e avaliar a relação entre o consumo excessivo de carne, qualidade da dieta e impacto ambiental. Métodos. Foram utilizados dados de 2361 indivíduos coletados em 2003 e 1662 indivíduos coletados em 2008 de ambos os sexos, com idade de 12 anos ou mais, incluídos no estudo transversal de base populacional: Inquérito de Saúde de São Paulo (ISA-Capital). A amostragem se deu probabilisticamente em dois estágios, setor censitário e domicílio. O consumo alimentar foi verificado em cada ano com o uso dois recordatórios alimentares de 24 horas. A estimativa de ingestão habitual das carnes foi feita pelo Multiple Source Method. A qualidade da dieta foi analisada pelo Índice de Qualidade da Dieta Revisado e o impacto ambiental pela estimativa de equivalentes de gás carbônico (CO₂) a partir do consumo de carne. Resultados. O consumo de carnes em São Paulo aumentou em cerca de 20% na população estudada. O consumo excessivo de carne foi observado em quase 75% das pessoas e o tipo de carne mais consumido nos dois períodos foi a bovina, seguida de aves, porco e peixe. Verificou-se que o consumo de carne processada vem crescendo, principalmente entre os adolescentes. A qualidade da dieta foi inversamente relacionada com o consumo excessivo de carne de vermelha e
processada em homens. O impacto ambiental do consumo de carne em São Paulo foi estimado em 18 milhões de toneladas de equivalentes de CO₂, representando cerca de 5% do total de CO₂ emitido pela agropecuária brasileira em 2003. **Conclusão.** O consumo excessivo de carne foi verificado em grande parte da população, com aumento significativo ao longo dos anos, relacionado com pior qualidade da dieta em homens e considerável impacto ambiental. Assim, é fundamental o estabelecimento de políticas públicas para redução do consumo de carne, dentro dos limites recomendados, como parte de uma alimentação saudável e ambientalmente sustentável.

Descritores: carne; consumo alimentar; tendência de consumo; impacto ambiental; qualidade da dieta.
ABSTRACT

Carvalho AM. Trends in meat consumption in city of São Paulo: population based study – ISA Capital 2003/2008. [dissertation]. São Paulo (BR): Faculdade de Saúde Pública da Universidade de São Paulo; 2012.

Introduction. Meat is an important food item in human nutrition, and its excessive consumption has been linked to chronic diseases, so meat should be consumed with moderation. Besides the impact on health, meat also causes major impacts on the environment because of its production. In Brazil, household meat availability has been increasing, however, there are few data on individual food consumption in Brazil. Objective. To present trends in individual meat consumption of the last decade, in the city of São Paulo, and to investigate the relationship between excessive meat consumption, diet quality and environmental impact. Methods. A cross-sectional population based survey conducted in 2003 and 2008 - Health Survey for Sao Paulo (ISA – Capital) - used data from 2631 subjects in 2003, and 1662 subjects in 2008. Subjects were males and females, adolescents, adults and elderly people. A two-stage cluster sampling was used: census tracts and household. Diet was assessed by two 24 hour recalls. Usual meat consumption was estimated by Multiple Source Method. Diet quality was analyzed by Brazilian Healthy Eating Index Revised. The environmental impact was analyzed according to estimates of CO₂ equivalents emitted from meat production. Results. Meat consumption showed a 20% increase in all age groups, both males and females. Excessive meat consumption was observed in almost 75% of the subjects and beef still represents the largest proportion of meat consumed, followed by poultry, then pork and fish. Processed meat consumption showed an increase, especially among adolescents. Diet quality was inversely associated with excessive meat consumption in men. The environmental impact of meat consumption was estimated at 18 million tons of CO₂ equivalents, thus representing about 5% of total CO₂ emitted by Brazilian agriculture.
in 2003. **Conclusion.** In most part of the population, meat consumption was excessive and was associated with poorer diet quality in men and great environmental impact. So, it is important to implement policies to advise reducing red and processed meat consumption to the recommended amounts, as part of a healthy and environmentally sustainable diet.

Key words: meat; food consumption; trends in consumption; environmental impact; diet quality.
ÍNDICE

1. INTRODUÇÃO ... 15
 1.1 CARNE ... 15
 1.1.1 Implicação na Saúde ... 16
 1.1.2 Impacto no Meio Ambiente ... 17
 1.1.3 Influência do Consumo na Economia .. 18

2. JUSTIFICATIVA .. 20

3. OBJETIVOS .. 21
 3.1 OBJETIVO GERAL .. 21
 3.2 OBJETIVOS ESPECÍFICOS .. 21

4. MÉTODOS ... 22
 4.1 ANTECEDENTES .. 22
 4.2 Delineamento do Estudo ... 22
 4.3 TAMANHO AMOSTRAL .. 22
 4.4 COLETA E PROCESSAMENTO DOS DADOS ... 24
 4.4.1 Dados Dietéticos ... 24
 4.5 VARIÁVEIS DE ESTUDO ... 26
 4.6 ANÁLISE DE DADOS .. 27
 4.6.1 Análise do Primeiro Manuscrito ... 28
 4.6.2 Análise do Segundo Manuscrito ... 29
 4.7 ASPECTOS ÉTICOS DA PESQUISA .. 29

5. RESULTADOS E DISCUSSÃO .. 30
 5.1 PRIMEIRO MANUSCRITO ... 31
 5.2 SEGUNDO MANUSCRITO .. 47

6. CONSIDERAÇÕES FINAIS ... 65

7. REFERÊNCIAS ... 66

ANEXOS .. 71
 Anexo 1 – Aprovações do Comitê de Ética ... 72

CURRÍCULO LATTES ... 78
LISTA DE FIGURAS E TABELAS

Figura 1 - Classificação de carnes segundo processamento e procedência. 15

PRIMEIRO MANUSCRITO

Tabela 1 - Usual red and processed meat intake (g), according to socioeconomic variables. São Paulo, 2003. 37
Tabela 2 - Proportion (%) of individuals with high daily red and processed meat intake according to gender and socioeconomic variables. São Paulo, 2003. 38
Tabela 3 - Average daily energy and nutrient intake according to levels of red and processed meat consumption. São Paulo, 2003. 39
Tabela 4 - BHEI-R and BHEI-R components according to levels of red and processed meat consumption by sex, São Paulo, 2003. 40

SEGUNDO MANUSCRITO

Tabela 1 - Consumo de carne total da dieta, carne vermelha, carne processada e carne branca (g/dia) segundo faixa etária, sexo, renda familiar per capita e período de consumo analisado. São Paulo. 2012. 54
Tabela 2 - Consumo de carne de boi, porco, ave e peixe (g/dia) segundo faixa etária, sexo, renda familiar per capita e período de consumo analisado. São Paulo. 2012. 55
Tabela 3 - Proporção do consumo em gramas dos tipos de carnes processadas segundo ano do estudo. São Paulo. 2012. 56
Tabela 4 - Percentual de energia, gordura total, gordura saturada, colesterol e proteína segundo processamento, procedência e ano do estudo. São Paulo. 2012. 57
ABREVIATURAS, SIGLAS E SÍMBOLOS UTILIZADOS

Abreviação	Significado
CO₂	Gás carbônico
DCNT	Doenças crônicas não transmissíveis
DCV	Doenças cardiovasculares
EUA	Estados Unidos da América
EP	Erro padrão
FAO	Food and Agriculture Organization
g	Gramas
IC 95%	Intervalo de confiança de 95%
ISA – Capital 2003	Inquérito de Saúde de São Paulo 2003
ISA – Capital 2008	Inquérito de Saúde de São Paulo 2008
Kcal	Quilocalorias
Kg	Quilograma
MS	Ministério da Saúde
MSM	Multiple Source Method
NDSR	Nutrition Data System for Research
OMS	Organização Mundial da Saúde
ONU	Organização das Nações Unidas
POF	Pesquisa de Orçamentos Familiares
QFA	Questionário de Frequência Alimentar
R24h	Recordatório alimentar de 24 horas
SP	São Paulo
WCRF	World Cancer Research Fund
APRESENTAÇÃO

Este trabalho utilizou dados do ISA – Capital, inquérito de saúde realizado na cidade de São Paulo nos anos de 2003 e 2008, e foi orientado por Dirce Maria Lobo Marchioni, membro da equipe de pesquisadores do estudo.

A estrutura desta dissertação foi elaborada de acordo com as diretrizes aprovadas na 9ª sessão de 05/6/2008 da Comissão de Pós-Graduação da Faculdade de Saúde Pública da Universidade de São Paulo, e com as recomendações do Guia de Apresentação de Teses desta instituição (CUENCA et al., 2006). Inclui as seções: (1) Introdução, com o referencial teórico sobre consumo de carne e sua relação com saúde e meio ambiente; (2) Justificativa do trabalho; (3) Objetivos, que descreve os propósitos gerais e específicos do estudo; (4) Métodos, com definições, procedimentos e materiais utilizados; (5) Resultados e Discussão, que apresenta dois manuscritos resultantes do projeto de pesquisa de mestrado; (6) Considerações Finais, com resumo das principais contribuições do estudo.
1. INTRODUÇÃO

1.1 CARNE

A carne pode ser definida como o conjunto de tecidos que recobre o esqueleto dos animais e serve de alimento ao homem, como carne de boi, aves, peixes, cavalo, coelho, caça entre outras (EMBRAPA, 1999).

Ela pode ser classificada de diversas maneiras. No presente trabalho adotaram-se classificações de acordo com o processamento e a procedência das carnes (Figura 1).

Quanto ao processamento, a carne pode ser dividida em processada e não processada. A carne não processada é aquela que não foi submetida a qualquer processo industrial; já a processada é aquela cujas características originais foram modificadas, a fim de aumentar seu período de validade, ser transportada a lugares distantes, e se tornar mais palatável, por meio de algum tipo de processamento, como defumação, cura, salga ou adição de conservantes (WCRF, 2007). A carne não processada ainda pode ser classificada em vermelha e branca. As carnes não processadas oriundas de bois e porcos são consideradas vermelhas e a de aves e peixes são consideradas brancas (EMBRAPA, 1999).

Quanto à procedência as carnes também podem ser classificadas em: carne de bois, porcos, aves e peixes.

Figura 1. Classificação de carnes segundo processamento e procedência.
1.1.1 Implicação na Saúde

As carnes contêm cerca de 20 a 40% de proteína de alto valor biológico, contendo boas fontes de aminoácidos essenciais, de minerais como zinco, selênio e ferro de alta biodisponibilidade, de vitaminas como a B6 e B12 (MINISTÉRIO DA SAÚDE, 2006), além de ácidos graxos insaturados e conjugados, importantes na prevenção de doenças cardiovasculares (DCV) (MCAFEE et al., 2010). No entanto, o consumo de carnes em excesso tem sido associado a doenças crônicas (DANIEL et al., 2010). Há evidências da associação entre consumo excessivo de carne vermelha e processada e DCV, diabetes (MICHA et al., 2010), câncer de cólon e reto (WCRF, 2007), ganho de peso, infarto (HODGSON et al, 2007; VERGNAUD et al., 2010) e maior risco de mortalidade (SINHA et al., 2009; PAN et al., 2012), possivelmente devido a seus altos teores de ferro, gorduras saturadas, colesterol e substâncias potencialmente carcinogênicas formadas no preparo culinário, como as aminas heterocíclicas e hidrocarbonetos policíclicos aromáticos, além de sódio e nitritos, adicionados nas carnes processadas (WCRF, 2007; FERGUSON, 2010; HU et al., 2011).

O elevado consumo de carne também vem sendo relacionado com pior qualidade da dieta. Na Irlanda, o alto consumo de carne vermelha e processada foi associado com menor ingestão de frutas e hortaliças, cereais integrais e peixes, e maior consumo de refrigerantes (COSGRVE et al., 2005). Em mulheres japonesas, o maior consumo de carne vermelha em relação à carne branca foi negativamente relacionado com consumo de frutas, hortaliças e leite, e positivamente associado com refrigerante, óleos e gorduras (VERGNAUD et al., 2010).

Para manutenção de uma dieta saudável da população brasileira, o Ministério da Saúde orienta a ingestão de uma porção de carne por dia (190 kcal), (MS, 2006), cerca de 100g. Para prevenção de câncer, o World Cancer Research Fund recomenda um consumo máximo de 500g/semana de carne vermelha e processada (WCRF, 2007).
1.1.2 Impacto no Meio Ambiente

Além de sua relação desfavorável com a saúde, o excesso de carne também interfere negativamente no meio ambiente, pois sua produção promove desmatamento, efeito estufa, poluição das águas, redução da biodiversidade, além de ocupar muitos hectares de terra (STEINFELD et al., 2006; MCMICHAEL et al., 2007; GARNETT, 2008; CEDEBERG et al., 2011).

No Brasil, a pecuária é o setor que mais promove desmatamento na Floresta Amazônica, responsável por grande parte da derrubada de árvores e perda da biodiversidade local (CHOMITZ e THOMAS, 2001). Atualmente cerca de 20% da área da Amazônia Legal está desmatada, sendo que 70% dessa área é ocupada por pastos e os outros 30% por plantação de grãos (STEINFELD et al., 2006).

Além disso, este setor também é responsável por emitir cerca de 18% dos gases de efeito estufa do mundo, poluindo mais do que o setor de transportes (STEINFELD et al., 2006). As emissões de gás carbônico (CO₂) são, em sua maioria, provenientes de devastações de florestas, e as emissões de metano vêm majoritariamente da digestão dos ruminantes (STEINFELD et al., 2006; MCMICHAEL et al., 2007).

Para produção de um quilograma (kg) de carne bovina são gerados cerca de 44kg de gases de efeito estufa, o equivalente a quantidade CO₂ produzida por um carro percorrendo a distância de 250km (CEDEBERG et al., 2011). Outros cálculos têm sido feitos para estimar o impacto ambiental global da produção de carne. Uma nova proposta considera que são emitidos 335kg de equivalentes de CO₂ para produção de um kg de carne bovina no Brasil, cinco vezes mais que nos demais países estudados. Esse valor é mais alto devido à devastação da Floresta Amazônica para produção de pastos e grãos, o que libera mais CO₂ para o ambiente (SCHMIDINGER e STEHFEStINCCLUDING, 2012).

Para produção de carne, usa-se também grande quantidade de água. Cerca de 70% dos rios, lagos e água subterrânea do mundo são destinadas à agricultura e pecuária (IWMI, 2007). Para produzir apenas um kg de carne bovina são necessários
2400 litros de água (HORRIGAN, 2002). Além disso, a produção de carne também polui as águas de rios e nascentes pela contaminação destas por dejetos de animais; hormônios e antibióticos aplicados; pesticidas e fertilizantes usados nas plantações de grãos que alimentam os animais (STEINFELD et al., 2006).

Outro aspecto é a utilização de grande quantidade de terra. Segundo a OMS, um hectare de terra é capaz de abastecer por ano uma pessoa a base de carne bovina e duas a base de cordeiro. No entanto, o mesmo hectare poderia abastecer 19 pessoas a base de arroz e 22 pessoas a base de batata (WHO, 2003).

Percebe-se então que o impacto ambiental da produção da carne é grande. Uma das maneiras de analisá-lo é por meio da pegada ecológica, que representa a quantidade de terra e mar necessários para regenerar os recursos que uma pessoa ou uma população consome. A alimentação é responsável por 25% da pegada ecológica mundial, sendo que o consumo de alimentos de origem animal corresponde a 61% desse valor, e 33% refere-se ao consumo de carne, sendo assim o maior contribuinte (COLLINS e FAIRCHILD, 2007).

Assim, o sistema de produção de carne atual possivelmente, será insustentável a longo prazo, pois estima-se que 2050 chegaremos a nove bilhões de pessoas e a produção de carne alcançará 465 milhões de toneladas (100% a mais que em 1999) (FAO, 2007). Portanto diversas questões da produção terão que ser discutidas para garantir a sustentabilidade global, entre elas: mudança climática e aquecimento do planeta por meio de gases de efeito estufa, efeito das pastagens no ecossistema, preservação da biodiversidade, fornecimento e uso eficiente da água, competição pelo uso da terra, além de proporcionar alimentação em quantidade e qualidade adequadas à população com retorno econômico viável (COSTA, 2007).

1.1.3 Influência do Consumo na Economia

A pecuária é um setor politicamente e socialmente muito importante, com crescimento expressivo no mundo, contribuindo com cerca de 40% da produção
agropecuária global, além de fornecer meios de subsistência para 1,3 bilhões de pessoas (STEINFELD et al., 2006).

O Brasil é um grande produtor e exportador de carne, sendo que 75% de sua produção se destina ao abastecimento do mercado interno. (MINISTÉRIO DA AGRICULTURA, 2012a). O Ministério da Agricultura brasileiro estima que até 2020, o país aumente sua produção e seja responsável pelo suprimento de cerca de 50% do mercado mundial de carne de boi e aves (MINISTÉRIO DA AGRICULTURA, 2012b).

Atualmente, há poucos dados sobre o consumo individual de alimentos em amostras representativas no Brasil. A Pesquisa de Orçamentos Familiares (POF) é uma fonte importante de informação, pois analisa a disponibilidade de alimentos nas famílias, fornecendo medidas indiretas de consumo (CLARO et al., 2007). Na última pesquisa realizada (2008-2009), a POF contou com um módulo individual de consumo alimentar, isto é, uma subamostra preencheu dois registros alimentares, trazendo dados mais reais dos alimentos consumidos (YOKOO et al., 2008). Entretanto para análise de alimentos, como o consumo de carnes, a POF pode subestimar as quantidades consumidas, já que há diversas preparações relatadas pelos entrevistados que não são desmembradas em seus constituintes (ingredientes), não computando essas quantidades de carne, como a carne da feijoada.

Nas POF de 2002-2003 e 2008-2009, observou-se que os maiores gastos com a alimentação domiciliar foram destinados à aquisição de carnes. Em 2002-2003, esse grupo representava 18% do gasto com alimentação e, em 2008, esse valor subiu para 22% (IBGE, 2010).

Utilizando-se os dados das POF de 1987-1988, 1995-1996 e 2002-2003 para avaliar a contribuição calórica dos alimentos na dieta, identificou-se que a carne apresentou aumento na participação relativa nos anos estudados. A bovina teve maior contribuição em todos os períodos. A carne processada foi a que sofreu maior aumento (104%), seguida da carne de frango (28%) e da bovina (10%). Diferentemente, os peixes tiveram a participação calórica diminuída (17%) nesses 16 anos (LEVY-COSTA et al., 2005).

Entretanto, ao analisar os dados das duas últimas pesquisas (POF 2002-2003 e 2008-2009), verificou-se que a participação relativa de carnes da dieta se manteve a
mesma (12%), assim como a carne suína (1%), peixes (1%) e embutidos (2%), aumentou para frango (de 3 para 4%) e diminui para bovina (de 5 para 4%), sendo que em 2008, a disponibilidade domiciliar de carne bovina e frango se igualou (LEVY-COSTA et al., 2005; LEVY-COSTA et al., 2012).

No mundo, a carne corresponde a 8% do total de energia disponível, 18% da proteína e 23% da gordura da dieta. O consumo é consideravelmente mais elevado nos países de alta renda, particularmente nos EUA, alguns países da Ásia, norte da Europa e a maior parte da Oceania. Já em grande parte da África e da Ásia o consumo é baixo. Bangladesh, por exemplo, tem o menor nível de consumo (0,6% do total de energia disponível) e Mongólia, o maior (28%) (WCRF, 2007).

Entre 1961 e 2002, a disponibilidade per capita de carne no mundo dobrou, sendo que as carnes de porco e de aves apresentaram os maiores índices de elevação (WCRF, 2007). Esse fato pode ser explicado pelo crescimento populacional, aumento da renda e urbanização, o que promoveu melhores condições de armazenamento de alimentos perecíveis (WHO, 2003).

Na América Latina, a disponibilidade de carne per capita na década de 1960 era de 87g/dia e em 2030, estima-se que o esse valor atinja 210g/dia, correspondendo a um aumento de 141% (WHO, 2003).

Em diversos países da Europa, o consumo de carne vermelha e processada é maior que o recomendado pelo WCRF, média de 71g/dia. A Holanda é o país que mais consome, com 108g/dia; seguido da Alemanha com 103g/dia; Espanha com 97g/dia; Dinamarca com 96g/dia, e Itália com 76g/dia (MCAFEE et al., 2010). Já para carne total da dieta, a Irlanda é o país que mais consome (138g), seguido da Espanha (135g), Holanda (125g) e Alemanha (120g) (MCAFEE et al., 2010).

2. JUSTIFICATIVA

Considerando que há evidências científicas da associação entre a ingestão excessiva de carnes, doenças crônicas e impacto no meio ambiente, bem como a
escassez de informações sobre o consumo individual desse grupo de alimentos e sua evolução de consumo, torna-se relevante o conhecimento da distribuição, da magnitude e dos determinantes do consumo de carnes na população residente em São Paulo. Com este trabalho, espera-se fornecer subsídios para o estabelecimento de programas de atenção à saúde e de políticas públicas para promoção da alimentação saudável e ambientalmente sustentável.

3. OBJETIVOS

3.1 OBJETIVO GERAL

- Investigar a tendência temporal do consumo individual de carnes no período de 2003 e 2008 e os fatores associados na população residente no município de São Paulo, assim como avaliar a relação entre o consumo excessivo de carne, qualidade da dieta e impacto ambiental.

3.2 OBJETIVOS ESPECÍFICOS

- Estimar o consumo de carnes na população do município de São Paulo por meio de inquérito domiciliar realizado em 2003 e 2008;
- Avaliar o consumo excessivo de carne de acordo com a recomendação internacional;
- Relacionar consumo de carne com a qualidade da dieta e impacto ambiental da produção de carne;
Verificar a tendência temporal no consumo de carne no período de 2003 e 2008 e sua relação com variáveis socioeconômicas e demográficas.

4. MÉTODOS

4.1 ANTECEDENTES

Os dados do presente estudo foram obtidos a partir da pesquisa “Inquérito de Saúde de São Paulo (ISA – Capital)”, um estudo realizado periodicamente no município de São Paulo. Seu objetivo é conhecer aspectos da realidade da saúde que não estão contidos nos sistemas de informação do Sistema Único de Saúde, para monitorar as condições de saúde da população residente de São Paulo ao longo do tempo e contribuir para avaliar o impacto das políticas de saúde nesse contexto (ISA, 2010). Foram utilizados dados coletados nos anos de 2003 e 2008 (ISA – Capital 2003 e ISA – Capital 2008).

4.2 Delineamento do Estudo

O estudo foi de delineamento transversal de base populacional, realizados por meio de inquérito domiciliar e telefônico em residentes de domicílios particulares na área urbana do município de São Paulo em 2003 e 2008.

4.3 TAMANHO AMOSTRAL

A amostragem dos estudos está descrita abaixo:
- **ISA – Capital 2003:** O plano de amostragem baseou-se na obtenção de amostra probabilística, representativa para os oito domínios de sexo e idade: menores de 1 ano; crianças (1 a 11 anos); adolescentes (12 a 19 anos) de ambos os sexos; adultos (20 a 59 anos) de ambos os sexos, e idosos (60 anos e mais) de ambos os sexos. O tamanho mínimo por domínio foi definido em 200 indivíduos, porém para melhorar o poder estatístico, duplicou-se este valor. Isso possibilitou estimar uma prevalência de 0,5, com erro de amostragem de 0,06, com nível de significância de 5% e efeito de delineamento de 1,5, considerando as possíveis perdas.

O sorteio da amostra foi feito por conglomerados em dois estágios: setores censitários e domicílios. Foi realizado sorteio aleatório simples de 60 setores censitários dentre os setores da Pesquisa Nacional por Amostra de Domicílios (PNAD) de 2002. Os setores foram estratificados segundo o percentual de chefes de família com nível universitário. A amostra inicial resultou em 3357 indivíduos.

A avaliação do consumo alimentar foi destinada a indivíduos com 12 anos ou mais (2514 indivíduos). Assim, a amostra deste trabalho foi composta por indivíduos que responderam ao questionário socioeconômico e dietético, compreendendo 2361 indivíduos (805 adolescentes, 743 adultos e 813 idosos).

- **ISA – Capital 2008:** Tanto os domínios amostrais quanto os procedimentos no sorteio foram os mesmos utilizados no ISA – Capital 2003. O tamanho mínimo por domínio foi definido em 300 indivíduos. Isso possibilitou estimar uma prevalência de 0,5 com erro de amostragem de 0,07, nível de significância de 5% e efeito de delineamento de 1,5.

Foi realizado sorteio aleatório simples de 70 setores censitários dentre os setores da Pesquisa Nacional por Amostra de Domicílios (PNAD) de 2005. A amostra inicial resultou em 3271 indivíduos.

A avaliação do consumo alimentar foi destinada a indivíduos com 12 anos ou mais (2691 indivíduos). Assim, a amostra deste trabalho foi composta por indivíduos que responderam ao questionário socioeconômico e dietético, compreendendo 1662 indivíduos (560 adolescentes, 585 adultos e 517 idosos). As perdas se deram devido a morte, recusa e mobilidade da população (mudança de telefone e domicílio).
4.4 COLETA E PROCESSAMENTO DOS DADOS

Em 2003 e 2008, foram coletadas nos domicílios variáveis demográficas, socioeconômicas e de estilo de vida, bem como investigada a morbidade referida, a história familiar de doenças e o uso de suplementos e medicamentos, por meio de questionários aplicados por entrevistadores previamente capacitados. No presente estudo, utilizaram-se apenas dados socioeconômicos, demográficos e estilo de vida, incluindo consumo alimentar.

4.4.1 Dados Dietéticos

Para a avaliação do consumo alimentar foram coletados em cada inquérito:

- dois **Recordatórios Alimentares de 24 horas** (R24h). No ISA – Capital 2003, os dois R24h foram aplicados no domicílio utilizando o procedimento recomendado por Thompson e Byers (1994) com intervalo médio de 50 meses entre as coletas. No ISA – Capital 2008, o primeiro R24h foi aplicado no domicílio usando o *Multiple Pass* (RAPER et al., 2004) e o segundo por telefone usando o *Automated Multiple Pass* (DWYER et al., 2003) com intervalo médio de 8 meses.

Nos dois estudos o segundo R24h foi utilizado a fim de remover a variabilidade intrapessoal, que infla a distribuição, distorcendo as medidas percentilares e atenuando as medidas de efeito (BEATON, 1994). O tempo decorrido entre os dois R24h foi longo (cerca de quatro anos no ISA – Capital 2003, e cerca de um ano no ISA – Capital 2008), o que pode ter afetado o padrão de consumo da população. Entretanto sabe-se que é mais adequado aplicar algum tipo de ajuste a fim de remover a variabilidade intrapessoal do que utilizar apenas uma medida de consumo dietético (JANHS et al., 2004).

Para tal, foi utilizado o **Multiple Source Method** (MSM), uma técnica estatística, desenvolvida para estimar a ingestão habitual de alimentos e nutrientes.
Esse procedimento utiliza dois R24h e uma probabilidade de consumo. O MSM calcula primeiro a ingestão dietética de indivíduos e então constrói a distribuição populacional baseado nos dados individuais (HAUBROCK et al., 2011; HARTTIG et al., 2011).

A distribuição do consumo de carne em cada inquérito (2003 e 2008) foi gerada separadamente para cada sexo e ajustada para faixa etária e data da coleta. Na predição dos modelos, considerou-se que todos os indivíduos apresentavam probabilidade de consumo habitual de carne maior que zero, já que o uso da frequência de consumo só modificaria os percentis iniciais da distribuição e não a média de consumo habitual (SOUVEREIN et al., 2011).

A padronização na coleta de dados foi realizada por meio de treinamento dos entrevistadores, utilização de formulário padrão para aplicação do R24h, e manual explicativo para o seu preenchimento. As entrevistas se deram em todos os dias da semana e meses dos anos dos estudos.

Anteriormente à digitação dos dados de consumo alimentar foi realizada a revisão de todos os R24h, com o objetivo de identificar falhas no preenchimento e na quantificação dos alimentos referidos pelo indivíduo. Em seguida, as falhas encontradas relacionadas à descrição do alimento, preparação, porcionamento e quantificação de cada item do R24h foram corrigidas para garantir a confiabilidade dos dados e viabilizar a análise de uma dieta mais próxima do real. Para a quantificação dos alimentos e padronização das preparações, foram utilizadas as publicações de Pinheiro et al., (2000) e Fisberg e Villar, (2002).

Os dados obtidos a partir do R24h foram convertidos em energia e nutrientes pelo software Nutrition Data System for Research (NDSR), cuja principal base de dados é a tabela da USDA National Nutrient Database for Standard Reference. O NDSR possui recursos que auxiliam na entrada de dados, além de ter mais de 18.000 alimentos e exportar mais de nove tipos de arquivos, que permitem a análise de nutrientes, alimentos e refeições em nível individual (NCC, 2011). Como o software utiliza uma base de dados americana, foi feita uma lista com a tradução de mais de 700 alimentos, bebidas, preparações e métodos de preparo culinário que os residentes de São Paulo utilizaram. Além disso, foi confrontado o valor de energia e macronutrientes dos alimentos a partir do NDSR com o de tabelas nacionais (TACO
- Tabela Brasileira de Composição de Alimentos - Unicamp e TBCA - Tabela Brasileira de Composição de Alimentos - Faculdade de Ciências Farmacêuticas da USP). Os alimentos que obtiveram percentuais de concordância entre 80% e 120% dos valores de energia e macronutrientes foram incluídos na lista (GAC, 2011).

Após a formação do banco de dados, foram feitas conferências periódicas nos bancos de dados para verificar possíveis erros de digitação. Dados inconsistentes de macronutrientes e energia foram checados nos R24h e corrigidos no software.

A recomendação do World Cancer Research Fund (WCRF) de 500g/semana (71,4g carne vermelha e processada/dia) foi utilizada como referência para designar o consumo excessivo de carne vermelha e processada (WCRF, 2007). O Ministério da Saúde não possui uma recomendação máxima de consumo de carne, portanto utilizou-se apenas a recomendação internacional.

4.5 VARIÁVEIS DE ESTUDO

Consumo de carnes: calculada a partir dos dados de consumo alimentar em g/dia, classificadas em:

Carne total da dieta	soma da ingestão de todas as carnes da dieta no dia relatado (carne de boi, porco, salsicha, linguinha, peru, frango, vísceras de boi, vísceras de ave, peixe e frutos do mar)
Procedência	
Carne de boi	soma de carne de boi, vísceras de boi e embutidos de boi
Carne de porco	soma da carne de porco e embutidos de porco
Carne de peixe	soma da carne de peixe e frutos do mar
Carne de ave	soma da carne de ave, vísceras de ave e embutidos de ave
Processamento

Carne vermelha	soma da carne de boi e de porco não processadas
Carne branca	soma da carne de ave e peixe não processadas
Carne processada	foram consideradas carnes defumadas, curadas, salgadas e com adição de conservantes
Carne vermelha e processada	soma da carne vermelha e da carne processada

Variáveis socioeconômica-demográficas:

Sexo	masculino; feminino
Idade	em grupos etários (adolescentes: 12-19 anos; adultos: 20 a 59 anos; idosos: 60 anos ou mais)
Grau de escolaridade do chefe da família	até sete anos de estudo (ensino fundamental incompleto); oito ou mais anos de estudo (ensino fundamental completo)
Raça	branca; outra
Renda familiar per capita	tercil de renda e salário mínimo
Fumo	não fumante; fumante e ex-fumante
Consumo de álcool	não ingere bebida alcoólica; ingere bebida alcoólica

4.6 ANÁLISE DE DADOS

Todas as análises foram realizadas utilizando-se o *software* Stata 10 (STATA, 2007) e o valor de p<0,05 foi adotado como significativo.
4.6.1 Análise do Primeiro Manuscrito

Para verificar a relação do consumo de carne com a qualidade da dieta, foi utilizado o Índice de Qualidade da Dieta Revisado (IQD-R) (PREVIDELLI et al., 2011). O IQD-R avalia uma combinação de diferentes tipos de alimentos, nutrientes e constituintes da alimentação em relação às recomendações dietéticas atuais, principalmente ao Guia Alimentar para População Brasileira (MS, 2006). O Índice contém 12 componentes, sendo nove baseados em grupos de alimentos (Frutas totais; Frutas integrais; Hortaliças totais; Hortaliças verdes escuros e alaranjados, e leguminosas; Cereais totais; Cereais integrais; Leite e derivados; Carnes, ovos e leguminosas; Óleos) cujas porções diárias são expressas em densidade energética (por 1000 kcal); dois são nutrientes (Sódio e Gordura saturada), e o último corresponde às calorias totais provenientes de gordura sólida, álcool e açúcar de adição (Gord_AA). A pontuação máxima para cada componente é 5 para os seis primeiros, 10 para os cinco seguintes e 20 para o último componente. Escores intermediários são calculados proporcionalmente, exceto para sódio e gordura saturada, em que foram determinadas duas faixas, zero a oito, e oito a dez pontos, sendo que a primeira representa níveis aceitáveis e a segunda, níveis ótimos de ingestão. A pontuação final do IQD-R varia de zero a 100. Para o presente estudo utilizou-se o escore final e os seguintes componentes: Gord_AA; hortaliças totais; frutas totais; cereais integrais, e leite e derivados.

Para verificar o impacto ambiental gerado pelo consumo de carne estimou-se a quantidade de carne vermelha e processada necessária para abastecer a população de São Paulo no ano de 2003 (10.615.844 pessoas) (FUNDAÇÃO SEADE, 2003), segundo dados de consumo representativos do presente estudo. Em seguida, foi estimada emissão de gases de efeito estufa provocada pela produção dessa quantidade de carne, sabendo que se emite cerca 44 kg de equivalentes de CO₂ para produção de um quilo de carne bovina brasileira (CEDEBERG et al., 2011).

Não há informação disponível sobre a quantidade de gases de efeito estufa emitidos pela produção de porcos e carne processada no Brasil, então utilizou-se o
consumo de carne vermelha e processada como proxy para produção de carne bovina.

4.6.2 Análise do Segundo Manuscrito

Os valores médios e erros padrão foram calculados considerando-se a ingestão usual predita pelo MSM.

As diferenças entre as médias foram realizadas por meio do Teste de Wald, que calcula estimativas pontuais por meio da estatística f, usando as ponderações de amostras complexas.

A contribuição das carnes na ingestão de calorias e macronutrientes e a contribuição em gramas dos tipos de carne processada foram calculadas pela metodologia proposta por Block et al., (1985). A diferença entre as proporções foi feita pelo teste de proporções.

4.7 ASPECTOS ÉTICOS DA PESQUISA

O presente estudo foi aprovado pelo Comitê de Ética em Pesquisa da Faculdade de Saúde Pública da Universidade de São Paulo (COEP) e utilizou dados oriundos de projetos anteriormente aprovados pelo COEP e pelo Comitê de Ética em Pesquisa da Secretaria Municipal da Saúde (Anexo 2). O projeto foi elaborado respeitando os aspectos éticos e requisitos da Resolução CNS 196/96.
5. RESULTADOS E DISCUSSÃO

Os resultados e discussão desta dissertação são apresentados em formato de dois manuscritos. O primeiro, intitulado “Excessive meat consumption in Brazil: diet quality and environmental impacts”, foi aceito pela revista Public Health Nutrition, e o segundo, “Tendência no consumo de carne em São Paulo: discussões no âmbito da saúde e do meio ambiente” será submetido a um periódico da área.
Excessive meat consumption in Brazil: diet quality and environmental impacts

1. Aline Martins de Carvalho
2. Chester Luiz Galvão César
3. Regina Mara Fisberg
4. Dirce Maria Lobo Marchioni

a Department of Nutrition; School of Public Health, University of São Paulo, São Paulo, Brazil. Address: Departamento de Nutrição da Faculdade de Saúde Pública - Av. Dr. Arnaldo, 715 - São Paulo – SP.

b Department of Epidemiology; School of Public Health, University of São Paulo, São Paulo, Brazil. Address: Departamento de Epidemiologia da Faculdade de Saúde Pública - Av. Dr. Arnaldo, 715 - São Paulo – SP.

All authors read and approved the final manuscript.

Correspondence to:
Aline Martins de Carvalho
Job Title: Master student
Institution: School of Public Health, University of São Paulo
Address: Departamento de Nutrição - Faculdade de Saúde Pública - Av. Dr. Arnaldo, 715 - Cerqueira César – CEP 01246-904 - São Paulo – SP - Brasil.
Phone: 55 11 3061-7804
Fax: 55 11 3061-7804
E-mail: marchioni@usp.br

Word count: 2702
Number of table: 4
Running title: Meat intake: diet and environmental impacts
ABSTRACT

Objective. To evaluate red and processed meat intake, and the impacts meat consumption has on diet quality and on the environment.

Design. A large cross-sectional health survey performed in São Paulo, Brazil.

Setting. Diet was assessed by two 24-Hour dietary recalls. Usual intakes were calculated using the Multiple Source Method. The World Cancer Research Fund (WCRF) recommendation of an average of 71.4 g/day was used as the cut-off point to estimate excessive red and processed meat consumption. To investigate the relationship between meat consumption and diet quality we used the Brazilian Healthy Eating Index Revised (BHEI-R). The environmental impact was analyzed according to estimates of CO₂ equivalents emission from meat consumption.

Subjects. 1677 Brazilians aged 19 and older were studied.

Results. The mean of red and processed meat intake was 138g/day for men and 81g/day for women. About 81% of men and 58% of women consumed more meat than what is recommended by the WCRF. Diet quality was inversely associated with excessive meat intake in men. In Brazil alone, greenhouse gases emission from meat consumption, in 2003, were estimated at approximately 18,071,988 tons of CO₂ equivalents, representing about 5% of total CO₂ emitted by agriculture.

Conclusions. The excessive meat intake, associated with poorer diet quality observed support initiatives and policies to advise to reduce red and processed meat intake within the recommended amounts, as part of a healthy and environmentally sustainable diet.

Key words: red and processed meat; food intake; diet quality; environmental impact.
1. INTRODUCTION

Meat is an important food item for human nutrition because it contains between 20% to 40% protein, and also minerals such as iron, zinc and selenium, B6 and B12 vitamins. The unsaturated and the conjugated fatty acids from meat may help prevent cardiovascular diseases (CVD). However, excessive meat consumption leads to high intake of saturated fat, cholesterol, potentially carcinogenic substances such as heterocyclic amines and polycyclic aromatic hydrocarbons formed during the cooking process, and of sodium and nitrite that are added in processed meats. Therefore excessive meat consumption has been linked to chronic diseases such as CVD, diabetes, colorectal cancer, weight gain and stroke.

Excessive meat consumption has been negatively associated with diet quality in some countries. In the USA, meat consumption has been a public health concern since late 1950s, when the American Heart Association released recommendations to prevent CVD. Today, the World Cancer Research Fund recommends limited consumption of cooked red meats (beef and pork) and processed meats (cured, salted, smoked or containing chemical preservatives) (500g/week) for cancer prevention. The Brazilian Ministry of Health recommends one serving of meat per day (100g/day) for a healthy diet. But, there are few studies evaluating meat intake in Brazil.

Livestock production already takes up 30 per cent of the world’s useable land area, and causes major impacts on the environment due to: deforestation for livestock grazing; emission of greenhouse gases by animals; water pollution by discharge of organic matter, pathogens, drug residues and antibiotics in lakes, rivers and seas; and loss of biodiversity. Cattle ranching is an important economic activity in Brazil. The country is one of the world largest beef exporters. However, this sector of the economy is the second-largest emitter of greenhouse gases in Brazil, mainly due to enteric fermentation by ruminant herbivores (one of the greatest sources of methane emissions in the country) and also due to handling of animal wastes.

Considering the possible deleterious effects of excessive meat consumption on human health and on the environment, monitoring production and consumption of meat is important to promoting healthy eating policies. The aim of the present study...
was to evaluate red and processed meat intake and also to assess the impact of this consumption on the diet quality and on the environment.

2. EXPERIMENTAL METHODS

2.1 Participants

The data comes from a cross-sectional population based survey titled Health Survey for São Paulo, conducted in 2003 (ISA-Capital 2003)\(^{(12)}\). A two-stage cluster sampling was used: census tracts and household. Census tracts were grouped into three strata based on the percentage of heads of the household with higher education. More details on sampling are available in Castro et al.\(^{(13)}\). In the present study, the final sample comprised 1677 subjects (both males and females), 847 adults and 830 elderly people.

Information about health, food intake and life conditions were collected in a representative sample of residents of the city of São Paulo, Brazil, by a structured questionnaire applied at subjects’ homes. This questionnaire concerning demographic (age, gender), socioeconomic (family income, education level of the household head) and lifestyle characteristics (smoking, alcohol consumption) was administered by trained interviewers at the participants homes.

A follow up study was completed in 2007 with a second household dietary survey. The final sample comprised 486 subjects (both males and females): 195 adults and 291 elderly people. Loss in the sample was due absence in the house after three attempts, refuse and change of address.

The project was approved by the Ethics Committee of the School of Public Health, University of São Paulo.

2.2 Assessment of dietary intake

Dietary assessment consisted of two 24-hour dietary recall (24HR) adapted from Thompson & Byers\(^{(14)}\). Interviewers were trained on using standard forms for administering the 24HR and received a manual explaining how to fill it out, thus standardizing data collection. Data was collected in 2003 and in 2007, at households, everyday of the month for the period of a year.

The household measures reported were converted into grams and milliliters, according to Pinheiro et al.\(^{(15)}\) and Fisberg & Villar\(^{(16)}\). Recipes were broken down into ingredients to estimate the amount of meat in each preparation.
Data from the 24HR were entered into the Nutrition Data System for Research (version 5.0, 2007, Nutrition Coordinating Center at the University of Minnesota, Minneapolis, MN, USA)\(^{(17)}\) and were converted to energy and nutrients (total fat, saturated fat, dietary fiber and vitamin C).

Definition of red and processed meat intake

The variable “red and processed meat” was calculated using the sum of red meat (beef and pork) and processed meat (cured, salted, smoked or containing chemical preservatives).

The Multiple Source Method (MSM), a statistical modelling technique, was used to estimate the usual dietary intake of red and processed meat. This technique uses two 24HR and a probability of consume\(^{(18,19)}\). The MSM calculates dietary intake for individuals first and then constructs the population distribution based on the individual data. Age group, and date of interview were included as covariates of model. All participants were considered meat daily consumers in MSM, because meat, specially red and processed meat, is consumed by almost all São Paulo’s population, according to previous data\(^{(20,21)}\).

The World Cancer Research Fund maximum recommended intake of 500g red and processed meat/week, corresponding to an average of 71.4 g red and processed meat/day, was the cut-off point to estimate excessive red and processed meat intake\(^{(3)}\).

Diet quality

To investigate the relationship between red and processed meat consumption and diet quality, we used the Brazilian Healthy Eating Index Revised (BHEI-R)\(^{(22)}\). The BHEI-R evaluates a combination of different types of foods, nutrients and others components of the diet with current dietary recommendations, especially the Brazilian Dietary Guidelines\(^{(1)}\). The Index is similar to HEI, 2005\(^{(23)}\) and comprises 12 components: nine are food groups expressed in terms of energy density (per 1000 kcal) (Total fruits; Whole fruits; Total vegetables; Dark green and orange vegetables and legumes; Total grains, Whole grains; Milk and dairy; Meat, eggs and legumes; Oils); two are nutrients (sodium and saturated fat), and the other is calories from solid fat, added sugar and alcohol (SoFAAs). The maximum score for the first six components is 5, for next five components is 10, and for the last component is 20.
Intermediate scores are calculated proportionately. Thus, the final score of the BHEI-R ranges from zero to 100. The following components were analyzed: SoFAAs, Total vegetables, Whole fruits, Whole grains, and Milk and dairy.

2.3 Environmental impact

To evaluate the environmental impact caused by meat consumption, we estimated the amount of red and processed meat consumed by the population of São Paulo, in 2003 (10,615,844 people)\(^{(24)}\). Then, we estimated greenhouse gases emissions by total meat consumption, knowing that the production of 1 kg of Brazilian beef generates about 44 kg of CO\(_2\) equivalents\(^{(25)}\). There is no available information on carbon footprint of pork and processed meat production in Brazil, so we used red and processed meat intake as proxy for beef production.

2.4 Statistical analyses

Mean values, confidence intervals (95\%) and proportion of subjects who consumed red and processed meat were calculated considering the predicted usual intake distribution by MSM, adjusted by age group and year of interview separated by sex.

Differences between means and proportions, we performed using the Wald test, which calculates point estimates using f statistic and considers the weights from complex samples\(^{(26)}\).

The association between energy intake, nutrients intake and selected BHEI-R scores according to categories of red and processed meat consumption (moderate intake; high intake) was investigated by analysis of variance among the three groups.

For all analyses, Stata 10\(^{(27)}\) was used and \(p < 0.05\) was considered statistically significant.

3. RESULTS

Daily per capita consumption of red and processed meat was 106g, 138g for men and 81g for women. Daily consumption of pork was 8g, bovine was 73g, processed meat was 25g (data not shown in table).

The average daily red and processed meat intake, according to socioeconomic, demographic and lifestyle variables is shown in Table 1.
	Male	Female				
	n	Mean (g)	CI	n	Mean (g)	CI
Age group						
Adult	347	143	138; 148	399	84	79; 88
Elderly	395	105	101; 109	421	64	60; 68
p*	<0.05			<0.05		
Education of Household						
Head						
Up to 7 years	436	135	128; 141	490	79	74; 85
8 years or more	298	142	135; 148	317	83	77; 88
p*	0.14			0.42		
Family income per capita						
Low-income	202	131	122; 139	299	82	76; 88
Middle income	226	141	133; 150	234	83	73; 92
High income	254	139	132; 146	226	80	74; 86
p*	0.16			0.81		
Smoking						
Non-smoker	331	138	131; 145	572	78	74; 82
Smoker and ex	390	136	130; 142	226	87	78; 95
p*	0.42			0.06		
Alcohol consumption						
Drinks at least twice a month	419	139	132; 145	251	85	79; 91
p*	0.26			0.14		
Race						
White	482	135	128; 141	551	83	78; 87
Other	258	143	135; 150	267	77	71; 84
p*	0.17			0.19		
Total	742	138	133; 142	820	81	77; 85

* P values for F statistics (Wald test).

The proportion of subjects with high red and processed meat intake was 81% of men and 58% of women (Table 2). According to the characteristics analyzed, there were no significant differences except for adult females who had a higher proportion in red and processed meat consumption than elderly women (Table 2).
Table 2. Proportion (%) of individuals with high daily red and processed meat intake according to gender and socioeconomic variables. São Paulo, 2003.

	Male (%)	Female (%)
Age group		
Adult	82	61
Elderly	77	41
p*	0.08	<0.05
Education of household head		
Up to 7 years	79	58
8 years or more	83	58
p*	0.46	0.99
Family income Per capita		
Low-income	73	57
Middle income	85	63
High income	84	56
p*	0.12	0.66
Non-smoker	80	55
Smoking		
Smoker and ex	81	65
p*	0.72	0.06
Did not drink for 1y	79	57
Alcohol consumption		
Drinks at least twice a month	81	61
p*	0.61	0.41
White	80	61
Race		
Other	82	53
p*	0.67	0.16
Total	81	58

* P values for F statistics (Wald test).

We also found that those who ate excessive red and processed meat had higher energy, and higher total and saturated fat intakes, in both sexes. For men and women who consumed red and processed meat in excess, energy intake was respectively 1.4 times and 1.3 times higher; total fat intake was respectively 1.7 times and 1.5 times higher, and saturated fat intake was respectively 2.0 times and 1.6 times higher than intakes of those who had moderate red and processed meat intake. Vitamin C consumption and dietary fiber was not different among the groups (Table 3).

When we evaluated the BHEI-R score, it was significantly lower among males who ate excessive amounts of red and processed meat, that is, the diet quality
was inversely associated with high consumption of red and processed meat in men (Table 3).

Table 3. Average daily energy and nutrient intake according to levels of red and processed meat consumption. São Paulo, 2003.

	Male	Female
Red and processed meat		
Energy (kcal)		
Moderate intake	142 1688 1522; 1855	344 1346 1237; 1455
High intake	600 2303 2212; 2393 <0.01	476 1738 1652; 1824 <0.01
Total fat (g)		
Moderate intake	142 52.3 45.0; 59.7	344 46.3 41.3; 51.3
High intake	600 90.4 85.7; 95.0 <0.01	476 71.0 66.6; 75.3 <0.01
Saturated fat (g)		
Moderate intake	142 14.5 12.1; 16.9	344 14.1 12.2; 16.0
High intake	600 28.8 27.1; 30.5 <0.01	476 23.0 21.3; 24.8 <0.01
Dietary fiber (g)		
Moderate intake	142 19.2 16.6; 21.7	344 13.0 12.1; 14.0
High intake	600 18.5 17.5; 19.6 0.66	476 13.8 12.9; 14.6 0.19
Vitamin C (mg)		
Moderate intake	142 63.0 44.1; 82.0	344 64.3 33.6; 95.1
High intake	600 71.1 50.8; 89.4 0.57	476 59.1 49.3; 68.9 0.74
BHEI-R (score)		
Moderate intake	142 59.6 57.9; 61.3	344 57.9 56.2; 59.5
High intake	600 54.4 53.3; 55.5 <0.01	476 56.2 54.6; 57.8 0.15

* P values for F statistics (Wald test).

Scoring for SoFAAs (calories from solid fat, added sugar and alcohol) was significantly lower in men and women with high red and processed meat intake, showing that these individuals consumed more solid fat, added sugar and alcohol than the others. High consumption of red and processed meat was also negatively related to dairy products in women and positively related to total vegetables in women. Total fruit and whole grains did not show statistical difference among groups (Table 4).

The amount of red and processed meat estimated for the population of São Paulo, in 2003, was about 410,727 tons. The production of this amount of meat released into the environment, 18,071,988 tons of CO₂ equivalents, what represents 4.1% of total CO₂ emitted by agriculture in Brazil, in 2003.
Table 4. BHEI-R and BHEI-R components according to levels of red and processed meat consumption by sex, São Paulo, 2003.

	Male	Female					
Red and processed meat	**Mean**	**CI**	**p**	**Mean**	**CI**	**p**	
SoFAA** (max 20)	Moderate intake	13.2	12.0; 14.4	11.0	10.2; 11.8		
	High intake	8.8	8.0; 9.6	<0.01	9.2	8.2; 10.2	<0.05
Total vegetables (max 5)	Moderate intake	4.1	3.8; 4.4	3.8	3.5; 4.1		
	High intake	4.5	4.3; 4.6	0.06	4.5	4.3; 4.8	<0.01
Total Fruits (max 5)	Moderate intake	1.7	1.2; 2.2	1.9	1.6; 2.1		
	High intake	1.4	1.2; 1.7	0.18	1.7	1.5; 2.0	0.51
Whole grains (max 5)	Moderate intake	0.3	0.1; 0.4	0.4	0.2; 0.5		
	High intake	0.3	0.2; 0.4	0.56	0.5	0.3; 0.6	0.37
Milk and diary (max 10)	Moderate intake	3.7	2.9; 4.6	5.2	4.6; 5.8		
	High intake	3.2	2.9; 3.7	0.3	3.9	3.5; 4.4	<0.01
BHEI-R (score)	Moderate intake	59.6	57.9; 61.3	57.9	56.2; 59.5		
	High intake	54.5	53.3; 55.5	<0.01	56.2	54.6; 57.8	0.15

* P values for F statistics (Wald test).
** SoFAAs: calories from solid fat, added sugar and alcohol

4. DISCUSSION

This is one of the few representative surveys based, that estimates meat consumption in Brazil. The result shows that meat is consumed almost universally in the city of São Paulo.

We observed that average red and processed meat intake exceeded 1.9 and 1.1 times maximum the limit of recommended meat intake (WCRF)\(^3\) for men and women, respectively. Other results were observed elsewhere. In the UK, daily average consumption of red and processed meat is 78g and 47g for men and women, respectively; in Ireland, 94g for men and 58g for women; in Spain, 127g for men and 68g for women\(^2\); and in the U.S., 116g for men and 71g for women\(^4\). What draws attention to our study is that red and processed meat consumption in São Paulo was even greater than in the U.S. - the world largest beef consumer\(^4\).

Excessive red and processed meat consumption is not considered healthy. It is known that only 50g of processed meat/day is associated with 42% increase in risk of
cardiovascular disease and 19% increase in risk of diabetes(5), and there is convincing evidence that red and processed meat increases risk of colorectal cancer(3).

In our study, excessive red and processed meat intake was related to a poor diet quality in men, showing that red and processed meat consumption had a negative effect on the diet quality. It was also associated with higher calorie intake from added sugar and alcohol, and lower intake of milk and dairy products in women. In Ireland, high processed meat consumption was also associated with lower intake of whole grain breads, fruits, vegetables and fish, and higher soft drink consumption, when compared with no or little meat consumption(6). In Japanese women, the ratio of fish to meat intake was positively associated with fruits, vegetables, milk and alcohol intakes, and negatively associated with soft drink, fat and oil intakes, showing that those who consume less red meat have a healthier dietary pattern(9).

In the present study, excessive red and processed meat consumption was also associated with higher energy, total fat and saturated fat intake, what might increase risk of CVD and being overweight, which are prevalent and high costing diseases. In Brazil, the prevalence of overweight adults is high, nearly 50\%(28). In São Paulo, the latest figures released show that 44\% of adults are overweight(29). In an European cohort study of more than 350,000 adults, a positive association between meats consumption and weight gain was noticed in total meat, red meat, processed meat and poultry, even after it was adjusted for energy, dietary patterns, smoking and body mass index(8).

In addition to these health effects, meat production causes large impacts on the environment due to: deforestation for livestock grazing; emission of greenhouse gases by animals; water pollution and biodiversity loss(30). We estimated that to produce the amount of meat consumed in São Paulo, in 2003, there was an emission of 4\% of greenhouse gases by Brazilian agriculture(31).

If a car travels a distance between Brazil and Canada (9,673 km), it would emit the same quantity of CO\textsubscript{2} that the CO\textsubscript{2} produced to supply meat intake of one person in one year in São Paulo(32). Greenhouse gas emissions would have been almost 50\% lower meat consumption had not exceeded maximum recommendations by WCRF (71.4 g / day) in São Paulo.
Promoting dietary changes towards healthy eating is a challenging task, because the process of food choice is complex and driven by features beyond our knowledge, such as cultural, environmental and economical. Although, meat is associated with increased risk of chronic diseases, and, is an expensive food item, of a complicated food market logistic distribution, it is being highly consumed. On the other hand, intake of fruits and vegetables is very low despite the well-known beneficial effects of its consumption\(^{(33)}\). This might illustrate how a food item is valued by the population in spite of its nutritional composition\(^{(34)}\). This can happen because meat, especially red meat, has a cultural value. It is desired by people from different cultures and of varying degrees of economic development\(^{(35)}\), making it especially attractive for consumption.

For successfully promoting healthy eating, a multidisciplinary approach needs to be taken. Our results add evidence that public policies should focus on encouraging lower red and processed meat consumption in this population, so intake would be within the recommended range, therefore reducing the risk of chronic diseases and preventing environmental degradation.

Limitation

The ISA is a cross-sectional study in which we cannot determine causality of events, but by using a probability sample and being a population-based study, results can be extrapolated to the total population of São Paulo. The use of two 24-hour dietary recall allowed estimating the usual food intake, but the period between assessment surveys (2003 – 2007) can be considered large, one could argue that changes over time could lead to differential changes in the eating patterns, as well as in within and between-person variation. However, it is known that any adjust gives less biased results than not adjusting distributions\(^{(4,36,37)}\).

5. CONCLUSION

The excessive red and processed meat intake, associated with poorer diet quality observed support initiatives and policies to advise to reduce red and processed meat intake within the recommended amounts, as part of a healthy and environmentally sustainable diet.

6. REFERENCES
1. Ministério da Saúde. Secretaria de Atenção à Saúde. Coordenação-Geral da Política de Alimentação e Nutrição. (2006) Guia alimentar para a população brasileira: promovendo a alimentação saudável. Brasília: Ministério da Saúde.

2. McAfee a AJ, McSorley EM, Cuskelly GJ et al. (2010) Red meat consumption: An overview of the risks and benefits. *Meat Science* **84**, 1–13.

3. World Cancer Research Fund / American Institute for Cancer Research. (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective, Washington DC: AICR.

4. Daniel CR, Cross AJ, Koebnick C et al. (2011) Trends in meat consumption in the USA. *Public Health Nutr* **14**, 575-83.

5. Micha R, Wallace SK, Mozaffarian D. (2010) Red and Processed Meat Consumption and Risk of Incident Coronary Heart Disease, Stroke, and Diabetes Mellitus: A Systematic Review and Meta-Analysis. *Circulation* **121**, 2271-83.

6. Cosgrave M, Flynn A, Kiely M. (2005) Consumption of red meat, white meat and processed meat in Irish adults in relation to dietary quality. *British Journal of Nutrition* **93**, 933-42.

7. Hodgson JM, Ward NC, Burke V et al. (2007) Increased lean red meat intake does not elevate markers of oxidative stress and inflammation in humans. *J Nutr* **137**, 294-303.

8. Vergnaud AC, Norat T, Romaguera D et al. (2010) Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. *Am J Clin Nutr* **92**, 398-407.

9. Okubo H, Sasaki S, Murakami K et al (2011). The ratio of fish to meat in the diet is positively associated with favorable intake of food groups and nutrients among young Japanese women. *Nutrition Research* **31**, 169-177.

10. Steinfeld H, Gerber P, Wassenaar T et al. (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of th United Nations: Roma.

11. Ministério da Ciência e Tecnologia. Inventário brasileiro das emissões e remoções antrópicas de gases de efeito estufa. Available at: http://www.mct.gov.br/upd_blob/0207/207624.pdf
12. ISA - Inquérito de Saúde no Município de São Paulo [homepage na internet]. São Paulo: Faculdade de Saúde Pública da USP. Available at: http://hygeia.fsp.usp.br/isa-sp/index_arquivos/Page3157.htm
13. Castro MA, Barros RR, Bueno MB et al. (2009) Trans fatty acids intake among the population of the city of São Paulo, Brazil. Rev Saude Publica 43, 991-97.
14. Thompson FE & Byers T. (1994) Dietary assessment resource manual. J Nutr 124, 2245S-2317S.
15. Pinheiro ABV, Lacerda EM de A, Benzecry EH et al. (2000) Tabela para Avaliação de Consumo Alimentar em Medidas Caseiras. 4.ed. São Paulo: Ed. Atheneu.
16. Fisberg RM & Villar BS. (2002) Manual de receitas e Medidas caseiras para Cálculo de Inquéritos Alimentares: manual elaborado para auxiliar o processamento de inquéritos alimentares. São Paulo: Signus.
17. NDSR - Nutrition Data System for Research. [computer program]. Version 2005. Minneapolis: University of de Minnesota; 2005.
18. Haubrock J, Nöthlings U, Volatier JL et al. (2011) Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J Nutr 141, 914-920.
19. Harttig U, Haubrock J, Knüppel S et al. (2011) The MSM program: web-based statistics package for estimating usual dietary intake using the Multiple Source Method. European Journal of Clinical Nutrition 65, S87–S91.
20. Fisberg RM, Morimoto JM, Slater B et al. (2006) Dietary Quality and Associated Factors among Adults Living in the State of São Paulo, Brazil. J Am Diet Assoc 106, 2067-2072.
21. Previdelli AN, Lipi M, Castro ML et al. (2010) Dietary Quality and Associated Factors among Factory Workers in the Metropolitan Region of São Paulo, Brazil. J Am Diet Assoc 110, 786-790.
22. Previdelli AN, Andrade SC, Pires MM et al. (2011) Índice de Qualidade da Dieta Revisado (IQD-R): desenvolvimento para população brasileira. Rev Saúde Pública 45, 794-798.
23. Guenther PM, Reedy J, Krebs-Smith SM et al. (2007) Development and Evaluation of the Healthy Eating Index-2005: Technical Report. Center for Nutrition
Policy and Promotion, U.S. Department of Agriculture. Available at: http://www.cnpp.usda.gov/HealthyEatingIndex.htm

24. Fundação Seade. Anuário Estatístico do Estado de São Paulo 2003. Available at: http://www.seade.gov.br/produtos/anuario/mostra_tabela.php?anos=2003&tema=de m&tabpesq=dem2003_02&tabela=null

25. Cedeberg C, Persson UM, Neovius K et al. (2011) Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environ Sci Technol 45, 1773-1779.

26. Rizzo L, Moser RP, Waldron W et al. (2008) Analytic methods to examine changes across years using hints 2003 & 2005 data. Division of Cancer Control and Population Sciences, National Cancer Institute.

27. Stata Corp. (2007) Stata statistical software: release 10. TX: Stata Corp LP.

28. IBGE – Instituto Brasileiro de Geografia e Estatística. (2010) Indicadores IBGE: Pesquisa de orçamentos familiares 2008-2009: antropometria e estado nutricional de crianças, adolescentes e adultos no Brasil. Rio de Janeiro: IBGE.

29. IBGE – Instituto Brasileiro de Geografia e Estatística. (2006) Indicadores IBGE: Pesquisa de orçamentos familiares 2002-2003: antropometria e estado nutricional de crianças, adolescentes e adultos no Brasil. Rio de Janeiro: IBGE.

30. McMichael A, Powles JW, Butler CD et al. (2007) Food, livestock production, energy, climate change, anh health. Lancet 370, 1253-1263.

31. Secretaria Municipal do Verde e do Meio Ambiente. (2005) Inventário de emissão de gases de efeito estufa do Município de São Paulo. Available at: http://ww2.prefeitura.sp.gov.br/arquivos/secretarias/meio_ambiente/Sintesedoinventario.pdf

32. Carisson-Kanyama A & González AD. (2009) Potencial contributions of food consumption patterns to climate change. Am J Clin Nutr 89, 1704S-9S.

33. Bigio RS, Verly Junior E, Castro MA et al. (2011) Determinants of fruit and vegetable intake in adolescents using quantile regression. Rev Saude Publica 45, 448-56.

34. Bazzano LA. (2005) Dietary Intake of fruit and vegetable and risk of diabetes mellitus and cardiovascular diseases. Geneva: WHO.
35. Swatland HJ. (2010) Meat products and consumption culture in the West. *Meat Science* **86**, 80–85.

36. Beaton GH, Milner J, Corey P *et al.* (1979) Sources of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. *Am J Clin Nutr* **32**, 2546-59.

37. Janhs L, Arab L, Carriquiry A *et al.* (2004) The use of external within-person variance estimates to adjust nutrient intake distributions over time and across populations. *Public Health Nutr* **8**, 69-76.
5.2 SEGUNDO MANUSCRITO

Tendência no consumo de carne em São Paulo: discussões no âmbito da saúde e do meio ambiente

Trends in meat consumption in city of Sao Paulo: health and environmental discussions

1. Aline Martins de Carvalho
2. Chester Luiz Galvão César
3. Regina Mara Fisberg
4. Dirce Maria Lobo Marchioni
RESUMO

Introdução. As carnes são boas fontes nutricionais para o homem, porém devem ser consumidas com moderação, pois seu consumo excessivo tem sido relacionado ao aumento do risco de doenças crônicas e impacto no meio ambiente. Objetivo. Analisar a tendência do consumo dos diversos tipos de carne no município de São Paulo na última década e sua relação com variáveis socioeconômicas e demográficas, além de oferecer subsídios para discussões sobre consumo excessivo de carne e seu impacto na saúde e no meio ambiente. Métodos. Estudo transversal de base populacional realizado com 2361 indivíduos em 2003 e 1662 em 2008, de ambos sexos, com 12 anos ou mais, incluídos no Inquérito de Saúde de São Paulo (ISA – Capital). O consumo alimentar foi verificado em cada ano com o uso dois recordatórios alimentares de 24 horas. A estimativa de ingestão habitual das carnes foi feita pelo Multiple Source Method. Resultados. O consumo de carnes em São Paulo aumentou em cerca de 20% em toda a população, exceto em idosos que mantiveram consumo constante nos anos estudados. O tipo de carne mais consumido nos dois períodos foi a carne bovina, seguida pela carne de aves, porco e peixe. O consumo de carne processada vem crescendo, principalmente entre os adolescentes. A contribuição de gorduras pela carne vermelha e bovina diminuiu no período, e a contribuição de gorduras e proteína pela carne processada aumentou. Cerca de 75% da população excedeu a recomendação internacional de consumo de carne vermelha e processada. Conclusão. O consumo excessivo de carne foi verificado em grande parte da população, com aumento significativo de consumo no período estudado. Assim, é fundamental o estabelecimento de políticas públicas para redução do consumo de carne, principalmente vermelha e processada, como parte de uma alimentação saudável e ambientalmente sustentável.

Palavras-chave: carne, consumo alimentar, tendência, impacto ambiental, risco à saúde.
INTRODUÇÃO

As carnes são boas fontes nutricionais para o homem, pois contêm proteína, minerais e vitaminas (Ministério da Saúde, 2006), além de ácidos graxos insaturados e conjugados, que ajudam na prevenção de doenças cardiovasculares (DCV) (McAfee et al., 2010). No entanto, o consumo de carnes em excesso tem sido associado a doenças crônicas. Há evidências da associação entre consumo excessivo de carne vermelha e processada e DCV, diabetes (Micha et al., 2010), câncer de cólon e reto (WCRF, 2007; Ferguson, 2010; Hu et al., 2011), ganho de peso, infarto (Hodgson et al., 2007; Vergnaud et al., 2010) e maior risco de mortalidade (Sinha et al., 2009; Pan et al., 2012). Isto, possivelmente devido a seus altos teores de gorduras saturadas, colesterol e substâncias potencialmente carcinogênicas formadas no preparo culinário, como as aminas heterocíclicas, hidrocarbonetos policíclicos aromáticos, além de sódio e nitritos, adicionados nas carnes processadas (WCRF, 2007; Ferguson, 2010; Hu et al., 2011).

Atualmente, as diretrizes brasileiras orientam para sua população a ingestão de uma porção de carne por dia, 190 kcal, como parte de uma dieta saudável (Ministério da Saúde, 2006). Para carne vermelha e processada, o World Cancer Research Fund recomenda o consumo máximo de 500g/semana para prevenção de câncer (WCRF, 2007). Contudo, diversos países desenvolvidos apresentam consumo excessivo (McAfee et al., 2010; Daniel et al., 2011).

Além do custo à saúde ocasionado pelo consumo excessivo da carne, a sua produção gera considerável impacto para o meio ambiente, pois promove desmatamento, efeito estufa, poluição das águas, redução da biodiversidade, além de ocupar muitos hectares de terra para pastagem (Horrigan et al., 2002; Steinfeld et al., 2006; McMichael et al., 2007; Garnett et al., 2008; Cedeberg et al., 2011).

O sistema de produção de carne atual, possivelmente, será insustentável a longo prazo, pois estima-se que em 2050 chegaremos a nove bilhões de habitantes e a produção de carne alcançará 465 milhões de toneladas (100% a mais do que em 1999) (FAO, 2007).

Portanto, é fundamental o monitoramento de populações, a fim de fomentar políticas de promoção de alimentação saudável e ambientalmente sustentável.
O presente estudo teve como objetivo analisar a tendência do consumo dos diversos tipos de carne no município de São Paulo na última década e sua relação com variáveis socioeconômicas e demográficas, além de oferecer subsídios para discussões sobre consumo excessivo de carne e seu impacto na saúde e meio ambiente.

METODOLOGIA

Coleta de dados e população do estudo

Os dados do presente estudo foram obtidos a partir da pesquisa “Inquérito de Saúde de São Paulo (ISA – Capital)”, um estudo transversal de base populacional com amostra probabilística, realizado periodicamente no município de São Paulo. Foram utilizados dados de sexo, faixa etária e renda familiar per capita da população coletados em 2003 e em 2008 (ISA – Capital 2003 e ISA – Capital 2008).

Os dois inquéritos tiveram processo de amostragem semelhante com oito domínios amostrais (menores de 1 ano; crianças (1 a 11 anos); adolescentes (12 a 19 anos) de ambos os sexos; adultos (20 a 59 anos) de ambos os sexos, e idosos (60 anos e mais) de ambos os sexos). O sorteio da amostra foi feito por conglomerados em dois estágios: setores censitários e domicílios. Para o presente estudo, utilizaram-se apenas os dados de indivíduos de 12 anos ou mais que responderam ao inquérito dietético, totalizando 2361 indivíduos (805 adolescentes, 743 adultos e 813 idosos) no ISA – Capital 2003, e 1662 indivíduos (560 adolescentes, 585 adultos e 517 idosos) no ISA – Capital 2008. Mais detalhes da amostragem podem ser encontrados em outras publicações (Castro et al., 2009; Fisberg et al., 2012).

Os estudos foram submetidos e aprovados pelo Comitê de Ética em Pesquisa da Faculdade de Saúde Pública da Universidade de São Paulo. Todos os participantes assinaram o termo de consentimento livre esclarecido.

Análise e processamento de dados do consumo alimentar

Para a avaliação do consumo alimentar foram coletados em cada inquérito:
- dois Recordatórios Alimentares de 24 horas (R24h). No ISA – Capital 2003, os dois R24h foram aplicados no domicílio utilizando o procedimento recomendado por Thompson e Byers, (1994), com intervalo médio de 50 meses entre as coletas. No ISA – Capital 2008, o primeiro R24h foi aplicado no domicílio usando o Multiple Pass (Raper et al., 2004) e o segundo por telefone usando o Automated Multiple Pass (Dwyer et al., 2003) com intervalo médio de 8 meses.

Nos dois estudos o segundo R24h foi utilizado para remover a variabilidade intrapessoal, que tem efeito de inflar a distribuição, distorcendo as medidas percentilares e atenuando as medidas de efeito (Beaton, 1994). O tempo decorrido entre os dois R24h foi longo (cerca de quatro anos no ISA – Capital 2003, e cerca de um ano no ISA – Capital 2008), o que pode ter afetado o padrão de consumo da população. Entretanto sabe-se que é mais adequado aplicar algum tipo de ajuste a fim de remover a variabilidade intrapessoal do que utilizar apenas uma medida de consumo dietético (Janhs et al., 2004).

Este ajuste foi feito pelo Multiple Source Method (MSM), uma técnica estatística, desenvolvida para estimar a ingestão habitual de alimentos e nutrientes. Esse procedimento utiliza dois R24h e uma probabilidade de consumo. O MSM calcula primeiro a ingestão dietética de indivíduos e então constrói a distribuição populacional baseado nos dados individuais (Haubrock et al., 2011; Harttig et al., 2011).

A distribuição do consumo de carne em cada inquérito (2003 e 2008) foi gerada separadamente para cada sexo e ajustada para faixa etária e data da coleta. Na predição dos modelos, considerou-se que todos os indivíduos apresentavam probabilidade de consumo habitual de carne maior que zero, já que o uso da frequência de consumo só modificaria os percentis iniciais da distribuição e não a média de consumo habitual (Souverein et al., 2011).

A padronização na coleta de dados foi realizada por meio de treinamento dos entrevistadores, utilização de formulário padrão para aplicação do R24h, e manual explicativo para seu preenchimento. As entrevistas ocorreram em todos os dias da semana e meses dos anos dos estudos.

Os dados foram criticamente revisados para padronizar e estimar a quantidade e tipo de alimentos e preparações relatados, utilizando as publicações de Pinheiro et
Os dados obtidos a partir do R24h foram convertidos em gramas, energia e nutrientes a partir do software **NDSR - Nutrition Data System for Research** (NDSR, 2005). Foram feitas conferências periódicas nos bancos de dados para verificar possíveis erros de digitação. Dados inconsistentes de macronutrientes e energia foram checados nos R24h e corrigidos no software.

As carnes da dieta foram classificadas e analisadas segundo procedência: carne de bois, porcos, aves e peixes, e processamento: carne processada (curada, salgada, defumada ou com adição de conservantes), carne vermelha não processada (bois e porcos) e carne branca não processada (aves e peixes).

A recomendação do **World Cancer Research Fund** (WCRF) de 500g/semana (em média 71,4g carne vermelha e processada/dia) foi utilizada como referência para designar o consumo excessivo (WCRF, 2007).

Análises estatísticas

Os valores médios e erros padrão foram calculados considerando-se a ingestão usual predita pelo MSM. As diferenças entre as médias foram realizadas por meio do Teste de Wald que calcula estimativas pontuais por meio da estatística f, usando as ponderações de amostras complexas.

A contribuição das carnes na ingestão de calorias, proteína, gordura total, gordura saturada e colesterol, e a contribuição em gramas dos tipos de carne processada foram calculadas pela metodologia proposta por Block et al., (1985) e a diferença entre as proporções foi feita pelo teste de proporções.

As análises foram estratificadas segundo sexo, renda familiar **per capita** e faixa etária. Utilizou-se o software Stata 10 (Stata, 2005) e o valor de p < 0,05 foi adotado como significativo.

RESULTADOS
O consumo médio diário de carnes aumentou entre 2003 e 2008 na população estudada. O consumo de carne total da dieta aumentou em toda a população exceto em idosos, e o consumo de carne vermelha aumentou exceto em mulheres, idosos e indivíduos de baixa renda. Já o consumo de carne branca e de carne processada aumentou em toda população (Tabela 1).

Adolescentes e homens apresentaram aumento no consumo de carne bovina, e os idosos apresentaram diminuição. O consumo de carne de peixes somente não aumentou entre idosos e indivíduos com renda intermediária, o consumo de carne porco não aumentou em idosos e indivíduos de renda baixa e intermediária, e o consumo de aves aumentou em toda população (Tabela 2).

O aumento do consumo médio de carne da dieta foi de 20%, sendo maior para carne branca (35%) e menor para vermelha (11%). O consumo de carnes processadas também aumentou ao longo dos anos (20%), principalmente entre adolescentes (29%). Quanto à procedência, o aumento foi maior para carne de peixe (46%), seguida de aves (30%), porco (30%) e de boi (1%).
Tabela 1. Consumo de carne total da dieta, carne vermelha, carne processada e carne branca (g/dia) segundo faixa etária, sexo, renda familiar *per capita* e período de consumo analisado. São Paulo, 2012.

Faixa etária	Carne total da dieta (g/dia)	Carne vermelha (g/dia)	Carne branca (g/dia)	Carne processada (g/dia)												
	2003 n	Média	EP	2008 n	média	EP	2003 n	média	EP	2008 n	média	EP	2003 n	média	EP	
adolescente	805	142,7	1,6	560	178,6*	5,2	74,8	1,5	92,6*	3,5	35,7	1,0	45,3*	1,2	32,9	0,8
adulto	743	136,5	1,7	585	167,7*	4,4	72,7	1,2	81,4*	2,5	37,7	1,0	52,6*	1,7	28,1	1,1
idoso	813	121,3	1,3	517	124,9	2,8	65,5	1,3	62,0	2,3	37,8	0,9	45,8*	1,1	19,8	0,7
Sexo																
homem	1155	164,7	0,99	722	200,2*	6,0	89,0	1,3	104,1*	3,2	42,6	1,3	57,2*	2,1	33,7	1,1
mulher	1206	112,2	1,4	940	130,6*	2,3	58,5	1,1	59,4	1,4	33,1	0,7	44,8*	1,2	23,2	0,8
Renda *per capita*																
1 tercil	664	130,2	2,6	531	150,0*	5,2	68,3	1,6	74,1	3,8	34,2	1,3	48,5*	1,9	26,3	1,5
2 tercil	745	138,4	2,1	582	163,8*	6,1	72,4	1,6	83,1*	3,2	38,0	1,5	49,5*	2,3	29,0	1,3
3 tercil	821	138,9	1,7	549	171,5*	4,9	75,8	1,6	82,2*	2,9	39,5	1,2	53,0*	1,9	28,4	0,9
TOTAL	2361	135,8	1,25	1662	163,2*	3,51	72,2	0,9	80,3*	1,8	37,4	0,8	50,6*	1,2	27,9	0,8

*Teste de Wald (diferença entre consumo de 2003 e 2008, considerando significativo p<0,05)

Carne total da dieta: todos os tipos de carnes consumidas
Carne vermelha: carnes de boi e de porco não processadas
Carne branca: carnes de peixes e aves não processadas
Carne processada: carnes curada, salgada, defumada ou com adição de conservantes
EP: erro padrão
Tabela 2. Consumo de carne de boi, porco, ave e peixe (g/dia) segundo faixa etária, sexo, renda familiar per capita e período de consumo analisado. São Paulo. 2012.

	Carne de boi (g/dia)	Carne de porco (g/dia)	Carne de ave (g/dia)	Carne de peixe (g/dia)														
	2003 n	média	EP	2008 n	Média	EP	2003 n	média	EP	2008 n	média	EP	2003 n	média	EP	2008 n	média	EP
Faixa etária																		
adolescente	805	74,2	1,8	560	89,3*	2,7	27,1	1,1	41,4*	2,6	33,0	0,9	41,3*	1,0	6,7	0,8	11,6*	0,7
adulto	743	72,4	1,4	585	76,7	2,0	24,6	1,4	30,7*	1,7	32,5	1,0	42,5*	1,2	10,0	1,0	14,8*	0,9
idoso	813	63,1	1,2	517	57,6*	1,7	18,2	1,0	20,3	1,6	29,3	0,8	37,8*	0,9	11,2	0,9	12,4	0,6
Sexo																		
homem	1155	87,4	1,8	722	96,5*	2,6	30,7	1,7	39,3*	2,2	35,0	1,2	44,3*	1,5	13,3	1,5	17,5*	1,2
mulher	1206	58,8	1,1	940	57,5	1,2	19,0	1,0	23,2*	1,1	29,9	0,7	39,3*	0,9	6,6	0,4	10,9*	0,7
Renda per capita																		
1 tercil	664	68,4	1,9	531	70,9	3,3	22,8	2,2	28,0	2,3	30,4	1,1	40,9*	1,3	7,4	0,9	12,6*	1,3
2 tercil	745	72,2	1,9	582	78,0	2,9	26,4	1,6	29,4	2,5	32,5	1,3	41,6*	2,2	9,8	1,7	12,9	1,0
3 tercil	821	74,1	1,7	549	77,2	2,2	24,1	1,3	33,7*	2,4	34,1	1,4	42,2*	1,3	10,6	0,8	15,9*	1,1
TOTAL	2361	71,7	1,1	1662	75,8*	1,4	24,3	1,1	30,8*	1,3	32,2	0,8	41,7*	0,8	9,6	0,7	14,0*	0,7

*Teste de Wald (diferença entre consumo de 2003 e 2008, considerando significativo p<0,05)

EP: erro padrão
Dentre as carnes processadas mais consumidas pelos habitantes de São Paulo, verificou-se que as salsichas e linguiças representaram quase 60% do consumo das carnes processadas nos dois momentos estudados, seguidas do presunto, frango empanado industrializado e mortadela. As proporções de consumo das carnes não sofreram alterações significativas nos dois períodos estudados (Tabela 3).

	2003	2008
Salsicha e linguíça	59,5	54,5
Presunto	11,3	8,9
Frango empanado	6,5	3,7
Mortadela	5,4	5,5
Salame	4,3	2,7
Bacon	3,4	2,1
Peixe salgado	2,0	4,5

Em relação à contribuição de calorias, nenhum tipo de carne sofreu aumento ou diminuição no período, isto é, dentre o total de calorias consumidas pela população, não houve diferença entre as calorias provenientes das carnes em 2003 e 2008 na média. Quanto a gorduras (total, saturada e colesterol), observou-se que a carne vermelha contribuiu significativamente menos em 2008, em contrapartida a carne processada contribuiu mais com as gorduras e proteína em 2008. A carne bovina também contribuiu menos com as gorduras e a carne de porco contribuiu mais com gordura total (Tabela 4).
Tabela 4. Percentual de energia, gordura total, gordura saturada, colesterol e proteína segundo processamento, procedência e ano do estudo. São Paulo. 2012.

	% energético 2003	% energético 2008	% gordura 2003	% gordura 2008	% gordura saturada 2003	% gordura saturada 2008	% colesterol 2003	% colesterol 2008	% proteína 2003	% proteína 2008
Carne total	19,0	19,7	31,7	31,3	36,7	34,7	55,1	54,8	46,8	51,5
Carne vermelha	11,3	9,7	19,5	15,5*	24,1	18,3*	31,5	27,8*	26,7	26,0
Carne processada	4,0	5,5	7,9	11,3*	8,7	12,4*	7,4	9,9*	6,1	8,7*
Carne branca	3,7	4,5	4,3	4,5	3,8	4,0	16,2	17,1	13,9	16,8
Carne de boi	10,5	9,3	18,1	14,7*	22,5	17,7*	29,5	25,9*	25,3	25,0
Carne de porco	4,3	5,3	8,6	11,4*	9,9	12,5	8,2	10,3	6,5	8,4
Carne de peixe	0,6	0,9	0,5	0,6	0,3	0,3	3,2	3,7	2,7	3,7
Carne de ave	3,6	4,1	4,5	4,6	4,1	4,1	14,2	14,9	12,3	14,5

*Teste de proporções (diferença entre consumo de 2003 e 2008, considerando significativo p<0,05)

Carne da dieta: todos os tipos de carnes consumidas
Carne vermelha: carnes de boi e de porco não processadas
Carne branca: carnes de peixes e aves não processadas
Carne processada: carnes curada, salgada, defumada ou com adição de conservantes

Em 2003, 72% dos residentes de São Paulo excederam a recomendação do WCRF de consumo de carne vermelha e processada, e em 2008, esse valor foi de 74% (variação não significativa). A proporção de indivíduos das diferentes faixas etárias e sexos que excederam as recomendações de carne vermelha e processada se mantiveram nos anos estudados (dados não mostrados).

DISCUSSÃO

Observou-se aumento significativo no consumo de carnes no município de São Paulo entre os anos estudados, principalmente entre carne total, carne de aves e carne processada que se elevou independente de sexo e renda familiar *per capita*. As carnes vermelhas e de boi não apresentaram aumento significativo em todas as categorias analisadas, entretanto foram as mais consumidas nos dois períodos e as carnes de peixes as menos consumidas pelos residentes de São Paulo.

Observou-se também que a carne vermelha foi a maior contribuinte para a ingestão de gordura total, gordura saturada, colesterol e proteína, entretanto houve diminuição significativa na contribuição de gorduras a partir das carnes vermelhas
nos anos estudados. Já para a carne processada houve aumento significativo da contribuição das gorduras e proteína, podendo ser explicado devido ao aumento do consumo das carnes processadas pela população.

Verificaram-se dados similares à tendência observada em São Paulo nas últimas Pesquisas de Orçamentos Familiares (1987-1988; 1995-1996; 2002-2003; 2008-2009). A carne de boi teve maior contribuição calórica em todos os períodos analisados na alimentação do brasileiro, porém sofreu diminuição nos últimos anos, enquanto o consumo de carne de aves aumentou progressivamente em todo o período (150%) e o consumo de peixes manteve a participação baixa e praticamente constante, em torno de 0,6% (Levy-Costa et al., 2005; Levy-Costa et al., 2012).

Em relação ao consumo de carne no mundo, dados de disponibilidade de alimentos da Food and Agriculture Organization (FAO) mostram crescente aumento do consumo diário de carne total em países desenvolvidos como EUA e nações europeias (Daniel et al., 2011). Observou-se também aumento do consumo de carnes brancas (25 para 55g/dia) e diminuição das carnes vermelhas (105 para 85g/dia) nos EUA de 1999 a 2007 (Daniel et al., 2011).

O consumo de carne total em São Paulo se mostrou igual ou superior aos encontrados em diversos países como Irlanda (138g), Espanha (135g), Holanda (125g), Alemanha (120g) (McAfee et al., 2010) e Estados Unidos (128g) (Daniel et al., 2011). O mesmo ocorreu para as carnes vermelhas, isto é, os residentes de São Paulo consumiram mais do que os países desenvolvidos do mundo. Já para carne processada, o consumo do paulistano foi superior ao da Irlanda (25g), Grécia (8g) e Itália (27g) (McAfee et al., 2010).

No cenário nacional, observa-se uma tendência no aumento da produção de carne de aves (FAO, 2011), que tem menor proporção de gordura, podendo melhorar a qualidade da carne consumida (MS, 2006). Entretanto, há uma tendência de aumento também no consumo de carnes processadas, que possuem maiores teores de gordura, além de substâncias potencialmente carcinogênicas como nitritos, nitratos e sódio (MS, 2006, WCRF, 2007).

Esses fatos podem ser explicados devido ao baixo preço das carnes de aves e processadas (Schlindwein e Kassouf 2006), da estabilidade econômica do país nos últimos anos, aumentando poder de compra da população (Ministério da Fazenda...
2010), além de ser um produto típico da alimentação brasileira e desejado pela maioria da população. Ações de saúde pública sobre os riscos do consumo excessivo de carne vermelha também podem ter alterado esse consumo.

Sabe-se que o consumo excessivo de carnes vermelhas e processadas está associado ao aumento do risco para câncer de cólon e reto (WCRF, 2007). Apenas 50g de carne processada/dia aumenta o risco em 42% para DCV e 19% para diabetes, e a carne total da dieta mostrou uma tendência para maior risco para DCV e diabetes (12%) (Micha et al., 2010). Em uma coorte europeia com mais de 350.000 adultos verificou-se associação positiva entre consumo de carnes e ganho de peso (Hu et al., 2011).

Na população estudada, observou-se que quase 75% da população apresentou consumo excessivo para carne vermelha e processada, o que pode aumentar a prevalência dessas doenças crônicas no município de São Paulo. Nos adolescentes, o consumo de carnes processadas também foi elevado, o que pode contribuir para elevação do risco de câncer na vida adulta. Em estudo de coorte americano, o consumo de carne processada na adolescência aumentou em 25% o risco para câncer de cólon e reto (Ruder et al., 2011).

Nota-se que no município de São Paulo os casos de câncer têm aumentando significativamente nas últimas décadas e tem sido uma das principais causas de morte entre 1980 e 2010. O câncer de cólon e reto é o terceiro mais frequente entre homens e mulheres. Entre 1997 e 2008 foram diagnosticados quase 17 mil casos novos em homens, perdendo em número apenas para os casos de câncer de próstata e de pele, e 18,5 mil casos em mulheres perdendo apenas para os casos de câncer de mama e de pele. A incidência desse câncer em homens aumentou em 24% entre 2003 e 2008, e 39% em mulheres (MS, 2011). Sabe-se que a dieta é um ponto fundamental na prevenção e causa desse tipo de câncer e há evidências convincentes da relação entre carne vermelha e processada, consumo de álcool, gordura corporal e visceral e aumento do risco de câncer de cólon e reto (WCRF, 2007).

O consumo excessivo de carne vermelha e processada tem sido relacionado com pior qualidade da dieta. Na Irlanda, o alto consumo de carne vermelha e processada foi associado com menor ingestão de frutas e hortaliças, cereais integrais e peixes, e maior consumo de refrigerantes (COSGRVE et al., 2005). Em São Paulo, o
consumo excessivo de carne vermelha e processada foi associado com maior consumo de calorias provenientes de gordura sólida, açúcar de adição e álcool, e também foi associado com pior qualidade da dieta em homens (Carvalho et al., 2012).

Além desses efeitos na saúde, a produção de carnes promove grande impacto no meio ambiente devido ao desmatamento para obter pastagens, dos gases emitidos na atmosfera pelos animais, da poluição das águas e redução da biodiversidade (McMichael et al., 2007). Estima-se que em 2003, a cidade de São Paulo tenha consumido cerca de 410 mil toneladas de carne e tenha emitido mais de 18 milhões de toneladas de equivalentes de CO₂ na atmosfera (Carvalho et al., 2012).

A estimativa de consumo por meio de inquéritos alimentares possuem falhas, porém o uso de métodos específicos de coleta podem diminuir erros na obtenção dos dados (Thompson e Byers, 1994; Dwyer et al., 2003; Raper et al., 2004). O grande espaço de tempo entre as coletas pode prejudicar a análise, porém o ajuste para remover a variabilidade intrapessoal promove um dado de melhor qualidade (Janhs et al., 2004); além disso, nota-se que durante os anos do estudo houve uma estabilidade política e econômica no país, e não ocorreu nenhum evento que poderia alterar o padrão alimentar do brasileiro.

CONCLUSÃO

Os dados do presente estudo permitem concluir que o consumo de carnes vermelhas e processadas é excessivo em quase toda a população estudada, e há uma tendência de aumento no consumo de carne total, carne brancas, especialmente aves, e carne processada. Portanto, ações de saúde pública que visem mostrar o impacto ambiental e a qualidade nutricional dos diversos tipos de carne, comparando as carnes brancas, vermelhas e processadas quanto a emissão de CO₂ e quanto aos teores de gorduras e métodos de preparo culinário mais adequados, a fim de minimizar a adição de gorduras às preparações e a formação de substâncias potencialmente carcinogênicas, como aminas heterocíclicas e hidrocarbonetos aromáticos policíclicos, são fundamentais para promoção da saúde da população e do planeta.
REFERÊNCIAS

Almeida IC, Guimaraes GF, Rezend DC. Hábitos alimentares da população idosa: padrões de compra e consumo. Agroalimentaria 2011; 17:95-110.

Block G, Dresse CM, Hartman AM, Carroll MD. Nutrient sources in the American diet: quantitative data from the NHANES II survey. II. Macronutrients and fats. Am J Epidemiol. 1985 Jul;122(1):27-40.

Carvalho AM, César CLG, Fisberg RM, Marchioni DML. Excessive meat consumption in Brazil: diet quality and environmental impacts. Public Health Nutr. In press.

Castro MA, Barros RR, Bueno MB, César CLG, Fisberg RM. Trans fatty acids intake among the population of the city of São Paulo, Brazil. Rev Saude Publica 2009; 43:991-97.

Cedeberg C, Persson UM, Neovius K, Molander S, Clift R. Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environ Sci Technol 2011; 45:1773-1779.

Costa ND. Reducing the meat and the livestock industry’s environmental footprint. Nutr & Dietitcs 2007; 64:S185-S191.

Daniel CR, Cross AJ, Koebnick C, Sinha R. Trends in meat consumption in the USA. Public Health Nutr 2011; 14: 575-83.

Dwyer J, Picciano MF, Raiten DJ. Future directions for the integrated CSFII-NHANES: What We Eat in America-NHANES. J Nutr 2003; 133:576S– 81S.

Ferguson LR. Meat and cancer. Meat Science 2010; 84:308-313.

Fisberg RM, Marchioni DML. Manual para estudos populacionais de alimentação, nutrição e saúde: a experiência do inquérito de saúde em São Paulo (ISA). Grupo de Avaliação de Consumo Alimentar (GAC); 2012.

Fisberg RM, Villar BS. Manual de receitas e Medidas caseiras para Cálculo de Inquéritos Alimentares: manual elaborado para auxiliar o processamento de inquéritos alimentares. São Paulo: Signus; 2002.

Food and Agriculture Organization. Managing Livestock - Environment Interactions. COAG 2007/4. Food and Agriculture Organization of the United Nations: Roma; 2007.
Food and Agriculture Organization. World Livestock 2011. Livestock in food security. Food and Agriculture Organization of the United Nations: Roma; 2011.

Garnett, T. Cooking up a storm. Food, greenhouse gas emissions and our changing climate; Food Climate Research Network, Centre for Environmental Strategy, University of Surrey, 2008. [acesso em 05 junho 2012]. Disponível em: http://www.fcrn.org.uk/sites/default/files/CuaS_web.pdf

Gossard MH, York R. Social structural influences on meat consumption. Human Ecology Review 2003; 10:1-9.

Hahn, William. An Annotated Bibliography of Recent Elasticity and Flexibility Estimates for Meat and Livestock. ERS Staff Report No. AGES-9611. U.S. Department of Agriculture, Economic Research Service; 1996.

Harttig U, Haubrock J, Knüppel S, Boeing H, EFCOVAL Consortium. The MSM program: web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur J Clin Nutr 2011; 65:S87–S91.

Haubrock J, Nöthlings U, Volatier JL, Dekkers A, Ocke M, Harttig U, et al. Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J Nutr 2011; 141:914-920.

Hodgson JM, Ward NC, Burke V, Beilin LJ, Puddey IB. Increased lean red meat intake does not elevate markers of oxidative stress and inflammation in humans. J Nutr 2007; 137:294-303.

Horrigan L, Lawrende RS, Walker P. How sustainable agriculture can address environmental and human health harms of industrial agriculture. Environ Health Perspect 2002; 110:445–456.

Hu J, La Vecchia C, Morrison H, Negri E, Mery L. Salt, processed meat and the risk of cancer. Eur J Cancer Prev 2011; 20:132–139.

Instituto Brasileiro de Geografia e Estatística. Pesquisa de Orçamentos Familiares 2008-2009 Análise do consumo alimentar pessoal no Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2011.

Janhs L, Arab L, Carriquiry A, Popkin BM. The use of external within-person variance estimates to adjust nutrient intake distributions over time and across populations. Public Health Nutr 2004; 8:69-76.

Lock K, Smith RD, Dangour AD, Keogh-Brown M, Pigatto G, Hawkes C, et al. Health, agricultural, and economic effects of adoption of healthy diet recommendations. Lancet 2010; 376:1699 – 1709.
McAfee a AJ, McSorley EM, Cuskelly GJ, Moss BW, Wallace JMW, Bonham MP, et al. Red meat consumption: An overview of the risks and benefits. Meat Scienc 2010; 84:1–13.

McMichael A, Powles JW, Butler CD, Uauy R. Food, livestock production, energy, climate change, and health. Lancet 2007; 370:1253-1263.

Micha R, Wallace SK, Mozaffarian D. Red and Processed Meat Consumption and Risk of Incident Coronary Heart Disease, Stroke, and Diabetes Mellitus: A Systematic Review and Meta-Analysis. Circulation 2010; 121: 2271-83.

Ministério da Fazenda. Economia brasileira em perspectiva. Brasília; 2010.

Ministério da Saúde. Câncer em São Paulo 1997 – 2008: incidência, mortalidade e tendência de câncer no município de São Paulo. São Paulo; 2011.

Ministério da Saúde. Secretaria de Atenção à Saúde. Coordenação-Geral da Política de Alimentação e Nutrição. Guia alimentar para a população brasileira: promovendo a alimentação saudável. Brasília: Ministério da Saúde; 2006.

NDSR - Nutrition Data System for Research. Version 2005. Minneapolis: University of de Minnesota; 2005.

Pan A, Sun Q, Bernsteins AM, Schulze MB, Manson JE, Stampfer MJ, et al. Red meat Intake and Mortality: Results from 2 prospective cohort studies. Arch Intern Med 2012; 169:555-563.

Pinheiro ABV, Lacerda EM de A, Benzecry EH, Gomes MC da S, Costa, VM da. Tabela para Avaliação de Consumo Alimentar em Medidas Caseiras. 4.ed. São Paulo: Ed. Atheneu; 2000.

Raper N, Perloff B, Ingwersen L, Steinfeldt L, Anand J. An overview of USDA’s Dietary Intake Data System. J of Food Compos Analysis 2004; 17:545–555.

Ruder EH, Thiébaut ACM, Thompson FE, Potischman N, Subar AF, Park Y, et al. Adolescent and mid-life diet: risk of colorectal cancer in the NIH-AARP Diet and Health Study. Am J Clin Nutr 2011; 94:1607-19.

Schainberg A, Gold KA. Environment and society: The enduring conflict. New York: ST. Martin´s Press; 1994.
Schlindwein MM, Kassouf AL. Análise da influência de alguns fatores socioeconômicos e demográficos no consumo domiciliar de carnes no Brasil. Rev. Econ. Sociol. Rural vol.44 no.3 Brasília 2006.

Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A. Meat Intake and Mortality: A prospective study of over half a million people. Arch Intern Med 2009; 169: 562-571.

Souveein OW, Dekkers AL, Geelen A, Haubrock J, Vries JH, Ocke MC, Hartig U, Boeing H, Veer P. Comparing four methods to estimate usual intake distributions. European Journal of Clinical Nutrition (2011) 65, S92–S101.

Stata Corp. Stata statistical software: release 10. TX: Stata Corp LP; 2005

Steinfeld H, Gerber P, Wassenaar T, CastelV, Rosales M, Haan C. Livestock's long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations: Roma; 2006.

Swatland HJ. Meat products and consumption culture in the West. Meat Science. 2010; 86:80–85.

Thompson FE, Byers T. Dietary assessment resource manual. J Nutr 1994; 124:2245S-2317S.

USDA, Office of Communications. Profiling food consumption in America. In Agriculture Fact Book 2001–2002. Washington, DC: US Government Printing Office; 2003 [acesso em 05 maio 2012]. Disponível em: http://www.usda.gov/factbook/2002factbook.pdf

Vergnaud AC, Norat T, Romaguera D, Mouw T, May AM, Travier N et al. Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. Am J Clin Nutr 2010; 92:398-407.

World Cancer Research Fund / American Institute for Cancer Research, Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective, Washington DC: AICR; 2007.
6. CONSIDERAÇÕES FINAIS

Verificou-se uma tendência de aumento no consumo de carne total, carne brancas, especialmente aves, e carne processada na dieta da população residente do município de São Paulo entre 2003 e 2008. Verificou-se também que o consumo de carnes vermelhas e processadas foi excessivo em quase toda a população estudada, tendo relação com pior qualidade da dieta em homens e impacto importante no meio ambiente.

Portanto, ações de saúde pública que visem mostrar o impacto ambiental e a qualidade nutricional dos diversos tipos de carne são fundamentais para o entendimento da população sobre riscos e benefícios do consumo de carnes. Comparar carnes brancas, vermelhas e processadas quanto à emissão de CO$_2$ e quanto aos teores de gorduras e métodos de preparo culinário mais adequados, são importantes para promoção da saúde da população e do planeta.
7. REFERÊNCIAS

Beaton GH. Approaches to analysis of dietary data: relationship between planned analyses and choice of methodology. Am J Clin Nutr. 1994;59:253S-61S.

Block G, Dresse CM, Hartman AM, Carroll MD. Nutrient sources in the American diet: quantitative data from the NHANES II survey. II. Macronutrients and fats. Am J Epidemiol. 1985 Jul;122(1):27-40.

Cedeberg C, Persson UM, Neovius K, Molander S, Clift R. Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environ Sci Technol. 2011; 45:1773-1779.

Claro RM, Machado FMS, Bandoni DH. Evolução da disponibilidade domiciliar de alimentos no município de São Paulo no período de 1979 a 1999. Rev Nutr. 2007;20:483-490.

Chomitz KM, Thomas TS. Geographic Patterns of Land Use and Land Intensity in the Brazilian Amazon. World Bank Policy Research Working Paper No. 2687; 2001

Collins A, Fairchild R. Sustainable food consumption at a subnational level: An ecological footprint. Nutritional and economic analysis. J Envir Policy Plan. 2007;9:5-30.

Cosgrave M, Flynn A, Kiely M. Consumption of red meat, white meat and processed meat in Irish adults in relation to dietary quality. British Journal of Nutrition. 2005;93: 933-42.

Costa ND. Reducing the meat and the livestock industry´s environmental footprint. Nutr & Dietetics. 2007;64:S185-S191.

Cuenca AMB, Andrade MTD, Noronha DP, Ferraz MLEF. Guia de apresentação de teses [guia na internet]. 2. ed. São Paulo: FSP/USP; 2008 [acesso em 30 dez 2011]. Disponível em: http://www.bvs-sp.fsp.usp.br:8080/html/pt/paginas/guia/home.htm

Daniel CR, Cross AJ, Koebnick C, Sinha R. Trends in meat consumption in the USA. Public Health Nutr. 2011;14: 575-83.

Diniz BPC, Silveira SG, Bertasso BF, Magalhães LCG, Servo LMS. As pesquisas de orçamentos familiares no Brasil. Brasília: IPEA, 2007. [acesso em 11/10/2010]. Disponível em: http://www.ipea.gov.br/sites/000/2/livros/gastoeconsumov2/06_Cap1.pdf

Dwyer J, Picciano MF, Raiten DJ. Future directions for the integrated CSFII-NHANES: What We Eat in America-NHANES. J Nutr. 2003;133:576S–81S.
Embrapa. Conhecendo a carne que você consome - qualidade da carne bovina. Campo Grande: Embrapa, 1999. [acesso em 07 de novembro de 2010]. Disponível em: http://www.cnpgc.embrapa.br/publicacoes/doc/doc77/index.html

Ferguson LR. Meat and cancer. Meat Science. 2010;84:308-313.

Fisberg RM, Villar BS. Manual de receitas e Medidas caseiras para Cálculo de Inquéritos Alimentares: manual elaborado para auxiliar o processamento de inquéritos alimentares. São Paulo: Signus; 2002.

Food and Agriculture Organization. Managing Livestock - Environment Interactions. COAG 2007/4. Rome: FAO; 2007.

Fundação SEADE. Anuário Estatístico do Estado de São Paulo 2003. Acesso em [17 de julho de 2011]. Disponível em: http://www.seade.gov.br/produtos/anuario/mostra_tabela.php?anos=2003&tema=dem&tabpesq=dem2003_02&tabela=null

GAC – Grupo de Avaliação do Consumo Alimentar [homepage na internet]. São Paulo: Universidade de São Paulo; 2011 [acesso em 10 fev 2012]. Disponível em: http://www.gac-usp.com.br

Garnett, T. Cooking up a storm. Food, greenhouse gas emissions and our changing climate; Food Climate Research Network, Centre for Environmental Strategy, University of Surrey; 2008. [acesso em 05 junho 2012]. Disponível em: http://www.fcrn.org.uk/sites/default/files/CuaS_web.pdf

Harttig U, Haubrock J, Knüppel S, Boeing H, EFCOVAL Consortium. The MSM program: web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur J Clin Nutr. 2011;65:S87–S91.

Haubrock J, Nöthlings U, Volatier JL, Dekkers A, Ocke M, Harttig U, et al. Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J Nutr. 2011;141:914-920.

Hodgson JM, Ward NC, Burke V, Beilin LJ, Puddey IB. Increased lean red meat intake does not elevate markers of oxidative stress and inflammation in humans. J Nutr. 2007;137:294-303.

Horrigan L, Lawrende RS, Walker P. How sustainable agriculture can address environmental and human health harms of industrial agriculture. Environ Health Perspect. 2002;110:445–456.

Hu J, La Vecchia C, MorrisonH, Negri E, Mery L. Salt, processed meat and the risk of cancer. Eur J Cancer Prev. 2011;20:132–139.
IBGE – Instituto Brasileiro de Geografia e Estatística. Indicadores IBGE: Pesquisa de orçamentos familiares 2008-2009: despesas, rendimentos e condições de vida. Rio de Janeiro: IBGE; 2010.

ISA - Inquérito de Saúde no Município de São Paulo [homepage na internet]. São Paulo: Faculdade de Saúde Pública da USP [acesso em 3 jan 2010]. Disponível em: http://hygeia.fsp.usp.br/isa-sp/index_arquivos/Page3157.htm

IWMI. Water for food - water for life: A comprehensive assessment of water management in agriculture. London/Colombo, International Water Management Institute and Earthscan; 2007.

Janhs L, Arab L, Carriquiry A, Popkin BM. The use of external within-person variance estimates to adjust nutrient intake distributions over time and across populations. Public Health Nutr. 2004;8:69-76.

Levy-Costa RB, Sichieri R, Pontes NS, Monteiro CA. Disponibilidade domiciliar de alimentos no Brasil: distribuição e evolução (1974-2003). Rev Saúde Pública. 2005;39(4):530-540.

Levy-Costa RB, Claro RM, Mondini L, Sichieri R, Monteiro CA. Distribuição regional e socioeconômica da disponibilidade domiciliar de alimentos no Brasil em 2008-2009. Rev Saúde Pública. 2012;46(1):6-15.

McAfee a AJ, McSorley EM, Cuskelly GJ, Moss BW, Wallace JMW, Bonham MP, Fearon AM. Red meat consumption: An overview of the risks and benefits. Meat Science. 2010;84:1–13.

McMichael A, Powles JW, Butler CD, Uauy R. Food, livestock production, energy, climate change, and health. Lancet. 2007;370:1253-1263.

Micha R, Wallace SK, Mozaffarian D. Red and Processed Meat Consumption and Risk of Incident Coronary Heart Disease, Stroke, and Diabetes Mellitus: A Systematic Review and Meta-Analysis. Circulation. 2010;121:2271-83.

Ministério da Agricultura. Mercado interno. [homepage na internet]. 2012a [acesso em 2 de junho de 2012]. Disponível em: http://www.agricultura.gov.br/animal/mercado-interno

Ministério da Agricultura. Exportação. [homepage na internet] 2012b [acesso em 2 de junho de 2012]. Disponível em: http://www.agricultura.gov.br/animal/exportacao

Ministério da Saúde. Secretaria de Atenção à Saúde. Coordenação-Geral da Política de Alimentação e Nutrição. Guia alimentar para a população brasileira: promovendo a alimentação saudável. Brasília: Ministério da Saúde; 2006.
NCC - Nutrition Coordinating Center [homepage na internet]. Minneapolis: University of Minnesota; c2011 [atualizado em 20 jul 2011; acesso em 3 jan 2012]. Disponível em: http://www.ncc.umn.edu/products/ndsr.html

NDSR - Nutrition Data System for Research. Minneapolis: University of de Minnesota; 2007.

Pan A, Sun Q, Bernsteins AM, Schulze MB, Manson JE, Stampfer MJ, et al. Red meat Intake and Mortality: Results from 2 prospective cohort studies. Arch Intern Med. 2012;169:555-563.

Pinheiro ABV, Lacerda EM de A, Benzecry EH, Gomes MC da S, Costa, VM da. Tabela para Avaliação de Consumo Alimentar em Medidas Caseiras. 4.ed. São Paulo: Ed. Atheneu; 2000.

Previdelli AN, Andrade SC, Pires MM, Ferreira SRV, Fisberg RM, Marchioni DML. Índice de Qualidade da Dieta Revisado (IQD-R): desenvolvimento para população brasileira. Rev Saúde Pública.2011;45:794-798.

Raper N, Perloff B, Ingwersen L, Steinfeldt L, Anand J. An overview of USDA’s Dietary Intake Data System. Journal of Food Composition and Analysis. 2004;17:545–555.

Schmidinger K, StehfestIncluding E. CO₂ implications of land occupation in LCAs — method and example for livestock products. Int J Life Cycle Assess. 2012. in press

Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A. Meat Intake and Mortality: A prospective study of over half a million people. Arch Intern Med. 2009;169: 562-571.

Souverein OW, Dekkers AL, Geelen A, Haubrock J, Vries JH, Ocke MC, Harttig U, Boeing H, Veer P. Comparing four methods to estimate usual intake distributions. European Journal of Clinical Nutrition (2011) 65, S92–S101.

Stata Corp. Stata statistical software: release 10. TX: Stata Corp LP; 2007.

Steinfeld H, Gerber P, Wassenaar T, CastelV, Rosales M, Haan C. Livestock's long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations: Roma; 2006.

Thompson FE, Byers T. Dietary assessment resource manual. J Nutr. 1994;124:2245S-2317S.

Vergnaud AC, Norat T, Romaguera D, Mouw T, May AM, Travier N et al. Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. Am J Clin Nutr. 2010;92:398-407.
Yokoo EM, Pereira RA, Veiga GV, Nascimento S, Costa RS, Marins VMR, Lobato JCP, Sichieri R. Proposta metodológica para o módulo de consumo alimentar pessoal na pesquisa brasileira de orçamentos familiares. Rev. Nutr. 2008;21:767-776.

WHO/FAO. Diet, nutrition and the prevention of chronic diseases. Report of a Joint WHO/FAO Expert Consultation. Geneva; 2003.

World Cancer Research Fund / American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington DC: AICR, 2007.
ANEXOS
Anexo 1 – Aprovações do Comitê de Ética

UNIVERSIDADE DE SÃO PAULO
FACULDADE DE SAÚDE PÚBLICA
COMITÊ DE ÉTICA EM PESQUISA-COEP

Av. Dr. Arnaldo, 715 – sala 16 – sub-solo – Cerqueira César
São Paulo-SF CEP: 01246-904
Telefone: (0XX11) 3066-7776 – e-mail: maq@cscusp.br

14 de fevereiro de 2001

Pelo presente, informo que o Comitê de Ética em Pesquisa da Faculdade de Saúde Pública da Universidade de São Paulo-COEP, analisou e aprovou, em sua 1° Sessão Ordinária, de 13.02.01, de acordo com os requisitos da Resolução CNS/196/96, o Protocolo de Pesquisa n.° 381, intitulado: “INQUÉRITO DE SAÚDE NO ESTADO DE SÃO PAULO – INQUÉRITO DOMICILIAR DE SAÚDE, DE BASE POPULACIONAL, EM MUNICÍPIOS DO ESTADO DE SÃO PAULO”, apresentado pelo pesquisador Chester Luiz Galvão Cesar.

Atenciosamente,

Paulo Antonio de Carvalho Fortes
Professor Associado
Vice-Coordenador do Comitê de Ética em Pesquisa da FSP-COEP
Prezado(a) Orientador(a),

Pelo presente, informo que o Comitê de Ética em Pesquisa da Faculdade de Saúde Pública da Universidade de São Paulo - COEP, analisou nesta data, de acordo com os requisitos da Resolução CNS/196/96 e suas complementares, o Protocolo de Pesquisa n.º 1428, intitulado: “Métodos e técnicas para estimativa da prevalência da inadequação de nutrientes e indivíduos residentes em regiões do Estado de São Paulo”, apresentado pela pesquisadora REGINA MARA FISBERG, e o considerou “APROVADO”.

Atenciosamente,

[Assinatura]

[Nome]
Professora Doutora
Coordenadora do Comitê de Ética em Pesquisa

Irm.ª Sr.ª
Prof.ª Assoc. Regina Mara Fisberg
Departamento de Nutrição

DDD 11 40244/2005-2
Para
Prof Dr. Moisés Goldbaum
Sra Pesquisador(a)

I - Identificação
> Título do projeto: Inquérito de Saúde da base populacional no Município de São Paulo
> Instituição onde se realizará: Município de São Paulo
> Tipo de projeto: Inquérito de base populacional sobre Saúde Domiciliar.
> Pesquisador responsável: Prof Dr. Moisés Goldbaum

II - Objetivos
> Oferecer um banco de dados com todas as informações coletadas que permitam;
> analisar a desigualdade social (de gênero, cor/raça e classe social) de morbididades (hipertensão e diabetes) e de uso de serviços de saúde (incluindo práticas preventivas) em adultos.
> Estudar a associação entre comportamentos, mortandades e uso de serviços de saúde.

III - Sumário do Projeto:
1. Desempenho geral do projeto:
A desigualdade social de acesso ao uso de serviços de saúde e as práticas preventivas é diferenciada conforme o tipo de serviço demandado. Para alguns serviços, a estruturação do SUS permite ampla acessibilidade e redução das desigualdades, para outros persiste ainda um grande desigualdade favorecendo os estratos sociais de maior escolaridade e renda (Cesar et al, 2005, Zaltman et al, 2006). Para algumas práticas, entretanto, como a vacinação de crianças, verifica-se maior utilização pelos segmentos de menor nível socioeconômico cobertos pelo SUS (Francisco et al, 2005).

2. Adequação do metadados:
Descrição e população de estudo
Os dados serão obtidos em inquérito domiciliar de base populacional e serão desenvolvidos no Município de São Paulo. Serão coletadas informações de pessoas não institucionalizadas residentes no município.
Amostra

A realização do inquérito será efetuada amostragem em dois estágios: setores consistoriais e domicilíos. Os setores consistoriais serão escolhidos com probabilidade proporcional ao tamanho (número de domicílios) e, antes do sorteio, serão ordenados segundo indicadores de escalabilidade, obtevendo de informações do censo demográfico de 2000. Nos setores selecionados, serão imediatos todos os endereços, com a informação sobre a existência de pacientes no último trimestre de gravidez e menores de um ano.

O sorteio será feito de forma a obter um mínimo de 400 entrevistas para cada um dos seguintes domínios de idades: menores de um ano; crianças de 1 a 11 anos; adolescentes de 12 e 17 anos; de 18 a 29 anos; de 30 anos e mais.

O tamanho mínimo de 400 possibilidade estimar uma prevalência de 0.9 com erro de 0.07 considerando um erro a priori de 0.05 e um efeito de delineamento de 2. Para compensar as possíveis perdas (mínimo de 20%), serão sorteados 500 indivíduos do cada domínio.

Entrevistas

O questionário da pesquisa incluirá conjuntos tendenciosos sobre condições socioeconômicas do entrevistado, características da família e domicílio, morbidade nos últimos quinze dias, utilização de serviços de saúde, materna-infantil, doenças crônicas, com fator de hipertensão e diabetes, doenças físicas, improntas preventivas: câncer de mama, de colo do útero e de próstata e saúde mental do inquérito IBGE-2002 (disponível no site www.ibge.gov.br/ibge).

Elaboração do instrumento: a seleção dos instrumentos que compõe o questionário foi guiada pelas seguintes fases: elucubrações, pesquisas, observações, testes, validação, e avaliação de correlação e validação. Uma revisão deverá ser realizada visando a atualização e necessitada de definição pelo gestor local, possibilitando o inquérito.

As entrevistas serão aplicadas nos domicílios, por entrevistadores treinados, diretamente à pessoa surtida.

A pesquisa garantirá a anonimato do participante que assumir um termo de consentimento emitido antes de responder o questionário. O projeto será encaminhado ao Comitê de Ética da PNUMP e, se necessário, às demais instituições envolvidas.

IV - Comentários

1. Estrutura do protocolo: adequada
2. Análise de riscos e benefícios: A pesquisa apresenta risco mínimo e seus resultados poderão contribuir para o planejamento das ações de saúde.
3. Termo de consentimento e forma de obtenção: adequado
4. Financiamento: adequado
5. Cronograma: adequado

V - Parecer do CEP: Projeto Aprovado
COMITÊ DE ÉTICA EM PESQUISA – COEP/FSP
Universidade de São Paulo
Faculdade de Saúde Pública

OF.COEP/275/09

São Paulo, 16 de setembro de 2009.

Prezado(a) Pesquisador(a) e Orientador(a),

O Comitê de Ética em Pesquisa da Faculdade de Saúde Pública da Universidade de São Paulo – COEP/FSP, analisou em sua 7ª/09 Sessão Ordinária realizada em 11/09/2009, de acordo com a Resolução N.º 196/96 do Conselho Nacional de Saúde – CNS e suas complementares, o protocolo de pesquisa n.º 2021, intitulado "HOMOCISTEÍNA, POLIMORFISMOS DO GENE MTHFR, FATORES DIETÉTICOS E RISCO CARDIOVASCULAR: ESTUDO DE BASE POPULACIONAL – ISA-CAPITAL", área temática GRUPO III, sob responsabilidade do(a) pesquisador(a) Dirce Maria Lobo Marchioni, e considera o protocolo de pesquisa acima intitulado APROVADO.

Cabe lembrar que conforme Resolução CN /196/96, são deveres do (a) pesquisador(a): 1. Comunicar, de imediato, qualquer alteração no projeto e aguardar manifestação deste CEP (Comitê de Ética em Pesquisa), para dar continuidade à pesquisa; 2. Manter sob sua guarda e em local seguro, pelo prazo de 5 (cinco) anos, os dados da pesquisa, contendo fichas individuais e todos os demais documentos recomendados pelo CEP, no caso eventual auditoria; 3. Comunicar, formalmente a este Comitê, quando do encerramento deste projeto; 4. Elaborar e apresentar relatórios parciais e final; 5. Justificar, perante o CEP, interrupção do projeto ou a não publicação dos resultados.

Atenciosamente,

[Assinatura]

Professor Titular
Coordenador do Comitê de Ética em Pesquisa – COEP

Ilm.ª Sr.º
Prof.ª Dr.ª Dirce Maria Lobo Marchioni
Departamento de Nutrição
Faculdade de Saúde Pública – USP

Av. Dr. Arnaldo, 715 – Assessoria Acadêmica – CEP: 01246-904 – São Paulo – SP
Telefones: (55-11) 3081-7779 /7742 e-mail: coep@usp.br site www.fsp.usp.br
Prezado(a) Pesquisador(a) e Orientador(a),

O Comitê de Ética em Pesquisa da Faculdade de Saúde Pública da Universidade de São Paulo – CDEP/FSP, analisou, em sua 2.ª/10 Sessão Ordinária, realizada em 19/03/2010, de acordo com a Resolução n.º 196/96 do Conselho Nacional de Saúde – CNS e suas complementares, o ADENDO ao protocolo de pesquisa n.º 2001, intitulado ‘HOMOCISTEÍNA, POLIMORFISMOS DO GENE MTHFR, FATORES DIETÉTICOS E RISCO CARDIOVASCULAR: ESTUDO DE BASE POPULACIONAL - ISA-CAPITAL’, área temática GRUPO III, sob responsabilidade do(a) pesquisador(a) Dirce Maria Lobo Marchioni, sugerindo à Pesquisadora que atenda as recomendações do relator, pendente de aprovação. Protocolo de pesquisa APROVADO.

Cabe lembrar que conforme Resolução acima mencionada, são deveres do (a) pesquisador(a): 1. Comunicar, de imediato, qualquer alteração no projeto e aguardar manifestação deste CEP (Comitê de Ética em Pesquisa), para dar continuidade à pesquisa; 2. Manter sob sua guarda e em local seguro, pelo prazo de 5 (cinco) anos, os dados da pesquisa, contendo fichas individuais e todos os demais documentos recomendados pelo CEP, no caso eventual auditoria; 3. Comunicar, formalmente a este Comitê, quando do encerramento deste projeto; 4. Elaborar e apresentar relatórios parciais e final; 5. Justificar, pendente o CEP, interrupção do projeto ou a não publicação dos resultados.

Atenciosamente,

Claudio Leone
Professor Titular
Coordenador do Comitê de Ética em Pesquisa - COEP

Im. Sr.º
Prof.º Dr.º Dirce Maria Lobo Marchioni
Departamento de Nutrição da Faculdade de Saúde Pública

Av. Dr. Arnaldo, 715 - Cerqueira César - CEP 01246-904 - São Paulo – SP
CURRÍCULO LATTES

Dirce Maria Lobo Marchioni
Bolsista de Produtividade em Pesquisa do CNPq - 1º Nível - 1D (***)

Possui graduação em Nutrição pela Universidade de São Paulo (1995), mestrado em Saúde Pública pela Universidade de São Paulo (1999) e doutorado em Saúde Pública pela Universidade de São Paulo (2003). Atualmente é pesquisadora e professor doutor - titular da Universidade de São Paulo. Tem experiência na área de Nutrição, com ênfase em Consumo Alimentar, atuando predominantemente nos seguintes temas: consumo alimentar, dieta, recomendações dietéticas, consumo de alimentos e caca de controle.

(Texto informado pelo autor)

Ultima atualização do currículo em 08/07/2012
Endereço para acessar este CV:
http://lattes.cnpq.br/059154202721558

Dados pessoais

Nome: Dirce Maria Lobo Marchioni
Nome em citações bibliográficas: MARCHIONI, Dirce Maria Lobo
Sexo: Fêmea
Endereço profissional: Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de NutRIção.
Av. C. Amaral 715
05246-904 - São Paulo, SP - Brasil
Telefones: (11) 3066-1771 Ramal: 257
URL da homepage: http://

Formação acadêmica/Situação

2011
Livre-docência. Faculdade de Saúde Pública da Universidade de São Paulo. Título: MONOLÍTICA E ABORDAGENS PARA ESTUDO DE UMA EXPOSIÇÃO AMBIENTAL DE NATUREZA OCUPACIONAL: A DIETA, Ano de obtenção: 2011

2007 - 2008
Pós-Doutorado. Fundação Oswaldo Cruz. PODRIZ. Brasil.

2004 - 2005
Pós-Doutorado. Universidade de São Paulo, USP. Brasil. Grande área: Ciências da Saúde / Área: Nutrição / Subárea: Análise Nutricional da População / Especialidade: Consumo Alimentar. Grande área: Ciências da Saúde / Área: Saúde Coletiva / Subárea: Epidemiologia / Especialidade: Epidemiologia Nutricional.

1999 - 2003
Doutorado em Saúde Pública (Conselho CAPES 5). Universidade de São Paulo, USP. Brasil. com período sanduíche em International Agency For Research On Cancer (Orientador: Paulo Barreto). Título: Valores dietéticos e câncer oral: um estudo caso-controle no Município de São Paulo, Ano de obtenção: 2003. Orientador: Regina Mara Filho.

Bolsista do CNPQ, Coordenação de Apoio ao Pesquisador de Nível Superior. Pela área-clínica: câncer oral, consumo de alimentos. Grande área: Ciências da Saúde / Área: Nutrição / Subárea: Análise Nutricional da População. Setores de atividade: Nutrição e Alimentação, Calidade A Saúde das Populações Humanas.

1992 - 1996
Mestrado em Saúde Pública (Conselho CAPES 5). Universidade de São Paulo, USP. Brasil. Título: Alimentação no primeiro ano de vida: prevalência de consumo de alimentos em dois Centros de Saúde no Município de São Paulo, Ano de obtenção: 1995. Orientador: Gordon Bueno Neto de Souza. Orientado do CNPQ, Coordenação de Apoio ao Pesquisador de Nível Superior.
Aline Martins de Carvalho

Endereço para acessar este CV: http://lattes.cnpq.br/2666935898916941
Última atualização do currículo em 31/07/2012

Graduada em Nutrição pela Faculdade de Saúde Pública da Universidade de São Paulo. Atualmente mestrandar em Nutrição em Saúde Pública sob orientação da Profa. Assoc. Dirce Maria Lobo Marchioni. (Texto informado pelo autor)

Identificação

Nome

Aline Martins de Carvalho

Nome em citações bibliográficas

CARVALHO, A. M.

Sexo

Feminino

Endereço

Endereço Profissional

Faculdade de Saúde Pública da Universidade de São Paulo,
Av. Dr. Arnaldo, 715
Cerqueira César
01246-904 - São Paulo, SP - Brasil
URL da Homepage: www.fsp.usp.br

Formação acadêmica/titulação

2010

Mestrado em andamento em Nutrição em Saúde Pública,
Faculdade de Saúde Pública da Universidade de São Paulo.
Título: Tendência temporal do consumo de carne no Município de São Paulo: estudo de base populacional ISA Capital 2003/2006, Ano de Obtenção: 2011.
Orienteador: Dirce Maria Lobo Marchioni.
Robista do(a): Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.