Annotation and analysis of the mitochondrial genome of *Coniothyrium glycines*, causal agent of red leaf blotch of soybean, reveals an abundance of homing endonucleases

Christine L. Stone1, Reid D. Frederick1*, Paul W. Tooley1, Douglas G. Luster1, Brittany Campos2, Richard A. Winegar4, Ulrich Melcher3, Jacqueline Fletcher4, Trenna Blagden4

1 United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America, 2 MRIGlobal, Global Health Surveillance & Diagnostics, Palm Bay, Florida, United States of America, 3 Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America, 4 National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America

* reid.frederick@ars.usda.gov

Abstract

Coniothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the *C. glycines* mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.01%. It contains twelve of the mitochondrial genes typically involved in oxidative phosphorylation (*atp6*, *cob*, *cox1-3*, *nad1-6*, and *nad4L*), one for a ribosomal protein (*rps3*), four for hypothetical proteins, one for each of the small and large subunit ribosomal RNAs (*rns* and *rnl*) and a set of 30 tRNAs. Genes were encoded on both DNA strands with *cox1* and *cox2* occurring as adjacent genes having no intergenic spacers. Likewise, *nad2* and *nad3* are adjacent with no intergenic spacers and *nad5* is immediately followed by *nad4L* with an overlap of one base. Thirty-two introns, comprising 54.1% of the total mt genome, were identified within eight protein-coding genes and the *rnl*. Eighteen of the introns contained putative intronic ORFs with either LAGLIDADG or GIY-YIG homing endonuclease motifs, and an additional eleven introns showed evidence of truncated or degenerate endonuclease motifs. One intron possessed a degenerate N-acetyl-transferase domain. *C. glycines* shares some conservation of gene order with other members of the Pleosporales, most notably *nad6-ml-atp6* and associated conserved tRNA clusters. Phylogenetic analysis of the twelve shared protein coding genes agrees with commonly accepted fungal taxonomy. *C. glycines* represents the second largest mt genome from a member of the Pleosporales sequenced to date. This research provides the first genomic information on *C. glycines*, which may provide targets for rapid diagnostic assays and population studies.
Introduction

Coniothyrium glycines (R.B. Stewart) Verkely & Gruyter is a soilborne pathogen that infects soybeans and the perennial soybean, *Neonotonia wightii*, causing lesions on foliage, petioles, pods and stems and eventual defoliation and premature senescence [1]. *C. glycines* produces melanized sclerotia that can germinate to either form infectious mycelia or produce pycnidia that in turn produce infectious conidia. The pathogen is spread locally via rain/water splash and human or animal movement, which scatter sclerotia and conidia onto neighboring plants. Leaf drop of infected leaves delivers sclerotia and pycnidia to the soil where they serve as sources of secondary inoculum. Sclerotia may also remain in the soil and restart the cycle of infection in the next growing season. There is no evidence that the fungus is seed-borne, but spread might occur from infected plant debris mixed in with untreated seed or through movement of contaminated soil.

The disease red leaf blotch (RLB) occurs predominantly in central and southern Africa [2] and the incidence of the disease has increased concomitantly with increased soybean production in regions where the pathogen is found. Yield losses of up to 50% have been reported in Zambia and Zimbabwe [3][4]. While it does not currently occur within the United States, the ability of sclerotia to survive high temperatures and dry conditions suggest it could survive in soybean growing regions of the southern United States [5]. As a result, the Secretary of Agriculture has determined that *C. glycines* poses a significant risk to U.S. agriculture, and the pathogen is listed by USDA-APHIS as a Plant Pathogen Select Agent under 7 CFR, part 331 [6][7]. Additionally, while *C. glycines* has been found to naturally infect only soybean and *N. wightii*, there is no evidence as to the pathogen’s potential ability to infect other leguminous species, such as cultivated peanut and native, wild legumes that occur in the USA.

In the early stages of disease development, RLB may not be readily distinguished from other foliar soybean diseases such as *Alternaria* leaf spot, brown spot, or target spot. Current methods to identify *C. glycines* require time-consuming examination of morphological characteristics and temperature requirements. No molecular diagnostic assay currently exists to identify *C. glycines*. The examination of genomic sequences such as the mtDNA may provide targets for the development of diagnostic tools and also may provide insight into the mechanisms of disease resistance.

Phylogenetic analysis of the mtDNA will also be useful to clarify the taxonomy of this fungus. RLB was first observed on soybean in Ethiopia in 1955 and, based on the morphology of the pycnidial state, the causal fungus was identified as *Pyrenochaeta glycines* [8]. In 1964, *Dactuliotheca glycines* was described as the cause of a leaf spot disease [9], and was subsequently identified as the sclerotial state of *P. glycines* [10]. Hartman and Sinclair [1] established the genus *Pyrenochaeta* to accommodate these synanamorphs. The fungus was re-classified as *Phoma glycinicola* in 2002 based on morphological characteristics [11][12], and most recently was again re-classified as *Coniothyrium glycines* (R.B. Stewart) Verkely & Gruyter based on sequence analysis of regions of the ITS, SSU, LSU [13]. The mt genomes of only eight other members of the class Dothidiomycete, which includes several economically important plant pathogens such as the wheat pathogen, *Stagonospora nodorum*, and wheat leaf blotch, *Zymoseptoria tritici* (*M. graminicola*), can currently be found in GenBank. Six of these also share membership in the order Pleosporales with *C. glycines*. Comparison of the mt genome of *C. glycines* with the mt genome of these other eight fungi may help support or clarify the recent re-classification of *C. glycines*, as mitochondrial genomes are considered to be effective tools for evolutionary studies because they evolve independently of and at an accelerated rate from nuclear genomes [14][15][16].
This study provides the complete mitochondrial genome of a pathogenic fungus identified as a USDA-APHIS Plant Pathogen Select Agent due to its potential impact on soybean production. Previously, the only genomic data available were specific sequences used in phylogenetic analysis of *Phoma* and *Septoria* spp [13][17]. This sequence data may provide targets for the development of a rapid diagnostic assay and will help further clarify the evolving fungal taxonomy of the genus.

Materials and methods

Fungal isolate, library construction, and sequence assembly

C. glycines-infected leaves were collected from soybean at the Rattray Arnold Research Station, Harare, Zimbabwe in March 2005 and shipped to the USDA-ARS Foreign Disease-Weed Science Research Unit at Fort Detrick, MD under Animal and Plant Health Inspection Service permit. Isolate Pg-21 was recovered from the leaves and maintained on 20% V8-juice agar at 20˚C in the dark. A 10% V8-juice broth was seeded with agar plugs containing mycelium of Pg-21 and grown for several weeks in the dark at 20˚C without shaking. Tissue was collected through vacuum filtration onto Whatman No. 1 filter paper in a Buchner funnel. Total DNA was extracted using the DNeasy Plant Mini kit (Qiagen, Germantown, MD). Culture identification was confirmed through sequencing of ITS fragments.

The mt genome was sequenced as part of a whole genome sequencing project with Illumina sequence libraries prepared using Nextera XT. Whole genome 2×300 paired-end sequencing was performed using Illumina MiSeq instrument. Reads were filtered and trimmed using Trimomatic v.0.32 [18]. The iMetAMOS pipeline v. 1.5 [19] was used to optimize de novo assembly and perform quality checks. Elements of the pipeline include FastQC v. 0.10.0; Spades v. 3.1.1; IDBA v. 1.1.1; KmerGenie v. 1.6741; and QUAST v. 2.2 [20][21][22][23][24]. Resulting assemblies were polished using Pilon v. 1.8 [25]. Samtools v. 1.1 [26] and BLAST were used to remove low coverage and contaminating contigs. Initial shotgun assembly produced 1431 contigs greater than 1kb in size, with a median size of 11kb and median depth of coverage of 274X. Contig 76 was identified as an outlier with a size of 98,482 bp and average depth of coverage of 1542X. Discontinuous MegaBLAST searches revealed homology with fungal mt genome sequences. Finishing of the mt sequence was performed using CLC Genomics Workbench Genome Finishing Module (Qiagen, Germantown, MD), mapping raw Illumina reads back to contig 76, correcting assembly errors, and extending the contig ends.

Sequence annotation

The MFannot tool (http://megasun.bch.umontreal.ca/cgi-bin-mfannot/mfannotInterface.pl) was used to annotate the mt genome using genetic code 4 [27]. Annotation of open reading frames (ORFs) was reviewed and revised by BLAST homology searches against the NCBI protein database [28]. tRNAs were further evaluated against output from tRNAscan-SE[29], Dogma (Dual Organellar GenoMe Annotator)[30], and ARAGORN [31]. RNAweasel was used to classify identified introns as group I or group II introns [32]. Repeats were identified and analyzed with the Tandem Repeats Finder [33] and Palindrome and Einverted EMBOSS programs [34]. Codon usage for concatenated ORFs of twelve protein-coding genes was determined using the codon usage tool at http://www.bioinformatics.org/sms2/codon_usage.html with genetic code 4 [35]. The physical map of the *Coniothyrium* mtDNA was constructing using SnapGene Viewer (GSL Biotech; available at snapgene.com). The complete mt sequence of *C. glycines* isolate Pg-21 has been deposited in GenBank under the accession number MH337273.
Comparative genomics

The complete mt genomes of the eight fungi belonging to the *Dothidiomycetes* were retrieved from GenBank (*Bipolaris cookei*, MF784482; *Didymella pinodes*, NC_029396; *Parastagonospora nodorum*, NC_009746; *Pithomyces chartarum*, KY792993; *Shiraia bambusicola*, NC_026869; *Stemphylium lycopersici*, KX453765; *Zasmidium cellare*, NC_0030334; and *Zymoseptoria tritici*, NC_010222.) Mitochondrial gene content and gene order of *C. glycines* was compared visually to these eight fungi. Nineteen additional complete mt genomes were retrieved from GenBank for a comparison of general features, including size, GC content, core protein coding genes, rRNAs, and tRNAs, and the presence of introns.

Phylogenetic analysis

Amino acid sequences of the twelve protein-coding genes shared in common among 25 fungal mt genomes were each aligned with MUSCLE from EMBL-EBI [36], and amino acids sharing low similarity were removed by Gblocks [37]. Sequences were concatenated using Seaview [38]. A maximum likelihood tree of aligned sequences was constructed with PhyML 3.0 using LG as the evolutionary model [39]. Branch support was assessed using the PhyML default of aLRT test (SH-Like).

Results

Gene content and genome organization

The mt genome of *C. glycines* is a circular molecule with a length of 98,533 bp (Fig 1). The sequence is AT-rich with an overall G + C content of 29.01%, and 28.9% in the coding regions of the protein-coding genes. The RNA genes had a higher GC content of 35.1% while the intergenic spacers had a lower GC content of 24.8%.

Protein-coding genes of the mt genome included one gene encoding for ATP-synthase complex F0 subunit (*atp6*), three cytochrome oxidase subunits (*cox1*, *cox2*, *cox3*), seven nicotinamide adenine dinucleotide ubiquinone oxidoreductase subunits (*nad1-6, nad4L*), cytochrome b (*cob*), one ribosomal protein (*rps3*), and four hypothetical proteins (*orf208, orf284, orf929*, and *orf1407*) (Fig 1 and Table 1). The mt genome also encodes for small and large subunit ribosomal RNAs (*rns* and *rnl*) and 30 tRNAs (Fig 1 and Table 1). Genes were transcribed from both DNA strands. The *cox1* and *cox2* genes were adjacent to each other with no intergenic spacers. Similarly, *nad2* and *nad3* were adjacent with no intergenic spacers and *nad5* is immediately followed by *nad4L* with an overlap of one base (Fig 1 and Table 1).

Within the intergenic spacers, four open reading frames (*orf208, orf284, orf929*, and *orf1407*) were found (Fig 1 and Table 1). Putative functions could be assigned to three of the ORFs: *orf1407* encodes a putative DNA polymerase type B, *orf929* encodes a putative DNA-dependent RNA polymerase, and *orf208* encodes a putative GIY-YIG endonuclease protein. All three showed similarity to relevant sequences in other fungi and possessed conserved domain motifs. Only *orf284* contained no conserved motifs and could not be assigned a putative function, but showed similarity to hypothetical proteins from whole genome shotgun sequencing of *Bipolaris maydis* and *B. zeicola*. An additional GIY-YIG endonuclease motif was identified in the intergenic spacer between the *rnl* and *atp6*. This region showed similarity to endonucleases from other fungi, however no clear ORF could be identified suggesting that this may represent a degenerate endonuclease. Only 14.4% of the mt sequence is comprised of intergenic spacers.

Within the intergenic spacers, 10 perfect or near identical tandem repeats were identified ranging in size from 12–62 bp and with 2–5 copies (S1 Table). In addition, fifteen palindromes were identified ranging in size from 10–15 bp. A single inverted repeat of 30 bp was found.
Introns

Introns made up 54.1% of the mt genome with a total of 32 introns identified within 8 of the protein-coding genes and the rnl (Fig 1 and Table 2). Thirty of the introns were classified as group I introns. One intron was classified as a group II intron (intron3 of the rnl) and one intron could not be definitively classified (intron2 of cox2). Eighteen of the identified introns were determined to contain putative intronic ORFs with either GIY-YIG or LAGLIDADG homing endonuclease (HE) motifs. An additional eleven introns showed evidence of truncated or degenerate HE motifs and one possessed degenerate N-acetyl-transferase domains. Only two introns had no identifiable ORFs and BLAST analysis revealed no homology in the NCBI
Table 1. Gene content of the *Coniothyrium glycines* mitochondrial genome.

Genetic element	Location (nt)	Start	Stop	Size (nt)	Size (aa)
rnl	join: 1–642; 2155–2432; 3861–5119; 8396–9456				
tRNA-Thr	9894–9964				
tRNA-Met	9989–10059				
tRNA-Met	10065–10137				
tRNA-Glu	10402–10474				
tRNA-Ala	10506–10577				
tRNA-Met	11092–11164				
tRNA-Leu	11625–11707				
tRNA-Gln	11782–11853				
tRNA-His	11859–11931				
tRNA-Met	12192–12263				
atp6	join: 13717–14049; 15413–15853				
tRNA-Cys	15948–16017				
tRNA-Phe	16300–16372				
cox1	join: 16743–16954; 19031–19204; 21606–21712; 23153–23368; 24739–24749; 25790–25936; 27865–27867; 29552–29738; 31122–31189; 32251–32387; 33416–34214	ATG	TAG	774	257
cox2	join: 34215–34445; 35613–35976; 37630–37688; 39663–39761	TTA*	TAA	753	250
rps	40260–41591				
nad5	complement join: 42514–43641; 46586–46792; 47806–47952; 49229–49372; 51255–51680	ATG	TAG	2052	683
nad4L	complement join: 51680–51709; 53178–53417	ATG	TAA	269	89
tRNA-Phe	complement 53450–53522	ATG	TAA	1332	443
orf284	complement 53689–54543	ATG	TAA	855	284
cob	complement join: 55085–55422; 56540–56872; 59027–59087; 62520–62747; 63283–63328; 64621–64775	ATG	TAG	1161	386
tRNA-Val	complement 65040–65112	ATG	TAG	1119	372
nad1	complement join: 65506–65987; 67161–67376; 69551–69827; 73205–73348	ATG	TAG	1554	517
nad4	complement 73557–75110	ATG	TAA	1257	418
tRNA-Phe	complement 75247–75319	ATG	TAA	1749	582
nad3	complement 75575–76831	ATG	TAA	816	271
nad2	complement 76832–78580	ATG	TAA	816	271
cox3	complement join: 78714–78890; 79358–79780; 80968–81183	ATG	TAA	816	271
orf1407/dpo	81506–85729				
tRNA-Ile	85795–85883				
orf929/rpo	complement 85986–88775	ATG	TAA	4224	1407
tRNA-Arg	90683–90753				
rns	91029–92648				
tRNA-Leu	93780–93862				
tRNA-Tyr	94127–94211				
tRNA-Asn	94286–94356				
nad6	94681–95268				
tRNA-Val	95545–95617				
tRNA-Lys	95650–95721				
tRNA-Gly	96262–96334				
tRNA-Asp	96337–96408				
tRNA-Ser	96658–96737				
tRNA-Trp	96846–96917				
tRNA-Ile	97024–97095				
protein database. All putative HEs showed significant similarity to those found in the mt genomes of other fungi and most were identified in other members of the Pezizomycotina subphylum. However, each was unique within *C. glycines*, showing no similarity to other intronic ORFs within the mt genome.

The *cox1* gene was the most common site for intron insertion, possessing ten of the 32 identified introns. Each of the ten introns also possessed either complete or degenerative putative HEs. Of these ten, only five were found to have high sequence identity to annotated introns found in the same location in the *cox1* gene of the other Pleosporales. However, no other member of the Pleosporales possessed all five introns in common. The GIY-YIG HE of intron1 of *cox1* showed 87% and 88% nucleotide identity to the corresponding introns of *D. pinodes* and *P. chartarum*, respectively. However, there was not a corresponding HE in the mt genomes of the other four Pleosporales species. Likewise, *cox1* intron4, containing a LAGLIDADG HE, showed 88% nucleotide identity to the corresponding intron in *B. cookei*, but was found in no other Pleosporales species. The remaining five introns showed varying degrees of identity with introns from the mt genomes of more distantly related fungi, such as intron8 which showed 85% nucleotide identity with an intron from the corresponding location in *Sclerotinia sclerotiorum* (S2 Table).

The 2041-bp intron2 of *cox1* has two regions with partial LAGLIDADG HE domains that showed 95–97% nucleotide identity with the 1208bp intron that occurs in the same position in the *cox1* gene of *D. pinodes*. However, the central 1200 bp region of *cox1* intron2 possessed a truncated GIY-YIG HE domain with no significant nucleotide similarity to any other fungus (S2 Table). This central region does show amino acid identity with a GIY-YIG HE located within an intron from the *cob* gene of the more distantly-related *Chrysoporthe deutercubensis* (Table 2).

While most introns showed nucleotide identity with introns inserted into the same gene in other fungi, *nad4L* intron1 shared identity with free standing orfs in *S. sclerotiorum* and *P. nodorum*. One intron, *nad1* intron2, showed no nucleotide identity with other species from the Ascomycota, but rather showed identity with introns from two members of the Basidiomycota. This intron showed identity with an intron from the *nad1* gene of *Moniliophthora roreri* and an intron from the *cox1* gene of *Fomitopsis palustris*.

Codon usage and tRNA genes

Codon usage, summarized in S3 Table, shows a bias towards AT-rich codons, which reflects the high AT content of the *C. glycines* mt genome. Most protein coding genes start with the canonical translation initiation codon ATG with the exception of *cox2* and *orf1407*, which appear to utilize UUA and AUA start codons, respectively. The preferred stop codon in the mt genome was TAA, occurring in 12 genes. The alternative stop codon TAG occurs in 3 genes. A traditional stop codon could not be identified for *cox1*. This absence, combined with the location of *cox1* adjacent to *cox2* with no intergenic spacers, suggested the possibility of a fused

Genetic element	Location (nt)	Start	Stop	Size (nt)	Size (aa)
tRNA-Arg	97100–97171				
tRNA-Ser	97271–97355				
orf208	97357–97983	ATG	TAA	627	208
tRNA-Pro	98372–98444				

*Putative polyprotein containing both *cox1* & *cox2*.

https://doi.org/10.1371/journal.pone.0207062.t001
cox1-coc2 polyprotein rather than two separate proteins. Thirty tRNAs were identified and twenty of them occurred in two large clusters around the rnl, while five occurred singly between mt genes (Fig 1). The tRNAs occurred on both DNA strands.

Comparative genomics and phylogenetic analysis

Comparison of the mt genome of *C. glycines* with those from eight other members of the Dothidiomycetes revealed that in all nine species genes are encoded on both mtDNA strands.
Comparison also found some conservation of gene order, most notably within the Order Pleosporales (Fig 2). In all nine species, \(\text{nad}^4 \) L and \(\text{nad}^5 \) were adjacent, and in all but \(P. nodorum \) there are no intergenic spacers but rather a one base pair overlap between the two genes. Within \(C. glycines \) and the six members of the Pleosporales, \(\text{cox} \text{1} \) and \(\text{cox} \text{2} \) were also adjacent with no intergenic spacers. Three members of the Pleosporales possess a conserved gene block of \(\text{nad}^5 \), \(\text{nad}^4 \) L, \(\text{nad}^3 \), and \(\text{nad}^2 \). \(C. glycines \) shows the same gene order, however the block is disrupted by insertion of \(\text{cob}, \text{nad} \text{1}, \text{and} \text{nad} \text{4} \) between \(\text{nad} \text{4} \) L and \(\text{nad} \text{3} \). \(C. glycines \) and the other Pleosporales species also lack the \(\text{atp} \text{8} \) and \(\text{atp} \text{9} \) genes which are typically found in fungal mt genomes, while both Capnodiaceae species possess both genes.

All nine species also exhibit large clusters of tRNA genes around the \(rnl \), and within the Pleosporales tRNA order is maintained as well. The conservation of gene and tRNA order is expanded among the Pleosporales, with six of the seven possessing a \(\text{nad} \text{6}-\text{rnl}-\text{atp} \text{6} \) gene block with associated conserved tRNA cluster patterns (Table 3). \(P. chartarum \) possesses a similar gene block and tRNA cluster pattern, but the \(\text{atp} \text{6} \) is displaced relative to the other Pleosporales. This conservation of tRNA gene order is carried to a lesser extent to the Capnodiaceae.

Table 3. Comparison of conserved gene and tRNA cluster patterns flanking the \(rnl \) in \(Coniothyrium glycines \) and other Dothidiomyces*

Species	Order	Family	tRNA and gene order \(^b\)	Accession
\(Coniothyrium glycines \)	Pleosporales	Coniothyriaceae	LYN—\(\text{nad} \text{6} \)-VKGDSWIRSP—rnl—TMM—EAFLQHM—\(\text{atp} \text{6} \)	MH337273
\(Bipolaris cookei \)	Pleosporales	Pleosporaceae	LYN—\(\text{nad} \text{6} \)-VKGDSWIRSP—rnl—TMM—EAFLQHML—\(\text{atp} \text{6} \)	MF784482
\(Pithomyces chartarum \)	Pleosporales	Pleosporaceae	-YN—\(\text{nad} \text{6} \)-VKGDSWIRSP—rnl—TMM—LEAFLQHM	KY792993
\(Stemphylium lycopersici \)	Pleosporales	Pleosporaceae	L—\(\text{nad} \text{6} \)-VKGDSWIRSP—rnl—TMMEAFLQHMNL—\(\text{atp} \text{6} \)	KX453765
\(Didymella pinodes \)	Pleosporales	Didymellaceae	LYN—\(\text{nad} \text{6} \)-V—DSWIRSP—rnl—TM—EAFLQHM—\(\text{atp} \text{6} \)	NC_029396
\(Shiria bambusicola \)	Pleosporales	Pleosporales incertae sedis	—\(\text{nad} \text{6} \)-V—GDSWIRSP—rnl—TMMEAFLQHM	NC_026869
\(Parastagonospora nodorum \)	Pleosporales	Pleosporales incertae sedis	—\(\text{nad} \text{6} \)-V—GDSWIRSP—rnl—TMMEAFLQHM	NC_009746
\(Zasmidium cellare \)	Capnodiaceae	Mycosphaerellaceae	————GD—SWI—SA—rnl—LEFLQHMIV	NC_030334
\(Zymoseptoria tritici \)	Capnodiaceae	Mycosphaerellaceae	————GD—SWI—SP—rnl—MLEAFYQMHRM	NC_010222

*The tRNA gene order of included organisms is taken from GenBank sequences.

*Capital letters correspond to tRNA genes for: L, Leucine; Y, Tyrosine; N, Asparagine; V, Valine; K, Lysine; G, Glycine; D, Aspartic acid; S, Serine; W, Tryptophan; I, Isoleucine; R, Arginine; P, Proline; T, Threonine; M, Methionine; E, Glutamic acid; A, Alanine; F, Phenylalanine; L, Leucine; Q, Glutamine; H, Histidine.
Comparison of the mt genome of *Coniothyrium glycines* and the other Dothidiomycetes with those of an additional 19 ascomycetous fungal species revealed several potentially distinguishing characteristics of this class. Of the 25 mt genomes compared, fifteen carry all genes on the same strand of DNA and an additional four mt genomes show the core coding genes encoded on the same strand with only tRNAs or hypothetical proteins encoded in the opposite direction (S4 Table). However, all nine members of the Dothidiomycetes contain genes distributed on both mtDNA strands. Also, while ribosomal protein S3 or S5 occurs within an intron of the *rnl* in 17 of the 25 species examined, among the Pleosporales *rps3/rps5* occurs as a free standing ORF and the gene appears to be absent from the two Capnodiales species (Table 4).

Table 4. A comparison of the general features of some completely sequenced fungal mitochondrial genomes a,b,c,d,e.

Species	Size (bp)	GC content (%)	Core coding genes	ribosomal protein	rRNAs	tRNAs	introns	Accession
Arthroderma otae	23943	24.2	14	rps5	2	25	1	NC_012832
Aspergillus niger	31103	27.0	14	rps5	2	25	3	NC_007445
Beauveria bassiana	29961	27.2	14	rps3	2	25	3	NC_010652
Bipolaris cockei	135790	30.1	12	rps3	2e	30	40	MF784482
Botrytis viti ficielliana	82212	29.9	14	rps3	2*	30	20	KC832409
Cladophialophora bastiana	26821	24.5	14	rps5	2	22	2	NC_030600
Coniothyrium glycines	98533	29.0	12	rps3	2	30	32	MH337273
Didymella pinodes	55973	29.5	12	rps3	2	22	14	NC_029396
Epichloe typhina	84630	27.0	14	rps3	2*	24	18	NC_032063
Glarea lozoyensis	45038	29.8	14	rps3	2	33	7	KF169905
Hypocrea je corina	42130	27.2	14	rps5	2	25	9	NC_003388
Lecanicium saksenae	25199	26.5	14	rps3	2	26	1	NC_028330
Metarhizium anisopliae	24673	28.4	14	rps3	2	24	1	NC_008068
Parastagonospora nodorum	49761	29.4	12	rps5	2	27	5	NC_009746
Peltigera dolichorrhiza	51156	26.8	14	rps3	2	26	6	NC_031804
Penicillium polonicum	28192	25.6	14	rps3	2	27	1	NC_030172
Phialocephala subalpina	43742	28.0	14	rps3	2	27	0	NC_015789
Pithomyces chartarum	68926	28.6	12	rps3	2e	26	13	KY792993
Pseudogymnoascus pannorum	26918	28.1	13	rps3	2	27	1	NC_027422
Pyronema omphalodes	191189	43.0	14	rps3	2	25	22	NC_029745
Sclerotinia borealis	203051	32.1	14	rps3	2	31	61	NC_025200
Shiraia bambusicola	39030	25.2	12	rps3	2	32	1	NC_026869
Stemphylium lycopersici	75911	29.6	12	rps3	2	28	15	KX453765
Talaromyces marneffi	35438	25.0	14	rps5	2	28	10	NC_005256
Trichophyton rubrum	26985	23.5	14	rps5	2	25	1	NC_012824
Verticillium dahliae	27184	27.3	14	rps3	2	25	1	NC_008248
Zasmidium cellare	23743	27.8	14	-	2	25	0	NC_030334
Zymoseptoria tritici	43964	32.0	14	-	2	27	0	NC_010222

Notes:

- **a** All fungi in this table have mt genomes with circular topology.
- **b** Refers to the 14 conserved protein coding genes typical of fungal mitochondrial genomes: 11 genes encoding subunits of respiratory chain complexes (*cob cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5, and nad6*) and 3 ATP synthase subunits (*atp6, atp8* and *atp9*).
- **c** Ribosomal protein S3 or S5, when present, occurs as an intronic orf within the *rnl* of all above mt genomes with the exception of *C. glycines, D. pinodes, P. nodorum, P. subalpina, P. amphalodes, P. chartarum, S. bambusicola, and S. lycopersici.*
- **d** The ribosomal proteins S3 or S5 were not annotated in the available sequences, but were putatively identified by blastx analysis against the non-redundant protein database.
- **e** Ribosomal RNAs were not annotated in the available sequences, but were putatively identified by blastn analysis against the *rnl* and *rns* of other fungal mt genomes.

https://doi.org/10.1371/journal.pone.0207062.t004
Additionally, while \textit{atp8} and \textit{atp9} are absent from the Pleosporales species, both are found in the other species with the exception of \textit{Pseudogympnoascus pannorum} which lacks only \textit{atp9} (Table 4). The proximity of \textit{cox1} and \textit{cox2}, also characteristic of the Pleosporales examined to date, is not apparent among the other ascomycetous species.

Several similarities across the species were revealed as well. The G+C content is consistent among all species, ranging from 23–32%, with the exception of \textit{Pyronema omphalodes} with 43%, and all show some tRNA clustering around the \textit{rnl}. In all but four species, \textit{nad4L} and \textit{nad5} are adjacent with either no intergenic spacer or a single base pair overlap (S4 Table).

The size of the mt genome and the presence of introns varies across all species, ranging from 23743 bp in \textit{Z. cellare} with no introns to 203051 bp in \textit{Sclerotinia borealis} with 61 introns. In general, a larger number of introns is reflected in a larger genome size (Table 4). Among the Pleosporales, \textit{S. bambusicola} has the smallest mt genome at 39030 bp, of which only 3.2% is comprised of the one intron identified.[40] \textit{P. nodorum} (49761 bp) contains five introns, which make up 13% of the mtDNA [16], while \textit{D. pinodes} (55973 bp) contains 14 introns, making up 26% of its mt genome size (NC_029396). Within \textit{C. glycines}, the 32 identified introns comprised 54% of total mt genome size.

A phylogenetic tree was built with twelve protein-coding genes in common from 25 fungal species (Fig 3). This tree agrees with commonly accepted fungal taxonomy and supports the placement of \textit{C. glycines} among the Pleosporales and recent reclassification to its own family, the Coniothyriaceae.[13]

Discussion

This research provides the first genomic information on the USDA APHIS-listed Plant Pathogen Select Agent \textit{C. glycines}; data which may provide targets for rapid diagnostic assays and population studies. Additionally, \textit{C. glycines} represents the second largest mt genome from a member of the Pleosporales sequenced to date. Mitochondrial genome size among fungi varies greatly from the smallest, \textit{Rozella allomyces}, at 12055 bp [41] to the largest, \textit{Rhizoctonia solani}, at 235849 bp [42]. At 98,533 bp, \textit{C. glycines} is of larger than average size and only 23 other currently available fungal mt genomes are larger. Among the fungi there is no correlation between mtDNA size and gene content.

The gene content of fungal mt genomes is largely conserved. However, it is notable that \textit{C. glycines} lacked two of the core set of genes typical of fungal mt genomes: \textit{atp8} and \textit{atp9}. These two genes were also absent from the mt genomes of other Pleosporales species [16][40]. While gene content may be conserved, gene order is not equally conserved and relative gene order varies both between and within major fungal phyla [43][44][45]. Alignment of the \textit{C. glycines} mt genome with other members of the Dothidiomycetes identified a lack of synteny in gene order and gene orientation. However, limited conserved gene blocks were observed. The uninterrupted gene pairs of \textit{nad2-nad3} and \textit{nad4L-nad5} occurred in all nine Dothidiomycetes species, while the pairing of \textit{cox1}-\textit{cox2} occurred only within all seven Pleosporales species and not the two Capnodiales species. Additionally, \textit{nad1-nad4} remain coupled in only three species from the Pleosporales. A conserved gene block \textit{nad2-nad3} and \textit{nad4L-nad5} was identified among three of the Pleosporales, but within the \textit{C. glycines} mt genome this block is interrupted by three other genes. However, six of the seven Pleosporales species showed an \textit{atp6-rnl-nad6} conserved gene block, which included two large clusters of tRNAs on either side of the \textit{rnl} in a relatively conserved pattern. Additionally, protein-coding and tRNA genes of \textit{C. glycines} and the eight other Dothidiomycetes are encoded on both mtDNA strands, while the majority of ascomycetes species examined here have genes encoded on a single DNA strand. The pattern of gene order in mt genomes may provide a road map to trace the evolutionary route of fungal
As additional species from the Dothidiomycetes, and the Pleosporales specifically, are analyzed, the additional mt signals will indicate if conserved gene blocks identified to date are characteristic of the Order Pleosporales and further help elucidate fungal taxonomy. Comparative genomics and phylogenetic analysis presented here supports the placement of *C. glycines* within the Pleosporales and its recent reclassification to its own family, the Coniothyriaceae [13].

With gene content being largely conserved, the size variation evident among fungal mt genomes is instead attributable to variations in the structure and size of intergenic spacers and the number and size of introns [46][47][48]. The larger than average mt genome size of *C. glycines* was attributed to the relatively high number of introns identified, with 32 introns comprising over half of the total mt genome size. This abundance of introns, most of which possess complete or degenerate HEs, may also provide valuable tools for the evaluation of evolutionary history and intron mobility [49][50][51][52][53][54]. While the cox1 gene is considered the most common insertion site for group I introns in fungal mt genomes, the number of introns...
inserted varies widely from zero in some fungi to the fourteen identified in *Podospora anserina* [55]. The present study of *C. glycines* found five of ten cox1 introns, which all possess either complete or truncated HE domains, shared high sequence identity with corresponding introns from the six other Pleosporales species annotated, suggesting common ancestral origin. However, it is notable that none of these five putative HEs occurred in all seven Pleosporales species. The remaining five cox1 introns showed varying degrees of identity with introns from the mt genomes of more distantly related fungi. For example, cox1 intron8 contained a GIY-YIG HE that showed 85% nucleotide identity with an intron from the corresponding location in *S. sclerotiorum* of the Helotiales and intron5, with its LAGLIDADG HE, shared 71% identity with an intron from *Lachancea mirantina*, a member of the Saccharomycotina subphylum (S2 Table). The similarity to HEs from fungi of more distantly related fungi suggest possible acquisition through horizontal transfer rather than retention from a common ancestor. Additional evidence of horizontal transfer comes from nad1 intron2 and its LAGLIDADG HE which showed no nucleotide identity with introns from other species of the Ascomycota, but rather showed identity with introns from two distantly related members of the Basidiomycota.

The examination of cox1 HEs also revealed evidence of multiple insertion events during the course of evolution. While cox1 intron2 possessed end regions with truncated LAGLIDADG domains and high nucleotide identity to a single orthologous intron from *D. pinodes*, the central region of this intron, with a truncated GIY-YIG domain, showed only amino acid similarity to an intron from the cob gene of the more distantly-related *C. deutercubensis*, suggesting the insertion of a new sequence into an already present HE.

It is difficult to determine the precise roles that intron retention, intron acquisition through horizontal transfer, and intron loss have played in constructing the *C. glycines* mt genome as it has been annotated here. The question remains if some fungal lineages possess a mechanism by which they accumulate and retain HEs while other fungal lineages appear to have lost all introns, and what that mechanism might be. However, this analysis of HEs does suggest that a complex pattern of insertions and horizontal transfers of introns are responsible for the relatively large mt genome size of *C. glycines*.

Supporting information

S1 Table. Repeat sequences in the *Coniothyrium glycines* mitochondrial genome.

(DOCX)

S2 Table. Sequence similarity between mt introns of *Coniothyrium glycines* and introns of other fungal mitochondrial genomes.

(XLSX)

S3 Table. Codon usage in twelve protein-coding mitochondrial genes of *Coniothyrium glycines*.

(XLSX)

S4 Table. Gene order of the fungal mt genomes used for comparative genomics and phylogenetic analysis.

(XLSX)

Acknowledgments

The authors wish to thank Melissa Carter for extraction and quality assessment of the DNA used in sequencing.
Author Contributions

Conceptualization: Douglas G. Luster, Ulrich Melcher, Jacqueline Fletcher, Trenna Blagden.

Data curation: Brittany Campos, Richard A. Winegar.

Formal analysis: Christine L. Stone, Brittany Campos, Richard A. Winegar.

Funding acquisition: Jacqueline Fletcher.

Investigation: Christine L. Stone, Brittany Campos, Richard A. Winegar.

Methodology: Christine L. Stone, Brittany Campos, Richard A. Winegar, Ulrich Melcher.

Project administration: Jacqueline Fletcher, Trenna Blagden.

Resources: Reid D. Frederick, Paul W. Tooley, Douglas G. Luster, Brittany Campos, Richard A. Winegar, Trenna Blagden.

Supervision: Reid D. Frederick, Richard A. Winegar, Jacqueline Fletcher.

Validation: Brittany Campos, Richard A. Winegar.

Visualization: Christine L. Stone.

Writing – original draft: Christine L. Stone.

Writing – review & editing: Christine L. Stone, Reid D. Frederick, Paul W. Tooley, Douglas G. Luster, Brittany Campos, Richard A. Winegar, Ulrich Melcher, Jacqueline Fletcher, Trenna Blagden.

References

1. Hartman GL, Sinclair JB. Dactuliochaeta, a new genus for the fungus causing red leaf blotch of soybeans. Mycologia. 1988; 80(5):696–706.
2. Punithalingam E. CMI descriptions of fungi and bacteria: Dactuliochaeta glycines (No. 1012). 1990.
3. Datnoff LE, Naik DM, Sinclair JB. Effect of red leaf blotch on soybean yields in Zambia. Plant Dis. 1987; 71:132–135.
4. Hartman GL, Sinclair JB. Red leaf blotch (Dactuliochaeta glycines) of soybeans (Glycine max) and its relationship to yield. Plant Pathol. 1996; 45(2):332–343.
5. Hartman GL, Sinclair JB. Cultural studies on Dactuliochaeta glycines, the causal agent of red leaf blotch of soybeans. Plant Dis. 1992; 76(8):847–852.
6. Federal Select Agent Program Animal and Plant Health Inspection Service, Agriculture Select Agent Services, Riverdale, MD 20737. 2014; http://www.selectagents.gov/SelectAgentsandToxinsList.html
Koren S, Treangen TJ, Hill CM, Pop M, Phillippy AM. Automated ensemble assembly and validation of microbial genomes. BMC Bioinformatics. 2014; 15:126. https://doi.org/10.1186/1471-2105-15-126

Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC. Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. CABI Publishing, Wallingford; UK. 2004.

Gruyter J. de and Boerema GH. Contributions towards a monograph of Phoma (Coelomycetes)—VIII. Section Paraphoma: Taxa with setose pycnidia. Persoonia. 2002; 17(4):541–561.

Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC. Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. CABI Publishing, Wallingford; UK. 2004.

Gruyter J. de, Woudenberg JHC, Aveskamp MM, Verkely GMJ, Groenewald JZ, Crous PW. Redisposition of phoma-like anamorphs in Pleosporales. Studies in Mycology. 2013; 75(1):1–36. https://doi.org/10.3114/sim0017 PMID: 24014902

Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics. 2014; 30(15):2078–2079. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352 PMID: 19505943

Beck N, Lang B. 2010. MFannot, organelle genome annotation webserver. http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl.

Gish W, States DJ. 1993. Identification of protein coding regions by database similarity search. Nat Genet. 3:266–272. https://doi.org/10.1038/ng0393-266 PMID: 8485583

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25:955–964. PMID: 9231104

Wyman SK, Jansen RIK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004; 20:3252–3255. https://doi.org/10.1093/bioinformatics/bth352 PMID: 15169297

Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004; 32:11–16. https://doi.org/10.1093/nar/gkh152 PMID: 14704338
The mitochondrial genome of *Coniothyrium glycinus*

32. Lang BF, Laforest MJ, Burger G. Mitochondrial introns: a critical view. Trends in Genetics 2007; 23:119–125. https://doi.org/10.1016/j.tig.2007.01.006 PMID: 17280737

33. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999; 27 (2):573–80. PMID: 9862982

34. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000; 16(6):276–7. PMID: 10827456

35. Stothard P. The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques. 2000; 28:1102–1104. https://doi.org/10.2144/00286ir01 PMID: 10868275

36. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32(5):1792–1797 https://doi.org/10.1093/nar/gkh340 PMID: 15034147

37. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol. 2010; 59(3):307–21. https://doi.org/10.1093/sysbio/syq010 PMID: 20525638

38. Shen XY, Li T, Chen S, Fan L, Gao J, Hou CL. Characterization and phylogenetic analysis of the mitochondrial genome of *Shiraia bambusicola* reveals special features in the order of Pleosporales. PLoS One. 2015; 10(3):e0116466. https://doi.org/10.1371/journal.pone.0116466 PMID: 25790308

39. James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, et al. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol. 2013; 23(16):1548–53. https://doi.org/10.1016/j.cub.2013.06.057 PMID: 23932404

40. Losada L, Pakala SB, Fedorova ND, Joardar V, Shabalina SA, Hostetler J, et al. Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen *Rhizoctonia solani* AG-3. FEMS Microbiol Lett. 2014; 352 (2), 165–173. https://doi.org/10.10111/j.1574-6968.12387 PMID: 24461055

41. Aguilera G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E., et al. High variability of mitochondrial gene order among fungi. Genome Biol Evol. 2014; 6(2):451–465. https://doi.org/10.1093/gbe/evu028 PMID: 24504088

42. Kouvulis VN, Ghikas DV, Typas MA. The analysis of the complete mitochondrial genome of *Lecanicillium muscarium* (synonym *Verticillium lecani*) suggests a minimum common gene organization in mtDNAs of Sordariomycetes: phylogenetic implications. Fungal Genet Biol. 2004; 41:930–940. https://doi.org/10.1016/j.fgb.2004.07.003 PMID: 15341915

43. Stone CL, Posada-Buitrago ML, Boore JL, Frederick RD. Analysis of the complete mitochondrial genome sequences of the soybean rust pathogens *Phakopsora pachyrhizi* and *P. melioriae*. Mycologia. 2010; 102(4):887–987. PMID: 20648755

44. Litter J, Keszthelyi A, Hamari Z, Pfeiffer I, Kucsera J. Differences in mitochondrial genome organization of *Cryptococcus neoformans* strains. Antonie van Leeuwenhoek. 2005; 88:249–255. https://doi.org/10.1007/s10482-005-8544-x PMID: 16284931

45. Wang Y, Zeng F, Hon CC, Zhang Y, Leung FCC. The mitochondrial genome of the Basidiomycete fungus *Pleurotus ostreatus* (oyster mushroom). FEMS Microbiol Lett. 2008; 280:34–41. https://doi.org/10.1111/j.1574-6968.2007.01048.x PMID: 18248422

46. Formighieri EF, Tiburcio RA, Armas ED, Medrano FJ, Shimo H, Carels N, et al. The mitochondrial genome of the phytopathogenic basidiomycete *Moniliophthora perniciosa* is 109 kb in size and contains a stable integrated plasmid. Mycol Res. 2008; 112:1136–1152. https://doi.org/10.1016/j.mycres.2008.04.014 PMID: 18788620

47. Cusimano N, Zhang LB, Renner SS. Reevaluation of the *cox1* group I intron in Araeaceae and angiosperms indicates a history dominated by loss rather than horizontal transfer, Mol Biol Evol. 2008; 25(2):265–276. https://doi.org/10.1093/molbev/msm241 PMID: 18158323

48. Férandon C, Mouha S, Callac P, Benedetto J-P, Castroviejo M, Barroso G. The *Agaricus bisporus* *cox1* gene: The longest mitochondrial gene and the largest reservoir of mitochondrial group I introns. PLoS ONE. 2010; 5(11): e14048. https://doi.org/10.1371/journal.pone.0014048 PMID: 21124976

49. Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD. Frequent, phylogenetically local horizontal transfer of the *cox1* group I intron in flowering plant mitochondria. Mol Biol Evol. 2008; 25 (8):1762–1777. https://doi.org/10.1093/molbev/msn129 PMID: 18524785
52. Saguez C, Lecellier G, Koll F. Intronic GiY-YIG endonuclease gene in the mitochondrial genome of *Podospora curvicolla*: evidence for mobility. Nucleic Acids Res. 2000; 28(6):1299–1306. PMID: 10684923

53. Sethuraman J, Majer A, Friedrich NC, Edgell DR, Hausner G. Genes within Genes: Multiple LAGLI-DADG Homing Endonucleases Target the Ribosomal Protein S3 Gene Encoded within an *nl* Group I Intron of Ophiostoma and Related Taxa. Mol Biol Evol. 2009; 26(10):2299–2315. https://doi.org/10.1093/molbev/msp145 PMID: 19597163

54. Mardanov AV, Beletsky AV, Kadnikov VV, Ignatov AN, Ravin NV. The 203 kbp Mitochondrial Genome of the Phytopathogenic Fungus *Sclerotinia borealis* Reveals Multiple Invasions of Introns and Genomic Duplications. PLoS One. 2014; 9(9):e107536. https://doi.org/10.1371/journal.pone.0107536 PMID: 25216190

55. Cummings DJ, McNally KL, Domenico JM, Matsuura ET. The complete DNA sequence of the mitochondrial genome of *Podospora anserina*. Curr Genet. 1990; 17:375. PMID: 2357736