Acute High-Altitude Illness: Updated Principles of Pathophysiology, Prevention, and Treatment

Akute Höhenkrankheit: Ein Update über die Prinzipien der Pathophysiologie, Prävention und Therapie

Summary

- The interest in trekking and mountaineering is increasing, and growing numbers of individuals are travelling to high altitude. Following ascent to high altitude, individuals are at risk of developing one of the three forms of acute high-altitude illness: acute mountain sickness (AMS), high-altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE). The cardinal symptom of AMS is headache that occurs with an increase in altitude. Additional symptoms are anorexia, nausea, vomiting, dizziness, and fatigue.

- HACE is characterized by truncal ataxia and decreased consciousness that generally but not always are preceded by worsening AMS. The typical features of HAPE are a loss of stamina, dyspnea, and dry cough on exertion. Followed by dyspnea at rest, rales, cyanosis, cough, and pink frothy sputum.

- These diseases can develop at any time from several hours to 5 days following ascent to altitudes above 2,500–3,000 m. Whereas AMS is usually self-limited, HACE and HAPE represent life-threatening emergencies that require timely intervention.

- For each disease, we review the clinical features, epidemiology and the current understanding of their pathophysiology. We then review the primary pharmacological and non-pharmacological approaches to the management of each form of acute altitude illness and provide practical recommendations for both prevention and treatment. The essential principles for advising travellers prior to high-altitude exposure are summarized.

KEY WORDS:
Acute Mountain Sickness, High Altitude Cerebral Edema, High Altitude Pulmonary Edema, Hypoxia

SCHLÜSSELWÖRTER:
Akute Bergkrankheit, Höhenhirnödem, Höhenlungenödem, Hypoxie

Introduction

Exposure to high altitude leads to a fall in barometric pressure and consequently to a decline in the inspired partial pressure of oxygen. In the absence of adaptive mechanisms, the decrease in alveolar oxygen uptake yields a reduction of oxygen delivery to the periphery with the risk of cellular hypoxia and organ dysfunction. The profound effect of altitude on the oxygen cascade is illustrated in figure 1. Maintaining sufficient oxygenation of organs and tissues in hypoxia presents a significant physiological challenge for the human body. This challenge is further aggravated during exercise due to the additional demand of oxygen resulting from exercising skeletal, respiratory, and cardiac muscles (32). If the adaptive processes fail to compensate sufficiently for the decrease in oxygen availability, acute mountain...
Acute Mountain Sickness (AMS) and High-Altitude Cerebral edema (HACE)

AMS is a complex of nonspecific symptoms experienced by many within the first days after ascent to an altitude >2,500 m. AMS primarily manifests itself as headache, anorexia, nausea, vomiting, dizziness, and fatigue (37). AMS per se is not life-threatening and usually manifests itself as headache, anorexia, nausea, vomiting, dizziness, and fatigue (37). AMS per se is not life-threatening and in the vast majority of cases the symptoms resolve spontaneously over the next days if no further ascent is made. Very severe AMS, however, may progress to life-threatening HACE, which is characterized by brain swelling and increased intracranial pressure leading to an altered level of consciousness, ataxia, and ultimately death if not treated appropriately (5).

The major determinants of AMS are the absolute altitude reached, the rate of ascent, the extent of pre-acclimatization, and the level of individual susceptibility (42). While the first three factors usually can be controlled, the mechanisms determining the degree of individual susceptibility are obscure. Susceptibility to AMS is not different between males and females, while children and adolescents may be less prone to AMS than adults (24). Whether exercise amplifies AMS or not remains controversial (38, 43). However, it has recently been shown that endurance trained athletes with a high aerobic capacity (>65 ml/kg/min) are at higher risk for developing AMS on the first day following passive and rapid ascent to 3,450 m (40).

The pathophysiology of AMS is still incompletely understood, and no consistent or strong correlations between an overall assessment of AMS and single pathophysiologic factors have been found in a large number of studies over the last 50 years. Also, exceptional high-altitude mountaineers fail to display any remarkable physiological characteristics at sea level (34), and those who cope poorly with high altitude are equally difficult to identify. Despite the long-lasting search for a test that reliably predicts susceptibility to AMS, currently the best predictor of high-altitude tolerance is the history of performance during previous exposures to a similar altitude with comparable pre-acclimatization (3).

While it is commonly assumed that AMS symptoms peak after the first night spent at a new altitude >2,500 m, we recently described, for the first time, that three different time courses of developing AMS may exist (11). While at a given altitude about 40% of those who suffer from AMS have a peak of their symptoms on day 1, about 40% of those with AMS have a peak in symptom severity on day 2. In about 20% of those who experience AMS, symptom severity increases over time and peaks on day 3 or even later. According to the day at which AMS symptoms are most prominent we suggest that the different time courses of AMS be named type I, type II, and type III. We further hypothesized that these variations of AMS time course are due to the different dominating pathophysiologic factors as summarized in Table 2. Figure 2 summarizes the concepts currently thought to underlie the pathogenesis of AMS and HACE, respectively.

Hypoxemia is an indispensable requirement for the development of AMS and HACE. Usually, at a given altitude arterial oxygen saturation (SaO2) and tension (PaO2) are on average slightly lower in individuals with AMS compared to healthy controls (11, 29). Factors that may contribute to the more pronounced hypoxemia in AMS include a lower hypoxic ventilatory drive (36), a higher metabolic demand (40), and an impaired oxygen diffusion caused by interstitial pulmonary edema (14). Once hypoxemia is established, the following pathways may be activated: At high altitude cerebral blood flow (CBF) increases in order to maintain oxygen delivery to the brain (52). The increase in CBF may lead to an increase in hydrostatic vascular pressure, particularly if a limitation in venous outflow exists (53) as it may be the case in supine position. An increased hydrostatic vascular pressure favours the development of HACE, especially if vascular permeability (see below) is also increased (25). The brain itself is an insensitive organ except for its meninges and large blood vessels, which contain sensory axons projecting to the trigeminal nerve (39). Brain edema and raised intracranial pressure may cause headache by compressing brain structures.

Table 1

INDICATION	MEDICATION	ROUTE	DOSAGE
AMS			
Prevention	Acetazolamide	oral	Moderate risk: 125 mg every 12 h
	Dexamethasone	oral	High risk: 250 mg every 12 h
Treatment	Ibuprofen	oral	600 mg every 8 h (against headache)
	Metoclopramide	oral	10 mg every 8 h (against nausea)
	Acetazolamide	oral	250 mg every 12 h
	Dexamethasone	oral	4 mg every 6 h (in case of severe AMS)
HACE			
Prevention	Acetazolamide	oral	same as for AMS
	Dexamethasone	oral	same as for AMS
Treatment	Dexamethasone	oral, iv, im	8 mg once, then 4 mg every 6 h
HAPE			
Prevention	Nifedipine	oral	30 mg slow release version, every 12 h or
	Tadalafil	oral	10 mg every 12 h
Treatment	Nifedipine	oral	20 mg slow release version every 8 h

Recommended dosages for medications used in the prevention and treatment of acute high-altitude illnesses (adapted from (26)). Of note, since all forms of acute high-altitude illnesses are caused by the lack of oxygen, descent to lower altitudes is the primary and definite treatment.

If descent is not possible administration of oxygen provides a suitable treatment alternative to descent for all forms of acute high-altitude illness.
structures leading to displacement and stretching of pain-sensitive unmyelinated fibres within the trigeminovascular system (1). Connections of afferent fibres of the trigeminal nerve to vegetative centres in the brainstem may also explain accompanying symptoms such as nausea and vomiting (39). A further consequence of hypoxia may be an increase in vascular permeability through higher levels of oxidative stress, inflammation or upregulation of vascular endothelial growth factor (VEGF) (1, 50), which might be involved in the pathophysiology of HACE. In addition, cytotoxic (intracellular) edema, caused by hypoxic depression of energy-dependent ion transport systems, may contribute to an increase in brain volume and intracranial pressure (23). However, as indicated by lumbar punctures, in AMS the blood-brain barrier seems to be intact for large molecular weight proteins (2) and there are no significant associations between the observed slight increase in brain volume (23) and AMS. Another consequence of hypoxia in some individuals may be greater activation of the parasympathetic nervous system over that of the sympathetic nervous system, which may typically cause nausea and dizziness (47) and lead, in combination with headache, to the diagnosis of AMS. This may explain why endurance trained athletes, that naturally have a more dominant parasympathetic activity, experience more difficulties to adapt to high altitude on the day of ascent (40).

In HACE visually detectable brain swelling has been demonstrated especially in the splenium of the corpus callosum (22). Susceptibility-weighted MRI also demonstrated a leak of the blood-brain barrier for erythrocytes as evidenced by hemosiderin deposition persisting over years in the corpus callosum and throughout the brain in more severe cases after HACE (44). The clinical features of HACE are truncal ataxia and decreased consciousness that generally but not always are preceded by worsening AMS. Without appropriate treatment HACE can rapidly progress to coma (29).

High Altitude Pulmonary Edema (HAPE)

Investigations over the last 40 years have largely unravelled the pathophysiology of HAPE, which is a pressure-induced, non-cardiac pulmonary edema that occurs within 1-5 days after an acute altitude exposure >3,000 m when acclimatization is insufficient. If HAPE occurs at lower altitudes (<3,000 m) pre-existing co-morbidities (e.g. left heart failure, pulmonary embolism, abnormalities in pulmonary circulation) must be considered. In about 50-70% of cases HAPE is preceded by symptoms of AMS. Early HAPE symptoms include excessive dyspnoea during exercise and reduced exercise performance. As edema progresses, orthopnoea, gurgling in the chest, and pink frothy sputum will occur. Under these circumstances, arterial SO₂ and PO₂ are dramatically reduced, reflecting the severity of the disease. If untreated, the estimated mortality rate of HAPE is about 50% (5).

As for AMS, the major determinants of HAPE are the absolute altitude reached, the rate of ascent, the extent of pre-acclimatization, and the level of individual susceptibility (5).
The removal of edema fluid from the alveolar space depends on active transport of sodium (Na+) and chloride (Cl-) across alveolar epithelial type I and II cells (31). Na+ enters the cell via various Na+ transporters in the apical plasma membrane and is extruded on the basolateral side of the cell by Na+/K+ pumps. Water follows passively, probably paracellularly and/or through aquaporins, which are water channels that are found predominantly on alveolar epithelial type I cells. From the lung interstitium the fluid is cleared via the lymphatics which may be less developed in HAPE-susceptible persons (13). It is well established that hypoxia decreases transepithelial Na+ transport by reducing expression and activity of both the epithelial sodium channel (ENaC) and the Na+/K+ -ATPase. However, if and how much a decreased alveolar fluid clearance and lymphatic transport capacity contribute to the pathophysiology of HAPE is not known.

A concomitant airway infection may increase the risk for HAPE by increasing permeability of the alveolar-capillary barrier, which favours fluid extravasation into the lung (48). The incidence among persons with an unknown history of HAPE is about 6% if they ascend to 4559 m within one to two days. For individuals with a history of radiographically documented HAPE, i.e. for HAPE-susceptible individuals, this risk increases to about 60% (5).

An important factor in the pathophysiology of HAPE is an excessive hypoxic pulmonary vasoconstriction causing fluid leakage into the lung. The critical role of a high pulmonary artery pressure is confirmed by the fact that descent, oxygen or drugs that lower pulmonary artery pressure are effective for preventing and treating HAPE. Measurements of plasma endothelin (8), of nitric oxide (NO) in exhaled air (12), NO metabolites in broncho-alveolar lavage fluid (49), and NO-dependent endothelial function in the systemic circulation (9) all point to a reduced NO availability and increased endothelin production in hypoxia as main cause of the excessive hypoxic pulmonary vasoconstriction in HAPE-susceptible individuals. Additional factors, e.g. inflammatory-induced increases in the permeability of the alveolar-capillary barrier and/or impaired alveolar fluid clearance, may contribute to the progression of HAPE ((41, 48), Figure 3).

Several mechanisms have been suggested to explain how an exaggerated hypoxic pulmonary vasoconstriction induces pulmonary edema formation (48): First, pulmonary vasoconstriction may cause transarteriolar leakage upstream of the microvascular bed. Second, hypoxic pulmonary venuconstriction may increase hydrostatic pressure at the microvascular level leading to fluid filtration. Third, inhomogeneous regional arterial hypoxic vasoconstriction may yield lung regions with higher flows in areas where the vasoconstriction is weak or not existent. In these areas capillary pressure increases, favouring pre-capillary and capillary fluid filtration. Indeed, MRI studies of lung blood flow at rest have demonstrated that hypoxic pulmonary vasoconstriction is inhomogeneous in HAPE-susceptible individuals, but not in those with HAPE resistance (16). This inhomogeneity in regional blood flow may explain the patchy radiographic appearance of early HAPE that is usually seen on chest radiographs or CT scans.

As described above, a rapid increase in hydrostatic pressure in the pulmonary vasculature leading to increased transvascular fluid filtration is the hallmark of the pathophysiology of HAPE. As an additional factor, a decreased capacity to clear fluid from the alveolar space may also contribute to its progression (41).
Pharmacological Approaches

A variety of medications can be used for the prevention of AMS, HACE, and HAPE (Table 1). However, pharmacological prevention of high-altitude illnesses should be based on an assessment of the individual risk for these diseases and should consider other factors such as the ascent profile and the absolute altitudes reached. Pharmacological prophylaxis should be considered for moderate and high-risk ascent profiles, but not for low-risk situations. Of note, if high-altitude illnesses develop even though pharmacological prophylaxis is taken, the therapeutic options are reduced to drugs not yet used and all other measures listed in the guidelines, which are still to be followed.

Acetazolamide is the mainstay in the pharmacological prevention of AMS and HACE (28). The optimal dose is a matter of debate, but several studies suggest that 125 mg twice daily is sufficient for most settings (27). Although doses up to 750 mg daily may be used, they are associated with more side effects and are not recommended as standard prevention of AMS. For children, the recommended dose of acetazolamide is 2.5 mg/kg (up to a maximum of 125 mg) every 12 hours (28). The medication is usually best started on the evening before ascent and should be continued until descent or for 2-3 days at the definite altitude. In case of intolerance or contraindications (e.g., acetazolamide and sulfonamide hypersensitivity, adrenal insufficiency) to acetazolamide, dexamethasone may be taken at a dose of 4 mg twice daily (28). The dose may be increased to 4 mg every 6-8 hours in high-risk settings. Due to the risk of adrenal suppression, dexamethasone should not be stopped abruptly but rather tapered over one week if it was taken for more than 5-7 days. Due to the lack of data for this indication, dexamethasone is not recommended for AMS prevention in children. Of note, acetazolamide and dexamethasone belong to the substances that are prohibited by the World Anti-Doping Agency (WADA), so that competitive athletes are restricted to non-pharmacological approaches for preventing high-altitude illnesses.

The primary method for preventing HAPE is a gradual ascent profile as it is described above. Drugs for HAPE prophylaxis should only be taken by individuals with a prior history of HAPE, if it is not possible to follow the recommended gradual ascent profile (see above). Based on large clinical experience and some smaller studies, the drug of first choice is the calcium-antagonist nifedipine (4, 5). The recommended dose is 30 mg twice daily of the extended-release preparation. It should be started the day before ascent and continued until descent is initiated, or until one has spent 4-5 days at the targeted altitude. Hypotension is not a concern with the extended-release version of the medication and may occur only in a few individuals. Dexamethasone (8 mg twice daily) and tadalafil (10 mg twice daily) taken before ascent are also effective in HAPE prevention (30) and can be taken if contra-indications (e.g., hypotension, hypersensitivity) against nifedipine exist. Pharmacologic consideration suggests that sildenafil (50 mg three times daily) may also be effective (28). However, due to the limited data available these drugs are only recommended as alternatives to nifedipine.

Treatment of AMS, HACE, and HAPE

Since all forms of acute high-altitude illness are caused by the lack of oxygen, descent to lower altitudes is the primary and definitive treatment. If descent is not possible, e.g., due to the terrain or because the patient is too sick, oxygen delivered by nasal cannula or mask at flow rates that relieve symptoms provides a suitable alternative to descent. Usually a peripheral SO_2~a of ~90% is sufficient. However, as described below, descent or administration of oxygen is not necessary in all circumstances. Usually AMS is mild to moderate and can be treated by a day of rest at the same altitude. In case of headache simple analgesics, e.g., paracetamol or ibuprofen, are usually effective.
and in case of nausea anti-emetics, e.g. metoclopramide, can be taken (5). Dexamethasone (4 mg every 6 hours) alone or in combination with acetazolamide (250 mg twice daily), which is not well documented for treatment, can be administered for those individuals with more severe AMS, or for those who fail to respond to conservative measures (29). Dexamethasone is very effective in treating AMS (18, 26). Individuals who remain ill despite these measures should descend 500-1000 m in altitude or until symptoms resolve. The descent should not be managed alone, particularly in case of severe AMS. In case HACE develops, 8 mg dexamethasone should be administered (intramuscularly, intravenously, or orally) followed by 4 mg every 6 hours (28). Descent or evacuation to low altitude must be initiated as soon as possible. If descent is not feasible, supplemental oxygen or a portable hyperbaric chamber should be used (28). Portable hyperbaric chambers, however, require constant tending by care providers because the devices must be pressurized by hand or foot pumps. The mode of action is a rapid pressurization of the patient (increase of oxygen pressure) which simulates a descent of about 2,000 to 2,500 m. Especially in case of HACE the patient must be closely observed in order not to miss a clinical worsening that requires rapid medical intervention.

As with AMS and HACE, descent remains the single best treatment for HAPE. Individuals should descend at least 1,000 m in altitude (28). If this is not possible, oxygen represents a suitable alternative. Both, descent and oxygen should be combined with nifedipine (30 mg sustained release version every 12 hours) (28). Due to their vasodilating properties, phosphodiesterase inhibitors (e.g. sildenafil, tadalafil) are probably effective in HAPE treatment, but there are no systematic studies examining their efficacy in this situation. Therefore, sildenafil or tadalafil may be used for HAPE treatment if descent, access to supplemental oxygen, or portable hyperbaric therapy are impossible and nifedipine is not available (28). Considering its potential role in HAPE prevention, dexamethasone may be considered for HAPE treatment. Although reports document clinical use in this regard, there are case reports (33) that caution the use of dexamethasone in the treatment of HAPE, because it might have a delayed onset of effects.

Conflict of Interest
The authors have no conflict of interest.

References

(1) Bailey DM, Bärtsch P, Knauth M, Baumgartner RW. Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological. Cell Mol Life Sci. 2009; 66: 3583-3594. doi:10.1007/s00018-009-0415-9
(2) Bailey DM, Roukens R, Knauth M, Kaltenegg K, Christ S, Mohr A, Genius J, Storch-Hagenlocher B, Meisel F, McNeny J, Young IS, Steiner T, Ness K, Bärtsch P. Free radical-mediated damage to barrier function is not associated with altered brain morphology in high-altitude headache. J Cereb Blood Flow Metab. 2006; 26: 99-111. doi:10.1038/sj.jcbfm.9600169
(3) Bärtsch P. Con: hypoxic cardiopulmonary exercise testing identifies subjects at risk for severe high altitude illnesses. High Alt Med Biol. 2014; 15: 318-320. doi:10.1089/ham.2013.1145
(4) Bärtsch P, Maggiorini M, Ritter M, Noti C, Vock P, Delz O. Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med. 1991; 325: 1284-1289. doi:10.1056/NEJM199103312851805
(5) Bärtsch P, Swenson ER. Clinical practice: Acute high-altitude illnesses. N Engl J Med. 2013; 366: 2294-2302. doi:10.1056/NEJMc1214870
(6) Beidleman BA, Fulco CS, Muza SR, Rock PB, Staab JE, Forde VA, Brothers MD, Cymerman A. Effect of six days of staging on moderate hypoxia at home for prevention of acute mountain sickness during ascent to 4300 meters. High Alt Med Biol. 2009; 10: 253-260. doi:10.1089/ham.2009.1004
(7) Beidleman BA, Muza SR, Fulco CS, Cymerman A, Ditzler D, Stulz D, Staab JE, Storchan GS, Lewis SF, Sawka MM. Intermittent altitude exposures reduce acute mountain sickness at 4300 m. Clin Sci (Lond). 2004; 106: 321-328. doi:10.1042/CS20040161
(8) Berger MM, Dehnert C, Bailey DM, Luks AM, Menold E, Castelli C, Schenelder G, Mailbaur H, Bärtsch P, Swenson ER. Transpulmonary pressure ET-1 and nitrite differences in high-altitude pulmonary hypertension. High Alt Med Biol. 2009; 10: 17-24. doi:10.1089/ham.2008.1053
(9) Berger MM, Hesse C, Dehnert C, Sieler H, Kleinböngard P, Barbenheuer HJ, Kelm M, Bärtsch P, Haefeli WE. Hypoxia impairs systemic endothelial function in individuals prone to high-altitude pulmonary edema. Am J Respir Crit Care Med. 2005; 172: 763-767. doi:10.1164/rccm.200504-454OC
(10) Berger MM, Macholz F, Sareban M, Schmidt P, Fried S, Dankl D, Niebauer J, Bärtsch P, Mailbaur H. Inhaled budesonide does not prevent acute mountain sicknes after rapid ascent to 4559 m. Eur Respir J. 2017; 50: 1700982. doi:10.1183/13993003.00982-2017
(11) Berger MM, Sareban M, Bärtsch P. Acute mountain sickness: Do different time courses point to different pathophysiologic mechanisms? J Appl Physiol (1985). 2020; 128: 952-959. doi:10.1152/japplphysiol.00305.2019
(12) Busch T, Bärtsch P, Pappert D, Grünig E, Hildebrandt W, Elser H, Falke KJ, Swenson ER. Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. Am J Respir Crit Care Med. 2001; 163: 368-373. doi:10.1164/ajrccm.163.2.2001134
(13) Carter EP, Wagensteen OD, Dunitz J, Ingbard DH. Hypoxic effects on alveolar sodium resorption and lung Na-K-ATPase. Am J Physiol. 1997; 273: L1191-L1202.
(14) Cremona G, Asnaghi R, Baderman P, Brunetto A, Brutsaert T, Cavallaro C, Clark TM, Cogo A, Donis R, Lanfranchi P, Luks A, Nadia Novello H, Peretta S, Perlin M, Putnam M, Spagnoliatti L, Wagner H, Wagner PD. Pulmonary extravascular fluid accumulation in recreational climbers: a prospective study. Lancet. 2002; 359: 303-309. doi:10.1016/S0140-6736(02)07496-2
(15) Dehnert C, Böhm A, Gröggel R, Menold E, Bärtsch P. Sleeping in moderate hypoxia at home for prevention of acute mountain sickness (AMS): a placebo-controlled, randomized double-blind study. Wilderness Environ Med. 2014; 25: 263-271. doi:10.1016/j.wem.2014.04.004
(16) Dehnert C, Risse F, Ley S, Kuder TA, Buhlmann R, Puderbach M, Menold E, Meredes D, Kauczor HU, Bärtsch P, Finck C. Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in humans. Am J Respir Crit Care Med. 2006; 174: 1132-1138. doi:10.1164/rccm.200606-780OC
(17) Faulhaber M, Poccecco E, Gatterer H, Niemandmer J, Huth M, Dünnwald T, Menz V, Bernardi L, Bärtsch R. Seven Passive 1-h Hypoxia Exposures Do Not Prevent AMS in Susceptible Individuals. Med Sci Sports Exerc. 2014; 46: 2563-2570. doi:10.1249/MSS.0000000000001036
(18) Ferreira P, Grundy P. Dexamethasone in the treatment of acute mountain sickness. N Engl J Med. 1985; 312: 1390. doi:10.1056/NEJM198505233121115
(19) Fulco CS, Muza SR, Beidleman BA, Deines R, Staab JE, Jones JE, Cymerman A. Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude. Am J Physiol Regul Integr Comp Physiol. 2011; 300: R128-R136. doi:10.1152/ajpregu.00633.2010
Use of a hypobaric chamber for pre-acclimatization

JANIN C.

Profile of world-class high-altitude climbers. J Appl Physiol

BÜHLMANN A, FERRETTI G, BRÜCKNER JC, VEICSTEINAS A.

Physiological

mountain range. Br Heart J. 1990; 64: 400-402. doi:10.1136/hrt.64.6.400

Cerebral

MRT study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

oxygenation at extreme altitude and in acute hypoxia—an ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST

Cerebral

ultrasound and MRI study. J Cereb Blood Flow Metab. 2011; 31: 220-222. doi:10.1038/jcbfm.2010.124

Cerebral

MONTGOMERY HE, GROCOTT MP, IMRAY CH; CAUDWELL XTREME EVEREST