1. Introduction

In a series of papers [KK86], [KK90] Kostant and Kumar introduced and successfully applied the techniques of nil (or 0-) Hecke algebras to study equivariant cohomology and K-theory of flag varieties. In particular, they showed that the dual of the nil Hecke algebra serves as an algebraic model for the T-equivariant singular cohomology of G/B (here G is a split semisimple linear algebraic group with a chosen split maximal torus T and G/B is the variety of Borel subgroups). In [HMSZ] and [CZZ], this formalism has been generalized using an arbitrary formal group law associated to an algebraic oriented cohomology theory in the sense of Levine-Morel [LM07], via the Quillen formula. Namely, given a formal group law F and a finite root system with a set of simple roots Π, one defines the formal affine Demazure

\begin{center}
\begin{tabular}{lrr}
1 & Introduction & 1 \\
2 & Formal Demazure and push-pull operators & 4 \\
3 & Two bases of the formal twisted group algebra & 7 \\
4 & The Weyl and the Hecke actions & 9 \\
5 & Push-pull operators and elements & 11 \\
6 & The push-pull operators on the dual & 13 \\
7 & Relations between bases coefficients & 15 \\
8 & Another basis of the W_Ξ-invariant subring & 17 \\
9 & The formal Demazure algebra and the Hecke algebra & 18 \\
10 & The algebraic restriction to the fixed locus on G/B & 20 \\
11 & The algebraic restriction to the fixed locus on G/P & 24 \\
12 & The push-pull operators on D_F^* & 27 \\
13 & An involution & 28 \\
14 & The non-degenerate pairing on the W_Ξ-invariant subring & 29 \\
15 & Push-forwards and pairings on D_F^*,Ξ & 32 \\
References & 34 \\
\end{tabular}
\end{center}
algebra \(\mathbf{D}_F\) and its dual \(\mathbf{D}_F^*\) provides an algebraic model for the \(T\)-equivariant oriented cohomology \(h_T(G/B)\). Specializing to the additive and the multiplicative formal group laws, one recovers Chow groups (or singular cohomology) and \(K\)-theory respectively.

Another motivation for studying the algebra \(\mathbf{D}_F\) comes from its close relationship to Hecke algebras. Indeed, for the additive (resp. multiplicative) \(F\) it coincides with the completion of the nil (resp. 0-) affine Hecke algebra (see [HMSZ]). Moreover, in section 9, we show that for some elliptic formal group law \(F\) and a root system of Dynkin type \(A\) the non-affine part of \(\mathbf{D}_F\) is isomorphic to the classical Iwahori-Hecke algebra, hence, relating it to equivariant elliptic cohomology.

In the present paper we pursue the ‘algebraization program’ for oriented cohomology theories started in [CPZ] and continued in [HMSZ] and [CZZ]; the general idea is to match cohomology rings of flag varieties and elements of classical interest in them (such as classes of Schubert varieties) with algebraic and combinatorial objects that can be introduced simply and algebraically, in the spirit of [De73] or [KK86]. This approach is useful to study the structure of these rings, and to perform various computations. We focus here on algebraic constructions pertaining to \(T\)-equivariant oriented cohomology groups. The precise proofs and details of how our algebraic objects match cohomology groups will be given in [CZZ2]; however, for the convenience of the reader, we now give a brief description of the geometric setting.

Given an equivariant oriented cohomology theory \(h\) over a base field whose spectrum is denoted by \(pt\), the formal group algebra \(S\) will correspond to \(h_T(pt)\).\(^1\) It is an algebra over \(R = h(pt)\).

The \(T\)-fixed points of \(G/B\) are naturally in bijection with the Weyl group \(W\). This gives a pull-back to the fixed locus map \(h_T(G/B) \to h_T(W) \simeq \bigoplus_{w \in W} h_T(pt)\). This map happens to be injective. We do not know a direct geometric reason for that, but it follows from our algebraic description, in which it appears as the map \(\mathbf{D}_F^* \to S^*_W \simeq \bigoplus_{w \in W} S\) of Definition 10.1. It is then convenient to enlarge \(S\) to its localization \(Q\) at a multiplicative subset generated by Chern classes of line bundles corresponding canonically to roots, which gives injections \(S \subseteq Q\), \(S_W \subseteq Q_W\) and \(S^*_W \subseteq Q^*_W\). Although we do not know good geometric interpretations of \(Q\), \(Q_W\) or \(Q^*_W\), all the formulas and operators we are interested in are easily defined at that localized level, because they involve denominators. The main technical difficulties then lie in proving that these operators actually restrict to \(S\), \(S^*_W\), \(\mathbf{D}_F^*\) etc., or so to speak, that the denominators cancel out.

Our central object of study is a push-pull operator on \(\mathbf{D}_F^*\), which is an algebraic version of the composition

\[
h_T(G/P) \xrightarrow{p^*} h_T(G/Q) \xrightarrow{p^*} h_T(G/P)
\]

of the push-forward followed by the pull-back along the quotient map \(p: G/P \to G/Q\), where \(P \subseteq Q\) are two parabolic subgroups of \(G\). Again \(p^*\) happens to be injective, and it identifies \(h_T(G/Q)\) to a subring of \(h_T(G/P)\), namely the subring of invariants under the action of the parabolic subgroup \(W_Q\) of the Weyl group \(W\).

This does not seem to be straightforward from the geometry either, and it once more follows from our algebraic description: given subsets \(\Xi' \subseteq \Xi\) of a given set of simple

\(^1\)We will require that the cohomology rings are ‘complete’ in some precise sense, but this is a technical point, that we prefer to hide here for simplicity. See [CZZ2, Definition 2.1]
roots \Pi (each giving rise to a parabolic subgroup), we define an element \(Y_{\Xi/\Xi'} \) in \(Q_W \) (see 5.3). We define an action of the Demazure algebra \(D_F \) on its S-dual \(D_F^* \), by precomposition by multiplication on the right. The action of \(Y_{\Xi/\Xi'} \) thus defines the desired push-pull operator

\[A_{\Xi/\Xi'} : (D_F^*)^{W_{\Xi'}} \to (D_F^*)^{W_\Xi}. \]

The formula for the element \(Y_{\Xi/\Xi'} \) with \(\Xi' = \emptyset \) had already appeared in related contexts, namely, in discussions around the Becker-Gottlieb transfer for topological complex-oriented theories (see [BE90, (2.1)] and [GR12, §4.1]).

Finally, we define the algebraic counterpart of the natural pairing \(h_T(G/B) \otimes h_T(G/B) \to h_T(pt) \) obtained by multiplication and push-forward to the point. It is a pairing \(D_F^* \otimes D_F^* \to S \). We show that it is non-degenerate, and that algebraic classes corresponding to (chosen) desingularization of Schubert varieties form a basis of \(D_F^* \), with a very simple dual basis with respect to the pairing. We provide the same kind of description for \(h_T(G/P) \). This generalizes (to parabolic subgroups and to equivariant cohomology groups) and simplifies several statements from [CPZ, §14], as well as results from [KK86] and [KK90] (to arbitrary oriented cohomology theories).

The paper is organized as follows. In sections 2 and 3, we recall definitions and basic properties from [CPZ, §2, §3], [HMSZ, §6] and [CZZ, §4, §5]: the formal group algebra \(S \), the Demazure and push-pull operators \(\Delta_\alpha \) and \(C_\alpha \) for every root \(\alpha \), the formal twisted group algebra \(Q_W \) and its Demazure and push-pull elements \(X_\alpha \) and \(Y_\alpha \). In section 4, we introduce a left \(Q_W \)-action \(\bullet \) on the dual \(Q_W^* \). It induces both an action of the Weyl group \(W \) on \(Q_W^* \) (the Weyl-action) and an action of \(X_\alpha \) and \(Y_\alpha \) on \(Q_W^* \) (the Hecke-action). In sections 5 and 6, we introduce and study more general push-pull elements in \(Q_W \) and operators on \(Q_W^* \) with respect to given coset representatives of parabolic quotients of the Weyl group. In section 7 we study relationships between some technical coefficients. In section 8, we construct a basis of the subring of invariants of \(Q_W^* \), which generalizes [KK90, Lemma 2.27].

In section 9, we recall the definition and basic properties of the formal (affine) Demazure algebra \(D_F \) following [HMSZ, §6], [CZZ, §5] and [Zh13]. We show that for a certain elliptic formal group law (Example 2.2), the formal Demazure algebra can be identified with the classical Iwahori-Hecke algebra. In section 10, we define the algebraic restriction to the fixed locus map which is used in section 12 to restrict all our push-pull operators and elements to \(D_F \) and its dual \(D_F^* \) as well as to restrict the non-degenerate pairing on \(D_F^* \). In section 11, we define the algebraic restriction to the fixed locus map on \(G/P \) for any parabolic subgroup \(P \). In section 13, we define an involution on \(D_F^* \) which is used to relate the equivariant characteristic map with the push-pull operators. In section 14, we define and discuss the non-degenerate pairing on the subring of invariants of \(D_F^* \) under a parabolic subgroup of the Weyl group. At last, in section 15, in the parabolic case, we identify the Weyl group invariant subring \((D_F^*)^{W_\Xi} \) with \(D_{F;\Xi}^* \), the dual of a quotient of \(D_F \), which matches more naturally to \(h_T(G/P) \).

Acknowledgments: One of the ingredients of this paper, the push-pull formulas in the context of Weyl group actions, arose in discussions between the first author and Victor Petrov, whose unapparent contribution we therefore gratefully acknowledge.
2. Formal Demazure and push-pull operators

In this section we recall definitions of the formal group algebra and of the formal Demazure and push-pull operators, following [CPZ, §2, §3] and [CZZ].

Let R be a commutative ring with unit, and let F be a one-dimensional commutative formal group law (FGL) over R, i.e. $F(x, y) \in R[[x, y]]$ satisfies
$$F(x, 0) = 0, \quad F(x, y) = F(y, x) \text{ and } F(x, F(y, z)) = F(F(x, y), z).$$

Example 2.1. The additive FGL is defined by $F_a(x, y) = x + y$, and a multiplicative FGL is defined by $F_m(x, y) = x + y - \beta xy$ with $\beta \in R$. The coefficient ring of the universal FGL $F_u(x, y) = x + y + \sum_{i,j \geq 1} a_{ij} x^i y^j$ is generated by the coefficients a_{ij} modulo relations induced by the above properties and is called the Lazard ring.

Example 2.2. Consider an elliptic curve given in Tate coordinates by
$$(1 - \mu_1 t - \mu_2 t^2) s = t^3.$$ The corresponding FGL over the coefficient ring $R = \mathbb{Z}[\mu_1, \mu_2]$ is given by [BB10, Cor. 2.8]
$$F(x, y) := \frac{x + y - \mu_1 xy}{1 + \mu_2 xy}.$$ Its genus is the 2-parameter generalized Todd genus introduced and studied by Hirzebruch in [Hi66]. Its exponent is given by the rational function $e^{e^{e^{e^{e^x}}}}$ in e^x, where $\mu_1 = e_1 + e_2$ and $\mu_2 = -e_1 e_2$ which suggests to call F a hyperbolic FGL and to denote it by F_h.

By definition we have
$$F_h(x, y) = x + y - xy(\mu_1 + \mu_2 F_h(x, y))$$ and, thus, that the formal inverse of F_h is identical to the one of F_m (i.e. $\frac{x}{\mu_1 x - 1}$) and $F_h(x, x) = \frac{2x - \mu_1 x^2}{1 + \mu_2 x^2}$.

Let Λ be an Abelian group and let $R[\Lambda]$ be the ring of formal power series with variables x_{λ} for all $\lambda \in \Lambda$. Define the formal group algebra $S := R[\Lambda]_{FGL}$ to be the quotient of $R[\Lambda]$ by the closure of the ideal generated by elements x_0 and $x_{\lambda_1 + \lambda_2} - F(x_{\lambda_1}, x_{\lambda_2})$ for any $\lambda_1, \lambda_2 \in \Lambda$. Here 0 is the identity element in Λ. Let \mathcal{L}_F denote the kernel of the augmentation map $\epsilon: S \to R, x_0 \mapsto 0$.

Let Λ be a free Abelian group of finite rank and let Σ be a finite subset of Λ. A root datum is an embedding $\Sigma \hookrightarrow \Lambda^\vee, \alpha \mapsto \alpha^\vee$ into the dual of Λ satisfying certain conditions [SGA, Exp. XXI, Def. 1.1.1]. The rank of the root datum is the \mathbb{Q}-rank of $\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$. The root lattice Λ_r is the subgroup of Λ generated by Σ, and the weight lattice Λ_w is the Abelian group defined by
$$\Lambda_w := \{ \omega \in \Lambda \otimes_{\mathbb{Z}} \mathbb{Q} \mid \alpha^\vee(\omega) \in \mathbb{Z} \text{ for all } \alpha \in \Sigma \}.$$ We always assume that the root datum is reduced and semisimple (Q-ranks of Λ_r, Λ_w and Λ are the same and no root is twice another one). We say that a root datum is simply connected (resp. adjoint) if $\Lambda = \Lambda_w$ (resp. $\Lambda = \Lambda_r$), and then use the notation \mathcal{D}_n^c (resp. \mathcal{D}_n^a) for irreducible root data where $\mathcal{D} = A, B, C, D, E, F, G$ is one of the Dynkin types and n is the rank.

The Weyl group W of a root datum (Λ, Σ) is a subgroup of $\text{Aut}_{\mathbb{Z}}(\Lambda)$ generated by simple reflections s_{α} for all $\alpha \in \Sigma$ defined by
$$s_{\alpha}(\lambda) := \lambda - \alpha^\vee(\lambda)\alpha, \quad \lambda \in \Lambda.$$
We fix a set of simple roots $\Pi = \{\alpha_1, \ldots, \alpha_n\} \subset \Sigma$, i.e. a basis of the root datum: each element of Σ is an integral linear combination of simple roots with either all positive or all negative coefficients. This partitions Σ into the subsets Σ^+ and Σ^- of positive and negative roots. Let ℓ denote the length function on W with respect to the set of simple roots Π. Let w_0 be the longest element of W with respect to ℓ and let $N := \ell(w_0)$.

Following [CZZ, Def. 4.4] we say that the formal group algebra S is Σ-regular if x_α is not a zero divisor in S for all roots $\alpha \in \Sigma$. We will always assume that:

The formal group algebra S is Σ-regular.

By [CZZ, Lemma 2.2] this holds if $x + p x$ is not a zero divisor in $R[x]$, in particular if 2 is not a zero divisor in R, or if the root datum does not contain any symplectic datum C^c, as an irreducible component.

Following [CPZ, Definitions 3.5 and 3.12] for each $\alpha \in \Sigma$ we define two R-linear operators Δ_α and C_α on S as follows:

\begin{equation}
\Delta_\alpha(y) := \frac{y - \kappa_\alpha(y)}{x_\alpha}, \quad C_\alpha(y) := \kappa_\alpha y - \Delta_\alpha(y) = \frac{y}{x_\alpha} + \frac{\alpha(y)}{x_\alpha}, \quad y \in S,
\end{equation}

where $\kappa_\alpha := \frac{1}{x_\alpha} + \frac{1}{\mu_1 x_\alpha}$ (note that $\kappa_\alpha \in S$). The operator Δ_α is called the Demazure operator and the operator C_α is called the push-pull operator or the BGG operator.

Example 2.3. For the hyperbolic formal group law F_h we have $\kappa_\alpha = \mu_1 + \mu_2 F_h(x_\alpha, x_\alpha) = \mu_1$ for each $\alpha \in \Sigma$. If the root datum is of type A_1^c, we have $\Sigma = \pm \alpha_1$, $\Lambda = \langle \omega \rangle$ with simple root $\alpha = 2\omega$ and

\[C_\alpha(x_\alpha) = \frac{x_\alpha}{x_\alpha} + \frac{x_\alpha}{x_\alpha} = \mu_1 x_\alpha - 1 + \frac{1}{\mu_1 x_\alpha - 1}, \quad C_\alpha(x_\omega) = \frac{x_\omega}{x_\alpha} + \frac{x_\omega}{x_\alpha} = \mu_1 x_\omega - \frac{1 + \mu_2 x_\omega^2}{1 - \mu_1 x_\omega}. \]

If it is of type A_2^c we have $\Sigma = \{\pm \alpha_1, \pm \alpha_2, \pm (\alpha_1 + \alpha_2)\}$, $\Lambda = \langle \omega_1, \omega_2 \rangle$ with simple roots $\alpha_1 = 2\omega_1 - \omega_2$, $\alpha_2 = 2\omega_2 - \omega_1$ and $x_{\alpha_1} = \frac{2x_1 - \mu_1 x_1 - \mu_2 x_1^2 x_2 + \mu_2 x_1 x_2}{1 + \mu_2 x_1 - \mu_1 x_1 - 2\mu_2 x_1 x_2}$, $x_{\alpha_2} = \frac{2x_1 - \mu_1 x_1 - \mu_2 x_1^2 x_2 - 2\mu_2 x_1 x_2}{1 + \mu_2 x_1 - \mu_1 x_1 - 2\mu_2 x_1 x_2}$,

\[C_{\alpha_1}(x_1) = \mu_1 x_1, \quad C_{\alpha_2}(x_1) = \mu_1 x_1 - \frac{1 + \mu_2 x_1^2 - \mu_2 x_1 x_2}{1 - \mu_1 x_1 - \mu_2 x_1 x_2}, \]

where $x_1 := x_{\omega_1}$ and $x_2 := x_{\omega_2}$.

According to [CPZ, §3] the operators Δ_α satisfy the twisted Leibniz rule

\begin{equation}
\Delta_\alpha(xy) = \Delta_\alpha(x)y + s_\alpha(x)\Delta_\alpha(y), \quad x, y \in S,
\end{equation}

i.e. Δ_α is a twisted derivation. Moreover, they are S^{W_α}-linear, where $W_\alpha = \{e, s_\alpha\}$, and

\begin{equation}
s_\alpha(x) = x \quad \text{if and only if} \quad \Delta_\alpha(x) = 0.
\end{equation}

Remark 2.4. Properties (2.2) and (2.3) suggest that the Demazure operators can be effectively studied using the theory of twisted derivations and the invariant theory of W. On the other hand, push-pull operators do not satisfy properties (2.2) and (2.3) but according to [CPZ, Theorem 12.4] they correspond to the push-pull maps between flag varieties and, hence, are of geometric origin.

For the i-th simple root α_i, let $\Delta_i := \Delta_{\alpha_i}$ and $s_i := s_{\alpha_i}$. Given a non-empty sequence $I = (i_1, \ldots, i_m)$ with $i_j \in \{1, \ldots, n\}$ define

\[\Delta_I := \Delta_{i_1} \circ \cdots \circ \Delta_{i_m} \quad \text{and} \quad C_I := C_{i_1} \circ \cdots \circ C_{i_m}. \]

We say that a sequence I is reduced in W if $s_i s_{i_2} \ldots s_{i_m}$ is a reduced expression of the element $w = s_{i_1} s_{i_2} \ldots s_{i_m}$ in W, i.e. it is of minimal length among such
decompositions of \(w \). In this case we also say that \(I \) is a reduced sequence for \(w \) of length \(\ell(w) \). For the neutral element \(e \) of \(W \), we set \(I_e = \emptyset \) and \(\Delta_0 = C_\emptyset = \text{id}_S \).

Remark 2.5. It is well-known that for a nontrivial root datum the composites \(\Delta_{I_w} \) and \(C_{I_w} \) are independent of the choice of a reduced sequence \(I_w \) of \(w \in W \) if and only if \(F \) is of the form \(F(x, y) = x + y + \beta xy, \beta \in \mathbb{R} \). The “if” part of the statement is due to Demazure [De73, Th. 1] and the “only if” part is due to Bressler-Evens [BE90, Theorem 3.7]. So for such \(F \) we can define \(\Delta_w := \Delta_{I_w} \) and \(C_w := C_{I_w} \) for each \(w \in W \).

The operators \(\Delta_w \) and \(C_w \) play a crucial role in the Schubert calculus and computations of the singular cohomology \((F = F_u)\) and the \(K \)-theory \((F = F_m)\) rings of flag varieties.

For a general \(F \) (e.g. for \(F = F_b \)) the situation becomes much more intricate as we have to rely on choices of reduced decomposition \(I_w \).

Let us now prove a Euclid type lemma for later use.

Lemma 2.6. If \(f \in xR[x] \) is regular in \(R[x] \) and \(g \in yR[y] \), then \(f(x) + P g(y) \) is regular in \(R[x, y] \).

Proof. Consider \(f + P g \) in \(R[x, y] = (R[x])[y] \) and note that its degree 0 coefficient (in \(R[x] \)) is \(f \) and is regular by assumption, so it is regular by [CZZ, Lemma 12.3.(a)].

Lemma 2.7. For each irreducible component of the root datum, assume that the corresponding integers or formal integers listed in Table 1 are regular in \(R \) or \(R[x] \) (and that 2 is invertible for \(C_1 \)). In particular, \(S \) is \(\Sigma \)-regular. Then \(x_\alpha | x_\beta x' \) implies that \(x_\alpha | x'_\beta \) for any two positive roots \(\alpha \neq \beta \) and for any \(x' \in S \).

(For example, in adjoint type \(E_7 \) we require that either \(2 \cdot_F x \) or \(3 \cdot_F x \) is regular in \(R[x] \), and in simply connected type \(E_7 \), we require that 2 is regular in \(R \).)

Proof of Lemma 2.7. It is equivalent to show that \(x_\beta \) is regular in \(S/(x_\alpha) \).

If \(\alpha \) and \(\beta \) belong to different irreducible components, we can complete \(\alpha \) and \(\beta \) into bases of the lattices of their respective components by [CZZ, Lemma 2.1], and then complete the union of the two sets into a basis of \(\Lambda \). By [CPZ, Cor. 2.13], it gives an isomorphism \(S \simeq R[x_1, \cdots, x_l] \) sending \(x_\alpha \) to \(x_1 \) and \(x_\beta \) to \(x_2 \), so the conclusion is obvious in this case.

If \(\alpha \) and \(\beta \) belong to the same irreducible component, we can assume that the root datum is irreducible.

Adjoint case. Complete \(\alpha \) to a basis \((\alpha_i)_{1 \leq i \leq l} \) of simple roots of \(\Sigma \) and express \(\beta = \sum_i n_i \alpha_i \). Still by [CPZ, Cor. 2.13], this yields an isomorphism \(S \simeq R[x_1, \cdots, x_l] \),
sending x_α to x_1 and x_β to $(n_1 \cdot_F x_1) +_F \cdots +_F (n_1 \cdot_F x_1)$. A repeated application of Lemma 2.6 shows that x_β is regular provided $n_i \cdot_F x$ is regular in $R[x]$ for at least one $i \neq 1$. Using Planche I to IX in [Bo68] giving coefficients of positive roots decomposed on simple ones, one checks for every type that it is always the case under the assumptions. For example, in the E_6 case, there are always two 1’s in any decomposition (except if the root is simple), hence the absence of any requirement. In the E_7 case, the same is true except for the longest root, in which there is a 1, a 2 and a 3, hence the requirement that $2 \cdot_F x$ or $3 \cdot_F x$ is regular in $R[[x]]$. All other cases are as easy and left to the reader.

Non adjoint case. By [CZZ, Lemma 1.2], the natural morphism $R[[\Lambda_\tau]]_F \rightarrow R[[\Lambda]]_F$ induced by the inclusion of the root lattice $\Lambda_\tau \subset \Lambda$ is injective. Furthermore, it becomes an isomorphism if $q = |\Lambda/\Lambda_\tau|$ is invertible in R.

Since α can be completed as a basis of Λ or as a basis of Λ_τ, both $R[\Lambda]/x_\alpha$ and $R[\Lambda]/x_\alpha$ are isomorphic to power series ring (in one less variable) and therefore respectively inject in $R[[\Lambda]]_F/x_\alpha$ and $R[[\Lambda]]_F/x_\alpha$, which are isomorphic. By the adjoint case, x_β is regular in the latter, and thus in its subring $S/x_\alpha = R[[\Lambda]]_F/x_\alpha$. □

Remark 2.8. Since $n \cdot_F x$ is regular in $R[[x]]$ if n is regular in R, the conclusion of Lemma 2.7 holds when formal integers are replaced by usual integers in R in the adjoint case. But more cases are covered. For example, if the formal group law is the multiplicative one $x + y - xy$, then one can show that $2 \cdot_F x$ is regular in $R[[x]]$ for any noetherian ring R (exercise: consider the ideal generated by the coefficients of a power series annihilating $2 \cdot_F x$), and in particular if $R = \mathbb{Z}[a, b]/(2a, 3b)$, in which neither 3 nor 2 are regular, but Lemma 2.7 will still apply to all adjoint types.

3. Two bases of the formal twisted group algebra

We now recall definitions and basic properties of the formal twisted group algebra Q_W. Demazure elements X_α and push-pull elements Y_α, following [HMSZ] and [CZZ]. For a chosen set of reduced sequences $\{I_w\}_{w \in W}$ we introduce two Q-bases $\{X_{I_w}\}_{w \in W}$ and $\{Y_{I_w}\}_{w \in W}$ of Q_W and describe transformation matrices $(a_{v, w})$ and $(a_{v, w}'')$ with respect to the canonical basis $\{\delta_w\}_{w \in W}$ of Q_W.

Let S_W be the twisted group algebra of S and the group ring $R[W]$, i.e. $S_W = S \otimes_R R[W]$ as an R-module and the multiplication is defined by

\[
(x \otimes \delta_w)(x' \otimes \delta_w') = xw(x') \otimes \delta_{ww'}, \quad x, x' \in S, \quad w, w' \in W,
\]

where δ_w is the canonical element corresponding to w in $R[W]$. The algebra S_W is a free S-module with basis $\{1 \otimes \delta_w\}_{w \in W}$. Note that S_W is not an S-algebra since the embedding $S \hookrightarrow S_W$, $x \mapsto x \otimes \delta_x$ is not central.

Since the formal group algebra S is Σ-regular, it embeds into the localization $Q = S[1/\sigma | \alpha \in \Sigma]$. Let Q_W be the Q-module obtained by localizing the S-module S_W, i.e. $Q_W = Q \otimes_S S_W$. The product on S_W extends to Q_W using the same formula (3.1) on basis elements (x and x' are now in Q).

Inside Q_W, we use the notation $q := q \otimes \delta_q$ and $\delta_w := 1 \otimes \delta_w$, $1 := \delta_1$ and $\delta_\alpha := \delta_\alpha$, for a root $\alpha \in \Sigma$. Thus $\delta_q w = q \otimes \delta_w$ and $\delta_w q = w(q) \otimes \delta_w$. By definition, $\{\delta_w\}_{w \in W}$ is a basis of Q_W as a left Q-module, and S_W injects into Q_W via $\delta_w \mapsto \delta_w$.
For each $\alpha \in \Sigma$ we define the following elements of Q_W (corresponding to the operators Δ_α and C_α, respectively, by the action of (4.3)):

$$X_\alpha := \frac{1}{x_\alpha} - \frac{1}{x_\alpha} \delta_\alpha, \quad Y_\alpha := \kappa_\alpha - X_\alpha = \frac{1}{x_\alpha} + \frac{1}{x_\alpha} \delta_\alpha$$

called the Demazure elements and the push-pull elements, respectively.

Direct computations show that for each $\alpha \in \Sigma$ we have

$$X_\alpha^2 = \kappa_\alpha X_\alpha = X_{\alpha \kappa_\alpha} \quad \text{and} \quad Y_\alpha^2 = \kappa_\alpha Y_\alpha = Y_{\alpha \kappa_\alpha},$$

$$X_\alpha = s_{\alpha}(q)X_\alpha + \Delta_\alpha(q) \quad \text{and} \quad Y_\alpha = s_{\alpha}(q)Y_\alpha + \Delta_{-\alpha}(q), \quad q \in Q,$$

$$X_\alpha Y_\alpha = Y_\alpha X_\alpha = 0.$$

We set $i_\alpha := \delta_{\alpha}$, $X_\alpha := X_{\alpha}$, and $Y_\alpha := Y_{\alpha}$ for the i-th simple root α_i. Given a sequence $I = (i_1, i_2, \ldots, i_m)$ with $i_j \in \{1, \ldots, n\}$, the product $X_{i_1} X_{i_2} \ldots X_{i_m}$ is denoted by X_I and the product $Y_{i_1} Y_{i_2} \ldots Y_{i_m}$ by Y_I. We set $X_\emptyset = Y_\emptyset = 1$.

By [Bo68, Ch. VI, §1, No 6, Cor. 2] if $v \in W$ has a reduced decomposition $v = s_{i_1} s_{i_2} \cdots s_{i_m}$, then

$$v \Sigma^- \cap \Sigma^+ = \{ \alpha_{i_1}, s_{i_1}(\alpha_{i_2}), \ldots, s_{i_1} s_{i_2} \cdots s_{i_{m-1}}(\alpha_{i_m}) \}.$$

We define

$$x_v := \prod_{\alpha \in v \Sigma^- \cap \Sigma^+} x_\alpha.$$

In particular, $x_w = \prod_{\alpha \in \Sigma^+} x_\alpha$ if w_0 is the longest element of W.

Lemma 3.1. We have

(a) $s_\alpha \Sigma^- \cap \Sigma^+ = \{ \alpha \}$ and $x_{s_\alpha} = x_\alpha$;

(b) if $\ell(vs_i) = \ell(v) + 1$, then

$$v_s \Sigma^- \cap \Sigma^+ = (v \Sigma^- \cap \Sigma^+) \cup \{ v(\alpha_i) \} \quad \text{and} \quad x_{vs_i} = x_v x_{v(\alpha_i)};$$

(c) if $\ell(s_v) = \ell(v) + 1$, then

$$s_v \Sigma^- \cap \Sigma^+ = s_v(v \Sigma^- \cap \Sigma^+) \cup \{ \alpha_i \} \quad \text{and} \quad x_{s_v} = s_v(x_v) x_\alpha;$$

(d) if $w = uv$ and $\ell(w) = \ell(u) + \ell(v)$, then

$$w \Sigma^- \cap \Sigma^+ = (w \Sigma^- \cap \Sigma^+) \cup u(v \Sigma^- \cap \Sigma^+) \quad \text{and} \quad x_w = x_u x_v;$$

(e) for any $v \in W$, $\frac{v(x_w)}{x_v}$ is invertible in S.

Proof. Items (a)-(d) follow immediately from the definition. As for (e) we have

$$v \Sigma^+ = (v \Sigma^+ \cap \Sigma^-) \cup (v \Sigma^+ \cap \Sigma^+) = (-v \Sigma^- \cap \Sigma^+) \cup (v \Sigma^+ \cap \Sigma^+) \quad \text{and} \quad$$

$$\Sigma^+ = v \Sigma^+ \cap \Sigma^+ = (v \Sigma^- \cap \Sigma^+) \cup (v \Sigma^+ \cap \Sigma^+),$$

therefore,

$$\frac{v(x_w)}{x_v} = \prod_{\alpha \in \Sigma^- \cap \Sigma^+} x_\alpha = \prod_{\alpha \in \Sigma^- \cap \Sigma^+} \frac{x_\alpha}{x_\alpha},$$

which is invertible in S since so is $\frac{x_\alpha}{x_\alpha}$.

Lemma 3.2. Let I_v be a reduced sequence for an element $v \in W$.

Then $X_{I_v} = \sum_{w \leq v} a^X_{v,w} \delta_w$ for some $a^X_{v,w} \in Q$, where the sum is taken over all elements of W less or equal to v with respect to the Bruhat order and $a^X_{v,v} = (-1)^{\ell(v)} \frac{1}{x_v}$. Moreover, we have $\delta_v = \sum_{w \leq v} b^X_{v,w} X_{I_w}$ for some $b^X_{v,w} \in S$ such that $b^X_{v,v} = 1$ and $b^X_{v,v} = (-1)^{\ell(v)} x_v$.

Proof. It follows from [CZZ, Lemma 5.4, Corollary 5.6] and the fact that \(\delta_a = 1 - x_a X_a \).

Similarly, for \(Y \)'s we have

Lemma 3.3. Let \(I_v \) be a reduced sequence for an element \(v \in W \).
Then \(Y_{I_v} = \sum_{w \leq v} a^Y_{v,w} \delta_w \) for some \(a^Y_{v,w} \in Q \) and \(a^Y_{v,v} = \frac{1}{x_v} \). Moreover, we have
\[
\delta_v = \sum_{w \leq v} b^Y_{v,w} Y_{I_w} \text{ for some } b^Y_{v,w} \in S \text{ and } b_{v,v} = x_v.
\]

Proof. We follow the proof of [CZZ, Lemma 5.4] replacing \(X \) by \(Y \). By induction we have
\[
Y_{I_v} = \left(\frac{1}{x_{-\beta}} + \frac{1}{x_{\beta}} \delta_{\beta} \right) \sum_{w \leq v'} a^Y_{v',w} \delta_w = \frac{1}{x_{\beta}} s_{\beta}(a^Y_{v',w'}) \delta_v + \sum_{w < v} a^Y_{v,w} \delta_w,
\]
where \(I_v = (i_1, \ldots, i_m) \) is a reduced sequence of \(v, \beta = \alpha_{i_1} \) and \(v' = s_{\beta} v \). This implies the formulas for \(Y_{I_v} \) and for \(a^Y_{v,v} \). Remaining statements involving \(b^Y_{v,w} \) follow by the same arguments as in the proof of [CZZ, Corollary 5.6] using the fact that \(\delta_\alpha = x_\alpha Y_\alpha - \frac{x_\alpha}{x_{-\alpha}} \) and \(\frac{x_\alpha}{x_{-\alpha}} \in S^\times \). □

As in the proof of [CZZ, Corollary 5.6], Lemmas 3.2 and 3.3 immediately imply:

Corollary 3.4. The family \(\{ X_{I_v} \}_{v \in W} \) (resp. \(\{ Y_{I_v} \}_{v \in W} \)) is a basis of \(Q_W \) as a left or as a right \(Q \)-module.

Example 3.5. For the root data \(A_1^{ad} \) or \(A_1^{sc} \) and the formal group law \(F_h \) we have \(x_\Pi = x_{-\alpha} \) and
\[
(a^Y_{v,w})_{v,w \in W} = \begin{pmatrix}
1 & 1 \\
\frac{1}{x_\alpha} & \frac{1}{x_\alpha}
\end{pmatrix},
\]
where the first row and column correspond to \(e \in W \) and the second to \(s_\alpha \in W \).

4. The Weyl and the Hecke actions

In the present section we recall several basic facts concerning the \(Q \)-linear dual \(Q^*_W \) following [HMSZ] and [CZZ]. We introduce a left \(Q_W \)-action \(\cdot \) on \(Q^*_W \). The latter induces an action of the Weyl group \(W \) on \(Q^*_W \) (the Weyl-action) and the action by means of \(X_\alpha \) and \(Y_\alpha \) on \(Q^*_W \) (the Hecke-action). These two actions will play an important role in the sequel.

Let \(Q^*_W := \text{Hom}_Q(Q_W, Q) \) denote the \(Q \)-linear dual of the left \(Q \)-module \(Q_W \). By definition, \(Q^*_W \) is a left \(Q \)-module via \((qf)(z) := qf(z)\) for any \(z \in Q_W, f \in Q^*_W \) and \(q \in Q \). Moreover, there is a \(Q \)-basis \(\{ f_w \}_{w \in W} \) of \(Q^*_W \) dual to the canonical basis \(\{ \delta_w \}_{w \in W} \) defined by \(f_w(\delta_v) := \delta^\text{Kr}_{w,v} \) (the Kronecker symbol) for \(w, v \in W \).

Definition 4.1. We define a left action of \(Q_W \) on \(Q^*_W \) as follows:
\[
(z \cdot f)(z') := f(z'z), \quad z, z' \in Q_W, f \in Q^*_W.
\]

By definition, this action is left \(Q \)-linear, i.e. \(z \cdot (qf) = q(z \cdot f) \) and it induces a different left \(Q \)-module structure on \(Q^*_W \) via the embedding \(q \rightarrow q \delta_e \), i.e.
\[
(q \cdot f)(z) := f(qz).
\]
It also induces a \(Q \)-linear action of \(W \) on \(Q^*_W \) via \(w(f) := \delta_w \cdot f \).

Lemma 4.2. We have \(q \cdot f_w = w(q)f_w \) and \(w(f_v) = f_{vw^{-1}} \) for any \(q \in Q \) and \(w, v \in W \).
Proof: We have \((q \bullet f_w)(\delta_v) = f_w(v(q)\delta_v) = v(q)\delta_{w,v}\), which shows that \(q \bullet f_v = v(q)f_v\). For the second equality, we have \([w(f_v)](\delta_w) = f_v(\delta_u\delta_w) = \delta_{w,v}\), so \(w(f_v) = f_{w^{-1}}\).

There is a coproduct on the twisted group algebra \(S_W\) that extends to \(Q_W\) defined by \([CZZ, \text{Def. 8.9}]:\)

\[
\Delta : Q_W \to Q_W \otimes_Q Q_W, \quad q\delta_w \mapsto q\delta_w \otimes \delta_w.
\]

Here \(\otimes_Q\) is the tensor product of left \(Q\)-modules. It is cocommutative with co-unit \(\varepsilon : Q_W \to Q, q\delta_w \mapsto q [\text{CZZ, Prop. 8.10}].\) The coproduct structure on \(Q_W\) induces a product structure on \(Q_W^*\), which is \(Q\)-bilinear for the natural action of \(Q\) on \(Q_W^*\) (not the one using \(\bullet\)). In terms of the basis \([f_w]_{w \in W}\) this product is given by component-wise multiplication:

\[
(\sum_{v \in W} q_v f_v)(\sum_{w \in W} q_w f_w) = \sum_{w \in W} q_w q'_w f_w, \quad q_w, q'_w \in Q.
\]

In other words, if we identify the dual \(Q_W^*\) with the \(Q\)-module of maps \(\text{Hom}(W, Q)\) via

\[
Q_W^* \to \text{Hom}(W, Q), \quad f \mapsto f', \quad f'(w) := f(\delta_w),
\]

then the product is the classical multiplication of ring-valued functions.

The multiplicative identity \(1\) of this product corresponds to the counit \(\varepsilon\) and equals \(1 = \sum_{w \in W} f_w\). We also have

\[
q \bullet (f f') = (q \bullet f) f' = f(q \bullet f') \quad \text{for } q \in Q \text{ and } f, f' \in Q_W^*.
\]

Lemma 4.3. For any \(\alpha \in \Sigma\) and \(f, f' \in Q_W^*\) we have \(s_\alpha(f f') = s_\alpha(f)s_\alpha(f')\), i.e. the Weyl group \(W\) acts on the algebra \(Q_W^*\) by \(Q\)-linear automorphisms.

Proof. By \(Q\)-linearity of the action of \(W\) and of the product, it suffices to check the formula on basis elements \(f = f_w\) and \(f' = f_v\), for which it is straightforward. \(\square\)

Observe that the ring \(Q\) can be viewed as a left \(Q_W\)-module via the following action:

\[
(q\delta_w) \cdot q' := qw(q'), \quad q, q' \in Q, \quad w \in W.
\]

Then by definition we have

\[
(q \bullet 1)(z) = z \cdot q, \quad z \in Q_W.
\]

Definition 4.4. For \(\alpha \in \Sigma\) we define two \(Q\)-linear operators on \(Q_W^*\) by

\[
A_\alpha(f) := Y_\alpha \bullet f \quad \text{and} \quad B_\alpha(f) := X_\alpha \bullet f, \quad f \in Q_W^*.
\]

An action by means of \(A_\alpha\) or \(B_\alpha\) will be called a *Hecke-action* on \(Q_W^*\).

Remark 4.5. If \(F = F_m\) (resp. \(F = F_n\)) one obtains actions introduced by Kostant–Kumar in \([KK90, I_{18}]\) (resp. in \([KK86, I_{51}]\)).
on the dual of the formal affine Demazure algebra is non-degenerate.

have 0 = \frac{1}{x_\alpha} \bullet \left(f' - s_\alpha(f) s_\alpha(f') \right) = B_\alpha(f f')

and \(B_\alpha(s_\alpha(f)) = \frac{1}{x_\alpha} (1 - \delta_\alpha) \bullet s_\alpha(f) = \frac{1}{x_\alpha} \bullet \left(s_\alpha(f) - f \right) = -B_\alpha(f) \). As for (4.6) we have 0 = B_\alpha(f) = X_\alpha \bullet f = \frac{1}{x_\alpha} \bullet \left[(1 - \delta_\alpha) \bullet f \right] \) which is equivalent to \(f = s_\alpha(f) \).

And as in (3.2), we obtain

\begin{align*}
A_\alpha^{(2)}(f) &= \kappa_\alpha \bullet A_\alpha(f) = A_\alpha(\kappa_\alpha \bullet f), \quad B_\alpha^{(2)}(f) = \kappa_\alpha \bullet B_\alpha(f) = B_\alpha(\kappa_\alpha \bullet f), \\
A_\alpha \circ B_\alpha = B_\alpha \circ A_\alpha = 0.
\end{align*}

We set \(A_i = A_{\alpha_i} \) and \(B_i := B_{\alpha_i} \) for the \(i \)-th simple root \(\alpha_i \). We set \(A_I = A_{i_1} \circ \ldots \circ A_{i_m} \) and \(B_I = B_{i_1} \circ \ldots \circ B_{i_m} \) for a non-empty sequence \(I = (i_1, \ldots, i_m) \) with \(i_j \in \{1, \ldots, n\} \) and \(A_\emptyset = B_\emptyset = \text{id} \). The operators \(A_I \) and \(B_I \) are key ingredients in the proof that the natural pairing of Theorem 12.4 on the dual of the formal affine Demazure algebra is non-degenerate.

5. PUSH-PULL OPERATORS AND ELEMENTS

Let us now introduce and study a key notion of the present paper, the notion of push-pull operators (resp. elements) on \(Q \) (resp. in \(Q_W \)) with respect to given coset representatives in parabolic quotients of the Weyl group.

Let \((\Sigma, A) \) be a root datum with a chosen set of simple roots \(\Pi \). Let \(\Xi \subseteq \Pi \) and let \(W_\Xi \) denote the subgroup of the Weyl group \(W \) of the root datum generated by simple reflections \(s_\alpha, \alpha \in \Xi \). We thus have \(W_\emptyset = \{ e \} \) and \(W_\Pi = W \). Let \(\Sigma_\Xi := \{ \alpha \in \Sigma \mid s_\alpha \in W_\Xi \} \) and let \(\Sigma_\Xi^+ := \Sigma_\Xi \cap \Sigma^+ \), \(\Sigma_\Xi^- := \Sigma_\Xi \cap \Sigma^- \) be subsets of positive and negative roots respectively.

Given subsets \(\Xi' \subseteq \Xi \) of \(\Pi \), let \(\Sigma_\Xi^{\pm, \Xi'} := \Sigma_\Xi^\pm \setminus \Sigma_{\Xi'} \) and \(\Sigma_\Xi^-, \Xi' := \Sigma_\Xi^- \setminus \Sigma_{\Xi'} \). We define

\[x_{\Xi/\Xi'} := \prod_{\alpha \in \Sigma_{\Xi'}^{\pm}} x_\alpha \]

and set \(x_\Xi := x_{\Xi/\emptyset} \).

In particular, \(x_\Pi = \prod_{\alpha \in \Sigma} x_\alpha = w_0(x_{w_0}) \).

Lemma 5.1. Given subsets \(\Xi' \subseteq \Xi \) of \(\Pi \) we have

\[v(\Sigma_{\Xi'}^-) = \Sigma_{\Xi/\Xi'}^- \quad \text{and} \quad v(\Sigma_{\Xi'}^+) = \Sigma_{\Xi/\Xi'}^+ \]

for any \(v \in W_\Xi \).

Proof. We prove the first statement only, the second one can be proven similarly. Since \(v \) acts faithfully on \(\Sigma_\Xi \), it suffices to show that for any \(\alpha \in \Sigma_{\Xi/\Xi'} \), the root \(\beta := v(\alpha) \notin \Sigma_{\Xi'} \) and is negative. Indeed, if \(\beta \in \Sigma_{\Xi'} \), then so is \(\alpha = v^{-1}(\beta) \) (as \(v^{-1} \in W_\Xi \)), which is impossible. On the other hand, if \(\beta \) is positive, then

\[\beta = v(\alpha) \in v(\Sigma_{\Xi'}^- \cap \Sigma_{\Xi'}^+) = v(\Sigma_{\Xi'}^-) \cap v(\Sigma_{\Xi'}^+). \]

where the latter equality follows from (3.3) and the fact that \(v \in W_\Xi \). So \(\alpha = v^{-1}(\beta) \in \Sigma_\Xi^-, \) a contradiction.

\[\square \]

Corollary 5.2. For any \(v \in W_\Xi \), we have \(v(x_{\Xi/\Xi'}) = x_{\Xi/\Xi'} \).
Definition 5.3. Given a set of left coset representatives $W_{\Xi}/_{\Xi'}$ of $W_\Xi/W_{\Xi'}$, we define a *push-pull operator* on Q with respect to $W_{\Xi}/_{\Xi'}$ by

$$C_{\Xi/_{\Xi'}}(q) := \sum_{w \in W_{\Xi}/_{\Xi'}} w\left(\frac{1}{x_{\Xi'/_{\Xi'}}}w\right), \quad q \in Q,$$

and a *push-pull element* with respect to $W_{\Xi}/_{\Xi'}$ by

$$Y_{\Xi/_{\Xi'}} := \left(\sum_{w \in W_{\Xi}/_{\Xi'}} \delta_w \right) \frac{1}{x_{\Xi'/_{\Xi'}}}.$$

We set $C_{\Xi} := C_{\Xi/\emptyset}$ and $Y_{\Xi} := Y_{\Xi/\emptyset}$ (so they do not depend on the choice of $W_{\Xi}/\emptyset = W_{\Xi}$ in these two special cases).

By definition, we have $C_{\Xi/_{\Xi'}}(q) = Y_{\Xi/_{\Xi'}} \cdot q$, where $Y_{\Xi/_{\Xi'}}$ acts on $q \in Q$ by (4.3). Also in the trivial case where $\Xi = \Xi'$, we have $x_{\Xi/_{\Xi}} = 1$, while $C_{\Xi/_{\Xi}} = \text{id}_Q$ and $Y_{\Xi/\Xi} = 1$ if we choose e as representative of the only coset. Observe that for $\Xi = \{\alpha_i\}$ we have $W_{\Xi} = \{e, s_i\}$ and $C_{\Xi} = C_i$ (resp. $Y_{\Xi} = Y_i$) is the push-pull operator (resp. element) introduced before and preserves S.

Example 5.4. For the formal group law F_h and the root datum A_2, we have $x_{\Pi} = x_{-\alpha_1,x_{-\alpha_2}}$, and

$$C_{\Pi}(1) = \sum_{w \in W_{\Xi}} w\left(\frac{1}{x_{\Xi}}\right) = \mu_1\left(\frac{1}{x_{-\alpha_2}x_{-\alpha_1}} + \frac{1}{x_{-\alpha_1}} + \frac{1}{x_{\alpha_1}}\right) = \mu_1^2 + \mu_1\mu_2.$$

Lemma 5.5. The operator $C_{\Xi/_{\Xi'}}$ restricted to $Q^{W_{\Xi'/_{\Xi'}}}$ is independent of the choices of representatives $W_{\Xi}/_{\Xi'}$ and it maps $Q^{W_{\Xi'/_{\Xi'}}}$ to $Q^{W_{\Xi'/_{\Xi'}}}$.

Proof. The independence follows, since $\frac{1}{x_{\Xi'/_{\Xi'}}} \in Q^{W_{\Xi'/_{\Xi'}}}$ by Corollary 5.2. The second part follows, since for any $v \in W_{\Xi}$, and for any set of coset representatives $W_{\Xi}/_{\Xi'}$, the set $vW_{\Xi}/_{\Xi'}$ is again a set of coset representatives.

Actually, we will see in Corollary 12.2 that the operator C_{Ξ} sends S to $S^{W_{\Xi}/_{\Xi'}}$.

Remark 5.6. The formula for the operator C_{Ξ} (with $\Xi' = \emptyset$) had appeared before in related contexts, namely, in discussions around the Becker-Gottlieb transfer for topological complex-oriented theories (see [BE90, (2.1)] and [GR12, §4.1]). The definition of the element $Y_{\Xi/_{\Xi'}}$ can be viewed as a generalized algebraic analogue of this formula.

Lemma 5.7 (Composition rule). Given subsets $\Xi'' \subseteq \Xi' \subseteq \Xi$ of Π and given sets of representatives $W_{\Xi}/_{\Xi'}$ and $W_{\Xi'/_{\Xi''}}$, take $W_{\Xi/_{\Xi''}} := \{vw \mid w \in W_{\Xi'/_{\Xi''}}, \ v \in W_{\Xi'/_{\Xi'}}\}$ as the set of representatives of $W_{\Xi}/_{\Xi''}$. Then

$$C_{\Xi/_{\Xi'}} \circ C_{\Xi'/_{\Xi''}} = C_{\Xi/_{\Xi''}} \text{ and } Y_{\Xi/_{\Xi'}} Y_{\Xi'/_{\Xi''}} = Y_{\Xi/_{\Xi''}}.$$

Proof. We prove the formula for Y’s, the one for C’s follows since C acts as Y, and the composition of actions corresponds to multiplication. We have $Y_{\Xi/_{\Xi''}} = (\sum_{w \in W_{\Xi}/_{\Xi''}} \delta_w \frac{1}{x_{\Xi'/_{\Xi''}}w})(\sum_{v \in W_{\Xi'/_{\Xi''}}} \delta_v \frac{1}{x_{\Xi''/_{\Xi''}}v}) = \sum_{w \in W_{\Xi}/_{\Xi''}, \ v \in W_{\Xi'/_{\Xi''}}} \delta_{wv} \frac{1}{x_{\Xi'/_{\Xi''}}w} \frac{1}{x_{\Xi''/_{\Xi''}}v}.$$

By Corollary 5.2, we have $v^{-1}(x_{\Xi'/_{\Xi''}}) = x_{\Xi'/_{\Xi''}}$. Therefore, $v^{-1}(x_{\Xi'/_{\Xi''}}) x_{\Xi'/_{\Xi''}} = x_{\Xi'/_{\Xi''}}$. We conclude by definition of $W_{\Xi'/_{\Xi''}}$.

The following lemma follows from the definition of $C_{\Xi/_{\Xi'}}$.

Lemma 5.8 (Projection formula). We have
\[C_{\Xi/\Xi'}(qq') = q C_{\Xi/\Xi'}(q') \quad \text{for any } q \in Q^W \text{ and } q' \in Q. \]

Lemma 5.9. Given a subset \(\Xi \) of \(\Pi \) and \(\alpha \in \Xi \), we have
\begin{align*}
(a) \quad Y_\Xi &= Y_\alpha Y_\eta = Y_\eta Y_\alpha \quad \text{for some } Y_\' \text{ and } Y'' \in Q_W, \\
(b) \quad Y_\Xi X_\alpha &= X_\alpha Y_\Xi = 0, \quad Y_\alpha Y_\Xi = \kappa_\alpha Y_\Xi \text{ and } Y_\Xi Y_\alpha = Y_\Xi\kappa_\alpha.
\end{align*}

Proof. (a) The first identity follows from Lemma 5.7 applied to \(\Xi' = \{\alpha\} \) (in this case \(Y_\' = Y_{\Xi/\Xi'} \)).

For the second identity, let \(\alpha W_\Xi \) be the set of right coset representatives of \(W_\alpha \setminus W_\Xi \), thus each \(w \in W_\Xi \) can be written uniquely either as \(w = s_\alpha u \) or as \(w = u \) with \(u \in \alpha W_\Xi \). Then
\[Y_\Xi = \sum_{u \in \alpha W_\Xi} (1 + \delta_\alpha) \delta_u \frac{1}{x_\Xi} = \sum_{u \in \alpha W_\Xi} (1 + \delta_\alpha) \frac{1}{x_\alpha x_\Xi} \delta_u \frac{1}{x_\Xi} \]
\[= \sum_{u \in \alpha W_\Xi} Y_\alpha x_\alpha \delta_u \frac{1}{x_\Xi} = Y_\alpha \sum_{u \in \alpha W_\Xi} \delta_u \frac{1}{x_\alpha x_\Xi}. \]

(b) then follows from (a) and (3.2). \(\square \)

6. THE PUSH-PULL OPERATORS ON THE DUAL

We now introduce and study the push-pull operators on the dual of the twisted formal group algebra \(Q^*_W \).

For \(w \in W \), we define \(f^\Xi_w := \sum_{v \in w W_\Xi} f_v \). Observe that \(f^\Xi_w = f^\Xi_v \) if and only if \(w W_\Xi = y W_\Xi \). Consider the subring of invariants \((Q^*_W)^{W_\Xi} \) by means of the '•'-action of \(W_\Xi \) on \(Q^*_W \) and fix a set of representatives \(W_{W/\Xi} \) of \(W/W_\Xi \). By Lemma 4.2, we then have the following

Lemma 6.1. The family \(\{f^\Xi_w\}_{w \in W_\Xi/\Xi} \) forms a basis of \((Q^*_W)^{W_\Xi} \) as a left \(Q \)-module, and \(f^\Xi_w f^\Xi_v = \delta^{Kr}_{w,v} f^\Xi_w \) for any \(w, v \in W_\Xi/\Xi \).

In other words, \(\{f^\Xi_w\}_{w \in W_\Xi/\Xi} \) is a set of pairwise orthogonal projectors, and the direct sum of their images is \((Q^*_W)^{W_\Xi} \).

Definition 6.2. Given subsets \(\Xi' \subseteq \Xi \) of \(\Pi \) and a set of representatives \(W_\Xi/\Xi' \), we define a \(Q \)-linear operator on \(Q^*_W \) by
\[A_{\Xi/\Xi'}(f) := Y_{\Xi/\Xi'} \cdot f, \quad f \in Q^*_W, \]
and call it the push-pull operator with respect to \(W_{\Xi/\Xi'} \). It is \(Q \)-linear since so is the '•'-action. We set \(A_\Xi = A_{\Xi/\Xi} \).

Lemma 5.7 immediately implies:

Lemma 6.3 (Composition rule). Given subsets \(\Xi'' \subseteq \Xi' \subseteq \Xi \) of \(\Pi \) and sets of representatives \(W_{\Xi/\Xi'} \) and \(W_{\Xi'/\Xi''} \), let \(W_{\Xi/\Xi''} = \{wv \mid w \in W_{\Xi/\Xi'}, v \in W_{\Xi'/\Xi''}\} \), then we have \(A_{\Xi/\Xi'} \circ A_{\Xi'/\Xi''} = A_{\Xi/\Xi''} \).

Lemma 6.4 (Projection formula). We have
\[A_{\Xi/\Xi'}(ff') = f A_{\Xi/\Xi'}(f') \quad \text{for any } f \in (Q^*_W)^{W_\Xi} \text{ and } f' \in Q^*_W. \]
Proof. Using (4.2) and Lemma 4.3, we compute

\[A_{\Xi/\Xi'}(f f') = Y_{\Xi/\Xi} \cdot (f f') = (\sum_{w \in W_{\Xi/\Xi'}} \delta_w \frac{1}{\varpi_{\Xi/\Xi'}}) \cdot (f f') = \sum_{w \in W_{\Xi/\Xi'}} \delta_w \frac{1}{\varpi_{\Xi/\Xi'}} \cdot (f f') \]

\[= \sum_{w \in W_{\Xi/\Xi'}} \delta_w \cdot (f(\frac{1}{\varpi_{\Xi/\Xi'}} \cdot f')) = \sum_{w \in W_{\Xi/\Xi'}} (\delta_w \cdot f)(\delta_w \cdot \frac{1}{\varpi_{\Xi/\Xi'}} \cdot f') \]

\[= f \sum_{w \in W_{\Xi/\Xi'}} \delta_w \cdot \frac{1}{\varpi_{\Xi/\Xi'}} \cdot f' = f A_{\Xi/\Xi}(f') \quad \square \]

Here is an analogue of Lemma 5.5.

Lemma 6.5. The operator \(A_{\Xi/\Xi'} \) restricted to \((Q^*_W)^{W_{\Xi'}}\) is independent of the choices of representatives \(W_{\Xi/\Xi'} \) and it maps \((Q^*_W)^{W_{\Xi'}}\) to \((Q^*_W)^{W_{\Xi}}\).

Proof. Let \(f \in (Q^*_W)^{W_{\Xi'}} \). For any \(w \in W \) and \(v \in W_{\Xi'} \), by Corollary 5.2, we have

\[(\delta_w \frac{1}{\varpi_{\Xi/\Xi'}}) \cdot f = (\delta_w \frac{1}{\varpi_{\Xi/\Xi'}} \cdot \delta_v) \cdot f = (\delta_w \frac{1}{\varpi_{\Xi/\Xi'}}) \cdot \delta_v \cdot f = (\delta_w \frac{1}{\varpi_{\Xi/\Xi'}}) \cdot f.\]

which proves that the action on \(f \) of any factor \(\delta_w \frac{1}{\varpi_{\Xi/\Xi'}} \) in \(Y_{\Xi/\Xi} \) is independent of the choice of the coset representative \(w \).

Now if \(v \in W_{\Xi} \), we have

\[v(A_{\Xi/\Xi}(f)) = \delta_v \cdot Y_{\Xi/\Xi} \cdot f = (\delta_v Y_{\Xi/\Xi}) \cdot f = A_{\Xi/\Xi}(f), \]

where the last equality holds since \(\delta_v Y_{\Xi/\Xi} \) is again an operator \(Y_{\Xi/\Xi} \) corresponding to the set of coset representatives \(vW_{\Xi/\Xi} \) (instead of \(W_{\Xi/\Xi} \)). This proves the second claim. \(\square \)

Lemma 6.6. We have \(A_{\Xi/\Xi}(f_v) = \frac{1}{v(x_{\Xi/\Xi'})} \sum_{w \in W_{\Xi/\Xi'}} f_{vw^{-1}} \). In particular,

\[A_{\Xi/\Xi}(f_{\Xi'}) = \frac{1}{v(x_{\Xi/\Xi'})} f_{\Xi'}, \quad A_{\Pi/\Xi}(f_{\Xi'}) = \frac{1}{v(x_{\Pi/\Xi})} 1 \quad \text{and} \quad A_{\Pi}(v(x_{\Pi})f_v) = 1.\]

Proof. By Lemma 4.2 we get

\[A_{\Xi/\Xi}(f_v) = (\sum_{w \in W_{\Xi/\Xi'}} \delta_w \frac{1}{\varpi_{\Xi/\Xi'}}) \cdot f_v = \sum_{w \in W_{\Xi/\Xi'}} \delta_w \cdot (\frac{1}{v(x_{\Xi/\Xi'})} f_v) = \frac{1}{v(x_{\Xi/\Xi'})} \sum_{w \in W_{\Xi/\Xi'}} f_{vw^{-1}}. \]

In particular

\[A_{\Xi/\Xi}(f_{\Xi'}) = \sum_{w \in W_{\Xi}} \frac{1}{v(x_{\Xi/\Xi'})} \sum_{u \in \Xi/\Xi'} f_{wuw^{-1}} = \frac{1}{v(x_{\Xi/\Xi'})} \sum_{w \in W_{\Xi/\Xi'}} \sum_{u \in W_{\Xi/\Xi'}} f_{uw^{-1}} \]

where the second equality follows from Corollary 5.2. \(\square \)

Together with Lemma 6.1 we therefore obtain:

Corollary 6.7. We have \(A_{\Xi/\Xi}((Q^*_W)^{W_{\Xi'}}) = (Q^*_W)^{W_{\Xi}} \).

Definition 6.8. We define the characteristic map \(c : Q \to Q^*_W \) by \(q \mapsto q \cdot 1 \).

By the definition of the ‘\(\cdot \)’ action, \(c \) is an \(R \)-algebra homomorphism given by \(c(q) = \sum_{w \in W} w(q)f_w \), that is, \(c(q) \in Q^*_W \) is the evaluation at \(q \in Q_W \) via the action (4.3) of \(Q_W \) on \(Q \). Note that \(c \) is \(Q_W \)-equivariant with respect to this action.
and the \(\bullet\)-action. Indeed, \(c(z \cdot q) = (z \cdot q) \bullet 1 = z \bullet (q \bullet 1) = z \bullet c(q)\). In particular, it is \(W\)-equivariant.

The following lemma provides an analogue of the push-pull formula of \([CPZ, \text{Theorem. 12.4}]\).

Lemma 6.9. Given subsets \(\Xi' \subseteq \Xi\) of \(\Pi\), we have \(A_{\Xi'/\Xi} \circ c = c \circ C_{\Xi'/\Xi}\).

Proof. By definition, we have
\[
A_{\Xi'/\Xi}(c(q)) = Y_{\Xi'/\Xi} \cdot c(q) = c(Y_{\Xi'/\Xi} \cdot q) = c(C_{\Xi'/\Xi}(q)).
\]

\[\square\]

7. Relations between bases coefficients

In this section we describe relations between coefficients appearing in decompositions of various elements on the different bases of \(Q_W\) and of \(Q_W'\).

Given a sequence \(I = (i_1, \ldots, i_m)\), let \(I^{\text{rev}} := (i_m, \ldots, i_1)\).

Lemma 7.1. Given a sequence \(I\) in \(\{1, \ldots, n\}\), for any \(x, y \in S\) and \(f, f' \in Q_W\) we have
\[
C_{\Pi}(\Delta_I(x)y) = C_{\Pi}(x\Delta_{I^{\text{rev}}}(y)) \quad \text{and} \quad A_{\Pi}(B_I(f)f') = A_{\Pi}(fB_I^{\text{rev}}(f')).
\]

Similarly, we have
\[
C_{\Pi}(C_I(x)y) = C_{\Pi}(xC_{I^{\text{rev}}}(y)) \quad \text{and} \quad A_{\Pi}(A_I(f)f') = A_{\Pi}(fA_I^{\text{rev}}(f')).
\]

Proof. By Lemma 5.9.(b) we have \(Y_{\Pi}X_\alpha = 0\) for any \(\alpha \in \Pi\). By (4.5) we obtain
\[
0 = A_{\Pi}(B_{\alpha}(s_\alpha(f)f')) = A_{\Pi}(fB_{\alpha}(f') - B_{\alpha}(f)'f')
\]
Hence, \(A_{\Pi}(B_{\alpha}(f)f') = A_{\Pi}(fB_{\alpha}(f'))\) and \(A_{\Pi}(B_I(f)f') = A_{\Pi}(fB_I^{\text{rev}}(f'))\) by iteration.

To prove the corresponding formula involving \(A_I\), note that \(A_{\alpha} = \kappa_{\alpha} - B_{\alpha}\), so
\[
fA_{\alpha}(f') - A_{\alpha}(f)f' = f(\kappa_{\alpha} \bullet f' - B_{\alpha}(f')) - (\kappa_{\alpha} \bullet f - B_{\alpha}(f))f' \tag{4.2}
\]
\[
\triangleq B_{\alpha}(f)f' - fB_{\alpha}(f') = B_{\alpha}(s_{\alpha}(f')f),
\]
so \(A_{\Pi}(A_{\alpha}(f)f') = A_{\Pi}(fA_{\alpha}(f'))\) and again \(A_{\Pi}(A_{\alpha}(f)f') = A_{\Pi}(fA_{\alpha}(f'))\) by iteration. The formulas involving \(C\) operators are obtained similarly. \[\square\]

Corollary 7.2. Let \(I = (i_1, \ldots, i_m)\) be a sequence in \(\{1, \ldots, n\}\). Let
\[
X_I = \sum_{v \in W} a_{I,v}^X \delta_v \quad \text{and} \quad X_{I^{\text{rev}}} = \sum_{v \in W} a_{I,v}^{X^{\text{rev}}} \delta_v \quad \text{for some} \ a_{I,v}^X, a_{I,v}^{X^{\text{rev}}} \in Q,
\]
then \(v(x_{\Pi})a_{I,v}^X = v(a_{I,v-1}^X) x_{\Pi}\). Similarly, let
\[
Y_I = \sum_{v \in W} a_{I,v}^Y \delta_v \quad \text{and} \quad Y_{I^{\text{rev}}} = \sum_{v \in W} a_{I,v}^{Y^{\text{rev}}} \delta_v \quad \text{for some} \ a_{I,v}^Y, a_{I,v}^{Y^{\text{rev}}} \in Q,
\]
then \(v(x_{\Pi})a_{I,v}^Y = v(a_{I,v-1}^Y) x_{\Pi}\).

Proof. We have
\[
v(x_{\Pi})A_{\Pi}(B_I(f_x)f_v) = v(x_{\Pi})A_{\Pi}((X_I \bullet f_x)f_v) = v(x_{\Pi})A_{\Pi}((\sum_{w}^{-1}(a_{I,w}^X)f_{w-1})f_v)
\]
\[
= v(x_{\Pi})A_{\Pi}(v(a_{I,v-1}^X)f_v) \tag{6.6}
\]
\[
= v(x_{\Pi})A_{\Pi}(v(a_{I,v-1}^X)f_v) = v(a_{I,v-1}^Y) 1,
\]
and symmetrically
\[
x_{\Pi}A_{\Pi}(f \cdot B_{\Pi}^{rev}(f_v)) = x_{\Pi}A_{\Pi}\left(\sum_w v(x_{\Pi})a_{I,v}^{X} \delta_w \cdot f_v\right)
\]
\[
= x_{\Pi}A_{\Pi}\left(\sum_w v(x_{\Pi})a_{I,v}^{X} f_{w-1}\right)
\]
\[
= x_{\Pi}A_{\Pi}(a_{I,v}^{X} f_v) = a_{I,v}^{X}.
\]
Lemma 7.1 then yields the formula by comparing the coefficients of \(X_I\) and \(X_{I}^{rev}\).
The formula involving \(Y_I\) is obtained similarly.

Lemma 7.3. For any sequence \(I\), we have
\[
A_{I}^{rev}(x_{\Pi}f_v) = \sum_{w \in W} v(x_{\Pi})a_{I,v}^{Y} f_v \quad \text{and} \quad B_{I}^{rev}(x_{\Pi}f_v) = \sum_{w \in W} v(x_{\Pi})a_{I,v}^{X} f_v
\]

Proof. We prove the first formula only. The second one can be obtained using similar arguments. Let \(Y_{I}^{rev} = \sum_{w \in W} a_{I,v}^{Y} \delta_v\) and \(Y_I = \sum_{w \in W} a_{I,v}^{X} \delta_v\) as in Corollary 7.2.

\[
A_{I}^{rev}(x_{\Pi}f_v) = Y_{I}^{rev} \cdot x_{\Pi}f_v = \sum_{w \in W} x_{\Pi}(a_{I,v}^{Y} \delta_v) \cdot f_v
\]
\[
= \sum_{w \in W} x_{\Pi}(a_{I,v}^{Y} \cdot f_{v-1}) = \sum_{w \in W} x_{\Pi}v^{-1}(a_{I,v}^{Y})f_{v-1} = \sum_{w \in W} x_{\Pi}v(a_{I,v-1}^{Y})f_v.
\]
The formula then follows from Corollary 7.2.

Let \(\{X_{I,w}^{\ast}\}_{w \in W}\) and \(\{Y_{I,w}^{\ast}\}_{w \in W}\) be the \(Q\)-linear bases of \(Q_W\) dual to \(\{X_{I,w}\}_{w \in W}\) and \(\{Y_{I,w}\}_{w \in W}\), respectively, i.e. \(X_{I,w}^{\ast}(X_{I,v}) = \delta_{w,v}\) for \(w, v \in W\). By Lemma 3.2 we have \(\delta_v = \sum_{w \le v} b_{v,w}^{X} X_{I,w} = \sum_{w \le v} b_{v,w}^{Y} Y_{I,w}\). Therefore, by duality we have
\[
X_{I,w}^{\ast} = \sum_{v \le w} b_{v,w}^{X} f_v \quad \text{and} \quad Y_{I,w}^{\ast} = \sum_{v \le w} b_{v,w}^{Y} f_v.
\]

Lemma 7.4. We have \(X_{I,w}^{\ast} = 1\) and, therefore, \(X_{I,w}^{\ast}(z) = z \cdot 1, z \in Q_W\) (the action defined in (4.3)). For any sequence \(I\) with \(\ell(I) \ge 1\), we have \(X_{I,w}^{\ast}(X_I) = X_I \cdot 1 = 0\) and, moreover, if we express \(X_I = \sum_{v \in W} q_v X_{I,v}\), then \(q_v = 0\).

Proof. Indeed, for each \(v \in W\) we have \(X_{I,v}^{\ast}(\delta_v) = b_{v,v}^{X} f_v = 1 = 1(\delta_v)\). Therefore, \(X_{I,v}^{\ast} = 1\). The formula for \(X_{I,w}^{\ast}(z)\) then follows by (4.4). Since \(X_{\alpha} \cdot 1 = 0\), we have \(X_I \cdot 1 = 0\). Finally, we obtain
\[
0 = X_I \cdot 1 = \sum_{v \in W} q_v X_{I,v} \cdot 1 = q_e + \sum_{\ell(v) \ge 1} q_v X_{I,v} \cdot 1 = q_e.
\]

Lemma 7.5. Let \(w_0\) be the longest element in \(W\) of length \(N\). We have
\[
A_{\Pi}(X_{I,w_0}^{\ast}) = (-1)^{N} 1 \quad \text{and} \quad A_{\Pi}(Y_{I,w_0}^{\ast}) = 1.
\]

Proof. Consider the first formula. By Lemma 3.2 \(\delta_v = \sum_{w \le v} b_{v,w}^{X} X_{I,w}\) with \(b_{v,w}^{X} = x_w\), therefore \(X_{I,w}^{\ast} = \sum_{w \ge v} b_{v,w}^{X} f_v\). Lemma 6.6 yields
\[
A_{\Pi}(X_{I,w}^{\ast}) = \sum_{v \ge w} b_{v,w}^{X} f_v = (-1)^{N} \cdot \frac{b_{v,w}^{X}}{\frac{w_0}{w_0} 1} = (-1)^{N} 1
\]
by (3.3).

The second formula is obtained similarly using Lemma 3.3 instead.
Lemma 7.6. For any reduced sequence I of an element w and $q \in Q$ we have

$$X_Iq = \sum_{v \leq w} \phi_{I,v}(q)X_{I_v} \quad \text{for some } \phi_{I,v}(q) \in Q.$$

Proof. For any subsequence J of I (not necessarily reduced), we have $w(J) \leq w$ by [De77, Th. 1.1]. Thus, by developing all $X_i = \frac{1}{2\pi i} (1 - \delta_i)$, moving all coefficients to the left, and then using Lemma 3.2 and transitivity of the Bruhat order,

$$X_Iq = \sum_{w \leq v} \phi_{I,w}(q)\delta_w = \sum_{w \leq v} \phi_{I,w}(q)X_{I_w}$$

for some coefficients $\phi_{I,w}(q)$ and $\phi_{I,w}(q) \in Q$. \hfill \square

8. Another basis of the W_{Ξ}-invariant subring

Recall that $\{f_w\}_{w \in W_{\alpha_{\Xi}}}^*$ is a basis of the invariant subring $(Q_W)^{W_{\Xi}}$. In the present section we construct another basis $\{X_I^*\}_{w \in W_{\Xi}}$ of the subring $(Q_W)^{W_{\Xi}}$, which generalizes [KK86, Lemma 4.34] and [KK90, Lemma 2.27].

Given a subset Ξ of Π we define

$$W_{\Xi} = \{w \in W \mid \ell(ws_u) > \ell(w) \text{ for any } \alpha \in \Xi\}.$$

Note that W_{Ξ} is a set of left coset representatives of W/W_{Ξ} such that each $w \in W_{\Xi}$ is the unique representative of minimal length.

We will extensively use the following fact [Hu90, §1.10]:

\begin{equation}
\tag{8.1}
\text{For any } w \in W \text{ there exist unique } u \in W_{\Xi} \text{ and } v \in W_{\Xi} \text{ such that } w = uv \text{ and } \ell(w) = \ell(u) + \ell(v).
\end{equation}

Definition 8.1. Let Ξ be a subset of Π. We say that the reduced sequences $\{I_w\}_{w \in W}$ are Ξ-compatible if for each $w \in W$ and the unique factorization $w = uv$ with $u \in W_{\Xi}$ and $v \in W_{\Xi}$, $\ell(w) = \ell(u) + \ell(v)$ of (8.1) we have $I_w = I_u \cup I_v$, i.e. I_w starts with I_u and ends by I_v.

Observe that there always exists a Ξ-compatible family of reduced sequences. Indeed, one could start with arbitrary reduced sequences $\{I_u\}_{u \in W_{\Xi}}$ and $\{I_v\}_{v \in W_{\Xi}}$, and complete it into a Ξ-compatible family $\{I_w\}_{w \in W}$ by defining I_w as the concatenation $I_u \cup I_v$ for $w = uv$ with $u \in W_{\Xi}, v \in W_{\Xi}$.

Theorem 8.2. For any Ξ-compatible choice of reduced sequences $\{I_w\}_{w \in W}$, if $u \in W_{\Xi}$, then for any sequence I in W_{Ξ} of length at least 1 (i.e. $\alpha_i \in \Xi$ for each i appearing in the sequence I), we have

$$X_{I_u}^*(zX_I) = 0 \text{ for all } z \in Q_W.$$

Proof. Since $\{X_{I_w}\}_{w \in W}$ is a basis of Q_W, we may assume that $z = X_{I_w}$ for some $w \in W$. We decompose $X_I = \sum_{v \in W_{\Xi}} q_vX_{I_v}$ with $q_v \in Q$. By Lemma 7.4 we may assume $v \neq e$.

We proceed by induction on the length of w. If $\ell(w) = 0$, we have $X_{I_w} = X_{I_e} = 1$. Since $W_{\Xi} \cap W_{\Xi} = \{e\}$, for any $v \in W_{\Xi}, v \neq e$, we conclude that $X_{I_v}^*(X_{I_e}) = 0$.

The induction step goes as follows: Assume $\ell(w) \geq 1$. Since the sequences are Ξ-compatible, we have

$$X_{I_w}X_I = X_{I_{w'}}X_{I_{v'}}X_I = X_{I_{w'}}X_{I_{v'}}, \text{ where } w' \in W_{\Xi}, v' \in W_{\Xi}, I' \in W_{\Xi},$$

and
\(\ell(I') \geq \ell(I) \geq 1 \). We can thus assume that \(w \in W^\Xi \), so that by Lemma 7.6,
\[
X_{I_w} X_I = \sum_{v \neq e} (X_{I_w} q_v) X_{I_v} = \sum_{\bar{w} \leq u, v \neq e} \phi_{I_w, \bar{w}}(q_v) X_{I_{\bar{w}}} X_{I_v}.
\]
Now \(X_{I_w}^* (X_{I_v} X_I) = X_{I_v}^* (X_{I_{\bar{w}}} X_I) = 0 \) since \(uv \) is not a minimal coset representative: indeed, we already have \(w \in W^\Xi \) and \(v \neq e \). Applying \(X_{I_w}^* \) to other terms in the above summation gives zero by induction. \(\square \)

Remark 8.3. The proof will not work if we replace \(X \)'s by \(Y \)'s, because constant terms appear (we cannot assume \(v \neq e \)).

Corollary 8.4. For any \(\Xi \)-compatible choice of reduced sequences \(\{I_u\}_{u \in W} \), the family \(\{X_{I_u}^*\}_{u \in W^\Xi} \) is a \(Q \)-module basis of \((Q_W^*)^W_\Xi \).

Proof. For every \(\alpha_i \in \Xi \) we have
\[
(\delta_i \bullet X_{I_u}^*)(z) = X_{I_u}^*(z \delta_i) = X_{I_u}^*(z(1 - x_i X_i)) = X_{I_u}^*(z), \quad z \in Q_W,
\]
where the last equality follows from Theorem 8.2. Therefore, \(X_{I_u}^* \) is \(W_\Xi \)-invariant.

Let \(\sigma \in (Q_W^*)^W_\Xi \), i.e. for each \(\alpha_i \in \Xi \) we have \(\sigma = s_i(\sigma) = \delta_i \bullet \sigma \). Then
\[
\sigma(z X_i) = \sigma(z \frac{1}{x_{\alpha_i}}(1 - \delta_{\alpha_i})) = \sigma(z \frac{1}{x_{\alpha_i}}) - (\delta_i \bullet \sigma)(z \frac{1}{x_{\alpha_i}}) = (\sigma - \delta_i \bullet \sigma)(z \frac{1}{x_{\alpha_i}}) = 0
\]
for any \(z \in Q_W \). Write \(\sigma = \sum_{w \in W} x_w X_{I_w}^* \) for some \(x_w \in Q \). If \(w \not\in W^\Xi \), then \(I_w \) ends by some \(i \) such that \(\alpha_i \in \Xi \) which implies that
\[
x_w = \sigma(X_{I_w}) = \sigma(X_{I_{\bar{w}}} X_i) = 0,
\]
where \(I_{\bar{w}} \) is the sequence obtained by deleting the last entry in \(I_w \). So \(\sigma \) is a linear combination of \(\{X_{I_u}^*\}_{u \in W^\Xi} \). \(\square \)

Corollary 8.5. If the reduced sequences \(\{I_w\}_{w \in W} \) are \(\Xi \)-compatible, then \(b_{w,v,u}^X = b_{w,v,u}^X \) for any \(v \in W_\Xi \), \(u \in W^\Xi \) and \(w \in W \), where \(b_{w,v,u}^X \) are the coefficients of Lemma 3.2.

Proof. From Lemma 3.2 we have \(X_{I_w}^* = \sum_{u \geq u} b_{w,v,u}^X f_w \). By Lemma 4.2 we obtain that \(v(X_{I_w}^*) = \sum_{u \geq u} b_{w,v,u}^X f_{w,v} \) for any \(v \in W_\Xi \). Since \(X_{I_w}^* \) is \(W_\Xi \)-invariant by Corollary 8.4 and \(\{f_w\}_{w \in W} \) is a basis of \(Q_W^* \), this implies that \(b_{w,v,u}^X = b_{w,v,u}^X \). \(\square \)

9. The formal Demazure algebra and the Hecke algebra

In the present section we recall the definition and basic properties of the formal (affine) Demazure algebra \(D_F \) following [HMSZ], [CZZ] and [Zh13].

Following [HMSZ], we define the formal affine Demazure algebra \(D_F \) to be the \(R \)-subalgebra of the twisted formal group algebra \(Q_W \) generated by elements of \(S \) and the Demazure elements \(X_i \) for all \(i \in \{1, \ldots, n\} \). By [CZZ, Lemma 5.8], \(D_F \) is also generated by \(S \) and all \(X_\alpha \) for all \(\alpha \in \Sigma \). Since \(\kappa_\alpha \in S \), the algebra \(D_F \) is also generated by \(Y_\alpha \)'s and elements of \(S \). Finally, since \(\delta_\alpha = 1 - x_\alpha X_\alpha \), all elements \(\delta_\alpha \) are in \(D_F \), and \(D_F \) is a sub-\(S_W \)-module of \(Q_W \), both on the left and on the right.

Remark 9.1. Since \(\{X_{I_w}\}_{w \in W} \) is a \(Q \)-basis of \(Q_W \), restricting the action (4.3) of \(Q_W \) onto \(D_F \) we obtain an isomorphism between the algebra \(D_F \) and the \(R \)-subalgebra \(D(\Lambda)_F \) of \(\text{End}_R(S) \) generated by operators \(\Delta_\alpha \) (resp. \(C_\alpha \)) for all \(\alpha \in \Sigma \), and multiplications by elements from \(S \). This isomorphism maps \(X_\alpha \mapsto \Delta_\alpha \) and \(Y_\alpha \mapsto C_\alpha \). Therefore, for any identity or statement involving elements \(X_\alpha \) or \(Y_\alpha \) there is an equivalent identity or statement involving operators \(\Delta_\alpha \) or \(C_\alpha \).
According to [HMSZ, Theorem 6.14] (or [CZZ, 7.9] when the ring R is not necessarily a domain), in type A_n, the algebra D_F is generated by the Demazure elements $X_i, i \in \{1, \ldots, n\}$, and multiplications by elements from S subject to the following relations:

(a) $X_i^2 = \kappa_i X_i$
(b) $X_i X_j = X_j X_i$ for $|i - j| > 1$,
(c) $X_i X_j X_i - X_j X_i X_j = \kappa_{ij} (X_j - X_i)$ for $|i - j| = 1$ and
(d) $X_i q = s_i(q) X_i + \Delta_i(q)$.

Furthermore, by [CZZ, Prop. 7.7], for any choice of reduced decompositions $\{I_w\}_{w \in W}$, the family $\{X_{I_w}\}_{w \in W}$ (resp. the family $\{Y_{I_w}\}_{w \in W}$) is a basis of D_F as a left S-module.

We show now that for some hyperbolic formal group law F_h, the formal Demazure algebra can be identified with the classical Iwahori-Hecke algebra.

Recall that the Iwahori-Hecke algebra H of the symmetric group S_{n+1} is a $\mathbb{Z}[t, t^{-1}]$-algebra with generators $T_i, i \in \{1, \ldots, n\}$, subject to the following relations:

(A) $(T_i + t)(T_i - t^{-1}) = 0$ or, equivalently, $T_i^2 = (t^{-1} - t)T_i + 1$,
(B) $T_i T_j = T_j T_i$ for $|i - j| > 1$ and
(C) $T_i T_j T_i = T_j T_i T_j$ for $|i - j| = 1$.

(The T_i’s appearing in the definition of the Iwahori-Hecke algebra [CG10, Def. 7.1.1] correspond to $t R_i$ in our notation, where $t = q^{-1/2}$.)

Following [HMSZ, Def. 6.3] let D_F denote the R-subalgebra of D_F generated by the elements $X_i, i \in \{1, \ldots, n\}$, only. By [HMSZ, Prop. 7.1], over $R = \mathbb{C}$, if $F = F_n$ (resp. $F = F_m$), then D_F is isomorphic to the completion of the nil-Hecke algebra (resp. the 0-Hecke algebra) of Kostant-Kumar. The following observation provides another motivation for the study of formal (affine) Demazure algebras.

Let us consider the FGL of example 2.2 with invertible μ_1. After normalization we may assume $\mu_1 = 1$. Then its formal inverse is $\frac{x}{x_1}$, and since $(1 + \mu_2 x_1 x_1) x_{i+1} = x_i + x_j - x_i x_j$, the coefficient κ_{ij} of relation (c) is simply μ_2:

\[\kappa_{ij} = \frac{1}{x_i + x_j} - \frac{1}{x_{ij}} - \frac{1}{x_i x_j} = \frac{x_{i+1} x_{j+1}}{x_i x_j x_{i+1} x_{j+1}} = \frac{(1 + \mu_2 x_i x_j) x_{i+1} x_{j+1}}{x_i x_j x_{i+1} x_{j+1}} = \mu_2 \]

Proposition 9.2. Let F_h be a normalized (i.e. $\mu_1 = 1$) hyperbolic formal group law over an integral domain R containing $\mathbb{Z}[t, t^{-1}]$, and let $a, b \in R$. Then the following are equivalent

1. The assignment $T_i \mapsto a X_i + b$, $i \in \{1, \ldots, n\}$, defines an isomorphism of R-algebras $H \otimes_{\mathbb{Z}[t, t^{-1}]} R \rightarrow D_F$.
2. We have $a = t + t^{-1}$ or $-t - t^{-1}$ and $b = -t$ or t^{-1} respectively. Furthermore $\mu_2(t + t^{-1})^2 = -1$; in particular, the element $t + t^{-1}$ is invertible in R.

Proof. Assume there is an isomorphism of R-algebras given by $T_i \mapsto a X_i + b$. Then relations (b) and (B) are equivalent and relation (A) implies that

\[0 = (a X_1 + b)^2 + (t - t^{-1})(a X_1 + b) - 1 = [a^2 + 2ab + a(t - t^{-1})] X_1 + b^2 + b(t - t^{-1}) - 1. \]

Therefore $b = -t$ or t^{-1} and $a = t^{-1} - t - 2b = t + t^{-1}$ or $-t - t^{-1}$ respectively, since 1 and X_i are S-linearly independent in $D_F \subseteq D_F$.

Relations (C) and (a) then imply
\[
\begin{align*}
0 &= (aX_i + b)(aX_j + b) - (aX_j + b)(aX_i + b) \\
&= a^3(X_iX_jX_i - X_jX_iX_j) + (a^2b + ab^2)(X_i - X_j).
\end{align*}
\]
Therefore, by relation (c) and (9.1), we have \(a^3\mu_2 - a^2b - ab^2 = 0\) which implies that \(0 = a^2\mu_2 - ab - b^2 = (t + t^{-1})^2 + 1\).

Conversely, by substituting the values of \(a\) and \(b\), it is easy to check that the assignment is well defined, essentially by the same computations. It is an isomorphism since \(a = \pm(t + t^{-1})\) is invertible in \(R\).

Remark 9.3. The isomorphism of Proposition 9.2 provides a presentation of the Iwahori-Hecke algebra with \(t + t^{-1}\) inverted in terms of the Demazure operators on the formal group algebra \(R[[A]]_{F_h}\).

Remark 9.4. In general, the coefficients \(\mu_1\) and \(\mu_2\) of \(F_h\) can be parametrized as \(\mu_1 = \epsilon_1 + \epsilon_2\) and \(\mu_2 = -\epsilon_1\epsilon_2\) for some \(\epsilon_1, \epsilon_2 \in R\). In 9.2 it corresponds to \(\epsilon_1 = \frac{t}{t+1}\) and \(\epsilon_2 = \frac{t^{-1}}{t+1}\) (up to a sign) and in this case [BuHo, Thm. 4.1] implies that \(F_h\) does not correspond to a topological complex oriented cohomology theory (i.e., a theory obtained from complex cobordism \(MU\) by tensoring over the Lazard ring). Observe that such \(F_h\) still corresponds to an algebraic oriented cohomology theory in the sense of Levine-Morel.

10. The Algebraic Restriction to the Fixed Locus on \(G/B\)

In the present section we define the algebraic counterpart of the restriction to \(T\)-fixed locus of \(G/B\).

Consider the \(S\)-linear dual \(S_W^* = \text{Hom}_S(S_W, S)\) of the twisted formal group algebra. Since \(\{\delta_w\}_{w \in W}\) is a basis for both \(S_W\) and \(Q_W\), \(S_W^*\) can be identified with the free \(S\)-submodule of \(Q_W^*\) with basis \(\{f_w\}_{w \in W}\) or, equivalently, with the subset \(\{f \in Q_W^* \mid f(S_W) \subseteq S\}\).

Since \(\delta_\alpha = 1 - x_\alpha X_\alpha\) for each \(\alpha \in \Sigma\), there is a natural inclusion of \(S\)-modules \(\eta: S_W \rightarrow D_F\). The elements \(\{X_{I_w}\}_{w \in W}\) (and, hence, \(\{Y_{I_w}\}_{w \in W}\)) form a basis of \(D_F\) as a left \(S\)-module by [CZZ, Prop. 7.7]. Observe that the natural inclusion \(S_W \rightarrow Q_W\) factors through \(\eta\). Tensoring \(\eta\) by \(Q\) we obtain an isomorphism \(\eta_Q: Q_W \rightarrow Q \otimes_S D_F\), because both are free \(Q\)-modules and their bases \(\{X_{I_w}\}_{w \in W}\) are mapped to each other.

Definition 10.1. Consider the \(S\)-linear dual \(D_F^* = \text{Hom}_S(D_F, S)\). The induced map \(\eta^*: D_F^* \rightarrow S_W^*\) (composition with \(\eta\)) will be called the **restriction to the fixed locus**.

Lemma 10.2. The map \(\eta^*\) is an injective ring homomorphism and its image in \(S_W^* \subseteq Q_W^* = Q \otimes_S S_W^*\) coincides with the subset
\[
\{f \in S_W^* \mid f(D_F) \subseteq S\}.
\]
Moreover, the basis of \(D_F^*\) dual to \(\{X_{I_w}\}_{w \in W}\) is \(\{X_{I_w}^*\}_{w \in W}\) in \(Q_W^*\).

Proof. The coproduct \(\triangle\) on \(Q_W\) restricts to a coproduct on \(D_F\) by [CZZ, Theorem 9.2] and to the coproduct on \(S_W\) via \(\eta\). Hence, the map \(\eta^*\) is a ring homomorphism.
There is a commutative diagram

\[
\begin{array}{ccc}
D_F^* & \xrightarrow{\eta^*} & S_W^* \\
\downarrow & & & \downarrow \\
Q \otimes S D_F^* & \xrightarrow{\eta_1^*} & Q \otimes S S_W^*
\end{array}
\]

where the vertical maps are injective by freeness of the modules and because \(S\) injects into \(Q\). The description for the image then follows from the fact that \(\{X_{I_w}\}_{w \in W}\) is a basis for both \(D_F^*\) and \(Q_W^*\).

The last part of the lemma follows immediately.

By Lemma 10.2, \(\sigma \in D_F^* \subseteq Q_W^*\) means that \(\sigma(D_F) \subseteq S\). For any \(X \in D_F\) we have \((X \star \sigma)(D_F) = \sigma(D_F \cdot X) \subseteq S\), so \(X \star \sigma \in D_F^*\). Hence, the \(\star\)-action of \(Q_W\) on \(Q_W^*\) induces a \(\star\)-action of \(D_F\) on \(D_F^*\).

For each \(v \in W\), we define

\[
\tilde{f}_v := x_{II \star} f_v = v(x_{II})f_v \in Q_W^*, \text{ i.e. } \tilde{f}_v(\sum_{w \in W} q_w \delta_w) = v(x_{II})q_v.
\]

Lemma 10.3. We have \(\tilde{f}_v \in D_F^*\) for any \(v \in W\).

Proof. We know that \(x_{II} = w_0(x_{w_0})\), and by Lemma 3.1.(v), \(\frac{x_{w_0}}{x_{w_0}}\) is invertible in \(S\) for any \(v \in W\), so it suffices to show that \(x_{II}f_v \in D_F^*\). If \(v = w_0\), by Lemma 3.2, we have

\[
X_{I_{w_0}} = \sum_{w \leq w_0} a_{w_0,w}^X \delta_w, \text{ where } a_{w_0,w}^X = (-1)^N \frac{1}{x_{w_0}}, \text{ so }
\]

\[
(x_{II}f_{w_0})(X_{I_{w_0}}) = (x_{II}f_{w_0})(\sum_{w \leq u} a_{w_0,w}^X \delta_w) = (x_{II}a_{w_0,w_0}^X)\delta_{w_0} = (-1)^N \frac{a_{w_0,w_0}^X}{x_{w_0}} \delta_{w_0} = (-1)^N \frac{1}{x_{w_0}} \delta_{w_0} \in S.
\]

By Lemma 10.2, we have \(x_{II}f_{w_0} \in D_F^*\). For an arbitrary \(v \in W\), by Lemma 4.2, we obtain

\[
x_{II}f_v = x_{II}f_{w_0}^{-1} v = v^{-1} w_0(x_{II}f_{w_0}) = v^{-1} w_0(x_{II}f_{w_0}) \in D_F^*.
\]

Corollary 10.4. For any \(z \in D_F\), we have \(x_{II}z \in S_W^*\) and \(z x_{II} \in S_W^*\).

Proof. It suffices to show that for any sequence \(I_v, x_{II}X_{I_v}\) and \(X_{I_v}x_{II}\) belong to \(S_W^*\). Indeed,

\[
x_{II}X_{I_v} = x_{II} \sum_{w \leq v} a_{v,w}^X \delta_w = \sum_{w \leq v} (x_{II}a_{v,w}^X)\delta_w = \sum_{w \leq v} (x_{II}f_w)(X_{I_v})\delta_w \in S_W^*,
\]

and

\[
X_{I_v}x_{II} = \sum_{w \leq v} a_{v,w}^X \delta_w x_{II} = \sum_{w \leq v} a_{v,w}^X w(x_{II})\delta_w = \sum_{w \leq v} (w(x_{II})f_w)(X_{I_v})\delta_w \in S_W^*.
\]

Let \(\zeta : D_F^* \to S_W^*\) be the multiplication on the right by \(x_{II}\) (it does indeed land in \(S_W^*\) by Corollary 10.4). The dual map \(\zeta^* : S_W^* \to D_F^*\) is the \(\star\)-action by \(x_{II}\), and \(\zeta^*(f_v) = \tilde{f}_v\).

Remark 10.5. In \(T\)-equivariant cohomology, the map \(\zeta^*\) corresponds to the pushforward from the \(T\)-fixed point set of \(G/B\) to \(G/B\) itself, see [CZ22, Lemma 8.5]. In the topological context, for singular cohomology, it coincides with the map \(i_*\) discussed in [ABS4, p.8].
Lemma 10.6. The unique maximal left D_F-module (by the \bullet-action) that is contained in S^*_W is D^*_F.

Proof. Let f be any element in a given D_F-module M contained in S^*_W. Then $X_i \bullet f \in M \subseteq S^*_W$ for any sequence I, and $(X_i \bullet f)(\delta_e) = f(X_i) \in S$. Since X_i’s generate D_F as an S-module, we have $f(D_F) \subseteq S$, and therefore $f \in D^*_F$ by Lemma 10.2.

Define the S-module
$$Z = \{ f \in S^*_W | B_i(f) \in S^*_W \text{ for any simple root } \alpha_i \}.$$ Since for an element $f = \sum_{w \in W} q_w f_w$, $q_w \in S$ we have
$$B_i(f) = X_i \bullet f = \sum_{w \in W} q_w - q_w x_{w(\alpha_i)} f_w = \sum_{w \in W} q_w - q_w x_{w(\alpha_i)} f_w,$$
this can be rewritten as
$$Z = \{ \sum_{w \in W} q_w f_w \in S^*_W | \frac{q_w - q_w x_{\alpha}}{x_{\alpha}} \in S \text{ for any root } \alpha \text{ and any } w \in W \}.$$ The following theorem provides another characterization of D^*_F.

Theorem 10.7. We have $D^*_F \subseteq Z$, and under the conditions of Lemma 2.7, we have $D^*_F = Z$.

Proof. Since $D^*_F \subseteq S^*_W$ is a sub-D_F-module, we have $D^*_F \subseteq Z$. By Lemma 10.6, D^*_F is the unique maximal D_F-module contained in S^*_W, so we only need to prove that Z is a D_F-submodule.

It suffices to show that for any $f \in Z$ and for any simple root α_i, the element $X_i \bullet f$ is still in Z, or in other words, that for any two simple roots α_i and α_j, we still have $X_i X_j \bullet f \in S^*_W$. If $\alpha_i = \alpha_j$, it follows from $X_i^2 = \kappa_i X_i$.

If $s_j(\alpha_i) = \alpha_i$, then $s_i s_j = s_j s_i$. Let $f = \sum_{w \in W} q_w f_w$, then $X_i \bullet f = \sum_{w \in W} q_w - q_w x_{w(\alpha_i)} f_w$. Set $p_w = \frac{q_w - q_w x_{\alpha}}{x_{\alpha}}$, then
$$(X_j X_i) \bullet f = \sum_{w \in W} p_w - p_w x_{w(\alpha_j)} f_w = \sum_{w \in W} q_w - q_w x_{w(\alpha_j)} f_w.$$ Rearranging the numerator, we see that it is divisible by both $x_{w(\alpha_i)}$ and $x_{w(\alpha_j)}$, so it is divisible by $x_{w(\alpha_i)} x_{w(\alpha_j)}$ by Lemma 2.7.

Suppose $s_j(\alpha_i) \neq \alpha_i$, then $s_j(\alpha_i) \neq \alpha_j$. Since $X_i \bullet f = \sum_w p_w f_w$ with $p_w \in S$ as above, we need to prove that the coefficient of f_w in $X_j X_i \bullet f$ is in S, for any w. This coefficient is
$$\frac{p_w - p_w x_{w(\alpha_j)}}{x_{w(\alpha_i)}} = \frac{(q_w - q_w x_{w(\alpha_j)}) (q_w x_{w(\alpha_j)} - q_w x_{w(\alpha_j)})}{x_{w(\alpha_i)} x_{w(\alpha_j)} x_{w(\alpha_j)}}.$$ Since the numerator is already divisible by $x_{w(\alpha_i)}$ and by $x_{w(\alpha_j)}$ by assumption, it suffices, by Lemma 2.7, to show that it is divisible by $x_{w(\alpha_j)}$. Setting $\gamma = w(\alpha_j)$ and $\nu = w(\alpha_i)$, it becomes $(q_w - q_w x_{\nu}) x_{w(\nu)} - (q_{s_j w} - q_{s_j s_j w}) x_{\nu}$. Using that $x_{w(\gamma)} = F(x_{w(\gamma')}, x_{w(\gamma')}) \equiv x_{w(\gamma)}$ mod x_{γ}, the numerator is congruent to (cf. the proof of [HMSZ, Lem. 5.7])
$$((q_w - q_{s_j w}) - (q_w - q_{s_j s_j w})) x_{\nu}$$ which is $0 \mod x_{\gamma}$, by assumption. \qed
Remark 10.8. The geometric translation of this theorem ([CZZ2, Theorem 9.2]) generalizes the classical result [Br97, Proposition 6.5.(i)].

Remark 10.9. In Theorem 10.7, it is not possible to remove entirely the assumptions on the root system and the base ring, as the following example shows. Take a root datum of type G_2, and a ring R in which $3 = 0$, with the additive formal group law F over R. Then, S is Σ-regular, and if (α_1, α_2) is a basis of simple roots, with $\beta = 2\alpha_2 + 3\alpha_1$ being the longest root, we have $x_\beta = 2x_{\alpha_2} = -x_{\alpha_2}$. It is not difficult to check that the element $f = (\prod_{\alpha \in \Sigma^+, \alpha \neq \beta} x_\alpha) f_e$ is in Z, but

$$f(X_{I_{w_0}}) \overset{\text{Lemma 3.2}}{=} \left(\prod_{\alpha \in \Sigma^+, \alpha \neq \beta} x_\alpha \right) \cdot \frac{1}{x_{w_0}} = \frac{1}{x_{\beta}} \notin S,$$

so $f \notin D_F$. Therefore, $Z \supset D_F$. Indeed, Z is not even a D_F-module.

Recall from (7.1) that $X^*_w = \sum_{v \geq w} b^X_{v, w} f_v$ and $Y^*_w = \sum_{v \geq w} b^Y_{v, w} f_v$.

Corollary 10.10. For any $v, w \in W$ and root α, we have $x_\alpha | (b^X_{v, w} - b^X_{w, v, w})$ and $x_\alpha | (b^Y_{v, w} - b^Y_{w, v, w})$.

Remark 10.11. It is not difficult to see that Corollary 10.4 and Corollary 10.10 provide a characterization of elements of D_F inside Q_W. This characterization coincides with the residue description of D_F in [ZZ, §4], which generalizes Ginzburg–Kapranov–Vasserot’s construction of certain Hecke algebras in [GKV].

For any $\Xi \subseteq \Pi$ and $w \in W$, define

$$\hat{X}_w^\Xi = \sum_{v \in W_\Xi} \delta_v b^X_{v, w} \quad \text{and} \quad \hat{Y}_w^\Xi = \sum_{v \in W_\Xi} \delta_v b^Y_{v, w}.$$

By Lemma 3.2, $b^X_{v, e} = 1$, so

$$\hat{X}_w^\Xi = \sum_{v \in W_\Xi} \delta_v \frac{1}{x_{\Xi}} = Y_w^\Xi.$$

Note that Y_w^Ξ does not depend on the choice of reduced sequences $\{I_w\}_{w \in W}$, but \hat{X}_w^Ξ and \hat{Y}_w^Ξ do, since $b^X_{w, v}$ and $b^Y_{w, v}$ do for w such that $\ell(w) \geq 3$. Moreover, we have

$$X^\Pi_w \cdot \hat{f}_e = X^\Pi_w$$

and

$$Y^\Pi_w \cdot \hat{f}_e = Y_w^*$$

by a straightforward computation.

Lemma 10.12. For any $\Xi \subseteq \Pi$ and $w \in W$, we have $\hat{X}_w^\Xi \in D_F$ and $\hat{Y}_w^\Xi \in D_F$.

Proof. The ring Q_W is functorial in the root datum (i.e. along morphisms of lattices that send roots to roots) and in the formal group law. This functoriality sends elements X_α (or Y_α) to themselves, so it restricts to a functoriality of the subring D_F. It also sends the elements \hat{X}_w^Ξ (or \hat{Y}_w^Ξ) to themselves. We can therefore assume that the root datum is adjoint, and that the formal group law is the universal one over the Lazard ring, in which all integers are regular, since it is a polynomial ring over \mathbb{Z}.

Consider the involution ι on Q_W given by $q \delta_w \mapsto (-1)^{\ell(w)} w^{-1}(q) \delta_{w^{-1}}$. It satisfies $\iota(zz') = \iota(z')\iota(z)$. Since $\iota(X_\alpha) = Y_{-\alpha}$, it restricts to an involution on D_F.

To show that $\hat{X}_w^\Xi \in D_F$, it suffices to show that $\iota(\hat{X}_w^\Xi) \in D_F$. We have

$$\iota(\hat{X}_w^\Xi) = \sum_{v \in W_\Xi} (-1)^{\ell(v)} \frac{b_{v,w}}{x_{v,w}} \delta_{v,w} = \sum_{v \in W_\Xi} (-1)^{\ell(v)} b_{v,w} \delta_{v,w},$$

Since the root datum is adjoint, we have $D_F = \{ f \in Q_W \mid f \cdot S \subseteq S \}$ by [CZZ, Remark 7.8], so it suffices to show that $\iota(\hat{X}_w^\Xi) \cdot x \in S$ for any $x \in S$. We have

$$\iota(\hat{X}_w^\Xi) \cdot x = \sum_{v \in W_\Xi} (-1)^{\ell(v)} b_{v,w} v(x).$$

By Lemma 2.7, it is enough to show that $\sum_{v \in W} (-1)^{\ell(v)} b_{v,w} v(x)$ is divisible by x_α for any root $\alpha \in \Xi$. Let $^\alpha W_\Xi = \{ v \in W_\Xi \mid \ell(s_\alpha v) > \ell(v) \}$. Then $(-1)^{\ell(v)} = -(-1)^{\ell(v)}$ and $W_\Xi = ^\alpha W_\Xi \sqcup s_\alpha W_\Xi$. So

$$\sum_{v \in W_\Xi} (-1)^{\ell(v)} b_{v,w} v(x) = \sum_{v \in ^\alpha W_\Xi} (-1)^{\ell(v)} (b_{v,w} v(x) - b_{s_\alpha v,w} s_\alpha v(x))$$

$$= \sum_{v \in ^\alpha W_\Xi} (-1)^{\ell(v)} (b_{v,w} v(x) - b_{s_\alpha v,w} s_\alpha v(x) + b_{s_\alpha v,w} s_\alpha v(x) - b_{s_\alpha v,w} s_\alpha v(x))$$

$$= \sum_{v \in ^\alpha W_\Xi} (-1)^{\ell(v)} (b_{v,w} x_\alpha \Delta_\alpha (v(x)) + (b_{v,w} - b_{s_\alpha v,w}) s_\alpha v(x))$$

which is divisible by x_α by Corollary 10.10. Therefore $\hat{X}_w^\Xi \in D_F$. The proof that $\hat{Y}_w^\Xi \in D_F$ is similar.

\[\square \]

Theorem 10.13. Q^*_W is a free Q_W-module of rank 1 generated by f_w for any $w \in W$, and D^*_F is a free left D_F-module of rank 1 generated by \hat{f}_w for any $w \in W$.

Proof. Since $\delta_{v,w} f_w = f_{wv} - 1$, we have $Q_W \cdot f_w = Q^*_W$. Moreover, if $z = \sum_{v \in W} q_v \delta_v$ such that $z \cdot f_w = 0$, then $\sum_{v \in W} q_v f_{wv} = 0$, so $q_v = 0$ for all $v \in W$, i.e. $z = 0$; the first part is proven.

To prove the second part, note that by Lemma 10.3 $\hat{f}_w \in D^*_F$ for any w. Moreover, $\{ \hat{f}_w \}$ is Q_W-linearly independent by the first part of the proof, hence it is D_F-linearly independent. On the other hand, $D_F \cdot \hat{f}_w = D^*_F$ by Lemma 10.12 and (10.1), so \hat{f}_w generates D^*_F as a left D_F-module. Since $\hat{f}_w = \frac{x_w}{w^{-1}(x_W)} \delta_{w^{-1} \cdot \hat{f}_w}$, and $\frac{x_w}{w^{-1}(x_W)} \in S$ by Lemma 3.1(e), the same is true for \hat{f}_w.

\[\square \]

11. The algebraic restriction to the fixed locus on G/P

We now extend the results of the previous section to the relative case of W/W_Ξ.

For any $\Xi \subseteq \Pi$, let S_{W/W_Ξ} be the free S-module with basis $(\delta_w)_{w \in W/W_\Xi}$ (it is not necessarily a ring). Let $Q_{W/W_\Xi} = Q \otimes_S S_{W/W_\Xi}$ be its Q-localization. There is a left S-linear coproduct on S_{W/W_Ξ}, defined on basis elements by the formula $\delta_{w} \mapsto \delta_{w} \otimes \delta_{w}$; it extends by the same formula to a Q-linear coproduct on Q_{W/W_Ξ}.

The induced products on the S-dual S^{\ast}_{W/W_Ξ} and the Q-dual Q^{\ast}_{W/W_Ξ} are given by the formula $f \cdot f_w = \delta_{v,w} f_v$.

If \(\Xi' \subseteq \Xi \) and \(\hat{w} \in W/W' \), let \(\hat{w} \) its class in \(W/W' \). We consider the projection and the sum over orbit maps

\[
p_{\Xi/\Xi'} : S_W/W_{\Xi'} \to S_W/W_{\Xi} \quad \text{and} \quad d_{\Xi/\Xi'} : S_W/W_{\Xi} \to \bigoplus_{\hat{v} \in W/W_{\Xi'}} \delta_{\hat{v}}.
\]

with \(S \)-dual maps

\[
p^*_{\Xi/\Xi'} : S_W/W_{\Xi} \to S_W/W_{\Xi'} \quad \text{and} \quad d^*_{\Xi/\Xi'} : S_W/W_{\Xi'} \to S_W/W_{\Xi}.
\]

We use the same notation for maps between the corresponding \(Q \)-localized module \(Q_{W/W_{\Xi}} \) and \(Q_{W/W_{\Xi'}} \), and we write \(p_{\Xi/\Xi'} \) and \(d_{\Xi/\Xi'} \) for their \(Q \)-dual maps. As usual, when \(\Xi' = \emptyset \), we omit it, as in \(p_{\Xi} : S_W \to S_W/W_{\Xi} \). Note that the maps \(p_{\Xi/\Xi'} \) preserve the coproduct (the maps \(d_{\Xi/\Xi'} \) don’t), and thus the dual maps \(p^*_{\Xi/\Xi'} \) and \(p^*_{\Xi/\Xi'} \) are ring maps. We set \(D_{F,\Xi} := p_{\Xi}(D_F) \subseteq Q_{W/W_{\Xi}} \).

The coproduct on \(Q_{W/W_{\Xi}} \) therefore restricts to a coproduct on \(D_{F,\Xi} \). We then have the following commutative diagram of \(S \)-modules which defines the map \(\eta_{\Xi} \)

\[
(11.1)
\]

Lemma 11.1. The map \(p_{\Xi/\Xi'} : Q_{W/W_{\Xi'}} \to Q_{W/W_{\Xi}} \) restricts to \(D_{F,\Xi'} \to D_{F,\Xi} \).

Proof. It follows by diagram chase from Diagram (11.1) applied first to \(\Xi \) and then to \(\Xi' \), using the surjectivity of \(p_{\Xi} : D_F \to D_{F,\Xi} \).\(\square \)

Lemma 11.2. We have \(p_{\Xi}(zX_{w}) = 0 \) for any \(\alpha \in \Sigma_{\Xi} \) and \(z \in Q_{W} \).

Proof. Since \(p_{\Xi} \) is a map of \(Q \)-modules, it suffices to consider \(z = \delta_{w} \), in which case

\[
\delta_{w}X_{\alpha} = \frac{1}{w(\sigma_{\alpha})} \delta_{w} - \frac{1}{w(\sigma_{\alpha})} \delta_{w,s_{\alpha}}, \quad \text{so} \quad p(\delta_{w}X_{\alpha}) = \frac{1}{w(\sigma_{\alpha})} (\delta_{\hat{w}} - \delta_{\hat{w}}) = 0.
\]

For any \(w \in W \), let \(X_{I_{w}} \) be the element \(p_{\Xi}(X_{I_{w}}) \in D_{F,\Xi} \).

Lemma 11.3. (a) Let \(\{I_{w}\}_{w \in W} \) be a family of \(\Xi \)-compatible reduced sequences.

If \(w \notin W' \), then \(X_{I_{w}} = 0 \).

(b) Let \(\{I_{w}\}_{w \in W} \) be a family of reduced sequences of minimal length. Then the family \(\{X_{I_{w}}\}_{w \in W} \) forms a \(S \)-basis of \(D_{F,\Xi} \) and, therefore, forms also a \(Q \)-basis of \(Q_{W/W_{\Xi}} \).

Proof. (a) If \(w \notin W' \), then \(w = uv \) with \(u \in W' \) and \(v \notin W' \). By Lemma 11.2, we have \(p_{\Xi}(X_{I_{w}}) = p_{\Xi}(X_{I_{w}}X_{I_{w}}) = 0 \).

(b) Let us complete \(\{I_{w}\}_{w \in W} \) to a \(\Xi \)-compatible choice of reduced sequences \(\{I_{w}\}_{w \in W} \) by choosing reduced decompositions for elements in \(W_{\Xi} \). Since \(\{X_{I_{w}}\}_{w \in W} \) is a basis of \(D_{F} \), its image \(D_{F,\Xi} \) in \(Q_{W/W_{\Xi}} \) is spanned by \(\{X_{I_{w}}\}_{w \in W} \) by part (a).

Writing \(X_{I_{w}} = \sum_{0 \leq u} a_{w,v} \delta_{v} \) yields \(X_{I_{w}} = \sum_{0 \leq u} a_{w,v} X_{I_{w}} \). Since \(w \in W' \) is of minimal length in \(W/W_{\Xi} \), the coefficient of \(\delta_{v} \) in \(X_{I_{w}} \) is \(a_{w,v} = (-1)^{f(w)} \frac{1}{w_{v}} \), invertible in \(Q \), so the matrix expressing the \(\{X_{I_{w}}\}_{w \in W} \) on the basis \(\{\delta_{v}\}_{w \in W} \) is upper triangular with invertible (in \(Q \)) determinant, hence \(\{X_{I_{w}}\}_{w \in W} \) is \(Q \)-linearly independent in \(Q_{W/W_{\Xi}} \) and therefore \(S \)-linearly independent in \(D_{F,\Xi} \).\(\square \)
Observe in particular that $D_{F,H} \simeq S$ carried by $X_H^\Pi = \delta_H$.

Definition 11.4. The dual map $\eta^*_F : D_{F,\Xi}^* \to S^*_W/W_{\Xi}$ is called the algebraic restriction to the fixed locus.

As in Lemma 10.2, and by the similar proof, we obtain:

Lemma 11.5. The map η^*_F is an injective ring homomorphism and its image in $S^*_W/W_{\Xi} \subseteq Q^*_W/W_{\Xi}$ coincides with the subset

$$\{f \in S^*_W \mid f(D_{F,\Xi}) \subseteq S\}.$$

Moreover, the basis of $D_{F,\Xi}^*$ dual to $\{X^\Xi_{I_w}\}_{w \in W_{\Xi}}$ maps to $\{(X^\Xi_{I_w})^*\}_{w \in W_{\Xi}}$ in Q^*_W/W_{Ξ}.

So far, the situation is summarized in the diagram of S-linear ring maps

$$\begin{array}{rcccl}
D_{F,\Xi}^* & \xrightarrow{\eta^*} & S_W^* \\
p^*_F & \downarrow & \downarrow p^*_F \\
D_{F,\Xi}^* & \xrightarrow{\eta^*_F} & S_{W/W_{\Xi}}^*
\end{array}$$

(11.2)

in which both columns become injections $Q^*_W/W_{\Xi} \hookrightarrow Q^*_W$ after Q-localization. The geometric translation of this diagram is in the proof of Corollary 8.7 in [CZZ2].

Lemma 11.6. For any Ξ-compatible choice of reduced sequences $\{I_w\}_{w \in W}$, the W_{Ξ}-invariant subring $(D_F^*)^W_{\Xi}$ is a free S-module with basis $\{X^*_I_{I_w}\}_{w \in W_{\Xi}}$.

Proof. It follows from Corollary 8.4 since $(D_F^*)^{W_{\Xi}} = (Q^*_W)^{W_{\Xi}} \cap D_F^*$. \hfill \square

Lemma 11.7. The injective maps $p^*_F : S^*_W/W_{\Xi} \to S_W^*$, $p^*_F : Q^*_W/W_{\Xi} \to Q_W^*$ and $p^*_{F,\Xi} : D_{F,\Xi}^* \to D_F^*$ have images $(S^*_W)^{W_{\Xi}}$, $(Q^*_W)^{W_{\Xi}}$ and $(D_F^*)^{W_{\Xi}}$, respectively.

Proof. For any $w \in W$, we have $p^*_F(f w) = f^\Xi_w$. Thus $p^*_F(Q^*_W/W_{\Xi}) = (Q^*_W)^{W_{\Xi}}$ by Lemma 6.1. Similarly, $p^*_F(S^*_W/W_{\Xi}) = (S^*_W)^{W_{\Xi}}$. Finally, take a Ξ-compatible choice of reduced sequences $\{I_w\}_{w \in W}$, dualizing the fact that $p_{\Xi}(X^*_I_{I_w}) = X^\Xi_{I_w}$, which, by Lemma 11.3, is 0 if $w \notin W_{\Xi}$ and a basis element otherwise, we obtain that $p^*_F((X^\Xi_{I_w})^*) = X^*_I_{I_w}$ if $w \in W_{\Xi}$, and thus the conclusion for $D_{F,\Xi}^*$ by Lemma 11.6. \hfill \square

Remark 11.8. Note that if $\{I_w\}_{w \in W}$ is not Ξ-compatible, then we may not have $p^*_F((X^\Xi_{I_w})^*) = X^*_I_{I_w}$ for all $w \in W_{\Xi}$.

Through the resulting isomorphism $D_{F,\Xi}^* \simeq (D_F^*)^{W_{\Xi}}$, we obtain

$$D_{F,\Xi}^* = \{f \in S^*_W/W_{\Xi} \mid f(D_{F,\Xi}) \subseteq S\}$$

$$\simeq (D_F^*)^{W_{\Xi}} = \{f \in (S^*_W)^{W_{\Xi}} \mid f(D_F) \subseteq S\}$$

$$= \{f \in S^*_W \mid f(D_F) \subseteq S \text{ and } f(K_{\Xi}) = 0\}$$

where K_{Ξ} is the kernel of p_{Ξ}, i.e., the sub-S-module of D_F generated by $(X^*_I_{I_w})_{w \notin W_{\Xi}}$ for a Ξ-compatible choice of reduced sequences $\{I_w\}_{w \in W}$.

Since $(D_F^*)^{W_{\Xi}} = D_F^* \cap (S^*_W)^{W_{\Xi}}$, an element of S^*_W/W_{Ξ} is in $D_{F,\Xi}^*$ if and only if its image by p^*_F is in D_F^*. Since $B_{\alpha}(f) = 0$ when $f \in (S^*_W)^{W_{\Xi}}$ and $\alpha \in W_{\Xi}$, Theorem 10.7 then gives:
Theorem 11.9. Under the conditions of Lemma 2.7, an element \(f \in S^*_W/W \) is in \(\mathcal{D}_F^s \) if and only if \(B_\alpha \circ \alpha^s_\Xi(f) \in S_\Xi^W \) for any \(\alpha \notin \Sigma_\Xi \). In other words, \(f = \sum q_\alpha^s f_w \) is in \(\mathcal{D}_F^s \) if and only if \(x_w(\alpha) \) divides \(q_w - q^s_{x_w(\alpha)w} \) for any \(w \in W/W \) and any \(\alpha \notin \Sigma_\Xi \).

12. The push-pull operators on \(\mathcal{D}_F^s \)

In this section we restrict the push-pull operators onto the dual of the formal affine Demazure algebra \(\mathcal{D}_F^s \), and define a non-degenerate pairing on it.

By Lemma 10.12, we have \(Y_\Xi \in \mathcal{D}_F \), so

Corollary 12.1. The operator \(Y_\Xi \) (resp. \(A_\Xi \)) restricted to \(S \) (resp. to \(\mathcal{D}_F^s \)) defines an operator on \(S \) (resp. on \(\mathcal{D}_F^s \)). Moreover, we have

\[
C_\Xi(S) \subseteq S^{W_\Xi} \quad \text{and} \quad A_\Xi(\mathcal{D}_F^s) \subseteq (\mathcal{D}_F^s)^{W_\Xi}.
\]

Proof. Here \(Y_\Xi \) acts on \(S \subseteq Q \) via (4.3). Since \(Y_\Xi \in \mathcal{D}_F \subseteq \{ z \in Q_W \mid z \cdot S \subseteq S \} \) by \([\text{CZZ}], \text{Remark } 7.8\) and \(Y_\Xi \cdot Q \subseteq (Q)^{W_\Xi} \), the result follows.

As for \(A_\Xi \), by Lemma 10.2 any \(f \in \mathcal{D}_F^s \) has the property that \(f(\mathcal{D}_F) \subseteq S \). Therefore, \((A_\Xi(f))(\mathcal{D}_F^s) = (Y_\Xi \circ f)(\mathcal{D}_F) = f(\mathcal{D}_F Y_\Xi) \subseteq S \), so \(A_\Xi(f) \in \mathcal{D}_F^s \). The result then follows by Lemma 6.4.

Corollary 12.2. Suppose that the root datum has no irreducible component of type \(C_n \) or that \(2 \) is invertible in \(R \). Then if \(|W_{\Xi'}| \) is regular in \(R \), for any \(\Xi' \subseteq \Xi \subseteq \Pi \), we have

\[
C_{\Xi/\Xi'}(S^{W_{\Xi'}}) \subseteq S^{W_\Xi}.
\]

Proof. Let \(x \in S^{W_{\Xi'}} \), then \(|W_{\Xi'}| \cdot x = \sum_{w \in W_\Xi} w(x) \). So we have

\[
|W_{\Xi'}| \cdot C_{\Xi/\Xi'}(x) = C_{\Xi/\Xi'}(|W_{\Xi'}| \cdot x) = \sum_{w \in W_{\Xi/\Xi'}} u\left(\frac{|W_{\Xi'}| \cdot x}{x_{\Xi/\Xi'}} \right)
\]

\[
= \sum_{w \in W_{\Xi/\Xi'}} \sum_{v \in W_{\Xi/\Xi'}} uv\left(\frac{x_{\Xi/\Xi'}}{x_{\Xi}} \right) = \sum_{w \in W_{\Xi}} w\left(\frac{x_{\Xi/\Xi'}}{x_{\Xi}} \right) \in S^{W_\Xi}.
\]

Thus \(|W_{\Xi'}| \cdot C_{\Xi/\Xi'}(x) \in S \), which implies that \(C_{\Xi/\Xi'}(x) \in S \) by \([\text{CZZ}], \text{Lemma } 3.5\) and any \(\Xi' \subseteq \Xi \). Besides, it is fixed by \(W_\Xi \) by Lemma 5.5.

Corollary 12.3. If \(|W| \) is invertible in \(R \), then \(C_{\Xi/\Xi'}(S^{W_{\Xi'}}) = S^{W_\Xi} \).

Proof. From the proof of Corollary 12.2 we know that for any \(x \in S^{W_{\Xi'}} \), \(|W_{\Xi'}| \cdot x = C_{\Xi} \cdot (x_{\Xi})_\Xi \), so \(C_{\Xi}(S) = S^{W_\Xi} \). The conclusion then follows from the identity \(C_{\Xi/\Xi'} \circ C_{\Xi'} = C_{\Xi} \) of Lemma 5.7.

Theorem 12.4. For any \(v, w \in W \), we have

\[
A_H(Y_{\Xi}^* \circ A_{\Xi}^{L^w}(f_x)) = \delta_{w,v}^w \cdot \mathbf{1} = A_H(X_{\Xi}^* \circ B_{\Xi}^{L^w}(f_x)).
\]

Consequently, the pairing

\[
A_H : \mathcal{D}_F^s \times \mathcal{D}_F^s \rightarrow (\mathcal{D}_F^s)^W \cong S, \quad (\sigma, \sigma') \mapsto A_H(\sigma \sigma')
\]

is non-degenerate and satisfies that \((A_{\Xi}^{L^w}(f_x))_{w \in W} \) is dual to the basis \((Y_{\Xi}^*_v)_{v \in W} \), while \((B_{\Xi}^{L^w}(f_x))_{w \in W} \) is dual to the basis \((X_{\Xi}^*_v)_{v \in W} \).
Proof. We prove the first identity. The second identity is obtained similarly.
Let \(Y_{t^v} = \sum_{v \in W} a_{w,v} \delta_v \) and \(Y_{t^v} = \sum_{v \in W} a_{w,v} \delta_v \). Let \(\delta_w = \sum_{v \in W} b_{w,v} Y_{t^v} \) so that \(\sum_{v \in W} a_{w,v} b_{v,u} = \delta_{w,u}^{Kr} \) and \(Y_{t^v} = \sum_{v \in W} b_{c,u} f_v \).
Combining the formula of Lemma 7.3 with the formula \(A_{\Pi}(f_v) = \frac{1}{v(x_{\Pi})} 1 \) of Lemma 6.6, we obtain
\[
A_{\Pi}(Y_{t^v} A_{f^v}(x_{\Pi} f_v)) = \sum_{v \in W} b_{v,u} v(x_{\Pi}) a_{w,v} A_{\Pi}(f_v) = \sum_{v \in W} b_{v,u} a_{w,v} 1 = \delta_{w,u}^{Kr} 1. \]

13. An Involution

In the present section we define an involution on \(D_F \) and study the relationship between the equivariant characteristic map and the push-pull operators.

We define an \(R \)-linear involution \(\tau : Q_W \to Q_W \) by
\[
\tau(q\delta_w) = w^{-1}(q) \frac{\pi_{\Pi}}{w^{-1}(x_{\Pi})} \delta_{w^{-1}} = x_{\Pi} \delta_{w^{-1}} q \frac{1}{x_{\Pi}} = \delta_{w^{-1}} q \frac{1}{x_{\Pi}}
\]
in particular, \(\tau(X_\alpha) = X_\alpha \) and \(\tau(Y_\alpha) = Y_\alpha \).

Lemma 13.1. We have \(\tau(z_1 z_2) = \tau(z_2) \tau(z_1) \) for any \(z_1, z_2 \in Q_W \), i.e. the map \(\tau \) just defined is indeed an involution.

Proof. For any \(q \in Q \), we have \(\tau(q) = q \) and \(\tau(q\delta_w) = \tau(\delta_w)q \), so it suffices to check that \(\tau(\delta_w)\delta_w = \tau(\delta_w)\tau(\delta_w) \), which is immediate from the definition of the multiplication in \(Q_W \).

Note that \(\frac{\pi_{\Pi}}{w^{-1}(x_{\Pi})} \) is in \(S \) for any \(w \in W \) by Lemma 3.1.(e), so the involution \(\tau \) restricts to \(S_W \).

Corollary 13.2. For any sequence \(I \), we have \(\tau(X_i) = X_i \) and \(\tau(qX_I) = X_I^{\tau} \cdot q \). In particular, \(\tau \) induces an involution on \(D_F \).

Proof. By Lemma 13.1 it suffices to show that \(\tau(X_i) = X_i \), which follows from direct computation.

Recall that the characteristic map \(c : Q \to Q_W \) introduced in 6.8 satisfies that \(q \mapsto \sum_{w \in W} w(q)f_w \), or in other words, \(c(q)(z) = z \cdot q \) for \(z \in Q_W \). In particular, we have
\[
c(q)(X_I) = \Delta_I(q) \quad \text{and} \quad c(q)(\delta_w) = w(q), \quad w \in W.
\]

Lemma 13.3. For any \(q \in Q \) and \(z \in Q_W \), we have
\[
A_{\Pi}((\tau(z) \cdot \tilde{f}_e)c(q)) = (z \cdot q) 1.
\]

Proof. Let \(z = p\delta_w, p \in Q \), then \(\tau(z) \cdot \tilde{f}_e = \delta_w^{-1} p \frac{\pi_{\Pi}}{x_{\Pi}} \cdot (x_{\Pi} f_e) = pw(x_{\Pi})f_w \), so
\[
A_{\Pi}((\tau(z) \cdot \tilde{f}_e)c(q)) = A_{\Pi}(pw(x_{\Pi})f_w)(\sum_{v \in W} v(q)f_v) = A_{\Pi}(pw(x_{\Pi})w(q)f_w) = pw(q) 1 = (z \cdot q) 1.
\]

We have the following special cases of Lemma 13.3:

Corollary 13.4. For any sequence \(I \) and \(x \in S \), we have
\[
A_{\Pi}(c(q) A_{f^{\tau}}(\tilde{f}_e)) = C_I(q) 1 \quad \text{and} \quad A_{\Pi}(c(q) B_{f^{\tau}}(\tilde{f}_e)) = \Delta_I(q) 1.
\]
Proof. Letting $z = Y_f$ (resp. $z = X_f$) in Lemma 13.3, and using $\tau(Y_f) = Y_{f^\circ}$ and $\tau(X_f) = X_{f^\circ}$ from Corollary 13.2 we get the two identities. \hfill \square

Corollary 13.5. For any $z \in Q_{W^z}$, we have $A_{\Pi}(\tau(z) \bullet f_x) = (z \cdot 1)1$. In particular, $A_{\Pi}(q \bullet f_x) = q1$ and $A_{\Pi}(B_f(f_x)) = \Delta_{f^\circ}(1)1 = \delta_1 \delta^1$.

14. THE NON-DEGENERATE PAIRING ON THE W^Ξ-IN Variant SUBRING

In this section, we construct a non-degenerate pairing on the subring of invariants $(D^*_F)^{W^\Xi}$. Using this pairing we provide several S-module bases of $(D^*_F)^{W^\Xi}$.

For any $w \in W, u \in W^\Xi$ we set

$$d^Y_{w,u} = u(x_{\Pi/\Xi}) \sum_{v \in W^\Xi} a^Y_{w,v} \quad d^X_{w,u} = u(x_{\Pi/\Xi}) \sum_{v \in W^\Xi} a^X_{w,v}, \quad \rho^\Xi = \prod_{w \in W^\Xi} w(x_{\Pi/\Xi})$$

where $a^Y_{w,v}$ and $a^X_{w,v}$ are the coefficients introduced in Lemma 3.2 and 3.3.

Lemma 14.1. For any $w \in W$ we have

$$A_{\Xi}(A_{f^\circ}(f_x)) = \sum_{w \in W^\Xi} d^Y_{w,u} f^\Xi_u, \quad A_{\Xi}(B_{f^\circ}(f_x)) = \sum_{w \in W^\Xi} d^X_{w,u} f^\Xi_u.$$

Proof. We prove the first formula only; the second one is obtained similarly. By Lemma 7.3 and 6.6,

$$A_{\Xi}(A_{f^\circ}(x_{f^\circ})) = A_{\Xi}(\sum_{v \in W} v(x_{\Pi/\Xi}) a^Y_{w,v} f_v) = \sum_{v \in W} v(x_{\Pi/\Xi}) a^Y_{w,v} f_v =$$

by (8.1), representing $v = uv'$, and Lemma 5.1,

$$= \sum_{u \in W^\Xi, v' \in W^\Xi} u'(x_{\Pi/\Xi}) a^Y_{u,v'} f^\Xi_{uv'} = \sum_{u \in W^\Xi, v' \in W^\Xi} u(x_{\Pi/\Xi}) a^Y_{u,v'} f^\Xi_{uv'}. \hfill \square$$

Lemma 14.2. For any $w \in W, u \in W^\Xi$, we have $d^Y_{w,u}$ and $d^X_{w,u}$ belong to S.

Proof. It follows from Lemma 14.1 and the fact $D^*_F \subseteq S^* W$. \hfill \square

Theorem 14.3. For any choice of reduced sequences $\{I_w\}_{w \in W^\Xi}$, the two families $\{A_{\Xi}(A_{f^\circ}(f_x))\}_{u \in W^\Xi}$ and $\{A_{\Xi}(B_{f^\circ}(f_x))\}_{u \in W^\Xi}$ are S-module bases of $(D^*_F)^{W^\Xi}$.

Proof. Let us first complete our choice of reduced sequence as a Ξ-compatible one, by choosing sequences I_u for each $u \in W^\Xi$. By Corollary 12.1 our families are in the S-module $(D^*_F)^{W^\Xi}$. To show that they are bases, it suffices to show that the respective matrices M^Y_{Ξ} and M^X_{Ξ} expressing them on the basis $\{X^*_u\}_{u \in W^\Xi}$ of Lemma 11.6 have invertible determinants (in S).

If $u' \in W^\Xi$ and $v \in W^\Xi$, we have $u' \leq u' v$ where the equality holds if and only if $v = e$. By Lemma 3.3, we get $a_{u,v'} = 0$ unless $u' \leq u$ and $a^Y_{u,v'} = 0$ if $v \neq e$. This implies that $d^Y_{u,v} = 0$ unless $u' \leq u$, and that

$$d^Y_{u,v} = u(x_{\Pi/\Xi}) \sum_{v' \in W^\Xi} a^Y_{u,v'} = u(x_{\Pi/\Xi}) a^Y_{u,v} = u(x_{\Pi/\Xi}) \frac{1}{x_u}.$$

Hence, the matrix $D^Y_{\Xi} := (d^Y_{u,v})_{u,v' \in W^\Xi}$ is lower triangular with determinant $\rho^\Xi \prod_{u \in W^\Xi} \frac{1}{x_u}$. Similarly, the matrix $D^X_{\Xi} := (d^X_{u,v})_{u,v' \in W^\Xi}$ is lower triangular with determinant $\rho^\Xi \prod_{u \in W^\Xi} (-1)^{l(u)} \frac{1}{x_u}$. \hfill \square
On the other hand, for \(u \in W^\Xi \), we have

\[
X^*_u = \sum_{w \in W^\Xi} b^X_{w,u} f_w = \sum_{u' \in W^\Xi} \sum_{v \in W^\Xi} b^X_{u',u} f_{u'v}.
\]

By Corollary 8.5, and because \(X^*_u \) is fixed by \(W^\Xi \), we have \(b^X_{u',u} = b^X_{u',u} \). Therefore,

\[
X^*_u = \sum_{u' \in W^\Xi} b^X_{u',u} \sum_v f_{u'v} = \sum_{u' \in W^\Xi} b^X_{u',u} f_{u'\Xi}.
\]

By Lemma 3.2, \(b^X_{u',u} = 0 \) unless \(u' \geq u \), so the matrix \(E^X_\Xi := \{ b^X_{u',u} \}_{u',u \in W^\Xi} \) is lower triangular with determinant \(\prod_{u \in W^\Xi} (-1)^{\ell(u)} x_u \).

The matrix \(M^X_\Xi = (E^X_\Xi)^{-1} D^X_\Xi \) has determinant

\[
\rho^\Xi = \prod_{u \in W^\Xi} \frac{1}{x_u^{-1}}
\]

which is invertible in \(S \) by Lemma 14.5 below. Since the determinant of \(M^X_\Xi = (E^X_\Xi)^{-1} D^X_\Xi \) differs by sign only, it is invertible as well.

Recall the definition of \(\Sigma^\Xi \) from the beginning of section 5, and let \(w_0,\Xi \) be the longest element of \(W^\Xi \).

Lemma 14.4. For any \(w \in W^\Xi \), we have \(x_w x_{w_0,\Xi} = w_0,\Xi(x_\Xi) \). In particular, if \(\Xi = \Pi \) we have \(x_w x_{w_0} = x_{w_0} \).

Proof. Recall from Lemma 3.3 that \(b^X_{w',w} = x_w = \prod_{w \Sigma^\Xi - \Sigma^+} x_\alpha \). By (3.3), it also equals \(\prod_{w \Sigma^\Xi - \Sigma^+} x_\alpha \). Since \(w_0,\Xi \Sigma^\Xi = \Sigma_\Xi^+ \), we have \(w w_0,\Xi \Sigma^\Xi \cap \Sigma_\Xi^+ = w \Sigma_\Xi^+ \cap \Sigma_\Xi^+ \). Moreover,

\[
(w \Sigma_\Xi^- \cap \Sigma_\Xi^+) \cap (w \Sigma_\Xi^+ \cap \Sigma_\Xi^+) \subseteq w \Sigma_\Xi^- \cap w \Sigma_\Xi^+ = w (\Sigma_\Xi^- \cap \Sigma_\Xi^+) = \emptyset
\]

and their union is \(\Sigma_\Xi^+ \).

Lemma 14.5. For any \(\Xi \subseteq \Pi \) the product \(\rho^\Xi = \prod_{u \in W^\Xi} \frac{1}{x_u^{-1}} \) is an invertible element in \(S \).

Proof. We already know that this product is in \(S \), since it is the determinant of the matrix \(M^X_\Xi \) whose coefficients are in \(S \). Consider the \(R \)-linear involution \(u \mapsto \bar{u} \) on \(S = R[\Lambda]_E \) induced by \(\lambda \mapsto -\lambda \), \(\lambda \in \Lambda \). Observe that it is \(W \)-equivariant.

For any \(\alpha \in \Xi \), we have

\[
x_\Xi = s_\alpha(x_\Xi)x_{-\alpha} x_{-\alpha} = s_\alpha(x_\Xi) \bar{x}_\alpha x_{-\alpha}^{-1}
\]

and, therefore, by induction \(x_\Xi = w(x_\Xi) \bar{x}_v x_v^{-1} \) for any \(v \in W^\Xi \). In particular, \(x_\Pi = w(x_\Pi) \bar{x}_v x_v^{-1} \) for any \(w \in W \). Then

\[
x_{|W^\Xi|} = \prod_{v \in W^\Xi} v(x_\Xi) \bar{x}_v x_v^{-1} \quad \text{and} \quad x_{|W|} = \prod_{w \in W} w(x_\Pi) \bar{x}_w x_w^{-1}.
\]
If \(w = uv \) with \(\ell(w) = \ell(u) + \ell(v) \), by Lemma 3.1, part (d), \(x_{uv} = x_u u(x_v) \) and \(\bar{x}_{uv} = \bar{x}_u u(\bar{x}_v) \). Hence

\[
\begin{align*}
 x_{\Pi}^{\lfloor W \rfloor} &= \prod_{w \in W} x(w_{\Pi}) x_w^{-1} = \prod_{w \in W^2} \prod_{v \in W} x_{w,v} x_v^{-1} = \\
 &= \prod_{w \in W^2} u(x_{\Pi}) x_w^{-1} = \prod_{v \in W} u(x_{v}) x_v^{-1} = \\
 &= \rho_{\Xi} \prod_{u \in W^2} (\bar{x}_u u(x_u))^{-1} \prod_{v \in W} (\bar{x}_v u(x_v))^{-1} = \\
 &= \rho_{\Xi} \prod_{u \in W^2} (\bar{x}_u u(x_u))^{-1} \prod_{v \in W} (\bar{x}_v u(x_v))^{-1}.
\end{align*}
\]

On the other hand, by Lemma 14.4,

\[
x_{\Xi}^{\lfloor W \rfloor} = u_{0,\Xi}(x_{\Xi}) = \prod_{v \in W} x_v = \prod_{v \in W^2} x_v^2
\]

and, in particular, \(x_{\Xi}^{\lfloor W \rfloor} = \prod_{w \in W} x_w^2 \). So, we obtain

\[
x_{\Pi}^{\lfloor W \rfloor} = \prod_{w \in W} x_w^2 = \prod_{u \in W^2} \prod_{v \in W} x_{w,v} x_v^2 = \prod_{u \in W^2} x_{u,v}^2 u(x_v) = \\
 = \left(\prod_{u \in W^2} x_u^{2|W_u|} \right) \left(\prod_{v \in W} u(\prod_{v \in W^2} x_v^2) \right) = \left(\prod_{u \in W^2} x_u^{2|W_u|} \right) \left(\prod_{v \in W} u(x_v)^{|W_v|} \right).
\]

Combining this with equation (14.1), we obtain

\[
\left(\prod_{u \in W^2} x_u^{2|W_u|} \right) \left(\prod_{v \in W} u(\prod_{v \in W^2} x_v^2) \right) = \left(\prod_{u \in W^2} x_u^{2|W_u|} \right) \left(\prod_{v \in W} u(x_v)^{|W_v|} \right)
\]

which is an element of \(S \), since it is a product of elements of the form \(x_a x_b^{-1} \in S \). Therefore \(\rho_{\Xi} \prod_{u \in W^2} x_u \) is invertible, since so is its \(|W_v| \)-th power. \(\square \)

Corollary 14.6. Given \(\Xi' \subseteq \Xi \subseteq \Pi \) we have \(A_{\Xi'}(D^*_F) = (D^*_F)^{W_{\Xi'}} \). For any set of coset representatives \(W_{\Xi/\Xi'} \), the operator \(A_{\Xi/\Xi'} \) induces a surjection \((D^*_F)^{W_{\Xi}} \to (D^*_F)^{W_{\Xi'}} \) (independent of the choices of \(W_{\Xi/\Xi'} \) by Lemma 6.5).

Proof. By Corollary 12.1 and Theorem 14.3, we obtain the first part. To prove the second part, let \(\sigma \in (D^*_F)^{W_{\Xi'}} \). By the first part, there exists \(\sigma' \in D^*_F \) such that \(\sigma = A_{\Xi'}(\sigma') \), so by Lemma 6.3 we have

\[
A_{\Xi/\Xi'}(\sigma) = A_{\Xi/\Xi'}(A_{\Xi'}(\sigma')) = A_{\Xi}(\sigma') \in (D^*_F)^{W_{\Xi}}.
\]

Hence, \(A_{\Xi/\Xi'} \) restricts to \(A_{\Xi/\Xi'}: (D^*_F)^{W_{\Xi'}} \to (D^*_F)^{W_{\Xi}} \). Since \(A_{\Xi}(D^*_F) = (D^*_F)^{W_{\Xi}} \), we also have \(A_{\Xi/\Xi'}((D^*_F)^{W_{\Xi'}}) = (D^*_F)^{W_{\Xi}} \). \(\square \)

Theorem 14.7. Assume that the choice of reduced sequences \(\{I_w\}_{w \in W} \) is \(\Xi \)-compatible. If \(u \in W_{\Xi} \), then

\[
A_{\Pi/\Xi}(X_{I_u}^*, A_{\Xi}(B_{I_u}^*(x_n f_u))) = \delta_{w,u}^K, 1.
\]

Consequently, the pairing

\[
(D^*_F)^{W_{\Xi}} \times (D^*_F)^{W_{\Xi}} \to (D^*_F)^W \cong S, \quad (\sigma, \sigma') \mapsto A_{\Pi/\Xi}(\sigma \tau)
\]
is non-degenerate; \(\{ A_{\Xi}(B_{\text{inv}}(x_{\Pi} f)) \}_{u \in W_\Xi} \) and \(\{ X^*_u \}_{u \in W} \) being dual \(S \)-bases of \((D^*_F)^{W_\Xi} \).

Proof. By Corollary 14.6, the pairing is well-defined (i.e. it does map into \(S \)). By Lemma 6.4, Lemma 6.3 and Theorem 12.4, we obtain \(A_{\Pi/\Xi}(X^*_u A_{\Xi}(B_{\text{inv}}(x_{\Pi} f))) = A_{\Pi/\Xi}(X^*_u B_{\text{inv}}(x_{\Pi} f)) = \delta^\text{Kr}_{u, \delta}. \)

15. **Push-forwards and pairings on \(D^*_{F_{\Xi/\Xi}} \)**

We construct now an algebraic version of the push-forward map.

For any \(\Xi \subseteq \Pi \), the \(W_\Xi \) invariant subring \(S^{W_\Xi} \) (resp. \(Q^{W_\Xi} \)) acts by multiplication on the right on \(S_{W/W_\Xi} \) (resp. \(Q_{W/W_\Xi} \)) by the formula \((\sum w \delta w) \cdot q' = \sum w q w(q') \delta w \) (note that \(w(q') \) does not depend on the choice of a representative \(w \) of \(\bar{w} \)). When \(q \in S^{W_\Xi} \) (resp. \(Q^{W_\Xi} \)) and \(f \in S^*_{W/W_\Xi} \) (resp. \(f \in Q^*_{W/W_\Xi} \)), we write \(q \cdot f \) for the map dual to the multiplication on the right by \(q \).

Recall that \(d^*_x : Q^*_{W/W_\Xi} \to Q^*_{W/W_\Xi} \) was defined at the beginning of section 11, and that it sends \(f_{\bar{w}} \) to \(f_{\bar{w}} \). By Corollary 5.2 we know that \(\frac{1}{x_{\Xi/\Xi}} \in Q^*_{(Q)^{W_\Xi}}. \)

We define \(A_{\Xi/\Xi} : Q^*_{W/W_\Xi} \to Q^*_{W/W_\Xi} \) by \(A_{\Xi/\Xi}(f) := d^*_x (1/x_{\Xi/\Xi} \cdot f) \). The left commutative diagram

\[
\begin{array}{ccc}
Q_{W/W_\Xi} & \overset{p^*_x}{\leftarrow} & Q_W \\
\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
Q_{W/W_\Xi} & \overset{p^*_x}{\leftarrow} & Q_W
\end{array}
\]

in which \(1/x_{\Xi/\Xi} \) and \(Y_{\Xi/\Xi} \) mean multiplication on the right, dualizes as the right one. Since \(p^*_x \) restricts to an isomorphism \(D^*_{F_{\Xi/\Xi}} \to (D^*_F)^{W_\Xi} \) by Lemma 11.7 and since \(A_{\Xi/\Xi} \) restricts to a map \((D^*_F)^{W_\Xi} \to (D^*_F)^{W_\Xi} \) by Corollary 14.6, we obtain:

Lemma 15.1. The map \(A_{\Xi/\Xi} \) restricts to \(D^*_{F_{\Xi/\Xi}} \to D^*_{F_{\Xi/\Xi}} \) and the diagram

\[
\begin{array}{ccc}
D^*_{F_{\Xi/\Xi}} & \overset{p^*_x}{\cong} & (D^*_F)^{W_\Xi} \\
\downarrow A_{\Xi/\Xi} \quad \quad \quad \downarrow A_{\Xi/\Xi} \\
D^*_{F_{\Xi/\Xi}} & \overset{p^*_x}{\cong} & (D^*_F)^{W_\Xi}
\end{array}
\]

commutes.

Remark 15.2. The map \(A_{\Xi/\Xi} \) corresponds to a push-forward in the geometric context, see [CZZ22, Diagram (8.3)].

Lemma 15.3. Within \(Q_{W/W_\Xi} \), we have \(D_{F_{\Xi}x_{\Xi/\Xi}} \subseteq S_{W/W_\Xi} \). So the right multiplication by \(x_{\Xi/\Xi} \) induces a map \(D_{F_{\Xi}} \to S_{W/W_\Xi} \). Consequently, it defines a map \(S_{W/W_\Xi} \to D_{F_{\Xi}}, f \mapsto x_{\Xi/\Xi} \cdot f \).

Proof. By Lemma 11.3 we know that \(\{ X^*_u \}_{u \in W_\Xi} \) is a basis of \(D_{F_{\Xi}} \), so it suffices to show that \(X^*_u x_{\Xi/\Xi} \in S_{W/W_\Xi} \). We have

\[
X^*_u x_{\Xi/\Xi} = \sum_{v \in W_\Xi} (\sum_{w \in W_\Xi} a^X_{w, uv}) \delta v x_{\Xi/\Xi} = \sum_{v \in W_\Xi} (\sum_{w \in W_\Xi} u(x_{\Xi/\Xi}) a^X_{w, uv}) \delta v = \sum_{w \in W_\Xi} d^*_w \delta w,
\]
which belongs to S_{W/W_Ξ} by Lemma 14.2.

The geometric translation of the map $S_{W/W_\Xi} \to D_{F,\Xi}^*$ is the push-forward map from the T-fixed points of G/P_Ξ to G/P_Ξ; see [CZZ2, Diagram (8.1)].

Example 15.4. Note that in general $x_{\Pi/W_\Xi}D_{F,\Xi} \not\subseteq S_{W/W_\Xi}$. For example, let the root datum be of type A_2^{ad} and $\Xi = \{\alpha_2\}$, then $x_{\Pi/W_\Xi} = x_{-\alpha_1}x_{-\alpha_1-\alpha_2}$. Let $w = s_2s_1 \in W_\Xi$, then

$$X_{21} = \frac{1}{x_{\alpha_1}x_{\alpha_2}}\delta_2 - \frac{1}{x_{\alpha_2}x_{\alpha_1 + \alpha_2}}\delta_{s_2} - \frac{1}{x_{\alpha_1}x_{\alpha_2}}\delta_{s_1} + \frac{1}{x_{\alpha_2}x_{\alpha_1 + \alpha_2}}\delta_{s_2s_1}.$$

Then $X_{21}^{\Xi} x_{\Pi/W_\Xi} \in S_{W/W_\Xi}$ but $x_{\Pi/W_\Xi} X_{21}^{\Xi} \not\subseteq S_{W/W_\Xi}$.

One easily checks that the diagram on the left below is commutative, and it restricts as the one on the right by Lemma 15.3.

\[
\begin{array}{ccc}
Q_{W/W_\Xi'} & \xrightarrow{x_{\Pi/W_\Xi}} & Q_{W/W_\Xi'} \\
\downarrow & & \downarrow d_{\Xi/W_\Xi'} \\
Q_{W/W_\Xi} & \xrightarrow{x_{\Pi/W_\Xi}} & Q_{W/W_\Xi} \\
\downarrow & & \downarrow d_{\Xi/W_\Xi'} \\
D_{F,\Xi} & \xrightarrow{x_{\Pi/W_\Xi}} & S_{W/W_\Xi} \\
\downarrow & & \downarrow d_{\Xi/W_\Xi'} \\
D_{F,\Xi} & \xrightarrow{x_{\Pi/W_\Xi}} & S_{W/W_\Xi}
\end{array}
\]

By S-dualization, one obtains the commutative diagram

\[
\begin{array}{ccc}
D_{F,\Xi}^* & \xrightarrow{x_{\Pi/W_\Xi}} & S_{W/W_\Xi}^* \\
\downarrow \mathcal{A}_{\Xi/W_\Xi} & & \downarrow d_{\Xi/W_\Xi'} \\
D_{F,\Xi}^* & \xrightarrow{x_{\Pi/W_\Xi}} & S_{W/W_\Xi}^*
\end{array}
\]

whose geometric interpretation in terms of push-forwards is given in [CZZ2, Diagram (8.3)].

Finally, Theorems 12.4 and 14.7 immediately translate as:

Theorem 15.5. The pairing $D_{F}^* \times D_{F}^* \to D_{F,\Pi}^* \simeq S$ defined by sending (σ, σ') to $\mathcal{A}_{\Pi}(\sigma, \sigma')$ is non degenerate; $\{A_{I_{w'}}(x_{\Pi f_c})\}_{w \in W}$ and $\{Y_{\Xi}^*\}_{v \in W}$ are dual bases and so are $\{B_{I_{w'}}(x_{\Pi f_c})\}_{w \in W}$ and $\{X_{I_{v}}^*\}_{v \in W}$.

Theorem 15.6. The pairing $D_{F,\Xi}^* \times D_{F,\Xi}^* \to D_{F,\Xi,\Pi}^* \simeq S$ defined by sending (σ, σ') to $\mathcal{A}_{\Xi}(\sigma, \sigma')$ is non degenerate, and $\{\mathcal{A}_{\Xi}(B_{I_{w'}}(x_{\Pi f_c}))\}_{w \in W_\Xi}$ and $\{(X_{I_{v}}^*)^*\}_{v \in W_\Xi}$ are dual bases.

Proof. For any choice of $\{I_{w}\}_{w \in W_\Xi}$, we complete it into a Ξ-compatible family $\{I_{w}\}_{w \in W}$, then by Lemma 11.6 $\{X_{I_{w}}^*\}_{w \in W_\Xi}$ is a basis of $(D_{F}^*)^{W_\Xi}$. By Lemma 11.7 we know that $p_{\Xi}^*(X_{I_{w}}^*)^* = X_{I_{w}}^*$ if $w \in W_\Xi$, so the conclusion follows from Lemma 15.1 and Theorem 14.7.

In some sense, Theorem 15.6 is not completely satisfactory in terms of geometry: in the parabolic case, although we do know that the Schubert classes $\{\mathcal{A}_{\Xi}(A_{I_{w'}}(x_{\Pi f_c}))\}_{w \in W_\Xi}$ form a basis, we did not find a good description of the dual basis with respect to the bilinear form.
References

[AB84] M. Atiyah, R. Bott, *The moment map and equivariant cohomology*, Topology 23 (1984), no. 1, 1–28.

[Bo58] N. Bourbaki, *Eléments de mathématique. Algèbre*, Hermann, Paris, 1958.

[Bo68] ———, *Eléments de mathématique. Groupes et algèbres de Lie*, Hermann, Paris, 1968.

[BE90] P. Bressler, S. Evens, *The Schubert calculus, braid relations and generalized cohomology*, Trans. Amer. Math. Soc. 317 (1990), no. 2, 799–811.

[Br97] M. Brion, *Equivariant Chow groups for torus actions*, Transform. Groups 2 (1997), no. 3, 225–267.

[BB10] V. Buchstaber, E Bunkova, *Krichever Formal Groups*. Funct. Analysis and Its Appl. 45 (2011), no. 2, 23–44.

[BuHo] V. Bukhshtaber, A. Kholodov, *Formal groups, functional equations and generalized cohomology theories*, (Russian) Mat. Sb. 181 (1990), no. 1, 75–94; translation in Math. USSR-Sb. 69 (1991), no. 1, 77–97.

[CPZ] B. Calmès, V. Petrov, K. Zainoulline, *Invariants, torsion indices and oriented cohomology of complete flags*, Ann. Sci. École Norm. Sup. (4) 46 (2013), no. 3, 405–448.

[CZZ] B. Calmès, K. Zainoulline, C. Zhong, *A coproduct structure on the formal affine Demazure algebra*, preprint arXiv:1209.1676, 2013.

[CZZ2] ———, *Equivariant oriented cohomology of flag varieties*, preprint arXiv.org 1409.7111, 2014.

[CG10] N. Chriss, V. Ginzburg, *Representation theory and complex geometry*, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2010. Reprint of the 1997 edition.

[SGA] M. Demazure and A. Grothendieck, *Schémas en groupes III: Structure des schémas en groupes réductifs* (SGA 3, Vol. 3), Lecture Notes in Math. 153, Springer-Verlag, Berlin-New York, 1970, viii+529 pp.

[De73] M. Demazure, *Invariants symétriques entiers des groupes de Weyl et torsion*, Invent. Math. 21 (1973), 287–301.

[De77] ———, *Some Characterizations of Bruhat Ordering on a Coxeter Group and Determination of the Relative Möbius Function*, Invent. Math. 39 (1977), 187–198.

[GR12] N. Gantner, A. Ram, *Generalized Schubert Calculus*, J. Ramanujan Math. Soc. 28A (Special Issue-2013), 149–190.

[GKV] V. Ginzburg, M. Kapranov, E. Vasserot, *Residue construction of Hecke algebras*, Adv. Math. 128 (1997), no. 1, 1–19.

[HHH] M. Harada, A. Henriques, T. Holm, *Computation of generalized equivariant cohomologies of Kac-Moody flag varieties*, Adv. Math. 197 (2005), 198–221.

[Ha78] M. Hazewinkel, *Formal groups and applications*, Pure and Applied Mathematics 78, Acad. Press, New-York-London, 1978. xxii+573pp.

[Hir66] F. Hirzebruch, *Topological methods in algebraic geometry*, Grundl. der Math. Wiss. 131, Springer-Verlag, 1966.

[HZ] G. Zhao, C. Zhong, *Geometric representations of the formal affine Hecke algebra*, preprint arXiv:1406.1283, 2014.
[Zh13] C. Zhong, *On the formal affine Hecke algebra*, to appear in J. Inst. Math. Jussieu, http://dx.doi.org/10.1017/S1474748014000188.

BAPTISTE CALMÈS, UNIVERSITÉ D’ARTOIS, LABORATOIRE DE MATHEMATIQUES DE LENS, FRANCE
E-mail address: baptiste.calmes@univ-artois.fr

KIRILL ZAINOULLINE, DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF OTTAWA, CANADA
E-mail address: kirill@uottawa.ca

CHANGLONG ZHONG, DEPARTMENT OF MATHEMATICAL AND STATISTICAL SCIENCES, UNIVERSITY OF ALBERTA, CANADA
E-mail address: zhongusc@gmail.com