All-inside Techniques for Meniscal Radial Root Tear Repair

David Weijia Mao, M.B.B.S., B.Med.Sci., M.R.C.S., and Yee Han Dave Lee, M.B.B.S., F.R.C.S.

Abstract: Meniscal radial root tears can disrupt the load-bearing function of the meniscus and worsen instability in anterior cruciate ligament-deficient knees. Paracentral radial tears adjacent to the root (types 1, 2, and 4) repaired with a transtibial pullout suture technique can lead to over-medialization of the meniscal root and a high-tension nonanatomic repair. We propose 2 all-inside techniques for anatomic repair of medial and lateral meniscal radial root tears with (1) an all-inside meniscal repair device and (2) an antegrade suture passer. We present the technical requirements and tips for these techniques. For lateral meniscal radial root repair with an all-inside meniscal repair device, ideal viewing is from an anterolateral portal with device entry from an anteromedial portal to reduce the risk of vascular injury. We recommend at least 2 stitches across the tear, with the depth setting limited to 18 to 20 mm for a central stitch and 16 mm or less for a peripherally placed stitch. For root repair with an antegrade suture passer, viewing should be from an anteromedial portal with the passer entering from an anterolateral portal. At least 2 stitches should be placed across the tear, with 1 central and 1 peripheral or 1 superior and 1 inferior.

Radial root tears in the meniscus disrupt its load-bearing function in the knee and increase compartment pressure by more than 25%. Meniscal repair can potentially restore compartment peak contact pressures to nearly normal. Lateral meniscal posterior root tears have been reported to reduce the stability of anterior cruciate ligament-deficient knees during rotatory loading because they function as a secondary stabilizer of the knee under pivot-shift loading. In addition, pivot-shift grades in patients with lateral meniscal posterior root tears have been found to be significantly greater on preoperative physical examination than those in controls with no root tears. This finding suggests the influence of lateral meniscal root injury on rotational stability of the knee. Transtibial pullout suture repair of posterior meniscal root tears has been reported to yield improvements in function, pain, and activity level postoperatively.

Not all lateral meniscal root tears are the same. In the meniscal root tear classification system of LaPrade et al., types 1, 2, and 4 are paracentral radial tears adjacent to the root and types 3 and 5 are root avulsions. Paracentral radial tears repaired with a transtibial pullout suture technique can lead to over-medialization of the lateral meniscal root and, consequently, a high-tension repair. We propose 2 techniques to repair paracentral meniscal radial root tears that allow for residual meniscal root tissue (fixed to the anatomic root) to be incorporated into the repair, preventing over-medialization and high tension.

Indications for Surgery

The described anatomic repair techniques can be used for both medial and lateral radial root tears. However, traumatic radial lateral root tears are more commonly associated with anterior cruciate ligament injuries. Patients with multiple medical comorbidities or severe chondral changes (Outerbridge grade 3 or 4) in the ipsilateral compartment are excluded from repair. In patients with significant malalignment, corrective osteotomy should be considered before meniscal repair.
Surgical Technique

Patient Positioning and Anesthesia
The patient is placed in the supine position on the operating table with a thigh tourniquet. After induction of general anesthesia, the foot of the table is removed, allowing the knee to be flexed at 90° and freely manipulated. The knee is examined for ligamentous stability and range of motion.

Diagnostic Arthroscopy
Standard anterolateral and anteromedial portals are made next to the patellar tendon. The knee joint is inspected with a 30° arthroscope. The root tear is probed and assessed for tear type. Root avulsions (types 3 and 5) can be repaired with a transtibial pullout suture technique. However, paracentral radial tears adjacent to the root (type 1, 2, and 4) with a significant stump are amenable to side-to-side repair techniques. We propose 2 side-to-side techniques for repair of radial meniscal root tears with a significant meniscal root stump, first with a FAST-FIX 360 all-inside meniscal repair device (Smith & Nephew, Andover, MA) and second with a Scorpion antegrade suture passer (Arthrex, Naples, FL). The first technique can be performed with any all-inside meniscal repair device. Similarly, the second technique can be performed with any available antegrade suture passer that can achieve access under the femoral condyles. The arthroscopic surgical techniques are explained in Video 1.

All-inside Meniscal Repair Device Technique
For lateral meniscal radial root repair with an all-inside meniscal repair device, the knee is placed in a figure-of-4 position. Ideal viewing of the lateral meniscus should be from an anterolateral portal with FAST-FIX 360 all-inside meniscal repair device entry guided by a slotted cannula (Fig 1) via an anteromedial portal to reduce the risk of vascular injury. There may sometimes be a requirement for the meniscal repair device to be introduced from the anterolateral portal for optimal stitch placement. This brings the tip of the repair device closest to the posterior vascular structures; therefore, the surgeon must be cognizant of the depth setting in relation to stitch placement to reduce the risk of vascular injury (Table 1). The depth limiter for the device is set at 18 to 20 mm when the entry point for the first side-to-side stitch in the meniscal root is in the central part of the meniscus. For a peripheral entry point in the red-red zone, we set the depth limiter to 16 mm or less. We recommend placement of at least 2 stitches across the tear (Fig 2).

For medial meniscal radial root tear repair, viewing and device entry can be achieved from either aforementioned portal with the knee in 20° of flexion with a valgus force applied. A percutaneous medial collateral ligament release may help to improve visibility and access to the posterior horn of the medial meniscus. The surgeon should be comfortable with switching between the anteromedial and anterolateral portals for viewing and introduction of the all-inside meniscal repair device.

Antegrade Suture Passer Technique
For lateral meniscal radial root repair, the knee is placed in a figure-of-4 position. Viewing should be from the anteromedial portal with the Scorpion antegrade suture passer entering from the anterolateral portal (Fig 3). Adequate access must be obtained under the femoral condyle to pass the sutures safely. The antegrade suture passer is loaded with an

Table 1. Tips on Using All-inside Meniscal Device

Tip	Tip
Portal	Lateral meniscal root repair: view from
	anterolateral portal and insert device from
	anteromedial portal (lower risk of
	vascular injury)
In cases with small root remnant, device	may be introduced from anterolateral portal
	(view from anteromedial portal)
Depth setting	Central stitch: 18- or 20-mm depth setting
	Peripheral stitch: ≤16 mm
Stitch configuration	≥2 stitches across tear
No. 2 Orthocord suture (Mitek, Raynham, MA) and passed through both sides of the radial tear. The knot is tied arthroscopically to bring the edges of the radial tear together. This technique can also be combined with an all-inside meniscal repair device technique for the second stitch. At least 2 stitches should be placed across the tear, with 1 central and 1 peripheral or 1 superior and 1 inferior (Table 2). This decision is subject to access to the meniscus, tissue quality, and distance between the first and second sutures. A cannula can be used for suture and soft-tissue management during knot tying. An absorbable suture is recommended because it reduces the risk of knot interference in the knee joint. It is important to use an antegrade suture passer that is designed for use in the knee and can gain access to the lateral meniscus under the lateral femoral condyle. For medial meniscal radial root tear repair, ideal viewing is from the anterolateral portal with antegrade suture passer entry from the anteromedial portal, with the knee in 20° of flexion and a valgus force applied.

Postoperative Protocol

After radial meniscal root tear repair, patients are placed in a knee brace with range of motion of 0° to 90° to limit deep knee flexion that can compromise the repair. They are also kept on protected weight bearing (≤50% weight on the operated leg) for 6 weeks.

Discussion

We describe all-inside meniscal repair device and antegrade suture passer techniques for meniscal radial root tear repair and present the technical requirements and tips for these techniques. Meniscal root tears should be repaired to restore meniscal hoop stresses. Posterior radial root tears that extend to the capsule and posterior horn attachments of the lateral meniscus are frequently amenable to repair. Anderson et al. found that 22 of 24 radial and posterior horn lateral meniscal tear repairs functioned successfully over a mean follow-up period of 58.6 months.

There are 2 main types of meniscal root tears. Para-central radial tears adjacent to the meniscal root are more common than true root avulsions when associated with anterior cruciate ligament injuries. Meniscal root avulsions are repaired by passing sutures through the posterior root, drilling a transtibial tunnel, and securing the pullout sutures to a button on the tibial cortex. LaPrade et al. reported good results with transtibial meniscal root repair using pullout sutures, with patients having significantly improved post-operative outcome scores. Paracentral radial meniscal root tears (types 1, 2, and 4) ideally should not be repaired with transtibial pullout sutures. Such repairs would be potentially under high tension, with the meniscal posterior horn and body being overly medialized. There can be excessive tibiofemoral contact.
Suture management

Use of cannula can be considered

Stitch configuration

Portal

Lateral meniscal root repair: view from anteromedial portal and insert passer from anterolateral portal

Medial meniscal root repair: view from anterolateral portal and insert passer from anteromedial portal

Suture management

Use of cannula can be considered

Portal	Tip
Lateral meniscal root repair: view from anteromedial portal and insert passer from anterolateral portal	
Medial meniscal root repair: view from anterolateral portal and insert passer from anteromedial portal	

Table 2. Tips on Using Antegrade Suture Passer

Tips on Using Antegrade Suture Passer

- Ability to tie arthroscopic knots
- Awareness of depth setting at different regions—central and peripheral—and appropriate trajectory
- Comfort with using meniscal repair device
- Comfort with using suture passer for mattress configuration across radial tear

Identification of meniscal radial root tears and awareness of repair techniques are becoming more common. We believe paracentral radial root tears with a significant stump are more anatomically repaired with side-to-side sutures with either an all-inside repair device or an antegrade suture passer.

References

1. Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus: Similar to total meniscectomy. J Bone Joint Surg Am 2008;90:1922-1931.
2. Shybut TB, Vega CE, Haddad J, et al. Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament—deficient knee. Am J Sports Med 2015;43:905-911.
3. Minami T, Muneta T, Sekiya I, et al. Lateral meniscus posterior root tear contributes to anterolateral rotational instability and meniscus extrusion in anterior cruciate ligament-injured patients. Knee Surg Sports Traumatol Arthrosc 2018;26:1174-1184.
4. LaPrade RF, Matheny LM, Moulton SG, James EW, Dean CS. Posterior meniscal root repairs: Outcomes of an anatomical transtibial pull-out technique. Am J Sports Med 2017;45:884-891.
5. LaPrade CM, James EW, Cram TR, Feagin JA, Engebretsen L, LaPrade RF. Meniscal root tears: A classification system based on tear morphology. Am J Sports Med 2015;43:363-369.
6. Mao DW, Upadhyay U, Thalanki S, Lee DYH. All-inside lateral meniscal repair via anterolateral portal increases risk of vascular injury: A cadaveric study. Arthroscopy 2020;36:225-232.
7. Todor A, Caterev S, Nistor DV. Outside-in deep medial collateral ligament release during arthroscopic medial meniscus surgery. Arthrosc Tech 2016;5:e781-e785.
8. Anderson L, Watts M, Shapter O, et al. Repair of radial tears and posterior horn detachments of the lateral meniscus: Minimum 2-year follow-up. Arthroscopy 2010;26:1625-1632.
9. Seo J-H, Li G, Shetty GM, et al. Effect of repair of radial tears at the root of the posterior horn of the medial meniscus with the pullout suture technique: A biomechanical study using porcine knees. Arthroscopy 2009;25:1281-1287.
10. Yoon KH, Park J-Y, Kwon YB, Lee YJ, Kim EJ, Kim S-G. Inside-out repair of the meniscus in concomitant anterior cruciate ligament reconstruction: Absorbable versus nonabsorbable sutures. *Arthroscopy* 2020;36:1074-1082.

11. Ahn JH, Lee YS, Yoo JC, Chang MJ, Park SJ, Pae YR. Results of arthroscopic all-inside repair for lateral meniscus root tear in patients undergoing concomitant anterior cruciate ligament reconstruction. *Arthroscopy* 2010;26:67-75.

12. Jiang EX, Everhart JS, Abouljoud M, et al. Biomechanical properties of posterior meniscal root repairs: A systematic review. *Arthroscopy* 2019;35:2189-2206.e2.