2nd International Materials, Industrial, and Manufacturing Engineering Conference, MIMEC2015, 4 – 6 February 2015, Bali, Indonesia

Editors:
Denni Kurniawan
Fethma M. Nor
Procedia Manufacturing - Editorial Board

Editor-in-Chief

Professor S.J. Hu

University of Michigan, Ann Arbor, Michigan, USA

Editorial Board

Dr. J. Cao

Northwestern University, Evanston, Illinois, USA

Professor S. Kara

UNSW Australia, Sydney, New South Wales, Australia

Prof. Dr.-Ing. G. Lanza

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Dr. J. Ni

University of Michigan, Ann Arbor, Michigan, USA

Professor A. Shih

University of Michigan, Ann Arbor, Michigan, USA

Professor R. Shivpuri

The Ohio State University, Columbus, Ohio, USA
2nd International Materials, Industrial, and Manufacturing Engineering Conference, MIMEC2015, 4-6 February 2015, Bali, Indonesia

Edited by Denni Kurniawan, Fethma M. Nor
Volume 2,
Pages 1-578 (2015)

Research article Open access
Efficiency Improvement of Blood Supply Chain System Using Taguchi Method and Dynamic Simulation
Seyed Mojib Zahraee, Jafri Mohd Rohani, Alireza Firooz, Alaeollahah Shahparnah
Pages 1-5
Download PDF Article preview

Research article Open access
Production Line Analysis via Value Stream Mapping: A Lean Manufacturing Process of Color Industry
Jafri Mohd Rohani, Seyed Mojib Zahraee
Pages 6-10
Download PDF Article preview

Research article Open access
Waste Elimination for Manufacturing Sustainability
Sherif Mostafa, Jantanee Dumrak
Pages 11-16
Download PDF Article preview

Research article Open access
Influence of Interface on epoxy/clay Nanocomposites: 1. Morphology Structure
Izzuddin Zaman, Fethma M. Nor, Bukhari Manshoor, Amir Khalid, Sherif Araby
Pages 17-22
Download PDF Article preview

Research article Open access
Influence of Interface on epoxy/clay Nanocomposites: 2. Mechanical and Thermal Dynamic Properties
Izzuddin Zaman, Fethma M. Nor, Bukhari Manshoor, Amir Khalid, Sherif Araby
Pages 23-27
Download PDF Article preview

Research article Open access
Effect of Amphoterict and Cationic Polyacrylamide on the Structural and Strength Properties of Coir Paper
Nor Mazlana Main, Rosnita A. Talib, Rusail Abdul Rahman, Ainun Zurijati Mohamed, ... Sharmiza Adnan
Pages 28-34
Download PDF Article preview

Research article Open access
Material Removal and Wheel Wear Models for Robotic Grinding Wheel Profiling
Stéphane Agnard, Zhaoheng Liu, Bruce Hazel
Pages 35-40
Download PDF Article preview
Research article Open access
Evaluation Improvement of Production Productivity Performance using Statistical Process Control, Overall Equipment Efficiency, and Autonomous Maintenance
Amir Azizi
Pages 186-190

Research article Open access
Analysis on Factors Impeding the Disassembly Process with Consideration on Automated Disassembly Planning
Nurhidayu Abdullah, Fairol Azri Jafar, Mohd Nazmin Maslan
Pages 191-195

Research article Open access
Preparation of Natural Hydroxyapatite from Bovine Femur Bones Using Calcination at Various Temperatures
W. Khoo, F.M. Nor, H. Ardhyananta, D. Kurniawan
Pages 196-201

Research article Open access
Effect of Machining Parameters on Tool Wear and Hole Quality of AISI 316L Stainless Steel in Conventional Drilling
A.Z. Sultan, Safian Sharif, Denni Kurniawan
Pages 202-207

Research article Open access
Effect of Different Cutting Speed and Feed Rate on Surface Roughness in Femur Bone Drilling
P.Y.M.W. Ndaruhadi, S. Sharif, D. Kurniawan
Pages 208-211

Research article Open access
Stress Distribution between Bonding Surface of Dental Filling in Enamel and Dentine
M.A.M. Soliheen, D. Kurniawan, F.M. Nor
Pages 212-217

Research article Open access
Stress Distribution Due to Loading on Premolar Teeth Implant: A Three Dimensional Finite Element Analysis
M.J. Hisam, J.Y. Lim, D. Kurniawan, F.M. Nor
Pages 218-223

Research article Open access
Chip Formation When Drilling AISI 316L Stainless Steel using Carbide Twist Drill
A.Z. Sultan, Safian Sharif, Denni Kurniawan
Pages 224-229

Research article Open access
Strain Distribution Equal Channel Angular Pressing of Magnesium alloy at 90° and 120° Corner Angles
M.H.M. Samsudin, D. Kurniawan, Fethma M. Nor
Pages 230-235

Research article Open access
Evaluation of Mechanical Properties of Hybrid Fiber Reinforced Polymer Composites and their Architecture
M.M.W. Irina, A.I. Azmi, C.L. Tan, C.C. Lee, A.N.M. Khalil
Pages 236-240

Research article Open access
New Design Feature of Mold in Injection Molding For Scrap Reduction
Mehdi Moayyedian, Kazem Ahbary, Romeo Marian
Pages 241-245

Research article Open access
Improved Gate System for Scrap Reduction in Injection Molding Processes
Mehdi Moayyedian, Kazem Ahbary, Romeo Marian
Pages 246-250
Optimizing power consumption for sustainable dry turning of treated aluminum alloy

Rusdi Nura,b, D. Kurniawanb, M.Y. Noordinb, *, S. Izmanb

aPoliteknik Negeri Ujung Pandang, Makassar 90245, Indonesia
bFaculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia

Abstract

Machining companies can implement sustainable manufacturing using steps to improving the performance of economic, environmental and social. One of the steps is to perform the efficiency of energy consumption (mainly electricity) in machining. This paper describes a case study which investigates the effect of cutting parameters on power consumption and surface roughness by applying design of experiments. Dry turning of treated Al-11%Si alloy using coated carbide tool at different cutting speed (70, 130 and 250 m/min) and feed (0.05, 0.10 and 0.15 mm) was investigated. The results showed an optimum effect of cutting parameters that was obtained at low feed rate and high cutting speed, as shown by the model solutions.

© 2015 The Authors. Published by Elsevier B.V. Selection and Peer-review under responsibility of the Scientific Committee of MIMEC2015.

Keywords: Power consumption, Surface roughness, Aluminum alloy, Design of experiments

1. Introduction

By an increasing pressure on the machining companies as the result of competition, tightening environmental legislation, request supply chain to enhance the environmental performance, and declining the ability of expertise in the industry. For addressing the issue, machining companies adopt sustainable manufacturing on all items to get cost-effective and enhance the ability of the pillars of sustainability (economic, environmental and social) [1]. The basic problems above can be resolved by sustainable product design and manufacturing. Sustainability of a product or production can be achieved by arrangement at all phases undertaken.

* Corresponding author. Tel.:+6075534734; fax: +6075566159
E-mail address: denni@utm.my
The industries of manufacturing always try to reduce costs and improve the quality of machined parts as the request for manufactured goods with tighter tolerance has increased speedily. Towards sustainability, these should also be complemented with other aspects of machining output, with power consumption being one of them. Related researches have been conducted to study the influence of machining parameters, tool geometry, and cutting fluid on the surface integrity and power consumption when machining several workpiece materials. These include the work to analyzing power consumption and surface roughness when turning of nickel-based, Inconel 718 alloy [2]. Another work investigated the influence of machining parameters on surface roughness and power consumption when turning of AISI 1045 utilizing coated carbide tools [3]. Related work analyzed trends of cutting power consumption in conjunction with various combinations of machining variables such as feed rate, cutting speed, depth of cut, and tool nose radius [4]. Regarding machining parameters, cutting speed was suggested as one of determining factors. High-speed cutting translates to higher material removal rate, which is preferred. It also benefits from severe and rapid chip generation, limiting the heat transfer to the workpiece and resulted in only slight thermal distortion [7]. But it will cause the tools wear rapidly due extensive heat generated from the friction on the surface of the cutting [6], increase vibrations, and enlarge power consumption.

Hence, this study is conducted to determine the effect of machining parameters, i.e. cutting speed. Also of interest is the effect of feed. The effect of machining parameters to the machining output was developed using empirical models on machinability responses, including power consumption and surface roughness during turning of aluminum alloy under no cooling. For this purpose, design of experiment approach was used, as it was previously reported to be applicable for machining using coated carbide tools [8,9].

2. Calculating power consumption

The power profile during machine tool operation has been studied and given for many types of machining processes [11]. Power was supplied to turn on parts (e.g. CNC control unit, spindle, and feed axis) of the CNC machine tool to realize a series of actions (e.g. set up, loading, cutting, and automatic tool change) during the machining process. The power curve can be subdivided by three items: power of constant, variable, and peak. Peak power is usually in small portion to contribute for the cumulative energy consumption, and can be neglected when calculating the total energy consumption. With consideration of these states, the power demand can generally be differentiated into a variable and a constant power [12].

Gutowski et al. (2006) notified that energy used during the process of cutting the material is relatively small when compared with the total energy use for the operation of the machine [12]. Following his earlier work, the electrical power requirement, P, for machining was calculated as equation below:

$$P_m = P_o + k \cdot \dot{v}$$

where, P_m is the power used for the cutting process [W]. P_o is the power used at the time without loading the machining [W] such as motors, computers and fan, cooling pump etc. The unloading power was using a three-phase motor to drive the machine tools, P_o. It can be formulated with:
\[P_o = V \cdot I \cdot \sqrt{3} \]

(2)

where \(V \) is the voltage and \(I \) is the current [A]. In this paper, \(P_o \) was estimated as 35% from total power capacity of lathe machine. \(k \) is the specific energy [Ws/mm³] in cutting operations and valued 0.7 for aluminum alloy, referring to [13], and \(\dot{V} \) is material removal rate (MRR), in [mm³/s].

3. Experimental details

The workpiece used for experiment was treated Al-11%Si base alloy, with compositions of 0.67% Fe, 0.253% Mn, 10.68% Si, 0.036% Cr, 0.032% Ti, 0.235% Mg, 0.253% Mn, 1.61% Cu, 0.049% Ni and balance Al). An experimental study was carried out on 2-axes CNC lathe machine with a 8.3kW power rating [14]. Dry turning was used as the cutting method for 70, 130 and 250 m/min of cutting speed, 0.05, 0.10 and 0.15 mm of feed, and 0.5mm for depth of cut. A coated carbide with TiN coating was used as cutting tool. It has 0.2mm nose radius, positioned at 5° relief angle using tool holder.

4. Results and discussion

The experimental results for power consumption and surface roughness are presented in Figs. 1 and 2.

From Fig. 1, it shows that a smoother surface was obtained at high cutting speed and low feed rate, and the minimum power consumption was reached at small cutting speed and feed rate.

In Table 1, it is shown that \(\text{Prob.}>F \) has a value of less than 0.05 which means that the desired model has a significant impact on the response. The following is the final equation resulting empirical models, in the form of actual factors, namely:

\[Ra = +3.04 - 0.01*Vc + 18.91*f \]

(3)

\[P_m = +2904.61 + 0.02*Vc + 273*f + 6.49*Vc*f \]

(4)

where \(Vc \) and \(f \) are cutting speed [m/min] and feed rate [mm/rev], respectively.

Each input factor can be measured of its influence on the output response. This can be done by creating a model to optimize the selection of the cutting speed range and feed rate that will generate value criteria established in the power consumption and the surface roughness. This criterion will bring together cutting speed and feed rate in a combination that is sketched in the gray area of the overlay plot (Fig. 3). As the solution is the intersection between
the criteria of power consumption (area under the contour P_c of 3000 W) and the criteria of the surface roughness (the area right next to the contours of R_a of 2.4 μm).

Table 1. ANOVA analysis for surface roughness and power consumption

Source	Sum of squares	Degree of freedom	Mean square	F-value	Prob. < F
Surface roughness					
Model	12.19	2	6.09	12.96	0.0066
A	6.82	1	6.82	14.52	0.0089
B	5.36	1	5.36	11.41	0.0149
Power consumption					
Model	49098.43	3	16366.14	137.10	< 0.0001
A	13966.09	1	13966.09	116.99	0.0001
B	19070.03	1	19070.03	159.75	< 0.0001
AB	3541.55	1	3541.55	29.67	

Fig. 3. Overlay plot of the input factors for the prearranged response criterion of maximum 3000W-P_m and 2.4μm-R_a

Fig. 4. Overview of desirability of the input factors to attain power consumption and surface roughness that is optimum

The obtained solution can be specified by having more specific criteria of the responses. This determination can be made use in order to obtain power consumption and the surface roughness to be minimum, by calculating the desirability from the numerical equations. The calculation shows that the maximum value of desirability is achieved
at a combination of high cutting speed (170 m/min) and low feed rate (0.05 mm/rev) as given in Fig. 4.

5. Conclusion

In studying the turning of treated Al-11%Si alloy employing TiN coated carbide with different cutting speed (70, 130 and 250 m/min) and feed (0.05, 0.10 and 0.15 mm), it was found that the optimal of cutting parameter in terms of power consumption and surface roughness was found to be at high cutting speed and low feed. It was concluded that for the particular machining, power consumption decreases with the decrease of feed rate and increase of the cutting speed.

Acknowledgements

The authors would like to acknowledge the Ministry of Education, Malaysia and Universiti Teknologi Malaysia for the Research University Grant Scheme no. 05H27. RN would like to acknowledge to Politeknik Negeri Ujung Pandang and Government of South Sulawesi Province for providing scholarship support.

References

[1] Cus, F. and U. Zuperl, Journal of Achievements in Materials and Manufacturing Engineering. 29/2(2008)115-122.
[2] Ezugwu, E.O., D.A. Fadare, J. Bonney, R.B. Da Silva, and W.F. Sales, International Journal of Machine Tools and Manufacture. 45/12-13 (2005) 1375-1385.
[3] Bhattacharya, A., S. Das, P. Majumder, and A. Batish, Production Engineering. 3/1(2009) 31-40.
[4] Abhang, L. and M. Hameedullah, Journal of Engineering Science and Technology Review. 3/1 (2010) 116-122.
[5] Noordin, M.Y., V.C. Venkatesh, C.L. Chan, and A. Abdullah, Journal of Materials Processing Technology. 116/1 (2001) 16-21.
[6] Luk, W.K. and R.F. Scrutton, International Journal of Production Research. 6/3 (1986) 197-206.
[7] Trent, E.M. and P.K. Wright, Metal Cutting, 4th ed. Woburn, 2000.
[8] Hwang, Y.K. and C.M. Lee, Journal of Mechanical Science and Technology. 24/8 (2010) 1669-1677.
[9] Kurniawan, D., N.M. Yusof, and S. Sharif, Materials and Manufacturing Processes. 25/6 (2010) 370-377.
[10] Noordin, M.Y., D. Kurniawan, Y.C. Tang, and K. Muniswaran, International Journal of Advanced Manufacturing Technology. 60 (2012) 853-863.
[11] Li, W., A. Zein, S. Kara, and C. Herrmann, Glocalized Solutions for Sustainability in Manufacturing: Proceedings of the 18th CIRP International Conference on Life Cycle Engineering. (2011) 268-273.
[12] Gutowski, T., J. Dahmus, and A. Thiriez, 13th CIRP International Conference on Life Cycle Engineering. 2006.
[13] Walsh, R.A., Handbook of Machining and Metalworking Calculations. 2001.
[14] Barzani, M.M., N.M. Yusof, S. Farahany, and A. Ourdjini, Applied Mechanics and Materials. 234 (2012) 74-77.
Procedia Manufacturing

Country: Netherlands - [SIR Ranking of Netherlands]

Subject Area and Category:
- Computer Science
- Artificial Intelligence
- Engineering
- Industrial and Manufacturing Engineering

Publisher: Elsevier BV
Publication type: Journals
ISSN: 2351-9789
Coverage: 2015-ongoing

Join the conversation about this journal

Quartiles:
- Artificial Intelligence
 - 2016
 - 2017
- Industrial and Manufacturing Engineering
 - 2016
 - 2017

SJR:

Citations per document:

Total Cites
Self-Cites
Cites per document

- Cites / Doc. (4 years) 2017: 0.690
- Cites / Doc. (3 years) 2015: 0.000
- Cites / Doc. (3 years) 2016: 0.335
- Cites / Doc. (3 years) 2017: 0.690
- Cites / Doc. (2 years) 2015: 0.000
- Cites / Doc. (2 years) 2016: 0.335

Journal self-citation is defined as the number of citations from a journal citing article to articles published by the same journal.

External Cites per Doc

Evolution of the number of total citation per document and external citation per document (i.e., journal self-citations removed) received by a journal's published documents during the three previous years. External citations are calculated by subtracting the number of self-citations from the total number of citations received by the journal's documents.

International Collaboration

International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal's documents signed by researchers from more than one country; that is, including more than one country address.

Citable documents vs. Non-citable documents

Not every article in a journal is considered primary research and therefore “citable”; this chart shows the ratio of a journal's articles including substantial research (research articles, conference papers, and reviews) in three-year windows vs. those documents other than research articles, reviews, and conference papers.

Ratio of cited vs. uncited documents

Ratio of a journal's items, grouped in three years windows, that have been cited at least once vs. those not cited during the following year.

Artificial Intelligence is in the top quartile. SJR 2017: 0.2

Powered by ScimagoJR.com
Nur, R., Kurniawan, D., Noordin, M.Y., Izman, S.

Optimizing Power Consumption for Sustainable Dry Turning of Treated Aluminum Alloy (2015) Procedia Manufacturing, 2, pp. 558-562. Cited 7 times.

DOI: 10.1016/j.promfg.2015.07.096

a Politeknik Negeri Ujung Pandang, Makassar, 90245, Indonesia
b Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Malaysia

Abstract
Machining companies can implement sustainable manufacturing using steps to improving the performance of economic, environmental and social. One of the steps is to perform the efficiency of energy consumption (mainly electricity) in machining. This paper describes a case study which investigates the effect of cutting parameters on power consumption and surface roughness by applying design of experiments. Dry turning of treated Al-11%Si alloy using coated carbide tool at different cutting speed (70, 130 and 250 m/min) and feed (0.05, 0.10 and 0.15 mm) was investigated. The results showed an optimum effect of cutting parameters that was obtained at low feed rate and high cutting speed, as shown by the model solutions. © 2015 The Authors

Author Keywords
Aluminum alloy; Design of experiments; Power consumption; Surface roughness

Correspondence Address
Noordin M.Y.; Faculty of Mechanical Engineering, Universiti Teknologi Malaysia

Publisher: Elsevier B.V.

ISSN: 23519789
Language of Original Document: English
Abbreviated Source Title: Procedia Manuf.
2-s2.0-85013168358
Document Type: Article
Publication Stage: Final
Source: Scopus
Access Type: Open Access
Record 1 of 1

Title: Optimizing power consumption for sustainable dry turning of treated aluminum alloy

Author(s): Nura, R (Nura, Rusdi); Kurniawan, D (Kurniawan, D.); Noordin, MY (Noordin, M. Y.); Izman, S (Izman, S.)

Edited by: Kurniawan D; Nor FM

Source: 2ND INTERNATIONAL MATERIALS, INDUSTRIAL, AND MANUFACTURING ENGINEERING CONFERENCE, MIMEC2015 Book Series: Procedia Manufacturing Volume: 2 Pages: 558-562 DOI: 10.1016/j.promfg.2015.07.096 Published: 2015

Abstract: Machining companies can implement sustainable manufacturing using steps to improving the performance of economic, environmental and social. One of the steps is to perform the efficiency of energy consumption (mainly electricity) in machining. This paper describes a case study which investigates the effect of cutting parameters on power consumption and surface roughness by applying design of experiments. Dry turning of treated Al-11% Si alloy using coated carbide tool at different cutting speed (70, 130 and 250 m/min) and feed (0.05, 0.10 and 0.15 mm) was investigated. The results showed an optimum effect of cutting parameters that was obtained at low feed rate and high cutting speed, as shown by the model solutions. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

Accession Number: WOS:000380490700095

Conference Title: 2nd International Materials, Industrial, and Manufacturing Engineering Conference, MIMEC2015

Conference Date: FEB 04-06, 2015

Conference Location: Bali, INDONESIA

Author Identifiers:

Author	ResearcherID Number	ORCID Number
Kurniawan, Denni	C-2703-2008	0000-0002-4179-0454
Nur, Rusdi	T-5958-2017	0000-0002-4985-7086

ISSN: 2351-9789
Dear Authors,

Pardon for the delay in handling your full papers. The review has been concluded and your submission is deemed suitable for inclusion in the proceedings of MIMEC2015 in Procedia Manufacturing.

ID: 319
Title: Optimizing Power Consumption for Sustainable Dry Turning of Treated Aluminum Alloy

We are now at the final stage of publishing your manuscript in Procedia Manufacturing with the production team of Elsevier.

To proceed, kindly do the following:
1. Ensure your manuscript is written in correct format of Procedia Manufacturing.
2. Identify the corresponding author, and mention his/her email in the space provided. You may skip the phone and fax info should you want to.
3. Ensure the text's English is error free.
4. Ensure all figures and tables are legible. Mind the page margins; ensure tables and figures are within the margins.
5. Prepare your manuscript in both MS Word (.doc or .docx) AND .pdf files.
6. Send the manuscript's files as attachments to: info@mimec.me

The due is 24 April 2015 (Friday) at 11am Malaysia time (GMT+8)

This is the final chance if you wish to amend anything on your manuscript. Publishing date is by early July 2015. Your cooperation is highly appreciated. Should you have question, please direct it to me through email: denni@utm.my

Thank you and best wishes,

Denni Kurniawan AND Fethma M. Nor
Guest Editors, MIMEC2015 Proceedings in Procedia Engineering
Dear student researchers,

Please reformat your papers for MIMEC2015 to Procedia Manufacturing format. Email me the MS word file by this Saturday 25 April.

Thank you and best wishes,
Denni

PROMFG-MIMEC2015_Template.docx
5.9MB