River wetland ecological forecast and diversified development of university entrepreneurship education based on matching tracking

Xiao Liu \(^1\) · Xiaoping Shi \(^1\)

Received: 2 June 2021 / Accepted: 10 July 2021 / Published online: 9 August 2021
© Saudi Society for Geosciences 2021

Abstract
This paper proposes a matching pursuit algorithm, which improves the reconstruction speed by optimizing the least squares problem, thereby further simplifying the hardware implementation. Hardware implementation architecture of FPGA-based matching tracking algorithm is designed, which is composed of three main parts: calculation module, memory module, and control module, and Vivado software is used for extensive simulation experiments. River wetland ecological assessment and monitoring are based on the three basic types of river wetland ecology and proposes strategies for the development of river wetland ecological restoration models, water system restoration, and topographic and geological restoration. At the same time, the related repair techniques and methods are further summarized. In addition, the article discusses specific methods of applying restoration strategies to park construction based on wetland parks, and studies the protection and utilization of wetlands from the perspective of river types. Matching tracking also plays an important role in the training of university entrepreneurs. This article affirms the status of higher education in university entrepreneurship education and advocates the value of higher education in entrepreneurship. By analyzing the diversified development of China’s entrepreneurship education curriculum, we have discovered its existing problems. At the current stage of China’s entrepreneurship education, based on the experience of American entrepreneurship education curriculum reform, combined with the status quo of China’s diversified entrepreneurship education, there are new ideas for education curriculum reform. This paper mainly studies the ecological prediction of river wetland with matching tracking, and applies it to the research on the diversified development of university entrepreneurship education, which promotes the enthusiasm of university students to start their own businesses.

Keywords Matching tracking · River wetland ecology · University entrepreneurship education · Diversified development

Introduction
In this paper, the sparse basis and observation matrix are used to construct a matching pursuit matrix, and the sparse signal is projected in the matrix to obtain the observation vector of the signal. In the reconstruction stage, the CS matrix reconstructs the original signal from the observation vector through methods such as matching pursuit and convex optimization (Abdelaziz et al. 2019). These CS reconstruction algorithms are based on nonlinear calculations and are typical computationally intensive algorithms. In the early CS system, the original sample was recreated by offline calculation (De et al. 2020). However, with the development of the Internet of Things and artificial intelligence technologies, the application of wearable devices has gradually become popular, and the realization of high-speed matching and tracking of CS has become the focus of research in this field (Delice et al. 2017). In addition, river wetland ecosystems are usually adjacent to cities and play an important role in the stability and sustainable development of urban ecosystems (Dragonetti et al. 2017). However, with the rapid development of urbanization and the expansion of construction sites year by year, human wetland construction activities are increasingly eroding the ecological land of the river wetland, and ultimately worsening the natural ecological environment of the river.
wetland, endangering the survival of human beings (Huang et al. 2019). How to rebuild the river wetland ecology system, protecting river wetlands through the construction of wetland parks, effectively using river wetlands and creating a healthy and sustainable development environment for human beings are important topics of current research (Moayedi et al. 2020). University entrepreneurship education is designated by UNESCO as the third education pass, which has the same important status as academic and professional training (Moslehi and Haeri 2020). With the development of China’s socialist market economy, there is an increasing demand for entrepreneurial talents (Neighbors et al. 2017). With the current situation of social and economic development and the reform and development of education in China, there is an urgent need to develop entrepreneurial education for students (Nhu et al. 2020). Carrying out university entrepreneurship education and cultivating talents for enterprises with innovative personality is the core content of high-quality university education. It provides a new type of development labor force to meet the needs of the new century, which is a positive promotion measure (Şahin 2018).

With this in mind, we will study the current situation and long-standing problems of the management of entrepreneurship education for college students, and point out the problems of entrepreneurship education management, management system, management form, management content, and system issues in the development of entrepreneurship education (Taherkhani and Safabakhsh 2016). With the participation of multiple governance departments, the diversified development of education is not deep enough (Wang et al. 2019). How to rebuild the river wetland ecology system, protecting river wetlands through the construction of wetland parks, effectively using river wetlands and creating a healthy and sustainable development environment for human beings are important topics of current research (Moayedi et al. 2020). University entrepreneurship education is designated by UNESCO as the third education pass, which has the same important status as academic and professional training (Moslehi and Haeri 2020). With the development of China’s socialist market economy, there is an increasing demand for entrepreneurial talents (Neighbors et al. 2017). With the current situation of social and economic development and the reform and development of education in China, there is an urgent need to develop entrepreneurial education for students (Nhu et al. 2020). Carrying out university entrepreneurship education and cultivating talents for enterprises with innovative personality is the core content of high-quality university education. It provides a new type of development labor force to meet the needs of the new century, which is a positive promotion measure (Şahin 2018).

With this in mind, we will study the current situation and long-standing problems of the management of entrepreneurship education for college students, and point out the problems of entrepreneurship education management, management system, management form, management content, and system issues in the development of entrepreneurship education (Taherkhani and Safabakhsh 2016). With the participation of multiple governance departments, the diversified development of education is not deep enough (Wang et al. 2019). How to rebuild the river wetland ecology system, protecting river wetlands through the construction of wetland parks, effectively using river wetlands and creating a healthy and sustainable development environment for human beings are important topics of current research (Moayedi et al. 2020). University entrepreneurship education is designated by UNESCO as the third education pass, which has the same important status as academic and professional training (Moslehi and Haeri 2020). With the development of China’s socialist market economy, there is an increasing demand for entrepreneurial talents (Neighbors et al. 2017). With the current situation of social and economic development and the reform and development of education in China, there is an urgent need to develop entrepreneurial education for students (Nhu et al. 2020). Carrying out university entrepreneurship education and cultivating talents for enterprises with innovative personality is the core content of high-quality university education. It provides a new type of development labor force to meet the needs of the new century, which is a positive promotion measure (Şahin 2018).

Materials and methods

Data source

The meteorological data are mainly regional temperature and precipitation data, from the grid data set of the China Meteorological Data Network, which has China’s monthly surface temperature and precipitation values. This data set is based on relevant meteorological data from more than 2000 weather stations in China. After a series of checks on the quality of the data, the thin-plate spline method is used to interpolate the meteorological station data to obtain climate grid data with a spatial resolution of 0.5°. In addition, the DEM data is used to perform related fitting, which eliminates the influence of terrain conditions in different regions on temperature and precipitation to a certain extent, and can accurately describe the temporal and spatial distribution and change trend of temperature and precipitation in different regions of China.

The surface water storage data comes from NASA’s GLDAS hydrological model data. The time resolution of GLDAS covers daily, monthly, and annual value data, and the spatial resolution is 0.25°, 0.5°, and 1° data products. Studies have found that GLDAS has high accuracy and suitability in the Qinghai-Tibet Plateau and the source area of the Yellow River, so far, the only set of long-term serial data products that can better describe the surface conditions of the plateau. The data used in this article are GLDAS data products with a time resolution of January and a spatial resolution of 0.25° in the GLDAS dataset. Including changes in surface water reserves such as rainfall, snowfall, snowmelt, surface runoff, underground runoff, and evapotranspiration data.

Approximate orthogonal matching pursuit algorithm design

The Kth iteration of solving the least squares method uses the improved orthogonal decomposition algorithm to perform the inverse matrix operation as follows:

\[
C = DL^T
\]

\[
L_{ij} = \frac{1}{D_{jj}} \left\{ C_{ij} - \sum_{k=1}^{j-1} (L_{ik}L_{kj}D_{kk}) \right\}, \quad i > j
\]

\[
D_{ii} = C_{ii} - \sum_{k=1}^{j-1} \left(L_{ik}^2 D_{kk} \right)
\]

\[
L_{ij}^{-1} = -\sum_{k=j}^{j-1} L_{ik}L_{kj}^{-1}
\]

\[
C^{-1} = (L^{-1})^T D^{-1} L^{-1}
\]

In this paper, the simulation verification of the approximate OMP algorithm is carried out in MATLAB. The original signal is obtained by adding two sine waves of different frequencies. The frequency of one sine wave is increased from 20 to 119 Hz, and the other is increased from 150 to 159 Hz. The steps are both 1. The two signals can be combined to produce 1000 samples. These 1000 samples have 4000 largest columns.

Selection and system construction of river wetland ecological indicators

At present, domestic scholars mostly select PSR and its improved model for comprehensive evaluation of wetland
ecosystem health based on the index system method. The DPSIR model is an improved model of PSR, which was proposed by the OECD and promoted by the European Environment Agency. Because the DPSIR model can more effectively display the concept and structure of the system, it is widely used in the evaluation of resources and environment systems, as shown in Table 1.

Scientific indicators are the basis for assessing the health of wetland ecosystems. The health assessment of wetland ecosystems follows the principles of regional, systematic, dynamic, and functional and considers a regional economic development model based on wetland ecosystems and animal husbandry functions.

Results
Analysis of environmental characteristics of river wetlands

The driving force index refers to the initial driving force that causes the health changes of the alpine wetland ecosystem in the G area. The structure and function of wetland ecosystem are mainly affected by natural environment and human disturbance. The development and development of wetlands are largely restricted by local water source conditions. Global climate change affects the surface water cycle in the region and leads to the reorganization of water resources on the temporal and spatial scales, thereby affecting the development of wetlands. The alpine wetlands in the G area, which are located in the semi-humid zone, are affected by global warming, and the regional water reserves have declined, which have exacerbated the shrinkage and degradation of the wetlands to a certain extent.

Temperature is one of the basic elements of light and heat required to maintain various ecosystem temperature. The growth and development of plants and animals in an ecosystem require a suitable temperature. At the same time, as the temperature rises, plant transpiration and surface water evapotranspiration increase, thereby reducing the area’s surface water reserves, leading to shrinking lakes and rivers and seasonal changes in wetlands. According to the national temperature raster data released by China Meteorological Data Network, the annual average temperature change of the region is shown in Figure 1.

Precipitation is vital to maintaining the stability of the ecosystem, especially the wetland ecosystem, and is the main water supply in the region. It plays an important role in the growth of regional plants, the reproduction of animals, and the stability of wetland resources. Wetland is a complex ecosystem formed by the interaction of land and water. Precipitation is the driving factor for wetland development and determines the temporal and spatial distribution of wetland resources. In areas with abundant rainfall, rivers, lakes, swamps, and other water sources have a large amount of water supply. The water conditions required for the survival and development of animals and plants are sufficient, the biodiversity is rich, and the wetland ecosystem is healthy and stable, as shown in Fig. 2.

Water resource protection is one of the most important ecosystem functions of wetlands. The alpine wetlands in Gannan Tibetan Autonomous Region and western Sichuan are important water source protection areas for the Yangtze and Yellow Rivers. Among them, the Ruoergai wetland is called “River Tower.” In the rainy and dry seasons, the water supply in the upper reaches of the Yellow River reaches 29% and 45% respectively. The main functions of wetland water saving are as follows: prevent rainfall, increase soil infiltration, control evaporation, reduce surface runoff, and increase rainfall. These functions directly affect the changes in the water level of rivers and lakes mainly in the way of “time and space.” This paper uses GLDAS hydrological model data, which provides 36 land surface meteorological data including global land surface runoff, underground runoff, snowmelt, rainfall, and evapotranspiration, as shown in Fig. 3.

| Table 1 Alpine wetland ecosystem health evaluation index system in G area |
|---------------------------------|-----------------|-----------------|
| **Target layer** | **Criterion layer** | **Index layer** |
| The evaluation index system of alpine wetland ecosystem health in G area | Driving force factor | Temperature |
| | Stress factor | Precipitation |
| | Status indicator | The population density |
| | Influencing factors | Unit animal husbandry output |
| | Response factor | Water conservation capacity |
| | | Net primary productivity |
| | | Black-necked crane suitability |
| | | Landscape diversity |
| | | Wetland change rate |
| | | Landscape fragmentation |
The net primary productivity of vegetation is the basis of the material and energy cycle of the wetland ecosystem, and it can characterize the material production capacity of the wetland. Wetlands have high productivity, and the well-growing vegetation of wetlands provides a material basis for the growth and development of cattle and sheep. In addition, plants can absorb CO2 and release O2 through photosynthesis. Net primary productivity can reflect the changes of the wetland ecosystem to the natural environment, so the net primary productivity NPP can be used as a reflection of the state of the wetland ecosystem, as shown in Fig. 4.

Changes in the health of river wetland ecosystems

A scientific and reasonable indicator system is the prerequisite for the evaluation of ecosystem health. Based on the DPSIR model, an index system for evaluating the health of the alpine wetland ecosystem in G area was constructed, and a single index analysis was carried out from five levels of driving force, pressure, status, impact, and response. Based on the index system constructed in the previous article and the determined weights of each index, this chapter spatially superimposes each index to obtain a comprehensive evaluation value of the regional ecosystem health, and quantitatively evaluates the temporal and spatial pattern changes of the alpine wetland ecosystem health in Gannan and northwestern Sichuan, reveal the health problems of the regional wetland ecosystem, put forward the priority order of regional wetland protection, and provide a basis for the management and protection of the regional alpine wetland.

Area G is an ecologically fragile area of the source of the Yellow River. Based on the Alpine Wetland Health Evaluation Index System constructed by the DPSIR system model, this paper quantitatively evaluates the ecosystem health of wetlands and potential wetlands in Gannan and northwestern Sichuan, as shown in Fig. 5.

According to the 10 index factors selected by the alpine wetland health evaluation index system, they are spatially
superimposed on the basis of standardization. Among them, population density, animal husbandry output per unit area, average patch area, landscape diversity index, and wetland change rate are all the indicators at the county scale, are transformed into raster data according to the administrative boundaries of G area, and are superimposed with the annual average temperature, annual precipitation, surface water storage, net primary productivity, and black-necked crane habitat suitability indicators, and are calculated according to the weight of each indicator. The comprehensive score of ecosystem health in G area shown in Table 2 below, because the wetland change rate is calculated based on the land use data of the two periods before and after.

According to Fig. 6, the health level of the alpine wetland ecosystem in G area has undergone major changes. With the change of time, the fluctuation of the area in the high-health level area decreased, from 11169 to 2503 km², a decrease of 77.59%. The high-health level areas dominated by N County are gradually converted to medium-health level, and the landscape structure of the high-health level areas is gradually fragmented. The area in sub-healthy and diseased areas is gradually increasing. The previous health status was dominated by low health, which accounted for 49.98%. In 2015, the sub-health and diseased areas of the regional ecosystem were 47001 km² and 47955 km², respectively, accounting for 77.52% of the regional area, except for the improvement in 2018. The health level of regional ecosystems declined severely in the year. On the whole, the health of the alpine wetland ecosystem in G area is relatively low. In 2019, high-health areas accounted for 2.05%, medium-health areas accounted for 5.74%, low-health areas accounted for 14.69%, sub-healthy areas accounted for 38.37%, and diseased areas accounted for 39.15%.

With reference to wetland-related standards (GB-T 24708-2009; LY T 2794-2017) and the classification standards of existing scholars in the system health research of G area, combined with the slope trend analysis results based on the DPSIR model, the alpine wetland, the ecosystem health level is divided into 5 levels, as shown in Fig. 7.

It can be seen from Table 3 that the area where the ecosystem health of the alpine wetland in area G has deteriorated is larger than the area where the improvement trend is. The area
where the health of the ecosystem is basically unchanged is the most, accounting for 46.73%. The only area where the health of the ecosystem has improved is 11210 km², accounting for 9.16% of the area, of which areas with obvious improvement are less positive, accounting for only 0.02%.

Analysis of ecological prediction results of river wetland

Based on the prediction results of the four species distribution models, it is found that the suitable habitats for black-necked cranes are mainly located in N County, M County, H County, and L County. N County is the main suitable distribution area for black-necked cranes. In the distribution of black-necked cranes in the four models, the geographical centers are all located in Tangke Town, N County; and their spatial distribution has a certain degree of consistency. Among them, the black-necked crane in the TG model has the smallest suitable habitat range, especially in the W township and Z town of N County, as well as the black-necked crane in M and A counties. The distribution habitat has been significantly reduced. The prediction results of the RF and ME models show similar spatial distribution. The prediction results of the black-necked crane distribution area of the four models are shown in Fig. 8.

It can be seen from Table 4 that the AUC values of the four models are significantly greater than the AUC value of the random distribution model (0.5), reaching an excellent level (AUC> 0.8), and the prediction accuracy of the model is in the order: RF> TG> ME> CART; 4 The TSS value of the two models is 0.514~0.926, and the prediction accuracy of the model is in the order: RF> CART> ME> TG. Except for the general accuracy of the TG model, other models have excellent prediction accuracy; the Kappa value is 0.527~0.701, and the prediction accuracy of the model is in the order. It is: RF> TG> ME> CART; only the RF model has excellent accuracy, and other models only perform well.
Discussion

The status quo of the curriculum of entrepreneurship education in Chinese universities

Entrepreneurship training in China started with theoretical research, and basic education on entrepreneurship education project activities has been carried out in the basic education stage. Although some results have been achieved in the practice of entrepreneurship education, the results are not extensive. University students organized the first “Entrepreneurship Planning Competition,” which is very important to promote college students’ entrepreneurial spirit and stimulate their interest in entrepreneurship. It is this kind of competition that has stimulated other Chinese universities’ interest in entrepreneurial activities (Xue et al. 2018). China hosted the “National Conference on Educational Work.” College students from various colleges and universities participated in this conference to promote students’ entrepreneurial spirit and entrepreneurial ability, and called for support for students from all walks of life to start their own businesses (Yuan et al. 2019). The Ministry of Education has established nine “entrepreneurship education” pilot universities and successively launched a series of courses on “entrepreneurship.” Rarely, some colleges and universities also provide funds for the publication of entrepreneur textbooks, which is a powerful indicator of the implementation, development, and progress of entrepreneurship education in China. In China, the development of entrepreneurship training seems to be relatively fast.

Scholars have basically reached a consensus on the main model of the current Chinese entrepreneur education curriculum: they usually believe that the first classic model is based on class training (Ye et al. 2020). The main focus of this model is learning ability. Through the holding of some competitions, entrepreneurship education, the launch of the lecture, established a platform to guide entrepreneurial behavior and practice, and enabled students to develop
entrepreneurship through the training model, and at the same time improve the overall quality of students in the process of knowledge building. The second classic model reflects the practice of entrepreneurship education (Zhang and Zhe 2019). Under this model, the school mainly adopts the following measures, such as the formation of entrepreneurial teams, the establishment of entrepreneurial parks for students, and the establishment of company funds to improve students’ business knowledge and related skills. The third is comprehensive training to become an entrepreneur. This model is the absorption and integration of the first two models (Zhang et al. 2019a). It mainly focuses on cultivating students’ basic skills to impart their professional knowledge in entrepreneurship education and provide students with relevant support, such as technical consulting and venture capital. A “pilot college” is adopting these three models, each with its own focus (Zhou and Cao 2020).

The state and the government provide strong support for the development of entrepreneurship education to encourage the localized development of entrepreneurship education courses. China has formulated policies and regulations to protect students’ self-employment. The national entrepreneurship education curriculum system is not perfect, and there is still a lot of room for development (Zech et al. 2016). Further efforts are needed. These problems are because the start of China’s entrepreneurship education has been delayed. With the development of entrepreneurship education in Chinese universities, the Ministry of Education has not yet formulated specific and detailed entrepreneurship education courses, and has not incorporated the establishment of an education curriculum system into its national curriculum. As a result, there is no uniform standard for educational development, and regional training is inconsistent. From the current point of view, the development of entrepreneurship education in
China lacks a unified curriculum, no clear goals, no classic teaching materials, and there are many drawbacks (Zhang et al. 2020).

Problems in curriculum construction of entrepreneurship education in Chinese universities

The concept of entrepreneurship education is relatively backward, and there is no full understanding of entrepreneurship education.

Due to the delay in the start of entrepreneurship training in China, so far, there are only a few universities with better conditions to establish entrepreneurship training courses in China, and they are still at the research preparation stage.

People, schools, and scholars in Chinese society attach great importance to entrepreneurship education, but China is still in its infancy, and has their own views on the meaning, characteristics, goals, and practices of entrepreneurship education. So far, there is no standardized national student who can understand it. A unified and comprehensive concept from the school’s point of view—the entrepreneurship courses offered by universities will only increase the number of students. They are purely created for employment, unaware of their particularity, and they did not distinguish between entrepreneurship and high-quality education (Zhang et al. 2019b). The purpose of studying entrepreneurship education, teachers in universities are not to convey entrepreneurial spirit to students, but simply to cultivate entrepreneurs. They only focus on results rather than processes. Secondly, as far as society as a whole is concerned, few people realize the importance of entrepreneurship education in the era of knowledge economy. In the process of China’s economic development, most people ignore the feasibility of individual entrepreneurship and the status of small and medium-sized enterprises, and still put employment first. Due to the lack of support for entrepreneurial practice activities in various disciplines in China, coupled with people’s shallow understanding of entrepreneurial concepts, it is difficult for the entrepreneurship courses of Chinese universities to create their own systems. So far, most courses in China have no special features and are copied from abroad.

Grade	Comprehensive evaluation value	Ecosystem health
Class I	0.50–1.00	The wetland ecosystem can maintain a very high state of health, its organizational structure is complete and reasonable, its ecological functions are perfect, the degree of landscape fragmentation is very low, it has strong stability and vitality, and can provide an excellent habitat for black-necked cranes and other wetland organisms. Conditions, the natural environment and human disturbances have little pressure, and they have strong sustainable development capabilities.
Class I	0.40–0.50	The wetland ecosystem is in good health, its stability and vitality are strong, the system’s organizational structure is more reasonable, its ecological functions are relatively complete, and the degree of landscape fragmentation is relatively low. It can provide good habitat conditions for wetland creatures such as black-necked cranes and natural environment. The pressure caused by human interference is small, and it is in a state of sustainable development.
Level II	0.30–0.40	The level of health of wetland ecosystems is average. The natural conditions of the ecosystem are affected, and the structure and functions of the ecosystem have undergone certain changes. The fragmentation of wetland landscapes has intensified, and the sensitivity to external pressure has become stronger. It can still maintain the protection of wetland organisms such as black-necked cranes for survival and development, wetland ecosystem can be maintained.
Class IV	0.20–0.30	The wetland ecosystem has been disturbed and destroyed to a certain degree; its stability and vitality are very low; the organizational structure and ecological functions have been degraded, and there are many ecological abnormalities.
Class V	0.00–0.20	The wetland ecosystem is severely damaged; the organizational structure is unreasonable; the ecological function is lost; the landscape is seriously fragmented, and ecological problems occur frequently.

Fig. 6 Changes in the health level of the alpine wetland ecosystem
The development of entrepreneurial textbooks and courses lags behind

Entrepreneurship training courses require a high degree of practicality and are difficult to develop. In addition, most entrepreneur teachers in Chinese universities only learn the theory itself, not the practice as an entrepreneur. Therefore, these entrepreneurial educators lack the motivation to develop entrepreneurial education courses, and the development of China’s entrepreneurial education courses is still in its infancy, relatively scattered, and there is no unified standard or requirement.

So far, the most widely used textbooks in Chinese universities are those published by the International Labor Organization and processed locally. SYB and SIYB textbooks are the products of international cooperation and exchanges in the field of entrepreneurship. They promote the development of Chinese textbooks and entrepreneurship courses, and bring practical experience in the training of mature foreign entrepreneurs. The vigorous development of entrepreneurial education in universities determines the development of entrepreneurial education in China.

China lacks a comprehensive understanding and understanding of the establishment of entrepreneurship education courses; the content of the courses provided is too monotonous, and the breadth and depth of entrepreneurial knowledge taught are insufficient. In addition, the courses offered were too rigid and did not take into account the individual differences between students in humanism. Some schools are ready to start entrepreneurship courses and copy the content of employment research. The educational content is not innovative enough to motivate students to learn. Entrepreneurship education curriculum implementation is not enough.

In response to this situation, universities have recognized the importance of high-quality teachers in entrepreneurship education courses and are improving university teacher education, such as participating in entrepreneurship education on and off campus. Although the development of entrepreneurship education has received
widespread attention in all disciplines, the number and quality of teaching teams established for entrepreneurship education courses are far from meeting the needs of today’s society.

Entrepreneurship education curriculum setting support and guarantee system is not sound

From a macroeconomic perspective, the country’s entrepreneurship training is a unified project. From the perspective of the development of American entrepreneurship education, its development is not only a major issue for universities, but also a major responsibility of all sectors of society. Entrepreneurship education is not only a social phenomenon, but also has its own social qualities. Therefore, the development of entrepreneurship training is inseparable from the system of social support and security.

The first is the difficulty of financing. From the current point of view, the shortage of funds is a major factor that prevents college students from developing their own careers. Students often start their own careers without stable financial support and abandon their path until they can no longer continue their studies. Since today’s society does not attach importance to entrepreneurship courses, even countries and universities do not attach importance to the establishment of entrepreneurship courses, which is why the educational funds allocated to them are low. The second is the lack of an effective course management system and evaluation mechanism. Currently, entrepreneurship training courses offered in Chinese universities are usually part of employment

Fig. 8 The prediction results of the four models.
counseling courses, and there is no systematic management within the school. Most courses are offered on a semester or class basis and are usually considered as elective courses. Only a few professional departments investigate or implement this. When evaluating the course, everyone also expressed their opinions. The lack of a unified standard made the evaluation unreasonable. It was still in the inspection stage and the evaluation did not play its original role. Third, there is a lack of support for national standards and regulations. Since China’s entrepreneurship education has just begun, the country pays little attention to the establishment of entrepreneurship education courses, laws, and guidelines to ensure that the development of entrepreneurial education courses in universities has not yet been released, and its development is severely restricted.

Strategies for the diversified development of university entrepreneurship education

Fully understand the value of the times of entrepreneurship education

Entrepreneurship education is a new educational concept and model, which began in developed countries such as Europe and the USA and has been popularized for many years. But it started late in China, and it is still a new product that has just been accepted and tried by China. However, so far, the development of Chinese entrepreneurship is still on the edge of “periphery” and “form.” Most of the current entrepreneurship training development in China follows this trend. University scholars and managers who provide entrepreneurial education courses believe that entrepreneurship education is a new educational concept and an inevitable evolution. They believe that it must be opened in China. However, in-depth research including the actual situation in China has not been conducted, and major universities in China have not paid enough attention to this. It is believed that the entrepreneurial education courses offered by most schools in China only explain how to conduct business, hold entrepreneurial competitions, or provide employment-related courses. On the surface, they only imitated the American entrepreneurship curriculum, and did not follow the local characteristics to move on.

Constructing an experience-based entrepreneurship education curriculum system

Entrepreneurship education is a new international education concept, and countries all over the world are gradually paying attention to it. Entrepreneurship plays an important role in promoting economic growth, solving social employment relations, accelerating technological innovation, and improving productivity development, which has been recognized by more and more scientists. In this period of the development of the knowledge economy, it is important to cultivate the innovative spirit of students and the entrepreneurial spirit of entrepreneur education, as the ability to develop individual independent entrepreneurship. Therefore, entrepreneurship education must be universal, and every university in China must establish entrepreneurship education courses related to local practices. Due to the multi-level nature of the daily standards of entrepreneurship education, the curriculum system of entrepreneurship education should include not only specialized courses, activity courses, and practical courses, but also courses for developing practical skills and courses for imparting entrepreneurial knowledge. Entrepreneurship education courses must be experiential so that students can seek entrepreneurial thinking and effectively improve their entrepreneurial skills.
Establish a guarantee system for entrepreneurship education courses

The importance of the curriculum cannot be emphasized enough to achieve the educational goals of university entrepreneur training. Practice has shown that the training content and courses for becoming an entrepreneur are not difficult. The challenge is to open courses to make it run smoothly and produce good results. Therefore, establishing a security system for entrepreneurship education courses is of great significance to the development of entrepreneurship education in China. In order to ensure the development of entrepreneurship education in China, obtaining financial support for entrepreneurship education, improving the construction of entrepreneurship education platforms, strengthening political support for entrepreneurship education courses, and an education course evaluation system to improve entrepreneurship capabilities are needed.

Conclusion

Based on the model, this paper focuses on the study of G area according to the unique structure and functional characteristics of the regional wetland ecosystem, establishes an index system for assessing the status of the G area ecosystem, studies the health status of G area, and proposes the spatio-temporal pattern and change trends to analyze the health of the ecosystem. According to land use data, the landscape pattern indicators and habitat suitability of black-necked cranes are analyzed in detail, and the landscape index is analyzed according to the weight ranking of the indicator system to evaluate the health of alpine wetlands. The temporal and spatial distribution pattern and landscape pattern are used to analyze the changes of alpine wetlands, use representative species of alpine wetlands to assess the habitat suitability of representative species of alpine wetlands, and use ecological methods to assess the health status of alpine wetlands. With the renewal of the concept of international education, Chinese universities have also entered a new concept of entrepreneurial education. The most important of these concepts is the establishment of entrepreneurship training courses. According to China’s national conditions, it is necessary to develop university entrepreneurship that is compatible with the actual development of Chinese universities. On the one hand, education courses can promote China’s social and economic development, and on the other hand, it can improve the skills and competitiveness of schools. This article introduces a brand-new educational concept with the purpose of promoting the overall growth and lifetime growth of students. More importantly, the opening of entrepreneurship courses is closely related to the quality of university personnel training. This article summarizes the entrepreneurial education of American universities from the perspective of entrepreneurship education curriculum reform, and summarizes the development trend of American university entrepreneurship education curriculum reform.

Funding This study is funded by the Hebei Social Science Fund Project “Research on the Cultivation of New Types of Cultural Bearers with the Spirit of Yanzhao Culture” (201803030312).

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdelaziz R, Merkel BJ, Zambranobigiarini M et al (2019) Particle swarm optimization for the estimation of surface complexation constants with the geochemical model PHREEQC-3.1.2. Geosci Model Dev 12(1):167–177
De A, Wang J, Tiwari MK et al (2020) Hybridizing basic variable neighborhood search with particle swarm optimization for solving sustainable ship routing and bunker management problem. IEEE Trans Intell Transp Syst 21(3):986–997
Delice Y, Aydogan EK, Ozcan U et al (2017) A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing. J Intell Manuf 28(1):23–36
Dragonetti G, Comegna A, Ajeed A et al (2017) Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements. Hydrol Earth Syst Sci 22(2):1509–1523
Huang Y, Li JP, Wang P et al (2019) Unusual phenomenon of optimizing the Griewank function with the increase of dimension. J Zhejiang Univ Sci C 20(10):1344–1360
Moayedi H, Moatamediyani A, Nguyen H et al (2020) Prediction of ultimate bearing capacity through various novel evolutionary and neural network models. Eng Comput 36(2):1–17
Mosleh F, Haeri A (2020) A novel hybrid wrapper–filter approach based on genetic algorithm, particle swarm optimization for feature subset selection. J Ambient Intell Humaniz Comput 11(3):1105–1127
Neighbors C, Cochran ES, Ryan K et al (2017) Solving for source parameters using nested array data: a case study from the Canterbury, New Zealand Earthquake Sequence. Pure Appl Geophys 174(3):875–893
Nhu V, Hoang N, Duong V et al (2020) A hybrid computational intelligence approach for predicting soil shear strength for urban housing
construction: a case study at Vinhomes imperia project, Hai Phong city (Vietnam). Eng Comput 36(2):1–14

Şahin AU (2018) A particle swarm optimization assessment for the determination of non-Darcian flow parameters in a confined aquifer. Water Resour Manag 32(2):751–767

Taherkhani M, Safabakhsh R (2016) A novel stability-based adaptive inertia weight for particle swarm optimization. Appl Soft Comput 38:281–295

Wang XL, Lai JX, Games RS, Luo YB (2019) On the support system for tunnelling in squeezing ground of Qingling-Daba mountainous area: case study from soft rock tunnels. Adv Civ Eng 8682535. https://doi.org/10.1155/2019/8682535

Xu Q, Li H, He Y, Liu F, Peng D (2017) Comparison of data-driven models of loess landslide runout distance estimation. Bull Eng Geol Environ 78(2):1281–1294

Xue YG, Zhang XL, Li SC, Qiu DH, Su MX, Li LP, Li ZG, Tao YF (2018) Analysis of factors influencing tunnel deformation in loess deposits by data mining: a deformation prediction model. Eng Geol 232:94–103

Ye C, Wei J, Wu T (2020) Evaluation of urbanization level from the perspective of epidemic situation: a case study of two major urban agglomerations in China. J Phys Conf Ser 1621(1):012107 (9pp)

Yuan JQ, Chen WZ, Tan XJ, Yang DS, Wang SY (2019) Countermeasures of water and mud inrush disaster in completely weathered granite tunnels: a case study. Environ Earth Sci 78(18):576

Zech A, Muller S, Mai J et al (2016) Extending theis’ solution: Using transient pumping tests to estimate parameters of aquifer heterogeneity. Water Resour Res 52(8):6156–6170

Zhang S, Zhe LI (2019) Simulation of urban rainstorm waterlogging and pipeline network drainage process based on SWMM. J Phys Conf Ser 1213(5):052061 (9pp)

Zhang H, Lu C, Yang K, Duan L (2019a) Evaluation on intensive use of urban land based on PSR model taking Henan province as an example. J Phys Conf Ser 1419(1):012016 (9pp)

Zhang LM, Wu XG, Liu WL, Skibniewski MJ (2019b) Optimization strategy to mitigate tunnel-induced settlement in soft soils: simulation approach. J Perform Constr Facil 33(5):04019058

Zhang X, Nguyen H, Bui X et al (2020) Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost. Nat Resour Res 29(2):711–721

Zhou W, Cao F (2020) Effects of changing spatial extent on the relationship between urban forest patterns and land surface temperature. Ecol Indic 109(Feb.):105778.1–105778.8