Interacted QTL Mapping in Partial NCII Design Provides Evidences for Breeding by Design

Su Hong Bu1☯, Zhao Xinwang2☯, Can Yi1, Jia Wen1, Tu Jinxing2, Yuan Ming Zhang1,2*

1 State Key Laboratory of Crop Genetics and Germplasm Enhancement / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China, 2 Statistical Genomics Lab, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China

☯ These authors contributed equally to this work.
* soyzhang@njau.edu.cn

Abstract

The utilization of heterosis in rice, maize and rapeseed has revolutionized crop production. Although elite hybrid cultivars are mainly derived from the F1 crosses between two groups of parents, named NCII mating design, little has been known about the methodology of how interacted effects influence quantitative trait performance in the population. To bridge genetic analysis with hybrid breeding, here we integrated an interacted QTL mapping approach with breeding by design in partial NCII mating design. All the potential main and interacted effects were included in one full model. If the number of the effects is huge, bulked segregant analysis were used to test which effects were associated with the trait. All the selected effects were further shrunk by empirical Bayesian, so significant effects could be identified. A series of Monte Carlo simulations was performed to validate the new method. Furthermore, all the significant effects were used to calculate genotypic values of all the missing F1 hybrids, and all these F1 phenotypic or genotypic values were used to predict elite parents and parental combinations. Finally, the new method was adopted to dissect the genetic foundation of oil content in 441 rapeseed parents and 284 F1 hybrids. As a result, 8 main-effect QTL and 37 interacted QTL were found and used to predict 10 elite restorer lines, 10 elite sterile lines and 10 elite parental crosses. Similar results across various methods and in previous studies and a high correlation coefficient (0.76) between the predicted and observed phenotypes validated the proposed method in this study.

Introduction

Genetic mating design plays an important role in crop genetics and breeding. In hybrid breeding, this design was widely used to evaluate general combining ability of parents and specific combining ability of the F1 between two parents. Therefore, many elite hybrid cultivars were bred and utilized in crop production. In classical quantitative genetics, mating design is one of...
main components. It provided a lot of information about two-order genetic parameters for quantitative traits. However, only the collective effects of all the polygenes were estimated. The introduction of molecular markers has facilitated the mapping of quantitative trait loci (QTL) in numerous species, and substantial progress has been achieved in bi-parental segregation population but not in the mating design. As we know, North Carolina (NC) design II has been considered to be one of the most powerful mating designs for combining ability and heterosis analyses, and its application has expanded into many crops. Therefore, there is a critical need for in-depth study of the methodology for mapping QTL in this design.

During the past several decades, many attempts have been made to detect QTL for quantitative traits in bi-parental segregation populations. For example, single marker analysis [1], two-marker analysis [2], interval mapping [3], composite interval mapping [4,5], multiple interval mapping [6], Bayesian method [7,8], and Bayesian-based likelihood approach [9–11]. However, this bi-parental segregation population is rarely used alone in commercial breeding, and therefore the results from these single-cross experiments have limited roles in breeding practice [12]. To overcome this shortcoming, crop cultivar population was used to conduct genome-wide association study (GWAS) [13,14], and the main and interacted effects of detected QTL were used to carry out breeding by design [14–16]. However, this approach is useful only for inbred line breeding but not for hybrid breeding, because only additive and additive-by-additive (aa) effects [14] but not dominant-related effects [17–21] were estimated in the above GWAS.

Up to now many mating designs have been proposed, such as four-way cross [22], triple testcross (TTC) [23], diallel design [24,25], and NC mating design [26]. Current studies on the topic focus mainly on three aspects. The first is the classical genetic analysis [27–29], for example, combining ability analysis [30]. These analyses dissected the genetic foundation of quantitative traits, which provided useful information for crop breeding. However, the position and effect of individual QTL are unclear. To answer this question, the QTL mapping approach is available, which is the second main area of the work on the mating design. In four-way cross, He et al. [12] extended the main-effect QTL mapping of Xu [31] into the interacted QTL mapping. In TTC, Z1, Z2 and Z3 were used to detect augmented additive, augmented dominant and dominance-by-additive (da) interaction effects, respectively, in Kusterer et al. [32] and Melchinger et al. [33], and to unbiasedly estimate all the main and epistatic effects in He et al. [34]. In the NCIII, pair mean Z1 and pair difference Z2 were used to detect augmented additive effect and augmented dominant effect in Melchinger et al. [35], and epistasis in Garcia et al. [36] and He et al. [37]. In addition, Rebaï & Goffinet [38] and Lenarcic et al. [39] developed a general regression-based method and Bayesian approach, respectively, for QTL detection in diallel design; Li et al. [40] and Wang et al. [41] proposed analysis of variance approach for the detection of main and interacted QTL of quantitative and endosperm traits in NCIII and TTC, respectively; and Reif et al. [42] used TTC with near-isogenic lines as base population to detect epistasis. However, relatively little has been known about NCII mating design. Recently, different base populations along with several testers were used to dissect the genetic foundation of heterosis using QTL mapping of GCA and SCA, such as BC1F8 [43], RIL [44] and introgression lines [45,46]. More recently, the comparison across different base populations was conducted as well [47]. However, these studies are based on main-effect QTL model. Finally, the mating design has been adopted in crop breeding, for example, four-way cross in maize breeding, and NCII mating design in rice and maize hybrid breeding. However, genetic analysis and crop breeding have been often performed separately.

In hybrid breeding, one group of parents is crossed with another group of parents, namely NCII mating design, in order to select elite hybrid cross. However, partial (or unbalanced) crosses are often conducted in breeding practice. In this study, partial F1 hybrids along with
their parents, a partial NCII mating design, were used to conduct genetic analysis. Here all the
main and interacted effects were included in one full model. Two-dimensional interacted effects
between each pair of QTL were considered as interacted term. If the number of effects in the
model was 10 times more than sample size, two groups of extreme individuals were used to test
which effects were related to the trait. All the selected effects were further shrunk by empirical
Bayesian, so significant effects could be identified. A series of Monte Carlo simulations was per-
formed to validate the new method. The validated approach was used to dissect the genetic
basis of oil content in rapeseed in partial NCII mating design. Based on the above information,
novel parents and cross combinations would be predicted.

Results

Effect of QTL heritability on mapping QTL

In the first simulation experiment, the effect of QTL heritability on QTL mapping in the NCII
population was evaluated by letting QTL heritability be set as 0.02, 0.05 and 0.08. Note that the
number of effects in the full model is 84,050, which is 116 times more than sample size. At this
situation, high throughput QTL-effect screening approach described in this study was adopted.
The results are shown in Fig. 1 and Supporting Information S1 Table. A general trend was
found. In other words, the power of QTL detection increases as QTL heritability increases. Rel-
atively small estimates for the average and standard deviation of absolute bias between estimat-
ed and true effects as well as false positive rate (FPR) were observed in the above three
situations. In the same QTL heritability, the power is higher for main-effect QTL than for inter-
acted QTL. In addition, the lowest power in the detection of the dominant-by-dominant (dd)
interaction is observed in all the situations. The reason may be due to the low proportion of
heterozygous genotypes in the mapping population.

Effect of sample size on mapping QTL

In the second simulation experiment, we explored the effect of sample size on QTL mapping
by letting sample size be set as 400, 500 and 600. Note that the proportion of the paternal lines,
maternal lines and their hybrids was set at 1:1:2. The others were the same as those in the first
simulation experiment. The results are shown in Fig. 2 and Supporting Information S2 Table.
A general trend was also found, for example, the power of QTL detection increases as sample
size increases. Relatively small estimates for the average and standard deviation of absolute bias
between estimated and true effects as well as the FPR were found in the above three
situations.

Effect of population structure on mapping QTL

In the third simulation experiment, we investigated the effect of population structure on QTL
mapping. The results are shown in Fig. 3 and Supporting Information S3 Table. If all the pa-
rents were viewed as mapping population, only additive and aa effects could be detected. It is
reasonable. This is because only homozygous genotypes were included in the mapping popula-
tion. If all the F1 hybrids were viewed as mapping population, additive and dominant effects
could be identified with satisfactory powers. Although all kinds of interacted effects could be
detected, their powers were not high, with the highest power for aa effect and with the lowest
power for dd effect. Meanwhile, the average and standard deviation of absolute bias between esti-
inated and true effects were larger for dominant-related effects than for additive and aa ef-
dects. If parents and F1 hybrid were mixed with the same proportion, their powers in the
detection of aa, additive-by-dominant (ad) and da effects were significantly higher than those
in the only F1 hybrids.
Mapping QTL for oil content in *Brassica napus*

One *Brassica napus* breeding dataset from Professor Jinxing Tu at Huazhong Agricultural University was used for the further demonstration. The dataset was collected from a partial NCII breeding design that contained 298 sterile lines, 143 restorer lines and their 284 F$_1$ hybrids. The phenotype analyzed was oil content. A total of 205 markers were used in the analysis. The total number of effects included in the genetic model is 84,050. Therefore, high throughput QTL-effect screening approach described in this study was adopted.

In the first step, 72 parental lines or F$_1$ hybrids with the highest oil content and 72 parental lines or F$_1$ hybrids with the lowest oil content were selected from the mapping population. Using the two groups of individuals, χ^2 test of independence was carried out to identify whether one marker under consideration was associated with the trait. In the second step, all the markers associated with the trait were included in the genetic model of the full mapping population. Therefore, association mapping could be conducted. All the results were listed in Table 1.
8 main-effect QTL and 37 interacted QTL were found to be associated with oil content, and explained 17.74% and 42.27% of phenotypic variance, respectively. Of these QTL, the proportion of phenotypic variance explained by each QTL varied from 0.52% to 4.12%, the LOD score varied from 2.13 to 14.04, and most QTL were additive (7 QTL) or aa (25 QTL). A few dominant-related QTL might be due to the low proportion (only 17.99%) of heterozygous genotypes in the mapping population. Correlation coefficient of 0.76 between the estimated genotypic value and the observation supported the proposed approach in this study.

To further confirm the above results, three other approaches, including EBLASSO [11], genome-wide efficient mixed-model association study [48] and regression-based association study [49], were used to re-analyze this dataset. All the results were showed in Table 1. Among all the main-effect QTL, three were identified simultaneously by all the four methods and seven were detected by at least three approaches. Among all the interacted QTL, one was detected simultaneously by all the four methods, eight were identified by at least two approaches; and 14 were partially confirmed because one same locus and two linked loci associated with these interacted QTL were found.
Locus	Marker	Position (marker)	Allelic frequency	Bulked segregation analysis	Association mapping	Similar results with other methods	Similar results in previous studies
1	a	CB10597C	0.54	Locus 1 17.46 0.0002	3.79	0.2619 1.19	✓
2	A	Bo3b	0.40	Locus 2 15.52 0.0004	3.13	−0.2680 1.10	✓
3	a	x2y2b	0.73		11.39	0.5697 3.99	✓
4	a	BnGMS488A	0.86		9.27	0.5831 2.77	✓
5	a	BRAS078A	0.05		14.04	−1.2047 4.12	✓
6	a	OI10-C01	0.84		7.60	−0.4916 2.22	✓
7	a	Bo2d	0.64		4.00	−0.2852 1.28	✓
8	d	CB10597C	0.54		4.43	−0.5672 1.07	✓
9	aa	CN64xSA63a	0.26		18.42	−0.3402 1.77	✓
10	aa	BRAS063axNa10-C06A	0.29		12.68	−0.2095 0.68	✓
11	aa	Bo3axCB10288B	0.61		12.43	0.3888 2.10	✓
12	aa	BnGMS175xAxRa2-G08A	0.59		12.09	−0.3124 1.42	✓
13	ad	CB10431AxCB10234A	0.82		11.86	0.6691 1.22	✓
14	aa	20-1cxRa3-E05D	0.34		11.49	0.2579 1.01	✓
15	aa	BRAS014BxNa14-H11B	0.46		11.18	0.2708 1.10	✓
16	da	CB10139BxBnGMS3B	0.39		10.80	0.7397 1.01	✓
17	aa	CB10229AxRa3-E05A	0.63		10.70	−0.3869 2.15	✓
18	aa	CB10036BxCB10343A	0.25		12.29	0.2794 1.18	✓
19	aa	CN75bxCB10373B	0.67		12.28	0.3431 1.61	✓

(Continued)
Table 1. (Continued)

QTL Type	Position (marker)	Locus 1	Locus 2	χ^2	P-value	LOD	Effect	$r^2(\%)$	EBLASSO	GEMMA	Regression-based	CV	Similar results in previous studies	
20 aa	CN1b×Ra2-E12B	0.67	0.64	10.83	0.0045	6.46	-0.3794	1.87			*	✓	EM18B1G1-405-SA7/PM63-298 [55]	
21 aa	CN64d×20-1b	0.58	0.46	10.65	0.0049	3.62	0.2597	1.00			*			
22 aa	Oi12-D05B×BnGMS385B	0.60	0.82	10.55	0.0051	3.49	-0.3293	1.07			*			
23 aa	MR119dxNa12-A02B	0.46	0.56	10.16	0.0062	5.16	-0.3079	1.44	✓	✓	✓	✓	ME16/EM17c×e12353b [54] Na12-A02 [51]	
24 da	E5axNa14-H11A	0.46	0.74	9.19	0.0101	2.56	0.8083	0.76			*			
25 ad	xy2bxCB10343B	0.40	0.50	9.19	0.0101	7.35	1.7274	1.83	✓					
26 aa	MR097xOi12-F02B	0.81	0.65	9.03	0.0110	5.66	0.3232	1.65	✓					
27 aa	CB10493C×BnGMS340B	0.15	0.46	8.78	0.0124	3.05	0.2502	0.96	✓	✓	✓	✓	sORG49a [50]	
28 da	CN64d×Oi11-C02A	0.33	0.80	8.50	0.0143	3.05	-0.6749	0.98	*	*				
29 aa	32_1xNa10-C06B	0.82	0.54	11.58	0.0031	4.61	0.2997	1.37	*					
30 dd	Ra2E12×CB10065B	0.22	0.90	9.60	0.0019	3.00	1.1079	0.78						
31 aa	BnGMS352B×Ra3-E05C	0.87	0.47	9.18	0.0102	2.63	-0.2047	0.67	*					
32 da	CB10045A×Ra3-E05B	0.22	0.15	9.01	0.0111	4.09	-0.8761	1.39	*					
33 dd	B02dxBnGMS175A	0.62	0.43	9.00	0.0027	2.13	-0.5142	0.52	*	*	*			
34 aa	Bo3a×CB10065A	0.68	0.05	12.45	0.0020	2.65	0.2238	0.77	*	*				
35 aa	BRMS-036c×CB10364B	0.13	0.96	11.40	0.0033	3.35	-0.2488	0.95	✓	*			BRMS036 [50] CB10364 [54] H00401-5×BnGMS312 [51]	

QTL Mapping in Partial NCII Provides Evidences for Breeding by Design
Locus	Type	Position (marker)	Allelic frequency	Bulked segregation analysis	Association mapping	Similar results with other methods	Similar results in previous studies				
					LOD	Effect	r^2(%)	EBLASSO	GEMMA	Regression-based	CV
36	ad	CB10493C×BnGMS3B	0.94	0.61	9.60	0.0082	2.41	0.6348	0.96	*	
37	da	CN46b×CB10597C	0.29	0.46	8.00	0.0183	2.89	0.7535	0.81	Ra2E04–S13M08-1-70 [56]; e8m17-309–Ra3H09 [51]	
38	aa	BnGMS103B×CB10277B	0.48	0.62	8.84	0.0120	3.51	−0.2578	1.12	*	*
39	dd	Ra2-E12A×O111-C02A	0.85	0.14	8.47	0.0036	3.35	−0.9321	1.09	CB10277 [54]	
40	aa	MD21a×O112-D05A	0.69	0.22	8.11	0.0173	3.62	−0.4304	0.96	✓	
41	aa	BRAS063axCB10139B	0.73	0.67	11.89	0.0026	4.58	−0.2801	1.20	✓	✓
42	aa	CN64d×CN59a	0.08	0.22	8.66	0.0132	2.55	−0.2134	0.68	✓	
43	aa	xy2ax20-1c	0.25	0.86	12.32	0.0021	2.30	0.2178	0.71	*	✓
44	aa	CN63b×Na12-A02C	0.27	0.68	8.47	0.0145	2.68	−0.2385	0.76	*	
45	da	20-1bxCB10026C	0.65	0.80	12.22	0.0022	2.15	0.5195	0.74	✓	

a: additive; d: dominant; aa: additive-by-additive; ad: additive-by-dominant; da: dominant-by-additive; dd: dominant-by-dominant; r^2: the proportion of total phenotypic variance explained by a single QTL.

EBLASSO: Fast empirical Bayesian LASSO [11]; GEMMA: genome-wide efficient mixed-model association study [48]; Regression-based: Regression-based association study [49]; CV: cross validation;

✓: same QTL was detected by other methods;

*: locus linked to the detected locus was identified by other methods.

doi:10.1371/journal.pone.0121034.t001
More importantly, some similar results were observed in previous studies (Table 1). One marker linked to main-effect QTL and 16 markers linked to the interacted QTL in this study were same as those in previous studies, and three markers linked to main-effect QTL and 32 markers linked to the interacted QTL were close to those in previous studies [50–57]. For example, additive QTL around marker BRAS078A was consistent with that in Zhao et al. [50], Wang et al. [51] and Delourme et al. [52].

Using the above mapping results, the genotypic values for all the missing F1 hybrids could be predicted. These predicted values were further used to calculate general combining ability (GCA) and specific combining ability (SCA). Based on these estimates, novel parents and elite F1 hybrids could be predicted (Table 2). Note that novel restorer line R092 could produce elite hybrid crosses: B1341 × R092, B0984 × R092, B0641 × R092, B0857 × R092 and B0066 × R092.

Discussion

There have been several advantages for the current study. First, one interacted QTL mapping approach for quantitative traits in partial NCII mating design had been proposed in this study. Most genetic analyses of previous studies in the designs are combining ability analysis in the polygenic system and little has been known about detecting individual QTL. Then, interaction
genetic analysis in this study had been integrated with crop breeding. This overcomes the shortcoming that genetic analysis in bi-parental segregation population has limited roles in breeding practice [12]. Although some similar studies have been reported [13–15,58], most previous studies are for inbred line breeding. As for the prediction of hybrid performance, to use multiple parents and their progenies as genetic population is a good strategy. However, a single marker analysis in Schrag et al. [30,59] and progenies of F2-derived lines in Windhausen et al. [60] were adopted. Clearly, new development appeared in this study. Third, how to estimate a large of parameters in oversaturated genetic model had been considered. In this study, the number of effects in the genetic model is 116 times than sample size. To solve this issue, bulked segregant analysis (BSA) along with empirical Bayesian method were used to estimate all the parameters. This approach was confirmed to be feasible in both Monte Carlo simulation studies and real data analysis. Although high proportion of phenotypic variation was contributed by interaction terms in real data analysis, main and interacted QTL could be clearly identified across various approaches and various groups, and the QTL detection power was larger for main QTL than for interacted QTL in a series of simulation experiments. Actually, this high proportion phenomenon was also observed in Mackay [61]. Meanwhile, 14 of 37 interacted QTL were frequently identified in a series of cross validation experiments, and these interacted QTL were similar to the commonly interacted QTL across four approaches in this study (Table 1), although prediction accuracy in cross validation needs to be addressed. To improve the accuracy, genome-wide prediction may be available in the future project. Finally, the new approach might be extended into other mating designs, i.e., unbalanced or balanced factorial crosses, NCI design, diallel crosses and recurrent breeding population, although the new method was designed for partial NCII mating design. In recurrent breeding population, there were heterozygous genotypes in the parents so that the F1 hybrid might be a mixture of multiple genotypes. At this situation, family average idea in the widely-used F2,3 design [62] was available.

Combining ability analysis has been found to be an effective method in crop breeding. When NCII mating design was completely carried out, it is easy to calculate general combining ability (GCA) and specific combining ability (SCA). At this situation, novel parents and elite hybrid crosses could be easily predicted. These results could be used to direct crop breeding practice. In crop breeding practice, however, partial NCII mating design (unbalanced factorial crosses) is frequently conducted. At this case, how to estimate combining ability is pending, although a mixed linear model approach for phenotypic values was adopted in Schrag et al. [30,59]. In this study, we proposed one method to deal with this issue. That is, the information from the interacted QTL mapping was used to estimate the genotypic values for all the missing

Table 2. Elite restorer and sterile lines and hybrid combinations.

Elite restorer line	Elite sterile line	Elite hybrid combination				
ID	GCA	ID	GCA	ID	BV	SCA
R092	3.71	B0393	1.67	R092×B1341	49.32	1.69
R587	2.03	B1053	1.66	R465×B0680	48.52	3.32
R552	1.73	B1341	1.65	R092×B0984	48.30	0.80
R110	1.71	B416	1.62	R552×B338	48.20	2.63
R002	1.61	B338	1.57	R092×B0641	48.16	1.99
R0446	1.50	B0680	1.54	R552×B1358	48.03	3.35
R516	1.40	B1308	1.53	R092×B0857	47.99	2.00
R465	1.38	B0984	1.52	R002×B0685	47.88	3.40
R627	1.34	B0552	1.50	R092×B0066	47.88	2.14

doi:10.1371/journal.pone.0121034.t002
F₁ hybrids, so elite parental combination could be found. Furthermore, GCA could be estimated and favorable parents could be predicted [63,64]. If all the effects with non-zero estimates were used to predict the genotypic values for all the missing F₁ hybrids, this is similar to genome-wide selection [65–68].

The above genetic analysis was for a single trait. In crop breeding, multiple traits would be improved simultaneously. At this case, we needed to pyramid favorable alleles of all the detected QTL for multiple traits. For example, if oil content, thioglycoside, erucic acid, yield per plant and thousand kernel weight were considered simultaneously in the real data analysis. Of 268 detected QTL for the five traits (data not shown), B1348 and R484 were found to have 199 and 204 favorable alleles, respectively. These two sterile restorer lines might be considered in crop breeding practice.

If the number of effects in a genetic model is much larger than sample size, it is difficult to estimate these effects. Although at present there have been some methods available, for example, Bayesian shrinkage estimation [7], LASSO [69,70], penalized maximum likelihood [9], empirical Bayesian [10], EBLASSO [11] and empirical Bayesian elastic net [71], these methods are widely used in bi-parental segregation populations but not in genetic mating population. In this study, one biological approach, named BSA or DNA pooling, was used to choose effects that are associated with the trait of interest. Although BSA was proposed in bi-parental segregation populations [72], this analysis was also useful in large scale association studies [73,74]. When considering interacted QTL in genetic model, main and interacted QTL could be clearly identified. In this study, therefore, this analysis along with the test of independence makes most effects be excluded from the full genetic model, and the reduced model is estimable. This approach in this study is an alternative way in the parameter estimation of oversaturated genetic model.

In quantitative genetics, epistasis refers to any statistical interaction between genotypes at two (or more) loci [61]. In our study, \(aa, ad, da \) and \(dd \) interactions are actually statistical terms rather than epistasis, such as defined by Cockerham’s model [75], although some mathematical relationships exist [76]. In F₂ population, Kao & Zeng [77] gave a very classic example for mapping epistasis, in which orthogonality between the main effect and epistasis was emphasized, because orthogonality between main effect and epistasis may be important for statistical clarification and interpretation. Note that this orthogonality depends on allelic frequency in the studied population [61]. However, only statistical interaction was considered in this study.

Materials and Methods
Mapping population and trait evaluation
In NCII mating design, all sterile lines (298) in Brassica napus need to be crossed to all restorer lines (143). However, it is infeasible in breeding practice. Here only 284 F₁ hybrids were conducted at Huazhong Agricultural University (Wuhan, China). In other words, each of 143 restorer lines was crossed to a pair of sterile lines to produce 284 hybrids. Therefore, the mapping population was a partial NCII mating design (unbalanced factorial crosses), including 298 sterile lines, 143 restorer lines and their 284 F₁ hybrids. Seed oil contents for each parent and F₁ hybrid were measured by near infrared reflectance spectroscopy, for technical detail the reader was referred to the original study of Tillmann [78].

SSR markers
205 SSR primer pairs were examined to screen for polymorphisms among all the 441 parents and the genotypes of all the F₁ hybrids were deduced from their parents. SSR primers were from Chen et al. [79] and Delourme et al. [52], and primer sequences were obtained from
http://www.brassica.info/ssr/SSRinfo.htm (prefixed by Ra, Ol, Na, BN, MB, BRMS- and MR) and http://www.ukcrop.net/perl/ace/search/BrassicaDB [80]. Primer pairs prefixed “BRAS” and “CB” were from the electronic supplementary material of Piquemal et al. [81], and those prefixed “s” were obtained from Agriculture and Agri-Food Canada (http://www.brassica.agr.gc.ca/index_e.shtml). PCR experiment was described in Chen et al. [79].

Genetic model
Let y_i be phenotypic observation of the ith accessions (parent or F_1) in the above partial NCII design. The genetic model for y_i is expressed as

$$y_i = \mu + \sum_{j=1}^{m} (x_{ij}a_j + z_{ij}d_j) + \sum_{j=1}^{m-1} \sum_{k=j+1}^{m} (x_{ij}x_{ik}(aa)_{jk} + x_{ij}z_{ik}(ad)_{jk} + z_{ij}x_{ik}(da)_{jk} + z_{ij}z_{ik}(dd)_{jk}) + \varepsilon_i$$

where μ is the population mean; m is the number of putative QTL; a_j and d_j are the additive and dominant effects of the jth QTL ($j = 1, \cdots, m$), respectively; x_{ij} and z_{ij} are the dummy variables of the ith individual for a_j and d_j, respectively; $(aa)_{jk}$, $(ad)_{jk}$, $(da)_{jk}$ and $(dd)_{jk}$ are aa, ad, da, and dd interaction effects between the jth and kth QTL ($j = 1, \cdots, m-1; k > j$), respectively; and ε is residual error with a $N(0,\sigma^2)$ distribution.

For the sake of clarity of notation, we redefine the design matrix and the regression coefficients as follows. Let $Y = (y_1, y_2, \cdots, y_n)^T$, $\beta = (1, 1, \cdots, 1)^T$; γ is the main and interacted effects, and Z is the dummy variable for γ. The above model is now rewritten as

$$Y = X\beta + Z\gamma + \varepsilon$$

Parameter estimation by empirical Bayesian
There are several methods available in the estimation of parameters in model (2), e.g., penalized maximum likelihood [9,82], empirical Bayesian [10], hierarchical generalized linear model [83,84]. Here we adopt empirical Bayesian, for technical detail the reader is referred to the original study of Xu [10]. The method is briefly described here.

The parameters β and σ^2 are always included in the model, the uniform prior is assigned to the two parameters: $P(\beta) \propto 1$ and $P(\sigma^2) \propto 1$. We adopt the normal prior for each of the genetic effects (γ_k) in model (2): $P(\gamma_k) \propto N(0, \sigma^2_k)$. The scaled inverse χ^2 prior distribution is further assigned to σ^2_k: $P(\sigma^2_k) = \text{Inv-}\chi^2(\sigma^2_k|\tau, \omega) \propto (\sigma^2_k)^{-\frac{\tau+2}{2}} \exp(-\omega/2\sigma^2_k)$. Clearly, Y in model (2) follows a multivariate normal distribution with mean $\mu = X\beta$ and variance-covariance $V = \sum Z_i Z_i^T \sigma^2_k + \Gamma \sigma^2_k$. Let $\theta = (\beta, \gamma, \sigma^2)$. Therefore, the main steps for parameter estimation are described as below.

Step (0): Let $\xi = (\tau, \omega) = (0, 0), \beta = (X^T X)^{-1} X^T Y, \sigma^2 = (Y - X\beta)^T (Y - X\beta)/n$, and γ_k and σ^2_k were initialized ($k = 1, 2, \cdots, 2m^2$);

Steps (1): Using $E(\gamma_k) = \sigma^2_k Z_k^T V^{-1}(Y - X\beta)$ and var(γ_k) = $\sigma^2_k - \sigma^2_k Z_k^T V^{-1}Z_k \sigma^2_k$, $E(\gamma_k^2 | \gamma_k)$ was estimated by $E(\gamma_k^2 | E(\gamma_k)) = \text{var}(\gamma_k) + E(\gamma_k^2 | \gamma_k)$. This is the E-step;

Step (2): Update β, σ^2 and σ^2_k: $\sigma^2_k = [E(\gamma_k^2 | \gamma_k) / (\tau + 2 + 1)], \beta = (X^T V^{-1}X)^{-1} X^T V^{-1} Y$, and $\sigma^2 = (Y - X\beta)^T (Y - X\beta - \sum Z_k E(\gamma_k))/n$. This is the M-step;

Step (3): Repeat the E-step and the M-step until convergence is reached.
Likelihood ratio test

In this study, a two-stage approach was adopted to conduct significance test of each effect. First, empirical Bayesian was used to select the significant effects in model (2). Then, all the selected effects were tested by using likelihood ratio test. For technical detail the reader is referred to the original study of Zhang & Xu [9] and Lü et al. [14]. For simplicity, the critical LOD score for declaring a significant effect at the 0.05 level was set at 2.0.

High throughput QTL-effect screening

A full genetic model should include potential pair-wise interaction effects of all loci. If the number of main and interacted effects is 10 times less than sample size, empirical Bayesian works well. Note that the model is saturated quickly as the number of loci increases. For example, in this study the number of SSR marker loci is 205, the numbers of potential main and interacted effects are 410 and 83,640, respectively. Therefore, a variable selection technique is usually considered to exclude those interactions with negligible effects. The procedures and steps were described as below.

1. **Test of independence between effect and trait.** First, extreme phenotypic individuals, 10% highest and 10% lowest, were selected from the mapping population. Then, contingency table was constructed based on the extreme individual and marker genotype. Third, χ^2 test of independence was conducted to test whether the targeted marker was associated with the trait. Finally, 100 main effects or 100 epistatic effects, with the minimum P-values, were selected to enter the next step. This method is BSA;

2. **Empirical Bayesian estimation and likelihood ratio test.** All the main or interacted effects selected in the first step were included in one genetic model and estimated by empirical Bayesian. Among these effects, the effects with non-zero estimates were remained. Likelihood ratio test was used to determine whether these effects were significantly associated with the trait. The critical LOD value was set at 2.0.

3. **Correction of trait phenotype using the significantly associated effects.** The corrected phenotypes for all the individual were $y'_i = y_i - Wb$, where b was vector of effects for the significantly associated markers, and W was the designed matrix for b;

4. **Repeat the step (1) to (3) until no more additional significantly associated effects were detected**;

5. **Empirical Bayesian analysis for selected main and epistatic effects.** All the significantly main and interacted effects were included one genetic model and estimates by empirical Bayesian.

The software for parameter estimation is available as S1 Software.

Hybrid prediction (HP)

In hybrid breeding, elite parents were predicted from general combining ability (GCA) and elite parental combinations were predicted from specific combining ability (SCA). In NCII mating design, both GCA for each parent and SCA for each parental combination could be calculated. In a partial NCII mating design, however, some F_1 hybrids were missing so that GCA and SCA were not calculated. Using the information of QTL detected above, these missing values could be predicted. Once all the information was obtained, SCA and GCA could be calculated. Therefore, elite parents and parental combinations could be predicted.
Monte Carlo simulation design

We performed three simulation experiments in this study. In the first simulation experiment, the effect of QTL heritability on the new method was assessed. The QTL size \((h^2_i) \), being the proportion of total phenotypic variance explained by the QTL, was 0.02, 0.05 and 0.08, respectively. In each case, two additive, two dominant, one \(aa \), one \(ad \), one \(da \), and one \(dd \) QTL were simulated. The genetic variance of the \(i \)th QTL, \(s^2_i(G) \), was calculated from

\[
s^2_i(G) = h^2_i s^2 = \frac{1}{1 + h^2_i}
\]

where residual variance \(\sigma^2 = 1 \). The allelic effects were calculated by relating \(s^2_i(G) \) to the allelic frequencies and effects. All the QTL were overlapped with the markers and listed in Table 3. All the genotypes of 441 parents and 284 F1 hybrids in the partial NCII were exactly same as those in real data analysis in this study. The simulated phenotypic value of each parent or F1 hybrid was the sum of the corresponding QTL genotypic values and residual error, with an assumed normal distribution. Each simulation run consisted of 100 replicates. For each simulated QTL, we counted the samples in which the LOD statistic surpassed 2.0. The ratio of the number of such samples to the total number of replicates represented the empirical power of this QTL. The FPR was calculated as the ratio of the number of false positive effects to the total number of zero effects. We also calculated absolute bias between estimated and true effects of each QTL in each sample. Therefore, the average and standard deviation of absolute biases across 100 replicates could be obtained. In the second simulation experiment, we evaluated the effect of sample size on the new method by letting the sample size be set as 400 (80 restorer lines + 160 sterile lines + 160 F1 hybrids), 500 (100 + 200 + 200) and 600 (120 + 240 + 240). All the QTL sizes were 0.05. Other parameters were the same as those in the first simulation experiment. In the third simulation experiment, we investigated the effect of population structure on the new method by letting the population structure be set as all the parents (300 restorer lines + 300 sterile lines), parents + F1 (150 restorer lines + 150 sterile lines + 300 F1 hybrids) and all the F1 (600 F1 hybrids). Other parameters were the same as those in the second simulation experiment.

Supporting Information

S1 Table. Effect of QTL heritability on mapping QTL in NCII mating design.

(DOCX)

S2 Table. Effect of sample size on mapping QTL in NCII mating design.

(DOCX)
S3 Table. Effect of population structure on mapping QTL in NCII mating design.

S1 Software. Software for mapping interacted QTL in partial NCII design. To first install JAVA Runtime Environment (jdk-7u71-windows-x64.exe) by default install directory, and to then install Matlab Runtime Environment (R2014b (8.4) For Windows. The readers may download the first file at http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html and the second file at http://cn.mathworks.com/products/compiler/mcr/index.html, respectively. If the readers want to use another jdk version, please change the corresponding content in the run.bat file. EMS memory size in the running computer is more than 8 G.

Author Contributions
Conceived and designed the experiments: YMZ. Performed the experiments: SHB ZXW CY JW TJX YMZ. Analyzed the data: SHB JW. Contributed reagents/materials/analysis tools: ZXW CY SHB TJX. Wrote the paper: YMZ SHB.

References
1. Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 1923, 8: 552–560 PMID: 17246026
2. Thoday JM. Location of polygenes. Nature 1961, 191: 368–370
3. Lander ES, Botstein D. Mapping Mendelian factor underlying quantitative traits using RFLP linkage maps. Genetics 1989, 121: 185–199 PMID: 2563713
4. Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics 1993, 135: 205–211 PMID: 8248820
5. Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci. Proc Natl Acad Sci USA. 1993, 90: 10972–10976 PMID: 8248199
6. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics 1999, 152: 1203–1216 PMID: 10388834
7. Xu S. Estimating polygenic effects using markers of the entire genome. Genetics 2003, 163: 789–801 PMID: 12618414
8. Yi N, Xu S. Bayesian Lasso for quantitative trait loci mapping. Genetics 2008, 179: 1045–1055 doi: 10.1534/genetics.107.085589 PMID: 18505874
9. Zhang YM, Xu S. A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity 2005, 95: 96–104 PMID: 15931238
10. Xu S. An expectation-maximization algorithm for the Lasso estimation of quantitative trait locus effects. Heredity 2010, 105(5):483–494 doi: 10.1038/hdy.2009.180 PMID: 20051978
11. Cai X, Huang A, Xu S. Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping. BMC Bioinformatics 2011, 12: 211 doi: 10.1186/1471-2105-12-211 PMID: 21615941
12. He XH, Qin HD, Hu ZL, Zhang TZ, Zhang YM. Mapping of epistatic quantitative trait loci in four-way crosses. Theor Appl Genet. 2011, 122:33–48 doi: 10.1007/s00122-010-1402-8 PMID: 20827458
13. Zhang YM, Mao YC, Xie C, Smith H, Luo L, Xu S. Mapping QTL using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 2005, 169: 2267–2275 PMID: 15716509
14. Lü HY, Liu XF, Wei SP, Zhang YM. Epistatic association mapping in homozygous crop cultivars. PLoS ONE 2011, 6(3): e17773 doi: 10.1371/journal.pone.0017775 PMID: 21423690
15. Niu Y, Xu Y, Liu XF, Yang SX, Wei SP, Xie FT, et al. Association mapping for seed size and shape traits in soybean cultivars. Molecular Breeding 2013, 31: 785–794
16. Zhang WJ, Niu Y, Bu SH, Li M, Feng JY, Zhang J, et al. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS ONE 2014, 9(1): e84750 doi: 10.1371/journal.pone.0084750 PMID: 24416275
17. Jones DF. Dominance of linked factors as a means of accounting for heterosis. Genetics 1917, 2: 466–479 PMID:17245892
18. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, et al. Single-locus heterotic effects and dominance-by-dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA. 2003, 100: 2574–2579 PMID:12604771
19. Lu H, Romero-Severson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet. 2003, 107: 494–502. PMID:12759730
20. Radoev M, Becker HC, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 2008, 179: 1547–1558 doi: 10.1534/genetics.108.089680 PMID: 18562665
21. Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, et al. Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA. 2012, 109: 15847–15852 PMID: 23019369
22. Jones DF. The productiveness of single and double first generation corn hybrids. J Am Soc Agron. 1922, 14: 242–252
23. Kearsey MJ, Jinks JL. A general method of detecting additive, dominance and epistatic variation for metrical traits. I. Theory. Heredity 1968, 23: 403–409 PMID:5250122
24. Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci. 1956, 9: 463–493
25. Kempthorne O, Curnow RN. The partial diallel cross. Biometrics 1961, 17: 229–250
26. Comstock RE, Robinson HF. Estimation of average dominance of genes. In. Heterosis, Iowa State College Press, Ames, 1952, 494–516
27. Keuls M, Garretsen F. A general method for the analysis of genetic variation in complete and incomplete diallels and North Carolina II designs. Part I. Procedures and general formulas for the random model. Euphytica 1977, 26: 537–551
28. Garretsen F, Keuls M. A general method for the analysis of genetic variation in complete and incomplete diallels and North Carolina II (NCII) designs: Part II procedures and general formulas for the fixed model. Euphytica 1978, 27: 49–68
29. Baker RJ. Issues in diallel analysis. Crop Sci. 1978, 18: 533–536
30. Schrag TA, Möhring J, Melchinger AE, Kusterer B, Dhillon BS, Piepho HP, et al. Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor Appl Genet. 2010, 120: 451–461 doi: 10.1007/s00122-009-1208-x PMID: 19916002
31. Xu S. Mapping quantitative trait loci using four-way crosses. Genet Res. 1996, 68: 175–181
32. Kusterer B, Piepho HP, Utz HF, Schö n CC, Muminovic J, Meyer RC, et al. Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics 2007, 177: 1839–1850 PMID: 18039885
33. Melchinger AE, Utz HF, Piepho HP, Zeng ZB, Schö n CC. The role of epistasis in the manifestation of heterosis: a systems-oriented approach. Genetics 2007, 177: 1815–1825 PMID: 18039883
34. He X-H, Zhang YM. A complete solution for dissecting pure main and epistatic effects of QTL in triple testcross design. PLoS ONE 2011, 6: e24575 doi: 10.1371/journal.pone.0024575 PMID: 21949729
35. Melchinger AE, Piepho HP, Utz HF, Muminovic J, Wegenast T, Törjék O, et al. Genetic basis of heterosis for growth related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 2007, 177: 1827–1837 PMID: 18039884
36. Garcia AAF, Wang S, Melchinger AE, Zeng ZB. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 2008, 180: 1707–1724 doi: 10.1534/genetics.107.082867 PMID:18791260
37. He X-H, Hu Z, Zhang YM. Genome-wide mapping of QTL associated with heterosis in the RIL-based NCII design. Chin Sci Bull. 2012, 57(21): 2655–2665
38. Reba A, Goffinet B. More about quantitative trait locus mapping with diallel designs. Genet Res. 2000, 75: 243–247 PMID: 10916981
39. Lenarcic AB, Svenson KL, Churchill GA, Valdar W. A general Bayesian approach to analyzing diallel crosses of inbred strains. Genetics 2012, 190: 413–435 doi: 10.1534/genetics.111.132563 PMID: 22346610
40. Li LZ, Lu KY, Chen ZM, Mu TM, Hu ZL, Li X. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 2008, 180:1725–1742 doi: 10.1534/genetics.108.091942 PMID: 18791236
41. Wang XF, Song W, Yang ZF, Wang YM, Tang ZX, Xu C. Improved genetic mapping of endosperm traits using NCIII and TTC designs. Journal of Heredity 2009, 100: 496–500 doi: 10.1093/jhered/esp009 PMID: 19332617

42. Reif JC, Kusterer B, Piepho HP, Meyer RC, Altmann T, Schönh CC, et al. Unraveling epistasis with triple testcross progenies of near-isogenic lines. Genetics 2009, 181: 247–251 doi: 10.1534/genetics.108.093047 PMID: 18984574

43. Qu Z, Li L, Luo J, Wang P, Yu S, Mou T, et al. QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses. PLoS ONE 2012, 7: e28463 doi: 10.1371/journal.pone.0028463 PMID: 22291881

44. Hu WM, Xu Y, Zhang EY, Xu CW. Study on the genetic basis of general combining ability with QTL mapping Strategy. Scientia Agricultura Sinica 2013, 46: 3305–3313

45. Qi H, Huang J, Zheng Q, Huang Y, Shao R, Zhu L, et al. Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theor Appl Genet. 2012, 126: 369–377 doi: 10.1007/s00122-012-1985-5 PMID: 23011316

46. Huang J, Qi HH, Feng XM, Huang YQ, Zhu LY, Yue B. General combining ability of most yield-related traits had a genetic basis different from their corresponding traits per se in a set of maize introgression lines. Genetica 2013, 141: 453–461 doi: 10.1007/s10709-013-9744-3 PMID: 24335978

47. Li LZ, Sun CW, Chen Y, Dai ZJ, Qu Z, Zheng XF, et al. QTL mapping for combining ability in different population-NCII designs by a simulation study. J Genet. 2013, 92: 529–543 PMID: 24371174

48. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012, 17, 44(7):821–824 doi: 10.1038/ng.2310 PMID: 22706312

49. Wen J. New methodology in the genetic dissection of quantitative traits (Ph D dissertation). Nanjing Agricultural university, 2014

50. Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, et al. Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet. 2012, 124(2):407–421 doi: 10.1007/s00122-011-1716-3 PMID: 21939634

51. Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, et al. Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS ONE 2013, 8(12): e80569 doi: 10.1371/journal.pone.0080569 PMID: 24312482

52. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, et al. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet. 2006, 113: 1331–1345 PMID: 16960716

53. Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W. Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype–environment interactions. Crop Sci. 2005, 45: 51–59

54. Yan XY, Li JN, Fu FY, Jin MY, Chen L, Liu LZ. Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 2009, 170(3): 355–364

55. Chen G, Geng JF, Rahman M, Liu XP, Tu JX, Fu TD, et al. Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 2010, 175:161–174

56. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet. 2006, 114(1): 67–80 PMID: 17033785

57. Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, et al. Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS ONE 2012, 7(10): e47037 doi:10.1371/journal.pone.0047037 PMID: 23077542

58. Peleman JD, van der Voort JR. Breeding by design. Trends Plant Sci. 2003, 8:330–334 PMID: 12878017

59. Schrag TA, Möhring J, Maurer HP, Dhillon BS, Melchinger AE, Piepho HP, et al. Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses. Theor Appl Genet. 2009, 118:741–751 doi: 10.1007/s00122-008-0934-9 PMID: 19048224

60. Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink J-L, Sorrells ME, et al. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3. 2012, 2: 1427–1436 doi: 10.1534/g3.112.003699 PMID: 23173094

61. Mackay TFC. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet. 2014, 15(1): 22–33 doi: 10.1038/nrg3627 PMID: 24296533

62. Zhang YM, Xu S. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny. Genetics 2004, 166: 1981–1993 PMID: 15126413
63. Yu CY, Jiang L, Xiao YH, Zhai HQ, Wan JM. Combining ability of yield-component traits for indica chromosome substituted segments in japonica hybrid rice. Acta Agron Sin. 2008, 34:1308–1316

64. Townsend T, Segura V, Chigeza G, Penfield T, Rae A, Harvey D, et al. The use of combining ability analysis to identify elite parents for Artemisia annua F1 hybrid production. PLoS ONE 2013, 8(4): e61989 doi:10.1371/journal.pone.0061989 PMID: 23626762

65. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome wide dense marker maps. Genetics 2001, 157:1819–1829 PMID: 11290733

66. Heffner EL, Sorrells ME, Jannink JL. Genomic selection for crop improvement. Crop Sci. 2009, 49:1–12

67. Rutkoski JE, Heffner EL, Sorrells ME. Genomic selection for durable stem rust resistance in wheat. Euphytica 2011, 179:161–173

68. Calus MPL, Haas YD, Pszczola M, Veerkamp RF. Predicted accuracy of and response to genomic selection for new traits in dairy cattle. Animal 2013, 7:183–191 doi: 10.1017/S1751731112001450 PMID: 23031684

69. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society 1996, 58:267–288

70. Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association 2006, 101:1418–1429

71. Huang A, Xu S, Cai X. Empirical Bayesian elastic net for multiple quantitative trait locus mapping. Heredity 2014, 114:107–115 doi: 10.1038/hdy.2014.79 PMID: 25204301

72. Michelmore R, Paran I, Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. P Natl Acad Sci USA. 1991, 88:9828–9832 PMID: 1682921

73. Martinez E, Destombe C, Quillet M, Valero M. Identification of random amplified polymorphic DNA (RAPD) markers highly linked to sex determination in the red alga Gratilaria gracilis. Mol Ecol. 1999, 8:1533–1538 PMID: 10564480

74. Sham P, Bader JS, Craig I, O’Donovan M, Owen M. DNA pooling: a tool for large-scale association studies. Nat Rev Genet. 2002, 3:862–871 PMID: 12415316

75. Cockerham CC. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 1954, 39:859–882 PMID: 17247525

76. Gai JY, Zhang Y-M, Wang JK. Genetic system of quantitative traits in plants. Beijing: Science Press, 2003

77. Kao CH, Zeng ZB. Modeling epistasis of quantitative trait loci using Cockerham’s model. Genetics 2002, 160:1243–1261 PMID: 11901137

78. Tillmann P. Recent experience with NIRS analysis of rapeseed. CGIRC Bull. 1997, 13:84–87

79. Chen W, Tu J, Fu T. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet. 2007, 115:849–858 PMID: 1766518

80. Lowe AJ, Moule C, Trick M, Edwards KJ. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet. 2004, 108:1103–1112 PMID: 15067397

81. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, et al. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet. 2005, 111:1514–1523 PMID: 16187118

82. Zhang J, Yue C, Zhang YM. Bias correction for estimated QTL effects using the penalized maximum likelihood method. Heredity 2012, 108:396–402 doi: 10.1038/hdy.2011.86 PMID: 21934700

83. Yi N, Banerjee S. Hierarchical generalized linear models for multiple quantitative trait locus mapping. Genetics 2008, 181:1101–1113 doi: 10.1534/genetics.108.095556 PMID: 19139143

84. Feng JY, Zhang J, Zhang WJ, Wang SB, Han SF, Zhang YM. An efficient hierarchical generalized linear mixed model for mapping QTL of ordinal traits in crop cultivars. PLoS ONE 2013, 8(4):e59541 doi:10.1371/journal.pone.0059541 PMID: 23593144