We study the suppression of nonlinear interactions in resonant macroscopic quantum devices where nonlinearities can be tuned or even suppressed. This is achieved by vibrating the gain medium along the cavity axis. Beat note occurrence under rotation provides a precise measurement of the strength of nonlinear interactions, which turn out to vanish for some discrete values of the amplitude of vibration. Our theoretical description, in very good agreement with the measured data, suggests the use of a higher vibration frequency to achieve quasi-ideal rotation sensing over a broad range of rotation speeds.

We study the suppression of nonlinear interactions in resonant macroscopic quantum devices. These nonlinear interactions are tuned by vibrating the gain medium along the cavity axis. Beat note occurrence under rotation provides a precise measurement of the strength of nonlinear interactions, which turn out to vanish for some discrete values of the amplitude of vibration. Our theoretical description, in very good agreement with the measured data, suggests the use of a higher vibration frequency to achieve quasi-ideal rotation sensing over a broad range of rotation speeds. We finally underline the analogy between this device and some other macroscopic quantum rotation sensors, such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned for example by the use of magnetically-induced Feshbach resonance.

PACS numbers: 42.65.Sf, 42.62.Eh, 06.30.Gv, 42.55.Rz

The use of macroscopic quantum effects for rotation sensing in ring-shaped configurations has been extensively studied in the case of both optical systems [1, 2, 3] and superfluids [4, 5], either liquid helium [6, 7] or Bose-Einstein condensed gases [8, 9, 10, 11, 12]. As pointed out in [13, 14], nonlinear interactions play a crucial role in the dynamics of such devices, as they can hinder or affect their ability to sense rotation, even when counteracted by other coupling sources. Consequently, the possibility of tuning or even suppressing nonlinear interactions is of great importance for using these devices as rotation sensors.

Several systems offer the possibility of controlling the strength of their nonlinearities. For example, in the case of gas ring laser gyroscopes, one can considerably lower mode competition by tuning the cavity out of resonance with the atoms at rest, resulting in the quasi-suppression of nonlinear interactions [1]. In the case of atomic systems, it is also possible to tune and even suppress nonlinear interactions, by using Feshbach resonance [15, 16, 17]. As regards solid-state ring lasers, we have recently demonstrated [14] the possibility of stable rotation sensing thanks to the circumvention of mode competition by the use of an additional stabilizing coupling. However, nonlinear interactions are still present in this configuration, and can even be quantitatively observed [14, 18].

In this Letter, we report the experimental and theoretical study of a novel technique intended to tune and suppress nonlinear interactions in a solid-state ring laser gyroscope, similar to the case of scattering length control in an atomic system. This is achieved by vibrating the gain crystal along the optical axis of the laser cavity, considering the fact that nonlinear interactions in a solid-state ring laser result mainly from mutual coupling between the counterpropagating modes induced by the population inversion grating established in the amplifying medium [3, 14]. Using the quantitative information on the strength of the nonlinear interactions provided by the beat note between the counterpropagating laser beams [14], we demonstrate experimentally the possibility of suppressing these interactions for some discrete values of the amplitude of the crystal movement. We eventually derive, in the limit of high vibration frequencies, a very simple condition for rotation sensing and point out the similarity with the equivalent condition for a toroidal Bose-Einstein condensed gas, resulting from the toy model of [13] where the effects of scattering length tuning described in [15] are included.

The solid-state ring laser gyroscope can be described semiclassically, assuming one single identical mode in each direction of propagation (something which is guaranteed by the attenuation of spatial hole burning effects thanks to the gain crystal movement [19]), one single identical state of polarization and plane wave approximation. The electrical field inside the cavity can then be written as follows:

$$E(x, t) = \text{Re} \left\{ \sum_{p=1}^{2} \bar{E}_p(t) e^{i(\omega_c t + \mu_p k x)} \right\},$$

where $\mu_p = (-1)^p$ and where ω_c and k are respectively the angular and spatial average frequencies of the laser, whose longitudinal axe is associated with the x coordinate. In the absence of crystal vibration, the equations of evolution for the slowly-varying amplitudes $\bar{E}_{1,2}$ and for the population inversion density N have the following
expression [3, 14] :
\[
\frac{d\tilde{E}_{1,2}}{dt} = -\frac{\gamma_{1,2}}{2}\tilde{E}_{1,2} + i\tilde{m}_{1,2}\tilde{E}_{2,1} + i\mu_{1,2}\Omega \tilde{E}_{1,2} + \frac{\sigma}{2T} \left(\int_{0}^{L} N dx + \int_{0}^{L} N e^{-2i\mu_{1,2}kx} dx\right),
\]
\[
\frac{\partial N}{\partial t} = W_{th}(1 + \eta) - \frac{N}{T_1} - \frac{a\eta N E(x,t)^2}{T_1},
\]
where \(\gamma_{1,2}\) are the intensity losses per time unit for mode, \(\tilde{m}_{1,2}\) are the backscattering coefficients, \(\Omega\) difference between the eigenfrequencies of the co-propagating modes (including the effect of rotation further), \(\sigma\) is the laser cross section, \(T\) is the round-trip time, \(\eta\) is the relative excess of pumping above the threshold value \(W_{th}\), \(T_1\) is the lifetime, \(\sigma\) is the saturation parameter. Throughout this paper we shall neglect dispersion considering the fact that the Nd-YAG gain width is larger than the laser cavity free spectral range. Backscattering coefficients, which depend on spatial homogeneities of the propagation medium [20], has following expression [18] :
\[
\tilde{m}_{1,2} = \frac{\omega_c}{\varepsilon c T} \int_{0}^{L} \left[\varepsilon(x) - i\kappa(x) \right] e^{-2i\mu_{1,2}kx} dx,
\]
where \(\varepsilon(x)\) and \(\kappa(x)\) are respectively the dielectric constant and the fictitious conductivity along the perimeter in the framework of an ohmic losses [21], where \(c\) is the speed of light in vacuum and \(w\) stands for the spatial average of \(\varepsilon\). In order to counter mode competition effects and ensure beam regime correction under rotation, an additional stabilizing coupling as described in [14] is introduced, resulting in losses of the following form :
\[
\gamma_{1,2} = \gamma - \mu_{1,2}K a(|\tilde{E}_1|^2 - |\tilde{E}_2|^2),
\]
where \(\gamma = R/\varepsilon\) is the average loss coefficient and where \(K > 0\) represents the strength of the stabilizing coupling.

We assume the following sinusoidal law to account for the gain crystal vibration :
\[
x_c(t) = \frac{x_m}{2} \sin(2\pi f_m t),
\]
where \(x_c(t)\) is the coordinate, in the frame of the laser cavity, of a given reference point attached to the crystal, and where \(x_m\) and \(f_m\) respectively the amplitude and the frequency of the vibration movement. The population inversion density function in the frame of the vibrating crystal \(N_c(x, t)\) is ruled by the following equation :
\[
\frac{\partial N_c}{\partial t} = W_{th}(1 + \eta) - \frac{N_c}{T_1} - \frac{aN_cE(x + x_c(t), t)^2}{T_1},
\]
where \(E(x, t)\) refers to the electric field in the cavity (non-vibrating) frame. Moreover, \(N_c(x, t)\) can be deduced from its equivalent in the cavity frame \(N(x, t)\) by the identity \(N_c(x, t) = N(x + x_c(t), t)\), resulting in the following expressions :
\[
\begin{align*}
\int_{0}^{L} N(x, t) dx &= \int_{0}^{L} N_c(x, t) dx, \\
\int_{0}^{L} N(x, t)e^{2ikx} dx &= e^{2ikx_c(t)} \int_{0}^{L} N_c(x, t)e^{2ikx} dx.
\end{align*}
\]
The backscattering coefficients (3) acquire in the presence of the crystal vibration the following time-dependent form :
\[
\tilde{m}_{1,2}(t) = \tilde{m}_{1,2} e^{-2i\mu_{1,2}kx_c(t)} + \tilde{m}_{1,2}^m,
\]
where \(\tilde{m}_{1,2}^m\) and \(\tilde{m}_{1,2}^m\), which are time-independent, account for the backscattering due respectively to the crystal at rest and to any other diffusion source inside the laser cavity (including the mirrors). As regards the difference \(\Omega\) between the eigenfrequencies of the counter-propagating modes, it results from the combined effects of the rotation (Sagnac effect [22]) and of the crystal movement in the cavity frame (Fresnel-Fizeau drag effect [23]), resulting in the following expression :
\[
\frac{\Omega}{2\pi} = \frac{4A}{\lambda L} - \frac{2\dot{x}_c(t)(n^2 - 1)}{\lambda L},
\]
where \(A\) is the area enclosed by the ring cavity, \(\lambda = 2\pi c/\omega_c\) is the emission wavelength, \(\dot{\theta}\) is the angular velocity of the cavity around its axis, and \(l\) and \(n\) are respectively the length and the refractive index of the crystal (dispersion terms are shown to be negligible in this case).
The dynamics of the solid-state ring laser gyroscope with a vibrating gain medium is eventually ruled, in the framework of our theoretical description, by the following equations:

\[
\frac{d\tilde{E}_{1,2}}{dt} = -\frac{\gamma_{1,2}}{2} \tilde{E}_{1,2} + i \frac{m_{1,2}}{2} \tilde{E}_{2,1} + \frac{\sigma}{2T} \left(\tilde{E}_{1,2} \int_0^L N_c dx + \tilde{E}_{2,1} e^{2ikx}, \right)
\]

where \(\gamma_{1,2}, x_c, N_c, m_{1,2}\) and \(\Omega\) are functions \((4), (5), (6), (7)\) and \((8)\) of time. This analysis that the solid-state ring laser gyroscope, from the crystal vibration in three separate ways:

- the contrast of the population inversion grating, which is responsible for no duction on both conditions (the step of the optical grating of \(\mu m\)) and that the period is significantly larger than the response time \(T_1\); the atom longer confined into a nodal – see eq. \((6)\) –, and becomes average value of the electric dependent of their position when the laser is not rotating \(J_\theta(kx_m) = 0\) is obeyed zero-order Bessel’s function
- the light backscattered on one mode into the other can be by the Doppler effect crystal movement in the cnonemon, which induces a coupling strength, ported in the case of vibration, our model, it arises from the factor \(\exp(2ikx_c)\) in front of \(\tilde{m}_{1,2}\) and \(\int N_c dx e^{i\epsilon}\)
- the frequency non-reciprocity propagating modes due to the fringe effect – eq. \((8)\) – has a chemical dithering typically the lock-in problem in the laser gyroscopes \([27]\).

The solid-state ring laser setup is sketched on Fig. 1. The stabilizing coupling \((4)\), a beat note above a critical rotation speed, \(\omega_{\text{beat}}\) frequency is plotted on Fig. 2. It can be seen on this figure that the difference between the ideal Sagnac line and the experimental beat frequency, which is a direct measurement of the nonlinear interactions \([14]\), is considerably reduced in the zone ranging from 10 to 40 deg/s. Some nonlinearities are observed around the discrete values \(\dot{\theta} \simeq 55\) deg/s and \(\dot{\theta} \simeq 165\) deg/s, in agreement with our theoretical model. As a matter of fact, analytical calculations starting from equation \((9)\) reveal the existence of disrupted zones centered on discrete values of the rotation speed \(\dot{\theta}_q\) obeying the following equation:

\[
\frac{4A^2}{\pi L} \dot{\theta}_q = qf_m \quad \text{where } q \text{ is an integer},
\]

the size of each disrupted zone being proportional to \(J_\theta(kx_m)\). With our experimental parameters, the first critical velocity corresponds to \(\dot{\theta}_1 = 55.5\) deg/s, the zones observed on Fig. 2 corresponding to the cases \(q = 1\) and \(q = 3\). The numerical simulations shown on the insert of this figure are in good agreement with our analytical and experimental data. Such a phenomenon of disrupted zones has been reported previously in the case of gas ring laser gyroscopes with mechanical dithering. It is sometimes designed as ‘Shapiro steps’ \([27]\), in reference to an equivalent effect in the field of Josephson junctions \([28]\). The dependence of the beat frequency on the amplitude of the crystal movement is shown on Fig. 3, for a fixed rotation speed \((200\) deg/s). This graph illustrates the good agreement between our numerical simulations and our experimental data. Moreover, this is an experimental demonstration of the direct control of the gyroscope.
strength of nonlinear interactions in the solid-state ring laser. In particular, for some special amplitudes of the crystal movement, the influence of mode coupling vanishes, resulting in a beat frequency equal to the ideal Sagnac value.

This study suggests the use of a higher vibration frequency of the crystal, in order to increase the value of $\dot{\theta}$ as much as possible. When $f_m \gg |\Omega|/(2\pi)$, the strength of the nonlinear interactions is shown to be directly proportional to $J_0(kx_m)^2$, and the condition for rotation sensing reads:

$$2K\eta > \tilde{N}J_0(kx_m)^2,$$

where $\tilde{N} = \gamma\eta/(1 + \Omega^2T_1^2)$ is the strength of nonlinear interactions [14], and $J_0(kx_m)^2$ is the attenuation factor due to the crystal vibration. The similar condition for rotation sensing in the case of a solid-state ring laser is obtained by vibrating the gain crystal. The condition for rotation sensing in the solid-state ring laser allows the direct measurement of the strength of nonlinear interactions, leading to the experimental demonstration of their fine tuning and even suppression. Furthermore, following the previous work of [14], we have underlined the analogy between our system and other ring-shaped macroscopic quantum configurations where nonlinear interactions could be tuned, for example a Bose-Einstein condensed gas with magnetically-induced Feshbach resonance. This illustrates the richness of such devices, both from applicative and fundamental perspectives.

The authors thank M. Defour, M. Mary, E. Bonneaudet and Thales Aerospace Division for constant support. They are also grateful to A. Aspect and A. Mignot for fruitful discussions, and to F. Grabisch for his contribution to the numerical simulations.

* Electronic address: sylvain.schwartz@thalesgroup.com

[1] F. Aronowitz in Laser Applications (Academic, New York, 1971), p. 133.
[2] P. A. Khandokhin and Y. I. Khanin, J. Opt. Soc. Am. B 2, 226 (1985).
[3] N. Kravtsov, E. Lariontsev, and A. Shelaev, Laser Phys. 3, 21 (1993).
[4] F. Bloch, Phys. Rev. A 7, 2187 (1973).
[5] A. Leggett, Rev. Mod. Phys. 71, 318 (1999).
[6] O. Avenel, P. Hakonen and E. Varoquaux, Phys. Rev. Lett. 78, 3602 (1997).
[7] K. Schwab, N. Bruckner and R.E. Packard, Nature 386, 585 (1997).
[8] E. Mueller, P. Goldbart and L. Lyanda-Geller, Phys. Rev. A 57, R1505 (1998).
[9] M. Benakli et al., Europhys. Lett. 46, 275 (1999).
[10] M. Cozzini, B. Jackson and S. Stringari, Phys. Rev. A 73, 013603 (2006).
[11] S. Schwartz et al., New J. Phys. 8, 162 (2006).
[12] C. Ryu et al., arXiv:0709.0012v1 [cond-mat.other].
[13] A. Leggett, Rev. Mod. Phys. 73, 307 (2001).
[14] S. Schwartz et al., Phys. Rev. Lett. 97, 093902 (2006).
[15] S. Inouye et al., Nature, 392, 151 (1998).
[16] Ph. Courteille et al., Phys. Rev. Lett. 81, No. 1, 69 (1998).
[17] M. Fattori et al., arXiv:0710.5131v1 [cond-mat.other].
[18] S. Schwartz et al., Phys. Rev. A 76, 023807 (2007).
[19] H. Danielmeyer and W. Nilsen, Appl. Phys. Lett. 16, No. 3, 124 (1970).
[20] R. Spreeuw et al., Phys. Rev. A 42, No. 7, 4315 (1990).
[21] A. Siegman, Lasers, University Science Books, Mill Valley, California (1986).
[22] G. Sagnac, C.R. Acad. Sci. 157, 708 (1913).
[23] H. R. Bilger and W. K. Stowell, Phys. Rev. A 16, No. 1, 313 (1977).
[24] H. Sabert and R. Ulrich, Appl. Phys. Lett. 58, No. 21, 2323 (1991).
[25] R. A. Patterson et al., Proc. SPIE 487, 78 (1984).

[26] M. Lai et al., Opt. Lett. 17, No. 21, 1535 (1992).
[27] W. Chow et al., Rev. Mod. Phys. 57, No. 1, 61 (1985).
[28] S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).