Quantitative assessment of eco-environmental stress of Anhui Province (China) using the eco-environmental stress index

Lifeng Jiao¹, Guangzhou Chen¹,²,*, Chen Sun³ and Rong Hu⁴

¹School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
²Center of urban management, Anhui Jianzhu University, Hefei, China
³Sinosteel Mǎ’anshan Institute of Mining Research Co.,Ltd, Mǎ’anshan, China
⁴School of Foreign Languages, Anhui Jianzhu University, Hefei, China

*Corresponding author e-mail: chgzh5@163.com

Abstract. The eco-environmental stress index (ESI) is used to quantitatively assess the stress caused by economic development to the environment. This study analyzed environmental and economic data for the period 2000-2014 in the Anhui Province (China) and quantified eco-environmental stress in every city of the Province for the year 2014 to provide the springboard for sustainable development strategies in the area. The results show increasing eco-environmental stress in the Anhui Province, driven by significant increase in the annual resource and energy consumption. The highest eco-environmental stress during 2014 was observed in the Hefei City, followed by Ma’anshan and Huainan. While the Hefei and Ma’anshan cities had the highest consumption of energy and resources, the environmental pollution index was relatively small, in contrast to the city of Huainan. Minimum stress was observed in the Huangshan City. This study highlights the necessity for green strategies in the Anhui Province to reduce eco-environmental stress and ensure a sustainable future for the Province and its citizens.

1. Introduction

Ecological environment is the basic of living and development for human society. As the rapid development of economy and society, the activities of human beings have a negative impact on ecological environment, such as environmental pollution, Destruction of the ecosystem. Scientifically perceiving and relieving eco-environmental stress from the activities of human beings, and realizing the sustainable development of economy, society and ecological environment have been a focus and difficult question. They have already aroused the domestic and foreign scholar’s attention.

The early studies focusing on the relationship between environmental quality deterioration and economic development is the environmental Kuznets curve (EKC) hypothesis, which was theorized by Kuznets in 1955[1]. After that, numerous studies were carried out based on the cases study from the relationship between the pollution emissions or CO2 emissions and economic development [2-4].Up to now, EKC is still used to study the relationship [5].

Energy analysis, which was Odom’s method of emery accounting [6], can bridge the gap between socio-economic development and protection of the environment that sustains the development [7].
Brown et al. [8] adopted the emery-based indices and ratios to assess the sustainability of economy and technology. Su et al. [9] adopted the emery and set pair analysis to assess the ecosystem health of typical cities in China. Sun et al. [10] assessed the sustainable development of eco-economic system in Liaoning Province based on emery analysis.

Another method employed to assess the sustainable development is the theory of ecological footprint. Ecological footprint was developed by William and Wackernagel [11-12]. In view of its characteristic, many recent studies have used EF as an indicator of environmental impact [13-15]. The ecological footprint of consumption (EFC) represents a comprehensive indicator of anthropogenic pressure on the environment [16]. Wackernagela et al. [17] presented two different conventional coefficients for calculating Ecological Footprints in time series, and applies them to Austria, the Philippines, and South Korea for the time period from 1961 to 1999. Uddin et al. [18] employed the statistical method to study the effects of real income, financial development and trade openness on the ecological footprint of consumption using a panel data.

Some other methods which were used to explore the environment and economic development (or sustainability development) were included as follows: Li et al. [19] analyzed development of urban ecological economy in the Yangtze basin based on the model of data envelopment analysis (DEA). Wu et al. [20] analyzed the coordination of regional economic growth and environmental conservation in China. Xiao et al. [21] analyzed input-output state for ecological-economic system of Chongqing city based on the ascendancy theory. Nguyen et al. [22] used GIS technology to zone the eco-environmental vulnerability region for environmental management and protection. Based on systematic dynamics, Cu et al. [23] studied and simulated the “industry-economy-resources” system for the eco-industrial clusters of Poyang Lake. Chu et al. [24] put forward ecological tension index (ETI), ecological occupancy index (EOI) and ecological economic coordination index (EECI) to evaluate ecological security of the Beijing-Tianjin-Hubei region between 1995 and 2010.

The above researches displayed the complex relationship of the economic, social development and ecological environment. And they achieved some valuable achievements. But then, the comprehensive evaluation index system is widely used in various evaluation practices. To assess quantitatively the regional economic development status, Cu et al. [25] put forward eco-environmental stress index (ESI) to estimate the trends of ecological environment, which was of great importance for evaluating the efficiency of development. Song et al. [26] employed the model to analyze the trend in stress of economic development to eco-environment in Jilin province for the period 2000-2010 and characterize the eco-environment stress in every city in Jilin province for 2010. Due to the difference of the patterns of industrial structure in the different study areas [26], the original model showed the single and uncertainty for the construction of index system and the methods determining the weight. Therefore, in order to provide a better understanding of environmental pressure, this paper made some improvements: added some indicators to the index system, and used entropy method to decide the weights of indicators.

Along with its promoting of urbanization and economic activity, the ecological environment of Anhui province was suffered with the pollution. Since 2004, the ecological province strategy began to come into effect in Anhui. In the practice of circular economy and construction of ecological province, ecological environment protection works had been done, but then there were still some eco-environment problems: the pollution emissions from energy consumption and industry production, soil degradation and so on [27]. So, it is very valuable to assess the eco-environmental stress index to the economic and social development. Resource, energy consumption index and environmental pollution index were employed to construct the index system of assessment.

2. Materials and Methods

2.1. Study area

Anhui province is located in the east of China and belongs to the Middle East Economic Zone in China. It is located in the middle and lower reaches of the Yangtze River and the Hua River. It stretches 450 kilometers from east to west and 570 kilometers from north to south. It has a land area of 139,400 km2,
accounting for 1.45% of the total land area of China. Anhui is located in the transitional area between temperate zone and subtropical zone, so the climate is warm and moist, and the four seasons are distinct. North of the Hua River is located in sub-humid warm temperate monsoon climate zone and south of the Hua River is located in subtropical humid monsoon climate zone. Anhui is composed by the mountains, hills and plains, and each class accounts for one-third of proportion.

Anhui is the major base of agricultural products, energy, raw materials and manufacturing industries in China. It plays an important role in many industries, such as car, machinery and so forth. As far as energy is concerned, there are 11.31 billion tons of coal reserves in Anhui [28]. In 2014, the three industrial structure was 11.5:53.7:34.8. The proportion of industrial added value to GDP was 46%.

2.2. The principles of constructing the index system

The evaluation indicators of eco-environmental stress varied widely [29-31], so the paper chose the indicators according to the following general principles:

1) Quantification: taking the quantitative data as a priority when choosing indicators, the value was expressed by the standardized value.

2) Independence: the indicators were chosen by its independence and representativeness, the connotation of those indicators should avoid the overlapping.

3) Scientificity: the chosen indicators should confirm to the current situation and trends of ecological environment of study area and be according with the reality.

Detailed index system was seen in table 1. The data sources of the paper were mainly from the statistical yearbooks of Anhui province (2001~2015) [32].

Sub-index indicators	Code	Meaning	Weight	Code	Meaning	Unit	Weight
RECI Resource and energy consumption index	REC1	Total energy consumption(coal)	104t	0.402			
REC2	Energy consumption by industries (coal)	104t	0.266				
REC3	Total water consumption	104m3	0.0624				
REC4	Farmland area	107m2	0.0006				
REC5	Urban construction land area	106m2	0.269				
EPI Environmental pollution index	EPI1	Usage of fertilizer in agriculture	105t	0.011			
EPI2	Discharge of industrial waste gas	109m3	0.562				
EPI3	Discharge of industrial dust	104t	0.083				
EPI4	Discharge of industrial SO2	104t	0.023				
EPI5	Discharge of industrial wastewater	104t	0.004				
EPI6	Mass of industrial solid wastes produced	104t	0.317				

2.3. Calculation principle of eco-environmental stress index (ESI)

2.3.1 Eco-environmental stress index. Eco-environmental stress index, proposed by Cu et al. (2014), was designed in a scale of 0 to 100 and divided into five parts: 0 to 20, 20 to 40, 40 to 60, 60 to 80, 80 to 100, and meant the stress of very low, low, medium, high and very high, respectively. The index was calculated from two sub-index, RECI (Resource-Energy Consumption Index) and EPI (Environmental Pollution Index).

ESI was computed using formula (1):

\[ESI = RECI \times W_1 + EPI \times W_2 \]

(1)

RECI and EPI were computed using formula (2):
Where \(W_1 \) and \(W_2 \) were the weight of \(RECI \) and \(EPI \), respectively, they were directly set to 0.5 according to their importance; \(RECI_i \) and \(w_i \) were the value and weight of i indicator of \(RECI \), respectively; \(EPI_j \) and \(w_j \) were the value and weight of j indicator of \(EPI \), respectively.

If \(RECI_i \) and \(EPI_j \) were the positive index, their normalization were calculated by using formula (3) and formula (4); if \(RECI_i \) and \(EPI_j \) were the negative index, formula (5) and formula (6) were used.

\[
RECI_i = \frac{RECI_{ii}}{\max(RECI_{ii})} \times 100, \quad i = 1, 2, \ldots, n; \quad ii = 1, 2, \ldots, n
\]

\[
EPI_j = \frac{EPI_{jj}}{\max(EPI_{jj})} \times 100, \quad j = 1, 2, \ldots, m; \quad jj = 1, 2, \ldots, m
\]

\[
RECI_i = \left(1 - \frac{RECI_{ii}}{\max(RECI_{ii})}\right) \times 100, \quad i = 1, 2, \ldots, n; \quad ii = 1, 2, \ldots, n
\]

\[
EPI_j = (1 - \frac{EPI_{jj}}{\max(EPI_{jj})}) \times 100, \quad j = 1, 2, \ldots, m; \quad jj = 1, 2, \ldots, m
\]

Where, \(RECI_{ii} \) and \(EPI_{jj} \) were the real value from yearbooks; \(\max(RECI_{ii}) \) and \(\max(EPI_{jj}) \) were respectively the maximum of the corresponding index.

The two dimensional space, composed of \(RECI \) and \(EPI \), would be used to describe the correlation between resource-energy consumption and environmental pollution [25]. By the superposition of five states (very low, low, medium, high, very high) of \(RECI \) and \(EPI \), the two dimensional space was divided into 25 regions to classify the types of eco-environmental stress. When the ratio of \(RECI \) to \(EPI \) was equal to 1, it meant the eco-environmental stress was determined by both environmental pollution and resource-energy consumption. When the ratio of \(RECI \) to \(EPI \) was less than 1, it meant the eco-environmental stress was determined by environmental pollution. When the ratio of \(RECI \) to \(EPI \) was more than 1, it meant the eco-environmental stress was determined by resource-energy consumption.

When \(RECI \) and \(EPI \) were both very low and low, it meant the negative impact of the resource-energy consumption and pollution on ecological environmental would be weak. When the two indicators were both at the medium level, it meant the consumption and pollution on ecological environment would be acceptable, but if the two indicators were both high and very high, it meant the consumption and pollution on ecological environment would be unacceptable and unsustainable, so the development mode of social economy needed to be adjusted or improved.

2.4. The determination of index weight

The common methods of determining the weights included experience method, expert consultation method, analytical hierarchy process and so forth[33]. This paper adopted the entropy weight method[34], which was an objective method to calculate weight. The entropy weight method was based on Shannon entropy theory according to their variation degrees.

Assumed that there was a data set of \(m \) years for evaluation and each year had \(n \) evaluation indicators, they formed the following decision matrix:

\[
R_{ij} = \begin{bmatrix}
 r_{11} & r_{12} & \cdots & r_{1n} \\
 r_{21} & r_{22} & \cdots & r_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 r_{m1} & r_{m2} & \cdots & r_{mn}
\end{bmatrix}
\]

Where, \(r_{mn} \) is the value of nth evaluation indicator for MTh year? Due to the difference of every indicator in dimension, magnitude and units, the paper adopted the extreme normalization method [35].

\[
r_{ij}^* = r_{ij} / r_{j}^{\max}
\]
Where, r_j^{max} is the maximum value of jet indicator, r_j' is the standardized value. The positive indicators were calculated by formula (8), while the reverse indicators were calculated by formula (9).

The proportion values P_j' were calculated by formula (10):

$$p_j' = \frac{r_j'}{\sum_{i=1}^{n} r_j'}$$

The entropy value of j indicator (e_j) was calculated by formula (11):

$$e_j = \frac{-\sum_{i=1}^{n} p_j' \times \ln (p_j')}{\ln (m)}$$

The entropy weight of j indicator (w_j) was calculated by formula (12):

$$w_j = \frac{(1 - e_j)}{\sum_{j=1}^{n} (1 - e_j)}$$

3. Results and discussion

3.1. Time characteristics analysis of ecological environment stress in Anhui province

According to the indicator system (table 1) and the related data from the statistical yearbooks of Anhui province, the paper calculated the weight of every indicator for the period 2000-2014 and analyzed the time trends of eco-environmental stress of Anhui province for the fifteen years. The change trend of eco-environmental stress of Anhui province for the period 2000-2014 was showed in figure 1, and the relationship chart of resource-energy consumption and environmental pollution is presented in figure 2.

![Figure 1. Variation trends of eco-environmental stress index in Anhui province during 2000-2014](image_url)

The figure 1 showed that the stress of economy development to ecological environment in Anhui province had significantly upward trend on the whole. Furthermore, there are also several different variation characteristics: during 2000-2002, the stress increased relatively slow, the value of eco-environmental stress was relatively small; during 2003-2010, the increasing trend of stress was accelerating and the stress was at the medium level; during 2011-2014, the stress maintained at a very high level and kept ascending trend.
The figure 2 showed that the inter-relationships and variation trend of the two sub-indexes (RECI and EPI) of eco-environmental stress of Anhui province. The relationship and trend can be concluded as follows:

(1) During 2001-2006, the data points were all above the diagonal line, the values of RECI were between 47 and 65, and the values of EPI were between 21 and 40. That meant the resource and energy consumption was relatively large and the environmental pollution was relatively small. The RECI are higher than the EPI. The ESI was at the medium level with its value between 34 and 55.

(2) During 2007-2010, the data points were all above the diagonal line, the values of RECI were between 69 and 85, and the values of EPI were between 48 and 65. That meant the increasing trend was accelerating during the period, RECI and EPI were both increasing. The ESI was at the level between medium and high with its value between 58 and 75, which was also increasing.

(3) During 2011-2012, the data points were all below the diagonal line, the values of RECI were between 88 and 94, and the values of EPI were between 94 and 96. The EPI was relatively high, which was the major indicator that impacted the ecological environment. The ESI was at the very high level with its value between 92 and 95.

(4) During 2013-2014, the data points were all above the diagonal line, the values of RECI were between 95 and 99, and the values of EPI were between 92 and 98. The RECI was relatively high, which was the major indicator that impacted the ecological environment. The ESI was at the very high level with its value between 93 and 98.

3.2. Space distributed characteristics of ecological environment stress for the cities in 2014

According to the features of cities in Anhui province, the paper used the indicator system of table 1 to assess the stress of economic development to eco-environmental for the cities of Anhui province in 2014. Suzhou, Huaibei, Bozhou, Fuyang, Bengbu, Huainan, Chuzhou, Hefei, Lu’an, Wuhu, Ma’anshan, Anqing, Chizhou, Tongling, Xuancheng and Huangshan were analyzed. Index weight, employed in 2014, was 0.154, 0.221, 0.292, 0.140, 0.193, 0.131, 0.188, 0.179, 0.114, 0.095, and 0.293. The distributed map of eco-environmental stress of the cities in Anhui province was shown in figure 3, which included the space distributed status of ESI, RECI and EPI.

![Figure 2. Interrelationship between RECI and EPI in Anhui province during 2000-2014](image-url)
Figure 3. Distributed maps of RECI, EPI and ESI of the cities of Anhui province in 2014. (a) Distribution description of RECI in the first panel; (b) Distribution description of EPI in the second panel; (c) Distribution description of ESI in the third panel.

Figure 3(a) showed that the RECI of Hefei is highest, followed by MA ‘Anshan. Figure 3(b) showed that the EPI of MA ‘Anshan was the highest, followed by Hefei. Figure 3(c) showed that the ESI of Hefei was the highest with value of 72.08, which was at the high level (60-80), followed by MA ‘Anshan’.

With the rapid development, Hefei had more resource and energy consumptions which led to its highest index of RECI among the cities; moreover, the environment pollution of Hefei should also get more attention. The ESI of MA ‘Anshan was second with its value of 71.19, and it was also at the high level (60-80).

The highest EPI indicated that the eco-environmental stress of MA ‘Anshan was significantly determined by environmental pollution. The third and fourth city in Anhui province was Huainan and Wuhu, respectively. Huainan was stressful because of its environment pollution and Wuhu was stressful because of its resource and energy consumption. By analyzing the two sub-indexes, the paper obtained the specific genesis and provided the decision support for the subsequent scientific development. The ESI of Hu Anshan and Chi Zhou were very low, which meant their ecological environment of the two cities were good.

3.3. Countermeasures
Based on the results of the above analysis, combing with the present status of ecological environment in Anhui and its major cities, the paper put forward the following development strategies:

1. Aimed at the fact that the stress of economy development to ecological environment in Anhui province has upward trend, Anhui should speed up the transformation of its economic growth pattern, optimize its industrial structure, get rid of the pattern which depended on the large resources and energy input to promote the economic development, and make a great effort to do green development and scientific development. Anhui should carry out the accounting of green GDP to provide supports for the
realizing of sustainability strategy and understand the net benefit of economic development. At the same
time, Anhui should strengthen the environmental protection and pollution control, develop recycling
economy, enhance the use efficiency of resource and energy, and reduce the total discharge of pollution.

2. Based on the results that the stress of Hefei, MA ‘Anshan and Wuhu are the classification of
resource and energy consumption, it is important to enhance the use efficiency of resource and energy,
 improve and optimize the energy structure, adjust and optimize the industrial structure and increase the
quality and benefit of economic development.

3. Based on the results that the stress of Huainan and MA ‘Anshan are the classification of
environmental pollution, it is important to strengthen the environmental protection and pollution control,
remedy ecological environment, do the ecological construction for the ecologically vulnerable area,
transform the function of the mining industrial cities and find new development fields. And they should
also reduce the total discharge of pollution and elevate the bearing capacity of ecological environment
by the comprehensive control.

In addition, it is important to strengthen the new industry and transform from the middle and low end
industry to middle and high end industry.

4. Conclusions
By evaluating quantitatively eco-environmental stress, the paper revealed the characteristics and status
of Anhui province and its cities. The conclusions were as follows:

1). With the rapid economic growth, Anhui had the larger eco-environmental stress. Since 2011, the
stress had been significantly increasing. So, it should speed up the transformation of its economic growth
pattern, carry out sustainable development strategy, and strengthen the construction of ecological
province.

2). From the view of the space characteristics, the ESI of Hefei, MA ‘Anshan and Huainan are
relatively large, while the ESI of other cities in Anhui province are relatively small.

3). The assessment method of ESI not only took ecological environmental pollution into account, but
also resource and energy consumption. Compared with other methods, ESI can explicit the specific
factor from economic development impacts on the eco-environmental stress, so it had advantage of
strong comprehensiveness.

Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (Grant no.
414714 22); Anhui Provincial Natural Science Foundation (Grant no. 1508085MD67); Key Project of
Outstanding Young Talents of Universities in Anhui Province (gxyqZD2016148); Humanities and
Social Sciences key project of Education Department of Anhui Province (SK2015A295).

References
[1] Kuznets, S. Economic growth and income inequality. American Economic Review, 1955, 45
(1), pp.1–28.
[2] M. Shahbaz, S. Dube, I. Ozturk, A. Jalil, Testing the environmental Kuznets curve hypothesis in
Portugal, International Journal of Energy Economics and Policy, 2015, 5 (2), pp.475–481.
[3] A. Mulali, U. Tang, C.F. Ozturk, Estimating the environment Kuznets curve hypothesis: evidence
from latin america and the caribbean countries, Renewable & Sustain Energy Reviews.,
2015,50, pp. 918–924.
[4] N. Apergis, I. Ozturk, Testing environmental Kuznets hypothesis in Asian countries, Ecological
Indicators, 2015, 52 (2), pp.16–22.
[5] Z. Mrabet, M. Alsamara, Testing the Kuznets Curve hypothesis for Qatar: a comparison between
carbon dioxide and ecological footprint, Renewable & Sustainable Energy Reviews,
2017,70, pp.1366-1375.
[6] H.T. Odum, Environment accounting: emery and environment decision making. John Wiley,
1996, New York.
[7] C.A.S. Hall, C.J. Cleveland, R. Kauffmann, Energy and resource quality: the ecology of the economic process, John Wiley and Sons, 1986, New York.

[8] M.T. Brown, S. Ulgiati, Emergy-based indices and ratios to evaluate sustainability: monitoring economics and technology toward environmentally sound innovation, Ecological Engineering, 1997, 9, pp.51-69.

[9] M.R. Su, Z.F. Yang, B. Chen, S. Ulgiati, Urban ecosystem health assessment based on emergy and set pair Analysis-a comparative study of typical Chinese cities, Ecological Modelling, 2009, 220, pp.2341-2348.

[10] Y. Sun, Q.G. Cheng, Y. Li, J. Fu, Assessment of eco-economic system sustainable development of Liaoning Province based on emergy analysis, Chinese Journal of Applied Ecology, 2014, 25(1), pp.188-194.

[11] E.R. Williams, Ecological footprints and appropriated carrying capacity: what urban economics leaves out, Environment and Urbanization, 1992, 4, pp.121-130.

[12] M. Wackernagel, W.E. Rees, Our ecological footprint: reducing human impact on the earth. New Society Publishers, 1996, Gabriola Island.

[13] M. Wackernagel, C. Monfreda, N.B. Schulz, K.H. Erb, H. Haberl, F. Krausmann, Calculating national and global ecological footprint time series: resolving conceptual challenges, Land Use Policy, 2004, 21(3), pp. 271–278.

[14] A. Galli, J. Kitzes, V. Niccolucci, M. Wackernagel, Y. Wada, N. Marchetti, Assessing the global environmental consequences of economic growth through the ecological footprint: A focus on China and India, Ecological Indicators, 2012a, 17, pp.99–107.

[15] A. Galli, T. Wiedmann, E. Ercin, D. Knoblauch, B. Ewing, S. Giljum, Integrating ecological, carbon and water footprint into a ‘Footprint Family’ of indicators: definition and role in tracking human pressure on the planet, Ecological Indicators, 2012, 16, pp.100–112.

[16] D. Vackar, Ecological footprint, environmental performance and biodiversity: a cross-national comparison, Ecological Indicators, 2012, 16, pp. 40–46.

[17] M. Wackernagel, Chad. Monfreda, K.H. Erb, H. Haberl, N.B Schulz, Ecological footprint time series of Austria, the Philippines, and South Korea for 1961–1999: comparing the conventional approach to an ‘actual land area’ approach, Land Use Policy, 2004, 21, pp.261–269.

[18] G.A. Uddina, M. Salahuddina, K. Alama, J. Gowa, Ecological footprint and real income: Panel data evidence from the 27 highest emitting countries, Ecological Indicators, 2017, 77, pp.166–175.

[19] J. Li, H.Y. Xie, Development analysis of urban ecological economy in the Yangtze basin based on the model of data envelopment analysis (DEA), Ecological Economy, 2008, 9, pp.85-88.

[20] Y.M. Wu, Y. Zhang, Analyzing coupled regional economic growth and environmental conservation in China, Resources Science, 2008, 30(1), pp.25-30.

[21] Q. Xiao, L.Z. Wen, D.H. Yi, D. Hu, H.T. Zhang, An input-output analysis on Chongqing ecological-economic system based on the ascendancy theory, Acta Ecologica Sinica, 2010, 30(5), pp.1148-1156.

[22] A.K. Nguyen, Y.A. Liou, M.H. Li, T. A. Tran, Zoning eco-environmental vulnerability for environmental management and protection, Ecological Indicators, 2016, 69, pp.100-117.

[23] S.H. Xu, D. Wu, Analysis on the “industry-economy-resources” simulated system of Poyang Lake eco-industrial clusters based on systematic dynamics, Resources Science, 2016, 38(5), pp.871-887.

[24] X. Chu, X.Z. Deng, G. Jin, Z. Wang, Z.H. Li, Ecological security assessment based on ecological footprint approach in Beijing-Tianjin-Hebei region, China, Physics and Chemistry of the Earth, Parts A/B/C, 2017, 4.

[25] F.L. Xu, S.S. Zhao, T.T. Du, W. Zhan, Z.Y. Zhao, J.Y. Hao, Y. Zhang, Quantitative assessment for economic development stress status and trends of eco-environment, China Population-Resources and Environment, 2004, 14(4), pp.30-36.
[26] J. Song, H.X. Wang, S.Y. Li, Quantitative assessment of stress of economic development to environment using ecological stress index, Chinese Journal of Eco-Agriculture, 2014, 22(3), pp.368-374.

[27] P.J. Ji, Researches on status evaluation and countermeasures of ecological civilization construction in Anhui Province, Acta Agriculturae Jiangxi, 2015, 27(4), pp.125-130.

[28] The People's Government of Anhui Province. Anhui overview, 2016–08–31, information on http://www.ah.gov.cn/.

[29] H.S. Wang, Study on Eco-Environmental pressures assessment and their impacts on the coastal zone in the Liaodong Bay. Chinese Research Academy of Environmental Sciences, 2010.

[30] L.T. Liang Evaluation of rural eco-environmental stress based on catastrophe progression method, Journal of Arid Land Resources and Environment, 2013, 27(7), pp.46-51.

[31] P. Yi, S.M. Fang, C.Y. Ma, Decoupling evaluation between tourism economic growth and eco-environmental pressure of Songshan Global Geopark, Journal of Natural Resources, 2014, 8, pp.1282-1296.

[32] Statistical Bureau of Anhui. Anhui Statistical Yearbook, 2001-2015. Beijing: China Statistical Publishing House.

[33] K. Li, Application of analytical hierarchy process to integrate evaluation of eco-environment, Environmental Science &Technology, 2009, 32(2), pp.183-185.

[34] P. Li, C.F. Wei, D.C. Qiu, Potentiality evaluation of regional cultivated land consolidation and rehabilitation based on entropy weight method: A Case Study of Chongqing Municipality, Chinese Agricultural Science Bulletin, 2007, 23(6), pp.536-541.

[35] L.P. Yu, Y.T. Pan, Y.S. Wu, Research on Data Normalization Methods in Multi-attribute Evaluation, Library and information Service, 2009, (12), pp.136-139.