SHORT COMMUNICATION

Antimutagenic components in *Glycyrrhiza* against *N*-methyl-*N*-nitrosourea in the Ames assay

Keiko Inamia,b, Yusuke Minea, Yukiko Kojob, Satomi Tanakaa, Satoko Ishikawab,c and Masataka Mochizukia,b

aFaculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Japan; bKyoritsu University of Pharmacy, Tokyo, Japan; cFaculty of Pharmacy, Keio University, Tokyo, Japan

ABSTRACT

Antimutagenesis against *N*-nitroso compounds contribute to prevention of human cancer. We have found that *Glycyrrhiza aspera* ethanolic extract exhibits antimutagenic activity against *N*-methyl-*N*-nitrosourea (MNU) using the Ames assay with *Salmonella typhimurium* TA1535. In the present study, eight purified components from *Glycyrrhiza*, namely glabridin, glycyrrhetinic acid, glycyrrhizin, licochalcone A, licoricesaponin H2, licoricesaponin G2, liquiritigenin and liquiritin were evaluated for their antimutagenicity against MNU in the Ames assay with *S. typhimurium* TA1535. Glycyrrhetinic acid, glycyrrhizin, licoricesaponin G2, licoricesaponin H2 and liquiritin did not show the antimutagenicity against MNU in *S. typhimurium* TA1535. Glabridin, licochalcone A and liquiritigenin reduced revertant colonies derived from MNU in *S. typhimurium* TA1535. Glabridin, licochalcone A and liquiritigenin reduced revertant colonies derived from MNU in *S. typhimurium* TA1535 without showing cytotoxic effects, indicating that these compounds possess antimutagenic activity against MNU. The inhibitory activity of glabridin and licochalcone A was more effective than that of liquiritigenin. Thus, *Glycyrrhiza* contains antimutagenic components against DNA alkylating, direct-acting carcinogens.

1. Introduction

Almost all tested *N*-nitroso compounds have been shown to have carcinogenic activity in experimental animals; as a result, exposure to *N*-nitroso compounds is suspected to induce human cancer (Lijinsky 1992). Approximately, 45–75% of the total human exposure to *N*-nitroso compounds is estimated to be due to *in vivo* synthesis (Tricker 1997).
N-Methyl-N-nitroso urea (MNU) is a direct-acting alkylating agent (Preussmann & Eisenbrand 1984). MNU is formed in vivo and anticipated to be a human carcinogen (Deng et al. 1998; Sen et al. 2000, 2001; Engemann et al. 2013). Therefore, for cancer chemoprevention, it is important to find some compounds that can inhibit the mutagenicity induced by MNU.

We have reported on the inhibitory effect of plant extracts; Glycyrrhiza ethanolic extract, Glycine max extract with 40% isoflavone aglycone (ISOMAX AG40) and Zingiber officinale ethanolic extract, against MNU mutagenicity using the Ames assay with Salmonella typhimurium TA1535 among 43 extracts derived from medicinal and edible plant (Tatsuzaki et al. 2014). In addition, the Leguminosae family has been effective at inhibiting MNU-induced mutagenicity in the umu assay (Inami et al. 2014). Therefore, we focused on components in the Glycyrrhiza root, which belongs to the Leguminosae family. In the present study, we evaluated the antimutagenicity of eight purified components of Glycyrrhiza ethanolic extract, namely glabridin, glycyrrhetinic acid, glycyrrhizin, licochalcone A, licoricesaponin H2, licoricesaponin G2, liquiritigenin and liquiritin, against MNU in the Ames assay with S. typhimurium TA1535 (Figure 1).

2. Results and discussion

Glycyrrhiza root is one of the historical herbal medicines, however, it has been still found some novel bioactivity (Kao et al. 2014; Gou et al. 2015). Many components have been isolated from Glycyrrhiza root, including triterpene saponin, flavonoids, isoflavonoids and chalcones (Shibata 2000; Asl & Hosseinzadeh 2008; Tanaka et al. 2010). Many components have been isolated from licorice, including triterpene saponin, flavonoids, isoflavonoids and chalcones (Shibata 2000; Asl & Hosseinzadeh 2008; Tanaka et al. 2010; Kao et al. 2014). We chose the following compounds from each category: β-glycyrrhetinic acid, glycyrrhizin, licoricesaponin H2 and licoricesaponin G2 are pentacyclic triterpenoids; liquiritigenin and liquiritin

![Figure 1. Chemical structures of components isolated from the Glycyrrhiza root.](image)
are flavanones; glabridin is an isoflavone; and licochalcone A is a chalcone. These are the major components in each category, and they are commercially available.

Because *Glycyrrhiza* has well-known antimicrobial and antiviral activities (Shibata 2000; Nomura et al. 2002; Asl & Hosseinzadeh 2008; Kao et al. 2014), the doses of the components for the Ames assay that lacked cytotoxicity were determined to evaluate the precise antimutagenicity. The results were the following maximum concentrations; 1.0 mg/mL for glycyrrhizin, β-glycyrrhetinic acid, licoricesaponin H2, licoricesaponin G2, liquiritigenin and liquiritin and 0.1 mg/plate for glabridin and licochalcone A. These components were examined for their ability to inhibit the mutagenicity of MNU in the Ames assay.

β-Glycyrrhetinic acid, glycyrrhizin, licoricesaponin H2, licoricesaponin G2 and liquiritin did not decrease the revertant colonies derived from MNU in *S. typhimurium* TA1535 at a concentration of 0.05–1.0 mg/plate (Supplemental Tables S1–S5). Glabridin, liquiritigenin and licochalcone A reduced the revertant colonies derived from MNU in *S. typhimurium* TA1535 without showing cytotoxicity, indicating that flavonoids and chalcones possessed antimutagenic activity against MNU (Figure 2, Supplemental Tables S6–S8). The inhibitory activities of glabridin and licochalcone A were more effective than that of liquiritigenin. Glabridin and licochalcone A had a similar extent of inhibition.

Those components are classified into two groups, aglycons (β-glycyrrhetinic acid, glabridin, liquiritigenin and licochalcone A) and glycosides (glycyrrhizin, licoricesaponin H2, licoricesaponin G2 and liquiritin). None of the tested glycosides influenced the MNU-induced mutagenicity in *S. typhimurium* TA1535. It can be difficult for the glycosides to pass through

![Figure 2. Antimutagenicity of glabridin (●), licochalcone A (▲) and liquiritigenin (■) against MNU in *Salmonella typhimurium* TA1535.](image-url)
the bacterial membrane because of their higher water solubility (Kiyosawa et al. 1995). It is important to evaluate the antimutagenicity of aglycons using the Ames assay.

To compare the antimutagenic activity of the *G. aspera* ethanolic extract and the components, the same maximum concentration (1.0 mg/plate) were used. In a previous study, the *G. aspera* ethanolic extract, at a concentration of 1.0 mg/plate, decreased the MNU-induced mutagenicity to 5.4% in *S. typhimurium* TA1535 without any cytotoxicity (Tatsuzaki et al. 2014). Licorittigenin inhibited the mutagenicity of MNU to 31.2% at a concentration of 1.0 mg/plate (Figure 2, supplemental Table S8). Glabridin and licochalcone A inhibited the mutagenicity of MNU between 5.9 and 31.0%, respectively, at a concentration of 0.1 mg/plate (Figure 2, supplemental Tables S6 and S7). At the concentration used, glabridin and licochalcone A may contribute to the antimutagenic activity of the *G. aspera* ethanolic extract. We are working on isolating the antimutagenic components from the *G. aspera* ethanolic extract.

For effective cancer chemoprevention, it is important to identify compounds that can inhibit the mutagenicity induced by MNU. Flavonoids and isoflavonoids are already known as chemopreventive agents (Birt et al. 2001). Glabridin, licochalcone A and licorittigenin were found to inhibit the mutagenicity of MNU for the first time. Further investigation is required to identify the antimutagens in the *Glycyrrhiza* root.

Acknowledgement

We thank J. Tatsuzaki, Tokiwa Phytochemical Co. Ltd. (Chiba, Japan), for providing components from *Glycyrrhiza*.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan; Grant-in-Aid for the Science Research Promotion Fund from the Japan Private School Promotion Foundation.

References

Asl MN, Hosseinzadeh H. 2008. Review of pharmacological effects of *Glycyrrhiza* sp. and its bioactive compounds. Phytother Res. 22:709–724.

Birt DF, Hendrich S, Wang W. 2001. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther. 90:157–177.

Deng D, Li T, Ma H, Wang R, Gu L, Zhou J. 1998. Characterization of *N*-nitrosomethyl)urea in nitrosated fermented fish products. J Agric Food Chem. 46:202–205.

Engemann A, Focke C, Humpf HU. 2013. Intestinal formation of *N*-nitroso compounds in the pig cecum model. J Agric Food Chem. 61:998–1005.

Gou SH, Liu J, He M, Qiang Y, Ni JM. 2015. Quantification and bio-assay of α-glucosidase inhibitors from the roots of *Glycyrrhiza uralensis Fisch*. Nat Prod Res. Published online Dec 14:1–5. doi:10.1080/14786419.2015.1114940.
Inami K, Takada M, Itoh K, Ishikawa S, Mochizuki M. 2014. Assessment of the antimutagenic effects of aqueous extracts from herbal medicines against N-nitroso-N-alkylureas induced mutagenicity using the *umu* test. Genes Environ. 6:33–38.

Kao TC, Wu CH, Yen GC. 2014. Bioactivity and potential health benefits of licorice. J Agric Food Chem. 62:542–553.

Kiyosawa I, Matsuyama J, Arai C, Setoguchi T. 1995. Suppressive effects of the methanol extracts from soybean products on SOS response of *Salmonella typhimurium* induced by mutagens and their contents of isoflavones. Nippon Shokuhin Kagaku Kogaku Kaishi. 42:835–842.

Lijinsky W. 1992. Chemistry and biology of N-nitroso compounds Cambridge monographs on cancer research. Cambridge: Cambridge University Press.

Nomura T, Fukai T, Akiyama T. 2002. Chemistry of phenolic compounds of licorice (*Glycyrrhiza* species) and their estrogenic and cytotoxic activities. Pure Appl Chem. 74:1199–1206.

Preussmann R, Eisenbrand G. 1984. *N*-nitroso carcinogens in the environment. In: Searle, CE, editor. *Chemical carcinogens, ACS monograph No. 182*. Washington (DC): American Chemical Society; p. 829–868.

Sen NP, Seaman SW, Baddoo PA, Burgess C, Weber D. 2001. Formation of *N*-nitroso-N-methylurea in various samples of smoked/dried fish, fish sauce, seafoods, and ethnic fermented/pickled vegetables following incubation with nitrite under acidic conditions. J Agric Food Chem. 49:2096–2103.

Sen NP, Seaman SW, Burgess C, Baddoo PA, Weber D. 2000. Investigation on the possible formation of *N*-nitroso-N-methylurea by nitrosation of creatinine in model systems and in cured meats at gastric pH. J Agric Food Chem. 48:5088–5096.

Shibata S. 2000. A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi. 120:849–862.

Tanaka K, Ina A, Hayashi K, Komatsu K. 2010. Comparison of *Glycyrrhiza uralensis* from various sources using a multivariate statistical approach. J Tradit Med. 27:210–206.

Tatsuzaki J, Jinwei Y, Kojo Y, Mine Y, Ishikawa S, Mochizuki M, Inami K. 2014. Antimutagenicity screening of extracts from medicinal and edible plants against *N*-methyl-*N*-nitrosourea by the Ames assay. Genes Environ. 6:39–46.

Tricker AR. 1997. *N*-nitroso compounds and man: sources of exposure, endogenous formation and occurrence in body fluids. Eur J Cancer Prev. 6:226–268.