LIMITS, STANDARD COMPLEXES AND fr-CODES

SERGEI O. IVANOV, ROMAN MIKHAILOV, AND FEDOR PAVUTNITSKIY

ABSTRACT. For a strongly connected category C with pair-wise coproducts, we introduce a cosimplicial object, which serves as a sort of resolution for computing higher derived functors of $\lim : \text{Ab}^C \to \text{Ab}$. Applications involve Künneth theorem for higher limits and \lim-finiteness of fr-codes. A dictionary for the fr-codes with words of length ≤ 3 is given.

1. INTRODUCTION

Let G be a group. By $\text{Pres}(G)$ we denote the category of presentations of G with objects being free groups F together with epimorphisms to G. Morphisms are group homomorphisms over G. For a functor $F : \text{Pres}(G) \to \text{Ab}$ from the category $\text{Pres}(G)$ to the category of abelian groups, one can consider the (higher) limits $\lim^i F$, $i \geq 0$, over the category of presentations. The limits $\lim^i F$ are studied in the series of papers [5], [6], [11], [12].

Let Ring be the category of rings. The group ring functor $\mathbb{Z}[-] : \text{Pres}(G) \to \text{Ring}$, $(F \to G) \mapsto \mathbb{Z}[F]$ has two functorial ideals f and r defined as

$$f(F \to G) = \ker\{\mathbb{Z}[F] \to \mathbb{Z}\}, \quad r(F \to G) = \ker\{\mathbb{Z}[F] \to \mathbb{Z}[G]\}$$

For different products of ideals f and r, their sums and intersections, like

$$\text{fr} + rf, \quad r^2 \cap f^3$$

one can consider their higher limits. It turns out, such limits, which depend functorially on G, cover a rich collection of various functors on the category of groups, including certain homological functors, derived functors etc.

(Finite) sums of monomials formed from letters f and r we call fr-sentences or fr-codes. By translation we mean a description of the functors $\lim^i (\text{fr-code})$, $i \geq 1$, fr-codes viewed as functors $\text{Pres}(G) \to \text{Ab}$. For the moment we do not have a unified method of translation of a given code and, in every new case, in order to translate a code, we find specific tricks. At the end of the paper we present a dictionary of all nontrivial translations of codes with monomials of length ≤ 3. In order to illustrate the diversity of functors which

The authors are supported by the Russian Science Foundation grant N 16-11-10073.
appear in this way, we give the following examples:

\[
\lim^1 (rff + frr) = \text{Tor}(H_2(G), G_{ab}), \\
\lim^1 (rr + ffr + rff) = H_2(G, G_{ab}), \\
\lim^1 (rr + ffr) = H_3(G), \\
\lim^2 (rr + ffr) = g \otimes \mathbb{Z}[G] g.
\]

Here \(H_i(G)\) is the \(i\)th integral homology of \(G\), \(g\) the augmentation ideal in \(\mathbb{Z}[G]\), \(G_{ab}\) the abelianization of \(G\).

Since the category \(\text{Pres}(G)\) is strongly connected, the \(\lim^1(\text{fr-code})\) has a natural interpretation as the maximal constant subfunctor of \(f/(\text{fr-code})\) (see [5], [6]). For example,

\[
\lim^1 rr + fff = \lim^0 \frac{f}{rr + fff} = \frac{(rr + fff) \cap (fr + fff)}{rr + fff} = \text{Tor}(G_{ab}, G_{ab}), \\
\lim^1 rf + fr = \lim^0 \frac{f}{rf + fr} = \frac{ff}{rf + fr} = g \otimes \mathbb{Z}[G] g.
\]

The point of this theory (which we also call metaphorically as \(\text{fr-language}\)), is that the formal manipulations with codes in two letters may induce deep and unexpected transformations of functors. Simple transformations of \(\text{fr}\)-codes, like changing the symbol \(r\) by \(f\) in a certain place, adding a monomial to the \(\text{fr}\)-code etc, induce natural transformations of (higher) limits determined by these \(\text{fr}\)-codes. For example, the transformation of the \(\text{fr}\)-codes

\[
rr + ffr \leadsto rr + ffr + rff
\]

induces the natural transformation of functors

\[
H_3(G) = \lim^1 (rr + ffr) \leadsto H_2(G, G_{ab}) = \lim^1 (rr + ffr + frr).
\]

Here the map \(H_3(G) \to H_2(G, G_{ab})\) is constructed as \(H_3(G) = H_2(G, g) \to H_2(G, g/g^2) = H_2(G, G_{ab})\), where the last map is induced by the natural projection \(g \twoheadrightarrow g/g^2 = G_{ab}\).

This paper has two main parts. The first part is more abstract, we prove that any (finite) \(\text{fr}\)-code has only finite number of non-zero higher limits (see Theorem 4.4). In order to prove this statement, we develop a general theory of standard complexes constructed for elements of categories with pairwise coproducts (such as our category \(\text{Pres}(G)\)). More precisely, for any object \(c\) of a category with pairwise coproducts we introduce a cosimplicial object \(\mathcal{G}(c)\), such that, for any functor \(\mathcal{F}\) from our category to abelian groups, the (higher) limits \(\lim^i \mathcal{F}\) are naturally isomorphic to the cohomotopy groups \(\pi^i \mathcal{F} \mathcal{G}(c)\) (Theorem 2.12). It follows from Theorem 4.4 that, given a \(\text{fr}\)-code, the number of its non-zero higher limits is finite. In the second part we present concrete translations. We form a dictionary of the various \(\text{fr}\)-codes using spectral sequences, Grünberg resolution, Künneth-type formulas and collections of tricks. Observe that, not all \(\text{fr}\)-codes can be translated using homological algebra only, in some cases (like the case \(rr + ffr + ffr + rff\)), nontrivial statements from the theory of groups and group rings are useful.
2. The standard complex

Definition 2.1. A category \mathcal{C} is called *strongly-connected* if for any two objects $c, c' \in \mathcal{C}$

$$\text{Hom}_\mathcal{C}(c, c') \neq \emptyset.$$

Moreover, if for any $c, c' \in \mathcal{C}$ there exists coproduct $c \sqcup c'$, we say that \mathcal{C} is a *category with pairwise coproducts* (i.e. with finite non-empty coproducts).

Definition 2.2. Let $\mathcal{F} : \mathcal{C} \to \text{Ab}$ be a functor. The *Higher limits* $\lim^i \mathcal{F}$ of \mathcal{F} are the right derived functors of the limit functor:

$$\lim^i \mathcal{F} = \mathbb{R}^i \lim \mathcal{F}, \quad \lim : \text{Ab}^\mathcal{C} \to \text{Ab}.$$

We will assume that in the functor category there are enough injective objects, so higher limits of any functor exists, provided \mathcal{C} is small. In a general case, as in section (4), where $\mathcal{C} = \text{Pres}(G)$, the existence of higher limits for functors of interest can be established, using Grothendieck-Tarsky theory, as in [6].

For a cochain complex of functors the relation between higher limits of its terms and limits of its cohomology is given by the following spectral sequence.

Proposition 2.3 ([5], (2.5), (2.6)). Let \mathcal{F}^\bullet be a bounded below cochain complex of functors with lim-acyclic cohomology. Then there exists a convergent spectral sequence

$$E^{p,q}_1 = \lim^q \mathcal{F}^p \Rightarrow \lim H^{p+q}(\mathcal{F}^\bullet)$$

with the differential on the first page induced by the differential of \mathcal{F}^\bullet.

Remark. For a functor \mathcal{F} consider its subfunctor of the invariants $\text{inv} \mathcal{F} : \mathcal{C} \to \text{Ab}$:

$$\text{inv} \mathcal{F}(c) = \{ x \in \mathcal{F}(c) | \forall c' \in \mathcal{C}, \varphi, \psi : c \to c', \mathcal{F}(\varphi)(x) = \mathcal{F}(\psi)(x) \}.$$

In strongly connected categories this functor is constant and its value is equal to $\lim \mathcal{F}$, see (4.1) in [6]. Moreover, it is known [11] that the limit of a functor from a strongly connected category with pair-wise coproducts is equal to the equalizer

$$\lim \mathcal{F} \cong \text{eq}(\mathcal{F}(c) \rightrightarrows \mathcal{F}(c \sqcup c))$$

for any $c \in \mathcal{C}$. In particular, this equalizer does not depend on c.

To generalize the relation between limits and invariants to the level of derived functors we introduce the following notion:

Definition 2.4. For $c \in \mathcal{C}$ consider the following cosimplicial object $\mathfrak{B} : \Delta \to \mathcal{C}$, which we will call the *standard complex* associated with c:

$$\mathfrak{B}(c)^n = \bigcup_{j=0}^n c,$$

$$\mathfrak{B}(c)([n] \overset{f}{\rightarrow} [m]) = \bigsqcup_{j=0}^n c^{(i_f(0), \ldots, i_f(n))} \rightarrow \bigsqcup_{k=0}^m c$$
here $i_j : c \to \bigsqcup_{k=0}^m c$, $0 \leq j \leq m$ are canonical inclusions and notation (g_0, \ldots, g_n), $g_k : c \to c'$ stands for the unique map $c^{\downarrow n+1} \to c'$ such that $(g_0, \ldots, g_n) \circ i_j = g_j$.

By definition, cofaces and codegeneracies of $\mathfrak{B}(c)$

$$d^i : c^{\downarrow n+1} \to c^{\downarrow n+2}, \quad s^i : c^{\downarrow n+1} \to c^{\downarrow n}$$

are given by

$$(4) \quad d^i = (i_0, \ldots, \hat{i}_j, \ldots, i_{n+1}), \quad s^i = (i_0, \ldots, i_j, \ldots, i_n).$$

This complex is very similar to the so-called canonical resolution, associated with the monad $(c\sqcup(-), \nabla, i_2)$, here $\nabla : c\sqcup c\sqcup(-) \xrightarrow{(i_1, i_2)\circ \text{id}} c\sqcup(-)$, see (17) (8.6.8). This similarity will become an identification, if there is an initial object 0 in \mathcal{C}. In this case though all higher limits of the functor $\mathcal{F} : \mathcal{C} \to \text{Ab}$ are trivial, provided $\mathcal{F}(0) = 0$. Alternatively, since (\mathcal{C}, \sqcup) can be considered as a strong monoidal category (without unit) and every object is a monoid with respect to this structure, for any c the standard resolution $\mathfrak{B}(c)$ can be considered as a unique monoidal functor $\Delta \to \mathcal{C}$ which sends $[0]$ to c, as in (7.5) of [9].

Now we will study some homotopical properties of the standard complex $\mathfrak{B}(c)$.

Definition 2.5 ([10], (2.1)). Let $f, g : X \to Y$ be two morphisms between cosimplicial objects X and Y. A cosimplicial homotopy between f and g is a collection of maps $k^i : X^{n+1} \to Y^n$, $0 \leq i \leq n$, satisfying the following identities:

$$(5) \quad k^0 d^0 = g, \quad k^i d^{i+1} = f$$

$$(6) \quad k^i d^i = \begin{cases} d^i k^{i-1}, & i < j \\ k^{i-1} d^i, & i = j > 0 \\ d^{i-1} k^i, & i > j + 1 \end{cases}$$

$$(7) \quad k^i s^i = \begin{cases} s^i k^{i+1}, & i \leq j \\ s^{i-1} k^i, & i > j \end{cases}$$

We will use the following definition of the Moore complex and the alternate sum complex for the abelian case, which are dualizations of the standard definitions, as in [3]:

Definition 2.6. Let A be a cosimplicial object in an abelian category \mathcal{C}

- The *Moore complex* QA of A is a cochain complex

$$(QA)^n = \text{coker}\left\{ \bigoplus_{i=1}^n A^{n-1} \xrightarrow{d^i} A^n \right\}$$

- The *alternate sum complex* CA of A is a cochain complex

$$CA^n = A^n, \quad d = \sum_{i=0}^{n+1} (-1)^i d^i$$
Both constructions are functorial, with $Q : \mathcal{C}^\Delta \to \text{Ch}_{<0}(\mathcal{C})$ being an exact functor, and as in the simplicial case, these two complexes are chain homotopic to each other. Since a cosimplicial homotopy $\{k^i\}_{i=0}^\infty$ between f and g induces a chain homotopy

$$k = \sum_{i=0}^n (-1)^i k^i$$

between Cf and Cg, Qf and Qg are also homotopic.

The Moore complex QA also has a convenient iterative description in terms of the $d'\text{ecalage}$ of A, which is a cosimplicial object $\text{Dec} A$ with the following structure:

$$(\text{Dec} A)^n = A^{n+1},
\begin{array}{l}
d^i_{\text{Dec} A} = d^i_{A}, \\
s^j_{\text{Dec} A} = s^j_{A}
\end{array}$$

Proposition 2.7. The following formula holds:

$$(QA)^n = \text{coker} \{(QA)^{n-1} \xrightarrow{d^1} (Q\text{Dec} A)^{n-1}\}.$$

Proof. Consider the following diagram:

The diagonal arrow here represents a map to a “total” cokernel of the square (the cokernel of the natural map from the push-out to the right-bottom corner), which is equal to a “sequential” cokernel, represented by the rightmost vertical arrows.

Turns out, on a strongly connected \mathcal{C} the standard complex construction is constant up to homotopy:

Theorem 2.8. Let \mathcal{C} be a category with pair-wise coproducts. Then for any two maps $f, g : c \to c'$ the induced morphisms $\mathfrak{A}(c) \to \mathfrak{A}(c')$ are homotopic.

Proof. Consider the following collection of maps $\{k^i : \mathfrak{A}(c)^{n+1} \to \mathfrak{A}(c')^n\}_{i=0}^\infty$.

$$k^i = (i_0 f, \ldots, i_i f, i_i g, \ldots, i_n g) = s^i \alpha^i, \quad \alpha^i := f \sqcup \cdots \sqcup f \sqcup g \sqcup \cdots \sqcup g$$

First we consider how α^j commutes with cofaces and codegeneracies. For fixed $i < j$:

$$\alpha^j d^i = (i_0 f, \ldots, i_j f, i_{j+1} g, \ldots, i_n g)(i_0, \ldots, \hat{i}_i, \ldots, i_n) = (i_0 f, \ldots, \hat{i}_i f, \ldots, i_j f, i_{j+1} g, \ldots, i_n g)$$

$$= (i_0, \ldots, \hat{i}_i, \ldots, i_n g)(i_0 f, \ldots, i_{j-1} f, i_j g, \ldots, i_n g) = d^i \alpha^{j-1}$$

(continued on the next page)
For $i > j + 1$:

$$\alpha^j d^i = (i_0 f, \ldots, i_j f, i_{j+1} g, \ldots, i_n g) = d^i \alpha^j$$

For codegeneracies if $i \leq j$:

$$\alpha^j s^i = (i_0 f, \ldots, i_j f, i_{j+1} g, \ldots, i_n g) = s^i \alpha^{j+1}$$

And similarly for $i > j$:

$$\alpha^j s^i = (i_0 f, \ldots, i_j f, i_{j+1} g, \ldots, i_i g, \ldots, i_n g) = s^i \alpha^j$$

Returning to k^i and using the cosimplicial identities:

$$k^i d^i = s^i \alpha^j d^i = \begin{cases} s^i d^i \alpha^{j-1}, & i < j \\ s^i d^i \alpha^j, & i > j + 1 \end{cases} = \begin{cases} d^i s^{j-1} \alpha^{j-1}, & i < j \\ d^i s^j \alpha^j, & i > j + 1 \end{cases} = \begin{cases} d^i k^{j-1}, & i < j \\ d^i k^j, & i > j + 1 \end{cases}$$

$$k^i s^i = s^j \alpha^j s^i = \begin{cases} s^i s^j \alpha^{j+1}, & i \leq j \\ s^i s^j \alpha^j, & i < j \end{cases} = \begin{cases} s^i k^{j+1}, & i \leq j \\ s^i k^j, & i < j \end{cases}$$

Finally we consider relations for $k^j d^j$ and the boundaries of the homotopy $k^0 d^0, k^n d^{n+1}$:

$$k^j d^j = (i_0 f, \ldots, i_j f, i_{j+1} g, \ldots, i_n g) = (i_0 f, \ldots, i_j f, i_{j+1} g, \ldots, i_n g) = k^j d^i$$

$$k^0 d^0 = (i_0 f, i_0 g, \ldots, i_n g) = (i_0 g, \ldots, i_n g) = g \sqcup \cdots \sqcup g = \mathcal{B}(g)^n$$

$$k^n d^{n+1} = (i_0 f, \ldots, i_n f, i_n g) = (i_0 f, \ldots, i_n f) = f \sqcup \cdots \sqcup f = \mathcal{B}(f)^n$$

This shows that $\{k^i\}_{i=0}^\infty$ defined above is indeed a cosimplicial homotopy between $\mathcal{B}(f)$ and $\mathcal{B}(g)$.

\[\square \]

Corollary 2.9. Let $\mathcal{F} : \mathcal{C} \to \text{Ab}$ be a functor on a strongly connected \mathcal{C} with pair-wise coproducts. Then the cohomology groups

$$\pi^n \mathcal{F} \mathcal{B}(c) := H^n C \mathcal{F} \mathcal{B}(c)$$

are independent of $c \in \mathcal{C}$.

6 SERGEI O. IVANOV, ROMAN MIKHAILOV, AND FEDOR PAVUNITSKIY
Remark. If a category C is not strongly connected, \mathcal{B} can be quite far from being homotopically constant, as the following example shows (see [1], [16]). Let k be a field and $\mathcal{C} = k-Alg$ be a category of commutative k-algebras and a coproduct is given by a tensor product over k. Let $F = U : k-Alg \to k-Mod$ be a forgetful functor, then for $A \in k-Alg$ the (coaugmented) alternate sum complex

$$U \mathcal{B}(A) : k \to A \to A \otimes_k A \to A \otimes_k A \otimes_k A \to \ldots$$

$$d : (a_1 \otimes \ldots \otimes a_k) \mapsto (a_1 \otimes \ldots a_{i-1} \otimes 1 \otimes a_i \otimes \ldots \otimes a_k)$$

is called the Amitsur complex and its cohomology broadly depends on A. For example, for $A = k$, $U \mathcal{B}(k) = k$ and the complex is contractible. But for A being a finite dimensional extension of k it can be shown (see [1]) that $H^2(U \mathcal{B}(A))$ is the Brauer group of the corresponding extension.

Let $F : \mathcal{C} \to \text{Ab}$ be a functor. Below we will study cocycles and (co)homotopy groups of the cosimplicial object $F \mathcal{B}(c)$.

Lemma 2.10. Cofaces \(^{(4)}\) induce isomorphisms on higher limits of F:

$$\lim^m F(\sqcup^{n+1} c) \xrightarrow{F(d')^*} \lim^m F(\sqcup^{n+2} c)$$

Proof. First two cofaces $i_1, i_2 : c \to c \sqcup c$ in $\mathcal{B}(c)$ are inducing isomorphisms

$$\lim^n F(c) \xrightarrow{F(i_k)^*} \lim^n F(c \sqcup c)$$

by (3.6) in [5]. Modifying the proof of this lemma, one can see that the similar fact holds for all canonical inclusions $i_k : c \to \sqcup^n c$. This can be seen by considering a functor $\Phi_n : c \mapsto \sqcup^n c$ together with a natural transformation $i_k : id \to \Phi_n$ such that for any $c' \in \mathcal{C}$ the comma category $(\Phi_n \downarrow c')$ is contractible. Now consider the diagrams

$$k < i + 1 : \quad k \geq i + 1 :$$

After applying F and \lim^n diagonal arrows become isomorphisms, hence a horizontal arrow, which is a map, induced by coface, is an isomorphism too. \(\square\)

Cocycles $Z^n F \mathcal{B}(c)$ of the standard complex serve as a natural generalization of the functor of invariants \mathcal{B}:

Lemma 2.11. For $c \in \mathcal{C}$ the following formula holds:

$$Z^n F \mathcal{B}(c) = \{ x \in F(\sqcup^{n+1} c) | \forall c', \varphi_0, \ldots, \varphi_{n+1} : c \to c' \sum_{j=0}^{n+1} (-1)^j F((\varphi_0, \ldots, \hat{\varphi_j}, \ldots, \varphi_{n+1}))(x) = 0 \}$$
Proof. By definition,
\[Z^n F \mathcal{B}(c) = \{ x \in F(\sqcup^{n+1}) \mid \sum_{j=0}^{n+1} (-1)^j F(d_j)(x) = 0 \} \]

Let’s denote the right hand side of (9) by \(\text{inv}^n F(c) \). The inclusion \(\text{inv}^n F(c) \subset Z^n F \mathcal{B}(c) \) is obvious. Now for any collection of maps \(\varphi_0, \ldots, \varphi_{n+1} : c \to c' \) there is a unique morphism \(\Phi = (\varphi_0, \ldots, \hat{\varphi_j}, \ldots, \varphi_{n+1}) \) such that \(\varphi_j = \Phi i_j \) and moreover \((\varphi_0, \ldots, \hat{\varphi_j}, \ldots, \varphi_{n+1}) = \Phi \circ (i_0, \ldots, i_j, \ldots, i_{n+1}) \). Hence for \(x \in Z^n F \mathcal{B}(c) \):

\[
\sum_{j=0}^{n+1} (-1)^j F((\varphi_0, \ldots, \hat{\varphi_j}, \ldots, \varphi_{n+1}))(x) = \\
\sum_{j=0}^{n+1} (-1)^j F(\Phi) \circ F((i_0, \ldots, \hat{i_j}, \ldots, i_{n+1}))(x) = \\
F(\Phi)(\sum_{j=0}^{n+1} (-1)^j F((i_0, \ldots, \hat{i_j}, \ldots, i_{n+1}))(x)) = F(\Phi)(0) = 0
\]

and \(x \in \text{inv}^n F(c) \) \(\square \)

The gap between the higher invariants \(\text{inv}^n \) and the higher limits of the functor \(F \) is given by the coboundaries of \(F \mathcal{B}(c) \) as the following theorem shows and hence the standard complex (2.4) can be used as a sort of resolution for computing \(\lim^n F \):

Theorem 2.12. For strongly connected category \(\mathcal{C} \) with pair-wise coproducts and a functor \(F : \mathcal{C} \to \text{Ab} \) for any \(c \in \mathcal{C} \)

(10) \(\lim^n F = \pi^n F \mathcal{B}(c) \)

Proof. By (2.9) the (co)homotopy groups of \(F \mathcal{B}(c) \) are independent of \(c \), in particular, a cochain complex \(C F \mathcal{B}(-) \) is bounded below, has \(\lim \)-acyclic cohomology and there is a spectral sequence (2.3):

\[E_1^{p,q} = \lim^q F \mathcal{B}(\sqcup^p c) = \lim^q F \mathcal{B}(c) \Rightarrow \lim \pi^{p+q} F \mathcal{B}(c) = \pi^{p+q} F \mathcal{B}(c) \]

The first page differential in this spectral sequence (which is acting horizontally) is a morphism, induced on \(\lim^q \) by the differential of the alternate sum complex: \(\sum_j (-1)^j F(d_j) \). Each summand in this differential is an isomorphism by (2.10) and hence the first and
second page of the spectral sequence look like this:

\[
\begin{array}{ccc}
\vdots & \vdots & \vdots \\
\lim^2 F(c) & 0 & \lim^2 F(c \sqcup c) \\
\lim^1 F(c) & 0 & \lim^1 F(c \sqcup c) \\
\lim F(c) & 0 & \lim F(c \sqcup c) \\
\end{array}
\]

\[
\begin{array}{ccc}
\lim^2 F(c) & 0 & 0 \\
\lim^1 F(c) & 0 & 0 \\
\lim F(c) & 0 & 0 \\
\end{array}
\]

Assertion follows. \(\square\)

Definition 2.13. We say that the functor \(F : \mathcal{C} \to \text{Ab}\) has the degree \(\deg F \leq n\) if \(Q(F \mathfrak{B}(c))^k = 0\) for all \(k > n\) for some \(c \in \mathcal{C}\).

This definition of the degree is a generalization (see [14]) of the usual notion of the degree of a polynomial functor between abelian categories [2]. We will sketch the (dual version of) main ideas from [14].

For a category \(\mathcal{C}\) let \(\mathcal{C}_{(1)}\) be a category of splitting monomorphisms of the form \(c \to c \sqcup c'\), iteratively \(\mathcal{C}_{(k)} = (\mathcal{C}_{(k-1)})_{(1)}\). Given a functor \(F : \mathcal{C} \to \text{Ab}\) its coderivative is defined as

\[
\mathcal{F}_{(1)}(c \to c \sqcup c') = \text{coker} \left\{ F(c) \to F(c \sqcup c') \right\}
\]

Similarly the higher orders coderivatives of \(F\) are defined. Then the dual version of Proposition 1.7 of [14] holds:

Proposition 2.14. Let \(F\) be a functor such that \(F_{(k)} = 0\) for some \(k\). Then \(\deg F \leq k - 1\).

Proof. For a cosimplical object \(X\) define \(k\)-cubes \(c_k(X)\) iteratively as

\[
c_0(X) = X_0, \quad c_{k+1}(X) = c_k(X) \xrightarrow{d} c_k(\text{Dec} X)
\]

Then for \(X = F \mathfrak{B}(c)\), \(\mathcal{F}_{(k-1)}(c_{k-1}(X)) = \text{coker} \left\{ \mathcal{F}_{(k-1)}(c_{k-1}(X)) \xrightarrow{d} \mathcal{F}_{(k-1)}(c_{k-1}(\text{Dec} X)) \right\}\) and from (2.7) and the induction we get that

\[
(QX)^k = \mathcal{F}_{(k)}(c_k(X))
\]

\(\square\)

The degree functor \(\deg\) behaves in a predictable way with a tensor product of functors:

Theorem 2.15. Let \(F\) and \(G\) be functors of degrees \(\leq n\) and \(\leq m\) respectively. Then their tensor product \(F \otimes G\) has degree \(\leq n + m - 1\).

Proof. For a given split monomorphism \(f : c \to c'\) in \(\mathcal{C}\) the map \((F \otimes G)(f)\) divides into composition of two split monomorphisms

\[
(F(c) \otimes G(c)) \xrightarrow{\text{id} \otimes G(f)} (F(c) \otimes G(c')) \xrightarrow{F(f) \otimes \text{id}} (F(c') \otimes G(c'))
\]
hence coderivative of the tensor product splits as
\[(F \otimes G)_{(1)}(f) = F(c) \otimes G_{(1)}(f) \oplus F_{(1)}(f) \otimes G(c')\]
By iterating this formula we get
\[(F \otimes G)_k = \bigoplus_{i+j=n} s^i F_{(j)} \otimes t^j G_{(i)}\]
Result now follows from this formula and Proposition 2.14.

3. KÜNNETH THEOREM

We can use the fact that \(\lim^n F\) can be expressed as cohomology groups of a well-understood complex to determine the higher limits of a tensor product of functors, using a Künneth-type spectral sequence as in (6.8) of [15]. For later use in (4) we will expand our universe of functors and describe the Künneth formula in this generalized setting.

As in [5], let \(\text{Mod}_R\) denote the category of pairs \((R, M)\), where \(R\) is a ring and \(M\) is a right \(R\)-module. Morphisms are pairs \((f, \varphi) : (R, M) \to (S, N)\) consisting of ring homomorphism \(f : R \to S\) and \(R\)-linear map \(\varphi : M \to N\), where \(R\) acting on \(N\) through \(f\). There is a natural projection \(\text{Mod}_r \to \text{Ring}\). Similarly, \(\text{Mod}_l\) will denote the category of left modules over arbitrary rings.

Definition 3.1 ([5], (3.2)). Let \(O : \mathcal{C} \to \text{Ring}\) be a \(\text{Ring}\)-valued functor. Then the right \(O\)-module \(F : \mathcal{C} \to \text{Mod}\) is a functor, such that the following diagram commutes:

\[
\begin{array}{ccc}
\text{Mod}_r & \xrightarrow{F} & \text{Ring} \\
\text{C} & \xrightarrow{O} & \text{Ring}
\end{array}
\]

Definition of the left \(O\)-module is completely symmetric.

Note that the higher limits \(\lim^\bullet F\) have a structure of a graded module over graded ring \(\lim^\bullet O\). For the right \(O\)-module \(F\) and the left \(O\)-module \(G\) their tensor product over \(O\) is defined as a functor:

\[F \otimes_O G : \mathcal{C} \to \text{Ab}, \ F \otimes_O G(c) = F(c) \otimes_{O(c)} G(c)\]

Theorem 3.2. Let \(O : \mathcal{C} \to \text{Ring}\) be a functor such that \(\lim^\bullet O\) is of finite global dimension. For a right \(O\)-module \(M\) and left \(O\)-module \(N\) of finite degree, such that \(N(c)\) is a flat \(O(c)\)-module for all \(c \in \mathcal{C}\) there is a second quadrant spectral sequence

\[E_2^{p,q} = \text{Tor}_{p}^{\lim^\bullet O}(\lim^\bullet M, \lim^\bullet N)_q \Rightarrow \lim^\bullet M \otimes_O N\]

Proof. The proof is a direct combination of the cosimplicial version of Theorem 6 of [15] and (2.12). Fix \(c \in \mathcal{C}\) and consider the projective resolution \(P_\bullet\) of \(M \mathfrak{B}(c)\) over \(O \mathfrak{B}(c)\) such that \(\pi^\bullet P_i\) are free \(\pi^\bullet O \mathfrak{B}(c)\) modules for all \(i\). The resolution \(P_\bullet\) can be constructed in a
way that $\pi^* P_\bullet$ is a free resolution of $\lim^\bullet M$ over $\lim^\bullet \mathcal{O}$ and hence there is an isomorphism of graded abelian groups

$$\pi^* P_\bullet \otimes_{\lim^\bullet \mathcal{O}} \lim^\bullet N \cong \pi^*(P_\bullet \otimes_{\mathcal{O}(c)} N \mathcal{O}(c))$$

Applying the Moore chain complex functor Q horizontally to the cosimplicial chain complex $D = P_\bullet \otimes_{\mathcal{O}(c)} N \mathcal{O}(c)$ and switching to the homological notation, we obtain a second quadrant double complex. Further argument is standard. Consider two spectral sequences, associated with D:

- $E^{2}_{p,q} = H^h_q H^p D = H^p Q(T^\mathcal{O}(c)(M \mathcal{O}(c), N \mathcal{O}(c)))$ Provided $N \mathcal{O}(c)$ is free as $\mathcal{O}(c)$-module, only the bottom line is nontrivial on the second page and the spectral sequence converges to $\lim^\bullet M \otimes_{\mathcal{O}} N$

- $E^{2}_{p,q} = H^v_q H^p D = H^q(\pi^* P_\bullet \otimes_{\lim^\bullet \mathcal{O}} \lim^\bullet N) = (\mathcal{T}\text{or}^\lim^\bullet \mathcal{O}(\lim^\bullet M, \lim^\bullet N))_q$

Since $\mathcal{T}\text{or}$-functors vanish above the certain line this spectral sequence converges to the same limit, as the first one.

4. fr-CODES

We denote by Pres the category whose objects are all presentations $c : F \to G$ and morphisms are commutative squares

$$
\begin{array}{ccc}
F & \xrightarrow{\tilde{\varphi}} & F' \\
\downarrow c & & \downarrow c' \\
G & \xrightarrow{\varphi} & G'
\end{array}
$$

$(\varphi, \tilde{\varphi}) : c \to c'$.

For each group G the category $\text{Pres}(G)$ is a subcategory of Pres. Then for a functor

$$\mathcal{F} : \text{Pres} \to \text{Ab}$$

and any $i \geq 0$ we have a map

$$G \mapsto \lim^i \mathcal{F}_{\text{Pres}(G)}.$$

Here $c : F \to G$ can be considered as an object of $\text{Pres}(G)$ and we can take $\mathcal{O}(c)$ that we will denote by $\mathcal{O}_G(c)$ in order to emphasize that we take it in the category $\text{Pres}(G)$ but not in the whole category Pres. By Theorem 2.12 we have an isomorphism

$$\lim^i \mathcal{F}_{\text{Pres}(G)} \cong H^i \mathcal{F} \mathcal{O}_G(c).$$

Moreover any morphism (11) in the category Pres gives a morphism of cosimplicial objects

$$\mathcal{O}_{\varphi, \tilde{\varphi}} : \mathcal{O}_G(c) \to \mathcal{O}_{G'}(c').$$

Then the morphism $(\varphi, \tilde{\varphi})$ induces a homomorphism

$$
\begin{array}{ccc}
\lim^i \mathcal{F}_{\text{Pres}(G)} & \to & \lim^i \mathcal{F}_{\text{Pres}(G')} \\
\text{Pres}(G) & & \text{Pres}(G')
\end{array}
$$
Lemma 4.1. The homomorphism φ depends only on φ and does not depend on the choice of presentations and $\tilde{\varphi}$. Moreover, these homomorphisms define a functor

$$\lim^i \mathcal{F} : \text{Gr} \to \text{Ab}. $$

Proof. Assume that we have two presentations $c_i : F_i \to G$, $i = 1, 2$ for G, two presentations $c_i' : F'_i \to G'$ for G'. Assume also that we have two morphisms $(\varphi, \tilde{\varphi}) : c_i \to c_i'$ in Pres. Consider the presentations $c_1 \ast c_2 : F_1 \ast F_2 \to G$ and $c_1' \ast c_2' : F_1' \ast F_2' \to G'$, the morphism $(\varphi, \tilde{\varphi}_1 \ast \tilde{\varphi}_2) : c_1 \ast c_2 \to c_1' \ast c_2'$ and the commutative diagram

$$
\begin{array}{ccc}
\mathbb{A}_G(c_1) & \xrightarrow{a_{\varphi, \tilde{\varphi}_1}} & \mathbb{A}_{G'}(c_1') \\
\downarrow & & \downarrow \\
\mathbb{A}_G(c_1 \ast c_2) & \xrightarrow{a_{\varphi, \tilde{\varphi}_1 \ast \tilde{\varphi}_2}} & \mathbb{A}_{G'}(c_1' \ast c_2') \\
\downarrow & & \downarrow \\
\mathbb{A}_G(c_2) & \xrightarrow{a_{\varphi, \tilde{\varphi}_2}} & \mathbb{A}_{G'}(c_2')
\end{array}
$$

By Theorem 2.8 the vertical arrows induce isomorphisms on $H^i \mathcal{A}(-)$. The assertion follows. \qed

The group ring functor $\mathbb{Z}[-] : \text{Pres} \to \text{Ring}$, $(F \to G) \mapsto \mathbb{Z}[F]$ has two functorial ideals $(\mathbb{Z}[F]$-modules in sense of Definition 3.1) f and r defined as

$$f(F \to G) = \ker \{ \mathbb{Z}[F] \to \mathbb{Z} \}, \ r(F \to G) = \ker \{ \mathbb{Z}[F] \to \mathbb{Z}[G] \}$$

Definition 4.2. The $\mathbb{Z}[F]$-module $c : \text{Pres} \to \text{Ab}$ is called an fr-code, if it is a functorial ideal of $\mathbb{Z}[F]$, formed by products of the ideals f and r, their sums and intersections.

Usually we consider c as a functor from $\text{Pres}(G) \to \text{Ab}$ for a fixed G, limits always are taken over $\text{Pres}(G)$. We need it to be defined on the category Pres only for the functors

$$\lim^i c : \text{Gr} \to \text{Ab}$$

to be well-defined. (see Lemma 4.1).

The notion of degree (2.13) seems to be a reasonable invariant of fr-code for the estimation of its \lim^*-dimension, since the Moore chain complex functor Q is exact and the property of a functor being a degree $\leq k$ is closed under extensions. But already f itself has an infinite degree, although it is $\mathbb{Z}[F]$-additive (i.e. of degree one with respect to $\mathbb{Z}[F]$), as shown in [6]. But since all fr-codes are subfunctors of f, this difficulty can be overcome by introducing the following notion:

Definition 4.3. An f-degree of an fr-code c is a degree of the quotient f/c.

Since f has trivial limits, it is straightforward that if $\deg^f c \leq n$ then $\lim^i c = 0$ for $i > n + 1$.
Theorem 4.4. Every (finite) \(fr\)-code \(c\) has a finite \(f\)-degree and hence only a finite number of the non-zero higher limits.

Proof. Let \(n\) be a minimal power of \(r\) such that \(r^n \subset c\), then we have an epimorphism \(f/r^n \twoheadrightarrow f/c\) which induces a surjection on the level of cochain complexes:

\[
\frac{Q^f_{r^n}}{Q^f_c} \twoheadrightarrow \frac{Q^f_c}{Q^f_c}
\]

and hence it is sufficient to prove finiteness of \(f/r^n\). The sequence of the short exact sequences

\[
(13) \quad r^n/r^{n+1} \hookrightarrow f/r^{n+1} \twoheadrightarrow f/r^n
\]

starts with a constant functor \(f/r = g = \ker \{Z[G] \to \mathbb{Z}\}\) and the problem is reduced to the functors \(r^n/r^{n+1} = (r/r^2)^{\otimes Z[F]}\) (see Lemma 5.1). Covering this tensor product by the tensor product over \(Z\) and applying Theorem 2.15, only the case \(n = 1\) need to be shown.

Note that \(r/r^2\) is a free \(Z[F]\)-module with basis formed by elements \(r-1, r \in R, \) see [4], hence a natural map \(R_{ab} \to r/r^2, r \mapsto r-1\) factors through \(Z[F] \otimes R_{ab} \to r/r^2\) and this map is an isomorphism.

Finally, the functor \(R_{ab} = r/fr\) has a finite degree, since it is embedded in \(f/fr = f \otimes_{Z[F]} Z[G]\) which is an additive functor. Indeed (see also [17]):

\[
f(F \ast F') \otimes_{Z[F \ast F']} Z[G] = (f(F) \otimes_{Z[F]} Z[F \ast F'] \oplus f(F') \otimes_{Z[F']} Z[F \ast F']) \otimes_{Z[F \ast F']} Z[G]
\]

\[
= f(F) \otimes_{Z[F]} Z[G] \oplus f(F') \otimes_{Z[F']} Z[G]
\]

which concludes the proof. □

5. Dictionary

In this section, we give a dictionary for all codes written on \(fr\)-language which consist of words with length \(\leq 3\). If one can not find a code in our table, this means that either it has trivial translation, i.e. all \(\lim^{i} = 0\), or has the same translation as its mirror image, which is in our dictionary. For example, the codes \(rf + ffr\) and \(fr + ffr\) have the same translations. As mention in Introduction, by translation we mean a description of the functors \(\lim^{i}(fr - code), i \geq 1\), \(fr\)-codes viewed as functors from the category of free group presentations to the category of abelian groups.

We will omit the translation of simple codes given in [6], like \(rr + fff\), or \(rr + ffr\), \(rrf + ffr\).

In construction of the dictionary, we will use the following statements.

Lemma 5.1 (Lemma 5.9 in [6]). Let \(a' \subset a, \ b' \subset b\) be ideals of \(Z[F]\) and \(\text{Tor}(Z[F]/a, Z[F]/b) = 0\), then there is a natural isomorphism

\[
\frac{a}{a'} \otimes_{Z[F]} \frac{b}{b'} = \frac{ab}{ab' + a'b}.
\]
Lemma 5.2. For any functor $\mathcal{F}(F, R)$ and a non-constant functor $\mathcal{H}(F)$, which depends only on F, $\lim^i \mathcal{F} \otimes \mathcal{H} = 0$, $i \geq 0$.

Similarly one can show (see [4]) that, for a fr-code with all words started with f, all limits are zero.

Lemma 5.3 (Lemma 6 in [11]). Let \mathcal{F} be a constant functor. Then any subfunctor $\mathcal{G} \hookrightarrow \mathcal{F}$ and any epimorphic image $\mathcal{F} \twoheadrightarrow \mathcal{H}$ are constant functors.

We will also use the spectral sequence 2.3, especially applied to the 4-term complexes. For convenience, let us reformulate the statement about convergence of the spectral sequence 2.3 in a more explicit form. Let \mathcal{F}^* be a complex of functors $\text{Pres}(G) \rightarrow \text{Ab}$

$$\cdots \rightarrow \mathcal{F}^n \rightarrow \mathcal{F}^n + 1 \rightarrow \cdots$$

Assume that \mathcal{F}^* is bounded below (i.e. $\mathcal{F}^n = 0$ for $n << 0$) and that $H^n(\mathcal{F}^*)$ is constant for any n. Then there exists a converging spectral sequence E_i with differentials

$$d^r : E_i^{i,j} \rightarrow E_{i+r,j-r+1}$$

such that

$$E_1^{i,j} = \lim^i \mathcal{F}^i \Rightarrow H^{i+j}(\mathcal{F}^*).$$

Now we proceed to the computations.

rfr+frf: Tensoring the short exact sequence $\frac{r}{fr} \hookrightarrow \frac{f}{fr} \twoheadrightarrow g$ by $- \otimes \frac{f}{fr+rf}$ and taking the group homology $H_i(G, -)$, we get the long exact sequence

$$(14) \quad H_1\left(G, \frac{f}{fr} \otimes \frac{f}{fr+rf}\right) \rightarrow H_2\left(G, \frac{f}{fr} \otimes \frac{f}{fr+rf}\right) \rightarrow H_2\left(G, \frac{f}{fr} \otimes \frac{f}{fr+rf}\right) \rightarrow$$

$$\rightarrow \frac{r}{fr} \otimes \frac{f}{fr} \rightarrow \frac{f}{fr} \otimes \frac{f}{fr} \rightarrow g \otimes \frac{f}{fr}.$$

Here we used the property that, for any G-module M, there is a natural isomorphism $H_1(G, g \otimes M) = H_2(G, M)$. Since f/fr is a free $\mathbb{Z}[G]$-module, $\frac{f}{fr} \otimes \frac{f}{fr+rf}$ is weak projective and hence $H_i(G, \frac{f}{fr} \otimes \frac{f}{fr+rf}) = 0$, $i \geq 1$. By Lemma 5.1

$$\frac{r}{fr} \otimes \frac{f}{fr+rf} = \frac{rf}{rfr+rf}, \quad \frac{f}{fr} \otimes \frac{f}{fr+rf} = \frac{ff}{frf+rf}.$$

And $\frac{ff}{frf+rf}$ has trivial limits by Lemma 5.2. From a spectral sequence of Proposition 2.3 applied to a four-term exact sequence (14), it can be seen that

$$\lim \frac{rf}{rfr+rf} = \lim^1 (rfr+frf) = \lim H_2\left(G, \frac{f}{fr} \otimes \frac{f}{fr+rf}\right)$$

and there is a short exact sequence

$$\lim^1 H_2\left(G, \frac{f}{fr} \otimes \frac{f}{fr+rf}\right) \hookrightarrow \lim^2 (rfr+frf) \twoheadrightarrow g^2 \otimes \mathbb{Z}[G] g.$$
Here $g \otimes_{\mathbb{Z}[G]} g^2 = \lim(g \otimes_{\mathbb{Z}[G]} \frac{f}{fr + rf}) = \lim^1(rf + ffr)$. To determine the \lim and \lim^1 of $H_2(\frac{f}{fr + rf})$, consider the short exact sequence

$$\frac{ff}{fr + rf} \hookrightarrow \frac{f}{fr + rf} \rightarrow \frac{ff}{fr}$$

and the associated homology long exact sequence

$$H_3(G) \otimes F_{ab} \rightarrow H_2\left(G, g \otimes_{\mathbb{Z}[G]} g\right) \rightarrow H_2\left(G, \frac{f}{fr + rf}\right) \rightarrow H_2(G) \otimes F_{ab} \rightarrow H_1\left(G, g \otimes_{\mathbb{Z}[G]} g\right)$$

Any map from $H_n(G) \otimes F_{ab}$ to a constant functor (which depends only on G) factors through $H_n(G) \otimes G_{ab}$. This follows from elementary properties of colimits (see [7]), namely from $\text{colim}(H_n(G) \otimes F_{ab}) = H_n(G) \otimes G_{ab}$. Therefore, after truncating (15) and applying Proposition 2.3 together with Lemma 5.3 to it, we obtain

$$\lim^1(rf + frf) = \text{coker}\{H_3(G) \otimes G_{ab} \rightarrow H_2\left(G, g \otimes_{\mathbb{Z}[G]} g\right)\}.$$

and

$$\lim^1 H_2\left(G, \frac{f}{fr + rf}\right) = \text{im}\{H_2(G) \otimes G_{ab} \rightarrow H_1\left(G, g \otimes_{\mathbb{Z}[G]} g\right)\}.$$

Hence, there is a short exact sequence

$$\text{im}\{H_2(G) \otimes G_{ab} \rightarrow H_1\left(G, g \otimes_{\mathbb{Z}[G]} g\right)\} \hookrightarrow \lim^2(rf + frf) \rightarrow g^2 \otimes_{\mathbb{Z}[G]} g.$$

rr+frf+ff: Consider the Grünberg resolution which consists of free $\mathbb{Z}[G]$-modules:

$$\cdots \rightarrow \frac{fr}{fr} \rightarrow \frac{r}{fr} \rightarrow \frac{f}{fr}$$

Tensoring it with $G_{ab} = \frac{f}{fr + rf}$ over $\mathbb{Z}[G]$, we obtain the complex

$$\cdots \rightarrow \frac{fr}{fr} \otimes_{\mathbb{Z}[G]} \frac{f}{fr + rf} \rightarrow \frac{r}{fr} \otimes_{\mathbb{Z}[G]} \frac{f}{fr + rf} \rightarrow \frac{f}{fr} \otimes_{\mathbb{Z}[G]} \frac{f}{fr + rf}$$

which can be written, by Lemma 5.1 as

$$\cdots \rightarrow \frac{frf}{fr + frf} \rightarrow \frac{rf}{fr + frf} \rightarrow \frac{ff}{fr + frf}.$$

Hence, there is a natural isomorphism

$$H_2(G, G_{ab}) = \frac{rf \cap (fr + fff)}{fr + frf + fff}.$$

For two ideals $I, J \subset f$ there is a short exact sequence:

$$\frac{f}{I \cap J} \hookrightarrow \frac{f}{I} \oplus \frac{f}{J} \rightarrow \frac{f}{I + J}$$
And hence we get the following 4-term exact sequence

\[H_2(G, G_{ab}) \hookrightarrow \frac{f}{rr + rff + frf} \to \frac{f}{fr} \oplus \frac{f}{fr + fff} \to G_{ab} \otimes G_{ab}. \]

From the associated spectral sequence we obtain the identifications

\[\lim^1(rr + frf + rff) = H_2(G, G_{ab}), \]
\[\lim^2(rr + frf + rff) = G_{ab} \otimes G_{ab}, \]
\[\lim^i(rr + frf + rff) = 0, \quad i \geq 3. \]

Now observe that, the statement written in Introduction, that the transformation of the \(fr\)-codes

\[rr + frf \simeq rr + frf + rff \]

induces the natural transformation of functors

\[H_3(G) = \lim^1(rr + frf) \simeq H_2(G, G_{ab}) = \lim^1(rr + frf + frr) \]

follows immediately from the identifications

\[H_3(G) = \frac{rf \cap fr}{rr + frf} \to \frac{rf \cap (fr + fff)}{rr + frf + rff}. \]

rrf+rfr+frr: Taking the tensor product over \(\mathbb{Z}[G]\) of the Gr\"unberg resolution with \(H_2(G) = \frac{r\cap fr}{fr + rf}\) and \(\frac{r}{fr + rf}\) respectively, we obtain

\[H_2(G, H_2(G)) = \frac{r(r \cap ff) \cap (ffr + frf)}{fr(r \cap ff) + rrf + frf}, \]
\[H_2 \left(G, \frac{r}{fr + rf} \right) = \frac{rr \cap (ffr + frf)}{rrf + rfr + frr}. \]

Since \(\lim^1rr = \lim^1(ffr + frf) = 0\),

\[\lim^1(rrf + rff + frr) = \lim H_2 \left(G, \frac{r}{fr + rf} \right). \]

The natural map \(H_2(G, H_2(G)) \to H_2 \left(G, \frac{r}{fr + rf} \right)\) is injective. Indeed, the above terms can be decomposed as

\[0 \to H_2(G) \otimes H_2(G) \to H_2(G, H_2(G)) \to \text{Tor}(G_{ab}, H_2(G)) \to 0 \]

and

\[0 \to H_2(G) \otimes \frac{r}{fr + rf} \to H_2 \left(G, \frac{r}{fr + rf} \right) \to \text{Tor} \left(G_{ab}, \frac{r}{fr + rf} \right) \to 0. \]

Using the fact that \(\frac{r}{fr + rf} = \text{coker} \{ H_2(G) \hookrightarrow \frac{r}{fr + rf} \}\) is torsion-free (since it is a subgroup of \(f/ff = F_{ab}\), we see that the natural map \(H_2(G) \otimes H_2(G) \to H_2(G) \otimes \frac{r}{fr + rf}\) is injective and \(\text{Tor}(G_{ab}, H_2(G)) \to \text{Tor} \left(G_{ab}, \frac{r}{fr + rf} \right)\) is an isomorphism. The natural map
$H_1(G, H_2(G)) \to H_1 \left(G, \frac{r}{\text{fr} + \text{rf}} \right)$ is also injective, by the same reason. Hence, we have the following short exact sequence

\[0 \to H_2(G, H_2(G)) \to H_2 \left(G, \frac{r}{\text{fr} + \text{rf}} \right) \to H_2(G) \otimes \frac{r}{\text{rf} \cap \text{ff}} \to 0. \]

It follows that

\[\lim^1 H_2(G, \frac{r}{\text{fr} + \text{rf}}) = \lim^1 (H_2(G) \otimes \frac{r}{\text{rf} \cap \text{ff}}) \]

To compute the latter one, we use Künneth theorem 3.2 which in this case degenerates to

\[\lim^1 (H_2(G) \otimes \frac{r}{\text{rf} \cap \text{ff}}) = H_2(G) \otimes \lim^1 \frac{r}{\text{rf} \cap \text{ff}} = H_2(G) \otimes G_{ab} \]

Applying Proposition 2.3 to the 4-term exact sequence

\[0 \to \text{Tor}(G_{ab}, H_2(G)) \to H_2(G) \otimes \frac{r}{\text{rf} \cap \text{ff}} \to H_2(G) \otimes \frac{f}{\text{ff}} \to H_2(G) \otimes G_{ab} \to 0, \]

we obtain the following description

\[\lim H_2(G) \otimes \frac{r}{\text{rf} \cap \text{ff}} = \text{Tor}(G_{ab}, H_2(G)), \quad \lim^1 H_2(G) \otimes \frac{r}{\text{rf} \cap \text{ff}} = H_2(G) \otimes G_{ab}. \]

The isomorphism (16) and the exact sequence (17) now imply that there exists the following natural short exact sequence

\[0 \to H_2(G, H_2(G)) \to \lim^1 (\text{rrf} + \text{rfr} + \text{frr}) \to \text{Tor}(G_{ab}, H_2(G)) \to 0 \]

In order to understand $\lim^2 (\text{rrf} + \text{rfr} + \text{frr})$, consider the spectral sequence applied to the 4-term sequence

\[0 \to H_2 \left(G, \frac{r}{\text{rf} + \text{fr}} \right) \to \frac{\text{rr}}{\text{rrf} + \text{rfr} + \text{frr}} \to \frac{\text{fr}}{\text{frf} + \text{frr}} \to \frac{\text{fr}}{\text{rr} + \text{frf} + \text{frr}} \to 0. \]

Putting the values of $\lim^i (\text{rr} + \text{frf} + \text{frr})$, $\lim H_2 \left(G, \frac{r}{\text{rf} + \text{fr}} \right)$ into the cells of the spectral sequence and noting that $\lim^i \text{rr} = g \otimes g$, $\lim^i \text{rr} = 0$, $i \neq 2$, we obtain the following diagram which gives a description of $\lim^2 (\text{rrf} + \text{rfr} + \text{frr})$ as a functor glued from three pieces

\[
\begin{array}{c}
H_2(G) \otimes G_{ab} \\
\downarrow \\
\lim^1 \frac{\text{rr}}{\text{rrf} + \text{rfr} + \text{frr}} \longrightarrow \lim^2 (\text{rrf} + \text{rfr} + \text{frr}) \longrightarrow \ker \{ g \otimes g \to G_{ab} \otimes G_{ab} \} \\
\downarrow \\
H_2(G, G_{ab})
\end{array}
\]
First observe that,
\[
\lim_i (\text{ffr} + \text{rff} + \text{ffff}) = 0, \ i \geq 0.
\]
This follows from the isomorphism
\[
G_{ab} \otimes F_{ab} \otimes G_{ab} = \frac{f}{r + \text{ff}} \otimes \frac{f}{r + \text{ff}} \otimes \frac{f}{r + \text{ff}} = \frac{f}{r + \text{ff}} \otimes \frac{f}{r + \text{ff}} \otimes \frac{f}{r + \text{ff}} = \frac{\text{ffff}}{f + r + \text{rff} + \text{ffr}}.
\]
Consider the following exact sequence
\[
\frac{\text{ff}}{r \cap \text{ff}} \otimes \frac{\text{gg}}{G} \frac{\text{ff}}{r \cap \text{ff}} \rightarrow \frac{\text{ff}}{\text{ffr} + \text{rff}} \rightarrow \frac{\text{ffff}}{f + \text{rff} + \text{ffr} + \text{ffff}} \rightarrow 0.
\]
The left hand term is \(g^2 \otimes \frac{\text{gg}}{G} \). Since an epimorphic image of a constant functor is a constant functor, (18) implies that
\[
\lim_1 (\text{ffr} + \text{rff}) = \frac{g^2 \otimes \frac{\text{gg}}{G} g^2}{\sim}, \quad \lim_i (\text{ffr} + \text{rff}) = 0, \ i \geq 2,
\]
where \(\frac{g^2 \otimes \frac{\text{gg}}{G} g^2}{\sim} \) is the image of the left hand map in the last exact sequence, i.e.
\[
\frac{g^2 \otimes \frac{\text{gg}}{G} g^2}{\sim} = \frac{\text{ffff}}{(\text{ffr} + \text{rff}) \cap \text{ffff}}.
\]
Define one more quotient of \(g^2 \otimes \frac{\text{gg}}{G} g^2 \) as follows:\footnote{Observe that, there exists a natural exact sequence}
\[
\frac{g^2 \otimes \frac{\text{gg}}{G} g^2}{\sim} := \frac{(r + \text{ff})^2}{\text{rr} + \text{ffr} + \text{rff}}.
\]
There is a natural epimorphism \(\frac{g^2 \otimes \frac{\text{gg}}{G} g^2}{\sim} \rightarrow \frac{g^2 \otimes \frac{\text{gg}}{G} g^2}{\approx} \). The short exact sequence
\[
0 \rightarrow \frac{g^2 \otimes \frac{\text{gg}}{G} g^2}{\approx} \rightarrow \frac{\text{ff}}{\text{r} + \text{ffr} + \text{rff}} \rightarrow \frac{\text{ff}}{(r + \text{ff})^2} \rightarrow 0
\]
implies that
\[
\lim_2 (\text{rr} + \text{ffr} + \text{rff}) = \lim_2 ((r + \text{ff})^2)
\]
and there is an exact sequence
\[
0 \rightarrow \frac{g^2 \otimes \frac{\text{gg}}{G} g^2}{\approx} \rightarrow \lim_1 (\text{rr} + \text{ffr} + \text{rff}) \rightarrow \lim_1 ((r + \text{ff})^2) \rightarrow 0.
\]
Now consider the short exact sequence

\[
0 \to \frac{f}{r + ff} \otimes \frac{ff}{fr + fff} \to \frac{f}{r + ff} \otimes \frac{ff + r}{fr + fff} \to \frac{f}{r + ff} \otimes \frac{ff + r}{ff} \to 0
\]

The left hand term has zero limits, since it is isomorphic to \(G_{ab} \otimes F_{ab} \otimes G_{ab}\). Since the diagonal action of \(F\) on the middle and the right head terms are trivial, they are isomorphic to \(f(f + ff)\) and \(f(ff + r)\) respectively. Hence,

\[
\lim_1((r + ff)^2) = \lim_1(rr + fff) = \text{Tor}(G_{ab}, G_{ab}), \\
\lim_2((r + ff)^2) = \lim_2(rr + fff) = G_{ab} \otimes G_{ab}.
\]

We obtain the needed description

\[
\lim_2(rr + ffr + rff) = G_{ab} \otimes G_{ab}
\]

and the short exact sequence

\[
0 \to \frac{g^2 \otimes [G]}{g^2} \approx \lim_1(rr + ffr + rff) \to \text{Tor}(G_{ab}, G_{ab}) \to 0.
\]

frr+rfr: There is an isomorphism

\[
\frac{ff}{fr + rf} \otimes_{[F]} r = \frac{ffr}{frr + rfr}.
\]

This is a particular case of the functor \(A \otimes_{[F]} r\), where \(A\) is a constant, in this case \(A = g \otimes_{[G]} g\). Since \(\lim^* [F] = \mathbb{Z}\) is of finite global dimension and \(r\) is a free \([F]\) -module, K"unneth theorem 3.2 can be applied to \(A \otimes_{[F]} r\), and it degenerates to a series of usual K"unneth short exact sequences

\[
\bigoplus_{i+j=n} \lim^i A \otimes \lim^j r \hookrightarrow \lim^n A \otimes_{[F]} r \to \bigoplus_{i+j=n+1} \text{Tor} \lim^i A, \lim^j r
\]

which computes the only non-trivial higher limit as

\[
\lim^1 A \otimes_{[F]} r = A \otimes g.
\]

In this way, we obtain the description

\[
\lim_2(frr + rfr) = (g \otimes_{[G]} g) \otimes g, \quad \lim^i(frr + rfr) = 0, \ i \neq 2.
\]

In the same way we have

\[
\lim_2(rr + ffr) = G_{ab} \otimes g, \quad \lim^i(rr + ffr) = 0, \ i \neq 2.
\]

rfr+frr: There is an isomorphism

\[
\frac{r}{fr + rf} \otimes \frac{r + ff}{ff} = \frac{rr + rff}{rff + frr}.
\]
We have the following descriptions of the limits of above terms
\[
\lim \frac{r}{fr + rf} = H_2(G), \quad \lim \frac{r}{fr + rf} = G_{ab}, \quad \lim i \frac{r}{fr + rf} = 0, \quad i \geq 2
\]
and
\[
\lim \frac{r + ff}{ff} = G_{ab}, \quad \lim i \frac{r + ff}{ff} = 0, \quad i \neq 1.
\]
As noted before, the abelian group \(\frac{r + ff}{ff} = \frac{r}{rf + ff} \) is torsion-free, hence the K"unneth formula implies the following
\[
\lim \frac{rr + rff}{rff + frr} = \text{Tor}(H_2(G), G_{ab}),
\]
\[
H_2(G) \otimes G_{ab} \hookrightarrow \lim \frac{rr + rff}{rff + frr} \twoheadrightarrow \text{Tor}(G_{ab}, G_{ab}),
\]
\[
\lim^2 \frac{rr + rff}{rff + frr} = G_{ab} \otimes G_{ab},
\]
\[
\lim^i \frac{rr + rff}{rff + frr} = 0, \quad i \geq 3.
\]
Comparing this description with the values of \(\lim^i (rr + rff) = \lim^i (rr + fff) \), we obtain the following:
\[
\lim^1 (rr + fff) = \text{Tor}(H_2(G), G_{ab}),
\]
\[
F \hookrightarrow \lim^2 (rr + fff) \twoheadrightarrow \ker \{ g \otimes G_{ab} \twoheadrightarrow G_{ab} \otimes G_{ab} \},
\]
\[
H_2(G) \otimes G_{ab} \hookrightarrow F \twoheadrightarrow \text{Tor}(G_{ab}, G_{ab}).
\]

ffr+frf+rff+rr: Consider the short exact sequence
\[
\begin{array}{c}
\text{ffr} + \text{frf} + \text{rff} + \text{rr} \cap \text{fff} \\
\text{ffr} + \text{frf} + \text{rff} + \text{rr} \cap \text{fff} \\
\text{ffr} + \text{frf} + \text{rff} + \text{rr} \cap \text{fff} \\
\text{ffr} + \text{frf} + \text{rff} + \text{rr} \cap \text{fff} \\
\text{ff} + \text{rr} + \text{fff}.
\end{array}
\]
The left hand term is a natural quotient of \(g \otimes \mathbb{Z}[G] \otimes g \otimes \mathbb{Z}[G] \), hence,
\[
\lim^2 (ffr + frf + rff + rr) = \lim^2 (rr + fff) = G_{ab} \otimes G_{ab},
\]
\[
\lim^2 (ffr + frf + rff + rr) = 0, \quad i \geq 3.
\]
Next observe that,
\[
rr \cap fff \subset ffr + frf + rff.
\]
This follows from the identification of the intersection of augmentation ideals:
\[
\Delta^2(R) \cap fff = \Delta^3(R) + \Delta(R) \Delta(R \cap [F, F]) + \Delta([R, R] \cap [[F, F], F])
\]
and the identity \(R' \cap \gamma_3(F) = \)
\[\text{In the free group ring } \mathbb{Z}[F], \quad rr = \Delta^2(R) + rrf.\]
\[[R \cap F', R] \] see [8]. Hence, the left hand term in the above short exact sequence is \(g \otimes_{\mathbb{Z}[G]} \mathbb{Z}[G] \) and we have a short exact sequence
\[
g \otimes_{\mathbb{Z}[G]} \mathbb{Z}[G] \hookrightarrow \lim^1(\text{ffr } + \text{frf } + \text{rff } + \text{rr}) \twoheadrightarrow \text{Tor}(G_{ab}, G_{ab}).
\]
We collect the results in the following table. By \(F'' \oplus G \) we mean an extension of the form \(F \hookrightarrow * \rightarrow G \).

\[* \]

\[\text{3A simple proof of this identity is the following. Observe that, } \Lambda^2(R/(R \cap [F, F])) = \frac{[R, R]}{[R, R]/[[F, F], F]}, \text{ where } \Lambda^2 \text{ is the exterior square, and } \Lambda^2(F_{ab}) = [F, F]/[[F, F], F]. \text{ Now the needed identity follows from the inclusion } \Lambda^2(R/(R \cap [F, F])) \hookrightarrow \Lambda^2(F_{ab}), \text{ which is induced by the inclusion } R/R \cap [F, F] \hookrightarrow F_{ab}. \]
REFERENCES

1. SA Amitsur, "Simple algebras and cohomology groups of arbitrary fields". In: Selected Papers of SA Amitsur with Commentary, 16 (2001), p. 113.

2. Sergei O. Ivanov and Roman Mikhailov, "On the groups $H(G, n)$. II. Methods of computation". In: Annals of Mathematics (1954), pp. 49-179.

3. K.A. Brown, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

4. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

5. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

6. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

7. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

8. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

9. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

10. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

11. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

12. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

13. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

14. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

15. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

16. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

17. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

18. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

19. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

20. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

21. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

22. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

23. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

24. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

25. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

26. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

27. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

28. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

29. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

30. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

31. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

32. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

33. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

34. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

35. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

36. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

37. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

38. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

39. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

40. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

41. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

42. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

43. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

44. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

45. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

46. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

47. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

48. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).

49. Sergei O. Ivanov and Roman Mikhailov, "Cohomological topics in group theory". Vol. 143, Springer, 1974.

50. Sergei O. Ivanov and Roman Mikhailov, "Higher limits, homology theories and fr-codes". In: Combinatorial And Toric Homotopy: Introductory Lectures 35 (2017).
[7] Sergei O Ivanov, Roman Mikhailov, and Vladimir Sosnilo. “Higher colimits, derived functors and homology”. In: Sb. Math. to appear (2019).

[8] Ram Karan, Deepak Kumar, and LR Vermani. “Some intersection theorems and subgroups determined by certain ideals in integral group rings, II”. In: Algebra Colloquium. Vol. 9. 2. 2002, pp. 135–142.

[9] Saunders Mac Lane. Categories for the working mathematician. Vol. 5. Springer Science & Business Media, 2013.

[10] Jean-Pierre Meyer. “Cosimplicial homotopies”. In: Proceedings of the American Mathematical Society 108.1 (1990), pp. 9–17.

[11] Roman Mikhailov and Inder Bir S Passi. “Dimension quotients, Fox subgroups and limits of functors”. In: Forum Mathematicum 31.2 (2019), pp. 385–401.

[12] Roman Mikhailov and Inder Bir S Passi. “Free group rings and derived functors”. In: European Congress of Mathematics. 2018, pp. 407–425.

[13] Roman Mikhailov and Inder Bir S Passi. “Generalized dimension subgroups and derived functors”. In: Journal of Pure and Applied Algebra 220.6 (2016), pp. 2143–2163.

[14] T Pirashvili. “Spectral sequence for epimorphism. I”. In: Proc. Math. Inst. Tbilisi. Vol. 70. 1982, pp. 69–91.

[15] Daniel G Quillen. Homotopical algebra. Vol. 43. Springer, 2006.

[16] Alex Rosenberg and Daniel Zelinsky. “On Amitsur’s complex”. In: Transactions of the American Mathematical Society 97.2 (1960), pp. 327–356.

[17] Charles A Weibel. An introduction to homological algebra. 38. Cambridge university press, 1995.

Laboratory of Modern Algebra and Applications, St. Petersburg State University, 14th Line, 29b, Saint Petersburg, 199178 Russia
E-mail address: ivanov.s.o.1986@gmail.com

Laboratory of Modern Algebra and Applications, St. Petersburg State University, 14th Line, 29b, Saint Petersburg, 199178 Russia and St. Petersburg Department of Steklov Mathematical Institute
E-mail address: rmikhailov@mail.ru

Laboratory of Modern Algebra and Applications, St. Petersburg State University, 14th Line, 29b, Saint Petersburg, 199178 Russia
E-mail address: fedor.pavutnitskiy@gmail.com