The blood preservation in surgical treatment of the mitral disease of the heart

B. M. Gumenyuk, V. V. Popov
Amosov National Institute of Cardio–Vascular Surgery, Kyiv

Objective. Investigation of modern possibilities of the bloodless technique of surgical treatment of the mitral valve failure (MVF) in environment of artificial blood circulation (ABC).

Materials and methods. There were examined 727 patients, suffering MVF. All the patients were divided into two groups: the main and a comparative one. The main group have consisted of 637 patients, in whom various variants of the blood preservation without its transfusion were applied, without application of a cell–saver, hemoconcentrating columns and the blood ultrafiltration; and a comparative one group have consisted of 90 patients, to whom the blood preparations were transfused. The procedure depicted have provided the anesthesia and the perfusion measures during operation of the mitral valve change, including as well the peculiarities of the intraoperative infusion therapy management in the ABC conditions.

Results. In the main group of patients the rate of postoperative infectious complications have constituted 1.2%, while in a comparative one – 9.9%. The average duration of stay on the artificial pulmonary ventilation have constituted (6.7 ± 2.3) and (12.3 ± 8.4) hours accordingly (р < 0.05). The intraoperative blood loss volume in the main group was significantly lesser, than in a comparative one – 9.9%. Median duration of stay in reanimation department was (58.4 ± 13.6) and (116.3 ± 43.2) hours accordingly (р < 0.05). On all stages of the operation and in postoperative period the level of hemoglobin have persisted in a compensation period range, what constitutes a safe level of the blood oxygen capacity.

Conclusion. The improved procedure of anesthesiological support consisted of the infusion–transfusion therapy conduction with stimulation of the perfusion measures during operation of the mitral valve change, including as well the peculiarities of the intraoperative infusion therapy management in the ABC conditions.

The intraoperative blood loss volume in the main group was significantly lesser, than in a comparative one – 9.9%. Median duration of stay in reanimation department was (58.4 ± 13.6) and (116.3 ± 43.2) hours accordingly (р < 0.05). On all stages of the operation and in postoperative period the level of hemoglobin have persisted in a compensation period range, what constitutes a safe level of the blood oxygen capacity.

Keywords: artificial blood circulation, procedure of the blood preservation without application of the donor's blood, correction of mitral failure.

The improved procedure of anesthesiological support consisted of the infusion–transfusion therapy conduction with stimulation of the perfusion measures during operation of the mitral valve change, including as well the peculiarities of the intraoperative infusion therapy management in the ABC conditions.

The intraoperative blood loss volume in the main group was significantly lesser, than in a comparative one – 9.9%. Median duration of stay in reanimation department was (58.4 ± 13.6) and (116.3 ± 43.2) hours accordingly (р < 0.05). On all stages of the operation and in postoperative period the level of hemoglobin have persisted in a compensation period range, what constitutes a safe level of the blood oxygen capacity.

Keywords: artificial blood circulation, procedure of the blood preservation without application of the donor's blood, correction of mitral failure.
Introduction

Transfusion of components of donor blood and its components is, essentially, a transplantation of a foreign tissue and is connected to the risk of developing diverse reactions after the transfusion and to the immunological and non-immune complications [1, 2]. There is a risk of contracting infectious or viral diseases (hepatitis, AIDS, cytomegalovirus, syphilis, transfusion mononucleosis, alaria, and others), which numbers grow every year [3]. The fact of immunosuppressive effect of allogeneic transfusions on the recipient has been proven [4]. Clinicians have been facing ethical and legal problems more and more often, lately, connected to patients’ refusals of allogeneic transfusions due to either religious beliefs or doubts regarding safety or components of donor blood.

It should also be noted the low functional efficiency of the donor erythrocyte mass in connection with the sequestration of 25–30% of transfused erythrocytes and a reduced content of 2,3–diphosphoglycerate in them (2,3–DPG). In this connection, hemoglobin, although it adds oxygen, but gives it to tissues rather weakly. That is why transfused donor blood only slightly improves oxygen transport to tissues. In this regard, the question raised in this article regarding the possibilities of blood-saving technologies is extremely relevant [5 – 8].

Objective. The purpose is to study the modern possibilities of bloodless technique of surgical treatment of mitral heart disease (MIA) in conditions of artificial blood circulation (SHK).

Materials and methods

It was possible to completely abandon the use of donor blood and its components throughout the entire hospitalization period only in 627 patients, from 01.01.2000 to 01.01.2017. Thanks to the developed by us blood-saving technologies, which very useful in the department of surgical treatment of acquired heart diseases in the NICVS AMS, utilized during surgical treatment of acquired valvular pathology in conditions of artificial circulation. In this group of patients, neither hemocoagulation of blood cells nor cell-savers were used.

All studied patients were divided into 2 groups: main group – 627 patient with mitral malformations, who had surgery with without the use of donor blood preparations and its components. Different kinds of blood-saving methods were used in this group, and no preparations of donor blood and its components were done at all stages of postoperative period.

The comparison group – 90 patients with the same pathology, who did not use any blood-saving techniques and the patients used donor blood and its components both in the intra- and postoperative period. The main group consisted of 627 patients, including 237 (37.4%) men and 390 (62.6%) women from 18 to 70 years old, average age is (54.3 ± 9.2) years old. The comparison group consisted of 90 patients, including 40 (44.4%) men and 50 (55.6%) women from 18 to 70 years old average age (47.6 ± 9.3) years old. All of them had corrections of MM under conditions of AC.

In 398 (63.5%) patients of the main group, as in 71 (78.9%) patients of the comparison group, a procedure of placing an isolated mitral valve prosthesis (Prosthetic Mitral Valve or PMV) prevails, without accompanying procedures.

In the main group, methods were developed and implemented that aimed at blood-saving technologies. Careful monitoring of hemodynamics as well as an evaluation of gas states were conducted, to rule out any complications at all stages of an operation. An important element in the main group was the stimulation of diuresis, which started with the start of the operation at a dose of 1 mg/kg of furosemide and (0.15 – 0.3) g/kg of mannitol. The following administration was performed intravenously for half an hour at an initial anesthesia. If the hematocrit was more than 0.4, then it created an opportunity blood deposition on citrate before the beginning of the artificial circulation (blood-saving option “A”).

Therefore, in 297 (47.5%) patients it was possible to deposit blood on citrate at a dose of 400 ml or more before the beginning of the AC, replenishing the volume with a 10% solution of Amylum hydroxethylcium to blood 1: 1 (blood-saving option “A”). Reservation of autoblood in the preperfusion stage was (465.2 ± 119.9) ml, i.e. (11.4 ± 3.2)% of the volume of circulating blood (VCB). After autoblood effusion, hemoglobin decreased from (139.2 ± 15.3) g/l to (129.4 ± 15.3) g/l, hematocrit – from 0.43 ± 0.03 to 0.38 ± 0.04, and the protein – from (73.2 ± 6.7) g/l to (59.2 ± 7.2) g/l, which was safe and did not significantly reduce the oxygen capacity of the blood.

After aortic cannulation, a procedure called retrograde autologous priming (RAP) was performed in 96 patients (blood-saving option “B”). This was possible with stable hemodynamics, with a patient weight of 80 kg and more and at a hematocrit value (in the last analysis) of at least 0.36. Meanwhile, heparinized blood was collected from the CPB pump arterial line, in which the patient’s blood was collected in the oxygenator reservoir, displacing the original bloodless perfusate collected by the perfusiologist in a separate reservoir.

The main goal of this stage is to minimize the hemodilution value after the start CPB by filling up the CPB pump reservoir with the patient’s own blood. This procedure is performed under strict hemodynamic control for approximately 9 – 10 minutes, that is why the use of any drugs that significantly lower AP (such as propofol), should be ruled out at this stage.

Before blood test the beginning of CPB determined a hematocrit of at least 0.4 and with a patient weight of at least 80 kg, then at the start of the perfusion and the presence in the oxygenator of a level of more than 1500 ml it was possible to perform the option “C” autoblood reservation (Figure).

This procedure was performed seperately in 84 patients and in 201 patients in combination with other options – “A” or “B”.

At the same time, through the venous port of the oxygenator, the autoblood perfusate effusion was (472.8 ± 128.3) ml (10.3 ± 3.4)% of the bcc calculated volume (4.3 ± 0.5) L.

After autoblood effusion at this stage, hemoglobin decreased from (134.5 ± 10.2) g/l to (97.3 ± 11.8) g/l, hema-
tocrit – from (0.39 ± 0.03) to (0.29 ± 0.03), and the protein from (70.8 ± 6.2) g/l to (55.5 ± 4.5) g/l, which was safe and did not significantly reduce the oxygen capacity of the blood.

Thus, the maximum discharge of autoblood at the stages of the operation was 1427.2 ± 413.7 ml (28.2 ± 6.7)% of blood volume circulation with the variant “A + B + C”, and the minimum with isolated variants of “A” (403.7 ± 92.7) ml and “B” – (462.8 ± 135.8) ml.

The most widely used as a method of exfusion in 293 (46.7%) isolated patients, or in conjunction with other methods exfusion in 538 (85.8%) patients was the option “A”. Isolated option “C” was used on 70 (11.2%) patients. The backup options “B” and “B + C” did not find a proper application in isolation.

All operations were performed under conditions of CPB and moderate hypothermia (32 – 35 °C). Myocardial protection was carried out on the basis of a modified crystalloid solution of St. Thomas with the addition of 22.0% autoblood, as well as a solution of Custadiol. Administering cardioplegia typically performed by applying a retrograde cardioplegia in combination with external cooling heart.

During the CPB, the following parameters were monitored: coagulogram, blood gas analysis (PaO2 100–300 mm Hg), SvO2, plasma electrolytes, glucose and lactate, hemoglobin, hematocrit, protein), depth of anesthesia, diuresis (200 ml / hr) with hemodilution, temperature, CVP (negative), mean BP (50 – 90 mmHg).

After completion of the correction of the defect and stopping the apparatus, the remaining contents of the CPB pump reservoir were returned to the patient, filling the BCC under strict control of the hemodynamics, keeping the preload within the maximum physiological limits. Typically, at this stage is actively used izoket (0.5 mkg/kg/min) in order to compensate for the maximum aortic trunk perfusate from the oxygenator to the patient. If this procedure is limited in its capabilities, the remaining perfusate of the oxygenator was going into the vials, then immediately poured to the patient. Irreversible blood loss at this stage (the remainder in the CPB pump reservoir) of the operation was minimized to 20–25 ml. Careful surgical hemostasis was carried out at all stages of the operation.

The time of CPB was (96.2 ± 20.4) min, the time of clamping of the aorta was 62.3 ± 15.5 min. in the main group, and it was (96.5 ± 14.2) min. and (62.3 ± 15.2) min. (p > 0.05) in the comparison group.

One of the principles of bloodless surgery with CPB is the absence of pronounced hemodilution at all stages of performing a correction. This allowed to maintain the water balance of the water balance of the liquid prior to perfusion within 0 + 300.0, pouring Amylum hydroxaethylicum only 10% at a dose of about 400 ml (as replenishment for blood sampling) and leaving almost zero water balance by the end of the operation. It is very important to minimize the water preload in the preperfusion stage. In most cases, 10% solution of 400 ml Amylum hydroxaethylicum was quite enough for this purpose.

At the stage of artificial circulation and at the end of perfusion, the water balance the liquid was not more than +1500.0 ml, and at the end of the operation, due to active diuresis, the fluid balance was usually reduced to zero. The protamine sulfate was administered at the calculated dose. To improve hemostasis, gokordex was administered at the end of the operation at a dose of 20 000 – 30 000 units/kg of weight, and epsilon–aminocaproic acid 200 mg/kg, as well as etamzilate at a dose of 30 mg/kg.

Results
The absence of allogeneic transfusions in the patients of the main group contributed to a reduction in the number of postoperative infectious complications in relation to the comparison group from 9.0% to 1.2%, and the duration of stay on artificial ventilation from (12.3 ± 8.4) hours to (6.7 ± 2.3) hours. The length of stay in the intensive care unit decreased from (116.3 ± 45.2) hours to (58.4 ± 12.4) hours (p < 0.05). Thus, the proposed methods of bloodsavings allowed to improve the results of surgical correction of mitral defects in the main group.

Reduction of intraoperative blood loss is one of the main tasks of bloodless operations. In the course of the comparative analysis of the volume of intraoperative blood loss, we found out that in the main group these indices were significantly less than in the comparison group: 261.2 ± 33.8 ml and 533.1 ± 131.6 ml (p <0.05). Data on the volume of blood loss are presented in Table 1.

In the comparison group, donor blood and plasma were used at all stages of the operation in 90 (100%) patients and in the intensive care unit in 48 (53.3%) patients. At the same time, in the comparison group, 24052 ml of erythrocyte mass were transfused in the operating room, which is 267.2 ml per person, and 30585 ml of fresh frozen plasma, which also corresponds to 340 ml per person. A total of 32317 ml of erythrocyte mass were used in this group, which in terms of 359 ml per patient and 44510 ml of fresh frozen plasma, which translates into 495 ml per patient.

An important criterion for the oxygen capacity of the blood was the level of hemoglobin at the correction stages. The dynamics of changes in hemoglobin indices at all stages in both the main group and in the comparison group is presented in Table 2.

As follows from the data of Table 2, in all groups at all stages of correction, the hemoglobin value was adequate and corresponding to the safe level of oxygen capacity of blood, as evidenced by the absence of multi–organ failure and clinically significant complications at the hospital stage. There were no lethal cases in the analyzed groups at the hospital stage.

Table 1: Intraoperative blood loss in cardio-surgical patients and drainage exudation in ICU

	Main group (n=227)	% of BCC	Comparative group (n=90)	% of BCC
Intraoperative blood loss (ml)	185,5±34,4	4,1±0,6	421,1±83,5*	8,9±1,8
Exudation by drainage (ml)	75,7±39,4	1,3±0,5	112,0±48,1	2,3±1,0
Total (ml)	271,2±33,8	5,4±1,5	533,1±131,6*	11,2±2,8

* – p<0,05
Table 2. Dynamics of changes in Hb (g/l) in the reservation and comparison groups at all stages

Groups	start of anesthesia	start of operation	start of CPB	end of CPB	2 days after operation	discharge	
Option «A» (n=293)	135,5±16,0	130,5±16,8	96,2±16,0*	90,2±13,7	108,3±14,4*	115,5±18,9*	110,9±13,0
Option «A+B» (n=46)	131,2±15,3	128,7±16,6	99,5±11,2*	95,1±12,2	115,4±9,7*	128,4±16,9*	107,0±18,0
Option «A+C» (n=143)	139,8±16,1	132,2±14,8	99,5±11,9*	95,1±11,8*	109,5±11,9*	127,2±16,0*	110,8±13,1
Option «A+B+C» (n=56)	140,4±12,1	131,3±15,9	103,1±14,6*	96,1±9,2*	116,3±9,8*	131,5±18,6*	120±10,9
Option C (n=70)	133,8±11,8	133,9±17,6	98,7±10,5*	93,4±10,4*	110,4±8,1*	124,6±19,5*	109,1±11,1
Comparison group (n=90)	136,0±15,7	130,1±11,7	90,1±12,5	87,2±11,4	102,9±12,0	111,1±19,8	111,8±14,7

Discussion

Routinely introduced into clinical practice the above-described technique of bloodless surgery in MП compensation under CPB allowed us to get a good clinical effect, without transfusion complications during hospital stay. The probability of its use is reduced in patients with a weight of 60 kg or less, the presence of anemia (hemoglobin 110 g / L and less) and in the older age group (65 years and older). With sufficient caution should be used bloodless technique in patients with multiple organ failure, the initial significant brain damage after previous impaired cerebral circulation.

The criterion indication for reserving intraoperative autologous blood during surgical correction operations mitral defects under CPB are:

a) anamnestic – no history of anemia and withdrawal of drugs that affect blood clotting 7 days before surgery;

b) initial laboratory parameters: hemoglobin ≥ 120 g / l, hematocrit ≥ 40, platelets ≥ 170 × 10^9 / l, erythrocytes ≥ 4,0 × 10^{12} / l, protein ≥ 60 g / l;

c) indicators of hemodynamics after the initial anesthesia: CVP ≥ 4 mm Hg.t. and mean BP ≥ 90 mm Hg, with initial bcc ≥ 4,4 ± 0,7 l.

The applied variants of intraoperative redundancy of autologous blood during surgical correction of mitral defects in conditions of CPB consist in:

- monitoring of CVP and maintenance of MAP with various fluids;

- perfection of autologous blood transfusion and bloodless technique in conditions of MП compensation during open heart surgery was improved:
 - for infusion—transfusion therapy (stimulation of diuresis, control of water balance, combination of ONG and CPB, and reduction of hemodilution due to autograft retrograde filling of the oxygenator);
 - perfection of autologous blood transfusion methods and their combination, change in the tactics of infusion hemostatic therapy;
 - monitoring of CVP and maintenance of MAP with various methods of autologous blood transfusion – all this increased the quality of surgical treatment of MD in conditions of CPB.

Conclusion

The blood saving methods of during open heart surgery was improved:

- for infusion—transfusion therapy (stimulation of diuresis, control of water balance, combination of ONG and CPB, and reduction of hemodilution due to autograft retrograde filling of the oxygenator);

- perfection of autologous blood transfusion methods and their combination, change in the tactics of infusion hemostatic therapy;

- monitoring of CVP and maintenance of MAP with various methods of autologous blood transfusion – all this increased the quality of surgical treatment of MD in conditions of CPB.

References

1. Dietrich W, Lüth JU, Kormann J, Wick S, Kaiser W, Eberle B, et al. Intraoperative blood requirements and allogeneic blood transfusion in cardioanesthesia. Data analysis of 7729 patients in 12 cardiac surgical clinics. Anesthesiast. 1999 Dec;48(12):876–83. PMID: 10672351. doi: 10.1007/s00100090050801.

2. Dunbar NM, Yazer MH. A possible new paradigm? A survey–based assessment of the use of thawed group A plasma for trauma resuscitation in the United States. Transfusion. 2016 Jan;56(1):125–9. doi: 10.1111/trf.13326. Epub 2015 Aug 20.

3. Humeniuk BM, Vyavlenka markiv infektsii, shche peredausia cheerez krov u donovri ta pasintiavii kardiokhirurhichnomu stanisam. Sheho- richnyk naukovykh prats Assotsiatsiyi sertsevo-sudynykh khirurhiv Ukrainy. Vyp.20.Kyiv; 2012–5 [In Ukrainian].

4. Lewis CE, Hratzka LF, Woods SE, Hendy MP, Engel AM. Autologous blood transfusion in elective cardiac valve operations. J Card Surg. 2005 Nov–Dec;20(6):513–8. PMID: 16309401. doi: 10.1111/j.1540-8191.2005.00137.x.

5. Lazoryshynets VV, Popov VV, Humeniuk BN. Krovozberizhachuka tekhnologhini pry khirurhichnomu khirurgii v ukraynyakh. Zhurnal Nationalnoi akademii medychnykh naukar Ukrainy. 2015;22(1). 80–6. [In Ukrainian].

6. Ferraris VA, Ferraris SP, Saha SP, Hessel EA 2nd, Haan CK, Royston BD, et al. Perioperative blood transfusion and blood conservation in cardiac surgery: the Society of Thoracic Surgeons and The Society of Cardiovascular Anesthesiologists clinical practice guideline. Ann Thorac Surg. 2007 May;83(5 Suppl):S27–86. PMID: 17462454. doi: 10.1016/j.athoracsur.2007.02.099.

7. Curley GF, Shehata N, Mazzer CD, Hare GM, Friedrich JO. Transfusion triggers for guiding RBC transfusion for cardiovascular surgery: a systematic review and meta-analysis. Crit Care Med. 2014 Dec;42(12):2611–24. doi: 10.1097/CCM.0000000000000548.

8. Jin R, Zelinka ES, McDonald J, Byrnes T, Grunkemeier GL, Brevig J, et al. Effect of hospital culture on blood transfusion in cardiac procedures. Ann Thorac Surg. 2013 Apr;95(4):1269–74. doi: 10.1016/j.athoracsur.2012.08.008. Epub 2012 Oct 4.