A general theory of rock glacier creep based on in-situ and remote sensing observations

Alessandro Cicoira¹ | Marco Marcer² | Isabelle Gärtner-Roer¹ | Xavier Bodin² | Lukas U. Arenson³ | Andreas Vieli¹

¹ | SUPPORTING INFORMATION
TABLE 1 Dataset used for the analysis of rock glacier thickness, driving stresses and creep rates. From borehole investigations. From InSar analysis. From terrestrial surveys or in-situ GPS stations. From morphological analysis. Derived from the steep front and/or the lateral margins.

Num	Rock glacier	Thickness [m]	Slope angle [°]	Creep rate [ma⁻¹]	Reference
1	Dirru	15ᵃᵇᶜ	27	5.50	Cicoira et al. (2019)ᵇᶜ
2	Furgwanghorn 5	15ᵃ	28	2.90	Buchli et al. (2018)ᵃ
3	Furgwanghorn 7	17ᵃ	20	5.20	Buchli et al. (2018)ᵃ
4	Guggla	17ᵇᶜ	22	4.00	Delaloye, pers. com., (2020)
5	HuHH1	17ᵇᶜ	21	1.00	Müller et al. (2016)ᵇᶜ
6	HuHH3	20ᵇ	22	1.70	Müller et al. (2016)ᵇᶜ
7	Kaiserberg	27ᵇ	9	0.50	Hausman et al. (2012)ᵇᶜ
8	Las Liebres	25ᵇ	15	1.10	Monnier and Kinnard (2016)ᶜ
9	Laurichard	20ᵇ	20	1.00	Bodin et al. (2018)ᵇᶜ
10	Lazaun	25ᵃ	15	1.20	Krainer et al. (2015)ᵇᶜ
11	Andes #1	22ᵃ	9	0.07	Arenson (per. com. 2020)ᵃ
12	Andes #2	18ᵇ	11	0.05	Arenson (per. com. 2020)ᵇ
13	Andes #3	12ᵃ	13	0.23	Arenson (per. com. 2020)ᵃ
14	Andes #4	22ᵃ	11	0.14	Arenson (per. com. 2020)ᵃ
15	Andes #5	14ᵃ	8	0.01	Arenson (per. com. 2020)ᵃ
16	Muragl 3	15ᵃ	18	1.40	Arenson (per. com. 2020)ᵃ
17	Muragl 4	16ᵃ	18	1.20	Arenson (per. com. 2020)ᵃ
18	Murtél	29ᵃ	12	0.10	Arenson (per. com. 2020)ᵃ
19	Ölgrube	31ᵇ	13	1.10	Hausmann et al. (2012)ᵇᶜ
20	Pierre Brune 1	15ᵃᵇ	25	6.00	Marcer (pers. com. 2019)ᵇᶜ
21	Pierre Brune 2	23ᵃᵇ	16	1.00	Marcer (pers. com. 2019)ᵇᶜ
22	Reichenkar	23ᵇ	13	2.50	Hausmann et al. (2007)ᵇᶜ
23	Rittigraben	20ᵃ	20	1.50	Kenner et al. (2017)ᵇᶜ
24	Schaflberg 1	14ᵃ	23	0.03	Arenson et al. (2002)ᵇᶜ
25	Schaflberg 1	25ᵃ	16	0.20	Arenson et al. (2002)ᵇᶜ
26	Steintälli	27ᶜ	12	0.40	Delaloye (pers. com. 2020)ᶜ
27	Tsarmine	17ᶜ	22	6.00	Delaloye (pers. com. 2020)ᶜ
28	Valdallacqua	22ᵃ	15	1.00	Cicoira (unpublished 2019)ᵇᶜ

TABLE 2 Dataset used for the analysis of rock glacier creep at the regional scale comprising observations of creep rates and surface slope angle. From aerial imagery (Satellites or UAVs). Feature tracking analysis. From InSar analysis. From terrestrial surveys or in-situ GPS stations.

Count	Rock glaciers	Reference
324	French inventoryᵃ	Marcer et al. (2019)ᵇᶜ
30	Kaunertal inventoryᵃ	Groh and Blöthe (2019)ᵇᶜ
17	Permosᵇᶜ	PERMOS (2019)ᵇᶜ
15	University of Fribourgᵃᵇᶜ	Delaloye (pers. com. 2020)ᵇᶜ
28	Present studyᵃᵇᶜ	Tab.1

TABLE 3 Dataset used for the analysis of rock glacier creep at the local scale.

Rock glacier	Data source (velocity, thickness)	Reference and availability
Laurichard	TLS, GPR	Bodin et al. (2018)ᵇᶜ
Dirru	UAVs, ERT	Cicoira et al. (2019)ᵇᶜ
Pierre Brune	UAVs, ERT	Marcer et al. (2020)ᵇᶜ
REFERENCES

1. Cicoira A, Beutel J, Faillettaz J, Vieli A. Water controls the seasonal rhythm of rock glacier flow. *Earth and Planetary Science Letters* 2019b; 528: 115844. doi: https://doi.org/10.1016/j.epsl.2019.115844

2. Buchli T, Kos A, Limpach P, Merz K, Zhou X, Springman SM. Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland. *Permafrost and Periglacial Processes* 2018; 29(1): 3–20.

3. Müller J, Vieli A, Gärtner-Roer I. Rock glaciers on the run – understanding rock glacier landform evolution and recent changes from numerical flow modeling. *The Cryosphere* 2016; 10(6): 2865–2886. doi: 10.5194/tc-10-2865-2016

4. Hausmann H, Krainer K, Brückl E, Ullrich C. Internal structure, ice content and dynamics of Ölgube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. *Austrian Journal of Earth Sciences* 2012(105): 12-31.

5. Monnier S, Kinnard C. Interrogating the time and processes of development of the Las Liebres rock glacier, central Chilean Andes, using a numerical flow model. *Earth Surface Processes and Landforms* 2016; 41(13): 1884-1893. doi: 10.1002/esp.3956

6. Bodin X, Thibert E, Sanchez O, Rabatel A, Jaillot S. Multi-Annual Kinematics of an Active Rock Glacier Quantified from Very High-Resolution DEMs: An Application-Case in the French Alps. *Remote Sensing* 2018; 10: 547. doi: 10.3390/rs10040547

7. Krainer K, Bressan D, Dietre B, et al. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). *Quaternary Research* 2015; 83: 324-335. doi: 10.1016/j.yqres.2014.12.005

8. Krainer K, Bressan D, Dietre B, et al. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). *Quaternary Research* 2015; 83: 324-335. doi: 10.1016/j.yqres.2014.12.005

9. Arenson LU, Hoelzle M, Springman S. Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. *Permafrost and Periglacial Processes* 2002; 13(2): 117–135. doi: 10.1002/ppp.414

10. Hausmann H, Krainer K, Brückl E, Mostler W. Internal structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria) assessed by geophysical investigations. *Permafrost and Periglacial Processes* 2007; 18(4): 351-367. doi: 10.1002/ppp.601

11. Kenner R, Phillips M, Beutel J, et al. Factors Controlling Velocity Variations at Short-Term, Seasonal and Multiyear Time Scales, Ritigraben Rock Glacier, Western Swiss Alps. *Permafrost and Periglacial Processes* 2017; 28(4): 675–684. PPP-16-0044.R2 doi: 10.1002/ppp.1953

12. Delaloye R. pers. com. 2020.

13. Marcer M, Serrano C, Brenning A, Bodin X, Goetz J, Schoeneich P. Evaluating the destabilization susceptibility of active rock glaciers in the French Alps. *The Cryosphere* 2019; 13(1): 141–155. doi: 10.5194/tc-13-141-2019

14. Groh T, Blöthe JH. Rock Glacier Kinematics in the Kaunertal, Ötztal Alps, Austria. *Geosciences* 2019; 9(9). doi: 10.3390/geosciences9090373

15. PERMOS. Permafrost in Switzerland 2014/2015 to 2017/2018. Noetzli, J., Pellet, C., and Staub, B. (eds.), Glaciological Report (Permafrost) No. 16-19. tech. rep., the Cryospheric commission of the Swiss Academy of Sciences, 104 pp.; 2019.

16. Marcer M, Cicoira A, Bodin X, Schoeneich P. Rock glacier destabilization due to climate change. *Nature Communications* submitted.