High temperature superconductivity was discovered in single unit-cell thick FeSe films grown on a SrTiO$_3$(001) substrate by molecular beam epitaxy. In situ scanning tunneling microscopy revealed a superconducting gap as large as 20 meV in single unit-cell thick FeSe films [1]. By ex situ transport measurements on single unit-cell thick FeSe films protected with FeTe layer, we demonstrated an onset T_C above 40 K and a critical current density $J_C \sim 1.7 \times 10^6$ A/cm2 at 2 K, which are much higher than $T_C \sim 8$ K and $J_C \sim 10^4$ A/cm2 for bulk FeSe [2,3], and that the characteristics of the transition are consistent with a two-dimensional superconductor undergoing a Berezinskii-Kosterlitz-Thouless transition. The superconductivity is further confirmed by measuring Meissner effect. The simple structure of the current system provides an ideal platform for understanding the underlying physics of high-T_C superconductivity.

[1] Wang, Q. Y. et al., Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO$_3$. *Chinese Physics Letters*, **29**, 037402 (2012).

[2] Hsu, F. C. et al., Superconductivity in the PbO-type structure α-FeSe. *Proc. Natl. Acad. Sci. USA* **105**, 14262 (2008).

[3] Lei, H. C. et al., Critical fields, thermally activated transport, and critical current density of β-FeSe single crystals. *Phys. Rev. B* **84**, 014520 (2011).