Performance Evaluation of Drip Irrigation Systems on Production of Okra (*Hibiscus esculentus*) in Southwestern, Nigeria

M. O. Amoo¹, T. A. Ademiju²*, A. J. Adesigbin¹ and G. A. Ali¹

¹Department of Agricultural and Bio - Environmental Engineering Technology, Federal Polytechnic, Ede, Osun State, Nigeria.
²Department of Agricultural Education, Federal College of Education (Technical), Asaba, Delta State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author MOA and TAA designed the study, performed the statistical analysis, wrote the protocol and Author TAA wrote the first draft of the manuscript. Author TAA managed the analyses of the study. Authors TAA and AJA managed the literature searches. All authors read and approved the final manuscript.

ABSTRACT

This study was carried out to evaluate the performance of drip irrigation systems on the production of okra (*Hibiscus esculentus*) in southwestern, Nigeria. Application of water to crops in an area of scarcity of water is very important to meet the food demand of the ever-increasing population and modified irrigation techniques that can assist the okra farmers to have affordable irrigation systems that will get them great yields at the end of the season was evaluated in this paper. A field experiment was conducted at the Teaching and Research Farm of Agricultural and Bio-Environmental Engineering Department, School of Engineering Technology, The Federal Polytechnic, Ado, Ekiti - State, Nigeria. The field area of 150 m by 400 m was properly cleared, stumped, ploughed and harrowed. The topography of the land was flat with its suitable soil structure, texture, retention capacity and loamy clay soil. The cultivated area of land was divided into three and on each experimental plot, high yield and disease resistant okra variety seeds...
obtained from a research institute (IITA) were carefully selected and planted at a regular interval of 0.6 m. Drip laterals were laid in between rows of okra plants with inline drippers at a spacing of 20 cm. The parameters measured include okra seed germination, plant height, stem girth, number of leaves and yield production. The study also includes soil properties, crop water requirement and crop water use efficiency. There were no significant difference in the okra agronomic parameters at each experimental plots under drip irrigation system. The water applied to crop was greater than the actual crop water requirement and the efficiency of the drip irrigation was 68.5%. There is high in seed germination percentage in with 3.5%, 3.6% and 3.8% at each experimental plot respectively. The selected okra agronomic parameters showed that okra performed very well under drip irrigation systems. Based on the results, water application through drip irrigation has a positive impact on growth and vegetative development of okra.

Keywords: Drip irrigation; surface irrigation; okra; evaluation; performance.

1. INTRODUCTION

Agriculture utilizes globally about 70% of all the water managed by man, and about 80% of the water used in the developing world. Water supply is important for crop growth and production particularly in arid and semi-arid areas. The increased competition for water among agricultural, industrial and domestic consumers creates the need for continuous improvements in techniques for judicious use of water in crop production. [1] analyze that the competition among the various sectors-agriculture, communities, industry, nature, etc. as becomes stiffer and agriculture is most under pressures for scarce water resources, as the output per unit water is significantly lower than in the other economic sectors. The majority of the population in sub-Saharan Africa makes their living from rainfed agriculture and depends to a larger extent on smallholder, subsistence agriculture for their livelihood and food security [2]. However, when rainfall is scarce and in order to make water available to the farmers throughout the dry season to ensure food security, there is a need for irrigation systems. Irrigation is the artificial application of water to the soil or plant, in the required quantity and at the time needed, is a risk management tool for agricultural production. [3] has estimated that irrigated agriculture uses more than 70% of the water withdrawn from the earth’s rivers; whereby the proportion exceeds 80% in developing countries. So it is judiciously using the already existing water resources by using suitable irrigation technology that not only increases vegetable production per unit area but also per unit of water used. Efficient water use is becoming increasingly important and alternative water application methods such as drip irrigation may contribute substantially to making the best use of the scarce available water for crop production. Drip irrigation is a technique that provides crops with water through a network of pipelines at a high frequency but with a low volume of water applied directly to the root zone in a quantity that approaches consumptive use of the plants [4]. Drip irrigation does not only conserve water but also improve productivity and quality of the product even utilizing poor quality waters. Paul et al. [5] discovered that drip irrigation has considerable advantages over other irrigation systems in terms of water application efficiency is capable to small and frequent applications of water has created interest among the farmers because of less water requirement, increased production and better quality production. Okra, a widely distributed crop is one of the oldest cultivated crops in many parts of the world with its origin from Ethiopia and Sudan [6]. It is an important vegetable because it is rich in vitamins, folic acid, carbohydrates, phosphorus, magnesium, calcium, potassium and other minerals and it belongs to the genus *Abelmoschus* family [7]. Okra is a type of vegetables that can be planted on all types of soils but the soil should be friable [8]. Drip irrigation system along with mulching can make the yield of okra to increase up to 61% higher than another irrigation method with the same quantity of irrigation water applied [6]. Okra is a high water crop use despite having considerable drought resistance [9]. During the year 2009 and 2010, 13.6 and 14.8 per cent higher okra yield was observed under drip irrigation in comparison to another irrigation method as reported by Birbal et al. [10]. Drip irrigation may help in producing more water applied and allow crop cultivation in water scarce area but there are limited numbers of the study conducted in Southwestern, Nigeria to assess and ascertain its utility and suitability under different situations for production of okra. This study is aimed at to evaluate the performance of improvised drip irrigation systems in the
production of okra in southwestern, Nigeria in order to maximize profit and at the same time reduce the cost of production.

2. MATERIALS AND METHODS

2.1 Study Area

The experiment was conducted during the year 2015 - 2016 at the Teaching and Research Farm of Department of Agricultural and Bio-Environmental Engineering, School of Engineering Technology, The Federal Polytechnic, Ado Ekiti, Ekiti State, Nigeria. The area is located around Latitude 6° N and Longitude 16° E and is a low relief with elevation about 185 m above the sea level which is enveloped by rocky and hilly outcrops. Geologically, the region lies entirely within the pre-Cambrian basement rock group, which underlies much of Ekiti State. The temperature of this area is almost uniform throughout the year; with little deviation from the mean annual temperature of 270°C. The hottest period is between February and March with a temperature between 280°C and 290°C respectively while the coolest period is June with the temperature of 250°C. The mean annual total rainfall is 1367 mm with a low coefficient variation of about 10%. Rainfall is highly seasonal with well-marked wet and dry season. The wet season lasts from April to October, with a break in August [11].

2.2 Treatments and Experimental Plot Layout

The ruggedness of the topography of the experimental plot is characterized by slopes, valleys, and some planes at the suburbs of the area which are used for agricultural purposes. The area is chosen for its suitable soil structure, texture, water retention capacity, loamy fertile soil, nearness to the water source (well) and availability of power supply to operate the electric water pump. To characterize the soil at the experimental plot, physicochemical analysis of soil sample from 0-30 cm depth was carried out and presented in Table 1. Land preparation involved the use of a tractor for ploughing and harrowing. The levelling was done manually by using simple farm implements to make it suitable for the undisturbed, unobstructed free flow of water and good crop management. The levelling of the experimental plot was done to avoid stagnate water in the area of the depression whereas higher parts of the area may lack necessary water. This may eventually result in uneven water distribution, uneven crop emergence and uneven early growth, uneven fertilizer distribution and possibly unwanted weeds. The total experimental plot of 150 m by 400 m was used and the area was divided into three experimental plots.

2.3 Irrigation Layout

The purpose of the irrigation layout is to transmit information from engineering plans to the irrigation field. The drip irrigation system employed includes discharge valve, flushing valve, pressure regulator, screen filter, sand filter and filter injection. Centrifugal water pump with 5.5 horse power (hp) capacity driven by an electric motor was used to draw irrigation water from the two storage tank (iron) at an elevation of 12 m as shown in plate 1. The storage tank serves as a water reservoir where the main pipeline is connected to sub main pipelines 240, 40 m long and 63 mm, 38 mm in diameter respectively, and made of Polyvinyl Chloride (PVC). It was buried at a depth of 20 cm. The lateral pipes are made of black Linear Low-Density Polyethylene (LLDPE). The twenty laterals are each 40 m long and 16 mm inside diameter. The laterals were joined to the sub-main at 1 m spacing. The discharge from each emitter is between 2-4 l/h as recommended by Al-Harbi et al. [12]. Emitters were fixed in each lateral at a 20 cm spacing that coincides with the plant spacing. Drip laterals were laid in between two rows of okra plants with inline drippers at a spacing of 20 cm. The spacing between plants on the ridges is 20 cm as shown in plate 2. The drip irrigation system components were laid according to experimental design.

Table 1. Physico-chemical properties of soil at the experimental plot area

Soil depth (Cm)	Sand (%)	Silt (%)	Clay (%)	Textural class	Water density (Gcm⁻³)	retention at 30 bar (cm³ cm⁻³)	retention at 15 bar (cm³ cm⁻³)	Moisture content (%)	Ks (cm day⁻¹)	EC (dS/m)	pH
0-30	17	32	43	Clayey	1.38	0.38	0.19	0.42	22.40	4.06	8.8
2.4 Irrigation Requirement and Uniformity Distribution

Climatic data were sourced from the Nigerian Meteorological Agency office, Ado Ekiti which was used to determine the amount of rainfall and other climatic data that were favourable for the crop production. Crop water requirement was calculated using the following formula [13].

\[
ET_c = ET_o + K_c
\]

where: \(ET_c \): Crop water requirement (mm/day); \(ET_o \): Reference crop evapotranspiration (mm/day); \(K_c \): Crop coefficient.

Reference crop evapotranspiration (\(ET_o \)) was calculated according to Penman-Monteith, as calculated by Allen et al. [13].

\[
ET_o = \frac{0.408 \Delta \alpha (R_o - G) + 0.24 \alpha \Delta \phi}{\Delta + \alpha \phi}
\]

where: \(ET_o \): Reference crop evaporation (mm/day); \(R_o \): Net radiation at crop surface (MJ/m\(^2\)/day); \(G \): Soil heat flux (MJ/m\(^2\)/day); \(T \): Average temperature at 2 m height (°C); (\(ea - ed \)): Vapour pressure deficit for measurement at 2 m height; \(U_2 \): Wind speed at 2 m height (m/s); \(\Delta \): Slope or vapour pressure Curve (KPa/°C); 0.34: Wind coefficient for the reference crop (S/m); \(Y \): Psychometric constant (KPa/°C).
Then net crop water requirement (NCWR) was calculated by subtracting the monthly effective rainfall (Ref) from crop water requirement (CWR) as:

\[NCWR = CWR - Ref \]

The Ref, (mm) was calculated from the total rainfall (TR) mm, using empirical formula according to USDA Soil Conservation Service;

\[Pe = C \times R_{tot} + d \]

where: Pe: Effective rainfall (mm/month); P_{tot}: Total rainfall in a given month (mm/month) and C, d are respectively, the fixed percentage that accounts for losses from rainfall and deep percolation.

The uniformity distributions of drip irrigation system were determined by using the equation according to [4]. The rate of discharge (q) was measured 70 emitter’s chosen for each system, volumetrically using catch cans, and a stopwatch.

\[En = \frac{q_n}{q_{ave}} \times 100 \]

The pressure for the drip irrigation was adjusted at 2bar for all the laterals. The discharge rate measurements were repeated three times and the average was taken. A regression analysis was used to analyze the rate of flow reduction. Three (3) representative experimental sites were used for measuring water infiltration in cm/hr following the procedure. Water use efficiency of the crop for each treatment was computed from yield and water requirement data.

2.5 Yield Data and Data Analysis

The okra seeds (3) were planted at 2 cm depth with a 0.6 m interval from each hole. The same amounts of water were applied through drip irrigation to the crop at the same time on the same day to avoid bias. The interval between irrigations was three (3) days for the drip irrigation. The pesticide and fertilizer were applied to control the diseases and increases the quality and quantity of okra yields. The moisture content and soil temperature were measured by means of soil moisture and soil thermometer respectively from the day of planting to the maturity stage of the plants. After one (1) month of sown, data was collected for okra yields include plant height (cm), plant diameter (cm), root length (cm), root weight (g), number of leaves, flowers and buds. Okra yield (kg/ha) was estimated considering the mean yield obtained from the replicated plots under the treatments using the sensitive balance. The data collected (height, stem girth, the canopy of okra plant and quantity of water used) was analysed using one – way Analysis of Variance (ANOVA) methods. Differences between means were considered significant at P < 0.05.

3. RESULTS AND DISCUSSION

3.1 Crop Water Requirement and Water Use Efficient

Climatic data and Reference Crop Evapotranspiration (ET) is shown in Table 2. The monthly mean reference of crop evapotranspiration (ETc) was 6.77 mm/day and the water consumption is about 8 mm/day for a full-grown cup [14]. Table 3 shows the water requirements for okra for four months which is the length of the growing season and the mean okra ETC was 5.31 mm/day which agrees with that of Abubaker, Alhadi, Shuang-En and Guang-Cheng, 2014 which show a linear relationship between okra production and the amount of water supplied. There was no rainfall during the period that this research was carried out, this makes the okra net crop water requirements (NCWR) coincided with ETC. The drip irrigation showed high crop water use efficiency (WUE) of 68.5% as shown in Table 4 during the period that this research was carried out and it was due to moisture conservation under irrigation which is probably due to prevention of deep percolation and evaporation from soil surface at the experimental plots.

3.2 Growth Parameters

3.2.1 Seed germination

The germination of seed of okra under the conditions of the drip irrigation system at experimental plots shows that the higher rate of seed germination at the experimental plots as presented in Table 5. Moreover, there was no significant difference in the germination percentage but there is higher in seed germination percentage in with 3.5%, 3.6% and 3.8% respectively. According to [1], this could have happened because the amount of water flowing from the drip nozzle was completely utilized by the sown seeds without any waste as a result of direct discharge of water at the planted spot in form of droplets with easy absorption by the soil in those experimental plots.
The mean plant height of okra under the drip irrigation systems was presented in Table 6.

Treatments	Oct	Nov	Dec	Jan	Mean
Drip	7.65	6.55	6.10	6.78	6.77
Kc	0.67	0.71	1.22	0.90	0.88
ETc mm/day	4.40	4.85	6.25	5.75	5.31
ETc mm/month	132	145.5	187.5	172.5	159.5

Means with the same alphabet(s) in the same column are not significantly different at P= 5%

3.2.2 Plant height

The mean plant height of okra under the drip irrigation systems was presented in Table 6. Okra plant height from drip irrigation systems experimental plots shows there was no significant in respect to plant height on the plots at weeks after planting. The height of okra is getting high as the plant is growing every week and there was no significant difference in respect of the height of the plant at all experimental plots where the research was carried out as shown in Fig. 1. On the average, the plant height on all
experimental plots using drip irrigation is around 38.8 cm which is in the same trend as the report by [1,15]. The result justified the fact that the water supplied was available for okra plants under drip irrigation to utilise maximally since the water was discharged directly to the root of the plants at low pressure. Also, drip irrigation kept the root zone at the field capacity and this to avoid lack of water for the physiological functions of the plant.

Fig. 1. Plant height at the experimental plots

Fig. 2. Stem girth at the experimental plots

Fig. 3. Number of okra leaves at the experimental plots
Table 8. Analysis of variance of number of leaves at the experimental plots

	Sum of squares	Df	Mean square	F	Sig.
Treatment	1636657.042	2	818328.521	29.480	.000
Error	1249124.438	45	27758.321		
Total	2885781.479	47			

Table 9. Analysis of variance of okra yields at the experimental plots

	Sum of squares	Df	Mean square	F	Sig.
Treatment	1636657.042	2	818328.521	29.480	.000
Error	1249124.438	45	27758.321		
Total	2885781.479	47			

Fig. 4. Okra yield at the experimental plots

3.2.3 Stem girth and number of leaves

The mean stem girth and number of leaves for various weeks were consistently higher under the drip irrigation method at the experimental plots as shown in Figs. 2 and 3 respectively. The numbers of okra leaves are significantly high and they are not different significantly as shown in Table 8 and Fig. 3, they are range between 20 and 70 as respect to the weeks after planting. The higher in the number of okra leaves is as a result of photosynthesis under drip irrigation compares to other irrigation systems which could determine to a large extent the assimilates for growth and yield. The significant increase in the stem girth of the plant as shown in Fig. 2 by the drip irrigation method can be attributed to the conserved soil moisture, seedling emergence and improved emergence. There was no significant difference in stem girth at different experimental plots as shown in Table 7 and this, as a result, positive significant correlation with yield under drip irrigation methods. The results achieved was similar results reported by Singh and Rajput [16] that okra plant grown under drip irrigation had number leaves and branches than any other irrigation methods and this could be as a result of carbon dioxide exchange rates varied considerably under the drip irrigation methods due to irrigation timings and quantity of water applied [1].

3.2.4 Okra yield (Kg/Ha)

The results of okra yield for sixteen days picking the show that there is no significant difference as shown in Table 9. Higher significant fresh okra fruit weight was obtained under drip irrigation between the 6th and 8th day of picking as shown in Fig. 4. This is because drip irrigation provides a consistent supply of water to the entire root area on a continuous basis so that drench and dry out stress are reduced. This is in agreement with the findings of [17] who reported that okra yield increase under drip irrigation systems by 20.69% with the water saving of 44.92% which further says that the plants receive drip irrigation than any other irrigation systems. Regular and often use of drip irrigation results in maintaining moisture conditions in the crop root zone leading to higher water as well as nutrient availability to the plant [18].
4. CONCLUSION

The hydraulic performance of drip irrigation system was evaluated and the performance of the system in terms of average uniformity coefficient, field emission uniformity, absolute emission uniformity and manufacturing coefficient of variation was within the acceptable limit. Drip irrigation method plays a significant role in okra production by maxima land utilization and as well as water in the production of okra. The study revealed better plant growth, high water use efficiency and enhancement in the yield under drip irrigation. The drip irrigation system is more economical and it could be used in places and periods of water scarcity for the production of okra throughout the year by small, medium and large scale farmers. The drip irrigation system also has the tendency to make a large quantity of water available to the plants gradually such that there will be no runoff and deep percolation. Although drip irrigation can be tedious in its installation as compared to another irrigation method it saves time, energy, labour and water during the process of water supply to plants after the drip lines have been laid out. The drip kit irrigation is highly affordable for subsistence farming for the sustainability of livelihood.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Oshunsanya SO, Aiyelari EA, Aliku O, Odekanyin RA. Comparative performance of Okra (Abelmoschus esculentus) under subsistence farming using drip and watering can methods of irrigation. Irrigat Drainage Sys Eng. 2016;5:159.

2. Masiri N, Senzanje A, Rockstrom J, Twomlow SJ. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system. Physics and Chemistry of the Earth. 2005; 30:783 – 791.

3. FAO. The state of food insecurity in the world [Database]. Retrieved from; 2014. Available:http://www.fao.org/3/a-i4030e.pdf

4. Nakayama FS, Backs DA. Emitter clogging effects on trickle irrigation uniformity. ASAE Trans, Paper No. 1981;81:2100.

5. Paul jc, Mishra jn, Pradhan PL, Panigrahi B. Effect of drip and surface irrigation on yield, wateruse-efficiency and economics of capsicum (Capsicum annum L.) grown under mulch and non mulch conditions in Eastern Coastal India. European Journal of Sustainable Development. 2013;2(1):99-108.

6. Oyelade OJ, Ade-Omowaye BIO, Adeomi VF. Influence of variety on protein, fat contents and some physical characteristics of okra seeds. J. Food Eng. 2003;57:111-114.

7. Dilruba S, Hasanuzzaman M, Karim R, Nahar K. Yield response of Okra to different sowing time and application of growth hormones. J. Hortic. Sci. Ornamental Plants. 2009;1:10-14.

8. Ayeni Mj, Ale OE, Kayode J. Effects of irrigation and soil types on the Germination and growth of Okra (Abelmoschus esculentus L. Moench). Journal of Plant Sciences. 2015;3(2):59-63.

9. Fasina AS. Irrigation suitability evaluation of Asu River basin soils, South Eastern Nigeria. Int. J. Soil Sci. 2008;3(1):35-41.

10. Birbal VS, Rathore NS, Nathawat SB, Yadav ND. Effect of irrigation methods and mulching on yield of okra under based vegetable production system under arid region. Bhartiya Krishi Anusandh Patrika. 2013;28(3):142-147.

11. Ogundele JA, Jegede AO. Environmental influences of flooding on urban growth and development of Ado-Ekiti, Nigeria. Studies in Sociology of Science. 2012;2(2):89-93.

12. Al-Harbi AR, Al-Omran AM, El-Adgham FL. Effect of drip irrigation levels and emitters depth on Okra (Abelmoschus esculentus) growth. Journals of Applied Sciences. 2008;8(15):2764-2769.

13. Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO irrigation and drainage. Paper no. 56. FAO Food and Agriculture Organization of the United Nations, Rome, Italy. 1998;300.

14. Sorapong B. Okra (Abelmoschus esculentus L. Moench) as a Valuable Vegetable of the World. Ratar Povt. 2012;49:105-112.

15. Choudhary S, Chandra A, Yadav PK. Effect of crop geometry on Okra (Abelmoschus esculentus) cultivars under different irrigation levels and mulching. Progressive Horticulture. 2012;44(2):276-280.
16. Singh DK, Rajput TS. Response of lateral placement depths of subsurface drip irrigation on okra (Abelmoschus esculentus). International Journal of Plant Production. 2007;1:73-84.

17. Antony E, Singandhupe RB. Impact of drip and surface irrigation on growth, yield and water use efficiency of capsicum (Capsicum annum L.). Agricultural Water Management. 2003;65:121-132.

18. Sharma P, Kausal A, Singh A, Garg S. Growth and yield attributes of okra under influence of drip irrigation. Int. Journal of Engineering Research and Applications. 2016;6(2):85-91.