Surface anisotropy broadening of the energy barrier distribution in magnetic nanoparticles

N Pérez¹, P Guardia¹, A G Roca², M P Morales², C J Serna², O Iglesias¹, F Bartolomé³, L M García³, X Batlle¹ and A Labarta¹

¹ Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Catalonia, Spain
² Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco E-28049, Madrid, Spain
³ Instituto de Ciencia de Materiales de Aragón, Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain

E-mail: nicolas@ffn.ub.es

Received 21 July 2008, in final form 3 September 2008
Published 30 October 2008
Online at stacks.iop.org/Nano/19/475704

Abstract
The effect of surface anisotropy on the distribution of energy barriers in magnetic fine particles of nanometer size is discussed within the framework of the $T \ln(t/\tau_0)$ scaling approach. The comparison between the distributions of the anisotropy energy of the particle cores, calculated by multiplying the volume distribution by the core anisotropy, and of the total anisotropy energy, deduced by deriving the master curve of the magnetic relaxation with respect to the scaling variable $T \ln(t/\tau_0)$, enables the determination of the surface anisotropy as a function of the particle size. We show that the contribution of the particle surface to the total anisotropy energy can be well described by a size-independent value of the surface energy per unit area which permits the superimposition of the distributions corresponding to the particle core and effective anisotropy energies. The method is applied to a ferrofluid composed of non-interacting Fe$_3$O$_4$ particles of 4.9 nm average size and x about 0.07. Even though the size distribution is quite narrow in this system, a relatively small value of the effective surface anisotropy constant $K_s = 2.9 \times 10^{-2}$ erg cm$^{-2}$ gives rise to a dramatic broadening of the total energy distribution. The reliability of the average value of the effective anisotropy constant, deduced from magnetic relaxation data, is verified by comparing it to that obtained from the analysis of the shift of the ac susceptibility peaks as a function of the frequency.

1. Introduction

Nowadays magnetic fine particles [1] are routinely used in many technological applications such as magnetic recording [2] and magnetic resonance imaging [3, 4], and they are considered promising materials for various biomedical applications [5] and nonlinear optics [6]. Consequently, the study of their magnetic properties has attracted many efforts in the last few decades, in particular because considerable deviations from bulk behavior have been widely reported for particle sizes below about 100 nm. This is because of finite-size effects and the increasing fraction of atoms lying at the surface with lower atomic coordination than in the core as the size of the particle decreases. In fact, magnetic properties at the particle surface are governed by the breaking of the lattice symmetry associated with several chemical and physical effects leading to a site-specific surface energy, usually taken as a local uniaxial anisotropy normal to the surface. Generally, it is assumed that this local surface anisotropy averages over the whole particle surface, giving rise to an effective uniaxial anisotropy acting on the net magnetization of the particle. In the nanometer range of sizes, the contribution of the surface anisotropy to the total effective anisotropy of the particle may be larger than that of the core, a fact which highly enlarges the characteristic switching time of the particle magnetization as a result of the increase in the effective energy barrier. Actually, determining the char-
acteristic switching time by studying the non-equilibrium dynamical response of the magnetization has been one of the most often used methods to get an estimation of the effective value of the particle anisotropy per unit volume, which in many cases has been found to be one or two orders of magnitude greater than that corresponding to the bulk counterpart and not proportional to the particle volume [7–11].

Many experimental results [9, 12, 7, 11] have been interpreted in terms of the phenomenological, ad hoc, equation originally proposed in [10] for the effective anisotropy per volume unit of a spherical particle of diameter D

$$K_{\text{eff}} = K_v + \frac{6K_s}{D},$$

(1)

where K_v is the core anisotropy energy per unit volume and K_s is the effective surface anisotropy per unit of surface area which, in general, is assumed to be particle-size-independent. The usually adopted assumption of radial surface anisotropy is not in contradiction with equation (1) since, in real samples, departures from the ideal spherical shape and surface roughness result in an effective uniaxial contribution to K_v.

It is worth noting that, for spheroidal particles, K_v contains the contributions coming from magnetocrystalline and shape anisotropy energies. Besides, K_{eff} is an effective uniaxial anisotropy which represents the height of the energy barrier per unit volume blocking the switching of the particle magnetization. K_v and K_s are also treated as effective uniaxial anisotropies.

In equation (1), the contributions of the core and surface to the total effective anisotropy are assumed to be solely additive excluding cross-linked effects. In spite of the simplicity of this assumption and the fact that there is no theoretical justification for it, equation (1) has been successfully applied to show that experimental values of K_{eff} determined from ac susceptibility measurements, scale with $1/D$ in some fine particle systems [12]. Moreover, magnetic resonance experiments in maghemite nanoparticles [7] have revealed an anisotropic contribution to the internal field associated with a positive uniaxial anisotropy originating at the particle surface which dominates over the cubic anisotropy contribution of the maghemite core and scales [7] with $1/D$.

The ad hoc assumption of a surface anisotropy normal to the particle surface and described by a uniform surface density K_s has also been applied to the study of the magnetization and switching processes of a single particle in many numerical calculations based on atomistic Monte Carlo simulations [13–16], Landau–Lifshitz–Gilbert equation [13, 17] and micromagnetics models [18]. Many of the results of these calculations reproduce most of the anomalous properties associated with surface anisotropy effects observed in fine particle systems. In particular, a simple phenomenological model based on this assumption has been used to calculate the astroids corresponding to the phase diagrams for ellipsoidal particles which are in agreement with recent micro-SQUID experiments on isolated particles [19].

At the moment, reference [20] constitutes the only attempt to assess the validity of equation (1) using an atomistic model for the surface anisotropy, namely the Néel model [21, 22].

It has been shown that the surface energy of a particle with a cubic lattice can be effectively represented by a first-order uniaxial contribution due to particle elongation, which is proportional to K_v and scales with the surface; a second-order contribution which is cubic in the net magnetization components, is proportional to K_s^2 and scales with the volume; and a core–surface mixing contribution which is smaller than the other two contributions. Correspondingly, the effective energy barrier of a particle could be consistent with equation (1) only for elongated particles but not for spherical or truncated octahedral ones. However, these conclusions have been drawn in the framework of a simple atomistic model for which there is not a general justification derived from more realistic modelizations of the crystal field, spin–orbit coupling and disorder taking place at the surface atoms.

In this work, we show that equation (1) may also account for the effective energy barriers of a size distribution of non-interacting spheroidal magnetic particles. We propose a method to evaluate the effective contribution of the surface and core anisotropies based on the comparison between the distributions of particle volumes, obtained from transmission electron microscopy (TEM), and energy barriers calculated from thermoremanent magnetization measurements. This method is similar to that applied in [23] to study the power law dependence of the energy barrier on the particle volume in antiferromagnetic ferrimagnetic nanoparticles. We show that the effective contribution of the particle surface to the total anisotropy energy can be well described by a size-independent value of the surface anisotropy density in accordance with equation (1), which permits the superimposition of the two energy distributions corresponding to the particle core and total effective anisotropies. It is worth noting that relatively small values of the effective surface anisotropy density give rise to a dramatic broadening of the energy barrier distribution even for a narrow distribution of particle volumes.

2. Sample and structural characterization

Monodispersed iron oxide $\text{Fe}_{1-x}\text{O}_4$ nanoparticles were synthesized by high temperature decomposition of Fe(III)-acetylacetone, coated by oleic acid and dispersed in hexane with extra oleic acid added as stabilizer [24, 25]. In fact, it was the sample called M5 in [26] where the full structural characterization could be found.

X-ray diffraction showed very good crystallinity, inverse spinel structure with lattice parameter $a = 0.838(2)$ nm, similar to that of bulk magnetite, and average particle diameter 5.8 ± 1.0 nm [26].

The phase of the iron oxide particles and their stoichiometry were identified by Mössbauer spectroscopy [26]. The spectrum recorded at 16 K was very similar to that reported for magnetite nanoparticles that have already undergone the Verwey transition [27] (see figure 9 in [26]). This spectrum was fitted to five discrete sextets following a fitting model previously proposed by other authors [28, 29] (see Table 4 in [26]). Three of the five components of the spectrum, amounting to 73% of the total spectral area, showed values of the isomer shift less than 0.5 mm s$^{-1}$ that may be attributed to
Fe$^{3+}$ ions in the octahedral and tetrahedral sites of the inverse spinel structure. The other two components showed values of the isomer shift greater than 0.6 mm s$^{-1}$ and were attributed to Fe$^{2+}$ ions lying in octahedral sites. Therefore, the Fe$^{2+}$ atomic fraction was 0.27 and the average stoichiometry of the particles was estimated to be Fe$_{2.93}$O$_4$. This result could be compatible with the presence of up to 21% of the maghemite phase in the form of an overoxidized shell surrounding the particle core.

Figure 1 shows TEM micrographs of the sample. Particles were spheroidal in shape and very uniform in size, with polydispersity lower than 20% of the mean size. The size distribution was determined measuring the internal diameter of about 3500 particles and the resultant histogram was fitted to a Poisson-like distribution function,

$$f(D) = f_0 a^D \exp(-D/b),$$

with $f_0 = 0.65$, $a = 12.5$ and $b = 0.36$ (in appropriate units for D to be in nm). From a fitted function an average diameter $\langle D \rangle = 4.9$ nm with standard deviation $\sigma = 1.3$ nm was estimated. Assuming that the particles are ellipsoidal in shape with equal minor axes, we evaluated the average value of the aspect ratio of about 100 particles to be 1.1 with standard deviation $\sigma = 0.1$. We only considered a prolate shape, due to the difficulties in distinguishing prolate and oblate shapes in TEM micrographs.

3. Magnetic characterization

Magnetic measurements were carried out in a commercial Superconducting Quantum Interference Device (SQUID) magnetometer in the temperature range between 1.8 and 200 K and in magnetic fields up to 5 T. The ac susceptibility was measured by applying an ac field of 2 Oe of amplitude and frequencies between 0.1 and 1320 Hz. Magnetic relaxation at zero field and several temperatures were recorded after field-cooling the sample under 50 Oe from room temperature down to the measuring temperature, switching off the field and then recording the magnetization decay as a function of time. All the magnetic measurements were performed using a special container for liquid suspensions.

Magnetization measurements revealed bulk-like saturation magnetization at 5 K, $M_s = 78$ emu g$^{-1}$ [25, 30].

The temperature dependence of the magnetization was measured increasing the temperature under an applied field of 50 Oe after zero-field cooling and field cooling (ZFC–FC experiment) the sample from room temperature to 1.8 K. Figure 2 shows the ZFC–FC curves of the magnetization which join together at $T_{\text{irr}} \approx 40$ K, indicating that all the particles were superparamagnetic above this temperature. The maximum of the ZFC curve was located at a mean blocking temperature of about 15 K. The relatively small irreversibility between the ZFC and FC curves above 15 K and the abrupt increase of the FC curve below this temperature were indicative of a non-interacting or very weak interacting superparamagnetic system of nanoparticles.

The Weiss temperature obtained extrapolating the reciprocal FC susceptibility in the superparamagnetic regime was also very small (less than 1 K) confirming a very weak strength of the interparticle interactions if they actually exist.

4. Results and discussion

4.1. Core anisotropy

Mössbauer spectra in [26] showed that the particles undergo a Verwey transition at a certain temperature within 40 and 16 K, in accordance with previous results of other authors [31] for magnetite particles of similar size. The reduced value of the Verwey temperature with respect to that of bulk magnetite may be due to finite-size effects and/or the non-perfect stoichiometry of the particles. Below
the temperature at which the Verwey transition takes place, magnetite is in a monoclinic configuration with uniaxial magnetic anisotropy. The effective uniaxial anisotropy along the [111] easy direction for stoichiometric magnetite [32, 33] is $K_u \approx 2.1 \times 10^5$ erg cm$^{-3}$ and almost temperature-independent below 40 K. This value of the uniaxial anisotropy is also a good approximation for that of partially oxidized magnetite [32] with the Verwey transition occurring at a temperature above about 20 K, as in the case of the sample studied in this work. This is the effective bulk anisotropy that should be expected to contribute to the energy barriers blocking the particle magnetization in thermoremanent and ac magnetization experiments below about 20 K. It is worth noting that ZFC–FC curves (figure 2) did not show any anomaly associated with the Verwey transition, likely due to smearing effects related to particle-size distribution.

Taking into account that the nanoparticles are not perfect spheres, we carried out a statistical evaluation of the shape anisotropy of about 100 particles from the TEM images. We assumed the particles to be ellipsoids with equal minor axes. The average value was $K_{sh} = 5.3 \times 10^4$ erg cm$^{-3}$, which is one order of magnitude less than K_u. Consequently, shape anisotropy was neglected and a value $K_s \approx K_u \approx 2.1 \times 10^5$ erg cm$^{-3}$ was expected.

4.2. Energy barrier distribution from magnetic relaxation

In order to obtain the effective distribution of energy barriers which block the switching of the net magnetization of the particles, we measured the magnetic relaxation of the sample at constant temperature (thermoremanent magnetization) towards a demagnetized state in zero applied field after a previous cooling in the presence of 50 Oe (FC process). The obtained relaxation curves corresponding to several temperatures were plotted as a function of the scaling variable $T \ln(t/\tau_0)$, selecting an attempt time $\tau_0 = (5 \pm 4) \times 10^{-10}$ s that brought all the curves onto a single master curve [34]. Due to inaccuracy in the determination of the initial value of the magnetization at each temperature (the value of M at $t = 0$), it was also necessary to normalize the experimental data, dividing them by an arbitrary reference magnetization value M_0 which was very close to $M_{FC}(T)$. The opposite of the derivative of the master curve with respect to $T \ln(t/\tau_0)$ gave the distribution of energy barriers of the system [35]. Figure 3 shows the master curve for the relaxation data and its derivative as a function of the scaling variable. When magnetic interactions among particles are very weak if present, as in the case of the sample studied in this work, the distribution of energy barriers directly represents the distribution of the effective anisotropy of the particles.

The contribution of the surface anisotropy to the effective anisotropy of the particle can be evaluated by simply comparing the distribution of energy barriers in figure 3 with the distribution of anisotropies corresponding to the particle cores. To do that, the volume distribution was first calculated from the size distribution by transforming the particle diameter into volume, assuming that the particles have spherical shape. The obtained histogram was properly renormalized by dividing the height of each bin by its width and assigning the new value of the height to the volume corresponding to the center of the bin. In the next section, we discuss a method to obtain the effective density of surface and core anisotropy energies by transforming the particle volume distribution into the total energy barrier distribution.

4.3. Effective surface and volume anisotropies

According to equation (1), the total anisotropy energy of a single domain nanoparticle can be described in a simple model as the sum of two contributions, one proportional to its volume and another proportional to its surface area, in the form $E = K_v V + K_s S$. Assuming that the nanoparticle has spherical shape, one can rewrite the right-hand side of this equation in terms of the volume only, resulting in

$$ E = K_v V + \sqrt{36\pi} K_s V^{2/3}. \quad (2) $$
In a statistical set of spherical, non-interacting nanoparticles the mean values of both sides of equation (2) have to coincide provided one uses an energy barrier distribution \(f(E) \) for the left-hand side and a volume distribution \(g(V) \) for the right-hand side. Namely

\[
\int_0^\infty E f(E) \, dE = \int_0^\infty \left(K_v V + \frac{\sqrt{36\pi}}{\sqrt[3]{3}} K_s V^{2/3}\right) g(V) \, dV.
\]

(3)

\[
\langle E \rangle = K_v \langle V \rangle + \frac{\sqrt{36\pi}}{\sqrt[3]{3}} K_s \langle V^{2/3} \rangle.
\]

(4)

Calculating the derivative of equation (3) with respect to \(V \), and making use of equation (2) to calculate \(dE/dV \) and for substituting \(E \) in the resulting expression, we obtain

\[
f \left(K_v V + \frac{\sqrt{36\pi}}{\sqrt[3]{3}} K_s V^{2/3}\right) = \left(K_v + 2\frac{\sqrt{4\pi}}{\sqrt[3]{3V}} K_s\right)\frac{1}{g(V)},
\]

(5)

that relates the distribution of the effective energy barriers to the particle volume distribution and enables the transformation between them. In fact, equation (5) depends only on one of the anisotropy constants, provided that equation (4) is used to find a relationship between \(K_v \) and \(K_s \). From equation (4) we obtain

\[
K_s = \frac{\langle E \rangle - K_v \langle V \rangle}{\sqrt{36\pi} \langle V^{2/3} \rangle}.
\]

(6)

In the previous discussion there is no need to make any assumption about the specific form of the distributions \(f(E) \) and \(g(V) \). In order to evaluate the averages in equation (6) it is sufficient to have a conveniently large set of experimental data and carry out a numerical calculation. In our case, we fitted the experimental \(f(E) \) and \(g(V) \) distributions to Poisson-like distribution functions. Then, the averages in equation (6) were calculated by numerical integration using the corresponding fitted functions leading to

\[
K_s = 4.9 \times 10^{-2} - 8.8 \times 10^{-9} K_v,
\]

(7)

where \(K_v \) and \(K_s \) were in \(\text{erg cm}^{-2} \) and \(\text{erg cm}^{-3} \), respectively.

A weighted least-squares fitting of the Poisson-like distribution function, corresponding to \(f(E) \), to equations (5) and (7) yielded the determination of an optimum value of \(K_v \) that allowed the superimposition of the two distributions, \(f(E) \) and \(g(V) \) (see figure 4). Weighting of the data in the fitting procedure was done by dividing the residuals by \(f(E) \). The fitted value was \(K_v = (2.3 \pm 0.7) \times 10^5 \text{ erg cm}^{-3} \) from which \(K_s = (2.9 \pm 0.6) \times 10^{-2} \text{ erg cm}^{-2} \) was estimated by using equation (7). The uniqueness of the fitting is demonstrated in the inset in figure 4 where the sum of the squared weighted residuals shows a well-defined minimum at the fitted value of \(K_v \). It is also worth noting that the quality of the fitting got significantly worse when trying to fit \(f(E) \) imposing either \(K_v = 0 \) or \(K_s = 0 \) in equation (2) (see lower panel in figure 4 where the deviations from \(f(E) \) are compared for the three cases). Moreover, the fitted values \(K_v = (25 \pm 2) \times 10^{-2} \text{ erg cm}^{-2} \) and \(K_s = (4.7 \pm 0.1) \times 10^{5} \text{ erg cm}^{-3} \) obtained when imposing either \(K_v = 0 \) or \(K_s = 0 \) in equation (2), respectively, were completely unphysical.

The fitted value of \(K_v \) was in good agreement with the value expected for the core anisotropy of magnetite nanoparticles at a temperature below the Verwey transition (see section 4.1). Besides, the obtained \(K_v \) lies within the range from \(2 \times 10^{-2} \) to \(6 \times 10^{-2} \text{ erg cm}^{-2} \) which was reported in previous experimental results for iron oxide nanoparticles [36, 7, 37, 8, 9].

In the preceding calculations, it was implicitly assumed that \(K_v \) is a size-independent constant. This assumption seems to be supported by the good superimposition of both distributions, \(f(E) \) and \(g(V) \), achieved when \(g(V) \) is transformed according to equation (5). Besides, these results also confirm the applicability of equation (1) to describe, at least in a first approximation, the effective anisotropy of the spheroidal magnetite particles studied in this work.

Interestingly, a relatively small value of \(K_v \) strongly modified \(g(V) \), giving rise to a broader energy barrier distribution centered at a much higher value of the energy than that corresponding to the \(g(V) \) function (core anisotropy contribution). The strong effect of \(K_v \) on \(g(V) \) is emphasized in figure 5 where transformed \(g(V) \) distributions using equation (5) for gradually increasing values of \(K_v \) within 0 and \(2.9 \times 10^{-2} \text{ erg cm}^{-2} \) and \(K_v = 2.3 \times 10^5 \text{ erg cm}^{-3} \) are shown. If no surface anisotropy is present, the energy barrier distribution is identical to \(g(V) \), while increasing values of \(K_v \) gradually shift energy barriers to higher temperatures (energies) producing a significant broadening effect.
that obtained by averaging the energy barrier distribution constant and shows an approximately square root dependence (the experimental data for \(\ln \tau_g \) lines correspond to the transformed equation (5) for 20, 40, 60 and 80% of \(\tau \) noting the fact that, indeed, into account the error intervals. However, it is worth

4.4. Effective anisotropy from ac susceptibility

The study of the blocking temperature close to the superparamagnetic regime as a function of the observational time window in ac susceptibility measurements is a conventional method to evaluate the mean value of the energy barrier which blocks switching processes of the particle magnetization. In particular, the real part of the ac susceptibility \(\chi_{ac} \) peaks at a temperature \(T_{\text{max}} \) for which the particles having an energy roughly equal to the mean value of the energy barriers become blocked [38]. Therefore, at \(T_{\text{max}} \), Arrhenius’ law \(\tau = \tau_0 \exp(\langle E \rangle/(k_B T_{\text{max}})) \) is accomplished with an attempt time \(\tau \) equal to the reciprocal of the frequency \(f \) of the applied ac field. Then, substituting \(\tau \) by \(1/f \), it can be obtained that

\[
\ln(1/f) = \ln \tau_0 + \langle E \rangle/(k_B T_{\text{max}}).
\]

Consequently, \(\langle E \rangle \) can be determined by linear regression of the experimental data for \(\ln(1/f) \) plotted as a function of \(1/T_{\text{max}} \).

In figure 6, \(\chi_{ac}'(T) \) curves for magnetite nanoparticles measured at frequencies within 0.1 and 1320 Hz are shown. The inset in figure 6 shows \(\ln(1/f) \) data as a function of \(1/T_{\text{max}} \) and the corresponding linear regression, the slope of which is \(\langle E \rangle/k_B = 300 \) K. This value is in good agreement with that obtained by averaging the energy barrier distribution \(f(E) \) from the relaxation data which, for the nanoparticles studied, was 263 K. This fact confirms the reliability of the method to obtain the energy barrier distribution associated with the effective anisotropy of the particles from magnetic relaxation analysis.

Besides, the values of the attempt time \(\tau_0 \) estimated from the ac susceptibility ((2 ± 1) \times 10^{-10} \) s) and magnetic relaxation ((5 ± 4) \times 10^{-10} \) s) are also in agreement, taking into account the error intervals. However, it is worth noting the fact that, indeed, \(\tau_0 \) for fine particles is not a constant and shows an approximately square root dependence on the temperature [39]. Bearing this in mind, it should be considered that the peak shifting of the real part of the \(S_{\text{ac}} \) susceptibility extended to the temperature interval from 12 to 20 K, while magnetic relaxation data scaled onto the master curve corresponded to a larger interval within 3 and 40 K. Therefore, magnetic relaxation data took into account additional switching processes at lower and higher temperatures, associated with, respectively, shorter and longer attempt times. Then, both experimental values of \(\tau_0 \) should be understood as a result of appropriate averages within the particular temperature interval where each experiment was carried out.

5. Conclusions

We have proposed a method to determine the volume and surface contributions to the effective anisotropy energy in magnetic fine particles which is based on the superimposition of the distributions corresponding to volumes and energy barriers, after transformation of the volume distribution assuming a specific expression for the dependence of the energy barrier on the particle size, \(E(D) \). The application of this method to a colloidal suspension of non-interacting magnetite nanoparticles of spheroidal shape has shown that the widely used expression given by equation (1) may be a good approximation for \(E(D) \) in this case. It is stated in [20] that surface anisotropy in spherical particles can never produce solely an effective uniaxial anisotropy which scales with \(1/D \). However, in our case, the significant uniaxial anisotropy observed may be associated with the slight deviations from the spherical shape observed in TEM micrographs and it is very plausible that the complex disorder taking place at the surface of real particles (including local modifications of the crystallographic structure, composition gradients, vacancies, dislocations and other defects) plays a key role in determining the character of their effective anisotropy since disorder may

![Figure 5. Poisson-like fittings to \(g(V) \) and \(f(E) \) (solid lines) for the magnetic nanoparticles studied in this work. They correspond to 0% of \(K_v \) (volume only) and 100% of \(K_v \) (volume plus surface). Dashed lines correspond to the transformed \(g(V) \) distribution according to equation (5) for 20, 40, 60 and 80% of \(K_v = 2.9 \times 10^{-2} \text{ erg cm}^{-2} \) with a fixed value of \(K_v = 2.3 \times 10^5 \text{ erg cm}^{-3} \).

![Figure 6. Real part of the ac susceptibility measured at frequencies (in Hz) 0.1 (upper curve), 1, 5, 10, 33, 60, 120, 240, 481, 919 and 1320 (lower curve). Inset shows \(\ln(1/f) \) as a function of \(1/T_{\text{max}} \). The solid line corresponds to the linear regression of the experimental points.](image)
break spherical symmetry, giving rise to a non-vanishing first-order uniaxial contribution to the surface anisotropy which could be dominant. Besides, magnetic frustration yielding non-collinear arrangements of the spins, modifications of the exchange interactions or the occurrence of a dead magnetic layer are phenomena having a strong potential effect on the surface anisotropy that, in principle, cannot be excluded at the outermost shell of the particle. Moreover, the hypothetical existence of a disordered layer of finite thickness at the particles’ surface would imply a reduction of the volume contributing to the core anisotropy. Thus equation (1) should be rewritten in terms of the core volume and the volume of the surface shell, giving rise to a slight reduction in K_c and an increase in K_v.

The good matching between the volume and energy barrier distributions after transformation using equation (1) also suggests that the effective density of surface anisotropy can be considered as a size-independent constant in magnetite nanoparticles, at least as a first approximation. This is contrary to the hypothesis used in [8] to obtain surface anisotropy from ac susceptibility data for magnetite nanoparticles, where the ad hoc equation $K_v(D) = K_v^0 \tanh(D/\lambda)$ was introduced without further justification.

It is worth noting that the actual nature of the anisotropy energy in nanoparticles may be much more complex than equation (1) implies, for instance, due to correlation effects between the surface and core of the nanoparticles, and temperature dependence of the anisotropy constants.

However, our results suggest that equation (1) can be used to build an effective description of the surface anisotropy contribution from the distribution of energy barriers blocking the switching of the particle magnetization, and the obtained values of the anisotropy constants should be understood as averaged over the range of temperatures in the experiments.

Finally, we would like to emphasize the strong broadening effect produced by surface anisotropy on the energy barrier distribution of magnetic fine particles even when the size distribution is quite narrow, as in the case of the sample studied in this work. This effect is an obvious consequence of the different functional dependence on the particle diameter of the energy contributions due to the core and surface anisotropy, which makes their relative importance to change dramatic as the size of the particle is reduced. This energy broadening may be relevant to give a proper interpretation of the dynamical response in systems of magnetic particles.

Acknowledgments

The financial support of the Spanish MEC through projects NAN2004-08805-C04-02, NAN2004-08805-C04-01, MAT2006-03999, MAT2005-02454 and Consolider-Ingenio 2010 CSD2006-00012 is gratefully recognized. The Catalan DURSI (2005 SGR 00969) is also acknowledged.

References

[1] Batlle X and Labarta A 2002 Finite-size effects in fine particles: magnetic and transport properties J. Phys. D: Appl. Phys. 35 R15–42

[2] Hayashi T, Hiroso N, Tomita M and Unemura S 1996 Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon Nature 381 772–4

[3] Huh Y M et al 2005 In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals J. Am. Chem. Soc. 127 12387–91

[4] Kim J et al 2006 Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy Angew. Chem. Int. Edn 45 7754

[5] Tartaj P, Morales M P, Veintemillas-Verdaguer S, Gonzalez-Carden T and Serna C J 2003 The preparation of magnetic nanoparticles for applications in biomedicine J. Phys. D: Appl. Phys. 36 R182–9

[6] Nie S and Emory S R 1997 Probing single molecules and single nanoparticles by surface-enhanced ramen scattering Science 275 1102–6

[7] Gazeau F, Bacri J C, Gendron F, Perzynski R, Raikher Yu L, Stepanov V I and Dubois E 1998 Magnetic resonance of ferrite nanoparticles: evidence of surface effects J. Magn. Magn. Mater. 186 175–87

[8] Gilmore K, Idzerda Y U, Klem M T, Allen M, Douglas T and Young M 2005 Surface contribution to the anisotropy energy of spherical magnetite particles J. Appl. Phys. 97 103B301

[9] Hrianka I, Caizer C and Schlett Z 2002 Dynamic magnetic behavior of Fe$_3$O$_4$ colloidal nanoparticles J. Appl. Phys. 92 2125–32

[10] Bodker F, Mørup S and Linderoth S 1994 Surface effects in metallic iron nanoparticles Phys. Rev. Lett. 72 282–5

[11] Respaud M, Broto J M and Rakoto H 1998 Surface effects on the magnetic properties of ultralight cobalt particles Phys. Rev. B 57 2925

[12] Luis F, Torres J M, Garcia L M, Bartolomé J, Stankiewicz J, Petroff F, Fetlar F, Maurice J L and Vaurès A 2002 Enhancement of the magnetic anisotropy of nanometer-sized co clusters: influence of the surface and of interparticle interactions Phys. Rev. B 65 094409

[13] Dimitrov D A and Wysin G M 1995 Magnetic properties of spherical fcc clusters with radial surface anisotropy Phys. Rev. B 51 11947–50

[14] Iglesias O and Labarta A 2001 Finite-size and surface effects in magnetite nanoparticles: Monte Carlo simulations Phys. Rev. B 63 184416

[15] Kachkachi H, Ezzir A, Nougéz M and Tronc E 2000 Surface effects in nanoparticles: application to maghemite y-Fe$_2$O$_3$ Eur. Phys. J. B 14 681–9

[16] Kachkachi H and Bonet E 2006 Surface-induced cubic anisotropy in nanomagnets Phys. Rev. B 73 224402

[17] Usatenko O V, Chubykalo-Fesenko O A and Sanchez F G 2006 Nonlinear adiabatic dynamics of small ferromagnetic particles Int. J. Mod. Phys. B 20 5391–404

[18] Leonov A A, Dragunov I E and Bogdanov A N 2007 Surface-induced anisotropy and multiple states in elongated magnetic nanoparticles Appl. Phys. Lett. 90 193112

[19] Wehrsdorfer W, Orozco E B, Hasselbach K, Benoi A, Barbara D, Demony N, Loiseau A, Pascard H and Mailly D 1997 Experimental evidence of the Néel–Brown model of magnetization reversal Phys. Rev. Lett. 78 1791–4

[20] Yanes R, Chubykalo-Fesenko O, Kachkachi H, Garanin D A, Evans R and Chantrell R W 2007 Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy Phys. Rev. B 76 064416

[21] Néel L 1954 Magnetic surface anisotropy and superlattice formation by orientation J. Phys. Rad. 17 376

[22] Gradmann U 1986 Magnetic surface anisotropies J. Magn. Magn. Mater. 54–57 733–6

[23] Silva N J O, Amaral V S, Carlos L D, Rodriguez-González B, Liz-Marzán L M, Berquó T S, Benarée A S, de Zee, Bermudez V, Millán A and Palacio F 2008 Evidence of
random magnetic anisotropy in ferrhydrite nanoparticles based on analysis of statistical distributions Phys. Rev. B 77 134426

[24] Sun S and Zeng H 2002 Size-controlled synthesis of magnetite nanoparticles J. Am. Chem. Soc. 124 8204–8

[25] Roca A G, Morales M P, O’Grady K and Serna C J 2006 Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors Nanotechnology 17 2783–8

[26] Roca A G, Marco J F, Morales M P and Serna C J 2007 Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles J. Phys. Chem. C 111 18577

[27] Mørup S, Topsøe h and Lipka J 1976 Modified theory for Mössbauer spectra of superparamagnetic particles: application to Fe3O4 J. Phys. Colloq. 37 C6–287

[28] Berry F J, Skinner S and Thomas M F 1998 J. Phys.: Condens. Matter 10 215–20

[29] Doriguetto A C, Fernandes N G, Persiano E, Numes Filho A I C, Greneche J M and Fabris J D 2003 Phys. Chem. Minerals 30 249

[30] Guardia P, Batlle-Brugal B, Roca A G, Iglesias O, Morales M P, Serna C J, Labarta A and Batlle X 2007 Surfactant effects in magnetite nanoparticles of controlled size J. Magn. Magn. Mater. 316 c756–9

[31] Mørup S 1983 J. Magn. Magn. Mater. 39 45

[32] Kaḵol Z and Honig J M 1989 Influence of deviations from ideal stoichiometry on the anisotropy parameters of magnetite Fe3(1−δ)O4 Phys. Rev. B 40 9090–7

[33] Lefever R A 1980 Magnetic and Other Properties of Oxides and Related Compounds: Spinels, Fe oxides, and Fe–Me–O Compounds (Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology. New Series vol III/12b) ed K H Hellwege and A M Hellwege (Berlin: Springer) pp 61–2

[34] Labarta A, Iglesias O, Balcells Ll and Badia F 1993 Magnetic relaxation in small-particle systems: ln(t/τ0) scaling Phys. Rev. B 48 10240–6

[35] Iglesias O, Badia F, Labarta A and Balcells Ll 1996 Energy barrier distributions in magnetic systems from the t ln(t/τ0) scaling Z. Phys. B 100 173–8

[36] Tronc E, Ezzir A, Cherkaoui R, Chaneac C, Nogues M, Kachkachi H, Fiorani D, Testa A M, Greneche J M and Jolivet J P 2000 Surface-related properties of γ-Fe2O3 nanoparticles J. Magn. Magn. Mater. 221 63–79

[37] Fiorani D, Dormann J L, Lucari F, D’Orazio F, Tronc E and Jolivet J P 1998 Dynamical magnetic behavior of interacting γ-Fe2O3 particles Appl. Organomet. Chem. 12 381–6

[38] Dormann J L, Fiorani D and Tronc E 1997 Magnetic relaxation in fine-particle systems Adv. Chem. Phys. XCVIII 283

[39] Brown W F 1963 Thermal fluctuations of a single-domain particle Phys. Rev. 130 1677–86