Insulin management in overweight or obese type 2 diabetes patients: the role of insulin glargine

M. Davies¹ and K. Khunti²

¹Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
²Department of Health Sciences, University of Leicester, Leicester, UK

Type 2 diabetes mellitus (T2DM) and obesity commonly co-exist. Improved clinical management of T2DM and improved glycaemic control with traditional therapies including insulin usually result in some weight gain — a frequently perceived barrier to the introduction of insulin by both patient and healthcare professionals. Weight gain of 2.5 kg per 1% change in haemoglobin A₁c (HbA₁c) is common in many studies. Strategies to minimize weight gain, particularly in obese patients, are essential to help patients better manage their diabetes and improve quality of life. Insulin analogues with lower risk of hypoglycaemia and better within-patient variability compared with human insulin may help facilitate reaching treatment goals. Moreover, weight gain can be minimized by earlier insulinization and the use of basal insulin, such as insulin glargine, instead of premixed insulin. Data specific to the obese patient with T2DM are presented; they are currently limited but do indicate that insulin glargine therapy is associated with improved glycaemic control as well as less weight gain than other insulins, such as premixed insulin and prandial insulin regimens. Retrospective subanalyses of earlier trials and ongoing studies would shed further light on the impact of insulin therapy in obese people with T2DM in addition to determination of optimal therapeutic strategies.

Keywords: insulin glargine, long-acting insulin, obesity, type 2 diabetes, weight management

Received 7 December 2007; accepted 3 January 2008

Introduction

Type 2 diabetes mellitus (T2DM) is a significant health problem, the prevalence of which is steadily increasing [1–3], and is associated with increased risk of vascular disease. However, it is well established that T2DM is also closely associated with obesity. It is predicted that up to 60% of cases of T2DM could potentially be avoided if the body mass index (BMI) of the population was maintained within the normal healthy range [4]. In addition, with greater understanding of the pathophysiology of diabetes, it appears that there are some differences in insulin secretion profiles between people with normal weight and obese people with T2DM, which partly relates to the degree of peripheral insulin resistance [5].
For many patients, insulin therapy used in conjunction with oral glucose-lowering drugs, most commonly sulphonylurea and metformin, is essential to maintain good glycaemic control. However, such a therapeutic strategy is associated with weight gain, which is a common barrier among patients and providers alike [6]. Understandably, therefore, there is some reluctance to use insulin in obese patients with T2DM as there is a perception that they may be more likely to gain relatively more weight, potentially worsening insulin resistance; thus, weight gain remains a significant barrier to insulin initiation [7–9]. Newer analogues, such as insulin glargine and insulin detemir, offer a simple approach for the introduction of insulin, with once-daily dosing for insulin glargine and some insulin detemir patients, improved within-patient variability and lower risk of hypoglycaemia vs. neutral protamine Hagedorn (NPH) insulin [10,11]. The aim of this review is to discuss the role of insulin therapy in obese patients with T2DM and strategies to minimize insulin-induced weight gain.

Obesity in T2DM

The global prevalence of obesity is steadily increasing, particularly in highly industrialized regions such as Europe [2] and North America [1,12]. Developing nations, and some ethnic groups, are also showing a trend towards increasing prevalence of obesity and T2DM [13,14]. Obese individuals, typically defined as having a BMI > 30 kg/m² (although this threshold is lower in some ethnic groups; e.g. the threshold for obesity is 27.5 kg/m² for South Asian populations [15]), are at greater risk of developing impaired fasting glucose and impaired glucose tolerance, which often progress to overt T2DM as a result of progressive dysfunction in β-cell function [16]. In addition, obese individuals also show abnormal liver, muscle and adipose tissue lipid handling, which has also been implicated in the development of insulin resistance and T2DM [17]. This is of significant concern, given the trend towards increasing prevalence of obesity and T2DM [18], particularly over the next 25 years [3], in addition to the strong association between these risk factors and microvascular [19–21] and macrovascular diseases [22–24]. Indeed, in people with T2DM and who are obese, the level of insulin resistance is typically greater than that in lean people with T2DM, as was demonstrated in a study by Reder et al. [5] who reported that in lean (mean BMI 23.5 ± 0.4 kg/m²) and obese (BMI 30.1 ± 0.4 kg/m²) patients with T2DM (matched for fasting glucose [10.2 ± 0.6 vs. 10.3 ± 0.4 mmol/l (184 ± 11 vs. 186 ± 7 mg/dl), respectively] and with similar diabetes duration (5.1 ± 1.4 vs. 5.5 ± 1.2 years, respectively)), there were clinically relevant differences in β-cell peptides in the fasting state and after glucagon stimulation. In particular, levels of intact proinsulin (6.6 ± 1.0 vs. 7.7 ± 2.0 pmol/l, respectively; p < 0.01) and C-peptide (598 ± 32 vs. 893 ± 112 pmol/l, respectively; p < 0.05) were significantly different in both groups, while insulin tended (although not statistically significant) to be higher in the obese group compared with the lean group (32.5 ± 4.9 vs. 63.9 ± 20.4 pmol/l, respectively), which likely reflects increased insulin resistance in obese patients [25,26].

Treatment of T2DM and improved metabolic control are associated with weight gain, particularly when insulin, thiazolidinediones (TZDs) or sulphonylureas are used [27]. In ADOPT (A Diabetes Outcome Progression Trial), weight gain over 5 years was 4.8 kg with rosiglitazone and 1.6 kg with glyburide [27]. This compares with a weight loss of 1.6 kg in the metformin group in that study [27]. However, for many patients, weight gain is unacceptable and commonly results in poor adherence to therapy or refusal to accept more intensive therapy, particularly the addition of insulin, despite its proven efficacy [9]. Therefore, it is important to understand why weight gain is common with insulin therapy and then consider potential strategies to minimize weight gain.

T2DM, Weight Gain and Therapeutic Strategies to Minimize Weight Gain

Management of T2DM typically involves the intensive use of a number of therapeutic agents that should be optimally titrated according to the patient’s needs and glycaemic status. However, a common feature is that the most commonly used therapeutic agents are associated with some weight gain, except metformin, which is largely weight neutral [28]. Weight gain is a barrier to the introduction of insulin therapy. However, the natural progression of T2DM means that insulin therapy is often essential [29]. Therefore, it is important to consider how best to use insulin therapy to minimize weight gain, which is particularly true for obese patients. Indeed, it has been suggested that for each 1% absolute reduction in haemoglobin A1c (HbA1c), an increase in body weight of 2.5 kg can be expected [30], which is supported by data showing a strong, inverse association between improvements in fasting glucose and changes in body weight (figure 1). However, before strategies to minimize weight gain can be discussed, it is important to understand why insulin therapy is associated with weight gain.
Mechanisms of Weight Gain in Insulin-treated T2DM – Pharmacodynamic Studies of Insulin

A number of pharmacodynamic studies have determined potential mechanisms that would conceptually lead to weight gain with long-term insulin therapy. Key factors included hypoglycaemia-associated snacking, reduced glucose excretion (glycosuria) and reduced metabolic rates.

Hypoglycaemia and Snacking

A common unwanted effect of insulin therapy is that of hypoglycaemia, and patients may respond to symptomatic hypoglycaemia, in particular, by increased snacking to maintain stable blood glucose levels [31], although patients on insulin therapy should be aware of the risks of hypoglycaemia. The modern insulin analogues are associated with lower risk of hypoglycaemia [10,11], lower within-patient variability [32] and lower fluctuation [33] in action compared with the human equivalent. Thus, the need for snacking to avoid hypoglycaemia should be reduced. One might anticipate that reduced hypoglycaemia-related snacking with newer insulin analogues would allow for less weight gain. In studies with insulin glargine, the reduced weight gain vs. NPH insulin was evident in the studies by Rosenstock et al. [34] and by Yki-Jarvinen et al. [35], while reduced weight gain is consistent in studies with insulin detemir vs. NPH insulin [36], although the underlying mechanism for this is still not fully understood.

Glycosuria

In people with poorly controlled T2DM, excess glucose is usually excreted in urine (glycosuria). In one study of six obese patients with T2DM, baseline urinary glucose excretion was 48 ± 19 g/day. After switching to glyburide treatment, glucose excretion fell to 20 ± 9 g/day and further declined to 2 ± 1 g/day with insulin therapy [37]. This reversal of glycosuria will inevitably lead to weight gain unless diet or exercise levels are changed, as demonstrated in figure 2.

Basal Metabolic Rate

The basal metabolic rate is also influenced by insulin therapy and is largely decreased by insulin with reduced resting energy expenditure, which may reflect increased efficiency in fuel selection as a result of better glycaemic control [30]. Therefore, weight gain will ensue unless diet or activity levels are adjusted accordingly.
Strategies to Reduce Weight Gain

As described above, weight gain is largely an expected effect of insulin therapy but is, nevertheless, unwanted by the majority of people treated with insulin. However, there are strategies to minimize the extent of weight gain associated with improved glycaemic control in patients on insulin.

Insulin vs. Alternative Oral Agents

Typically, insulin is added as a third agent after metformin and sulphonylurea doses have reached the maximum tolerated, although the joint American Diabetes Association and the European Association for the Study of Diabetes consensus statement advocates the earlier use of basal insulin [29]. For the third agent, there is a choice between adding a TZD or adding insulin. This was evaluated in a study comparing triple therapy of insulin glargine vs. rosiglitazone (both added to sulphonylurea plus metformin) [38]. In that study, insulin glargine was associated with significantly less weight gain (1.6 vs. 3.0 kg, respectively; p = 0.02) over 24 weeks. Furthermore, it appears that weight gain with insulin therapy can be further minimized depending on the stage of the treatment pathway at which insulin is started, such as initial therapy in combination with metformin, or later in the treatment pathway when a combination of maximally tolerated doses of sulphonylurea plus metformin provides inadequate glycaemic control.

Ordinarily, insulin therapy would be expected to increase weight by 2.5 kg for every 1% reduction in HbA1c. Indeed, in a study by Mákimattila et al. [30], which assessed the impact of insulin therapy alone or insulin plus metformin therapy on weight gain in T2DM patients, improvements in HbA1c were similar in both groups, but the insulin plus metformin group required 47% less insulin and experienced less weight gain than the insulin-alone group (3.8 vs. 7.5 kg, respectively; p < 0.05). Thus, unless contraindicated, metformin should continue when insulin is initiated in T2DM.

Insulin Analogues, Human Insulin or Premixed Insulin?

Moreover, the choice of insulin may limit the weight gain observed. Indeed, the LANMET study showed that when adding insulin glargine or NPH insulin to metformin, weight gain was lower with insulin glargine (+2.6 vs. 3.5 kg, respectively; table 1) [35]. Similarly, the LAPTOP (LANTUS + Amaryl) vs. Premixed insulin in T2DM patients after failing Oral treatment Pathways) [39] and INITIATE (INITiation of Insulin to reach A1c TargEt) [40] studies demonstrated that the use of once-daily insulin glargine is associated with less weight gain than either twice-daily human insulin (+1.4 vs. +2.1 kg, respectively; p = 0.0805) or twice-daily biphasic insulin aspart (+3.5 vs. +5.4 kg, respectively) (table 1), when added to existing oral agents. These findings are consistent with those reported in the 4-T (Treating to Targets in Type 2 diabetes) study, in which weight gain was lower with basal insulin vs. either biphasic or prandial insulin therapy [41].

Table 1

Weight management in randomized, controlled trials with insulin glargine vs. NPH insulin, premixed insulin or insulin lispro

	BMI at baseline (kg/m²)	HbA1c change (%)	Weight change (kg)					
	Glargine	Comparator	Glargine	Comparator	p value	Glargine	Comparator	p value
Insulin glargine vs. NPH insulin								
Yki-Jarvinen et al. [51]	29.3 ± 0.3	28.5 ± 0.3	−0.83	−0.77	n/s	+2.6	+2.3	n/d
Rosenstock et al. [34]	30.7 ± 6.0	30.4 ± 5.1	−0.41	−0.59	n/s	+0.4	+1.4	0.0007
Fritsche et al. [52]	28.7 ± 3.9	28.9 ± 3.9	−0.96	−0.84	n/s	+3.7	+2.9	n/s
Massi Benedetti et al. [44]	29.3 ± 4.3	28.8 ± 4.3	−0.48	−0.38	n/s	+2.0	+1.9	n/s
Riddle et al. [32]	32.5 ± 4.6	32.2 ± 4.8	−1.65	−1.59	n/s	+3.0	+2.8	n/s
Pan et al. [53]	24.8 ± 3.1	25.1 ± 3.3	−1.10	−0.92	0.0319*	+1.4 kg/m²†	+1.3 kg/m²†	n/d
Yki-Jarvinen et al. [35]	31.3 ± 0.7	32.0 ± 0.8	−1.99	−2.10	n/s	+2.6	+3.5	n/s
Insulin glargine vs. premixed insulin								
Janka et al. [39]	29.5 ± 3.6	29.6 ± 3.6	−1.64	−1.31	0.0003	+1.4	+2.1	0.0805
Raskin et al. [40]	31.4 ± 5.3	31.5 ± 5.5	−2.60	−2.79	<0.01	+3.5	+5.4	<0.05
Insulin glargine vs. insulin lispro								
Bretzel et al. [54]	29.2 ± 3.7	29.4 ± 3.5	−1.71	−1.87	n/s	+3.0	+3.5	n/s

BMI, body mass index; HbA1c, haemoglobin A1c; n/d, not determined; NPH, neutral protamine Hagedorn; n/s, not significant.

*Based on superiority analysis.
†Actual weight change (kg) was not reported.
However, in these studies, although the study populations comprised a majority of obese people (mean BMI was \(\geq 30 \text{ kg/m}^2 \)), it was not reported whether there were differential effects in normal weight, overweight or obese patients. Insulin glargine may offer benefits to these people, with lower risk of hypoglycaemia and potentially a decreased need for snacking or other preventative measures. Some studies have ascertained the effects of insulin glargine therapy in obese patients with T2DM.

Weight Management with Insulin Glargine in Randomized, Controlled Trials and Observational Studies

In randomized, controlled trials comparing insulin glargine with NPH insulin, when added to existing oral antidiabetic drugs (OADs), weight gain was seen with both insulins but was broadly similar across the trials (table 1). In contrast, in the two studies that compared insulin glargine therapy with premixed insulin, insulin glargine was associated with less weight gain, which was significant in one trial and of borderline significance in the other (table 1).

In the AT.LANTUS (A Trial comparing LANTUS® Algorithms to achieve Normal blood glucose Targets in patients with Uncontrolled blood Sugar) study [42], which compared a physician-managed algorithm (Algorithm 1; mean BMI at baseline: 29.0 \(\pm \) 4.7 kg/m\(^2\)) with a patient-managed algorithm (Algorithm 2; mean BMI at baseline: 29.0 \(\pm \) 4.7 kg/m\(^2\)) for the initiation of insulin glargine, baseline to end-point increases in body weight were relatively modest in both algorithms (Algorithm 1: 79.8 \(\pm \) 15.8 to 80.8 \(\pm \) 16.0 kg; Algorithm 2: 79.8 \(\pm \) 16.2 to 81.1 \(\pm \) 16.5 kg) and similar to that expected for the magnitude of HbA\(_{1c}\) reduction (\(-0.9\) and \(-1.1\), respectively) achieved [30].

Meanwhile, in an observational study of everyday clinical practice, which evaluated the switch from premixed insulin to insulin glargine plus OADs in 5045 patients (mean diabetes duration: 8.7 years) for 12 weeks, mean weight change was \(-1.5 \pm 3.2\) kg, while HbA\(_{1c}\) decreased by 1.1\% and fasting blood glucose (FBG) decreased by 2.0 mmol/l (36 mg/dl) [43].

Insulin Glargine Therapy in Overweight or Obese Individuals with T2DM

In a subanalysis of overweight patients (BMI >28 kg/m\(^2\)) in a 1-year, randomized, multicentre study comparing insulin glargine with NPH insulin, insulin glargine was associated with significantly greater improvements in HbA\(_{1c}\) (\(-0.42\) vs. \(-0.11\), respectively; \(p = 0.0237\)) and a trend towards greater improvements in FBG (\(-2.62\) vs. \(-2.29\) mmol/l (47 vs. 41 mg/dl), respectively]. Insulin glargine was also associated with a significantly lower prevalence of nocturnal hypoglycaemia (22.2 vs. 9.5\%, respectively; \(p = 0.0006\)) but with similar change in weight (+1.95 vs. +1.88 kg, respectively) [44].

A recent, 32-month, open-label, uncontrolled, multicentre, observational study (which had previously demonstrated improvements in HbA\(_{1c}\) at 3, 9 and 20 months) assessed the efficacy and safety of initiating insulin glargine in addition to existing OADs [45,46]. In this study, the greatest reductions in HbA\(_{1c}\) (\(-1.8 \pm 1.8\)% were in patients who were obese (\(\geq 30\) kg/m\(^2\)) at the start of observation. Furthermore, some weight loss was also seen in these patients (\(-4.4 \pm 10.7\) kg) (figure 3).

These results are promising for obese patients, suggesting that improvements in glycaemic control and weight loss can be achieved and, importantly, maintained over 32 months of treatment with insulin glargine.

In the majority of trials of insulin glargine, many of the patients are obese, as is common in T2DM. Several of these studies, including AT.LANTUS [42], GOT (Glycaemia Optimization Trial) [47] and GOAL A1C (Glycaemic Optimization with Algorithms and Labs At pO1nt of Care) [48], involved in excess of 3000 patients each. The size of these studies will provide an opportunity to evaluate through retrospective subanalyses the efficacy of insulin glargine therapy across the cut-points for obesity.

Discussion

Good blood glucose control reduces the risk of long-term diabetes complications. However, tight metabolic control can be particularly difficult in obese patients. Hypoglycaemia resulting from insulin therapy is a common fear
for many patients with T2DM, and it can be a possible influence on health providers’ and patients’ treatment policies alike. This fear can be a major barrier to achieving good glycaemic control.

Insulin glargine provides at least equivalent glycaemic control when compared with NPH insulin regimes, and hypoglycaemic episodes are less common, as reported in a meta-regression of six studies of insulin glargine vs. NPH insulin [10]. This provides the opportunity for patients with diabetes to titrate to optimal doses and thereby increase the potential for further glycaemic control.

Weight gain is a commonly cited barrier to insulin therapy [7–9], and results of many studies indicate that weight gain is largely unavoidable, which may be a result of improved tissue glucose uptake, reduced glycosuria, snacking and reduced resting energy expenditure. However, studies in clinical practice suggest that weight gain can be minimized with insulin therapy [43,46], and this does not appear to compromise the improvements in glycaemic control seen in these studies.

A number of large, randomized, controlled trials have been performed to evaluate the efficacy and safety of insulin glargine in T2DM. In particular, the AT.LANTUS [42], GOT [47] and GOAL A1C [48] studies each recruited a large number of patients across a range of BMI values. Subanalyses of these studies, by stratifying the patients according to BMI, are in progress and should provide informative comparisons between normal weight and obese patients.

Such data would allow for a greater understanding of the impact of insulin therapy not only on glycaemic control and risk of hypoglycaemia but also on weight management in these patients. Indeed, this seems essential owing to differences in the pathophysiology of T2DM in lean and obese patients as well as optimum insulin titration regimens and dosing algorithms owing to the differential insulin secretory capability and insulin resistance in these patients [5]. Although both insulin glargine and insulin detemir are associated with less weight gain than other insulin preparations, particularly premixed insulin or regular human/NPH insulin, this does not preclude the continuation of lifestyle factors, such as diet and exercise, to help prevent excessive weight gain.

Finally, while weight gain may be an undesired factor and excessive adiposity is a risk factor for cardiovascular disease, the improvements in glycaemic control would be expected to outweigh these risks, as indicated by the United Kingdom Prospective Diabetes Study [49] and the Kumamoto [50] study. These studies demonstrated that the improvements in glycaemic control were associated with significantly reduced risk for cardiovascular end-points despite weight gain.

In summary, insulin therapy with insulin glargine is associated with clinically important improvements in glycaemic control. Retrospective analysis of earlier trials and new studies would help elucidate the impact of insulin therapy in normal weight to obese patients with T2DM. Such data are of interest to help the clinician (and patient) determine the optimal treatment algorithms.

Acknowledgement

Editorial support for this review was provided by the Global Publications group of sanofi-aventis.

References

1 Lipscombe LL, Hux JE. Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995-2005: a population-based study. Lancet 2007; 369: 750–756.
2 Lusignan S, Sismanidis C, Carey IM, DeWilde S, Richards N, Cook DG. Trends in the prevalence and management of diagnosed type 2 diabetes 1994-2001 in England and Wales. BMC Fam Pract 2005; 6: 13.
3 Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047–1053.
4 Hart CL, Hole DJ, Lawlor DA, Davey Smith G. How many cases of type 2 diabetes mellitus are due to being overweight in middle age? Evidence from the Midspan prospective cohort studies using mention of diabetes mellitus on hospital discharge or death records. Diabet Med 2007; 24: 73–80.
5 Roder ME, Dinesen B, Hartling SG et al. Intact proinsulin and beta-cell function in lean and obese subjects with and without type 2 diabetes. Diabetes Care 1999; 22: 609–614.
6 Carver C. Insulin treatment and the problem of weight gain in type 2 diabetes. Diabetes Educ 2006; 32: 910–917.
7 Davies M. The reality of glycaemic control in insulin treated diabetes: defining the clinical challenges. Int J Obes Relat Metab Disord 2004; 28 (Suppl. 2): S14–S22.
8 Korytkowski M. When oral agents fail: practical barriers to starting insulin. Int J Obes Relat Metab Disord 2002; 26: S18–S24.
9 Polonsky WH, Fisher L, Guzman S, Villa-Caballero L, Edelman SV. Psychological insulin resistance in patients with type 2 diabetes: the scope of the problem. Diabetes Care 2005; 28: 2543–2545.
10 Mullins P, Sharp P, Yki-Jarvinen H, Riddle MC, Harrington R. Negative binomial meta-regression analysis of combined glycosylated hemoglobin and hypoglycemia outcomes across eleven Phase III and IV studies of insulin glargine compared with neutral protamine Hagedorn insulin in type 1 and type 2 diabetes mellitus. Clin Ther 2007; 29: 1607–1619.
Insulin glargine in obese type 2 diabetes patients

Hermansen K, Davies M, Derezenski T, Martinez Ravn G, Clauson P, Home P. A 26-week, randomized, parallel, treat-to-target trial comparing insulin detemir with NPH insulin as add-on therapy to oral glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetes Care 2006; 29: 1269–1274.

Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology 2007; 133: 2087–2102.

Abate N, Chandalia M. The impact of ethnicity on type 2 diabetes. J Diabetes Complications 2003; 17: 39–58.

Shai I, Jiang R, Manson JE et al. Ethnicity, obesity, and risk of type 2 diabetes in women: a 20-year follow-up study. Diabetes Care 2006; 29: 1585–1590.

WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004; 363: 157–163.

Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. beta-Cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J Clin Endocrinol Metab 2005; 90: 493–500.

Blaak EE. Basic disturbances in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus. Proc Nutr Soc 2004; 63: 323–330.

Gregg EW, Cheng YJ, Narayan KM, Thompson TJ, Williamson DF. The relative contributions of different levels of overweight and obesity to the increased prevalence of diabetes in the United States: 1976–2004. Prev Med 2007; 45: 348–352.

Adler AI, Stevens RJ, Neil A, Stratton IM, Boulton AJ, Holman RR. UKPDS 59: hyperglycaemia and other potentially modifiable risk factors for peripheral vascular disease in type 2 diabetes. Diabetes Care 2002; 25: 894–899.

Stratton IM, Adler AI, Neil HA et al. Association of hyperglycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321: 405–412.

Stratton IM, Kohner EM, Aldington SJ et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia 2001; 44: 156–163.

See R, Abdullah SM, McGuire DK et al. The association of differing measures of overweight and obesity with prevalent atherosclerosis: the Dallas Heart Study. J Am Coll Cardiol 2007; 50: 752–759.

Fonseca VA. Insulin resistance, diabetes, hypertension, and renin-angiotensin system inhibition: reducing risk for cardiovascular disease. J Clin Hypertens (Greenwich) 2006; 8: 713–720; quiz 721–722.

Adler AI, Neil HA, Manley SE, Holman RR, Turner RC. Hyperglycaemia and hyperinsulinemia at diagnosis of diabetes and their association with subsequent cardiovascular disease in the United Kingdom prospective diabetes study (UKPDS 47). Am Heart J 1999; 138: S353–S359.

Gastaldelli A, Cusi K, Pettiti M et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007; 133: 496–506.

Burns N, Finucane PM, Hatunic M et al. Early-onset type 2 diabetes in obese white subjects is characterised by a marked defect in beta cell insulin secretion, severe insulin resistance and a lack of response to aerobic exercise training. Diabetologia 2007; 50: 1500–1508.

Kahn SE, Haffner SM, Heise MA et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355: 2427–2434.

Golay A. Metformin and body weight. Int J Obes (Lond) 2008; 32: 61–72.

Nathan DM, Buse JB, Davidson MB et al. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2006; 49: 1711–1721.

Mäkimmätila S, Nikkila K, Yki-Jarvinen H. Causes of weight gain during insulin therapy with and without metformin in patients with type II diabetes mellitus. Diabetologia 1999; 42: 406–412.

Orre-Pettersson AC, Lindstrom T, Bergmark V, Arnessvist HJ. The snack is critical for the blood glucose profile during treatment with regular insulin prandially. J Intern Med 1999; 245: 41–45.

Riddle M, Rosenstock J, Gerich J; Insulin Glargine 4002 Study Investigators. The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care 2003; 26: 3080–3086.

Gerich J, Becker RH, Zhu R, Bolli GB. Fluctuation of serum basal insulin levels following single and multiple dosing of insulin glargine. Diabetes Technol Ther 2006; 8: 237–243.

Rosenstock J, Schwartz SL, Clark CM Jr, Park GD, Donley DW, Edwards MB. Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin. Diabetes Care 2001; 24: 631–636.

Yki-Jarvinen H, Kauppinen-Makelin R, Tiikkainen M et al. Insulin glargine or NPH combined with metformin in type 2 diabetes: the LANTIME study. Diabetologia 2006; 49: 442–451.

Hermansen K, Davies M. Does insulin detemir have a role in reducing risk of insulin-associated weight gain? Diabetes Obes Metab 2007; 9: 209–217.

Welle S, Nair KS, Lockwood D. Effect of a sulfonylurea and insulin on energy expenditure in type II diabetes mellitus. J Clin Endocrinol Metab 1988; 66: 593–597.

Rosenstock J, Sugimoto D, Strange P, Stewart JA, Soltes-Rak E, Dailey G. Triple therapy in type 2 diabetes: insulin glargine or rosiglitazone added to combination therapy of sulfonylurea plus metformin in insulin-naive patients. Diabetes Care 2006; 29: 554–559.
39 Janka HU, Plewe G, Riddle MC, Kliebe-Frisch C, Schweitzer MA, Yki-Jarvinen H. Comparison of basal insulin added to oral agents versus twice-daily premixed insulin as initial insulin therapy for type 2 diabetes. Diabetes Care 2005; 28: 254–259.

40 Raskin P, Allen E, Hollander P et al. Initiating insulin therapy in type 2 diabetes: a comparison of biphasic and basal insulin analogs. Diabetes Care 2005; 28: 260–265.

41 Holman RR, Thorne KI, Farmer AJ et al. 4-T Study Group. Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N Engl J Med 2007; 357: 1716–1730.

42 Davies M, Storms F, Shutler S, Bianchi-Biscay M, Gomis R. Improvement of glycemic control in subjects with poorly controlled type 2 diabetes: comparison of two treatment algorithms using insulin glargine. Diabetes Care 2005; 28: 1282–1288.

43 Hammer H, Klinge A. Patients with type 2 diabetes inadequately controlled on premixed insulin: effect of initiating insulin glargine plus oral antidiabetic agents on glycaemic control in daily practice. Int J Clin Pract 2007; 61: 2009–2018.

44 Massi Benedetti M, Humbug E, Dressler A, Ziemen M. A one-year, randomised, multicentre trial comparing insulin glargine with NPH insulin in combination with oral agents in patients with type 2 diabetes. Horm Metab Res 2003; 35: 189–196.

45 Schreiber SA, Ferlinz K, Haak T. The long-term efficacy of insulin glargine plus oral antidiabetic agents in a 32-month observational study of everyday clinical practice. Diabetes Technol Ther 2007 (in press).

46 Schreiber SA, Haak T. Insulin glargine benefits patients with type 2 diabetes inadequately controlled on oral antidiabetic treatment: an observational study of everyday practice in 12,216 patients. Diabetes Obes Metab 2007; 9: 31–38.

47 Tanenberg RJ, Zisman A, Stewart J. Glycemia Optimization Treatment (GOT): glycemic control and rate of severe hypoglycemia for five different dosing algorithms of insulin glargine in patients with type 2 diabetes mellitus (T2DM). Diabetes 2006; 55: A135 (Abstract 567-P).

48 Kennedy L, Herman WH. Glycated hemoglobin assessment in clinical practice: comparison of the A1cNow point-of-care device with central laboratory testing (GOAL A1C Study). Diabetes Technol Ther 2005; 7: 907–912.

49 UKPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). (UK Prospective Diabetes Study Group). Lancet 1998; 352: 837–853.

50 Shichiri M, Kishikawa H, Ohkubo Y, Wake N. Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 2000; 23 (Suppl. 2): B21–B29.

51 Yki-Jarvinen H, Dressler A, Ziemen M. Less nocturnal hypoglycemia and better post-dinner glucose control with bedtime insulin glargine compared with bedtime NPH insulin during insulin combination therapy in type 2 diabetes. HOE 901/3002 Study Group. Diabetes Care 2000; 23 (Suppl. 2): B21–B29.

52 Fritsche A, Schweitzer MA, Haring HU. Glimepiride combined with morning insulin glargine, bedtime neutral protamine hagedorn insulin, or bedtime insulin glargine in patients with type 2 diabetes. A randomized controlled trial. Ann Intern Med 2003; 138: 952–959.

53 Pan CY, Sinnassamy P, Chung KD, Kim KW. Insulin glargine versus NPH insulin therapy in Asian type 2 diabetes patients. Diabetes Res Clin Pract 2007; 76: 111–118.

54 Bretzel RG, Nuber U, Landgraf W et al. Once-daily basal insulin glargine versus thrice-daily prandial insulin lispro in people with type 2 diabetes on oral hypoglycaemic agents (APOLLO): an open randomised controlled trial. Lancet 2008; 371: 1073–1084.