CP Violation in $B^\pm \to \rho^0\pi^\pm$ and $B^\pm \to \sigma\pi^\pm$ Decays

Hai-Yang Cheng
Institute of Physics, Academia Sinica
Taipei, Taiwan 115, Republic of China

Abstract

The decay amplitude of $B^+ \to \pi^+\pi^-\pi^+$ in the Dalitz plot has been analyzed by the LHCb using three different approaches for the S-wave component. It was found that the mode with σ (or $f_0(500)$) exhibited a CP asymmetry of 15% in the isobar model, whereas the $f_2(1270)$ mode had a 40% asymmetry. On the contrary, CP asymmetry for the dominant quasi-two-body decay $B^- \to \rho^0\pi^-$ was found to be consistent with zero in all three approaches, while all the existing theoretical predictions lead to a negative CP asymmetry ranging from -7% to -45%. We show that the nearly vanishing CP violation in $B^- \to \rho^0\pi^-$ is understandable in the framework of QCD factorization (QCDF). It arises from the $1/m_b$ power corrections to the penguin amplitudes due to penguin annihilations and to the color-suppressed tree amplitude due to hard spectator interactions. Penguin annihilation and hard spectator interactions contribute destructively to $A_{CP}(B^- \to \rho^0\pi^-)$ to render it consistent with zero. The branching fraction and CP asymmetry in $B^- \to \sigma/f_0(500)\pi^-$ are investigated in QCDF with results in agreement with experiment.
I. INTRODUCTION

In 2013 and 2014 LHCb has measured direct CP violation in charmless three-body decays of B mesons [1,2] and found evidence of inclusive integrated CP asymmetries in $B^+ \rightarrow \pi^+\pi^+\pi^-$, $K^+K^+K^-$, $K^+K^-\pi^+$ and a 2.8σ signal of CP violation in $B^+ \rightarrow K^+\pi^+\pi^-$. Besides the integrated CP asymmetry, LHCb has also observed large asymmetries in localized regions of phase space, such as the low invariant mass region devoid of most of known resonances and the rescattering regions of $m_{\pi^+\pi^-}$ or $m_{K^+K^-}$ between 1.0 and 1.5 GeV.

Recently LHCb has analyzed the decay amplitudes of $B^+ \rightarrow \pi^+\pi^-\pi^+$ in the Dalitz plot [4, 5]. In the LHCb analysis, the S-wave component of $B^- \rightarrow \pi^+\pi^-\pi^-$ was studied using three different approaches: the isobar model, the K-matrix model and a quasi-model-independent (QMI) binned approach. In the isobar model, the S-wave amplitude was presented by LHCb as a coherent sum of the σ (or $f_0(500)$) meson contribution and a $\pi\pi \leftrightarrow KK$ rescattering amplitude in the mass range $1.0 < m_{\pi^+\pi^-} < 1.5$ GeV. The fit fraction of the S-wave is about 25% and predominated by the σ resonance.

A clear CP asymmetry was seen in the $B^- \rightarrow \pi^+\pi^-\pi^-$ decay in the following places: (i) the S-wave amplitude at values of $m_{\pi^+\pi^-}$ below the mass of the $\rho(770)$ resonance. In the isobar model, the S-wave amplitude is predominated by the σ meson. Hence, a significant CP violation of 15% in $B^- \rightarrow \sigma\pi^-$ is implied in this model. (ii) the $f_2(1270)$ component with a CP violation of 40% exhibited, and (iii) the interference between S- and P-waves which is clearly visible in Fig. 12 of [5] where the data are split according to the sign of $\cos \theta$ with θ being the angle between the momenta of the two same-sign pions measured in the rest frame of the dipion system. The significance of CP violation in the interference between S- and P-waves exceeds 25σ in all the S-wave models.

On the contrary, CP asymmetry for the dominant quasi-two-body decay mode $B^- \rightarrow \rho^0\pi^-$ was found by the LHCb to be consistent with zero in all three S-wave approaches (see Table I), which was already noticed by the LHCb previously in 2014 [2]. ¹ Indeed, if this quasi-two-body CP asymmetry is nonzero, it will destroy the aforementioned interference pattern between S- and P-waves. However, the existing theoretical predictions based on QCD factorization (QCDF) [7, 8], perturbative QCD (pQCD) [9], soft-collinear effective theory (SCET) [10], topological diagram approach (TDA) [11] and factorization-assisted topological-amplitude (FAT) approach [12] all lead to a negative CP asymmetry for $B^- \rightarrow \rho^0\pi^-$, ranging from -7% to -45% (see Table II).

	isobar	K-matrix	QMI
$\rho(770)^0$	0.7 ± 1.1 ± 0.6 ± 1.5	4.2 ± 1.5 ± 2.6 ± 5.8	4.4 ± 1.7 ± 2.3 ± 1.6

¹ There was a measurement of $A_{CP}(\rho^0\pi^-)$ by BaBar with the result $0.18 \pm 0.07^{+0.05}_{-0.15}$ from the Dalitz plot analysis of $B^- \rightarrow \pi^+\pi^-\pi^-$ [6].
TABLE II: Theoretical predictions of CP violation (in %) for the $B^- \to \rho^0 \pi^-$ decay in various approaches.

	QCDF [7]	QCDF [8]	pQCD [9]	SCET [10]	TDA [11]	FAT [12]
cp	$-9.8^{+3.4+11.4}_{-2.6-10.2}$	$-6.7^{+0.2+3.2}_{-0.2-3.7}$	$-27.5^{+2.3+0.9}_{-3.1-1.0} \pm 1.4 \pm 0.9$	$-19.2^{+15.5+1.7}_{-13.4-1.9}$	-23.9 ± 8.4	-45 ± 4

The purpose of this work is twofold. First, we would like to resolve the long-standing puzzle in regard to the CP asymmetry in $B^- \to \rho^0 \pi^-$. Second, we will present a study of $B^- \to \sigma \pi^-$ in QCDF. For CP violation in $B^- \to f_2(1270) \pi^-$, it has been studied in [13–15] before the LHCb experiment. As for CP asymmetry induced by interference, we will give a detailed study elsewhere.

II. $B^\pm \to \rho^0 \pi^\pm$ DECAYS

As stressed in the Introduction, we are concerned about the discrepancy between theory and experiment in regard to CP asymmetry in the tree-dominated mode $B^- \to \rho^0 \pi^-$. It has been argued in [16] that in $B \to PV$ decays with $m_V < 1$ GeV, CP asymmetry induced from a short-distance mechanism is suppressed by the CPT constraint. Normally, CPT theorem implies the same lifetimes for both particle and antiparticle. When partial widths are summed over, the total width of the particle and its antiparticle should be the same. Final-state interactions are responsible for distributing the CP asymmetry among the different conjugate decay channels. In the three-body B decays, the “2+1” approximation is usually assumed so that the resonances produced in heavy meson decays do not interact with the third particle. In $B \to PV$ decays with $m_V < 1$ GeV, for example, $V = \rho(770)$ or $K^*(892)$, there do not exist other states below the $K\bar K$ threshold which can be connected to $\pi\pi$ or πK rescattering through final-state interactions. As stressed in [16], the absence of final-state interactions is a hadronic constraint and therefore, the impossibility to observe CP asymmetry in those processes is independent from the relative short-distance contribution from tree and penguin diagrams. As elucidated in [16], there are three other possibilities that can produce CP violation, for example, a three-body rescattering including the third particle.

If we take this argument seriously to explain the approximately vanishing CP asymmetry in $B^+ \to \rho^0 \pi^+$, it will be at odd with the CP violation seen in other PV models [17]: $A_{CP}(B^+ \to \rho^0 K^+) = 0.37 \pm 0.11$, $A_{CP}(B^0 \to K^* \eta) = 0.19 \pm 0.05$ and $A_{CP}(B^0 \to K^{*+}\pi^-) = -0.271 \pm 0.044$, especially CP violation in the last mode was first observed by the LHCb [18]. In general, the agreement between theory and experiment for these three modes is good (see e.g. [18]). Therefore, it seems to us that the smallness of $A_{CP}(B^+ \to \rho^0 \pi^+)$ probably has nothing to do with the CPT constraint.

In QCDF, the decay amplitude of $B^- \to \rho^0 \pi^-$ is given by [19]

$$A(B^- \to \rho^0 \pi^-) = \frac{1}{\sqrt{2}} \left[\delta_{\rho\pi}(a_2 - \beta_2) - a_4^\rho a_6^\pi + \frac{3}{2}(a_7^\rho + a_9^\rho) + \frac{1}{2}(a_{10}^\rho + r_\chi a_8^\pi) - \beta_3^\rho - \beta_3^{EOF} \right]_{\pi\rho}$$

$$\times X(B^- \pi, \rho) + \frac{1}{\sqrt{2}} \left[\delta_{\rho a_1} + a_4^\rho r_\chi a_6^\pi + a_{10}^\rho - r_\chi a_8^\pi + \beta_3^\rho + \beta_3^{EOF} \right]_{\pi\rho} X(B^- \rho, \pi),$$

(2.1)
where the chiral factors $r_{\chi}^{\pi, \rho}$ are given by
\[r_{\chi}^{\pi}(\mu) = \frac{2m_{\pi}^2}{m_b(\mu)(m_u + m_d)(\mu)}, \quad r_{\chi}^{\rho}(\mu) = \frac{2m_{\rho}}{m_b(\mu)} \frac{f_{\pi}^{(\rho)}}{f_{\rho}}, \quad (2.2) \]
and the factorizable matrix elements read
\[X^{(B^-, \pi, \rho)}(2.1) = 2f_{\pi}\alpha_{BPc}F_1^{B\pi}(m_{\rho}^2), \quad X^{(B^-, \rho, \pi)}(2.1) = 2f_{\pi}\alpha_{BPc}F_0^{B\rho}(m_{\pi}^2), \quad (2.3) \]
with p_c being the c.m. momentum. Here we have followed \[20\] for the definition of form factors. In Eq. (2.1), the order of the arguments of the $a_i^p(M_1M_2)$ and $\beta_i(M_1M_2)$ coefficients is dictated by the subscript M_1M_2.

The flavor operators a_i^p are basically the Wilson coefficients in conjunction with short-distance nonfactorizable corrections such as vertex corrections and hard spectator interactions. In general, they have the expressions \[19, 21\]
\[a_i^p(M_1M_2) = \left(c_i + \frac{c_{i+1}}{N_c} \right) N_i(M_2) + \frac{c_{i+1}}{N_c} \frac{C_F\alpha_s}{4\pi} \left[V_i(M_2) + \frac{4\pi^2}{N_c} H_i(M_1M_2) \right] + P_i^p(M_2), \quad (2.4) \]
where $i = 1, \ldots, 10$, the upper (lower) signs apply when i is odd (even), c_i are the Wilson coefficients, $C_F = (N_c^2 - 1)/(2N_c)$ with $N_c = 3$, M_2 is the emitted meson and M_1 shares the same spectator quark with the B meson. The quantities $V_i^h(M_2)$ account for vertex corrections, $H_i^h(M_1M_2)$ for hard spectator interactions with a hard gluon exchange between the emitted meson and the spectator quark of the B meson and $P_i(M_2)$ for penguin contractions.

In the $m_b \to \infty$ limit, the decay amplitudes of charmless two-body decays of B mesons are factorizable and can be described in terms of decay constants and form factors. However, it is well known that the short-distance contribution to $a_4^{ca} + r_{\chi}^{\pi} a_6^{ca}$ will yield CP asymmetries for $B^0 \to K^-\pi^+, K^+\pi^-, \pi^+\pi^-$, $B^- \to K^-\pi^0$ and $\bar{B}_s \to K^+\pi^-$, etc., which are wrong in signs when confronted with experiment \[1, 22\]. Beyond the heavy quark limit, it is thus necessary to introduce $1/m_b$ power corrections. In QCDF, power corrections to the penguin amplitudes are described by the penguin annihilation characterized by the parameters $\beta_{BP, 2, 3}$ and $\beta_{BP, EW}$ given in Eq. (2.1). Penguin annihilation is also responsible for the rate deficit problems with penguin-dominated modes encountered in the heavy quark limit.

As pointed out in \[1, 22\], while the signs of CP asymmetries in aforementioned modes are flipped to the right ones in the presence of power corrections from penguin annihilation, the signs of A_{CP} in $B^- \to K^-\pi^0$, $K^-\eta$, $\pi^-\eta$ and $B^0 \to \pi^0\pi^0$, $K^*0\eta$ will also get reversed in such a way that they disagree with experiment. This CP puzzle is resolved by invoking power corrections to the color-suppressed tree topology as all the above-mentioned five modes receive contributions from a_2^n \[1, 22\]. An inspection of Eq. (2.4) reveals that hard spectator contributions to a_i are usually very small except for a_2 and a_{10} as $c_1 \sim O(1)$ and $c_9 \sim O(-1.3)$ in units of α_{em}. Explicitly,
\[a_2(M_1M_2) = c_2 + \frac{c_1}{N_c} \frac{C_F\alpha_s}{4\pi} \left[V_2(M_2) + \frac{4\pi^2}{N_c} H_2(M_1M_2) \right], \quad (2.5) \]
where the hard spectator term $H_2(M_1M_2)$ reads
\[H_2(M_1M_2) = \frac{if_{BP_c} f_{M_1} f_{M_2}}{X(B^{M_1M_2})} \alpha_{BP_c} \int_0^1 dx dy \left(\frac{\Phi_{M_1}(x)\Phi_{M_2}(y)}{xy} + r_{\chi}^{M_1} \frac{\Phi_{M_1}(x)\Phi_{M_2}(y)}{xy} \right), \quad (2.6) \]
with $\bar{x} = 1 - x$. Subleading $1/m_b$ power corrections arise from the twist-3 amplitude Φ_m. As shown in detail in [22], power corrections to a_2 not only resolve the aforementioned CP puzzles (including the so-called $\pi \bar{K}$ puzzle) but also account for the observed rates of $B^0 \to \pi^0 \pi^0$ and $\rho^0 \pi^0$.

In the QCD factorization approach, power corrections often involve endpoint divergences. We shall follow [21] to model the endpoint divergence $X \equiv \int_0^1 dx/\bar{x}$ in the penguin annihilation and hard spectator scattering diagrams as

$$X^i_A = \ln \left(\frac{m_B}{\Lambda_h} \right) (1 + \rho_A^i e^{i \phi_A^i})$$

$$X_H = \ln \left(\frac{m_B}{\Lambda_h} \right) (1 + \rho_H e^{i \phi_H}), \quad (2.7)$$

with Λ_h being a typical hadronic scale of 0.5 GeV, where the superscripts 'i' and 'f' refer to gluon emission from the initial and final-state quarks, respectively. In principle, one can also add the superscripts 'VP' and 'PV' to distinguish penguin annihilation effects in $B \to VP$ and $B \to PV$ decays [19]:

$$A_1^i \approx -A_2^i \approx 6 \pi \alpha_s \left[3 \left(X^V_{iA} - 4 + \frac{\pi^2}{3} \right) + r^V X^P \left(\left(X^V_{iA} \right)^2 - 2 X^P_{iA} \right) \right],$$

$$A_4^i \approx 6 \pi \alpha_s \left[-3r^V X^P \left(\left(X^V_{iA} \right)^2 - 2 X^P_{iA} + 4 - \frac{\pi^2}{3} \right) + r^V \left(\left(X^V_{iA} \right)^2 - 2 X^P_{iA} + \frac{\pi^2}{3} \right) \right],$$

$$A_5^i \approx 6 \pi \alpha_s \left[3r^V \left(2X^V_{iA} - 1 \right) \left(2 - X^V_{iA} \right) - r^V \left(2 \left(X^V_{iA} \right)^2 - X^V_{iA} \right) \right], \quad (2.8)$$

for $M_1 M_2 = VP$ and

$$A_1^i \approx -A_2^i \approx 6 \pi \alpha_s \left[3 \left(X^V_{iA} - 4 + \frac{\pi^2}{3} \right) + r^V X^P \left(\left(X^V_{iA} \right)^2 - 2 X^P_{iA} \right) \right],$$

$$A_4^i \approx 6 \pi \alpha_s \left[-3r^V X^P \left(\left(X^V_{iA} \right)^2 - 2 X^P_{iA} + 4 - \frac{\pi^2}{3} \right) + r^V \left(\left(X^V_{iA} \right)^2 - 2 X^P_{iA} + \frac{\pi^2}{3} \right) \right],$$

$$A_5^i \approx 6 \pi \alpha_s \left[-3r^P \left(2X^P_{iA} - 1 \right) \left(2 - X^P_{iA} \right) + r^V \left(2 \left(X^P_{iA} \right)^2 - X^P_{iA} \right) \right], \quad (2.9)$$

for $M_1 M_2 = PV$. Nevertheless, for simplicity we shall assume that the parameters X^V_{iA} and X^P_{iA} are the same. So we shall drop the superscripts VP and PV hereafter.

Initially, it was expected that $\rho_A^i = \rho_A^f \sim 1$ and $\phi_A^i = \phi_A^f$. The two unknown parameters ρ_A and ϕ_A were fitted to the data of $B \to PP, VP, PV$ and VV decays. The values of ρ_A and ϕ_A are given, for example, in Table III of [14], where the results are very similar to the so-called “S4 scenario” presented in [19]. Now a surprise came from the measurement of the pure annihilation process $B^0 \to \pi^+ \pi^-$ by the CDF [23] and LHCb [24]. The world average $B(B_s \to \pi^+ \pi^-) = (0.671 \pm 0.083) \times 10^{-6}$ [17] is much higher than the QCDF prediction of $(0.26^{+0.10}_{-0.09}) \times 10^{-6}$ [22]. Since this mode proceeds through the penguin-annihilation amplitudes A_1^i and A_5^i, it is natural to expect that $\rho_A^i \neq \rho_A^f$ and that $\rho_A^i \sim 3$ is needed to accommodate the data [26, 27]. That is,

2 At first sight, the new measurement of another pure annihilation process $B(B^0 \to K^+ K^-) = (7.80 \pm 1.27 \pm 0.84) \times 10^{-5}$ by the LHCb [28] seems to be at odd with a large ρ_A^i in the PP sector. As can be seen from Fig. 3 in [29] for the dependence of $B(B^0 \to K^+ K^-)$ on (ρ_A^i, ϕ_A^i), a large ρ_A^i is still allowed so long as ϕ_A^i is not in the region of $[-100^\circ, 100^\circ]$. The constraint on the phase ϕ_A^i arises mainly from CP violation in $B \to \pi K$ decays. It follows that $\phi_A^i \sim [-140^\circ, -60^\circ]$ with a large ρ_A^i is favored by the data of CP asymmetries. Putting all together, a large ρ_A^i with $\phi_A^i \sim [-140^\circ, -100^\circ]$ is still favored by the data even when the new measurement of $B^0 \to K^+ K^-$ is take into account [30].
TABLE III: The branching fraction and CP asymmetry of $B^- \to \rho^0\pi^-$ within the QCDF approach. Experimental data are taken from [17]. The theoretical errors correspond to the uncertainties due to the variation of (i) Gegenbauer moments, decay constants, form factors, the strange quark mass, and (ii) $\rho_{A,H}$, $\phi_{A,H}$, respectively. In (ii) we assign an error of ± 0.4 to ρ and $\pm 4^\circ$ to ϕ.

$\mathcal{B}(10^{-6})$	$\mathcal{A}_{CP} (%)$	Comments
8.3$^{+1.2}_{-1.3}$	0.7 \pm 1.9	Expt
8.9$^{+2.0}_{-1.0}$	6.3$^{+0.5}_{-0.8}$	(1) Heavy quark limit
9.3$^{+1.8}_{-1.0}$	$-13.0^{+10.0}_{-8.8}$	(2) $\rho_H = 0$ and $\phi_H = 0$ with ρ_A and ϕ_A given by Eq. (2.12)
6.7$^{+0.6}_{-0.4}$	$-4.8^{+4.3}_{-2.4}$	(3) $\rho_H = 3.08$, $\phi_H = -145^\circ$, ρ_A and ϕ_A given by Eq. (2.12)
8.4$^{+1.6}_{-0.8}$	$-0.7^{+3.2}_{-2.8}$	(4) $\rho_H = 3.15$, $\phi_H = -113^\circ$, ρ_A and ϕ_A given by Eq. (2.12)
6.4$^{+0.6}_{-0.4}$	14.4$^{+2.2}_{-1.3}$	(5) $\rho_H = 3.08$, $\phi_H = -145^\circ$, $\rho_A^{i,f} = 0$, $\phi_A^{i,f} = 0$
8.1$^{+1.7}_{-0.8}$	15.2$^{+1.3}_{-1.1}$	(6) $\rho_H = 3.15$, $\phi_H = -113^\circ$, $\rho_A^{i,f} = 0$, $\phi_A^{i,f} = 0$

the parameters X_i^A and X_f^A should be treated separately. A large $\rho_A^{i,f}$ is also a good news for the hard spectator interactions because $\rho_H > 3$ together a large phase ϕ_H are required to solve the CP puzzle together with the rate deficit issue of $B^0 \to \pi^0\pi^0$ and $\rho^0\pi^0$. Hence, it is pertinent to set $\rho_H = \rho_A^{i,f}$ and $\phi_H = \phi_A^{i,f}$ to the first order approximation.

For $B \to PV$ decays, when (ρ_H, ϕ_H) and $(\rho_A^{i,f}, \phi_A^{i,f})$ are treated as free parameters, it was found in [8] that the allowed regions of $(\rho_A^{i,f}, \phi_A^{i,f})$ are small and tight, while those of $(\rho_A^{i,f}, \phi_A^{i,f})$ are big and loose. Moreover, the allowed (ρ_H, ϕ_H) regions are significantly separated from those of $(\rho_A^{i,f}, \phi_A^{i,f})$ and overlap partly with the regions of $(\rho_A^{i,f}, \phi_A^{i,f})$. When (ρ_H, ϕ_H) are set to $(\rho_A^{i,f}, \phi_A^{i,f})$ as a first order approximation, a fit of the four parameters $(\rho_A^{i,f}, \phi_A^{i,f})$ to the $B \to PV$ data yields [8]

$$(\rho_A^{i,f}, \phi_A^{i,f})_{PV} = (2.87^{+0.06}_{-0.05}, 0.91^{+0.12}_{-0.04})^{\circ}, \quad (\phi_A^{i,f}, \phi_A^{i,f})_{PV} = (-145^{+14}_{-21}, -37^{+10}_{-9})^{\circ},$$

where the allowed regions of $(\rho_A^{i,f}, \phi_A^{i,f})$ shrink considerably. For comparison, they are close to the solutions obtained in the PP sector [31]

$$(\rho_A^{i,f}, \phi_A^{i,f})_{PP} = (2.98^{+1.12}_{-0.86}, 1.18^{+0.20}_{-0.23}), \quad (\phi_A^{i,f}, \phi_A^{i,f})_{PP} = (-105^{+34}_{-24}, -40^{+11}_{-8})^{\circ}.$$

In this work, we shall follow [32] to take

$$(\rho_A^{i,f}, \phi_A^{i,f})_{PV} = (3.08, 0.83), \quad (\phi_A^{i,f}, \phi_A^{i,f})_{PV} = (-145^{\circ}, -36^{\circ}),$$

for calculations.

We are now ready to compute the branching fraction and CP asymmetry for $B^- \to \rho^0\pi^-$. In the heavy quark limit, its CP asymmetry is positive with a magnitude of order 0.06. We then turn on power corrections induced from penguin annihilation. It is clear that the sign of $\mathcal{A}_{CP}(\rho^0\pi^-)$ is flipped and in the meantime its magnitude is enhanced. We next switch on $1/m_b$ corrections from hard spectator interactions. Under the simplification with $\rho_H = \rho_A^{i}$ and $\phi_H = \phi_A^{i}$, we will have $\mathcal{B}(\rho^0\pi^-) \approx 6.7 \times 10^{-6}$ and $\mathcal{A}_{CP}(\rho^0\pi^-) \approx -0.05$. However, the resultant branching fraction is too small by 20% when compared with experiment. This implies that the realistic values of ρ_H and
\(\phi_H \) should have some deviation from \(\rho_A^j \) and \(\phi_A^j \), respectively. Indeed, we find that the data can be accommodated by having \(\rho_H = 3.15 \) and \(\phi_H = -113^\circ \), for instance, shown in case (4) of Table III. To see the effect of hard spectator interactions alone, we turn off \(\rho_A \) and \(\phi_A \). It is evident that \(A_{CP}(\rho^0\pi^-) \) will be enhanced from \(O(6) \) to \(O(15) \) in the presence of hard spectator effects. If the heavy quark limit of \(A_{CP}(\rho^0\pi^-) \) is considered as a benchmark, hard spectator interactions will push it up further, whereas penguin annihilation will pull it to the opposite direction. Therefore, the nearly vanishing \(A_{CP}(\rho^0\pi^-) \) arises from two destructive \(1/m_b \) power corrections.

What about the previous QCDF predictions given in Table III? The results of \(A_{CP}(\rho^0\pi^-) \approx -0.098 \) and \(B(\rho^0\pi^-) \approx 8.7 \times 10^{-6} \) given in [7] were obtained using \(\rho_A \approx 1 \) and \(\phi_A^P = -70^\circ \) and \(\phi_A^{PV} = -30^\circ \), while the power correction to \(a_2 \) was parameterized as \((1 + 0.8e^{-180^\circ}) \). The QCDF predictions \(A_{CP}(\rho^0\pi^-) \approx -0.067 \) and \(B(\rho^0\pi^-) \approx 6.8 \times 10^{-6} \) given in [8] are very similar to case (3) in Table III. As noticed in passing, one needs to adjust \(\rho_H \) and \(\phi_H \) slightly to render both the branching fraction and \(CP \) asymmetry in agreement with the data.

III. \(B^\pm \to \sigma\pi^\pm \) DECAYS

Charmed hadronic \(B \) decays to scalar mesons have been studied in the approach of QCD factorization [33–35]. For completeness, we shall present a study of \(B^- \to \sigma/f_0(500)\pi^- \) in Eq. (A1) of [35]:

\[
A(B^- \to \sigma\pi^-) = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p^{(d)} \left\{ a_1 \delta_{pu} + a_4^p + a_{10}^p - (a_6^p + a_8^p) f_\chi^{\sigma \pi} X(B\sigma, \pi) \\
+ \left[a_2 \delta_{pu} + 2(a_3^p + a_5^p) + \frac{1}{2} (a_7^p + a_9^p) + a_4^p - \frac{1}{2} a_{10}^p - (a_6^p - \frac{1}{2} a_8^p) f_\chi^{\sigma \pi} \right] X(B\pi, \sigma) \\
- f_B f_\pi f_\sigma^u \left[\delta_{pu} b_2(\pi \sigma) + b_3(\pi \sigma) + b_{3,EW}(\pi \sigma) + (\pi \sigma \to \sigma \pi) \right] \right\}, \tag{3.1}
\]

where the factorizable matrix elements read

\[
X(B\sigma, \pi) = -f_\pi F_0^{Br u} (m_\sigma^2)/(m_B^2 - m_\sigma^2), \quad X(B\pi, \sigma) = f_\sigma^u F_0^{B\pi} (m_\sigma^2)/(m_B^2 - m_\sigma^2), \tag{3.2}
\]

with \(\delta_X^u \mu = 2m_\sigma/m_\mu(\mu) \) and \(\lambda_\rho^{(d)} = V_{pb}^* V_{pd} \). The superscript \(u \) in the scalar decay constant \(f_\sigma^u \) and the form factor \(F_{B\sigma^u} \) refers to the \(u \) quark component of the \(\sigma \).

It is known that the neutral scalar meson \(\sigma \) cannot be produced via the vector current. If \(\sigma \) is a 2-quark bound state with the flavor wave function \((\bar{u}u + \bar{d}d)/\sqrt{2} \), its scale-dependent scalar decay constant can be defined as

\[
\langle \sigma | \bar{u}u | 0 \rangle = m_\sigma f_\sigma^u. \tag{3.3}
\]

For simplicity, we will not consider the mixing of \(\sigma \) and \(f_0(980) \) and hence the strange quark effect in Eq. (3.1). In this work we shall assume that \(\sigma \) has a similar decay constant and light-cone distribution amplitude (LCDA) as \(f_0(980) \). Explicitly, we take \(f_\sigma^u = 350 \text{ MeV} \) at \(\mu = 1 \text{ GeV} \) and \(F_0^{B\sigma^u}(0) = 0.25 \), where the Clebsch-Gordon coefficient \(1/\sqrt{2} \) is included in \(f_\sigma^u \) and \(F_0^{B\sigma^u} \). Vertex corrections, hard spectator interactions and weak annihilation for \(B \to SP \) and \(B \to SV \).
have been worked out in [33–35]. Since the twist-2 LCDA of the \(\sigma \) meson is dominated by the odd Gegenbauer moments, which vanish for the \(\pi \) mesons, it follows that the flavor operators \(a_1^{\sigma}(\pi \pi) \) and \(a_1^{\sigma}(\pi \pi) \) can be very different numerically except for \(a_6^{\sigma} \) (see Table IV). For example, \(a_1(\pi \sigma) \approx 1 \gg a_1(\pi \pi) \). It appears that \(a_1^{\sigma}(\pi \pi) \) look like the normal ones, but not \(a_1^{\sigma}(\pi \pi) \). Effects of penguin annihilation defined by

\[
\beta^p(M_1 M_2) = -f_B f_\pi \bar f_\sigma \delta_{\rho u} b_2 + b_3 + b_{3,EW} \big|_{M_1 M_2}\]

(3.4)

are also shown in Table IV.

Using the input parameters given in [35] except for the Wolfenstein parameters updated with \(A = 0.8235, \lambda = 0.224837, \bar \rho = 0.1569 \) and \(\bar \eta = 0.3499 \) [36], we obtain

\[
B(B^- \to \sigma \pi^-) = (5.38^{+0.19}_{-0.18} + 1.34^{+0.94}_{-0.90}) \times 10^{-6}, \quad A_{CP}(B^- \to \sigma \pi^-) = (15.95^{+0.29}_{-0.28} + 0.08^{+18.88}_{-21.88})\%.
\]

(3.5)

Theoretical uncertainties come from (i) the Gegenbauer moments \(B_{1,3} \), the scalar meson decay constants, (ii) the heavy-to-light form factors and the strange quark mass, and (iii) the power corrections due to weak annihilation and hard spectator interactions, respectively. The calculated \(CP \) asymmetry agrees well with the LHCb measurement [4,5]

\[
A_{CP}(B^- \to \sigma \pi^-) = (16.0 \pm 1.7 \pm 2.2)\%.
\]

(3.6)

From the fit fraction \((25.2 \pm 0.5 \pm 5.0)\%\) of the \(\sigma \) component in \(B^- \to \pi^+ \pi^- \pi^- \) decay analyzed in the isobar model [4,5] and the total branching fraction \((15.2 \pm 1.4) \times 10^{-6}\) measured by BaBar [6], we obtain

\[
B(B^- \to \sigma \pi^- \to \pi^+ \pi^- \pi^-)_{\text{expt}} = (3.83 \pm 0.76) \times 10^{-6}.
\]

(3.7)

To compute the decay rate of \(B^- \to \sigma \pi^- \to \pi^+ \pi^- \pi^- \) it is necessary to take into account the resonance shape of the \(\sigma \), for example, the standard Breit-Wigner function. If \(\sigma \) were very narrow,
one would have the narrow width approximation

\[\mathcal{B}(B^- \to \sigma \pi^- \to \pi^+ \pi^- \pi^-) = \mathcal{B}(B^- \to \sigma \pi^-) \mathcal{B}(\sigma \to \pi^+ \pi^-). \]

Since \(\mathcal{B}(\sigma \to \pi^+ \pi^-) \approx 2/3 \), it appears that the above relation is empirically working. However, as \(\sigma \) is very broad, its finite width effect could be very important [37].

IV. CONCLUSIONS

The decay amplitudes of \(B^+ \to \pi^+ \pi^- \pi^+ \) in the Dalitz plot have been analyzed by the LHCb using three different approaches for the \(S \)-wave component. It was found that the mode with \(\sigma \) (or \(f_0(500) \)) exhibited a \(CP \) asymmetry of 15\% in the isobar model, whereas the \(f_2(1270) \) mode had a 40\% asymmetry. In contrast, \(CP \) asymmetry for the dominant quasi-two-body decay \(B^- \to \rho^0 \pi^- \) was found to be consistent with zero in all three approaches, while all the existing theoretical predictions lead to a negative \(CP \) asymmetry ranging from \(-7\% \) to \(-45\% \). We show that the nearly vanishing \(CP \) violation in \(B^- \to \rho^0 \pi^- \) is understandable in QCDF. The \(1/m_b \) power corrections penguin annihilation and hard spectator interactions contribute destructively to \(A_{CP}(B^- \to \rho^0 \pi^-) \) to render it consistent with zero. The branching fraction and \(CP \) asymmetry in \(B^- \to \sigma/f_0(500) \pi^- \) are investigated in QCDF with results in agreement with experiment.

Acknowledgments

We are very grateful to Qin Chang for helpful discussions. This research was supported in part by the Ministry of Science and Technology of R.O.C. under Grant No. 107-2119-M-001-034.

[1] R. Aaij et al. [LHCb Collaboration], “Measurement of \(CP \) violation in the phase space of \(B^\pm \to K^{\pm}\pi^+\pi^- \) and \(B^\pm \to K^{\pm}K^+K^- \) decays,” Phys. Rev. Lett. 111, 101801 (2013) [arXiv:1306.1246 [hep-ex]].

[2] R. Aaij et al. [LHCb Collaboration], “Measurement of \(CP \) violation in the phase space of \(B^\pm \to K^{\pm}\pi^+\pi^- \) and \(B^\pm \to \pi^+\pi^-\pi^\pm \) decays,” Phys. Rev. Lett. 112, 011801 (2014) [arXiv:1310.4740 [hep-ex]].

[3] R. Aaij et al. [LHCb Collaboration], “Measurements of \(CP \) violation in the three-body phase space of charmless \(B^\pm \) decays,” Phys. Rev. D 90, 112004 (2014) [arXiv:1408.5373 [hep-ex]].

[4] R. Aaij et al. [LHCb Collaboration], “Observation of Several Sources of \(CP \) Violation in \(B^+ \to \pi^+\pi^+\pi^- \) Decays,” Phys. Rev. Lett. 124, 031801 (2020) [arXiv:1909.05211 [hep-ex]].

[5] R. Aaij et al. [LHCb Collaboration], “Amplitude analysis of the \(B^+ \to \pi^+\pi^+\pi^- \) decay,” Phys. Rev. D 101, 012006 (2020) [arXiv:1909.05212 [hep-ex]].
[6] B. Aubert et al. [BaBar Collaboration], “Dalitz Plot Analysis of $B^+ \to \pi^+\pi^+\pi^-$ Decays,” Phys. Rev. D 79, 072006 (2009) [arXiv:0902.2051 [hep-ex]].

[7] H. Y. Cheng and C. K. Chua, “Revisiting Charmless Hadronic $B_{u,d}$ Decays in QCD Factorization,” Phys. Rev. D 80, 114008 (2009) [arXiv:0909.5229 [hep-ph]].

[8] J. Sun, Q. Chang, X. Hu and Y. Yang, “Constraints on hard spectator scattering and annihilation corrections in $B_{u,d} \to PV$ decays within QCD factorization,” Phys. Lett. B 743, 444-450 (2015) [arXiv:1412.2334 [hep-ph]].

[9] Y. Li, A. Ma, W. Wang and Z. Xiao, “Quasi-two-body decays $B(s) \to P\rho \to P\pi\pi$ in perturbative QCD approach,” Phys. Rev. D 95, 056008 (2017) [arXiv:1612.05934 [hep-ph]].

[10] W. Wang, Y. M. Wang, D. S. Yang and C. D. Lu, “Charmless Two-body $B_{s} \to VP$ decays In Soft-Collinear-Effective-Theory,” Phys. Rev. D 78, 034011 (2008) [arXiv:0801.3123 [hep-ph]].

[11] H. Cheng, C. Chiang and A. Kuo, “Updating $B \to PP,VP$ decays in the framework of flavor symmetry,” Phys. Rev. D 91, 014011 (2015) [arXiv:1409.5026 [hep-ph]].

[12] S. Zhou, Q. Zhang, W. Lyu and C. L, “Analysis of Charmless Two-body B decays in Factorization Assisted Topological Amplitude Approach,” Eur. Phys. J. C 77, 125 (2017) [arXiv:1608.02819 [hep-ph]].

[13] H. Y. Cheng and K. C. Yang, “Charmless Hadronic B Decays into a Tensor Meson,” Phys. Rev. D 83, 034001 (2011) [arXiv:1010.3309 [hep-ph]].

[14] Z. T. Zou, X. Yu and C. D. Lu, “Nonleptonic two-body charmless B decays involving a tensor meson in the Perturbative QCD approach,” Phys. Rev. D 86, 094015 (2012) [arXiv:1203.4120 [hep-ph]].

[15] Y. Li, A. J. Ma, Z. Rui, W. F. Wang and Z. J. Xiao, “Quasi-two-body decays $B(s) \to Pf_{2}(1270) \to P\pi\pi$ in the perturbative QCD approach,” Phys. Rev. D 98, 056019 (2018) [arXiv:1807.02641 [hep-ph]].

[16] J. H. Alvarenga Nogueira, I. Bediaga, T. Frederico, P. C. Magalhes and J. Molina Rodriguez, “Suppressed $B \to PV$ CP asymmetry: CPT constraint,” Phys. Rev. D 94, 054028 (2016) [arXiv:1607.03939 [hep-ph]].

[17] Y. Amhis et al. [HFLAV Collaboration], “Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016,” Eur. Phys. J. C 77, 895 (2017) [arXiv:1612.07233 [hep-ex]], and online update at https://hflav.web.cern.ch .

[18] R. Aaij et al. [LHCb Collaboration], “Amplitude analysis of the decay $\overline{B}^0 \to K^0_S\pi^+\pi^-$ and first observation of the CP asymmetry in $\overline{B}^0 \to K^+(892)^-\pi^+$,” Phys. Rev. Lett. 120, 261801 (2018) [arXiv:1712.09320 [hep-ex]].

[19] M. Beneke and M. Neubert, “QCD factorization for $B \to PP$ and $B \to PV$ decays,” Nucl. Phys. B 675, 333-415 (2003) [arXiv:hep-ph/0308039 [hep-ph]].

[20] M. Wirbel, B. Stech, and M. Bauer, “Exclusive Semileptonic Decays of Heavy Mesons,” Z. Phys. C 29, 637 (1985); M. Bauer, B. Stech, and M. Wirbel, “Exclusive Nonleptonic Decays of D, D_s, and B Mesons,” Z. Phys. C 34, 103 (1987) C 34, 103 (1987).

[21] M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, “QCD factorization for $B \to PP$ decays: Strong phases and CP violation in the heavy quark limit,” Phys. Rev. Lett. 83, 1914-1917 (1999) [arXiv:hep-ph/9905312 [hep-ph]]; “QCD factorization for exclusive, nonleptonic
B meson decays: General arguments and the case of heavy light final states,” Nucl. Phys. B 591, 313-418 (2000) [arXiv:hep-ph/0006124 [hep-ph]].

[22] H. Y. Cheng and C. K. Chua, “Resolving B-CP Puzzles in QCD Factorization,” Phys. Rev. D 80, 074031 (2009) [arXiv:0908.3506 [hep-ph]].

[23] T. Aaltonen et al. [CDF Collaboration], “Evidence for the charmless annihilation decay mode $B^0_s \rightarrow \pi^+\pi^-$,” Phys. Rev. Lett. 108, 211803 (2012) [arXiv:1111.0485 [hep-ex]].

[24] R. Aaij et al. [LHCb Collaboration], “Observation of the annihilation decay mode $B^0 \rightarrow K^+K^-$,” Phys. Rev. Lett. 118, 081801 (2017) [arXiv:1610.08288 [hep-ex]].

[25] H. Y. Cheng and C. K. Chua, “QCD Factorization for Charmless Hadronic B_s Decays Revisited,” Phys. Rev. D 80, 114026 (2009) [arXiv:0910.5237 [hep-ph]].

[26] G. Zhu, “Implications of the recent measurement of pure annihilation $B_s \rightarrow \pi^+\pi^-$ decays in QCD factorization,” Phys. Lett. B 702, 408-412 (2011) [arXiv:1106.4709 [hep-ph]].

[27] K. Wang and G. Zhu, “Flavor dependence of annihilation parameters in QCD factorization,” Phys. Rev. D 88, 014043 (2013) [arXiv:1304.7438 [hep-ph]].

[28] R. Aaij et al. [LHCb Collaboration], “Observation of the annihilation decay mode $B^0 \rightarrow K^+K^-$,” Phys. Rev. Lett. 118, 081801 (2017) [arXiv:1610.08288 [hep-ex]].

[29] Q. Chang, J. Sun, Y. Yang and X. Li, “Spectator scattering and annihilation contributions as a solution to the πK and $\pi\pi$ puzzles within QCD factorization approach,” Phys. Rev. D 90, 054019 (2014) [arXiv:1409.1322 [hep-ph]].

[30] Qin Chang, private communication.

[31] Q. Chang, J. Sun, Y. Yang and X. Li, “A combined fit on the annihilation corrections in $B_{u,d,s} \rightarrow PP$ decays within QCDF,” Phys. Lett. B 740, 56-60 (2015) [arXiv:1409.2995 [hep-ph]].

[32] Q. Chang, X. Hu, J. Sun and Y. Yang, “Probing spectator scattering and annihilation corrections in $B_s \rightarrow PV$ decays,” Phys. Rev. D 91, 074026 (2015) [arXiv:1504.04907 [hep-ph]].

[33] H. Y. Cheng, C. K. Chua and K. C. Yang, “Charmless hadronic B decays involving scalar mesons: Implications to the nature of light scalar mesons,” Phys. Rev. D 73, 014017 (2006) [arXiv:hep-ph/0508104].

[34] H. Y. Cheng, C. K. Chua and K. C. Yang, “Charmless B decays to a scalar meson and a vector meson,” Phys. Rev. D 77, 014034 (2008) [arXiv:0705.3079 [hep-ph]].

[35] H. Y. Cheng, C. K. Chua, K. C. Yang and Z. Q. Zhang, “Revisiting charmless hadronic B decays to scalar mesons,” Phys. Rev. D 87, 114001 (2013) [arXiv:1303.4403 [hep-ph]].

[36] J. Charles et al. [CKMfitter Group], Eur. Phys. J. C 41, 1 (2005) [hep-ph/0406184], updated results and plots available at: http://ckmfitter.in2p3.fr. M. Bona et al. [UTfit Collaboration], JHEP 0507, 028 (2005) and updated results from http://utfit.roma1.infn.it.

[37] J. J. Qi, Z. Y. Wang, X. H. Guo and Z. H. Zhang, “Study of localized CP violation in $B^- \rightarrow \pi^+\pi^+\pi^-$ and the branching ratio of $B^- \rightarrow \sigma(600)\pi^-$ in the QCD factorization approach,” Nucl. Phys. B 948, 114788 (2019) [arXiv:1811.10333 [hep-ph]].