Abstract | The immune system enables organisms to combat infections and to eliminate endogenous challenges. Immune responses can be evoked through diverse inducible pathways. However, various constitutive mechanisms are also required for immunocompetence. The inducible responses of pattern recognition receptors of the innate immune system and antigen-specific receptors of the adaptive immune system are highly effective, but they also have the potential to cause extensive immunopathology and tissue damage, as seen in many infectious and autoinflammatory diseases. By contrast, constitutive innate immune mechanisms, including restriction factors, basal autophagy and proteasomal degradation, tend to limit immune responses, with loss-of-function mutations in these pathways leading to inflammation. Although they function through a broad and heterogeneous set of mechanisms, the constitutive immune responses all function as early barriers to infection and aim to minimize any disruption of homeostasis. Supported by recent human and mouse data, in this Review we compare and contrast the inducible and constitutive mechanisms of immunosurveillance.

A major challenge for living organisms is to maintain homeostasis in response to changes in external and internal environments. These include alterations in nutrient and water supplies, physical stress, temperature changes, physiological stress, infections and malignancies. Through billions of years of evolution, the forms of life and biological processes that cope with these challenges in the most successful way have been selected. One challenge that all organisms have to deal with is the elimination of microorganisms and of abnormal or damaged cellular material. The ideal immune response would eliminate the potential threat and re-establish homeostasis without causing excessive damage to healthy cells and tissues. However, immune responses to infections are often disruptive and can cause marked tissue damage. Such responses are evolutionarily advantageous when the benefit of eliminating the challenge outweighs the risk of associated tissue damage and the requirement for regeneration. However, for potential challenges that occur frequently but rarely develop into serious homeostasis-altering threats, it is not desirable to mount systemic or potentially disruptive immune responses. In addition, vigorous immune responses are not desirable in organs and tissues that are particularly sensitive to immune-mediated damage, such as the brain. Therefore, the ideal immune response has checks and balances, which allow the organism to modulate the magnitude and duration of the response according to the nature of the threat caused by the challenge.

The mammalian immune system, as we understand it today, is induced mainly by two types of receptor systems, the germline-encoded pattern recognition receptors (PRRs), which initiate innate immune responses, and the antigen-specific receptors generated through gene rearrangement after antigen encounter, which initiate adaptive immune responses. The immune responses induced by PRRs, such as Toll-like receptors (TLRs), interact with those induced by antigen-specific receptors; this interaction is notably represented by dendritic cells, which rely on PRR-driven cues to initiate dendritic cell maturation for the stimulation of lymphocytes through antigen-specific receptors. However, the research literature contains numerous reports of host defence activities that occur independently of both PRR-based immunity and antigen-specific receptors, and emerging evidence suggests that several of these mechanisms have non-redundant roles in host defence in humans. Here we review the literature on this topic by focusing on constitutive immune mechanisms. On the basis of this analysis, and by integrating concepts previously reviewed, we propose that this constitutive layer of innate immunity exerts early host defence activities through specific molecular mechanisms and at the same time limits PRR activation as a specific feature.
Constitutive and inducible mechanisms

The innate immune system uses both constitutive and inducible mechanisms to eliminate infections and damaged self to maintain homeostasis (Fig. 1). Although the constitutive mechanisms have the advantage of providing an immediate response to a danger signal, they lack the potential to amplify the response. In addition, constitutive mechanisms consume energy to remain operative, and there are hence limits to how many of these can be maintained in any one organism. By contrast, inducible mechanisms such as those mediated through PRRs, as well as antigen-specific receptors, are activated only in response to stimuli and have the ability to amplify signals many times. Hence, inducible mechanisms can give rise to very strong and efficient immune responses, but can also lead to excess inflammation and immunopathology. Given their amplification potential, inducible immune mechanisms require tight control and negative regulatory systems.

The constitutive immune mechanisms can be divided into the chemical and physical barriers of the body, such as skin, saliva, stomach acid and urine flow, which are not the focus of this Review, and various molecularly defined mechanisms that control microbial infection and/or replication. Although these mechanisms have been known for many years, they have generally been considered to have only minor roles in the immune system, and evidence has been lacking as to their specific, non-redundant functions in host defence. Consequently, they have not received much attention in front-line immunology research. Here we discuss the constitutive innate immune responses in comparison with the better-described inducible innate responses triggered by PRRs. In addition, we present evidence suggesting that efficient action of constitutive innate immune mechanisms leads to both antimicrobial activity and mitigation of PRR-driven activities (Fig. 2).

PRR-activated inducible innate immune responses. PRRs detect pathogen-associated molecular patterns (PAMPs), microorganism-associated molecular patterns, host-derived danger-associated molecular patterns, and molecular signatures associated with homeostasis-altering molecular processes. These molecular patterns activate PRR signalling, which ultimately leads to the transcription of antimicrobial and proinflammatory genes. Downstream activities of PRR signalling include the production of type I interferon (interferon-α (IFNα) and IFNβ), IL-1β and tumour necrosis factor (TNF). These cytokines, in turn, activate antimicrobial and proinflammatory activities, as well as the maturation of antigen-specific adaptive immune responses.

Constitutive innate immune response

- **Amplitude of response**
- **Contribution to defence**
- **Energy consumption relative to contribution to fitness**

Inducible immune response

- **Amplitude of response**
- **Contribution to defence**
- **Energy consumption relative to contribution to fitness**

![Fig. 1 | Constitutive innate immune responses versus inducible immune responses.](chart)

Illustration of how constitutive and inducible immune responses vary over time during the course of a generalized infection, and their impact on host defence, energy consumption and host fitness. In the case of a sterilizing and resolving immune response, the additional energy consumption required by the inducible immune response is balanced by the re-establishment of homeostasis. By contrast, in the case of an immunopathological response, the energy that is consumed to mount an inducible response does not benefit the host and instead leads to tissue damage and disruption of homeostasis.
Constitutive innate immune mechanisms. Constitutive innate immune mechanisms respond to microbial activities, cellular stress and metabolic alterations by inducing antimicrobial effector functions. As there is most evidence for constitutive innate immune mechanisms that exert antiviral and antibacterial activities, these are the focus of this Review (Fig. 3). A large range of constitutive mechanisms of innate immunity have been identified, including restriction factors, antimicrobial peptides, basal autophagy and proteasomal degradation (Box 2; Table 1). Here we divide these mechanisms into two classes: those that target specific steps in microbial replication cycles, such as restriction factors, and those that lead to degenerative processes, such as autophagy.

The constitutive mechanisms that target specific steps in microbial replication function by blocking molecularly defined events that are essential for the replication of specific microorganisms but are dispensable for cellular fitness. By contrast, those mechanisms that operate through degenerative programmes target microbial or altered host molecules for recycling or degradation. The modes of action of representative examples from each of these mechanistic classes are described in the following sections.

Given the ability of constitutive immune mechanisms to exert antimicrobial activity, one consequence of their successful action is decreased levels of PAMPs. This, in turn, limits PRR activation and the downstream inflammatory response. Thus, constitutive immune mechanisms equip cells and tissues with a layer of defence that can fight infections immediately and hence potentially limit the requirement for inducible immune responses, such as type I interferon, IL-1β and other proinflammatory cytokines.

Targeting microbial replication

Direct inhibition of microbial replication is executed by molecules that interfere with specific steps in the replication cycle of a given microorganism. There are at least six mechanisms of action in this category: restriction factors that directly block a specific replication step; restriction factors that deplete molecules essential for replication; RNA interference (RNAi); antimicrobial peptides; soluble lectins; and metabolite-mediated inhibition of microbial replication (Table 1).

Restrictions factors. Restriction factors are antiviral proteins that target viral replication. Extensive studies, particularly of HIV-1 and herpesviruses, have led to the identification of numerous restriction factors that together target nearly all steps in the viral replication cycle. For example, APOBEC3 proteins belong to the family of cytidine deaminases, which catalyse the deamination of cytidine to uridine in single-stranded DNA, thus introducing potentially deleterious mutations into the HIV-1 genome. Likewise, tetherin is a membrane-bound protein that prevents the release of progeny HIV-1 particles from the cell surface. These two mechanisms provide examples of direct blockade of specific steps in the replication cycle. By contrast, SAM domain and HD domain-containing protein 1 (SAMHD1) blocks HIV-1 replication indirectly, by converting deoxynucleoside triphosphates into inorganic phosphate and 2'-deoxynucleoside,
In the nucleus of eukaryotic cells, ND10 bodies, membraneless, interchromatin structures in the nucleus of eukaryotic cells, have been described to be involved with ND10 bodies, which restrict viral gene expression by promoting processes that lead to the formation of nucleosome-like structures. IFI16 restricts viral replication in the nucleus mainly by interfering directly with transcription. New evidence suggests that this involves the ability of IFI16 to form DNA filaments, which reduces recruitment of RNA polymerase II (REF. 34), but also leads to recruitment of ND10 bodies, thus indicating that these two restriction systems might interact. The restriction factors discussed here are all constitutively expressed, although the expression of many of them is further increased by interferons (REF. 34,45). Tonic type I interferon signalling or constitutive activity of interferon regulatory factor 1 (IRF1) drives the basal expression of many constitutive restriction factors (REF. 46,47).

RNA interference. RNAi is another constitutive immune mechanism that directly controls viral replication. RNAi involves the processing of double-stranded RNA molecules by members of the Dicer nuclease family to 20–25-bp fragments, thus leading to the formation of the RNA-induced silencing complex (RISC), which blocks gene expression or translation through binding to target mRNAs. The ability of RNAi to directly block viral replication was first shown in plants (REF. 48) and was later also shown in insects and worms (REF. 49–51). For example, Caenorhabditis elegans and Drosophila melanogaster infected with Flock House virus activate antiviral defence mechanisms that depend on Dicer (REF. 52,53). This constitutive immune mechanism might have a more important role in lower organisms, but as some mammalian viruses do target the RNAi system, there may be a subdominant role for this primordial antiviral system in host defence in more evolved organisms (REF. 54). For example, Ebola virus VP35 and VP30 proteins interact with Dicer cofactors, and the hepatitis C virus core protein directly associates with Dicer (REF. 55,56).

Antimicrobial peptides. Antimicrobial peptides, including defensins and cationic peptides, contribute to the first line of defence against bacteria in the skin and at mucosal surfaces. They work by binding directly to bacterial membranes, thus perturbing membrane integrity and inhibiting microbial growth (REF. 57–59). These peptides are rich in both cationic and hydrophobic amino acids, and generally form amphiphilic helical structures, although this may not be the case for all antimicrobial peptides (REF. 60). This enables the peptides to interact with negatively charged bacterial surfaces through electrostatic interactions, thus triggering disruption of the bacterial membranes by pore-forming or non-pore-forming mechanisms (REF. 61). Many antimicrobial peptides, such as β-defensin 1, are constitutively expressed on epithelial surfaces, thus providing immediate antimicrobial action on infection (REF. 1). This is illustrated by the increased susceptibility to a broad range of bacterial infections in mice lacking cathelicidin antimicrobial peptide (CAMP) (REF. 62). Beyond their role in antibacterial defence, there is also evidence that antimicrobial peptides can disrupt viral particles, thus exerting antiviral activity (REF. 63,64). Similarly to the restriction factors, many antimicrobial peptides are expressed in both constitutive and inducible manners. This illustrates the general principle that different branches of the immune system can use overlapping effector functions (BOX 2).

Soluble lectins. Many microorganisms have extensive and more complex glycan patterns than mammalian cells, and these sugars can therefore be used as a means to distinguish self from non-self. There are four classes of soluble lectins carrying out this function, namely collectins, ficolins, galectins and pentraxins (REF. 65). On recognition of non-self glycans, soluble lectins can exert host defence activities indirectly through complement activation and opsonization, as discussed later, or directly through aggregation and neutralization. For example, the collectin surfactant protein D (SP-D) has been reported to bind directly to highly glycosylated viruses such as HIV-1 and influenza A virus and neutralize their infectivity (REF. 66,67). Similarly, pentraxin 3 directly binds influenza A virus particles and neutralizes virus infectivity (REF. 68). Importantly, SP-D-deficient mice have impaired clearance of influenza A virus and increased production of proinflammatory cytokines in response to viral challenge (REF. 69). In addition to viruses, SP-D also binds and agglutinates Streptococcus pneumoniae (REF. 70), thus suggesting that soluble lectins might also have a role in the immediate inactivation of bacteria.
Aerobic glycolysis

The process by which glucose is converted to lactate in the presence of oxygen to produce energy in the form of ATP.

Metabolite-mediated inhibition. A final example of constitutive immune mechanisms that directly interfere with microbial growth is provided by metabolites that block pathogen replication, and perhaps the best example of which is lactate [106]. Many viral infections are characterized by a shift of host cellular metabolism to aerobic glycolysis, which leads to the production of lactate [106]. Viral infections also induce fatty acid synthesis and intermediate molecules in these pathways. These include palmitic acid and oleic acid, which have been shown to have antiviral activity [107,108]. The mechanisms by which lactate and other metabolites block viral replication remain to be determined, but the antiviral activity of lactate illustrates a general principle that select molecules accumulating during alterations of cellular homeostasis can interfere with microbial replication.

A second form of metabolite-dependent constitutive host defence is mediated through nutritional depletion and starvation of pathogens. For example, natural resistance-associated macrophage protein 1 (NRAMP1; also known as SLC11A1) is a metal ion transporter that transports divalent cations from vacuoles into the cytoplasm, hence depleting factors from vacuoles that are essential for the growth of intracellular pathogens [89]. The gene encoding NRAMP1 was shown to contribute to defence against, for example, Mycobacterium tuberculosis, Salmonella enterica subsp. enterica serovar Typhimurium and Leishmania donovani, which was later shown to be mediated by the reduction of metal ion concentrations inside microorganism–containing vacuoles [89]. A second example of nutritional depletion is provided by lactoferrin, which is present in various secretory fluids. Lactoferrin is a highly cationic molecule that shows antimicrobial activity, in part, by binding and sequestering iron from pathogenic microorganisms [80]. Lactoferrin contributes to host defence in a non-redundant manner, as lactoferrin-deficient mice have increased susceptibility to Streptococcus mutans–induced dental caries, for example [80].

Degenerative mechanisms

The second class of constitutive innate immune mechanisms functions through the degradation of danger molecules and elimination of unwanted cells. This class of mechanisms includes autophagy, phagocytosis, proteasomal degradation and nucleases (TABLE 1). Collectively, degenerative programmes function to continually limit danger signals, allowing for the rapid elimination of unwanted molecules without the activation of energy-consuming amplificative induced immune responses.

Autophagy and phagocytosis. Autophagy and phagocytosis execute the digestion of intracellular and extracellular microorganisms, respectively, through membrane encapsulation followed by chemical and enzymatic degradation [85,86]. Pathogens are shunted into these pathways through the recognition of polyubiquitin chains or glycans inside damaged vacuoles in the case of autophagy [80,87], and through complement coating of microorganisms in the case of phagocytosis [88]. In the case of autophagy, a large number of ubiquitin E3 ligases have been identified that coat viral and bacterial surfaces with ubiquitin [88,89], thus targeting microorganisms for loading into autophagosomes through interaction with the autophagosome-associated protein LC3 (also known as MAP1LC3) [88] (FIG. 4b). This targeting mechanism involves E3 ligases, including SMURF1 and LRSAM1 (REFS 7,90,91), as well as the ubiquitin-binding selective autophagy receptors p62 (also known as SQSTM1), optineurin and NDP52 (also known as CALCOOC2) [84,85]. An alternative mechanism for sensing of vesicle-damaging pathogens has been identified that involves damaged vesicles exposing glycans in the cytoplasm for sensing by galactin 8, which links to autophagy via NDP52 (REF 89). This triggers phagophore formation in the vicinity of cytosolic bacteria [81]. Autophagy has important roles in the control of infection. For example, defective autophagy leads to increased susceptibility to infection with Sindbis virus in mice [89]. In addition, stimulation of autophagy in primary human macrophages mediated protection against M. tuberculosis infection [93]. However, mice defective in autophagy do not have impaired antimycobacterial defence in vivo, which indicates that the precise role of autophagy requires further investigation [93]. Third, herpes simplex virus type 1 specifically interferes with autophagy, which is essential for neuropathogenicity of the virus [81].

Complement-mediated phagocytosis involves specific recognition of complement components bound to the surface of microorganisms by the corresponding complement receptors on phagocytes. Activation of the complement system, for example after sensing of glycans by the lectin pathway, leads to the formation of C3 convertase, eventually generating C5b, which binds to complement receptors, thus inducing phagocytosis [90]. Mice devoid of the lectin-based complement pathway have increased susceptibility to Staphylococcus aureus infection and impaired bacterial phagocytosis [82]. Furthermore, several bacteria, including Streptococcus pyogenes, inhibit complement-mediated phagocytosis [100].

A third degenerative mechanism for the degradation of membrane-encapsulated extracellular material is LC3–associated phagocytosis (LAP), which uses components from both the phagocytosis and autophagy pathways [84]. LAP is involved in the clearance of extracellular pathogens and dead cells [102,103], and LAP-deficient mice fail to clear Aspergillus fumigatus infection [103]. Thus, autophagy, phagocytosis and LAP are important systems for immediate host defence.

Proteasomal degradation. The proteasome is a cytoplasmic protein complex that degrades proteins by proteolysis [104]. Proteins to be degraded are tagged by K48-linked polyubiquitylation, attracted to the proteasome, unfolded into polypeptides and then degraded [104]. The proteasomal degradation pathway also contributes to immediate defence against infecting pathogens. For example, viruses can be detected by the ubiquitin E3 ligase TRIM21 through binding to antibody-bound viral capsids, which links to downstream proteasomal degradation [105]. This process is involved in the elimination of infecting viral capsids from the cytoplasm and contributes to antiviral defence [85–107]. Other studies have shown that the viral RNA-dependent RNA polymerase of
a Viral infection

b Bacterial infection
The presence of bacteria changes the local microenvironment, for example through the accumulation of hydrophobic and charged bacterial surfaces or alteration of cellular metabolism. This activates antibacterial effectors independently of pattern recognition receptors, including inactivation by soluble lectins and antimicrobial peptides, nutritional depletion by natural resistance-associated macrophage protein 1 (NRAMP1) and lactoferrin, and bacterial degradation by phagocytosis and basal autophagy. dsDNA, double-stranded DNA; RISC, RNA-induced silencing complex; ROS, reactive oxygen species; viRNA, virus-derived small interfering RNA.

Fig. 3 | Overview of the regulation of microbial replication by constitutive innate immune mechanisms. a | Constitutive innate immune mechanisms and viral infection. The accumulation of specific viral molecular structures (such as double-stranded RNA (dsRNA) or capsid) and cellular stress responses (such as autophagy) activate constitutive–latent mechanisms with direct antiviral activity, independently of pattern recognition receptors. Some of the antiviral effector functions target microbial replication by blocking specific steps in the replication cycles of viruses; these effectors include soluble lectins, antimicrobial peptides, restriction factors, RNA interference (RNAi) and metabolites. Other antiviral effectors of the constitutive response function through the degradation of virus particles; these include nucleases such as TREDX1, which degrades viral DNA in the cytoplasm, and RNase L, which degrades viral RNA, as well as autophagy and proteasomal degradation. Viruses can be targeted for proteasomal degradation by the ubiquitin E3 ligase TRIM21, which binds to antibody-attached viral capsids. b | Constitutive innate immune mechanisms and bacterial infection. The presence of bacteria changes the local microenvironment, for example through the accumulation of hydrophobic and charged bacterial surfaces or alteration of cellular metabolism. This activates antibacterial effectors independently of pattern recognition receptors, including inactivation by soluble lectins and antimicrobial peptides, nutritional depletion by natural resistance-associated macrophage protein 1 (NRAMP1) and lactoferrin, and bacterial degradation by phagocytosis and basal autophagy. dsDNA, double-stranded DNA; RISC, RNA-induced silencing complex; ROS, reactive oxygen species; viRNA, virus-derived small interfering RNA.

Nucleases. The cytoplasm contains RNAses and DNAses that eliminate unwanted nucleic acid species, including viral nucleic acids, and these enzymes can thereby contribute to sterilization of the cytoplasm. RNase L is a latent cytoplasmic exoribonuclease that is activated by 2′–5′ oligoadenylates produced by OASs. Although OASs are highly interferon inducible, they are also expressed at a basal level and hence induce basal RNase L activity. Importantly, this activity has been suggested to contribute to basal restriction of coronaviruses in myeloid cells, and hence to protect other cell types from infection. TREX1 is a cytoplasmic exodeoxyribonuclease that eliminates DNA from the cytoplasm. Very few microorganisms have free DNA as part of their productive replication cycle, but exogenous and endogenous retroviruses have a cytoplasmic DNA step that is sensitive to degradation by TREX1. Consequently, TrelX1−/− mice have increased levels of endogenous retroviral DNA in the cytoplasm, which indicates that TREX1 has a role in limiting retroviral infection and hence maintaining genome integrity.

Limiting inflammatory responses. Immune responses induced by PRRs and by antigen-specific receptors are often highly potent and stimulating. However, they may also be relatively disruptive and can be associated with tissue damage and the requirement for significant tissue repair and energy consumption. Many of the constitutive immune mechanisms discussed here not only interfere with microbial replication but also have negative effects on PRR activity (Table 1). This raises the possibility that an overarching function of the constitutive immune mechanisms is to both eliminate danger and limit the use of PRR-driven activities. At the mechanistic level, this immunoregulatory function of the constitutive mechanisms can be exerted in two qualitatively different ways. The first is through the direct effect of their antimicrobial activity on decreasing levels of PAMPs. The second is through specific inhibition of PRR signalling.

Reduction of PAMP levels. Many studies have shown that PRR activation requires PAMP levels to be above a certain threshold. Above this threshold, PRRs are activated in a concentration-dependent manner until saturation is reached. Therefore, constitutive immune mechanisms that reduce PAMP levels will limit or even prevent PRR activation (Fig. 2a). For example, mice deficient in the restriction factor APOBE3C, which has antiretroviral activity, have higher viral loads after infection with murine leukemia virus and corresponding higher levels of reverse viral transcripts and downstream interferon induction through the cyclic GMP–AMP synthase–stimulator of interferon genes pathway. Similarly, SAMHD1 activity in vivo controls lentivirus load and limits virus-induced production of interferons in myeloid cells. In addition, SAMHD1 deficiency leads to increased expression of costimulatory molecules and T cell activation on lentiviral infection, which suggests that the constitutive reduction of PRR activation by SAMHD1 limits not only the expression of innate immune cytokines but also downstream adaptive immune responses. A third example is provided by the observation that expression of Drosophila Dicer in mammalian cells leads to decreased induction of IFNβ by double-stranded RNA, most likely owing to the digestion of immunostimulatory RNA into shorter 20–25-bp RNA species, that activate PRRs only inefficiently. Finally, constitutive innate immune mechanisms can also reduce PRR activity by lowering the concentration of PAMPs. PAMPs that have immunostimulatory activity. For example, lactoferrin binds CpG DNAs and inhibits their ability to activate TLR9.

Inhibition of PRR signalling. In addition to limiting the levels of PAMPs, some constitutive mechanisms have been reported to target PRR activity at the signalling level (Fig. 2a). For example, autophagy negatively regulates signalling by the RIG-I–MAVS pathway (retinoic acid-inducible gene I protein–mitochondrial antiviral signalling protein pathway) and by the cyclic GMP–AMP synthase–stimulator of interferon genes pathway; in the former case by limiting reactive oxygen species–mediated amplification of signalling and by LC3-dependent MAVS inactivation, and in the latter case through degradation of STING. In line with this, defective autophagy as a result of ATG16L1 deficiency predisposes to STING-dependent intestinal pathology in mice, and ATG5 deficiency selectively in...
Box 2 | Overlap between constitutive and inducible immune responses

In most respects, constitutive and inducible immune responses operate through different principles; however, in certain cases, their downstream effector activities may overlap. This is to be expected given that all of these responses use mechanisms from the same ‘evolutionary toolbox’ to achieve optimal protection of the host. For example, autophagy can be activated during infection and upon sterile danger134,139. Similarly, phagocytosis can be activated by both Toll-like receptor (TLR)-dependent and TLR-independent mechanisms175–177. Moreover, many restriction factors are expressed at basal levels to exert immediate antiviral activity, but are also induced transcriptionally in response to stimulation with type I interferon129,180. Nevertheless, despite these minor areas of overlap between constitutive immune mechanisms and the pattern recognition receptor (PRR)-induced immune responses, the differences are more pronounced. The key difference between constitutive immune mechanisms and PRR-induced immunity is that the former mechanisms are all activated through pre-existing molecules to directly eliminate danger, whereas the latter system functions mainly through inducible transcription-dependent proinflammatory programmes. In addition, inducible innate responses can amplify adaptive responses, whereas constitutive innate responses do not amplify inducible innate responses.

Constitutive immunity in human health

We propose that constitutive immune mechanisms enable cells and organisms to fight infections and eliminate endogenous abnormalities in a non-inflammatory manner. Therefore, an important benefit of these mechanisms may be to increase the threshold for development of clinically overt signs of disease on exposure to infections or endogenous danger. Studies of the associations between single-nucleotide polymorphisms and infections have shown that restriction factors, antimicrobial peptides and autophagy have important roles in antimicrobial defence111,112. Constitutive immune mechanisms may be particularly active in the protection of tissues that are frequently exposed to pathogens, such as epithelial cells in the airways and the gut, or tissues that are particularly vulnerable to immunopathology, such as the brain. In favour of this idea, RNA lariat debranching enzyme 1 (DBR1) and small nuclear RNA, H/ACA box 31 (SNORA31) were recently shown to have non-redundant, interferon-independent roles in the prevention of viral brainstem encephalitis and herpes simplex encephalitis, respectively113,114. The mechanisms through which they exert their antiviral activity remain to be determined. Reports have shown that autophagy is an antiviral mechanism in the brain in mice115,116. In addition, some cell populations, including stem cells, seem to use constitutive immune mechanisms to eliminate danger without losing key functions, such as self-renewal and differentiation capacity, that are known to be impaired by PRR-based immunity117,118.

An important question related to human immunology is how individuals with a loss-of-function mutation in a constitutive immune mechanism may present clinically. Deficiency of a mechanism that is expressed in specific organs or cell types might lead to a higher frequency of clinical infections by a subset of microorganisms that are normally controlled by the defective mechanism. This seems to be the case for defects in DBR1, which confer susceptibility to disease caused by infections with herpes simplex virus type 1, influenza virus or norovirus in the brainstem119. The impact of deficiencies in constitutive immune mechanisms might not be limited to acute infections and could also include chronic and latent infections. In support of a link between such defects and increased inflammation, patients with inborn defects in DNA repair, elimination of extranuclear DNA or degradation of misfolded proteins develop autoinflammatory neutrophils exacerbates M. tuberculosis immunopathology without affecting bacterial load109. As a second example, lactate, which is produced during aerobic glycolysis and has virus-restricting activity110,111, also directly inhibits MAVS activity; thus lactate both reduces levels of viral PAMPs and has a negative regulatory function to inhibit PAMP-driven signalling and interferon expression128. Third, an engineered amphipathic-helical antimicrobial peptide was found to block TLR4 signalling through the TRIF pathway112. This occurs by the inhibition of TLR4 endocytosis, which is an essential step for the engagement of TRIF from endosomal compartments.

Collectively, the current literature suggests that constitutive immune mechanisms reduce PRR activation through a range of mechanisms and, therefore, that these constitutive mechanisms impose a threshold and negative regulatory activity on the amplificative innate and adaptive immune responses (FIG. 2b). We propose that rapid, molecularly specific and non-amplificative responses to challenges provided by constitutive immune mechanisms are beneficial for achieving optimal host defence with minimal immunopathology.

Constitutive immunity beyond infection

Our main focus here has been on infections. However, constitutive immune mechanisms are also involved in the elimination of sterile danger. For example, DNA damage in the nucleus and the accumulation of DNA in extranuclear compartments are eliminated by the DNA damage response and specific DNases180, respectively; the accumulation of misfolded proteins leads to the formation of aggresomes, which are cleared by selective autophagy177,132; excessive accumulation of reactive oxygen species leads to death of the oxygen-stressed cells133; and free cholesterol is converted into an ester derivative by lecithin–cholesterol acyltransferase, thus enabling transport to the liver by high-density lipoprotein and eventual degradation134. Defects in these constitutive and latent danger-eliminating mechanisms lead to the accumulation of danger-associated molecular patterns and activation of PRR-based immunity. For example, in cells with defects in either the DNA damage response or extranuclear DNases, the accumulation of DNA induces type I interferon production through the cGAS–STING pathway135–138. Similarly, defective elimination of protein aggregates or cholesterol leads to the induction of IL-1β production through activation of the NLRP3 inflammasome139,140.
diseases, including Aicardi–Goutières syndrome and proteasome-associated autoinflammatory syndromes, which are characterized by type I interferon-dependent autoinflammation and are termed ‘interferonopathies’. Therefore, a loss of function in constitutive immune mechanisms can lead to selective susceptibility to specific infections or to infections in specific organs. Likewise, such deficiency might lead to the accumulation of PAMPs, microorganism-associated molecular patterns, danger-associated molecular patterns and/or

Type of effector	Examples	Trigger	Target microorganisms	Evidence for control of inflammatory responses	Refs
Targeting microbial replication					
Restriction factors	BST2, YBX1, IFITMs	Specific viral replication events	HIV-1, HCV, HSV-1, VSV, RSV	Increased IL-6 and IL-1β expression in the lungs of RSV-infected ifitm1−/− mice; increased constitutive infiltration of monocytes and macrophages in the kidney in Ybx1−/− mice	40,44, 154–156
	SAMHD1, APOBEC3	Modulation of nucleic acid availability and/or function	HIV-1, vaccinia virus, HSV-1, murine herpesvirus 68, parovirus	Increased spontaneous and lentivirus-induced interferon and ISG expression in Samhd1−/− mice; increased IFNβ expression in Apcob3−/− mice infected with murine leukemia virus	38,41,129, 123,137,138
RNAi	RISC	dsRNA	Cucumovirus (plants), Flock House virus (worms), cricket paralysis virus (flies)	Introduction of Drosophila Dicer-2 in mammalian cells reduced dsRNA-induced IFNβ expression	50–52,199
Antimicrobial peptides	β-Defensins, cathelicidin	Negatively charged surfaces	Salmonella enterica subsp. enterica serovar Typhimurium, Escherichia coli, Shigella spp., HIV-1	LL37 inhibits DNA-sensing inflammammasomes in psoriatic skin; an engineered antimicrobial peptide inhibits TRIF signalling through the TRIF pathway	58–60,205, 129,160
Soluble lectins	Collectins, ficolins, galectins, pentraxins	Glycans	HIV-1, influenza A virus, Streptococcus pneumoniae	SP-A inhibits LPS-induced TR4 signalling through the TRIF pathway	66–72,201
Metabolites	Lactate, palmitic acid	Metabolic alterations	HIV-1, HSV-1, Zika virus, VSV	Ldha−/− mice express increased levels of type I interferon on infection with RNA viruses	71,74,77, 102,123, 167,168
NRAMP1, lactoferrin	Iron depletion	Mycobacterium tuberculosis, S. Typhimurium, Leishmania donovani, Streptococcus mutans	Lactoferrin binds CpG DNA and impedes stimulation through TLR9	80,81, 84,123	
Degenerative mechanisms					
Autophagy	–	Viral proteins, organelle dysfunction, protein aggregates	M. tuberculosis, S. Typhimurium, Sindbis virus	Increased interferon expression and inflammammasome activation in autophagy-defective cells; excess IL-1β production and lung inflammation in autophagy-defective mice after infection and sterile challenge	52,53,69, 126,104
Phagocytosis	–	Opsonization	Staphylococcus aureus, Salmonella spp., Mycobacteria spp., Aspergillus spp.	Patients with CGD have increased inflammammasome activity and IL-1β production	105,109
LC3-associated phagocytosis	–	Not known	S. Typhimurium, Listeria monocytogenes, Burkholderia pseudomallei	LC3-deficient mice fail to clear dead cells and develop lupus-like inflammatory disease	102,129, 103,108
Proteasomal degradation	–	Cytosolic capsids and capsid–IgG complexes	Adenovirus, turnip yellow mosaic virus	Patients with PRAAS-associated mutations in proteasome genes have strong interferon signatures	105–107, 111,160,198
Nucleic acid degradation	–	Cytosolic RNA and DNA	Endogenous retroviruses, murine coronavirus	Patients with defective TREX1 have increased interferon expression and develop Aicardi–Goutières syndrome	113,161,157

APOBEC3, apolipoprotein B mRNA-editing complex 3; BST2, bone marrow stromal antigen 2 (also known as tetherin); CGD, chronic granulomatous disease; dsRNA, double-stranded RNA; HCV, hepatitis C virus; HSV-1, herpes simplex virus type 1; IFITMs, interferon-induced transmembrane proteins; ISG, interferon-stimulated gene; Ldha, lactate dehydrogenase A; LPS, lipopolysaccharide; NRAMP1, natural resistance-associated macrophage protein 1; PRAAS, proteasome-associated autoinflammatory syndromes; RISC, RNA-induced silencing complex; RNAi, RNA interference; RSV, respiratory syncytial virus; SAMHD1, SAM domain and HD domain-containing protein 1; SP, surfactant protein; TLR, Toll-like receptor; VSV, vesicular stomatitis virus; YBX1, Y-box binding protein 1.
Restriction factors that control herpesvirus and retrovirus infections, including their targets in the viral replication cycle. Restriction factors interfere with viral replication by either blocking a specific and essential step in the viral replication cycle (for example, viral gene transcription or release of progeny virus) or depletion of factors that are essential for replication (such as deoxynucleoside triphosphates). Blockade of viral and bacterial replication by autophagy. Various ubiquitin E3 ligases (such as SMURF1, LRSAM1 and TRIM23) and ubiquitin-binding proteins (such as p62, optineurin and NDP52) have been identified to conjugate ubiquitin to microbial surfaces, which targets them for loading into autophagosomes. Also, cytosolic exposure of glycans by pathogen-damaged vesicles can be recognized by galectin 8 for targeting to autophagosomes. APOBEC3, apolipoprotein B mRNA-editing complex 3; BST2, bone marrow stromal antigen 2 (also known as tetherin); DBR1, RNA lariat debranching enzyme 1; IFI16, interferon-γ-inducible protein 16; IFITM, interferon-induced transmembrane protein; MTOC, microtubule-organizing centre; ND10, nuclear domain 10; SAMHD1, SAM domain and HD domain-containing protein 1; SIRT6, sirtuin 6; SNORA31, small nucleolar RNA, H/ACA box 31.
NRF2–KEAP1
Nuclear factor erythroid 2-related factor 2 (NRF2) senses oxidative stress, whereupon it is released from Kelch-like ECH-associated protein 1 (KEAP1) to translocate to the nucleus and induce gene expression.

Hypoxia-inducible factor 1α
A transcription factor that is activated by hypoxia to induce the expression of genes with hypoxia-responsive elements in their promoters.

Bone morphogenetic protein–SMAD
Bone morphogenetic proteins are growth factors that signal through SMAD proteins to induce gene transcription.

Box 3 | A new concept of damage-limiting immune mechanisms?
In addition to the constitutive immune mechanisms described in this Review, several pathways are activated in response to infections and sterile challenge that function independently of pattern recognition receptors (PRRs) and antigen-specific receptors to control infection. These include the NRF2–KEAP1, hypoxia-inducible factor 1α and bone morphogenetic protein–SMAD pathways. These pathways differ from the constitutive immune mechanisms by engaging transcriptional programmes to execute their activities. Some of these pathways have also been reported to exert negative control of PRR signalling, which shows that they share both antimicrobial and immunoregulatory functions with the constitutive immune mechanisms. For example, NRF2-deficient mice have increased susceptibility to certain viral infections, and NRF2 also negatively regulates cyclic GMP–AMP synthase (cGAS)–stimulator of interferon gene (STING) signalling. As we gain more information about the actions of constitutive immune mechanisms and PRR-independent transcriptional pathways in early host defence, we believe that the immunological community should consider whether these diverse mechanisms share features that distinguish them from other immune pathways. It is possible that the constitutive immune mechanisms described in this Review are part of a larger group of damage-limiting immune mechanisms that can be defined by fulfilling all of the following criteria:

1. Function independently of PRRs and antigen-specific receptors
2. Respond to the presence of specific microbial or host stress-related molecules
3. Eliminate danger in a non-inflammatory manner, and limit PRR activation by removing PRR ligands and/or inhibiting PRR signalling
4. Eliminate danger through specific effector functions that target defined host or microbial structures and activities

Whereas the physical and chemical barrier functions of the immune system fulfill criteria 1 and 3, they do not satisfy criteria 2 and 4. Similarly, PRRs and antigen-specific receptors fulfill criteria 2 and 4, but do not fulfill criteria 1 and 3. Although it is speculative at present, we think that the idea of damage-limiting immune mechanisms may serve as a useful guide for future experimental and clinical research.

Outlook
In this article, we have described the role and mode of action of a large panel of constitutive mechanisms used by the immune system to exert immediate control of infections and endogenous dangers independently of the inducible mechanisms that are activated through PRRs and antigen-specific receptors. Although many such constitutive responses have been known for years, greater understanding of the mechanisms involved and renewed interest in fields such as restriction factor biology and immunometabolism are spurring further work in the area. With the identification of constitutive mechanisms that have non-redundant roles in host defence, we now know that these immune mechanisms are not just redundant, non-specific players in immunology. This should stimulate interest in understanding the roles played by constitutive immune mechanisms in host defence in vivo, which might include the identification of new primary immune disorders. Improved knowledge of the host cell type and tissue specificities of constitutive immune mechanisms in relation to susceptibility to infections could greatly improve our understanding of human immunology. Such work will start to provide answers to the fundamental question of how the immune system determines the degree of threat caused by an infection and balances that with the appropriate strength of the immune reaction.

Finally, as we gain further insights into the various host responses that are activated during immunological challenge, it will be interesting to explore the idea that the immune system has a defensive layer of activities that have been selected to eliminate danger without engaging the PRR system. In this respect, it is interesting to note that in addition to the constitutive mechanisms described in this Review, there are various sensing systems that use transcriptional programmes to induce host defence independently of PRRs and with the ability to control inflammation. They include the NRF2–KEAP1, hypoxia-inducible factor 1α and bone morphogenetic protein–SMAD pathways.

In addition, the constitutive host defence exerted by commensal bacteria through several mechanisms, including niche competition, warrants more attention. With more and more data emerging on the importance of constitutive mechanisms in immunology, there is a need to understand this phenomenon in more detail. Such work may advance our understanding of one of the most interesting questions in immunology, namely how to eliminate danger in a rapid, efficient and specific manner without causing excess damage to the host.

Published online 11 August 2020
11. Zhang, S. Y. et al. Inborn errors of RNA lariat metabolism in humans with brachio muscular viral infection. Cell 172, 952–965 (2018).

12. Laflaie, F. G. et al. Human SNORA31 variations impact miRNA expression. J. Clin. Invest. 126, 5597–5606 (2016).

13. Nish, S. & Medzhitov, R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 34, 629–636 (2011).

14. Ausubel, F. M. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6, 975–979 (2005).

15. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

16. Laston, A. & Masters, S. L. Homeostasis-altering molecular processes as mechanisms of inflammatory activation. Nat. Rev. Immunol. 17, 208–214 (2017).

17. Lemaire, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene caspase spätzle/Toll/cactus controls the potent antimicrobial activity in Drosophila adults. Cell 86, 973–986 (1996).

18. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C3H/HeN mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

19. Crov, J. Y. & Marel, N. Ascari-Goutieres syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).

20. Dinarello, C. A., Simon, A. & van der Meer, J. W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 635–652 (2012).

21. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edde, S. & Mira, C. Recognition of commensal microbe by toll-like receptors is required for intestinal homeostasis. Cell 118, 239–241 (2004).

22. Bartetz, E. S. et al. Herpesvirus latency confers protective immunity to bacterial infection. Nature 447, 526–529 (2007).

23. Magee, I., Durbin, R. E. B. & Levy, D. E. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. J. Immunol. 170, 717–715 (2004).

24. Baurandt, F. G. et al. Cutting edge: NF-kappaB activation by the metalloproteinase matrilysin cooperatively to repress herpesvirus infection. J. Virol. 87, 2174–2185 (2013).

25. Merki, P. E. & Knipe, D. M. Role for a filamentous RNA conferring protection against herpes simplex virus. Science 336, 1040–1043 (2005).

26. Galiana-Arnoux, D., Dostert, C., Schneemann, A., Izui, K., Luecke, S. et al. cGAS is activated by DNA in a length-dependent manner. J. Exp. Med. 206, 1133–1145 (2009).

27. Lim, J. K. et al. Genetic variation in OAS1 is a risk factor for recurrent interstitial cystitis in white Nile virus in man. PLoS Pathog. 5, e1000521 (2009).

28. Li, H. et al. Identification of a Sogner’s syndrome susceptibility locus on chromosome 18p11.1 that influences immune switching, protein expression, and responsiveness to type I interferons. PLoS Genet. 13, e1006820 (2017).

29. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

30. This work identifies SAMHD1 as an HIV-1 restriction factor through a mechanism dependent on the phosphodiesterase activity of the enzyme.

31. Garcia, C. R., Chaudhuri, B., Sahay, S., Stiggelbout, B., Bauernfeind, F. G. et al. Cutting edge: NF-kappaB activation by the metalloproteinase matrilysin cooperatively to repress herpesvirus infection. PLoS Pathog. 8, e1002698 (2012).

32. Orvedahl, A. et al. HSV-1 ICPS5 s confers neurovirulence by targeting the Belrin1 autophagy protein. Cell Host Microbe 1, 23–35 (2007).

33. Harris, R. S., Lim, J. K. & Evans, D. T. The regulation of human cytomegalovirus replication. J. Virol. 87, 357–382 (2012).

34. Glass, M. & Everett, R. D. Components of promyelocytic leukemia bodies (ND10) act cooperatively to repress herpesvirus infection. J. Virol. 71, 695–691 (2003).

35. Brien, J. D. et al. Interferon regulatory factor-1 (IRF-1) promotes T cell immune responses against West Nile virus infection. PLoS Pathog. 7, e1002250 (2011).

36. Zhou, R. & Rana, T. M. RNA-based mechanisms for Dicer-2 in host defense against RNA viruses in drosophila. Science 326, 950–952 (1999).

37. Casals, C., Garcia-Jofreja, B. & Minutti, C. M. Soluble defense collagens: quelling up immune threats. Mol. Immunol. 41, 304–309 (2004).

38. Meschi, J. et al. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication. J. Gen. Virol. 86, 3097–3107 (2005).

39. Hartshorn, K. L. et al. Reduced inflammation virus neutralizing activity of human natural trimers of surfactant protein D. Respir. Res. 8, 9 (2007).

40. Reading, P. C. et al. Antiviral activity of the long chain pentraxin PTX3 against influenza viruses. J. Immunol. 180, 5391–5398 (2008).

41. LeVine, A. M., Whitsett, J. A., Hartshorn, K. L., Crouch, E. C. & Korthof, T. R. Surfactant protein D enhances clearance of influenza virus in lung in vivo. J. Immunol. 167, 5868–5873 (2001).

42. Joubriot, R. et al. Binding and agglutination of Streptococcus pneumoniae by human surfactant protein D (SP-D) vary between strains, but SP-D fails to enhance killing by neutrophils. Infect. Immun. 72, 709–716 (2004).

43. Isaacz, C. E. & Xu, W. Theaflavin-3,3’-digallate and lactic acid combinations reduce herpes simplex virus infectivity. Antimicrob. Agents. Chemother. 57, 3809–3813 (2013).

44. Tyssen, D. et al. Anti-HIV-1 activity of lactic acid in human cervicovaginal fluid. mSphere 3, e00055 (2018).

45. Sanchez, E. L. & Lagoufio, M. Viral activation of cellular metabolism. Virolology 479, 480–609 (2015).

46. Munder, G. et al. Antigen presentation of viral peptides and CD8+ T cells in the skin from invasive bacterial infection. J. Immunol. 168, 10910–10915 (2002).

47. Ludecke, S. & Malo, D. et al. cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 18, 1707–1715 (2017).

48. Gehrig, S. et al. Identification of modifications in microbial, native RNA that suppress immunostimulatory activity. J. Exp. Med. 209, 225–233 (2012).

49. Rhee, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with type I interferon signaling. Nat. Genet. 46, 503–509 (2014).

50. Kagan, J. C., Maguill, V. G. & Wu, H. SMOGs: supercomplex organizing centers that control innate immunity. Nat. Rev. Immunol. 14, 821–826 (2014).

51. Hammerschmidt, J. A. et al. Negative regulation of TLR signaling in myeloid cells—implications for autoimmune diseases. Immuno. Rev. 269, 212–227 (2016).

52. Carey, C. M. et al. Recurrent loss-of-function mutations result in reduced viral activity in pigs. Cell Host Microbe 25, 356–354 (2019).

53. Lim, J. K. et al. Genetic variation in OAS1 is a risk factor for recurrent interstitial cystitis in white Nile virus in man. PLoS Pathog. 5, e1000521 (2009).

54. Li, H. et al. Identification of a Sogner’s syndrome susceptibility locus on chromosome 18p11.1 that influences immune switching, protein expression, and responsiveness to type I interferons. PLoS Genet. 13, e1006820 (2017).
84. Velsam, S. K., Markowitz, K., Fine, D. H. & Velliyagounder, K. Human lactoferrin protects against Streptococcus mutans-induced caries in mice. Oral Dis. 22, 148–154 (2016).
85. Levin, B., Mizrak, E. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 325–335 (2011).
86. Lim, J. Y., Grinstein, S. & Roth, Z. Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Front. Cell. Infect. Immun. 12, 373 (2019).
87. Thurston, T. L., Wandel, M. P., von Muhlenin, N., Foeglein, A. & Randow, F. Galexin B targets damaged vesicles for autophagy to defend cells against bacterial and viral pathogens. Proc. Natl Acad. Sci. USA 105, 1014–1019 (2008).
88. Gros, P., Milder, F. J. & Janssen, B. J. Complement driven by conformational changes. Nat. Rev. Immunol. 10, 589–599 (2010).
89. Orvedahl, A. et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–127 (2010).
90. This study identifies an essential role for autophagy in antiviral defence in vitro and in vivo in mice.
91. Sparrer, K. M. J. et al. TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat. Microbiol. 2, 1543–1557 (2017).
92. Franco, L. H. et al. The ubiquitin ligase Smurf1 mediates the antiviral activity of autophagy upon viral infection through capsid inactivation. Nat. Cell. Biol. 19, 228–233 (2017).
93. Wang, Y. & Le, W. D. Autophagy and ubiquitin-proteasome system interaction: roles in innate immunity, anti-viral defense and viral infection. Nat. Rev. Immunol. 18, 421–434 (2018).
94. These authors identify an important role for the ubiquitin–proteasome pathway in cytotoxic mechanisms of capsvirus.
95. Tam, J. C., Bigdoff, S. R., McEwan, A. W. & James, L. C. Intracellular sensing of complement C3 activates cell death and autophagy. J. Exp. Med. 201, 895–907 (2005).
96. Bottermann, M. et al. Complement C4a prevents viral infection through capsid inactivation. Cell Host Microbe 25, 617–629 e617 (2019).
97. This work provides the first description of autophagy as an antibacterial mechanism.
98. Ruckdeschel, K. et al. The LRR and RING domain protein RAMP2 regulates the cytotoxicity of a DNA-demethylating drug. Proc. Natl Acad. Sci. USA 116, 5071–5076 (2019).
99. Lemoine, J. et al. The ubiquitin-proteasome system: an integrated antimicrobial model peptide that suppresses the inflammatory response to viral infection. Cell Host Microbe 16, 478–483 (2015).
100. Stavrou, S. et al. RIG-I-like receptor–MAVS signalling mediates the cytotoxicity of a DNA-demethylating drug. Proc. Natl Acad. Sci. USA 116, 5071–5076 (2019).
101. Birdwell, L. D. et al. M. Nature Immunol. 19, 150–160 (2018).
102. Yu, Y. et al. M. Nature Immunol. 22, 3142–3152 (2011).
103. Chen, L. et al. PLoS ONE 10, e0126871 (2015).
104. Huang, F., Mallery, D. L., McEwan, W. A., Bidgood, S. R., Hauler, F. & Le, W. D. Autophagy and ubiquitin-proteasome system interaction: roles in innate immunity, anti-viral defense and viral infection. Nat. Rev. Immunol. 18, 421–434 (2018).
105. Marton, J. et al. Association of beta-defensin-1 gene expression with lipodystrophy and elevated temperature with lipodystrophy and elevated temperature. Proc. Natl Acad. Sci. USA 114, 1357–1361 (2017).
106. Xu, Y. et al. Nature 464, 646–647 (2010).
107. Liu, Y. et al. Nature 533, 895–907 (2010).
108. Massaad, M. J. et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J. Clin. Invest. 126, 4219–4236 (2016).
109. Huett, A. et al. The LRR and RING domain protein RAMP2 regulates the cytotoxicity of a DNA-demethylating drug. Proc. Natl Acad. Sci. USA 116, 5071–5076 (2019).
110. These authors report that patients with mutations in genes encoding proteasome subunits develop disease with a type I interferon signature.
111. Camborde, L. et al. The ubiquitin-proteasome system: an integrated antimicrobial model peptide that suppresses the inflammatory response to viral infection. Cell Host Microbe 16, 478–483 (2015).
112. Stavrou, S. et al. RIG-I-like receptor–MAVS signalling mediates the cytotoxicity of a DNA-demethylating drug. Proc. Natl Acad. Sci. USA 116, 5071–5076 (2019).
113. These authors identify an important role for the ubiquitin–proteasome pathway in cytotoxic mechanisms of capsvirus.
114. Wang, Y. & Le, W. D. Autophagy and ubiquitin–proteasome system interaction: roles in innate immunity, anti-viral defense and viral infection. Nat. Rev. Immunol. 18, 421–434 (2018).
115. Bottermann, M. et al. Complement C4a prevents viral infection through capsid inactivation. Cell Host Microbe 25, 617–629 e617 (2019).
116. This work provides the first description of autophagy as an antibacterial mechanism.
117. Hauler, F., Mallery, D. L., McEwan, W. A., Bidgood, S. R., Hauler, F. & Le, W. D. Autophagy and ubiquitin-proteasome system interaction: roles in innate immunity, anti-viral defense and viral infection. Nat. Rev. Immunol. 18, 421–434 (2018).
118. Martin, J. et al. L. Nature Immunol. 19, 150–160 (2018).
119. Wang, Y. & Le, W. D. Autophagy and ubiquitin–proteasome system interaction: roles in innate immunity, anti-viral defense and viral infection. Nat. Rev. Immunol. 18, 421–434 (2018).
120. These authors identify an important role for the ubiquitin–proteasome pathway in cytotoxic mechanisms of capsvirus.
Reviews

151. Khor, T. O. et al. Nr2f2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 66, 11580–11584 (2006).

152. Ivanicic, T., Strana, E., Casola, A. & Garofalo, R. P. Protective role of nuclear factor erythroid 2-related factor 2 against respiratory syncytial virus and human metapneumovirus infections. Front. Immunol. 9, 854 (2018).

153. Peyssonnaux, C. et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest. 115, 1806–1815 (2005).

154. Girardi, E. et al. Cross-species comparative analysis of virus 1 and is antagonized by glycoprotein M. J. Virol. 90, 4509–4517 (2016).

155. Stamme, C., Muller, M., Hamann, L., Gutsmann, T. & Seydel, U. Surfactant protein a inhibits lung disease following silica exposure. Proc. Natl Acad. Sci. USA 109, 1228–1232 (2012).

156. Peng, G., Lei, K. J., Jin, W., Greenwell-Wild, T. & Wahl, S. M. Induction of APOBECS family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J. Exp. Med. 205, 41–46 (2006).

157. Weltman, R. et al. Prototypical IL-1 receptor agonists stimulate inflammatory cell activation with lipopolysaccharide-binding protein. J. Immunol. 183, 3506 (2018).

158. Ross, S. R. In vivo examination of mouse APOBEC3-mediated restriction of parvovirus and herpesvirus infection and human APOBEC3A- and APOBEC3G-mediated antiviral metabolic state in neurons. Immunity 43, 501–512 (2016).

159. Doyle, S. E. et al. Toll-like receptors induce a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J. Exp. Med. 205, 41–46 (2006).

160. Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1255–1257 (2007).

161. Doyle, S. E. et al. Toll-like receptors induce a phagocytic gene program through p68. J. Exp. Med. 199, 81–90 (2004).

162. Henneke, P. et al. Cellular activation, phagocytosis, and bactericidal activity against group B streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J. Immunol. 169, 3970–3977 (2002).

Acknowledgements

S.R.P. is funded by the European Research Council (ERC-AdG ENVISION, 786602), the Novo Nordisk Foundation (NNF18OC0030276) and the Lundbeck Foundation (R19B-2015-171 and R268-2016-5927). T.P. is funded by the European Research Council (ERC-StG IDEM; 637647). S.L.M. acknowledges funding from a Howard Hughes Medical Institute–Wellcome International Research Scholarship and the Sylvia and Charles Viertel Foundation. T.H.M. received funding from Aarhus University Research Foundation (AUTF-E-215-FLS-8-66), the Danish Council for Independent Research-Medical Sciences (4004/000678) and the Lundbeck Foundation (R268-2016-3927). The authors thank D. Olagnier for critical reading of the manuscript and comments and suggestions.

Author contributions

S.R.P. conceived the idea and wrote the first version of the manuscript together with T.H.M. All authors together fully developed the work, and drafted, finalized and revised the manuscript.

Competing interests

The authors declare no competing interests.

Peer review information

Nature Reviews Immunology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.