Comparative Profitability and Impact of BINA Developed Aman Mutant Rice Binadhan-7 with Non-Mutant Variety in Bangladesh

M. H. Rahman1, R. Sultana1*, M. M. A. Sarkar1, S. Islam1, M. A. K. Azad2 and S. Sivasankar3

1Agricultural Economics Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh.
2Admn and Support Service, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh.
3Plant Breeding and Genetics, Joint FAO/IAEA Division of the UN, International Atomic Energy Agency (IAEA), Austria.

Authors’ contributions

This work was carried out in collaboration among all authors. *All authors read and approved the final manuscript.

ABSTRACT

This paper examined the cost and revenue as well as impact of mutant rice on fourteen region of Bangladesh namely Mymensingh, Jashore, Cumilla, Bogura, Rajshahi, Sylhet, Dinajpur, Rangpur, Dhaka, Khulna, Chattagram, Rangamati, Barishal and Faridpur. A total of 560 farmers were randomly selected to fulfill the objectives where 280 farmers were mutant growers and 280 were non-mutant growers. A pre-designed interview schedule was used to collect the necessary data. Descriptive statistics, profit function and livelihood assets were used to analyze the collected data. The study revealed that total variable cost of rice cultivation was BDT.40589 and BDT.43927 per hectare for mutant and non-mutant, respectively which was around 71 percent of total cost of production. On an average, the total cost of production was BDT.59584 per hectare, where 29 percent was fixed costs and 71 percent was variable cost. For Binadhan-7 cultivation per hectare...
average net return was found highest in Dinajpur region i.e. BDT.70919 and the lowest in Jashore region i.e. BDT.33703. BCR on total cost basis was found 1.90 which was the highest in Sylhet 2.56 and the lowest 1.51 in Jashore region for Binadhan-7 production. In case of non-growers BCR on total cost basis was found 1.43 which was lower than Binadhan-7 production in the study areas indicating Binadhan-7 growers earn much than the non growers. The asset pentagon approach showed that there is a noteworthy increases in capitals of sampled farm households and the highest for financial capital that was 20.05 percent and the lowest was for natural capital i.e., 5.38 percent. Among the list of preferences, the highest was 88.93 percent for short duration and it was ranked I, the lowest was high yielding i.e. 81.43 percent which was ranked as V. Among the constraints, the highest constraint reported by the farmer was labour crisis as well as high price of labour i.e. 80.71 percent and it was ranked I and the lowest ranked V was lack of quality seed at proper time i.e. 48.93 percent in Binadhan-7 cultivation. Finally it is remarked that short duration high yielding variety Binadhan-7 plays a vital role in the monga mitigation of the northern areas of Bangladesh.

Keywords: Short duration; high yielding; aman mutant Rice; profitability and livelihood;

1. INTRODUCTION

Rice is the most important and fundamental cereal food crop in Bangladesh. It dominates the crop sector of Bangladesh agriculture approximately more than 73 percent of total cropped area [1]. Bangladesh has been familiar as the fourth largest rice producer country in the world. It is a staple food for more than half of the world’s population [2] and more than 95 percent of population consumes rice in Bangladesh. Rice is the single crop which plays the most important contribution to GDP, income and employment generation, and meets the challenges to self sufficiency in food production [3]. Bangladesh is autonomous in rice [4] [5]. Production with an average per capita consumption of 134 kg per annum, compared to the world average of 57 kg per annum [6]. It is the most leading crop and produces a major distribute of farmers’ income and employment [7] [8]. The fast growing population of Bangladesh puts remarkable stress on its scarce natural wealth. To feed the growing population of the country, there is an urgent need to develop more efficient and sustainable agricultural production and more unbiased distribution systems. In Bangladesh, rice is grown in three distinct seasons; namely Boro (January to June), Aus (April to August) and Aman (August to December) [9]. It is grown in four ecosystems viz., irrigated rice (Boro), rainfed or partially irrigated (transplanted Aus and Aman), rainfed upland (direct-seeded Aus), and deepwater (broadcast Aman) [10]. Aman is one of the most important crops in Bangladesh. Two types of Aman rice are grown in this country. One is called broadcast Aman which is sown in the month of mid March to mid April in the low lands and another is transplant Aman, which is planted during late June to August. At present it is the second largest crop in the country in respect of the volume of production after boro rice. Binadhan-7 is such type of short duration (110-115 days) mutant aman rice variety which contributes significantly in changing farmer’s income. It is notable that the area coverage of Aman is the largest as a single crop and boro remains the second in Bangladesh. Total aman production areas are increasing day by day after introducing of this mutant variety. In 2019-20 total area for BINA develop all rice varieties were 552483 hectare and aman varieties were 461385 hectare, in where short duration high yielding mutant rice variety Binadhan-7 was 421080 hectare [11-12]. Specially, Binadhan-7 contributes vital role in eradiating Monga (a Bengali word that refers to the annual state of poverty and hunger, refers to two times of the year, from September to November each year (after planting aman rice) and from March-April (after planting boro rice) in Bangladesh.

Fig. 1 shows that the overall area coverage of aman mutant rice variety Binadhan-7 in 2019-20 that was 461385.10 hectare in aman season in Bangladesh, which was highest among the BINA developed varieties. Among the fourteen agricultural regions of Bangladesh containing all 64 districts the highest area was found in Jashore region (121811 hectare) and the lowest was found in Rangamati region (2551 hectare) because of hilly areas.

The Fig. 2 shows that mostly aman rice is grown in the northern part of Bangladesh. The climate of Bangladesh is characterized by high temperatures, heavy rainfall, high humidity and fairly marked seasonal variations. More than 80 percent of the annual precipitation of the country occurs during the southwestern summer
monsoons, from June through September during which aman rice is grown. In recent years the weather pattern has been erratic, with the cool, dry season having considerably decreased- a change probably attributable to climate change (Chowdhury, I.U.A, 2015). Rainfall has statistically significant effect aman rice and also the influences of maximum temperature and minimum temperature are more pronounced compared with that of rainfall. It implies that maximum temperature is the dominant factor in this region which increases the aman rice production significantly. So, effect of maximum temperature becoming the dominant variable continuously in the aman rice production of Bangladesh in last decade [7].

Fig. 1. Region-wise area coverage of BINA developed aman rice varieties during 2019-20

Fig. 2. Map showing the aman rice growing areas in Bangladesh.
High yielding varieties of paddy is believed to be one of the success key of increasing rice production [13]. Furthermore, Suhartatik and Makarim [14] revealed that the superior varieties have high yields because they have physiological character in accordance with its environment. On the other hand the non-mutant growers cultivated local traditional varieties (Pajam, Balam, Kataribug, Shorna) and other high yielding varieties like BR-11, Brridhan-49 in aman season.

Considering all the thing present study was undertaken to fulfill the following objectives:

i. to compare profitability of aman mutant rice variety Binadhan-7 with the non mutant rice varieties;

ii. to assess the impact of aman mutant rice variety cultivation on farmers livelihood pattern among the fourteen regions;

iii. to identify preferences and constraints of aman mutant rice variety Binadhan-7 cultivation in the study areas.

2. METHODOLOGY

The study was conducted in fourteen agricultural regions of Bangladesh namely Mymensingh, Jashore, Cumilla, Bogura, Rajshahi, Sylhet, Dinajpur, Rangpur, Dhaka, Khulna, Chattagram, Rangamati, Barishal and Faridpur. To fulfill the objectives fourteen agricultural regions were classified as Reg-1: Cumilla region, Reg-2: Mymensingh region, Reg-3: Sylhet region, Reg-4: Rangamati hilly region, Reg-5: Khulna region, Reg-6: Barishal region, Reg-7: Rajshahi region, Reg-8: Rangpur Region, Reg-9: Dinajpur region, Reg10: Bogura region, Reg-11: Dhaka region, Reg-12: Chattagram region, Reg-13: Jashore region and Reg-14: Faridpur region. A total of 560 farmers were randomly selected to fulfill the objectives where 280 farmers were mutant growers and 280 were non-mutant growers. A pre-designed interview schedule was used to collect the necessary data. Descriptive statistics, profit function and livelihood assets were used to analyzed the collected data.

2.1 Profitability Study of Mutant Rice Variety Binadhan-7 Growers and Non Growers

For profitability analysis, the following equation was used.

The equation applied for each of the selected farmers:

\[\pi = Pm^* Ym + Pb^* Yb - \sum (Pxi^* Xi) - TFC \]

Where,

- \(\pi \) = Net return
- \(Pm \) = Price of main product per units
- \(Ym \) = Total quantity of main product
- \(Pb \) = Price of by-product per unit
- \(Yb \) = Quantity of by-product
- \(Pxi \) = Price of ith input per unit used for rice production
- \(X_i \) = Quantity of the ith input used for rice production
- \(TFC \) = Total fixed cost
- \(i = 1, 2, 3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots n \) (number of input)
- \(T \) = Period of rice production (in month).

\[T = \frac{AI \times i \times t}{14(3): 11} \]

Where,

- \(AI \) = (Total investment)/2;
- \(i \) = Rate of interest per annum (%); and
- \(T \) = Period of rice production (in month).

\[\text{Interest on OC} = AI \times i \times t \]

Benefit Cost Ratio: The benefit cost ratio (BCR) is a relative measure which is used to compare benefit per unit of cost. Benefit-cost ratio is the ratio of present net worth of benefit and present net worth of cost. It indicates that the benefit of per unit cost at present worth.

Land preparation: Land preparation included ploughing, laddering, pit preparation and other activities needed to make the soil suitable for plantation of seedling. In the study areas, all the farmers ploughed their land with the help of power tiller and tractor and the number of ploughing varied from farm to farm.

Human labour: Human labour is one of the most important components for crop cultivation. Machine power could not replace human labour fully for cultivation till now in our country. Farmers used both family supplied and hired labour. Family labour includes the operator himself and other working member of the family, while the hired labour includes permanent hired labour, labour employed on monthly contract basis, casual labour and labour employed on the other contract basis.

Seed: Most of the farmers collect seeds from their own storage. Besides, in research office and DAE office it is also available. Only few farmers purchase seed from the local market or other organization. The farmer of the study areas mainly used Binadhan-7, Pajam, Balam, BRRI-11, Shorna, etc.
Fertilizer: Proper use of fertilizer can enhance agricultural production largely and help to retain or improve soil fertility. The sample farmers used four kinds of chemical fertilizers namely; Urea, TSP/DAP, MoP and Sulphur in the survey area.

Pesticide: Pesticide mainly insecticide and fungicide was used by most of the sample farmers and applied to survey plot with different rates. The cost of pesticide was computed based on the price that the farmers have actually paid.

Irrigation: Farmers in the study areas used irrigation water in their plot from shallow tube well (STW). Very few farmers followed deep irrigation method for irrigation purpose.

Land rent: Land rent is one of the biggest fixed cost items for the production process. Rental value of land was estimated for the cropping period at the rate prevailing in the study area. In this analysis, cropping period was considered as four months.

3. RESULTS AND DISCUSSION

3.1 Total Cost of Production

Variable cost: The cost of production included all kinds of variable costs such as hired labour, land preparation, seed, fertilizers, irrigation, pesticides, etc. which was used for the production of rice. Both cash expenses and imputed value of family supplied inputs were included in the variable cost. The study revealed that total variable cost of rice cultivation was BDT.40589 & BDT.43927 per hectare for mutant & non mutant, respectively which was around 71 percent of total cost of production (Table 1). The highest cost item was hired labour which accounted for about 32.91 percent for mutant rice and 30.98 percent in case of non mutant of the total cost. Cost of fertilizer accounted for 12.45 percent and 13.19 percent for mutant and non mutant rice cultivation of total cost, respectively as well as ranked second. Land preparation cost (power tiller cost) was about 12 percent for both categories of total cost and ranked third cost item for aman rice cultivation.

Fixed cost: Family labour and rental value of land was considered as fixed cost of production. There are 29 percent fixed costs for both category of rice production. The family labour cost was BDT.19182 and BDT.14701 per hectare around 25 percent of the total cost in case of both categories of farmer and land use cost were accounted for BDT.2400 (4.16%) and BDT.2491 (4.05%) per hectare for mutant and non mutant rice production, respectively (Table 1).

Total cost: Total cost of production included variable costs and fixed costs incurred for Binadhan-7 and non-mutant varieties cultivation. On an average, per hectare total cost of production was BDT.57689 for mutant and BDT.61479 for non mutant, where 29.64 percent and 28.55 percent were fixed costs and 70.36 percent as well as 71.45 percent were variable cost, respectively (Table 1).

3.2 Financial Profitability of Binadhan-7 Growers & Non Growers in the Study Areas

Financial profitability (FP) is based on calculation of market prices of inputs and outputs that farmers actually pay or receive for producing a crop, along with the quantities used of each. Farmers allocate land and other resources in the production of different crops on the basis of relative financial profitability.

3.3 Returns and Financial Profitability of Binadhan-7 Production

From Table 2, per hectare average yield of rice was 4.65 and 3.97 ton as well as per kg average price were about BDT.20 & BDT.19 for Binadhan-7 and non-mutant rice variety. The average yield was the highest in Dinajpur region (5.3 t/h) and it was the lowest in Rangamati region (4.0 t/h) among the 14 regions. The per hectare average net return of Binadhan-7 production and non mutant rice was found BDT.50410 and BDT.26063, respectively indicating 48.30 percent higher than the non-mutant variety cultivation in the study areas. For Binadhan-7 cultivation per hectare average net return were found in the highest in Dinajpur region BDT.70919 and the lowest in Jashore BDT.33703. BCR on total cost basis was found 1.90 which was the highest in Sylhet 2.56 and the lowest in 1.51 in Jashore region for Binadhan-7 production. In case of non growers BCR on total cost basis was found 1.43 which was lower than Binadhan-7 production in the study areas indicating Binadhan-7 growers earn much more than the non growers.
Table 1. Per hectare cost of mutant rice variety Binadhan-7 and non-mutant rice production in Bangladesh

Study Areas	Type	Human Labour (BDT./ha)	Power tiller (BDT./ha)	Seed (BDT./ha)	Fertilizers/manure (BDT./ha)	Pesticides (BDT./ha)	Irrigation charge (BDT./ha)	Variable Cost (including IOC) (BDT./ha)	Land use cost (BDT./ha)	Fixed Cost (BDT./ha)
	Mutant	28036 (14626)	24384 (15014)	24928 (13849)	21262 (11812)	23515 (10364)	12968 (7205)	16524 (9180)	15822 (16352)	
	Non-mutant	27177 (15654)	23176 (12875)	25863 (14369)	22914 (11812)	23515 (9745)	18654 (10364)	18541 (9180)	15851 (16452)	
	Mutant	627	684	727	787	758	793	656	711	
	Non-mutant	380	707	759	881	800	840	744	731	
	Mutant	139	178	147	179	250	182	151	269	
	Non-mutant	1945	1651	1181	2383	1723	2216	1894	2267	
	Mutant	4188 (803)	5368 (2588)	9793 (740)	8121 (954)	9221 (1355)	7835 (288)	6246 (783)	7924 (1606)	
	Non-mutant	5555 (862)	8604 (987)	10537 (998)	9352 (1007)	8252 (825)	8487 (603)	9184 (1744)	9286 (1833)	
	Mutant	16	310	227	255	220	198	119	321	
	Non-mutant	15	28	43	27	24	30	25	18	
	Mutant	163	3953	1037	1181	1096	256	1341	204	
	Non-mutant	15	28	43	27	24	30	25	18	
	Mutant	163	3953	1037	1181	1096	256	1341	204	
	Non-mutant	15	28	43	27	24	30	25	18	
	Mutant	163	3953	1037	1181	1096	256	1341	204	
	Non-mutant	15	28	43	27	24	30	25	18	
	Mutant	163	3953	1037	1181	1096	256	1341	204	
	Non-mutant	15	28	43	27	24	30	25	18	

Rahman et al.; ARJA, 14(3): 11-25, 2021; Article no.ARJA.72236
Study Areas	Type	Human Labour (BDT./ha)	Power tiller (BDT./ha)	Seed (BDT./ha)	Fertilizers/manure (BDT./ha)	Pesticides (BDT./ha)	Irrigation charge (BDT./ha)	Variable Cost (including IOC) (BDT./ha)	Land use cost (BDT./ha)	Fixed Cost (BDT./ha)	Total Cost (BDT./ha)
Dhaka		18031 (15468)	20229 (14296)	613 (3)	726 (2)	176 (3)	1998 (1139)	7031 (1448)	2 (1)	159 (16)	358 (413)
Khulna		22314 (14534)	23321 (16182)	69 (7)	714 (7)	204 (2276)	6897 (1491)	7996 (1300)	7 (2)	200 (23)	466 (482)
	Mutant	17826 (20536)	19241 (17321)	704 (2)	703 (7)	244 (2401)	7745 (1120)	7741 (1367)	204 (5)	25 (85)	3969 (7)
	Non mutant	204 (2401)	19241 (17321)	704 (2)	703 (7)	244 (2401)	7745 (1120)	7741 (1367)	204 (5)	25 (85)	3969 (7)
	Mutant	12041 (16652)	13040 (17440)	703 (2)	703 (7)	226 (2243)	4407 (1350)	4618 (1454)	205 (1)	22 (90)	3009 (6)
	Non mutant	12041 (16652)	13040 (17440)	703 (2)	703 (7)	226 (2243)	4407 (1350)	4618 (1454)	205 (1)	22 (90)	3009 (6)
	Mutant	16087 (18938)	17523 (17071)	748 (8)	752 (2)	178 (2131)	8707 (1323)	7990 (1331)	219 (6)	29 (28)	3855 (8)
	Non mutant	16087 (18938)	17523 (17071)	748 (8)	752 (2)	178 (2131)	8707 (1323)	7990 (1331)	219 (6)	29 (28)	3855 (8)
	Mutant	12028 (18936)	12545 (19182)	718 (1)	765 (1)	219 (2131)	7033 (946)	8107 (890)	271 (1)	26 (22)	3303 (0)
	Non mutant	12028 (18936)	12545 (19182)	718 (1)	765 (1)	219 (2131)	7033 (946)	8107 (890)	271 (1)	26 (22)	3303 (0)
	Mutant	18983 (19182)	19044 (14701)	710 (9)	736 (0)	196 (2031)	7180 (1178)	8110 (1189)	199 (9)	25 (43)	4058 (9)
	Non mutant	18983 (19182)	19044 (14701)	710 (9)	736 (0)	196 (2031)	7180 (1178)	8110 (1189)	199 (9)	25 (43)	4058 (9)
	Mutant	% 32.91 (25.48)	30.98 (24.50)	12.3 (2)	11.9 (7)	3.4 (3.30)	12.45 (2.04)	13.19 (1.93)	3.45 (4)	4.1 (5)	70.3 (5.05)
	Non mutant	% 32.91 (25.48)	30.98 (24.50)	12.3 (2)	11.9 (7)	3.4 (3.30)	12.45 (2.04)	13.19 (1.93)	3.45 (4)	4.1 (5)	70.3 (5.05)

Source: Field Survey, 2021
Table 2. Per hectare return of mutant rice variety Binadhan-7 and non-mutant rice production

Study areas	Type	Yield (Kg./ha.)	Price (BDT./kg)	Return from paddy (BDT./ha.)	Return from straw (BDT./ha.)	Total return (BDT./ha.)	Total variable cost (BDT./ha.)	Total Cost (BDT./ha.)	Net return (BDT./ha.)	BCR
	Mutant	Non mutant	Mutant	Non mutual						
Demographic characteristics of the mutant rice variety Binadhan-7 growers and non-growers:

The demographic characteristics of the rice farmers were presented and discussed according to their age, sex, education, household size, years of farming experience and farm size. The distribution of the farmers by age showed that the mean age for Binadhan-7 cultivated farmers was 45 years. Among the farmer 92 percent was educated which was categories as illiterate, primary, secondary, higher secondary and above. In the study areas, the average experience of farmers was 21.38 years and income was BDT. 242134 per year (Table 3).

3.5 Livelihoods

A livelihood is the set of capabilities, assets and activities that furnish the means for people to meet their basic needs and support their well being. The building of livelihoods reflects and seeks to fulfill both material and experiential needs. Livelihoods are not simply a localized phenomenon, but connected by environmental, economic, political and cultural process to wider national, regional and global arenas. In these guidelines, “livelihood” does not just mean the activities that people carry out to earn a living. It means all the different elements that contribute to or affect their ability to ensure a living for themselves and their household. This includes:

- the assets that the household owns or is able to gain access to—human, natural, social, financial and physical capital;
- the activities that allow the household to use those assets to satisfy basic needs;
- the different factors that the household itself may not be able to control directly, like the seasons, natural disasters or economic trends, that affect its vulnerability;
- Policies, institutions and processes that may help them or make it more difficult for them, to achieve an adequate livelihood.

3.5.1 Impact on livelihood pattern of the mutant farmer

The members of a household combine their capabilities, skills and knowledge with the different resources at their disposal to create activities that will enable them to achieve the best possible livelihood for themselves and the household as a whole: Everything that goes towards creating that livelihood can be thought of as a livelihood asset [10]. The livelihood framework identifies five core assets or capital upon which livelihoods are built. Increasing access which can take the form of ownership or the right to use to these assets is a primary concern for Department for International Development in its support of livelihoods and poverty elimination. These assets can be divided into five different “types” shown in Fig. 2.

This asset can provide a useful starting point for household livelihood analysis, as it encourages investigators to take into account all the different kinds of assets and resources that are likely to play a role in household livelihood. In the past, development workers often tended to focus very much on the physical capital, the financial capital and the human capital. But very often people’s access to natural capital and the key role of the social capital of households has not been properly taken into account. Using this pentagon as guide can help investigators to get a more complete picture of the household and its livelihood assets.

Sl no.	Variables	Mean values
1.	Age (years)	45
2.	Gender (Male %)	95
3.	Educational qualification (%)	92
4.	Family size (no.)	
	Male	3
	Female	3
5.	Income (BDT/year)	242134.20
6.	Educated person (no.)	3
7.	Earning Person (no.)	2
8.	Land size (hectare)	124.21
9.	Land under Binadhan-7 cultivation (hectare) (%)	34.58 (27.84)
10.	Farming experience (years)	21.38

Source: Field Survey, 2021.
The asset pentagon approach showed that there is a noteworthy improvement based on different capitals (namely, human capital, social capital, natural capital, physical capital and financial capital) of farm households adopting mutant rice variety in comparison to non-mutant variety. Fig. 3 represents the changing nature of different capitals which reveals that the farmers cultivating had a positive impact on farm households' livelihood patterns in comparison to farmers with non-mutant growers. Increases in capitals of sampled farm households were the highest for financial capital that was 20.05 % and the lowest was for natural capital i. e. 5.38%.

From Table 5, it was observed that livelihood of Binadhan-7 growers was changed from 12 years before, because Binadhan-7 was developed in 2007. In case of home type, the highest differences were seen in Tin-shade building that was 47% and the lowest was mud build 12.14%.
Table 6. Distribution of respondents according to Preferences in Binadhan-7 Cultivation

Preferences	Short duration	High yielding	Income increases	Create employment Opportunity	Reduce Poverty
Study areas					
Mymensingh	20	17	19	19	20
Jashore	20	15	19	19	19
Cumilla	19	16	20	20	20
Rajshahi	17	14	17	17	16
Bogura	16	16	20	20	20
Sylhet	15	18	19	18	17
Dinaipur	14	17	19	18	20
Rangpur	19	15	20	19	20
Dhaka	18	18	15	17	19
Khulna	19	16	13	14	13
Chattagram	16	15	12	12	14
Rangamati	18	16	13	13	15
Barishal	19	17	18	20	18
Faridpur	19	18	16	17	17
%	88.93	81.43	85.71	87.14	88.57
Rank	I	II	III	IV	

Source: Field Survey, 2021

Table 7. Distribution of respondents according to constraints to Binadhan-7 Cultivation

Type	Constraints	Lack of quality Seed	Labour crisis & high price of labour	Marketing Problem	Lack of Godown	Destroy by bird
Study areas						
Mymensingh	7	10	5	12	12	
Jashore	14	14	17	10	16	
Cumilla	7	17	9	17	19	
Rajshahi	13	16	7	10	17	
Bogura	12	18	9	16	8	
Sylhet	10	16	13	11	16	
Dinaipur	7	15	10	14	13	
Rangpur	8	16	12	15	14	
Dhaka	11	18	18	19	11	
Khulna	9	17	18	17	17	
Chattagram	7	16	18	16	16	
Rangamati	10	18	19	14	14	
Barishal	12	17	15	10	10	
Faridpur	10	18	19	14	4	
%	48.93	80.71	67.50	69.64	66.79	
Rank	V	I	III	II	IV	

Source: Field Survey, 2021

Both the livestock & poultry rearing and drinking water through tube well were increased by 8%. At present, the number of trees cultivation per households increased by 45% from 12 years before. The study revealed that road condition also changed in the study areas. It was the highest for brick road i.e 61.43% than 12 years ago. In case of sanitation, the highest percentage change was seen in half building and tin shade 42% and the lowest was in mud built 8.21%. Food security & health condition was increase by 46.79% and 44.64 %, respectively, in the study areas. Electricity connection, Social communication (Mobile/Internet), Recreation (TV/Radio), Agricultural industrialization was increased by 38.93%, 70.36%, 45% and 89.64%, respectively. In case of women empowerment it was increased by 52.86 % and women and child death rate was decreased by 15.36 %.

3.5.2 Preferences and major constraints to mutant rice variety binadhan-7 cultivation

Farmers prefer this variety for various reasons such as short duration, high yielding, earliness,
Table 8. Major technical information to Binadhan-7 Cultivation

Type	Mymensingh	Jashore	Cumilla	Rajshahi	Bogura	Sylhet	Dinajpur	Rangpur	Dhaka	Khulna	Chattagram	Rangamatiari	Barishal	Faridpur	%	Rank	
Technical/ Other Information	Get information about this variety from DAE & Research station	18	17	17	16	16	17	14	18	19	19	14	8	19	20	82.86	I
Type of information/Support	Training	17	10	16	14	12	14	13	15	8	15	12	16	4	8	62.14	V
	Suggestions	19	14	17	15	15	16	15	17	12	5	8	8	18	13	12	III
	Seed support	10	8	12	7	9	8	7	8	5	0	0	0	5	4	29.64	VIII
	Rice used for family purpose	10	6	8	9	7	6	9	9	10	9	16	13	14	14	50.00	VII
Taste good to eat Binadhan-7	11	12	14	17	20	14	13	18	9	9	10	10	9	16	65	65.00	IV
Selling paddy at market	14	15	11	14	10	9	12	18	18	20	16	18	15	18	74	74.29	II
Cultivate other BINA’s variety rather than Binadhan-7	12	11	16	14	13	10	11	13	6	0	9	5	18	8	18	52.14	VI

Source: Field Survey, 2021.
cropping intensity increase, four cropping pattern (Binadhan-7-potato/ mustard/ vegetables-Boro-Aus). They can include rabi crops like mustard, potato, wheat, different vegetables in their cropping pattern that leads to increase income as well as employment and reduce poverty. Major of these preferences are shown in the Table 6. Among the list the highest preferences was 88.93% for short duration and it was ranked I, the lowest was high yielding i.e. 81.43% which was ranked as V.

Among the constraints, the highest constraint reported by the farmer was labour crisis as well as high price of labour (80.71%) and it was ranked I and the lowest ranked V was lack of quality seed at proper time (48.93 %) in Binadhan-7 cultivation (Table 7).

From the Table 8, we found that 82.86% respondents got information about this variety cultivation from research office and DAE. There were 62.14% growers who received training, 70% got suggestions from different Agricultural officers, and 29.64% receive seed support indicating 70.36% of seed used from their previous harvest. Farmer harvested paddy within 110-115 days and 50% of that were used for family consumption and the rest were sold by them. The study found that, 74.29% paddy was sold by the growers in the market, 65% growers noticed about good taste to eat the rice, 52.14% cultivated other BINA developed variety rather than Binadhan-7 in aforsaid locations.

4. CONCLUSIONS AND RECOMMENDATION

Cultivation of mutant rice variety Binadhan-7 is highly profitable among the study areas and that is increasing day by day [11]. Net return was the highest in Dinajpur region, a northern part of Bangladesh. It brought 48.30% higher income than the non-mutant variety cultivation in the study areas. Farmers are happy to cultivate Binadhan-7 for the special characteristics of this variety such as short duration, HYV, early cutting and increasing the number of crop in their pattern i.e. Binasarisha (mustard), potato, Binarosun (garlic), Binamorich (Chilli), Binatomato etc. Now in a year, they can cultivate four crops so that they can earn more money which stabilizes their income and secured food. Their livelihood also changes within 12 years. The asset pentagon approach showed that there is a noteworthy improvement based on different capitals (namely, human capital, social capital, natural capital, physical capital and financial capital) of farm households adopting mutant rice variety in comparison to non-mutant variety. On the other hand, the non-mutant growers are not growing
mutant varieties like Binadhan-7 because of non availability of quality seed, extension weakness, lack of training, reluctant to adopt new variety and farmers willingness to the traditional variety cultivation for their own consumption. Some of the farmers are also cultivating other mutant varieties such as Binasail, Binadhan-9, Binadhan-13, Binadhan-19 and Binadhan-22. Finally it is remarked that short duration high yielding variety Binadhan-7 plays a vital role in the monga mitigation of the northern areas of Bangladesh for early ripening or cutting character. In this case, as there is an advantage for the BINA developed HYVs like Binadhan-7 over the other HYVs because of their shorter duration and introducing opportunities four cropping pattern then it seems to be needed to estimate the value of the additional crop in future study. So, Government of Bangladesh and donor agencies can invest more for more research and extension of the short duration mutant rice variety to achieve food security as well as sustainable development goal (SDG).

ACKNOWLEDGEMENTS

The authors highly acknowledge the International Atomic Energy Agency (IAEA) authority for their financial support to CRP-23843. The authors also acknowledge Bangladesh Institute of Nuclear Agriculture (BINA) authority for allowing in conducting the above mentioned research.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Sarkar MSK, Hasan MR, Feardous MA, Shuhel MMH. Moniruzzaman. Comparative Economic Analysis of Borrower and Non Borrower Boro Rice Farmers in some selected sites of Mymensingh District. Bangladesh Journal of Agricultural Research. 2010;35(1):65-76.
2. Omotesho OA, Lawal AM, Yusuf YK. Economics small scale rice production in Patigi and Edu local government areas of Kwara state, Nigeria. African Journal of Agricultural Research. 2010;5(4).
3. Hasnain MN, Hossain ME, Islam MK. Technical Efficiency of Boro Rice Production in Meherpur District of Bangladesh: A Stochastic Frontier Approach. American Journal of Agriculture and Forestry. 2015;3(2):31-37. DOI: 10.11648/j.ajaf.20150302.14.
4. Mainuddin M, Kirby M. National food security of Bangladesh to 2050. Food Security. 2015;7:633–646
5. Timsina J, Wolf J, Gulipart N, van Bussel LGJ, Grassini P, van Wart J, et al. Can Bangladesh produce enough cereals to meet future demand? Agric. Sys. 2018;163:36–44. pmid:29861535
6. Motaleb KA, Mishra AK. Rice consumption and grain-type preference by household: a Bangladesh case. Journal of Agricultural and Applied Economics. 2016;48:298–319.
7. Sarker MAR, Alam K, Gow J. Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agricultural. System. 2012;112:11–16.
8. Alam MJ, McKenzie AM, Begum IA, Buyssse J, Wailes EJ, Van Huylmenbroeck G. Asymmetric price transmission in the deregulated rice markets in Bangladesh: Asymmetric Error Correction model. Agribusiness. 2016;32(4): 498–511.
9. Bapari MY, Joy MAK. Estimation of Rice Production Function in Rajbari District, Bangladesh: an Ecometric Analysis. Asian Journal of Humanity, Art and Literature. 2016;3(1): 99-112. Retrieved from http://journals.abc.us.org/index.php/ajhal/article/view/790.
10. Hussain SG. Food Security: Quality Management, Issues and Economic Implications: Role of Rice in Food Security of Bangladesh. Publisher: Nova Science Publishers, Inc.; 2012. DOI: 10.13140/2.1.1018.4328.
11. Rahman MH, Sultana R, Sarkar MAA, Islam S. A Comparative Study of Mutant Aman Rice Binadhan-7 with Non-Mutant Variety in Some Selected Areas of Bangladesh International Journal of Innovative Science and Research Technology. 2020;5(10):1057-1065.
12. Rahman MH, Sultana R, Sarkar MAA, Islam S. Area coverage of BINA developed Rice, Pulse and Oilseed Varieties in Bangladesh, Bangladesh Journal of Nuclear Agriculture. 2020;33 & 34:123-134.
13. Hossain M, Bose ML, Mustafi BAA. Adoption and Productivity Impact of
Modern Rice Varieties in Bangladesh. 14. Suhartatik E, Makarim AK. Morfologi dan Fisiologi Tanaman Padi. Balai Besar Penelitian Tanaman Padi; 2010.

© 2021 Rahman et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle4.com/review-history/72236