Association of Fatal and Nonfatal Cardiovascular Outcomes With 24-Hour Mean Arterial Pressure

Jesus D. Melgarejo, Wen-Yi Yang, Lutgarde Thijs, Yan Li, Kei Asayama, Tine W. Hansen, Fang-Fei Wei, Masahiro Kikuya, Takayoshi Ohkubo, Eamon Dolan, Katarzyna Stolarz-Skrzypek, Qi-Fang Huang, Valérie Tikhonoff, Sofia Malyutina, Edoardo Casiglia, Lars Lind, Edgado Sandoya, Jan Filipovský, Natasa Gilis-Malinowska, Krzysztof Narkiewicz, Kalina Kawecka-Jaszcz, José Boggia, Ji-Guang Wang, Yutaka Imai, Thomas Vanassche, Peter Verhamme, Stefan Janssens, Eoin O’Brien, Gladys E. Maestre, Jan A. Staessen, Zhen-Yu Zhang, for the International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcome Investigators*

ABSTRACT: Major adverse cardiovascular events are closely associated with 24-hour blood pressure (BP). We determined outcome-driven thresholds for 24-hour mean arterial pressure (MAP), a BP index estimated by oscillometric devices. We assessed the association of major adverse cardiovascular events with 24-hour MAP, systolic BP (SBP), and diastolic BP (DBP) in a population-based cohort (n=11596). Statistics included multivariable Cox regression and the generalized R^2 statistic to test model fit. Baseline office and 24-hour MAP averaged 97.4 and 90.4 mmHg. Over 13.6 years (median), 2034 major adverse cardiovascular events occurred. Twenty-four-hour MAP levels of <90 (normotension, n=6183), 90 to <92 (elevated MAP, n=909), 92 to <96 (stage-1 hypertension, n=1544), and ≥96 (stage-2 hypertension, n=2960) mmHg yielded equivalent 10-year major adverse cardiovascular events risks as office MAP categorized using 2017 American thresholds for office SBP and DBP. Compared with 24-hour MAP normotension, hazard ratios were 0.96 (95% CI, 0.80–1.16), 1.32 (1.15–1.51), and 1.77 (1.59–1.97), for elevated and stage-1 and stage-2 hypertensive MAP. On top of 24-hour MAP, higher 24-hour SBP increased, whereas higher 24-hour DBP attenuated risk ($P<0.001$). Considering the 24-hour measurements, R^2 statistics were similar for SBP (1.34) and MAP (1.28), lower for DBP than for MAP (0.47), and reduced to null, if the base model included SBP and DBP; if the ambulatory BP indexes were dichotomized according to the 2017 American guideline and the proposed 92 mmHg for MAP, the R^2 values were 0.71, 0.89, 0.32, and 0.10, respectively. In conclusion, the clinical application of 24-hour MAP thresholds in conjunction with SBP and DBP refines risk estimates. (Hypertension. 2021;77:39–48. DOI: 10.1161/HYPERTENSIONAHA.120.14929.) • Data Supplement

Key Words: cardiovascular disease ■ hypertension ■ mean arterial pressure ■ mortality ■ oscillometry

The Global Burden of Disease Study 2010 reported that high blood pressure (BP) is the major modifiable cardiovascular risk factor, causing 9.4 million deaths annually, that is, more than half of cardiovascular mortality.1 Prevention of the cardiovascular complications associated with hypertension requires that BP be accurately measured,2 preferably by 24-hour ambulatory monitoring.3,4 Because mercury is being phased out, oscillometry is replacing the auscultatory Korotkoff approach in use since 1910.5 The proprietary software implemented in automated oscillometric devices draws an envelope around the pressure oscillations in the brachial cuff and estimates mean arterial pressure (MAP) as the cuff pressure at the point of...
Novelty and Significance

What Is New?
• We established in a population-based cohort of 11,596 adult people outcome-driven thresholds for 24-hour mean arterial pressure (MAP), and we assessed its associations with fatal and nonfatal cardiovascular end points.

What Is Relevant?
• Using a composite cardiovascular end point as primary outcome and the 10-year risks associated with 2017 American College of Cardiology/American Heart Association thresholds for office blood pressure (BP) as reference, we established levels of 24-hour MAP of <90, ≥90 to <92, ≥92 to <96, and ≥96 mm Hg delineated normotension, elevated 24-hour MAP, stage 1 hypertension, and stage 2 combined with severe hypertension, respectively.

Summary
Our observations have implications for hypertension management and the use and validation of oscillometric BP measuring devices. Oscillometric BP measuring devices should include MAP in the reports they generate. Considering 24-hour MAP in clinical practice in conjunction with 24-hour systolic BP and diastolic BP might refine risk estimates.

Nonstandard Abbreviations and Acronyms

Abbreviation	Definition
BP	blood pressure
DBP	diastolic BP
MAP	mean arterial pressure
SBP	systolic BP

maximal oscillations (Figure S1 in the Data Supplement). From the so estimated MAP, the software then computes systolic and diastolic BP.\(^8\) For validated devices, the fault tolerance around the calculated systolic and diastolic BP is ±5 mm Hg.\(^8\) Furthermore, MAP is similar throughout the arterial tree,\(^9\) thereby avoiding the dilemma as to whether central compared with brachial BP confers higher cardiovascular risk.\(^10\) In addition, MAP captures risk-related information associated with both systolic and diastolic BP.\(^11\) In an individual participant meta-analysis of 1 million people, office MAP was a better predictor of vascular mortality than systolic or diastolic BP or pulse pressure.\(^12\) However, to our knowledge, hypertension guidelines do not propose how MAP should be used for risk stratification.\(^3,4\) We recently demonstrated that of all in-office and ambulatory BP indexes the association of mortality and cardiovascular complications was closest with the 24-hour ambulatory BP.\(^13\) Given the clinical underuse of MAP and the predictive superiority of 24-hour BP,\(^13\) we established in a population-based cohort of 11,596 adults, recruited in Europe, Asia, and South America, outcome-driven thresholds for 24-hour MAP that might guide clinical practice and we assessed the strength of its associations with fatal and nonfatal cardiovascular end points.
BP Measurements

Nurses or physicians measured office BP with a standard mercury sphygmomanometer or with validated auscultatory or oscillometric devices. The office BP was the average of 2 consecutive readings. MAP on office measurement was diastolic BP plus one-third of pulse pressure (the difference between systolic and diastolic BP) and categorized according to the 2017 American guidelines for systolic and diastolic pressure, rounded to the closest integer. The cut off points were <93 mm Hg for normotension ([(80+0.33) × (120–80)] mm Hg; 93 to <97 mm Hg for elevated BP; 97 to <107 mm Hg for stage-1 hypertension, ≥107 mm Hg for stage-2 hypertension combined with severe hypertension. Hypertension was an office BP of ≥130 mm Hg systolic or ≥80 mm Hg diastolic or use of antihypertensive drugs.3

For ambulatory monitoring (Table S3), portable oscillometric monitors were programmed to obtain readings at 30-minute intervals throughout the whole day or at intervals of 15 to 30 minutes during daytime and at intervals ranging from 20 to 60 minutes during nighttime. Ambulatory recordings had to include at least 6 daytime and 3 nighttime readings.16

Ascertainment of End Points

We ascertained vital status and the incidence of fatal and nonfatal end points from the appropriate sources in each country. Prespecified end points were coded according to the International Classification of Diseases (Table S4). The primary end point was a composite cardiovascular outcome consisting of cardiovascular mortality, including sudden death, nonfatal coronary events, coronary revascularization, heart failure, and stroke. Secondary end points included total mortality, cardiovascular mortality, fatal and nonfatal coronary end points, and fatal and nonfatal stroke excluding transient ischemic attack. The diagnosis of heart failure required hospitalization in the 2 Scandinavian cohorts (Table S4). In the other cohorts, it was a clinical diagnosis or the diagnosis on the death certificate. All end points were validated against hospital files or medical records held by primary care physicians, specialists, or hospitals. In all outcome analyses, only the first event within each category was considered. Participants free of events were censored at last follow-up.

Statistical Analysis

For database management and statistical analysis, we used SAS software, version 9.4, maintenance level 5. We applied the Kolmogorov-Smirnov test for assessing the normality of distributions. For between-group comparison of means and proportions, we applied the large-sample z-test and Fisher exact test, respectively. After stratification for cohort and sex, we interpolated missing values of body mass index and total serum cholesterol from the regression slopes on age. In participants with unknown status of smoking, drinking, diabetes, or history of cardiovascular disease, we set the indicator (dummy) variable to the cohort- and sex-specific mean of the codes (0, 1).

In multivariable-adjusted Cox regression, we accounted for cohort (random effect), sex, and baseline characteristics including age, body mass index, smoking and drinking, serum cholesterol, antihypertensive drug intake, history of cardiovascular disease, and diabetes. To adjust for cohort, we pooled participants recruited in the framework of the European Project on Genes in Hypertension (Gdansk, Krakow, Novosibirsk, Padova, and Pilsen; Table S1). We checked the proportional hazards assumption by the Kolmogorov-type supremum test and by testing the interaction between BP and follow-up time.

We obtained operational thresholds for MAP by ambulatory monitoring in 5 steps.14 First, we computed the 10-year incidence rates of end points associated with office MAP, using as thresholds 93, 97, and 107 mm Hg. Second, we computed the 10-year risk of end points associated with ambulatory MAP ranging from the 10th up to the 90th percentile, using intervals of 2 mm Hg. In a third step, we selected the ambulatory MAP levels that were associated with similar 10-year risks as the office MAP thresholds. Next, we calculated the bootstrap distribution of the so obtained ambulatory MAP thresholds by randomly resampling the study population 1000× with replacement. For each new sample, we repeated the first 3 steps, while accounting for tied event times. Finally, we calculated the bootstrap point estimates and 95% CIs of the ambulatory MAP thresholds as the mean±1.96 SEs of the bootstrap distribution.

Based on the thresholds for the 24-hour MAP obtained by the bootstrap procedure, we computed incidence rates and multivariable-adjusted hazard ratios as metrics of absolute and relative risk, respectively. Rates were standardized by the direct method for cohort, sex and age (<40, 40 to <60, and ≥60 years) and 95% CIs were computed as $R \pm 1.96 \times \sqrt{(R/N)}$, where R and N are the rate and the number of individuals used to compute the rate. We constructed heat maps to visualize the contribution of 24-hour systolic, diastolic, and 24-hour MAP to the association with the primary end point. Improvement in the fit of nested Cox models was assessed by the log likelihood ratio and the generalized R² statistic.17 Statistical significance was a 2-tailed α-level of 0.05 or less.

RESULTS

Baseline Characteristics

Of 13 728 people included in the database, we excluded 2132, because they were adolescents younger than 18 years (n=317), because their office BP or use of antihypertensive drugs had not been recorded at baseline (n=255), or because their ambulatory BP recording included fewer readings than required (n=1560). This left 11 596 individuals for statistical analysis (Table 1). Missing values of body mass index (n=34), serum cholesterol (n=903), smoking (n=96), diabetes (n=5), and history of cardiovascular disease (n=1) were interpolated or set to the cohort- and sex-specific means. Table 1 lists the baseline characteristics of the participants. Mean age at enrollment was 52.8 years. Across increasing fourths (quartiles) of the 24-hour MAP distribution (Table S5), the percentage of women decreased while the prevalence of hypertension and diabetes increased as well as the average levels of office and 24-hour BP, body mass

Hypertension. 2021;77:39–48. DOI: 10.1161/HYPERTENSIONAHA.120.14929 January 2021 41
Office and Ambulatory BP

On office measurement, systolic/diastolic BP averaged 132.6/79.8 mm Hg, and MAP 97.4 mm Hg (Table 1). The median number of ambulatory readings recorded over 24-hour was 132.6/79.8 mm Hg (5th–95th percentile interval, 130.8–82.4). On 24-hour monitoring, systolic/diastolic BP averaged 123.6/73.9 mm Hg, and MAP 90.4 mm Hg (Table 1). All BP measurements were highly correlated (Table S6; *P*<0.0001).

24-Hour MAP Thresholds

In all Cox regression models that follow, the proportional hazard assumption was met. The number of person-years of follow-up totaled 158,431 in 11,596 participants. Over a median follow-up of 13.6 years (5th–95th percentile interval, 3.6–26.0), 2034 primary end points occurred, including 916 (45.0%) coronary end points, and 809 (39.8%) strokes. Over the same time span, 2821 participants died, 1059 (37.5%) of cardiovascular disease (Table S4). Using the bootstrap procedure (Table 2), we obtained as thresholds for 24-hour MAP: <90 mm Hg (normotension); 90 to <92 mm Hg (elevated MAP); 92 to <96 mm Hg (stage-1 hypertension), and ≥96 mm Hg (stage-2 hypertension). The corresponding thresholds for daytime and nighttime MAP were 94/80 mm Hg, 96/82 mm Hg, and 104/88 mm Hg for elevated, stage 1 and stage 2 hypertension, respectively. The thresholds based on the full data set were similar to the means of the bootstraps. In sensitivity analyses, rounded thresholds were 2 mm Hg lower in women than in men, and among participants with a previous history of cardiovascular diseases (Table S7).

However, the thresholds remained largely consistent using 16/6 or 11/5 for the number of daytime/nighttime readings, in participants untreated or treated for hypertension at baseline, in patients with or without diabetes at baseline (Table S7), after excluding one cohort at a time (Table S8), and in Europeans compared with Asians and South Americans (Table S9).

Absolute Risk Associated With 24-Hour MAP

Based on the aforementioned MAP thresholds, the primary end point occurred in 715 of 6183 normotensive participants (11.6%; rate per 1000 person-years, 11.9 [95% CI, 11.1–13.2]); in 134 of 909 people with elevated BP (14.7%; 11.3 [9.5–13.6]); in 312 of 1544 participants with stage-1 hypertension (20.2%; 15.2 [13.5–17.2]); and in 873 of 2960 stage-2 hypertensive patients (29.5%; 21.5 [20.0–23.3]). The increase in absolute risk across higher MAP categories was highly significant (*P*<0.001). This was also the case for the secondary end points (Table S10).

Relative Risk Associated With 24-Hour MAP

Compared with the normotensive reference group (Table 3), the relative risk of a primary end point associated with 24-hour MAP was 32% higher in patients with stage-1 hypertension and 77% higher in those with stage-2 hypertension (*P*<0.001). For the secondary end points, the corresponding risk estimates ranged...
from 16% to 52% for stage-1 hypertension (P≤0.173 to <0.010) and from 39% to 90% for stage-2 hypertension (P<0.001). These findings were direction wise consistent in 6996 participants younger than 60 years and in 4600 patients aged 60 years or more (Table 3), albeit that in the younger age group the relative risk of cardiovascular mortality and coronary end points was formally significant only in patients with stage-2 hypertension (P<0.001). The interaction terms between age and the 24-hour MAP categories were nonsignificant (Table 3).

Association of the Primary End point With MAP, Systolic and Diastolic BP

We stratified the analysis of 24-hour MAP by the median of the MAP distribution (90 mmHg). In 2-mmHg steps, hazard ratios were computed for lower and higher MAP levels with as reference group participants with levels of 90 mmHg or more or <90 mmHg, respectively. In line with the data in Table 2, the risk of the primary end point (Figure 1A) increased above unity at a level of ≥92 mmHg. Using the American College of Cardiology/American Heart Association thresholds for 24-hour systolic/diastolic BP (<125/<75 versus ≥125/≥75 mmHg) and the presently obtained thresholds for 24-hour MAP (<92 versus ≥92 mmHg; Table 2), the 11596 participants were subdivided in 4 groups. For systolic combined with MAP, 6284 people (54.2%) were normotensive for both BP indexes (group A), 808 (7.0%) had high systolic BP but normal MAP (group B), 585 (5.0%) had normal systolic BP but elevated MAP (group C), and 3919 (33.8%) had both elevated systolic BP and MAP (group D). For cross-classification with diastolic BP, these numbers were 6427 (55.4%), 665 (5.7%), 518 (4.5%), and 3986 (34.4%), respectively. In multivariable-adjusted analyses with group A as reference, the relative risk was similar in systolic/diastolic groups B (+8%/-8%; P=0.317; Figure 1B and 1C) but elevated in group C (+34%+/46%; P≤0.027) and in group D (+71%+/64%; P<0.001).

Heat maps combining 24-hour systolic, diastolic and MAP (Figure 2) showed along the horizontal axis that the 10-year risks of the primary end point increased with higher MAP (P<0.001). Along the vertical axis, higher systolic BP (Figure 2C; P<0.001) added to the risk conferred by MAP, whereas higher diastolic BP attenuated the risk (Figure 2D; P<0.001). Combined with MAP, 24-hour pulse pressure added to the risk conferred by MAP (Figure S2), replicating the results for systolic BP (Figure 2C). Finally, we assessed the log likelihood ratios and generalized R² statistics across nested models. The associations of the primary end point with MAP and systolic BP, both analyzed as continuous variables, were similar if the base model included the covariables accounted for in adjusted analyses (R², 1.34 and 1.28,

Table 2. Ambulatory MAP Thresholds Yielding Equivalent 10-y Risk Compared With the Reference Thresholds of Office MAP in 11596 Participants

End points	Reference office MAP* thresholds and associated 10-y risk†	Ambulatory MAP* thresholds yielding equivalent 10-y risk	Proposed threshold‡						
	No.	Level, mmHg	Risk in percent (95% CI)	24 h	Daytime	Nighttime	24 h	Daytime	Night-time
All cardiovascular end points	2034	93	4.55 (4.09–5.00)	89.4 (88.5–90.3)	93.4 (92.2–94.6)	79.3 (78.1–80.5)	90	94	80
97	4.81 (4.35–5.27)	91.5 (90.9–92.0)	96.1 (95.5–96.8)	81.7 (80.9–82.4)	92	96	82		
107	5.54 (5.04–6.04)	96.6 (95.9–97.3)	103.1 (102.1–104.1)	87.6 (86.7–88.4)	96	104	88		
Total mortality	2821	93	3.75 (3.38–4.12)	89.4 (87.9–90.8)	92.7 (89.9–95.4)	80.2 (78.8–81.6)	90	92	80
97	3.86 (3.49–4.24)	91.5 (90.7–92.3)	96.0 (94.6–97.3)	82.1 (81.3–82.9)	92	96	82		
107	4.17 (3.76–4.59)	96.7 (95.9–97.9)	104.1 (101.7–106.6)	86.9 (85.7–88.2)	96	104	86		
Cardiovascular mortality	1059	93	1.12 (0.91–1.33)	90.4 (88.9–91.9)	94.2 (91.9–96.5)	80.7 (79.0–82.5)	90	94	80
97	1.18 (0.96–1.40)	92.4 (91.4–93.4)	96.9 (95.4–98.5)	82.9 (81.7–84.1)	92	96	82		
107	1.36 (1.11–1.62)	97.3 (96.4–98.3)	103.8 (102.6–105.0)	88.2 (87.1–89.3)	96	104	88		
Coronary end points	916	93	2.17 (1.84–2.49)	89.3 (87.5–91.1)	93.3 (90.7–95.8)	79.7 (77.6–81.8)	90	94	80
97	2.25 (1.92–2.57)	91.1 (90.2–91.9)	95.7 (94.5–96.9)	81.6 (80.5–82.7)	92	96	82		
107	2.45 (2.09–2.81)	95.5 (93.9–97.2)	101.7 (99.4–104.1)	86.4 (84.6–88.3)	96	102	86		
Stroke	809	93	1.71 (1.45–1.97)	89.5 (88.2–90.8)	93.5 (91.9–95.1)	79.2 (77.6–80.8)	90	94	80
97	1.85 (1.57–2.13)	91.7 (90.9–92.5)	96.4 (95.5–97.3)	81.8 (80.7–82.8)	92	96	82		
107	2.26 (1.92–2.61)	97.3 (96.5–98.1)	103.8 (102.7–104.9)	88.3 (87.3–89.2)	96	104	88		

MAP indicates mean arterial pressure.
*MAP was estimated from office blood pressure (MAP=diastolic blood pressure plus one-third of the difference between systolic and diastolic blood pressure) or estimated using oscillometric ambulatory monitors. Oscillometric devices compute systolic and diastolic blood pressure, using proprietary algorithms (Figure S1 in the Data Supplement).
†The ambulatory MAP thresholds were computed by bootstrapping 1000× multivariable-adjusted Cox models.
‡Proposed thresholds were obtained by rounding the point estimates to the closest even integer value, except for the risk of cardiovascular mortality and stroke events associated with 24-hour MAP stage 2 combined with severe hypertension, which were set at 96 mmHg instead of 98 mmHg for reasons of consistency and precaution.
For MAP added to the covariates and diastolic BP, the R^2 was 0.47. If the base model included the covariates and both systolic and diastolic BP, continuous MAP did not add to the model fit (Table S11). If MAP and systolic and diastolic BP were dichotomized as in Figure 1B, the corresponding R^2 values were 0.71, 0.89, 0.32, and 0.10, respectively (Table S12).

DISCUSSION

Using a composite cardiovascular end point as primary outcome, statistical methods published before, and the 10-year risks associated with the 2017 ACC/AHA thresholds for office BP as reference, we computed thresholds for 24-hour MAP. We focused on 24-hour ambulatory BP derived thresholds because we recently demonstrated that of all in-office and ambulatory BP indexes, mortality and fatal combined with nonfatal cardiovascular end points were closely associated with the 24-hour BP level. Levels of 24-hour MAP of <90, 90 to <92, 92 to <96, and ≥ 96 mm Hg delineated normotension, elevated 24-hour MAP, stage-1 hypertension, and stage-2 combined with severe hypertension, respectively. With higher 24-hour MAP categories, both the absolute and relative risks of adverse events increased, as captured by the incidence and hazard ratios, respectively. These observations withstood multiple sensitivity analyses and held true for the primary and secondary end points. Combined with 24-hour systolic and diastolic BP, 24-hour MAP kept its prognostic accuracy in categorical and continuous analyses of BP.
The fit of the associations of the primary end point with MAP and systolic BP, both analyzed as continuous variables, were similar if the base model included only the covariates accounted for in adjusted analyses, but if the base model also included systolic and diastolic BP, continuous MAP did no longer add to the model fit (Table S11). These observations are in line with the concept that diastolic BP is the main determinant of MAP and that MAP captures information related to both systolic and diastolic BP. If the BP indexes were dichotomized, using the ACC/AHA thresholds for systolic (125 mm Hg) and diastolic (75 mm Hg) BP and the outcome-driven MAP threshold derived in this article (92 mm Hg), MAP did add to a model including covariables and both systolic and diastolic BP thresholds. The log likelihood ratios and generalized R² statistics only evaluate model fit but not the strength of the association of an end point with a BP index, as shown in Figure 2. As demonstrated by numerous placebo and actively controlled trials¹⁸ and long-term cohort studies of populations¹³ and patients,¹⁹ BP is the overriding modifiable cardiovascular risk factor. Small increments in R² challenge this concept. However, major irreversible risk factors, such as sex and age, on their own already generate an R² of 23.94%. Consequently, adding BP to multivariable-adjusted models that already account for sex, age, and other risk factors cannot substantially augment R². Under such conditions, many researchers share the opinion that markers of model fit are imprecise and that clinical relevance is of greater importance than the improvement of the model fit.²⁰

From a physiological point of view, BP and blood flow can be broken down into a pulsatile component with systolic and diastolic BP representing the extremes of the BP oscillations around MAP, which drives organ perfusion.²¹ When peripheral resistance increases by rarefaction or remodeling of arterioles, MAP rises with parallel increments in systolic and diastolic BP. However, when there is an additional reduction of arterial compliance, as occurs with stiffening of the large arteries, both systolic BP and MAP increase, whereas diastolic BP decreases.²² Figure 2 illustrates these concepts, showing that the 10-year risk of the primary end point was consistently greater with higher MAP with an additional contribution of systolic BP, whereas higher diastolic BP attenuated the risk. Diastolic BP is within 2 mm Hg similar throughout the arterial system.⁹ Pulse pressure is the difference between systolic and diastolic BP. These hemodynamic principles explain why adding systolic BP (Figure 2C) or pulse pressure (Figure S2), which both reflect the pulsatile component of BP, produced similar results.

The clinical relevance of our study pertains to the consideration of MAP for identifying hypertension and categorizing individuals according to their risk for adverse health outcomes. As reported before,¹²⁻¹³ relative risk was higher at young than older age, whereas absolute followed the opposite trend (Table 3). Our observations have implications for hypertension management and the use and validation of oscillometric BP measuring devices. Treatment wise, targeting lower systolic BP goals²⁴ is
likely to reduce risk, but only when MAP and diastolic BP are not lowered below levels required for the perfusion of the cerebrovascular, coronary, and renal vascular beds. Oscillometric BP measuring devices should include MAP in the reports they generate, as this information might carry clinical information.

Strengths and Limitations

Generalizability is among the strengths of our study. Participants were randomly recruited from populations in 12 countries and 3 continents. End points were collected over a median of 13.6 years of follow-up and encompassed both fatal and nonfatal events all adjudicated against the source documents available in each country. Notwithstanding these strengths, our study must also be interpreted within the context of its possible limitations. Asians and South Americans were under-represented. We had no information on Black people of African descent or Black people born and living in Africa, who generally are more susceptible to the complications of hypertension. Our findings were obtained in participants aged 18 years without upper age limit. They are obviously not applicable in children and young adolescents. Finally, we assessed

Figure 2. Heat maps depicting the 10-y risk of a primary end point in relation to 24-h mean arterial, systolic and diastolic BP in 11596 participants.

Numbers in the (A) and (B) grids represent the percentage of participants within each BP cross-classification category; numbers in (C) and (D) represent the 10-y risks. Heat maps were derived by Cox proportional hazards regression with systolic BP (C) or diastolic BP (D) plotted along the vertical axis and mean arterial pressure (MAP) along the horizontal axis. Estimates of the 10-y risk were standardized to the average of the distributions in the whole study population (mean or ratio) of all covariables. Higher MAP consistently conferred greater risk ($P<0.001$) with an additional contribution of systolic BP ($P<0.001$ [C]), whereas higher diastolic BP attenuated the risk ($P<0.001$ [D]).
Epidemiology/Population Science

Received February 19, 2020; accepted October 9, 2020.

Affiliations

From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (J.D.M., W.-Y. Y, L.T., F.-F.W., J.A.S., Z.-Y.Z.); Laboratory of Neurosciences, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela (J.D.M., G.E.M.); Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China (W.-Y.Y.); Centers for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluation, Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., Q.-F.H., J.-G.W.); Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan (K.A., M.K., T.O.); Tokohu Institute for Management of Blood Pressure (K.A., T.O., Y.I.); Steno Diabetes Center Copenhagen, Gentofte and Research Centre for Prevention and Health, Capital Region of Denmark (T.W.H.); Stroke and Hypertension Unit, Blanchardstown, Dublin, Ireland (E.D.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Kraków, Poland (K.S.-S., K.K.-J.); Department of Medicine, University of Padova, Italy (V.T., E.C.); Institute of Internal and Preventive Medicine, Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russian Federation (S.M.); Section of Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Sweden (L.L.); Asociación Española Primera de Socorros Mutuos, Montevideo, Uruguay (E.S.); Faculty of Medicine, Charles University, Pilsen, Czech Republic (J.F.); Department of Hypertension, Medical University of Gdansk, Poland (N.G.-M., K.N.); Centro de Nefrología and Departamento de Fisiopatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay (J.B.); Department of Medicine, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA (G.E.M.); Alzheimer’s Disease Resource Center for Minority Aging Research, University of Texas Rio Grande Valley, Brownsville (G.E.M.); and Research Institute Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium (J.A.S.).

Disclosures

None.

APPENDIX

IDACO Investigators; Belgium, Noordkempen: S. Janssens, J.A. Staessen, L. Thijs, T. Vanassche, P. Verhamme, F.F. Wei, Z.Y. Zhang, and W.Y. Yang; China, JingNing: Y. Li, Q.F. Huang, and J.G. Wang; Czech Republic, Pilíšová: J. Filipíšková, J. Seidlerová, and M. Tichá; Denmark, Copenhagen: T.W. Hansen, H. Ibsen, J. Jeppesen, S. Rasmussen, and C. Torp-Pedersen; Ireland, Dublin: E. Dolan and E. O’Brien; Italy, Padova: E. Casiglia, A. Pizziolo, and V. Tichonoff; Japan, Ohasama: K. Asayama, J. Hoshino, H. Hoshi, Y. Imai, R. Inoue, M. Kikuya, H. Metoki, T. Obara, T. Ohkubo, M. Gatch, and K. Totsune; Poland (Gdański): European Union (grants LSHM-CT-2006–037093 and HEALTH-F4-2007–201550); Uruguay: Asociación Española en Salud; Venezuela: The National Institute of Aging and the Fogarty International Center (grant 1R01AG036469 A1), the National Institutes of Health and National Institute of Aging (grant R03 AG054186-01), FONACIT, Caracas (grant G-97000726), and FundaConCiencia, Maracay (grant LOC-T/008-2008). The Research Institute Alliance for the Promotion of Preventive Medicine (APPREMED), Mechelen, Belgium received a nonbinding grant from OMRON Healthcare, Co, Ltd, Kyoto, Japan.

REFERENCES

1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Anderson HM, Andrews KG, Atkinson G, Azevedo-Scott R, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease 2010 Study. Lancet. 2012;380:2223–2260. doi: 10.1016/S0140-6736(12)61666-8
2. Olsen MH, Angell SY, Asma S, Boutourley P, Burger D, Chininos JA, Damasceno A, Delles C, Gimenez-Roqueplo AP, et al. A call to action and a lifestyle strategy to address the global burden of raised blood pressure on current and future generations: the lancet commission on hypertension. Lancet. 2016;388:2665–2712. doi: 10.1016/S0140-6736(16)31134-5

Hypertension. 2021;77:39–48. DOI: 10.1161/HYPERTENSIONAHA.120.149929

January 2021

47
3. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison-Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, et al. 2017 ACC/AHA/APA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71:e127–e248. doi: 10.1016/j.jacc.2017.11.006

4. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, et al; Authors/Task Force Members; 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Eur Heart J. 2018;39:1903–2041. doi: 10.1093/eurheartj/ehy154

5. Laher M, O’Brien E. In search of Korotkoff. Br Med J (Clin Res Ed). 1982;285:1796–1798. doi: 10.1136/bmj.285.6357.1796

6. Forouzanfar M, Daji HR, Groz V, Bolic M, Rajan S, Batkin I. Oscillometric blood pressure estimation: past, present, and future. IEEE Rev Biomed Eng. 2015;8:44–63. doi: 10.1109/RBME.2015.2434215

7. Babis CF. Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model. Biomed Eng Online. 2012;1:56. doi: 10.1186/1475-922X-11-56

8. O’Brien E, Atkins N, Stergiou G, Karpettas N, Parati G, Asmar R, Imay Y, Wang J, Mengden T, Shennan A; Working Group on Blood Pressure Monitoring of the European Society of Hypertension. European society of hypertension international protocol revision 2010 for the validation of blood pressure measuring devices in adults. Blood Press Monit. 2010;15:29–38. doi: 10.1097/MBP.0b013e328360e98

9. Boggia J, Luzardo L, Lujambio I, Sottolano M, Robaina S, Thijis L, Olascoaga A, Noboa O, Struijker-Boudier HA, Safar ME, et al. The diurnal profile of central hemodynamics in a general uruguayan population. Am J Hypertens. 2016;29:737–746. doi: 10.1093/ahj/hpv169

10. McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB. Central blood pressure: current evidence and clinical importance. Br Med J (Clin Res Ed). 2018;358:k408. doi: 10.1136/bmj.k408

11. Flint AC, Conell C, Ren X, Banki N, Chan SL, Rao VA, Mellers RB, Bhatt DL. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N Engl J Med. 2019;381:243–251. doi: 10.1056/NEJMoA1803180

12. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–1913. doi: 10.1016/s0140-6736(02)11191-8

13. Yang WY, Melgarejo JD, Thijis L, Zhang ZY, Boggia J, Wei FF, Hansen TW, Asayama K, Ohkubo T, Jeppesen J, et al; International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes (IDACO) Investigators. Association of office and ambulatory blood pressure with cardiovascular outcomes. J Am Coll Cardiol. 2016;68:1713–1722. doi: 10.1016/j.jacc.2016.07.075

14. Kikuya M, Hansen TW, Thijis L, Björklund-Bodén G, Kuznetsova T, Ohkubo T, Richart T, Torp-Pedersen C, Lind L, Isen H, et al; International Database on Ambulatory blood pressure monitoring in relation to Cardiovascular Outcomes Investigators. Diagnostic thresholds for ambulatory blood pressure monitoring based on 10-year cardiovascular risk. Circulation. 2007;115:2145–2152. doi: 10.1161/CIRCULATIONAHA.106.662954

15. World Medical Association. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053

16. Yang WY, Thijis L, Zhang ZY, Asayama K, Boggia J, Hansen TW, Ohkubo T, Jeppesen J, Stolarz-Skrzypek K, Malyutina S, et al; International Database on Ambulatory blood pressure in relation to Cardiovascular Outcomes (IDACO) Investigators. Evidence-based proposal for the number of ambulatory readings required for assessing blood pressure level in research settings: an analysis of the IDACO database. Blood Press. 2018;27:341–350. doi: 10.1080/08037051.2018.1476057

17. Gillespie BW. Use of generalized R-squared in Cox regression. APHA Scientific Session and Event Listing. 2006. https://apha.confex.com/apha/134am/techprogram/paper_135906.htm

18. Staessen JA, Wang JG, Thijis L. Cardiovascular prevention and blood pressure reduction: a meta-analysis. Lancet. 2001;358:1305–1315.

19. Banegas JR, Rulíope LM, de la Sierra A, Vinyoles E, Gorostidi M, de la Cruz JJ, Ruiz-Hurtado G, Segura J, Rodríguez-Artalejo F, Williams B. Relationship between clinic and ambulatory blood-pressure measurements and mortality. N Engl J Med. 2018;378:1509–1520. doi: 10.1056/NEJMoA1712231

20. Baker SG, Schuit E, Steyerberg EW, Pencina MJ, Vickers A, Vickers A, Moons KG, Moi BW, Lindeman KS. How to interpret a small increase in AUC with an additional risk prediction marker: decision analysis comes through. Stat Med. 2014;33:3946–3959. doi: 10.1002/sim.6195

21. O’Rourke MF, Satar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–204. doi: 10.1161/01.HYP.0000185062.00426.65

22. Staessen JA, Amery A, Fagard R. Isolated systolic hypertension in the elderly. J Hypertens. 1990;8:393–405. doi: 10.1097/00004872-199005000-00001

23. Li Y, Thijis L, Zhang ZY, Asayama K, Hansen TW, Boggia J, Björklund-Bödén G, Yang WY, Niiranen TJ, Nitani T, et al; CVD Risk in Young Adults Study Group. Comparison of ambulatory blood pressure monitoring and conventional blood pressure measurement in a young adult population. JAMA. 2015;373:2103–2116. doi: 10.1056/NEJMoA1511939

24. Spence DJ. Systolic pressure targets, diastolic pressure targets, and cuff artefact in blood pressure measurement: a note of caution. Eur J Neurol. 2017;24:1233–1235.

25. McEvoy JW, Chen Y, Rawlings A, Hoeveeen RC, Ballantyne CM, Blumenthal RS, Corsh J, Selvin E. Diastolic blood pressure, subclinical myocardial damage, and cardiac events: implications for blood pressure control. J Am Coll Cardiol. 2016;68:1713–1722. doi: 10.1016/j.jacc.2016.07.075

26. Odili AN, Thijis L, Yang WY, Ogedengbe JO, Nweogu MM, Jacobs L, Wei FF, Feng YM, Zhang ZY, Kuznetsova T, et al. Office and home blood pressures as determinants of electrocardiographic left ventricular hypertrophy among black americans compared with white american. Am J Hypertens. 2017;30:1085–1092. doi: 10.1093/ajh/hpx114
Association of Fatal and Nonfatal Cardiovascular Outcomes With 24-Hour Mean Arterial Pressure.

JD Melgarejo, WY Yang, L Thijs, Y Li, K Asayama, TW Hansen, FF Wei, M Kikuya, T Ohkubo, E Dolan, K Stolarz-Skrzypek, QF Huang, V Tikhonoff, S Malyutina, E Casiglia, L Lind, E Sandoya, J Filipovský, N Gilis-Malinowska, K Narkiewicz, K Kawecka-Jaszcz, J Boggia, JG Wang, Y Imai, T Vanassche, P Verhamme, S Janssens, E O'Brien, GE Maestre, JA Staessen*, ZY Zhang, for the International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcome Investigators

*Correspondence to Jan A. Staessen, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Diseases, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 7, Box 7001, BE 3000 Leuven, Belgium. Email: jan.staessen@med.kuleuven.be

Table of Contents

Table S1	Recruitment and Follow-Up by Cohort	S2
Table S2	Literature Sources Documenting Methods in Each Cohort	S3
Table S3	Ambulatory Blood Pressure Monitoring Devices by Cohort	S4
Table S4	International Classification of Disease Coding and Number of Endpoints in 11,596 Participants	S5
Table S5	Baseline Characteristics of Participants by Fourths of the Distribution of 24-Hour Mean Arterial Pressure	S6
Table S6	Correlation Matrix between Blood Pressure Indexes	S7
Table S7	24-Hour Mean Arterial Pressure Thresholds Yielding Equivalent 10-Year Risk for All Cardiovascular Events Compared to the Reference Thresholds of Office Mean Arterial Pressure in 11,596 Participants by Difference Baseline Clinical Characteristics	S8
Table S8	24-Hour Mean Arterial Pressure Thresholds Yielding Equivalent 10-Year Risk for All Cardiovascular Events Compared to the Reference Thresholds of Office Mean Arterial Pressure in Participants by Excluding Cohorts	S9
Table S9	24-Hour Mean Arterial Pressure Thresholds Yielding Equivalent 10-Year Risk as Reference Thresholds of Office Mean Arterial Pressure in Europeans or in Asians and South Americans	S10
Table S10	Incidence of Primary and Secondary Endpoints by Increasing Categories of 24-Hour Mean Arterial Pressure	S11
Table S11	Nested Cox Models Relating the Primary Endpoint to 24-Hour Blood Pressure Level	S12
Table S12	Nested Cox Models Relating the Primary Endpoint to 24-Hour Blood Pressure Categories	S13
Figure S1	Pressure Oscillations in a Sphygmomanometer Cuff during Deflation	S14
Figure S2	Heat Map Depicting the 10-Year Risk of a Primary Endpoint in Relation to 24-Hour Mean Arterial Pressure and Pulse Pressure in 11,596 Participants	S15
References		S16
Table S1. Recruitment and Follow-Up by Cohort.

Catchment Area	Sampling Frame	Recruitment	N* of Participants	Follow-Up				
		Timeline	Invitation	PR (%)	In Database	Analyzed	Last Follow-Up (Year)	Median in Years (5–95% Percentile Interval)
Ohasama, Iwate, Japan	People aged ≥40 years	1988–1994	Address list	78	1535	1326	2015	22.0 (5.0–26.8)
JingNing, Zhejiang, China	Family-based random sample	2003–2003	All villagers invited	62	895	855	2012	4.0 (3.5–7.6)
Oktyabrsky, Novosibirsk, Russian Federation	Family-based random sample	1999–2001	Address list	68	306	300	2009	16.4 (8.1–17.5)
Niepolomice, Kraków, Poland	Family-based random sample	1999–2008	Address list	54	413	389	2014	13.5 (6.1–14.3)
Gdańsk, Poland	Family-based random sample	2008–2010	Address list	90	289	284	2014	6.1 (4.8–8.7)
Pilsen, Czech Republic	Family-based random sample	2000–2001	Address list	82	174	169	2015	14.1 (13.8–14.4)
Padova, Italy	Family-based random sample	1999–2007	Address list	73	314	314	2013	13.3 (12.6–14.5)
Noordkempen, Belgium	Family-based random sample	1985–2008	Address list	78	2904	1436	2016	24.5 (8.6–27.8)
Uppsala, Sweden	Men aged 69–74 years	1991–1995	Population census	73	1143	1110	2015	15.1 (3.5–23.0)
Copenhagen County, Denmark	Stratified random sample of women and men aged 30, 40, 50 and 60 years	1993–1997	Population registry	83	2311	2148	2010	16.3 (5.1–17.3)
Dublin, Ireland	Bank employees working at branches across Ireland	1989–1991	All invited	14	981	946	2007	17.6 (16.4–18.2)
Maracaibo, Venezuela	City residents aged ≥55 years	1998–2008	Population census	71	604	590	2012	8.1 (1.7–13.7)
Montevideo, Uruguay	Age-stratified random sample	1995–1998	Members of a health insurance organization	78	1859	1729	2007	9.0 (4.2–10.7)

PR denotes participation rate. The European Project on Genes in Hypertension included participants recruited in Novosibirsk, Kraków, Gdańsk, Pilsen and Padova. Participants from Padova were recruited in Mirano in the province of Venice and in Torrebelvicino and Valli del Pasubio in the province of Vicenza, Italy.
Study Location	Study Name	References
Ohasama, Iwate, Japan	Ohasama Study of Blood Pressure	1-4
China, Zhejiang, JingNing	JingNing Population Study (JNPS)	5-7
Oktyabrysky, Novosibirsk, Russia	European Project on Genes in Hypertension (EPOGH)	8-11
Poland, Kraków, Niepolomice	European Project on Genes in Hypertension (EPOGH)	8-10
Poland, Gdańsk	European Project on Genes in Hypertension (EPOGH)	8-10
Czech Republic, Pilsen	European Project on Genes in Hypertension (EPOGH)	8-10
Italy, Padova	European Project on Genes in Hypertension (EPOGH)	8-10
Belgium, Noordkempen	Flemish Study on Environment Genes and Health Outcomes (FLEMENGHO)	9,12-14
Uppsala, Sweden	Uppsala Longitudinal Study of Adult Men (ULSAM)	15,16
Copenhagen County, Denmark	Monitoring of trends and determinants in Cardiovascular Disease (MONICA)	17-19
Dublin, Ireland	The Allied Irish Bank Study	20-21
Maracaibo, Venezuela	Maracaibo Aging Study	22,23
Uruguay, Montevideo	Asociación Española Primera de Socorros Mutuos Study	24,25

References are listed starting on pages S17-S20.
Table S3. Ambulatory Blood Pressure Monitoring Devices by Cohort.

Study Cohorts	N° of Participants	Monitoring Device	Programmed Intervals between Readings in Minutes	N° of Readings Recorded over 24-Hours						
			Day	Night	Programmed	Median	P5	P25	P75	P95
Ohasama, Iwate, Japan	1326	ABP-630, Nippon Colin	30	30	48	45	36	42	48	50
JingNing, Zhejiang, China	855	90207, SpaceLabs	20	45	65	56	48	55	57	62
Oktyabrsky, Novosibirsk, Russia	300	90202, SpaceLabs	15	30	76	71	56	65	75	78
Niepolomice, Kraków, Poland	389	90202, SpaceLabs	15	30	76	74	54	63	77	79
Gdańsk, Poland	284	TM-2430, A&D	20	45	65	62	50	59	64	64
Pilsen, Czech Republic	169	90202, SpaceLabs	20	45	65	76	54	71	80	82
Padova, Italy	314	90202, SpaceLabs	15	30	76	76	64	74	76	125
Noordkempen, Belgium	1436	90202, SpaceLabs	20	40	55	53	37	41	56	58
Uppsala, Sweden	1110	Accutrackler II	20–30	20–60	41–72	65	44	52	75	84
Copenhagen County, Denmark	2148	TM-2421, A&D	15	30	80	80	67	78	81	83
Dublin, Ireland	946	90202 and 90207, Spacelabs	30	30	48	46	37	44	48	49
Maracaibo, Venezuela	590	90207, SpaceLabs	15	30	80	67	51	61	71	77
Montevideo, Uruguay	1729	90207, SpaceLabs	20	40	60	37	26	33	39	42

The TM-2421 and TM-2430 monitors implemented both an auscultatory and an oscillometric technique. However, only oscillometric readings were used for analysis. All devices had passed validation. In cohorts with a greater number than programmed readings, participants could manually initiate additional measurements.
Table S4. International Classification of Disease Coding and Number of Endpoints in 11,596 Participants.

Endpoint*	ICD Codes by Version	N° of Endpoints				
	8	9	10	All	Fatal	Nonfatal†
Total mortality§	2821	2821				
Cardiovascular mortality§	1059	1059				
Noncardiovascular mortality	1573	1573				
Cause unknown	144	144				
All cardiovascular endpoints‡	2034					
Coronary endpoints§	916	262				
Myocardial infarction	663	227	444			
Coronary revascularization	179	179				
Death from ischemic heart disease	154	154				
Sudden death	83	83				
Heart failure	685	148	596			
Stroke§	809	279	670			

* The median follow-up of 11,596 participants was 13.6 years (5th to 95th percentile interval, 3.6–26.0 years). The number of person-years of follow-up totaled 158,431.
† The nonfatal events do not add up, because within each category only the first event was analyzed.
‡ Primary endpoint.
§ Secondary endpoint.
Table S5. Baseline Characteristics of Participants by Fourths of the Distribution of 24-Hour Mean Arterial Pressure.

Baseline Characteristics	Statistics	<83 mm Hg (n=2899)	83-89 mm Hg (n=2899)	90-96 mm Hg (n=2899)	≥ 97 mm Hg (n=2899)	P Value*
Participants with characteristic						
Women — no. (%)		2016 (69.5)	1481 (51.1)	1190 (41.1)	1067 (36.8)	<0.001
Europeans — no. (%)		1682 (58.0)	1867 (64.4)	1859 (64.1)	1688 (58.2)	0.932
Asians — no. (%)		643 (22.2)	516 (17.8)	516 (18.0)	638 (22.0)	0.991
South Americans — no. (%)		574 (19.8)	516 (17.8)	518 (17.9)	573 (20.0)	0.925
Current smoking — no. (%)††		720 (24.8)	781 (26.9)	837 (28.9)	812 (28.0)	0.001
Drinking alcohol — no. (%)†§		1111 (38.3)	1451 (50.1)	1640 (56.6)	1804 (62.2)	<0.001
Office hypertension — no. (%)¶ǁ		831 (28.7)	1637 (56.5)	2226 (76.8)	2741 (94.6)	<0.001
On antihypertensive treatment — no. (%)†		283 (9.8)	441 (15.2)	588 (20.3)	961 (33.2)	<0.001
Diabetes mellitus — no. (%)**		138 (4.8)	180 (6.2)	232 (8.0)	335 (11.6)	<0.001
History of cardiovascular disease — no. (%)†		213 (7.4)	269 (9.3)	357 (12.3)	448 (15.5)	<0.001
Mean (±SD) of characteristic						
Age—yr		45.8±16.4	50.8±16.4	55.1±14.9	59.5±12.4	<0.001
Body mass index— kg/m2††		23.9±4.0	25.2±4.2	26.0±4.4	26.6±4.3	<0.001
Office systolic blood pressure — mm Hgǁ		116.4±16.4	126.8±17.3	135.5±19.9	151.7±23.6	<0.001
Office diastolic blood pressure — mm Hgǁ		71.0±8.7	76.9±9.1	81.3±9.8	90.0±11.7	<0.001
Office mean arterial pressure — mm Hgǁ		86.1±9.9	93.6±10.2	99.3±11.4	110.6±13.8	<0.001
24-Hour systolic blood pressure — mm Hg$‡‡$		108.5±6.0	118.0±5.5	126.3±6.5	141.4±11.9	<0.001
24-Hour diastolic blood pressure — mm Hg$‡‡$		64.6±3.7	70.5±2.8	75.6±3.3	84.9±6.8	<0.001
24-Hour mean arterial pressure — mm Hg$‡‡$		79.3±3.2	86.3±1.7	92.4±2.0	103.7±7.0	<0.001
24-Hour heart rate — beats per minute		72.0±8.8	72.2±9.1	72.4±9.3	73.5±10.0	<0.001
Serum cholesterol, mg/dL$§§$		205.0±42.5	213.1±43.6	220.1±44.8	220.8±43.6	<0.001
Blood glucose, mg/dL$§§$		89.3±21.4	92.9±23.2	94.6±27.3	93.2±30.4	<0.001

* P values are for linear trend across categories.
† Assessed by questionnaire or interview at baseline.
‡ Use of smoking materials on a daily basis.
§ Occasional or daily consumption of alcoholic beverages.
¶| An office blood pressure of ≥130 mm Hg systolic or ≥80 mm Hg diastolic, or use of antihypertensive drugs.
ǁ Office blood pressure was measured using standard mercury sphygmomanometers or validated auscultatory or oscillometric devices. Mean arterial pressure was diastolic blood pressure plus one third of pulse pressure (the difference between systolic and diastolic blood pressure).
** Use of antidiabetic drugs, fasting blood glucose of ≥126 mg/dL (7.0 mmol/l), random blood glucose of ≥200 mg/dL (11.1 mmol/l), a self-reported diagnosis, or diabetes documented in practice or hospital records.
†† Body weight in kilogram divided by body height in meters squared.
‡‡ 24-Hour blood pressure was measured with validated oscillometric devices (see Table S3).
§§ Serum cholesterol and blood glucose were measured by automated methods in certified laboratories. Conversion factors: To convert cholesterol to mmol/l, multiply by 0.0259, to convert glucose to mmol/l, multiply by 0.056.
Table S6. Correlation Matrix between Blood Pressure Indexes.

BP Item‡	24-Hour Ambulatory BP*	Office BP†				
	Systolic	Diastolic	MAP	Systolic	Diastolic	MAP
24–Hour systolic BP	—					
24–Hour diastolic BP	0.73	—				
24–Hour MAP	0.92	0.94	—			
Office systolic BP	0.67	0.46	0.60	—		
Office diastolic BP	0.53	0.62	0.62	0.68	—	
Office MAP	0.65	0.60	0.67	0.91	0.92	—

* Validated oscillometric devices, used for ambulatory blood pressure (BP) monitoring, measured mean arterial pressure (MAP) and extrapolated systolic and diastolic BP, using proprietary algorithms with an accuracy of ±5 mm Hg against the auscultatory standard.

† In those cohort that observers applied the auscultatory or oscillometric method to measure BP levels, the systolic and diastolic BP were set to the nearest even number. Office MAP was computed as diastolic BP plus one third of pulse pressure (difference between systolic and diastolic BP).

‡ All correlation coefficients were highly significant (P<0.0001).
Table S7. 24-Hour Mean Arterial Pressure Thresholds Yielding Equivalent 10-Year Risk for All Cardiovascular Events Compared to the Reference Thresholds of Office Mean Arterial Pressure in 11,596 Participants by Difference Baseline Clinical Characteristics.

Baseline Clinical Characteristics	Reference Office MAP* Thresholds and Associated 10-Year Risk	24-Hour Ambulatory MAP* Thresholds Yielding Equivalent 10-Year Risk†	Proposed Thresholds§		
Type	Level (mm Hg)	Risk in Percent (95% CI)	Point Estimates (95% CI)†	Proposed Thresholds§	
Women	626/5754	93	2.66 (2.18-3.13)	88.8 (87.4-90.1)	88
Men	1408/5842	97	2.84 (2.34-3.33)	90.7 (90.0-91.5)	90
Cardiovascular disease	456/1287	107	3.34 (2.75-3.93)	95.7 (94.2-97.1)	96
Free of cardiovascular disease	1578/10,309	93	5.93 (5.05-6.82)	90.2 (88.4-92.0)	90
Diabetic participants	299/885	93	6.26 (5.35-7.18)	92.4 (91.0-93.7)	92
Nondiabetic participants	1735/10,711	93	7.17 (6.11-8.23)	97.7 (97.0-98.5)	98
16-6 day/nighttime BP readings	1870/10,333	93	17.6 (14.5-20.7)	87.6 (83.7-91.5)	88
11-5 day/nighttime BP readings	1984/11,171	93	18.3 (15.2-21.4)	89.8 (87.2-92.9)	90
Untreated	1226/9323	93	20.2 (16.9-23.6)	95.4 (94.0-96.8)	96
Treated	808/2273	93	20.6 (17.3-23.8)	96.0 (95.1-96.9)	96

* MAP indicates mean arterial pressure, which was estimated from office blood pressure (MAP = diastolic blood pressure plus one third of the difference between systolic and diastolic blood pressure, or measured using oscillometric ambulatory monitors). Oscillometric devices compute systolic and diastolic blood pressure, using proprietary algorithms (Figure 1 in the Supplemental Data).
† E/AR denotes the number of endpoints/number of participants at risk according to baseline clinical categories.
‡ Proposed thresholds were obtained by rounding the point estimates to the closest even integer value which were set at 88, 90, 92, 96, and 98 mm Hg reasons of consistency and precaution. The so obtained thresholds were similar among baseline clinical categories.
§ The 24-hour MAP thresholds were computed by bootstrapping 1000 times multivariable-adjusted Cox models.
Table S8. 24-Hour Mean Arterial Pressure Thresholds Yielding Equivalent 10-Year Risk for All Cardiovascular Events Compared to the Reference Thresholds of Office Mean Arterial Pressure in Participants by Excluding Cohorts.

Cohorts exclusion (n° of endpoints/participants at risk)	Level (mm Hg)‡	Risk in Percent (95% CI)	Proposed Thresholds‡	
	Reference Office MAP* Thresholds and associated 10-Year Risk	24-Hour Ambulatory MAP* Thresholds Yielding Equivalent 10-Year Risk†		
Without Ohasama (315/1326)	93	4.29 (3.85-4.73)	89.1 (88.0-90.2)	90
	97	4.55 (4.10-5.00)	91.4 (90.6-92.1)	92
	107	5.28 (4.75-5.81)	97.0 (96.3-97.7)	96
Without JingNing (42/855)	93	4.53 (4.11-4.96)	89.2 (88.3-90.1)	90
	97	4.78 (4.34-5.22)	91.2 (90.7-91.7)	92
	107	5.47 (4.94-5.99)	96.3 (95.5-97.1)	96
Without EPOGH (54/1456)	93	5.44 (4.92-5.97)	89.4 (88.4-90.5)	90
	97	5.75 (5.22-6.27)	91.4 (90.8-92.1)	92
	107	6.58 (6.00-7.16)	96.5 (95.8-97.2)	96
Without Noordkempen (280/1436)	93	4.85 (4.33-5.36)	89.7 (88.7-90.7)	90
	97	5.13 (4.60-5.66)	91.7 (91.1-92.4)	92
	107	5.90 (5.27-6.52)	96.9 (96.2-97.6)	96
Without Uppsala (683/1110)	93	3.82 (3.44-4.20)	89.9 (89.1-90.7)	90
	97	4.06 (3.66-4.46)	91.8 (91.2-92.3)	92
	107	4.72 (4.24-5.21)	96.4 (95.7-97.1)	96
Without Copenhagen (366/2148)	93	4.22 (3.71-4.73)	89.1 (87.9-90.3)	90
	97	4.45 (3.93-4.98)	91.1 (90.4-91.9)	90
	107	5.10 (4.50-5.70)	96.2 (95.4-96.9)	96
Without Dublin (19/946)	93	5.49 (4.99-5.99)	89.5 (88.5-90.4)	90
	97	5.80 (5.28-6.32)	91.5 (90.9-92.0)	92
	107	6.65 (6.00-7.24)	96.4 (95.8-97.1)	96
Without Maracaibo (130/590)	93	4.06 (3.65-4.47)	89.2 (88.3-90.2)	90
	97	4.33 (3.91-4.75)	91.5 (90.9-92.0)	92
	107	5.07 (4.58-5.56)	97.0 (96.2-97.7)	98
Without Montevideo (145/1729)	93	4.57 (4.10-5.03)	89.5 (88.6-90.4)	90
	97	4.85 (4.36-5.33)	91.6 (91.0-92.1)	92
	107	5.61 (5.04-6.19)	96.8 (96.0-97.5)	96

* MAP indicates mean arterial pressure, which was estimated from office blood pressure (MAP = diastolic blood pressure plus one third of the difference between systolic and diastolic blood pressure, or measured using oscillometric ambulatory monitors). Oscillometric devices compute systolic and diastolic blood pressure, using proprietary algorithms (Figure 1 in the Supplemental Data).
† The 24-hour MAP thresholds were computed by bootstrapping 1000 times multivariable-adjusted Cox models.
‡ Proposed thresholds were obtained by rounding the point estimates to the closest even integer value. The so obtained thresholds were similar across subgroups.
Table S9. 24-Hour Mean Arterial Pressure Thresholds Yielding Equivalent 10-Year Risk as Reference Thresholds of Office Mean Arterial Pressure in Europeans or in Asians and South Americans.

Type	No. E/ASA‡	Reference Office MAP* Thresholds and Associated 10-Year Risk	24-Hour Ambulatory MAP* Thresholds Yielding Equivalent 10-Year Risk†	Proposed Thresholds E/ASA§
		Level (mm Hg) Europeans (n=7096) Asians and South Americans (n=4500)	Point Estimates (95% CI) Europeans (n=7096) Asians and South Americans (n=4500)	
All cardiovascular endpoints	1402/323	93 3.41 (2.97-3.85) 6.48 (5.56-7.40)	88.6 (87.4-89.7) 90.4 (88.7-92.1)	88/90
		97 3.65 (3.19-4.10) 6.82 (5.86-7.77)	91.2 (90.6-91.9) 92.0 (90.8-93.1)	92/92
		107 4.31 (3.77-4.85) 7.75 (6.61-8.90)	97.9 (96.9-99.0) 95.9 (95.1-96.7)	98/96
Total mortality	1899/922	93 2.83 (2.43-3.23) 5.53 (4.56-6.50)	88.9 (87.0-90.8) 89.8 (87.0-92.6)	88/88
		97 2.92 (2.52-3.32) 5.72 (4.74-6.70)	91.4 (90.7-92.1) 91.6 (89.7-93.5)	92/92
		107 3.15 (2.71-3.58) 6.24 (5.19-7.28)	97.7 (95.2-100.2) 96.1 (94.9-97.3)	96/96
Cardiovascular mortality	701/358	93 0.67 (0.49-0.85) 2.01 (1.47-2.55)	89.2 (87.3-91.1) 91.2 (88.0-94.4)	90/92
		97 0.71 (0.53-0.90) 2.12 (1.56-2.68)	91.7 (90.6-92.8) 92.9 (90.5-95.3)	92/92
		107 0.84 (0.63-1.05) 2.43 (1.79-3.07)	98.0 (96.5-99.4) 97.0 (95.6-98.4)	98/98
Coronary endpoints	688/228	93 1.84 (1.55-2.14) 3.15 (2.46-3.84)	89.2 (87.2-91.1) 89.6 (82.8-96.4)	90/90
		97 1.94 (1.64-2.25) 3.22 (2.53-3.91)	91.7 (90.7-92.6) 91.8 (86.5-95.1)	92/92
		107 2.22 (1.85-2.59) 3.40 (2.65-4.15)	97.0 (95.0-98.9) 93.8 (91.2-96.5)	96/94
Stroke	493/316	93 1.14 (0.86-1.41) 2.67 (2.08-3.27)	89.8 (87.3-90.3) 90.3 (88.3-92.3)	90/90
		97 1.23 (0.93-1.53) 2.92 (2.27-3.56)	91.4 (90.6-92.1) 92.3 (90.9-93.6)	92/92
		107 1.50 (1.11-1.89) 3.62 (2.74-4.50)	97.8 (96.4-99.2) 97.2 (96.1-98.2)	98/98

* MAP indicates mean arterial pressure, which was estimated from office blood pressure (MAP = diastolic blood pressure plus one third of the difference between systolic and diastolic blood pressure) or measured by oscillometric ambulatory monitors. Oscillometric devices compute systolic and diastolic blood pressure, using proprietary algorithms (Figure 1 in the Supplemental Data).
† The 24-hour MAP thresholds were computed by bootstrapping 1000 times multivariable-adjusted Cox.
‡ E/ASL refers to the number of endpoints or the proposed thresholds in participants enrolled in Europe or in Asia and South America.
§ Proposed thresholds were obtained by rounding the point estimates to the closest even integer value. The so obtained thresholds were similar between Europeans and Asians and South Americans.
Table S10. Incidence of Primary and Secondary Endpoints by Increasing Categories of 24-Hour Mean Arterial Pressure.

Endpoints	Normotension (<90 mm Hg)	Elevated Blood Pressure (≥90 to <92 mm Hg)	Stage-1 Hypertension (≥92 to <96 mm Hg)	Stage-2 and Severe Hypertension (≥96 mm Hg)
No. at risk [11,596]	6183	909	1544	2960
Primary endpoint				
Endpoints — no. (%) [2034]	715	134	312	873
Rate per 1000 person-years	11.9 (11.1-13.2)	11.3 (9.5-13.6)	15.2 (13.5-17.2)	21.5 (20.0-23.3)
Secondary endpoints				
Total mortality				
Deaths — no. (%) [2821]	1107	215	450	1049
Rate per 1000 person-years	17.2 (16.2-18.6)	16.8 (14.6-19.4)	19.4 (17.7-21.5)	22.6 (21.2-24.3)
Cardiovascular mortality				
Deaths — no. (%) [1059]	358	62	165	474
Rate per 1000 person-years	5.6 (5.1-6.6)	4.9 (3.7-6.5)	7.0 (6.0-8.5)	10.0 (9.1-11.3)
Coronary endpoints				
Endpoints — (%) [916]	322	64	132	398
Rate per 1000 person-years	5.2 (4.7-6.2)	5.0 (3.9-6.7)	6.0 (5.0-7.4)	8.7 (7.8-10.0)
Stroke				
Endpoints — no. (%) [809]	278	41	135	355
Rate per 1000 person-years	4.3 (3.8-5.2)	3.3 (2.3-4.7)	6.2 (5.2-7.6)	8.4 (7.4-9.7)

Rates were standardized by the direct method for cohort, sex and age (<40, 40 to <60, ≥60 years). P values for linear trend in the rates (given with 95% confidence interval) across the blood pressure categories were all <0.001.
Models	χ^2 Statistic	P Value	R^2 (%)†
Base model*	3173.53	<0.001	
+ 24-hour systolic BP	3329.89	<0.001	1.34
+ 24-hour diastolic BP	3279.16	<0.001	0.91
+ 24-hour mean arterial pressure	3322.98	<0.001	1.28†
Base model including also 24-hour systolic BP†	3334.03	0.042	0.04†
+ 24-hour mean arterial pressure	3334.04	<0.001	0.47†
Base model including also 24-hour diastolic BP†	3334.04	<0.001	0.47†
+ 24-hour mean arterial pressure	3334.04	1.000	0.000†

* Accounts for cohort (random effect), sex, and baseline characteristics including age, body mass index, smoking and drinking, serum cholesterol, antihypertensive drug intake, history of cardiovascular disease, and diabetes mellitus.
† R^2 is an estimate of the additional variance explained (https://apha.confex.com/apha/134am/techprogram/paper_135906.htm).
‡ R^2 for adding mean arterial pressure to models.
| Models | χ^2 Statistic | P Value | R^2 (%)† |
|--------|-------------------|-----------|------------------|
| Base model* | 3173.53 | <0.001 | |
| + 24-hour systolic BP ≥125 mm Hg | 3256.52 | <0.001 | 0.71 |
| + 24-hour diastolic BP ≥75 mm Hg | 3241.57 | <0.001 | 0.58 |
| + 24-hour mean arterial pressure BP ≥92 mm Hg | 3277.65 | <0.001 | 0.89† |
| Base model including also 24-hour systolic BP ≥125 mm Hg‡ | 3286.14 | <0.001 | 0.25† |
| + 24-hour mean arterial pressure BP ≥92 mm Hg | | | |
| Base model including also 24-hour diastolic BP ≥75 mm Hg‡ | 3278.85 | <0.001 | 0.32† |
| + 24-hour mean arterial pressure BP ≥92 mm Hg | | | |
| Base model including also 24-hour systolic BP ≥125 mm Hg and 24-hour diastolic BP ≥75 mm Hg‡ | 3287.81 | <0.001 | 0.10† |

* Accounts for cohort (random effect), sex, and baseline characteristics including age, body mass index, smoking and drinking, serum cholesterol, antihypertensive drug intake, history of cardiovascular disease, and diabetes mellitus.

† R^2 is an estimate of the additional variance explained (https://apha.confex.com/apha/134am/techprogram/paper_135906.htm).

‡ R^2 for adding mean arterial pressure to models.
Figure S1
Pressure Oscillations in a Sphygmomanometer Cuff During Deflation.
Upper trace, Korotkoff sounds; second trace, cuff pressure; third trace, oscillations in cuff pressure. The maximal oscillation occurs at a pressure of 108 mm Hg, the mean arterial pressure. Bottom trace, radial pulse. Reproduced with permission from *Curr Opin Nephrol Hypertens*. 1993;2:380–385.
Figure S2
Heat Map Depicting the 10-Year Risk of a Primary Endpoint in Relation to 24-Hour Mean Arterial Pressure and Pulse Pressure in 11,596 Participants.

Numbers in the Panels A grid represent the percentage of participants within each blood pressure cross-classification category; numbers in Panel B represent the 10-year risk. The heat map was derived by Cox proportional hazards regression with pulse pressure plotted along the vertical axis and mean arterial pressure (MAP) along the horizontal axis. Estimates of the 10-year risk were standardized to the average of the distributions in the whole study population (mean or ratio) of all covariables. Higher MAP conferred greater risk (P<0.001) with an additional contribution of pulse pressure (P<0.001).
References

1. Imai Y, Ohkubo T, Tsuji I, Nagai K, Satoh H, Hisamichi S, Abe K. Prognostic value of ambulatory and home blood pressure measurements in comparison to screening blood pressure measurements: a pilot study in Ohasama. *Blood Press Monit.* 1996;1:S51-S58.

2. Kikuya M, Ohkubo T, Asayama K, Metoki H, Obara T, Saito S. Ambulatory blood pressure and 10-years risk of cardiovascular and noncardiovascular mortality the Ohasama study. *Hypertension.* 2005;45:240-245.

3. Ohkubo T, Hozawa A, Yamaguchi J, Kikuya M, Ohmori K, Michimata M, Matsubara M, Hashimoto J, Hoshi H, Araki T, Tsuji I, Satoh H, Hisamichi S, Imai Y. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. *J Hypertens.* 2002;20:2183-2189.

4. Satoh M, Asayama K, Kikuya M, Inoue R, Metoki H, Hosaka M, Tsubota-Utsugi M, Obara T, Ishiguro A, Murakami K, et al. Long-term stroke risk due to partial white-coat or masked hypertension based on home and ambulatory blood pressure measurements: the Ohasama study. *Hypertension.* 2016;67:48-55.

5. Li Y, Wang JG, Gao HF, Nawrot T, Wang GL, Qian YS, Staessen JA, Zhu D. Are published characteristics of the ambulatory blood pressure generalizable to rural Chinese? The JingNing population study. *Blood Press Monit.* 2005;10:125-134.

6. Li Y, Wang JG, Gao PJ, Wang GL, Qian YS, Zhu DL, Staessen JA. Interaction between body mass index and alcohol intake in relation to blood pressure in HAN and SHE Chinese. *Am J Hypertens.* 2006;19:448-453.

7. Li LH, Li Y, Huang QF, Sheng CS, Staessen JA, Wang JG. Isolated nocturnal hypertension in a Chinese population. *Blood Press Monit.* 2008;13:157-159.

8. Kuznetsova T, Staessen JA, Kawecka-Jaszcz K, Babeanu S, Casiglia E, Filipovský J, Nachev C, Nikitin Y, Peleská J, O'Brien E, on behalf of the EPOGH Investigators. Quality control of the blood pressure phenotype in the European Project on Genes in Hypertension. *Blood Press Monit.* 2002;7:215-224.

9. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerová J, Richart T, Jin Y, Olszanecka A, Malyutina S, Casiglia E, et al. Fatal and nonfatal outcomes, incidence of hypertension and blood pressure changes in relation to urinary sodium excretion in White Europeans. *JAMA.* 2011;305:1777-1785.

10. Tikhonoff V, Kuznetsova T, Thijs L, Cauwenberghs N, Stolarz-Skrzypek K, Seidlerová J, Malyutina S, Gilis-Malinowska N, Świerblewska E, Kawecka-Jaszcz K, et al. Ambulatory blood pressure and long-term risk for atrial fibrillation. *Heart.* 2018;104:1263-1270.

11. Kuznetsova T, Malyutina S, Pello E, Thijs L, Nikitin Y, Staessen JA. Ambulatory blood pressure of adults in Novosibirsk, Russia: interim report on a population study. *Blood Press Monit.* 2000;5:291-296.

12. Staessen JA, Bieniaszewski L, O'Brien ET, Imai Y, Fagard R. An epidemiological approach to ambulatory blood pressure monitoring: the Belgian population study. *Blood Press Monit.* 1996;1:13-26.
13. Staessen J, Bulpitt CJ, Fagard R, Mancia G, O'Brien ET, Thijs L, Vyncke G, Amery A. Reference values for ambulatory blood pressure: a population study. J Hypertens. 1991;9:S320-S321.
14. Gasowski J, Li Y, Kuznetsova T, Richart T, Thijs L, Grodzicki T, Clarke R, Staessen JA. Is "usual" blood pressure a proxy for 24-hour ambulatory blood pressure in predicting cardiovascular outcomes? Am J Hypertens. 2008;21:994-1000.
15. Ingelsson E, Björklund K, Lind L, Ärnlöv J, Sundström J. Diurnal blood pressure pattern and risk of congestive heart failure. JAMA. 2006;295:2859-2866.
16. Ärnlöv J, Zethelius B, Risérus U, Basu S, Berne C, Vessby B, Alftan G, Helmersson J. Serum and Dietary Beta-Carotene and Alpha-Tocopherol and Incidence of Type 2 Diabetes Mellitus in a Community-Based Study of Swedish Men: Report From the Uppsala Longitudinal Study of Adult Men (ULSAM) Study. Diabetologia. 2009;52:97-105.
17. Hansen TW, Jeppesen J, Rasmussen F, Ibsen H, Torp-Pedersen C. Ambulatory blood pressure monitoring and mortality: a population-based study. Hypertension. 2005;45:499-504.
18. Hansen TW, Staessen JA, Zhang H, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, Jeppesen J. Cardiovascular outcome in relation to progression to hypertension in the Copenhagen MONICA cohort. Am J Hypertens. 2007;20:483-491.
19. Hansen TW, Li Y, Staessen JA, Jeppesen J, Rasmussen S, Wang JG, Thijs L, Ibsen H, Safar ME, Torp-Pedersen C. Independent prognostic value of the ambulatory arterial stiffness index and aortic pulse wave velocity in a general population. J Hum Hypertens. 2008;22:214-216.
20. O'Brien E, Murphy J, Tyndall A, Atkins N, Mee F, McCarthy G, Staessen J, Cox J, O'Malley K. Twenty-four-hour ambulatory blood pressure in men and women aged 17 to 80 years: the Allied Irish Bank Study. J Hypertens. 1991;9:355-360.
21. Dolan E, O'Brien ET, Staessen JA. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population. Circulation. 2005;111:e244-e245.
22. Maestre GE, Pino-Ramírez G, Molero AE, Silva ER, Zambrano R, Falque L, Gamero MP, Sulbarán TA. The Maracaibo Aging Study: population and methodological issues. Neuroepidemiology. 2002;21:194-201.
23. Melgarejo JD, Lee JH, Petitto M, Yépez JB, Murati FA, Jin Z, Chávez CA, Pirela RV, Calmón GE, Lee W, et al. Glaucomeatos optic neuropathy associated with nocturnal dip in blood pressure. Ophthalmology. 2017;125:807-814.
24. Schettini C, Bianchi M, Nieto F, Sandoya E, Senra H, Hypertension Working Group. Ambulatory blood pressure. Normality and comparison with other measurements. Hypertension. 1999;34:818-825.
25. Boggia J, Luzardo L, Lujambio I, Sottolano M, Robaina S, Thijs L, Olascoaga A, Noboa O, Struijker-Boudier HA, Safar ME, Staessen JA. The diurnal profile of central hemodynamics in a general Uruguayan population. Am J Hypertens. 2016;29:737-746.