Supplementary material

This manuscript contains 4 supplementary figure, 3 supplementary table and 1 supplementary text, respectively. Those can be found in the online version of this article on the publisher’s website.

Supplementary Figure Legends

Figure S1. Urea hydrolysis by the studied soil sample. Soil 2 was aerobically incubated with urea (794 µM-N), and urea (circles) and ammonia concentrations (squares) were determined during 36 h of incubation. Error bars indicate the range of standard deviations derived from triplicate incubations.

Figure S2. Primer–temperate mismatches between the previously developed oligonucleotide ureC primers and prokaryotic ureC sequences. Alignment positions of primers ureC_F, ureC_R, L2F_V1, and 733R (panels a, b, c, and d, respectively) in the Bradyrhizobium lablabi ureC gene (LT670845) were 646, 970, 294, and 680, respectively. The 2,653 ureC sequences located in prokaryotic genomes were retrieved from the IMC genome database, aligned, and the mismatches were counted. The row “Coverage” indicates sequence coverage of the examined ureC primer at the specific position, and the heatmap highlights the regions showing high sequence coverage, i.e. red for >90% coverage, pink for >75% coverage, and yellow for >50% coverage.

Figure S3. Taxonomic classification of prokaryotic communities in soils. The heatmap indicates the relative abundance of 16S rRNA gene reads. The reads that are not classified into any known prokaryotic group are labelled as ‘other’. The complete dendrogram of linkage hierarchical clusters among the prokaryotic community structures in the seven soils is shown in the upper panel.
Figure S4. Correlation between the identity of α-proteobacterial *ureC* and 16S rRNA gene sequences. The *ureC* identity and 16S rRNA identity were assessed by means of the blastn program using *ureC* (corresponding to nucleotide positions 294 to 680) and 16S rRNA gene sequence (nucleotide positions 10 to 1,464) in the *Bradyrhizobium lablabi* genome (accession number LT670845) as query sequences and the *ureC* and 16S rRNA gene sequences located in the α-proteobacterial genome deposited in the National Center of Biotechnology Information (NCBI) database as reference sequences, respectively. Note that 93.3% identity of *ureC* corresponds to 99% identity of the 16S rRNA gene as determined by linear regression analysis; 91% identity was used in the present study as a conservative threshold value for grouping the *ureC* sequence reads.
Concentration (μM-N)

Figure S1 (Oshiki et al., 2018)
a) ureC_F

| primer (5' - 3') | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
|----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| T | 0%| 1%| 0%| 0%| 1%| 1%| 0%| 1%| 1%| 0%| 1%| 1%| 1%| 1%| 1%| 1%| 1%| 1%| 1%| 1%| 1%| 1%| 1%| 1%| 1%| 1%| 1%|
| G | 25%| 0%| 1%| 1%| 5%| 4%| 0%|
| C | 15%| 0%| 1%| 1%| 5%| 1%| 0%|

Coverage for ureC_F: 60% 17% 91% 81% 81% 81% 98% 58% 100% 100% 28% 14% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98%

b) ureC_R

primer (5' - 3')	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
T	0%	1%	0%	0%	1%	1%	0%	1%	1%	0%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
G	25%	0%	1%	1%	5%	4%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
C	15%	0%	1%	1%	5%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Coverage for ureC_R: 87% 74% 99% 95%

c) L2F_V1

primer (5' - 3')	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
T	0%	1%	0%	0%	1%	1%	0%	1%	1%	0%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
G	25%	0%	1%	1%	5%	4%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
C	15%	0%	1%	1%	5%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Coverage for L2F_V1: 75% 74% 94% 93%

d) 733R

primer (5' - 3')	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
T	0%	1%	0%	0%	1%	1%	0%	1%	1%	0%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
G	25%	0%	1%	1%	5%	4%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
C	15%	0%	1%	1%	5%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Coverage for 733R: 98% 98% 95%

Figure S2
$y = 1.5776x - 0.6291$

$R^2 = 0.74$

Figure S4
Supplementary Table Legends

Table S1. Description of the soil samples examined in the present study. C; total carbon, N; total nitrogen, NH$_4^+$; 0.5M sodium acetate-extractable ammonium, NO$_2^-$, NO$_3^-$ and P; 0.002N H$_2$SO$_4$-extractable nitrite, nitrate, and phosphorus, K and Ca; 1M ammonium acetate-extractable potassium and calcium, and Fe; 1M KCl-extractable iron.

Soil	Type	pH	Water contents	C (g kg$^{-1}$)	N (g kg$^{-1}$)	NH$_4^+$ (mg kg$^{-1}$)	NO$_2^-$ (mg kg$^{-1}$)	NO$_3^-$ (mg kg$^{-1}$)	P (mg kg$^{-1}$)	K (mg kg$^{-1}$)	Ca (mg kg$^{-1}$)	Fe (mg kg$^{-1}$)
Soil 1	Agricultural soil (Colocasia esculenta)	7.4	33%	25	1.0	3.3	0.27	35	5.1	110	2555	<5
Soil 2	Forest soil (Japanese ceder)	5.4	23%	26	1.3	4.3	<0.1	21	0.20	116	691	<5
Soil 3	Glassland soil	6.4	25%	2.6	1.0	1.9	<0.1	28	0.78	124	661	<5
Soil 4	Urban park soil	4.5	17%	1.6	0.4	1.5	<0.1	8	0.07	34.3	174	14
Soil 5	Compost soil (kitchen garbage)	7.4	27%	34	1.6	0.9	<0.1	36	0.36	73.3	1116	21
Soil 6	Freshwater sediment	5.1	29%	3.2	1.2	20	<0.1	18	0.19	47.5	277	28
Soil 7	Forest soil (bamboo)	9.4	33%	40	1.6	2.1	<0.1	53	0.55	103	935	7.5
Table S2. Community richness, diversity, and evenness indices of the soils analysed in the present study. OTU: operational taxonomic unit. ±: standard deviation.

a) 16S rRNA gene

Soil	OTU	Shannon	Simpson	Chao1	Good’s coverage	
Soil 1	13290	1837	9.1	0.990 ± 0.0003	4025 ± 147	79.6% ± 0.29%
Soil 2	11808	1896	9.4	0.993 ± 0.0003	4272 ± 128	78.6% ± 0.26%
Soil 3	14731	2263	9.9	0.996 ± 0.0001	5469 ± 120	73.2% ± 0.22%
Soil 4	15342	1143	8.1	0.987 ± 0.0003	2157 ± 136	88.5% ± 0.43%
Soil 5	12684	2073	9.8	0.996 ± 0.0002	4239 ± 164	78.1% ± 0.34%
Soil 6	10300	1591	8.8	0.989 ± 0.0004	3045 ± 147	84.0% ± 0.41%
Soil 7	6638	1894	9.5	0.993 ± 0.0002	4680 ± 18	76.9% ± 0.02%

b) ureC

Soil	OTU	Shannon	Simpson	Chao1	Good’s coverage	
Soil 1	3537	363	6.5	0.971 ± 0.0011	512 ± 40	94.6% ± 0.25%
Soil 2	3500	1426	9.1	0.993 ± 0.0002	3212 ± 233	67.7% ± 0.76%
Soil 3	3757	1438	9.4	0.995 ± 0.0002	2739 ± 152	70.2% ± 0.57%
Soil 4	2511	1149	9.0	0.992 ± 0.0004	3260 ± 26	66.9% ± 0.12%
Soil 5	4299	1385	8.6	0.981 ± 0.0009	2472 ± 165	73.5% ± 0.71%
Soil 6	3333	731	7.8	0.984 ± 0.0004	1204 ± 85	85.7% ± 0.48%
Soil 7	6248	1685	8.8	0.985 ± 0.0007	2157 ± 183	76.0% ± 0.71%
Table S3. The closest relatives of the 34 most abundant operational taxonomic units (OTUs) of ureC (corresponding to the species level). A blastn search was carried out using the nucleic acid sequence of each species level OTU of ureC as a query sequence and the nr database (National Center for Biotechnology Information) as reference sequences. Nucleotide sequence accession numbers are indicated in parentheses.

ureC OTU	Closest relative	identity	e-value
2 (LC287204)	*Delftia tsuruhatensis* CM13 (CP017420.1)	81%	8.5×10^{-87}
283 (LC280142)	*Pseudomonas* sp. UW4 (CP003880.1)	95%	3.9×10^{-148}
505 (LC280352)	*Rhizobacter gummiphilus* NS21 (CP015118.1)	87%	7.5×10^{-113}
507 (LC280353)	*Caldilinea aerophila* (AP012337.1)	75%	6.3×10^{-57}
1050 (LC280858)	*Caldilinea aerophila* (AP012337.1)	77%	1.1×10^{-53}
1144 (LC280942)	*Nitrospira japonica* NJ11 (LT828648.1)	88%	8.0×10^{-119}
1290 (LC281081)	*Afipia* sp. GAS231 (LT629703.1)	93%	7.0×10^{-145}
1384 (LC281171) (CP014671.1)	*Immundisolibacter cernigliae* TR32	81%	6.2×10^{-76}
1435 (LC281221)	*Thermobacillus composti* KWC4 (CP003255.1)	76%	7.5×10^{-56}
1885 (LC287326)	*Agrobacterium* sp. RAC06 (CP016499.1)	89%	7.0×10^{-126}
2335 (LC282065)	*Cupriavidus metallidurans* CH34 (CP000352.1)	84%	5.4×10^{-102}
2444 (LC282169)	*Burkholderia* sp. BDU6 (CP013386.1)	77%	2.0×10^{-69}
2460 (LC282184)	*Pseudomonas* sp. MT-1 (AP014655.1)	81%	2.5×10^{-87}
2477 (LC282201)	*Methylversatilis* sp. RAC08 (CP016448.1)	79%	9.1×10^{-74}
2606 (LC282317)	*Thauera* sp. MZ1T (CP001281.2)	83%	9.7×10^{-99}
2826 (LC282520) (LTL670817.1)	*Bradyrhizobium erythrophlei* GAS138	83%	4.1×10^{-97}
2846 (LC282540)	*Herbaspirillum frisingense* AA6 (CP018845.1)	84%	3.4×10^{-98}
3157 (LC287405)	Uncultured *thaumarchaeote* clone B1-C-21	80%	1.5×10^{-83}
3157 (LC287405) (KM525691.1)	*Candidatus* Nitrososphaera evergladensis SR1	80%	1.5×10^{-83}
3295 (LC282957)	(CP007174.1)	78%	9.1×10^{-74}
3313 (LC282974)	*Ralstonia solanacearum* IBSBF1503	81%	2.0×10^{-69}
3907 (LC283528)	*Pseudomonas brassicacearum* BS3663	95%	3.9×10^{-148}
ureC OTU	Closest relative	identity	e-value
----------	------------------	----------	---------
3974 (LC283587)	*Bradyrhizobium* sp. S23321 (AP012279.1) Uncultured archaeon clone JD HF 10	93%	5.7×10^{-146}
4155 (LC283757)	(KM396444.1) *Burkholderia multivorans* MSMB1640WGS	83%	1.5×10^{-83}
4596 (LC284169)	(CP013467.1) Uncultured archaeon clone LZ HF 6	78%	8.0×10^{-62}
4606 (LC287507)	(KM396450.1) *Burkholderia oklahomensis* strain 1974002358	80%	1.5×10^{-83}
4747 (LC284312)	(CP013358.1) *Cupriavidus basilensis* 4G11 (CP010536.1) *Bradyrhizobium canariense* GAS369	85%	2.5×10^{-106}
4796 (LC284354)	(LT629750.1) *Bradyrhizobium erythrophlei* GAS242	87%	9.7×10^{-118}
5062 (LC284606)	(LT670818.1) *Bradyrhizobium diazoefficiens* (AP014685.1)	90%	1.4×10^{-128}
6797 (LC286227)	(CP009435.1) *Burkholderia glumae*	82%	4.7×10^{-90}
6801 (LC286230)	(CP003642.1) *Cylindrospermum stagnale* PCC7417	89%	4.4×10^{-103}
7222 (LC286630)	(CP000494.1) *Bradyrhizobium* sp. BTAi1	87%	1.4×10^{-115}
7277 (LC286681)	(CP011801.1) *Nitrospira moscoviensis* NSP M-1	80%	1.0×10^{-85}
7572 (LC286956)	(AP014685.1) *Bradyrhizobium diazoefficiens*	92%	5.4×10^{-140}
The following supplementary text includes a detailed protocol of the experiments conducted in the present study.

1. DNA extraction and quantitative PCR

Genomic DNA was extracted using the PowerSoil DNA Isolation kit (MO BIO Laboratories). DNA concentrations were determined using the Qubit dsDNA BR assay kit and a Qubit 3.0 fluorospectrometer (Thermo Fisher Scientific). The qPCR assay was performed using oligonucleotide primers 515F (5’-GTGCCAGCMGCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’) for the 16S rRNA gene (1) and L2F_V1 (5’-CGGCAAGGCGGCAACCC-3’) and 733R (5’-GTBGHDCCCTCARTCRT-3’) for ureC (9). Sequences of primers L2F_V1 and 733R were taken from another study with minor modifications. Degenerate bases at positions +3, +6, +9, +12, +15, and +18 relative to the 5’ terminus of the original L2F primer were modified to decrease sequence complexity, i.e. H to C at position +3, Y to C at +6, R to G at +9, N to C at +12, N to C at +15, and Y to C at +18. The PCR mixture had a volume of 20 μl and contained 2 ng of an extracted DNA sample or 2 μl of standard DNA, oligonucleotide primers (0.3 μM each), and 1×SSoFast EvaGreen Supermix (Bio-Rad). The cycling conditions were as follows: 98°C for 2 min; 40 cycles at 98°C for 5 s and 50°C for 10 s; and finally, 65°C to 95°C with 0.5°C increments for melting curve analysis. The assay was conducted in triplicate on a MiniOpticon thermal cycler (Bio-Rad), and specific amplification of the 16S rRNA gene and of ureC was ascertained by agarose gel electrophoresis of the amplicons. Genomic DNA of Pseudomonas aeruginosa PA01 (JCM14847) with 4 and 1 copies of the 16S rRNA gene and ureC, respectively, was used as a standard for quantification. The cells were
cultured as recommended by the supplier, genomic DNA was extracted, and DNA concentration was determined as mentioned above. The genomic DNA was serially diluted with distilled water to concentrations of 10^5 to 10^0 copies·µl$^{-1}$.

2. **Amplicon sequencing of the 16S rRNA gene and ureC**

PCR amplification of the 16S rRNA gene and of ureC was carried out using the above-mentioned oligonucleotide primers containing Illumina tag sequences at the 5' end of the forward and reverse primers (5'- TCGTCGCGAGCGTCAGATGTGTATAAGAGACAG-3' and 5'-GTCTCGTGGGCTCGAGATGTGTATAAGAGACAG-3', respectively). The PCR mixture had a volume of 30 µl and contained 30 ng of an extracted DNA sample, the oligonucleotide primers (0.5 µM each), dNTPs (200 µM), 1× PCR buffer, and ExTaq polymerase (0.025 U·µl$^{-1}$). The cycling conditions were as follows: 35 and 40 cycles for the 16S rRNA gene and ureC, respectively, at 98°C for 10 s, followed by 55°C for 30 s, then 72°C for 30 s; and finally, 72°C for 10 min. PCR products were purified using the FastGene Gel/PCR Extraction Kit (Nippon Genetics). The purified PCR products were tagged with a sample-unique index and Illumina adapter sequences at their 5' end (Nextera XT Index Kit v2, Illumina) by PCR. The PCR reaction mixture (20 µl) contained 1× KAPA HiFi HS ReadyMix (Kapa Biosystems), 1 µl of each forward and reverse primer (10 µM), and 2 µl of the recovered PCR products. The PCR was run under the following cycling conditions: 95°C for 3 min, 10 cycles of 95°C for 20 s, 65°C for 15 s, and 72°C for 1 min; and finally, 72°C for 5 min. After agarose gel electrophoresis, the PCR products were excised from the gel and purified using an Agencourt AMPure XP Kit (Beckman Coulter). The tagged amplicons were pooled and sequenced on the Illumina MiSeq platform in a 250-bp paired-end sequencing reaction with the v2 reagent kit (Illumina).
3. Bioinformatics

The generated ureC and 16S rRNA gene sequence reads were processed for removal of adapter sequences using cutadapt and for quality trimming using Trimmomatic v0.33 (1) as previously described (10). The reads that contained <50 bp or were associated with an average Phred-like quality score <30 were removed. Paired-end sequence reads were assembled in the paired-end assembler for the Illumina sequence software package (PANDAseq) (12). The obtained ureC reads were subjected to a blastn search (threshold e-value; 10^{-10}) against the known 60,733 ureC sequences downloaded from fungene database (8) and the database of Integrated Microbial Genomes & Microbiome Samples (IMG/MER) (11) to remove non-ureC sequences. As for the 16S rRNA gene, the assembled sequence reads with ≥97% sequence identity were grouped into an OTU by UCLUST (6). Phylogenetic affiliations of the OTUs were identified using a blastn search against reference sequences in the Greengenes database version 13_5 (4) and in the nr database (National Center for Biotechnology Information). As for ureC, sequence reads with ≥91% sequence identity were grouped into an OTU, and the phylogenetic affiliation was examined using a blastn search in the nr database. Putative chimeric sequences were removed using UCHIME (7). Alpha diversity indices (observed species, Chao1, Good’s coverage, and Simpson’s index) were calculated in QIIME (2). Chao1 was computed at a sampling depth of 5,500 reads and 2,500 reads for the 16S rRNA gene and ureC gene, respectively. A phylogenetic tree was constructed using the nucleic acid sequences of ureC by the maximum likelihood method with the Jones-Taylor-Thornton model in the MEGA 6.06 software (14). Cluster analysis was carried out to examine similarities of community composition among the soils using the STAMP software (13).
4. Evaluation of ureC primers for PCR amplification of the known ureC sequences

Coverage of the previously designed ureC primers was examined by aligning known ureC sequences and the ureC primer sequences, and by counting the primer–template mismatches. A total of 17,312 ureC sequences were downloaded from the database of IMG/MER (11). We found that the ureC sequences derived from some bacterial species were tremendously abundant because many genome sequences have been determined and deposited, e.g. 3,174 genomes were deposited in the database entry for the species Escherichia coli (accessed on 16th May 2017). On the other hand, for the majority of bacterial species, only a limited number of genome sequences was available. To evaluate the coverage of ureC primers for phylogenetically distinct ureC sequences uniformly, the ureC sequences derived from the genome sequences affiliated with the same bacterial species were grouped, and a representative ureC sequence was subjected to sequence alignment. Alignment of 2,653 ureC sequences was performed using the MUSCLE software under default conditions (16 iterations) (5). Regions in which primers L2F_V1, 733R, ureC_F, and ureC_R hybridised were manually examined, and primer–template mismatches were counted.

References

1. Bolger, A. M., M. Lohse and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30:2214-2120.

2. Caporaso, J. G., J. Kuczynski, J. Stombaugh et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 7:335-336.

3. Caporaso, J.G., C.L. Lauber, W.A. Walters, D. Berg-Lyons, C.A. Lozupone, P.J. Turnbaugh, N. Fierer and R. Knight. 2011. Global patterns of 16S rRNA diversity at a depth of millions
of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108:4516-4522.

4. DeSantis, T. Z., P. Hugenholtz, N. Larsen et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–5072.

5. Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797.

6. Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26:2460–2461.

7. Edgar, R. C., B.J. Haas, J.C. Clemente, C. Quince and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27:2194–2200.

8. Fish, J.A., Chai, B., Wang, Q. et al. 2013. FunGene: the functional gene pipeline and repository, Front. Microbiol. 4:291.

9. Fujita, Y., J.L. Taylor, L.M. Wendt, D.W. Reed and R.W. Smith. 2010. Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environ. Sci. Technol. 44:7652-7658.

10. Hirakata, Y., M. Oshiki, K. Kuroda, M. Hatamoto, K. Kubota, T. Yamaguchi, H. Harada and N. Araki. 2016. Effects of predation by protists on prokaryotic community function, structure, and diversity in anaerobic granular sludge. Microbes Environ. 31:279-287.

11. Markowitz, V.M., I.M.A. Chen, K. Palaniappan et al. 2010. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res. 38:D382-D390.

12. Masella, A.P., A.K. Bartram, J.M. Truskowski, D.G. Brown and J.D. Neufeld. 2012.
PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:1-7.

13. Parks, D. H., G.W. Tyson, P. Hugenholtz and R.G. Beiko. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 30:3123-3124.

14. Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.