Search for the W-exchange decays $B^0 \rightarrow D^{(*)-}D^{(*)+}$

B. Aubert, D. Boutigny, F. Coudert, Y. Karyotakis, J. P. Lees, V. Poireau, Tisserand, A. Zghiche, E. Grauges, A. Palano, M. Pappagallo, A. Pomplii, J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu, G. Eigen, I. Ofte, B. Stugu, G. S. Abrams, M. Battaglia, D. Best, A. B. Breon, D. N. Brown, J. Button-Shafer, R. N. Calhn, E. Charles, C. T. Day, M. S. Gill, A. V. Gritsan, G. Groymsan, R. G. Jacobsen, W. K. Wadel, J. Kadyk, L. T. Kerth, G. Kolomensky, G. Kukartses, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, W. A. Wenzel, M. Barrett, K. E. Ford, T. J. Harrison, J. A. Hart, C. M. Hawkes, S. E. Morgan, A. T. Watson, M. Fritsch, K. Goetzen, T. Held, B. Lewandowski, A. Pelazues, K. Peters, T. Schroeder, M. Steinke, J. T. Boyd, J. P. Burke, N. Chevalier, W. N. Cottingham, T. Cuhadar-Donszelmann, B. G. Fulsom, C. Hearty, N. S. Knecht, T. S. Mattison, A. J. McKenna, A. Khan, P. Kyberd, M. Saleem, L. Teodorescu, A. E. Blinov, V. E. Blinov, A. D. Bukin, V. P. Druzhinin, V. B. Golubev, E. A. Kravchenko, A. P. Onuchin, S. I. Serebryakov, Yu. I. Skopyn, E. S. Solomon, A. N. Yushkov, M. Bondioli, M. Bruinsma, M. Chao, S. Curry, I. Eschrich, J. A. Lankford, P. Lund, M. Mandelkern, R. K. Mommens, W. Roethel, D. P. Stoker, C. Buchanan, B. L. Hartfiel, A. J. R. Weinstein, S. D. Foulkes, J. W. Gary, O. Long, B. C. Shen, K. Wang, L. Zhang, D. del Re, H. K. Hadavand, E. J. Hilli, D. B. MacFarlane, H. P. Paar, S. Rahatlou, V. Sharma, J. W. Berryhill, C. Campagnari, A. Cunha, B. Dahmes, T. M. Hong, M. A. Mazur, J. D. Richman, W. Verkerke, T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroseberg, W. S. Lockman, G. Neson, T. Schalk, B. A. Schumann, A. Seiden, P. Spradlin, D. C. Williams, M. G. Wilson, J. Albert, E. Chen, G. P. Dubois-Felsmann, A. Dworetzki, D. G. Hitlin, J. S. Minamora, I. Narshy, T. Piatenko, F. C. Porter, A. Ryd, A. Samuel, R. Andreassen, G. Mancinelli, B. T. Meadows, M. D. Sokoloff, F. Blanc, P. C. Bloom, S. Chen, W. T. Ford, J. F. Hirschauer, A. Kreisel, U. Nauenberg, A. Olivas, W. O. Ruddick, J. G. Smith, K. A. Ulmer, S. R. Wagner, J. Zhang, A. Chen, E. Ackhart, A. Soffer, W. H. Toki, R. J. Wilson, Q. Zeng, D. Altenburg, E. Feltese, A. Hauke, B. Spaan, T. Brandt, J. Brose, M. Dickopp, V. Klose, H. M. Lacker, R. Bogowski, S. Otto, A. Petzold, J. Schubert, K. R. Schubert, R. Schwierz, J. E. Sundermann, D. Bernard, G. R. Bouneau, P. Grenier, S. Schrenk, Ch. Thiebaux, G. Vasileiadis, M. Verderi, D. J. Bard, P. J. Clark, W. Gradl, F. M. Urban, S. Playfer, Y. Xie, M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinetto, L. Luppi, M. Negrini, L. Piemonte, F. Anulli, G. Baldini-Ferrario, A. Calcetta, R. de Sangro, G. Finocchiaro, P. Patteri, I. M. Peruzzi, * M. Piccolo, A. Zallo, A. Buzzo, R. Capra, R. Contri, M. Lo Vetere, M. M. Macri, M. R. Monge, S. Pasqualotto, C. Patrignani, E. Robutti, A. Santroni, S. Tosi, G. Brandenburg, K. S. Chaisangiamun, M. Mori, E. Won, J. Wu, R. S. Dubitzky, U. Langenegger, J. Marks, S. Schenk, U. Uwer, W. Bhiij, A. Bowerman, P. D. Dauncey, U. Egede, R. L. Flack, J. R. Gaillard, J. A. Nash, M. B. Nikolich, W. Panduro Vazquez, X. Chai, M. J. Charles, W. W. F. Mader, U. Mallik, V. Ziegler, J. Cochran, H. B. Crawley, V. Eysges, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubin, J. I. YI, G. Schott, N. Arnaud, M. Davier, X. Giroux, G. Grosdidier, A. Hocker, F. Le Diberder, V. Lepeltier, A. M. Lutz, A. Oyanguren, T. C. Petersen, S. Plaszczynski, S. Rodier, P. Roudeau, M. H. Schune, A. Stocchi, G. Wormser, C. H. Cheng, D. J. Lange, M. C. Simani, D. M. Wright, A. J. Bevan, C. A. Chevet, I. J. Forster, J. R. Fry, E. Gabathuler, R. Gamet, K. A. George, D. E. Hutchcroft, R. J. Parry, D. J. Payne, K. C. Schofield, C. Touramanis, C. M. Cormack, D. Lodovichio, W. Menges, R. Sacco, C. L. Brown, G. Cowan, H. U. Fleicher, M. G. Green, D. A. Hopkins, P. S. Jackson, T. R. McMahon, R. S. Ricciardi, F. Salvatore, D. N. Brown, C. L. Davis, J. Allison, N. R. Barlow, R. J. Barlow, C. L. Edgar, M. C. Hodgkinson, P. M. Kelly, G. D. Lafferty, M. T. Naisbit, J. C. Williams, W. D. Hulsbergen, A. Jawahery, D. Kovalsky, C. K. Lae, D. A. Roberts, G. Simi, G. Blaylock, C. Dallapiccola, S. S. Hertzback, R. Koffler, X. Li, T. B. Moore, S. Saiidi, H. Staengle, Y. Willocq, R. Cowan, K. Koeneke, G. Sciolla, J. S. Sekula,
University of California at Los Angeles, Los Angeles, California 90024, USA
15 University of California at Riverside, Riverside, California 92521, USA
16 University of California at San Diego, La Jolla, California 92093, USA
17 University of California at Santa Barbara, Santa Barbara, California 93106, USA
18 University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
19 California Institute of Technology, Pasadena, California 91125, USA
20 University of Cincinnati, Cincinnati, Ohio 45221, USA
21 University of Colorado, Boulder, Colorado 80309, USA
22 Colorado State University, Fort Collins, Colorado 80523, USA
23 Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
24 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
25 École Polytechnique, LLR, F-91128 Palaiseau, France
26 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27 Universität di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
28 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29 Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy
30 Harvard University, Cambridge, Massachusetts 02138, USA
31 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32 Imperial College London, London, SW7 2AZ, United Kingdom
33 University of Iowa, Iowa City, Iowa 52242, USA
34 Iowa State University, Ames, Iowa 50011-3160, USA
35 Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
36 Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
37 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
38 University of Liverpool, Liverpool L69 72E, United Kingdom
39 Queen Mary, University of London, E1 4NS, United Kingdom
40 University of Manchester, Manchester M13 9PL, United Kingdom
41 University of Maryland, College Park, Maryland 20742, USA
42 University of Massachusetts, Amherst, Massachusetts 01003, USA
43 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
44 University of Melbourne, South Hadley, Massachusetts 01075, USA
45 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46 McGill University, Montréal, Québec, Canada H3A 2T8
47 Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
48 University of Mississippi, University, Mississippi 38677, USA
49 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
50 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51 Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
52 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53 University of Notre Dame, Notre Dame, Indiana 46556, USA
54 Ohio State University, Columbus, Ohio 43210, USA
55 University of Oregon, Eugene, Oregon 97403, USA
56 Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
57 Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Énergies, F-75252 Paris, France
58 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59 Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
60 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
61 Prairie View A&M University, Prairie View, Texas 77446, USA
62 Princeton University, Princeton, New Jersey 08544, USA
63 Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
64 Universität Rostock, D-18051 Rostock, Germany
65 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
66 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
67 University of South Carolina, Columbia, South Carolina 29208, USA
68 Stanford Linear Accelerator Center, Stanford, California 94309, USA
69 Stanford University, Stanford, California 94305-4060, USA
70 State University of New York, Albany, New York 12222, USA
71 University of Tennessee, Knoxville, Tennessee 37996, USA
72 University of Texas at Austin, Austin, Texas 78712, USA
73 University of Texas at Dallas, Richardson, Texas 75083, USA
74 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
75 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
76 IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
77 Vanderbilt University, Nashville, Tennessee 37235, USA
We report a search for the decays $B^0 \rightarrow D_s^{(*)-} D_s^{(*)+}$ in a sample of 232 million $\Upsilon(4S)$ decays to $B\bar{B}$ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e^+e^- storage ring. We find no significant signal and set upper bounds for the branching fractions: $B(B^0 \rightarrow D_s^{(*)-} D_s^{(*)+}) < 1.0 \times 10^{-4}$, $B(B^0 \rightarrow D_s^{(*)-} D_s^{(*)+}) < 1.3 \times 10^{-4}$ and $B(B^0 \rightarrow D_s^{(*)-} D_s^{(*)+}) < 2.4 \times 10^{-4}$ at 90% confidence level.

PACS numbers: 12.35.Hw

In the Standard Model (SM), $B^0 \rightarrow D_s^{(*)-} D_s^{(*)+}$ decays are dominated by the W-exchange mechanism $\bar{b}d \rightarrow c\bar{c}$ as shown in Figure 1, while the corresponding loop diagram is highly suppressed. The decay rates of W-exchange or annihilation processes are usually argued to be negligibly small due to the suppression from helicity and/or form factors [1]; however this assumption has not been well tested experimentally.

![W-exchange decay diagram for $B^0 \rightarrow D_s^{(*)-} D_s^{(*)+}$](image)

FIG. 1: W-exchange decay diagram for $B^0 \rightarrow D_s^{(*)-} D_s^{(*)+}$.

Recently, it has been pointed out that it is difficult to calculate these decay amplitudes using the factorization approach, and a perturbative QCD (pQCD) [2] model has been used to predict the branching fraction for these decays. Prediction of branching fractions from an alternative model [3] gives an estimate of non-factorizable contributions coming from chiral loops (CL) and tree level amplitudes generated by soft gluon emission forming a gluon condensate (GC) and it differs from pQCD approach by large amounts, as shown in Table I.

Table I: Summary of theoretical predictions of the branching fractions.

B Decays	Branching Fraction ($\times 10^{-4}$)	
$B^0 \rightarrow D_s^- D_s^+$	pQCD [2]	CL-GC [3]
B^0	7.8 ± 1.6	25.0
B^0	6.0 ± 1.6	33.0
B^0	8.5 ± 2.0	54.0

It has been estimated that a CP asymmetry of the order of 10% could arise between $B^0 \rightarrow D_s^- D_s^+$ and its charge conjugate [4]. A measurement of the decay rates of $B^0 \rightarrow D_s^{(*)-} D_s^{(*)+}$ relative to those of $B^0 \rightarrow D^{(*)-} D^{(*)+}$ will provide an estimate of the W-exchange contribution to the latter decay, a crucial piece of information for extracting the CKM angle γ from $B^0 \rightarrow D^{(*)-} D^{(*)+}$ and $B^0 \rightarrow D^{(*)-} D^{(*)+}$ decays [6].

Using 211 fb$^{-1}$ of data taken on the $\Upsilon(4S)$ resonance with the BABAR detector at the PEP-II asymmetric B factory, we report a search for $B^0 \rightarrow D_s^- D_s^+$, $B^0 \rightarrow D_s^- D_s^+$ and $B^0 \rightarrow D_s^- D_s^+$ decays [7]. We use the $D_s^-\bar{D}_s^+$ decays into $D_s^-\gamma$ and $D_s^-\gamma$ decays into $\phi\pi^-$, $K_s^0 K^-$, and $K^+ K^-$. The ϕ, K_s and $K^+ K^-$ mesons are reconstructed in their decays to $K^\pm K^-$, $\pi^+\pi^-$ and $K^+\pi^-$, respectively.

The BABAR detector is described in detail elsewhere [8]. Tracking of charged particles is provided by a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH). Discrimination between charged pions and kaons relies upon ionization energy loss (dE/dx) in the DCH and SVT, and upon Cherenkov photons detected in a ring-imaging detector (DIRC). An electromagnetic calorimeter (EMC), consisting of 6580 thallium-doped CsI crystals, is used to identify electrons and photons. These detector sub-systems are mounted inside a 1.5-T solenoidal superconducting magnet. Finally, the instrumented flux return of the magnet allows us to discriminate muons from other particles. We use the GEANT4 Monte Carlo (MC) [9] program to simulate the response of the detector, taking into account the varying accelerator and detector conditions.

Charged tracks used in the reconstruction of ϕ, K^*(892)0 and D_s meson candidates must have a distance of closest approach to the interaction point of less than 1.5 cm in the transverse plane and less than 10 cm along the beam axis. All kaon candidates must pass particle identification (PID) criteria, based on a neural-network algorithm which uses measurements of dE/dx in the DCH and the SVT, Cherenkov angles and the number of Cherenkov photons in the DIRC. No PID requirement is applied to the pion candidates. A ϕ candidate is composed of two identified kaons of opposite charge that are consistent with originating from a common vertex. We accept ϕ candidates with invariant mass $1.000 < m_{K^+K^-} < 1.039$ GeV. K_s^0 candidates are composed of two oppositely-charged tracks coming from a common vertex with an invariant mass $0.491 < m_{\pi^+\pi^-} < 0.505$ GeV. K^*(892)0 candidates are
reconstructed from two oppositely-charged tracks, where one track is identified as a kaon, with an invariant mass 0.842 < m_{K^{-}π^{+}} < 0.942 GeV.

We reconstruct D_{s}^{−} mesons from decays to φπ^{−}, K_{S}^{0}K^{−}, and K^{*}(892)^{0}K^{−} using tracks coming from a common vertex with a χ^{2} probability greater than 0.1%. The reconstructed mass of D_{s} candidates is required to be within 2.7 to 3.0 standard deviations of the nominal mass; a typical mass resolution of D_{s} is about 5.1 MeV. The selected D_{s} candidates are then kinematically fit with their tracks constrained to the nominal value [10]. In the decays D_{s}^{−} → φπ^{−} (K^{*}(892)^{0}K^{−}), the φ (K^{*}(892)^{0}) mesons are polarized longitudinally. Therefore, the cosine of the decay angle θ_{H} between the direction of the K^{−} from φ (π^{−} from K^{*}(892)^{0}) and the D_{s}^{−} direction in the φ (K^{*}(892)^{0}) rest frame is expected to follow cos^{2}θ_{H} distribution. Background events from random combinations are expected to be uniformly distributed in cosθ_{H}. We place a decay mode-dependent requirement on the minimum value of |cosθ_{H}|, which varies from 0.3 to 0.5 and rejects 13 to 24% of the combinatorial background.

D_{s}^{−} candidates are formed by combining D_{s} and γ candidates with a mass difference ∆M = m_{D_{s}^{−}} − m_{D_{s}^{−}} in the range of 0.125 < ∆M < 0.160 GeV. The photon energy measured in the EMC is required to be more than 100 MeV.

B^{0} meson candidates are reconstructed by combining either (i) two oppositely charged D_{s} candidates, (ii) one D_{s}^{−} candidate and an oppositely charged D_{s} candidate or (iii) two oppositely charged D_{s}^{∗} candidates. Finally, two quantities are used to discriminate between B^{0}-meson signal and background: the beam-energy-substituted mass m_{ES} = √{E_{B}^{2} − (p_{B}^{2})} and the energy difference ∆E = E_{B}^{γ} − E_{B}^{γ}, where E_{B}^{γ} is the beam energy in the center of mass (CM) frame, and p_{B}^{γ} (E_{B}^{γ}) is the CM momentum (energy) of the B^{0}-meson candidate. For signal events m_{ES} peaks at the B^{0}-meson mass with a typical resolution of 2.5 MeV, dominated by the uncertainty of the beam energy, and ∆E peaks near zero indicating that the B decay candidate has a total energy consistent with the beam energy in the CM frame. Depending on the particular B^{0} decay mode, the measured resolution for ∆E is 6.5 − 13.3 MeV.

Multiple candidates are found in 3% to 5% of the selected events in the three different B^{0} decay modes. The best candidate in each event is selected based on the smallest χ^{2} combination, where

\[\chi^{2} = \sum \left| \frac{m_{D_{s}^{±}} - m_{D_{s}^{±}}}{σ_{m_{D_{s}^{±}}}} \right|^{2} + \sum \left| \frac{ΔM - ΔM}{σ_{ΔM}} \right|^{2}, \]

and the sum is over D_{s}^{∗(+)−} and D_{s}^{∗−} candidates participating in a particular B^{0} decay. The mean values (m_{D_{s}^{±}} and ΔM) are the nominal values given in Ref. [10] and the errors (σ_{m_{D_{s}^{±}}}, σ_{ΔM}) are measured in a data control sample of B^{0} → D^{−}D_{s}^{∗(+)−} decays.

A small source of remaining background is e^{+}e^{−} → q̅q production, which is suppressed based on event topology. We restrict the angle (θ_{T}) between the thrust axis [11] of the B^{0} meson candidate and the thrust axis of the rest of the particles in the event. In the CM frame, B̅B̅ pairs are produced approximately at rest and form a nearly uniform distribution in |cosθ_{T}|. In contrast, hadrons in q̅q events are produced back-to-back in two jets, which results in a |cosθ_{T}| distribution peaked at 1. Based on the background level of each mode, we require the value of |cosθ_{T}| to be less than a mode-dependent upper limit, which ranges from 0.83 and 0.9. We require R_{2} < 0.4, where R_{2} is the ratio of the second Fox-Wolfram moment to the zeroth moment [12], both determined using charged tracks and unmatched neutral showers in the event.

For different B^{0} meson decays, a signal region is defined in a two dimensional scatter plane of m_{ES} and ∆E as shown in Table II. Optimization of the selection is performed separately for each of the three B^{0} decays [13] by maximizing a figure of merit, S^{2}/(S + B), where S is the number of signal events in the signal box as derived from the MC simulation and B is the number of background events estimated from simulations of generic B-decays and q̅q continuum. We use the same selection criteria for different B^{0} decay modes if the figure of merit differs by less than 10%.

After the aforementioned selection, four possible background sources are considered. First, the amount of combinatorial background in the signal region is estimated from the grand sideband region: −0.25 < ∆E < 0.25 GeV and 5.20 < m_{ES} < 5.27 GeV. The second source of backgrounds arises from B meson decays such as B^{0} → D^{∗(−)}D_{s}^{∗(+)−} and B^{∗−} → D_{s}^{∗−}D_{s}^{∗(+)−}. These background events have the same m_{ES} distribution as the signal, but their reconstructed energy is higher than the beam energy. Third, the cross-feed background that may arise among the six combinations of D_{s}D_{s} modes and the three reconstructed B^{0} decay mode was studied with a large sample of signal MC and the corresponding contributions were found to be small. Finally, rare B decays into the same final state particles, such as non-resonant B^{0} → D_{s}^{−}K^{0}K^{+}, have the same m_{ES} and ∆E distributions as the signal. This source of background is estimated not to be negligible.

Figure 2 shows the distributions of candidates for (i) B^{0} → D_{s}^{−}D^{∗+}_{s}, (ii) B^{0} → D^{∗−}D^{∗+}_{s}, and (iii) B^{0} → D^{−}D^{∗+}_{s} decays in the ∆E versus m_{ES} plane after all selection criteria have been applied. We find 6, 4 and 3 candidate events in the signal boxes that survived the selection criteria for the B^{0} → D_{s}^{−}D^{∗+}_{s}, B^{0} → D^{−}D^{∗+}_{s}, and B^{0} → D^{−}D^{∗+}_{s}, respectively. The combinatorial background in the signal box (N_{bkg}), is esti-
events in the grand sideband region. The energy substituted mass : m_{ES} is defined as:

$$m_{ES} = E - \Delta E$$

Here, E is the total energy of the event, and ΔE is the difference between the energy of the signal and the background. We compute the average number of background events in the grand sideband region (N_{bkg}^{avg}) within the region $E_2 < \Delta E < E_1$ GeV and $5.20 < m_{ES} < 5.27$ GeV from a fit to the ΔE distribution of the data events in the grand sideband (described well by a first order polynomial function $P(\Delta E)$)

$$N_{bkg}^{\text{avg}} = N_{GSB} \times \int_{E1}^{E2} P(\Delta E) \, d\Delta E$$

where E_1 and E_2 are the ΔE energy bounds of the signal box as shown in Table II and N_{GSB} is the total number of events in the grand sideband region. The m_{ES} projection of these background events is modeled with the threshold function [14],

$$\frac{dN}{dx} = x \sqrt{1 - x^2/E_b^{*2}} \exp[\xi(1 - x^2/E_b^{*2})]$$

characterized by the shape parameter ξ, the endpoint parameter E_b^{*} fixed at 5.289 GeV and $x = m_{ES}$. $N_{\text{comb}}^{\text{bkg}}$ in the signal box is then estimated from N_{bkg}^{avg} scaled by a factor: $5.27 \frac{dN}{dx}/5.29 \frac{dN}{dx}$. We vary E_b^{*} by ± 2 MeV to include its effect in the systematic uncertainties in N_{bkg}^{comb}. The measured uncertainties due to the choice of threshold parameter ξ, endpoint parameter E_b^{*}, and parameter of the polynomial fit are combined in quadrature with the Poisson fluctuation of the number of events in the grand sideband to obtain the total error on $N_{\text{comb}}^{\text{bkg}}$. This procedure does not account for any potential backgrounds that are enhanced in the signal region. The simulation indicates that only a small component of the background from the $B^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ and $B^0 \rightarrow D_s^{(*)+} D_s^{(*)0}$ decays exhibits a peaking m_{ES} distribution. This component, $N_{\text{peak}}^{\text{bkg}}$, is extracted from a binned likelihood fit to the m_{ES} distribution of simulated events using a combination of the threshold function and a Gaussian. The ξ parameter in the threshold function is fixed to the value we obtained from the fit to the data grand sideband. The mean and width of the Gaussian component is fixed to the fit values obtained from $B^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ decays after all selection criteria are applied. The box in each plot is the signal region based on studies with MC simulation as described in the text.

![FIG. 2: Distributions of events in the ΔE versus m_{ES} plane, for (i) $B^0 \rightarrow D_s^+ D_s^-$, (ii) $B^0 \rightarrow D_s^+ D_s^-$, and (iii) $B^0 \rightarrow D_s^+ D_s^-$ decays after all selection criteria are applied. The box in each plot is the signal region based on studies with MC simulation as described in the text.](image)

Table II: The number of signal candidates (N_{cond}), total estimated background (N_{bkg}), efficiency from MC simulation times the branching fraction ($\epsilon_i \times B_i$), and 90% C.L. upper limit for $B^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$, $B^0 \rightarrow D_s^{(*)+} D_s^{(*)0}$, and $B^0 \rightarrow D_s^{(*)0} D_s^{(*)0}$ decay modes.

B^0 decay mode	N_{cond}	N_{bkg}	$\epsilon_i \times B_i$	90% C.L. upper limit
$B^0 \rightarrow D_s^+ D_s^-$	6.5 $\times 10^4$	5.27 $\times 10^4$	3.51 $\times 10^{-3}$	< 6.0 $\times 10^{-3}$
$B^0 \rightarrow D_s^+ D_s^-$	3.9 ± 1.2	3.9 ± 1.2	0.85 $\times 10^{-3}$	< 4.0 $\times 10^{-3}$

We consider the following sources of systematic uncertainty for the signal efficiencies. The particle reconstruction and identification efficiencies are obtained from simulation, and cross-checked and corrected using large data control samples. This results in systematic uncertainties of (1) 0.8% per charged track; (2) 2.5% per reconstructed K_s^0 candidate; (3) 2.5% per identified charged...
kaon and (4) 1.8% per reconstructed photon. The uncertainty on the number of $B \bar{B}$ events is estimated to be 1.1%. Depending on the B submodes, the error from the MC statistics is 2% to 4.5%. The systematic errors are dominated by the 13.3% relative uncertainty on $B(D_s^- \to \phi\pi^-)$ [15], and 15.8% and 9.8% errors in $B(D_s^- \to K^0\phi^-)$ and $B(D_s^- \to K^{*0}\pi^-)$ relative to $B(D_s^+ \to \phi\pi)$, respectively [10]. The uncertainty in modeling the simulation of ΔE, $|\cos \theta_T|$, $|\cos \theta_H|$ distributions is evaluated using a ratio of the signal yield from $B^0 \to D^0 D^{(*)+}$ data control sample and generic $B \bar{B}$ MC. Each selection requirement is varied and the resulting relative change in the ratio is assigned as the systematic error. The error due to vertexing is obtained by taking the difference in the ratio with and without the vertex requirement in the D_s candidate selection. A summary of the systematic uncertainties in signal efficiency is given in Table III. Using the measured signal efficiency

Systematics	$D_s^- D_s^+$ (%)	$D_s^0 D_s^-$ (%)	$D_s^- D_s^+$ (%)
Tracking eff.	4.3	4.3	4.3
K_s eff.	2.7	2.7	2.7
Kaon PID	9.2	9.2	9.2
Photon eff.	-	1.8	3.6
B counting	1.1	1.1	1.1
MC statistics	2.0	3.5	4.5
D_s^0 b.f.	26.0	26.0	26.0
Selection	5.4	5.4	6.0
Total	28.7	28.8	29.3

($\sum_i c_i B_i$), 211 fb$^{-1}$ on-resonance data corresponding to $N_{B \bar{B}} = (231.8 \pm 2.6) \times 10^6$, the background estimation along with the uncertainties and the observed candidate events in the signal region N_{cand}, we determine the 90% confidence-level (C.L.) upper limit using the procedure given in [16]. The systematic uncertainties are included following the prescription in Ref. [17]. In all branching fraction calculations we assume equal production of $B^0 \bar{B}^0$ and $B^+ B^-$ pairs at the $\Upsilon(4S)$.

The search for $B^0 \to D_s^- D_s^+$, $B^0 \to D_s^0 D_s^-$ and $B^0 \to D_s^- D_s^+$ decays yields the 90% C.L. upper limits (Table II):

$$B(B^0 \to D_s^- D_s^+) < 1.0 \times 10^{-4},$$

$$B(B^0 \to D_s^0 D_s^-) < 1.3 \times 10^{-4},$$

$$B(B^0 \to D_s^- D_s^+) < 2.4 \times 10^{-4}.$$

In conclusion, we have performed a measurement of the decay rates for $B^0 \to D_s^- D_s^+$, $B^0 \to D_s^0 D_s^-$ and $B^0 \to D_s^- D_s^+$ processes with a sensitivity needed to test the SM prediction [18]. Our upper limits disfavor the branching fraction predictions in Ref. [3] for all three B^0 decays and accommodate the predictions of the pQCD calculation [2] for all three B^0 decay modes. The possible existence of a significant W-exchange component in $B^0 \to D^- D^+$ [19] decays is not confirmed in this analysis.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from CONACyT (Mexico), the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

* Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
† Also with Università della Basilicata, Potenza, Italy
‡ Deceased

[1] H. Fritzsch and P. Minkowski, Phys. Lett. B 90, 455 (1980); D. Fakir and B. Stech, Nucl. Instr. Methods Phys. Res., Sect. B 133, 315 (1978).
[2] Ying Li et al. J. Phys. G 31, 273 (2005).
[3] J. O. Eeg et al. Eur. Phys. Jour. C 42, 29 (2005).
[4] B. Blok et al. Phys. Rev. Lett. 78, 3990 (1997).
[5] The BABAR Physics Book, P. Harrison and H. Quinn, 1998, SLAC report 504.
[6] A. Datta, D. London Phys. Lett. B 584, 81 (2004).
[7] Inclusion of charge conjugate modes is implied throughout this paper.
[8] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Methods Phys. Res., Sect. A 479, 1 (2002).
[9] GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instr. Methods Phys. Res., Sect. A 506, 250 (2003).
[10] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[11] E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
[12] G. C. Fox, S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[13] pQCD predictions for the branching fractions are assumed for the selection optimization.
[14] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48,
543 (1990).

[15] BABar collaboration, B. Aubert et al., Phys. Rev. D 71, 091104(R) (2005).

[16] R. Barlow, Comput. Phys. Commun. 149, 97 (2002).

[17] R. D. Cousins and V. L. Highland, Nucl. Instr. Methods Phys. Res., Sect. A 320, 331 (1992).

[18] While this paper was being written, the Belle Collaboration released an upper limit on the decay rate for $B^0 \rightarrow D^-_s D_s^+$ consistent with our result: K. Abe et al. hep-ex/0508040.

[19] Belle Collaboration, G. Majumder et al. Phys. Rev. Lett. 95, 041803 (2005).