A projection formula for the ind-Grassmannian

Erik Carlsson

July 30, 2013

Abstract

Let $X = \bigcup_k X_k$ be the ind-Grassmannian of codimension n subspaces of an infinite-dimensional torus representation. If \mathcal{E} is a bundle on X, we expect that $\sum_j (-1)^j \Lambda^j(\mathcal{E})$ represents the K-theoretic fundamental class $[0_Y]$ of a subvariety $Y \subset X$ dual to \mathcal{E}^*. It is desirable to lift a K-theoretic “projection formula” from the finite-dimensional subvarieties X_k, but such a statement requires switching the order of the limits in j and k. We find conditions in which this may be done, and consider examples in which Y is the Hilbert scheme of points in the plane, the Hilbert scheme of an irreducible curve singularity, and the affine Grassmannian of $SL(2, \mathbb{C})$. In the last example, the projection formula becomes an instance of the Weyl-Kac character formula, which has long been recognized as the result of formally extending Borel-Weil theory and localization to Y [49]. See also [10] for a proof of the MacDonald inner product formula of type A_n along these lines.

1 Introduction

Let X be a smooth complex projective variety, let

$$T \circlearrowleft X, \quad T = \mathbb{C}^* = \{z\},$$

be a one-dimensional complex torus action on X, and let \mathcal{E} be an equivariant bundle on X. The K-theoretic Atiyah-Bott-Lefschetz localization formula describes the character of the derived push forward to a point, also known as the equivariant Euler characteristic,

$$\chi_X(\mathcal{E}) = \sum_i (-1)^i \text{ch} H^i_X(\mathcal{E}) = \sum_{F \subset X} \chi_F \left(\mathcal{E}_F \lambda(\mathcal{N}_{X/F})^{-1} \right), \quad (1)$$
Here H^i is the Čech cohomology group, ch is the (Chern) character map, F ranges over the fixed components of the torus action, $N_{X/F}$ is its normal bundle, and λ is the usual operation on K-theory defined below. See [14] for a reference.

Suppose $Y \subset X$ is an invariant subvariety which is the zero set of an equivariant section of a bundle \mathcal{E}^*. Then the fundamental class $[\mathcal{O}_Y]$ is given by $\lambda(\mathcal{E}) \in \tilde{K}_T(X)$, and we have the projection formula

$$
\chi_Y(\gamma) = \chi_X(\gamma \lambda(\mathcal{E})).
$$

(2)

If we apply the localization formula to either side, the resulting identity is not mysterious. The fundamental class $\lambda(\mathcal{E})$ vanishes when restricted to a component $F \subset X$ that does not intersect with Y, and the two expressions are in fact equal termwise. However, if a formula is known describing χ_X as a Laurent polynomial rather than an unworkable rational function, then (2) produces such a formula for Y.

We will derive a version of (2) for several examples in which Y is an interesting moduli space, and X is the Grassmannian of codimension n subspaces of an infinite-dimensional torus representation Z, defined as an ind-variety, i.e. a union of finite dimensional subvarieties,

$$
\cdots \subset X_{-1} \subset X_0 \subset X_1 \subset \cdots, \quad \bigcup_k X_k = X.
$$

We define the K-theory of this space as the inverse limit

$$
\tilde{K}_T(X) = \lim_{\leftarrow} K_T(X_k) \otimes \mathbb{C}[[z]], \quad \chi_X(\gamma) = \lim_{k \to \infty} \chi_X(\gamma_k) \in \mathbb{C}((z)).
$$

For instance, we have a class $[\mathcal{U}] \in \tilde{K}_T(X)$, where \mathcal{U}_k is the tautological rank n quotient bundle on X_k.

Consider the fairly general virtual bundle

$$
\mathcal{E} = A\mathcal{U} + B\mathcal{U}^* + C\mathcal{U}\mathcal{U}^* \in \tilde{K}_T(X),
$$

where A, B, C are torus characters, i.e. elements of the equivariant K-theory of a point. We then define the class $\mathcal{Y} = \lambda(\mathcal{E})$ by its components

$$
\mathcal{Y}_k = \lim_{w \to 1} \sum_{j \geq 0} (-w)^j \lambda^j(\mathcal{E}) \in \tilde{K}_T(X_k),
$$

(3)

and define $\chi_{\mathcal{Y}}(\gamma) = \chi_X(\gamma \mathcal{Y})$. We will think of \mathcal{Y} as the fundamental class of some subvariety $Y \subset X$, if formally we have $\chi_{\mathcal{Y}}(\gamma) = \chi_Y(i^*\gamma)$, even though \mathcal{E} may not be an honest bundle, and Y may be noncompact, infinite dimensional, or singular.

Our main theorem is the following:
Theorem A. Under certain conditions on E, X, γ, we have the following analog of (2):

$$
\chi_Y(\gamma) = \sum_{j \geq 0} (-1)^j \chi_X(\gamma \lambda^j(E)).
$$

Essentially, this theorem gives conditions under which we may switch the limits in j and k in (3), which turns out to imply the formula. The essential part of the argument is to calculate the rational function in $C(z, w)$ whose expansion in w is the contribution of the higher Cech cohomology groups to (3), and show that it vanishes to high degree at $z = 0$.

We include the following examples:

1. Y is the Hilbert scheme of n points in the complex plane, and $X = G_{n,R}$, where R is the total space of $\mathbb{C}[x, y]$. The embedding is the map which associates to a subscheme of \mathbb{C}^2 the total space its ideal. The projection formula becomes a power series expansion with integer coefficients for the Euler characteristic of a subbundle of $U \otimes m$, where U is the tautological rank n bundle on Y. This example may also be extended to the moduli space $M_{r,n}$ of higher rank sheaves (instantons), see [39] for a definition.

2. Y is the Hilbert scheme of a plane curve singularity $y^2 = x^3$, and $X = G_{n,R}$ with

$$
R = \mathbb{C}[x, y]/(y^2 - x^3) \cong \mathbb{C}[u^2, u^3].
$$

Again the projection formula produces a power series formula form the euler characteristic. Since Y is singular, χ_Y must be defined using virtual localization.

3. Y is the affine Grassmannian of the loop group of $SL(2, \mathbb{C})$, and X is the Sato Grassmannian of half infinite-dimensional subspaces of a faithful representation of $L\mathbb{C}^2$. The projection formula produces an instance of the Weyl-Kac character formula. This circumvents the technical ideas behind an idea that was discussed by Segal in [40], and has been studied by several authors, including generalizations to the analogous flag varieties [28, 51, 52].

In [10], the author also gives a proof of the MacDonald inner product formula of type A_n in this way, which is too involved to reproduce here. From this point of view, the factorization of the inner product is explained as coming from a localization sum concentrated at a
single fixed point point, together with the form of the Pieri rules for MacDonald polynomials.

The motivations for this paper have do to with a fascinating and well studied interplay between the Hilbert scheme of points on a surface, representation theory, and modular forms. In many different studies, geometric correspondences between the Hilbert schemes of different points induce an action of various infinite-dimensional Lie algebras on H^*, the direct sum of the cohomology groups of $\text{Hilb}_n S$ over all n, see [4, 11, 19, 32, 30, 37] to name a few. There is a related story in K-theory which in many cases is based on Haiman’s character theory of the Bridgeland King and Reid isomorphism which identifies $K(\text{Hilb}_n \mathbb{C}^2)$ as an inner-product space with the ring of symmetric polynomials in infinitely many variables [6, 12, 43, 48]. In some cases, the resulting character theory leads to functional properties of the generating function of cohomological or K-theoretic constants in a variable q, over the number of points n [8, 11, 27, 55].

These phenomena are closely related to a physical conjecture known as AGT (Alday, Gaiotto, Tachikawa) [1], which connects correlation functions in four dimensional gauge theory with a certain Liouville theory. In fact, there are two current mathematical proofs of this conjecture that proceed along these lines [36, 54]. It would be very desirable mathematically and physically to discover integrals on a larger moduli space which restrict to both sides of this dictionary under different specializations of the equivariant parameters. The motivation in extending the projection formula is that interesting integrands on a Grassmannian manifold are simply easier to construct than interesting moduli spaces. Haiman’s theory makes sense when the moduli space is the Hilbert scheme, whereas the structures on the cohomology and K-theory of $\mathcal{M}_{r,n}$ also lead to interesting character theory. A fundamental example is the action of the Kač-Moody algebra $\widehat{sl}_r \mathbb{C}$ on $H^*(\mathcal{M}_{r,n})$ [32, 42, 43, 44], which prompted the Kač-Moody example.

Acknowledgements. The author would like to thank the Simons foundation, for its support, as well as Hiraku Nakajima, Alexei Oblomnkov, and Andrei Okounkov, for many valuable discussions.

2 Plethysm

Let $K_T(X)$ denote the complex equivariant K-theory of a smooth complex projective variety with an action of a torus $T = (\mathbb{C}^*)^d$. Let
\(\lambda^i\) denote the usual operation defined on bundles by
\[
\lambda^i([E]) = [\Lambda^i(E)].
\]
The total operation is defined by
\[
\lambda(\mathcal{E}) = \lim_{w \to 1} \lambda^i(w\mathcal{E}) = \lim_{w \to 1} \sum_j (-1)^j w^j \lambda^j(\mathcal{E})
\] (4)
where the limit is the analytic continuation to \(w = 1\) of the rational function defined by the right hand side for \(w\) near zero. The limit exists if \(\gamma = [\mathcal{E} - \mathcal{F}]\) for honest bundles \(\mathcal{E}, \mathcal{F}\), with \(\lambda(\mathcal{F})\) invertible, and equals \(\lambda(\mathcal{E})\lambda(\mathcal{F})^{-1}\).

If \(\gamma = \sum_I a_I x^I\) for \(a_I \in \mathbb{Z}\), and \(x^I\) are monomials in some set of indeterminants, called plethystic variables, we define
\[
\lambda(\gamma) = \prod_I (1 - x^I)^{a_I}, \quad \gamma^* = \sum_I x^{-I},
\]
\[
\dim(\gamma) = \sum_I a_i, \quad \det(\gamma) = \prod_I x^{a_i I}.\tag{5}\]
Given a symmetric polynomial \(f \in \Lambda_n\), we also have a homomorphism defined in the elementary symmetric function basis by
\[
\gamma \mapsto f(\gamma), \quad e_{i_1} \cdots e_{i_k}(\gamma) = \lambda^{i_1}(\gamma) \cdots \lambda^{i_k}(\gamma).
\]
We may think of \(\gamma\) as an element of \(K_T(pt)\), when the plethystic variables are the torus variables \(z_i\). In this paper, every variable will be considered plethystic, meaning it counts as an indeterminant for the purposes of (5). Furthermore, we will often identify a torus representation and its character in \(\mathbb{Z}_{\geq 0}[z_i^{\pm 1}]\), denoting both by the same letter.

3 The Grassmannian

Suppose \(Z\) is a representation of \(T\) of dimension \(d\), and consider the Grassmannian variety of codimension \(n\) subspaces of \(Z\),
\[
X = G_{n,Z} = \{ V \subset Z \mid \text{codim}(V) = n \}.
\]
There is a tautological bundle \(\mathcal{V}\) whose fiber over \(V \subset Z\) is \(V\) itself, and a rank \(n\) quotient bundle \(\mathcal{U} = \mathcal{Z}/\mathcal{V}\), where \(\mathcal{Z} = G_{n,Z} \times Z\). The action
of T on Z induces an action on the Grassmannian, and on the above bundles. We may consider the characters of the Cech cohomology groups
\[\chi^i(E) = \text{ch} H^i_X(E), \quad \chi = \sum_i (-1)^i \chi^i. \]

Only χ_0 however, descends to a map on K-theory.

Let $P = G_{1,Z}$, and let us define a linear map $\xi: x^m \mapsto \chi^0_x(U^m) \in \mathbb{C}[z_1^\pm 1], \quad \epsilon = 0, 1, \ldots$

where $\chi^0 = \chi$. The answer is well known to be
\[\xi_x^0 f(x) = [x^0]^j \mathcal{P} x^{-1} f(x) \chi_x, \quad \xi_x^d f(x) = [x^0]^j \mathcal{P} f(x) \chi_x, \]
\[\chi_x = \lambda(Z x^{-1})^{-1}, \quad \xi_x^i f(x) = 0, \quad i \notin \{0, d\}. \] (6)

where $[x^i]$ denotes the coefficient of x^i, and
\[\mathcal{P} x^\pm 1 : \mathbb{k}(x) \hookrightarrow \mathbb{k}((x^{\pm 1})) \subset \mathbb{k}[[x^{\pm 1}]] \]
is the map that sends a rational function over \mathbb{k} to its Laurent series about $x = 0$ or ∞ respectively.

Equivariant localization gives a second expression for the Euler characteristic,
\[\xi_x f(x) = \sum_j \xi_{x,j} f(x), \quad \xi_{x,j} f(x) = \chi \left(\lambda(N_{F_j/F_j})^{-1} \iota_{x,j} f(x) \right), \]
\[\iota_{x,j} : x^m \mapsto \iota_{x,j}^* (U^m) \in K(F_j) \otimes \mathbb{C}(z), \] (7)
where $F_j = G_{1,Z_j}$ are the torus fixed components of P, and Z_j is the invariant subspace of Z with character z^j. We have that
\[K(F_j) \cong \mathbb{C}[y]/(y^c), \quad c = \dim F_j. \]
The restriction map is given by
\[\iota_{x,j}^* (x^m) = z^{jm} p_y^j (1 + y)^m \in \mathbb{C}[[y]] \rightarrow \mathbb{C}[[y]]/((y^c)). \] (8)
The pushforward map is
\[\chi : K(F_j) \rightarrow \mathbb{C}, \quad y^i \mapsto \left(\frac{c - 1}{i} \right). \] (9)
There is an elegant expression for the Euler characteristic in terms of residues, which follows easily from the formulas above:

\[\xi_0^0(f(x)) = -\text{Res}_{x=\infty} g(x), \quad \xi_d^d(f(x)) = -(-1)^d \text{Res}_{x=0} g(x), \]

\[\xi_{x,j}(f(x)) = \text{Res}_{x=z_j} g(x), \quad g(x) = x^{-1} f(x)X_x, \] \hspace{1cm} (10)

where

\[\text{Res}_{x=c} f(x) = [x^{-1}] f(x + c) \]

is the algebraic residue operation. Then

\[\xi_x^0 + (-1)^d \xi_x^d = \xi_x = \sum_j \xi_{x,j} \] \hspace{1cm} (11)

corresponds to the fact that the sum of the residues of a meromorphic function on \(\mathbb{CP}^1 \) equals zero.

There is a well known formula for the general case to in terms of the case \(n = 1 \):

\[\chi^\epsilon_X(f(\mathbb{U})) = \frac{1}{n!} \xi_{x_1}^\epsilon \cdots \xi_{x_n}^\epsilon f(x_1, \ldots, x_n) \Delta_x, \] \hspace{1cm} (12)

\[\Delta_x = \lambda \left(\sum_{i \neq j} x_i x_j^{-1} \right), \quad \epsilon \in \{\emptyset, 0\}. \]

The \(\epsilon = \emptyset \) case is a simple instance of a theorem of Shaun Martin [35] for general symplectic quotients, see also the Jeffrey-Kirwan residue formula [25]. The \(\epsilon = 0 \) case is an application of Borel-Weil theory, we refer the reader to [13].

4 The fundamental class

Suppose now that \(T \) is one-dimensional with torus parameter \(z \), and define a finite-dimensional torus representation by its character

\[Z = \sum_i d_i z^i \in \mathbb{Z}_{\geq 0}[z^{\pm 1}]. \]

Let \(k, k' \) respectively denote the largest and smallest \(i \) such that \(d_i \neq 0 \), and let \(d = \dim(Z) \). Fix a positive integer \(n \), and let \(X = G_{n,Z} \).

Now define an element \(X = X_\mathbb{U} \in K_T(X)[[w]] \) by

\[X_\gamma = \sum_i (-w)^i \lambda^i (E_\gamma), \quad E_\gamma = A\gamma + B\gamma^* + C\gamma^*, \] \hspace{1cm} (13)

7
for some Laurent polynomials
\[A = \sum_i a_i z^i, \quad B = \sum_i b_i z^i, \quad C = \sum_i c_i z^i \]
with integer coefficients. Then we have that \(X = P_w Y_w \) for some class
\[Y_w \in K_T(X) \otimes \mathbb{C}(z, w), \]
which can easily be seen using localization
\[K_T(X) \otimes \mathbb{C}(z, w) \cong \bigoplus_{F \subseteq X^T} K(F) \otimes \mathbb{C}(z, w). \]
If this class is well defined at \(w = 1 \), we define
\[Y = Y_1 \in K_T(X) \otimes \mathbb{C}(z). \]
Let us define
\[\chi_Y(\gamma) = \chi_X(\gamma Y) \in \mathbb{C}(z), \]
which should be thought of as the Euler characteristic of \(\gamma \) over a subvariety \(Y \subset X \) which is the intersection of a section of \(\mathcal{E}^* \) with the zero section, even though \(\mathcal{E} \) is not an honest bundle, and such a variety may not exist. Now suppose that \(\gamma = \gamma_{u,m} \), where
\[\gamma_{A,m} = \det(A)^m f(A), \quad f \in \Lambda, \quad m \in \mathbb{Z}. \] (14)
It follows easily from (10) and (12) that there are rational functions satisfying
\[f^\epsilon(z, w) \in \mathbb{C}(z, w), \quad P_w f^\epsilon(z, w) = \chi^\epsilon(\gamma X), \]
when \(\epsilon \) is zero or blank. For instance, \(f(z, w) = \chi_X(\gamma Y_w) \). Define a rational function whose power series in \(w \) measures the contribution from the higher cohomology groups,
\[g(z, w) = f(z, w) - f^0(z, w). \]
The following lemmas study the expansion of \(g(z, w) \) in the \(z \) direction.

Lemma 1. Let \(x \) be a variable. We have
\[\nu_z(\xi^0_x(x^m X_x)) \geq o_k', \quad \nu_z(\xi^d_x(x^m X_x)) \geq o_k, \quad \nu_z(\xi_{x,i}(x^m X_x)) \geq o_i, \]
\[o_i = mi + \sum_{j \leq -i} a_j(i + j) + \sum_{j \leq i} b_j(j - i) - \sum_{j \leq i} d_j(j - i). \]
Proof. Let us prove the first bound. Consider the power series
\[P_x(A) \big|_{x=\lambda x^{-1}} = \sum_i f_i(z, w) x^i, \quad A = X_{\lambda} A(Z x^{-1})^{-1}. \]
Using (10), it suffices to show that
\[\nu_z(f_i(z, w)) \geq o_k. \]
To prove this we simply study each factor in \(A \) separately and use
\[\nu_z(fg) \geq \nu_z(f) + \nu_z(g). \]
The others are similar.

Lemma 2. Suppose condition (d) of theorem 1 below is satisfied. Then
\[g(z, w) = \sum_{r \geq 1} (-1)^r d \binom{n}{r} f^{r,n-r}(z, w), \]
where
\[f^{r,s}(z, w) = \sum_{j_1, \ldots, j_s} \text{Res}_{\{y_q = z^q\}} \text{Res}_{\{x_p = 0\}} \Omega_{r,s}, \]
\[\Omega_{r,s} = \Omega_{x_1 + \cdots + x_r + y_1 + \cdots + y_s}, \quad \text{Res}_{\{e_1, \ldots, e_k\}} = \text{Res}_{e_1} \cdots \text{Res}_{e_k}, \]
\[\Omega_A = \frac{1}{n!} \gamma_A \lambda(w \mathcal{E}_A) \lambda(Z A)^{-1} \Delta_A. \]
Proof. Using (10), (11), (12), we may write
\[\mathcal{P}_w g(z, w) = \sum_{r \geq 1} (-1)^r d \binom{n}{r} \mathcal{P}_w f^{r,n-r}(z, w), \]
where \(f^{r,s}(z, w) \) is defined by
\[\mathcal{P}_w f^{r,s}(z, w) = \xi_{x_1} \cdots \xi_{x_r} \xi_{y_1} \cdots \xi_{y_s} \mathcal{X}_{x_1 + \cdots + x_r + y_1 + \cdots + y_s} = \]
\[\sum_{j_1, \ldots, j_s} \text{Res}_{\{y_q = z^q\}} \text{Res}_{\{x_p = 0\}} \mathcal{P}_w \Omega_{r,s}. \]
It suffices to prove that
\[\left(\text{Res}_{\{y_q = z^q\}} \text{Res}_{\{x_p = 0\}} \mathcal{P}_w - \mathcal{P}_w \text{Res}_{\{y_q = z^q\}} \text{Res}_{\{x_p = 0\}} \right) \Omega_{r,s} = 0, \]
so that $f^{r,s}(z,w) = \tilde{f}^{r,s}(z,w)$.

We now claim the following commutation relations between P_w and the residue

$$\left(\text{Res}_{x_{p}=0} P_w - P_w \text{Res}_{x_{p}=0}\right) \Omega_{r,s} = P_w \sum_{q,i} \text{Res}_{y_{q}=wz^{i}} \Omega_{r,s}, \quad (16)$$

$$\left(\text{Res}_{y_{q}=z^{j}} P_w - P_w \text{Res}_{y_{q}=z^{j}}\right) \text{Res}_{x_{p}=0} \Omega_{r,s} = 0. \quad (17)$$

Both are algebraic facts which may be described in terms of formal distributions, but it is simpler to imagine the residues about zero as contours about $|x_{p}| = \epsilon$. The first commutator may be thought of as the residues picked up from swapping the range $|w| \ll |x_{p}|$ for $|x_{p}| \ll |w|$. The second is also straightforward.

We have that $\text{Res}_{x_{p}=wz^{i}} \Omega_{r,s}$ vanishes to order

$$a_{-i-j} + b_{i+j} + c_{i} - d_{j} + 1$$

at $y_{q} = z^{j}$. By condition (11) this number is nonnegative, so that

$$\text{Res}_{y_{q}=z^{j}} \text{Res}_{x_{p}=wz^{i}} \Omega_{r,s} = 0. \quad (18)$$

Furthermore, taking additional residues at $x_{i_{p}} = 0$ can only increase the degree of vanishing. Applying this to (16) and combining with (17) establishes (15), proving the lemma.

\[\square\]

5 The main theorem

Now suppose that Z is an infinite-dimensional representation, defined via its character

$$Z = \sum_{i} d_{i}z^{i} \in \mathbb{Z}_{\geq 0}(z).$$

Suppose furthermore that $A, B \in \mathbb{Z}(z)$, again with coefficients a_{i}, b_{i}, respectively. Let $X = G_{n,Z}$ be the ind-Grassmannian of codimension n subspaces of Z, taken as a limit of subspaces

$$X = \bigcup_{k} X_{k}, \quad X_{k} = G_{n,Z_{\leq k}},$$

where $Z_{\leq k}$ is the direct sum of the subspaces with torus weight $j \leq k$.

10
We set
\[\tilde{K}_T(X) = \lim_{\leftarrow} \tilde{K}_T(X_k), \quad \tilde{K}_T(X_k) = K_T(X_k) \otimes \mathbb{C}[[z]]. \]

The above inverse system is determined by the pullback maps i_{ab}^* where

\[i_{ab} : X_a \to X_b, \quad V \mapsto \pi_b^{-1}(V), \quad a \leq b, \]

and $\pi_{ab} : Z_{\leq b} \to Z_{\leq a}$ is the projection map. Given an element $\gamma \in \tilde{K}_T(X)$, with components γ_k, let us define

\[\chi_X(\gamma) = \lim_{k \to \infty} \chi_{X_k}(\gamma_k) \in \mathbb{C}((z)), \]

when that limit exists. One way to guarantee existence is to have that $i_{F}^* \gamma = 0$ for all but finitely many fixed components $F \in X^T$. If this is the case, we will say that $\chi_X(\gamma)$ is well defined.

If it exists, we define an element $Y \in \tilde{K}_T(X)$ by

\[Y_k = \lim_{l \to \infty} \mathcal{P}_z Y_{k,l,1} \in \tilde{K}_T(X_k), \]

where $Y_{k,l,w}$ is the class obtained by replacing A, B by the finite dimensional spaces $A_{\leq l}, B_{\leq l}$ in the definition of Y_w.

Theorem 1. Suppose $\gamma = \gamma_{U,m}$, and the following conditions are satisfied:

- a) $a_i \geq 0$ for $i \leq -k'$.
- b) $b_i \geq 0$ and $b_i = d_i$ for large enough i.
- c) $c_i = 0$ for $i \leq 0$, and $c_i = 0$ for large enough i.
- d) For any weights $i, j \in \mathbb{Z}$ with $d_j \neq 0$, $c_i < 0$, we have
 \[a_{-i-j} + b_{i+j} + c_i - d_j + 1 \geq 0. \]
- e) Both Y and χ_Y are defined in the sense described above.

Then for large enough m we have the projection formula,

\[\chi_Y(\gamma) = \sum_{j \geq 0} (-1)^j \chi_X(\gamma \lambda^j(\xi)). \quad (19) \]
Proof. Since \(f(U) \) is arbitrary, we may assume without loss of generality that \(A \in \mathbb{Z}_{\geq 0}[z^{\pm 1}] \). Let \(f_{k,l}(z, w) \) and \(g_{k,l}(z, w) \) denote the rational functions from the last section with \(Z \leq k, B \leq l \) in place of \(Z, B \), and let

\[
f_k(z, w) = \lim_{l \to \infty} f_{k,l}(z, w),
\]

pointwise. By condition \(\mathbf{c} \), \(f_k(z, w) \) is defined at \(w = 1 \). By definition, the limit over \(k \) of \(\mathcal{P}_z f_k(z, 1) \) agrees with the left hand side of (19).

We next claim that the limit of \(f_0(z, w) \) agrees with the right hand side of (19). Since the higher cohomology of \(f(U) \) vanishes for large enough dimension of \(Z \leq k \), we have

\[
\lim_{k \to \infty} \mathcal{P}_z f_k(z, w) = \lim_{k \to \infty} \mathcal{P}_z f_0(z, w),
\]

(20)

Using condition \(\mathbf{c} \), lemma 1, and (12), we can see that

\[
\lim_{i \to \infty} \nu_z(e_{k,i}(z)) = \infty, \quad \mathcal{P}_w f_0(z, w) = \sum_i e_{k,i}(z) w^i.
\]

(21)

This shows that the left side of (20) converges in \(\mathbb{C}((z)) \) at \(w = 1 \). It also shows that

\[
(\mathcal{P}_z \mathcal{P}_w - \mathcal{P}_w \mathcal{P}_z)f_k(z, w) \in \mathbb{C}((w))(z),
\]

whereas a priori, it is only an element of \(\mathbb{C}[[z^{\pm 1}, w^{\pm 1}]] \). On the other hand, by multiplying by the denominator of \(f_0(z, w) \), we see that it is a zero divisor, and so must be zero. But the left side of (20) agrees with the right side of (19) at \(w = 1 \), proving the claim.

We now prove that they are equal. By lemma 1 we find that

\[
\nu_z(f_{r,s,k}(z, w)) \geq rmk + ak + b
\]

for some constants \(a, b \). The constants may be chosen independently of \(l \), by condition \(\mathbf{b} \), and because \(o_k \) depends only on the differences \(b_i - d_i \), for \(i \leq k \). By lemma 2, \(g_{k,l}(z, w) \) is a linear combination of \(f_{r,s,k}(z, w) \) for \(r \neq 0 \), so that

\[
\lim_{k \to \infty} \mathcal{P}_z f_k(z, w) - \mathcal{P}_z f_0(z, w) = \lim_{k \to \infty} \lim_{l \to \infty} \mathcal{P}_z g_{k,l}(z, w) = 0,
\]

including the value \(w = 1 \), as long as \(m > -a \).
6 Examples

6.1 The Hilbert scheme of points in the plane

Let $Y = \text{Hilb}_n \mathbb{C}^2$, the Hilbert scheme of n points in the plane. There is a standard torus action on Y induced by pullback of ideals from the action on the plane

$$(z_1, z_2) \cdot (x, y) = (z_1^{-1}x, z_2^{-1}y).$$

(22)

The fixed points of Y are the monomial ideals indexed by Young diagrams $I_\mu = (x^{\mu_1}, x^{\mu_2}, ..., y^{\ell(\mu)}) \subset R = \mathbb{C}[x, y]$. The character of the cotangent space to this point is a polynomial in z_i with nonnegative integer coefficients summing to $\dim(Y) = 2n$. By deformation theory and a standard Čech cohomology argument, it is given by

$$T_\mu Y = \chi(R, R) - \chi(I_\mu, I_\mu),$$

(23)

where χ is the Euler characteristic

$$\chi(F, G) = \sum_{i} (-1)^i \text{ch Ext}^i_R(F, G).$$

There is an interesting formula for this polynomial in terms of the arm and leg lengths of boxes in μ, which we will not need. See [11, 38] for a reference on this calculation.

Now let Z be the total space of R, so that

$$Z = \mathcal{P}_{z_1, z_2} M^{-1}, \quad M = (1 - z_1)(1 - z_2).$$

Let $X = G_{n, Z}$, and let

$$A = -z_1 z_2, \quad B = Z - 1, \quad C = M - 1,$$

with \mathcal{E} and \mathcal{Y} as in the last section. There is an injection $Y \hookrightarrow X$ determined by sending an ideal to its total space in $Z = R$, which comes up in the construction of Y. The images of the fixed points are

$$V_\mu = H^0(I_\mu) \subset Z, \quad U_\mu = Z/V_\mu = \sum_{(i, j) \in \mu} z_1^i z_2^j,$$

where (i, j) are the coordinates of a box in μ.

13
Lemma 3. Suppose $U \in X^T$ is an invariant subspace.

a) We have that $\lambda(E_U)$ vanishes unless $U = U_\mu$ for some μ.

b) If $U = U_\mu$, then

$$T_\mu^* X - T_\mu^* Y = E_\mu, \quad E_\mu = E_{U_\mu}.$$

Proof. For part (a) it suffices to show that the constant term of E_U is positive unless $U = U_\mu$, in which case it is zero. Consider the graph whose vertices are $\mathbb{Z}^2 \subset \mathbb{R}^2$, and whose edge set E connects horizontal and vertical neighbors. Color each box with lower-left corner (i, j) white if $z_1^i z_2^j$ is a weight of V, and black otherwise. Define subsets by

$$X_0 = \{ v \in \mathbb{Z}^2 : v(\nearrow) \text{ is black, } v(\swarrow) \text{ is white}\}$$

$$X_1 = \{ e \in E : e(\nearrow) \text{ is black, } e(\swarrow) \text{ is white}\}$$

Here $v(\nearrow)$ is the upper-right neighboring box to v, $e(\nearrow)$ is the upper or right neighboring box to the edge e depending on whether e is horizontal or vertical, and similarly for the southwest arrow.

Expanding E, we see that the constant term is

$$[z_1^0 z_2^0] E_U = x_1 - x_0, \quad x_i = |X_i|.$$

Now notice that every vertex in X_0 is the endpoint of exactly two edges in X_1, but each edge in X_1 always has at most two endpoints in X_0, proving that $x_1 - x_0 \geq 0$. If U does not come from a Young diagram, then the set X_1 is nonempty, and there must be some edge in X_1 whose endpoints are not both in X_0, leading to strict inequality.

Part (b) may be deduced easily from (23), and

$$\chi(I_\mu, I_\nu) = z_1^{-1} z_2^{-1} MV_\mu^* V_\nu.$$

Now restrict to a one-dimensional torus $z_i = z^{a_i}$, where the a_i are large enough that the fixed points of Y are isolated. Lemma 3 combined with localization on each fixed component F with respect to the two-dimensional torus proves that condition of the theorem is satisfied. Condition (d) holds because Z has the same character as R, B is the character of the total space of its maximal ideal m, and xR and yR are contained in m. The others are obvious.
By lemma 3, we see that \(\chi_{\text{Hilb}}(\gamma_U, m) = \chi_Y(\gamma_U, m) \), where \(U \) also denotes the tautological rank \(n \) bundle on \(Y = \text{Hilb}_n \), which is pulled back from \(X \). By theorem 1, we have

\[
\chi_{\text{Hilb}}(\gamma_U, m) = \sum_j (-1)^j \chi_X(\gamma \lambda^j(\mathcal{E})) \in \mathbb{Z}[[z]]
\] (24)

for large enough \(m \). Since the answer is a rational functions of \(z_i \), it is determined by its values on the restricted torus. We may therefore drop the assumption that \(z = z^a_i \), and have an equality of functions of two distinct torus variables \(z_i \). It may be checked that both sides are given by elements of \(\mathbb{C}(z_i)[z^m_i] \) for \(m \geq 0 \), and so (24) holds for all nonnegative \(m \). The point of this formula is the the right hand side is given explicitly by a sum of power series with integer coefficients.

6.2 The Hilbert scheme of a singular curve

Let \(C \) denote the singular curve \(y^2 = x^3 \), and consider the action

\[
T = \mathbb{C}^* \times C, \quad z \cdot (x, y) = (z^{-2}x, z^{-3}y).
\]

Let \(Y \) denote the Hilbert scheme of \(n \) points in this curve, whose points correspond to ideals in

\[
R = \mathbb{C}[x, y]/(y^2 - x^3) \cong \mathbb{C}[u^2, u^3],
\]

with \(\dim_{\mathbb{C}} R/I = n \). The torus fixed points of \(Y \) are those of the form

\[
I_S = \bigoplus_{i \in S} \mathbb{C} \cdot u^i \subset R,
\]

for \(S \) a sub-semigroup of \(\{0, 2, 3, 4, \ldots\} \).

There is an injection \(Y \hookrightarrow X \), where the data for \(X \) is given by

\[
Z = \text{ch} R = p_z(1 - z^6)M^{-1}, \quad M = (1 - z^2)(1 - z^3).
\]

Now let

\[
A = -z^5, \quad B = Z + z^6 - 1, \quad C = M - 1.
\]

We find that \(\gamma_U \) vanishes at all fixed points in \(X \) except those whose weights form a semigroup \(S \). We would find that \(T_S^*X - \mathcal{E}_S \) does not consist entirely of nonnegative weights, but that the signed dimension is always \(n \). This corresponds to the fact that the Hilbert scheme of
points on this curve only has a virtual tangent bundle of expected dimension n. Its character may be calculated by realizing Y as an lci subvariety of the Hilbert scheme of n points in the plane. For a reference, see [50].

In a similar way to the last subsection, theorem 1 gives a power series formula for the Euler characteristic, but now for $m \geq 1$.

6.3 The affine Grassmannian

Let $G = SL(2, \mathbb{C})$, and consider the affine Grassmannian

$$Y = LG_{\mathbb{C}}/L^+G_{\mathbb{C}},$$

where LG is the space of maps from the circle into G, and L^+G are those maps which extend to a holomorphic function in the disc of radius 1.

In [49], Segal noted that there should be a proof of the Weyl-Kac character formula using this variety, which is analogous of the well-known geometric proof of the Weyl character formula using K-theoretic localization combined with Borel-Weil-Bott, see [14]. He also pointed out that there was a gap in the reasoning due to the fact that Y is infinite-dimensional with singular closure, and the explanation that the higher cohomology groups vanish. This topic, and generalizations to the related flag varieties have been studied by several authors, including [28, 51, 52].

We now demonstrate how theorem 1 can be used to circumvent these two difficulties in the case of the Jacobi triple product formula, which corresponds to the basic representation for $G = SL(2, \mathbb{C})$. It would be interesting to see how far this approach generalizes. Let us ignore technicalities and simply motivate the choice of data for theorem 1. There is an action of a two-dimensional torus on Y by

$$(g \cdot f)(x) = Ad \left(\begin{array}{c} z^{-1} \\ z \end{array} \right) \cdot f(qx), \quad g = (q, z).$$

Ignoring the infinite-dimensionality of Y, we can write down the character of the cotangent bundle to this space at a fixed point as follows. The cotangent bundle at the image of the identity in Y is given by

$$T^*_1Y = (Lg_{\mathbb{C}}/L^+g_{\mathbb{C}})^* = \frac{q}{1-q}(z^2 + 1 + z^{-2}).$$

The character at a general fixed point can be extracted from by applying elements of the affine Weyl group.
Let $\mathcal{H} = L\mathbb{C}^2$, the Hilbert space of maps to \mathbb{C}^2. Then LG_C acts in the obvious way on this space, and L^+G_C is precisely the subgroup that preserves the subspace $V \subset \mathcal{H}$ of all maps which are holomorphic at the origin. The action on \mathcal{H} induces an inclusion $Y \subset X$ in which 1 maps to V, where X is the Sato Grassmannian of half-infinite dimensional subspaces of \mathcal{H}, by taking the orbit space of V. The character of the cotangent bundle at V is given by

$$\text{ch} T^*_V X = \frac{q}{(1-q)^2} (z^2 + 2 + z^{-2}),$$

(26)

Now let us derive the Jacobi triple product. For each n, let

$$M = 1 - q, \quad W = q^{-n}(z + z^{-1}), \quad Z = q^{-n}(z + z^{-1}) \partial_z M^{-1},$$

$$A = 0, \quad B = Z - W, \quad C = M - 1, \quad X^{(n)} = G_{2n, Z},$$

so that $Z \subset \mathcal{H}$, and includes the whole space as n becomes large. As in section 6.1, we find that the projection formula holds for the two-dimensional torus, and that $m \geq 0$ is sufficient.

We may check that $\lambda(\mathcal{E}^{(n)})$ vanishes at all fixed points of $X^{(n)}$ except those whose complementary subspace has character

$$U_k = \sum_{-n \leq i \leq k-1} zq^i + \sum_{-n \leq i \leq -k-1} z^{-1}q^i,$$

and the character at such a point satisfies

$$\lim_{n \to \infty} \left(T^*_k X^{(n)} - \mathcal{E}_k^{(n)} - T^*_k Y \right) = \frac{q}{1-q}.$$

Now taking the limit over n of (19) gives

$$\sum_k (q; q)_\infty^{-1} \theta(z^2, q)^{-1} \left(z^{4k}q^{2k^2+k} - z^{4k-2}q^{2k^2-k} \right) =$$

$$\sum_j (-1)^j q^j \lim_{n \to \infty} \chi_X \left(\lambda^j(T^*_n X) \right) = (q; q)_\infty^{-1},$$

(27)

where

$$(x; q)_\infty = \prod_{i \geq 0} (1 - xq^i), \quad \theta(x; q) = (q; q)_\infty (xq; q)_\infty (x^{-1}; q)_\infty.$$

The second equality follows from

$$\chi_{\text{Gr}(k,n)} \left(\lambda^j(T^*_n) \right) = (-1)^j p(j),$$

for sufficiently large $k, n - k$, where $p(j)$ is the number of partitions of j, and the answer holds equivariantly for any group action on \mathbb{C}^n. 17
References

[1] L.F. Alday, D. Gaiotto, Y. Tachikawa, *Liouville correlation functions from four dimensional gauge theories*, Lett. Math. Phys. 91 (2010), 167-197.

[2] M. Atiyah, R. Bott, *The Moment map and equivariant cohomology*, Topology 23 (1984), no. 1, 1 - 28.

[3] M. Atiyah, V.G. Drinfel’d, N.J. Hitchin, and Y.I. Manin *Construction of Instantons*, Phys. Lett. A65 (1978) 185-187

[4] V. Baranovsky, *Moduli of sheaves on surfaces and action of the oscillator algebra*, J. Differential Geom. 55 (2000), no. 2, 193 - 227.

[5] S. Bloch, A. Okounkov, *The character of the infinite wedge representation*, Adv. Math. 149 (2000), no. 1, 1 - 60.

[6] T. Bridgeland, A, King, M. Reid, *The McKay correspondence as an equivalence of derived categories*, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554.

[7] E. Carlsson, *Vertex Operators and Moduli Spaces of Sheaves*, PhD Thesis, Princeton University,

[8] E. Carlsson, *Vertex operators, Grassmannians, and Hilbert schemes* Comm. Math. Phys. 300, no. 3, (2010), 599-613.

[9] E. Carlsson *Vertex operators and quasi-modularity of Chern numbers on the Hilbert scheme* (2011), Advances in Mathematics, to appear.

[10] E. Carlsson, *Localization and a generalization of MacDonald’s inner product*, arXiv:1305.0778, 2013.

[11] E. Carlsson, A. Okounkov, *Exts and vertex operators*, arXiv:0801.2565v1

[12] E. Carlsson, N. Nekrasov, and A. Okounkov, *Exts and vertex operators 2*, arxiv preprint.

[13] D. Edidin, and Christopher A. Francisco, *Grassmannians and representations*, 2006

[14] N. Chriss and V. Ginzburg, *Representation theory and complex geometry*, Birkhuser Boston, Inc., Boston, MA, 1997.

[15] G. Ellingsrud, L. Götsche, M. Lehn, *On the cobordism class of the Hilbert scheme of a surface* Journal of Algebraic Geometry, 10 (2001), 81 - 100.
[16] E. Frenkel, D. Ben-Zvi, *Vertex algebras and algebraic curves*, Mathematical Surveys and Monographs, vol. 88. AMS 2001.

[17] L. Göttsche, *Hilbert schemes of points on surfaces*, ICM Proceedings, Vol. II (Beijing, 2002), 483–494.

[18] L. Göttsche, *The Betti numbers of the Hilbert scheme of points on a smooth projective surface*, Math. Ann. 286 (1990), no. 1-3, 193 - 207.

[19] I. Grojnowski, *Instantons and affine algebras I: the Hilbert scheme and vertex operators*, Math. Res. Lett. 3 (1996), 275–291.

[20] V. Guilleman and S. Sternberg *Supersymmetry and equivariant de Rham theory*, Springer-Verlag Berlin Heidelberg, 1999

[21] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941-1006, arXiv:math.AG/0010246.

[22] M. Haiman, *Combinatorics, symmetric functions, and Hilbert schemes*, Current developments in mathematics, 2002, 39 - 111, Int. Press, Somerville, MA, 2003.

[23] D. Huybrechts, M. Lehn, *The geometry of moduli spaces of sheaves*, Aspects of Mathematics, E31. Friedr. Vieweg & Sohn, Braunschweig, 1997.

[24] A. Iqbal, C. Kozczaz, K. Shabbir, *Refined Topological Vertex, Cylindric Partitions and the U(1) Adjoint Theory*, http://arxiv.org/abs/0803.2260.

[25] L. Jeffrey, F. Kirwan, *Localization for nonabelian group actions* Topology Volume 34, Issue 2, April 1995, Pages 291-327

[26] V. Kač, *Infinite dimensional Lie algebras, third edition*, Cambridge University Press, 1990.

[27] M. Kaneko and D. Zagier, *A generalized Jacobi theta function and quasimodular forms*, The moduli space of curves, Progress in Mathematics, 129, Birkhäuser, 1995.

[28] S. Kumar, *Demazure character formula in arbitrary Kac-Moody setting*, Inventiones mathematicae, 1987, Volume 89, Issue 2, pp 395-42.

[29] M. Lehn, *Geometry of Hilbert schemes*, CRM Proceedings and Lecture Notes, Volume 38, 2004, 1 - 30.
[30] M. Lehn, *Chern classes of tautological bundles on Hilbert schemes of points on surfaces*, Invent. Math. 136 (1999), no. 1, 157 - 207.

[31] W. Li, Z. Qin, W. Wang, *Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces*, Math. Ann. 324 (2002), 105 - 133.

[32] A. Licata, *Framed torsion-free sheaves on CP 2, Hilbert schemes, and representations of infinite dimensional Lie algebras* Adv. Math, vol. 226, no. 2, pp. 1057-1095, 2011.

[33] W. Li, Z. Qin, W. Wang, *The cohomology rings of Hilbert schemes via Jack polynomials*, CRM Proceedings and Lecture Notes, vol. 38 (2004), 249–258.

[34] I. Macdonald, *Symmetric functions and Hall polynomials*, The Clarendon Press, Oxford University Press, New York, 1995.

[35] S. Martin, *Cohomology rings of symplectic quotients*, arXiv:math/0001002 [math.SG].

[36] D. Maulik and A. Okounkov, *Quantum Groups and Quantum Cohomology*, arXiv:1211.1287 [math.AG]

[37] H. Nakajima, *Heisenberg algebra and Hilbert schemes of points on projective surfaces*, Ann. of Math. (2) 145 (1997), no. 2, 379–388.

[38] H. Nakajima, *Lectures on Hilbert schemes of points on surfaces*, AMS, Providence, RI, 1999.

[39] H. Nakajima, *Jack polynomials and Hilbert schemes of points on surfaces*, arXiv:alg-geom/9610021

[40] H. Nakajima, *Instanton counting on blowup. I. 4-dimensional pure gauge theory*, Invent. Math. 162 (2005), no. 2, 313–355.

[41] H. Nakajima, *Instanton counting on blowup. II: K-theoretic partition function*, math.AG/0505553.

[42] H. Nakajima, *Instantons and affine Lie algebras I*, Nucl.Phys.Proc.Suppl.46:154-161,1996

[43] A. Negut, *Laumon Spaces and the Calogero-Sutherland Integrable System*, Inventiones Mathematicae, Volume 178, Number 2 (Nov 2009), 299–331.

[44] N. Nekrasov and A. Okounkov, *Seiberg-Witten Theory and Random Partitions*, In *The Unity of Mathematics* (ed. by P. Etingof, V. Retakh, I. M. Singer) Progress in Mathematics, Vol. 244, Birkhäuser, 2006, hep-th/0306238.
[45] A. Okounkov, *Random Partitions and Instanton Counting*, International Congress of Mathematicians. Vol. III, 687 - 711, Eur. Math. Soc., Zürich, 2006.

[46] A. Okounkov and R. Pandharipande, *Quantum cohomology of the Hilbert scheme of points in the plane*, arXiv:math/0411210.

[47] A. Pressley, G. Segal, *Loop Groups*, Clarendon Press, Oxford, 1986.

[48] S. Schiffmann, E. Vasserot, *The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of \(\mathbb{A}^2 \)*, arXiv:0905.2555v2

[49] G. Segal, *Loop groups*, Lecture Notes in Mathematics, Arbeitstagung Bonn 1984, Subseries: Mathematisches Institut der Universität und Max-Planck-Institut für Mathematik, Bonn - vol 5, chapter 8, 1984.

[50] V. Shende, *A support theorem for Hilbert Schemes of planar curves*, arXiv:1107.2355 [math.AG]

[51] C. Teleman, *Borel-Weil-Bott theory for loop groups*, arXiv:alg-geom/9707014

[52] C. Teleman, *Borel-Weil-Bott theory on the moduli stack of \(G \)-bundles over a curve*, Inventiones mathematicae , September 1998, Volume 134, Issue 1, pp 1-57.

[53] E. Vasserot, *Sur l’anneau de cohomologie du schema de Hilbert de \(\mathbb{C}^2 \)*, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 1, 7 - 12.

[54] E. Vasserot, *Cherednik algebras, W algebras and the equivariant cohomology of the moduli space of instantons on \(\mathbb{A}^2 \)*, arXiv:1202.2756 [math.QA]

[55] Y. Zhu, *Modular invariance of characters of vertex operator algebras*, J. AMS, 9 (1996), 237 - 302.