Non-integrability of the dumbbell and point mass problem

Andrzej J. Maciejewski1, Maria Przybylska2,
Leon Simpson1, and Wojciech Szumiński2

1Kepler Institute of Astronomy,
University of Zielona Góra, Licealna 9,
PL-65-407, Zielona Góra, Poland,

2Institute of Physics,
University of Zielona Góra, Licealna 9,
PL-65-407, Zielona Góra, Poland

May 11, 2014

Abstract
This paper discusses a constrained gravitational three-body problem with two of the point masses separated by a massless inflexible rod to form a dumbbell. The non-integrability of this system is proven using differential Galois theory.

1 Equations of motion, symmetries and reduction

Considered is the gravitational three-body problem with a single constraint. Three point masses, m_1, m_2 and m_3 move in a plane under mutual gravitational interaction. Masses m_2 and m_3 are connected by a massless inflexible rod of length $l > 0$ to form a dumbbell. A pictorial description of the problem is given in Figure 1.

The Lagrangian of the system has the form

$$ L = \frac{1}{2} m_1 \|r_1\|^2 + \frac{1}{2} m_2 \|r_2\|^2 + \frac{1}{2} m_3 \|r_3\|^2 - U(r_1, r_2, r_3), $$

(1.1)

where r_1, r_2 and r_3 are the position vectors of the respective masses, and

$$ U(r_1, r_2, r_3) = -\frac{G m_1 m_2}{\|r_1 - r_2\|} - \frac{G m_1 m_3}{\|r_1 - r_3\|} - \frac{G m_2 m_3}{\|r_2 - r_3\|}. $$

(1.2)

is the potential. r_d is the radius vector of the centre of mass of the dumbbell, and

$$ e := \frac{r_3 - r_2}{\|r_3 - r_2\|}, $$

(1.3)

is a unit vector along the dumbbell. It follows that

$$ r_2 = r_d + \mu_3 l e, \quad r_2 = r_d + \mu_3 l e, $$

(1.4)

$$ r_3 = r_d - \mu_2 l e, \quad r_3 = r_d - \mu_2 l e, $$

(1.5)
Figure 1: A dumbbell and a point mass in the plane. Point O denotes the origin of an inertial frame. Point C is the system centre of masses. Axis OX_1 of the moving frame is always parallel to the dumbbell.

where

$$
\mu_2 := \frac{m_2}{m_d}, \quad \mu_3 := \frac{m_3}{m_d}, \quad m_d := m_2 + m_3.
$$

The system has five degrees of freedom. The configuration space of the point m_1 is \mathbb{R}^2, and the configuration space of the dumbbell is $\mathbb{R}^2 \times S^1$. A configuration of the system is fully specified by r_1, r_d, and e. In these coordinates, the Lagrangian is as follows.

$$
L = \frac{1}{2}m_1 \| \dot{r}_1 \|^2 + \frac{1}{2}m_d \| \dot{r}_d \|^2 + \frac{1}{2}I \| \dot{e} \|^2 - \tilde{U}(r_1, r_d, e),
$$

where

$$
I := l^2 \frac{m_2 m_3}{m_d}, \quad \tilde{U}(r_1, r_d, e) = U(r_1, r_d + \mu_3 e, r_d - \mu_2 e).
$$

The system possesses natural symmetries that are exploited to reduce the dimension of the system. Amongst these is translational symmetry. This is manifest by defining $r := r_d - r_1$ as the vector between the mass m_1 and the dumbbell. A configuration of the system can be thus described by r, e, and r_s defined by

$$
m_s r_s = m_1 r_1 + m_d r_d, \quad m_s := m_1 + m_2 + m_3.
$$

As

$$
\begin{align*}
 r_1 &= r_s - \frac{m_d}{m_s} r_s, \\
 r_d &= r_s + \frac{m_1}{m_s} r_s
\end{align*}
$$

the Lagrangian (1.7) is written in the following form.

$$
L = \frac{1}{2}m_r \| \dot{r} \|^2 + \frac{1}{2}I \| \dot{e} \|^2 + \frac{1}{2}m_s \| \dot{r}_s \|^2 - W(r, e),
$$
where
\[m_r := \frac{m_1 m_d}{m_s}, \] (1.12)
is the reduced mass, and
\[W(r, e) = -\frac{G m_1 m_2}{\|r + \mu_3 e\|} - \frac{G m_1 m_3}{\|r - \mu_2 e\|}, \] (1.13)
The components of \(r \) are cyclic coordinates, and the motion of the centre of mass separates completely. Therefore, the term \(m_s \|\dot{r}_s\|^2/2 \) is removed from the Lagrangian (1.11).

It is convenient to introduce dimensionless variables, taking \(l \) as the unit of length, \(m_r \) as the unit of mass, and
\[T := \sqrt{\frac{l^3}{m_s}}, \] (1.14)
as the unit of time. Setting \(l = m_r = T = 1 \), the Lagrangian (1.11) reduces to
\[L = \frac{1}{2} \|\dot{r}\|^2 + \frac{1}{2} l \|\dot{e}\|^2 - W(r, e), \] (1.15)
where
\[W(r, e) = -\frac{1}{\| (1 + \mu) r + \mu e\|} - \frac{\mu}{\| (1 + \mu) r - e\|}, \quad \mu := \frac{m_3}{m_2}. \] (1.16)
The reduced system still has a symmetry: it is invariant with respect to the natural action of the group \(\text{SO}(2, \mathbb{R}) \). In fact, the dynamics are oblivious to the orientation of the inertial frame. This symmetry can be used to reduce the dimension of the configuration space by one. This is achieved by describing the dynamics in a rotating frame in which the dumbbell is at rest. The transformation from the inertial frame to the rotating frame is given by
\[r = A R, \quad A \in \text{SO}(2, \mathbb{R}). \] (1.17)
An additional assumption, that \(e \) is parallel to \(x \)-axis of the rotating frame, allows for a coordinate representation of the transformation as follows.
\[A = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}, \quad \text{and} \quad e = [\cos \varphi, \sin \varphi]^T. \] (1.18)
Then
\[e = AE, \quad E = [1, 0]^T, \] (1.19)
and
\[\dot{e} = \dot{\varphi}[-\sin \varphi, \cos \varphi]^T, \quad \dot{A} = \dot{\varphi} AJ, \quad J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}. \] (1.20)
The Lagrangian expressed in the coordinates \(R = [X_1, X_2]^T \), and \(\varphi \) has the form
\[L = \frac{1}{2} \|\dot{R}\|^2 + \dot{\varphi} \dot{R}^T J R + \frac{1}{2} \dot{\varphi}^2 \|R\|^2 + \frac{1}{2} l \dot{\varphi}^2 - V(R), \] (1.21)
where
\[V(R) := -\frac{1}{\| (1 + \mu) R + \mu E\|} - \frac{\mu}{\| (1 + \mu) R - E\|}. \] (1.22)
The generalised momenta $P := [P_1, P_2]^T$ and P_φ, are given by
\[
P := \frac{\partial L}{\partial \dot{R}} = \dot{R} + \varphi J R, \quad P_\varphi := \frac{\partial L}{\partial \varphi} = \varphi (\|R\|^2 + I) + R^T J R.
\] (1.23)

Coordinate φ is cyclic, so P_φ is a first integral of the system. Thus, the Hamiltonian of the system is written as
\[
H = \frac{1}{2} \|P\|^2 + \frac{1}{2} \alpha \left(\gamma - P^T J R \right)^2 + V(R),
\] (1.24)
where $\alpha = 1/\lambda$, and γ is a fixed value of the first integral P_φ corresponding to the cyclic variable φ. Hence, the equations of motion have the form
\[
\frac{d}{dt} R = P - \alpha \left(\gamma - P^T J R \right) J R, \\
\frac{d}{dt} P = -\alpha \left(\gamma - P^T J R \right) J P - (1 + \mu) \left((1 + \mu) R + \mu E \right)^{\parallel} \left((1 + \mu) R + \mu E \right)^{-\parallel}
\] (1.25)
\[
\mu (1 + \mu) \left((1 + \mu) R - E \right)^{\parallel} \left((1 + \mu) R - E \right)^{-\parallel}.
\]

2 Problem

Numerical experiments suggest that the considered system is not integrable. The complex behaviour of the system is apparent from the Poincaré cross-section. For fixed values of the parameters and the energy the equations (1.25) are integrated numerically by the Burlish-Stoer method [5]. The cross-section plane is specified as $X_1 = 0$, and the cross direction is chosen $X_2 > 0$. The coordinates of the cross-section are (X_2, P_2). The cross-sections presented in the subsequent figures are obtained for parameters $\mu = 1$ and $\alpha = \frac{4}{51}$.

Figure 2 is a cross-section corresponding to energy $e = -0.1$ and $\gamma = -1$. Chaotic behaviour is evident. Two cross-sections for $\gamma = 0$ are shown in Figure 3 and Figure 4. Both of them attest to the non-integrability of the system. The problem is proving the non-integrability of the system analytically. It is attractive to try using the differential Galois approach to the problem of integrability (see e.g. [11]). However, as is explained in [11], application of this theory directly to the system (1.25) is invalid as the Hamiltonian function (1.24) is not single-valued.

Proposed in this paper is a solution addressing this deficiency, based on an extension of the system into a larger phase space. Coordinates of these additional dimensions are denoted by R_1 and R_2. This approach further requires a definition of the time derivative consistent with system (1.25). Following this, coordinates R_1 and R_2 are considered as lengths of vectors
\[
R_1 := (1 + \mu) R + \mu E, \quad R_2 := (1 + \mu) R - E.
\] (2.1)
That is, equations $G_1 = G_2 = 0$, where polynomials $G_1, G_2 \in \mathbb{C}[X_1, X_2, R_1, R_2]$ given by
\[
G_1 := R_1^2 - [(1 + \mu) X + \mu]^2 - (1 + \mu)^2 Y^2 = R_1^2 - R_1^T R_1, \\
G_2 := R_2^2 - [(1 + \mu) X - 1]^2 - (1 + \mu)^2 Y^2 = R_2^2 - R_2^T R_2.
\] (2.2)
defines R_1 and R_2 as algebraic functions of (X_1, X_2).

The extended phase space is C^6 with coordinates $Z := [X_1, X_2, P_1, P_2, R_1, R_2]$. The Hamiltonian (1.24) expressed in these coordinates reads

$$K = K(Z) := \frac{1}{2} \|P\|^2 + \frac{1}{2} \alpha \left(\gamma - P^T JR \right)^2 - \frac{1}{R_1} - \frac{\mu}{R_2}. \quad (2.3)$$

As

$$\frac{d}{dt} R_i = \frac{R_i^T R_i}{R_i} = (1 + \mu) \frac{R_i^T R_i}{R_i}, \quad i = 1, 2,$$ \quad (2.4)

system (1.25) can be extended to the following one.

$$\frac{d}{dt} Z = U(Z), \quad U(Z) := J(Z)K'(Z), \quad J(Z) := \begin{bmatrix} 0 & E_2 & 0_2 \\ -E_2 & 0_2 & -A \\ 0_2 & A^T & 0_2 \end{bmatrix} \quad (2.5)$$

where

$$A = (1 + \mu) \begin{bmatrix} R_1 \\ R_1^T \\ R_2 \end{bmatrix}, \quad K'(Z) := (\nabla_Z K(Z))^T. \quad (2.6)$$

It can be shown that matrix $J(Z)$ defines a Poisson structure on C^6. The corresponding Poisson bracket is given by the following formula

$$\{F, G\} (Z) = F'(Z)^T J(Z) G'(Z), \quad (2.7)$$
where F and G are two smooth functions. The Poisson structure given by $J(Z)$ is degenerated and has rank 4. It is demonstrable that polynomials G_1 and G_2 are Casimir functions of this structure, whose common levels are symplectic manifolds. In particular,

$$M^4_\mu := \{ Z \in \mathbb{C}^6 \mid G_1(Z) = G_2(Z) = 0 \} , \quad \mu \in (0, 1/2].$$

(2.8)
is a symplectic manifold. System (2.5), when restricted to M^4_μ, is equivalent to (1.25).

In the setting thus described the main result of this paper can be formulated in the following theorem.

Theorem 2.1. For $\gamma = 0$ and $\mu \in (0, 1/2]$, system (2.5), when restricted to the symplectic leaf M^4_μ, is not integrable in the Liouville sense with meromorphic first integrals.

3 \hspace{1em} **Particular solution and variational equation**

If $\gamma = 0$, then equations (2.5) have an invariant algebraic manifold,

$$N := \{ Z \in \mathbb{C}^6 \mid X_2 = P_2 = 0, \quad G_1(Z) = G_2(Z) = 0 \} .$$

(3.1)

On this manifold it can be taken that

$$R_1 = (1 + \mu)X_1 + \mu, \quad R_2 = (1 + \mu)X_1 - 1,$$

(3.2)

so the system (2.5), restricted to N, reduces to

$$\dot{X} = P, \quad \dot{P} = -((\mu + 1)\left(\frac{\mu}{[(1 + \mu)X - 1]^2} + \frac{1}{[(1 + \mu)X + \mu]^2}\right)),$$

(3.3)
Figure 4: Cross-section for $e = -0.15$ for system with $\gamma = 0$

where $(X, P) := (X_1, P_1) \in \mathbb{C}^2$. This is a Hamiltonian system with one degree of freedom. Thus the manifold N is foliated by phase curves Γ_e on energy levels $K|_N = e$, that is

$$\Gamma_e \subset M_e := \left\{ (X, P) \in \mathbb{C}^2 \mid e = \frac{1}{2} P^2 - \frac{\mu}{(1 + \mu) X - 1} - \frac{1}{(1 + \mu) X + \mu} \right\}. \quad (3.4)$$

For a generic value of e the level M_e contains three phase curve. If e is real, two or three of these levels have a non-empty intersection with the real part of the phase space. In further consideration it is assumed that $e \geq 0$, and the chosen phase curve Γ_e contains the half-line $(1/(1 + \mu), \infty) \times \{0\} \subset \mathbb{C}^2$. In the phase space \mathbb{C}^6 this curve is given by

$$\Gamma_e := \{ Z \in N \mid (X_1, P_1) \in \Gamma_e \}. \quad (3.5)$$

Application of the Morales-Ramis theory necessitates the linearisation of equations (2.5) along Γ_e. It has the form

$$\frac{d}{dt} z = V z, \quad V = \frac{\partial U}{\partial Z}(Z), \quad Z \in \Gamma_e. \quad (3.6)$$

This system has three first integrals

$$k(z) := \nabla K(Z) \cdot z, \quad g_1(z) := \nabla G_1(Z) \cdot z, \quad g_2(z) := \nabla G_2(Z) \cdot z, \quad Z \in \Gamma_e. \quad (3.7)$$

On the level $g_1(z) = g_2(z) = 0$, the following equalities are satisfied

$$R_1 r_1 = (1 + \mu) [(1 + \mu) X_1 + \mu] x_1, \quad R_2 r_2 = (1 + \mu) [(1 + \mu) X_1 - 1] x_1. \quad (3.8)$$
where it is assumed that \(z = [x_1, x_2, p_1, p_2, r_1, r_2]^T \). On \(\Gamma_e \), coordinates \((R_1, R_2)\) can be expressed by \(X_1 \),

\[
R_1 = (1 + \mu)X_1 + \mu, \quad R_2 = (1 + \mu)X_1 - 1.
\]

Hence, on the level \(g_1(z) = g_2(z) = 0 \), variables \((r_1, r_2)\) can be eliminated from the variational equations (3.6). The reduced system of variational equations has the form

\[
\frac{d}{dt} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ A & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\alpha X P & 1 + \alpha X^2 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{bmatrix},
\]

(3.10)

where

\[
A = 2(\mu + 1)^2 \left(\frac{\mu}{[(1 + \mu)X - 1]^3} + \frac{1}{[(1 + \mu)X + \mu]^3} \right),
\]

(3.11)

and \((X, P) \in \Gamma_e\). This system splits into two subsystems. Variables \((u_1, v_1)\) describe variations in the invariant plane \(N \). In fact, \((u_1, v_1)\) is a vector tangent to \(N \) at point \((X, P)\), hence the subsystem in variables \((u_1, v_1)\) is called tangential. The second subsystem, corresponding to variables \((u_2, v_2)\), yield the normal variational equations. The latter subsystem can be expressed by a single second-order equation,

\[
\ddot{u} + a\dot{u} + bu = 0,
\]

(3.12)

where \(u = u_2 \), and

\[
a := -\frac{2\alpha X P}{1 + \alpha X^2}, \quad b := \frac{2\alpha P^2}{1 + \alpha X^2} + \frac{1}{2} (1 + \alpha X^2) A.
\]

Changing the independent variable by

\[
t \rightarrow z = (1 + \mu)X
\]

(3.13)

transforms equation (3.12) into an equation with rational coefficients. This follows from

\[
\frac{d}{dt} = \frac{dz}{dz} \frac{d}{dz}, \quad \frac{d^2}{dt^2} = (\dot{z})^2 \frac{d}{dz} + \ddot{z} \frac{d}{dz},
\]

\[
\dot{z} = (1 + \mu)\dot{x} = (1 + \mu)p_1, \quad (\dot{z})^2 = (1 + \mu)^2 p_1^2 = 2(1 + \mu)^2 \left(e + \frac{\mu}{z - 1} + \frac{1}{z + \mu} \right),
\]

\[
\ddot{z} = (1 + \mu)\ddot{p}_1 = -(\mu + 1)^2 \left(\frac{\mu}{(z - 1)^2} + \frac{1}{(z + \mu)^2} \right),
\]

where the energy integral

\[
e = \frac{1}{2} X^2 - \frac{\mu}{(1 + \mu)X - 1} - \frac{1}{(1 + \mu)X + \mu}
\]

has been used.
Resultantly, equation (3.12) transforms into

\[X'' + p(z)X' + q(z)X = 0, \quad X \equiv X_1, \]

(3.14)

with

\[p = - \left[(1 - z)^2(1 + z^2(5 + 4ez)\alpha) + (2 + z(-4 + 3z + (4 + z(-8 + 8e(-1 + z)^2 + 5z^2))\alpha) \mu + (1 + 3z^2 + 2z(2e(-1 + z)^2 + z(-4 + 5z))\alpha) \mu^2 + (1 + z(4 + z - 4\alpha + 5z\alpha))\mu^3 + 2(1 + z)\mu^4 + \mu^5 \right] / \left[2(z - 1)(z + \mu)((z - 1)(1 + ez) + (e(z - 1) + z)\mu + \mu^2)(z^2\alpha + (1 + \mu)^2) \right] , \]

\[q = \left[4(z - 1)^2\alpha(1 + \mu)(z + \mu)^2((z - 1)(1 + ez) + (e(z - 1) + z)\mu + \mu^2) + (z - 1)^3 + (1 + 3(z - 1)z)\mu + (3z - 1)\mu^2 + \mu^3)(z^2\alpha + (1 + \mu)^2)^2 \right] / \left[2(z - 1)^2(1 + \mu) \cdot (z + \mu)^2((z - 1)(1 + ez) + (e(z - 1) + z)\mu + \mu^2)(z^2\alpha + (1 + \mu)^2) \right] . \]

Making the next change of variables,

\[X = w \exp \left[-\frac{1}{2} \int_{s_0}^{s} p(s) \, ds \right] \]

(3.15)

(3.14) is transformed to the canonical form,

\[w'' = r(z)w, \quad r(z) = -q(z) + \frac{1}{2}p'(z) + \frac{1}{4}p(z)^2, \]

(3.16)

with coefficients given as

\[r = \frac{P}{M}, \]

\[M = 16(z - 1)^2\beta^2(z^2 + \beta^2)^2(z + \mu)^2((z - 1)(1 + ez) + (e(-1 + z) + z)\mu + \mu^2)^2, \]

\[P = \sum_{i=0}^{11} p_i z^{11-i}. \]

Here \(\beta^2 = (1 + \mu)^2/\alpha \) and coefficients \(p_i \) of \(P \) are given in the Appendix in [A,1]. This equation has seven singularities,

\[z_1 = 0, \quad z_2 = -\mu, \quad z_{3,4} = \pm i\beta, \]

\[z_{5,6} = \frac{e - 1 - (1 + e)\mu \pm \sqrt{(1 + \mu)((1 + e)^2 + (e - 1)^2\mu)}}{2e}, \]

and \(z_7 = \infty \), providing energy is chosen such that

\[e \notin \left\{ \frac{(1 + i\beta)(\pm i + \beta \mp i\mu)(\beta \pm i\mu)(1 + \mu)}{(1 + \beta^2)(\beta^2 + \mu^2)}, \frac{(\sqrt{\mu} \pm i)^2}{\mu + 1}, \frac{-\mu + \mu^3 \pm i(1 + \mu^3 + \beta^2(1 + \mu))|\beta|}{(1 + \beta^2)(\beta^2 + \mu^2)} \right\} , \]

(3.18)

Points \(z_1, \ldots, z_6 \) are regular poles of second order and the order of infinity is 1 provided that \(E(1 + \mu) \neq 0 \). Here, the order of a singular point is defined as in [2].
The differences of exponents at the singularities in \(C \) are as follows.

\[
\Delta_1 = \frac{1}{2} \sqrt{1 - \frac{8}{\beta^2}}, \quad \Delta_2 = \frac{1}{2} \sqrt{1 - \frac{8\mu^2}{\beta^2}}, \quad \Delta_3 = \Delta_4 = 2, \quad \Delta_5 = \Delta_6 = \frac{1}{2}.
\] (3.19)

It is evident that the differences of the exponents at singularities \(z_3 \) and \(z_4 \) are integer, and thus, in local solutions around these points, logarithmic terms may appear. Application of the method described in Appendix B verifies the presence of such terms. For singularity \(z_3 \), solutions of the indicial equation are \(\alpha_1 = 3/2 \) and \(\alpha_2 = -1/2 \). The relevant one is \(\alpha = \alpha_1 = 3/2 \). The expansion of \(r(z - z_3)^2 \), according to (3.4), gives coefficients \(r_0, r_1, \) and \(r_2 \). Then \(f_1, f_2 \) and \(g_1, g_2 \) are determined from (3.6) and (3.12) respectively. Since \(s = \alpha_1 - \alpha_2 = 2 \), the coefficient \(g_2 \), which multiplies the logarithm, must be found, and it is given as

\[
g_2 = -\frac{i(1 + \mu)((1 + \beta)^2 + \mu - 2i\beta\mu - \mu^2)}{8\beta(\beta + \mu)(1 + e\beta^2 + (e - \mu)\mu - i\beta(1 + e(-1 + \mu) + \mu))}.
\] (3.20)

Examination of the real and imaginary part of \(g_2 \) yields the following conditions.

\[
\beta(1 + \mu)[1 + \beta^4(1 + \mu) + 2\beta^2(-1 + \mu)(-1 - 2e\mu + \mu^2) + \mu(-1 - 2e(-1 + \mu)(1 + \mu)^2 + \mu(-1 + \mu(-1 + (-1 + \mu)\mu))] = 0,
\]

\[
(1 + \mu)(\mu(1 + 3\beta^2 + (-1 + \mu)\mu)(-1 + \mu^2) + e(\beta^5 + \mu^2(-1 + \mu - \mu^2) + \beta^4(2 + \mu(-3 + 2\mu)) + \beta^2(1 + \mu(-1 + \mu(-1 + (-1 + \mu)\mu))) = 0.
\]

This system has two solutions satisfying \(\mu > 0, \beta^2 > 0 \) and \(e \in \mathbb{R} \).

\[
\beta^2 = -1 + \mu - \mu^2, \quad e = \frac{1 + \mu}{1 - \mu} \quad \text{and} \quad \beta^2 = \mu = 1.
\] (3.21)

The condition precluding a logarithm in a local solution around \(z_4 \) is \(g_2^* = 0 \), where \(^* \) denotes complex conjugation. The corresponding solutions are the same as those given previously.

In the first solution in (3.21), condition

\[
\beta^2 = -1 + \mu - \mu^2,
\]

(3.22)

gives

\[
\frac{m_0}{m_1} = -\frac{\mu(\mu + 1)}{\mu^2 + 1} \leq 0,
\]

with the only non-negative solution \(m_1 = 0 \). The second solution in (3.21) also yields \(m_1 = 0 \) only.

If conditions (3.21) are not satisfied, the two linearly-independent local solutions \(w_1 \) and \(w_2 \) of (3.16) in a neighbourhood of \(z_s = z_3 \) or \(z_s = z_4 \) have the following forms.

\[
w_1(z) = (z - z_s)^\alpha f(z), \quad w_2(z) = w_1(z) \ln(z - z_s) + (z - z_s)^{a-2} h(z),
\]

(3.23)

where \(f(z) \) and \(h(z) \) are holomorphic at \(z_s \) and \(f(z_s) \neq 0 \). The local monodromy matrix, which corresponds to the continuation of the matrix of fundamental solutions along a small loop encircling \(z_s \) counter-clockwise, gives rise to a triangular monodromy matrix,

\[
\begin{bmatrix}
-1 & -2\pi i \\
0 & -1
\end{bmatrix}.
\]
A subgroup of $\text{SL}(2, \mathbb{C})$ generated by a triangular non-diagonalizable matrix is not finite, and thus the differential Galois group is not finite either. Moreover, the differential Galois group \mathcal{G} of this equation is not any subgroup of the dihedral group because such subgroups contain only diagonalizable matrices. Thus, \mathcal{G} is either the full triangular group or $\text{SL}(2, \mathbb{C})$. But since the order of infinity is one, the necessary condition that \mathcal{G} is the full triangular group is not satisfied (see Lemma 3.2). This means the that the differential Galois group of (3.16) is $\text{SL}(2, \mathbb{C})$, with a non-Abelian identity component equal to the whole group $\text{SL}(2, \mathbb{C})$.

Regarding exceptional values of energies given in (3.18): the condition that the first one is real gives $\beta(1 + \mu^3 + \beta^2(1 + \mu)) = 0$, which further suggests the equality (3.22). Its only physical solution is m_1. The second expression in (3.18) is never real and the third one is real when (3.22) holds only.

Acknowledgements

This work was partially supported by the EC Marie Curie Network for Initial Training Astronet-II, Grant Agreement No. 289240, and by the National Science Centre, Poland, under grant DEC-2012/05/B/ST1/02165.
A Appendix

Explicit form of coefficients p_i in r given by (3.17) are as follows.

$$
p_0 = -8e(1 + \mu), \quad p_1 = -8(1 + \mu)(1 + 4e(-1 + \mu) + \mu),$$
$$p_2 = -8(1 + \mu)\left(-4 + 4\mu^2 + e(6 + \beta^2 + 2\mu(-5 + 3\mu))\right),$$
$$p_3 = -48e^2\beta^4 - 16e(-1 + \mu^2)(2 + 2\beta^2 + \mu(-3 + 2\mu)) - (1 + \mu)^2(11\beta^2 + 24(2 + \mu(-3 + 2\mu))),$$
$$p_4 = -4(48e^2\beta^4(-1 + \mu) + (-1 + \mu)(1 + \mu)^2(8 + 11\beta^2 - 6\mu + 8\mu^2) + 2e(1 + \mu)(1 + 12\beta^4 + \beta^2(6 + \mu(-7 + 6\mu)) + \mu(-5 + \mu(5 + (-5 + \mu)\mu)))},$$
$$p_5 = -2(-4(1 + (e - \mu)\mu)(-1 + \mu^4) + 3\beta^4(9(1 + \mu)^2 + 64e(-1 + \mu^2) + 16\mu^2(3 + \mu(-8 + 3\mu)) + \beta^2(16e(-1 + \mu^4) + 3(1 + \mu)^2(11 + \mu(-13 + 11\mu)))))},$$
$$p_6 = -4\beta^2(48e^2\beta^2(\mu - 1)(1 + (\mu - 5)\mu) + (\mu - 1)(1 + \mu)^2(11 + 54\beta^2 + \mu(3 + 11\mu)) + 2e(1 + \mu)(1 + 3\beta^2(24 + \mu(-59 + 24\mu)) + \mu(-1 + \mu(-5 + (-\mu - 1)\mu)))},$$
$$p_7 = -\beta^2(11 + 3\beta^4(1 + \mu)^2 + 12\beta^2(4e(-8 + 33\mu - 33\mu^3 + 8\mu^4) + (1 + \mu)^2(27 + \mu(-59 + 27\mu)) + 4e^2(1 + (-2 + \mu)\mu(8 + (-14 + \mu)\mu)) + \mu(32 + \mu(-42\mu + \mu^3(32 + 11\mu) - 32e(-1 + \mu)^2))},$$
$$p_8 = -4\beta^2(3\beta^4(-1 + \mu)(1 + \mu)^2 - 2(1 + (e - \mu)\mu)\mu(\mu^4) + 2\beta^2(-24e^2(-1 + \mu)(1 + (-5 + \mu)\mu + 27(-1 + \mu)(1 + \mu)^2(1 + (-3 + \mu)\mu) + 2e(1 + \mu)(6 + \mu(-76 + \mu(-157 + 76\mu + 6\mu^2))))},$$
$$p_9 = -2\beta^4(27 + 3\beta^2(1 + \mu)^2(3 + \mu(-5 + 3\mu)) + \mu(-176 - 140e(-1 + 4\mu - 4\mu^3 + \mu^4) + 48e^2\mu(3 + \mu(-8 + 3\mu)) + \mu(4 + \mu(414 + \mu(4 + \mu(-176 + 27\mu))))))},$$
$$p_{10} = -4\beta^4(3\beta^2(-1 + \mu^2 - \mu^3 + \mu^5) - 2\mu(1 + (e - \mu)\mu)(-11 + \mu(24 + 24e(\mu - 1) + (24 - 11\mu)\mu))),$$
$$p_{11} = -3\beta^4(16\mu^2(1 + (e - \mu)\mu)^2 + \beta^2(1 + \mu^3)^2)}$$

B Second-order differential equation in reduced form with rational coefficients and its differential Galois group

Consider the second-order linear differential equation in reduced form with rational coefficient

$$w'' = r(z)w, \quad r(z) \in \mathbb{C}(z).$$ \hspace{1cm} (B.1)

A point $z = c \in \mathbb{C}$ is a singular point of this equation if it is a pole of $r(z)$. A singular point is a regular point if at this point $(z - c)^2r(z)$ is holomorphic.

Assume that c is a regular point and look for local solutions of this equation in a neighbourhood of this point. For simplicity, assume that $c = 0$. Look for a solution of the following form (see e.g. [6]),

$$w = z^af(z), \quad f(z) = 1 + \sum_{i=1}^{\infty} f_iz^i,$$ \hspace{1cm} (B.2)

12
where α, f_i for $i \in \mathbb{N}$ are constants to be determined. Substituting in (B.1) yields
\[z^{n-2} \left[\alpha(a - 1) + \sum_{i=1}^{\infty} (\alpha + i)(\alpha + i - 1)f_iz^i \right] - r(z)z^\alpha \left(1 + \sum_{i=1}^{\infty} f_iz^i \right) = 0. \] (B.3)

Multiplying by z^2, apply Taylor’s formula for the analytic function $z^2r(z)$
\[z^2r(z) = r_0 + \sum_{i=1}^{\infty} r_iz^i, \] (B.4)
and equating to zero the coefficients of successive powers of t, obtain the sequence of equations determining unknown coefficients in series (B.2). The first of these equations, called the indicial equation and determining α, has the following form.
\[\alpha(a - 1) - r_0 = 0. \] (B.5)

From the remaining equations f_i is evaluated.
\[f_1 = \frac{r_1}{2\alpha}, \quad f_i = \frac{1}{i(i + 2\alpha - 1)} \left(\sum_{j=1}^{i-1} r_jf_{i-j} + r_i \right), \quad \text{for} \quad i \geq 2. \] (B.6)

Let α_1 and α_2 be the roots of the indicial equation. If the difference $s = \alpha_1 - \alpha_2$ is not an integer, then equation (B.1) has two local solutions of the form
\[w_1 = z^{\alpha_1} \left(1 + \sum_{i=1}^{\infty} f_iz^i \right), \quad w_2 = z^{\alpha_2} \left(1 + \sum_{i=1}^{\infty} f_iz^i \right). \] (B.7)

In the case where s is a positive integer or zero, the series w_2 may not exist or coincide with w_1, and a second independent solution must be constructed as
\[w_2(z) = w_1(z) \int \frac{dx}{w_1(x)^2} = w_1(z) \int z^{-2\alpha_1} \frac{dx}{f(x)^2} = w_1(z) \int z^{-s-1} \frac{dx}{f(x)^2}. \] (B.8)

In the last equality the relation $2\alpha_1 = s + 1$ is applied.
Denoting
\[\frac{1}{f(z)^2} = 1 + \sum_{i=1}^{\infty} g_iz^i, \] (B.9)
the second solution is written as
\[w_2(z) = w_1(z)g_s \ln z + z^{\alpha_2} \left(-\frac{1}{s} + \sum_{i=1}^{\infty} h_it^i \right), \] (B.10)
where h_i are constants.

Coefficients g_i are given by
\[g_1 = -2f_1, \quad g_2 = -2f_2 - 2f_1g_1 - f_1^2 = -2f_2 + 3f_1^2, \] (B.11)
and
\[g_i = -2f_i - \sum_{j=1}^{i-1} (2g_{i-j} + f_{i-j})f_j - \sum_{j=1}^{i-2} f_j \sum_{k=1}^{i-j-1} f_kg_{i-j-k}, \] (B.12)
for \(i \geq 3 \), while coefficients \(h_i \) are defined as follows.

\[
\begin{align*}
 h_i = \begin{cases}
 -\frac{f_i}{s} - \frac{g_1}{s - 1} & \text{for } i = 1, \\
 -\frac{f_i}{s} - \frac{g_i}{s - i} - \sum_{j=1}^{i-1} \frac{g_j}{s - j} f_{i-j} & \text{for } 1 < i < s, \\
 -\frac{f_s}{s} & \text{for } i = s, \\
 -\frac{f_{s+1}}{s} + \frac{g_{s+1}}{s} - \sum_{j=1}^{s-1} \frac{g_j}{s - j} f_{s+1-j} & \text{for } i = s + 1, \\
 -\frac{f_i}{s} + \frac{g_i}{i - s} - \sum_{j=1}^{s-1} \frac{g_j}{s - j} f_{i-j} + \sum_{j=s+1}^{i-1} \frac{g_j}{s - j} f_{i-j} & \text{for } i \geq s + 2.
 \end{cases}
\end{align*}
\]

(B.13)

The differential Galois group of equation (B.1) is a subgroup of \(SL(2, \mathbb{C}) \). Classification of these subgroups is well known. The following lemma shows that the differential Galois group determines the form of solutions (see e.g. [2,4]).

Lemma B.1. Let \(G \) be the differential Galois group of equation (3.16). Then one of four cases may occur.

Case I \(G \) is conjugate to a subgroup of the triangular group,

\[
\mathcal{T} = \left\{ \begin{bmatrix} a & b \\ 0 & a^{-1} \end{bmatrix} \ \bigg| \ a \in \mathbb{C}^{*}, \ b \in \mathbb{C} \right\} \text{ text;}
\]

in this case equation (3.16) has an exponential solution of the form \(y = P \exp \int \omega \), where \(P \in \mathbb{C}[z] \) and \(\omega \in \mathbb{C}(z) \).

Case II \(G \) is conjugate to a subgroup of

\[
\mathcal{D}^{t} = \left\{ \begin{bmatrix} c & 0 \\ 0 & c^{-1} \end{bmatrix} \ \bigg| \ c \in \mathbb{C}^{*} \right\} \cup \left\{ \begin{bmatrix} 0 & c \\ -c^{-1} & 0 \end{bmatrix} \ \bigg| \ c \in \mathbb{C}^{*} \right\} \text{ text;}
\]

in this case equation (3.16) has a solution of the form \(y = \exp \int \omega \), where \(\omega \) is algebraic over \(\mathbb{C}(z) \) of degree 2.

Case III \(G \) is primitive and finite; in this case all solutions of equation (3.16) are algebraic, thus \(y = \exp \int \omega \), where \(\omega \) belongs to an algebraic extension of \(\mathbb{C}(z) \) of degree \(n = 4, 6 \) or 12.

Case IV \(G = SL(2, \mathbb{C}) \) and equation (3.16) has no Liouvillian solution.

Kovacic [2] formulates the necessary conditions for the respective cases from Lemma B.1 to hold.

Write \(r(z) \in \mathbb{C}(z) \) in the form

\[
r(z) = \frac{s(z)}{t(z)}, \quad s(z), t(z) \in \mathbb{C}[z],
\]

where \(s(z) \) and \(t(z) \) are relatively prime polynomials and \(t(z) \) is monic. The roots of \(t(z) \) are poles of \(r(z) \). Denote \(\Sigma' := \{ c \in \mathbb{C} \mid t(c) = 0 \} \) and \(\Sigma := \Sigma' \cup \{ \infty \} \). The order \(\text{ord}(c) \) of \(c \in \Sigma' \) is equal to the multiplicity of \(c \) as a root of \(t(z) \), the order of infinity is defined by \(\text{ord}(\infty) := \deg t - \deg s \).
Lemma B.2. The necessary conditions for the respective cases in Lemma B.1 are the following.

Case I. Every pole of r must have even order or else have order 1. The order of r at ∞ must be even or else be greater than 2.

Case II. r must have at least one pole that either has odd order greater than 2 or else has order 2.

Case III. The order of a pole of r cannot exceed 2 and the order of r at ∞ must be at least 2. If the partial-fraction expansion of r is

$$ r(z) = \sum_i \frac{a_i}{(z - c_i)^2} + \sum_j \frac{b_j}{z - d_j}, \quad (B.14) $$

then $\Delta_i = \sqrt{1 + 4a_i} \in \mathbb{Q}$, for each i, $\sum_j b_j = 0$ and if

$$ g = \sum_i a_i + \sum_j b_j d_j, $$

then $\sqrt{1 + 4g} \in \mathbb{Q}$.

References

[1] Thierry Combot. A note on algebraic potentials and Morales-Ramis theory. *Celestial Mechanics and Dynamical Astronomy*, 115(4):397–404, 2013.

[2] Jerald J. Kovacic. An algorithm for solving second order linear homogeneous differential equations. *J. Symbolic Comput.*, 2(1):3–43, 1986.

[3] Andrzej J. Maciejewski and Maria Przybylska. Non-integrability of ABC flow. *Phys. Lett. A*, 303(4):265–272, 2002.

[4] Juan J. Morales Ruiz. *Differential Galois theory and non-integrability of Hamiltonian systems*, volume 179 of *Progress in Mathematics*. Birkhäuser Verlag, Basel, 1999.

[5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. *Numerical Recipes in C. The art of Scientific Computing*. Cambridge University Press, New York, second edition, 1992.

[6] E. T. Whittaker and G. N. Watson. *A Course of Modern Analysis*. Cambridge University Press, London, 1935.