Spanners in randomly weighted graphs: independent edge lengths

Alan Frieze* and Wesley Pegden†
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh PA 15213

Abstract

Given a connected graph $G = (V, E)$ and a length function $\ell : E \to \mathbb{R}$ we let $d_{v,w}$ denote the shortest distance between vertex v and vertex w. A t-spanner is a subset $E' \subseteq E$ such that if $d'_{v,w}$ denotes shortest distances in the subgraph $G' = (V, E')$ then $d'_{v,w} \leq td_{v,w}$ for all $v, w \in V$. We show that for a large class of graphs with suitable degree and expansion properties with independent exponential mean one edge lengths, there is w.h.p. a 1-spanner that uses $\approx \frac{1}{2} n \log n$ edges and that this is best possible. In particular, our result applies to the random graphs $G_{n,p}$ for $np \gg \log n$.

1 Introduction

Given a connected graph $G = (V, E)$ and a length function $\ell : E \to \mathbb{R}$ we let $d_{v,w}$ denote the shortest distance between vertex v and vertex w. A t-spanner is a subset $E' \subseteq E$ such that if $d'_{v,w}$ denotes shortest distances in the subgraph $G' = (V, E')$ then $d'_{v,w} \leq td_{v,w}$ for all $v, w \in V$. In general, the closer t is to one, the larger we need E' to be relative to E. Spanners have theoretical and practical applications in various network design problems. For a recent survey on this topic see Ahmed et al [1]. Work in this area has in the main been restricted to the analysis of the worst-case properties of spanners. In this note, we assume that edge lengths are random variables and do a probabilistic analysis.

Suppose that $G = ([n], E)$ is almost regular in that

\[(1 - \theta)dn \leq \delta(G) \leq \Delta(G) \leq (1 + \theta)dn\]

where $1 \geq d \gg \frac{\log \log n}{\log^{1/2} n}$ and $\theta = \frac{1}{\log^{1/2} n}$. Here δ, Δ refer to minimum and maximum degree respectively.

We will also assume either that $d > 1/2$ or

\[|E(S, T)| \geq \psi |S| |T|\]

for all $|S|, |T| \geq \theta n$.

(2)

Here $\psi = \frac{\omega \log \log n}{\log^{1/2} n} \leq d$ where $\omega = \omega(n) \to \infty$ as $n \to \infty$ and $E(S, T)$ denotes the set of edges of G with one end in $S \subseteq [n]$ and the other end in $T \subseteq [n]$, $S \cap T = \emptyset$.

Let $\mathcal{G}(d)$ denote the set of graphs satisfying the stated conditions, (1) and (2). We observe that $K_n \in \mathcal{G}(1)$ and that w.h.p. $G_{n,p} \in \mathcal{G}(p)$, as long as $np \gg \log n$. The weighted perturbed model of Frieze [5] where randomly weighted edges are added to a randomly weighted dn-regular graph also lies in $\mathcal{G}(d).

*Research supported in part by NSF grant DMS1952285
†Research supported in part by NSF grant DMS1363136
Suppose that the edges \(\{i, j\} \) of \(G \) are given independent lengths \(\ell_{i,j}, 1 \leq i < j \leq n \) that are distributed as the exponential mean one random variable, denoted by \(E(1) \). In general we let \(E(\lambda) \) denote the exponential random variable with mean \(1/\lambda \).

When \(G = K_n \), Janson \[9\] proved the following: W.h.p. and in expectation

\[
d_{1,2} \approx \frac{\log n}{n}; \quad \max_{j>1} d_{1,j} \approx \frac{2 \log n}{n}; \quad \max_{i,j} d_{i,j} \approx \frac{3 \log n}{n}. \tag{3}
\]

Here (i) \(A_n \approx B_n \) if \(A_n = (1 + o(1))B_n \) and (ii) \(A_n \gg B_n \) if \(A_n/B_n \to \infty \), as \(n \to \infty \).

It follows that w.h.p. the length of the longest edge in any shortest path is at most \(L = (3 + o(1)) \log n \). It follows further that w.h.p. if we let \(E' \) denote the set of edges of length at most \(L \) then this is a 1-spanner of size \(O(n \log n) \).

We tighten this and extend it to graphs in the class \(G(d) \).

Theorem 1. Let \(G \in G(d) \) or let \(G \) be a \(dn \)-regular graph with \(d > 1/2 \) where the lengths of edges are independent exponential mean one. The following holds w.h.p.

(a) The minimum size of a 1-spanner is asymptotically equal to \(\frac{1}{2} n \log n \).

(b) If \(2 \leq \lambda = O(1) \) then a \(\lambda \)-spanner requires at least \(n \log n \) edges.

A companion paper deals with \((1 + \varepsilon)\)-spanners in embeddings of \(G_{n,p} \) in \([0, 1]^2\) as studied by Frieze and Pegden \[7\]. Here we choose \(n \) random points \(X = \{X_1, X_2, \ldots, X_n\} \) in \([0, 1]^2\) and connect a pair \(X_i, X_j \) with probability \(p \) by an edge of length \(|X_i - X_j| \).

2 Proof of Theorem 1

The proof of Theorem 1 uses a few parameters. We will list some of them here for easy reference:

\[
\theta = \frac{1}{\log^{1/2} n}; \quad k_0 = \log n; \quad k_1 = \theta n; \quad \alpha = 1 - 2\theta.
\]

\[
\ell_0 = \frac{(1 + \sqrt{\theta}) \log n}{dn}; \quad \ell_1 = \frac{5 \log n}{dn}; \quad \ell_2 = \ell_0 - \frac{(\log \log n)^2}{dn}; \quad \ell_3 = \frac{\log n}{200\lambda dn}.
\]

We also use the Chernoff bounds for the binomial \(B(n, p) \): for \(0 \leq \varepsilon \leq 1 \),

\[
P(B(n, p) \leq (1 - \varepsilon)np) \leq e^{-\varepsilon^2 np/2},
\]

\[
P(B(n, p) \geq (1 + \varepsilon)np) \leq e^{-\varepsilon^2 np/3},
\]

\[
P(B(n, p) \geq \alpha np) \leq \left(\frac{e}{\alpha} \right)^{\alpha np}.
\]

It will only be in Section 2.2 that we will need to use condition [2].

2.1 Lower bound for part (a)

We identify sets \(X_v \) (defined below) of size \(\approx \log n \) such that w.h.p. a 1-spanner must contain \(X_v \) for \(n - o(n) \) vertices \(v \). The sets \(X_v \) are the edges from \(v \) to its nearest neighbors. If an edge \(\{v, x\} \) is missing from a set \(S \subseteq E(K_n) \) then a path from \(v \) to \(x \) must go to a neighbor \(y \) of \(v \) and then traverse \(K_n - v \) to reach \(x \). Such a path is likely to have length at least the distance promised by \(\[3\] \), scaled by \(d^{-1} \).

We first prove the following:
Lemma 2. Fix \(v, w_1, w_2, \ldots, w_\ell \) for \(\ell = O(\log n) \) and let \(\alpha = 1 - 2\theta \). Then,

\[
\Pr\left(\exists 1 \leq i \leq \ell : d_{v, w_i} \leq \frac{\alpha \log n}{dn} \right) = o(1).
\]

Proof. There are at most \(((1 + \theta)dn)^{k-1} \) paths using \(k \) edges that go from vertex \(v \) to vertex \(w_i, 1 \leq i \leq \ell \). The random variable \(E(1) \) dominates the uniform \([0, 1]\) random variable \(U_1 \). We write this as \(E(1) \succ U_1 \). As such we can couple each edge weight with a lower bound given by a copy of \(U_1 \). The length of one of these \(k \)-edge paths is then at least the sum of \(k \) independent copies of \(U_1 \). The fraction \(x^k/k! \) is an upper bound on the probability that this sum is at most \(x \) (tight if \(x \leq 1 \)). Therefore,

\[
\Pr\left(\exists 1 \leq i \leq \ell : d_{v, w_i} \leq \frac{\alpha \log n}{dn} \right) \leq \ell \sum_{k=1}^{n-1} \left((1 + \theta)dn \right)^{\frac{k-1}{k}} \leq \frac{\ell}{dn} \sum_{k=1}^{10\log n} \left(\frac{e^{1+\theta} \alpha \log n}{k} \right)^k + O(n^{-10}) \leq \frac{10\ell \log n}{dn^{1-\alpha e^\sigma}} + o(1) = o(1).
\]

For a vertex \(v \in [n] \), let

\[
A_v = \left\{ w \neq v : \ell_{v, w} \leq \frac{\log n}{dn} \right\}.
\]

Lemma 3. W.h.p. \(|A_v| \leq 4 \log n \) for all \(v \in [n] \).

Proof. We have, from the Chernoff bounds and \(E(1) \succ U_1 \) that

\[
\Pr(|A_v| \geq 4 \log n) \leq \Pr\left(\text{Bin} \left((1 + \theta)dn, \frac{\log n}{dn} \right) \geq 4 \log n \right) \leq \left(\frac{e(1 + \theta)}{4} \right)^{4\log n} = o(n^{-1}).
\]

The lemma follows from the union bound, after multiplying the RHS of (5) by \(n \).

For \(v \in [n] \), let \(\delta_v \) be the distance from \(v \) to its nearest neighbor. Let

\[
B = \left\{ v : \delta_v \geq \frac{\log^{1/2} n}{dn} \right\}.
\]

Lemma 4. \(|B| \leq ne^{-\log^{1/3} n} \) w.h.p.

Proof. We have

\[
\mathbb{E}(|B|) \leq n \left(\exp \left\{ - \frac{\log^{1/2} n}{dn} \right\} \right)^{(1-\theta)dn} = ne^{-(1-\theta)\log^{1/2} n}.
\]

The lemma follows from the Markov inequality.

Let

\[
X_v = \left\{ e = \{v, x\} : \ell(e) \leq \delta_v + \frac{\alpha \log n}{dn} \right\}.
\]
Lemma 5. Let \(S \subseteq E(K_n) \) define a 1-spanner. Then w.h.p. \(S \supseteq X_v \) for all but \(o(n) \) vertices \(v \).

Proof. Let \(G_S = ([n], S) \) and suppose that \(v \notin B \). Then

\[
\delta_v + \frac{\alpha \log n}{dn} < \frac{\log^{1/2} n}{dn} + \frac{\alpha \log n}{dn} < \frac{\log n}{dn}
\]

(6)

and so \(X_v \subseteq \{v\} \times A_v \) and in particular \(|X_v| \leq 4 \log n \) w.h.p. by Lemma 3.

If \(G_S \) does not contain an edge \(e = \{v, x\} \in X_v \), then the \(G_S \)-distance from \(v \) to \(x \) is then w.h.p. at least

\[
\delta_v + \frac{\alpha \log n}{dn} > d_{v,x}.
\]

(7)

To obtain (7) we have used Lemma 2 applied to \(K_n - v \) with \(x \) replacing \(v \) and \(w_1, w_2, \ldots, w_{\ell} \) being the remaining neighbors of \(v \) in \(K_n \).

So, if

\[
C = \{v \notin B : \exists 1\text{-spanner } S \supseteq X_v\},
\]

then \(\mathbb{E}(|C|) = o(n) \).

Any 1-spanner must contain \(X_v, v \in [n] \setminus (B \cup C) \) and the lemma follows from the Markov inequality.

Now \(|X_v| \) dominates \(Bin \left((1 - \theta)dn, 1 - \exp \left\{-\frac{\alpha \log n}{dn}\right\}\right) \) and so by the Chernoff bounds

\[
\mathbb{P} \left(|X_v| \leq (1 - \varepsilon)\alpha \log n + O \left(\frac{\log^2 n}{n}\right)\right) \leq e^{-\varepsilon^2 \alpha \log n/(2 + o(1))} = o(1) \text{ for } \varepsilon = \log^{-1/3} n.
\]

Applying Lemma 5 we see that w.h.p. a 1-spanner contains at least \(\frac{1 - o(1)}{2} \log n \) edges. The factor 2 comes from the fact that \(\{v, w\} \) can be in \(X_v \cap X_w \). (In this case the edge \(\{v, w\} \) contributes twice to the sum of the \(|A_v| \)’s.) Note that we do not need (2) to prove the lower bound.

2.2 Upper bound for part (a)

Let \(\ell_0 = \frac{(1 + \sqrt{\theta}) \log n}{dn} \) and \(\ell_1 = \frac{5 \log n}{dn} \) and \(E_0 = \{e : \ell(e) \leq \ell_0\} \). Now \(|E(G)| \in (1 \pm \theta)dn^2/2 \) and so the Chernoff bounds imply that w.h.p. \(|E_0| \approx \frac{1}{2} n \log n \) and our task is to show that adding \(o(n \log n) \) edges to \(E_0 \) gives us a 1-spanner w.h.p. We will do this by showing that w.h.p. there are only \(o(n \log n) \) edges \(e \) with \(\ell(e) > \ell_0 \) that are the shortest path between their endpoints. Adding these \(o(n \log n) \) edges to \(E_0 \) creates a 1-spanner, since every edge on a shortest path in a graph is itself a shortest path between its endpoints.

Janson [9] analysed the performance of Dijkstra’s algorithm on the complete graph \(K_n \) with exponential edge-weights; we will adapt his argument to our setting on a graph \(G \) satisfying conditions (1) and (2).

In particular, we analyze Dijkstra’s algorithm for shortest paths from vertex 1 where edges have exponential weights. Recall that after \(i \) steps of the algorithm we have a tree \(T_i \) and a set of values \(d_v, v \in [n] \) such that for \(u \in T_i \), \(d_u \) is the length of the shortest path from 1 to \(u \). For \(v \notin T_i \), \(d_v \) is the length of the shortest path from 1 to \(v \) that follows a path from 1 to \(u \in T_i \) and then uses the edge \(\{u, v\} \). Let \(\delta_i = \max \{v \in T_i : d_v\} \).

The constraints on the length \(l(u, v) \) of the edge \(\{u, v\} \) for \(u \in T_i, v \notin T_i \) are that \(d_u + l(u, v) \geq \delta_i \) or equivalently that \(l(u, v) \geq \delta_i - d_u \). Fixing \(T_i \) and the lengths of edges within \(T_i \) or its complement, every set of lengths \(\{l(u, v)\}_{u \in T_i, v \notin T_i} \) satisfying these constraints would give the same history of the algorithm to this point.

Due to the memoryless property of the exponential distribution we then have that \(l(u, v) = \delta_i - d_u + E_{u,v} \) where \(E_{u,v} \) is a mean-1 exponential, independent of all other \(E(u', v') \).

Thus the Dijkstra algorithm is equivalent in distribution to the following discrete-time process:
• Set \(v_1 = 1, T_1 = \{1\} \).

• Having defined \(T_i \), associate a mean-1 exponential \(E_{u,v} \) to each edge \(\{u,v\} \in E(T_i, \bar{T}_i) \) that is independent of the process to this point. Define \(e_{i+1} \) to be the edge \(\{u,v\} \in E(T_i, \bar{T}_i) \) minimizing \(\delta_i + E_{u,v} \), and define \(v_{i+1} \) to be the vertex for which \(e_{i+1} = \{v_j, v_{i+1}\} \) for some \(v_j \in T_i \). Finally define \(d_{v_{i+1}} \) by \(\delta_i + E_{v_j, v_{i+1}} \).

Finally, note that, as the minimum of \(r \) rate-1 exponentials is an exponential of rate \(r \), this is equivalent in distribution to the following process:

• Set \(v_1 = 1, T_1 = \{1\} \).

• Having defined \(v_i, T_i \), define a vertex \(v_{i+1} \) by choosing an edge \(e_{i+1} = \{v_j, v_{i+1}\} (j \leq i) \) uniformly at random from \(E(T_i, \bar{T}_i) \), set \(T_{i+1} = T_i \cup \{v_{i+1}\} \), and define \(d_{1, v_{i+1}} = d_{1, v_i} + E_i \gamma_i \) where \(E_i \gamma_i \) is an (independent) exponential random variable of rate \(\gamma_i = E(T_i, \bar{T}_i) \).

It follows that

\[
\mathbb{E}(d_{1,m}) = S_m := \sum_{i=1}^{m-1} \mathbb{E} \left(\frac{1}{\gamma_i} \right) \quad \text{and} \quad \mathbb{V}ar(d_{1,m}) = \sum_{i=1}^{m-1} \mathbb{E} \left(\frac{1}{\gamma_i^2} \right).
\]

Observe that we have

\[
(1 - \theta)i(dn - i) \leq \gamma_i \leq (1 + \theta)i(dn) \quad \text{w.h.p.}
\]

and so for \(1 \leq i \leq \theta n \) we have

\[
\gamma_i = idn(1 + \zeta_i) \quad \text{where} \quad |\zeta_i| = O(\theta) \quad \text{w.h.p.}
\]

Also, we have

\[
\gamma_i = (n - i)dn(1 + \zeta_i) \quad \text{where} \quad |\zeta_i| = O(\theta) \quad \text{w.h.p.}
\]

for \(n - \theta n \leq i \leq n \).

It follows that

\[
S_{\theta n} = (1 + O(\theta)) \sum_{i=1}^{\theta n} \frac{1}{dn i} = \frac{\log n}{dn} + O \left(\frac{\log^{1/2} n}{n} \right) \quad \text{w.h.p.} \quad (8)
\]

Lemma 6. W.h.p. \(\max_{i,j} d_{i,j} \leq \ell_1 = \frac{5\log n}{dn} \).

Proof. Following [9], let \(k_1 = \theta n \) and \(Y_i = E_i^{\gamma_i}, 1 \leq i < n \) so that \(Z_1 = d_{1,k_1} = Y_1 + Y_2 + \cdots + Y_{k_1} \). For \(t < 1 - \frac{1 + o(1)}{dn} \) we have implies that w.h.p. for \(m = k_1 - 1 \),

\[
\mathbb{E}(e^{tdnZ_1}) = \mathbb{E} \left(\prod_{i=1}^{m} e^{tdnY_i} \right) = \sum_{x} \mathbb{E} \left(\prod_{i=1}^{m} e^{tdnY_i} \mid \gamma_m = x \right) \mathbb{P}(\gamma_m = x) = \mathbb{E} \left(\prod_{i=1}^{m-1} e^{tdnY_i} \right) \sum_{x} \mathbb{E}(e^{tdY_m} \mid \gamma_m = x) \mathbb{P}(\gamma_m = x) = \mathbb{E} \left(\prod_{i=1}^{m-1} e^{tdnY_i} \right) \sum_{x} \frac{x}{x - tdn} \mathbb{P}(\gamma_m = x) = \mathbb{E} \left(\prod_{i=1}^{m-1} e^{tdnY_i} \right) \left(1 - \frac{(1 + o(1))t}{i} \right)^{-1}.
\]

Here the term in (9) stems from the fact that given \(\gamma_m, Y_m \) is independent of \(Y_1, Y_2, \ldots, Y_{m-1} \).

Then for any \(\beta > 0 \) we have
\[P \left(Z_1 \geq \frac{\beta \log n}{dn} \right) \leq E(e^{t dn Z_1 - t \beta \log n}) \leq e^{-t \beta \log n} \prod_{i=1}^{k_1-1} \left(1 - \frac{(1 + o(1))t}{i} \right)^{-1} = e^{-t \beta \log n} \exp \left\{ \sum_{i=1}^{k_1-1} \left(\frac{(1 + o(1))t}{i} + O \left(\frac{1}{i^2} \right) \right) \right\} = \exp \{ (1 + o(1) - \beta) t \log n \}. \]

It follows, on taking \(\beta = 2 + o(1) \) that w.h.p.

\[d_{j,k_1} \leq \frac{(2 + o(1)) \log n}{dn} \text{ for all } j \in [n]. \]

Letting \(\hat{T}_{k_1} \) be the set corresponding to \(T_{k_1} \) when we execute Dijkstra’s algorithm starting at vertex 2. First consider the case where \(d \leq 1/2 \) and (2) holds. Then, using (2), we have that either \(T_{k_1} \cap \hat{T}_{k_1} \neq \emptyset \) or,

\[P \left(\exists e \in T_{k_1} : \hat{T}_{k_1} : X(e) \leq \frac{1}{n} \right) \leq \exp \left\{ -\frac{\psi \theta^2 n^2}{n} \right\} = o(n^{-2}) \] (10)

This shows that we fail to find a path of length \(\leq \frac{(4 + o(1)) \log n}{dn} + \frac{1}{n} \) between a fixed pair of vertices with probability \(o(n^2) \). In particular, taking a union bound over all pairs of vertices, we obtain that w.h.p.

\[\max_{i,j} d_{i,j} \leq \left(\frac{4 + o(1)}{dn} \right) \log n + \frac{1}{n}. \]

If \(G \) has \(\delta(G) \geq (1 - \tau)dn \) with \(d = 1/2 + \varepsilon, \varepsilon > 0 \) constant, then any pair of vertices has at least \((2\varepsilon - 2\theta)n \) common neighbors. We pair up the vertices of \(T_{k_1}, \hat{T}_{k_1} \) and bound the probability that we cannot find a path of length 2 whose endpoints consist of one of our pairs, and which uses only edges of length at most \(\frac{\log n}{n \log n} \), as

\[\left(e^{-\left(\frac{\log n}{n \log n} \right)^2} \right)^{-\theta n(2\varepsilon n - 2\theta n)} = o(n^{-2}). \]

Again we are done by a union bound over possible pairs.

We now consider the probability that a fixed edge \(e \) satisfies that \(\ell(e) > \ell_0 \) and that \(e \) is a shortest path from 1 to \(n \).

Lemma 7. Let \(E(e) \) denote the event that \(\ell(e) > \ell_0 \) and \(e \) is a shortest path from 1 to \(n \).

\[P \left(E \left| \max_{j} d_{1,j} \leq \ell_1 \right. \right) = o \left(\frac{\log n}{n} \right). \]

Proof. Without loss of generality we write \(e = \{1, n\} \). If \(E = E(e) \) occurs then we have the occurrence of the event \(F \) where

\[F = \{ d_{1,m} + \ell(f_m) \geq \ell(e), m = 2, 3, \ldots, n - 1 \} \]

and \(f_m \) denotes the edge joining vertex \(n \) to the vertex whose shortest distance from vertex 1 (in \(G \setminus \{n\} \)) is the \(m \)th smallest. (If the edge does not exist then \(\ell(f_m) = \infty \) in the calculation below.) Indeed this follows from Dijkstra’s algorithm; the event \(F \) indicates that at every step of the algorithm, no path shorter than the edge \(\{1, n\} \) is found.

Let \(n_0 = n(1 - d/2) \). We need \(\ell(f_m) + d_m \geq \xi = \ell(e) \) for all \(m \) in order that \(F \) occurs. If \(d_{1,n_0} = x \) then this is implied by \(\bigcap_{m=1}^{n_0} \{ \ell(f_m) \geq \xi - x \} \). Using the independence of the \(\ell(f_m) \) and \(d_{1,i}, i = 2, \ldots, n_0 \), we bound

\[P(F \mid \max_{i,j} d_{1,j} \leq \ell_1) \leq \frac{1}{P(\max_{j} d_{1,j} \leq \ell_1)} \int_{\xi = \ell_0}^{\ell_1} e^{-\xi} \int_{x = 0}^{\infty} P \left(\bigcap_{m=1}^{n_0} \{ \ell(f_m) \geq \xi - x \} \right) dP \{ d_{1,n_0} = x \} d\xi \] (11)

and using the fact that there are at least \(dn/2 - 1 \) indices \(m \) for which \(\ell(f_m) < \infty \) we bound
Lemma 8. Together with Lemma 6, Lemma 7 implies that w.h.p. the number of edges e for which $\mathcal{E}(e)$ occurs is $o(n \log n)$. Adding these to E_0 gives us a 1-spanner of size $\approx \frac{1}{2}n \log n$.

2.3 Lower bound for part (b)

Lemma 8. Fix a set A such that $|A| \leq a_0 = O(\log n)$. Let \mathcal{P} be the event that there exists a path P of length at most $\ell_4 = \frac{\log n}{200d^2 n}$ joining two distinct vertices of A. Then $\mathbb{P}(\mathcal{P}) = O(n^{o(1)-199/200})$.
There are a number of related questions one can tackle:

Lemma 9. Let B_1 denote the set of vertices whose incident edges of length smaller than $\ell_3 = \ell_4/\lambda$ do not number in the range $I = [\frac{\log n}{300d\lambda}, \frac{\log n}{100d\lambda}]$. Then, w.h.p. $|B_1| \leq n^{1-1/5000\lambda}$. (Recall that we are bounding the size of a λ-spanner from below.)

Proof. The Chernoff bounds imply that

$$
\mathbb{P}(v \in B_1) \leq \mathbb{P}\left(Bin\left((1 + \theta)dn, 1 - \exp\left\{-\frac{\log n}{200\lambda dn}\right\}\right) \notin I \right) = \\
\mathbb{P}\left(Bin\left((1 + \theta)dn, \frac{\log n}{200\lambda dn} + O\left(\frac{\log^2 n}{n^2}\right)\right) \notin I \right) \leq 2 \exp\left\{-\frac{(1 + o(1)) \log n}{2 \times 9 \times 200\lambda}\right\} \leq n^{-1/4000\lambda}.
$$

The result follows from the Markov inequality.

Lemma 10. Let B_2 denote the set of vertices v for which $|\{w : \ell_{v,w} \leq \ell_4\}| \geq \log n$. Then $B_2 = \emptyset$ w.h.p.

Proof. The Chernoff bounds imply that

$$
\mathbb{P}(B_2 \neq \emptyset) \leq n \mathbb{P}\left(Bin\left((1 + \theta)dn, 1 - \exp\left\{-\frac{\log n}{200dn}\right\}\right) \geq \log n\right) = o(1).
$$

Let B_3 denote the set of vertices v for which there is a path of length at most ℓ_4 joining neighbors w_1, w_2 such that $\ell_{v,w_i} \leq \ell_3, i = 1, 2$. Lemma 8 with A equal to the set of neighbors w of vertex v such that $\ell_{v,w} \leq \ell_3$ shows that $|B_3| = o(n)$ w.h.p. (The fact that we can take $|A| = O(\log n)$ follows from Lemma 3) Lemmas 9 and 10 then imply that if $v \notin B_1 \cup B_3$ then a λ-spanner has to include the at least $\log n/(300d\lambda)$ edges incident to v that are of length at most ℓ_3. This completes the proof of part (b) of Theorem 1.

3 Summary and open questions

We have determined the asymptotic size of the smallest 1-spanner when the edges of a dense (asymptotically) regular graph G are given independent lengths distributed as E_2, modulo the truth of (2) or the degree being $dn, d > 1/2$.

There are a number of related questions one can tackle:

1. We could replace edge lengths by E_2^s where $s < 1$. This would allow us to generalise edge lengths to distributions with a density f for which $f(x) \approx x^{1/s}$ as $x \to 0$. This is a more difficult case than $s = 1$ and it was considered by Bahmidi and van der Hofstad [3]. They prove that w.h.p. $d_{1,2}$ grows like $\frac{n^s}{\Gamma(1+1/s)}$, where Γ denotes Euler’s Gamma function. The analysis is more complex than that of [9] and it is not clear that our proof ideas can be generalised to handle this situation.

2. The results of Theorem 1 apply to $G_{n,p}$. It would be of some interest to consider other models of random or quasi-random graphs.
References

[1] R. Ahmed, G. Bodwin, F. Sahneh, K. Hamm, M. Javad, S. Kobourov and R. Spence, Graph Spanners: A Tutorial Review.

[2] N. Alon and J. Spencer, The Probabilistic Method, Third Edition, Wiley and Sons, 2008

[3] S. Bahmidi and R. van der Hofstadt, Weak disorder asymptotics in the stochastic mean-field model of distance, Annals of Applied Probability 22 (2012) 29-69.

[4] E. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik 1 (1959) 269-271.

[5] A.M. Frieze, The effect of adding randomly weighted edges.

[6] A.M. Frieze and M. Karoński, Introduction to Random Graphs, Cambridge University Press, 2015.

[7] A.M. Frieze and W. Pegden, Travelling in randomly embedded random graphs, Random Structures and Algorithms 55 (2019) 649-676

[8] A.M. Frieze and T. Tkocz, Shortest paths with a cost constraint: a probabilistic analysis.

[9] S. Janson, One, two and three times log n/n for paths in a complete graph with random weights, Combinatorics, Probability and Computing 8 (1999) 347-361.

[10] A. Mehrabian and N. Wormald, On the Stretch Factor of Randomly Embedded Random Graphs, Discrete & Computational Geometry 49 (2013) 647-658.

[11] G. Narasimhan and Smid, Geometric Spanner Networks, Cambridge University Press, 2007.

[12] M. Penrose, Random Geometric Graphs, Oxford University Press, 2003.

[13] M. Talagrand, Concentration of measures and isoperimetric inequalities in product spaces, Publications Mathematiques de l'I.H.E.S. 81 (1996) 73-205.