Regularities of vector–meson electroproduction: transitory effects or early asymptotics?

S. M. Troshin, N. E. Tyurin

Institute for High Energy Physics,
Protvino, Moscow Region, 142281, Russia

Abstract

We discuss recent HERA results on vector–meson electroproduction $p \to V p$ and demonstrate that universality of the initial and final state interactions responsible for the transition between the on– and off–mass shell states allows to explain energy independence of the ratio of exclusive electroproduction cross section to the total cross section. We also predict explicit mass dependence of this ratio for other vector mesons.
Introduction

Besides the studies of the structure function F_2 in DIS at low x the important measurements of the cross–sections of elastic vector meson production were performed in the experiments H1 and ZEUS at HERA [1, 2].

As it follows from this data the integral cross section of the elastic vector meson production $\Sigma p (W^2; Q^2)$ increases with energy in a way similar to the $\Sigma p (W^2; Q^2)$ dependence on W^2 [3]. It appeared also that the growth of the vector–meson electroproduction cross–section with energy is steeper for heavier vector mesons. Similar effect takes also place when the virtuality Q^2 increases.

The most recent data of ZEUS Collaboration evidently demonstrated an energy independence of the ratio of the cross section of exclusive electroproduction to the total cross section [4]. Such behaviour of this ratio is at variance with perturbative QCD results [5], Regge and dipole approaches [4, 6]. Recent review of the related problems and successes of the various theoretical approaches can be found in [7].

Of course, the energy range of the available data is limited and the above mentioned contradiction could probably be avoided due to fine tuning of the appropriate models. But this is merely a general statement and it needs to be checked in each particular case. Meanwhile, it would be interesting to pay an attention to a model where such an energy independence is an inherent one. To be more specific this energy independence was obtained in the approach based on the off–shell extension of the s–channel unitarity [8]. It is worth to note also that the approach developed in [8] and its application to the elastic vector meson production processes $p ! V p$ leads to mass dependence of the corresponding cross–sections which is in a good agreement with the experiment [9] and it allows us to make predictions for the explicit mass dependence of the ratio $r_V = \Sigma p (W^2; Q^2)/\Sigma p (W^2; Q^2)$.

Vector–meson electroproduction

There is no universal, generally accepted method to obey unitarity of the scattering matrix. However, long time ago arguments based on analytical properties of the scattering amplitude were put forward [10] in favor of the rational form of unitarization. Unitarity relations can be written for both real and virtual external particles scattering amplitudes. However, implications of unitarity are different for the scattering of real and virtual particles. The extension of the U–matrix unitarization scheme (rational form of unitarization) for the off–shell scattering was considered in [8]. It was supposed as usual that the virtual photon fluctuates into a quark–antiquark pair $q\bar{q}$ and this pair can be treated as an effective virtual vector meson state. There were considered limitations the unitarity provides for the
p–total cross-sections and geometrical effects in the energy dependence of \(\sigma_{tp}\).

It was shown that the solution of the extended unitarity equations augmented by an assumption of the \(Q^2\)-dependent constituent quark interaction radius results in the following dependence at high energies:

\[
\sigma_{tp} \propto (W^2) \cdot (Q^2)^r.
\]

(1)

where \((Q^2)\) is saturated at large values of \(Q^2\) and reaches unity. However, off-shell unitarity does not require transformation of this power-like dependence into a logarithmic one at asymptotical energies. Thus, power–like behaviour of the cross–sections with exponent dependent on virtuality could be of an asymptotical nature and have a physical ground. It should not be regarded merely as a transitory behaviour or a convenient way to represent the data.

The extended unitarity for the off–mass–shell amplitudes \(F\) and \(F^\prime\) has a structure similar to the equation for the on–shell amplitude \(F\) but in the former case it relates the different amplitudes \(F_{1}\). The important point in the solution of the extended unitarity is the factorization in the impact parameter representation at the level of the input dynamical quantity — \(U\)–matrix:

\[
U(s; b; Q^2)U(s; b) = \left[U(s; b; Q^2) \right]^2 = 0.
\]

(2)

Eq. (2) reflects universality of the initial and final state interactions when transition between on– and off–mass shell states occurs. Despite that such factorization does not survive at the level of the amplitudes \(F\) \((s; t; Q^2)\), \(F^\prime\) \((s; t; Q^2)\) and \(F\) \((s; t)\) (i.e. after unitarity equations are solved and Fourier-Bessel transform is performed), it is essential for the energy independence of the ratio of the exclusive electroproduction cross section to the total cross section.

The above result (1) is valid when the interaction radius of the virtual constituent quark is rising with virtuality \(Q^2\). The dependence of the interaction radius

\[
r_Q = (Q^2)^r = m_Q.
\]

(3)

on \(Q^2\) comes through the dependence of the factor \((Q^2)\) (in the on-shell limit \((Q^2) = m_Q\)). The origin of the rising interaction radius of the virtual constituent quark with virtuality \(Q^2\) might be of a dynamical nature and it would steam from the emission of the additional \(q\bar{q}\)-pairs in the nonperturbative structure of a constituent quark. Available experimental data are consistent with the \(\ln Q^2\)–dependence of the radius [8]:

\[
(Q^2) = a \ln(1 + \frac{Q^2}{Q_0^2})
\]
The introduction of the Q^2 dependent interaction radius of a constituent quark, which in this approach consists of a current quark surrounded by the cloud of quark–antiquark pairs of different flavors [11], is the main issue of the off–shell extension of the model, which provides at large values of W^2

$$
\frac{\text{tot}_{p} (W^2; Q^2)}{G (Q^2)} \left(\frac{W^2}{m^2_Q} \right) \ln \frac{W^2}{m^2_Q};
$$

(4)

where

$$
Q^2 = \frac{Q^2}{\langle Q^2 \rangle};
$$

(5)

The value of parameter $\langle Q^2 \rangle$ in the model is determined by the slope of the differential cross–section of elastic scattering at large t region [12] and it follows from the pp–experimental data that $\langle Q^2 \rangle = 2$.

Inclusion of heavy vector meson production into this scheme is straightforward: the virtual photon fluctuates before the interaction with proton into the heavy quark–antiquark pair which constitutes the virtual heavy vector meson state. After interaction with a proton this state turns out into a real heavy vector meson.

Integral exclusive (elastic) cross–section of vector meson production in the process $pp \rightarrow Vp$ when the vector meson in the final state contains not necessarily light quarks can be calculated directly:

$$
\frac{\text{tot}_{p} (W^2; Q^2)}{G (Q^2)} \left(\frac{W^2}{m^2_Q} \right) \ln \frac{W^2}{m^2_Q};
$$

(6)

where

$$
\langle Q^2 \rangle = \frac{Q^2}{\langle m_Q \rangle};
$$

(7)

In Eq. (7) m_Q denotes the mass of the constituent quarks from the vector meson and $\langle m_Q \rangle$ is the mean constituent quark mass of the vector meson and proton system. Of course, for the on–shell scattering ($Q^2 = 0$) we have a standard Froissart–like asymptotic energy dependence.

It is evident from Eqs. (4) and (6) that $\langle Q^2 \rangle = \langle Q^2 \rangle$ for the light vector mesons, i.e. the ratio

$$
\frac{\text{tot}_{p} (W^2; Q^2)}{G (Q^2)} \left(\frac{W^2}{m^2_Q} \right) \ln \frac{W^2}{m^2_Q};
$$

(8)

does not depend on energy for $V = \text{light}$. For the case of the heavy vector meson production $J = \text{heavy}$ the respective cross–section rises about two times faster than the total cross–section; Eq. (7) results in

$$
J = \langle Q^2 \rangle \cdot 2 \cdot \langle Q^2 \rangle; \quad \langle Q^2 \rangle \cdot 2 \cdot \langle Q^2 \rangle;
$$

4
i.e.
\[
\frac{r_{V}}{r} = \frac{(Q^2)^2}{W^2}; \quad \frac{r}{(W^2)^{1/2}} = \frac{(Q^2)^2}{W}
\]

Corresponding relations for the \(\pi\)–meson production are the following

\[
\frac{r_{V}}{r} = \frac{(Q^2)^2}{W^2}; \quad \frac{r}{(W^2)^{1/2}} = \frac{(Q^2)^2}{W}
\]

In the limiting case when the vector meson is very heavy, i.e. \(m_{Q} \approx m_{Q_{1/2}}\), the relation between exponents is

\[
v(Q^2) = \frac{5}{2} (Q^2)
\]

The quantitative agreement of Eq. (6) with experiment was demonstrated in [9]. This agreement is in favor of relation (7) which provides explicit mass dependence of the exponent in the power–like energy dependence of cross–sections.

Thus, the power-like parameterization of the ratio \(r_{V}\)

\[
\frac{r_{V}}{G} = \frac{(Q^2)^2}{m_{Q} \cdot m_{Q_{1/2}}} = \frac{(Q^2)^2}{W}
\]

with \(m_{Q}\) and \(Q^2\)–dependent exponent could also have a physical ground. It would be interested therefore to check experimentally the predicted energy dependence of the ratio \(r_{V}\).

The dependence of the constituent quark interaction radius \(r_{Q} = \frac{Q^2}{m_{Q}}\) on its mass and virtuality gets an experimental support and the non–universal energy asymptotical dependence Eqs. (6) and (7) and predicted in [8] does not contradict to the high–energy experimental data on elastic vector–meson electro–production. Of course, as it was already mentioned in the Introduction, the limited energy range of the available experimental data allows other parameterizations, e. g. universal asymptotical Regge–type behavior with \(Q^2\)–independent trajectories (cf. [13, 14, 15]), to treat the observed experimental regularities as transitory effects.

It seems, however, that the scattering of virtual particles reaches the asymptotics much faster than the scattering of the real particles and the \(Q^2\)–dependent exponent \((Q^2)\) reflects asymptotical dependence and not the ”effective” preasymptotical one. Despite that the relation between \((Q^2)\) and \((Q^2)\) implies a saturation of the \(Q^2\)–dependence of \((Q^2)\) at large values of \(Q^2\), the power–like energy dependence itself will survive at asymptotical energy values. The early asymptotics of virtual particle scattering is correlated with the peripheral impact parameter behavior of the scattering amplitude for the virtual particles. The respective profiles of the amplitudes \(F_{1}\) and \(F_{2}\) are peripheral when \((Q^2)\) increases with \(Q^2\).

The energy independence of the ratio \(r = \frac{Q}{p_{tot}}\) reflects universality of the initial and final state interactions responsible for the transition between the on– and off–mass shell states. This universality is a quite natural assumption leading to factorization Eq. (2) at the level of the \(U\)–matrix [8]. Thus, the off–shell unitarity is the principal origin of the observed energy independence of the ratio \(r\).
Acknowledgement

We are grateful to V. Petrov and E. Martynov for the interesting discussions.

References

[1] ZEUS Collaboration, S. Chekanov et al., Eur. Phys. J. C 24 (2002) 345.
[2] H1 Collaboration, C. Adloff et al., Phys. Lett. B 483 (2000) 23.
[3] A. M. Cooper-Sarkar, R. C. E. Devenish and A. De Roeck, Int. J. Mod. Phys. A 13 (1998) 3385.
[4] A. Levy, Acta Physica Polonica B 33 (2002) 3547; hep-ex/0301022.
[5] S. J. Brodsky, L. Frankfurt, J.F. Gunion, A. H. Mueller and M. Strikman, Phys. Rev. D 50 (1994) 3134.
[6] A. Bialas, Acta Physica Polonica B, 33 (2002) 3983.
[7] P. V. Landshoff, hep-ph/0209364.
[8] S. M. Troshin and N. E. Tyurin, Eur. Phys. J. C 22 (2002) 667.
[9] M. A. Perfilov and S. M. Troshin, hep-ph/0207306.
[10] R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126 (1962) 766.
[11] S. M. Troshin and N. E. Tyurin, Nuovo Cim. 106A 327 (1993); Phys. Rev. D 49 (1994) 4427.
[12] S. M. Troshin and N. E. Tyurin, Theor. Math. Phys. 50 (1982) 150.
[13] V.A. Petrov and A.V. Prokudin, hep-ph/9912245 in Proceedings, International Conference, 8th Blois Workshop, EDS’99, Protvino, Russia, June 28-July 2, 1999, p. 95, V.A. Petrov and A.V. Prokudin (Eds.), World Scientific (2000).
[14] E. Martynov, E. Predazzi and A. Prokudin, Eur. Phys. J. C 26 (2002) 271.
[15] R. Fiore, L. Jenkovszky, F. Paccanoni and A. Papa, Phys. Rev. D 65 (2002) 077505.