Locating the Economic and other Performance Centres of Asia using Geodetic Coordinates, Haversine Formula and Weiszfeld’s Algorithm

A Baskar
Department of Mechanical Engineering, Panimalar Institute of Technology, Chennai, India
E-mail: a.baaskar@gmail.com

Abstract. Due to the increasing economic activities in Asia, the Global Economic Centre is moving towards China from the Atlantic Ocean. According to the “Global Growth Generators, Citi Investment Research and Analysis, 2011” report, in the year 2050, India will become the world’s largest economy (GDP: 85.97 trillion USD) closely followed by China (GDP: 80.02 trillion USD). US may slip to the third position with a GDP of 39.07 trillion USD followed by Indonesia (13.93 trillion USD). Japan may be at a distant ninth position with 6.48 trillion USD. The objective of this paper is to locate the performance centres of Asia that include the “Economic Centre” and “Population Centre” for the years 2005, 2010 and 2018. These centres will provide some idea about the concentration of the population and economic activities at a particular point of time. Identifying such Centres can help in supply chain management to establish the optimal ‘Facilities’ to manufacture, distribute or collect. The estimated three Economic Centres confirm the movement of Economic Centre towards China, especially Beijing. Haversine formula is used in combination with the Weiszfeld’s algorithm to locate the centres from the geodetic coordinates.

1. Introduction
The Asian continent is the most populous and largest continent located in the Eastern and Northern Hemispheres with about 30% of the Earth’s total land area and roughly 60% of the planet’s population. It has extremely diverse cultures, climatic conditions and geographic features. It is widely believed that Asia continent is the birthplace of many religions including Hinduism, Judaism, Jainism, Buddhism, Confucianism, Christianity, Islam and Sikhism. As of 2018, China, Japan, India, South Korea, Turkey and Indonesia are the top economies of the continent.

In the year 2010, China overtook Japan to become world’s second largest economy. It is predicted that in the coming decade, China may occupy the top slot in the world and India may overtake Japan. It is widely accepted that 4 out of 5 most sorted office locations are in Asia: Hong Kong, Singapore, Tokyo and Seoul. Asia has three dominant economic centres, Hong Kong, Tokyo and Singapore. According to UN [1], Asia has 50 countries as its members and has more millionaires than Europe.

The popular Citigroup in its “The Wealth Report 2012” [2] claims that the world’s “Economic Centre of Gravity” is continuously moving towards East. The London School of Economics professor Danny Quah forecasts that by 2050, the world’s economic centre of gravity, a theoretical measure of the focal point of global economic activity based on GDP, will have shifted from Atlantic ocean (1980) eastwards to lie somewhere between China and India (2050). This paper tries to locate the
economic centre of gravity of Asia in addition to a few other centres. Codes are generated in MATLAB R2012b and run in an i5 PC with 4 GB RAM.

2. Objective and Methodology used
The objective of this paper is to estimate the following “Performance Centres” of Asia:
- Economic Centre - a point of economic activity based on GDP
- Mass Centre – a physical point at the algebraic mean of the coordinates
- Access Centre – a point (geometric median) estimated without any weight, only Euclidean distance
- Population Centre - a point obtained by considering the % population share as the weight
- Area Centre - a point obtained by considering the % area share as the weight
- Literacy Centre - a point obtained by considering the fraction literacy rate as the weight.

For evaluating these centres, following two assumptions have been made:
- All the countries are represented by their respective capital cities.
- Only Euclidean distances are considered.

All the required data pertaining to the 50 countries; official names, capital cities, 2018 population, area in square kilometres, GDP (in million current USD) for the years 2005, 2010 and 2018 are collected from UN’s official website [3] and presented in Table 1. The countries are grouped under Southern Asia, Western Asia, South-Eastern Asia, Eastern Asia and Central Asia. The latitudes and longitudes of the capital cities are extracted from a single popular website [4] to minimise the errors, if any and listed in Table 2. This site has been referred in the official “My NASA Data” [5] site also.

Table 1. Countries of Asia, their Capitals and other Data.

S.No.	Country	Population (2018)	Area (km²)	Capital	GDP (million current USD)				
					2005	2010	2018		
1.	Afghanistan	36373	652864	Kabul	6622	16078	20235		
2.	Armenia	2934	29743	Yerevan	5226	9875	10572		
3.	Azerbaijan	9924	86600	Baku	13245	52906	37847		
4.	Bahrain	1567	771	Manama	15969	25713	32179		
5.	Bangladesh	166368	147570	Dhaka	57628	114508	220837		
6.	Bhutan	817	38394	Thimphu	819	1585	2213		
7.	Brunei Darussalam	434	5765	Bandar Seri Begawan	10561	13707	11400		
8.	Cambodia	16246	181035	Phnom Penh	6293	11242	20017		
9.	China	1415046	9600000	Beijing	2308800	6066351	11218281		
10.	China, Hong Kong SAR	7429	1106	Hong Kong	181569	228639	320912		
11.	China, Macao SAR	632	30	Macao	12092	28124	45311		
12.	Cyprus	1189	9251	Nicosia	18694	25561	20046		
13.	Democratic People's Republic of Korea	25611	120538	Pyongyang	13031	13945	16789		
14.	Georgia	3907	69700	Tbilisi	6411	11638	14333		
15.	India	1354052	3287263	New Delhi	812059	1650635	2259642		
16.	Indonesia	266795	1910931	Jakarta	304372	755094	932259		
17.	Iran (Islamic Republic of)	82012	1628750	Tehran	226452	491099	425403		
No.	Country	Latitude	Longitude	Population	GDP GDP PPP	Capital	Population	GDP GDP PPP	Capital
-----	--------------------------	----------	-----------	------------	-------------	------------------	------------	-------------	------------------
18	Iraq	39.340	43.5052	36.268	117.138	Baghdad	160.021		
19	Israel	34.9058	36.1272	124.163	23.3611	Jerusalem	31.7748		
20	Japan	37.7930	135.4101	47.255410	57.00098	Tokyo	49.36212		
21	Jordan	28.9138	22.9318	125.899	26.425	Amman	36.2565		
22	Kazakhstan	48.0408	82.2402	5.71251	1.48047	Astana	1.35005		
23	Kuwait	25.1781	47.1818	80.7978	11.5416	Kuwait City	1.10346		
24	Kyrgyzstan	41.633	99.9949	24.460	47.944	Bishkek	6.551		
25	Lao People's Democratic Republic	39.61	106.8000	23.6800	6.7313	Vientiane	15.806		
26	Lebanon	30.964	104.52	21.490	38.420	Beirut	50.458		
27	Malaysia	32.042	33.0323	143.534	25.018	Kuala Lumpur	29.6531		
28	Maldives	12.444	13.30	11.63	25.88	Male	4.224		
29	Mongolia	31.22	156.4116	29.265	71.89	Ulaanbaatar	11.160		
30	Myanmar	53.856	67.6577	11.931	41.445	Nay Pyi Taw	6.698		
31	Nepal	29.624	147.181	8.259	16.281	Kathmandu	20.914		
32	Oman	48.38	30.9500	31.082	58.641	Muscat	6.3171		
33	Pakistan	32.8081	79.6095	11.7708	17.4508	Islamabad	28.2506		
34	Philippines	106.512	30.0000	10.3072	19.9591	Manila	30.4906		
35	Qatar	1.5265	1.1160	4.3998	12.3627	Doha	15.2452		
36	Republic of Korea	5.1164	100.284	8.98137	10.94499	Seoul	14.11246		
37	Saudi Arabia	32.5544	22.06714	32.8461	52.8207	Riyadh	63.9617		
38	Singapore	5.792	7.19	12.7418	23.6420	Singapore	29.6946		
39	Sri Lanka	20.950	65.610	27.932	56.726	Colombo	81.322		
40	State of Palestine	5.053	6.020	4.832	8.913	East	13.397		
41	Syrian Arab Republic	18.284	181.508	28.397	6.0465	Damascus	22.163		
42	Tajikistan	9.107	114.2600	23.12	5.642	Dushanbe	69.52		
43	Thailand	69.183	101.3120	18.9318	34.1105	Bangkok	40.7026		
44	Timor-Leste	13.24	141.991	1.850	3.999	Dili	2.703		
45	Turkey	8.1917	78.3562	50.1423	7.71877	Ankara	86.3712		
46	Turkmenistan	58.52	48.8100	14.182	22.583	Ashgabat	36.180		
47	United Arab Emirates	9.542	83.6000	18.2978	28.9787	Abu Dhabi	34.8744		
48	Uzbekistan	32.365	44.8969	14.396	39.526	Tashkent	67.779		
49	Viet Nam	9.6941	33.0967	57.633	11.5932	Hanoi	20.5276		
50	Yemen	28.915	52.7968	19.041	29.031	Sana'a	25.374		

The methodology used can be summarised as follows:

- The geodetic coordinates will be converted to Earth Centric Earth Fixed (ECEF) x, y and z coordinates.
- The Geometric Median in terms of x, y and z coordinates will be estimated using Weiszfeld’s algorithm.
- The Geometric Median will be converted back to geodetic coordinates.
- The physical location will be identified from the geodetic coordinates.
- Great circle distance between any two points will be computed using the latitudes and longitudes wherever required.
Haversine formula [6] is used to find the distance between two points with known geodetic coordinates, (Lat, Lon).

\[
d = 2r \sin \left(\sqrt{\sin^2(\frac{\text{Lat}_2 - \text{Lat}_1}{2}) + \cos(\text{Lat}_1) \cos(\text{Lat}_2) \sin^2(\frac{\text{Lon}_2 - \text{Lon}_1}{2})} \right)
\]

Where, ‘r’ is the Earth’s radius.

Table 2. Geodetic Coordinates of Capitals of Asian Countries.

S.No.	Country	Capital	Latitude	Longitude	Altitude, m
1	Afghanistan	Kabul	34.555347	69.207489	1,791
2	Armenia	Yerevan	40.179188	44.499104	990
3	Azerbaijan	Baku	40.409264	49.867092	-28
4	Bahrain	Manama	26.228516	50.586048	7
5	Bangladesh	Dhaka	23.810331	90.412521	4
6	Bhutan	Thimphu	27.577391	89.623016	2,334
7	Brunei	Bandar Seri	4.903052	114.939819	16
8	Cambodia	Phnom Penh	11.556374	104.928207	12
9	China	Beijing	39.904202	116.407394	44
10	China, Hong Kong SAR	Hong Kong	22.396427	114.109497	552
11	China, Macao SAR	Macau	22.210928	113.552971	26
12	Cyprus	Nicosia	35.185566	33.382275	220
13	Democratic People's Republic of Korea	Pyongyang	39.039219	125.762527	5
14	Georgia	Tbilisi	41.715137	44.827095	770
15	India	New Delhi	28.613939	77.209023	216
16	Indonesia	Jakarta	-6.175110	106.865036	8
17	Iran (Islamic Republic of)	Tehran	35.689198	51.388973	1,189
18	Iraq	Baghdad	33.312805	44.361488	34
19	Israel	Jerusalem	31.768318	35.213711	754
20	Japan	Tokyo	35.689487	139.691711	40
21	Jordan	Amman	31.945368	35.928371	1,000
22	Kazakhstan	Astana	51.169392	71.449074	347
23	Kuwait	Kuwait City	29.375858	47.977406	306
24	Kyrgyzstan	Bishkek	42.874622	74.569763	800
25	Lao People's Democratic Republic	Vientiane	17.975706	102.63102	174
26	Lebanon	Beirut	33.893791	35.501778	19
27	Malaysia	Kuala Lumpur	3.139003	101.686852	66
28	Maldives	Male	4.175496	73.509346	2.4
29	Mongolia	Ulaanbaatar	47.886398	106.905746	1,350
30	Myanmar	Nay Pyi Taw	19.671480	96.069893	115
31	Nepal	Kathmandu	27.717245	85.323959	1,400
32	Oman	Muscat	23.585890	58.405922	8
3. A Few Observations

Mainland Asia roughly ranges through about 77° of latitude and 195° of longitude. If translated into distance, it comes about 8,560 km long by 9,600 km wide. The data compiled by UNESCO Institute for Statistics for Youth (age 15-24) are available at UNICEF [7] site for the literacy Rate (updated 2015). The data shows that three countries have literacy rate below 80% (Afghanistan – 47%, Pakistan – 71% and Bhutan – 74%); whereas, 14 Asian countries have an impressive record of 100% (Armenia, Azerbaijan, China, China - Hong Kong SAR, China - Macao SAR, Cyprus, Democratic People's Republic of Korea, Georgia, Kazakhstan, Kyrgyzstan, Singapore, Tajikistan, Turkmenistan and Uzbekistan). The female literacy rate is at the lowest level in Afghanistan which is 32% followed by Pakistan (62%) and Bhutan (68%). For a few countries, the data are not available and are collected from other sources. For comparison purpose, since the data are not available in UN site, Wikipedia [8] is referred for collecting the 2005 population.

If 2018 GDP is taken as the benchmark, Table 3 shows other parameters considered for the top 10 countries. With a 1.18% area and 2.81% population contribution, Japan’s GDP contribution was a mind blowing 39.72% in the year 2005 and in 2018, it is 18.28%.

Let us define the GDP-Population Ratio 2018 as, \[\text{Ratio} = \frac{\text{GDP share in percentage-2018}}{\text{Population share in percentage-2018}} \]

If we consider the countries with a minimum 2018 GDP share of 1%, Singapore is ranked first with a ratio of 8.58 (Table 4). China - Hong Kong SAR is at second place with a ratio of 7.23. This is followed by Japan (6.49), Israel (6.29) and UAE (6.11). China has a low ratio of 1.32.
Table 3. Top Ten Countries considering 2018 GDP as Benchmark.

Country	% GDP Share	% Area Share	% Population Share (2018)	% Literacy Rate (2015)
China	41.54	29.75	30.08	100
Japan	18.28	27.95	1.18	99
India	8.37	8.09	10.30	86
Republic of Korea	5.22	5.37	0.31	97.9
Indonesia	3.45	3.70	5.99	99
Turkey	3.20	3.79	2.45	98
Saudi Arabia	2.37	2.59	6.91	99
Iran (Islamic Republic of)	1.58	2.41	5.10	98
Thailand	1.51	1.67	1.61	97
United Arab Emirates	1.29	1.42	0.26	95

If no restriction is imposed on the quantum of GDP (Table 5), China - Macao SAR is the best performer that has a ratio of 12.0 followed by Qatar (9.47). With a ratio of 0.28, India is at 39th overall position followed by Pakistan and Bangladesh. Nepal, Democratic People's Republic of Korea and Afghanistan occupy last three positions.

Table 4. GDP – Population 2018 Ratio with min. 1% GDP Share.

Country	GDP – Population 2018 Ratio	Approx. 2018 GDP % share
Singapore	8.58	1.10
China, Hong Kong SAR	7.23	1.19
Japan	6.50	18.28
Israel	6.29	1.18
United Arab Emirates	6.12	1.29
Republic of Korea	4.62	5.22
Saudi Arabia	3.19	2.37
Turkey	1.77	3.20
Malaysia	1.55	1.10
China	1.33	41.54

Table 5. Countries with high GDP – Population 2018 Ratio.

Country	GDP – Population 2018 Ratio	Approx. 2018 GDP % share
China, Macao SAR	12.00	0.17
Qatar	9.47	0.56
4. Weiszfeld’s Algorithm

In geometry, Fermat point in a triangle refers a point such that the sum of distances from the vertices is the minimum. If the largest angle is $\geq 120^o$, the Fermat point lies at the obtuse angled vertex; else, the point lies inside the triangle. In the latter case, the solution point is constructed such that the straight lines connecting the point and vertices are at 120^o to each other. In location theory, the popular Weber problem [9] requires finding a point in a plane that minimises the sum of weighted distances. This solution point is termed as the “Geometric Median” from which the sum of (weighted) Euclidean distances to all the points is the minimum. Simply ‘Median’ represents the ‘Middle Value’ whereas; ‘Geometric Median’ is the ‘Average Factor’. Geometric median is the positive root of product of many positive integers.

Mathematically, Geometric Median = $(x_1, x_2, x_3, \ldots, x_n)^{1/n}$

In the scope of operations and supply chain management, a geometric median of a discrete set of points in a Euclidean space is the point that minimizes the sum of distances to the sample points. Fig. 1 explains the concept of ‘Geometric Median’ for a set of 8 given points. The red dot (GM) is the ‘Geometric Median’ of all the 8 black points. The sum of the distances of all the black points from the red point is the minimum. Finding such a point is often referred as a ‘Minisum’ problem. The ‘Mass Centre’ is the algebraic mean of all the points which may not coincide with the ‘Geometric Median’ in many cases.
Torricelli provided a geometrical solution in 1645. In 1972 only, a direct numerical solution was devised by Tellier [10] for a triangular case. Baskar [11] analysed and generalised the trigonometric solutions, with and without repulsion. Cem Iyigun and Adi Ben-Israel [12] proposed a method for multi-facility location problems which is a natural generalization of Weiszfeld's method [13] to several facilities. Weiszfeld’s algorithm has been effectively used by researchers in facility location problems for finding the ‘Geometric Median’. Weiszfeld’s algorithm is an iterative algorithm that finds the ‘Geometric Median’ of a set of ‘p’ given points in ‘n’ dimensional space. This algorithm computes a new point from the present point using the relationship:

\[
y_{i+1} = \frac{\sum_{j=1}^{p} \frac{x_j}{\|x_j - y_i\|}}{\sum_{j=1}^{p} \frac{1}{\|x_j - y_i\|}} ; y \in \mathbb{R}^n
\]

(4.1)

The initial point may be taken as the origin. In general, the algorithm converges for any initial point. The mass centre is taken as the initial point in most of the cases and the geometric median is obtained after a finite number of iterations.

5. Computational Results

The codes written in MATLAB 2012b are run in a PC with 4 GB RAM. To validate the codes, the geodetic coordinates of some capitals with varying ranges of latitudes and longitudes were considered. Ankara (39.93365, 32.859741), Ulaanbaatar (47.886398, 106.905746), Singapore (1.352083, 103.819839), Seoul (37.566536, 126.977966) and Dili (-8.556856, 125.56031) were used in this process, along with their altitudes. The latitudes, longitudes and altitudes were converted to ECEF coordinates and back to geodetic using the functions. They were observed to be perfectly matching with the actual coordinates. In addition, two problems used by Cooper and Katz [14] were analysed to check the accuracy of Weiszfeld’s algorithm. The results obtained endorse the accuracy and match with Cooper and Katz both in terms of magnitudes and number of iterations. Subsequently, the Asian data are processed and the obtained Centres are listed in Table 6. However, it becomes very difficult to compare the results as not much literature is available about the Performance Centres of Asia.
It is widely accepted that the Economic Centre of the entire globe has come back to Asia and is now at the China region. Géza Tóth and Zoltán Nagy [15] claims that the economic centre of gravity of Asia, Australia, and Oceania (they considered them together) has been in the territory of the People's Republic of China, from 1970 to the present day. In the 21st century, they add, the centre increasingly shifted to the west, with one axis pointing to the oil-rich Middle Eastern countries and the other axis to India. In this context, it is noted that Asia’s 2010/2018 Economic Centre (39.9041776, 116.4073548) is virtually collinear with Beijing (39.904202, 116.407394) that represents China. In the year 2005, the Economic Centre was at the Yellow Sea, near South Korea. The Geometric and Literacy Centres are located in Pakistan whereas; the Mass Centre is in India. Table 7 gives the distance between any two centres computed using Haversine formula. If all the countries have the same literacy rate then, the access centre and literacy centre will become the same. But, they are separated by 79.06 km. Similarly, if the population is proportional to the area of any country and; if the GDP indicators are proportional to the population share of the respective countries then, the Area Centre, Population Centre and Economic Centre should coincide.

However, if the Access Centre is taken as the reference, the Area Centre is observed to be 1656.26 km away from the Access Centre and the Population Centre is 1471.31 km away from it. The 2005 Economic Centre and 2010/2018 Economic Centres are 4855.93 km and 4025.73 km away from the Access Centre, respectively.

Table 6. Location of Performance Centres.

S.No	Performance Centre	Latitude	Longitude	Location
1.	Mass Centre	30.4540460	77.5689514	Puruwala Santokhgarh, Himachal Pradesh, India
2.	Geometric Centre (Distance)	32.4281358	72.0128661	Quaidabad Tehsil, Punjab, Pakistan
2.	Access Centre [Ref.]	32.2974735	92.5772441	Nyainrong, Nagqu, Tibet, China
3.	2005 Population Centre	31.1554599	87.5325588	Nyima Nagqu, Tibet, China
5.	Area Centre	37.536898	89.1379272	Ruoqiang, Bayingol, Xinjiang, China
6.	Literacy Centre	32.6710536	71.2195498	Isakhel, Mianwali, Pakistan
7.	2005 Economic Centre	37.6737697	125.7421912	Yellow Sea (MPFR+GV Yeonpyeong-myeon, Ongjin-gun, Incheon, South Korea)
8.	2010 Economic Centre	39.9041776	116.4073548	Beijing People's Government, Dongcheng Qu, Beijing Shi, China, 100006
9.	2018 Economic Centre	39.9041776	116.4073548	Beijing People's Government, Dongcheng Qu, Beijing Shi, China, 100006
Table 7. Distances between Centres.

Centre	Latitude	Longitude	Centre	Latitude	Longitude	Distance, km
Access Centre [Ref.]	32.4281358	72.0128661	Mass Centre	30.4540460	77.5689514	570.49
Access Centre [Ref.]	32.4281358	72.0128661	2018 Population Centre	31.1554599	87.5325588	1471.31
Access Centre [Ref.]	32.4281358	72.0128661	Area Centre	37.536898	89.1379272	1656.26
Access Centre [Ref.]	32.4281358	72.0128661	Literacy Centre	32.6710536	71.2195498	79.06
Access Centre [Ref.]	32.4281358	72.0128661	2005 Economic Centre	37.6737697	125.7421912	4855.93
2005 Economic Centre	37.6737697	125.7421912	2010 Economic Centre	39.9041776	116.4073548	845.18
Access Centre [Ref.]	32.4281358	72.0128661	2018 Economic Centre	39.9041776	116.4073548	4025.73
2005 Population Centre	32.2974735	92.5772441	2018 Population Centre	31.1554599	87.5325588	493.34

In 2005, the Economic Centre (Red upward arrow) was located near Korea and Japan due to the dominant performances of Japan (39.72%) and Republic of Korea (7.50%) in the initial years of this century. China’s share was a mere 19.28%.

However, after the emergence of China, the Centre shifted towards Beijing, China (Green upward arrow) due to its mammoth economic growth after 2005 till 2018. China’s share was 29.75% against Japan’s 27.95% in 2010 and a massive 41.54% in the year 2018 against 18.28% of Japan. India’s share was 6.78% in 2005, 8.09% in 2010 and 8.37% in the year 2018.
Figure 2. Performance Centres of Asia.

Figure 3. Movement of Population and Economic Centres.

Figure 3 shows the movement of Population Centre and Economic Centre from the year 2005 to 2018. It clearly indicates, the Population Centre is moving away from China and Economic Centre is moving towards China.

6. Conclusion
It is evident that in this twenty first century, Asia is becoming main economic region of the world. Started from Asia in AD1, the Economic Centre travelled towards US till 1950 and then, reversed its direction towards Asia again. Estimating the centre of any particular activity will help in decision making. For example: if simply an administrative setup is to be created in any region then geometric centre shall be taken as the reference. If new manufacturing facilities or financial facilities are to be
established then, the economic centre can help in identifying the new location. Similarly, literacy centre can help in identifying the literacy scenario in any area and can suggest new areas that shall be considered for planning improved/new educational institutions. This paper analysed the basic geometric, population, literacy and economic data of the 50 Asian countries listed by UN by taking their respective capital cities as the representatives of the countries and located the performance centres. The 2010/2018 Economic Centre is clearly at Beijing, the capital of China. The Population Centre has moved 493.34 km in southwest direction when considered from 2005 to 2018. The Economic Centre moved 845.18 km, in the same period, in northwest direction.

Improving the GDP will directly have impacts on all other activities. Reduced interest rates coupled with increased purchase power will improve the industrial growth and employment. In countries that have a large population base like India and China, improved employment opportunities spread across the country will improve the GDP growth. As the country's GDP is increasing, it is more productive which in turn leads to more people being employed. This increases the wealth of the country. Higher economic growth also leads to extra tax income for government spending, which the government can use to develop the economy.

7. References
[1] https://www.un.org/en/member-states/
[2] https://www.privatebank.citibank.com/pdf/wealthReport2012_lowRes.pdf
[3] http://data.un.org/en/index.html
[4] https://www.latlong.net/
[5] https://mynasadata.larc.nasa.gov/basic-page/looking-latitude-longitude-finder
[6] Robusto CC 1957 The cosine-haversine formula The American Mathematical Monthly. 64 38-40
[7] https://data.unicef.org/topic/education/literacy/
[8] https://en.wikipedia.org/wiki/List_of_countries_by_population_in_2005
[9] Weber A 1982 on the location of industries Progress in Geography 6 120-8
[10] Kalman S, Kennedy S and editor’s 2014 The French right between the wars: political and intellectual movements from conservatism to fascism Berghahn Books
[11] Baskar A 2017 Analysing a few trigonometric solutions for the Fermat-Weber facility location problem with and without repulsion and generalising the solutions International Journal of Mathematics in Operational Research 10 150-66
[12] Iyigun C and Ben-Israel A 2010 A generalized Weiszfeld method for the multi-facility location problem Operations Research Letters 38 207-14
[13] Weiszfeld E 1937 Sur le point pour lequel la somme des distances de n points donnés est minimum Tohoku Mathematical Journal First Series 43 355-86
[14] Cooper L and Katz IN 1981 The Weber problem revisited. Computers & Mathematics with Applications 7 225-34
[15] Tóth G and Nagy Z 2017 The world’s economic centre of gravity Regional Statistics 6 177-80