Between Two Fern Genomes

Emily B Sessa1,2*, Jo Ann Banks3, Michael S Barker4, Joshua P Der5,15, Aaron M Duffy6, Sean W Graham7, Mitsuyasu Hasebe8, Jane Langdale9, Fay-Wei Li10, D Blaine Marchant8,11, Kathleen M Pryer10, Carl J Rothfels12,16, Stanley J Roux13, Mari L Salmi13, Erin M Sigel10, Douglas E Soltis1,2,11, Pamela S Soltis2,11, Dennis W Stevenson14, and Paul G Wolf6

Abstract

Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.

Keywords: Azolla, Ceratopteris, Comparative analyses, Ferns, Genomics, Land plants, Monilophytes

Introduction

Ferns (Monilophyta) are an ancient lineage of land plants that comprise a significant component of the Earth’s terrestrial flora. They are the second largest group of vascular plants, with more than 10,000 species [1], and play a major role in shaping community assembly and ecological processes in many biomes. For example, ferns shape ecosystem regeneration, persistence, and biomass production in eastern North American temperate forests [2-4]; play keystone roles in tropical rainforest canopies [5,6], heathlands [7], after landslides [8], and on islands [9]; and include several invasive species with significant economic impact [10-12]. Phylogenetically, ferns are sister to the seed plant clade (Spermatophyta) that includes the ecologically dominant flowering plants. Thus, the phylogenetic position of ferns makes them pivotal in the evolutionary history of land plants (Embryophyta), and essential for a comprehensive understanding of the origin and diversification of numerous traits found in seed plant crops and model species, such as rice and Arabidopsis [13,14].

Review

In a broad sense, ferns include four main clades: psilotoids (whisk ferns) + ophioglossoids, equisetoids (horsetails), marattioids, and leptosporangiates (Figure 1). The leptosporangiate ferns are the most species-rich clade by far, with over 9,000 species [15,16] that include the majority of fern species found in temperate and tropical regions. Ferns and seed plants diverged from a common ancestor around 380 million years ago (mya) (the oldest fern fossils date to ca. 350 mya [17]), and the most recent common ancestor (MRCA) of the leptosporangiate ferns arose ca. 280 mya [17,18]. Several fern lineages diverged from another prior to the divergence of the angiosperm and gymnosperm sister clades (Figure 1).

Despite the ubiquity of ferns and their ecological and evolutionary importance, genomic resources for the group remain sparse. Ferns are the only major clade of vascular land plants for which a complete nuclear genome has not yet been sequenced. This gap is particularly acute in light of recent efforts to sequence the transcriptomes of all major lineages of green plants [23,24].
assembly, analysis, and interpretation of these transcrip-
tomes would benefit enormously from the availability of
well-annotated fern genomes. Recent innovations in se-
quencing technologies and the resulting torrent of whole-
genome sequencing projects have fueled a renaissance
in comparative genetic and genomic analyses, and each
genome sequenced yields new insights into plant evolu-
tion. For example, the recently-sequenced genome of

Figure 1 Phylogeny of major groups of land plants. Based on [13,15,19,20]. Approximate numbers of species and available genome sequences are
given, and approximate times of major divergences are indicated. Ferns as a whole include lineages that diverged from one another prior to the
divergence of the major seed plant clades. The most recent common ancestor of all leptosporangiates arose approximately 280 mya [17,18]. The
ancestors of Ceratopteris and Azolla diverged from each other ca. 200 mya, well before the divergence of monocots and eudicots. Dates obtained from
TimeTree [21,22].
Amborella trichopoda [25]—the sister taxon to all other angiosperms—has revealed much about the conservation of synteny across flowering plants and about genome organization, as well as gene content in the ancestral angiosperm. It has also facilitated inference of ancient genome doubling events in angiosperms. Ferns, with their large genomes, high chromosome numbers, independent gametophyte phase, and mix of heterosporous and homosporous taxa, offer unparalleled opportunities for ground-breaking comparative genetic and genomic analyses across land plants as a whole.

Ferns provide a stark contrast to other lineages of land plants in several key biological features. For example, angiosperms and gymnosperms are both dominated by a diploid, spore-bearing (sporophyte) stage of the life cycle. Their haploid sexual stage, the gametophyte, is extremely reduced (microscopic in angiosperms) and completely dependent on the sporophyte for nutrition. On the other hand, in bryophytes (mosses, liverworts and hornworts), it is the sporophyte that is dependent at maturity on the dominant, macroscopic and photosynthetic gametophyte. Ferns and lycophytes are the only land plants where, for most taxa, both gametophytes and sporophytes are independent, free-living organisms that can each be long-lived. Unlike seed plants, which are exclusively heterosporous, ferns include both heterosporous and homosporous species. The latter group includes the majority of extant fern diversity, in which only one spore type is produced that develops into a gametophyte that is either bisexual, or whose sex is determined by non-genetic aspects of development (e.g., pheromones from surrounding gametophytes).

The evolution from homospory to heterospory, whose sex is determined by non-genetic aspects of development, in which only one spore type is produced that develops into a gametophyte that is either bisexual, or whose sex is determined by non-genetic aspects of development (e.g., pheromones from surrounding gametophytes), and mix of heterosporous and homosporous taxa, offer unparalleled opportunities for ground-breaking comparative genetic and genomic analyses across land plants as a whole.

Paleopolyploidy events have been inferred in the histories of all angiosperm lineages studied to date (e.g., [56]) and are implicated in the ancestral angiosperm and ancestral seed plant genomes [25,57]. Thus, even contemporary flowering plant taxa with relatively small genomes, such as the model species *Arabidopsis thaliana* (*n* = 5, 125 Mb [58]), often belong to lineages that have experienced multiple rounds of polyploidy. *Arabidopsis* is thought to have experienced five such events, including the ancestral seed plant and angiosperm duplications [57,59]. Various groups have evidently responded to these events in different ways, and data from ferns are the key to understanding these differences. Using these data, we can ask, for example: how do the various genomic components (e.g., repetitive elements) differ across land plant lineages, and how do their fates differ following polyploidy? What mechanisms are responsible for the universally smaller numbers of chromosomes in heterosporous vs. homosporous lineages, and how do these relate to the transitions among mating systems across land plants?

What genomic changes underlie trends in gametophyte reduction and the shift from haploid-dominant to diploid-dominant life cycles across land plants? Do the free-living, haploid gametophytes of ferns experience strong purifying selection? Ferns are the crucial missing clade for understanding all of these evolutionary paradoxes. Most importantly, the addition of ferns to the set of sequenced land plant genomes will also facilitate reconstruction of the ancestral euphyllophyte (ferns plus seed plants; Euphyllophyta) and vascular plant (Tracheophyta) genomes, and will...
inform efforts to reconstruct the ancestral seed plant genome by providing an outgroup that is more suitable for comparative analyses than are the currently available lycophyte [60] and moss [61] genomes. Improved understanding of genomic changes during the evolution of seed plants will provide a new perspective for examining key evolutionary innovations in that clade, such as the seed itself.

To capture and characterize the genetic, genomic, and ecological diversity of ferns, we recommend two candidates for genome sequencing: Azolla (Azollaceae: Salviniaceae) and Ceratopteris (Pteridaceae: Polypodiales). Both have been promoted as model ferns for genome sequencing [14,40,62,63] and together, Azolla and Ceratopteris are a powerful combination. They cumulatively represent more than 400 million years of independent evolution (MRCA 200 mya [16]), and embody the key genomic and life-history characteristics of interest for fern genome sequencing.

Azolla is a heterosporous, free-floating water fern with a compact, 750 Mb (1C) genome and n = 22 chromosomes [38,64]. It has long been valued in Southeast Asia as a green fertilizer due to its symbiotic relationship with Nostoc azollae, a cyanobacterium that lives in cavities enclosed by the leaf tissue of Azolla [65] and renders it capable of nitrogen fixation [66]. Azolla also has promise as a biofuel and bioremediator in carbon sequestration efforts [63]. In addition, Azolla has been implicated as the cause of a massive shift in Earth’s climate approximately 50 mya [67], when atmospheric carbon dioxide levels were apparently halved by Azolla-driven carbon sequestration [68-70]. A genome sequence for Azolla will allow us to explore its relationship with its symbionts and may facilitate efforts to harness its nitrogen-fixing ability on a scale large enough to provide an inexpensive source of nitrogen-rich fertilizer [71].

Recently, the BGI (formerly Beijing Genomics Institute) agreed to complete the first fern genome sequencing project, for Azolla, in collaboration with principal investigator K.M. Pryer and colleagues (see [72,73]). Supplemental funds were also raised through crowdfunding [74,75], and the PIs are currently gathering material for the project. This planned sequencing of Azolla will provide initial and much-needed genomic resources for ferns, but given the deep divergence times, variation in life-history characteristics, and diversity within this clade, one fern genome is simply not enough to address the full range of outstanding genomic questions in ferns and across land plants.

Ceratopteris provides an ideal contrast to Azolla. It is homosporous, and its genome is 11.26Gb (1C; DB Marchant, unpublished), an order of magnitude larger than that of Azolla. This size is more typical of genome sizes found in leptosporangiate ferns and is closer to the size scale of conifer genomes than to Azolla. Ceratopteris is the “Arabidopsis of the fern world”: it can be readily transformed with recombinant DNA [76,77] and has a fast life cycle, features that have made it an ideal genetic model system for studying sex expression and mating systems [78-81], spore and gametophyte development [82-87], and even plant responses to gravity during space flight [88]. In addition, a rapidly developing strain of Ceratopteris has been used extensively as an educational model system in undergraduate and K-12 biology instruction worldwide [89,90].

The earliest candidates for genome sequencing in plants tended to be those with small and simple genomes that could be assembled with relative ease. As the trend towards whole-genome sequencing intensifies, an increasing number of taxa with large or complex genomes will be of interest for complete nuclear genome sequencing. It is likely that most large fern genomes will not assemble easily using current techniques, making them important test cases for improved sequencing strategies, mapping, and especially assembly approaches, such as those recently developed for sequencing of the 22Gb (1C) loblolly pine [91,92] and 20Gb (1C) Norway spruce [93] genomes [94]. Ceratopteris will provide such an opportunity, and genetic resources for this species already exist to facilitate the assembly process. These include a genetic linkage map and mapping population comprising ∼500 doubled haploid lines (DHLs) [53], which will allow efficient de novo sequencing and high-quality assembly, leveraging, for example, the recombinant population genome construction approach of Hahn et al. [95]. Azolla will provide a novel opportunity to sequence a plant nuclear genome that has co-evolved for more than 70 million years along with the genomes of its obligate, vertically-inherited symbiotic microbiome. The genome of one such symbiont has been sequenced [66], but additional components of the fern microbiome are not well characterized.

Conclusions

Ferns are a phylogenetically pivotal and evolutionarily critical group of plants, yet they remain a group for which we lack extensive nuclear genomic resources. This is an astonishing reality, given the progress that has been made to date elsewhere across the tree of life. Transcriptome sequencing efforts such as the 1,000 Plants Project [23] have vastly expanded the gene sequence resources available for plants, but genes alone are insufficient to answer the most pressing questions in fern and land plant genome evolution. Ferns are crucial for understanding many aspects of plant development, physiology, metabolism, and evolution, and they hold the answers to key questions that have puzzled evolutionary and comparative biologists for more than a century. Between these two ferns—Ceratopteris and Azolla—evolution has operated for 400 million years, providing tremendous opportunity for differences to accumulate, both between
these genomes and between ferns and other extant plants. Simultaneous sequencing of Azolla and Ceratopteris will close the phylogenetic gap in available plant genomes, and more importantly, will complete the critical framework necessary for rigorous comparative studies of genome structure and function across land plants.

Abbreviations

Gb: Gigabases; Mb: Megabases; MRCA: Most recent common ancestor; mya: Million years ago.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

EBS and PGW conceived and drafted the paper; all other authors edited, contributed comments to, and read and approved the final manuscript.

Acknowledgements

The title alludes to the popular internet comedy series “Between Two Ferns with Zach Galifianakis”: http://www.funnyordie.com/between_two_ferns.

Note from the Editors

A related discussion by Fay-Wei Li and Kathleen Pryer on crowdfunding efforts to sequence the Azolla fern genome is published alongside this article (75).

Author details

1Department of Biology, Box 118525, University of Florida, Gainesville, FL 32611, USA. 2Genetics Institute, University of Florida, Box 103610, Gainesville, FL 32611, USA. 3Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA. 4Department of Ecology & Evolutionary Biology, University of Arizona, 1041 East Lowell Street, Tucson, AZ 85721, USA. 5Department of Biology, Penn State University, 201 Life Science Building, University Park, PA 16801, USA. 6Ecology Center and Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA. 7Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada. 8National Institute for Basic Biology, 38 Nishigounaka, Myo-daiji-cho, Okazaki 444-8585, Japan. 9Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. 10Department of Biology, Duke University, Post Office Box 90338, Durham, NC 27708, USA. 11Florida Museum of Natural History, Dickinson Hall, University of Florida, Gainesville, FL 32611, USA. 12Department of Zoology, University of British Columbia, 2329 W. Mall, WAITING VANC, BC V6T 1Z4, Canada. 13Department of Molecular Biosciences, University of Texas, 205 W. 24th Street, Austin, TX 78712, USA. 14New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA. 15Current address: Department of Biological Science, Florida International University, Miami, FL 33199, USA. 16Current address: University Herbarium and Department of Integrative Biology, University of California, 1001 Valley Life Sciences Building, Berkeley, California, CA 94720, USA.

Received: 8 August 2014 **Accepted:** 18 September 2014

Published: 25 September 2014

References

1. Smith AR, Pryer K, Schuettelpitz E, Korall P, Schneider H, Wolf P: A classification for extant ferns. *Taxon* 2006, 55:705–731.

2. George LO, Bazzaz FA: The fern understory as an ecological filter: Emergence and establishment of canopy-tree seedlings. *Ecology* 1999, 80:833–845.

3. George LO, Bazzaz FA: The fern understory as an ecological filter: Growth and survival of canopy-tree seedlings. *Ecology* 1999, 80:846–856.

4. Siccama TG, Bormann FH, Likens GE: The Hubbard Brook ecosystem study: Productivity, nutrients, and phytosociology of the herbaceous layer. *Ecol Monogr* 1970, 40:389–402.

5. Ellwood MDF, Foster WA: Doubbling the estimate of invertebrate biomass in a forest canopy. *Nature* 2004, 429:549–551.

6. Watkins JE Jr, Cardéllos CL: Ferns in an angiosperm world: Cretaceous radiation into the epiphytic niche and diversification on the forest floor. *Int J Plant Sci* 2012, 173:695–710.

7. Marrs RH, Le Duc MG, Mitchell RJ, Goddard D, Paterson S, Pakeman RJ: The ecology of Bracken: Its role in succession and implications for control. *Ann Bot* 2000, 85:15–18.

8. Walker LR: Effects of fern thickets on woodland development on landslides in Puerto Rico. *J Veg Sci* 1994, 5:525–532.

9. Tryon RM: Development and evolution of fern floras of oceanic islands. *Biotropica* 1970, 2:76–84.

10. Allison SD, Vitousek PM: Rapid nutrient cycling in leaf litter from invasive plants in Hawaii. *Ecological Monographs* 2004, 141:612–619.

11. Pemberton RW, Ferrier AP: Old World climbing fern (Psilotum microphyllum), a dangerous invasive weed in Florida. *American Fern Journal* 1998, 88:165–175.

12. de Al I C, Kelty MJ: Establishment and control of hay-scented fern: a native invasive species. *Biol Invasions* 1999, 1:223–236.

13. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD: Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. *Nature* 2001, 409:618–622.

14. Pryer KM, Schneider H, Zimmer EA, Banks JA: Deciding among green plants for whole genome studies. *Trends Plant Sci* 2002, 7:550–554.

15. Pryer KM, Schuettelpitz E, Wolf PG, Schneider H, Smith AR, Cranfill R: Phylogeny and evolution of ferns (Monilophyta) with a focus on the early leptosporangiate divergences. *Am J Bot* 2004, 91:1582–1598.

16. Schuettelpitz E, Pryer KM: Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. *Proc Natl Acad Sci USA* 2009, 106:11200–11205.

17. Schneider H, Schuettelpitz E, Pryer K, Cranfill R, Magallon SA, Lupia R: Ferns diversified in the shadow of angiosperms. *Nature* 2004, 428:554–557.

18. Smith SA, Beaulieu JM, Donoghue MJ: An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. *Proc Natl Acad Sci USA* 2010, 107:5987–5992.

19. Green F, Guo W, Gubbels EA, Hansen AK, Mower P: Complete plastid genomes from Ophioglossum californicum, Poliotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. *BMC Evol Biol* 2013, 13:8.

20. Rai HS, Graham SW: Utility of a large, multigene plastid data set in inferring higher-order relationships in ferns and relatives (monilophytes). *Am J Bot* 2010, 97:1444–1456.

21. **TimeTree** (http://timetree.org).

22. Hedges SB, Dudley J, Kumar T: **TimeTree**: A public knowledge-base of divergence times among organisms. *Bioinformatics* 2006, 22:2921–2927.

23. **The 1000 Plants Project** (http://www.onekp.com).

24. Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter EJ, Matasci N: The 1000 Plants Project: A phylogenomics analysis of the origin and early diversification of flowering plants. *Proc Natl Acad Sci USA* 2013, 110:138–143.

25. Amborella Genome Project: The Amborella genome and the evolution of flowering plants. *Science* 2013, 342:1241069-1–10.

26. Bateman RM, DImichele WA: Heterosporous: the most iterative key innovation in the evolutionary history of the plant kingdom. *Biol Rev* 1994, 69:345–417.

27. Britton DM: Chromosome studies on ferns. *Am J Bot* 1953, 40:575–583.

28. Britton DM: The significance of chromosome numbers in ferns. *Ann Mo Bot Gard* 1974, 61:310–317.

29. Love A, Love D, Pichi-Sermolli REG: Cytogenetical Atlas of the Pteridophyta. J. Cramer: Vaduz, Liechtenstein; 1977.

30. Manton I: Problems of Cytology and Evolution in the Pteridophyta. Cambridge: Cambridge University Press; 1950.

31. Klekowski EJ, Baker HG: Evolutionary significance of polyploidy in the Pteridophyta. *Ann Mo Bot Gard* 1966, 53:305–307.

32. Ghatak J: Chromosome studies on ferns. *Am J Bot* 1953, 40:575–583.

33. Barker MS, Wolf PG: Unfurling fern biology in the genomics age. *Bioscience* 2010, 60:177–185.

34. Bainard JD, Henry TA, Bainard LD, Newmaster SC: DNA content variation in monilophytes and lycophytes: large genomes that are not endopolyploid. *Chromosoma* 2011, 119:763–775.
35. Bennett MD, Leitch IJ. Nuclear DNA amounts in pteridophytes. Ann Bot 2001, 87:335–346.

36. Garcia S, Leitch IJ, Anadon-Rosell A, Canela MA, Galvez F, Garnache T, Gras A, Hidalgo O, Johnston E, Mas de Xaxas G, Pellicer J, Siljak-Yakovlev S, Vallés J, Viales D, Bennett MD. Recent updates and developments to plant genome size databases. Nucl. Acids Res 2013, 41:D1159–D1166.

37. Hanson L, Leitch IJ. DNA amounts for five pteridophyte species fill phylogenetic gaps in C-value data. Bot J Linn Soc 2002, 140:169–173.

38. Obermayer R, Leitch IJ, Hanson L, Bennett MD. Nuclear DNA C-values in species double the familial representation in pteridophytes. Ann Bot 2002, 90:207–217.

39. Leitch IJ, Solis DE, Solts PS, Bennett MD. Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 2000, 86:207–217.

40. Nakazato T, Barker MS, Riesberg LH, Gastony GJ. Evolution of the nuclear genome of ferns and lycophytes. In Biology and Evolution of Ferns and Lycophytes. Edited by Ranker TA, Hauffer CH. Cambridge, UK: Cambridge University Press; 2008.

41. Chiarugi A. Tavole chromosomiche delle Pteridophyta. Caryologia 1960, 13:27–150.

42. Fabbri F. Primo supplemento alle tavole chromosomiche delle Pteridophyta di Alberto Chiarugi. Caryologia 1963, 16:237–335.

43. Gastony GJ, Gottlieb LD. Genetic variation in the homosporous fern Pellaea andromedifolia. Am J Bot 1985, 72:257–267.

44. Hauffer CH, Solts DE. Genetic evidence suggests that homosporous ferns with high chromosome numbers are diploid. Proc Natl Acad Sci 1986, 83:4393–4395.

45. Hauffer CH. Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. Am J Bot 1987, 74:953–966.

46. Wolf PG, Hauffer CH, Sheffield E. Electrophoretic evidence for genetic diploidy in the bracken fern (Pteridium aquilum). Science 1987, 236:947–949.

47. Solts DE. Genetic evidence for diploidy in Equisetum. Am J Bot 1986, 73:909–913.

48. Solts PS, Solts DE. Estimated rates of intragametophytic selfing in Arabidopsis thaliana. Nature 1991, 349:439–441.

49. McGrath JM, Hickok LG, Pichersky E. Genetic evidence for diploidy in the homosporous fern. Nature 1991, 349:439–441.

50. DeYoung B, Weber T, Hass B, Banks JA. Generating autotetraploid sporophytes and their role in analyzing mutations affecting gametophyte development in the fern Ceratopteris. Genetics 1997, 147:829–841.

51. Banks JA. The TRANSFORMER genes of the fern Ceratopteris simultaneously promote meristem and archegonia development and repress antheridia development in the developing gametophyte. Genetics 1997, 147:1895–1899.

52. Strans E, Hass B, Banks JA. Characterization of mutations that feminize gametophytes of the fern Ceratopteris. Genetics 2001, 159:1271–1281.

53. Nakazato T, Jung MK, Housworth EA, Riesberg LH, Gastony GJ. Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardi. Genetics 2006, 173:1585–1597.

54. Barker MS. Evolutionary genomic analyses of ferns reveal that high chromosome numbers are a product of high retention and fewer rounds of polyploidy relative to angiosperms. American Fern Journal 2009, 99:136–141.

55. Solts PS, Solts DE. The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci 2000, 97:7051–7057.

56. Solts DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Solts PS. Polyploidy and genome diversification. Annu Rev Ecol Evol System 2006, 37:305–336.

57. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Sessa et al. GigaScience Tavole chromosomiche delle Pteridophyta. Caryologia 2016, 69:1–17.

58. Hanson L, Leitch IJ. Estimated rates of intragametophytic selfing in Arabidopsis thaliana. Nature 2000, 408:815–818.

59. Barker MS, Bennett JL, Bonavita ND, Chapple C, Cheng C, Correa LGG, Dacre M, DelBarry J, Dreyer E, Elmas M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 2011, 332:860–863.

60. Rensing SA, Lang D, Ziegler AD, Terry A, Salamov A, HH S, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto SI, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anerola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennett JL, Blankenship R, et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 2008, 319:64–69.
83. Salmi ML, Bushart TJ, Stout SC, Roux SJ: Profile and analysis of gene expression changes during early development in germinating spores of Ceratopteris richardii. *Plant Physiol* 2005, 138:1734–1745.

84. Hickok LG, Warne TR, Slocum MK: *Ceratopteris richardii*: Applications for experimental plant biology. *Am J Bot* 1987, 74:3104–3116.

85. Hickok LG, Warne TR, Fribourg RS: The biology of the fern *Ceratopteris* and its use as a model system. *Int J Plant Sci* 1995, 156:332–345.

86. Cooke TJ, Hickey LJ, Sugai M: The fern *Ceratopteris richardii* as a lower plant model system for studying the genetic regulation of plant photomorphogenesis. *Int J Plant Sci* 1995, 156:367–373.

87. Chasan R: *Ceratopteris*: A model plant for the 90s. *Plant Science News* 1992, 4:113–115.

88. Salmi ML, Roux SJ: Gene expression changes induced by space flight in single-cells of the fern *Ceratopteris richardii*. *Planta* 2008, 229:151–159.

89. Warne TR, Renzaglia KS, Hickok LG: *Ceratopteris richardii* - a simple model system for teaching and research. *Plant Physiol* 1993, 102:87.

90. C-fern.org [http://www.c-fern.org]

91. Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marcais G, Puliu D, Roberts M, Wegrzyn JLI, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH: Sequencing and assembly of the 22-Gb loblolly pine genome. *Genetics* 2014, 196:875–890.

92. Neale DB, Wegrzyn JLI, Stevens KA, Zimin AV, Puliu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Lefchyt JD, Martinez-Garcia PJ, Vasquez-Gross HA, Lin BY, Zieve JJ, Dougherty WM, Fuentes-Soriano S, Wu LS, Gilbert D, Marcais G, Roberts M, Holt C, Yandell M, Davis JM, Smith KE, Dean JF, Lorenz WW, Whetten RW, Sederoff R, Wheeler N, McGuire PE, et al: Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. *Genome Biol* 2014, 15:R59.

93. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Veizi F, Dillemore N, Giacomelli S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Eft strand M, Granzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kalter M, Luthman J, Lysholm F, Nittyla T, Olson A, Rilakovic N, Ritland C, Rossello JA, Sena J, et al: The Norway spruce genome sequence and conifer genome evolution. *Nature* 2013, 497:579–584.

94. Soltis PS, Soltis DE: A conifer genome spruces up plant phylogenomics. *Genome Biol* 2013, 14:122.

95. Hahn MW, Zhang SV, Moyle LC: Sequencing, assembling, and correcting draft genomes using recombinant populations. *G3 Genes, Genomes, Genetics* 2014, 4:669–679.

doi:10.1186/2047-217X-3-15
Cite this article as: Sessa et al.: Between Two Fern Genomes. *GigaScience* 2014 3:15.