Serum hepatic enzyme manifestations in patients with severe acute respiratory syndrome: Retrospective analysis

Hui-Juan Cui, Xiao-Lin Tong, Ping Li, Ying-Xu Hao, Xiao-Guang Chen, Ai-Guo Li, Zhi-Yuan Zhang, Jun Duan, Min Zhen, Bin Zhang, Chuan-Jin Hua, Yue-Wen Gong

INTRODUCTION
Severe acute respiratory syndrome (SARS) or so-called atypical pneumonia with unknown etiology started to appear in Guangdong Province, China in November 2002 and quickly spread to other parts of China and around the world[1-4]. A novel coronavirus has been identified as the etiological agent of the syndrome[5-8]. Most coronaviruses may cause either a respiratory or an enteric change. During the outbreak of SARS, abnormal hepatic enzyme activity was reported in patients of Toronto area, Canada[9]. The present study summarized the hepatic enzyme activities in patients with SARS who were treated at the China-Japan Friendship Hospital, Beijing, which started to receive patients with SARS in mid-March 2003, and was designated as one of the three hospitals in Beijing to treat patients with SARS in April 2003.

MATERIALS AND METHODS

Patients
Our study included all patients who received a diagnosis of SARS with no pre-existing live diseases and were treated at the China-Japan Friendship Hospital between March 10 and May 31, 2003, and excluded such patients with a history of liver disorders. According to the criteria for SARS that have been established by the Ministry of Health, China-Clinical Diagnostic Criteria for Severe Acute Respiratory Syndrome[10], our case definition was a fever (temperature >38 °C), a chest radiograph of the thorax showing evidence of consolidation with or without respiratory symptoms and a history of close contact with a person to whom SARS had been diagnosed. The diagnosis was confirmed by an indirect immunofluorescence assay with fetal rhesus kidney cells that were infected with coronavirus and fixed in acetone to detect a serological response to the virus[11] or by a positive viral culture. Patients in the study included 103 male and 79 female with age ranging from 11 to 86. The age distribution is shown in Table 1.

Table 1 Age distribution of the patient

Age range (yr)	Case number (n)	%
Under 20	18	9.89
21-30	45	24.73
31-40	35	19.23
41-50	29	15.93
51-60	18	9.89
Above 60	37	20.33

Laboratory examination
Hepatic functions included alanine aminopeptidase (ALT), aspartate aminotransferase (AST) and lactic dehydrogenase (LDH). We studied these variables from the first day of admission to May 31, 2003. The normal values of these enzymes were 0-40 U/L for ALT, 0-42 U/L for AST and 100-250 U/L for LDH.

Data collection
We retrospectively analyzed data from 3 aspects. First, total incidence rate of abnormal liver enzyme activities were analyzed from 182 patients with SARS. Second, the time course of abnormal liver enzyme activities was dissected in 57 patients because these patients were admitted to China-Japan Friendship Hospital from beginning of the illness. The other large proportion of patients with SARS was transferred to China-Japan Friendship Hospital after the hospital was designated
specifically to treat patients with SARS on April 28, 2003. Third, analysis of ribavirin treatment for patients with SARS was performed in 84 cases, as well as their abnormal liver enzyme activities after ribavirin treatment.

Statistical analysis

We used univariate analysis to compare patients with normal and abnormal serum hepatic enzyme activities, and an unpaired Student’s t test, χ² test, or Fisher’s exact test, as appropriate. We then performed multiple logistic regression analysis with stepwise analysis to identify independent predictors of the abnormality. A P value of less than 0.05 was considered to indicate statistical significance. All probabilities are two tailed. Statistical analysis software StatView 5.0 for Macintosh OS was employed and data were reported as mean±SD unless otherwise indicated.

RESULTS

Between March 10, and May 31, 2003, more than 100 of patients with SARS were admitted to the China-Japan Friendship Hospital; especially on May 8 a large number of patients with SARS were transferred to our hospital at severe stage and some patients were at convalescent stage. Serum samples were collected immediately after the patients were admitted to the hospital. The study included 103 male and 79 female patients from all ethnic background. The mean age was 40.42 years (range 15-78 years).

Incidence rate of abnormal liver enzyme activities in 182 patients

Transiently elevated ALT was observed in 128 (70.3%) patients with SARS. Of the 182 patients with SARS, 57 (31.3%) had elevated AST while 87 (47.8%) had abnormal LDH as indicated in Table 2.

Time course of abnormal liver enzyme activities

The time course of abnormal liver enzyme activities was obtained from 57 patients with SARS who were admitted to our hospital at the beginning of illness. The earliest day of abnormal liver enzyme activities was the first day of illness. The peak of abnormal liver enzyme activities was between the sixth and the tenth d of illness. Liver function started to recover 15 d after onset. However, for some patients, abnormal liver enzyme activities could last for almost a month (Figure 1).

Comparison of liver enzyme activities before and after hospital treatment

To explore whether hospital treatment could lead to abnormal liver enzyme activities in patients with SARS, we analyzed data of all patients who had normal or abnormal liver enzyme activities before and after hospital treatment. The deadline for entering analysis was June 15, 2003. Patients with hospital treatment less than 15 d were excluded from the study. As shown in Table 3, statistically significant difference was observed in AST and LDH (P<0.01) while no significant difference was obtained in ALT.

Hospital treatment in 182 patients with SARS

Most patients with SARS in our hospital received empirical treatment with antibiotics or ribavirin 400-500 mg, twice daily, or intravenous methylprednisolone at high dosage. As listed in Table 4, of the 182 patients with SARS, 160 (87.9%) received antibiotics, 137 (75.2%) received ribavirin and 115 (63.2%) received methylprednisolone. Since Ribavirin is a drug that inhibits viral replication, it has been widely used in patients with SARS after it was confirmed that coronavirus is etiological factor of SARS. We further analyzed the duration of Ribavirin treatment and its relation to abnormal liver enzyme activities in patients with SARS.
patients received ribavirin treatment at days 6 to 10. A total of 55(65.5%) patients with SARS received ribavirin treatment within 5 d of the illness while a total of 72(85.7%) patients received ribavirin treatment within 10 d of the illness.

Correlation of ribavirin treatment and abnormal liver enzyme activities

Correlation of ribavirin treatment and abnormal liver enzyme activities was analyzed in 84 patients with SARS. The duration of ribavirin treatment was different among these patients. Twenty-six (29.8%) patients with SARS received ribavirin treatment for 1 to 7 d, 32(35.7%) patients for 8 to 14 d, 20(22.6%) patients for 15 to 21 d and 10(11.9%) patients for more than 22 d. However, as shown in Table 5, there was small increase in liver enzyme activities in patients with longer Ribavirin treatment, but it did not reach statistically significant.

Table 5 The distribution of ribavirin treatment in 84 SARS patients

Treatment	Days 1-3	Days 4-5	Days 6-10	Days 11-20	Days 21-30	Days 30
Cases number	32	23	17	8	3	1
%	38.1%	27.4%	20.2%	9.5%	3.6%	1.2%

DISCUSSION

Abnormal serum liver enzyme activities have been reported by different hospitals with inconsistent incident rates. It was reported that there were 44.7% patients with SARS having abnormal liver enzyme activities in Guangzhou Southern Hospital[11]. And 53.3% was reported in the First Hospital of Beijing University[12]. Moreover, 40% patients with SARS having abnormal liver enzyme activities were reported in hospitals around great Toronto area[9]. In our study, we have found that 70% patients with SARS suffered from abnormal liver enzyme activities. The higher percentage of liver damage in our patients might be related to the fact that large number of patients with severe illness were transferred to our hospital.

The difference between these reports may also be associated with different treatment strategies between these areas, especially in the use of ribavirin. Ribavirin (1-b-D- ribofuranosyl- 1,2,4-triazole), a broad spectrum antiviral nucleoside, is one of the first antiviral drugs ever discovered. It was first approved in the United States in an aerosol form for the treatment of a severe lung infection in infants[13]. Recently, it has been employed as an anti-HIV treatment[14,15] and in combination with interferon for the treatment of hepatitis A, B, and C[16,20]. Compared with hospitals around great Toronto area (88%), the usage of ribavirin in our hospital (75%) was less. However there were a larger proportion of patients (70%) with abnormal liver enzyme activities in our hospital than that (40%) in hospital around Toronto area. This indicated that ribavirin could not be a contributing factor for abnormal liver enzyme activities observed in patients with SARS. Although there was an increased trend of elevated liver enzyme activities with duration of ribavirin treatment, there was no statistic significant correlation between abnormal liver enzyme activities and duration of ribavirin treatment.

Abnormal liver enzyme activities could also be caused by coronavirus induced liver damage. Although liver biopsy was not feasible in these patients, pathological evaluation of the fatal cases revealed that hepatocytes underwent fatty degeneration, cloudy swelling, focal hemorrhage, apoptosis and dot necrosis, Kupffer cell proliferation, portal infiltration of lymphocytes and dispersive eosinophilic body in the liver[22,23]. There was an enlargement of the liver in 23 patients with SARS in our study observed by B-ultrasonic examination (data reported in another study). Because of difficulty in clinical practice, it was not documented whether pathological impairments of liver function and structure were present in the early stage of the disease. However, we have used herbal medicines and liver protective drugs in these patients. These treatments did not alter the outcome of abnormal liver enzyme activities. Therefore, it is unlikely that hospital treatment contributes to the outcome of abnormal liver enzyme activities in patients with SARS.

Our conclusions are that abnormal liver enzyme activities are common in patients with SARS and coronaviruses that cause severe acute respiratory syndrome might affect the liver and induce liver damage in the course of infection.

REFERENCES

1. Luo D. SARS treatment: experience from a team in Guangdong, China. Chin Med J 2003; 116: 938-939.
2. Chan YM, Yu WC. Outbreak of severe acute respiratory syndrome in Hong Kong Special Administrative Region: case report. BMJ 2003; 326: 850-852.
3. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja MA, Yang MY, Leung CB, To KF, Lui SF, Szeto CC, Chung S, Sung JY. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348: 1986-1994.
4. Poutanen SM, Low DE, Henry B, Finkelstein S, Rose D, Green K, Tellier R, Draker R, Adachi D, Ayers M, Chan AK, Skowronski DM, Salit I, Simor AE, Slutsky AS, Doyle PW, Krajden M, Petric M, Brunham RC, McGeer AJ. Identification of severe acute respiratory syndrome in Canada. N Engl J Med 2003; 348: 1995-2005.
5. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabanau H, Panning M, Koeneleva L, Fouchier RA, Berger A, Burguier AM, Cinatl J, Eickmann M, Escroui N, Grykova K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vlie H, Klenk HD, Osterhaus AD, Schmitz H, Doen HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348: 1967-1976.
6. Ksiazek TG, Erdman DM, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shiue WJ, Guerjian J, Paddock CD, Rota P, Fields D, Birisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003; 348: 1953-1966.
7. Petris JS, Lai ST, Poon LL, Guan Y, Lam PY, Lim W, Nicholls J, Yee WW, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003; 363: 1319-1325.
8. Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der Werf S, Escroui N, Manuguerra JC, Sturh K, Petris JS, Osterhaus AD. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 2003; 362: 263-270.
9. Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, Walmsey SL, Mazzulli T, Avendano M, Derkach P, Ephthimiou IE, Kutla I, Mederski BD, Shadowitz SB, Gold WL, Hawryluck LA, Raa E, Chenkin JS, Cescon DW, Poutanen SM, Detak S. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 2003; 289: 3990-3995.
10. Ministry of Health, PR China. Clinical diagnostic criteria for Severe Acute Respiratory Syndrome (SARS) (On Trial). http://www.chinadd.clinetcn/56/kong56-2htm/# May 3, 2003.
11. Peng J, Hou JL, Guo YB, Feng YK, Cheng JJ, Liu DL, Zhu YY, Jiang RL, Chen YP. Clinical features of severe acute respiratory syndrome in the Guangzhou area. Zhonghua J Chuanranbing 2003; 21: 89.
12. Huo N, Lu HY, Xu XY, Wang GF, Li HC, Wang GQ, Li JP, Wang J, Nie LG, Gao XM, Zhao ZH, Li JJ, Li YH, Zhuang H. The clinical characteristics and outcome of 45 early patients with SARS. Beijing Da Xu Ke Zao 2003; 35(1): 19-22.
13 Hall CB, McBride JT, Walsh EE, Bell DM, Gala CL, Hildreth S, Ten Eyck LG, Hall WJ. Aerosolized Ribavirin treatment of infants with respiratory syncytial viral infection. A randomized double-blind study. N Engl J Med 1983; 308: 1443-1447

14 Japour AJ, Lertora JJ, Meehan PM, Erice A, Connor JD, Griffith BP, Clax PA, Holden-Wiltse J, Hussey S, Walesky M, Cooney E, Pollard R, Timpone J, McLaren C, Johansson N, Wood K, Booth D, Bassiakos Y, Crumpacker CS. A phase-I study of the safety, pharmacokinetics, and antiviral activity of combination didanosine and Ribavirin in patients with HIV-1 disease. AIDS Clinical Trials Group 231 Protocol Team. J Acquir Immune Defic Syndr Hum Retrovirol 1996; 13: 235-246

15 Vogt MW, Hartshorn KL, Furman PA, Chou TC, Fyfe JA, Coleman LA, Crumpacker C, Schooley RT, Hirsch MS. Ribavirin antagonizes the effect of azidothymidine on HIV replication. Science 1987; 235: 1376-1379

16 Crotty S, Andino R. Implications of high RNA virus mutation rates: lethal mutagenesis and the antiviral drug Ribavirin. M i c r o b e s Infect 2002; 4: 1301-1307

17 Meier V, Burger E, Mihm S, Saile B, Ramadori G. Ribavirin inhibits DNA, RNA, and protein synthesis in PHA-stimulated human peripheral blood mononuclear cells: possible explanation for therapeutic efficacy in patients with chronic HCV infection. J Med Virol 2003; 69: 50-58

18 Saito Y, Escuret V, Durandel D, Zoulim F, Schinazi RF, Agrofoglio LA. Synthesis of 1, 2, 3-triazolo-carbanucleoside analogues of Ribavirin targeting an HCV in replicon. Bioorg Med Chem 2003; 11: 3633-3639

19 Liu CJ, Chen PJ, Lai MY, Kao JH, Jeng YM, Chen DS. Ribavirin and interferon is effective for hepatitis C virus clearance in hepatitis B and C dually infected patients. Hepatology 2003; 37: 568-576

20 Rakove NE. Peginterferon alfa-2a plus Ribavirin for chronic hepatitis C. N Engl J Med 2003; 348: 259-260

21 Zhang H, Yang G, Yang X. Prospective study of combination of interferon-alpha with Ribavirin for treatment of chronic hepatitis C in children. Zhonghua Shiyan Helin Chuangbing Duxue Zazhi 2001; 15: 81-82

22 Wang CE, Qin ED, Gan YH, Li YC, Wu XH, Cao JT, Yu M, Si BY, Yan G, Li JF, Zhu QY. Pathological observation on sucking mice and Vero E6 cells inoculated with SARS samples. Jifangjun Yuxue Zazhi 2003; 28: 383-384

23 Hong T, Wang JW, Sun YL, Duan SM, Chen LB, Qu JG, Ni AP, Liang GD, Ren LL, Yang RQ, Guo L, Zhou WM, Chen J, Li DX, Xu WB, Xu H, Guo YJ, Dai SL, Bi SL, Dong XP, Ruan L. Chlamydia-like and coronavirus-like agents found in dead cases of atypical pneumonia by electron microscopy. Zhonghua Yixue Zazhi 2003; 83: 632-636

Edited by Zhu LH Proofread by Xu FM