Zone-based verification of timed automata: Extrapolations, simulations and what next?

Patricia Bouyer

Laboratoire Méthodes Formelles
Université Paris-Saclay, CNRS, ENS Paris-Saclay
France

Based on a survey paper written with Paul Gastin, Frédéric Herbreteau, Ocan Sankur and B. Srivathsan

Partly supported by ANR projet Ticktac
Timed Automata

[AD90] Alur, Dill: Automata For Modeling Real-Time Systems (ICALP'90)
[AD94] Alur, Dill: A Theory of Timed Automata (TCS)
Timed Automata

- Infinitely many configurations!
- Decidability proven using regions
- Reachability is PSPACE-complete
Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general
Alternative: zone-based symbolic computation
Zones and DBMs

- Zone = symbolic representation

\[Z = (x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4) \]

Enumerative approach: not possible
Region construction: not feasible in general
Alternative: zone-based symbolic computation
Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general
Alternative: **zone-based symbolic computation**

- Zone = symbolic representation
 \[Z = (x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4) \]

- DBM = data structure

	\(x_0 \)	\(x_1 \)	\(x_2 \)
\(x_0 \)	+\(\infty \)	-3	0
\(x_1 \)	+\(\infty \)	+\(\infty \)	4
\(x_2 \)	5	+\(\infty \)	+\(\infty \)
Zones and DBMs

- Enumerative approach: not possible
- Region construction: not feasible in general
- Alternative: **zone-based symbolic computation**

- Zone = symbolic representation

\[Z = (x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4) \]

- DBM = data structure

\[
\begin{pmatrix}
 x_0 & x_1 & x_2 \\
 x_0 & +\infty & -3 & 0 \\
 x_1 & +\infty & +\infty & 4 \\
 x_2 & 5 & +\infty & +\infty \\
\end{pmatrix}
\]
Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general
Alternative: zone-based symbolic computation

- Zone = symbolic representation
 \[Z = (x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4) \]

- DBM = data structure

\[
\begin{pmatrix}
 x_0 & x_1 & x_2 \\
 x_0 & +\infty & -3 & 0 \\
 x_1 & +\infty & +\infty & 4 \\
 x_2 & 5 & +\infty & +\infty \\
\end{pmatrix}
\]
Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general
Alternative: **zone-based symbolic computation**

- Zone = symbolic representation
 \[Z = (x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4) \]

- DBM = data structure

\[
\begin{pmatrix}
 x_0 & x_1 & x_2 \\
 x_0 & +\infty & -3 & 0 \\
 x_1 & +\infty & +\infty & 4 \\
 x_2 & 5 & +\infty & +\infty \\
\end{pmatrix}
\]
Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general
Alternative: **zone-based symbolic computation**

- Zone = symbolic representation

 \[Z = (x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4) \]

- DBM = data structure

 \[
 \begin{array}{ccc}
 x_0 & x_1 & x_2 \\
 x_0 & 0 & -3 & 0 \\
 x_1 & 9 & 0 & 4 \\
 x_2 & 5 & 2 & 0 \\
 \end{array}
 \]

 Normal form
Operations on zones

\[
\begin{align*}
&x_0 \begin{pmatrix} 0 & -3 & 0 \end{pmatrix} \\
&x_1 \begin{pmatrix} 9 & 0 & 4 \end{pmatrix} \\
&x_2 \begin{pmatrix} 5 & 2 & 0 \end{pmatrix}
\end{align*}
\sim
\begin{align*}
&x_0 \begin{pmatrix} 0 & -3 & 0 \end{pmatrix} \\
&x_1 \begin{pmatrix} +\infty & 0 & 4 \end{pmatrix} \\
&x_2 \begin{pmatrix} +\infty & 2 & 0 \end{pmatrix}
\end{align*}
\]
Operations on zones

\[\begin{align*}
\mathbf{x}_0 & \begin{pmatrix} 0 & -3 & 0 \end{pmatrix} \\
\mathbf{x}_1 & \begin{pmatrix} 5 & 0 & 4 \end{pmatrix} \\
\mathbf{x}_2 & \begin{pmatrix} 5 & 2 & 0 \end{pmatrix}
\end{align*} \quad \overset{\sim}{\rightarrow} \quad \begin{align*}
\mathbf{x}_0 & \begin{pmatrix} 0 & -3 & 0 \end{pmatrix} \\
\mathbf{x}_1 & \begin{pmatrix} +\infty & 0 & 4 \end{pmatrix} \\
\mathbf{x}_2 & \begin{pmatrix} +\infty & 2 & 0 \end{pmatrix}
\end{align*} \]
Operations on zones

\[x_0 \begin{pmatrix} 0 & -3 & 0 \\ 9 & 0 & 4 \\ 5 & 2 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & -3 & 0 \\ 9 & 0 & 9 \\ 0 & -3 & 0 \end{pmatrix} \]
Operations on zones

If Z is a zone, then $Z' = [Y](Z \cap g)$ is a zone.

The computation can be made in $\mathcal{O}(|X|^2 \cdot |g|)$.
Initialize \mathcal{S} with $(q_0, \vec{0})$

Repeat until saturation:

- If $(q, Z) \in \mathcal{S}$, then add (q', Z') to \mathcal{S},
 where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q'$
 unless there is $(q', Z'') \in \mathcal{S}$ s.t. $Z' \subseteq Z''$
Standard forward computation

- Initialize \mathcal{S} with $(q_0, \overrightarrow{0})$

- Repeat until saturation:
 - If $(q, Z) \in \mathcal{S}$, then add (q', Z') to \mathcal{S}, where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q'$ unless there is $(q', Z'') \in \mathcal{S}$ s.t. $Z' \subseteq Z''$

Inclusion test
Can be made in $\tilde{O}(|X|^2)$
Standard forward computation

- Initialize S with $(q_0, 0)$
- Repeat until saturation:
 - If $(q, Z) \in S$, then add (q', Z') to S,
 where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q'$,
 unless there is $(q', Z'') \in S$ s.t. $Z' \subseteq Z''$

Three properties

- Soundness: for every $(q, Z) \in S$, there is $v \in Z$ s.t. (q, v) reachable

Inclusion test
Can be made in $O(|X|^2)$
Initialize \mathcal{S} with (q_0, \emptyset)

Repeat until saturation:

- If $(q, Z) \in \mathcal{S}$, then add (q', Z') to \mathcal{S}, where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q'$ unless there is $(q', Z'') \in \mathcal{S}$ s.t. $Z' \subseteq Z''$

Three properties

- Soundness: for every $(q, Z) \in \mathcal{S}$, there is $v \in Z$ s.t. (q, v) reachable
- Completeness: for every reachable (q, v), there is $(q, Z) \in \mathcal{S}$ s.t. $v \in Z$

Inclusion test
Can be made in $\mathcal{O}(|X|^2)$
Standard forward computation

- Initialize \mathcal{S} with (q_0, \emptyset)
- Repeat until saturation:
 - If $(q, Z) \in \mathcal{S}$, then add (q', Z') to \mathcal{S}, where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q'$ unless there is $(q', Z'') \in \mathcal{S} \text{ s.t. } Z' \subseteq Z''$

Three properties

- Soundness: for every $(q, Z) \in \mathcal{S}$, there is $v \in Z$ s.t. (q, v) reachable
- Completeness: for every reachable (q, v), there is $(q, Z) \in \mathcal{S}$ s.t. $v \in Z$
- Termination: saturation eventually happens
Standard forward computation

- Initialize \mathcal{S} with (q_0, \emptyset)
- Repeat until saturation:
 - If (q, Z), then add $\mathcal{S}(q, Z)$, unless there is $v \in Z$ s.t.
 $\mathcal{S}(q', Z') \in \mathcal{S}$
 $Z' \subseteq Z'$

Three properties

- Soundness: for every $(q, Z) \in \mathcal{S}$, there is $v \in Z$ s.t. (q, v) reachable
- Completeness: for every reachable (q, v), there is $(q, Z) \in \mathcal{S}$ s.t. $v \in Z$
- Termination: saturation eventually happens

The computation does not terminate in general

Inclusion test can be made in $O(|X|^2)$
Two approaches

- Extrapolation
- Simulation
The extrapolation approach
The extrapolation approach

- Initialize \mathcal{S} with $(q_0, \vec{0})$
- Repeat until saturation:
 - If $(q, Z) \in \mathcal{S}$, then add $(q', \text{extra}(Z'))$ to \mathcal{S}, where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q'$ unless there is $(q', Z'') \in \mathcal{S}$ s.t. $\text{extra}(Z') \subseteq Z''$
The extrapolation approach

- Initialize S with $(q_0, \vec{0})$
- Repeat until saturation:
 - If $(q, Z) \in S$, then add $(q', \text{extra}(Z'))$ to S, where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q'$ unless there is $(q', Z'') \in S$ s.t. $\text{extra}(Z') \subseteq Z''$

 NF after extrapolation can be computed in $\mathcal{O}(|X|^3)$

 Inclusion can be decided in $\mathcal{O}(|X|^2)$
The extrapolation approach

- Initialize \mathcal{S} with $(q_0, \vec{0})$
- Repeat until saturation:
 - If $(q, Z) \in \mathcal{S}$, then add $(q', \text{extra}(Z'))$ to \mathcal{S},
 where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q'$
 unless there is $(q', Z'') \in \mathcal{S}$ s.t. $\text{extra}(Z') \subseteq Z''$

Operator extra defined s.t.

- Termination is ensured (extra has finite range)
- Completeness is obvious
- **Soundness is challenging**

NF after extrapolation can be computed in $\mathcal{O}(|X|^3)$

Inclusion can be decided in $\mathcal{O}(|X|^2)$
Extrapolation

Remove « irrelevant »
constants w.r.t. the automaton
\[\Rightarrow \text{syntactic on the DBM} \]

\[
\begin{pmatrix}
x_0 & x_1 & x_2 \\
x_0 & 0 & -3 & 0 \\
x_1 & 9 & 0 & 4 \\
x_2 & 5 & 2 & 0 \\
\end{pmatrix}
\]
Extrapolation

Remove « irrelevant »
constants w.r.t. the automaton
⇝
syntactic on the DBM

	x_0	x_1	x_2
x_0	0	-3	0
x_1	9	0	4
x_2	5	2	0

\Rightarrow

	x_0	x_1	x_2
x_0	0	-2	0
x_1	+\infty	0	+\infty
x_2	+\infty	2	0
Extrapolation

Remove « irrelevant » constants w.r.t. the automaton
\(~\rightarrow\) syntactic on the DBM
Extrapolation

Remove « irrelevant » constants w.r.t. the automaton
→ syntactic on the DBM

- Extrapolation [DT98,Bou03,Bou04]
- State-dependent extrapolation [BBFL03]
- LU-extrapolation [BBLP04,BBLP06]
Extrapolation

Remove « irrelevant » constants w.r.t. the automaton
\(\leadsto\) syntactic on the DBM

- Extrapolation [DT98,Bou03,Bou04]
- State-dependent extrapolation [BBFL03]
- LU-extrapolation [BBLP04,BBLP06]

⇒ Soundness requires to show that extra is a simulation-based abstraction:
\[
\forall v' \in \text{extra}(Z) \exists v \in Z \text{ s.t. } v' \leq v
\]
Extrapolation

- Remove « irrelevant » constants w.r.t. the automaton
 -→ syntactic on the DBM

- Extrapolation [DT98,Bou03,Bou04]
- State-dependent extrapolation [BBFL03]
- LU-extrapolation [BBLP04,BBLP06]

⇒ Soundness requires to show that extra is a simulation-based abstraction: \(\forall v' \in \text{extra}(Z) \exists v \in Z \text{ s.t. } v' \leq v \)
Extrapolation

- Remove « irrelevant » constants w.r.t. the automaton
 \[\rightsquigarrow\] syntactic on the DBM

- Extrapolation [DT98, Bou03, Bou04]
- State-dependent extrapolation [BBFL03]
- LU-extrapolation [BBLP04, BBLP06]

- Soundness requires to show that \(\text{extra}\) is a simulation-based abstraction:
 \[
 \forall v' \in \text{extra}(Z) \exists v \in Z \text{ s.t. } v' \leq v
 \]
Extrapolation

Remove « irrelevant » constants w.r.t. the automaton
→ syntactic on the DBM

- Extrapolation [DT98,Bou03,Bou04]
- State-dependent extrapolation [BBFL03]
- LU-extrapolation [BBLP04,BBLP06]

⇒ Soundness requires to show that extra is a simulation-based abstraction: \(\forall v' \in \text{extra}(Z) \ \exists v \in Z \ \text{s.t.} \ v' \leq v \)

[DT98] Daws, Tripakis: Model-checking of real-time reachability properties using abstractions (TACAS'98)
[Bou04] Bouyer: Forward analysis of updatable timed automata (FMSD)
[BBFL03] Behrmann, Bouyer, Fleury, Larsen: Static guard analysis in timed automata verification (TACAS'03)
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek: Lower and upper bounds in zone based abstractions of timed automata (TACAS'04)
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT)
Limits of the extrapolation approach

[Bou03] Bouyer: Untameable timed automata! (STACS’03)
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT)
[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)
The extrapolation is required to transform a zone into a zone

[Bou03] Bouyer: Untameable timed automata! (STACS’03)
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT)
[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)
Limits of the extrapolation approach

- The extrapolation is required to transform a zone into a zone
- It does not benefit from the coarsest abstractions of zones [HKSW11]
 - The region closure would in principle be sound, but it is not convex
 - The LU-abstraction $a_{LU}(Z) = \{ v' \mid \exists v \in Z \text{ s.t. } v' \leq_{LU} v \}$ would in principle be sound [BBLP06], but it is not convex

[Bou03] Bouyer: Untameable timed automata! (STACS’03)
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT)
[HKSW11] Herbreteau, Kini, Srinivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)
Limits of the extrapolation approach

- The extrapolation is required to transform a zone into a zone
- It does not benefit from the coarsest abstractions of zones [HKSW11]
 - The region closure would in principle be sound, but it is not convex
 - The LU-abstraction $a_{LU}(Z) = \{ v' \mid \exists v \in Z \text{ s.t. } v' \leq_{LU} v \}$ would in principle be sound [BBLP06], but it is not convex
- The approach does not apply to timed automata with diagonal constraints [Bou03]

[Bou03] Bouyer: Untameable timed automata! (STACS’03)
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT)
[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)
The buggy automaton

[Bou03] Bouyer. Untameable timed automata! (STACS’03).
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).
The buggy automaton

After \(\alpha \) loops, the zone which is reached at \(q_6 \) is

\[
Z_{\alpha} := (1 \leq x_2 - x_1 \leq 3) \land (1 \leq x_4 - x_3 \leq 3) \land (x_4 - x_2 = x_3 - x_1 = 2\alpha + 5)
\]
The buggy automaton

After α loops, the zone which is reached at q_6 is

$$Z_\alpha := (1 \leq x_2 - x_1 \leq 3) \land (1 \leq x_4 - x_3 \leq 3) \land (x_4 - x_2 = x_3 - x_1 = 2\alpha + 5)$$

- There is no extrapolation, which preserves zones, which is sound and finite for this timed automaton with diagonal constraints.

[Bou03] Bouyer. Untameable timed automata! (STACS’03).
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).
The simulation approach
The simulation approach

- Initialize \mathcal{S} with $(q_0, 0)$
- Repeat until saturation:
 - If $(q, Z) \in \mathcal{S}$, then add (q', Z') to \mathcal{S}, where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q' $
 - unless there is $(q', Z'') \in \mathcal{S}$ s.t. $Z' \leq Z''$
The simulation approach

- Initialize \(\mathcal{S} \) with \((q_0, \vec{0})\)
- Repeat until saturation:
 - If \((q, Z) \in \mathcal{S}\), then add \((q', Z')\) to \(\mathcal{S}\), where \(Z' = [Y](Z \cap g)\) is the successor via \(q \xrightarrow{g,Y} q'\) unless there is \((q'', Z'') \in \mathcal{S}\) s.t. \(Z' \leq Z''\)

Properties:
- Termination is ensured if we require \(\leq\) has a finite-chain property
- Soundness is obvious
- Completeness relies on a simulation property for \(\leq\)
The simulation approach

- Initialize \mathcal{S} with $(q_0, 0)$
- Repeat until saturation:
 - If $(q, Z) \in \mathcal{S}$, then add (q', Z') to \mathcal{S}, where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q'$ unless there is $(q', Z'') \in \mathcal{S}$ s.t. $Z' \leq Z''$

Properties

- Termination is ensured if we require \leq has a finite-chain property
- Soundness is obvious
- Completeness relies on a simulation property for \leq
The simulation approach

- Initialize \mathcal{S} with (q_0, \emptyset)
- Repeat until saturation:
 - If $(q, Z) \in \mathcal{S}$, then add (q', Z') to \mathcal{S}, where $Z' = [Y](Z \cap g)$ is the successor via $q \xrightarrow{g,Y} q'$, unless there is $(q'', Z'') \in \mathcal{S}$ s.t. $Z' \leq Z''$

Properties

- Termination is ensured if we require \leq has a finite-chain property
- Soundness is obvious
- Completeness relies on a simulation property for \leq
Simulation \leq

If $(q, v_1) \leq (q, v_2)$

δ

$(q, v_1 + \delta)$
If \((q, v_1) \preceq (q, v_2)\)

then \((q, v_1 + \delta) \preceq (q, v_2 + \delta)\)
Simulation \leq

If $(q, v_1) \leq (q, v_2)$

then $(q, v_1 + \delta) \leq (q, v_2 + \delta)$

If $(q, v_1) \leq (q, v_2)$

(q', v_1')
Simulation \leq

\begin{align*}
\text{If} \quad & (q, v_1) \leq (q, v_2) \\
\text{then} \quad & (q, v_1 + \delta) \leq (q, v_2 + \delta) \\
\text{then} \quad & (q', v_1') \leq (q', v_2')
\end{align*}
Simulation \preceq

If $(q, v_1) \preceq (q, v_2)$

then $(q, v_1 + \delta) \preceq (q, v_2 + \delta)$

If $(q, v_1) \preceq (q, v_2)$

then $(q', v_1') \preceq (q', v_2')$

Inclusion « up-to » simulation

$(q, Z_1) \preceq (q, Z_2)$ iff $\forall v_1 \in Z_1, \exists v_2 \in Z_2 \text{ s.t. } (q, v_1) \preceq (q, v_2)$
Simulation \preceq

\[
\begin{align*}
\text{If} \quad (q, v_1) & \preceq (q, v_2) \\
\quad \delta & \quad \delta \\
\text{then} \quad (q, v_1 + \delta) & \preceq (q, v_2 + \delta)
\end{align*}
\]

\[
\begin{align*}
\text{If} \quad (q, v_1) & \preceq (q, v_2) \\
\quad t & \quad t \\
\text{then} \quad (q', v_1') & \preceq (q', v_2')
\end{align*}
\]

Inclusion « up-to » simulation

\[
(q, Z_1) \preceq (q, Z_2) \iff \forall v_1 \in Z_1, \exists v_2 \in Z_2 \text{ s.t. } (q, v_1) \preceq (q, v_2)
\]

- Note: \((q, Z_1) \preceq (q, Z_2) \iff Z_1 \subseteq \text{Closure}_\preceq(Z_2)
\]
 \iff \text{Closure}_\preceq(Z_1) \subseteq \text{Closure}_\preceq(Z_2)\)
And concretely?
The region equivalence [HKSW11]

- It has the finite-chain property
- The corresponding inclusion « up-to » can be decided in $\Theta(|X|^2)$
And concretely?

- The region equivalence [HKSW11]
- The LU-simulation [HSW12]

It has the finite-chain property

The corresponding inclusion « up-to » can be decided in $\Theta(|X|^2)$
And concretely?

- The region equivalence [HKSW11]
- The LU-simulation [HSW12]
- The \mathcal{G}-simulation [GMS18,GMS19,GMS20]

It has the finite-chain property

The corresponding inclusion « up-to » can be decided in $\Theta(|X|^2)$
And concretely?

- The region equivalence [HKSW11]
- The LU-simulation [HSW12]
- The G-simulation [GMS18,GMS19,GMS20]
 - It is coarser than the LU-simulation for diagonal-free automata

It has the finite-chain property

The corresponding inclusion « up-to » can be decided in $O(|X|^2)$
The region equivalence [HKSW11]

The LU-simulation [HSW12]

The G-simulation [GMS18,GMS19,GMS20]
- It is coarser than the LU-simulation for diagonal-free automata
- It is correct for timed automata with diagonal constraints!

It has the finite-chain property

The corresponding inclusion « up-to » can be decided in $\mathcal{O}(|X|^2)$

The corresponding inclusion « up-to » is NP-complete
And concretely?

- The region equivalence [HKSW11]
- The LU-simulation [HSW12]
- The G-simulation [GMS18, GMS19, GMS20]
 - It is coarser than the LU-simulation for diagonal-free automata
 - It is correct for timed automata with diagonal constraints!
 - Adapts to (« decidable ») automata with updates

It has the finite-chain property

The corresponding inclusion « up-to » can be decided in $\Theta(|X|^2)$

The corresponding inclusion « up-to » is NP-complete
And concretely?

- The region equivalence [HKSW11]
- The LU-simulation [HSW12]
- The G-simulation [GMS18,GMS19,GMS20]
 - It is coarser than the LU-simulation for diagonal-free automata
 - It is correct for timed automata with diagonal constraints!
 - Adapts to (« decidable ») automata with updates

It has the finite-chain property

The corresponding inclusion « up-to » can be decided in $\mathcal{O}(|X|^2)$

The corresponding inclusion « up-to » is NP-complete

[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)
[HSW12] Herbreteau, Srivathsan, Walukiewicz: Better Abstractions for Timed Automata (LICS’12)
[GMS18] Gastin, Mukherjee, Srivathsan: Reachability in Timed Automata with Diagonal Constraints (CONCUR’18)
[GMS19] Gastin, Mukherjee, Srivathsan: Fast Algorithms for Handling Diagonal Constraints in Timed Automata (CAV’19)
[GMS20] Gastin, Mukherjee, Srivathsan: Reachability for Updatable Timed Automata Made Faster and More Effective (FSTTCS’20)
Constraints relevant at q: $\mathcal{G}(q)$
Constraints relevant at q: $\mathcal{G}(q)$

\[\begin{cases} \{g_1, g_2\} \subseteq \mathcal{G}(q) \\ \text{pre}(\mathcal{G}(q_i), Y_i) \subseteq \mathcal{G}(q) \end{cases} \]
Constraints relevant at q: $\mathcal{G}(q)$

\[
\begin{align*}
\{g_1, g_2\} &\subseteq \mathcal{G}(q) \\
\text{pre}(\mathcal{G}(q_i), Y_i) &\subseteq \mathcal{G}(q)
\end{align*}
\]

\[
\text{pre}(x \boxtimes c, Y) = \begin{cases}
\{x \boxtimes c\} & \text{if } x \notin Y \\
\emptyset & \text{if } x \in Y
\end{cases}
\]

\[
\text{pre}(x - y \boxtimes c, Y) = \begin{cases}
\{x - y \boxtimes c\} & \text{if } x, y \notin Y \\
\{x \boxtimes c\} & \text{if } x \notin Y, y \in Y \\
\{-y \boxtimes c\} & \text{if } x \in Y, y \notin Y \\
\emptyset & \text{if } x, y \in Y
\end{cases}
\]
Constraints relevant at q: $\mathcal{G}(q)$

- Fixpoint computation terminates for timed automata; it also terminates for known decidable classes of updatable timed automata.
The G-simulation
The \(\mathcal{G} \)-simulation

Let \(\mathcal{G} \) be the previous mapping

- We say that \((q, v) \leq_{\mathcal{G}} (q, v') \) whenever for every \(\varphi \in \mathcal{G} \), for every \(\delta \geq 0 \), \(v + \delta \vDash \varphi \) implies \(v' + \delta \vDash \varphi \)
We say that $(q, v) \preceq_G (q, v')$ whenever for every $\varphi \in G$, for every $\delta \geq 0$, $v + \delta \models \varphi$ implies $v' + \delta \models \varphi$.

Theorem

- \preceq_G is a simulation relation
- It satisfies the finite-chain property on zones
An example

q_7 is not reachable

$\{x_3 \leq 3, x_2 = 3, x_4 < 2\}$

$\{x_1 = 1, x_2 = 3, x_4 < x_3 + 2\}$

$\{x_1 = 2, x_2 = 2, x_4 < x_3 + 2\}$

$\{x_1 = 2, x_2 = 2, x_4 < x_3 + 2\}$

$\{x_1 = 2, x_2 = 2, x_4 < x_3 + 2\}$
An example

The \mathcal{G} mapping

q_7 is not reachable
An example

The \mathcal{G} mapping

- On this automaton, any extrapolation-based method fails \cite{Bou04}
- The $\leq_{\mathcal{G}}$-simulation approach terminates at the second iteration
Going further
Going further

- Liveness properties [HSWT16, HSWT20]
Going further

- Liveness properties [HSWT16, HSWT20]
- Weighted timed automata [BCM16]
- Pushdown timed automata [AGP21] (talk of Akshay at SNR)
- Event-clock automata [AGGS22]
Going further

- Liveness properties [HSWT16, HSWT20]
- Weighted timed automata [BCM16]
- Pushdown timed automata [AGP21] (talk of Akshay at SNR)
- Event-clock automata [AGGS22]

[BCM16] Bouyer, Colange, Markey: Symbolic Optimal Reachability in Weighted Timed Automata (CAV’16)
[HSTW20] Herbreteau, Srivathsan, Tran, Walukiewicz: Why Liveness for Timed Automata Is Hard, and What We Can Do About It (ACM Trans. Comput. Log)
[AGP21] Akshay, Gastin, Prakash: Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata (CAV’21)
[AGGS22] Akshay, Gastin, Govind, Srivathsan: Simulations for Event-Clock Automata (CONCUR’22)
Tools

• Uppaal https://uppaal.org
• Tchecker https://github.com/ticktac-project/tchecker
• Red https://sites.google.com/site/redlibtw/
• Pat https://pat.comp.nus.edu.sg
• Rabbit https://www.sosy-lab.org/people/beyer/Rabbit/
• MCTA http://gki.informatik.uni-freiburg.de/tools/mcta/
• ...
Tool UPPAAL

- Developed since 1995
- Successfully used in the industry, with many case studies
- Many extensions:
 - games, weighted timed automata, testing, statistical model-checking, ...
- Implements extrapolation-based algorithms

https://uppaal.org
Tool TChecker

- Developed since a couple of years, under development
- Fully open-source verification tool for timed automata
- Implements extrapolation and simulation-based algorithms
- Made also as a framework to develop new verification algorithms or data structures

https://github.com/ticktac-project/tchecker
Conclusion
What next?
What next?

- Much **algorithmic effort** has been made to reduce the impact of the timing aspects (reduce the number of zones to visit)
 - Need to push the ideas to larger classes of models
 - In each case, one of the difficulties lies in the proof of efficiency of inclusion « up-to »
Much **algorithmic effort** has been made to reduce the impact of the timing aspects (reduce the number of zones to visit)

- Need to push the ideas to larger classes of models
- In each case, one of the difficulties lies in the proof of efficiency of inclusion « up-to »

A major bottleneck: the **state explosion** due to control states

- Use of BDD/SAT technics, bounded model-checking, ...
 → No technics overwrites the other, they are useful and complementary
- Local-time semantics + POR (talk of Sri at SNR) [GHSW22]

[GHSW22] Govind, Herbreteau, Srivathsan, Walukiewicz: Abstractions for the local-time semantics of timed automata: a foundation for partial-order methods (LICS'22)
What next?

- **Domain-specific** algorithms:
 - Funnel automata for robotic systems [BMPS15,BMPS17]

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier: Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels (FORMATS'15)
[BMPS17] Bouyer, Markey, Perrin, Schlehuber-Caissier: Timed-automata abstraction of switched dynamical systems using control invariants (Real Time Syst.)
What next?

- **Domain-specific** algorithms:
 - Funnel automata for robotic systems [BMPS15,BMPS17]

\[\begin{align*}
\mathcal{F}_1^1(\alpha_1) & \quad \mathcal{F}_1^1(\beta_1) \\
\mathcal{F}_2^1(\gamma_1) & \quad \mathcal{F}_2^2(\alpha_2) \\
\mathcal{F}_3^1(\gamma_2) & \quad \mathcal{F}_3^2(\beta_2)
\end{align*} \]

\(c_t\): positional clock; \(c_h\): local clock

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier: Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels (FORMATS'15)

[BMPS17] Bouyer, Markey, Perrin, Schlehuber-Caissier: Timed-automata abstraction of switched dynamical systems using control invariants (Real Time Syst.)
Thank you for your attention!