2\(n\)-rational maps

Pavlos Kassotakis\(^1\) and Maciej Nieszporski\(^2\)

\(^1\) Department of Mathematics and Statistics University of Cyprus, PO Box: 20537, 1678 Nicosia, Cyprus
\(^2\) Katedra Metod Matematycznych Fizyki, Wydział Fizyki, Uniwersytet Warszawski, ul. Pasteura 5, 02-093 Warszawa, Poland

E-mail: pavlos1978@gmail.com, pkasso01@ucy.ac.cy and maciejun@fuw.edu.pl

Received 24 November 2016
Accepted for publication 19 April 2017
Published 5 May 2017

Abstract

We present a natural extension of the notion of nondegenerate rational maps (quadrirational maps) to arbitrary dimensions. We refer to these maps as \(2^n\)-rational maps. In this note we construct a rich family of \(2^n\)-rational maps. These maps by construction are involutions and highly symmetric in the sense that the maps and their companion maps have the same functional form.

Keywords: integrable maps, discrete integrable systems, simplex equations

1. Introduction

In [1] Etingof introduced the notion of nondegenerate rational maps. These maps arose in the interplay between studies on set-theoretical solutions [2, 3] of the quantum Yang–Baxter equation [4, 5] and the theory of geometric crystals [6]. In the literature on integrable systems, the set-theoretical solutions reappeared under the name Yang–Baxter maps [7] and instead of the term nondegenerate rational maps, the name quadrirational maps was coined [8]. In recent years many results on the connection between quadrirational Yang–Baxter maps and the theory of discrete integrable systems were obtained [9–21]. The connection of quadrirational maps with integrable difference equations was our main motivation to extend the notion of quadrirational maps to \(2^n\)-rational maps that we present in this article.

A rational map \(R : \mathbb{CP}^1 \times \mathbb{CP}^1 \ni (x, y) \mapsto (X, Y) \in \mathbb{CP}^1 \times \mathbb{CP}^1\) is called quadrirational if the maps \(R^{-1} : (X, Y) \mapsto (x, y), R_c : (X, y) \mapsto (x, Y)\), and \((R_c)^{-1} : (x, Y) \mapsto (X, y)\) are rational maps as well. Here, \(R^{-1}\) is the inverse of the map \(R\) and \(R_c\) the so-called companion map of \(R\). If all maps and the companion maps have the same functional form, then we refer to it as quadrirationality in the narrow sense. This note is about quadrirationality and moreover on its generalisation to \(n\) dimensions, \(2^n\)-rationality (see definition 3.1), only in the narrow sense.

The QRT map was introduced by Quispel, Roberts and Thompson [22] as a family of Liouville integrable maps on the plane [23–25]. In [26] Tsuda derived the conditions that led to periodic QRT maps. Although in [26] there is no mention of quadrirationality, it turns out...
that the period 2 QRT map is a quadrirational one in the narrow sense. An alternative way to introduce quadrirationality, via factorisation of involutions, was presented in [27, 28].

In section 2, we are recalling the QRT construction and we present some quadrirational subclasses of it. In section 3 we present a QRT generalisation which was introduced in [26]. Afterwards we present in detail the $n = 2$ and $n = 3$ cases i.e. quadrirational and octarational maps respectively. Finally, in section 4 we end this article with some conclusions and perspectives.

2. Quadrirational QRT maps

The QRT map [22] $\phi : \mathbb{CP}^1 \times \mathbb{CP}^1 \ni (x, y) \mapsto (X, Y) \in \mathbb{CP}^1 \times \mathbb{CP}^1$ is defined by the composition of two non-commuting involutions σ^1, σ^2, which both preserve the same invariant

$$H(x, y) = \frac{X^TA_0Y}{X^T A_1 Y}.$$

where X, Y are vectors $X = (x^2, x, 1)^T$, $Y = (y^2, y, 1)^T$ and A_0, A_1 are two 3×3 matrices,

$$A_i = \begin{pmatrix} \alpha_i & \beta_i & \gamma_i \\ \delta_i & \epsilon_i & \zeta_i \\ \kappa_i & \lambda_i & \mu_i \end{pmatrix}.$$

The QRT is the composition $\sigma^2 \circ \sigma^1$ of the non-commuting involutions σ^1, σ^2. The involution σ^1 is obtained from the solution of the equation $H(x, y) = H(x, y) = 0$ for X and the involution σ_2 from the solution of $H(x, Y) - H(x, y) = 0$ for Y. Each of these equations has 2 solutions. One solution is the identity map and by choosing the other one we arrive at

$$\sigma^1 : (x, y) \mapsto (X, Y) = \left(\frac{f_1(y) - f_2(y)x}{f_2(y) - f_1(y)x}, y \right), \quad \sigma^2 : (x, y) \mapsto (X, Y) = \left(x, \frac{g_1(x) - g_2(x)y}{g_2(x) - g_3(x)y} \right) \quad (1)$$

where

$$(f_1(y), f_2(y), f_3(y))^T = (A_0 Y) \times (A_1 Y),$$

$$(g_1(x), g_2(x), g_3(x))^T = (A^T_1 X) \times (A^T_2 X).$$

To recapitulate, the QRT map is defined by the equations

$$H(x, y) = H(X, Y) = H(x, Y). \quad (2)$$

The QRT map preserves a linear pencil of biquadratics curves $h(x, y, t) = X^T A_0 Y - t X^T A_1 Y = 0$. Base points of a linear pencil of biquadratics are the points which are contained in all curves of the linear pencil. They are determined by

$$x = \frac{f_1(y)}{f_2(y)}, \quad y = \frac{g_1(x)}{g_2(x)} \quad (3)$$

For a given bi-quadratic polynomial, quantities that are covariant under Möbius transformations action on the bi-quadratic under consideration are called relative invariants of the latter. They are given by the formulas
i_2(h, x, y) = 2hh_{xyy} - 2h_xh_{yy} - 2h_yh_{xx} + 2h_xh_y + h_y^2,

i_3(h, x, y) = \frac{1}{2} \det \begin{pmatrix} h & h_x & h_{xx} \\ h_y & h_{xy} & h_{xxy} \\ h_{xy} & h_{yy} & h_{xyy} \end{pmatrix} = \det(A_0 - tA_1).

Proposition 2.1. For $i_3 = 0$ the associated QRT involutions σ^1, σ^2 commute and the QRT map is an involution.

Proof. There is

$$i_3 = \det(A_0 - tA_1) = -t^3 \det A_1 + t^2 \left(\frac{\det(A_0 + A_1) + \det(A_0 - A_1)}{2} - \det A_0 \right)$$

$$+ t \left(\frac{\det(A_0 - A_1) - \det(A_0 + A_1)}{2} - \det A_1 \right) + \det A_0 = 0.$$

Demanding the coefficients of this polynomial on t to be zero we obtain:

$$\det A_0 = \det A_1 = 0 = \det(A_0 - A_1) = \det(A_0 + A_1).$$

(4)

Note that i_3 is by definition covariant under Möbius transformations. By a certain Möbius transformation we can send 2 of the base points of the linear pencil to $(0, 0)$ and (∞, ∞). Then the parameters matrices have the form:

$$A_i = \begin{pmatrix} 0 & \alpha_i & \zeta_i \\ \beta_i & \epsilon_i & \gamma_i \\ \eta_i & \delta_i & 0 \end{pmatrix}, \quad i = 0, 1$$

are exactly the conditions obtained by Tsuda (see Theorems 2.4 and 3.4 in [26]) for the QRT to be periodic of period 2, from which it follows that the QRT involutions commute. Hence for $i_3 = 0$ the associated QRT involutions σ^1, σ^2 commute and the QRT map is an involution. □

From now on we focus on the following solution of the conditions (4):

$$A_i = \begin{pmatrix} 0 & \alpha_i & 0 \\ \beta_i & \epsilon_i & \gamma_i \\ 0 & \delta_i & 0 \end{pmatrix}, \quad i = 0, 1.$$ (5)

The QRT map for this choice of parameter matrices, was given explicitly in [26]. In the following Proposition we repeat a result of [26] and we prove our observation i.e. in this case the period 2 QRT map is a quadrirational map.

Proposition 2.2. The QRT map associated to the integral

$$H(x, y) = \frac{\alpha_0 + \alpha_1 x + \alpha_2 y + \frac{\beta_1}{x} + \frac{\beta_2}{y}}{\gamma_0 + \gamma_1 x + \gamma_2 y + \frac{\delta_1}{x} + \frac{\delta_2}{y}}$$ (6)

reads

$$\phi : (x, y) \mapsto (X, Y) = \left(\frac{1}{x} \alpha_1 - \delta_1 H(x, y), \frac{1}{y} \beta_2 - \delta_2 H(x, y) \right).$$ (7)

It is an involution and moreover a quadrirational map in the narrow sense i.e. the map the companion map and their inverses have the same functional form.

Proof. It is easy to show that the parameter matrices A_i associated to the integral (6) are of the form (5), so $i_3 = 0$ and the QRT map is an involution. For the integral (6), the QRT map is
\[\phi : (x, y) \mapsto (X, Y) \] where:

\[
X = \frac{(\beta_1 \delta_0 - \beta_0 \delta_1)^2 + (\epsilon_1 \delta_0 - \epsilon_0 \delta_1) y + \gamma_1 \delta_0 - \gamma_0 \delta_1 - (\alpha_0 \delta_1 - \alpha_1 \delta_0) y x}{(\alpha_0 \delta_1 - \alpha_1 \delta_0) y - ((\alpha_1 \beta_0 - \alpha_0 \beta_1) y^2 + (\alpha_1 \epsilon_0 - \alpha_0 \epsilon_1) y + \alpha_1 \gamma_0 - \alpha_0 \gamma_1) x}
\]

\[
Y = \frac{(\alpha_1 \gamma_0 - \alpha_0 \gamma_1) x^2 + (\epsilon_1 \gamma_0 - \epsilon_0 \gamma_1) x + \gamma_0 \delta_1 - (\beta_0 \gamma_1 - \beta_1 \gamma_0) y x}{(\beta_0 \gamma_1 - \beta_1 \gamma_0) x - ((\alpha_0 \beta_1 - \alpha_1 \beta_0) x^2 + (\beta_1 \epsilon_0 - \beta_0 \epsilon_1) x + \beta_1 \delta_0 - \beta_0 \delta_1) y^2}
\]

(8)

In terms of the integral \(H\), mapping (8) simplifies to

\[
\phi : (x, y) \mapsto (X, Y) = \left(\frac{1}{x} \beta_1 - \frac{\delta_1 H(x, y)}{\gamma_1 H(x, y)}, \frac{1}{y} \beta_2 - \frac{\delta_2 H(x, y)}{\gamma_2 H(x, y)} \right).
\]

(9)

The companion map \(\phi'\) of the mapping \(\phi\), is the map \(\phi' : (X, Y) \mapsto (x, y)\) i.e. from (9) we need to solve for \(x, y\) in terms of \(X, Y\). From the first equality of (9) we obtain

\[
x X = \frac{\delta_0 - \delta_1 H(x, y)}{x} \alpha_0 - \alpha_1 H(x, y),
\]

from (2) we have

\[
H(x, y) = H(X, y),
\]

so

\[
x = \frac{1}{x} \frac{\delta_0 - \delta_1 H(x, y)}{\gamma_0 H(X, y)}.
\]

From the second equality of (9) we obtain

\[
y Y = \frac{1}{y} \frac{\gamma_0 - \gamma_1 H(x, y)}{\gamma_0 H(X, y)}.
\]

So the companion map is

\[
\phi' : (X, Y) \mapsto (x, y) = \left(\frac{1}{x} \frac{\delta_0 - \delta_1 H(x, y)}{\gamma_1 H(X, y)}, \frac{1}{y} \frac{\gamma_0 - \gamma_1 H(x, y)}{\gamma_0 H(X, y)} \right).
\]

The map \(\phi'\) has the same functional form as \(\phi\) so it is also an involution. Therefore all the 4 maps \(\phi, \phi', (\phi')^{-1}\) have the same functional form and the map \(\phi\) is quadrirational in the narrow sense.

3. \(2^n\)-rational maps

Generalisations of the QRT map have been proposed by various authors [26, 29–33]. In order to derive \(2^n\)-rational maps we focus on the generalisation given in [26] which includes the generalisation given in [29]. Namely, a map \(\phi : (\mathbb{CP}^1)^n \ni (x^1, x^2, \ldots, x^n) \mapsto (X^1, X^2, \ldots, X^n) \in (\mathbb{CP}^1)^n\) that is defined by the composition of \(n\) non-commuting involutions \(\sigma^1, \sigma^2, \ldots, \sigma^n\), i.e. which preserve the same integral

\[
H(x^1, x^2, \ldots, x^n) = \sum_{j_1, j_2, \ldots, j_n=0}^{2} \alpha_{j_1, j_2, \ldots, j_n} (x^1)^{2-j_1} (x^2)^{2-j_2} \ldots (x^n)^{2-j_n}
\]

(10)

Note that with \((\mathbb{CP}^1)^n\) we denote \((\mathbb{CP}^1)^n := \mathbb{CP}^1 \times \mathbb{CP}^1 \times \ldots \times \mathbb{CP}^1\), \(n\) times.

The involution \(\sigma^k\) is defined by the non-trivial solution of

\[
H(x^1, x^2, \ldots, x^n) = H(x^1, x^2, \ldots, x^n),
\]

for \(X^1\). Similarly for the other \(n - 1\) involutions. From now on we will call mapping \(\phi\) as Tsuda map. Note that for \(n = 2\) we have exactly the QRT map. To recapitulate, the Tsuda map is defined by the equations:

\[
\forall m \in \{1 \ldots n\}, \quad H(x^1, \ldots, x^{m-1}, x^m, x^{m+1}, \ldots, x^n) = H(X^1, \ldots, X^{m-1}, X^m, x^{m+1}, \ldots, x^n)
\]

(11)
and preserves the linear pencil of manifolds

\[h(x^1, x^2, \ldots, x^n; t) = \sum_{j_1, j_2, \ldots, j_n=0}^2 \alpha_{j_1, j_2, \ldots, j_n} (x^1)^{2-j_1} (x^2)^{2-j_2} \cdots (x^n)^{2-j_n} \]

\[-t \sum_{j_1, j_2, \ldots, j_n=0}^2 \beta_{j_1, j_2, \ldots, j_n} (x^1)^{2-j_1} (x^2)^{2-j_2} \cdots (x^n)^{2-j_n} = 0. \quad (12)\]

For \(n = 2 \) the pencil of manifolds is a linear pencil of elliptic curves. For \(n = 3 \) we have a linear pencil of K-3 surfaces and for \(n \geq 4 \) we have Calabi–Yau manifolds.

Before we present the definition of a 2\(^n\)-rational map, we introduce some notation. Let \(M \) the set of \(n \) indices, \(M := \{1, \ldots, n\} \) and \(m \) any subset of the set \(M \) i.e. \(m := \{m_1, m_2, \ldots, m_k\}, \ k \leq n \). Also \(m^c \) the complement of the set \(m \) so \(m^c := M \setminus m \). Finally, with \(X^m \) and \(X^{m^c} \) we denote the coordinates \(X^m := (x^1, x^2, \ldots, x^{m_1}, x^{m_1+1}, \ldots, x^{m_2}, \ldots, x^{m_k}, \ldots, x^n) \) and \(X^{m^c} := (X^1, X^2, \ldots, x^{m_1}, x^{m_1+1}, x^{m_2}, \ldots, x^{m_k}, \ldots, x^n) \). Now we are ready to give the following definition.

Definition 3.1. A rational map \(R : (\mathbb{C}P^1)^n \ni (x^1, x^2, \ldots, x^n) \mapsto (X^1, X^2, \ldots, X^n) \in (\mathbb{C}P^1)^n \) is a 2\(^n\)-rational map if all 2\(^n\) maps \(R^k : (\mathbb{C}P^1)^n \ni X^m \mapsto X^{m^c} \in (\mathbb{C}P^1)^n \), are rational maps. The maps \(R^k \) are called companion maps of \(R \).

Proposition 3.1. The Tsuda map \(\phi \) associated to the integral

\[H(x^1, \ldots, x^n) = \frac{\gamma_0 + \sum_{i=1}^n \alpha_i x^i}{\gamma_0 + \sum_{i=1}^n \gamma_i x^i} + \sum_{i=1}^n \delta_i / x^i, \quad (13) \]

reads

\[\phi : (x^1, \ldots, x^n) \mapsto (X^1, \ldots, X^n), \quad \text{where} \quad X^i = \frac{1}{x^i} \frac{\beta_i - \delta_i H(x^1, \ldots, x^n)}{\alpha_i - \gamma_i H(x^1, \ldots, x^n)}, \quad i = 1, \ldots, n. \quad (14) \]

It is an involution and moreover is a 2\(^n\)-rational map in the narrow sense i.e. the map the companion maps and their inverses have the same functional form.

Proof. By varying the integral (13), apart the identity solution, the equations

\[\forall k \in \{1, \ldots, n\} \quad H(x^1, \ldots, X^2, \ldots, x^n) - H(x^1, \ldots, x^n) = 0 \]

has as solutions the involutions \(\sigma^k : (x^1, \ldots, x^k, \ldots, x^n) \mapsto (x^1, \ldots, X^k, \ldots, x^n) \), \(k \in \{1, \ldots, n\} \) where

\[X^k = \frac{1}{x^k} \frac{\beta_k - \delta_k H(x^1, \ldots, x^n)}{\alpha_k - \gamma_k H(x^1, \ldots, x^n)}, \quad k \in \{1, \ldots, n\}. \quad (15) \]

For any 2 involutions \(\sigma^i, \sigma^j \), \(i, j \in \{1, \ldots, n\} \) of (15), since \(H \) is preserved by both of them, it is easy to show by direct computation that \((\sigma^i \circ \sigma^j)^2 = id \). Hence for the map \(\phi = \sigma^1 \circ \sigma^2 \circ \cdots \circ \sigma^n \), there is \(\phi^2 = id \) so \(\phi \) it is an involution and reads:

\[\phi : (x^1, \ldots, x^n) \mapsto (X^1, \ldots, X^n), \quad \text{where} \quad X^i = \frac{1}{x^i} \frac{\beta_i - \delta_i H(x^1, \ldots, x^n)}{\alpha_i - \gamma_i H(x^1, \ldots, x^n)}, \quad i = 1, \ldots, n. \]

Moreover \(\phi \) is a 2\(^n\)-rational map. To prove the 2\(^n\)-rationality, we have to find the companion maps of (14). For the coordinates \(X^m = (x^1, x^2, \ldots, x^{m_1}, x^{m_1+1}, \ldots, x^{m_2}, \ldots, x^{m_k}, \ldots, x^n) \)
it holds

\[H(x^1, \ldots, x^n) = H(x^1, x^2, \ldots, X^{m_1}, x^{m_1+1}, \ldots, X^{m_2}, \ldots, X^{m_k}, \ldots, x^n), \]

(16)
since \(H \) is an integral. Solving \(k \) of the equalities of (14) for \(x^i, i \in m \) and using (16) we obtain:

\[x^i = \frac{1}{X^i} \alpha_i - \gamma_i H(x^1, x^2, \ldots, X^{m_1}, x^{m_1+1}, \ldots, X^{m_2}, \ldots, X^{m_k}, \ldots, x^n), \quad i \in m. \]

(17)

Where \(m \) the set of \(k \) indices (see the notation introduced previously). For the remaining \(n - k \) equalities of (14), we have

\[x^j = \frac{1}{x^j} \beta_j - \delta_j H(x^1, x^2, \ldots, X^{m_1}, x^{m_1+1}, \ldots, X^{m_2}, \ldots, X^{m_k}, \ldots, x^n), \quad j \in m'. \]

(18)

So we have the companion maps \(\phi'^* : \mathcal{X}^m \rightarrow \mathcal{X}^{m'} \), or

\[\phi'^* : (x^1, x^2, \ldots, X^{m_1}, x^{m_1+1}, \ldots, X^{m_2}, \ldots, x^n) \rightarrow (X^1, X^2, \ldots, x^1, X^{m_1+1}, \ldots, x^{m_2}, \ldots, x^n), \]

where the variables \(x^i, i \in m \) are given explicitly in (17), and the variables \(X^j, j \in m' \) are given in (18).

Clearly there are \(2^n \) such maps \(\phi'^* \). All these maps have the same functional form as the original map \(\phi \), hence they are involutions. So mapping \(\phi \) is a 2\(^{n}\)-rational map in the narrow sense.

\[\square \]

3.1. \textbf{n = 1. The birational case}

For \(n = 1 \) and if we rename \(x^1 \) as \(x \) we have

\[H(x) = \frac{\alpha_0 + \alpha_1 x + \beta_1/x}{\gamma_0 + \gamma_1 x + \delta_1/x}, \]

(19)

and the map \(\phi \) reads:

\[\phi : x \mapsto X = X^1 = \frac{1}{x} \beta_1 - \delta_1 H(x) = \frac{-\beta_1 \gamma_0 - \alpha_0 \delta_1 + (\beta_1 \gamma_1 - \alpha_1 \delta_1) x}{\beta_1 \gamma_1 - \alpha_1 \delta_1 + (\alpha_0 \gamma_1 - \alpha_1 \gamma_0) x}. \]

(20)

Map \(\phi \) is a fraction linear involution and as well a 2\(^{1}\)-rational map (birational). Note that in this case involutivity implies birationality and vice versa. Consider the following matrix

\[\tau = \begin{pmatrix} \alpha_0 & \alpha_1 & \beta_1 \\ \gamma_0 & \gamma_1 & \delta_1 \end{pmatrix}. \]

Let \(\tau_{ij} \) the determinants of the matrix generated by the \(i \)th and \(j \)th column of \(\tau \) (the minor determinants of \(\tau \) referred to as Plücker coordinates). Then mapping (20) reads \(x \mapsto X = \frac{\tau_{13} - \tau_{32} x}{\tau_{32} - \tau_{12} x} \)

the Möbius involution.

3.2. \textbf{n = 2. The quadrirational case}

For \(n = 2 \) if we rename the variables \((x^1, x^2) \) as \((x, y) \) we have

\[H(x, y) = \frac{\alpha_0 + \alpha_1 x + \alpha_2 y + \beta_1 x + \beta_2 y}{\gamma_0 + \gamma_1 x + \gamma_2 y + \delta_1 x + \delta_2 y}. \]

(21)
and the map ϕ reads:

$$\phi: (x, y) \mapsto (X, Y) = \left(\frac{1 - \delta_1 H(x, y)}{\alpha_1}, \frac{1 - \delta_2 H(x, y)}{\gamma_1} \right).$$ \hspace{1cm} (22)

Mapping ϕ is involutive and moreover a 2^2 - rational map (quadrirational). Consider the following matrix $\tau = \begin{pmatrix} \alpha_0 & \alpha_1 & \alpha_2 & \beta_1 & \beta_2 \\ \gamma_0 & \gamma_1 & \gamma_2 & \delta_1 & \delta_2 \end{pmatrix}$. As in the previous section, τ_0 denotes the Plücker coordinates. Then mapping (22) reads:

$$\phi: (x, y) \mapsto \left(X = \frac{\tau_{34} x^2 + \tau_{14} y + \tau_{34} - \tau_{42} xy}{\tau_{42} y - (\tau_{23} x^2 + \tau_{21} y + \tau_{25})}, Y = \frac{\tau_{52} x^2 + \tau_{51} x + \tau_{54} - \tau_{35} xy}{\tau_{35} x - (\tau_{23} x^2 + \tau_{13} x + \tau_{43})} \right).$$ \hspace{1cm} (23)

3.3. $n = 3$. The octarational case

For $n = 3$ if we rename the variables (x^1, x^2, x^3) as (x, y, z) we have

$$H(x, y, z) = \frac{\alpha_0 + \alpha_1 x + \alpha_2 y + \alpha_3 z + \beta_1 / x + \beta_2 / y + \beta_3 / z}{\gamma_0 + \gamma_1 x + \gamma_2 y + \gamma_3 z + \delta_1 / x + \delta_2 / y + \delta_3 / z}.$$ \hspace{1cm} (24)

and the map ϕ reads:

$$\phi: (x, y, z) \mapsto (X, Y, Z) = \left(\frac{1 - \delta_1 H(x, y, z)}{\alpha_1}, \frac{1 - \delta_2 H(x, y, z)}{\gamma_1} \right).$$ \hspace{1cm} (25)

Mapping ϕ is involutive and moreover a 2^3 - rational map (octarational). If we consider the matrix $\tau = \begin{pmatrix} \alpha_0 & \alpha_1 & \alpha_2 & \alpha_3 & \beta_1 & \beta_2 & \beta_3 \\ \gamma_0 & \gamma_1 & \gamma_2 & \gamma_3 & \delta_1 & \delta_2 & \delta_3 \end{pmatrix}$, mapping (25), in terms of the determinants τ_0 reads:

$$\phi: (x, y, z) \mapsto (X, Y, Z),$$

where

$$X = \frac{\tau_{31} x^2 + \tau_{35} y^2 + \tau_{12} y z + \tau_{65} z + \tau_{7} y z + \tau_{25} xy z}{\tau_{31} x^2 + (\tau_{32} y^2 + \tau_{42} x z^2 + \tau_{12} y z + \tau_{7} y z + \tau_{25} xy z)},$$

$$Y = \frac{\tau_{64} x^2 + \tau_{62} x z^2 + \tau_{61} x z + \tau_{65} z + \tau_{63} y z}{\tau_{64} x^2 + \tau_{62} x z^2 + \tau_{31} x y z + \tau_{7} x y z + \tau_{25} x y z},$$

$$Z = \frac{\tau_{72} x^2 y + \tau_{73} x y z + \tau_{21} x y z + \tau_{7} x y z + \tau_{25} x y z}{\tau_{72} x^2 y + \tau_{73} x y z + \tau_{21} x y z + \tau_{7} x y z + \tau_{25} x y z}. \hspace{1cm} (26)$$

4. Conclusions

In this note we present a rich family of 2^n-rational maps. These maps by construction are involutions and highly symmetric in the sense that the maps and their companion maps have the same functional form.

2^n-rational maps, are quite exceptional objects inside the set of rational maps. Although on their own are interesting as mathematical entities we expect to have various connections with discrete integrable systems. It is known that the quadrirational maps are related to Yang–Baxter maps and therefore to 2-dimensional difference integrable systems [8, 12].
of octarational maps provides solutions to the functional tetrahedron equation [34–36]. Our next goal is to isolate solutions of functional tetrahedron equations within the family of maps (25). The question arises whether within the families of 2^n-rational maps presented here (14), one can find solutions of higher simplex equations [37–39]. We leave this question open for future investigations.

Acknowledgments

PK would like to thank the Cyprus Research Promotion Foundation for their support through project number KY-ROY/0713/27.

References

[1] Etingof P 2003 Geometric crystals and set-theoretical solutions to the quantum Yang–Baxter equation Commun. Algebra 31 1961–73
[2] Sklyanin E K 1988 Classical limits of SU(2)-invariant solutions of the Yang–Baxter equation J. Soviet Math. 40 93–107
[3] Drinfeld V G 1992 On some unsolved problems in quantum group theory Quantum Groups (Lecture Notes in Mathematics vol 1510) (New York: Springer) pp 1–8
[4] Yang C N 1967 Some exact results for the many body problem in one-dimension repulsive delta-function interaction Phys. Rev. Lett. 19 1312–5
[5] Baxter R J 1972 Partition function for the eight-vertex lattice model Ann. Phys. 70 193–22
[6] Berenstein A and Kazhdan D 1992 On some unsolved problems in quantum group theory Quantum Groups (Lecture Notes in Mathematics vol 1510) (New York: Springer) pp 1–8
[7] Veselov A P 2003 Yang–Baxter maps and integrable dynamics Phys. Lett. A 314 214–21
[8] Adler V E, Bobenko A I and Suris Yu B 2004 Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings Commun. Anal. Geom. Special vol part 1: 188–236 (arXiv:math/0912105)
[9] Noumi M and Yamada Y 1998 Affine weyl groups, discrete dynamical systems and Painlevé equations Commun. Math. Phys. 199 281–95
[10] Kajiwara K, Noumi M and Yamada Y 2002 Discrete dynamical systems with \(w(\alpha_{m-1}^{(1)} \times \alpha_{n-1}^{(1)})\) symmetry Lett. Math. Phys. 60 211–9
[11] Papageorgiou V G, Tongas A G and Veselov A P 2006 Yang–Baxter maps and symmetries of integrable equations on quad-graphs J. Math. Phys. 47 083502
[12] Papageorgiou V G, Suris Yu B, Tongas A G and Veselov A P 2010 On quadrirational Yang–Baxter maps SIGMA 6 033
[13] Kasotakis P and Nieszporski M 2012 On non-multiaffine consistent around the cube lattice equations Phys. Lett. A 376 3135–40
[14] Kasotakis P and Nieszporski M 2011 Families of integrable equations SIGMA 100 14
[15] Kasotakis P and Nieszporski M 2017 Systems of difference equations on a vector valued function that admit 3d vector space of scalar potentials (in preparation)
[16] Atkinson J 2012 A multidimensionally consistent version of Hirota’s discrete KdV equation J. Phys. A: Math. Theor. 45 222001
[17] Atkinson J 2013 Idempotent biquadratics, Yang–Baxter maps and birational representations of Coxeter groups (arXiv:1301.4613 [nlin.SI])
[18] Atkinson J and Yamada Y 2014 Quadrirational Yang–Baxter maps and the \(E_8\) Painlevé lattice (arXiv:1405.2745 [nlin.SI])
[19] Konstantinou-Rizos S and Mikhailov A V 2013 Darboux transformations, finite reduction groups and related Yang–Baxter maps J. Phys. A: Math. Theor. 46 425201
[20] Kouloukas T E and Papageorgiou V G 2011 Entwining Yang–Baxter maps and integrable lattices Banach Center Publ. 93 163–75
[21] Bazhanov V V and Sergeev S M 2016 Yang–Baxter maps, discrete integrable equations and quantum groups (arXiv:1501.06984v2 [math-ph])
[22] Quispel G R W, Roberts J A G and Thompson C J 1988 Integrable mappings and soliton equations Phys. Lett. A 126 419–21
[23] Maeda S 1987 Completely integrable symplectic mapping Proc. Japan Acad. A 63 198–200
[24] Veselov A P 1991 Integrable maps Russ. Math. Surv. 46 1–51
[25] Bruschi M, Ragnisco O, Santini P M and Gui-Zhang T 1991 Integrable symplectic maps Physica D 49 273–94
[26] Tsuda T 2004 Integrable mappings via rational elliptic surfaces J. Phys. A: Math. Gen. 37 2721–30
[27] Joshi N and Kassotakis P 2017 On a re-factorisation of the QRT map (in preparation)
[28] Kassotakis P and Joshi N 2010 Integrable non-QRT mappings of the plane Lett. Math. Phys. 91 71–81
[29] Capel H W and Sahadevan R 2001 A new family of four-dimensional symplectic and integrable mappings Physica A 289 86–106
[30] Iatrou A 2003 Higher dimensional integrable mappings Physica D 179 229–53
[31] Roberts J A G and Quispel G R W 2006 Creating and relating three-dimensional integrable maps J. Phys. A: Math. Gen. 39 L605–15
[32] Fordy A P and Kassotakis P G 2006 Multidimensional maps of QRT type J. Phys. A: Math. Gen. 39 10773–86
[33] Adler V E 2006 On a class of third order mappings with two rational invariants (arXiv:nlin/0606056)
[34] Korepanov I G 1995 Algebraic integrable dynamical systems, 2 + 1-dimensional models in wholly discrete space-time, and inhomogeneous models in 2-dimensional statistical physics (arXiv:solv-int/9506003)
[35] Kashaev R M, Korepanov I G and Sergeev S M 1998 Functional tetrahedron equation Theor. Math. Phys. 117 1402–13
[36] Sergeev S M 1998 Solutions of the functional tetrahedron equation connected with the local Yang–Baxter equation for the ferro-electric condition Lett. Math. Phys. 45 113–9
[37] Maillet J M and Nijhoff F 1989 The tetrahedron equation and the four-simplex equation Phys. Lett. A 134 221–8
[38] Maillet J M and Nijhoff F 1989 Integrability for multidimensional lattice models Phys. Lett. B 224 389–96
[39] Dimakis A and Muller-Hoissen F 2015 Simplex and polygon equations SIGMA 11 042