Reciprocal Altruism-based Cooperation in a Social Network Game

高野 雅典 Masanori Takano 株式会社サイバーエージェント takano.masanori@cyberagent.co.jp

和田 計也 Kazuya Wada （同上） wada.kazuya@cyberagent.co.jp

福田 一郎 Ichiro Fukuda （同上） fukuda.ichiro@cyberagent.co.jp, http://www.cyberagent.co.jp/corporate/labo/

keywords: data mining, evolution of cooperation, reciprocal altruism, leader game, social network game

Summary

Cooperative behaviors are common in humans and are fundamental to our society. Theoretical and experimental studies have modeled environments in which the behaviors of humans, or agents, have been restricted to analyze their social behavior. However, it is important that such studies are generalized to less restrictive environments to understand human society. Social network games (SNGs) provide a particularly powerful tool for the quantitative study of human behavior. In SNGs, numerous players can behave more freely than in the environments used in previous studies; moreover, their relationships include apparent conflicts of interest and every action can be recorded. We focused on reciprocal altruism, one of the mechanisms that generate cooperative behavior. This study aims to investigate cooperative behavior based on reciprocal altruism in a less restrictive environment. For this purpose, we analyzed the social behavior underlying such cooperative behavior in an SNG. We focused on a game scenario in which the relationship between the players was similar to that in the Leader game. We defined cooperative behaviors by constructing a payoff matrix in the scenario. The results showed that players maintained cooperative behavior based on reciprocal altruism, and cooperators received more advantages than noncooperators. We found that players constructed reciprocal relationships based on two types of interactions, cooperative behavior and unproductive communication.

1. は じ め に

相互の協調はヒトをはじめとして多くの動物に見られる現象であり、社会を形成する上で重要な要素である [Fehr 03, Smith 00]。しかし、他個体に協力する利他的な個体は、利己的な個体と相互作用すると搾取され、利己的な個体だけが利益を得るため、相互の協調状態は不安定である [Axelrod 06]。それにかかわらずヒトは社会的な生活を営む上で相互に協調し合っている。したがって、ヒトは進化の過程において相互の協調関係を維持するメカニズムを獲得してきているはずである [Barkow 95]。

協調行動が進化するためには、利他的な個体が利己的な個体との相互作用を避け、利己的な個体同士で相互に協調し合うことが必要である。前述のように利他的な個体は利己的な個体に搾取されてしまうからである。そのような状態を維持する仕組みとして、血縁選択、直接利恵、間接利恵、空間利恵、マルチレベル選択の5つが提案されている [Nowak 06]。それらについて様々な実験的・理論的研究がなされており、多くの証拠が得られてきた [Rand 13]。それらの研究のほとんどは我々が生活する現実世界において非常に解釈された環境で実施されていることが多い。このような簡略化はヒトの社会的行動を分析するに重要であるが、そこで得られた証拠が現実世界で適用可能であることを検証することも重要である [Rand 13]。

ヒトの社会に対する定量的な研究において、インタラクティブなオンラインゲームのデータ分析は強力な手段である [Castronova 06, Bainbridge 07, Szell 10, Szell 12, Szell 13]。オンラインゲームは多くのプレイヤーが前述のような理論的・実験的研究よりも制約の少ない環境で行動することができ、すべてのプレイヤーのすべての行動はログとして記録可能だからである。オンラインゲームのデータ分析によって、仮想世界の経済ダイナミクス [Castronova 06, Bainbridge 07]、ヒトの移住行動 [Szell 12]、社会的
行動の性差 [Szell 10] などについて知見が得られている。そこで我々はオンラインゲームの一種であるソーシャルゲーム（例えば，神動のバハムート1，ガールフレンド（仮）2など）を対象としてプレイヤーの協調行動について分析する。以下に示すように，ソーシャルゲームの環境はヒトの協調行動に基づいて研究する上で分析しやすい特徴を持っている。ソーシャルゲームではプレイヤーの利益はゲームという性質上，総合ランキングを争うためのポイントなど単一の定量的な値で表現されるため，協調行動の研究に頻繁に用いられるゲーム理論の利用が可能である。

本稿では直接互恵に基づいた協調行動（互恵的利他主義） [Trivers 71] に焦点を当てる。互恵的利他主義とは，後で見返りが期待できるならば，単に自分が得る利益ではなく，手によって利得的に振る舞うというものである。互恵的利他主義は人 [Grujić 10, Grujić 12, Rand 11] など多数人を対象にした研究が行われており，互恵的利他主義は行動の持続可能性を検証する研究として注目されている。また，それだけでは不確実環境 [Willkinson 90]や外的環境 [Bshary 06] などでも，その可能性が示唆されており，進化ゲーム理論に基づいた数理解析やシミュレーションによって，理論的，行動学的，外的リハズルを使った研究も試みられている [Lindgren 91, Nowak 93, Axelrod 06]。

互恵性に基づく協調行動が成立するためには，次の3つの条件を満たす必要がある [Trivers 71] 1) 二個間の社会関係が長くわたって続くような集団に所属していること．2) 二個が互いに個体識別し，過去の振る舞いを記憶可能であること．3) 協調する個体の損失よりも，協調する個体が受ける利益のほうが大きいこと．これらが満たされる場合，協調者は相関ある相手の行動履歴から「相手に協調した場合に自分が相手からの見返りを期待できるか否か」を判断できる。そして，もし期待できるのであれば，協調行動をすることで将来の自分自身の利得を向上させることができる。このように協調者が協調相手の選別をすると，非協調者は相関ある行動を避けられず相関ある行動を取らざるをえなくななる [Hauert 02]。また，協調者が非協調者を識別することで，協調者から非協調者への懲罰を与えることができ，非協調的な振る舞いを抑制することも可能になる [Rand 09]。

本研究の目的は，理論的，実験的研究よりも制約の少ない環境であるソーシャルゲームにおいて，互恵的利他主義に基づく協調行動の成立の可否と，仮に成立するのであればその成立の仕組みを調査することである。本研究は分析対象とするソーシャルゲームでは，記憶力を持つのプレイア－が数人程度のグループを組んで協力して他のプレイア－と競争をするため，上記の3条件を満たしており，互恵的利他主義に基づく協調行動が成立している可能性がある。そのため，最初に互恵的利他主義に基づく協调行動が成立していることを確認し，それが得に与える効果，その成立を促進している要因について分析する。

2. 分析対象と分析方法の概要

本稿では分析結果の理解のための最低限のゲームの仕様とそれに基づく協調行動の定義を述べる。詳細なゲームの仕様は付録 A・B，協調行動の定義は付録 C を参照のこと。

本稿ではガールフレンド（仮）というカードバトル系ソーシャルゲームを分析の対象とする。このゲームではプレイヤーは”イベントポイント”という得点を獲得し，その得点に基づいたプレイア－同士のランキングで上位になることが主な目的である。このランキングは2013/3/25?2013/4/の期間で獲得したイベントポイントの総得点で決まる。プレイヤーの社会関係は動的に変わるため，異なるものであるが，得点変動が頻繁に行われるソーシャルゲームでは何が序列推移について分析することは難しく，また，ランキング期間の順序はプレイヤーのランキングやモチベーション，プレイア－間の関係性などの状況の変動も激しいため，ある程度安定している期間として最後の3日間のデータを使用してプレイア－の社会相互作用に関して静的な分を行った。

1 回のイベントポイント獲得行動あたりの得点は，基本的にはプレイヤーの“レベル”という属性の値が高いほど多くのポイントを獲得することができる。また，イベントポイントを獲得するための行動回数は限られており，消費した行動回数を回復させるため，時間経過によって回復することを欠かず，消耗の回復アイテムを使用する必要がある。分析対象期間内に各プレイア－がこの料金の回復アイテム購入に掛けた金額をアイテム購入額と呼ぶ。各プレイア－の時間とお金という資源は有限であるため，多くのイベントポイントを獲得するためには消費資源（時間とお金）あたりのイベントポイントの獲得効率を良くする必要がある。

プレイア－は基本的には人から50人のプレイア－で構成されるグループに所属している。対象のゲームは，グループ内でプレイア－同士が共同作業をすることで効率よくイベントポイントの獲得ができるようにゲームが設計されている。このゲームにはプレイア－間で常時使用可能な簡易的なテキストコミュニケーションが可能である。

1 正確にはレベルと相関の高いパラメータ（攻撃力）によって決定されるが，そのパラメータのデータは保存されていないため代替としてレベルを考える。
“メッセージ送信”機能がある。この機能の利用によるプレイヤーのパラメータの不利益を減らす。また、有利な増加がほとんどない。なお、グループ内の相互作用について分析するため、分析対象期間中に1回以上ゲームをプレイしているプレイヤーをアクティブであるとして、アクティブなプレイヤーを5人以上所属するグループに所属するプレイヤーのデータを分析対象とした。また、次に示す協調行動やメッセージの送受信を同じプレイヤー群に所属しているプレイヤー間で行われたものに限定した。

表1 Leaderゲームの利得行列

協調	非協調
T,S	P,P

このような環境のもと、プレイヤーの互恵的利他主義に基づく協調行動について分析する。対象とするゲームではプレイヤーは多様な行動が可能、様々な形での協調行動が可能であるため、あらゆる協調行動を追跡することは難しい。そのため、追跡しやすい協調行動を1つ定義し、その頻度をそのプレイヤーの“協調行動の傾向”と考える。本研究では、Leaderゲームと類似した社会的ジレンマ構造を持つゲーム中の状況に焦点を当てた。Leaderゲームの利得行列（表1）は $S + T > 2R$ と $T > S > R > P$を満たす。ただし、本研究で考える状況では両方とも協調する場合は存在しない（付録C参照）。このゲームでは、一方が協調し他方が協調しなかったとき協調者は S、非協調者は T の利得を得ることができる。パレート最適である。このゲームが繰り返される状況において、相互通報率を含めている状況での「ST互恵」と呼ばれる協調状態である（Tanimoto 07）。このような状況において、利得 S を得られる相手を利得 T を与える相手行動を、追跡する「協調行動」として採用し、プレイヤーの互恵関係について分析する。

3. 分析結果

まず、プレイヤーに互恵性が存在しているか否かについて調査する。そのために、プレイヤーiとプレイヤーjの間の互恵性 r_{ij} を考える。本稿では互恵度を以下のようして定義する。

$$r_{ij} = \min(C_{ij}, C_{ji}) / \max(C_{ij}, C_{ji})$$ (1)

ここで、C_{ij} が j に協調行動をした回数、C_{ji} が j に協調行動をした回数である。つまり両者が相互に協

調べてみると互恵度 r_{ij} は1に近づき、協調が一方的であるほど0に近づく。この指標は C_{ij}, C_{ji} の少なくともどちらかが0より大きい時だけ（少なくとも1回以上の協調行動が行われた関係について）計測した。

図1 互恵度 r_{ij} の密度分布

図1に r_{ij} の密度分布を示す。多くのプレイヤー間の互恵度がほぼ0である一方、プレイヤー間の互恵度が高い場合もある程度存在しており、互恵関係を築いているプレイヤーが存在していたことがわかる。本研究では $r_{ij} > 0$ であれば両者は互恵関係にあるとした。

それでも互恵関係がプレイヤーの利得（ゲーム上の利得）に与えていた影響について分析する。もし互恵関係を用いずに協調しないものがゲーム上有利な場合であれば、プレイヤーiと互恵関係にあるプレイヤーの数 f_i がプレイヤーのイベントポイント p_i の増加に寄与しているはずである。それについて調べるために、以下に示すモデルを考える。

$$p_i \sim \text{NB}(r_{ij})$$ (2)

これによりプレイヤーiのイベントポイント p_i を、プレイヤーiのレベルL_i、互恵関係にあるプレイヤーの数 f_i で説明しようとするものである。NB (x) は x が負の二項分布に従うことを示す。リンク関数は対数とし、尤度推定法を使用してパラメータの推定を行った（以下すべてのモデルについて同様のリンク関数と推定手法を使用）。また、プレイヤーのイベントポイントのための行動回数は購入したアイテム個数分だけ増加するため、イベントポイントはアイテム購入額 s_i に比例するはずである。そのため、これらの対数をモデルに組み込んでいる。なお、ここで知りたいものは p_i に対する f_i の影響でありながら、プレイヤーの行動回数と強さの影響を調整するために s_i, L_i を共変量としてモデルに組み込んでいる。このモデルは、ポアソン分布に基づく一般化線形モデルでは過分散の傾向が見られたため、ポアソン分布に基づく一般化線形モデル（ランダム効果がグループごとに掛かること）と負の二項分布に基づく一般化線形モデル
デルの AIC をそれぞれ計測し、最小になる負の二項分布に基づく一般化線形モデルを採用した。上記モデルによる回帰分析を \(s_i > 0 \) であるプレイヤーから 5000 人分のデータをランダムサンプリングして実施した。

このモデルに基づく回帰分析の結果を表 2 に示す。イベントポイントに影響を与えると考えられるアイテム購入額 \(s_i \) とレベル \(L_i \) を調整したモデルで、互恵関係にある相手の数 \(f_i \) が正であった。したがってアイテム購入額 \(s_i \) とレベル \(L_i \) であっても、互恵関係にある相手の数 \(f_i \) が多いほどイベントポイント \(p_i \) を多く獲得できることがわかる。このため、互恵関係を持つことはゲームを進める上で有利（アイテム購入額に対する効率が良く、高利得）であったと言える。

次にゲームプレイに有効であった互恵関係の成立要因について分析する。それについて調べるために、式 (3) に示すモデルを考える。

\[
C_{ij} \sim \text{Poisson}(\lambda_{ij})
\]

\[
\ln \lambda_{ij} = \beta_1 \ln C_i C_j' + \beta_2 C_{ji} + \beta_3 g_{ij} + \beta_4 g_{ji}
\]

\[
+ \beta_5 L_i + \beta_6 L_j + \beta_7 m_i + \beta_8 + \sigma_i
\]

これはプレイヤー \(i \) がプレイヤー \(j \) に協調した回数 \(C_{ij} \) を、プレイヤー \(j \) から協調された回数 \(C_{ji} \) , 相互のメッセージ送信の回数 \(g_{ij} \) , \(g_{ji} \), 毎のレベル \(L_i \), \(L_j \), プレーヤー \(i \) の所属するグループのアクティブメンバー数 \(m_i \) (\(i \) も同じグループに所属), プレーヤー \(i \) が所属するグループごとのランダム効果 \(\sigma_i \) で説明しようとするモデルである。Poisson(x) は \(x \) がポアソン分布に従うことを示す。もしプレイヤーの協調行動の相手がランダムに決まる（互恵的ではない）のであれば、あるプレイヤー \(j \) からあるプレイヤー \(i \) への協調行動の回数 \(C_{ij} \) は、プレイヤー \(i \) の協調された回数の合計 \(C_i \) とプレイヤー \(j \) の協調した回数の合計 \(C_j' \) の積に比例するはずである。そのため、それが対数をモデルに組み込むので、そのようなランダムな選択を基準として、前述の説明変数の影響を知ることが本モデルの目的である。すなわち、ここで考えたものは \(C_{ij} \) に対する \(C_{ji} \) の影響であるから、プレイヤーのランダムな協調行動（\(\ln C_i C_j' \)）、プレイヤーの強さ（\(L_i, L_j \)）、グループのアクティブメンバー数（\(m_i \)）の影響を調整するために、それらを共変数としてモデルに組み込んでいる。このモデルは、ポアソン分布に基づく一般化線形モデルでは過分散の傾向が見られたため、ポアソン分布に基づく一般化線形混合モデル（ランダム効果はグループごとに掛かるとして）と負の二項分布に基づく一般化線形モデルの AIC をそれぞれ計測し、最も回帰分析に基づく一般化線形混合モデルを採用した。上記モデルによる回帰分析を \(C_i, C_j' > 0 \) である全組み合わせを 30000 個のデータをランダムサンプリングして実施した。

このモデルに基づく回帰分析の結果を表 3 に示す。協調回数に間関があると思われる協調・被協調回数 \(C_{ij}, C_{ji} \) とレベル \(L_i, L_j \) を調整したモデルで、 \(C_{ij}, g_{ij} \) が正であった。したがって他のプレイヤー \(i \) から協調してもらうためには、プレイヤー \(j \) はプレイヤー \(i \) に対して協調行動をし、自分からコミュニケーションを取ることが重要であると思われる。また、\(m_i \) が負であることを示す人数のグループの方、互恵関係が成立しないことがある。

次に社会的ジェンズーマ構造がたくなる関係するプレイヤー全員が利益を得ることができる状況において、プレイヤーの社会関係がプレイヤーの行動に与えた影響を分析する。具体的には、相手にかかわらず、相手からの“救援依頼”という要求に応じて“救援”という行動を行うことが、両プレイヤーに利益を与えるような状況において、依頼されたプレイヤーがその行動をするのが何と仮定したプレイヤー間の社会的関係が与えた影響を調べる。この場合、救援依頼をしたプレイヤーと救援依頼されたプレイヤーの両者に利益が存在するので、救援依頼プレイヤーにかかわらず救援することはプレイヤーにとって利益がある（詳細は付録 D を参照のこと）。そのために式 (4) に示すモデルを考える。

\[
H_{ij} \sim \text{NB}(r_{ij})
\]

\[
\ln r_{ij} = \beta_1 \ln H_i H_j' + \beta_2 C_{ji} + \beta_3 g_{ij} + \beta_4 g_{ji}
\]

\[
+ \beta_5 L_i + \beta_6 L_j + \beta_7 m_i + \beta_8
\]

これはプレイヤー \(i \) がプレイヤー \(j \) の救援依頼に応じた回数 \(H_{ij} \) を、プレイヤー \(j \) から協調された回数 \(C_{ij} \) 、相互のメッセージ送信の回数 \(g_{ij} \) , \(g_{ji} \), 各々のレベル \(L_i \), \(L_j \), プレイヤー \(i \) の所属するグループのアクティブメンバー数 \(m_i \) （\(i \) も同じグループに所属）で説明しようとするモデルである。もしプレイヤーの救援行動の相手がランダムに決まる（社会関係の影響がない）のであれば、あ
表4 プレイヤー間の救援頻度に関する回帰分析結果

パラメータ	回帰係数 (標準誤差)
$\ln H_j H'_j$	0.8891775 (0.0064168)**
C_{ji}	0.006710 (0.0018061)**
g_{ij}	0.0089753 (0.007516)**
g_{ji}	0.0066472 (0.007328)**
L_i	0.0063142 (0.002365)**
L_j	-0.0046951 (0.002432)**
m_i	-0.0692416 (0.0012895)**
Intercept	-0.4414666 (0.0218464)**

30本以上のデータを用いて、このモデルにより回帰分析を行った。これにより、以下の結果が得られた。

1. プレイヤーの救援行動活動の回帰係数は、H_j と H'_j の和を用いる場合、C_{ji} と g_{ij} と g_{ji} の重みを用いる場合で、それぞれ、0.8891775 (0.0064168)**、0.006710 (0.0018061)**、0.0089753 (0.007516)**、0.0066472 (0.007328)**、0.0063142 (0.002365)**、-0.0046951 (0.002432)**、-0.0692416 (0.0012895)**、-0.4414666 (0.0218464)** と得られた。

2. 回帰分析の結果、各パラメータの有意水準は、すべて0.05以下であり、モデルは有意であることが確認された。全てのパラメータが負の値であるが、これはプレイヤーの救援行動がプレイヤーの行動を抑制する傾向を示していることを意味する。

3. 回帰分析の結果、プレイヤーの救援行動活動の回帰係数は、プレイヤーの救援行動を抑制する傾向を示している。これは、プレイヤーの救援行動活動がプレイヤーの行動を抑制する傾向を示していることを意味する。

4. 考察

本研究では GrannyBee Game ゲームにおいて、プレイヤーの救援行動活動を抑制するため、プレイヤーの救援行動活動を抑制する方法を考察した。その結果、プレイヤーの救援行動活動を抑制する傾向を示していることが分かった。

プレイヤーの救援行動活動の抑制を目的とした方法を以下に示す。

(1) プレイヤーの救援行動活動を抑制するためには、プレイヤーの救援行動活動を抑制する方法を考察した。

(2) プレイヤーの救援行動活動を抑制する方法を考察した。その結果、プレイヤーの救援行動活動を抑制する傾向を示していることが分かった。

(3) プレイヤーの救援行動活動を抑制する方法を考察した。その結果、プレイヤーの救援行動活動を抑制する傾向を示していることが分かった。

したがって、プレイヤーの救援行動活動を抑制する方法を考察した結果、プレイヤーの救援行動活動を抑制する傾向を示していることが分かった。
ソーシャルゲームにおける互恵的利他主義に基づく協調行動

る傾向にあった。すなわち、協調的なプレイヤー同士は相互に利得を得ることができ、一方で非協調的なプレイヤーは救出してもらえる利得を得られなかったと言える。その結果、協調的なプレイヤーは非協調的なプレイヤーよりも高い利得を得ることができたと考えられる。このような非協調的な相手を避けるような行為は、非協調的な振る舞いに対する懲罰のような効果を持つ[Rand 11]と考えることができる。非協調的な振る舞いを抑えるような効果がある可能性がある。

このように、理論的・実験的研究のようにモデル化されていない環境において、互恵的利他主義・社会的グループニング・懲罰の3つのメカニズムが協調に有効に働き、それらがヒトとヒトの相互作用から自発的に発生しやすくなったことを定量的に示した。またそれは小さいグループであるほど発生しやすい傾向があった。

本研究はゲーム中のイベントの最終段階について静的な分析を行ったものである。ゲームのプレイヤーは常に入れかわり、プレイヤーは新たなプレイヤーと出会い、そこでのそれぞれの社会関係を構築しながら進化している。また、そこから生じる社会的ジャンヌの強度や種類といった環境も動的に変化する。したがって、互恵関係の成立過程や環境の変動に関するダイナミクスについて分析し知見を得ることは重要であり、今後の課題としたい。

謝辞
本稿作成にあたり、詳細なコメントと洞察に富む助言を賜って頂いた阿南工業高等専門学校 制御情報工学科 一ノ瀬元助教に心からお礼を申し上げたい。

參考文献

[André 10] André, J.: The Evolution of Reciprocity: Social Types or Social Incentives?, The American Naturalist, Vol. 175, No. 2, pp. 197–210 (2010)

[Axelrod 06] Axelrod, R.: The Evolution of Cooperation: Revised Edition, Basic Books (2006)

[Baimbridge 07] Baimbridge, W. S.: The Scientific Research Potential of Virtual Worlds, Science, Vol. 317, No. 5837, pp. 472–476 (2007)

[Barkow 95] Barkow, J.: The Adapted Mind: Evolutionary Psychology and the Generation of Culture, Oxford University Press (1995)

[Bshary 06] Bshary, R. and Grujic, M.: Image Scoring and Cooperation in a Cleaner Fish Mutualism, Nature, Vol. 441, No. 7096, pp. 975–978 (2006)

[Castronova 06] Castronova, E.: On the Research Value of Large Games: Natural Experiments in Norrath and Camelot, Games and Culture, Vol. 1, No. 2, pp. 163–186 (2006)

[Danbar 00] Danbar, R.: On the origin of the human mind, in Caruthers, P. and Chamberlain, A. eds., The Evolution of Mind, pp. 238–253, Cambridge University Press (2000)

[Danbar 04] Danbar, R.: Gossip in Evolutionary Perspective, Review of General Psychology, Vol. 8, No. 2, pp. 100–110 (2004)

[Fehr 03] Fehr, E. and Fischbacher, U.: The Nature of Human Altruism, Nature, Vol. 425, No. 23, pp. 785–791 (2003)

[Grujic 10] Grujic, M., Fosco, C., Araujo, L., Cuesta, J., and Sánchez, A.: Social Experiments in the Meso-scale: Humans Playing a Spatial Prisoner’s Dilemma, Plos ONE, Vol. 5, No. 11, p. e13749 (2010)

[Grujic 12] Grujic, M., Rohl, T., Semmann, D., Milinski, M., and Traulsen, A.: Consistent Strategy Updating in Spatial and Non-Spatial Behavioral Experiments Does Not Promote Cooperation in Social Networks, Plos ONE, Vol. 7, No. 11, p. e47718 (2012)

[Hauert 02] Hauert, C., De Monte, S., Hofbauer, J., and Sigmund, K.: Volunteering as Red Queen Mechanism for Cooperation in Public Goods Games, Science, Vol. 296, No. 5570, pp. 1129–1132 (2002)

[Kobayashi 97] Kobayashi, H. and Kohshima, S.: Unique Morphology of the Human Eye, Nature, Vol. 387, No. 6635, pp. 767–768 (1997)

[Kobayashi 11] Kobayashi, H. and Hashiya, K.: The gaze that grooms: contribution of social factors to the evolution of primate eye morphology, Evolution and Human Behavior, Vol. 32, No. 3, pp. 157–165 (2011)

[Lindgren 91] Lindgren, K.: Evolutionary Phenomena in Simple Dynamics, in Artificial Life II, pp. 295–312 (1991)

[Nakamura 03] Nakamura, M.: Gathering of social grooming among wild chimpanzees: implications for evolution of sociality, Journal of Human Evolution, Vol. 44, No. 1, pp. 59–71 (2003)

[Nowak 93] Nowak, M. A. and Sigmund, K.: A Strategy of Win-Stay, Lose-Shift That Outperforms Tit-for-Tat in the Prisoner’s Dilemma Game, Nature, Vol. 364, No. 6432, pp. 56–58 (1993)

[Nowak 06] Nowak, M. A.: Five Rules for the Evolution of Cooperation, Science, Vol. 314, No. 5805, pp. 1560–1563 (2006)

[Packer 77] Packer, C.: Reciprocal Altruism in Papio Anubis, Nature, Vol. 265, No. 5593, pp. 441–443 (1977)

[Rand 09] Rand, D. G., Ohtsuki, H., and Nowak, M. A.: Direct Reciprocity with Costly Punishment: Generous Tit-for-Tat Prevails, Journal of Theoretical Biology, Vol. 256, No. 1, pp. 45–57 (2009)

[Rand 11] Rand, D., Arbesman, S., and Christakis, N.: Dynamic Social Networks Promote Cooperation in Experiments with Humans, Proceedings of the National Academy of Sciences, Vol. 108, No. 48, pp. 19193–19198 (2011)

[Rand 13] Rand, D. and Nowak, M. A.: Human Cooperation, Trends in Cognitive Sciences, Vol. 17, No. 8, pp. 413–425 (2013)

[Smith 94] Smith, J. M.: Must reliable signals always be costly?, Animal Behaviour, Vol. 47, No. 5, pp. 1115–1120 (1994)

[Smith 00] Smith, J. M. and Szathmáry, E.: The Origins of Life: From the Birth of Life to the Origin of Language, Oxford University Press (2000)

[Szell 10] Szell, M. and Thurner, S.: Measuring Social Dynamics in a Massive Multiplayer Online Game, Social Networks, Vol. 32, No. 4, pp. 313–329 (2010)

[Szell 12] Szell, M., Sinatra, R., Petri, G., Thurner, S., and Latora, V.: Understanding Mobility in a Social Petri Dish, Scientific Reports, Vol. 2, p. 457 (2012)

[Wilkinson 90] Wilkinson, G.: Food Sharing in Vampires Bats, Science, Vol. 290, No. 5493, pp. 96–99 (1990)

[Wilkinson 00] Wilkinson, G.: Food Sharing in Vampire Bats, Scientific American, Vol. 290, No. 2, pp. 76–82 (1990)

[2014年10月7日 受理]
表 A.1 分析対象ゲームの基本情報

運営会社	株式会社サイバーエージェント
ゲーム名	ガフレンド (仮)
URL	http://vcard.ameba.jp
イベント名	たすかで！マイヒーロー イベント見編
イベント形式	レイドバトル
イベント期間	2013/3/25 16:00 ～ 2013/4/8 14:00
分析対象期間	2013/4/5 0:00 ～ 2013/4/8 14:00

の高いカードを集めるため、レイドは強力になり、様々な場面で有利になるため、ステータスの高いカードを集めることが、このゲーム全体を通してプレイヤーがゲームをプレイする大きな動機の一つである。ステータスの高いカードはガチャと呼ばれるいじりや後述するようなイベントでランキング上位になることで手に入れることができる。

プレイヤーは基本的に150名程度のプレイヤーで構成されるグループに所属する（人数制限あり）、所属しない方も可能であるが所属しないことはゲームをプレイすると不利であり、アティブなプレイヤーは基本的にグループに所属しているため本研究では考慮しない。グループはプレイヤー1名によって作成され、そこに他のプレイヤーが自然的集まって構成される。ただし、グループにプレイヤーが加入されると、そのプレイヤーが加入したプレイヤーをグループの管理者（基本的には作成者）が認定することが必要である。グループは他のユーザは任意のタイミングで可能である。また、後述するメッセージや共通の敵への攻撃などのプレイヤー間の相互作用において誰が何をしたのかは適宜表明に表示される。同様の行動を認識することが可能である。したがって分析対象のゲームの環境は前述の条件の他に基本として「スタンダード」を満たしている。

対象のゲームでは複数のコミュニケーション手段があり、物理的にメッセージを送るだけの「メッセージ機能」と、各グループに用意されている「掲示板」がある。メッセージ機能の方は掲示板をは利用プレイヤー数が多い場合、ここではメッセージの送受信を分析対象とした。メッセージ機能またはプレイヤー間で30秒以内の文字列メッセージを送受信させる。この機能の送信・受信によるプレイヤーにとっての不利なパネルの減少は少なく、有利なパラメータの上昇をとどめない。各プレイヤーに送られたメッセージはそのプレイヤーのプロフィール画面で誰が作成したかを表示することができる。ゲーム中ではコミュニケーションを活用することが重要である。あなたの場面メッセージの送信を促すことが必要になる。基本的にはプレイヤーがプレイヤーへの1対1のメッセージ機能があるが、グループメンバー全員または（後述に続く敵との）バトルに参加したプレイヤー全員をメッセージを送ることもできる。

B. イベントの仕様

選択対象のイベントは、レイドイベント（図 B.1）と呼ばれるタイプのもので、プレイヤーは強力で敵を攻撃し、イベント「レイドイベント」を獲得し、そのポイントに基づいてランキングや競争をすることである。ランキング上の位置はイベントの終了時に強力なカードやアイテムを報酬として獲得することができるため、プレイヤーにとってランキングの順位を上げることは重要である。

プレイヤーは敵を攻撃するために「クエスト」というアクションを実行する。敵が発見したらプレイヤーはその敵をバトルを開始し、攻撃して敵のヒットポイント（HP）を減らし、それに応じた

6 残部 HPのみを持ち、プレイヤーは攻撃されることはない。
「プレイヤーが攻撃しポイントを消費して大量の HPを持つ敵を倒す」ことに繰り返しポイントを獲得する。
7 クエストとはカードバトル系のソーシャルゲームの基本アクションの一つで、「体力」というバランスを消費して経験値を獲得するアクションである。通常は数秒で1アクションが完了する。レイドイベント期間中は、このアクションを続けていると、敵が一定確率で出現する。

図 B.1 レイドイベントの概要。1. プレイヤーは敵を発見するためのクエストを実行する。2. プレイヤーが敵を発見したらその敵とバトルを開始し、攻撃して敵のヒットポイント（HP）を減らし、それに応じたイベントポイントを得る。3. 敵は強いHPを持つので、プレイヤーが単独で倒すことは難しい。敵を倒すため、プレイヤーは自分の所属するグループのメンバーに救援を求める。4. 救援に応え、パートナーに参加したプレイヤーは一回の攻撃につき通常の1.5倍のイベントポイントを得ることができる。5. このようにして獲得したイベントポイントによってプレイヤーはランキングを扱う。

イベントポイントを得る敵は非常に高い HPを持つので、プレイで倒すことが難しい。そのため、敵を倒すためにプレイヤーは自分の所属するグループのメンバーに救援を求めることができる。このとき救援を求めるプレイヤーはゲームのシステムによって自動的に決まる。救援に応え、パートナーに参加したプレイヤーは一回の攻撃につき通常の1.5倍のイベントポイントを得ることができる。このようにして獲得したイベントポイントによってプレイヤーはランキングを扱う。

ランキングにはプレイヤー個人のイベントポイントで順位を争うものと、グループメンバー全員の合計イベントポイントで順位を争うものの2種類が存在する。一方で上位になるためには、プレイヤーが各イベントポイントを多く獲得するとともに、グループメンバー全員がイベントポイントを多く獲得する必要がある。

イベントポイントは敵を攻撃することで与えられるアイテムに比例して獲得することができる（攻撃した時点でポイントは獲得できるので、倒されなくてもポイントは獲得できる）。したがってプレイヤーのデコが強力であるほど敵の攻撃あたりのダメージが大きくなる。獲得イベントポイントも増える。敵に倒された HPが多くならないので、イベントの後半では何度も攻撃しなければ敵を倒すことはできない。敵は一回に1体までしか手にできない。そのため、一旦遭遇すると、または救援に応えて攻撃してもその敵を倒すことが一定時間経過して敵が逃げ続けるまたは他の敵に遭遇したり、他プレイヤーの救急援助に応えることはできない。

プレイで他のプレイヤーと敵を攻撃している時は、プレイヤー同士で「コンボ」をすることによって一度与えるダメージを増やすことができる。コンボはあるプレイヤーが敵を攻撃した後に、別のプレイヤーが10秒以内に同じ敵を攻撃することを発生する。これを繰り返すことで「コンボ数」が増加し、コンボ数に応じて一定回のダメージが増加する。したがって複数プレイヤーで敵を攻撃し、コンボ数を増加させることによって、効率よくイベントポイントを獲得することができる。

プレイヤーが敵を攻撃すると「攻撃ポイント」の1/4を消費する。すなわち攻撃ポイントが最大の状態でプレイヤーが4回攻撃できる。攻撃ポイントの主な回復方法は2種類おり、プレイヤーは攻撃ポイントを時間経過で、もしくは、アイテム（1つ100円相当）に

8 この時間は172時間（敵の種別により異なる）に設定されている。ランキング上・中位においては、その間にもしないことはランキングでの他のプレイヤーに大きく差を付けてしまう時間である。
9 同じプレイヤーが続けて攻撃した場合はカウントされない。また、10分以内に誰も攻撃しないかったらコンボ数は0になりセットされる。
ソーシャルゲームにおける互惠的利他主義に基づく協調行動

ようって回復させることができる（アイテムはゲーム上の報酬として配布されることもある）。

つまり、このイベントでは「同じグループのプレイヤーを救援したことで通常の1.5倍のポイントを獲得する」。コンボ数に増やして一定程度に与えるダメージを増やす、「もちろんできるような無駄な時間をなくす」などを改善して攻撃ポイントや時間・アイテムといった資源を得るだけでなく効率的に使用してポイントを獲得することが重要である。そのため本稿ではプレイヤーの“有利さ”をイベントポイントに対する回復アイテム購入の効率の良さと考え、それをゲーム理論の利得に対応するものとして考える。

C. 焦点を当てるシナリオと協調行動の定義

対象とするゲームではプレイヤーが多様な行動をとることが、様々な形状の協調行動が可能であるため、あらゆる協調行動を追跡することは難しい。そのため、下記で追跡しやすい協調行動を1つ定義し、それを脈動をそのプレイヤーの“協調行動の傾向”と考える。

そのため本稿では、前述のイベントにおいて次のように焦点を当てた。

- 指数法で敵を攻撃している。
- 敵の残り HP が非常に少ない（残り HP < 攻撃力）ため、その敵を攻撃しても、獲得できるイベントポイントは通常よりも少ない（使用した攻撃ポイントに対してコストパフォーマンスが悪い）。

C.2 二で対象を攻撃しており、敵の HP が非常に少ない状況における利益関係。この状況で攻撃したプレイヤーは得点 S, そのとき攻撃しなかったプレイヤーの得点 T である。両プレイヤーが共に攻撃しなかった場合は両者ともに得点 P である、敵の HP が非常に少ないとき、敵が攻撃した時点でこの状況は解消されるため、両者ともに攻撃するという状況は発生しない。

表 C.2 二で敵を攻撃しており、敵の HP が非常に少ない状況における利益関係。この状況で攻撃したプレイヤーは得点 S, そのとき攻撃しなかったプレイヤーの得点 T である。両プレイヤーが共に攻撃しなかった場合は両者ともに得点 P である、敵の HP が非常に少ないとき、敵が攻撃した時点でこの状況は解消されるため、両者ともに攻撃するという状況は発生しない。

D. 社会的ジレンマ構造のないシナリオ

社会的ジレンマ構造がなく、相互作用したプレイヤーの両者に利益がある状況を分析するために、敵の HP が十分に高い状況を考える。このような場合、最初に攻撃をしたプレイヤーが敵を単独で倒してくれないので、グループメンバーに救援を依頼することになる。この救援依頼がグループメンバーを惹きつける場合、依頼したプレイヤーはコンボが可能になり、また、救援プレイヤーが多いほどコンボ数が増やしやすいため効率の良いポイント獲得がしやすくなる。そこで、救援に参加したプレイヤーは効率的な攻撃行動ができ、さらに、通常の1.5倍のイベントポイントを得ることができるため、両者にとって利益がある関係である。したがって、救援依頼プレイヤーがどれかにかかわらず、救援に参加することは救援プレイヤーにとって利益があるはずである。

著者紹介

高野 雅政（正会員）
2009年 名古屋大学大学院情報科学研究科博士課程修了。博士（情報科学研究）。大学士後、現在は株式会社サイバーエージェントに勤務。同社サービスの開発・運用に携わった後、現在は自社のソーシャルゲームのデータインプ

和田 計也
2003年 武蔵野大学大学院生命環境科学研究科修士課程修了。総合電機メーカー、バイオベンチャーを経て、現在は株式

福田 一郎
2006年 東京工業大学システム創造学科卒業。2008年

\[
\begin{align*}
\alpha_{ij} &= c_{ij} / M(e_i) \\
(1)
\end{align*}
\]