An Auditory Illusion of Infinite Tempo Change Based on Multiple Temporal Levels

Guy Madison*
Department of Psychology, Umeå University, Umeå, Sweden

Abstract
Humans and a few select insect and reptile species synchronise inter-individual behaviour without any time lag by predicting the time of future events rather than reacting to them. This is evident in music performance, dance, and drill. Although repetition of equal time intervals (i.e. isochrony) is the central principle for such prediction, this simple information is used in a flexible and complex way that accommodates both multiples, subdivisions, and gradual changes of intervals. The scope of this flexibility remains largely uncharted, and the underlying mechanisms are a matter for speculation. Here I report an auditory illusion that highlights some aspects of this behaviour and that provides a powerful tool for its future study. A sound pattern is described that affords multiple alternative and concurrent rates of recurrence (temporal levels). An algorithm that systematically controls time intervals and the relative loudness among these levels creates an illusion that the perceived rate speeds up or slows down infinitely. Human participants synchronised hand movements with their perceived rate of events, and exhibited a change in their movement rate that was several times larger than the physical change in the sound pattern. The illusion demonstrates the duality between the external signal and the internal predictive process, such that people's tendency to follow their own subjective pulse overrides the overall properties of the stimulus pattern. Furthermore, accurate synchronisation with sounds separated by more than 8 s demonstrate that multiple temporal levels are employed for facilitating temporal organisation and integration by the human brain. A number of applications of the illusion and the stimulus pattern are suggested.

Introduction
Periodical sound patterns such as rhythmic music induce a sensation of temporal recurrence called pulse [1]. This is employed by humans for achieving precise synchronisation or entrainment among individuals in music performance, dance, drill, and various ritual behaviours [2]. Pulse is a periodic process that enables proactive timing by predicting the time of future events rather than reacting to them with a time lag of at least 100 ms [3]. This makes precise synchronisation and co-ordination among individuals possible in the absence of any other common control system [4]. While pulse events typically coincide with conspicuous physical events in the sensory signal, such as louder or more frequent sounds, the pulse is in fact a subjective process. Pulse events may occur at points in time when there is no physical stimulus, if implied by the stimulus pattern as a whole [5], as well as in the absence of an external signal altogether [6].

Music is the most common example of a sound pattern with multiple temporal levels, in contrast to which the typical signal of a metronome can be characterised as a one-level pattern that physically contains only one level at which to attribute pulse. Even in response to one-level patterns may the pulse be perceived at other levels than the physical one, determined in part by temporal limits of the neural system [7,8]. This so-called subjective rhythmisation [9] is typically attributed to multiples corresponding to every second, third, or fourth sound etcetera if the physical intervals are short, and to subdivisions of intervals into two, three, or more equal subintervals if the physical intervals are long. Although repetition of equal time intervals (i.e. isochrony) is the central principle for predictive timing, this simple information is apparently used in a flexible and complex way that accommodates not only fractions and subdivisions of intervals, but also momentary [1] and gradual [10] changes of intervals. The scope of this flexibility remains largely uncharted, and the underlying mechanisms are a matter for speculation [e.g. 11,12,13,14].

Temporal synchronisation among individuals is rare in the animal kingdom, which indicates that it is has few instrumental uses. In addition to humans it is nevertheless found in a few species of insects and reptiles, for example, for which its function is to increase the salience or geographic reach of a signal by summation over simultaneously signalling individuals. This is in turn used for attracting migrating females [15,16], warning conspecifics for...
predators [17], or confusing the auditory localising ability of bats preying on a species of tree frog [18], for example. The underlying mechanisms are in general poorly understood, although the synchronising behaviour of fireflies has been subject to quite detailed study [19–21]. These examples show that the ability and motivation for entrainment is not merely a curiosity but may serve a distinct adaptive function whenever its function has been identified. For humans, however, no obvious adaptive function has been recognised for entrainment, although it is obviously a key element in music performance and other group behaviours mentioned above. While neither these behaviours are unanimously attributed to an adaptive value, music and entrainment in various guises has been suggested to be related to group cohesion [22], the evolution of language [23], hominid speciation by means of natural selection [24], and costly signalling of mate quality in the context of sexual selection [25]. Be that as it may; human entrainment capabilities serve important functions in humans’ present state of affairs, and have long attracted scientific inquiry [e.g., 4,26,27].

Given that human processing of isochronous sequences accommodates multiplication and subdivision of intervals it is not surprising that music is also characterised by this multiple temporal level structure, as defined by metre and different note values. The present illusion is based on a generalisation of this property. While the presence of each level typically varies throughout a piece of real music, the present pattern features physical events corresponding to all levels within a perceptually relevant range. The pattern consists of sounds with brief isochronous inter onset intervals (IOI) on the order of 50 ms. Every second sound event is louder than the intervening ones, which gives the impression of a second temporal level with half the rate of the first one. Increasing the loudness of every second event of the second level likewise yields a third level, and so forth. In addition to this, the intervals are continuously increased or decreased by a factor of $2^{\pm 1}$ across the pattern length, that is, either halving or doubling the interval. These principle properties are illustrated in Figure 1, which for clarity of presentation depicts an example 96-event pattern rather than the 786-event patterns used in the experiment. The ordinal position of sound events in the pattern is indicated by the angular scale, and their IOI by the radial scale. The size of the points represents the relative loudness of events. It is manipulated so as to obscure the boundaries between pattern repetitions, which might otherwise distract listeners and make the illusion less powerful [cf. Shepard’s circularity in the perception of pitch illusion [28]]. All these features are detailed in Materials and Methods.

It was predicted that participants would accurately synchronise with one level in the pattern and follow the gradual interval change therein, but would continue to the next higher or lower level at pattern boundaries, depending on the direction of the change. This illusion was evaluated by a sensori-motor synchronisation experiment in which human participants were asked to

![Figure 1. Implementation of the multiple temporal levels in a 96-event example pattern.](https://example.com/figure1.png)

doi:10.1371/journal.pone.0008151.g001
beat a drumstick against an electronic sensor plate in synchrony
with their perceived pulse.

Results and Discussion

Responses demonstrated epochs of consistent synchronisation
with sounds corresponding to one specific level, seamless
continuation to an adjacent level at the pattern boundary, and
occasional switching to another level when beat IOIs become very
short or long. All these features occurred in almost every trial
(N = 76), and are exemplified by one trial with increasing intervals
in Figure 2A (Audio file S2) and one trial with decreasing intervals
in Figure 2B (Audio file S4). The course of each example trial is
represented by a clockwise trajectory with its first and last response
intervals indicated, in Figure 2A for a trial with increasing intervals
from the center (short intervals) to the circumference (long
intervals), and in Figure 2B from the circumference to the center.
Filled circles denote each response according to its closest
responding event position in the stimulus pattern on the
angular scale and to its IOI on the radial scale. When trajectories
overlap (i.e., when synchronization to the same level has occurred
more than once in the same trial) points are connected with lines
to guide the eye. One response sequence corresponds to five
revolutions, since the whole stimulus sequence in each trial
consisted of five seamlessly repeated patterns. The illusory
temporal levels that emerge as an effect of the manipulation of
stimulus IOI and loudness are represented by the helical
alternating dotted and solid lines numbered with Arabic numerals,
whose meeting points coincide with the boundaries between
repeated patterns at the zenith of the figure. Since the angular scale
represents pattern position, and the time between successive events
continuously changes by a factor $2^{1/6}$ across one pattern, time
proper is nonlinear along this scale. This is evident at the
boundaries between repeated patterns, where the distance
between points to the right of the boundary is double the number
of pattern events of the immediately preceding points to the left,
although they in fact are separated by almost the same amount of
time. The lines with arrows between levels indicate switches in the
response interval, consecutively numbered with Roman numerals.

As can be seen, no switches coincide with the boundary between
repeated patterns, which was indeed rarely the case among all
trials. This suggests that participants did neither notice the
boundary between pattern repetitions nor find any portion of
the pattern more or less difficult to synchronize with. When
interviewed after the session did no participant report having
noticed any breakpoints in the stimulus sequence. On the
contrary, several participants spontaneously reported being
puzzled by making such large changes in beat rate without the
stimulus essentially changing. To quantify this issue, the 351
switches that occurred across all 76 trials were sorted in 16 bins
according to their pattern position; one bin for each 48 adjacent
positions of the total 768. No significant difference in the
frequency of switches was found among bins ($\chi^2 = 13.64, df = 15,
\ p = 0.55$), a histogram of which showed no tendency for
frequencies to increase close to the start or end of the pattern
(Figure S1).

Within these features of the response sequences, demonstrating
the illusion, the beat IOI varied among trials and participants in
accordance with the unconstrained task. Participants did accu-
larately synchronize with IOIs longer than 8 s (Fig. 2A) and shorter
than 200 ms (Fig. 2B), while many trials exhibited a more narrow
range. Across all trials, central tendencies in IOI for switches were
close to 0.5 s for decreasing IOIs (M = 511, Md = 461, min = 160,
max = 1070 ms) and close to 2 s for increasing IOIs (M = 2197,
Md = 1778, min = 713, max = 8650 ms).

Most aspects of the switching behaviour are summarised in
Figure 3, in which the ratio between the last IOI before the switch
and the first IOI after the switch is plotted as a function of IOI
before the switch. To render a clearer depiction of the results only

![Figure 2. Polar representations of two response sequences.](http://www.plosone.org/figure/10.1371/journal.pone.0008151.g002)
switches with a relatively high effect size (Hedges’ g > 3.0) are included (N = 209) in order to exclude switches to a similar IOI (ratio ~1), and axis scales are logarithmic. First, decreasing intervals (circles) lead to short IOIs that tend to be switched to the double IOI (2.0), while increasing intervals (squares) lead to long IOIs that tend to be switched to half or ¼ of the interval (0.5 or 0.25), as exemplified in Figure 2. Second, more extreme IOIs tend to be associated with larger switch ratios, in other words a tendency towards a preferred range of IOIs close to 500 ms [29]. This is particularly evident for increasing intervals, where IOIs above 4 s are exclusively divided in four at the switch. Third, switch IOIs along the abscissa for decreasing intervals suggest a bimodal distribution with central tendencies close to 300 and 600 ms, respectively, which is also reflected by the difference between the mean (511 ms) and the median (461 ms). This indicates the employment of two different strategies on behalf of the participants; either to switch within the comfortable range of IOIs between 400 and 800 ms [30], or to hold on until approaching the motor limit close to 200 ms [3].

The illusion was also demonstrated by the differences between increasing and decreasing sequences in both response and switch IOIs, which are - in contrast to the $2^{\pm1}$ stimulus change - on average on the order of $2^{\pm2}$. The central tendencies are 2197/511 = 4.30 for the mean IOI and 1778/461 = 3.86 for for the median IOI. It should be noted that this behaviour occurred spontaneously to the open-ended instruction to beat in synchrony with the perceived pulse and feel free to change the beat rate to a more natural one at any time. The mean change would conceivably have been much larger, in accord with the behaviour of some participants, if the instruction would have been to maintain the “same” rate, which in the case of this pattern sequence would amount to following the illusory change for even longer epochs. Indeed, switches from one level to another were interspersed among long epochs subject to the illusion, and the actually produced IOIs therefore covered an even wider range than did the switch IOIs. In particular did a number of the response sequences with increasing intervals exhibit few or no switches at all, as exemplified by Figure 2A. All 19 participants produced beat sequences with local mean IOIs longer than 2 s, and many participants produced IOIs longer than 3 s (N = 17), 5 s (N = 11), and 8 s (N = 6).

Illusions offer insight into the working principles of perceptual and cognitive systems. Apart from the illusory phenomenon per se, their unstability and sensitivity to subtle stimulus properties can be employed for examining more general questions that may be difficult to address with normal stimuli. There are numerous visual illusions but only a handful auditory ones [31]. Shepard tones [28] and the present infinite tempo change create the only “impossible” percepts while other auditory illusions involve hearing what is not physically present or choosing among ambiguous percepts (but cf. [32], and references therein).

The present data provide a striking demonstration of pulse and its subjective nature, characteristic for the proactive, predictive, and hypothesis-testing character of brain function in general [33,34]. Specifically, the beat rate is apparently a function of both the immediate stimulus properties, which determine the possible specific time points to synchronise with bottom-up, and the recent behaviour history, which determines the level to synchronise with top-down. In other words, the pulse seems to function as a top-down hypothesis about future intervals, which assimilates contradictory sensory information if the discrepancy is not too large, but accommodates information that consistently disagrees with the hypothesis. In this case the ±0.13 percent (1/768) continuous stimulus interval change was readily accommodated into the prediction that the next interval was almost similar to the previous one, rather than determined by the local stimulus...
properties. It has previously been demonstrated that people can accurately synchronize with sound events across a wide range of change from ± 0.077 to ± 0.67 percent per interval in one-level sequences [10]. When local variability is applied to a stimulus sequence, in terms of unpredictable lengthening and shortening of otherwise isochronous intervals, the mean threshold for perceiving pulse was 8.6 percent across a group of listeners, as compared to a 3.5 percent threshold for detecting such deviations [1]. Although such ample margins may seem to suggest that synchronisation is correspondingly inexact, this is not the case. When deviations are relatively small, they are reflected in the immediately following response interval even when they are below the detection threshold [33,36], although the proportion of the deviation reflected seems to decrease for larger (10–50%) deviations [37]. This seems to reflect another strategy for facilitating synchronisation, namely to rely more on the internal pulse when the signal is a poor predictor, but follow the signal closely when it is a reliable predictor of isochrony [e.g., 39]. The signal might be anything from rhythmic music or a multilevel pattern to the movements of another individual. There is evidence that the pulse mechanism is in place already within the first year of life [39].

The present results demonstrate proactive synchronisation, and hence temporal integration, of events separated by up to 8 s, while proactive synchronisation is impossible for one-level sequences with IOIs from 2.4 s and up [8]. Participants must therefore have utilised sound events intervening the level of their beats, at least for beat IOIs longer than 2 s. This demonstrates that although the pulse takes on a dominating role for the top-down interpretation of ambiguous stimuli, it does not preclude the influence of other information. These trade-off characteristics and their underlying mechanisms are a challenge for future research. Extant synchronisation models cannot account for this duality since they are confined to one level [e.g., 12,40,41]. Interestingly, however, both the present behaviours and type of stimuli are sufficiently well-defined to allow precise formal manipulation and modelling, and may therefore serve as a micro-world system for exploring general information-processing principles in ecological, dynamical interaction.

The multilevel pattern could be applied to examine a number of issues that have been difficult to assess with traditional methods. It features a large and multi-dimensional stimulus space including base IOI, direction, rate of change, and the number of pattern repetitions. In the present study both directions were used but only one level of rate change (1/768 repetitions. In the present study both directions were used but only

0.077 to ± 0.67 percent per interval in one-level sequences [10]. When local variability is applied to a stimulus sequence, in terms of unpredictable lengthening and shortening of otherwise isochronous intervals, the mean threshold for perceiving pulse was 8.6 percent across a group of listeners, as compared to a 3.5 percent threshold for detecting such deviations [1]. Although such ample margins may seem to suggest that synchronisation is correspondingly inexact, this is not the case. When deviations are relatively small, they are reflected in the immediately following response interval even when they are below the detection threshold [33,36], although the proportion of the deviation reflected seems to decrease for larger (10–50%) deviations [37]. This seems to reflect another strategy for facilitating synchronisation, namely to rely more on the internal pulse when the signal is a poor predictor, but follow the signal closely when it is a reliable predictor of isochrony [e.g., 39]. The signal might be anything from rhythmic music or a multilevel pattern to the movements of another individual. There is evidence that the pulse mechanism is in place already within the first year of life [39].

The present results demonstrate proactive synchronisation, and hence temporal integration, of events separated by up to 8 s, while proactive synchronisation is impossible for one-level sequences with IOIs from 2.4 s and up [8]. Participants must therefore have utilised sound events intervening the level of their beats, at least for beat IOIs longer than 2 s. This demonstrates that although the pulse takes on a dominating role for the top-down interpretation of ambiguous stimuli, it does not preclude the influence of other information. These trade-off characteristics and their underlying mechanisms are a challenge for future research. Extant synchronisation models cannot account for this duality since they are confined to one level [e.g., 12,40,41]. Interestingly, however, both the present behaviours and type of stimuli are sufficiently well-defined to allow precise formal manipulation and modelling, and may therefore serve as a micro-world system for exploring general information-processing principles in ecological, dynamical interaction.

The multilevel pattern could be applied to examine a number of issues that have been difficult to assess with traditional methods. It features a large and multi-dimensional stimulus space including base IOI, direction, rate of change, and the number of pattern repetitions. In the present study both directions were used but only one level of rate change (1/768 repetitions. In the present study both directions were used but only
room where the experiment took place had a 36 dBA background noise, mainly from the ventilation system, that was reduced to 31 dBA in the headphones. Figure S2B illustrates the loudness manipulation by means of a short example with increasing intervals (slowing rate). This example is only 96 events in order to convey the principles withouth cluttering the graph, but is computed with the same IOI and velocity equations as were the 768-event stimulus patterns used in the experiment. Increasing IOIs between sound events appear as longer distances between events from left to right, since the absissa represents real time. The ordinate represents the loudness manipulation, showing that (a) the loudness of each level at the beginning of the pattern corresponds with an adjacent level at the end of the pattern, (b) loudness is a sigmoid function of level, such that it changes less from start to end for the fastest and slowest levels than for intermediate levels, (c) loudness is divided among all levels such that the fastest level transgresses the auditory threshold within the pattern, which masks its appearance for increasing IOIs or disappearance for decreasing IOIs at the pattern boundary. These devices are similar to those applied in Roger Shepard's circularity in pitch illusion [28].

Apparatus
A PC with the real-time operating system FreeDOS was programmed to generate stimulus events and collect responses by means of an MPU-401-compatible MIDI interface connected to an Alesis DM5 synthesiser module. The temporal resolution of this system is 1 ms [see, e.g., 45]. Stimuli consisted of a percussion instrument sound (Prc/021 ShakerLo) presented through sound-attenuating Peltor HTB7A headphones. Responses were obtained by beating a drumstick against a ddrum drum pad equipped with a piezoelectric sensor (Clavia musical instruments, Stockholm).

Participants
Nineteen nonmusicians participated, ten women and nine men aged 19 to 35 years (M = 24.5). None had any previous experience with similar experiments, had received music tuition, or had played a musical instrument in a systematic fashion.

Procedure
Each individual session lasted 45–55 minutes and comprised instructions and 5 brief training trials together with the experimenter, followed by 28 static (without rate change) trials, 4 rate change trials, and then another 26 static trials performed alone. The static trials were not considered here. A critical part of the instruction was to beat the drum pad in synchrony with the perceived pulse, and to feel free to change the beat rate to a more natural one at any time.

Data Analysis
Data consisted of IOIs of response beats and the identity (level and position) of the pattern events closest in time to each beat. One important aspect of the participants’ behaviour was at what positions in the stimulus sequence they switched from one beat rate to another. To detect switches from one consistent beat IOI to another one in an objective fashion, a routine based on Hedges’ effect size g was implemented in Statistica v. 7 visual basic (Statsoft Inc.). It computes local means and variances and compares them for each position in order to find local maxima. For each response beat interval sequence X_i, M_1 and s_1 were computed for X_i to X_{i+9t}, and M_2 and s_2 were computed for X_{i+10} to X_{i+20}. The effect size of the difference between these means was computed as $g = M_1 - M_2 / \sqrt{9s_1^2 + 9s_2^2 / 18}$. The difference $M_1 - M_2$ was also multiplied with direction (-1 for decreasing intervals and 1 for increasing intervals) which excluded switches in the “wrong” direction. The initial g_1 was stored as maximum $g = \max$ and the position i advanced one step. Subsequent larger values of g replaced \max, until $g < \max$, which indicated that g_1 was a local maximum and that a switch to a different mean IOI had occurred. If in these cases g was greater than a lower cut-off of 0.3, the sequence position and the mean IOIs before and after this position were stored, \max was reset to 0, and the process re-continued. This procedure yielded 606 switches within the total 26,850 response intervals. However, some of these referred to switches in IOI within the same level in the pattern, and were therefore not relevant for testing possible correspondence between switch positions and pattern boundaries. Analyses showed that a cut-off of $g > 1.4$ yielded switches ($N \approx 351$) that mostly referred to different levels in the pattern, i.e. differences with a factor $\approx 2^{\pm 1}$ or greater.

Supporting Information
Figure S1 Histogram of sequence positions at which the 351 switches with $g > 1.4$ occurred. Found at: doi:10.1371/journal.pone.0008151.s001 (0.34 MB TIF)
Figure S2 Additional graphical representations of the stimulus pattern. See text for explanations. Found at: doi:10.1371/journal.pone.0008151.s002 (0.09 MB TIF)
Audio S1 Increasing intervals with 49 ms mean IOI Found at: doi:10.1371/journal.pone.0008151.s003 (3.09 MB MP3)
Audio S2 Increasing intervals with 64 ms mean IOI Found at: doi:10.1371/journal.pone.0008151.s004 (3.88 MB MP3)
Audio S3 Decreasing intervals with 49 ms mean IOI Found at: doi:10.1371/journal.pone.0008151.s005 (3.11 MB MP3)
Audio S4 Decreasing intervals with 64 ms mean IOI Found at: doi:10.1371/journal.pone.0008151.s006 (3.84 MB MP3)

Acknowledgments
Part of this work was conducted at the Department of Psychology at Uppsala University, and I thank Björn Merker for the best of sparring. I also thank Linus Holm, Bo Molander, Lars Nyberg, and Louise Ronqvist for helpful comments on a previous version of this paper. An anonymous referee indicated a few papers by J.-C. Risset that mention a tempo illusion (see [32] and references therein). The author is named as an inventor on a Swedish patent (SE 529 032 C2) and patent applications for the U.S. (US20080091414), the United Kingdom (GB2441259), and Australia (PCT/SE2006/050117) regarding the use of the type of stimulus patterns used in this study for therapeutic purposes.

Author Contributions
Conceived and designed the experiments: GM. Performed the experiments: GM. Analyzed the data: GM. Contributed reagents/materials/analysis tools: GM. Wrote the paper: GM.

References
1. Madison G, Merker B (2002) On the limits of anisynchrony in pulse attribution. PsychRes 66: 201–207.
2. McNeil WH (1995) Keeping together in time. Dance and drill in human history. Cambridge, MA: Harvard University Press.
