Classifying Genomic Sequences by Sequence Feature Analysis

Zhi-Hua Liu, Dian Jiao, and Xiao Sun*

State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.

Traditional sequence analysis depends on sequence alignment. In this study, we analyzed various functional regions of the human genome based on sequence features, including word frequency, dinucleotide relative abundance, and base-base correlation. We analyzed the human chromosome 22 and classified the upstream, exon, intron, downstream, and intergenic regions by principal component analysis and discriminant analysis of these features. The results show that we could classify the functional regions of genome based on sequence feature and discriminant analysis.

Key words: genome, sequence feature analysis, BBC, PCA, discriminant analysis

Introduction

Since the beginning of the Human Genome Project, a huge amount of genomic sequences have been generated. It becomes more and more important to annotate these raw sequences. Eukaryotes have genes that contain upstream, exon, intron, and downstream regions. It is even more important to classify these various functional regions. Seeking appropriate features is the key to solve this problem. In recent years, several sequence features have been proposed, including word frequency (WF; ref. 1), synonymous codon choice, amino acid usage, G+C content (2), and nucleotide composition constraint (3). In this study, we present a novel sequence feature extraction algorithm and multidimensional statistical analysis to classify genomic sequences.

Results and Discussion

We extracted the sequence feature information from the collected sequence data of the human chromosome 22, reduced the dimensionality of sequence feature vector by principal component analysis (PCA), and classified the datasets by discriminant analysis.

Word frequency

Reinert et al (4) provided the concept of word frequency. Since a DNA sequence is formed by using an alphabet of four letters (A, T, C, G) denoting four DNA bases, we can define DNA k-words, which are k-tuples formed by using these four letters. For an integer \(k \geq 1 \), clearly there are \(4^k \) possible k-words. We assume that \(f_w \) is the frequency of \(w \) in the DNA sequences with the length of \(L \):

\[
f_w = \frac{n_w}{L}
\]

In this study, we analyze mainly 2-word and 3-word frequencies, which form \(4^2 = 16 \) and \(4^3 = 64 \) dimensional frequency vectors, respectively.

Dinucleotide relative abundance

Karlin and Burge (5) defined the formula of dinucleotide relative abundance (DRA) as the following:

\[
T_{ij} = \frac{p_{ij}}{p_ip_j}
\]

in which \(p_i \) or \(p_j \) means the frequency of appearance of a single base \(i \) or \(j \), and \(p_{ij} \) means that of joint probabilities of bases \(i \) and \(j \). The DRA feature forms a 16-dimensional vector. If one sequence is completely stochastic and the bases are mutually independent, then theoretically \(p_{ij} = p_ip_j \) and the value of \(T_{ij} \) is 1. Therefore, the deviation of \(T_{ij} \) of one sequence opposite to 1 could evaluate the bias of dinucleotide.

Base-base correlation

We have proposed a novel feature called base-base correlation (BBC) with the following formula:

\[
T_{ij}(k) = \sum_{l=1}^{k} p_{ij}(l) \cdot \log_2 \left(\frac{p_{ij}(l)}{p_ip_j} \right) \quad i, j \in \{1, 2, 3, 4\}
\]
Here, \(p_i \) and \(p_j \) are defined as above, while \(p_{ij}(l) \) means the joint probabilities of bases \(i \) and \(j \) at a distance of \(l \). \(T_{ij}(k) \) represents the average relevance of the two-base combination with different gaps from 1 to \(k \). It reflects a local feature of two bases with an interval of \(k \). The BBC feature forms a 16-dimensional vector.

For a given DNA sequence, the features of 2-word, 3-word, DRA, and BBC form a 112-dimensional vector in all.

Principal component analysis

Let \(X_1, X_2, \ldots, X_p \) denote the \(p \) index considered, then we have

\[
S = \begin{bmatrix}
S_{11} & S_{12} & \cdots & S_{1p} \\
S_{21} & S_{22} & \cdots & S_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
S_{p1} & S_{p2} & \cdots & S_{pp}
\end{bmatrix}
\]

The above matrix is the covariance matrix of \(X_1, X_2, \ldots, X_p \), in which the principal diagonal elements \(S_{11}, S_{22}, \ldots, S_{pp} \) represent the variance of \(X_1, X_2, \ldots, X_p \), respectively, reflecting the \(p \) index variation degree. Therefore, \(S_{11} + S_{22} + \cdots + S_{pp} \) means the total variation degree of the \(p \) index.

Now we seek a new index \(y_1 = a_{11}x_1 + a_{12}x_2 + \cdots + a_{1p}x_p \) instead of the original \(p \) index. Moreover, we expect this new index could contain the original information as far as possible. We suppose \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \) \((\gamma \leq p)\) is the non-vanishing characteristic root. Then \(S_{11} + S_{22} + \cdots + S_{pp} = \lambda_1 + \lambda_2 + \cdots + \lambda_\gamma \).

Thus we extract the \(\gamma \) overall index of \(y_1, y_2, \ldots, y_\gamma \), whose variance is equal to the original \(p \) index variance, that is to say, the information that the \(\gamma \) index contains is equal to the information that the original \(p \) index contains. If \(\gamma \) is much smaller than \(p \), the method greatly reduces the index but does not affect the analysis result. Because the overall index \(y_1 = a_{11}x_1 + a_{12}x_2 + \cdots + a_{1p}x_p \) is the biggest when the variance is \(\lambda_1 \), so the ability of synthesizing the \(p \) index of \(y_1 \) is the strongest. We define \(y_1, y_2, \ldots, y_\gamma \) as the first, second, \(\ldots \), and the \(\gamma \)th principal component, respectively. Then

\[
\frac{\lambda_1}{\lambda_1 + \lambda_2 + \cdots + \lambda_\gamma} = \frac{\lambda_\gamma}{S_{11} + S_{22} + \cdots + S_{pp}}
\]

which expresses the proportion of \(y_\gamma \) variance in the total variance, and it is called the variance contribution rate of the \(\gamma \)th principal component (6).

Here we reduced the original 112-dimensional vector to a 21-dimensional vector according to whether the eigenvalue is bigger than 1 (Table 1).

Discriminant analysis

The basic principle of discriminant analysis is that the studied object that could be portrayed by the \(p \) index could also be described with the stochastic vector \(X = (X_1, X_2, \ldots, X_p)^T \). Let \(\pi_1, \pi_2, \ldots, \pi_s \) denote the \(s \) kinds of the object that we study. If an object belongs to the \(j \)th kind, then it is recorded as \(X \in \pi_j \). The main goal of discriminant analysis is to seek the decision function \(g(X) \) of \(X \) according to different discriminative criteria, and to determine the category of \(X \) based on the attribute of \(g(X) \). The main criteria to construct discriminative function include the shortest distance criterion, the smallest expectation loss criterion, the Fisher criterion, and so on. Sandberg et al (7) used a naïve Bayesian classifier to capture whole-genome characteristics in short sequences. In our method, we use the Fisher criterion whose basic principle is to find the most appropriate projection axis to make the two kinds of samples that project on this axis to be the least, thus make the classified effect to be the best.

We firstly analyzed the upstream, coding, and downstream regions of the sequence (Figure 1). The scatter plots in Figure 1 show the values of the cases on two discriminant functions, and we can see obvious differences among the coding, upstream, and downstream regions. It is observed that the coding regions (green) prefer to appear on the positive side of Function 1, whereas the upstream (red) and downstream (blue) regions prefer to appear on the negative side. The two discriminant functions cannot distinguish between upstream and downstream regions. We think the reason is that regulatory elements are located in upstream regions and the gene regulatory information is not considered when we use these three sequence features. Therefore, we may seek a more effective sequence feature related to known gene regulatory knowledge to distinguish the two regions.

In order to further investigate non-coding regions, we expanded the datasets from three kinds to five kinds, and selected three features, namely WF, DRA, and BBC, which constructed a 112-dimensional vector as mentioned above. The SPSS software (8) was applied to carry on discriminant analysis and the result is shown in Table 2, which was used to assess how well the discriminant function works. From the result, we
Table 1 The Result of Principal Component Analysis

Component	Initial eigenvalue	Extraction sum of squared loadings				
	Total	Variance (%)	Cumulation (%)	Total	Variance (%)	Cumulation (%)
1	31.128	27.793	27.793	31.128	27.793	27.793
2	12.589	11.240	39.033	12.589	11.240	39.033
3	8.365	7.469	46.503	8.365	7.469	46.503
4	8.075	7.210	53.713	8.075	7.210	53.713
5	4.726	4.220	57.933	4.726	4.220	57.933
6	4.192	3.743	61.675	4.192	3.743	61.675
7	3.836	3.425	65.100	3.836	3.425	65.100
8	3.425	3.058	68.158	3.425	3.058	68.158
9	2.938	2.624	70.782	2.938	2.624	70.782
10	2.775	2.478	73.259	2.775	2.478	73.259
11	2.606	2.327	75.586	2.606	2.327	75.586
12	1.928	1.721	77.308	1.928	1.721	77.308
13	1.880	1.678	78.986	1.880	1.678	78.986
14	1.663	1.485	80.471	1.663	1.485	80.471
15	1.565	1.397	81.868	1.565	1.397	81.868
16	1.515	1.353	83.221	1.515	1.353	83.221
17	1.293	1.154	84.375	1.293	1.154	84.375
18	1.276	1.139	85.515	1.276	1.139	85.515
19	1.170	1.045	86.559	1.170	1.045	86.559
20	1.067	0.953	87.512	1.067	0.953	87.512
21	1.052	0.939	88.451	1.052	0.939	88.451
22	0.925	0.826	89.277			
23	0.831	0.742	90.019			
24	0.786	0.702	90.721			
25	0.677	0.605	91.326			

Table 2 The Statistical Result of Discriminant Analysis*

Result	Predicted group membership	Total					
Group	1	2	3	4	5		
Original	1	71	0	7	8	14	100
	2	1	94	0	2	3	100
	3	7	0	86	5	2	100
	4	4	1	13	69	13	100
	5	5	2	12	12	69	100
Cross-	1	68	4	8	7	13	100
validated	2	1	94	0	2	3	100
	3	7	0	86	5	2	100
	4	6	2	16	57	19	100
	5	9	4	18	13	56	100

* “Original” is the classification result of each observed sample, and “Cross-validated” is the alternately confirmed result. Groups 1 to 5 represent the upstream, exon, intron, downstream, and intergenic regions, respectively. In “Predicted group membership”, the established discriminative function reclassifies the source data and is compared with the primary variable value to compute the probability of mistaken discriminant. For example, for the 1st group of samples with the total number of 100, the constructed discriminative function based on the original data predicts that the number belongs to the 1st, 2nd, 3rd, 4th, and 5th group is 71, 0, 7, 8, and 14, respectively.
can see that the classification accuracy of the exon, intron, upstream, downstream, and intergenic regions is 94%, 86%, 71%, 69%, and 69%, respectively. The classification accuracy of exon and intron is relatively high, while that of upstream, downstream, and intergenic regions is relatively low. This can help us identify genes and study the gene structure (exon-intron arrangement). The 3-word frequency can help us reveal hidden sequence features in coding regions. Recent discoveries have suggested that non-coding regions may not be merely “junk DNA” as previously thought. High densities of long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs) occur in non-coding regions as the signal to start methylating a region of DNA (9, 10). The sequence features that we have used may not match inherent sequence features in non-coding regions. Therefore, the classification accuracy of non-coding regions is lower than that of coding regions. Our future project is to further improve the classification accuracy of non-coding regions by seeking new features and more efficient algorithms.

Conclusion

Nowadays algorithms and software for gene prediction have been developed widely. However, to our knowledge, researches on how to effectually distinguish the exon, intron, and intergenic regions have not made breakthrough. We have proposed a novel analysis method of genomic sequences based on sequence feature and statistic analysis. The results show that our analysis algorithm could improve the identification accuracy of the upstream, exon, intron, downstream, and intergenic regions from DNA sequences, especially the exon (94%) and intron (86%) regions.

Materials

We used the human chromosome 22 and collected the upstream (1,000 bp), exon, intron, downstream (1,000 bp), and intergenic regions (1,000 bp) according to the gene annotation database of the University of Santa Cruz Golden Path human genome sequence (http://genome.cse.ucsc.edu).

Acknowledgements

This work was supported by the National High-Tech Research and Development Program (863 Program) of China (No. 2002AA231071) and the Natural Science Foundation of Jiangsu Province (No. BK2002057).
References

1. Basu, S., et al. 2003. Words in DNA sequences: some case studies based on their frequency statistics. *J. Math. Biol.* 46: 479-503.
2. Sandberg, R., et al. 2003. Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G+C content. *Gene* 311: 35-42.
3. Zhang, C.T. and Zhang, R. 2004. A nucleotide composition constraint of genome sequences. *Comput. Biol. Chem.* 28: 149-153.
4. Reinert, G., et al. 2000. Probabilistic and statistical properties of words: an overview. *J. Comput. Biol.* 7: 1-46.
5. Karlin, S. and Burge, C. 1995. Dinucleotide relative abundance extremes: a genomic signature. *Trends Genet.* 11: 283-290.
6. Hogg, R.V. and Craig, A.T. 1995. *Introduction to Mathematical Statistics* (fifth edition). Prentice-Hall, Englewood Cliffs, USA.
7. Sandberg, R., et al. 2001. Capturing whole-genome characteristics in short sequences using a naïve Bayesian classifier. *Genome Res.* 11: 1404-1409.
8. Kirkpatrick, L.A. and Feeney, B.C. 2003. *A Simple Guide to SPSS for Windows for Versions 8.0, 9.0, 10.0, and 11.0* (revised edition). Wadsworth Publishing, Florence, USA.
9. Arnaud, P., et al. 2000. SINE retroposons can be used in vivo as nucleation centers for de novo methylation. *Mol. Cell. Biol.* 20: 3434-3441.
10. Lyon, M.F. 2000. LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? *Proc. Natl. Acad. Sci. USA* 97: 6248-6249.