Large-scale gene flow in the barnacle *Jehlius cirratus* and contrasts with other broadly-distributed taxa along the Chilean coast

Baoying Guo ¹, John P Wares ²

¹ College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
² Department of Genetics and Odum School of Ecology, University of Georgia, Athens, Georgia, USA

Corresponding Author: John P Wares
Email address: jpwares@uga.edu

We evaluate the population genetic structure of the intertidal barnacle *Jehlius cirratus* across a broad portion of its geographic distribution using data from the mitochondrial cytochrome oxidase I (COI) gene region. Despite sampling diversity from over 3000 km of the linear range of this species, there is only slight regional structure indicated, with overall Φ_{CT} of 0.036 ($p<0.001$) yet no support for isolation by distance. While these results suggest greater structure than previous studies of *J. cirratus* had indicated, the pattern of diversity is still far more subtle than in other similarly-distributed species with similar larval and life history traits. We compare these data and results with recent findings in four other intertidal species that have planktotrophic larvae. There are no clear patterns among these taxa that can be associated with intertidal depth or other known life history traits.
1 RH: Phylogeography in *Jehlius cirratus*

2 Large-scale gene flow in the barnacle *Jehlius cirratus* and contrasts with

3 other broadly-distributed taxa along the Chilean coast

4

5 Guo B.1,2

6 Wares J. P.* 2

7

8 1 College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China

9 2 Department of Genetics, University of Georgia, Athens, Georgia, USA

10

12 *corresponding author: John P. Wares, University of Georgia, jpwares@uga.edu

13
Abstract

We evaluate the population genetic structure of the intertidal barnacle *Jehlius cirratus* across a broad portion of its geographic distribution using data from the mitochondrial cytochrome oxidase I (COI) gene region. Despite sampling diversity from over 3000 km of the linear range of this species, there is only slight regional structure indicated, with overall Φ_{CT} of 0.036 ($p<0.001$) yet no support for isolation by distance. While these results suggest greater structure than previous studies of *J. cirratus* had indicated, the pattern of diversity is still far more subtle than in other similarly-distributed species with similar larval and life history traits. We compare these data and results with recent findings in four other intertidal species that have planktotrophic larvae. There are no clear patterns among these taxa that can be associated with intertidal depth or other known life history traits.
Introduction

A persistent question in marine biogeography and population biology involves the interaction of species life history, geographic range, and trait or genealogical diversity within that range. In some cases, genealogical diversity or “structure” (Wares 2016) within a species is informative of mechanisms that act to limit other species’ distributional ranges (Brante et al. 2012; Dawson 2001; Riginos & Nachman 2001; Wares et al. 2001). Of course, these studies often find that organisms with limited larval or juvenile dispersal have greater amounts of structure and less extensive ranges, but there are often exceptions (Marko 2004). It is the variation among species, and the exceptions to the “rules”, that offer continued opportunity to understand marine diversity.

Early approaches to comparative phylogeography (Dawson 2001; Dawson et al. 2002; Hugall et al. 2002; Stuart-Fox et al. 2001; Sullivan et al. 2000; Wares 2002) focused primarily on regions of co-diversification of intraspecific lineages, e.g. the regions across which species were likely to exhibit structure. Subsequently, Marko (2004) noted that even when species had apparently identical life history and dispersal mechanisms, the distribution of a species across habitats (e.g. intertidal height) could influence their persistence in distinct glacial refugia. However, certainly to understand these associations more taxa should be compared, and Kelly and Palumbi (2010) made explicit comparisons of diversity and population divergence for 50 species along the Pacific coast of North America to suggest that species high in the intertidal were perhaps more likely to exhibit spatial genetic structure than those at lower depths. However, within taxa that are more
closely related, e.g. among barnacles, this rule does not necessarily hold. Along the Pacific coast of North America, the high intertidal *Chthamalus dalli* exhibits no apparent population structure (Wares & Castañeda 2005) relative to the mid-intertidal *Balanus glandula* (Sotka et al. 2004), while other barnacle species in this region also show effectively no structure (Dawson *et al.* 2010).

The particular spatial structure of the species represented in Kelly and Palumbi (2010) varies; however, there is often concordance of population structure – a non-random distribution of population discontinuities – among groups of species (Pelc *et al.* 2009; Small & Wares 2010) on this coast. Other regions that have been similarly explored – for example, the NW Atlantic coast – have fewer instances of strong population structure aside from regions that are also recognized as biogeographic transitions (Altman *et al.* 2013; Díaz-Ferguson *et al.* 2009) among more distinct groups of taxa. Another such example of this concordance of genetic diversity with biogeography was recently published by Haye *et al.* (2014), looking at species with short-dispersing larval forms around the well-characterized biogeographic transition near 30°S latitude along the coast of Chile. Again, the structure of diversity within species was informative to the mechanisms – including shifts in upwelling intensity and nutrient availability (Navarrete *et al.* 2005) – that may limit the distribution of other taxa. As patterns of coastal upwelling are associated with phylogeographic structure in many regions and species (Rocha-Olivares & Vetter 1999; Zakas *et al.* 2009), it merits exploration for how species respond to distinct oceanographic regimes along the Chilean coast.
Evaluating broad-scale diversity structure on the Chilean coast is of key interest as there are so many oceanographic and biogeographic comparisons to be made between this well-studied coastline and the well-studied Pacific coast of North America (Navarrete et al. 2008). However, until recently there were few data available for species that spanned most of the length of the Chilean coastline. This scale is of interest because it spans two major biogeographic transitions – the region around 30°S noted above, as well as a notable biogeographic transition near 42°S (Thiel et al. 2007). While the divergence of taxa near 30°S is typically associated with shifts in upwelling and concomitant environmental transitions (Ewers-Saucedo et al. 2016; Haye et al. 2014), the biogeographic transition at 42°S is more likely driven by divergent current flow (Ewers-Saucedo et al. 2016).

Temperature and salinity both exhibit significant transitions along this coastal region (Acha et al. 2004), and thus the dominant biogeographic boundary along the Chilean coast is at about 42°S (Thiel et al. 2007).

Some of the first such work at this spatial scale was done in the direct-developing gastropod Acanthina monodon (Sanchez et al. 2011) and another gastropod Concholepas concholepas (Cardenas et al. 2009). In Acanthina, which has low dispersal potential among locations, strong concordance of intraspecific diversity with the 30°S biogeographic boundary was found, but association with the 42° boundary was less clear. Nevertheless, statistically significant genetic structure and shifts in phenotypic diversity are associated with this region. The gastropod Concholepas concholepas, on the other hand, has high potential for pelagic larval dispersal, is similarly distributed along the coast of Chile, but
exhibits no significant genetic structure at all (Cardenas et al. 2009). These contrasts are wholly in line with predictions based on larval life history.

Recently, large data sets have become available for other commonly encountered taxa in the Chilean intertidal. Microsatellite data were analyzed in the mussel *Perumytilus purpuratus* (Guiñez et al. 2016), which both spawns gametes and has a long-lived planktotrophic larva, and this ecosystem engineer exhibited significant structure with two main lineages (separated at approximately 40°S) and isolation by distance within each lineage. Similarly, Ewers-Saucedo et al. (2016) explored genetic variation in the high intertidal barnacle *Notochthamalus scabrosus*, with nauplius larvae that have high pelagic larval dispersal potential, and found two primary lineages that mirror the dominant biogeographical pattern of Chile: in the northern Peruvian region only one lineage is found, while both are found in the Intermediate Area that represents the overlap of the Peruvian and Magellanic regions, and only the southern lineage is found south of 42°S. Another barnacle, the edible *picoroco* (*Austromegabalanus psittacus*) exhibits only slight structure along most of the Chilean coast (Pappalardo et al. 2016), but nevertheless the observed structure is statistically significant and seems to be associated with the northern (30°S) biogeographic transition.

To these data we add one more layer: Zakas et al. (2009) had explored mitochondrial sequence population structure in the high intertidal barnacle *Jehlius cirratus*, a species that is biologically and ecologically very similar to *Notochthamalus* but found slightly higher in the intertidal (Lamb et al. 2014; Shinen & Navarrete 2010, 2014). Zakas et al. (2009) found
that unlike *Notochthamalus*, there was very little apparent genetic structure in *J. cirratus*.

However, that analysis comprised only a small section of the Chilean coast, from ~28-34°S. Here, we expand the sampling of *J. cirratus* to include diversity from ~3500km of coastline, including most of the known distribution (Häussermann & Försterra 2009). As chthamalid barnacles have a propensity to harbor cryptic genetic diversity (Dando & Southward 1981; Meyers *et al.* 2013; Tsang *et al.* 2008; Wares *et al.* 2009; Zardus & Hadfield 2005), we specifically look for any phylogeographic structure that may add to our understanding of coastal biodiversity in Chile. We then more directly compare the whole-coast data described above for the ecological implications of the population structure identified within and among taxa.
Methods

Specimens of *J. cirratus* were collected from the intertidal in 2004-2013. Field permits were not required from the Subsecretaría de Pesca y Acuicultura for the specimens included in this paper, as they were not "shellfish resources". Sequences of cytochrome oxidase I (n=153) from Zakas et al (2009) were used in this study (Genbank GU126073 – GU126226); additional sequences (n=187) were generated from subsequent samples collected in 2011-2013 using PCR methods as in Zakas et al. (2009). Samples were mostly collected in central Chile (Table 1), but this additional effort also added substantially to information from northern Chile and northern Patagonia.

After quality control and alignment of sequence data using CodonCode Aligner v6.0.2 (CodonCode Corporation), data were formatted for analysis using Arlequin v3.5.2.2. (Excoffier et al. 2005) to identify population structure. Pairwise ΦST was calculated for all sites and compared to a matrix of pairwise geographic distance for signal of isolation by distance (Wright 1943); this was done both with haplotypic data as well as nucleotide data under a K2P distance model. Additionally, an exact test of differentiation was calculated for all pairs of populations. Analysis of molecular variance (AMOVA) was performed to identify maximal structure along the coast as in Dupanloup et al. (2002) and Zakas et al (2009), using an iterative approach for K contiguous spatial groups, increasing K if there were significant patterns of ΦSC within the determined regional groups. Following the results of AMOVA, a haplotype network was generated using PopArt (http://popart.otago.ac.nz). Haplotypes were coded by sample location and by regions separated by the iterative AMOVA results that maximize ΦCT to visually identify components of diversity associated
with each regional group. Population diversity was also assessed at each sampled location; nucleotide diversity (\(\pi\)) and haplotype diversity (\(H\)) are estimated at each location using Arlequin.

Results

New sequences were archived in GenBank under accession numbers KX014910 - KX015034. Site-specific diversity is presented in Table 1; pairwise values of \(\Phi_{ST}\) are presented in Table 2. Only a single sequence was recovered from the northernmost collection site of Arica, so this sequence was included in the Antofagasta sample (results identical when excluded) for statistical purposes. Values of \(\Phi_{ST}\) were very low and in general not statistically significant (Table 2); the only exceptional locations were Guanaqueros (30°S) and Pichilemu (34°S), each of which tended to exhibit higher differentiation from a broader set of other locations. No population pairs were significantly different under an exact test. Testing these results for a pattern of genetic isolation by distance was not significant (p 0.245).

Although negligible structure was exhibited along the Chilean coast in *J. cirratus* (\(\Phi_{ST}\) of -0.019, p ~ 1), there was statistical regional structure detectable with the increased power of sampling at that scale. Our implementation of spatial AMOVA (Zakas et al. 2009) recovered two contrasts for \(K=2\) regions in which \(\Phi_{CT}>0.035\) and \(p<0.01\), though similar results are found if the separation among regions is near to either of these locations (Table 3). These local maxima in \(\Phi_{CT}\) separated Guanaqueros (30°S) and sites to the north from all locations to the south; and Pichilemu (44°S) and all sites to the south from all locations to the north. No significant \(\Phi_{SC}\) was exhibited in these comparisons. If \(K=3\) groups are chosen
using these same delineations, Φ_{CT} was comparable (0.03661, p < 0.001).

From these results, a haplotype network (minimum spanning tree) is presented in Figure 1, showing “northern” diversity (from Guanaqueros northward), “southern” diversity (including Pichilemu and southward sites), and “central” diversity (locations in between), for visualization.

Discussion

As noted in Zakas et al. (2009) there is only slight population structure in *J. cirratus*.

Previous efforts had also noted that using alternate statistics such as Hudson’s (Hudson 2000) Snn also recovered no signal of structure or pattern of isolation by distance (Wares 2014). Here, we identify statistically significant structure that is roughly associated with the 30°S biogeographic transition between the Peruvian and “Intermediate” zones, and there may also be structure further south – but not associated with the boundary at 42°S.

Overall, the statistical significance indicated – given that pairwise statistical support was not consistent between permutational tests of Φ_{ST} and pairwise exact tests of population differentiation – suggests little actual spatial variation but sufficient sampling to identify the differential representation of regional samples in the 2 dominant haplotypes found (Figure 1). Whether this is an instance of ‘eurymixis’ (Dawson *et al.* 2011), an instance where structure may exist but the power to detect it with available markers is insufficient to provide a consistent signal, is unclear. Nevertheless, the same methods have allowed the identification of phylogeographic structure in other species with similar distributions.
Excluding the direct developer *A. monodon* from further consideration, the studies reviewed earlier plus the current study include 5 intertidal species with high larval dispersal potential that are distributed and were analyzed along the length of the Chilean coast. Unfortunately, there is no clear pattern associated with intertidal depth; the species with no or slight population genetic structure (*J. cirratus*, this study; *A. psittacus*, Pappalardo *et al.* 2016; *C. concholepas*, Cardénas *et al.* 2009) are in the highest reaches of the intertidal (*J. cirratus*) as well as the low intertidal (*A. psittacus* and *C. concholepas*). The two species that exhibit significant structure, each with two primary lineages and evidence for isolation by distance within each lineage, are in the high-to-middle intertidal (*N. scabrosus*, Ewers-Saucedo *et al.* 2016; *P. purpuratus*, Guiñez *et al.* 2016).

Clearly a sample of only 5 taxa is insufficient for statistical consideration. However, what we can indicate is that all 3 barnacles (*A. psittacus*, *J. cirratus*, and *N. scabrosus*) have at least some signal associated with the 30-32° oceanographic transition in upwelling (Lagos *et al.* 2005; Navarrete *et al.* 2005); in contrast, the two molluscs, the mussel *P. purpuratus* and abalone *C. concholepas*, do not. The association of genetic structure with the southern biogeographic boundary near 42°S (Thiel *et al.* 2007) is far more varied; other taxa with shorter distributional ranges that span this biogeographic transition, such as the mussel *Mytilus chilensis*, show little spatial structure at mitochondrial or other putatively neutral markers (L. Besch and K. Bockrath, unpublished; Areneda *et al.* 2016) but can be distinguished among different coastal environments by outlier markers (Araneda *et al.* 2016) and expression profiling (Núñez-Acuña *et al.* 2012). Ewers-Saucedo *et al.* (2016) note that environmental transitions and current-mediated larval dispersal in this region,
where trans-oceanic currents are separated as they reach the continental margin (Acha et al. 2004), are likely to transport regionally-differentiated diversity along a broad swath of this coastline. Thus, identifying concordant intraspecific diversity patterns among taxa may require a different analytical approach that is model-driven as in Ewers-Saucedo et al. (2016).

There is an expanding interest in exploration of genetic diversity within and among regional populations of intertidal species along the coast of Chile (see Haye et al. 2014 for a recent synthesis). Such data are being used to explore the underlying causes of biogeographic transition (Cardenas et al. 2009; Ewers-Saucedo et al. 2016), to inform management and aquacultural concerns (Haye & Munoz-Herrera 2013; Núñez-Acuña et al. 2012; Pappalardo et al. 2016), and better understand how the dynamics of a coastal ocean influence local diversity (Aiken & Navarrete 2014; Broitman et al. 2001; Hinojosa et al. 2006; Navarrete et al. 2005). For example, even with variation among the data and taxa evaluated here, there is a concordance between the genetic transitions exhibited in these taxa and regions of strong upwelling along coastal Chile (Navarrete et al. 2005).

What remains unsatisfying is our ability to predict – based on what we know of life history, ecology, and other parameters of a given taxon – which species are likely to exhibit structure across a certain region, or why some species are able to spread across boundaries that others cannot (Dawson 2014). Haydon et al. (1994) first noted the problem of both stochastic and deterministic contributions to biogeography and overall population structure. Certainly some ‘significant’ phylogeographic structure may simply represent the interaction of genealogical processes and modest limitations on gene flow (Irwin 2002).
However, the most direct contrast of the taxa included here involves the barnacles *N. scabrosus* and *J. cirratus*, which are ecologically nearly indistinguishable (Lamb *et al.* 2014; Shinen & Navarrete 2010, 2014) with little known distinction in larval life history. In fact, though *N. scabrosus* exhibits significant phylogeographic structure (Ewers-Saucedo *et al.* 2016), the larvae of *N. scabrosus* appear to require longer times in the plankton and longer times for cyprid metamorphosis than *J. cirratus* (Venegas *et al.* 2000). Whether the cause for this contrast in population structure across a large geographic range is ecological, physiological, or simply chance remains unclear.

Acknowledgments

The author would like to thank Sergio Navarrete, John Binford, Christina Zakas, Leah Besch, Jenna Shinen, Arnaldo Vilaxa Olcay, Daniel Saucedo, Ulo Pörschmann, and Christine Ewers-Saucedo for assistance in collecting specimens and sequence data. Karen Bobier, Paula Pappalardo, Katie Bockrath, Leah Besch, and Bud Freeman assisted with preparation of the manuscript.
Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America: Physical and ecological processes. *J. Marine Systems* **44**, 83-105.

Aiken CM, Navarrete SA (2014) Coexistence of competitors in marine metacommunities: environmental variability, edge effects, and the dispersal niche. *Ecology* **95**, 2289-2302.

Altman S, Robinson JD, Pringle JM, Byers JE, Wares JP (2013) Edges and overlaps in Northwest Atlantic phylogeography. *Diversity* **5**, 263-275.

Brante A, Fernandez M, Viard F (2012) Phylogeography and Biogeography Concordance in the Marine Gastropod *Crepipatella dilatata* (Calyptraeidae) along the Southeastern Pacific Coast. *Journal of Heredity* **103**, 630-637.

Broitman BR, Navarrete SA, Smith F, Gaines SD (2001) Geographic variation in southern Pacific intertidal communities. *Marine Ecology Progress Series* **224**, 21-34.

Cardenas L, Castilla JC, Viard F (2009) A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod *Concholepas concholepas*. *Journal of Biogeography* **36**, 969-981.

Dando PR, Southward AJ (1981) Existence of Atlantic and Mediterranean Forms of Chthamalus-Montagui (Crustacea, Cirripedia) in the Western Mediterranean. *Marine Biology Letters* **2**, 239-248.

Dawson MN (2001) Phylogeography in coastal marine animals: a solution from California? *J. Biogeography* **28**, 723-736.

Dawson MN (2014) Biogeography and complex traits: dispersal syndromes, in the sea. *Frontiers of Biogeography* **6**, 11-15.

Dawson MN, Barber PH, Gonzalez-Guzman LI, Toonen RJ, Dugan JE, Grosberg RK (2011) Phylogeography of *Emerita analoga* (Crustacea, Decapoda, Hippidae), an eastern Pacific Ocean sand crab with long-lived pelagic larvae. *Journal of Biogeography* **38**, 1600-1612.

Dawson MN, Grosberg RK, Stuart YE, Sanford E (2010) Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle *Tetraclita rubescens*. *Molecular Ecology* **19**, 1585-1605.

Dawson MN, Louie KD, Barlow M, Jacobs DK, Swift CC (2002) Comparative phylogeography of sympatric sister species, Clevelandia ios and Eucyclogobius newberryi (Teleostei, Gobiidae), across the California Transition Zone. *Molecular Ecology* **11**, 1065-1075.

Díaz-Ferguson E, Robinson JD, Silliman BR, Wares JP (2009) Comparative Phylogeography of East Coast American Salt Marsh Communities. *Estuaries & Coasts* DOI 10.1007/s12237-009-9220-6.

Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. *Mol. Ecol.* **11**, 2571-2581.

Ewers-Saucedo C, Pringle JM, Sepúlveda HH, Byers JE, Navarrete SA, Wares JP (2016) The oceanic concordance of phylogeography and biogeography: a case study in *Notochthamalus*. *Ecology and Evolution* **6**, 4403-4420.
Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. *Evolutionary Bioinformatics Online* **1**, 47-50.

Guíñez R, Pita A, Pérez M, Briones C, Navarrete SA, Toro JE, Presa P (2016) Present-day connectivity of historical stocks of the ecosystem engineer Perumytilus purpuratus along 4500 km of the Chilean Coast. *Fisheries Research* **7/16**, 322-332.

Häusermann V, Försterra G (2009) *Marine Benthic Fauna of Chilean Patagonia* Nature in Focus, Santiago, Chile.

Haydon DT, Crother BI, Pianka ER (1994) New directions in biogeography? *Trends in Ecology and Evolution* **9**, 403-406.

Haye PA, Munoz-Herrera NC (2013) Isolation with differentiation followed by expansion with admixture in the tunicate Pyura chilensis. *BMC Evol Biol* **13**, 252.

Haye PA, Segovia NI, Munoz-Herrera NC, Galvez FE, Martinez A, Meynard A, Pardo-Gandarillas MC, Poulin E, Faugeron S (2014) Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential. *PLoS One* **9**, e88613.

Hinojosa I, Boltana S, Lancellotti D, Macaya E, Ugalde P, Valdivia N, Vasquez N, Newman WA, Thiel M (2006) Geographic distribution and description of four pelagic barnacles along the south east Pacific coast of Chile - a zoogeographical approximation. *Revista Chilena de Historia Natural* **79**, 13-27.

Hudson RR (2000) A new statistic for detecting genetic differentiation. *Genetics* **155**, 2011-2014.

Irwin DE (2002) Phylogeographic breaks without geographic barriers to gene flow. *Evolution* **56**, 2383-2394.

Kelly RP, Palumbi SR (2010) Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. *PLoS One* **5**, e8594.

Lagos NA, Navarrete SA, Véliz F, Masuero A, Castilla JC (2005) Meso-scale spatial variation in settlement and recruitment of intertidal barnacles along the coast of central Chile. *Mar. Ecol. Prog. Ser.* **290**, 165-178.

Lamb EA, Leslie HM, Shinen JL (2014) Both like it hot? Influence of temperature on two co-occurring intertidal barnacles in central Chile. *Journal of Experimental Marine Biology and Ecology* **453**, 54-61.

Marko PB (2004) 'What's larvae got to do with it?' Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. *Molecular Ecology* **13**, 597-611.

Meyers M, Pankey MS, Wares JP (2013) Genealogical approaches to the temporal origins of the Central American Gap: Speciation and divergence in Pacific *Chthamalus*. *Revista Biologia Tropical* **61**, 75-88.

Navarrete SA, Broitman BR, Menge BA (2008) Interhemispheric comparison of recruitment to rocky intertidal communities: pattern persistence and scales of variation. *Ecology* **89**, 1308-1322.
recent connectivity across the Pacific and Indian Oceans. *Mar. Ecol. Prog. Ser.* **364**, 107-118.

Venegas RM, Ortíz V, Olguín A, Navarrete SA (2000) Larval development of the intertidal barnacles *Jehlius cirratus* and *Notochthamalus scabrosus* (Cirripedia: Chthamalidae) under laboratory conditions. *J. Crust. Biol.* **20**, 495-504.

Wares JP (2002) Community genetics in the Northwestern Atlantic intertidal. *Molecular Ecology* **11**, 1131-1144.

Wares JP (2014) Why not do phylogeography on every chthamalid barnacle? The case of *Jehlius cirratus*. *PeerJ PrePrints* **2**, e596v592.

Wares JP (2016) Population structure and gene flow. In: *Encyclopedia of Evolutionary Biology* (ed. Kliman RM), pp. 327-331. Academic Press, Oxford.

Wares JP, Castañeda AE (2005) Geographic range in Chthamalus along the west coast of North America. *J. mar. biol. Ass. U.K.* **85**, 327-331.

Wares JP, Gaines SD, Cunningham CW (2001) A comparative study of asymmetric migration events across a marine biogeographic boundary. *Evolution* **55**, 295-306.

Wares JP, Pankey MS, Pitombo FB, Gómez Daglio LE, Achituv Y (2009) A "shallow phylogeny" of shallow barnacles (*Chthamalus*). *PLos One* **4**, e5567.

Wright S (1943) Isolation by distance. *Genetics* **28**, 139-156.

Zakas C, Binford J, Navarrete SA, Wares JP (2009) Restricted gene flow in Chilean barnacles reflects an oceanographic and biogeographic transition zone. *Marine Ecology Progress Series* **394**, 165-177.

Zardus JD, Hadfield MG (2005) Multiple origins and incursions of the Atlantic barnacle *Chthamalus Proteus* in the Pacific. *Molecular Ecology* **14**, 3719-3733.
Table 1 Collection sites, number of individuals per sampling site (n) and summary statistics of genetic variability for *Jehlius cirratus*.

Site (South Latitude)	Sampled n	Haplotypes	Haplotype diversity	Nucleotide diversity (π)
Antofagasta/Arica (18.49°)	31	27	0.978±0.020	0.012±0.009
Huasco (28.46°)	41	25	0.945±0.022	0.009±0.003
Temblador (29.40°)	21	16	0.948±0.040	0.009±0.006
Guanaqueros (30.20°)	24	18	0.942±0.040	0.011±0.006
Punta Talca (30.95°)	23	14	0.893±0.052	0.008±0.004
Los Molles (32.25°)	28	23	0.971±0.024	0.011±0.007
Monte Mar (32.95°)	28	24	0.987±0.014	0.011±0.006
El Quisco (33.45°)	29	25	0.988±0.013	0.010±0.006
Las Cruces (33.49°)	17	16	0.993±0.023	0.012±0.006
Matanzas (33.95°)	24	20	0.975±0.024	0.011±0.006
Pichilemu (34.42°)	32	24	0.958±0.025	0.010±0.008
Niebla (39.85°)	25	17	0.957±0.024	0.014±0.008
Añihue (43.85°)	8	7	0.964±0.077	0.016±0.009
Isla Madre de Dios (50.42°)	7	3	0.667±0.160	0.009±0.004
Table 2 Pairwise Φ_{ST} values among sites (indicated as header) for mitochondrial COI sequence data in *Jehlius cirratus*. Statistically significant ($p<0.01$) comparisons are bolded and in blue. The sample from Antofagasta includes the single available sequence from Arica.

Antofagasta	Huasco	Temblador	Guanaqueros	Punta Talca	Los Molles	Monte Mar	El Quisco	Las Cruces	Matanzas	Pichilemu	Niebla	Añihue
-0.10271	-0.02397	-0.10075	-0.06007	-0.00797	-0.01641	-0.07084	-0.17547	-0.00509	-0.07137	0.06509	0.1927	0.10959
-0.10271	-0.02397	-0.10075	-0.06007	-0.00797	-0.01641	-0.07084	-0.17547	-0.00509	-0.07137	0.06509	0.1927	0.10959
-0.09836	-0.09486	-0.01873	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	
-0.09836	-0.09486	-0.01873	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	
-0.01539	0.01272	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	-0.02127	
-0.01539	0.01272	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	-0.02127	
-0.01539	0.01272	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	-0.02127	
-0.01539	0.01272	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	-0.02127	
-0.01539	0.01272	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	-0.02127	
-0.01539	0.01272	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	-0.02127	
-0.01539	0.01272	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	-0.02127	
-0.01539	0.01272	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	-0.02127	
-0.01539	0.01272	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	-0.02127	
-0.01539	0.01272	-0.01757	0.00493	-0.03693	-0.0808	-0.15953	-0.03391	-0.16477	-0.07314	-0.02223	-0.02127	
Table 3 Iterative AMOVA for K=2 regions of sequence diversity. Site is listed as dividing that location and all sites to the north from all locations to the south. The northernmost 2 sites (Arica, Antofagasta) were pooled for analysis as were the southernmost 2 sites (Añihue, Madre de Dios). Strongest values of Φ_{CT} (by magnitude and p-value) indicated in bold. Similar value of Φ_{CT} (0.0366, p<0.001) is obtained with K=3 and the regions separated as in Figure 1.

Site	Φ_{CT}	p-value
Huasco	0.01406	0.16
Temblador	0.01977	0.11
Guanaqueros	**0.03679**	<0.001
Punta Talca	0.02623	0.03
Los Molles	0.03215	<0.01
Monte Mar	0.02998	0.01
El Quisco	0.02896	<0.01
Las Cruces	0.03463	<0.01
Matanzas	**0.03615**	<0.005
Pichilemu	0.00076	0.55
Niebla	0.00635	0.64
Figure 1. Minimum-spanning tree of mitochondrial COI diversity in *Jehlius cirratus*. Regional designations are generated from maximal Φ_{CT} values along the coast. Map to right of figure indicates the hypothesized transitions of species and genetic diversity noted from previous work (30°S, 42°S) and the regional separation of diversity supported by analyses of molecular
variance in this study ("north", "central", and "south"). Red circles indicate sample locations along the coast; blue circles represent log-transformed sample size (see Table 1).