Depolarization of circularly polarized light in the Mie resonance region

E E Gorodnichev, A I Kuzovlev and D B Rogozkin
National Research Nuclear University MEPhI, Kashirskoe Shosse 31, 115409 Moscow, Russia
E-mail: gorodn@theor.mephi.ru

Abstract. We show that a disordered ensemble of dielectric particles near the Mie resonances has anomalous depolarizing properties. Under the first Kerker condition the depolarization length of circularly polarized light reaches its peak value, and can be ten times greater than the transport mean free path. The second Kerker condition is shown to be satisfied as the refractive index of particles increases. In this case, the depolarization length is minimum and almost coincides with the mean free path.

1. Introduction
The effect of slow decay of circular polarization is inherent in wave propagation through media with large scattering inhomogeneities [1] (see also [2] and references therein) and, as has been shown recently [3], through media with resonant Mie particles. The latter case is considered below.

Between the first two Mie resonances a single scattered wave can retain its circular polarization [3]. This effect arises provided that the electric dipolar contribution to the scattering amplitude becomes equal to the magnetic dipolar one (e.g., for silicon spheres, refractive index $n = 3.5$, the circular polarization memory can be observed at size parameter $k_0a = 0.784$, k_0 and a are the wavenumber and the particle radius). The equality between the electric and magnetic dipolar contributions corresponds to the so-called first Kerker condition [3] under which the differential scattering cross-section is equal to zero in the backward direction. Numerical simulations [3] have indicated that multiply scattered light remains also completely polarized. However, as shown below, the results [3] can be considered as a first approximation. The inclusion of the quadrupolar and higher order contributions violates the exact fulfillment of the Kerker condition. The depolarization cross section proves to be small, but nonzero, and the circular polarization decays at scales that are more than ten times greater than the transport mean free path.

2. General relations
Consider a beam of polarized light incident on the surface of a scattering medium. The medium is assumed to be a statistically isotropic disordered ensemble of particles. The polarization state of scattered light can be described by the Stokes vector $\hat{S} = (I, Q, U, V)$ which obeys the vector radiative transfer equation [4],

$$\left\{ \mathbf{n} \frac{\partial}{\partial r} + n_0\sigma_{tot} \right\} \hat{S}(z, \mathbf{n}) = n_0 \int d\mathbf{n}' \hat{Z}(\mathbf{n}, \mathbf{n}') \hat{S}(z, \mathbf{n}') \tag{1}$$
where $\sigma_{\text{tot}} = \sigma + \sigma_a$ is the cross section of total extinction, σ and σ_a are the the cross sections of scattering and absorption, respectively; vectors \mathbf{n} and \mathbf{n}' denote the directions of wave propagation, n_0 is the number of scattering particles per unit volume. The phase matrix $\hat{Z}(\mathbf{n}, \mathbf{n}')$ entering into Eq.(1) can be expressed in terms of the scattering matrix (see [4]),

$$
\hat{Z}(\mathbf{n}, \mathbf{n}') = \hat{L}(\pi - \beta) \hat{F}(\mathbf{nn}') \hat{L}(-\beta')
$$

(2)

The scattering matrix $\hat{F}(\mathbf{nn}')$ describes the intrinsic properties of the medium. The matrices $\hat{L}(-\beta')$ and $\hat{L}(\pi - \beta)$ describe the transformation of the Stokes parameters under rotations in the space of directions \mathbf{n} (regarding the definition of the matrix \hat{L} and angles β, β', see [4]).

For a macroscopically isotropic and symmetric medium, the scattering matrix $\hat{F}(\mathbf{nn}')$ appearing in Eq.(2) has the block-diagonal structure [4]:

$$
\hat{F}(\mathbf{nn}') = \begin{pmatrix}
 a_1(\mathbf{nn}') & b_1(\mathbf{nn}') & 0 & 0 \\
 b_1(\mathbf{nn}') & a_1(\mathbf{nn}') & 0 & 0 \\
 0 & 0 & a_2(\mathbf{nn}') & b_2(\mathbf{nn}') \\
 0 & 0 & -b_2(\mathbf{nn}') & a_2(\mathbf{nn}')
\end{pmatrix}
$$

(3)

The element a_1 in matrix (3) is the differential cross section of elastic scattering. It is subject to the condition

$$
\int d\mathbf{n}' a_1(\mathbf{nn}') = \sigma
$$

(4)

For spherical particles of given radius and refractive index, the matrix elements a_1, a_2 and b_1, b_2 are equal to

$$
a_1(\cos \gamma) = \frac{1}{2} \left(|A_{||}(\cos \gamma)|^2 + |A_{\perp}(\cos \gamma)|^2 \right), \\
b_1(\cos \gamma) = \frac{1}{2} \left(|A_{||}(\cos \gamma)|^2 - |A_{\perp}(\cos \gamma)|^2 \right),
$$

$$
a_2(\cos \gamma) = \text{Re} A_{||}(\cos \gamma) A_{\perp}^*(\cos \gamma), \\
b_2(\cos \gamma) = \text{Im} A_{||}(\cos \gamma) A_{\perp}^*(\cos \gamma)
$$

(5)

where $\cos \gamma = \mathbf{nn}'$, $A_{||}$ and A_{\perp} are the amplitudes of the components polarized parallel and perpendicular to the scattering plane. The values of $A_{||}$ and A_{\perp} are calculated with the Mie theory [5].

In the case of the normal incidence of the circularly polarized light the Stokes parameters I, Q, U and V obey two independent systems of transfer equations

$$
\begin{align*}
\{ & \frac{\partial}{\partial z} + n_0 \sigma_{\text{tot}} \} \\
I(z, \mu) & = n_0 \int d\mathbf{n}' \begin{pmatrix} a_1 \\ b_1 \cos \beta' \\ a_1 \cos \beta \cos \beta' - a_2 \sin \beta \sin \beta' \end{pmatrix} \begin{pmatrix} I(z, \mu') \\ Q(z, \mu') \\ V(z, \mu') \end{pmatrix}, \\
Q(z, \mu) & = n_0 \int d\mathbf{n}' \begin{pmatrix} a_2 \\ b_2 \cos \beta' \\ a_2 \cos \beta \cos \beta' - a_2 \sin \beta \sin \beta' \end{pmatrix} \begin{pmatrix} I(z, \mu') \\ Q(z, \mu') \\ V(z, \mu') \end{pmatrix},
\end{align*}
$$

(6)

$$
\begin{align*}
\{ & \frac{\partial}{\partial z} + n_0 \sigma_{\text{tot}} \} \\
V(z, \mu) & = n_0 \int d\mathbf{n}' \begin{pmatrix} a_2 \\ b_2 \cos \beta' \\ a_2 \cos \beta \cos \beta' - a_2 \sin \beta \sin \beta' \end{pmatrix} \begin{pmatrix} I(z, \mu') \\ Q(z, \mu') \\ V(z, \mu') \end{pmatrix},
\end{align*}
$$

(7)

where $\mu = \mathbf{nn}_n$, \mathbf{n}_n is the inward normal to the surface, $\psi = \varphi - \varphi'$ is the difference between the azimuthal angles of vectors \mathbf{n} and \mathbf{n}'. The degree of circular polarization of light is defined as $P_C = V/I$.

For a unit incident flux, the boundary conditions to Eqs.(6) and (7) have the form

$$
I(z = 0, \mu) = V(z = 0, \mu) = \frac{1}{2\pi} \delta(1 - \mu)
$$

(8)

The other quantities, Q and U, should be put equal to zero at $z = 0$.

Figure 1. Angular dependence of the elements a_1 (solid black line), $|a_2|$ (dashed red line), $|b_1|$ (dash-dotted green line) and $|b_2|$ (dotted blue line) at the first Kerker point. The numerical calculations were carried out with the Mie theory for a silicon sphere ($n = 3.5, k_0a = 0.784$).

3. First Kerker point. Basic mode approximation

Between the first two Mie resonances the differential scattering cross section can tend to zero in the backward direction [6]. This corresponds to the so-called first Kerker condition [6, 7] and occurs when the electric and magnetic dipolar contributions to the scattering amplitude coincide to each other.

Under the first Kerker condition the elements a_1 and a_2 appearing in Eqs.(3) and (5) prove to be very nearly equal to each other and vastly greater than the elements b_1 and b_2 (see Fig. 1). Therefore, in the vicinity of the first Kerker point we can neglect the off-diagonal elements of the scattering matrix, and the systems (6) and (7) reduce to two independent equations [2]. Within such an approximation, the specific intensity I and the fourth Stokes parameter V are subject to the transfer equations [2]

$$\begin{align*}
\left\{ \mu \frac{\partial}{\partial z} + n_0\sigma_{\text{tot}} \right\} I(z, \mu) &= n_0 \int d\mu' a_1(\mu\mu') I(z, \mu') \\
\left\{ \mu \frac{\partial}{\partial z} + n_0\sigma_{\text{tot}} \right\} V(z, \mu) &= n_0 \int d\mu' a_2(\mu\mu') V(z, \mu')
\end{align*}$$

Equations (9) and (10) correspond to the basic mode approximation [2] in the vector radiative transfer equation. The difference between the elements a_1 and a_2 is responsible for attenuation of ratio V/I due to depolarization of circularly polarized light in the medium. The cross-section of depolarization [2, 9]

$$\sigma_{\text{dep}} = \int d\mu' (a_1(\mu\mu') - a_2(\mu\mu')) = \frac{1}{2} \int d\mu' |A_{\parallel}(\mu\mu') - A_{\perp}(\mu\mu')|^2$$

acts as the cross section of an "additional absorption" in Eq.(10). The elements a_1 and a_2 differ from each other only in the vicinity of the backward direction (see Fig. 1).

If only the electric and magnetic dipolar contributions to the scattering amplitudes are taken into account, the amplitudes A_{\parallel} and A_{\perp} and, consequently, the elements a_1 and a_2 can be expressed in terms of the electric α_e and magnetic α_m particle polarizabilities and written in the form

$$A_{\parallel} = k_0^2 (\alpha_e \cos \gamma + \alpha_m), \quad A_{\perp} = k_0^2 (\alpha_e + \alpha_m \cos \gamma)$$

(12)
depolarization length l_{circ} for an ensemble of silicon spheres as a function of size parameter k_0a. The upper curve is the result of numerical calculations with the characteristic transfer equation. The lower curve is the diffusion result (15). The inset shows the peak value of l_{circ}/l_{tr} as a function of the refractive index of scattering particles.

\[
\alpha_{1,2} = \frac{k_0^4}{2} \left(|\alpha_e| + |\alpha_m| \right)^2 (1 + \cos \gamma)^2 \pm |\alpha_e - \alpha_m|^2 (1 - \cos \gamma)^2
\]

From Eqs.(12) and (13) it follows that under the first Kerker condition, $\alpha_e = \alpha_m$ [6], the equalities $A_\parallel = A_\perp$ and $a_1 = a_2$ are valid. In this approximation the cross section of depolarization $\sigma_{dep} = 0$, and the circular polarization is retained at an arbitrary depth z [3].

The difference between a_1 and a_2 shown in Fig. 1 is due to the higher-order multipolar contributions to the scattering amplitudes. The cross section σ_{dep} is small but nonzero. The wavelength dependence of σ_{dep} is illustrated in Fig. 2. The numerical calculations were carried out with the Mie theory [5]. A sharp dip in σ_{dep} corresponds to the first Kerker point. In the vicinity of this point, the value of σ_{dep} is much less than the transport cross-section σ_{tr}, resulting in the effect of circular polarization memory.

As z increases, the fourth Stokes parameter decays as $V(z, \mu) \sim \exp(-z/l_{circ})$, where the depolarization length l_{circ} can be found from the characteristic equation corresponding to Eq.(10) (for details see [2]). For a medium with no absorption ($\sigma_a = 0$) this equation has the form

\[
\det \left(n_0 (\sigma - a_2(l)) \delta_{l,m} - \frac{1}{(2l + 1)l_{circ}} (l\delta_{l-1,m} + (l + 1)\delta_{l+1,m}) \right) = 0
\]

where $a_2(l)$ ($l = 0, 1, \ldots$) are the expansion coefficients of the element $a_2(\cos \gamma)$ in the Legendre polynomials.

For silicon spheres, the results of numerical calculations of l_{circ} in the vicinity of the first Kerker point are shown in Fig. 3. For a number of materials with high refractive index [8], the values of l_{circ} are also presented in Table 1. From the obtained results it follows that ratio l_{circ}/l_{tr} at the first Kerker point increases with the refractive index of particles. For different materials, the position of the first Kerker point is well approximated by the relation $k_0an = 2.744$.

Figure 2. Depolarization cross section σ_{dep} for silicon spheres as a function of size parameter k_0a. The inset illustrates the smooth behavior of σ_{tr} near of the first Kerker point.

Figure 3. Depolarization length l_{circ} for an ensemble of silicon spheres as a function of size parameter k_0a.
Table 1. Depolarization length at the first Kerker point for high refractive index materials

Material	Refractive index n ($\lambda = 1.6 \ \mu m$) [8]	k_0n	σ_{dep}/σ_{tr}	l_{circ}/l_{tr}
AlAs	2.9	2.743	0.0016	14.6
GaP	3.05	2.745	0.0012	16.5
InP	3.15	2.744	0.0010	17.9
AlSb	3.28	2.745	0.0009	19.3
GaAs	3.37	2.743	0.0008	20.8
Si	3.47	2.745	0.0007	22.0
Ge	4.24	2.743	0.0003	32.6

Under conditions of the circular polarization memory, $\sigma_{dep} \ll \sigma_{tr}$, the fourth Stokes parameters V falls off at scales that are much greater than the transport mean free path l_{tr}, and the diffusion approximation can be applied to calculations of $V(z, \mu)$ [9]. Within such an approximation, the depolarization length l_{circ} of circularly polarized light is equal to [2,9]

$$l_{circ} = \sqrt{l_{tr}l_{dep}/3} \quad (15)$$

where $l_{dep} = (n_0\sigma_{dep})^{-1}$ is the mean free path with respect to depolarizing collisions. Comparison of Eq.(15) with the results of numerical calculations is illustrated in Fig. 3. As follows from Fig. 3, the diffusion formula (15) is valid wherever the inequality $l_{circ} > l_{tr}$ is fulfilled.

In practice, spread of particles in size reduces the peak value of l_{circ}/l_{tr}. However, for relatively small deviations from the Kerker condition, the circular polarization memory effect remains observable.

4. Second Kerker point

The second Kerker condition implies that the scattering cross section tends to zero in the forward direction [6]. Owing to the optical theorem, this condition can be fulfilled only approximately.

With allowance for the electric and magnetic dipolar contributions, the optical response of the Mie particles was studied in [6,10]. Within such an approximation, the scattering amplitudes A_\parallel and A_\perp at the second Kerker point, $\alpha_e = -\alpha_m$ [6], satisfy the equality $A_\parallel = -A_\perp$. In this case $a_1 = -a_2$ and the cross section a_1 is proportional to $(1 - \cos \gamma)^2$ (see Eq.(13)). As a result, the scattering to the backward hemisphere dominates, and the mean cosine of single-scattering angle reaches its minimum value $<\cos \gamma> = -0.5$. The cross section of depolarization σ_{dep} peaks at the second Kerker point. The maximum value of σ_{dep} is equal to 2σ.

If, in addition to the electric and magnetic dipolar contributions, the higher-order multipolar contributions are taken into account, the second Kerker condition can not be satisfied exactly. As follows from our calculations, the suppression of the forward scattering turns out to be slightly pronounced for relatively moderate values of the refractive index. However, the fulfillment of the second Kerker condition is achieved asymptotically as the refractive index increases, $n \gg 1$ (see Fig. 4). The values of σ_{dep} and $<\cos \gamma>$ tend to their limiting values at $n \geq 5$ (see Fig. 5).

Owing to rather great values of σ_{dep}, multiple scattering near the second Kerker point is accompanied by fast depolarization of light. The results of numerical calculations of l_{circ} with the characteristic equation (14) are presented in Fig. 5. As the refractive index increases, the depolarization length tends to the value close to the mean free path, $l_{circ} = 1.038l$. This value corresponds to the limit $n \gg 1$ where $a_1(\cos \gamma) = a_1(180^0)(1 - \cos \gamma)^2/4$.

From the obtained results it follows that an ensemble of Mie particles near the second Kerker point can be considered as the medium that maximally scatters and depolarizes the electromagnetic radiation.

5. Conclusions
In conclusion, we have shown that a disordered ensemble of dielectric spheres with a relatively high refractive index exhibits anomalous depolarizing properties in the Mie resonance region. For the first and second Kerker points, the depolarization lengths of circularly polarized light have been first calculated. The decay of polarization in the vicinity of the first Kerker point has been shown to occur deep in the diffusion regime. It has also been found that the second Kerker condition can be satisfied as the refractive index of particles increases. In this case, the depolarizing ability of the medium is maximum. The depolarization length of circularly polarized light is very close to the mean free path.

References
[1] Bicout D, Brosseau C, Martinez A S and Schmitt J M 1994 Phys. Rev. E 49 1767
[2] Gorodnichev E E, Kuzovlev A I and Rogozkin D B 2014 Phys. Rev E 90 043205
[3] Schmidt M K, Aizpurua J, Zambrana-Puyalto X, Vidal X, Molina-Terriza G and Saenz J J 2015 Phys. Rev. Lett. 114 113902
[4] Mishchenko M I, Travis L D and Lacis A A 2002 Scattering, Absorption and Emission of Light by Small Particles (Cambridge: Cambridge University Press).
[5] Bohren C F and Huffman D R 1998 Absorption and Scattering of Light by Small Particles (Toronto: Wiley Professional Paperbacks).
[6] Nieto-Vesperinas M, Gomez-Medina R and Saenz J J 2011 J. Opt. Soc. Am. A 28 54
[7] Kerker M., Wang D-S and C. L. Giles 1983 J. Opt. Soc. Am. 73 765
[8] Garcia-Camara B, Gomez-Medina R, Saenz J J and Sepulveda B 2013 Opt. Express 21 23007 (2013).
[9] Gorodnichev E E, Kuzovlev A I and Rogozkin D B 1998 JETP Lett. 68 22
[10] Gomez-Medina R, Froune-Perez L S, Yepez M, Scheffold F, Nieto-Vesperinas M and Saenz J J 2012 Phys. Rev. A 85 035802