ON THE MINIMAL RAMIFICATION PROBLEM FOR SEMIABELIAN GROUPS

HERSHY KISILEVSKY, DANNY NEFTIN, AND JACK SONN

Abstract. It is known ([10], [12]) that for any prime \(p \) and any finite semiabelian \(p \)-group \(G \), there exists a (tame) realization of \(G \) as a Galois group over the rationals \(\mathbb{Q} \) with exactly \(d = d(G) \) ramified primes, where \(d(G) \) is the minimal number of generators of \(G \), which solves the minimal ramification problem for finite semiabelian \(p \)-groups. We generalize this result to obtain a theorem on finite semiabelian groups and derive the solution to the minimal ramification problem for a certain family of semiabelian groups that includes all finite nilpotent semiabelian groups \(G \). Finally, we give some indication of the depth of the minimal ramification problem for semiabelian groups not covered by our theorem.

1. Introduction

Let \(G \) be a finite group. Let \(d = d(G) \) be the smallest number for which there exists a subset \(S \) of \(G \) with \(d \) elements such that the normal subgroup of \(G \) generated by \(S \) is all of \(G \). One observes that if \(G \) is realizable as a Galois group \(G(K/\mathbb{Q}) \) with \(K/\mathbb{Q} \) tamely ramified (e.g. if none of the ramified primes divide the order of \(G \)), then at least \(d(G) \) rational primes ramify in \(K \) (see e.g. [10]). The minimal ramification problem for \(G \) is to realize \(G \) as the Galois group of a tamely ramified extension \(K/\mathbb{Q} \) in which exactly \(d(G) \) rational primes ramify. This variant of the inverse Galois problem is open even for \(p \)-groups, and no counterexample has been found. It is known that the problem has an affirmative solution for all semiabelian \(p \)-groups, for all rational primes \(p \) ([10], [12]). A finite group \(G \) is semiabelian if and only if \(G \in \mathcal{SA} \), where \(\mathcal{SA} \) is the smallest family of finite groups satisfying: (i) every finite abelian group belongs to \(\mathcal{SA} \). (ii) if \(G \in \mathcal{SA} \) and \(A \) is finite abelian, then any semidirect product \(A \rtimes G \) belongs to \(\mathcal{SA} \). (iii) if \(G \in \mathcal{SA} \), then every homomorphic image of \(G \) belongs to \(\mathcal{SA} \). In this paper we generalize this result to arbitrary finite semiabelian groups by means of a “wreath product length” \(\text{wl}(G) \) of a finite semiabelian group \(G \). When a finite semiabelian group \(G \) is nilpotent, \(\text{wl}(G) = d(G) \), which for nilpotent groups \(G \) equals the (more familiar) minimal number of generators of \(G \). Thus the general result does not solve the minimal ramification problem for all finite semiabelian groups, but does specialize to an affirmative solution to the

\[\text{The research of the first author was supported in part by a grant from NSERC.} \]
minimal ramification problem for nilpotent semiabelian groups. Note that for a nilpotent group \(G \), \(d(G) = \max_p |G| d(G_p) \) and not \(\sum_p|G| d(G_p) \), where \(G_p \) is the \(p \)-Sylow subgroup of \(G \). Thus, a solution to the minimal ramification problem for nilpotent groups does not follow trivially from the solution for \(p \)-groups.

2. Properties of wreath products

2.1. Functoriality. The family of semiabelian groups can also be defined using wreath products. Let us recall the definition of a wreath product. Here and throughout the text the actions of groups on sets are all right actions.

Definition 2.1. Let \(G \) and \(H \) be two groups that act on the sets \(X \) and \(Y \), respectively. The \textit{(permutational) wreath product} \(H \wr_X G \) is the set \(H \times X \times G = \{ (f,g) \mid f : X \to H, g \in G \} \) which is a group with respect to the multiplication:

\[
(f_1,g_1)(f_2,g_2) = (f_1f_2g_1^{-1},g_1g_2),
\]

where \(f_2^{-1} \) is defined by \(f_2^{-1}(x) = f_2(xg_1) \) for any \(g_1, g_2 \in G, x \in X, f_1, f_2 : X \to H \).

The group \(H \wr_X G \) acts on the set \(Y \times X \) by \((y,x) \cdot (f,g) = (yf(x),xg) \), for any \(y \in Y, x \in X, f : X \to H, g \in G \).

Definition 2.2. The \textit{standard (or regular) wreath product} \(H \wr G \) is defined as the permutational wreath product with \(X = G, Y = H \) and the right regular actions.

The functoriality of the arguments of a wreath product will play an important role in the sequel. The following five lemmas are devoted to these functoriality properties.

Definition 2.3. Let \(G \) be a group that acts on \(X \) and \(Y \). A map \(\phi : X \to Y \) is called a \(G \)-map if \(\phi(xg) = \phi(x)g \) for every \(g \in G \) and \(x \in X \).

Note that for such \(\phi \), we also have \(\phi^{-1}(y)g = \{ xg | \phi(x) = y \} = \{ x' \phi(x') = yg \} = \phi^{-1}(yg) \).

Lemma 2.4. Let \(G \) be a group that acts on the finite sets \(X, Y \) and let \(A \) be an abelian group. Then every \(G \)-map \(\phi : X \to Y \) induces a homomorphism \(\tilde{\phi} : A \wr_X G \to A \wr_Y G \) by defining: \((\tilde{\phi}(f,g)) = (\hat{\phi}(f),g) \) for every \(f : X \to A \) and \(g \in G \), where \(\hat{\phi} : Y \to A \) is defined by:

\[
\hat{\phi}(f)(y) = \prod_{x \in \phi^{-1}(y)} f(x),
\]

for every \(y \in Y \). Furthermore, if \(\phi \) is surjective then \(\tilde{\phi} \) is an epimorphism.
Proof. Let us show the above $\tilde{\phi}$ is indeed a homomorphism. For this we claim: $\tilde{\phi}((f_1,g_1)(f_2,g_2)) = \tilde{\phi}(f_1,g_1)\tilde{\phi}(f_2,g_2)$ for every $g_1,g_2 \in G$ and $f_1,f_2 : X \to A$. By definition:

$$\tilde{\phi}(f_1,g_1)\tilde{\phi}(f_2,g_2) = (\hat{\phi}(f_1),g_1)(\hat{\phi}(f_2),g_2) = (\hat{\phi}(f_1)\hat{\phi}(f_2)^{g_1^{-1}},g_1g_2),$$

while: $\tilde{\phi}((f_1,g_1)(f_2,g_2)) = \tilde{\phi}(f_1f_2^{g_1^{-1}},g_1g_2) = (\hat{\phi}(f_1)f_2^{g_1^{-1}},g_1g_2)$. We shall show that $\hat{\phi}(f_1f_2) = \hat{\phi}(f_1)\hat{\phi}(f_2)$ and $\hat{\phi}(f^g) = \hat{\phi}(f)^g$ for every $f_1,f_2,f : X \to A$ and $g \in G$. Clearly this will imply the claim. The first assertion follows since:

$$\hat{\phi}(f_1f_2)(y) = \prod_{x \in \phi^{-1}(y)} f_1(x)f_2(x) = \prod_{x \in \phi^{-1}(y)} f_1(x) \prod_{x \in \phi^{-1}(y)} f_2(x) = \hat{\phi}(f_1)(y)\hat{\phi}(f_2)(y).$$

As to the second assertion we have:

$$\hat{\phi}(f^g)(y) = \prod_{x \in \phi^{-1}(y)} f^g(x) = \prod_{x \in \phi^{-1}(y)} f(xg^{-1}) = \prod_{x' \in \phi^{-1}(yg^{-1})} f(x') = \prod_{x' \in \phi^{-1}(g^{-1})} f(x').$$

Since ϕ is a G-map we have $\phi^{-1}(yg^{-1}) = \phi^{-1}(yg^{-1})$ and thus

$$\hat{\phi}(f^g)(y) = \prod_{x \in \phi^{-1}(yg^{-1})} f(x) = \prod_{x \in \phi^{-1}(y)} f(x) = \hat{\phi}(f)^g(y).$$

This proves the second assertion and hence the claim. It is left to show that if ϕ is surjective then $\tilde{\phi}$ is surjective. Let $f' : Y \to A$ and $g' \in G$. Let us define an $f : X \to A$ that will map to f'. For every $y \in Y$ choose an element $x_y \in X$ for which $\phi(x_y) = y$ and define $f(x_y) := f'(y)$. Define $f(x) = 1$ for any $x \notin \{x_y | y \in Y\}$. Then clearly

$$\hat{\phi}(f)(y) = \prod_{x \in \phi^{-1}(y)} f(x) = f(x_y) = f'(y).$$

Thus, $\tilde{\phi}(f,g') = (\hat{\phi}(f),g') = (f',g')$ and $\tilde{\phi}$ is onto.\square

Lemma 2.5. Let B and C be two groups. Then there is a surjective $B \wr C$-map $\phi : B \wr C \to B \times C$ defined by: $\phi(f,c) = (f(1),c)$ for every $f : C \to B, c \in C$.

Proof. Let $(f,c),(f',c')$ be two elements of $B \wr C$. We check that $\phi((f,c)(f',c')) = \phi(f,c)(f',c')$. Indeed,

$$\phi((f,c)(f',c')) = \phi(ff'^{-1},cc') = (f(1)f'^{-1}(1),cc') = (f(1)f'(c),cc') = (f(1),c)(f',c) = \phi(f,c)(f',c').$$
Note that the map ϕ is surjective: For every $b \in B$ and $c \in C$, one can choose a function $f_b : C \to B$ for which $f_b(1) = b$. One has: $\phi(f_b, c) = (b, c)$.

The following Lemma appears in [11] Part I, Chapter I, Theorem 4.13] and describes the functoriality of the first argument in the wreath product.

Lemma 2.6. Let G, A, B be groups and $h : A \to B$ a homomorphism (resp. epimorphism). Then there is a naturally induced homomorphism (resp. epimorphism) $h_\ast : A \wr G \to B \wr G$ given by $h_\ast(f, g) = (h \circ f, g)$ for every $g \in G$ and $f : G \to A$.

The functoriality of the second argument is given in [12, Lemma 2.15] whenever the first argument is abelian:

Lemma 2.7. Let A be an abelian group and let $\psi : G \to H$ be a homomorphism (resp. epimorphism) of finite groups. Then there is a homomorphism (resp. epimorphism) $\tilde{\psi} : A \wr G \to A \wr H$ that is defined by: $\tilde{\psi}(f, g) = (\psi(f), \psi(g))$ with $\tilde{\psi}(f)(h) = \prod_{k \in \psi^{-1}(h)} f(k)$ for every $h \in H$.

These functoriality properties can now be joined to give a connection between different bracketing of iterated wreath products:

Lemma 2.8. Let A, B, C be finite groups and A abelian. Then there are epimorphisms:

$$A \wr (B \wr C) \to (A \wr B) \wr C \to (A \times B) \wr C.$$

Proof. Let us first construct an epimorphism $h_\ast : (A \wr B) \wr C \to (A \times B) \wr C$. Define $h : A \wr B \to A \times B$ by:

$$h(f, b) = (\prod_{x \in B} f(x), b),$$

for any $f : B \to A, b \in B$. Since A is abelian h is a homomorphism. For every $a \in A$, let $f_a : B \to A$ be the map $f_a(b') = 0$ for any $1 \neq b' \in B$ and $f_a(e) = a$. Then clearly $h(f_a, b) = (a, b)$ for any $a \in A, b \in B$ and hence h is onto. By Lemma 2.6, h induces an epimorphism $h_\ast : (A \wr B) \wr C \to (A \times B) \wr C$. To construct the epimorphism $A \wr (B \wr C) \to (A \wr B) \wr C$, we shall use the associativity of the permutational wreath product (see [11] Theorem 3.2]). Using this associativity one has:

$$(A \wr B) \wr C = (A \wr_B B) \wr_C C \cong A \wr_{B \times C} (B \wr_C C).$$

It is now left to construct an epimorphism:

$$A \wr (B \wr C) = A \wr_{B \wr C} (B \wr_C C) \to A \wr_{B \times C} (B \wr_C C).$$

By Lemma 2.5, there is a $B \wr C$-map $\phi : B \wr C \to B \times C$ and hence by Lemma 2.4 there is an epimorphism $A \wr_{B \wr C} (B \wr C) \to A \wr_{B \times C} (B \wr C)$.

\Box
Let us iterate Lemma 2.8. Let G_1, \ldots, G_n be groups. The ascending iterated standard wreath product of G_1, \ldots, G_n is defined as

$$
(\cdots ((G_1 \wr G_2) \wr G_3) \wr \cdots) \wr G_n,
$$

and the descending iterated standard wreath product of G_1, \ldots, G_n is defined as

$$
G_1 \wr (G_2 \wr (G_3 \cdots \wr G_n)) \cdots.
$$

These two iterated wreath products are not isomorphic in general, as the standard wreath product and non-associative (as opposed to the “permutation” wreath product). We shall abbreviate and write G for a perfect group.

By iterating the epimorphism in Lemma 2.8 one obtains:

Corollary 2.9. Let A_1, \ldots, A_r be abelian groups. Then $(A_1 \wr \ldots \wr A_{r-1}) \wr A_r$ is an epimorphic image of $A_1 \wr (A_2 \wr \ldots \wr A_r)$.

Proof. By induction on r. The cases $r = 1, 2$ are trivial; assume $r \geq 3$. By the induction hypothesis there is an epimorphism

$$
\pi_1 : (A_1 \wr \ldots \wr A_{r-1}) \rightarrow (A_1 \wr \ldots \wr A_{r-2}) \wr A_{r-1}.
$$

By Lemma 2.8, π_1 induces an epimorphism $\pi_1 : (A_1 \wr (A_2 \wr \ldots \wr A_{r-1})) \wr A_r \rightarrow (A_1 \wr \ldots \wr A_{r-1}) \wr A_r$. Applying Lemma 2.8 with $A = A_1, B = A_2 \wr (A_3 \wr \ldots \wr A_{r-1}), C = A_r$, one obtains an epimorphism:

$$
\pi_2 : A_1 \wr (A_2 \wr \ldots \wr A_r) \rightarrow (A_1 \wr (A_2 \wr \ldots \wr A_{r-1})) \wr A_r.
$$

Taking the composition $\pi = \pi_1 \pi_2$ one obtains an epimorphism

$$
\pi : A_1 \wr (A_2 \wr \ldots \wr A_r) \rightarrow (A_1 \wr \ldots \wr A_{r-1}) \wr A_r.
$$

2.2. Dimension under epimorphisms. Let us understand how the “dimension” d behaves under the homomorphisms in Lemma 2.8 and Corollary 2.9. By Lemma 2.8, for any finite group G that is not perfect, i.e. $[G, G] \neq G$, where $[G, G]$ denotes the commutator subgroup of G, one has $d(G) = d(G/[G, G])$. According to our definitions, for a perfect group G, $d(G/[G, G]) = d(\{1\}) = 0$, but if G is nontrivial, $d(G) \geq 1$. As nontrivial semiabelian groups are not perfect, this difference will not effect any of the arguments in the sequel.

Definition 2.10. Let G be a finite group and p a prime. Define $d_p(G)$ to be the rank of the p-Sylow subgroup of $G/[G, G]$, i.e. $d_p(G) := d((G/[G, G])_p)$.

Note that if G is not perfect one has $d(G) = \max_p(d_p(G))$.

Let p be a prime. An epimorphism $f : G \rightarrow H$ is called d-preserving (resp. d_p-preserving) if $d(G) = d(H)$ (resp. $d_p(G) = d_p(H)$).
Lemma 2.11. Let G and H be two finite groups. Then:

$$H \wr G/[H \wr G, H \wr G] \cong H/[H, H] \times G/[G, G].$$

Proof. Applying Lemmas 2.6 and 2.7 one obtains an epimorphism

$$H \wr G \to H/[H, H] \wr G/[G, G].$$

By Lemma 2.8 (applied with $C = 1$) there is an epimorphism

$$H/[H, H] \wr G/[G, G] \to H/[H, H] \times G/[G, G].$$

Composing these epimorphisms one obtains an epimorphism

$$\pi: H \wr G \to H/[H, H] \times G/[G, G],$$

that sends an element $(f : G \to H, g) \in H \wr G$ to

$$\left(\prod_{x \in G} f(x)[H, H], g[G, G] \right) \in H/[H, H] \times G/[G, G].$$

The image of π is abelian and hence $\ker(\pi)$ contains $K := [H \wr G, H \wr G]$.

Let us show $K \supseteq \ker(\pi)$. Let $(f, g) \in \ker(\pi)$. Then $g \in [G, G]$ and $\prod_{x \in G} f(x) \in [H, H]$. As $g \in [G, G]$, it suffices to show that the element $f = (f, 1) \in H \wr G$ is in K.

Let g_1, \ldots, g_n be the elements of G and for every $i = 1, \ldots, n$, let f_i be the function for which $f_i(g_i) = f(g_i)$ and $f(g_j) = 1$ for every $j \neq i$. One can write f as $\prod_{i=1}^n f_i$. Now for every $i = 1, \ldots, n$, the function $f_{1,i} = f_i^{g_i^{-1}}$ satisfies $f_{1,i}(1) = f(g_i)$ and $f_{1,i}(g_j) = 1$ for every $j \neq 1$. Thus f_i is a product of an element in $[H[G], G]$ and f_i. So, f is a product of elements in $[H[G], G]$ and $f' = \prod_{i=1}^n f_{1,i}$. But $f'(1) = \prod_{x \in G} f(x) \in [H, H]$ and $f'(g_i) = 1$ for every $i \neq 1$ and hence $f' \in [H[G], H[G]]$. Thus, $f \in K$ as required and $K = \ker(\pi)$.

The following is an immediate conclusion:

Corollary 2.12. Let G and H be two finite groups. Then

$$d_p(H \wr G) = d_p(H) + d_p(G)$$

for any prime p.

So, for groups A, B, C as in Lemma 2.8 we have:

$$d_p(A \wr (B \wr C)) = d_p((A \times B) \wr C) = d_p(A \times B \times C) = d_p(A) + d_p(B) + d_p(C)$$

for every p. In particular, the epimorphisms in Lemma 2.8 are d-preserving.

The same observation holds for Corollary 2.9 so one has:
Lemma 2.13. Let A_1, \ldots, A_r be finite abelian groups. Then
$$d_p(A_1 \wr (A_2 \wr \ldots \wr A_r)) = d_p((A_1 \wr \ldots \wr A_{r-1}) \wr A_r) = d_p(A_1 \times \ldots \times A_r)$$
are all $\sum_{i=1}^r d_p(A_i)$ for any prime p.

For cyclic groups A_1, \ldots, A_r, $d_p(A_1 \wr (A_2 \wr \ldots \wr A_r))$ is simply the number of cyclic groups among A_1, \ldots, A_r whose p-part is non-trivial. Thus:

Corollary 2.14. Let C_1, \ldots, C_r be finite cyclic groups and $G = C_1 \wr (C_2 \wr \ldots \wr C_r)$. Then $d(G) = \max_{p \mid |G|} d(C_1(p) \wr (C_2(p) \wr \ldots \wr C_r(p)))$.

Let us apply Lemma 2.8 in order to connect between descending iterated wreath products of abelian and cyclic groups:

Proposition 2.15. Let A_1, \ldots, A_r be finite abelian groups and let A_i have invariant factors $C_{i,j}$ for $j = 1, \ldots, l_i$, i.e. $A_i = \prod_{j=1}^{l_i} C_{i,j}$ and $|C_{i,j}| = |C_{i,j+1}|$ for any $i = 1, \ldots, r$ and $j = 1, \ldots, l_i - 1$. Then there is an epimorphism from the descending iterated wreath product $\tilde{G} := \prod_{i=1}^{l_i} C_{i,j}$ (here the groups $C_{i,j}$ are ordered lexicographically: $C_{1,1}, C_{1,2}, \ldots, C_{1,l_1}, C_{2,1}, \ldots, C_{r,l_r}$) to $G := A_1 \wr (A_2 \wr \ldots \wr A_r)$.

Proof. Let us assume $A_1 \neq \{0\}$ (otherwise A_1 can be simply omitted). Let us prove the assertion by induction on $\sum_{i=1} l_i$. Let $G_2 = A_2 \wr (A_3 \wr \ldots \wr A_k)$. Write $A_1 = C_{1,1} \times A_1'$. By Lemma 2.8 there is an epimorphism $\pi_1 : C_{1,1} \wr (A_1' \wr G_2) \to (C_{1,1} \times A_1') \wr G_2 = A_1 \wr G_2 = G$. By applying the induction hypothesis to A_1', A_2, \ldots, A_r, there is an epimorphism π_2' from the descending iterated wreath product $\tilde{G}_2 = \prod_{i=2}^{l_i} C_{i,j} \wr (\prod_{i=2}^{l_i} C_{i,j} \wr G_2)$ to $A_1' \wr G_2$. By Lemma 2.7, π_2' induces an epimorphism $\pi_2 : C_{1,1} \wr G_2 \to C_{1,1} \wr (A_1' \wr G_2)$. Taking the composition $\pi = \pi_2 \pi_1$, we obtain the required epimorphism: $\pi : \tilde{G} = C_{1,1} \wr \tilde{G}_2 \to G$. \qed

Remark 2.16. Note that:
$$d_p(\tilde{G}) = \sum_{i=1}^r \sum_{j=1}^{l_i} d_p(C_{i,j}) = \sum_{i=1}^r d_p(A_i) = d_p(G)$$
for every p and hence π is d-preserving.

Therefore, showing G is a d-preserving epimorphic image of an iterated wreath product of abelian groups is equivalent to showing G is a d-preserving epimorphic image of an iterated wreath product of finite cyclic groups.

3. Wreath Length

The following lemma is essential for the definition of wreath length:
Lemma 3.1. Let G be a finite semiabelian group. Then G is a homomorphic image of a descending iterated wreath product of finite cyclic groups, i.e. there are finite cyclic groups C_1, \ldots, C_r and an epimorphism $C_1 \wr (C_2 \wr \cdots \wr C_r) \to G$.

Proof. By Proposition 2.15 it suffices to show G is an epimorphic image of a descending iterated wreath product of finite abelian groups. We shall prove this claim by induction on $|G|$. The case $G = \{1\}$ is trivial. By [3], $G = A_1H$ with A_1 an abelian normal subgroup and H a proper semiabelian subgroup of G. First, there is an epimorphism $\pi_1 : A_1 \wr H \to A_1H = G$. By induction there are abelian groups A_2, \ldots, A_r and an epimorphism $\pi_2 : A_2 \wr (A_3 \wr \cdots \wr A_r) \to H$. By Lemma 2.6 π_2' can be extended to an epimorphism $\pi_2 : A_1 \wr (A_2 \wr \cdots \wr A_r) \to A_1 \wr H$. So, by taking the composition $\pi = \pi_1 \pi_2$ one obtains the required epimorphism $\pi : A_1 \wr (A_2 \wr \cdots \wr A_r) \to G$.

We can now define:

Definition 3.2. Let G be a finite semiabelian group. Define the wreath length $\text{wl}(G)$ of G to be the smallest positive integer r such that there are finite cyclic groups C_1, \ldots, C_r and an epimorphism $C_1 \wr (C_2 \wr \cdots \wr C_r) \to G$.

Let $\tilde{G} = C_1 \wr (C_2 \wr \cdots \wr C_r)$ and $\pi : \tilde{G} \to G$ an epimorphism. Then by Corollary 2.14

$$\text{d}(G) \leq \text{d}(\tilde{G}) \leq r.$$

In particular $\text{d}(G) \leq \text{wl}(G)$.

Proposition 3.3. Let C_1, \ldots, C_r be nontrivial finite cyclic groups. Then $\text{wl}(C_1 \wr (C_2 \wr \cdots \wr C_r)) = r$.

Let $\text{dl}(G)$ denote the derived length of a (finite) solvable group G, i.e. the smallest positive integer n such that the nth higher commutator subgroup of G (nth element in the derived series $G = G^{(0)} \geq G^{(1)} \geq \cdots \geq G^{(i)} \geq \cdots$) is trivial. In order to prove this proposition we will use the following lemma:

Lemma 3.4. Let C_1, \ldots, C_r be nontrivial finite cyclic groups. Then $\text{dl}(C_1 \wr (C_2 \wr \cdots \wr C_r)) = r$.

Proof. It is easy (by induction) to see that $\text{dl}(C_1 \wr (C_2 \wr \cdots \wr C_r)) \leq r$. We turn to the reverse inequality. By Corollary 2.11, it suffices to prove it for the ascending iterated wreath product $G = (C_1 \wr \cdots \wr C_{r-1}) \wr C_r$. We prove this by induction on r. The case $r = 1$ is trivial. Assume $r \geq 1$. Write $G_1 := (C_1 \wr \cdots \wr C_{r-2}) \wr C_{r-1}$ so that $G = G_1 \wr C_r$. By induction hypothesis, $\text{dl}(G_1) = r - 1$. View G as the semidirect product $G_1^r \rtimes C_r$. For any $g \in G_1$, the element $t_g := (g, g^{-1}, 1, 1, \ldots, 1) \in G_1^r \wr C_r$ lies in $[G_1^r, C_r]$ and hence in $[G_1^r, C_r] \leq G' \leq G''$. Let $H = \{t_g | g \in G_1\}$. The projection map $G_1^r \to G_1$ onto the first copy of G_1 in G_1^r maps H onto G_1. Since $H \leq G'$, the projection map also maps G' onto G. Now $\text{dl}(G_1) = r - 1$ by the induction hypothesis. It follows that $\text{dl}(G') \geq r - 1$, whence $\text{dl}(G) \geq r$. \qed
To prove the proposition, we first observe that $\text{wl}(C_1 \wr (C_2 \wr \ldots \wr C_r)) \leq r$ by definition. If $C_1 \wr (C_2 \wr \ldots \wr C_r)$ were a homomorphic image of a shorter descending iterated wreath product $C'_1 \wr (C'_2 \wr \ldots \wr C'_s)$, then by Lemma 3.1 $s = \text{dl}(C'_1 \wr (C'_2 \wr \ldots \wr C'_s)) \geq \text{dl}(C_1 \wr (C_2 \wr \ldots \wr C_r)) = r > s$, contradiction.

Combining Proposition 3.3 with Corollary 2.14 we have:

Corollary 3.5. Let C_1, \ldots, C_r be finite cyclic groups and $G = C_1 \wr (C_2 \wr \ldots \wr C_r)$. Then $\text{wl}(G) = \text{d}(G)$ if and only if there is a prime p for which $p \mid |C_1|, \ldots, |C_r|$.

We shall now see that all examples of groups G with $\text{wl}(G) = \text{d}(G)$ arise from Corollary 3.5.

Proposition 3.6. Let G be a finite semiabelian group. Then $\text{wl}(G) = \text{d}(G)$ if and only if there is a prime p, finite cyclic groups C_1, \ldots, C_r for which $p \mid |C_i|, i = 1, \ldots, r$, and a d-preserving epimorphism $\pi : C_1 \wr (C_2 \wr \ldots \wr C_r) \twoheadrightarrow G$.

Proof. Let $d = \text{d}(G)$. The equality $d = \text{wl}(G)$ holds if and only if there are finite cyclic groups C_1, C_2, \ldots, C_d and an epimorphism $\pi : \tilde{G} = C_1 \wr (C_2 \wr \ldots \wr C_d) \twoheadrightarrow G$. Assume the latter holds. Clearly $d \leq \text{d}(\tilde{G})$ but by Corollary 2.14 applied to \tilde{G} we also have $\text{d}(\tilde{G}) \leq d$. It follows that π is d-preserving. Since $\text{d}(G) = \max_p (\text{d}_p(G))$, there is a prime p for which $d = \text{d}_p(G)$ and hence $\text{d}_p(\tilde{G}) = d$. Thus, $p \mid |C_i|$ for all $i = 1, \ldots, r$.

Let us prove the converse. Assume there is a prime p, finite cyclic groups C_1, \ldots, C_r for which $p \mid |C_i|, i = 1, \ldots, r$, and a d-preserving epimorphism $\pi : \tilde{G} := C_1 \wr (C_2 \wr \ldots \wr C_r) \twoheadrightarrow G$. Since $p \mid |C_i|$, it follows that $\text{d}_p(\tilde{G}) = r$. As $\text{d}_p(\tilde{G}) \leq \text{d}(\tilde{G}) \leq r$, it follows that $\text{d}(G) = \text{d}(\tilde{G}) = r$. In particular $\text{wl}(G) \leq r = \text{d}(G)$ and hence $\text{wl}(G) = \text{d}(G)$. \qed

Remark 3.7. Let G be a semiabelian p-group. By [12, Corollary 2.15], G is a d-preserving image of an iterated wreath product of abelian subgroups of G (following the proof one can observe that the abelian groups were actually subgroups of G). So, by Proposition 2.15 G is a d-preserving epimorphic image of $\tilde{G} := C_1 \wr (C_2 \wr \ldots \wr C_k)$ for cyclic subgroups C_1, \ldots, C_k of G. By applying Proposition 3.6 one obtains $\text{wl}(G) = \text{d}(G)$.

Remark 3.8. Throughout the proof of [12, Corollary 2.15] one can use the minimality assumption posed on the decompositions to show directly that the abelian groups A_1, \ldots, A_r, for which there is a d-preserving epimorphism $A_1 \wr (A_2 \wr \ldots \wr A_r) \twoheadrightarrow G$, can be actually chosen to be cyclic.

We shall generalize Remark 3.7 to nilpotent groups:

Proposition 3.9. Let G be a finite nilpotent semiabelian group. Then $\text{wl}(G) = \text{d}(G)$.
Proof. Let \(d = d(G) \). Let \(p_1, \ldots, p_k \) be the primes dividing \(|G| \) and let \(P_i \) be the \(p_i \)-Sylow subgroup of \(G \) for every \(i = 1, \ldots, k \). So, \(G \cong \prod_{i=1}^k P_i \). By Remark 3.7 there are cyclic \(p_i \)-groups \(C_{i,1}, \ldots, C_{i,r_i} \) and a \(d \)-preserving epimorphism \(\pi_i : C_{i,1} \ast \ldots \ast C_{i,r_i} \to P_i \) for every \(i = 1, \ldots, k \). In particular for any \(i = 1, \ldots, k \), \(r_i = d(P_i) = d_p(G) \leq d \). For any \(i = 1, \ldots, k \) and any \(d \geq j > r_i \), set \(C_{i,j} = \{1\} \). For any \(j = 1, \ldots, d \) define \(C_j = \prod_{i=1}^k C_{i,j} \).

We claim \(G \) is an epimorphic image of \(\tilde{G} = C_1 \ast \ldots \ast C_d \). To prove this claim it suffices to show every \(P_i \) is an epimorphic image of \(\tilde{G} \) for every \(i = 1, \ldots, k \). As \(C_{i,j} \) is an epimorphic image of \(C_j \) for every \(j = 1, \ldots, d \) and every \(i = 1, \ldots, k \), one can apply Lemmas 2.6 and 2.7 iteratively to obtain an epimorphism \(\pi'_i : \tilde{G} \to C_{i,1} \ast \ldots \ast C_{i,r_i} \) for every \(i = 1, \ldots, k \). Taking the composition \(\pi'_1 \pi_i \) gives the required epimorphism and proves the claim. As \(G \) is an epimorphic image of an iterated wreath product of \(d(G) \) cyclic groups one has \(\text{wl}(G) \leq d(G) \) and hence \(\text{wl}(G) = d(G) \).

Example 3.10. Let \(G = D_n = \langle \sigma, \tau | \sigma^2 = 1, \tau^n = 1, \sigma \tau \sigma = \tau^{-1} \rangle \) for \(n \geq 3 \). Since \(G \) is an epimorphic image of \(\langle \tau \rangle \ast \langle \sigma \rangle \) and \(G \) is not abelian we have \(\text{wl}(G) = 2 \). On the other hand \(d(G) = d(G/[G,G]) \) is 1 if \(n \) is odd and 2 if \(n \) is even. So, \(G = D_3 = S_3 \) is the minimal example for which \(\text{wl}(G) \neq d(G) \).

4. A RAMIFICATION BOUND FOR SEMIABELIAN GROUPS

In this section we prove:

Theorem 4.1. Let \(G \) be a finite semiabelian group. Then there exists a tamely ramified extension \(K/\mathbb{Q} \) with \(G(K/\mathbb{Q}) \cong G \) in which at most \(\text{wl}(G) \) primes ramify.

The proof relies on the splitting Lemma from [10]: Let \(\ell \) be a rational prime, \(K \) a number field and \(p \) a prime of \(K \) that is prime to \(\ell \). Let \(I_{K,p} \) denote the group of fractional ideals prime to \(p \), \(P_{K,p} \) the subgroup of principal ideals that are prime to \(p \) and let \(P_{K,p,1} \) be the subgroup of principal ideals \((\alpha) \) with \(\alpha \equiv 1 \pmod{p} \). Let \(P_{K,p}^\ell \) denote \(P_{K,p}/P_{K,p,1} \). The ray class group \(\text{Cl}_{K,p} \) is defined to be \(I_{K,p}/P_{K,p,1} \). Now, as \(I_{K,p}/P_{K,p} \cong \text{Cl}_K \), one has the following short exact sequence:

\[
1 \longrightarrow P_{K,p}^\ell \longrightarrow C_{K,p}^\ell \longrightarrow C_{K}^\ell \longrightarrow 1,
\]

where \(A^\ell \) denotes the \(\ell \)-primary component of an abelian group \(A \). Let us describe a sufficient condition for the splitting of (4.1). Let \(\bar{a}_1, \ldots, \bar{a}_r \in I_{K,p}, \bar{a}_1, \ldots, \bar{a}_r \) their classes in \(C_{K,p}^\ell \), with images \(\bar{a}_1, \ldots, \bar{a}_r \) in \(C_{K}^\ell \), so that \(C_{K,p}^\ell = \langle \bar{a}_1 \rangle \times \langle \bar{a}_2 \rangle \times \ldots \times \langle \bar{a}_r \rangle \). Let \(\ell^m_i := |\langle \bar{a}_i \rangle| \) and let \(a_i \in K \) satisfy \(\ell^m_i = (a_i) \), for \(i = 1, \ldots, r \).

Lemma 4.2. (Kisilevsky-Sonn [9]) Let \(p \) be a prime of \(K \) and let \(K' = K(\sqrt[n]{a_i}|i = 1, \ldots, r) \). If \(p \) splits completely in \(K' \) then the sequence (4.1) splits.
The splitting of (4.1) was used in [10] to construct cyclic ramified extensions at one prime only. Let \(m = \max\{1, m_1, \ldots, m_r\} \). Let \(U_K \) denote the units in \(\mathcal{O}_K \).

Lemma 4.3. (Kisilevsky-Sonn [10]) Let \(K'' = K(\mu_m, \sqrt{\zeta}, \sqrt[m]{a_i}) \xi \in U_K, i = 1, \ldots, r \) and \(p \) a prime of \(K \) which splits completely in \(K'' \). Then there is a cyclic \(\ell^m \)-extension of \(K \) that is totally ramified at \(p \) and is not ramified at any other prime of \(K \).

Corollary 4.4. Let \(K \) be a number field, \(n \) a positive integer. Then there exists a finite extension \(K'' \) of \(K \) such that if \(p \) is any prime of \(K \) that splits completely in \(K'' \), then there exists a cyclic extension \(L/K \) of degree \(n \) in which \(p \) is totally ramified and \(p \) is the only prime of \(K \) that ramifies in \(L \).

Proof. Let \(n = \prod \ell^m(\ell) \) be the decomposition of \(n \) into primes. Let \(K'' \) be the composite of the fields \(K'' = K''(\ell) \) in Lemma 4.3 \((m = m(\ell)) \). Let \(L(\ell) \) be the cyclic extension of degree \(\ell^m(\ell) \) yielded by Lemma 4.3. The composite \(L = \prod L(\ell) \) has the desired property. \(\square \)

Proof. (Theorem 4.1) By definition, \(G \) is a homomorphic image of a descending iterated wreath product of cyclic groups \(C_1 \wr (C_2 \wr \cdots \wr C_r) \), \(r = \text{wr}(G) \). Without loss of generality \(G \cong C_1 \wr (C_2 \wr \cdots \wr C_r) \) is itself a descending iterated wreath product of cyclic groups. Proceed by induction on \(r \). For \(r = 1 \), \(G \) is cyclic of order \(N \). If \(p \) is a rational prime \(\equiv 1 \pmod{N} \), then the field of \(p \)th roots of unity \(\mathbb{Q}(\mu_p) \) contains a subfield \(L \) cyclic over \(\mathbb{Q} \) with Galois group \(G \) and exactly one ramified prime, namely \(p \). Thus the theorem holds for \(r = 1 \).

Assume \(r > 1 \) and the theorem holds for \(r - 1 \). Let \(K_1/\mathbb{Q} \) be a tamely ramified Galois extension with \(G(K_1/\mathbb{Q}) \cong G_1 \), where \(G_1 \) is the descending iterated wreath product \(C_1 \wr (C_2 \wr \cdots \wr C_r) \), such that the ramified primes in \(K_1 \) are a subset of \(\{p_2, \ldots, p_r\} \). By Corollary 4.4, there exists a prime \(p = p_1 \) not dividing the order of \(G \) which splits completely in \(K''_1 \), the field supplied for \(K_1 \) by Corollary 4.4, and let \(p = p_1 \) be a prime of \(K_1 \) dividing \(p \). By Corollary 4.3, there exists a cyclic extension \(L/K_1 \) with \(G(L/K_1) \cong C_1 \) in which \(p \) is totally ramified and in which \(p \) is the only prime of \(K_1 \) which ramifies in \(L \).

Now \(p \) has \(|G_1| \) distinct conjugates \(\{\sigma(p) \mid \sigma \in G(K_1/\mathbb{Q})\} \) over \(K_1 \). For each \(\sigma \in G(K_1/\mathbb{Q}) \), the conjugate extension \(\sigma(L)/K_1 \) is well-defined, since \(K_1/\mathbb{Q} \) is Galois. Let \(M \) be the composite of the \(\sigma(L) \), \(\sigma \in G(K_1/\mathbb{Q}) \). For each \(\sigma \), \(\sigma(L)/K_1 \) is cyclic of degree \(|C_1| \), ramified only at \(\sigma(p) \), and \(\sigma(p) \) is totally ramified in \(\sigma(L)/K_1 \). It now follows (see e.g. [10] Lemma 1) that the fields \(\{\sigma(L) \mid \sigma \in G(K_1/\mathbb{Q})\} \) are linearly disjoint over \(K_1 \), hence \(G(M/\mathbb{Q}) \cong C_1 \wr G_1 \cong G \). Since the only primes of \(K_1 \) ramified in \(M \) are \(\{\sigma(p) \mid \sigma \in G(K_1/\mathbb{Q})\} \), the only rational primes ramified in \(M \) are \(p_1, p_2, \ldots, p_n \). \(\square \)
Corollary 4.5. The minimal ramification problem has a positive solution for all finite semiabelian groups \(G \) for which \(\text{wl}(G) = d(G) \). Precisely, any finite semiabelian group \(G \) for which \(\text{wl}(G) = d(G) \) can be realized tamely as a Galois group over the rational numbers with exactly \(d(G) \) ramified primes.

By Proposition 3.9, we have

Corollary 4.6. The minimal ramification problem has a positive solution for all finite nilpotent semiabelian groups.

5. Arithmetic consequences

In this section we examine some arithmetic consequences of a positive solution to the minimal ramification problem. Specifically, given a group \(G \), the existence of infinitely many minimally tamely ramified \(G \)-extensions \(K/\mathbb{Q} \) is re-interpreted in some cases in terms of some open problems in algebraic number theory. We will be most interested in the case \(d(G) = 1 \).

Proposition 5.1. Let \(q \) and \(\ell \) be distinct primes. Let \(K/\mathbb{Q} \) be a cyclic extension of degree \(n := [K : \mathbb{Q}] \geq 2 \) with \((n, q\ell) = 1 \). Suppose that \(K/\mathbb{Q} \) is totally and tamely ramified at a unique prime \(l \) dividing \(\ell \). Then \(q \) divides the class number \(h_K \) of \(K \) if and only if there exists an extension \(L/K \) satisfying the following:

i). \(L/\mathbb{Q} \) is a Galois extension with non-abelian Galois group \(G = G(L/\mathbb{Q}) \).

ii). The degree \([L : K] = q^s \) is a power of \(q \).

iii). \(L/\mathbb{Q} \) is (tamely) ramified only at primes over \(\ell \).

Proof. First suppose that \(q \) divides \(h_K \). Let \(K_0 \) be the \(q \)-Hilbert class field of \(K \), i.e. \(K_0/K \) is the maximal unramified abelian \(q \)-extension of \(K \). Then \(K_0/\mathbb{Q} \) is a Galois extension with Galois group \(G := G(K_0/\mathbb{Q}) \), and \(H := G(K_0/K) \simeq (C_K)_q \neq 0 \), the \(q \)-part of the ideal class group of \(K \). Then \([G,G]\) is contained in \(H \). If \([G,G] \subseteq H\), then the fixed field of \([G,G]\) would be an abelian extension of \(\mathbb{Q} \) which contains an unramified \(q \)-extension of \(\mathbb{Q} \) which is impossible. Hence \([G,G] = H \neq 0 \) and so \(G \) is a non-abelian group, and \(L = K_0 \) satisfies \(i), ii)\), and \(iii) \) of the statement.

Conversely suppose that there is an extension \(L/K \) satisfying \(i), ii)\), and \(iii) \) of the statement. Since \(H = G(L/K) \) is a \(q \)-group, there is a sequence of normal subgroups \(H = H_0 \supset H_1 \supset H_2 \cdots \supset H_s = 0 \) with \(H_i/H_{i+1} \) a cyclic group of order \(q \). Let \(L_i \) denote the fixed field of \(H_i \) so that \(K = L_0 \supset \cdots \supset L_s = L \). Let \(m \) be the largest index such that \(L_m/\mathbb{Q} \) is totally ramified (necessarily at \(\ell \)). If \(m = s \), then \(L/\mathbb{Q} \) is totally and tamely ramified at \(\ell \) and so the inertia group \(T(\mathfrak{L}/(\ell)) = G \), where in this case \(\mathfrak{L} \) is the unique prime of \(L \) dividing \(\ell \). Since \(L/\mathbb{Q} \) is tamely ramified it follows that \(T(\mathfrak{L}/(\ell)) \) is cyclic, but this contradicts the hypothesis that \(G \) is non-abelian. Therefore it follows that \(m < s \), and so \(L_{m+1}/L_m \) is unramified and therefore \(q \) must...
We now apply this to the case that $G \neq \{1\}$ is a quotient of the regular wreath product $C_q \wr C_p$ where p and q are distinct primes. Then $d(G) = 1$.

The existence of infinitely many minimally tamely ramified G-extensions L/\mathbb{Q} would by Proposition 5.1 imply the existence of infinitely many cyclic extensions K/\mathbb{Q} of degree $[K : \mathbb{Q}] = p$ ramified at a unique prime $\ell \neq p, q$ for which q divides the class number h_K. (If there were only finitely many distinct such cyclic extensions K/\mathbb{Q}, then the number of ramified primes ℓ would be bounded, and there would be an absolute upper bound on the possible discriminants of the distinct fields L/\mathbb{Q}. By Hermite’s theorem, this would mean that the number of such G-extensions L/\mathbb{Q} would be bounded).

The question of whether there is an infinite number of cyclic degree p extensions (or even one) of \mathbb{Q} whose class number is divisible by q is in general open at this time.

For $p = 2$, it is known that there are infinitely many quadratic fields (see Ankeny, Chowla [1]), with class numbers divisible by q, but it is not known that this occurs for quadratic fields with prime discriminant.

This latter statement is also a consequence of Schinzel’s hypothesis as is shown by Plans in [13]. There is also some numerical evidence that the heuristic of Cohen-Lenstra should be statistically independent of the primality of the discriminant (see Jacobson, Lukes, Williams [6] or te Riele, Williams [15]). If this were true, then one would expect that there is a positive density of primes ℓ for which the cyclic extension of degree p and conductor ℓ would have class number divisible by q.

For $p = 3$ it has been proved by Bhargava [11] that there are infinitely many cubic fields K/\mathbb{Q} for which 2 divides their class numbers. That there are infinitely many cyclic cubics with prime squared discriminants whose class numbers are even (or more generally divisible by some fixed prime q) seems out of reach at this time.

In our view, there is a significant arithmetic interest in solving the minimal ramification problem for other groups (see also [4], [7], [14]).

References

[1] Ankeny, N. C.; Chowla, S. On the divisibility of the class number of quadratic fields. Pacific J. Math. 5 (1955), 321–324.
[2] Bhargava, M., The density of discriminants of quartic rings and fields, Annals of Math. 162 (2005), no. 2, 1031–1062
[3] Dentzer, R., On geometric embedding problems and semiabelian groups, Manuscripta Math. 86 (1995), no. 2, 199–216.
[4] Harbater, D. *Galois groups with prescribed ramification*, Proceedings of a Conference on Arithmetic Geometry (Arizona State Univ., 1993), AMS Contemporary Mathematics Series, vol. 174, (1994), pp. 35–60.

[5] Iwasawa, K. *A note on class numbers of algebraic number fields*, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257–258. – also in Kenkichi Iwasawa Collected Papers, Volume 1, 32, p.372-373, Springer. ISBN4-431-70314-4

[6] Jacobson, M.J., Lukes, R.F., and Williams, H.C. *An investigation of bounds for the regulator of quadratic fields*, Experimental Mathematics, 4 (1995), no. 3, 211–225.

[7] Jones, J. W., Roberts, D. P. *Number fields ramified at one prime*, Lecture Notes in Comput. Sci., 5011, Springer, Berlin, (2008), 226–239.

[8] Kaplan, G., Lev, A. *On the dimension and basis concepts in finite groups*, Comm. Alg. 31 no. 6 (2003), 2707–2717.

[9] Kisilevsky, H., Sonn, J., *Abelian extensions of global fields with constant local degrees*, Math. Research Letters 13 no.4 (2006), 599–605.

[10] Kisilevsky, H., Sonn, J., *On the minimal ramification problem for \(\ell \)-groups*, Compositio Math. (to appear)

[11] Meldrum, J.D.P., *Wreath products of groups and semigroups*, Monographs and Surveys in Pure and Applied Mathematics.

[12] Neftin, D., *On semiabelian \(p \)-groups*, submitted.

[13] Plans, B., *On the minimal number of ramified primes in some solvable extensions of \(\mathbb{Q} \)*. Pacific J. Math. 215 (2004), no. 2, 381–391.

[14] Rabayev, D., *Polynomials with roots mod \(n \) for all \(n \)*, Master Thesis, (2009), Technion.

[15] te Riele, H.J., Williams, H.C., *New computations concerning the Cohen-Lenstra heuristics*, Experimental Mathematics 12 (2003), no. 1, 99–113.

Department of Mathematics and Statistics, Concordia University, Montreal, Quebec, Canada
E-mail address: kisilev@mathstat.concordia.ca

Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
E-mail address: neftind@tx.technion.ac.il

Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
E-mail address: sonn@math.technion.ac.il