UGT1A1 polymorphisms in cancer: impact on irinotecan treatment

Masashi Takano 1
Toru Sugiyama 2

1 Department of Clinical Oncology, National Defense Medical College Hospital, Tokorozawa, Saitama, 2 Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Iwate, Japan

Abstract: Mutations in the UGT1A1 gene have been implicated in Gilbert syndrome, which shows mild hyperbilirubinemia, and a more aggressive childhood subtype, Crigler–Najjar syndrome. To date, more than 100 variants have been found in the UGT1A1 gene. Among them, UGT1A1*28 and UGT1A1*6 have been reported to be associated with severe toxicities in patients treated with irinotecan-based chemotherapy by increasing the dose of SN-38 (7-ethyl-10-hydroxycamptothecin), an active form of irinotecan. Many association studies and meta-analyses have demonstrated the contribution of UGT1A1*28 and UGT1A1*6 polymorphisms to the toxicities caused by irinotecan-based therapy. The aim of this review was to evaluate the impact of these variants upon the toxicities and the efficacy of irinotecan-based chemotherapy.

Keywords: UGT1A1, irinotecan, chemotherapy, toxicity, response, survival

Introduction
Irinotecan hydrochloride, inhibiting topoisomerase I, is one of the key anticancer drugs in chemotherapy for several cancers such as colorectal cancer, lung cancer, gastric cancer, and gynecologic cancers.1–4 The patients treated with irinotecan occasionally experience severe neutropenia and delayed diarrhea; however, the occurrence of these adverse reactions has been unpredictable and largely unexplained.5 An active metabolite of irinotecan, SN-38 (7-ethyl-10-hydroxycamptothecin), is glucuronidated by uridine diphosphate glucuronosyltransferase 1As (UGT1As), such as UGT1A1, and is inactivated by forming the SN-38 glucuronide (SN-38G). Among these UGT1A enzymes, UGT1A1 protein has the highest ability to glucuronidate SN-38.6 Various studies have demonstrated a relationship between UGT1A1 genotypes affecting SN-38 pharmacokinetics and the experienced toxicity.7 The transport pathway of irinotecan is shown in Figure 1. In addition to UGT1A1 polymorphism, polymorphisms of carboxylesterase (CES) and ATP-binding cassette (ABC) genes have been reported to affect the metabolism of irinotecan.8,9 In this review, the impact of UGT1A1 genotypes on irinotecan treatment will be discussed.

UGT1A1 polymorphisms and disease susceptibility
Mutations in the UGT1A1 gene have been implicated in Gilbert’s syndrome, which shows mild hyperbilirubinemia, and a more aggressive childhood subtype, Crigler–Najjar syndrome.10,11 A common cause of decreased UGT1A1 activity is the insertion of a TA in the TATA box at the promoter region of the UGT1A1 gene, which was named as UGT1A1*28.10 Individuals with homozygous UGT1A1*28 had higher levels of serum bilirubin compared with those with heterozygous UGT1A1*28 or the wild-type allele.10
Gilbert’s syndrome, also known as constitutional hepatic dysfunction or familial nonhemolytic jaundice, is an inherited disorder of the liver resulting in an overabundance of bilirubin. Most of the patients with Gilbert’s syndrome are asymptomatic; however, they sometimes present with episodes of mild intermittent jaundice due to predominantly unconjugated hyperbilirubinemia. Crigler–Najjar syndrome is a rare, but more severe, disorder of bilirubin metabolism and is divided into two distinct forms (types I and II) based upon the severity of the disease. Gilbert’s syndrome is part of a continuous spectrum of altered glucuronidation that extends to the fatal Crigler–Najjar disease.

Gilbert’s syndrome is primarily linked to *UGT1A1* alleles, but other variants in the promoter and coding regions are also involved in the predisposition of the disease. To date, more than 100 variants have been identified in the *UGT1A1* gene. Among these polymorphisms, the clinically important variants are listed in Table 1. Emerging data on the role of genetic variants in the *UGT1A1* gene confirm that the *UGT1A1* allele is associated with severe toxicities in irinotecan-based chemotherapy. Additionally, it seems that patients with the allele were also associated with better outcome, despite severe toxicities. A study by Toffoli et al conducted in 238 patients with metastatic colorectal cancers, showed that

UGT1A1 allele and efficacy of irinotecan-based therapy

Emerging data on the role of genetic variants in the *UGT1A1* gene confirm that the *UGT1A1* allele is associated with severe toxicities in irinotecan-based chemotherapy. Additionally, it seems that patients with the allele were also associated with better outcome, despite severe toxicities. A study by Toffoli et al conducted in 238 patients with metastatic colorectal cancers, showed that
are listed in Table 2.22,26–36 Representative studies evaluated in these meta-analyses with *28/*28 or *1/*28 alleles, due to severe toxicities. A study by Hoskins et al.37 evaluating 821 cases, revealed that severe hematological toxicities were more frequently observed in *28/*28 patients, when the irinotecan doses were high (>250 mg/m²) or intermediate (150–250 mg/m²). However, the risk was not elevated in patients treated with low doses of irinotecan (<150 mg/m²).37 Another study by Hu et al.38 reported that the *28/*28 genotype was associated with an increased risk of neutropenia not only at medium (response rate [RR] = 1.84, 95% CI = 1.24–2.72, p < 0.01) or high doses (RR = 2.0, 95% CI = 3.1–16.8, p < 0.01) of irinotecan but also at low doses (RR = 2.4, 95% CI = 1.3–4.4, p < 0.01) from the results of meta-analyses evaluating 1,998 patients. Additionally, a study by Liu et al.39 confirmed that patients with *28/*28 genotype had higher incidence of neutropenia compared with *1/*1 or *1/*28 genotype cases, in addition to suggesting that patients with *1/*28 genotype had significantly higher rate of severe neutropenia compared with *1/*1 genotype cases (odds ratio [OR] = 1.84, 95% CI = 1.24–2.72, p < 0.01).

*28/*28 cases had a better response rate and progression-free survival compared with *1/*1 cases. However, most of the other studies evaluating survival according to UGT1A1 genotypes failed to show the significance of UGT1A1 variants in terms of survival. A meta-analysis by Dias et al.23,24 evaluating 10 studies using irinotecan-based chemotherapy, revealed that there was no significant efficacy in terms of response rate, progression-free survival, and overall survival. Additionally, another meta-analysis by Liu et al.25 also confirmed that the UGT1A1 genotype could not be a predictor for response rate and survival. These results might reflect a lower dose intensity of irinotecan in patients with *28/*28 or *1/*28 alleles, due to severe toxicities. Representative studies evaluated in these meta-analyses are listed in Table 2.22,26–36

UGT1A1*28 allele and the toxicities of irinotecan-based therapy

Many studies have evaluated toxicities in patients treated with irinotecan-based therapy according to UGT1A1*28 genotypes.22,26–36 Table 2 summarizes representative studies evaluating the incidence of neutropenia and diarrhea. In terms of neutropenia, approximately half of these studies suggested a significant contribution of *28/*28 alleles to severe toxicities. A study by Kweekel et al.29 analyzing high-dose irinotecan regimens (250 or 350 mg/m²) revealed that patients with *28 allele had a significantly higher rate of febrile neutropenia compared with *1/*1 cases.

Several studies evaluating 5-fluorouracil, leucovorin, irinotecan (FOLFIRI) regimen also reported significantly higher incidence of severe neutropenia in cases with *28/*28 alleles.26,28,32–34 Some reports suggested significant association between diarrhea and *28/*28 alleles.27,31,33 Several meta-analyses have examined the impact of the *28 allele on the toxicities of irinotecan-based therapy. A study by Hoskins et al.37 evaluating 821 cases, revealed that severe hematological toxicities were more frequently observed in *28/*28 patients, when the irinotecan doses were high (>250 mg/m²) or intermediate (150–250 mg/m²). However, the risk was not elevated in patients treated with low doses of irinotecan (<150 mg/m²).37 Another study by Hu et al.38 reported that the *28/*28 genotype was associated with an increased risk of neutropenia not only at medium (response rate [RR] = 1.84, 95% CI = 1.24–2.72, p < 0.01) or high doses (RR = 2.0, 95% CI = 3.1–16.8, p < 0.01) of irinotecan but also at low doses (RR = 2.4, 95% CI = 1.3–4.4, p < 0.01) from the results of meta-analyses evaluating 1,998 patients. Additionally, a study by Liu et al.39 confirmed that patients with *28/*28 genotype had higher incidence of neutropenia compared with *1/*1 or *1/*28 genotype cases, in addition to suggesting that patients with *1/*28 genotype had significantly higher rate of severe neutropenia compared with *1/*1 genotype cases (odds ratio [OR] = 1.84, 95% CI = 1.24–2.72, p < 0.01).

Denomination	Variants	Allele frequency (ethnicity)	Expression level	Enzymatic activity	Clinical consequence
UGT1A1*28	(TA)_{10} TA	29–45% (Caucasians); 42–51% (Africans); 16% (Asians)	Reduced	Reduced	Gilbert’s syndrome, Crigler–Najjar syndrome
Polymorphisms in the promoter region	UGT1A1*60	23–39% (Caucasian); 15% (African Americans); 17% (Asians)	Reduced	Unchanged	Gilbert’s syndrome, Crigler–Najjar syndrome
Polymorphisms in exon 1	UGT1A1*6	15–20% (Asians)	Unchanged	Reduced	Gilbert’s syndrome, Crigler–Najjar syndrome
UGT1A1*27	c.686 C>A p.Pro229Gln	5–28% (Asians)	Unchanged	Reduced	Gilbert’s syndrome, Crigler–Najjar syndrome

UGT1A1*6 allele and efficacy or toxicities of irinotecan-based therapy

The most frequent and important variant in the Asian population is UGT1A1*6, which is rarely found among Caucasians. Representative studies evaluating UGT1A1*6 and clinical outcomes in patients treated with irinotecan-based therapy are listed in Table 3.50–58 Most of these studies were mainly focused on the toxicities of the regimens,40,42,44–46,49,50 and quite a few studies reported the clinical outcomes such as response rate and survival.47,48 Some studies reported that there were no significant associations between *6 alleles and the efficacy.
Table 2 Severe toxicities according to UGT1A1*28 genotyping

Study	No of patients	Regimens	Irinotecan dose (mg/m²)	Neutropenia G3–4, %	Diarrhea G3–4, %	Efficacy			
				Odds ratio (95% CI)	Efficacy				
				*28/*28 vs *1/*1	*1/*28 vs *1/*1	*28/*28 vs *1/*1	*1/*28 vs *1/*1		
Rouits et al²⁶	73	FOLFIRI, mFOLFIRI	85/1w, 180/2w	23.33 (3.08–177.04)	–	2.70 (0.39–18.92)	1.69 (0.44–6.43)	–	
Marcuello et al²⁷	95	IRI-Tomudex, etc	80/w, 180/2w, 350/3w	–	–	11.00 (2.27–53.37)	2.36 (0.85–6.57)	RR, no difference (NS)	
Toffoli et al²²	250	FOLFIRI, mFOLFIRI	180/2w	2.08 (0.60–7.28)	1.99 (0.91–4.38)	0.86 (0.10–7.49)	2.52 (0.93–6.81)	RR 40% (*1/*1), 42% (*1/*28), 67% (*28/*28) (p=0.03)	
Côté et al²⁸	89	FOLFIRI	180/2w	6.40 (1.20–34.20)	1.88 (0.58–6.11)	–	–	DFS 52% (*1/*1), 42% (*1/*28), 87% (*28/*28) (p=0.06, NS)	
Kweekel et al²³	218	IRI, IRI-Cape	250 or 350/3w	–	–	IRI 1.14 (0.89–140.12)	IRI-Cape 2.08 (0.53–8.14)	–	
Braun et al²⁵	326	IRI, IRI-5Fu	300–350/3w, 180/2w	IRI 1.73 (0.16–18.40)	IRI 1.28 (0.52–3.13)	1.63 (0.51–5.21)	–	–	
Ferraldeschi et al²¹	92	FOLFIRI, IRI-Cape, etc	180/2w, 250 or 350/3w	2.53 (0.40–16.15)	2.14 (0.66–7.03)	IRI-Cape 1.06 (0.46–2.46)	–	–	
McLeod et al²²	212	IFL, IROX	100–125/1w, 200/3w	IFL 3.04 (0.44–20.91)	IFL 1.71 (0.40–7.26)	1.24 (0.32–4.77)	3.32 (0.33–33.25)	RR of IROX, lower in *28/*28 (p=0.02)	
Martinez-Balibrea et al²³	149	FOLFIRI, FUIRI	80/1w, 180/2w	4.00 (1.12–14.32)	1.67 (0.67–4.20)	1.09–179.00)	1.04 (0.08–2.74)	IRI-Cape 2.08 (0.53–8.14)	–
Glimelius et al²⁴	136	FLIRI, Lv-5Fu-IRI	180/2w	6.88 (1.70–27.75)	1.75 (0.55–5.56)	1.42 (0.15–13.79)	1.85 (0.47–7.25)	RR, no difference (NS)	
Shulman et al²⁵	214	TEGAFIRI, XELIRI, etc	80/w, 180/2w	5.43 (1.50–19.67)	1.53 (0.48–4.85)	0.97 (0.37–2.52)	0.97 (0.37–2.52)	RR, PFS, OS, no difference (NS)	
Lamas et al²⁶	100	IRI-Cape, FOLFIRI	100 or 125/w, 180/1w/biweekly	0.80 (0.09–7.25)	2.49 (0.85–7.29)	0.28 (0.01–5.22)	0.57 (0.14–2.29)	–	

Abbreviations: CI, confidence interval; RR, response rate; DFS, disease-free survival; PFS, progression-free survival; OS, overall survival; NS, not significant; FOLFIRI, 5-fluorouracil, leucovorin, irinotecan; mFOLFIRI, modified FOLFIRI; IRI-Tomudex, irinotecan plus tomudex; IRI, irinotecan; IRI-Cape, irinotecan plus capecitabine; IRI-5Fu, irinotecan plus 5-fluorouracil; IFL, irinotecan plus 5-fluorouracil; IROX, irinotecan plus oxaliplatin; FUIRI, irinotecan plus high-dose 5-fluorouracil; FLIRI, irinotecan plus bolus 5-fluorouracil/leucovorin; Lv-SFU-IRI, irinotecan, plus bolus/infused 5-fluorouracil/leucovorin; TEGAFIRI, uracil, floraflur, leucovorin, and irinotecan; XELIRI, capecitabine plus irinotecan.

including response rate and survival.⁴⁰,⁴⁴,⁴⁵ Among the studies listed, almost all the studies reported significant relationship between UGT1A1*6/*6 and severe neutropenia, compared with *1/*1 cases. Additionally, half of the studies suggested significantly higher incidence of severe neutropenia in patients with UGT1A1*1/*6.⁴²,⁴⁴,⁴⁸–⁵⁰ A study evaluating a combination therapy with irinotecan and cisplatin reported an increased risk of severe diarrhea in patients with *1/*6 alleles.⁵⁹

A meta-analysis evaluating mainly Asian studies reported that patients with *6/*6 alleles had increased incidences of severe neutropenia with both high/medium (OR = 3.95, 95% CI = 2.05–7.64, p<0.01) and low doses (OR = 9.64, 95% CI = 2.05–45.28, p<0.01) of irinotecan. This trend was also observed in patients with *1/*6 alleles compared with *1/*1 cases: OR = 4.42 for low dose, and OR = 1.55 for high/intermediate dose of irinotecan.⁵¹
Accumulated evidence suggests that optimal doses of irinotecan according to UGT1A1 genotype are needed. Several dose-finding studies have been published; however, most of the studies were dose modifications of the FOLFIRI regimens (Table 4).52–56 Three studies evaluating irinotecan doses in FOLFIRI showed that the maximal tolerated dose (MTD) in patients with *1/*1, *1/*28, and *1/*6 alleles was higher than the standard doses of the FOLFIRI regimen.52–54

In the Asian population, incorporation of UGT1A1*6 in addition to UGT1A1*28 would be needed for the safety

Table 3 Severe toxicities according to UGT1A1*6 genotyping

Study	No of patients	Regimens	Irinotecan dose	Neutropenia G3–4 (%)	Diarrhea G3–4 (%)	Efficacy
				*6/*6 vs *1/*1 (95% CI)	*1/*6 vs *1/*1 (95% CI)	
Jada et al40	45	IRI	375/3w	–	7.75 (0.40–149.70)	1.11 (0.11–11.49)
Sai et al41	49	IRI	60/1w, 100, 125, 150/2w	28.00 (0.92–85.54)	8.00 (0.82–78.47)	
Takano et al42	30	IRI-cisplatin	60/1w	–	11.20 (1.73–72.30)	
Seo et al43	39	FOLFIRI	150/2w	–	–	
Onoue et al44	133	IRI-platinum, FOLFIRI	<60, >100	7.78 (1.36–44.50)	4.27 (1.71–10.62)	
Satoh et al45	73	IRI	150/2w	9.33 (1.96–44.49)	0.85 (0.16–4.51)	18.18 (0.68–483.94)
Okuyama et al46	39	FOLFIRI	150/2w	4.04 (0.15–108.57)	1.93 (0.44–8.42)	
Wang et al47	130	FOLFIRI, IFL	180/2w	0.59 (0.06–5.54)	0.97 (0.44–2.13)	4.47 (0.16–30.12)
Gao et al48	276	FOLFIRI, XELIRI	180/2w	4.07 (1.50–11.04)	2.02 (1.06–3.86)	1.98 (0.40–9.77)
Gao et al49	133	IRI-cisplatin, FOLFIRI, etc	180/2w	6.40 (1.30–31.60)	3.34 (1.43–7.79)	2.25 (0.23–21.86)
Ichikawa et al50	1,376	FOLFIRI, IRIS, etc	150/2w	3.34 (2.19–5.10)	1.64 (1.21–2.17)	1.91 (NS)

Table 4 Genotype-based dose-finding studies

Study	Chemotherapy	Genotype	Starting dose, mg/m²	Results, mg/m²
Toffoli et al52	FOLFIRI	*1/*1	215	MTD = 370
		*1/*28	215	MTD = 310
Marcuello et al53	FOLFIRI	*1/*1	180	MTD = 390
		*1/*28	110	MTD = 340
		*28/*28	90	MTD = 130
Kim et al54	FOLFIRI	*1/*1	240	MTD ≥ 330
		*1/*28, *1/*6	240	MTD = 300
		*28/*28, *6/*6, *6/*28	240	MTD = 150
Hazama et al55	Irinotecan (every 2w)+ doxifluoridine	*1/*1	70	MTD > 150, RD = 150
		*1/*28	70	MTD = 100, RD = 70
Lu et al56	FOLFIRI + bevacizumab	*1/*1	180	MTD = 260
		*1/*28	180	MTD = 240
		*28/*28	120	MTD = 210

Abbreviations: CI, confidence interval; RR, response rate; PFS, progression-free survival; OS, overall survival; NS, not significant; IRI, irinotecan; FOLFIRI, 5-fluorouracil, leucovorin, irinotecan; IFL, irinotecan plus 5-fluorouracil; XELIRI, capecitabine plus irinotecan; IRIS, irinotecan plus S-1.

Genotype-based dose modification studies

Accumulated evidence suggests that optimal doses of irinotecan according to UGT1A1 genotype are needed. Several dose-finding studies have been published; however, most of the studies were dose modifications of the FOLFIRI regimens (Table 4).52–56 Three studies evaluating irinotecan doses in FOLFIRI showed that the maximal tolerated dose (MTD) in patients with *1/*1, *1/*28, and *1/*6 alleles was higher than the standard doses of the FOLFIRI regimen.52–54

The MTD in the *1/*1 patients was also higher than that of patients with *1/*28 and *1/*6 alleles, and the MTD in patients with *28/*28, *6/*6, and *28/*6 alleles was lower than the current standard doses of the FOLFIRI regimen.53,54

In the Asian population, incorporation of UGT1A1*6 in addition to UGT1A1*28 would be needed for the safety
of irinotecan-based chemotherapy. All these results suggested that patients with heterozygous UGT1A1 variants, in addition to those with homozygous UGT1A1 variants, had lower MTD of irinotecan compared with those with wild-type alleles.

Current recommendation for UGT1A1 genotyping in daily practice

The US Food and Drug Administration recommends on the irinotecan drug label that patients with the *28/*28 genotype should receive a lower starting dose of irinotecan. Additionally the recommendation also noted that “the precise dose reduction in this patient population is not known, and subsequent dose modifications should be considered based on individual patient tolerance to treatment”.57

According to European Society for Medical Oncology (ESMO) guidelines, testing for UGT1A1 polymorphisms should be considered only if severe toxicity potentially related to treatment with irinotecan occurs. The ESMO guideline noted that testing for UGT1A1 is particularly important when irinotecan is used at high doses (300–350 mg/m²) but of less importance when it is administered at lower doses (125–180 mg/m²).58

According to the Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines, it is especially desirable to test for a UGT1A1 genetic polymorphism before administering irinotecan to patients with a high serum bilirubin level, elderly patients, patients whose general condition is poor (eg, performance status 2 [PS2]), and patients in whom severe toxicity (especially neutropenia) developed after the previous administration of irinotecan.59 The guidelines also noted that “irinotecan toxicity cannot be predicted with certainty on the basis of the presence of a UGT1A1 genetic polymorphism alone”, and that “it is essential to monitor patients’ general condition during treatment and to manage adverse drug reactions carefully, irrespective of whether a genetic polymorphism is detected”.

In the USA, single agent irinotecan (350 mg/m², triweekly, monotherapy) is usually used as one of the “irinotecan-based therapies”, so the doses of irinotecan are usually higher than in Europe (180 mg/m², biweekly, combination) or Japan (150 mg/m², biweekly, combination). Although the recommendations for UGT1A1 genotyping are different according to the doses of irinotecan which are clinically often used in daily practice, clinical usefulness should be always considered in all patients who receive irinotecan-based therapy.

Conclusion

Emerging data confirmed an increased risk of severe toxicities, such as neutropenia, in patients with UGT1A1*28 and/or UGT1A1*6 genotype when the patients received irinotecan-based chemotherapy. Homozygous variants and double heterozygous variants showed a higher risk of severe toxicities compared with single heterozygous variants. However, genotype-based studies suggest that MTD is clearly lower in patients with homozygous UGT1A1 variants compared with those with wild-type alleles. Further clinical studies that include heterozygous UGT1A1 variants, in addition to homozygous variants, are needed to evaluate the clinical utility of UGT1A1 genotyping in patients treated with irinotecan-based therapy. On the other hand, although severe toxicities were clearly evident when the dose of irinotecan was high or intermediate, the incidence of these toxicities was significantly higher even when the dose of irinotecan was lower. Furthermore, clinical significance in terms of tumor response or survival was not found according to UGT1A1 genotypes. Further investigations, such as genotype-based therapy, are needed for increasing the efficacy and decreasing the toxicities for patients receiving irinotecan-based therapy.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Stintzing S, Modest DP, Rossius L, et al. FOLFIRI plus cetuximab versus FOLFI R plus bevacizumab for metastatic colorectal cancer (FIRE-3): a post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. *Lancet Oncol.* 2016;17(10):1426–1434.
2. Noda K, Nishiwaki Y, Kawahara M, et al. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. *N Engl J Med.* 2002;346(2):85–91.
3. Boku N, Yamamoto S, Fukuda H, et al. Fluorouracil plus combination of irinotecan plus cisplatin versus S-1 in metastatic gastric cancer: a randomised phase 3 study. *Lancet Oncol.* 2009;10(11):1063–1069.
4. Sugiyama T, Okamoto A, Enomoto T, et al. Randomized phase III trial of irinotecan plus cisplatin compared with paclitaxel plus carboplatin as first-line chemotherapy for ovarian clear cell carcinoma: JGOG3017/GCIG trial. *J Clin Oncol.* 2016;34(24):2881–2887.
5. Sugiyama T, Nishida T, Kamagai S, et al. Combination therapy with irinotecan and cisplatin as neoadjuvant chemotherapy in locally advanced cervical cancer. *Br J Cancer.* 1999;81(1):95–98.
6. Iyer L, King CD, Whittington PF, et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuro-nosyltransferase isof orm 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. *J Clin Invest.* 1998;101(4):847–854.
7. Innocenti F, Kroezt DL, Schuetz E, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. *J Clin Oncol.* 2009;27(16):2604–2614.
8. Merali Z, Ross S, Paré G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. *Drug Metabol Drug Interact.* 2014;29(3):143–151.
9. De Mattia E, Toffoli G, Polesi J, et al. Pharmacogenetics of ABC and SLC transporters in metastatic colorectal cancer patients receiving first-line FOLFIRI treatment. Pharmacogenet Genomics. 2013;23(10):549–557.

10. Bosma PJ, Chowdhury JR, Bakker C, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333(18):1171–1175.

11. Bosma PJ, Chowdhury NR, Goldhoorn BG, et al. Sequence of exons and the flanking regions of human bilirubin-UDP-glucuronosyltransferase gene complex and identification of a genetic mutation in a patient with Crigler-Najjar syndrome, type 1. Hepatology. 1992;15(5):941–947.

12. Kadakol A, Ghosh SS, Sappal BS, Sharma G, Chowdhury JR, Chowdhury NR. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Crigler-Najjar and Gilbert syndromes: correlation of genotype to phenotype. Hum Mutat. 2000;16(4):297–306.

13. Pharmacogenomics. Knowledge. Implementation (PharmGKB) [web-page on the Internet]. Available from: https://www.pharmgkb.org/haplotypeset/PA166115840. Accessed January 12, 2017.

14. OMIM [web-page on the Internet]. UDP-Glycosyltransferase 1 Family, Polyphenotype A1; UGT1A1. Available from: http://omim.org. Accessed November 19, 2016. Revised December 12, 2017.

15. Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronate glucuronosyltransferase (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci U S A. 1998;95(14):8170–8174.

16. Kaniwa N, Kurose K, Jinno H, et al. Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of novel single nucleotide polymorphism 686>C>T (P229L) found in an African-American. Drug Metab Dispos. 2005;33(3):458–465.

17. Maruo Y, Nakahara S, Yanagi T, et al. Genotype of UGT1A1 and phenotype correlation between Crigler-Najjar syndrome type II and Gilbert syndrome. J Gastroenterol Hepatol. 2016;31(2):403–408.

18. Lee JS, Wang J, Martin M, et al. Genetic variation in UGT1A1 typical of Gilbert syndrome is associated with unconjugated hyperbilirubinemia in patients receiving tocilizumab. Pharmacogenet Genomics. 2011;21(7):365–374.

19. Udommuksorn W, Elliott DJ, Lewis BC, Mackenzie PI, Yoovathaworn K, Shulman K, Cohen I, Barnett-Griness O, et al. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer. 2011;117(14):3156–3162.

20. Lamas MJ, Duran G, Balbou E, et al. The value of genetic polymorphisms to predict toxicity in metastatic colorectal patients with irinotecan-based regimens. Cancer Chemother Pharmacol. 2012;69(1):1591–1599.

21. Hoskins JM, Goldberg RM, Qu P, Ibrham JG, McLeod HL. Association of UGT1A1*28 genotype and irinotecan-induced neutropenia: dose issues in metastatic colorectal cancer. Br J Cancer. 2007;99(17):1290–1295.

22. Hy ZY, Yu Q, Pei Q, Guo C. Dose-dependent association between UGT1A1*28 genotype and irinotecan-induced neutropenia: low doses also increase risk. Clin Cancer Res. 2010;16(15):3832–3842.

23. Liu X, Cheng D, Kuang Q, Liu G, Xu W. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J. 2014;14(2):120–129.

24. Sato H, Yamada Y, et al. Genotype-directed, dose-finding study of irinotecan in cancer patients with UGT1A1*28 and/or UGT1A1*6 polymorphisms. Cancer Sci. 2011;102(10):1868–1873.

25. Okuyama Y, Hazama S, Nozawa H, et al. Prospective phase II study of FOLFIRI for mCRC in Japan, including the analysis of UGT1A1 28/6 polymorphisms. Jpn J Clin Oncol. 2011;41(4):477–482.
47. Wang Y, Shen L, Xu N, et al. UGT1A1 predicts outcome in colorectal cancer treated with irinotecan and fluorouracil. World J Gastroenterol. 2012;18(45):6635–6644.

48. Gao J, Zhou J, Li Y, Lu M, Jia R, Shen L. UGT1A1 6/28 polymorphisms could predict irinotecan-induced severe neutropenia not diarrhea in Chinese colorectal cancer patients. Med Oncol. 2013;30(3):604.

49. Gao J, Zhou J, Li Y, et al. Associations between UGT1A1*6/*28 polymorphisms and irinotecan-induced severe toxicity in Chinese gastric or esophageal cancer patients. Med Oncol. 2013;30(3):630.

50. Ichikawa W, Uehara K, Minamimura K, et al. An internally and externally validated nomogram for predicting the risk of irinotecan-induced severe neutropenia in advanced colorectal cancer patients. Br J Cancer. 2015;112(10):1709–1716.

51. Cheng L, Li M, Hu J, et al. UGT1A1*6 polymorphisms are correlated with irinotecan-induced toxicity: a system review and meta-analysis in Asians. Cancer Chemother Pharmacol. 2014;73(3):551–560.

52. Toffoli G, Cecchin E, Gasparini G, et al. Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28(5):866–871.

53. Marcuello E, Páez D, Paré L, et al. A genotype-directed phase I-IV dose-finding study of irinotecan in combination with fluorouracil/leucovorin as first-line treatment in advanced colorectal cancer. Br J Cancer. 2011;105(1):53–57.

54. Kim KP, Hong YS, Lee JL, et al. A phase I study of UGT1A1 *28/*6 genotype-directed dosing of irinotecan (CPT-11) in Korean patients with metastatic colorectal cancer receiving FOLFIRI. Oncology. 2015;88(3):164–172.

55. Hazama S, Nagashima A, Kondo H, et al. Phase I study of irinotecan and oxifluoridine for metastatic colorectal cancer focusing on the UGT1A1*28 polymorphism. Cancer Sci. 2010;101(3):722–727.

56. Lu CY, Huang CW, Hu HM, et al. Prognostic advantage of irinotecan dose escalation according to uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) genotyping in patients with metastatic colorectal cancer treated with bevacizumab combined with 5-fluorouracil/leucovorin with irinotecan in a first-line setting. Transl Res. 2014;164(2):169–176.

57. Camptosar [prescribing information] [webpage on the Internet]. Available from: http://labeling.pfizer.com/ShowLabeling.aspx?id=533. Accessed January 12, 2017.

58. Schmoll HJ, Van Cutsem E, Stein A, et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol. 2012;23(10):2479–2516.

59. Watanabe T, Itabashi M, Shimada Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) Guidelines 2014 for treatment of colorectal cancer. Int J Clin Oncol. 2015;20(2):207–239.