Nonexistence of Finite-dimensional Quantizations of a Noncompact Symplectic Manifold

Mark J. Gotay1) and Hendrik Grundling2)

1) Department of Mathematics, University of Hawai‘i,
2565 The Mall, Honolulu, HI 96822 USA
email: gotay@math.hawaii.edu

2) Department of Pure Mathematics, University of New South Wales,
P.O. Box 1, Kensington, NSW 2033, Australia.
email: hendrik@maths.unsw.edu.au

October 21, 1997

Abstract We prove that there is no faithful finite-dimensional representation by skew-hermitian matrices of a “basic algebra of observables” \mathcal{B} on a noncompact symplectic manifold M. Consequently there exists no finite-dimensional quantization of any Lie subalgebra of the Poisson algebra $C^\infty(M)$ containing \mathcal{B}.
1. Introduction

Let M be a connected noncompact symplectic manifold. On physical grounds one expects a quantization of M, if it exists, to be infinite-dimensional. This is what we rigorously prove here, in the framework of the paper [GGT]. Our precise hypotheses are spelled out below.

A key ingredient in the quantization process is the choice of a basic set of observables in the Poisson algebra $C^\infty(M)$. This is a finite-dimensional linear subspace B of $C^\infty(M)$ such that

- (B1) (Completeness) the Hamiltonian vector fields X_f, $f \in B$, are complete,
- (B2) (Transitivity) $\{X_f \mid f \in B\}$ spans TM, and
- (B3) (Minimality) B is minimal with respect to these conditions.

In addition to these conditions we assume in this paper that B forms a Lie algebra under the Poisson bracket. We then refer to B as a basic algebra. (Note also that unlike in [GGT], we do not require here that $1 \in B$.)

Now fix a basic algebra B, and let O be any Lie subalgebra of $C^\infty(M)$ containing 1 and B. Then by a finite-dimensional quantization of the pair (O, B) we mean a Lie representation Q of O by skew-hermitian matrices on \mathbb{C}^n such that

- (Q1) $Q(1) = I$,
- (Q2) $Q(B)$ is irreducible, and
- (Q3) Q is faithful on B.

We refer the reader to [GGT] for a detailed discussion of these matters. We remark that in the infinite-dimensional case there are additional conditions which must be imposed upon a quantization. We also elaborate briefly on (Q3). Although faithfulness is not usually assumed in the definition of a quantization, it seems to us a reasonable requirement in that a classical observable can hardly be regarded as “basic” in a physical sense if it is in the kernel of a quantization map. In this case, it cannot be obtained in any classical limit from the quantum theory.
2. The Obstruction

Given the definitions above, we state our result:

Theorem. Let M be a noncompact symplectic manifold, \mathcal{B} a basic algebra on M, and \mathcal{O} any Lie subalgebra of $C^\infty(M)$ containing \mathcal{B}. Then there is no finite-dimensional quantization of $(\mathcal{O}, \mathcal{B})$.

As the proof will show, we do not need conditions (Q1) or (Q2) to obtain the theorem. Moreover, the subalgebra \mathcal{O} is irrelevant since the proof depends only on the Lie theoretical properties of the basic algebra \mathcal{B} and its action on M.

Proof: We argue by contradiction. Suppose there exists a finite-dimensional quantization Q of the basic algebra \mathcal{B}. Since $Q(\mathcal{B})$ consists of skew-hermitian matrices, it is completely reducible. Since Q is faithful, one deduces from [V, Thm 3.16.3] that \mathcal{B} is reductive, i.e. $\mathcal{B} = s \oplus \mathfrak{z}$ where s is semisimple and \mathfrak{z} is the center of \mathcal{B}.

We show that $\mathfrak{z} = \{0\}$. Indeed, by the transitivity condition (B2), the elements of \mathfrak{z} must be constant but, if these are nonzero, then s alone would serve as a basic algebra, contradicting the minimality condition (B3). Thus $\mathfrak{z} = \{0\}$ and $\mathcal{B} = s$ is semisimple.

Let B be the connected, simply connected Lie group with Lie algebra \mathcal{B}. We show that B is noncompact. Let \mathfrak{g} be the Lie algebra $\{X_f \mid f \in \mathcal{B}\}$. By (B1) the vector fields in \mathfrak{g} are complete and so by [V, Thm. 2.16.13] this infinitesimal action of \mathfrak{g} can be integrated to an action of the connected, simply connected Lie group G with Lie algebra \mathfrak{g}. Condition (B2) implies that this action is locally transitive and thus globally transitive as M is connected. Thus the noncompact manifold M is a homogeneous space for G, and so G must be noncompact as well. Now \mathcal{B} is isomorphic either to \mathfrak{g} or to a central extension of \mathfrak{g} by constants. Since \mathcal{B} is semisimple, the latter alternative is impossible. Hence B is isomorphic to G and so is noncompact.

Now consider a unitary representation π of B on \mathbb{C}^n. Decompose B into a product $B_1 \times \cdots \times B_K$ of simple groups. Then (at least) one of these, say B_1, must be
noncompact. But it is well-known that a connected, simple, noncompact Lie group has no nontrivial unitary representations [BR, Thm. 8.1.2]. Thus \(\pi|B_1 \) is trivial, i.e. \(\pi(b) = I \) for all \(b \in B \). Since every finite-dimensional quantization \(Q \) of \(B \) is a derived representation of some unitary representation \(\pi \) of \(B \), it follows that \(Q|B_1 = 0 \), and so \(Q \) cannot be faithful.

3. Discussion

This theorem is complementary to a recent result of [GGG] which states that there are no nontrivial quantizations (finite-dimensional or otherwise) of \((P(B), B) \) on a compact symplectic manifold \(M \), where \(P(B) \) is the Poisson algebra of polynomials generated by the basic algebra \(B \). The proof of that result leaned heavily on the algebraic structure of \(P(B) \); indeed, when \(M \) is compact, it turns out that \(B \) must be compact semisimple, and such algebras do have faithful finite-dimensional representations by skew-hermitian matrices. Thus in the compact case, the obstruction to the existence of a quantization is Poisson, rather than Lie theoretical. Combining [GGG] with the present theorem, we can now assert, roughly speaking, that no symplectic manifold with a basic algebra has a finite-dimensional quantization.

We hope to address the issue of whether there are obstructions in general to infinite-dimensional quantizations of noncompact symplectic manifolds in future work. Certainly such obstructions exist in specific examples, such as \(\mathbb{R}^{2n} \) [GGT] and \(T^\ast S^1 \) [GG]. This appears to be a difficult problem, however.

Acknowledgments

M.J.G. thanks the University of New South Wales and the U.S. National Science Foundation (through grant DMS 96-23083) for their support while this research was underway.

H.G would like to thank the Australian Research Council for their support through a research grant.
Bibliography

[BR] A.O. Barut and R. Račzka [1986] Theory of Group Representations and Applications
(Second Edition). World Scientific, Singapore.

[GGG] M.J. Gotay, J. Grabowski, and H.B. Grundling [1997] An Obstruction to Quantizing
Compact Symplectic Manifolds. Preprint [dg-ga/9706001].

[GG] M.J. Gotay and H.B. Grundling [1997] On Quantizing T^*S^1. Rep. Math. Phys., to
appear.

[GGT] M.J. Gotay, H.B. Grundling, G.M. Tuynman [1996] Obstruction Results in Quantiza-
tion Theory. J. Nonlinear Sci. 6, 469–498.

[V] V.S. Varadarajan [1984] Lie Groups, Lie Algebras and Their Representations. Springer
Verlag, New York.