BIM and CMMS for IBS building maintenance in Malaysia

Zul-Atfi Ismail, M. Abdul Rahim, Z. Md. Ghazaly

Civil Engineering Program, School of Environmental Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia

Email: zulatfippkas@gmail.com

Abstract. IBS construction is gradually increasing in many building projects in Malaysia. The projects have involved modern, contemporary and innovation design for construction. The increase of demands for IBS construction every year indirectly contributes the building and infrastructure development but maintenance management however is poor, possesses low defect diagnosis and limited decision making process to repairing. These problems become more complicated in complex and high-rise building projects like Malaysia to which IBS building construction is practiced. Conventionally, the repairing maintenance method (fragmentation approach) has been criticized for serious unacceptable quality or productivity, budget and concept of the IBS building maintainability (reworks and delay). Therefore, a novel and more sophisticated technique is proposed for improving defect diagnosis and decision making process by employing BIM and CMMS integration in maintenance management on IBS buildings in Malaysia.

1. Introduction
An Industrialised Building System (IBS) is the new construction technology involving the use of on-site and off-site (factory producing) prefabrications for installation to improve the construction efficiency (e.g. components keeping and sustainable building projects) [1,2]. The adoption of IBS construction (IBS or a hybrid IBS) can be considered as an alternative option in maintaining sustainability in construction using pre-fabricated components that are systematically done using machine, formwork and other forms of mechanical equipment. The IBS construction provides the most advantageous solutions in terms of better control maintenance cost, shorten construction period and increase the quality of buildings [3,4,5]. However, as IBS construction projects grow in scale and complexity, repairing maintenance method (fragmentation approach) can be noticed in a problematic maintenance management to monitor the defects comprising diagnostic testing for the corrective and preventive maintenance action [6,7]. The repairing maintenance method to the project delivery and its failure to form effective communication channel between complementary knowledge on IBS construction and construction members that is conducted in the sequential manner has resulted in ineffectiveness for managing building maintenance, where a paradigm shift within the IBS traditional approach is necessary. Furthermore, the need for sophisticated tools and techniques using an appropriate Information and Communication Technology (ICT) (e.g. Building Information Modelling (BIM) and Computerised Maintenance Management System (CMMS)) for implementing an integrated approach in the design and construction could facilitate new maintenance management processes for IBS building construction projects in the future [8,9].

This paper reviews BIM and CMMS on maintenance management and explores the factors affecting BIM and CMMS requirement. The roles and effects of BIM and CMMS integration on IBS
building maintenance are also highlighted. The paper concludes with a discussion of the findings showing the outline features of a research framework for more effective applications of BIM and CMMS integration in maintenance management on IBS buildings in Malaysia.

2. Building Information Modelling (BIM)
Building Information Modelling (BIM) technology is an accurate virtual model of a building which is digitally constructed (Three-Dimensional) 3D Models [10]. Today, BIM application is in full swing practices and the concept of BIM is to collect the vital information from the model to analyze the beneficial alternative in the early stages of the construction design [11]. BIM also has provided the integration for the information database of building components to document a building design and construction [12]. Furthermore, it has been articulated that BIM has saved 683 hours for the management efficiency compared to the 2D Computer Assisted Design (CAD) application for a particular project in different phases in construction. The tasks involved are schematic, design development, construction documents, inspection and coordination. Besides, the construction documents use of a building design took minimum rate hours, 815 hours to BIM and saved 208 hours more than using 2D CAD application. The BIM platform enables to assemble all information into one location and cross-links that data between associates objects compared to 2D CAD which has no linkage between the created data [13].

3. Computerised Maintenance Management System (CMMS)
CMMS software was seen first around 1976 and today, it is widely used in maintenance management all over the world. CMMS provides inventory activity for facility assessment to reduce maintenance problems [14]. This application covers the wide spectrum of building and infrastructure components such as specifying work location, labour, material and equipment needed as well as desired completion date [15]. CMMS also supports the maintenance management budget and long term financial commitment to attain returns benefits of financial management.

4. Factors affecting BIM and CMMS requirement
The absence of available diagnosis tools and guidelines of cooperation among construction parties create an additional cost to redesign the project when measuring the maintenance delivery in IBS construction [16]. The repairing maintenance method (fragmentation approach) restrict contractors and manufacturers from being involved in the design stage of a performance project, which often results in design changes and a corresponding maintenance and operation cost increase including construction time, production and labour cost [17,18]. According to [19] and [5], the management level in Malaysia, monitoring, diagnosing technology and repairing maintenance method of IBS buildings is far behind some developed countries. Compared with the relatively high level of IBS construction in the USA and Japan, the supporting technologies and large-scale production systems (such as supervision systems and matching construction technologies) are used to improve the construction maintainability of components and could diagnose the maintenance problems with safety monitoring process to prevent the building construction accidents [20]. Low defect diagnosis for building maintenance may cause great economic losses and personal casualty incidents due to the disaster building defect. For example, concrete roof of the Gong Badak stadium collapsed in Kuala Terengganu on June 2, 2009 [21]. The roof structure crash occurred under construction for SMK Taman Connaught in Kuala Lumpur and three labours were injured on Jan 15, 2010 [22]. In addition, a few of ceilings at a Hospital Serdang in Selangor collapsed for a third time as a result of its structural failure (steel corrosion) on November 14, 2013 [23]. Thus, the management of maintenance in the complex and high-rise buildings claims a high emphasis on the systematic process for the improvement of maintenance management system of IBS construction.

The inefficiency in decision making process has been found to be a major cause of aesthetic and functional faults [24]. The defects include cracks, blemishes, moisture penetration, water leakage due to improper jointing and poor thermal insulation [25]. Many factors stimulate ineffective decision
support to provide the sufficient information of maintenance strategy with the extensive coordination on technical knowledge requirements and schedules prior to maintenance operations of project implementation, however poor maintenance management or repairing maintenance method (fragmentation approach) deficiency can give a major impact to the IBS building maintenance activities [24]. According to [16], the main reasons for not optimum decision making on IBS building construction projects were lack of knowledge and exposure to IBS technology, since the resolution implementation were based on familiarity and personal preferences (e.g. experience of the design team) rather than rigorous data between team members through regular meetings. This is also supported by [26], who agree with that the incorrect strategic decision at the initial project phase was a major cause of cost overrun and supply chain integration problem due to lack of comprehensive principles in the maintainability approach such as measuring convention, standardisation, buildability score and open system practices among IBS construction teams. The integrated decision making process with the maintenance strategy from the design stage to the installation of components is needed that can significantly improve the repairing maintenance method of IBS building construction projects [27]. This could realise with a good management system with the implementation of ICT, to enhance managing efficiency for both defect diagnosis and decision making process, thereby establishing a more effective maintenance strategy for an IBS building construction.

As a result of the inherent weaknesses in maintenance management at IBS building construction, an alternate maintenance management model is proposed, namely, Computerised Maintenance Management System (CMMS). The CMMS model is engaged in the sophisticated system (e.g. BIM model) to improve the characteristic element with the defect diagnosis and decision making process. The significant factor to select a CMMS is much more advantageous than just a way to schedule maintenance management processes and able to perform the task needed without stressing the budget [28]. The CMMS does not make decision, rather it provides the maintenance manager with the best information which affects the operational efficiency of a facility [29]. Meanwhile, the BIM model could assist in communications and quick decision-making in the inspection to be efficiently operated the building projects [30].

5. Roles of BIM and CMMS integration on IBS building maintenance
CMMS are among the approaching technologies utilised for reducing the downtime of equipments and facilitate the accessibility information to the staff for maintenance management [31]. CMMS is the technology management and includes all computer systems and networks, building automation systems such as control systems and programmable logic controllers, design drawing databases, an all diagnostic and monitoring systems [32]. The system is implemented to record numerous data from papers and forms in order to ease the information administration and optimised a building maintenance to strike a balance between cost and reliability in the organisation [33]. Quality CMMS is also able to provide the maintenance assessment resulted from the coherent fashion for analysis of relevant information in the database [34]. The specification of data such as the history of defect structure from the previous years is collected into the system for assisting staff to suggest the maintenance implementation effortlessly in managing complex building during design and construction stages. The schedule planning and the work orders enable the monitoring of the concrete structure and manage the budget constraints strategically [35].

BIM is defined as the use of ICT technologies to improve the building construction processes to be more operationally maintenance throughout the building lifecycle [36]. BIM has allowed implementing manufacturing concepts such as lean design and modularisation (e.g. IBS building components) into construction. Lean design is a tool for improving the component design on the conventional method (e.g. in situ construction). Besides, BIM is also assisting to monitor the specification of IBS building site planning, for instance, building fabrication, assemblies and subassemblies economically as well as technologically [37]. The use of BIM application in construction sites has been observed for a prominent benefit of better production quality toward the documentation output. The data transfer in the documentation is flexible and exploits automation for
the maintenance diagnosis information which enables to trace the concerned recorded of building components in the construction projects [38,39]. Furthermore, the design changes can be resolved more quickly in a BIM system because modifications can be shared, visualised, estimated and resolved without the use of time consuming paper transactions. Some modifications can be made automatically based on the established parametric rules or through clash detection [40]. The parametric rules consist of geometric definitions, associated data and rules in order to extract consistent drawings and reports of geometric parameters [39]. According to [41], the maintenance management practices in the construction projects become intelligent by developing a BIM model in remote construction project. This BIM model can provide the effective design and technical review to improve the consistency and accuracy drawing for the construction management in the future such as changes to specifications, specified materials, effective maintenance planning and scheduling [42,43].

6. Effects of BIM and CMMS integration on IBS building maintenance

The deployment of sophisticated system (e.g. BIM and CMMS) resulted to improve IBS building maintenance as discussed in Table 1.

Research	Type of System	Function
Motawa & Almarshad [44]	Knowledge BIM-Based System	To use priority in the maintenance planning and strategy for maintenance execution in the design/construction/operation of buildings using case-based reasoning (CBR)
Liu & Issa [45]	BIM-assisted Facility Management	To provide automatically identifying equipment and facility including supporting operational and strategic management of buildings in the design and construction phases
Stack et al. [46]	BIM-based Computer-Aided Facility Management (CAFM)	To support the building and energy efficiency analysis and monitoring the maintenance operation with a combination of Integrated Project Delivery (IPD)
Asen, Motamedi & Hammad [47]	BIM-based Visual Analytics Approach (Integration with COBIE)	To identify, assess the defect problems based on the visual analytics for building
Sue, Lee & Lin [48]	BIM-based Facility Management (BIMFM)	To support the 3D CAD-based models for identifying, tracking, coordinating and accessing particular building maintenance into a database system

The improvement of BIM and CMMS integration as stated in Table 1 will support the defect diagnosis and decision making process on IBS building maintenance.

7. Concluding remarks

Taking into account that BIM and CMMS integration to be a promising technique for improving defect diagnosis and decision making process. A focused research in a more comprehensive area is desired for more effective application of BIM and CMMS in IBS building maintenance. This review has highlighted that BIM and CMMS integration is a potential method in maintenance management on IBS buildings in Malaysia.
References
[1] Badir Y F and Kadir M R A 2002 Journal of Architectural Engineering 8 1 pp 19-23
[2] Ismail F Baharuddin H E A and Marhani M A 2013 Procedia Social and Behavioral Sciences 85 pp 43-50
[3] Blismas N G Pendlebury M Gibb A and Pasquire C 2005 Journal of Architectural Engineering and Design Management 1 3 pp 153-162
[4] Luo Y Riley R Horman M J and Kremer G O 2006 Symposium on Sustainability and Value Through Construction Procurement Salford UK pp 368-377.
[5] Rahman A B A and Omar W 2006 Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference (APSEC 2006) Kuala Lumpur Malaysia pp 1-9
[6] Hamid Z A Kamar K A M Zain M Z M Ghani M K and Rahim A H A 2008 Malaysian Construction Research Journal (MCRJ) 1 2 pp 1-11
[7] Gajzler M 2013 Procedia Engineering 54 pp 615-624
[8] Anumba C J Baugh C and Khalfan M M 2002 Industrial Management & Data Systems 102 5 pp 260-270
[9] Nawi M N M Lee A Azman M N A and Kamar K A M 2014 Journal of Engineering Science and Technology 9 1 pp 97-106
[10] Azhar S Hein M and Sketo B 2008 Proceedings of the 44th ASC National Conference (Auburn USA) pp 1-11
[11] Hassanabadi M S Tahmasebi M M Banihashemi S S Boroojeni M B and Torabi M 2011 2nd International Conference on Construction and Project Management (ICCPM) (Singapore) pp 107-111
[12] Liao C Tan D and Li Y 2012 Applied Mechanics and Materials 174 pp 2111-2114
[13] Kumar J V and Mukherjee M 2009 Journal of Engineering Science and Technology Review 2 1 pp 165-169
[14] O’Donoghue C D and Prendergast J G 2004 Journal of Materials Proceeding Technology 153-154 pp 226-232
[15] Hassananin M A Froese T M and Vanier D J 2003 Journal of Performance of Constructed Facilities 17 1 pp 51-64
[16] Chen Y Okudan G E and Riley D R 2010 Automation in Construction 19 6 pp 665-675
[17] Yunus R and Yang J 2012 Construction Innovation 12 4 pp 447-463
[18] Chang C and Tsai M 2013 Advanced Engineering Informatics 27 pp 246-260
[19] Kamaruddin S S Mohammad M F Mahbub R and Ahmad K 2013 Procedia Social and Behavioral Sciences 105 2013 pp 106-114
[20] Zhang X Skitmore M and Peng Y 2014 Habitat International 41 pp 176-184
[21] Kaos J 2013 http://www.mstar.com.my/berita/berita-semasa/2013/09/29/lagi-bumbung-runtuh-di-terengganu/
[22] Isa M S M 2010 http://www.utusan.com.my/utusan/info.asp?y=2010&dt=0117&pub=Utusan_Malaysia&sec=Kota&p=wk_01.htm
[23] Ramli M M 2013 http://www.bharian.com.my/bharian/articles/SilingHospitalSerdangruntuhlagi/Article
[24] Chiu C and Lin Y 2014 Automation in Construction 39 pp 15-31
[25] Onyeizu E N Hassan A and Bakar A 2011 Applied Sciences 15 2 pp 205-213
[26] Bari N A A Yusuff R Ismail N Jaapar A and Ahmad N 2012 Procedia Social and Behavioral Sciences 35 pp 689-696
[27] Wood B 2012 Journal of Architectural Engineering 18 p 192-197
[28] Kullolli I 2008 Biomedical Instrumentation & Technology 42 4 pp 276-278
[29] Sharma R and Govindaraju N 2010 International Conference of Chemical Biological and Environmental Engineering Cairo Egypt pp 331-335
[30] Azhar S Khalfan M and Maqsood T 2012 Australasian Journal of Construction Economics and
Building 12 4 pp 15-28

[31] Shareghi M and Faieza A A 2011 Scientific Research and Essays 6 15 pp 3182-3188

[32] Matusheski B 2001 Plant Engineering 55 5 pp 22-26

[33] Liu Y 2006 A Forecasting Model for Maintenance and Repairs Costs for Office Buildings. MSc Thesis (Concordia University Canada)

[34] Cardellino P and Finch E 2006 Journal of Information Technology in Construction (ITcon) 11 pp 673-684

[35] Jardine A K S Lin D and Banjevic D A 2006 Mechanical Systems and Signal Processing 20 7 pp 1483-1510

[36] Volk S Stengel J and Schultmann F 2014 Automation in Construction 38 pp 109-127

[37] Azhar S Khalfan M and Maqsood T 2012 Australasian Journal of Construction Economics and Building 12 4 pp 15-28

[38] Tang P Anil E Akinci B and Huber D 2011 Proceedings of the ASCE International Workshop on Computing in Civil Engineering (Florida USA) pp 1-8

[39] Eastman C Teicholz P Sacks R and Liston K 2011 BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors 2nd Ed. (New Jersey, USA: John Wiley and Sons)

[40] Ibrahim M and Krawczyk R 2003 Association for Computer-Aided Design Architecture 2003 International Conference (Indiana USA) pp 172-177

[41] Hajian H and Becerik-Gerber B 2012 Computing in Civil Engineering pp 83-94

[42] Donath D and Thurow T 2007 Automation in Construction 16 pp 19–27

[43] Becerik-Gerber B Jazizadeh F Li N and Calis G 2012 Journal of Construction Engineering and Management 138 3 pp 431–442

[44] Motawa I and Almarshad A 2013 Automation in Construction 29 pp 173–182

[45] Liu R and Issa R 2012 International Conference on Computing in Civil Engineering (Florida USA) pp 373-380

[46] Stack P Menzel K Flynn D and Ahmed A 2012 14th International Conference on Computing in Civil and Building Engineering (14th ICCBCE) (Moscow Russia) pp 1-8

[47] Asen Y Motamedi A and Hammad A 2012 14th International Conference on Computing in Civil and Building Engineering (14th ICCBCE) (Moscow Russia) pp 1-8

[48] Su Y C Lee Y C and Lin Y C 2011 Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC) (Seoul Korea) pp 752-757