Melatonin represses oil and anthocyanin accumulation in seeds

Dong Li,†, Yuan Guo,†, Da Zhang, Shuangcheng He, Jingyun Gong, Haoli Ma, Xin Gao, Zhonghua Wang, Lixi Jiang, Xiaoling Dun, Shengwu Hu, Mingxun Chen,*

† These authors contributed equally to the article
*Correspondence
Mingxun Chen, State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
E-mail: cmx786@nwafu.edu.cn

Short title
Melatonin limits fatty acid & anthocyanin content

ONE SENTENCE SUMMARY
Melatonin functions as a negative regulatory signal of seed oil and anthocyanin accumulation during the maturation of A. thaliana seeds.
ABSTRACT

Previous studies have clearly demonstrated that the putative phytohormone melatonin functions directly in many aspects of plant growth and development. In *Arabidopsis thaliana*, the role of melatonin in seed oil and anthocyanin accumulation, and corresponding underlying mechanisms, remain unclear. Here, we found that *serotonin N-acetyltransferase*1 (*SNAT1*) and *caffeic acid O-methyltransferase* (*COMT*) genes were ubiquitously and highly expressed and essential for melatonin biosynthesis in *A. thaliana* developing seeds. We demonstrated that blocking endogenous melatonin biosynthesis by knocking out *SNAT1* and/or *COMT* significantly increased oil and anthocyanin content of mature seeds. In contrast, enhancement of melatonin signaling by exogenous application of melatonin led to a significant decrease in levels of seed oil and anthocyanins. Further gene expression analysis through RNA-sequencing and reverse transcription quantitative PCR demonstrated that the expression of a series of important genes involved in fatty acid and anthocyanin accumulation was significantly altered in *snat1-1 comt-1* developing seeds during seed maturation. We also discovered that SNAT1 and COMT significantly regulated the accumulation of both mucilage and proanthocyanidins in mature seeds. These results not only help us understand the function of melatonin and provide valuable insights into the complicated regulatory network controlling oil and anthocyanin accumulation in seeds, but also divulge promising gene targets for improvement of both oil and flavonoids in seeds of oil-producing crops and plants.

Key words: oil, anthocyanins, SNAT1, COMT, melatonin, *Arabidopsis thaliana*
INTRODUCTION

Arabidopsis thaliana is a popular model system for the study of primary and secondary metabolites, including oil and anthocyanins, in seeds of angiosperms. Seed oil, stored as triacylglycerols (TAGs), not only represents the major form of carbon storage, thus providing nutrients for humans and livestock and energy for seed germination and seedling establishment (Graham, 2008; Baud and Lepiniec, 2009; Li et al., 2016), but also serves as a raw material for various industries and biofuel production (Durrett et al., 2008; Lu et al., 2011; Keneni and Marchetti, 2017; Rodionova et al., 2017). In the plant cell, fatty acids (FAs) are biosynthesized in plastids and to a large extent transported to the endoplasmic reticulum for further elongation, modification, and TAG assembly (Baud and Lepiniec, 2009; Chapman and Ohlrogge, 2012; Li et al., 2016). Anthocyanins are natural water-soluble pigments that belong to the flavonoid class of secondary metabolites (Castaneda-Ovando et al., 2009; Kovinich et al., 2014). Anthocyanins exhibit antioxidant properties and are implicated in protection against abiotic and biotic stresses in plants (Winkel-Shirley, 2002; Petrussa et al., 2013). As signaling molecules in animal cells, anthocyanins participate in protection against cardiovascular illness, diabetes, and certain cancers (Toufektsian et al., 2008; Pan et al., 2010; Pojer et al., 2013; Fang, 2015).

Over the last few decades, major efforts have been undertaken to uncover specific roles of different factors in the accumulation of FAs and anthocyanins. However, few factors have been identified to synergistically improve their contents in seeds. Molecular breeding, a highly effective approach, is
increasingly being utilized to improve the quantity of useful metabolites in crop
seeds. Therefore, investigating the roles of essential factors in the
accumulation of seed oil and anthocyanins in *A. thaliana* would provide useful
information and potential targets for breeders to elevate the contents of these
metabolites in many crops, which is of great economic and social significance.

Melatonin (N-acetyl-5-methoxytryptamine), a highly conserved bioactive
molecule, is ubiquitously present in all plant species (Tan et al., 2012; Tan et
al., 2013). It is produced from serotonin through two consecutive enzymatic
steps. Serotonin is converted into either N-acetylserotonin by serotonin
N-acetyltransferase (SNAT) or into 5-methoxytryptamine (5-MT) by caffeic acid
O-methyltransferase (COMT), which are subsequently metabolized into
melatonin by COMT or SNAT, respectively (Lee et al., 2014a). There are two
SNAT isogenes, *SNAT1* and *SNAT2* (Back et al., 2016; Lee et al., 2019), and a
single copy of *COMT* in the *A. thaliana* genome (Nakatsubo et al., 2008).

Melatonin is a potent antioxidant (Tan et al., 2015; Reiter et al., 2016) that
functions directly against a wide range of abiotic and biotic stresses, including
high salt concentrations (Chen et al., 2017a; Zheng et al., 2017), heavy metals
(Cai et al., 2017; Gu et al., 2017; Kobylinska et al., 2017; Lee and Back, 2017 a;
Zhang et al., 2017a; Luo et al., 2018; Nawaz et al., 2018), high nitrate levels
(Zhang et al., 2017b), K⁺ deficiency (Chen et al., 2017b), drought (Antoniou et
al., 2017; Wang et al., 2017a), high pH (Gong et al., 2017), cold (Bajwa et al.,
2014; Li et al., 2017a; Li et al., 2018a), high temperature (Xu et al., 2016; Zhang
et al., 2017c; Qi et al., 2018), and various pathogens (Yin et al., 2013; Lee et al.,
2014b; Lee and Back, 2016, 2017b; Wei et al., 2017).

Melatonin has also been demonstrated to be involved in other aspects of
plant growth and development, such as root development (Hernandez-Ruiz et
al., 2005; Arnau and Hernandez-Ruiz, 2007; Chen et al., 2009; Wang et al.,
2016), cotyledon and seedling growth (Hernandez-Ruiz et al., 2005; Byeon and
Back, 2014; Wei et al., 2015), flowering time (Byeon and Back, 2014; Shi et al., 2016), and seed yield (Byeon and Back, 2014; Wei et al., 2015). As a putative phytohormone, the first identified melatonin receptor, CAND2/PMTR1, was found in *A. thaliana*, and the regulation of stomatal closure by melatonin is dependent on this receptor (Wei et al., 2018). In addition, exogenous application of melatonin enhances the accumulation of FAs in soybean seeds (Wei et al., 2015), and increases anthocyanin biosynthesis in cabbage seedlings (Zhang et al., 2016). However, the effect of melatonin on seed oil and anthocyanin accumulation and the corresponding mechanisms behind it remain unclear in *A. thaliana*.

In this study, we demonstrated that melatonin functions as a negative regulatory signal for seed oil and anthocyanin accumulation during the maturation of *A. thaliana* seeds.

RESULTS

SNAT1 and COMT are expressed abundantly in developing seeds

We investigated the subcellular localization of SNAT1 and COMT in *Nicotiana benthamiana* leaves using the GFP fusion constructs, 35S:SNAT1-GFP and 35S:COMT-GFP. We observed that SNAT1-GFP and COMT-GFP were localized in the chloroplast (Figure 1A) and cytoplasm (Figure 1B), respectively, which is consistent with a previous study (Lee et al., 2014a). We also found that the green fluorescence of COMT-GFP was co-localized with that of the nuclear marker DAPI, indicating that COMT was also localized in the nucleus (Figure 1B).

To determine the temporal and spatial mRNA distributions of *SNAT1* and *COMT* essential for melatonin biosynthesis, reverse transcription quantitative PCR (RT-qPCR) was conducted to investigate their expressions in various
tissues of wild-type plants. *SNAT1* was highly expressed in various tissues except for stems (Figures 2A, B). *COMT* was widely distributed in different tissues, and its transcript level was much higher in roots, flower buds, open flowers, and developing seeds than in stems, rosette leaves, and cauline leaves (Figures 2D, E). During seed development, the expression of *SNAT1* and *COMT* exhibited a similar pattern and increased rapidly from 8 days after pollination (DAP) to the maximal level at 10 DAP, and then decreased gradually afterwards (Figures 2B, E).

To better investigate the expression patterns of *SNAT1* and *COMT*, we generated at least 15 independent transgenic lines for each of the *pSNAT1*:GUS and *pCOMT*:GUS constructs in a wild-type background. Most transgenic lines of each construct showed similar GUS staining patterns and then one representative line was selected for GUS staining analysis. The results indicated that *SNAT1* was highly expressed in various tissues, including roots (Figure 2C1), cotyledons, rosette and cauline leaves (Figures 2C1-3), flower buds and open flowers (Figure 2C4), and developing seeds, including embryos and seed coat during seed maturation (Figures 2C5-8). The *COMT* transcript level was predominant in the tissues of roots (Figure 2F1), cotyledons and just emerged true leaves (Figure 2F1), flower buds and open flowers (Figures 2F3, 4), and developing seeds inclusive of embryos and seed coat during seed maturation (Figures 2F5-8). The expression of *SNAT1* was much higher than that of *COMT* in the seed coat (Figures 2C5-8 and 2F5-8).

However, GUS staining was hardly observed in stems of the *pSNAT1*:GUS line (Figure 2C3), as well as in rosette leaves (Figure 2F2), cauline leaves (Figure 2F3), and stems (Figure 2F3) of the *pCOMT*:GUS line.

To summarize, gene expression results from GUS staining and RT-qPCR were highly consistent, and both *SNAT1* and *COMT* were abundantly expressed during seed maturation. These results implied that the dynamic...
regulation of the two genes or of melatonin was relevant to the accumulation of seed metabolites occurring mainly at the seed maturation stage.

Melatonin represses seed oil and anthocyanin accumulation

To clarify the biological functions of endogenous melatonin on the accumulation of oil and anthocyanins in seeds, we obtained single mutants – snat1-1 of the **SNAT1** gene and comt-1 and comt-2 of the **COMT** gene – and created the double mutant snat1-1 comt-1 through artificial hybridization. No **SNAT1** and **COMT** transcripts were respectively detected in the homozygous snat1-1 and comt-1 plants (Figures 3C and S1), confirming that they are loss-of-function mutants. The T-DNA element in the comt-2 mutant, a previously unfamiliar allele in this study, was inserted in the second intron of the **COMT** gene (Figure 3A). The results of PCR-based genotyping (Figure 3B) indicated the presence of the homozygous comt-2 mutant, which completely lacks the **COMT** transcript, as determined by RT-PCR (Figure 3C).

We determined the melatonin levels in developing siliques at 12 DAP between wild type plants and various single and double mutants of **SNAT1** and **COMT** genes. As illustrated in Figure 3D, the three single mutants of snat1-1, comt-1, and comt-2 contained much less melatonin than wild-type plants, and the double mutant of snat1-1 comt-1 accumulated much less than their corresponding single mutants. The snat1-1 comt-1 mutant still produced melatonin (Figure 3D), which is consistent with the fact that another **SNAT** isogene (**SNAT2**) is present in the *A. thaliana* genome (Back et al., 2016; Lee et al., 2019). These results suggested that SNAT1 and COMT additively promote melatonin biosynthesis in *A. thaliana* siliques.

We measured the quantities of the major FA compositions and total FAs per microgram of mature seeds between wild-type plants and the single and double mutants of **SNAT1** and **COMT** genes. As shown in Figure 4A and Table
S1, the seed FA contents in all three single mutants of snat1-1, comt-1, and comt-2 were about 6% higher than that of wild type plants, and the significant increase of FA contents was accompanied by an increase in all detected FA compositions. The FA content of snat1-1 comt-1 seeds was much higher than that of their corresponding single mutants and was 17% higher than that of wild-type plants (Figure 4A; Table S1). These results indicated that SNAT1 and COMT have an additive effect in the repression of FA accumulation in A. thaliana seeds.

We also analyzed the contents of anthocyanins in seeds of wild-type plants and various single and double mutants of SNAT1 and COMT genes. The loss of function of either SNAT1 or COMT resulted in a significant increase in the accumulation of anthocyanins in seeds, and the comt mutation accumulated more anthocyanins than the snat1-1 mutation (Figure 4C; Table S2). However, no obvious difference was observed in the seed anthocyanin content between the comt mutants and the double mutant snat1-1 comt-1 (Figure 4C; Table S2). These results suggested that SNAT1 and COMT have a non-additive effect on the accumulation of anthocyanins in seeds, and COMT is more important than SNAT1 for seed anthocyanin biosynthesis.

To further confirm the function of SNAT1 and COMT on the accumulation of FAs and anthocyanins, we transformed snat1-1 and comt-1 mutants with the genomic constructs of gSNAT1 and gCOMT, respectively. Among more than 15 independent lines regenerated for each construct, at least three homozygous progenies for each construct containing a single transgene were selected based on a 3:1 Mendelian segregation ratio on glufosinate-ammonium-containing medium. Examination of the representative lines, snat1-1 gSNAT1#1 and comt-1 gCOMT#1, showed that the expression levels of SNAT1 and COMT were restored to wild-type levels (Figure S2), and the lower melatonin content in both snat1-1 and comt-1 was also fully rescued.
to wild-type levels (Figure 3D) in their corresponding rescued lines. Thus, the representative transformants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1 were utilized for further experiments. We found that the higher contents of both FAs and anthocyanins in snat1-1 and comt-1 seeds were fully restored to wild-type levels by introducing gSNAT1 and gCOMT, respectively (Figures 4A, C). These results implied that SNAT1 and COMT indeed inhibit the accumulation of seed oil and anthocyanins in *A. thaliana*.

Meanwhile, we investigated the effect of exogenous application of melatonin on the accumulation of FAs and anthocyanins of wild-type plants, single mutants of snat1-1 and comt-1, and the double mutant snat1-1 comt-1. The results showed that exogenous application of melatonin on wild-type plants led to a significant decrease of both oil (Figure 4B; Table S1) and anthocyanin (Figure 4D; Table S2) levels in seeds. Under exogenous melatonin treatment, the seed oil content of the single and double mutants was almost the same as that of wild-type plants (Figure 4B; Table S1), whereas the seed oil content of the single mutants was slightly lower than that of the double mutant, and slightly higher than that of wild-type plants (Figure 4B; Table S1). These findings showed that SNAT1 and COMT repress FA accumulation in an independent and additive manner, but mainly by influencing melatonin biosynthesis, in *A. thaliana* seeds.

In addition, under exogenous melatonin treatment, the anthocyanin content in snat1-1 seeds was the same as that of wild-type plants (Figure 4D; Table S2), whereas the seed anthocyanin contents of comt1-1 and snat1-1 comt-1 mutants were the same, and higher than that of wild-type plants (Figure 4D; Table S2). These findings indicated that SNAT1 inhibits seed anthocyanin deposition only by affecting melatonin biosynthesis, whereas COMT represses seed anthocyanin accumulation not only by itself, but also by influencing melatonin biosynthesis.
No obvious differences in seed coat color, size, and weight were observed among the single and double mutants of SNAT1 and COMT, the transgenic plants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1, wild-type plants applied with exogenous melatonin, or their corresponding controls (Figure S3). Overall, we demonstrated that, through blocking endogenous melatonin biosynthesis by knocking out SNAT1 and/or COMT and by exogenous application of melatonin, melatonin represses the accumulation of both oil and anthocyanins. In addition, SNAT1 and COMT, independent of melatonin, exhibit distinct roles in the inhibition of oil and anthocyanin biosynthesis in A. thaliana seeds.

Genome-wide analysis of DEGs in developing seeds at 12 DAP between wild type and snat1-1 comt-1 plants

In A. thaliana developing seeds, FAs start to accumulate at 6 DAP, and increase linearly from 8 to 18 DAP during seed maturation (Baud and Lepiniec, 2009, 2010). The double mutant snat1-1 comt-1 accumulated much more seed FAs than wild type and single mutants of SNAT1 and COMT (Figure 4A; Table S1). In addition, 12 DAP is the key stage for the biosynthesis of seed flavonoids, including anthocyanins, during seed maturation (Routaboul et al., 2012). Therefore, we utilized developing seeds at 12 DAP to compare the expression profiles at a genome-wide level between wild type and snat1-1 comt-1 plants. These profiles would provide information on the downstream targets of melatonin that contribute to FA and anthocyanin accumulation, as well as facilitate a better understanding of the regulatory network underlying melatonin-mediated metabolites biosynthesis in A. thaliana seeds.

RNA-seq analysis identified 243 differentially expressed genes (DEGs), among which 119 were up-regulated (Table S3) and 124 were down-regulated (Table S4) in snat1-1 comt-1 developing seeds at 12 DAP. Functional analysis
discovered that 12 (4.9%) and six (2.5%) of the DEGs were related to oil and anthocyanin metabolisms, respectively (Tables S2 and S3). However, the expression of other genes that play major roles in oil and anthocyanin accumulation was not altered in snat1-1 comt-1 seeds compared to wild-type seeds (Table S5). Up to nine (7.6%) up-regulated genes and no down-regulated genes were related to carbohydrate metabolism (Tables S3 and S4). Multiple up-regulated (16, 13.4%) and down-regulated (30, 24.2%) genes were involved in general protein metabolism in snat1-1 comt-1 seeds (Tables S3 and S4). The storage proteins mainly contain legumin-type 12S globulins and napin-type 2S albumins in A. thaliana seeds (Heath et al., 1986; Baud et al., 2008). However, no obvious differences were observed in the expression levels of key genes encoding 12S precursors, including CRUCIFERINA1 (CRU1), CRU2, and CRU3, and five genes encoding 2S precursors (2S1 to 2S5), between wild-type and snat1-1 comt1-1 seeds (Table S5). Consistently, there was no substantive difference in the content of seed storage proteins between wild type and snat1-1 comt1-1 plants (Figure S4). It is worth mentioning that the number of DEGs involved in the stress/defense response and other biological processes accounts for the largest proportion of all the DEGs in snat1-1 comt-1 seeds (Tables S3 and S4).

Therefore, simultaneous knockout of SNAT1 and COMT, essential for melatonin biosynthesis, regulates a series of genes important for oil and anthocyanin accumulation and many genes involved in other biological processes during seed maturation.

Verification of regulated genes involved in oil and anthocyanin biosynthesis at different developmental stages in snat1-1 comt-1 seeds

To confirm the regulation of DEGs involved in oil and anthocyanin biosynthesis in snat1-1 comt-1 developing seeds at 12 DAP, and to extensively
explore expression alterations of these genes, we performed RT-qPCR to
compare their expression patterns at the seed maturation stages (12-16 DAP)
between wild type and snat1-1 comt-1 plants.

For the highly up-regulated genes related to oil accumulation, we chose
one regulatory gene, WRINKLED1 (WRI1), and five structural genes, Biotin
Carboxyl-Carrier Protein1 (BCCP1), Acetyl Co-Enzyme A
Carboxylase Carboxyltransferase Alpha Subunit (CAC3),
Malonyl Co-ACP Malonyltransferase (MCAMT), Plastid
Lipase1 (PLIP1), and Lipid Transfer Protein3 (LTP3), in snat1-1
comt-1 developing seeds at 12 DAP (Figure 5; Table 1). The expression levels
of all six genes from 12 to 16 DAP were always significantly higher in the
snat1-1 comt-1 mutant than in wild type (Figure 5). As detailed in Figure 5, the
relative expression of WRI1 gradually increased, whereas the relative
expression of LTP3 dramatically decreased from 12 to 16 DAP in the snat1-1
comt-1 mutant compared to wild type. Moreover, both BCCP1 and CAC3
exhibited an expression pattern like that of WRI1. The relative expression
levels of MCAMT and PLIP1 grew from 12 DAP to peaks at 14 DAP and then
decreased afterwards in the snat1-1 comt-1 mutant in comparison with wild type.

For the highly regulated genes contributing to anthocyanin biosynthesis, we
selected two regulatory genes, Kelch-Domain-Containing F-Box
Protein39 (KFB39) and Kanadi4 (KAN4), and four structural genes,
4-Coumarate:CoA Ligase1 (4CL1), Chalcone Isomerase (CHI),
UDP-Glucosyltransferase 73B2 (UGT73B2), and
Glucose-6-Phosphate/Phosphate Translocator2 (GPT2), in
snat1-1 comt-1 developing seeds at 12 DAP (Figure 6; Table 2). Except for
GPT2 expression at 16 DAP, from 12 to 16 DAP the expression levels of all six
genes were dramatically altered in the snat1-1 comt-1 mutant compared to wild
type (Figure 6). Compared to wild type, the relative expression of KFB39 was
always significantly lower, and the relative expression levels of *UGT73B2*,
KAN4, and *GPT2* gradually declined in *snat1-1 comt-1* developing seeds from
12 to 16 DAP (Figure 6). The relative expression levels of *4CL1* and *CHI*
increased from 12 DAP to the peaks at 14 DAP and then decreased afterwards
in the *snat1-1 comt-1* mutant compared to wild type (Figure 6).

Taken together, simultaneous knockout of SNAT1 and COMT, essential for
melatonin biosynthesis, inhibits seed oil and anthocyanin accumulation by
regulating a range of genes contributing to oil and anthocyanin biosynthesis,
respectively, during seed maturation.

SNAT1 and COMT antagonistically affect seed coat mucilage production

Previous studies showed that seed coat mucilage competes with FAs for
photosynthates in *A. thaliana* seeds (Shi et al., 2012; Liu et al., 2017; Li et al.,
2018b). Therefore, we explored whether melatonin affects the production of
seed coat mucilage. Surprisingly, the *snat1-1* mutant produced less mucilage,
whereas the *comt* mutation accumulated more mucilage in the seed coat in
comparison with wild type (Figure 7A). The altered seed coat mucilage in the
snat1-1 and *comt-1* mutants was fully restored by the introduction of *gSNAT1*
and *gCOMT*, respectively (Figure 7A). Furthermore, the double mutant *snat1-1*
comt-1 contained moderate mucilage in comparison with their corresponding
single mutants and had mucilage comparable with wild type in the seed coat
(Figure 7A). Consistently, RNA-seq analysis only detected two regulatory
genes *DE1 BINDING FACTOR1 (DF1*, Kaplan-Levy et al., 2012; Vasilevski et
al., 2012) and *MUCILAGE-MODIFIED4 (MUM4*, Western et al., 2004; Oka and
Nemoto, 2007; Francoz et al., 2015) that positively regulate seed coat mucilage
production, and their expression levels were not altered in *snat1-1 comt-1*
developing seeds (Table S5). On the other hand, exogenous application of
melatonin to wild-type plants did not alter the accumulation of seed coat
mucilage (Figure S5). The results suggested that melatonin has no effect on seed coat mucilage biosynthesis, although SNAT1 and COMT antagonistically affect its production.

To investigate how SNAT1 and COMT separately regulate seed coat mucilage production, we carried out RT-qPCR to compare the expression of DF1 and MUM4 from 8 to 12 DAP, which are the key stages for seed mucilage deposition (Francoz et al., 2015), among wild type, single mutants of snat1-1 and comt-1, and the transgenic plants of snat1-1 gSNAT#1 and comt-1 gCOMT#1. We found that the expression levels of both DF1 and MUM4 were significantly down-regulated (Figure 7B) and up-regulated (Figure 7C) in developing seeds of snat1-1 and comt-1, respectively, at both 10 and 12 DAP, compared with wild type. As expected, the altered expressions of DF1 and MUM4 in snat1-1 and comt-1 developing seeds were fully restored to wild-type levels by the introduction of gSNAT1 and gCOMT, respectively (Figures 7B, C).

These results suggested that SNAT1 and COMT antagonistically affect the production of seed coat mucilage not by influencing melatonin biosynthesis, but instead by regulating the expression of DF1 and MUM4, in A. thaliana developing seeds.

SNAT1 and COMT inhibited seed coat proanthocyanidin deposition

Flavonoids, as secondary metabolites, are generally classified into three major classes in A. thaliana—flavonols, anthocyanins, and proanthocyanidins (PAs, Lepiniec et al., 2006). Considering that biosynthesized flavonols are converted into both anthocyanins and PAs in the flavonoid biosynthetic pathway (Lepiniec et al., 2006), we speculated that anthocyanins and PAs compete against each other for flavonols during flavonoid biosynthesis. To test this hypothesis, we investigated the effect of SNAT1 and COMT on the accumulation of PAs that are mainly deposited in the seed coat (Lepiniec et al.,
2006). Dimethylaminocinnamaldehyde (DMACA) staining analysis showed that levels of PAs in the seed coat were markedly higher in the single and double mutants of SNAT1 and COMT genes compared with wild-type plants (Figure 8A). Consistently, acidic hydrolysis of PAs indicated that the single and double mutants of SNAT1 and COMT genes possessed more solvent-soluble PAs in their seeds than wild-type plants (Figures 8B, C). Moreover, the higher amounts of PAs in snat1-1 and comt-1 were fully rescued by the introduction of gSNAT1 and gCOMT, respectively (Figures 8B, C). It is worthy to note that levels of both total and solvent-soluble PAs in the comt seeds were higher than those of snat1-1 seeds, and comparable with snat1-1 comt-1 seeds (Figure 8). These results suggested that SNAT1 and COMT act in a non-additive manner, and COMT exhibits a greater role than SNAT1 in inhibiting the deposition of PAs in the A. thaliana seed coat.

DISCUSSION

In seeds of angiosperms, accumulation of both oil and anthocyanins is coordinately regulated at multiple levels by intricate regulatory networks of various environmental and developmental signals. The mechanisms underlying how phytohormones control the overall amounts of oil and anthocyanins stored in plant seeds are still largely unknown. Previous studies have extensively demonstrated that the putative phytohormone melatonin functions directly in many aspects of plant growth and development. However, the role of melatonin in seed oil and anthocyanin accumulation remains unclear in A. thaliana. In this study, we showed that blocking the biosynthesis of endogenous melatonin through knock-out of two essential genes in the melatonin biosynthetic pathway, SNAT1 and COMT, significantly increased the contents of total FAs.
and anthocyanins, while enhancement of melatonin signaling by exogenous application of melatonin led to a dramatic decrease in the levels of total FAs and anthocyanins in mature seeds (Figure 4; Tables S1 and S2). Furthermore, the expression of a series of important genes involved in FA and anthocyanin accumulation was significantly altered in snat1-1 comt-1 developing seeds (Figures 5 and 6; Tables 1, 2, S3, and S4). These results, together with the observation of increased expression of SNAT1 and COMT in developing seeds at the seed maturation stage (Figures 2B, C and 2E, F), suggest that melatonin is an important player in the regulatory network that represses the accumulation of both oil and anthocyanins in A. thaliana seeds.

Several previous studies showed a negative correlation between the contents of oil and flavonoids in A. thaliana seeds (Chen et al., 2012a; Chen et al., 2014; Chen et al., 2015; Li et al., 2018b; Xuan et al., 2018). Thus, it is generally considered difficult for breeders to synergistically improve both seed oil and flavonoid contents. Interestingly, we demonstrated that the deficiency of endogenous melatonin in the snat1-1 comt-1 mutant resulted in a significant increase of both oil and flavonoids, including anthocyanins and PAs (Figures 4 and 8; Tables S1 and S2). It is known that sucrose from photosynthesis is hydrolyzed to glucose, which is then used for acetyl-coenzyme A (CoA) biosynthesis through glycolysis that can be further converted into malonyl-CoA. Both acetyl-CoA and malonyl-CoA are essential substrates for FA biosynthesis (Baud et al., 2008), while malonyl-CoA also serves as a key substrate for flavonoid production (Lepiniec et al., 2006) in the plant cell. Some studies propose that starch serves as a carbon source for seed compound accumulation during seed maturation (Norton and Harris, 1975; da Silva et al., 1997; Periappuram et al., 2000). The number of genes related to carbohydrate metabolism that are up-regulated is much higher than that of down-regulated genes in developing seeds of snat1-1 comt-1 plants at 12 DAP (Tables S2 and
S3). In addition, LTP3, a member of a family of lipid-transfer proteins that encode 7–10 kDa peptides and are widely distributed among plants (Kader, 1996; Arondel et al., 2000; Wong et al., 2017), promotes the accumulation of soluble sugars (Guo et al., 2013). Previous studies have indicated that GPT2, a glucose 6-phosphate/phosphate translocator, is thought to be involved in the transport of glucose 6-phosphate from the cytosol to plastids, leading to starch biosynthesis (Kammerer et al., 1998; Knappe et al., 2003; Kunz et al., 2010).

Thus, these regulated carbohydrate metabolism genes (Table S3) together with the up-regulation of LTP3 and GPT2 genes (Figures 5 and 6; Tables 1, 2, and S3) could supply more carbon resources for glycolysis, thus promoting acetyl-CoA and malonyl-CoA production and further accelerating FA and flavonoid biosynthesis in snat1-1 comt-1 developing seeds.

Transcriptional regulation is a major means of controlling the accumulation of seed oil and anthocyanins. In angiosperms, this process requires the coordinated expression of genes involved in the biosynthetic pathways of these metabolites. Our results showed that SNAT1 and COMT repress the accumulation of seed oil and anthocyanins mainly by affecting melatonin biosynthesis (Figure 4; Tables S1 and S2). Thus, the genes related to the accumulation of oil (Figure 5; Tables 1, S3, and S4) and anthocyanins (Figure 6; Tables 2, S3, and S4) in snat1-1 comt-1 developing seeds should be predominantly regulated by the deficiency of endogenous melatonin. Of the enzymes involved in oil accumulation, acetyl-CoA carboxylase (ACCase), localized in both plastids and cytosol, catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA (Sasaki et al., 1995). The formation of malonyl-CoA is the rate-limiting step for FA biosynthesis (Ohlrogge et al., 1995), and ACCase may serve as a sensor or a gating system to monitor the overall flux of FA biosynthesis (Mu et al., 2008). ACCase contains three nuclear-localized subunits—BCCP, biotin carboxylase (BC), and α-carboxyltransferase.
(α-CT)—and one plastid-localized subunit, β-carboxyltransferase (β-CT), which are encoded by BCCP1 and BCCP2, CAC2, CAC3, and ACCD, respectively, in *A. thaliana* (Li et al., 2011). The complete loss of BCCP1 function results in embryo lethality, and reduced BCCP1 activity markedly decreases FA accumulation in *A. thaliana* seeds (Li et al., 2011). MCAMT, localized in both chloroplasts and mitochondria, converts malonyl-CoA and ACP into malonyl-ACP and CoA, and significantly promotes oil accumulation in *A. thaliana* seeds (Jung et al., 2019). PLIP1, as a chloroplast thylakoid-associated protein, functions in the export of FAs from the chloroplast and the incorporation of FAs derived from the thylakoid membrane lipid pool into TAG, and positively regulates FA accumulation in *A. thaliana* seeds (Wang et al., 2017b). The LTP3 loss-of-function mutant seeds contain oil content similar to wild-type plants (Pignussat et al., 2015). However, LTP3, LTP4 and LTP5, can enhance the *in vitro* transfer of phospholipids between membranes and can bind acyl chains (Kader, 1996; Arondel et al., 2000; Wong et al., 2017); thus they probably have a redundant function in seed oil accumulation. GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE 2 (GPAT2), localized in mitochondria, exhibits *sn*-1 and *sn*-2 acyltransferase activities and utilizes dicarboxylic acyl-CoA as substrate for the biosynthesis of extracellular lipids (Beisson et al., 2007; Yang et al., 2012; Jayawardhane et al., 2018). The transcription factor WRI1, an APETALA2/ethylene-responsive element-binding transcription factor, acts as a master positive regulator in seed oil accumulation by incorporating sucrose and glucose into TAGs during seed maturation (Focks and Benning, 1998); through directly promoting the expression of *ABNORMAL SUSPENSOR2* (*SUS2*), *PKp β1*, *BCCP1*, *BCCP2*, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE I (*KASI*), and *REDUCED OLEATE DESATURATION1* (*ROD1*); and by indirectly activating the expression of *ACYL CARRIER PROTEIN1* (*ACP1*), CAC2, CAC3, BIOTIN AUXOTROPH.
(BIO2), PDH E1α, KASIII, and MOSAIC DEATH1 (MOD1), which are involved in the late glycolysis and plastidial FA biosynthetic pathways during seed development in *A. thaliana* (Cernac and Benning, 2004; Masaki et al., 2005; Baud et al., 2007; Maeo et al., 2009; To et al., 2012). We found that BCCP1 and CAC3 were significantly up-regulated (Figure 5; Tables 1 and S3), and the expression of other genes was not altered (Table S5) in *snat1-1 comt-1* developing seeds at 12 DAP, indicating that melatonin controls the expression of *BCCP1* and *CAC3* through the up-regulation of WRI1, and that other genes were regulated by a complex upstream regulatory network. A previous study showed that five GDSL-type lipase genes, *SEED FATTY ACID REDUCERS*, inhibit seed FA biosynthesis by affecting FA degradation (Chen et al., 2012b), thus the much lower expression of the two GDSL-type lipase genes (AT2G30310 and AT5G45670) observed in our study is helpful for understanding the higher oil content in *snat1-1 comt-1* seeds (Table S4).

Therefore, the increased expression of *BCCP1*, *CAC3*, *MCAMT*, *PLIP1*, *LTPs*, *GPAT2*, and *WRI1* contributing to oil biosynthesis (Figure 5; Tables 1 and S3) and the decreased expression of the two GDSL-type lipase genes (Table S4) together assist in promoting seed oil accumulation (Figure 4A; Table S1) in *snat1-1 comt-1* developing seeds.

Anthocyanin biosynthesis starts from the phenylpropanoid pathway (Lepiniec et al., 2006). KFB39, a member of Kelch domain-containing F-box proteins, negatively regulates anthocyanin accumulation by directly controlling the stability and activity of phenylalanine ammonia-lyase, which is the first rate-limiting enzyme in the phenylpropanoid biosynthetic pathway (Zhang et al., 2015). There are four isoforms of 4CL, namely, 4CL1 to 4, which are essential for the activation of *p*-coumarate to form *p*-coumaroyl CoA in the last step of this pathway. *p*-coumaroyl CoA and malonyl-CoA are ultimately used for the biosynthesis of naringenin chalcone in the anthocyanin biosynthetic pathway.
4CL1 accounts for the majority of total 4CL activity and positively regulates the accumulation of anthocyanins in *A. thaliana* (Li et al., 2015). The CHI enzyme converts tetrahydroxychalcone to naringenin as the second step in the anthocyanin biosynthetic pathway, and its mutation fails to accumulate anthocyanins (Shirley et al., 1992; Pourcel et al., 2013). UGT73B2, a member of group D URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASEs, encodes a flavonol 7-O-glucosyltransferase that preferentially transfers a glucose group to the 3-hydroxyl group of flavonoids *in vitro* (Kim et al., 2006; Lim et al., 2006). KAN4, a member of the MYB-related GARP (Golden2, ARR-B, Psr1) superfamily of type-B response regulators promotes the accumulation of flavonoids by directly activating the expression of flavonoid biosynthetic genes, such as the regulatory genes *TRANSPARENT TESTA2* (*TT2*), *TT8* and *TRANSPARENT TESTA GLABRA1* (*TTG1*), and the structural genes *CHALCONE SYNTHASE* (*CHS*), *CHI*, *FLAVONOID 3′ HYDROXYLASE* (*F3’H*), *DIHYDROFLAVONOL 4-REDUCTASE* (*DFR*), and *ANTHOCYANIDIN SYNTHASE* (*ANS*) (Gao et al., 2010). Our results showed that only *CHI* was up-regulated (Figure 6; Tables 2 and S3) and the expression of the other genes was not altered in *snat1-1 comt-1* developing seeds (Table S5), implying that melatonin controls *CHI* expression through the up-regulation of KAN4, and other genes were regulated by a complex upstream regulatory network. The transcription factor MYB56 acts in a sucrose-dependent manner to control *GPT2* expression in response to the circadian cycle, thus promoting anthocyanin accumulation (Jeong et al., 2018). Therefore, the down-regulation of *KFB39* and up-regulation of 4CL1, *CHI*, *UGT73B2*, *KAN4*, and *GPT2* related to anthocyanin biosynthesis (Figure 6; Tables 2, S3, and S4) are helpful for anthocyanin accumulation (Figure 4C; Table S2) in *snat1-1 comt-1* developing seeds.
It is worth mentioning that snat1-1 seedlings accumulate less anthocyanins than wild-type seedlings under cold stress (Zhang et al., 2016), and exogenous application of melatonin increases anthocyanin biosynthesis in cabbage seedlings (Zhang et al., 2016) and enhances FA accumulation in soybean seeds (Wei et al., 2015). For melatonin contents in A. thaliana leaves, no significant differences were found between wild type and the single mutants of SNAT1, SNAT2, and COMT (Byeon et al., 2014; Lee et al., 2015; Lee et al., 2019). In contrast, both flowers of the snat2 mutant (Lee et al., 2019) and developing siliques at 12 DAP of the single and double mutants of SNAT1 and COMT (Figure 3D) contained much less melatonin than their corresponding wild-type tissues. Considering our results showing that both endogenous and exogenous melatonin inhibited seed oil and anthocyanin accumulation (Figure 4; Tables S1 and S2), it could be speculated that the effect of melatonin on seed oil or anthocyanin biosynthesis is plant species- or tissue-specific. In the plant cell, oil biosynthesis occurs in both the plastid and the endoplasmic reticulum (Baud and Lepiniec, 2009; Chapman and Ohlrogge, 2012; Li et al., 2016). Anthocyanins and PAs are biosynthesized in multi-enzyme complexes that are localized at the cytoplasmic surface of the endoplasmic reticulum (Winkel-Shirley, 2002; Winkel, 2004). The seed coat mucilage is mainly composed of pectins, which are largely acidic polysaccharides biosynthesized from Golgi stacks in the secretory cell (Western et al., 2000). Our results showed that SNAT1 and COMT were localized in the chloroplast (Figure 1A) and the cytoplasm and nucleus (Figure 1B), respectively. Thus, the different subcellular localizations of SNAT1 and COMT together with the different biosynthetic sites of oil, flavonoids, and mucilage in the plant cell could explain why SNAT1 and COMT, independent of melatonin, had distinct effects on the biosynthesis of different metabolites in seeds, including oil (Figures 4A, B; Table S1), flavonoids inclusive of
anthocyanins (Figures 4C, D; Table S2) and PAs (Figure 8), and mucilage (Figures 7 and S1). These interesting questions need further investigation. Even so, as exogenous application of melatonin and loss of function of SNAT1 and COMT exhibited opposite effects on seed oil and anthocyanin accumulation (Figure 4; Tables S1 and S2), and SNAT1 and COMT had a common and additive role in melatonin biosynthesis in developing siliques (Figure 3D; Lee et al., 2014a; Back et al., 2016), we might conclude that melatonin represses the accumulation of oil and anthocyanins in *A. thaliana* seeds; an underlying mechanism is proposed in Figure 9.

In summary, the present study provides significant and fresh information in several ways. First, this study demonstrates that melatonin represses seed oil and anthocyanin accumulation during seed maturation by inhibiting the expression of important genes involved in oil and anthocyanin biosynthesis, respectively. Second, in *A. thaliana* seeds, the two essential melatonin biosynthetic genes *SNAT1* and *COMT*, independent of melatonin, have distinct functions on different metabolites, including oil, flavonoids inclusive of anthocyanins and PAs, and mucilage, which might be due to their differential distribution among subcellular fractions. Third, seed metabolite accumulation is controlled by a coordinated regulatory network, which is not only pertinent to major steps of their metabolic pathways but also requires the partitioning of photosynthates (Mu et al., 2008; Li et al., 2018b). The results presented here indicate that manipulation of this co-regulation network is feasible by blocking melatonin biosynthesis through knocking out SNAT1 and/or COMT. In this regard, the genes *SNAT1* and *COMT* are noteworthy genetic resources for genetic modification of oil-producing crops and plants to synergistically improve both oil and flavonoids in seeds.

MATERIALS AND METHODS
Plant material and growth conditions

The *A. thaliana* ecotype Columbia (Col-0) was utilized as wild type control. The mutants of *snat1-1* (SALK_032239), *comt-1* (SALK_002373), and *comt-2* (SALK_020611C) were in the Col-0 background, and their genotyping primers are listed in Table S6. The *comt* mutants were obtained from the Arabidopsis Biological Resources Center at Ohio State University, USA. The growth conditions of all *A. thaliana* plants in this study have been reported in detail previously (Li et al., 2017b).

Exogenous application of melatonin to plants

Distilled water as the control was set as Level-1 (0 µM), and melatonin solution concentrations of 100, 200, and 500 µM were set as Level-2, Level-3, and Level-4, respectively. The different levels of melatonin solutions were applied to ten individual plants (Col-0, *snat1-1*, *comt-1*, and *snat1-1 comt-1*) at the bolting stage in one of three randomly arranged blocks every other day until the first silique was harvested. Melatonin from Sigma (St. Louis, MO, USA) was used in this exogenous application experiment.

Plasmid construction and plant transformation

To construct *pSNAT1:GUS* and *pCOMT:GUS*, their 5' regulatory regions upstream of the ATG start codon were amplified and then cloned into pHY107 (Liu et al., 2007), separately. To construct *gSNAT1* and *gCOMT*, a 2.799 kb genomic fragment of *SNAT1* harboring the 1.128 kb 5' upstream sequence, the entire 1.439 kb coding sequence, and the 0.232 kb 3’ downstream sequence, and a 4.956 kb *COMT* genomic region including the 2.631 kb 5’ upstream sequence, the entire 2.093 kb coding sequence, and 0.232 kb 3’ downstream sequence were amplified, digested, and then separately cloned into pHY105 (Liu et al., 2007). The *pSNAT1:GUS* and *pCOMT:GUS* constructs were
introduced into wild-type (Col-0) plants, whereas the gSNAT1 and gCOMT constructs were transformed into snat1-1 and comt-1 plants, respectively, using the Agrobacterium-mediated floral dip method (Clough and Bent, 1998). The transgenic plants were selected by Basta on soil or on culture medium containing glufosinate-ammonium and verified by DNA analysis until T3 homozygous transgenic progeny was generated.

To construct 35S:SNAT1-GFP and 35S:COMT-GFP, the cDNA fragments of SNAT1 and COMT were amplified and then cloned into pGreen-35S-GFP to obtain the fusions of SNAT1-GFP and COMT-GFP under the control of 35S promoter, respectively. The 35S:SNAT1-GFP or 35S:COMT-GFP construct was transiently expressed in tobacco leaves (Nicotiana benthamiana) as previously described (Yang et al., 2000). Images were obtained with an Olympus IX83 confocal microscope (Japan) 72 h after agroinfiltration. GFP was excited with a 488 nm wavelength laser, and emitted light was collected between 500 and 540 nm. Chloroplasts were excited with a 488 nm wavelength laser, and emitted light was collected from 660 to 731 nm. The fluorescence of DAPI (Sangon, Shanghai, China) was excited with a 405 nm wavelength laser, and emitted light was collected from 390 to 465 nm. Plasmid construction primers including restriction sites are listed in Table S6.

Microscopic observation of A. thaliana seed traits

Mature seeds of different A. thaliana lines were harvested from major inflorescences, specifically from siliques at the basal region, and then randomly selected to be photographed with an OLYMPUSSZ61 stereomicroscope (Tokyo, Japan) for seed traits, including color, size, and seed coat mucilage and PAs.

The ruthenium red staining of seed coat mucilage was performed as reported before (McFarlane et al., 2014). In brief, dry mature seeds were shaken vigorously in an Ethylene Diamine Tetraacetic Acid (EDTA, 0.05 M, pH
8.5) solution for 1 h and then stained in a 0.01% (w/v) ruthenium red solution for 1 h at room temperature. Subsequently, the ruthenium red solution was removed and replaced with dH₂O.

The DMACA staining of seed coat PAs was conducted as previously described (Abrahams et al., 2002). Dry seeds were stained with the DMACA reagent (2% (w/v) DMACA in 3 M HCl and 50% (w/v) methanol) at room temperature under dark conditions for 16 h, and then washed three times with 70% (v/v) ethanol.

Determination of seed FAs and storage proteins

Seeds for FA determination were collected from the basal region of the major inflorescences of 20 individual plants grown in different pots arranged randomly within one of three blocks. Seed FA determination was performed as described previously (Poirier et al., 1999; Chen et al., 2012a). The extraction and methylation of FAs on 300 individual intact seeds were performed in a methanol solution containing 2.5% (v/v) H₂SO₄ at 80 °C for 2 h. After cooling to room temperature, the FA methyl esters were extracted with 2 mL hexane and 2 mL 0.9% (w/v) NaCl, and the organic phase was analyzed by gas chromatography (GC), using methyl heptadecanoate as an internal standard.

The GC-2014 instrument (Shimadzu, Kyoto, Japan) was equipped with a flame ionization detector and a 30 m (length) × 0.25 mm (inner diameter) × 0.5 µm (liquid membrane thickness) column (Supelco wax-10, Supelco, Cat. no. 24079, Schnelldorf, Germany). The initial column temperature was maintained at 160 °C for 1 min, then increased by 4 °C min⁻¹ to 240 °C and held for 16 min at the final temperature. The peaks of each FA composition were identified by their unique retention times, and their concentrations were calculated against the internal control.
Analysis of seed storage proteins was conducted as previously reported (Chen et al., 2015). Briefly, 1 mg of mature dry seeds was homogenized with 50 μL of extraction buffer (100 mM Tris-HCl, pH 8.0, 0.5% (w/v) sodium salt (SDS), 10% (v/v) glycerol, and 2% (v/v) 2-mercaptoethanol) using a microglass pestle and mortar. After boiling for 5 min, the extract was centrifuged at 13,000 rpm for 10 min and then 15 μL of each extract was used for SDS-polyacrylamide gel electrophoresis.

Quantification of melatonin

The quantification of melatonin was performed by Shanghai Bioprofile (http://www.bioprofile.cn) and the detailed analysis procedure was provided as follows. The developing siliques (about 100 mg) at 12 DAP were pulverized to powder in a 2 mL Eppendorf tube filled with liquid nitrogen and thoroughly homogenized in 1 mL of 2:2:1 methanol/acetonitrile/H₂O (v/v/v), followed by sonication for 1 h in an ice-water bath. Subsequently, the mixture was incubated at -20 °C for 1 h and centrifuged at 12,000 rpm for 20 min at 4 °C. Then the supernatant was dried under vacuum and resuspended in 100 μL of 1:1 methanol / H₂O (v/v). Following centrifugation at 12,000 rpm for 15 min at 4 °C, the supernatant was collected, and 10 μL aliquots were used for melatonin analysis. Analysis was performed using a Shimadzu Nexera LC-30AD UHPLC system with a Waters® ACQUITY UPLC® BEH Amide column (1.7 μm, 2.1 mm x 100 mm) and an AB SCIEX QTRAP 5500 mass spectrometer. The mobile phase consisted of aqueous formic acid (0.1% v/v, solvent A) and acetonitrile (solvent B). Gradient elution started at 20% solvent B. Within 5 min solvent B was increased linearly to 65%, and then increased linearly to 100% over 2 min with a 3 min hold before returning to the starting mixture during 0.1 min and re-equilibrating the column for 2.9 min. In all experiments, the column was heated to 40 °C under a flow rate of 300 μL/min. The instrument mass parameters were set as follows: Source Temperature 550 °C, Ion Source Gas1:
40, Ion Source Gas2: 50, Curtain Gas: 35, Ion Spray Voltage Floating 5500 V,
scan type: selected reaction monitoring/multiple reaction monitoring
(SRM/MRM). The mass transition from m/z 233.2 to m/z 174.1 was identified as
melatonin; the retention time was 3.48 min. AB SCIEX Analyst software
(version 1.5.2) was used for data integration.

Measurement of seed anthocyanins and PAs

The anthocyanin content was measured as previously described (Li et al.,
2018c), with some modifications. Briefly, about 5 mg mature seeds were frozen
in liquid nitrogen and ground in 3 mL buffer consisting of 1% (v/v) HCl in
methanol. The mixtures were centrifuged at 12,000 rpm for 5 min after
incubation at 70 °C for 1 h. Then the supernatant was taken and extracted with
an equal volume of chloroform after adding 2 mL of distilled water. After
centrifuging at 12,000 rpm for 5 min, the absorbance at 535 nm was determined
using a Beckman-Coulter DU730 spectrophotometer, and then normalized to
the total weight of dry seeds for each sample, which is regarded as the
anthocyanin amount.

Extraction of PAs and acid hydrolysis were performed as previously
described (Kitamura et al., 2010), with some modifications. Briefly, about 10 mg
mature seeds were frozen in liquid nitrogen and ground in 1.5 mL 70% (v/v)
acetone containing 5.26 mM Na$_2$S$_2$O$_5$, followed by sonication for 20 min at
room temperature. Following centrifugation at 1,500 rpm for 15 min, the
supernatant was dried and resuspended in 0.4 mL 70% (v/v) acetone
containing 5.26 mM Na$_2$S$_2$O$_5$ and 1.6 mL HCl/butanol (1:5 v/v). The
absorbance at 545 nm of this resuspended solution was determined using
Tecan’s Infinite® M200 PRO. After hydrolysis at 95 °C for 1 h, the absorbance
at 545 nm was once again determined. Subtraction of the first absorbance
value from the second followed by weight normalization was defined as the
content of soluble PAs. The residues were dried by evaporation, and then 2 mL
2:10:3 of HCl:butanol:70% (v/v) acetone was added. After heating at 95 °C for 1 h, the extract was centrifuged for 15 min. The absorbance at 545 nm of the supernatant was measured and then normalized to the weight as the content of insoluble PAs.

RNA-sequencing and data analyses

The flowers of wild type (Col-0) and snat1-1 comt-1 plants tagged with different colored threads indicate DAP. Developing seeds at 12 DAP were taken from the basal region of the major inflorescences of 50 individual plants for each genotype in one biological replicate. These seeds were grown in different pots arranged randomly and were used for the RNA-sequencing (RNA-seq) experiments. Three independent biological replicates from three different plantings were carried out for wild type and snat-1 comt-1 in the RNA-seq experiment. The following analysis was performed using the services of Gene Denovo (http://www.genedenovo.com/) following the standard protocol (http://www.genedenovo.com/product/41.html). The Excel add-in for significance analysis of RNA-seq was utilized to identify differentially expressed genes (DEGs) between wild type and snat1-1 comt-1. The DEGs with $|\log_2$ ratios| ≥ 0.58 and false discovery rate (FDR) ≤ 0.05 are listed in Tables S3 and S4.

Analysis of gene expression

The sampling of developing seeds used for gene expression was the same as that described for the RNA-seq experiment. Other tissues were harvested from at least eight individual plants grown in different pots arranged randomly, and three independent biological replicates from three different plantings were conducted for the expression analysis. Total RNA from various tissues was extracted using the MiniBEST Plant RNA Extraction Kit (TaKaRa) and reverse transcribed using PrimeScript RT (TaKaRa). RT-qPCR was performed in three biological replicates using SYBR Green Master Mix (TaKaRa). GUS staining
was performed as described previously (Jefferson et al., 1987). Primers used for gene expression analyses are listed in Table S1.

ACCESSION NUMBERS

Sequence data from this article can be found in the Arabidopsis Genome Initiative database under the following accession numbers: SNAT1 (AT1G32070), COMT (AT5G54160), WRI1 (AT3G54320), BCCP1 (AT5G16390), CAC3 (AT2G38040), MCAMT (AT2G30200), PLIP1 (AT3G61680), LTP3 (AT5G59320), KFB39 (AT2G44130), 4CL1 (AT1G51680), CHI (AT3G55120), UGT73B2 (AT4G34135), KAN4 (AT5G42630), and GPT2 (AT1G61800).

LIST OF SUPPLEMENTAL DATA

- **Supplemental Figure S1** Molecular verification of the *snat1-1* mutation.
- **Supplemental Figure S2** Reverse transcription PCR identification of rescued lines of *snat1-1 gSNAT1#1* and *comt-1 gCOMT#1*.
- **Supplemental Figure S3** Comparison of seed traits in various lines.
- **Supplemental Figure S4** Analysis of storage proteins between wild-type (Col-0) and *snat1-1 comt-1* mature seeds.
- **Supplemental Figure S5** Analysis of seed coat mucilage layer in wild type (Col-0) mature seeds exogenously treated with different concentrations of melatonin solutions (0, 100, 200, and 500 μM).
- **Supplemental Table S1** Comparison of FA composition and total FA content (μg/mg seed DW) in mature seeds of various lines in this study.
- **Supplemental Table S2** Comparison of anthocyanin content (A535/g DW) in mature seeds of various lines in this study.
Supplemental Table S3 List of up-regulated genes in developing seeds of snat1-1 comt-1 plants at 12 days after pollination.

Supplemental Table S4 List of down-regulated genes in developing seeds of snat1-1 comt-1 plants at 12 days after pollination.

Supplemental Table S5 List of transcription factors and structural genes contributing to the accumulation of oil, flavonoids, mucilage, and storage proteins whose expressions were not altered in developing seeds of snat1-1 comt-1 plants at 12 days after pollination.

Supplemental Table S6 Primers used in this study.

ACKNOWLEDGEMENTS

The work was supported by the National Natural Science Foundation of China (Grant nos. 31971974 and 31501336), the Shaanxi Youth Science and Technology New Star (Grant no. 2018KJXX-041), the General Agricultural Project of Shaanxi Province (2019NY-016), the Science Fund for the Cultivation of Excellent Youth Scholars of Northwest A&F University (Z109022001), and the Programme of Introducing Talents of Innovative Discipline to Universities (Project 111) from the State Administration of Foreign Experts Affairs (#B18042) “Crop breeding for disease resistance and genetic improvement”. We thank Prof. Yangdong Guo for kindly providing the snat1-1 mutant.
Table 1. Differentially expressed genes (DEGs) important for seed oil accumulation in the developing seeds of snat1-1 comt-1 plants at 12 days after pollination (DAP). DEGs with $|\log_2 \text{ratios}| \geq 0.58$, and only GO Slim IDs with FDR ≤ 0.05, are listed here.

DEGs	log2 ratios	Functions	References
WRI1 (AT3G54320)	0.69	Promoting oil accumulation	(Focks and Benning, 1998; Cernac and Benning, 2004; Masaki et al., 2005; Baud et al., 2007; Maeo et al., 2009; To et al., 2012)
BCCP1 (AT2G38040)	0.63	Promoting oil accumulation	(Ohlrogge et al., 1995; Sasaki et al., 1995; Mu et al., 2008; Li et al., 2011)
CAC3 (AT2G38040)	0.66	Promoting oil accumulation	(Ohlrogge et al., 1995; Sasaki et al., 1995; Mu et al., 2008; Li et al., 2011)
MCAMT (AT2G30200)	0.60	Promoting oil accumulation	(Jung et al., 2019; Mu et al., 2008)
PLIP1 (AT3G61680)	0.65	Promoting oil accumulation	(Wang et al., 2017b)
GPAT2 (AT1G02390)	0.96	Exhibiting sn-1 and sn-2 acyltransferase activities and utilizing dicarboxylic acyl-CoA as the substrate for the biosynthesis of the extracellular lipids; Promoting soluble sugar accumulation; Enhancing the *in vitro* transfer of phospholipids between membranes and binding acyl chains; No obvious effect on oil accumulation in the single mutant	(Beisson et al., 2007; Yang et al., 2012; Jayawardhane et al., 2018)
LTP3 (AT5G59320)	2.42	Enhancing the *in vitro* transfer of phospholipids between membranes and binding acyl chains	(Kader, 1996; Arondel et al., 2000; Pagnussat et al., 2015; Wong et al., 2017)
LTP4 (AT5G59310)	1.19	Enhancing the *in vitro* transfer of phospholipids between membranes and binding acyl chains	(Kader, 1996; Arondel et al., 2000; Wong et al., 2017)
LTP5	1.06	Enhancing the *in vitro* transfer of phospholipids between membranes and binding acyl chains	(Kader, 1996; Arondel et al., 2000; Wong et al., 2017)
Table 2. Differentially expressed genes (DEGs) contributing to anthocyanin biosynthesis in the developing seeds of *snat1-1 comt-1* plants at 12 days after pollination (DAP). DEGs with \(|\log_2\text{ratios}| \geq 0.58\), and only GO Slim IDs with FDR \(\leq 0.05\), are listed here.

DEGs	log\(_2\) ratios	Functions	References
KFB39 (AT2G44130)	-1.90	Repressing anthocyanin accumulation	(Zhang et al., 2015)
4CL1 (AT1G51680)	0.65	Promoting anthocyanin accumulation	(Li et al., 2015)
CHI (AT3G55120)	0.62	Promoting anthocyanin accumulation	(Shirley et al., 1992; Pourcel et al., 2013)
UGT73B2 (AT4G34135)	2.72	Transferring a glucose group to the 3-hydroxyl group of flavonoids	(Kim et al., 2006; Lim et al., 2006)
KAN4 (AT5G42630)	1.56	Promoting flavonoid accumulation	(Gao et al., 2010)
GPT2 (AT1G61800)	1.76	Promoting anthocyanin accumulation	(Jeong et al., 2018)
FIGURE LEGENDS

Figure 1 Subcellular localization of the SNAT1 and COMT proteins in *N. benthamiana* leaves. Subcellular distribution of the SNAT1 (A) and COMT (B) proteins fused with GFP (*35S:SNAT1-GFP* or *35S:COMT-GFP*). DAPI, fluorescence of 4', 6-diamino-2-phenylindole; Merge 1, merge of GFP, DAPI, and bright-field images; Merge 2, merge of chlorophyll, GFP, DAPI, and bright-field images. GFP, green fluorescent protein.

Figure 2 Tissue-specific analyses of *SNAT1* and *COMT* expression patterns. A and D, RT-qPCR analysis of *SNAT1* (A) and *COMT* (D) expression in various tissues of wild-type (Col-0) plants. Rt, Roots; St, stems; RL, rosette leaves; CL, cauline leaves; FB, flower buds; OF, open flowers. Values are means ± SD (n = 3). B and E, RT-qPCR analysis of *SNAT1* (B) and *COMT* (E) expressions in developing seeds of wild type (Col-0) plants. Values are means ± SD (n = 3). C and F, Representative GUS staining of *pSNAT1:GUS* (C) and *pCOMT:GUS* (F) transgenic plants show *SNAT1* and *COMT* expression levels, respectively, in vegetative and reproductive tissues in wild-type (Col-0) plants. C, Upper panel photos successively (from left to right) indicate 9-day-old seedlings (C1), rosette leaves (C2), stems and cauline leaves (C3), and flower buds and open flowers (C4). F, Upper panel photos successively (from left to right) indicate 8-day-old seedlings (F1), rosette leaves (F2), stems, cauline leaves, and flower buds (F3), and open flowers (F4). Bottom panel photos successively (C and F, from left to right) represent developing seeds at different developmental stages (C5-8 and F5-8). The RT-qPCR results were normalized against the expression of *EF1αA4* as an internal control. Bars = 2 mm, except for seeds, where the bars represent 100 μm. RT-qPCR, reverse transcription quantitative PCR.

Figure 3 Melatonin quantification in developing siliques from various lines of *SNAT1* and *COMT*. A, Structure of the *COMT* (AT5G54160) gene showing the position of T-DNA insertions in SALK_002373 (*comt-1*) and SALK_020611C
(comt-2) mutants. The coding and untranslated regions are represented by black and gray boxes, respectively, and introns and other genomic regions are represented by open boxes. Translation start site (ATG) and stop codon (TAA) are indicated. The arrow indicates the left border of the T-DNA. B, PCR-based DNA genotyping of the homozygous mutants of the COMT gene. LP and RP refer to the gene specific primers and BP refers to T-DNA right-border primer. Three independent biological replicates were carried out. C, Reverse transcription PCR analysis of COMT transcript in wild type (Col-0) and their corresponding mutants. EF1aA4 was used as an internal control. Three independent biological replicates were conducted. D, Melatonin levels in the developing siliques at 12 days after pollination from wild type (Col-0), the single mutants of snat1-1, comt-1, and comt-2, the double mutant snat1-1 comt-1, and the transgenic plants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1. Values are means ± SD (n = 3). Different lowercase letters within various lines of the SNAT1 and COMT genes indicate significant differences at P ≤ 0.05 (Tukey’s highly significant difference test). FW, fresh weight. **Figure 4** Effect of endogenous deficiency and exogenous application of melatonin on seed FA and anthocyanin accumulation. A and C, Total FA (A) and anthocyanin (C) contents in seeds from wild type (Col-0), the single mutants of snat1-1, comt-1, and comt-2, the double mutant snat1-1 comt-1, and the transgenic plants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1. Different lowercase letters within various lines of the SNAT1 and COMT genes indicate significant differences at P ≤ 0.05 (Tukey’s highly significant difference test). B and D, Total FA (B) and anthocyanin (D) contents in seeds of wild type (Col-0), snat1-1, comt-1, and snat1-1 comt-1 exogenously applied with different concentrations of melatonin solutions (0, 100, and 200 μM). Different letters within each treatment indicate significant differences at P ≤ 0.05 (Tukey’s highly significant difference test); lowercase letters compare with each other, capital
letters compare with each other, and Greek letters compare with each other.

Asterisks denote statistically significant differences between the indicated samples (Student’s t-test, $P \leq 0.05$). In A–D: Values are means ± SD ($n = 5$).

FA, fatty acid. DW, dry weight. A535, absorbance at 535 nm.

Figure 5 Dynamic expression analysis of genes related to seed oil accumulation in developing seeds of wild-type (Col-0) and snat1-1 comt-1 plants. Gene expression was normalized against the expression of $EF1\alpha A4$ as an internal control, and the expression level in wild type was set to 1 (dotted line). Values are means ± SD ($n = 3$). Asterisks indicate significant differences in gene expression levels in snat1 comt-1 plants compared with those in wild-type plants (two-tailed paired Student’s t-test, $P \leq 0.05$).

Figure 6 Dynamic expression analysis of genes contributing to seed anthocyanin accumulation in developing seeds of wild-type (Col-0) and snat1-1 comt-1 plants. Gene expression was normalized against the expression of $EF1\alpha A4$ as an internal control, and the expression level in wild type was set to 1 (dotted line). Values are means ± SD ($n = 3$). Asterisks indicate significant differences in gene expression levels in snat1-1 comt-1 plants compared with those in wild-type plants (two-tailed paired Student’s t-test, $P \leq 0.05$).

Figure 7 Effect of SNAT1 and COMT on seed coat mucilage deposition. A, Comparison of the mucilage layer attached to the seed coat among wild type (Col-0), the single mutants of snat1-1, comt-1, and comt-2, the double mutant snat1-1 comt-1, and the transgenic plants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1. Bars = 500 μm. B, Comparison of the dynamic expression of DF1 and MUM4 in developing seeds from 8 to 12 days after pollination among wild type (Col-0), the single mutant snat1-1, and the transgenic plant snat1-1 gSNAT1#1. C, Comparison of the dynamic expression of DF1 and MUM4 in developing seeds from 8 to 12 days after pollination among wild type (Col-0), the single mutant comt-1, and the transgenic plant comt-1 gCOMT#1. Gene
expression was normalized against the expression of EF1αA4 as an internal control, and the expression level in wild type was set to 1. In B and C: Values are means ± SD (n = 3). Asterisks indicate significant differences in gene expression levels in snat1-1 or comt-1 plants compared with those in wild-type plants (two-tailed paired Student’s t-test, \(P \leq 0.05 \)).

Figure 8 Effect of SNAT1 and COMT on the accumulation of PAs in seeds. A, Seeds stained with DMACA for 16 h among wild type (Col-0), the single mutants of snat1-1, comt-1, and comt-2, the double mutant snat1-1 comt-1, and the transgenic plants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1. Bars = 500 μm. B and C, Analysis of soluble (B) and insoluble (C) PAs by acidic hydrolysis among wild type (Col-0), single mutants of snat1-1, comt-1, and comt-2, the double mutant snat1-1 comt-1, and the transgenic plants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1. In B and C: Values are means ± SD (n = 5). Different letters within various lines represent significant differences at \(P \leq 0.05 \) (Tukey’s highly significant difference test). PAs, proanthocyanidins. DW, dry weight.

Figure 9 A proposed working model shows that the deficiency of melatonin by knocking out SNAT1 and/or COMT represses the accumulation of oil and anthocyanins by regulating the expression of key genes that control the biosynthesis of oil and anthocyanins, respectively, in *A. thaliana* seeds. Arrows and T bars indicate promoting and inhibitory effects, respectively.

REFERENCES
Abrahams S, Tanner GJ, Larkin PJ, Ashton AR (2002) Identification and biochemical characterization of mMutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol 130: 561-576

Antoniou C, Chatzimichail G, Xenofontos R, Pavlou JJ, Panagiotou E, Christou A, Fotopoulos V (2017) Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res 62

Arnao MB, Hernandez-Ruiz J (2007) Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42: 147-152

Arondel V, Vergnolle C, Cantrel C, Kader JC (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci 157: 1-12

Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61: 426–437

Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56: 238-245

Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec Lc (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6: e0113

Baud S, Lepiniec L (2009) Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem 47: 448

Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Progress in Lipid Research 49: 235-249

Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50: 825-838

Beisson F, Li YH, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19: 351-368

Byeon Y, Back K (2014) An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. J Pineal Res 56: 408-414

Byeon Y, Lee HY, Lee K, Back K (2014) Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. J Pineal Res 57: 219-227

Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Zhou J (2017) HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 62

Castaneda-Ovando A, Pacheco-Hernandez MD, Paez-Hernandez ME, Rodriguez JA, Galan-Vidal CA (2009) Chemical studies of anthocyanins: A review. Food Chem 113: 859-871
Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40: 575-585

Chapman KD, Ohlrogge JB (2012) Compartmentation of Triacylglycerol Accumulation in Plants. J Biol Chem 287: 2288-2294

Chen L, Fan J, Hu Z, Huang X, Amombo E, Liu A, Bi A, Chen K, Xie Y, Fu J (2017b) Melatonin is involved in regulation of bermudagrass growth and development and response to low K⁺ stress. Fron Plant Sci 8: 2038

Chen MX, Du X, Zhu Y, Wang Z, Hua SJ, Li ZL, Guo WL, Zhang GP, Peng JR, Jiang LX (2012b) Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ 35: 2155-2169

Chen MX, Wang Z, Zhu YN, Li ZL, Hussain N, Xuan LJ, Guo WL, Zhang GP, Jiang LX (2012a) The effect of TRANSPARENT TESTA2 on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis. Plant Physiol 160: 1023-1036

Chen MX, Xuan LJ, Wang Z, Zhou LH, Li ZL, Du X, Ali E, Zhang GP, Jiang LX (2014) TRANSPARENT TESTA8 inhibits seed fatty acid accumulation by targeting several seed development regulators in Arabidopsis. Plant Physiol 165: 905-916

Chen MX, Zhang B, Li CX, Kulaveerasingam H, Chew FT, Yu H (2015) TRANSPARENT TESTA GLABRA1 regulates the accumulation of seed storage reserves in Arabidopsis. Plant Physiol 169: 391-402

Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166: 324-328

Focks N, Benning C (1998) wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118: 91-101

Francoz E, Ranocha P, Burlat V, Dunand C (2015) Arabidopsis seed mucilage secretory cells: regulation and dynamics. Trends Plant Sci 20: 515-524

Gao P, Li X, Cui D, Wu L, Parkin I, Gruber MY (2010) A new dominant Arabidopsis transparent testa mutant, sk21-D, and modulation of seed flavonoid biosynthesis by KAN4. Plant Biotechnol J 8: 979-993
Gong XQ, Shi ST, Dou FF, Song Y, Ma FW (2017) Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules

Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59: 115-142

Gu Q, Chen ZP, Yu XL, Cui WT, Pan JC, Zhao G, Xu S, Wang R, Shen WB (2017) Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Sci 261: 28-37

Guo L, Yang HB, Zhang XY, Yang SH (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64: 1755-1767

Heath JD, Weldon R, Monnot C, Meinke DW (1986) Analysis of storage proteins in normal and aborted seeds from embryo-lethal mutants of Arabidopsis thaliana. Planta 169: 304-312

Hernandez-Ruiz J, Cano A, Arnau MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39: 137-142

Jayawardhane KN, Singer SD, Weselake RJ, Chen GQ (2018) Plant sn-Glycerol-3-Phosphate Acyltransferases: biocatalysts involved in the biosynthesis of intracellular and extracellular lipids. Lipids 53: 469-480

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6: 3901-3907

Jeong CY, Kim JH, Lee WJ, Jin JY, Kim J, Hong SW, Lee H (2018) AtMyb56 regulates anthocyanin levels via the modulation of AtGPT2 expression in response to sucrose in Arabidopsis. Mol Cells 41: 351-361

Jung SH, Kim RJ, Kim KJ, Lee DH, Suh MC (2019) Plastidial and mitochondrial malonyl-CoA-ACP malonyltransferase is essential for cell division and its overexpression increases storage oil content. Plant Cell Physiol 60: 1239-1249

Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol 47: 627-654

Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A, Flugge UI (1998) Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10: 105-117

Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR (2012) The trihelix family of transcription factors – light, stress and development. Trends Plant Sci 17: 163-171

Keneni YG, Marchetti JM (2017) Oil extraction from plant seeds for biodiesel production. Aims Energy 5: 316-340

Kim JH, Kim BG, Ko JH, Lee Y, Hur H-G, Lim Y, Ahn J-H (2006) Molecular cloning, expression, and characterization of a flavonoid glycosyltransferase from Arabidopsis thaliana. Plant Sci 170: 897-903

Kitamura S, Matsuda F, Tohge T, Yonekura-Sakakibara K, Yamazaki M, Saito K, Narumi I (2010) Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. Plant J 62(4): 549-559

Knappe S, Flugge UI, Fischer K (2003) Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous
transporters, classified by their putative substrate-binding site. Plant Physiol 131: 1178-1190

Kobylnska A, Reiter RJ, Posmyk MM (2017) Melatonin Protects Cultured Tobacco Cells against Lead-Induced Cell Death via Inhibition of Cytochrome c Translocation. Front Plant Sci 8

Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui MS, Grotewold E (2014) Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta 240: 931-940

Kunz HH, Hausler RE, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flugge UI, Schneider A (2010) The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol 12: 115-128

Lee HY, Back K (2016) Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants. J Pineal Res 60: 327-335

Lee HY, Byeon Y, Back K (2014b) Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J Pineal Res 57: 262-268

Lee HY, Byeon Y, Lee K, Lee HJ, Back K (2014a) Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. J Pineal Res 57: 418-426

Lee HY, Byeon Y, Tan DX, Reiter RJ, Back K (2015) Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J Pineal Res 58: 291-299

Lee HY, Lee K, Back K (2019) Knockout of arabidopsis serotonin N-acetyltransferase-2 reduces melatonin levels and delays flowering. Biomolecules 9: 1-12

Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57: 405-430

Li CX, Zhang B, Chen B, Ji LH, Yu H (2018b) Site-specific phosphorylation of TRANSPARENT TESTA GLABRA1 mediates carbon partitioning in Arabidopsis seeds. Nature Commun 9

Li D, Jin CY, Duan SW, Zhu YN, Qi SH, Liu KG, Gao CH, Ma HL, Zhang M, Liao YC, Chen MX (2017b) MYB89 transcription factor represses seed oil accumulation. Plant Physiol 173: 1211-1225

Li H, Chang JJ, Zheng JX, Dong YC, Liu QY, Yang XZ, Wei CH, Zhang Y, Ma JX, Zhang X (2017a) Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Sci Rep 7
Li N, Wu H, Ding QQ, Li HH, Li ZF, Ding J, Li Y (2018c) The heterologous expression of
Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato.
Funct Integr Genomic 18: 341-353

Li N, Xu C, Li-Beisson Y, Philippar K (2016) Fatty acid and lipid transport in plant cells. Trends
Plant Sci 21: 145-158

Li X, Ilarislan H, Brachova L, Qian HR, Li L, Che P, Wurtele ES, Nikolau BJ (2011)
Reverse-genetic analysis of the two biotin-containing subunit genes of the heteromeric
Acetyl-Coenzyme A Carboxylase in Arabidopsis indicates a unidirectional functional
redundancy. Plant Physiol 155: 293-314

Li X, Wei JP, Scott ER, Liu JW, Guo S, Li Y, Zhang L, Han WY (2018a) Exogenous melatonin
alleviates cold stress by promoting antioxidant defense and redox homeostasis in
Camellia sinensis L. Molecules 23: 165

Li Y, Kim Ji, Pys L, Chapple G (2015) Four isoforms of Arabidopsis 4-Coumarate: CoA ligase
have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol 169:
2409-2421

Lim CE, Ahn J-H, Lim J (2006) Molecular genetic analysis of tandemly located
glycosyltransferase genes, UGT73B1, UGT73B2, and UGT73B3, in Arabidopsis thaliana. J
Plant Biol 49: 309-314

Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H (2007) Specification of Arabidopsis
floral meristem identity by repression of flowering time genes. Development 134:
1901-1910

Liu KG, Qi SH, Li D, Jin CY, Gao CH, Duan SW, Feng BL, Chen MX (2017) TRANSPARENT
TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis
to foxtail millet (Setaria italica). Plant Sci 254: 60-69

Lu C, Napier JA, Clemente TE, Cauhon EB (2011) New frontiers in oilseed biotechnology:
meeting the global demand for vegetable oils for food, feed, biofuel, and industrial
applications. Curr Opin Biotechnol 22: 252-259

Luo H, He C, Han L (2018) Heterologous expression of ZjOMT from Zoysia japonica in
Escherichia coli confers aluminum resistance through melatonin production. Plos One 13:
e0196952

Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K
(2009) An AP2-type transcription factor, WRINKLE1, of Arabidopsis thaliana binds to the
AW-box sequence conserved among proximal upstream regions of genes involved in fatty
acid synthesis. Plant J 60: 476-487

Masaki T, Mitsui N, Tsukagoshi H, Nishii T, Morikami A, Nakamura K (2005) ACTIVATOR of
Spo(min): LUC1/WRINKLE1 of a Arabidopsis thaliana transactivates sugar-inducible
promoters. Plant Cell Physiol 46: 547-556

McFarlane HE, Gendre D, Western TL (2014) Seed coat ruthenium red staining assay
Bio-protocol 4

Mu JY, Tan HL, Zheng Q, Fu FY, Liang Y, Zhang J, Yang XH, Wang T, Chong K, Wang XJ,
Zuo JR (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in
Arabidopsis. Plant Physiol 148: 1042-1054
Nakatsubo T, Kitamura Y, Sakakibara N, Mizutani M, Hattori T, Sakurai N, Shibata D, Suzuki S, Umezawa T (2008) At5g54160 gene encodes Arabidopsis thaliana 5-hydroxyconiferaldehyde O-methyltransferase. J Wood Sci 54: 312–317

Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol 220: 115-127

Norton G, Harris JF (1975) Compositional changes in developing rape seed (Brassica-Napus L). Planta 123: 163-174

Ohlrogge J, Savage L, Jaworski J, Voelker T, Postbietenmiller D (1995) Alteration of Acyl-Acyl Carrier protein pools and Acetyl-CoA Carboxylase expression In Escherichia-Coli by a plant medium-chain Acyl-Acyl Carrier Protein Thioesterase. Arch Biochem Biophys 317: 185-190

Oka T, Nemoto T, Y (2007) Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J Biol Chem 282: 5389-5403

Pan MH, Lai CS, Ho CT (2010) Anti-inflammatory activity of natural dietary flavonoids. Food Funct 1: 15-31

Periappuram C, Steinhauer L, Barton DL, Taylor DC, Chatson B, Zou JT (2000) The plastidic phosphoglucomutase from Arabidopsis. A reversible enzyme reaction with an important role in metabolic control. Plant Physiol 122: 1193-1199

Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14: 14950-14973

Poirier Y, Ventre G, Caldelari D (1999) Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol 121: 1359-1366

Pojer E, Mattivi F, Dan J, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci F 12: 483–508

Pourcel L, Irani NG, Koo AJK, Bohorquez-Restrepo A, Howe GA, Grotewold E (2013) A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. Plant J 74: 383-397

Qi ZY, Wang KX, Yan MY, Kanwar MK, Li DY, Wijaya L, Alyemeni MN, Ahmad P, Zhou J (2018) Melatonin Alleviates High Temperature-Induced Pollen Abortion in Solanum lycopersicum. Molecules 23

Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin LL (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61: 253-278
Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA, Zharmukhamedov SK, Nam HG, Zayadan BK, Bruce BD, Hou HJM, Allakhverdiev SI (2017) Biofuel production: Challenges and opportunities. Int J Hydrogen Energ 42: 8450-8461

Routaboul J-M, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O, Lepiniec L (2012) Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J Exp Bot 63: 3749-3764

Sasaki Y, Konishi T, Nagano Y (1995) The compartmentation of Acetyl-Coenzyme-a Carboxylase in plants. Plant Physiol 108: 445-449

Shi H, Wei Y, Wang Q, Reiter RJ, He C (2016) Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis. J Pineal Res 60: 373-379

Shi L, Katavic V, Yu YY, Kunst L, Haughn G (2012) Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J 69: 37-46

Shirley BW, Hanley S, Goodman HM (1992) Effects of Ionizing Radiation on a Plant Genome: Analysis of Two Arabidopsis transparent testa Mutations. Plant Cell 4: 333-347

Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma SR, Rosales-Corral S, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63: 577-597

Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ (2015) Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules 20: 18886-18906

Tan DX, Manchester LC, Liu XY, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res 54: 127-138

To A, Joubes J, Barthole G, Lecureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S (2012) WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell 24: 5007-5023

Toufektsian MC, De LM, Nagy N, Salen P, Donati MB, Giordano L, Mock HP, Peterek S, Matros A, Petroni K (2008) Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr 138: 747-752

Vasilevski A, Giorgi FM, Bertinetti L, Usadel B (2012) LASSO modeling of the Arabidopsis thaliana seed/seedling transcriptome: a model case for detection of novel mucilage and pectin metabolism genes. Mol Biosyst 8: 2566-2574

Wang K, Froehlich JE, Zienkiewicz A, Hersh HL, Benning C (2017b) A plastid phosphatidylglycerol lipase contributes to the export of acyl groups from plastids for seed oil biosynthesis. Plant Cell 29: 1678-1696

Wang L, Feng C, Zheng XD, Guo Y, Zhou FF, Shan DQ, Liu X, Kong J (2017a) Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J Pineal Res 63

Wang QN, An B, Wei YX, Reiter RJ, Shi HT, Luo HL, He CZ (2016) Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Front Plant Sci 7
Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q (2018) Phytomelanotin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res: e12500

Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma BA, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66: 695-707

Wei YX, Hu W, Wang QN, Zeng HQ, Li XL, Yan Y, Reiter RJ, He CZ, Shi HT (2017) Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt. J Pineal Res 62

Western TL, Skinner DJ, Haughn GW (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol 122: 345-355

Western TL, Young DS, Dean GH, Ling TW, A Lacey S, Haughn GW (2004) MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiol 134: 296-306

Winkel BSJ (2004) Metabolic Channeling in Plants. Annu Rev Plant Biol 55: 85–107

Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5: 218-223

Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Yu JQ, Reiter RJ, Zhou J (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61: 457-469

Xuan LJ, Zhang CC, Yan T, Wu DZ, Hussain N, Li ZL, Chen MX, Pan JW, Jiang LX (2018) TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ 41: 2773-2790

Yang WL, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160: 638-652

Yang YN, Li RG, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22: 543-551

Yin LH, Wang P, Li MJ, Ke XW, Li CY, Liang D, Wu S, Ma XL, Li C, Zou YJ, Ma FW (2013) Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54: 426-434

Zhang J, Shi Y, Zhang XZ, Du HM, Xu B, Huang BR (2017c) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138: 36-45

Zhang JR, Zeng BJ, Mao YW, Kong XY, Wang XX, Yang Y, Zhang J, Xu J, Rengel Z, Chen Q (2017a) Melatonin alleviates aluminium toxicity through modulating antioxidative enzymes and enhancing organic acid anion exudation in soybean. Funct Plant Biol 44: 961-968
Zhang N, Sun QQ, Li HF, Li XS, Cao YY, Zhang HJ, Li ST, Zhang L, Qi Y, Ren SX, Zhao B, Guo YD (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in Cabbage. Front Plant Sci 7

Zhang RM, Sun YK, Liu ZY, Jin W, Sun Y (2017b) Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J Pineal Res

Zhang X, Gou M, Guo C, Yang H, Liu C-J (2015) Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (Poly)phenols and tolerance to ultraviolet radiation. Plant Physiol 167: 337-350

Zheng XD, Tan DX, Allan AC, Zuo BX, Zhao Y, Reiter RJ, Wang L, Wang Z, Guo Y, Zhou JZ, Shan DQ, Li QT, Han ZH, Kong J (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7
Figure 1 Subcellular localization of the SNAT1 and COMT proteins in *N. benthamiana* leaves. Subcellular distribution of the SNAT1 (A) and COMT (B) proteins fused with GFP (*35S:SNAT1-GFP* or *35S:COMT-GFP*). DAPI, fluorescence of 4’, 6-diamino-2-phenylindole; Merge 1, merge of GFP, DAPI, and bright-field images; Merge 2, merge of chlorophyll, GFP, DAPI, and bright-field images. GFP, green fluorescent protein.
Figure 2 Tissue-specific analyses of SNAT1 and COMT expression patterns. A and D, RT-qPCR analysis of SNAT1 (A) and COMT (D) expression in various tissues of wild-type (Col-0) plants. Rt, Roots; St, stems; RL, rosette leaves; CL, cauline leaves; FB, flower buds; OF, open flowers. Values are means ± SD (n = 3). B and E, RT-qPCR analysis of SNAT1 (B) and COMT (E) expressions in developing seeds of wild type (Col-0) plants. Values are means ± SD (n = 3). C and F, Representative GUS staining of pSNAT1:GUS (C) and pCOMT:GUS (F) transgenic plants show SNAT1 and COMT expression levels, respectively, in vegetative and reproductive tissues in wild-type (Col-0) plants. C, Upper panel photos successively (from left to right) indicate 9-day-old seedlings (C1), rosette leaves (C2), stems and cauline leaves (C3), and flower buds and open flowers (C4). F, Upper panel photos successively (from left to right) indicate 8-day-old seedlings (F1), rosette leaves (F2), stems, cauline leaves, and flower buds (F3), and open flowers (F4). Bottom panel photos successively (C and F, from left to right) represent developing seeds at different developmental stages (C5-8 and F5-8). The RT-qPCR results were normalized against the expression of EF1aA4 as an internal control. Bars = 2 mm, except for seeds, where the bars represent 100 μm. RT-qPCR, reverse transcription quantitative PCR.
Figure 3 Melatonin quantification in developing siliques from various lines of SNAT1 and COMT. A, Structure of the COMT (AT5G54160) gene showing the position of T-DNA insertions in SALK_002373 (comt-1) and SALK_020611C (comt-2) mutants. The coding and untranslated regions are represented by black and gray boxes, respectively, and introns and other genomic regions are represented by open boxes. Translation start site (ATG) and stop codon (TAA) are indicated. The arrow indicates the left border of the T-DNA. B, PCR-based DNA genotyping of the homozygous mutants of the COMT gene. LP and RP refer to the gene specific primers and BP refers to T-DNA right-border primer. Three independent biological replicates were carried out. C, Reverse transcription PCR analysis of COMT transcript in wild type (Col-0) and their corresponding mutants. EF1αA4 was used as an internal control. Three independent biological replicates were conducted. D, Melatonin levels in the developing siliques at 12 days after pollination from wild type (Col-0), the single mutants of snat1-1, comt-1, and comt-2, the double mutant snat1-1 comt-1, and
the transgenic plants of *snat1-1 gSNAT1#1* and *comt-1 gCOMT#1*. Values are means ± SD (n = 3). Different lowercase letters within various lines of the *SNAT1* and *COMT* genes indicate significant differences at $P \leq 0.05$ (Tukey’s highly significant difference test). FW, fresh weight.
Figure 4 Effect of endogenous deficiency and exogenous application of melatonin on seed FA and anthocyanin accumulation. A and C, Total FA (A) and anthocyanin (C) contents in seeds from wild type (Col-0), the single mutants of snat1-1, comt-1, and comt-2, the double mutant snat1-1 comt-1, and the transgenic plants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1. Different lowercase letters within various lines of the SNAT1 and COMT genes indicate significant differences at $P \leq 0.05$ (Tukey’s highly significant difference test). B and D, Total FA (B) and anthocyanin (D) contents in seeds of wild type (Col-0), snat1-1, comt-1, and snat1-1 comt-1 exogenously applied with different concentrations of melatonin solutions (0, 100, and 200 μM). Different letters within each treatment indicate significant differences at $P \leq 0.05$ (Tukey’s highly significant difference test); lowercase letters compare with each other, capital letters compare with each other, and Greek letters compare with each other. Asterisks denote statistically significant differences between the indicated samples (Student’s t-test, $P \leq 0.05$). Values are means ± SD (n = 5). FA, fatty acid. DW, dry weight. A535, absorbance at 535 nm.
Figure 5 Dynamic expression analysis of genes related to seed oil accumulation in developing seeds of wild-type (Col-0) and snat1-1 comt-1 plants. Gene expression was normalized against the expression of EF1αA4 as an internal control, and the expression level in wild type was set to 1. Values are means ± SD (n = 3). Asterisks indicate significant differences in gene expression levels in snat1 comt-1 plants compared with those in wild-type plants (two-tailed paired Student's t-test, $P \leq 0.05$).
Figure 6 Dynamic expression analysis of genes contributing to seed anthocyanin accumulation in developing seeds of wild-type (Col-0) and snat1-1 comt-1 plants. Gene expression was normalized against the expression of EF1αA4 as an internal control, and the expression level in wild type was set to 1. Values are means ± SD (n = 3). Asterisks indicate significant differences in gene expression levels in snat1-1 comt-1 plants compared with those in wild-type plants (two-tailed paired Student’s t-test, \(P \leq 0.05 \)).
Figure 7 Effect of SNAT1 and COMT on seed coat mucilage deposition. A, Comparison of the mucilage layer attached to the seed coat among wild type (Col-0), the single mutants of snat1-1, comt-1, and comt-2, the double mutant snat1-1 comt-1, and the transgenic plants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1. Bar = 500 μm. B, Comparison of the dynamic expression of DF1 and MUM4 in developing seeds from 8 to 12 days after pollination among wild type (Col-0), the single mutant snat1-1, and the transgenic plant snat1-1 gSNAT1#1. C, Comparison of the dynamic expression of DF1 and MUM4 in developing seeds from 8 to 12 days after pollination among wild type (Col-0), the single mutant comt-1, and the transgenic plant comt-1 gCOMT#1. Gene expression was normalized against the expression of EF1αA4 as an internal control, and the expression level in wild type was set to 1. Values are means ± SD (n = 3). Asterisks indicate significant differences in gene expression levels in snat1-1 or comt-1 plants compared with those in wild-type plants (two-tailed paired Student’s t-test, P ≤ 0.05).
Figure 8 Effect of SNAT1 and COMT on the accumulation of PAs in seeds. A, Seeds stained with DMACA for 16 h among wild type (Col-0), the single mutants of snat1-1, comt-1, and comt-2, the double mutant snat1-1 comt-1, and the transgenic plants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1. Bar = 500 μm. B and C, Analysis of soluble (B) and insoluble (C) PAs by acidic hydrolysis among wild type (Col-0), single mutants of snat1-1, comt-1, and comt-2, the double mutant snat1-1 comt-1, and the transgenic plants of snat1-1 gSNAT1#1 and comt-1 gCOMT#1. Values are means ± SD (n = 5). Different letters within various lines represent significant differences at $P \leq 0.05$ (Tukey’s highly significant difference test). PAs, proanthocyanidins. DW, dry weight.
Figure 9 A proposed working model shows that the deficiency of melatonin by knocking out SNAT1 and/or COMT represses the accumulation of oil and anthocyanins by regulating the expression of key genes that control the biosynthesis of oil and anthocyanins, respectively, in A. thaliana seeds. Arrows and T bars indicate promoting and inhibitory effects, respectively.
Abrahams S, Tanner GJ, Larkin PJ, Ashton AR (2002) Identification and biochemical characterization of mMutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol 130: 561-576

Antoniou C, Chatzimichail G, Xenofontos R, Pavlou JJ, Panagiotou E, Christou A, Fotopoulos V (2017) Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res 62

Arnao MB, Hernandez-Ruiz J (2007) Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42: 147-152

Arondel V, Vergnolle C, Cantrel C, Kader JC (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci 157: 1-12

Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61: 426–437

Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56: 238-245

Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6: e0113

Baud S, Lepiniec L (2009) Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem 47: 448

Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Progress in Lipid Research 49: 235-249

Baud S, Mendoza MS, To A, Harsoecot E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50: 825-838

Beisson F, Li YH, Bonaventure G, Pollard M, Ohrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19: 351-368

Byeon Y, Back K (2014) An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. J Pineal Res 56: 408-414

Byeon Y, Lee HY, Lee K, Back K (2014) Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. J Pineal Res 57: 219-227

Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Zhou J (2017) HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 62

Castaneda-Ovando A, Pacheco-Hernandez MD, Paez-Hernandez ME, Rodriguez JA, Galan-Vidal CA (2009) Chemical studies of anthocyanins: A review. Food Chem 113: 859-871
Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40: 575-585

Chapman KD, Ohlrogge JB (2012) Compartmentation of Triacylglycerol Accumulation in Plants. J Biol Chem 287: 2288-2294

Chen L, Fan J, Hu Z, Huang X, Amombo E, Liu A, Bi A, Chen K, Xie Y, Fu J (2017b) Melatonin is involved in regulation of bermudagrass growth and development and response to low K+ stress. Front Plant Sci 8: 2038

Chen MX, Du X, Zhu Y, Wang Z, Hua SJ, Li ZL, Guo WL, Zhang GP, Peng JR, Jiang LX (2012b) Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ 35: 2155-2169

Chen MX, Wang Z, Zhu YN, Li ZL, Hussain N, Xuan LJ, Guo WL, Zhang GP, Jiang LX (2012a) The effect of TRANSPARENT TESTA2 on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis. Plant Physiol 160: 1023-1036

Chen MX, Xuan LJ, Wang Z, Zhou LH, Li ZL, Du X, Ali E, Zhang GP, Jiang LX (2014) TRANSPARENT TESTA8 inhibits seed fatty acid accumulation by targeting several seed development regulators in Arabidopsis. Plant Physiol 165: 905-916

Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166: 324-328

Chen ZP, Xie YJ, Gu Q, Zhao G, Zhang YH, Cui WT, Xu S, Wang R, Shen WBA (2017a) The AtrohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis. Free Radical Biol Med 108: 465-477

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743

da Silva PMFR, Eastmond PJ, Hill LM, Smith AM, Rawsthorne S (1997) Starch metabolism in developing embryos of oilseed rape. Planta 203: 480-487

Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54: 593-607

Fang J (2015) Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 31: 1301-1306

Francoz E, Ranocha P, Burlat V, Dunand C (2015) Arabidopsis seed mucilage secretory cells: regulation and dynamics. Trends Plant Sci 20: 515-524
Gao P, Li X, Cui D, Wu L, Parkin I, Gruber MY (2010) A new dominant Arabidopsis transparent testa mutant, sk21-D, and modulation of seed flavonoid biosynthesis by KAN4. Plant Biotechnol J 8: 979-993
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Gong XQ, Shi ST, Dou FF, Song Y, Ma FW (2017) Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules 22
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59: 115-142
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Gu Q, Chen ZP, Yu XL, Cui WT, Pan JC, Zhao G, Xu S, Wang R, Shen WB (2017) Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Sci 261: 28-37
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Guo L, Yang HB, Zhang XY, Yang SH (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64: 1755-1767
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Heath JD, Weldon R, Monnot C, Meinke DW (1986) Analysis of storage proteins in normal and aborted seeds from embryo-lethal mutants of Arabidopsis thaliana. Planta 169: 304-312
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Hernandez-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39: 137-142
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Jayawardhane KN, Singer SD, Weselake RJ, Chen GQ (2018) Plant sn-Glycerol-3-Phosphate Acyltransferases: biocatalysts involved in the biosynthesis of intracellular and extracellular lipids. Lipids 53: 469-480
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6: 3901-3907
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Jeong CY, Kim JH, Lee WJ, Jin JY, Kim J, Hong SW, Lee H (2018) AtMYb56 regulates anthocyanin levels via the modulation of AtGPT2 expression in response to sucrose in Arabidopsis. Mol Cells 41: 351-361
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Jung SH, Kim RJ, Kim KJ, Lee DH, Suh MC (2019) Plastidial and mitochondrial malonyl CoA-ACP malonyltransferase is essential for cell division and its overexpression increases storage oil content. Plant Cell Physiol 60: 1239-1249
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol 47: 627-654
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A, Flugge UI (1998) Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10: 105-117
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR (2012) The trihelix family of transcription factors – light, stress and development. Trends Plant Sci 17: 163-171
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Keneni YG, Marchetti JM (2017) Oil extraction from plant seeds for biodiesel production. Aims Energy 5: 316-340
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Kim JH, Kim BG, Ko JH, Lee Y, Hur H-G, Lim Y, Ahn J-H (2006) Molecular cloning, expression, and characterization of a flavonoid glycosyltransferase from Arabidopsis thaliana. Plant Sci 170: 897-903
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title
Kitamura S, Matsuda F, Tohge T, Yonekura-Sakakibara K, Yamazaki M, Saito K, Narumi I (2010) Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. Plant J 62(4): 549-559

Knappe S, Flugge UI, Fischer K (2003) Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol 131: 1178-1190

Kobylińska A, Reiter RJ, Posmyk MM (2017) Melatonin Protects Cultured Tobacco Cells against Lead-Induced Cell Death via Inhibition of Cytochrome c Translocation. Front Plant Sci 8

Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui MS, Grotewold E (2014) Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta 240: 931-940

Kunz HH, Hausler RE, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flugge UI, Schneider A (2010) The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol 12: 115-128

Lee HY, Back K (2016) Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants. J Pineal Res 60: 327-335

Lee HY, Back K (2017b) Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res 62(2): 1-11

Lee K, Back K (2017a) Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J Pineal Res 62(3): 1-14

Lee HY, Byeon Y, Back K (2014b) Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J Pineal Res 57: 262-268

Lee HY, Byeon Y, Lee K, Lee HJ, Back K (2014a) Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. J Pineal Res 57: 418-426

Lee HY, Byeon Y, Tan DX, Reiter RJ, Back K (2015) Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J Pineal Res 58: 291-299

Lee HY, Lee K, Back K (2019) Knockout of arabidopsis serotonin N-acetyltransferase-2 reduces melatonin levels and delays flowering. Biomolecules 9: 1-12

Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesl N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57: 405-430

Li CX, Zhang B, Chen B, Ji LH, Yu H (2018b) Site-specific phosphorylation of TRANSPARENT TESTA GLABRA1 mediates carbon partitioning in Arabidopsis seeds. Nature Commun 9

Li D, Jin CY, Duan SW, Zhu YN, Qi SH, Liu KG, Gao CH, Ma HL, Zhang M, Liao YC, Chen MX (2017b) MYB89 transcription factor represses seed oil accumulation. Plant Physiol 173(1): 1211-1225

Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesl N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57: 405-430

Li D, Jin CY, Duan SW, Zhu YN, Qi SH, Liu KG, Gao CH, Ma HL, Zhang M, Liao YC, Chen MX (2017b) MYB89 transcription factor represses seed oil accumulation. Plant Physiol 173(1): 1211-1225
Li H, Chang JJ, Zheng JX, Dong YC, Liu QY, Yang XZ, Wei CH, Zhang Y, Ma JX, Zhang X (2017a) Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Sci Rep 7

Li N, Wu H, Ding QQ, Li HH, Li ZF, Ding J, Li Y (2018c) The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato. Funct Integr Genomic 18: 341-353

Li N, Xu C, Li-Beisson Y, Philippar K (2016) Fatty acid and lipid transport in plant cells. Trends Plant Sci 21: 145-158

Li X, Ilarslan H, Brachova L, Qian HR, Li L, Che P, Wurtele ES, Nikolau BJ (2011) Reverse-genetic analysis of the two biotin-containing subunit genes of the heteromeric Acetyl-Coenzyme A Carboxylase in Arabidopsis indicates a unidirectional functional redundancy. Plant Physiol 155: 293-314

Li X, Wei JP, Scott ER, Liu JW, Guo S, Li Y, Zhang L, Han WY (2018a) Exogenous melatonin alleviates cold stress by promoting antioxidant defense and redox homeostasis in Camellia sinensis L. Molecules 23: 165

Li Y, Kim J, Pysh L, Chapple C (2015) Four isoforms of Arabidopsis 4-Coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol 169: 2409-2421

Lim CE, Ahn J-H, Lim J (2006) Molecular genetic analysis of tandemly located glycosyltransferase genes, UGT73B1, UGT73B2, and UGT73B3, in Arabidopsis thaliana. J Plant Biol 49: 309-314

Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134: 1901-1910

Liu KG, Qi SH, Li D, Jin CY, Gao CH, Duan SW, Feng BL, Chen MX (2017) TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica). Plant Sci 254: 60-69

Lu C, Napier JA, Clemente TE, Cafoon EB (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol 22: 252-259

Luo H, He C, Han L (2018) Heterologous expression of ZjOMT from Zoysia japonica in Escherichia coli confers aluminum resistance through melatonin production. Plos One 13: e0196952

Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60: 476-487

Masaki T, Mitsui N, Tsukagoshi H, Nishii T, Morikami A, Nakamura K (2005) ACTIVATOR of Spo(min)::: LUC1/WRINKLED1 of a Arabidopsis thaliana transactivates sugar-inducible promoters. Plant Cell Physiol 46: 547-556

McFarlane HE, Gendre D, Western TL (2014) Seed coat ruthenium red staining assay Bio-protocol 4

Mu JY, Tan HL, Zheng Q, Fu FY, Liang Y, Zhang J, Yang XH, Wang T, Chong K, Wang XJ, Zuo JR (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148: 1042-1054
Nakatsubo T, Kitamura Y, Sakakibara N, Mizutani M, Hattori T, Sakurai N, Shibata D, Suzuki S, Umezawa T (2008) At5g54160 gene encodes Arabidopsis thaliana 5-hydroxyconiferaldehyde O-methyltransferase. J Wood Sci 54: 312–317

Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol 220: 115-127

Norton G, Harris JF (1975) Compositional changes in developing rape seed (Brassica-Napus L). Planta 123: 163-174

Ohlrogge J, Savage L, Jaworski J, Voelker T, Postbitteinmiller D (1995) Alteration of Acyl-Acyl Carrier protein pools and Acetyl-CoA Carboxylase expression In Escherichia-Coli by a plant medium-chain Acyl-Acyl Carrier Protein Thioesterase. Arch Biochem Biophys 317: 185-190

Oka T, Nemoto T, Y (2007) Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J Biol Chem 282: 5389-5403

Pagnussat LA, Oyarburo N, Cimmino C, Pinedo ML, de la Canal L (2015) On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth. Plant Signal Behav 10

Pan MH, Lai CS, Ho CT (2010) Anti-inflammatory activity of natural dietary flavonoids. Food Funct 1: 15-31

Periappuram C, Steinhauser L, Barton DL, Taylor DC, Chatson B, Zou JT (2000) The plastidic phosphoglucomutase from Arabidopsis. A reversible enzyme reaction with an important role in metabolic control. Plant Physiol 122: 1193-1199

Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14: 14950-14973

Poirier Y, Ventre G, Caldelari D (1999) Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol 121: 1359-1366

Pojer E, Mattivi F, Dan J, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci F 12: 483–508

Pourcel L, Irani NG, Koo AJK, Bohorquez-Restrepo A, Howe GA, Grotewold E (2013) A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. Plant J 74: 383-397

Qi ZY, Wang KK, Yan MY, Kanwar MK, Li DY, Wijaya L, Alyemeni MN, Ahmad P, Zhou J (2018) Melatonin Alleviates High Temperature-Induced Pollen Abortion in Solanum lycopersicum. Molecules 23

Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin LL (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61: 253-278

Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA, Zharmukhamedov SK, Nam HG, Zayadan BK, Bruce BD, Hou HJM, Allakhverdiev SI (2017) Biofuel production: Challenges and opportunities. Int J Hydrogen Energ 42: 8450-8461
Routaboul J-M, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O, Lepiniec L (2012) Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J Exp Bot 63: 3749-3764

Sasaki Y, Konishi T, Nagano Y (1995) The compartmentation of Acetyl-Coenzyme-a Carboxylase in plants. Plant Physiol 108: 445-449

Shi H, Wei Y, Wang Q, Reiter RJ, He C (2016) Melatonin mediates the stabilization of DELLla proteins to repress the floral transition in Arabidopsis. J Pineal Res 60: 373-379

Shi L, Katavic V, Yu YY, Kunst L, Haughn G (2012) Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J 69: 37-46

Shirley BW, Hanley S, Goodman HM (1992) Effects of Ionizing Radiation on a Plant Genome: Analysis of Two Arabidopsis transparent testa Mutations. Plant Cell 4: 333-347

Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma SR, Rosales-Corrall S, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63: 577-597

Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ (2015) Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules 20: 18886-18906

Tan DX, Manchester LC, Liu XY, Rosales-Corrall SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54: 127-138

To A, Joubes J, Barthole G, Lecureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S (2012) WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell 24: 5007-5023

Tofektsian MC, De LM, Nagy N, Salen P, Donati MB, Giordano L, Mock HP, Peterek S, Matros A, Petroni K (2008) Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr 138: 747-752

Vasilevski A, Giorgi FM, Bertinetti L, Usadel B (2012) LASSO modeling of the Arabidopsis thaliana seed/seedling transcriptome: a model case for detection of novel mucilage and pectin metabolism genes. Mol Biosyst 8: 2566-2574

Wang K, Froehlich JE, Zienkiewicz A, Hersh HL, Benning C (2017b) A plastid phosphatidylglycerol lipase contributes to the export of acyl groups from plastids for seed oil biosynthesis. Plant Cell 29: 1678-1696

Wang L, Feng C, Zheng XD, Guo Y, Zhou FF, Shan DQ, Liu X, Kong J (2017a) Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J Pineal Res 63

Wang QN, An B, Wei YX, Reiter RJ, Shi HT, Luo HL, He CZ (2016) Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Front Plant Sci 7

Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q (2018) Phytoamelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res: e12500
Wei W, Li QT, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma BA, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66: 695-707

Wei YX, Hu W, Wang QN, Zeng HQ, Li XL, Yan Y, Reiter RJ, He CZ, Shi HT (2017) Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminate L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt. J Pineal Res 62

Western TL, Skinner DJ, Haughn GW (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol 122: 345-355

Western TL, Young DS, Dean GH, Ling TW, A Lacey S, Haughn GW (2004) MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiol 134: 296-306

Winkel BSJ (2004) Metabolic Channeling in Plants. Annu Rev Plant Biol 55: 85–107

Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5: 218-223

Wong LH, Copic A, Levine TP (2017) Advances on the Transfer of Lipids by Lipid Transfer Proteins. Trends Biochem Sci 42: 516-530

Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Yu JQ, Reiter RJ, Zhou J (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61: 457-469

Xuan LJ, Zhang CC, Yan T, Wu DZ, Hussain N, Li ZL, Chen MX, Pan JW, Jiang LX (2018) TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ 41: 2773-2790

Yang WL, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160: 638-652

Yang YN, Li RG, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22: 543-551

Yin LH, Wang P, Li MJ, Ke XW, Li CY, Liang D, Wu S, Ma XL, Li C, Zou YJ, Ma FW (2013) Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54: 426-434

Zhang J, Shi Y, Zhang XZ, Du HM, Xu B, Huang BR (2017c) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138: 36-45

Zhang JR, Zeng BJ, Mao YW, Kong XY, Wang XX, Yang Y, Zhang J, Xu J, Rengel Z, Chen Q (2017a) Melatonin alleviates aluminium toxicity through modulating antioxidative enzymes and enhancing organic acid anion exudation in soybean. Funct Plant Biol 44: 961-968

Zhang N, Sun QQ, Li HF, Li XS, Cao YY, Zhang HJ, Li ST, Zhang L, Qi Y, Ren SX, Zhao B, Guo YD (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in Cabbage. Front Plant Sci 7
Zhang RM, Sun YK, Liu ZY, Jin W, Sun Y (2017b) Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J Pineal Res 62

Zhang X, Gou M, Guo C, Yang H, Liu C-J (2015) Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (Poly)phenols and tolerance to ultraviolet radiation. Plant Physiol 167: 337-350

Zheng XD, Tan DX, Allan AC, Zuo BX, Zhao Y, Reiter RJ, Wang L, Wang Z, Guo Y, Zhou JZ, Shan DQ, Li QT, Han ZH, Kong J (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7