Research Paper

Comparison of Static and Dynamic Balance of Athletes of Different Sports in Conditions With and Without Posture Disturbances

Mostafa Shadkanlu Ostad1, *Aliasghar Norasteh2, Hamed Babagoltabar Samakoush1

1. Department of Sport Management, Faculty of Physical Education, University of Guilan, Rasht, Iran.
2. Department of Sport Physiology, Faculty of Physical Education, University of Guilan, Rasht, Iran.

ABSTRACT

Objective: Balance is a key component of motor skills to maintain posture and perform complex sports skills. The aim of this study was to compare the static and dynamic balance of athletes in different sports using different conditions of with/without postural perturbation.

Methods: Participants were 42 athletes with 3 years of sports experience assigned into three groups of wrestlers (n=14), football players (n=14) and karate players (n=14). Static balance was assessed using the Balance Error Scoring System and dynamic balance measurement was done using the Star Excursion Balance Test. For measurement of postural perturbations or cognitive task, the countdown technique was used. Data were analyzed using Analysis of variance (ANOVA), Analysis of Covariance (ANCOVA), and paired t-test at a significance level of P≤0.05.

Results There was no significant difference between the static and dynamic balance of athletes with postural perturbation in three groups. No significant difference was found between static balance with and without postural perturbation in three groups, but the difference was significant different between dynamic balance with and without postural perturbation, where their dynamic balance without postural perturbation was better.

Conclusion Coaches and physiotherapists are recommended to use dual-task techniques in assessments.

Extended Abstract

1. **Introduction**

Balance is a critical component of motor skills to maintain posture and perform complex exercise skills. Studies using the dual-task paradigm have reported that postural control requires considerable resources. Cognition refers to a range of high-level brain functions, including the ability to learn and remember information, solve problems, concentrate, maintain and divide attention, understand, use language, and correctly understand the environment.

Attention, as a cognition’s aspect, significantly impacts postural control. For example, a football player knows that when shooting, the gravity line moves forward; thus, to maintain balance, he pushes the center of gravity backward. In basketball, the athletes throw their Body Mass (BM) forward to throw the ball, followed by the center of gravity to move forward and out of the supporting surface; thus, one has to take a step forward to avoid falling.

* Corresponding Author: Aliasghar Norasteh, PhD.
Address: Department of Sport Physiology, Faculty of Physical Education, University of Guilan, Rasht, Iran.
Tel: +98 (912) 3896962
E-Mail: asgharnorasteh@yahoo.com
Postural control requires coordination between the sensory, motor, and cognitive systems. Furthermore, the dysfunction of each component affects postural maintenance. Attention is the individuals’ information processing capacity. To study the effect of cognitive systems on balance control, researchers have evaluated the rate of human balance control dependence on attention. The present study compared the static and dynamic balance in different sports athletes with and without postural disturbances.

2. Participants and Methods

The study subjects consisted of 14 wrestlers (Mean±SD of age: 19.85±2.79 y; Mean±SD of height: 177.14±5.17 cm; Mean±SD of weight: 71.64±1.32 kg; BM index: 22.81±3.43 kg/m²), 14 soccer players (Mean±SD of age: 21.57±2.02 y; Mean±SD of height: 178.86±6.58 cm; Mean±SD of weight: 74.35±8.02 kg; BM index 23.20±1.60 kg/m²), and 14 karatekas (Mean±SD of age: 21.35±1.54 y; Mean±SD of height: 178.07±4.10 cm; Mean±SD of weight: 76.92±4.98 kg; BM index: 24.32±1.76 kg/m²).

Bureau of Indian Standards (BIS) and Star tests were used to evaluate static and dynamic balance, respectively. To perform the cognitive task in this study, the reverse numbering of random numbers was used. The cognitive activity consisted of reverse coding, starting from a random number selected. For example, a digit between 200-300 out of 30 numbers introduced by the examiner, by counting down by 7. Then, as the test started, the subject counted down and reduced the number by 7 in his mind. After 30 seconds, the subject was requested to report the last number. He was requested to engage his mind in numerical calculation entirely. The number of times a person was able to count down 7 numbers could not be accurately calculated; therefore, the final answer was considered in terms of being true or false. The obtained data, after a descriptive evaluation, were analyzed using the Analysis of Variance (ANOVA), Analysis of Covariance (ANCOVA), and t-test at P<0.05.

3. Results

Data analysis suggested that static and dynamic balance preservation in wrestlers, soccer players, and karatekas was not significantly different. Furthermore, static and dynamic balance preservation associated with postural disturbances was not significantly different in these groups. There was no significant difference in static balance without postural disturbances, compared to static balance with postural disturbances. There was a significant difference in dynamic balance with no postural disturbances, compared to dynamic balance with postural disturbances. It was also better to maintain dynamic balance without postural disturbances.

4. Discussion

Researchers have recently used the dual-task paradigm to assess the effect of cognitive factors on postural control in evaluating balance control. Therefore, this study aimed to compare the static and dynamic balance of different sports athletes with and without postural disturbances. The collected results indicated that the karatekas had the lowest performance in both static and dynamic balance tasks.

Table 1. One-way ANOVA results for the comparison of static and dynamic balance with and without cognitive task in the study subjects
Test
--
Static balance without a cognitive task (s)
Static balance with a cognitive task (s)
Dynamic balance without a cognitive task (cm/foot length)
Dynamic balance with the cognitive task (cm/foot length)
mean number of errors in the BIS test and the highest mean length of maturity in the star test. However, the wrestlers had the lowest mean maturity in the star test. Data analysis revealed no significant difference in the static and dynamic balance between the studied wrestlers, soccer players, and karatekas.

Recent studies suggested a significant necessity for postural control. Moreover, these requirements vary depending on the postural function, age, and the balance ability of individuals. The current study compared the static and dynamic balance of different sports athletes with and without postural disturbances. In all three exercise groups, the extent of foot entrapment in dynamic balance decreased with a cognitive task. As a result, they are more involved with motions; thus, they require higher dynamic balance and moving to maintain balance, i.e. focus on skills and motions. Accordingly, athletes should perform their skill and balance exercises through cognitive tasks.

5. Conclusion

Based on the study results, it is suggested that trainers and physiotherapists use a dual-task paradigm in their evaluations.

Ethical Considerations

Compliance with ethical guidelines

All subjects in the present study participated with full consent and were aware of all stages of the research. Also aware of the confidentiality of their personal information, they had complete authority to exit any stages of the investigation.

Funding

The present paper was extracted from the MSc thesis of Mostafa Shadkanlou of the Department of Corrective Exercise and sport Injuries of the University of Guilan and it didn't use any financial backing.

Authors’ contributions

Conceptualization, methodology: Mostafa Shadkanlu Ostad, Aliasghar Norashe; Resources, writing - original draft preparation: Hamed Babagoltabar Samakoush; Writing - review & editing: Hamed Babagoltabar Samakoush, Aliasghar Norashe; Visualization, supervision, project administration: Aliasghar Norashe.

Conflicts of interest

In this paper, there is no conflict of interest.

Table 2. Correlated t-test results for comparing static and dynamic balance with and without cognitive task in the three study groups

Sport	Test	t	Sig.
Wrestling	Static balance with cognitive task	-1.022	0.326
Wrestling	Dynamic balance with the cognitive task	2.387	0.03
Soccer	Static balance with cognitive task	0.751	0.466
Soccer	Dynamic balance with cognitive task	2.469	0.02
Karate	Static balance with cognitive task	-1.876	0.08
Karate	Dynamic balance with cognitive task	12.288	0.001
مقایسه تعادل ایستا و پویا و ورزشکاران رشته‌های مختلف ورزشی در شرایط با و بدون اعمال اغتشاشات پاسچر

در این مطالعه، بررسی تعادل ایستا و پویا ورزشکاران رشته‌های مختلف ورزشی در شرایط با و بدون اعمال اغتشاشات پاسچر انجام شد. این بررسی شامل سه سطح تعادل ایستا، تعادل پویا و تعادل پویا در شرایط با و بدون اعمال اغتشاشات پاسچر بود. در این مطالعه، کارشناس ارشد تربیت بدنی و کارشناس دکتری تخصصی فیزیوتراپی در رشته تربیت بدنی و علوم ورزشی، دانشگاه گیلان، رشت ایران، ویژه و با توجه به نتایج این مطالعه، به مربیان و فیزیوتراپیست ها پیشنهاد می‌شود در ارزیابی با و بدون اعمال اغتشاشات پاسچر استفاده کنند.

کلیدواژه‌ها: تعادل ایستا، تعادل پویا، اغتشاشات پاسچر، توجه، کشتی، فوتبال، کاراته

مقدمه

پاسچر عمودی یک وضعیت متداول در زندگی روزانه و پایه طبیعی برای سازماندهی حرکات است. تعادل و حفظ توازن اثر مهمی در حیات روزمره انسان را دارا می‌باشد. تعادل و حفظ توازن به روش‌های مختلفی می‌تواند انجام شود. در حال حاضر، حضور نوآوری‌های نوین در زمینه فیزیوتراپی و سیستم‌های ایستا را در این زمینه مشاهده می‌کنیم.

تعادل و حفظ توازن به روش‌های مختلفی می‌تواند انجام شود. در حال حاضر، حضور نوآوری‌های نوین در زمینه فیزیوتراپی و سیستم‌های ایستا را در این زمینه مشاهده می‌کنیم.

۱. تعادل ایستا
۲. تعادل پویا

3. مركز یوکس (COP)
در پژوهشی که به بررسی توانایی شناخت ورزشکاران با و بدون اختلالات و قادر به مقایسه تعادل ایستا و پویا و قسمتی از آن انجام داده شد، نتایج نشان دهنده اهمیت ادراک شناختی در عملکرد است.

جدول

تکلیف	مثال
Drop test	پاسچر در هنگام اجرای هم‌زمان تکلیف شناختی در افراد سالمند
Sensory organization test (SOT)	نوعی از سنجش تعادل و بهبود سیستم سنجش
Single-Task Balance	تکلیف به یکی از تکلیف‌های ساده
Dual-Task Paradigm	یک تکلیف حافظه و تکلیف شناختی (به‌عنوان تکلیف شناختی را به مثابه تکلیف حافظه یا به‌عنوان تکلیف خودیک)

منابع

1. Single-Task Balance
2. Sensory organization test (SOT)
3. Drop test
4. Cognition
5. Divided Attention
6. Attention
7. Dual-Task Paradigm
8. Limited Capacity Theory of Attention
9. Choice response time
مقایسه تعادل ایستا و پویای ورزشکاران رشته‌های مختلف ورزشی

مصطفی‌شادکان‌لواستاد‌و‌همکاران. مقایسه تعادل ایستا و پویای ورزشکاران رشته‌های مختلف ورزشی

از این 12 کشتی گیر (با میانگین سن 23 سال، قد 1.83 متر، وزن 77 کیلوگرم و شاخص توده بدنی 24/35 ± 0.98 کیلوگرم بر متر مربع) به عنوان نمونه‌هایی محاسباتی انتخاب شدند.

برای جمع‌آوری اطلاعات جمعیت‌شناسی و اطلاعات در مورد سابقه ورزشی، از پرسشنامه و اندازه‌گیری تعادل ایستا و پویا به کمک آزمون‌های ستاره و بس استفاده گردید. تکلیف شناختی در این پژوهش نیز شمارش معکوس بود.

همچنین قبل از انجام آزمون‌ها در آزمایشگاه حرکات اصلاحی دانشگاه گیلان برخی شاخص‌های آنتروپومتری (وزن، قد، طول پا، عرض شانه، عرض لگن و عرض مچ پا) ارزیابی شد تا تفاوتی بین این شاخص‌ها در سه گروه وجود نداشته باشد.

پس از بررسی نرمال بودن توزیع داده‌ها با استفاده از آزمون کولموگروف اسمیرنوف، برای مقایسه متغیرهای مذکور در میان گروه‌ها از آزمون تحلیل واریانس یک‌طرفه و آزمون تعقیبی استفاده شد. همچنین برای مقایسه تعادل ایستا و پویا به کمک آزمون تی استفاده گردید.

همچنین قبل از انجام آزمون‌ها در آزمایشگاه حرکات اصلاحی دانشگاه گیلان برخی شاخص‌های آنتروپومتری (وزن، قد، طول پا، عرض شانه، عرض لگن و عرض مچ پا) ارزیابی شد تا تفاوتی بین این شاخص‌ها در سه گروه وجود نداشته باشد.

پس از بررسی نرمال بودن توزیع داده‌ها با استفاده از آزمون کولموگروف اسمیرنوف، برای مقایسه متغیرهای مذکور در میان گروه‌ها از آزمون تحلیل واریانس یک‌طرفه و آزمون تعقیبی استفاده شد. همچنین برای مقایسه تعادل ایستا و پویا به کمک آزمون تی استفاده گردید.

برای سنجش کیفیت داده‌ها و با توجه به نتایج غیر قابل قبول آزمون تی، نتایج به کمک نرم‌افزار SPSS نوسازی گردید.

کلیه محاسباتی این آزمون به نرم‌افزار SPSS نوسازی گردید.

13. Anterior superior iliac spine (ASIS)
14. Balance Error Scoring System (BESS)
به‌طور کلی، از آزمون‌های آزمایشگری در زمینه‌های مختلف استفاده شدند. این آزمون‌ها شامل برنامه‌های نرم‌افزاری، سیستم‌های عصبی و پیچیدگی چشمی بودند. همچنین استفاده شدند از آزمون‌های آزمایشگری در زمینه‌های اختلالات عصبی و پیچیدگی چشمی بودند. به‌طور کلی، از آزمون‌های آزمایشگری در زمینه‌های مختلف استفاده شدند. این آزمون‌ها شامل برنامه‌های نرم‌افزاری، سیستم‌های عصبی و پیچیدگی چشمی بودند. همچنین استفاده شدند از آزمون‌های آزمایشگری در زمینه‌های اختلالات عصبی و پیچیدگی چشمی بودند.

شماره	پاسخ	F	تعداد و پیش‌بینی	میانگین	مانند	مانند	مانند	مانند
1	پاسخ	0.01	تعداد و پیش‌بینی	میانگین	مانند	مانند	مانند	مانند
2	پاسخ	0.02	تعداد و پیش‌بینی	میانگین	مانند	مانند	مانند	مانند
3	پاسخ	0.03	تعداد و پیش‌بینی	میانگین	مانند	مانند	مانند	مانند
4	پاسخ	0.04	تعداد و پیش‌بینی	میانگین	مانند	مانند	مانند	مانند
5	پاسخ	0.05	تعداد و پیش‌بینی	میانگین	مانند	مانند	مانند	مانند

جدول 1. تأثیر آزمون خودکار گر در زمینه‌های مختلف با استفاده از آزمون‌های آزمایشگری

به‌طور کلی، از آزمون‌های آزمایشگری در زمینه‌های مختلف استفاده شدند. این آزمون‌ها شامل برنامه‌های نرم‌افزاری، سیستم‌های عصبی و پیچیدگی چشمی بودند. همچنین استفاده شدند از آزمون‌های آزمایشگری در زمینه‌های اختلالات عصبی و پیچیدگی چشمی بودند. به‌طور کلی، از آزمون‌های آزمایشگری در زمینه‌های مختلف استفاده شدند. این آزمون‌ها شامل برنامه‌های نرم‌افزاری، سیستم‌های عصبی و پیچیدگی چشمی بودند. همچنین استفاده شدند از آزمون‌های آزمایشگری در زمینه‌های اختلالات عصبی و پیچیدگی چشمی بودند.
شماره ۴. دوره ۱۳۹۷ اسفند

نتایج آزمون تحلیل واریانس یک راهه برای مقایسه تعادل ایستا و پویا با و بدون تکلیف شناختی در آزمودنی‌ها

جدول ۲. نتایج آزمون تحلیل کوواریانس جهت بررسی اثر متغیرهای تعادل ایستا و تعادل پویا با و بدون تکلیف شناختی در حالات مختلف ورزش

گروه ورزشی	میانگین	انحراف معیار	±	F	Df	sig
کشتی						
تعادل ایستا						
بدون تکلیف	5/28	± 5/23	2	0/57	18	1/42
با تکلیف	6/42	± 4/95	2	0/39	18	6/53
تعادل پویا						
بدون تکلیف	5/23	± 5/23	2	0/57	18	1/42
با تکلیف	7/70	± 6/09	2	0/55	18	7/93
فوتبال						
تعادل ایستا						
بدون تکلیف	6/64	± 4/23	2	0/77	18	3/77
با تکلیف	6/61	± 5/77	2	0/65	18	5/23
تعادل پویا						
بدون تکلیف	3/50	± 2/31	2	0/31	18	0/14
با تکلیف	7/96	± 2/96	2	0/57	18	7/31
کاراته						
تعادل ایستا						
بدون تکلیف	3/85	± 2/53	2	0/53	18	0/77
با تکلیف	4/87	± 2/53	2	0/53	18	0/77
تعادل پویا						
بدون تکلیف	7/28	± 2/96	2	0/57	18	7/31
با تکلیف	7/96	± 2/96	2	0/57	18	7/31

نتایج آزمون تی همبسته برای مقایسه تعادل ایستا و پویا با و بدون تکلیف شناختی در سه گروه آزمودنی

جدول ۳. نتایج آزمون تی همبسته برای مقایسه تعادل ایستا و پویا با و بدون تکلیف شناختی در سه گروه آزمودنی

رشته	آزمون	F	Df	sig
کشتی	تعادل ایستا	-1/022	13	1/32
	تعادل ایستا با تکلیف	-1/022	13	1/32
	تعادل پویا	2/387	13	0/03
	تعادل پویا با تکلیف	2/387	13	0/03
فوتبال	تعادل ایستا	0/751	13	1/46
	تعادل ایستا با تکلیف	0/751	13	1/46
	تعادل پویا	2/469	13	0/02
	تعادل پویا با تکلیف	2/469	13	0/02
کاراته	تعادل ایستا	-1/876	13	0/08
	تعادل ایستا با تکلیف	-1/876	13	0/08
	تعادل پویا	12/288	13	0/001
	تعادل پویا با تکلیف	12/288	13	0/001
با توجه به نتایج آزمون تحلیل واریانس، نشان می‌دهد اثر آن‌ها تعادل ایستا و پویای اندازه‌گیری شده (به جز طول پا) بر تعادل ایستا نیست. این محور با نتایج آزمون تحلیل کوواریانس، بنیان گذاری شده است. این کنترل به این دلیل انجام شد که مشخص شد اثر متغیرهای شاخص‌های آنترومتری و افت استخوان ناوی بر کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر تئوری Nیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی دو پا هستند ولی در یک پا در کاراته نسبت به آن‌ها. از نظر Tئوری نیز قابل انتظار است که کشتی‌گیران و فوتبالیست‌ها بیشتر روی Dو پا Hستند ولی در یک Pا در کاراته نسبت به آن‌ها. از Nظر Tئوری نیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها بیشتر روی Dو پا Hستند ولی در یک Pا در کاراته Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه نسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه نسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند ولی در یک Pا در کارات Nه Nسبت به آن‌ها. از Nظر Tئوری Nیز Qقابل انتظار است که کشتی Gیران و Fوتبالیست‌ها Bیشتر روی Dو Pا Hستند و
از شاخص‌های این گروه به داشتگی در تکلیف شناختی در تعادل ایستا و پویا باید تأکید شود. ورزشکاران آزمودنی و ناشناخته در این شرایط می‌بینند که شاخص‌های این گروه در برابر مهارت وریدر و حرکات صادقانه بیشتری دارند.

نتایج نشان داد که انجام تکلیف شناختی هم‌زمان سبب افزایش نوسان پاسچر در دو گروه بدون تمرین و تمرین یک تکلیف شد، در صورتی که در گروه تمرین تکلیف دوگانه نتایج این گونه نبود.

در زمینه تکلیف شناختی در سه گروه کشتی‌گیر، فوتبالیست و کاراته‌کا تفاوت معنی‌داری را در ارتفاع و اینکه افزایش سطح رقابت، وابستگی فوتبالیست‌ها به بینایی برای حفظ تعادل کاهش می‌یابد.

بر اساس تئوری سیستم‌ها عمل سیستم حسی در تیمار تعادل بستگی به هدف و شرایط محیطی دارد و هر سیستم حسی تحت شرایط خاصی می‌تواند از اهمیت بیشتری برخوردار باشد. بنابراین سیستم حسی برتر در هر لحظه لماهی‌می‌کند که اطلاعات دقت‌تری از وضعیت محیطی موجود فراهم کند.

ارزیابی تأثیر تمرین بر افزایش نوسان پاسچر حین انجام تکلیف شناختی پرداخت. نتایج نشان داد که انجام تکلیف شناختی هم‌زمان سبب افزایش نوسان پاسچر در دو گروه بدون تمرین و تمرین یک تکلیف شد. در صورتی که در می‌تواند که انجام تکلیف شناختی وابسته به تمرین‌های ناشناخته‌های مگر در تمرین‌های جوی استانداردهای پاسچر به‌گونه‌ای تأثیر گذاشته.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

تمام آزمودنی‌ها تحت حفاظت حاضر با رضایت کامل در پژوهش

20. Choice response time
21. Attentional demands
شرکت کرده و از تمامی مراحل تحقیق آگاه بودند. همچنین با آگاهی از محرمانه بودن اطلاعات شخصی شان، اختیار کامل در خروج از هر یک از مراحل تحقیق را داشتند.

حامی مالی

این مقاله مستخرج از پایان نامه آقای مصطفی شادکانلو استاد، از گروه آسیب شناسی ورزشی و حرکات اصلاحی دانشگاه گیلان بوده و از حمایت مالی هیچ یکی استفاده نکرده است.

مشارکت ویژه‌نگاران

مفهوم‌سازی: مصطفی شادکانلو و دکتر علی اصغر نورسته
تحقیق و بررسی: مصطفی شادکانلو و دکتر علی اصغر نورسته
منابع: حمید پاگل نیا وسیم تجربه‌های ورزشی، حمید پاگل نیا وسیم تجربه‌های ورزشی، حمید پاگل نیا وسیم تجربه‌های ورزشی
نظرات و مدیریت پروژه دکتر علی اصغر نورسته

تعارض منافع

در این مقاله هیچ تعارض منافعی وجود ندارد.
References

[1] Gautier G, Thouvarecq R, Larue J. Influence of experience on postural control: Effect of expertise in gymnastics. Journal of Motor Behavior. 2008; 40(5):400-8. [DOI:10.3200/JMBR.40.5.400-408]

[2] Gribble PA, Hertel J. Considerations for normalizing measures of the star excursion balance test. Measurement in Physical Education and Exercise Science. 2003; 7(2):89-100. [DOI:10.1207/S15327841MEPES0702_3]

[3] Norasteh AA, Mohabbi H, Shah Heydari S. Comparison of static and dynamic balance in different athletes [Persian]. Journal of Sport Medicine. 2011; 2(2):5-22.

[4] Hosseini Mehr SH, Norasteh AA, Khaleghi Tazji M, Abbasi A. The effect of vibration on proprioceptive inputs of trunk muscles in healthy young males in the steering of walking [Persian]. Journal of Sport Medicine. 2009; 1(1):25-36.

[5] Matsuda S, Demura S, Uchiyama M. Centre of pressure sway characteristics during static one-legged stance of athletes from different sports. Journal of Sports Sciences. 2008; 26(7):775-9. [DOI:10.1080/02640410701824099] [PMID]

[6] Moradi J. Comparison of static equilibrium in soccer players and swimmers under different sensory conditions [Persian] [Msc. thesis]. Tehran: University of Tehran; 2009.

[7] Shurway-Cook A, Woolacott MH. Motor control: Translating research into clinical practice. Philadelphia: Lippincott Williams & Wilkins; 2007.

[8] Matlin MW. Cognition. 6th ed. Hoboken: John Wiley & Sons; 2005.

[9] Andersson G, Hagman J, Talianzadeh R, Svärdberg A, Larsen HC. Effect of cognitive load on postural control. Brain Research Bulletin. 2002; 58(1):135-9. [DOI:10.1016/S0361-9230(02)00770-0] [PMID]

[10] Fraizer EV, Mitra S. Methodological and interpretative issues in posture-cognition dual-tasking in upright stance. Gait & Posture. 2008; 27(2):271-9. [DOI:10.1016/j.gaitpost.2007.04.002] [PMID]

[11] Dautel MC, Frank JS. Does practice modify the relationship between postural control and the execution of a secondary task in young and older individuals? Gerontology. 2004; 50(3):157-64. [DOI:10.1159/000076773] [PMID]

[12] Redfern MS, Jennings JR, Martin C, Furman JM. Attention influences sensory integration for postural control in older adults. Gait & Posture. 2001; 14(3):211-6. [DOI:10.1016/S0966-6362(01)00144-8] [PMID]

[13] Rahnama L, Salavati M, Akhbari B, Mazaheri M. Attentional demands and postural control in athletes with and without functional ankle instability. Journal of Orthopaedic & Sports Physical Therapy. 2010; 40(3):180-7. [DOI:10.2519/jospt.2010.3188] [PMID]

[14] Vuillerme N, Nougier V. Attentional demand for regulating postural sway: The effect of expertise in gymnastics. Brain Research Bulletin. 2004; 63(2):161-5. [DOI:10.1016/j.brainresbull.2004.02.006] [PMID]

[15] Stins JF, Michielsen ME, Roerdink M, Beek PJ. Sway regularity reflects attentional involvement in postural control: Effects of expertise, vision and cognition. Gait & Posture. 2009; 30(1):106-9. [DOI:10.1016/j.gaitpost.2009.04.001] [PMID]

[16] Happe H, Kohler A, Feddermann MT, Zentgraf K. The relationship between expertise in sports, visuospatial, and basic cognitive skills. Frontiers in Psychology. 2016; 7:904. [DOI:10.3389/fpsyg.2016.00904] [PMID] [PMCID]

[17] Martin A, Sler AM, D’Urso Villar MA, Barraza JF. Position affects performance in multiple-object tracking in rugby union players. Frontiers in Psychology. 2017; 8:1494. [DOI:10.3389/fpsyg.2017.01494] [PMID] [PMCID]

[18] Van Biesen D, Jacobs L, McCulloch K, Jansens L, Vanlandewijck YC. Cognitive-motor dual-task ability of athletes with and without intellectual impairment. Journal of Sports Sciences. 2018; 36(5):513-21. [DOI:10.1080/02640414.2017.1322215] [PMID]

[19] Luder B, Kiss R, Granacher U. Single- and dual-task balance training are equally effective in youth. Frontiers in Psychology. 2018; 9:912. [DOI:10.3389/fpsyg.2018.00912] [PMID] [PMCID]

[20] Schwesig R, Kluttig A, Leuchte S, Becker S, Schmidt H, Esperer HD. The impact of different sports on posture regulation [German]. Sportverletzung Sportschaden. 2009; 23(3):148-54. [DOI:10.1055/s-0028-1109576] [PMID]

[21] Leong HT, Fu SN, Ng GY, Tsang WW. Low-level taekwondo practitioners have better somatosensory organisation in standing balance than sedentary people. European Journal of Applied Physiology. 2011; 111(8):1787-93. [DOI:10.1007/s00421-010-1798-7] [PMID]

[22] Lohmann TG, Roche AF, Martorell R, editors. Anthropometric standardization reference manual. Champaign: Human Kinetics Books; 1988.

[23] Ismaila OS. Anthropometric data of hand, foot and ear of university students in Nigeria. Leonardo Journal of Sciences. 2009; (15):15-20.

[24] Cote KP, Brunet ME, Gansneder BM, Shultz SJ. Effects of pronated and supinated foot postures on static and dynamic postural stability. Journal of Athletic Training. 2005; 40(1):41-6. [PMID] [PMCID]

[25] Allen MK, Glasoe WM. Metrecom measurement of navicular drop in subjects with anterior cruciate ligament injury. Journal of Athletic Training. 2000; 35(4):403-6. [PMID] [PMCID]

[26] Bressel E, Yonker JC, Kras J, Heath EM. Comparison of static and dynamic balance in female collegiate soccer, basketball, and gymnastics athletes. Journal of Athletic Training. 2007; 42(1):42-6. [PMID] [PMCID]

[27] Smith BL, Docherty CL, Simon J, Klosner J, Schrader J. Ankle strength and force sense after a progressive, 6-week strength-training program in people with functional ankle instability. Journal of Athletic Training. 2012; 47(3):282-8. [DOI:10.4085/1062-6050-47.3.06] [PMID] [PMCID]

[28] Andersson G, Hagman J, Talianzadeh R, Svärdberg A, Larsen HC. Dual-task study of cognitive and postural interference in patients with vestibular disorders. Otology & Neurotology. 2003; 24(2):289-93. [DOI:10.1097/00006409-200303000-00026] [PMID]

[29] Du Pasquier RA, Blanc Y, Sinnreich M, Landis T, Burkhard P, Vingerhoets AJ. Dual-task ability of athletes with and without intellectual impairment. Neurophysiologie Clinique/Clinical Neurophysiology. 2003; 33(5):213-8. [DOI:10.1016/j.neucli.2003.09.001] [PMID]

[30] Schwesig R, Kluttig A, Leuchte S, Becker S, Schmidt H, Esperer HD. The impact of different sports on posture regulation (German). ZKDung Sportschaden. 2009; 23(3):148-54. [DOI:10.1055/s-0028-1109576] [PMID]

[31] Pellecchia GL. Dual-task training reduces impact of cognitive task on postural sway. Journal of Motor Behavior. 2005; 37(3):239-46. [DOI:10.3200/JMBR.37.3.239-246] [PMID]