State complexity of union and intersection combined with star and reversal

Yuan Gao, Sheng Yu
Department of Computer Science,
The University of Western Ontario,
London, Ontario, Canada N6A 5B7

Abstract
In this paper, we study the state complexities of union and intersection combined with star and reversal, respectively. We obtain the state complexities of these combined operations on regular languages and show that they are less than the mathematical composition of the state complexities of their individual participating operations.

1 Introduction
State complexity is one of the fundamental topics in automata theory. It is important from both theoretical aspect and implications in automata applications, because the state complexity of an operation gives an upper bound of both time and space complexity of the operation. For example, programmers should know the largest possible number of states that would be generated before they perform an operation in an application, since they need to allocate enough space for the computation and make an estimate of the time it takes.

The research on state complexity can be recalled to 1950's [20]. However, most results on state complexity came out after 1990 [3, 4, 5, 6, 11, 13, 14, 15, 19, 22, 23, 24]. Their research focused on individual operations, e.g. union, intersection, star, catenation, reversal, etc, until A. Salomaa, K. Salomaa and S. Yu initiated the study of state complexities of combined operations in 2007 [21]. In the following three years, many papers were published on this topic [1, 2, 7, 8, 9, 10, 16, 17].

People are interested in state complexities of combined operations not only because it is a relatively new research direction but also because its importance in practice. For example, several operations are often applied in a certain order on languages in searching and language processing. If we simply use the mathematical composition of the state complexities of individual participating

*All correspondence should be directed to Yuan Gao at ygao72@csd.uwo.ca. This work is supported by Natural Science and Engineering Council of Canada Discovery Grant 41630.
operations, we may get a very huge value which is far greater than the exact state complexity of the combined operation, because the resulting languages of the worst case of one operation may not be among the worst case input languages of the next operation [9 10 17 24]. Although computer technology is developing fast, time and space should still be used efficiently. Thus, state complexities of combined operations are at least as important as those of individual operations.

In [21], two combined operations were investigated: \((L(M) \cup L(N))^* \) and \((L(M) \cap L(N))^* \), where \(M \) and \(N \) are \(m \)-state and \(n \)-state DFAs, respectively. In [17], Boolean operations combined with reversal were studied, including: \((L(M) \cup L(N))^R \) and \((L(M) \cap L(N))^R \). One natural question is what are the state complexities of these combined operations if we exchanged the orders of the composed individual operations. For example, we perform star or reversal first and then perform union or intersection. Thus, in this paper, we investigate four particular combined operations: \(L(M)^* \cup L(N) \), \(L(M)^* \cap L(N) \), \(L(M)^R \cup L(N) \) and \(L(M)^R \cap L(N) \).

It has been shown in [21] that, (1) the state complexities of the union and intersection of an \(m \)-state DFA language and an \(n \)-state DFA language are both \(mn \), (2) the state complexity of star of a \(k \)-state DFA language is \(2^k \), and (3), the state complexity of reversal of an \(l \)-state DFA language is \(2^l \). In this paper, we obtain the state complexities of \(L(M)^* \cup L(N) \), \(L(M)^* \cap L(N) \), \(L(M)^R \cup L(N) \) and \(L(M)^R \cap L(N) \) and show that they are all less than the mathematical compositions of individual state complexities for \(m, n \geq 2 \).

We prove that the state complexity of \(L(M)^* \cup L(N) \) is \(\frac{3}{4}2^m \cdot n - n + 1 \) for \(m, n \geq 2 \) which is much less than the known state complexity of \((L(M) \cup L(N))^* \) (21). We obtain that the state complexity of \(L(M)^* \cap L(N) \) is also \(\frac{3}{4}2^m \cdot n - n + 1 \) for \(m, n \geq 2 \) whereas the state complexity of \((L(M) \cap L(N))^* \) has been proved to be \(\frac{3}{4}2^{mn} \), the mathematical compositions of individual state complexities (21). For \(L(M)^R \cup L(N) \) and \(L(M)^R \cap L(N) \), we prove both of their state complexities to be \(2^m \cdot n - n + 1 \) for \(m, n \geq 2 \) while the state complexities of \((L(M) \cup L(N))^R \) and \((L(M) \cap L(N))^R \) are both \(2^{m+n} - 2^m + 2 \) (17).

In the next section, we introduce the basic notations and definitions used in this paper. In Sections 3 4 5 and 6 we investigate the state complexities of \(L(M)^* \cup L(N) \), \(L(M)^* \cap L(N) \), \(L(M)^R \cup L(N) \) and \(L(M)^R \cap L(N) \), respectively. In Section 7 we conclude the paper.

2 Preliminaries

An alphabet \(\Sigma \) is a finite set of letters. A word \(w \in \Sigma^* \) is a sequence of letters in \(\Sigma \), and the empty word, denoted by \(\varepsilon \), is the word of length 0.

A deterministic finite automaton (DFA) is usually denoted by a 5-tuple \(A = (Q, \Sigma, \delta, s, F) \), where \(Q \) is the finite and nonempty set of states, \(\Sigma \) is the finite and nonempty set of input symbols, \(\delta : Q \times \Sigma \rightarrow Q \) is the state transition function, \(s \in Q \) is the initial state, and \(F \subseteq Q \) is the set of final states. A DFA is said to be complete if \(\delta \) is a total function. Complete DFAs are the basic
model for considering state complexity. Without specific mentioning, all DFAs are assumed to be complete in this paper. We extend δ to $Q \times \Sigma^* \rightarrow Q$ in the usual way. Then this automaton accepts a word $w \in \Sigma^*$ if $\delta(s, w) \cap F \neq \emptyset$. Two states in a DFA are said to be equivalent if and only if for every word $w \in \Sigma^*$, if A is started in either state with w as input, it either accepts in both cases or rejects in both cases. The language accepted by a DFA A is denoted by $L(A)$. A language is accepted by many DFAs but there is only one essentially unique minimal DFA for the language which has the minimum number of states.

A non-deterministic finite automaton (NFA) is also denoted by a 5-tuple $B = (Q, \Sigma, \delta, s, F)$, where Q, Σ, s, and F are defined the same way as in a DFA and $\delta : Q \times \Sigma \rightarrow 2^Q$ maps a pair consisting of a state and an input symbol into a set of states rather than a single state. An NFA may have multiple initial states, in which case an NFA is denoted $(Q, \Sigma, \delta, S, F)$ where S is the set of initial states. A language L is accepted by an NFA if and only if L is accepted by a DFA, and such a language is called a regular language. Two finite automata are said to be equivalent if they accepts the same regular language. An NFA can always be transformed into an equivalent DFA by performing subset construction. The reader may refer to [12, 25] for more details about regular languages and automata theory.

The state complexity of a regular language L is the number of states of the minimal, complete DFA accepting L. The state complexity of a class of regular languages is the worst among the state complexities of all the languages in the class. The state complexity of an operation on regular languages is the state complexity of the resulting languages from the operation. For example, we say that the state complexity of union of an m-state DFA language and an n-state DFA language is mn. This implies that the largest number of states of all the minimal, complete DFAs that accept the union of an m-state DFA language and an n-state DFA language, is mn, and such languages exist. Thus, state complexity is a worst-case complexity.

3 State complexity of $L_1^* \cup L_2$

We first consider the state complexity of $L_1^* \cup L_2$, where L_1 and L_2 are regular languages accepted by m-state and n-state DFAs, respectively. It has been proved that the state complexity of L_1^* is $\frac{3}{4}2^m$ and the state complexity of $L_1 \cup L_2$ is mn [18, 24]. The mathematical composition of them is $\frac{3}{4}2^m \cdot n$. In the following, we show that this upper bound can be lower.

Theorem 1. For any m-state DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ and n-state DFA $N = (Q_N, \Sigma, \delta_N, s_N, F_N)$ such that $|F_M - \{s_M\}| = k \geq 1$, $m \geq 2$, $n \geq 1$, there exists a DFA of at most $(2^{m-1} + 2^{n-k-1}) \cdot n - n + 1$ states that accepts $L(M)^* \cup L(N)$.

Proof. Let $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ be a complete DFA of m states. Denote $|F_M - \{s_M\}|$ by F_0. Then $F_0 = k \geq 1$ Let $N = (Q_N, \Sigma, \delta_N, s_N, F_N)$ be another complete DFA of n states. Let DFA $M' = (Q_M', \Sigma, \delta_M', s_M', F_M')$
For any DFA accepting \(L \), the number of states of minimal DFA accepting \(L \) is \(s \) states and a DFA \(M \) following.

Theorem 2. Given two integers \(m \geq 2, n \geq 2 \), there exists a DFA \(M \) of \(m \) states and a DFA \(N \) of \(n \) states such that any DFA accepting \(L(M)^* \cup L(N) \) needs at least \(\frac{1}{2}2^m \cdot n - n + 1 \) states.

We can see that there are 2 states and a DFA \(N \) where \(s \) states and a DFA \(N \) following.

Next, we show that the upper bound \(\frac{1}{2}2^m \cdot n - n + 1 \) is reachable.

\[s_{M'} \notin Q_M \text{ is a new start state,} \]
\[Q_{M'} = \{s_{M'}\} \cup \{P \mid P \subseteq (Q_M - F_0) \land P \neq \emptyset\} \]
\[\cup\{R \mid R \subseteq Q_M \land s_M \in R \land R \cap F_0 \neq \emptyset\}, \]
\[\delta_M'(s_{M'}, a) = \{\delta_M(s_M, a) \mid a \in \Sigma\}, \]
\[\delta_M'(R, a) = \{\delta_M(R, a) \mid a \in \Sigma\text{ if } \delta_M(R, a) \cap F_0 = \emptyset\}, \]
\[\delta_M'(R, a) = \{\delta_M(R, a) \mid a \in \Sigma\text{ otherwise}, \]
\[F_{M'} = \{s_{M'}\} \cup \{R \mid R \subseteq Q_M \land R \cap F_M \neq \emptyset\}. \]

It is clear that \(M' \) accepts \(L(M)^* \). In the second term of the union for \(Q_{M'} \), there are \(2^{m-k} - 1 \) states. And in the third term, there are \((2^k - 1)2^{m-k-1} \) states. So \(M' \) has \(2^{m-1} + 2^{m-k-1} \) states in total. Now we construct another DFA \(A = (Q, \Sigma, \delta, s, F) \) where

\[s = (s_{M'}, s_N), \]
\[Q = \{(i, j) \mid i \in Q_{M'} - \{s_{M'}\}, j \in Q_N \} \cup \{s\}, \]
\[\delta((i, j), a) = \{\delta_M(i, a), \delta_N(j, a)\}, (i, j) \in Q, a \in \Sigma, \]
\[F = \{(i, j) \mid i \in F_{M'} \text{ or } j \in F_N\}. \]

We can see that

\[L(A) = L(M') \cup L(N) = L(M)^* \cup L(N). \]

Note \((s_{M'}, j) \notin Q \), for \(j \in Q_N \setminus \{s_N\} \), because there is no transition going into \(s_{M'} \) in DFA \(M' \). So there are at least \(n - 1 \) states in \(Q \) are not reachable. Thus, the number of states of minimal DFA accepting \(L(M)^* \cup L(N) \) is no more than

\[|Q| = (2^{m-1} + 2^{m-k-1}) \cdot n - n + 1. \]

If \(s_M \) is the only final state of \(M(k = 0) \), then \(L(M)^* = L(M) \).

Corollary 1. For any \(m \)-state DFA \(M = (Q_M, \Sigma, \delta_M, s_M, F_M) \) and \(n \)-state DFA \(N = (Q_N, \Sigma, \delta_N, s_N, F_N) \), \(m > 1, n > 0 \), there exists a DFA \(A \) of at most \(\frac{1}{2}2^m \cdot n - n + 1 \) states such that \(L(A) = L(M)^* \cup L(N) \).

Proof. Let \(k \) be defined as in the above proof. There are two cases in the following.

(I) \(k = 0 \). In this case, \(L(M)^* = L(M) \). Then \(A \) simply needs at most \(m \cdot n \) states, which is less than \(\frac{1}{2}2^m \cdot n - n + 1 \) when \(m > 1 \).

(II) \(k \geq 1 \). The claim is clearly true by Theorem 1. \(\square \)

Next, we show that the upper bound \(\frac{1}{2}2^m \cdot n - n + 1 \) is reachable.

Theorem 2. Given two integers \(m \geq 2, n \geq 2 \), there exists a DFA \(M \) of \(m \) states and a DFA \(N \) of \(n \) states such that any DFA accepting \(L(M)^* \cup L(N) \) needs at least \(\frac{1}{2}2^m \cdot n - n + 1 \) states.
Proof. Let $M = (Q_M, \Sigma, \delta_M, 0, \{m - 1\})$ be a DFA, where $Q_M = \{0, 1, \ldots, m - 1\}$, $\Sigma = \{a, b, c\}$ and the transitions of M are

\[
\begin{align*}
\delta_M(i, a) &= i + 1 \mod m, i = 0, 1, \ldots, m - 1, \\
\delta_M(0, b) &= 0, \delta_M(i, b) &= i + 1 \mod m, i = 1, \ldots, m - 1, \\
\delta_M(i, c) &= i, i = 0, 1, \ldots, m - 1.
\end{align*}
\]

The transition diagram of M is shown in Figure 1.

![Figure 1: The transition diagram of the witness DFA M of Theorems 2 and 5](image)

Let $N = (Q_N, \Sigma, \delta_N, 0, \{n - 1\})$ be another DFA, where $Q_N = \{0, 1, \ldots, n - 1\}$ and

\[
\begin{align*}
\delta_N(i, a) &= i, i = 0, 1, \ldots, n - 1, \\
\delta_N(i, b) &= i, i = 0, 1, \ldots, n - 1, \\
\delta_N(i, c) &= i + 1 \mod n, i = 0, 1, \ldots, n - 1.
\end{align*}
\]

The transition diagram of N is shown in Figure 2.

![Figure 2: The transition diagram of DFA N](image)

It has been proved in [24] that the minimal DFA accepting the star of an m-state DFA language has $\frac{3}{4}2^m$ states in the worst case. M is a modification of worst case example given in [24] by adding a c-loop to every state. So we design a $\frac{3}{4}2^m$-state, minimal DFA $M' = (Q_{M'}, \Sigma, \delta_{M'}, s_{M'}, F_{M'})$ that accepts $L(M)^*$, where

- $s_{M'} \notin Q_M$ is a new start state,
- $Q_{M'} = \{s_{M'}\} \cup \{P \mid P \subseteq \{0, 1, \ldots, m - 2\} \& P \neq \emptyset\}$ \cup \{R \mid R \subseteq \{0, 1, \ldots, m - 1\} \& 0 \in R \& m - 1 \in R\},
- $\delta_{M'}(s_{M'}, a) = \{\delta_M(0, a) \mid a \in \Sigma\}$,
- $\delta_{M'}(R, a) = \{\delta_M(R, a) \mid R \subseteq Q_M \& a \in \Sigma\}$ if $m - 1 \notin \delta_M(R, a)$,
- $\delta_{M'}(R, a) = \{\delta_M(R, a) \mid a \in \Sigma\}$ otherwise,
- $F_{M'} = \{s_{M'}\} \cup \{R \mid R \subseteq \{0, 1, \ldots, m - 1\} \& m - 1 \in R\}$.

Figure 2: The transition diagram of the witness DFA N of Theorems 2 and 5

Then we construct a DFA $A = (Q, \Sigma, \delta, s, F)$ accepting $L(M)^* \cup L(N)$ exactly as described in the proof of Theorem 1, where

$$s = \langle s_{M'}, 0 \rangle$$
$$Q = \{ \langle i, j \rangle \mid i \in Q_{M'} - \{ s_{M'} \}, j \in Q_N \} \cup \{ s \}$$
$$\delta(\langle i, j \rangle, a) = \langle \delta_{M'}(i, a), \delta_N(j, a) \rangle, \langle i, j \rangle \in Q, a \in \Sigma$$
$$F = \{ \langle i, j \rangle \mid i \in F_{M'} \text{ or } j = n - 1 \}$$

Now we need to show that A is a minimal DFA.

(I) All the states in Q are reachable.

For an arbitrary state $\langle i, j \rangle$ in Q, there always exists a string w_1w_2 such that $\delta(\langle s_{M'}, 0 \rangle, w_1w_2) = \langle i, j \rangle$, where

$$\delta_{M'}(s_{M'}, w_1) = i, w_1 \in \{ a, b \}^*$$
$$\delta_N(0, w_2) = j, w_2 \in \{ c \}^*$$

(II) Any two different states $\langle i_1, j_1 \rangle$ and $\langle i_2, j_2 \rangle$ in Q are distinguishable.

1. $i_1 \neq i_2, j_2 \neq n - 1$. We can find a string w_1 such that

$$\delta(\langle i_1, j_1 \rangle, w_1) \in F, \quad \delta(\langle i_2, j_2 \rangle, w_1) \notin F$$

2. $i_1 \neq i_2, j_2 = n - 1$. There exists a string w_1 such that

$$\delta(\langle i_1, j_1 \rangle, w_1c) \in F, \quad \delta(\langle i_2, j_2 \rangle, w_1c) \notin F, \quad \delta_{M'}(i_1, w_1) \in F_{M'} \text{ and } \delta'_{M'}(i_2, w_1) \notin F_{M'}.$$

6
3. \(i_1 = i_2 \notin F_{M'} \), \(j_1 \neq j_2 \). For this case, a string \(c^{n-1-j_1} \) can distinguish the two states, since \(\delta(\langle i_1, j_1 \rangle, c^{n-1-j_1}) \in F \) and \(\delta(\langle i_2, j_2 \rangle, c^{n-1-j_1}) \notin F \).

4. \(i_1 = i_2 \in F_{M'} \), \(j_1 \neq j_2 \). A string \(b^m c^{n-1-j_1} \) can distinguish them, because \(\delta(\langle i_1, j_1 \rangle, b^m c^{n-1-j_1}) \in F \) and \(\delta(\langle i_2, j_2 \rangle, b^m c^{n-1-j_1}) \notin F \).

Since all the states in \(A \) are reachable and distinguishable, DFA \(A \) is minimal. Thus, any DFA accepting \(L(M)^* \cup L(N) \) needs at least \(\frac{3}{4}2^m \cdot n \) states.

This result gives a lower bound for the state complexity of \(L(M)^* \cup L(N) \). It coincides with the upper bound in Corollary 1. So we have the following

Theorem 3. For any integer \(m \geq 2 \), \(n \geq 2 \), \(\frac{3}{4}2^m \cdot n \) states are both sufficient and necessary in the worst case for a DFA to accept \(L(M)^* \cup L(N) \), where \(M \) is an \(m \)-state DFA and \(N \) is an \(n \)-state DFA.

4 State complexity of \(L(M)^* \cap L(N) \)

Since the state complexity of intersection on regular languages is the same as that of union \([21]\), the mathematical composition of the state complexities of star and intersection is also \(\frac{3}{4}2^m \). In this section, we show that the state complexity of \(L(M)^* \cap L(N) \) is \(\frac{3}{4}2^m \cdot n \) which is the same as the state complexity of \(L(M)^* \cup L(N) \).

Theorem 4. For any \(m \)-state DFA \(M = (Q_M, \Sigma, \delta_M, s_M, F_M) \) and \(n \)-state DFA \(N = (Q_N, \Sigma, \delta_N, s_N, F_N) \) such that \(|F_M - \{s_M\}| = k \geq 1 \), \(m > 1 \), \(n > 0 \), there exists a DFA of at most \((2^{m-1} + 2^{m-k-1}) \cdot n \) states that accepts \(L(M)^* \cap L(N) \).

Proof. We construct a DFA \(A \) accepting \(L(M)^* \cap L(N) \) the same as in the proof of Theorem 1 except that its set of final states is

\[F = \{ \langle i, j \rangle \mid i \in F_{M'}, j \in F_N \} \]

Thus, after reducing the \(n - 1 \) unreachable states \(\langle s_M, j \rangle \notin Q \), for \(j \in Q_N - \{s_N\} \), the number of states of \(A \) is still no more than \((2^{m-1} + 2^{m-k-1}) \cdot n + 1 \).

Similarly to the proof of Corollary 1 we consider both the case that \(M \) has no other final state except \(s_M \) \((L(M)^* = L(M)) \) and the case that \(M \) has some other final states (Theorem 4). Then we obtain the following corollary. Detailed proof may be omitted.

Corollary 2. For any \(m \)-state DFA \(M = (Q_M, \Sigma, \delta_M, s_M, F_M) \) and \(n \)-state DFA \(N = (Q_N, \Sigma, \delta_N, s_N, F_N) \), \(m > 1 \), \(n > 0 \), there exists a DFA \(A \) of at most \(\frac{3}{4}2^m \cdot n \) states such that \(L(A) = L(M)^* \cap L(N) \).

Next, we show that this general upper bound of state complexity of \(L(M)^* \cap L(N) \) can be reached by some witness DFAs.
Theorem 5. Given two integers $m \geq 2$, $n \geq 2$, there exists a DFA M of m states and a DFA N of n states such that any DFA accepting $L(M)^* \cap L(N)$ needs at least $\frac{3}{4}2^m \cdot n - n + 1$ states.

Proof. We use the same DFAs M and N as in the proof of Theorem 2. Their transition diagrams are shown in Figure 1 and Figure 2, respectively.

Construct DFA $M' = (Q_{M'}, \Sigma, \delta_{M'}, s_{M'}, F_{M'})$ that accepts $L(M)^*$ in the same way.

Then we construct a DFA $A = (Q, \Sigma, \delta, s, F)$ accepting $L(M)^* \cap L(N)$ exactly as described in the proof of Theorem 2 except that

$$F = \{\langle i, n - 1 \rangle \mid i \in F_{M'}\}.$$

Now we prove that A is minimal.

(I) Every state of A is reachable.

Let $\langle i, j \rangle$ be an arbitrary state of A. Then there always exists a string w_1w_2 such that $\delta((s_{M'}, 0), w_1w_2) = \langle i, j \rangle$, where

$$\delta_{M'}(s_{M'}, w_1) = i, w_1 \in \{a, b\}^*,$$

$$\delta_{N}(0, w_2) = j, w_2 \in \{c\}^*.$$

(II) Any two different states $\langle i_1, j_1 \rangle$ and $\langle i_2, j_2 \rangle$ of A are distinguishable.

1. $i_1 \neq i_2$.

 We can find a string w_1 such that

 $$\delta(\langle i_1, j_1 \rangle, w_1c^{n-1-j_1}) \in F,$$

 $$\delta(\langle i_2, j_2 \rangle, w_1c^{n-1-j_1}) \notin F,$$

 where $w_1 \in \{a, b\}^*$ and $\delta_{M'}(i_1, w_1) \in F_{M'}$ and $\delta_{M'}(i_2, w_1) \notin F_{M'}$.

2. $i_1 = i_2 \notin F_{M'}, j_1 \neq j_2$.

 There exists a string w_2 such that

 $$\delta(\langle i_1, j_1 \rangle, w_2c^{n-1-j_1}) \in F,$$

 $$\delta(\langle i_2, j_2 \rangle, w_2c^{n-1-j_1}) \notin F,$$

 where $w_1 \in \{a, b\}^*$ and $\delta_{M'}(i_1, w_2) \in F_{M'}$.

3. $i_1 = i_2 \in F_{M'}, j_1 \neq j_2$.

 Then

 $$\delta(\langle i_1, j_1 \rangle, c^{n-1-j_1}) \in F,$$

 $$\delta(\langle i_2, j_2 \rangle, c^{n-1-j_1}) \notin F.$$

Due to (I) and (II), A is a minimal DFA with $\frac{3}{4}2^m \cdot n - n + 1$ states which accepts $L(M)^* \cap L(N)$.

This lower bound coincides with the upper bound in Corollary 2. Thus, the bounds are tight.

Theorem 6. For any integer $m \geq 2$, $n \geq 2$, $\frac{3}{4}2^m \cdot n - n + 1$ states are both sufficient and necessary in the worst case for a DFA to accept $L(M)^* \cap L(N)$, where M is an m-state DFA and N is an n-state DFA.
5 State complexity of $L^R_1 \cup L_2$

In this section, we study the state complexity of $L^R_1 \cup L_2$, where L_1 and L_2 are regular languages. It has been proved that the state complexity of L^R_1 is 2^m and the state complexity of $L_1 \cup L_2$ is mn [13, 24]. Thus, the mathematical composition of them is $2^m \cdot n$. In this section we will prove that this upper bound of state complexity of $L^R_1 \cup L_2$ can not be reached in any case. We will first try to lower the upper bound in the following.

Theorem 7. Let L_1 and L_2 be two regular language accepted by an m-state and n-state DFAs, respectively. Then there exists a DFA of at most $2^m \cdot n - n + 1$ states that accepts $L^R_1 \cup L_2$.

Proof. Let $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ be a complete DFA of m states and $L_1 = L(M)$. Let $N = (Q_N, \Sigma, \delta_N, s_N, F_N)$ be another complete DFA of n states and $L_2 = L(N)$. Let $M' = (Q_M, \Sigma, \delta_{M'}, F_M, \{s_M\})$ be an NFA with multiple initial states. \(\delta_{M'}(p, a) = q \) if \(\delta_M(q, a) = p \) where \(a \in \Sigma \) and \(p, q \in Q_M \).

Clearly, \(L(M') = L(M)^R = L^R_1 \). After performing subset construction, we can get a 2^m-state DFA $A = (Q_A, \Sigma, \delta_A, s_A, F_A)$ that is equivalent to M'. Since A has 2^m states, one of its final state must be Q_M. Now we construct a DFA $B = (Q_B, \Sigma, \delta_B, s_B, F_B)$, where

\[
Q_B = \{ (i, j) \mid i \in Q_A, j \in Q_N \},
\]

\[
s_B = (s_A, s_N),
\]

\[
F_B = \{ (i, j) \in Q_B \mid i \in F_A \text{ or } j \in F_N \},
\]

\[
\delta_B((i, j), a) = (i', j'), \text{ if } \delta_A(i, a) = i' \text{ and } \delta_N(j, a) = j', a \in \Sigma.
\]

It is easy to see that \(\delta_B((Q_M, j), a) \in F_B \) for any \(j \in Q_N \) and \(a \in \Sigma \). This means all the states (two-tuples) starting with \(Q_1 \) are equivalent. There are \(n \) such states in total. Thus, the minimal DFA accepting $L^R_1 \cup L_2$ has no more than $2^m \cdot n - n + 1$ states. \(\square \)

This result gives an upper bound of state complexity of $L^R_1 \cup L_2$. Now let’s see if this bound is reachable.

Theorem 8. Given two integers $m \geq 2$, $n \geq 2$, there exists a DFA M of m states and a DFA N of n states such that any DFA accepting $L(M)^R \cup L(N)$ needs at least $2^m \cdot n - n + 1$ states.

Proof. Let $M = (Q_M, \Sigma, \delta_M, 0, \{0\})$ be a DFA, where $Q_M = \{0, 1, \ldots, m - 1\}$, $\Sigma = \{a, b, c, d\}$ and the transitions are

\[
\delta_M(0, a) = m - 1, \; \delta_M(i, a) = i - 1, \; i = 1, \ldots, m - 1,
\]

\[
\delta_M(0, b) = 1, \; \delta_M(i, b) = i, \; i = 1, \ldots, m - 1,
\]

\[
\delta_M(0, c) = 1, \; \delta_M(1, c) = 0, \; \delta_M(j, c) = i, \; j = 2, \ldots, m - 1,
\]

\[
\delta_M(k, d) = k, \; k = 0, \ldots, m - 1.
\]

The transition diagram of M is shown in Figure [Figure]. Let $N = (Q_N, \Sigma, \delta_N, 0, \{0\})$
be another DFA, where \(Q_N = \{0, 1, \ldots, n - 1\} \), \(\Sigma = \{a, b, c, d\} \) and the transitions are

\[
\begin{align*}
\delta_N(i, a) &= i, \quad i = 0, \ldots, n - 1, \\
\delta_N(i, b) &= i, \quad i = 0, \ldots, n - 1, \\
\delta_N(i, c) &= i, \quad i = 0, \ldots, n - 1, \\
\delta_N(i, d) &= i + 1 \mod n, \quad i = 0, \ldots, n - 1.
\end{align*}
\]

The transition diagram of \(N \) is shown in Figure 4.

Note that \(M \) is a modification of worst case example given in [24] for reversal, by adding a \(d \)-loop to every state. Intuitively, the minimal DFA accepting \(L(M)^R \) should also have \(2^m \) states. Before using this result, we will prove it
first. Let \(A = (Q_A, \Sigma, \delta_A, \{0\}, F_A) \) be a DFA, where

\[
Q_A = \{q \mid q \subseteq Q_M\}, \\
\Sigma = \{a, b, c, d\}, \\
\delta_A(p, e) = \{j \mid \delta_M(i, e) = j, i \in p\}, p \in Q_A, e \in \Sigma, \\
F_A = \{q \mid \{0\} \in q, q \in Q_A\}.
\]

Clearly, \(A \) has \(2^m \) states and it accepts \(L(M)^R \). Now let’s prove it is minimal.

(i) Every state \(i \in Q_A \) is reachable.

1. \(i = \emptyset \).
 \(|i| = 0 \) if and only if \(i = \emptyset \). \(\delta_A(\{0\}, b) = i = \emptyset \).
2. \(|i| = 1 \).
 Assume that \(i = \{p\}, 0 \leq p \leq m - 1 \). \(\delta_A(\{0\}, a^p) = i \).
3. \(2 \leq |i| \leq m \).
 Assume that \(i = \{i_1, i_2, \ldots, i_k\}, 0 \leq i_1 < i_2 < \ldots < i_k \leq m - 1 \),
 \(2 \leq k \leq m \). \(\delta_A(\{0\}, w) = i, \) where
 \[
w = ab(ac)^{i_k-i_{k-1}-1}ab(ac)^{i_{k-1}-i_{k-2}-1}\cdots ab(ac)^{i_2-i_1-1}a^{i_1}.
 \]

(ii) Any two different states \(i \) and \(j \) in \(Q_A \) are distinguishable.
 Without loss of generality, we may assume that \(|i| \geq |j| \). Let \(x \in i - j \).
 Then a string \(a^{n-x} \) can distinguish these two states because
 \[
 \begin{align*}
 \delta_A(i, a^{n-x}) & \in F_A, \\
 \delta_A(j, a^{n-x}) & \notin F_A.
 \end{align*}
 \]

Thus, \(A \) is a minimal DFA with \(2^m \) states which accepts \(L(M)^R \). Now let
\(B = (Q_B, \Sigma, \delta_B, \{(\{0\}, 0)\}, F_B) \) be a DFA, where
\[
Q_B = \{\langle p, q \rangle \mid p \in Q_A - \{Q_M\}, q \in Q_N\} \cup \{\langle Q_M, 0 \rangle\}, \\
\Sigma = \{a, b, c, d\}, \\
F_B = \{\langle p, q \rangle \mid p \in F_A \text{ or } q \in F_N, \langle p, q \rangle \in Q_B\},
\]
and for \(\langle p, q \rangle \in Q_B, e \in \Sigma \)
\[
\delta_B(\langle p, q \rangle, e) = \begin{cases}
\langle p', q' \rangle & \text{if } \delta_A(p, e) = p', \delta_N(q, e) = q', p' \neq Q_M, \\
\langle Q_M, 0 \rangle & \text{if } \delta_A(p, e) = Q_M.
\end{cases}
\]

As we mentioned in last proof, all the states (two-tuples) starting with \(Q_M \) are equivalent. Thus, we replace them with one state: \(\langle Q_M, 0 \rangle \). It is easy to see that \(B \) accepts the language \(L(M)^R \cup L(N) \). It has \(2^m \cdot n - n + 1 \) states. Now let’s see if \(B \) is a minimal DFA.
(I) All the states in Q_B are reachable.

For an arbitrary state $⟨p, q⟩$ in Q_B, there always exists a string $d^i w$ such that $δ_B(⟨\{0\}, 0⟩, d^i w) = ⟨p, q⟩$, where $w ∈ \{a, b, c\}^*$ and $δ_A(\{0\}, w) = p$.

(II) Any two different states $⟨p_1, q_1⟩$ and $⟨p_2, q_2⟩$ in Q_B are distinguishable.

1. $q_1 = q_2$.

We can easily find a string $d^i w$ such that

$$δ_B(⟨p_1, q_1⟩, d^i w) ∈ F_B,$$
$$δ_B(⟨p_2, q_2⟩, d^i w) ∉ F_B,$$

where $i+q_1 \mod n \neq 0$, $w ∈ \{a, b, c\}^*$, $δ_A(p_1, w) ∈ F_A$ and $δ_A(p_2, w) ∉ F_A$.

2. $p_1 = p_2$, $q_1 ≠ q_2$.

A string $d^{n−q_1} w$ can distinguish these two states where $w ∈ \{a, b, c\}^*$ and $δ_A(p_1, w) ∉ F_A$, because

$$δ_B(⟨p_1, q_1⟩, d^{n−q_1} w) ∈ F_B,$$
$$δ_B(⟨p_2, q_2⟩, d^{n−q_1} w) ∉ F_B.$$

3. $p_1 ≠ p_2$, $q_1 ≠ q_2$.

We first find a string $w ∈ \{a, b, c\}^*$ such that $δ_A(p_1, w) ∈ F_A$ and $δ_A(p_2, w) ∉ F_A$. Then it is clear that

$$δ_B(⟨p_1, q_1⟩, d^{n−q_1} w) ∈ F_B,$$
$$δ_B(⟨p_2, q_2⟩, d^{n−q_1} w) ∉ F_B.$$

Since all the states in B are reachable and distinguishable, DFA B is minimal. Thus, any DFA accepting $L(M)^R ∪ L(N)$ needs at least $2^m \cdot n − n + 1$ states.

This result gives a lower bound for the state complexity of $L(M)^R ∪ L(N)$. It coincides with the upper bound. So we have the following Theorem 9.

Theorem 9. For any integer $m ≥ 2$, $n ≥ 2$, $2^m \cdot n − n + 1$ states are both sufficient and necessary in the worst case for a DFA to accept $L(M)^R ∪ L(N)$, where M is an m-state DFA and N is an n-state DFA.

6 **State complexity of $L_1^R ∩ L_2$**

The mathematical composition of the state complexities of reversal and intersection is also $2^m \cdot n$, since the state complexities of intersection and union are the same [24]. In this section, we will show that the state complexity of $L_1^R ∩ L_2$ is also $2^m \cdot n − n + 1$, which is the same as that of $L_1^R ∪ L_2$. We will start with an upper bound less than the mathematical composition.
Theorem 10. Let L_1 and L_2 be two regular language accepted by an m-state and n-state DFAs, respectively. Then there exists a DFA of at most $2^m \cdot n - n + 1$ states that accepts $L_1^R \cap L_2$.

Proof. Let $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ be a complete DFA of m states and $L_1 = L(M)$. Let $N = (Q_N, \Sigma, \delta_N, s_N, F_N)$ be another complete DFA of n states and $L_2 = L(N)$. Let $M' = (Q_M, \Sigma, \delta_{M'}, F_M, \{s_M\})$ be an NFA with multiple initial states. $\delta_M(p, a) = q$ if $\delta_M(q, a) = p$ where $a \in \Sigma$ and $p, q \in Q_M$. Clearly, $L(M') = L(M)^R = L_1^R$. After performing subset construction, we can get a 2^m-state DFA $A = (Q_A, \Sigma, \delta_A, s_A, F_A)$ that is equivalent to M'. Since A has 2^m states, one of its nonfinal state must be a sink state, denoted by t_A.

Next we construct a DFA $B = (Q_B, \Sigma, \delta_B, s_B, F_B)$, where

\[
Q_B = \{\langle i, j \rangle \mid i \in Q_A, j \in Q_N\},
\]
\[
s_B = \langle s_A, s_N \rangle,
\]
\[
F_B = \{\langle i, j \rangle \in Q_B \mid i \in F_A, j \in F_N\},
\]
\[
\delta_B(\langle i, j \rangle, a) = \langle i', j' \rangle, \text{ if } \delta_A(i, a) = i' \text{ and } \delta_N(j, a) = j', a \in \Sigma.
\]

We can see that $\delta_B(t_A, j, a) \notin F_B$ for any $j \in Q_N$ and $a \in \Sigma$, since t_A is the sink state of DFA A which accepts $L(M)^R$. This means all the states (two-tuples) starting with t_A are equivalent. There are n such states in total. Thus, after reducing them to one state, we can see the number of states of A is sill no more than $2^m \cdot n - n + 1$. \(\square\)

Theorem 10 gives an upper bound of state complexity of $L_1^R \cap L_2$. Now let’s see if this bound is reachable.

Theorem 11. Given two integers $m \geq 2$, $n \geq 2$, there exists a DFA M of m states and a DFA N of n states such that any DFA accepting $L(M)^R \cap L(N)$ needs at least $2^m \cdot n - n + 1$ states.

Proof. We use the same DFAs M and N as in the proof of Theorem 8. Their transition diagrams are shown in Figure 3 and Figure 4 respectively. It has been shown in the proof of Theorem 8 that the minimal DFA accepting $L(M)^R$ has 2^m states. So we design a minimal DFA $A = (Q_A, \Sigma, \delta_A, \{\emptyset\}, F_A)$ that accepts $L(M)^R$ in the same way, where

\[
Q_A = \{q \mid q \subseteq Q_M\},
\]
\[
\Sigma = \{a, b, c, d\},
\]
\[
\delta_A(p, e) = \{j \mid \delta_M(i, e) = j, i \in p\}, p \in Q_A, e \in \Sigma,
\]
\[
F_A = \{q \mid \emptyset \in q, q \in Q_A\}.
\]

Note that A must have a sink state, denoted by t_A.

Next we construct a DFA $B = (Q_B, \Sigma, \delta_B, \{(\emptyset, 0)\}, F_B)$ accepting $L(M)^R \cap L(N)$, where

\[
Q_B = \{\langle p, q \rangle \mid p \in Q_A - \{t_A\}, q \in Q_N \cup \{t_A, 0\}\},
\]
\[
\Sigma = \{a, b, c, d\},
\]
\[
F_B = \{\langle p, q \rangle \mid p \in F_A, q \in F_N, (p, q) \in Q_B\}.
\]
and for \((p, q) \in Q_B, e \in \Sigma \)

\[
\delta_B(p, q, e) = \begin{cases}
\langle p', q' \rangle & \text{if } \delta_A(p, e) = p', \delta_N(q, e) = q', p' \neq t_A, \\
\langle t_A, 0 \rangle & \text{if } \delta_A(p, e) = t_A.
\end{cases}
\]

As we mentioned in last proof, all the states starting with \(t_A \) are equivalent. Thus, we replace them with one sink state: \(\langle t_A, 0 \rangle \). Clearly, \(B \) accepts the language \(L(M)^R \cap L(N) \) and it has \(2^m \cdot n - n + 1 \) states. Next we prove that \(B \) is a minimal DFA.

(I) Every state of \(B \) is reachable from \(\langle \{0\}, 0 \rangle \).

Let \(\langle p, q \rangle \) be an arbitrary state of \(B \). Then there always exist a string \(d^i w \) such that \(\delta_B(\langle \{0\}, 0 \rangle, d^i w) = \langle p, q \rangle \), where \(w \in \{a, b, c\}^* \) and \(\delta_A(\{0\}, w) = p \).

II Any two different states \(\langle p_1, q_1 \rangle \) and \(\langle p_2, q_2 \rangle \) of \(B \) are distinguishable.

1. \(q_1 = q_2 \).

 In this case, we can find a string \(d^i w \) such that

 \[
 \delta_B(\langle p_1, q_1 \rangle, d^i w) \in F_B,
 \delta_B(\langle p_2, q_2 \rangle, d^i w) \notin F_B,
 \]

 where \(i + q_1 \mod n = 0 \), \(w \in \{a, b, c\}^* \), \(\delta_A(p_1, w) \in F_A \) and \(\delta_A(p_2, w) \notin F_A \).

2. \(p_1 = p_2, q_1 \neq q_2 \).

 A string \(d^{n-q_1} w \) can distinguish states \(\langle p_1, q_1 \rangle \) and \(\langle p_2, q_2 \rangle \), where \(w \in \{a, b, c\}^* \) and \(\delta_A(p_1, w) \in F_A \), because

 \[
 \delta_B(\langle p_1, q_1 \rangle, d^{n-q_1} w) \in F_B,
 \delta_B(\langle p_2, q_2 \rangle, d^{n-q_1} w) \notin F_B.
 \]

3. \(p_1 \neq p_2, q_1 \neq q_2 \).

 Since \(A \) is a minimal DFA and \(p_1 \neq p_2 \), there always exists a string \(w \in \{a, b, c\}^* \) such that \(\delta_A(p_1, w) \in F_A \) and \(\delta_A(p_2, w) \notin F_A \). Then it is clear that

 \[
 \delta_B(\langle p_1, q_1 \rangle, d^{n-q_1} w) \in F_B,
 \delta_B(\langle p_2, q_2 \rangle, d^{n-q_1} w) \notin F_B.
 \]

Now we know DFA \(B \) is minimal because all the states in \(B \) are reachable and distinguishable. Thus, any DFA accepting \(L(M)^R \cap L(N) \) needs at least \(2^m \cdot n - n + 1 \) states. \(\Box \)

Theorem 11 gives a lower bound of state complexity of \(L(M)^R \cap L(N) \). It coincides with the upper bound shown in Theorem 10. So we have the following theorem.

Theorem 12. For any integer \(m \geq 2, n \geq 2 \), \(2^m \cdot n - n + 1 \) states are both sufficient and necessary in the worst case for a DFA to accept \(L(M)^R \cap L(N) \), where \(M \) is an \(m \)-state DFA and \(N \) is an \(n \)-state DFA.
7 Conclusion

In this paper, we have studied the state complexities of union and intersection combined with star and reversal. We have proved the state complexities of four particular combined operations, including: $L(M)^* \cup L(N)$, $L(M)^* \cap L(N)$, $L(M)^R \cup L(N)$ and $L(M)^R \cap L(N)$ for $m \geq 2$ and $n \geq 2$. They are less than the mathematical composition of state complexities of its component operations. The state complexities of the four combined operations are also less than the state complexities of the combined operations composed of the same individual operations but in different orders. The reason of this is that the state complexities decrease when we perform union and intersection in the end instead of star or reversal. This makes the order of the state complexities reduced from $O(2^m n)$ to $O(2^m n^2)$. An interesting question is: why are the state complexities of $L(M)^* \cup L(N)$ and $L(M)^* \cap L(N)$ the same whereas the state complexities of $(L(M) \cup L(N))^*$ and $(L(M) \cap L(N))^*$ are different?

References

[1] B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of catenation combined with star and reversal, in: Proceedings of DCFS 2010, Saskatoon, SK, Canada, August 8-10, 2010

[2] B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of catenation combined with union and intersection, in: Proceedings of CIAA 2010, Winnipeg, MB, Canada, August 12-15, 2010

[3] C. Campeanu, K. Culik, K. Salomaa, S. Yu: State complexity of basic operations on finite language, in: Proceedings of the Fourth International Workshop on Implementing Automata VIII 1-11, LNCS 2214, 1999, 60-70

[4] C. Campeanu, K. Salomaa, S. Yu: Tight lower bound for the state complexity of shuffle of regular languages, Journal of Automata, Languages and Combinatorics 7 (3) (2002) 303-310

[5] M. Daley, M. Domaratzki, K. Salomaa: State complexity of orthogonal catenation, in: Proceedings of DCFS 2008, Charlottetown, PE, Canada, July 16-18, 2008, 134-144

[6] M. Domaratzki: State complexity and proportional removals, Journal of Automata, Languages and Combinatorics 7 (2002) 455-468

[7] M. Domaratzki, A. Okhotin: State complexity of power, Theoretical Computer Science 410 (24-25) (2009) 2377-2392

[8] Zoltán Ésik, Yuan Gao, Guangwu Liu, S. Yu: Estimation of State Complexity of Combined Operations, Theoretical Computer Science 410 (35) (2008) 3272-3280.

[9] Y. Gao, K. Salomaa, S. Yu: The state complexity of two combined operations: star of catenation and star of Reversal, Fundamenta Informaticae 83 (1-2) (2008) 75-89

[10] Y. Gao, S. Yu: State complexity approximation, Electronic Proceedings in Theoretical Computer Science 3 (2009) 121-130
[11] M. Holzer, M. Kutrib: State complexity of basic operations on nondeterministic finite automata, in: Proceedings of International Conference on Implementation and Application of Automata 2002, LNCS 2608, 2002, 148-157

[12] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory, Languages, and Computation (2nd Edition), Addison Wesley, 2001

[13] J. Jirásek, G. Jirásková, A. Szabari: State complexity of concatenation and complementation of regular languages, International Journal of Foundations of Computer Science 16 (2005) 511-529

[14] G. Jirásková: State complexity of some operations on binary regular languages, Theoretical Computer Science 330 (2005) 287-298

[15] G. Jirásková, A. Okhotin: State complexity of cyclic shift, in: Proceedings of DCFS 2005, Como, Italy, June 30-July 2, 2005, 182-193

[16] G. Jirásková, A. Okhotin: On the state complexity of star of union and star of intersection, Turku Center for Computer Science TUCS Technical Report No. 825, 2007

[17] G. Liu, C. Martin-Vide, A. Salomaa, S. Yu: State complexity of basic language operations combined with reversal, Information and Computation 206 (2008) 1178-1186

[18] A. N. Maslov: Estimates of the number of states of finite automata, Soviet Mathematics Doklady 11 (1970) 1373-1375

[19] G. Pighizzini, J. O. Shallit: Unary language operations, state complexity and Jacobsthal’s function, International Journal of Foundations of Computer Science 13 (2002) 145-159

[20] M. Rabin, D. Scott: Finite automata and their decision problems, IBM Journal of Research and Development, 3 (2) (1959) 114-125

[21] A. Salomaa, K. Salomaa, S. Yu: State complexity of combined operations, Theoretical Computer Science 383 (2007) 140-152

[22] A. Salomaa, D. Wood, S. Yu: On the state complexity of reversals of regular languages, Theoretical Computer Science 320 (2004) 293-313

[23] S. Yu: State complexity of regular languages, Journal of Automata, Languages and Combinatorics 6 (2) (2001) 221-234

[24] S. Yu, Q. Zhuang, K. Salomaa: The state complexity of some basic operations on regular languages, Theoretical Computer Science 125 (1994) 315-328

[25] S. Yu: Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1, Springer-Verlag, 1997, 41-110