Heavy quark expansion parameters from lattice NRQCD *

JLQCD Collaboration: N. Tsutsuia, S. Aokib, R. Burkelalterc, M. Fukugitad, S. Hashimotoa, K-I. Ishikawae, N. Ishizukab,c, Y. Iwasakib,c, K. Kanayab,c, T. Kanekoa, Y. Kuramashia, M. Okawaa, T. Onogic, S. Tominagaa, A. Ukawab,c, N. Yamadaa, T. Yoshib,c

aHigh Energy Accelerator Research Organization(KEK), Tsukuba, Ibaraki 305-0801, Japan
bInstitute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
cCenter for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
dInstitute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
eYukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Using the lattice NRQCD action for heavy quark, we calculate the heavy quark expansion parameters μ_π^2 and μ_G^2 for heavy-light mesons and heavy-light-light baryons. The results are compared with the mass differences among heavy hadrons to test the validity of HQET relations on the lattice.

1. Introduction

In the calculation of inclusive decay rates of the heavy hadron, the heavy quark expansion (HQE) technique is widely used. At the order $1/m_Q^2$ of HQE two nonperturbative parameters

\[\mu_\pi^2(H_Q) = \frac{1}{2M_{H_Q}} \left\langle H_Q \left| \bar{Q}(i\hat{D})^2Q \right| H_Q \right\rangle, \tag{1} \]
\[\mu_G^2(H_Q) = \frac{1}{2M_{H_Q}} \left\langle H_Q \left| \bar{Q}\hat{\sigma} \cdot \vec{B}Q \right| H_Q \right\rangle, \tag{2} \]

appear in the calculation. H_Q represents a heavy-light meson or heavy-light-light baryon (for b hadrons, $H_b = B, B^*, \Lambda_b, \Sigma_b, \Sigma_b^*$). For instance, the lifetime ratio of b hadrons is given as

\[\frac{\tau(H_b^{(1)})}{\tau(H_b^{(2)})} = 1 + \frac{\mu_\pi^2(H_b^{(1)}) - \mu_\pi^2(H_b^{(2)})}{2m_b^2} + c_G \frac{\mu_G^2(H_b^{(1)}) - \mu_G^2(H_b^{(2)})}{m_b^2} + O(1/m_b^3), \tag{3} \]

with $c_G \simeq 1.2$. While μ_G^2 may be evaluated from experimental values of hyperfine splitting, the determination of μ_π^2 requires some theoretical inputs. It should be noted that the parameters are defined in the static limit: $m_Q \to \infty$. For heavy-light meson, μ_G^2 for heavy-light-light baryons. The results are compared with the mass differences among heavy hadrons to test the validity of HQET relations on the lattice.

2. HQET mass formula

The parameters μ_π^2 and μ_G^2 can be indirectly obtained from hadron masses, using

\[M_{H_Q} - m_Q = \bar{X} + \frac{-\mu_\pi^2 - \mu_G^2}{2m_Q^2} + O \left(\frac{1}{m_Q^2} \right), \tag{4} \]

where \bar{X} is the residual energy difference between M_{H_Q} and m_Q surviving in the infinite heavy quark limit. μ_π^2 and μ_G^2 appear in the correction terms of $O(1/m_Q)$. Therefore, by consider-
ing proper mass differences, certain combinations of μ_2^2 and μ_G^2 can be extracted.

For example, a difference of μ_G^2 can be obtained from the mass splitting in a spin multiplet, because $\bar{\chi}$ and μ_2^2 have the same value. Also, the spin averaged mass $M_B = (M_B + 3M_B^*)/4$ does not depend on μ_G^2, because μ_G^2 is proportional to the spin of the light degrees of the freedom and the sum of μ_G^2 in the spin multiplet vanishes.

3. Lattice calculations

We carry out quenched QCD simulations at $\beta=6.0$ on a $20^3 \times 48$ lattice. The NRQCD action including all $O(1/m_Q)$ terms and the non-perturbatively improved clover action (c_{sw}=1.769) is adapted for heavy quark and light quark, respectively. Five heavy quark masses am_Q=1.3, 2.1, 3.0, 5.0, and 10.0 are used to study the $1/m_Q$ dependence of hadron masses and matrix elements, while three hopping parameters K=0.13331, 0.13384, and 0.13432 are simulated to extrapolate to the chiral limit K_c=0.135284(8). The inverse lattice spacing a^{-1}=1.85(5) GeV is determined with the ρ meson mass m_ρ=770 MeV.

We measure the three-point functions $\langle O_{H_Q}(t)O_{\pi,G}(t_{\bar{c}})O_{H_Q}^\dagger(0) \rangle$, where O_{H_Q} is an interpolating field to create or annihilate the hadron H_Q, and $O_{\pi,G}$ is the operator to be measured, $\bar{Q}(i\bar{D})\bar{Q}$ or $\bar{Q}\sigma \cdot \bar{B}Q$. We divide them by $\langle O_{H_Q}(t_1)O_{H_Q}^\dagger(0) \rangle$ to obtain the desired matrix elements μ_2^2 and μ_G^2.

4. Hyperfine splittings

From (4) the hyperfine splitting $M_B^* - M_B$ is given by $-\Delta \mu_G^2/2m_Q$, or equivalently

$$M_B^* - M_B^2 = -\Delta \mu_G^2 \equiv -(\mu_G^2(B^*) - \mu_G^2(B)),$$ \hspace{1cm} (5)

at the leading order. In Figure 1, we plot our results for $-\Delta \mu_G^2$ together with the measurement of $M_B^* - M_B^2$. We observe that the relation (5) is satisfied very well, while both are significantly lower than the experimental values for B and D mesons.

In deriving (5) we used a relation

$$\Delta \mu_2^2 = \mu_2^2(B^*) - \mu_2^2(B) = 0,$$ \hspace{1cm} (6)

which holds in the static limit. However, for the NRQCD action including the spin-magnetic interaction term at $O(1/m_Q)$, the operator O_π mixes with O_G at order a_s/m_Q. This is the reason why our result for $-\Delta \mu_G^2$ deviates from that of the mass difference in the lighter heavy quark mass region. In other words, the relation (5) may be considered as a renormalization condition for the operator O_π.

Similar analysis can be made for the hyperfine splitting of heavy-light-light baryon, i.e. $\Sigma^* - \Sigma$ splitting. Figure 2 shows the mass difference and the matrix element $-\Delta \mu_G^2$. Both are in good agreement.
5. $M_{\Lambda_b} - M_{\bar{B}}$

The heavy-light meson-baryon mass difference $M_{\Lambda_b} - M_{\bar{B}}$ is given as

$$M_{\Lambda_b} - M_{\bar{B}} = \overline{\Lambda}(\Lambda_b) - \overline{\Lambda}(B) + \frac{1}{2m_Q} \left[-\mu_\pi^2(\Lambda_b) + \mu_\pi^2(B) \right].$$

(7)

The intercept at $1/M_{\bar{B}}=0$ yields $\overline{\Lambda}(\Lambda_b) - \overline{\Lambda}(B)=393(31)$ MeV, in agreement with a previous work by Ali Khan et al., $\overline{\Lambda}(\Lambda_b) - \overline{\Lambda}(B)=415(156)$ MeV. Our result is slightly larger than the experimental values for b and c hadrons. However, to draw a definite conclusion we have to consider several systematic errors, especially the finite volume effect, because our lattice may not be large enough for baryons.

The slope obtained from the fit of the mass difference is consistent with zero: $-0.21(21)$ GeV2. Our results of direct measurement of $-\Delta\mu_\pi^2$ is plotted in Figure 3, which is consistent with the result from mass difference, but have much better accuracy. Our result is also compatible with the phenomenological estimate $-0.01(3)$ GeV2 obtained from a combination $(M_{\Lambda_b} - M_{\bar{B}}) - (M_{\Lambda_c} - M_{\bar{D}})$.

6. Conclusions

We confirm that the lattice measurements of the matrix elements μ_π^2 and μ_G^2 are consistent with the HQET mass relations. The well-known problem of quenched lattice calculation that the hyperfine splitting is much smaller than the experiments is also reproduced.

An important extension of our work is to measure the matrix elements of four-quark operators, which are relevant to the $1/m_Q^3$ corrections to the lifetime ratios $[1]$. This work is supported by the Supercomputer Project No.66 (FY2001) of High Energy Accelerator Research Organization (KEK), and also in part by the Grants-in-Aid of the Ministry of Education (Nos. 10640246, 11640294, 12014202, 12640253, 12640279, 12740133, 13640260 and 13740169). K-I.I and N.Y are supported by the JSPS Research Fellowship.

REFERENCES

1. M. Neubert and C. T. Sachrajda, Nucl. Phys. B 483 (1997) 339.
2. V. Gimenez, G. Martinelli and C. T. Sachrajda, Nucl. Phys. B 486 (1997) 227.
3. A. Ali Khan et al., Phys. Rev. D 62 (2000) 054505.