Mapping Isoform Abundance and Interactome of the Endogenous TMPRSS2-ERG Fusion Protein by Orthogonal Immunoprecipitation–Mass Spectrometry Assays

Authors
Zhiqiang Fu, Yasmine Rais, Tarek A. Bismar, M. Eric Hyndman, X. Chris Le, and Andrei P. Drabovich

In Brief
Orthogonal immunoprecipitation-mass spectrometry assays quantified TMPRSS2-ERG fusion protein (~27,000 copies/cell) and its four distinct isoforms, and revealed that T1E4-ERG isoform accounted for 52 ± 3% of the total ERG in VCaP cells and 50 ± 11% in FFPE prostate cancer tissues. Methionine-truncated and N-acetylated peptide TASSSSDYGQTSK unique for T1/E4 TMPRSS2-ERG fusion was identified. Unlike the N-terminal antibodies, C-terminal antibodies identified 29 ERG-interacting proteins, including mutually exclusive BRG1- and BRM-associated canonical SWI/SNF chromatin remodeling complexes. Clinical perspectives of assays were discussed.

Highlights
• Orthogonal IP_MS assays revealed four distinct isoforms of TMPRSS2-ERG fusion protein
• T1E4-ERG isoform accounted for 52% of total ERG in VCaP cells, 50% in PCa tissues
• Unique N-terminal modifications of T1/E4 TMPRSS2-ERG fusion protein were identified
• C-term mAb revealed 29 ERG-interacting proteins including canonical SWI/SNF complexes

2021, Mol Cell Proteomics 20, 100075
© 2021 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
https://doi.org/10.1016/j.mcpro.2021.100075
Mapping Isoform Abundance and Interactome of the Endogenous TMPRSS2-ERG Fusion Protein by Orthogonal Immunoprecipitation–Mass Spectrometry Assays

Zhiqiang Fu¹,², Yasmine Rais¹, Tarek A. Bismar³, M. Eric Hyndman⁴, X. Chris Le¹, and Andrei P. Drabovich¹,*

TMPRSS2-ERG gene fusion, a molecular alteration found in nearly half of primary prostate cancer cases, has been intensively characterized at the transcript level. However, limited studies have explored the molecular identity and function of the endogenous fusion at the protein level. Here, we developed immunoprecipitation–mass spectrometry assays for the measurement of a low-abundance T1E4 TMPRSS2-ERG fusion protein, its isoforms, and its interactome in VCaP prostate cancer cells. Our assays quantified total ERG (~27,000 copies/cell) and its four unique isoforms and revealed that the T1E4-ERG isoform accounted for 52 ± 3% of the total ERG protein in VCaP cells, and 50 ± 11% in formalin-fixed paraffin-embedded prostate cancer tissues. For the first time, the N-terminal peptide (methionine-truncated and N-acetylated TASSSDYGQTSK) unique for the T1/E4 fusion was identified. ERG interactome profiling with the C-terminal, but not the N-terminal, antibodies identified 29 proteins, including mutually exclusive BRG1- and BRM-associated canonical SWI/SNF chromatin remodeling complexes. Our sensitive and selective IP-SRM assays present alternative tools to quantify ERG and its isoforms in clinical samples, thus paving the way for development of more accurate diagnostics of prostate cancer.

Prostate cancer is the most frequently diagnosed neoplasm and the third leading cause of cancer mortality in men. Introduction of prostate-specific antigen (PSA) testing revolutionized the practice of urologic oncology (1), facilitated earlier detection of localized tumors, and resulted in the active surveillance as a treatment option for many patients with low-grade prostate cancer. PSA test, however, is prone to overdiagnosis and unable to differentiate between indolent and aggressive cancers (2, 3). The race for prognostic biomarkers continues, with numerous genomic, transcriptomic, proteomic, and metabolomic markers being recently discovered and validated (4, 5). The most promising biomarkers are also explored for the molecular mechanisms of their differential expression or regulation (6–8).

Recent genomic studies on the primary prostate adenocarcinoma revealed major subtypes defined by gene fusions of E26 transformation-specific (ETS) transcription factors and mutations in SPOP, FOXA1, and IDH1 genes (3, 10). The most common genomic subtype of primary prostate cancer was represented by the fusion of an androgen-responsive gene TMPRSS2 with a transcription factor ERG (~50% of all cases) (11). While TMPRSS2-ERG rearrangement is heterogeneous, the fusion of TMPRSS2 exon 1 with ERG exon 4 (T1/E4) occurs in ~80% of all TMPRSS2-ERG cases (12). Functionally, TMPRSS2-ERG fusion results in the androgen-dependent overexpression of the N-terminally truncated ERG protein and its isoforms, which may contribute to oncogenic transformation of prostate epithelial cells (Fig. 1A) (13).

Numerous studies evaluated TMPRSS2-ERG fusion mRNA as a prognostic biomarker, but the fusion mRNA revealed either positive, or negative, or no association with the clinical significance, progression, or aggressiveness of prostate cancer (14, 15). At the protein level, quantification of the total ERG has been suggested as a surrogate marker for the TMPRSS2-ERG fusion. Measurement of ERG protein expression by

From the ¹Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; ²Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China; ³Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, and Alberta Precision Laboratories, Calgary, Alberta, Canada; ⁴Division of Urology, Department of Surgery, Southern Alberta Institute of Urology, University of Calgary, Alberta, Canada
*For correspondence: Andrei P. Drabovich, andrei.drabovich@ualberta.ca.
immunohistochemistry (IHC) in the prostate needle biopsies (16, 17) was proposed to diagnose limited adenocarcinoma, resolve atypical glands suspicious for adenocarcinoma, detect precancerous lesions, or select patients for targeted therapeutic interventions (18). Antibody-based IHC analysis, however, could not provide any details on the heterogeneity of ERG protein isoforms or posttranslational modifications.

Human ERG gene has 12 predicted protein-coding mRNA isoforms, of which six isoforms were experimentally detected by RNA sequencing in VCaP cells (supplemental Table S1). While the wild-type ERG protein is not expressed in VCaP cells, T1/E4 fusion results in overexpression of the N-term truncated isoforms which retain the function the full ERG. Earlier studies suggested that some ERG isoforms could have distinct molecular functions (19, 20). For instance, high levels of a presumably protein-coding mRNA isoform-6 (ENST00000468474) were detected in VCaP cells and patient tissues (12). As a result, isoform-6 protein (P11308-6) lacking DNA-binding ETS domain was suggested as an inhibitor of the transcriptional activation mediated by the full-length ERG isoforms. Overexpression of ERG protein isoforms in HEK293 cells revealed an inhibitory function of isoform-6 protein (20), but expression of the endogenous isoform-6 protein has never been demonstrated in VCaP cells or prostate tissues. In addition, limited experimental data were available for posttranslational modifications (21), protein domains, and interactomes (22–24) of the endogenous ERG protein.

Quantitative proteomic by mass spectrometry (25–28) is a promising tool to generate novel knowledge on TMPRSS2-ERG heterogeneity at the protein level. He et al. pioneered measurements of ERG protein by targeted mass spectrometry, utilizing two-dimensional liquid chromatography separations and selected reaction monitoring (SRM) assays (29, 30). Unique peptides of the total ERG protein were quantified in VCaP cell lysate, achieving limits of detection of 1.8 fg/cell or ~3000 cells spiked into urine.

In our study, we aimed at developing immunoprecipitation-shotgun mass spectrometry (IP-MS) and immunoprecipitation-selected reaction monitoring (IP-SRM) assays for the identification and quantification of the endogenous TMPRSS2-ERG fusion protein and its isoforms. As a model cell line, we selected VCaP prostate cancer epithelial cells, which harbored T1/E4 TMPRSS2-ERG gene fusion, overexpressed T1/E4 fusion mRNA, and expressed detectable levels of the endogenous ERG protein. We hypothesized that sensitive IP-MS and
IP-SRM assays, as well as orthogonal assays designed with the N-term and C-term monoclonal antibodies, would provide novel knowledge on the abundance of the endogenous TMPRSS2-ERG and its isoforms, TMPRSS2-ERG posttranslational modifications, and TMPRSS2-ERG protein-protein interactions.

EXPERIMENTAL PROCEDURES

Hypothesis, Study Design, and Objectives

We hypothesized that the orthogonal IP-MS assays with the N-term and C-term ERG antibodies will provide novel knowledge on the identity and abundance of ERG isoforms, interactome, and posttranslational modifications. Our study was designed to measure the endogenous T1E4 TMPRSS2-ERG fusion protein in VCaP cells. Specific objectives included: (1) develop IP-MS and IP-SRM assays; (2) quantify the relative abundance of TMPRSS2-ERG protein isoforms in VCaP cells and formalin-fixed paraffin-embedded (FFPE) prostate cancer tissues (exploratory stage), (3) identify the N-term modifications of TMPRSS2-ERG protein, (4) identify TMPRSS2-ERG protein interactome in VCaP cells, and (5) investigate if synthetic N-term epitope peptides could disrupt TMPRSS2-ERG interactome.

Chemicals and Cell Culture Reagents

Iodoacetamide, dithiothreitol, L-methionine, and trifluoroacetic acid (TFA) were purchased from Thermo Fisher Scientific. Optima water and acetonitrile were purchased from Fisher Scientific. Formic acid (FA) was obtained from Sigma-Aldrich. Stable isotope-labeled peptides (SpikeTides_L and SpikeTide_TQL) were obtained from JPT Peptide Technologies GmbH. VCaP and LNCaP prostate cancer lines were obtained from the American Type Culture Collection. Cell lines were cultured in a humidified incubator at 37 °C and 5% CO2. Dulbecco’s Modified Eagles Medium (HyClone) and RPMI 1640 medium (Gibco) were used to culture VCaP and LNCaP cells, respectively. Media were supplemented with 10% fetal bovine serum (Invitrogen) and 1% penicillin-streptomycin (Invitrogen).

Cell Lysis and Sample Preparation

Cell pellets were lysed in 50 μl of 0.1% RapiGest SF (Waters) with repeated pipetting, vortexing, and probe sonication at 20 kHz. EDTA-free protease inhibitor cocktail (Roche) combined with Benzonase Nuclease (Fisher Scientific) was added prior to cell lysis to reduce proteolysis and digest nucleic acids. To remove cell debris, lysates were centrifuged at 16,000g and 4 °C for 10 min. Total protein of lysates was measured with Pierce BCA protein assay kit (Fisher Scientific). Proteins were denaturated, and disulfide bonds were reduced by 10 mM dithiothreitol at 70 °C for 15 min and alkylated with 20 mM iodoacetamide at room temperature (RT) in the dark for 45 min. Digestion was completed overnight at 37 °C using recombinant dimethylated SOLu-trypsin (Sigma-Aldrich) with a trypsin:protein ratio 1:20. Trifluoroacetic acid (1%) was added to cleave and precipitate Rapiigest SF, and 1 μl of 0.4 M L-methionine was added to limit methionine oxidation during storage. OMIX C18 10 μl tips (Agilent Technologies) were used for desalting and microextraction of tryptic peptides. Finally, samples were diluted in 5% acetonitrile with 0.1% formic acid.

RT-PCR

Total RNA was extracted from LNCaP and VCaP cells using TRIzol (Thermo Fisher Scientific). RNA was reversely transcribed to cDNA via iScriptTM Reverse Transcription Supermix (Bio-Rad Laboratories). After quantification by NanoVue Plus spectrophotometer (GE Healthcare), 500 ng cDNA was utilized as a template for amplification of TMPRSS2-ERG fusion using Hot Start Taq 2X Master Mix (New England Biolabs) and GeneAmp PCR System 2700 thermal cycler (Applied Biosystems). The forward and reverse PCR primers for T1/E4 fusion included 5’-TAAGGCGGAGCTAAGCAGGAG-3’ and 5’-CCATAT TCTTACCACCCTGCT-3’ (Integrated DNA Technologies). ERG isoform-6 primers were 5’-GGTAC-GAAAACACCGTCTG-3’ (forward) and 5’-CCAAATCAACA-GAGGCAGAA-3’ (reverse); the total ERG primers were 5’-AA CGAGGCCAGATGTATCG-3’ (forward) and 5’-GTGAGCCTCT TGGAAAGTCGTC-3’ (reverse). The final volume was 25 μl, and an initial denaturation step of 95 °C for 5 min was followed by 40 cycles of 95 °C for 30 s, 59 °C for 30 s, 72 °C for 30 s, and one cycle at 72 °C for 5 min. T1/E4 fusion, isoform-6, and total ERG cDNA were detected by 2% agarose gel electrophoresis (supplemental Fig. S1).

Immunoprecipitation

Rabbit monoclonal anti-ERG antibody EPR3864(2) (C-term epitope PNTRLPTSHMPH; Abcam), mouse monoclonal antibody 9FY (N-term epitope KMSPRVPQDWDLS; BioCare Medical), and mouse monoclonal antibody OTI5F12 (epitope unknown; Origene Technologies) were used as capture antibodies for the enrichment of ERG protein from cell lysates (Fig. 1B). Rabbit polyclonal antibody GTX129433 (Genetex) was used to enrich ARI1A_HUMAN. Two microliters of antibody (Jackson Immunoresearch Labs) was first coated on plates for 9FY antibody pull-down. After washing with 0.1% Tween 20 in PBS (washing buffer; three times with 200 μl), the plate was blocked for 1 h at RT with 200 μl of blocking buffer (2% BSA in wash buffer). The washing step was repeated, followed by addition of 80 μg total protein VCaP lysates per well and dilution to 100 μl with the dilution buffer (0.1% BSA in wash buffer, 0.2 μm-filtered). After 2 h incubation...
with continuous shaking, the plate was finally washed three times with 200 μl washing buffer and three times with 50 mM ammonium bicarbonate. Proteins were digested with trypsin (0.25 ng per well). Heavy isotope-labeled peptide internal standards were mixed and diluted to 100 fmol/μl. Three microliters of the internal standard mixture was spiked into each sample before (SpikeTides_TQL peptides) or after (SpikeTides_L peptides) trypsin digestion, and each digest was analyzed in triplicates (10 μl per injection). For the interactome studies, antibody isotype controls included: (i) anti-FOLH1 mouse monoclonal antibody (clone 3B5, Abnova) as an IgG1 isotype control for OTI5F12 and 9FY antibodies; (ii) anti-KLK3 rabbit monoclonal antibody (Sino Biological) as an IgG isotype control for EPR3864(2) antibody.

Selection of Tryptic Peptides and Development of SRM Assays

Peptide Atlas, neXtProt database, and our in-house Ion Trap shotgun MS data were used to select best peptides for the total ERG, or peptides unique and shared by specific isofoms. Excision of the N-term methionine, N-term acetylation, and serine and threonine phosphorylation were selected as potential posttranslational modifications of a unique N-term peptide MTASSSSDYGQTSK of T1/E4 fusion. In total, 14 synthetic heavy isotope-labeled SpikeTides_L peptides were used as internal standards for the Tier 2 SRM assay development (supplemental Table S2). Initially, 28 heavy and light peptide pairs (280 transitions) were included into a multiplex unscheduled SRM method with 5 ms scan time per transition. Based on the SRM peak area, main charge states and collision energies for each peptide were determined, and poorly performing peptides were removed. Low-intensity transitions and transitions with interferences with the VCaP cell lysate were removed. Finally, six best peptides with three or four most intense and reproducible transitions per peptide (42 transitions) were scheduled within 2-min acquisition windows (supplemental Table S3). Scan time of 10 ms ensured acquisition of at least 20 points per peak. Superposition of light and heavy peptide peaks, peak shapes, and the order of y-ion transition intensities ensured the correct identities of peptides in the cell lysate (31, 32). Amounts of the light endogenous peptides were calculated using the peak area ratio of the spiked-in heavy peptide internal standards. To enable accurate and absolute quantification, heavy isotope-labeled SpikeTides_TQL peptides with the trypsin-cleavable JPT-tags [serine-alanine-(3-nitro)tyrosine-glycine] were finally used as internal standards.

Chromatography and Shotgun Mass Spectrometry

A quadrupole ion-trap mass spectrometer (AB SCIEX QTRAP 5500) coupled to EASY-nLC II liquid chromatography (Thermo Scientific) via a NanoSpray III ion source (AB SCIEX) was used for SRM assays. The tryptic peptides were loaded at 5 μl/min onto a C18 trap column (Thermo Scientific, 100 μm ID × 2 cm, 5 μm, 120 Å). Peptides were separated with PicoFrit columns (New Objective, 15 cm × 75 μm ID, 8 μm tip, PepMap C18, 3 μm, 100 Å) and 28 min gradients (300 nl/min). The gradient started with 5% buffer B and ramped to 65% buffer B over 20 min, then to 100% buffer B within 1 min, and continued for 7 min. QTRAP 5500 parameters were: 2300 V ion spray; 75 °C source temperature; 2.0 arbitrary units for gas 1 (N2), 0 arbitrary units for gas 2; 25 arbitrary units for curtain gas (N2); and 100 V declustering potential. Q Exactive Hybrid Quadrupole-Orbitrap (Thermo Scientific) coupled to EASY-nLC 1000 (Thermo Scientific) was used for PRM assays. The mobile phase consisted of 0.1% formic acid in water (buffer A) and 0.1% formic acid in acetonitrile (buffer B). Acclaim PepMap 100 nanoViper C18 precolumn (Thermo Scientific, 100 μm ID×2 cm, 5 μm, 100 Å) was used for sample loading, while EASY-Spray C18 (Thermo Scientific, 15 cm × 75 μm ID, 3 μm, 5 μm) was used as an analytical column. An 18-min gradient (400 nl/min) started with 0% buffer B and ramped to 50% buffer B over 15 min, then to 100% buffer B within 1 min, and continued for 2 min. PRM scans were performed at 17.5 K resolution with 27% normalized collision energy. Automatic Gain Control target value was set to 3 × 10^6 (100 ms injection time; 2.0 m/z isolation width). The performance of the nanoLC-MS systems was assessed every six runs with BSA digest solution (10 μl of 20 fmol/μl).

IP-SRM Assessment of Interactome Disruption by Synthetic 9FY Epitope Peptides

The ERG interactome was identified using Orbitrap Elite Hybrid Ion Trap-Orbitrap mass spectrometer (Thermo Scientific) coupled to EASY-nLC II liquid chromatography. The peptides were eluted at 300 nl/min with a 2-h gradient: 5% B for 5 min, 5 to 35% B for 95 min, 35 to 65% B for 10 min, 65 to 100% B for 1 min, and 100% B for 9 min. LC-MS/MS data were acquired with XCalibur (v. 2.2). MS1 scans (400–1250 m/z) were performed at 80 K resolution in the profile mode, followed by top 20 ion trap centroid MS/MS, acquired at 33% normalized collision energy. Ion counts were set to 1 × 10^6 (FTMS; 200 ms injection time) and 9000 (MS/MS; 100 ms injection time). MS/MS acquisition settings included 500 minimum signal threshold, 2.0 m/z isolation width, 10 ms activation time, and 60 s dynamic exclusion. Monoisotopic precursor selection and charge state rejection were enabled; +1 and unknown charge states were rejected. Instrument parameters included 230 °C capillary temperature, 2.0 kV source voltage, and 67% S-lens RF level.
duplicates), 9FY epitope peptides were added at 0, 200, 400, and 800 μM (in 100 μl PBS) and incubated overnight at RT, followed by three washings and trypsin digestion (0.25 μg per well). SpikeTides_L peptides (200 fmol per well) were used for the accurate relative quantification of seven ERG-interacting proteins (supplemental Table S4). Each analytical replicate was analyzed in technical duplicates using the Tier 2 PRM assays and Q Exactive mass spectrometer.

Lysis and Sample Preparation of Prostate Cancer FFPE Tissues

Thirteen FFPE prostate cancer prostatectomy tissue blocks (ten TMPRSS2-ERG positive and three negative) were obtained from the University of Calgary (Ethics approval #HRE-BA.CC-14-0085). TMPRSS2-ERG positive areas were marked (ten TMPRSS2-ERG positive and three negative) were observed with 100 fmol/injection SpikeTides_TQL standards, two analytical replicates, and two technical replicates (36 injections in total). For the preliminary quantification of the TMPRSS2-ERG protein isoforms, VCaP cell lysates were subjected to IP by the C-term, N-term, and 5F12 mAbs, or matched no-Ab controls, and were analyzed by the single-point titration with 100 fmol/injection SpikeTides_TQL heavy peptide internal standards, three analytical replicates, and two technical replicates (36 injections in total). According to effect size calculations, IP-SRM analysis with three analytical replicates could detect at least 17% change in ERG peptide abundance, respectively, assuming 80% power, α = 0.05, average CV 5% for analytical replicates in our IP-SRM experiments, and a two-tailed paired t-test (G*Power software, v3.1.7, Heinrich Heine University Dusseldorf). For more accurate titration, VCaP cell lysates were subjected to IP by the C-term and N-term mAbs and were analyzed with 15, 20 fmol/injection SpikeTides_TQL standards, two analytical replicates, and two technical replicates (24 injections in total). To measure ERG and its isoforms in clinical samples (exploratory stage), 13 FFPE samples (ten positive and three negative for TMPRSS2-ERG fusion) were selected. Due to the low amounts of tissue, only one analytical and two technical replicates were analyzed per sample. For the interactome study, VCaP cell lysates were subjected to IP by the C-term, N-term, and 5F12 mAbs, or matched isotype mAb controls, and were analyzed with three analytical and two technical replicates (36 injections). According to effect size calculations, IP-MS analysis with three analytical replicates could identify proteins up- or down-regulated at least 1.09-fold, assuming 80% power, α = 0.05, average CV 5% for analytical replicates in our IP-MS experiments, and a two-tailed paired t-test (G*Power software, v3.1.7, Heinrich Heine University Dusseldorf).

MS Data Analysis

SRM and PRM raw files were analyzed with Skyline Targeted Proteomics Environment v20.1.0.76 (MacCoss Lab) (34). Peak boundaries were adjusted manually, and the integrated areas of all transitions were extracted. Light-to-heavy peak area ratios were used for accurate relative or absolute quantification of the endogenous peptides. Shogun MS data were searched against the reviewed human UniProtKB/Swiss-prot database (20,365 entries, Uniprot release 2020.03) using MaxQuant software (v1.6.3.4) (35). Search parameters...
TMPRSS2-ERG isoforms and interactome

TABLE 1

TMPRSS2-ERG protein isoform	Length(aa)	Relative abundance (%)	Corresponding wildtype ERG protein isoforms (UniProt)	Corresponding mRNA isoforms (Ensembl)
T1E4-ERG	447	52.3 ± 2.7	Isoform 1 (P11308-4)	ENST00000288319.12
			Isoform 2 (P11308-3)	ENST00000398919.6
T1E4-ERG_Δ7b	423	9.5 ± 1.0	Isoform 3 (P11308-1) B5MDW0_HUMAN	ENST00000417133.6
T1E4-ERG_Δ4	387	32.9 ± 2.1	A0A0C4DG41_HUMAN	ENST00000398911.5
T1E4-ERG_Δ4Δ7b	363	5.3 ± 2.3	Isoform 4 (P11308-2)	ENST00000398897.5
T1E4-ERG_7bpA	286	n/d	Isoform 6 (P11308-6)	ENST00000468474.5

Δ4 and Δ7b, isoforms arising due to missing exons 4 or 7b; 7bpA, an isoform arising due to an alternative polyadenylation site; n/d, not detected; T1E4, fusion of TMPRSS2 exon 1 with ERG exon 4.

Protein isoform naming is according to Zambrini et al. [64].

*Protein length includes the N-terminal methionine.

TABLE 1

TMPRSS2-ERG protein isoform	Length(aa)	Relative abundance (%)	Corresponding wildtype ERG protein isoforms (UniProt)	Corresponding mRNA isoforms (Ensembl)
T1E4-ERG	447	52.3 ± 2.7	Isoform 1 (P11308-4)	ENST00000288319.12
T1E4-ERG_Δ7b	423	9.5 ± 1.0	Isoform 3 (P11308-1) B5MDW0_HUMAN	ENST00000417133.6
T1E4-ERG_Δ4	387	32.9 ± 2.1	A0A0C4DG41_HUMAN	ENST00000398911.5
T1E4-ERG_Δ4Δ7b	363	5.3 ± 2.3	Isoform 4 (P11308-2)	ENST00000398897.5
T1E4-ERG_7bpA	286	n/d	Isoform 6 (P11308-6)	ENST00000468474.5

Δ4 and Δ7b, isoforms arising due to missing exons 4 or 7b; 7bpA, an isoform arising due to an alternative polyadenylation site; n/d, not detected; T1E4, fusion of TMPRSS2 exon 1 with ERG exon 4.

Protein isoform naming is according to Zambrini et al. [64].

*Protein length includes the N-terminal methionine.

Results

Selection of ERG Protein Isoforms

RNA sequencing data available at the Cancer Cell Line Encyclopedia (CCLE) and DeepMap database (v2; https://depmap.org [37]) revealed that only six protein-coding mRNA isoforms were expressed in VCaP cells (supplemental Table S1). Our rationale for consideration of the endogenous ERG isoforms was based on the following facts: (i) VCaP cells had four copies of chromosome 21 [38], of which only two harbored T1/E4 TMPRSS2-ERG fusion and expressed TMPRSS2-ERG mRNA and a truncated ERG protein; (ii) similar to other prostate cancer cells, wild-type chromosomes 21 did not express any full length ERG (supplemental Table S5 and supplemental Fig. S2); (iii) mRNA T1/E4 isoforms 1 and 2, as well as isoforms 3 and B5MDW0, were identical at the protein level (Table 1); (iv) protein-coding mRNA isoforms 5, A0A0B8AWP2, A8MX39, and A8MZ24 were not expressed in VCaP cells. As a result, we considered five protein isoforms for further investigation (Table 1).

To measure the expression and relative abundance of ERG protein isoforms, tryptic peptides for the total ERG, peptides shared by some isoforms, or peptides unique for specific isoforms were selected. Among five protein isoforms, only T1E4-ERG_7bpA had unique peptides (Fig. 1C). The remaining four isoforms could be distinguished using combinations of the shared tryptic peptides VPQQDWLSQPPAR, NTDLPYEPPR, and ITTRPDLPYEPPR (Fig. 1C). Since isoforms T1E4-ERG_Δ4Δ7b and T1E4-ERG_Δ4 were lacking the N-term exon 4 (including KMSRVPQDWSLQPQ epitope of the 9FY mAb), immunoprecipitation with either the N-term 9FY or C-term EPR3864(2) antibodies followed by quantification of the shared and total ERG peptides would unambiguously resolve relative abundances of these four ERG isoforms. Quantification of TMPRSS2-ERG Protein Isoforms by Orthogonal IP-SRM Assays

ERG protein was immunoprecipitated from VCaP cell lysate with three different anti-ERG mAbs. Following trypsin digestion,
ERG protein was quantified by SRM using trypsin-cleavable SpikeTides_TQL internal standard peptides (supplemental Table S6), to enable absolute quantification (Fig. 2A). Figure 2B shows extracted-ion chromatograms of transitions monitored for the unique ERG peptides in VCaP lysate. ERG peptides detected in VCaP lysate by three different antibodies are listed in Table 2 and supplemental Table S7. The recovery of ERG after IP was estimated at ~90% (relative to the total ERG measured in the direct digest of VCaP cells). IP-SRM assays revealed excellent reproducibility, with coefficient of variation (CV) below 10% (Table 2). Limit of detection of IP-SRM, as estimated with serial dilutions of VCaP lysate, was 93.6 amol/μg total protein or ~10,000 cells (supplemental Fig. S3). Three antibodies displayed similar efficiency of capturing total ERG protein (69–84%; Fig. 2C and supplemental Table S6). Based on the cell count, the amount of total ERG was estimated at 2.2 fg per VCaP cell (~27,000 copies/cell), which was in good agreement with the previously reported levels (1.8 fg per cell) (29).

While mRNA isoform-6 was expressed at high levels (supplemental Fig. S4), none of the unique peptides of the corresponding protein isoform T1E4-ERG_7bpA were detected in VCaP cells (supplemental Fig. S5). Detection of the mutually exclusive peptides ITTRPDLPYEPPR and NTDLPYEPPR indicated expression of at least two distinct ERG isoforms (Fig. 2B). Based on our data (Table 2, supplemental Table S9, and supplemental Text), the relative abundance of four ERG isoforms was estimated at 52.3 ± 2.7% (T1E4-ERG), 9.5 ± 1.0% (T1E4-ERG_Δ7b), 32.9 ± 2.1% (T1E4-ERG_Δ4), and 5.3 ± 2.3% (T1E4-ERG_Δ4Δ7b). To the best of our knowledge, the relative abundance of endogenous ERG isoforms, as well as lack of expression of the shortest isoform T1E4-ERG_7bpA (P11308-6) missing ETS domain was quantified for the first time.

Identification of the N-terminal Peptide of T1E4 TMPRSS2-ERG Protein

Tryptic digestion of T1E4-ERG and T1E4-ERG_Δ7b isoforms (~62% of the total ERG in VCaP cells) should generate a unique N-terminal peptide MTASSSSDYGQTSK (as opposed to the wild-type ERG peptide TEMTASSSSDYGQTSK). However, this unique peptide has never been identified in previous studies (29, 30). We hypothesized that the N-terminus of ERG could be further modified by acetylation, methionine cleavage, or threonine and serine phosphorylation. The challenge to detect a low-abundance fusion-specific peptide was our initial
TMPRSS2-ERG isoforms and interactome

motivation. We then realized that the knowledge of the N-terminal modifications of ERG could be important to explore a presumably increased stability of TMPRSS2-ERG protein (39), or facilitate development of therapeutic strategies for degradation (40) of the fusion-derived, but not the wild-type ERG.

To reveal the N-terminal identity of T1/E4 TMPRSS2-ERG protein, we searched IP-MS/MS data for peptides modified with the N-terminal acetylation, N-terminal methionine truncation, and phosphorylation of threonine, serine, and tyrosine. Our search identified a peptide N-acetyl-TASSSSDYGQTSK, with the near-complete series of y- and b-fragment ions (Fig. 3A). Additional search of unreviewed TrEMBL sequences did not provide any nonstandard isoforms. We then confirmed the N-terminal identity of the T1/E4 TMPRSS2-ERG protein with more sensitive IP-SRM assays using internal standards (41), were found.

Identification of ERG Interactome

We hypothesized that orthogonal IP-MS/MS assays with the N-term and C-term antibodies could elucidate the most complete interactome of the endogenous ERG. First, we optimized conditions for the mild cell lysis. Several non-denaturing detergents (24), including (i) 0.1% Rapigest; (ii) modified IP lysis buffer (0.1% Rapigest, 1% NP-40, 0.1% sodium deoxycholate), and (iii) 0.5% SDS with 0.5% NP-40 were tested, and 0.1% Rapigest was selected based on the completeness of the cell lysis, total protein amount, and ERG recovery.

Following concurrent immunoprecipitation with the N-term, C-term, and 5F12 mAbs, ERG interactomes were identified by shotgun MS with the label-free quantification. MaxQuant search resulted in identification and quantification of 449 proteins (supplemental Table S10). As opposed to shotgun MS of the VCaP direct digest (no ERG identified), IP-MS identified ERG with eight unique peptides, including some isoform-specific peptides (supplemental Fig. S6).

The amounts (L/H ratios) and coefficients of variation (CV) were calculated based on analytical duplicates with spiked heavy standards of 1, 5, and 20 fmol per injection. Detailed data are presented in supplemental Table S9.

Table 2

Quantification of TMPRSS2-ERG isoform razor peptides by IP-SRM in VCaP cells

Shared and unique peptides	ERG isoforms	C-term mAb; L/H ratio (CV%)	N-term mAb; L/H ratio (CV%)				
		20 fmol	5 fmol	1 fmol	20 fmol	5 fmol	1 fmol
VIVPADPTLWSTDHVR	Total ERG (all five isoforms)	0.363 (1.4)	1.680 (4.2)	7.320 (3.4)	0.424 (3.8)	1.817 (3.9)	7.854 (4.2)
VPOQDWLSQOPPAR	T1E4-ERG; T1E4-ERG_{Δ7b}; T1E4-ERG_{Δ7b}	0.236 (1.6)	1.027 (4.1)	4.338 (9.0)	0.451 (2.4)	1.960 (2.4)	9.001 (6.4)
ITRPDLPYEPPR	T1E4-ERG; T1E4-ERG_{Δ4}	0.104 (2.7)	0.395 (4.4)	1.721 (4.6)	0.116 (13)	0.441 (6.3)	2.041 (1.8)
NTDLPYEPPPR	T1E4-ERG_{Δ7b}; T1E4-ERG_{Δ4Δ7b}	0.017 (12)	0.069 (5.6)	0.322 (12)	0.023 (9.5)	0.074 (14)	0.369 (4)
TPLCDLFIER	T1E4-ERG_{Δ7b}	0	0	0	0	0	0

The amounts (L/H ratios) and coefficients of variation (CV) were calculated based on analytical duplicates with spiked heavy standards of 1, 5, and 20 fmol per injection. Detailed data are presented in supplemental Table S9. We then confirmed the presence of N-acetyl-TASSSSDYGQTSK peptide (Fig. 3C). No phosphorylation of threonine or serine, as opposed to previous studies on ERG overexpressed in 293T cells (41), were found.

Identification of ERG Interactome

We hypothesized that orthogonal IP-MS/MS assays with the N-term and C-term antibodies could elucidate the most complete interactome of the endogenous ERG. First, we optimized conditions for the mild cell lysis. Several non-denaturing detergents (24), including (i) 0.1% Rapigest; (ii) modified IP lysis buffer (0.1% Rapigest, 1% NP-40, 0.1% sodium deoxycholate), and (iii) 0.5% SDS with 0.5% NP-40 were tested, and 0.1% Rapigest was selected based on the completeness of the cell lysis, total protein amount, and ERG recovery.

Following concurrent immunoprecipitation with the N-term, C-term, and 5F12 mAbs, ERG interactomes were identified by shotgun MS with the label-free quantification. MaxQuant search resulted in identification and quantification of 449 proteins (supplemental Table S10). As opposed to shotgun MS of the VCaP direct digest (no ERG identified), IP-MS identified ERG with eight unique peptides, including some isoform-specific peptides (supplemental Fig. S6).

The amounts (L/H ratios) and coefficients of variation (CV) were calculated based on analytical duplicates with spiked heavy standards of 1, 5, and 20 fmol per injection. Detailed data are presented in supplemental Table S9. We then confirmed the presence of N-acetyl-TASSSSDYGQTSK peptide (Fig. 3C). No phosphorylation of threonine or serine, as opposed to previous studies on ERG overexpressed in 293T cells (41), were found.

Identification of ERG Interactome

We hypothesized that orthogonal IP-MS/MS assays with the N-term and C-term antibodies could elucidate the most complete interactome of the endogenous ERG. First, we optimized conditions for the mild cell lysis. Several non-denaturing detergents (24), including (i) 0.1% Rapigest; (ii) modified IP lysis buffer (0.1% Rapigest, 1% NP-40, 0.1% sodium deoxycholate), and (iii) 0.5% SDS with 0.5% NP-40 were tested, and 0.1% Rapigest was selected based on the completeness of the cell lysis, total protein amount, and ERG recovery.

Following concurrent immunoprecipitation with the N-term, C-term, and 5F12 mAbs, ERG interactomes were identified by shotgun MS with the label-free quantification. MaxQuant search resulted in identification and quantification of 449 proteins (supplemental Table S10). As opposed to shotgun MS of the VCaP direct digest (no ERG identified), IP-MS identified ERG with eight unique peptides, including some isoform-specific peptides (supplemental Fig. S6).

The amounts (L/H ratios) and coefficients of variation (CV) were calculated based on analytical duplicates with spiked heavy standards of 1, 5, and 20 fmol per injection. Detailed data are presented in supplemental Table S9. We then confirmed the presence of N-acetyl-TASSSSDYGQTSK peptide (Fig. 3C). No phosphorylation of threonine or serine, as opposed to previous studies on ERG overexpressed in 293T cells (41), were found.
result on interactome differences suggested that some antibodies could interfere or disrupt protein–protein interactions of ERG. We previously observed similar antibody-mediated disruptions of protein–protein interactions for the TEX101-DPEP3 complex (46). Here, this finding motivated us to investigate further if the ERG interactome could be disrupted by short synthetic peptides representing the binding epitope of the N-term mAb, thus paving the way for development of potential disruptors of the oncogenic ERG interactomes.

Independent Verification of ERG-Interacting Proteins by PRM

To verify some ERG-interacting proteins, we developed parallel reaction monitoring (PRM) assays for the most interesting ERG-interacting proteins, including some cBAF complex subunits (ARI1A_HUMAN, SMCA2_HUMAN, and SMCE1_HUMAN), androgen receptor (ANDR_HUMAN), nuclear receptor coactivators (NCOA2_HUMAN and NOCA6_HUMAN), and a transcriptional coregulator EWS. Targeted assays with the heavy peptide internal standards facilitated precise measurements of protein relative abundances and more accurate estimation of differential enrichments, as previously demonstrated (25, 47). Interestingly, independent verification revealed potentially three groups of ERG-interacting proteins: 1) strong and moderate ERG binders disrupted by the N-term antibody (NCOA2_HUMAN, NCOA6_HUMAN, and ARI1A_HUMAN); 2) a strong ERG binder not disrupted by the N-term antibody (EWS_HUMAN); and 3) weak ERG binders (supplemental Table S12).
It should be noted that while additional experiments with reciprocal IP-SRM and polyclonal anti-ARI1A antibodies successfully enriched ARI1A_HUMAN (110-fold versus isotype control), neither total ERG or its isoforms were detected. That result could be explained by the lower sensitivity of the ERG peptide assays, saturation of polyclonal anti-ARI1A antibodies with ARI1A_HUMAN paralogs (VCaP cells expressed six proteins of the AT-rich interactive domain-containing family (48), with 30–60% sequence identity), or lower stability of massive cBAF complexes (~2000 kDa) during IP-SRM. Overall, protein–protein interactions of cBAF are heterogeneous and dynamic; cBAF complexes simultaneously interact with numerous transcriptional activators. Our ERG C-term IP-SRM data estimated that only 1 in 50 ERG molecules interacted with ARI1A_HUMAN. We could suggest that the reciprocal IP-SRM assays for verification of cBAF interactions might utilize mAbs generated against known and unique epitopes with no cross-reactivity to the numerous paralogs of cBAF subunit proteins.

Evaluation of ERG Interactome Disruption by the N-term Epitope Peptides

Since the N-term mAb could potentially disrupt ERG interactome, we hypothesized that synthetic peptides representing minimal or extended epitopes (RVPQQDWL and KMSPRVPQQDWLSQ (49), respectively) could also disrupt interactions between ERG protein and its interactome. First, we confirmed by IP-PRM that both peptides had no effect on ERG enrichment by the C-term mAb, but disrupted ERG enrichment by the N-term mAb. Following that, we evaluated the impact of a minimal epitope peptide RVPQQDWL on co-IP of some ERG-interacting proteins. As a result, only small changes were observed at very high RVPQQDWL concentrations (800 μM; Fig. 5A, supplemental Table S13). We concluded that the minimal epitope peptide was not a strong candidate for the disruption of ERG-interacting proteins (EC50 in mM range, if any at all).

Impact of the N-term Epitope Peptides on Proliferation and Morphology of VCaP Cells

We also evaluated the impact of a minimal epitope peptide RVPQQDWL on proliferation and morphology of VCaP cells. The cell-permeable N-term epitope peptides were conjugated to the cationic HIV-TAT motif GRKKRRQRRRG, to facilitate uptake into VCaP cells (50). As a result, we found that the cell-permeable N-term epitope peptides (400 μM) had no impact on VCaP proliferation (Fig. 5B, supplemental Table S14) or morphology (Fig. 5C).

Measurement of TMPRSS2-ERG Isoforms in Prostate Cancer FFPE Tissues by IP-SRM Assays

Quantification of four distinct TMPRSS2-ERG isoforms in VCaP cells motivated us to explore isoform identity in prostate cancer tissues.
cancer clinical samples. While FFPE tissues appear as the most challenging samples for proteomics, FFPE samples are widely available, have detailed clinical information, and include large amounts of tissue (radical prostatectomy FFPEs). Here, we obtained radical prostatectomy FFPEs blocks with positive (N = 10) and negative (N = 3) tissues for TMPRSS2-ERG fusion (as assessed by ERG IHC staining), and developed an IP-SRM-compatible protocol for protein extraction and quantification. Both C-term and N-term mAbs could enrich ERG protein even after intense tissue homogenization, probe sonication, and rigorous protein denaturation at high temperature in the presence of detergents.

As a result, total ERG protein was quantified by IP-SRM in six and ten fusion-positive FFPEs, with C-term and N-term mAbs, respectively (Fig. 6, A and B). LOD of the N-term mAb (0.39 fmoles on column; S/N = 3) was low enough to differentiate between fusion-positive and negative FFPEs. Median ERG levels in ERG-positive tissues were 1.5 [IQR 1.2–1.6] fmoles on column. In addition, our C-term and N-term IP-SRM were sensitive enough to measure low-abundance isoform-specific peptides in five FFPE samples (Fig. 6B and supplemental Table S15). Interestingly, IP-SRM with the N-term mAb could also detect a low-abundance fusion-specific peptide Ac-TASSSSDYGQTSK in three fusion-positive FFPEs. Collectively, our data (Fig. 6) revealed that T1E4-ERG was the dominant isoform both in VCaP cells (52 ± 3%) and prostate-cancer FFPE tissues (50 ± 11%). These new data on expression of distinct ERG isoforms warrant further investigation on their association with progression and aggressiveness of prostate cancer.

Measurement of TMPRSS2-ERG in FFPE Tissues by TRF-ELISA

To facilitate independent validation of IP-SRM data in FFPE tissues, we developed in-house a highly sensitive (60 pg/ml LOD) and reproducible time-resolved fluorescence ELISA using the C-term and 5F12 mAbs for ERG capture and detection, respectively. TRF-ELISA revealed ERG levels below LOD in three ERG-negative FFPE lysates, and ERG levels ranging from 0.4 to 2.7 ng/ml in eight ERG-positive FFPE lysates (Fig. 6A, supplemental Fig. S9 and supplemental Table S16).

It should be noted that colorimetric ELISA for ERG protein (300 pg/ml LOD) has previously been reported (29), with the N-term mAb (9FY) used as a capture antibody (lacking detection of Δ4 ERG isoforms: T1E4-ERG_Δ4 and T1E4-ERG_Δ4Δ7b). Even though the epitope of 5F12 mAb was not known, our IP-SRM data suggested that 5F12 enriched Δ4 ERG isoforms (based on VPQQDWLSQPAR/VIVPADPTLWSTDHVR ratios of 0.85 ± 0.04, 0.78 ± 0.01, and 1.28 ± 0.02 for the C-term, 5F12, and N-term mAbs, respectively; supplemental Table S7). In future, our ELISA and IP-SRM assays may facilitate development of ERG isoform-specific ELISA and evaluate clinical significance of total ERG (ELISA with the C-term capture and 5F12 detection mAbs) versus clinical significance of isoforms

Fig. 5. Assessment of the ERG interactome disruption by synthetic 9FY epitope peptides. A, ERG-interacting proteins were enriched from the VCaP lysate using the C-term mAb, incubated with the increasing amounts of 9FY epitope peptide RVPQQDWL, and quantified by PRM assay. No significant differences were observed. B, confluence of VCaP cells treated with 400 μM epitope peptides (including peptides with the cell-permeable HIV-TAT sequences) and grown for 4 days. C, comparison of VCaP cell morphology untreated, treated with 400 μM RVPQQDWLSQ-TAT and TAT peptides for 4 days. No differences in cell morphology were observed.
Proteomics by mass spectrometry advanced to the level of identification and quantification of nearly whole proteomes of human cells (~12,000 proteins per cell) (48). However, quantification of low-abundance cellular proteins, such as transcription factors, may still require extensive sample fractionation or protein enrichment approaches. Distinct isoforms of transcription factors may present particular interest due to their different, or even opposite, molecular functions (for example, dominant-negative effects of the N-terminally truncated isoform ER\textalpha\text{46} of the estrogen receptor alpha (51)).

While mRNA isoforms are routinely measured (37), elucidation of the identity, abundance, and function of the distinct protein isoforms is still challenging and may be considered as one of the milestones of proteomics and proteogenomics (52–54).

IP-MS and IP-SRM assays have recently gained considerable interest due to their high sensitivity and selectivity for quantification of low-abundance proteins in cells and biological fluids (55). Immunoprecipitation substantially reduces sample complexity and facilitates quantification of multiple peptides per protein, thus enabling resolution of splicing isoforms and in-depth analysis of posttranslational modifications. In our previous studies, IP-SRM assays were successfully utilized to quantify low-abundance kallikrein-related peptidases (56), resolve protein isoforms (57), screen for antibody clones (58), discover the TEX101-DPEP3 complex (46), and detect a low-abundance missense variant of TEX101 protein (59). In this study, we focused on development of IP-MS and IP-SRM assays for a low-abundance fusion protein TMPRSS2-ERG. While the TMPRSS2-ERG gene fusion was found in nearly 50% of prostate cancer cases (60), and while its mRNA expression has been well characterized, clinical significance of TMPRSS2-ERG (for example, association with the more aggressive cancer (14, 15)) is still conflicting. Here, we hypothesized that IP-MS and IP-SRM would emerge as novel assays to characterize TMPRSS2-ERG fusion protein, quantify its levels in cells and tissues, elucidate its N-terminal posttranslational modifications, resolve the identity and abundance of TMPRSS2-ERG protein isoforms, and discover TMPRSS2-ERG interactome.

Wild-type ERG is a transcription factor expressed in endothelial cells and implicated in vascular development and angiogenesis (61). ERG expression is negligible in normal prostate tissues and prostate epithelial and stromal cells. Only two prostate cancer cell lines harbor TMPRSS2-ERG gene fusion and express measurable amounts of ERG transcripts: VCaP (~50,000-fold higher expression versus baseline expression in prostate stromal cells) and NCI-H660 (~6,000-fold) (62). Oncogenic nature of ERG protein is mediated through its function as a transcription factor, which promotes cell migration and cancer progression (63).

While ERG protein can now be identified in the direct digest of VCaP cells using the most powerful mass spectrometry instruments (48), ERG isoforms still cannot be fully resolved without extensive fractionation or protein enrichment approaches. He et al. previously pioneered quantification of ERG protein with two-dimensional liquid chromatography and targeted SRM assays (29, 30). ERG levels in VCaP cells were estimated at 1.8 fg per cell, which was in agreement with our IP-SRM data (2.2 fg, or ~27,000 copies per cell).

FIG. 6. Measurement of the TMPRSS2-ERG protein isoforms in prostate cancer FFPE tissues. A, thirteen prostatectomy FFPE tissue blocks with the known ERG IHC status were subjected to lysis and proteins extraction, followed by ERG quantification with TRF ELISA and IP-SRM. Three ERG IHC-negative samples (−) revealed total ERG below LOD of ELISA (60 pg/ml) and IP-SRM (0.39 femoles on column; S/N = 3). One sample (C13) could not be homogenized. n/a, not available for measurements. B, relative abundances of ERG isoforms in VCaP cells and five FFPE tissues were calculated based on IP with the C-term and N-term mAbs and SRM measurements.

T1E4-ERG and T1E4-ERG\text{Δ7b} (ELISA with the N-term capture and 5F12 detection mAbs).

DISCUSSION

Proteomics by mass spectrometry advanced to the level of identification and quantification of nearly whole proteomes of human cells (~12,000 proteins per cell) (48). However, quantification of low-abundance cellular proteins, such as transcription factors, may still require extensive sample fractionation or protein enrichment approaches. Distinct isoforms of transcription factors may present particular interest due to their different, or even opposite, molecular functions (for example, dominant-negative effects of the N-terminally truncated isoform ER\textalpha\text{46} of the estrogen receptor alpha (51)). While mRNA isoforms are routinely measured (37), elucidation of the identity, abundance, and function of the distinct protein isoforms is still challenging and may be considered as one of the milestones of proteomics and proteogenomics (52–54).

IP-MS and IP-SRM assays have recently gained considerable interest due to their high sensitivity and selectivity for quantification of low-abundance proteins in cells and biological fluids (55). Immunoprecipitation substantially reduces sample complexity and facilitates quantification of multiple peptides per protein, thus enabling resolution of splicing isoforms and in-depth analysis of posttranslational modifications. In our previous studies, IP-SRM assays were successfully utilized to quantify low-abundance kallikrein-related peptidases (56), resolve protein isoforms (57), screen for antibody clones (58), discover the TEX101-DPEP3 complex (46), and detect a low-abundance missense variant of TEX101 protein (59). In this study, we focused on development of IP-MS and IP-SRM assays for a low-abundance fusion protein TMPRSS2-ERG. While the TMPRSS2-ERG gene fusion was found in nearly 50% of prostate cancer cases (60), and while its mRNA expression has been well characterized, clinical significance of TMPRSS2-ERG (for example, association with the more aggressive cancer (14, 15)) is still conflicting. Here, we hypothesized that IP-MS and IP-SRM would emerge as novel assays to characterize TMPRSS2-ERG fusion protein, quantify its levels in cells and tissues, elucidate its N-terminal posttranslational modifications, resolve the identity and abundance of TMPRSS2-ERG protein isoforms, and discover TMPRSS2-ERG interactome.

Wild-type ERG is a transcription factor expressed in endothelial cells and implicated in vascular development and angiogenesis (61). ERG expression is negligible in normal prostate tissues and prostate epithelial and stromal cells. Only two prostate cancer cell lines harbor TMPRSS2-ERG gene fusion and express measurable amounts of ERG transcripts: VCaP (~50,000-fold higher expression versus baseline expression in prostate stromal cells) and NCI-H660 (~6,000-fold) (62). Oncogenic nature of ERG protein is mediated through its function as a transcription factor, which promotes cell migration and cancer progression (63).

While ERG protein can now be identified in the direct digest of VCaP cells using the most powerful mass spectrometry instruments (48), ERG isoforms still cannot be fully resolved without extensive fractionation or protein enrichment approaches. He et al. previously pioneered quantification of ERG protein with two-dimensional liquid chromatography and targeted SRM assays (29, 30). ERG levels in VCaP cells were estimated at 1.8 fg per cell, which was in agreement with our IP-SRM data (2.2 fg, or ~27,000 copies per cell).

ERG mRNA isoforms were previously characterized in cells and prostate cancer tissues (64). As opposed to the total ERG mRNA, isoform–6 (previously known as ERG8 or isoform–8) was associated with more favorable outcomes of prostate cancer (12). Corresponding T1E4-ERG\text{Δ7b} protein (lacking DNA-binding ETS domain essential for transcriptional activation) was suggested as a hypothetical inhibitor of the ERG-mediated gene expression (19, 20). Here, we resolved for the first time the relative abundance of four ERG isoforms in...
VCaP cells and demonstrated that isoform-6 was not expressed at the protein level (supplemental Figs. S4 and S5). Recently, it has been demonstrated that degradation of wild-type ERG protein was mediated through the SPOP ubiquitin ligase-binding site 42-ASSSS-46 ("degron") located at the N-term of ERG. The N-term truncated TMPRSS2-ERG fusion protein displayed significantly reduced interaction with SPOP in vivo and in vitro. (39, 41) This fact encouraged us to characterize the N-terminal composition of the endogenous TMPRSS2-ERG fusion protein in VCaP cells. Our sensitive IP-SRM assays revealed the N-term methionine truncation and threonine acetylation (peptide N-acetyl-TASSSSDYGQTSK), but no phosphorylation of threonine or serine. In future, development of affinity ligands recognizing the N-terminal motif N-acetyl-TASSSS (none of the human canonical UniProt protein isoforms have the N-term motifs MTASSSS or MTASSSS) could be utilized as strategy to target TMPRSS2-ERG fusion protein for degradation (65).

Finally, we employed our orthogonal IP-MS assays to identify interactome of the endogenous TMPRSS2-ERG protein in VCaP cells. Previous co-IP-MS studies completed with polyclonal antibodies identified partial ERG interactomes (lacking BAF complex subunits (66), EWS protein (24), and others). We believe that our IP-MS assay with the C-term mAb identified one of the most complete ERG interactomes (including BRG1-and BRM-associated canonical BAF complexes, EWS (43), androgen receptor (22, 67), and numerous transcriptional regulators).

Our data revealed that the N-term and 5F12 mAbs could enrich ERG, but not its interactome. We suggested that these high-affinity mAbs could interfere with ERG protein–protein interactions, and that the region crucial for interactions with cBAF complexes could be located between the N-term epitope (46-KMSPRVPQDWSQ-59 of P11308-4) and the DNA-binding ETS domain (aa 320–391). PNT domain (aa 120–199) located in that region was previously suggested as the protein–protein interaction domain of the ETS family of transcription factors (23). Our experimental methods, however, were lacking any three-dimensional structural perspectives to explore the hypothesis that interactions of large cBAF complexes (~2000 kDa) and transcriptional regulators (NCOA2_HUMAN and NCOA6_HUMAN, ~200 kDa) could be disrupted due to steric hindrance with the N-term or 5F12 mAbs. In future, the exact regions of ERG protein–protein interactions could be identified with the series of recombinant truncated ERG proteins, epitope mapping arrays, or cross-linking mass spectrometry (68). It would also be worth investigating whether the shorter isoforms T1E4-ERG_Δ7b and T1E4-ERG_Δ4Δ7b (lacking exon 7 of 26 aa in the region between the N-term epitope and ETS domain; representing 15% of total ERG) could reveal alternative interactomes or exhibit any dominant-negative inhibition of the ERG transcriptional activity (similar to the hypothetical isoform T1E4-ERG_7bpA (20)). In line with these investigations, short peptides disrupting ERG interactome, similar to peptides disrupting ERG-DNA interactions (50), could be identified and explored as potential targeted therapies of prostate cancer.

Finally, we demonstrated that our IP-SRM assays were useful for quantification of ERG and its four isoforms in prostatectomy FFPE tissues. Sensitivity of the N-term IP-SRM was sufficient to differentiate between fusion-positive FFPEs (median ERG levels 1.5 [IQR 1.2–1.6] fmole on column) and fusion-negative FFPEs (values below LOD of 0.39 fmole on column). These data were in agreement with our in-house TRF-ELISA results for fusion-positive (median 1.2 [IQR 0.8–1.5] ng/ml) and fusion-negative FFPEs (values below LOD of 0.06 ng/ml). In future, our IP-SRM assays could be utilized to quantify ERG and its isoforms in fresh-frozen tissues, semen, and exfoliated prostate epithelial cells in urine. Some post-digital rectal examination urine samples of prostate cancer patients were found to contain up to 27,000 exfoliated cells (69), which was above LOD of our IP-SRM assay (~10,000 VCaP cells). Our ELISA and IP-SRM assays could also facilitate development of ERG isoform-specific immunoassays and evaluate clinical significance (for example, the risk of prostate cancer progression during active surveillance (70)) of total ERG versus isoforms T1E4-ERG and T1E4-ERG_Δ7b in the large cohorts of clinical samples. Collectively, future applications of our IP-SRM assays may well contribute to the precision diagnostics needs prioritized by the Movember Prostate Cancer Landscape Analysis (71).

CONCLUSIONS
We developed IP-SRM and IP-MS assays for the quantification of a low-abundant transcriptional factor TMPRSS2-ERG fusion protein (~27,000 copies/cell), its isoforms, and its interactome in VCaP cells. Our orthogonal IP-SRM assays quantified for the first time the relative abundance of four isoforms and revealed that the T1E4-ERG isoform accounted for 52 ± 3% of the total ERG protein in VCaP cells and 50 ± 11% in prostate cancer FFPE tissues. For the first time, the N-terminal peptide (methionine-truncated and N-acetylated TASSSSDYGQTSK) unique for the T1/E4 fusion was identified. ERG interactome mapping with the C-terminal antibodies identified 29 proteins, including the mutually exclusive BRG1-and BRM-associated canonical SWI/SNF chromatin remodeling complexes, and numerous transcriptional regulators. Our sensitive and selective IP-SRM assays present alternative tools to quantify ERG and its isoforms in clinical samples, thus paving the way for development of more accurate diagnostics of prostate cancer.

DATA AVAILABILITY
Raw shotgun MS data have been deposited to ProteomeXchange Consortium via PRIDE (www.ebi.ac.uk/pride/
TMPRSS2-ERG isoforms and interactome

archive/login) with the data set identifier PXD021236. All annotated spectra, including single-peptide identification, can be inspected with MS-Viewer (https://msviewer.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msviewer) and the search key: Zelnmyocus. Raw SRM and PRM data, as well as processed Skyline files, were deposited to Peptide Atlas with the dataset identifier PASS01624 (www.peptideatlas.org/PASS/PASS01624 or ftp://PASS01624:SL727hk@ftp.peptideatlas.org).

Supplemental Data—This article contains supplemental data (21, 23).

Acknowledgments—We thank Prof. Xingfang Li for the access to QTRAP 5500 mass spectrometer and Dr. Konstantin Stolletov for providing VCaP and LNCaP cells.

Author contributions—A. P. D. designed the research project. Z. F. and Y. R. performed all major experiments and analyzed the data. T. A. B. and M. E. H. provided clinical samples and clinical information. Z. F. and A. P. D. wrote the article, and all the authors contributed to the revisions.

Z. F.: Investigation, Methodology, Validation, Formal Analysis, Writing—Original Draft, Writing—Review and Editing, Data Curation, Visualization, Y. R.: Investigation, Writing—Review and Editing, T. A. B.: Resources, M. E. H.: Resources, X. C. L.: Resources, Writing—Review and Editing, Funding Acquisition, A. P. D.: Conceptualization, Methodology, Validation, Formal Analysis, Data Curation, Writing—Original Draft, Writing—Review and Editing, Visualization, Supervision, Project Administration, Funding Acquisition

Funding and additional information—This work was supported by the Prostate Cancer Canada grant (RS2015-01) to A. P. D.; Z. F. acknowledges the support from the National Natural Science Foundation of China (21806018) and Glob-alink Early Career Fellowship (Mitacs, Canada and China Scholarship Council, China; 201806065018).

Conflict of interest—The authors declare no potential conflicts of interest.

Abbreviations—The abbreviations used are: aa, amino acids; CV, coefficient of variation; ELISA, enzyme-linked immunosorbent assay; ERG, v-ETS avian erythroblastosis virus E26 oncogene homolog; FFPE, formalin-fixed paraffin-embedded tissues; IHC, immunohistochemistry; LC-MS/MS, liquid chromatography-tandem mass spectrometry; LQF, label-free quantification; mAb, monoclonal antibody; PCa, prostate cancer; PRM, parallel reaction monitoring; RT, room temperature; SRM, selected reaction monitoring.

Received February 23, 2021 Published, MCPRO Papers in Press, March 23, 2021, https://doi.org/10.1016/j.mcpro.2021.100075

REFERENCES
1. Pinsky, P. F., Prorok, P. C., and Kramer, B. S. (2017) Prostate cancer screening - a perspective on the current state of the evidence. N. Engl. J. Med. 376, 1285–1289
2. Grossman, D. C., Curry, S. J., Owens, D. K., Bibbins-Domingo, K., Caughey, A. B., Davidson, K. W., Doubeni, C. A., Eibel, M., Epling, J. W., Jr., Kemper, A. R., Krist, A. H., Kubik, M., Landefeld, C. S., Mangione, C. M., Silverstein, M., et al. (2018) Screening for prostate cancer: US preventive services task force recommendation statement. JAMA 319, 1901–1913
3. Sarnaon, P., Drabovich, A. P., Jarvi, K. A., and Diamandis, E. P. (2014) Mechanisms of androgen-independent prostate cancer. EndiC 25, 42–54
4. Drabovich, A. P., Sarnaon, P., Drabovich, M., Karakosta, T. D., Dimitromanolakis, A., Hyndman, M. E. J., Jarvi, K., and Diamandis, E. P. (2019) Multi-omics biomarker pipeline reveals elevated levels of protein-glutamine gamma-glutamyltransferase 4 in seminal plasma of prostate cancer patients. Mol. Cell Proteomics 18, 1807–1823
5. Koo, K. M., Mainwaring, P. N., Tomlins, S. A., and Trau, M. (2019) Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat. Rev. Urol. 16, 302–317
6. Drabovich, A. P., Pavlou, M. M., Batruch, I., and Diamandis, E. P. (2013) Proteomic and mass spectrometry technologies for biomarker discovery. In: Isaq, H. J., Veenstra, T. D., eds. Proteomic and Metabonomic Approaches to Biomarker Discovery, Academic Press (Elsevier), Waltham, MA: 17–37
7. Cho, C. K., Drabovich, A. P., Karagiannis, G. S., Martinez-Morillo, E., Dason, S., Dimitromanolakis, A., and Diamandis, E. P. (2019) Quantitative proteomic analysis of amniocytes reveals potentially dysregulated molecular networks in Down syndrome. Clin. Proteomics 10, 2
8. Konvalinka, A., Zhou, J., Dimitromanolakis, A., Drabovich, A. P., Fang, F., Gurley, S., Coffman, T., John, R., Zhang, S. L., Diamandis, E. P., and Scholey, J. W. (2013) Determination of an angiogenin II-regulated proteome in primary human kidney cells by stable isotope labeling of amino acids in cell culture (SILAC). J. Biol. Chem. 288, 24834–24847
9. Abeshouse, A., Ahn, J., Akbani, R., Ally, A., Amin, S., Andry, C. D., Annala, M., Aprikian, A., Armenia, J., Arora, A., Auman, J. T., Balasundaram, M., Balu, S., Barbieri, C. E., Bauer, T., et al. (2013) The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1023
10. Armenia, J., Wankowicz, S. A. M., Liu, D., Gao, J., Kundrak, R., Reznik, E., Chatilla, W. K., Chakravarty, D., Han, G. C., Coleman, I., Montgomery, B., Pritchard, C., Morrissey, C., Barbieri, C. E., Beltran, H., et al. (2018) The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651
11. Tomlins, S. A., Laxman, B., Dhanasekaran, S. M., Helgeson, B. E., Cao, X., Morris, D. S., Menon, A., Jing, X., Cao, G., Han, B. Y., Wang, L., Montie, J. E., Rubin, M. A., Pienta, K. J., et al. (2007) Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, U595–U599
12. Hu, Y., Dobi, A., Sreenath, T., Cook, C., Tadase, A. Y., Ravindranath, L., Cullen, J., Furusato, B., Chen, Y., Thangapazham, R. M., Mohamed, A., Sun, C., Seusterhenn, I. A., McLeod, D. G., Petrovics, G., et al. (2008) Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin. Cancer Res. 14, 4719–4725
13. Tomlins, S. A., Rhodes, D. R., Perter, S., Dhanasekaran, S. M., Mehra, R., Sun, X. W., Varambally, S., Cao, X. H., Tchinda, J., Kuefer, R., Lee, C., Montie, J. E., Shah, R. B., Pienta, K. J., Rubin, M. A., et al. (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648
14. Fine, S. W., Gopalan, A., Leversha, M. A., Al-Ahmadie, H. A., Tickoo, S. K., Zhou, Q., Satagopan, J. M., Scardino, P. T., Gerald, W. L., and Reuter, E. V. (2010) TMPRSS2-ERG gene fusion is associated with low Gleason scores and not with high-grade morphological features. Mod. Pathol. 23, 1325–1333
15. Toubaji, A., Albadiane, R., Meeker, A. K., Isaacs, W. B., Lotan, T., Haffner, M. C., Chauvex, A., Epstein, J. I., Han, M., Walsh, P. C., Partin, A. W., De Marzo, A. M., Platz, E. A., and Netto, G. J. (2011) Increased gene copy number of ERG on chromosome 21 but not TMPRSS2-ERG fusion predicts outcome in prostatic adenocarcinomas. Mod. Pathol. 24, 1511–1520
16. Park, K., Tomlins, S. A., Mudalier, K. M., Chiu, Y. L., Esquela, R., Mehra, R., Suleman, K., Varambally, S., Brenner, J. C., MacDonald, T., Srivastava, A., Tewari, A. K., Sathyaranayana, U., Nagy, D., Pestano, G., et al. (2010) Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 12, U590–U599

17. Pettersson, A., Graff, R. E., Bauer, S. R., Pitt, M. J., Lis, R. T., Stack, E. C., Martin, N. E., Kunz, L. Penney, K. L., Ligon, A. H., Suppan, C., Flavin, R., Sesso, H. D., Rider, J. R., Sweeney, C., et al. (2012) The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: A cohort study and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 21, 1497–1509

18. Shah, R. B. (2013) Clinical applications of novel ERG immunohistochemistry in prostate cancer diagnosis and management. Adv. Anat. Pathol. 20, 117–124

19. Carrere, S., Verger, A., Flourens, A., Stehelin, D., and Duterque-Couillard, M. (1998) ERG proteins, transcription factors of the Ets family, form homo, heterodimers and ternary complexes via two distinct domains. Oncogene 16, 3261–3268

20. Hessel, B., Malkani, N., Hochreiter, B., Basilio, J., Sughra, K., Ilyas, M., and Schmidt, J. A. (2016) Sequence-function correlations and dynamics of ERG isoforms. ERG8 is the black sheep of the family. Biochim. Biophys. Acta 1863, 205–218

21. Kedage, V., Strittmatter, B. G., Dausinas, P. B., and Hollenhorst, P. C. (2017) Phosphorylation of the oncogenic transcription factor ERG in prostate cells dissociates polycomb repressive complex 2, allowing target gene activation. J. Biol. Chem. 292, 17225–17233

22. Yu, J. D., Yu, J. J., Mani, R. S., Cao, Q., Brenner, C. J., Cao, X. H., Wang, X. J., Wu, L. T., Li, J. H., M., Gong, Y. S., Cheng, H., Laxman, B., Veliaichamy, A., Shankar, S., et al. (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454

23. Hollenhorst, P. C., McIntosh, L. P., and Graves, B. J. (2011) Genomic and proteomic analysis of cancer-associated proteins in body fluids samples. Nat. Methods 8, 471–478

24. Drabovich, A. P., McDougle, M. P., Dimitromanolakis, A., and Diamandis, E. P. (2010) Combinatorial peptide libraries facilitate development of multiple reaction monitoring assays for low-abundance proteins. J. Proteome Res. 9, 1236–1245

25. Lee, S. L., Yu, D., Wang, C., Saba, R., Liu, S., Tripkovic, K., Donnelly, B., and Bismar, T. A. (2015) ERG expression in prostate needle biopsy: Potential diagnostic and prognostic implications. Appl. Immunohistochem. Mol. Morphol. 23, 499–505

26. MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L., Frewen, B., Kern, R., Tabb, D. L., Liebler, D. C., and Macoss, M. J. (2010) Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968

27. Tyanova, S., Temu, T., and Cox, J. (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319

28. Tyanova, S., Temu, T., Sinicyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., and Cox, J. (2016) The Perseus computational platform for comprehensive analysis of (proteomics) data. Nat. Methods 13, 731–740

29. Ghandi, M., Huang, F. W., Jane-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E. R., Barretina, J., Gelfand, E. T., Bilski, C. M., Li, H., Hu, K., Andreew-Drakhlin, A. Y., Kim, J., Hess, M. J., Haas, B. J., et al. (2019) Next-generation characterization of the cancer cell line encyclopedia. Nature 569, 503

30. van Bokhoven, A., Caesar, A., Maria, M. D., Schulte, A. P., Lucia, M. S., Nordeen, S. K., Miller, G. J., and Varella-Garcia, M. (2003) Spectral karyotyping (SKY) analysis of human prostate carcinoma cell lines. Prostate 57, 226–244

31. Gan, W., Dai, X., Lunardi, A., Li, Z., Inuzuka, H., Liu, P., Varmeh, S., Zhang, J., Cheng, L., Sun, Y., Asara, J. M., Beck, A. H., Huang, J., Pandolfi, P. P., and Wei, W. (2015) SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Cell Mol. Cell 59, 917–930

32. Bogaert, A., Fernandez, E., and Gevaert, K. (2020) N-terminal proteoforms in human disease. Trends Biochem. Sci. 45, 308–320

33. An, J., Ren, S., Murphy, S. J., Dalangood, S., Chang, C., Pang, X., Cui, Y., Wang, L., Pan, Y., Zhang, X., Zhu, Y., Wang, C., Halling, G. C., Cheng, L., Sukov, W. R., et al. (2015) Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol. Cell 59, 904–916

34. Wasmuth, E. V., Hoover, E. A., Antar, A., Klinge, S., Chen, Y., and Sawyers, C. L. (2020) Modulation of androgen receptor DNA binding activity through direct interaction with the ERG transcription factor ERG. Proc. Natl. Acad. Sci. U. S. A. 117, 8584–8592

35. Kedage, V., Selvaraj, N., Nicholas, T. R., Budka, J. A., Plotnik, J. P., Jerde, T. J., and Hollenhorst, P. C. (2016) An interaction with Ewing’s sarcoma breakpoint protein EWS defines a specific oncogenic mechanism of ETS factors rearranged in prostate cancer. Cell Rep. 17, 1289–1301

36. Kadoch, C., Hargreaves, D. C., Hodges, C., Elias, L., Ho, L., Ranish, J., Crabtree, G. R. (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601

37. Melachrouru, D., Wright, Z., Couzens, A. L., Lambert, J. P., St-Denis, N. A., Li, T., Miteva, Y. V., Hauri, S., Sardari, M. E., Low, T. Y., Halim, V. A., Bagshaw, R. D., Hubner, N. C., Al-Hakim, A., Bouchard, A., et al. (2013) The CRAPome: A contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10, 730–736

38. Schiza, C., Korbakis, D., Panteleli, E., Jarvi, K., Drabovich, A., and Diamandis, E. P. (2018) Discovery of a human testis-specific protein complex TEX101-DPEPS and selection of its disrupting antibodies. Mol. Cell Proteomics 17, 2480–2485

39. Drabovich, A. P., Jarvi, K., and Diamandis, E. P. (2011) Verification of male infertility biomakers in seminal plasma by multiplex selected reaction monitoring assay. Mol. Cell. Proteomics 10, M110.004127

40. Nusinow, D. P., Szpyt, J., Ghandi, M., Rose, C. M., McDonald, E. R., Kalocsay, M., Jane-Valbuena, J., Gelfand, E., Schweppke, D. K., Jedychwowski, M., Golij, J., Porter, D. A., Rejtar, T., Wang, Y. K., Kryukov, G. V., et al. (2020) Quantitative proteomics of the cancer cell line encyclopedia. Cell 180, 387–402

41. Rastogi, A., Tan, S. H., Banerjee, S., Sharan, S., Kagan, J., Srivastava, S., McLeod, D. G., Srivastava, S., and Srinivasan, A. (2014) ERG monoclonal antibody in the diagnosis and biological stratification of prostate cancer: delineation of minimal epitope, critical residues for binding.
molecular basis of specificity. *Monoclon. Antib. Immunodiagn. Immun- other.* **33**, 201–208

50. Wang, X. J., Qiao, Y. Y., Asangani, I. A., Ateeq, B., Poliakov, A., Cieslik, M., Pitchiayi, S., Chakravartini, B., Cao, X. H., Jing, X. J., Wang, C. X., Apel, I. J., Wang, R., Tien, J. C. Y., Juckette, K. M., et al. (2017) Development of peptidomimetic inhibitors of the ERG gene fusion product in prostate cancer. *Cancer Cell** **31**, 532–548

51. Metivier, R., Penot, G., Carmouche, R. P., Hubner, M. R., Reid, G., Denger, S., Manu, D., Brand, H., Kos, M., Benes, V., and Gannon, F. (2004) Transcriptional complexes engaged by apo-estrogen receptor-alpha isofoms have divergent outcomes. *EMBO J.* **23**, 3653–3666

52. Smith, L. M., and Kelleher, N. L. (2018) Proteoforms as the next proteomics currency. *Science* **359**, 1106–1107

53. Aebersold, R., Agar, J. N., Amster, I. J., Baker, M. S., Bertozzi, C. R., Boja, E. S., Costello, C. E., Cravatt, B. F., Fenselau, C., Garcia, B. A., Ge, Y., Gunawardena, J., Hendrickson, R. C., Hergenrother, P. J., Huber, C. G., et al. (2018) How many human proteoforms are there? *Nat. Chem. Biol.* **14**, 206–214

54. Dimitrakopoulos, L., Prassas, I., Diamandis, E. P., Nesvizhskii, A., Korbakis, D., Schiza, C., Korbakis, D., Jarvi, K., Diamandis, E. P., and Drabovich, A. P. (2016) Quanti- cation of human kallikrein-related peptidases in biological fluids by multiplatform targeted mass spectrometry assays. *Mol. Cell. Proteomics* **15**, 2863–2876

55. Carver, B. S., Tran, J., Gopalan, A., Chen, Z., Shaikh, S., Carracedo, A., Alimonti, A., Nardella, C., Varmeh, S., Scardino, P. T., Cordon-Cardo, C., Gerald, W., and Pandolfi, P. P. (2009) Aberrant ERG expression co- operates with loss of PTEN to promote cancer progression in the prostate. *Nat. Genet.* **41**, 619–624

56. Zammarchi, F., Boutsalis, G., and Cartegni, L. (2013) 5’ UTR control of native ERG and of Tmprss2-ERG variants activity in prostate cancer. *PLoS One* **8**, e49721

57. Lai, A. C., Toure, M., Hellschmied, D., Salami, J., Jaime-Figueroa, S., Ko, E., Hines, J., and Crews, C. M. (2016) Modular PROTAC design for the degradation of oncogenic BCR-ABL. *Angew. Chem. Int. Ed. Engl.* **55**, 807–810

58. Mounir, Z., Korn, J. M., Westerling, T., Lin, F., Kirby, C. A., Schirle, M., McClaiyster, G., Hoffman, G., Ramirez, N., Hartung, A., Feng, Y., Kipp, D. R., Quinn, C., Fodor, M., Baird, J., et al. (2016) ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor. *Elife* **5**, e13964

59. Zhang, Z., Chng, K. R., Lingadahalli, S., Chen, Z., Liu, M. H., Do, H. H., Cai, S., Rinaldi, N., Poh, H. M., Li, G., Sung, Y. Y., Heng, C. L., Core, L. J., Tan, S. K., Ruan, X., et al. (2019) An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells. *Genome Res.* **29**, 223–235

60. Mashtalir, N., D’Avino, A. R., Michel, B. C., Luo, J., Pan, J., Otto, J. E., Zulow, H. J., McKenzie, Z. M., Kubiak, R. L., Pierre, R. St., Valencia, A. M., Poynter, S. J., Cassel, S. H., Ranish, J. A., and Kadoch, C. (2018) Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. *Cell* **175**, 1272–1288.e1220

61. Pal, R. P., Kochelbergh, R. C., Pringle, J. H., Cresswell, L., Hew, R., Dormer, J. P., Cooper, C., Mellon, J. K., Barwell, J. G., and Hollox, E. J. (2016) Immunocytochemical detection of ERG expression in exfoliated urinary cells identifies with high specificity patients with prostate cancer. *BJU Int.* **117**, 896–896

62. Berg, K. D., Vainer, B., Thomsen, F. B., Roder, M. A., Gerds, T. A., Toft, B. G., Brasso, K., and Iversen, P. (2014) ERG protein expression in diagnostic specimens is associated with increased risk of progression during active surveillance for prostate cancer. *Eur. Urol.* **66**, 851–860

63. Kouspou, M. M., Fong, J. E., Brew, N., Hsiao, S. T. F., Davidson, S. L., Choyke, P. L., Crispino, T., Jain, S., Jenster, G. W., Knudsen, B. S., Millar, J. L., Mittmann, N., Ryan, C. J., Tombal, B., and Buzza, M. (2020) The movermed prostate cancer landscape analysis: An assessment of unmet research needs. *Nat. Rev. Urol.* **17**, 499–512