Testing modified gravity via Yukawa potential in two body problem: Analytical solution and observational constraints

David Benisty1,2,3,*

1DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
2Kavli Institute of Cosmology (KICC), University of Cambridge, Madingley Road, Cambridge, CB3 0HA, United Kingdom
3Queens’ College, Cambridge, CB3 9ET, United Kingdom

Many alternative theories of gravity screens a Yukawa-type potential. This article shows Keplerian-type parametrization as a solution of Yukawa type potential accurate equations of motion for two non-spinning compact objects moving in an eccentric orbit. A bound from the solar system is presented.

I. INTRODUCTION

Cosmological measurements from the last few decades shows that General theory of Relativity (GR) is not the complete solution for gravity theories. The measurements from the Type Ia supernova [1], Baryon Acoustic Oscillations (BAO) [2–5] and the Cosmic Microwave Background (CMB) [6] give a strong evidence at least for one modification beyond GR, which is the Cosmological Constant Λ [7–12]. However, the question whenever $GR+\Lambda$ is the final theory of gravity or a small part from a bigger theory remains an open question [13].

In order to constraint other theories of gravity there are many tests from the laboratory [14] to compact objects [15, 16]. The two-body solution for alternative theories also yields a strong constraint from solar system, the galactic star center [16–57] and others systems [58].

One of the simplest way to test gravity is to constrain the existence of a Yukawa additional term, such that the one particle Newtonian potential assumes the form:

$$V(r) = \frac{GM}{r} \left(1 + \alpha e^{-m/r}\right),$$

where M is the total mass of the system, G is the Newtonian constant and r is the separation between the two objects. For the Yukawa couplings: α is the Yukawa strength and m is the Yukawa mass. For α goes to zero the Yukawa interaction is reduced into the Newtonian one. For m goes to zero the Newtonian constant is modified to $G(1 + \alpha)$. Such a correction arises whenever the force is mediated by a scalar particle of mass m. Therefore testing gravity is equivalent to testing the existence of a fifth force of scalar nature.

Analysis of Yukawa potential in two body problem is studies in different approaches [59–66]. In this letter we derive an analytical solution for the Yukawa potential using the equations of motion for compact binaries moving in eccentric orbits. We employ similar techniques which allowed to obtain a simple parametrization for the solution of Post Newtonian accurate equations of motion for compact binaries in eccentric orbits [67]. The approach yields to a close elegant solution and we constraint these parameters with different astrophysical systems.

The plan of work is as follows: Section III introduces an analytical solution for the Yukawa potential in the Newtonian limit. Section IV solves the relativistic correction to the Yukawa potential. Section V performs data comparison with the solar system. Finally, section VI summarizes the results.

II. MEAN AND TRUE KEPLERIAN MOTION

We begin by summarizing some known solutions about the two body problem. The Keplerian parametrization for Newtonian motion is analytically solved in celestial mechanics [68]. The conservation of the energy and the angular momentum reads:

$$\epsilon = \frac{1}{2} v^2 - \frac{GM}{r}, \quad l = r^2 \dot{\theta},$$

where ϵ is the total energy per the reduced mass, l is the total angular momentum per the reduced mass, r is the separation and the dot sing is the derivative with
is generalized via the Yukawa potential. The total energy relation between these.

\[\theta \] to describe the instantaneous position on the ellipse, defines the mean anomaly. Two running angles are used which corresponds to the Keplerian law. Eq. (2) gives a differential equation that relates \(\dot{\eta} \) into \(\eta \):

\[\frac{1}{\dot{\eta}} = \frac{1 - e \cos \eta}{4} (2(\alpha - 2) + (e^2 - 3)f + 2ef \cos \eta). \]

Here, we assume \(m \cdot a \ll 1 \) and we take the second order correction. The integration gives the elegant solution:

\[2\pi t - t_0 = \eta - e_t \sin \eta + e_t^2 f \frac{3}{8} \sin 2\eta, \]

with:

\[e_t = \left(1 + \frac{2 - e_t^2}{4} f\right) e_r, \]

\[T = 2\pi \sqrt{\frac{a^3}{GM} \left[1 - \frac{\alpha}{2} + \frac{3}{4}\right]}, \]

Using the chain rule over the true anomaly:

\[\frac{d\theta}{d\eta} = \frac{1/\nu^2}{\eta} = \frac{\sqrt{1 - e^2}}{1 - e \cos(\eta)} \times \left(1 + \frac{\alpha}{2} + f \left(\frac{e^2 - 1}{2} e \cos(\eta) + \frac{1}{4}\right)\right). \]

Solving the integral yields the solution for the true anomaly vs. the mean anomaly:

\[2\pi \frac{\theta - \theta_0}{\Phi} = \nu + f \frac{2}{\sqrt{1 - e^2}(\eta - \nu)}, \]

with:

\[\Phi_{Yuk} = 1 + \frac{\alpha}{2} - \frac{f}{4} \left(1 - e^2 - 2\sqrt{1 - e^2}\right). \]

\[\epsilon = \frac{1}{2} m^2 \mathbf{v}^2 - \frac{GM}{r} \left(1 + \alpha \epsilon^{-m/r}\right) + l^2 \frac{e}{2r^2}. \]

In order to find the relation between the energy and the angular momentum to the eccentricity and the semi-major axis, we use edge condition, where the time derivative of the separation is zero:

\[\dot{r} \left[a \left(1 \pm e\right) \right] = 0. \]

The separations \(a \left(1 \pm e\right) \) are the extremal separations. Inserting this condition into Eq. (6) yields the relations:

\[\epsilon = -\frac{GM}{2a} \left[1 + \alpha - 2\alpha(m \cdot a)\right], \]

\[\frac{l^2}{GMa(1 - e^2)} = 1 - \alpha - \frac{f}{2} (1 - e^2), \]

where \(f = \alpha m^2 a^2 \). Invoking the condition (3) into (6) gives a differential equation that relates \(\dot{\eta} \) into \(\eta \):

\[\frac{1}{\dot{\eta}} = \frac{1 - e \cos \eta}{4} (2(\alpha - 2) + (e^2 - 3)f + 2ef \cos \eta). \]

In this section the solution for the Newtonian potential is generalized via the Yukawa potential. The total energy reduced energy is:

\[\epsilon = \frac{1}{2} m^2 \mathbf{v}^2 - \frac{GM}{r} \left(1 + \alpha \epsilon^{-m/r}\right) + l^2 \frac{e}{2r^2}. \]

FIG. 2. A demonstration for the difference between mean anomaly \(\eta \) and the true anomaly \(\theta \). The red curve is the true motion of the celestial body and the blue curve is the theoretical circle that surrounds the elliptical motion. The picture were taken from the link: a.

\[a \text{ https://www.pngwing.com/en/free-png-shacp}\]

respect to time. The total velocity in polar coordinates is: \(v^2 = r^2 + \dot{\theta}^2 r^2 = \dot{r}^2 + \frac{l^2}{r^2} \). In order to solve the problem it is useful to parametrize the separation as:

\[r/a = 1 - e \cos \eta, \]

the exact solution for the Eq. (2) is described by the well-known relations:

\[\frac{2\pi}{T} (t - t_0) = \eta - e \sin \eta, \]

\[\theta = \dot{\nu} = 2 \tan^{-1} \left[\sqrt{\frac{1 + e}{1 - e}} \tan \frac{\eta}{2}\right]. \]

\(e \) is the eccentricity, \(a \) is the semi-major axis and \(n = 2\pi/T \) is the frequency. These quantities are related to the energy and the angular momentum via:

\[a = \sqrt{\frac{GM}{-2e}}, \quad e^2 = 1 + 2l^2 e, \]

\[\frac{2\pi}{T} = \frac{(-2c)^{3/2}}{GM} = \sqrt{\frac{GM}{a^3}}, \]

which corresponds to the Keplerian 3\(^{rd}\) law. Eq. (4a) defines the mean anomaly. Two running angles are used to describe the instantaneous position on the ellipse, namely \(\theta \) or the true anomaly and \(\nu \) or the eccentric anomaly. Fig. II shows the two anomalies and the relation between these.

III. YUKAWA POTENTIAL SOLUTION

In this section the solution for the Newtonian potential is generalized via the Yukawa potential. The total energy
Therefore, the precession rate reads:

$$\Delta \theta_{\text{Yuk}} = \frac{\alpha}{2} - \frac{f}{4} \left(1 - e^2 - 2\sqrt{1 - e^2}\right).$$

(15)

The time eccentricity is modified due to the Yukawa potential presence as in the Post Newtonian correction to the Newtonian potential. The period and the precession are effected as well and could be constraint from the standard solar system planets measurements. Fig. 3 illustrates the motion of the with positive and negative values of \(\alpha\). The sign changes the direction of the motion.

IV. RELATIVISTIC CORRECTIONS

We examine the motion of a test mass of the Schwarzschild spacetime. The particle is moving freely on a timelike geodesic of the spacetime. It can be shown that the the relativistic correction changes the angular momentum part in the effective potential by [68]:

$$\frac{l^2}{2r^2} \left(1 - \frac{GM}{r c^2}\right).$$

(16)

The dimensionless ratio \(GM/r \cdot c^2\) is the Schwarzschild correction in the effective potential. Following the same procedure for the modified potential, and taking separations \(a (1 \pm \epsilon)\) as an extremal one, yields the relations:

$$\epsilon = -\frac{GM}{2a} \left(1 + \alpha - 2\alpha m \cdot \alpha - \frac{\beta}{2} (1 + \alpha) (1 - e^2)\right),$$

(17a)

$$l^2 \frac{GMa}{1 - e^2} = \left(1 + \frac{\beta}{2} (e^2 + 3)\right) \left(1 + \alpha - \frac{f}{2} (1 - e^2)\right),$$

(17b)

where we define the dimensionless parameter:

$$\beta = \frac{GM}{a c^2 (1 - e^2)}.\tag{18}$$

For \(\beta \ll 1\) the correction agrees with the Post Newtonian correction for massless and spinless body. Invoking the condition (3) into the modified energy equation gives a differential equation that relates \(\dot{\eta}\) into \(\eta\):

$$\dot{\eta}^{-1} - \dot{\eta}^{-1}_{(\beta=0)} = \frac{\beta}{16} \left(1 - e^2\right) (e \rho - 3) (2(\alpha - 2) + f \left(e^2 + 6e\rho - 7\right)).$$

(19)

As in the classical case, using the chain rule over the true anomaly:

$$\frac{d\theta}{d\eta} - \frac{d\theta}{d\eta}_{(\beta=0)} = -\frac{\beta \sqrt{1 - e^2}}{16(e\rho - 1)^2}$$

$$\times \left(e \left(e^2 (2(\alpha + 2) + (e^2 + 4) f) + 2e \left(e^2 + 9\right) f \rho^2 + \rho (14(\alpha + 2) + e^4 f + 2e^2 (\alpha - 5f + 2) + 41f)\right) - 3(6(\alpha + 2) + 7f)\right).$$

(20)

The solution for the differential equation yields the same Eq (10) with modified time eccentricity and the period:

$$\frac{\epsilon_t}{e} = 1 + \frac{2 - e^2}{4} f - \frac{\beta}{2} \left(1 - e^2\right) \left(1 - \frac{2 + e^2}{8} f\right),$$

(21a)

The modification for the Yukawa potential modified the time eccentricity only in the second order. Also the
leading PN order of the time eccentricity is modified only from the second order. However, the period is modified only by the first order \(f \) both in the Newtonian and the PN expansion terms.\(^{23}\)

Solving (20) yields the solution for the true anomaly vs. the mean anomaly:

\[
\frac{2\pi}{\Phi} (\theta - \theta_0) = \nu + \frac{f}{2} \sqrt{1 - e^2} \eta + \frac{\beta \sqrt{1 - e^2} \sin(\eta)}{2} - \frac{e \cos(\eta)}{2 - 2e} \tag{22}
\]

with the precession:

\[
\Delta \theta_{Yuk,1PN} = \frac{\Phi}{2\pi} - 1 = \Delta \theta_{Yuk} + \Delta \theta_{Yuk,Mod}. \tag{23}
\]

where \(\Delta \theta_{Yuk,Mod} \) is the modification for the precession due to the 1st order correction.

\[
\frac{\Delta \theta_{Yuk,Mod}}{\beta} = \frac{e^2 + 9}{4} + \frac{9 + e^2}{8} + 6 + \frac{f}{16} \left(3 + e^4 - 2(\sqrt{1 - e^2} + 2) e^2 + 18 \sqrt{1 - e^2} \right). \tag{24}
\]

The precession rate depends also on the dimensionless parameter \(\beta \) and also on the Yukawa parameters \(\alpha \) and \(f \). It is possible to take the first order corrections for the precession rate and state:

\[
\Delta \theta \approx \Delta \theta_{GR} + \Delta \theta_{Yuk}. \tag{25}
\]

The corrections to the relativistic case also include \(\alpha \) and \(f \) in the next order correction.

V. DATA COMPARISON

In order to complete our discussion on the interactions in two body motion we add the solar system constraint.\(^{69}\) The comparison is done with the \(\chi^2 \) function:

\[
\chi^2 = \left(\frac{\Delta \theta_{ob} - \Delta \theta(\alpha, m)}{\sigma_\theta} \right)^2, \tag{26}
\]

where \(\Delta \theta_{ob} \pm \sigma_\theta \) is the observed precession of the planets and \(\Delta \theta(\alpha, m) \) is the prediction from the model. We include the precession data of the solar system from\(^{70}\). The combined constraint is approached by using the combined likelihood from the precession measurements from the solar system.

Regarding the problem of likelihood maximization, we use an affine-invariant Markov Chain Monte Carlo sampler\(^{71}\), as it is implemented within the open-source packaged Polychord\(^{72}\) with the GetDist package\(^{73}\) to present the results. The prior we choose is with a uniform distribution, where \(\alpha \in [0; 1] \), \(m(AU^{-1}) \in [0; 1] \).

Fig. (4) shows the precession constraint from the solar system constraint. The table below summarizes the final values. We see that adding the solar system constraints, gives very little change to the modified gravity parameters. However, adding the Cassini bound \((e^2 < 10^{-7})\) (see\(^{74}\)) reduces the final value of \(\alpha \) into \(~ 10^{-7}\) and changes the possible bound value of \(m \).

VI. DISCUSSION

The Yukawa-like correction to the Newtonian potential is an established result of many modified gravity. This article derives Keplerian-type parametrization for the solution of Yukawa type potential accurate equations of motion for two non-spinning compact objects moving in an eccentric orbit. The modifications are encoded in two parameters: the strength \(\alpha \) and the scale mass \(m \) of the Yukawa-term.

In this letter we used the mean anomaly parameterization with the Yukawa potential and we derive an exact analytical solution for two body motion. Moreover, we derive an analytical term for the modified Keplerian 3rd law and the precession terms. With the latest Nasa and Cassini bounds we derive the bounds for the Yukawa strength and mass.

ACKNOWLEDGMENTS

D.B gratefully acknowledge the supports of the Blavatnik and the Rothschild fellowships. D.B. acknowledges a Postdoctoral Research Associateship at the Queens’ College, University of Cambridge. We have received partial support from European COST actions.
[1] D. M. Scolnic et al. (Pan-STARRS1), Astrophys. J. 859, 101 (2018), arXiv:1710.00845 [astro-ph.CO].
[2] G. E. Addison, G. Hinshaw, and M. Halpern, Mon. Not. Roy. Astron. Soc. 436, 1674 (2013), arXiv:1304.6984 [astro-ph.CO].
[3] E. Aubourg et al., Phys. Rev. D 92, 123516 (2015), arXiv:1411.1074 [astro-ph.CO].
[4] A. J. Cuesta, L. Verde, A. Riess, and R. Jimenez, Mon. Not. Roy. Astron. Soc. 448, 3463 (2015), arXiv:1411.1094 [astro-ph.CO].
[5] A. Cuceu, J. Farr, P. Lemos, and A. Font-Ribera, JCAP 10, 044 (2019), arXiv:1906.11628 [astro-ph.CO].
[6] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron. Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
[7] S. Perlmutter et al. (Supernova Cosmology Project), Astron. Astrophys. 517, 565 (1999), arXiv:astro-ph/9812133.
[8] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[9] D. M. Scolnic et al. (PANSTARRS1), Science 366, 105 (2019), arXiv:1808.07187 [astro-ph.CO].
[10] J. Frieman, M. Turner, and D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385 (2008), arXiv:0803.0982 [astro-ph].
[11] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, Astrophys. J. 876, 85 (2019), arXiv:1903.07603 [astro-ph.CO].
[12] S. Capozziello and M. De Laurentis, Phys. Rept. 541, 1 (2014), arXiv:1408.2216 [astro-ph.CO].
[13] F. Vazza, M. Brüggen, C. Gheller, S. Hackstein, D. Wittor, and P. M. Hinz, Class. Quant. Grav. 34, 234001 (2017), arXiv:1711.02669 [astro-ph.CO].
[14] K. Matthews, M. R. Morris, B. Sitarski, and G. Witzel, ApJ 830, 114 (2019), arXiv:1905.09619 [astro-ph.CO].
[15] D. Borka, P. Jovanovic, V. B. Jovanovic, and A. F. Zakharov, JCAP 1311, 050 (2013), arXiv:1311.1404 [astro-ph.GA].
[16] E. Berti et al., Class. Quant. Grav. 32, 243001 (2015), arXiv:1501.07274 [gr-qc].
[17] D. Borka, S. Capozziello, P. Jovanovic, and V. Borka Jovanov, Astropart. Phys. 79, 41 (2016), arXiv:1504.07832 [gr-qc].
[18] A. F. Zakharov, P. Jovanovic, D. Borka, and V. B. Jovanovic, JCAP 05, 045 (2016), arXiv:1605.00913 [gr-qc].
[19] X. Zhang, T. Liu, and W. Zhao, Phys. Rev. D95, 104027 (2017), arXiv:1702.08752 [gr-qc].
[20] T. Christensen and W. Sutherland, Mon. Not. Roy. Astron. Soc. 480, 1778 (2018), arXiv:1711.05034 [gr-qc].
[21] Y. Nakamura, D. Kikuchi, K. Yamada, H. Asada, and N. Yunes, Class. Quant. Grav. 36, 105006 (2019), arXiv:1810.13313 [gr-qc].
[22] K. Enqvist, H. J. Nyrhinen, and T. Koivisto, Phys. Rev. D88, 104006 (2013), arXiv:1308.0988 [gr-qc].
[23] D. Borka, P. Jovanovic, V. B. Jovanovic, and A. F. Zakharov, JCAP 1311, 050 (2013), arXiv:1311.1404 [astro-ph.GA].
[24] C. Pittard and W. Sutherland, Mon. Not. Roy. Astron. Soc. 480, 1778 (2018), arXiv:1711.10867 [astro-ph.CO].
[25] S. Hou and Y. Gong, Eur. Phys. J. C78, 247 (2018), arXiv:1711.05034 [gr-qc].
[26] Y. Nakamura, D. Kikuchi, K. Yamada, H. Asada, and N. Yunes, Class. Quant. Grav. 36, 105006 (2019), arXiv:1810.13313 [gr-qc].
[27] K. F. Diailekopoulos, D. Borka, S. Capozziello, V. Borka Jovanovic, and P. Jovanovic, Phys. Rev. D99, 104053 (2019), arXiv:1812.09289 [astro-ph.GA].
[28] K. Matthews, M. R. Morris, B. Sitarski, and G. Witzel, ApJ 830, 114 (2019), arXiv:1907.10731 [astro-ph.GA].
[29] R. Abuter et al. (GRAVITY), Mon. Not. Roy. Astron. Soc. 489, 4606 (2019), arXiv:1908.06681 [astro-ph.GA].
[30] C. Pittard and W. Sutherland, Mon. Not. Roy. Astron. Soc. 488, 4740 (2019), arXiv:1905.09619 [astro-ph.CO].
[31] R. C. Nunes, M. E. S. Alves, and J. C. N. de Araujo, Phys. Rev. D100, 064012 (2019), arXiv:1905.03237 [gr-qc].
[49] D. Anderson, P. Freire, and N. Yunes, Class. Quant. Grav. 36, 225009 (2019), arXiv:1901.00938 [gr-qc].
[50] R. I. Gainutdinov, Astrophysics 63, 470 (2020), arXiv:2002.12598 [gr-qc].
[51] S. Bahamonde, J. Levi Said, and M. Zubair, JCAP 2010, 024 (2020), arXiv:2006.06750 [gr-qc].
[52] P. Banerjee, D. Garain, S. Paul, S. Rajibul, and T. Sarkar, Astrophys. J. 910, 23 (2021), arXiv:2006.01646 [astro-ph.SR].
[53] M. L. Ruggiero and L. Iorio, JCAP 2006, 042 (2020), arXiv:2001.04122 [gr-qc].
[54] O. Okcu and E. Aydiner, Nucl. Phys. B964, 115324 (2021), arXiv:2101.09524 [gr-qc].
[55] I. de Martino, R. della Monica, and M. de Laurentis, (2021), arXiv:2106.06821 [gr-qc].
[56] R. Della Monica, I. de Martino, and M. de Laurentis, (2021), arXiv:2105.12687 [gr-qc].
[57] A. D’Addio, R. Casadio, A. Giusti, and M. De Laurentis, (2021), arXiv:2110.08379 [gr-qc].
[58] J. Henrichs, M. Lembo, F. Iocco, and L. Amendola, Phys. Rev. D 104, 043009 (2021), arXiv:2010.15190 [astro-ph.GA].
[59] D. Pricopi, Astrophys. Space Sci. 361, 277 (2016).
[60] J. P. Edwards, U. Gerber, C. Schubert, M. A. Trejo, and A. Weber, PTEP 2017, 083A01 (2017), arXiv:1706.09979 [physics.atom-ph].
[61] R. Mukherjee and S. Sounda, Indian Journal of Physics 92, 197 (2018), arXiv:1705.02444 [physics.plasm-ph].
[62] E. Cavan, I. Haranas, I. Gkigkitzis, and K. Cobbett, Astrophys. Space Sci. 365, 36 (2020).
[63] C. Martz, S. Van Middelkoop, I. Gkigkitzis, I. Haranas, and I. Kotsireas, Adv. Math. Phys. 2019, 6765827 (2019).
[64] J. Bergé, P. Brax, M. Pernot-Borràs, and J.-P. Uzan, Class. Quant. Grav. 35, 234001 (2018), arXiv:1808.00340 [gr-qc].
[65] I. De Martino, R. Lazkoz, and M. De Laurentis, Phys. Rev. D 97, 104067 (2018), arXiv:1801.08135 [gr-qc].
[66] M. De Laurentis, I. De Martino, and R. Lazkoz, Phys. Rev. D 97, 104068 (2018), arXiv:1801.08136 [gr-qc].
[67] R.-M. Memmesheimer, A. Gopakumar, and G. Schaefer, Phys. Rev. D 70, 104011 (2004), arXiv:gr-qc/0407049.
[68] D. Brouwer, E. S., T. Books, and G. Clemence, Methods of Celestial Mechanics (Academic Press, 1961).
[69] H. Y. Ip, J. Sakstein, and F. Schmidt, JCAP 1510, 051 (2015), arXiv:1507.00568 [gr-qc].
[70] Https://nssdc.gsfc.nasa.gov/planetary/factsheet/.
[71] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013), arXiv:1202.3665 [astro-ph.IM].
[72] W. J. Handley, M. P. Hobson, and A. N. Lasenby, Mon. Not. Roy. Astron. Soc. 450, L61 (2015), arXiv:1502.01856 [astro-ph.CO].
[73] A. Lewis, (2019), arXiv:1910.13970 [astro-ph.IM].
[74] B. Bertotti, L. Iess, and P. Tortora, Nature 425, 374 (2003).