RG Flows of Non-Unitary Minimal CFTs

Changrim Ahn

F. R. Newman Lab. of Nuclear Studies
Cornell University
Ithaca, NY 14853

ABSTRACT

In this paper we study the renormalization group flow of the \((p, q)\) minimal (non-unitary) CFT perturbed by the \(\Phi_{1,3}\) operator with a positive coupling. In the perturbative region \(q \gg (q - p)\), we find a new IR fixed point which corresponds to the \((2p - q, p)\) minimal CFT. The perturbing field near the new IR fixed point is identified with the irrelevant \(\Phi_{3,1}\) operator. We extend this result to show that the non-diagonal \((A, D)\)-type modular invariant partition function of the \((p, q)\) minimal CFT flows into the \((A, D)\)-type partition function of the \((2p - q, p)\) minimal CFT and the diagonal partition function into the diagonal.

* E-mail address: ahn@cornell.bitnet
1. Conformal field theories (CFTs)\[^{[1]}\] perturbed by relevant operators have provided a theoretical framework for constructing integrable scale non-invariant 2D quantum field theories (QFTs). There are two interesting classes: One is a class of massive integrable QFTs whose scattering matrices are exactly solvable due to an infinite number of conserved currents.\[^{[2]}\] The other is a class of scale non-invariant QFTs with no massive particles which have new RG fixed points at which the scale invariance and conformal symmetries are restored.\[^{[3,4]}\]

The minimal CFTs\[^{[1]}\] are characterized by two coprime integers \(p, q\) \((q > p)\). We will denote the \((p, q)\) minimal CFT by \(\mathcal{M}_{(p,q)}\). The principal series of \((p, p+1)\) correspond to the unitary CFTs in the sense that the states created by the Virasoro generators have positive definite norm.\[^{[5]}\] Except for the string theory, the unitarity of these Virasoro modules seems not the first principle to be satisfied. Interesting applications of the non-unitary CFTs have been made in the integrable lattice models, matrix models and others.

We start with the following perturbed CFT:

\[
S_{(p,q)}(g) = \mathcal{M}_{(p,q)} + g \int d^2z \Phi_{1,3}(z, \overline{z}),
\]

where the dimension of the least relevant operator \(\Phi_{1,3}\) of \(\mathcal{M}_{(p,q)}\) is

\[
\Delta(\Phi_{1,3}) = 1 - \frac{2(q-p)}{q}.
\]

The theories can be represented in one-dimensional parameter space spanned by \(g\) because \(\Phi_{1,3}\) satisfies a closed operator product expansion,

\[
[\Phi_{1,3}] \times [\Phi_{1,3}] = [\Phi_{1,3}].
\]

If \(g < 0\), the theory is a massive integrable QFT, the ‘restricted sine-Gordon theory’ both for the unitary CFTs\[^{[6]}\] and the non-unitary CFTs.\[^{[7]}\] If \(g > 0\), the
perturbed theory remains as a massless theory while the scale invariance is broken. For the unitary CFT $M_{(p,p+1)}$, A.B. Zamolodchikov$^{[3]}$ and A. Ludwig and J. Cardy$^{[4]}$ found a new IR fixed point corresponding to another unitary theory $M_{(p-1,p)}$ for $\Delta(\Phi_{1,3}) = 1 - \epsilon$ with $\epsilon = 2/(p + 1) << 1$. The perturbing field $\Phi_{1,3}$ becomes irrelevant field $\Phi_{3,1}$ near the new fixed point.

In this paper, we study the RG flows of the non-unitary CFTs $M_{(p,q)}$ to show that $M_{(p,q)}$ perturbed by $\Phi_{1,3}$ flows into $M_{(2p-q,p)}$ perturbed by $\Phi_{3,1}$ for $q >> (q - p)$. We also investigate the RG flows of the non-diagonal modular invariant partition functions (MIPFs) of $M_{(p,q)}$$^{[8]}$ to find that the (A, A) and (A, D) MIPFs flow into the (A, A) and (A, D) MIPFs, respectively. This analysis has been already made for the unitary CFTs in $[9,10]$.

2. Under the scale transformation $x_\mu \rightarrow (1+1/2\epsilon) x_\mu$, the parameter g changes according to the equation$^{[3]}$

$$\beta(g) = \frac{dg}{dt} = \epsilon g - \frac{1}{2}Cg^2 + O(g^3), \quad \epsilon = \frac{2(q - p)}{q}$$

where the coefficient of a (diagonal) three-point function $C = C_{(1,3)(1,3)(1,3)}$ is$^{[12]}$

$$C_{(1,3)(r,s)(r,s)} = -\frac{\Gamma(\epsilon)}{\Gamma(1-\epsilon)} \left[\frac{\gamma^3(1 - \epsilon/2)}{\gamma(2 - 3\epsilon/2)} \right]^{1/2} \frac{\gamma(r + 1 - s - (1 - s)\epsilon)}{\gamma(r - s + (1 + s)\epsilon)},$$

with $\gamma(x) = \Gamma(x)/\Gamma(1-x)$. For $\epsilon << 1$, $C \cong 4/\sqrt{3} + O(\epsilon)$.

From Eq.(4), one can find a new fixed point at $g = g_*$

$$\beta(g_*) = 0 \rightarrow g_* \cong \frac{\sqrt{3}}{2} \frac{2(q - p)}{q}. \quad (6)$$

One can identify this as the IR fixed point from the fact that $g_* = g(t_*)$ with $t_* = \infty$ from Eq.(4). Following $[3]$, we introduce the ‘c-function’ which gives the
central charges at the fixed points and satisfies the following RG equation:

\[
\frac{dc}{dt} = \beta(g) \frac{\partial}{\partial g} c(g) = -12\beta^2(g). \tag{7}
\]

Eq.(7) shows that the \(c\)-function is monotonically decreasing as \(t\) increases in the \(\Phi_{1,3}\) direction such that the inequality \(c_{UV} > c_{IR}\) holds. From Eqs.(4) and (7), the central charge of the IR CFT is given by

\[
c_{IR} = c(g_*) = c_{UV} - 6\epsilon g_*^2 + 2Cg_*^3 + O(g_*^4), \quad c_{UV} = 1 - \frac{6(q-p)^2}{pq}
\]

\[
= 1 - \frac{6(q-p)^2}{p(2p - q)} = c[\mathcal{M}_{(2p-q,p)}]. \tag{8}
\]

The conformal dimension of the perturbing field near the new fixed point is determined by

\[
\Delta(\Phi_{1,3}) = 1 - \frac{\partial \beta}{\partial g} \bigg|_{g_*} = 1 + \epsilon + \epsilon^2 + O(\epsilon^3)
\]

\[
\approx \frac{q}{2p - q} = \Delta[\Phi_{3,1}] \quad \text{for} \quad \mathcal{M}_{(2p-q,p)}.
\tag{9}
\]

This completes the RG flow of \(\mathcal{M}_{(p,q)}\) perturbed by \(\Phi_{1,3}\) into \(\mathcal{M}_{(2p-q,p)}\) perturbed by \(\Phi_{3,1}\) for \(q >> (q-p)\). This means that the \((p, q)\) minimal CFTs can be grouped into an infinite number of series for each value of \(q - p\) such that the CFTs in each series are connected by the RG flows under the \(\Phi_{1,3}\) perturbations:

\[
\cdots \rightarrow (p + n, p + 2n) \rightarrow (p, p + n) \rightarrow (p - n, p) \rightarrow (p - 2n, p - n) \rightarrow \cdots
\]

for \(p >> n\) and \(n = 1, 2, \ldots\). The \(n = 1\) case gives the RG flows of the principal series (the unitary CFTs). No unitary CFTs flow into the non-unitary ones and vice versa. This result has been also considered in ref.[11].

\[\ast\] This does not contradict to the fact that ‘c-theorem’\(^{[3]}\) is not valid for the non-unitary CFTs. Although the \(c\)-function is not monotonically decreasing for any relevant perturbation, there can still exist certain perturbations which makes \(c\) decrease.
3. We now consider how each MIPF of the minimal CFTs will flow under the perturbation. There are three types of the MIPFs for the \((p, q)\) minimal CFT, denoted by \(Z_{(p,q)}(A, A)\), \(Z_{(p,q)}(A, D)\), and \(Z_{(p,q)}(A, E)\).\(^8\) The diagonal MIPFs \(Z_{(p,q)}(A, A)\) are possible for all \((p, q)\) and contains only spinless fields. The non-diagonal MIPFs \(Z_{(p,q)}(A, D)\) are possible for \(p\) or \(q\) even and include some primary fields with spins. The exceptional MIPFs \(Z_{(p,q)}(A, E)\) are allowed only for a few discrete values of \(p\) and \(q\). We will consider the RG flows of the \(Z_{(p,q)}(A, A)\) and \(Z_{(p,q)}(A, D)\) MIPFs here.

The partition functions of the perturbed \((p, q)\) minimal CFTs on the RG trajectory can be written in the following schematic form:

\[
Z(g) = \int [D\varphi] e^{-S_{(p,q)}(g)[\varphi]} = \int [D\varphi] \exp - \left[\mathcal{M}_{p/q} + g \int d^2z \Phi_1(1,3) \right],
\]

(10)

where \(\varphi\) denotes the field degree of freedom which has no direct consequence in the following context. For a small \(g_* \ll 1\), Eq.(10) gives with \(Z(0) = Z_{(p,q)}\) and \(Z(g_*) = Z_{(2p-q,p)}\):

\[
\delta Z = Z_{(2p-q,p)}(A, Y) - Z_{(p,q)}(A, X) \cong -g_* \frac{\tau_2}{\pi} \langle \Phi_{1,3} \rangle_{\text{torus}},
\]

(11)

where \(\tau_2\) is the imaginary part of the modular parameter \(\tau\). For a given MIPF of \(\mathcal{M}_{(p,q)}\) \((X = A \text{ or } D)\), we need to find the corresponding \(Y\) for the MIPFs of \(\mathcal{M}_{(2p-q,p)}\). We will show that \(Y = A\) if \(X = A\) and \(Y = D\) if \(X = D\) using Eq.(11).

For the purpose, it is convenient to express the MIPFs of the minimal CFTs in terms of the Coulomb gas form:\(^{13}\)

\[
Z_{(p,q)}(A, A) = \frac{1}{2} \left[Z_c(pq) - Z_c \left(\frac{p}{q} \right) \right],
\]

\[
Z_{(p,q)}(A, D) = \frac{1}{2} \left[Z_c \left(\frac{4p}{q} \right) - Z_c \left(\frac{p}{q} \right) - Z_c \left(\frac{4}{pq} \right) + Z_c \left(\frac{1}{pq} \right) \right],
\]

(12)

\[
Z_c(N) = \frac{1}{|\eta(\tau)|^2} \sum_{e,m \in \mathbb{Z}} e^{\pi i \tau(e/\sqrt{N+m\sqrt{N}})^2/2} e^{-\pi i \tau(e/\sqrt{N-m\sqrt{N}})^2/2}.
\]

We first compute \(\delta Z\) for the diagonal and non-diagonal MIPFs separately as-
assuming that \((A, A)\) flows into \((A, A)\) and \((A, D)\) to \((A, D)\):

\[
\delta_A Z = Z_{(2p-q,p)}(A, A) - Z_{(p,q)}(A, A) \\
\approx 2\pi \tau_2 \frac{(q-p)}{q} \frac{1}{|\eta(\tau)|^2} F(pq) + \mathcal{O}(\epsilon^2),
\]

\[
\delta_D Z = Z_{(2p-q,p)}(A, D) - Z_{(p,q)}(A, D) \\
\approx 2\pi \tau_2 \frac{(q-p)}{q} \frac{1}{|\eta(\tau)|^2} [F(pq) - F(pq/4)] + \mathcal{O}(\epsilon^2),
\]

(13)

using \(Z_c(N) = Z_c(1/N)\) and

\[
\delta Z_c(N) = Z_c(N + \delta N) - Z_c(N) \approx -2\pi \tau_2 \frac{\delta N}{N} \frac{1}{|\eta(\tau)|^2} F(N)
\]

\[
F(N) = \sum_{e,m \in \mathbb{Z}} \left(\frac{m^2 N}{2} - \frac{e^2}{2N} \right) e^{\pi i \tau (e/\sqrt{N} + m \sqrt{N})^2/2} e^{-\pi i \tau (e/\sqrt{N} - m \sqrt{N})^2/2}.
\]

(14)

From the asymptotic expression of \(F(N)\)

\[
F(N) \sim -\frac{1}{2\pi \tau_2^{2/3}} \frac{\sqrt{N}}{2} \text{ for } N \gg 1,
\]

(15)

one can find \(\delta_A Z\) and \(\delta_D Z\) to be

\[
\delta_A Z \approx -\frac{(q-p)}{2\sqrt{\tau_2}} \frac{1}{|\eta(\tau)|^2}, \quad \delta_D Z \approx -\frac{(q-p)}{4\sqrt{\tau_2}} \frac{1}{|\eta(\tau)|^2}.
\]

(16)

Next we compute the one-point function on the torus using the method used in [9,10]. Since \(\Delta[\Phi_{1,3}] \approx 1\), one can express the one-point function with the characters

\[
\langle \Phi_{1,3} \rangle_{\text{torus}}(\tau, \bar{\tau}) = 4\pi |z|^2 \sum_{F \in \mathcal{A}} \langle \Phi_F | \Phi_{1,3}(z, \bar{z}) | \Phi_F \rangle \chi_h(\tau) \overline{\chi_h(\bar{\tau})},
\]

\[
= 4\pi |z|^2 \sum_{F \in \mathcal{A}} C_{(1,3),F,F} \chi_h(\tau) \overline{\chi_h(\bar{\tau})},
\]

(17)

where \(\mathcal{A}\) denotes a complete set of primary fields \(F\) with conformal dimension
The characters are expressed as a sum of infinite terms as follows:

$$\chi_{r,s}(\tau) = \frac{K_{r,s}(\tau) - K_{r,-s}(\tau)}{\eta(\tau)}, \quad K_{r,s}(\tau) = \sum_{n=-\infty}^{\infty} \exp \left[\frac{2\pi i \tau (2pqn + qr - ps)^2}{4pq} \right].$$

(18)

Since $p, q >> 1$ and $\tau_2 > 0$, most terms in $K_{r,s}$ vanish except those with $n = 0$ and $qr - ps \sim p, q$. By the same reason, $K_{r,-s}$ becomes negligible. Therefore, the character can be approximated as

$$\chi_{r,s}(\tau) \approx \frac{1}{\eta(\tau)} \exp \left[\frac{\pi i \tau (qr - ps)^2}{2pq} \right].$$

(19)

The integer $\lambda = qr - ps$ covers all integers between $-pq$ and pq only once for $1 \leq r \leq p$ and $1 \leq s \leq q$ for (A, A) and all the odd integers for (A, D). Furthermore, as pointed out in [10], the non-diagonal combinations like $\chi_{r,s} \chi_{r,q-s}$ are negligible because $|qr - p(q - s)| \sim pq$ if $|qr - ps| \sim O(1)$.

Using these observations and the coefficients of the diagonal three-point functions in Eq.(5), one can obtain the one-point function on the torus to be

$$\langle \Phi_{1,3} \rangle_{\text{torus}} \approx -\alpha \frac{\pi^2}{\sqrt{3}\eta^2} \sum_{\lambda=-q}^{q} \frac{\Gamma\left(\frac{p+\lambda}{q}\right)}{\Gamma\left(\frac{a-p+\lambda}{q}\right)} \frac{\Gamma\left(\frac{p-\lambda}{q}\right)}{\Gamma\left(\frac{q-p-\lambda}{q}\right)} \exp \left[-\frac{\pi \tau_2 \lambda^2}{pq} \right] + O(\varepsilon)$$

$$\approx \alpha \frac{q\pi}{\sqrt{3}\eta^2} \int_{-\infty}^{\infty} dx e^{-\pi \tau_2 x^2} = \frac{\alpha}{\eta^2} \frac{q\pi}{2\sqrt{3}\tau_2^{3/2}},$$

(20)

where $\alpha = 1$ or $1/2$ for the (A, A) and (A, D) MIPFs, respectively. Comparing this with Eq.(6), one can confirm Eq.(16) with $X = Y = A$ and $X = Y = D$:

$$\mathcal{M}_{(p,q)}(A, A) \longrightarrow \mathcal{M}_{(2p-q,p)}(A, A), \quad \mathcal{M}_{(p,q)}(A, D) \longrightarrow \mathcal{M}_{(2p-q,p)}(A, D).$$

(21)

4. We showed so far that there can exist a RG flow from the (p, q) minimal CFT to the $(2p - q, p)$ minimal CFT due to the least relevant operator $\Phi_{1,3}$. Although our argument is rigorous only for $q >> (q - p)$, it may be possible to extend
our results to all possible pairs of \((p, q)\). For the unitary CFTs, in particular, Al.B. Zamolodchikov showed the RG flows for any \(p\) using the conjectured thermodynamic Bethe Ansatz (TBA) equations.\(^{15}\) For example, the RG flow connects the tricritical Ising model with the Ising model. Although the direct derivation of the TBA equations is still missing, the TBA analysis can support the conjecture that the RG flow exists for all \((p, p + 1)\) unitary CFTs. Interesting point is that the conjectured TBA equations for the massless \(g > 0\) field theories are given by those for the massive \(g < 0\) theories, i.e. the restricted sine-Gordon theories with the massless left- and right-moving particles instead of the massive particles. It would be interesting to study the RG flows of the \((p, q)\) minimal CFTs in the same way as the unitary cases. The conjectured TBA equations will be provided by those for the massive theories.\(^{16,17}\) This TBA analysis of the RG flow of the minimal CFTs based on the TBA equations will be reported elsewhere.\(^{18}\)

One interesting application of the RG flow is to identify new integrable model which flows into the ‘Yang-Lee edge singularity model’, identified with \(\mathcal{M}_{(2,5)}\).\(^{19}\) This new model which is \(\mathcal{M}_{(5,8)}\) can be realized as a UV (short distance) limit of the Yang-Lee model perturbed by the dimension 4 operator \(T_4(z)\) which is a decendent field of the vacuum at level 4:

\[
S_{(5,8)} = S_{YL} + g \int d^2z T_4(z) T_4(\overline{z}). \tag{22}
\]

Finally, one can think of the RG flows of the \(SU(2)\) coset CFTs which have extended symmetries like the superconformal invariance. For the unitary CFTs, it has been claimed that there exist the RG flows into new IR fixed points by the perturbation of the least relevent operator.\(^{20}\) Based on this observation, we can conjecture the following RG flows of the \(SU(2)\) coset non-unitary CFTs due to the least relevent operator:

\[
\frac{SU(2)_K \times SU(2)_L}{SU(2)_{K+L}} + g\Phi_{\text{pert}} \rightarrow \frac{SU(2)_K \times SU(2)_{L-K}}{SU(2)_L} + g'\Phi'_{\text{pert}}, \tag{23}
\]

where \(L + 2 = p/(q - p)\) and \(\Delta(\Phi_{\text{pert}}) = (K + L)/(K + L + 2)\) and \(\Delta(\Phi'_{\text{pert}}) = \)
\((K + L + 2)/(K + L) \). Also, interesting is to compare these massless field theories \((g > 0)\) with the massive theories \((g < 0)\) considered in [21] where exact \(S\)-matrices and particle spectrum are proposed.

Note After finishing this paper, we noticed a preprint [22] which gets a similar result for the diagonal theories.

Acknowledgements:

It is a pleasure to thank our colleagues at Cornell and S. Nam at Seoul for various helpful discussions.

REFERENCES

1. A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov, Nucl. Phys. **B241** (1984) 333.
2. A.B. Zamolodchikov, Int. J. Mod. Phys. **A4** (1989) 4235.
3. A.B. Zamolodchikov, JETP Lett. **43** (1986) 702; Sov. J. Nucl. Phys. **46** (1987) 1090.
4. A.W.W. Ludwig and J.L. Cardy, Nucl. Phys. **B285** (1987) 687.
5. D. Friedan, Z. Qiu, and S. Shenker, Phys. Rev. Lett. **52** (1984) 1575.
6. A. LeClair, Phys. Lett. **230B** (1989) 103;
 D. Bernard and A. LeClair, Phys. Lett. **247B** (1990) 309.
7. F. Smirnov, Int. J. Mod. Phys. **A4** (1989) 4213;
 N.Yu Reshetikhin and F. Smirnov, Comm. Math. Phys. **131** (1990) 17.
8. A. Cappelli, C. Itzykson, and J.-B. Zuber, Nucl. Phys. **B280[FS18]** (1987) 445.
9. D. Ghoshal and A. Sen, Phys. Lett. **B265** (1991) 295.
10. F. Ravanini, Saclay Preprint SPhT/91-147 (1991).
11. S. Elitzur, A. Giveon, and E. Rabinovici, Nucl. Phys. **B316** (1989) 679.
12. Vl.S. Dotsenko and V.A. Fateev, Phys. Lett. **B154** (1985) 291.
13. P. di Francesco, H. Saleur, and J.-B. Zuber, J. Stat. Phys. **49** (1987) 57.
14. Al.B. Zamolodchikov, Nucl. Phys. **B342** (1990) 695.
15. Al.B. Zamolodchikov, Nucl. Phys. **B358** (1991) 619.
16. C. Ahn and S. Nam, Phys. Lett. **B271** (1991) 329.
17. C. Ahn, Cornell Preprint 91/1117.
18. C. Ahn and S. Nam, in preparation.
19. J.L. Cardy, Phys. Rev. Lett. \textbf{54} (1985) 1354.
20. C. Crnkovic, G.M. Sotkov, and M. Stanishkov, Phys. Lett. \textbf{226} (1989) 297.
21. C. Ahn, Nucl. Phys. \textbf{B354} (1991) 57.
22. M. Lassig, PRINT-92-0009 (JULICH) December 1991.