Construction of Fuzzy Control Chart with Multinomial Quality using Process Capability

R.Dilipkumar, C.Nanthakumar

Abstract: Control charts are the effective and quietest form of statistical process control methods. Many of the times, data are obtained in quantitative form; however, there are many quality characteristics that cannot be expressed in numerical measure, such as characteristics for appearance, smoothness and colour, etc. Fuzzy sets theory is an impressive mathematical methodology to evaluate the vagueness related uncertainty that can linguistically express data in these situations. In this paper, we construct a fuzzy control limits under fixed and varying sample size with various quality levels for observing a manufacturing process based on the multinomial distribution using degrees of membership and process capability.

Keywords: Fuzzy set, Linguistic variable, Membership function, Multinomial distribution and Process capability.

I. INTRODUCTION

Control charts are widely used for monitoring and examining a production process. The power of control charts lies in their ability to detect process shifts and to identify abnormal conditions in the process, Amirzadeh et.al (2008). A control chart consists of three horizontal lines called; Upper Control Limit (UCL), Centre Line (CL) and Lower Control Limit (LCL). The centre line in a control chart denotes the average value of the quality characteristic under study, Saravanan and Nagarajan (2012). If a point lies within UCL and LCL, then the process is deemed to be under control. Otherwise, a point plotted outside the control limits can be regarded as evidence representing that the process is out of control and, hence preventive or corrective actions are necessary in order to find and eliminate the assignable cause or causes, which subsequently result in improving quality characteristics, Kolarik (1995).

According to W.A.Shewhart (1924), if w be a sample statistic that measures some quality characteristic of interest the mean of w is \(\mu_w \) and the standard deviation of w is \(\sigma_w \), then the control limits are defined as \(\mu_w \pm A \sigma_w \), where A is the “distance” of the control limits from the centre line, expressed in standard deviation units. In many situations, control limits could not be so precise. Uncertainty comes from the measurement system including operators and gauges, and environmental conditions. In this context, fuzzy set theory is a useful tool to handle this uncertainty. Numeric control limits can be transformed to fuzzy control limits by using membership functions, Sevil Senturk (2009).

Pandurangan and Varadarajan (2011) proposed a Fuzzy Multinomial (FM) process with Variable Sample Size (VSS) and the control limits for the FM chart have been obtained using multinomial distribution. They compared with the conventional chart for fraction defective. It is seen that Fuzzy Multinomial chart with Variable Sample Size performs better than the conventional chart. Kawa and Suzan (2014) presented an extension of standard control chart to deal with linguistic categories and the variable sampling size (VSS), it is named as fuzzy multinomial charts (FM-chart), and they compared FM-chart with the conventional p-chart and EWMA Control Chart. It is seen that FM chart with VSS performs better than the conventional charts, this method is more sensitive, accurate and more economic for assisting decision maker to control the operation system as early time, especially when there is a change in sample sizes. Kar et.al. (2018) dealt with the application of fuzzy multinomial control chart (FM-chart) with variable sample size for characterizing the mulberry multi-bivoltine silk cocoons quality and the result is compared with the conventional p-chart. In this research article we introduce the fuzzy control chart under fixed and varying sample size with multinomial quality using process capability with a linguistic variable which is classified in more than two categories by numerical examples.

II. METHODS AND MATERIALS

A linguistic variable differs from a numerical variable in that its values are not numbers but words or phrases in some language, Amirzadeh et.al (2008). In the context of fuzzy set theory, a linguistic variable \(\tilde{L} \) is characterized by the set of ‘m’ mutually exclusive members \(\{ \tilde{l}_1, \tilde{l}_2, \ldots, \tilde{l}_m \} \) and each term \(\tilde{l}_i \) has a weight \(\tilde{L}(l_i) \) that reproduces the degree of membership in the set. It is denoted as

\[\tilde{L} = \left[\tilde{l}_1, \tilde{L}(l_1) \right], \left[\tilde{l}_2, \tilde{L}(l_2) \right], \ldots, \left[\tilde{l}_m, \tilde{L}(l_m) \right]. \]

Assume that the production/service process is operating in a stable manner and \(p_i \) is the probability that an item is \(\tilde{l}_i \), \(i=1, 2 \ldots m \) and successive items produced are independent and accept that a random sample of \(n \) items of the product/service is taken by using sampling techniques, is designed at identifying, regulating unfavourable trends and out of control conditions. In order to do this, the four classifications listed below could cause different degrees of membership.
Construction of Fuzzy Control Chart with Multinomial Quality using Process Capability

A random sample of size \(n_r, r = 1, 2, \ldots, s \) and let \(X_n, i = 1, 2, \ldots, m \), be the number of items of the product/service that are \(i \)-th, \(i = 1, 2, \ldots, m \) and \(X_n, X_2, \ldots, X_m \) has a multinomial distribution with parameters \(n_1, n_2, \ldots, n_r \) and \(p_1, p_2, \ldots, p_m \). It is experienced that each \(\{X_n, X_2, \ldots, X_m\} \) marginaly has a binomial distribution with the parameters \(n_{ij} \) and variance \(n_{ij}(1-p_{ij}) \), \(i = 1, 2, \ldots, m \) and \(r = 1, 2, \ldots, s \) respectively. Further the mean and variance of the linguistic variable with variable sample size will be equal to the mean and variance of the linguistic variable to fixed small size.

At the present we define the weighted average (Amirzadeh, et al, 2008) for the degree of membership \(\left[\hat{I}_r, \hat{L}(l) \right] \), \(i = 1, 2, \ldots, m \), as follows:

\[
\tilde{X}_L = \frac{\sum X_i \hat{L}(l)}{n_r} = \frac{\sum X_i \hat{L}(l)}{n_r}, \quad i = 1, 2, \ldots, m, \quad r = 1, 2, \ldots, s
\]

In a sample of \(n_r \) units, \(X_i \) has a binomial distribution with the mean \(n_{ij} \) , variance \(n_{ij}(1-p_{ij}) \) and \(\text{Cov}(X_i, X_j) = n_{ij}p_{ij} \), if \(i \neq j \). Then variance for the degree of membership is given by

\[
V\left(\tilde{X}_L\right) = \frac{1}{n_r} \sum X_i \hat{L}(l) + X_i \hat{L}(l_i) + \ldots + X_h \hat{L}(l_n) = \frac{1}{n_r} \sum e_i \hat{L}(l)\left[p_i \left(1-p_i\right)\right] - 2 \sum \sum \tilde{L}(i)\hat{L}(l_i)\left(p, p_i\right), r = 1, 2, \ldots, s
\]

The traditional Shewhart (1931) control chart is replaced by fuzzy multinomial control chart, then

\[
\text{UCL}_S = E\left(\tilde{X}_L\right) + 3\sqrt{V\left(\tilde{X}_L\right)} \quad \text{and} \quad \text{CL}_S = E\left(\tilde{X}_L\right)
\]

\[
\text{LCL}_S = E\left(\tilde{X}_L\right) - 3\sqrt{V\left(\tilde{X}_L\right)}
\]

The derived fuzzy multinomial control chart from the substitution of the derived results of \(E\left(\tilde{X}_L\right) \) and \(V\left(\tilde{X}_L\right) \) are as follows:

\[
\text{UCL}_{FM-C_r} = E\left[\sum X_i \hat{L}(l)\right] + 3\left[\frac{1}{n_r} \sum e_i \hat{L}(l)\left[p_i \left(1-p_i\right)\right] - 2 \sum \sum \tilde{L}(i)\hat{L}(l_i)\left(p, p_i\right)\right]
\]

\[
\text{CL}_{FM-C_r} = E\left[\sum X_i \hat{L}(l)\right] \quad \text{and} \quad \text{LCL}_{FM-C_r} = E\left[\sum X_i \hat{L}(l)\right] - 3\left[\frac{1}{n_r} \sum e_i \hat{L}(l)\left[p_i \left(1-p_i\right)\right] - 2 \sum \sum \tilde{L}(i)\hat{L}(l_i)\left(p, p_i\right)\right]
\]

III. PERFORMANCE OF THE PROPOSED CONTROL CHART USING PROCESS CAPABILITY FOR FIXED SAMPLE SIZE

The following data includes 20 samples of size 25 each from the turnout of a final assembly line in an automobile company which is located Salem city. The items for assembled in each sample are inspected and classified as each "admirable", "worthy", "normal" and "corruptly" with the degrees of membership 0, 0.25, 0.5 and 1, respectively.

S.No	Admiraible	Worthy	Normal	Corruptly
1	3	3	3	2
2	3	2	3	1
3	5	4	3	1
4	5	3	2	1
5	4	3	2	1
6	5	4	3	2
7	4	3	2	1
8	3	2	1	1

The weighted average for the degree of membership is as follows:

For the first sample,
\[
\hat{\bar{X}}_L = \frac{\sum_{i=1}^{n} X_i \bar{L}_i}{n_t} \quad \text{and so on. The variance for the degree of membership is as follows:}
\]

For the first sample,
\[
V(\hat{\bar{X}}_L) = \frac{1}{n_t} \left(\frac{1}{n_t} \sum_{i=1}^{n_t} \left(E(L_i) \left(\sigma_p (1-p) \right) + E(L_i) \left(\sigma_p (1-0.9) \right) + E(L_i) \left(\sigma_p (1-0.25) \right) + E(L_i) \left(\sigma_p (0) \right) \right) - 2 \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} E(L_i) L_j (\sigma_p (p_p)) - 2 \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} E(L_i) L_j (\sigma_p (p_p)) \right) \]

\[
= \frac{1}{25} \left(\left(1 \times 0.08 \times 0.36 \right) + \left(0.25 \times 0.16 \times 0.16 \right) \right) \]

\[
V(\hat{\bar{X}}_L) = 0.0026
\]

and so on.

To supervise the assembly line of the items, 20 samples of fixed size i.e. 25 are chosen. The degrees of membership for the assessment are taken as 1, 0.5, 0.25 and 0 respectively. The data with probabilities, weighted average and variance based on linguistic variables are given in Table-2.

The fuzzy multinomial control limits are as follows:
\[
UCL_{FM} = E \left[\sum_{i=1}^{n_t} X_i \bar{L}_i \right] - 3 \left(\frac{1}{n_t} \sum_{i=1}^{n_t} E(L_i) \left(p \left(1-p \right) \right) - 2 \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} E(L_i) L_j (\sigma_p (p_p)) \right)
\]

\[
= 0.4070 - 3 \times 0.000226 = 0.4053
\]

\[
CL_{FM} = E \left[\sum_{i=1}^{n_t} X_i \bar{L}_i \right] = 0.4070
\]

\[
LCL_{FM} = E \left[\sum_{i=1}^{n_t} X_i \bar{L}_i \right] - 3 \left(\frac{1}{n_t} \sum_{i=1}^{n_t} E(L_i) \left(p \left(1-p \right) \right) - 2 \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} E(L_i) L_j (\sigma_p (p_p)) \right)
\]

\[
= 0.4070 - 3 \times 0.000226 = 0.3587
\]

Even the control limit interval hereafter refers to as CLI, is the difference between the control limit value. Thus, control chart for fuzzy multinomial, the control limit interval is 0.0965. From the resulting Figure-1, it is clear that the process is out of control, since the sample numbers 3, 8, 11, 13 and 19 lie outside the upper control limit and the sample numbers 2, 4, 10, 12, 14, 15, 17 and 20 lie outside the lower control limit.
Construction of Fuzzy Control Chart with Multinomial Quality using Process Capability

Thus, control chart for fuzzy multinomial using process capability, the control limit interval is 0.0267. From the resulting Figure-2, it is clear that the process is out of control, since the sample numbers 3, 5, 7, 8, 9, 11, 13, 16 and 19 lie outside the upper control limit and the sample numbers 1, 2, 4, 10, 12, 14, 15, 17 and 20 lie outside the lower control limit.

Figure 3: Average run length (ARL) for control charts

In general, the expected number of samples needed to detect a shift of ‘multiple of σ’ under the control chart for fuzzy multinomial using process capability is more agile than the existing fuzzy multinomial control limits.

IV. PERFORMANCE OF THE PROPOSED CONTROL CHART USING PROCESS CAPABILITY FOR VARYING SAMPLE SIZE

A factory is located in Salem District producing spark plug found on the inspection of 15 samples of varying size. The spark plugs in each sample are inspected and classified as each "Fail", "Pass", "Good" and "Excellent" with the degrees of membership 1, 0.5, 0.25 and 0 respectively.

Table 4: The data for final assembly line in an automobile company

S.No	Sample size	Fail	Pass	Good	Excellent
1	20	6	1	6	7
2	21	9	5	6	0
3	33	14	9	3	2
4	25	3	12	2	1
5	29	7	9	5	0
6	30	8	7	12	0
7	19	5	5	4	0
8	27	8	9	8	0
9	28	5	20	2	0
10	26	2	11	8	5
11	19	3	10	5	0
12	32	8	4	10	0
13	34	9	6	14	5
14	31	7	5	12	7
15	29	6	8	11	4

To supervise the assembly line of the items, 15 samples of varying size are chosen.

The degrees of membership for the assessment are taken as 1, 0.5, 0.25 and 0 respectively. The data with probabilities, weighted average and variance based on linguistic variables are given in Table-7.

The weighted average for the degree of membership is as follows:

For the first sample,
\[\bar{X}_n = \frac{\left(\hat{L}(l_x) \times X_{1x} \right) + \left(\hat{L}(l_y) \times X_{1y} \right) + \left(\hat{L}(l_z) \times X_{1z} \right) + \left(\hat{L}(l_t) \times X_{1t} \right)}{n} \]

\[= \frac{\left((1 \times 6) + (0.5 \times 1) + (0.25 \times 6) + (0 \times 7) \right)}{20} = 0.400 \]

and so on.

The variance for the degree of membership is as follows:

For the first sample,

\[\nu \left(\bar{X}_n \right) = \frac{1}{n!} \left[\left[\hat{L}(l_x) \hat{L}(l_y) \hat{L}(l_z) \hat{L}(l_t) \hat{p}_x \hat{p}_y \hat{p}_z \hat{p}_t \right] + \left[\hat{L}(l_x) \hat{L}(l_y) \hat{L}(l_z) \hat{L}(l_t) \hat{p}_x \hat{p}_y \hat{p}_z \hat{p}_t \right] \right] \]

\[= \frac{1}{20} \left[\left[\left[(1 \times 0.30 \times 0.30) \times 0.05 \times (1 - 0.05) \right] + \left[(0.25 \times 0.30 \times 0.30) \times 0.05 \times (1 - 0.05) \right] \right] \right] \]

\[\nu \left(\bar{X}_n \right) = 0.009 \]

and so on.

The fuzzy multinomial control limits are as given below:

For sample 1:

\[UCL_{pM} = E \left[\frac{\sum(X \hat{L}(l_x))}{n_x} \right] - 3 \left\{ \frac{1}{n_x} \left[\sum \hat{L}(l_x) \hat{p}_x (1 - \hat{p}_x) \right] \right\} \]

\[= 0.372 + 3 \sqrt{0.009} = 0.650 \]

\[LCL_{pM} = E \left[\frac{\sum(X \hat{L}(l_x))}{n_x} \right] - 3 \left\{ \frac{1}{n_x} \left[\sum \hat{L}(l_x) \hat{p}_x (1 - \hat{p}_x) \right] \right\} \]

\[= 0.372 - 3 \sqrt{0.009} = 0.094 \]

The control limits for fuzzy multinomial using process capability with varying sample size are as follows:

The difference between upper specification and lower specification limits is 0.233 (USL - LSL = 0.414 - 0.181), which termed as tolerance level (TL) and choose the process capability (Cp) is 2.0, the value of \(\tilde{\sigma}_{FM,C_p} \) is 0.019.

The proposed fuzzy multinomial control limits using process capability for a specified tolerance level are given below.

Table 5: Results of probabilities, weighted average, variance based on linguistic variables

S. No	\(p_1 \)	\(p_2 \)	\(p_3 \)	\(p_4 \)	\(\bar{p}_{FM,C_p} \)	Variance \(\nu _{FM,C_p} \)	Standard deviation \(\tilde{\sigma}_{FM,C_p} \)
1	0.30	0.05	0.35	0.40	0.0400	0.009	0.0414
2	0.05	0.43	0.24	0.31	0.2921	0.003	0.029
3	0.06	0.42	0.27	0.34	0.2312	0.002	0.0583
4	0.32	0.12	0.48	0.50	0.3411	0.005	0.0675
5	0.14	0.24	0.31	0.36	0.2921	0.004	0.0599
6	0.10	0.27	0.23	0.40	0.2921	0.003	0.0583
7	0.26	0.26	0.21	0.46	0.2921	0.007	0.0599
8	0.07	0.30	0.33	0.30	0.2921	0.006	0.0599
9	0.04	0.18	0.71	0.07	0.2921	0.001	0.0583
10	0.08	0.42	0.31	0.19	0.3411	0.003	0.0599
11	0.05	0.16	0.53	0.26	0.2921	0.003	0.0583
12	0.25	0.13	0.31	0.39	0.2921	0.005	0.0599
13	0.26	0.18	0.41	0.15	0.2921	0.004	0.0599
14	0.23	0.16	0.39	0.23	0.2921	0.004	0.0599
15	0.21	0.28	0.38	0.14	0.2921	0.004	0.0599

For sample 1:

\[UCL_{FM,C_p} = E \left[\frac{\sum(X \hat{L}(l_x))}{n_x} \right] + \left(3 \sqrt{\nu _{FM,C_p}} \right) \]

\[= 0.372 + \left(3 \sqrt{0.019} \right) = 0.385 \]

\[LCL_{FM,C_p} = E \left[\frac{\sum(X \hat{L}(l_x))}{n_x} \right] - \left(3 \sqrt{\nu _{FM,C_p}} \right) \]

\[= 0.372 - \left(3 \sqrt{0.019} \right) = 0.359 \]

and so on.

Figure 4: Control limits for fuzzy multinomial and FM using Cp
Construction of Fuzzy Control Chart with Multinomial Quality using Process Capability

Table 6: Results of Fuzzy control limits based on linguistic variables

S. No	Sample size (n_i)	Fuzzy multinomial control limits	Control limits for Fuzzy multinomial using process capability				
		UCL	LCL	Lower control limit Interval (CLI)	UCL	LCL	Class limit Interval (CLI)
1	20	0.650	0.594	0.555	0.385	0.359	0.025
2	21	0.541	0.203	0.337	0.384	0.360	0.025
3	33	0.508	0.236	0.271	0.382	0.362	0.020
4	25	0.588	0.156	0.435	0.383	0.361	0.023
5	29	0.552	0.192	0.360	0.383	0.361	0.021
6	30	0.542	0.202	0.340	0.382	0.362	0.021
7	19	0.623	0.121	0.505	0.385	0.359	0.026
8	27	0.531	0.213	0.318	0.383	0.361	0.022
9	28	0.475	0.269	0.205	0.383	0.361	0.022
10	26	0.526	0.218	0.308	0.383	0.361	0.022
11	19	0.535	0.209	0.325	0.385	0.359	0.026
12	32	0.576	0.168	0.408	0.382	0.362	0.020
13	34	0.555	0.189	0.366	0.382	0.362	0.020
14	31	0.565	0.179	0.385	0.382	0.362	0.020
15	29	0.554	0.190	0.365	0.383	0.361	0.021

It is clear that the process is in-control under fuzzy multinomial control chart, since the entire sample numbers lie inside the control limits. Furthermore, the process is out of control under the control chart for FM using process capability, since the sample numbers 1, 4, 7, 12, 13, 14 and 15 lie above the upper control limit and the sample numbers 2, 3, 5, 6, 8, 9 and 11 lie below the lower control limit.

V. CONCLUSION

The constructed control chart for fuzzy multinomial using process capability in both cases i.e. fixed and varying sample sizes, procedures adopted and discussed in the research article by taking the process capability (C_p) as the base only. In this article offers the possibility of using fuzzy multinomial control chart using process capability, which rules out the weaknesses compared to the existing control charts. Specifically, it present one of the fuzzy multinomial control chart using process capability and on the real-life data illustrates the simplicity of its usage in practice. The procedures can also be constructed by changing the suitable process capability (C_p) used in this article and the performance with efficiency of the control charts is tested through average run length.

References

1. Amirzadeh V, Mashinchi M and Yaghoobi M.A (2008). ‘Construction of Control Charts Using Fuzzy Multinomial Quality’, Journal of Mathematics and Statistics, Vol.4, Issue 1, pp.26-31.
2. Kawa M, Jamal Rashid and Suzan S. Haydar (2014). ‘Construction of control charts by using Fuzzy Multinomial -FM and EWMA Chart “Comparative study”’, Journal of Zankoy Sulaimani- Part A, Vol.16, Issue 3, pp.21-26.
3. Kar N.B, Das S, Ghosh A and Banerjee D (2018). ‘Silk Cocoons Quality Characterization by Fuzzy Control Chart’, Vol. 11, Issue 12, pp.1-11.
4. Kolarik W.J (1995). ‘Creating Quality- Concepts’, Systems Strategies and Tools, McGraw – Hill.
5. Montgomery D.C (2009). ‘Introduction to Statistical Quality Control’, 6th Edition, John Wiley & Sons, Inc., New York.
6. Pandurangan A and Varadharajan R (2011). ‘Fuzzy multinomial control chart with variable sample size’, International Journal of Engineering Science and Technology, Vol. 3, Issue 9, pp.6984-6991.
7. Radhakrishnan R and Balamurugan P (2012). ‘Construction of control charts based on six sigma Initiatives for Fraction Defectives with varying sample size’, Journal of Statistics & Management Systems, Vol. 5, Issue 4 & 5, pp.405-413.
8. Saravanan A and Nagarajan P (2012). ‘α - cut fuzzy control charts for bottle bursting strength data’, International Journal of Electronics, Communication & Instrumentation Engineering Research and Development, Vol. 2 Issue 4, pp.17-30.
9. Sevil Senturk A and Nihal Erginel (2009). ‘Development of fuzzy \(\tilde{X} - \tilde{R} \) and \(\tilde{X} - \tilde{S} \) control charts α-cuts, Information Sciences, Vol. 179, pp.1542–1551.
10. Shewhart W.A (1924). ‘Economic Control of Quality of Manufactured Product’, Van Nostrand, New York.

AUTHORS PROFILE

C.s.Nanthakumar is Doctorate in Statistics and presently working as Associate Professor & Head with 33 years of Academic teaching experience. He has more than 20 publications in reputed, peer reviewed National and International Journals. His research area includes- Stochastic Processes, Survival Analysis and Statistical Quality Control.

R.Dilipkumar is pursuing his Doctorate in Statistics under Periyar University and presently working as Associate Professor of Statistics at Salem Sowdeswari College, Tamilnadu, India. He has 33 years of teaching experience at Under graduate and Post graduate levels in Statistics Discipline. His area of interest in Statistical Quality Control and Reliability Analysis.