Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida

Volke, Daniel Christoph; Friis, Laura; Wirth, Nicolas T.; Turlin, Justine; Nikel, Pablo Ivan

Published in:
Metabolic Engineering Communications

Link to article, DOI:
10.1016/j.mec.2020.e00126

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Volke, D. C., Friis, L., Wirth, N. T., Turlin, J., & Nikel, P. I. (2020). Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metabolic Engineering Communications, 10, e00126. https://doi.org/10.1016/j.mec.2020.e00126

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of *Pseudomonas putida*

Daniel C. Volke, Laura Friis, Nicolas T. Wirth, Justine Turlin, Pablo I. Nikel *

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark

ARTICLE INFO

Keywords:
- Genome engineering
- *Pseudomonas putida*
- Metabolic engineering
- Plasmid curing
- Synthetic biology

ABSTRACT

Genome engineering of non-conventional microorganisms calls for the development of dedicated synthetic biology tools. *Pseudomonas putida* is a Gram-negative, non-pathogenic soil bacterium widely used for metabolic engineering owing to its versatile metabolism and high levels of tolerance to different types of stress. Genome editing of *P. putida* largely relies on homologous recombination events, assisted by helper plasmid-based expression of genes encoding DNA modifying enzymes. Plasmid curing from selected isolates is the most tedious and time-consuming step of this procedure, and implementing commonly used methods to this end in *P. putida* (e.g., temperature-sensitive replicons) is often impractical. To tackle this issue, we have developed a toolbox for both target- and self-curing of plasmid DNA in *Pseudomonas* species. Our method enables plasmid-curing in a simple cultivation step by combining in vivo digestion of vectors by the I-SceI homing nuclease with synthetic control of plasmid replication, triggered by the addition of a cheap chemical inducer (3-methylbenzoate) to the medium. The system displays an efficiency of vector curing >90% and the screening of plasmid-free clones is greatly facilitated by the use of fluorescent markers that can be selected according to the application intended. Furthermore, quick genome engineering of *P. putida* using self-curing plasmids is demonstrated through genome reduction of the platform strain EM42 by eliminating all genes encoding β-lactamases, the catabolic ben gene cluster, and the pyoverdine synthesis machinery. Physiological characterization of the resulting streamlined strain, *P. putida* SEM10, revealed advantageous features that could be exploited for metabolic engineering.

1. Introduction

The scope of contemporary metabolic engineering has expanded over the years through the adoption of non-conventional microorganisms, domesticated via synthetic biology strategies (Aparicio and Udoando, 2020; Calero and Nikel, 2019; Fernández-Cabezón et al., 2019; Jawed et al., 2019; Kim et al., 2016; Sánchez-Pascual et al., 2017). Key to this development is the use of advanced genome engineering techniques (Freed et al., 2018; Kent and Dixon, 2020), often based on the temporary propagation of plasmids. Such approaches include CRISPR/Cas9 technologies (Aparicio et al., 2016; Batianis et al., 2020; Cong and Zhang, 2015; Jakociunas et al., 2017; Sun et al., 2018), DNA recombineering (Aparicio et al., 2020; Csorgó et al., 2016; Sharan et al., 2009), and homologous recombination-based DNA editing (Choi and Lee, 2020; Martínez-García and de Lorenzo, 2017; Wirth et al., 2020). A dedicated synthetic biology toolbox enabled the taming of *Pseudomonas* species (and, in particular, of *P. putida* strain KT2440) as robust platforms for bioproduction (Johnson et al., 2016; Loeschcke and Thies, 2015; Nikel et al., 2016; Nikel and de Lorenzo, 2014, 2018; Poblete-Castro et al., 2020; Sánchez-Pascual et al., 2019). Homologous recombination is the standard principle to insert heterologous DNA fragments into (or deleting parts of) the genome of *Pseudomonas* species (Nikel et al., 2014). This methodology, established for *P. putida* by Martínez-García and de Lorenzo (2011), typically involves two rounds of recombination. A first cycle consists in the chromosomal integration of a suicide plasmid containing recognition sequence(s) for the I-SceI homing meganuclease (Gallagher and Haber, 2018; Jacquier and Dujon, 1985; Jasin, 1996). Next, a helper plasmid, encoding elements needed to introduce double-strand breaks (DSBs) in the chromosome, is transformed into co-integrants. The second recombination event, forced by DSBs (which would be otherwise lethal), uses duplicated sequences in the (co-integrated) plasmid as substrate (Posfai et al., 1999). Such recombination-and-resolving step results in the stochastic occurrence of revertant clones (displaying the wild-type genotype) and mutant clones carrying the desired modification—e.g., deletion, insertion, or point mutation. After creating the mutation intended, the helper plasmid...

* Corresponding author. The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark.

E-mail address: pabnik@biosustain.dtu.dk (P.I. Nikel).

https://doi.org/10.1016/j.mec.2020.e00126

Received 8 January 2020; Received in revised form 23 February 2020; Accepted 29 February 2020

2214-0301/© 2020 The Authors. Published by Elsevier B.V. on behalf of International Metabolic Engineering Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
used for introducing DSBs should be cured prior to any subsequent experiment. Vector curing is also beneficial for successive genome engineering manipulations, as the presence of helper plasmids drastically reduces the efficiency of subsequent integration events—likely because of the basal expression of the gene encoding the DSB-inducing enzyme (Bennett et al., 1993).

The plasmid-curing step is the most time-consuming part of bacterial genome engineering protocols; generally accomplished by repetitive passaging of clones in antibiotic-free culture media (loss-by-dilution) followed by sensitivity screening against the antibiotic marker of the helper plasmid (Aparicio et al., 2019a,b; Martínez-García et al., 2017). From a broader perspective, the removal of plasmid DNA from a given bacterial host is a standard technique in microbiology, and different strategies have been implemented for this purpose (Haldimann and Wanner, 2001; Trevors, 1986). Originally designed for *Escherichia coli* and related species, such protocols comprise electroporation (Heery et al., 1989), use of DNA intercalating reagents (Buckner et al., 2018), and adoption of conditionally-replicating plasmids and repetitive passaging under non-selective conditions (Chen et al., 2017), and related species, such protocols comprise electroporation (Heery et al., 1989), use of DNA intercalating reagents (Buckner et al., 2018), and adoption of conditionally-replicating plasmids and repetitive passaging under non-selective conditions (Chen et al., 2017), and during genome engineering manipulations, cells were extracted, and 10 g L\(^{-1}\) citrate in 96-well plates in a Synergy HI plate reader (BioTek Instruments; Winooski, VT, USA). The excitation and emission wavelengths were 485 nm and 535 nm, respectively.

2. Materials and methods

2.1. Bacterial strains and growth conditions

All bacterial strains used in this study are listed in *Table 1*. Cultures of *P. putida* KT2440, *E. coli* and their derivatives were incubated at 30 °C and 37 °C, respectively. For standard applications, routine cloning procedures, and during genome engineering manipulations, cells were grown in lysogeny broth (LB) medium (10 g L\(^{-1}\) tryptone, 5 g L\(^{-1}\) yeast extract, and 10 g L\(^{-1}\) NaCl). All liquid cultures were agitation at 200 rpm (MaxQ\(^{TM}\) 8000 incubator; ThermoFisher Scientific, Waltham, MA, USA). Solid culture media also contained 15 g L\(^{-1}\) agar, Kanamycin (Km), gentamicin (Gm), streptomycin (S), and ampicillin (Amp) were added whenever needed at 50 μg mL\(^{-1}\), 10 μg mL\(^{-1}\), 100 μg mL\(^{-1}\), and 100 μg mL\(^{-1}\), respectively. Unless indicated otherwise, Amp was supplemented at 500 μg mL\(^{-1}\) in *P. putida* cultures. For quantification of red and green fluorescence and phenotypic characterization of reduced-genome strains, *P. putida* KT2440, EM42, and derivatives thereof were grown in M9 minimal medium (Nickel et al., 2008, 2015) supplemented with 0.2% (w/v) citrate in 96-well plates in a Synergy Hi plate reader (BioTek Instruments; Winooski, VT, USA). The excitation and emission wavelengths were 485 nm and 535 nm, respectively.

Table 1

Bacterial strains and plasmids used in this study.	Source or reference	
Bacterial strain	**Relevant characteristics**	
E. coli DH5α	Cloning host; Flâ‘ltron endA1 gfpX44(AS) thrEl recA1 relAI spoT1 gyrA96(Nal\(^R\)) tfbCl1 desR nupG(Φ80lacZΔM15) ΔlacYJlacZΔ(169::F’ lacIq) mCherry	Meselson and Yuan (1968)
E. coli DH5α Δpir	Cloning host; Δpir, Δpir-β-gal lacZΔ(169::F’ lacIq) mCherry	Platt et al. (2000)
P. putida KT2440	Wild-type strain; derivative of *P. putida* MT2 (Worsey and Williams, 1975)	Bagdasarian et al. (1981)
P. putida EM42	Reduced-genome derivative of *P. putida* KT2440; ΔP, 4329-P, 4397 (flagellar operon) ΔP, 3953-P, 3920 (propanediol) ΔP, 3962-P, 3957 (propanediol III) ΔP, 1532-P, 1586 (propanediol IV) ΔTn7 ΔmDA-1 ΔmDA-2 ΔhisRMS Δftr6562	Martínez-García et al. (2014b)
P. putida SEM10	Reduced-genome derivative of *P. putida* EM42; ΔP, 3952-P, 3977 (P) ΔP, 3952-P, 3977 (P) ΔP, 2045-P, 2076-P, 2091 (P) ΔP, 2045-P, 2076-P, 2091 (P) ΔmABCD ΔpvdD	This work
Plasmid pSEVA657M	Cloning vector; orf828R1, promoter-less msfGFP; Gm\(^R\)	Martínez-García et al. (2015)
pSEVA628S	Helper plasmid; orf828R2, XylS/Flâ‘ltron I-SceI; Gm\(^R\)	Aparicio et al. (2015)
pSEVA228S	Helper plasmid; orf828R2, XylS/Flâ‘ltron I-SceI; Gm\(^R\)	Aparicio et al. (2015)
pSEVA128S	Helper plasmid; orf828R2, XylS/Flâ‘ltron I-SceI; Amp\(^R\)	Aparicio et al. (2015)
pBSD1	Conditionally-replicating vector; orf828R2, XylS/Flâ‘ltron I-SceI; Amp\(^R\)	Karunakaran et al. (1999)
pS228SR	Derivative of vector pSEVA628S with P14g(BCD2) ΔmCherry; Gm\(^R\)	This work
pS228SR	Derivative of vector pSEVA628S with P14g(BCD2) ΔmCherry; Gm\(^R\)	This work
pS228SR-M	Derivative of vector pSEVA628S with P14g(BCD2) ΔmCherry; Gm\(^R\)	This work
pS228SR-L	Derivative of vector pSEVA628S with P14g(BCD2) ΔmCherry; Gm\(^R\)	This work
pQURE1H	Conditionally-replicating vector; derivative of vector pBSD1 carrying XylS/Flâ‘ltron I-SceI and P14g(BCD2) ΔmCherry; Amp\(^R\)	This work
pQURE2H	Conditionally-replicating vector; derivative of vector pBSD1 carrying XylS/Flâ‘ltron I-SceI and P14g(BCD2) ΔmCherry; Amp\(^R\)	This work
pQURE6L	Conditionally-replicating vector; derivative of vector pBSD1 carrying XylS/Flâ‘ltron I-SceI and P14g(BCD2) ΔmCherry; Amp\(^R\)	This work
pQURE6M	Conditionally-replicating vector; derivative of vector pBSD1 carrying XylS/Flâ‘ltron I-SceI and P14g(BCD2) ΔmCherry; Amp\(^R\)	This work
pQURE6H	Conditionally-replicating vector; derivative of vector pBSD1 carrying XylS/Flâ‘ltron I-SceI and P14g(BCD2) ΔmCherry; Amp\(^R\)	This work
rendered electrocompetent by washing the biomass from saturated (24 h) sites. Site-directed PCR mutagenesis, respectively. For colony PCR, the constructs were prepared and transformed with plasmids according to well established protocols (Sambrook and Russell, 2001).

In the following description, the letter x is used as a place-holder in plasmid nomenclature, standing for Amp® (1), Km® (2), and Gm® (6). Note that the numbers identifying these resistance determinants are coded as for the rules set in the Standard European Vector Architecture (SEVA; Silva-Rocha et al., 2013). In order to construct plasmids pSx28SR-L (low level of red fluorescence), the fragment containing mCherry under transcriptional control of the constitutive Pflamm promoter (Nikel et al., 2013) was amplified from vector pGNW2 mCherry with the primer pair RED-low-F and RED-low-R. Similarly, to construct plasmids pSx28SR-M and pSx28SR (displaying, respectively, medium and high levels of red fluorescence), the fragments containing mRFP under transcriptional control of Pflamm or Pfl (a synthetic, constitutive and strong derivative of the Pfl promotor [Zobel et al., 2015]) were amplified from plasmids pSEVA2313R and pGNW2-LPO with the primer pairs RED-medium-F/RED-medium-R and RED-F/RED-R, respectively. In parallel, plasmids pSx28SR were reverse-amplified with the oligonucleotide pair Ins-RED-F and Ins-RED-R. These fragments were used as the backbone, and stitched with the previously-generated mCherry- or mRFP-bearing DNA fragments by USER cloning to yield the corresponding plasmids (Table 1).

For the construction of plasmid pQURE1, a DNA fragment bearing both the I-sceI gene under the transcriptional control of a XylS/Pm element and the mRFP gene under control of Pfl was amplified from plasmid pS28SR with oligonucleotides pQURE-F and pQURE-R. The resulting amplicon was joined with the fragment resulting from the reverse amplification of vector pJBS1 with the primer pair Ins-pQURE-F and Ins-pQURE-R. Plasmids pQURE2 and pQURE6 were generated, respectively, by exchanging the antibiotic cassette present in plasmid pQURE1 (AmpR) by either a KmR or a GmR marker. To this end, plasmid pS6313 was reverse-amplified with the primer pair Ins-pQURE-Ab-R and Ins-pQURE-Ab-R, while individual antibiotic cassettes were amplified with oligonucleotides Ab-F and Ab-R from vectors pSEVA228S and pSEVA628S. The individual fragments were then ligated by USER cloning as indicated above.

Plasmid pS6313-GFP, carrying a synthetic PflmR-msfGFP element, was constructed through site-directed PCR mutagenesis of plasmid pSEVA637M with the primer pair PflmR-Ins-F and PflmR-Ins-R. Furthermore, the I-sceI restriction site (5′-TAG GGA TAA CAG GGT AAT-3′) was engineered into this vector by a subsequent round of site-directed PCR mutagenesis with oligonucleotides I-sceI-Ins-F and I-sceI-Ins-R, yielding plasmid pS6313-GFPs. Finally, suicide vector pSNW2 and derivatives thereof, designed for quick genome engineering of Pseudomonas, were constructed by amplification of a fragment containing the Pflm element and a bicistronic design (BCD2, adopted as a translational coupler) element from plasmid pGNW2-LPO with the primer pair PflmR-R and BCD2-R. Plasmids pGNW2, pGNW4, and pGNW6 were reverse-amplified with oligonucleotides GFL4BCD2-F and EMG4GFP-R. The resulting fragments were assembled by USER cloning, giving rise to the suicide vectors pSNW2 (Km®), pSNW4 (Str®), and pSNW6 (Gm®), respectively.

2.2. General cloning procedures and plasmid construction

All plasmids and oligonucleotides used in this work are listed in Table 1 and Table S1 (Supplementary Material), respectively. Unless stated otherwise, uracil-excision (USER) cloning (Cavaleiro et al., 2015) was used for the construction of all plasmids. The AMUSER tool was employed for the design of oligonucleotides (Genee et al., 2015). Phusion™ U and Phusion™ Hot Start II high-fidelity DNA polymerases (ThermoFisher Scientific) were used according to the manufacturer’s specifications for amplifications intended for USER cloning or site-directed PCR mutagenesis, respectively. For colony PCR, the commercial OneTaq™ master mix (New England BioLabs; Ipswich, MA, USA) was used according to the manufacturer’s instructions. E. coli DH5ar was employed for general cloning purposes, while E. coli DH5a ppir was employed when cloning and maintaining replicons with the conditional Δ-lop-dependent origin of replication RK6 (Table 1). Chemically-competent E. coli cells were prepared and transformed with plasmids according to well established protocols (Sambrook and Russell, 2001). P. putida was rendered electrocompetent by washing the biomass from saturated (24 h) LB medium cultures with 0.3 M sucrose, and cells were routinely transformed with plasmids by electroporation, following the protocols of Iwasaki et al. (1994) and Choi et al. (2006). Site-directed PCR mutagenesis was used for insertion of I-sceI restriction sites into selected plasmids with procedures described elsewhere (Volke et al., 2020). The identity and correctness of all plasmids and DNA constructs were confirmed by sequencing.

2.3. Target-curing of plasmids by in vivo meganuclease digestion

The P. putida strain harboring the plasmid to be cured was co-transformed with a helper plasmid bearing the I-sceI activity (e.g. plasmid pSEVA228S) by electroporation. A 10-μL aliquot of LB medium supplemented with the appropriate antibiotics to select for both plasmids was then inoculated with the resulting strain, and the cells were grown overnight as indicated above. A 100-μL aliquot of this culture was then used to inoculate 10 mL of fresh LB medium supplemented with 2 mM 3-
mBz and the antibiotic needed to select only for the I-SceI-bearing plasmid (e.g. Km, when using plasmid pSEVA228S). The culture was incubated for 24 h and aliquots were then plated on solid media and inspected for plasmid loss as specified in the text.

2.4. Quick genome engineering of *P. putida* using self-curing vectors

For the deletion of genes from the genome of *P. putida*, 500-bp DNA fragments upstream and downstream of the corresponding target to be eliminated were individually amplified from the genome of strain KT2440 with the corresponding pairs of oligonucleotides as specified in Table S1. Km

-vector pSNW2 was used in all cases, and the addition of the upstream and downstream homology regions to this backbone resulted in the corresponding suicide vectors (indicated as pSNW-Agene in Table 1) for deleting each locus. The protocol of Wirth et al. (2020) was followed for genomic co-integration of the suicide vectors. Successful integration of the suicide pSNW plasmids into the target locus was confirmed by (i) green fluorescence of individual colonies inspected under blue light and (ii) colony PCR of selected amplicons (Martínez-García and de Lorenzo, 2011). One such colony was inoculated in 10 mL of LB medium and incubated overnight as indicated above. This culture was used to prepare competent cells by thoroughly washing the biomass with 0.3 M sucrose, and these cells were transformed by electroporation with plasmid pQURE1 or its derivatives. Cell suspensions were recovered at least for 2 h in LB medium containing 2 mM 3-mBz, and a loopfull of this culture was streaked onto LB medium agar containing 2 mM 3-mBz and the corresponding antibiotic(s), and incubated overnight or until discernible colonies appeared on the agar surface. Deletion of target gene(s) was confirmed in msGFP

clones by colony PCR, and 5 mL of fresh LB medium (i.e. no additives) were inoculated with a single colony and incubated for 2 to 10 h under the same conditions. This culture was then diluted by streaking onto solid media (according to the nutritional needs of the mutants; solid LB medium was routinely used) to obtain isolated colonies. Non-fluorescent colonies (i.e. clones that have lost both msGFP and mRFP/mCherry fluorescence when examined under blue light) were picked and inoculated in 5 mL of liquid LB medium. The loss of the plasmid was finally confirmed by parallel inoculation of liquid medium with the corresponding antibiotic(s), and all relevant genotypes were checked by DNA sequencing.

2.5. Ampicillin sensitivity assay

 Cultures of *P. putida* EM42 and SEM10 were grown overnight in 10 mL of LB medium. These cultures were diluted to an optical density measured at 600 nm (OD

before serial dilutions were prepared. A 5-μL aliquot of each dilution was then spotted onto plates containing various Amp concentrations (up to 75 μg mL

Plates were then incubated overnight and colonies were counted in each experiment. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 1. Selective target-curing of plasmids through *in vivo* meganuclease digestion. (A) One-step engineering of an I-SceI restriction site into any plasmid of the Standard European Vector Collection by site-directed PCR mutagenesis with an oligonucleotide pair carrying the (split) meganuclease recognition target and a sequence homologous to the conserved region between the antibiotic resistance (green) and the oriT modules (gray). The asymmetric, 18-bp-long I-SceI restriction sequence is indicated with a pink box, and the overhangs left after digestion are highlighted. Other relevant features of SEVA vectors are identified with different colors. (B) Target curing of plasmids in *P. putida*. *P. putida* KT2440 carries plasmids pSEVA228S (XylS/Pm–I-SceI, Km

and either pS6313-GFPs (Pm

induced cultures of *P. putida* KT2440 containing plasmids pSEVA228S and either pS6313-GFP (indicated as control) or pS6313-GFPs were treated with 2 mM 3-mBz for the time periods indicated and aliquots of the cell suspension were plated onto non-selective solid LB medium. An uninduced control experiment was treated similarly, but 3-mBz was omitted. In all cases, average values for the percentage of plasmid-containing cells and standard deviations are presented, calculated from triplicate measurements from at least three independent experiments. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

3. Results and discussion

3.1. Target-curing of plasmids in *P. putida* through *in vivo* meganuclease digestion

During our current efforts to engineer *P. putida* for several applications, we often found it difficult to eliminate plasmids and vectors from this bacterium (especially if an engineered strain displays slow growth, rendering the plasmid loss-by-dilution approach impractical or simply impossible). Here, we chose the intron-encoded meganuclease I-SceI from yeast to selectively introduce DSBs into targeted plasmids in *P. putida*, therefore impeding further replication. Plasmids to be removed through this protocol are easily modified by insertion of the asymmetric, 18-bp–long I-SceI recognition site into a conserved region present in all SEVA plasmids within the antibiotic resistance marker and the oriT (origin of transfer) module (Fig. 1A). A one-step, site-directed PCR mutagenesis of any SEVA vector can be used to this end.

In order to show the general validity of the approach, we constructed plasmid pS6313-GFP, a derivative of vector pSEVA6313 carrying a synthetic module for constitutive expression of msGFP (i.e. Pm

GFP). An I-SceI restriction site was engineered in this plasmid, giving rise to plasmid pS6313-GFPs, and this vector was electroporated into strain KT2440. *P. putida* KT2440 carrying either plasmid pS6313-GFP (control vector) or pS6313-GFPs (sensitive to I-SceI digestion) was co-transformed with plasmid pSEVA228S, bearing the meganuclease gene under control of the XylS/Pm expression system. Aliquots from these cultures were plated onto non-selective medium after overnight (18 h) growth in liquid LB medium added with 3-mBz (to trigger expression of I-SceI) under antibiotic selection for plasmid pSEVA228S (Km

After an 18-h incubation, plates were examined under blue light and msGFP

and msGFP

colonies were counted to estimate the percentage of plasmid loss. The resulting colonies were replicated onto LB medium plates containing Gm (the antibiotic resistance borne by plasmids pS6313-GFP and pS6313-GFPs) as a further evidence of plasmid presence or loss. Most colonies from 3-mBz–induced cultures of *P. putida*/pS6313-GFPs did not
show any green fluorescence, while essentially all *P. putida*/*pS6313-GFPs* colonies were highly fluorescent under blue light (Fig. 1B). In comparison, roughly half of the colonies showed msGFP fluorescence in a non-induced culture (i.e. no 3-mBz added). Considering the known leakiness of the XylS/Pm expression system in the absence of inducer (Gawin et al., 2017), the loss of fluorescence in half of these colonies (which matches plasmid loss) is assumed to result from basal expression of the I-SceI gene in plasmid pSEVA2285. Importantly, the figures for plasmid loss calculated by the amount of Gm-sensitive clones paralleled the results obtained by scoring msGFP colonies.

A time-course experiment was performed to determine the kinetics of target plasmid curing over 30 min using *in vivo* meganuclease digestion (Fig. 1C). The first time point was taken by adding the inducer to the cultures and immediately washing the treated cells with fresh LB medium before plating and colony counting. Surprisingly, exposure of *P. putida* to 3-mBz for less than 1 min (the minimum time needed for these manipulations) was sufficient to cure plasmid pS6313-GFPs from ~80% of all cells. More than 90% of all cells were cured of the plasmid after induction of I-SceI expression for 20 min, as indicated by the loss of msGFP fluorescence. Compared to other plasmid curing systems described in the literature, the kinetics of plasmid loss brought about by this system are considerably fast—probably due to high levels of I-SceI activity and its simple DNA nicking mechanism, which does not require any other components (e.g. cofactors) for efficient DNA restriction (Niu et al., 2008). Taken together, these results expose the validity of the approach for quick and selective curing of plasmids by meganuclease digestion, but also leave a question mark on the fate of the very plasmid bearing the I-SceI meganuclease module—an issue solved as indicated in the next section.

3.2. Insertion of red fluorescent markers in meganuclease-bearing plasmids

Target-curing of vectors can be followed by loss of a fluorescence marker (e.g. msGFP, encoded in vector pSEVA6313-GFPs) or antibiotic sensitivity. In order to facilitate the tracking of the plasmid bearing the I-SceI meganuclease gene (pSEVA2285, KmR), easing the identification of plasmid-free cells, we designed and tested a set of synthetic modules encoding different red fluorescent proteins. As the fluorescence intensity of such reporters is known to vary immensely across microbial hosts (Piatkevich and Verkhusha, 2011), three separate constructs were created, each endowed with different expression strengths and red fluorescence levels (Fig. 2). In particular, we were interested in red markers that could support visual inspection of bacterial colonies with the naked eye to spot plasmid-free clones. Firstly, the mCherry gene, present in a number of SEVA vectors (Silva-Rocha et al., 2013), was placed under transcriptional control of the constitutive *Pm* promoter and inserted in vector pSEVA2285, which gave rise to plasmid pS228SR-L. Transformation of this low-copy-number plasmid into *E. coli DH5α* or *P. putida* KT2440 resulted in the lowest level of red fluorescence, as evaluated in colonies grown onto solid LB medium (Fig. 2A). The monomeric red fluorescent protein (mRFP; Campbell et al., 2002) was likewise placed under transcriptional control of the constitutive *Pm* promoter and added to vector pSEVA2285, resulting in plasmid pS228SR-M. Transformation of this plasmid in either bacteria enabled medium mRFP levels (Fig. 2A). Finally, in order to maximize accumulation of the red fluorescent reporter, mRFP was put under transcriptional control of the *Pm* promoter (a stronger and constitutive derivative of *Pm*) and the gene was added with the BCD2 translational coupler (Mutalik et al., 2015; Zobel et al., 2015). Addition of this module to vector pSEVA2285 resulted in plasmid pS228SR-M, which conferred the highest level of mRFP accumulation in both *E. coli* and *P. putida* colonies, easily spotted by naked eye on LB medium plates (Fig. 2A). To further expand this plasmid toolbox, GlnB-derivatives of all three vectors were constructed (Table 1)—allowing the user to combine different vectors for target-curing of plasmids as needed while keeping red fluorescent markers for plasmid tracing. Furthermore, the use of plasmid pS228SR in *P. putida* KT2440 enabled the detection of plasmid-containing cells after a mere overnight incubation—whereas red fluorescent markers in other configurations typically needed a further incubation in the cold to enable chromophore maturation (Alieva et al., 2008). Direct quantification of the specific red fluorescence in liquid cultures of *E. coli DH5α* or *P. putida* KT2440 individually transformed with plasmids pS228SR-L (low), pS228SR-M (medium), and pS228SR (high) and grown in LB medium further showed the graded output conferred by the synthetic marker modules (Fig. 2B). The behavior of the chromophores tested was fairly similar in both hosts, although the low- and medium-level of red fluorescence were comparable in *P. putida* (exposing the importance of chromophore maturation, as these measurements were done online during growth). Importantly, plasmid pS228SR resulted in high levels of red fluorescence irrespective of the host (in the case of *P. putida*, for instance, the fluorescence signal was >5-fold higher than that observed.}

Fig. 2. Insertion of red fluorescent modules into plasmids carrying the meganuclease gene. (A) Plasmid pSEVA2285 (XylS/Pm→I-SceI, KmR) was used as a template to generate a family of derivatives carrying fluorescent modules yielding low, medium, and high levels of red fluorescence. The modules contain the genes encoding either mCherry or the monomeric red fluorescent protein (mRFP) under transcriptional control of the synthetic, constitutive *Pm* or *Pm* promoters. Each gene is preceded by a regulatory element, indicated by a purple circle, composed of a ribosome binding site and a short spacer sequence (5′-AGG AGG AAA AAC AT-3′). For the module yielding high levels of red fluorescence, a bistronic design (BCD2) was used as a translational coupler. *E. coli* DH5α and *P. putida* KT2440 were transformed with derivatives of plasmid pSEVA2285 (Table 1) and streaked onto LB medium plates containing Km. *E. coli* colonies were incubated at 37 °C for 18 h and photographed afterwards, while *P. putida* colonies were grown at 30 °C for 18 h and plates were stored at 8 °C for a further 24 h to allow for fluorophore maturation. (B) Specific (Sp) red fluorescence in cultures of *E. coli* DH5α and *P. putida* KT2440 transformed with plasmid pS228SR-L (low), pS228SR-M (medium), or pS228SR (high). Cells were grown in LB medium added with Km for 18 h and the Sp red fluorescence, expressed as arbitrary units (AU) relative to the optical density measured at 600 nm (OD600) of the cultures, was measured after resuspending the bacterial pellets in M9 minimal medium. Each bar represents the mean value of the Sp red fluorescence in each culture ± standard deviation of quadruplicate measurements from at least three independent experiments. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
when the cells were transformed either with plasmid pS228SR-L or pS228SR-M. The relevant characteristics of this set of meganuclease-bearing vectors are detailed in Table 2. With these vectors at hand, the next step was to design a protocol for self-curing of plasmids in *P. putida*.

3.3. Self-curing of plasmids by synthetic control of plasmid replication

We next aimed at applying the plasmid removal approach through in vivo DNA digestion to cure the vector bearing I-SceI. To this end, we attempted to introduce an I-SceI recognition site into vector pSVEA228S. Even though amplification of the plasmid (Fig. 1A) and subsequent transformation of *E. coli* cells seemed to work well, the resulting plasmids did not contain the correct sequence or the transformants could not be sub-cultured further. We dismissed this strategy after several attempts, and we hypothesized that a plasmid carrying I-SceI and its own recognition site is genetically unstable to be maintained even under selective pressure (i.e. antibiotic resistance). This result could be due to the basal expression of I-SceI, which was evident in previous experiments (Fig. 1B), and the phenomenon is probably amplified by the physical proximity of the I-SceI meganuclease to its target, as shown for transcriptional regulators and their cognate promoters (Goni-Moreno et al., 2017; Volke et al., 2020).

Next, we considered the use of a temperature-sensitive replicon. These replicons are routinely used in *E. coli*, with a well-understood mechanism of plasmid partitioning (Hashimoto-Gotoh and Ishii, 1982)—and some reports indicate their use in *P. putida* (Choi and Lee, 2020; Lauritsen et al., 2017; Sun et al., 2018). However, one of the difficulties in using such vectors is that *P. putida* KT2440 barely grows when incubated at 42 °C (Munna et al., 2016)—an incubation condition typically used as non-permissive for temperature-sensitive replicons in *E. coli* and other *Pseudomonas* species, e.g. *P. aeruginosa* (Prathapam and Uehara, 2018; Silo-Suh et al., 2009). Plasmids designed for recombining in *E. coli* (e.g. the pSiM set of vectors and plasmid pKD46) exploit temperature-sensitive mutants of oriV (RK2) and oriV (pSC101) (Datsenko and Wanner, 2000; Thomason et al., 2014). While the pSiC101 replicon has a very narrow host range and does not replicate in pseudomonads (Barth et al., 1981), the broad-host-range RK2 replicon is known to be functional in *P. putida* (Kotaka et al., 2008). The RK2 replication mechanism depends on the plasmid-encoded replication initiator protein (TrfA) and other elements necessary for replication encoded in the host genome (e.g. DnaA). TrfA binds to the β subunit (sliding clamp) of DNA polymerase III in *E. coli* (Kongsuwan et al., 2006) and, at the same time, controls the expression of key components of the replication machinery. The plasmid displayed temperature-sensitivity in *E. coli*, so it could not be stably maintained at elevated temperatures in *P. putida* KT2440. We verified this occurrence by culturing both *E. coli* DH5α and *P. putida* KT2440 bearing plasmid pFREE-RK2 (Lauritsen et al., 2017) in LB medium at elevated temperatures overnight and checking for plasmid loss through antibiotic sensitivity. The plasmid displayed temperature-sensitivity in *E. coli* but replicated in *P. putida* at 37 °C, yielding a virtually homogenous plasmid-containing bacterial population. This phenomenon could be due to the slow growth of *P. putida* at 37 °C, but also to high TrfA expression levels (Pinkney et al., 1987) and/or enhanced TrfA stability, known to be affected by interactions with host components (Valla et al., 1991).

Dismissing also temperature-sensitive replicons as a strategy for quick curing of plasmids in *P. putida*, we focused on engineering a conditionally-replicating vector based on regulated and orthogonal control of the expression of key components of the replication machinery. Karunakaran et al. (1999) constructed plasmid pBJSD1 to generate genomic integrations in Gram-negative bacteria (Table 1), since this vector only replicates in *E. coli* if a chemical inducer is present in the medium. Taking inspiration on this approach, we firstly confirmed the conditional replication of this vector in *P. putida* KT2440 by spreading transformants onto LB medium plates with 500 μg mL⁻¹ Amp, with or without 3-mBz as the inducer to trigger the (essential) XylS/Pm→TrfA module expression. Colonies were only obtained on plates added with the chemical inducer, hinting that synthetic control of plasmid replication can be used as a general strategy to manipulate segregational stability of plasmids in *P. putida*. This goal was pursued as explained in the next section.

3.4. Target- and self-curing of plasmids in *P. putida*

We proceeded to construct a new set of vectors, termed pQURE, in which plasmid replication is rendered fully dependent on the addition of 3-mBz to the culture medium. Furthermore, we took advantage of red fluorescent markers (Fig. 2) for plasmid tracing. Plasmid pQURE1-H (Amp⁵) carries the conditional replication machinery (i.e. XylS/Pm→TrfA), an inducible XylS/Pm→I-SceI module, and a constitutively expressed *Pm* (BCD2)→mRFP fluorescence marker. pQURE vectors are designed for both target- and self-curing of plasmids by means of the I-SceI meganuclease in a 3-mBz-dependent fashion (Fig. 3A). Curing of plasmid pS6313-GFPs from *P. putida* was tested as a proof of concept. To this end, *P. putida* KT2440 was co-transformed with plasmids pS6313-GFPs and pQURE1-H. The first step (target-curing) involved growth of the cells in LB medium containing 2 mM 3-mBz for 24 h, followed by plating onto LB medium and inspection of the colonies under blue light for msfGFP fluorescence. Under these conditions, 89 ± 6% of the cells had lost plasmid pS6313-GFPs (Fig. 3B). In a consecutive step (self-curing), vector pQURE1-H was eliminated by omitting the inducer and antibiotics in the culture medium. By inoculating an msfGFP colony into fresh LB medium and incubating the culture for another 24 h, 92 ± 7% of all cells were cured, with only ~8% of the bacterial population retaining vector pQURE1-H (Fig. 3B). These traits, visually inspected by the presence of fluorescent markers in individual *P. putida* colonies, were confirmed by antibiotic sensitivity in selected clones, yielding similar figures of plasmid-free cells. Taken together, these results expose the high efficiency of the target- and self-curing process. Following the same line of reasoning, we created a whole set of pQURE vectors by combining different determinants of antibiotic resistance and red fluorescent modules (Table 1).

Segregational stability of plasmid pQURE1-H

The replication of which is subjected to the control of the XylS/Pm expression system, was studied in the presence of different 3-mBz concentrations. This regulatory system is known to be titratable, and expression levels of genes under control of the *Pm* promoter are also influenced by temperature (Ramos et al., 1988). We assumed that pQURE plasmids have to be duplicated at least as quickly as the cells divide in order to be stably retained. Therefore, we explored inducer concentrations in the μM range to determine...

Table 2

New vectors designed for quick curing of plasmids and quick genome engineering of *Pseudomonas*.

Plasmid¹	Functionality	XylS/Pm→I-SceI	Red fluorescence	Antibiotic resistance	Conditional replication
pSx228SR L	Yes	mCherry; low level	Amp, Km, Gm	No	
pSx228SR M	Yes	mRFP; medium level	Amp, Km, Gm	No	
pSx228SR	Yes	mRFP; high level	Km, Gm	No	
pQUREpL/M/H	Yes	mRFP; high level	Amp, Km, Gm	Yes (XylS/Pm→msfGFP)	

¹ The letter x indicates different antibiotic resistance markers (coded as per the Standard European Vector Architecture rules (Silva-Rocha et al., 2013)), and the suffix L, M, or H specifies low, medium, or high red fluorescence (mRFP/mCherry) levels, respectively.

² Antibiotic markers: Amp, ampicillin; Gm, gentamicin; and Km, kanamycin.
the minimum amount of 3-mBz that warrants stable plasmid maintenance. Plasmid pQURE1-H was retained in *P. putida* KT2440 already in the presence of 8 μM 3-mBz (Fig. 3C). Higher inducing concentrations did not lead to higher fluorescence (Fig. 3C). Therefore, we assume that (i) the replication machinery is rapidly saturated (del Solar et al., 1998) and (ii) the copy number of the plasmid is not titratable, but follows an *ON/OFF* behaviour consistent with the replication mechanism of RK2 (Durland and Helinski, 1990). According to this model, replication of RK2 plasmids is strictly dependent on the presence of TrfA, but the machinery is already saturated at low protein concentrations and a further increase of TrfA does not lead to a higher plasmid copy number. Again, the leaky nature of the *XylS/Pm* expression system allowed for some replication of vector pQURE1-H even in the absence of 3-mBz, although addition of the inducer even at very low concentrations resulted in a ~2-fold increase in the red fluorescence output (Fig. 3C). This expanded plasmid toolbox (Table 2) served as the basis for practical applications in genome engineering of *P. putida* as indicated in the next section.

3.5. Quick genome engineering of pseudomonas with vectors pSNW and pQURE

The most widespread technique for genome engineering of *Pseudomonas* encompasses homologous recombination assisted by the activity of the I-SceI meganuclease (Martínez-García and de Lorenzo, 2011, 2012; Wirth et al., 2020). This method relies on plasmid-based expression of I-SceI for inducing DSBs in the target chromosome and thus forcing DNA recombination (Fig. 4A). For most applications, the meganuclease-bearing plasmid has to be cured from mutant clones before further steps can be carried out. Failure to do so results in reduced efficiency of subsequent genome editing steps, as the unavoidable basal expression of I-SceI will force recombination while selection pressure for maintaining the resistance marker is applied. In turn, this situation usually leads to the emergence of unwanted mutants (e.g. co-integrants that cannot be resolved, when the I-SceI recognition site acquires mutations that prevent recognition by the meganuclease). The loss-by-dilution protocol routinely used for plasmid curing takes around 4–5 days with ≥3 passages in fresh, non-selective medium per day, followed by sensitivity screening of several tens of clones. For mutant strains displaying reduced growth (e.g. after knocking-out key metabolic genes), plasmid curing can take much longer or even be infeasible. Motivated by the ease of target- and self-curing plasmid efficacy of the conditional-replication system, we tested these vectors for fast genome engineering of *P. putida*. To this end, the functional elements needed for synthetic control of plasmid replication were combined together with the red fluorescent markers of pQURE vectors as indicated in Fig. 4A.

We essentially followed the genome engineering strategy by Wirth et al. (2020) for design and co-integration of suicide plasmids into the *P. putida* chromosome. However, we observed a high locus-dependence of the fluorescence intensity brought about by integration of the reporter msfGFP gene borne by pGNW vectors (Fig. S1 in the Supplementary Material). Depending on the genome region, in some cases we could not detect any fluorescence even when the suicide vector had landed in the correct locus. This phenomenon is not surprising, given the highly variable nature of transcriptional activity across the bacterial chromosome (Martínez-García et al., 2014a). To address this situation, we upgraded the reporter module of vector pGNW to obtain a reliable fluorescent marker even in low expression loci. The msfGFP gene was added with the strong constitutive promoter *Pm* and the archetypal ribosomal binding site upstream of the coding sequence was replaced by the bicistronic design *BCD2* (Mutalik et al., 2013; Zobel et al., 2015) as a translational coupler (Fig. 4B). A new set of suicide plasmids for genome engineering was thus created, comprising vectors pSNW2 (Km^B, pSNW4 (Str^B), and pSNW6 (Gm^B) (Table 1).

We tested the efficiency of these new vectors for genome engineering by targeting the *ben* gene cluster of *P. putida* KT2440. Integration of a pGNW2-based suicide vector designed to delete the *ben* genes (i.e. plasmid pGNW-ΔbenABCD, Table 1) into this chromosomal locus (*PP_3161-PP_3164*) resulted in poorly fluorescent colonies, difficult to spot even when the plates were examined under blue light—given that the *ben* cluster displays very low expression levels in the absence of the cognate aromatic substrates (Kim et al., 2013). The pSNW2-counterpart of this suicide vector (i.e. plasmid pSNW-ΔbenABCD, Table 1) was likewise constructed and co-integrated in the chromosome. In this case, successful co-integration events were easily spotted on LB medium plates containing Km by the highly fluorescent phenotype of individual colonies. A single colony was isolated from each of co-integrants, and bacterial growth and msfGFP fluorescence were determined in LB medium cultures over 24 h. While the growth of either *P. putida* co-integrator was not affected by the swapping of the fluorescence marker in the suicide plasmid (Fig. 4C), the msfGFP fluorescence intensity of the co-integrator carrying pSNW-ΔbenABCD increased by ≥3-fold (Fig. 4D). Considering these results, we adopted the pSNW series of plasmids for genome engineering of *P. putida*, and carried out deletions by means of the procedure described in the next section.

![Fig. 3. Target- and self-curing of plasmids by in vivo meganuclease digestion with pQURE vectors. (A) Synthetic control of plasmid replication for target- and self-curing. In pQURE vectors, the gene encoding TrfA (which binds to the vegetative origin of replication, oriV) is under transcriptional control of the XylS/Pm expression system. pQURE vectors can only replicate in the presence of 3-methybenzoate (3-mBz), effecter of the XylS transcriptional regulator. The Pm promoter also drives the expression of the gene encoding the 1-SceI meganuclease. When I-SceI is expressed, the meganuclease introduces double-strand breaks in any DNA molecule containing its recognition site. In the example, a target plasmid carrying an engineered I-SceI restriction site is recognized by the meganuclease and subjected to *in vivo* digestion—resulting in selective plasmid loss. (B) *P. putida* KT2440 harboring plasmid p65313-GFPs was co-transformed with vector pQURE1-H (XylS/Pm—trfA, Amp^B). During the first curing step (indicated as 1), cell were grown in LB medium in the presence of 2 mM 3-mBz for 18 h and aliquots were plated onto solid LB medium. A single colony displaying an msfGFP phenotype (indicative of loss of plasmid p65313-GFPs) was inoculated into fresh LB medium without any additives, and grown for 18 h (shown as 2). After plating aliquots of this suspension, the percentage of plasmid-free cells as well as the fraction of *P. putida* cells carrying plasmids p65313-GFPs and/or pQURE1-H was calculated as indicated in Fig. 1. (C) Segregational stability of vector pQURE6-H (XylS/Pm—trfA, Gm^B) in *P. putida* KT2440 over 7–8 generations in LB medium cultures added with varying concentrations (concn.) of 3-mBz in the μM range. The specific (Sp) red fluorescence of these cultures was calculated as indicated in Fig. 1. Bars represent the mean value of either the percentage of plasmid-containing cells or the Sp red fluorescence in each culture ± standard deviation of quadruplicate measurements from at least three independent experiments. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)](image)
3.6. Elimination of the ben catabolic activities of P. putida KT2440

P. putida mt-2 carries the catabolic pWW0 plasmid, which endows cells with the ability of processing toluene, xylenes, and ethylbenzene via the TOL degradation pathway (de Lorenzo and Joshi, 2019). This biochemical route is encoded in two gene clusters, i.e. the upper and the lower or _meta_ pathway for degradation of aromatic compounds (Ramos et al., 1997). These two biochemical modules convert the hydrocarbon substrate into the corresponding carboxylic acid, and the resulting benzoate(s) are further metabolized to pyruvate and acetaldehyde (Domínguez-Cuevas and Marqués, 2017). Strain mt-2 also carries a chromosomally-encoded _ortho_-cleavage pathway for benzoate(s) degradation (Jiménez et al., 2002). When _m_-xylene is processed by the upper pathway, the resulting product is _3-mBz_, which can follow alternative metabolic itineraries. The products of either the plasmid-borne _xyl_ genes of the lower TOL operon or the chromosomal _ben_ genes mediate the transformation of _3-mBz_ into 3-methyl catechol (Fig. 5A). _P. putida_ KT2440 is a derivative of mt-2 that has been cured of the catabolic pWW0 plasmid (Bagdasarian et al., 1981; Worsey and Williams, 1975), and therefore processes _3-mBz_ only through the _ortho_-cleavage pathway.

From a practical point of view, spontaneous oxidation and polymerization of 3-methylcatechol gives rise to brown-coloured aggregates (Jiménez et al., 2014) that interfere with colorimetric and fluorimetry determinations (e.g. bacterial growth as assessed by optical density measurements). Additionally, _3-mBz_ is employed as a chemical inducer of the _XylS/Pm_ expression system—thus hampering the selection of fluorescent colonies in _3-mBz_-containing media. As such, we set to eliminate the _ben_ gene cluster of _P. putida_ KT2440 (Fig. 5B) using the quick genome engineering procedure assisted by self-curing vectors. To this end, the strain carrying plasmid pSNW _ΔbenABCD_ as a co-integration in the chromosome (Fig. 4) was subjected to the procedure outlined in Fig. 5C. Self-curing vector pQURE6-H (Table 1) was used as source of the _I-SceI_ meganuclease. Two successive cultivation rounds (firstly, selecting for _msfGFP_ and _mRFP_ colonies; secondly, picking clones that have lost all fluorescent markers) sufficed to isolate _P. putida_ _ΔbenABCD_ knock-outs in <2.5 days. The _Ben_ phenotype was clearly evidenced by the absence of any pigmentation in colonies grown in LB medium added with _3-mBz_. Prompted by these encouraging results, we expanded the applications of fast genome engineering approaches for genome reduction of _P. putida_.

Fig. 4. Genome engineering of _Pseudomonas_ with self-curing vectors and genetic upgrading of suicide plasmids with highly-fluorescent markers. (A) Genome engineering in _Pseudomonas_. A suicide plasmid (e.g. from the pGNW or pSNW series, containing the II-dependent ori[RP4K], Table 1) is integrated into the genome of _P. putida_ through homologous recombination. To this end, homology regions (HR) flanking the gene of interest (GOI) are assembled into the plasmid. An _msfGFP_ clone, harboring a copy of the suicide plasmid co-integrated into the chromosome, is selected and transformed with the pQURE vector of choice (Table 1) and grown in the presence of _3-methylbenzoate_ to ensure vector replication and meganuclease activity. _I-SceI_ introduces double-strand breaks in the chromosome and thereby enforces a second homologous recombination event. Resolution of the co-integration leads to either the wild-type or the mutant genotype; _msfGFP_ colonies are screened for the desired alteration and cured from the pQURE vector by growing the cells in the absence of _3-methylbenzoate_. (B) Genetic upgrading of suicide vector pGNW into pSNW by addition of a bicistronic design in front of _msfGFP_. Bacterial growth (C) and specific (Sp) green fluorescence levels (D) in _P. putida_ KT2440 carrying either pGNW2 _ΔbenABCD_ or pSNW2 _ΔbenABCD_ (which only differ in the genetic architecture of the fluorescent marker added to the backbone) integrated as a single copy into the target chromosomal locus. Cells were grown in LB medium, and the Sp green fluorescence and the optical density measured at 600 nm (OD600) was calculated as indicated in Fig. 1. Data represent the mean value of each parameter ± standard deviation of triplicate measurements from at least five independent experiments. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Fig. 5. Elimination of the Ben catabolic activities of *P. putida* through quick genome engineering using self-curing pQURE vectors. (A) The Ben activities mediate the conversion of 3-methylbenzoate (3-MBz) into 3-methylcatechol, which undergoes spontaneous oxidation and polymerization into brown-coloured aggregates. (B) Genomic structure of the ben locus of *P. putida* KT2440. The individual genes within the cluster encode BenA, subunit α of benzoate 1,2-dioxygenase; BenB, subunit β of benzoate 1,2-dioxygenase; BenC, electron transfer component of benzoate 1,2-dioxygenase; and BenD, 1,6-dihydroxyclohexa-2,4-diene-1-carboxylate dehydrogenase. The Δ symbol identifies the genomic region targeted for deletion. (C) Overview of the strategy to delete benABCD in *P. putida* KT2440 through quick genome engineering. Co-integration of the suicide plasmid pSNWΔbenABCD (Table 1) into the chromosome can be easily screened for by selecting clones that display a Km\(^\text{r}\) and mGFP\(^\text{r}\) phenotype. After confirming the genotype of the co-integrants by colony PCR, a clone was further transformed with vector pQURE6-H (XylS/Pm→trfA, Gm\(^\text{r}\)). This strain was grown for 24 h in the presence of 2 mM 3-MBz and plated onto solid LB medium to recover mGFP\(^\text{r}\) and mRFP\(^\text{r}\) colonies. The few very colonies still displaying mGFP fluorescence (indicated with black arrows) were discarded. Deletion of benABCD results in a Ben\(^\text{−}\) phenotype, characterized by the absence of brown pigmentation of colonies in the presence of 3-MBz. To assess this phenotype, colonies were plated onto solid LB medium containing 2 mM 3-MBz and incubated at 30 °C for 24 h. The Ben\(^\text{−}\) (black arrows) or Ben\(^\text{+}\) (white arrows) phenotypes were clearly spotted after storing the plates at 4 °C. The final step of the procedure is self-curing of vector pQURE6-H, accomplished by streaking the Ben\(^\text{−}\) colony onto a non-selective medium plate (i.e. neither 3-MBz nor any antibiotic are added). After a 24-h incubation at 30 °C, mGFP\(^\text{r}\) and mRFP\(^\text{r}\) colonies were easily spotted (white arrows) and distinguished from mRFP\(^\text{−}\) clones (still retaining vector pQURE6-H, black arrow) even with the naked eye. Relevant genotypes were confirmed by PCR amplification of the corresponding genomic regions with specific oligonucleotides and DNA sequencing. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

3.7. Genome reduction of *P. putida* strain EM42 towards a reference chassis

Capitalizing on the intrinsic physiological and metabolic strength of *P. putida* KT2440, Martínez-García et al. (2014b) sequentially deleted eleven chromosomal regions (comprising 300 genes) to create the reduced-genome strain EM42. This strain displays enhanced physiological properties (e.g. fast growth and increased availability of redox and energy cofactors) that are advantageous for metabolic engineering applications (Aparicio et al., 2019a; Lieder et al., 2015). By following a similar line of thought, we further streamlined strain EM42 towards a *P. putida* reference chassis through fast genome engineering. In particular, we wanted to delete key elements in the chromosome encoding functions that may (i) confer resistance to β-lactam antibiotics, (ii) interfere with the use of fluorescent protein markers, and (iii) hamper the use of 3-MBz as an inducer of the XylS/Pm expression system. Inspection of the genome of strain EM42 identified ten genes as obvious targets to fulfill this purpose: eight β-lactamase and β-lactamase–like genes, the side-rophore gene pvbD, and the benABCD gene cluster (Table 3).

P. putida exhibits a naturally high resistance to Amp, a hindrance for the use of β-lactams as a selective pressure. Both efflux pumps and β-lactamases account for the resistance of *P. putida* to β-lactam antibiotics. Deletion of the efflux pumps of strain KT2440 increased sensitivity towards these antibiotics, but it also impacted solvent tolerance (Martínez-García and de Lorenzo, 2011). Therefore, we decided to delete the eight genes annotated to encode β-lactamases or metallo-β-lactamase family proteins to reduce Amp resistance without interfering with solvent tolerance. Furthermore, we deleted pvbD, encoding a large non-ribosomal peptide synthetase involved in the formation of siderophores (Matilla et al., 2007). Siderophores are high-affinity iron-chelating molecules, critical for metal capture in environmental niches colonized by *Pseudomonas* (Cornelis, 2010). The energy- and resource-demanding biosynthesis of these secondary metabolites is not only unnecessary when sufficient iron is supplied (e.g. in laboratory setups), but their presence also interferes with fluorescence measurements. Finally, the Ben catabolic activities were targeted for the reasons explained in the preceding section. The genes encoding these features are spread over the bacterial chromosome (Fig. 6A). Again, 500-bp long homologous regions flanking the target were amplified with the corresponding set of primers for each knock-out (Table S1) and inserted into the suicide plasmid pSNW2 according to the procedure of Wirth et al. (2020) indicated in Fig. 4A. After plasmid co-integration, the resulting strains were transformed with vector pQURE6-H and cells were recovered for 2 h in LB medium with 2 mM 3-MBz. For all targets, the efficiency of co-integration resolving was >90% and, in several cases, close to 100%. Elimination of all the genes listed in Table 3 led to a ~23-kb reduction of the genome of strain EM42, giving rise to streamlined *P. putida* strain SEM10 (i.e. lacking 310 genes as compared to wild-type strain KT2440). To test whether off-target mutations were introduced due to the multi-step genome engineering programme, we carried out a suite of colony PCR amplifications in the parental strain (EM42) and its SEM10 derivative. All the amplicons had the expected size, and sequencing of these DNA fragments confirmed the absence of any unintended mutation (Fig. S2 in the Supplementary Material).

P. putida SEM10 was then subjected to phenotypic characterization by

Table 3

Gene(s) number	Gene(s) name	Genomic region [bp (strand)]	Length [bp]	Annotated function \(^a\)
PP_1239		1,416,753–1,417,511 (+)	759	MBLa
PP_3291		3,725,348–3,726,715 (+)	1,368	MBLa
PP_1952		2,208,685–2,209,632 (+)	948	MBLa
PP_0772		890,074–890,718 (+)	645	MBLa
PP_2876	amPC	3,276,978–3,278,120 (+)	1,143	β-lactamase
PP_1775		1,982,049–1,983,482 (+)	1,434	MBLa
PP_0052		60,831–61,715 (+)	885	β-lactamase domain-containing protein
PP_2045		2,325,342–2,327,303 (+)	1,962	MBLa
PP_3161\(^b\)	benABCD	3,581,930–3,585,749 (+)	3,819	Benzoate catabolism gene cluster
PP_3164	pvbD	4,768,854–4,779,266 (+)	10,412	Non-ribosomal peptide synthetase
PP_4219		(−)	(−)	

\(^a\) Functional annotations and genome coordinates are given according to the *Pseudomonas* Database (Winsor et al., 2016) and Belda et al. (2016).

\(^b\) MBLa, metallo-β-lactamase family protein.

\(^c\) The enzymes encoded in the ben gene cluster are BenA, subunit α of benzoate 1,2-dioxygenase; BenB, subunit β of benzoate 1,2-dioxygenase; BenC, electron transfer component of benzoate 1,2-dioxygenase; and BenD, 1,6-dihydroxyclohexa-2,4-diene-1-carboxylate dehydrogenase.

\(^*\) The genes encoded in the ben gene cluster are BenA, subunit α of benzoate 1,2-dioxygenase; BenB, subunit β of benzoate 1,2-dioxygenase; BenC, electron transfer component of benzoate 1,2-dioxygenase; and BenD, 1,6-dihydroxyclohexa-2,4-diene-1-carboxylate dehydrogenase. The α-lactamase family protein.

\(^\text{MBLa}\) Benzoate catabolism gene cluster.

\(^\text{MBLa}\) Non-ribosomal peptide synthetase.
examining growth profiles in different culture conditions and antibiotic resistance. Expectedly, the reduced-genome strain displayed increased susceptibility towards Amp (Fig. 6B). Importantly, no colonies of *P. putida* SEM10 were observed when dilutions of the cell suspension were spotted in LB medium containing 75 μg mL⁻¹ Amp—allowing for the use of AmpR as a selection marker at antibiotic concentrations similar to those employed for *E. coli*. The deletion of benABCD suppressed the development of pigments derived from 3-methylcatechol in cultures of *P. putida* SEM10 grown in the presence of 3-mBz. Furthermore, auto-fluorescence of this genome-reduced strain was highly reduced due to the deletion of pvdD. Finally, no changes were observed in the growth profile of this strain in rich LB medium or minimal M9 medium containing 0.2% (w/v) citrate as compared to *P. putida* EM42 (Fig. 6C), indicating that the deletions introduced in this study are largely irrelevant for fitness under laboratory conditions.

4. Conclusion

In this work, we have benchmarked a toolbox for target- and self-curing plasmids in *Pseudomonas*. Although the literature offers numerous examples of circuits and strategies developed to ensure plasmid maintenance in cell factories (Kroll et al., 2009; Nikel et al., 2010; Silva et al., 2012), less attention has been paid to the equally important programmable loss of plasmids. After assessing vector curing methods commonly used in other bacterial species (Hale et al., 2010; Hove-Jensen, 2008; Kamruzzaman et al., 2017), we failed to identify a straightforward procedure that can be applied to *P. putida*.

Recently, Lauritsen et al. (2017) developed an elegant approach to plasmid curing based on CRISPR/Cas9, reaching a vector loss efficiency of ~40–90% in *E. coli* within 24 h. This system relies on the Cas9 nuclease, which can cause inadvertent off-target mutations in the genome (Pattanayak et al., 2013) and is known to be a toxic protein when the cognate gene is expressed heterologously (Zhang and Voigt, 2018). On the other hand, the efficiency and editing-accuracy of CRISPR/Cas9-based systems varies even between closely related bacterial species (Vento et al., 2019).

Most importantly, this system and other genome engineering tools (Choi and Lee, 2020; Sun et al., 2018), employ a temperature-sensitive orV(RK2), which, in our hands, does not exhibit a consistent temperature-dependent replication behaviour in *P. putida* KT2440. The procedure developed in this study, based on in vivo digestion of vectors by the I-Scel meganuclease (i.e. target-curing) and synthetic control of plasmid replication (i.e. self-curing), is fast, plasmid-specific, and can be applied in virtually any microorganism where the use of temperature-sensitive replicons is not possible. Importantly, the plasmid-curing step during genome engineering, typically consuming several days during the routine loss-by-dilution protocol, has been brought down to a mere overnight cultivation in a simple culture medium (omitting 3-mBz in its formulation). Owing to the presence of red fluorescent markers in pQURE vectors (the output level of which can be selected according to the application), laborious sensitivity screenings are fully circumvented. Furthermore, for applications were achieving a vector loss efficiency of 100% is crucial, plasmid-free bacteria can be automatically isolated by fluorescence-activated cell sorting. Note that the procedure presented herein can be (i) scaled-up as needed, whereas temperature shifts for plasmid curing are meaningful only at the laboratory scale, and (ii) used in other Gram-negative bacteria besides *Pseudomonas*.

Declaration of competing interest

The authors declare no conflict of interest.

CRediT authorship contribution statement

Daniel C. Volke: Conceptualization, Methodology, Investigation, Validation, Formal analysis, Data curation, Writing - original draft. Laura Friis: Methodology, Investigation, Formal analysis, Data curation. Nicholas T. Wirth: Methodology, Investigation, Formal analysis. Justine Turlin: Investigation, Data curation. Pablo I. Nikel: Project administration, Supervision, Conceptualization, Formal analysis, Writing - review & editing, Funding acquisition.

Acknowledgements

We thank Rahmi Lale (NTNU, Trondheim, Norway) for supplying vector pJBSD1 and for helpful discussions. Fruitful discussions with Esteban Martínez-García and Víctor de Lorenzo (CNB–CSIC, Madrid, Spain) are likewise acknowledged. We also thank Jan Martinussen (DTU Bioengineering, Denmark) for his support and guidance of L.F. Financial support from The Novo Nordisk Foundation (NNF10CC1016517 and
References

Abram, K.Z., Udadao, Z., 2020. Towards a better metabolic engineering reference: the microbial chassis. Microbiol. Biotechnol. 13, 17–18. https://doi.org/10.1093/mib/miaa026

Aguado, T., de Lorenzo, V., Martinez-Garcia, E., 2016. The Ssr system (TIR1405) from Pseudomonas putida DOT-TIE enables oligonucleotide-based recombineering in platform strain P. putida EM2. Biotechnol. J. 11, 1309–1319. https://doi.org/10.1002/biot.201600017

Aparicio, T., de Lorenzo, V., Martinez-Garcia, E., 2015. Broadening the SEVA plasmid repertoire to facilitate genomic editing of Gram-negative bacteria. In: McGinty, T., Timmis, K.N., Nogales, B. (Eds.), Hydrocarbon and Lipid Microbiology Protocols. Springer, Berlin, Germany, pp. 9–27.

Aparicio, T., Jensen, S.T., de Lorenzo, V., Martinez-Garcia, E., 2016. The Ssr (TIR1405) from Pseudomonas putida DOT-TIE enables oligonucleotide-based recombineering in platform strain P. putida EM2. Biotechnol. J. 11, 1309–1319. https://doi.org/10.1002/biot.201600017

Aparicio, T., de Lorenzo, V., Martinez-Garcia, S.L., 2019a. Improved thermostability of genome-reduced Pseudomonas putida EM2 enables effective functioning of the P. cichlids system. Biotechnol. J. 14. https://doi.org/10.1002/biot.201800483

Aparicio, T., de Lorenzo, V., Martinez-Garcia, E., 2019b. CRISPR-Cas9 enhanced ssDNA recombineering for Pseudomonas putida. Microbiol. Biotechnol. 12, 1076–1089. https://doi.org/10.1093/microbiolsys/ezz145.

Aparicio, T., de Lorenzo, V., Martinez-Garcia, E., 2020. A broad host range plasmid-based roadmap for ssDNA recombineering in Gram-negative bacteria. Methods Mol. Biol. 2075, 383–398. https://doi.org/10.1007/978-1-949-9877-7.27

Bagdasarian, M., Lurz, R., Rückert, B., Franklin, F.C.H., Bagdasarian, M.M., Frey, J., Timmis, K.N., 1981. Specific purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene recombineering for microbial genome-reduced Pseudomonas putida. Microbiol. Biotechnol. 12, 1076–1089. https://doi.org/10.1093/microbiolsys/ezz145.

Bargadarian, M., Lurz, R., Rückert, B., Franklin, F.C.H., Bargadarian, M.M., Frey, J., Timmis, K.N., 1981. Specific purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene recombineering for microbial genome-reduced Pseudomonas putida. Microbiol. Biotechnol. 12, 1076–1089. https://doi.org/10.1093/microbiolsys/ezz145.

Barth, P.T., Tobin, L., Sharpe, G.S., 1981. Development of broad-host-range plasmid vectors. In: Levy, S.B., Clauses, R.C., König, E.L. (Eds.), Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids. Springer, Boston, MA, USA, pp. 439–448.

Batistian, C., Cozaeva, E., Damalas, S., Martín-Pascual, M., Volke, D.C., Nikol, P.I., Martins dos Santos, V.A.P., 2020. An expanded CRISPRi toolbox for tunable control of gene expression in Pseudomonas putida. Microbiol. Biotechnol. 13, 308–385. https://doi.org/10.1093/microbiolsys/ezz133.

Belda, E., van Heck, R.G.A., Lopez-Sanchez, M.J., Cruveiller, S., Barbe, V., Fraser, C., Klemp, H.P., Petersen, J., Morgat, A., Nikel, P.I., Vallenet, D., Rouy, Z., Sekowska, A., Marti, A., Domínguez-Cuevas, P., del Solar, G., Giraldo, R., Ruiz-Echevarría, M.J., Espinosa, M., Díaz-Orejas, R., 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 464–746. https://doi.org/10.1128/MMBR.62.2.464-474.1998.

Benitez, A., Font, A., Rosell, G., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.

Benoit, L., Cros, A., Nikel, P.I., 2019. Evolutionary approaches for engineering industrially-relevant phenotypes in bacterial cell factories. Biotechnol. J. 14, 1800439. https://doi.org/10.1002/biot.201804390.

Bendich, A., 1981. Oxidation of hydrocarbons by Pseudomonas putida. In: Steffan, R. (Ed.), Aerobic Utilization of Hydrocarbons, Oils and Lipids. Springer, Cham, Germany, pp. 1–15.

Belda, E., van Heck, R.G.A., Landa, A., Perez-Sanchez, M.J., Cruveiller, S., Barbe, V., Fraser, C., Klemp, H.P., Petersen, J., Morgat, A., Nikel, P.I., Vallenet, D., Rouy, Z., Sekowska, A., Marti, A., del Solar, G., Giraldo, R., Ruiz-Echevarría, M.J., Espinosa, M., Díaz-Orejas, R., 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 464–746. https://doi.org/10.1128/MMBR.62.2.464-474.1998.

Belda, E., van Heck, R.G.A., López-Sánchez, M.J., Cruveiller, S., Barbe, V., Fraser, C., Klemp, H.P., Petersen, J., Morgat, A., Nikel, P.I., Vallenet, D., Rouy, Z., Sekowska, A., Marti, A., Domínguez-Cuevas, P., del Solar, G., Giraldo, R., Ruiz-Echevarría, M.J., Espinosa, M., Díaz-Orejas, R., 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 464–746. https://doi.org/10.1128/MMBR.62.2.464-474.1998.

Belda, E., van Heck, R.G.A., Lopez-Sanchez, M.J., Cruveiller, S., Barbe, V., Fraser, C., Klemp, H.P., Petersen, J., Morgat, A., Nikel, P.I., Vallenet, D., Rouy, Z., Sekowska, A., Marti, A., Domínguez-Cuevas, P., del Solar, G., Giraldo, R., Ruiz-Echevarría, M.J., Espinosa, M., Díaz-Orejas, R., 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 464–746. https://doi.org/10.1128/MMBR.62.2.464-474.1998.

Berger, T., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.

Berger, T., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.

Berger, T., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.

Berger, T., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.

Berger, T., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.

Berger, T., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.

Berger, T., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.

Berger, T., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.

Berger, T., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.

Berger, T., 2016. System-level genome editing in E. coli. ACS Chem. Biol. 11, 1359–1369. https://doi.org/10.1021/acschembio.6b00194.
Martínez-García, E., Aparicio, T., de Lorenzo, V., Nikel, P.I., 2014a. New transposon tools
Martínez-García, E., de Lorenzo, V., 2017. Molecular tools and emerging strategies for
Martínez-García, E., de Lorenzo, V., 2012. Transposon-based and plasmid-based genetic
Loeschcke, A., Thies, S., 2015.
Kolatka, K., Witosinska, M., Pierechod, M., Konieczny, I., 2008. Bacterial partitioning
Kent, R., Dixon, N., 2020. Contemporary tools for regulating gene expression in bacteria.
Karunakaran, P., Endresen, D.T., Ertesvåg, H., Blatny, J.M., Valla, S., 1999. A small
Kroll, J., Steinle, A., Reichelt, R., Ewering, C., Steinbüchel, A., 2009. Establishment of a
Karunakaran, P., Blatny, J.M., Ertesvåg, H., Valla, S., 1998. Species-dependent
Jimenez, J.I., Perez-Pantoja, D., Chavarría, M., Díaz, E., de Lorenzo, V., 2014. A second
Jimenez, J.I., Aparicio, T., de Lorenzo, V., Nikel, P.I., 2014b. Pseudomonas 2.0: genetic upgrading of KT2440 as an automated tool for heterologous gene expression. Microbiol. Cell Fact. 13, 2702-2716.
Martínez-García, E., Aparicio, T., de Lorenzo, V., Nikel, P.I., 2014h. Pseudomonas 2.0: genetic upgrading of KT2440 as a functional chassis for the production of heterologous proteins. Nucleic Acids Res. 45, D1183-D1189. 10.1093/nar/gku1114
Martínez-García, E., Aparicio, T., de Lorenzo, V., Nikel, P.I., 2017. Engineering Gram-negative microbial cell factories using transposon vectors. Methods Mol. Biol. 1498, 233-263. 10.1007/978-1-4939-7078-7_14
Matilla, M.A., Ramos, J.L., Duque, E., Alch, J.D.D., Espinosa-Urgel, M., Ramos-González, M.I., 2007. Temperature and pyoverdine-mediated iron acquisition control surface motility in Pseudomonas putida. Environ. Microbiol. 9, 1842-1850. 10.1111/j.1462-2920.2007.01286.x
Meseleh, M., Yuan, R., 1968. DNA restriction enzyme from E. coli. Nature 217, 1110-1114. 10.1038/2171110a0.
Munna, M.S., Zeba, Z., Noor, R., 2016. Influence of temperature on the growth of Pseudomonas putida. J. Microbiol. 5, 9-12. 10.2478/jm-2016-0016
Müller, D.A., Guimaraes, J.C., Cambray, G., Lam, C., Christoffersen, M.J., Mai, Q.A., Tran, A.B., Paul, M., Keasling, J.D., Arkin, A.P., Endy, D., 2015. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods 10, 354-360. 10.1038/nmeth.2940
Nikel, P.I., de Lorenzo, V., 2018. Biotechnological domestication of Pseudomonas putida KT2440 as a host for ethanol biosynthesis. New Biotechnol. 31, 562-571. 10.1016/j.nbt.2014.02.006.
Nikel, P.I., de Lorenzo, V., 2018. Pseudomonas putida as a functional chassis for industrial bioconversions: from native biochemistry to evo-metabolism. Metab. Eng. 50, 142-155. 10.1016/j.ymben.2018.05.005.
Nikel, P.I., Pettinari, M.J., Ramírez, M.C., Galvango, M.A., Méndez, B.S., 2008. Escherichia coli mutants: metabolic and functional characterization of microaerobic cultures using glycerol as a carbon source. J. Microbiol. Biotechnol. 15, 48-54. 10.1007/pn/b/10011992
Nikel, P.I., Pettinari, M.J., Galvango, M.A., Méndez, B.S., 2010. Metabolic selective pressure stabilizes plasmids carrying biosynthetic genes for reduced biocatalysts in Escherichia coli redox mutants. Appl. Microbiol. Biotechnol. 88, 563-573. 10.1007/s00253-010-1774-1.
Nikel, P.I., Pérez-Pantoja, D., de Lorenzo, V., 2013. Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloropropene 1-enhanced metabolism by Pseudomonas putida. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20120377. 10.1098/rstb.2012.0377.
Nikel, P.I., Martínez-García, E., de Lorenzo, V., 2014. Biotechnological domestication of Pseudomonads using synthetic biology. Nat. Rev. Microbiol. 12, 368-379. 10.1038/nrmicro3253.
Nikel, P.I., Chavarría, M., Fuhrer, T., Sauer, U., de Lorenzo, V., 2015. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof, and pentose phosphate pathways. J. Bacteriol. 290, 25920-25932. 10.1128/JB.0078749.
Nikel, P.I., Chavarría, M., Danchin, A., de Lorenzo, V., 2016. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting hitherto biochemical reactions. Curr. Opin. Chem. Biol. 34, 20-29. 10.1016/j.cob.2016.05.011.
Niu, Y., Tenney, K., Li, H., Gambles, F.S., 2008. Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA nicking activity. J. Mol. Biol. 382, 188-202. 10.1016/j.jmb.2008.03.006.
Pattanaik, V., Sin, S., Guilling, J.P., Ma, E., Dounda, J.A., Liu, D.R., 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839-843. 10.1038/nbt.2677.
Ptachkiv, K.D., Verkhusha, V.V., 2011. Guide to red fluorescent proteins and biosensors for flow cytometry. Methods Cell Biol. 102, 431-461. 10.1016/B978-0-12-379132-3.00017-I.
Pinkney, M., Theophilus, B.D.M., Warne, S.R., Tacon, W.C.A., Thomas, C.M., 1987. Analysis of transcription from the tra promoter of broad host range plasmid RK2 in Escherichia coli, Pseudomonas putida, and Pseudomonas aeruginosa. Plasmid 17, 222-232. 10.1016/0147-619X(87)90030-8.
Platt, R., Drescher, C., Park, S.K., Phillips, G.J., 2000. Genetic system for reversible integration of DNA constructs and lacZ fusions into the Escherichia coli chromosome. Plasmid 43, 12-23. 10.1006/plas.2000.0106.
Pinkney, M., Deshpande, N., Winters, C., Nguyen, L., de Lorenzo, V., Nikel, P.I., 2019. Functional analysis of the Embden-Meyerhof 6-phosphogluconate pathway. Front. Microbiol. 10, 23. 10.3389/fmicb.2019.00020.
Pinkney, M., Deshpande, N., Winters, C., Nguyen, L., de Lorenzo, V., Nikel, P.I., 2019. Functional analysis of the Embden-Meyerhof 6-phosphogluconate pathway. Front. Microbiol. 10, 23. 10.3389/fmicb.2019.00020.
Pinkney, M., Deshpande, N., Winters, C., Nguyen, L., de Lorenzo, V., Nikel, P.I., 2019. Functional analysis of the Embden-Meyerhof 6-phosphogluconate pathway. Front. Microbiol. 10, 23. 10.3389/fmicb.2019.00020.
Sharan, S.K., Thomason, L.C., Kuznetsov, S.G., Court, D.L., 2009. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223. https://doi.org/10.1038/nprot.2008.227.

Silo-Suh, L.A., Elmore, B., Ohman, D.E., Suh, S.J., 2009. Isolation, characterization, and utilization of a temperature-sensitive allele of a \textit{Pseudomonas} replicon. J. Microbiol. Methods 78, 319–324. https://doi.org/10.1016/j.mimet.2009.07.002.

Silva-Rocha, R., Martínez-García, E., Calles, R., Chavarría, M., Arce-Rodríguez, A., de las Heras, A., Páez-Espino, A.D., Durante-Rodríguez, G., Kim, J., Nikel, P.I., Platero, R., de Lorenzo, V., 2013. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 41, D666–D675. https://doi.org/10.1093/nar/gkt1119.

Silva, F., Queiroz, J.A., Domingues, F.C., 2012. Evaluating metabolic stress and plasmid stability in plasmid DNA production by \textit{Escherichia coli}. Biotechnol. Adv. 30, 691–708. https://doi.org/10.1016/j.biotechadv.2011.12.005.

Sun, J., Wang, Q., Jiang, Y., Wen, Z., Yang, L., Wu, J., Yang, S., 2018. Genome editing and transcriptional repression in \textit{Pseudomonas putida} KT2440 via the type II CRISPR system. Microb. Cell Fact. 17, 41. https://doi.org/10.1186/s12934-018-0887-x.

Thomason, L.C., Sawitzke, J.A., Li, X., Costantino, N., Court, D.L., 2014. Recombineering: genetic engineering in bacteria using homologous recombination. Curr. Prot. Mol. Biol. 106 https://doi.org/10.1002/0471142727.mb0116s106, 1.16.11-11.16.39.

Trevors, J.T., 1986. Plasmid curing in bacteria. FEMS Microbiol. Rev. 32, 149–157. https://doi.org/10.1016/0168-6445(86)90025-8.

Vento, J.M., Crook, N., Beisel, C.L., 2019. Barriers to genome editing with CRISPR in bacteria. J. Ind. Microbiol. Biotechnol. 46, 1327–1341. https://doi.org/10.1007/s10295-019-02195-1.

Volk, D.C., Turlin, J., Mol, V., Nikel, P.I., 2020. Physical decoupling of XylS/Pm regulatory elements and conditional proteolysis enable precise control of gene expression in \textit{Pseudomonas putida}. Microb. Biotechnol. 13, 222–232. https://doi.org/10.1111/1751-7915.13583.

Wirth, N.T., Kozaea, E., Nikel, P.I., 2020. Accelerated genome engineering of \textit{Pseudomonas putida} by I-SceI-mediated recombination and CRISPR-Cas9 counterselection. Microb. Biotechnol. 13, 233–249. https://doi.org/10.1111/1751-7915.13383.

Zhang, S., Voigt, C.A., 2018. Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design. Nucleic Acids Res. 46, 11115–11125. https://doi.org/10.1093/nar/gky884.

Zobel, S., Benedetti, I., Eisenbach, I., de Lorenzo, V., Wierckx, N., Blank, L.M., 2015. Ta7-based device for calibrated heterologous gene expression in \textit{Pseudomonas putida}. ACS Synth. Biol. 4, 1341–1351. https://doi.org/10.1021/acssynbio.5b00058.