A circulating miRNA signature for early diagnosis of acute kidney injury following acute myocardial infarction

Pei-Chun Fan1,2†, Chia-Chun Chen3,4†, Chen-Ching Peng3, Chih-Hsiang Chang1,2, Chia-Hung Yang5, Chi Yang3, Lichieh Julie Chu3, Yung-Chang Chen6, Chih-Wei Yang1, Yu-Sun Chang3 and Pao-Hsien Chu7*

Abstract

Background: Acute kidney injury (AKI) is a common complication of acute myocardial infarction (AMI), and is associated with adverse outcomes. The study aimed to identify a miRNA signature for the early diagnosis of post-AMI AKI.

Methods: A total of 108 patients admitted to a coronary care unit (CCU) were divided into four subgroups: AMI−AKI−, AMI+AKI−, AMI+AKI+, and AMI−AKI+. Thirty-six miRNA candidates were selected based on an extensive literature review. Real-time quantitative RT-PCR analysis was used to determine the expression levels of these miRNAs in the serum collected on the day of CCU admittance. TargetScan 7.1 and miRDB databases were used for target prediction and Metacore 6.13 was used for pathway analysis.

Results: Through a stepwise selection based on abundance, hemolytic effect and differential expression between four groups, 9 miRNAs were found to have significantly differential expression levels as potential biomarkers for post-AMI AKI specifically. Noticeably, the expression levels of miR-24, miR-23a and miR-145 were significantly downregulated in AMI+AKI+ patients compared to those in AMI+AKI− patients. Combination of the three miRNAs as a panel showed the best performance in the early detection of AKI following AMI (AUC = 0.853, sensitivity 95.65%), compared to the analysis of serum neutrophil gelatinase-associated lipocalin (AUC = 0.735, sensitivity 63.16%). Furthermore, bioinformatic analysis indicated that these three miRNAs regulate the transforming growth factor beta signaling pathway and involve in apoptosis and fibrosis in AKI.

Conclusions: For the first time, this study identify a unique circulating miRNA signature (miR-24-3p, miR-23a-3p, miR-145-5p) that can potentially early detect AKI following AMI and may be involved in renal injury and fibrosis in post-AMI AKI pathogenesis.

Keywords: MicroRNAs, Acute kidney injury, Acute myocardial infarction, TGF-β

Background

Acute kidney injury (AKI) is a common and important complication of various critical illnesses [1]. Among them, the incidence of AKI following acute myocardial infarction (AMI) is approximately 12–37% [2–5]. Compared to those without AKI, patients with AMI who develop incident AKI have significantly prolonged hospital stays and increased rates of hospital mortality (14–39% vs. 0.5–9%) and 1-year mortality (16–50% vs. 5–14%) [2–4, 6, 7]. In the short term, AKI can lead to uremic symptoms, fluid overload, electrolyte imbalance, metabolic acidosis, coagulopathy and increased risk of infection. In addition, the severity and duration of AKI are correlated with the risk of chronic kidney disease and end-stage renal disease, leading to increased economic, social and personal burdens (Additional file 1: Figure S1a) [8, 9].
Although research advances have been made in recent decades, a definite and effective treatment for AKI is still lacking. The best strategies currently focus on prevention, early diagnosis and early interventions aiming at managing the underlying etiologies and complications of AKI. The widely accepted diagnostic criteria for AKI are based on changes of serum creatinine (SCr) and urine output; they include the Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease (RIFLE) classification [1] the Acute Kidney Injury Network (AKIN) criteria [10] and the Kidney Disease Improving Global Outcomes (KDIGO) criteria [11]. However, obvious changes in SCr may not be seen until 48–72 h after renal insult, potentially delaying the diagnosis of AKI. To enable the early diagnosis of AKI, researchers have investigated various novel biomarkers, such as neutrophil gelatinase-associated lipocalin (NGAL) [12] and kidney injury molecule-1 (KIM-1) [13]. However, these biomarkers may be interfered by diseases other than AKI, and there are controversies regarding cut-offs. To date, researchers have been unable to establish a biomarker-guided clinical strategy that reliably improves the clinical outcome in patients with AKI.

MicroRNAs (miRNAs) are endogenous single-stranded noncoding mRNAs of 19–23 nucleotides that play critical roles in the post-transcriptional regulation of multiple biological cell functions, including proliferation, differentiation, metabolism and apoptosis [14]. Accumulating evidence suggests that certain miRNAs are up- or down-regulated in response to AKI and AMI, respectively. These miRNAs have been suggested as contributing to the pathogenesis of AKI and AMI and as potential biomarkers for both diseases [15, 16]. Nevertheless, no previous study has explored these related miRNA expression levels and functions in post-AMI AKI, and the interaction of miRNAs and their downstream targets also have not been completely elucidated. Furthermore, miRNAs have emerged as promising therapeutic targets in various diseases, including kidney fibrosis and diabetic kidney disease [17], with many ongoing clinical trials. However, the therapeutic implication of miRNAs in AKI has not yet been explored.

This study aims to identify a circulating miRNA signature for post-AMI AKI, in the hopes of facilitating early diagnosis and prompt early intervention. Such miRNAs could also serve as potential therapeutic targets to improve clinical outcomes in patients with post-AMI AKI.

Methods

Study design and patient cohort

The study design was summarized in Additional file 1: Figure S1. The study was performed in the coronary care unit (CCU) of a tertiary care referral center. The patients admitted in this CCU from 2010 to 2014 were prospectively enrolled. Patients less than 18 years old, patients who had previously received a kidney transplant, and patients with end-stage renal disease were excluded. The enrolled patients were classified into four groups: AMI−AKI+, AMI+AKI−, AMI+AKI+ and AMI−AKI+. Demographic characteristics, causes of admission, laboratory data, and hospital outcomes were prospectively collected. The diagnosis of AMI was based on the Consensus Conference criteria for the universal definition of myocardial infarction [18]. AKI was defined based on a change in SCr, as listed in the KDIGO criteria [11]. The study protocol was approved by the local institutional review board, and informed consents were obtained from all participants.

Sample collection, hemolysis detection, and serum NGAL analysis

Blood samples were collected in non-heparinized tubes within 24 h, at 48 h and at 1 week of admission. Blood samples were centrifuged at 2000 rpm for 10 min, and the obtained serum was stored at − 80 °C for further processing. Serum levels of NGAL were measured in duplicate using commercially available enzyme-linked immunosorbent assay (ELISA) kits according to the manufacturer’s instructions (DLCN20; R&D Systems, Minneapolis, MN, USA). When a measurement exhibited a > 5% variance, a third analysis was performed to ensure a variance of ≤ 5%. For the purpose of early diagnosis, only samples at the first time point (within 24 h) were used to miRNA detection. Before RNA extraction, hemolysis was directly determined in 2 μL serum samples by detecting the absorbance of hemoglobin at 414 nm using the NanoDrop 2000c UV–Vis spectrophotometer (Thermo Scientific, DE, USA).

Selection of 36 miRNA candidates as potential biomarkers from literature review

A thorough and critical literature review of 119 research articles related to AKI, AMI and cardiovascular diseases (CVD) was performed (Additional file 2: Tables S1, S2). The total reference counts and the numbers of studies related to AKI, AMI and CVD for each miRNA are summarized in Additional file 1: Figure S2a. It is worth noting that many of these miRNAs overlapped in the cardiac and renal diseases. Among the most frequently cited miRNAs, miR-21 was the top one among the 15 miRNAs commonly reported in all three disease types (Additional file 1: Figure S2b). In the 119 studies, miRNAs were detected in various sample types (liquid or tissue biopsies) and species origins (human or murine); the distribution of sample types grouped by disease is shown
in Additional file 1: Figure S2c. About 68.2% (30/44) and 66.7% (62/93) of the miRNAs studied in AMI and CVD were tested in patient blood or tissue samples, whereas less studies (27.3%, 24/88) of those studied in AKI were tested in blood, tissue or urine samples. From the compiled data, 36 highly reported miRNAs as the miRNA candidate set were selected.

RNA extraction and heparinase treatment
An aliquot of 250 μL serum samples were mixed with 1000 μL QIAZol Lysis Reagent (Qiagen) and a spiked-in control consisting of 10^6 copies of synthetic RNA corresponding to Caenorhabditis elegans miR-39 (5′-UCA CCGGGUGUAACAGCUU 5′) (IDT, Coralville, IA, USA). Total RNA was extracted from this mixture using a miRNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. The purified RNA was eluted in 30 μL nuclease-free water and stored at –80 °C until use. To avoid the heparin-related interference, 0.5 U heparinase I (Sigma-Aldrich, MO, USA) was added to the pre-reverse transcription (RT) mixture containing 5.4 μL serum RNA, 2 μL/μL RNase out (Invitrogen), 1× iPCR buffer (Roche Diagnostics) and 1.25 mM MgCl₂, and the samples were incubated at 25 °C for 1 h.

Reverse transcription and quantitative polymerase chain reaction
The multiplex RT-qPCR of 37 miRNAs was performed as described previously [19]. The resulting Ct value of each miRNA was first normalized with respect to that of the spiked-in cel-miR-39 by adjusting the miRNA Ct values with the cel-miR-39 ratio (a ratio calculated based on the differences of cel-miR-39 Ct value in each sample to cel-miR-39 median of total samples). To adjust for variations in the total RNA amounts of individual samples, the cel-miR-39-normalized Ct value was further normalized to each individual RNA concentration, which was determined using a NanoDrop 3300 Fluorospectrophotometer (Thermo Scientific, DE, USA) and a Quant-iT™ RiboGreen® RNA Assay (Invitrogen). MiRNAs with normalized Ct values over 40 were defined as 'undetectable'. Relative miRNA expression levels were represented as 40-Ct.

miRNA target prediction and pathway analysis
The MiRDB and TargetScan 7.1 databases were used to identify potential human miRNA target genes. The predicted target genes were subjected to Metacore 6.13 pathway map analysis.

Statistical methods
Continuous variables were summarized as the mean ± standard error and percentages. Normally distributed continuous variables were compared by the Student’s t-test or Fisher’s exact test, and non-normally distributed ones were compared by the Mann–Whitney U test. Categorical variables were compared using the χ² test or Fisher’s exact test. Correlation coefficients were calculated using Spearman’s rank correlation analysis between groups. Non-parametric Kruskal–Wallis test with post hoc Dunn’s tests were conducted to analyze the differences among all groups. The area under the receiver operating characteristic curve (AUC) was used to determine the discriminatory power, and the Youden’s index was used to assess the optimal cut-off value. Algorithms of two- or three-miRNAs panels were built by logistic regression and are, respectively, logit[Pr(Y = 1)] = 13.962 + 0.982 × miR-23a-3p – 1.987 × miR-24-3p and logit[Pr(Y = 1)] = 17.12 + 0.742 × miR-23a-3p – 2.558 × miR-24-3p + 0.772 × miR-145-5p. All statistical tests were 2-tailed, and P < 0.05 was considered statistically significant. All statistical analyses were conducted using the IBM SPSS Statistics 22 (SPSS Inc., IL, USA). Plots were graphed using Prism 5 (GraphPad).

Results
Patient characteristics
As shown in Table 1, a total of 108 patients were enrolled for analysis and the AMI−AKI−, AMI+AKI−, AMI+AKI+ and AMI−AKI+ subgroups contained 30, 26, 23, and 29 patients, respectively. All four groups have similar gender distribution, body weight, white blood cell count, serum level of alanine aminotransferase, mean arterial pressure, ejection fraction and in-hospital mortality. Compared to AMI+AKI− patients, AMI+AKI+ patients had an older age and higher prevalences of pre-existing hypertension and congestive heart failure. The average SCr values in AMI+AKI+ and AMI+AKI− patients were 3.4±0.5 and 0.9±0.1 mg/dL, respectively. The average serum NGAL levels in AMI+AKI+ and AMI+AKI− patients were 140.1±24.4 and 64.3±7.5 ng/dL, respectively. Compared to AMI+AKI− patients, the AMI+AKI+ patients had lower hemoglobin, lower serum albumin, higher troponin-I and higher B-type natriuretic peptide. Three (13%) of the AMI+AKI+ patients required renal replacement therapy. Three (13%) of the AMI+AKI+ patients died during admission.

miR-24, miR-23a and miR-145 are the most promising targets for the early detection of post-AMI AKI
A work flow diagram for our identification of the clinically applicable miRNAs with the best discriminatory power in detecting post-AMI AKI is shown in Fig. 1. To increase data reliability, the five least abundant miRNAs
Table 1 Demographic data and clinical characteristics of the study population

Group	AMI−AKI− (n = 30)	AMI+AKI− (n = 26)	AMI+AKI+ (n = 23)	AMI+AKI+ (n = 29)	P-value (four groups)	P-value (AMI+AKI− vs AMI+AKI+)
Age (years)	61 ± 3	59 ± 2	73 ± 2	71 ± 2	< 0.001	< 0.001
Sex, male (%)	19 (63.3)	22 (84.6)	19 (82.6)	19 (65.5)	0.165	0.576
Body weight (kg)	64.5 ± 1.9	68.9 ± 2.6	65.3 ± 2.3	64.9 ± 2.6	0.563	0.321
Diabetes mellitus (%)	7 (23.3)	7 (26.9)	12 (52.2)	16 (55.2)	0.023	0.064
Hypertension (%)	14 (46.7)	14 (53.8)	20 (87.0)	23 (79.3)	0.004	0.013
Coronary artery disease (%)	8 (26.7)	26 (100.0)	23 (100.0)	8 (27.6)	< 0.001	1.000
Heart failure (%)	13 (43.3)	2 (7.7)	15 (65.2)	22 (75.9)	< 0.001	< 0.001
Blood urea nitrogen (mg/dL)	15 ± 1	14 ± 1	40 ± 6	53 ± 6	< 0.001	< 0.001
Serum creatinine (mg/dL)	0.8 ± 0.1	0.9 ± 0.1	3.4 ± 0.5	3.0 ± 0.3	< 0.001	< 0.001
Serum NGAL (ng/mL)	72.0 ± 9.0	64.3 ± 7.5	140.1 ± 24.4	264.8 ± 56.1	< 0.001	0.007
WBC (10^3/μL)	8.2 ± 0.4	10.4 ± 0.6	12.6 ± 1.2	11.7 ± 2.0	0.071	0.096
Hemoglobin (g/dL)	13.0 ± 0.4	14.8 ± 0.2	12.2 ± 0.5	11.0 ± 0.5	< 0.001	< 0.001
Sugar (mg/dL)	122 ± 9	171 ± 18	183 ± 20	175 ± 15	0.033	0.671
ALT (U/L)	33 ± 6	31 ± 5	47 ± 11	88 ± 54	0.565	0.222
Albumin (g/L)	3.9 ± 0.1	3.9 ± 0.1	3.4 ± 0.1	3.3 ± 0.1	< 0.001	< 0.001
Troponin I (ng/mL)	2.30 ± 1.13	3.43 ± 1.47	15.98 ± 5.62	0.83 ± 0.27	0.005	0.041
BNP (pg/mL)	386 ± 112	243 ± 132	1098 ± 303	1460 ± 288	0.001	0.038
Mean arterial pressure (mmHg)	87.3 ± 3	89 ± 3	90.3 ± 3	86.4 ± 4	0.759	0.804
Ejection fraction (%)	55 ± 3	58 ± 3	48 ± 4	50 ± 4	0.226	0.050
Renal replacement therapy	0 (0)	0 (0)	3 (13.0)	4 (13.8)	0.021	0.096
In-hospital mortality	1 (3.3)	0 (0)	3 (13.0)	2 (6.9)	0.237	0.096

Values are mean ± standard error

AMI acute myocardial infarction, AKI acute kidney injury, ALT alanine aminotransferase, BNP B-type natriuretic peptide, BUN blood urea nitrogen, NGAL neutrophil gelatinase-associated lipocalin, RRT renal replacement therapy, WBC white blood cell

(miR-200c, miR-205, miR-135a, miR-489 and miR-210), which were undetectable (Ct value > 40) in more than 50% of our samples, were eliminated (Fig. 1a). In serum samples, hemolysis may cause miRNAs to be released from red blood cells, substantially altering the circulating miRNA content [20]. To exclude the miRNAs whose levels may be altered by hemolysis, the serum samples were separated into non-hemolytic (n = 28) and hemolytic (n = 80) groups by their OD414 nm values of hemoglobin, and then compared miRNA expression between the groups. As shown in Fig. 1b, the expression levels of 14 of 31 miRNAs were significantly increased in hemolytic samples. Among them, miR-451a showed that largest alteration, with a 4.3-fold change in hemolytic samples; this finding is consistent with many previous reports [21–23]. Finally, the remaining 17 miRNA candidates were compared among all 4 groups by Kruskal–Wallis test. Among them, 15 miRNAs were significantly altered between these four groups (Additional file 1: Table S3). Noticeably, after multiple comparisons, 9 of them had significantly differential expression in AMI patients who developed AKI compared to those without developed AKI (Fig. 1c and Additional file 2: Table S1). However, these miRNAs were not altered between AMI−AKI+ and AMI−AKI− group and these data disclosed them specifically as potential biomarkers for post-AMI AKI. In order to facilitate clinical practice with minimum miRNA targets, the top 3 highly abundant miRNAs (miR-24, miR-23a and miR-145) were selected as the most potential biomarkers for further evaluating (Fig. 1c, d).

The expression levels of miR-24, miR-23a and miR-145 were significantly down-regulated in AMI+AKI+ patients compared to AMI+AKI− patients (Fig. 2a; 0.27-, 0.32- and 0.34-fold, respectively). For discrimination ability, the AUC values of miR-24 and miR-23a were greater than 0.8, and all three miRNAs had better performances than that of serum NGAL (AUC = 0.735). Using the cut-off values obtained from Youden’s index on the ROC curves of miRNAs and serum NGAL, sensitivities ranging from 60.87 to 86.96% and specificities of 53.85–92.31% were obtained (Table 2). The sensitivity of miR-23a was very close to that of serum NGAL; however, the sensitivities of miR-24 and miR-145 were greatly improved (by ~20%). These results strongly suggested that the selected miRNAs may have potential for clinical application.
The miRNA panel (miR-24, miR-23a, miR-145) has the highest detection rate of post-AMI AKI. Based on the high sensitivity of miR-24 and miR-145 and the high specificity of miR-23a, the top two miRNAs (miR-24 and miR-23a) and the top three miRNAs (miR-24, miR-23a and miR-145) were combined into panels, and used logistic regression analysis to evaluate the performance of these panels in detecting post-AMI AKI. As shown in Fig. 2b, the scores of the two-miRNA model and three-miRNA model were elevated in the AMI+AKI+
group compared with those in the AMI+AKI+ group. Using the two-miRNA panel with the cut-off value of 0.46 yielded a slightly higher AUC value of 0.838, a sensitivity of 73.91% and a specificity of 80.77%. Using the three-miRNA panel with the cut-off value of 0.30 yielded an AUC value of 0.853, a remarkably increased sensitivity of 95.65% and a moderate specificity of 65.38% (Table 2). This three-miRNA signature detected 22 out of the 23 patients in the AMI+AKI+ group and had the best performance for diagnosing post-AMI AKI.

miR-24, miR-23a and miR-145 are simultaneously up-regulated in AMI, but down-regulated in AKI

Our literature review indicated that miR-24, miR-23a and miR-145 were highly related to AKI and AMI (Additional file 1: Figure S2), and our experimental results showed that all three miRNAs were significantly downregulated in AMI+AKI+ patients compared to those in AMI+AKI− patients (Fig. 2a). miRNAs in the AMI+AKI+ and AMI+AKI− groups were also examined. Comparing to the AMI−AKI− group (disease control), the AMI+AKI− group exhibited significantly higher expression levels of miR-24...
In the present study, a thorough literature review was performed to select 36 miRNA candidates as potential biomarkers for post-AMI AKI. From among them, serum miR-24, miR-23a and miR-145 were found to be significantly down-regulated in AMI+aki+ patients and showed good discriminatory power (i.e., better than serum NGAL) in detecting in post-AMI AKI within 24 h of admission. Our logistic regression analysis showed that this three-miRNA panel exhibited better diagnostic performance than the individual miRNAs or a two-miRNA panel. Our target prediction and pathway analyses showed that these three miRNAs commonly regulate TGF-β signaling and apoptosis. To our knowledge, this is the first report to identify a unique circulating miRNA signature for detecting post-AMI AKI at an early stage and demonstrate their pathogenic mechanisms.

Our results demonstrated that the three-miRNA panel had excellent performance in the early the diagnosis of post-AMI AKI. Over the last decade, NGAL has been known as one of the most promising and sensitive novel protein biomarkers for diagnosing AKI, with a reported AUC of 0.815 [24]. When NGAL was combined with KIM-1 and N-acetyl-beta-D-glucosaminidase (NAG), the AUC of the three-protein panel could reach 0.840 [25]. In our current study, using samples obtained within 24 h of admission, miR-24 alone (AUC=0.828), miR-23a alone (AUC=0.801), miR-145 alone (AUC=0.763) and the three-miRNA panel (AUC=0.853) all had higher discriminatory abilities than serum NGAL (AUC=0.735) in diagnosing post-AMI AKI. Our data indicate that the three-miRNA panel is a promising diagnostic tool for post-AMI AKI.

To determine this signature for post-AMI AKI, three disease control groups were used from CCU patients (AMI-aki-, AMI+aki-and AMI-AKI+) rather than normal healthy individuals. Previous studies separately

Table 2 Summarized diagnostic factors of the individual miRNAs, combined miRNA panels and serum NGAL for AKI

Variate	Value (mean ± SE)	Fold-change (AMI+aki+/AMI+aki-)	P (MWU test)	Cut-off	AUC (95% CI)	Sensitivity (%)	Specificity (%)
miR-24 (Ct)	13.64 ± 0.26	11.74 ± 0.31	0.27	< 0.001	0.828 (0.711–0.941)	82.61	69.23
miR-23a (Ct)	12.23 ± 0.28	10.59 ± 0.32	0.32	< 0.001	0.801 (0.676–0.927)	60.87	92.31
miR-145 (Ct)	9.70 ± 0.31	8.16 ± 0.29	0.34	< 0.001	0.763 (0.631–0.894)	86.96	53.85
sNGAL (ng/mL)	64.32 ± 7.50	140.13 ± 24.38	2.18	< 0.001	0.735 (0.578–0.892)	63.16	84.62
miR-24 + miR-23a (score)	0.30 ± 0.04	0.66 ± 0.06	2.16	< 0.001	0.838 (0.728–0.948)	73.91	80.77
miR-24 + miR-145 (score)	0.29 ± 0.04	0.67 ± 0.06	2.27	< 0.001	0.843 (0.730–0.956)	69.57	88.46
miR-23a + miR-145 (score)	0.35 ± 0.04	0.61 ± 0.05	1.74	< 0.001	0.801 (0.676–0.927)	60.87	92.31
miR-23a + miR-145 + miR-24 (score)	0.29 ± 0.04	0.67 ± 0.06	2.29	< 0.001	0.853 (0.744–0.962)	95.65	65.38

AMI = acute myocardial infarction, AKI = acute kidney injury, AUC = area under receiver operating characteristic curve, CI = confidence interval, Cut-off = cycle threshold, MWU = Mann–Whitney U test, NGAL = neutrophil gelatinase-associated lipocalin, SE = standard error.
discussed miRNA expression under AMI or AKI; however, both conditions have shared pathophysiologies including cell apoptosis, inflammation, and fibrosis. Some miRNAs were reported to be involved in both AMI and AKI, but it was not known whether they acted synergistically or antagonistically. The use of disease control groups allowed us to focus on the specific effect of AKI on miRNA expression among AMI patients, in turn enabling us to identify a circulating miRNA signature that is distinctive in diagnosing post-AMI AKI.

MiR-24, miR-23a and miR-145 had all been previously reported in AMI and AKI, but it was not known whether they acted synergistically or antagonistically. The use of disease control groups allowed us to focus on the specific effect of AKI on miRNA expression among AMI patients, in turn enabling us to identify a circulating miRNA signature that is distinctive in diagnosing post-AMI AKI.

MiR-24, miR-23a and miR-145 had all been previously reported in AMI, and miR-24 and miR-145 had been implicated in AKI. MiR-24 was reportedly down-regulated in the plasma of critically ill patients with AKI [26]. Its tissue levels were up-regulated in a mouse model of renal ischemic reperfusion (I/R) injury and in renal transplant patients with prolonged cold ischemic time [27]. MiR-24 was shown to be induced by hypoxia inducible factor-1, and to thereby promote renal ischemic injury by stimulating apoptosis in endothelial and tubular epithelial cells. In vivo inhibition of miR-24 was shown to reduce tubular injury and improve renal function [27]. MiR-24 was found to be specifically enriched in cardiac endothelial cells in the infarct border zone after AMI [28]. Inhibition of endothelial miR-24 limited the myocardial infarct size of mice by preventing endothelial apoptosis and enhancing vascularity, thereby preserving cardiac function and survival. MiR-23a was found to be up-regulated in the plasma of patients with coronary artery diseases, and in an I/R-induced myocardial infarction model [29, 30]. MiR-23a was also shown to regulate cardiomyocyte apoptosis by inhibiting manganese superoxide dismutase [31]. MiR-145 is reportedly abundant in normal vascular smooth muscle cells, but down-regulated in injured or atherosclerotic vessels [32]. In contrast to patients with coronary artery diseases, the plasma levels of miR-145 were found to be increased in AMI patients; moreover, these levels were positively correlated with the infarct size [33]. Our current results agree with these previous reports and demonstrate for the first time that miR-23a is down-regulated in AKI. The distinctive expression pattern of these three miRNAs suggests that they may be functionally relevant.
Our bioinformatic study found that miR-24, miR-23a and miR-145 were commonly associated with TGF-β signaling and apoptosis. TGF-β is well recognized as a key mediator of renal fibrosis [34]. Evidence also showed that TGF-β signaling participates in kidney injury. During AKI, tubular epithelial cells can produce TGF-β and fractalkines to promote inflammation and kidney injury [35]. Deletion the TGF-β type II receptor in the proximal tubules could attenuate tubular apoptosis and reduce renal injury in a mouse model, suggesting that TGF-β signaling is pro-apoptotic in this setting [36]. In a transgenic mouse model, activation of TGF-β signaling in

Target	Gene symbol	Pathway	miRNA	Prediction	Experiment
ACVR1B	Role of activin A in cytoskeleton remodeling	miR-145 miR-24 (2), miR-145 (6,11)	miR-145		
ACVR2A	Role of activin A in cytoskeleton remodeling	miR-145	miR-145		
APAF1	FAS signaling cascades	miR-23a (17,20,23,25,28,34,42)	miR-23a		
CASP7	FAS signaling cascades	miR-23a	miR-23a (7,12,21)		
CFL2	TGF, WNT and cytoskeleton remodeling/TGFβ-dependent induction of EMT via rhoA and PI3 K	miR-23a			
CHUK	TGF, WNT and cytoskeleton remodeling/TGFβ-dependent induction of EMT via rhoA and PI3 K	miR-23a			
COL4A1	TGF, WNT and cytoskeleton remodeling	miR-23a			
FAS	FAS signaling cascades	miR-23a	miR-23a (3,15,22)		
GSK3B	TGF, WNT and cytoskeleton remodeling/TGFβ-dependent induction of EMT via rhoA and PI3 K	miR-23a			
LRP5	TGF, WNT and cytoskeleton remodeling	miR-23a	miR-23a (36), miR-145 (38)		
MAP3K1	FAS signaling cascades	miR-23a			
MAP3K5	FAS signaling cascades	miR-23a			
MAPK14	TGFβ-mediated regulation of cell proliferation	miR-24	miR-24 (1)		
MKL2	TGFβ-dependent induction of EMT via SMADs	miR-145			
MYL12B	TGF, WNT and cytoskeleton remodeling	miR-23a			
NLK	TGF, WNT and cytoskeleton remodeling	miR-23a			
PAK2	FAS signaling cascades	miR-23a			
PDGFRα	TGFβ-mediated regulation of cell proliferation	miR-24			
PDGFRβ	TGFβ-mediated regulation of cell proliferation	miR-24	miR-24 (16,33)		
PDK1	TGFβ-dependent induction of EMT via rhoA and PI3 K	miR-23a			
PIK3C2A	TGF, WNT and cytoskeleton remodeling/TGFβ-dependent induction of EMT via rhoA and PI3 K	miR-23a			
PIK3CB	TGF, WNT and cytoskeleton remodeling/TGFβ-dependent induction of EMT via rhoA and PI3 K	miR-23a			
PPP1Cβ	TGF, WNT and cytoskeleton remodeling	miR-23a			
PPP1R12A	TGF, WNT and cytoskeleton remodeling	miR-23a			
PXN	Role of activin A in cytoskeleton remodeling	miR-145 miR-145 (30)	miR-145		
SERPINE1/PAI1	TGFβ-dependent induction of EMT via SMADs	miR-145	miR-145 (8,13)		
SMAD2	TGFβ-dependent induction of EMT via SMADs/role of activin A in cytoskeleton remodeling	miR-145	miR-145 (5,40)		
SMAD3	TGFβ-dependent induction of EMT via SMADs/role of activin A in cytoskeleton remodeling	miR-145	miR-23a (39,41), miR-145 (14,27,29,31,37)		
TCF3	TGFβ-dependent induction of EMT via SMADs	miR-145	miR-24 (19)		
TGFBR2	TGF, WNT and cytoskeleton remodeling/TGFβ-dependent induction of EMT via rhoA and PI3K/TGFβ-dependent induction of EMT via SMADs	miR-23a, miR-145	miR-145 (18,26,40)		
TJP1	TGFβ-dependent induction of EMT via rhoA and PI3 K	miR-23a			
XIAP	TGF, WNT and cytoskeleton remodeling/FAS signaling cascades	miR-23a	miR-23a (4,9,35), miR-24 (10,24,32)		

The references are listed in Additional file 2: Supplementary references.
the tubular epithelium alone was sufficient to cause AKI [37]. Tubular cell apoptosis, which is well recognized as the hallmark of AKI, involves intrinsic, extrinsic and endoplasmic reticulum stress pathways [38]. Previous studies showed that the three miRNAs selected in the present work can target TGF-β signaling and apoptosis by regulating Furin, SMAD4, Bim, Bax, FOXO3, and SP1. Based on the bioinformatic analysis and previous experimental studies, a network model was proposed (Fig. 4) in which the three selected miRNAs suppress the expressions of TGF-β signaling components (Furin, TGFBR2 and SMADs), the transcription factors (Foxo3 and SP1), and apoptosis-related molecules (Bim, Bax, Caspase 7, Apaf-1 and Fas receptor). Taken together, the three selected miRNAs not only have the potential to serve as early biomarkers for detecting post-AMI AKI, but may also contribute to post-AMI AKI pathogenesis by regulating TGF-β signaling and apoptosis to promote renal injury and fibrosis. The biological relevance and therapeutic potential of these three miRNAs in AKI are worthy of further study.

Limitations

The study population was relatively small and not enough to evaluate the correlation of the three selected miRNAs with the severity of AKI or the long-term clinical outcome. Further investigation is needed to validate the accuracy and clinical utility of the three-miRNA panel to serve as an early detection tool of AKI following AMI or other cardiorenal syndromes.

Conclusion

In conclusion, for the first time, this study identified a unique circulating miRNA signature (miR-24, miR-23a and miR-145) that enables the early detection of post-AMI AKI in human. These three miRNAs target TGF-β.

Fig. 4 Schematic overview for the roles of miR-24, miR-23a and miR-145 in TGF-β signaling in AKI. The proteolytic activity of Furin is required for the maturation of TGF-β. After binding with mature TGF-β, TGFBR2 phosphorylates TGFBR1 and induces canonical SMAD2/3 signaling. Phosphorylated SMAD2/3 interacts with SMAD4, and this complex translocates into the nucleus and associates with transcription factors (FOXO3 and SP1) to regulate target gene expression. The pro-apoptotic factors, Bim and Bax, are induced by TGF-β-SMADs signaling to cooperatively trigger the release of Cyt C from mitochondria. Cyt C, Pro-Casp9 and Apaf1 form the apoptosome, which can initiate intrinsic apoptosis through the caspase 9-mediated cleavage of caspase 3/7. Fasl is transactivated by the canonical TGF-β pathway, binds to Fas receptor, and enhances extrinsic apoptosis by autolysis of Pro-Casp8. Activated caspase 8 also converts caspase 3/7 into active enzymes and induces cell death. SMAD2/3 transactivates pro-fibrotic genes that are directly involved in extracellular matrix deposition. PAI1 is also activated via the TGF-β-SMADs pathway; activated PAI1 reduces the production of plasmin and protects fibrin from degradation, thereby promoting tissue fibrosis. The experimentally confirmed targets of miR-24, miR-23a and miR-145 are marked. AKI acute kidney injury, Apaf1 apoptotic protease activating factor 1, Cyt C Cytochrome C, FasL Fas ligand, FOXO3 forhead box O3, PAI1 plasminogen activator inhibitor-1, Pro-Casp8 pro-caspase 8, Pro-Casp9 pro-caspase 9, TGF-β transforming growth factor beta, TGFBR1 transforming growth factor, beta receptor I, TGFBR2 transforming growth factor, beta receptor II, SP1 specificity protein 1.
signaling and apoptosis, and may be involved in renal injury and fibrosis in post-AMI AKI pathogenesis.

Additional files

Additional file 1: Figure S1. Study design. **Figure S2.** Summary of total reference numbers, disease distribution and sample type analysis of the miRNA candidates. **Table S3.** Kruskal–Wallis test and post hoc Dunn’s multiple comparisons of the 17 miRNAs among all groups (N = 108).

Additional file 2: Tables S1, S2. Literature review of 119 research articles related to AKI, AMI and cardiovascular diseases. **Supplementary references.** Supplementary references of Additional file 1: Table S3.

Abbreviations

ACVR1B: activin A receptor type 1B; AKI: acute kidney injury; AKIN: Acute Kidney Injury Network; AMI: acute myocardial infarction; APAF1: apoptotic protease activating factor 1; AUC: area under receiver operating characteristic curve; CASP7: caspase 7; CCL: coronary care unit; CKD: chronic kidney disease; CVD: cardiovascular disease; ELISA: enzyme-linked immunosorbent assay; FasL: Fas ligand; FOXO3: forkhead box O3; I/R: ischemic reperfusion; KDIGO: Kidney Disease Improving Global Outcomes; KIM-1: kidney injury molecule-1; LRPS: low-density lipoprotein-related receptors S; MAPK14: mitogen-activated protein kinase 14; miRNA: microRNA; NAG: N-acetyl-beta-D-glucosaminidase; ND: not detected; NGAL: neutrophil gelatinase-associated lipocalin; PAI1: plasminogen activator inhibitor-1; PCR: polymerase chain reaction; PDGF-BB: platelet-derived growth factor receptor beta; Pro-Casp8: pro-caspase 8; Pro-Casp9: pro-caspase 9; PXN: pxalin; RIFLE: Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease; ROC: receiver-operating characteristic; SCR: serum creatinine; SERPINE1: serine protease inhibitor C1 inhibitor; TGFBR1: transforming growth factor receptor beta 1; TGFBR2: transforming growth factor receptor beta 2; XIAP: X-linked inhibitor of apoptosis protein.

Authors’ contributions

PCP, CCC: data analysis and interpretation, drafting the article; CCP, CYC, LJC: data analysis and interpretation, CHC, CHY: data collection; YCC, CWY: critical revision of the article; YSC: conception or design of the work, final approval of the version to be published; PHC: conception or design of the work, final approval of the version to be published. All authors read and approved the final manuscript.

Author details

1 Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University College of Medicine, No. 5 Fusing Street, Gueishan Dist., Taoyuan City 333, Taiwan, ROC. 2 Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 5 Fusing Street, Gueishan Dist., Taoyuan City 333, Taiwan, ROC. 3 Molecular Medicine Research Center, Chang Gung University, No 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan City 33302, Taiwan, ROC. 4 Department of Colorectal Surgery, Chang Gung Memorial Hospital, No 259 Wen-Hwa 1st Road, Kwei-Shan, Linkou, Taoyuan City 33302, Taiwan, ROC. 5 Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5 Fusing Street, Gueishan Dist., Taoyuan City 333, Taiwan, ROC. 6 Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, Chang Gung University College of Medicine, No. 222, Maijin Rd., Anle Dist., Keelung City 20401, Taiwan, ROC. 7 Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 199 Tung Hwa North Road, Taipei 105, Taiwan.

Acknowledgements

The authors thank the participants of the Kidney Research Center of Chang Gung Memorial Hospital, Linkou, Taiwan, and Yu-Ka Chu’s critical reading. All authors have read the journal’s authorship agreement and reviewed and approved the manuscript.

Competition of interests

The authors declare that they have no competing interests.

Availability of data and materials

All the data generated or analysed during this study are included in this published article.

Consent for publication

Not applicable.

Ethics approval and consent to participate

The study protocol was approved by the local institutional review board, and informed consents were obtained from all participants.

Funding

This research is supported by research grants from the Chang Gung Medical Foundation (CORPG3H0091, CIRPG3B0042, CIRPG3B0043, CIRPD3B0012, CIR-PD3B0013 and CIRPGSG0111), and the Ministry of Science and Technology of Taiwan (103-2314-B-182A-018-MY3, 106-2314-B-182A-118-MY3).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 November 2018
Accepted: 23 April 2019

Published online: 30 April 2019

References

1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute Dialysis Quality Initiative w. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.

2. Bruetto RG, Rodrigues FB, Torres US, Otaviano AP, Zanetta DM, Burdmann EA. Renal function at hospital admission and mortality due to acute kidney injury after myocardial infarction. PLoS ONE. 2012;7(4):e35496.

3. Fox CS, Munter P, Chen AT, Alexander KP, Roe MT, Wiviott SD. Short-term outcomes of acute myocardial infarction in patients with acute kidney injury: a report from the national cardiovascular data registry. Circulation. 2012;125(3):497–504.

4. Parkh CR, Coca SG, Wang Y, Masoudi FA, Krumholz HM. Long-term prognosis of acute kidney injury after acute myocardial infarction. Arch Intern Med. 2008;168(9):987–95.

5. Rodrigues FB, Bruetto RG, Torres US, Otaviano AP, Zanetta DM, Burdmann EA. Incidence and mortality of acute kidney injury after myocardial infarction: a comparison between KDIGO and RIFLE criteria. PLoS ONE. 2013;8(7):e69998.

6. Marenzi G, Cosentino N, Bartorelli AL. Acute kidney injury in patients with acute coronary syndromes. Heart. 2015;101(22):1778–85.

7. Amin AP, Speratus JA, Reid KJ, Lan X, Buchanan DM, Decker C, et al. The prognostic importance of worsening renal function during an acute myocardial infarction on long-term mortality. Am Heart J. 2010;160(6):1065–71.

8. Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 2012;82(5):S16–24.

9. Coca SG, Singanamala S, Parkh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.

10. Mehta RL, Kellum JA, Shah SV, Mlotorski BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

11. Group KDIGOKAKIW. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1–38.

12. Mishra J, Ma Q, Prada A, Mitsnese M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–43.
Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecular-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–44.

Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.

Fan PC, Chen CC, Cheng YS, Chu PH. MicroRNAs in acute kidney injury. Hum Genomics. 2016;10(1):29.

Sun T, Dong YH, Du W, Shi CY, Wang K, Tariq MA, et al. The role of microRNAs in myocardial infarction: from molecular mechanism to clinical application. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18040745 (pii:E745).

Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.

Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/SCAI/HTF/TFTR/FDA. Universal definition of myocardial infarction. Eur Heart J. 2007;28(20):2525–38.

Chang PY, Chen CC, Chang YS, Tsai WS, You JF, Lin GP, et al. MicroRNA-223 and microRNA-92a in stool and plasma samples act as complementary biomarkers to increase colorectal cancer detection. Oncotarget. 2016;7(9):10663–75.

Kirschner MB, Kao SC, Edelman JJ, Armstrong NJ, Vallely MP, van Zandwijk N, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS ONE. 2011;6(9):e24145.

Shah JS, Soon PS, Marsh DJ. Comparison of methodologies to detect low levels of hemolysis in serum for accurate assessment of serum microRNAs. PLoS ONE. 2011;6(9):e24145.

Kirschner MB, Edelman JJ, Armstrong NJ, Valley MP, van Zandwijk N, et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4(5):873–82.

Han WK, Wagener G, Zhu Y, Wang S, Lee HT. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4(5):873–82.

Lorenzen JM, Kielstein JT, Hafer C, Gupta SK, Kumpers P, Faulhaber-Walter R, et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol. 2011;6(7):1540–6.

Lorenzen JM, Kauser T, Schuerle C, Schmitt R, Rong S, Hubner A, et al. MicroRNA-24 antagonism prevents renal ischemia-reperfusion injury. J Am Soc Nephrol. 2014;25(12):2717–29.

Fiedler J, Jazbutyte V, Kirschmaier BC, Gupta SK, Lorenzen J, Hartmann D, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124(6):720–30.

Han H, Qu G, Han C, Wang Y, Sun T, Li F, et al. MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: a pilot microarray study and confirmation in a 32 patient cohort. Exp Mol Med. 2015;47:e138.

Wang S, He W, Wang C. MiR-23a regulates the vasculogenesis of coronary artery disease by targeting epidermal growth factor receptor. Cardiovasc Ther. 2016;34(4):199–208.

Long B, Gan TY, Zhang RC, Zhang YH. miR-23a regulates cardiomyocyte apoptosis by targeting manganese superoxide dismutase. Mol Cells. 2017;40(8):542–9.

Guo C, Deng Y, Liu J, Qian L. Cardiomyocyte-specific role of miR-24 in promoting cell survival. J Cell Mol Med. 2015;19(1):103–12.

Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 2011;106(1):13–23.

Bottinger EP. TGF-beta in renal injury and disease. Semin Nephrol. 2007;27(3):309–20.

Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 2004;66(2):480–5.

Gewin L, Vadiuvelu S, Neelessy S, Srichai MB, Paueksakon P, Pozzi A, et al. Deleting the TGF-beta receptor attenuates acute proximal tubule injury. J Am Soc Nephrol. 2012;23(12):2001–11.

Gentle ME, Shi S, Daehn L, Zhang T, Qi H, Yu L, et al. Epithelial cell TGFbeta signaling induces acute tubular injury and interstitial inflammation. J Am Soc Nephrol. 2013;24(5):787–99.

Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S, Dong Z. Regulated cell death in AKI. J Am Soc Nephrol. 2014;25(12):2689–701.