The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme

Semer Maksoud

Abstract
Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.

Keywords Glioma · Ubiquitin · Proteasome · E3 ligase · Deubiquitinases · PROTACs

Introduction
Gliomas represent about 60% of central nervous system (CNS) primary tumors. Glioblastoma multiforme (GBM), the most aggressive form of brain tumor in adults, encompasses more than 54% of gliomas with an average survival hardly exceeding 15 months [1]. One of the GBM hallmarks is the diffusive invasion of tumor cells in the surrounding regions of the brain, with individual infiltrating cells scattered throughout the brain parenchyma, which complicates treatment [2]. Among other properties of the tumor that also hinder its treatment are cell heterogeneity and the presence of glioma stem-like cells (GSCs), a cell subset with significant capacity for expansion and ability to generate new tumors [3].

Through multiple genomic profile studies, many genes have been sequenced in numerous tumor samples revealing the complex genetic profile of GBM, highlighting three signaling pathways commonly altered: the p53, tyrosine kinase receptor (RTK)/RAS/phosphoinositide 3-kinase (PI3K), and retinoblastoma (RB) pathways. These alterations result in uncontrolled proliferation, cell infiltration, and resistance to apoptosis [4]. These studies have also been established with the aim of facilitating the development of more effective therapies by allowing GBM to be classified, being cataloged in at least four subgroups called proneural (PN), neural (NL), classical (CL), and mesenchymal (MES); each group has particular properties associated to molecular alterations, prognosis, and sensitivity to therapies [5]. The MES subtype is the most aggressive and is related to poor prognosis compared to the PN subtype, with a PN → MES transition being reported in several patients undergoing radiation and chemotherapy [6].

Current standard therapy for GBM includes surgical resection, followed by radiation and co-administration of temozolomide (TMZ), an oral alkylating agent; this therapeutic option has limited effectiveness. Surgical procedures, although representing the most effective way to increase survival of GBM patients, depend considerably on tumor location and infiltration extent [7]. Besides, high doses of radiation cannot be given due to the damage they can cause to the brain [8]. For its part, the TMZ effect, which consists of blocking the cell cycle in the G2/M phase and eventually activating apoptosis through methylation of adenine and guanine residues, is often hampered by DNA repair systems in which the role of O^6-
methylguanine methyltransferase (MGMT) is crucial [9]. However, different investigations have pointed to the development of new strategies that can improve the efficiency of treatment, such as the use of nanoparticles [10], immunotherapy [11], oncolytic viruses [12], or compounds with synergistic effects to TMZ [13].

The Ubiquitin Proteasome System

Ubiquitination consists of a three-step enzymatic cascade in which proteins are labeled for degradation by the proteasome. Ubiquitin (Ub), which has a central role in this process, has 76 highly conserved amino acids and is present in all cell types, from yeasts to humans. The ubiquitin proteasome system (UPS) participates in signal transduction, cell cycle, transcription, and apoptosis events, among others. First, in an ATP-dependent process, Ub is activated by binding to a ubiquitin-activating enzyme (E1), which forms a thioester bond between a cysteine residue of its active site and the carboxyl terminus of Ub. Next, Ub is subsequently transferred to a second protein called ubiquitin-conjugating enzyme (E2), by transferring the thioester bond to a cysteine residue. Finally, Ub is coupled to a target protein through a peptide bond by the action of a third enzyme, termed ubiquitin ligase (E3), which is responsible for selective recognition of appropriate substrate proteins. The catalytic and substrate recruitment domains of E3 ligases can be present in a single protein, as in the case of c-CBL, or in separate subunits assembled in a multiprotein complex, such as cullin-RING ligases; in these complexes, the adapter proteins are responsible for the recruitment of substrates [14]. Given the importance of ubiquitination in the regulation of various cellular processes, it is essential that it can be reversible; this is achieved by deubiquitinase enzymes (DUBs) [15, 16].

The proteasome is a multiprotein complex responsible for the degradation of most intracellular proteins. The specificity of the signal is determined by the length and structure of poly-Ub chains. However, it should be noted that there is also an Ub-independent proteasomal degradation in which auxiliary molecules or specific motifs of target proteins cooperate [17]. This multiprotein complex consists of two structural and functional parts: the catalytic core (20S proteasome) and the regulatory particles that, when united, give rise to the 26S proteasome. It has three types of proteolytic activity: similar to trypsin, chymotrypsin, and caspase (cleavage after positive, aromatic, and negative amino acids, respectively) [18]. The 19S regulatory particles, included in 26S proteasomes, are responsible for identifying, binding, deubiquitinating, unfolding, and translocating substrates into the core proteolytic chamber [19].

UPS and Glioma

The interest in UPS in the brain began mainly with observations emphasizing that Ub or UPS-related proteins were part of protein deposits in several neurodegenerative diseases, such as Alzheimer’s or Parkinson’s. Nevertheless, subsequent investigations positioned UPS in very important non-degenerative processes including growth, development, survival, synaptic function, and plasticity of neurons (reviewed by Yi and Ehlers [20] and Lehman [21]).

Since the UPS intervenes in several cellular functions, any functional mutation or abnormal expression of its elements can lead to various disorders, such as cancer, neurodegenerative diseases, and immune disturbances; ubiquitination functions are not limited only to proteolysis but also to protein assembly, cell signaling, and DNA repair, among others [22]. In cancer, ubiquitination causes an activation or a deactivation of tumorigenic pathways; in a siRNA screening analysis that identified relevant genes for GBM survival, 22% (12/55) were components of the 20S and 26S proteasome subunits [23]. This review discusses how different elements of the UPS regulate the suppression/progression of gliomas, highlighting genes and proteins involved and describing those investigations that have used UPS as a way of treating this type of tumor. Figure 1 indicates the suppressive/oncological E3 ligases identified in gliomas. The full names corresponding to the abbreviations used are listed in Table 1.

Ubiquitin-Conjugating Enzymes

UBE2C/UBCH10

In search of possible tools that can be used as diagnostic markers, attention has been given to the UBC10 gene, which encodes a protein belonging to the E2 family known as ubiquitin-conjugating enzyme E2C (UBE2C/UBCH10), regulating the cell cycle in different types of carcinomas by UPS modulation, including GMB [24]. UBCH10 expression has been evaluated in normal brain, gliosis, grade II astrocytic tumors, and GBM, revealing a direct correlation between this expression and the histological grade of tumors [25, 26]. The expression of this enzyme is also linked to poor prognosis and resistance to therapy in patients [27, 28]. In addition, the analysis of UBCH10 expression allowed for differentiation of tumor tissue from gliotic or normal tissue [25]. UBCH10 would facilitate the formation of CDK1-cyclin B1 complexes that initiate mitosis [24]; thus, this enzyme could not only be used as a diagnostic marker but also as a therapeutic target. Its knockdown caused the inhibition of proliferation, activation of p53, and Bax-dependent apoptosis in U251 glioma cells [29].
UBE2S

The ubiquitin-conjugating enzyme E2S (UBE2S) is commonly overexpressed in grade III and IV gliomas, being phosphorylated by AKT, which prevents its proteasomal degradation. UBE2S increased expression in GBM is related to poor prognosis and low sensitivity to chemoradiotherapy [30]. In approximately 40–60% of GBM, the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is mutated [31], where the loss of its function leads to constitutive activation of the PI3K/AKT/mTOR signaling pathway [32]. In GBM, UBE2S binds to several components of the non-homologous end-joining (NHEJ) complex, cooperating in the repair of DNA double-stranded breaks (DSBs) that can be caused by internal metabolites, including reactive oxygen species (ROS) or external factors like ionizing radiation. In vivo experiments reveal that UBE2S knockdown makes GBM tumors more sensitive to etoposide, a DNA damage agent. In consequence, the AKT1/UBE2S/NHEJ axis assists in GBM chemo and radioresistance [30, 33, 34].

Oncological Ubiquitin Ligase Enzymes

SCFσKP2

The first investigation involving UPS in glioma development was described by Piva et al. [35]. In their study, they revealed, using the proteasome inhibitor LLnL, that proteasomal degradation of p27 would be one of the causes of malignant transformation of gliomas. Previously, they showed that p27 levels in astrocytic tumors were reduced, while in GBM, they were almost nil [36]. The G1/S transition of the cell cycle is regulated by p27/KIP1 through inhibition of cyclin D-CDK4 and cyclin A/E-CDK2 [37]; the progression through the cell cycle is promoted by cyclin-dependent kinase (CDK) action.

SKP1, CUL1, and F-box (SCF) complexes are a class of E3 enzymes that ensure the specific recognition and ubiquitination of different substrates through various F-box proteins [38]. S-phase kinase-associated protein 2 (SKP2) is required for G1/S transition by facilitating ubiquitination and subsequent degradation of p27/KIP1 [39]. There is an inverse correlation between p27/KIP1 and SKP2 in a series of astrocytic gliomas: SKP2 expression was absent or greatly reduced...
in well-differentiated astrocytomas, but increased signifi-
cantly in several GBM samples [40]. PTEN has been deter-
determined to increase protein stability of p27/KIP1 by reducing SKP2 levels [41]: there is the possibility that PTEN genetic alter-
ations, which are common in GBM, are responsible for in-
creased and reduced levels of SKP2 and p27/KIP1, respective-
ly [40]. In addition, since SKP2 is overexpressed in several
types of tumors and regulates the proteasomal stabilization/
degradation of relevant proteins in glioma tumorigenesis, such as p21, myelocytomatosis (MYC), or cyclin D1, it could also be considered as a therapeutic target; several SKP2 inhibitors have been developed with beneficial effects in vitro and in vivo [42–45].

CUL3

The Cullin-3 enzyme (CUL3) is part of the Cullin-RING E3 ligase complexes, which, together with the adapter protein KBTBD7, induces the ubiquitination and degradation of neurofibromin in response to growth factors [46]. The neurofibromin tumor suppressor is a known RAS GTPase activating protein (RasGAP) generally mutated in various types of tumors, including GBM [47]. One of the signaling mechanisms frequently altered in different types of human cancer is the RAS pathway, either by mutations of RAS or in genes encoding RasGAPs, a series of negative regulators hydrolyzing RAS-GTP, causing hyperactivation of the pathway [48]. Mitigation of the anticancer activity of neurofibromin could take place not only by genetic mutations but also by proteasomal degradation, as in other tumor suppressors, such as p53 and PTEN [47]. CUL3 knockdown stabilizes neurofibromin, inactivating the RAS pathway and inhibiting GBM cell proliferation [46].

PJA2

Another E3 ligase exerting oncogenic function is Praja2 (PJA2), expressed in multiple tissues and cells, including the brain [49]. In human glioma cells, this enzyme ubiquitin the tumor suppressor Mps one binder 1 (MOB1), a component of large tumor suppressor kinases 1/2 (LATS1/2) involved in the Hippo pathway. The inverse correlation between PJA2 and
MOB1 was also demonstrated in vivo. MOB1 proteasomal degradation and the consequent attenuation of the Hippo signal drive GBM growth. There is a direct correlation between PJA2 expression and glioma aggressiveness, so it could be considered as a prognostic marker [50].

UBE3C

Little is known about substrates and the implications that ubiquitin-protein ligase E3C (UBE3C) action may have on cells. In the particular case of gliomas, UBE3C upregulation was found in glioma tissues compared to surrounding normal tissues; its overexpression promoted invasion and mobility of GBM cells. Additionally, UBE3C could function as a correct prognosis biomarker, since higher levels of UBE3C expression were detected in patients with aggressive clinicopathological characteristics, such as high tumor grade, metastasis, and poor differentiation. Regarding its mechanism of action, UBE3C induces the proteasomal degradation of Annexin A7 [51]; this protein is believed to act as a tumor suppressor in GBM via attenuation of the epidermal growth factor receptor (EGFR) signaling [52].

PARC/CUL9

One of the key events of the intrinsic apoptotic pathway is the permeabilization of the mitochondrial membrane, deriving in the release of pro-apoptotic factors from this organelle, including cytochrome c, which will be assembled in the caspase activating apoptosome [53]. Nevertheless, in glioma cells, a control mechanism for cytochrome c was identified. It was determined that Parkin-like cytoplasmic protein (PARC/CUL9) is an E3 ligase implicated in the ubiquitination and subsequent proteasomal degradation of cytochrome c, a process that does not occur in normal dividing cells. Low levels of APAF-1, the main protein associated with cytochrome c after its release, would be responsible for its degradation [54].

MDM2

The protein p53 is a tumor suppressor that acts as a sensor of cell stress whose activation often initiates apoptosis, cell cycle arrest, and DNA repair [55]. Under normal conditions, p53 protein levels are usually low and controlled by the proteasome, being mouse double minute 2 homolog (MDM2) one of the E3 ligases binding to this protein [56]. In primary GBMs, the inactivation of the p53 pathway is frequent due to MDM2 overexpression. On the other hand, p53 mutations are more common as the histological grade of gliomas increases, suggesting that this protein plays a role in the generation of secondary GBMs [57].

Likewise, the MDM2-p53 interaction is regulated by several mechanisms. For example, positive feedback between p53 and PTEN has been reported, where the latter blocks p53 degradation and this induces PTEN expression [58]. Kim et al. [59] reported that Merlin, a tumor suppressor related to neurofibromatosis-2, stabilizes p53 levels by inducing MDM2 degradation in glioma cells. Additionally, Park et al. [60] identified a complex which dephosphorylates p53 known as GAS41-PP2Cβ, generally amplified in human gliomas [61]; p53 phosphorylation blocks its interaction with MDM2. Other posttranslational modifications inhibiting MDM2-p53 interaction are acetylation, sumoylation, and neddylation [55]. Targeting the MDM2-p53 axis could give us positive results in the search for new therapies: the construction of a mutant p53 protein with substitution of amino acid residues avoiding its ubiquitination inhibited glioma cell proliferation in vitro [62].

TRIM59

One of the mechanisms of EGFR-driven tumorigenicity in gliomas involves the E3 ligase tripartite motif family (TRIM) 59. CDK5 is activated in EGFR signaling, which has been linked to poor prognosis in GBM patients and to in vitro self-renewal of GSCs [63]. CDK5 phosphorylates TRIM59, leading to its nuclear translocation where it will initiate the ubiquitination and degradation of macroH2A1, a tumor-suppressive histone; this eventually results in increased STAT3 signaling and glioma tumorigenicity [64]. TRIM59 also exerts an oncological effect on gliomas through a mechanism not dependent on its E3 ligase activity [65].

Suppressive Ubiquitin Ligase Enzymes

FBXW7

Those responsible for the ubiquitination of proteins through SCF complexes are F-box proteins, which represent the variable component of these complexes. FBXW7 encodes one of the more than 70 F-box proteins identified in humans. Unlike other F-box proteins involved in the ubiquitination of positive and negative regulators of the cell cycle, all known SCF Fbxw7 targets are promoters of cell proliferation [66, 67]. FBXW7 is mutated in different cancer cell lines and human tumors, including gliomas [68]. A known substrate of this anti-tumor ligase is mTOR, whose signaling promotes cell survival, proliferation, and motility [69]. Besides, FBXW7 [70], among other ligases, modulates the proteasomal degradation of MYC, an oncological transcriptional factor generally overexpressed in gliomas [71]. FBXW7 expression is reduced in GBM, and this has been correlated to lower survival in patients. In protein extracts from biopsies of GBM samples, it was found that FBXW7
loss of function resulted in the accumulation of Aurora-A and NOTCH4 [67]. Aurora-A overexpression, a protein required for G2/M transition, causes centrosome amplification and cytokinesis defects that generate abnormal cells with a high probability of undergoing a malignant transformation [72]. Little is known about the role of NOTCH4 in cancer, but it is probably linked to blood vessel formation in tumors [73]. Furthermore, FBXW7 overexpression is involved in proliferation inhibition of glioma cells, while its deletion causes instability in chromosome segregation during mitosis, a process controlled by several SCF\(^{Fbxw7}\) targets, including Aurora-A [80, 81]. Nevertheless, some evidence also indicates that it has oncogenic properties in gliomas [80, 81]; this may depend on the type of cell and the presence of proteins that can interact with it. CHIP induces the ubiquitination and degradation of the oncprotein c-MYC initiated by the deubiquitinase USP28; circ-FBXW7 expression was linked to greater survival in patients.

Parkin

Parkin is an E3 ligase encoded by the PARK2 gene, which is usually mutated in different types of cancer, including gliomas. Parkin activity reduction causes accumulation of cyclin E and D1, producing mitotic disturbances. The induction of Parkin expression, generally low in GBM, generates a blockade of the cell cycle in the G1 phase, decreasing glioma cell proliferation in vitro and in vivo. The expression of this ligase is correlated with greater survival and a lower degree of malignancy in GBM patients [76, 77]. Further, its overexpression in GBM cells mitigated metastasis, cell invasion, and the epithelial-mesenchymal transition (EMT), albeit through a proteasome-independent mechanism [78].

CHIP

A component of the UPS with anticancer activity is the E3 ligase called carboxyl terminus of Hse70-interacting protein (CHIP), which connects substrates of chaperones such as the heat shock protein 90 (HSP90) with the proteasome [79]. Nevertheless, some evidence also indicates that it has oncogenic properties in gliomas [80, 81]; this may depend on the type of cell and the presence of proteins that can interact with it. CHIP induces the ubiquitination and degradation of the oncprotein c-MYC in glioma cells [82]; its knockdown magnifies the metastatic properties of these cells. In different types of tumors, c-MYC is commonly overexpressed, contributing to uncontrolled cell proliferation [83]. In fact, CHIP mRNA levels are lower in GBM compared to normal tissues [82]. Hence, CHIP could be considered as a target for the treatment of tumors where c-MYC has an active role.

In addition, CHIP forms an E3 ligase complex with HSP70 and p42 in glioma cells [84]: the latter is an isoform of the EBP1 protein that has anticancer activity, unlike another isoform of the same protein known as p48, which is oncological [85]. This complex is capable of causing the proteosomal degradation of p85, a subunit of PI3K; excessive activation of the PI3K/AKT signaling pathway is common in several types of cancer [86]. Co-expression of CHIP/HSP70 and p42 decreased p48 levels and markedly inhibited glioma growth in mice [84].

Another known CHIP substrate is EGFR, a transmembrane protein with tyrosine kinase activity frequently overexpressed in GBM [87, 88]. EGFR phosphorylation activates the PI3K/AKT, MAPK, and SRC signaling pathways involved in cell proliferation, metastasis, and survival [89]. However, a negative CHIP regulator known as CSN6 has been identified in GBM, a constitutive photomorphogenesis 9 (COP9) signalosome (CSN) subunit with oncogenic properties [90], whose expression levels are significantly higher in GBM tumors in contrast to normal brain tissues, as well as in glioma cell lines. CSN6 promotes GBM proliferation, migration, invasion, and tumorigenesis through upregulation of EGFR by blocking its ubiquitination; this happens as a result of interactions with CHIP that cause its degradation, although CHIP auto-ubiquitination occurs through an unknown mechanism [91]. Accordingly, the EGFR/CHIP/CSN6 pathway should be explored in more depth if it is desired to use CHIP as a therapeutic approach in GBM.

CBL

It is believed that the RING-type E3 ubiquitin ligase named c-CBL has a role as a tumor suppressor by inducing proteosomal degradation of proteins involved in cell proliferation and migration, such as paxillin, FAK, and EGFR [92]. In addition to EGFR, other tyrosine kinase receptors are usually overexpressed in pediatric high-grade gliomas, including platelet-derived growth factor receptors (PDGFRs) and vascular endothelial growth factor receptor (VEGFR), among others, being targeted by CBL [93–95]. In particular, EGFR gene amplification has been detected in approximately ~40% of gliomas [57], as well as frequent mutations that generate a receptor unable to recruit this ubiquitin ligase [96]: this leads to less receptor internalization and degradation, with the signaling resulting from EGFR dimerization being an aggravating factor in gliomas [45, 97].

Among other substrates of c-CBL is αPix, a guanine nucleotide exchange factor that activates the Rho family and is involved in migration, angiogenesis, and cell propagation. In A172 (human) and C6 (rat) glioma cells, c-CBL is not...
expressed, causing αPix accumulation and consequently promoting cell migration and invasion; this in contrast to other cell lines that do express c-CBL [98]. Nonetheless, other GBM cell lines do not express αPix and remain highly invasive, so other c-CBL/αPix-independent mechanisms operate. These observations would explain why αPix levels are higher in tissues of GBM patients [99], due to the apparent silencing of c-CBL expression.

Future investigations should analyze the mechanisms of silencing or attenuation of the expression of suppressive E3 ligases. Indeed, Seong et al. [100] demonstrated that c-CBL exon skipping occurred in A172 and C6 glioma cells, as well as in brain tissues of GBM patients, generating two isoforms of the protein which were rapidly degraded by the proteasome. Interestingly, the c-CBL exon skipping happens when cells grow in high density or under hypoxic conditions, suggesting that environmental factors activate trans elements catalyzing the exon skipping.

TRIM9

Ubiquitination is generally related to proteasomal degradation, but it is more complex since it regulates several cellular processes: this depends on the length of the ubiquitin chains and the compromised lysine residues. Recently, Liu et al. [101] determined that a short isoform of TRIM9, known as TRIM9s, promotes K63-linked poly-ubiquitination of MAPKK6 (MKK6) at residue Lys82, decreasing the availability of this residue for K48-linked poly-ubiquitination related to proteasomal degradation. MKK6 is known as one of several positive regulators of p38, a member of the mitogen-activated protein kinase (MAPK) family [102]; p38 is generally known as a tumor suppressor by blocking cell proliferation and activating apoptosis [103]. MKK6-p38 signaling plays a critical role in suppressing GBM progression in vitro and in vivo [101].

Interestingly, MKK6-p38 signaling stabilizes TRIM9s by blocking its K48-linked poly-ubiquitination, establishing positive feedback. Unfortunately, levels of TRIM9s are lower in GBM tissues compared to normal tissues. Liu et al. [101] suggest that in normal brain cells TRIM9s stabilizes MKK6 and this, in turn, activates p38 bound to TRIM9s, which phosphorylates preventing its degradation. On the contrary, in GBM cells, the transcriptional downregulation of TRIM9s decreases its protein levels, generating a consequent increase in MKK6 proteasomal degradation, reduction of p38 activation, degradation of the remaining TRIM9 molecules, and ultimately tumor progression.

The question remains about the mechanisms responsible for TRIM9 isoform generation or its low expression in gliomas. In addition, another scale of complexity is added to the UPS and glioma relationship: the intervention of proteins regulating the proteasome activity depending on the type of ubiquitination initiated.

TRIM45

The E3 ligase TRIM45 is another member of the TRIM family functioning as a tumor suppressor. Its expression is reduced in glioma tissues [104] despite being elevated in the healthy adult brain [105]. This ligase inhibits cell proliferation and induces apoptosis in glioma cells as well as decreases tumor growth in vivo. TRIM45 stimulates the K63-linked poly-ubiquitination of p53 in glioma, decreasing its availability for the K48-linked poly-ubiquitination that leads to its degradation [104].

FBXO16

Recently, another UPS element acting as a tumor suppressor was identified. Khan et al. [106] found a member of the FBXO protein family known as FBXO16 interacting with β-catenin, an important element of the Wnt signaling pathway, guiding it toward its proteasomal degradation. This prevents the hyper-activation of the Wnt pathway, which drives the progression of glioma malignancy [107]. FBXO16 expression in gliomas is low, so it would be appropriate to evaluate how this expression is controlled in this type of cancer to eventually use the FBXO16 → β-catenin pathway as a therapeutic route.

Deubiquitinase Enzymes

Similar to E3 ligases, oncogenic and anticancer functions have been reported for deubiquitinase enzymes in gliomas. Among the oncogenic effects of deubiquitinases are the mitigation of tumor suppressors, increased apoptotic resistance, stabilization of oncoproteins, and maintenance of oncogenic transduction signals. Besides the classic effects observed by blocking/activating various elements of UPS, such as modulation of cell proliferation or apoptosis, the evidence shows that deubiquitinases also collaborate in the radio/chemoresistance development, microenvironment modulation, and maintenance of GSC stemness (capacity for self-renewal and multipotentiality) [108]. Other studies reveal deubiquitinase enzymes participating in cell differentiation processes, including EMT (reviewed by Suresh et al. [109]). Table 2 summarizes the expression, mechanisms of action, and effects of deubiquitinases in gliomas.

UPS and Glioma Stem-Like Cells

Cell heterogeneity represents one of the main reasons for a poor response to treatment in gliomas, highlighting the presence of GSCs, a highly tumorigenic and aggressive cell subset with a significant capacity for expansion [3]. The accumulated
Deubiquitinase	Expression and mechanism of action	Effects	References
Tumor-promoter deubiquitinases			
Tumor-promoter deubiquitinases	HAUSP		
- Higher expression in glioma
- Stabilization of MDM2, LSD1, and NANOG |
↓ Survival of patients
↑ Proliferation and invasion
↓ p53 signaling pathway
↑ Stemness of glioma cells | [110–113] |
| OTUB1 | - Overexpression in GBM
- Expression correlated with histological grade
- Stabilization of Snail and Vimentin |
↓ Survival of patients
↑ Migration and EMT | [114] |
| USP1 | - Upregulation in GBM
- Stabilization of ID1, ID2, and CHEK1, regulators of the DNA damage response and stem cell maintenance
- Stabilization of EZH2, a transcriptional repressor of several anticancer proteins |
↑ Survival and growth of GSCs
↑ Radiosensitivity of GBM
↑ Survival of proneural glioma cells
↑ Proliferation of glioma cells | [108, 115, 116] |
| USP3 | - Stabilization of Snail, a transcription factor promoting EMT |
↑ Invasion, migration, and tumor growth
↑ EMT | [117] |
| USP4 | - Stabilization of PCNA, Bcl-2, p-ERK1/2, and regulation of TGF-β |
↑ Proliferation, TMZ resistance, and ERK pathway
↓ p53-dependent apoptosis | [118, 119] |
| USP5 | - In GBM, an aberrant splicing event occurs generating an oncogenic isoform of USP5 |
↑ GBM resistance to TRAIL-induced apoptosis
↑ Wnt/β-catenin signaling pathway
↑ Proliferation and survival
↑ Tumorigenicity and self-renewal of GSCs | [120] |
| USP8 | - Stabilization of the anti-apoptotic protein FLIP |
↑ Wnt/β-catenin signaling pathway
↑ Proliferation and survival
↓ Tumorigenicity and self-renewal of GSCs | [121] |
| USP9X | - Prevents β-catenin degradation, which promotes the expression of c-MYC and cyclin D1
- Stabilization of ALDH1A3 |
↑ GBM resistance to TRAIL-induced apoptosis
↑ Wnt/β-catenin signaling pathway
↑ Proliferation and survival
↓ Tumorigenicity and self-renewal of GSCs | [122, 123] |
| USP10 | - Overexpression in GBM
- Mechanism of action unknown in glioma |
↓ Proliferation, invasiveness, and tumor growth
↓ Self-renewal, tumor-forming capacity, and therapeutic resistance of GSCs
↓ Tumorigenesis and proliferation | [124] |
| USP11 | - Increases expression in glioma samples
- Stabilization of CDK1, CDK2, cyclin B1, BMI1, and KDM1 |
↑ GSC self-renewal and tumorigenic potential
↑ Proliferation, survival, migration, and invasion of glioma cells
↑ Tumorigenesis
↑ Stem cell self-renewal | [125] |
| USP13 | - Stabilization of SMAD7 |
↓ TGF-β signaling
↓ Survival of patients | [140] |
| USP22 | - Overexpression in glioma
- Stabilization of the oncprotein c-MYC |
↓ Survival of patients
↓ Proliferation and tumorigenicity
↓ Proliferation, migration, and invasion
↓ Tumorigenicity and proliferation | [131] |
| USP28 | - Overexpression in glioma
- Stabilization of the oncoprotein c-MYC |
↓ Survival of patients
↑ Tumorigenesis
↑ Proliferation and invasion | [132] |
| **Tumor-suppressor deubiquitinases** | | | |
| USP2a | - Conflicting results
It is overexpressed in glioma tissues, and its levels correlate with an increase of the tumor histological grade. However, it stabilizes the levels of the pro-apoptotic protein Mdm4. |
↑ p53-dependent intrinsic apoptosis in GBM | [135–137] |
| USP11 | - Inhibits the ubiquitination and proteasomal degradation of the protein PML, an essential component of nuclear structures |
↓ Proliferation, invasiveness, and tumor growth
↓ Self-renewal, tumor-forming capacity, and therapeutic resistance of GSCs
↓ Tumorigenesis and proliferation | [138] |
| USP17 | - Downregulation in glioma
- Expression inversely correlated with glioma histological grade
- Reduction of RAS and MYC protein levels |
↓ TGF-β signaling.
↓ Survival of patients | [139] |
| USP26 | - Stabilization of SMAD7 |
↑ TGF-β signaling and tumorigenicity (oncogenic)
↑ Proliferation and invasion (oncogenic)
↓ Wnt signaling (anticancer) | [141–143] |
| **Dual role deubiquitinase** | | | |
| USP15 | - Conflicting evidence
USP15 is amplified or deleted in GBM subgroups
- It has an oncogenic role by deubiquitinating TGF-βR1 through the suppression of the activity of the ligase complex SMURF2.
- It exhibits an anticancer role by stabilizing the ligase HECTD1. |
↑ TGF-β signaling and tumorigenicity (oncogenic)
↑ Proliferation and invasion (oncogenic)
↓ Wnt signaling (anticancer) | [141–143] |
Evidence shows that proteasome inhibitors possess anticancer activity against different types of tumors, including gliomas [144–146]. In the particular case of GSCs, several studies show the pro-apoptotic activity of these inhibitors [147–150].

Low et al. [151] analyzed the effect that knockdown of several E3 ligases would cause on U87MG cells and GSCs phenotype, aiming to identify those compromised in apoptosis resistance, cell cycle progression, and stemness maintenance. Although therapies are usually directed at induction of GSC apoptosis, some therapeutic approaches also seek to mitigate stemness by stimulating cell differentiation. Five ligases associated with apoptosis resistance in U87MG cells (UBE3B, CNOT4, TRIM52, TRIM13, and MARCH9) were identified. On the other hand, NFX1, TRIM41, FBXO21, FBXL20, and FBXO44 ligases are related to cell cycle progression in these differentiated cells. Interestingly, knockdown of several of these ligases did not cause apoptosis in GSCs unlike U87MG cells: in GSCs, knockdown of UBE3E3, TRIM3, TRIM52, and NFX1 ligases generated apoptosis, while deletion of TRIM41, FBXL20, RNF25, and TRIM13 produced the loss of stem cell markers, generating more differentiated phenotypes. According to the authors, it would be convenient to use differentiation therapies together with cytotoxic agents to arrest growth or eliminate cell subpopulations responsible for tumor recurrence. Differences in the activity of UPS proteins when comparing differentiated glioma cells and GSCs suggest that UPS is subjected to dynamic changes during the maintenance of stemness in GSCs and their differentiation process.

Several proteasome inhibitors develop a significantly higher cytotoxic effect on GSCs compared to their differentiated counterparts through an ATF3-dependent apoptotic process [152]. However, some clinical trials using bortezomib, an inhibitor of the chymotrypsin-like proteasome activity, do not show equally positive results and this could be explained by the cytotoxicity conferred to GSCs but not to the bulk tumor, which apparently would not affect the total tumor mass [153, 154]. Indeed, the most differentiated cells are approximately 1000 times more resistant to proteasome inhibitors [152].

UPS Targeting in Glioma

It is not known exactly why cancer cells are more sensitive to proteasome inhibitors compared to normal cells. One possible reason derives from several investigations demonstrating that proteasomal function is more active in tumors, which is important for malignant phenotype maintenance [155]. The disruption of the proteasomal function could lead to an intensification of oncoprotein effects or decrease the availability of tumor suppressors. Different proteasome inhibitors such as lactacystin, N-acetyl-leu-leu-norleucinal, MG132, and proteasome inhibitor II induce apoptosis in glioma cells (Table 3).

In addition to UPS-mediated protein degradation in eukaryotic cells, degradation of intracellular and extracellular proteins also takes place through autophagy [188]. Ge et al. [189] demonstrated that MG132 induced autophagy in glioma cells, blocking cell proliferation and activating apoptosis. What is interesting is that co-treatment of these cells with MG132 and 3-MA, an autophagy inhibitor, led to increased cell death. These observations open the possibility of considering autophagy inhibitors as therapeutic tools together with proteasome inhibitors. Nonetheless, the dual role of autophagy in cancer has also been manifested in gliomas, as it has been shown to disturb proliferation and tumorigenicity [190, 191] or to promote survival of cancer cells in stressful situations [192, 193].

Bortezomib is a drug approved by the Food and Drug Administration and European Medicine Agency for multiple myeloma treatment, validating the UPS as a therapeutic anticancer target [194]. Various mechanisms of action causing cell cycle arrest and apoptosis in GBM have been described for bortezomib [148, 156–158]. This inhibitor is also capable of exerting a synergistic antglioma effect in combination with autophagy suppressants [195, 196]. Likewise, the inhibition of anti-apoptotic proteins, usually overexpressed in brain tumors and causing resistance to treatments [197], makes glioma cells more sensitive to the pro-apoptotic effect of bortezomib [198]. Furthermore, bortezomib downregulates MGMT levels by inhibiting NFκB activation [159, 199]; this protein has a central role in TMZ resistance [200]. Besides, NFκB is constitutively activated in GBM, boosting migration, invasion, and resistance to chemotherapy [201]; the InBrα gene is often deleted in tumor samples from GBM patients [202].

In addition to the classic proteasome inhibitors, different studies over the years have revealed the presence of several synthetic and natural compounds exhibiting anticancer effects in gliomas through UPS targeting. Among the synthetic compounds are different drugs used in the treatment of other diseases, such as saquinavir (HIV), troglitazone (diabetes), and disulfiram (alcoholism), isopeptidase inhibitors (G5), and γ-secretase suppressors (LLNle). The natural compounds cover a wide range of products derived from bacteria (geldanamycin), animals (bufalin), and plants (thymoquinone, hypericin, paeoniflorin, sophoridine, curcumin, and obtusaquinone) with anti-glioma activity. Unfortunately, only four of the compounds listed in Table 3 (bortezomib, disulfiram, hypericin, and curcumin) have been tested in clinical trials, and none have yet entered clinical phase III; their efficacy is relatively limited, which is why the development of analogs with greater ease of penetration into the BBB and less toxicity is urgently needed.
Table 3 Compounds with anti-glioma activity through UPS targeting

Compound	Mechanism of action/effect	References
Classic proteasome inhibitors	-Activation of the extrinsic and intrinsic apoptotic pathway in glioma cells by suppressing proteasomal degradation of c-MYC, caspase 3, and 8	[144–146]
Lactacystin	-Promotes/reduces the expression of proteins related to cell cycle arrest/progression and pro-apoptotic/anti-apoptotic activity	[148, 156–159]
N-acetyl-leu-leu-norleucinal MG132	-Exerts a synergistic pro-apoptotic effect with TRAIL -JNK signaling activation -Downregulation of MGMT	
Bortezomib	-Promotes/reduces the expression of proteins related to cell cycle arrest/progression and pro-apoptotic/anti-apoptotic activity	[148, 156–159]
Synthetic compounds	-Inhibits 20S and 26S proteasomes	[160, 161]
Saquinavir	-Sensitizes different GBM cell lines to TRAIL-induced apoptosis via FLIP proteasomal degradation	[162]
Troglitazone	-Inhibition of GSCs proliferation and reduction of glioma development in vivo -Disulfiram-Cu complexes suppress proteasome activity and initiate apoptosis in GSCs -Blocks P-glycoprotein extrusion pump activity involved in drug resistance -Promotes changes in the MGMT Cys45 residue, causing its degradation through UPS -The combination of DSF/Cu and TMZ is well tolerated but has limited activity in some patients.	[163–168]
Disulfiram	-Inhibits isopeptidases -Stimulates necrosis processes in glioma cells resistant to apoptosis	[169]
G5	-Proteasome inhibition -Reduction/elevation of genes required for cell cycle progression/suppression -Blocks cell cycle and activates apoptosis in GSCs -Targeting of the NOTCH oncogenic pathway	[170]
LLNle	-Inhibits isopeptidases -Stimulates necrosis processes in glioma cells resistant to apoptosis	[169]
Natural compounds	-Disruption of HSP90 activity, initiating the ubiquitination and subsequent degradation of proteins interacting with it, including CHK1, CDC2, and cyclin B1. This results in cell cycle arrest, apoptosis onset, and alterations in DNA damage control processes.	[171, 172]
Geldanamycin	-Blocks cell proliferation and initiates apoptosis in GBM cells through proteasomal degradation of ATP1A1 -Mitigates tumor growth in vivo	[173, 174]
Bufalin	-Proteasome inhibition and accumulation of the pro-apoptotic proteins p53 and BAX	[175]
Thymoquinone	-Stimulates HSP90 proteasomal degradation, causing subsequent lysosomal degradation of HIF-1α (stress-response protein) -Causes a reduction in tumor volume and increases survival in GBM patients through the promotion of STAT3 and TLR4 proteasomal degradation	[176, 177]
Hypericin	-Inhibits proliferation, activates apoptosis, and suppresses tumor growth in vitro and in vivo through the promotion of STAT3 and TLR4 proteasomal degradation	[178, 179]
Paeoniflorin	-Proteasome inhibition, causing significant elevation of ROS levels -Facilitates cell cycle arrest and apoptosis -Inactivates NF-κB	[180]
Sophoridine	-Synergistic anti-glioma activity in combination with TMZ -Sensitizes GBM cells to TMZ by inducing proteasomal degradation of Connexin 43 -The administration of micellar curcuminoids allowed the concentration of significant amounts of Curcumin in GBM patients	[181, 182]
Obtusaquinone	-Activates apoptosis in GBM cell lines and GSCs in vitro and in vivo -Binds to KEAP1 and reacts with its cysteine residues, inducing its proteasomal degradation	[183–187]

Remarks

Although clinical trials show that proteasome inhibitors are not significantly efficient in treating gliomas, second-generation proteasome inhibitors have been produced with better pharmacokinetic properties [203, 204]. It is hoped that in the future these new inhibitors will generate better results in the treatment of gliomas and other diseases, such as the case of the proteasome inhibitor marizomib [205]. However, the inhibition of the
proteasome would cause a non-selective blockage of the degradation of all proteins subjected to this process. Therefore, future therapeutic strategies in the context of UPS-glioma should focus on going as downstream as possible, such as targeting E3 enzymes.

Based on this suggestion, the aforementioned study carried out by Low et al. [151] shows different E3 ligases that could be considered as potential therapeutic targets in gliomas. Note that these ligases were not described in any of the previously mentioned E3 ligases (oncological or suppressive), which demonstrates that the participation of UPS elements in gliomas is much more complex than disclosed. The information available on the relationship between UPS and glioma, although abundant, remains incomplete. More studies are needed aiming to identify cellular elements that regulate or are being regulated by UPS, involved in some way in the development or suppression of gliomas: several elements of the UPS exhibiting oncogenic or suppressive activities have not yet been evaluated in brain tumors. In this regard, Vlachostergios et al. [206] compile a set of proteins participating in motility and invasion of tumors, including gliomas, whose regulation would be determined through UPS, presenting a group of potential targets many of which are overexpressed.

Additionally, it is pertinent to suggest for future studies that these should focus not only on cell and biochemical variations occurring in cancer cells but also on the tumor microenvironment. The glioma microenvironment is composed of different types of non-cancerous cells, an extracellular matrix, and unique cell subtypes (astrocytes, microglia, and neurons), which give properties that distinguish the brain from the rest of the body. For example, the evidence indicates that through different mechanisms macrophages, regulatory T lymphocytes, and neurons contribute to glioma progression, while dendritic cells and effector T lymphocytes initiate antitumor activities (reviewed by Quail and Joyce [207]). An intriguing topic for further study might be how the UPS could influence the tumor microenvironment modulation and what its putative effect would be in gliomas.

Future Perspectives: PROTAC

The use of drugs in therapies has certain limitations, such as the development of resistance, unwanted side effects, and/or their inefficiency in targeting proteins that lack enzymatic activity, for instance, proteins that function through protein interactions or scaffolding proteins. Proteolysis targeting chimeras (PROTACS) are a new and useful tool for drug design in which target protein levels are regulated by proteasomal degradation. PROTACs have two ligands, connected through a linker, bound to a protein of interest and an E3 ligase: this way a ternary complex (PROTAC, the protein of interest, and E3 ligase) is assembled, inducing ubiquitination and proteasomal degradation of target proteins [208]. There is even a variant formed by two ligands for ligases known as Homo-PROTAC, which allows the self-degradation of E3 ligases after dimerization. This variant is very useful considering these types of enzymes have multiple domains and lack an active site, so their activities are not usually easy to suppress using conventional inhibitors [209].

The selectivity of PROTAC-linked drugs is superior [210], enabling the targeting of mutated proteins that often cannot be targeted by drugs alone [211], being useful in the context of drug resistance evasion in diseases. However, it is necessary to continue improving properties related to bioavailability, tissue distribution, toxicity, pharmacokinetics, and molecular weight of PROTACs [212], as well as the development of more stable ternary complexes [210].

In diseases like cancer, the PROTAC tool has been used for selective degradation of proteins, including kinases, transcription factors, or nuclear receptors, obtaining promising results in breast, lung, colon, lymphoma, prostate, myeloma, and leukemia, among other types of cancer [213–218]. Besides, PROTAC is effective in tumor growth inhibition in vivo [216, 218–221], being able to reduce the proliferation or initiate apoptosis in cancer cells with a lower IC$_{50}$ when contrasted to unconjugated drugs [216, 222]. PROTAC has not yet been used in GBM, but the results obtained in other types of cancer suggest that it could be useful in this type of tumor. The big question remains how effective would be the passage of PROTACs through the BBB. This review could work as a starting point in choosing target proteins and ligases for PROTAC design in gliomas; moreover, it presents a set of oncogenic ligases that could be used in studies employing Homo-PROTACs. This suggestion would represent a radical change in the way the UPS and glioma relationship is treated because instead of inhibiting the UPS to treat this type of tumor we would be taking advantage of it for selective degradation.

Conclusions

Genetic or protein alterations in elements of the UPS or molecules regulating them cause accumulation of oncoproteins or degradation of tumor suppressors. This review covers those studies describing the complex relationship between UPS and glioma. This type of research is necessary as it allows the establishment of the basis for the creation of new treatments that are increasingly selective, efficient, and less toxic. Although in myeloma the use of bortezomib has been very beneficial, in gliomas the administration of classic proteasome inhibitors has certain limitations; nevertheless, these compounds could be useful for adjuvant or combined therapy. However, the different reports in which classic proteasome inhibitors, synthetic, and natural compounds were used for
UPS targeting have undoubtedly shown the great potential of the proteasomal degradation route in glioma regulation. This is why other approaches such as targeting more specific proteins (E3 ligases) or using PROTACs could be implemented.

Author Contribution The named author was the only person involved in the development of this review.

Data Availability Not applicable.

Declarations

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflict of Interest The author declares no competing interests.

References

1. Johnson DR, Ma DJ, Buckner JC, Hammack JE (2012) Conditional probability of long-term survival in glioblastoma. *Cancer 118*(22):5608–5613
2. Capper D (2012) Addressing diffuse glioma as a systemic brain disease with single-cell analysis. *Arch Neuro 69*(4):523
3. Holland EC (2001) Progenitor cells and glioma formation. *Curr Opin Cell Biol 14*(6):683–688
4. Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. *Science 321*(5897):1807–1812
5. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRα, IDH1, EGFR, and NF1. *Cancer Cell 17*(1):98–110
6. Segerman A, Niklasson M, Haglund C, Bergström T, Jarvius M, Xie Y et al (2016) Clonal variation in drug and radiation response among glioma-initiating cells is linked to proneural-mesenchymal transition. *Cell Rep 17*(11):2994–3009
7. Paolillo M, Boselli C, Schinelli S (2018) Glioblastoma under siege: an overview of current therapeutic strategies. *Brain Sci 8*(1):15
8. Bovenberg MSS, Degeling MH, Tannous BA (2013) Cell-based immunotherapy against gliomas: from bench to bedside. *Mol Ther 21*(7):1297–1305
9. Roos WP, Batista LFZ, Naumann SC, Wick W, Weller M, Menck CFM, Kaina B (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. *Oncogene 26*(2):186–197
10. Wang X, Huang X, Yang Z, Gallego-Perez D, Ma J, Zhao X et al (2014) Targeted delivery of tumor suppressor microRNA-1 by transferrin-conjugated lipopolyplex nanoparticles to patient-derived glioblastoma stem cells. *Curr Pharm Biotechnol 15*(9):839–846
11. Gan HK, van den Bent M, Lassman AB, Reardon DA, Scott AM (2017) Antibody–drug conjugates in glioblastoma therapy: the right drugs to the right cells. *Nat Rev Clin Oncol 14*(11):695–707
12. Kaufmann JK, Chiocca EA (2014) Glioma virus therapies between bench and bedside. *Neuro-Oncology 16*(3):334–351
13. Teng J, Hejazi S, Hidding L, Carvalho L, de Gooijer MC, Wakimoto H et al (2018) Recycling drug screen repurposes hydroxyurea as a sensitizer of glioblastomas to temozolomide targeting de novo DNA synthesis, irrespective of molecular subtype. *Neuro-Oncology 20*(5):642–654
14. Zheng N, Shabek N (2017) Ubiquitin ligases: structure, function, and regulation. *Annu Rev Biochem 86*:129–157
15. Hershko A, Ciechanover A, Varshavsky A (2000) The ubiquitin system. *Nat Med 6*(10):1073–1081
16. Komander D, Rape M (2012) The ubiquitin code. *Nat Rev Mol Cell Biol 13*(1):15–25
17. Kudriaeva AA, Belogurov AA (2019) Proteasome: a nanomachinery of creative destruction. *Biochem Molec 84*(S1):159–192
18. Jang HH (2018) Regulation of protein degradation by proteasomes in cancer. *J Cancer Prevent 23*(4):153–161
19. Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, Avni N, Ciechanover A (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. *Cell Res 26*(8):869–885
20. Yi JJ, Ehlers MD (2007) Emerging roles for ubiquitin and protein degradation in neuronal function. *Pharmacol Rev 59*(1):14–39
21. Lehman NL (2009) Ubiquitin proteasome system in neuropa-thology. *Acta Neuropathol 118*(3):329–347
22. Mansour MA (2018) Ubiquitination: friend and foe in cancer. *Int J Biochem Cell Biol 101*:80–93
23. Thaker NG, Zhang F, McDonald PR, Shun TY, Lewen MD, Pollack IF, Lazo JS (2009) Identification of survival genes in human glioblastoma cells by small interfering RNA screening. *Mol Pharmacol 76*(6):1246–1255
24. Wagner KW, Sapinsoo LM, El-Rifai W, Frierson HF, Butz N, Mestan J et al (2004) Overexpression, genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. *Oncogene 23*(39):6621–6629
25. Donato G, Iofrida G, Lavano A, Volpentesta G, Signorelli F, Pallante P et al (2008) Analysis of UbcH10 expression represents a useful tool for the diagnosis and therapy of astrocytic tumors. *Clin Neuropathol 27*(07):219–223
26. Jiang L, Huang C-G, Lu Y-C, Luo C, Hu G-H, Liu H-M et al (2008) Expression of ubiquitin-conjugating enzyme E2C/UbcH10 in astrocytic tumors. *Brain Res 1201*:161–166
27. Ma R, Kang X, Zhang G, Fang F, Du Y, Lv H (2016) High expression of UBE2C associates with the aggressive progression and poor outcome of malignant glioma. *Oncol Lett 11*(3):2300–2304
28. Alafate W, Zuo J, Deng Z, Guo X, Wu W, Zhang W et al (2019) Combined elevation of AURKB and UBE2C predicts severe outcomes and therapy resistance in glioma. *Pathol Res Pract 215*(10):152557
29. Jiang L, Bao Y, Luo C, Hu G, Huang C, Ding X et al (2010) Knockdown of ubiquitin-conjugating enzyme E2C/UbcH10 expression by RNA interference inhibits glioma cell proliferation and enhances cell apoptosis in vitro. *J Cancer Res Clin Oncol 136*(2):211–217
30. Hu L, Li X, Liu Q, Xu J, Ge H, Wang Z et al (2017) UBE2S, a novel substrate of Akt1, associates with Ki67 and regulates DNA repair and glioblastoma multiforme resistance to chemotherapy. *Oncogene 36*(8):1145–1156
31. Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N et al (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. *JNCI J Nat Cancer Inst 93*(16):1246–1256
32. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. *Nat Rev Cancer 2*(7):489–501
33. Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A (2007) Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling...
impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem 282(29):21206–21212
34. Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF, Valerie K (2009) Pro-survival AKT and ERK signaling from EGFR and mutant EGFRVIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther 8(9):730–738
35. Piva R, Cancell I, Cavalla P, Bortolotto S, Dominguez J, Druetta GF, Schiffer D (1999) Proteasome-dependent degradation of p27kip1 in gliomas. J Neuropath Exp Neurol 58(7):691–696
36. Piva R, Cavalla P, Bortolotto S, Cordera S, Richardi P, Schiffer D (1997) p27kip1 expression in human astrocytic gliomas. Neurosci Lett 234(2–3):127–130
37. Soos TJ, Kiyokawa H, Yan JS, Rubin MS, Giordano A, DeBlasio R et al (1996) Formation of p27/CDK complexes during the human mitotic cell cycle. Cell Growth Differ 7(2):135–146
38. Kipreos, E. T., & Pagano, M. (2000). The F-box protein family. Genes Dev 14(15), REVIEWS3002.
39. Ganoth D, Borstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A (2001) The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 3(3):321–324
40. Schiffer D, Cavalla P, Fiano V, Ghimenti C, Piva R (2002) Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas. Immunohistochemistry and Western blot. Neurosci Lett 328(2):125–128
41. Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang H, Sun H (2001) PTEN regulates the ubiquitin-dependent degradation of the cell-cycle regulatory protein Cks1. J Biol Chem 276(39):35524–35530
42. Hede S-M, Savov V, Weishaupt H, Sangfelt O, Swartling FJ (2001) p27kip1 expression in human astrocytic gliomas. J Neuropath Exp Neurol 58(5):491–498
43. Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ (2012) Proteolysis of MOB1 by the ubiquitin ligase Praja2 restricts cancer stem cell traits and cancer progression. J Cell Biol 199(3):415–427
44. Chan C-H, Morrow JK, Li C-F, Gao Y, Jin G, Moten A et al (2013) Pharmacological inactivation of Skp2 SF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154(3):555–568
45. Hede S-M, Savov V, Weishaupt H, Sangfelt O, Swartling F (2002) p27kip1 expression in human astrocytic gliomas. J Neuropath Exp Neurol 58(5):491–498
46. Hollstein PE, Cichowski K (2013) Identifying the ubiquitin ligase complex that regulates the NF1 tumor suppressor and Ras. Cancer Discov 3(6):880–893
47. Mc Gillicuddy LT, Fromm JA, Hollstein PE, Kubek S, Beroukhim R, De Raedt T et al (2009) Proteasomal and genetic inactivation of the F11 tumor suppressor in gliomagenesis. Cancer Cell 16(3):479–489
48. Bernard A (2003) GAPS galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta (BBA) - Rev Cancer 1603(2):47–82
49. Yu P, Chen Y, Tagle DA, Cai T (2002) PJA1, encoding a RINGH2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain. Genomics 79(6):869–874
50. Lignitto L, Arcella A, Sepe M, Rinaldi L, Delle Donne R, Gallo A et al (2013) Proteolysis of MOB1 by the ubiquitin ligase Prja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun 4(1):1822
51. Pan S-J, Zhan S-K, Ji W-Z, Pan Y-X, Liu W, Li D-Y et al (2015) Ubiquitin-protein ligase E3C promotes glioma progression by mediating the ubiquitination and degradation of Annexin A7. Sci Rep 5(1):11066
52. Bredel M, Scholtens DM, Harsh GR, Bredel C, Chandler JP, Renfrow J et al (2009) A network model of a cooperative genetic landscape in brain tumors. JAMA 302(3):261–262
53. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632
54. Gama, V., Swahari, V., Schafer, J., Kole, A. J., Evans, A., Huang, Y., et al. (2014). The E3 ligase PARC mediates the degradation of cytosolic cytochrome c to promote survival in neurons and cancer cells. Science Signaling, 7(334), r67–r67.
55. Kruse J-P, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622
56. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299
57. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Ann J Pathol 170(5):1445–1453
58. Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27(9):462–467
59. Kim H, Kwak N-J, Lee JY, Choi BH, Lim Y, Ko YJ et al (2004) Merlin neutralizes the inhibitory effect of Mdm2 on p53. J Biol Chem 279(9):7812–7818
60. Park JH, Smith R, Shich S-Y, Roeder RG (2011) The GAS41-PP2CB complex dephosphorylates p53 at serine 366 and regulates its stability. J Biol Chem 286(13):10911–10917
61. Fischer U, Heckel D, Michel A, Janka M, Hulsebos T, Meese E (1997) Cloning of a novel transcription factor-like gene amplified in human glioma including astrocytoma grade I. Hum Mol Genet 6(11):1817–1822
62. Michieue H, Tomizawa K, Matsushita M, Tamiya T, Lu Y-F, Ichikawa T et al (2005) Ubiquitination-resistant p53 protein transduction therapy facilitates anti-cancer effect on the growth of human malignant glioma cells. FEBS Lett 579(18):3965–3969
63. Mukherjee S, Tucker-Burden C, Kaisii E, Newsam A, Duggiredy H, Chau M et al (2018) CDK5 inhibition resolves PKa-eAMP-independent activation of CREB1 signaling in glioma stem cells. Cell Rep 23(6):1651–1664
64. Sang Y, Li Y, Zhang Y, Alvarez AA, Yu B, Zhang W et al (2019) CDK5-dependent phosphorylation and nuclear translocation of TRIM59 promotes macroH2A1 ubiquitination and tumorigenicty. Nat Commun 10(1):4013
65. Sang Y, Li Y, Song L, Alvarez AA, Zhang W, Lv D et al (2018) TRIM59 promotes gliomagenesis by inhibiting TC45 dephosphorylation of STAT3. Cancer Res 78(7):1792–1804
66. Jin J (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18(21):2573–2580
67. Hagedorn M, Delugin M, Abrakles I, Allain N, Belaud-Rotureau MA, Turmo M et al (2007) FBXW7/hCDC4 controls glioma cell proliferation in vitro and is a prognostic marker for survival in glioblastoma patients. Cell Div 2:9
68. Mackay A, Burbad A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al (2017) Integrated molecular meta-analysis of 1,589 glioblastoma patients. Cancer Discov 7(10):1502–1517
69. Mao J-H, Kim I-J, Wu D, Climent J, Kang HC, DelRosario R, Bagley GE, Schülein C, Jaenicke LA, Eilers M (2010) TRIM59 promotes macroH2A1 ubiquitination and tumorigenicty. Nat Commun 10(1):4013
70. Popov N, Schülein C, Jaenicke LA, Eilers M (2010) TRIM59 promotes macroH2A1 ubiquitination and tumorigenicty. Nat Commun 10(1):4013
71. Bjerke L, Mackay A, Nandhabalan M, Burbad A, Jury A, Popov S et al (2013) Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3(5):512–519

Springer
72. Giet R, Petretti C, Prigent C (2005) Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 15(5): 241–250
73. Hainaud P, Conterres J-O, Villemain A, Liu L-X, Plouët J, ToBelem G, Dupuy E (2006) The role of the vascular endothelial growth factor–delta-like 4 ligand/Notch4-Ephrin B2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res 66(17):8501–8510
74. Lin J, Ji A, Qiu G, Feng H, Li J, Li S et al (2018) FBW7 is associated with prognosis, inhibits malignancies and enhances temozolomide sensitivity in glioblastoma cells. Cancer Sci 109(4):1001–1011
75. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F et al (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. JNCI: J Nat Cancer Inst 110(3):304–315
76. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I et al (2015) J NCI: J Nat Cancer Inst 110(3):304–315
77. Shindo H, Tani E, Matsumoto T, Hashimoto T, Furuyama J (2018) FBW7 is controls the proliferation and metastasis of glioblastoma by CHIP-mediated degradation of EGFR. Oncogene 36(8):1134–1144
78. Schmidt MHH, Dikici I (2005) The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6(12):907–919
79. Peschard P, Park M (2003) Escape from Cbl-mediated downregulation. Cancer Cell 3(6):519–523
80. Liang M-L, Ma J, Ho M, Solomon L, Bouflet E, Rutka JT, Hawkins C (2008) Tyrosine kinase expression in pediatric high grade astrocytoma. J Neuro-Oncol 87(3):247–253
81. Ko HR, Kim CK, Lee SB, Song J, Lee K-H, Kim KK et al (2014) Heregulin regulates the ability of ElK-1 and AP-1. Cell Rep 23(6):e2831–e2831
82. Zhang J, Zhang C, Cui J, Ou J, Han J, Qin Y et al (2017) TRIM45, a ubiquitin ligase CHIMP(miR-92b) regulatory network contributes to tumorigenesis of glioblastoma. Am J Cancer Res 7(2): 289–300
83. Zhang Y, Hamburger AW (2004) Heresignal regulates the ability of the ErbB3-binding Protein Ebp1 to bind E2F promoter elements and repress E2F-mediated transcription. J Biol Chem 279(25):26126–26133
84. Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30(4):194–204
85. McLendon R, Friedman A, Bigner D, Van Meir EG, Brut DJ, Mastrogeannakis GM et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068
86. Riddick G, Fine HA (2011) Integration and analysis of genome-scale data from gliomas. Nat Rev Neurol 7(8):439–450
87. Yarden Y, Sliskovskiy MX (2001) Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2(2):127–137
88. Fang L, Lu W, Choi HH, Yeung S-CJ, Tunq J-Y, Hsiao C-D et al (2015) ERK2-dependent phosphorylation of CSN6 Is critical in colorectal cancer development. Cancer Cell 28(2):183–197
89. Hou J, Deng Q, Zhou J, Zou J, Zhang Y, Tan P et al (2017) CSN6 controls the proliferation and metastasis of glioblastoma by CHIP-mediated degradation of EGFR. Oncogene 36(8):1134–1144
90. Schmidt MHH, Dikici I (2005) The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6(12):907–919
91. Riddick G, Fine HA (2011) Integration and analysis of genome-scale data from gliomas. Nat Rev Neurol 7(8):439–450
92. Liang M-L, Ma J, Ho M, Solomon L, Bouflet E, Rutka JT, Hawkins C (2008) Tyrosine kinase expression in pediatric high grade astrocytoma. J Neuro-Oncol 87(3):247–253
93. Schmidt MHH, Furnari FB, Cavenee WK, Bogler O (2003) Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci 100(11):6505–6510
94. Seong MW, Park JH, Yoo HM, Yang SW, Oh KH, Ka SH et al (2014) c-Cbl regulates α-Pix-mediated cell migration and invasion. Biochem Biophys Res Commun 455(3-4):153–158
95. Yokota T, Kouno J, Adachi K, Takahashi H, Teramoto A, Matsuomo K et al (2006) Identification of histological markers for malignant glioma by genome-wide expression analysis: dynein, α-PIX and sorcin. Acta Neuropathol 111(1):29–38
96. Seong MW, Ka SH, Park JH, Park JH, Yoo HM, Yang SW et al (2015) Deletious c-Cbl exon skipping contributes to human glioma. Neoplasia 17(6):518–524
97. Liu K, Zhang C, Li B, Xie W, Zhang J, Nie X et al (2018) Mutual stabilization between TRIM9 short isoform and MKK6 potentiates p38 signaling to synergistically suppress glioblastoma progression. Cell Rep 23(3):838–851
98. Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12(1):1–13
99. Han J, Sun P (2007) The pathways to tumor suppression via route p38. Trends Biochem Sci 32(8):364–371
100. Zhang J, Zhang C, Cui J, Ou J, Han J, Qin Y et al (2017) TRIM45 functions as a tumor suppressor in the brain via its E3 ligase activity by stabilizing p53 through K63-linked ubiquitination. Cell Death Dis 8(5):e2831–e2831
101. Wang Y, Li Y, Qi X, Yuan W, Ai J, Zhu C et al (2004) TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of Elk-1 and AP-1. Biochem Biophys Res Commun 323(1): 9–16
102. Khan M, Muzumdar D, Shiras A (2019) Attenuation of tumor suppressive function of FBXO16 ubiquitin ligase activates Wnt signaling in glioblastoma. Neoplasia 21(1):106–116
103. Wu G, Xu G, Schumman BA, Jeffery PD, Harper JW, Pavletich NP (2003) Structure of a β-TrCP1-Skp1-β-catenin complex. Mol Cell 11(6):1445–1456
104. Cheng C, Niu C, Yang Y, Wang Y, Lu M (2013) Expression of HAUSP in gliomas correlates with disease progression and survival of patients. Oncol Rep 29(5):1730–1736
111. Bhattacharya S, Ghosh MK (2014) HAUSP, a novel deubiquitinas e for Rb - MDM2 the critical regulator. FEBS J 28(13):3061–3078

112. Li, Cui Y, Xu Q, Jiang Y (2016) Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumori genesis and metastasis through suppression of the p53 signaling pathway. Oncol Rep 36(5):2935–2945

113. Cheng C, Dong Y, Niu W, Niu C (2020) HAUSP promoted the growth of glioma cells in vitro and in vivo via stabilizing NANO G. Pathol Res Pract 216(4):152883

114. Xu L, Li J, Bao Z, Xu P, Chang H, Wu J et al (2017) Silencing of OT U1 inhibits migration of human glioma cells in vitro. Neuropathology 37(3):217–226

115. Rahme GJ, Zhang Z, Young AL, Cheng C, Bivona EJ, Fiering SN et al (2014) Ubiquitin-specific protease 22 promotes glioma malignancy through deubiquitinating B cell-specific Moloney murine leukemia virus integration site 1 for stabilization. Cancer Sci 105(7):2199–2210

116. Panner A, Crane CA, Weng C, Feletti A, Fang S, Parsa AT, Pieper JC (2012) USP26 regulates TGF-β signal transduction in glioblastoma. Oncol Lett 129(4):1251–1257

117. Qin N, Han F, Li L, Ge Y, Lin W, Wang J et al (2018) Deubiquitinating enzyme 4 facilitates chemoresistance in glioblastoma by inhibiting P53 activity. Oncol Lett 17(1):958–964

118. Zhou Y, Liang J, Zhang X, Xie S, Zhou X, Shi Q, Hu J et al (2016) Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol 18(9):954–966

119. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J et al (2016) Deubiquitinating enzyme USP48 aids glioblastoma tumorigenesis by stabilizing Glil. EMBO Rep 18(8):1318–1330

120. Tao B-B, He H, Shi X, Wang C, Li W, Li B et al (2013) Overregulation of USP2a and FASN in gliomas correlates strongly with glioma grade. J Clin Neurosci 20(5):717–720

121. Tao B-B, He H, Shi X, Wang C, Li W, Li B et al (2013) Up-regulation of USP2a and FASN in gliomas correlates strongly with glioma grade. J Clin Neurosci 20(5):717–720

122. Wang C-L, Wang J-Y, Liu Z-Y, Ma X-M, Wang X-W, Jin H et al (2014) Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 35(7):1500–1509

123. Zhou A, Lin K, Zhang S, Ma L, Xue J, Morris S et al (2017) Glil-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Glil. Oncotarget 8(35):58231–58246

124. Wang Z, Song Q, Xue J, Zhao Y, Qin S (2016) Ubiquitin-specific protease 28 is overexpressed in human glioblastomas and contributes to glioma tumorigenicity by regulating MYC expression. Exp Biol Med 241(3):255–264

125. Ding K, Ji J, Zhang X, Huang B, Chen A, Zhang D et al (2019) RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene 38(7):6414–6428

126. Qin N, Han F, Li L, Ge Y, Lin W, Wang J et al (2018) Deubiquitinating enzyme 4 facilitates chemoresistance in glioblastoma by inhibiting P53 activity. Oncol Lett 17(1):958–964

127. Fan L, Chen Z, Wu X, Cai X, Feng S, Lu J et al (2019) Ubiquitin-specific protease 3 promotes glioblastoma cell invasion and epithelial–mesenchymal transition via stabilizing Snail. Mol Cancer Res 17(10):1975–1984

128. Zhang Z, Young AL, Cheng C, Bivona EJ, Fiering SN et al (2014) Ubiquitin-specific protease 22 promotes glioma malignancy through deubiquitinating B cell-specific Moloney murine leukemia virus integration site 1 for stabilization. Cancer Sci 105(7):2199–2210

129. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J et al (2016) Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol 18(9):954–966

130. Qiu G-Z, Mao X-Y, Ma Y, Gao X-C, Wang Z, Jin M-Z et al (2018) Ubiquitin-specific protease 22 acts as an oncoprotein to maintain glioma malignancy through deubiquitinating B cell-specific Moloney murine leukemia virus integration site 1 for stabilization. Cancer Sci 109(7):2199–2210

131. Wang Z, Song Q, Xue J, Zhao Y, Qin S (2016) Ubiquitin-specific protease 28 is overexpressed in human glioblastomas and contributes to glioma tumorigenicity by regulating MYC expression. Exp Biol Med 241(3):255–264

132. Ding K, Ji J, Zhang X, Huang B, Chen A, Zhang D et al (2019) RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene 38(7):6414–6428

133. Zhao A, Lin K, Zhang S, Ma L, Xue J, Morris S et al (2017) Glil-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Glil. Oncotarget 8(35):58231–58246

134. Wu H-C, Lin Y-C, Liu C-H, Chung H-C, Wang Y-T, Lin Y-W et al (2014) USP11 regulates PML stability to control Notch-induced malignancy in brain tumours. Nat Commun 5(1):3214

135. Hu M, Chen H, Han C, Lan J, Xue Y, Li C et al (2016) Expression and functional implications of USP17 in glioma. Neurosci Lett 616(12):131–135

136. Kit Leng Lui S, Iyengar PV, Jaynes P, Isa ZFBA, Pang B, Tan TZ, Eichhorn PJA (2017) USP26 regulates TGF-β signalling in glioblastoma. EMBO Rep 18(5):797–808

137. Eichhorn PJA, Rodón L, Gonzàlez-Juncà A, Dirac A, Gili M, Eichhorn PJA (2017) USP26 regulates TGF-β signalling in glioblastoma. EMBO Rep 18(5):797–808

138. Eichhorn PJA, Rodón L, Gonzàlez-Juncà A, Dirac A, Gili M, Martinez-Sáez E et al (2012) USP15 stabilizes TGF-β receptor I and promotes oncosenescence through the activation of TGF-β signalling in glioblastoma. Nat Med 18(3):429–435

139. Oikonomaki M, Bady P, Hegi ME (2017) Ubiquitin Specific Peptidase 15 (USP15) suppresses glioblastoma cell growth via stabilization of HECTD1 E3 ligase attenuating Wnt pathway activity. Oncotarget 8(66):110490–110502

140. Xu K, Pei H, Zhang Z, Wang H, Li L, Xie Q (2018) Ubiquitin-specific protease 15 promotes tumor cell invasion and proliferation in glioblastoma. Oncol Lett 15(3):3846–3851

141. Tani E, Kitagawa H, Ikemoto H, Matsumoto T (2001) Proteasome inhibitors induce Fas-mediated apoptosis by c-Myc accumulation and subsequent induction of FasL message in human glioma cells. FEBS Lett 504(1–2):53–58

142. Kim S, Choi K, Choi C, Kwon D, Benveniste EN (2004) Ubiquitin-proteasome pathway as a primary defender against TRAIL-mediated cell death. Cell Mol Life Sci 61(9):1075–1081
146. Wagenknecht B, Herminus M, Groscurth P, Liston P, Krammer PH, Weller M (2008) Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 73(6):2288–2297

147. Kahana S, Finniss S, Cazacu S, Xiang C, Lee HK, Brodie S et al (2011) Proteasome inhibitors sensitize glioma cells and glioma stem cells to TRAIL-induced apoptosis by PKCε-dependent downregulation of AKT and XIAP expressions. Cell Signal 23(8):1348–1357

148. Unterkircher T, Cristofanon S, Vellanki SHK, Nonnenmacher L, Kahana S, Finniss S, Cazacu S, Xiang C, Lee HK, Brodie S et al (2011) Bortezomib primes glioblastoma, including glioblastoma stem cells, for TRAIL by increasing Bid stability and mitochondrial apoptosis. Clin Cancer Res 17(12):4049–4030

149. Asklund T, Kvarnbrink S, Holmlund C, Wibom C, Bergenheim T, Unterkircher T, Cristofanon S, Vellanki SHK, Nonnenmacher L, Kahana S, Finniss S, Cazacu S, Xiang C, Lee HK, Brodie S et al.

150. Low J, Blosser W, Dowless M, Ricci-Vitiani L, Pallini R, de Bota DA, Alexandru D, Keir ST, Bigner D, Vredenburgh J, Papandreou CN (2013) Bortezomib downregulates MGMT expression in glioblastoma cancer stem cells leading to cell death and differentiation. Cell Mol Neurobiol 33(3):368–379

151. Pajonk F, Himmelsbach J, Riess K, Sommer A, McBride WH (2002) The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res 62(18):5230–5235

152. Grund K, Ahmadi R, Jung F, Funke V, Gdynia G, Benner A et al (2008) Troglitazone-mediated sensitization to TRAIL-induced apoptosis is regulated by proteasome-dependent degradation of FLIP and ERK1/2-dependent phosphorylation of BAD. Cancer Biol Ther 7(12):1982–1990

153. Gerson SL (2002) Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 20(9):2388–2399

154. Marikovsky M, Ziv V, Nevo N, Harris-Cerruti C, Mahler O (2003) Cu/Zn superoxide dismutase plays important role in immune response. J Immunol 170(6):2993–3001

155. Loo TW, Bartlett MC, Clarke DM (2004) Disulfiram metabolites permanently inactivate the human multidrug resistance P-Glycoprotein. Mol Pharm 1(6):426–433

156. Hothi P, Martins TJ, Chen L, Deleyrolle L, Yoon J-G, Reynolds B, Foltz G (2012) High-throughput chemical screens identify Disulfiram as an inhibitor of human glioblastoma stem cells. Oncotarget 3(10):1124–1136

157. Paranjpe A, Zhang R, Ali-Osman F, Bobustuc GC, Srivenugopal KS (2014) Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage. Carcinogenesis 35(3):692–702

158. Huang J, Chaudhary R, Cohen AL, Fink K, Goldlust S, Bockvar J et al (2019) A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J Neuro-Oncol 142(3):537–544

159. Foti C, Florean C, Pezzutto A, Roncaglia P, Tomasella A, Gustinich S, Brancolini C (2009) Characterization of caspase-dependent and caspase-independent deaths in glioblastoma cells treated with inhibitors of the ubiquitin-proteasome system. Mol Cancer Ther 8(11):3140–3150

160. Monticone M, Biollo E, Fabiano A, Fabbri M, Daga A, Romeo F et al (2009) z-Leucinyl-leucinyl-norleucinal induces apoptosis of human glioblastoma tumor-initiating cells by proteasome inhibition and mitotic arrest response. Mol Cancer Res 7(11):1822–1834

161. Nomura M, Nomura N, Yamashita J (2005) Geldanamycin-induced degradation of Chk1 is mediated by proteasome. Biochem Bioph Res Commun 333(3):900–905

162. Nomura N, Nomura M, Newcomb EW, Zagzag D (2007) Geldanamycin induces G2 arrest in U87MG glioblastoma cells through downregulation of Cdc2 and cyclin B1. Biochem Pharmacol 73(10):1528–1536

163. Liu T, Wu C, Weng G, Zhao Z, He X, Fu C et al (2017) Bufalin inhibits cellular proliferation and cancer stem cell-like phenotypes via upregulation of MiR-203 in glioma. Cell Physiol Biochem 44(2):671–681

164. Lan Y-L, Wang X, Lou J-C, Xing J-S, Yu Z-L, Wang H et al (2018) Bufalin inhibits glioblastoma growth by promoting proteasomal degradation of the Na+K+ATPase α1 subunit. Biomed Pharmacother 103:204–215

165. Cecarini V, Quassinti L, Di Blasio A, Bonfili L, Bramucci M, Lupidi G et al (2010) Effects of thymoquinone on isolated and cellular proteasomes. FEBS J 277(9):2128–2141

166. Bariya T, Mandel M, Livnat T, Weinberger D, Lavi G (2011) Degradation of HIF-1alpha under hypoxia combined with induction of Hsp90 polyubiquitination in cancer cells by Hypericin: a unique cancer therapy. PLoS ONE 6(9):e22849

167. Couldwell WT, Surnock AA, Tobia AJ, Cabana BE, Stillerman CB, Forsyth PA et al (2011) A phase 1/2 study of orally
administered synthetic hypericin for treatment of recurrent malignant gliomas. *Cancer* 117(21):4905–4915

178. Xu R, Nie X, Jia O, Xing Y, Li D, Dong X, Liu R (2015) Paenoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin-proteasome pathway. *Drug Design, Dev Ther* 5611

179. Wang Z, Yu G, Liu Z, Zhu J, Chen C, Liu R, Xu R (2018) Paenoniflorin inhibits glioblastoma growth in vivo and in vitro: a role for the TriadA3-dependent ubiquitin proteasome pathway in TLR4 degradation. *Cancer Manag Res* 10:887–897

180. Wang WX, Sun ZH, Chen HM, Xu BN, Wang FY (2015) Role of mechanism of soxophorine on proliferation inhibition in human glioma U87MG cell line. *Int J Clin Exp Med* 8(1):464–471

181. Jia W-Q, Wang Z-T, Zou M-M, Lin J-H, Li Y-H, Zhang L, Xu R-X (2018) Verbascoside inhibits glioblastoma cell proliferation, migration and invasion while promoting apoptosis through upregulation of protein tyrosine phosphatase SHP-1 and inhibition of STAT3 phosphorylation. *Cell Physiol Biochem* 47(5):1871–1882

182. Hei B, Wang J, Wu G, Ouyang J, Liu R (2019) Verbascoside suppresses the migration and invasion of human glioblastoma cells via targeting c-Met-mediated epithelial-mesenchymal transition. *Biochem Biophys Res Commun* 514(4):1270–1277

183. Düttzmann S, Schiborr C, Kocher A, Pilatus U, Hattingen E, Hei B, Wang J, Wu G, Ouyang J, Liu R (2019) Verbascoside promotes Connexin 43 degradation and STAT3 phosphorylation. *Cell Physiol Biochem* 47(5):1871–1882

184. Dützmann S, Schiborr C, Kocher A, Pilatus U, Hattingen E, Weissenberger J et al (2016) Intratumoral concentrations and effects of orally administered micellar curcuminoids in glioblastoma patients. *Nutr Cancer* 68(6):943–948

185. Huang B-R, Tsai C-H, Chen C-C, Way T-D, Kao J-Y, Liu Y-S et al (2019) Curcumin promotes Connexin 43 degradation and temozolomide-induced apoptosis in glioblastoma cells. *Am J Chin Med* 47(03):657–674

186. Badr CE, Van Hoppe S, Dumbuya H, Tian-Kon-Fat L-A, Tjon-Kon-Fat L-A, Badr CE, Van Hoppe S, Dumbuya H, Tjon-Kon-Fat L-A, Buhimschi AD, Hines J, Bondeson DP, Smith BE, Burslem GM et al (2018) Verbascoside inhibits glioblastoma cell proliferation, migration and invasion while promoting apoptosis through upregulation of protein tyrosine phosphatase SHP-1 and inhibition of STAT3 phosphorylation. *Cell Physiol Biochem* 47(5):1871–1882

187. Ge P, Zhang J, Wang X, Meng F, Li W, Luan Y et al (2009) Verbascoside inhibits glioblastoma U87MG cell proliferation, migration and invasion while promoting apoptosis through upregulation of protein tyrosine phosphatase SHP-1 and inhibition of STAT3 phosphorylation. *Cell Physiol Biochem* 47(5):1871–1882

188. Mathew R, White E (2007) Why sick cells produce tumors: the role of autophagy in cancer cell death. *Curr Mol Pharmacol* 1(1):24–37

189. Zhang X, Li W, Wang C, Leng X, Lian S, Feng J et al (2014) Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells. *Mol Cell Biochem* 385(1–2):265–275

190. Wang H-Y, Chen J-L, Zhu X, Liu L, Wang J, Zhu X-M (2018) Titania-coated gold nano-bipyramids for blocking autophagy flux and sensitizing cancer cells to proteasome inhibitor-induced death. *Adv Sci* 3(3):1700585

191. Strik H, Deininger M, Sreffler J, Grote E, Wickboldt J, Dychgans J et al (1999) BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. *J Neurol Neurosurg Psychiatry* 67(6):763–768

192. Zhang Y, Zhu X, Hou K, Zhao J, Han Z, Zhang X (2015) Mel-1 downregulation sensitizes glioma to bortezomib-induced apoptosis. *Oncol Rep* 33(5):2277–2284

193. Lavon I, Fuchs D, Zrihan D, Efroni G, Zelikovitch B, Fellig Y, Siegal T (2007) Novel mechanism whereby nuclear factor b mediates DNA damage repair through regulation of O6-methylguanine-DNA-methyltransferase. *Cancer Res* 67(18):8952–8959

194. Preusser M, de Ribaupierre S, Wöhrer A, Erridge SC, Hegi M, Weller M, Stupp R (2011) Current concepts and management of glioblastoma. *Ann Neurol* 70(1):9–21

195. Raychaudhuri B, Han Y, Lu T, Vogelbaum MA (2007) Aberrant constitutive activation of nuclear factor kappaB in glioblastoma multiforme drives invasive phenotype. *J Neuro-Oncol* 85(1):39–47

196. Bredel M, Scholtsens DM, Yadav AK, Alvarez AA, Renfrow JJ, Chandler JP et al (2011) NFKBIA deletion in glioblastomas. *Nat Engl J Med* 364(7):627–637

197. Goldberg AL (2016) Probing the proteasome. *Trends Cell Biol* 26(11):792–794

198. Thibbaudeau TA, Smith DM (2019) A practical review of proteasome pharmacology. *Pharmacol Rev* 71(1):170–197

199. Di K, Lloyd GK, Abraham V, MacLaren A, Burrows FJ, Desjardins A et al (2016) Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier. *Neuro-Oncology* 18(6):840–848

200. Vlahostergios PJ, Voutsadakis IA, Papandreou CN (2013) The shaping of invasive glioma phenotype by the ubiquitin–proteasome system. *Cell Commun Adhes* 20(5):87–92

201. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. *Cancer Cell* 31(3):326–341

202. Pettersson M, Crews CM (2019) PROteolysis TArgeting Chimeras (PROTACs) — past, present and future. *Drug Discov Today Technol* 31:15–27

203. Maniaci C, Hughes SJ, Testa A, Chen W, Lamont DJ, Rocha S et al (2017) Homo-PROTACs: bivalent small-molecule dimersizers of the VHL E3 ubiquitin ligase to induce self-degradation. *Nat Commun* 8(1):830

204. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S et al (2018) Lessons in PROTAC design from selective degradation with a promiscuous warhead. *Cell Commun Adhes* 25(1):78–87.e5

205. Sun Y, Zhao X, Ding N, Gao H, Wu Y, Yang Y et al (2018) PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B cell malignancies. *Cell Res* 28(7):779–781

206. Gu S, Cui D, Chen X, Xiong X, Zhao Y (2018) PROTACs: an emerging targeting technique for protein degradation in drug discovery. *BioEssays* 40(4):1700247

207. Okuhira K, Demizu Y, Hattori T, Ohoka N, Shibata N, Nishimaki-Mogami T et al (2013) Development of hybrid small molecules...
that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells. *Cancer Sci* 104(11):1492–1498

214. Robb CM, Contreras JI, Kour S, Taylor MA, Abid M, Sonawane YA et al (2017) Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). *Chem Commun* 53(54):7577–7580

215. Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H et al (2018) Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. *Commun Biol* 1(1):100

216. Sun B, Fiskus W, Qian Y, Rajapakshe K, Raina K, Coleman KG et al (2018) BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. *Leukemia* 32(2):343–352

217. Zhang C, Han X-R, Yang X, Jiang B, Liu J, Xiong Y, Jin J (2018) Proteolysis Targeting Chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). *Eur J Med Chem* 151:304–314

218. Zhang X, Lee HC, Shirazi F, Baladandayuthapani V, Lin H, Kuiatse I et al (2018) Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. *Leukemia* 32(10):2224–2239

219. Hines J, Gough JD, Corson TW, Crews CM (2013) Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. *Proc Natl Acad Sci* 110(22):8942–8947

220. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE (2015) Phthalimide conjugation as a strategy for in vivo target protein degradation. *Science* 348(6241):1376–1381

221. Kang CH, Lee DH, Lee CO, Du Ha J, Park CH, Hwang JY (2018) Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). *Biochem Biophys Res Commun* 505(2):542–547

222. Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP et al (2018) The advantages of targeted protein degradation over inhibition: an RTK case study. *Cell Chem Biol* 25(1):67–77.e3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.