Comments on “Comparative Hazards of Chrysotile Asbestos and Its Substitutes: A European Perspective”

I was glad to read the abstract of Harrison et al. (1) on the Web; this paper supports our work currently being done. I just returned from a cooperative program in Australia with Forestry and Forest Products-CSIRO, where methods were being developed to replace asbestos in fiber-cement products.

In the study in Australia, a new approach is being taken by using only alternative raw materials such as ground iron blast-furnace slag (BFS) as a matrix and cellulose fibers from sisal and banana crop wastes or eucalyptus pulp by-products.

The fibers were pulped using chemical and/or thermomechanical processes. The composites were prepared by a slurry vacuum de-watering method. The initial test results showed that physical and mechanical performance is acceptable for housing requirements. Long-term aging is now in progress in Melbourne, Australia, and Sao Paulo, Brazil, to evaluate durability.

Further CSIRO/USP collaborative studies are planned to study BFS-based composites optimization and low-cost construction components related to walling and roofing.

Additional information is available from CSIRO (www.ffp.csiro.au/publicat/onwood/onwood22).

Holmer Savastano, Jr.
University of Sao Paulo
Sao Paulo, Brazil
E-mail: holmersj@usp.br

REFERENCES AND NOTES
1. Harrison PTC, Levy LS, Patrick G, Pigott GH, Smith LL. Comparative hazards of chrysotile asbestos and its substitutes: a European perspective. Environ Health Perspect 107:807-811 (1999).

Comments on “A Critical Review of Epidemiologic Studies of Radiofrequency Exposure and Human Cancers”

Elwood (1) noted that a weakness in the U.S. Naval study (2) is that it compared groups with high and low (> or < 1.0 mW/cm^2) exposures and lacked an unexposed group to assess if the low-exposure group was truly unaffected. This is more than a weakness because both high and low exposure groups took recreation on decks where they were exposed to RFR, occasionally up to 1 mW/cm^2 according to Robinette et al. (1). This is important given Szmigelski’s finding of effects occurring at < 0.1 mW/cm^2, and may explain the null findings of the U.S. Naval study. Also, Szmigelski (3) stated that exposures were 150–3500 MHz, whereas the U.S. Naval study simply stated that microwave radar was > 300 MHz. The importance of this difference is that the lower frequencies (150–300 MHz) in the Polish study (4) include wavelengths that have much greater coupling with the body, which in turn may contribute to a different spectrum of cancer sites.

Early in his paper, Elwood (1) noted that there is evidence that RFR may be a promoter of cancer. However, he did not consider the implications of this when discussing the study of brain tumors by Thomas et al. (5), Thomas et al. (5) found an increased risk of brain tumors (RR 2.3) in individuals who had both been exposed to RFR and worked in electronics, which would have likely caused exposure to solvents and fumes. A promotional effect of RFR is consistent with this observation.

Finally, “Acknowledgments” Elwood mentioned that his paper was “stimulated by a request from Telecom New Zealand for a review of this topic.” He did not mention that 2 months before submission of the paper, he had appeared as the major witness for Telecom NZ in a court case regarding placement of a mobile phone tower beside a primary school (1). I was called by the school to give evidence about the Sydney study.

Bruce Hocking
Consultant in Occupational Medicine
Camberwell, Victoria, Australia
E-mail: bruhoc@connexus.apana.org

1. Elwood J M. A critical review of epidemiologic studies of radiofrequency exposure and human cancers. Environ Health Perspect 107:155–168 (1999).
2. Hocking B, Gordon IR, Grain HL, Hatfield GE. Cancer incidence and mortality and proximity to TV towers. Med J Aust 165:401-405 (1996).
3. Dolk H, Shaddick G, Walls P, Grundy C, Thakrar B, Kleinenschmidt I, Elliott P. Cancer incidence near radio and television transmitters in Great Britain. I. Sutton Coldfield transmitter. Am J Epidemiol 147:1-9 (1998).
4. Dolk H, Elliott P, Shaddick G, Walls P, Thakrar B. Cancer incidence near radio and television transmitters in Great Britain. II. All high power transmitters. Am J Epidemiol 147:10-17 (1998).
5. Hocking B, Gordon I, Hatfield G, Grain H. “Cancer incidence near transmitters in Great Britain. I. Sutton Coldfield transmitter. II. All high power transmitters” [Letter]. Am J Epidemiol 147:90-91 (1998).
6. McKenzie DR, Yin Y, Morrell S. Childhood incidence of acute lymphoblastic leukaemia and exposure to broadcast radiation in Sydney—a second look. Aust N Z J Public Health 22:393–397 (1998).
7. Hocking B, Gordon I, Hatfield GE. Childhood leukaemia and TV towers revisited [Letter]. Aust N Z J Public Health 22:104–105 (1998).
8. Robineau C D, Silverman G, Jacibon S. Effects upon health of occupational exposure to microwave radiation (rader). Am J Epidemiol 112:95–99 (1980).
9. Szymielski S. Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiation. Sci Total Environ 105:3-17 (1990).