Genome sequence and description of *Bacteroides timonensis* sp. nov.

Dhamodharan Ramasamy¹, Jean-Christophe Lagier¹, Morgane Rossi-Tamisier¹, Anne Pfleiderer¹, Caroline Michelle¹, Carine Couderc¹, Didier Raoult¹,² and Pierre-Edouard Fournier¹*

¹ Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Aix-Marseille Université, Marseille, France
²King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia

*Correspondence: Pierre-Edouard Fournier (pierre-edouard.fournier@univ-amu.fr)

Keywords: *Bacteroides timonensis*, genome, culturomics, taxono-genomics

Bacteroides timonensis strain AP1ᵗ (= CSUR P194 = DSM 26083) is the type strain of *B. timonensis* sp. nov. This strain, whose genome is described here, was isolated from the fecal flora of a 21-year-old French Caucasian female who suffered from severe anorexia nervosa. *Bacteroides timonensis* is a Gram-negative, obligate anaerobic bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 7,130,768 bp long genome (1 chromosome, no plasmid) exhibits a G+C content of 43.3% and contains 5,786 protein-coding and 59 RNA genes, including 2 rRNA genes.

Introduction

Bacteroides timonensis strain AP1ᵗ (= CSUR P194 = DSM 26083) is the type strain of *B. timonensis* sp. nov. This bacterium was isolated from the stool sample of a 21-year-old French Caucasian female in an effort of culturing individually all bacterial species within human feces [1]. It is a Gram-negative, anaerobic, indole-positive rod-shaped bacillus.

The conventional genetic parameters used in the delineation of bacterial species include 16S rRNA sequence identity and phylogeny [2,3], genomic G + C content diversity and DNA–DNA hybridization (DDH) [4,5]. These tools have limitations, notably because their cutoff values vary across species or genera [6]. With the introduction of high-throughput sequencing techniques [7], a wealth of genomic data was made available for many bacterial species. We recently proposed to include genomic data in a polyphasic approach to describe new bacterial taxa (taxono-genomics) [8]. This strategy combines phenotypic characteristics, notably the MALDI-TOF MS spectrum, and genomic analysis [8-37]. Here, we present a summary classification and a set of features for *B. timonensis* sp. nov. strain AP1ᵗ (= CSUR P194 = DSM 26083) together with the description of the complete genome sequencing and annotation. These characteristics support the circumscription of the type species, *B. timonensis*.

The genus *Bacteroides* (Castellani and Chalmers 1919) was created in 1919 [38]. Currently, it is one of the largest genera among the human gut microbiota [39], and consists of 91 species and 5 subspecies with validly published names [40]. *Bacteroides* species are Gram-negative, non-spore-forming, non-motile and anaerobic rods that are generally isolated from the gastrointestinal tract of mammals [41]. They have symbiotic relationships with humans and play many beneficial roles on normal intestinal physiology and function. Several *Bacteroides* species are identified as opportunistic pathogens when isolated from anaerobic infections [42].

Classification and features

A stool sample was collected from 21-year-old French Caucasian female who suffered from severe restrictive anorexia nervosa from the age of 12 years. At the time of sample collection, she had been hospitalized for recent aggravation of her medical condition (BMI: 10.4 kg/m²). The patient’s written consent and the agreement of the local ethics committee of the IFR48 (Marseille, France) were obtained under agreement number 09-022. The feces sample of this patient...
Bacteroides timonensis was stored at -80°C immediately after collection. Strain AP1T (Table 1) was isolated in November 2011 after 1 month of incubation in Columbia agar (BioMerieux, Marcy l’Etoile, France). Several other new bacterial species were isolated from this stool specimen using various culture conditions.

When compared to sequences available in GenBank, the 16S rRNA gene sequence of \textit{B. timonensis} strain AP1T (GenBank accession number JX041639) exhibited an identity of 97.00% with \textit{Bacteroides cellulosilyticus} (Figure 1). This value was the highest similarity observed, but was lower than the 97.8% 16S rRNA gene sequence threshold recommended by Stackebrandt and Ebers (2006) to delineate a new species without carrying out DNA-DNA hybridization [3], and was in the 74.8 to 98.7% range of 16S rRNA identity values observed among 41 \textit{Bacteroides} species with validly published names [56].

MIGS ID	Property	Term	Evidence codea
	Current classification	Domain \textit{Bacteria}	TAS [44]
		Phylum \textit{Bacteroidetes}	TAS [45,46]
		Class \textit{Bacteroidia}	TAS [45,47]
		Order \textit{Bacteroidales}	TAS [45,48]
		Family \textit{Bacteroidaceae}	TAS [49,50]
		Genus \textit{Bacteroides}	IDA [49,51-54]
		Species \textit{Bacteroides timonensis}	IDA
	Type strain AP1T		IDA
	Gram stain	Negative	IDA
	Cell shape	Rod	IDA
	Motility	Non motile	IDA
	Sporulation	Non sporulating	IDA
	Temperature range	Mesophile	IDA
	Optimum temperature	37°C	IDA
	Salinity	Unknown	IDA
	Oxygen requirement	Anaerobic	IDA
	Carbon source	Unknown	IDA
	Energy source	Unknown	IDA
	Habitat	Human gut	IDA
	Biotic relationship	Free living	IDA
	Pathogenicity	Unknown	IDA
	Biosafety level	2	IDA
	Isolation	Human feces	IDA
	Geographic location	France	IDA
	Sample collection time	November 2011	IDA
	Latitude	43.296482	IDA
	Longitude	5.36978	IDA
	Depth	surface	IDA
	Altitude	0 m above sea level	IDA

Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [55]. If the evidence is IDA, then the property was directly observed for a live isolate by one of the authors or an expert mentioned in the acknowledgements.
Four different growth temperatures (25, 30, 37, 45°C) were tested; growth occurred between 25 and 37°C, but optimal growth was observed at 37°C, 24 hours after inoculation. No growth occurred at 45°C. Colonies were translucent and approximately 0.3 mm in diameter on 5% sheep blood-enriched Columbia agar (BioMerieux). Growth of the strain was tested in the same agar under anaerobic and microaerophilic conditions using GENbag anaer and GENbag microaer systems, respectively (BioMerieux), and under aerobic conditions, with or without 5% CO₂. Growth was observed under anaerobic and microaerophilic conditions, and only weakly with 5% CO₂. No growth occurred under aerobic condition without CO₂. Gram staining showed short Gram-negative rods unable to form spores (Figure 1). A motility test was negative. Cells grown on agar are translucent and exhibit a mean diameter of 0.88 µm in electron microscopy (Figure 2, Figure 3).

Strain AP1⁺ exhibited catalase but no oxidase activity (Table 2). Using an API Rapid ID 32A strip (BioMerieux), positive reactions were obtained for arginine dihydrolase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, α-arabinosidase, N-acetyl-β-glucosaminidase, glutamic acid decarboxylase, α-fucosidase, nitrate reduction, indole production, alkaline phosphatase, proline arylamidase, leucyl glycine arylamidase, alanine arylamidase, glutamyl glutamic acid arylamidase, and fermentation of mannose and raffinose. Weak activities were observed for glycine arylamidase and serine arylamidase. Negative reactions were obtained for urease, β-galactosidase-6-phosphatase, β-glucuronidase, arginine arylamidase, phenylalanine arylamidase, leucine arylamidase, pyroglutamic acid arylamidase, tyrosine arylamidase and histidine arylamidase. Using an API 50CH strip (BioMerieux), strain AP1⁺ was asaccharolytic.

B. timonensis is susceptible to amoxicillin-clavulanate, ceftriaxone, imipenem, trimethoprim-sulfamethoxazole, metronidazole and doxycline but resistant to amoxicillin, vancomycin and gentamicin. By comparison with other Bacteroides species, B. timonensis dif-

Figure 1. Phylogenetic tree highlighting the position of Bacteroides timonensis strain AP1⁺ relative to other type strains within the Bacteroides genus. GenBank accession numbers are indicated in parentheses. Sequences were aligned using CLUSTALW, and phylogenetic inferences were obtained using the maximum-likelihood method within the MEGA software. Numbers at the nodes are percentages of bootstrap values obtained from 500 replicates. Prevotella melaninogena was used as outgroup. The scale bar represents a 2% nucleotide sequence divergence.
Bacteroides timonensis

fered in production of indole, nitrate reductase, β-galactosidase and acidification of sugars.

Figure 2. Gram staining of *B. timonensis* strain *AP1*°

Figure 3. Transmission electron microscopy of *B. timonensis* strain *AP1*°, made using a Morgani 268D (Philips) at an operating voltage of 60kV. The scale bar represents 200 nm.
Properties	B. timonensis	B. cellulosyicus	B. intestinalis	B. fragilis	B. vulgatus	B. thetaiotaomicron	B. salanitronis	B. holcogens	B. finegoldii	B. uniformis
Cell diameter (μm)	0.88	2-5	1.3	1.3	0.5-0.8	0.7-2	2-3	1.2	1.2	0.5-2
Oxygen requirement	anaerobic	anaerobic	anaerobic	anaerobic	anaerobic	anaerobic	anaerobic	anaerobic	anaerobic	anaerobic
Gram stain	–	–	–	+	–	–	–	–	–	–
Salt requirement	+	+	+	na	na	na	na	na	+	+
Motility	–	–	–	–	–	–	–	–	–	–
Endospore formation	–	–	–	+	na	–	–	–	–	–
Indole	+	+	+	–	–	–	–	–	–	+
Production of										
Alkaline phosphatase	+	+	+	Na	+	+	+	na	+	+
Catalase	+	+	+	na	+	–	–	na	–	–
Oxidase	–	+	na	+	na	na	na	na	na	na
Nitrate reductase	+	na	–	na	–	–	–	–	–	–
Urease	–	na	–	na	–	–	–	–	–	–
β-galactosidase	+	–	+	na	–	+	+	+	+	+
N-acetyl-glucosamine	+	+	+	na	na	na	na	+	+	+
Acid from										
L-Arabinose	–	w	+	–	–	+	+	–	–	+
Ribose	–	+	na	+	na	na	na	na	na	na
Mannose	–	+	+	+	+	+	+	+	+	+
Mannitol	–	–	–	–	–	–	–	–	–	–
Sucrose	–	+	+	+	+	+	+	+	+	+
D-glucose	–	+	+	+	+	+	+	+	+	+
D-fructose	–	+	+	+	+	+	+	+	+	+
D-maltose	–	+	+	+	+	+	+	+	+	+
D-lactose	–	w	+	+	+	+	+	+	+	+
Habitat	human	human	human	human	human	human	human	pig	human	human

Bacteroides timonensis strain AP1; B. cellulosyicus strain DSM 14838, B. intestinalis strain DSM 17393, B. fragilis strain YCH46, B. vulgatus strain ATCC 8482, B. thetaiotaomicron strain VPI-5482, B. salanitronis strain DSM 18170, B. holcogens strain P 36-108, B. finegoldii strain DSM 17365, and B. uniformis strain ATCC 8492. na = data not available; w = weak, v = variable reaction.
Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) MS protein analysis was carried out as previously described [68]. Briefly, a pipette tip was used to pick one isolated bacterial colony from a culture agar plate and spread it as a thin film on a MTP 384 MALDI-TOF target plate (Bruker Daltonics, Leipzig, Germany). Twelve distinct deposits from twelve isolated colonies were performed for strain AP1T. Each smear was overlaid with 2 µL of matrix solution (saturated solution of alpha-cyano-4-hydroxycinnamic acid) in 50% acetonitrile, 2.5% tri-fluoracetic acid, and allowed to dry for 5 minutes. Measurements were performed with a Microflex spectrometer (Bruker). Spectra were recorded in the positive linear mode for the mass range of 2,000 to 20,000 Da (parameter settings: ion source 1 (ISI), 20kV; IS2, 18.5 kV; lens, 7 kV). A spectrum was obtained after 675 shots with variable laser power. The time of acquisition was between 30 seconds and 1 minute per spot. The twelve AP1T spectra were imported into the MALDI BioTyper software (version 2.0, Bruker) and analyzed by standard pattern matching (with default parameter settings) against the main spectra of 3,769 bacteria, including 129 spectra from 98 Bacteroides species. The method of identification included the m/z from 3,000 to 15,000 Da. For every spectrum, a maximum of 100 peaks were compared with spectra in database. The resulting score enabled the identification of tested species, or not: a score \(\geq 2 \) with a validly published species enabled identification at the species level, a score \(\geq 1.7 \) but \(< 2 \) enabled identification at the genus level, and a score \(< 1.7 \) did not enable any identification. No significant MALDI-TOF score was obtained for strain AP1T against the Bruker database, suggesting that our isolate was not a member of a known species. We added the spectrum from strain AP1T to our database (Figure 4). Finally, the gel view showed the spectral differences with other members of the genus Bacteroides (Figure 5).

Figure 4. Reference mass spectrum from B. timonensis strain AP1T. Spectra from 12 individual colonies were compared and a reference spectrum was generated.
Figure 5. Gel view comparing *B. timonensis* strain AP1 to other *Bacteroides* species. The gel view displays the raw spectra of loaded spectrum files as a pseudo-electrophoretic gel. The *x*-axis records the m/z value. The left *y*-axis displays the running spectrum number originating from subsequent spectra loading. The peak intensity is expressed by a grey scale scheme code. The grey scale bar on the right *y*-axis indicate the relation between the shade of grey a peak is displayed with and the peak intensity in arbitrary units. Displayed species are detailed in the left column.

Genome sequencing information

Genome project history

The organism was selected for sequencing on the basis of its phylogenetic position and 16S rRNA gene sequence similarity to members of the genus *Bacteroides*, and is part of a study of the human digestive flora aiming at isolating all bacterial species within human feces [1]. It was the ninety-ninth genome of a *Bacteroides* species and the first genome of *B. timonensis* sp. nov. The GenBank accession number is CBV1000000000 and consists of 211 contigs. Table 3 shows the project information and its association with MIGS version 2.0 compliance [43].

MIGS ID	Property	Term
MIGS-31	Finishing quality	High-quality draft
MIGS-28	Libraries used	454 GS paired-end 3-kb library
MIGS-29	Sequencing platform	454 GS FLX Titanium
MIGS-31.2	Fold coverage	35.76
MIGS-30	Assemblers	gsAssembler
MIGS-32	Gene calling method	PRODIGAL

Growth conditions and DNA isolation

B. timonensis sp. nov., strain AP1 (= CSUR P194 = DSM 26083) was grown on 5% sheep blood-enriched Columbia agar (BioMerieux) at 37°C in anaerobic atmosphere. Bacteria grown on four Petri dishes were harvested and resuspended in 4x100 µL of TE buffer. Then, 200 µL of this suspension was diluted in 1ml TE buffer for lysis treatment that included a 30-minute incubation with 2.5 µg/µL lysozyme at 37°C, followed by an
overnight incubation with 20 µg/µL proteinase K at 37°C. Extracted DNA was then purified using 3 successive phenol-chloroform extractions and ethanol precipitation at -20°C overnight. After centrifugation, the DNA was resuspended in 160 µL TE buffer. The yield and concentration was measured by the Quant-it Ribogreen kit (Invitrogen) on the Genios Tecan fluorometer at 88.6 ng/µL.

Genome sequencing and assembly

Five µg of DNA was mechanically fragmented on Covaris device (KBioScience-LGC Genomics, Teddington, UK) using miniTiUBE-blue. The DNA fragmentation was visualized through an Agilent 2100 BioAnalyzer on a DNA labchip 7500 with an average size of 2.950kb. A 3 kb paired-end library was constructed according to the 454 GS FLX Titanium paired-end protocol (Roche). Circularization and nebulization were performed and generated a pattern with a mean size of 513 bp. After PCR amplification through 17 cycles followed by double size selection, the single stranded paired-end library was quantified with the Quant-it Ribogreen kit (Invitrogen) on the Genios Tecan fluorometer at 243 µg/µL. The library concentration equivalence was calculated as 8.69 x 10^8 molecules/µL. The library was stored at -20°C until further use.

The paired-end library was clonally amplified with 0.5cpb and 1cpb in 8 SV-emPCR reactions with the GS Titanium SV emPCR Kit (Lib-L) v2 (Roche). The yields of the emPCR reactions were 4.65 and 7.29% respectively, within the recommended range of 5 to 20% from the Roche procedure. Approximately 790,000 beads were loaded on a 1/4 region of a GS Titanium PicoTiterPlate PTP Kit 70×75 and sequenced with the GS Titanium Sequencing Kit XLR70 (Roche). The run was performed overnight and then analyzed on the cluster through the gsRunBrowser and Newbler assembler (Roche). A total of 802,249 passed filter wells were obtained and generated 255Mb with a length average of 314 bp. These sequences were assembled using Newbler (Roche) with 90% identity and 40bp as overlap. The final assembly identified 63 scaffolds and 211 large contigs (>1,500bp) generating a genome size of 7.13 Mb which corresponds to a coverage of 35.76× genome equivalent.

Genome annotation

Open Reading Frames (ORFs) were predicted using Prodigal [69] with default parameters. However, the predicted ORFs were excluded if they spanned a sequencing gap region. The predicted bacterial protein sequences were searched against the GenBank [70] and Clusters of Orthologous Groups (COG) databases using BLASTP. The tRNAs and rRNAs were predicted using the tRNAscan-SE [71] and RNAmmer [72] tools, respectively. Signal peptides and numbers of transmembrane helices were predicted using SignalP [73] and TMHMM [74], respectively. Mobile genetic elements were predicted using PHAST [75] and RAST [76]. ORFans were identified if their BLASTP E-value was lower than 1e-03 for alignment length greater than 80 amino acids. If alignment lengths were smaller than 80 amino acids, we used an E-value of 1e-05. Such parameter thresholds have already been used in previous works to define ORFans. Artemis [77] and DNA Plotter [78] were used for data management and visualization of genomic features, respectively. The Mauve alignment tool (version 2.3.1) was used for multiple genomic sequence alignment [79].

To estimate the mean level of nucleotide sequence similarity at the genome level between *B. timonensis* and 9 other members of the genus *Bacteroides* (Table 6), we used the Average Genomic Identity Of gene Sequences (AGIOS) in-house software [8]. Briefly, this software uses the Proteinortho software [80] for the pairwise detection of orthologous proteins between genomes, then retrieves the corresponding genes and determines the mean percentage of nucleotide sequence identity among orthologous ORFs using the Needleman-Wunsch global alignment algorithm. *B. timonensis* strain API* was compared to *B. intestinalis* strain DSM 17393 (GenBank accession number NZ_AB1L00000000), *B. cellulosilyticus* strain DSM 14838 (NZ_ACCH00000000), *B. fragilis* strain YCH46 (NC_006347), *B. vulgatus* ATCC 8482 (NC_009614), *B. thetaiotaomicron* strain VPI-5482 (NC_004663), *B. salanitronis* strain DSM 18170 (NC_015164), *B. helcogenes* strain P36-108 (NC_014933), *B. finegoldii* strain DSM 17565 (NZ_ABX100000000) and *B. uniformis* strain ATCC 8492 (AAYH00000000).

Genome properties

The genome is 7,130,768 bp long (1 chromosome, but no plasmid) with a 43.3% G+C content (Figure 6 and Table 4). Of the 5,845 predicted genes, 5,786 were protein-coding genes and 59 were RNAs, including 1 complete rRNA operon. A total of 3,111 genes (53.22%) were assigned a putative function and 3,283 genes were identified as ORFans (56.16%). Strain API* possesses a variety of mobile genetic elements. These include 6 prophages of 13.70, 14.60, 10.51, 8.18, 9.91 and 12.79 Kb, respectively) and 91 trans-
posable elements belonging to 18 transposon families that include the putative mobilization protein BF0133, the putative conjugative transposon mobilization protein BF0132, the hypothetical protein clustered with conjugative transposons BF0131, TraA-CTn, TraB-CTn, TraD-CTn, TraE-CTn, TraF-CTn, TraG-CTn, TraH-CTn, TraI-CTn, TraJ-CTn, TraK-CTn, TraL-CTn, TraM-CTn, TraN-CTn, TraO-CTn and TraQ-CTn. The properties and statistics of the genome are summarized in Tables 4 and 5. The distribution of genes into COGs functional categories is presented in Table 5.

![Graphical circular map of the chromosome. From the outside in: open reading frames oriented in the forward (colored by COG categories) direction, open reading frames oriented in the reverse (colored by COG categories) direction, RNA operon (red), and tRNAs (green), GC content plot, and GC skew (purple: negative values, olive: positive values).](image)

Table 4. Nucleotide content and gene count levels of the genome

Attribute	Value	% of total*
Genome size (bp)	7,130,768	
DNA coding region (bp)	6,434,142	90.23
DNA G+C content (bp)	3,087,622	43.30
Number of replicons	1	
Extra chromosomal element	0	
Total genes	5,845	100
RNA genes	59	1.01
Protein-coding genes	5,786	98.99
Genes with function prediction	3,111	53.22
Genes assigned to COGs	2,820	48.24
Genes with peptide signals	435	7.44
Genes with transmembrane helices	456	7.80

* The total is based on either the size of the genome in base pairs or the total number of protein-coding genes in the annotated genome.
Table 5. Number of genes associated with the 25 general COG functional categories

Code	Value	%age	Description
J	156	2.66	Translation
A	0	0	RNA processing and modification
K	234	4.00	Transcription
L	200	3.42	Replication, recombination and repair
B	0	0	Chromatin structure and dynamics
D	27	0.46	Cell cycle control, mitosis and meiosis
Y	0	0	Nuclear structure
V	107	1.83	Defense mechanisms
T	240	4.22	Signal transduction mechanisms
M	361	6.17	Cell wall/membrane biogenesis
N	5	0.08	Cell motility
Z	0	0	Cytoskeleton
W	0	0	Extracellular structures
U	65	1.11	Intracellular trafficking and secretion
O	89	1.52	Translation
C	168	2.87	Energy production and conversion
G	369	6.31	Carbohydrate transport and metabolism
E	212	3.62	Amino acid transport and metabolism
F	73	1.25	Nucleotide transport and metabolism
H	130	2.22	Coenzyme transport and metabolism
I	87	1.48	Lipid transport and metabolism
P	202	3.42	Inorganic ion transport and metabolism
Q	47	0.80	Secondary metabolites biosynthesis, transport and catabolism
R	518	8.86	General function prediction only
S	197	3.37	Function unknown
-	2966	51.26	Not in COGs

The total is based on the total number of protein-coding genes in the annotated genome.

Genome comparison with other

Bacteroides genomes

Here, we compare the genome of *B. timonensis* with those of *B. intestinalis* DSM 17393, *B. cellulosolyticus* DSM 14838, *B. fragilis* YCH46, *B. vulgaris* ATCC 8482, *B. thetaiotaomicron* VPI-5482, *B. salanitronis* DSM 18170, *B. helcogenes* P36-108, *B. finegoldii* DSM 17565 and *B. uniformis* ATCC 8492. The draft genome of *B. timonensis* (7.13Mb) is larger than all other studied genomes (Table 6A). It also exhibits a higher G+C content than all other genomes except *B. salanitronis*, *B. helcogenes* and *B. uniformis* (43.3, 46.4, 44.7 and 46.4%, respectively). *B. timonensis* has a higher gene content (5,786) than any other compared genome. The distribution of genes into COG categories was similar in all 10 compared genomes except in the N category (cell motility) for which *B. fragilis*, *B. vulgaris*, *B. salanitronis*, *B. helcogenes* and *B. uniformis* were underrepresented (Figure 7). In addition, *B. timonensis* shared 2,956, 3,081, 2,159, 2,099, 2,379, 1,721, 2,001, 2,039 and 2,268 orthologous genes with *B. intestinalis*, *B. cellulosolyticus*, *B. fragilis*, *B. vulgaris*, *B. thetaiotaomicron*, *B. salanitronis*, *B. helcogenes*, *B. finegoldii* and *B. uniformis*, respectively. Among compared genomes except *B. timonensis*, AGIOS values ranged from 70.16 between *B. salanitronis* and *B. cellulosolyticus* to 88.16% between *B. intestinalis* and *B. cellulosolyticus*. When *B. timonensis* was compared to other species, AGIOS values ranged from 70.29 with *B. salanitronis* to 93.61% with *B. cellulosolyticus* (Table 6B).
Table 6A. Genomic comparison of *B. timonensis* with 9 other *Bacteroides* species†.

Species	Strain	Genome accession number	Genome size (Mb)	G+C content
B. timonensis	AP1	CBVI0100000000	7.13	43.3
		NZ_ABJL00000000		
B. intestinalis	DSM 17393	00	6.05	42.8
		NZ_ACCH00000000		
B. cellulosilyticus	DSM 14838	000	6.87	42.7
B. fragilis	YCH46	NC_006347	5.28	43.2
B. vulgatus	ATCC 8482	NC_009614	5.16	42.2
B. thetaiotaomicron	VPI-5482	NC_004663	6.26	42.8
B. salanitronis	DSM 18170	NC_015164	4.24	46.4
B. helcogenes	P 36-108	NC_014933	4.0	44.7
		NZ_ABX10000000		
B. finegoldii	DSM 17565	00	4.89	42.9
B. uniformis	ATCC 8492	AAYH00000000	4.72	46.4

†Species, Strain, GenBank accession number, genome size and G+C content of all compared genomes.

Table 6B. Genomic comparison of *B. timonensis* with 9 other *Bacteroides* species†.

	B. tim	B. int	B. cel	B. fra	B. vul	B. the	B. sal	B. hel	B. fin	B. uni
B. tim	5,786	2,956	3,081	2,159	2,099	2,379	1,721	2,001	2,039	2,268
B. int	87.73	4,911	2,967	2,085	2,036	2,361	1,667	1,963	2,066	2,278
B. cel	93.61	88.16	5,719	2,130	2,078	2,380	1,655	1,990	2,017	2,231
B. fra	73.76	74.43	73.92	4,184	1,927	2,174	1,517	1,893	1,880	1,995
B. vul	71.91	71.74	71.48	71.87	4,066	2,100	1,638	1,743	1,859	1,898
B. the	73.99	74.65	73.87	75.42	72.21	4,778	1,601	1,891	2,191	2,039
B. sal	70.29	70.65	70.16	70.35	72.18	70.50	3,553	1,466	1,580	1,584
B. hel	76.40	76.51	76.41	74.15	71.62	73.64	70.68	3,244	1,703	1,930
B. fin	74.28	75.01	74.45	75.72	72.22	81.24	70.77	73.99	4,485	1,920
B. uni	77.08	76.83	76.80	74.25	72.45	74.36	71.32	79.37	4,663	

†Numbers of orthologous proteins shared between genomes (above diagonal), AGIOS values (below diagonal) and numbers of proteins per genome (bold numbers).

B. tim = B. timonensis, B. int = B. intestinalis, B. cel = B. cellulosilyticus, B. fra = B. fragilis, B. vul = B. vulgatus, B. the = B. thetaiotaomicron, B. sal = B. salanitronis, B. hel = B. helcogenes, B. uni = B. uniformis, B. fin = B. finegoldii.

http://standardsingenomics.org
Conclusion

On the basis of phenotypic, phylogenetic and genomic analyses (taxono-genomics), we formally propose the creation of *Bacteroides timonensis* sp. nov. that contains strain AP1\(^T\). This strain was isolated from the fecal flora of a 21-year-old woman who suffered from severe anorexia nervosa.

Description of *B. timonensis* sp. nov.

Bacteroides timonensis (tim.o.nen’sis. L. masc. adj. timonensis, of Timone, the name of the hospital where strain AP1\(^T\) was first cultivated). Colonies are translucent and 0.3 mm in diameter on blood-enriched Columbia agar. Cells are rod-shaped with a mean diameter of 0.88 μm. Optimal growth is achieved anaerobically, although the strain is able to grow under microaerophilic conditions, and weakly with 5% CO\(_2\). Growth occurs between 25°C and 37°C, with optimal growth at 37°C. Cells stain Gram-negative and are not motile. Positive reactions for catalase, arginine dihydrolase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, α-arabinosidase, N-acetyl-β-glucosaminidase, glutamic acid decarboxylase, α-fucosidase, nitrate reduction, indole production, alkaline phosphatase, proline arylamidase, leucyl glycine arylamidase, alanine arylamidase, glutamyl glutamic acid arylamidase, and fermentation of mannose and raffinose.

Weak activities are observed for glycine arylamidase and serine arylamidase. Negative reactions are obtained for urease, β-galactosidase-6-phosphatase, β-glucuronidase, arginine arylamidase, phenylalanine arylamidase, leucine arylamidase, pyrogallol acid arylamidase, tyrosine arylamidase and histidine arylamidase. Using an API 50CH strip (Biomerieux), strain AP1\(^T\) is saccharolytic. Cells are susceptible to amoxicillin-clavulanate, ceftriaxone, imipenem, trimethoprim-sulfamethoxazole, metronidazole and doxycycline but resistant to amoxicillin, vancomycin and gentamicin.

The 16S rRNA and genome sequences are deposited in GenBank under accession numbers JX041639 and CBVI000000000, respectively. The G+C content of the genome is 43.3%. The habitat of the organism is the digestive tract. The type strain AP1\(^T\) (= CSUR P194 = DSMZ 26083) was isolated from the fecal flora of a French Caucasian female who suffered from a severe restrictive form of anorexia nervosa. This strain has been found in Marseille, France.

Figure 7. Distribution of predicted genes of *B. timonensis* and 9 other *Bacteroides* species into COG categories. B. uni = *B. uniformis*, B. fin = *B. finegoldii*, B. hel = *B. helcogenes*, B. sal = *B. salanitronis*, B. the = *B. thetaotaomicron*, B. vul = *B. vulgatus*, B. fra = *B. fragilis*, B. cel = *B. cellulosilyticus*, B. int = *B. intestinalis*, B. tim = *B. timonensis*.
References

1. Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, et al. Microbial culuturoomics: paradigm shift in the human gut microbiome study. *Clin Microbiol Infect* 2012; 18:1185-1193. [PubMed](http://dx.doi.org/10.1016/j.clinmicinfection.2012.07.025)

2. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. *Int J Syst Evol Microbiol* 2010; 60:249-266. [PubMed](http://dx.doi.org/10.1099/ijs.0.006949-0)

3. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. *Microbiol Today* 2006; 33:152-155.

4. Wayne LG, Brenner DJ, Colwell PR, Grimont PAD, Kandler O, Kr槌evsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. *Int J Syst Bacteriol* 1987; 37:463-464. [PubMed](http://dx.doi.org/10.1099/00207713-37-4-463)

5. Rossello-Mora R. DNA-DNA Reassociation Methods Applied to Microbial Taxonomy and Their Critical Evaluation. In: Stackebrandt E (ed), Molecular Identification, Systematics, and population Structure of Prokaryotes. Springer, Berlin, 2006; p. 23-50.

6. Welker M, Moore ER. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. *Syst Appl Microbiol* 2011; 34:2-11. [PubMed](http://dx.doi.org/10.1016/j.syapm.2010.11.013)

7. Kokcha S, Mishra AK, Lagier JC, Million M, Leroy Q, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of *Bacillus timonensis* sp. nov. *Stand Genomic Sci* 2012; 6:346-355. [PubMed](http://dx.doi.org/10.4056/sigs.2776064)

8. Ramasamy D, Mishra AK, Lagier JC, Padmanabhan R, Rossi-Tamisier M, Sentauxa E, Raoult D, Fournier PE. A polyphasic strategy incorporating genomic data for the taxonomic description of new bacterial species. *Int J Syst Evol Microbiol* 2013; 64:384-391. [PubMed](http://dx.doi.org/10.1099/ijsem.0.057091-0)

9. Lagier JC, El Karkouri K, Nguyen TT, Armougom F, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of *Anaerococcus senegalensis* sp. nov. *Stand Genomic Sci* 2012; 6:116-125. [PubMed](http://dx.doi.org/10.4056/sigs.2415480)

10. Mishra AK, Gimenez G, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of *Alistipes senegalensis* sp. nov. *Stand Genomic Sci* 2012; 6:304-314. [PubMed](http://dx.doi.org/10.4056/sigs.2625821)

11. Lagier JC, Armougom F, Mishra AK, Ngyuen TT, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of *Alistipes timonensis* sp. nov. *Stand Genomic Sci* 2012; 6:315-324. [PubMed](http://dx.doi.org/10.4056/sigs.2685971)

12. Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of *Clostridium senegalense* sp. nov. *Stand Genomic Sci* 2012; 6:386-395. [PubMed](http://dx.doi.org/10.4056/sigs.2956294)

13. Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of *Peptoniphilus timonensis* sp. nov. *Stand Genomic Sci* 2012; 7:1-11. [PubMed](http://dx.doi.org/10.4056/sigs.2956294)

14. Mishra AK, Lagier JC, Rivet R, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of *Paenibacillus senegalensis* sp. nov. *Stand Genomic Sci* 2012; 7:70-81. [PubMed](http://dx.doi.org/10.4056/sigs.3056450)

15. Lagier JC, Gimenez G, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of *Herbaspirillum massiliense* sp. nov. *Stand Genomic Sci* 2012; 7:200-209. [PubMed](http://dx.doi.org/10.4056/sigs.3256677)

16. Kokcha S, Ramasamy D, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of *Brevibacterium senegalense* sp. nov. *Stand Genomic Sci* 2012; 7:233-245. [PubMed](http://dx.doi.org/10.4056/sigs.3256677)

17. Ramasamy D, Kokcha S, Lagier JC, N’Guyen TT, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of *Aeromicrobiium massiliense* sp. nov. *Stand Genomic Sci* 2012; 7:246-257. [PubMed](http://dx.doi.org/10.4056/sigs.3306717)

18. Lagier JC, Ramasamy D, Rivet R, Raoult D, Fournier PE. Non-contiguous finished genome
sequence and description of *Cellulomonas massilensis* sp. nov. *Stand Genomic Sci* 2012; 7:258-270. PubMed http://dx.doi.org/10.4056/sigs.3316719

19. Lagier JC, Karkouri K, Rivet R, Couderc C, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of *Senegalemassilia anaerobia* gen. nov., sp. nov. *Stand Genomic Sci* 2013; 7:343-356. PubMed http://dx.doi.org/10.4056/sigs.3246665

20. Mishra AK, Hugon P, Nguyen TT, Robert C, Couderc C, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Peptoniphilus obesi* sp. nov. *Stand Genomic Sci* 2013; 7:357-369. PubMed http://dx.doi.org/10.4056/sigs.3276671

21. Mishra AK, Lagier JC, Nguyen TT, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Peptoniphilus senegalensis* sp. nov. *Stand Genomic Sci* 2013; 7:370-381. PubMed http://dx.doi.org/10.4056/sigs.3366764

22. Lagier JC, Karkouri K, Mishra AK, Robert C, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Enterobacter massilensis* sp. nov. *Stand Genomic Sci* 2013; 7:399-412. PubMed http://dx.doi.org/10.4056/sigs.3396830

23. Hugon P, Ramasamy D, Rivet R, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Alistipes obesi* sp. nov. *Stand Genomic Sci* 2013; 7:427-439. PubMed http://dx.doi.org/10.4056/sigs.3336746

24. Hugon P, Mishra AK, Nguyen TT, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Brevibacillus massilensis* sp. nov. *Stand Genomic Sci* 2013; 8:1-14. PubMed http://dx.doi.org/10.4056/sigs.3466975

25. Mishra AK, Hugon P, Nguyen TT, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Enorma massilensis* gen. nov., sp. nov., a new member of the Family *Coriobacteriaceae*. *Stand Genomic Sci* 2013; 8:290-305. PubMed http://dx.doi.org/10.4056/sigs.3426906

26. Ramasamy D, Lagier JC, Gorlas A, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Bacillus massiliosenegalensis* sp. Nov. *Stand Genomic Sci* 2013; 8:264-278. PubMed http://dx.doi.org/10.4056/sigs.3496989

27. Ramasamy D, Lagier JC, Nguyen TT, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Dielma fastidiosa* gen. nov., sp. nov., a new member of the Family *Erysipelotrichaceae*. *Stand Genomic Sci* 2013; 8:336-351. PubMed http://dx.doi.org/10.4056/sigs.3567059

28. Mishra AK, Pfleiderer A, Lagier JC, Robert C, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Bacillus massielanoarexii* sp. nov. *Stand Genomic Sci* 2013; 8:465-479. PubMed http://dx.doi.org/10.4056/sigs.4087826

29. Hugon P, Ramasamy D, Robert C, Couderc C, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Kalliopyga massilensis* gen. nov., sp. nov., a new member of the family *Clostridiales Incertae Sedis XI*. *Stand Genomic Sci* 2013; 8:500-515. PubMed http://dx.doi.org/10.4056/sigs.4047997

30. Padmanabhan R, Lagier JC, Dangui NPM, Michelle C, Couderc C, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Megasphaera massilensis*. *Stand Genomic Sci* 2013; 8:525-538. PubMed http://dx.doi.org/10.4056/sigs.4077819

31. Mishra AK, Edouard S, Dangui NPM, Lagier JC, Caputo A, Blanc-Tailleur C, Ravaux I, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Nosocomiibacillus massilensis* sp. nov. *Stand Genomic Sci* 2013; 9:205-219. PubMed http://dx.doi.org/10.4056/sigs.4378121

32. Mishra AK, Lagier JC, Robert C, Raoul D, Fournier PE. Genome sequence and description of *Timonella senegalensis* gen. nov., sp. nov., a new member of the suborder *Micrococccaeae*. *Stand Genomic Sci* 2013; 8:318-335. PubMed http://dx.doi.org/10.4056/sigs.3476977

33. Keita MB, Diene SM, Robert C, Raoul D, Fournier PE. Non contiguous-finished genome sequence and description of *Bacillus massiliogorillae* sp. nov. *Stand Genomic Sci* 2013; 9:93-105. PubMed http://dx.doi.org/10.4056/sigs.4388124

34. Mediannikov O, El Karkouri K, Robert C, Fournier PE, Raoul D. Non contiguous-finished genome sequence and description of *Bartonella florenceae* sp. nov. *Stand Genomic Sci* 2013; 9:185-196. PubMed http://dx.doi.org/10.4056/sigs.4358060

35. Lo CI, Mishra AK, Padmanabhan R, Samb Ba B, Gassama Sow A, Robert C, Couderc C, Faye N, Raoul D, Fournier PE, Fenoll T. Non contiguous-finished genome sequence and description of *Clostridium dakarense* sp. nov. *Stand Genomic Sci* 2013; 9:14-27. PubMed http://dx.doi.org/10.4056/sigs.4097825

36. Mishra AK, Hugon P, Robert C, Raoul D, Fournier PE. Non contiguous-finished genome se-
sequence and description of Peptoniphilus grossensis sp. nov. Stand Genomic Sci 2012; 7:320-330. PubMed

37. Mediannikov O, El Karkouri K, Diatta G, Robert C, Fournier PE, Raoul D. Non contiguous-finished genome sequence and description of Bartonella senegalensis sp. nov. Stand Genomic Sci 2013; 8:279-289. PubMed http://dx.doi.org/10.4056/sigs.3807472

38. Garrity GM, Holt JG. Taxonomic Outline of the Archaea and Bacteria. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 155-166.

39. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbrial flora. Science 2005; 308:1635-1638. PubMed http://dx.doi.org/10.1126/science.1110591

40. List of Prokaryotic names with standing nomenclature (LPSN). http://www.bacterio.cict.fr

41. Smith CJ, Rocha ER, Paster BJ. 2005. The medically important Bacteroides spp. in health and disease. In The Prokaryotes, an evolving electronic resource for the microbiological community, Release 3.19 (18.3.2005) (http://141-150-157-117:8080/prokPUB/index.htm). Edited by M. Dworkin. New York: Springer.

42. Finegold SM, George WL. 1989. Anaerobic Infections in Humans. San Diego: Academic Press.

43. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed http://dx.doi.org/10.1038/nbt1360

44. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576

45. Validation List No. 143. Int J Syst Evol Microbiol 2012; 62:1-4. http://dx.doi.org/10.1099/ijsem.0.039487-0

46. Krieg NR, Ludwig W, Euzéby J, Whitman WB. Phylum XIV. Bacteroidetes phyL. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 4, Springer, New York, 2011, p. 25.

47. Krieg NR. Class I. Bacteroidia class. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 4, Springer, New York, 2011, p. 25.

48. Krieg NR. Order I. Bacteroidales ord. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 4, Springer, New York, 2011, p. 25.

49. Skerman VBD, McGowan V, Sneth PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980; 30:225-420. http://dx.doi.org/10.1099/00207713-30-1-225

50. Pribram E. Klassifikation der Schizomyceten. Klassifikation der Schizomyceten (Bakterien), Franz Deuticke, Leipzig, 1933, p. 1-143.

51. Castellani A, Chalmers AJ. Genus Bacteroides Castellani and Chalmers, 1918. Manual of Tropical Medicine, Third Edition, Williams, Wood and Co., New York, 1919, p. 959-960.

52. Holdeman LV, Moore WEC. Genus I. Bacteroides Castellani and Chalmers 1919, 1599. In: Buchanan RE, Gibbons NE (eds), Bergey's Manual of Determinative Bacteriology, Eighth Edition, The Williams and Wilkins Co., Baltimore, 1974, p. 385-404.

53. Cato EP, Kelley RW, Moore WEC, Holdeman LV. Bacteroides zoogoiformans, Weinberg, Nativelle, and Prérot 1937) corrig. comb. nov.: emended description. Int J Syst Bacteriol 1982; 32:271-274. http://dx.doi.org/10.1099/00207713-32-3-271

54. Shah HN, Collins MD. Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 1989; 39:85-87. http://dx.doi.org/10.1099/00207713-39-1-85

55. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. PubMed http://dx.doi.org/10.1038/75556

56. 16S Yourself database. (http://www.mediterraneo-infection.com/article.php?larub=152&titre=16s-yourself).

57. Eggert AH, Gagnon BH. The Bacteroides of Human Feces. J Bacteriol 1933; 25:389-413. PubMed

58. Shah HN. 1992. The genus Bacteroides and related taxa. In The Prokaryotes, 2nd edn, pp. 3593–3607. Edited by Balows A, Truper HG,
Bacteroides timonensis

Dworkin M, Harder M & Schleifer KH. New York: Springer.

59. Bakir MA, Kitahara M, Sakamoto M, Matsumoto M, Benno Y. *Bacteroides intestinalis* sp. nov., isolated from human faeces. *Int J Syst Evol Microbiol* 2006; 56:151-154. PubMed [http://dx.doi.org/10.1099/ijs.0.63914-0]

60. Robert C, Chassard C, Lawson PA, Bernaliere-Donadille A. *Bacteroides cellobiosilyticus* sp. nov., a cellulolytic bacterium from the human gut microbial community. *Int J Syst Evol Microbiol* 2007; 57:1516-1520. PubMed [http://dx.doi.org/10.1099/ijs.0.64998-0]

61. Johnson JL. Taxonomy of the *Bacteroides* I. Deoxyribonucleic acid homologies among *Bacteroides fragilis* and other saccharolytic *Bacteroides* species. *Int J Syst Evol Microbiol* 1978; 28:245-256.

62. Cato EP, Johnson JL. Reinstatement of species rank for *Bacteroides fragilis, B. ovatus, B. distasonis, B. thetataoaomicron*, and *B. vulgatus*: Designation of Neotype Strains for *Bacteroides fragilis* (Veillon and Zuben) Castellani and Chalmers and *Bacteroides thetataoaomicron* (Distaso) Castellani and Chalmers. *Int J Syst Bacteriol* 1976; 26:230-237. [http://dx.doi.org/10.1099/00207713-26-2-230]

63. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JL. A genomic view of the human-*Bacteroides thetataoaomicron* symbiosis. *Science* 2003; 299:2074-2076. PubMed [http://dx.doi.org/10.1126/science.1080029]

64. Lan PT, Sakamoto M, Sakata S, Benno Y. *Bacteroides barnesiae* sp. nov., *Bacteroides salanitronis* sp. nov. and *Bacteroides gallinarum* sp. nov., isolated from chicken caecum. *Int J Syst Evol Microbiol* 2006; 56:2853-2859. PubMed [http://dx.doi.org/10.1099/ijs.0.64517-0]

65. Benno Y, Watabe J, Mitsuoka T. *Bacteroides pyogenes* sp. nov., *Bacteroides suis* sp. nov. and *Bacteroides helcogenes* sp. nov., New Species from Abscesses and Feces of Pigs. *Syst Appl Microbiol* 1983; 14:396-407.

66. Pati A, Gronow S, Zeytun A, Lapidus A, Nolan M, Hammon N, Deshpande S, Cheng JF, Tapia R, Han C, et al. Complete genome sequence of *Bacteroides helcogenes* type strain (P 36-108). *Stand Genomic Sci* 2011; 4:45-53. PubMed [http://dx.doi.org/10.4056/sigs.1513795]

67. Bakir MA, Kitahara M, Sakamoto M, Matsumoto M, Benno Y. *Bacteroides thetataoaomicron* sp. nov., isolated from human faeces. *Int J Syst Evol Microbiol* 2006; 56:931-935. PubMed [http://dx.doi.org/10.1099/ijs.0.64084-0]

68. Seng P, Drancourt M, Gouriet F, La SB, Fournier PE, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. *Clin Infect Dis* 2009; 49:543-551. PubMed [http://dx.doi.org/10.1086/600885]

69. Prodigal. [http://prodigalornl.gov]

70. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank. *Nucleic Acids Res* 2012; 40:D48-D53. PubMed [http://dx.doi.org/10.1093/nar/gkr1202]

71. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res* 1997; 25:955-964. PubMed [http://dx.doi.org/10.1093/nar/25.5.955]

72. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Res* 2007; 35:3100-3108. PubMed [http://dx.doi.org/10.1093/nar/gkm160]

73. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. *J Mol Biol* 2004; 340:783-795. PubMed [http://dx.doi.org/10.1016/j.jmb.2004.05.028]

74. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J Mol Biol* 2001; 305:567-580. PubMed [http://dx.doi.org/10.1006/jmbi.2000.4315]

75. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. *Nucleic Acids Res* 2011; 39:W347-W352. PubMed [http://dx.doi.org/10.1093/nar/gkr483]

76. Aziz RK, Bartels D, Best AA, Delongh M, Disz T, Edwards RA, Formsmka K, Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations using subsystems technology. *BMC Genomics* 2008; 9:75. PubMed [http://dx.doi.org/10.1186/1471-2164-9-75]

77. Rutherford K, Parkhill J, Crook J, Hornsell T, Rice P, Rajandream MA, Barrell B. Artemis: sequence visualization and annotation. *Bioinformatics* 2000; 16:944-945. PubMed [http://dx.doi.org/10.1093/bioinformatics/16.10.944]

78. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. *Bioinformatics* 2009; 25:119-120. PubMed [http://dx.doi.org/10.1093/bioinformatics/btn578]
79. Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394-1403. PubMed http://dx.doi.org/10.1101/gr.2289704

80. Lechner M, Findeib S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124. PubMed http://dx.doi.org/10.1186/1471-2105-12-124