Circular dichroism in spline shaped chiral metamaterial at mid-infrared

Cite as: AIP Advances 9, 115105 (2019); https://doi.org/10.1063/1.5127200
Submitted: 09 September 2019 . Accepted: 26 October 2019 . Published Online: 13 November 2019

H. Ali, J. Chen, and G. Zhang
Circular dichroism in spline shaped chiral metamaterial at mid-infrared

H. Ali,1,a) J. Chen,2 and G. Zhang1

AFFILIATIONS
1Key Laboratory of Quark and Lepton Physics (MOE), College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
2College of Physics and Telecommunications, Huanggang Normal University, Huanggang 438000, China

a)hananelia@live.co.uk

ABSTRACT
Currently, scientists are intrigued by the vast potential of chiral metamaterials. These include a negative index of refraction, optical activity, circular dichroism, and asymmetric transmission. A planar chiral metamaterial supporting completely different left-hand and right-hand oriented polarized light within a spline shaped chiral metamaterial is proposed. Robust circular dichroism of the spline-shaped planned structure numerically is acquired. The reliance on geometrical parameters of spectral features, precisely spline thickness, and scanning angle is analyzed by a commercial software referred to as CST MICROWAVE STUDIO supported by the finite integration technique. The chirality parameter and, therefore, the surface-field response of the proposed structure are also determined. Because of the increased surface-field reaction and controlled features, the projected structure might have the potential for biosensing enforcements.

I. INTRODUCTION
A particle is chiral if it cannot be superimposed, which implies that a chiral cannot be divided into two equal elements and appear identical.1 For rounded polarized right-hand (R) and rounded polarized left-hand (L) incident light, the optical reaction of two-dimensional planner chiral metamaterials (PCMs) is distinct. Circular dichroism (CD) is usually unified with a method referred to as spectrometry that uses circularly polarized light to research structural aspects of optically active chiral metamaterials, and this will be simplified by the formula “CD = A_L – A_R”, where A_L and A_R are the absorptions of left- and right-handed circular excitation. Circular dichroism is employed to check biological molecules, their structure, and interactions with different particles.2–11 Chirality in two- and three-dimensional structures is discovered and studied.1,3–15 The chiral optical response of three-dimensional plasmonic nanostructures is noticeably more pronounced; however, these kinds of nanostructures require more complex fabrication compared to planar structures.2,3–6 Nonetheless, even fabrics that are not chiral such as quasiplanar and planar plasmonic types exhibit significant chiral interaction with circularly polarized light.2,6–11 3D chiral metamaterial structure designs have been developed with the goal of obtaining enhanced circular dichroism and optical chirality.20–26

Infrared frequencies, in particular mid-infrared spectrum, are appropriate for biological sensing because they embrace molecular oscillations which can be useful in biochemistry for identification of essential elements such as DNA, lipids, or proteins.1,27

In this paper, to accumulate chirality in the mid-infrared spectrum, a spline-shaped chiral metamaterial is recommended. Numerically, robust circular dichroism is acquired. The Finite Integration Technique (FIT) method is employed to determine the optical chirality and, therefore, the distribution of electrical fields. FIT is a numeral simulation technique for approximation-free solutions of differential equations in their basic form. It is conjointly the mathematical base for simulation software CST MICROWAVE STUDIO. The reliance on the geometrical parameters is additionally tested with FIT methodology to extract spectral characteristics. The proposed 3D chiral metamaterial structure might have the potential to be used for the implementation of biosensors for chiral biomolecules in the infrared regime.
II. MATERIALS AND METHODS

Figure 1 demonstrates the chiral structure unit schematics. It consists of a substrate and a spline. The unit cell’s substrate is made of glass with a dielectric constant of $\varepsilon_r = 2.2099$, and the spline is made of silicon with a relative permittivity of $\varepsilon_r = 11.9$; the dielectric properties of both materials were chosen from material library supported by CST MICROWAVE STUDIO. The chiral metamaterial structure is simulated numerically using CST MICROWAVE STUDIO. The Floquet port Z_{max} can stimulate a plane wave propagating on the coordinate axis. An incident plane wave with 45° angles is employed to use left and right circular polarized agitation. Because the coming light wave hits the structure, it will be captivated, mirrored, and transferred through the fabric. The frequency-domain solver is employed to induce the results in this text.

III. RESULTS AND DISCUSSION

To characterize a chiral structure, the spectrum of circular dichroism (CD) is typically examined. For determining the CD, the absorbance spectra of the structure are acquired using the FIT technique for substrate width of 3150 nm, substrate height of 1350 nm, and substrate thickness of 1800 nm, and a spline thickness of $\text{spline_th} = 1350$ nm and spline width of $\text{spline_w} = 162$ nm. Absorption spectra for left and right circular incident waves are given by Eqs. (1) and (2), and the distinction in absorption that determines the circular dichroism CD is given by Eq. (3),

$$A_{\text{Left}} = 1 - R_L - T_L,$$
$$A_{\text{Right}} = 1 - R_R - T_R,$$
$$CD = A_{\text{Left}} - A_{\text{Right}},$$

where R_L and T_L are the reflection and transmission of left circular excitation. R_R and T_R are the reflection and transmission of right circular excitation. A_{Left} and A_{Right} are the absorptions of left and right circular excitation, respectively.

Figures 2(a) and 2(b) show that there are two resonances around frequencies 83.759 THz and 95.063 THz. For the first
resonant frequency (83.759 THz), the absorption dips for left incident waves are extending far down than that for right incident waves, which implies that the depth for the right incident wave is robust than the left incident wave, whereas for resonant frequencies at 95.063 THz, left circular excitation is far stronger than right circular wave excitation. The detailed CD results are calculated by using Eq. (3) underneath the left and right excitations; see Fig. 2(b). As is seen in Fig. 2(b), the structure has three resonances at the frequencies 83.759 THz and 95.063 THz. Therefore, the composition exhibits CD within the mid-IR regime.

Figure 3(a) shows that ellipticity (η) has two peaks at the resonance frequencies of 83.759 THz and 95.063 THz that ensure the observation of circular dichroism at those frequencies. However, it should be noted that the real a part of the chirality parameter (κ) and the ellipticity are calculated from the following equations:

$$\eta = \frac{1}{2} \tan^{-1}\left(\frac{|T_{\text{Left}}|^2 - |T_{\text{Right}}|^2}{|T_{\text{Left}}|^2 + |T_{\text{Right}}|^2}\right),$$

(4)

$$\text{Re}(\kappa) = \frac{\arg(T_{\text{Left}}) - \arg(T_{\text{Right}})}{2kd},$$

(5)

where k is the wave vector number, d is the spline thickness, and m is an integer with its values in the domain $-\pi < \arg(T_{\text{Left}}) - \arg(T_{\text{Right}}) < 2m\pi$ for single unite cell. It is ascertained that chirality values...
in Fig. 3(b) do not vanish for right-handed and left-handed excitations. This implies that the projected spline-shaped chiral metamaterial has the flexibility to differentiate between the molecules that spin on the left direction and molecules that rotate on the right direction.

To understand the originality of the optical reaction, the surface-field disseminations at the resonant points underneath left- and right-handed agitations are analyzed. Figures 4(a) and 4(b) show the electrical field disseminations for left excitement and right excitement at the resonance points 83.759 THz and 95.063 THz. As it is seen from Fig. 4, the electrical charges have localized in the edges of the spline. Particles in those edges could endure an active reciprocation with the magnetic force field. This means the resonant frequencies are heavily influenced by the negligible electrical setting of the surface-field area of the spline-shaped chiral metamaterial. This fact is the basis of the bioassay capacities of chiral constructions.

IV. CONTROLLING THE CHIRAL SPECTRUM

To tune the predicted chiral’s spectral reaction of the projected chiral structure, we tend to investigate the CD spectrum’s dependency on spline geometrical parameters such as width, thickness, the rotation angle of the spline, and incident wave angles. Figure 5 presents the relation between circular dichroism and spline geometry. Figure 5(a) illustrates the impact of spline width on CD. From Fig. 5(a), we see that CD spectra are not affected by changing the spline width where the abundance of CD changes softly based on spline width at the primary resonance. Figure 5(b) presents the reliance of CD spectra on the spline thickness. As may be seen from Fig. 5(b), the amplitude of CD declined with rising the thickness of the spline. In Fig. 5(c), we presented that CD spectra can be tuned also by rotation of the spline for different angles (60°, 90°, 150°, and 180°). Figure 5(d) clearly shows that the scanning angle θ affects CD spectra. The CD amplitude will increase first off for θ = 100°, then decreases considerably for θ = 150° and 200°, severely, and then rises once more for θ = 250° and 300°, severally. As a result, resonance frequencies of CD are contingent on the geometrical parameters (in our case, spline thickness and scanning angle); in the meantime, the spline width has no vital effects on CD spectra. Thus, the CD oscillation frequencies from the anticipated structure in this paper may be simply tuned by changing spline thicknesses and scanning angles θ. Due to differences in the resonance frequency with dynamic geometric composition sizes (in our case, spline thickness), the localized surface plasmon resonance (LSPR) excitement is linked to the CD spectra within the structure.

V. CONCLUSION

In conclusion, a numerical study of a spline-shaped chiral metamaterial is given to attain optical chirality within the mid-IR spectrum. A robust CD from this structure is set theoretically. The simulation outcomes specified that the behavior of circular dichroism of the projected structure is dependent on the geometrical parameters (such as spline thickness and spline rotation angle) and scanning angle (θ). The chirality parameter and electric field distribution are investigated. Because of the improved surface chiroptical field response and amenable spectrum behavior, the proposed spline-shaped chiral metamaterial might be used for biosensing purposes such as disclosure of biomolecules that have chiral behavior in the mid-infrared range.
REFERENCES

1. E. Petronijevic, G. Leahu, R. Li Voli et al., “Photo-acoustic detection of chirality in metal-polyethylene metasurfaces,” Appl. Phys. Lett. 114, 053101 (2019).

2. D. L. Jaggiard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. 18, 211–216 (1979).

3. Y. Xia, L. Min, H. Yidong, D. Jinglei, and G. Fuhua, “Active perfect absorber based on planar anisotropic chiral metamaterials,” Opt. Express 27, 6801–6814 (2019).

4. P. Pachidis and E. V. Ferry, “Tunable optical chirality in a metamaterial platform with off-resonantly coupled metal-dielectric components,” Opt. Express 26(13), 17289–17299 (2018).

5. J. K. Gansel, M. Thié, M. S. Rill et al., “Gold helix photonic metamaterial as a broadband circular polarizer,” Science 325, 1513–1515 (2009).

6. A. Guerrero-Martinez, J. L. Alonso-Gomez, B. Auguié et al., “From individual to collective chirality in metal nanoparticles,” Nano Today 6, 381–400 (2011).

7. A. O. Govorov, Z. Fan, P. Hernandez et al., “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).

8. M. Hentschel, L. Wu, M. Schaferling et al., “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012).

9. Z. Zhou and H. Yang, “Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial,” Appl. Phys. A 119, 115–119 (2015).

10. G. Armelles, A. Cebollada, H. Y. Feng et al., “Interaction effects between magnetic and chiral building blocks: A new route for tunable magneto-chiral plasmonic structures,” ACS Photonics 2, 1272–1277 (2015).

11. V. Tasco, M. Exposito, F. Todisco et al., “Three-dimensional nanohelices for chiral photonics,” Appl. Phys. A 122, 280 (2016).

12. S. Oh and O. Hess, “Chiral metamaterials: Enhancement and control of optical activity and circular dichroism,” Nano Convergence 2, 24 (2015).

13. A. Papakostas, A. Potts, D. M. Bagnall et al., “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).

14. M. Kuwata-Gonokami, N. Saito, Y. Ino et al., “Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).

15. M. Decker, M. W. Klein, M. Wegener et al., “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32, 856–858 (2007).

16. C. Menzel, C. Rockstuhl, T. Paul et al., “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett. 93, 233106 (2008).

17. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16, 11802–11807 (2008).

18. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen et al., “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).

19. E. Hendry, T. Carpy, J. Johnston et al., “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).

20. K. Konishi, M. Nomura, K. Nakagai et al., “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).

21. J. Li, F. Q. Yang, and J. F. Dong, “Design and simulation of L-shaped chiral negative refractive index structure,” Prog. Electromagn. Res. 116, 395–408 (2011).

22. F. Eftekhar and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86, 075428 (2012).

23. M. Schaferling, D. Dregely, M. Hentschel et al., “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).

24. S. Kaya, “Circular dichroism from windmill-shaped planar structures operating in mid-infrared regime,” Opt. Mater. Express 4, 2332–2339 (2014).

25. J. Cao, C. Wei, and L. Zhang, “Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials,” Opt. Mater. Express 4, 1526–1534 (2014).

26. W. Li, Z. J. Coppins, L. V. Bestee et al., “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).

27. R. Daniel, L. Odeta, J. Davide et al., “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).