Prolonged Prone Position Ventilation Is Associated With Reduced Mortality in Intubated COVID-19 Patients

Daniel Okin, MD, PhD; Ching-Ying Huang; George A. Alba, MD; Sirus J. Jesudasen, MD; Nupur A. Dandawate, MD; Alexander Gavralidis, MD; Leslie L. Chang, MD; Emily E. Moin, MD; Imama Ahmad, MD; Alison S. Witkin, MD; C. Corey Hardin, MD, PhD; Kathryn A. Hibbert, MD; Aran Kadar, MD; Patrick L. Gordan, MD; Hang Lee, PhD; B. Taylor Thompson, MD; Lisa M. Bebell, MD; and Peggy S. Lai, MD, MPH

BACKGROUND: Prone position ventilation (PPV) is resource-intensive, yet the optimal strategy for PPV in intubated patients with COVID-19 is unclear.

RESEARCH QUESTION: Does a prolonged (24 or more h) PPV strategy improve mortality in intubated COVID-19 patients compared with intermittent (~16 h with daily supination) PPV?

STUDY DESIGN AND METHODS: Multicenter, retrospective cohort study of consecutively admitted intubated COVID-19 patients treated with PPV between March 11 and May 31, 2020. The primary outcome was 30-day all-cause mortality. Secondary outcomes included 90-day all-cause mortality and prone-related complications. Inverse probability treatment weights (IPTW) were used to control for potential treatment selection bias.

RESULTS: Of the COVID-19 patients who received PPV, 157 underwent prolonged and 110 underwent intermittent PPV. Patients undergoing prolonged PPV had reduced 30-day (adjusted hazard ratio [aHR], 0.475; 95% CI, 0.336-0.670; \(P < .001 \)) and 90-day (aHR, 0.638; 95% CI, 0.461-0.883; \(P = .006 \)) mortality compared with intermittent PPV. In patients with \(\text{PAO}_2/\text{FiO}_2 \leq 150 \) at the time of pronation, prolonged PPV was associated with reduced 30-day (aHR, 0.357; 95% CI, 0.213-0.597; \(P < .001 \)) and 90-day mortality (aHR, 0.562; 95% CI, 0.357-0.884; \(P = .008 \)). Patients treated with prolonged PPV underwent fewer pronation and supination events (median, 1; 95% CI, 1-2 vs 3; 95% CI, 1-4; \(P < .001 \)). PPV strategy was not associated with overall PPV-related complications, although patients receiving prolonged PPV had increased rates of facial edema and lower rates of peri-proning hypotension.

INTERPRETATION: Among intubated COVID-19 patients who received PPV, prolonged PPV was associated with reduced mortality. Prolonged PPV was associated with fewer pronation and supination events and a small increase in rates of facial edema. These findings suggest that prolonged PPV is a safe, effective strategy for mortality reduction in intubated COVID-19 patients.

CHEST 2023; 163(3):533-542

KEY WORDS: acute hypoxemic respiratory failure; COVID-19; mechanical ventilation; prone position ventilation

FOR EDITORIAL COMMENT, SEE PAGE 469

ABBREVIATIONS: \(\Delta \text{PF} = \text{change in } \text{PAO}_2/\text{FiO}_2 \text{ ratio with proning; aHR} = \text{adjusted hazard ratio; CCI} = \text{Charlson comorbidity indexes; HR} = \text{hazard ratio; IPTW} = \text{inverse probability treatment weights; IQR} = \text{interquartile range; LOS} = \text{length of stay; LTTV} = \text{low tidal volume ventilation; PPV} = \text{prone position ventilation; SARS-CoV-2} = \text{severe acute respiratory syndrome coronavirus 2; SOFA} = \text{Sequential organ failure assessment} \)

AFFILIATIONS: From the Division of Pulmonary and Critical Care Medicine (D. O., C.-Y. H., G. A. A., A. S. W., C. C. H., K. A. H., B. T. T., and P. S. L.), the Department of Medicine (S. J. J., L. L. C., E. E. M., H. L., and L. M. B.), Massachusetts General Hospital, Boston, MA; the Department of Medicine (N. A. D. and A. G.), and the Division of Pulmonary, Critical Care and Sleep Medicine (P. L. G.), Salem Hospital, Salem, MA; and the Division of Pulmonary
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, results in critical illness in up to 5% of patients. Most patients require prolonged mechanical ventilation, with mortality comparable to that of ARDS. Few effective therapies are available for reducing mortality in COVID-19 patients admitted to the ICU, highlighting the importance in identifying additional therapies for this high-mortality group.

Prone position ventilation (PPV) reduces mortality in ARDS. However, PPV is a resource-intensive intervention requiring multiple highly trained staff to execute each pronation and supination event. Additionally, the optimal duration for PPV is unknown. Current practice tends to follow the protocol set out in the PROSEVA trial, whereby patients were randomized to receive PPV for at least 16 h per day, with daily supination events. Meta-analyses have demonstrated a mortality benefit when patients are proned for > 12 h/day, but the physiologic benefits of PPV continue to accrue through 24 h of prone ventilation. Furthermore, supination is frequently accompanied by a recruitment event, possibly increasing lung stress and strain, ventilator-induced lung injury, and mortality. These observations suggest that prolonged exposure to PPV may offer an additional mortality benefit. Three prior studies evaluated safety and efficacy of PPV longer than 24 h; however, no studies have compared this prolonged PPV approach with one including daily supination. Additionally, lengthening PPV duration would reduce the frequency of pronation and supination events, decreasing the number of staff required to implement this lifesaving treatment. Thus, determining whether a prolonged PPV strategy is efficacious may benefit both individual patients and strained hospital systems by reducing health care resource utilization.

Early in the pandemic, uncertainty about appropriate treatment of critically ill COVID-19 patients led to heterogeneity in clinical practice, providing a unique opportunity to study which PPV parameters contribute to improved mortality. In this study, we assessed the association between prolonged (>24 h prone) or intermittent (~16 h prone with daily supination) PPV strategy and mortality in intubated COVID-19 patients.

Take-home Points

Study Question: Does prolonged prone position ventilation (PPV) improve mortality in patients intubated for COVID-19?

Results: Prolonged PPV (>24 h) is associated with improved 30-day and 90-day survival in patients intubated for COVID-19 compared with intermittent PPV (~16 h prone with daily supination) without an increased risk of overall complications, and reduces the total number of pronation and supination episodes.

Interpretation: Among intubated COVID-19 patients, prolonged PPV was associated with improved 30-day and 90-day survival, fewer pronation and supination episodes, and no increased risk of overall complications compared with intermittent PPV.

Study Design and Methods

This is a retrospective cohort study of all patients with confirmed COVID-19 and acute respiratory failure consecutively admitted to a medical or surgical ICU at three Mass General Brigham hospitals in the Boston, Massachusetts, metropolitan area, from March 11, 2020, through May 31, 2020. These hospitals included both academic medical centers and community hospitals. Each hospital employed dedicated proning teams comprising individuals with prior experience with PPV. Positive end-expiratory pressure (PEEP) was set at each institution either based on ARDSNet PEEP/FiO2 tables or best compliance during a decremental PEEP titration trial. Remdesivir was given as a 200-mg single dose on day 1 followed by 100 mg daily for 5 days. Tocilizumab was the anti-IL-6 monoclonal antibody administered most often in this cohort, typically given as a 400-mg single dose. Most patients did not receive high-dose steroids early in the course of the disease. Inclusion criteria were age 18 years or older, positive SARS-CoV-2 reverse transcription-quantitative polymerase chain reaction test, need for mechanical ventilation, and at least one PPV episode. Prone strategy was classified based on exact dates and times of pronation and supination events. Prolonged PPV was defined as a prone duration lasting at least 24 h before supination. Intermittent PPV was defined as daily pronation and supination events. Patients were classified based upon the prone strategy employed for their first proning episode. Patients who underwent a single PPV event during their ICU stay, or who had prone sessions on nonconsecutive days, were classified as intermittent if the longest prone session length was less than 24 h. Hospitalwide guidelines were not available during the study for choice of prone strategy, but physicians typically used clinical improvement and subsequent stability as a means for determining whether patients should receive intermittent or prolonged PPV.

Study data were collected and managed using the REDCap electronic data capture tool hosted at Mass General Brigham. Data were
abstracted through May 31, 2021, by board-certified or board-eligible physicians. The study protocol was approved by the Institutional Review Board at Massachusetts General Hospital (2020P001119). The need for informed consent was waived.

Outcomes

The primary outcome was 30-day all-cause mortality. Secondary outcomes included 90-day mortality, hospital length of stay (LOS), ICU LOS, ventilator-free days at 28 days, and prespecified complications of PPV. Prespecified subgroup analysis included patients with \(P_{A\text{O}_2}/F\text{I}_2 >= 150 \) immediately before PPV, based on the PROSEVA trial and existing clinical guidelines.6,15

Statistical Analyses

To control for potential treatment selection bias between the intermittent and prolonged prone strategies, we carried out a propensity score based inverse probability treatment weighted (IPTW) analysis. Propensity scores were calculated through a multivariable logistic regression model that included admission hospital, time-to-intubation in days, PEEP at time of intubation, and need for dialysis at time of proning. Variables were chosen based on an a priori assessment of the likelihood that they would contribute to the clinical decision to repeatedly prone or supinate a patient. Standardized mean (or proportional) difference less than 0.1 for each variable was used to verify balance between treatment groups. A sensitivity analysis was performed, incorporating additional variables in the propensity score model.

To determine the association between PPV strategy and mortality, a parametric outcome survival model was fit using the Weibull distribution with the survreg package (version 3.2-13) incorporating stabilized IPTW weights to adjust for potential treatment selection bias. This outcome model adjusted for potential confounders including age, sex, Charlson comorbidity index (CCI), sequential organ failure assessment (SOFA) score at hospital admission, \(P_{A\text{O}_2}/F\text{I}_2 \) ratio immediately before pronation, BMI, treatment with anti-IL-6 therapy, and treatment with paralytics, while stratifying on admission hospital. Survival time was calculated from the time of PPV initiation to death. We performed a prespecified subgroup analysis focused only on patients with \(P_{A\text{O}_2}/F\text{I}_2 <= 150 \) just before pronation, as described. Propensity score weights were recalculated for this subgroup analysis and the outcome models adjusted for the same set of covariates in the primary analyses. Only four patients (1.5%) were excluded from the analysis because of missing IPTW covariates; thus, we did not adjust for missingness in the final outcome models.

Predictors of complications due to PPV were identified using generalized linear models. Penalized splines were initially used to test for nonlinear relationships between continuous predictors, such as duration of PPV, and outcomes. These models showed a linear relationship between duration of PPV and complications; thus, the final model incorporated prone duration as a linear covariate.

Secondary analyses focused on understanding the role of change in \(P_{A\text{O}_2}/F\text{I}_2 \) ratio with proning (\(\Delta \text{PF} \)). Patients were determined to have an improved \(\Delta \text{PF} \) if the \(P_{A\text{O}_2}/F\text{I}_2 \) ratio after proning was greater than before proning (ie, \(\Delta \text{PF} > 0 \text{ mm Hg} \)). Parametric survival models using the Weibull distribution were used to estimate the association between mortality and improvement in \(P_{A\text{O}_2}/F\text{I}_2 \) ratio alone and after adjusting for potential confounders, including age, sex, CCI, SOFA score, \(P_{A\text{O}_2}/F\text{I}_2 \) ratio before PPV, BMI, treatment with anti-IL-6 therapy, and treatment with paralytics, while stratifying on admission hospital.

Two-sided P-values less than .05 were considered significant. All data analysis was performed using R (version 4.2.1). Continuous variables are presented as median (interquartile range), and categorical data are presented as number (%). The R code used for this analysis is shown in e-Appendix 1.

Results

Patient Characteristics

A total of 267 patients received PPV while mechanically ventilated for confirmed COVID-19; 157 of 267 (58.8%) received prolonged PPV (Fig 1). The median age was 62 years; 64.4% were male; and 55.4% were White (Table 1). Prolonged PPV patients were less likely to be treated with paralysis (27.4% vs 43.6%; \(P = .009 \)) and less likely to receive anti-IL-6 therapy (9.6% vs 32.7%, \(P < .001 \)) than intermittent PPV patients. No group differences were found in severity of illness at admission assessed using SOFA, simplified acute physiology score II, and \(P_{A\text{O}_2}/F\text{I}_2 \) ratio. Similar trends were seen between PPV strategies in the subgroup of patients with \(P_{A\text{O}_2}/F\text{I}_2 <= 150 \) just before pronation (e-Table 1). Low tidal volume ventilation was achieved in the cohort, with an average tidal volume of 6.01 (5.84-6.27) cc/kg ideal body weight, and an average driving pressure of 11.0 (9.5-13.0) cm H\(_2\)O before pronation. Of the patients initially receiving intermittent PPV, 24 of 110 (21.8%) transitioned to a prolonged strategy (defined as subsequent prone sessions lasting 24 or more hours), whereas of patients initially receiving prolonged PPV, 5 of 157 (3.2%) transitioned to an intermittent strategy (defined as daily supination events).

IPTW weights were constructed separately for all patients, and those with \(P_{A\text{O}_2}/F\text{I}_2 <= 150 \) before pronation. Of 267 patients receiving PPV, the IPTW cohort included 263 patients (Fig 1, study flow diagram). Demographics of the four patients excluded because of missing covariates are available in e-Table 2. After adjusting for potential treatment selection bias with stabilized IPTW in the overall cohort, no differences were found in key variables between PPV strategies (e-Table 3, e-Fig 1). In patients with \(P_{A\text{O}_2}/F\text{I}_2 <= 150 \) before pronation, the IPTW cohort included 166 patients; no differences in key variables between PPV strategies were found (e-Table 4, e-Fig 2).

Primary Outcome

Kaplan-Meier curves for 90-day survival are shown in Figure 2. In multivariable Weibull survival models,
prolonged PPV was associated with reduced 30-day mortality (aHR, 0.475; 95% CI, 0.336-0.670; \(P < 0.001 \)) and 90-day mortality (aHR, 0.638; 95% CI, 0.461-0.883; \(P = .006 \)) compared with intermittent PPV in the overall cohort. In prespecified subgroup analyses focused on patients with PAO2/FIO2 \(\leq 150 \) before pronation, the protective effect of prolonged PPV on mortality was stronger. Prolonged PPV was associated with both reduced 30-day (aHR, 0.357; 95% CI, 0.213-0.597; \(P < .001 \)) and 90-day mortality (aHR, 0.562; 95% CI, 0.357-0.884; \(P = .008 \)) compared with intermittent PPV. Sensitivity analysis incorporating additional covariates in the IPTW model showed similar results (e-Table 5). Hospital LOS, ICU LOS, and ventilator-free days at 28 days differed between survivors and nonsurvivors but not between PPV strategies (e-Table 6).

Proning Characteristics and Complications

No differences in time from intubation to proning between PPV strategies were found (Table 2). Patients receiving prolonged PPV had longer cumulative length of time in the prone position (median, 68 h; interquartile range [IQR], 46-120, vs 48 h; IQR 19-80, \(P < .001 \)) and fewer pronation and supination events compared with the intermittent PPV group (median 1, IQR 1-2, vs 3, IQR 1-4, \(P < .001 \)). Duration of first prone session was longer in patients receiving prolonged PPV (median, 40 h; IQR, 27-55, vs 17 h, IQR 14-20, \(P < .001 \)). The empirical cumulative distribution functions of PPV session duration are available in e-Figure 3.

When comparing the effect of PPV strategy on changes in PAO2/FIO2 ratio with the first proning event, there was
no overall difference between groups in the \(\text{PAO}_2/\text{FiO}_2 \) ratio before or after proning, nor did the magnitude of change in \(\text{PAO}_2/\text{FiO}_2 \) ratio with the first proning event differ (Table 2). In univariable analysis, improvement in \(\text{PAO}_2/\text{FiO}_2 \) ratio (ie, change in \(\text{PAO}_2/\text{FiO}_2 \) ratio > 0 mm Hg) with proning was associated with improved 30-day (hazard ratio [HR], 0.576; 95% CI, 0.382-0.868; \(P = .009 \)) and 90-day mortality (HR, 0.617; 95% CI, 0.414-0.919; \(P = .02 \)). Similarly, for patients with \(\text{PAO}_2/\text{FiO}_2 \leq 150 \) at the time of proning, improvement in \(\text{PAO}_2/\text{FiO}_2 \) ratio with proning was associated with 30-day (HR, 0.467; 95% CI, 0.277-0.789; \(P = .005 \)) and 90-day (HR, 0.547; 95% CI, 0.326-0.917; \(P = .02 \)) mortality. In the multivariable Weibull model in the overall cohort, improvement in \(\text{PAO}_2/\text{FiO}_2 \) ratio remained associated with improved 30-day (aHR, 0.329; 95% CI, 0.211-0.512; \(P < .001 \)) and 90-day mortality (aHR, 0.447; 95% CI, 0.287-0.694; \(P < .001 \)). Inclusion of improvement in

TABLE 1 | Demographics and Characteristics of Patients Admitted to the ICU With COVID-19

Characteristics	Overall (n = 267)	Prolonged Prone (n = 157)	Intermittent Prone (n = 110)	\(P^a \)
Demographics				
Age	62 (51-72)	63 (52-70)	60 (51-74)	.991
Male	172 (64.4)	103 (65.6)	69 (62.7)	.724
White	148 (55.4)	89 (56.7)	59 (53.6)	.712
Hispanic or Latino/a	117 (46.8)	70 (48.6)	47 (44.3)	.589
BMI	29.8 (26.5-34.8)	29.6 (26.7-34.5)	30.1 (26.0-35.7)	.743
CCI	3 (1-5)	3 (1-4)	4 (2-5)	.145
SAPS II^b	32 (25-41)	33 (26-43)	32 (24-39)	.299
SOFA Score^b	6 (4-8)	7 (4-8)	6 (4-8)	.555
\(\text{PAO}_2/\text{FiO}_2 \) on admission^c	157 (99-211)	158 (105-211)	149 (99-211)	.623
Vasopressor use within 24 h of admission^d	138 (52.5)	88 (56.8)	50 (46.3)	.122
Days of COVID-19 symptoms^c	6 (4-9)	7 (4-10)	6 (3-7)	.004
COVID-19 therapies				
Remdesivir	28 (10.5)	16 (10.2)	12 (10.9)	1
Anti-IL-6	51 (19.1)	15 (9.6)	36 (32.7)	<.001
Steroids	68 (25.5)	41 (26.1)	27 (24.5)	.883
Admission hospital				<.001
MGH	175 (65.5)	126 (80.3)	49 (44.5)	
NWH	27 (10.1)	16 (10.2)	11 (10.0)	
SH	65 (24.3)	15 (9.6)	50 (45.5)	
Intubation characteristics				
Time to intubation, d	1 (0-2)	1 (0-2)	1 (0-3)	.046
Ventilator mode				.305
Volume control	254 (95.1)	152 (96.8)	102 (92.7)	
Pressure control	10 (3.7)	4 (2.5)	6 (5.5)	
Pressure support	3 (1.1)	1 (0.6)	2 (1.8)	
Vt/kg IBW,^e mL/kg	6.01 (5.84-6.27)	6.00 (5.84-6.22)	6.04 (5.79-6.35)	.397
PEEP, cm H\(_2\)O	12 (10-14)	12 (10-14)	12 (10-14)	.276
Additional ICU therapies				
Paralysis	91 (34.1)	43 (27.4)	48 (43.6)	.009
Pulmonary vasodilator	85 (31.8)	53 (33.8)	32 (29.1)	.501
ECMO	14 (5.2)	4 (2.5)	10 (9.1)	.037
Tracheostomy	89 (33.3)	61 (38.9)	28 (25.5)	.031

CCI = Charlson comorbidity index; ECMO = extracorporeal membrane oxygenation; IBW = ideal body weight; MGH = Massachusetts General Hospital; NWH = Newton-Wellesley Hospital; SAPS = simplified acute physiology score; SH = Salem Hospital; SOFA = sequential organ failure assessment.

^aTwo-tailed \(P \) value based on Pearson \(\chi^2 \) test for categorical data and Mann-Whitney \(U \) test for continuous data.

Data missing for ^3, ^5, ^4, ^6 patients.
PAO2/FIO2 ratio did not alter the association between prolonged PPV and 30-day (aHR, 0.409; 95% CI, 0.289-0.579; P < .001) or 90-day mortality (aHR, 0.577; 95% CI, 0.414-0.805; P < .001).

No differences were found in ventilator mode, settings, or mechanics between patients receiving either PPV strategy (Table 2, e-Table 7). A total of 48.3% of patients had a complication associated with PPV (Table 3), the most common of which were pressure injuries (29.2%) and facial edema (11.6%). Patients receiving prolonged PPV had a higher rate of facial edema (15.3% vs 6.4%; P = .04) and a lower rate of peri-proning hypotension (1.3% vs 7.3%; P = .03). PPV strategy was not associated with overall increased risk of complications related to prone position (prolonged vs intermittent, aOR, 0.658; 95% CI, 0.388-1.106; P = .116; e-Table 8).

Discussion

In this study of intubated COVID-19 patients, prolonged PPV was associated with higher 30-day and 90-day survival compared with intermittent PPV in both the overall cohort and in a prespecified subgroup of patients with PAO2/Fio2 ≤ 150 before pronation. PPV strategy was not associated with an overall higher rate of proning-related complications and resulted in significantly fewer pronation and supination episodes. These findings suggest that intermittent supination, especially in patients with more severe disease, may be injurious. Prolonged PPV has a favorable safety profile and reduces resource utilization because of the need for fewer pronation and supination episodes.

This study is an important addition to the literature on PPV in acute respiratory failure. First, although prior studies have characterized safety and efficacy of PPV for greater than 24 h, this is the first to directly compare a prolonged PPV approach with the intermittent strategy laid out in the PROSEVA trial, addressing a long-standing question on whether lengthening the duration of PPV improves outcomes.9-11,17-19,23 Second, this study contributes detailed information on the number of pronation or supination episodes with implications for resource utilization, and further extends our knowledge of the effects of PPV on oxygenation and lung mechanics.24 Third, this study provides a comprehensive look at complications of PPV, highlighting the areas to focus development of preventative measures.10

There are several potential benefits to choosing prolonged rather than intermittent PPV in patients intubated for COVID-19. First, the physiological benefits of PPV, including improved compliance of the respiratory system and reduced lung strain, improve continuously over 24 h of prone ventilation.15 The derecruitment associated with repeated supination may lead to increased atelectotrauma and ventilator-induced lung injury, possibly contributing to mortality.25,26 In addition, meta-analyses have indicated that PPV reduces mortality only if its duration is greater than 12 h per day.14,27,28 and in patients receiving low tidal volume

Figure 2 – Kaplan-Meier plot of the probability of survival from time of proning to 90 days in (A) the entire cohort and (B) patients with PAO2/Fio2 ≤ 150 at time of pronation.
ventilation (LTVV; ≤ 8 mL/kg ideal body weight). Because the PROSEVA trial showed that LTVV plus 17 h of PPV is superior to LTVV while supine, our findings that prolonged PPV is associated with improved mortality compared with intermittent PPV logically follows. Second, from a resource utilization standpoint, prolonged PPV requires significantly fewer health care personnel to implement because of fewer pronation and supination episodes. Third, although our data suggest that the safety profile of prolonged PPV is comparable to that of traditional intermittent PPV, it will be important to conduct additional research into methods to reduce the risk of potential complications related to prolonged PPV. A randomized controlled trial comparing prolonged with intermittent PPV will be important to verify these findings.

Prior work has indicated that improvement in PaO2/FIO2 ratio with proning is associated with reduced mortality in COVID-19, although this is less clear for other causes of ARDS. We find no differences in the change in PaO2/FIO2 ratio with PPV based on strategy, nor does the change in PaO2/FIO2 ratio explain the association with improved mortality seen with prolonged PPV.
Evaluating the PAO2/FIO2 ratio over time in patients receiving either PPV strategy may reveal a difference in oxygenation response to prolonged PPV, as has previously been seen with PPV and recruitment maneuvers.34,35 Additionally, the relative balance between resolution of dorsal atelectasis and development of ventral atelectasis may contribute to initial changes in PAO2/FIO2 ratio with PPV or contribute to a diminished response with prolonged PPV.36 Further research will be necessary to determine how prolonged PPV affects ventilation inhomogeneity during ARDS and the contribution of this effect to the associated improvement in mortality.

Ventilator mechanics are known to influence outcomes in severe ARDS. First, higher PEEP has been associated with improved mortality in patients with ARDS and PAO2/FIO2 ratio < 200 mm Hg.37 Although we found no difference in PEEP before or after pronation based on PPV strategy, we only measured mechanics up to 6 h after the first pronation episode. Future work evaluating the change in PEEP over time may reveal an important interaction between PEEP and PPV strategy, as patients who did not manifest improved PAO2/FIO2 ratio with proning may have undergone another PEEP titration to increase recruitment. Second, lower driving pressure is associated with reduced mortality and is hypothesized to be one pathophysiologic rationale by which PPV improves outcomes in ARDS.16,38 We observed a slightly higher driving pressure in patients receiving intermittent PPV but found no change in driving pressure or compliance after PPV. Information on driving pressure was missing in 35.6% patients, limiting the ability to evaluate whether a change in driving pressure is associated with mortality or interacts with PPV strategy. Future work examining changes in respiratory mechanics will be necessary to assess whether changes in driving pressure are the mechanism underpinning improved mortality with prolonged PPV.

Our study has several strengths. We included all patients consecutively admitted to three Boston area community hospitals and academic centers, thus minimizing selection bias. Chart review was performed by board-certified or board-eligible physicians. Although our study has identified a benefit of PPV strategy on mortality in intubated COVID-19 patients, it is plausible that the effects of PPV strategy may extend to other causes of acute respiratory failure and merits further study.

There are several limitations to our study. First, although this was a multicenter study, it was conducted within the same hospital system. Second, the study was retrospective in nature. Although we adjusted for potential treatment selection bias and confounders selected based on prior known biology, unmeasured

TABLE 3 Complication in Prone Position

Complication	Overall (n = 267)	Prolonged Prone (n = 157)	Intermittent Prone (n = 110)	P value
Any complication of proning	129 (48.3)	73 (46.5)	56 (50.9)	.558
Early cessation of proning	30 (23.3)	13 (17.8)	17 (30.4)	.144
Arrhythmias	6 (2.2)	5 (3.2)	1 (0.9)	.415
Hypotension	10 (3.7)	2 (1.3)	8 (7.3)	.027
Loss of vascular access	5 (1.9)	1 (0.6)	4 (3.6)	.187
Chest tube displacement	1 (0.4)	0 (0.0)	1 (0.9)	.858
OG/NG tube displacement	2 (0.7)	0 (0.0)	2 (1.8)	.330
Accidental extubation	2 (0.7)	2 (1.3)	0 (0.0)	.640
Endotracheal tube displacement	9 (3.4)	6 (3.8)	3 (2.7)	.886
Worsening ventilator mechanics	8 (3.0)	5 (3.2)	3 (2.7)	1
Facial edema	31 (11.6)	24 (15.3)	7 (6.4)	.041
Pressure injuries	78 (29.2)	48 (30.6)	30 (27.3)	.655
Conjunctival hemorrhage	1 (0.4)	1 (0.6)	0 (0.0)	1
Vomiting	6 (2.2)	1 (0.6)	5 (4.5)	.089
Oropharyngeal injury	7 (2.6)	4 (2.5)	3 (2.7)	1
Rhabdomyolysis	2 (0.7)	2 (1.3)	0 (0.0)	.640

OG = orogastric; NG = nasogastric.

*Two-tailed P value based on Pearson χ² test.
confounding is always a possibility in observational studies, and thus these findings should be confirmed in future randomized controlled trials. Third, patients in the prolonged PPV group benefitted from a greater cumulative duration of PPV. Although this is probably because their clinical state was more severe, we cannot completely exclude that the effect on mortality lies in this difference. Finally, the patient population represents the first wave of the COVID-19 pandemic in Boston, when there were no proven COVID-19 specific treatments. However, our overall 30-day mortality was 30.0%, comparable to pre-pandemic patients intubated for acute respiratory failure, and patients received low tidal volume ventilation after intubation, suggesting that our results were not influenced by an overwhelmed hospital system. Current literature suggests that ICU mortality has not improved over successive COVID-19 waves, highlighting the importance of identifying effective treatments in this vulnerable patient population.

Interpretation

Among intubated COVID-19 patients, prolonged PPV was associated with improved 30-day and 90-day survival, fewer pronation and supination episodes, and no increased risk of overall complications compared with intermittent PPV.

Funding/Support

Dr Okin is supported by the National Institutes of Health (NIH [grant T32HL116727]). Dr Alba is supported by the NIH (grant 5KL2TR002542-02).

Financial/Nonfinancial Disclosures

None declared.

References

1. Kim L, Garg S, O’Halloran A, et al. Risk factors for intensive care unit admission and in-hospital mortality among hospitalized adults identified through the U.S. coronavirus disease 2019 (COVID-19)-associated hospitalization surveillance network (COVID-NET). *Clin Infect Dis*. 2020. ciaa1012.

2. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. *Intensive Care Med*. 2020;46(12): 2200-2211.

3. Auld SC, Caridi-Scheible M, Blum JM, et al. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. *Crit Care Med*. 2020;9(48): https://doi.org/10.1097/CCM.0000000000004457.

4. Buffleires W, Sarton B, Zadro C, et al. Clinical course and risk factors for severe disease and death of adult critically ill patients with COVID-19 in Toulouse, France: a retrospective cohort study. *Lancet*. 2020;395(10229):1054-1062.

5. Ziehr DR, Alladina J, Petri CR, et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. *Am J Respir Crit Care Med*. 2020;8(9):1560-1564.

6. Group RC, Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with Covid-19. *N Engl J Med*. 2021;384(8): NEJMoa2021436.

7. Investigators R-C, Gordon AC, Mouncey PR, et al. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. *N Engl J Med*. 2021;384(16): NEJMoa2100433.

8. Group TWREA for C-19 T, REACT) W, Domingo P, Mur I, et al. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19. *JAMA*. 2021;326(6):499-518.

9. Guérin C, Reignier J, Richard J-C, et al. Prone positioning in severe acute respiratory distress syndrome. *N Engl J Med*. 2013;368(23):2159-2168.

10. Lucchini A, Bambi S, Mattiussi E, et al. Prone position in acute respiratory distress syndrome patients: a retrospective analysis of complications. *Dimensions Crit Care Nurs*. 2020;39(1):39-46.

11. Albert RK. Prone ventilation for patients with mild or moderate acute respiratory distress syndrome. *Ann Am Thorac Soc*. 2019;17(1):24-29.

12. Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. *Ann Intensive Care*. 2019;9(1):69.

13. Fan E, Sorbo LD, Goligher EC, et al. An Official American Thoracic Society/ European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. *Am J Respir Crit Care Med*. 2017;195(9):1253-1263.

14. Munshi L, Sorbo LD, Adhikari NKJ, et al. Prone position for acute respiratory distress syndrome: a systematic review and meta-analysis. *Ann Am Thorac Soc*. 2017;14(Suppl 4):S280-S288.

15. Jochmans S, Maerzand S, Chelly J, et al. Duration of prone position sessions: a prospective cohort study. *Ann Intensive Care*. 2020;10(1):166.

16. Henderson WR, Chen L, Amato MBP, Brochard L. Fifty years of research in ARDS: respiratory mechanics in acute respiratory distress syndrome. *Ann J Respir Crit Care Med*. 2017;196(7):822-833.

17. Douglas IS, Rosenthal CA, Swanson DD, et al. Safety and outcomes of prolonged usual care prone position mechanical ventilation to treat acute coronavirus disease 2019 hypoxemic respiratory failure. *Crit Care Med*. 2021;49(3):490-502.
18. Walter T, Zucman N, Muller J, et al. Extended prone positioning duration for COVID-19-related ARDS: benefits and detriments. Crit Care. 2021;25(1):208.

19. Parker EM, Bittner EA, Berra L, Pino RM. Efficiency of prolonged prone positioning for mechanically ventilated patients infected with COVID-19. J Clin Med. 2021;10(13):2969.

20. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-1308.

21. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap): a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-381.

22. Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208.

23. Guérin C, Albert RK, Beilert J, et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med. 2020;46(12):2385-2396.

24. Ziehr DR, Alladina J, Wolf ME, et al. Respiratory physiology of prone positioning with and without inhaled nitric oxide across the coronavirus disease 2019 acute respiratory distress syndrome severity spectrum. Critical Care Explor. 2021;3(6):e0471.

25. Guérin C. Prone positioning acute respiratory distress syndrome patients. Ann Transl Med. 2017;5(14):289. 289.

26. Cornejo RA, Díaz JC, Tobar EA, et al. Effects of prone position on lung protection in patients with acute respiratory distress syndrome. Am J Respir Crit Care. 2013;188(4):440-448.

27. Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36(4):585-599.

28. Lee JM, Bae W, Lee YJ, Cho Y-J. The efficacy and safety of prone positional ventilation in acute respiratory distress syndrome. Crit Care Med. 2014;42(5):1252-1262.

29. Beilert JR, Shaefi S, Montesi SB, et al. Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis. Intensive Care Med. 2014;40(3):332-341.

30. Langer T, Brioni M, Guzzardella A, et al. Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients. Crit Care. 2021;25(1):128.

31. Scaramuzzo G, Gamberini L, Tonetti T, et al. Sustained oxygenation improvement after first prone positioning is associated with liberation from mechanical ventilation and mortality in critically ill COVID-19 patients: a cohort study. Ann Intensive Care. 2021;11(1):63.

32. Camporota L, Sanderson B, Chiumello D, et al. Prone position in COVID-19 and COVID-19 acute respiratory distress syndrome: an international multicenter observational comparative study. Crit Care Med. 2022;50(4):633-643.

33. Albert RK, Keniston A, Baboi L, Ayaz L, Guérin C, Investigators P. Prone position–induced improvement in gas exchange does not predict improved survival in the acute respiratory distress syndrome. Am J Respir Crit Care. 2014;189(4):494-496.

34. Grasso S, Mascia L, Turco MD, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002;96(4):795-802.

35. Patel BV, Haar S, Handalip R, et al. Natural history, trajectory, and management of mechanically ventilated COVID-19 patients in the United Kingdom. Intensive Care Med. 2021;47(5):549-565.

36. Rossi S, Palumbo MM, Sverzellati N, et al. Mechanisms of oxygenation responses to proning and recruitment in COVID-19 pneumonia. Intensive Care Med. 2022;48(1):56-66.

37. Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865-873.

38. Amato MBP, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747-755.

39. Bellani G, Laey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788-800.

40. Carbonell R, Urgelés S, Rodríguez A, et al. Mortality comparison between the first and second/third waves among 3,795 critical COVID-19 patients with pneumonia admitted to the ICU: a multicentre retrospective cohort study. Lancet Reg Health Eur. 2021;11:100243.