Synthesis and crystal structure of a new chiral \(\alpha \)-aminooxime nickel(II) complex

Yasmina Homrani,\(^a\) Abdelaziz Dahdouh,\(^a\) Mohamed Amin El Amrani,\(^a\) Pauline Loxq,\(^b\) Frédéric Capet,\(^b\) Isabelle Suisse\(^b\) and Mathieu Sauthier\(^b\)*

\(^a\)Laboratoire de Chimie Organique Appliquée, Faculté des Sciences, BP 2121, Université Abdelmalek Essaadi, Tétouan, Morocco, and \(^b\)Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France. *Correspondence e-mail: mathieu.sauthier@univ-lille.fr

A dinuclear nickel complex with (S)-limonene based aminooxime ligand has been isolated and its crystal structure determined. The resolved structure of dichloridobis\{(2\(S\),5\(R\)-2-methyl-5-(prop-1-en-2-yl)-2-[(pyridin-2-yl)methylamino]cyclohexan-1-one oxime\}dinickel(II), \([\text{Ni}_2\text{Cl}_2\text{C}_{16}\text{H}_{23}\text{ClN}_3\text{O}_2]\), at 100 K has monoclinic (\(P2_1\)) symmetry. The two Ni\(^{II}\) ions in the dinuclear complex are each coordinated in a distorted octahedral environment by three nitrogen atoms, a terminal chloride and two \(\mu\)-chloro bridging chlorides. Each oxime ligand is coordinated to nickel(II) by the three nitrogen atoms, leading to two five-membered chelate rings, each displaying an envelope conformation. In the crystal, numerous intermolecular and intramolecular hydrogen bonds lead to the formation of a three-dimensional network structure.

1. Chemical context

Asymmetric synthesis allows the preparation of enantiomerically enriched compounds either by using a chiral auxiliary, which will be temporarily introduced, or by using catalytic procedures (Gawley & Aubé, 2012). This latter method is particularly attractive as it contributes to the development of green chemistry, which maximizes efficiency and minimizes hazardous effects on human health and the environment (Anastas & Zimmerman, 2013). Thus, asymmetric catalysis avoids synthetic steps and only catalytic amounts of the optically pure auxiliary are needed (Ojima, 2010). As part of the development of this chemistry, the synthesis of new chiral organometallic complexes is always challenging. The pivotal point is then the synthesis of optically pure ligands, which will be coordinated to the metal center. In terms of sustainable chemistry, using the chiral pool to develop new ligands is most interesting (Elalami \textit{et al.}, 2015). Coordination metal complexes containing terpenoid fragments are widely used in the pharmaceutical field and in catalysis. We have therefore developed ligands based on terpenes such as pinene and limonene (El Alami \textit{et al.}, 2009, 2015; Chahboun \textit{et al.}, 2012). In particular, the synthesis of optically pure aminooxime ligands has been performed successfully from \(\alpha\)-limonene (El Alami \textit{et al.}, 2012). These compounds possess structures with two or three nitrogen atoms as donor heteroatoms that could coordinate to the metal center. They have advantageously replaced phosphine ligands, which are generally unstable under air. Ruthenium (Benabdelouahab \textit{et al.}, 2015) and palladium (de la Cueva-Alique \textit{et al.}, 2019)
complexes have already been synthesized with these ligands. Here we report the first synthesis of a limonene-based α-aminooxime nickel complex and its crystal structure. In the dinuclear title complex, each nickel ion is coordinated by \((1\text{S},4\text{R})\)-1-picolylamino-p-menth-8-en-2-one oxime. The ligand was first synthesized from \((R)\)-limonene through the addition of nitrosyl chloride, NOCl, to a picolylamine moiety, allowing the formation of the oxime moiety.

2. Structural commentary

The title compound (Fig. 1) crystallizes in the monoclinic space group \(P2_1\) with two chiral molecules per unit cell. The two Ni\(^{II}\) ions in the dinuclear complex are each coordinated by three nitrogen atoms, a terminal chloride and two \(\mu\) bridging chlorides. The environment around each metal center can then be described as a distorted octahedron with Ni—Ni—Cl angles of 79.91 (13) and 91.99 (4)\(^\circ\), respectively, together with Cl1—Ni1—N2 and Cl2—Ni1—N1 angles of 165.04 (11) and 88.69 (10)\(^\circ\), respectively. A similar arrangement can be found around the Ni2 atom \([\text{Ni4—Ni2—N5, Cl2—Ni2—Cl4, Cl4—Ni2—N5 and Cl4—Ni2—N4} = 79.7 (2), 99.38 (4), 166.04 (12) and 93.24 (16)\(^\circ\), respectively].

Each aminooxime ligand is coordinated to nickel(II) by the three nitrogen atoms, leading to two five-membered chelate rings, each displaying an envelope conformation (with N2 as the flap for Ni1/N1/C5/C6/N2 and N5 for Ni2/N4/C21/C22/N5). The six-membered carbocycles of the limonene units adopt a chair conformation. The lengths of the Ni1—N1, Ni1—N2 and Ni1—N3 bonds are 2.077 (3), 2.126 (4) and 2.041 (3) Å, respectively, while Ni2—N4, Ni2—N5 and Ni2—N6 are 2.095 (4), 2.103 (4) and 2.027 (3) Å from the metal centers Ni1 and Ni2, respectively. The two metal centers are linked by two bridging Cl atoms with an average Ni—Cl distance of 2.42 Å, which is normal for these bond lengths. All these values compare well with literature values. The two nickel ions are separated by a distance of 3.5198 (7) Å, which is similar to average values (Zheng et al., 2010; Cheng et al., 2012).

3. Supramolecular features

The crystal structure is stabilized by numerous intermolecular and intramolecular hydrogen bonds (Table 1), which link the component into a three-dimensional network (Figs. 2 and 3).

![Figure 1](Image)

Figure 1
Displacement ellipsoid plot at the 50% probability level for Ni\(_2\)(aminooxime)\(_2\)Cl\(_4\). H atoms are omitted for clarity.

![Figure 2](Image)

Figure 2
Intermolecular and intramolecular hydrogen bonds in the structure, shown as dashed lines.

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1···Cl1	0.85 (7)	2.32 (6)	3.009 (4)	139 (6)
N2—H2···Cl4	0.77 (5)	2.46 (5)	3.209 (4)	166 (5)
O2—H2···Cl4	0.76 (8)	2.31 (7)	2.978 (4)	147 (7)
C3—H3···O1'	0.95	2.58	3.432 (5)	149
C1—H1···Cl1	0.95	2.75	3.369 (5)	124
C6—H6A···Cl2	0.99	2.76	3.309 (5)	115
C11—H11B···Cl3	0.99	2.64	3.573 (5)	156
C17—H17···Cl4	0.95	2.69	3.327 (6)	125
C26—H26···O2iii	1.00	2.56	3.489 (6)	154
C22—H22B···Cl2	0.99	2.81	3.352 (6)	115
C19—H19···Cliv	0.95	2.64	3.570 (7)	167

Symmetry codes: (i) \(-x + 2, y - \frac{1}{2}, -z + 1\); (ii) \(-x + 1, y - \frac{1}{2}, -z + 1\); (iii) \(-x, y + \frac{1}{2}, -z\); (iv) \(-x + 1, y - \frac{1}{2}, z\).
In particular, the two \([\text{Ni(aminooxime)}\mu\text{-Cl}]{\text{Cl}}\) units are slightly asymmetrical with the existence of a hydrogen-bonding interaction between the amine N2—H2 linked to Ni1 and the chlorine atom Cl4 linked to Ni2. In addition, the two oxygen atoms O1 and O2 of the oxime groups are involved in intramolecular O1—H1/C1/C1/Cl1 and O2—H2/A/C1/C1/Cl4 hydrogen bonds and in intermolecular C3—H3/C1/C1/C1 and C26—H26/C1/C1/C1 interactions.

4. Database survey

The aminooxime ligand used in this study was previously reacted with palladium and platinum precursors, generating three N-coordinated cationic complexes as enantiopure compounds (de la Cueva-Alique et al., 2019). A heteronuclear TiIV/PdII complex has also been described. The compounds were studied to assess their potential biological activity, a high anticancer activity (de la Cueva-Alique et al., 2019).

5. Synthesis and crystallization

To a solution of NiII chloride ethylene glycol dimethyl ether (0.15 g, 1.48 mmol) in MeOH (5 mL) was added (1S,4R)-1-picolylamino-p-menth-8-en-2-one-oxime (0.101 g, 0.36 mmol) dissolved in MeOH (3 mL). The solution turned green. The mixture was stirred overnight at room temperature during which time the mixture changed color to blue–green. The solvent was then evaporated to produce a crude solid that was washed with diethyl ether before crystallization. Single crystals were grown by slow diffusion at room temperature of diethyl ether into a dichloromethane solution. Elemental analysis calculated for C32H46Cl4N6Ni2O2: C, 46.33; H, 5.54; N, 9.65. Found: C, 46.35; H, 5.672; N, 9.77.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. N- and O-bound atoms were refined with the restraint \(U_{iso}(H) = 1.2U_{eq}(N)\) or \(1.5U_{eq}(O)\). H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined as riding with \(U_{iso} = 1.2U_{eq}(C)\) or \(1.5U_{eq}(C\text{-methyl})\).

Acknowledgements

We would like to thank Céline Delabre for the elemental analysis.

Table 2

Crystal data	[NiCl2(C16H23ClN3O)2]						
Chemical formula	NiCl2(C16H23ClN3O)2						
Mass (Mr)	805.97						
Crystal system, space group	Monoclinic, P21						
Temperature (K)	100						
No. of measured, independent and observed \(F	> 2\sigma(F)\) reflections	42747, 10769, 9436		
\(R_{w}		F		F		F\rangle\), \(wR_{2}\),	0.043, 0.109, 1.05
No. of parameters	431						
No. of restraints	13						
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement						
\(\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \text{ (e Å}^{-3})\)	1.50, −1.19						
Absolute structure parameter	−0.009 (4)						

Computer programs: APEX2 and SAINT (Bruker, 2019), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Figure 3

Packing diagram.
Funding information

The authors thank the Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation (France) and the Ministère de la Recherche (Morocco) for financial support. The Chevreul Institute (FR 2638), Ministry of Higher Education, Research and Innovation, Région Hauts de France and FEDER are recognized for funding of X-ray diffractometers.

References

Anastas, P. T. & Zimmerman, J. B. (2013). Environ. Sci. Technol. 37, 95A–101A.

Benabdelouahab, Y., Muñoz-Moreno, L., Frik, M., de la Cueva-Alique, I., El Amrani, M. A., Contel, M., Bajo, A. M., Cuenca, T. & Royo, E. (2015). Eur. J. Inorg. Chem. pp. 2295–2307.

Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.

Chahboun, G., Brito, J. A., Royo, B., El Amrani, M. A., Gómez-Bengoa, E., Mosquera, M. E. G., Cuenca, T. & Royo, E. (2012). Eur. J. Inorg. Chem. pp. 2940–2949.

Cheng, T.-P., Liao, B.-S., Liu, Y.-H., Peng, S.-M. & Liu, S.-T. (2012). Dalton Trans. 41, 3468–3473.

Cueva-Alique, I. de la, Muñoz-Moreno, L., de la Torre-Rubio, E., Bajo, A. M., Gude, L., Cuenca, T. & Royo, E. (2019). Dalton Trans. 48, 14279–14293.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

El Alami, M. S. I., El Amrani, M. A., Dahnouh, A. A., Mansour, A. I., El Amrani, M. A., Suisse, I., Mortreux, A. & Agbossou-Niedercorn, F. (2009). C. R. Chim. 12, 1253–1258.

El Alami, M. S. I., El Amrani, M. A., Agbossou-Niedercorn, F., Suisse, I. & Mortreux, A. (2015). Chem. Eur. J. 21, 1398–1413.

Gaw, R. E. & Aubé, J. (2012). Principles and applications of asymmetric synthesis, 2nd ed. Amsterdam: Elsevier Science.

El Alami, M. S. I., El Amrani, M. A., Dahnouh, A. A., Roussel, P., Suisse, I. & Mortreux, A. (2012). Chirality, 24, 675–682.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

Ojima, I. (2010). Catalytic asymmetric synthesis, 3rd ed. Hoboken: Wiley.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Zheng, L., Zhang, S., Li, K., Chen, W., Chen, Y., Xu, B., Hu, B., Li, Y. & Li, W. (2010). J. Mol. Struct. 984, 153–156.
Synthesis and crystal structure of a new chiral α-aminooxime nickel(II) complex

Yasmina Homrani, Abdelaziz Dahdouh, Mohamed Amin El Amrani, Pauline Loxq, Frédéric Capet, Isabelle Suisse and Mathieu Sauthier

Computing details

Data collection: APEX2 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dichloridobis((2S,5R)-2-methyl-5-(prop-1-en-2-yl)-2-[(pyridin-2-yl)methylamino]cyclohexan-1-one oxime)dinickel(II)

Crystal data

\[\text{[Ni}_2\text{Cl}_4(\text{C}_{19}\text{H}_{24}\text{ClN}_5\text{O})_2]}\]
\[M_r = 805.97\]
Monoclinic, \(P2_1\)
\(a = 13.3729\) (9) \(\text{Å}\)
\(b = 8.9363\) (7) \(\text{Å}\)
\(c = 16.4248\) (16) \(\text{Å}\)
\(\beta = 114.014\) (2)°
\(V = 1792.9\) (3) \(\text{Å}^3\)
\(Z = 2\)

Data collection

Bruker APEXII CCD diffractometer
Radiation source: microfocus sealed X-ray tube
\(\varphi\) and \(\omega\) scans
Absorption correction: multi-scan (SADABS; Krause et al., 2015)
\(T_{\text{min}} = 0.669, T_{\text{max}} = 0.746\)
42747 measured reflections
10769 independent reflections
9436 reflections with \(I > 2\sigma(I)\)

Refinement

Refinement on \(F^2\)
Least-squares matrix: full
\(R[F^2 > 2\sigma(F^2)] = 0.043\)
\(wR(F^2) = 0.109\)
\(S = 1.05\)
10769 reflections
431 parameters
13 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
\(H\) atoms treated by a mixture of independent and constrained refinement
\(w = 1/[\sigma^2(F_c^2) + (0.0581P)^2 + 0.9636P]\)
where \(P = (F_c^2 + 2F_s^2)/3\)
\((\Delta/\sigma)_{\text{max}} = 0.001\)
\(\Delta\rho_{\text{max}} = 1.50\ \text{e} \ \text{Å}^{-3}\)
Δρ_{min} = −1.18 e Å⁻³

Absolute structure: Flack x determined using
3850 quotients [(I⁺)−(I⁻)]/[(I⁺)+(I⁻)] (Parsons et al., 2013)
Absolute structure parameter: −0.009 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U_{iso}/*U_{eq}
Ni1	0.66455 (4)	0.50226 (6)	0.35327 (3)	0.01526 (11)
Ni2	0.41917 (4)	0.48960 (6)	0.15985 (3)	0.01813 (12)
Cl2	0.61155 (8)	0.45928 (14)	0.19208 (7)	0.0259 (2)
Cl3	0.48342 (7)	0.60270 (12)	0.30567 (7)	0.0212 (2)
Cl1	0.74487 (8)	0.75170 (12)	0.37010 (7)	0.0249 (2)
Cl4	0.38501 (9)	0.25191 (13)	0.21270 (9)	0.0336 (3)
O1	0.7388 (3)	0.6301 (4)	0.3539 (2)	0.0244 (7)
H1	0.740 (5)	0.705 (7)	0.507 (4)	0.037*
N1	0.8111 (3)	0.3926 (4)	0.3786 (2)	0.0182 (7)
N3	0.6939 (2)	0.5043 (5)	0.4853 (2)	0.0183 (6)
N2	0.6216 (3)	0.2811 (4)	0.3745 (2)	0.0183 (7)
H2	0.563 (4)	0.289 (6)	0.339 (3)	0.022*
O2	0.1908 (3)	0.4533 (5)	0.1497 (2)	0.0339 (9)
H2A	0.226 (6)	0.389 (9)	0.176 (5)	0.051*
C8	0.6846 (3)	0.3877 (5)	0.5258 (3)	0.0203 (8)
C5	0.8008 (3)	0.2431 (5)	0.3699 (3)	0.0202 (8)
N6	0.2619 (3)	0.5471 (4)	0.1318 (2)	0.0212 (8)
N5	0.4081 (3)	0.6943 (5)	0.0936 (3)	0.0394 (12)
H5	0.468 (5)	0.736 (8)	0.140 (4)	0.047*
C12	0.7001 (3)	0.1123 (6)	0.5107 (3)	0.0250 (9)
H12A	0.660298	0.022653	0.478112	0.030*
H12B	0.770464	0.117488	0.504159	0.030*
C14	0.9033 (3)	0.2356 (6)	0.6758 (3)	0.0257 (9)
C3	0.9925 (4)	0.2136 (6)	0.4131 (3)	0.0301 (11)
H3	1.054899	0.151943	0.425362	0.036*
C9	0.7192 (4)	0.3765 (6)	0.6253 (3)	0.0279 (10)
H9A	0.653362	0.378843	0.638523	0.034*
H9B	0.764996	0.464264	0.654444	0.034*
C1	0.9109 (3)	0.4531 (5)	0.4044 (3)	0.0220 (9)
H1A	0.918464	0.558677	0.410777	0.026*
C30	0.0369 (4)	0.6416 (7)	−0.1114 (4)	0.0357 (12)
N4	0.3669 (3)	0.4143 (6)	0.0282 (3)	0.0361 (11)
C2	1.0041 (3)	0.3660 (6)	0.4222 (3)	0.0277 (10)
H2B	1.074096	0.411370	0.440161	0.033*
C25	0.1029 (4)	0.7072 (7)	0.0546 (4)	0.0384 (13)
	X	Y	Z	
----	------	------	------	----
H25A	0.095090	0.786671	0.093629	0.046*
H25B	0.059972	0.619493	0.058673	0.046*
C7	0.6314 (3)	0.2540 (5)	0.4678 (3)	0.0206 (8)
C4	0.8897 (4)	0.1499 (6)	0.3860 (3)	0.0278 (10)
H4	0.880183	0.044699	0.378533	0.033*
C24	0.2208 (4)	0.6641 (5)	0.0869 (3)	0.0258 (10)
C6	0.6855 (3)	0.1848 (5)	0.3402 (3)	0.0218 (8)
H6A	0.649955	0.182503	0.274260	0.026*
H6B	0.687313	0.081400	0.362311	0.026*
C10	0.7844 (4)	0.2319 (6)	0.6644 (3)	0.0281 (10)
H10	0.785669	0.219265	0.725250	0.034*
C23	0.2999 (4)	0.7724 (5)	0.0732 (4)	0.0365 (12)
C15	0.9419 (4)	0.3220 (6)	0.6296 (3)	0.0301 (10)
H15A	1.016603	0.314817	0.638711	0.036*
H15B	0.894916	0.391186	0.587469	0.036*
C31	0.0663 (3)	0.5006 (7)	−0.0931 (3)	0.0322 (10)
H31A	0.053020	0.430999	−0.140077	0.039*
C31B	0.100801	0.468485	−0.032826	0.039*
C13	0.5139 (3)	0.2394 (7)	0.4628 (3)	0.0314 (11)
H13A	0.471161	0.327732	0.433110	0.047*
H13B	0.516636	0.231714	0.523147	0.047*
H13C	0.479378	0.149469	0.428806	0.047*
C11	0.7236 (4)	0.0951 (6)	0.6094 (3)	0.0306 (11)
H11A	0.768517	0.004325	0.633040	0.037*
H11B	0.653697	0.081821	0.615749	0.037*
C16	0.9776 (4)	0.1259 (6)	0.7427 (3)	0.0313 (11)
H16A	0.980940	0.149758	0.802043	0.047*
H16B	1.051172	0.132186	0.743621	0.047*
H16C	0.948965	0.024270	0.726130	0.047*
C18	0.2741 (6)	0.2441 (10)	−0.0937 (4)	0.0582 (18)
H18	0.234602	0.153747	−0.115022	0.070*
C17	0.3151 (5)	0.2832 (8)	−0.0055 (4)	0.0493 (16)
H17	0.306660	0.213712	0.035033	0.059*
C26	0.0565 (4)	0.7638 (7)	−0.0421 (4)	0.0423 (14)
H26	−0.016160	0.810447	−0.054167	0.051*
C21	0.3804 (4)	0.5139 (10)	−0.0254 (4)	0.0504 (17)
C28	0.2479 (5)	0.8323 (7)	−0.0237 (4)	0.0486 (16)
H28A	0.293285	0.915184	−0.030027	0.058*
H28B	0.247256	0.751483	−0.065083	0.058*
C32	−0.0176 (7)	0.6926 (9)	−0.2067 (4)	0.068 (2)
H32A	0.032890	0.756035	−0.220891	0.101*
H32B	−0.083660	0.749858	−0.215141	0.101*
H32C	−0.037751	0.605256	−0.246168	0.101*
C22	0.4373 (5)	0.6511 (10)	0.0162 (4)	0.064 (2)
H22A	0.416191	0.732765	−0.028357	0.077*
H22B	0.517365	0.635850	0.038173	0.077*
C27	0.1312 (6)	0.8883 (7)	−0.0493 (4)	0.0552 (18)
H27A	0.101814	0.926492	−0.111198	0.066*
Atomic displacement parameters (Å²)

	\(U_{11} \)	\(U_{22} \)	\(U_{33} \)	\(U_{12} \)	\(U_{13} \)	\(U_{23} \)
Ni1	0.0139 (19)	0.0171 (2)	0.0136 (2)	0.0000 (2)	0.00431 (17)	0.0017 (2)
Ni2	0.0158 (2)	0.0210 (3)	0.0153 (2)	−0.0019 (2)	0.00406 (17)	−0.0011 (2)
Cl2	0.0180 (4)	0.0431 (7)	0.0155 (4)	0.0164 (4)	0.0057 (3)	0.0037 (4)
Cl3	0.0178 (4)	0.0225 (5)	0.0194 (5)	0.0017 (4)	0.0034 (4)	−0.0031 (4)
Cl1	0.0240 (5)	0.0198 (5)	0.0244 (5)	−0.0048 (4)	0.0031 (4)	0.0052 (4)
Cl4	0.0301 (5)	0.0180 (5)	0.0367 (7)	−0.0042 (4)	−0.0027 (5)	0.0021 (5)
O1	0.0275 (15)	0.0233 (17)	0.0205 (16)	0.0014 (13)	0.0077 (13)	−0.0051 (13)
N1	0.0159 (14)	0.0249 (19)	0.0133 (16)	0.0017 (13)	0.0054 (13)	0.0017 (14)
N3	0.0163 (13)	0.0206 (17)	0.0170 (15)	0.0001 (15)	0.0056 (12)	0.0000 (16)
N2	0.0122 (13)	0.0204 (19)	0.0200 (18)	0.0019 (13)	0.0044 (13)	0.0019 (14)
O2	0.0186 (14)	0.052 (3)	0.0312 (19)	−0.0003 (14)	0.0099 (13)	0.0128 (17)
C8	0.0184 (18)	0.026 (2)	0.020 (2)	0.0079 (16)	0.0113 (16)	0.0058 (17)
C5	0.0221 (18)	0.025 (2)	0.0146 (19)	0.0034 (17)	0.0086 (15)	0.0006 (17)
N6	0.0182 (15)	0.028 (2)	0.0163 (17)	0.0011 (13)	0.0055 (14)	−0.0007 (14)
N5	0.029 (2)	0.040 (3)	0.033 (2)	−0.0178 (19)	−0.0040 (18)	0.020 (2)
C12	0.0200 (18)	0.025 (2)	0.027 (2)	−0.0009 (17)	0.0064 (17)	0.0088 (19)
C14	0.0249 (19)	0.033 (3)	0.016 (2)	0.0063 (18)	0.0045 (16)	0.0044 (19)
C3	0.025 (2)	0.036 (3)	0.029 (3)	0.0125 (19)	0.0111 (19)	0.004 (2)
C9	0.032 (2)	0.037 (3)	0.018 (2)	0.011 (2)	0.0145 (18)	0.006 (2)
C1	0.0194 (17)	0.028 (2)	0.019 (2)	0.0006 (16)	0.0077 (15)	0.0024 (17)
C30	0.035 (2)	0.041 (3)	0.033 (3)	0.006 (2)	0.015 (2)	0.000 (2)
N4	0.0223 (18)	0.061 (3)	0.021 (2)	0.0157 (19)	0.0044 (16)	−0.005 (2)
C2	0.0149 (17)	0.041 (3)	0.028 (2)	0.0019 (18)	0.0097 (17)	0.007 (2)
C25	0.033 (2)	0.047 (3)	0.031 (3)	0.022 (2)	0.009 (2)	−0.001 (2)
C7	0.0174 (16)	0.025 (2)	0.022 (2)	0.0014 (16)	0.0105 (15)	0.0077 (18)
C4	0.025 (2)	0.032 (3)	0.027 (2)	0.0106 (18)	0.0114 (18)	0.002 (2)
C24	0.029 (2)	0.025 (2)	0.017 (2)	0.0080 (18)	0.0041 (18)	−0.0052 (18)
C6	0.0243 (19)	0.017 (2)	0.024 (2)	0.0046 (16)	0.0094 (17)	−0.0026 (17)
C10	0.030 (2)	0.034 (3)	0.024 (2)	0.007 (2)	0.0142 (18)	0.012 (2)
C23	0.048 (3)	0.015 (2)	0.032 (3)	−0.003 (2)	0.001 (2)	0.006 (2)
C15	0.0204 (19)	0.036 (3)	0.028 (2)	0.0014 (18)	0.0032 (18)	0.008 (2)
C31	0.0267 (19)	0.033 (2)	0.032 (2)	−0.005 (2)	0.0058 (18)	0.001 (3)
C13	0.0198 (19)	0.040 (3)	0.034 (3)	−0.001 (2)	0.0108 (18)	0.010 (2)
C11	0.026 (2)	0.033 (3)	0.035 (3)	0.0008 (19)	0.015 (2)	0.018 (2)
C16	0.033 (2)	0.037 (3)	0.024 (2)	0.009 (2)	0.0120 (19)	0.011 (2)
Geometric parameters (Å, °)

Bond/Distance	Value (Å)	Bond/Distance	Value (Å)	Bond/Distance	Value (Å)
Ni1—C12	2.4762 (11)	C2—H2B	0.950	Ni1—C13	2.3964 (10)
Ni1—Cl2	2.4408 (12)	C25—H25A	0.9900	Ni1—Cl3	2.4128 (12)
Ni1—Cl3	2.077 (3)	C25—H25B	0.9900	Ni1—Cl4	2.4077 (14)
Ni1—Cl1	2.041 (3)	C25—C24	1.495 (6)	Ni2—N6	2.027 (3)
Ni1—N1	2.126 (4)	C25—C26	1.536 (8)	Ni2—N5	2.103 (4)
Ni1—N3	2.126 (4)	C7—C13	1.545 (5)	Ni2—N4	2.095 (4)
Ni1—N2	2.4216 (10)	C4—H4	0.9500	O1—H1	0.85 (7)
Ni2—Cl2	2.4216 (10)	C24—C23	1.516 (7)	O1—N3	1.403 (5)
Ni2—Cl3	2.4128 (12)	C24—C23	0.9900	N1—C5	1.345 (6)
Ni2—Cl4	2.4077 (14)	C6—H6A	0.9900	N1—C1	1.338 (5)
Ni2—Cl1	2.027 (3)	C6—H6B	0.9900	N3—C8	1.269 (6)
Ni2—N6	2.103 (4)	C10—H10	1.0000	N2—H2	0.77 (5)
Ni2—N5	2.095 (4)	C10—C11	1.540 (8)	N2—C7	1.503 (5)
Ni2—N4	2.103 (4)	C13—H13A	0.9800	N2—C6	1.477 (5)
O1—H1	0.85 (7)	C13—H13B	0.9800	O2—H2A	0.76 (8)
N1—C5	1.345 (6)	C15—H15A	0.9500	N6—N2	1.385 (5)
N1—C1	1.338 (5)	C15—H15B	0.9500	C8—C9	1.509 (6)
N3—C8	1.269 (6)	C31—H31A	0.9500	C8—C7	1.513 (7)
N2—H2	0.77 (5)	C31—H31B	0.9500	C5—C4	1.385 (6)
N2—C7	1.503 (5)	C13—H13A	0.9800	C5—C6	1.508 (6)
N2—C6	1.477 (5)	C13—H13B	0.9800	N6—C24	1.269 (6)
O2—H2A	0.76 (8)	C13—H13C	0.9800	N5—H5	0.93 (7)
O2—N6	1.385 (5)	C11—H11A	0.9900	N5—C23	1.517 (7)
C8—C9	1.509 (6)	C11—H11B	0.9900	N5—C22	1.524 (9)
C8—C7	1.513 (7)	C16—H16A	0.9800	N5—H12A	0.9900
C5—C4	1.385 (6)	C16—H16B	0.9800	C12—H12A	0.9900
C5—C6	1.508 (6)	C16—H16C	0.9800	C12—H12B	0.9900
N6—C24	1.269 (6)	C18—H18	0.9500	C12—C7	1.555 (6)
N5—H5	0.93 (7)	C18—C17	1.370 (8)	C12—C11	1.528 (7)
N5—C23	1.517 (7)	C18—C19	1.318 (12)		
N5—C22	1.524 (9)	C17—H17	0.9500		
C12—H12A	0.9900	C26—H26	1.0000		
C12—H12B	0.9900	C26—C27	1.532 (10)		
C12—C7	1.555 (6)	C21—C22	1.457 (12)		
C12—C11	1.528 (7)	C21—C20	1.465 (10)		
Bond	Distance (Å)	Bond	Distance (Å)		
----------------------	--------------	----------------------	--------------		
C14—C10	1.523 (6)	C28—H28A	0.9900		
C14—C15	1.326 (7)	C28—H28B	0.9900		
C14—C16	1.506 (7)	C28—C27	1.525 (9)		
C3—H3	0.9500	C32—H32A	0.9800		
C3—C2	1.373 (8)	C32—H32B	0.9800		
C3—C4	1.384 (7)	C32—H32C	0.9800		
C9—H9A	0.9900	C22—H22A	0.9900		
C9—H9B	0.9900	C22—H22B	0.9900		
C9—C10	1.545 (7)	C27—H27A	0.9900		
C1—H1A	0.9500	C27—H27B	0.9900		
C1—C2	1.396 (6)	C29—H29A	0.9800		
C30—C31	1.318 (8)	C29—H29B	0.9800		
C30—C26	1.521 (8)	C29—H29C	0.9800		
C30—C32	1.503 (8)	C19—H19	0.9500		
N4—C17	1.359 (8)	C19—C20	1.360 (13)		
N4—C21	1.314 (8)	C20—H20	0.9500		
C13—Ni1—Cl2	84.13 (4)	C8—C7—C13	108.0 (4)		
C13—Ni1—Cl1	91.99 (4)	C13—C7—C12	110.9 (4)		
C11—Ni1—Cl2	100.61 (4)	C5—C4—H4	120.7		
N1—Ni1—Cl2	88.69 (10)	C3—C4—C5	118.5 (5)		
N1—Ni1—Cl3	171.31 (10)	C3—C4—H4	120.7		
N1—Ni1—Cl1	94.14 (11)	N6—C24—C25	124.3 (5)		
N1—Ni1—N2	79.91 (13)	N6—C24—C23	116.7 (4)		
N3—Ni1—Cl2	170.10 (12)	C25—C24—C23	118.8 (4)		
N3—Ni1—Cl3	94.30 (9)	N2—C6—C5	110.5 (4)		
N3—Ni1—Cl1	89.21 (12)	N2—C6—H6A	109.6		
N3—Ni1—N1	91.94 (13)	N2—C6—H6B	109.6		
N3—Ni1—N2	77.38 (15)	C5—C6—H6A	109.6		
N2—Ni1—Cl2	93.02 (10)	C5—C6—H6B	109.6		
N2—Ni1—Cl3	95.56 (9)	H6A—C6—H6B	108.1		
N2—Ni1—Cl1	165.04 (11)	C14—C10—C9	114.7 (4)		
C13—Ni2—Cl2	84.97 (4)	C14—C10—H10	106.7		
C14—Ni2—Cl2	99.38 (4)	C14—C10—C11	111.4 (4)		
C14—Ni2—Cl3	93.14 (5)	C9—C10—H10	106.7		
N6—Ni2—Cl2	171.72 (12)	C11—C10—C9	110.3 (4)		
N6—Ni2—Cl3	92.13 (11)	C11—C10—H10	106.7		
N6—Ni2—Cl14	88.51 (11)	N5—C23—C28	112.0 (5)		
N6—Ni2—N5	79.29 (16)	C24—C23—N5	109.5 (4)		
N6—Ni2—N4	88.11 (15)	C24—C23—C28	108.9 (4)		
N5—Ni2—Cl2	93.15 (13)	C29—C23—N5	104.7 (5)		
N5—Ni2—Cl3	94.06 (15)	C29—C23—C24	109.9 (5)		
N5—Ni2—Cl4	166.04 (12)	C29—C23—C28	111.8 (5)		
N4—Ni2—Cl2	93.92 (11)	C14—C15—H15A	120.0		
N4—Ni2—Cl3	173.62 (15)	C14—C15—H15B	120.0		
N4—Ni2—Cl4	93.24 (16)	H15A—C15—H15B	120.0		
N4—Ni2—N5	79.7 (2)	C30—C31—H31A	120.0		
Ni2—Cl2—Ni1	91.88 (4)	C30—C31—H31B	120.0		
Ni1—Cl3—Ni2 94.09 (4) H31A—C31—H31B 120.0					
N3—O1—H1 111 (4) C7—C13—H13A 109.5					
C5—N1—Ni1 113.6 (3) C7—C13—H13B 109.5					
C1—N1—Ni1 127.6 (3) C7—C13—H13C 109.5					
C1—N1—C5 118.8 (4) H13A—C13—H13B 109.5					
O1—N3—Ni1 121.4 (3) H13A—C13—H13C 109.5					
C8—N3—Ni1 122.2 (3) H13B—C13—H13C 109.5					
C8—N3—O1 115.9 (3) C12—C11—C10 112.0 (4)					
Ni1—N2—H2 93 (4) C12—C11—H11A 109.2					
C7—N2—Ni1 113.6 (3) C12—C11—H11B 109.2					
C7—N2—H2 116 (4) C10—C11—H11A 109.2					
C6—N2—Ni1 104.0 (2) C10—C11—H11B 109.2					
C6—N2—H2 109 (4) H11A—C11—H11B 107.9					
C6—N2—C7 118.1 (3) C14—C16—H16A 109.5					
N6—O2—H2A 105 (5) C14—C16—H16B 109.5					
N3—C8—C9 124.7 (4) C14—C16—H16C 109.5					
N3—C8—C7 116.1 (4) H16A—C16—H16B 109.5					
C9—C8—C7 119.2 (4) H16A—C16—H16C 109.5					
N1—C5—C6 122.3 (4) H16B—C16—H16C 109.5					
N1—C5—C4 115.1 (4) C17—C18—H18 121.9					
C4—C5—C6 122.6 (4) C19—C18—H18 121.9					
O2—N6—Ni2 122.4 (3) C19—C18—C17 116.1 (8)					
C24—N6—Ni2 120.3 (3) N4—C17—C18 124.7 (7)					
C24—N6—O2 116.7 (4) N4—C17—H17 117.7					
Ni2—N5—H5 94 (4) C18—C17—H17 117.7					
C23—N5—Ni2 112.0 (3) C30—C26—C25 114.3 (5)					
C23—N5—H5 115 (4) C30—C26—H26 107.1					
C23—N5—C22 118.6 (4) C30—C26—C27 112.5 (5)					
C22—N5—Ni2 102.9 (4) C25—C26—H26 107.1					
C22—N5—H5 110 (4) C27—C26—C25 108.5 (5)					
H12A—C12—H12B 107.8 C27—C26—H26 107.1					
C7—C12—H12A 109.0 N4—C21—C22 116.4 (5)					
C7—C12—H12B 109.0 N4—C21—C20 117.2 (8)					
C11—C12—H12A 109.0 C22—C21—C20 126.3 (7)					
C11—C12—H12B 109.0 C23—C28—H28A 109.2					
C11—C12—C7 113.0 (4) C23—C28—H28B 109.2					
C15—C14—C10 124.9 (4) H28A—C28—H28B 107.9					
C15—C14—C16 120.2 (4) C27—C28—C23 112.2 (6)					
C16—C14—C10 114.9 (4) C27—C28—H28A 109.2					
C2—C3—H3 120.1 C27—C28—H28B 109.2					
C2—C3—C4 119.7 (4) C30—C32—H32A 109.5					
C4—C3—H3 120.1 C30—C32—H32B 109.5					
C8—C9—H9A 109.2 C30—C32—H32C 109.5					
C8—C9—H9B 109.2 H32A—C32—H32B 109.5					
C8—C9—C10 112.2 (4) H32A—C32—H32C 109.5					
H9A—C9—H9B 107.9 H32B—C32—H32C 109.5					
C10—C9—H9A 109.2 N5—C22—H22A 109.7					
C10—C9—H9B 109.2 N5—C22—H22B 109.7					
Bond	Angle (°)	Bond	Angle (°)		
----------------------	-----------	----------------------	-----------		
N1—C1—H1A	119.0	C21—C22—N5	110.0		
N1—C1—C2	122.1	C21—C22—H22A	109.7		
C2—C1—H1A	119.0	C21—C22—H22B	109.7		
C31—C30—C26	124.8	H22A—C22—H22B	108.2		
C31—C30—C32	120.1	C26—C27—H27A	109.3		
C32—C30—C26	115.1	C26—C27—H27B	109.3		
C17—N4—Ni2	126.7	C28—C27—C26	111.5		
C21—N4—Ni2	113.2	C28—C27—H27A	109.3		
C21—N4—C17	119.9	C28—C27—H27B	109.3		
C3—C2—C1	118.6	H27A—C27—H27B	108.0		
C3—C2—H2B	120.7	C23—C29—H29A	109.5		
C1—C2—H2B	120.7	C23—C29—H29B	109.5		
H25A—C25—H25B	107.9	C23—C29—H29C	109.5		
C24—C25—H25A	109.2	H29A—C29—H29B	109.5		
C24—C25—H25B	109.2	H29A—C29—H29C	109.5		
C26—C25—H25A	112.1	H29B—C29—H29C	109.5		
C26—C25—H25B	109.2	H27A—C27—H27B	108.0		
N2—C7—C8	110.8	C20—C19—H19	118.5		
N2—C7—C12	112.5	C21—C20—H20	120.5		
N2—C7—C13	107.1	C19—C20—C21	119.0		
C8—C7—C12	108.5	C19—C20—H20	120.5		

\[
\begin{align*}
\text{Ni1—N1—C5—C4} & \quad -178.5 \quad \text{N4—C21—C20—C19} \quad 2.4 \\
\text{Ni1—N1—C5—C6} & \quad 2.4 \quad \text{C2—C3—C4—C5} \quad -0.9 \\
\text{Ni1—N1—C1—C2} & \quad 177.8 \quad \text{C25—C24—C23—N5} \quad -168.7 \\
\text{Ni1—N3—C8—C9} & \quad 171.5 \quad \text{C25—C24—C23—C28} \quad -45.9 \\
\text{Ni1—N3—C8—C7} & \quad -10.6 \quad \text{C25—C24—C23—C29} \quad 76.9 \\
\text{Ni1—N2—C7—C8} & \quad -7.7 \quad \text{C25—C26—C27—C28} \quad 59.6 \\
\text{Ni1—N2—C7—C12} & \quad -128.6 \quad \text{C7—N2—C6—C5} \quad -83.5 \\
\text{Ni1—N2—C7—C13} & \quad 109.3 \quad \text{C7—C8—C9—C10} \quad 47.9 \\
\text{Ni1—N2—C6—C5} & \quad 43.4 \quad \text{C7—C12—C11—C10} \quad -57.9 \\
\text{Ni2—N6—C24—C25} & \quad 173.2 \quad \text{C4—C5—C6—N2} \quad 148.6 \\
\text{Ni2—N6—C24—C23} & \quad -12.5 \quad \text{C4—C3—C2—C1} \quad 0.6 \\
\text{Ni2—N5—C23—C24} & \quad -13.2 \quad \text{C24—C25—C26—C30} \quad 73.6 \\
\text{Ni2—N5—C23—C28} & \quad -134.2 \quad \text{C24—C25—C26—C27} \quad -52.8 \\
\text{Ni2—N5—C23—C29} & \quad 104.5 \quad \text{C24—C23—C28—C27} \quad 49.5 \\
\text{Ni2—N5—C22—C21} & \quad 44.6 \quad \text{C6—N2—C7—C8} \quad 114.5 \\
\text{Ni2—N4—C17—C18} & \quad 174.2 \quad \text{C6—N2—C7—C12} \quad -6.5 \\
\text{Ni2—N4—C21—C22} & \quad 5.4 \quad \text{C6—N2—C7—C13} \quad -128.6 \\
\text{Ni2—N4—C21—C20} & \quad -178.0 \quad \text{C6—C5—C4—C3} \quad 180.0 \\
\text{O1—N3—C8—C9} & \quad -0.7 \quad \text{C23—N5—C22—C21} \quad -79.6 \\
\text{O1—N3—C8—C7} & \quad 177.3 \quad \text{C23—C28—C27—C26} \quad -59.7 \\
\text{N1—C5—C4—C3} & \quad 1.0 \quad \text{C15—C14—C10—C9} \quad -24.5 \\
\text{N1—C5—C6—N2} & \quad -32.3 \quad \text{C15—C14—C10—C11} \quad 101.6 \\
\text{N1—C1—C2—C3} & \quad -0.2 \quad \text{C31—C30—C26—C25} \quad -6.7 \\
\text{N3—C8—C9—C10} & \quad -134.2 \quad \text{C31—C30—C26—C27} \quad 117.5 \\
\text{N3—C8—C7—N2} & \quad 11.5 \quad \text{C11—C12—C7—N2} \quad 172.3 \\
\end{align*}

Acta Cryst. (2021). E77, 1116-1119
[sup-8]
Hydrogen-bond geometry (Å, º)

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1···Cl1	0.85 (7)	2.32 (6)	3.009 (4)	139 (6)
N2—H2···Cl4	0.77 (5)	2.46 (5)	3.209 (4)	166 (5)
O2—H2A···Cl4	0.76 (8)	2.31 (7)	2.978 (4)	147 (7)
C3—H3···O1i	0.95	2.58	3.432 (5)	149
C1—H1A···Cl1	0.95	2.75	3.369 (5)	124
C6—H6A···Cl2	0.99	2.76	3.309 (5)	115
C11—H11B···Cl3ii	0.99	2.64	3.573 (5)	156
C17—H17···Cl4	0.95	2.69	3.327 (6)	125
C26—H26···O2iii	1.00	2.56	3.489 (6)	154
C22—H22A···Cl2	0.99	2.81	3.352 (6)	115
C19—H19···Cl1iv	0.95	2.64	3.570 (7)	167

Symmetry codes: (i) −x+2, y−1/2, z−1; (ii) −x+1, y−1/2, z+1; (iii) x, y+1/2, −z; (iv) −x+1, y−1/2, −z.