Indicators for assessing water, energy and labor use performance in a low-tech greenhouse

Indicadores para evaluar el desempeño en el uso del agua, energía y mano de obra en un invernadero de baja tecnología

Raquel Salazar-Moreno*; Ana Cristina Sánchez-Martínez; Irineo L. López-Cruz

Universidad Autónoma Chapingo, Posgrado en Ingeniería Agrícola y Uso Integral del Agua. Carretera México-Texcoco km 38.5, Texcoco, Estado de México, C. P. 56230, MÉXICO.

*Corresponding author: raquels60@hotmail.com

Abstract

One of the advantages of controlled agriculture is the notable increase in crop yields. However, at high-tech levels, water use productivity has increased, while energy use productivity has decreased. Therefore, the objective of this study was to estimate water, energy and labor use productivity in tomato cultivation, for a low-tech greenhouse. The inputs used in the production process were recorded from April 24 (date of transplant) to October 16, 2016 (date of last harvest). The yields obtained were 19.07 kg·m\(^{-2}\). Water use productivity was 27.86 kg·m\(^{-3}\) (35.89 L·kg\(^{-1}\)), which is within the range reported for unheated plastic greenhouses (30-40 L·kg\(^{-1}\)). Energy productivity was 0.331 kg·MJ\(^{-1}\), and the energy consumed per unit area was 57.61 MJ·m\(^{-2}\), with Calcium nitrate being the input with the highest energy demand (49.49 %). During the production cycle, 738 working hours were used, 78 % of which were dedicated to cleaning and maintenance, with labor productivity of 3.02 kg·h\(^{-1}\).

Keywords: yields, efficiency, controlled agriculture, Calcium nitrate.

Resumen

Una de las ventajas de la agricultura controlada es el incremento en los rendimientos de los cultivos de manera notable. No obstante, en niveles tecnológicos altos la productividad en el uso de agua se ha incrementado, mientras que la productividad en el uso de la energía ha disminuido. Por ello, el objetivo de este estudio fue estimar la productividad en el uso de agua, energía y mano de obra en el cultivo de tomate, para un invernadero de baja tecnología. Se registraron los insumos utilizados en el proceso de producción, desde el 24 de abril (fecha del trasplante) hasta el 16 de octubre de 2016 (fecha de la última cosecha). Los rendimientos obtenidos fueron de 19.07 kg·m\(^{-2}\). La productividad en el uso del agua fue de 27.86 kg·m\(^{-3}\) (35.89 L·kg\(^{-1}\)), cifra que está dentro del rango reportado para invernaderos de plástico sin calefacción (30-40 L·kg\(^{-1}\)). La productividad energética fue de 0.331 kg·MJ\(^{-1}\), y la energía consumida por unidad de área fue de 57.61 MJ·m\(^{-2}\), siendo el Nitrato de calcio el insumo con mayor demanda de energía (49.49 %). Durante el ciclo de producción se utilizaron 738 h de trabajo, 78 % de las cuales se dedicaron a limpieza y mantenimiento, con una productividad de mano de obra de 3.02 kg·h\(^{-1}\).

Palabras clave: rendimientos, eficiencia, agricultura controlada, Nitrato de calcio.
Introduction

Mexico is the world’s leading exporter of tomato, and in 2016 it contributed 25.11 % of the value of world tomato exports, accounting for 90.67 % of U.S. imports and 65.31 % of Canada’s (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación [SAGARPA], 2017). According to Fideicomisos Instituidos en Relación con la Agricultura (FIRA, 2017), the red tomato is the main vegetable produced under protected agriculture (shade net and greenhouses) in Mexico (70 %). The area established with this system increased from 1,973 to 15,198 ha between 2007 and 2017, with an average annual growth rate of 22.7 % (FIRA, 2019).

Tomato yields vary significantly between producers, varieties, state of the republic and type of technology used. For example, Ortega-Martínez et al. (2010) found yields ranging from 7.3 to 25 kg·m⁻² in greenhouse tomato grown with different substrates, the best being sawdust. Núñez-Ramírez et al. (2017), in an experiment with tomato grown in mulch and with drip irrigation under greenhouse conditions in Sonora, Mexico, reported tomato yields ranging from 17 to 20.6 kg·m⁻² with different doses of N (250 to 1,000 kg·ha⁻¹). In a continuous production scheme with three to four cycles per year, Sánchez-del Castillo, Bastida-Cañada, Moreno-Pérez, Contreras-Magaña, and Sahagún-Castellanos (2014) report yields of up to 600 t·ha⁻¹·year⁻¹ for tomato. From 2015 to 2017, Saladette tomato yields increased from 173.3 to 176.7 t·ha⁻¹·year⁻¹ in greenhouse production, and from 34.3 to 36.1 t·ha⁻¹·year⁻¹ in open field production (FIRA, 2016, 2019).

The performance of production systems in protected agriculture can be measured through various indicators. According to Carro-Paz and González-Gómez (2016), productivity is an index that relates outputs or products to the inputs needed to generate such production. Partial productivity relates total production or output to one of the resources used.

There are two indices to denote water use by crops defined by Nederhoff and Stanghellini (2010). The first is product water use (PWU), which is the volume of water used by the plant during the entire production cycle to generate one kilogram of fresh product (L·kg⁻¹). The second, which is the inverse of the previous one, is called water use efficiency (WUE), although some authors call it water productivity, and it is the production in kilograms divided by the amount of water used by the crop (kg·m⁻³). Water is used efficiently when PWU is low and WUE is high. Some PWU values for tomato are reported in Table 1, and range from 4 to 300 L·kg⁻¹, which corresponds to WUE values between 250 and 3.33 kg·m⁻³. For the purposes of this study, the WUE index will be used.

Introducción

México es el principal exportador de tomate a nivel mundial, y en 2016 contribuyó con el 25.11 % del valor de las exportaciones mundiales, cubriendo el 90.67 % de las importaciones de Estados Unidos de América y 65.31 % de Canadá (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación [SAGARPA], 2017). De acuerdo con Fideicomisos Instituidos en Relación con la Agricultura (FIRA, 2017), el tomate rojo es la principal hortaliza producida bajo agricultura protegida (malla sombra e invernadero) en México (70 %). La superficie establecida con este sistema pasó de 1,973 a 15,198 ha entre 2007 y 2017, con una tasa promedio anual de crecimiento de 22.7 % (FIRA, 2019).

Los rendimientos de tomate variaron significativamente entre productores, variedades, estado de la república y tipo de tecnología utilizada. Por ejemplo, Ortega-Martínez et al. (2010) encontraron rendimientos que oscilaron entre 7.3 y 25 kg·m⁻² en tomates cultivados bajo invernadero con diferentes sustratos, siendo el mejor el aserrín. Núñez-Ramírez et al. (2017), en un experimento con tomate en acolchado y riego por goteo bajo condiciones de invernadero en Sonora, México, reportaron rendimientos de 17 y 20.6 kg·m⁻² con diferentes dosis de N (250 a 1,000 kg·ha⁻¹). En un esquema de producción continua de tres a cuatro ciclos por año, Sánchez-del Castillo, Bastida-Cañada, Moreno-Pérez, Contreras-Magaña, y Sahagún-Castellanos (2014) reportan rendimientos de hasta 600 t·ha⁻¹·año⁻¹ para tomates. De 2015 a 2017, los rendimientos de tomate tipo Saladette se incrementaron de 173.3 a 176.7 t·ha⁻¹·año⁻¹ en producción bajo invernadero, y de 34.3 a 36.1 t·ha⁻¹·año⁻¹ a campo abierto (FIRA, 2016, 2019).

El desempeño de los sistemas de producción en agricultura protegida se puede medir a través de algunos indicadores. De acuerdo con Carro-Paz y González-Gómez (2016), la productividad es un índice que relaciona salidas o productos con las entradas o insumos necesarios para generar tal producción. La productividad parcial relaciona la producción total o salida con uno de los recursos utilizados.

Existen dos índices para denotar el uso del agua por los cultivos definidos por Nederhoff y Stanghellini (2010). El primero es el uso del agua por el producto (PWU, por sus siglas en inglés), que es el volumen de agua utilizado por la planta durante todo el ciclo productivo para generar un kilogramo de producto fresco (L·kg⁻¹). El segundo es el inverso del anterior, se denomina eficiencia en el uso del agua (WUE, por sus siglas en inglés), aunque algunos autores le llaman la productividad del agua, y es la producción en kilogramos dividida por la cantidad de agua utilizada por el cultivo (kg·m⁻³). El agua se usa de manera
Rashidi and Gholami (2008), in experiments with tomato over 20 years in Iran, report a range of 2.58 to 11.88 kg∙m⁻³ in WUE, whereas Nederhoff and Stanghellini (2010) note a WUE of 5.43 kg∙m⁻³ (184 L∙kg⁻¹) in the same crop, for an average of 65 countries from 1997 to 2001, although the authors do not mention whether that average is for developed or underdeveloped countries. In a study conducted in Cuba, González-Robaina, Herrera-Puebla, López-Seijas, and Cid-Lazo (2014) report a WUE between 12.9 and 45.4 kg∙m⁻³ in tomato. Likewise, Liu, Hu, Feng, Wang, and Yang (2019) in their research on open field tomato growth, under different potassium levels in a province of China, obtained productivities in a range of 20.28 to 24.33 kg∙m⁻³.

The WUE figures for tomato cultivation depend on several factors, among them the technology level, as shown in Table 1 where the amount of irrigation water needed to produce 1 kg of fresh tomato, from different farming systems, is broken down. With the most advanced technology, only 4 L of water are needed to produce 1 kg of tomato, whereas under traditional farming methods, this amount can range from 100-300 L∙kg⁻¹. This demonstrates the importance of efficient water use in tomato production.

Table 1. Liters of water used per kilogram of tomato produced (WUE).

Production method / Método de producción	Country / País	PWU (L∙kg⁻¹)
Open field, general / Campo abierto en general	Various / Varios	100-300a
Open field, drip irrigation / Campo abierto, riego por goteo	Israel	60b
Open field / Campo abierto	Almería, España	50-60a
Open field, drip irrigation, substrate: cocopeat + perlite + vermiculite (50:25:25) / Campo abierto, riego por goteo, sustrato: cocopeat + perlita + vermiculita (50:25:25)	Saidapur, India	11.99c
Unheated plastic greenhouses / Invernaderos de plástico sin calefacción	Israel, España	30-40a
Unheated parral-type plastic greenhouse / Invernadero tipo parral de plástico sin calefacción	España	40b
Unheated parral-type plastic greenhouse with regulated ventilation / Invernadero tipo parral de plástico sin calefacción y ventilación regulada	España	27b
Heated glasshouse / Invernadero de cristal sin calefacción	Israel	30b
Glasshouses with climate control and CO₂ enrichment / Invernaderos de cristal con control climático y enriquecimiento de CO₂	Holanda	22a,b
As above but with hydroponic system and reuse of drainage water / Igual que el anterior pero con sistema hidropónico y reuso de agua de drenaje	Holanda	15a,b
As above but with closed hydroponic system / Igual que el anterior pero con sistema hidropónico cerrado	Holanda	4a

Source: a) Nederhoff and Stanghellini (2010); b) van Kooten, Heuvelink, and Stanghellini (2008); c) Parameshwarareddy, Angadi, Biradar, and Patil (2018).

Fuente: a) Nederhoff y Stanghellini (2010); b) van Kooten, Heuvelink, y Stanghellini (2008); c) Parameshwarareddy, Angadi, Biradar, y Patil (2018).
required to produce 1 kg of tomato. Figure 1 shows a summary of water use and productivity for seven technological levels of tomato production, obtained from a simulation model based on physical equations that describe the heat and mass flows associated with greenhouse tomato production established by Elings, Campen, Nieves-García, and van der Valk (2013) for the conditions of Aguascalientes, Mexico. As the technological level increases, water use decreases and water use productivity increases, which is more noticeable when going from medium technological level 5 (M5) (51.9 kg·m⁻³) to the high technological level (A) (168.2 kg·m⁻³); the only difference between the two was that at level A thermal screens and mechanical cooling were added.

Another fundamental resource in greenhouse production, besides water, is energy, which depends on the climatic needs within the greenhouse for each crop, the varieties, the time of year and the physiological state of the plants.

There are two approaches to measuring performance in energy use; the first considers the energy used in the production of inputs (such as seeds, herbicides, fertilizers, etc.), with the indicators being: 1) the Las cifras de la WUE en cultivo de tomate dependen de varios factores, entre ellos el nivel tecnológico, como se muestra en el Cuadro 1, en donde se desglosa la cantidad de agua de riego necesaria para producir 1 kg de tomate fresco a partir de diferentes sistemas de cultivo. Con la tecnología más avanzada se requieren únicamente 4 L de agua para producir 1 kg de tomate. En la Figura 1 se muestra un resumen del uso del agua y la productividad de siete niveles tecnológicos de producción de tomate, obtenidos de un modelo de simulación basado en ecuaciones físicas que describen los flujos de calor y masa asociados con la producción de tomate bajo invernadero establecidas por Elings, Campen, Nieves-García, y van der Valk (2013) para las condiciones de Aguascalientes, México. A medida que aumenta el nivel tecnológico, disminuye el uso de agua e incrementa la productividad en el uso de agua, lo cual es más notorio al pasar del nivel tecnológico medio 5 (M5) (51.9 kg·m⁻³) al nivel tecnológico alto (A) (168.2 kg·m⁻³); la única diferencia entre ambos fue que en el nivel A se adicionaron pantallas térmicas y enfriamiento mecánico.

![Figure 1. Water use and productivity in tomato cultivation with different technologies. Technological level: B = low (P, V, G), M1 = medium 1 (P, H, V, S), M2 = medium 2 (P, H, V, S, TS), M3 = medium 3 (P, HP, V, S, CO₂), M4 = medium 4 (P, HP, E, S), M5 = medium 5 (G, HP, V, R, CO₂), A = high (D, HP, M, TS, CO₂). Where, covering: P = plastic, G = glass, D = diffuse glass; heating: H = air heaters, HP = heating pipes; cooling: V = ventilation, E = evaporative cooling, M = mechanical cooling; substrate: G = soil, S = substrate, R = substrate with reuse of water; TS = thermal screens; CO₂ = CO₂ enrichment. Source: Author-made with data from Elings et al. (2013).](image)

Figura 1. Uso y productividad del agua en cultivo de tomate con diferentes tecnologías. Nivel tecnológico: B = bajo (P, V, G), M1 = medio 1 (P, H, V, S), M2 = medio 2 (P, H, V, S, TS), M3 = medio 3 (P, HP, V, S, CO₂), M4 = medio 4 (P, HP, E, S), M5 = medio 5 (C, HP, V, R, CO₂), A = alto (D, HP, M, TS, CO₂). Donde, cubierta: P = plástico, C = cristal, D = cristal difuso; calefacción: H = calentadores de aire, TP = tuberías de calefacción; enfriamiento: V = ventilación, E = enfriamiento evaporativo, M = enfriamiento mecánico; sustrato: G = suelo, S = sustrato, R = sustrato con reuso de agua; TS = pantallas térmicas; CO₂ = enriquecimiento de CO₂. Fuente: Elaboración propia con datos de Elings et al. (2013).
energy use ratio (EUR), which is the amount of energy recovered in MJ through the product obtained for each MJ used in inputs (MJ-MJ⁻¹), 2) the energy productivity (EP), expressed in kg of product per MJ used (kg-MJ⁻¹), and 3) the specific energy (SE), which is the inverse of the previous one measured in MJ-kg⁻¹. The second approach considers the energy use efficiency (EUE) indicator, which is the ratio between the energy expenditure on electricity and fuel in MJ used in the production process (MJ-kg⁻¹).

The first approach is applied by Dimitrijević, Blažin, Blažin, and Ponjićan (2015), who report an EP of 0.65 kg-MJ⁻¹ and an EUR of 0.52 MJ-MJ⁻¹ for a tunnel-type greenhouse with tomato cultivation in Serbia. Pahlavan, Omid, and Akram (2011) report an EUR of 0.001 MJ-MJ⁻¹ in tomato production, where the inputs used were labor, fertilizers, herbicides, electricity and machinery. Likewise, Sepat, Sepat, Sepat, and Kumar (2013) report yields of 29 kg-m⁻² in greenhouse tomato production, with an EUR of 1.36 MJ-MJ⁻¹ and SE of 2.42 MJ-kg⁻¹. Shamsabadi, Abedi, Ahmad, and Taheri-Rad (2017), in a study conducted in four provinces of Iran, one under open field conditions and three under greenhouse conditions, found that the EUR was between 0.59 and 1.48 MJ-MJ⁻¹, while the EP was between 0.74 and 1.38 kg-MJ⁻¹.

In the second approach, the EUE is defined by Dannehl, Schuch, and Schmidt (2013) as the amount of energy required to produce 1 kg of commercial fruit expressed in MJ-kg⁻¹. The EUE, although it has the same units as the specific energy in the first approach, does not consider the energy consumed in the preparation of inputs such as fertilizers, seeds, herbicides, etc. The same authors calculated an average EUE of 40 MJ-kg⁻¹, considering the consumption of electricity and fuel in heating and cooling systems for one year of tomato production in a high-tech glasshouse located in Berlin, Germany. Furthermore, these authors obtained an EUE of -1.41 MJ-kg⁻¹ in a solar collector greenhouse with heat pumps, and they report an EUE of 1.97 MJ-kg⁻¹ in unheated greenhouses in Spain.

Elings et al. (2013), in a simulation established for the conditions in Aguascalientes, Mexico, found that the EUE is 1.98 MJ-kg⁻¹ for low-tech greenhouses, between 14.92 and 11.49 MJ-kg⁻¹ for medium-tech greenhouses and 25.64 MJ-kg⁻¹ for high-tech greenhouses. The EUE decreases as the technology level increases due to the high energy use in absolute terms (Figure 2). When going from level M5 to A, energy use increases dramatically from 778 to 3,465 MJ-m⁻²-year⁻¹; furthermore, due to the use of mechanical cooling and thermal screens, energy use efficiency is highest at the lowest technology level and lowest at the highest one.

Invernaderos para cada cultivo, las variedades, la época del año y el estado fisiológico de las plantas.

Existen dos enfoques para medir el desempeño en el uso de la energía; el primero considera la energía utilizada en la fabricación de insumos (como semillas, herbicidas, fertilizantes, etc.), y los indicadores utilizados son: 1) la razón en el uso de la energía (RUE), que es la cantidad de energía recuperada en MJ a través del producto obtenido por cada MJ utilizado en insumos (MJ-MJ⁻¹), 2) la productividad energética (PE), expresada en kg de producto por MJ utilizado (kg-MJ⁻¹), y 3) la energía específica (EE), que es el inverso del anterior medido en MJ-kg⁻¹. El segundo enfoque considera el indicador eficiencia en el uso de la energía (EUE), que es la razón entre el gasto de energía en electricidad y combustible en MJ utilizados en el proceso de producción (MJ-kg⁻¹).

El primer enfoque es aplicado por Dimitrijević, Blažin, Blažin, y Ponjićan (2015), quienes reportan una PE de 0.65 kg-MJ⁻¹ y una RUE de 0.52 MJ-MJ⁻¹, para un invernadero tipo túnel con cultivo de tomate en Servia. Pahlavan, Omid, y Akram (2011) presentan una RUE de 0.001 MJ-MJ⁻¹ en la producción de tomate, en donde los insumos utilizados fueron mano de obra, fertilizantes, herbicidas, electricidad y maquinaria. Asimismo, Sepat, Sepat, Sepat, y Kumar (2013) reportan rendimientos de 29 kg-m⁻² en la producción de tomate bajo invernadero, con una RUE de 1.36 MJ-MJ⁻¹ y EE de 2.42 MJ-kg⁻¹. Shamsabadi, Abedi, Ahmad, y Taheri-Rad (2017), en un estudio realizado en cuatro provincias de Irán, una en condiciones de campo abierto y tres bajo condiciones de invernadero, encontraron que la RUE osciló entre 0.59 y 1.48 MJ-MJ⁻¹, mientras que la PE estuvo entre 0.74 y 1.38 kg-MJ⁻¹.

El segundo enfoque, la EUE es definida por Dannehl, Schuch, y Schmidt (2013) como la cantidad de energía requerida para producir 1 kg de frutos comerciales expresada en MJ-kg⁻¹. La EUE, aunque tiene las mismas unidades que la energía específica del primer enfoque, no considera la energía consumida en la elaboración de insumos como fertilizantes, semillas, herbicidas, etc. Los mismos autores calcularon una EUE promedio de 40 MJ-kg⁻¹, considerando el consumo de electricidad y combustible en los sistemas de calefacción y enfriamiento para un año de producción de tomate en un invernadero de cristal de alta tecnología ubicado en Berlín, Alemania. Además, dichos autores obtuvieron una EUE de -1.41 MJ-kg⁻¹ en un invernadero de tipo colector solar con bomba de calor, y reportan una EUE de 1.97 MJ-kg⁻¹ en invernaderos sin calefacción en España.

Elings et al. (2013), in a simulación establecida para las condiciones de Aguascalientes, México,
Technological advances have also increased labor productivity, as shown by Ríos-Flores et al. (2010) in a study on corn cultivation in Lerdo City, Durango, Mexico. In that study, labor productivity increased from 14.6 to 20.8 kg∙h\(^{-1}\) in the periods 1990 to 1992 and 2004 to 2006, which means a 43% increase in physical product per hour. The same authors mention that labor productivity, measured as the yield per hectare among the number of workers, in high-tech systems is 74 kg of maize per worker, while in a low-tech system it falls to 26 kg of corn per worker.

According to Pérez-Mesa, de Pablo-Valenciano, and Escudero-Moreno (2004), in a study conducted in Almería, Spain, in a plastic greenhouse with tomato cultivation, labor accounted for almost 35% of total operating costs, and 60% of the workforce was engaged in tasks such as pruning, tutoring and cleaning in the greenhouse. Figure 3 shows the percentage of labor used in different operations in a greenhouse, for a total of 3,900 h∙ha\(^{-1}\) (Pérez-Mesa et al., 2004).

Given the importance of tomato cultivation in Mexico, it is essential to consider not only the increase in
yields per unit of area, but also the increase in the use of resources in the production process; for this reason, the objectives of this work were: 1) to estimate water, energy and labor productivity in tomato production, for an experimental greenhouse located at Chapingo Autonomous University; 2) to identify the production inputs that consume the greatest amount of energy, in order to improve some management aspects in the production of this crop.

Materials and methods

The present study was carried out in a sawtooth-type polyethylene greenhouse 8 m wide and 15 m long (120 m²), with two side windows and two zenithal windows, all with anti-insect mesh (Figure 4), located at Chapingo Autonomous University (19° 29’ NL and 98° 53’ WL, at 2,240 masl).

Sowing of the commercial Saladette-type tomato (**Solanum lycopersicum**) hybrid ‘El Cid F1’ (purchased at the “El Field” agro-inputs store) was carried out on March 6, 2016 in 200-cavity polystyrene trays. One tomato seed was placed in each tray cavity, covered with 0.5 cm of peat moss substrate and watered manually. On March 22, 2016, the seedlings emerged, and transplantation was carried out on April 24 in 10 L bags at a distance of 30 cm between each bag and 80 cm between rows, with a density of 3.5 plants-m⁻²; volcanic rock (tezontle) was used as substrate (Figure 5). Irrigation was carried out manually in the first days; after transplantation, a drip fertirrigation system with PVC valves and 16 mm tubing with 8 L-h⁻¹ dripper capacity and a four-outlet distributor was used. Twelve irrigations were performed per day, increasing the irrigation time according to the phenological
Figure 4. Sawtooth-type experimental greenhouse with drip irrigation located at Chapingo Autonomous University, 2016.
Figura 4. Invernadero experimental tipo cenital con riego por goteo ubicado en la Universidad Autónoma Chapingo, 2016.

Figure 5. Sowing and transplanting.
Figura 5. Siembra de semilla y transplante.

Figure 6. Tomato crop: drip irrigation, development and harvest.
Figura 6. Cultivo de tomate: riego por goteo, desarrollo y cosecha.
stage (Figure 6). Steiner nutrient solution was used for fertilization (Steiner, 1980).

The plants were tutored ten days after transplanting, followed by pruning in order to have better lighting, which also facilitated ventilation. As for phytosanitary control, there were only problems with whitefly, which was controlled with an insecticide.

On May 8, when the first flower clusters emerged, manual pollination began, which consists of gently moving the strings that were placed on the trellis to allow the pollen to fall on the stigmas of the flower. This activity was carried out daily before midday throughout the flowering stage.

It should be noted that the experiment carried out had several purposes: 1) to build a dynamic energy balance model for a greenhouse with tomato cultivation (Salazar-Moreno, López-Cruz, & Sánchez-Cruz, 2019), 2) to simulate the behavior of the nitrogen absorbed by the crop using the HortSyst mathematical model (Martínez-Ruiz, López-Cruz, Ruiz-García, Pineda-Pineda, and Prado-Hernández, 2019) and 3) to determine the water, energy and labor productivity in tomato production, which was the objective of the present study.

Water productivity and product water use are calculated for a certain unit of area, which can be hectares or square meters (Equations 1 and 2; Nederhoff & Stanghellini, 2010; Parameshwarareddy et al., 2018).

Water productivity (WUE) = \(\frac{Yields \ (kg)}{Applied \ water \ (m^2)} \)

Product water use (PWU) = \(\frac{Applied \ water \ (m^2)}{Yields \ (kg)} \)

The daily amount of water applied to the crop in m\(^3\) was obtained considering the water consumption in the drippers (8 L/h\(^{-1}\)), the number of irrigations per day and the period of time in which the system was on.

In order to monitor the climate in the greenhouse, a HOBO weather station was installed in the center of the greenhouse to measure air temperature and relative humidity. With the data obtained, the vapor-pressure deficit (VPD) during the crop cycle was calculated from the following equations proposed by The Institute of Measurement and Control (1996) for temperatures between -45 and 60 °C:

\[e_v = \exp \left[\ln(611.2) + \frac{17.62 \times t_r}{243.12 + t_r} \right] \]

\[e_s = \frac{e_v \times Rhi}{100} \]

La siembra del híbrido comercial de tomate tipo Saladette (Solanum lycopersicum) ‘El Cid F1’ (adquirido en agroinsumos “El Field”) se llevó a cabo el 6 de marzo de 2016 en charolas de poliestireno de 200 cavidades. Se colocó una semilla de tomate por cada cavidad de la charola, se cubrió con 0.5 cm de sustrato turba (peat moss) y se regaron manualmente. El 22 de marzo de 2016 emergieron las plántulas, y el trasplante se llevó acabo el 24 de abril en bolsas de 10 L a una distancia de 30 cm entre cada bolsa y 80 cm entre hilera, con una densidad de 3.5 plantas-m\(^{-2}\); como sustrato se utilizó roca volcánica (tezontle) (Figura 5). El riego se llevó a cabo de forma manual en los primeros días, después del trasplante se utilizó el sistema de fertirriego por goteo, con válvulas PVC y manguera ciega de 16 mm con capacidad de gotero de 8 L-h\(^{-1}\) y distribuidor de cuatro salidas. Se realizaron 12 riegos por día, aumentando el tiempo de riego de acuerdo con la etapa fenológica (Figura 6). Para la fertilización se utilizó la solución nutritiva Steiner (Steiner, 1980).

El tutorado de las plantas se llevó a cabo a los diez días después del trasplante, posteriormente se realizó la poda, esto con el fin de tener una mejor iluminación, lo que también facilitó la ventilación. En cuanto al control fitosanitario, únicamente se tuvieron problemas con la mosquita blanca, la cual se controló con un insecticida.

El 8 de mayo, cuando emergieron los primeros racimos florales, se comenzó la polinización manual, que consiste en mover suavemente los hilos que se colocaron en el tutorado para permitir el desprendimiento del polen sobre los estigmas de la flor. Esta actividad se realizó diariamente antes del medio día durante toda la etapa de floración.

Cabe señalar que el experimento realizado tuvo varios propósitos: 1) construir un modelo dinámico de balance de energía para un invernadero con cultivo de tomate (Salazar-Moreno, López-Cruz, & Sánchez-Cruz, 2019), 2) simular el comportamiento del nitrógeno absorbido por el cultivo utilizando el modelo matemático HortSyst (Martínez-Ruiz, López-Cruz, Ruiz-García, Pineda-Pineda, y Prado-Hernández, 2019) y 3) determinar la productividad del agua, energía y mano de obra en la producción de tomate, que fue el objetivo del presente estudio.

La productividad del agua y el uso de agua por el producto se calculan para cierta unidad de superficie, que puede ser hectáreas o metros cuadrados (Ecuaciones 1 y 2; Nederhoff & Stanghellini, 2010; Parameshwarareddy et al., 2018).

\[\text{Productividad del agua (WUE)} = \frac{\text{Rendimientos (kg)}}{\text{Agua aplicada (m}^2\text{)}} \]

\[\text{Uso del agua por el producto (PWU)} = \frac{\text{Agua aplicada (m}^2\text{)}}{\text{Rendimientos (kg)}} \]
Indicators for assessing water use performance include:

\[VPD = e_s - e_a \] \hspace{1cm} (5)

where \(t_a \) is the air temperature (°C), \(RH \) is the relative humidity (%), \(e_s \) is the saturation vapor pressure (kPa), \(e_a \) is the vapor pressure at air temperature (kPa) and \(VPD \) is the vapor-pressure deficit (kPa).

To evaluate energy use performance, the indicators described by Djevic and Dimitrijević (2004) and Pahlavan et al. (2011) were used and are described below:

\[\text{Energy use ratio (EUR)} = \frac{\text{Energy output (MJ)}}{\text{Energy inputs (MJ)}} \] \hspace{1cm} (6)

\[\text{Energy productivity (EP)} = \frac{\text{Tomato production (kg)}}{\text{Energy inputs (MJ)}} \] \hspace{1cm} (7)

\[\text{Specific energy (SE)} = \frac{\text{Energy inputs (MJ)}}{\text{Tomato production (kg)}} \] \hspace{1cm} (8)

La cantidad diaria de agua aplicada al cultivo en m\(^3\) se obtuvo considerando el gasto de agua en los goteros (8 L.h\(^{-1}\)), número de riegos por día y periodo de tiempo en el que estuvo prendido el sistema.

Con el fin de monitorear el clima en el invernadero, se instaló una estación meteorológica HOBO en el centro del invernadero, para la medición de la temperatura del aire y la humedad relativa. Con los datos obtenidos se calculó el déficit de presión de vapor (DPV) durante el ciclo de cultivo a partir de las siguientes ecuaciones propuestas por *The Institute of Measurement and Control* (1996) para temperaturas entre -45 a 60 °C:

\[e_s = \exp \left[\ln(611.2) + \left(\frac{17.62 \times t_a}{243.12 + t_a} \right) \right] \] \hspace{1cm} (3)

\[e_a = \frac{e_s \times RH}{100} \] \hspace{1cm} (4)

\[DPV = e_s - e_a \] \hspace{1cm} (5)

Table 2. Inputs used in a tomato production cycle and their energy equivalents.

Cuadro 2. Insumos utilizados en un ciclo de producción de tomate y su equivalencia en energía.

Inputs / Insumos	Units / Unidades	Amount in 120 m\(^2\) / Cantidad en 120 m\(^2\)	Energy equivalent (MJ per unit) / Equivalencia de energía (MJ por unidad)	Total energy (MJ) / Energía total (MJ)	Used (%) / Utilizado (%)
Water for irrigation / Agua para riego	m\(^3\)	82.15	1.028\(^a\)	84.45	1.22
Labor / Mano de obra	h	758	1.95\(^a\)	1,478.10	21.38
Seeds / Semillas	kg	0.00189	1\(^b\)	0.00	0.000003
Single-phase motor / Motor monofásico	kW.h\(^{-1}\)	18.29	3.6\(^a\)	65.84	0.95
Stink bug insecticide / Insecticida Stink bug	kg	0.10	101.2\(^b\)	10.12	0.15
Calcium nitrate / Nitrato de calcio	kg	51.74	66.14\(^c\)	3,422.08	49.49
Potassium nitrate / Nitro de potasio	kg	22.37	66.14\(^c\)	1,479.32	21.40
Potassium sulfate / Sulfato de potasio	kg	19.45	11.15\(^a\)	216.89	3.14
Magnesium sulfate / Sulfato de magne	kg	18.74	1.12\(^b\)	20.99	0.30
Macroelements / Macroelementos	kg	0.40	120\(^a\)	48.00	0.69
Phosphoric acid / Ácido fosfórico	kg	5.85	13.07\(^a\)	76.46	1.11
Sulfuric acid / Ácido sulfúrico	kg	0.90	1.12\(^b\)	1.98	0.03
Boron / Boro	kg	0.09	120\(^b\)	10.80	0.16
Total inputs / Total insumos	kg	2,288.94	0.8\(^c\)	1,831.15	100.00

Source: a) Moradi, Moghaddam, and Mansoori (2015), b) Sepat et al. (2013) and c) Pahlavan et al. (2011).
Fuente: a) Moradi, Moghaddam, y Mansoori (2015), b) Sepat et al. (2013) y c) Pahlavan et al. (2011).
The above indices include two types of energy inputs: indirect energy in seeds, fertilizers, herbicides, pesticides, and direct energy that includes labor, electricity and irrigation. The amount of each of the mentioned inputs was counted throughout the crop cycle, as well as the tomato production (kg), and the equivalents in MJ were obtained from the information in Table 2.

Labor productivity was obtained with Equation 9.

\[
\text{Labor productivity} = \frac{\text{Tomato production (kg)}}{\text{No. of workers} \times \text{hours per day} \times \text{no. of days (h)}}
\]

(9)

In order to count the number of hours spent on tomato production, a daily record was kept of the people who worked on the tomato crop, each one recording their daily workday by noting the time of entry and exit.

Results and discussion

Figure 6 shows the developed tomato crop and the start of the harvest. The consumption of inputs during a production cycle, from April 24 (transplant) to October 16, 2016, is reported in Table 2, as well as the corresponding energy equivalence according to several authors.

Tomato production yields were 19.07 kg∙m², above the yields reported by FIRA (2019) of 17.67 kg∙m² under greenhouse conditions in Mexico, but below those reported by Elings et al. (2013) of 21.6 kg∙m² in the simulation carried out for low-tech greenhouses.

Table 3 shows the total irrigation volume per day during a tomato production cycle. The variation in water per day is due to the phenological stage of the crop, and if one day there was no water in the runoff container, irrigation was increased by 1 min.

The calculated WUE in the experimental greenhouse was 27.86 kg∙m³. This figure is higher than the one found by Elings et al. (2013) of 7.2 kg∙m³ for low-tech greenhouses where the crop is grown in the soil, but it is within the range of 24.7 to 35.2 kg∙m³ for the medium 2 (M2) (plastic greenhouse with heating system and thermal screens) and medium 3 (M3) (plastic greenhouse with heating system and CO₂ enrichment) technological levels.

The WUE obtained is equivalent to 35.89 L∙kg⁻¹, which is within the PWU range reported by van Kooten et al. (2008) for unheated plastic greenhouses (30 to 40 L∙kg⁻¹). In more recent studies on open field tomato with a drip irrigation system, Parameshwarareddy et al. (2018) found that the highest WUE (83.37 kg∙m⁻³) was obtained under high WUE conditions.

Para evaluar el desempeño en el uso de la energía, se utilizaron los indicadores descritos por Djevic y Dimitrijević (2004), y Pahlavan et al. (2011), los cuales se describen a continuación:

\[
\text{Razón en el uso de la energía (RUE)} = \frac{\text{Salida de energía (MJ)}}{\text{Entradas de energía (MJ)}}
\]

(6)

\[
\text{Productividad energética (PE)} = \frac{\text{Producción de tomate (kg)}}{\text{Entradas de energía (MJ)}}
\]

(7)

\[
\text{Energía específica (EIE)} = \frac{\text{Entradas de energía (MJ)}}{\text{Producción de tomate (kg)}}
\]

(8)

Los índices anteriores incluyen dos tipos de entradas de energía: la energía indirecta en semillas, fertilizantes, herbicidas, pesticidas, y la energía directa que incluye mano de obra, electricidad y riego. La cantidad de cada uno de los insumos mencionados se contabilizó a lo largo del ciclo del cultivo, así como la producción de tomate (kg), y las equivalencias en MJ se obtuvieron a partir de la información del Cuadro 2.

La productividad de la mano de obra (MO) se obtuvo con la Ecuación 9.

\[
\text{Productividad de la MO} = \frac{\text{Producción de tomate (kg)}}{\text{Núm. trabajadores} \times \text{horas diarias} \times \text{núm. de días (h)}}
\]

(9)

Para poder contabilizar el número de horas empleadas en la producción de tomate, se llevó a cabo un registro diario de las personas que trabajaron en el cultivo de tomate, cada uno registraba su jornada diaria anotando hora de entrada y salida.

Resultados y discusión

En la Figura 6 se muestra el cultivo de tomate desarrollado y el inicio de la cosecha. El consumo de insumos durante un ciclo de producción, comprendido del 24 de abril (transplante) al 16 de octubre de 2016, se reporta en el Cuadro 2, así como su equivalencia en energía de acuerdo con varios autores.

Los rendimientos en la producción de tomate fueron de 19.07 kg∙m⁻², arriba de los rendimientos reportados por FIRA (2019) de 17.67 kg∙m⁻² en condiciones de invernadero en México, pero por debajo de los reportados por Elings et al. (2013) de 21.6 kg∙m⁻² en la simulación realizada para invernaderos de baja tecnología.
obtained when using a substrate mixture containing cocopeat + perlite + vermiculite (50:25:25).

In this study, daily water consumption during plant development ranged from 1.4 to 5.6 L∙m⁻²∙day⁻¹ (Table 3). The water consumed by the plant during the production cycle was 195 L, a high figure compared to that obtained by Parameshwarareddy et al. (2018) of 20.83 and 37.65 L∙plant⁻¹.

During the period of highest temperatures, from June 18 to August 26, the average VPD was 0.33 kPa, less than the optimal range reported by Shamshiri et al. (2018) for greenhouse tomato cultivation (0.47 to 1.27 kPa). Some authors such as Na, Michiko, Kozai, and Wataru (2015) report VPD values of 1.8 kPa during midday in winter for greenhouse tomato cultivation. The value obtained means that the plant was not stressed.

According to Table 2, the highest energy consumption during the tomato production cycle corresponded to Calcium nitrate and Potassium nitrate, which coincides with the findings of Martínez-Ruiz et al. (2019), who mention that approximately 50% of the fertilizer applied in their experiment may have been wasted.

The EUR was 0.2648 MJ∙MJ⁻¹, a result higher than that reported by Pahlvan et al. (2011) of 0.001 MJ∙MJ⁻¹, but lower than the results reported by Dimitrijević et al.

Date / Fecha	Phenological stages / Etapas fenológicas	Total days / Total de días	Water volume per day (m³) / Volumen de agua por día (m³)	Total water volume (m³) / Volumen total de agua (m³)	L∙m⁻²∙day⁻¹ / L∙m⁻³∙día⁻¹
April 30 - May 18 / 30 abril - 18 mayo	VD¹/DV¹	19	0.168	3.192	1.4
May 19 - June 5 / 19 mayo - 5 junio	VD - F/DV - F	18	0.336	6.048	2.8
June 6 - July 9 / 6 junio - 9 julio	F	34	0.504	17.136	4.2
July 10 - July 24 / 10 julio - 24 julio	F	15	0.672	10.08	5.6
July 25 - August 14 / 25 julio - 14 agosto	F	21	0.504	10.584	4.2
August 15 - September 3 / 15 agosto - 3 septiembre	FR	20	0.672	13.44	5.6
September 4 - October 16 / 4 septiembre - 16 octubre	FR	43	0.504	21.672	4.2
Total			82.152		

¹VD = vegetative development; F = flowering; FR = fruiting. Source: Author-made.

Table 3. Total irrigation volume in 120 m² for tomato production with a density of 3 plants-m².

El Cuadro 3 muestra el volumen total de riego por día durante un ciclo de producción de tomate. La variación de agua por día se debe a la etapa fenológica en la que se encuentra el cultivo, y si un día no había agua en el recipiente de escurrimiento, se incrementaba el riego 1 min.

La WUE calculada en el invernadero experimental fue de 27.86 kg∙m⁻³. Dicha cifra es superior a la encontrada por Elings et al. (2013) de 7.2 kg∙m⁻³ para invernaderos de baja tecnología en suelo, pero se encuentra dentro del rango de 24.7 a 35.2 kg∙m⁻³ para los niveles tecnológicos medio 2 (M2) (invernadero de plástico con sistema de calefacción y pantallas térmicas) y medio 3 (M3) (invernadero de plástico con sistema de calefacción y enriquecimiento de CO₂).

La WUE obtenida es equivalente a 35.89 L∙kg⁻¹, lo cual está dentro del rango de PWU que reportan van Kooten et al. (2008) para invernaderos de plástico sin calefacción (30 a 40 L∙kg⁻¹). En estudios más recientes realizados en tomate a campo abierto con sistema de riego por goteo, Parameshwarareddy et al. (2018) encontraron que la mayor WUE (83.37 kg∙m⁻³) se obtuvo al utilizar el sustrato fibra de coco + perlita + vermiculita (50:25:25).
(2015), Shamsabadi et al. (2017) and Sepat et al. (2013) of 0.52, 1.16 and 1.36 MJ-MJ⁻¹, respectively. However, the last authors, in addition to considering the tomato fruit as an energy output, also take into account the energy in the leaf litter, which provides 7.5 MJ-kg⁻¹, while the tomato fruit adds 0.8 MJ-kg⁻¹.

On the other hand, EP was 0.331 kg-MJ⁻¹ and its inverse, SE, was 3.02 MJ-kg⁻¹, higher than that reported by Sepat et al. (2013) of 2.42 MJ-kg⁻¹ for greenhouse tomato production. The energy consumption per m² was 57.61 MJ.

In the second approach, only the electricity consumption of a single-phase motor was considered, so the EUE was expressed as follows:

\[
\text{EUE} = \frac{\text{Energy inputs (MJ)}}{\text{Production (kg)}} = \frac{65.83 \text{ (MJ)}}{2288.9 \text{ (kg)}} = 0.028 \text{ MJ-kg}^{-1}
\]

(10)

The above figure is lower than that reported by Dannehl et al. (2013) for a solar collector greenhouse, but higher than that reported for unheated greenhouses in Spain.

Regarding labor, during the tomato production cycle, 758 h of labor were used for an area of 120 m² and production of 2,288.94 kg of tomato. Figure 7 breaks down the percentage of hours used in each operation.

![Figure 7](image)

Figure 7. Distribution of working hours used in a tomato production cycle in a sawtooth-type experimental greenhouse.

Figura 7. Distribución de horas de trabajo empleadas en un ciclo de producción de tomate en un invernadero experimental tipo cenital.
Maintenance and cleaning occupied 78% of the workforce during the production cycle, higher than that reported by Pérez-Mesa et al. Labor productivity was 3.019 kg·h⁻¹.

Conclusions

One aspect that should be considered in any production system is its environmental impact resulting from the use of resources, particularly water and energy. Greenhouse production has managed to increase water use productivity, but this has not happened with energy use, where as the technological level increases, greater energy consumption is required for the production of 1 kg of tomatoes.

This study estimated water, energy and labor use productivity in tomato production, and the results indicate that even in low-tech greenhouses, energy consumption is high due to the excessive use of fertilizers. Water use productivity, although within the ranges reported by other authors for low-tech greenhouses, is high compared to closed hydroponic systems in high-tech greenhouses.

Greenhouse tomato production is a labor-intensive activity, especially in terms of maintenance and harvesting. In larger greenhouses, working hours could be reduced by installing a material handling system (mobile systems, wheeled benches) and increasing ventilation.

References / Referencias

Carro-Paz, R., & González-Gómez, D. (2016). Productividad y competitividad. Administración de las operaciones. Argentina: Universidad Nacional de Mar del Plata. Retrieved from https://nulan.mdp.edu.ar/1607/1/02_productividad_competitividad.pdf

Dannehl, D., Schuch, I., & Schmidt, U. (2013). Plant production in solar collector greenhouses - influence on yield, energy use efficiency and reduction in CO₂ emissions. Journal of Agricultural Science, 5(10), 34-45. doi: 10.5539/ajas.v5n10p34

Dimitrijević, A., Blažin, S., Blažin, D., & Ponjičan, O. (2015). Energy efficiency of the tomato open field and greenhouse production systems. Journal on Processing and Energy in Agriculture, 19(3), 132-135. Retrieved from https://scindeks-clanci.ceon.rs/data/pdf/1821-4487/2015/1821-44871503132D.pdf

Djevic, M., & Dimitrijević, A. (2004). Greenhouse energy consumption and energy efficiency. Balkan Agricultural Engineering Review, 5, 1-9. Retrieved from https://www.researchgate.net/publication/228976025_Greenhouse_energy_consumption_and_energy_efficiency

Por otro lado, la PE fue de 0.331 kg MJ⁻¹ y su inverso, la EE, fue de 3.02 MJ kg⁻¹, superior a la reportada por Sepat et al. (2013) de 2.42 MJ kg⁻¹ para producción de tomate bajo invernadero. El consumo de energía por m² fue de 57.61 MJ.

En el segundo enfoque, se consideró únicamente el consumo de electricidad de un motor monofásico, por lo que la EUE se expresó de la siguiente manera:

\[
EUE = \frac{Entradas de energía (MJ)}{Producción (kg)} = \frac{65.83 \text{ (MJ)}}{2288.9 \text{ (kg)}} = 0.028 \text{ MJ kg}^{-1}
\]

La cifra anterior se encuentra por debajo de lo reportado por Dannehl et al. (2013) para un invernadero tipo colector solar, pero está por arriba de lo reportado para invernaderos sin calefacción en España.

En relación con la mano de obra, durante el ciclo de producción de tomate se utilizaron 758 h de mano de obra para una superficie de 120 m² y producción de 2,288.94 kg de tomate. En la Figura 7 se desglosa el porcentaje de horas utilizadas en cada operación.

El mantenimiento y limpieza ocuparon el 78% de la mano de obra durante el ciclo de producción, superior al reportado por Pérez-Mesa et al. (2004) entre labores de cultivo, mantenimiento y limpieza. La productividad de la mano de obra fue de 3.019 kg·h⁻¹.

Conclusiones

Un aspecto que se debe considerar en cualquier sistema productivo es el impacto ambiental que se tiene a través del uso de recursos, particularmente agua y energía. La producción bajo invernadero ha logrado incrementar la productividad en el uso del agua, pero no ha ocurrido así con el uso de la energía, en donde a medida que incrementa el nivel tecnológico se requiere mayor consumo de energía para la producción de 1 kg de tomate.

En el presente trabajo se estimó la productividad en el uso de agua, energía y mano de obra en la producción de tomate, y los resultados indican que aun en invernaderos de baja tecnología, el consumo de energía es elevado debido al uso excesivo de fertilizantes. La productividad en el uso de agua, aunque estuvo dentro de los rangos reportados por otros autores para invernaderos de baja tecnología, es una cifra elevada comparada con sistemas hidropónicos cerrados en invernaderos de alta tecnología.

End of English version
La producción de tomate en invernaderos es una actividad que requiere de muchas horas de mano de obra, sobre todo en las labores de mantenimiento y recolección. En invernaderos con mayor superficie, se podrían reducir las horas de trabajo instalando un sistema de manejo de materiales (sistemas móviles, bancas con ruedas) y mayor ventilación.

Fin de la versión en español

from http://www.scielo.org.ar/scielo.php?script=sci_abstract&pid=S1853-86652017000200007

Ortega-Martínez, L. D., Sánchez-Olarte, J., Ocampo-Mendoza, J., Sandoval-Castro, E., Salcido-Ramos, B. A., & Manzo Ramos, F. (2010). Efecto de diferentes sustratos en crecimiento y rendimiento de tomate (lycopersicum esculentum Mill.) bajo condiciones de invernadero. Ra unxai, 6(3), 339-346. Retrieved from http://revistas.unam.mx/index.php/rxm/article/view/24588

Pahlavan, R., Omid, M., & Akram, A. (2011). Energy use efficiency in greenhouse tomato production in Iran. Energy, 36(12), 6714-6719. doi: 10.1016/j.energy.2011.10.038

Parameshwarareddy, R., Angadi, S. S., Biradar, M. S., & Patil, R. H. (2018). Water productivity of tomato as influenced by drip irrigation levels and substrates. Journal of Pharmacognosy and Phytochemistry, 7(2), 1343-1346. Retrieved from http://www.phytojournal.com/archives/?year=2018&vol=7&issue=2&ArticleId=3539

Pérez-Mesa, J. C., de Pablo-Valenciano, J., & Escudero- Moreno, M. C. (2004). Costes de producción y utilización de la mano de obra en jitomate: un estudio empírico para el cultivo bajo plástico en Almería. Almería, España: COEXPHAL. Retrieved from https://www.asepelt.org/ficheros/File/Anales/2003%20-%20Almeria/asepeltPDF/227.PDF

Rashidi, M., & Gholami, M. (2008). Review of crop water productivity values for tomato, potato, melon, watermelon and cantaloupe in Iran. International Journal of Agriculture and Biology, 10(4), 432-436. Retrieved from http://www.fs publishers.org/published_papers/21754__pdf

Ríos-Flores, J. L., Torres-Moreno, M., Cantú-Brito, J. E., Caamal-Cauich, J., Jerónimo-Ascencio, F., & Cruz- Martínez, A. (2010). Producción, productividad y rentabilidad de maíz grano (Zea mays) bajo riego por bombeo en la Laguna, México de 1990 a 2006. Revista Chapingo Serie Zonas Áridas, 9, 21-26. Retrieved from https://chapingo.mx/revistas/phpscript/download.php?file=completo&id=MTc3OQ==

Salazar-Moreno, R., López-Cruz, I. L., & Sánchez-Cruz, A. C. (2019). Dynamic energy balance model in a greenhouse with tomato cultivation: simulation, calibration and evaluation. Revista Chapingo Serie Horticultura, 25(1), 45-60. doi: 10.5154/fr.rchsh.2018.07.014
Sánchez-del Castillo, F., Bastida-Cañada, O. A., Moreno-Pérez, E. C., Contreras-Magaña, E., & Sahagún-Castellanos, J. (2014). Rendimiento de tomate con diferentes métodos de cultivo hidropónico basados en doseles escaleriformes. Revista Chapingo Serie Horticultura, 20(3), 239-251. doi: 10.5154/r.rchsh.2013.10.037

Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). (2017). Planeación Agrícola Nacional 2017-2030. México: Author. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/255627/Planeaci_n_Agr_cola_Nacional_2017-2030_-parte_uno.pdf

Sepat, N. K., Sepat, S. R., Sepat, S., & Kumar, A. (2013). Energy use efficiency and cost analysis of tomato under greenhouse and open field production system at Nubra valley of Jammu and Kashmir. International Journal of Environmental Science, 3(4), 1233-1241. doi: 10.6088/ijes.2013030400002

Shamsabadi, H., Abedi, M., Ahmad, D., & Taheri-Rad, A. (2017). Comparison of energy consumption and greenhouse gas emissions footprint caused by agricultural products in greenhouses and open fields in Iran. Energy Equipment and Systems, 2(5), 157-163. Retrieved from www.energyequipsys.com/article_25756_75ec1a67f527df038bc7e6129604dc2a.pdf

Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri. S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. International Agrophysics, 32(2), 287-302. doi: 10.1515/intag-2017-0005

Steiner, A. A. (1980). The selective capacity of plant for ions and its importance for the composition and treatment of the nutrient solution. Acta Horticulturae, 98, 87-98. doi: 10.17660/ActaHortic.1980.98.7

The Institute of Measurement and Control. (1996). A guide to the measurement of humidity. London: National Physical Laboratory. Retrieved from https://www.npl.co.uk/special-pages/guides/a-guide-to-the-measure-of-humidity-gpg103

van Kooten, O., Heuvelink, E., & Stanghellini, C. (2008). New developments in greenhouse technology can mitigate the water shortage problem of the 21st century. Acta Horticulturae, 767. doi: 10.17660/ActaHortic.2008.767.2