FAST TRACK COMMUNICATION

An ignition key for atomic-scale engines

Daniel Dundas, Brian Cunningham, Claire Buchanan, Asako Terasawa, Anthony T Paxton and Tchavdar N Todorov

Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK

E-mail: d.dundas@qub.ac.uk

Received 28 August 2012
Published 18 September 2012
Online at stacks.iop.org/JPhysCM/24/402203

Abstract
A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling.

Nanoscale conductors [1, 2] carry current densities orders of magnitude larger than in macroscopic wires, resulting in substantial forces. The current-induced force on a nucleus consists of (I) the average force, and (II) force noise originating from the corpuscular nature of electrons [3, 4]. II causes inelastic electron–phonon scattering and Joule heating [5, 2]. I contains the so-called electron-wind force, and velocity-dependent forces [6, 3, 7–11, 4]. The wind force results from momentum transfer in elastic electron–nuclear scattering, and drives electromigration [12]. Wind forces can be calculated from first principles, to study their effect on nanoscale devices [13–16].

The electron-wind force is receiving fresh attention due to a remarkable property: it is non-conservative (NC) and can do net work on atoms around closed paths [12, 6, 3, 7–11, 4]. This phenomenon, which we call the waterwheel effect, opens up interesting questions. It provides a mechanism for driving molecular engines [17–22]. But the gain in kinetic energy of the atoms from the work done by NC forces is also a potential failure mechanism, possibly more potent than Joule heating. There are experimental indications of anomalous bias-activated apparent heating in point contacts [23, 24], above that expected from Joule heating alone [13, 25–27]. The waterwheel effect is a possible activation mechanism also for the electromigration phenomena that become a central issue under large currents [28, 29].

The applied bias is a key factor for the operation of NC forces [6, 3, 8–11, 4]. First, they have to compete against the electronic friction (a velocity-dependent force), and this may require a critical current. Second, the waterwheel effect requires pairs of normal modes degenerate in frequency [6, 3, 8]. If there is a frequency mismatch, a critical bias may be needed to overcome it. Ramping up the bias to overcome these factors is, notionally, like having to press the accelerator harder to climb a hill.

The bias is a sensitive control parameter for the current-driven excitation of atomic motion in resonant systems [30, 31]. In this letter we show how resonances can be exploited to turn the NC force on and off, akin to turning the engine of a car on and off. We will see that this ‘switch’ is robust against decreasing resonance width. We will illustrate further how NC forces can be gauged to extract work from the current with no net angular momentum transfer to the real-space atomic motion.

Nanoscale conductors [1, 2] carry current densities orders of magnitude larger than in macroscopic wires, resulting in substantial forces. The current-induced force on a nucleus consists of (I) the average force, and (II) force noise originating from the corpuscular nature of electrons [3, 4]. II causes inelastic electron–phonon scattering and Joule heating [5, 2]. I contains the so-called electron-wind force, and velocity-dependent forces [6, 3, 7–11, 4]. The wind force results from momentum transfer in elastic electron–nuclear scattering, and drives electromigration [12]. Wind forces can be calculated from first principles, to study their effect on nanoscale devices [13–16].

The electron-wind force is receiving fresh attention due to a remarkable property: it is non-conservative (NC) and can do net work on atoms around closed paths [12, 6, 3, 7–11, 4]. This phenomenon, which we call the waterwheel effect, opens up interesting questions. It provides a mechanism for driving molecular engines [17–22]. But the gain in kinetic energy of the atoms from the work done by NC forces is also a potential failure mechanism, possibly more potent than Joule heating. There are experimental indications of anomalous bias-activated apparent heating in point contacts [23, 24], above that expected from Joule heating alone [13, 25–27]. The waterwheel effect is a possible activation mechanism also for the electromigration phenomena that become a central issue under large currents [28, 29].

The applied bias is a key factor for the operation of NC forces [6, 3, 8–11, 4]. First, they have to compete against the electronic friction (a velocity-dependent force), and this may require a critical current. Second, the waterwheel effect requires pairs of normal modes degenerate in frequency [6, 3, 8]. If there is a frequency mismatch, a critical bias may be needed to overcome it. Ramping up the bias to overcome these factors is, notionally, like having to press the accelerator harder to climb a hill.

The bias is a sensitive control parameter for the current-driven excitation of atomic motion in resonant systems [30, 31]. In this letter we show how resonances can be exploited to turn the NC force on and off, akin to turning the engine of a car on and off. We will see that this ‘switch’ is robust against decreasing resonance width. We will illustrate further how NC forces can be gauged to extract work from the current with no net angular momentum transfer to the real-space atomic motion.
Our system is shown in figure 1. It is a 2D metallic nanowire in the x–y plane. The wire has a simple square lattice structure with a bond length of 2.6 Å. Electrons are described in a nearest-neighbour single-orbital tight-binding model with parameters for gold [32], except the band filling which here is set to 0.16. The hopping integral is \(t = -3.3175 \text{ eV} \) and its derivative with distance is \(H' = 5.1038 \text{ eV Å}^{-1} \). Red denotes metallic atoms, with an onsite energy set to zero. Region \(C \) is a resonant device created by the blue atoms, which have an elevated onsite energy, \(E_b \). These insulating atoms form a double constriction. Current is supplied by the leads \(L \) and \(R \).

First we examine the steady-state transport properties of the system, in the Landauer picture summarized in figure 1. Under bias \(V \), the steady-state 1-electron density matrix can be written as

\[
\hat{\rho}(V, \mathbf{R}) = \int_{-\infty}^{+\infty} \hat{\rho}(E) \, dE, \tag{1}
\]

where \(\hat{\rho}(E) = \hat{f}_L(E)\hat{D}_L(E) + \hat{f}_R(E)\hat{D}_R(E) \) and \(\hat{D}_{L(R)}(E) \) are the density of states operators for the stationary scattering states \(\{\psi_{L(R)}\} \), and \(\mathbf{R} \) denotes ionic coordinates. We consider non-interacting electrons throughout. Spin is subsumed in \(\hat{D}_{L(R)}(E) \).

Forces exerted by electrons on ions are described within the Ehrenfest approximation [33]. In the steady state, this force is given by

\[
\mathbf{F}(V, \mathbf{R}) = \text{Tr}[\hat{\mathbf{F}}(\mathbf{R})\hat{\rho}(V, \mathbf{R})], \tag{2}
\]

where \(\hat{\mathbf{F}}(\mathbf{R}) = -\nabla_R \hat{H}_e(\mathbf{R}) \) is the force operator, defined in terms of the electronic Hamiltonian \(\hat{H}_e(\mathbf{R}) \). The curl of the force on an ion with position \((R_x, R_y, R_z) \),

\[
(\nabla \times \mathbf{F})_z = \frac{\partial F_y}{\partial R_x} - \frac{\partial F_x}{\partial R_y}, \tag{3}
\]

is given by [6, 7]

\[
(\nabla \times \mathbf{F})_z = 4\pi \int_{-\infty}^{+\infty} \text{Im} \, \text{Tr}[\hat{F}_z\hat{D}^\dagger(E)\hat{F}_z\hat{\rho}(E)] \, dE. \tag{4}
\]

Here, \(\hat{D}(E) = \hat{D}_L(E) + \hat{D}_R(E) = [\hat{G}^-(E)-\hat{G}^+(E)]/2\pi i \) is the total density of states operator, where \(\hat{G}^\pm(E) \) are the retarded and advanced Green operators. The curl comes solely from the non-equilibrium part of the density matrix. Thus, at zero electronic temperature

\[
(\nabla \times \mathbf{F})_z = 4\pi \int_{\mu}^{\mu_L} \text{Im} \, \text{Tr}[\hat{F}_z\hat{D}(E)\hat{F}_z\hat{D}_{L(R)}(E)] \, dE - 4\pi \int_{\mu_R}^{\mu} \text{Im} \, \text{Tr}[\hat{F}_z\hat{D}(E)\hat{F}_z\hat{D}_{R(L)}(E)] \, dE. \tag{5}
\]

To lowest order in the bias, this simplifies to

\[
(\nabla \times \mathbf{F})_z = 4\pi \text{Im} \, \text{Tr}[\hat{F}_z\hat{D}(\mu)\hat{F}_z\Delta \hat{\rho}], \tag{6}
\]

where \(\Delta \hat{\rho} = e\hat{V}[\hat{D}_{L(R)}(\mu) - \hat{D}_{R(L)}(\mu)]/2 \).

Figure 2 shows the energy-resolved curl of the force on atom (1) from figure 1 and the transmission function for the system (inset), for two values of \(E_b \). By symmetry, the curl for atom (3) is identical. To see this, reverse the bias. Equation (6) changes sign. Atom (1) under the new bias is physically equivalent to atom (3) under the old bias. It follows that the curl on (3) and (1) is the same, under a given bias. The curl on (4) is the negative of that on (1), and so on.

At the given Fermi level, the perfect 4-atom wide strip has two open conduction channels, corresponding to the two lowest transverse modes in the wire. The double constriction formed by the insulating atoms constitutes a tunnelling double barrier for the higher mode. The resultant electronic resonance is present both in the curl and in the transmission in figure 2. Raising \(E_b \) makes the walls harder and the effective constriction narrower, making the resonance narrower.
shift is the energy renormalization that accompanies changes in lifetime for quasibound states. (The effect eventually saturates with E_b.)

First we study the system with the wider resonance, for $E_b = 10.8$ eV. The peak in the curl is at an energy of $-2.21|H|$. Then we expect that we can switch the NC force on and off by varying the bias so as to just include, or exclude, the peak from the conduction window. For the present system the equilibrium Fermi level is $\mu = -2.1118|H|$. The peak falls in the voltage range $-1.0 \, V < V < -0.3 \, V$. We thus expect a threshold bias somewhere in this range, at which the waterwheel effect is activated.

To test these ideas we simulate this system numerically. As in [6], the simulations are carried out in the Ehrenfest approximation. Ehrenfest dynamics consists of the quantum Liouville equation for the electronic density matrix, coupled with Newtonian equations for nuclei. It includes the mean Liouville equation for the electronic density matrix, coupled with the nuclear motion. The Ehrenfest dynamics consists of the quantum Hamiltonian for nuclei, coupled with Newtonian equations for nuclei. The result is a system of coupled equations that includes both electronic and nuclear motion.

Next we allow atoms (1) and (3) to move, with $M = 1$ amu. Figure 4 presents the total kinetic energy of the two atoms for biases of -0.7, -0.8 and -1.0 V. For -0.7 V we see only cooling. At -0.8 V the kinetic energy starts to grow, showing that the waterwheel effect has been activated. Increasing the bias to -1.0 V shows an even larger energy gain. If we examine the trajectories we observe unidirectional rotational orbits that spiral outward as the energy grows. These are similar to those in bent atomic chains [6], although here they tended to be elliptical.

Thus for the two moving atoms we see the expected bias threshold for the waterwheel effect, between -0.7 V and -0.8 V. But for the same mass, for one moving atom the effect fails to manifest itself even above this threshold. Both features can be understood in terms of the non-equilibrium dynamical response matrix.

We write the dynamical response matrix under current as

$$ K_{\nu\nu'}(V, R) = -\frac{\partial F_I}{\partial R_{\nu'}} + \frac{\partial^2 V_{II}}{\partial R_{\nu}\partial R_{\nu'}}. \tag{7} $$

where F_I is the electronic force of equation (2), V_{II} is the ionic–ionic interaction, and index ν labels ionic degrees of freedom. $K_{\nu\nu'}$ may be split into an equilibrium part $K_{\nu\nu'}^0$ and a non-equilibrium correction $\Delta K_{\nu\nu'}$. $K_{\nu\nu'}^0(V, R) = K_{\nu\nu'}^{eq} + \Delta K_{\nu\nu'}$. Since $V \times F$ is non-zero under current, equation (3) implies that $\Delta K_{\nu\nu'}$ is in general not symmetric and hence mode frequencies under current will in general be complex. Complex frequencies imply motion that grows or decays in time. The growing modes are the waterwheel, or runaway [3], modes.

Differentiating the steady-state density matrix by scattering theory as in [6, 7], we obtain $\Delta K_{\nu\nu'} = S_{\nu\nu'} +$
Table 1. Mode frequencies at equilibrium and at different applied biases when both atoms (1) and (3) in figure 1 are allowed to move. Results are shown for both the wide resonance (labelled W.R.; \(E_b = 10.8\) eV) and for the narrow resonance (labelled N.R.; \(E_b = 20\) eV). \(M = 1\) amu.

Normal frequency (fs\(^{-1}\))	Equilibrium	Applied bias				
	W.R.	N.R.	W.R.	N.R.	W.R.	N.R.
\(\omega_1\)	0.442	0.432	0.368	0.470 + 0.016i	0.477 + 0.014i	0.476 + 0.013i
\(\omega_2\)	0.457	0.450	0.464	0.470 − 0.016i	0.477 − 0.014i	0.476 − 0.013i
\(\omega_3\)	0.473	0.471	0.474	0.482	0.483	0.481
\(\omega_4\)	0.494	0.492	0.481	0.490	0.500	0.504

\(A_{\nu\nu'}\), where the symmetric and antisymmetric components are given by

\[
S_{\nu
u'} = \frac{\Delta K_{\nu\nu'} + \Delta K_{\nu'\nu}}{2} = \sum_{i=L,R} \int_{t=0}^{t=\mu} \text{Tr}(\hat{K}_{\nu\nu'} \hat{D}_i(E)) \, dE
\]

\[
+ 2 \sum_{i=L,R} \int_{t=0}^{t=\mu} \text{Re} \text{Tr}[\hat{F}_i \hat{R}(E) \hat{F}_i \hat{D}_i(E)] \, dE \tag{8}
\]

\[
A_{\nu\nu'} = \frac{\Delta K_{\nu\nu'} - \Delta K_{\nu'\nu}}{2} = 2\pi \sum_{i=L,R} \int_{t=0}^{t=\mu} \text{Im} \text{Tr}[\hat{F}_i \hat{D}_i(E) \hat{D}_i(E)] \, dE. \tag{9}
\]

Above, \(\hat{R}(E) = [\hat{G}^{-\dagger}(E) + \hat{G}^{\dagger}(E)]/2\) and

\[
\hat{K}_{\nu\nu'} = \frac{\partial^2 \hat{H}_c}{\partial R_{\nu} \partial R_{\nu'}} - \frac{\partial \hat{F}_v}{\partial R_{\nu}}.
\]

The competition between \(S\) and \(A\) will determine whether mode frequencies are real or complex. We have calculated these frequencies for the systems above. When only atom (1) in figure 1 is allowed to move the equilibrium frequencies for \(M = 1\) amu are \(\omega_1 = 0.456\) fs\(^{-1}\) and \(\omega_2 = 0.477\) fs\(^{-1}\), while for a bias of \(-1.0\) V \(\omega_{1,2} = 0.480 \pm 0.005\) fs\(^{-1}\).

Table 1 shows the mode frequencies when both atoms (1) and (3) are allowed to move. All frequencies are real at \(-0.7\) V, while two frequencies become complex at \(-0.8\) V. The waterwheel effect should activate in between, as observed in figure 4. The imaginary parts in table 1 at \(-1.0\) V are considerably larger than for one moving atom, explaining the greater ease with which waterwheel motion occurs. Remarkably, the frequencies for the narrow and wide resonance in table 1 have comparable imaginary parts. We can see this from figure 2: the peak in the transmission is bounded, but the curt grows in height with decreasing width, keeping the area under the curve roughly constant. The reason is evident from equation (6): the imaginary part comes from \(\Delta \bar{\rho}\) and is related to the current; but present also is the density of states, which is not bounded. We conclude that, at least within limits, the ‘switch’ for the NC force can be made more abrupt by making the resonance sharper.

The electronic friction should drop as the edges of the bias window move away from the resonance [36]. This is reflected in the results for the two moving atoms in figure 4. The imaginary parts of the frequencies at \(-0.8\) and \(-1.0\) V (for both the wide and narrow resonance) are comparable. But the rate of energy gain increases as \(\mu_L\) and \(\mu_R\) retreat from the peak.

In table 1 the large variation in \(\omega_1\) around \(-0.7\) V arises from the behaviour of the integrals in equations (8) and (9), as the resonance moves into the conduction window. The interplay between the components of the dynamical response matrix will be studied further in future work.

Allowing atoms (1), (3), (4) and (6) to move produces only real frequencies at \(-1.0\) V, but with all six atoms allowed to move two waterwheel modes appear, one with a larger imaginary part than any above. We simulate the system, starting with small random velocities, in figure 5. To slow down the motion, we set \(M = 20\) amu. The trajectories show that there is angular momentum transfer to each atom, but no net angular momentum transfer overall. Thus, although the elemental motion under NC forces is a generalized rotation in the abstract space of two normal coordinates coupled by current [8], these forces can do work without angular momentum transfer to the real-space dynamics of the atomic subsystem as a whole.

We have simulated dynamically a resonant device and have shown how the bias can switch on and off the non-conservative forces on atoms induced by current. This switch appears robust with decreasing resonance width. This robustness will ultimately be limited by electron–phonon and electron–electron interactions, which will modify the resonant energies and the resonance widths. An assessment of these factors is an important direction for further work. The abrupt activation of the waterwheel effect is a strong candidate mechanism behind anomalous heating in point contacts [23, 24], and can furnish a bias-controlled ‘switch’ for current-driven atomic-scale motors.

The non-equilibrium dynamical response matrix is a useful simple probe into non-conservative effects, and is a generalization of the usual description of harmonic motion at equilibrium. A complete analysis of the eigenmodes under current requires the inclusion of velocity-dependent forces, which can be done perturbatively in the steady state [3, 9–11, 4]. The simpler picture obtained by neglecting the velocity-dependent forces then amounts to taking the adiabatic limit of large atomic mass, or small atomic velocities. The eigenmode analysis now does not contain, for example, the electronic friction present in our non-adiabatic molecular dynamics simulations, but captures rigorously
Figure 5. Total kinetic energy (top) and individual trajectories (bottom), with atoms (1)–(6) allowed to move, for the wide resonance ($E_b = 10.8$ eV). The bias is -1.0 V and $M = 20$ amu. The trajectories cover an advanced stage of the motion, with large displacements: this interval is denoted in blue in the kinetic energy plot. Dots (squares) denote the start (end) of each trajectory.

and exactly the physics of steady-state conduction in the Born–Oppenheimer limit.

We are grateful for support from the Engineering and Physical Sciences Research Council, under grant EP/I00713X/1. It is a pleasure to thank Jingtao Lü, Mads Brandbyge and Per Hedegård for invaluable discussions.

References

[1] Agraït N, Yeyati A L and van Ruitenbeek J M 2003 Phys. Rep. 377 81
[2] Galperin M, Ratner M A and Nitzan A 2007 J. Phys.: Condens. Matter 19 103201
[3] Lü J-T, Brandbyge M and Hedegård P 2010 Nano Lett. 10 1657
[4] Lü J-T, Brandbyge M, Hedegård P, Todorov T N and Dundas D 2012 Phys. Rev. B 85 245444
[5] Agraït N, Untiedt C, Rubio-Bollinger G and Vieira S 2002 Phys. Rev. Lett. 88 216803
[6] Dundas D, McEniry E J and Todorov T N 2009 Nature Nanotechnol. 4 99
[7] Todorov T N, Dundas D and McEniry E J 2010 Phys. Rev. B 81 075416
[8] Todorov T N, Dundas D, Paxton A T and Horsfield A P 2011 Beilstein J. Nanotechnol. 2 727
[9] Bode N, Kusminskiy S V, Egger R and von Oppen F 2011 Phys. Rev. Lett. 107 036804
[10] Bode N, Kusminskiy S V, Egger R and von Oppen F 2012 Beilstein J. Nanotechnol. 3 144
[11] Lü J-T, Gunst T, Hedegård P and Brandbyge M 2011 Beilstein J. Nanotechnol. 2 814
[12] Sorbello S R 1997 Solid State Physics, Advances in Research and Applications vol 51, ed H Ehrenreich and F Spaepen (New York: Academic) p 159
[13] Todorov T N, Hoekstra J and Sutton A P 2001 Phys. Rev. Lett. 86 3606
[14] Di Ventra M, Pantelides S T and Lang N D 2002 Phys. Rev. Lett. 88 046801
[15] Brandbyge M, Stokbro K, Taylor J, Mozos J-L and Ordejón P 2003 Phys. Rev. B 67 193104
[16] Zhang R, Rungger I, Sanvito S and Hou S 2011 Phys. Rev. B 84 085445
[17] Seideman T 2003 J. Phys.: Condens. Matter 15 R521
[18] Král P and Seideman T 2005 J. Chem. Phys. 123 184702
[19] Bailey S W D, Amanatidis I and Lambert C J 2008 Phys. Rev. Lett. 100 256802
[20] Pshenichnyuk J A and Cizek M 2011 Phys. Rev. B 83 165446
[21] Seldenthuis J S, Prins F, Thijsse J M and van der Zant H S J 2010 ACS Nano 4 6681
[22] Tierney H L, Murphy C J, Jewell A D, Baber A E, Iski E V, Khodaverdian H Y, McGuire A F, Klebanov N and Sykes E C H 2011 Nature Nanotechnol. 6 625
[23] Tsutsui M, Taniguchi M and Kawai T 2008 Nano Lett. 8 3293
[24] Tsutsui M, Kurokawa S and Sakai A 2007 Appl. Phys. Lett. 90 133121
[25] van den Brom H E, Yanson A I and van Ruitenbeek J M 1998 Physica B 252 69
[26] Smit R H M, Untiedt C and van Ruitenbeek J M 2004 Nanotechnology 15 S472
[27] Tsutsui M, Kurokawa S and Sakai A 2006 Nanotechnology 17 5334
[28] Taychatanapat T, Bolotin K I, Kuemmeth F and Ralph D C 2007 Nano Lett. 7 652
[29] Kizuka T and Aoki H 2009 Appl. Phys. Express 2 075003
[30] Jorn R and Seideman T 2009 J. Chem. Phys. 131 244114
[31] Jorn R and Seideman T 2010 Acc. Chem. Res. 43 1186
[32] Sutton A P, Todorov T N, Cawkwell M J and Hoekstra J 2001 Phil. Mag. A 81 1833
[33] Ehrenfest P 1927 Z. Phys. 45 455
[34] Horsfield A P, Bowler D R, Fisher A J, Todorov T N and Sánchez C G 2005 J. Phys.: Condens. Matter 17 4793
[35] McEniry E J, Bowler D R, Dundas D, Horsfield A P, Sánchez C G and Todorov T N 2007 J. Phys.: Condens. Matter 19 196201
[36] McEniry E J, Frederiksen T, Todorov T N, Dundas D and Horsfield A P 2008 Phys. Rev. B 78 035446