Cholangiocyte anion exchange and biliary bicarbonate excretion

Jesús M Banales, Jesús Prieto, Juan F Medina

Abstract

Primary canalicular bile undergoes a process of fluidization and alkalization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. The excretion of bicarbonate at both the canalculus and the bile ducts is an important contributor to the generation of the so-called bile-salt independent flow. Bicarbonate is secreted from hepatocytes and cholangiocytes through parallel mechanisms which involve chloride efflux through activation of Cl\(^{-}\) channels, and further bicarbonate secretion via AE2/SLC4A2-mediated Cl\(^{-}\)/HCO\(_3\)\(^{-}\) exchange. Glucagon and secretin are two relevant hormones which seem to act very similarly in their target cells (hepatocytes for the former and cholangiocytes for the latter). These hormones interact with their specific G protein-coupled receptors, causing increases in intracellular levels of cAMP and activation of cAMP-dependent Cl\(^{-}\) and HCO\(_3\)\(^{-}\) secretory mechanisms. Both hepatocytes and cholangiocytes appear to have cAMP-responsive intracellular vesicles in which AE2/SLC4A2 colocalizes with cell specific Cl\(^{-}\) channels (CFTR in cholangiocytes and not yet determined in hepatocytes) and aquaporins (AQP8 in hepatocytes and AQP1 in cholangiocytes). cAMP-induced coordinated trafficking of these vesicles to either canalicular or cholangiocyte lumenal membranes and further exocytosis results in increased osmotic forces and passive movement of water with net bicarbonate-rich hydrochloresis.

© 2006 The WJG Press. All rights reserved.

Key words: AE2 anion exchanger; Bile salt-independent flow; Biliary bicarbonate excretion; Regulation of intracellular pH; Hydroionic fluxes in cholangiocytes

Banales JM, Prieto J, Medina JF. Cholangiocyte anion exchange and biliary bicarbonate excretion. World J Gastroenterol 2006; 12(22): 3496-3511

http://www.wjgnet.com/1007-9327/12/3496.asp

INTRODUCTION

Hepatocytes and cholangiocytes are the epithelial cells in the liver, and they both participate in the production of bile. The hepatocytes, the major liver cell population (65%), generate the primary bile at their canalica[1]. As an important complement, the epithelial cells lining intrahepatic bile ducts or cholangiocytes (5% of the liver cell population) exert a series of reabsorptive and secretory processes which dilute and alkalinize the bile flow during its passage along the biliary tract[2-6]. Modifications of ductal bile appear to be tightly regulated by the action of nerves, biliary constituents, and some peptide hormones like secretin. Accordingly, it is possible to distinguish between three different bile flow fractions: (1) the canalicular bile salt-dependent flow (30% to 60% of spontaneous basal bile flow) that is driven by concentrationsecretion of bile acids by the hepatocytes followed by a facilitated efflux of water[7,8]; (2) the canalicular bile salt-independent flow (another 30% to 60% of spontaneous basal bile flow)[7,8,9], which is also created by hepatocytes but through active secretion of both inorganic and organic compounds (mainly bicarbonate[11,12] and glutathione[13], respectively); and (3) the ductal bile flow, that is the bile salt-independent flow fraction modified and contributed by cholangiocytes, mainly through production of a bicarbonate-rich fluid in response to secretin[9,10,11] and other regulatory factors[11,12,13].

In the last decade, the use of molecular- and cell-biology tools and the availability of suitable experimental models have greatly facilitated our knowledge on the processes involved in bile generation and modification. This review summarizes some of the experimental models employed in biliary studies, and focuses on the biliary excretion of bicarbonate, the chief factor responsible for ductal bile alkalinization and fluidization, and the role and interactions of regulatory factors.
STUDY MODELS

Biliary studies started over one hundred years ago. In 1902 Bayliss and Starling discovered the hormone secretin as an agent with stimulatory effects on pancreatic secretion and bile flow\cite{25-28}. About 25 years later secretin was reported as a chologogue, i.e. an agent capable of stimulating the flow of bile into the duodenum\cite{29}, as well as a choleretic agent that could stimulate the production of bile in the liver\cite{30}. In spite of this, although the role of hepatocytes for bile generation was widely recognized quite early, the contribution of cholangiocytes to the production of bile with an adequate composition was accepted more recently. Knowledge of the cholangiocyte contribution was facilitated by the availability of experimental models and the development of both in vivo and in vitro sophisticated procedures.

In vivo models

The initial experimental studies on the bile flow and bile composition were carried out by using in vivo models of conscious or anesthetized mammals with biliary fistulas. In the case of total biliary fistulas, there was a major concern because of the interruption of the enterohepatic circulation and the subsequent depletion of the bile acid pool. However, this can be overcome by continuous intravenous or intraduodenal administration of exogenous bile acids at controlled rates. On the other hand, partial biliary fistula allows controlled interruption of the enterohepatic circulation, and a portion of bile collected can be returned to the stomach or duodenum, thereby replenishing the pool of natural bile acids\cite{31}. Fistula animals have also been useful to estimate canalicular bile flow by measuring the biliary clearance of selected inert solutes (mainly erythritol and mannitol). This procedure assumes that these solutes are sufficiently permeable to enter the canalicular bile by passive processes while being unable to cross the ductal epithelium\cite{32,33}. It appears that this might be the case in some animal species but not in all\cite{34}. Moreover, bile duct cannulation allows direct interventions in the biliary tract through retrograde intrabiliary injection\cite{35-38}; this procedure has been employed to obtain animal models of hepatitis\cite{39} and toxic-induced biliary disease\cite{40}, as well as for experimental gene therapy\cite{41,42}. Retrograde intrabiliary injection has also been employed to assess the effects of toxic substances or inhibitors on the bicarbonate-rich choleseris upon stimulation. For instance, ursodeoxycholate-induced bicarbonate-rich choleseris has been shown to be sensitive to intrabiliary phenol\cite{43}. More recently, secretion of bicanurate in secretin-stimulated rats has been found to be sensitive to intrabiliary administration of particular ion-transport blockers\cite{44}.

In humans, in vivo assessment of biliary bicarbonate secretion has employed cumbersome maneuvers like nasobiliary drains in hepatic bile ducts\cite{45}. In a context of surgical interventions, invasive procedures similar to those employed in animals (for instance T-tube insertion into the common bile duct\cite{46,47} or percutaneous transhepatic cholangio-drainage\cite{48}) were also used. Recently, non-invasive assessment of biliary bicarbonate secretion was developed by using positron emission tomography (PET)\cite{49}. This imaging technique allows evaluation of baseline and stimulated organ functions after intravenous injection of short half-life positron emitting isotopes\cite{50,51}. Thus, 2-3 min after bicarbonate labeled with carbon-11 (half live of 20.4 min) was given to healthy volunteers, label uptake was observed in the abdominal region corresponding to the liver parenchyma and hepatic hilum. Interestingly, administration of secretin increased bicarbonate uptake in the parenchymal region, this being followed by accumulation of the label in the perihilary area\cite{52}. Currently, the availability of micro-PET systems may also facilitate non-invasive in vivo studies of biliary bicarbonate secretion in small laboratory animals.

Animal models of bile ductal cell hyperplasia have also been developed, mainly in rodents, to study the pathophysiology of bile ducts\cite{53-55}. These models are closely associated with increased secretin-stimulated ducetal secretion. The increased responsiveness seems to occur regardless of the procedure employed to obtain the hyperplasia of cholangiocytes: partial hepatectomy\cite{56,57}, chronic feeding of bile acids\cite{58} or α-naphthylisothiocyanate (ANIT)\cite{59}, chronic administration of phenobarbital plus CCL\textsubscript{4} to rats\cite{60} or just CCl\textsubscript{4} in mice\cite{61} or bile-duct ligation (BDL)\cite{62,63}. In contrast, a decreased secretin-stimulated ducetal secretion can be observed in BDL rats with ductopenia following interruption of the choleretic innervation by total vagotomy\cite{64}, or selective damage of large (but not small) cholangiocytes by acute feeding with CCL\textsubscript{4}\cite{65,66}.

The development of genetically modified murine models has contributed to ascertain the role of selective genes, like those for the cystic fibrosis transmembrane conductance regulator Cfr\textsubscript{47,58} and the P glycoprotein Pgy3/Mdr2-3/Abcb4\cite{67,68}, among others. In Cfr-/- mice, for instance, induction of colitis has been shown to result in increased bile duct injury\cite{69}. In Mdr2/Abcb4-/- mice, a multistep process of bile-duct damage leading to sclerosing cholangitis has been described\cite{70}. Spontaneous mutant animals can also serve as useful in vivo models. The PCK rat, a model of the autosomal recessive polycystic kidney and hepatic disease (PKHD1), has been used for studies on possible trigger factors of biliary cystogenesis. This mutant was spontaneously developed in the rat strain Crj:CD/Sprague-Dawley because of a germ line mutation of the Pkhd1 gene\cite{71}. The TR rat model is widely used for studying canalicular secretion of organic anions. This mutant lacks the functional canalicular isoform of the conjugate export pump Mrp2/Abcc2 because of one nucleotide deletion in the Mrp2/Abcc2 gene\cite{72}.

In vitro models

Isolated perfused liver preparations are useful experimental models to evaluate the liver effects of single factors in a manner independent of systemic or humoral effects\cite{73}. There are two modalities of these preparations, as the liver can be isolated and perfused in situ or ex situ, i.e. attached to or removed from the animal body. Livers can be isolated from many animal species (rat\cite{74}, hamster\cite{75}, guinea pig\cite{76}, cat\cite{77}, rabbit\cite{78}, dog\cite{79}, sheep\cite{80}, calf\cite{81}, pig\cite{82}, and

www.wignet.com
monkey\cite{68}, the isolated perfused rat liver (IPRL) being the model most widely used\cite{69}. All these models allow repeated collection of both the perfusate and the bile, and permit easy exposure of the liver to different concentrations of test substances. Test substances may be given intravenously through just the portal vein\cite{1,59,61,70,74,78}, which provides flow to essentially all hepatocytes\cite{71}, or through both the portal vein and the hepatic artery (i.e. isolated bivascularly perfused liver)\cite{72,73}. The latter bivascularly perfused model is particularly adequate to investigate ductal physiology because the predominant blood supply to the bile ducts is \textit{via} the hepatic artery\cite{74,75}. For studies on ductal secretion, test substances and drugs may also be administered intrabiliary (as retrograde intrabiliary injection\cite{76}). Altogether, these \textit{in vitro} preparations of isolated perfused liver had provided very valuable data on liver physiology and pathophysiology, the regulation of bile secretion included. However, extrapolation of that data to the \textit{in vivo} situation should be cautious, as \textit{in vitro} effects of local factors may be tightly influenced by systemic players such as humoral factors and innervation.

Membrane vesicle preparations derived from rat liver have been useful to distinguish transport across the cell membrane from intracellular events. They may be selectively enriched in basolateral or apical plasma membrane, or in intracellular membranes\cite{77}. The first identification of liver anion exchange activity was carried out in canalicular plasma membrane vesicles\cite{78}.

While isolated couplets of hepatocytes was particularly useful as primary secretory units to study canalicual secretion\cite{79}, the development in the last decade of the model of isolated bile duct units (IBDU), mainly from rat\cite{16,80,81} but also from mouse\cite{82} is making a great contribution to better study the regulation of ductal bile secretion\cite{83}. Both models permits micropuncture for electrophysiological studies as well as video microscopic optical planimetry to determine bile secretion\cite{84,85,88}. Isolated cholangiocytes\cite{85-89} are also widely employed for transport studies. The preparation of different size subpopulations of cholangiocytes and IBDU isolated from specific portions of the rat intrahepatic biliary tree has made it possible to define the functional heterogeneity of cells lining specific sized intrahepatic ducts\cite{2,90}. Furthermore, knockout and mutant animal models are being used to isolate cholangiocytes and bile duct units to carry out different \textit{in vitro} studies\cite{91-93}. Moreover, studies have been performed in isolated cholangiocytes from patients with cystic fibrosis (i.e. patients with mutations in the \textit{CFTR} gene)\cite{84,89}. Finally, a major advance is coming from the development of polarized primary cultures of intrahepatic cholangiocytes from both rat\cite{94,95} and humans\cite{98-100}.

As the excretion of bicarbonate to bile involves a change in intracellular pH (pH) and a counterbalance through ion transporters in the responsible epithelial cells, several procedures and maneuvers have been developed to study pH regulation. The main strategy is based on the pH recovery towards its initial values after loading cells with acid or alkali. This type of experiment requires techniques for rapid and efficient monitoring of the pH. Although the most direct and accurate method seems to be the insertion of double-barreled microelectrodes sensitive to [H+]\textsubscript{i} into the cell, this has important limitations; tested cells should have large dimensions and a special ability to manipulate the electrodes. Thus a valuable alternative is microfluorimetry, a procedure based on the sensitivity of intracellular fluorescent dyes to pH. The indicator most widely employed is the membrane-permeable compound 2', 7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxy-methylester (BCECF-AM)\cite{102,104}. Uncharged BCECF-AM rapidly enters the cell, where it is enzymatically cleaved into its charged, membrane impermeant, fluorescent form BCECF. When bound to H+ ions, BCECF exhibits a shift in its emission fluorescence spectrum, and the ratio between the pH-sensitive emission at 495 nm wavelength, and the pH-insensitive (background) emission at the isosbestic point (440 nm) can be estimated. Once proper adjustments are set up (correcting for cellular autofluorescence, minimizing dye leakage, bleaching, or compartmentation, and preventing photodynamic damage to the cells), this methodology allows for continuous measurements of pH, with a very rapid response time. The technique can be applied to studies with a fluorimeter, flow cytometer, inverted epifluorescent microscope connected to a photon-counting photometer and a TV camera attachment plus a digital image-processing software\cite{105}. An example of successful use of this methodology is the measurement of the Na+-independent Cl-/HCO\textsubscript{3}- anion exchange (AE) activity in both cell clusters and single cells. After inducing intracellular alkalization by administration and further withdrawal of the cell-permeant weak acid propionate in Krebs-Ringer bicarbonate buffer (KRB), it is possible to estimate the anion exchange activity as the rate of spontaneous recovery of pH\cite{106}. Rates of pH\textsubscript{recovery} can be measured as δpH/δt from the tangent to the experimental plot; transmembrane acid fluxes (or equivalent transmembrane base fluxes, i.e. $f_{\text{s}\text{Cl}}$) are usually calculated as $f_{\text{s}\text{Cl}} = \delta$[H+]\textsubscript{tot}/$\delta$t, β_{tot} being the total intracellular buffering power in the presence of CO\textsubscript{2}/HCO\textsubscript{3}-, estimated as described\cite{107,108}.

The collection of additional important methodologies which enable a continuous progress in bile secretion pathophysiology is still large. Thus, microcomputed tomography\cite{109}, scanning and transmission electron microscopy\cite{80,110}, immunoelectron microscopy\cite{111}, and dual labeled immunogold\cite{112,113} are only a few among those techniques deserving a brief mention. Moreover, concerning molecular biological tools, the techniques of gene silencing through RNA-interference show great potential for clarifying the function of selective genes in bile duct cells. Currently, RNA-interference may be achieved with small interfering RNAs (siRNA) and through microRNAs (miRNA) and short/small hairpin RNA (shRNA)\cite{114}. siRNAs had been used in normal rat IBDU to examine the role of fibrocytin in ciliary morphology and biliary cystogenesis\cite{74} and that of aquaporin-1 (AQP1) in the transport of water by biliary epithelia\cite{115}. Also siRNA experiments had been carried out in cholangiocarcinoma cells to identify factors involved, for example, in the growth of these cells\cite{116} or their resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)\cite{117}. Usual transfection protocols are not very efficient to internalize the siRNAs in cultured
cholangiocytes. Viral vectors that incorporate shRNA expression cassettes have thus been developed. Recently, a recombinant adenovirus with this design has been constructed and employed to efficiently infect normal rat cholangiocytes in culture and test the function of AE2/SLC4A2 anion exchanger in these cells[17].

MECHANISMS INVOLVED

Bile formation is regarded as an osmotic water flow in response to active solute transport. Bile salts are secreted in the canaliculi through a specific export pump referred to as BSEP/SPGP/ABCB11 (from bile salt export pump, sister of P-glycoprotein, and ATP-binding cassette, subfamily B, member 11, respectively)[118-120], allowing for the generation of the bile salt-dependent flow fraction. Remaining bile-salt independent flow fractions can be driven by supplementary solutes secreted at both the canaliculi (the so-called canalicular bile salt-independent flow), and the bile ducts (named as ductal bile salt-independent flow))1,2,10,121). Estimates for the magnitude of each bile flow fraction in humans are shown in Table 1.

Canalicular bile-salt independent flow

In addition to bile acid secretion, the canalicular membranes of hepatocytes show active secretion of other organic and inorganic compounds, mainly glutathione[18] and bicarbonate[11,12,122], respectively. Glutathione can be secreted via the organic anion transporter MRP2/ABCC2[123], while the efflux of bicarbonate occurs through a DIDS-sensitive Na+-independent Cl-/HCO3- exchange in association with other ion transport systems (Figure 1).[7,124-127] Both glutathione and bicarbonate seem to have an equivalent major input in canalicular bile flow generation, each driving up to 50% of the bile salt-independent fraction[10]. For this to be accomplished, resultant osmotic forces need to be associated with aquaporin-mediated transcellular movement of water molecules from plasma to the bile canaliculi[128]. In any event, the relative contribution of the canalicular bile salt-independent fraction to the whole canalicular bile flow may vary substantially between animal species (Table 2).

Canalicular bicarbonate excretion has been reported to be regulated by glucagon[134,135], a hormonal oligopeptide secreted by the pancreatic α-cells. This hormone is encoded by the gene GCG, which belongs to the same multigene family as secretin (3CT), vasoactive intestinal peptide (VIP), and gastric inhibitory peptide (GIP) genes, among others. Following its synthesis in the pancreas, glucagon may reach the liver and stimulate the hepatocytes via its interaction with the glucagon receptor (Figure 2). Interestingly, this receptor and the receptors for secretin, VIP, GIP and other small peptide hormones, are included in a superfamily of receptors characterized by a 7-transmembrane domain structure and by their coupling to adenylate cyclase (ADCY) via GTP-binding proteins (G-proteins). Glucagon-glucagon receptor interaction in hepatocytes leads to increased intracellular levels of cAMP, PKA activation, stimulation of canalicular Cl-/HCO3- exchange activity[126,134,135], and enhanced AQP8-mediated water permeability at the canalicular membrane[128,136-138].

Current data strongly suggests that these choleric effects of glucagon are microtubular-dependent and involve mobilization of intracellular vesicles[126,129,136,139,140]. These effects of glucagon in hepatocytes resemble those of secretin in cholangiocytes (Figure 2). After their interaction with their specific G-protein-coupled receptors, both hormones appear to use a similar cAMP-dependent PKA pathway to co-redistribute cell-type specific intracellular vesicles with flux proteins towards the apical plasma membrane of the target cell. But some of the flux proteins involved in bile formation may differ between hepatocytes and cholangiocytes. While AQP8 is the involved water channel in hepatocytes[128,136,137,138], it changes to AQP1 in cholangiocytes[112,141,142]. Moreover, there are data suggesting that in hepatic cells in baseline situation, the water channel AQP8, the glutathione carrier MRP2/ABCC2 and the chloride bicarbonate exchanger AE2/SLC4A2[138,140] are present in pericanalicular vesicles that might migrate to the canalicular membrane upon glucagon stimulation[128]. These data, together with previous findings on AE2/SLC4A2 expression at the canaliculi and the pericanalicular area[14,144], point towards the canalicular bicarbonate excretion occurring via an AE2/SLC4A2-mediated Cl-/HCO3- exchange[127]. Although a number of observations suggest that this excretion of bicarbonate in exchange for chloride functions in connection with an apical chloride channel that maintains favorable Cl- gradients[7,124,127], the specific chloride channel(s) involved need yet to be identified (see Figures 1 and 2). While in cholangiocytes AE2/SLC4A2 colocalizes with CFTR[143], this particular cAMP-responsive Cl- channel is not expressed in hepatocytes. Therefore, it might be expected that a Cl- channel other than CFTR[145-148] be physically and/or functionally associated with AE2/SLC4A2 in hepatocytes. Moreover, previous findings have established an important link between bicarbonate excretion to bile and changes in pH. Canalicular Cl-/HCO3- exchange is a major hepatic acid loading mechanism; at resting pH and in the absence of any stimulation it shows low activity, but it is rapidly activated by intracellular alkalosis, whereas cAMP stimulation leads to intracellular acidification.

Table 1	Estimated bile flow rates in humans[10]
Bile flow fraction	Flow rate
Canalicular bile acid-dependent flow	0.15-0.16 mL/min
Ductal secretion of bile flow	0.11 mL/min
Daily total bile flow	620 mL/d

Table 2	Estimations of canalicular bile-salt independent flow in different species	
Species	Flow rate[129] (μL/min/kg)	Percentage of the canalicular bile flow
Humans	2	30%[10,126]
Monkey	7	
Dog	5	20%[9]
Rat	70	> 60%[119,130]
Rabbit	60	> 50%[119]
which requires appropriate counterbalance[124,127]. Figure 1 summarizes several carriers putatively involved in these events in hepatocytes (as well as in cholangiocytes), including acid/base transporters and related proteins. A brief recall on bicarbonate loaders -and therefore acid extruders- highlights the role of electrogenic Na$^+$-HCO$_3^-$ cotransporters (NBCe) [149-151] and the carbonic anhydrase/CA-CO$_2$ pathway [152,153]. Intracellular load of bicarbonate may increase upon hydration of intracellular CO$_2$ by carbonic anhydrase(s) [154] and subsequent H$^+$ efflux via Na$^+/H^+$ exchange (NHE) (Figure 1). The involved exchanger is mainly the basolateral NHE1/SLC9A1 [155-157], but NHE4/SLC9A4 [158] and the canalicular NHE3/SLC9A3 [159] may also participate. The other relevant way of loading bicarbonate into hepatocytes, i.e. through electrogenic Na$^+$-HCO$_3^-$ cotransport, functions upon membrane depolarization following intracellular acidification [160]. The specific proteins mediating this cotransport in hepatocytes remain to be defined. The only two members of the SLC4 family of bicarbonate transporters [161] known to be electrogenic are NBCe1/SLC4A4 and NBCe2/NBC4/SLC4A5 [162]. NBCe1/SLC4A4 is widely expressed in most tissues, but its expression is negligible in the liver [163,164], while mRNA expression for NBCe2/NCB4/SLC4A5 is high in this tissue [165]. Of the known human NBCe2/NBC4/SLC4A5 variants, only the rat NBC4c ortholog can be detected in the rat liver by RT-PCR [166]. Moreover, NBC4c immunoreactivity had been observed at the basolateral membrane of rat hepatocytes [167]. Altogether, these findings suggest that the basolateral NBC4c variant might be a relevant bicarbonate loader that enables hepatocytes for canalicular secretion of bicarbonate through the apical AE2/SLC4A2 anion exchanger.

Ductal bile

As previously mentioned, primary canalicular bile undergoes a process of fluidization and alkalization along the biliary tract that is influenced by several factors including hormones (mainly secretin in most species [124,127]), innervation/neuropeptides [15,16,17], and biliary constituents [15,16,17,18]. This process results in net ductal secretion of a bicarbonate-rich watery fluid. The magnitude of the ductal contribution varies between species, representing 30% of basal bile flow in humans and 10% in rats [168]. Cholangiocytes are provided with specific transport systems that participate in bile modifications [12,168]. They are able to take up bile salts via an apical Na$^+$-dependent transporter (SLC10A2, formerly ASBT/ISBT and occasionally ABAT) [169,170] and release them through a basolateral truncated isoform of the same carrier [171]. Indeed, transcellular transport through these carriers is specially important under cholestatic situations. In any case under normal conditions, biliary transport of bicarbonate appears as a relevant function of the bile duct epithelium. It is accomplished by specific acid/base carriers and related transporters that enable cholangiocytes to regulate their pH [160,164] (Figure 1).

Cholangiocyte acid extruders

The vectorial transport of HCO$_3^-$ from cholangiocytes to duct lumen starts with the accumulation of HCO$_3^-$ in the cells via mechanisms which vary between animal species. In rat cholangiocytes, for instance, HCO$_3^-$ loading is mediated by transport systems similar to those in hepatocytes, i.e. by electrogenic Na$^+$-HCO$_3^-$ cotransport activity [164,174-176] and the carbonic anhydrase/CA-CO$_2$ pathway coupled to subsequent carrier-mediated H$^+$ extrusion [155,156]. Carbonic anhydrases (CAs) catalyze the hydration of carbon dioxide, CO$_2$ + H$_2$O ↔ HCO$_3^-$ + H$^+$ (reviewed in ref. 153). Thus far, several CA isoenzymes have been identified which differ in organ distribution, subcellular location, and function (cf. Table I in ref. 153). Compared with other secretory organs, the mammalian liver contains relatively low levels of total CA activity. Thus, the cytoplasmic CA-II (CA2)
is mainly expressed in bile duct cells (but it may also be found in hepatocytes), and appears to be involved in the production of HCO$_3^-$ for its further secretion to bile$^{[153,177]}$. Also, the biliary epithelial cells express the membrane associated CA-IV and CA-IX, which on the basis of their location might be involved in acidification and concentration of the bile, even though the exact mechanisms have not been described$^{[153]}$.

Among electronegatic Na$^+$-HCO$_3^-$ cotransporters$^{[161,162]}$ only the NBC4c variant of NBCe2/NBC4/SLC4A5 was found to be expressed in the rat liver, being immunolocalized to both hepatocytes and cholangiocytes$^{[104]}$. Interestingly, NBC4c immunoreactivity was basolateral in hepatocytes but apical in cholangiocytes, suggesting a potential role for this cotransporter in the luminal fluid secretion and/or absorption$^{[104]}$. In humans cholangiocytes, however, Na$^+$-HCO$_3^-$ cotransport is not active in the physiological range of pH, being active only at very low pH, and bicarbonate influx occurs mainly through electroneutral Na$^+$-dependent CI/HCO$_3^-$ anion exchange$^{[176,178]}$. Thus far, NDCBE/SLC4A8 is the only Na$^+$-dependent CI/HCO$_3^-$ exchanger cloned in humans$^{[179]}$. Although Northern blot analysis could not detect its messenger RNA in the whole liver$^{[179]}$, this cannot rule out that NDCBE/SLC4A8 be expressed in cholangiocytes (which account for just 5% of the liver cell population).

In both rat and human cholangiocytes, H$^+$ extrusion takes place essentially through NHE activity (Figure 1) while in pig cholangiocytes H$^+$ extrusion is mediated by a cAMP-activated H$^+$-ATPase$^{[180]}$. Thus far, several members of the NHE/SLC9 family have been described in rat cholangiocytes. They include NHE1/SLC9A1, restricted to the basolateral membrane and highly sensitive to amiloride, and the amiloride-insensitive isoform NHE2/SLC9A2, which is likely to be active on the side facing the lumen$^{[188]}$. Moreover, NHE3/SLC9A3 has been immunolocalized to the apical membrane of rat cholangiocytes, where it may play an important role in fluid absorption from the bile duct lumen$^{[190]}$. Also NHE4/SLC9A4 - an isoform seemingly activated by hypertonicity and with K$^+$/H$^+$ exchange activity$^{[188]}$, was identified in whole liver extracts by Western blot$^{[188]}$. Some findings in the stomach of Nhe4$^{-/-}$/Slc9a4$^{-/-}$ mice had led to speculations on a possible functional coupling of NHE4/SLC9A4 with the AE2/SLC4A2 anion exchanger in parietal cells$^{[182]}$. In any case, the specific cellular expression and function of this NHE isoform in the liver remains to be determined.

Cholangiocytes acid loaders

As previously reported in hepatocytes, the main acid loader mechanism in bile duct cells is the apical Na$^+$-independent CI/HCO$_3^-$ exchange$^{[20,164,173]}$. Such an AE activity might secrete HCO$_3^-$ into the lumen which is exchanged for CI influx. This exchange is electroneutral, being facilitated by the outside to inside transmembrane gradient of CI at relatively high intracellular concentration of HCO$_3^-$, specially upon secretin stimulation$^{[161,164,173,183]}$ (Figure 2). Actually, several bicarbonate transporters have been described as exerting Na$^+$-independent CI/HCO$_3^-$ exchange activity. This is the case for the SLC4 anion exchangers (AE1/SLC4A1, AE2/SLC4A2 and AE3/SLC4A3)$^{[161,184]}$ as well as several members of the SLC26 gene family of multifunctional anion exchangers (DRA/CLD/SLC26A3, PDS/DFNB4/SLC26A4, and SLC26A5$^{[185]}$ and more controversially SLC26A7$^{[186,187]}$). But none of these carriers except AE2/SLC4A2 had been described to occur in the liver. Moreover, AE2/SLC4A2 was localized not only to the canalliculi but also to the luminal membrane of bile duct cells$^{[143]}$. Recent experiments of RNA interference with recombinant adenovirus expressing shRNA have shown that AE2/SLC4A2 is indeed the main effector of both basal and stimulated Na$^+$ -independent CI/HCO$_3^-$ exchange in rat cholangiocytes$^{[17]}$.

Other ion-loaders/extruders

Besides acid/base transporters cholangiocytes possess other ion carriers like those for CI, Na$^+$, and K$^+$, which greatly contribute to pH regulation and bicarbonate secretion (Figure 1). Thus, the cAMP-responsive CI channel CFTR had been localized at the apical side, where it plays a role in biliary excretion of HCO$_3^-$$^{[188,190]}$. Although HCO$_3^-$ permeability through activated CFTR has been shown in several cell systems$^{[190,194]}$, its main contribution to biliary bicarbonate secretion appears to occur through a coordinated action with AE2/SLC4A2$^{[17,173,189]}$. In addition to CFTR, cholangiocytes possess a dense population of Ca$^{2+}$-activated CI channels. These channels are responsive to interaction of the purinergic-2 (P2) receptors with nucleotides (mainly ATP or UTP)$^{[196,199]}$, and they appear to be related to the Ca$^{2+}$-calmodulin-dependent protein kinase II$^{[190,201]}$. Resultant Ca$^{2+}$-stimulated CI efflux might be up to 2-fold greater than that mediated by cAMP$^{[200]}$. Additional high conductance anion channels which are insensitive to both Ca$^{2+}$ and cAMP were identified in rat bile duct cells$^{[200]}$, but their specific role remains to be defined. The efflux of CI from cholangiocytes to the ductular lumen is counterbalanced not only via apical CI/HCO$_3^-$ exchange but also through other CI uptake systems, mainly the basolateral Na$^+$-K$^+$-2CI cotransporter NKCC1/SLC12A1$^{[190,204]}$. In addition to maintain high intracellular CI concentration facilitating apical CI excretion, this forskolin-stimulable cotransporter has been reported to participate in cell volume homeostasis$^{[205]}$ and cell proliferation$^{[204,206,207]}$. Because the NKCC1/SLC12A2-mediated influx of CI occurs together with the entry of Na$^+$ and K$^+$, cholangiocytes possess other systems that sustain the gradients of these cations and the membrane potential difference. Thus a basolateral sodium pump (the Na$^+$/K$^+$-ATPase)$^{[207,209]}$ extrudes Na$^+$ and uptakes K$^+$ with a 3:2 stoichiometry$^{[208]}$. Accumulation of K$^+$ within cholangiocytes is prevented by its exit through K$^+$ channels. Intracellular cAMP and/or Ca$^{2+}$ concentration may activate basolateral K$^+$ conductance that hyperpolarizes the cell$^{[211]}$. The small conductance K$^+$ channel SK2/KCNN2 has been identified in rat and human hepatocytes$^{[212]}$ and in rat and human biliary epithelia$^{[202,212]}$, the activity of which is stimulated by small increases in intracellular Ca$^{2+}$ in an ampin-sensitive manner$^{[213]}$. Although SK2/KCNN2 immunoreactivity has been localized in cholangiocytes at both apical and basolateral membranes, functional studies in polarized preparations have demonstrated a significantly greater basolateral Ca$^{2+}$-stimulated K$^+$ conductance$^{[202]}$.

www.wjgnet.com
Because the nonselective K⁺ channel blocker Ba²⁺ is able to cause a greater degree of inhibition than apamin(202), apamin-insensitive channels not yet identified may also be involved in the conductance of K⁺.

In a context of cAMP- and/or Ca²⁺-stimulated Cl⁻ channels, cell hyperpolarization due to K⁺ conductance facilitates the transcellular Cl⁻ movement into the lumen. Recycling of K⁺ can be held up through the basolateral Na⁺-K⁺-2Cl⁻ cotransport and the Na⁺/K⁺-ATPase. All these ionic fluxes across cholangiocyte membranes may ultimately lead to biliary excretion of bicarbonate via its exchange with luminal chloride, which is facilitated by the outside to inside transmembrane gradient of chloride at relatively high intracellular concentration of bicarbonate(16, 81,106,175,183). The apical fluxes of anions result in increased osmotic forces in the bile duct lumen which in the presence of aquaporins contribute to the generation of ductal bile flow. This view has been strongly supported by the finding that AE2/SLC4A2 and CFTR both colocalize with AQP1 in cholangiocyte intracellular vesicles which redistribute to the apical cholangiocyte membrane upon both cAMP and secretin stimulations(112).

Water transporters or aquaporins

Aquaporins are water channels that mediate a bidirectional passive movement of water molecules across epithelial cells in response to osmotic gradients established by ions and solutes. Thus far, rodent cholangiocytes have been described to possess two types of aquaporins. Thus, in addition to the AQP1 locating in the intracellular vesicles which may traffic to the apical membrane upon agonist stimulation(112), there occurs another water channel at the basolateral membrane of cholangiocytes named AQP4, which is not sensitive to secretin(214,215) (Figures 1 and 2). However, there can be differences between species. For instance, immunohistochemical analysis in liver pig has shown the presence of AQP1 and AQP9 in cholangiocytes, while AQP3, AQP4, AQP7, and AQP8 were absent in these cells(216).

REGULATORY FACTORS

The bile duct epithelium is constantly regulated by the action of multiples factors that contribute to the formation of bile flow with an adequate final composition. Among these factors secretin is a relevant hormone peptide which may induce bicarbonate-rich hydrocholeresis in many animal species. Thus, secretin regulation of ductal bile flow and the concurrence of other factors are briefly summarized as follows:

Relevance of secretin stimulation

In 1902, Bayliss and Starling(29) described an active agent originating from the intestinal mucosa, which they referred to as secretin because of its capacity to stimulate pancreatic secretion in the dog. They also used the word “hormone” to designate this sort of compound that can be produced in an organ and carried through the circulation to exert its effect on another organ. Some years passed before the choleretic effect of secretin in the liver was reported in several animal species and humans(217-219). Secretin was found to stimulate bile flow together with a decrease in the concentration of bile salts(217-219). In the late 1960s the role of bile ducts in secretin-induced hydrocholeresis was postulated because of the observation that this secretin effect was associated with reciprocal changes in the biliary concentration of bicarbonate and chloride anions(35).

Meanwhile secretin was purified from most species, first in 1962 from pig(220,221) and then from humans, dog, goat, guinea pig, rabbit, rat, mouse and chicken. Secretin has only 27 amino acids, which allowed for its chemical synthesis as early as 1968(222). There is close homology between mammalian secretins, but also between the regulatory peptides (more than 10) currently grouped in the secretin/glucagon/ VIP superfamily.

Secretin is produced in many organs but mainly in the mucosa of upper small intestine (duodenum and jejunum)(223,224). Its release to blood occurs mainly in the postprandial period, being stimulated by gastric acid delivered into duodenal lumen(225), as well as by pancreatic and intestinal secretions(226,227). Secretin release appears to be mediated by a luminal secretin-releasing peptide contained in these gastrointestinal juices(228-229). In addition to its mentioned biliary and pancreatic effects, secretin may function as feedback inhibitor of gastrin (GAST) release and gastric acid secretion(231), and may also regulate gastric motility(232). The physiological activities of secretin are subjected to hormone-hormone and neuro-hormonal interactions. Inhibition of gastric acid secretion by secretin is thus mediated by somatostatin (SST) and prostaglandins(233,234), and secretin inhibition of gastric motility involves a vagal afferent pathway(235,236).

Secretin exerts its physiological actions via interaction with the N-terminal extracellular tail of its specific glycoprotein receptor SCTR(237-239). Like the glucagon receptor and other members of the same receptor superfamily, SCTR is coupled to adenylate cyclase/ADCY through an oligomeric GTP-binding protein. In the liver SCTR is exclusively expressed at the basolateral membrane of cholangiocytes(230,231). As previously noted, the action of secretin in cholangiocytes runs parallel with the choleretic effect of glucagon in hepatocytes (Figure 2). Thus, both glucagon and secretin may stimulate the bile salt-independent bile flow, but each at a different level, i.e. canaliculic for the former and ductular for the latter(cf. ref. 242).

Secretin-SCTR interaction in cholangiocytes results in increased intracellular levels of cAMP(15,16,243). Further PKA activation(175,183) can induce microtubule-dependent co-redistribution of the intracellular vesicles with AE2-CFTR-AQP1 flux carriers to the apical membrane(112). Additionally, the CFTR is phosphorylated and activated(244), thus resulting in Cl⁻ efflux to the ductular lumen. In consequence, Cl⁻ secreted by CFTR can be exchanged with HCO₃⁻ through AE2/SLC4A2. This mechanistic model has been consistently confirmed in vitro using rat IBDU(16,175) and cholangiocytes(174). For in vivo studies, most experiments with rats have used some of the aforementioned models with bile duct proliferation(41,43,46,112,245,246), since normal rats appear to respond very poorly to secretin (likewise rabbit, but in contrast with guinea pig among rodent species)(15,41,46,47,247). Indeed the expression of
SCTR is increased in BDL rat cholangiocytes[252,254] but the receptor is also expressed in normal rat cholangiocytes[255]. In the model of IPRL[256], intra-arterial secretin increased biliary concentration of bicarbonate, but had no effect on the net bile flow. Because the effect of secretin was blocked only by the CFTR inhibitor NPPB and not by the anion exchanger inhibitor DIDS (both administered intrarterially), it was proposed that Cl÷/HCO3− exchange would have no role in the ductal secretion of bicarbonate in the normal rat[257]. However, recent experiments indicate that secretin does increase bile flow and biliary Cl− and HCO3− excretions in the normal rat, but when they maintain the bile acid pool via continuous infusion with taurocholate[258]. Moreover, these effects of secretin were distinctively blocked by the inhibitors given by intrabiliary retrograde injection. While secretin effects were all blocked by intrabiliary NPPB, DIDS only inhibited secretin-induced increases in bile flow and bicarbonate excretion but not the increased chloride excretion[259]. These findings provide evidence for the role of biliary Cl÷/HCO3− exchange in secretin-induced bicarbonate-rich choleresis in the normal rat model.

The role of the bile acid pool
In line with former findings in earlier experiments with dogs[14,245], the aforementioned observation that secretin also has effects on the normal rat when infused continuously with taurocholate[257] confirms the notion that bile acids are relevant for secretin actions. In a previous study in normal rats secretin and taurocholate were tested and no secretin effects were observed[260]. But in that study, taurocholate infusion was interrupted before secretin administration[261]. It is already known that bile acids can enter into cholangiocytes through the carrier ASBT[254,258,259] and exert their effects on these cells (reviewed in refs. 2 and 250). For instance, it has been recently reported, activation of CFTR by ASBT-mediated bile salt absorption, which is seemingly independent from cAMP or cGMP signaling[251].

The bile salt-dependent canalicular flow is related to the osmotic activity of bile acids, but some bile acids such as Ursodeoxycholic acid (UDCA), 23-nor-UDCA, and 23-norchenodeoxycholate[252,254], have a higher choleric effect than can be accounted for by their secretion into bile (the so-called hypercholeric effect). This hypercholeric effect is associated with a marked stimulation of bicarbonate secretion into bile. A classic hypothesis referred to as “cholehepatic shunt pathway”[262] claimed that the hypercholeric effect may involve intraductal protonation of unconjugated bile salts which results in the formation of bicarbonate anions derived from hydrated CO3 i.e. H2CO3 or H+ plus HCO3−. Passive diffusion of uncharged bile acids through cholangiocytes to the periductular vessels and further uptake in hepatocytes could be followed by their canalicular resecretion as unconjugated bile salts (reviewed in ref. 250). After the identification of apical and basolateral bile acid carriers in cholangiocytes (ASBT and tASBT, respectively[172,173]), the cholehepatic shunt hypothesis has received a boost, being updated for the conjugated bile salts[255]. ASBT activity acutely increases upon secretin stimulation[172], which may accentuate the cholehepatic bile acid shunting in the postprandial period.

Neurovegetative liver innervation
The liver is directly regulated by the neurovegetative innervation. Indeed, the release of the neurotransmitter acetylcholine from the intrahepatic parasympathetic terminals induces, via selectively interaction with M3 Ach receptors on cholangiocytes, an increase in both secretin-stimulated cholangiocyte cAMP synthesis and Cl÷/HCO3− exchanger activity by Ca2+-calcineurin-mediated PKC-independent modulation of adenylate cyclase/ADCY[259,260]. In fact, infusion of acetylcholine in the IPRL model was found to potentiate the effect of secretin on biliary HCO3− excretion[261]. Furthermore, interruption of parasympathetic innervation in BDL rats by vagotomy has been reported to inhibit secretin-stimulated ductal secretion, as well as to decrease cholangiocyte intracellular cAMP levels[255].

The intrahepatic biliary epithelium also receives dopaminergic innervation[257,258], but in contrast to the choleric system, the dopaminergic system inhibits secretin-induced choleresis. Although both systems exert their functions through increased intracellular ions (1, 4, 5) P and Ca2+, the choleric system acts via calmodulin and calcineurin but without recruitment of PKC[256], whereas the D2 dopaminergic system inhibits secretin-stimulated ductal secretion through increased expression and activation of PKC-γ[259].

Moreover, cholangiocyte secretion can also be regulated by the action of the adrenergic system[262,264]. The α-adenrenergic receptor agonist UK-14304 has been reported to inhibit cholangiocarcinoma growth through time course-dependent modulation of Raf-1 and B-Raf activities[265], and the α2-adrenergic agonist phenylephrine can potentiate secretin-stimulated ductal secretion through the amplification of the ADCY system via a Ca2+ - and PKC-dependent mechanism[261].

Hormones
In addition to secretin, there are gastrointestinal hormones and neuropeptides such as bombesin/gastrin releasing peptide (BN/GRP), VIP, endothelin-1 (ET1/EDN1), somatostatin/SST, and gastrin/GAST, which may also modulate the ductular bile salt-independent flow (reviewed in ref. 2). Some of these factors operate through a secretin-independent mechanism, while others influence the release of secretin or interact with the secretin signaling in cholangiocytes, depending very much on the animal species. For instance, the neuropeptide bombesin/BN/GRP can act either by increasing the secretin release in dogs[262,263], or inducing ductal secretion with activated Cl÷/HCO3− exchange via secretin-independent mechanisms in isolated rat cholangiocytes[2,264-266]. The effect of VIP on cholangiocytes depends also on the animal species[2,257,258]. While VIP appears to increase secretin-stimulated bile flow and bicarbonate excretion in humans[257,266], studies in rat IBDU show that VIP can stimulate basal fluid and bicarbonate secretion through a cAMP-independent pathway[2,269].

The cyclic tetradecapeptide somatostatin/SST is able to inhibit basal and secretin-stimulated bicarbonate-rich choleresis via its interaction with the SSTR2 receptor.
subtype[2,273]. In rat, inhibition of secretin-stimulated ductal secretion by SST is associated with decreased expression of the secretin receptor SCTR in cholangiocytes and reduced secretin-stimulated cAMP level[195,273]. In mice SST has also been shown to stimulate ductal fluid absorption, a process involving intracellular cGMP synthesis and inhibition of secretin-stimulated cAMP synthesis[273]. Moreover, in dogs, SST has been shown to diminish the acid-induced release of secretin from the duodenal mucosa[284]. Similarly SST, the gastrointestinal hormone gastrin/GAST may also modulate cholangiocyte secretion[2]. In BDL rats, GAST has been reported to inhibit secretin-stimulated ductal secretion by reducing both SCTR expression and secretin-induced cAMP levels[281,283].

Other peptide hormones like insulin and insulin-like growth factor 1 (IGF1) can also modulate the biliary epithelium. Insulin was reported to inhibit secretin-induced secretion in BDL rats through activation of PKC and inhibition of secretin-stimulated cAMP and PKA activity[278]. On the other hand, studies using a liver cell line (though from hepatoma rather than cholangiocyte type), showed that insulin may stimulate membrane turnover with increased exocytosis/endocytosis of vesicles containing ion channels[281,283]. In rats IGF1 was found to stimulate choleresis[277] as well as cholangiocyte proliferation[278]. IGF1 can be synthesized and released from cholangiocytes under the control of the growth hormone (GH)[278]. Biliary IGF1 may in turn interact with its receptor (IGF-R) located at the apical pole of cholangiocytes [285]. Expression of both IGF1-R and IGF1 is markedly enhanced in cholangiocytes following bile duct ligation[276,277].

Also steroid hormones like corticosteroids and estrogens have effects on the biliary epithelium. Corticosteroids are choleretic and increase biliary bicarbonate excretion[277,279]. However, estrogen-induced cholestasis results in diminished biliary bicarbonate excretion[286]. Reduced bicarbonate excretion might be caused by a reflux of biliary bicarbonate via leaky tight junctions as it is not associated with impaired activity of the Cl-/HCO3- exchanger[288].

Purinergic stimulation

Both hepatocytes and cholangiocytes are able to release ATP and UTP, which leads to increased biliary concentration of nucleotides and nucleosides (the latter being a result of nucleotide dephosphorylation by membrane-associated nucleotidases)[281,283]. Stimulation of the different subtypes of purinergic receptors (PR) at the luminal membrane of cholangiocytes by either extracellular nucleotides (P1 family receptors) or extracellular nucleotides (P2 family receptors) may control cholangiocyte secretion and ion channel activities[281,283]. Most subtypes of purinergic receptors are G protein-coupled receptors except the P2X subtypes which are ligand-gated channels[281,283]. P2 activation stimulates cholangiocyte biliary efflux of K+, HCO3-, and Cl-, and reabsorption of Na+[281,284]. Whereas Cl efflux seems to be mediated by a calcium-stimulated Cl channel[284], HCO3- is secreted from cholangiocytes via an AE2/SLC4A2 mediated CI/HCO3- exchange[17,103,174,234,247]. Of notice, the P2Y11 subtype receptor has been reported to mediate secretion via cAMP in pancreatic duct epithelial cells[288], which suggests that a similar mechanism may also occur in cholangiocytes (as well as in hepatocytes). Finally, P2 receptors may stimulate the basolateral NHE1/SLC9A1 activity in cholangiocytes[287].

Cytokines and related factors

Some cytokines such as IL5 and the combination of the proinflammatory cytokines IL6, IFN-γ, IL1, and TNF-α can inhibit secretin-induced choleresis[289,290]. Moreover, proinflammatory cytokines can impair the barrier function of biliary epithelia[290], and stimulate the biliary epithelium to generate NO, via induction of inducible nitric oxide synthase 2A (NOS2A/INOS). Resultant reactive nitrogen oxide species (RNOS) may cause ductular cholestasis through inhibition of both the soluble adenylate cyclase (SAC) and the cAMP-dependent HCO3- and Cl secretory mechanisms[195]. Such a pathogenetic sequence may contribute to ductal cholestasis in inflammatory cholangiopathies[195].

In conclusion, biliary secretion of bicarbonate is an important contributor to the generation of the bile-salt independent flow. Bicarbonate is secreted from both hepatocytes and cholangiocytes through parallel mechanisms which involve chloride efflux through activation of CI channels, and further bicarbonate excretion via AE2/SLC4A2-mediated CI/HCO3- exchange. Glucagon and secretin are two relevant hormones which act very similarly in hepatocytes and cholangiocytes, respectively. These hormones interact with their specific receptor, resulting in increased intracellular cAMP levels and activation of cAMP-dependent CI and HCO3- secretory mechanisms. Both hepatocytes and cholangiocytes seem to have cAMP-responsive intracellular vesicles in which AE2/SLC4A2 may colocalize with cell specific CI channels (CFTR in cholangiocytes and thus far undetermined in hepatocytes) and aquaporins (AQP1 in cholangiocytes and AQP8 in hepatocytes). cAMP-induced coordinated trafficking of these vesicles to either canaliculal or cholangiocyte luminal membranes and further exocytosis results in increased osmotic forces and passive movement of water with net bicarbonate-rich hydrochlolesterosis.

REFERENCES

1. Boyer JL. Canalicular bile formation in the isolated perfused rat liver. Am J Physiol 1971; 221: 1156-1163
2. Kanno N, Le Sage G, Glaser S, Alpini G. Regulation of cholangiocyte bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 2001; 281: G612-G625
3. Boyer JL. Bile duct epithelium: frontiers in transport physiology. Am J Physiol 1996; 270: G1-G5
4. Alpini G, Glaser S, Robertson W, Rodgers RE, Phinizy JL, Lasseter J, Le Sage GD. Large but not small intrahepatic bile ducts in rat liver. Am J Physiol 1997; 270: 1156-1163
5. Baiocchi L, Le Sage G, Glaser S, Alpini G. Regulation of cholangiocyte bile secretion. J Hepatol 1999; 31: 179-191
6. Tavoloni N. The intrahepatic biliary epithelium: an area of growing interest in hepatology. Semin Liver Dis 1987; 7: 280-292
7. Speker I. Biliary secretion of organics anions and its influence on bie flow. In: Taylor W, eds. The Biliary System, Oxford: Blackwell, 1965: 457-467
8. Erlinger S, Dhumeaux D. Mechanisms and control of secre-
tion of bile water and electrolytes. Gastroenterology 1974; 66: 281-304

9 Wheeler HO, Ross ED, Bradley SE. Canalicular bile production in dogs. Am J Physiol 1968; 214: 866-874

10 Erlinger S. Bile flow. In: Arias IM, Boyer JL, Fausto N, Jakoby WB, Schachter D, Shafritz DA, eds. The liver: biology and pathobiology. New York: Raven Press, 1994: 769-786

11 Hardison WG, Wood CA. Importance of bicarbonate in bile salt independent fraction of bile flow. Am J Physiol 1978; 235: E158-E164

12 Van Dyke RW, Stephens JE, Scharschmidt BF. Effects of ion substitution on bile acid-dependent and -independent bile formation by rat liver. J Clin Invest 1982; 70: 505-517

13 Ballatori N, Truong AT. Relation between biliary glutathione excretion and bile acid-independent bile flow. Am J Physiol 1989; 256: G22-G30

14 Wheeler HO, Mancusi-Ungaro PL. Role of bile ducts during secretin choleretic in dogs. Am J Physiol 1966; 210: 1153-1159

15 Lenzen R, Alpini G, Tavoloni N. Secretin stimulates bile ductular secretory activity through the cAMP system. Am J Physiol 1992; 263: G527-G532

16 Roberts SK, Kuntz SM, Gores GJ, LaRusso NF. Regulation of bicarbonate-dependent bile ductular secretion assessed by luminal microperfusion of isolated rodent intrahepatic bile ducts. Proc Natl Acad Sci U S A 1993; 90: 9080-9084

17 Banales JM, Arenas F, Rodriguez-Ortigosa CM, Saez E, Uriarte I, Doctor RB, Prieto J, Medina JF. Bicarbonate-rich cholestasis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger. Hepatology 2006; 43: 266-275

18 Strazzabosco M, Zsembery A, Fabris L. Electrolyte transport in bile ductular epithelial cells. J Hepatol 1996; 24 Suppl 1: 78-87

19 Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol 1902; 28: 325-353

20 Mellanby J. Bile salts and secretin as chologogues. J Physiol 1928; 64: 331-340

21 Lueth KC, Kloster G. The effect of purified secretin on bile flow from the liver. Am J Physiol 1928; 85: 389

22 Forker EL. Two sites of bile formation as determined by mannitol and erythritol clearance in the guinea pig. J Clin Invest 1967; 46: 1189-1195

23 Forker EL. Bile formation in guinea pigs: analysis with inert solutes of graded molecular radius. Am J Physiol 1968; 215: 56-62

24 Tavoloni N. Biliary clearance of inert carbohydrates. Expectations and reality. Gastroenterology 1988; 94: 217-228

25 Peterson RE, Fujimoto JM. Retrogastrointrahepatic injection: absorption of water and other compounds from the rat biliary tree. J Pharmacol Exp Ther 1973; 185: 150-162

26 Bockman DE. Route of flow and micropathology resulting from retrograde intrahepatic injection of India ink and ferritin in experimental animals. A combined light- and electron-microscopic study. Gastroenterology 1974; 67: 324-332

27 Olson JR. Evaluation of hepatobiliary function in the rat by the segmented retrograde intrabiliary injection technique. Biochem Pharmacol 1980; 29: 205-211

28 Ballatori N, Jacob R, Boyer JL. Intrahepatic glutathione hydrolysis. A source of glutamate in bile. J Biol Chem 1986; 261: 7860-7865

29 Takehara T, Hayashi N, Miyamoto Y, Yamamoto M, Mita E, Fusamoto H, Kamada T. Expression of the hepatitis C virus genome in rat liver after cationic liposome-mediated in vivo gene transfection. Hepatology 1995; 21: 746-751

30 Goetz M, Lehr HA, Neurath MF, Galle PR, Orth T. Long-term evaluation of a rat model of chronic cholangitis resembling human primary sclerosing cholangitis. Scand J Immunol 2003; 58: 533-540

31 Tominaga K, Kuriyama S, Yoshiji H, Deguchi A, Nakai S, Ogawa M, Nonomura T, Kiyura Y, Inoue H, Kinekawa F, Tsujimoto T, Masaki T, Kurokohchi K, Uchida N. Safe and efficient transgene expression in rat hepatocytes induced by adenoviral administration into the biliary tract. Oncol Rep 2005; 13: 825-830

32 Kuriyama S, Yoshiji H, Deguchi A, Nakai S, Ogawa M, Nonomura T, Kiyura Y, Inoue H, Kinekawa F, Tsujimoto T, Masaki T, Kurokohchi K, Uchida N. Safe and efficient transgene expression in rat hepatocytes induced by adenoviral administration into the biliary tract. Oncol Rep 2005; 13: 825-830

33 Dumont M, D'Hont C, Moreau A, Mbape H, Feldmann G, Erlinger S. Retrograde injections of formaldehyde into the biliary tree induce alterations of biliary epithelial function in rats. Hepatology 1996; 24: 1217-1223

34 Knyrim V, Vakil N. The effects of synthetic human secretin on calcium carbonate solubility in human bile. Gastroenterology 1999; 117: 167-172

35 Waitman AM, Dyck WP, Janowitz HD. Effect of secretin and acetazolamide on the volume and electrolyte composition of hepatic bile in man. Gastroenterology 1969; 56: 286-294

36 Lenzen R, Bähr A, Eichertstäd H, Marschall U, Bechstein WO, Neuhaus P. In liver transplantation, T tube bile represents total bile flow: physiological and scintigraphic studies on biliary secretion of organic anions. Liver Transpl Surg. 1999; 5: 8-15

37 Fukumoto Y, Orita K, Yasunaga M, Konishi T, Yamazaki T, Ando M, Shirasawa H, Fujii T, Takemoto T. A new therapeutic trial of secretin in the treatment of intrahepatic cholestasis. Gastroenterol Jpn 1989; 24: 298-307

38 Prieto J, García N, Martí-Climent JM, Peñuelas I, Richter JA, Medina JF. Assessment of biliary bicarbonate secretion in humans by positron emission tomography. Gastroenterology 1999; 117: 167-172

39 Clark JC, Buckingham PD. The preparation and storage of carbon-11 labelled gases for clinical use. Int J Appl Radiat Isot 1971; 22: 639-646

40 Shields AF, Graham MM, Kozawa SM, Kozell LB, Link JM, Swenson ER, Spence AM, Bassingthwaighte JB, Krohn KA. Contribution of labeled carbon dioxide to PET imaging of carbon-11-labeled compounds. J Nucl Med 1992; 33: 581-584

41 Alpini G, Lenzi R, Sarkozi L, Tavoloni N. Biliary physiology in rats with bile ductular cell hyperplasia. Evidence for a secretory function of proliferated bile ductules. J Clin Invest 1988; 86: 569-578

42 GOLDFARB S, SINGER EJ, POPPER H. BILIARY DUCTULES AND BILE SECRETION. J Lab Clin Med 1963; 62: 608-615

43 Kountouras J, McKavanagh S, Bumpicky M, Billing BH. The effect of secretin on bile flow and bile acid and bilirubin excretion following relief of prolonged bile duct obstruction in the rat. J Hepatol 1987; 4: 198-205

44 Lesage G, Glaser SS, Gubba S, Robertson WE, Phinizy JL, LaSater J, Rodgers RE, Alpini G. Regrowth of the rat biliary tree after 70% partial hepatectomy is coupled to increased secretin-induced ductal secretion. Gastroenterology 1996; 111: 1633-1644

45 Alpini G, Glaser SS, Ueno Y, Rodgers PR, Phinizy JL, Francis H, Baoiocio L, Holcomb LA, Caligiuri A, LeSage GD. Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for a bile acid-regulated ductal secretion. Gastroenterology 1999; 116: 179-186

46 Alpini G, Lenzi R, Zhai WR, Slott PA, Liu MH, Sarkozi L, Tavoloni N. Bile secretory function of intrahepatic biliary epithelium in the rat. Am J Physiol 1989; 257: G124-G133

47 Knuchel J, Krähenbühl S, Zimmermann A, Reichen J. Effect of secretin on biliary formation in rats with cirrhosis of the liver: structure-function relationship. Gastroenterology 1989; 97: 950-957

48 Alpini G, Elias I, Glaser SS, Rodgers RE, Phinizy JL, Robertson WE, Francis H, LaSater J, Richards M, LeSage CD. Gamma-interferon inhibits secretin-induced cholestasis and cholangiocyte proliferation in a murine model of cirrhosis. J Hepatol 1997; 27: 371-380

49 Alpini G, Glaser SS, Ueno Y, Pham L, Podila PV, Caligiuri A, LeSage G, LaRusso NF. Heterogeneity of the proliferative capacity of rat cholangiocytes after bile duct ligation. Am J Physiol 1999; 274: C767-C773

50 LeSage G, Alvaro D, Benedetti A, Glaser S, Marucci L, Baoiocio L, Eisel W, Caligiuri A, Phinizy JL, Rodgers R, Francis H, Alpini G. Cholinergic system modulates growth, apoptosis,
and secretion of cholangiocytes from bile duct-ligated rats. Gastroenterology 1999; 117: 191-199

Le Sage GD, Glaser SS, Marucci L, Benedetti A, Phinizy JL, Rodgers R, Caligiuri A, Papa E, Tretjak Z, Jezquel AM, Holcomb LA, Richardson G. Acute carbon tetrachioride feeding induces damage of large but not small cholangiocytes from BDL rat liver. Am J Physiol 1999; 276: G1289-G1301

Le Sage GD, Benedetti A, Glaser S, Marucci L, Tretjak Z, Caligiuri A, Rodgers R, Phinizy JL, Baiocchi L, Francis H, Lasater J, Ugli L, Alpini G. Acute carbon tetrachloride feeding selectively damages large, but not small, cholangiocytes from normal rat liver. Hepatology 1999; 29: 307-319

Blanco PC, Zaman MM, Iwai O, Sheth S, Yantis RK, Nasser IA, Freedman SD. Induction of colitis in ccr-/- mice results in bile duct injury. Am J Physiol Gastrointest Liver Physiol 2004; 287: G491-G496

Durie PR, Kent G, Phillips MJ, Ackerley CA. Characteristic multigland pathologic of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model. Am J Pathol 2004; 164: 1481-1493

Fickert P, Fuchsbichler A, Wagner M, Zollner G, Kaser A, Tilg H, Krause R, Lammert F, Langner C, Zatloukal K, Marschall U, Denk H, Trauner M. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 2004; 127: 261-274

Lager DJ, Qian Q, Bernal RJ, Ishibashi M, Torres VE. The pck rat: a new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int 2001; 59: 126-136

Masyuk TV, Huang BQ, Ward CJ, Masyuk AI, Yuan D, Splinter PL, Punyanintthi R, Ritman EL, Torres VE, Harris PC, La Russo NF. Defects in cholangiocyte fibrocytin expression and ciliary structure in the PCK rat. Gastroenterology 2003; 125: 1303-1310

Müller M, Roelofsen H, Jansen PL. Secretion of organic anions by hepatocytes: involvement of homologues of the multidrug resistance protein. Semin Liver Dis 1996; 16: 211-220

Miller LJ, BLY CG, WATSON ML, BALE WF. The dominant role of the liver in plasma protein synthesis; a direct measurement of the efficacy of purification [Fixation of colloidal radioactive gold by isolated perfused dog liver]. Cell Biol Int Rep 1977: 431-435

Beije B, Jensen D, Arrhenius E, Zetterqvist MA. Isolated liver perfusion--a tool in mutagenicity testing for the evaluation of carcinogens. Chem Biol Interact 1979; 27: 41-157

Demisch K, Ammedick U, Staub W. Testosterone metabolism in the isolated perfused human foetal liver. Pharm Metab Res 1969; 1: 43

Kruhoff P, Muntz JA. Carbohydrate metabolism of the isolated, perfused cat liver as studied by labelled glucose and fructose. Acta Physiol Scand 1954; 30: 258-274

Benhamou JP, Affifi FH, Loverdo A, Faure V. [Fixation of colloidal radioactive gold by isolated perfused rabbit liver. I. Measurement of the efficacy of purification]. C R Seances Soc Biol Fil 1975; 151: 442-444

Axelrod LR, Miller LL. The metabolism of hydrocortisone in the isolated perfused dog liver. Arch Biochem Biophys 1956; 60: 373-378

Andrews WH, Britton HG, Huggett AS. Fructose metabolism in the isolated perfused liver of the foetal and newborn sheep. J Physiol 1960; 152: 199-208

Martinis AJ, Goldsworthy PD, JONES TW, NYHUS LM, Devito RV, Youmler W, Harkins HN. Studies of hepatic physiology in the isolated, perfused calf liver. Surg Forum 1958; 9: 489-493

Eisenman B, Moore TC, Normell L. Histamine metabolism in the isolated perfused pig liver. Surg Gynecol Obstet 1964; 118: 69-74

Sparks JW, Lynch A, Chez RA, Glinsmann WH. Glycogen regulation in isolated perfused near term monkey liver. Pediatr Res 1976; 10: 151-156

Gores GJ, Kost LJ, La Russo NF. The isolated perfused rat liver: conceptual and practical considerations. Hepatology 1986; 6: 511-517

Reichen J, Paumgartner G. Kinetics of taurocholate uptake by the perfused rat liver. Gastroenterology 1975; 68: 132-136

Wanless IR. Physioanatomical considerations. In: Schiff ER, Sorell MF, Maddrey WC, eds. Shif’s diseases of the liver, New York: Lippincott, 1992; 15: 464-470

Ahmad AB, Bennett PN, Rowland M. Influence of route of hepatic administration on drug availability. J Pharmocol Exp Ther 1984; 230: 718-725

Zimmerman T, Gardemann A, Maknic G, Dargel R, Jungermann K. Metabolic and hemodynamic responses of bivascularly perfused rat liver to nerve stimulation, noradrenaline, acetylcholine and glucagon in thioacetamide-induced micronodular cirrhosis. Hepatology 1992; 15: 352-370

Gaudio E, Onori P, Pannarale L, Alvaro D. Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis: a morphological study. Gastroenterology 1996; 111: 1118-1124

Nakanuma Y, Hosoi M, Sanzen T, Sasaki M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc Res Tech 1997; 38: 552-570

Imamura T, Fujimoto J. Transit patterns of marker compounds given by segmented retrograde intrabiliary injection (SRIL) in the isolated in situ perfused rat liver. J Pharmocol Exp Ther 1980; 210: 115-115

Meier PJ, Szulz ES, Reuben A, Boyer JL. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J Cell Biol 1984; 98: 991-1000

Meier PJ, Knobluein R, Moseley RH, Cobbins JW, Boyer JL. Evidence for carrier-mediated chloride/bicarbonate exchange in canalicular rat liver plasma membrane vesicles. J Clin Invest 1985; 75: 1256-1263

Graf J, Gautam A, Boyer JL. Isolated rat hepatocyte couplets: a primary secretory unit for electrophysiologic studies of bile secretory function. Proc Natl Acad Sci U S A 1984; 81: 6516-6520

Benedetti A, Marucci L, Bassotti C, Mancini R, Contucci S, Jezquel AM, Orlandi F. Tubulovesicular transcytotic pathway in rat biliary epithelium: a study in perfused liver and in isolated in situ bile duct. Hepatology 1993; 18: 422-432

Mennone A, Alvaro D, Cho W, Boyer JL. Isolation of small polarized bile duct units. Proc Natl Acad Sci U S A 1995; 92: 6527-6531

Cho WK, Mennone A, Boyer JL. Isolation of functional polarized bile duct units from mouse liver. Am J Physiol Gastrointest Liver Physiol 2001; 280: G241-G246

Boyer JL. Isolated hepatocyte couplets and bile duct units--novel preparations for the in vitro study of bile secretory function. Cell Biol Toxicol 1997; 13: 289-300

Gautam A, Ng OC, Strazzabosco M, Boyer JL. Quantitative assessment of canalicular bile formation in isolated hepatocyte couples using microscopic optical planimetry. J Clin Invest 1989; 83: 569-573

Gall JA, Bhatia PS. The isolation of intrahepatic biliary epithelial cells from normal rat livers. Cell Biol Int Rep 1985; 9: 315-322

Parola M, Cheeseman KB, Biocca ME, Dianzani MU, Slater TF. Isolation and characterization of biliary epithelial cells from normal rat liver. J Hepatol 1988; 6: 175-186

Kumar U, Jordan TW. Isolation and characterization of bile duct epithelial cells from normal rat liver. J Clin Invest 2001; 107: 1569-1578

Grisham JW. Cell types in rat liver cultures: their identification and isolation. Mol Cell Bio 1983; 53-54: 23-33

Ishii M, Vroman B, LaRusso NF. Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver. Gastroenterology 1989; 97: 1268-1247

Marzioni M, Glaser SS, Francis H, Phinizy JL, LeSage G, Alpini G. Functional heterogeneity of cholangiocytes. Semin Liver Dis 2001; 21: 227-240

Cho WK, Siestrij VJ, Zinowow. Impaired regulatory volume decrease in freshly isolated cholangiocytes from cystic fibrosis mice: implications for cystic fibrosis transmembrane conduc-
tance regulator effect on potassium conductance. J Biol Chem 2004; 279: 14610-14618

92 Spirili C, Fiorotto R, Song L, Santos-Sacchi J, Okolicsanyi L, Masier S, Rocchi L, Vaiman DP, De Bernard M, Meleto S, Pozzan T, Strazzabosco M. Gilbenclamide stimulates fluid secretion in rodent cholangiocytes through a cystic fibrosis transmembrane conductance regulator-independent mechanism. Gastroenterology 2005; 129: 220-233

93 Nozaki I, Lutz JG 3rd, Specht S, Park JI, Giraud AS, Murase N, Demetris AJ. Regulation and function of trefoil factor family 3 expression in the biliary tree. Am J Pathol 2004; 165: 1907-1920

94 Grubman SA, Fang SL, Mulberg AE, Perrone RD, Rogers LC, Lee DW, Armentano D, Murray SL, Dorkin HL, Cheng SH. Correction of the cystic fibrosis defect by gene complementation in human intrahepatic biliary epithelial cell lines. Gastroenterology 1995; 108: 584-592

95 Zsembery A, Jessner W, Sitter G, Spirili C, Strazzabosco M, Graf J. Correction of CFTR mutation and stimulation of Ca-activated Cl channels restore HCO3- secretion in cystic fibrosis bile ductular cells. Hepatology 2002; 35: 95-104

96 Vroman B. Development and characterization of polarized primary cultures of rat intrahepatic bile duct epithelial cells. Lab Invest 1996; 74: 303-313

97 Salter KD, Roman RM, LaRusso NR, Fitz JG, Doctor RB. Modified culture conditions enhance expression of differentiated phenotypic properties of normal rat cholangiocytes. Lab Invest 2000; 80: 1775-1778

98 Joplin R, Strain AJ, Neuberger JM. Immuno-isolation and culture of biliary epithelial cells from normal human liver. In Vitro Cell Dev Biol 1989; 25: 1189-1192

99 Joplin R, Strain AJ, Neuberger JM. Biliary epithelial cells from the liver of patients with primary biliary cirrhosis: isolation, characterization, and short-term culture. J Pathol 1990; 162: 255-260

100 Joplin R, Hishida T, Tsoubouchi H, Daikuhara Y, Ayres R, Neuberger JM, Strain AJ. Human intrahepatic biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor. J Clin Invest 1992; 90: 1284-1289

101 Ishida Y, Smith S, Wallace L, Sadamoto T, Okamoto M, Auth M, Strazzabosco M, Fabris L, Medina J, Prieto J, Strain A, Neuberger J, Joplin R. Ductular morphogenesis and functional polarization of normal human biliary epithelial cells in three-dimensional culture. J Hepatol 2001; 35: 2-9

102 Thomas JA, Buchsbaum RN, Zimniak A, Racke E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 1979; 18: 2210-2218

103 Rink TJ, Tsien RY, Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 1982; 95: 189-196

104 Graber ML, DiLillo DC, Friedman BL, Pastoriza-Munoz E. Characteristics of fluoroprobes for measuring intracellular pH. Anal Biochem 1986; 156: 202-212

105 Strazzabosco M, Boyer JL. Ion Transporters that regulate intracellular pH and secretion in bile duct epithelial cells. In: Sirica EA, Longnecker DS, eds. Biliary and pancreatic ductal epithelium: Pathobiology and pathophysiology. New York: Marcel Dekker, Inc; 1997: 85-106

106 Spirili C, Granato A, Zsembery K, Anglani F, Okolicsanyi L, LaRusso NF, Crepaldi G, Strazzabosco M. Functional polarity of Na+/H+ and Cl-/HCO3- exchangers in a rat cholangiocyte cell line. Am J Physiol 1998; 275: G1236-G1245

107 Chaillot JR, Aman K, Boron WE. Optical measurements of intracellular pH in single LLC-PK1 cells: demonstration of Cl/HCO3 exchange. Proc Natl Acad Sci U S A 1986; 83: 522-526

108 Boron WE. Regulation of intracellular pH. Adv Physiol Educ 2004; 28: 160-179

109 Masyuk TV, Ritman EL, LaRusso NF. Quantitative assessment of the rat intrahepatic biliary system by three-dimensional reconstruction. Am J Pathol 2001; 158: 2079-2088

110 Grisham JW, Nopanitaya W, Compagno J, Nägel AE. Scanning electron microscopy of normal rat liver: the surface structure of its cells and tissue components. Am J Anat 1975; 144: 295-321

111 Ishii M, Vroman B, LaRusso NF. Morphologic demonstration of receptor-mediated endocytosis of epidermal growth factor by isolated bile duct epithelial cells. Gastroenterology 1990; 98: 1284-1291

112 Tietz PS, Marinelli RA, Chen XM, Huang B, Cohn J, Kole J, McNiven MA, Alper S, LaRusso NF. Angiostatin-induced coordinated trafficking of functionally-related transport proteins for water and ions in cholangiocytes. J Biol Chem 2003; 278: 20413-20419

113 McCaffrey JM, Farquhar MG. Localization of GTPases by indirect immunofluorescence and immunoelectron microscopy. Methods Enzymol 1995; 257: 209-279

114 Sullen BR, Hessayon D. Activation and function of small interfering RNAs and microRNAs. Virus Res 2004; 102: 3-9

115 Splinter PI, Masyuk AI, LaRusso NF. Specific inhibition of AQP1 water channels in isolated rat intrahepatic bile duct units by small interfering RNAs. J Biol Chem 2003; 278: 6268-6274

116 Obama K, Ura K, Sato S, Nakamura Y, Furukawa Y. Up-regulation of PSF2, a member of the GINS multiprotein complex, in intrahepatic cholangiocarcinoma. Oncol Rep 2005; 14: 701-706

117 Tanai M, Gribmiller A, Higuchi H, Werneburg N, Bronk SF, Farrugia DJ, Kaufmann SH, Gores GJ. Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma. Cancer Res 2004; 64: 3517-3524

118 Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J, Hofmann AF, Meier PJ. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 1998; 273: 10046-10050

119 Strautniens SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Hishida T, Tsubouchi H, Daikuhara Y, Ayres R, Lee DW, Armentano D, Murray SL, Dorkin HL, Cheng SH. Regulation of intracellular pH, cell volume, and bile secretion. Proc Natl Acad Sci U S A 1991: 98, 2011-2016

120 Hannahson MH, Boyer JL. Mechanisms and regulation of bile secretion. Hepatology 1991; 14: 551-566

121 Erlinger S. Physiology of bile secretion and enterohepatic circulation. In: Johnson LR, eds. Physiology of the gastrointestinal tract. New York: Raven Press, 1987; 1557-1580

122 Meier PJ, Stieger B. Molecular Mechanisms in Bile Formation. News Physiol Sci 2000; 15: 89-93

123 Benedetti A, Strazzabosco M, Corasanti JG, Haddad P, Graf J, Boyer JL. Cl(-)/HCO3- exchanger in isolated rat hepatocytes: role in regulation of intracellular pH. Am J Physiol 1991; 261: G512-G522

124 Boyer JL, Graf J, Meier PJ. Hepatic transport systems regulating pH, cell volume, and bile secretion. Annu Rev Physiology 1992; 54: 415-438

125 Benedetti A, Strazzabosco M, Ng OC, Boyer JL. Regulation of activity and apical targeting of the Cl(-)/HCO3- exchanger in rat hepatocytes. Proc Natl Acad Sci U S A 1994; 91: 792-796

126 Strazzabosco M, Boyer JL. Regulation of intracellular pH in the hepatocyte. Mechanisms and physiological implications. J Hepatol 1996; 24: 631-644

127 Gradilone SA, Garcia F, Huebert RC, Tietz PS, Larocca MC, Kierbel A, Carreras FI, Larusso NF, Marinelli RA. Glucagon induces the plasma membrane insertion of functional aquaporin-8 water channels in isolated rat hepatocytes. Hepatology 2003; 37: 1435-1441

128 Boyer JL, Bloomer JR. Canalicular bile secretion in man. Studies utilizing the biliary clearance of (14C)mannitol. J Clin Invest 1974; 54: 773-781

129 Prandi D. Canalicular bile production in man. Eur J Clin Invest 1975; 5: 1-6
Berthelot P, Erlinger S, Dhuemex D, Preaux AM. Mechanism of phenobarbital-induced hypercholeresis in the rat. Am J Physiol 1970; 219: 809-813

Beyer JL, Klatskin G. Canaliccular bile flow and bile secretory pressure. Evidence for a non-bile salt dependent fraction in the isolated perfused rat liver. Gastroenterology 1970; 59: 853-859

Erlinger S, Dhuemex D, Berthelot P, Dumont M. Effect of inhibitors of sodium transport on bile formation in the rabbit. Am J Physiol 1970; 219: 416-422

Lenzen R, Hruby V, Tavoloni N. mechanism of glucagon choleresis in guinea pigs. Am J Physiol 1990; 259: G736-G744

Alvaro D, Della Guardia P, Bini A, Gilglozzi A, Furfaro S, La Rosa T, Pica C, Capocaccia L. Effect of glucagon on intracellular pH regulation in isolated rat hepatocyte couplets. J Clin Invest 1995; 96: 665-675

García F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, Biemesderfer D, Abu-Alfa AK, Wu MS, Exner M, Isenring P, Igarashi P, Aronson PS. Immunohistochemical detection of chloride/bicarbonate anion exchangers in human liver. J Biol Chem 2002; 277: 22710-22717

Gradilone SA, Tietz PS, Splinter PL, Marinelli RA, LaRusso NF. Expression and subcellular localization of aquaporin water channels in rat hepatocytes. Evidence for a role in canalicular bile secretion. J Biol Chem 2002; 277: 22710-22717

Huebert RC, Splinter PL, Garcia F, Marinelli RA, LaRusso NF. Expression and localization of aquaporin water channels in rat hepatocytes. Evidence for a role in canalicular bile secretion. J Biol Chem 2002; 277: 22710-22717

Pizzonia JH, Biemesderfer D, Abu-Alfa AK, Wu MS, Exner M, Isenring P, Igarashi P, Aronson PS. Immunohistochemical characterization of Na+/H+ exchanger isoform NHE4. Am J Physiol 1998; 275: F510-F517

Mennone A, Biemesderfer D, Negoiu D, Yang CL, Abbiati T, Schutteis PS, Shull GE, Aronson PS, Boyer JL. Role of sodium/hydrogen exchanger isoform NHE3 in fluid secretion and absorption in mouse and rat cholangiocytes. Am J Physiol Gastrointest Liver Physiol 2001; 280: G247-G254

Fitz JG, Lidofsky SD, Xie MH, Scharschmidt BF. Transmembrane electrical potential difference regulates Na+/HCO3- cotransport and intracellular pH in hepatocytes. Proc Natl Acad Sci U S A 1992; 89: 4197-4201

Romero MF, Fulton CM, Boron WF. The SLCl4 family of HCO3-transporters in the normal gastrointestinal tract and gastrointestinal tumours. J Membr Biol 2004; 197: 77-90

Pushkin A, Abuladze N, Newman D, Wajng J, Boorer K, Pushkin A, Kurtz I. Cloning, characterization and chromosomal assignment of NBC4, a new member of the sodium bicarbonate cotransporter family. Biochim Biophys Acta 2000; 1493: 215-218

Kaminski DL, Dorighi J, Jelinek M. Effect of electrical vaginal stimulation on canine hepatic bile flow. Am J Physiol 1974; 227: 487-493

Cucchiari G, Braman GD, Farouk M, Mansour G, Kuhn CM, Anthony DC, Meyers WC. The effects of liver denervation on the regulation of hepatic biliary secretion. Transplantation 1992; 54: 129-136

Serrazhabo M. New insights into cholangiocyte physiology. J Hepatol 1997; 27: 945-952

Lazaridis KN, Pham L, Tietz P, Marinelli RA, deGroen PC, Levine S, Dawson PA, LaRusso NF. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 1997; 100: 2714-2721

Alpini G, Glaser SS, Rodgers R, Phinizy JL, Robertson WE, Lasater J, Caligiuri A, Tretjak Z, LeSage GD. Functional expression of the apical Na+ -dependent bile acid transporter in large but not small rat cholangiocytes. Gastroenterology 1997; 113: 1734-1740
Alpini G, Glaser S, Alvaro D, Ueno Y, Marzioni M, Francis H, Bairocci L, Stati T, Barbaro B, Phinizy JL, Mauldin J, Lesage G. Bile acid depletion and repletion regulate cholangiocyte growth and secretion by a phosphatidylinositol 3-kinase-dependent pathway in rats. *Gastroenterology* 2002; 123: 1226-1237

Alpini G, Glaser S, Bairocci L, Francis H, Xia X, Lesage G. Secretin activation of the apical Na+-dependent bile acid transporter is associated with cholehepatic shunting in rats. *Hepatology* 2005; 41: 1037-1045

Lazaridis KN, Tietz P, Wu T, Kip S, Dawson PA, LaRusslo NF. Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. *Proc Natl Acad Sci U S A* 2000; 97: 11092-11097

Strazzabosco M, Mennone A, Boyer JL. Intracellular pH regulation in isolated rat bile duct epithelial cells. *J Clin Invest* 1991; 87: 1503-1512

Alvaro D, Cho WK, Mennone A, Boyer JL. Effect of secretion on intracellular pH regulation in isolated rat bile duct epithelial cells. *J Clin Invest* 1995; 92: 1314-1325

Strazzabosco M, Japelin R, Zembery A, Wallace L, Spirlì C, Bridges RJ. Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. *J Gen Physiol* 1999; 113: 743-760

Spirlì C, Fabris L, Duner E, Fiorotto R, Ballardini G, Roskmans T, Larusso NF, Sonzogni A, Okolicsányi L, Strazzabosco M. Cytokine-stimulated nitric oxide production inhibits adenyl cyclase and cAMP-dependent secretion in cholangiocytes. *Gastroenterology* 2003; 124: 737-753

Basavappa S, Middleton J, Mangel AW, McGill JM, Cohn JA, Fitz JG. Cl- and K+ transport in human biliary cell lines. *Gastroenterology* 1993; 104: 1796-1805

McGill JM, Basavappa S, Mangel AW, Shimokura GH, Middleton JP, Fitz JG. Adenosine triphosphate activates ion permeabilities in biliary epithelial cells. *Gastroenterology* 1994; 107: 236-243

Schlenker T, Fitz JG. Ca(2+)-activated Cl- channels in a human biliary cell line: regulation by Ca2+/calmodulin-dependent protein kinase. *Am J Physiol* 1996; 271: G304-G313

Clarke LE, Harline MC, Gawenis LR, Walker NM, Turner JT, Weisman GA. Extracellular UTP stimulates electrogenic bicarbonate secretion across CFTR knockout gallbladder epithelium. *Am J Physiol Gastrointest Liver Physiol* 2000; 279: G1391-G1400

McGill JM, Yen MS, Basavappa S, Mangel AW, Kwiatkowski AP. ATP-activated chloride permeability in biliary epithelial cells is regulated by calmodulin-dependent protein kinase II. *Biochem Biophys Res Commun* 1995; 208: 457-462

Roman RM, Feranchak AP, Salter KD, Wang Y, Fitz JG. Endogenous ATP release regulates Cl- secretion in cultured human and rat biliary epithelial cells. *Am J Physiol* 1999; 276: G391-G400

Feranchak AP, Doctor RB, Troetsch M, Brookman K, Johnson SM, Fitz JG. Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels. *Gastroenterology* 2004; 127: 903-913

McGill JM, Basavappa S, Fitz JG. Characterization of high-conductance anion channels in rat bile duct epithelial cells. *Am J Physiol* 1992; 262: G703-G710

Singh SK, Mennone A, Gigliozi A, Fraioli F, Boyer JL. Cl- dependent secretory mechanisms in isolated rat bile duct epithelial units. *Am J Physiol Gastrointest Liver Physiol* 2001; 281: G438-G446

Geck P, Pfeiffer B. Nat + K + 2Cl- co-transport in animal cells--its role in volume regulation. *Ann N Y Acad Sci* 1985; 456: 166-182

Panet R, Markus M, Atlan H. Bumetanide and furosemide inhibited vascular endothelial cell proliferation. *J Cell Physiol* 1994; 158: 121-127

Russell JM. Sodium-potassium-chloride co-transport. *Physiol Rev* 2000; 80: 211-276

Scoazec JY, Bringue AF, Medina JF, Martinez-Anso E, Veissiere D, Feldmann G, Houset C. The plasma membrane polarity of human biliary epithelial cells: in situ immunohistochemical analysis and functional implications. *J Hepatol* 1997; 26: 543-553

Hamerton RW, Krzeminski KA, Mays RW, Ryan TA, Wolner DA, Nelson WJ. Mechanism for regulating cell surface distribution of Na+,K(+)-ATPase in polarized epithelial cells. *Science* 1991; 254: 847-850

Rakowski RF, Gadsby DC, De Weer P. Stoichiometry and voltage dependence of the sodium pump in voltage-clamped, internally dialyzed squid giant axon. *J Gen Physiol* 1989; 93: 943-941

McRoberts JA, Beuerlein G, Dharmsathaphorn K. Cyclic AMP and Ca2+ -activated K+ transport in a human colonic epithelial...
cell line. J Biol Chem 1985; 260: 14163-14172

212 Roman R, Feranchak AP, Troetsch M, Dunkelberg JC, Kilic G, Schlenker T, Schack J, Fitz JG. Molecular characterization of volume-sensitive SK(Ca) channels in human liver cell lines. Am J Physiol Gastrointest Liver Physiol 2002; 282: GI16-122

213 Ishii TM, Matley J, Adelman JP. Determinants of apamin and d-tubocurarine block in SK potassium channels. J Biol Chem 1997; 272: 23195-23200

214 Marinelli RA, Pham LD, Tietz PS, LaRusso NF. Expression of aquaporin-4/water channels in rat cholangiocytes. Gastroenterology 2000; 31: 1313-1317

215 Splinter PL, Marcoux AI, Marinelli RA, LaRusso NF. AQPF transfected into mouse cholangiocytes promotes water transport in biliary epithelia. Hepatology 2004; 39: 109-116

216 Talbot NC, Garrett WM, Caperna TJ. Analysis of the expression of aquaporin-1 and aquaporin-9 in pig liver tissue: comparison with rat liver tissue. Cells Tissues Organs 2003; 174: 117-128

217 Still EU, Mckean JW, Ries FA. Studies on the physiology of secretin. Am J Physiol 1931; 99: 94

218 Melinany JM, Suffolk FS. Quantitative investigation into enterohepatic circulation of bile salts in the cat. Proc R Soc 1938; 126: 287

219 Grossman MI, Janowitz HD. The effect of secretin on bile formation in man. Gastroenterology 1949; 12: 133-138

220 Jorpes JE, Mutt V, Magnusson S, Steege BB. Amino acid composition and N-terminal amino acid sequence of porcine secretin. Biochim Biophys Res Commun 1962; 9: 275-279

221 Mutt V, Jorpes JE, Magnusson S. Structure of porcine secretin. The amino acid sequence. Eur J Biochem 1970; 15: S3-159

222 Ondetti MA, Narayanan VL, von Saltz M, Sheehan JT, Sabo EF, Bodanszky M. The synthesis of secretin. 3. The fragment-condensation approach. J Am Chem Soc 1968; 90: 4711-4715

223 Joffe SN, Bloom SR, Polak JM, Welbourn RB. Proceedings: Release of secretin for S cells of porcine duodenum and jejunum by acid. Gut 1975; 16: 398

224 Polak JM, Bloom SR, Kuzio M, Brown JC, Pearse AG. Cell-specific localization of gastric inhibitory polypeptide in the duodenum and jejunum. Gut 1973; 14: 284-288

225 Kim MS, Lee KY, Chey WY. Plasma secretin concentrations in fasting and postprandial states in dog. Am J Physiol 1979; 236: E539-E544

226 Sun G, Lee KY, Chang TM, Chey WY. Effect of pancreatic juice diversion on secretin release in rats. Gastroenterology 1985; 89: 1173-1179

227 Shiratori K, Jo YH, Lee KY, Chang TM, Chey WY. Effect of pancreatic juice and trypsin on oleic acid-stimulated pancreatic secretin and plasma secretin in dogs. Gastroenterology 1989; 96: 1330-1336

228 Li P, Lee KY, Chang TM, Chey WY. Mechanism of acid-induced release of secretin in rats. Presence of a secretin-releasing peptide. J Clin Invest 1990; 86: 1474-1479

229 Li P, Song Y, Lee KY, Chang TM, Chey WY. Acid-induced secretin releasing peptide exists in dog pancreatic juice. Life Sci 2000; 66: 1307-1316

230 Li JP, Lee KY, Chang TM, Chey WY. MEK inhibits secretin release and pancreatic secretion: roles of secretin-releasing peptide and somatostatin. Am J Physiol Gastrointest Liver Physiol 2001; 280: G890-G896

231 Chey WY, Kim MS, Lee KY, Chang TM. Secretin is an enterogastrone in the dog. Am J Physiol 1981; 240: G239-G244

232 Jin HO, Lee KY, Chang TM, Chey WY, Dubois A. Secretin: a physiological regulator of gastric emptying and acid output in dogs. Am J Physiol 1994; 267: G702-G708

233 Chung I, Li P, Lee K, Chang T, Chey WY. Dual inhibitory mechanism of secretin action on acid secretion in totally isolated, vasculature perfused rat stomach. Gastroenterology 1994; 107: 1751-1758

234 Shimizu K, Li P, Lee KY, Chang TM, Chey WY. The mechanism of inhibitory action of secretin on gastric acid secretion in conscious rats. J Physiol 1995; 488 (Pt 2): 501-508

235 Raybould HE, Holzer H. Secretin inhibits gastric emptying in rats via a capsaicin-sensitive vagal afferent pathway. Eur J Pharmacol 1993; 250: 165-167

236 Lu Y, Owyang C. Secretin at physiological doses inhibits gastric motility via a vagal afferent pathway. Am J Physiol 1995; 268: G1012-G1122

237 Holmman MH, Ganguli S, Hadac EM, Dolu V, Miller LJ. Multiple extracellular loop domains contribute critical determinants for agonist binding and activation of the secretin receptor. J Biol Chem 1996; 271: 14944-14949

238 Pang RT, Ng SS, Cheng CH, Holmman MH, Miller LJ, Chow BK. Role of N-linked glycosylation on the function and expression of the human secretin receptor. Endocrinology 1999; 140: 5102-5111

239 Gardner JD, Jensen RT. Regulation of pancreatic enzyme secretion in vitro. In: Schultz SF, editor. Physiology of the gastrointestinal tract. Vol. 2. New York: Raven Press, 1981: 831-837

240 Farouk M, Vigna SR, McVey DC, Meyers WC. Localization and characterization of secretin binding sites expressed by rat bile duct epithelium. Gastroenterology 1992; 102: 963-968

241 Farouk M, Vigna SR, Haebig JE, Geetys TW, McVey DC, Chari R, Pruthi RS, Meyers WC. Secretin receptors in a new preparation of plasma membranes from intrahepatic biliary epithelium. J Surg Res 1993; 54: 1-6

242 Lenzen R, Elster J, Behrend C, Hampel KE, Bechstein WO, Neuhaus P. Bile acid-independent bile flow is differentially regulated by glucagon and secretin in humans after orthotopic liver transplantation. Hepatology 1997; 26: 1272-1281

243 Levine RA, Hall RC. Cyclic AMP in secretin cholecystokinin. Evidence for a regulatory role in man and baboons but not in dogs. Gastroenterology 1976; 70: 537-544

244 McGill JM, Basavappa S, Geetys TW, Fitz JG. Secretin activates Cl- channels in bile duct epithelial cells through a CAMP-dependent mechanism. Am J Physiol 1994; 266: G731-G736

245 Alpini G, Ulrich CD 2nd, Phillips JO, Pham LD, Miller LJ, LaRusso NF. Upregulation of secretin receptor gene expression in rat cholangiocytes after bile duct ligation. Am J Physiol 1994; 266: G922-G928

246 Tietz PS, Hadac EM, Miller LJ, LaRusso NF. Upregulation of secretin receptors on cholangiocytes after bile duct ligation. Regul Pept 2001; 97: 1-6

247 Mutt V. Secretin: isolation, structure and function. In: Glass GBJ, editor. Gastrointestinal hormones. New York: Raven Press, 1980: 85-126

248 Hirata K, Nathanson MH. Bile duct epithilia regulate biliary bile acid secretion in normal rat liver. Gastroenterology 2001; 121: 396-406

249 PREISIG R, COOPER HL, WHEELER HO. The relationship between taurocholate secretion rate and bile production in the unanesthetized dog during cholerinergic blockade and during secretin administration. J Clin Invest 1962; 41: 1152-1162

250 Alpini G, Glaser S, Francis H, Marzioni M, Venter J, LeSeage G. Bile acid interaction with cholangiocytes. In: Alpini G, Alvaro D, Marzioni M, LeSeage G, LaRusso N, editors. The Pathophysiology of the Biliary Epithlia. Georgetown, TX: Landes Bioscience, 2004: 112-126

251 Bijveelds MJ, Jorna H, Verkade HJ, Bot AG, Hofmann F, Ageloon LB, Sinaasappel M, de Jonge HR. Activation of CFTR by ASBT-mediated bile salt absorption. Am J Physiol Gastrointest Liver Physiol 2005; 289: G870-G879

252 Dumont M, Eurlinger S, Uchman S. Hypercholeriasis induced by ursodeoxycholic acid and 7-ketocholestsolic acid in the rat: possible role of bicanoritate transport. Gastroenterology 1980; 79: 82-89

253 Yoon YB, Hagey LR, Hofmann AF, Gurantz D, Michelotti EL, Steinbach JH. Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-norursodeoxycholate in rodents. Gastroenterology 1986; 90: 837-852

254 Palmer KR, Gurantz D, Hofmann AF, Clayton LM, Hagey LR, Cecchetti S. Hypercholeriasis induced by norchenodeoxycholate in biliary fistula rodent. Am J Physiol 1987; 252: G219-G228

255 Nathanson MH, Burgstahler AD, Mennone A, Boyer JL.
Characterization of cytosolic Ca²⁺ signaling in rat bile duct epithelia. *Am J Physiol* 1996; 271: G86-G96

256 Alvaro D, Alpini G, Jezequel AM, Bassotti C, Francia C, Fraioli F, Romeo R, Marucci L, Le Sage G, Glaser SS, Benedetti A. Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions. *J Clin Invest* 1997; 100: 1349-1362

257 Mann R, Bhatial PS, Bell C. Aminergic innervation of the gall bladder in man and dog. *Clin Auton Res* 1991; 1: 205-213

258 Mann R, Bhatial PS, Bell C. Sympathetic innervation of the liver in man and dog: an immunohistochemical study. *Clin Auton Res* 1991; 1: 141-145

259 Glaser S, Alvaro D, Roskams T, Phinizy JL, Stoica G, Francis H, Ueno Y, Barbaro B, Marzioni M, Mauldin J, Rashid S, Mancino MG, Le Sage G, Alpini G. Dopaminergic inhibition of secretin-stimulated cholestasis is increased in PKC-gamma expression and decrease of PKA activity. *Am J Physiol Gastrointest Liver Physiol* 2003; 284: G683-G694

260 Kanno N, Lesage G, Phinizy JL, Glaser S, Francis H, Alpini G. Stimulation of alpha2-adrenergic receptor inhibits cholangiocarcinoma growth through modulation of Raf-1 and B-Raf activities. *Hepatology* 2002; 35: 1320-1340

261 Le Sage GD, Alvaro D, Glaser S, Francis H, Marucci L, Roskams T, Phinizy JL, Marzioni M, Benedetti A, Taffetani S, Barbaro B, Fava G, Ueno Y, Alpini G. Alpha-1 adrenergic receptor agonists modulate ductal secretion of BDL rats via Ca²⁺- and PKC-dependent stimulation of cAMP. *Hepatology* 2004; 40: 1116-1127

262 Kaminski DL, Deshpande YG. Effect of somatostatin and bombesin on secretin-stimulated ductular bile flow in dogs. *Gastroenterology* 1983; 85: 1239-1247

263 Kortz WJ, Nashold JR, Delong E, Meyers WC. Effects of bombesin on fasting bile formation. *Am Surg* 1986; 203: 1-7

264 Cho WK, Mennon A, Rydberg SA, Boyer JL. Bombesin stimulates bicarbonate secretion from rat cholangiocytes: implications for neural regulation of bile secretion. *Gastroenterology* 1997; 113: 311-321

265 Cho WK, Mennon A, Boyer JL. Intracellular pH regulation in bombesin-stimulated secretion in isolated bile duct units from rat liver. *Am J Physiol* 1998; 275: G1028-G1036

266 Cho WK, Boyer JL. Characterization of ion transport mechanisms involved in bombesin-stimulated biliary secretion in rat cholangiocytes. *J Hepatol* 1999; 30: 1045-1051

267 Nyberg B, Einarrson K, Sonnenfeld T. Evidence that vasoactive intestinal peptide induces ductular secretion of bile in humans. *Gastroenterology* 1989; 96: 920-924

268 Nyberg B, Sonnenfeld T, Einarrson K. Vasoactive intestinal peptide and secretin: effects of combined and separate intravenous infusions on bile secretion in man. *Scand J Gastroenterol* 1991; 26: 109-118

269 Cho WK, Boyer JL. Vasoactive intestinal polypeptide is a potent regulator of bile secretion from rat cholangiocytes. *Gastroenterology* 1999; 117: 420-428

270 Harada E, Niimi M, Syuto B. Hepatic bile and pancreatic exocrine secretions evoked by gastrointestinal peptides in sheep. *Comp Biochem Physiol A Comp Physiol* 1986; 85: 729-734

271 Makhloof GM, Yau WM, Ziss AM, Said SI, Bodanszky M. Comparative effects of synthetic and natural vasoactive intestinal peptide on pancreatic and biliary secretion and on glucose and insulin blood levels in the dog. *Scand J Gastroenterol* 1978; 13: 759-765

272 Tietz PS, Alpini G, Pham LD, Larusso NF. Somatostatin inhibits secretin-induced ductal hyperplasia and exocytosis by cholangiocytes. *Am J Physiol* 1995; 269: G110-G118

273 Gong AY, Tietz PS, Muff MA, Splinter PL, Huebert RC, Struewing MZ, Chen XM, LaRusso NF. Somatostatin stimulates ductal bile absorption and inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes. *Am J Physiol Cell Physiol* 2003; 284: C1205-C1214

274 Glaser SS, Rodgers RE, Phinizy JL, Robertson WE, Lasater J, Caligiuri A, Tretjak Z, Le Sage GD, Alpini G. Gastrin inhibits secretin-stimulated ductal secretion by interaction with specific receptors on rat cholangiocytes. *Am J Physiol* 1997; 273: G1061-G1070

275 Lesage GD, Marucci L, Alvaro D, Glaser SS, Benedetti A, Marzioni M, Patel T, Francis H, Phinizy JL, Alpini G. Insulin inhibits secretin-induced ductal secretion by activation of PKC alpha and inhibition of PKA activity. *Hepatology* 2002; 36: 641-651

276 Kilić G, Doctor RB, Fitz JG. Insulin stimulates membrane conductance in a liver cell line: evidence for insertion of ion channels through a phosphoinositide kinase-dependent mechanism. *J Biol Chem* 2001; 276: 26762-26768

277 Mabuchi M, Kawamura I, Fushimi M, Takeshita S, Takakura S, Hirosumi J, Mutoh S. Cholesteric actions of insulin-like growth factor-I, preproinsulin, and ureosodeoxycholic acid in rats. *Dig Dis Sci* 2003; 48: 1398-1405

278 Alvaro D, Metalli VD, Alpini G, Onori P, Franchitto A, Barbaro B, Glaser SS, Francis H, Cantafora A, Blotta I, Attili AF, Gaudio E. The intrahepatic biliary epithelium is a target of the growth hormone(insulin-like growth factor 1, axis. *J Hepatol* 2005; 43: 875-883

279 Alvaro D, Gigliozzi A, Marucci L, Alpini G, Barbaro B, Monterubbianesi R, Minetola L, Mancino MG, Medina JF, Attili AF, Benedetti A. Corticosteroids modulate the secretory processes of the rat intrahepatic biliary epithelium. *Gastroenterology* 2002; 122: 1058-1069

280 Alvaro D, Gigliozzi A, Piet C, Carli L, Fraioli F, Romeo R, Francia C, Attili AF, Capocaccia L. Inhibition of biliary bicarbonate secretion in ethinyl estradiol-induced cholestasis is not associated with impaired activity of the CI-/HCO3- exchanger in the rat. *J Hepatol* 1997; 26: 146-157

281 Roman RM, Fitz JG. Emerging roles of purinergic signaling in gastrointestinal epithelial secretion and hepatobiliary function. *Gastroenterology* 1999; 116: 964-979

282 Feranchak AP, Fitz JG. Adenosine triphosphate release and purinergic regulation of cholangiocyte transport. *Semin Liver Dis* 2002; 22: 251-262

283 Buechler RE, Linden J. Purinergic regulation of epithelial transport. *J Physiol*. 2004; 555: 311-321

284 Dranoff JA, Nathanson MH. It’s swell to have ATP in the liver. *J Hepatol* 2003; 33: 323-325

285 Dranoff JA. Purinergic regulation of bile ductular secretion. In: Alpini G, Alvaro D, Marzioni M, Le Sage G, LaRusso N, editors. The Pathophysiology of the Biliary Epithelia. *George town, TX: Landes Bioscience, 2004: 96-104

286 Leipziger J. Control of epithelial transport via luminal P2 receptors. *Am J Physiol Renal Physiol* 2003; 284: F419-F432

287 Zsembery A, Spirić C, Granato A, LaRusso NF, Okolicsanyi L, Crepaldi G, Strazzabosco M. Purinergic regulation of acid/base transport in human and rat biliary epithelial cell lines. *Hepatology* 1998; 29: 914-920

288 Nguyen TD, Meichle S, Kim US, Wong T, Moody MW. P2Y(11), a purinergic receptor acting via cAMP, mediates secretion by pancreatic ductal epithelial cells. *Am J Physiol Gastrointest Liver Physiol* 2001; 280: G795-G804

289 McGill JM, Yen MS, Cummings OW, Alpini G, Le Sage G, Pollok KE, Miller B, Engle SK, Stansfield AF. Interleukin-5 inhibition of biliary cell chloride currents and bile flow. *Am J Physiol Gastrointest Liver Physiol* 2001; 280: G738-G745

290 Spirić C, Nathanson MH, Fiorotto R, Duner E, Denson LA, Sanz JM, Di Virgilio F, Okolicsanyi L, Casagrande F, Strazzabosco M. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium. *Gastroenterology* 2001; 121: 156-169

S-Editor Pan BR E-Editor Bl L

www.wignet.com