Identification of the rare yeast *Cutaneotrichosporon (Trichosporon) debeurmannianum* from diabetic foot infection

In Young Yoo1 | Woong Heo1 | Joo An Kwon2 | Miran Lee2 | Yeon-Joon Park1

1Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
2Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea

Correspondence
Yeon-Joon Park, Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, South Korea.
Email: yjpk@catholic.ac.kr

Funding information
Korea Health Industry Development Institute: Ministry of Health & Welfare and Ministry of Science and ICT, Republic of Korea. Grant/Award Number: HI22C0595

Abstract

Background: Diabetic foot infection is the most common complications of diabetes mellitus. Although most of the diabetic foot infections has been known to be caused by aerobic and anaerobic bacteria, mycotic diabetic foot infection caused by *Candida* species has also been reported recently. Here, we present the first case of diabetic foot infection caused by *Cutaneotrichosporon debeurmannianum* (previously known as *Trichosporon debeurmannianum*).

Methods: A 68-year-old diabetic male patient was admitted for management of the necrosis of the big toe. Wound swab culture was performed three times, and each time after 5 days of incubation, beige-colored, wrinkled, and rough colonies were observed on chocolate agar plate.

Results: The isolate was identified as *C. debeurmannianum* with the matrix-assisted laser desorption ionization-time of flight mass spectrometry system (MicroIDSys, ASTA corp.). For confirmation, the sequencing for ITS1/ITS2 and D1/D2 ribosomal DNA was also performed, and the isolate was confirmed as *C. debeurmannianum* with 100% identity. The isolate exhibited low minimum inhibitory concentrations (MICs) for azoles and high MICs for all echinocandins.

Conclusion: Considering that usual incubation time for bacterial culture of open wound specimens is only 48 h, it is important to include the request for fungus culture to detect pathogen in diabetic foot lesion.

KEYWORDS

Cutaneotrichosporon debeurmannianum, diabetic foot infection, MIC, *Trichosporon debeurmannianum*

1 | BACKGROUND

Diabetic foot infection is the most common complications of diabetes mellitus with a lifetime incidence of 25% and high mortality and morbidity.1 Most of the diabetic foot infections are known to be caused by aerobic and anaerobic bacteria and in most cases polymicrobial.2 Recently, a few studies have reported mycotic infections of the diabetic foot, mainly *Candida* species.3–5

Trichosporon debeurmannianum was first isolated from bronchial aspirate, but it had not been determined whether it was pathogenic or not.6 Recently, Liu et al.7 reclassified *Trichosporon* into three genera: *Apiotrichum*, *Cutaneotrichosporon*, and *Trichosporon*.
T. debeurmannianum was renamed to Cutaneotrichosporon debeurmannianum based on the phylogenetic analysis. The genus Cutaneotrichosporon contains 15 species,\(^7\) of which C. cutaneum, C. dermatis, and C. mucoides are currently regarded as potentially pathogenic for humans.\(^8\)\(^–\)\(^12\) The accurate identification and discrimination of these species by conventional method (e.g., morphological and biochemical method) is difficult, leading to inconclusive identification especially for infrequent species.\(^13\) Recently, the matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) system is considered a reliable method for rapid identification of fungal species and used as an alternative to molecular method.

Here, we present the first case of diabetic foot infection caused by C. debeurmannianum. This case report was approved by the Institutional Review Board of Seoul St. Mary’s Hospital, Korea (IRB No. KC22ZASI0555), and informed consent was waived.

CASE PRESENTATION

A 68-year-old man was transferred from another hospital for wound management of big toe gangrene. The patient presented with diabetes mellitus and end-stage renal disease undergoing hemodialysis. A wound swab culture was performed on the necrotic part of the big toe showing swelling, redness, and purulent discharge. Gram stain of the swab specimen showed many white blood cells and some yeasts. The swab specimen was inoculated onto blood, McConkey, and chocolate agar plates. Also, smooth with mucoid texture colonies grown on CHROMagar Candida® medium were mucoid and brown-colored.

The yeast was identified as C. debeurmannianum by the MicroIDSys MALDI-TOF MS system (ASTA corp., Suwon, Korea) using in-tube ethanol/formic acid protein extraction method (in-tube E/FA method). For the in-tube E/FA method, a single colony was mixed with 300 µl of distilled water and 900 µl of 100% ethanol. The sample was centrifuged (15,000 g for 2 min), and supernatant was removed. The pellet was air-dried at room temperature for 10 min, and resuspended in 20 µl of 70% formic acid and incubated for 5 min. The sample volume of 100% acetonitrile was then added to the sample and incubated for 5 min. After centrifugation at 15,000 g for 5 min, 1.0 µl of the supernatant was spotted in duplicate onto the target plate and overlaid with 1.0 µl of a CHCA matrix. The target plate was placed in the MicroIDSys Elite system (ASTA corp.) and was analyzed. They were identified as C. debeurmannianum with 156/150 scores (over the cutoff value of 140).

This isolate was not identified by Vitek 2 YST system (bioMérieux, Marcy l’Etoile, France) and VITEK MS MALDI-TOF system (bioMérieux), given that the C. debeurmannianum was not in the database. The culture of the wound swab was repeated on two other days, and C. debeurmannianum grew each time. To confirm the identification, we performed sequencing of the internal transcribed spacer (ITS1/ITS2) regions and D1/D2 region of the 28S ribosomal DNA. Analysis of the ITS1/ITS2 and D1/D2 ribosomal DNA sequences showed 100% identity with C. debeurmannianum (GenBank accession no. KY103002.1 and NR_154752.1 for ITS1/ITS2, GenBank accession no. NG_058998.1, AY143554.1, and AB044568.1 for D1/D2). We performed antifungal susceptibility testing with Sensititre YeastOne plate (Thermo Scientific, Cleveland, OH, U) according to the manufacturer’s instructions. The minimum inhibitory concentration of each antifungal agent was measured after 72 h of incubation at 35 °C (when growth control appeared as positive after 72 h of incubation). The minimum inhibitory concentrations (MIC) were 1.0 µg/ml of amphotericin B, 1.0 µg/ml of fluconazole, 0.03 µg/ml of posaconazole, 0.06 µg/ml of itraconazole, 0.015 µg/ml of voriconazole, and >8.0 µg/ml of all echinocandins (Table 1). The follow-up cultures were serially performed on hospital Days 2 and 4, then the same isolate was also identified. However, as the patient was transferred to another hospital for amputation, we could not follow up the clinical course.

DISCUSSION AND CONCLUSIONS

Since Sugita et al.\(^6\) reported two cases of T. debeurmannianum (a previous name of C. debeurmannianum), it has been rarely found in clinical samples. Nath et al.\(^14\) reported that nine isolates from three blood and six urine samples in patients who were diagnosed as septicemia and urinary tract infection over a 3-year period. In addition, Noy et al.\(^15\) reported the case of a subcutaneous mycotic infection caused by C. debeurmannianum in an immunocompetent man. In our study, the isolated C. debeurmannianum showed high echinocandins MICs. Azoles had good in vitro activity against this isolate, especially voriconazole (MIC = 0.015 µg/ml). Previous study on antifungal susceptibility testing for C. debeurmannianum reported that these isolates were susceptible to fluconazole and voriconazole performed by disc diffusion method.\(^14\) Despite the lack of defined clinical breakpoints for Cutaneotrichosporon spp. and Trichosporon spp., previous studies reported that all Trichosporon spp. exhibited high MICs for all echinocandins.\(^5\)\(^,\)\(^16\) We summarized the results of the antifungal susceptibility testing for the Cutaneotrichosporon spp. isolated from clinical specimens (Table 1). Except only two isolates isolated from patients treated with antifungal agents, most Cutaneotrichosporon spp. show relatively low MICs for azoles.

The main limitation of this study is that we could not determine the clinical response to conventional antifungal agents (especially azoles) for this isolate. Nevertheless, it is meaningful in that we tried to identify the C. debeurmannianum isolated from diabetic foot by culturing more than 2 days for wound culture. For clinicians, it is important to suspect fungal infections in diabetic foot lesion, especially in patients unresponsive to antibacterial treatment with
Species	Case no. (reference)	Origin	MIC method	MIC result (μg/ml)	Previous antifungal treatment								
			AMB	5-FC	FLZ	ITZ	POS	VOR	CAS	MIF			
C. debeurmannianum	Case 1⁶	Bronchial secretion	Eiken kit	0.125	>64	2	0.06	-	-	-	-	None	
	Case 2⁶	Bronchial secretion	Eiken kit	0.25	>64	4	0.125	-	-	-	-	None	
	This case	Wound	Sensititre YeastOne	1	8	1	0.06	0.03	0.015	>8	>8	None	
	Case 3¹²	Nail	BMD (CLSI)^a	4	-	1	0.25	0.25	0.25	-	-	Unknown	
C. dermatis	Case 4¹⁷	Pericardial fluid	BMD (EUCAST)^b	2	-	0.25	0.25	0.5	0.032	-	-	Unknown	
	Case 5¹⁰	Abdominal fluid	Sensititre YeastOne	0.25	>64	>256	>16	>8	>16	>16	-	Yes (Azoles)	
	Case 6¹²	Wound	BMD (CLSI)^a	4	-	1	0.25	0.25	0.12	-	-	Unknown	
C. mucoides	Case 7¹⁸	Nail	E-test	0.32	-	256	32	-	-	32	-	-	Yes (Azoles)
	Case 8¹⁹	Blood Heart Skin	BMD (CLSI)^a	1	-	16	-	-	0.25	>8	>8	None	
	Case 9¹²	Blood	BMD (CLSI)^a	2	-	1	0.12	0.25	0.25	-	-	Unknown	

Abbreviations: 5-FC, 5-flucytosine; AMB, amphotericin B; CAS, caspofungin; FLZ, fluconazole; ITZ, itraconazole; MIC, minimum inhibitory concentration; MIF, micafungin; POS, posaconazole; VOR, voriconazole.

^aAs per the CLSI guidelines. 20

^bAs per the EUCAST guidelines. 21
longstanding ulcers. Early detection and appropriate fungal treatment are critical for the prevention of severe consequences such as amputation.

AUTHOR CONTRIBUTIONS
IYY wrote the first draft of the article; IYY assisted in the acquisition of data; WH, MRL, and JAK performed the laboratory analyses; YJP reviewed and improved the case report. All authors read and approved the final article.

ACKNOWLEDGMENTS
This research was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) and Korea Dementia Research Center (KDR), funded by the Ministry of Health & Welfare and Ministry of Science and ICT, Republic of Korea (grant number: HI22C0595).

CONFLICT OF INTEREST
The authors have no relevant financial or non-financial interests to disclose.

DATA AVAILABILITY STATEMENT
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

ORCID
In Young Yoo https://orcid.org/0000-0003-1505-846X

REFERENCES
1. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA, 2005;293:217-228.
2. Viswanathan V, Jasmine JJ, Snehalatha C, Ramachandran A. Prevalence of pathogens in diabetic foot infection in south Indian type 2 diabetic patients. J Assoc Physicians India. 2002;50:1013-1016.
3. Torrence GM, Schmidt BM. Fungal osteomyelitis in diabetic foot infections: a case series and comparative analysis. Int J Low Extrem Wounds. 2018;17:184-189.
4. Musyoki VM, Mutai W, Ngugi N, Otieno F, Masika MM. Speciation and antifungal susceptibility of Candida isolates from diabetic foot ulcer patients in a tertiary hospital in Kenya. Pan Afr Med J. 2022;41:34.
5. Chellan G, Shivaprakash S, Karimassery Ramaiyar S, et al. Spectrum and prevalence of fungi infecting deep tissues of lower-limb wounds in patients with type 2 diabetes. J Clin Microbiol. 2010;48:2097-2102.
6. Sugita T, Takashima M, Nakase T, Ichikawa T, Ikeda R, Shinoda T. Two new yeasts, Trichosporon debeurmannianum sp. nov. and Trichosporon dermatis sp. nov., transferred from the Cryptococcus humicola complex. Int J Syst Evol Microbiol. 2001;51:1221-1228.
7. Liu XZ, Wang QM, Göker M, et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol. 2015;81:85-147.
8. Archer-Dubon C, Orozco-Topete R, Leyva-Santiago J, Arenas R, Carbajosa J, Ysunza A. Superficial mycotic infections of the foot in a native pediatric population: a pathogenic role for Trichosporon cutaneum? Pediatr Dermatol. 2003;20:299-302.
9. Colombo AL, Padovan AC, Chaves GM. Current knowledge of Trichosporon spp. and Trichosporonosis. Clin Microbiol Rev. 2011;24:682-700.
10. Oliveira dos Santos C, Zijlstra JG, Porte RJ, et al. Emerging pan-resistance in Trichosporon species: a case report. BMC Infect Dis. 2016;16:148.
11. Ruan SY, Chien JY, HsuEH PR. Invasive trichosporonosis caused by Trichosporon asahii and other unusual Trichosporon species at a medical center in Taiwan. Clin Infect Dis. 2009;49:e11-e17.
12. Rastogi V, Honnavar P, Rudramurthy SM, Pemidi U, Ghosh A, Chakrabarti A. Molecular characterisation and antifungal susceptibility of clinical Trichosporon isolates in India. Mycoses. 2016;59:528-534.
13. Rodriguez-Tudela JL, Diaz-Guerra TM, Mellado E, et al. Susceptibility patterns and molecular identification of Trichosporon species. Antimicrob Agents Chemother. 2005;49:4026-4034.
14. Nath R, Sargiary P, Borkakoty B, Parida P. Cutaneotrichosporon (Trichosporon) debeurmannianum: a rare yeast isolated from blood and urine samples. Mycopathologia. 2018;183:585-590.
15. Noy ML, Abdolrasouli A, Borman AM, et al. Cutaneotrichosporon (Trichosporon) Debeurmannianum Associated with a Subcutaneous Mycotic Cyst Successfully Treated with Voriconazole. Clin Exp Dermatol. 2020;45:250-253.
16. Chagas-Neto TC, Chaves GM, Melo AS, Colombo AL. Bloodstream infections due to Trichosporon spp.: species distribution, Trichosporon asahii genotypes determined on the basis of ribosomal DNA intergenic spacer 1 sequencing, and antifungal susceptibility testing. J Clin Microbiol. 2009;47:1074-1081.
17. Araratzis M, Abel P, Kanellopoulos M, et al. Sequence-based identification, genotyping and EUCAST antifungal susceptibilities of Trichosporon clinical isolates from Greece. Clin Microbiol Infect. 2014;20:777-783.
18. Capoor MR, Agarwal S, Yadav S, Saxena AK, Ramesh V. Trichosporon mucoides causing onychomycosis in an immunocompetent patient. Int J Dermatol. 2015;54:704-707.
19. Oh TH, Shin SU, Kim SS, et al. Prosthetic valve endocarditis by Trichosporon mucoides: a case report and review of literature. Medicine (Baltimore). 2020;99:e22584.
20. CLSI, ed. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 4th ed. CLSI standard M27. Clinical and Laboratory Standards Institute; 2017.
21. Arendrup MC, Cuenca-Estrella M, Lass-Floél C, Hope W. EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin Microbiol Infect. 2012;18:E246-E247.

How to cite this article: Yoo IY, Heo W, Kwon JA, Lee M, Park Y-J. Identification of the rare yeast Cutaneotrichosporon (Trichosporon) debeurmannianum from diabetic foot infection. J Clin Lab Anal. 2022;36:e24785. doi:10.1002/jcla.24785