Towards the continuum limit of the lattice Landau gauge gluon propagator

O. Oliveira*† and P. J. Silva*

*Centro de Física Computacional, Rua Larga, Universidade de Coimbra, P-3004-516 Coimbra, Portugal
†Departamento de Física, Instituto Tecnológico de Aeronáutica, 12.228-900, São José dos Campos, SP, Brazil

Abstract. The infrared behaviour of the lattice Landau gauge gluon propagator is discussed, combining results from simulations with different volumes and lattice spacings. In particular, the Cucchieri-Mendes bounds are computed and their implications for D(0) discussed.

Keywords: confinement, Landau gauge, lattice QCD, gluon propagator

PACS: 11.15.Ha, 12.38.Gc, 14.70.Dj

INTRODUCTION AND MOTIVATION

The link between the deep infrared behaviour of the gluon and ghost propagators and confinement, has motivated a great effort on computing these quantities on the lattice. Besides checking gluon confinement criteria, another important goal is to compare recent solutions of the Dyson-Schwinger equations with lattice results. In particular, the scaling solution [1] predicts a vanishing gluon propagator and a divergent ghost propagator at zero momentum. This solution complies with Gribov-Zwanziger [2] and Kugo-Ojima [3] confinement criteria. On the other hand, the decoupling solution [4] claims that the zero momentum gluon propagator is connected with a dynamical generated gluon mass.

In this paper we report on our current results for the Cucchieri-Mendes bounds in SU(3) lattice gauge theory.

CUCCHIERI-MENDES BOUNDS

The Cucchieri-Mendes bounds [5] provide upper and lower bounds for the zero momentum gluon propagator of lattice Yang-Mills theories in terms of the average value of the gluon field. In particular, they relate the gluon propagator at zero momentum \(D(0) \) with

\[
M(0) = \frac{1}{d(N_c^2 - 1)} \sum_{\mu, a} |A_{\mu}^a(0)|,
\]

where \(d \) is the number of space-time dimensions, and \(N_c \) the number of colors. In the above equation, \(A_{\mu}^a(0) \) is the \(a \) color component of the gluon field at zero momentum, defined by

\[
A_{\mu}^a(x) = \frac{1}{V} \sum_x A_{\mu}^a(x)
\]

where \(A_{\mu}^a(x) \) is the \(a \) color component of the gluon field in the real space. \(D(0) \) is related with \(M(0) \) by

\[
\langle M(0) \rangle^2 \leq \frac{D(0)}{V} \leq N_d(N_c^2 - 1) \langle M(0) \rangle^2. \tag{3}
\]

In the last equation \(\langle \cdot \rangle \) means Monte Carlo average over gauge configurations. For convenience we will use the definition \(N_d = N_d(N_c^2 - 1) \). The bounds in equation (3) are a direct result of the Monte Carlo approach. The interest on these bounds comes from allowing a scaling analysis which can help understanding the finite volume behaviour of \(D(0) \): assuming that each of the terms in inequality (3) scales with the volume according to \(A/V^\alpha \), the simplest possibility and the one considered in [5], an \(\alpha > 1 \) for \(\langle M(0) \rangle^2 \) clearly indicates that \(D(0) \rightarrow 0 \) as the infinite volume is approached. In this sense, this scaling analysis allows to investigate the behaviour of \(D(0) \) in the infinite volume limit.

For the SU(2) Yang-Mills theory [5], the results show a \(D(0) = 0 \) for the two dimensional theory, but a \(D(0) \neq 0 \) for three and four dimensional formulations.

RESULTS FOR SU(3) GAUGE THEORY

We have studied the Cucchieri-Mendes bounds within SU(3) lattice gauge theory for three values of the gauge coupling: \(\beta = 6.0 \) [6, 7], \(\beta = 5.7 \) [7], and \(\beta = 6.2 \).

Scaling analysis for \(\beta = 6.0 \)

In table 1 we present the lattice setup for \(\beta = 6.0 \), pointing out the differences to [6, 7].

Figure 1 shows the results for the bounds, together with the fits to \(\omega/V^\alpha \). Assuming this simple scaling
behaviour, our results for the exponent α support $D(0) = 0$ – see table 2. However, when one assumes a scaling behaviour like $C/V + \omega V^{-\alpha}$, the results support $D(0) \neq 0$ – see table 3. In this sense, a finite and non-vanishing value for $D(0)$ in the infinite volume is not excluded.

Concerning the fits to ω/V^α, the reasons for the differences in the values of α reported here and in [5] – and therefore on the behaviour of $D(0)$ in the infinite volume limit – are not clear. The simulations use different gauge groups. Although there it is generally believed that the SU(2) and SU(3) propagators are equivalent for momenta above 1 GeV [8, 9], a recent direct comparison for smaller momenta has shown a measurable difference in the infrared region [10].

Moreover, the physical volumes used in [5] are much larger – up to $(27\text{fm})^4$ – than the ones used here – up to $(8\text{fm})^4$. However, the reader should be aware that in the SU(2) case the lattice spacing used is about twice the lattice spacing considered here.

TABLE 2. Fits to ω/V^α using lattice data at $\beta = 6.0$.
\begin{tabular}{c|cc|c}
\hline
 & ω & α & χ^2 \\
\hline
$\langle M(0) \rangle$ & 9.53(36) & 0.5255(26) & 0.80 \\
$D(0)/V$ & 149 ± 10 & 1.0542(49) & 0.63 \\
$N_{cd} \langle M(0)^2 \rangle$ & 2927 ± 221 & 1.0504(54) & 0.83 \\
\hline
\end{tabular}

TABLE 3. Fits to $C/V + \omega V^{-\alpha}$ using lattice data at $\beta = 6.0$.
\begin{tabular}{cccc}
\hline
 & $\omega/1000$ & α & $C/100$ & χ^2 \\
\hline
$\langle M(0) \rangle^2$ & 0.23(24) & 1.22(11) & 0.337(50) & 0.47 \\
$D(0)/V$ & 0.27(23) & 1.19(10) & 0.49(11) & 0.42 \\
$N_{cd} \langle M(0)^2 \rangle$ & 7.1 ± 7.3 & 1.22(11) & 11.0 ± 1.7 & 0.55 \\
\hline
\end{tabular}

LATTICE SPACING EFFECTS IN THE GLUON PROPAGATOR

In order to disentangle possible lattice effects due to the use of a different lattice spacing, we carried out simulations at $\beta = 5.7$ and $\beta = 6.2$. The lattice setup is shown in tables 4 and 5 respectively.

TABLE 4. Lattice setup for $\beta = 5.7$. The lattice spacing is $a = 0.1838(11)\text{fm}$.
\begin{tabular}{cccccccc}
\hline
L^4 & $L/(\text{fm})$ & # conf. & 51 & 149 & 149 & 149 & 132 & 100 & 55 \\
\hline
4^4 & 1.47 & 1.84 & 2.57 & 3.31 & 4.78 & 6.62 & 8.09 \\
5^4 & 1.74 & 2.32 & 3.49 & 4.65 & 5.81 & 7.1 & 8.6 & 10.0 & 5.5 \\
6^4 & 2.03 & 2.44 & 3.25 & 4.88 & 6.50 & 8.13 \\
7^4 & 2.57 & 3.31 & 4.78 & 6.62 & 8.09 & 10.0 & 12.0 \\
8^4 & 3.25 & 4.88 & 6.50 & 8.13 & 10.0 & 12.0 & 14.0 & 16.0 & 18.0 \\
9^4 & 4.88 & 6.50 & 8.13 & 10.0 & 12.0 & 14.0 & 16.0 & 18.0 & 20.0 \\
\hline
\end{tabular}

TABLE 5. Lattice setup for $\beta = 6.2$. The lattice spacing is $a = 0.07261(85)\text{fm}$.
\begin{tabular}{cccccccc}
\hline
L^4 & $L/(\text{fm})$ & # conf. & 51 & 56 & 87 & 99 & 150 & 150 & 85 \\
\hline
4^4 & 1.74 & 2.32 & 3.49 & 4.65 & 5.81 & 7.1 & 8.6 & 10.0 & 5.5 \\
5^4 & 2.03 & 2.44 & 3.25 & 4.88 & 6.50 & 8.13 & 10.0 & 12.0 \\
6^4 & 2.57 & 3.31 & 4.78 & 6.62 & 8.09 & 10.0 & 12.0 & 14.0 & 16.0 \\
7^4 & 3.25 & 4.88 & 6.50 & 8.13 & 10.0 & 12.0 & 14.0 & 16.0 & 18.0 \\
8^4 & 4.88 & 6.50 & 8.13 & 10.0 & 12.0 & 14.0 & 16.0 & 18.0 & 20.0 \\
9^4 & 6.50 & 8.13 & 10.0 & 12.0 & 14.0 & 16.0 & 18.0 & 20.0 & 22.0 \\
10^4 & 8.13 & 10.0 & 12.0 & 14.0 & 16.0 & 18.0 & 20.0 & 22.0 & 24.0 \\
11^4 & 10.0 & 12.0 & 14.0 & 16.0 & 18.0 & 20.0 & 22.0 & 24.0 & 26.0 \\
\hline
\end{tabular}

Some differences have been seen between the gluon propagator computed at different lattice spacings for similar physical volumes. An example can be seen in figures 2 and 3, where the infrared $\beta = 6.2$ data does not agree with data from $\beta = 5.7$ and 6.0 simulations. These differences deserve further investigations to clarify any possible effects due to finite lattice spacing.

Scaling analysis for $\beta = 5.7$ and $\beta = 6.2$

In what concerns the fits to ω/V^α, the analysis of the data coming from both sets still supports a vanishing $D(0)$ in the infinite volume limit – see tables 6 and 7.

Similarly to the case studied before, the lattice data is also well described by the functional form $C/V + \omega V^{-\alpha}$ – see tables 8 and 9. Although the $\beta = 5.7$ case supports $D(0) \neq 0$, for $\beta = 6.2$ the statistical errors do not allow to take any conclusion. In fact, although $C = 0$ within statistical errors, we also get $\alpha = 1$. For this case, it is worth an increase of statistics.

FIGURE 1. Cucchieri-Mendes bounds for $\beta = 6.0$.

![Graph showing Cucchieri-Mendes bounds for $\beta = 6.0$.]
The authors acknowledge financial support from FAPESP. O.O. acknowledges financial support from CERN/FP/109327/2009 and (P.J.S.) grant SFRH/BPD/40998/2007. The authors acknowledge financial support from FAPESP.

Comparing the gluon propagator computed using different lattice spacings at the same physical volume $V \sim (4.8\, fm)^4$.

TABLE 6. Fits to $\omega V^{-\alpha}$ using lattice data at $\beta = 5.7$. In order to keep $\chi^2_\nu < 2$, the 26^4 lattice data has been excluded.

ω	α	χ^2_ν	
$\langle M(0) \rangle / V$	4.63(12)	0.524(23)	1.92
$D(0)/V$	32.8±1.6	1.046(42)	1.14
$N_{cd}(M(0))^2$	696±37	1.048(47)	1.72

CONCLUSIONS

We have studied the scaling behaviour of Cucchieri-Mendes bounds using ensembles generated at several lattice spacings. Fits of the data to a pure power law in the volume strongly support $D(0) = 0$, but the use of other ansatze do not allow to take definitive conclusions.

ACKNOWLEDGMENTS

The authors acknowledge financial support from FCT under contracts PTDC/FIS/100968/2008, CERN/FP/109327/2009 and (P.J.S.) grant SFRH/BPD/40998/2007. O.O. acknowledges financial support from FAPESP.

Comparing the gluon propagator computed using different lattice spacings at the same physical volume $V \sim (6.5\, fm)^4$.

TABLE 9. Fits to $C/V + \omega V^{-\alpha}$ using lattice data at $\beta = 6.2$. Data for $M(0)$ does not include 48^4.

$\omega/1000$	α	$C/1000$	χ^2_ν	
$\langle M(0) \rangle^2$	0.34(66)	1.13(29)	0.4±1.2	0.13
$D(0)/V$	0.366(47)	1.07(29)	0.04±5.6	0.95
$N_{cd}(M(0))^2$	8.6±6.7	1.08(28)	4±85	0.25

REFERENCES

1. C. S. Fischer, *J. Phys.* **G32**, R253 (2006).
2. D. Zwanziger, *Nucl. Phys.* **B364**, 127 (1991).
3. T. Kugo, I. Ojima, *Prog. Theor. Phys. Suppl.* **66**, 1 (1979).
4. D. Binosi, J. Papavassiliou, *Phys. Rep.* **479**, 1 (2009).
5. A. Cucchieri, T. Mendes, *Phys. Rev. Lett.* **100**, 241601 (2008), arXiv:0712.3517 [hep-lat].
6. O. Oliveira, P. J. Silva, *Phys. Rev. D79*, 031501(R) (2009), arXiv:0809.0258 [hep-lat].
7. O. Oliveira, P. J. Silva, PoS(LAT2009)226, arXiv:0910.2897 [hep-lat].
8. A. Cucchieri, T. Mendes, O. Oliveira and P.J. Silva, *Phys. Rev. D76*, 114507 (2007), arXiv:0705.3367 [hep-lat].
9. A. Sternbeck, L. von Smekal, D.B. Leinweber and A.G. Williams, PoS(LATTICE 2007)340.
10. O. Oliveira, P. J. Silva, PoS(QCD-TNT09)033, arXiv:0911.1643 [hep-lat].