Coordinated modulation of multiple processes through phase variation of a c-di-GMP phosphodiesterase in *Clostridioides difficile*

Isabella Gamez

The opportunistic nosocomial pathogen *Clostridioides difficile* exhibits phenotypic heterogeneity through phase variation, a stochastic, reversible process that modulates expression. In *C. difficile*, multiple sequences in the genome undergo inversion through site-specific recombination. One such loci lies upstream of *pdcB*, which encodes phosphodiesterases (PDEs) that degrade the signaling molecule c-di-GMP. Expression of *pdcB* has been shown to be heterogeneous and the orientation of the invertible sequence, or ‘*pdcB switch*’, determines expression. In this study, we aimed to identify the full mechanism of *pdcB* regulation. The *pdcB* switch contains a promoter that when properly oriented promotes *pdcB* expression. Expression is augmented by an additional promoter upstream of the *pdcB* switch. Additionally, an element near the left invertible repeat of the invertible element modulates transcription from the upstream promoter. Overall, complex transcriptional regulation takes place to control the phase variation of *pdcB* and further work is needed to investigate the mechanisms behind expression.