Recurrent formulas for explicitly finding some minimal polynomials

I G Galyautdinov and E E Lavrentyeva
Kazan Federal University, 18 Kremlyovskaya Street, 420008, Kazan, Russia

E-mail: ialee-4@mail.ru

Abstract. When solving many applied problems, it becomes necessary to solve nonlinear equations, including the need to find the roots of polynomials. Therefore, the study of the properties of polynomials is an important problem. In the present paper, we obtain recurrence formulas for minimal polynomials over circular fields.

1. Introduction
Nonlinear equations arise in solving important problems in many fields, for example, in the theory of underground filtration [1–8], the shells non-linear theory [9–16], the theory of multilayer shells [17–22], the theory of soft shells [23–27], and in modeling low-temperature plasmas [28–35], when solving spectral problems with nonlinear occurrence of a parameter [36–38], etc. At the same time, the functions describing the relationship between the parameters of processes are power functions, including polynomial functions.

In addition, to solve nonlinear, two-layer iterative processes [39–41] are used, the preconditioners of which are duality operators [42–44]. The gauge functions defining these operators are also often polynomial. When solving the above classes of problems, it becomes necessary to repeatedly find the roots of polynomials. Therefore, the problem of studying the properties of polynomial functions is very urgent.

In the present paper, which is a continuation of [45–47], recurrent formulas for minimal polynomials over circular fields are obtained.

2. Basic definitions and notations
We give a number of information we need in the future. The field $K_h = \mathbb{Q}(u_h)$, which is obtained by attaching rational numbers of a primitive root u_h of unit of degree h, where h is a natural number, to a field \mathbb{Q}, is called a circular field. Since $K_{2h} = K_h$ for odd h, in what follows, we will assume that h takes only even values. Moreover, non-isomorphic fields K_h correspond to different h. If h_1 and h_2 are two even positive integers and h_1 is divisible by h_2, i.e., $h_1 = h_2l$, then $K_{h_2} \subset K_{h_1}$. In the case $h = 2$, we have that and is a real field. When $h > 2$, the fields K_h are complex.

Let $n > 2$ be an arbitrary positive integer and $h = 2n$. Then the element $u_h + u_h^{-1}$ generates a real field $L_n = \mathbb{Q}(u_h + u_h^{-1})$. As is known [48], the field L_n is a subfield of the circular field K_h and $[K_h : L_n] = 2$. Since it follows from the relations $\mathbb{Q} \subset L \subset K_h$ that the degree $[L : \mathbb{Q}]$ of the field
\(L \) is a divisor of the degree \([K_h:Q]\) of the field \(K_h \), equality \([K_h:L_n]=2\) means that \(L_n=Q(2\cos(\pi/n)) \) is the maximum and real subfield of the circular field \(K_h=K_{2n} \).

It is known [49] that the Galois group \(G(K_{2n}/Q) \) over the field \(K_h \) over \(Q \) is isomorphic to the multiplicative group \(UZ_{2^n} \) of residue classes that are mutually simple with module \(2n \). In addition, the subfield \(Q(2\cos(\pi/n)), 2\cos(\pi/n)=u_h+u_h^{-1}, \) is invariant with respect to the subgroup \(H=\{1,-1\} \subset UZ_{2^n}. \) Therefore, \(G(L_n/Q)\cong UZ_{2^n}/H \), i.e., the Galois group of the field \(L_n \) over \(Q \) is isomorphic to the factor group \(UZ_{2^n}/H \).

Recall that a number \(\alpha \) is called algebraic if it is the root of some polynomial with rational coefficients. Among such polynomials there exists a unique normed polynomial \(f(x)\in Q[x] \) irreducible over a field \(Q \) whose root is a number \(\alpha \). This polynomial is called the minimal polynomial of a number \(\alpha \), and \(\deg f(x) \) is called its degree.

The Euler function \(\varphi(n) \) is the multiplicative arithmetic function, equal to the number of natural numbers, smaller \(n \) and mutually simple with it. For a prime number \(p \), the Euler function is given by the formula \(\varphi(p)=p-1 \). To calculate the Euler function of the degree of a prime number \(p \) the following formula is used: \(\varphi(p^m)=p^m-p^{m-1} \). For an arbitrary natural number \(n \), the value of \(\varphi(n) \) is represented as \(\varphi(n)=n\prod_{p|n}(1-1/p) \).

The extension \(\Omega \) that is obtained from a field \(P \) by attaching to it a single algebraic number \(\alpha \) over a field \(P \) is called a simple algebraic extension of the field \(P \). The number \(\alpha \) for the field \(P \) is called a primitive (generating) element.

In this paper, recurrent formulas are obtained for calculating the minimum polynomial \(q_n(x) \) of a primitive element \(\alpha=2\cos(\pi/n) \) of the circular field \(L_n=Q(2\cos(\pi/n)) \). Thus we are using the results previously obtained for the Chebyshev polynomials. Examples of using recurrent formulas for constructing the minimal polynomials are given.

3. Minimal polynomials of numbers \(2\cos(\pi/n) \)

Let \(T_n(x), \; n=0,1,2, \ldots, \) be the Chebyshev polynomials [50]. As is known, they have the property \(T_n(\cos(\phi))=\cos(n\phi) \) and are calculated by the recurrence formulas \(T_{n+1}(x)=2xT_n(x)−T_{n−1}(x), T_0(x)=1, T_1(x)=x, \; n=0,1,2, \ldots \).

The following statements are true [45].

Theorem 1. Let \(n=2k+1 \) be a positive integer number and \(\varphi \) be an Euler function. Then there are polynomials \(p_n(x)\in Q[x] \) of degree \(\varphi(n)/2 \) with roots \(\cos(s\pi/n), \) where odd \(s \) is less than \(n \) and takes all values that are mutually simple with \(n \). These polynomials are found recursively from the formulas:

\[
p_1(T_n(x))=p_1(x)(p_1(x))^2, \quad n=2k+1 \text{ is a prime,} \quad p_1(x)=x+1, \quad (1)
\]

\[
p_m(T_q(x))=p_n(x), \quad n=mq, \quad m\div q, \quad q \text{ is a prime,} \quad (2)
\]

\[
p_m(T_q(x))=p_n(x)p_n(x), \quad n=mq, \quad \text{LCD}(m,q)=1, \quad q \text{ is a prime.} \quad (3)
\]

The numbers \(\cos(t\pi/n), \) where even \(t<n \) takes all values that are mutually simple with \(n \), are the roots of the polynomial \((-1)^d p_n(x) \) where \(d=\deg(p_n(x)) \).

Theorem 2. Let \(n=2k \) be a positive integer number and \(\varphi \) be an Euler function. Then there are polynomials \(p_n(x)\in Q[x] \) of degree \(\varphi(n) \) with roots \(\cos(s\pi/n), \) where odd \(s \) is less than \(n \) and takes all values that are mutually simple with \(n \). These polynomials are found recursively from the formulas:

\[
\]
$p_n(x) = p_k(T_2(x)), \quad n = 2k, \quad p_2(x) = x. \quad (4)$

Theorem 3. Polynomials $p_n(x)$ constructed by formulas (1)–(4) are irreducible over a field Q.

By virtue of Theorem 3, the polynomials $p_n(x)$ constructed in Theorems 1 and 2 are minimal polynomials of numbers $\cos(\pi / n)$ up to a constant factor. This means that formula (5)

$q_n(x) = p_n(x/2), \quad n = 1, 2, \ldots, \quad (5)$

enables us to calculate the minimum polynomials of numbers $2\cos(\pi / n)$ but one can write recurrent formulas for explicitly calculating polynomials $q_n(x)$ with the roots $2\cos(\pi / n)$. This will be discussed in the next section.

4. Recurrent formulas minimal polynomials

In order to obtain recurrence formulas for the explicit computation of polynomials $q_n(x)$ with roots $2\cos(\pi / n)$, we turn from the Chebyshev polynomials $T_n(x)$ to the polynomials $S_n(x)$ given by the formula

$S_n(x) = 2T_n(x/2), \quad n = 0, 1, 2, \ldots \quad (6)$

Polynomials satisfy the recurrence relation

$S_{n+1}(x) = 2S_n(x) - S_{n-1}, \quad n = 0, 1, 2, \ldots \quad (7)$

From formulas (6) and (7) it follows that the polynomials $S_n(x)$ have properties [49]:

1. $\deg S_n(x) = n$;
2. the leading coefficient is 1;
3. all coefficients of $S_n(x)$ are integers;
4. $S_n(2\cos \alpha) = 2\cos(n\alpha)$.

Using formula (6) and the fact that $T_0(x) = 1$, $T_1(x) = x$, let’s construct the several polynomials $S_n(x)$. We have $S_0(x) = 2$, $S_1(x) = x$, $S_2(x) = x^2 - 2$, $S_3(x) = x^3 - 3x$, $S_4(x) = x^4 - 4x^2 + 2$, $S_5(x) = x^5 - 5x^3 + 5x$, $S_6(x) = x^6 - 6x^4 + 9x^2 - 2$.

The properties of polynomials $S_n(x)$ make it possible to prove the following result.

Lemma 1. For any natural k, the degree x^k is representable as a linear combination with integer rational coefficients of the polynomials 1, $S_1(x)$, $S_2(x)$, \ldots, $S_k(x)$.

Proof. The proof is carried out by induction on k. For $k = 1, 2, 3$ we have $x = S_1(x)$, $x^2 = S_2(x) + 2$, $x^3 = S_3(x) + 3S_1(x)$. If we assume that the required representations are true for all $i = 1, 2, \ldots, k$, then from properties 2 and 3 of polynomials $S_n(x)$ for $S_{k+1}(x)$ we obtain

$x^{k+1} = S_{k+1}(x) + a_{k-1}x^{k-1} + a_{k-3}x^{k-3} + \ldots$, where a_{k-i} are rational integers. Hence, taking into account the induction hypothesis, we find

$x^{k+1} = S_{k+1}(x) + b_{k-1}S_{k-1}(x) + b_{k-3}S_{k-3}(x) + \ldots$, where b_{k-i} are also whole rational numbers. Lemma is proved.

If in equations (1)–(4), using formulas (5) and (6), we replace the polynomials $p_2(x)$ and $T_2(x)$, respectively, by the polynomials $q_2(x)$ and $S_2(x)$, then Theorems 1 and 2 take the following form.

Theorem 4. Let $n = 2k + 1$ be a positive integer number and φ be an Euler function. Then there are polynomials $q_n(x) \in \mathbb{Q}[x]$ of degree $\varphi(n) / 2$ with roots $2\cos(s\pi / n)$, where odd s is less than n and takes all values that are mutually simple with n. These polynomials are found recursively from the formulas:

$q_1(S_2(x)) = q_1(x)(q_2(x))^2, \quad n = 2k + 1 \text{ is a prime}, \quad q_1(x) = x + 2, \quad (8)$

$q_m(S_q(x)) = q_n(x), \quad n = mq, \quad m \mid q, \quad q \text{ is a prime}, \quad (9)$
\[q_n(S_q(x)) = q_n(x)q_m(x), \quad n = m \cdot q, \quad \text{LCD}(m, q) = 1, \quad q \text{ is a prime.} \quad (10) \]

The numbers \(2\cos(t \pi / n)\), where even \(t < n\) takes all values that are mutually simple with \(n\), are the roots of the polynomial \((-1)^d q_n(-x)\) where \(d = \deg(q_n(d))\).

Theorem 5. Let \(n = 2k\) be a positive integer number and \(\varphi\) be an Euler function. Then there are polynomials \(q_s(x) \in \mathbb{Q}[x]\) of degree \(\varphi(n)\) with roots \(2\cos(s\pi / n)\), where odd \(s\) is less than \(n\) and takes all values that are mutually simple with \(n\). These polynomials are found recursively from the formulas:

\[q_n(x) = q_k(S_2(x)), \quad n = 2k, \quad q_2(x) = x. \quad (11) \]

From Theorems 3–5 and formula (5), taking into account the properties of polynomials \(S_n(x)\), it follows that the following theorem holds.

Theorem 6. If \(n\) is a natural number, then \(2\cos(\pi / n)\) is an algebraic integer, and \(q_n(x)\) is its minimal polynomial.

Proof. As previously noted, the polynomial \(S_n(x)\) has integer rational coefficients and its leading coefficient is 1. Therefore, from the recurrent formulas (8)–(11) it follows that the polynomial \(q_n(x)\) also has integer rational coefficients and its leading coefficient is 1. This means that its root is algebraic integer. It follows from Theorem 3 and formula (5) that \(q_n(x)\) is also irreducible over a field. Hence, \(q_n(x)\) is the minimal polynomial of numbers \(2\cos(\pi / n)\). The theorem is proved.

Let’s give examples of the polynomials \(q_n(x)\). We have \(q_1(x) = x + 2, q_2(x) = x, q_3(x) = x - 1, q_4(x) = x^2 - 2, q_5(x) = x^2 - x - 1, q_6(x) = x^2 - 3, q_7(x) = x^3 - x^2 - 2x + 1, q_8(x) = x^4 - 4x^2 + 2, q_9(x) = x^3 - 3x - 1, q_{10}(x) = x^4 - 5x^2 + 5, q_{11}(x) = x^5 - x^4 - 4x^3 + 3x^2 + 3x + 1, q_{12}(x) = x^4 - 4x^2 + 1\) etc.

Acknowledgments

The research was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project № 1.12878.2018/12.1.

References

[1] Badriyev I B, Zadvornov O A, Ismagilov L N and Skvortsov E V 2009 Solution of plane seepage problems for a multivalued seepage law when there is a point source *Journal of Applied Mathematics and Mechanics* 73(4) 434-42 DOI: 10.1016/j.jappmathmech.2009.08.007

[2] Badriyev I B, Kalacheva N V, Shangaraeva A I and Sudakov V A 2018 Numerical solving of highly viscous fluids filtration in porous media for nonlinear filtration laws with power growth *IOP Conference Series: Earth and Environmental Science* 155(1) 012015 DOI: 10.1088/1755-1315/155/1/012015.

[3] Badriyev I B, Banderov V V and Singatullin M T 2015 Numerical Solution of Non-Linear Filtration Issues for High Viscous Fluids at the Presence of Wells *Research Journal of Applied Sciences* 10(8) 343-6 DOI: 10.3923/rjasci.2015.343.346

[4] Badriyev I B and Pankratova O V 1992 Mixed finite-element method for nonlinear stationary problems of seepage theory *Journal of Soviet Mathematics* 61(6) 2405-16 DOI: 10.1007/BF01100574

[5] Badriyev I B 1989 Regularization of the nonlinear problem of seepage theory with a discontinuous law *Journal of Soviet Mathematics* 44(5) 681-91 DOI: 10.1007/BF01095183

[6] Badriyev I B and Fanyuk B Y 2012 Iterative methods for solving seepage problems in multilayer beds in the presence of a point source *Lobachevskii Journal of Mathematics* 33(4) 386-99 DOI: 10.1134/S1995080212040026
[7] Badriev I B, Banderov V V, Lavrentyeva E E and Pankratova O V 2016 On the Finite Element Approximations of Mixed Variational Inequalities of Filtration Theory IOP Conference Series: Materials Science and Engineering 158 (1) 012012 DOI: 10.1088/1757-899X/158/1/012012

[8] Badriev I B 1983 Difference-schemes for linear-problems of the filtration theory with discontinuous law Izvestiya Vysshikh Uchebnykh Zavedenii Matematika 5 3-12

[9] Solov'ev S I 2016 Eigenvibrations of a beam with elastically attached load Lobachevskii Journal of Mathematics 37 597-609 DOI: 10.1134/S1995080216050115

[10] Solov'ev S I 2017 Eigenvibrations of a bar with elastically attached load Differential Equations 53 (3) 409-23 DOI: 10.1134/S0374064117030116

[11] Abdrakhmanova A I, Garifullin I R, Davydov R L, Sultanov L U and Fakhrutdinov L R 2015 Investigation of Strain of Solids for Incompressible Materials Applied Mathematical Sciences 9 (3-12)

[12] Pajmushin V N and Shalashilin V I 2004 Noncontradictory variant of solid mechanics in square approximation Doklady Akademii Nauk 396 (4) 492-5

[13] Bereznoi D V, Balafendieva I S, Sachenkov A A and Sekaeva L R 2016 Modelling of deformation of underground tunnel lining, interacting with water-saturated soil IOP Conference Series: Materials Science and Engineering 158 (1) 012018 DOI: 10.1088/1757-899X/158/1/012018

[14] Bereznoi D V and Sagdatullin M K 2015 Calculation of interaction of deformable designs taking into account friction in the contact zone by finite element method Contemporary Engineering Sciences 8(21-24) 1091-8 DOI: 10.12988/ces.2015.58237

[15] Paimushin V N and Polyakova N V 2009 The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability Journal of Applied Mathematics and Mechanics 73 (2) 220-36 DOI: 10.1016/j.jappmathmech.2009.04.012

[16] Paimushin V N 1987 Nonlinear theory of the central bending of three-layer shells with defects in the form of sections of bonding failure Soviet Applied Mechanics 23 (11) 1038-43 DOI: 10.1007/BF00887186.

[17] Paimushin V N 1987 Nonlinear theory of the central bending of three-layer shells with defects in the form of sections of bonding failure Soviet Applied Mechanics 23 (11) 1038-43 DOI: 10.1007/BF00887186.

[18] Badriev I B, Makarov M V and Paimushin V N 2017 Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversally-soft core Russian Mathematics 61(1) 69-75 DOI: 10.3103/S1066369X1701008X

[19] Badriev I B, Makarov M V and Paimushin V N 2018 Geometrically Nonlinear Problem of Longitudinal and Transverse Bending of a Sandwich Plate with Transversally Soft Core Lobachevskii Journal of Mathematics 39 (3) 448-57 DOI: 10.1134/S1995080218030046

[20] Badriev I B, Makarov M V and Paimushin V N 2016 Longitudinal and transverse bending by a cylindrical shape of the sandwich plate stiffened in the end sections by rigid bodies IOP Conference Series-Materials Science and Engineering 158 (1) 012011 DOI: 10.1088/1757-899X/158/1/012011

[21] Badriev I B, Makarov M V and Paimushin V N 2017 Numerical investigation of a physically nonlinear problem of the longitudinal bending of the sandwich plate with a transversal-soft core PNRPU Mechanics Bulletin (1) 39-51 DOI: 10.15593/perm.mech/2017.1.03

[22] Badriev I B, Banderov V V, Gnedenkova V L, Kalacheva N V, Korablev A I and Tagirov R R 2015 On the finite dimensional approximations of some mixed variational inequalities Applied Mathematical Science 9 (113-6) 5697-705. DOI: 10.12988/ams.2015.57480

[23] Badriev and Shagidullin R R 1995 A study of the convergence of a recursive process for solving a stationary problem of the theory of soft shells Journal of Mathematical Sciences 73 (5) 519-25 DOI: 10.1007/BF02367668
[24] Badriev and Shagidullin R R 1992 Study of monomeric equations of static state of soft envelope and algorithm of their solution *Izvestiya vysshikh uchebykh zavedenii. Matematika* (1) 8-16

[25] Badriev I B, Banderov V V and Makarov M V 2017 Mathematical Simulation of the Problem of the Pre-Critical Sandwich Plate Bending in Geometrically Nonlinear One Dimensional Formulation *IOP Conference Series: Materials Science and Engineering* **208** (1) 012002 DOI: 10.1088/1757-899X/208/1/012002.

[26] Badriev I B, Banderov V V and Zadvornov O A 2013 On the solving of equilibrium problem for the soft network shell with a load concentrated at the point *PNRPU Mechanics Bulletin* (3) 17-35

[27] Badriev I B and Banderov V V 2014 Iterative methods for solving variational inequalities of the theory of soft shells *Lobachevskii Journal of Mathematics* **35** (4) 371-83 DOI: 10.1134/S1995080214040015

[28] Chebakova V J, Gerasimov A V and Kirpichnikov A P 2016 On the solving of one type of problems of mathematical physics *IOP Conference Series: Materials Science and Engineering* **158** (1) 012023 DOI: 10.1088/1757-899X/158/1/012023

[29] Zheltukhin V S, Solov'ev S I, Solov'ev P S Chebakova V Yu and Sidorov A M 2016 Third type boundary conditions for steady state ambipolar diffusion equation *IOP Conference Series: Materials Science and Engineering* **158**(1) 012102 DOI: 10.1088/1757-899X/158/1/012102

[30] Zheltukhin V S, Solov'ev S I, Solov'ev P S and Chebakova V Yu 2016 Existence of solutions for electron balance problem in the stationary radio-frequency induction discharges *IOP Conference Series: Materials Science and Engineering* **158** (1) 012103 DOI: 10.1088/1757-899X/158/1/012103

[31] Badriev I B, Chebakova V Y and Zheltukhin V S 2017 Capacitive coupled RF discharge: Modelling at the local statement of the problem *Journal of Physics: Conference Series* **789**(1) 012004 DOI: 10.1088/1742-6596/789/1/012004

[32] Gabbasov F G, Dubrovin V T and Chebakova V J 2016 Vector random fields in mathematical modelling of electron motion *IOP Conference Series: Materials Science and Engineering* **158**(1) 012032 DOI: 10.1088/1757-899X/158/1/012032

[33] Chebakova V J and Badriev I B 2018 Mathematical simulation of the low-temperature plazma at the interaction with oil products *IOP Conference Series: Earth and Environmental Science* **107**(1) 012097 DOI: 10.1088/1755-1315/107/1/012097

[34] Chebakova V Y 2017 Modeling of radio-frequency capacitive discharge under atmospheric pressure in Argon *Lobachevskii Journal of Mathematics* **38**(6) 1165-78. DOI: 10.1134/S1995080217060154

[35] Askhatov R M, Badriev I B, Chebakova V Yu and Zheltukhin V S 2018 Simulation of electron moving in RF capacitively coupled discharge *Journal of Physics: Conference Series* **1058**(1) 012044 DOI: 10.1088/1742-6596/1058/1/012044

[36] Solov'ev S I 1985 Fast methods for solving mesh schemes of the finite element method of second order accuracy for the Poisson equation in a rectangle *Izvestiya vysshikh uchebykh zavedenii. Matematika* (10) 71-4

[37] Dautov R Z, Lyashko A D and Solov'ev S I 1991 Convergence of the Bubnov-Galerkin method with perturbations for symmetric spectral problems with parameter entering nonlinearly *Differential Equations* **27**(7) 799-806

[38] Solov'ev S I 2016 Approximation of operator eigenvalue problems in a Hilbert space *IOP Conference Series-Materials Science and Engineering* **158**(1) 012087 DOI: 10.1088/1757-899X/158/1/012087

[39] Badriev I B and Karchevskii M M 1989 Convergence of the iterative Uzawa method for the solution of the stationary problem of seepage theory with a limit gradient *Journal of Soviet Mathematics* **45**(4) 1302-9 DOI: 10.1007/BF01097083

[40] Badriev I B and Zadvornov O A 2003 A decomposition method for variational inequalities of the second kind with strongly inverse-monotone operators *Differential Equations* **39**(7) 936-
[41] Badriev I B 1989 Application of duality methods to the analysis of stationary seepage problems with a discontinuous seepage law *Journal of Soviet Mathematics* **45** (4) 1310-4 DOI: 10.1007/BF01097084

[42] Badriev I B, Zadvornov O A and Saddek A M 2001 Convergence Analysis of Iterative Methods for Some Variational Inequalities with Pseudomonotone Operators *Differential Equations* **37** (7) 934-42 DOI: 10.1023/A:1011901503460

[43] Badriev I B, Zadvornov O A and Lyashko A D 2004 A study of variable step iterative methods for variational inequalities of the second kind *Differential Equations* **40** (7) 971-83 DOI: 10.1023/B:DIEQ.0000047028.07714.df

[44] Badriev I B, Pankratova O V and Shagidullin R R 1997 Iterative methods for solving filtration problems with discontinuous law with limit gradient *Differential Equations* **33**(3) 395-8

[45] Galyautdinov I G and Galeeva L I 2011 Galois Groups for one class equations *Asian-European Journal of mathematics* **4** (3) 427-36 DOI: 10.1142/S1793557111000344

[46] Galyautdinov I G and Lavrentyeva E E 2016 Polynomials Generating Maximal Real Subfields of Circular Fields *Uchenye zapiski Kazanskogo universiteta-Seriya fiziko-matematicheskie nauki* **158** (4) 469–81

[47] Galyautdinov I G and Lavrentyeva E E 2016 Finding minimal polynomials of algebraic numbers of the form \(\tan^2(\frac{\pi n}{2})\) using Tschirnhaus’s transform *Lobachevskii Journal of Mathematics* **37** (3) 342–8 DOI: 10.1134/S1995080216030033

[48] van der Waerden B L 1949 *Modern Algebra Vol. 1* (New York, Frederick Ungar Publishing Co.)

[49] Kostrikin A I 2001 *Introduction to Algebra. Part 3* (Moscow, Fizmatlit) (In Russian)

[50] Prasolov V V 2003 *Polynomials* (Moscow, MTsIMO) (In Russian)