Introduction

Alveolar macrophages (AM) are an important source of numerous cytokines and are a primary cell type in chronic inflammatory reactions induced by fibrogenic dusts. It is likely that the contribution of AM-derived cytokines plays an important role in the maintenance and progression of pulmonary inflammation. Among these, tumour necrosis factor α (TNF) has attracted much attention owing to a wide range of activities including fibroblast growth-promoting and growth-inhibiting activities. Together with other cytokines, TNF is frequently found at sites of inflammatory reactions and higher levels of TNF messenger RNA were identified in lung tissue of mice treated with silica and bleomycin. With regard to basal and LPS-stimulated TNF production by AM, variable responses including stimulation as well as inhibition or no change have been reported in experimental silicosis. Less information is available concerning the contribution of AM-derived TNF in asbestos-induced fibrosis. In a previous study, we reported bidirectional changes in LPS-stimulated TNF production by rat AM exposed to fibrogenic asbestos. These changes were characterized initially by a 50% suppression of TNF and were associated with the development of lung fibrosis but were absent in resolving lung granuloma. TNF inhibition was observed at a time when the bronchoalveolar cell population was composed exclusively of macrophages, raising the possibility of a macrophage-related inhibitory mechanism(s). Therefore, the present work was undertaken to study the role of macrophage-derived mediators, notably PGE2 and TGF-β1, in the observed TNF suppression. We report here that down-regulation of AM-derived TNF production was completely abrogated by TGF-β1 neutralization whereas indomethacin treatment had no effect. These results suggest that TNF response in AM from animals with lung fibrosis is inhibited in an autocrine fashion by TGF-β1.

Materials and Methods

Induction of lung inflammation and fibrosis: Male Wistar rats weighing 225–250 g were pur-
chased from Charles River Canada, Inc. (St Constant, Québec). These animals were derived from a pathogen-free colony, shipped behind filter barriers, and housed in isolated temperature-controlled quarters in an animal isolator unit (Johns Scientific Inc., Toronto). Lung inflammation and fibrosis were induced by intratracheal instillation of a preparation of chrysotile asbestos fibres as described previously.9 UICC Canadian chrysotile B asbestos fibres, (21% > 10 μm)12 were obtained from the National Research Institute for Occupational Diseases, Johannesburg, South Africa. Asbestos fibres were autoclaved for 45 min and suspended in sterile phosphate-buffered saline (PBS, pH 7.4) with a Dounce glass homogenizer (Fisher Scientific, Ottawa) before instillation into the animals. Under anaesthesia, the trachea was exposed surgically and saline or chrysotile B fibres were briskly injected through an 18-gauge needle. Two groups of seven rats each, received respectively, a single intratracheal injection of saline (control) or chrysotile B (5 mg). The rats from each group were sacrificed 3 weeks after treatment and analysed by bronchoalveolar lavage (BAL), for BAL cell populations and AM-derived TNF production. Histological examination of lung sections stained with haematoxylin–eosin or Masson’s trichrome revealed the presence of fibrosis in the lungs of rats exposed to UICC chrysotile fibres.9 The lesions consisted of granulation tissue with fibroblastic proliferation and collagen deposition and were localized predominantly in and around terminal bronchioles.

Alveolar macrophage culture: Alveolar macrophages were obtained by bronchoalveolar lavage as described previously.9 Cells were counted in a haemocytometer chamber and viability (98–100%) was determined by trypan blue exclusion. Differential analysis of lavage cells made from cytocentrifuge smears (Shandon, 2.5 x 10⁴ cells) and stained with Wright–Giemsa indicated that the BAL cell population was essentially composed of macrophages (99% AM) in normal rats. Similarly, in saline and asbestos-treated rats, the BAL cell population was 99% AM, the major difference between these two groups being a significant increase in AM number in asbestos-treated animals (11 x 10⁶ and 19 x 10⁶ respectively, for saline and asbestos groups). For determination of TNF, IL-6 and TGF-β1 bioactivities, AM (0.2 x 10⁷) from normal rats and when indicated, from saline and asbestos-treated rats, were incubated in 0.2 ml of DMEM supplemented with 0.5% FBS for 18 h at 37°C in the presence and absence of LPS (1 μg/ml) (Sigma Chemical Co., St Louis, MO). Culture supernatants were collected by centrifugation and frozen at −80°C until assayed.

Assays of TNF, IL-6 and TGF-β1: TNF activity was determined as described7 using the L929 murine fibroblast lysis assay. Serial dilutions of test supernatant were added to 4.5 x 10⁴ L929 cells in the presence of actinomycin D (1 μg/ml) (Boehringer Mannheim) and incubated for 18 h in microtitre plates. The supernatants were discarded; the remaining adherent viable cells were stained with crystal violet (0.5% in 2% methanol) and the absorbance of each well was read at 540 nm using an automated Bio-Tek microplate reader (Mandel Scientific). Each assay was standardized with murine recombinant TNF (4 x 10⁷ U/mg, Genzyme) and TNF units were calculated by probit analysis. TNF bioassay was validated by using a rabbit antimurine TNF antibody (Genzyme Corporation, Boston, MA) which completely neutralizes the cytotoxicity of AM conditioned media.

IL-6 activity was measured with the standard B9 cells proliferation assay as described.13 B9 cells (0.5 x 10⁵) were incubated in 0.2 ml of Iscove’s Modified Dulbecco’s Medium (IMDM) (Grand Island Biological Co.) supplemented with 5% FBS and 5 x 10⁻⁵ M 2-mercaptoethanol in the presence of AM supernatants at various dilutions. Tritiated thymidine (1 μCi/well) was added after 66 h of incubation and cultures were harvested at 72 h with a Skatron filtration device. The sample dilution curve was related to a standard curve generated with recombinant murine IL-6 (Genzyme, 10⁶ U/mg) and IL-6 units were calculated by probit analysis.

TGF-β1 activity was determined using the selectively sensitive Mr1Lu, mink lung connective tissue cell line (American Type Culture Collection, Rockville, MD: no. CCL-64) as described.14 Cells (2.5 x 10⁷/well) were cultured for 4 h in 96-well flat-bottomed microtitre plates (Costar, Cambridge, MA) in MEM supplemented with 10% foetal bovine serum (FBS) (Grand Island Biological Co., Grand Island, NY). AM culture supernatants were then added in triplicate and incubation was performed for 18 h. Cells were pulsed for 6 h with [³H]thymidine (1.5 μCi/well) (Dupont NEM). After washing with PBS, cells were treated with trypsin–EDTA (0.5–0.03%) for 40 min at room temperature and collected with a Skatron harvester. Results were calculated based on the decrease of [³H]thymidine incorporation compared with natural human TGF-β1 standard (Upstate Biotechnology Inc., NY) and data are expressed as ng/ml. The specificity of the assay was demonstrated by using chicken anti-human TGF-β1 (R & D Systems) which inhibits the activity.
Prostaglandin E₂ determination: Prostaglandin E₂ (PGE₂) was determined from AM supernatants using an ELISA kit (Cayman Chemical, Ann Arbor, MI). The ELISA was a competitive acetylcholinesterase-linked immunoassay and was performed according to the manufacturer's instruction.

Neutralization and blocking experiments: AM obtained from animals exposed to saline or UICC chrysotile B asbestos for 3 weeks were incubated as follows: AM (10⁶/ml) from each group were incubated for 18 h at 37°C with LPS (1 μg/ml) alone or in the presence of a purified turkey IgG antibody (10 μg) to human transforming growth factor-β₁ (anti-TGF-β₁) which displays neutralizing activity against rat TGF-β₁ (Collaborative Research, Bedford MA), turkey serum as a control for anti-TGF-β₁ or indomethacin (10⁻⁵ M) (Sigma, St Louis, MO). AM culture supernatants were collected and frozen at -80°C for TNF measurement as described above.

Statistical analysis: Results were expressed as mean values ± S.E.M. Statistical significance of differences between treated and control groups were determined using a one-way analysis of variance and Bonferroni test (Instat) (p < 0.05).

Results

PGE₂ inhibited LPS-induced TNF release from AM by 50% in a dose-dependent manner with half-maximal effect observed at 25 μg/ml (Fig. 1A). This is much higher than the levels of PGE₂ produced by LPS activated AM (805 pg/ml) (Table 1) indicating that physiological concentrations of PGE₂ are not sufficient to inhibit TNF production by rat AM. In contrast, relatively small concentrations of PGE₂ (25–300 pg/ml) had a direct stimulatory effect on spontaneous IL-6 release (7 U/ml), an inhibitor of TNF production by rat AM. Up to six-fold stimulation (46 U/ml) was obtained with 300 pg/ml PGE₂ (Fig. 1B). In addition, LPS-stimulated IL-6 release (75 U/ml) was further increased two- to five-fold by PGE₂ within the same concentration range.

On the other hand, TGF-β₁ at concentrations ranging between 0.5 and 50 ng/ml caused significant inhibition of LPS-induced TNF (Fig. 2A) and IL-6 (Fig. 2B) by rat AM with maximal inhibition (50%) obtained with 2.5–5 ng/ml. In addition, TGF-β₁ had a potent inhibitory effect (54%) on LPS-induced PGE₂ production by AM (Table 1). Thus, TGF-β₁ can directly inhibit TNF production by AM whereas PGE₂ may indirectly down-regulate TNF by stimulating IL-6.

To investigate which pathway(s) may be involved in the down-regulation of AM-derived TNF following asbestos exposure, AM obtained from rats exposed to UICC chrysotile asbestos

Table 1. Effects of TGF-β₁ on PGE₂ production by AM

Treatment	PGE₂ (pg/ml)
AM	168.6 ± 54
AM + LPS (1 μg/ml)	805.2 ± 72
AM + TGF-β₁ (2 ng/ml)	179.8 ± 37
AM + LPS + TGF-β₁ (2 ng/ml)	378 ± 31

*Alveolar macrophages (10⁶/ml) were incubated as described in Materials and Methods for 18 h in media alone or in the presence of LPS or TGF-β₁ or a combination of both. Prostaglandin concentrations were determined in culture supernatants by ELISA. Data represent mean ± S.E.M. of three separate experiments.
FIG. 2. AM (10^6/ml) were incubated with increasing concentrations of recombinant TGF-β1 for 18 h in the presence and absence of LPS (1 μg/ml). (A) TNF activity was measured in AM culture media as described in Materials and Methods. AM + LPS = 125 U/ml or 3125 pg/ml. Values represent mean ± S.E.M. of three separate experiments. (B) IL-6 activity was measured in AM culture media as described in Materials and Methods. AM + LPS = 72 U/ml or 720 pg/ml. Values represent mean ± S.E.M. of four separate experiments.

for 3 weeks were incubated in the presence and absence of anti-TGF-β1 known to neutralize rat TGF-β1, turkey serum as a control, and indomethacin, an inhibitor of PGE2 synthesis. Treatment with anti-TGF-β1 but not with turkey serum or indomethacin abrogated the 50% suppression of AM-derived TNF seen 3 weeks after asbestos exposure (Fig. 3). At this time, AM culture media from asbestos exposed rats contained levels of TGF-β1 (1.2 ng/ml) sufficient for inhibition of TNF release (Table 2).

Discussion

We have investigated the mechanisms involved in TNF suppression during the development of asbestos-induced fibrosis, at the macrophage level. A variety of mediators are known to inhibit TNF production from cells including IL-4, IL-6, IL-10, PGE2 and TGF-β1. Among these, IL-4 is produced by activated T-lymphocytes, a cell type which is not present in the bronchoalveolar compartment of our inflammatory lung model. Because the alveolar macrophage (AM) is a prominent feature of lung reactions to asbestos, our study focused on mediators produced by AM, notably PGE2, IL-6 and TGF-β1. As reported in other systems, TGF-β1 exerts significant inhibitory effects on TNF release by activated rat AM, conditions that are consistent with inflammatory states. TGF-β1 inhibits TNF release within the concentration range produced by AM suggesting that it could act in an autocrine fashion to modulate TNF production in the pulmonary microenvironment. In addition, TGF-β1 inhibits LPS-induced PGE2 indicating that it suppresses TNF production through a PGE2-independent pathway. This is consistent with previous findings in peripheral blood mononuclear cells and murine macrophage cell lines. Furthermore, TGF-β1 also inhibits IL-6 release from activated AM, ruling out the contribution of IL-6 in mediating its suppressive effect on TNF. Although TGF-β1 has been reported to stimulate IL-6 production in fibroblasts, chondrocytes and peripheral blood lymphocytes, it has been shown to suppress IL-6 in
bone marrow cells. 25 Such differences are likely to reflect cell-specific regulation of TNF by TGF-β1. The molecular basis of TGF-β1 inhibitory action on TNF production by rat AM is unknown. As reported for human peripheral blood mononuclear cells 15 and murine peritoneal macrophages, 26 TGF-β1 may block TNF by acting post-transcriptionally in rat AM, possibly through increased mRNA degradation or inhibition of TNF mRNA translation. 26 In this respect, and consistent with our observations, TGF-β1 appears to act differently to PGE2 and IL-6, which both have been shown to inhibit TNF transcription. 18,27 Further investigation would be necessary to clarify this.

In contrast, relatively high non-physiological concentrations of PGE2 (10^{-5}–10^{-4}M) range are necessary for inhibition of TNF. This is in agreement with previous studies which showed AM to be less susceptible than monocytes to PGE2 inhibition requiring much higher concentrations of PGE2 (10^{-2}–10^{-3}M) for suppression of TNF. 28 Such high inhibitory levels of PGE2 could not be achieved following LPS stimulation, indicating that, under our experimental conditions, activated rat AM do not produce enough PGE2 to interfere with TNF production. PGE2 on the other hand, stimulates IL-6 release in rat AM. This is in contrast to a recent report that PGE2 inhibits LPS-induced release of IL-6 in murine peritoneal macrophages. 29 Such discrepancies are likely due to differences in the experimental conditions used, including cell preparations and concentrations of PGE2. As mentioned earlier, AM are fairly resistant to inhibition by PGE2 concentrations (10^{-9}M) used in the latter study. 29 However, our results are in accordance with other studies which demonstrate that augmentation of PGE2 correlates with an increase in IL-6, whereas inhibition of PGE2 blocks IL-6 production. 31,32 Interestingly, stimulation of IL-6 by PGE2 is observed within the physiological range of concentrations produced by AM, raising the possibility that, under certain conditions, PGE2 may contribute indirectly to TNF suppression by increasing IL-6 levels. Our study, however, clearly demonstrates that TNF suppression in AM from fibrogenic rats is mediated through a TGF-β1-dependent PGE2-independent mechanism(s). This is based on our observations that neutralizing antibody to TGF-β1 blocks the observed 50% inhibition of TNF whereas indomethacin treatment has no effect. Furthermore, in contrast to controls, AM from animals exposed to asbestos produce amounts of TGF-β1 sufficient to cause inhibition. The contribution of other inhibitors, notably IL-6 and IL-10, cannot be completely ruled out. However, our observations that PGE2 at physiological concentrations stimulate IL-6, do not suggest a role for IL-6. In support of this, previous work from this laboratory demonstrated a lack of correlation between AM-derived IL-6 and TNF production following asbestos exposure. 11 Similarly, since PGE2 deactivation of macrophages has recently been shown to be mediated by IL-10, 39 our results are not consistent with a role for IL-10. Further experiments would be necessary to address these issues.

Collectively, our findings support a role for AM-derived TGF-β1 in down-regulating AM-derived TNF in an autocrine fashion. Our study also provides further evidence for important interactions between TGF-β1 and TNF during inflammatory responses to injury. In this regard, it is interesting to note that TGF-β1 and TNF antagonize each other's functions. Thus, TGF-β1 blocks numerous effects of TNF 35 whereas TNF inhibits the growth-promoting effects of TGF-β1 34 and wound healing. 35 This is in agreement with recent work which demonstrated that mRNA for TNF was greatly increased in TGF-β1 knockout animals 36 and that deficient expression of TGF-β1 was correlated with dysregulated production of TNF and lethal dysfunction of the inflammatory system. Since TGF-β1 exerts numerous biological activities that are directly relevant to tissue repair, 37 TGF-β1-induced suppression of TNF may be a requisite step for appropriate repair response following injury.

References

1. Fels AOS, Cohn ZA. The alveol macrophage. J Appl Physiol 1986;66:353-360.
2. Lemaire I. Silica- and asbestos-induced pulmonary fibrosis. In: Phan SH, Thrall RS, eds. Pulmonary Fibrosis Lung Biology in Health and Disease. New York: Marcel Dekker, 1995; 319-362.
3. OM IJ. Tumor necrosis factor. In: Bonavida B, Granger E, eds. Tumor Necrosis Factor: Structure, Mechanisms of Action, Role in Disease and Therapy. Basel: Karger, 1990; 1-50.
4. Thorson SC, For SH, Walsh BJ, Penny R, Broit SN. Interaction of immune and connective tissue cells. I. The effect of lymphokines and monokines on fibroblast growth. J Leukoc Biol 1990; 97:312-320.
5. Piguet PF, Collart MA, Grau GF, Sappino AP, Vassalli P. Requirement of tumor necrosis factor for development of silica-induced pulmonary fibrosis. Nature 1990; 346:245-247.
6. Piguet PF, Collart MA, Grau GE, Kapanci Y, Vassalli P. Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J Exp Med 1989; 170:655-663.
7. Deretic KE, Lindenschmidt KC, Maurer JK, Higgins JM, Ridder G. Pulmonary response to silica or titantium dioxide: inflammation cells, alveolar macrophage-derived cytokines and histopathology. Am J Respir Cell Mol Biol 1990; 2:381-390.
8. Bia sonetti E, Rola-Pleszczynski M. Pulmonary inflammation and fibrosis. In a murine model of asbestos and silicosis. Possible role of tumor necrosis factor. Inflammation 1989; 13:329-339.
9. Ouellet S, Yang H, Aubin RA, Hawley RG, Wroblewski GEC, Lemaire I. Bidirectional modulation of TNF-a production by alveolar macrophages in asbestos-induced pulmonary fibrosis. J Leukoc Biol 1993; 53:279-286.
10. Mohr C, Geiss D, Grabeuer C, et al. Synergic macrophage stimulation in rats with silicosis: enhanced release of tumor necrosis factors from alveolar and peritoneal macrophages. Am J Respir Cell Mol Biol 1991; 5:395-402.
11. Lemaire I, Ouellet S. Distinctive profile of alveolar macrophage-derived cytokine release induced by fibrogenic and non-fibrogenic mineral dusts. J Toxicol Environ Health 1996; 47:101-115.
12. Timbrell V. Characteristics of the International Union against Cancer stan-
I. Lemaire and S. Ouellet

...standard references samples of asbestos. In: Pneumococcosis. Proceedings of an International Conference. Johannesburg, 1990; 28-36.

13. Lemaire I, Yang H, Cantin M-F, Lemaire S. Up-regulation of cytolytic protein production in alveolar macrophages by histogranin, a novel endogenous pentadecapeptide. *Immunol Lett* 1994; 41: 37-42.

14. Lauzon W, Lemaire I. Alveolar macrophage inhibition of lung-associated NK activity: involvement of prostaglandins and transforming growth factor-β. *Exp Lung Res* 1994; 20: 331-349.

15. Hart PH, Vld GF, Burgess DR, Whity GA, Piccoli DS, Hamilton JA. Potential antiinflammatory effects of IL-4: suppression of human monocyte tumor necrosis factor alpha, interleukin-1 and prostaglandin E2. *Proc Natl Acad Sci USA* 1989; 86: 3803-3807.

16. Aderka D, Lee J, VlcekJ. IL-6 inhibits lipopolysaccharide-induced TNF production in cultured human monocytes, U937 cells and in mice. *J Immunol* 1989; 143: 3517-3523.

17. Florentino DP, Zornik A, Mossman TB, Howard M, O’Garra A. Interleukin-10 inhibits cytokine production by activated macrophages. *J Immunol* 1991; 147: 3815-3822.

18. Kunzle Sf, Spengler M, May MA, Spengler R, Larrick J, Resnick D. Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene expression. *J Biol Chem* 1988; 263: 5380-5384.

19. Chantry D, Turner M, Abney B, Feldmann M. Modulation of cytokine production by transforming growth factor β. *J Immunol* 1989; 142: 4295-4300.

20. Howard M, Farrar J, Hillbiller M, et al Identification of a T cell-derived B cell growth factor distinct from interleukin 2. *J Exp Med* 1982; 155: 914-923.

21. Reddy ST, Gilchrist RS, Xie W, Lunes S, Henschman HR. TGF-beta, inhibits both endotoxin-induced prostaglandin synthesis and expression of the TIS10/prostaglandin synthase 2 gene in murine macrophages. *J Leukoc Biol* 1994; 55: 192-200.

22. Elias J, Leutz V, Cunnin J. Transforming growth factor β regulation of IL-6 production by unstimulated and IL-1 stimulated human fibroblasts. *J Immunol* 1993; 116: 3437-3445.

23. Guerra A, Canales DA, Loez. M. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors and hormones in vitro. *J Immunol* 1990; 144: 698-700.

24. Turner M, Chantry D, Feldman M. Transforming growth factor beta induces the production of interleukin 6 by human peripheral blood mononuclear cells. *Cytokine* 1990; 2: 21-26.

25. Loret E, Sachi I. Selective regulation of the activity of different hematopoietic regulatory proteins by transforming growth factor β in normal and leukemic myeloid cells. *Blood* 1990; 76: 1315-1322.

26. Bogdan C, Pask J, Vlodover Y, Nathan C. Coordinating mechanisms for suppression of macrophage cytokine release by transforming growth factor β and interleukin-10. *J Biol Chem* 1992; 267: 23301-23308.

27. Schindler R, Marcilla J, Endres S, Ghorbari R, Clark SC, Dinarello CA. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1 and tumor necrosis factor (TNF) in human blood mononuclear cells. IL-6 suppresses IL-1 and TNF. *Blood* 1990; 75: 40-47.

28. Streiter IM, Krelln DAC, Lynch JP, et al Differential regulation of tumor necrosis factor-alpha in human alveolar macrophages and peripheral blood monocytes: a cellular and molecular analysis. *Am J Respir Cell Mol Biol* 1989; 1: 57-63.

29. Strassmann G, Patil-Kooba V, Finkelman F, Mung F, Kamhusho T. Evidence for the involvement of interleukin-10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. *J Exp Med* 1994; 180: 2355-2370.

30. Mandlikewicz J. In vitro cytokine release by activated murine peritoneal macrophages: role of prostaglandins in the differential regulation of tumor necrosis factor alpha, interleukin-1 and interleukin-6. *Cytokine* 1991; 6: 327-332.

31. Stefler J, Harbech BG, Dabvigt K, et al Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. *J Leukoc Biol* 1995; 53: 165-172.

32. Ertel W, Morrison MA, Wang P, Zhang F, Ayala A, Chaudry IH. The complex pattern of cytokines in sepsis. Association between prostaglandins, cachectin and interleukins. *Annals of Surgery* 1991; 214: 141-148.

33. Cai JP, Falanga V, Chin YH. Transforming growth factor β regulates the adhesive interactions between mononuclear cells and microvascular endothelium. *J Invest Dermatol* 1991; 97: 169-174.

34. Stefenos HH, Hunt TK, Scheneurtv H, Goodson WH. Selective effects of tumor necrosis factor-alpha on wound healing in rats. *Surgery* 1989; 106: 171-176.

35. Rapala K, Lasto M, Niloski J, et al. Tumor necrosis factor alpha inhibits wound healing in the rat. *Eur Surg Res* 1991; 23: 261-268.

36. Shull MM, Ormsby I, Kier AR, et al. Targeted disruption of the mouse transforming growth factor β1 gene results in multifocal inflammatory disease. *Nature* 1992; 359: 665-669.

37. Roberts AB, Sporn MB. The transforming growth factor β. In: Sporn MB, Roberts AB, eds. Peptide Growth Factors and their Receptors. Heidelberg: Springer-Verlag 1990; 419-472.

ACKNOWLEDGEMENTS. This work was supported by grant MT-7310 from the Medical Research Council of Canada (MRC). I.L. is a scholar of MRC (DG-350). The authors thank T. Drouin for competent preparation of figures and C. Lalonde for diligent secretarial help.

Received 17 October 1995; accepted in revised form 21 November 1995.