Study of the reaction $e^+e^- \rightarrow J/\psi \pi^+\pi^-$ via initial-state radiation at BABAR

J. P. Lees,1 V. Poireau,1 V. Tisserand,1 J. Garra Tico,2 E. Grauges,2 A. Palano,3 G. Eigen,4 B. Stuhr,4 D. N. Brown,5 L. T. Kerth,6 Yu. G. Kolomensky,5 G. Lynch,5 H. Koch,6 T. Schroeder,6 D. J. Asgeirsson,7 C. Hearty,7 T. S. Mattisson,7 J. A. McKenna,7 A. Khan,8 V. E. Blinov,9 A. R. Buzykaev,9 V. P. Druzhinin,9 V. B. Golubev,9 E. A. Kravchenko,9 A. P. Onuchin,9 S. I. Serednyakov,9 Yu. I. Skovpen,9 E. P. Solodov,9 K. Yu. Todyshev,9 A. N. Yushkov,9 M. Bondioli,10 D. Kirkby,10 A. J. Lankford,10 M. Mandelker,10 H. Attmacan,11 J. W. Gary,11 F. Liu,11 O. Long,11 G. M. Vitug,11 C. Campanagni,12 T. M. Hong,12 D. Kovalskyi,12 J. D. Richman,12 C. A. West,12 A. M. Eisner,13 J. Kroseberg,13 W. S. Lockman,13 A. J. Martinez,13 B. A. Schumm,13 A. Seiden,13 D. S. Chaio,14 C. H. Cheng,14 B. Echenard,14 K. T. Flood,14 D. G. Hitlin,14 P. Ongmongkolkul,14 F. C. Porter,14 A. Y. Rakitin,14 R. Andreassen,15 Z. Huard,15 B. T. Meadows,15 M. D. Sokoloff,15 L. Sun,15 P. C. Bloom,16 W. T. Ford,16 A. Gaz,16 U. Nauenberg,16 J. G. Smith,16 S. R. Wagner,16 R. Ayad,17 W. H. Toki,17 B. Spaan,18 K. R. Schubert,19 R. Schwierz,19 B. Bernard,20 M. Verderi,20 P. J. Clark,21 S. Playfer,21 D. Bettoni,22 C. Bozzi,22 R. Calabrese,22 G. Cribietto,22 E. Fioravanti,22 I. Garzia,22 E. Luppi,22 M. Menerato,22 M. Negrini,22 D. Piemontese,22 V. Santoro,23 R. Baldini-Ferroli,23 A. Calcaterra,23 R. de Sangro,23 G. Finocchiaro,23 P. Patteri,23 M. P. Peruzzi,23 P. Piccolo,23 M. Rama,23 A. Zallo,23 R. Contri,24 E. Guido,24 M. Lo Vetere,24 M. R. Monge,24 S. Passaggio,24 C. Patrignani,24 E. Robutti,24 B. Bhuyan,25 V. Prasad,25 C. L. Lee,26 M. Morii,26 A. J. Edwards,27 A. Adanetz,28 U. Uwer,28 H. M. Lacker,29 T. Lueck,29 P. D. Dunneym,30 P. K. Behera,31 U. Mallik,31 C. Chen,32 J. Cochran,32 W. T. Meyer,32 S. Prell,32 A. E. Rubin,32 A. V. Gritsan,33 Z. J. Guo,33 N. Arnaud,34 M. Davier,34 D. Derkach,34 G. Grosdidier,34 F. Le Diberder,34 A. M. Lutz,34 B. Malaeuc,34 P. Roubou,34 M. H. Schune,34 A. Stocchi,34 G. Wormser,34 D. J. Lange,35 D. M. Wright,35 C. A. Cheeze,36 J. P. Coleman,36 J. R. Fry,36 G. Bagnabthurer,36 D. E. Hutchcroft,36 D. J. Payne,36 C. Touramanis,36 A. J. Bevan,36 F. Di Lodovico,37 R. Sacco,37 M. Sigamani,37 G. Cowan,38 D. N. Brown,39 C. L. Davis,39 A. G. Denig,40 M. Fritsch,40 W. Grady,40 K. Griesseing,40 A. Hafner,40 E. Prencipe,40 R. J. Barlow,41 G. Jackson,41 G. D. Lafferty,41 E. Behn,42 R. Cenci,42 B. Hamilton,42 A. Jawahery,42 D. A. Roberts,42 C. Dallapiccola,43 R. Cowan,44 D. Dujmic,45 G. Sciolla,45 R. Chebai,45 D. Lindemann,45 P. M. Patel,45 S. H. Robertson,45 P. Bissoni,46 N. Neris,46 F. Palombo,46 S. Stracka,46 L. Cremaldi,47 R. Godang,47 R. Kroeger,47 P. Sonnek,47 D. J. Summers,47 X. Nguyen,48 M. Simard,48 P. Taras,48 G. De Nardo,49 D. Monorchio,49 G. Onorato,49 C. Sciacca,50 M. Martelini,50 G. Raven,50 C. P. Jessop,51 J. M. LoSecco,51 W. F. Wang,51 K. Honscheid,52 R. Kass,52 J. Brau,53 R. Frey,53 N. B. Sinev,53 D. Strom,53 E. Torrence,53 E. Feltesse,54 N. Pagliardini,54 M. Morandin,54 M. Morandin,54 M. Pozzores,54 M. Rotondo,54 G. Simi,54 F. Simonetto,55 R. Strollo,55 S. Akar,55 E. Ben-Haim,55 M. Bomben,55 G. R. Bonneau,55 A. Hriand,55 G. Calderini,55 J. Chauveau,55 O. Hamon,55 Ph. Lerust,55 G. Marchiori,55 J. Ocariz,55 S. Sitt,55 M. Biasini,56 E. Manolov,56 S. Pacetti,56 A. Rossi,56 C. Angelini,57 G. Bagni,57 S. Bettarini,57 M. Carpinelli,57 G. Casarosa,57 A. Cervelli,57 F. Forti,57 M. A. Giorgi,57 L. Lusiani,57 B. Oberholzer,57 E. Paoloni,57 A. Perez,57 G. Rizzo,57 J. A. Walsh,57 D. Lopes Pegna,58 J. Olsen,58 A. J. Smith,58 A. V. Telnov,58 R. Anuli,59 R. Faccini,59 F. Ferrarotto,59 F. Ferroni,59 M. Gaspero,59 L. Li Gioi,59 M. A. Mazzoni,59 G. Piredda,59 C. Bünger,60 O. Grünberg,60 T. Hartmann,60 J. Ledig,60 H. Schröder,60 C. Voss,60 R. Wald,60 T. Adey,61 E. O. Olaiya,61 F. F. Wilson,61 S. Emery,62 G. Hamel de Monchenault,62 G. Vasseur,62 Ch. Yéche,62 D. Aston,63 D. J. Bard,63 R. Bartoldus,63 J. F. Benitez,63 C. Cartaro,63 M. R. Convery,63 J. Dorfan,63 G. P. Dubois-Felsmann,64 W. Dunwoodie,65 M. Ebert,65 R. C. Field,65 M. Franco Sevilla,65 B. G. Fulsom,63 A. M. Gabareen,63 M. T. Graham,63 P. Grenier,63 C. Hast,63 W. R. Innes,63 M. H. Kelsey,63 P. Kim,63 M. L. Kocian,63 D. W. G. S. Leith,63 P. Lewis,63 B. Lindquist,63 S. Luitz,63 V. Luth,63 H. L. Lynch,63 D. B. MacFarlane,63 D. R. Muler,63 H. Neal,63 S. Nelson,63 M. Perl,63 T. Puhlmann,63 B. N. Ratcliff,63 A. Roodman,63 A. A. Sahinikov,63 R. H. Schindler,63 A. Snyder,63 D. Su,63 M. K. Sullivan,64 J. Va'vra,64 A. P. Wagen,64 W. J. Wisniewski,65 M. Wittgen,66 D. H. Wright,66 H. W. Walsin,66 C. C. Young,66 V. Ziegler,66 W. Park,66 M. V. Purohit,64 R. M. White,64 J. R. Wilson,64 A. Randle-Conde,65 S. J. Sekula,65 M. Bellis,66 P. R. Burchat,66 T. S. Miyashita,66 M. S. Alain,67 J. A. Ernst,67 R. Gorodesky,68 N. Guttman,68 D. R. Reimer,68 A. Soffer,68 P. Lund,69 S. M. Spanier,69 J. L. Ritchie,70 A. M. Ruland,70 R. F. Schwitters,70 B. C. Wray,70 J. M. Izen,71
X. C. Lou, F. Bianchi, D. Gamba, L. Lancieri, L. Vitale, F. Martinez-Vidal, A. Oyanguren, H. Ahmed, J. Albert, Sw. Banerjee, F. U. Bernlochner, H. H. F. Choi, G. J. King, R. Kowalewski, M. J. Lewczuk, I. M. Nugent, J. M. Roney, R. J. Sobie, N. Tasneem, T. J. Gershon, P. F. Harrison, T. E. Latham, E. M. T. Puccio, H. R. Band, S. Dasu, Y. Pan, R. Prepost, and S. L. Wu

(The BABAR Collaboration)

1 Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2 Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3 INFN Sezione di Bari; Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4 University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6 Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
7 University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8 Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9 Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
10 University of California at Irvine, Irvine, California 92697, USA
11 University of California at Riverside, Riverside, California 92521, USA
12 University of California at Santa Barbara, Santa Barbara, California 93106, USA
13 University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14 California Institute of Technology, Pasadena, California 91125, USA
15 University of Cincinnati, Cincinnati, Ohio 45221, USA
16 University of Colorado, Boulder, Colorado 80309, USA
17 Colorado State University, Fort Collins, Colorado 80523, USA
18 Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
19 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
20 Laboratoire Leprince-Ringuet, École Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
21 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22 INFN Sezione di Ferrara; Dipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy
23 INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
24 INFN Sezione di Genova; Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
25 Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
26 Harvard University, Cambridge, Massachusetts 02138, USA
27 Harvey Mudd College, Claremont, California 91711
28 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29 Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
30 Imperial College London, London, SW7 2AZ, United Kingdom
31 University of Iowa, Iowa City, Iowa 52242, USA
32 Iowa State University, Ames, Iowa 50011-3160, USA
33 Johns Hopkins University, Baltimore, Maryland 21218, USA
34 Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
35 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36 University of Liverpool, Liverpool L69 7ZE, United Kingdom
37 Queen Mary, University of London, London, E1 4NS, United Kingdom
38 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39 University of Louisville, Louisville, Kentucky 40292, USA
40 Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
41 University of Manchester, Manchester M13 9PL, United Kingdom
42 University of Maryland, College Park, Maryland 20742, USA
43 University of Massachusetts, Amherst, Massachusetts 01003, USA
44 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45 McGill University, Montréal, Québec, Canada H3A 2T8
46 INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
47 University of Mississippi, University, Mississippi 38677, USA
48 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
49 INFN Sezione di Napoli; Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
50 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
51 University of Notre Dame, Notre Dame, Indiana 46556, USA
52 Ohio State University, Columbus, Ohio 43210, USA
53 University of Oregon, Eugene, Oregon 97403, USA
54 INFN Sezione di Padova; Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
The observation of the \(X(3872)\) \cite{1}, followed by the discovery of other states such as the \(\chi_{c2}(2P)\) \cite{2}, the \(Y(3940)\) \cite{3}, and the \(X(3940)\) \cite{4}, has reopened interest in charmonium spectroscopy. These resonances cannot be fully explained by a simple charmonium model \cite{5}. In addition, the \(Y(2460)\) was discovered \cite{6} in the initial-state-radiation (ISR) process \(e^+e^-\rightarrow J/\psi \pi^+\pi^-\) with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BABAR detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb\(^{-1}\). We investigate the \(J/\psi \pi^+\pi^-\) mass distribution in the region from 3.5 to 5.5 GeV/c\(^2\). Below 3.7 GeV/c\(^2\) the \(\psi(2S)\) signal dominates, and above 4 GeV/c\(^2\) there is a significant peak due to the \(Y(4260)\). A fit to the data in the range 3.74 – 5.50 GeV/c\(^2\) yields a mass value 4244 \pm 5 (stat) MeV/c\(^2\) and a width value 114 \pm 17 (stat) MeV/c\(^2\) for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c\(^2\). In addition, we investigate the \(\pi^+\pi^-\) system which results from \(Y(4260)\) decay.

PACS numbers: 13.20.Gd, 13.25.Gv, 13.66.Bc, 14.40.Pq, 12.40.Yx, 12.39.Mk, 12.39.Pn, 12.39.Ki

We study the process \(e^+e^-\rightarrow J/\psi \pi^+\pi^-\) with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BABAR detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb\(^{-1}\). We investigate the \(J/\psi \pi^+\pi^-\) mass distribution in the region from 3.5 to 5.5 GeV/c\(^2\). Below 3.7 GeV/c\(^2\) the \(\psi(2S)\) signal dominates, and above 4 GeV/c\(^2\) there is a significant peak due to the \(Y(4260)\). A fit to the data in the range 3.74 – 5.50 GeV/c\(^2\) yields a mass value 4244 \pm 5 (stat) MeV/c\(^2\) and a width value 114 \pm 17 (stat) MeV/c\(^2\) for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c\(^2\). In addition, we investigate the \(\pi^+\pi^-\) system which results from \(Y(4260)\) decay.

PACS numbers: 13.20.Gd, 13.25.Gv, 13.66.Bc, 14.40.Pq, 12.40.Yx, 12.39.Mk, 12.39.Pn, 12.39.Ki
The analysis uses a data sample corresponding to an integrated luminosity of 454 fb$^{-1}$, recorded by the BABar detector at the SLAC PEP-II asymmetric-energy e^+e^- collider operating at c.m. energies 10.58 and 10.54 GeV. The detector is described in detail elsewhere [17]. Charged-particle momenta are measured with a tracking system consisting of a five-layer, double-sided silicon vertex tracker (SVT), and a 40-layer drift chamber (DCH), both of which are coaxial with the 1.5-T magnetic field of a superconducting solenoid. An internally reflecting ring-imaging Cherenkov detector, and specific ionization measurements from the SVT and DCH, provide charged-particle identification (PID). A CsI(Tl) electromagnetic calorimeter (EMC) is used to detect and identify photons and electrons, and muons are identified using information from the instrumented flux-return system.

We reconstruct events corresponding to the reaction $e^+e^- \rightarrow \gamma_{\text{ISR}} J/\psi \pi^+\pi^-$. Where γ_{ISR} represents a photon that is radiated from the initial state e^\pm, thus lowering the c.m. energy of the e^+e^- collision which produces the $J/\psi \pi^+\pi^-$ system. We do not require observation of the ISR photon, since it is detectable in the EMC for only $\sim 15\%$ of the events. This is because the ISR photon is produced predominantly in a direction close to the e^+e^- collision axis, and as such is most frequently outside the fiducial region of the EMC.

We select events containing exactly four charged-particle tracks, and reconstruct J/ψ candidates via their decay to e^+e^- or $\mu^+\mu^-$. For each mode, at least one of the leptons must be identified on the basis of PID information. When possible, electron candidates are combined with associated photons in order to recover bremsstrahlung energy loss, and so improve the J/ψ momentum measurement. An $e^+e^- (\mu^+\mu^-)$ pair with invariant mass within $(-75, +55)$ MeV/c2 of the nominal J/ψ mass [18] is accepted as a J/ψ candidate. We refer to the combination of these e^+e^- and $\mu^+\mu^-$ mass intervals as “the J/ψ signal region”. Each J/ψ candidate is subjected to a geometric fit in which the decay vertex is constrained to the e^+e^- interaction region. The χ^2 probability of this fit must be greater than 0.001. An accepted J/ψ candidate is kinematically constrained to the nominal J/ψ mass [18] and is combined with a candidate $\pi^+\pi^-$ pair in a geometric fit which must yield a vertex-χ^2 probability greater than 0.001.

The value of the missing-mass-squared recoiling against the $J/\psi \pi^+\pi^-$ system must be in the range (-0.50, +0.75) (GeV/c2)2 in order to be consistent with the recoil of an ISR photon. We require also that the transverse component of the missing momentum be less than 2.25 GeV/c. If the ISR photon is detected in the EMC, its momentum vector is added to that of the $J/\psi \pi^+\pi^-$ system in calculating the missing momentum.

The candidate $\pi^+\pi^-$ system has a small contamination due to e^+e^- pairs from photon conversions. We compute the pair mass $m_{e^+e^-}$ with the electron mass assigned to each candidate pion, and remove events with $m_{e^+e^-} < 50$ MeV/c2. We estimate the remaining background by using events that have an $e^+e^- (\mu^+\mu^-)$ mass in the J/ψ continuum (2.896, 2.971) or (3.201, 3.256) (2.936, 2.991) or (3.201, 3.256)) GeV/c2 after satisfying the other signal region selection criteria.

The $J/\psi \pi^+\pi^-$ invariant-mass distribution in the region below 4 GeV/c2 is dominated by the $\psi(2S)$ signal. The peak region, after subtraction of background from the J/ψ sideband, is shown in Fig. (a) (solid dots). The open dots indicate the $\psi(2S)$ MC distribution, modified as described below. The data distribution above ~ 3.75 GeV/c2 (Fig. (b)) may be due to the $\psi(2S)$ tail and a possible $J/\psi \pi^+\pi^-$ continuum (i.e. non-resonant) contribution. In order to investigate this we performed a detailed comparison of the $\psi(2S)$ signal in data and in MC simulation. For the latter, we used the MC generator VECTORISR [19] and a simulation of the
The resulting MC events were subjected to the reconstruction procedures which were applied to the data.

We first measured the peak mass position for both dis-tributions. We performed a \(\chi^2 \)-fit of a parabola to the data and MC distributions in intervals of 0.5 MeV/c\(^2\) for the region within \(\pm 5 \) MeV/c\(^2\) of the nominal \(\psi(2S) \) mass [15]. For the data, this gave a peak mass value of \(3685.32 \pm 0.02 \) (stat) MeV/c\(^2\), which is \(0.77 \pm 0.04 \) MeV/c\(^2\) less than the nominal value [18]. For the MC events, the result was \(3685.43 \pm 0.01 \) (stat) MeV/c\(^2\), which is \(0.66 \pm 0.01 \) MeV/c\(^2\) smaller than the input value [18]. This difference is attributed to final-state-reduction effects. The larger deviation obtained for data may result from under-estimated energy-loss corrections, and/or magnetic field uncertainty [21, 22]. Each MC event was then displaced by 0.11 MeV/c toward lower mass, and the parabolic fit to the new MC distribution was repeated. The MC distribution was normalized to the data by using the data-to-MC ratio of the maximized of the fitted functions. In order to improve the MC data resolution agreement, a \(\chi^2 \) function incorporating the data-MC histogram differences and their uncertainties was created for the region within \(\pm 10 \) MeV/c\(^2\) of the peak mass value. In the minimization procedure each MC event was represented in mass by a superposition of 3685.32 MeV/c\(^2\) (nominal) and 3685.43 MeV/c\(^2\) (input) of the Y(4260), and beyond \(\sim 4.0 \) MeV/c\(^2\), we cannot discount the possibility of a contribution from an \(e^+e^- \rightarrow J/\psi \pi^+\pi^- \) continuum cross section in this region. In this regard, the failure of the MC lineshape to describe the data in the region of the low-mass tail might be due to the threshold rise of just such a continuum cross section.

In order to extract the parameter values of the \(J/\psi \) signal region, we perform an unbinned, extended-maximum-likelihood fit in the region 3.74–5.5 GeV/c\(^2\) which might result from the \(\psi(2S) \) tail and a possible \(J/\psi \pi^+\pi^- \) continuum contribution, as discussed with respect to Fig. 1(b). At higher mass we observe clear production of the Y(4260), and beyond \(\sim 4.8 \) GeV/c\(^2\), which we choose to attribute to statistical fluctuation. In this regard, we note that no corresponding excess is observed in Ref. [14]. The background contribution is featureless throughout the mass region being considered.

In order to extract the parameter values of the Y(4260), we perform an unbinned, extended-maximum-likelihood fit in the region 3.74–5.5 GeV/c\(^2\) to the \(J/\psi \pi^+\pi^- \) distribution from the \(J/\psi \) signal region, and simultaneously to the background distribution from the \(J/\psi \) sidebands. The background is fitted using a third-order polynomial in \(J/\psi \pi^+\pi^- \) mass, \(m \). The mass-dependence of the signal function is given by \(f(m) = \epsilon(m) \cdot \mathcal{L}(m) \cdot \sigma(m) \), where \(\epsilon(m) \) is the mass-dependent signal-selection efficiency from MC simulation with a \(J/\psi \pi^+\pi^- \) phase space distribution, and \(\mathcal{L}(m) \) is the mass-distributed luminosity [23], where we ignore the small corrections due to initial-state emission of additional soft photons; \(\epsilon(m) \) increases from 9.5% at 3.74 GeV/c\(^2\) to 15.5% at 5.5 GeV/c\(^2\), and \(\mathcal{L}(m) \) from 35 pb\(^{-1}\)/20 MeV to 61.3 pb\(^{-1}\)/20 MeV over the same range. The cross section, \(\sigma(m) \), is given by the incoherent sum \(\sigma(m) = \sigma_{NR}(m) + \sigma_{BW}(m) \), where \(\sigma_{NR}(m) \) is an exponential function which provides an empirical description of the \(\psi(2S) \) tail and possible continuum contributions; \(\sigma_{BW}(m) \) is the cross section for the production of the MC low-mass tail is systematically below the data distribu-
Y(4260), and is given by

$$
\sigma_{BW}(m) = \frac{12\pi C}{m^2} \cdot \frac{PS(m)}{PS(m_Y)} \cdot \frac{\Gamma_{e^+e^-} \cdot B(J/\psi\pi^+\pi^-) \cdot m_Y^2 \cdot \Gamma_Y}{(m_Y^2 - m^2)^2 + m_Y^2 \Gamma_Y^2},
$$

where m_Y and Γ_Y are the mass and width of the Y(4260), $\Gamma_{e^+e^-}$ is the partial width for $Y(4260) \rightarrow e^+e^-$, $B(J/\psi\pi^+\pi^-)$ is the branching fraction for $Y(4260) \rightarrow J/\psi\pi^+\pi^-$, and $C = 0.3894 \times 10^9$ GeV2 pb. The function $PS(m)$ represents the mass dependence of $J/\psi\pi^+\pi^- \rightarrow \pi^+\pi^- \pi^+\pi^-$ phase space, and $PS(m_Y)$ is its value at the mass of the Y(4260). In the likelihood function, $\sigma_{BW}(m)$ is multiplied by $B(J/\psi \rightarrow l^+l^-)$, the branching fraction sum of the e^+e^- and $\mu^+\mu^-$ decay modes [18], since the fit is to the observed events. In the fit procedure $f(m)$ is convolved with a Gaussian resolution function obtained from MC simulation. This function has a r.m.s. deviation which increases linearly from 2.1 MeV/c^2 at ~ 3.5 GeV/c^2 to 5 MeV/c^2 at ~ 4.3 GeV/c^2. The results of the fit are shown in Fig. 2(a). The parameter values obtained for the Y(4260) are $m_Y = 4244 \pm 5$ (stat) MeV/c^2, $\Gamma_Y = 114^{+15}_{-14}$ (stat) MeV, and $\Gamma_{e^+e^-} \times B(J/\psi\pi^+\pi^-) = 9.2 \pm 0.8$ (stat) eV.

For each $J/\psi\pi^+\pi^-$ mass interval, i, we calculate the $e^+e^- \rightarrow J/\psi\pi^+\pi^-$ cross section after background subtraction using

$$
\sigma_i = \frac{n_i^{obs} - n_i^{bkg}}{\epsilon_i \cdot \mathcal{L}_i \cdot B(J/\psi \rightarrow l^+l^-)},
$$

with n_i^{obs} and n_i^{bkg} the number of observed and background events, respectively, for this interval; ϵ_i, and \mathcal{L}_i are the values of $\epsilon(m)$ and $\mathcal{L}(m)$ [23] at the center of interval i.

The resulting cross section is shown in Fig. 2(b), where the solid curve is obtained from the simultaneous likelihood fit. The corresponding estimates of systematic uncertainty are due to luminosity (1%), tracking (5.1%), $B(J/\psi \rightarrow l^+l^-)$ (0.7%), efficiency (1%) and PID (1%); combined in quadrature. These yield a net systematic uncertainty of 5.4%, as indicated in Table I.

The reaction $e^+e^- \rightarrow J/\psi\pi^+\pi^-$ has been studied at the c.m. energy of the $\psi(3770)$ by the CLEO [24] and BES [25] collaborations. The former reported the value 12.1 ± 2.2 pb for the $e^+e^- \rightarrow \psi(3770) \rightarrow J/\psi\pi^+\pi^-$ cross section, after subtraction of the contribution resulting from radiative return to the $\psi(2S)$. The dependence on E_{cm} of our fitted cross section, shown by the curve in Fig. 2(b), yields the value 31 ± 5 (stat) ± 2 (syst) pb at the $\psi(3770)$ with no subtraction of a $\psi(2S)$ contribution. This is compatible with the much more precise CLEO result obtained after subtraction. No cross section value is reported in Ref. [25], but the results of the BES analysis agree within their significantly larger uncertainties with those from CLEO.

The systematic uncertainties on the measured values of the Y(4260) parameters include contributions from the fitting procedure (evaluated by changing the fit range and

Source	$\Gamma_{e^+e^-} \cdot B(\%)$	Mass (MeV/c^2)	Γ (MeV)
Fit procedure	+1.5	+0	+2
Mass Scale	-0.5	-1	-
Mass resolution	-	-	+1.5
MC dipion model	±3.6	-	-
Decay angular momentum	±3.6	±3.5	±7
Luminosity, etc.	±5.4	-	-

(see text)
the background parametrization), the uncertainty in the mass scale, the mass-resolution function, and the change in efficiency when the dipion distribution is simulated using the solid histogram in Fig. 3(c), which is described below. In Eq. (1) it is assumed that $Y(4260)$ decay to a J/ψ and a scalar dipion occurs in an S-wave orbital angular momentum state. However, a D-wave decay between the J/ψ and the $\pi^+\pi^-$ system can occur also, and for this hypothesis the fitted central values of mass, width, and $\Gamma_{\pi^+\pi^-} \times B(J/\psi \to l^+l^-)$ become 4237 MeV/c^2, 100 MeV, and 8.5 eV, respectively. We assign half the change in central value of each quantity as a conservative estimate of systematic uncertainty associated with the decay angular momentum. Uncertainties associated with luminosity, tracking, $B(J/\psi \to l^+l^-)$, efficiency and PID affect only $\Gamma_{\pi^+\pi^-} \cdot B$, and their net contribution is 5.4%, as we discussed previously. Our estimates of systematic uncertainty are summarized in Table I and are combined in quadrature to obtain the values which we quote for the $Y(4260)$.

We now consider the $\pi^+\pi^-$ system from $Y(4260)$ decay to $J/\psi\pi^+\pi^-$. Since the $Y(4260)$ has $I(J^{PC}) = 0(1^-)$ and its width indicates strong decay, the $\pi^+\pi^-$ system has $I(J^{PC}) = 0(0^{++})$ or $I(J^{PC}) = 0(2^{++})$. For the region $4.15 \leq m(J/\psi \pi^+\pi^-) \leq 4.45$ GeV/c^2, the $\pi^+\pi^-$ mass distribution after subtraction of that from the J/ψ sideband regions is shown in Fig. 3(a). The region below 0.32 GeV/c^2 is excluded since it is severely depopulated by the procedure used to remove e^+e^- pair contamination. The distribution decreases from threshold to near zero at ~ 0.6 GeV/c^2, rises steadily to a maximum at ~ 0.95 GeV/c^2, decreases rapidly to near zero again at ~ 1 GeV/c^2, and increases thereafter. The distribution is consistent with previous measurements [6, 14].

We define θ_π as the angle between the π^+ direction and that of the recoil J/ψ, both in the dipion rest frame. The distribution in $\cos \theta_\pi$ is shown in Fig. 3(b). The fitted line represents S-wave decay, and provides an adequate description of the data ($\chi^2/NDF = 12.3/9$, probability = 19.7%); there is no need for a D-wave contribution, e.g., from $f_2(1270) \to \pi^+\pi^-$ decay.

The mass distribution near 1 GeV/c^2 suggests coherent addition of a nonresonant $\pi^+\pi^-$ amplitude and a resonant amplitude describing the $f_0(980)$. If the peak near 950 MeV/c^2 is attributed to a nonresonant amplitude with phase near 90°, the coherent addition of the resonant $f_0(980)$ amplitude, in the context of elastic unitarity, could result in the observed behavior, which is similar to that of the $I = 0\ \pi^+\pi^-$ elastic scattering cross section near 1 GeV (Fig. 2, p.VI.38, of Ref. [26]). However, we have no phase information with which to support this conjecture.

The distribution in Fig. 3(a) for $m_{\pi\pi} < 0.9$ GeV/c^2 is qualitatively similar to that observed for the decay $Y(3S) \to \Upsilon(1S)\pi^+\pi^-$. There, the dipion mass distribution decreases from a maximum near threshold to a significantly non-zero minimum at ~ 0.6-0.7 GeV/c^2, before rising steeply toward 0.8 GeV/c^2 before being cut-off by the kinematic limit (0.895 GeV/c^2). The CLEO data are well-described in terms of a QCD multipole expansion [28, 29] up to $m_{\pi\pi} \sim 0.7$ GeV/c^2, but the sharp rise thereafter is not well-accommodated. This shortcoming...

![FIG. 3. (a) The background-subtracted $\pi^+\pi^-$ mass distribution for the $Y(4260)$ signal region; the dashed vertical line is at the nominal $f_0(980)$ mass value [15]; (b) the corresponding $\cos \theta_\pi$ distribution; the fitted line is for an S-wave description; (c) the result of the fit using the model of Eq. (3).]
is more readily apparent for the much larger \textit{BaBar} data sample for this same process \cite{12}. There the distribution begins a rapid rise toward the $f_0(980)$ region, as seen in Fig. 3(a), but turns over at ~ 0.85 because of the kinematic limit at 0.895 GeV/c2. The CLEO multipoole pole expansion fit involves two amplitudes whose relative phase is approximately 155 degrees, so that the interference is destructive, and hence the minimum in the distribution is at ~ 0.6-0.7 GeV/c2. The amplitudes are of similar magnitude in this region, and so a relative phase of ± 180 degrees could yield near-zero intensity, as observed in the Fig. 3(a). This phase value would result in an approximately real amplitude. However it would contain no explicit contribution, which requires necessary to describe the data of Fig. 3(a), and so we attempt to describe the entire distribution using the following simple model.

The nonresonant intensity distribution requires three turning points, as in the CLEO multiple pole expansion description, and so we choose to represent it by a fourth-order polynomial, $T(m_{\pi\pi})$, where $m_{\pi\pi}$ is the invariant mass of the $\pi^+\pi^-$ system. From the phase requirement discussed above, it follows that the corresponding amplitude can be chosen to be real and represented by $\sqrt{T(m_{\pi\pi})}$. To this amplitude we add the complex ϕ^{\ast} wave amplitude obtained from the \textit{BaBar} analysis of $D^+_s \to \pi^+\pi^-\pi^+$ decay \cite{20}, which shows a clear resonant behavior at the $f_0(980)$. We perform a χ^2-fit to the data of Fig. 3(a) using

$$ f(m_{\pi\pi}) = |\sqrt{T(m_{\pi\pi})} + e^{i\phi} F_{f_0}(m_{\pi\pi})|^2 \cdot p \cdot q ,$$

where $F_{f_0}(m_{\pi\pi})$ is proportional to the complex ϕ^{\ast} amplitude of Ref. \cite{20}, and the phase ϕ is determined by p is the π^\pm momentum in the $\pi^\pm\pi^-$ rest frame, and q is the J/ψ momentum in the $J/\psi\pi^\pm\pi^-$ rest frame. We use the fitted $Y(4260)$ mass value in calculating q, which implies a kinematic limit of 1.15 GeV/c2 for the fit function. The result is shown in Fig. 3(c). The fit is good ($\chi^2/NDF = 33.6/35$ probability = 56.6%), and the interference is important for the description of the region near 1 GeV/c^2 ($\phi = 280^\circ \pm 24^\circ$). The $f_0(980)$ amplitude squared gives 0.17 ± 0.13 (stat) for the branching ratio $\mathcal{B}(J/\psi f_0(980), f_0(980) \to \pi^+\pi^-)/\mathcal{B}(J/\psi\pi^+\pi^-)$. This is somewhat smaller than the prediction of Ref. \cite{14}, where it is proposed that the $f_0(980)$ contribution should be dominant.

In summary, we have used ISR events to study the process $e^+e^- \to J/\psi\pi^+\pi^-$ in the e.m. energy range 3.74-5.50 GeV. For the $Y(4260)$ we obtain $m_Y = 4244 \pm 5$ (stat) ± 4 (syst) MeV/c2, $\Gamma_Y = 114^{+16}_{-15}$ (stat) ± 7 (syst) MeV, and $\Gamma_{e^+e^-}$. The results represent an improvement in statistical precision of $\sim 30\%$ over the previous \textit{BaBar} results, and agree very well in magnitude and statistical precision with the results of the Belle fit which uses a single Breit-Wigner resonance to describe the data \cite{21}. We do not confirm the broad enhancement at 4.01 GeV/c2 reported in Ref. \cite{21}. The dipion system for the $Y(4260)$ decay is in a predominantly S-wave state. The mass distribution exhibits an $f_0(980)$ signal, for which a single model indicates a branching ratio with respect to $J/\psi\pi^+\pi^-$ of 0.17 ± 0.13 (stat).

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support \textit{BaBar}. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (USA).

\begin{thebibliography}{99}
\bibitem{1} Now at the University of Tabuk, Tabuk 71491, Saudi Arabia
\bibitem{2} Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
\bibitem{3} Now at the University of Huddersfield, Huddersfield HD1 3DH, UK
\bibitem{4} Now at University of South Alabama, Mobile, Alabama 36688, USA
\bibitem{5} Also with Università di Sassari, Sassari, Italy
\bibitem{6} S. K. Choi \textit{et al.}, Phys. Rev. Lett. \textbf{91}, 262001 (2003).
\bibitem{7} S. Uehara \textit{et al.}, Phys. Rev. Lett. \textbf{96}, 082003 (2006).
\bibitem{8} S. K. Choi \textit{et al.}, Phys. Rev. Lett. \textbf{94}, 182002 (2005).
\bibitem{9} K. Abe \textit{et al.}, Phys. Rev. Lett. \textbf{98}, 082001 (2007).
\bibitem{10} T. Appelquist, R. M. Barnett and K. D. Lane, Ann. Rev. Nucl. Part. Sci. \textbf{28}, 387 (1978).
\bibitem{11} B. Aubert \textit{et al.}, Phys. Rev. Lett. \textbf{95}, 142001 (2005).
\bibitem{12} T. E. Coan \textit{et al.}, Phys. Rev. Lett. \textbf{96}, 162003 (2006).
\bibitem{13} A. G. Brasseur \textit{et al.}, Phys. Rev. D \textbf{76}, 111105 (2007); B. Aubert \textit{et al.}, Phys. Rev. D \textbf{79}, 092001 (2009); G. Palladina \textit{et al.}, Phys. Rev. Lett. \textbf{98}, 092001 (2007); G. Palladina \textit{et al.}, Phys. Rev. D \textbf{77}, 011103 (2008).
\bibitem{14} P. del Amo Sanchez \textit{et al.}, Phys. Rev. D \textbf{82}, 052004 (2010); J. Libby \textit{et al.}, Nucl. Phys. B, Proc. Suppl. \textbf{181-182}, 127 (2008).
\bibitem{15} I. Bigi \textit{et al.}, Phys. Rev. D \textbf{72}, 114016 (2005).
\bibitem{16} L. Maiani \textit{et al.}, Phys. Rev. D \textbf{72}, 031502 (2005).
\bibitem{17} C. -F. Qiao, J. Phys. G \textbf{35}, 075008 (2008).
\bibitem{18} S. -L. Zhu, Phys. Lett. B \textbf{625}, 212 (2005).
\bibitem{19} C. Z. Yuan \textit{et al.}, Phys. Rev. Lett. \textbf{99}, 182004 (2007).
\bibitem{20} A. G. Brasseur \textit{et al.}, Phys. Rev. Lett. \textbf{98}, 212001 (2007).
\bibitem{21} X. L. Wang \textit{et al.}, Phys. Rev. Lett. \textbf{99}, 142002 (2007).
\bibitem{22} A. G. Brasseur \textit{et al.}, Nucl. Instrum. Methods Phys. Res., Sect. A \textbf{479}, 1 (2002); W. Menges, IEEE Nucl. Sci. Symp. Conf. Rec. 5, 1470 (2006).
\bibitem{23} K. Nakamura \textit{et al.}, J. Phys. G \textbf{37}, 075021 (2010), and partial update for the 2012 edition (URL: http://pdg.lbl.gov).
\end{thebibliography}
[19] G. Bonneau and F. Martin, Nucl. Phys. B27, 381 (1971); H. Czyz et al., Eur. Phys. J. C18, 497 (2001); D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[20] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect A 506, 250 (2003).

[21] B. Aubert et al., Phys. Rev. D 80, 092005 (2009).

[22] B. Aubert et al., Phys. Rev. D 72, 052006 (2005).

[23] E. A. Kuraev and V. S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985).

[24] N. E. Adam et al., Phys. Rev. Lett. 96, 082004 (2006).

[25] J. Z. Bai et al., Phys. Lett. B 605, 63 (2005).

[26] K. Hikasa et al., Phys. Rev. D 45, Part II (1992).

[27] D. Cronin-Hennessy et al., Phys. Rev. D 76, 072001 (2007).

[28] L. S. Brown and R. N. Cahn, Phys. Rev. Lett. 35, 1 (1975).

[29] T.-M. Yahn, Phys. Rev. D 22, 1652 (1980).

[30] E. Guido, Ph.D. Thesis, Università degli Studi di Genova (2011); BABAR Publications, THESIS-12/003 (2012).

[31] B. Aubert et al., Phys. Rev. D 79, 032003 (2009).

[32] A. Martinez Torres et al., Phys. Rev. D 80, 094012 (2009).