COMPACTIFYING MODULI OF HYPERELLIPTIC CURVES

MARCO PACINI

Abstract. We construct a new compactification of the moduli space H_g of smooth hyperelliptic curves of genus g. We compare our compactification with other well-known remarkable compactifications of H_g.

1. Introduction

Let H_g be the moduli space of smooth hyperelliptic curves of genus $g \geq 3$. Several compactifications of H_g have been constructed. For example, there exists a moduli space B_m of GIT-semistable binary forms of degree m, where a binary form of degree m is a homogeneous polynomial of degree m in two variables over \mathbb{C}, up to non-trivial constants. In particular, B_{2g+2} contains H_g as a dense open subset. Recall that a m-pointed stable curve of genus zero (Y,p_1,\ldots,p_m) is a curve Y of genus 0 with an ordered set of distinct smooth points $p_i \in Y$ such that $|Y_i \cap Y| + |Y_i \cap \{p_1,\ldots,p_m\}| \geq 3$ for every irreducible component Y_i of Y. A m-marked stable curve of genus zero (Y,p_1,\ldots,p_m) up to the action of the symmetric group S_m on p_1,\ldots,p_m. A natural compactification of H_g is given by its closure within the moduli space of Deligne-Mumford stable curves. This compactification is isomorphic to the moduli space $N_{0,2g+2}$ of $2g+2$-marked stable curves of genus zero. There exists also a fine moduli space $M_{0,m}$ of m-pointed stable curves of genus zero and $N_{0,m} = M_{0,m}/S_m$.

As pointed out in [AL], $N_{0,2g+2}$ and B_{2g+2} are different schemes. We construct a compactification \overline{J}_g of H_g, given in term of configurations of plane lines and we compare it to $N_{0,2g+2}$ and B_{2g+2}. Indeed, consider (C,p_1,\ldots,p_{2g+2}), a smooth plane conic and $p_i \in C$ distinct points. Pick the $h_g = \binom{2g+2}{2}$ lines spanned by p_i,p_j for $1 \leq i < j \leq 2g+2$. By taking the closure within $\text{Sym}^h(\mathbb{P}^2)^\vee$, we obtain configurations associated to (C,p_1,\ldots,p_{2g+2}), C singular or $p_i = p_j$. The variety \overline{J}_g is the GIT-quotient of the set of GIT-semistable configurations of lines, with respect to the action of $SL(3)$. A boundary point of \overline{J}_g is a configuration containing at least a non-reduced line. For example, if C is smooth and $p_1 = p_2 \neq p_j$ for $j \geq 3$, the associated configuration contains span$(p_1,p_j)_{j \geq 3}$ as double lines. The boundary points of \overline{J}_g have the following geometric meaning. If C is smooth and $p_i \in C$ are distinct, consider the double cover $\varphi : X \to C$ branched at the $2g+2$ points p_i. From [ACGH] pag. 288 and [M] Proposition 6.1, we have that $\mathcal{O}_X(\varphi^*(p_1+p_j))$ is a $(g-1)$-th root of ω_X. If $g = 3$, they are the 28 odd theta characteristics of the hyperelliptic curve X. Thus \overline{J}_g is a compactification of H_g given in terms of limits of configurations of higher spin curves of order $g - 1$, in the sense of [CCC].

In [H] and [AL], the authors construct a geometrical meaningful morphism $F_g : N_{0,2g+2} \to B_{2g+2}$. In Theorem 3.3 Theorem 4.3 and Theorem 4.7 we construct rational maps $\beta_g : N_{0,2g+2} \dashrightarrow \overline{J}_g \dashrightarrow B_{2g+2}$, giving a factorization of F_g. The
construction of α_g follows from Lemma 3.2 proving that it is possible to recover $(C, p_1, \ldots, p_{2g+2})$, C smooth conic and $p_i \in C$, from its configuration of lines. In particular, Lemma 3.2 extends the results of [CS1] and [L], stating that a smooth plane quartic can be recovered from its bitangents, to double conics. In fact, the stable reduction of a general one-parameter deformation of a double conic C is an hyperelliptic curve, the double cover of C branched at 8 points. The limits of the bitangents give rise to the configuration of lines associated to C and the 8 points. We point out that a different generalization of bitangents for any genus is theta hyperplanes, used in [CS2] and [GS].

In short, in Section 2 we show properties of twisters of curves. In Section 3, we construct J_g and the map α_g. In Section 4, we construct the map β_g, showing that α_g and β_g provide a factorization of F_g.

1.1. Notation. We work over \mathbb{C}. A family of curves is a proper and flat morphism $f : C \to B$ whose fibers are curves. If 0 is a point of a scheme B, set $B^* := B - 0$. A smoothing of a curve C is a family $f : C \to B$, where B is a smooth, connected, affine curve of finite type, with a distinguished point $0 \in B$, such that $f^{-1}(0)$ is isomorphic to C and $f^{-1}(b)$ is smooth for $b \in B^*$. A general smoothing is a smoothing with smooth total space. Let Y be a scheme and $X \to Y$ be a Y-scheme. Denote by $Sym^m_X := X^m / S_m$ the quotient of $X^m = X \times Y X \times Y \cdots \times Y X$ (the m-fiber product) by the symmetric group S_m. If a group G acts on a variety X, denote by X^{ss} the set of GIT-semistable points. If $p, q \in \mathbb{P}^2$, $p \neq q$, we set $\overline{pq} = \text{span}(p, q)$. For a positive integer g, set $m_g = 2g + 2$ and $h_g = \binom{m_g}{2}$.

2. On some properties of conic twisters

A twister of a curve Y is a $T \in \text{Pic}(Y)$ such that there exists a smoothing Y' of Y' such that $T \simeq O_Y(D) \otimes O_Y$, where D is a Cartier divisor of Y' supported on irreducible components of Y. If Y is of compact type, it is well-known that a twister depends only on its multidegree. A conic twister is a twister whose degrees on the irreducible components are positive and sum up to 2.

Proposition 2.1. Let Y be a genus zero curve and T a conic twister of Y. Then:

(i) if d_1, \ldots, d_N are positive integers summing up to 2, then there exists a conic twister T of Y such that $\deg (\omega_Y^N \otimes T) = (d_1, \ldots, d_N)$;

(ii) the linear system $[\omega_Y^N \otimes T]$ is base point free, two-dimensional and induces a morphism $Y \to \mathbb{P}^2$ realizing Y as plane conic.

Proof. (i) Given two components $Y_1, Y_2 \subset Y$ such that $Y_1 \cap Y_2 = \{p_1 \sim p_2\}$, the class $[p_1] - [p_2]$ is a twister T such that $T|_{Y_1} = O_{Y_1}(1)$, $T|_{Y_2} = O_{Y_2}(-1)$ and T is trivial on the other components of Y; the claim follows from the connectivity of Y.

(ii) If $\deg Y_i T = 2$ for some $Y_i \subset Y$, then $|O_{Y_i}(T|_{Y_i})| = |O_{\mathbb{P}^2}(2)| \simeq \mathbb{P}^2$, and the map $Y_1 \to \mathbb{P}^2$ is degree 2. This map extends to Y because the dual graph of the components of Y is a tree. If $\deg Y_1 T = \deg Y_2 T = 1$ for some $Y_1, Y_2 \subset Y$, let Γ be the unique path in the dual graph of the components of Y connecting Y_1, Y_2, and let $p_1 \in Y_1, p_2 \in Y_2$ be the unique points in Y_1, Y_2 which sit on the dual of Γ in Y. Note that T induces isomorphisms $\pi_i : Y_i \simeq \mathbb{P}^1 \cup_{\pi_i(p_1) \sim \pi_i(p_2)} \mathbb{P}^1$ for $i = 1, 2$. Since the dual graph of the components of Y is a tree, there is a unique map $\pi : Y \to \mathbb{P}^1 \cup_{\pi_1(p_1) \sim \pi_2(p_2)} \mathbb{P}^1$ extending π_1, π_2. Since up to projective morphisms there is a unique embedding $\mathbb{P}^1 \cup_{\pi_1(p_1) \sim \pi_2(p_2)} \mathbb{P}^1 \to \mathbb{P}^2$, we are done. □
3. The first map

Let \(C \to \mathbb{P}^5 \cong |O_{\mathbb{P}^2}(2)| \) be the universal plane conic. For any integer \(m \geq 2 \), consider the variety \(\text{Sym}^m C \) and the morphism \(\rho : \text{Sym}^m C \to \mathbb{P}^5 \). If \(k \in \text{Sym}^m C \), let \(\text{supp}(k) \) be the conic parametrized by \(\rho(k) \). The points of \(k \) are called markings and \((k, \text{supp}(k)) \), a conic with markings. A marking has a weight, i.e. the number of times it appears in \(k \). We call the markings \(p_{\min} \) and \(p_{\max} \) with minimal and maximal weight, the minimal and maximal markings of \(k \). Recall that \(m_g = 2g + 2 \) and \(h_g = \binom{m_g}{2} \), where \(g \geq 3 \). Set \(\mathbb{P}_{h_g} = \text{Sym}^{h_g}(\mathbb{P}^2)^\vee \). Consider the rational map:

\[
\psi : \text{Sym}^m C \dashrightarrow \mathbb{P}_{h_g}
\]

where, if \(k \) has markings \(\{p_i\}_{1 \leq i \leq s} \) of weight \(m_i = 1 \) and \(\{p_i\}_{s < i \leq r} \) of weights \(m_i > 1 \), then:

\[
\psi(k) = (\cdots \overbrace{p_1, \cdots, p_1}^{m_1, m_1 \text{ times, } \frac{s_i}{m_i}} \cdots \overbrace{p_{s_i}, \cdots, p_{s_i}}^{m_{s_i}, m_{s_i} \text{ times, } \frac{s_i}{m_i}} \cdots)_{1 \leq s_i < \frac{s_i}{m_i} \leq r}.
\]

Let \(\Gamma_\psi \) be the closure in \(\text{Sym}^m C \times \mathbb{P}_{h_g} \) of the graph of \(\psi \) and \(\psi : \Gamma_\psi \to \mathbb{P}_{h_g} \) be the second projection. Consider the GIT quotient:

\[
q : p(\Gamma_\psi) \cap \mathbb{P}_{h_g}^{ss} \longrightarrow \mathcal{G} = (p(\Gamma_\psi) \cap \mathbb{P}_{h_g}^{ss})/\text{SL}(3).
\]

We say that \(k \) is degenerate if \(\text{supp}(k) \) is not integral. Consider the open subset \(V \) of \(p(\Gamma_\psi) \cap \mathbb{P}_{h_g}^{ss} \) defined as:

\[
V = \{ r \in p(\Gamma_\psi) \cap \mathbb{P}_{h_g}^{ss} : r \neq p(k, r) \ \forall \ k \ \text{degenerate} \} \subset p(\Gamma_\psi) \cap \mathbb{P}_{h_g}^{ss}
\]

Recall the Hilbert-Mumford criterion [MFK Proposition 4.3] for configurations of plane lines. Let \(r \) be in \(\mathbb{P}_{h_g} \). For a point \(p \in \mathbb{P}^2 \), let \(\mu_p(r) \) be the number of lines of \(r \), with multiplicities, containing \(p \). Let \(\mu_i(r) \) be the multiplicity of a line \(l \) of \(r \). Then \(r \) is GIT-semistable if \(\max_{p \in \mathbb{P}^2} \mu_p(r) \leq 2h_g/3 \) and \(\max_{l \in \mathbb{P}^2} \mu_l(r) \leq h_g/3 \).

Lemma 3.1. Let \((k, r) \in \Gamma_\psi \). Then:

(i) if \(k \) has a marking \(q \) of weight at least \(g + 1 \), then \(r \) is not GIT-semistable;

(ii) if \(\text{supp}(k) \) is reducible and the set of markings on smooth points of a component is one marking of weight 1, then \(r \) is not GIT-semistable;

(iii) if \(\text{supp}(k) \) is integral and the markings have weight 1, then \(r \in V \).

Proof. (i) We have \(\max_{p \in \mathbb{P}^2} \mu_p(r) \geq \mu_q(r) \geq \binom{g+1}{2} + (g+1)^2 > 2h_g/3 \).

(ii) From (i), we can assume that the node \(n \) of \(\text{supp}(k) \) is a marking of weight at most \(g \). The number of lines of \(r \) not containing \(n \) is at most \(2g + 1 \) and hence \(\max_{p \in \mathbb{P}^2} \mu_p(r) \geq \mu_n(r) \geq h_g - 2g - 1 > 2h_g/3 \).

(iii) We have that \(r \) is GIT-semistable, because \(\max_{p \in \mathbb{P}^2} \mu_p(r) = 2g+1 < 2h_g/3 \) and \(\max_{l \in \mathbb{P}^2} \mu_l(r) = 1 < h_g/3 \). The property \(\max_{l \in \mathbb{P}^2} \mu_l(r) = 1 \) characterizes the configurations of integral cones with markings of weight 1, hence \(r \in V \).

Lemma 3.2. Consider the rational map \(\psi : \text{Sym}^m C \dashrightarrow \mathbb{P}_{h_g} \). Then the restricted morphism \(\psi^{-1}(V) \to V \) is injective for every \(g \geq 3 \).

Proof. Pick \(k \in \text{Sym}^m C \), where \(m \geq 2 \). Let \(C = \text{supp} k \) be integral. Set \(r = \psi(k) \), as in (3.2). Let \(\{m_1, \ldots, m_r\} \) be the set of the weights of \(k \), where \(m_i \leq m_{i+1} \).

Step 1. Assume that \(\{m_1, \ldots, m_r\} \neq \{1, 1\} \). The goal of the first step is to recover the maximal markings of \(k \) and their weights. We claim that the maximal markings of \(k \) are the points \(p \in \mathbb{P}^2 \) with maximum multiplicity \(\mu_p(r) \). It is easy if \(m_i = 1 \),
for $1 \leq i \leq r$, thus assume that $m_{\text{max}} = \max \{m_i\}_{1 \leq i \leq r} \geq 2$. If $p \in C$, then $\mu_p(r) \leq \mu_{p_{\text{max}}}(r)$, with the equality iff p is a maximal marking of k and we are done. If $p \notin C$, take two markings $p_i, p_j \in C$ of k of weights m_i and m_j such that $p \in \overline{p_i p_j}$ if $p_i \neq p_j$ and $p \in \mathcal{T}_{p,C}$ if $p_i = p_j$. Thus:

i) if $p_i \neq p_j$ and $p_i, p_j \neq p_{\text{max}}$, then $\mu_{p_i p_j}(r) = m_i m_j < m_{\text{max}}(m_i + m_j) = \mu_{p_{\text{max}}}(r) + \mu_{p_{\text{max}}}(r);$

ii) if $p_j = p_{\text{max}}$ and $p_i \neq p_{\text{max}}$, then $\mu_{p_i p_{\text{max}}}(r) < \mu_{p_{\text{max}}}(r) + \mu_{p_{\text{max}}}(r);$

iii) if $p_i = p_j \neq p_{\text{max}}$, then $\mu_{p_i p_{\text{max}}}(r) = (m_i m_j) < m_i m_{\text{max}} = \mu_{p_{\text{max}}}(r);$

iv) two lines $\overline{p_i p_{\text{max}}}$ in two different cases among i) ii) iii) cannot be the same;

v) if $p_i = p_j = p_{\text{max}}$, then $\mathcal{T}_{p_{\text{max}} C}$ contains both p_{max} and p. The case ii) does not hold. If $\overline{p_{\text{max}} C}$ is the only line of r containing p, then $\mu_p(r) = \mu_{p_{\text{max}} C}(r) < \mu_{p_{\text{max}} C}(r) + \mu_{p_{\text{max}}}(r) \leq \mu_{p_{\text{max}}}(r)$ for some $C \ni p_k \neq p_{\text{max}}$. If p is in at least two lines of r, then at least one case i) or iii) holds.

This shows that $\mu_p(r) < \mu_{p_{\text{max}}}(r)$. Thus, we recover the maximal markings of k as the points of \mathbb{P}^2 with maximum multiplicity. In particular, we find also the number N of maximal markings of k. To recover their weight m_{max}, consider $m = \sum_{1 \leq i \leq r} m_i$, and the subconfiguration r' of r of the lines containing no maximal markings of k. If $r' = \emptyset$, then r' is the configuration of lines associated to (k', C), where k' are the non-maximal markings of k. We know the sum of the multiplicities of the lines of r', thus we know also the sum m' of the weights of k' and $m_{\text{max}} = (m - m')/N$. If $r' = \emptyset$, then either $m_i = m_j$ for $1 \leq i, j \leq r$ and $m_{\text{max}} = m/N$, or $m_1 = 1 < m_i = m_j$ for $1 \leq i, j \leq r$ and $m_{\text{max}} = (m - 1)/N$.

Step 2. Pick $k \in \psi^{-1}(V)$ for $m = 2g + 2$. We recover the markings of k, with the exception of the marking of multiplicity m_1, if $m_1 = 1 < m_2$, and of multiplicity m_1 and m_2, if $m_1 = m_2 = 1 < m_3$. In fact, using Step 1 we find the maximal markings of k and their weights. Now, consider (k', C), where k' are the non-maximal markings of k. We find the maximal markings of k' and their weights, using Step 1. By iterating, we find the configuration r_0 associated to the markings of k with minimal weights. If either $m_1 = m_2 = 1$ or $m_1 = m_2 = m_3 = 1$, we find the markings of k and their weights. Otherwise, let $\{p_1, \ldots, p_s\}$ be the set of the recovered markings, where $s \geq 2$, by Lemma 3.1 (i). Consider the subconfiguration r'' of r obtained by getting rid of the lines containing p_3, \ldots, p_s and $\overline{p_1 p_2}$. We have three cases. In the first case, $r_0 = \emptyset$ and $m_1 = 1 < m_2$. In the second case, r_0 is a line l of multiplicity $\mu_l(r_0) > 1$ and $3 \leq m_1 < m_2$. The marking with weight m_1 is the point contained in 3 lines of r''. We recover also its weight m_1, because $\mu_{l}(r_0) = \binom{m_1}{2}$. In the third case, r_0 is a line l of multiplicity $\mu_l(r_0) = 1$ and either $m_1 = 2 < m_2$ or $m_1 = m_2 = 1 < m_3$. We have $m_1 = 2 < m_2$ iff r'' has 5 lines. The marking with weight 2 is the unique point contained in 3 lines of r''.

Step 3. Pick $k \in \psi^{-1}(V)$ for $m = 2g + 2$. If, using Step 2, we find at least 5 markings, we recover (k, C), because we find also the markings with multiplicity 1 as the points on C with multiplicity $2g + 1$. Assume that, using Step 2, we find at most 4 markings and their weights sum up to $2g + 2$, i.e. they are all the markings of k. They are at least 3 markings of weights at least 2, by Lemma 3.1 (i) and Step 2. Their tangents are the lines which do not contain a pair of markings. We find at least 3 markings and 3 tangents to the markings, then we recover (k, C). If, using Step 2, we find at most 4 markings of k and their weights do not sum up to $2g + 2$, do
then either \(m_1 = 1 < m_2 \) or \(m_1 = m_2 = 1 < m_3 \). There are 5 cases. Notice that \(k \) has at least 4 markings, by Lemma 3.1 (i).

a) 2 recovered markings and the weights are \(\{1, 1, m_3, m_4\} \), \(2 \leq m_3 \leq m_4 \).

Let \(p_3, p_4 \) be the markings with multiplicities \(m_3, m_4 \). If \(m_3 \neq 3 \), then \(\mathcal{T}_{p_3} C \) is the line through \(p_3 \) not containing \(p_4 \) and whose multiplicity is not \(m_3 \). Similarly, we determine also \(\mathcal{T}_{p_4} C \). Consider the 4 lines of the configuration \(r \) different from \(\mathcal{T}_{p_3} C, \mathcal{T}_{p_4} C, \mathcal{P}_{p_2} p_3 \) and containing either \(p_3 \) or \(p_4 \). The pairwise intersections of these lines are 6 points: two points of multiplicity \(2g + 1 \), two of multiplicity \(2g \) and \(p_3, p_4 \). The points of multiplicity \(2g + 1 \) are the markings with weight 1. Thus we recover 4 markings and 2 tangents to the markings, hence also \((k, \text{supp} \ k) \). If \(m_3 = 3 \), then also \(m_4 = 3 \) from Lemma 3.1 (i) and \(g = 3 \). It is easy to see that there is only one conic with markings having \(r \) as associated configuration.

b) 3 recovered markings and the weights are \(\{1, m_2, m_3, m_4\} \), \(2 \leq m_2 \leq m_3 \leq m_4 \).

Let \(p_1 \) have weight \(m_1 \). Assume that two weights are not equal to 3, e.g. \(m_2, m_3 \neq 3 \). Consider the subconfiguration \(r' \) of \(r \) of the lines not containing \(p_1 \) and different from \(\mathcal{P}_{p_2} p_3 \). The marking with weight 1 is the point \(p \neq p_2, p_3 \) with multiplicity \(\mu_p(r') = m_2 + m_3 \). If two weights are equal to 3, then \(m_2 = m_3 = 3 \), \(m_4 = 2g - 5 \). If \(m_4 \neq 3 \), then \(\mathcal{T}_{p_3} C \) is the unique line containing \(p_4 \) with multiplicity \(\binom{m_1}{2} \) and different from \(\mathcal{P}_{p_2} p_3, \mathcal{P}_{p_3} p_4, \mathcal{P}_{p_4} p_3 \). Consider the subconfiguration \(r' \) of \(r \) obtained by getting rid of \(\mathcal{T}_{p_3} C \). Then \(r' \) is the configuration of \((k', C)\), where \(k' \) are the markings of \(k \) with set of weights \(\{1, 1, 3, 3\} \), where \(p_4 \) has weight 1 in \(k' \). Using (a), we recover \((k', C)\), hence also the original \((k, C)\). If \(m_2 = m_3 = m_4 = 3 \), it is easy to see that there is only one conic with markings having \(r \) as associated configuration.

c) 3 recovered markings and the weights are \(\{1, m_1, m_3, m_5\} \), \(2 \leq m_3 \leq m_4 \leq m_5 \).

There is a marking of weight different from 3, otherwise \(2g + 2 = 11 \), for example \(m_3 \neq 3 \). Let \(r' \) be the subconfiguration of \(r \) obtained by getting rid of lines containing the points with weights \(m_4, m_5 \). Thus the markings with weight 1 are the points \(p, q \) of multiplicity \(\mu_p(r') = \mu_q(r') = m_3 + 1 \). We recover \((k, C)\).

d) 4 recovered markings and the weights are \(\{1, m_2, m_3, m_4, m_5\} \), \(2 \leq m_2 \cdots \leq m_5 \).

Consider the subconfiguration \(r' \) of \(r \) obtained by getting rid of the lines connecting any two points with multiplicity \(> 1 \). Then the point with multiplicity 1 is the only point contained in 4 lines of \(r' \). We recover \((k, C)\).

e) 4 recovered markings and the weights are \(\{1, 1, m_3, \ldots, m_6\} \), \(2 \leq m_3 \cdots \leq m_6 \).

If a marking has a weight different form 3, we argue as in c). Otherwise, consider the subconfiguration \(r' \) of \(r \) obtained by getting rid of the lines containing the markings with weight \(5 \), \(6 \). Thus \(r' \) is the configuration of \((k', C)\), where \(k' \) has weights \(\{1, 1, 3, 3\} \) and we argue as in a).

Denote by \(J_g \) the subset of \(\overline{\mathcal{J}_g} \) corresponding to the classes of configurations of lines of integral conics with markings of weight 1.

Theorem 3.3. There exists a map \(\alpha_g : J_g \rightarrow \overline{\mathcal{B}_{m_g}} \) defined at least over \(J_g \).

Proof. Up to restrict \(V \), we have that \(\psi : \psi^{-1}(V) \rightarrow V \) is an isomorphism by Theorem 3.2. Pick \(k \in \psi^{-1}(V) \). Since \(\text{supp}(k) \) is irreducible, Lemma 3.1 (i) implies that \((k, \text{supp}(k))\) is a GIT-stable binary form. Thus \(\mathcal{U} \rightarrow \psi^{-1}(V) \simeq V \) is a family of stable binary forms, where \(\mathcal{U} = \{(k, p) : p \in \text{supp} \ k\} \subset \psi^{-1}(V) \times \mathbb{P}^2 \), hence we get a \(\text{SL}(3) \)-invariant morphism \(V \rightarrow \overline{\mathcal{B}_{m_g}} \), inducing the rational map \(\alpha_g : J_g \rightarrow \overline{\mathcal{B}_{m_g}} \).
To show that α_g is defined over J_g, it is enough to show that the differential of ψ is injective over an irreducible conics with markings of weight 1. We show that, if U is the open subset of $\text{Sym}^{m_\sigma}(\mathbb{P}^2)$ of m_σ distinct points such that any three of them are not contained in a line, then the differential of $\psi: U \to \mathbb{P}_{h_g}$ is injective, where $\psi(p_1, \ldots, p_{m_\sigma}) = (\ldots, p_i p_j \ldots)_{1 \leq i < j \leq m_\sigma}$. If $k \in U$, set $X = \psi(k)$, the union of h_g distinct lines. If N_{X/P^2} is the normal sheaf of X in \mathbb{P}^2, then:

$$T_k U = T_{p_1} \mathbb{P}^2 \oplus \cdots \oplus T_{p_{m_\sigma}} \mathbb{P}^2 \xrightarrow{d\psi} H^0(X, N_{X/P^2}).$$

For $v_i \in T_{p_i} \mathbb{P}^2$, let $d\psi(v_1, \ldots, v_{m_\sigma}) = 0$, i.e. it is the trivial embedded deformation of X, fixing all the components of X. This means that v_i is contained in the lines of X containing p_i. It is impossible, being p_i contained in at least two lines of X. □

4. THE SECOND MAP AND THE FACTORIZATION

A family of m-pointed stable curves of genus zero is a family $f: \mathcal{Y} \to B$ of curves of genus zero with sections $\sigma_1, \ldots, \sigma_m$ of f such that $(Y_b, \sigma_1(b), \ldots, \sigma_m(b))$ is a m-pointed stable curve of genus zero for $b \in B$. If T is a conic twister of Y, let $\varphi_T: \mathcal{Y} \to \mathbb{P}^2$ be the morphism induced by $|\omega_\mathcal{Y} \otimes T|$ as in Lemma 2.1(ii).

Definition 4.1. Let (Y, p_1, \ldots, p_m) be a m-pointed stable curve of genus zero. A connected subcurve $P \subset Y$ is a principal part if there exists a conic twister T of Y such that the point $k = (\varphi_T(p_1), \ldots, \varphi_T(p_m)) \in \text{Sym}^m_{\mathbb{P}^2} \mathcal{C}$ satisfies $\text{supp } k = \varphi_T(P) = \varphi_T(Y)$ and $\psi(k) \in \mathbb{P}_{h_g}^m$, where $\psi: \text{Sym}^m_{\mathbb{P}^2} \mathcal{C} \to \mathbb{P}_{h_g}$ is the map (3.1).

A principal part P has at most two components. If P is a principal part of (Y, p_1, \ldots, p_m), the associated conic twister T is uniquely determined by the condition $\varphi_T(P) = \varphi_T(Y)$. Since P is connected, $\varphi_T(p_i)$ is not in the singular locus of $\varphi_T(P)$ and hence the map ψ is defined over $k = (\varphi_T(p_1), \ldots, \varphi_T(p_m)).$

Example 4.2. Let (Y, p_1, \ldots, p_{10}) be a pointed stable curve where $Y = Y_1 \cup Y_2$. Assume that $p_1, \ldots, p_9 \in Y_1$ and $p_{10} \in Y_2$. Both Y_1 and Y_2 are principal parts. In fact, if we consider $k_1 = (\varphi_T(p_1), \ldots, \varphi_T(p_{10}))$, where $T_1 = \mathcal{O}_{\mathcal{Y}}$ and T_2 is the twister given by Y_2, then $\psi(k_1)$ and $\psi(k_2)$ are GIT-semistable.

We refer to [K] for a proof of the following Lemma.

Lemma 4.3. Let $[f: \mathcal{Y} \to B, \sigma_1, \ldots, \sigma_m]$ be a family of m-pointed stable curves of genus zero. Then there exists a unique family $[f': \mathcal{Y}' \to B, \sigma_1', \ldots, \sigma_{m-1}']$ and a B-morphism $h: \mathcal{Y} \to \mathcal{Y}'$ such that $h \circ \sigma_i = \sigma_i'$ for $i = 1, \ldots, m - 1$. If $E_b \subset f^{-1}(b)$ is the component with $\sigma_m(b) \in E_b$ and $h_b = h|_{f^{-1}(b)}: f^{-1}(b) \to (f')^{-1}(b)$, then:

(i) h_b contracts E_b iff $|E_b \cap (f^{-1}(b) - E_b)| + |E_b \cap \{\sigma_1(b), \ldots, \sigma_{m-1}(b)\}| \leq 2$;

(ii) if h_b does not contract E_b, then h_b is an isomorphism;

(iii) if h_b contracts E_b, then $h_b|_{(f')^{-1}(b) - E_b}$ is an isomorphism.

Lemma 4.4. The subset of M_{0, m_σ} of the curves with a principal part is an open subset containing the locus of the curves with at most two components.

Proof. Let P be a principal part of $(Y, p_1, \ldots, p_{m_\sigma})$. Let $[f: \mathcal{Y} \to B, \sigma_1, \ldots, \sigma_{m_\sigma}]$ be a family of m_σ-pointed stable curves of genus zero with $Y = f^{-1}(0)$ and $p_i = \sigma_i(0)$ for $0 \in B$. Applying Lemma 4.3, we get a family $f': \mathcal{Y}' \to B$ with $P = (f')^{-1}(0)$ and a morphism $h: \mathcal{Y} \to \mathcal{Y}'$. Now, P has at most two components, then up to shrinking B to an open subset containing 0, all the fibers of \mathcal{Y}' have at most two components.
The image of the map $\varphi : Y \to \mathbb{P}(H^0(f^*\omega_Y^\vee)^\vee)$ induced by $|\omega_Y^\vee|$ is a family of conics over B. The conic over $b \in B$ has markings $\gamma(b) = (\gamma_1(b), \ldots, \gamma_m(b))$, where $\gamma_i = \varphi \circ h \circ \sigma_i$. By constructing a marking is not a node of a fiber, hence $\psi : \text{Sym}_m^g C \to \mathbb{P}_h^g$ is defined over $\gamma(b)$. Now, $\psi \circ \gamma(0) \in \mathbb{P}_h^g$ because P is a principal part. Thus, up to shrinking again B, we have $\psi \circ \gamma(b) \in \mathbb{P}_h^g$ for $b \in B$ and the fiber of $Y' \to B$ over b is a principal part of $f^{-1}(b)$ and we are done.

We show that Y has a principal part if it has at most two components. If Y is irreducible and $T = \mathcal{O}_Y$, then $\psi(\varphi_T(p_1), \ldots, \varphi_T(p_{m_2}))$ is GIT-stable by Lemma 3.1 (iii), thus Y is a principal part. If $Y = Y_1 \cup Y_2$, let $[f : Y \to B, \sigma_1, \ldots, \sigma_{m_2}]$ be a general smoothing of $(Y, p_1, \ldots, p_{m_2})$ and $C^* \to B^*$ be the family of conics given by $|T f^{-1}_1(B^*)|$. We have a map $\varphi : Y \to C^*$, which is an isomorphism away from Y. Now, $\psi(\varphi \circ \sigma_1(b), \ldots, \varphi \circ \sigma_{m_2}(b)) \in \mathbb{P}_h^g$ for $b \in B^*$ by Lemma 3.1 (iii). By the GIT-semistable replacement property, up to a finite base change totally ramified over $0 \in B$, we find a completion $f' : C \to B$ and $k \in \text{Sym}_m^g(C)$, where $C = (f')^{-1}(0)$ such that $\psi(k) \in \mathbb{P}_h^g$. If φ induces a morphism $\varphi : Y \to C$, then $\varphi|_Y = \varphi_T$, where either $T = \mathcal{O}_Y$ or T is given by Y_1 or Y_2 and Y is a principal part. Otherwise, call $\tilde{\varphi} : \tilde{Y} \to C$ the regularization of φ. Let φ be not defined at $p \in Y$ and E be an exceptional components over p. Let p be a smooth point of Y. Then $\tilde{\varphi}(E) \subset C$ is a component containing at one marking with weight 1 and $\psi(k) \notin \mathbb{P}_h^g$ by Lemma 3.1 (ii), a contradiction. Assume that $p_1, \ldots, p_t \in Y_1$ for $t \leq m_2/2$. Let p be the node of Y. If $\tilde{\varphi}$ contracts Y_2, then k has a marking with at least $m_2/2$ and $\psi(k) \notin \mathbb{P}_h^g$ by Lemma 3.1 (ii), a contradiction. If Y_2 is not contracted, then $C = \tilde{\varphi}(Y_2) \cup E$. If $q = \tilde{\varphi}(p_1) = \cdots = \tilde{\varphi}(p_t)$, then $k = (t, \tilde{\varphi}(p_{t+1}), \ldots, \tilde{\varphi}(p_{m_2}))$ and $\psi(k) \in \mathbb{P}_h^g$. Consider $T = \mathcal{O}_T$ and $k' = (\varphi_T(p_1), \ldots, \varphi_T(p_{m_2}))$. We have $\psi(k') \in \mathbb{P}_h^g$ because $\max_{p \in E} |\mu_p(\psi(k'))| \leq \max_{p \in \Delta} |\mu_p(\psi(k))| \leq |\mu_p(\psi(k))|$, hence Y is a principal part. \square

Let $P_g \subset \mathcal{M}_{0,m_g}$ be the open subset of the curves with a principal part and $\overline{M}_{0,m_g} = \mathcal{M}_{0,m_g}/S_{m_g}$ the moduli space of m_g-marked stable curves, where S_{m_g} is the symmetric group.

Theorem 4.5. There exists a map $\beta_g : \overline{N}_{0,m_g} \to \mathcal{T}_g$ defined at least over P_g/S_m.

Proof. First of all, we show that if $(Y, p_1, \ldots, p_{m_2}) \in \mathcal{M}_{0,m_g}$ has two principal parts P_1 and P_2, whose associated configurations of lines are r_1 and r_2, then:

$$O_{\text{SL}(3)}(r_1) \cap O_{\text{SL}(3)}(r_2) \cap \mathbb{P}_h^g \neq \emptyset,$$

where $O_{\text{SL}(3)}(\cdot)$ denotes the orbit under the action of $\text{SL}(3)$. In fact, consider a general smoothing $[f : Y \to B, \sigma_1, \ldots, \sigma_{m_2}]$ of $(Y, p_1, \ldots, p_{m_2})$. Fix $j = 1, 2$, let T_j be the twist of P_j. The morphisms φ_T, induced by $|\omega_Y^\vee \otimes T_j|$ give rise to two families of conics, which are isomorphic away from the special fiber. Furthermore, $\{\varphi_{T_1} \circ \sigma_1\}$ and $\{\varphi_{T_2} \circ \sigma_1\}$ induce markings on the two families. By construction, the associated families of configurations of lines are $\text{SL}(3)$-conjugate over B^* and r_1 and r_2 are their special fibers. Thus, r_1 and r_2 are GIT-semistable limits of conjugate families of GIT-stable configurations, hence (3.3) follows.

Now, let \mathcal{P}_g be the functor of families of m_g-pointed stable curves with a principal part. We construct a functor trnasformation $\mathcal{P}_g \to \mathcal{M}_\text{or}(-, \mathcal{T}_g)$. For a scheme B, pick $[f : Y \to B, \sigma_1, \ldots, \sigma_{m_g}] \in \mathcal{P}_g(B)$. As in the proof of Lemma 4.4 (ii), we get an open covering $B = \cup B_h$ of B and morphisms $t_h : B_h \to \mathbb{P}_h^g$ such that $t_h(b)$ is
Theorem 4.7. The variety \mathcal{J}_g corresponding to a central vertex of Γ is the set of connected subgraphs such that Γ has a central vertex if and only if there are no edges e of Γ such that $\omega(e) = -2$ or of Γ such that $\Gamma_1 \cup \Gamma_2 = \Gamma - e$. There exists at most one central vertex.

Let us recall how the morphism $F_g: \overline{N_{0,m_g}} \to \overline{B_{m_g}}$ is defined in [AL]. Let $(Y,p_1,\ldots,p_{m_g}) \in \overline{N_{0,m_g}}$. The weighted dual tree of Y is the dual graph Γ_Y of Y and, for each vertex, the number of marked points contained in the corresponding component. If Γ is a subset of Γ_Y, let $\omega(\Gamma)$ be the sum of the weights of the vertices contained in Γ. We say that Y has a central vertex $v \in \Gamma_Y$ if $\omega(\Gamma) < m_g/2$ for every connected subsets Γ of Y. The following is [AL] Lemma 3.2.

Lemma 4.6. Let $(Y,p_1,\ldots,p_{m_g}) \in \overline{N_{0,m_g}}$. Then Y has a central vertex if and only if there are no edges e of Γ such that $\omega(\Gamma_1) = \omega(\Gamma_2) = m_g/2$, where Γ_1,Γ_2 are the connected subgraphs such that $\Gamma_1 \cup \Gamma_2 = \Gamma - e$. There exists at most one central vertex.

A marked stable curve has a central vertex if it is not contained in the divisor Δ of $\overline{N_{0,m_g}}$ whose general point has two components containing $g+1$ marked points. If the central vertex exists, then $F_g(Y,p_1,\ldots,p_{2g+2})$ is obtained by contracting all the components of Y, which do not correspond to the central vertex. If Y has no central vertex, it is easy to see that the edge disconnecting Γ_Y in two subgraphs with weights $g+1$ is unique. We call it the central edge of Γ.

Theorem 4.7. The variety \mathcal{J}_g is a compactification of H_g and the chain of maps $\overline{N_{0,m_g}} \to \mathcal{J}_g \to \overline{B_{m_g}}$ gives a rational factorization of $F_g: \overline{N_{0,m_g}} \to \overline{B_{m_g}}$.

Proof. The morphism β_g restricts to an injection $H_g \to \mathcal{J}_g$ whose image is the subset J_g of Theorem 3.3. The inverse is the morphism of Theorem 3.3.

To prove the factorization, it is enough to show that, if P is an irreducible principal part of a pointed stable curve (Y,p_1,\ldots,p_{m_g}), then P is the component corresponding to a central vertex of Γ_Y. First of all, assume that Y has a (unique) central vertex v and let $C \subset Y$ be the corresponding component. Assume that $P \neq C$ and let v_P be the vertex of P. There is an edge e of Γ_Y such that, if Γ_1,Γ_2 are the connected subgraphs with $\Gamma_1 \cup \Gamma_2 = \Gamma_Y - e$, then $v_P \in \Gamma_1$ and $v \in \Gamma_2$. Thus $\omega(\Gamma_1) < m_g/2$ by definition of central vertex. Let T be the conic twister such that $\omega_T \otimes T$ has degree 2 on P. Now, $\psi(\varphi_T(p_1),\ldots,\varphi_T(p_{m_g})) \in \mathbb{P}^g_{h^+_g}$, by definition of principal part. Since φ_T contracts the connected subcurve of Y corresponding to Γ_2 to a unique marking, we have $\omega(\Gamma_2) < m_g/2$ by Lemma 3.1 (i). Then $m_g = \omega(\Gamma) = \omega(\Gamma_1) + \omega(\Gamma_2) < m_g$, a contradiction. If Y has no central edge, let e be the central edge of Y. Set $\Gamma_1 \cup \Gamma_2 = \Gamma_Y - e$ for connected graphs Γ_1,Γ_2. If T is the twister of P, then φ_T contracts either the component of Γ_1 or of Γ_2. Now, $\psi(\varphi_T(p_1),\ldots,\varphi_T(p_{m_g})) \in \mathbb{P}^g_{h^+_g}$ and $(\varphi_T(p_1),\ldots,\varphi_T(p_{m_g}))$ has a marking of weight at least $g+1$, because $\omega(\Gamma_1) = \omega(\Gamma_2) = g + 1$, contradicting Lemma 3.1 (i).

Acknowledgments. I wish to thank Lucia Caporaso and Edoardo Sernesi for useful conversations and helpful comments.
References

[ACGH] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris, Geometry of algebraic curves. Vol. I. Fand. Princ. of Math. Sciences. vol 267, Springer-Verlag, New York, 1985.

[AL] D. Avritzer, H. Lange, The moduli space of hyperelliptic curves and binary forms. Math. Z., vol. 242, 2002, n.4, 615-632.

[CCC] L. Caporaso, C. Casagrande, M. Cornalba, Moduli of roots of line bundles on curves. Trans. of the Amer. Math. Soc., to appear.

[CS1] L. Caporaso, E. Sernesi, Recovering plane curves from their bitangents. J. Alg. Geom. vol. 12, 2003, n. 2, 225-244.

[CS2] L. Caporaso, E. Sernesi, Characterizing curves by their odd theta-characteristics. J. R. Angew. Math. 562 2003, 101–135.

[GS] S. Grushevsky, R. Salvati Manni, Gradients of odd theta functions. J. R. angew. Math. 573 2004, 43–59.

[H] B. Hassett, Moduli spaces of weighted pointed stable curves. Ad. Math, 173(2):316-352, 2003.

[K] F. Knudsen, Projectivity of the moduli space of stable curves, II. Math. Scand., vol. 52, 1983, 1225-1265.

[L] D. Lehavi, Any smooth quartic can be reconstructed from its bitangents. Isr. J. Math. 146, 2005, 371–379.

[M] D. Mumford, Tata lectures on theta II. Progress in math., 43, Birkhäuser Boston Inc. Boston, 1984.

[MFK] D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory. E.M.G. 34. Third edition, Springer, New York, 1994.

Dipartimento di Matematica Guido Castelnuovo, Università Roma La Sapienza, piazza Aldo Moro 2, 00185 Roma, Italia

Instituto de Matematica Pura e Aplicada, Estrada D. Castorina 110, 22460-320 Rio de Janeiro, Brazil

E-mail address: pacini@impa.br