Performance of chromID Clostridium difficile Agar Compared with BBL C. difficile Selective Agar for Detection of C. difficile in Stool Specimens

Sang Bong Han, M.D.¹, Jiyoung Chang, M.D.², Sang Hyun Shin, M.T.², Kang Gyun Park, M.T.², Gun Dong Lee, M.T.², Yong Gyu Park, Ph.D.³, and Yeon-Joon Park, M.D.²

Department of Laboratory Medicine¹, Yeouido St. Mary’s Hospital; Department of Laboratory Medicine², Seoul St. Mary’s Hospital; Department of Biostatistics³, College of Medicine, The Catholic University of Korea, Seoul, Korea

We evaluated the performance of a new chromogenic medium for detection of Clostridium difficile, chromID C. difficile agar (CDIF; bioMérieux, France), by comparison with BBL C. difficile Selective Agar (CDSA; Becton Dickinson and Company, USA). After heat pre-treatment (80°C, 5 min), 185 diarrheal stool samples were inoculated onto the two media types and incubated anaerobically for 24 hr and 48 hr for CDIF and for 48 hr and 72 hr for CDSA. All typical colonies on each medium were examined by Gram staining, and the gram-positive rods confirmed to contain the tpi gene by PCR were identified as C. difficile. C. difficile was recovered from 36 samples by using a combination of the two media. The sensitivity with CDIF 48 hr was highest (100%) and was significantly higher than that with CDIF 24 hr (58.3%; P<0.001), because samples with a low burden of C. difficile tended to require prolonged incubation up to 48 hr (P<0.001). The specificity of CDIF 24 hr and CDIF 48 hr (99.3% and 90.6%, respectively) was significantly higher than that of CDSA 48 hr and CDSA 72 hr (72.5% and 67.1%, respectively; P<0.001). CDIF was effective for detecting C. difficile in heat-pretreated stool specimens, thus reducing unnecessary testing for toxin production in non-C. difficile isolates and turnaround time.

Key Words: Clostridium difficile, Chromogenic agar, Performance, ChromID C. difficile agar, Toxigenic culture

Clostridium difficile infection (CDI) is increasingly recognized in both hospital and community settings [1-3]. For culture of C. difficile, pre-reduced cycloserine-cefoxitin-fructose agar with a high cycloserine concentration (0.5 g/L) is the most widely used medium, but it requires an incubation of at least 48 hr. In addition, intense growth of stool flora is frequently observed, thereby making detection and isolation of C. difficile difficult. To limit the growth of contaminating flora, various treatments such as heat-shock and alcohol-shock may be applied to specimens for culture [4-8]. Recently, a new chromogenic medium for C. difficile, chromID C. difficile agar (CDIF; bioMérieux, Marcy l’Etoile, France), which can detect C. difficile within 24 hr, was introduced to the market. This study aimed to evaluate the performance of CDIF by comparing it with BBL C. difficile Selective Agar (CDSA; Becton Dickinson and Company, Sparks, MD, USA).

This prospective study was conducted at Seoul St. Mary’s hospital, a 1,300-bed teaching hospital in Seoul, Korea. In total, 185 consecutive diarrheal stool samples from patients suspected of having CDI were included from April to May 2012. Culture was performed within 72 hr of collection, and stool specimens were stored at -4°C until processing. Each specimen (1 mL) was mixed with 1 mL of thioglycollate broth and, after vortexing, placed in an 80°C water bath for 5 min [6-8]. A 100-µL aliquot of this suspension was inoculated onto CDIF and CDSA and spread to obtain isolated bacterial colonies. All media were incubated in a Bactron anaerobic/environmental...
Table 1. Comparison of four combinations (CDIF 24 hr, CDIF 48 hr, CDSA 48 hr, and CDSA 72 hr)

| Agar plates | Sensitivity (95% CI) | Specificity (95% CI) | CDIF 24 hr vs. CDIF 48 hr | CDIF 48 hr vs. CDSA 48 hr | CDSA 48 hr vs. CDSA 72 hr | P value* |
|-------------|----------------------|----------------------|---------------------------|---------------------------|---------------------------|---------|
| CDIF 24 hr  | 58.3% (40.8-74.5)    | 99.3% (96.3-100)     | < 0.001                   | 0.023                     | 0.188                     | 0.375   |
| CDIF 48 hr  | 100% (90.3-100)     | 90.6% (84.7-94.8)    | 0.001                     | < 0.001                   | < 0.001                   | < 0.001 |
| CDSA 48 hr  | 83.3% (67.2-93.6)    | 72.5% (64.5-79.5)    | 0.001                     | < 0.001                   | < 0.001                   | 0.047   |
| CDSA 72 hr  | 86.1% (70.5-95.3)    | 67.1% (59.0-74.6)    | < 0.001                   | 0.001                     | 0.001                     | 0.001   |

*Obtained by exact McNemar test using Bonferroni adjustment. Abbreviations: CDIF 24 hr, growth of C. difficile colonies on chromID C. difficile agar (CDIF) at 24 hr incubation; CDIF 48 hr, growth of C. difficile colonies on CDIF agar at 48 hr incubation; CDSA 48 hr, growth of C. difficile colonies on BBL C. difficile Selective Agar (CDSA) at 48 hr incubation; CDSA 72 hr, growth of C. difficile colonies on CDSA at 72 hr incubation; CI, confidence intervals.

Table 2. The number of agar plates presenting growth according to the medium, time, and colony-count-grades

| Colony-count-grade (colony number) | No. of agar plates presenting growth | CDIF 24 hr | CDIF 48 hr | CDSA 48 hr | CDSA 72 hr |
|-----------------------------------|-------------------------------------|------------|------------|------------|------------|
| 1+ (1-10)                         |                                     | -          | 10         | 4          | 1          |
| 2+ (11-50)                        |                                     | 2          | 3          | 4          | -          |
| 3+ (51-100)                       |                                     | -          | 1          | 2          | -          |
| 4+ (≥101)                         |                                     | 19         | 1          | 20         | -          |

Abbreviations: CDIF 24 hr, growth of C. difficile colonies on chromID C. difficile agar (CDIF) at 24 hr incubation; CDIF 48 hr, growth of C. difficile colonies on CDIF agar at 48 hr incubation; CDSA 48 hr, growth of C. difficile colonies on BBL C. difficile Selective Agar (CDSA) at 48 hr incubation; CDSA 72 hr, growth of C. difficile colonies on CDSA at 72 hr incubation; CI, confidence intervals.

C. difficile was recovered from 36 stool samples (19.5%) by using a combination of two media. The number of stool samples positive for C. difficile was 21 (58.3%) and 36 (100%) on CDIF at 24 hr and 48 hr, respectively, and 30 (83.3%) and 31 (86.1%) on CDSA at 48 hr and 72 hr, respectively. The sensitivity of CDIF at 48 hr was significantly higher than that of CDIF 24 hr (P < 0.001, exact McNemar test using Bonferroni adjustment), but it was not significantly higher than that of CDSA 48 hr or CDSA 72 hr (Table 1). Of the 36 CDIF-positive samples, the distribution of colony-count-grades was as follows: 1+ in 10 samples, 2+ in 5 samples, 3+ in one sample, and 4+ in 20 samples. The proportion of samples that presented growth at 24 hr according to the colony-count-grade was 0% in grade 1+, 40% in grade 2+, 0% in grade 3+, and 95% in grade 4+ (P for trend < 0.001, Mantel-Haenszel chi-squared test; Table 2).

With CDIF, non-C. difficile isolates presenting gray to black colonies were recovered from approximately 9% of samples (16/185; 10 gram-positive bacillus [GBP], 1 gram-negative bacillus [GNB], 1 GBP/GNB, and 2 GBP/gram-positive coccus [GPC/GNB]), and they were much less common at 24 hr of incubation (two isolates). With CDSA, non-C. difficile isolates presenting typical, yellow colonies were recovered from approximately 30% (55/185; 53 GBP and 2 GPC) of samples, and 47 of them were recovered at 48 hr. Among them, the number of agar plates showing false-positive isolates from the 149 C. difficile-negative stool samples was one on CDIF at 24 hr, 14 on...
CDIF at 48 hr, 41 on CDSA at 48 hr, and 49 on CDSA at 72 hr, resulting in a specificity 99.3%, 90.6%, 72.5%, and 67.1%, respectively (Table 3). The specificity of CDIF 24 hr and CDIF 48 hr was significantly higher than that of CDSA 48 hr and 72 hr (P < 0.001, exact McNemar test using Bonferroni adjustment; Table 1), and this low specificity of CDSA resulted from the frequent growth of non-\(C.\) \textit{difficile} GPB (Table 3).

Toxigenic culture is a new reference method for diagnosis of CDI, as it is more sensitive than the fecal cytotoxin assay [10-12]. However, it is a two-step method that consists of isolating \(C.\) \textit{difficile} strains on a selective medium and then testing the colonies for toxin production by PCR. To reduce unnecessary PCR tests and turnaround time, the occurrence of endogenous flora showing colonies of typical color should be low.

CDIF is a new chromogenic medium containing taurocholate and a chromogen mix that allows isolation of \(C.\) \textit{difficile} in 24 hr. Although direct plating or alcohol pre-treatment is recommended by the manufacturer, we pre-treated stool samples to facilitate the plate reading and used heat-shock rather than alcohol-shock to shorten the turnaround time. The heat pre-treatment seemed to inhibit the growth of GPC and GNB effectively, as growth of GPC or GNB was only observed on rare occasions (one sample [0.5%] on CDIF at 24 hr, six samples [3.2%] on CDIF at 48 hr, two samples [1.1%] on CDSA at 48 hr, and two samples [1.1%] on CDSA at 72 hr among 185 stool samples). This finding is similar to that of Yim \textit{et al}. [13], where GPC or GNB isolates were recovered from 3.1% (23/738) of samples on CDIF at 48 hr and superior to that of Perry \textit{et al}. [14], where GPC or GNB isolates were recovered from 3.0% (11/368) and 9.0% (33/368) of samples on CDIF at 24 hr and 48 hr, respectively. In both studies [13, 14], alcohol pre-treatment was used.

Based on our results, the sensitivity for recovering CDIF at 24 hr was low (58.3%), but after 48 hr incubation, it increased to 100%. This finding agrees with that of Eckert \textit{et al}. [15], who showed that prolonging incubation enhanced the recovery of \(C.\) \textit{difficile} from 74.1% to 87%, but appears to contrast with the findings of Perry \textit{et al}. [14], who showed that the sensitivity of CDIF at 24 hr incubation was 96.3%. However, looking into the study more closely, the recovery rate of \(C.\) \textit{difficile} with CDIF at 24 hr incubation was different between the samples which were positive and negative for Vidas immunoassay; it was high (94.5%) in Vidas-positive samples, but low (68%) in Vidas-negative samples. In both studies, the recovery rate on CDIF at 24 hr was somewhat higher than that in our study. Further evaluation is needed to investigate whether this difference results from a difference in pre-treatment, because Eckert \textit{et al}. [15] used the direct plating method and Perry \textit{et al}. [14] used the alcohol-shock method.

The colony-count-grades in stool samples from which \(C.\) \textit{difficile} was recovered on CDIF at 24 hr and 48 hr (3.8±0.6 and 1.5±0.9, respectively) indicate that a 24 hr incubation is sufficient for stool samples with a high burden (more than 50 colonies per agar plate), but the samples with a low burden (less than 50 colonies per agar plate) of \(C.\) \textit{difficile} require prolonged incubation of up to 48 hr. This finding is similar to that of Shin \textit{et al}. [16], where the no-growth-plates were 37.9% and 6.2% on day 1 and 2, respectively. For CDSA, of the 31 stool samples from which \(C.\) \textit{difficile} was recovered, all but one were recov-

| Gram stain morphology | CDIF 24 hr | CDIF 48 hr | CDSA 48 hr | CDSA 72 hr |
|-----------------------|------------|------------|------------|------------|
| \(C.\) \textit{difficile} true positive | 36 samples | 149 samples |
| GPB                   | 1          | 10         | 5          | 40         |
| GPC                   | 2          | -          | 1          | 1          |
| GNB                   | -          | -          | -          | -          |
| GPB/GNB               | -          | 1          | -          | -          |
| GPB/GPC/GNB           | 2          | 2          | -          | -          |
| Total                 | 1          | 10         | 6          | 41         |

Table 3. Non-\(C.\) \textit{difficile} isolates presenting typical colonies recovered from 185 stool specimens

Abbreviations: CDIF 24 hr, growth of \(C.\) \textit{difficile} colonies on chromID \(C.\) \textit{difficile} agar (CDIF) at 24 hr incubation; CDIF 48 hr, growth of \(C.\) \textit{difficile} colonies on CDIF agar at 48 hr incubation; CDSA 48 hr, growth of \(C.\) \textit{difficile} colonies on BBL \(C.\) \textit{difficile} Selective Agar (CDSA) at 48 hr incubation; CDSA 72 hr, growth of \(C.\) \textit{difficile} colonies on CDSA at 72 hr incubation; CI, confidence intervals; GPB, gram-positive bacillus; GPC, gram-positive coccus; GNB, gram-negative bacillus.
ered after 48 hr of incubation, indicating that prolonged incubation of up to 72 hr was not necessary.

In conclusion, CDIF was highly effective for detecting *C. difficile* in heat-pretreated stool specimens, thus reducing unnecessary testing for toxin production on non-*C. difficile* isolates and turn-around time, and this medium exhibited the best sensitivity at 48 hr, especially with stool samples with low burden of *C. difficile*.

**Authors’ Disclosures of Potential Conflicts of Interest**

No potential conflicts of interest relevant to this article were reported.

**Acknowledgments**

This work was supported by bioMérieux, Marcy l’Etoile, France.

**REFERENCES**

1. Johnson S, Clabots CR, Linn FV, Olson MM, Peterson LR, Gerding DN. Nosocomial *Clostridium difficile* colonisation and disease. Lancet 1990;336:97-100.
2. McFarland LV, Mulligan ME, Kwok RY, Stamm WE. Nosocomial acquisition of *Clostridium difficile* infection. N Engl J Med 1989;320:204-10.
3. Khanna S, Pardi DS, Aronson SL, Kammer PP, Orenstein R, St Sauver JL, et al. The epidemiology of community-acquired *Clostridium difficile* infection: a population-based study. Am J Gastroenterol 2012;107:89-95.
4. Koransky JR, Allen SD, Dowell VR Jr. Use of ethanol for selective isolation of sporeforming microorganisms. Appl. Environ Microbiol 1978;35:762-5.
5. Clabots CR, Gerding SJ, Olson MM, Peterson LR, Gerding DN. Detection of asymptomatic *Clostridium difficile* carriage by an alcohol shock procedure. J Clin Microbiol 1989;27:2386-7.
6. Nakamura S, Yamakawa K, Izumi J, Nakashio S, Nishida S. Germinability and heat resistance of spores of *Clostridium difficile* strains. Microbiol Immunol 1985;29:113-8.
7. Kamiya S, Yamakawa K, Ogura H, Nakamura S. Recovery of spores of *Clostridium difficile* altered by heat or alkali. J Med Microbiol 1989;28:217-21.
8. Lahn M, Tyler G, Daubener W, Hadding U. Improvement of *Clostridium difficile* isolation by heat-shock and typing of the isolated strains by SDS-PAGE. Eur J Epidemiol 1993;9:327-34.
9. Lemee L, Dhalluin A, Testelin S, Matrat MA, Maillard K, Lemeland JF, et al. Multiplex PCR Targeting *tpi* (triose phosphate isomerase), *tcdA* (Toxin A), and *tcdB* (Toxin B) genes for toxigenic culture of *Clostridium difficile*. J Clin Microbiol 2004;42:5710-4.
10. Delmée M, Van Broeck J, Simon A, Janssens M, Avesani V. Laboratory diagnosis of *Clostridium difficile*-associated diarrhoea: a plea for culture. J Med Microbiol 2005;54:187-91.
11. Reller ME, Lema CA, Peri TM, Cai M, Ross TL, Speck KA, et al. Yield of stool culture with isolate toxin testing versus a two-step algorithm including stool toxin testing for detection of toxigenic *Clostridium difficile*. J Clin Microbiol 2007;45:3601-5.
12. Jaksic AS, Nimmo GR, Dwyer BW. Laboratory diagnosis of *Clostridium difficile*-associated diarrhoea: microbiologist (should) do it with culture. Pathology 2009;41:187-8.
13. Yim J, Hwang SM, Kim M, Lim HJ, Shin S, Chung HS, et al. Evaluation of a ChromID C. difficile Agar for the Isolation of *Clostridium difficile*. Korean J Clin Microbiol 2012;15:88-91.
14. Perry JD, Asir K, Halimi D, Orena S, Dale J, Payne M, et al. Evaluation of the chromogenic culture medium for isolation of *Clostridium difficile* within 24 hours. J Clin Microbiol 2010;48:3852-8.
15. Eckert C, Burghoffer B, Lalande V, Barbier F. Evaluation of the chromogenic agar chromIDC. difficile. J Clin Microbiol 2013;51:1002-4.
16. Shin BM and Lee EJ. Comparison of ChromID agar and *Clostridium difficile* selective agar for effective isolation of *C. difficile* from stool specimens. Ann Lab Med 2014;34:15-9.