SOME CURRENT ISSUES IN GALAXY FORMATION

Joseph Silk
Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

Abstract. I describe recent challenges in hierarchical galaxy formation theory, including the formation of disk galaxies and of ellipticals. Problems with cold dark matter are summarized, and possible solutions are presented. I conclude with a description of the prospects for observing one of the most important ingredients in galaxy formation theory, namely cold dark matter.

1 Challenges of galaxy formation theory

Galaxy formation theory must account for the properties and evolution of galaxies, the star formation rate, the spectral energy distribution and galaxy morphologies. Another important confrontation with observation is with the scaling relations. These relations (e.g. Tully-Fisher, fundamental plane) are controlled by the current relaxation time-scales (dynamical and chemical) which are long compared to the age of the universe. This is not an easy task because the theory is almost entirely phenomenological and is driven by the observations. The ultimate aim is to make predictions at high redshift for the current and future generations of powerful detectors and very large telescopes. Progress is inevitably iterative and slow, and observations are usually well ahead of theory. A major hurdle is that there is no fundamental theory of star formation. Major uncertainties include the initial stellar mass function, the star formation efficiency and the star formation rate. Of course, the empirical evidence for star formation is overwhelming, and this leaves cosmologists with little choice but to extract every possible output from their theories.

2 Hierarchical galaxy formation

The ab initio approach to large-scale structure has undergone a revolution in the past twenty years, with an understanding of the initial conditions of structure formation. Growth from inflation-boosted quantum fluctuations provides the current paradigm that sets the point of departure for virtually all theories of large-scale structure. The theory of structure growth made one notable prediction that has been verified with outstanding success. This was the existence of fossil cosmic microwave background temperature fluctuations imprinted on the last scattering surface of the cosmic microwave background. The fluctuations are on angular scales that correspond to the comoving scales of the observed large-scale structure in the galaxy distribution. The WMAP satellite, adding unprecedented precision to many earlier experiments, most notably those of BOOMERANG, MAXIMA and DASI, has verified to within a factor of order unity one of the most remarkable predictions of cosmology, confirming the growth of structure via the gravitational instability of primordial density fluctuations.

With the initial conditions specified, it became possible to simulate galaxy formation. Three distinct approaches have emerged: numerical, semi-analytical and hybrid. The fully numerical approach cannot yet cope with the complexities of star formation, but has been instrumental in guiding us towards an understanding of the dark matter distribution. The semi-analytical approach has had most success, because it can cope with a wide dynamic range via the extended Press-Schechter formalism, to which is added a prescription for star formation based on
baryonic dissipation. The hybrid approach, combining N-body simulations with a star formation prescription, is useful for its predictive power in observational cosmology, as it is ideal for constructing mock catalogues of galaxies.

There have been some notable successes in the theory of semi-analytic galaxy formation. These include an understanding of the large-scale clustering of galaxies via the primordial density fluctuation power spectrum $P(k)$, including the two-point correlation function $\xi(r)$ and its higher moments, the predictions of the existence of filaments and sheets in the galaxy distribution and of the morphologies of galaxy clusters, the derivations of the cluster and galaxy mass functions, and the predictions of large-scale velocity fields and weak lensing optical depths. On smaller scales, the predictions of galaxy rotation curves and of strong lensing by massive galaxies and galaxy clusters are generally considered to be successes of the theory. Global results that have motivated many observations which are in general agreement with the theory include the cosmic star formation history and the distribution and evolution of HI clouds in the intergalactic medium $\frac{d^2 N}{d^2 N_H}$.

2.1 Disk galaxy formation

The rotation of galaxy disks arises from the generation of tidal torques between nonlinear density fluctuations in the process of forming protogalaxies. The angular momentum acquired by dark halos suffices to explain the specific angular momentum of disks, if angular momentum is approximately conserved as the baryons collapse. Once the cold gas disk forms, it is prevented from prematurely forming stars because of gravitational self-regulation via the operation of large-scale disk gravitational instabilities that are controlled by the cold gas fraction and by the continuing supply of cold gas that depends on the star formation rate and stellar feedback. Self-regulation maintains the Toomre parameter, which is inversely proportional to gas surface density and proportional to differential rotation-induced shearing motions and to turbulent velocity dispersion, to satisfy $Q \sim 1$. One can visualise the sequence of self-regulation as being:

$$\text{gas cools} \Rightarrow Q \downarrow \Rightarrow \text{stars form} \Rightarrow \text{heat gas} \Rightarrow Q \uparrow.$$

The empirical star formation rate can be written as

$$\frac{d\rho_*}{dt} = \epsilon \mu_{\text{gas}}^n \Omega(r) f(Q) + \text{early gas infall}.$$

Here ϵ is a measure of the efficiency of star formation, $\Omega(r)$ is the disk rotation rate, n is empirically found to be near unity, and $f(Q)$ ($\approx Q^{-2} - 1$ if $Q < 1$, but ≈ 0 if $Q > 1$) is a threshold function that allows the outer disk to be stable to star formation. In practice, this azimuthally-averaged description is too simplistic in the outer disk where star formation is highly inhomogeneous. However an important and generic consequence is that disks are expected to form inside-out. Cold gas infall is required for chemical evolution, in order to account for the paucity of metal–poor old disk stars (the so-called G dwarf problem). There is some evidence from recent HI observations that the high velocity HI clouds around the Milky Way trace a more extensive gas reservoir [1], and may be manifestations of such cold infall. The gas supply is expected to be disrupted in galaxy clusters. This is presumed to account for the preponderance of early-type galaxies in clusters, and in particular the dependence of morphological type on local density.

There are complications, however, that demonstrate that we have not yet converged on the ultimate theory of galactic disk formation. The Tully-Fisher relation is not understood. Models consistently give too high a normalisation of mass at a given rotation velocity, due to the predominance of dark matter in the model galaxies. There also is some question as to whether the slope is well understood both for samples of nearby disk galaxies which have been carefully corrected for inclination effects, and for distant disk galaxies when projected forward in time for comparison with current epoch samples. This may seem to be a detail, however the fundamental problems are twofold: most of the initial angular momentum in the theoretical models is lost to the dark halo as the disk forms, and the distribution of observed angular
momentum is skewed towards high angular momentum in contrast to the initial distribution predicted by the simulations.

The trigger that controls star formation may be more complex than is inferred from the Q parameter. There is evidence in our own neighbourhood for a series of multiple ministarbursts rather than a monotonic decrease of star formation. Yet another issue that is not well understood concerns the efficiency of star formation. This is the fraction of gas that is converted into stars within a dynamical timescale. In our galaxy, the global value is about a percent, thereby accounting for the longevity of star formation. However surveys such as the Sloan Digital Sky Survey are finding that star formation efficiency increases as galaxy mass increases [2]. There does not seem to be a universal value for the star formation efficiency as might be expected if it were controlled only by the local physics associated with supernova feedback. Rather, global dynamical aspects must also play a role, for example via regulation of disk stability. The stellar mass fraction increases relative to the dark matter as the disk mass increases. Massive disks are found to be maximal, whereas less massive disks with smaller circular velocities are usually submaximal [3]. The more extreme disk star formation efficiencies are inferred to have occurred in the very early universe, simply in order to have massive disks in place by a redshift of unity [4]. Indeed, at high redshift, such high star formation rates are occasionally observed that the star formation efficiency must approach fifty percent or more in systems undergoing extreme starbursts. These are presumably elliptical galaxies in formation.

2.2 Elliptical galaxy formation

There is no star formation theory for dynamically hot systems such as elliptical galaxies. Appeal must be made to phenomenology. Tidal interactions and mergers are found in simulations to be very effective at concentrating gas into the inner hundreds of parsecs. Ultraluminous infrared galaxies are observed to have star formation rates of hundreds or even thousands of solar masses per year, as inferred if the stars formed in a monolithic collapse of the system. Post-starburst near-infrared light profiles are also suggestive of forming spheroids. Since the ultraluminous infrared galaxies are almost inevitably associated with ongoing mergers or strong tidal interactions with nearby galaxies, it therefore seems entirely plausible that these conditions are capable of driving intense bursts of star formation at the prodigious star formation rates that are observed. Measurements of the molecular gas masses in several such systems at high redshift demonstrate that a very high efficiency indeed of star formation is required, with some $10^{10} M_\odot$ of stars being inferred to form in 10^7 years [5].

Colours and spectra of elliptical galaxies at redshift of unity or beyond are suggestive of a very early formation epoch, at least for the stars [6] if not for overall assembly. Additional information comes from the observed ratios of α/Fe abundances. These are enhanced in massive ellipticals. A star formation duration of less than a hundred million years is inferred in order to avoid excessive gas phase contamination by iron-producing SNIa ejecta that would otherwise overdilute the observed α/Fe ratio that originates from SNII ejecta [7]. Of course, to argue that the stars formed early and rapidly does not necessarily imply that the galaxy was assembled monolithically when the stars formed. Assembly could have post-dated star formation, although HST imaging with the ACS makes this possibility increasingly unlikely. The cosmic star formation history is likely to be dominated by the precursors of today’s ellipticals at $z \gtrsim 2$. Of course such a probe, which relies on galaxy surveys, is rest frame UV flux-limited. However the extragalactic diffuse background light from FIR to optical/UV wavelengths provides a glimpse of all the star formation that ever occurred in the universe. Here it seems likely that forming dust-shrouded ellipticals dominate the far infrared background above 400μm [8].

2.3 Unresolved issues in galaxy formation theory

One of the greatest puzzles in galaxy formation theory concerns the distribution of the dark matter. The cold dark matter concentration is predicted from N-body simulations to follow a
density profile:

$$\rho = \frac{A}{r^\gamma (1 + r/r_s)^{3-\gamma}}.$$

Here, \(r_s\) is a scale factor that is incorporated into the concentration parameter, \(c \equiv r_v/r_s\), where \(r_v\) is either the virial radius or the radius at an overdensity, spherically-averaged, of 200. The profile slope parameter \(\gamma\) is measured in high resolution N-body simulations ([9], [10]) to be \(\gamma \approx 1.2 \pm 0.3\), and the normalisation parameter \(A\) reflects the epoch of formation, typically defined to be when half of the present mass was at overdensity of 200.

Unfortunately, observations seem to be in mild disagreement with this predicted profile [11]. A low CDM concentration is observed in low surface brightness dwarf galaxies where the rotation curve is well measured. The predicted dark matter cusp is not usually seen; the typical profile has a soft core, although the interpretation is compounded by issues of disk inclination, of the HI distribution which is usually used to measure the rotation curve, and of the possible mismatch between baryon and CDM potential well depths. The problem is still there in more massive galaxies. In the Milky Way, a low concentration of nonbaryonic dark matter is inferred, with the argument being made that no more than 10 percent of the total mass interior to the solar circle can be non-baryonic. Theory predicts something like 50 percent for a CDM-dominated universe. However the gravitational microlensing optical depth towards the bulge of our galaxy is used to assess the stellar contribution to the inner rotation curve, and this is uncertain by a factor of \(~3\). A low CDM concentration has also been invoked to account for the observed deficiency of dark matter in intermediate luminosity ellipticals to \(~5\) effective radii [12], relative to the CDM predictions, in contrast with the well known evidence for dark matter from x-ray and strong lensing studies of luminous ellipticals. Other objections to the hypothesis of cold dark matter dominance abound but are of less concern. For example, preferentially rapid formation of the more massive galaxies, in apparent violation of the CDM mass hierarchy evolution with redshift, massive halos forming later and more slowly, is accomplished by advocating strong positive feedback, for which mechanisms exist. The inference of cores in the density profiles of galaxy clusters from strong lensing studies is avoided by allowing small deviations from axial symmetry [13].

Another issue is that of dark matter clumpiness. Large numbers of dwarf galaxy halos are predicted at masses comparable to those of the dwarf galaxies in the Local Group, exceeding the observed numbers by an order of magnitude or more. If these systems formed stars, they would be in gross disagreement with observations. If the angular momentum of the baryons is mostly lost to the dark halo as the baryons contract to form the disk, according to simulations, then disk sizes of spiral galaxies are predicted to be smaller by about a factor of 5 than is observed. The baryons are clumped and lose angular momentum as a consequence of dynamical friction on the dark matter.

A related prediction is that of the galaxy luminosity function. If the mass in stars tracks that in dark matter, far too many small galaxies are predicted. Too many massive galaxies are also predicted. This has been noted both in isolated groups of galaxies at the \(L_*\) level [14] and for the field luminosity function, where an excessive frequency of super-\(L_*\) galaxies is expected if a modern value for the initial baryon density is adopted [15]. The problem arises because the baryons fall into the dark matter potential wells, cool and eventually form stars. There are simply too many cold baryons. If one begins with the baryon fraction predicted by primordial nucleosynthesis of about 15 percent, one ends up with about twice as many baryons as are seen even for the Milky Way galaxy. This issue has been aggravated by recent studies which show that many of the accreting baryons enter the disk cold, without shocking to the virial temperature [16]. This appears to be the dominant form of accretion both for low mass galaxies and at high redshift.
3 Resurrecting CDM

It would seem that cold dark matter has certain difficulties to overcome. One approach is to tinker with the particle physics by modifying the dark matter, for example by introducing self-interacting or fluid dark matter. This approach is not only non-compelling from the physics perspective but it has also resulted in about as many new difficulties as it purports to resolve. Another strategy is to modify gravity. The less said about this the better: it seems to this author that one should only modify the laws of fundamental physics in the case of true desperation. We are not there yet.

A more promising approach is via astrophysics. The dark matter distribution is inevitably modified by the impact of astrophysical processes. These include dynamical feedback, such as via a massive, transient, rapidly rotating bar. Such gaseous bars are expected to form in the course of a major merger that preceded the first episode of star formation in the protogalaxy, and later would settle into the galactic disk. Indeed up to half of spiral galaxies have significant stellar bars. The initial tumbling of the bar is slowed by dynamical friction on the dark matter. This provides a substantial heat source that is capable of softening the CDM cusp into an isothermal core [17], but see [18] for an independent appraisal of bar-halo angular momentum exchange. The converse consequence is that to explain the observed stellar bars that are generally in rapid rotation, one needs either a deficiency of dark matter, less than 10 percent of the total mass within the region where the bar is observed, or to argue that the observed bars are young. Cold gas infall to disks produces cold stellar disks that can subsequently become bar-unstable [19]. The jury is still out on the history and secular evolution of bars.

A more radical astrophysical approach appeals to the formation of supermassive black holes in the protogalaxy. These must have formed contemporaneously with the oldest stars, as evidenced by the remarkable correlation between spheroid velocity dispersion and supermassive black hole mass that extends over more than 3 orders of magnitude. Gas accretion onto the supermassive black hole is inevitable in the gas-rich protogalaxy, and provokes violent outflows. It is these outflows that are viewed in the spectra of quasars, the most luminous objects in the universe, and which are powered by accretion onto supermassive black holes. These massive outflows of baryons can provoke efficient star formation and preferentially expel the low angular momentum gas. In this way, one might hope to understand why disks and more generally galaxies are the sizes they are, why spheroids formed with great efficiency, why half of the baryons have apparently been expelled from massive galaxies [20], and why only high angular momentum gas remains to form the disk. As for the impact on the dark matter, rapid loss of more than half the mass in the inner core of the galaxy should leave an impact by softening the dark matter profile.

3.1 The case for massive early winds

There are a number of reasons for believing that massive winds played an important role in galaxy formation. Enrichment of the intracluster gas is observed to \(\sim Z_{\odot}/3 \). This cannot be explained by current epoch star formation activity, or indeed by past activity unless substantial mass ejection occurred. Intracluster magnetic fields are observed at a level that is about 10 percent of the typical galactic value. Ejection of magnetic flux from galaxies early in the lifetime of the galaxies seems to be the most plausible explanation. At a redshift of about 3, the Lyman break galaxies are inferred to have outflows to velocities of \(\sim 600 \text{km/s} \). More indirectly, absorption against background quasars near these galaxies has revealed evidence for a proximity effect on the intergalactic medium. This is in the form of a deficiency of HI that is observed as an increase in the transparency to Ly\(\alpha \) and possibly CIV absorption extending out to about \(\sim 1 \text{Mpc} \) from the Lyman break galaxies [21].

However numerical simulations of early supernova-driven winds fail to find any evidence for substantial gas ejection from luminous \(\sim L_\star \) galaxies [22]. One can ask what is wrong with the hydrodynamic simulations? Firstly, the simulations lack resolution. Rayleigh-Taylor instabilities enhance wind porosity and Kelvin-Helmholtz instabilities enhance wind loading
of the cold interstellar medium. Both effects are certain to occur and will enhance the wind efficacity. Secondly, the simulation initial conditions assume that the winds are driven by supernovae produced by massive stars whose initial mass function is similar to that found in the solar neighbourhood. This is a dangerous assumption, given that we have no fundamental theory of the initial mass function, and that conditions both in massive starbursts and in the early universe may be quite different from anything sampled locally. A top-heavy initial mass function is one way to boost the specific energy and momentum input by up to an order of magnitude. It has been speculated that a top-heavy initial mass function is necessary to account for the high efficiencies of star formation observed in certain very high redshift ultraluminous infrared sources. This option has also been invoked in order to account for the surprisingly high redshift of reionisation found by the WMAP satellite [23] and for the intracluster gas enrichment [24].

Another possibility is that some of the early supernovae may in fact be hypernovae. A hypernova has up to \(10^{53}\) ergs of kinetic energy. If one supernova in 10 at high redshift is in fact a hypernova, the specific energy input is boosted by up to an order of magnitude. The case for an enhanced hypernova fraction at high redshift is based on the nucleosynthetic evidence from abundances measured for the oldest stars in our halo. The enhancements of zinc and chromium and deficiency of iron in these stars can be explained in terms of hypernova yields. In hypernovae, the energy output is boosted by infall of the inner rotating core onto a black hole, and the corresponding ejecta mass cuts for precursors of \(\sim 25M_\odot\) reflect the observed abundance anomalies relative to standard supernova yields [25]. Hypernovae are also a possible source of the r-process nuclear enhancement seen in the oldest stars.

Finally, the ubiquitous AGN, as traced by the presence of supermassive black holes that amount to \(\sim 0.001\) of the spheroid mass, would inevitably have been activated in the gas-rich protogalactic environment. The supermassive black hole is presumed to achieve most of its growth by gas accretion from a circumnuclear disk. This would inevitably have been accompanied by intense jets of relativistic plasma that provide a means of exerting strong positive feedback onto the protogalactic environment [26].

3.2 A new theory of outflows

Consider a multiphase interstellar medium heated by supernovae. The entrainment and porosity of the cold gas is controlled by subgrid physics, and one initially has to resort to a simple approach. The galactic outflow rate can be written as

\[
\dot{M}_{\text{outflow}} = \beta \dot{M}_* f_{\text{hot}}.
\]

This expression assumes that porosity, via the volume fraction of hot gas, controls the outflow rate of hot gas, which is also modulated by the mass of entrained gas from the cold interstellar medium. The effective mass-loading factor is defined by

\[
\beta = (1 + L) \frac{\Delta m_{SN}}{m_{SN}} \sim 1,
\]

where \(L\) is the wind-loading factor, estimated from Chandra observations of starbursts, \(\Delta m_{SN}\) is the mass ejected by a supernova and \(m_{SN}\) is the mass consumed in star formation in order for one Type II supernova to form. The hot gas filling factor is expressed in terms of the porosity as \(f_{\text{hot}} = 1 - e^{-Q}\).

I define the porosity \(Q\) such that \(Q \equiv (\text{SN bubble rate}) \times (\text{maximum bubble 4-volume})\). The porosity is inferred to be proportional to the product of the rate of star formation and a factor \(p_{\text{turb}}^{-1.36}\), where I have assumed that the turbulent gas pressure is \(\rho_{\text{gas}} \sigma_{\text{gas}}^2\). Next, I rewrite the porosity in terms of the star formation rate as

\[
Q = \frac{\dot{\rho}_*}{G^{1/2} \rho_{\text{gas}}^{3/2}} \left(\frac{\sigma_f}{\sigma_{\text{gas}}}\right)^{2.7},
\]
where the fiducial velocity σ_f absorbs the constant of proportionality. Now define the supernova explosion kinetic energy E_{SN}. Typical values of E_{SN} and m_{SN} are 10^{51} ergs and $300M_\odot$, respectively, for a normal initial stellar mass function, similar to that measured locally. One can then write the fiducial velocity as

$$\sigma_f \approx 20\text{km/s} \left(\frac{E_{SN}}{10^{51}}\right)^{1.27} \left(\frac{200M_\odot}{m_{SN}}\right).$$

This determines the effectiveness of porosity relative to some specified turbulence field maintained by the galaxy potential well. Recent numerical simulations by A. Slyz verify that the star formation rate in a multiphase star-forming medium is indeed given by $\dot{\rho}_* \propto Q p_{turb}^{1.5}$. Since the porosity tends to self-regulate, this means that there is positive feedback, resulting in a burst of star formation as pressure from supernova energy injection builds up. The process stops when the gas supply is exhausted.

I finally write the star formation rate as $\dot{\rho}_* = \epsilon \rho_{gas} \Omega$. The dimensionless star formation efficiency ϵ incorporates the hidden physics of porosity and turbulence: it is not a constant. Indeed the SDSS survey of 100,000 galaxy spectra finds that star formation efficiency increases with galactic stellar mass up to a mass of about $3 \times 10^{10}M_\odot$, above which it levels off. A similar result is inferred from the present analysis, if the appropriate physics is incorporated into the fiducial parameter σ_f. One can see this by writing the porosity as

$$Q = \epsilon \left(\frac{\rho}{\rho_{gas}}\right)^{1/2} \left(\frac{\sigma_f}{\sigma_{turb}}\right)^{2.7}.$$

If the porosity self-regulates, the star formation efficiency increases approximately as σ_{turb}^2. There is a critical value of σ_{turb}, below which the porosity is large. If the porosity is large, $Q \gg 1$, and $\dot{M}_{outflow} \approx \dot{M}_*$. The outflow rate is of order the star formation rate. This is a generic result, and is similar to what is observed in nearby starburst galaxies, which are generally low mass galaxies. I speculate that σ_f is likely to be boosted relative to the preceding simplistic analysis by some combination of the following: instability-enhanced porosity, hypernovae, a top-heavy IMF and AGN-triggered outflows. The model explains the observed starburst superwinds and the observed star formation efficiency dependence on galactic stellar mass if $\sigma_f \approx 100$ km/s. At early epochs, σ_f is likely to be larger, and such outflows should also prevail in massive galaxies.

4 Observing CDM: motivated candidate is WIMP LSP

Assuming that the WIMPS once were in thermal equilibrium, one finds that the relic WIMP froze out at

$$n_x < \sigma_{ann}v > t_H \approx 1 \implies T \approx m_\chi/20k.$$

From this, one infers that the relic CDM density is $\Omega_x \sim \sigma_{weak}/\sigma_{ann}$. It is useful to know the mass range of the WIMPs in order to define search parameters. Minimal SUSY has many free parameters, and most of them are generally suppressed. For example, requiring the relic neutralino density to be within mSUGRA greatly reduces the parameter space for possible masses [27]. If the WIMP is a SUSY neutralino, simple scaling arguments yield

$$<\sigma_{ann}v> \propto m_\chi^2 \text{ for } m_\chi \ll Z^0$$

and

$$<\sigma_{ann}v> \propto m_\chi^{-2} \text{ for } m_\chi \gg Z^0,$$

thereby defining a window of opportunity for dark matter. Stability is assumed for the SUSY LSP to be a WIMP candidate, usually via R-parity conservation. From accelerator limits combined with model expectations, the allowed mass range is conservatively found to satisfy

$$50\text{GeV} \lesssim m_\chi \lesssim 1\text{TeV}.$$
Accelerator limits set a lower bound, and the inclusion of the extra degrees of freedom from coannihilations sets an upper bound. Direct searches may also independently set a model-dependent lower bound.

Indirect searches via halo annihilations of the LSP into $\gamma, \bar{p}, e^+, \nu$ have hitherto been inconclusive. There are hints of an anomalous feature in the high energy e^+ spectrum. However halo detection of e^+ requires clumpiness of order

$$< n^2 > / < n >^2 \sim 100,$$

both to get sufficient flux and to allow the possibility of a nearby clump which might allow the observed spectral feature to be reproduced [28]. Such clumpiness could also boost the predicted gamma ray flux from annihilations into the range observable by EGRET. Clumpiness of this order is indeed predicted by galaxy halo simulations. However this generally applies in the outer halo. The γ-ray flux towards the galactic centre is observed to have a hard spectrum (as expected for annihilations), but the clumps would not survive the tidal disruptions that are inevitable in the inner galaxy [29]. To account for the observed diffuse gamma ray flux from the direction of the galactic centre, one would need to have a very steep density profile ($\rho \propto r^{-1.5}$). This would conflict with microlensing observations and the inner rotation curve of the Galaxy.

5 The future

There are exciting prospects for addressing many of the challenges facing galaxy formation and dark matter. With regard to directly observing forming galaxies, we can look forward to sampling the galaxy luminosity function at redshifts beyond unity with both SIRTF and ground-based NIR spectroscopy. The theory of multiphase galaxy formation is certain to be greatly refined, incorporating dynamical feedback and the impact of supermassive black holes. We will probe scales down to $\sim 10^6 M_\odot$ via spectroscopic gravitational lensing. Baryonic dark matter will be mapped at UV/SXR wavelengths. In the area of indirect detection of CDM, new experiments will search for high energy halo annihilation signatures in the form of γ, e^+, \bar{p} and ν. Over the next 5 years, these experiments will include GLAST, HESS, MAGIC, VERITAS, ICECUBE, ANTARES, PAMELA and AMS. High energy neutrinos from annihilations in the sun (and earth) will be probed, thereby providing a measure of the cold dark matter density at the solar circle.

The Galactic Centre could provide a “smoking gun” with radio synchrotron, γ-ray and ν data: annihilations measure cold dark matter where Milky Way formation began “inside-out”, some 12 Gyr ago. Accretion models onto the central black hole fail to give sufficient low frequency radio or gamma ray emission to account for the observed fluxes from SagA*, and it is tempting to invoke a more exotic alternative. However even if the history of the supermassive black hole at the centre of the galaxy disfavours a cold dark matter spike as has been argued [30], one might expect lesser spikes to survive around other relic masssive black holes. The central supermassive black hole and the bulge of the galaxy most likely formed from the mergers of protogalactic dwarf galaxies that themselves contained smaller black holes. This model suggests that there should be relic “naked” intermediate mass black holes in the inner halo [31]. The adiabatic growth of these seed black holes should have generated local spikes in cold dark matter that could have survived and maintained a density profile

$$\rho \propto r^{-\gamma} \Rightarrow \rho \propto r^{-\gamma'}, \text{ with } \gamma' = \frac{9 - 2\gamma}{4 - \gamma}.$$

Annihilation fluxes would be enhanced, to a level where such sources could possibly account for a subset of the unidentified EGRET gamma ray sources.

Of course, the preceding interpretation rests heavily on the hypothesis that the dark matter consists primarily of the lightest $N = 1$ SUSY neutralinos. This is well motivated, but as
has often been emphasized, the most compelling and elegant explanation of any natural phenomenon is often false. Of course, if accelerator evidence were found for SUSY, the odds in favour of a neutralino explanation of dark matter would be dramatically increased. It is exceedingly difficult to construct a theory of galaxy formation without some compelling evidence for the nature of the dark matter. We assume that the dark matter is cold and stable, and this results in beautiful simulations of cosmic structure that meet many, but by no means all, of the observational challenges. Our hope is that with increasingly refined probes of galaxies near and far, we will be able to construct a strong inferential case for the required properties of the dark matter. Indeed, even now we are not far from this goal in so far as our modelling of large-scale structure is concerned.

On smaller scales, however, the picture, and the corresponding role of dark matter, is much less clear. It is particularly disconcerting that we know so little about the fundamental physics of star formation, despite decades of detailed observations. It is only too tempting to assume that conditions in the distant universe, while being far more extreme than those encountered locally, nevertheless permit us to adopt similar rules and inputs for star formation. We may be easily misled. Galaxy formation moreover rests on knowledge of the initial conditions that seeded structure formation, and that we measure in the cosmic microwave background. Here too it is worth recalling that our conclusions are only as robust as the initial priors. Change these substantially, and new modes of fluctuations are allowed that can, for example, permit a much earlier epoch of massive galaxy formation than in the standard model. It is clear that only increasingly refined and precise observations will guide us: if evidence were to be confirmed for a hypothesis that was far from our current prejudices, theory would rapidly adapt. We should bear in mind that Nature has more surprises than we can imagine, otherwise physics would be hopelessly dull.

Acknowledgements.

I thank my colleagues especially at Oxford for their unwavering enthusiasm in discussions about many of the topics covered here. In particular I acknowledge the contributions of Celine Boehm, Greg Bryan, Julien Devriendt, Ignacio Ferreras, Dan Hooper, Hugues Mathis, Adrianne Slyz and James Taylor. In preparing this review, I deliberately restricted myself to citing papers from 2003: apologies to those whose work has not been cited.

References

[1] D. Thilker et al., ApJ Letters, in press, astro-ph/0311571 (2003)
[2] G. Kauffmann et al., MNRAS, 341 (2003) 54
[3] T. Kranz, A. Slyz and H. Rix, ApJ, 586 (2003) 143
[4] C. Conselice et al., in IAU Symposium 220 "Dark Matter in Galaxies," Sydney, July 2003, to be published by ASP, astro-ph/0312352 (2003)
[5] F. Bertoldi et al., A&A Letters, in press, astro-ph/0307408 (2003)
[6] P. G. van Dokkum et al., ApJ, 587 (2003) L83-L88
[7] C. Maraston et al., A&A, 400 (2003) 823-840
[8] C. Balland, J. E. G. Devriendt and J. Silk, MNRAS, 343 (2003) 107
[9] T. Fukushige, A. Kawai and J. Makino, ApJ, submitted, astro-ph/0306203 (2003)
[10] J. F. Navarro et al., MNRAS, submitted, astro-ph/0311231 (2003)
[11] M.R. Merrifield, in IAU Symposium 220 "Dark Matter in Galaxies," Sydney, July 2003, to be published by ASP, astro-ph/0310497 (2003)
[12] A. Romanowsky et al., Science 301 (2003) 1696
[13] M. Bartelmann and M. Meneghetti, A&A, submitted, astro-ph/0312011 (2003)
[14] E. D’Onghia and G. Lake, ApJ Letters, submitted, astro-ph/0309735 (2003)
[15] A. J. Benson, R. G. Bower, C. S. Frenk, C. G. Lacey, C. M. Baugh and S. Cole, ApJ, submitted, astro-ph/0302450 (2003)
[16] Y. Birnboim and A. Dekel, MNRAS, in press, astro-ph/0302161 (2003)
[17] K. Holley-Bockelmann, M. Weinberg and N. Katz, MNRAS, submitted, astro-ph/0306374 (2003)
[18] E. Athanassoula, in IAU Symposium 220 “Dark Matter in Galaxies”, Sydney, July 2003, to be published by ASP, astro-ph/0312155 (2003).
[19] D. L. Block, F. Bournaud, F. Combes, I. Puerari and R. Buta, in IAU Symposium 217 “Recycling Intergalactic and Interstellar Matter”, Sydney, July 2003, to be published by ASP (2003).
[20] J. Silk, MNRAS, 343 (2003) 249
[21] K.L. Adelberger, C.C. Steidel, A.E. Shapley and M. Pettini, ApJ, 584 (2003) 45-75
[22] V. Springel and L. Hernquist, MNRAS, 339 (2003) 289
[23] B. Ciardi, A. Ferrara and S. D. M. White, MNRAS, 344 (2003) L7
[24] L. Portinari, A. Moretti, C. Chiosi, J. Sommer-Larsen, ApJ, in press, astro-ph/0312360 (2003)
[25] H. Umeda and K. Nomoto, ApJ, submitted, astro-ph/0308029 (2003)
[26] W. van Breugel, C. Fragile, P. Anninos and S. Murray, in IAU Symposium 217 “Recycling Intergalactic and Interstellar Matter”, Sydney, July 2003, to be published by ASP (2003).
[27] J. Edsjo, M. Schelke, P. Ullio and P. Gondolo, JCAP 0304 (2003) 001
[28] D. Hooper, J. E. Taylor and J. Silk, PRD, submitted, hep-ph/0312076 (2003)
[29] F. Stoehr, S. D. M. White, V. Springel, G. Tormen and N. Yoshida, MNRAS, 345 (2003) 1313
[30] D.Merritt, preprint, astro-ph/0311594 (2003)
[31] R. R. Islam, J. E. Taylor and J. Silk, MNRAS, in press, astro-ph/0307171 (2003)