Impact of Drinking Water Source and Sanitation Facility on Malnutrition Prevalence in Children under Three: A Gender-Disaggregated Analysis Using PDHS 2017–18

Rafit Saheed 1,†, Muhammad Shahid 2,3,4,†, Jun Wang 3, Madeeha Gohar Qureshi 5, Xiaoke Sun 6,*, Asma Bibi 7, Sidra Zia 4,‡ and Kun Tang 4,*

Abstract: Objectives: The proposed research studied the determinants of male and female child malnutrition in Pakistan. More specifically, it observed the role of the sanitation facility and drinking water source as important determinants of malnutrition in a gender analysis. Methods: Novel data of 1010 children under three years of age from PDHS 2017–18 were used. A CIAF (Cumulative Index for Anthropometric Failure) was established to assess malnourishment in the children. Discrete-choice logistic methodology was applied in this empirical research to study the likelihood of malnourishment in children. Results: The logistic regression results depicted that factors such as a child belonging to a deprived area, the status of home wealth, and the education of the mother were common determinants of malnutrition in children. Factors such as a child having diarrhea (OR = 1.55, CI = 0.96–2.50) and the drinking water source (OR = 0.62, CI = 0.37–1.03) were separate prominent predictors of malnutrition in male children whereas the sanitation facility was the main determinant of malnutrition in female children (OR = 0.64, CI = 0.43–0.95). Conclusion: This study concludes that important links exist between the drinking water source and male child malnutrition and between sanitation facilities and female child malnutrition.

Keywords: gender analysis; malnutrition; PDHS; sanitation facility; water source
bias or gender preferences, or discrimination in poor households [10]. Unfortunately, in many poor families, sons are preferred over daughters [10]. The main reason is that males are considered to be breadwinners whereas females are perceived to be a burden on a poor family [10]. This preference compels many poor parents to discriminate in terms of food, education, health, and clothing. Evidence shows that mothers in disadvantaged houses serve food first to their husbands and sons and then to their daughters. Deficient and poor-quality food is left for the daughters [11]. Due to this, poverty females are victimized not only in nutritional intake and health outcomes but also in other social and economic terms [12].

In Pakistan, numerous studies have observed the determinants of child malnutrition. The most important variables of child malnutrition in the literature over time are a poor economic status of a household and maternal education status. Recent literature in Pakistan highlighted that richer households have a lower probability of stunting and wasting prevalence [13]. Another case study from the deprived region of Punjab in Pakistan revealed that malnutrition chances decrease with an increase in the wealth status from rich to richest [14]. The results of another study from the rural areas of Punjab depicted that children belonging to richer families have less distance to travel to healthcare facilities and regular visits from an LHW within 15 days reduces the chances of malnutrition [15]. Another study from the rural areas of Punjab revealed that as the household shifts from a lower socio-economic status (HDS-1) to a middle socio-economic status (HDS-2) and further to a rich socio-economic status (HDS-3), the rates of being underweight and stunting decreases [16]. The educational status of the mother is also a leading determinant of the child malnutrition status in Pakistan. In the literature, it has been observed that the education of mothers has a direct and indirect link with the child malnutrition status. The direct effect shows the understanding of child healthcare and breastfeeding practices of mothers [17–19]. The indirect effect of maternal education works through late marriages of women, reducing the demand of the children and the empowerment of women [20–22].

Several research findings have revealed several crucial determinants of child malnutrition, including water quality and sanitation facilities. Water, sanitation, and hygiene (WASH) belong to the four “pillars” of the Food and Nutrition Protection Framework [23]. A few studies regarding child malnutrition have discovered that WASH is considered to be a prominent determinant in South Asia [24–26], including in Pakistan [27,28]. The literature shows that inadequate situations for WASH in developing countries are the main reason children miss school and the odds of sexual abuse and the rape of girls increase [29–31]. Other studies have revealed that households having access to sanitation and clean water reduced the danger of stunting [32–34] and child mortalities [35–37].

Studies have shown that infants and children who are more at risk of stunting experience diarrhea and gastrointestinal contagions, which are correlated with bad WASH situations and open defecation [38,39]. The UNICEF and WHO supported WASH in developing countries as a prime approach for fighting child malnutrition, diarrhea, and morbidities [40]. The evidence on nutritional discrimination in children in Pakistan is limited. Moreover, the gender-wise impact of sanitation facilities and water sources on malnutrition has never been systematically assessed in Pakistan. Therefore, to bridge this gap, the current study attempted to examine how water and sanitation indicators behaved in a gender-disaggregated analysis in Pakistan.

2. Methods
2.1. Data

This study used the 2018 PDHS data, with a sample of 1010 children under the age of three. Out of 1010, 497 (49.21%) were female and 513 (50.79%) were male children under three. The data gave broad information on the empowerment of women, the healthcare and nutritional information of women and children, nutrition and demographic characteristics, and domestic violence, for example.
2.2. Dependent Variables

In the present study, a CIAF was established to quantify child nutrition based on three indices (weight-for-age (WAZ), weight-for-height (WHZ), and height-for-age (HAZ)), conferring to the WHO (2009) standards of growth [41]. The CIAF classification had seven different categories for the children: 1: underweight only; 2: stunted only; 3: wasted only; 4: no failure; 5: both underweight and wasting both; 6: both underweight and stunted; and 7: wasted, underweight, and stunted. The scale of malnutrition prevalence in children was entirely measured by the sum of all, excluding group A. For a child with no malnutrition, the binary variable “0” was used and “1” was used for a malnourished child.

2.3. Independent Variables

This study was based on the conceptual framework of Victoria et al. [42], who proposed a conceptual framework based on the previous literature for studying and predicting the determinants of the health outcomes of children [42,43]. According to them, the distribution of variables in this framework is in three groups: (1) socio-economic indicators (e.g., region/place of residence, educational level of the mother, maternal employment status, BMI of the mother, age of the mother at the birth of their child, and household wealth status); (2) intermediate factors, including environmental determinants (e.g., the type of latrine/sanitation, the source of water, and the type of house); and (3) proximal or individual factors (e.g., the child birth order, sex of the child, gender of the child, weight-for-age, weight-for-height, height-for-age, and child diseases). In short, the nutritional status of preschool children may be affected by these factors [42,43].

The main explanatory variables in this study were the drinking water source and the form of sanitation/toilet facilities. To compute the two variables, the responses on the water source and sanitation facility were separated into categories, which were unimproved sanitation, improved sanitation, unimproved water, and improved water. These variables were binary in the analysis. In the analysis, we assigned the value “1” if the source of water was improved and “0” if unimproved. In the same way, “1” was assigned if the type of sanitation facility was improved and “0” if unimproved. The composition of the responses is given in Table 1.

Table 1. Description of water and sanitation variables.

Drinking Water Source	Sanitation/Toilet Facility Type
Improved	Unimproved
Piped water	Piped to neighbor
Piped into lodging	Unprotected dug well
Piped water into plot/yard	Protected well
Public tap/standpipe	Tanker truck
Borehole	Unprotected spring
Tube well water	Bottled/sachet water
Protected spring	Surface water
Rainwater	River/stream/lake/dam/canals/pond
Protected well	Cart with small tank
Filtration plant	Other unimproved
Improved	Unimproved
Piped to neighbor	Pit latrine without a slab or open ditch
Unprotected dug well	Bucket toilet
Protected well	Any facility shared with other households
Tanker truck	Hanging toilet/latrine
Unprotected spring	Flush to somewhere else
Bottled/sachet water	No facility
Surface water	Facility/stream/field/river/bush
River/stream/lake/dam/canals/pond	Composting toilet
Cart with small tank	Flush, do not know where

The other socio-economic factors included in the analysis as possible determinants or control variables were the age of the child in months, sex of the child, education level of the mother, region, had diarrhea recently, and wealth index. The conceptual relationship between the explanatory variables of the study or the socio-economic and environmental factors with the child malnutrition status, based on the conceptual framework of Victoria et al. [43], is shown in Figure 1:
2.4. Statistical Analysis

The study measured the relationship between the socio-economic variables and malnourishment through the use of a logistical regression. It estimated the odds ratio and probability score of the resultant variables (CIAF), subject to the explanatory variables.

The binary logistic model had the following explanation:

$$CIAFin = Y\in = (1 = \text{for malnourished child}, \text{and} 0 = \text{otherwise})$$

where Y in the equation shows the malnutrition status of a child. The study evaluated whether the other various explanatory variables ($X_1, X_2 \ldots X_n$) were associated with it. The response was twofold; either failure or success as to whether the child was malnourished or not with a code of “0” or “1”. The sample weights were applied to all results.

3. Results

This study explored the effect of sanitation/toilet facilities and water sources on children under three with malnourishment. Analyzing the data (PDHS) for all variables, the percentage of malnutrition (CIAF) prevalence in children concerning various features was obtained and is given in Table 2, depicting that the malnourishment prevalence among children below three years of age was 252 (50.50%) in males and 247 (49.50%) in females. Out of 1010 children, 499 (49.41%) were malnourished and 511 (50.59%) were normal or not malnourished. A total of 266 (52.05%) female children were not malnourished; in other words, they were normal, so the percentages and frequencies of the normal children are not listed in Table 2. The malnutrition rates were higher in children aged between 19 and 36 months. The prevalence of malnutrition was high in the Sindh province (24.65%), followed by KPK (15.43%) and Balochistan (24.85%). Around 73.15%
of the malnourished children were from households where the mothers were illiterate. The prevalence of malnutrition among the children under three was 37.88% in the poorest households and 29.26% in poorer households. Of the malnourished children, 26.25% had recently had diarrhea. The malnutrition prevalence was 26.45% where unimproved water sources were used and 36.27% where unimproved sanitation facilities were used.

Table 2. Prevalence of malnutrition by different socio-economic factors.

Variables	Categories	\(F \)	%
Sex of Child	Male	252	50.50
	Female	247	49.50
Age of Child (Months)	0 to 6	69	13.83
	7 to 12	60	12.02
	13 to 18	62	12.42
	19 to 24	81	16.23
	25 to 36	227	45.49
Region	Punjab	49	9.82
	Sindh	123	24.65
	KPK	77	15.43
	Balochistan	124	24.85
	Gilgit Baltistan	23	4.61
	ICT (Capital)	14	2.81
	AJK	26	5.21
	FATA	63	12.63
Qualification Level of Mother	Illiterate	365	73.15
	Primary	48	9.62
	Middle	59	11.82
	High	27	5.41
	11–15	130	26.05
	Greater than 15	73	14.63
Wealth Index	Poorest	189	37.88
	Poorer	146	29.26
	Middle	74	14.83
	Richer	52	10.42
	Richest	38	7.62
Source of Drinking Water	Unimproved	132	26.45
	Improved	367	73.55
Had Diarrhea Recently	No	368	73.75
	Yes	131	26.25
Sanitation Facility Type	Unimproved	181	36.27
	Improved	318	63.73

Source: estimation of the authors.

Malnutrition Association with the Water Source and Sanitation Facilities

Figure 2a,b highlight the rates of prevalence of being underweight, stunting, and wasting by the gender of the children. The results of both figures display that the rate of stunting and being underweight showed a reduction as households enhanced their
sanitation facilities whereas the rates of wasting due to a change in sanitation facilities remained constant.

Figure 2a,b highlight the rates of prevalence of being underweight, stunting, and wasting by the gender of the children. The results of both figures display that the rate of stunting and being underweight showed a reduction as households enhanced their sanitation facilities whereas the rates of wasting due to a change in sanitation facilities remained constant.

Figure 3a,b illustrate the rates of prevalence of being underweight, stunting, and wasting by the gender of the children. The results of both figures display that the being underweight and stunting rates declined as households enhanced their sanitation facilities. The rates of wasting also decreased in boys as households enhanced their water sources, but the rates of wasting did not change (remaining constant) in girls.

In Table 3, we report the results of the logistic regression. Model I estimated the coefficients of the CIAF for the male children and model II estimated the coefficients of the CIAF for the female children.
Table 3. Logistic regression showing adjusted odd ratios for the covariates of the CIAF.

Variables	Categories	Model I (OR 95% CI)	Model II (OR 95% CI)
Age of Child (Months)			
0 to 6 months (R)			
7–12 months	1.15 (0.56, 2.36)	1.13 (0.56, 2.25)	
13–18 months	0.80 (0.39, 1.63)	1.43 (0.72, 2.84)	
19–24 months	2.10 ** (1.00, 4.4)	2.57 *** (1.28, 5.2)	
25–36 months	1.93 ** (1.00, 4.4)	3.87 *** (2.2, 6.78)	
Region			
Punjab (R)			
Sindh	2.89 *** (1.4, 5.85)	3.15 *** (1.5, 6.45)	
KPK	1.66 (0.79, 3.47)	2.07 ** (0.99, 4.29)	
Balochistan	3.03 *** (1.5, 6.33)	3.44 *** (1.6, 7.47)	
Gilgit Baltistan	0.80 (0.29, 2.24)	0.97 (0.37, 2.55)	
ICT (Capital)	1.59 (0.56, 4.58)	0.58 (0.16, 2.07)	
AJK	1.28 (0.44, 3.75)	1.16 (0.49, 2.77)	
FATA	1.26 (0.54, 2.91)	1.22 (0.55, 2.72)	
Qualification Level of Mother			
Illiterate (R)			
Primary	0.49 ** (0.25, 0.95)	0.88 (0.45, 1.71)	
Middle	1.03 (0.53, 1.98)	0.53 ** (0.27, 1.04)	
High	0.35 (0.15, 0.80)	0.51 (0.23, 1.17)	
Poorest (R)			
Poorer	0.92 (0.52, 1.65)	0.83 (0.48, 1.46)	
Middle	0.60 (0.29, 1.26)	0.92 (0.46, 1.85)	
Richer	0.48 ** (0.22, 1.02)	0.65 (0.29, 1.47)	
Richest	0.33 *** (0.13, 0.81)	0.48 * (0.20, 1.13)	
Wealth Index			
No (R)			
Yes	1.55 * (0.96, 2.50)	1.48 (0.93, 2.36)	
Drinking Water Source	Unimproved (R)		
Improved	0.62 ** (0.37, 1.03)	0.80 (0.49, 1.31)	
Sanitation Facility	Unimproved (R)		
Improved	1.24 (0.75, 2.03)	0.64 ** (0.43, 0.95)	
Overall Significance of the Model			
Number of Observations	497	513	
LR Chi²	90.42	96.57	
Prob > Chi²	0.0000	0.0000	
Pseudo R²	0.1313	0.1359	

Source: estimation of the authors. References: odds ratios; confidence intervals. R: reference category in the model. Significance level: *** if \(p < 1\% \); ** if \(p < 5\% \); * if \(p < 10\% \).

Children aged 19–36 months were more likely to be malnourished in both cases. The malnutrition odds were higher in the male children belonging to the Sindh (OR = 0.80, CI = 0.29–2.24) and Balochistan (OR = 3.03, CI = 1.5–6.33) regions whereas the female children in the KPK (OR = 2.07, CI = 0.99–4.29), Sindh (OR = 3.15, CI = 1.5–6.45), and Balochistan (OR = 3.44, CI = 1.6–7.47) regions/provinces were bound to be malnourished. A primary school education of the mothers reduced the chances of malnutrition in the
male children (OR = 0.49, CI = 0.25–0.95); in female children, a secondary education of the mothers was related to fewer chances of malnourishment among their children (OR = 0.53, CI = 0.27–1.04). In terms of wealth, children from richer households were less likely to suffer from malnutrition (OR = 0.48, CI = 0.22–1.02) as well as the richest wealth index quantiles (OR = 0.33, CI = 0.13–0.81); malnutrition was also the least in the richest WIQ in female children (OR = 0.48, CI = 0.20–1.13). Malnutrition was thought to be more likely in male children who had recently had exposure to diarrhea (OR = 1.55, CI = 0.96–2.50).

The results of the source of drinking water in the male model showed a lesser probability of male child malnutrition where there were improved water sources in their houses (OR = 0.62, CI = 0.37–1.03). The sanitation variable was not significant in the male model. Similarly, the results of the sanitation facilities in the female model illustrated that households with enhanced sanitation facilities had lower chances of female malnutrition (OR = 0.64, CI = 0.43–0.95). The water source variable was not significant in the female model.

4. Discussion

This study analyzed the impact of sanitation facilities and drinking sources of water on a gender analysis for the determinants of child malnutrition in Pakistan using nationally representative data from PDHS 2017–18. A sample of 1010 children under three was included in the analysis. Around 36.37% of malnourished children belonged to those households that used unimproved sanitation facilities and 26.45% of malnourished children belonged to those households that had unimproved water sources. Around 67.14% of malnourished children under three belonged to the poorest and poorer households in Pakistan (37.88% in the poorest and 29.26% in the poorer).

Overall, the results of logistic regression analysis in the gender analysis for the determinants of child malnutrition in children under three are presented in Table 3. The logistic regression results of the study showed that children aged 19–36 months were more likely to be malnourished in both cases. It portrayed that with an increase in age, the prevalence of malnutrition also increased. The results were consistent with the previous literature [44–46]. The consequences of the study were that the chances of malnutrition were higher in children belonging to the Sindh, Balochistan, and KPK regions/provinces. There is a regional diversity in nutrition in Pakistan. Compared with Punjab and KPK, women in Sindh and Balochistan have higher levels of nutrition in adulthood or at a younger age [47]. Another study showed that the prevailing modes of malnutrition in Balochistan and Sindh were greater than in other parts of Pakistan as these provinces are deprived in terms of socio-economic development [3]. The study results depicted that the primary and secondary education of the mother lessened the malnutrition odds in both female and male children. The findings of the study were also in accordance with previous studies that observed that the significant determinant of malnutrition is the education of the mothers [48–51]. The results of this study demonstrated that the odds of both male and female malnutrition were low in the rich and richest wealth status households. Previous studies have depicted that children have a lower probability of being malnourished as their parents have more resources to purchase food items [52–54]. Diarrhea, respiratory infections, and malnutrition are three major causes of death during infancy [55]. The results of our study illustrated that the malnutrition odds were high among only male children who had recently had diarrhea. Studies have shown that the prevalence of diarrhea was higher in male children compared with their female counterparts; this had a significant effect on male child malnutrition [56,57].

The results illustrated that households with improved drinking water sources had lower chances of malnutrition only in male children whereas an improved sanitation facility had lower chances of malnutrition only in female children. According to a study conducted in Pakistan, sanitation and water are closely related to malnutrition in Pakistan and there is little improvement in sanitation and water in the SAARC regions [58]. Previous studies have depicted that male children are at a higher risk of contracting schistosomiasis (water-
borne disease) and stunting because of unimproved water [32,59,60]. In Nigeria, boys were seven times more likely to be infected with schistosomiasis and stunting compared with girls [59]. Research in Ghana and West Africa revealed that enhanced hygiene and water reduced the stunting risk by 15% in boys compared with girls [61]. Admittance to enhanced drinking water decreased the probability of stunting by 30% in male children compared with their female counterparts in Nigeria [32]. A study in India showed that poor access to sanitation facilities and a low infant birth weight were significantly associated with female harassment [62]. A study concluded that unimproved sanitation facilities were highly linked with maternal mortality [63]. In Kenya, a study depicted that those households in which the head was female had more chances to openly defecate compared with their male counterparts [64]. In Ethiopia, mothers were more likely to be underweight and have an underweight child who was fasting and with no access to enhanced sanitation [65]. Another study in Ethiopia showed that poor sanitation facilities and poor water sources lowered the probability of wasting [66]. A study conducted in Pakistan showed that sanitation and water were the only important components of the interaction of the variables (sanitation and water), indicating that homes with improved water sources and sanitation facilities had fewer chances of undernutrition in their children [67].

Strengths and Limitations of the Study

The strength of this study was its novel analysis of the gender-wise effects of water and sanitation/toilet facilities on the malnourishment of children under three in Pakistan. Under three is a vital age for child growth. At this age, children are more prone to diseases and infections than above the age of three and they need more care. Observing the determinants for children under three is vital for policy decisions. Using a national dataset, the results and scope of this study can be generalized for policy solutions. However, this study has a few limitations as it used secondary data with a prearranged set of variables to meet our objective, which meant that other important variables (i.e., dietary diversity, inadequate access to food, and human and organizational resources as well as political, cultural, and ideological factors) were either missing or not included in our analysis because of their insignificance in the study model.

5. Conclusions

The results of the study illustrated that an improved water source significantly reduced the probability of malnutrition in male children whereas an improved sanitation facility lowered the probability of malnutrition in the case of the female child in Pakistan. The education of the mother, a child belonging to deprived regions, and the household wealth status were the significant determinants of both male and female child malnutrition. Therefore, improved facilities of sanitation and water are highly recommended to achieve the targets in sustainable development goal (SDG) 6. This will also help to meet the other goals of sustainable development such as SDG 3 (wellbeing and good health) and SDG 4 (gender equity). The study concludes that improved sanitation and water facilities are direly needed for human health and wellbeing in Pakistan.

Author Contributions: Conceptualization, R.S. and M.S.; methodology, R.S. and M.S.; software, M.S.; validation, R.S., M.S., J.W.; M.G.Q., X.S., A.B., S.Z. and K.T.; formal analysis, R.S. and M.S.; investigation, R.S. and M.S.; supervision, M.S.; project administration, R.S. and M.S.; writing—original draft preparation, R.S. and M.S.; writing—review and editing, R.S., M.S., J.W., M.G.Q., X.S., A.B., S.Z. and K.T.; visualization, R.S., MS., J.W., M.G.Q., X.S., A.B., S.Z. and K.T. All authors agreed to and accepted the final draft. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement: There is no need for an institutional review board statement for this study.

Informed Consent Statement: Informed consent and study approvals were not required because secondary data were used that are publicly available on the DHS website.
Data Availability Statement: Data from the Pakistan Demographic and Health Survey (2017–2018) were utilized in the study (available online at: https://dhsprogram.com/data/dataset/Pakistan_Standard-DHS_2017.cfm?flag=1 (accessed on 20 June 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fanzo, J.; Hawkes, C.; Udomkesmalee, E.; Afshin, A.; Allemandi, L.; Assery, O.; Baker, P.; Battersby, J.; Bhutta, Z.; Chen, K. Global Nutrition Report 2018: Shining a Light to Spur Action on Nutrition. 2018. Available online: https://globalnutritionreport.org/reports/global-nutrition-report-2018/ (accessed on 29 September 2021).
2. World Health Organization. Nutrition Landscape Information System (NLIS) Country Profile Indicators: Interpretation Guide; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/9789241516952 (accessed on 29 September 2021).
3. Khaliq, A.; Wraith, D.; Miller, Y.; Nambyar-Mann, S. Prevalence, Trends, and Socioeconomic Determinants of Coexisting Forms of Malnutrition Amongst Children under Five Years of Age in Pakistan. Nutrients 2021, 13, 4566. [CrossRef]
4. Jawaregowda, S.K.; Angadi, M.M. Gender differences in nutritional status among under-five children in rural areas of Bijapur district, Kamataka, India. Int. J. Community Med. Public Health 2015, 2, 506–509. [CrossRef]
5. Dhungana, G.P. Nutritional Status and the Associated Factors in Under Five Years Children of Lamjung, Gorkha and Tanahun Districts of Nepal. Nep. J. Stat. 2017, 1, 15–18. [CrossRef]
6. Ahmad, D.; Afzal, M.; Imtiaz, A. Effect of socioeconomic factors on malnutrition among children in Pakistan. Future Bus. J. 2020, 6, 30. [CrossRef]
7. Haq, I.; Hossain, M.I.; Parvin, M.M.; Saleheen, A.A.S.; Habib, M.J. Gender differences in child nutrition status of Bangladesh: A multinominal modeling approach. J. Huminut. Appl. Soc. Sci. 2021, 4, 1–14. Available online: https://www.emerald.com/insight/content/doi/10.1108/JHASS-02-2021-0030/full/html (accessed on 15 January 2022).
8. Shahid, M.; Qureshi, M.G.; Ahmad, J.E. Socio-economic Causes of Malnutrition among Pre-School Children in Pakistan: A Gender-Disaggregated Analysis. Glob. Eco. Rev. 2020, 5, 47–59. [CrossRef]
9. Babatunde, R.O.; Olagunja, F.I.; Fakayode, S.B.; Sola-Ojo, F.E. Prevalence and Determinants of Malnutrition among under-five children of farming household in Kwara State, Nigeria. J. Agric. Sci. 2011, 3, 173–181. [CrossRef]
10. Jayachandran, S.; Kuziemko, I. Why do mothers breastfeeding girls less than boys? Evidence and implications for child health in India. Q. J. Econ. 2011, 126, 1485–1538. [CrossRef]
11. Arif, G.M.; Nazir, S.; Satti, M.N.; Fanoq, S. Child malnutrition in Pakistan: Trends and determinants. Pak. Inst. Dev. Econ. 2012, 2012, 1–8.
12. Heise, L.; Greene, M.E.; Opper, N.; Stavropoulou, M.; Harper, C.; Nascimento, M.; Zewdie, D.; Darmstadt, G.L.; Greene, M.E.; Hawkes, S. Gender inequality and restrictive gender norms: Framing the challenges to health. Lancet 2019, 393, 2440–2454. [CrossRef]
13. Lubna, N.; Kamalesh, K.P.; Ieoma, E.U. The prevalence of undernutrition and associated factors among preschool children: Evidence from Pakistan Demographic and Health Survey 2017–18. Child. Youth Serv. Rev. 2020, 119, 105579.
14. Shahid, M.; Liu, Y.; Ameer, W.; Qureshi, M.G.; Ahmed, F.; Tang, K. Comparison of Different Nutritional Screening Approaches and the Determinants of Malnutrition in Under-Five Children in a Marginalized District of Punjab Province, Pakistan. Children 2022, 9, 1096. [CrossRef]
15. Shahid, M.; Ameer, W.; Malik, N.I.; Alam, M.B.; Ahmed, F.; Qureshi, M.G.; Zhao, H.; Yang, J.; Zia, S. Distance to Healthcare Facility and Lady Health Workers’ Visits Reduce Malnutrition in under Five Children: A Case Study of a Disadvantaged Rural District in Pakistan. Int. J. Environ. Res. Public Health 2022, 19, 8200. [CrossRef] [PubMed]
16. Shahid, M.; Ahmed, F.; Ameer, W.; Guo, J.; Raza, S.; Fatima, S.; Qureshi, G.M. Prevalence of child malnutrition and household socioeconomic deprivation: A case study of marginalized district in Punjab, Pakistan. PLoS ONE 2022, 17, e0263470. [CrossRef] [PubMed]
17. Menon, P.; Bamezai, A.; Subandoro, A.; Ayoya, M.A.; Aguayo, V. Age-appropriate infant and young child feeding practices are associated with child nutrition in India: Insights from nationally representative data. Matern. Child Nutr. 2015, 11, 73–87. [CrossRef] [PubMed]
18. Poda, G.G.; Hsu, C.Y.; Chao, J.C.J. Factors associated with malnutrition among children <5 years old in Burkina Faso: Evidence from the Demographic and Health Surveys IV 2010. Int. J. Qual. Health Care 2017, 29, 901–908. [CrossRef]
19. Aguayo, V.M.; Badgaiyan, N.; Qadir, S.S.; Bugti, A.N.; Alam, M.M.; Nishhtar, N.; Galvin, M. Community management of acute malnutrition (CMAM) programme in Pakistan effectively treats children with uncomplicated severe wasting. Matern. Child Nutr. 2018, 14, e12623. [CrossRef]
20. Di Cesare, M.; Bhatti, Z.; Soofi, S.B.; Fortunato, L.; Ezzati, M.; Bhutta, Z.A. Geographical and socioeconomic inequalities in women and children’s nutritional status in Pakistan in 2011: An analysis of data from a nationally representative survey. Lancet 2015, 3, e229–e239. [CrossRef]
21. Hasan, M.T.; Magalhães, R.J.S.; Williams, G.M.; Mamun, A.A. Long-term changes in childhood malnutrition are associated with long-term changes in maternal BMI: Evidence from Bangladesh, 1996–2011. Am. J. Clin. Nutr. 2016, 104, 1121–1127. [CrossRef]
22. Cunningham, K.; Headey, D.; Singh, A.; Karmacharya, C.; Rana, P.P. Maternal and Child Nutrition in Nepal: Examining drivers of progress from the mid-1990s to 2010s. *Glob. Food Secur.* 2017, 13, 30–37. [CrossRef]

23. Cumming, O.; Cairncross, S. Can water, sanitation and hygiene help eliminate stunting? Current Evidence and Policy Implications. *Matern. Child Nutr.* 2016, 12, 91–105. [CrossRef] [PubMed]

24. Ngure, F.M.; Reid, B.M.; Humphrey, J.H.; Mbuya, M.N.; Pelto, G.; Stoltzfus, R.J. Water, sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child development: Making the links. *Ann. N. Y. Acad. Sci.* 2014, 1308, 118–128. [CrossRef] [PubMed]

25. Anand, A.; Roy, N. Transitioning toward sustainable development goals: The role of household environment in influencing child health in Sub-Saharan Africa and South Asia using recent demographic health surveys. *Front. Public Health.* 2016, 4, 87. [CrossRef] [PubMed]

26. Harding, K.L.; Aguayo, V.M.; Webb, P. Factors associated with wasting among children under five years old in South Asia: Implications for actions. *PLoS ONE* 2018, 13, e0198749. [CrossRef] [PubMed]

27. Hakro, A.N. Water, sanitation and poverty linkages in Pakistan. *Asian J. Water Environ. Pollut.* 2012, 9, 25–36.

28. Murtaza, F.; Muzaffar, M.; Mustafa, T.; Anwer, J. Water and sanitation risk exposure in children under-five in Pakistan. *J. Fam. Community Med.* 2021, 28, 103–109. [CrossRef]

29. Inter-Agency Standing Committee. Guidelines for Integrating Gender-Based Violence Interventions in Humanitarian Action: Reducing Risk, Promoting Resilience and Aiding Recovery. 2015. Available online: https://gbvguidelines.org/wp/wp-content/uploads/2015/09/2015-IASC-Gender-Based-Violence-Guidelines_lo-res.pdf (accessed on 2 May 2020).

30. Hutton, G.; Whittington, D. Benefits and Costs of the Water Sanitation and Hygiene Targets for the Post-2015 Development Agenda; Copenhagen Consensus Center: Tewksbury, MA, USA, 2015; Available online: http://www.truevaluemetrics.org/DBpdfs/Initiatives/CCC/CCC-water-sanitation-assessment-paper-Guy-Hutton-2015.pdf (accessed on 9 May 2020).

31. House, S.; Ferron, S.; Sommer, M.; Cavill, S. Violence, Gender and WASH: A Practitioner’s Toolkit. Making Water, Sanitation and Hygiene Safer through Improved Programming and Services; Wateraid/SHARE: London, UK, 2014; Available online: https://www.susana.org/_resources/documents/default/3-2098-7-1414164920.pdf (accessed on 22 September 2020).

32. Akombi, B.J.; Agho, K.E.; Hall, J.J.; Merom, D.; Astell-Burt, T.; Renzaho, A.M.N. Stunting and severe stunting among children under-5 years in Nigeria: A multilevel analysis. *BMC Pediatr.* 2017, 17, 15. [CrossRef]

33. Vos, T.; Ababjor, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdel, T.A.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. *Lancet* 2017, 390, 1211–1259. [CrossRef]

34. Marinda, P.A.; Genschick, S.; Khayeka-Wandabwa, C.; Kiwanuka-Lubinda, R.; Thilsted, S.H. Dietary diversity determinants and contribution of fifish to maternal and under-fifive nutritional status in Zambia. *PLoS ONE* 2018, 13, e0204009. [CrossRef]

35. Ahmed, S.M.; Alam, P.M.; Rawal, L.B.; Chowdhury, S.A.; Murray, J.; Arscott, M.S.; Jack, S.; Hinton, R.; Alam, P.M.; Kuruvilla, S. Cross-country analysis of strategies for achieving progress towards global goals for women’s and children’s health. *Bull. World Health Organ.* 2016, 94, 351–361. [CrossRef] [PubMed]

36. Acheampong, M.; Ejiofor, C.; Salinas-Miranda, A.; Jaward, F.M.; Eduful, M.; Yu, Q. Bridging the under-fifive mortality gap for Africa in the era of sustainable development goals: An ordinary least squares (OLS) analysis. *Ann. Glob. Health* 2018, 84, 110–120. [CrossRef] [PubMed]

37. Dendup, T.; Zhao, Y.; Dema, D. Factors associated with under-five mortality in Bhutan: An analysis of the Bhutan National Health Survey 2012. *BMC Public Health* 2018, 18, 1375. [CrossRef]

38. Ahmed, F.; Shahid, M. Understanding Food Insecurity Experiences, Dietary Perceptions and Practices in Households Facing Hunger and Malnutrition in Rajanpur District, Pakistan. *Pak. Perspect. J.* 2020, 26, 224–227. [CrossRef] [PubMed]

39. World Health Organization (WHO); United Nations Children’s Fund (UNICEF). *Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs*; WHO: Geneva, Switzerland, 2021; Available online: https://data.unicef.org/resources/progress-on-household-drinking-water-sanitation-and-hygiene-2000-2020/ (accessed on 12 December 2021).

40. World Health Organization. Child Growth Standards and the Identification of Severe Acute Malnutrition in Infants and Children: A Joint Statement by the World Health Organization and the United Nations Children’s Fund. In *Bull. World Health Organ.* 2021, 99, e0198749. [CrossRef] [PubMed]

41. Victoria, C.G.; Vanghan, J.P.; Kirwood, P.R.; Martinez, J.C.; Barcelos, L.B. Risk factors for malnutrition in Brazilian children: The role of social and environmental variables. *Bull. World Health Organ.* 1986, 64, 299–309. Available online: https://researchonline.lshhtm.ac.uk/id/eprint/4654026/1/bullwho00079-0142.pdf (accessed on 20 July 2022).

42. Victoria, C.G.; Huttly, S.R.; Fuchs, S.C.; Olinto, M.T. The role of conceptual frameworks in epidemiological analysis: A hierarchical approach. *Int. J. Epidemiol.* 1997, 26, 224–227. [CrossRef] [PubMed]

43. Shahid, M.; Leghari, I.U.; Ahmed, F. Socio-Economic Correlates of Children’s Nutritional Status: Evidence from Pakistan Demographic and Health Survey 2017–18. *Glob. Eco. Rev.* 2020, 1, 213–221. [CrossRef]

44. Shahid, M. Interaction of Household Wealth and Women Working Status on Child Malnutrition: Evidence from PDHS-2013. *Pak. Perspect.* 2020, 25, 71–84.
46. Das, S.; Rahman, R.M. Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh. *Nutr. J.* 2011, 10, 124. [CrossRef]
47. Chatterjee, M.; Lumbert, J. Women and nutrition: Reflection from India and Pakistan. *Food Nutr. Bull.* 1989, 11, 90. [CrossRef]
48. Ahmed, F.; Shahid, M.; Cao, Y.; Qureshi, M.G.; Zia, S.; Fatima, S.; Guo, J. A Qualitative Exploration in Causes of Water Insecurity Experiences, and Gender and Nutritional Consequences in South-Punjab, Pakistan. *Int. J. Environ. Res. Public Health* 2021, 18, 12534. [PubMed]
49. Ahmed, F.; Malik, N.I.; Shahzad, M.; Ahmad, M.; Shahid, M.; Feng, X.L.; Guo, J. Determinants of Infant Young Child Feeding Among Mothers of Malnourished Children in South Punjab, Pakistan: A Qualitative Study. *Front. Public Health* 2022, 10, 834089. [CrossRef]
50. Ahmed, F.; Malik, N.I.; Malik, N.; Qureshi, M.G.; Shahzad, M.; Shahid, M.; Zia, S.; Tang, K. Key Challenges to Optimal Therapeutic Coverage and Maternal Utilization of CMAM Program in Rural Southern Pakistan: A Qualitative Exploratory Study. *Nutrients* 2022, 14, 2612. [CrossRef] [PubMed]
51. Shafiq, A.; Hussain, A.; Asif, M.; Hwang, J.; Jameel, A.; Kanwel, S. The effect of “women’s empowerment” on child nutritional status in Pakistan. *Int. J. Environ. Res. Public Health* 2019, 16, 4499. [CrossRef]
52. Adhikari, R.P.; Shrestha, M.L.; Acharya, A.; Upadhaya, N. Determinants of stunting among children aged 0–59 months in Nepal: Findings from Nepal Demographic and Health Survey, 2006, 2011, and 2016. *BMC Nutr.* 2019, 5, 37. [CrossRef]
53. Mistry, S.K.; Hossain, M.B.; Khanam, F.; Akter, F.; Parvez, M.; Yunus, F.M.; Alsana, K.; Rahman, M. Individual- and household-level factors associated with stunting among children aged 0–23 months in Bangladesh. *Public Health Nutr.* 2019, 22, 85–94. [CrossRef]
54. Nie, P.; Rammohan, A.; Gwozdz, W.; Sousa-Poza, A. Changes in child nutrition in India: A decomposition approach. *Int. J. Environ. Res. Public Health* 2019, 16, 1815. [CrossRef]
55. Irena, A.H.; Mwambazi, M.; Mulenga, V. Diarrhea is a major killer of children with severe acute malnutrition admitted to inpatient set-up in Lusaka, Zambia. *Nutr. J.* 2011, 10, 110. [CrossRef]
56. Chineke, H.N.; Ouohoa, R.U.; Uwha, E.P.; Azudialu, B.C.; Nwaigbo, E. The role of family setting in the prevalence of diarrhea diseases in under-five children in Imo State University Teaching Hospital, Nigeria. *J. Adv. Med. Med Res.* 2017, 22, 1–9. [CrossRef]
57. Kalakheti, B.; Panthee, K.; Jain, K.C. Risk factors of diarrhea in children under five years in urban slums. *J. Lumbini Med. Coll.* 2016, 4, 94–98. [CrossRef]
58. Saheed, R.; Hina, H.; Shahid, M. Water, Sanitation and Malnutrition in Pakistan: Challenge for Sustainable Development. *Glob. Pol. Rev.* 2021, 6, 1–14. [CrossRef]
59. Atalabi, T.E.; Lawal, U.; Ipinlaye, S.J. Prevalence and intensity of genito-urinary schistosomiasis and associated risk factors among junior high school students in two local government areas around Zobe Dam in Katsina State, Nigeria. *Parasit. Vectors* 2016, 9, 388. [CrossRef] [PubMed]
60. Donohue, R.E.; Mashoto, K.O.; Mubyazi, G.M.; Madon, S.; Malecela, M.N.; Michael, E. Bioskialal determinants of persistent schistosomiasis among schoolchildren in Tanzania despite repeated treatment. *Trop. Infect. Dis.* 2017, 2, e61. [CrossRef] [PubMed]
61. Azupogo, F.; Abizari, A.R.; Aurino, E.; Gelli, A.; Osendarp, S.J.; Bras, H.; Feskens, E.J.; Brouwer, I.D. Malnutrition, hypertension risk, and correlates: An analysis of the 2014 ghana demographic and health survey data for 15–19 years adolescent boys and girls. *Nutrients* 2020, 12, 2737. [CrossRef]
62. Baker, K.K.; Story, W.T.; Walser-Kuntz, E.; Zimmerman, M.B. Impact of social capital, harassment of women and girls, and water and sanitation access on premature birth and low infant birth weight in India. *PLoS ONE* 2018, 13, e0205345. [CrossRef]
63. Benova, L.; Cumming, O.; Campbell, O.M. Systematic review and meta-analysis: Association between water and sanitation environment and maternal mortality. *Trop. Med. Int. Health* 2014, 19, 368–387. [CrossRef]
64. Njuguna, J. Progress in sanitation among poor households in Kenya: Evidence from demographic and health surveys. *BMC Public Health* 2019, 19, 135. [CrossRef]
65. Desalegn, B.B.; Lambert, C.; Riedel, S.; Negese, T.; Biesalski, H.K. Ethiopian orthodox fasting and lactating mothers: Longitudinal-study on dietary pattern and nutritional status in rural tigray, Ethiopia. *Int. J. Environ. Res. Public Health* 2018, 15, 1767. [CrossRef] [PubMed]
66. Van Cooten, M.H.; Bilal, S.M.; Gebremedhin, S.; Spigt, M. The association between acute malnutrition and water, sanitation, and hygiene among children aged 6–59 months in rural E thiopia. *Matern. Child Nutr.* 2015, 11, e12631. [CrossRef]
67. Shahid, M.; Cao, Y.; Shahzad, M.; Saheed, R.; Rauf, U.; Qureshi, M.G.; Hasnat, A.; Bibi, A.; Ahmed, F. Socio-economic and environmental determinants of malnutrition in under three children: Evidence from PDHS-2018. *Children* 2022, 9, 361. [CrossRef]