2-Local derivations of real AW*-algebras are derivation

R. A. Dadakhodjaev · A. A. Rakhimov

Received: 14 December 2020 / Accepted: 29 January 2021 / Published online: 1 March 2021
© The Author(s) 2021

Abstract
2-Local derivations on real matrix algebras over unital semi-prime Banach algebras are considered. Using the real analogue of the result that any 2-local derivation on the algebra $M_{2^n}(A)$ ($n \geq 2$) is a derivation, it is shown that any 2-local derivation on real AW*-algebra for which the enveloping algebra is (complex) AW*-algebra, is a derivation, where A is a unital semi-prime Banach algebra with the inner derivation property.

Keywords Matrix algebra · Real AW*-algebra · Derivation · Inner derivation property · 2-local derivation

Mathematics Subject Classification 46L10, 46L37, 46L57, 47B47, 47C15

1 Introduction

Given an algebra \mathcal{A}, a linear operator $D : \mathcal{A} \to \mathcal{A}$ is called a derivation, if $D(xy) = D(x)y + xD(y)$, for all $x, y \in \mathcal{A}$. Each element $a \in \mathcal{A}$ implements a derivation D_a on \mathcal{A} defined as $D_a(x) = [a, x] = ax - xa, x \in \mathcal{A}$. Such derivations are said to be inner derivations. A map $\Delta : \mathcal{A} \to \mathcal{A}$ (not linear in general) is called a 2-local derivation, if for every $x, y \in \mathcal{A}$, there exists a derivation $D_{x,y} : \mathcal{A} \to \mathcal{A}$ such that $\Delta(x) = D_{x,y}(x)$ and $\Delta(y) = D_{x,y}(y)$.

In the paper [1] P. Semrl introduced the notion of 2-local derivations and described 2-local derivations on the algebra $B(H)$ of all bounded linear operators on the infinite-dimensional Hilbert space H. This was extended by P. Semrl and P. Šemrl in [2] to derivations on real algebras and to multilinear derivations on any real algebra.

1 V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 100170 Tashkent, Uzbekistan

2 National University of Uzbekistan named after Mirzo Ulugbek (Tashkent, Uzbekistan), and Karadeniz Technical University, Trabzon, Turkey
dimensional separable (complex) Hilbert space H. A similar description for the finite-dimensional case appeared later in [2]. In the papers [3–5] and [6] the authors extended the Semrl’s result for arbitrary finite, semi-finite and purely infinite von Neumann algebras, respectively. The real analogue of Semrl’s result is received in the paper [7], i.e. it is described 2-local derivations on the real W^*-algebra $B(H)$ of all bounded linear operators on the infinite-dimensional separable real Hilbert space H.

In the paper [8] the authors investigated 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property it is proved that any 2-local derivation on the algebra $M_{2^n}(A)$, $n \geq 2$, is a derivation. They apply this result to AW^*-algebras and it is showed that any 2-local derivation on an arbitrary (complex) AW^*-algebra is a derivation. In the present paper step by step we will prove analogous result for real AW^*-algebras.

The authors would like to express his thanks to Professor Shavkat A. Ayupov for suggesting the derivation problem, and for many helpful discussions.

2 Preliminaries

Let $B(H)$ be the algebra of all bounded linear operators on a complex Hilbert space H. A weakly closed *-subalgebra M containing the identity operator 1 in $B(H)$ is called a W^*-algebra. A real *-subalgebra $R \subset B(H)$ is called a real W^*-algebra if it is closed in the weak operator topology, $1 \in R$ and $R \cap iR = \{0\}$. A real W^*-algebra R is called a real factor if its center $Z(R)$ consists of the elements $\{\lambda 1, \lambda \in \mathbb{R}\}$. We say that a real W^*-algebra R is of the type $I_{fin}, I_\infty, II_1,$ or III_λ, $(0 \leq \lambda \leq 1)$ if the enveloping W^*-algebra $R + iR$ has the corresponding type in the ordinary classification of W^*-algebras.

We say that an algebra A has the inner derivation property if every derivation on A is inner. Recall that an algebra A is said to be semi-prime if $aAa = 0$ implies that $a = 0$.

In work [8] (Theorem 2.1) it is proved, that if A is a unital semi-prime (complex) Banach algebra with the inner derivation property and $M_{2^n}(A)$ is the algebra of $2^n \times 2^n$-matrices over A, then any 2-local derivation on $M_{2^n}(A)$ is a derivation.

The proof of this theorem without changes to pass for real Banach algebras. Therefore we shall formulate this result in a real case.

Theorem 1 Let A be a unital semi-prime real Banach algebra with the inner derivation property and let $M_{2^n}(A)$ is the real algebra of $2^n \times 2^n$-matrices over A. Then any 2-local derivation on $M_{2^n}(A)$ is a derivation.

We apply Theorem 1 to the description of 2-local derivations on real AW^*-algebras.

3 2-Local derivations on real AW^*-algebras

Firstly, we shall remind some definitions and the facts from the theory of complex and real AW^*-algebras. Let A be a real or complex *-algebra and let S be a nonempty subset of A. Put
\[R(S) = \{ x \in A \mid sx = 0 \text{ for all } s \in S \} \]

and call \(R(S) \) the right-annihilator of \(S \). Similarly

\[L(S) = \{ x \in A \mid xs = 0 \text{ for all } s \in S \} \]

denotes the left-annihilator of \(S \). Following [12] we introduce the following notions.

Definition 1 A \(*\)-algebra \(A \) is called a Baer *-algebra if for any nonempty \(S \subset A \), \(R(S) = gA \) for an appropriate projection \(g \).

Since \(L(S) = (R(S^*))^* = (hA)^* = Ah \) the definition is symmetric and can be given in terms of the left-annihilator and a suitable projection \(h \). Here \(S^* = \{ s^* \mid s \in S \} \).

In the particular case, where we consider only one point sets \(S = \{ x \}, \ x \in A \), we obtain the more general definition of a Rickart *-algebra. It is known that a Rickart *-algebra is a Baer *-algebra if and only if its projections form a complete lattice or every orthogonal family of projections has a supremum (i.e. a least upper bound).

Let \(A \) be a Banach *-algebra over the field \(\mathbb{C} \). The algebra \(A \) is called a C*-algebra, if \(\|aa^*\| = \|a\|^2 \) for any \(a \in A \). A real Banach *-algebra \(R \) is called a real C*-algebra, if \(\|aa^*\| = \|a\|^2 \) and an element \(\mathbf{1} + aa^* \) is invertible for any \(a \in R \). It is easy to see that \(R \) is a real C*-algebra if and only if a norm on \(R \) can be extended onto the complexification \(A = R + iR \) of the algebra \(R \) so that algebra \(A \) is a C*-algebra.

Definition 2 A (complex) C*-algebra \(M \) which is a Baer *-algebra is called an AW*-algebra.

This definition is equivalent to the definition given by Kaplansky [9], namely a C*-algebra is an AW*-algebra if and only if it satisfies the following conditions:

(A) In the partially ordered set of projections, any set of orthogonal projections has a supremum;
(B) Any maximal abelian *-subalgebra is generated by its projections.

Every W*-algebra is, of course, an AW*-algebra, however, the converse is not true as it was shown by Dixmier [10]. Given an AW*-algebra \(M \), its center is \(Z_M = \{ x \in M \mid xy = yx \text{ for all } y \in M \} \). An AW*-algebra is called an AW*-factor, if its center consists of complex multiples of the identity \(\mathbf{1} \), i.e. \(Z_M = \{ \lambda \mathbf{1} \mid \lambda \in \mathbb{C} \} \).

Now following Kaplansky [11, Appendix III] we introduce the main subject of the paper.

Definition 3 A real C*-algebra which is a Baer *-ring is called a real AW*-algebra.

It is clear that any real AW*-algebra contains an identity \(\mathbf{1} \), and we say that a real AW*-algebra \(A \) is a real AW*-factor if its center consists of real multiples of \(\mathbf{1} \).

Remark 1 1. Unlike the complex case in the real case it is not possible to give a definition in terms of conditions (A) and (B) above, because in maximal abelian *-subalgebras skew-hermitian elements can not be generated by projection.
2. A slightly more general notion of real AW*-algebras was given also by Berberian [12, p. 26, Exercise 14A]. He defined a real AW*-algebra as a Banach *-algebra over the field of real numbers such that \(\|x^*x\| = \|x\|^2 \) for all \(x \in A \) and such that \(A \) is a Baer *-ring. In this case the field \(\mathbb{C} \) of complex numbers with the identical involution \(x^* = x \) becomes a real AW*-algebra, but it is not a real C*-algebra, because it is not a symmetric *-algebra, which means \(I + x^*x \) is invertible for any \(x \in A \).

Any real W*-algebra (real W*-factor) is a real AW*-algebra (resp. a real AW*-factor). But the converse is not true. Any complex AW*-algebra is a real AW*-algebra. Complex AW*-factors are not real AW*-factors, because their centers are complex multiples of \(I \).

For real C*-algebras and W*-algebras we know that their complexification are C*- and W*-algebras respectively. But in AW*-algebras case we have: there is a real AW*-algebra \(R \) such that the complex C*-algebra \(R + iR \) is not an AW*-algebra (see [13, Proposition 4.2.3]).

Now, we shall prove the main result of paper.

Theorem 2 Let \(R \) be an arbitrary real AW*-algebra and suppose that its complexification \(M = R + iR \) is a (complex) AW*-algebra. Then any 2-local derivation \(\Delta \) on \(R \) is a derivation.

Proof Let us first note that any (complex) AW*-algebra is semi-prime, and it is clear that a real algebra \(A \) is semi-prime if and only if its complexification \(A + iA \) is semi-prime. Therefore, any real AW*-algebra is also semi-prime. It is also known [14, Theorem 2] that AW*-algebra has the inner derivation property.

It is easy to shown that any real AW*-algebra has also the inner derivation property, i.e. every derivation of real AW*-algebra is an inner. Indeed, let \(R \) be a real AW*-algebra and let \(D : R \to R \) be a derivation. \(D \) can be extended by the linearity to a derivation on \(M = R + iR \) as \(\overline{D}(x + iy) = D(x) + iD(y) \). Since \(\overline{D} \) is an inner there is an element \(z = a + ib \) \((a, b \in R)\) such that \(\overline{D}(x + iy) = [z, x + iy] \) for all \(x, y \in R \). Hence \(D(x) = \overline{D}(x) = [z, x] = [a, x] + i[b, x] \). Therefore from \(D(x) \in R \) we have \(b = 0 \), i.e. \(z = a \in R \). Thus \(D(x) = [a, x] \).

Now, let \(z \) be a central projection in \(R \). Then \(z \) is a central projection in \(M \). It is known that \(\overline{D}(z) = 0 \), and therefore \(D(z) = 0 \). Then it is easy to see that \(\Delta(z) = 0 \) for any 2-local derivation \(\Delta \) on \(R \). For \(x \in R \) we consider the elements \(x \) and \(zx \). Then there is a derivation \(D \) on \(R \) such that \(\Delta(zx) = D(zx) \) and \(\Delta(x) = D(x) \). Then we have

\[
\Delta(zx) = D(zx) = D(z)x + zD(x) = zD(x) = z\Delta(x).
\]

It means that every 2-local derivation \(\Delta \) maps \(zR \) into \(zR \) for each central projection \(z \in R \). Thus we may consider the restriction of \(\Delta \) onto \(eR \). By [13, Proposition 4.4.3] an arbitrary real AW*-algebra can be decomposed along a central projection into the direct sum of an abelian real AW*-algebra, and real AW*-algebras of type I_\(n \), \(n \geq 2 \), type I_\(\infty \), type II and type III. We will consider these cases separately.
Let R be an abelian real AW^*-algebra. It is well-known that any derivation on an abelian (complex) W^*-algebra $R + iR$ is identically zero. Therefore, the derivation $D(x + iy) = D(x) + iD(y)$ on $R + iR$ is identically zero, where D is a derivation on R. Hence D is identically zero, i.e. any 2-local derivation on an abelian AW^*-algebra is also identically zero.

If R is a real AW^*-algebra of type I_n, $n \geq 2$, with the center $Z(R)$, then it is isomorphic to the algebra $M_n(Z(R))$. By Lemma 2.3 [8] (as it is already told above, that the proof of theorem 2.1 and Lemmas from [8] without changes to pass for real Banach algebras) there exists a derivation D on $R \equiv M_n(Z(R))$ such that $D = D$. So, D is a derivation.

Let the real AW^*-algebra R have one of the types I_∞, II or III. Then using the methods developed in [13, §§4.3-4.7] and similarly following the scheme of the proof of Lemmas 4.5 and 4.12 in [9], the algebra R can be represented as a sum of mutually equivalent orthogonal projections e_1, e_2, e_3, e_4 from R. Then the map $x \to \sum_{i, j=1}^4 e_i x e_j$ defines an isomorphism between the algebra R and the matrix algebra $M_4(Q)$, where $Q = e_{1,1} Re_{1,1}$. It is easy to see that Q and $Q + iQ$ are real and complex C^*-algebras, respectively. Since $M = R + iR$ is AW^*-algebra by [12, Proposition 8 (iii), 23p.] C^*-algebra eMe is also AW^*-algebra, where e is an arbitrary projection in M. Then by [13, Proposition 4.3.1] a real C^*-algebra $Q = e_{1,1} Re_{1,1}$ is a real AW^*-algebra and its complexification $Q + iQ = e_{1,1} Me_{1,1}$ is also a (complex) AW^*-algebra. Therefore Q is a unital semi-prime real Banach algebra with the inner derivation property. Hence Theorem 1 implies that any 2-local derivation on R is a derivation. \square

Remark 2 Everywhere in the work we considered a real AW^*-algebra with a (complex) AW^*-algebra of its complexification. Moreover, in the definition of real C^*-algebra the condition of convertibility of an element $I + xx^*$ (for all x) is required. It is equivalent to that a norm on real C^*-algebra can be extended onto its complexification so that it is a (complex) C^*-algebra. But in the [12, Exercise 14A] in definition of real C^*-algebra convertibility of $I + xx^*$ is not required. In this connection we shall formulate following questions.

Question let R be a real Baer $*$-ring. Suppose that

(i) R is a real Banach $*$-algebra with $\|xx^*\| = \|x\|^2$, for any $x \in R$, or

(ii) R is a real AW^*-algebra (not necessary its complexification is a (complex) AW^*-algebra). Then

(1) is any derivation of R is inner?

(2) is any 2-local derivation on R is derivation?

Acknowledgements The authors would like to thank Professor F.A.Sukochev for his interest in this paper and for his useful conversations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
References

1. Semrl, P.: Local automorphisms and derivations on $B(H)$. Proc. Am. Math. Soc. 125(9), 2677–2680 (1997)
2. Kim, S.O., Kim, J.S.: Local automorphisms and derivations on M_n. Proc. Amer. Math. Soc. 132, 1389–1392 (2004)
3. Ayupov, Sh.A., Kudaybergenov, K.K., Nurjanov, B.O., Alauadinov, A.K.: Local and 2-local derivations on noncommutative Arens algebras. Math. Slovaca 64, 423–432 (2014)
4. Ayupov, Sh.A., Arzikulov, F.N.: 2-local derivations on semi-finite von Neumann algebras. Glasgow Math. J. 56, 9–12 (2014)
5. Ayupov, Sh.A., Kudaybergenov, K.K.: 2-local derivations on von Neumann algebras. Positivity 19(3), 445–455 (2015)
6. Ayupov, Sh.A., Kudaybergenov, K.K.: 2-local derivations and automorphisms on $B(H)$. J. Math. Anal. Appl. 395, 15–18 (2012)
7. Dadakhodjaev, R.A., Rakhimov, A.A.: 2-Local derivations on real W^*-algebra $B(H)$. Uzbek Math. J. 1, 34–39 (2016)
8. Ayupov, Sh.A., Kudaybergenov, K.K.: 2-Local derivations on matrix algebras over semi-prime banach algebras and AW^*-algebras. J. Phys: Conf. Ser. 697, (2016)
9. Kaplansky, I.: Projections in Banach algebras. Ann. Math. 53, 235–249 (1951)
10. Dixmier, J.: Sur certains espaces consid. par M. H. Stone. Summa Brasil. Math. 2, 151–182 (1951)
11. Kaplansky, I.: Rings of Operators. Benjamin, New-York (1968)
12. Berberian, S.K.: Baer *-rings. Springer, Berlin (1972)
13. Ayupov, Sh.A., Rakhimov, A.A.: Real W^*-algebras, Actions of groups and Index theory for real factors. VDM Publishing House Ltd. Beau-Bassin, Mauritius. ISBN 978-3-639-29066-0, 138p (2010)
14. Olesen, D.: Derivations of AW^*-algebras are inner. Pac. J. Math. 532, 555–561 (1974)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.