Genome sequencing analysis of a novel thermophilic strain *Geobacillus* sp. CX412

Xin Li¹, Wei Zhang¹², Xin-Ru Zhong¹, Hao-Xuan Han¹ and Bin Dong¹³*

¹School of Environmental Science and Engineering, Tongji University, Shanghai, China, ²School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China, ³YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China

The thermophilic spore-forming strain *Geobacillus* sp. CX412 was isolated from hot spring soil in Tengchong City, Yunnan Province, China. We sequenced the complete genome of *Geobacillus* sp. CX412 using PacBio SMRT Sequencing. Genome-scale phylogenetic analysis and average nucleotide identity (ANI) results indicated that *Geobacillus* sp. CX412 is a novel species in the genus *Geobacillus*. The metabolic potential of *Geobacillus* sp. CX412 based on COG, KEGG, and CAZymes analysis demonstrated that *Geobacillus* sp. CX412 was a highly adaptable strain with an unusually high number of 73 annotated transposons in the genome, which is relatively rare in *Geobacillus*. Compared with the near-derived strains, it was found that *Geobacillus* sp. CX412 has the unique β-lactam resistance and more active metabolism (more than 50.5–100.1%). Additionally, its genome encodes glycoside hydrolases and other genes related to lignocellulose breakdown, suggesting that *Geobacillus* sp. CX412 has a considerable biomass degradation potential. Thus, *Geobacillus* sp. CX412 is a new thermophilic bacterial species that add to the increasing repertoire of known lignocellulose degraders.

KEYWORDS

Geobacillus sp. CX412, thermophile, transposons, β-lactam resistance, lignocellulose

Introduction

Geobacillus were categorized initially as “Group 5” in the genus *Bacillus*. They were subsequently split into the new genus based on 16S rRNA gene sequence analysis, phenotypic characterization, and DNA-DNA hybridization experiments, including thermophilic gram-positive spore-forming bacteria that form phylogenetically

Abbreviations: ANI, average nucleotide identity; DDH, digital DNA-DNA hybridization; ME, minimum-evolution; COG, cluster of orthologous groups of proteins; KEGG, Kyoto encyclopedia of genes and genomes; CAZymes, carbohydrate active enzymes.
consistent clades within the Bacillus family (Nazina et al., 2001; Chen et al., 2015; Brumm et al., 2016). In 2016, the genus Geobacillus was subdivided into two genera based on whole-genome approaches, with the addition of Parageobacillus (Aliyu et al., 2016, 2018; Najar et al., 2020). In 2020, Reclassification of Geobacillus galactosidasius and Geobacillus yumthagensis as Parageobacillus galactosidasius comb. nov. and Parageobacillus yumthagensis comb. nov., respectively (Najar et al., 2020). Therefore, Geobacillus and Parageobacillus are relatively similar in the phylogenetic tree and often cross over.

Geobacillus species have been found mainly in hot springs in the United States (Brumm et al., 2015a,b), Africa (Hawumba et al., 2002), and Russia (Nazina et al., 2004), the Mariana Trench (Takami et al., 2004), deep-sea vents (Maugeri et al., 2002), high-temperature oilfields (Kuisiene et al., 2004), a corroded pipeline in an extremely deep well (Popova et al., 2002), and composting materials (Bhalla et al., 2013; Li et al., 2014; Brumm et al., 2016). It demonstrates the ability of Geobacillus to thrive in this diverse and often harsh environment and suggests that these species have enzymes suitable for application in challenging industrial environments (such as enzymes that efficiently break down lignocellulose) (Bouzas et al., 2006; Bergquist et al., 2014; Chen et al., 2015). Geobacillus species can grow in high-temperature environments (up to 70°C or more), and the advantages of using thermophilic bacteria as whole-cell biocatalysts include reduced risk of contamination and accelerated biochemical processes in fermentation (Chen et al., 2015). Composting Materials, as the main sources of thermal bacteria, also imply that thermal bacteria would use organic matter to self-reproduce during composting. When antibiotic production residue is used as compost substrate, due to the inhibitory and poisoning effect of antibiotics, thermal bacteria may not be able to reproduce and grow well, which would reduce the composting effect (Yang et al., 2016). Therefore, finding bacteria that may resist antibiotics under high-temperature conditions is necessary. Geobacillus are generally used in complex environments, and the number of genes coding for transposons implies the adaptability of Geobacillus to the environment (Frost et al., 2005). For example, the genome of Geobacillus sp. WCH70 has 125 annotation transpositions, which indicates that Geobacillus sp. WCH70 has a highly variable chromosomal, which can add or delete non-essential genes and gene clusters according to environmental conditions (Brumm et al., 2016).

Furthermore, many glycolytic thermophiles can use polymeric or short oligomeric carbohydrates with low nutritional requirements to produce lactic acid, formic acid, acetic acid, and ethanol as products (Niehaus et al., 1999; Taylor et al., 2009). Strains such as Geobacillus thermoglucosidasius DSM2542 have been developed for industrial bioethanol production from lignocellulosic feedstocks (Cripps et al., 2009; Chen et al., 2015). Geobacillus sp. Strain DUSELR13 has been developed for thermostable xylanase and ethanol production with lignocellulosic biomass (Bibra et al., 2018). Geobacillus sp. strain WSUCF1 is a thermophilic exopolysaccharide-producing bacterium and producing highly thermostable xylanase utilizing lignocellulosic biomass (Bhalla et al., 2014; Wang et al., 2019, 2021). Therefore, the study of Geobacillus as a significant source of thermostable enzymes and a platform host for lignocellulosic biomass natural products is critical (Chen et al., 2015).

Materials and methods

Organism information

Classification and features

Geobacillus sp. CX412 is a novel thermophilic species obtained from hot spring soil in Tengchong City, Yunnan Province, China (24.953861° latitude and 98.443661° longitude). The organism was isolated from hot spring soil by enrichment and plating on a screening medium (screening medium contains (per liter) 8.0 g tryptone, 7.0 g casein, 3.0 g glucose, 5.0 g sodium chloride, 2.0 g disodium hydrogen phosphate, 10.0 g dehydrated calf brain extract, 15.0 g agar, pH 7.0–7.4) at 75°C.

Genome sequencing information

Illumina Hiseq is used for sequencing to obtain the original data of the sequencing. FastQC assesses the quality of the original sequencing data, and then the Illumina sequencing data is cut by Trimmmomatic (Bolger et al., 2014) to obtain relatively accurate and practical data. The Pacific Biosciences (PacBio) RS II is used for sequencing, and the original data is quality-cut to obtain high-quality data. Pacbio/single-molecule sequencing data were assembled using Canu (Koren et al., 2017), Illumina Hiseq sequencing data were introduced, and GapFiller (Boetzer and Pirovano, 2012) was used to complement the assembled scaffolds with GAP. Finally, sequence correction was performed using PrInSeS-G (Massouras et al., 2010). The editing errors and indels were fixed in segments during splicing. After obtaining the genome sequence, Prokka (Seemann, 2014) was used to predict the genetic elements: gene, tRNA, rRNA, etc. Sequencing was done at Sangon Biotech (Shanghai) Co., Ltd.

Taxonomic assignment and phylogenetic analysis

The predicted 16S rRNA sequence was compared with the NCBI 16S database using NCBI Blast+ (Altschul et al., 1997) to obtain information on its homologous strains, and
a phylogenetic tree was constructed. Download genome sequences of approximate strains, and perform average nucleotide identity (ANI) and digital DNA-DNA hybridization (DDH) were analyzed by JSpeciesWS and GGDC 3.0, respectively (Richter et al., 2016; Meier-Kolthoff et al., 2022).

Functional annotation

NCBI Blast+ (Altschul et al., 1997) was used to compare the gene protein sequence with the COG database (Tatusov et al., 2000) to obtain its functional annotation information, KAAS (Kanehisa and Goto, 2000; Moriya et al., 2007) was used to obtain the gene KEGG annotation information, and HMMER3 (Eddy, 2009) was used to compare the gene protein sequence with the Carbohydrate active enzymes (CAZymes) database (Lombard et al., 2014) to obtain its functional annotation information.

Accession numbers

The complete genome information of Geobacillus sp. CX412 was deposited in GenBank under the accession number CP103461-CP103464.

Results and discussion

Complete genome sequence of Geobacillus sp. CX412

Geobacillus sp. CX412 is a Gram-positive, rod-shaped bacterium with an optimum growth temperature of 75°C and a maximum growth temperature of 85°C (Table 1). The total genome length of Geobacillus sp. CX412 was 3,560,825 bp, the average G + C content was 42.5%, and there were 91 tRNA genes and 26 rRNA genes (Table 2 and Figure 1). There are 3,763 predicted protein-coding regions in the genome (Table 2). A total of 2,678 genes (71.17%) were annotated in the COG database, and about 30% of the annotated genes were not assigned to COG or had unknown functions (Table 3).

Taxonomic assignment and phylogenetic analysis

After the 16S rRNA sequences were compared in the NCBI database, 16S rRNA sequences of the strains were selected according to the similarity to construct a phylogenetic tree. As shown in Figure 2, Geobacillus sp. CX412 is closely related to other Geobacillus and is an independent branch in the phylogenetic tree, confirming that it is Geobacillus. The four closest strains with complete genome sequences (Table 2) were selected for comparative analysis, and the results showed that these genomes shared 1,315 homologous gene clusters.

Average Nucleotide Identity (ANI) is an indicator for comparing the relatedness of two genomes at the nucleotide level. ANI is the average base similarity between homologous segments of two microbial genomes, characterized by a high degree of discrimination between closely related species. Compared with the traditional DDH, the calculation of the ANI index is simple and time-saving, and it is helpful to build a structured database, which is convenient for the follow-up research of bioinformatics scholars (Brumm et al., 2016). The ANI of Geobacillus sp. CX412 and the closely related strain Geobacillus sp. WCH70 was 92.1%, and the ANI of the strain Parageobacillus toebii NBRC 107807 was 91.4%, lower than the new species’ critical value of 95% (Figure 3). At the same time, the DDH of Geobacillus sp. CX412 and Geobacillus sp. WCH70 was 36.8%, and the DDH of Parageobacillus toebii 107,807 was 35.7%, lower than the new species’ critical value of 70% (Supplementary Table 1). This suggests that Geobacillus sp. CX412 should be a new Geobacillus sp.

TABLE 1 Classification and general features of Geobacillus sp. CX412.

Property	Term	Evidence code
Classification	Domain Bacteria	TAS
	Phylum Firmicutes	TAS
Class Bacilli	TAS	
Order Bacillales	TAS	
Family Bacillaceae	TAS	
Genus Geobacillus	TAS	
Species Geobacillus sp.	Strain: CX412	
Gram stain	Positive	IDE
Cell shape	Rods and chains of rods	IDE
Motility	Motile	IDE
Temperature	55–85°C	IDE
Optimum temperature	75°C	IDE
pH range; Optimum	5.8–8.0; 7.2	IDE
Carbon source	Carbohydrate or protein	IDE
Habitat	Thermal spring soil	IDE
Salinity	Not reported	IDE
Oxygen requirement	Aerobic	IDE
Biotic relationship	Free-living	IDE
Pathogenicity	Non-pathogen	IDE

Evidence codes—IDE: Inferred from Direct Experiment, TAS: Traceable Author Statement (i.e., a direct report exists in the literature).
TABLE 2 Genome statistics of representative thermophilic Geobacillus and Parageobacillus.

Strain	G. sp. CX412	G. sp. WCH70	P. toebii NBRC 107807	P. thermoglucosidasius NBRC 107763	P. thermoglucosidasius C56-YS93
Origin	Yunnan, China	Middleton, WI, USA	Tokyo, Japan	Tokyo, Japan	USA
Genome size (bp)	3,560,825	3,508,804	3,263,973	3,871,162	3,993,793
G + C content (%)	42.45	42.80	42.15	43.69	43.93
Number of tRNA genes	91	92	89	81	90
Number of protein-coding genes	3,763	3,477	3,220	3,725	3,787

Comparison with other Geobacillus

In order to better understand the characteristics of Geobacillus sp. CX412, the number and metabolic potential of Geobacillus sp. CX412 and the other four species with complete genome sequence similarity were analyzed based on COG and CAZymes.

It shows that superoxide dismutase (SOD) is an essential protein for cells to resist high temperature, and Cu/Zn superoxide dismutase (SOD1) enzymes under Cu$^{2+}$/Zn$^{2+}$...
TABLE 3 Number of genes associated with general COG functional categories.

Code	Value	Percent	Description
J	169	4.49	Translation, ribosomal structure, and biogenesis
A	0	0.00	RNA processing and modification
K	158	4.20	Transcription
L	195	5.18	Replication, recombination, and repair
B	0	0.00	Cell cycle control, cell division, chromosome partitioning
D	40	1.06	Defense mechanisms
T	112	2.98	Signal transduction mechanisms
M	116	3.08	RNA processing and modification
N	23	0.61	Cell motility
U	54	1.44	Intracellular trafficking, secretion, and vesicular transport
O	102	2.71	Posttranslational modification, protein turnover, chaperones
C	182	4.84	Energy production and conversion
G	149	3.96	Carbohydrate transport and metabolism
E	239	6.35	Amino acid transport and metabolism
F	75	1.99	Nucleotide transport and metabolism
H	136	3.61	Coenzyme transport and metabolism
I	77	2.05	Lipid transport and metabolism
P	160	4.25	Inorganic ion transport and metabolism
Q	44	1.17	Secondary metabolites biosynthesis, transport, and catabolism
R	343	9.12	General function prediction only
S	273	7.25	Function unknown
-	1,085	28.83	Not in COGs

presence can also make cells have high-temperature resistance (Askwith et al., 1994). At the same time, ClpP protein is found to affect the temperature resistance of the strain (Gerth et al., 2008). As a thermophilic bacterium, Geobacillus sp. strain CX412 should have genes related to high-temperature tolerance. The results showed that Geobacillus sp. CX412 had related genes for SOD, SOD1, and ClpP proteins; the related genes generally existed in the near-derived strains (Supplementary Table 2). The existence of related genes suggests the reasons for the high-temperature resistance of Geobacillus sp. CX412.

The ability of Geobacillus to thrive in this diverse and often harsh environment may be due to the predicted encoding transposons of many Geobacillus species (Bouzas et al., 2006; Bergquist et al., 2014). To some extent, the number of predicted coding transposons indicates the variability of the organism’s chromosomes, which can add or delete non-essential genes and gene clusters according to environmental conditions, representing the ability of the organism to adapt to the environment (Brumm et al., 2016). As shown in Table 4, Geobacillus sp. CX412 contained 73 predicted coding transposons. After comparing with the near-derived strains and reviewing the literature (Supplementary Table 3; Brumm et al., 2016), it was found that the predicted number of transposons encoded by Geobacillus sp. CX412 in Geobacillus was more than three times that of Parageobacillus toebii NBRC 107807. At the same time, the predicted number of transposons encoded by Geobacillus sp. CX412 in Geobacillus was significantly more than that of Parageobacillus thermoglucosidasius NBRC 107763 and Parageobacillus thermoglucosidasius C56-Y593. It shows that Geobacillus sp. CX412 also has a strong ability to adapt to the environment.

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a comprehensive database of biological systems that integrates genomic, chemical, and system functional information. KEGG GENES collects all known complete genome gene protein sequences, including the minimum information for each gene. The KO (KEGG ORTHOLOG) system links the various KEGG annotation systems together. After the KO annotation of the gene, the KEGG metabolic pathway classification is carried out according to the connection between the KO and pathway. There are seven categories: cellular processes, environmental information processing, genetic information processing, human diseases, metabolism, organismal systems, and drug development.

In order to analyze the metabolic pathway of Geobacillus sp. CX412, the genes of Geobacillus sp. CX412 and other four near-derived strains were compared with the KEGG functional pathway database for functional annotation (Figure 4). The proportion of six functional genes of Geobacillus sp. CX412 was 2.8% respectively (cellular processes), 11.6% (environmental...
information processing), 9.3% (genetic information processing), 1.8% (human diseases), 73.2% (metabolism), 1.2% (organismal systems). It was indicated that there are six categories of functional genes of *Geobacillus* sp. CX412 (excluding drug development). At the same time, it can be seen from Figure 4 that the metabolic function genes of *Geobacillus* sp. CX412 are mainly carbohydrate metabolism and amino acid metabolism, and the metabolic function genes of *Geobacillus* sp. CX412 are significantly more than those of other near-derived strains (more than 50.5–100.1%). It was revealed that *Geobacillus* sp. CX412 is the strain with more robust metabolism in the genus *Geobacillus*. In addition, *Geobacillus* sp. CX412 has the human disease group that other near-derived strains do not have, in which the number of genes annotated to the ko00312 pathway (β-lactam resistance) accounts for 34.6% of the total genes associated with human disease. The near-derived strain *Geobacillus* sp. WCH70 of *Geobacillus* sp. CX412 was isolated from the aerobic fermenter (Brumm et al., 2016). Combined with the results of the KEGG analysis, it could be seen that *Geobacillus* sp. CX412 could also be used in composting, which had related genes of β-lactam resistance and more active metabolism (Figure 4). It also implies that the *Geobacillus* sp. CX412 has a broader range of applications.

Studies have also shown that *Geobacillus* species can grow in high-temperature environments (up to 70°C or more), and the advantages of using thermophilic bacteria as whole-cell biocatalysts include reducing the risk of contamination and accelerating biochemical processes in...
fermentation (Chen et al., 2015). Unexpectedly, *Geobacillus* sp. WCH70 lacks the predicted polysaccharide degradation clusters in many *Geobacillus* species, including metabolic clusters for hemicellulose degradation (Markowitz et al., 2014; Brumm et al., 2016). Nearly related strains of *Geobacillus* sp. CX412 include *Geobacillus* sp. WCH70. Therefore, to determine the metabolic potential of *Geobacillus* sp. CX412, CAZymes analysis was performed (Supplementary Table 4; Figure 5). CAZymes are divided into different families such as glycoside hydrolases (GH), glycosyltransferases (GT), carbohydrate-binding modules (CBM), carbohydrate esterases (CE), accessory activity (AA), and polysaccharide lyase (PL) (Lemos et al., 2017). *Geobacillus* sp. CX412 encompassing all six CAZymes families, as follows: 24.5% GHs, 30.8% GTs, 17.6% CEs, 15.7% AAs, 10.1% CBMs, and 1.3% PLs.

CAZymes are involved in constructing and breaking down complex carbohydrates and glycoconjugates in various biological processes (Lemos et al., 2017; Gavande et al., 2021). CBMs are the necessary modules for cellulytic enzymes to bind to their substrates. AAs are involved in the degradation of lignin polymers, and CEs are the key to efficient hemicellulase activity. Cellulases and hemicellulases in GHs play an essential role in cellulose depolymerization (Gavande et al., 2021). Therefore, the genes encoding lignocellulose-degrading enzymes were screened, and 45 related genes were found in *Geobacillus* sp. CX412. Among them, there are 12 kinds of enzymes related to cellulolysis (GH1, GH4, GH5, GH9, GH74, and AA7) and 16 kinds of enzymes related to hemicellulose (GH2, GH4, GH36, GH43, GH130, CE1, and CE4), and 17 lignin oxidases (AA1, AA3, AA4, and AA6). The GH36 family is found only in the *Geobacillus* sp. CX412 genome (Figure 6). The GH36 family includes a thermostable hemicellulase (Lemos et al., 2017). *Parageobacillus thermoglucosidasius* C56-YS93, isolated from Yellowstone National Park in the United States, is a biomass degrader which can effectively degrade lignocellulose (Brumm et al., 2015c). *Geobacillus* sp. CX412 contains 18 lignocellulose-degrading enzymes, and *Parageobacillus thermoglucosidasius* C56-YS93, isolated from Yellowstone National Park in the United States, is a biomass degrader which can effectively degrade lignocellulose (Brumm et al., 2015c).
FIGURE 4
KEGG Pathway categories histogram. CX412, Geobacillus sp. CX412; WCH70, Geobacillus sp. WCH70; 107807, Parageobacillus toebii NBRC 107807; 107763, Parageobacillus thermoglucosidasius NBRC 107763; C56-YS93, Parageobacillus thermoglucosidasius C56-YS93.

FIGURE 5
Carbohydrate-Active Enzymes (CAZymes). CAZymes classification result: AA, Auxiliary Activities; CBM, Carbohydrate-Binding Modules; CE, Carbohydrate Esterases; GH, Glycoside Hydrolases; GT, Glycosyl Transferases; PL, Polysaccharide Lyases; CX412, Geobacillus sp. CX412; WCH70, Geobacillus sp. WCH70; 107807, Parageobacillus toebii NBRC 107807; 107763, Parageobacillus thermoglucosidasius NBRC 107763; C56-YS93, Parageobacillus thermoglucosidasius C56-YS93.
Conclusion

Geobacillus sp. CX412 is a gram-positive, rod-shaped bacterium with an optimum growth temperature of 75°C, a maximum growth temperature of 85°C, and an average G + C content of 42.5%. There are 91 tRNA genes and 26 rRNA genes. Seventy-three predicted coding transposons indicate that *Geobacillus* sp. CX412 has a highly variable chromosome and that *Geobacillus* sp. CX412 has a strong ability to adapt to the environment. Compared with the near-derived strains with KEGG analysis, it was found that *Geobacillus* sp. CX412 has the unique β-lactam resistance and more active metabolism (more than 50.5–100.1%). It was also implied that the *Geobacillus* sp. CX412 has a broader range of applications. Analysis of the metabolic potential of *Geobacillus* sp. CX412 showed that *Geobacillus* sp. CX412 contained 45 genes related to lignocellulose degradation. Among them, there are 12 enzymes related to cellulolysis, 16 kinds of enzymes related to hemicellulose, and 17 lignin oxidases. *Geobacillus* sp. CX412 has the potential to efficiently degrade lignocellulose. These findings add to the growing library of known lignocellulose degradants and support further research into their biotechnological potential.

Data availability statement

The data presented in this study are deposited in the GenBank repository, accession numbers: CP103461–CP103464.

Author contributions

XL: methodology, software, data curation, writing – original draft, formal analysis, and validation. WZ: conceptualization,
methodology, and validation. X-RZ: investigation and data curation. H-XH: investigation and validation. BD: conceptualization, resources, writing – review and editing, and supervision. All authors contributed to the article and approved the submitted version.

Funding

This research was supported by the Project National Natural Science Foundation of China (Nos. 52270136 and 52192684), the National Key Research and Development Project (2020YFC1908700 and 2021YFC3200700), and the Consulting Research Project of Chinese Academy of Engineering (2021-SH-XY-2).

Conflict of interest

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.1035311/full#supplementary-material
glucose-starved Bacillus subtilis. *J. Bacteriol.* 190, 321–331. doi: 10.1128/JB.02337-07

Hawzmba, J. F., Theron, J., and Brozel, V. S. (2002). Thermophilic protease-producing Geobacillus from Buranga hot springs in western Uganda. *Curr. Microbiol.* 45, 144–150. doi: 10.1007/s00284-001-0116-3

Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. *Nucleic Acids Res.* 28, 27–30. doi: 10.1093/nar/28.1.27

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017). Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res.* 27, 722–736. doi: 10.1101/gr.215087.116

Kuisiene, N., Raugalas, J., and Citavičius, D. (2004). Geobacillus litunicus sp novo. *Int. J. Syst. Evol. Microbiol.* 54, 1991–1995. doi: 10.1099/ijs.0.02976-0

Lemos, L. N., Pereira, R. V., Quaggio, R. B., Martins, L. F., Moura, L. M. S., da Silva, A. R., et al. (2017). Genome-Centric Analysis of a Thermophilic and Cellulolytic Bacterial Consortium Derived From Composting. *Fron. Microbiol.* 8.644. doi: 10.3389/fmicb.2017.00644

Li, R., Li, L., Huang, R., Sun, Y., Mei, X., Shen, B., et al. (2014). Variations of culturable thermophilic microbe numbers and bacterial communities during the thermophilic phase of composting. *World J. Microbiol. Biotechnol.* 30, 1737–1746. doi: 10.1007/s11274-013-1593-9

Lombard, V., Ramula, H. G., Drula, E., Coutinho, P. M., and Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res.* 42, D490–D495. doi: 10.1093/nkj/ekt1178

Markowitz, V. M., Chen, I. M. A., Palaniappan, K., Chu, K., Stet, E., Pillay, M., et al. (2014). IMG 4 version of the integrated microbial genomes comparative analysis system. *Nucleic Acids Res.* 42, D560–D567. doi: 10.1093/nar/gkt963

Massouras, A., Hens, K., Gubelmann, C., Uplekar, S., Decouttere, F., Rougemont, J., et al. (2010). Primer-initiated sequence synthesis to detect and assemble structural variants. *Nat. Method.* 7, 485–486. doi: 10.1038/nmeth.f.308

Maugeri, T. L., Goghandolo, C., Cacarno, D., and Stackebrandt, E. (2002). Three novel halotolerant and thermophilic Geobacillus strains from shallow marine vents. *Syst. Appl. Microbiol.* 25, 450–455. doi: 10.1078/0723-2020-00119

Meier-Kolthoff, J. P., Carbase, J. S., Perinado-Olarte, R. L., and Goker, M. (2022). TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. *Nucleic Acids Res.* 50, D801–D807. doi: 10.1093/nkj/ekab902

Moritya, Y., Itoh, M., Okuda, S., Yoshihiza, A. C., and Kanehisa, M. (2007). KAAS: An automatic genome annotation and pathway reconstruction server. *Nucleic Acids Res.* 35, W182–W185

Najar, I. N., Das, S., and Thakur, N. (2020). Reclassification of Geobacillus galactosidicus and Geobacillus yumthangensis as Parageobacillus galactosidicus comb. nov. and Parageobacillus yumthangensis comb. nov., respectively. *Int. J. Syst. Evol. Microbiol.* 70, 6516–6523. doi: 10.1099/ijsem.0.004550

Nazina, T. N., Lebedeva, E. V., Polkaraus, A. B., Tourova, T. P., Grigoryan, A. A., Sokolova, D. S., et al. (2004). Geobacillus gargentos sp.nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. *Int. J. Syst. Evol. Microbiol.* 54, 2019–2024. doi: 10.1099/ijs.0.02932-0

Nazina, T. N., Tourova, T. P., Polkaraus, A. B., Novikova, E. V., Grigoryan, A. A., Ivanova, A. E., et al. (2001). Taxonomic study of aerobic thermophilic bacilli. Descriptions of Geobacillus subterraneus gen. nov., sp nov and Geobacillus uzenensis sp nov from petroleum reservoirs and transfer of Bacillus *steatorrhominophilus* Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermogoldformans and *Bacillus thermoleovorans* to Geobacillus as the new combinations G- *steatorrhominophilus*, G-thermocatenulatus, G-thermoleovorans, G-kaustophilus, G-thermogoldformans and G-thermoleovorans. *Int. J. Syst. Evol. Microbiol.* 51, 433–446. doi: 10.1099/00207713-51-2-433

Niehaus, F., Bertoldo, C., Kahler, M., and Antranikian, G. (1999). Extremophiles as a source of novel enzymes for industrial application. *Appl. Microbiol. Biotechnol.* 51, 711–729.

Popova, N. A., Nikolaev, I. A., Tourova, T. P., Lyosenko, A. M., Osipov, G. A., Verkhovtseva, N. V., et al. (2002). [Geobacillus uralicus, a new species of thermophilic bacteria]. *Mikrobiologiia* 71, 391–398.

Richter, M., Rosello-Mora, R., Gloeckner, F. O., and Peplies, J. (2016). *SpeciesWS*: A web server for prokaryotic species circumscription based on pairwise genome comparison. *Bioinformatics* 32, 929–931. doi: 10.1093/bioinformatics/btw681

Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* 30, 2068–2069

Takami, H., Nishi, S., Lu, J., Shinamura, S., and Takaki, Y. (2004). Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. *Extremophiles* 8, 351–356. doi: 10.1007/s00792-004-0394-3

Tatusov, R. L., Galperin, M. Y., Natale, D. A., and Koonin, E. V. (2000). The COG database: A tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Res.* 28, 33–36. doi: 10.1093/nar/28.1.33

Taylor, M. P., Eley, K. L., Martin, S., Tuffin, M. I., Burton, S. G., and Cowan, D. A. (2009). Thermophilic ethanologenes: Future prospects for second-generation bioethanol production. *Trends Biotechnol.* 27, 398–405. doi: 10.1016/j.tibtech.2009.03.006

Wang, J., Goh, K. M., Salem, D. R., and Sani, R. K. (2019). Genome analysis of a thermophilic exopolysaccharide-producing bacterium - Geobacillus sp. *WSUCF1*. *Sci. Rep.* 9:1608. doi: 10.1038/s41598-018-36983-z

Wang, J., Salem, D. R., and Sani, R. K. (2021). Two new exopolysaccharides from a thermophilic bacterium *Geobacillus* sp. *WSUCF1*: Characterization and bioactivities. *N. Biotechnol.* 61, 29–39. doi: 10.1016/j.nbt.2020.11.004

Yang, L., Zhang, S., Chen, Z., Wen, Q., and Wang, Y. (2016). Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge. *Bioresour. Technol.* 204, 185–191. doi: 10.1016/j.biortech.2016.01.004