Recursive boson system in the Cuntz algebra \mathcal{O}_∞

Katsunori Kawamura

College of Science and Engineering Ritsumeikan University,
1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan

Abstract

Bosons and fermions are often written by elements of other algebras. M. Abe gave a recursive realization of the boson by formal infinite sums of the canonical generators of the Cuntz algebra \mathcal{O}_∞. We show that such formal infinite sum always makes sense on a certain dense subspace of any permutative representation of \mathcal{O}_∞. In this meaning, we can regard as if the algebra \mathcal{B} of bosons was a unital \ast-subalgebra of \mathcal{O}_∞ on a given permutative representation by keeping their unboundedness. By this relation, we compute branching laws arising from restrictions of representations of \mathcal{O}_∞ on \mathcal{B}. For example, it is shown that the Fock representation of \mathcal{B} is given as the restriction of the standard representation of \mathcal{O}_∞ on \mathcal{B}.

Mathematics Subject Classifications (2000). 47L55, 81T05, 17B10

Key words. recursive boson system, Cuntz algebra.

1 Introduction

Bosons and fermions are not only important in physics but also interesting in mathematics. Studies of their algebras spurred the development of the theory of operator algebras [8]. Representations of bosons are used to describe representations of several algebras [6, 12, 15]. Bosons and fermions are often written by elements of other algebras and such descriptions are useful for several computations. For example, the boson-fermion correspondence [16, 17] is well-known. It is shown that bosons and fermions are corresponded as operators on the infinite wedge representation of fermions.
1.1 Motivation

In our previous paper [1], we have presented a recursive construction of the CAR (=canonical anticommutation relation) algebra for fermions in terms of the Cuntz algebra \(\mathcal{O}_2 \) and shown that it may provide us a useful tool to study properties of fermion systems by using explicit expressions in terms of generators of the algebra. Let \(s_1, s_2 \) be the canonical generators of \(\mathcal{O}_2 \), that is, they satisfy that

\[
s_i^* s_j = \delta_{ij} I \quad (i, j = 1, 2), \quad s_1 s_1^* + s_2 s_2^* = I.
\]

Let \(\zeta \) be the linear map on \(\mathcal{O}_2 \) defined by

\[
\zeta(x) \equiv s_1 x s_1^* - s_2 x s_2^*
\]

for \(x \in \mathcal{O}_2 \).

We recursively define the family \(\{ a_1, a_2, a_3, \ldots \} \) by

\[
a_1 \equiv s_1 s_2^*, \quad a_n \equiv \zeta(a_{n-1}) \quad (n \geq 2).
\]

Then \(\{ a_n : n \in \mathbb{N} \} \) satisfies that

\[
a_n a_m^* + a_m^* a_n = \delta_{nm} I, \quad a_n a_m + a_m a_n = a_n a_m^* + a_m^* a_n = 0 \quad (n, m \in \mathbb{N})
\]

where \(\mathbb{N} = \{1, 2, 3, \ldots\} \). We call such \(\{ a_n : n \in \mathbb{N} \} \) by a recursive fermion system (=RFS) in \(\mathcal{O}_2 \). From this description, the C*-algebra \(\mathcal{A} \) generated by fermions is embedded into \(\mathcal{O}_2 \) as a C*-subalgebra with common unit:

\[
\mathcal{A} \equiv C^*\langle\{a_n : n \in \mathbb{N}\}\rangle \hookrightarrow \mathcal{O}_2
\]

Furthermore \(\mathcal{A} \) coincides with the fixed-point subalgebra of \(\mathcal{O}_2 \) with respect to the \(U(1) \)-gauge action. Because every \(a_n \) is written as a polynomial in the canonical generators of \(\mathcal{O}_2 \) and their \(* \)-conjugates, their description is very simple and it is easy to compute the restriction \(\pi\vert_{\mathcal{A}} \) of a representation \(\pi \) of \(\mathcal{O}_2 \) on \(\mathcal{A} \). By using the RFS, we obtain several new results about fermions [2, 3, 4, 5]. For example, assume that \((\mathcal{H}, \pi) \) is a \(* \)-representation of \(\mathcal{O}_2 \) with a cyclic vector \(\Omega \). If \(\Omega \) satisfies \(\pi(s_1)\Omega = \Omega \), then \(\pi\vert_\mathcal{A} \) is equivalent to the Fock representation of \(\mathcal{A} \) with the vacuum \(\Omega \). If \(\Omega \) satisfies \(\pi(s_1 s_2)\Omega = \Omega \), then \(\pi\vert_\mathcal{A} \) is equivalent to the direct sum of the infinite wedge representation and the dual infinite wedge representation of \(\mathcal{A} \) [13]. In this way, well-known results of fermions are explicitly reformulated by the representation theory of \(\mathcal{O}_2 \).

From this, we speculate that the boson can be also simply written by the generators of a certain Cuntz algebra like the RFS, where the boson means a family \(\{ a_n : n \in \mathbb{N} \} \) satisfying that

\[
a_n a_m^* - a_m^* a_n = \delta_{nm} I, \quad a_n a_m - a_m a_n = a_n a_m^* + a_m^* a_n = 0 \quad (1.1)
\]

Furthermore, the boson is written as a polynomial in the canonical generators of \(\mathcal{O}_2 \) and their \(* \)-conjugates, their description is very simple and it is easy to compute the restriction \(\pi\vert_{\mathcal{A}} \) of a representation \(\pi \) of \(\mathcal{O}_2 \) on \(\mathcal{A} \).
for each \(n, m \in \mathbb{N} \). However, the boson is always represented as a family of unbounded operators on a Hilbert space. Hence the \(*\)-algebra generated by \(\{a_n : n \in \mathbb{N}\} \) never be a \(*\)-subalgebra of any C*-algebra. On the other hand, the C*-algebra approach of boson is well-known as the CCR algebra (CCR = canonical commutation relations, see § 5.2 in [8]). Because the CCR algebra is not a separable C*-algebra, it is impossible to embed it into any Cuntz algebra as a C*-subalgebra. From these problems, it seems that a RFS-like description of bosons by any Cuntz algebra is impossible.

1.2 Recursive boson system

In spite of such problems, Mitsuo Abe gave a “formal” realization of the boson by the canonical generators of the Cuntz algebra \(\mathcal{O}_\infty \) in 2006 as follows. Let \(\{s_n : n \in \mathbb{N}\} \) be the canonical generators of \(\mathcal{O}_\infty \), that is,

\[
s_i^* s_j = \delta_{ij} I \quad (i, j \in \mathbb{N}), \quad \sum_{i=1}^k s_is_i^* \leq I \quad (\text{for any } k \in \mathbb{N}).
\]

Define the family \(\{a_n : n \in \mathbb{N}\} \) of formal sums by

\[
a_1 = \sum_{m=1}^{\infty} \sqrt{m} s_m s_m^* + 1, \quad a_n = \rho(a_{n-1}) \quad (n \geq 2)
\]

where \(\rho \) is the formal canonical endomorphism of \(\mathcal{O}_\infty \) defined by

\[
\rho(x) = \sum_{n=1}^{\infty} s_n x s_n^* \quad (x \in \mathcal{O}_\infty).
\]

By formal computation, we can verify that \(a_n \)'s satisfy (1.1) where we assume that infinite sums can be freely exchanged. However infinite sums in these equations do not converge in \(\mathcal{O}_\infty \) in general. Hence (1.2) does not make sense as elements of \(\mathcal{O}_\infty \).

We show that the Abe’s formal description (1.2) can be justified as unbounded operators defined on a certain dense subspace of any permutative representation of \(\mathcal{O}_\infty \). Define \(X_N \equiv \{1, \ldots, N\} \) for \(2 \leq N < \infty \) and \(X_\infty \equiv \mathbb{N} \). Let \(\{s_n : n \in X_N\} \) be the set of canonical generators of \(\mathcal{O}_N \) for \(2 \leq N \leq \infty \).

Definition 1.1 [7, 10, 11] A representation \((\mathcal{H}, \pi) \) of \(\mathcal{O}_N \) is permutative if there exists a complete orthonormal basis \(\{e_n\}_{n \in \Lambda} \) of \(\mathcal{H} \) and a family \(f = \{f_i\}_{i=1}^{N} \) of maps on \(\Lambda \) such that \(\pi(s_i)e_n = e_{f_i(n)} \) for each \(n \in \Lambda \) and \(i = 1, \ldots, N \). We call \(\{e_n\}_{n \in \Lambda} \) and the linear hull \(\mathcal{D} \) of \(\{e_n\}_{n \in \Lambda} \) by the reference basis and the reference subspace of \((\mathcal{H}, \pi) \), respectively.
Remark that for any permutation representation \((H, \pi)\) of \(\mathcal{O}_N\) with the reference subspace \(D\), \(\pi(s_n)D \subset D\) and \(\pi(s_n^*)D \subset D\) for each \(n\), but \(\pi(x)D \not\subset D\) for \(x \in \mathcal{O}_\infty\) in general.

From Definition 1.1 and (1.2), we immediately obtain the following fact.

Fact 1.2 For any permutative representation \((H, \pi)\) of \(\mathcal{O}_\infty\), define the family \(\{A_n : n \in \mathbb{N}\}\) of operators on the reference subspace \(D\) of \((H, \pi)\) by

\[
A_1v \equiv \sum_{m=1}^{\infty} \sqrt{m} \pi(s_ms_{m+1}^*)v,
\]

\[
A_nv \equiv \sum_{m_{n-1}=1}^{\infty} \cdots \sum_{m_1=1}^{\infty} \sum_{m=1}^{\infty} \sqrt{m} \pi(s_{m_{n-1}} \cdots s_{m_1} s_m s_{m+1}^* s_{m_1} \cdots s_{m_{n-1}}^*)v
\]

for \(v \in D\) and \(n \geq 2\). Then the family \(\{A_n : n \in \mathbb{N}\}\) satisfies (1.1) on \(D\).

Infinite sums in Fact 1.2 are actually finite for each \(v \in D\). By comparing Fact 1.2 and (1.2), we see that (1.2) is well-defined on the reference subspace of any permutative representation of \(\mathcal{O}_\infty\). Furthermore, the mapping

\[
a_n \mapsto A_n \quad (n \in \mathbb{N})
\]

defines a unital \(*\)-representation \(\pi_B\) of the algebra \(B\) of bosons on \(D\), that is, \(\pi_B(a_n) \equiv A_n\) for each \(n\). In consequence, we obtain the operation

\[
(H, \pi) \mapsto (D, \pi_B)
\]

for any permutative representation \((H, \pi)\) of \(\mathcal{O}_\infty\) to the representation \((D, \pi_B)\) of \(B\). We call \((D, \pi_B)\) the restriction of \((H, \pi)\) on \(B\) and often write it by \((H, \pi|_B)\) for convenience in this paper. Strictly speaking, this is not a restriction because \(B\) is neither a subalgebra of \(\mathcal{O}_\infty\) nor \(\pi(\mathcal{O}_\infty)D \subset D\).

Remark 1.3 If a \(C^*\)-algebra \(A\) irreducibly acts on a Hilbert space \(\mathcal{H}\), then any (unbounded) operator on \(\mathcal{H}\) can be written by the strong operator limit of elements of \(A\) on \(\mathcal{H}\). However such description always depends on the choice of representation. Fact 1.2 claims that the description (1.2) always hold on any permutative representations of \(\mathcal{O}_\infty\) nevertheless there exist infinitely many inequivalent permutative representations of \(\mathcal{O}_\infty\) and they are not always irreducible.

Definition 1.4 The family \(\{A_n : n \in \mathbb{N}\}\) in Fact 1.2 is called the recursive boson system (=RBS) in \(\mathcal{O}_\infty\) with respect to a permutative representation \((H, \pi)\) of \(\mathcal{O}_\infty\).
We identify A_n in Fact 1.2 with a_n.

Remark that B is neither a subalgebra of O_∞ nor that of the double commutations $\pi(O_\infty)$ of $\pi(O_\infty)$. However for any permutative representation (\mathcal{H}, π) of O_∞, we obtain a representation of the boson as B by the RBS. In this sense, it seems that B is a subalgebra of O_∞ in special situation:

$$B = \text{Alg}\langle\{a_n, a_n^* : n \in \mathbb{N}\}\rangle \cong \text{subalgebra of } O_\infty.$$

1.3 Representations of bosons arising from permutative representations of O_∞

We show the significance of the RBS in the representation theory of operator algebras. The algebra B of bosons always appears with a representation in theoretical physics. Especially, the Fock representation plays the most important role among representations of B. It has both the mathematical simple structure and the physical meaning. By the RBS, we can understand the Fock representation from a viewpoint of the representation theory of O_∞.

First, we explain the notion of branching law. For a group G, if there exists an embedding of G into some other group G', then any representation π of G' induces the restriction $\pi|_G$ of π on G. The representation $\pi|_G$ is not irreducible in general even if π is irreducible. If $\pi|_G$ is decomposed into the direct sum of a family $\{\pi_\lambda : \lambda \in \Lambda\}$ of irreducible representations of G, then the equation

$$\pi|_G = \bigoplus_{\lambda \in \Lambda} \pi_\lambda$$

is called the branching law of π. The branching law can be also considered for a pair of subalgebra and algebra. Thanks to the RBS, we can consider (an analogy of) branching laws of permutative representations of O_∞ which are restricted on B.

Theorem 1.5 (i) For $j \geq 1$, let (\mathcal{H}, π_j) be a representation of O_∞ with a cyclic vector Ω satisfying

$$\pi_j(s_j)\Omega = \Omega.$$

Then there exists a dense subspace \mathcal{D}_j of \mathcal{H} and an action η_j of B on \mathcal{D}_j such that $\eta_j(B)\Omega = \mathcal{D}_j$ and

$$\eta_j(a_n a_n^*)\Omega = j^\Omega \quad (n \geq 1).$$

In particular, η_1 is the Fock representation of B with the vacuum Ω.

5
(ii) Let \((\mathcal{H}, \pi_{12})\) be a representation of \(\mathcal{O}_\infty\) with a cyclic vector \(\Omega\) satisfying
\[
\pi_{12}(s_1 s_2)\Omega = \Omega.
\]
Then there exist two subspaces \(V_1\) and \(V_2\) of \(\mathcal{H}\) and two actions \(\eta_{12}\) and \(\eta_{21}\) of \(\mathcal{B}\) on \(V_1\) and \(V_2\), respectively such that \(V_1 \oplus V_2\) is dense in \(\mathcal{H}\), \(V_1 = \pi_{12}(\mathcal{B})\Omega\), \(V_2 = \pi_{21}(\mathcal{B})\Omega'\) for \(\Omega' \equiv \pi(s_2)\Omega\) and the following holds:
\[
\begin{align*}
\eta_{12}(a_{2n-1})\Omega &= \eta_{21}(a_{2n})\Omega' = 0, \\
\eta_{12}(a_{2n}^* a_{2n})\Omega &= \Omega, \\
\eta_{21}(a_{2n-1}^* a_{2n-1})\Omega' &= \Omega'
\end{align*}
\]
\(n \geq 1\).

(iii) Any two of representations in \(\{\eta_j, \eta_{12}, \eta_{21} : j \geq 1\}\) of \(\mathcal{B}\) are not unitarily equivalent.

(iv) All of representations \(\{\eta_j, \eta_{12}, \eta_{21} : j \geq 1\}\) of \(\mathcal{B}\) are irreducible.

Every representations of \(\mathcal{O}_\infty\) in Theorem 1.5 (i) and (ii) are irreducible permutative representations. Hence Theorem 1.5 shows branching laws of representations of \(\mathcal{O}_\infty\) restricted on \(\mathcal{B}\):
\[
\pi_j|_\mathcal{B} = \eta_j \quad (j \geq 1), \quad \pi_{12}|_\mathcal{B} = \eta_{12} \oplus \eta_{21}.
\]

By comparison to the fermion case in §1.1 this result shows that the RBS is very similar to the RFS in a sense of the representation theory of operator algebras. This result shows the naturality of the description in (1.2).

In §2 we show permutative representations of \(\mathcal{O}_\infty\) and several representations of \(\mathcal{B}\). In §2.3 we prove Theorem 1.5. In §3 we show examples. In §3.2 we give an interpretation of representations of bosons in Theorem 1.5 by formal infinite product of operators.

2 Representations and their relations

In order to show Theorem 1.5 we introduce several representations of \(\mathcal{O}_\infty\) and \(\mathcal{B}\). After this preparation, we show their relations as the proof of Theorem 1.5.
2.1 Permutative representation of Cuntz algebras

For $N = 2, 3, \ldots, +\infty$, let \mathcal{O}_N be the Cuntz algebra $[9]$, that is, a C*-algebra which is universally generated by s_1, \ldots, s_N satisfying $s_i^* s_j = \delta_{ij} I$ for $i, j = 1, \ldots, N$ and

$$\sum_{i=1}^{N} s_i s_i^* = I \quad (\text{if } N < +\infty), \quad \sum_{i=1}^{k} s_i s_i^* \leq I, \quad k = 1, 2, \ldots \quad (\text{if } N = +\infty)$$

where I is the unit of \mathcal{O}_N. Because \mathcal{O}_N is simple, that is, there is no non-trivial closed two-sided ideal, any homomorphism from \mathcal{O}_N to a C*-algebra is injective. If t_1, \ldots, t_n are elements of a unital C*-algebra A such that t_1, \ldots, t_n satisfy the relations of canonical generators of \mathcal{O}_N, then the correspondence $s_i \mapsto t_i$ for $i = 1, \ldots, N$ is uniquely extended to a ∗-embedding of \mathcal{O}_N into A from the uniqueness of \mathcal{O}_N. Therefore we call such a correspondence among generators by an embedding of \mathcal{O}_N into A.

Define $X_N \equiv \{1, \ldots, N\}$ for $2 \leq N < +\infty$ and $X_\infty \equiv \mathbb{N}$. For $N = 2, \ldots, +\infty$ and $k = 1, \ldots, \infty$, define the product set $X_N^k \equiv (X_N)^k$ of X_N. Let $\{s_n : n \in X_N\}$ be the set of canonical generators of \mathcal{O}_N for $2 \leq N \leq +\infty$.

\textbf{Definition 2.1} For $J = (j_l)_{l=1}^k \in X_N^k$ with $1 \leq k < +\infty$, we write $P_N(J)$ the class of representations (\mathcal{H}, π) of \mathcal{O}_N with a cyclic unit vector $\Omega \in \mathcal{H}$ such that $\pi(s_J) \Omega = \Omega$ and $\{\pi(s_{j_l} \cdots s_{j_k}) \Omega\}_{l=1}^{k}$ is an orthonormal family in \mathcal{H} where $s_J \equiv s_{j_1} \cdots s_{j_k}$.

We call the vector Ω in Definition 2.1 by the GP vector of (\mathcal{H}, π). A representation (\mathcal{H}, π) of \mathcal{O}_N is called a cycle if there exists $J \in X_N^k$ for $1 \leq k < +\infty$ such that (\mathcal{H}, π) belongs to $P_N(J)$. Any permutative representation is uniquely decomposed into cyclic permutative representations up to unitary equivalence. For any J, $P_N(J)$ contains only one unitary equivalence class $[7, 10, 11, 13]$. We show properties of $P_\infty(j)$ $(j \geq 1)$ and $P_\infty(12)$ more closely as follows.

\textbf{Lemma 2.2} Let $T \equiv \{P_\infty(j), P_\infty(12) : j \geq 1\}$.

(i) For each $X \in T$, any two representations belonging to X are unitarily equivalent.

(ii) Any two of representations in T are not unitarily equivalent.

(iii) All of representations in T are irreducible.
The proof of Lemma 2.2 are given in Appendix A. From Lemma 2.2 (i), we use symbols $P_{\infty}(j), P_{\infty}(12)$ as their representatives.

For $2 \leq N < \infty$, let t_1, \ldots, t_N be the canonical generators of O_N. Define the representation $(l_2(N), \pi)$ of O_N by

$$\pi(t_i)e_n = e_{N(n-1)+i} \quad (i = 1, \ldots, N, n \in \mathbb{N}).$$

Then $(l_2(N), \pi)$ is $P_N(1)$ of O_N. If we identify O_∞ with a C^*-subalgebra of O_N by the embedding of O_∞ into O_N defined by

$$s_{(N-1)(k-1)+i} \equiv t_{N}^{k-1}t_i \quad (k \geq 1, i = 1, \ldots, N-1),$$

then $(l_2(N), \pi|_{O_\infty})$ is $P_\infty(1)$ of O_∞.

2.2 Representations of bosons

We summarize several representations of bosons and their properties. We write B the $*$-algebra generated by $\{a_n : n \in \mathbb{N}\}$ which satisfies (1.1). A representation of B is a pair (H, π) such that H is a complex Hilbert space with a dense subspace D and π is a $*$-homomorphism from B to the $*$-algebra $\{x \in \text{End}_{\mathcal{C}}(D) : x^*D \subset D\}$. A cyclic vector of (H, π) is a vector $\Omega \in D$ such that $\pi(B)\Omega = D$.

Definition 2.3

(i) For $j \geq 1$, we write F_j the class of representations (H, π) of B with a cyclic vector Ω satisfying $\pi(a_n a_n^*)\Omega = j\Omega$ for each $n \in \mathbb{N}$.

(ii) We write F_{12} the class of representations (H, π) of B with a cyclic vector Ω satisfying

$$\pi(a_{2n-1})\Omega = 0, \quad \pi(a_{2n}a_{2n})\Omega = \Omega$$

for each $n \in \mathbb{N}$.

(iii) We write F_{21} the class of representations (H, π) of B with a cyclic vector Ω satisfying

$$\pi(a_{2n})\Omega = 0, \quad \pi(a_{2n-1}^*a_{2n-1})\Omega = \Omega$$

for each $n \in \mathbb{N}$.

A representation (H, π) of B is called irreducible if the commutant of $\pi(B)$ in $B(H)$ is the scalar multiples of I.

8
Lemma 2.4 Let $S \equiv \{F_j, F_{12}, F_{21} : j \geq 1\}$.

(i) For each $X \in S$, any two representations belonging to X are unitary equivalent. From this, we can identify a representation belonging to $X \in S$ with X.

(ii) Any two of representations in S are not unitarily equivalent.

(iii) All of representations in S are irreducible.

Lemma 2.4 is proved in Appendix B. We consider the case $j = 1$ in Definition 2.3 (i). Then $\pi(a_n a_n^*) \Omega = \Omega$ for each n. From this, $\pi(a_n^* a_n) \Omega = 0$. This implies that $\pi(a_n) \Omega = 0$ for each n. Because Ω is a cyclic vector, F_1 is the Fock representation of \mathcal{B} with the vacuum Ω.

In this study, we became the first to find F_j, F_{12}, F_{21} from the computation of branching laws of permutative representations of O_∞. After finding the equations of bosons and the vector Ω, we found the conditions of F_j, F_{12}, F_{21} without using permutative representations of O_∞.

2.3 Proof of Theorem 1.5

Before the proof, we summarize basic relations of the RBS $\{a_n : n \in \mathbb{N}\}$ and the canonical generators $\{s_n : n \in \mathbb{N}\}$ of O_∞. From (1.2), the following holds on the reference subspace of any permutative representation of O_∞:

$$s_m a_n = a_{n+1} s_m, \quad s_m a_n^* = a_{n+1}^* s_m \quad (n, m \in \mathbb{N}),$$

$$\rho(x) s_i = s_i x \quad (x \in O_\infty, i \in \mathbb{N}).$$

(i) Fix $j \geq 1$. First, we see that (\mathcal{H}, π_j) is $P_\infty(j)$ with the GP vector Ω. We simply write $\pi_j(s_n)$ by s_n for each n. Define

$$\mathcal{D}_j \equiv \text{Lin}\{s_n \Omega : J \in \mathbb{N}^n\}$$

where $\mathbb{N}^n \equiv \prod_{l \geq 1} \mathbb{N}^l$. Then \mathcal{D}_j is the reference subspace. We simply write $\{a_n : n \in \mathbb{N}\}$ the RBS on $P_\infty(j)$ and \mathcal{B} the algebra generated by them. From (1.2),

$$a_n a_n^* = \sum_{K \in \mathbb{N}^{n-1}} \sum_{m=1}^{\infty} m s_K s_m s_n^* s_m^*.$$

By definition, $s_j^m \Omega = (s_j^*)^m \Omega = \Omega$ for any $m \geq 1$. From these, we obtain that $a_n a_n^* \Omega = j^2 \Omega$ for any $n \in \mathbb{N}$.
It is sufficient to show $B \Omega = D_j$. By definition of the RBS, $B \Omega \subset D_j$. We write $(a^*_n)^{-1} \equiv a_n$ and $a_n^0 = (a^*_n)^0 = I$ for convenience. Then for any $n \in \mathbb{N}$, there exists $M \in \mathbb{R}$ such that $s_n \Omega = M (a^*_i)^{n-j} \Omega$. From this, we can derive that

$$s_K \Omega \in B \Omega \quad (K \in \mathbb{N}^*).$$

Hence $D_j \subset B \Omega$. Therefore the statement holds.

(ii) We see that (\mathcal{H}, π_{12}) is $P_{\infty}(12)$ with the GP vector Ω. The relations of a_n’s and Ω, Ω' are shown by assumption. Let $V_1 \equiv B \Omega$ and $V_2 \equiv B \Omega'$. Then we see that V_1 and V_2 are F_{12} and F_{21}, respectively. By Lemma 2.4 (ii), V_1 and V_2 are orthogonal in \mathcal{H}.

For $m \geq 1$ and $J = (j_1, \ldots, j_n) \in \mathbb{N}^n$,

$$s_J \Omega = \begin{cases} C_n a^{*(J-1)} a_2 a_4 \cdots a_{2m} \Omega & (n = 2m), \\ C_n a^{*(J-1)} a_1 a_3 \cdots a_{2m-1} \Omega' & (n = 2m - 1) \end{cases}$$

where $a^{*(J-1)} \equiv (a^*_i)^{j_1 - 1} \cdots (a^*_k)^{j_k - 1}$ and $C_n \equiv \{(j_1 - 1)! \cdots (j_n - 1)\}^{-1/2}$. From this, $s_J \Omega \in V_1 \oplus V_2$ for any $J \in \mathbb{N}^*$. This implies that the reference subspace of \mathcal{H} is a subspace of $V_1 \oplus V_2$. Hence $V_1 \oplus V_2$ is dense in \mathcal{H}.

(iii) From (i), (ii) and Lemma 2.4 (i), we see that η_j is F_j ($j \geq 1$), η_{12} is F_{12} and η_{21} is F_{21}. From these and Lemma 2.4 (ii), the statement holds.

(iv) From Lemma 2.4 (iii), the statement holds.

\section{Example}

3.1 Fock representation of RBS

From Theorem 1.5 (i), we obtain a correspondence between state vectors in the Bose-Fock space and vectors in the permutative representation $P_{\infty}(1)$ as follows:

$$(a_1^*)^{j_1-1} \cdots (a_k^*)^{j_k-1} \Omega = \{(j_1 - 1)! \cdots (j_k - 1)\}^{1/2} s_J \Omega \quad (3.1)$$

for $J = (j_1, \ldots, j_k) \in \mathbb{N}^k$. This shows that any physical theory with the Bose-Fock space is rewritten by O_{∞}. Furthermore the Fock vacuum is interpreted as the eigenvector of the generator s_1 of O_{∞}. For example, the one-particle state is given as follows:

$$a_n^* \Omega = s_1^{n-1} s_2 \Omega \quad (n \geq 1).$$
On the other hand, if the Fock representation of B is given, then it is always extended to the action of O_∞ as follows:

$$s_m \Omega = \{(m-1)!\}^{-1/2}(a_1^*)^{m-1} \Omega,$$

$$s_m(a_{n_1}^*)^{k_1} \cdots (a_{n_p}^*)^{k_p} \Omega = \{(m-1)!\}^{-1/2} (a_1^*)^{m-1}(a_{n_1+1}^*)^{k_1} \cdots (a_{n_p+1}^*)^{k_p} \Omega,$$

$$s_m^* \Omega = \delta_{m,1} \Omega,$$

$$s_m^*(a_{n_1}^*)^{k_1} \cdots (a_{n_p}^*)^{k_p} \Omega = \begin{cases}
 \delta_{m,1}(a_{n_1}^*)^{k_1} \cdots (a_{n_p}^*)^{k_p} \Omega & (n_1 \geq 2), \\
 \delta_{m,k_1+1}\sqrt{k_1!}(a_{n_2}^*)^{k_2} \cdots (a_{n_p}^*)^{k_p} \Omega & (n_1 = 1)
\end{cases}$$

for $1 \leq n_1 < \cdots < n_p$ and $k_1, \ldots, k_p \in \mathbb{N}$.

Example 3.1 Define the representation $(l_2(\mathbb{N}), \pi)$ of O_∞ by

$$\pi(s_n)e_m \equiv e_{2n-1(2m-1)} \quad (n, m \in \mathbb{N}). \tag{3.2}$$

Then this is $P_\infty(1)$ with the GP vector e_1. For the representation in (3.2), the vacuum is e_1 and the subspace H_1 of one-particle states is given by

$$H_1 \equiv \text{Lin}(\{e_{2n-1+1} : n \geq 1\}).$$

We show that the above correspondence holds for O_N for any $2 \leq N < \infty$.

Proposition 3.2 If we identify O_∞ with a C^*-subalgebra of O_N by (2.1), then $P_N(1)|_B = \text{Fock}$.\[11]

Proof. Because $P_N(1)|_{O_N} = P_\infty(1)$, $P_N(1)|_B = P_\infty(1)|_B = \text{Fock}$.\[11]

Let (\mathcal{H}, π) be $P_N(1)$ of O_N with the GP vector Ω. From (2.1), the following holds for $1 \leq n_1 < n_2 < \cdots < n_m$ and $k_1, \ldots, k_m \in \mathbb{N}$:

$$(a_{n_1}^*)^{k_1} \cdots (a_{n_m}^*)^{k_m} \Omega = \prod_{i=1}^{m} \sqrt{k_i!} \ t_{1}^{n_{i-1} - 1} t_{N}^{c_{i-1} - 1} t_{b_i} T_2 \cdots T_m \Omega \tag{3.3}$$

where $T_i \equiv t_1^{n_{i-1} - 1} t_{N}^{c_{i-1} - 1} t_{b_i}$ for $i = 2, \ldots, m$ and we define $c_i \in \mathbb{N}$ and $b_i \in \{1, \ldots, N-1\}$ by the equation $k_i = (N-1)(c_i - 1) + b_i - 1$.\[11]
Example 3.3 (Fock representation by O_2 and O_3) From (3.3), the following holds: When $N=2$,

$$(a_{n_1}^*)^{k_1} \cdots (a_{n_m}^*)^{k_m} \Omega = \prod_{i=1}^{m} \sqrt{k_i!} \ t_1^{n_1-1} t_2^{k_1} t_1^{n_2-n_1} t_2^{k_2} \cdots t_1^{n_m-n_{m-1}} t_2^{k_m} \Omega.$$

When $N=3$,

$$(a_{n_1}^*)^{k_1} \cdots (a_{n_m}^*)^{k_m} \Omega = \prod_{i=1}^{m} \sqrt{k_i!} \ t_1^{n_1-1} t_3^{c_1-1} t_b t_2 \cdots T_m \Omega$$

where $T_i \equiv t_1^{n_i-n_{i-1}} t_3^{c_i-1} t_b$ for $i = 2, \ldots, m$ and we define $c_i \in \mathbb{N}$ and $b_i \in \{1, 2\}$ by $k_i = 2(c_i - 1) + b_i - 1$.

3.2 Interpretation of representations by infinite product

In this subsection, we consider representations F_j ($j \geq 2$), F_{12} and F_{21} of bosons in Definition 2.3 from a viewpoint of Fock representation. Formal infinite products of operators are introduced for this purpose.

3.2.1 F_j

For the cyclic vector Ω of F_j in Definition 2.3 with $j \geq 2$, it seems that the formal vector

$$\Omega' \equiv \left(\prod_{n=1}^{\infty} a_{j_n}^{-1} \right) \Omega$$ \hspace{1cm} (3.4)

is a new vacuum of F_j up to normalization constant. The cyclic subspace by Ω' is equivalent to the Fock representation because $a_n \Omega' = 0$ for each n by formal computation. However such vector can not be defined in the representation space of F_j. Furthermore F_j is not equivalent to the Fock representation F_1 when $j \neq 1$ by Lemma 2.4 (ii). However, the formal notation (3.4) often appears in theoretical physics and it excites curiosity. If we regard that (3.4) is justified by F_j, then (3.4) obtains a meaning of the operation in the representation theory.

3.2.2 F_{12} and F_{21}

According to the case F_j, we write the Fock vacuum by the cyclic vector Ω of F_{12}. Then we obtain the formal vector Ω' as follows:

$$\Omega' \equiv \left(\prod_{n=1}^{\infty} a_{2n} \right) \Omega.$$ \hspace{1cm} (3.5)
Of course, Ω' never be defined in the representation space F_{12}.

In the same way, we write the Fock vacuum by the cyclic vector Ω of F_{21}. Then we obtain the formal vector Ω' as follows:

$$\Omega' \equiv \left(\prod_{n=1}^{\infty} a_{2n-1} \right) \Omega. \quad (3.6)$$

Acknowledgement: The author would like to Mitsuo Abe for his idea of the recursive boson system.

Appendix

A Proof of Lemma 2.2

(i) Fix $j \geq 1$. We introduce an orthonormal basis of a given representation belonging to $P_\infty(j)$. Let (\mathcal{H}, π) be $P_\infty(j)$ with the GP vector Ω. We simply denote $\pi(s_n)$ by s_n for each n. Define the subset Λ_j of $N^* \equiv \bigsqcup_{l \geq 1} N^l$ by

$$\Lambda_j \equiv \{(m), J \cup (n), n, m \geq 1, n \neq j, J \in N^*\}$$

and $v_J \equiv s_J \Omega$ for $J \in N^*$. Because $s_j \Omega = \Omega$, we see that $\{s_J s_K^* \Omega : J, K \in N^*\} = \{s_J \Omega : J \in \Lambda_j\}$. Hence $\text{Lin}(\{v_J : J \in \Lambda_j\})$ is dense in \mathcal{H}. Furthermore $\langle v_J | \Omega \rangle = 0$ when $J \neq (j)$. This implies that $\langle v_J | v_K \rangle = \delta_{J,K}$ for $J, K \in \Lambda_j$. In consequence $\{v_J : J \in \Lambda_j\}$ is a complete orthonormal basis of \mathcal{H}. The construction of $\{v_J : J \in \Lambda_j\}$ is independent of the choice of \mathcal{H} except the existence of GP vector Ω. Hence $P_\infty(j)$ is uniquely up to unitary equivalence.

Assume that (\mathcal{H}, π) is $P_\infty(12)$ with the GP vector of Ω. We identify $\pi(s_n)$ with s_n for each n. By definition, we see that $\{s_J \Omega : J \in N^*\}$ spans a dense subspace of \mathcal{H}. Define the sequence $\{T_n \in N^* : n \in N\}$ of multiindices by $T_{2k} \equiv (12)^k$ and $T_{2k-1} = (12)^{k-1} \cup (1)$ for each $k \geq 1$. If $J \in N^n$, then

$$\langle v_J | \Omega \rangle = \delta_{J,T_n}.$$

From this, the orthonormal basis $\{v_J : J \in \Lambda_{12}\}$ of \mathcal{H} is given by

$$v_J \equiv s_J \Omega \quad (J \in \Lambda_{12})$$

where $\Lambda_{12} \equiv \{(n2), (m), J \cup (k), J \cup (12) : n, m, k, l \in N, k \neq 2, l \neq 1, J \in N^*\}$. Hence the orthonormal basis of \mathcal{H} is determined only by the assumptions of Ω. Hence $P_\infty(12)$ is unique up to unitary equivalence.
(ii) Assume that $P_\infty(i) \sim P_\infty(j)$. Then there exists a representation of O_∞ with two cyclic vectors Ω and Ω' satisfying $s_i \Omega = \Omega$ and $s_j \Omega' = \Omega'$. Because $i \neq j$, $\langle \Omega | \Omega' \rangle = 0$. Furthermore we can verify that $\langle v_j | \Omega' \rangle = \delta_{j(j)} \langle \Omega | \Omega' \rangle$ for any $J \in \Lambda_i \cap \mathbb{N}^n$ with respect to the notation in the proof of (i) for i. Hence $\langle v_j | \Omega' \rangle = 0$ for any $J \in \Lambda_i$. This implies that $\Omega' = 0$. This contradicts with the choice of Ω'. Therefore $P_\infty(i) \not\sim P_\infty(j)$.

Fix $i \geq 1$. Assume that $P_\infty(12) \sim P_\infty(i)$. Then there exists a representation of O_∞ with two cyclic vectors Ω and Ω' satisfying $s_{12} \Omega = \Omega$ and $s_i \Omega' = \Omega'$. Then $\langle \Omega | \Omega' \rangle = \langle s_{12} \Omega | s_i^2 \Omega' \rangle = 0$. For any $J \in \mathbb{N}^n$,

$$\langle v_j | \Omega' \rangle = \delta_{j(i)} \langle \Omega | \Omega' \rangle = 0.$$

This implies $\Omega' = 0$. This contradicts with the choice of Ω'. Hence there exist no such cyclic vector. Therefore the statement holds.

(iii) We use the notation in the proof of (i). Assume that $B \in \mathcal{B}(\mathcal{H})$ satisfies $[B, x] = 0$ for any $x \in O_\infty$. Then we can verify that $\langle Bv_j | v_K \rangle = \delta_{j,k} \langle B \Omega | \Omega \rangle$ for each $J, K \in \Lambda_j$. This implies that $B = \langle \Omega | B \Omega \rangle \cdot I \in CI$. Hence the statement holds.

Assume that O_∞ acts on \mathcal{H} and $\Omega \in \mathcal{H}$ is a cyclic vector such that $s_{12} \Omega = \Omega$. Assume that $B \in \mathcal{B}(\mathcal{H})$ satisfies $[B, x] = 0$ for any $x \in O_\infty$. Then we can verify that

$$\langle Bv_J | v_K \Omega \rangle = \delta_{JK} \langle B \Omega | \Omega \rangle \quad (J, K \in \Lambda_{12}).$$

From this, $B = \langle \Omega | B \Omega \rangle I \in CI$. Hence the statement holds.

\[\blacksquare \]

B Proof of Lemma 2.4

(i) Fix $j \geq 1$. By definition, the following is derived:

$$a_n^j \Omega = 0, \quad a_n^k (a_n^*)^k \Omega = (j + k - 1) \cdots j \Omega \quad (n, k \in \mathbb{N}).$$

In addition, if $j \geq 2$, then the following holds for $1 \leq l \leq j - 1$:

$$(a_n^*)^l a_n^j \Omega = (j - 1) \cdots (j - l) \Omega.$$

If $k \geq j$, then $\langle \Omega | (a_n^*)^k \Omega \rangle = \langle a_n^k \Omega | \Omega \rangle = 0$. If $1 \leq k \leq j - 1$, then

$$\langle \Omega | (a_n^*)^k \Omega \rangle = C \langle \Omega | (a_n^*)^k (a_n^*)^{j-k} a_n^j \Omega \rangle = C \langle a_n^j \Omega | a_n^{j-k} \Omega \rangle = 0.$$
where \(C \equiv \{(j-1)\cdots k\}^{-1/2} \). This implies \(\langle \Omega|a_n^k\Omega \rangle = 0 \) when \(1 \leq k \leq j-1 \). In consequence,

\[
\langle \Omega|a_n^k\Omega \rangle = \langle \Omega|(a_n^*)^k\Omega \rangle = 0 \quad (k, n \geq 1). \quad (B.1)
\]

From these, the family of the following vectors is an orthonormal basis of the vector space \(\mathcal{B}\Omega \):

\[
v = C \cdot (a_{n_1}^*)^{k_1} \cdots (a_{n_p}^*)^{k_p}a_{m_1}^{l_1} \cdots a_{m_q}^{l_q}\Omega \quad (B.2)
\]

for \(1 \leq n_1 < \cdots < n_p \) and \(k_1, \ldots, k_p \in \mathbb{N}, 1 \leq m_1 < \cdots < m_q, l_1, \ldots, l_q \in \{1, \ldots, j-1\}, \{n_1, \ldots, n_p\} \cap \{m_1, \ldots, m_q\} = \emptyset \) and \(p, q \geq 0 \) where we use notations \(a_{n_0}^n = a_{m_0}^m = 1 \) and

\[
C = \left[\prod_{j=1}^{p} \{(j+k_t-1)\cdots j\} \cdot \prod_{r=1}^{q} \{(j-1)\cdots (j-l_r)\} \right]^{-1/2}.
\]

In particular, when \(j = 1 \), we always assume \(q = 0 \). The existence of the canonical basis consisting of \(v \)'s in \((B.2) \) implies the uniqueness of the representation. Therefore the statement holds for \(F_j \).

For the cyclic vector \(\Omega \) of \(F_{12} \), we see that

\[
a_{2m-1}^1(a_{2m-1}^*)^\dagger \Omega = l!\Omega, \quad a_{2m}^l(a_{2m}^*)^\dagger \Omega = (l+1)!\Omega, \quad a_{2m}^2\Omega = 0
\]

for \(l, m \geq 1 \). Define

\[
v = C \cdot (a_{n_1}^*)^{k_1} \cdots (a_{n_p}^*)^{k_p}(a_{m_1}^*)^{l_1} \cdots (a_{m_q}^*)^{l_q}a_{t_1}^{l_1} \cdots a_{t_r}^{l_r}\Omega \quad (B.3)
\]

for \(1 \leq n_1 < \cdots < n_p, 1 \leq m_1 < \cdots < m_q, 1 \leq t_1 < \cdots < t_r, \{m_1, \ldots, m_q\} \cap \{t_1, \ldots, t_r\} = \emptyset \) and \(k_1, \ldots, k_p, l_1, \ldots, l_q \in \mathbb{N} \) where

\[
C = \{k_1! \cdots k_p! (l_1+1)! \cdots (l_q+1)!\}^{-1/2}.
\]

Then the set of all such \(v \)'s in \((B.3) \) is an orthonormal basis of \(\mathcal{B}\Omega \). Hence the uniqueness of \(F_{12} \) holds.

For \(F_{21} \), we can construct an orthonormal basis by replacing the suffixes \(2n \) and \(2n-1 \) in the proof of \(F_{12} \). Hence the uniqueness of \(F_{21} \) holds.

(ii) Assume that \(i \neq j \) and \(F_i \sim F_j \). Then there exists a representation of \(\mathcal{B} \) with two cyclic vectors \(\Omega \) and \(\Omega' \) satisfying

\[
a_n a_n^\dagger \Omega = i\Omega, \quad a_n a_n^\dagger \Omega' = j\Omega' \quad (n \geq 1). \quad (B.4)
\]
From this, \(\langle \Omega | \Omega' \rangle = 0 \). Let
\[
x = (a_{n_1}^*)^{k_1} \cdots (a_{n_p}^*)^{k_p} a_{m_1}^{l_1} \cdots a_{m_q}^{l_q}
\]
for \(1 \leq n_1 < \cdots < n_p, 1 \leq m_1 < \cdots < m_q, k_1, \ldots, k_p \in \mathbb{N}, l_1, \ldots, l_q \in \{1, \ldots, j-1\} \) and \(\{m_1, \ldots, m_q\} \cap \{m_1, \ldots, m_q\} = \emptyset \). Define \(M \equiv n_p + m_q + 1 \). Because \(a_M a_M^* \) commutes \(x \), and \(i \neq j \), \(\langle x \Omega | \Omega' \rangle = 0 \) from (B.4). From this and (B.2), \(\Omega' = 0 \). This contradicts with the choice of \(\Omega' \). Hence \(F_i \not\sim F_j \) when \(i \neq j \).

Assume that \(F_j \sim F_{12} \) for some \(j \geq 1 \). Then there exists a representation of \(B \) with two cyclic vectors \(\Omega \) and \(\Omega' \) satisfying
\[
a_n a_n^* \Omega = j \Omega, \quad a_{2n-1} \Omega' = 0, \quad a_{2n} a_{2n}^* \Omega' = \Omega' \quad (n \geq 1).
\]
From this,
\[
a_{2n} a_{2n}^* \Omega' = 2 \Omega', \quad a_{2n-1} a_{2n-1}^* \Omega' = \Omega' \quad (n \geq 1).
\]
Hence \(\langle \Omega | \Omega' \rangle = 0 \). Let \(x \) be as in (B.5) and \(M \equiv n_p + m_q + 1 \). Because both \(a_{2M-1} a_{2M-1}^* \) and \(a_{2M} a_{2M}^* \) commute \(x \), \(\langle x \Omega | \Omega' \rangle = 0 \) from (B.6) and (B.7). This implies \(\Omega' = 0 \). This contradicts with the choice of \(\Omega' \). Therefore \(F_j \not\sim F_{12} \) for any \(j \geq 1 \). In the same way, we see that \(F_j \not\sim F_{21} \) for any \(j \geq 1 \).

Assume \(F_{12} \sim F_{21} \). Then there exists a representation of \(B \) with two cyclic vectors \(\Omega \) and \(\Omega' \) satisfying \(a_n^* a_n \Omega = \Omega \) and \(a_{2n-1} \Omega \) is the \(n \geq 1 \) and \(a_{2n-1} a_{2n-1} \Omega' = \Omega' \) and \(a_{2n} \Omega' = 0 \) for each \(n \geq 1 \). Then \(\langle \Omega | \Omega' \rangle = \langle a_n^* a_n \Omega | a_2 t_1 a_2 \cdots a_{2r} \rangle = 0 \).
\[
x = (a_{n_1}^*)^{k_1} \cdots (a_{n_p}^*)^{k_p} (a_{m_1}^{l_1}) \cdots (a_{m_q}^{l_q}) a_{2n} \cdots a_{2r}
\]
and assume the assumption in (B.3) and \(p + q + r \geq 1 \). Let \(L \equiv 2n_p + 1 + 2m_q + 2t_r + 1 \). Then
\[
\langle x \Omega | \Omega' \rangle = \langle x a_{2L}^* a_{2L} \Omega | \Omega' \rangle = \langle a_{2L}^* x a_{2L} \Omega | \Omega' \rangle = \langle x a_{2L} \Omega | a_{2L} \Omega' \rangle = 0.
\]
This holds for any such \(x \). Hence \(\Omega' = 0 \). This contradicts with the choice of \(\Omega' \). Therefore Assume \(F_{12} \not\sim F_{21} \).

(iii) Fix \(j \geq 1 \). Let \(\Omega \) be the cyclic vector \(F_j \) such that \(a_n a_n^* \Omega = j \Omega \) for each \(n \in \mathbb{N} \). Assume that \(B \in \mathcal{B}(\mathcal{H}) \) satisfies \([a_n, B] = [a_n^*, B] = 0 \) for each \(n \). Let \(x = (a_{n_1}^*)^{k_1} \cdots (a_{n_p}^*)^{k_p} (a_{m_1}^{l_1}) \cdots (a_{m_q}^{l_q}) a_{2n} \cdots a_{2r} \). Therefore the off-diagonal part of \(B \) with respect to
vectors in E is zero. Furthermore, we obtain that $\langle Bv|v \rangle = \langle B\Omega|\Omega \rangle$ for any $v \in E$. This implies that $B = \langle \Omega|B\Omega \rangle I \in CI$. Hence F_j is irreducible.

Let S be the set of all vectors v in (3.3). We see that $\langle \Omega|Bv \rangle = 0$ for $v \in S \setminus \{\Omega\}$. From this, $\langle v|Bw \rangle = 0$ for $v, w \in S$, $v \neq w$. Furthermore, from the form of $v \in S$, we obtain that $\langle v|Bv \rangle = \langle \Omega|B\Omega \rangle$ for any $v \in S$. Therefore $B = \langle \Omega|B\Omega \rangle I \in CI$. Hence F_{12} is irreducible. We can prove the irreducibility of F_{21} by replacing the suffixes $2n$ and $2n - 1$ in the proof of F_{12}. Hence F_{21} is also irreducible.

References

[1] M. Abe and K. Kawamura, Recursive fermion system in Cuntz algebra. I —Embeddings of fermion algebra into Cuntz algebra—, Comm. Math. Phys. 228, 85-101 (2002).

[2] ———, Nonlinear transformation group of CAR fermion algebra, Lett. Math. Phys. 60, 101-107 (2002).

[3] ———, Recursive fermion system in Cuntz algebra. II - Endomorphism, automorphism and branching of representation - preprint RIMS-1362, (2002).

[4] ———, Pseudo Cuntz algebra and recursive FP ghost system in string theory, Int. J. Mod. Phys. A18, No. 4 (2003) 607-625.

[5] ———, Branching laws for polynomial endomorphisms in CAR algebra for fermions, uniformly hyperfinite algebras and Cuntz algebras, [math-ph/0606047] (2006).

[6] H. Awata, S. Odake and J. Shiraishi, Free boson representation of $U_q(\hat{sl}_3)$, Lett. Math. Phys. 30, 207-216 (1994).

[7] O. Bratteli and P. E. T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra, Memoirs Amer. Math. Soc. 139 (1999), no.663.

[8] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics II, Springer New York (1981).

[9] J. Cuntz, Simple C^*-algebras generated by isometries, Comm. Math. Phys. 57, 173-185 (1977).
[10] K. R. Davidson and D. R. Pitts, *The algebraic structure of non-commutative analytic Toeplitz algebras*, Math. Ann. 311, 275-303 (1998).

[11] ———, *Invariant subspaces and hyper-reflexivity for free semigroup algebras*, Proc. London Math. Soc. (3) 78 (1999) 401-430.

[12] A. Kato, Y. Quano and J. Shiraishi, *Free boson representation of q-vertex operators and their correlation functions*, Comm. Math. Phys. 157 (1993), no. 1, 119–137.

[13] K. Kawamura, *Generalized permutative representations of the Cuntz algebras*, math.OA/0505101 (2005).

[14] ———, *Extensions of representations of the CAR algebra to the Cuntz algebra O_2 —the Fock and the infinite wedge—*, J. Math. Phys. 46 (2005) no. 7, 073509, 12 pp.

[15] N. MacKay and L. Zhao, *On the algebra A_{\hbar,\eta}(osp(2|2)^{(2)}) and free boson representations*, J. Phys. A 34 (2001), no. 32, 6313–6323.

[16] T. Miwa, M. Jimbo and E. Date, *Solitons: differential equations, symmetries and infinite dimensional algebras*, Cambridge Univ. Press (2000).

[17] A. Okounkov, *Infinite wedge and random partitions*, Selecta Math. (N.S.) 7 (2001), no. 1, 57-81.