Search for the doubly heavy baryons Ω^0_{bc} and Ξ^0_{bc} decaying to $\Lambda_c^+\pi^-$ and $\Xi_c^+\pi^-$

LHCb collaboration†

Abstract

The first search for the doubly heavy Ω^0_{bc} baryon and a search for the Ξ^0_{bc} baryon are performed using pp collision data collected via the LHCb experiment from 2016 to 2018 at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.2 fb$^{-1}$. The baryons are reconstructed via their decays to $\Lambda_c^+\pi^-$ and $\Xi_c^+\pi^-$. No significant excess is found for invariant masses between 6700 and 7300 MeV/c^2, in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20 GeV/c. Upper limits are set on the ratio of the Ω^0_{bc} and Ξ^0_{bc} production cross-section times the branching fraction to $\Lambda_c^+\pi^-$ ($\Xi_c^+\pi^-$) relative to that of the Λ^0_0 (Ξ^0_0) baryon, for different lifetime hypotheses, at 95% confidence level. The upper limits range from 0.5×10^{-4} to 2.5×10^{-4} for the $\Omega^0_{bc} \rightarrow \Lambda_c^+\pi^-$ ($\Xi^0_{bc} \rightarrow \Lambda_c^+\pi^-$) decay, and from 1.4×10^{-3} to 6.9×10^{-3} for the $\Omega^0_{bc} \rightarrow \Xi_c^+\pi^-$ ($\Xi^0_{bc} \rightarrow \Xi_c^+\pi^-$) decay, depending on the considered mass and lifetime of the Ω^0_{bc} (Ξ^0_{bc}) baryon.

Published in Chin. Phys. C45 (2021) 093002
© 2021 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence

†Authors are listed at the end of this paper.
1 Introduction

The constituent quark model was initially proposed by Murray Gell-Mann [1] and George Zweig [2] for classification of hadrons formed from light quarks (u, d, s) and understanding their quantum numbers. It was later extended to hadrons containing heavy c or b quarks [3]. In addition to baryons containing a single heavy quark, the theory also predicts baryons comprising two heavy quarks. Such doubly heavy baryons provide a unique probe for quantum chromodynamics, the gauge theory of strong interactions. In 2017, the LHCb collaboration reported the first observation of the \(\Xi_{bc}^{++} \) baryon containing two charm quarks through the decay \(\Xi_{bc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ \) [4]. The \(\Xi_{bc}^{++} \) state was later confirmed in the decay to \(\Xi_c^+ \pi^+ \) [5]. Its lifetime, mass and production cross-section were subsequently measured \([6–8]\). To date, no baryons containing one b and one c quark, or two b quarks, have been observed experimentally. An observation would enrich our knowledge of baryon spectroscopy and improve our understanding of the quark structure inside baryons.

The ground-state baryons containing one b and one c quark, the \(\Omega_{bc}^0 \) (bcd) and \(\Xi_{bc}^+ \) (bcu) states, have been considered within various theoretical models. Most studies predict the masses of the \(\Omega_{bc}^0 \) and \(\Xi_{bc}^0 \) baryons to be between 6700 and 7200 MeV/c\(^2\) \([9–25]\).

The lifetime of the \(\Omega_{bc}^0 \) baryon is predicted to be \(0.22 \pm 0.04 \) ps \([14]\), while the lifetime of \(\Xi_{bc}^0 \) is predicted to be in the range of 0.09 to 0.28 ps \([14, 23, 26, 27]\). The production cross-section of the \(\Xi_{bc}^0 \) baryon in proton-proton (pp) collisions at a centre-of-mass energy \(\sqrt{s} = 14 \) TeV is expected to lie in the range between 19 to 39 nb, derived from Ref. \([28]\), in the \(\Xi_{bc}^0 \) pseudorapidity (\(\eta \)) range of 1.9 < \(\eta \) < 4.9, depending on the required minimum value of the momentum component transverse to the beam direction (\(p_T \)) of the \(\Xi_{bc}^0 \) particle. Recently, the LHCb experiment found no significant \(\Xi_{bc}^0 \) baryon signal in the predicted mass range using the \(\Xi_{bc}^0 \rightarrow D^0 p K^- \) decay mode \([29]\).

This article reports the first search for the \(\Omega_{bc}^0 \) baryon and a new search for the \(\Xi_{bc}^0 \) baryon, both via decay chains \(\Lambda_c^+ \pi^- \) with \(\Lambda_c^+ \rightarrow p K^- \pi^+ \) or \(\Xi_c^+ \pi^- \) with \(\Xi_c^+ \rightarrow p K^- \pi^+ \) in the LHCb experiment. Examples of Feynman diagram of the four signal decay modes are shown in Fig. 1. There are few theoretical predictions on the branching fractions of these decay modes. Ref. \([30]\) predicts the branching fractions of the \(\Omega_{bc}^0 \rightarrow \Xi_c^+ \pi^- \) and \(\Xi_{bc}^0 \rightarrow \Lambda_c^+ \pi^- \) decays to be \(1.6 \times 10^{-7} \) and \(3.0 \times 10^{-7} \), respectively. However, uncertainties are not quoted. Inputs from experimental studies are necessary to deepen our understanding of the properties of \(\Omega_{bc}^0 \) and \(\Xi_{bc}^0 \) baryons, and can provide valuable reference for future searches. Besides, the distinct experimental signatures of these decays make it promising to search for them in the LHCb experiment considering the high detection efficiency of the LHCb detector.

The \(\Omega_{bc}^0 \) and \(\Xi_{bc}^0 \) baryons are not differentiated and are collectively denoted as \(H_{bc}^0 \) hereafter, unless otherwise stated. The production cross-section times branching fraction of \(H_{bc}^0 \rightarrow \Lambda_c^+ \pi^- \) (\(H_{bc}^0 \rightarrow \Xi_c^+ \pi^- \)) decay is measured relative to that of the control channel \(\Lambda_c^0 \rightarrow \Lambda_c^+ \pi^- \) (\(\Xi_c^0 \rightarrow \Xi_c^+ \pi^- \)). This takes advantage of identical final-state particles and similar topology. The search is performed in the mass range between 6700 and 7300 MeV/c\(^2\) using the pp collision data collected with the LHCb experiment at \(\sqrt{s} = 13 \) TeV, corresponding to an integrated luminosity of 5.2 fb\(^{-1}\). The \(H_{bc}^0 \) baryons are reconstructed in the fiducial region of rapidity (\(y \)) between 2.0 and 4.5 and with \(p_T \) between 2 and 20 GeV/c.

\(^1\)The inclusion of charge-conjugate modes is implied throughout this paper.
Figure 1: Examples of Feynman diagrams for the $\Omega^{0}_{bc} \rightarrow \Lambda^{+}_{c} \pi^{-}$, $\Omega^{0}_{bc} \rightarrow \Xi^{+}_{c} \pi^{-}$, $\Xi^{0}_{bc} \rightarrow \Lambda^{+}_{c} \pi^{-}$ and $\Xi^{0}_{bc} \rightarrow \Xi^{+}_{c} \pi^{-}$ decays.

2 Detector and simulation

The LHCb detector [31, 32] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region [33], a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of approximately 4 Tm, and three stations of silicon-strip detectors and straw drift tubes [34] placed downstream of the magnet. The tracking system provides a measurement of the momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary pp collision vertex (PV), the impact parameter (IP), is measured with a resolution of $(15 + 29/p_{T}) \mu m$, where p_{T} is in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors [35]. Photons, electrons, and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, and an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [36]. The online event selection is performed by a trigger [37], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. At the hardware trigger stage, events are required to have at least one hadron with E_{T} larger than 3.5 GeV. The software trigger requires a two-, three- or four-track secondary vertex with a significant displacement from any PV. At least one charged particle must have $p_{T} > 1.6$ GeV/c and be inconsistent with originating from any PV. A multivariate algorithm [38, 39] is used for the identification of secondary vertices consistent with the decay of a b hadron.

Simulated samples are produced to model the effects of the detector acceptance and the imposed selection requirements. In the simulation, pp collisions are generated using PYTHIA [40, 41] with a specific LHCb configuration [42]. A dedicated generator, GENXicc2.0, is used to simulate the H^{0}_{bc} baryon production [43], with the mass and lifetime of the H^{0}_{bc} baryon set to $m(H^{0}_{bc}) = 6900\text{MeV}/c^{2}$ and $\tau(H^{0}_{bc}) = 0.4\text{ps}$. Simulation samples with different mass (6700–7300 MeV/c^{2}) and lifetime (0.2–0.4 ps) hypotheses are
obtained using a weighting technique with the generator level information on signal. Decays of unstable particles are described by EvtGen [44], in which final-state radiation is generated using PHOTOS [15]. The interaction of the generated particles with the detector, and its response, is implemented using the GEANT4 toolkit [46][47] as described in Ref. [48]. For the two control channels, $A^0_{bc} \rightarrow \Lambda^+_c \pi^-$ and $\Xi^0_b \rightarrow \Xi^+_c \pi^-$, PYTHIA is used to simulate the pp collisions and the production of the A^0_{bc} and Ξ^0_b baryons.

3 Reconstruction and selection

For both the H^0_{bc} signal and the control channels, the Λ^+_c candidates are reconstructed from three charged particles identified as a proton, kaon and pion, respectively. The tracks are required to have good quality, and to be inconsistent with originating from any PV in the event. The tracks must also form a common vertex of good fit quality. The Λ^+_c candidate is required to have an invariant mass in the range 2271–2301 MeV/c2 (2450–2488 MeV/c2), corresponding to approximately six times the Λ^+_c mass resolution, and to be inconsistent with originating from any PV. In the sample of selected Λ^+_c candidates, there is a sizable background contamination from decays of other particles, such as D^+_c ($D^{+}_{D} \rightarrow K^-\pi^+\pi^+$) with a charged pion (kaon) misidentified as a proton, and background from $\phi \pi^+$ combinations where in $\phi \rightarrow K^-K^+$ decays a kaon is misidentified as a proton. Such background candidates are not allowed to form a common vertex of good fit quality. The Λ^+_c candidates are required to be consistent with originating from a PV. To avoid contributions from duplicate tracks, the selected candidates are rejected if the angle between any pair of the final-state particle tracks with same charge is smaller than 0.5 mrad.

An additional charged particle identified as a pion and, with p_T greater than 0.2 GeV/c, is combined with the Λ^+_c candidate to form an H^0_{bc} candidate. The H^0_{bc} candidates must have a vertex with good fit quality, a decay time larger than 0.05 ps, a p_T greater than 2 GeV/c and a scalar sum of the p_T of the final-state particles greater than 5 GeV/c. Furthermore, the H^0_{bc} candidates are required to be consistent with originating from a PV. To avoid contributions from duplicate tracks, the selected candidates are rejected if the angle between any pair of the final-state particle tracks with same charge is smaller than 0.5 mrad.

A boosted decision tree (BDT) classifier [50,51] implemented in the TMVA toolkit [52,53] is used to further suppress combinatorial background. A simulated signal sample in the mass range 6846–6954 MeV/c2 and a background sample formed by candidates in an upper mass sideband region (7500–9000 MeV/c2) are used to train the BDT classifier. Four different categories of variable are used as the BDT input. The first category exploits the non-zero lifetime of H^0_{bc} baryons and a displacement of their vertices from any PV in the event. The variables comprise the χ^2_{IP} of all final-state particles forming the Λ^+_c and H^0_{bc} candidates with respect to their associated PV, where χ^2_{IP} is defined as the difference in the vertex-fit χ^2 of a given PV reconstructed with and without the particle under consideration, and the associated PV is the one with respect to which the H^0_{bc} candidate has the smallest χ^2_{IP}; the sum of χ^2_{IP} of the four final-state particles; and χ^2 of the flight distance of the Λ^+_c and H^0_{bc} candidates. The second category consists of kinematic variables, including p_T of the final-state particles and the Λ^+_c and H^0_{bc} candidates, and the angle between the H^0_{bc} momentum vector and the displacement vector pointing from the associated PV to the H^0_{bc} decay vertex. The third category comprises
the vertex-fit χ^2 of the $\Lambda_c^+ (\Xi_c^+)$ and H_{bc}^0 candidates, and χ^2 of a kinematic fit [54] of the signal decay chain constraining the H_{bc}^0 candidate to originate from the associated PV. The fourth category consists of identification variables of the final-state particles.

The BDT threshold is chosen to maximize the figure of merit, $\varepsilon/(\alpha^2 + \sqrt{B})$ [55]. Here, ε is the selection efficiency of signal candidates determined from simulation, B is the expected background number in the signal mass region, and $\alpha = 5$ is the signal significance. This threshold is estimated using the signal sample simulated with the default mass and lifetime values. The same selection is applied to the control modes.

4 Yield determination

To improve the resolution of the mass of the H_{bc}^0 candidates, the $A_{c}^+ \pi^- (\Xi_c^+ \pi^-)$ invariant mass is calculated after constraining the $A_c^+ (\Xi_c^+) mass to its known value [49] and requiring the H_{bc}^0 candidate to be consistent with originating from its associated PV. The obtained invariant mass distributions of H_{bc}^0 candidates, $m(A_{c}^+ \pi^-)$ and $m(\Xi_c^+ \pi^-)$, are shown in Fig. 2. To search for the H_{bc}^0 signals, the mass distributions are fitted using an unbinned maximum-likelihood fit. A double-sided Crystal Ball function [56] is used to model the signal, with tail parameters fixed from simulation, and the peak position and width allowed to vary in the fit. The background shape is interpolated from a double-exponential fit to a lower ($6100–6650$ MeV/c^2) and an upper ($7500–9000$ MeV/c^2) sideband region of the $\Lambda_c^+ \pi^- (\Xi_c^+ \pi^-)$ mass distribution. No significant excess is observed across the searched mass range.

The $A_{c}^+ \pi^-$ and $\Xi_c^+ \pi^-$ invariant mass distributions of the selected $A_b^0 \rightarrow A_{c}^+ (\rightarrow pK^−\pi^+)\pi^-$ and $\Xi_b^0 \rightarrow \Xi_c^+ (\rightarrow pK^−\pi^+)\pi^-$ candidates are shown in Fig. 3. The yields are obtained from unbinned maximum-likelihood fits to the invariant mass distributions, using the fit model described above. The yields are determined to be 191000 ± 500 and 5490 ± 80 for $A_b^0 \rightarrow A_{c}^+ (\rightarrow pK^−\pi^+)\pi^-$ and $\Xi_b^0 \rightarrow \Xi_c^+ (\rightarrow pK^−\pi^+)\pi^-$, respectively.

```
Figure 2: Invariant mass distributions of selected (left) $H_{bc}^0 \rightarrow A_{c}^+ \pi^-$ and (right) $H_{bc}^0 \rightarrow \Xi_c^+ \pi^-$ candidates (black points), together with results of the background only fit (brown dashed line).
```
5 Ratio of production cross-sections

The ratio \mathcal{R} of the H_{bc}^0 baryon production cross-section multiplied by the branching fraction of the $H_{bc}^0 \rightarrow \Lambda_b^{+}\pi^−$ ($H_{bc}^0 \rightarrow \Xi_b^{+}\pi^−$) decay relative to that of the Λ_b^0 (Ξ_b^0) baryon can be written as

$$\mathcal{R}(\Lambda_b^{+}\pi^−) \equiv \frac{\sigma(pp \rightarrow H_{bc}^0 \ X \ \mathcal{B}(H_{bc}^0 \rightarrow \Lambda_b^{+}(\rightarrow pK^−\pi^+\pi^-))}{\sigma(pp \rightarrow \Lambda_b^0 \ X \ \mathcal{B}(\Lambda_b^0 \rightarrow \Lambda_b^{+}(\rightarrow pK^−\pi^+\pi^-))} \ \ (1)$$

$$\mathcal{R}(\Xi_b^{+}\pi^−) \equiv \frac{\sigma(pp \rightarrow H_{bc}^0 \ X \ \mathcal{B}(H_{bc}^0 \rightarrow \Xi_b^{+}(\rightarrow pK^−\pi^+\pi^-))}{\sigma(pp \rightarrow \Xi_b^0 \ X \ \mathcal{B}(\Xi_b^0 \rightarrow \Xi_b^{+}(\rightarrow pK^−\pi^+\pi^-))} \ \ (2)$$

where N and ε are the signal yield and the efficiency for the corresponding decay modes, respectively. The efficiency accounts for the geometrical acceptance, trigger, reconstruction, and event selection. The \mathcal{R} is determined in the fiducial region $2 < y < 4.5$ and $2 < p_T < 20 \text{ GeV/c}$.

Efficiencies are determined from the simulated samples. The p_T distributions of Λ_b^0 and Ξ_b^0 baryons are not well modeled in simulation. To improve the description, a gradient boosted weighting method [57] is used to apply a kinematic correction on the p_T distributions of the Λ_b^0 and Ξ_b^0 decay products of the simulated control samples. With this correction, a good agreement on the Λ_b^0 and Ξ_b^0 p_T distribution is seen between the data and simulation. The track detection and particle identification efficiencies are calibrated with the data [58] [60]. The imperfect modeling of input variables used in the BDT training can bias the efficiency estimation. To suppress such effects, ratios between the BDT response distribution of the background-subtracted data sample and that of the simulated sample are calculated using the control channel. The background subtraction is performed using the sPlot method [61] with $m(\Lambda_b^{+}\pi^−)$ and $m(\Xi_b^{+}\pi^−)$ as discriminating variables. These ratios are applied as correction weights to the simulated samples for all reconstructed decay modes.

Figure 3: Invariant mass distributions of (left) $\Lambda_b^0 \rightarrow \Lambda_b^{+}(\rightarrow pK^−\pi^+\pi^-)$ and (right) $\Xi_b^0 \rightarrow \Xi_b^{+}(\rightarrow pK^−\pi^+\pi^-)$ candidates with the fit results overlaid (blue solid line). The black points represent the data, the red dashed line represents the signal contribution, and the gray dashed line represents the combinatorial background.
The total efficiency ratio \(\varepsilon(\Lambda_{bc}^0) / \varepsilon(H_{bc}^0) \) is determined to be \(3.18 \pm 0.05 \), and \(\varepsilon(\Xi_{bc}^0) / \varepsilon(H_{bc}^0) \) is calculated to be \(3.00 \pm 0.02 \) for \(m(H_{bc}^0) = 6900 \text{ MeV}/c^2 \) and \(\tau(H_{bc}^0) = 0.4 \text{ ps} \). The efficiency is larger for the control mode, mainly due to the longer lifetime of the \(\Lambda_{bc}^0 \) and \(\Xi_{bc}^0 \) baryons. The efficiency depends on the mass and lifetime hypotheses of the \(H_{bc}^0 \) state, and is evaluated from simulation. The kinematic properties of the fully simulated samples are weighted to match those of the generator-level sample to calculate the efficiency for different \(H_{bc}^0 \) mass and lifetime assumptions.

6 Systematic uncertainties

Various sources of systematic uncertainties on \(R \) are estimated and combined in quadrature. The effect of imperfect description of the mass distributions on the yield estimates is studied using alternative signal and background models. For the signal model, the Hypatia \([62]\) function is used instead of the nominal double-sided Crystal Ball function. For the background model of the control modes, the nominal double-exponential function is replaced by a first-order polynomial function. As the background model for the \(H_{bc}^0 \) decay modes is interpolated from the sidebands, its uncertainty is evaluated by both replacing the nominal function with an exponential function and varying the sideband regions. The largest deviation with respect to the nominal result is taken as the corresponding uncertainty. In total, the associated systematic uncertainty is estimated to be 0.1% and 0.9% for \(H_{bc}^0 \to \Lambda_c^+ \pi^- \) and \(H_{bc}^0 \to \Xi_c^+ \pi^- \) decays, respectively.

In the \(R \) ratios, systematic uncertainties arising from the track detection efficiency largely cancel, and the uncertainty due to limited size of simulation samples is determined to be 1.6% (0.7%) on \(R(\Lambda_c^+ \pi^-) \) \(R(\Xi_c^+ \pi^-) \). The particle identification efficiency is determined in bins of particle momentum, pseudorapidity, and track multiplicity using control channels in the data \([60]\). As the particle identification variables have large dependencies on the momentum of the final-state particles, there are sizeable differences in these efficiencies between the control and signal channels, which do not cancel in the ratio measurement. Systematic effects arising from the choice of binning scheme are evaluated by varying the bin sizes and reevaluating the efficiency. The largest deviations from the nominal result, 1.7% and 2.1%, are assigned as the systematic uncertainty for the \(H_{bc}^0 \to \Lambda_c^+ \pi^- \) and \(H_{bc}^0 \to \Xi_c^+ \pi^- \) decays, respectively.

The \(\Lambda_c^+ \) \((\Xi_c^+) \) mass resolution shows a difference between data and simulation, which affects the selection efficiency. It results in a 0.2% systematic uncertainty contribution for the \(H_{bc}^0 \to \Xi_c^+ \pi^- \) decay, while the contribution for the \(H_{bc}^0 \to \Lambda_c^+ \pi^- \) decay is below 0.1%. This systematic uncertainty is negligible compared to other sources.

The imperfect simulation of the signal and control modes are considered by applying corrections to the BDT response and kinematic properties of the simulated control mode samples. To assess the systematic uncertainty in these corrections, the correcting weights are varied within their uncertainties. The largest deviation from the nominal result is taken as the systematic uncertainty. Combining the uncertainties from the BDT response correction and the kinematic modeling of the simulated control samples gives an uncertainty of 1.6% for the \(H_{bc}^0 \to \Lambda_c^+ \pi^- \) channel, and 3.0% for the \(H_{bc}^0 \to \Xi_c^+ \pi^- \) channel. The analysis relies on the \(\Xi_{bc}^0 \) \(p_T \) model implemented in simulation. No systematic uncertainty is assigned to this model.

The algorithm used to compute the \(\chi^2_{IP} \) was updated during data collection, which
causes a mismatch between data and simulation and introduces systematic effects in the efficiency estimation. The corresponding uncertainty was found to be 5% in the previous Ξ_{bc}^0 search \[29\]. Checks by varying the χ^2_{IP}-related requirements show that the uncertainty well covers the change of result. Therefore, a 5% systematic uncertainty is assigned.

The systematic uncertainties are summarized in Table 1. The total systematic uncertainty is 5.7% for $H_{bc}^0 \rightarrow \Lambda_c^+ \pi^-$ and 6.3% for $H_{bc}^0 \rightarrow \Xi_c^+ \pi^-$, for a H_{bc}^0 mass of 6900 MeV/c2 and lifetime of 0.4 ps. These values of systematic uncertainties are also used for other assumed lifetime and mass hypotheses.

Table 1: Sources of systematic uncertainty obtained for an H_{bc}^0 mass of 6900 MeV/c2 and lifetime of 0.4 ps. The total is the quadratic sum of the individual systematic uncertainties.

Source of systematic uncertainty	$H_{bc}^0 \rightarrow \Lambda_c^+ \pi^-$	$H_{bc}^0 \rightarrow \Xi_c^+ \pi^-$
Fit model	0.1%	0.9%
Size of simulated samples	1.6%	0.7%
Particle identification efficiency	1.7%	2.1%
Mass resolution	< 0.1%	0.2%
Simulation model	1.6%	3.0%
χ^2_{IP} simulation	5.0%	5.0%
Total	5.7%	6.3%

7 Results

No evidence for a Ω_{bc}^0 or a Ξ_{bc}^0 baryon is observed in the inspected mass range. Upper limits are set at 95% confidence level on the ratios $R(\Lambda_c^+ \pi^-)$ and $R(\Xi_c^+ \pi^-)$ under different mass and lifetime hypotheses for the Ω_{bc}^0 and Ξ_{bc}^0 baryons, using the asymptotic CL$_s$ method implemented in the RooStats framework \[63\][64] considering the systematic uncertainties. The assumed masses of the Ω_{bc}^0 and Ξ_{bc}^0 baryons are varied from 6700 to 7300 MeV/c2 with a step size of 4 MeV/c2, and the lifetime values of 0.2 ps, 0.3 ps, and 0.4 ps are considered. The calculated upper limits are shown in Fig. 1 as a function of the H_{bc}^0 mass. These results are obtained for the sum of the Ω_{bc}^0 and Ξ_{bc}^0 production and as such hold for the two individually.

8 Conclusions

The first search for the doubly heavy baryon Ω_{bc}^0 and a new search for the Ξ_{bc}^0 baryon in the mass range from 6700 to 7300 MeV/c2 are presented, using pp collision data collected at a centre-of-mass energy $\sqrt{s} = 13$ TeV with the LHCb experiment. The data set corresponds to an integrated luminosity of 5.2 fb$^{-1}$. The Ω_{bc}^0 (Ξ_{bc}^0) baryon is reconstructed in the $\Lambda_c^+ \pi^-$ and $\Xi_c^+ \pi^-$ decay modes. No evidence of a signal is found. Upper limits at 95% confidence level on the ratio of the Ω_{bc}^0 (Ξ_{bc}^0) production cross-section times its branching fraction relative to that of the Λ_c^0 (Ξ_c^0) baryon are calculated in the rapidity range $2.0 < y < 4.5$ and transverse momentum range $2 < p_T < 20$ GeV/c under different Ω_{bc}^0 (Ξ_{bc}^0) mass and lifetime hypotheses. The upper limits range from 0.5×10^{-4} to 2.5×10^{-4} for the $\Omega_{bc}^0 \rightarrow \Lambda_c^+ \pi^-$ ($\Xi_{bc}^0 \rightarrow \Lambda_c^+ \pi^-$) decay, and from 1.4×10^{-3} to 6.9×10^{-3} for
the $\Omega_{bc}^0 \rightarrow \Xi_{c}^+ \pi^- \ (\Xi_{bc}^0 \rightarrow \Xi_{c}^+ \pi^-)$ decay, for the considered lifetime and mass hypotheses. These results constitute the first limit on the production of the Ω_{bc}^0 baryon. Further measurements will be possible with the larger data samples expected at the upgraded LHCb experiments and with additional decay modes.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and NERSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia); AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. & Tech. Program of Guangzhou (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Leverhulme Trust, the Royal Society and UKRI (United Kingdom).
References

[1] M. Gell-Mann, *A Schematic Model of Baryons and Mesons*, Phys. Lett. **8** (1964) 214.

[2] G. Zweig, in *An SU(3) model for strong interaction symmetry and its breaking. Version 2*, D. B. Lichtenberg and S. P. Rosen, eds., pp. 22–101, 1964.

[3] S. Fleck, B. Silvestre-Brac, and J. M. Richard, *Search for diquark clustering in baryons*, Phys. Rev. **D38** (1988) 1519.

[4] LHCB collaboration, R. Aaij et al., *Observation of the doubly charmed baryon \(\Xi^{++}_{cc} \)*, Phys. Rev. Lett. **119** (2017) 112001, arXiv:1707.01621.

[5] LHCB collaboration, R. Aaij et al., *First observation of the doubly charmed baryon decay \(\Xi^{++}_{cc} \to \Xi^{+}_c \pi^+ \)*, Phys. Rev. Lett. **121** (2018) 162002, arXiv:1807.01919.

[6] LHCB collaboration, R. Aaij et al., *Measurement of the lifetime of the doubly charmed baryon \(\Xi^{++}_{cc} \)*, Phys. Rev. Lett. **121** (2018) 052002, arXiv:1806.02744.

[7] LHCB collaboration, R. Aaij et al., *Measurement of \(\Xi^{++}_{cc} \) production in pp collisions at \(\sqrt{s} = 13 \) TeV*, Chin. Phys. **C44** (2020) 022001, arXiv:1910.11316.

[8] LHCB collaboration, R. Aaij et al., *Precision measurement of the \(\Xi^{++}_{cc} \) mass*, JHEP **02** (2020) 049, arXiv:1911.08594.

[9] E. Bagan, M. Chabab, and S. Narison, *Baryons with two heavy quarks from QCD spectral sum rules*, Phys. Lett. **B306** (1993) 350.

[10] R. Roncaglia, D. B. Lichtenberg, and E. Predazzi, *Predicting the masses of baryons containing one or two heavy quarks*, Phys. Rev. **D52** (1995) 1722, arXiv:hep-ph/9502251.

[11] D. B. Lichtenberg, R. Roncaglia, and E. Predazzi, *Mass sum rules for singly and doubly heavy flavored hadrons*, Phys. Rev. **D53** (1996) 6678, arXiv:hep-ph/9511461.

[12] D. Ebert et al., *Heavy baryons in the relativistic quark model*, Z. Phys. **C76** (1997) 111, arXiv:hep-ph/9607314.

[13] B. Silvestre-Brac, *Spectroscopy of baryons containing heavy quarks*, Prog. Part. Nucl. Phys. **36** (1996) 263.

[14] V. V. Kiselev and A. K. Likhoded, *Baryons with two heavy quarks*, Phys. Usp. **45** (2002) 455, arXiv:hep-ph/013169.

[15] K. Anikeev et al., *B physics at the Tevatron: Run II and beyond*, in Workshop on B Physics at the Tevatron: Run II and Beyond Batavia, Illinois, September 23-25, 1999, 2001, arXiv:hep-ph/0201071.

[16] D. Ebert, R. N. Faustov, V. O. Galkin, and A. P. Martynenko, *Mass spectra of doubly heavy baryons in the relativistic quark model*, Phys. Rev. **D66** (2002) 014008, arXiv:hep-ph/0201217.
[17] D.-H. He et al., Evaluation of spectra of baryons containing two heavy quarks in bag model. Phys. Rev. D70 (2004) 094004 [arXiv:hep-ph/0403301]

[18] C. Albertus, E. Hernandez, J. Nieves, and J. M. Verde-Velasco, Static properties and semileptonic decays of doubly heavy baryons in a nonrelativistic quark model. Eur. Phys. J. A32 (2007) 183 [arXiv:hep-ph/0610030]. [Erratum: Eur. Phys. J. A36 (2008) 119].

[19] W. Roberts and M. Pervin, Heavy baryons in a quark model. Int. J. Mod. Phys. A23 (2008) 2817 [arXiv:0711.2492]

[20] J.-R. Zhang and M.-Q. Huang, Doubly heavy baryons in QCD sum rules. Phys. Rev. D78 (2008) 094007 [arXiv:0810.5396].

[21] S. M. Gerasyuta and E. E. Matskevich, S-wave bottom baryons. Int. J. Mod. Phys. E18 (2009) 1785 [arXiv:0803.3497]

[22] K. Azizi, T. M. Aliev, and M. Savei, Properties of doubly and triply heavy baryons. J. Phys. Conf. Ser. 556 (2014) 012016.

[23] M. Karliner and J. L. Rosner, Baryons with two heavy quarks: Masses, production, decays, and detection. Phys. Rev. D90 (2014) 094007 [arXiv:1408.5877].

[24] Z. Shah and A. K. Rai, Excited state mass spectra of doubly heavy Ξ baryons. Eur. Phys. J. C77 (2017) 129 [arXiv:1702.02726]

[25] Z. S. Brown, W. Detmold, S. Meinel, and K. Orginos, Charmed bottom baryon spectroscopy from lattice QCD. Phys. Rev. D90 (2014) 094507 [arXiv:1409.0497].

[26] V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Lifetimes of Ξ⁺ and Ξ⁰ baryons. Eur. Phys. J. C16 (2000) 461 [arXiv:hep-ph/9901224].

[27] H.-Y. Cheng and F. Xu, Lifetimes of doubly heavy baryons Bbb and Bbc. Phys. Rev. D99 (2019) 073006 [arXiv:1903.08148]

[28] J.-W. Zhang et al., Hadronic production of the doubly heavy baryon Ξbc at LHC. Phys. Rev. D83 (2011) 034026 [arXiv:1101.1130].

[29] LHCb collaboration, R. Aaij et al., Search for the doubly heavy baryon Ξbc in the D⁰pK⁻ final state. JHEP 11 (2020) 095 [arXiv:2009.02481]

[30] W. Wang, F.-S. Yu, and Z.-X. Zhao, Weak decays of doubly heavy baryons: the 1/2 → 1/2 case. Eur. Phys. J. C77 (2017) 781 [arXiv:1707.02834].

[31] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC. JINST 3 (2008) S08005.

[32] LHCb collaboration, R. Aaij et al., LHCb detector performance. Int. J. Mod. Phys. A30 (2015) 1530022 [arXiv:1412.6352]

[33] R. Aaij et al., Performance of the LHCb Vertex Locator. JINST 9 (2014) P09007 [arXiv:1405.7808].
[34] P. d’Argent et al., Improved performance of the LHCb Outer Tracker in LHC Run 2, JINST 12 (2017) P11016 arXiv:1708.00819

[35] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C73 (2013) 2431 arXiv:1211.6759

[36] A. A. Alves Jr. et al., Performance of the LHCb muon system, JINST 8 (2013) P02022 arXiv:1211.1346

[37] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022 arXiv:1211.3055

[38] V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, JINST 8 (2013) P02013 arXiv:1210.6861

[39] T. Likhomanenko et al., LHCb topological trigger reoptimization, J. Phys. Conf. Ser. 664 (2015) 082025

[40] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 arXiv:0710.3820

[41] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 arXiv:hep-ph/0603175

[42] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047

[43] C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC2.0: An upgraded version of the generator for hadronic production of double heavy baryons Ξcc, Ξbc and Ξbb, Comput. Phys. Commun. 181 (2010) 1144 arXiv:0910.4462

[44] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152

[45] N. Davidson, T. Przedzinski, and Z. Was, PHOTOS interface in C++: Technical and Physics Documentation, Comput. Phys. Commun. 199 (2016) 86 arXiv:1011.0937

[46] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

[47] Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

[48] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023

[49] Particle Data Group, P. A. Zyla et al., Review of particle physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01.

[50] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California, USA, 1984.
[51] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.

[52] H. Voss, A. Hoecker, J. Stelzer, and F. Tegenfeldt, TMVA - Toolkit for Multivariate Data Analysis with ROOT, PoS ACAT (2007) 040.

[53] A. Hocker et al., TMVA - Toolkit for Multivariate Data Analysis, arXiv:physics/0703039.

[54] W. D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth. A552 (2005) 566, arXiv:physics/0503191.

[55] G. Punzi, Sensitivity of searches for new signals and its optimization, eConf C030908 (2003) MODT002, arXiv:physics/0308063.

[56] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.

[57] A. Rogozhnikov, Reweighting with Boosted Decision Trees, J. Phys. Conf. Ser. 762 (2016) 012036, arXiv:1608.05806, https://github.com/arogozhnikov/hep_ml.

[58] LHCb collaboration, R. Aaij et al., Measurement of the track reconstruction efficiency at LHCb, JINST 10 (2015) P02007, arXiv:1408.1251.

[59] L. Anderlini et al., The PIDCalib package, LHCb-PUB-2016-021, 2016.

[60] R. Aaij et al., Selection and processing of calibration samples to measure the particle identification performance of the LHCb experiment in Run 2, Eur. Phys. J. Tech. Instr. 6 (2018) 1, arXiv:1803.00824.

[61] M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Meth. A555 (2005) 356, arXiv:physics/0402083.

[62] D. Martínez Santos and F. Dupertuis, Mass distributions marginalized over per-event errors, Nucl. Instrum. Meth. A764 (2014) 150, arXiv:1312.5000.

[63] L. Moneta et al., The RooStats Project, PoS ACAT2010 (2010) 057, arXiv:1009.1003.

[64] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554, arXiv:1007.1727.

[65] LHCb, R. Aaij et al., Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv:1808.08865.
R. Aaij, C. Abellán Beteta, T. Ackernley, B. Adeva, M. Adinolfi, A. Afsharnia, C.A. Aidala, S. Aiola, Z. Ajaltouni, S. Akaev, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Albero, Z. Aliouche, G. Alkhazov, P. Alvarez Cartelle, S. Amato, Y. Amhis, L. An, L. Anderlini, A. Andreianov, M. Andreotti, F. Archilli, A. Artamonov, M. Artuso, K. Azratyev, E. Aslanides, M. Atzeni, B. Audurier, S. Bachmann, M. Bachmayer, J.J. Back, P. Baladron Rodriguez, V. Balagura, W. Baldini, J. Baptista Leite, R.J. Barlow, S. Barsuk, W. Barter, M. Bartolini, F. Baryshnikov, J.M. Basles, G. Bassi, B. Batsukh, A. Battig, A. Bay, M. Becker, F. Bedeschi, I. Bediaga, A. Beiter, V. Belavin, S. Belin, V. Bellec, K. Belous, I. Belov, I. Belyaev, G. Bencivenni, E. Ben-Haim, A. Berezin, R. Bernet, D. Bernardinoff, H.C. Bernstein, C. Bertella, A. Bertolin, C. Betancourt, F. Bett, Ia. Bezshyiko, S. Bhisin, J. Bhom, L. Bian, M.S. Bieker, S. bifani, P. Billoir, M. Birch, F.C.R. Bishop, A. Bitadze, A. Bizzeti, M. Bjorn, M.P. Blago, T. Blake, F. Blanc, S. Blusk, D. Bobulsk, J.A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Boldyrev, A. Bondar, N. Bondar, S. Borgli, M. Borisyak, M. Borsato, J.T. Borsuk, S.A. Bouchiba, T.J.V. Bowcock, A. Boyer, C. Bozzi, M.J. Bradley, S. Braun, A. Brea Rodriguez, M. Brodski, J. Brodzicka, A. Brossa Gonzalez, D. Brundu, A. Buonaura, C. Burr, A. Bursche, A. Butkevich, J.S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, R. Calabrese, L. Calefice, L. Calero Diaz, S. Cali, R. Calladine, M. Calvi, M. Calvo Gomez, P. Camargo Magalhaes, A. Camboni, P. Campana, A.F. Campoverde Quezada, S. Capelli, L. Capriotti, A. Carbone, G. Carboni, R. Cardinale, A. Cardini, I. Carli, P. Carlini, L. Carus, K. Carvalho Akiba, A. Casais Vital, G. Casse, M. Cattaneo, G. Cavallero, S. Celani, J. Cerasoli, A.J. Chadwick, M.G. Chapman, M. Charles, Ph. Charpentier, G. Chatzikonstantinidis, C.A. Chavez Barajas, M. Chefdievile, C. Chen, S. Chen, A. Chernov, V. Chobanova, S. Cholak, M. Chraszcz, A. Chubynska, V. Chulkov, P. Ciambrone, M.F. Cicala, X. Cid Vital, G. Ciezarek, P.E.L. Clarke, M. Clemencie, H.V. Cliff, J. Closher, J.L. Cobbledick, V. Coco, J.A.B. Coelho, J. Cogan, E. Cognessa, L. Cojocariu, P. Collins, T. Colombo, L. Congedo, A. Contu, N. Cooke, G. Coombs, G. Cotti, C.M. Costa Sobral, B. Couturier, D.C. Craik, J. Crkovskij, M. Cruz Torres, R. Currie, C.L. Da Silva, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, A. Danilina, P. d’Argent, A. Davis, O. De Aguilar Francisco, B. De Bruyn, S. De Capua, M. De Cian, J.M. De Miranda, L. De Paula, M. De Serio, D. De Simone, P. De Simone, J.A. de Vries, C.T. Dean, D. Decamp, L. Del Buono, B. Delaney, H-P. Dembinski, A. Dendek, V. Denysenko, D. Derkach, O. Deschamps, F. Desesse, T. Dettori, B. Dey, P. Di Nezza, S. Didenko, L. Dieste Maronas, H. Dijkstra, V. Dobishuk, M.A. Donohoe, F. Dordei, A.C. dos Reis, L. Douglas, A. Dovbnya, A.G. Downes, K. Dreimanis, M.W. Dudek, L. Dufour, R. Dukel, P. Durante, J.M. Durham, D. Dutta, A. Dziurda, A. Dyubich, S. Easo, U. Egeden, V. Egorychev, S. Eidelman, S. Eisenhardt, S. Ek-In, L. Eklund, S. Ely, A. Ene, E. Eppler, S. Escher, J. Eschle, S. Essen, T. Evans, A. Falabella, J. Fan, B. Fang, S. Farry, D. Fazzini, M. Fede, A. Fernandez Prieto, J.M. Fernandez-tenllado Arribas, F. Ferrari, L. Ferreira Lopes, F. Ferreira Rodrigues, S. Ferreres Sole, M. Ferrillo, M. Ferro-Luzzi, F. Filipov, R.A. Fini, M. Fiorini, M. Firlej, K.M. Fischer, C. Fitzpatrick, T. Fiutowski, F. Fleuret, M. Fontana, F. Fontanelli, R. Forty, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Fru, C. Frei, D.A. Friday, J. Fu, Q. Fuehring, W. Funk, E. Gabriel, T. Gaintseva.
G. Vitali29, D. Vom Bruch10, A. Vorobyev38, V. Vorobyev43,44, N. Voropaev38, R. Waldi76, J. Walsh29, C. Wang17, J. Wang5, J. Wang4, J. Wang73, M. Wang3, R. Wang54, Y. Wang7, Z. Wang50, Z. Wang4, H.M. Wark60, N.K. Watson53, S.G. Weber13, D. Websdale61, C. Weisser54, B.D.C. Westhenny54, D.J. White62, M. Whitehead54, D. Wiedner15, G. Wilkinson53, M. Wilkinson68, I. Williams55, M. Williams64, M.R.J. Williams58, F.F. Wilson57, W. Wislicki30, M. Witek35, L. Witola17, G. Wormser11, S.A. Wotton55, H. Wu68, K. Wyllie48, Z. Xiang4, D. Xiao7, Y. Xie7, A. Xu5, J. Xu6, L. Xu9, M. Xu7, Q. Xu6, Z. Xu5, Z. Xu6, D. Yang3, S. Yang6, Y. Yang6, Z. Yang3, Z. Yang66, Y. Yao68, L.E. Yeomans60, H. Yin7, J. Yu71, X. Yuan68, O. Yushchenko44, E. Zaffaroni49, M. Zavertyaev16,17, M. Zdybal35, O. Zenaieff48, M. Zeng3, D. Zhang5, L. Zhang3, S. Zhang5, Y. Zhang5, Y. Zhang63, A. Zhelezov17, Y. Zheng6, X. Zhou4, Y. Zhou6, X. Zhu3, V. Zhukov14,40, J.B. Zonneveld58, Q. Zou4, S. Zucchelli29,30, D. Zuliani28, G. Zunica62.

1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 Institute Of High Energy Physics (IHEP), Beijing, China
5 School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
6 University of Chinese Academy of Sciences, Beijing, China
7 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
8 Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
9 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
10 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
11 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
12 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
13 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
14 I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
15 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
16 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
17 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
18 School of Physics, University College Dublin, Dublin, Ireland
19 INFN Sezione di Bari, Bari, Italy
20 INFN Sezione di Bologna, Bologna, Italy
21 INFN Sezione di Ferrara, Ferrara, Italy
22 INFN Sezione di Firenze, Firenze, Italy
23 INFN Laboratori Nazionali di Frascati, Frascati, Italy
24 INFN Sezione di Genova, Genova, Italy
25 INFN Sezione di Milano, Milano, Italy
26 INFN Sezione di Milano-Bicocca, Milano, Italy
27 INFN Sezione di Cagliari, Monserrato, Italy
28 Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy
29 INFN Sezione di Pisa, Pisa, Italy
30 INFN Sezione di Roma La Sapienza, Roma, Italy
31 INFN Sezione di Roma Tor Vergata, Roma, Italy
32 Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
33 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
34 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
35 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
36 National Center for Nuclear Research (NCBJ), Warsaw, Poland
37 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
38 Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia

16
Università di Ferrara, Ferrara, Italy
Università di Firenze, Firenze, Italy
Università di Genova, Genova, Italy
Università degli Studi di Milano, Milano, Italy
Università di Milano Bicocca, Milano, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Università di Padova, Padova, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Pisa, Pisa, Italy
Università della Basilicata, Potenza, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Siena, Siena, Italy
Università di Urbino, Urbino, Italy
MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Novosibirsk State University, Novosibirsk, Russia
Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
Hanoi University of Science, Hanoi, Vietnam