Nuclear Norm minimization for the planted clique and biclique problems

Brendan Ames1 Stephen Vavasis1

1Department of Combinatorics & Optimization
University of Waterloo

2009-Aug-26 / ISMP
Maximum clique and biclique problems

- **Clique**: Given an undirected graph \((V, E)\), find \(k\) vertices mutually interconnected such that \(k\) is maximized.

- **Biclique**: Given a bipartite graph \((U, V, E)\), find a subgraph \((U^*, V^*, E^*)\) containing all possible \(|U^*| \cdot |V^*|\) edges such that \(|U^*| \cdot |V^*|\) is maximized.

- Max Clique and Max Biclique are both NP-hard.

- They are simple models of information retrieval problems.
Biclique reformulation as rank minimization

- **Rank minimization** refers to the problem of minimizing the rank of X subject to convex constraints on X.
- Existence of an mn biclique as rank minimization:
 \[
 \min \text{ rank}(X) \\
 \text{s.t.} \quad X(i, j) \in [0, 1] \quad \forall (i, j) \in U \times V \\
 X(i, j) = 0 \quad \forall (i, j) \in (U \times V) - E \\
 \sum_{(i,j)} X(i, j) \geq mn
 \]
- Similar formulation exists for clique
Nuclear norm relaxation

- **Nuclear norm** of a matrix X, written $\|X\|_*$, is defined as the sum of X’s singular values.
- Recent work by Recht, Fazel, Parrilo and others suggests that nuclear norm is a good relaxation for rank minimization.
- Nuclear norm relaxation of biclique:

$$\begin{align*}
\text{min} & \quad \|X\|_* \\
\text{s.t.} & \quad X(i,j) \geq 0 \quad \forall (i,j) \in U \times V, \\
& \quad X(i,j) = 0 \quad \forall (i,j) \in (U \times V) - E, \\
& \quad \sum_{(i,j)} X(i,j) \geq mn.
\end{align*}$$

- This relaxation is convex.
Our results for clique

- Consider an N-node graph G consisting of an n-node clique K_n plus diversionary edges:
 - Up to $O(n^2)$ deterministically-placed diversionary edges; at most $O(n) K_n$-vertices adjacent to any non-K_n-vertex, or,
 - All nonclique edges inserted independently at random with probability p, and $N = O(n^2)$.

- Then the nuclear norm relaxation finds the maximum clique and a certificate that it is the maximum.

- Similar results for biclique.

- Previous results by Feige and Krauthgamer; Alon, Krivelevich and Sudakov.
Relationship to compressive sensing

- Recht, Fazel and Parrilo: main results of compressive sensing extend to rank minimization.
 \[\|x\|_0 \iff \text{rank}(X) \]
 \[\|x\|_1 \iff \|X\|_* \]

- Our result is similar to theirs in spirit: an NP-hard rank minimization problem is solvable in polynomial time by convex relaxation if low-rank solution is known to exist and if data includes randomized constraints.

- We use the KKT conditions in the same way that RFP use them.
Proof technique: show that the maximum clique is optimal for (NNR) by showing that KKT conditions are satisfied. Furthermore show that optimal solution is unique.

Suppose $A \in \mathbb{R}^{m \times n}$ has rank r and SVD $A = \sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T$. Then $\phi \in \partial \|A\|_*$ iff $\phi = u_1 v_1^T + \cdots + u_r v_r^T + W$ s.t. $\|W\| \leq 1$, $\text{span}(W) \perp \text{span}\{u_1, \ldots, u_r\}$, $\text{span}(W^T) \perp \text{span}\{v_1, \ldots, v_r\}$.
KKT conditions (biclique case)

Theorem. Suppose X is a feasible rank-one matrix $X = \bar{u}\bar{v}^T$, where \bar{u}, \bar{v} are the characteristic vectors of $U^* \subset U$, $V^* \subset V$ resp, $|U^*| = m$, $|V^*| = n$. Then X is optimal for (NNR) iff

$\exists W \in \mathbb{R}^{M \times N}, \lambda \in \mathbb{R}^{M \times N}, \mu \in \mathbb{R}$ s.t.

$$\frac{\bar{u}\bar{v}^T}{\sqrt{mn}} + W = \mu e e^T + \sum_{(i,j) \in (U \times V) - E} \lambda_{ij} e_i e_j^T$$

with $\|W\| \leq 1$, $W^T \bar{u} = 0$, $W\bar{v} = 0$, $\mu \geq 0$. In this case, U^*, V^* is an optimal solution for the max biclique problem.
Theorem. Suppose X is a feasible rank-one matrix $X = \bar{u}\bar{v}^T$, where \bar{u}, \bar{v} are the characteristic vectors of $U^* \subset U$, $V^* \subset V$ resp, $|U^*| = m$, $|V^*| = n$. Then X is optimal for (NNR) iff

$$\exists W \in \mathbb{R}^{M \times N}, \lambda \in \mathbb{R}^{M \times N}, \mu \in \mathbb{R} \text{ s.t.}$$

$$\frac{\bar{u}\bar{v}^T}{\sqrt{mn}} + W = \mu ee^T + \sum_{(i,j) \in (U \times V) - E} \lambda_{ij} e_i e_j^T$$

with $\|W\| \leq 1$, $W^T\bar{u} = 0$, $W\bar{v} = 0$, $\mu \geq 0$. In this case, U^*, V^* is an optimal solution for the max biclique problem. If, in addition, $\mu > 0$ and $\|W\| < 1$, X is the unique optimizer.
Finding W, λ, μ

Thus, showing that (NNR) finds the optimal biclique reduces to constructing W, λ, μ. Define $\mu = 1/\sqrt{mn}$. Define W as follows

$$W = \frac{1}{\sqrt{mn}} \cdot \begin{bmatrix} V^* & \ V - V^* \\ \ U^* & 0 \end{bmatrix}$$

$$U - U^* = \begin{bmatrix} 1 \text{ in } E \ \ \ -q_j \text{ in } \bar{E} \\ \ -p_i \text{ in } \bar{E} \ \ \ \ \ \ \ -\gamma \text{ in } \bar{E} \end{bmatrix}$$

$p_i = \# \text{ of } V^*-\text{nodes adjacent to } i \in U - U^*$

$q_j = \# \text{ of } U^*-\text{nodes adjacent to } j \in V - V^*$
Finding W, λ, μ

Thus, showing that (NNR) finds the optimal biclique reduces to constructing W, λ, μ. Define $\mu = 1/\sqrt{mn}$. Define W as follows

$$W = \frac{1}{\sqrt{mn}} \cdot \begin{bmatrix} V^* & V - V^* \\ U^* & 0 \\ U - U^* & \left\{ \begin{array}{ll} 1 \text{ in } E & \frac{-q_j}{m-q_j} \text{ in } \bar{E} \\ -p_i & \frac{-p_i}{n-p_i} \text{ in } \bar{E} & 1 \text{ in } E & -\gamma \text{ in } \bar{E} \end{array} \right. \end{bmatrix}$$

$$Wv = 0, \quad W^T\bar{u} = 0$$

$p_i = \# \text{ of } V^*\text{-nodes adjacent to } i \in U - U^*$

$q_j = \# \text{ of } U^*\text{-nodes adjacent to } j \in V - V^*$
Finding \(W, \lambda, \mu \)

Thus, showing that (NNR) finds the optimal biclique reduces to constructing \(W, \lambda, \mu \). Define \(\mu = 1/\sqrt{mn} \). Define \(W \) as follows:

\[
W = \frac{1}{\sqrt{mn}} \cdot \begin{bmatrix}
V^* & V - V^* \\
0 & \{ 1 \text{ in } E \} - \frac{q_j}{m-q_j} \text{ in } \bar{E} & \{ 1 \text{ in } E \} - \gamma \text{ in } \bar{E}
\end{bmatrix}
\]

where

\[
W\bar{v} = 0 \quad W^T\bar{u} = 0 \quad \|W\| < 1?
\]

\(p_i = \# \text{ of } V^*-\text{nodes adjacent to } i \in U - U^* \)

\(q_j = \# \text{ of } U^*-\text{nodes adjacent to } j \in V - V^* \)
In the case of deterministic (adversary-chosen) diversionary edges, use fairly weak bound that $\|W\| \leq \|W\|_F$. Fractions $p_i/(n - p_i)$ and $q_j/(m - q_j)$ are bounded by imposing assumption that $p_i \leq \alpha n$, $q_j \leq \beta n$. Remaining entries bounded by assuming $|E - (U^* \times V^*)| \leq O(mn)$.

With these assumption, $\|W\|_F \leq 1$.

The bounds in these assumptions are the best possible (up to constant factors).
Norm of W: randomized case

Assume non-clique edges are included in G independently at random with probability p.

\[
W = \frac{1}{\sqrt{mn}} \cdot U^* - U^* - \left(\begin{array}{c}
\{ 1 \text{ in } E - \frac{-p_i}{n-p_i} \text{ in } \bar{E} \} \\
\{ \frac{-q_j}{m-q_j} \text{ in } \bar{E} \}
\end{array} \right) - \gamma \text{ in } \bar{E}
\]

Take $\gamma = -p/(1 - p)$; then W is fairly close to a random matrix with independent entries of mean 0.
Norm of a random matrix

Theorem (Geman, 1980). Suppose \hat{W} is an $M \times N$ random matrix with $M \sim N$ and with entries chosen independently from a fixed distribution whose mean is 0 (plus a few other assumptions). Then with probability exponentially close to 1, $\|\hat{W}\| \leq O(\sqrt{N})$.

Much better than Frobenius norm estimate.

Note: $W \approx \hat{W} / \sqrt{mn}$.

Implies that we can take M, N as large as m^2, n^2 and still obtain $\|W\| \leq 1$.
Analysis of the perturbation

- Must derive bound on $\|W - \hat{W}/\sqrt{mn}\|$.
- Must bound the difference between entries of the form $-p_i/(n - p_i)$ and $-p/(1 - p)$ in $(U - U^*) \times V^*$ block of W.
- Our analysis uses Bernstein’s technique described in Hoeffding (1962).
Follows the same lines, except in place of Geman’s theorem we require Füredi and Komlós’s (1981) analysis of the norm of a random symmetric matrix.

Similar result obtained: our algorithm can find a “planted” clique of with \(n \) nodes, \(n(n - 1)/2 \) edges, in a random graph with \(O(n^2) \) vertices (and hence \(O(n^4) \) edges).
Nuclear norm minimization can be reduced to SDP, hence (NNR) is solvable with an SDP package.

We have a preliminary implementation of an (NNR) solver that uses Boyd’s cvx on top of SDPT3.

Toh and Yun’s (2009) work on nuclear norm minimization seems promising but applies only to equality constraints.
Conclusions and open questions

- Convex relaxation can find a clique or biclique in a graph that contains the clique and biclique plus many diversionary edges.
- If the diversionary edges are placed at random, then the algorithm can tolerate many more of them.
- Would be interesting to extend the technique to other information retrieval problems.