Evocalcet with vitamin D receptor activator treatment for secondary hyperparathyroidism

Takashi Shigematsu¹*, Shinji Asada², Yuichi Endo³, Takehisa Kawata², Masafumi Fukagawa⁴, Tadao Akizawa⁵

¹ Department of Nephrology, Wakayama Medical University, Wakayama, Japan, ² Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo, Japan, ³ R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan, ⁴ Division of Nephrology, Endocrinology, and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan, ⁵ Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan

* docteur_shigemat@iris.eonet.ne.jp

Abstract

This ad hoc analysis of a previously conducted phase 3 head-to-head comparison study of evocalcet and cinacalcet in secondary hyperparathyroidism patients undergoing maintenance hemodialysis evaluated the efficacy and safety of combined once-daily oral evocalcet and intravenous vitamin D receptor activator treatment stratified by weekly vitamin D receptor activator dose (117, 45, and 91 patients in no, low [< 1.5 μg], and high [≥ 1.5 μg] dose groups, respectively). Effects of vitamin D receptor activator were assessed on the basis of intact parathyroid hormone, corrected calcium, phosphorus, and fibroblast growth factor-23 levels; percent changes from baseline; proportions of patients who achieved target intact parathyroid hormone, corrected calcium, and phosphorus at Weeks 28–30; and adverse drug reactions. Intact parathyroid hormone, corrected calcium, phosphorus, and fibroblast growth factor-23 levels decreased in all groups; phosphorus and fibroblast growth factor-23 levels remained high in the high dose group. In the low and high dose groups, greater proportions of patients achieved the corrected calcium target compared with the no dose group (p = 0.043). Ratios of intact-to-C-terminal fibroblast growth factor-23 decreased in all groups. In low and high dose groups, hypocalcemia was less common than in the no dose group (p = 0.014). Evocalcet with concomitant vitamin D receptor activator demonstrated benefits such that more patients achieved the corrected calcium target and exhibited decreased fibroblast growth factor-23 synthesis; the incidence of hypocalcemia also decreased.

Clinical trial registration: ClinicalTrials.gov (NCT02549391) and JAPIC (JapicCTI-153013).

Introduction

Patients with severe chronic kidney disease requiring dialysis exhibit a decline in renal function that controls calcium and phosphate metabolism. This impairment subsequently causes
various mineral and bone disorders, such as secondary hyperparathyroidism (SHPT) [1–3].

Patients with SHPT have elevated circulating parathyroid hormone (PTH), calcium and phosphorus levels, and increased levels of bone turnover markers and fibroblast growth factor-23 (FGF23), leading to an increased risk of cardiovascular morbidity and mortality [4].

FGF23, first reported in 2000, is synthesized in osteocytes and involved in the regulation of phosphorus reabsorption and 1,25(OH)₂ vitamin D production [5, 6]. Recent studies revealed a significant association between elevated serum FGF23 levels and poor prognosis, cardiovascular events, and increased all-cause mortality in hemodialysis patients [7–12]. FGF23 is also associated with left ventricular hypertrophy in chronic kidney disease patients and, therefore, it is critical to control circulating FGF23, PTH, and mineral levels [13–15].

A vitamin D receptor activator (VDRA) preparation administered intravenously (IV) is the standard therapy for patients with SHPT in Japan, but recently, calcium-sensing receptor agonists, termed calcimimetics, have been developed and demonstrated a significant improvement in the balance between serum calcium, PTH, phosphorus, and FGF23 levels [16–25]. Evocalcet, the latest calcimimetic drug approved in Japan, causes nausea and vomiting less frequently than another calcimimetic drug, cinacalcet [26, 27], which suggests that it might better achieve target PTH and calcium levels in patients with SHPT who are on maintenance hemodialysis.

Because of the recent development of calcimimetics, patients with SHPT are often treated with combination therapy consisting of VDRA and a calcimimetic drug. Indeed, approximately 50% of patients who participated in a previously conducted phase 3 randomized study to compare the efficacy and safety of evocalcet with cinacalcet (phase 3 head-to-head comparison study) were treated with concomitant IV VDRAs [26]. Although VDRAs and calcimimetics may reduce PTH levels to a similar degree, they have different effects on calcium, phosphorus, and FGF23 levels [28–34]. Therefore, it is of clinical interest to investigate how the efficacies of various calcimimetics are affected by concomitant VDRA therapy.

The current study evaluated the efficacy, including that on FGF23, and safety of evocalcet in the presence (low and high VDRA use) or absence of concomitant IV VDRA using a data set obtained from the previous phase 3 head-to-head comparison study in patients with SHPT who were on hemodialysis.

Materials and methods

This study was conducted at 89 study sites in Japan from October 2015 to November 2016. The ethics committees at all sites (S1 Table) approved the study protocol, and the study was conducted in accordance with the principles of the Declaration of Helsinki and in compliance with the Pharmaceuticals, Medical Devices, and Other Therapeutic Products Act, and Good Clinical Practice (Ministry of Health, Labour and Welfare Ordinance No. 28 dated March 27, 1997). The full study procedures were explained, and written informed consent was obtained from all patients prior to participation.

Previous phase 3 head-to-head comparison study

Patients. Patients with SHPT and on maintenance hemodialysis were eligible for participation in the previous phase 3 head-to-head comparison study of evocalcet and cinacalcet [26]. The inclusion criteria were age ≥ 20 years, stable chronic renal failure treated with hemodialysis three times weekly for ≥ 12 weeks, mean intact PTH level > 240 pg/mL during screening at 2 weeks and 1 week before starting treatment, and serum corrected calcium (cCa) level ≥ 9.0 mg/dL during screening.
Study procedure. Detailed study procedures of the phase 3 head-to-head comparison study were described previously [26]. Briefly, the randomized, double-blind, intrapatient dose-adjustment, parallel-group study comprised a 28-week dose adjustment period (Week 0 to 1 day before Week 28) and a 2-week evaluation period (Week 28 to Week 30). During the dose adjustment period, the starting dose of once-daily oral evocalcet was determined based on the serum intact PTH level 1 week prior to treatment initiation: patients with < 500 pg/mL received 1 mg/day and those with ≥ 500 pg/mL received 2 mg/day that was further adjusted at 1 mg increments up to 8 mg on the day of dialysis based on the dose adjustment criteria.

Concomitant medication and therapy, including cinacalcet (from 2 weeks prior to screening to the end of the study), bisphosphonates, denosumab, teriparatide, and parathyroid intervention (from 24 weeks prior to screening to the end of study), and peritoneal dialysis (between Week 12 and Week 30), were prohibited. Changes in prescribed dialysis conditions (dialysate calcium concentration, dialyzer, dialysis time, and number of dialysis sessions per week) were prohibited from 2 weeks prior to screening to the end of the study.

During the period from 2 weeks before screening until the end of the study, initiation of or changes in preparation, dose, and dosing regimen of IV and oral VDRA medications or derivatives (calcitriol, maxacalcitol, falecalcitriol, alfacalcidol, and eldecalcitol) were not permitted. However, dose reduction or discontinuation of VDRA preparations and derivatives were allowed if the serum cCa level was > 11.0 mg/dL after the start of the study treatment. Furthermore, initiation of treatment with VDRA preparations and derivatives or any dose increase was permitted if either of the following conditions were met: corrected serum calcium level decreased below 7.5 mg/dL and remained at ≤ 7.5 mg/dL after the dose increase or initiation of a calcium preparation; or appearance of clinical symptoms potentially attributable to hypocalcemia that did not improve after the initiation or dose increase of a calcium preparation.

The initiation of phosphate binders, calcium preparations, or food with a phosphate binding effect was not allowed for patients who were not already receiving these preparations or food during this period.

Study design and patients
This ad hoc analysis was designed to analyze the efficacy and safety results of the previous phase 3 head-to-head comparison study, stratified by the baseline weekly IV VDRA dose: patients in the evocalcet arm treated with no VDRA as no dose group (NDG); < 1.5 μg/week VDRA as low (L)DG; ≥ 1.5 μg/week VDRA as high (H)DG. The prescribed weekly dose of VDRA derivatives was converted to an equivalent calcitriol dose (e.g. 10 μg of maxacalcitol was equivalent to 1.5 μg of calcitriol). Both male and female patients were included in the present study.

Efficacy and safety endpoints
The efficacy endpoints were 30 weeks of mean serum levels of intact PTH, cCa, phosphorus, and intact and C-terminal FGF23 levels, and their percent changes from baseline, as well as numbers and percentages of patients who achieved the targets of intact PTH (60 to 240 pg/mL), cCa (8.4 to 10.0 mg/dL), and phosphorus (3.5 to 6.0 mg/dL) during the evaluation period [35, 36], stratified by the VDRA dose. Ratios of intact-to-C-terminal FGF23 in all patients by VDRA dose, and the mean expression levels of bone turnover markers (bone specific alkaline phosphatase [BAP] and tartrate-resistant acid phosphatase-5b [TRACP-5b]) by VDRA dose were evaluated. The mean daily dose of evocalcet was presented by VDRA dose.

Safety endpoints were incidences of pre-determined hypocalcemia-related (cCa decreased, blood calcium decreased, and hypocalcemia) and upper gastrointestinal tract-related (nausea,
vomiting, abdominal discomfort, abdominal distension, and decreased appetite) adverse drug reactions (ADRs) by VDRA dose.

Statistical methods

Efficacy was evaluated in the per protocol set (PPS), which excluded the following patients: those who did not receive treatment with evocalcet, who had no intact PTH measurement after starting the treatment with evocalcet, who did not meet any inclusion criteria or met any of the exclusion criterion, who were prescribed evocalcet for ≥ 28 weeks with an adherence rate of < 70%, who received prohibited concomitant medication or therapy, who did not have two or more intact PTH measurements from three timepoints during the evaluation period (Weeks 28 to 30), or who had a protocol violation that might have affected the efficacy evaluations. Safety was assessed in the safety analysis set, which included all patients except those who did not receive treatment with evocalcet.

For the patient baseline characteristics, categorical data were summarized using frequencies and percentages, and continuous data were summarized using descriptive statistics consisting of the number of patients, mean, and standard deviation by DG. Categorical data were analyzed using the χ² test, and continuous data were analyzed using the Kruskal–Wallis test or analysis of variance according to the date distribution. For between-group comparisons of the percentages of patients who achieved the targets, crude differences and 95% confidence intervals were calculated, which were adjusted further for age (< 65 and ≥ 65 years), sex, intact PTH level (< 500 pg/mL and ≥ 500 pg/mL) at baseline and previous cinacalcet treatment. The χ² test was used for statistical analysis. Differences in changes in intact PTH, corrected calcium, and phosphorus from baseline to Week 30 among three DGs were analyzed by a repeated linear mixed model. Pearson’s correlation coefficient and linear mixed-effects modeling were used to assess the relationship between intact and C-terminal FGF23 levels, and the level of correlation was shown as adjusted R-squared. The ratio of intact-to-C-terminal FGF23 at each time point was normalized to the baseline ratio in each DG. For intact FGF23 levels, those ≥ 80,000 pg/mL were excluded from the analyses. Changes in the ratio of intact-to-C-terminal FGF23 between Week 0 and Week 30 were analyzed by a generalized linear mixed model. All pre-determined ADRs were summarized by preferred term according to the Medical Dictionary for Regulatory Activities version 19.0, and between-group differences were analyzed using the χ² test. Statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC, USA), and two-tailed p-values < 0.05 were considered statistically significant.

Results

Patients

Of 320 patients randomized to receive evocalcet in the previous phase 3 head-to-head comparison study [26], 317 patients were included in the safety analysis set and 253 patients were included in the PPS (117, 45, and 91 were treated with no, low, and high IV VDRA, respectively) in this ad hoc analysis.

Patient baseline characteristics were similar among the three DGs in the PPS, including the proportions of males and females (range: males 65.8% to 76.9% and females 23.1% to 34.2%) (Table 1). However, a significantly higher number of prior cinacalcet users were included in the HDG compared with the other DGs (p < 0.001), and the baseline mean BAP level was lower (p = 0.015) and the C-terminal FGF23 level was higher (p = 0.031) as the concomitant VDRA dose range increased.
Intact PTH, cCa, phosphorus, and bone turnover markers

After the initiation of treatment with evocalcet, the mean intact PTH level gradually decreased in all DGs by Week 30 (NDG vs LDG, \(p > 0.1 \); NDG vs HDG, \(p < 0.0001 \); LDG vs HDG, \(p = 0.0025 \)). The mean percent reductions in intact PTH from baseline were also increased through the 30 weeks of treatment, irrespective of concomitant VDRA dose (Fig 1A, S2 Table). The mean cCa level decreased until Week 4 after treatment initiation and remained at a similar level in all DGs with slightly lower levels in the NDG and LDG compared with the HDG (NDG vs LDG, \(p > 0.1 \); NDG vs HDG, \(p = 0.0019 \); LDG vs HDG, \(p > 0.1 \)). A similar tendency was observed for the mean percent changes in cCa levels, irrespective of concomitant VDRA dose (Fig 1B, S2 Table). The mean phosphorus levels and mean changes in phosphorus levels tended to show moderate reductions over the study period (all between-groups, \(p < 0.0001 \) (Fig 1C, S2 Table). However, no significant difference was observed for the intact PTH, cCa, or phosphorus level among the three DGs when the levels were adjusted according to their respective baseline levels (all cases, \(p > 0.95 \)).

Table 1. Baseline characteristics of study patients.

Parameter (unit)	Weekly VDRA dose				
	0	< 1.5 μg	≥ 1.5 μg	\(p\)-value \(a \)	
N = 117	N = 45	N = 91			
Male, n (%)	77 (65.8)	30 (66.7)	70 (76.9)	0.193	
Age (years)	62.4 (10.6)	62.0 (11.9)	58.6 (11.8)	0.050	
Body mass index (kg/m\(^2\))	24.18 (4.23)	25.36 (5.24)	24.70 (4.60)	0.317	
Primary disease, n (%)	Diabetic nephropathy	35 (29.9)	11 (24.4)	20 (22.0)	0.464
	Chronic glomerulonephritis	47 (40.2)	15 (33.3)	42 (46.2)	
	Nephrosclerosis	14 (12.0)	5 (11.1)	12 (13.2)	
	Other	21 (17.9)	14 (31.1)	17 (18.7)	
Duration of dialysis (months)	121.2 (86.7)	122.0 (82.6)	135.4 (87.4)	0.468	
Dry weight (kg)	60.51 (12.97)	64.02 (15.52)	63.54 (14.10)	0.188	
Dialysis efficiency (spKt/V)	1.510 (0.285)	1.473 (0.299)	1.488 (0.285)	0.730	
Cinacalcet use before screening, n (%)	61 (52.1)	24 (53.3)	70 (76.9)	< 0.001	
VDRA use at Week 0, n (%)	81 (69.2)	45 (100.0)	91 (100.0)	< 0.0001	
IV	0 (0.0)	45 (100.0)	91 (100.0)		
Oral	81 (69.2)	0 (0.0)	0 (0.0)	-	
Intact PTH (pg/mL)	438.9 (197.7)	382.2 (125.8)	409.6 (168.0)	0.183	
Corrected calcium (mg/dL)	9.5 (0.6)	9.5 (0.5)	9.6 (0.5)	0.374	
Phosphorus (mg/dL)	5.6 (1.2)	5.7 (1.4)	5.9 (1.4)	0.383	
Calcium corrected-phosphate product (mg\(^2\)/dL\(^2\))	53.35 (11.00)	54.46 (13.48)	56.36 (13.23)	0.217	
BAP (μg/L)	18.79 (10.63)	18.42 (10.66)	15.61 (8.18)	0.015	
TRACP-5b (mU/dL)	816.00 (387.62)	773.51 (392.01)	745.76 (405.17)	0.184	
Total P1NP (μg/L)	452.51 (304.75)	461.33 (297.93)	405.86 (258.40)	0.530	
Whole PTH (pg/mL)	203.58 (91.73)	190.63 (79.76)	190.48 (89.93)	0.274	
Intact FGF23 (pg/mL)	18,082.25 (19,267.33)	21,363.44 (20,641.90)	25,365.10 (24,136.73)	0.051	
C-terminal FGF23 (RU/mL)	14,414.73 (17,677.51)	18,293.33 (23,928.71)	23,488.03 (34,396.35)	0.031	
Largest parathyroid gland volume (mm\(^3\))	321.97 (566.19)	256.92 (261.39)	364.11 (791.89)	0.846	

Unless otherwise specified, data are presented as the mean (standard deviation). \(\chi^2 \) test (categorical), Kruskal–Wallis test or analysis of variance (continuous).

Abbreviations: BAP, bone specific alkaline phosphatase; FGF23, fibroblast growth factor-23; IV, intravenous; PTH, parathyroid hormone; P1NP, procollagen type 1 amino-terminal propeptide; TRACP-5b, tartrate-resistant acid phosphatase-5b; VDRA, vitamin D receptor activator.

https://doi.org/10.1371/journal.pone.0262829.t001
The mean BAP level was slightly increased at Week 6 and gradually returned to the baseline level at Week 30 in all DGs (Fig 2A). Mean TRACP-5b levels gradually decreased in all DGs throughout the 30 weeks of the study period (Fig 2B).

Intact PTH, cCa, and phosphorus guideline target achievement rates

The proportions of patients who achieved the intact PTH target in the LDG and HDG were slightly higher than that in the NDG, but no significant difference was found among the DGs.

Fig 1. Mean levels (left) and mean percent change from baseline (right) in (A) intact PTH, (B) corrected calcium, (C) and phosphorus levels stratified by concomitant baseline IV VDRA weekly dose in patients with SHPT treated with evocalcel for 30 weeks. IV, intravenous; PTH, parathyroid hormone; SHPT, secondary hyperparathyroidism; VDRA, vitamin D receptor activator.

https://doi.org/10.1371/journal.pone.0262829.g001
The proportion of patients who achieved the cCa target was significantly higher as the VDRA dose increased ($p = 0.043$). The proportion of patients who achieved the phosphorus target was similar among the DGs. The proportion of patients who achieved intact PTH, cCa and phosphorus targets was similar among the DGs, although it was slightly higher in the HDG compared with the other DGs (Table 2).

Daily evocalcet doses

The mean daily evocalcet doses were increased at Week 4, when a dose increase was permitted, and showed a gradual increase until the end of the dose adjustment period in all DGs (mean ± standard deviation at Week 27: 3.32 ± 2.38, 3.91 ± 2.46, and 3.34 ± 2.43 mg/day in the

Table 2. Numbers, percentages, and between-group differences of patients who achieved the target parameters during Weeks 28 to 30 stratified by concomitant baseline IV VDRA dose.

Weekly VDRA dose	0	< 1.5 µg	≥ 1.5 µg	p-value*
Patients who achieved the guideline target level	N = 117	N = 45	N = 91	
Intact PTH, n (%)	80 (68.4)	34 (75.6)	70 (76.9)	0.349
Difference (95% CI)	7.2 (−9.01, 20.72)	8.5 (−3.81, 20.16)		
Adjusted difference (95% CI)	4.6 (−11.90, 18.50)	11.5 (−1.83, 23.83)		
Corrected calcium, n (%)	70 (59.8)	32 (71.1)	69 (75.8)	0.043
Difference (95% CI)	11.3 (−7.54, 26.66)	16.0 (3.12, 27.84)		
Adjusted difference (95% CI)	9.8 (−7.35, 24.91)	16.4 (2.75, 28.86)		
Phosphorus, n (%)	86 (73.5)	31 (68.9)	58 (63.7)	0.318
Difference (95% CI)	−4.6 (−20.83, 9.84)	−9.8 (−22.27, 2.81)		
Adjusted difference (95% CI)	−4.6 (−21.20, 10.31)	−13.2 (−26.23, 0.17)		
The above three parameters, n (%)	45 (38.5)	16 (35.6)	38 (41.8)	0.768
Difference (95% CI)	−2.9 (−18.21, 13.90)	3.3 (−9.89, 16.51)		
Adjusted difference (95% CI)	−5.1 (−21.00, 12.19)	4.2 (−9.94, 18.21)		

* χ^2 test.
Adjusted for baseline age, sex, intact PTH level, and previous cinacalcet treatment.

Abbreviations: CI, confidence interval; IV, intravenous; PTH, parathyroid hormone; VDRA, vitamin D receptor activator.

https://doi.org/10.1371/journal.pone.0262829.t002

![Fig 2. Mean levels of serum BAP (A) and TRACP-5b (B), stratified by concomitant baseline IV VDRA. BAP, bone specific alkaline phosphatase; IV, intravenous; SHPT, secondary hyperparathyroidism; TRACP-5b, tartrate-resistant acid phosphatase-5b; VDRA, vitamin D receptor activator.](https://doi.org/10.1371/journal.pone.0262829.g002)
NDG, LDG, and HDG, respectively) with a slightly higher mean dose in the LDG compared with the other DGs.

ADRs

Overall, 18.6% (59/317) of patients experienced pre-determined hypocalcemia-related ADRs, and a significant difference was found among the three DGs with the highest incidence rate in the NDG ($p = 0.003$). The incidence of hypocalcemia in the NDG was the highest compared with the LDG and HDG ($p = 0.014$). Also, 12.9% (41/317) of patients experienced pre-determined upper gastrointestinal tract-related ADRs without significant differences in the incidence rates (Table 3).

FGF23

The mean intact and C-terminal FGF23 levels in the HDG were higher than those in the NDG and LDG at baseline and throughout the treatment period. After starting treatment with evocalcet, the intact and C-terminal FGF23 levels were decreased in all DGs (Fig 3). The percent reductions from baseline in intact FGF23 and C-terminal FGF23 in the LDG were significantly higher than those in the HDG throughout the 30 weeks of treatment ($p < 0.005$ and $p < 0.030$, respectively). The ratio of intact-to-C-terminal FGF23 in all DGs was 1.2 from Week 0 to the measurement time point at Week 6, which indicates a higher intact FGF23 level compared with the C-terminal FGF23 level (Fig 4). The ratio in the NDG and LDG decreased to 1.1 at Week 12 and then to 0.9 at Week 30 (vs HDG, $p < 0.007$); however, the reduction in the HDG was not as marked (1.1 at Week 30).

The adjusted R-squared was similar among the DGs in Week 0 and did not show a notable change at Week 30 (Fig 5). The slope of the FGF23 intact and C-terminal relationship at Week 0 and Week 30 was 0.6717 (95% CI, 0.6489, 0.6946) and 0.7230 (95% CI, 0.7038, 0.7422) in all patients, 0.6359 (95% CI, 0.5981, 0.6736) and 0.6927 (95% CI, 0.6583, 0.7271) in the NDG, 0.6596 (95% CI, 0.6228, 0.6965) and 0.6950 (95% CI, 0.6436, 0.7464) in the LDG, and 0.6936 (95% CI, 0.6566, 0.7307) and 0.7376 (95% CI, 0.7085, 0.7667) in the HDG, respectively. The slope of the FGF23 intact and C-terminal relationship significantly increased after treatment with evocalcet at Week 30 compared with Week 0 in all patients (0.04874 [standard error 0.01307], $p = 0.0002$) and patients in the NDG (0.06729 [standard error 0.01917], $p = 0.0005$).

Table 3. Incidences of ADRs stratified by concomitant baseline IV VDRA dose.

Weekly VDRA dose	All	p-valuea
0 μg	152	
N = 152		
< 1.5 μg	55	
≥ 1.5 μg	110	
N = 110		
N = 317		
Hypocalcemia-related ADRs, n (%)	59 (18.6)	0.003
Corrected calcium decreased	37 (11.7)	0.072
Blood calcium decreased	11 (3.5)	0.184
Hypocalcemia	11 (3.5)	0.014
Upper gastrointestinal tract-related ADRs, n (%)	41 (12.9)	0.337
Nausea	16 (5.0)	0.368
Vomiting	14 (4.4)	0.522
Abdominal discomfort	10 (3.2)	0.562
Abdominal distension	2 (0.6)	0.311
Decreased appetite	8 (2.5)	0.312

aχ² test.

Abbreviation: ADR, adverse drug reaction; IV, intravenous; VDRA, vitamin D receptor activator.

https://doi.org/10.1371/journal.pone.0262829.t003
Fig 3. Mean levels (left) and mean percent changes from baseline (right) in (A) intact FGF23 and (B) C-terminal FGF23 levels stratified by concomitant baseline IV VDRA weekly dose in patients with SHPT treated with evocalcet for 30 weeks. IV, intravenous; SHPT, secondary hyperparathyroidism; VDRA, vitamin D receptor activator. FGF23, fibroblast growth factor-23.

https://doi.org/10.1371/journal.pone.0262829.g003

Fig 4. Intact FGF23-to-C-terminal FGF23 mean (standard error) ratios, stratified by concomitant baseline IV VDRA. FGF23, fibroblast growth factor-23; IV, intravenous; SHPT, secondary hyperparathyroidism; VDRA, vitamin D receptor activator.

https://doi.org/10.1371/journal.pone.0262829.g004
Discussion

The current *ad hoc* analyses demonstrated that evocalcet was effective at reducing the intact PTH, cCa, phosphorus, TRACP-5b, BAP, and FGF23 levels, irrespective of concomitant IV VDRA. The clinical benefit of evocalcet with IV VDRA was also found for hypocalcemia.

Fig 5. Correlations between intact FGF23 and C-terminal FGF23 at Week 0 and Week 30. (A) all patients, (B), patients with no concomitant treatment of IV VDRA, (C) patients with IV VDRA < 1.5 μg/week, and (D) patients with IV VDRA ≥ 1.5 μg/week. Circles with a sold line, Week 0; triangles with a broken line, Week 30. FGF23, fibroblast growth factor-23; IV, intravenous; VDRA, vitamin D receptor activator.

https://doi.org/10.1371/journal.pone.0262829.g005
Although the difference was not statistically significant, we found that over the 30 weeks of treatment, intact PTH levels tended to be slightly lower in the LDG and HDG compared with the NDG; indeed, > 7% of patients achieved the target with VDRA compared with those receiving evocalcet alone, which indicates that evocalcet and VDRA might have additive effects. Treatment with evocalcet and VDRA showed similar but significant effects on the cCa levels: > 10% patients achieved the target compared with evocalcet alone. Treatment with evocalcet alone decreased cCa levels below the target range in some patients, which was likely prevented by concomitant VDRA, thereby improving the achievement rate. Indeed, patients treated with concomitant VDRA developed hypocalcemia-related ADRs less frequently than those without VDRA. Therefore, evocalcet and VDRA appear to complement each other in the regulation of calcium levels, leading to further clinical improvements. However, unlike intact PTH and cCa, VDRA had no impact on the proportion of patients who achieved the phosphorus target.

Accumulating evidence suggests that elevated FGF23 levels are associated with increased mortality in patients undergoing hemodialysis [7–10]. Although the mechanism by which elevated circulating FGF23 levels increase mortality is not fully understood, it is accepted that FGF23 levels should be better controlled [15]. As previously reported for cinacalcet [12], our results showed that evocalcet decreased intact and C-terminal FGF23 levels. However, overall serum FGF23 levels tended to be higher as the VDRA dose increased, consistent with previous studies [30–32]. Furthermore, while the percent changes in the HDG stopped decreasing after Week 12, those in the LDG kept decreasing, which suggests that a combination of low range IV VDRA and evocalcet provides better control over FGF23 levels.

A lowered intact-to-C-terminal FGF23 ratio indicates a reduction in FGF23 synthesis; therefore, our results suggest that evocalcet decreased FGF23 levels by suppressing FGF23 synthesis irrespective of concomitant VDRA, although this effect was significantly lower in the HDG compared with the other DGs partly because VDRA stimulates FGF23 synthesis. The suppression of FGF23 synthesis by evocalcet was further supported by our finding that the slope at Week 0 was increased at Week 30 with the highest slope change found in the NDG. In addition to FGF23, favorable effects of the combination therapy were found for levels of the bone turnover markers TRACP-5b and BAP. The timing of the changes in the FGF23 coincided with that of BAP. Because FGF23 is synthesized in osteoblasts and osteocytes [5, 6], it would be of clinical interest to elucidate any interactions among these markers and their clinical implications on the prognosis of SHPT in responding to a combination therapy with calcimimetics and VDRA. Furthermore, because elevated levels of FGF23 and bone turnover markers have been presented as prognostic factors [7, 12, 37, 38], further studies are needed to evaluate the long-term effects of this combination therapy.

We observed the clinical benefit of combination therapy with evocalcet and VDRA for pre-determined hypocalcemia-related ADRs. Although upper gastrointestinal tract-related ADRs were slightly increased by the addition of VDRA, this increase was negligible, and no notable new hypocalcemia- or upper gastrointestinal tract-related safety concerns were observed.

In this study, the daily evocalcet dose in the LDG was slightly higher than that in the other DGs. Because evocalcet and VDRA both reduce serum intact PTH levels, patients receiving the lower VDRA dose range were assumed to be treated with a higher range of evocalcet daily doses to supplement the efficacy of VDRA. The combination of IV VDRA and evocalcet dose ranges applied to patients in the LDG appeared to be more beneficial than in the HDG because LDG patients had equivalent efficacy to the HDG but with potentially better long-term progress related to lower phosphorus and FGF23 levels. However, differences among the three DGs obtained in this study, such as an elevated FGF23 level [29–34], and/or differential patient baseline characteristics that included a higher proportion of patients with prior cinacalcet use...
in the HDG, might have been a consequence of the ongoing VDRA treatment. A post hoc analysis of the previously conducted Evaluation of Cinacalcet Therapy to Lower Cardiovascular Events (EVOLVE) trial, in which the effects of cinacalcet on cardiovascular disease were investigated in severe SHPT patients on maintenance hemodialysis treatment, reported that, in most patients, the doses of cinacalcet, VDRA, and phosphate binders were not adjusted just after or at ≥14 days after the onset of hypocalcemia [39], which indicates that further studies are needed to confirm whether a high dose range of VDRA is beneficial for the treatment of SHPT patients with oral calcimimetics. Considering the advantages and disadvantages of the combination therapy, treatment options and doses need to be finely adjusted dependent on individual patient disease state, conditions, and characteristics.

This study had some limitations. First, differences in the 30 weeks of mean changes and percent changes from baseline in the intact and C-terminal FGF23, BAP, and TRACP-5b levels were not statistically tested within and among the three DGs. Therefore, any longitudinal mean changes and between group differences in levels need to be interpreted as tendencies. In addition, all patients were Japanese, the study had a small sample size, and patients were treated with evocalcet only up to 30 weeks. Although evocalcet was developed in Japan and has only recently been approved for the treatment of SHPT in patients on maintenance dialysis, it is expected that long-term studies will be conducted in the near future to determine the efficacy and safety of evocalcet in other global populations with larger sample sizes.

In conclusion, treatment with evocalcet improved the achievement rate of the serum cCa target, decreased FGF23 levels by suppressing FGF23 synthesis, and decreased the incidence of hypocalcemia in the presence of VDRA, demonstrating the additive benefits of the combination therapy in SHPT patients.

Supporting information

S1 Table. List of Institutional Review Boards (IRBs).
(DOCX)

S2 Table. Standard deviations of the mean levels and mean percent changes from baseline in intact PTH, corrected calcium, and phosphorus levels stratified by concomitant baseline IV VDRA weekly dose in patients with SHPT treated with evocalcet for 30 weeks.
(DOCX)

Acknowledgments

The authors thank all collaborators for their participation in the study, Ms. Shiori Yasui, Mr. Taichi Mizogui, and Dr. Shinjo Yada of A2 Healthcare Corporation for statistical analysis, and ASCA Corporation for medical writing assistance.

Author Contributions

Conceptualization: Takashi Shigematsu, Masafumi Fukagawa, Tadao Akizawa.
Data curation: Shinji Asada, Yuichi Endo, Takehisa Kawata.
Formal analysis: Shinji Asada, Yuichi Endo, Takehisa Kawata.
Investigation: Shinji Asada, Yuichi Endo, Takehisa Kawata.
Methodology: Shinji Asada, Yuichi Endo, Takehisa Kawata.
Writing – original draft: Shinji Asada, Takehisa Kawata.
Writing – review & editing: Takashi Shigematsu, Masafumi Fukagawa, Tadao Akizawa.

References

1. Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006; 69: 1945–1953. https://doi.org/10.1038/sj.ki.5000414 PMID: 16641930

2. Cunningham J, Locatelli F, Rodriguez M. Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin J Am Soc Nephrol. 2011; 6: 913–921. https://doi.org/10.2215/CJN.06040710 PMID: 21454719

3. Cozzolino M, Tomlinson J, Walsh L, Bellasi A. Emerging drugs for secondary hyperparathyroidism. Expert Opin Emerg Drugs. 2015; 20: 197–208. https://doi.org/10.1517/14728214.2015.1018177 PMID: 25702624

4. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004; 15: 2208–2218. https://doi.org/10.1097/01.ASN.0000133041.27682.A2 PMID: 15284307

5. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA. 2001; 98: 6500–6505. https://doi.org/10.1073/pnas.101545198 PMID: 11444269

6. Noonan ML, White KE. FGF23 Synthesis and activity. Curr Mol Biol Rep. 2019; 5: 18–25. https://doi.org/10.1007/s40610-019-0111-8 PMID: 31008021

7. Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008; 359: 584–592. https://doi.org/10.1056/NEJMoa0706130 PMID: 18687639

8. Jean G, Terrat JC, Vanel T, Hurot JM, Lorriaux C, Mayor B, et al. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant. 2009; 24: 2792–2796. https://doi.org/10.1093/ndt/gfp191 PMID: 19395730

9. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011; 305: 2432–2439. https://doi.org/10.1001/jama.2011.826 PMID: 21673295

10. Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL, Smits G, et al. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol. 2011; 22: 1913–1922. https://doi.org/10.1681/ASN.2010121224 PMID: 21903574

11. Unsal A, Kose Budak S, Koc Y, Basturk T, Sakaci T, Ahbap E, et al. Relationship of fibroblast growth factor 23 and left ventricle mass index and coronary calcification in chronic renal disease. Kidney Blood Press Res. 2012; 36: 55–64. https://doi.org/10.1159/000339026 PMID: 22854270

12. Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation. 2015; 132: 27–39. https://doi.org/10.1161/CIRCULATIONAHA.114.013876 PMID: 26059012

13. Gutiérrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009; 119: 2545–2552. https://doi.org/10.1161/CIRCULATIONAHA.108.844506 PMID: 19414634

14. Negishi K, Kobayashi M, Ochiai I, Yamazaki Y, Hasegawa H, Yamashita T, et al. Association between fibroblast growth factor 23 and left ventricular hypertrophy in maintenance hemodialysis patients. Comparision with B-type natriuretic peptide and cardiac troponin T. Circ J. 2010; 74: 2734–2740. https://doi.org/10.1253/circj.cj-10-0355 PMID: 20141973

15. Rodelo-Haad C, Santamaria R, Muñoz-Castañeda JR, Péndón-Ruíz de Mier MV, Martin-Malo A, Rodríguez M. FGF23, biomarker or target? Toxins (Basel). 2019; 11: 175.

16. Rodríguez M, Goodman WG, Liakopoulos V, Messa P, Wiecek A, Cunningham J. The use of calcimimetics for the treatment of secondary hyperparathyroidism: A 10 year evidence review. Semin Dial. 2015; 28: 497–507. https://doi.org/10.1111/sedi.12357 PMID: 25752680

17. Pereira L, Meng C, Marques D, Frazão JM. Old and new calcimimetics for treatment of secondary hyperparathyroidism: impact on biochemical and relevant clinical outcomes. Clin Kidney J. 2018; 11: 80–88. https://doi.org/10.1093/ckj/sfx125 PMID: 29423207

18. Lindberg JS, Culleton B, Wong G, Borah MF, Clark RV, Shapiro WB, et al. Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis.
dialysis: a randomized, double-blind, multicenter study. J Am Soc Nephrol. 2005; 16: 800–807. doi.org/10.1681/ASN.2004060512 PMID: 15689407

19. Fukagawa M, Yokoyama K, Shigematsu T, Akiba T, Fuji A, Kuramoto T, et al. A phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of etelcalcetide (ONO-5163/AMG 416), a novel intravenous calcimimetic, for secondary hyperparathyroidism in Japanese haemodialysis patients. Nephrol Dial Transplant. 2017; 32: 1723–1730. https://doi.org/10.1093/ndt/gfx408 PMID: 28057872

20. Block GA, Zeig S, Sugihara J, Chertow GM, Chi EM, Turner SA, et al. Combined therapy with cinacalcet and low doses of vitamin D sterols in patients with moderate to severe secondary hyperparathyroidism. Nephrol Dial Transplant. 2008; 23: 2311–2318. https://doi.org/10.1093/ndt/gfn028 PMID: 18310602

21. Tentori F, Wang M, Bieber BA, Karaboyas A, Li Y, Jacobson SH, et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study. Clin J Am Soc Nephrol. 2015; 10: 98–109. https://doi.org/10.2215/CJN.12941213 PMID: 25516917

22. Fukagawa M, Fukuma S, Onishi Y, Yamaguchi T, Hasegawa T, Akizawa T, et al. Prescription patterns and mineral metabolism abnormalities in the cinacalcet era: results from the MBD-5D study. Clin J Am Soc Nephrol. 2012; 7: 1473–1480. https://doi.org/10.2215/CJN.10812111 PMID: 22822017

23. Ketteler M, Martin KJ, Wolf M, Amdahl M, Cozzolino M, Goldsmith D, et al. Paricalcitol versus cinacalcet plus low-dose vitamin D therapy for the treatment of secondary hyperparathyroidism in patients receiving haemodialysis: results of the IMPACT-SHPT study. Nephrol Dial Transplant. 2012; 27: 3270–3278. https://doi.org/10.1093/ndt/gfs018 PMID: 22387567

24. Fukuma S, Kurita N, Fukagawa M, Akizawa T, Fukuhara S. Impact of cinacalcet introduction on MBD and mineral metabolism abnormalities in the cinacalcet era: results from the MBD-5D study. Clin J Am Soc Nephrol. 2013; 8: 435–441. https://doi.org/10.1093/ CJN/BNS231 PMID: 25019026

25. Yuan F, Chen X, Wang C, Li Z, Liu H. Effect of cinacalcet combined with calcitriol on the clinical outcome and bone metabolism in patients on hemodialysis with severe secondary hyperparathyroidism. Blood Purif. 2018; 45: 73–78. https://doi.org/10.1159/000484435 PMID: 29216631

26. Fukagawa M, Shimazaki R, Akizawa T; Evocalcet study group. Head-to-head comparison of the new calcimimetic agent evocalcet in Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 2018; 94: 818–825. https://doi.org/10.1016/j.kint.2018.05.013 PMID: 30049473

27. Yokoyama K, Shimazaki R, Fukagawa M, Akizawa T; Evocalcet Study Group. Long-term efficacy and safety of evocalcet in Japanese patients with secondary hyperparathyroidism receiving haemodialysis. Sci Rep. 2019; 9: 6410. https://doi.org/10.1038/s41598-019-42017-z PMID: 31015494

28. Leifheit-Nestler M, Große Siemer R, Flasbart K, Richter B, Kirchhoff F, Ziegler WH, et al. Induction of cardiac FGF23/FGFFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transplant. 2016; 31: 1088–1099. https://doi.org/10.1093/ndt/gfv421 PMID: 26681731

29. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005; 289: F8–28. https://doi.org/10.1152/ajprenal.00336.2004 PMID: 15951480

30. Cozzolino M, Ketteler M, Martin KJ, Sharma A, Goldsmith D, Khan S. Paricalcitol- or cinacalcet-centred therapy affects markers of bone mineral disease in patients with secondary hyperparathyroidism receiving haemodialysis: results of the IMPACT-SHPT study. Nephrol Dial Transplant. 2014; 29: 899–905. https://doi.org/10.1093/ndt/gfu011 PMID: 24500308

31. Sprague SM, Wetmore JB, Gurevich K, Da Roza G, Buerkert J, Reiner M, et al. Effect of cinacalcet and vitamin D analogs on fibroblast growth factor-23 during the treatment of secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2015; 10: 1021–1030. https://doi.org/10.2215/CJN.03270314 PMID: 25873267

32. Wetmore JB, Gurevich K, Sprague S, Da Roza G, Buerkert J, Reiner M, et al. A randomized trial of cinacalcet versus vitamin D analogs as monotherapy in secondary hyperparathyroidism (PARADIGM). Clin J Am Soc Nephrol. 2015; 10: 1031–1040. https://doi.org/10.2215/CJN.07050714 PMID: 25904755

33. Friedl C, Zitt E. Role of etelcalcetide in the management of secondary hyperparathyroidism in hemodialysis patients: a review on current data and place in therapy. Drug Des Devel Ther. 2018; 12: 1589–1598. https://doi.org/10.2147/DDDT.S134103 PMID: 29910605

34. Ohya M, Yashiro M, Sonou T, Okuda K, Tatsuta K, Mima T, et al. Intravenous maxacalcitol therapy correlates with serum fibroblast growth factor 23 levels in hemodialysis patients independent of serum phosphate or calcium levels. Contrib Nephrol. 2018; 196: 44–51. https://doi.org/10.1159/000485696 PMID: 30041203
35. Fukagawa M, Yokoyama K, Koiwa F, Taniguchi M, Shoji T, Kazama JJ, et al. Clinical practice guideline for the management of chronic kidney disease-mineral and bone disorder. Ther Apher Dial. 2013; 17: 247–288. https://doi.org/10.1111/1744-9987.12058 PMID: 23735142

36. Yokoyama K, Taniguchi M, Fukagawa M. A Japanese approach for CKD-MBD. Kidney Int Suppl (2011). 2013; 3: 451–456. https://doi.org/10.1038/kisup.2013.94 PMID: 25019029

37. Fahrleitner-Pammer A, Herberth J, Browning SR, Obermayer-Pietsch B, Wirnsberger G, Holzer H, et al. Bone markers predict cardiovascular events in chronic kidney disease. J Bone Miner Res. 2008; 23: 1850–1858. https://doi.org/10.1359/jbmr.080610 PMID: 18597636

38. Coyne DW, Andress DL, Amdahl MJ, Ritz E, de Zeeuw D. Effects of paricalcitol on calcium and phosphate metabolism and markers of bone health in patients with diabetic nephopathy: results of the VITAL study. Nephrol Dial Transplant. 2013; 28: 2260–2268. https://doi.org/10.1093/ndt/gft227 PMID: 23787544

39. Floege J, Tsirtonis K, Ilies J, Druke TB, Chertow GM, Parfrey P. Incidence, predictors and therapeutic consequences of hypocalcemia in patients treated with cinacalcet in the EVOLVE trial. Kidney Int. 2018; 93: 1475–1482. https://doi.org/10.1016/j.kint.2017.12.014 PMID: 29525393