Periodic solution for strongly nonlinear oscillators by He’s new amplitude-frequency relationship

O. González-Gaxiola

1 Introduction

Nonlinear vibration arises everywhere in science, engineering and other disciplines, since most phenomena in our world today, are essentially nonlinear and are described by nonlinear equations. It is very important in applications to have a version of the frequency (or period) to have a better understanding of the phenomena modeled through differential equations that contain terms with high nonlinearities, and a simple mathematical method is very useful for practical applications.

Recently many analytical methods have appeared to obtain the approximate solutions of nonlinear systems, such as the parameter-expansion method [1], the harmonic balance method [2, 4, 6], the energy balance method [7, 8], the Hamiltonian approach [10, 12], the use of special functions [13, 14], the max-min approach [15, 16], the variational iteration method [17, 18, 20, 21] and homotopy perturbation [22, 23, 24, 25, 26, 27, 28], and others. An excellent study, in which many of these techniques can be found in detail to solve nonlinear
problems of oscillatory type can be seen in [29].
Recently, In [11] an analytical approximate technique for large and small amplitudes oscillations of a class of conservative single degree-of-freedom systems with odd non-linearity is proposed. In this study, we have applied new method to find the approximate solutions of nonlinear differential equation governing strongly nonlinear oscillators and have made a comparison with the exact solution. The most interesting features of the used method are its simplicity and its excellent accuracy of both period and corresponding periodic solution for the entire range of oscillation amplitude. Finally, four examples are presented to describe the solution methodology and to illustrate the usefulness and effectiveness of the proposed technique.

2 He’s new amplitude-frequency relationship

Consider a one-dimensional, nonlinear oscillator governed by

\[u'' + f(u) = 0, \] (1)

with the initial conditions

\[u(0) = A, \quad u'(0) = 0. \] (2)

where a prime denotes differentiation with respect to \(t \) and the nonlinear function \(f(u) \) is odd, i.e. \(f(-u) = -f(u) \) and satisfies \(f(u)/u > 0 \) for \(u \in [-A,A] \), \(u \neq 0 \). It is obvious that \(u = 0 \) is the equilibrium position. The system oscillates between the symmetric bounds \(-A\) and \(A \). The period and corresponding periodic solution are dependent on the oscillation amplitude \(A \).

According to He’s new amplitude-frequency formulation, the approximate frequency as a function of \(A \) can be obtained as follows [11]:

\[\omega^2(A) = \sum_{i=1}^{N} \omega_i^2(A) \] (3)

with each \(\omega_i^2(A) \) defined by

\[\omega_i^2(A) = f'(u_i) \] (4)

where \(u_i \) are location points, \(0 < u_i < A \). Explicitly, \(u_i = iA/N \) for every \(i = 1, 2, \ldots, N - 1 \). The simplest way to calculate the frequency is given by

\[\omega_i^2(A) = f'(u_i), \] (5)

for some \(0 < u_i < A \). The accuracy, however, depends greatly upon the location point.

In Table 1 we present the criteria suggested by Ji-huan He in [11] for choosing a suitable location point \(u_i \).

Conditions	Location point for Eq. (5)
\(u f''(u) < 0 \)	\(0 < u_i < A/2 \)
\(u f''(u) > 0 \)	\(A/2 \leq u_i < A \)

Table 1: Criterion for choosing a location point
Therefore, the analytical approximate frequency \(\omega \) as a function of \(A \) is
\[
\omega_{\text{app}}(A) = \sqrt{f'(u_i)}.
\] (6)
From Eq. (6) we obtain the following approximate periodic solution to (1)
\[
u_{\text{app}}(t) = A \cos \left(\sqrt{f'(u_i)} \cdot t \right).
\] (7)

3 Numerical examples

In this section, we will give four examples to illustrate the use and the effectiveness of the present approach.

Example 1
Consider the cubic-quintic Duffing nonlinear oscillator, which is modelled by the following second-order differential equation
\[
u'' + \nu + \nu^3 + \nu^5 = 0,
\] (8)
with initial conditions
\[
u(0) = A, \quad \nu'(0) = 0.
\] (9)
In the present example we have \(f(\nu) = \nu + \nu^3 + \nu^5 \), it is clear that \(f \) is an odd function and satisfies \(f(\nu)/\nu > 0 \).
Calculating we have \(f'(\nu) = 1 + 3\nu^2 + 5\nu^4 \) and \(f''(\nu) = 6\nu + 20\nu^3 \), hence \(uf''(\nu) > 0 \). Now, considering the criterion given in Table 1 we must take the location points \(A/2 \leq u_i < A \). If we take \(u_i = 0.5772A \) and consider the proposed approach in Eq. (6), one can assume for the frequency-amplitude formulation
\[
\omega_{\text{app}}(A) = \sqrt{1 + 3(0.5772)^2A^2 + 5(0.5772)^4A^4}.
\] (10)
We, therefore, obtain the following periodic solution:
\[
u_{\text{app}}(t) = A \cos \left(\sqrt{1 + 3(0.5772)^2A^2 + 5(0.5772)^4A^4} \cdot t \right)
\] (11)
which has a high accuracy (see Figs. 1-2).
The exact frequency for the present example is given by (10):
\[
\omega_{\text{ex}}(A) = \frac{2\pi}{\int_0^{\pi/2} \frac{4d\theta}{\sqrt{1 + \frac{1}{3}(1 + \sin^2 \theta)A^2 + \frac{1}{5}(1 + \sin^2 \theta + \sin^2 \theta)A^4}}}
\] (12)
From Table 2 it can be observed that Eq. (10) yield excellent analytical approximate periods for both small and large values of oscillation amplitude \(A \).
Table 2: Comparison between frequencies \(\omega_{\text{app}}(A) \) and \(\omega_{\text{ex}}(A) \) for different values of \(A \).

\(A \)	\(\omega_{\text{app}}(A) \) Eq. (10)	\(\omega_{\text{ex}}(A) \) Eq. (12)	Relative Error (%)
1/1000	1.0000004997	1.0000003750	0.0000124%
1/10	1.0000499755	1.0000375023	0.0012401%
10	75.171283755	75.177400632	0.0081363%
50	1863.0910920	1867.5739782	0.2400379%
100	7450.3513534	7468.8303066	0.2474142%
1000	744968.72043	746834.68847	0.2498502%

Fig. 1: Comparison of analytical approximation (dashed) and exact solution (black) for \(A = 1/10 \) in example 1.

Fig. 2: Comparison of analytical approximation (dashed) and exact solution (black) for \(A = 50 \) in example 1.
Example 2
Consider the nonlinear oscillator
\[u'' + u + u^5 = 0, \] \hspace{1cm} (13)
subject to the initial conditions
\[u(0) = A, \quad u'(0) = 0. \] \hspace{1cm} (14)

For this problem,
\[f(u) = u + u^5, \]
it is clear that \(f \) is an odd function and satisfies \(f(u)/u > 0 \).
Derivating we have,
\[f'(u) = 1 + 5u^4 \quad \text{and} \quad f''(u) = 20u^3, \]
and hence
\[u f''(u) = 20u^4 > 0. \]
Therefore, considering the criterion given in Table 1 we must take the location points \(A/2 \leq u_i < A \).
If we take \(u_i = 0.5779A \) and consider the proposed approach in Eq. (6), one can assume for the frequency-amplitude formulation
\[\omega_{app}(A) = \sqrt{1 + 5(0.5779)^4 A^4}. \] \hspace{1cm} (15)

The exact frequency for the present problem was established in [19] and is given by
\[\omega_{ex}(A) = \pi \sqrt{A^4 + 3} \left(\int_0^{\pi/2} \frac{1}{\sqrt{1 + \left(\frac{4}{A^4} \right) \left(\sin^2 \theta + \sin^4 \theta \right)}} d\theta \right)^{-1}. \] \hspace{1cm} (16)

To illustrate and verify accuracy of these approximate analytical approach, a comparison of approximate frequencies \(\omega_{app}(A) \) for different values of amplitude \(A \) and the exact frequencies \(\omega_{ex}(A) \) is presented in Table 3. Note that the approximation is very accurate for small values and large values of \(A \). From Table 3 we can see that

A	\(\omega_{app}(A) \) Eq. (15)	\(\omega_{ex}(A) \) Eq. (16)	Relative Error (%)
1/100	1.00000000000	1.00000000000	0.0000000%
1	1.0000000028	1.0000000031	0.0000000%
1/10	1.0000278833	1.0000312493	0.0003365%
1	1.2480683052	1.2647077571	1.3156756%
10	74.684301857	74.690887847	0.0088176%
100	746.77603739	746.83420769	0.0077840%
500	186694.01678	186708.55006	0.0077839%
1000	746776.06710	746834.20022	0.0077839%
10000	7.467760 \times 10^7	7.468342 \times 10^7	0.0077839%

Table 3: Comparison between frequencies \(\omega_{app}(A) \) and \(\omega_{ex}(A) \) for different values of \(A \).

\[\lim_{A \to 0^+} \frac{\omega_{app}(A)}{\omega_{ex}(A)} = 1 \quad \text{and} \quad \lim_{A \to \infty} \frac{\omega_{app}(A)}{\omega_{ex}(A)} = 0.999922. \] \hspace{1cm} (17)

Considering the approximation for the frequency obtained in Eq. (15) the approximate solution of Eq. (13) becomes
\[u_{app}(t) = A \cos \left(\sqrt{1 + 5(0.5779)^4 A^4} \cdot t \right). \] \hspace{1cm} (18)
For this example we will not show graphs as we did in the previous example, because the high precision would not allow the distinction between them.

Example 3
Consider the cubic-quintic Duffing nonlinear oscillator, which is modelled by the following second-order differential equation

\[u'' + \frac{1}{u} = 0, \quad (19) \]

with initial conditions

\[u(0) = A, \quad u'(0) = 0. \quad (20) \]

This is an important and interesting nonlinear differential equation since it occurs in the modeling of certain phenomena in plasma physics \[9\].

The exact solution for Eq. (19) as a function of \(A \) was obtained in \[5\] and this is

\[\omega_{ex}(A) = 2\pi \left[2\sqrt{2} A \int_0^1 \frac{ds}{\sqrt{\ln(1/s)}} \right]^{-1}. \quad (21) \]

To use the method presented in the section \[2\] we will consider \(f(u) = \frac{1}{u} \), it is clear that \(f \) is an odd function and satisfies \(f(u)/u > 0 \).

Calculating, we get \(f'(u) = -\frac{1}{u^2} \) and \(f''(u) = \frac{2}{u^3} \), hence \(uf''(u) > 0 \). Now, considering again the criterion given in Table \[1\] we must take the location points \(A/2 \leq u_t < A \). If we take \(u_t = 0.799A \) and consider the proposed approach in Eq. (6), one can assume for the frequency-amplitude formulation

\[\omega_{app}(A) = \sqrt{\frac{1}{(\frac{799}{1000})^2A^2}} = \frac{1000}{799A}. \quad (22) \]

\(A \)	\(\omega_{app}(A) \) Eq. (22)	\(\omega_{ex}(A) \) Eq. (21)	Relative Error (%)
1/1000	1251.5644556	1253.3141373	0.13960%
1/100	125.15644556	125.33141373	0.13960%
1/10	12.515644556	12.533141373	0.13960%
1	1.2515644556	1.2533141373	0.13960%
10	0.1251564456	0.1253314137	0.13960%
100	0.0125156446	0.0125331414	0.13960%
500	0.0025031289	0.0025066282	0.13960%
1000	0.0012515644	0.0012533141	0.13960%

Table 4: Comparison between frequencies \(\omega_{app}(A) \) and \(\omega_{ex}(A) \) for different values of \(A \).

\[\lim_{A \to 0^+} \frac{\omega_{app}(A)}{\omega_{ex}(A)} = \lim_{A \to \infty} \frac{\omega_{app}(A)}{\omega_{ex}(A)} = 0.9986. \quad (23) \]

Finally, considering the approximation \(\omega_{app}(A) \), we have obtain the following periodic solution of the Eq. (19)

\[u_{app}(t) = A \cos \left(\frac{1000}{799A} t \right). \quad (24) \]

The obtained solution is of remarkable accuracy, as shown in Table 4 and Fig. 3.
Example 4
As a last example, we consider the following nonlinear differential equation:

$$u'' + u + \frac{u}{\sqrt{1 + u^2}} = 0, \quad u(0) = A, \quad u'(0) = 0.$$ \hspace{1cm} (25)

Which, \(f(u) = u + \frac{u}{\sqrt{1 + u^2}}\). Its derivatives are:

$$f'(u) = 1 + \frac{1}{\sqrt{(1 + u^2)^3}}, \quad f''(u) = -\frac{3u}{\sqrt{(1 + u^2)^5}}.$$ \hspace{1cm} (26)

From Eq. (26) we have \(uf''(u) < 0\). Considering the criterion given in Table 1 we must take the location points \(A < u_i < A/2\). If we take \(u_i = 0.48A\) and consider the proposed approach in Eq. (6), one can assume for the frequency-amplitude formulation

$$\omega_{app}(A) = \sqrt{1 + \frac{1}{(1 + (0.48A)^2A^2)^{3/2}}}.$$ \hspace{1cm} (27)

The nonlinear oscillator described in Eq. (25) is a conservative system. By integrating Eq. (25) and using the initial conditions, we arrive at

$$\omega_{ex}(A) = \frac{1}{2\pi} \left(\int_0^{\pi} \frac{A\cos \theta}{\sqrt{A^2\cos^2 \theta - 2(\sqrt{1 + A^2} \sin \theta - \sqrt{1 + A^2})}} d\theta \right)^{-1}.$$ \hspace{1cm} (28)

By taking into account our approximation made through He’s frequency-amplitude formulation Eq. (27) and \(\omega_{ex}(A)\) from Eq. (28) we can calculate the Table 5 for small and large values of \(A\).
Also, considering the approximation (27), we have obtained the following periodic solution of the Eq. (25)

\[
\omega_{\text{app}}(A) = A \cos \left(\sqrt{1 + \frac{1}{1 + \frac{48}{100} A^2}} \right) t.
\]

The obtained solution is very acceptable accuracy, as shown in Fig. 4 and Fig. 5. We can conclude that formula (27) is valid for the whole range of values of amplitude of oscillation and its maximum relative error is 5.3% and this is obtained when \(A = 10 \). We can also see that, for very large or very small values of \(A \), we have

\[
\lim_{A \to 0^+} \frac{\omega_{\text{app}}(A)}{\omega_{\text{ex}}(A)} = \lim_{A \to \infty} \frac{\omega_{\text{app}}(A)}{\omega_{\text{ex}}(A)} = 1.
\]

\(A \)	\(\omega_{\text{app}}(A) \) Eq. (27)	\(\omega_{\text{ex}}(A) \) Eq. (28)	Relative Error (%)
1/1000	1.4142134402	1.4142134298	0.0000007%
1/10	1.4142013439	1.4142003049	0.0000734%
1	1.4129946662	1.4128952474	0.0070365%
10	1.0042330178	1.060605289	5.3151037%
100	1.00000045182	1.0063415277	0.6297076%
1000	1.0000000045	1.0006636862	0.0635976%
10000	1.0000000000	1.0000636597	0.0063655%

Table 5: Comparison between frequencies \(\omega_{\text{app}}(A) \) and \(\omega_{\text{ex}}(A) \) for different values of \(A \).

Fig. 4: Comparison of analytical approximation (dashed) and exact solution (black) for \(A = 10 \) in example 4.
4 Conclusions

He’s new amplitude-frequency relationship recently established by Ji-Huan He in [11] is proved to be a powerful mathematical tool for use in the search for periodic solutions of nonlinear oscillators. It is simple, straightforward and effective. Moreover the approximate analytical solutions are valid for small as well as large amplitudes of oscillation.

The new method applied in this paper is of potential and can be applied to other strongly nonlinear oscillators with more general restoring forces provided that they meet the requirements established in section 2.

Finally, four examples have been presented to illustrate excellent accuracy of the analytical approximate periods and the corresponding periodic solutions. The technique is very simple in principle, all numerical calculations have been made with the help of the software MATHEMATICA.

References

1. Mohyud-Din, S. T., Noor, M. A., Noor, K. I.: Parameter-expansion techniques for strongly nonlinear oscillators. Int. J. Nonlinear Sci. Numer. 10(5), 581-583 (2009). doi: 10.1515/IJNSNS.2009.10.5.581
2. Hu, H., Tang, J. H.: Solution of a Duffing-harmonic oscillator by the method of harmonic balance. J. Sound Vib. 294(3), 617-639 (2006). doi: 10.1016/j.jsv.2005.12.025
3. Nayfeh, A.H.: Problems in Perturbation. Wiley, New York (1985)
4. Mickens, R. E.: Oscillations in Planar Dynamics Systems. World Scientific, Singapore (1996)
5. Mickens, R. E.: Harmonic balance and iteration calculations of periodic solutions to $y'' + y^{-1} = 0$. J. Sound Vib. 306, 968-972 (2007). doi: 10.1016/j.jsv.2007.06.010
6. Beléndez, A., Pascual, C.: Harmonic balance approach to the periodic solutions of the (an)harmonic relativistic oscillator. Phys. Lett. A 371(4), 291-299 (2007). doi: 10.1016/j.physleta.2007.09.010
7. Yıldırım, A., Askari, H., Saadatnia, Z., Kalami-Yazdi, M., Khand, Y.: Analysis of nonlinear oscillations of a punctual charge in the electric field of a charged ring via a Hamiltonian approach and the energy balance method. Comput. Math. Appl. 62(1), 486-490 (2011). doi: 10.1016/j.camwa.2011.05.029
8. Khan, Y., Mirzabeigy, A.: Improved accuracy of He’s energy balance method for analysis of conservative nonlinear oscillator. Neural Comput. Appl. 25(3), 889-895 (2014). doi: 10.1007/s00521-014-1576-2
9. Lan, X.: A Hamiltonian approach for a plasma physics problem. Comput. Math. Appl. 61(8), 1909-1911 (2011). doi: 10.1016/j.camwa.2010.06.028
10. Yıldırım, A., Saadatnia, Z., Askari, H.: Application of the Hamiltonian approach to nonlinear oscillators with rational and irrational elastic terms. Math. Comput. Modelling 54(1-2), 697-703 (2011). doi: 10.1016/j.mcm.2011.03.012
11. He, J. H.: Amplitude-Frequency Relationship for Conservative Nonlinear Oscillators with Odd Nonlinearities. Int. J. Appl. Comput. Math. 3(2), 1557-1560 (2017). doi: 10.1007/s40819-016-0160-0
12. He, J. H.: Hamiltonian approach to nonlinear oscillators. Phys. Lett. A 374(23), 2312-2314 (2010). doi: 10.1016/j.physleta.2010.03.064
13. Elías-Zúñiga, A.: Exact solution of the cubic-quintic Duffing oscillator. Appl. Math. Model. 37(4), 2574-2579 (2013). doi: 10.1016/j.apm.2012.04.005
14. Elías-Zúñiga, A.: Solution of the damped cubic-quintic Duffing oscillator by using Jacobbi elliptic functions. Appl. Math. Comput. 246, 474-481 (2014). doi: 10.1016/j.amc.2014.07.110
15. He, J.H.: Max-min approach to nonlinear oscillators. Int. J. Nonlinear Sci. Numer. Simul. 9(2), 207-210 (2008). doi: 10.1515/IJNSNS.2008.9.2.207
16. Zeng, D. Q.: Nonlinear oscillator with discontinuity by the max-min approach. Chaos, Solitons Fractals 42(15), 2885-2889 (2009). doi: 10.1016/j.chaos.2009.04.029
17. Rafei, M., Ganji, D. D., Daniali, H., Pashaee, H.: The variational iteration method for nonlinear oscillators with discontinuities. J. Sound. Vibration 305(4-5), 614-620 (2007). doi: 10.1016/j.jsv.2007.04.020
18. He, J. H.: Variational approach for nonlinear oscillators. Chaos, Solitons Fractals 34(5), 1430-1439 (2007). doi: 10.1016/j.chaos.2006.10.026
19. He, J. H.: Variational iteration method a kind of non-linear analytical technique: some examples. Int. J. Non-linear Mech. 34(4), 699-708 (1999). doi: 10.1016/S0020-7462(98)00048-1
20. He, J. H., Wu, X. H.: Construction of solitary solution and compact on-like solution by variational iteration method. Chaos, Solitons Fractals 29(1), 108-113 (2006). doi: 10.1016/j.chaos.2005.10.100
21. Wazwaz, A. M.: The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion equations. Comput. Math. Appl. 54(7-8), 933-939 (2007). doi: 10.1016/j.camwa.2006.12.039
22. Beléndez, A., Pascual, C., Gallego, S., Ortuño, M., Neipp, C.: Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of a $\psi^{(3)}$ force nonlinear oscillator. Phys. Lett. A 371(5-6), 421-426 (2007). doi: 10.1016/j.physleta.2007.06.042
23. Beléndez, A., Hernández, A., Beléndez, T., Fernández, E., Álvarez, M. L., Neipp, C.: Application of He’s homotopy perturbation method to the Duffing harmonic oscillator. Int. J. Non-linear Sci. Numer. Simul. 8(1), 79-88 (2007). doi: 10.1515/IJNSNS.2007.8.1.79
24. Gorji, M., Ganji, D. D., Solemani, S.: New application of He’s homotopy perturbation method. Int. J. Non-linear Sci. Numer. Simul. 8(3), 319-328 (2007). doi: 10.1515/IJNSNS.2007.8.3.319
25. Ganji, D. D., Sadighi, A.: Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations. Int. J. Non-linear Sci. Numer. Simul. 7(4), 411-418 (2006). DOI: 10.1515/IJNSNS.2006.7.4.411
26. He, J. H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350(1-2), 87-88 (2006). doi: 10.1016/j.physleta.2005.10.005
27. He, J. H.: Homotopy perturbation method for bifurcation on nonlinear problems. Int. J. Non-linear Sci. Numer. Simul. 6(2), 207-208 (2005). doi: 10.1515/IJNSNS.2005.6.2.207
28. He, J. H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 151(1), 287-292 (2004). doi: 10.1016/S0096-3003(03)00341-2
29. He, J. H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141-1199 (2006). doi: 10.1142/S0217979206033796
30. Younesian, D., Askari, H., Saadatnia, Z., Kalamı Yazdı, M.: Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency-amplitude formulation and He’s energy balance method. Comput. Math. Appl. 59(9), 3222-3228 (2010). doi: 10.1016/j.camwa.2010.03.013