LoCl: An Analysis of the Impact of Optical Loss and Crosstalk Noise in Integrated Silicon-Photonic Neural Networks

Amin Shafiee
Colorado State University
Fort Collins, USA

Sanmitra Banerjee
Duke University
Durham, USA

Krishnendu Chakrabarty
Duke University
Durham, USA

Sudeep Pasricha
Colorado State University
Fort Collins, USA

Mahdi Nikdast
Colorado State University
Fort Collins, USA

ABSTRACT
Compared to electronic accelerators, integrated silicon-photonic neural networks (SP-NNs) promise higher speed and energy efficiency for emerging artificial-intelligence applications. However, a hitherto overlooked problem in SP-NNs is that the underlying silicon photonic devices suffer from intrinsic optical loss and crosstalk noise, the impact of which accumulates as the network scales up. Leveraging precise device-level models, this paper presents the first comprehensive and systematic optical loss and crosstalk modeling framework for SP-NNs. For an SP-NN case study with two hidden layers and 1380 tunable parameters, we show a catastrophic 84% drop in inferencing accuracy due to optical loss and crosstalk noise.

CCS CONCEPTS
- Hardware → Emerging optical and photonic technologies.

KEYWORDS
Integrated Photonic Neural Networks, Optical loss and crosstalk

ACM Reference Format:
Amin Shafiee, Sanmitra Banerjee, Krishnendu Chakrabarty, Sudeep Pasricha, and Mahdi Nikdast. 2022. LoCl: An Analysis of the Impact of Optical Loss and Crosstalk Noise in Integrated Silicon-Photonic Neural Networks. In Proceedings of the Great Lakes Symposium on VLSI 2022 (GLSVLSI ’22), June 6–8, 2022, Irvine, CA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3526241.3530365

1 INTRODUCTION
Integrated silicon-photonic neural networks (SP-NNs) use silicon photonic devices—e.g., Mach–Zehnder interferometers (MZIs)—to realize matrix-vector multiplication with a computational complexity of $O(1)$ [1]. Coherent SP-NNs, which operate on a single wavelength, have an inherent advantage over noncoherent SP-NNs that require power-hungry wavelength-conversion steps and multiple wavelength sources [1]. Fig. 1(a) presents an overview of a multi-layer coherent SP-NN with N_1 inputs, N_2 outputs, and M layers. Each layer comprises an optical-interference unit (OIU) implemented using an array of MZIs, connected to a nonlinear-activation unit (NAU) using an optical-gain (amplification) unit (OGU).

While SP-NNs are promising alternatives to electronically implemented neural networks, several performance roadblocks still need to be addressed. In particular, the underlying silicon photonic devices in SP-NNs suffer from intrinsic optical loss and crosstalk noise due to inevitable device imperfections (e.g., sidewall roughness) and undesired mode couplings [2]. For example, prior work has shown up to 1.5 dB insertion loss and −18 dB crosstalk in 2×2 MZIs [3]. Note that while the optical loss and crosstalk are small at the device level, they can accumulate as SP-NNs scale up, hence limiting the scalability and degrading the performance of SP-NNs. Even worse, crosstalk noise cannot be filtered in coherent SP-NNs—our focus in this paper—due to the coherence between the noise and victim signals. This necessitates careful analysis of optical loss and crosstalk noise in SP-NNs and their impact on SP-NN performance, which have not been addressed in any prior work.

The novel contribution of this paper is in developing, to the best of our knowledge, the first comprehensive and systematic optical loss and crosstalk modeling framework for Integrated silicon-photonic neural networks, called LoCl. We analyze the average and the worst-case optical loss and coherent crosstalk noise in SP-NNs across different numbers of inputs and layers. Our results show considerable degradation in optical signal integrity in the SP-NNs’...
output layer due to optical loss and crosstalk noise. Considering an example of an SP-NN case study with two hidden layers ($M = 3$) and 16 inputs (i.e., 1380 tunable parameters) with an input optical power of 0 dBm and an OGU with 17 dB optical gain [5], we found that the optical loss and optical coherent crosstalk power in the output can be as high as 4 dB and 31.7 dBm, respectively. Also, we show the inferencing accuracy in this network can drop by 84% due to optical loss and crosstalk.

2 BACKGROUND

2.1 2×2 MZI Multiplier

As shown in Fig. 1(b)-right, a 2×2 MZI is the building block of the optical-interference unit in coherent SP-NNs. It consists of two 3-dB directional couplers (DCs), with a nominal splitting ratio of 50:50, and two optical phase shifters (θ and ϕ), which are often implemented using microheaters [3]. Using the phase shifters, one can actively change the phase angle of optical signals traversing the MZI, hence controlling the interference in the output DC and imprinting weight/activation parameters into the electric field amplitude of the optical signals. Accordingly, as shown in [3] and Fig. 1(b)-right, an input vector of two optical signals (on I_1 and I_2) can be coherently multiplied to the transfer matrix of the MZI—defined based on the phase settings on θ and ϕ, which represent weight parameters in SP-NNs—to obtain the output vector.

2.2 Coherent Optical-Interference Unit (OIU)

Several architectures have been proposed to enable MZI-based linear multipliers (i.e., OIU in Fig. 1(a)) for deep neural networks [4, 6, 7]. A fully connected layer L_m with n_m neurons performs linear multiplication between an input vector and a weight matrix (W) followed by a non-linear activation (f). Accordingly, the output of the next layer L_{m+1} can be represented as $O_{m+1} = f_m(W_m \times O_m)$, where O_m is the output of the previous layer. Using singular value decomposition (SVD), a weight matrix W in layer L_m can be decomposed to $W_m = U_m \Sigma_m V_m^H$, where U_m and V_m are unitary matrices with dimension of $n_m \times n_m$, and Σ_m is a diagonal matrix (see Fig. 1(a)). Here, V_H stands for the Hermitian transpose of V. Employing the Clements’ method in [4], U_m and V_m can be mapped into an array of cascaded MZIs (see Fig. 1(b)-left) by adjusting the phase settings on each MZI. The diagonal matrix ($\Sigma_m \times n_m \times n_m$) can be realized by MZIs with one input and one output being terminated, as shown in Fig. 1(b)-left. Based on [4], the number of MZIs required to implement an $N_1 \times N_1$ unitary and an $N_2 \times N_1$ diagonal matrix is $\frac{N_1(N_1-1)}{2}$ and $\min(N_1, N_2)$, respectively.

2.3 Optical Loss and Crosstalk Noise

Silicon photonic devices intrinsically suffer from optical loss and crosstalk noise. For example, an optical signal traversing an MZI experiences optical loss through the DCs (e.g., 0.1–0.4 dB [2]), absorption loss due to microheaters’ metal planes in proximity (e.g., 0.1–0.3 dB [8]), and propagation loss in the waveguides (e.g., 1–4 dB/cm [2]). Optical crosstalk noise is another limiting factor in silicon photonic networks [9]. Optical crosstalk is a result of undesired mode coupling among signals of the same wavelength (coherent crosstalk) or different wavelengths (incoherent crosstalk). In coherent SP-NNs with a single wavelength, part of the signal on the same wavelength may leak through a device and experiences a different delay (phase), which is common in coherent networks with cascaded MZIs. Such leaked signals will interfere with the victim signal at the output as coherent in-band crosstalk noise, hence making its filtering extremely challenging.

3 OPTICAL LOSS AND CROSSTALK NOISE ANALYSIS IN COHERENT SP-NNS

3.1 Device-Level Compact Models

Fig. 1(b)-right shows a 2×2 MZI structure in coherent SP-NNs. As discussed in Section 2.3, the main sources of optical loss in an MZI are the DC loss (a_1), the metal absorption loss (a_2) from the phase shifters ϕ and θ, and the propagation loss (a_3) in the waveguides. In DCs (see Fig. 1(b)-right), a fraction (determined by cross-over coupling coefficient k) of the optical signal in an input waveguide is coupled to an adjacent waveguide with $\frac{2}{3}$ phase shift, and the remaining (determined by power transmission coefficient r) is transmitted through the input waveguide ($k = t = 0.5$ in an ideal 50:50 DC). Throughout this process, the optical signal suffers from some optical loss based on the relationship $|k|^2 + |r|^2 = a_2$. The metal absorption loss (a_3) is due to the absorption through metal planes of phase shifters in proximity to waveguides and it depends on the integration, material, and size of the metal planes [8]. Considering optical losses a_1, a_2, a_3, and a_p, a compact transfer-matrix model for the MZI in Fig. 1(b)-right can be defined as:

$$
\begin{pmatrix}
O_1 \\
O_2
\end{pmatrix} =
\begin{pmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{pmatrix}
\begin{pmatrix}
I_1 \\
I_2
\end{pmatrix},
$$

$$
T_{DC_1} = \begin{pmatrix}
a_{L_1} & a_{L_2} \\
a_{L_1} & a_{L_2}
\end{pmatrix}
\begin{pmatrix}
\sqrt{1-k^2} \\
\sqrt{1-k^2}
\end{pmatrix},
$$

$$
T_{DC_2} = \begin{pmatrix}
a_{L_1} & a_{L_2} \\
a_{L_1} & a_{L_2}
\end{pmatrix}
\begin{pmatrix}
\sqrt{1-k^2} \\
\sqrt{1-k^2}
\end{pmatrix},
$$

$$
T_{DC} = \begin{pmatrix}
a_{L_1} & a_{L_2} \\
a_{L_1} & a_{L_2}
\end{pmatrix}
\begin{pmatrix}
\sqrt{1-k^2} \\
\sqrt{1-k^2}
\end{pmatrix},
$$

$$
T_{DC} = \begin{pmatrix}
a_{L_1} & a_{L_2} \\
a_{L_1} & a_{L_2}
\end{pmatrix}
\begin{pmatrix}
\sqrt{1-k^2} \\
\sqrt{1-k^2}
\end{pmatrix},
$$

where k_1 and k_2 are the coupling coefficients in DC_1 and DC_2, respectively. Without loss of generality and in the absence of process variations, we assume $k_1 = k_2$ ($k_{1/2} = 0.5$ in 3-dB DCs). Moreover, $a_{L_{MZI}}$ is the MZI propagation loss where L_{MZI} is the MZI length.

Optical crosstalk noise in an MZI can be analyzed by injecting an optical signal into a single input port at a time. That way, when $\theta = 0$ (Cross-state) or $\theta = \pi$ (Bar-state), the crosstalk coefficient can be captured on the opposite output port with destructive interference (see Fig. 1(b)-right). However, there is no exact method to calculate the crosstalk coefficient on each output port because the MZI can be in an intermediate state (not only Bar- or Cross-state). To address this problem, we define a statistical model for the crosstalk coefficient (X) in the 2×2 MZI multiplier in Fig. 1(b)-right. Considering the two known crosstalk coefficients X_B and X_C, where typically $X_B \leq X_C$ [10], we analyze X at an intermediate state determined by θ (and not by ϕ) based on a Gaussian distribution with a θ-dependent mean of $\mu(\theta) = \frac{X_B - X_C}{\theta + X_C}$ and standard deviation of $0.05 \mu(\theta)$, considered here as an example. Employing (1), the coherent crosstalk noise on outputs O_1 and O_2 of the MZI in Fig. 1(b)-right can be modeled as (see also Fig. 2(b)):

$$
\begin{pmatrix}
O_1 \\
O_2
\end{pmatrix} =
\begin{pmatrix}
(1 - X)T_{11} & (1 - X)T_{12} \\
(1 - X)T_{21} & (1 - X)T_{22}
\end{pmatrix}
\begin{pmatrix}
I_1 \\
I_2
\end{pmatrix} +
\begin{pmatrix}
(X)T_{11} \\
(X)T_{12}
\end{pmatrix}
\begin{pmatrix}
I_1 \\
I_2
\end{pmatrix},
$$
The proposed compact models in (1) and (2) can be applied to any 2×2 MZI structure in coherent SP-NNs.

3.2 Layer-Level Compact Models

As shown in Fig. 1(a), we consider a generic coherent SP-NN model with \(N_1 \) inputs, \(N_2 \) outputs, and \(M \) layers. Here, we assume \(N = N_1 = N_2 \) for brevity. An optical signal in the input of a given layer goes through an array of cascaded MZIs in the OIU (see Fig. 1(a)), where the number of MZIs depends on the OIU architecture [4]. Note that \(\theta \) and \(\phi \) in each MZI, where \(\theta \) determines the state and hence optical loss and crosstalk noise introduced in each MZI, depend on the weight parameters and can be determined using SP-NN training algorithms [11]. The output of the OIU is connected to an optical-gain unit (OGU) that includes semiconductor optical amplifiers (SOAs) [5]. Last, the optical signal enters the nonlinear-activation unit (NAU), which can be implemented electronically [12], optoelectronically [13], or optically [14], each with different costs. Considering Fig. 1(a), the insertion loss (IL) of layer \(L_m \) in a coherent SP-NN can be systematically modeled as:

\[
IL_m = IL_{OIU} \cdot G \cdot IL_{NAU},
\]

where \(IL_{OIU} \) is the insertion loss in the OIU that can be calculated based on (1) for each MZI and it depends on the OIU architecture and \(\theta \) phase settings in MZIs. Moreover, \(G \) is the optical gain of the SOAs in the OGU and \(IL_{NAU} \) is the insertion loss due to the NAU. In this paper, we consider the state-of-the-art SOA in [5] with \(G \approx 17 \text{ dB} \), and we assume \(IL_{NAU} \approx 1 \text{ dB} \) based on the optoelectronic NAU proposed in [13], which realizes arbitrary activation functions.

As optical signals traverse MZIs in the OIU in SP-NNs, some coherent crosstalk will be generated and propagated towards the output of each layer, and eventually the network. The coherent crosstalk power (XP) at the output of layer \(L_m \) can be defined as:

\[
XP_m = \sum_{j=1}^{N_{M2ZI}} \left(P \cdot X_{M2ZI}^{mj}(\rho) \cdot IL_{OIJ}^{mj} \right) \cdot G \cdot IL_{NAU}.
\]

In (4), \(N_{M2ZI} \) is the total number of MZIs in the OIU in layer \(L_m \) and \(P \) is the input optical power. Moreover, \(X_{M2ZI}^{mj}(\rho) \) can be calculated using (2) and is the coherent crosstalk on the output of layer \(L_m \) originating in MZI \(j \) in the OIU. Also, \(\rho \) is the optical phase of the crosstalk signal. Similarly, \(IL_{OIJ}^{mj} \) is the insertion loss, which can be calculated using (1), experienced by \(X_{M2ZI}^{mj}(\rho) \) as it traverses the OIU. Note that although SOAs can help improve the insertion loss in SP-NNs, the SOA optical gain will be also applied to the coherent crosstalk signals, thereby exacerbating coherent crosstalk noise in SP-NNs. By cascading the insertion loss and crosstalk models in (3) and (4) across multiple layers, we can analyze the network-level insertion loss and crosstalk power in coherent SP-NNs of any size.

4 SIMULATION RESULTS AND DISCUSSIONS

We implemented the proposed analytical models in Section 3 along with a coherent SP-NN architecture model based on [4] in MATLAB. For layer- and network-level analysis, we consider random weight matrices of different dimensions (\(N = 8, 16, 32, \) and 64), and use SVD to obtain \(U, \Sigma, \) and \(V^H \) (see Fig. 1(a)) for each layer with \(M = 1, 2, \) and 3. We employ the algorithm proposed in [4] to calculate the phase settings (\(\theta \) and \(\phi \)) in the MZIs in the network (see our discussion in Section 2.2). Note that random weight matrices are only used in the layer- and network-level optical loss and crosstalk quantitative simulations, and the inferencing accuracy simulations are based on trained weight matrices (see Section 4.4). Table 1 lists the device-level parameters used in the simulations.

4.1 Device-Level: 2×2 MZI Multiplier

Employing (1) and (2) and the parameters in Table 1, Fig. 2(a) and Fig. 2(b) show the total insertion loss, which includes all the optical loss factors in (1), and crosstalk power at the output of the 2×2 MZI in Fig. 1(b)-right. The x-axis shows \(\theta \leq \pi \), which determines the MZI state (\(\phi \) does not change the MZI state). We used Lumerical [15] to validate the results in Fig. 2(a). Note that Lumerical cannot analyze crosstalk in intermediate states, hence is not considered in Fig. 2(b). Observe that both the insertion loss and crosstalk noise power in the MZI change with the MZI state. The insertion loss on each output is approximately 0.3–0.8 dB. Considering Fig. 1(b)-right, compared to input \(I_2 \), the optical signal on \(I_1 \) experiences higher insertion loss because of \(a_m \) through \(\phi \). Therefore, for example, the insertion loss is higher on \(O_1 (O_2) \) for the Cross-state (Bar-state). Note that the fluctuations in the crosstalk power in Fig. 2(b) are due to the Gaussian noise model defined for the MZI in Section 3.1. The coherent crosstalk power in the MZI output changes between \(\approx -18 \text{ dBm} \) and \(\approx -25 \text{ dBm} \), when the input power is 0 dBm.
average and the worst-case insertion loss and coherent crosstalk power, respectively, at the output of a coherent SP-NN as the number of inputs (\(N\)) and layers (\(M\)) are varied. In contrast to layer-level analysis studied in Section 4.2, the network-level results consider an SOA gain of 17 dB [5] and 1 dB loss per NAU [13] (see Table 1) at the output of each layer. As shown in Fig. 3(a), the insertion loss increases significantly as the number of inputs and layers increases. Even with a single layer (\(M = 1\)), the average (worst-case) insertion loss can be as high as 38.3 dB (54 dB) when \(N = 64\). The drastically high insertion loss is due to the large number of cascaded MZIs in the OIU (see Fig. 1); this number is \(MN(N - 1) + MN\).

Following the same coherent crosstalk noise analysis described in Section 4.2, Fig. 3(b) shows the average and the worst-case coherent crosstalk power in the SP-NN as the number of inputs and layers is increased. Note that the input optical power at the first layer is \(P = 0\) dBm, and the crosstalk power results include the insertion loss—as well as the SOA gain—experienced by the crosstalk signals traversing the network. When \(N\) and \(M\) increase, the number of MZIs that generate coherent crosstalk towards the output ports increases as well, hence one would expect a higher crosstalk power at the output. However, crosstalk signals also experience a higher insertion loss as the network scales up (see Fig. 3(a)). Consequently, the coherent crosstalk power in the output can decrease when both \(N\) and \(M\) increase. As can be seen in Fig. 3(b), when \(M = 1\), the average (worst-case) coherent crosstalk power increases with \(N\) and it can be as high as 19.6 dBm (48 dBm) when \(N = 64\). Nevertheless, when both \(N\) and \(M\) increase, the severely higher resulting insertion loss diminishes the coherent crosstalk power in the output.

4.4 System-Level: Inferencing Accuracy

To analyze the system-level impact of optical loss and crosstalk, we consider a case study of an SP-NN with two hidden layers (\(M = 3\)) of 16 neurons each (\(N = 16\)), trained on the MNIST handwritten digit classification task. The nominal test accuracy is 93.86%. To analyze the effect of optical loss and crosstalk during inferencing, we integrated the MZI model in (1) and (2) into our SP-NN model implementation.

Employing Table 1, we consider \(\alpha_l, \alpha_m,\) and \(\alpha_p\) within the range 0.1–0.4 dB [2], 0.1–0.3 dB [8], and 1–4 dB/cm [2], respectively. Considering an MZI of length \(l_{MZI} = 300 \mu m\) in [3], the propagation loss per MZI (\(\alpha_p \cdot l_{MZI}\)) is 0.03–0.12 dB. Fig. 4(a) shows the inferencing accuracy of our example SP-NN when each of these \(\alpha\)’s are independently varied while the other \(\alpha\)’s are kept fixed at 0 dB and

Table 1: Device-level loss, crosstalk coefficient, power, and gain parameters considered in this paper (PhS: Phase shifter).

Par.	Definition	Value	Ref.
\(X_p\)	Crosstalk in Bar-state	-25 dB	[10]
\(X_C\)	Crosstalk in Cross-state	-18 dB	[10]
\(l_{MZI}\)	MZI length	300 \(\mu m\)	[3]
\(\sigma_m\)	PhS (metal) absorption loss	0.2 dB	[8]
\(\sigma_p\)	Propagation loss	2 dB/cm	[2]
\(\alpha_l\)	Insertion loss of DC	0.1 dB	[2]
\(L_{NAU}\)	NAU loss	1 dB	[13]
\(G\)	SOA gain	17 dB (26.2 dBm)	[5]
\(P\)	Input optical power	0 dBm	-

average and the worst-case insertion loss and coherent crosstalk power, respectively, at the output of a coherent SP-NN as the number of inputs (\(N\)) and layers (\(M\)) are varied. In contrast to layer-level analysis studied in Section 4.2, the network-level results consider an SOA gain of 17 dB [5] and 1 dB loss per NAU [13] (see Table 1) at the output of each layer. As shown in Fig. 3(a), the insertion loss increases significantly as the number of inputs and layers increases. Even with a single layer (\(M = 1\)), the average (worst-case) insertion loss can be as high as 38.3 dB (54 dB) when \(N = 64\). The drastically high insertion loss is due to the large number of cascaded MZIs in the OIU (see Fig. 1); this number is \(MN(N - 1) + MN\).

Following the same coherent crosstalk noise analysis described in Section 4.2, Fig. 3(b) shows the average and the worst-case coherent crosstalk power in the SP-NN as the number of inputs and layers is increased. Note that the input optical power at the first layer is \(P = 0\) dBm, and the crosstalk power results include the insertion loss—as well as the SOA gain—experienced by the crosstalk signals traversing the network. When \(N\) and \(M\) increase, the number of MZIs that generate coherent crosstalk towards the output ports increases as well, hence one would expect a higher crosstalk power at the output. However, crosstalk signals also experience a higher insertion loss as the network scales up (see Fig. 3(a)). Consequently, the coherent crosstalk power in the output can decrease when both \(N\) and \(M\) increase. As can be seen in Fig. 3(b), when \(M = 1\), the average (worst-case) coherent crosstalk power increases with \(N\) and it can be as high as 19.6 dBm (48 dBm) when \(N = 64\). Nevertheless, when both \(N\) and \(M\) increase, the severely higher resulting insertion loss diminishes the coherent crosstalk power in the output.

4.4 System-Level: Inferencing Accuracy

To analyze the system-level impact of optical loss and crosstalk, we consider a case study of an SP-NN with two hidden layers (\(M = 3\)) of 16 neurons each (\(N = 16\)), trained on the MNIST handwritten digit classification task. The nominal test accuracy is 93.86%. To analyze the effect of optical loss and crosstalk during inferencing, we integrated the MZI model in (1) and (2) into our SP-NN model implementation.

Employing Table 1, we consider \(\alpha_l, \alpha_m,\) and \(\alpha_p\) within the range 0.1–0.4 dB [2], 0.1–0.3 dB [8], and 1–4 dB/cm [2], respectively. Considering an MZI of length \(l_{MZI} = 300 \mu m\) in [3], the propagation loss per MZI (\(\alpha_p \cdot l_{MZI}\)) is 0.03–0.12 dB. Fig. 4(a) shows the inferencing accuracy of our example SP-NN when each of these \(\alpha\)’s are independently varied while the other \(\alpha\)’s are kept fixed at 0 dB and
crosstalk is assumed to be absent. We observe that while the inferencing accuracy drops by up to 12% and 16% due to phase shifter metal absorption loss (α_m) and the propagation loss ($\alpha_p \cdot l_{MZI}$), respectively, the impact of the DC insertion loss (α_L) is significantly higher, and the accuracy can drop to $\approx 10\%$ for expected values of α_L. Clearly, optical loss—and DC insertion loss specifically—is catastrophic to network performance as also highlighted in Fig. 4(b)-left, where we model an SP-NN under multiple simultaneous loss sources in the absence of crosstalk. Out of 1000 such random loss scenarios, we found that the SP-NN inferencing accuracy is less than 20% in 750 scenarios and more than 70% in only 20 scenarios. We found that, even when the α’s are at their corresponding lowest expected values, the accuracy is only $\approx 78\%$. The maximum tolerable α’s for which the accuracy loss is less than 5% (in the absence of crosstalk) are shown in Fig. 4(b)-right.

To capture the impact of crosstalk on SP-NN inferencing accuracy, we determine crosstalk coefficient X using a linear interpolation between the worst-case (Cross, $X_C = -18$ dB) and the best-case (Bar, $X_B = -25$ dB) crosstalk; see Section 3.1. Fig. 4(c) shows the inferencing accuracy in the presence of both optical loss and crosstalk, when $X_B \leq X \leq X_C$ and with α’s set to their corresponding minimum expected values. When $X_C = -18$ dB and $X_B = -25$ dB, the accuracy drops to 10.3%. We found that under optical crosstalk and average (or worst-case) loss, the accuracy remains at $\approx 10\%$. Even when $X_{B/C}$ decreases, the accuracy saturates at 78.2% (lower left corner in Fig. 4(c)). The results presented in this section motivate the need for SP-NN design exploration and optimization to mitigate optical loss and crosstalk.

5 CONCLUSION

In this paper, we have presented LoCIL, the first modeling framework to characterize SP-NNs in the presence of optical loss and coherent crosstalk. We have analyzed the average and the worst-case insertion loss and coherent crosstalk noise in coherent SP-NNs while exploring inferencing accuracy drops in SP-NNs under such scenarios. Our results indicate the critical impact of optical loss and crosstalk noise in SP-NNs, resulting in significant power penalty and accuracy loss of 84%. As SP-NNs are advanced to handle more complex problems, insights from this work can help photonic device engineers and SP-NN system architects to explore and optimize next-generation SP-NNs and evaluate SP-NN performance under critical optical loss and crosstalk noise.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foundation under grants CCF-1813370, CCF-2006788, and CNS-2046226.

REFERENCES

[1] F. P. Sunny, E. Taheri, M. Nikdast, and S. Pasricha, "A survey on silicon photonics for deep learning," ACM JETC, vol. 17, no. 4, pp. 1–57, 2021.
[2] M. Bahadori et al., "Comprehensive design space exploration of silicon photonic interconnects," IEEE JLT, vol. 34, no. 12, pp. 2975–2987, 2016.
[3] F. Shokraneh et al., "Theoretical and experimental analysis of a 4x4 reconfigurable MZI-based linear optical processor," IEEE JLT, vol. 38, no. 6, pp. 1258–1267, 2020.
[4] W. B. Clements et al., "Optimal design for universal multipoint interferometers," Optica, vol. 3, no. 12, pp. 1460–1465, 2016.
[5] B. Haq et al., "Micro-Transfer-Printed III-V-on-Silicon C-Band Semiconductor Optical Amplifiers," Laser Photonics Rev., vol. 14, no. 7, p. 1900364, 2020.
[6] M. Beck et al., "Experimental realization of any discrete unitary operator," Phys. Rev. Lett., vol. 73, pp. 58–61, 1994.
[7] F. Shokraneh et al., "The diamond mesh, a phase-error- and loss-tolerant field-programmable MZI-based optical processor for optical neural networks," Opt. Express, vol. 28, pp. 23491–23508, 2020.
[8] F. Ding et al., "Broadband near-infrared metamaterial absorbers utilizing highly lossy metals," Scientific Reports, vol. 6, no. 1, pp. 1–9, 2016.
[9] M. Bahadori et al., "Crosstalk penalty in microring-based silicon photonic interconnect systems," IEEE JLT, vol. 34, no. 17, pp. 4043–4052, 2016.
[10] Y. Shoji et al., "Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides," Opt. Express, vol. 18, no. 9, pp. 9071–9075, 2010.
[11] S. Banerjee, M. Nikdast, and K. Chakraborty, "Modeling silicon photonic neural networks under uncertainties," in IEEE/ACM DATE, 2021, pp. 98–101.
[12] Q. Cheng et al., "Silicon Photonics Codesign for Deep Learning," Proc. IEEE, vol. 108, no. 8, pp. 1261–1282, 2020.
[13] M. M. P. Fard et al., "Experimental realization of arbitrary activation functions for optical neural networks," Opt. Express, vol. 28, no. 8, pp. 12138–12148, 2020.
[14] Y. Shen et al., "Deep learning with coherent nanophotonic circuits," Nature Photonics, vol. 11, no. 7, pp. 441–446, 2017.
[15] Ansys Numerical. [Online]. Available: https://www.numerical.com/products/