REGULARIZING PROPERTIES OF COMPLEX MONGE-AMPÈRE FLOWS

TAT DAT TÔ

Abstract. We study the regularizing properties of complex Monge-Ampère flows on a Kähler manifold \((X, \omega)\) when the initial data are \(\omega\)-psh functions with zero Lelong number at all points. We prove that the general Monge-Ampère flow has a solution which is immediately smooth. We also prove the uniqueness and stability of solution.

Introduction

Let \((X, \omega)\) be a compact Kähler manifold of complex dimension \(n\) and \(\alpha \in H^{1,1}(X, \mathbb{R})\) a Kähler class with \(\omega \in \alpha\). Let \(\Omega\) be a smooth volume form on \(X\). Denote by \((\theta_t)_{t \in [0, T]}\) a family of Kähler forms on \(X\), and assume that \(\theta_0 = \omega\). The goal of this note is to prove the regularizing and stability properties of solutions to the following complex Monge-Ampère flow

\[
(CMAF) \quad \frac{\partial \varphi_t}{\partial t} = \log \frac{(\theta_t + dd^c \varphi_t)^n}{\Omega} - F(t, z, \varphi_t)
\]

where \(F\) is a smooth function and \(\varphi(0, z) = \varphi_0(z)\) is a \(\omega\)-plurisubharmonic (\(\omega\)-psh) function with zero Lelong numbers at all points.

One motivation for studying this Monge-Ampère flow is that the Kähler-Ricci flow can be reduced to a particular case of \((CMAF)\). When \(F = F(z)\) and \(\theta_t = \omega + t\chi\), where \(\chi = \eta - Ric(\omega)\), then \((CMAF)\) is the local potential equation of the twisted Kähler-Ricci flow

\[
\frac{\partial \omega_t}{\partial t} = -Ric(\omega_t) + \eta,
\]

which was studied recently by Collins-Székelydi [CS12] and Guedj-Zeriahi [GZ13].

Running the Kähler-Ricci flow from a rough initial data has been the purpose of several recent works [CD07], [ST09], [SzT11], [GZ13], [BG13], [DNL14]. In [ST09], [SzT11] the authors succeeded to run \((CMAF)\) from continuous initial data, while [DNL14] and [GZ13] are running a simplified flow starting from an initial current with zero Lelong numbers. In this note we extend these latter works to deal with general \((CMAF)\) and arbitrary initial data.
A strong motivation for studying (CMAF) with degenerate initial data comes from the Analytic Minimal Model Program introduced by J. Song and G. Tian [ST09], [ST12]. It requires to study the behavior of the Kähler-Ricci flow on mildly singular varieties, and one is naturally lead to study weak solutions of degenerate complex Monge-Ampère flows (when the function F in (CMAF) is not smooth but continuous). Eyssidieux-Guedj-Zeriahi have developed in [EGZ16] a viscosity theory for degenerate complex Monge-Ampère flows which allows in particular to define and study the Kähler-Ricci flow on varieties with canonical singularities.

Our main result is the following:

Theorem A. Let φ_0 be a ω-psh function with zero Lelong numbers at all points. Let $(t, z, s) \mapsto F(t, z, s)$ be a smooth function on $[0, T] \times X \times \mathbb{R}$ such that $\frac{\partial F}{\partial s} \geq -C$ for some $C \geq 0$. Then there exists a family of smooth strictly ω-psh functions (φ_t) satisfying (CMAF) in $(0, T] \times X$, with $\varphi_t \to \varphi_0$ in $L^1(X)$, as $t \searrow 0^+$. This family is moreover unique if $C = 0$ and $|\frac{\partial F}{\partial t}| < C'$ for some $C' > 0$.

We further show that
- φ_t converges to φ_0 in $C^0(X)$ if φ_0 is continuous.
- φ_t converges to φ_0 in capacity if φ_0 is merely bounded.
- φ_t converges to φ_0 in energy if $\varphi \in E^1(X, \omega)$ has finite energy.

Moreover, we also prove the following stability result:

Theorem B. Let $\varphi_0, \varphi_{0,j}$ be ω-psh functions with zero Lelong number at all points, such that $\varphi_{0,j} \to \varphi_0$ in $L^1(X)$. Denote by $\varphi_{t,j}$ and φ_j the corresponding solutions of (CMAF) with initial condition $\varphi_{0,j}$ and φ_0 respectively. Then for each $\varepsilon \in (0, T)$

$$\varphi_{t,j} \to \varphi_t \text{ in } C^\infty([\varepsilon, T] \times X) \text{ as } j \to +\infty.$$

Moreover, if φ_0 and ψ_0 are continuous, then for any $k \geq 0$, for any $0 < \varepsilon < T$, there exists a positive constant $C(k, \varepsilon)$ depending only on k and ε such that

$$||\varphi - \psi||_{C^k([\varepsilon, T] \times X)} \leq C(k, \varepsilon)||\varphi_0 - \psi_0||_{L^\infty(X, \omega)}.$$

We also prove in Section 5 that one can run the Monge-Ampère flow from a positive current representing a nef class, generalizing results from [GZ13], [DNL14].

The paper is organized as follows. In Section 1 we recall some analytic tools, and give the strategy of proof of Theorem A. In Section 2 we prove various a priori estimates for the regular case. In Section 3 we prove Theorem A using the a priori estimates from Section 2. In Section 4 we prove the uniqueness in Theorem A and Theorem B. In Section 5 we show that the Monge-Ampère flow can run from a nef class.

Acknowledgement. The author is grateful to his supervisor Vincent Guedj for support, suggestions and encouragement. We also would like to
thank Hoang Son Do, Eleonora Di Nezza, Hoang Chinh Lu, Van Hoang Nguyen and Ahmed Zeriahi for very useful discussions.

1. Preliminaries and Strategy

In this section we recall some analytic tools which will be used in the sequel.

1.1. Plurisubharmonic functions and Lelong number. Let (X, ω) be a compact Kähler manifold. We define the following operators:

$$d := \partial + \bar{\partial}, \quad d^c := \frac{1}{2i\pi} (\partial - \bar{\partial}).$$

Definition 1.1. We let $PSH(X, \omega)$ denote the set of all ω-plurisubharmonic functions (ω-psh for short), i.e. the set of functions $\varphi \in L^1(X, \mathbb{R} \cup \{-\infty\})$ which can be locally written as the sum of a smooth and a plurisubharmonic function, and such that

$$\omega + dd^c \varphi \geq 0$$

in the weak sense of positive currents.

Definition 1.2. Let φ be a ω-psh function and $x \in X$. The Lelong number of φ at x is

$$\nu(\varphi, x) := \liminf_{z \to x} \frac{\varphi(z)}{\log |z - x|}.$$

We say φ has a logarithmic pole of coefficient γ at x if $\nu(\varphi, x) = \gamma$.

1.2. A Laplacian inequality. Let α and ω be $(1, 1)$-forms on a complex manifold X with $\omega > 0$. Then the trace of α with respect ω is defined as

$$\text{tr}_\omega(\alpha) = n \frac{\alpha \wedge \omega^{n-1}}{\omega^n}.$$

We can diagonalize α with respect to ω at each point of X, with real eigenvalues $\lambda_1, \ldots, \lambda_n$, then $\text{tr}_\omega(\alpha) = \sum_j \lambda_j$. The Laplace of a function φ with respect to ω is given by

$$\Delta_\omega \varphi = \text{tr}_\omega(dd^c \varphi).$$

We have the following eigenvalue estimate:

Lemma 1.3. If ω and ω' are two positive $(1, 1)$-forms on a complex manifold X of dimension n, then

$$\left(\frac{\omega'^n}{\omega^n} \right)^{\frac{1}{n}} \leq \frac{1}{n} \text{tr}_\omega(\omega') \leq \left(\frac{\omega'^n}{\omega^n} \right) (\text{tr}_{\omega'}(\omega))^{n-1}.$$
Proposition 1.4 ([Siu87]). Let ω, ω' be two Kähler forms on a compact complex manifold. If the holomorphic bisectional curvature of ω is bounded below by a constant $B \in \mathbb{R}$ on X, then we have
\[
\Delta_{\omega'} \log \text{tr}_{\omega} (\omega') \geq - \frac{\text{tr}_{\omega} \text{Ric}(\omega')}{\text{tr}_{\omega} (\omega')} + B \text{tr}_{\omega'} (\omega).
\]

1.3. Maximum principle and comparison theorem. We establish here a slight generalization of the comparison theorem that we will need.

Proposition 1.5. Let $\varphi, \psi \in C^\infty([0, T] \times X)$ be θ_t-psh functions such that
\[
\frac{\partial \varphi}{\partial t} \leq \log \left(\frac{(\theta_t + dd^c \varphi)^n}{\Omega} \right) - F(t, z, \varphi),
\]
\[
\frac{\partial \psi}{\partial t} \geq \log \left(\frac{(\theta_t + dd^c \psi)^n}{\Omega} \right) - F(t, z, \psi),
\]
where $F(t, z, s)$ is a smooth function with $\frac{\partial F}{\partial s} \geq -\lambda$. Then
\[
\sup_{[0, T] \times X} (\varphi_t - \psi_t) \leq e^{\lambda T} \max \left\{ \sup_X (\varphi_0 - \psi_0); 0 \right\}. \tag{1.1}
\]
In particular, if $\varphi_0 \leq \psi_0$, then $\varphi_t \leq \psi_t$.

Proof. We define $u(x, t) = e^{-\lambda t} (\varphi_t - \psi_t)(x) - \varepsilon t \in C^\infty([0, T] \times X)$ where $\varepsilon > 0$ is fixed. Suppose u is maximal at $(t_0, x_0) \in [0, T] \times X$. If $t_0 = 0$ then we have directly the estimate (1.1). Assume now $t_0 > 0$, using the maximum principle, we get $\dot{u} \geq 0$ and $dd^c \psi \leq 0$ at (t_0, x_0), hence
\[
-\lambda e^{-\lambda t_0} (\varphi_t - \psi_t) + e^{-\lambda t_0} (\dot{\varphi}_t - \dot{\psi}_t) \geq \varepsilon > 0 \text{ and } dd^c \varphi_t \leq dd^c \psi_t.
\]
Observing that at (t_0, x_0)
\[
\dot{\varphi} - \dot{\psi} \leq F(t, x, \psi) - F(t, x, \varphi),
\]
we infer that
\[
0 \leq F(t, x, \psi) + \lambda \psi - [F(t, x, \varphi) + \lambda \varphi],
\]
at (t_0, x_0). Since $\frac{\partial F}{\partial s} \geq -\lambda$, $F(t, x, s) + \lambda s$ is an increasing function in s, hence $\varphi_{t_0}(x_0) \leq \psi_{t_0}(x_0)$. Thus $u(x, t) \leq u(x_0, t_0) \leq 0$. Letting $\varepsilon \to 0$, this yields
\[
\sup_{[0, T] \times X} (\varphi_t - \psi_t) \leq e^{\lambda T} \max \left\{ \sup_X (\varphi_0 - \psi_0); 0 \right\}. \]
\[
\square
\]

The following proposition has been given for the twisted Kähler-Ricci flow by Di Nezza and Lu [DNL14]:

Proposition 1.6. Assume ψ_t a smooth solution of (CMAF) with a smooth initial data ψ_0 and φ_t is a subsolution of (CMAF) with initial data φ_0 which is a ω-psh function with zero Lelong number at all point: i.e $\varphi_t \in C^\infty([0, T] \times X)$ satisfies
\[
\frac{\partial \varphi_t}{\partial t} \leq \log \left(\frac{(\theta_t + dd^c \varphi_t)^n}{\Omega} \right) - F(t, z, \varphi_t),
\]
and \(\varphi_t \to \varphi_0 \) in \(L^1(X) \). Suppose that \(\varphi_0 \leq \psi_0 \), then \(\varphi_t \leq \psi_t \).

Proof. Fix \(\epsilon > 0 \) and note that \(\varphi - \psi \) is a smooth function on \([\epsilon, T] \times X \). It follows from Proposition 1.5 that

\[
\varphi - \psi \leq e^{\lambda T} \max \left\{ \sup_X (\varphi_\epsilon - \psi_\epsilon); 0 \right\}.
\]

We have \((\epsilon, x) \mapsto \psi_\epsilon(x) \) is smooth by assumption. Using Hartogs’ Lemma and the fact that \(\varphi_t \) converges to \(\varphi_0 \) in \(L^1(X) \) as \(t \to 0 \), we get

\[
\sup_X (\varphi_\epsilon - \psi_\epsilon) \to \sup_X (\varphi_0 - \psi_0) \leq 0 \quad \text{as} \quad \epsilon \to 0.
\]

This implies that \(\varphi_t \leq \psi_t \) for all \(0 \leq t \leq T \). \(\square \)

1.4. **Evans-Krylov and Schauder estimates for Monge-Ampère flow.**

The Evans-Krylov and Schauder theorems for nonlinear elliptic equations

\[
F(D^2 u) = f
\]

with \(F \) concave, have been used to show that bounds on \(u, D^2 u \) imply \(C^{2,\alpha} \) on \(u \) for some \(\alpha > 0 \) and higher order bounds on \(u \). There are also Evans-Krylov estimates for parabolic equations (see [Lie96]), but the precise version which we need is as follows

Theorem 1.7. Let \(U \subseteq \mathbb{C}^n \) be an open subset and \(T \in (0, +\infty) \). Suppose that \(u \in C^\infty([0, T] \times \bar{U}) \) and \((t, x, s) \mapsto f(t, x, s) \) is a function in \(C^\infty([0, T] \times \bar{U} \times \mathbb{R}) \), satisfy

\[
\frac{\partial u}{\partial t} = \log \det \left(\frac{\partial^2 u}{\partial z_j \partial \bar{z}_k} \right) + f(t, x, u).
\]

In addition, assume that there is a constant \(C > 0 \) such that

\[
\sup_{(0, T) \times \bar{U}} \left(|u| + \left| \frac{\partial u}{\partial t} \right| + |\nabla u| + |\Delta u| \right) \leq C.
\]

Then for any compact \(K \subseteq U \), for each \(\epsilon > 0 \) and \(p \in \mathbb{N} \),

\[
\|u\|_{C^p([\epsilon, T] \times K)} \leq C_0.
\]

where \(C_0 \) only depends on \(C \) and \(||f||_{C^q([0, T] \times \bar{U} \times [-C, C])} \) for some \(q \geq p - 2 \).

The proof of this theorem follows the arguments of Boucksom-Guedj [BG13, Theorem 4.1.4] where the function \(f \) is independent of \(u \).

First of all, we recall the parabolic \(\alpha \)-Hölder norm of a function \(f \) on the cylinder \(Q = U \times (0, T) \):

\[
||f||_{C^\alpha(Q)} := ||f||_{C^0(Q)} + [f]_{\alpha, Q},
\]

where

\[
[f]_{\alpha, Q} := \sup_{X, Y \subseteq Q, X \neq Y} \frac{|f(X) - f(Y)|}{\rho^\alpha(X, Y)}
\]

is the \(\alpha \)-Hölder seminorm with respect to the parabolic distance

\[
\rho((x, t), (x', t')) = |x - x'| + |t - t'|^{1/2}.
\]
For each \(k \in \mathbb{N} \), the \(C^{k,\alpha} \)-norm is defined as
\[
\|f\|_{C^{k,\alpha}(Q)} := \sum_{|\alpha|+2|\beta| \leq k} \|D^\beta_u D^\gamma_t f\|_{C^\alpha(Q)}.
\]

If \((\omega_t)_{t \in (0,T)}\) is a path of differential forms on \(U \), we can similarly define \([\omega_t]_{\alpha,\beta}\) and \(\|\omega_t\|_{C^{k,\alpha}(Q)}\), with respect to the flat metric \(\omega_U\) on \(U \).

The first ingredient in the proof of Theorem 1.7 is the Schauder estimates for linear parabolic equations.

Lemma 1.8. ([Kry96, Theorem 8.11.1], [Lie96, Theorem 4.9]) Let \((\omega_t)_{t \in (0,T)}\) be a smooth path of Kähler metrics on \(U \) and \(\omega_U\) be the flat metric on \(U \). Define \(Q = U \times (0,T) \), and assume that \(u, g \in C^\infty(Q) \) satisfy
\[
\left(\frac{\partial}{\partial t} - \Delta_t - c(t,x) \right) u(t,x) = g(t,x),
\]
where \(\Delta_t \) is the Laplacian with respect to \(\omega_t\). Suppose also that there exist \(C > 0 \) and \(0 < \alpha < 1 \) such that on \(Q \) we have
\[
C^{-1} \omega_U \leq \omega_t \leq C \omega_U, \quad \|c\|_{C^\alpha(Q)} \leq C \quad \text{and} \quad [\omega_t]_{\alpha,\beta} \leq C.
\]
Then for each \(Q' = U' \times (\varepsilon,T) \) with \(U' \subset U \), we can find a constant \(A \) only depending on \(U' \), \(\varepsilon \) and \(C \) such that
\[
\|u\|_{C^{2,\alpha}(Q')} \leq A(\|u\|_{C^\alpha(Q)} + \|g\|_{C^\alpha(Q)}).
\]

The second ingredient in the proof Theorem 1.7 is the following Evans-Krylov estimates type for complex Monge-Ampère flows.

Lemma 1.9. ([Gil11, Theorem 4.1]) Suppose \(u, g \in C^\infty(Q) \) satisfy
\[
\frac{\partial u}{\partial t} = \log \text{det} \frac{\partial^2 u}{\partial z_j \partial z_k} + g(t,x),
\]
and assume also that there exists a constant \(C > 0 \) such that
\[
C^{-1} \leq \left(\frac{\partial^2 u}{\partial z_j \partial \bar{z}_k} \right) \leq C \quad \text{and} \quad \left| \frac{\partial g}{\partial t} \right| + |dd^c g| \leq C.
\]
Then for each \(Q' = U' \times (\varepsilon,T) \) with \(U' \subset U \) an open subset and \(\varepsilon \in (0,T) \), we can find \(A > 0 \) and \(0 < \alpha < 1 \) only depending on \(U' \), \(\varepsilon \) and \(C \) such that
\[
[dd^c u]_{\alpha,\beta} \leq A.
\]

Proof of Theorem 1.7. In the sequel of the proof, we say that a constant is under control if it is bounded by the terms of \(C, \varepsilon \) and \(\|f\|_{C^\infty([0,T] \times \bar{U} \times [-C,C])} \).

Consider the path \(\omega_t := dd^c u_t \) of Kähler forms on \(U \). Denote by \(\omega_U\) the flat metric on \(U \). It follows from 1.2 that
\[
\omega^n_t = \exp \left(\frac{\partial u}{\partial t} - f \right) \omega^n_U.
\]
Since \(\frac{\partial u}{\partial t} - f \) is bounded by a constant under control by the assumption, there exists a constant \(C_1 \) under control such that \(C^{-1}_1 \omega^n_U \leq \omega^n_t \leq C_1 \omega^n_U \). It follows
from the assumption that $\text{tr}_{\omega_U} \omega_t$ is bounded. Two latter inequalities imply that $C_2^{-1} \omega_t \leq \omega_t \leq C_2 \omega_U$ for some $C_2 > 0$ under control by considering inequalities of eigenvalues. Set $g(t, x) := f(t, x, u)$. Since $C_2^{-1} \omega_U \leq \omega_t \leq C_2 \omega_U$ and

$$\sup_{(0, T) \times U} \left(|u| + \left| \frac{\partial u}{\partial t} \right| + |\nabla u| + |\Delta u| \right) \leq C,$$

we get $|\partial u/\partial t| + |dd^c g| \leq C_3$ with C_3 under control. Apply Lemma 1.9 to (1.2), we obtain $[dd^c u]_{\alpha, Q}$ is under control for some $0 < \alpha < 1$.

Let D be any first order differential operator with constant coefficients. Differentiating (1.2), we get

$$\left(\frac{\partial}{\partial t} - \Delta_t - \frac{\partial f}{\partial s} \right) Du = Df,$$

with $|u| + |\nabla u| + \left| \frac{\partial u}{\partial t} \right| + |\Delta u|$ and $[dd^c u]_{\alpha, Q}$ are under control, so C^0 norm of Du is under control. Applying the parabolic Schauder estimates (Lemma 1.8) to (1.3) with $c(t, x) = \frac{df}{\partial s}(t, x, u)$, the $C^{2, \alpha}$ norm of Du is thus under control. Apply D to (1.3) we get

$$\left(\frac{\partial}{\partial t} - \Delta_t - \frac{\partial f}{\partial s} \right) D^2 u = D^2 f + \frac{\partial(Df)}{\partial s} Du + \sum_{j, k} (D\omega_t^{j k}) \frac{\partial^2 Du}{\partial z_j \partial \bar{z}_k}$$

$$+ \frac{\partial^2 f}{\partial s^2} |Du|^2 + D \left(\frac{\partial f}{\partial s} \right) Du,$$

where the parabolic C^α norm of the right-hand side is under control. Thanks to the parabolic Schauder estimates 1.8, the $C^{2, \alpha}$ norm of $D^2 u$ is under control. Iterating this procedure we complete the proof of Theorem 1.7.

1.5. Monge–Ampère capacity.

Definition 1.10. Let K be a Borel subset of X. We set

$$\text{Cap}_{\omega}(K) = \sup \left\{ \int_K MA(\varphi); \varphi \in PSH(X, \omega), 0 \leq \varphi \leq 1 \right\}.$$

Then we call Cap_{ω} is the Monge–Ampère capacity with respect to ω.

Definition 1.11. Let $(\varphi_j) \in PSH(X, \omega)$. We say that (φ_j) converges to φ as $j \to +\infty$ in capacity if for each $\varepsilon > 0$

$$\lim_{j \to +\infty} \text{Cap}_{\omega}(|\varphi_j - \varphi| < \varepsilon) = 0.$$

The following Proposition [GZ05, Proposition 3.7] states that decreasing sequences of ω-psh functions converge in capacity.

Theorem 1.12. Let $\varphi, \varphi_j \in PSH(X, \omega) \cap L^\infty(X)$ such that (φ_j) decreases to φ, then for each $\varepsilon > 0$

$$\text{Cap}_{\omega}(\{\varphi_j > \varphi + \varepsilon\}) \to 0 \quad \text{as} \quad j \to +\infty.$$
1.6. Monge-Ampère energy. The energy of a \(\omega \)-psh function has been introduced in [GZ07] and further studied in [BBGZ13]. For \(\phi \in PSH(X, \omega) \cap L^\infty(X) \), the Aubin-Yau energy functional is

\[
E(\phi) := \frac{1}{(n + 1) V} \sum_{j=0}^{n} \int_X \phi(\omega + dd^c \phi)^j \wedge \omega^{n-j},
\]

where

\[
V := \int_X \omega^n.
\]

For any \(\phi \in PSH(X, \omega) \), we set

\[
E(\phi) := \inf \{ E(\psi); \psi \in PSH(X, \omega) \cap L^\infty(X), \phi \leq \psi \}.
\]

Definition 1.13. We say that \(\phi \in PSH(X, \omega) \) has a finite energy if \(E(\phi) > -\infty \) and denote by \(\mathcal{E}^1(X, \omega) \) the set of all finite energy \(\omega \)-psh functions.

Let \((\theta_t)_{t \in [0, T]} \) be a family of Kähler metrics on \(X \) and \(\Omega \) be a smooth volume form. We consider the following complex Monge-Ampère flow

\[
(CMAF) \begin{cases}
\frac{\partial \varphi}{\partial t} = \log \frac{(\theta_t + dd^c \varphi)^n}{\Omega} - F(t, z, \varphi), \\
\varphi(0, .) = \varphi_0.
\end{cases}
\]

We set \(\omega_t = \theta_t + dd^c \varphi_t \).

Definition 1.14. Suppose \(\varphi_t \) is a solution of \((CMAF) \). The energy for \(\varphi_t \) is

\[
E(\varphi_t) := E_{\theta_t}(\varphi_t) := \frac{1}{(n + 1) V} \sum_{j=0}^{n} \int_X \varphi_t(\theta_t + dd^c \varphi)^j \wedge \theta_t^{n-j}.
\]

In particular, when \(\theta_t = \omega \) for all \(t \in [0, T] \) we get the Aubin-Yau energy functional.

1.7. Reduction to \(\frac{\partial F}{\partial s} \geq 0. \) We now consider the complex Monge-Ampère flow

\[
(CMAF) \quad \frac{\partial \varphi_t}{\partial t} = \log \frac{(\theta_t + dd^c \varphi_t)^n}{\Omega} - F(t, z, \varphi),
\]

where \(F(t, z, s) \in C^\infty([0, T] \times X \times \mathbb{R}, \mathbb{R}) \) with

\[
\frac{\partial F}{\partial s} \geq -C,
\]

for some \(C \geq 0. \)

First of all, we observe that it is sufficient to prove Theorem A with \(F \) satisfying \(F(t, z, s) \in C^\infty([0, T] \times X \times \mathbb{R}, \mathbb{R}) \) and \(s \mapsto F(t, z, s) \) is non-decreasing. Indeed, assume that \(\varphi_t \) is a solution of \((CMAF) \) with \(\partial F/\partial s \geq -C. \) By changing variables

\[
\phi(t, z) = e^{Bt} \varphi(B^{-1}(1 - e^{-Bt}), z),
\]
we get
\[\frac{\partial \phi_t}{\partial t} = \log \left(\tilde{\theta}_t + dd^c \phi_t \right)^n - \tilde{F}(t, z, \phi_t), \]
where \(\tilde{\theta}_t = e^{Bt} \theta_1^{-e^{-Bt}} \) and
\[\tilde{F}(t, z, s) = -Bs + Bnt + F(B^{-1}(1 - e^{-Bt}), z, e^{-Bt}s). \]
We thus have
\[\frac{\partial \tilde{F}}{\partial s} = -B + \frac{\partial F}{\partial s} e^{-Bt} \geq -B - Ce^{-Bt}. \]
Choosing \(B < 0 \) such that \(-B - Ce^{-Bt} \geq 0 \) or \(-Be^{Bt} \geq C \) for all \(t \in [0, T] \), we get the desired equation. Note that we can not always choose \(B \) for any \(T > 0 \) because the maximal value of \(-Be^{Bt} \) is \(1/e^T \) at \(B = -1/T \), but in our case we can assume \(T \) is small enough such that \(C < 1/e^T \). Finally we obtain the equation
\[\frac{\partial \phi_t}{\partial t} = \log \left(\tilde{\theta}_t + dd^c \phi_t \right)^n - \tilde{F}(t, z, \phi_t), \]
where \(\phi(0, z) = \varphi_0 \) and \(\partial \tilde{F}/\partial s \geq 0. \)

1.8. **Strategy of the proof.** We fix \(\omega \) a reference Kähler form. Since we are interested in the behavior near 0 of the flow, we can assume that for \(0 \leq t \leq T \)
\[\frac{\omega}{2} \leq \theta_t \leq 2\omega, \quad (1.4) \]
and there exists \(\delta > 0 \) such that
\[\delta^{-1} \Omega \leq \theta_t^n \leq \delta \Omega, \forall t \in [0, T]. \]

We consider the complex Monge-Ampère flow
\[(CMAF) \quad \frac{\partial \varphi_t}{\partial t} = \log \left(\theta_t + dd^c \varphi_t \right)^n - F(t, z, \varphi), \]
where \(F(t, z, s) \in C^\infty([0, T] \times X \times \mathbb{R}, \mathbb{R}) \) is such that \(\frac{\partial F}{\partial s} \geq -C \), for some \(C \geq 0 \). Our first goal is to show the following generalization of [GZ13, DNL14]:

Theorem 1.15. Let \(\varphi_0 \) be a \(\omega \)-psh function with zero Lelong numbers. There exists a family of smooth strictly \(\theta_t \) - psh function \((\varphi_t) \) such that
\[\frac{\partial \varphi_t}{\partial t} = \log \left(\theta_t + dd^c \varphi_t \right)^n - F(t, z, \varphi), \]
in \((0, T] \times X \), with \(\varphi_t \rightarrow \varphi_0 \) in \(L^1(X) \), as \(t \searrow 0^+ \). This family is unique if \(C = 0 \) and \(|\frac{\partial F}{\partial s}| < C' \) for some \(C' > 0 \). Moreover, \(\varphi_t \rightarrow \varphi \) in energy if \(\varphi \in \mathcal{E}^1(X, \omega) \) and \(\varphi_t \) is uniformly bounded and converges to \(\varphi_0 \) in capacity if \(\varphi_0 \in L^\infty(X) \).

The strategy of the proof is as follows:
- We first reduce to the case when \(\frac{\partial F}{\partial s} \geq 0 \) following Section 1.7.
• Approximate φ_0 by a decreasing sequence $(\varphi_{0,j})$ of smooth and strictly ω-psh functions by using the regularization result of Demailly [Dem92, BK07]. There exists unique solutions $\varphi_{t,j} \in PSH(X, \omega) \cap C^\infty(X)$ to the flow above with initial data $\varphi_{0,j}$.

• We then establish various priori estimates which will allow us to pass to the limit as $j \to \infty$. We prove for each $0 < \varepsilon < T$:
 1. $(t,z,j) \mapsto \varphi_{t,j}(z)$ is uniformly bounded on $[\varepsilon, T] \times X \times \mathbb{N}$,
 2. $(t,z,j) \mapsto \dot{\varphi}_{t,j}(z)$ is uniformly bounded on $[\varepsilon, T] \times X \times \mathbb{N}$,
 3. $(t,z,j) \mapsto \Delta_\omega \varphi_{t,j}(z)$ is uniformly bounded on $[\varepsilon, T] \times X \times \mathbb{N}$.

• Finally, we apply the Evans-Krylov theory and Schauder estimates to show that $\varphi_{t,j} \to \varphi_t$ in $C^\infty((0, T] \times X)$, as $j \to +\infty$ such that φ_t satisfies (CMAF). We then check that $\varphi_t \to \varphi_0$ as $t \to 0^+$, and also study finer convergence properties:
 1. For $\varphi_0 \in L^1(X)$, we show that $\varphi_t \to \varphi_0$ in $L^1(X)$ as $t \to 0$.
 2. When φ_0 is bounded, we show that $\varphi_t \to \varphi_0$ in capacity.
 3. When $\varphi_0 \in E^1(X, \omega)$, we show that φ_t converges to φ_0 in energy as $t \to 0$.

2. A priori estimates

In this section we prove various a priori estimates for φ_t which satisfies

$$\frac{\partial \varphi_t}{\partial t} = \log \left(\frac{\theta_t + dd^c \varphi_t}{\Omega} \right) - F(t, z, \varphi)$$

with a smooth strictly ω-psh initial data φ_0, where $(t,z,s) \mapsto F(t,z,s) \in C^\infty([0, T] \times X \times \mathbb{R}, \mathbb{R})$ with $\frac{\partial F}{\partial s} \geq 0$. Since we are interested in the behavior near 0 of (CMAF), we can further assume that

$$\theta_t - t\dot{\theta}_t \geq 0 \text{ for } 0 \leq t \leq T. \tag{2.1}$$

This assumption will be used to bound the $\dot{\varphi}_t$ from above.

2.1. Bounding φ_t.

Lemma 2.1. We have

$$\varphi_t \leq Ct + \max \{ \sup \varphi_0, 0 \},$$

where $C = -\inf_{x \in X, t \in [0, T]} F(t, x, 0) + n \log \delta$.

Proof. Consider $\psi_t = Ct$, where $C = -\inf_{x \in X, t \in [0, T]} F(t, x, 0) + n \log \delta$. Thus we have

$$\log \left(\frac{\theta_t + dd^c \psi_t}{\Omega} \right) = \log \left(\frac{\theta^n_t}{\Omega} \right) \leq n \log \delta.$$

Now $F(t, z, \psi_t) \geq F(t, z, 0) \geq \inf_{x \in X, t \in [0, T]} F(t, x, 0)$, since we assume $s \mapsto F(\cdot, \cdot, s)$ is increasing. Therefore

$$\frac{\partial \psi_t}{\partial t} \geq \left(\frac{\theta_t + dd^c \psi_t}{\Omega} \right) - F(t, z, \psi_t).$$
Apply Proposition 1.5 for φ_t and ψ_t, we get $\varphi_t \leq Ct + \max\{\sup \varphi_0, 0\}$. □

We now find a lower bound of φ_t which does not depend on $\inf_X \varphi_0$. First, we assume that $\theta_t \geq \omega + t\chi, \forall t \in [0, T]$, for some smooth $(1, 1)$-form χ. Fix $0 < \beta < +\infty$ and $0 < \alpha$ such that

$$\chi + (2\beta - \alpha)\omega \geq 0.$$

It follows from Skoda’s integrability theorem [Sko72] that $e^{-2\beta\varphi_0}\omega^n$ is absolutely continuous with density in L^p for some $p > 1$. This is where we use the crucial assumption that φ_0 has zero Lelong number at all points. Kołodziej’s uniform estimate [Koł98] insures the existence of a continuous ω-psh solution u of the equation

$$\alpha^n(\omega + dd^c u)^n = e^{\alpha u - 2\beta\varphi_0}\omega^n.$$

Assume that ϕ_t is solution of the following equation

$$\begin{cases}
\frac{\partial \phi_t}{\partial t} = \log \left(\frac{(\omega + t\chi + dd^c \phi)^n}{\omega^n}\right), \\
\phi(0, \cdot) = \varphi_0.
\end{cases}$$

By Lemma 2.9 in [GZ13] we have

$$\phi_t(z) \geq (1 - 2\beta t)\varphi_0(z) + \alpha tu(z) + n(t \log t - t). \quad (2.2)$$

Using this we have the following lemma:

Lemma 2.2. For all $z \in X$ and $t \in (0, T]$, we have

$$\varphi_t(z) \geq \phi_t + At \geq (1 - 2\beta t)\varphi_0(z) + \alpha tu(z) + n(t \log t - t) + At, \quad (2.3)$$

where A depend on $\sup_X \varphi_0$. In particular, there exists $c(t) \geq 0$ such that

$$\varphi_t(z) \geq \varphi_0(z) - c(t),$$

with $c(t) \searrow 0$ as $t \searrow 0$.

Proof. There is $\sigma > 0$ such that $\sigma^{-1}\omega^n \leq \Omega \leq \sigma\omega^n$, so we may assume that

$$\frac{\partial \phi_t}{\partial t} \leq \log \left(\frac{(\theta_t + dd^c \phi_t)^n}{\Omega}\right).$$

Thanks to Lemma 2.1, $\varphi_t \leq C_0$ with $C_0 > 0$ depends on $\sup_X \varphi_0$ and T. As we assume $s \mapsto F(\cdot, s)$ is increasing, $F(t, z, \varphi_t) \leq F(t, z, C_0)$. Replacing φ_t by $\varphi_t - At$ and F by $F - A$, where

$$A := \sup_{[0, T] \times X} F(t, z, C_0),$$

we can assume that

$$\sup_{[0, T] \times X} F(t, z, \sup_{[0, T] \times X} \varphi_t) \leq 0.$$
Hence we have
\[
\frac{\partial \varphi_t}{\partial t} = \log \left(\theta_t + \frac{\partial F}{\partial t}(t, z, \varphi_t) \right) - F(t, z, \varphi_t)
\geq \log \left(\omega + t \chi + \frac{\partial F}{\partial t}(t, z, \varphi_t) \right).
\]

Apply the comparison theorem (Proposition 1.5) for \(\varphi_t \) and \(\phi_t \) we have \(\varphi_t \geq \phi_t \). In general, we get
\[
\varphi_t(z) \geq \phi_t + At \geq (1 - 2\beta t)\varphi_0(z) + \alpha t u(z) + n(t \log t - t) + At.
\]

\[
\square
\]

2.2. Upper bound for \(\dot{\varphi}_t \). We now prove a crucial estimate which allows us to use the uniform version of Kolodziej’s estimates in order to get the bound of \(\text{Osc}_X \varphi_t \).

Proposition 2.3. Fix \(\varepsilon \in (0, T) \). There exists \(0 < C = C(\sup_X \varphi_0, \varepsilon, T) \) such that for all \(\varepsilon \leq t \leq T \) and \(z \in X \),
\[
\dot{\varphi}_t(z) \leq -\varphi_{\varepsilon}(z) + C \leq -\frac{\phi_{\varepsilon}(z) + C}{t} - A,
\]
where \(\phi_t \) and \(A \) are as in Lemma 2.2.

Proof. We consider \(G(t, z) = t \dot{\varphi}_t - \varphi_t - nt + Bt^2/2 \), with \(B < \min F' \) on \([\varepsilon, T] \times X\). We obtain
\[
\frac{\partial G}{\partial t} = t \ddot{\varphi}_t - n = t \Delta_{\omega_t} \dot{\varphi} + t \text{tr}_{\omega_t} \theta_t - t \frac{\partial F}{\partial s} \dot{\varphi} - tF' - n + Bt,
\]
and
\[
\Delta_{\omega_t} G = t \Delta_{\omega_t} \dot{\varphi} = t \Delta_{\omega_t} \varphi_t - (n - \text{tr}_{\omega_t} \theta_t),
\]

hence
\[
\left(\frac{\partial}{\partial t} - \Delta_{\omega_t} \right) G = -t \dot{\varphi} \frac{\partial F}{\partial s} + t(B - F') - \text{tr}_{\omega_t}(\theta_t - t \theta_t).
\]

Since we assume that \(\theta_t - t \theta_t \geq 0 \) and \(B < \min F' \), we get
\[
\left(\frac{\partial}{\partial t} - \Delta_{\omega_t} \right) G < -t \dot{\varphi} \frac{\partial F}{\partial s}.
\]

If \(G \) attains its maximum at \(t = \varepsilon \), we have the result. Otherwise, assume that \(G \) attains its maximum at \((t_0, z_0)\) with \(t_0 > \varepsilon \), then at \((t_0, z_0)\) we have
\[
0 \leq \left(\frac{\partial}{\partial t} - \Delta_{\omega_t} \right) G < -t_0 \frac{\partial F}{\partial s} \dot{\varphi}.
\]

Since \(\frac{\partial F}{\partial s} \geq 0 \) by the hypothesis, we obtain \(\dot{\varphi}(t_0, z_0) < 0 \) and
\[
t \dot{\varphi}_t - \varphi_t - nt + Bt^2/2 \leq -\varphi_{t_0}(z_0) - nt_0 + Bt_0^2/2.
\]

Using Lemma 2.2 we get \(\varphi_{t_0} \geq \varphi_{\varepsilon} - C(\varepsilon) \), hence
\[
t \dot{\varphi}_t \leq \varphi_t - \varphi_{\varepsilon} + C_1.
\]
It follows from Lemma 2.1 that $\varphi_t \leq C_2(\sup \varphi_0, T)$, so

$$\dot{\varphi}_t(x) \leq -\frac{\varphi_\varepsilon + C}{t},$$

where C depends on $\sup \varphi_0, \varepsilon, T$. Since $\varphi_\varepsilon \geq \phi_\varepsilon + At$ (Lemma 2.2), we obtain the desired inequality. \qed

2.3. Bounding the oscillation of φ_t. Once we get an upper bound for $\dot{\varphi}_t$ as in Proposition 2.3, we can bound the oscillation of φ_t by using the uniform version of Kolodziej’s estimates. Indeed, observe that φ_t satisfies

$$(\theta_t + dd^c \varphi_t)^n = H_t \Omega,$$

then by Proposition 2.3, for any $\varepsilon \in (0, T)$,

$$H_t = \exp(\dot{\varphi}_t + F) \leq \exp\left(-\frac{\varphi_\varepsilon + C}{t} + C'\right)$$

are uniformly in $L^2(\Omega)$ for all $t \in [\varepsilon, T]$ since $\dot{\phi}_\varepsilon$ is smooth. Thanks to the uniform version of Kolodziej’s estimates [Kol98, EGZ08], we infer that the oscillation of φ_t is uniformly bounded:

Theorem 2.4. Fix $0 < t < T$. There exist $C(t) > 0$ independent of $\inf_X \varphi_0$ such that

$$\text{Osc}_X(\varphi_t) \leq C(t).$$

2.4. Lower bound for $\dot{\varphi}_t$. The next result is similar to [ST09, Lemma 3.2] and [GZ13, Proposition 3.3].

Proposition 2.5. Assume φ_0 is bounded. There exist constants $A > 0$ and $C = C(A, \text{Osc}_X \varphi_0) > 0$ such that for all $(x, t) \in X \times (0, T]$,

$$\dot{\varphi} \geq n \log t - A \text{Osc}_X \varphi_0 - C,$$

Proof. We consider $H(t, x) = \dot{\varphi}_t + A \varphi_t - \alpha(t)$, where $\alpha \in C^\infty(\mathbb{R}^+, \mathbb{R})$ will be chosen hereafter. We have

$$\frac{\partial H}{\partial t} = \ddot{\varphi}_t + A \dot{\varphi}_t - \dot{\alpha}$$

$$= \Delta_{\omega_t} \dot{\varphi}_t + \text{tr}_{\omega_t} \dot{\theta}_t - F' - \frac{\partial F}{\partial s} \dot{\varphi}_t + A \dot{\varphi}_t - \dot{\alpha},$$

and

$$\Delta_{\omega_t} H = \Delta_{\omega_t} \dot{\varphi}_t + A \Delta_{\omega_t} \varphi_t.$$

Therefore, we have

$$\left(\frac{\partial}{\partial t} - \Delta_{\omega_t}\right) H = A \dot{\varphi}_t + \text{tr}_{\omega_t} \dot{\theta}_t - A \text{tr}_{\omega_t}(\omega_t - \theta_t) - F' - \dot{\alpha} - \frac{\partial F}{\partial s} \dot{\varphi}_t$$

$$= A \dot{\varphi}_t + \text{tr}_{\omega_t}(A \theta_t + \dot{\theta}_t) - An - F' - \dot{\alpha} - \frac{\partial F}{\partial s} \dot{\varphi}_t$$

$$= (A - \frac{\partial F}{\partial s}) \dot{\varphi}_t + \text{tr}_{\omega_t}(A \theta_t + \dot{\theta}_t) - F' - \dot{\alpha} - An.$$
Now $A\dot{\theta} + \dot{\theta} \geq \omega$ with A sufficiently large, hence
\[
\text{tr}_{\omega_t}(A\dot{\theta} + \dot{\theta}) \geq \text{tr}_{\omega_t} \omega.
\]
Using the inequality
\[
\text{tr}_{\omega_t}(\omega) \geq n \left(\frac{\omega_t^{n}}{\omega^n} \right)^{-1/n} = n \exp \left(\frac{-1}{n} (\dot{\phi} + F) \right) \left(\frac{\Omega}{\omega^n} \right)^{-1/n} \geq \sigma^{-1/n} h_t^{-1/n} \exp(- \sup_{[0,T] \times X} F(t, z, C_0)/n),
\]
where $h_t = e^{\dot{\phi}}$ and C_0 depends on $\sup X \varphi_0$, we have
\[
\text{tr}_{\omega_t}(A\dot{\theta} + \dot{\theta}) \geq \frac{h_t^{-1/n}}{C}.
\]
In addition, we apply the inequality $\sigma x > \log x - C_\sigma$ for all $x > 0$ with $x = h_t^{-1/n}$ and $\sigma \ll 1$ to obtain $\sigma h_t^{-1/n} = \sigma e^{-\dot{\phi}/n} > -\dot{\varphi}/n - C_\sigma$. Finally, we can choose A sufficiently large and $\sigma > 0$ such that
\[
(A - \frac{\partial F}{\partial s})\dot{\phi} + \text{tr}_{\omega_t}(A\dot{\theta} + \dot{\theta}) \geq \frac{h_t^{-1/n}}{C_1} - C'_1.
\]
Since $|F'|$ is bounded by some constant $C(Osc_X \varphi_0) > 0$, we obtain
\[
\left(\frac{\partial}{\partial t} - \Delta_{\omega_t} \right) H > \frac{h_t^{-1/n}}{C_1} - \alpha'(t) - C_2,
\]
where C_2 depends on $Osc_X \varphi_0$.

We chose α such that $\alpha(0) = -\infty$. This insures that H attains its minimum at (t_0, z_0) with $t_0 > 0$. At (t_0, z_0) we have
\[
C_1[C_2 + \alpha'(t_0)] \geq h_{t_0}^{-1/n}(z_0),
\]
hence
\[
H(t_0, z_0) \geq A\varphi_{t_0}(z_0) - \{ n \log[C_2 + \alpha'(t_0)] + \alpha(t_0) \}.
\]
From Lemma 2.1 we have $\varphi_{t_0} \leq \sup X \varphi_0 + C'$ we have
\[
\dot{\varphi} \geq \alpha(t) - A Osc_X \varphi_0 - C_3 - \{ n \log[C_2 + \alpha'(t_0)] + \alpha(t_0) \}.
\]
Choosing $\alpha(t) = n \log t$ we have
\[
n \log[C_2 + \alpha'] + \alpha \leq C_4,
\]
so obtain the inequality. □
2.5. Bounding the gradient of φ. In this section we bound the gradient of φ using the same technique as in [SzT11, Lemma 4] (which is a parabolic version of Błocki’s estimate [Bł09]). In these articles $\theta_t = \omega$ is independent of t. We note that if one is interested in the special case of (twisted) Kähler-Ricci flows, then the gradient estimate is not needed.

Proposition 2.6. Fix $\varepsilon \in [0, T]$. There exists $C > 0$ depending on $\sup_X \varphi_0$ and ε such that for all $\varepsilon \leq t \leq T$

$$|\nabla \varphi(z)|_\omega^2 < e^{C/t}. $$

Proof. Define

$$ K = t \log |\nabla \varphi|_\omega^2 - \gamma \circ \varphi = t \log \beta - \gamma \circ \varphi, $$

where $\beta = |\nabla \varphi|_\omega^2$ and $\gamma \in C^\infty(\mathbb{R}, \mathbb{R})$ will be chosen hereafter.

If K attains its maximum for $t = \varepsilon$, β is bounded in terms of $\sup_X \varphi_0$ and ε, since $|\varphi_t|$ is bounded by a constant depending on $\sup_X \varphi_0$ and ε for all $t \in [\varepsilon, T]$ (Lemma 2.1 and Lemma 2.2).

We now assume that K attains its maximum at (t_0, z_0) in $[\varepsilon, T] \times X$ with $t_0 > \varepsilon$. Near z_0 we have $\omega = dd^c g$ for some smooth strongly plurisubharmonic g and $\theta_t = dd^c h_t$ for some smooth function h_t, hence $u := h_t + \varphi$ is plurisubharmonic near (t_0, z_0). We take normal coordinates for ω at z_0 such that

$$ g_{i\bar{k}}(z_0) = \delta_{jk}, \quad g_{i\bar{k}}(z_0) = 0, \quad u_{pq}(t_0, z_0) \text{ is diagonal}, $$

(2.4) (2.5) (2.6)

here we denote $\alpha_{j\bar{k}} := \frac{\partial^2 \alpha}{\partial z_j \partial \bar{z}_k}$.

We now compute K_p, K_{pp} at (t_0, z_0) in order to use the maximum principle. At (t_0, z_0) we have $K_p = 0$ hence

$$ t\beta_p = \beta \gamma' \varphi_p $$

(2.7)

or

$$ \left(\frac{\beta_p}{\beta}\right)^2 = \frac{1}{t^2} (\gamma')^2 |\varphi_p|^2. $$

Therefore,

$$ K_{p\bar{p}} = t \frac{\beta_{p\bar{p}} - |\beta_p|^2}{\beta^2} - \gamma'' |\varphi_p|^2 - \gamma' \varphi_{p\bar{p}} $$

$$ = t \frac{\beta_{p\bar{p}}}{\beta} - [t^{-1} (\gamma')^2 + \gamma''] |\varphi_p|^2 - \gamma' \varphi_{p\bar{p}}. $$

Now we compute $\beta_p, \beta_{p\bar{p}}$ at (t_0, z_0) with $\beta = g^{jk} \varphi_j \varphi_k$ where $(g^{jk}) = ([g_{jk}]^{-1})$. We have

$$ \beta_p = g^{jk} \varphi_j \varphi_k + \tilde{g}^{jk} \varphi_{jp} \varphi_k + \tilde{g}^{jk} \varphi_{j\bar{p}} \varphi_{k\bar{p}}. $$
At \((t_0, z_0)\), use (2.4), (2.5)

\[g_p^{jk} = -g_p^{ji} g_{dp} g^{dk} = 0, \]

hence

\[\beta_p = \sum \varphi_{jp} \varphi_j + \sum \varphi_{pj} \varphi_j, \quad (2.8) \]

and

\[\beta_{pp} = g_{pp}^{jk} \varphi_j \varphi_k + 2 \Re \sum \varphi_{pp} \varphi_j + \sum |\varphi_{jp}|^2 + \sum |\varphi_{jp}|^2. \]

Note that

\[R_{ijk} = -g_{ijk} + g^{si} g_{sk} g_{i\bar{i}}, \]

hence, at \((t_0, z_0)\) \(g_{jk}^{jk} = -g_{jkpp} = R_{jkpp} \), and

\[\beta_{pp} = R_{jkpp} \varphi_j \varphi_k + 2 \Re \sum \varphi_{pp} \varphi_j + \sum |\varphi_{jp}|^2 + \sum |\varphi_{jp}|^2. \]

Now

\[\Delta_{\omega_{t_0}} K = \sum_{p=1}^{n} \frac{K_{pp}}{u_{pp}}, \]

hence

\[\Delta_{\omega_{t_0}} K = t \sum \frac{R_{jkpp} \varphi_j \varphi_k}{\beta u_{pp}} + 2 t \Re \sum \frac{\varphi_{pp} \varphi_j}{\beta u_{pp}} + t \sum \frac{|\varphi_{jp}|^2 + |\varphi_{jp}|^2}{\beta u_{pp}} \]

\[- \left[t^{-1} (\gamma')^2 + \gamma'' \right] \frac{|\varphi_p|^2}{u_{pp}} - \gamma' \frac{\varphi_{pp}}{u_{pp}}. \]

Since \(u_{pp} = \varphi_{pp} + h_{pp} \) near \((t_0, z_0)\), then at \((t_0, z_0)\)

\[\sum \frac{\gamma' \varphi_{pp}}{u_{pp}} = n\gamma' - \sum \frac{\gamma' h_{pp}}{u_{pp}}. \]

Moreover, assume that the holomorphic bisectional curvature of \(\omega \) is bounded by a constant \(B \in \mathbb{R} \) on \(X \), then at \((t_0, z_0)\)

\[t \sum \frac{R_{jkpp} \varphi_j \varphi_k}{\beta u_{pp}} \geq -B t \sum \frac{1}{u_{pp}}, \]

therefore

\[\Delta_{\omega_{t_0}} K \geq (\gamma' - tB) \sum \frac{1}{u_{pp}} + 2 t \Re \sum \frac{\varphi_{pp} \varphi_j}{\beta u_{pp}} \]

\[+ \frac{t}{\beta} \sum \frac{|\varphi_{jp}|^2 + |\varphi_{jp}|^2}{\beta u_{pp}} - [t^{-1} (\gamma')^2 + \gamma''] \sum \frac{|\varphi_p|^2}{u_{pp}} - n\gamma' + \gamma' \sum \frac{t h_{pp}}{u_{pp}}. \]

By the maximum principle, at \((t_0, z_0)\)

\[0 \leq \left(\frac{\partial}{\partial t} - \Delta_{\omega} \right) K. \]
hence,

\[
0 \leq \log \beta - \gamma' \dot{\varphi} - (\gamma' - t B) \sum_p \frac{1}{u_{p\bar{p}}} + t \frac{\beta'}{\beta} - 2t \text{Re} \sum_{j,p} \frac{\varphi_{p\bar{j}} \varphi_{\bar{j}}}{\beta u_{p\bar{p}}}
- \frac{t}{\beta} \sum_{j,p} \frac{|\varphi_{jp}|^2 + |\varphi_{j\bar{p}}|^2}{\beta u_{p\bar{p}}} + |t^{-1}(\gamma')^2 + \gamma''| \sum_p \frac{|\varphi_p|^2}{u_{p\bar{p}}} + n \gamma'.
\] (2.9)

We will simplify 2.9 to get a bound for \(\beta \) at \((t_0, z_0)\). We now estimate

\[
t \frac{\beta'}{\beta} - 2t \text{Re} \sum_{j,p} \frac{\varphi_{p\bar{j}} \varphi_{\bar{j}}}{\beta u_{p\bar{p}}} \quad \text{and} \quad - \frac{t}{\beta} \sum_{j,p} \frac{|\varphi_{jp}|^2}{\beta u_{p\bar{p}}} + t^{-1}(\gamma')^2 \sum_p \frac{|\varphi_p|^2}{u_{p\bar{p}}}.
\]

For the first one, we note that near \((t_0, z_0)\)

\[
\log \det(u_{p\bar{q}}) = \dot{\varphi} + F(t, z, \varphi) + \log \Omega,
\]

hence using

\[
\frac{d}{ds} \det A = A^{\bar{i}j} \left(\frac{d}{ds} A_{i\bar{j}} \right) \det A
\]

we have at \((t_0, z_0)\)

\[
u^{p\bar{p}} u_{p\bar{j}} = \frac{u_{p\bar{j}}}{u_{p\bar{p}}} = (\dot{\varphi} + F(t, z, \varphi) + \log \Omega)_j.
\]

Therefore

\[
2t \text{Re} \sum_{j,p} \frac{\varphi_{p\bar{j}} \varphi_{\bar{j}}}{\beta u_{p\bar{p}}} = 2t \text{Re} \sum_{j,p} \frac{(u_{p\bar{j}} - h_{p\bar{j}}) \varphi_{\bar{j}}}{\beta u_{p\bar{p}}}
= \frac{2t}{\beta} \text{Re} \sum_{j,p} (\dot{\varphi} + F(t, z, \varphi) + \log \Omega)_j \varphi_{\bar{j}} - 2t \text{Re} \sum_{j,p} \frac{h_{p\bar{j}} \varphi_{\bar{j}}}{\beta u_{p\bar{p}}}
= \frac{2t}{\beta} \text{Re} \sum_{j,p} (\dot{\varphi} j \varphi_{\bar{j}}) \varphi_{\bar{j}}
+ \frac{2t}{\beta} \text{Re} \left((F(t, z, \varphi) + \log \Omega)_j + \frac{\partial F}{\partial r} \varphi_{\bar{j}} \right) \varphi_{\bar{j}}
- \frac{2t}{\beta} \text{Re} \sum_{j,p} \frac{h_{p\bar{j}} \varphi_{\bar{j}}}{\beta u_{p\bar{p}}}.
\]

In addition, at \((t_0, z_0)\)

\[
t \frac{\beta'}{\beta} = \frac{t}{\beta} \sum g^{\bar{k}} \dot{\varphi}_j \varphi_{\bar{k}} + \varphi_j \dot{\varphi}_{\bar{k}}
= \frac{2t}{\beta} \text{Re}(\dot{\varphi}_j \varphi_{\bar{j}}),
\]

we infer that

\[
t \frac{\beta'}{\beta} - 2t \text{Re} \sum_{j,p} \frac{u_{p\bar{j}} \varphi_{\bar{j}}}{\beta u_{p\bar{p}}} = -\frac{2t}{\beta} \text{Re} \sum_{j,p} (F(t, z, \varphi) + \log \Omega)_j \varphi_{\bar{j}} - \frac{2t}{\beta} \sum \frac{\partial F}{\partial s} |\varphi_j|^2
+ 2t \text{Re} \sum_{j,p} \frac{h_{p\bar{j}} \varphi_{\bar{j}}}{\beta u_{p\bar{p}}}.
\]
We may assume that \(\log \beta > 1 \) so that
\[
\frac{|\phi_j|}{\beta} < C
\]
By the hypothesis that \(\frac{\partial F}{\partial s} \geq 0 \) there exists \(C_1 \) depends on \(\sup |\phi_0| \) and \(C_2 \) depends on \(h \) and \(\varepsilon \) such that
\[
t^\beta \beta - 2t Re \sum_{j,p} \frac{u_{j\bar{p}} \phi_j}{\beta u_{p\bar{p}}} < C_1 t + C_2 t \sum \frac{1}{u_{p\bar{p}}}
\]
we now estimate
\[
-\frac{t}{\beta} \sum_{j,p} \frac{\phi_{jp}}{\beta u_{p\bar{p}}} + t^{-1}(\gamma')^2 \sum_p \frac{\phi_p}{u_{p\bar{p}}}.
\]
It follows from (2.7) and (2.8) that
\[
\beta_p = \sum \phi_{jp} \bar{\phi}_j + \sum \phi_{pj} \bar{\phi}_j,
\]
\[
t\beta_p = \beta' \phi_p
\]
then,
\[
\sum_j \phi_{jp} \bar{\phi}_j = (t^{-1} \gamma' - \phi_{pp}) \phi_p.
\]
Hence
\[
\frac{t}{\beta} \sum_{j,p} \frac{|\phi_{jp}|^2}{u_{p\bar{p}}} \geq \frac{t}{\beta^2} \sum_{j,p} \frac{|\sum \phi_{jp} \phi_j|^2}{u_{p\bar{p}}} = \frac{t}{\beta^2} \sum \frac{|t^{-1} \gamma' \beta + 1 - u_{pp}|^2 |\phi_p|^2}{u_{p\bar{p}}}
\]
\[
\geq t^{-1}(\gamma')^2 \sum \frac{|\phi_p|^2}{u_{p\bar{p}}} - C_3 \gamma',
\]
here \(C_3 \) depends on \(h \) and we assume \(\gamma' > 0 \).

We now choose
\[
\gamma(s) = As - \frac{1}{A} s^2
\]
with \(A \) so large that \(\gamma' > 0 \) and \(\gamma'' = -2/A < 0 \) for all \(s \leq \sup_{[0,T] \times X} \phi_t \).
From Lemma 2.5 we have \(\phi \geq C_0 + n \log t \), where \(C_0 \) depends on \(Ocs_X \phi_0 \). Combining this with (2.9), (2.10), (2.11) we obtain
\[
0 \leq -\frac{2}{A} \sum \frac{|\phi_p|^2}{u_{p\bar{p}}} - (\gamma' - Bt - C_2 t) \sum \frac{1}{u_{p\bar{p}}} + \log \beta + C_4 \gamma' + C_1 t,
\]
where \(C_1, C_2, C_4 \) depend on \(\sup_X |\phi_0| \), \(h_t \) and \(\varepsilon \). If \(A \) is chosen sufficiently large, we have a constant \(C_5 > 0 \) such that
\[
\sum \frac{1}{u_{p\bar{p}}} + \sum \frac{|\phi_p|^2}{u_{p\bar{p}}} \leq C_5 \log \beta,
\]
so we get \((u_{p\bar{p}})^{-1} \leq C_5 \log \beta\) for \(1 \leq p \leq n\). From (2.1) and (2.3) we have at \((t_0, z_0)\)
\[
\prod_p u_{p\bar{p}} = e^{-\varphi_t + F(t, x, \varphi_t)} \leq C_6,
\]
where \(C_6\) depends on \(\sup_X |\varphi_0|, \varepsilon\). Then we get
\[
u_{p\bar{p}} \leq C_6 (C_5 \log \beta)^{n-1},
\]
so from (2.12) we have
\[
\beta = \sum |\varphi_p|^2 \leq C_6 (C_5 \log \beta)^n,
\]
hence \(\log \beta < C_7\) at \((t_0, z_0)\). This shows that \(\beta = |\nabla \varphi(z)|^2 < e^{C/t}\) for some \(C\) depending on \(\sup |\varphi_0|\) and \(\varepsilon\). \(\square\)

2.6. Bounding \(\Delta \varphi_t\). We now use previous a priori estimates above to get a estimate of \(\Delta \varphi_t\). The estimate on \(|\nabla \varphi|^2\) is needed here, because \(F(t, z, \varphi)\) depends on \(\varphi\), in contrast with \([GZ13, DNL14]\).

Lemma 2.7. For all \(z \in X\) and \(s, t > 0\) such that \(s + t \leq T\),
\[
0 \leq t \log \text{tr}_\omega(\omega_{t+s}) \leq A\text{Osc}_X(\varphi_s) + C + [C - n \log s + A\text{Osc}_X(\varphi_s)] t
\]
for some uniform constants \(C, A > 0\).

Proof. We define
\[
P = t \log \text{tr}_\omega(\omega_{t+s}) - A\varphi_{t+s},
\]
and
\[
u = \text{tr}_\omega(\omega_{t+s})
\]
with \(A > 0\) to be chosen latter. We set \(\Delta_t := \Delta_{\omega_{t+s}}\). Now,
\[
\frac{\partial}{\partial t} P = \log u + t \frac{\dot{u}}{u} - A\dot{\varphi}_{t+s},
\]
\[
\Delta_t P = t \Delta_t \log u - A\Delta_t \varphi_{t+s}
\]
hence
\[
\left(\frac{\partial}{\partial t} - \Delta_t\right) P = \log u + t \frac{\dot{u}}{u} - A\varphi_{t+s} - t \Delta_t \log u + A\Delta_t \varphi_{t+s}. \tag{2.13}
\]
First, we have
\[
A\Delta_t \varphi_{t+s} = An - A\text{tr}_{\omega_{t+s}}(\theta_{t+s}) \leq An - \frac{A}{2} \text{tr}_{\omega_{t+s}}(\omega),
\]
and by Proposition 1.4
\[
-t \Delta_t \log u \leq B \text{tr}_{\omega_{t+s}}(\omega) + t \frac{\text{tr}_\omega(\text{Ric}(\omega_{t+s}))}{\text{tr}_\omega(\omega_{t+s})}.
\]
Moreover,
\[
\frac{t\dot{u}}{u} = t \frac{1}{u} \left[\Delta_\omega \left(\log \omega_{t+s}^n / \omega^n - \log \Omega / \omega^n - F(t, z, \varphi_{t+s})\right) + \text{tr}_\omega \dot{\theta}_t\right],
\]
\[
= t \frac{1}{u} \left[- \text{tr}_\omega(\text{Ric} \omega_{t+s}) + \text{tr}_\omega(\dot{\theta}_t + \text{Ric} \omega) - \Delta_\omega \left(F(t, z, \varphi) + \log \Omega / \omega^n\right)\right],
\]
with \(u = \text{tr}_\omega(\omega_{t+s}) \), and
\[
\text{tr}_{\omega_{t+s}}(\omega) \text{tr}_\omega(\omega_{t+s}) \geq n,
\]
we get
\[
-t \Delta_t \log u + \frac{t \dot{u}}{u} \leq (B + C_1)t \text{tr}_{\omega_{t+s}}(\omega) - \frac{t \Delta_\omega [F(t, z, \varphi) + \log \Omega/\omega^n]}{\text{tr}_\omega(\omega_{t+s})}. \tag{2.14}
\]
Now
\[
\Delta_\omega F(t, z, \varphi_{t+s}) = \Delta_\omega F(z, \varphi) + 2\text{Re} \left[g^{jk} \left(\frac{\partial F}{\partial s} \right)_j \varphi_k \right] + \frac{\partial F}{\partial s} \Delta_\omega \varphi + \frac{\partial^2 F}{\partial s^2} \left| \nabla \varphi \right|^2.
\]
So there are constants \(C_2, C_3, C_4 \) such that
\[
\left| \Delta_\omega (F(t, z, \varphi_{t+s}) + \log \Omega/\omega^n) \right| \leq C_2 + C_3 \left| \nabla \varphi \right|^2 + C_4 \text{tr}_\omega \omega_{t+s}.
\]
Then we infer
\[
-t \Delta_t \log u \leq \frac{1}{n} \text{tr}_{\omega_{t+s}}(\omega)(C_2 + C_3 \left| \nabla \varphi \right|^2 + C_4),
\]
so from Lemma 2.6 and (2.14) we have
\[
-t \Delta_t \log u + \frac{t \dot{u}}{u} \leq (B + C_5)t \text{tr}_{\omega_{t+s}}(\omega) + C_6. \tag{2.15}
\]
From Lemma 1.3 and the inequality \((n - 1) \log x \leq x + C_n\),
\[
\log u = \log \text{tr}_\omega(\omega_{t+s}) \leq \log \left(n \left(\frac{\omega_{t+s}^n}{\omega^n} \right) \text{tr}_{\omega_{t+s}}(\omega)^{n-1} \right)
\]
\[
= \log n + \dot{\varphi}_{t+s} + F(t, z, \varphi) + (n - 1) \log \text{tr}_{\omega_{t+s}}(\omega)
\]
\[
\leq \dot{\varphi}_{t+s} + \text{tr}_{\omega_{t+s}}(\omega) + C_7.
\]
It follows from (2.13), (2.14) and (2.15) that
\[
\left(\frac{\partial}{\partial t} - \Delta_t \right) P \leq C_8 - (A - 1) \dot{\varphi}_{t+s} + [(B + C_5)t + 1 - A/2] \text{tr}_{\omega_{t+s}} \omega.
\]
We choose \(A \) sufficiently large such that \((B + C_5)t + 1 - A/2 < 0\). Applying Proposition 2.5,
\[
\left(\frac{\partial}{\partial t} - \Delta_t \right) P \leq C_8 - (A - 1)(n \log s - A\text{osc}_{X} \varphi_s - C).
\]
Now suppose \(P \) attains its maximum at \((t_0, z_0)\). If \(t_0 = 0 \), we get the desired inequality. Otherwise, at \((t_0, z_0)\)
\[
0 \leq \left(\frac{\partial}{\partial t} - \Delta_t \right) P \leq C_8 - (A - 1)(n \log s - A\text{osc}_{X} \varphi_s - C).
\]
Hence we get
\[
t \log \text{tr}_\omega(\omega_{t+s}) \leq A\text{osc}_{X}(\varphi_s) + C + [C - n \log s + A\text{osc}_{X}(\varphi_s)]t.
\]
\[\square\]
Corollary 2.8. For all \((t, x) \in (0, T] \times X\)

\[
0 \leq t \log \text{tr}_\omega(\omega_{t+s}) \leq 2AOsc_X(\varphi_{t/2}) + C'.
\]

2.7. Higher order estimates. For the higher order estimates, we can follow Székelyhidi-Tosatti [SzT11] by bounding

\[
S = g^{ij} \varphi_i \varphi_j g^{k\ell} \varphi_{ij k} \varphi_{\ell pq} \text{ and } |\text{Ric}(\omega_t)|\omega_t,
\]

then using the parabolic Schauder estimates in order to obtain bounds on all higher order derivatives for \(\varphi\). Besides we can also combine previous estimates with Evans-Krylov and Schauder estimates (Theorem 1.7) to get the \(C^k\) estimates for all \(k \geq 0\).

Theorem 2.9. For each \(\varepsilon > 0\) and \(k \in \mathbb{N}\), there exists \(C_k(\varepsilon)\) such that

\[
|||\varphi|||_{C^k([\varepsilon, T] \times X)} \leq C_k(\varepsilon).
\]

3. Proof of Theorem A

3.1. Convergence in \(L^1\). We approximate \(\varphi_0\) by a decreasing sequence \(\varphi_{0,j}\) of smooth \(\omega\)-psh functions (using [Dem92] or [BK07]). Denote by \(\varphi_{t,j}\) the smooth family of \(\theta_t\)-psh functions satisfying on \([0, T] \times X\)

\[
\frac{\partial \varphi_t}{\partial t} = \log \left(\frac{(\theta_t + dd^c \varphi_t)^n}{\Omega} \right) - F(t, z, \varphi)
\]

with initial data \(\varphi_{0,j}\).

It follows from the comparison principle (Proposition 1.5) that \(j \mapsto \varphi_{j,t}\) is non-increasing. Therefore we can set

\[
\varphi_t(z) := \lim_{j \to +\infty} \varphi_{t,j}(z).
\]

Thanks to Lemma 2.2 the function \(t \mapsto \sup_X \varphi_{t,j}\) is uniformly bounded, hence \(\varphi_t\) is a well-defined \(\theta_t\)-psh function. Moreover, it follows from Theorem 2.9 that \(\varphi_t\) is also smooth in \((0, T] \times X\) and satisfies

\[
\frac{\partial \varphi_t}{\partial t} = \log \left(\frac{(\theta_t + dd^c \varphi_t)^n}{\Omega} \right) - F(t, z, \varphi).
\]

Observe that \((\varphi_t)\) is relatively compact in \(L^1(X)\) as \(t \to 0^+\), we now show that \(\varphi_t \to \varphi_0\) in \(L^1(X)\) as \(t \searrow 0^+\).

First, let \(\varphi_{t_k}\) is a subsequence of \((\varphi_t)\) such that \(\varphi_{t_k}\) converges to some function \(\psi\) in \(L^1(X)\) as \(t_k \to 0^+\). By the properties of plurisubharmonic functions, for all \(z \in X\)

\[
\limsup_{t_k \to 0} \varphi_{t_k}(z) \leq \psi(z),
\]

with equality almost everywhere. We infer that for almost every \(z \in X\)

\[
\psi(z) = \limsup_{t_k \to 0} \varphi_{t_k}(z) \leq \limsup_{t_k \to 0} \varphi_{t_k,j}(z) = \varphi_{0,j}(z),
\]

by continuity of \(\varphi_{t,j}\) at \(t = 0\). Thus \(\psi \leq \varphi_0\) almost everywhere.
Moreover, it follows from Lemma 2.2 that
\[\varphi_t(z) \geq (1 - 2\beta t)\varphi_0(z) + \alpha t u(z) + n(t \log t - t) + A t, \]
with \(u \) continuous, so
\[\varphi_0 \leq \liminf_{t \to 0} \varphi_t. \]
Since \(\psi \leq \varphi_0 \) almost everywhere, we get \(\psi = \varphi_0 \) almost everywhere, so \(\varphi_t \to \varphi_0 \) in \(L^1 \).

We next consider some cases in which the initial condition is slightly more regular.

3.2. Uniform convergence. If the initial condition \(\varphi_0 \) is continuous then by Proposition 1.5 we get \(\varphi_t \in C^0([0, T] \times X) \), hence \(\varphi_t \) uniformly converges to \(\varphi_0 \) as \(t \to 0^+ \).

3.3. Convergence in capacity. When \(\varphi_0 \) is only bounded, we prove this convergence moreover holds in capacity (Definition 1.11). It is the strongest convergence we can expect in the bounded case (cf. [GZ05]). First, observe that it is sufficient to prove that \(u_t := \varphi_t + c(t) \) converges to \(\varphi_0 \) as \(t \to 0 \) in capacity, where \(c(t) \) satisfies \(\varphi_t + c(t) \geq \varphi_0 \) as in Proposition 2.2. Since \(\varphi_t \) converges to \(\varphi_0 \), so does \(u_t \), and we get
\[\limsup_{t \to 0} u_t \leq \varphi_{0,j}, \]
for all \(j > 0 \), where \((\varphi_{0,j}) \) is a family of smooth \(\omega \)-psh functions decreasing to \(\varphi_0 \) as in Section 3.1. It follows from Hartogs’ Lemma that for each \(j > 0 \) and \(\varepsilon > 0 \), there exists \(t_j > 0 \) such that
\[u_t \leq \varphi_{0,j} + \varepsilon, \quad \forall 0 \leq t \leq t_j. \]
Therefore
\[\text{Cap}_\omega (\{u_t > \varphi_0 + 2\varepsilon\}) \leq \text{Cap}_\omega (\{\varphi_{0,j} > \varphi_0 + \varepsilon\}), \]
for all \(t \leq t_j \). Since \(\varphi_{0,j} \) converges to \(\varphi_0 \) in capacity (Proposition 1.12), the conclusion follows.

3.4. Convergence in energy. Using the same notations as in Section 1.6 we get the following monotonicity property of the energy.

Proposition 3.1. Suppose \(\varphi_t \) is a solution of \(\text{CMAF} \) with initial data \(\varphi_0 \in \mathcal{E}^1(X, \omega) \). Then there exists a constant \(C \geq 0 \) such that \(t \mapsto E(\varphi_t) + C t \) is increasing on \([0, T] \).

Proof. By computation we get
\[
\frac{dE(\varphi_t)}{dt} = \frac{1}{V} \int_X \dot{\varphi} t \omega_t + \frac{1}{(n+1)V} \sum_{j=0}^{n} \int_X \varphi_t \theta_t \wedge [j\theta_t + (n-j)\omega_t] \wedge \omega_t^j \wedge \theta_t^{n-j-1}.
\]
For the first term, we use the concavity of the logarithm to get
\[
\int_X \dot{\varphi} t \omega_t^n = \int_X \log \left(\frac{\omega_t^n}{e^F \Omega} \right) \frac{\omega_t^n}{V_t} \geq - \log \left(\frac{\int_X e^{F(t,z,\varphi_t)} \Omega}{V_t} \right) \geq - \log (C_0 \delta)
\]
where \(F(t, z, \varphi_t) \leq \log C_0 \) and

\[
V_t := \int_X \omega^n_t = \int_X \theta^n_t \geq \delta^{-1}V.
\]

For the second one, there is a constant \(A > 0 \) such that
\[
\dot{\theta}_t \leq A \theta_t
\]
for all \(0 \leq t \leq T \). We note that
\[
\int_X \varphi_t(\theta_t + dd^c \varphi_t)^j \wedge \theta_t^{n-j} \leq \int_X \varphi_t(\theta_t + dd^c \varphi_t)^{j-1} \wedge \theta_t^{n-j+1},
\]
hence
\[
\frac{dE(\varphi_t)}{dt} \geq -C_1 + C_2 E(\varphi_t),
\]
for some \(C_1, C_2 > 0 \). By Lemma 2.2 we have
\[
E(\varphi_t) \geq C_3 E(\varphi_0) + C_3 \geq C_4
\]
Thus \(t \mapsto E(\varphi_t) + Ct \) is increasing on \([0, T]\) for some \(C > 0 \). □

Proposition 3.2. If \(\varphi_0 \in \mathcal{E}^1(X, \omega) \), then \(\varphi_t \) converges to \(\varphi_0 \) in energy as \(t \to 0 \).

Proof. It follows from Proposition 3.1 that \(\varphi_t \) stays in a compact subset of the class \(\mathcal{E}^1(X, \omega) \). Let \(\psi = \lim_{t_k \to 0} \varphi_{t_k} \) be a cluster point of \(\varphi_t \) as \(t \to 0 \). Reasoning as earlier, we have \(\psi \leq \varphi_0 \). Since the energy \(E(\cdot) \) is upper semi-continuous for the weak \(L^1 \)-topology (cf. [GZ07]), Proposition 3.1 and the monotonicity of Aubin-Yau energy functional yield
\[
E(\varphi_0) \leq \lim_{t_k \to 0} E(\varphi_{t_k}) \leq E(\psi) \leq E(\varphi_0),
\]
Therefore \(E(\psi) = E(\varphi_0) \), so \(\psi = \varphi_0 \) and we have \(\varphi_t \to \varphi_0 \) in energy. □

4. Uniqueness and Stability of Solution

We now prove the uniqueness and stability for the complex Monge-Ampère flow

\[
(CMAF) \quad \frac{\partial \varphi_t}{\partial t} = \log \frac{(\theta_t + dd^c \varphi_t)^n}{\Omega} - F(t, z, \varphi),
\]
where \(F(t, z, s) \in C^\infty([0, T] \times X \times \mathbb{R}, \mathbb{R}) \) with

\[
\frac{\partial F}{\partial s} \geq 0 \quad \text{and} \quad \left| \frac{\partial F}{\partial t} \right| \leq C',
\]
for some constant \(C' > 0 \).
4.1. **Uniqueness.** For the uniqueness and stability of solution we follow the approach of Di Nezza-Lu [DNL14]. The author thanks Eleonora Di Nezza and Hoang Chinh Lu for valuable discussion on the argument in [DNL14, Theorem 5.4].

Suppose φ_t is a solution of

\[
\begin{aligned}
\frac{\partial \varphi}{\partial t} &= \log \left(\frac{\theta_t + \frac{dd^c \varphi}{\Omega}}{n} \right) - F(t, z, \varphi), \\
\varphi(0, \cdot) &= \varphi_0.
\end{aligned}
\tag{4.1}
\]

Consider

\[
\phi(t, z) = e^{At} \varphi \left(\frac{1 - e^{-At}}{A}, z \right),
\]

so $\phi_0 = \varphi_0$. Then

\[
\frac{\partial \phi_t}{\partial t} = \log \left(\frac{\tilde{\theta}_t + \frac{dd^c \phi}{\Omega}}{\tilde{A}} \right) + A\phi_t - H(t, z, \phi_t), \tag{4.2}
\]

where

\[
\tilde{\theta}_t = e^{At} \frac{1 - e^{-At}}{A},
\]

and

\[
H(t, z, \phi) = Ant + F(A^{-1}(1 - e^{-At}), z, e^{-At} \phi).
\]

Since

\[
\frac{\partial \tilde{\theta}_t}{\partial t} = Ae^{At} \frac{1 - e^{-At}}{A} + \frac{\tilde{\theta}_t}{\tilde{A}},
\]

we can choose A so large that $\tilde{\theta}_t$ is increasing in t. Observe that the equation (4.1) has a unique solution if and only if the equation (4.2) has a unique solution. It follows from Lemma 2.2 that

\[
\varphi \geq \varphi_0 - c(t),
\]

where $c(t) \downarrow 0$ as $t \downarrow 0$, so for $\phi(t):

\[
\phi \geq \phi_0 - \alpha(t),
\]

with $\alpha(t) \downarrow 0$ as $t \downarrow 0$.

Theorem 4.1. Suppose ψ and φ are two solutions of (4.1) with $\varphi_0 \leq \psi_0$, then $\varphi_t \leq \psi_t$. In particular, the equation (4.1) has a unique solution.

Proof. Thanks to the previous remark, it is sufficient to prove $u \leq v$, where $u(t, z) = e^{At} \varphi \left(\frac{1 - e^{-At}}{A}, z \right)$, and $v(t, z) = e^{At} \psi \left(\frac{1 - e^{-At}}{A}, z \right)$.

Fix $\varepsilon \in (0, T)$, define

\[
\tilde{v}(t, z) = v_{t+\varepsilon} + \alpha(\varepsilon)e^{At} + n\varepsilon(e^{At} - 1).
\]
then \(\tilde{v}_0 \geq v_0 = \psi_0 \) and \(\tilde{v} \geq v_{t+\varepsilon} \). Since we choose \(A \) so large that \(\tilde{\theta}_t \) is increasing,
\[
\frac{\partial \tilde{v}}{\partial t} = \log \frac{(\tilde{\theta}_{t+\varepsilon} + dd^c v_{t+\varepsilon})^n}{\Omega} + A\tilde{v}_t - H(t, z, v_{t+s}) \\
\geq \log \frac{(\tilde{\theta}_t + dd^c \tilde{v}_t)^n}{\Omega} + A\tilde{v}_t - H(t, z, v_{t+s})
\]
Where
\[
H(t, z, v_{t+\varepsilon}) = 2A t - A n(t + \varepsilon) + F(A^{-1}(1 - e^{-A(t+\varepsilon)})), z, e^{-A(t+\varepsilon)} v_{t+\varepsilon})
\]
It follows from the monotonicity of \(F \) in the third variable that
\[
F(A^{-1}(1 - e^{-A(t+\varepsilon)}), z, e^{-A(t+\varepsilon)} v_{t+\varepsilon}) \leq F(A^{-1}(1 - e^{-A(t+\varepsilon)}), z, e^{-At} \tilde{v}_t)
\]
By the assumption \(\left| \frac{\partial F}{\partial s} \right| < C' \), we choose \(A > C' \) and get
\[
s \mapsto -A(t + s) + F(A^{-1}(1 - e^{-A(t+s)}), z, e^{-At} \tilde{v}_t)
\]
is decreasing. Thus
\[
H(t, z, v_{t+\varepsilon}) \leq A t + F(A^{-1}(1 - e^{-At}), z, e^{-At} \tilde{v}_t)
\]
and
\[
\frac{\partial \tilde{v}}{\partial t} \geq \log \frac{(\tilde{\theta}_t + dd^c \tilde{v}_t)^n}{\Omega} + A\tilde{v}_t - H(t, z, \tilde{v}_t).
\]
Therefore \(\tilde{v} \) is the supersolution of (4.2). It follows from Proposition 1.6 that \(u_t \leq \tilde{v}_t, \forall t \in [0, T] \). Letting \(\varepsilon \to 0 \), we get \(u_t \leq v_t \), so \(\varphi_t \leq \psi_t \).

\textbf{Remark 4.2.} For \(\theta_t(x) = \omega(x), \Omega = \omega^n, F(t, z, s) = -2|s|^{1/2} \) and \(\varphi_0 = 0 \), we obtain two distinct solutions to (CMAF), \(\varphi_t(z) \equiv 0 \) and \(\varphi_t(z) = t^2 \). Here \(\frac{\partial F}{\partial s} \) is negative and \(F \) is not smooth along \((s = 0) \).

We now prove the following qualitative stability result:

\textbf{Theorem 4.3.} Fix \(\varepsilon > 0 \). Let \(\varphi_{0,j} \) be a sequence of \(\omega \)-psh functions with zero Lelong number at all points, such that \(\varphi_{0,j} \to \varphi_0 \) in \(L^1(X) \). Denote by \(\varphi_{t,j} \) and \(\varphi_j \) the solutions of (4.1) with the initial condition \(\varphi_{0,j} \) and \(\varphi_0 \) respectively. Then
\[
\varphi_{t,j} \to \varphi_t \text{ in } C^\infty([\varepsilon, T] \times X) \text{ as } j \to +\infty.
\]

\textbf{Proof.} Observe that we can use previous techniques in Section 2 to obtain estimates of \(\varphi_{t,j} \) in \(C^k([\varepsilon, T] \times X) \) for all \(k \geq 0 \). In particular, for the \(C^0 \) estimate, we need to have the uniform bound for \(H_{t,j} = \exp(\varphi_{t,j} + F) \) in order to use the uniform version of Kolodziej’s estimates [Kol98, EGZ08]. By Lemma 2.3 we have
\[
H_{t,j} = \exp(\varphi_{t,j} + F) \leq \exp \left(\frac{-\phi_0 + C}{t} + C' \right),
\]
where C, C' depend on $\varepsilon, \sup_X \varphi_{0,j}$. Since $\varphi_{0,j}$ decreases to φ_0, we have the sup$_X \varphi_{0,j}$ is uniformly bounded in term of sup$_X \varphi_0$ for all j, so we can choose C, C' to be independent of j. Hence there is a constant $A(t, \varepsilon)$ depending on t and ε such that $|H_{t,j}|_{L^2(L)}$ is uniformly bounded by $A(t, \varepsilon)$ for all $t \in [\varepsilon, T]$. By the Arzela-Ascoli theorem we can extract a subsequence φ_{j_k} that converges to ϕ_t in $C^\infty([\varepsilon, T] \times X)$. Note that
\[
\frac{\partial \phi_t}{\partial t} = \log \frac{(\theta_t + dd^c \phi_t)^n}{\Omega} - F(t, z, \phi_t).
\]
We now prove $\phi_t = \varphi_t$. From Lemma 2.2 we get
\[
\varphi_{t,j_k} \geq (1 - \beta_t) \varphi_{0,j_k} - C(t),
\]
where $C(t) \searrow 0$ as $t \to 0$. Let $j_k \to +\infty$ we get $\phi_t \geq (1 - \beta_t) \varphi_0 - C(t)$, hence
\[
\lim_{t \to 0} \inf \phi_t \geq \varphi_0.
\]
It follows from Theorem 4.1 that $\phi_t \geq \varphi_t$. For proving $\phi_t \leq \varphi_t$, we consider $\psi_{0,k} = \left(\sup_{j \geq k} \varphi_{0,j}\right)^*$, hence $\psi_{0,k} \searrow \varphi_0$ by Hartogs theorem. Denote by $\psi_{t,k}$ the solution of (4.1) with initial condition $\psi_{0,j}$. It follows from Theorem 4.1 that
\[
\psi_{t,j} \geq \varphi_{t,j}.
\]
Moreover, thanks to the same arguments for proving the existence of a solution in Sections 2 and 3 by using a decreasing approximation of φ_0, we have that $\psi_{t,j}$ decreases to φ_t. Thus we infer that $\phi_t \leq \varphi_t$ and the proof is complete.

4.2. Quantitative stability estimate. In this section, we prove the following stability result when the initial condition is continuous.

Theorem 4.4. If $\varphi, \psi \in C^\infty((0, T] \times X)$ are solutions of (CMAF) with continuous initial data φ_0 and ψ_0, then
\[
||\varphi - \psi||_{C^k([\varepsilon, T] \times X)} \leq C(k, \varepsilon)||\varphi_0 - \psi_0||_{L^\infty(X)}.
\]

Proof. **Step 1.** It follows from Demailly’s approximation result (cf. [Dem92]) that there exist two sequences $\{\varphi_{0,j}\}, \{\psi_{0,j}\} \subset PSH(X, \omega) \cap C^\infty(X)$ such that
\[
\lim_{j \to \infty} ||\varphi_{0,j} - \varphi_0||_{L^\infty(X)} = 0 \quad \text{and} \quad \lim_{j \to \infty} ||\psi_{0,j} - \psi_0||_{L^\infty(X)} = 0.
\]
Denote by $\varphi_{t,j}, \psi_{t,j}$ solution of (CMAF) corresponding to initial data $\varphi_{0,j}, \psi_{0,j}$. Moreover, thanks to Theorem 4.3 we obtain
\[
\lim_{j \to \infty} ||\varphi_{t,j} - \varphi_t||_{C^k([\varepsilon, T] \times X)} = 0 \quad \text{and} \quad \lim_{j \to \infty} ||\psi_{t,j} - \psi_t||_{C^k([\varepsilon, T] \times X)} = 0.
\]
Thus it is sufficient to prove (4.3) with smooth functions φ_0, ψ_0.

Step 2. We now assume that φ_0 and ψ_0 are smooth. For each $\lambda \in [0, 1]$,
there is a unique solution \(\varphi^\lambda_t \in C^\infty((0,T] \times X) \) for the complex Monge-Ampère flow

\[
\begin{aligned}
\frac{\partial \varphi^\lambda_t}{\partial t} &= \log \left(\frac{\theta_t + dd^c \varphi^\lambda_t}{\Omega} \right) - F(t, z, \varphi^\lambda), \\
\varphi^\lambda(0,.) &= (1 - \lambda)\varphi_0 + \lambda \psi_0.
\end{aligned}
\]

(4.4)

By the local existence theorem, \(\varphi^\lambda \) depends smoothly on the parameter \(\lambda \).

We denote by \(\Delta^\lambda_t \) the Laplacian with respect to the Kähler form

\[
\omega^\lambda := \theta_t + dd^c \varphi^\lambda.
\]

Observe that

\[
\left(\frac{\partial}{\partial t} - \Delta^\lambda_t \right) \frac{\partial \varphi^\lambda}{\partial \lambda} = -\frac{\partial F}{\partial s} \frac{\partial \varphi^\lambda}{\partial \lambda},
\]

so

\[
\left(\frac{\partial}{\partial t} - \Delta^\lambda_t \right) u^\lambda_t + g_\lambda(t, z) u^\lambda_t = 0,
\]

(4.5)

where \(u^\lambda_t = \frac{\partial \varphi^\lambda}{\partial \lambda} \) and \(g_\lambda(t, z) = \frac{\partial F}{\partial s}(t, z, \varphi^\lambda) \geq 0 \). Moreover

\[
\psi_t - \varphi_t = \int_0^1 u^\lambda d\lambda,
\]

thus it is sufficient to show that

\[
\|u^\lambda_t\|_{C^k([\varepsilon,T] \times X)} \leq C(k, \varepsilon)\|u^\lambda_0\|_{L^\infty(X)} = C(k, \varepsilon)\|\psi_0 - \varphi_0\|_{L^\infty}.
\]

Step 3. It follows from Theorem 2.9 that for each \(k \geq 0 \),

\[
\|g_\lambda\|_{C^k([\varepsilon,T] \times X)} \leq C_1(k, \varepsilon) \quad \text{and} \quad \|\omega^\lambda_t\|_{C^k([\varepsilon,T] \times X)} \leq C_2(k, \varepsilon),
\]

for all \(\lambda \in [0,1] \). Using the parabolic Schauder estimates [Kry96, Theorem 8.12.1] for the equation (4.5) we get

\[
\|u^\lambda_t\|_{C^k([\varepsilon,T] \times X)} \leq C(k, \varepsilon)\|u^\lambda_0\|_{L^\infty(X)}.
\]

Step 4. Proving

\[
\|u^\lambda_t\|_{L^\infty(X)} \leq \|u^\lambda_0\|_{L^\infty(X)}.
\]

Indeed, suppose that \(u^\lambda \) attains its maximum at \((t_0, z_0) \). If \(t_0 = 0 \), we obtain the desired inequality. Otherwise, by the maximum principle, at \((t_0, z_0) \)

\[
0 \leq \left(\frac{\partial}{\partial t} - \Delta^\lambda_t \right) u^\lambda_t = -g_\lambda(t_0, z_0) u^\lambda_{t_0}.
\]

Since \(g_\lambda \geq 0 \), we get

\[
u^\lambda_t \leq \max \left\{ 0, \max_X u^\lambda_0 \right\}.
\]

Similarly, we obtain

\[
u^\lambda_t \geq \min \left\{ 0, \min_X u^\lambda_0 \right\},
\]

hence

\[
\|u^\lambda_t\|_{L^\infty(X)} \leq \|u^\lambda_0\|_{L^\infty(X)}.
\]
Finally,

\[\|\varphi - \psi\|_{C^k([\varepsilon,T] \times X)} \leq \int_0^1 \|u^\lambda\|_{C^k([\varepsilon,T] \times X)} d\lambda \leq C(k,\varepsilon) \|\varphi_0 - \psi_0\|_{L^\infty(X)}. \]

The proof of Theorem B is therefore complete. \qed

5. Starting from a nef class

Let \((X,\omega)\) be a compact Kähler manifold. In [GZ13], the authors proved that the twisted Kähler-Ricci flow can smooth out a positive current \(T_0\) with zero Lelong numbers belonging to a nef class \(\alpha_0\). At the level of potentials it satisfies the Monge-Ampère flow

\[\frac{\partial \varphi_t}{\partial t} = \log \left(\frac{(\theta_0 + t \omega + dd^c \varphi_t)^n}{\omega^n} \right) - F(t, z, \varphi_t), \]

where \(\theta_0\) is a smooth differential closed \((1,1)\)-form representing a nef class \(\alpha_0\) and \(\varphi_0 \in PSH(X,\theta_0)\) is a \(\theta_0\)-psh potential for \(T_0\), i.e. \(T_0 = \theta_0 + dd^c \varphi_0\). We prove here this is still true for more general flows we have considered:

Theorem 5.1. Let \(\theta_0\) be a smooth closed \((1,1)\)-form representing a nef class \(\alpha_0\) and \(\varphi_0\) be a \(\theta_0\)-psh function with zero Lelong number at all points. Set \(\varphi_t := \theta_0 + t \omega\). Then there exists a unique family \((\varphi_t)_{t \in [0,T]}\) of smooth \((\theta_t)\)-psh functions satisfying

\[\frac{\partial \varphi_t}{\partial t} = \log \left(\frac{(\theta_t + dd^c \varphi_t)^n}{\omega^n} \right) - F(t, z, \varphi_t), \]

such that \(\varphi_t\) converges to \(\varphi_0\) in \(L^1\).

Proof. First, observe that for \(\varepsilon > 0\), \(\theta_0 + \varepsilon \omega\) is a Kähler form. Thanks to Theorem A, there exists a family \(\varphi_{t,\varepsilon}\) of \((\theta_0 + \varepsilon \omega)\)-psh functions satisfying

\[\frac{\partial \varphi_{t,\varepsilon}}{\partial t} = \log \left(\frac{(\theta_0 + \varepsilon \omega + dd^c \varphi_{t,\varepsilon})^n}{\omega^n} \right) - F(t, z, \varphi_{t,\varepsilon}) \]

with initial data \(\varphi_0\) which is a \((\theta_0 + \varepsilon \omega)\)-psh function with zero Lelong numbers.

First, we prove that \(\varphi_{t,\varepsilon}\) is decreasing in \(\varepsilon\). Indeed, for any \(\varepsilon' > \varepsilon\)

\[\frac{\partial \varphi_{t,\varepsilon'}}{\partial t} = \log \left(\frac{(\theta_t + \varepsilon' \omega + dd^c \varphi_{t,\varepsilon'})^n}{\omega^n} \right) - F(t, z, \varphi_{t,\varepsilon'}) \]

\[\geq \log \left(\frac{(\theta_t + \varepsilon \omega + dd^c \varphi_{t,\varepsilon})^n}{\omega^n} \right) - F(t, z, \varphi_{t,\varepsilon}) \]

hence \(\varphi_{t,\varepsilon'} \geq \varphi_{t,\varepsilon}\) by the comparison principle (Proposition 1.5). Then we consider

\[\varphi_t := \lim_{\varepsilon \to 0^+} \varphi_{t,\varepsilon}. \]

We now show that \(\varphi_t\) is bounded below (so it is not \(\to -\infty\)). Thanks to [GZ13, Theorem 7.1], there exist a family \((\phi_t)\) of \((\theta_0 + t \omega)\)-psh functions
such that
\[
\frac{\partial \phi_t}{\partial t} = \log \frac{(\theta_0 + t \omega + dd^c \phi_t)^n}{\omega^n}
\]
There is \(\sigma > 0\) such that \(\sigma^{-1} \omega^n \leq \Omega \leq \sigma \omega^n\), so we may assume that
\[
\frac{\partial \phi_t}{\partial t} \leq \log \frac{(\theta_0 + t \omega + dd^c \phi_t)^n}{\Omega}.
\]
Moreover, \(\varphi_{t, \varepsilon} \leq C\), where \(C\) only depends on \(\sup_X \varphi_0\), hence assume that \(F(t, z, \varphi_{t, \varepsilon}) \leq A\) for all \(\varepsilon\) small. Changing variables, we can assume that
\[
\frac{\partial \varphi_{t, \varepsilon}}{\partial t} \geq \log \frac{(\theta_0 + t \omega + dd^c \varphi_{t, \varepsilon})^n}{\Omega}.
\]
Using the comparison principle (Theorem 1.5) again, we get \(\varphi_{t, \varepsilon} \geq \phi_t\) for all \(\varepsilon > 0\) small, so \(\varphi_t \geq \phi_t\).

For the essential uniform bound of \(\varphi_t\), we use the method of Guedj-Zeriahi. For \(\delta > 0\), we fix \(\omega_\delta\) a Kähler form such that \(\theta_0 + \delta \omega = \omega_\delta + dd^c h_\delta\) for some smooth function \(h_\delta\). Our equation can be rewritten, for \(t \geq \delta\)
\[
(\omega_\delta + (t - \delta) \omega + dd^c (\varphi_t + h_\delta))^n = H_t \Omega \tag{5.3}
\]
where
\[
H_t = e^{\dot{\varphi_t} + F(t, x, \varphi_t)}
\]
are uniformly in \(L^2\), since
\[
\varphi_t \leq \frac{-\phi_\delta + C}{t} + C,
\]
for \(t \geq \delta\) as in Lemma 2.2. Kolodziej’s estimates now yields that \(\varphi_t + h_\delta\) is uniformly bounded for \(t \geq \delta\), so is \(\varphi_t\).

Now apply the arguments in Section 2 to the equation (5.3) we obtain the bounds for the time derivative, gradient, Laplacian and higher order derivatives of \(\varphi_t + h_\delta\) in \([\delta, T] \times X\). We thus obtain a priori estimates for \(\varphi_t\) which allow us get the existence of solution of (5.2) and the convergence to the initial convergence in \(L^1(X)\).

\[
\square
\]

References

[BBGZ13] R. Berman, S. Boucksom, V. Guedj, and A. Zeriahi, A variational approach to complex monge-ampère equations, Publ. Math. Inst. Hautes Études Sci. 177 (2013), no. 1, 179–245.

[BG13] S Boucksom and V. Guedj, Regularizing properties of the Kähler-Ricci flow, Lecture Notes in Math., vol. 2086, Springer, 2013.

[BK07] Z. Błocki and S. Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093.

[Bł09] Z. Błocki, A gradient estimate in the Calabi-Yau theorem, Math. Ann. 344 (2009), 317–327.

[CD07] X. X. Chen and W. Ding, Ricci flow on surfaces with degenerate initial metrics, J. Partial Differential Equations 20 (2007), no. 3, 193–202.
T. Collins and G. Székelyhidi, *The twisted Kähler-Ricci flow*, J. reine angew. Math. Ahead of Print, arXiv:1207.5441 [math.DG] (2012).

J.P. Demailly, *Regularization of closed positive currents and intersection theory*, J. Alg. Geom. 1 (1992), no. 3, 361–409.

E. Di Nezza and H.C Lu, *Uniqueness and short time regularity of the weak Kähler-Ricci flow*, Preprint, arXiv:1411.7958. (2014).

P. Eyssidieux, V. Guedj, and A. Zeriahi, *A priori l^∞-estimates for degenerate complex Monge-Ampère equations*, Int. Math. Res. Not. IMRN (2008).

E. Di Nezza and H.C Lu, *Uniqueness and short time regularity of the weak Kähler-Ricci flow*, Preprint, arXiv:1411.7958. (2014).

P. Eyssidieux, V. Guedj, and A. Zeriahi, *A priori l^∞-estimates for degenerate complex Monge-Ampère equations*, Int. Math. Res. Not. IMRN (2008).

J. Song and G. Tian, *The Kähler-Ricci flow through singularities*, Preprint, arXiv:0909.4898 (2009).

J. Song and G. Tian, *Canonical measures and Kähler-Ricci flow*, J. Amer. Math. Soc. 25 (2012), no. 2, 303–353.

G. Székelyhidi and V. Tosatti, *Regularity of weak solutions of a complex monge-ampère equation*, Anal. PDE 4 (2011), no. 3, 369–378.

Institut Mathématiques de Toulouse,, Université Paul Sabatier, 31062 Toulouse cedex 09, France

E-mail address: tat-dat.to@math.univ-toulouse.fr