Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Viral pneumonia

Olli Ruuskanen, Elina Lahti, LANCE C JENNINGS, DAVID R MURDOCH

About 200 million cases of viral community-acquired pneumonia occur every year—100 million in children and 100 million in adults. Molecular diagnostic tests have greatly increased our understanding of the role of viruses in pneumonia, and findings indicate that the incidence of viral pneumonia has been underestimated. In children, respiratory syncytial virus, rhinovirus, human metapneumovirus, human bocavirus, and parainfluenza viruses are the agents identified most frequently in both developed and developing countries. Dual viral infections are common, and a third of children have evidence of viral-bacterial co-infection. In adults, viruses are the putative causative agents in a third of cases of community-acquired pneumonia, in particular influenza viruses, rhinoviruses, and coronaviruses. Bacteria continue to have a predominant role in adults with pneumonia. Presence of viral epidemics in the community, patient’s age, speed of onset of illness, symptoms, biomarkers, radiographic changes, and response to treatment can help differentiate viral from bacterial pneumonia. However, no clinical algorithm exists that will distinguish clearly the cause of pneumonia. No clear consensus has been reached about whether patients with obvious viral community-acquired pneumonia need to be treated with antibiotics. Apart from neuraminidase inhibitors for pneumonia caused by influenza viruses, there is no clear role for use of specific antivirals to treat viral community-acquired pneumonia. Influenza vaccines are the only available specific preventive measures. Further studies are needed to better understand the cause and pathogenesis of community-acquired pneumonia. Furthermore, regional differences in cause of pneumonia should be investigated, in particular to obtain more data from developing countries.

Introduction

Pneumonia is a common illness that continues to be the major killer of young children in developing countries and elderly people in developed countries. Many microorganisms are associated with pneumonia, and now attention is turning to the importance of viruses as pathogens. Widespread introduction of Haemophilus influenzae type b and pneumococcal conjugate vaccines into immunisation programmes has led to speculation about the growing predominance of viruses as causes of childhood pneumonia. The emergence of severe acute respiratory syndrome (SARS), avian influenza A (H5N1) virus, and the 2009 pandemic influenza A (H1N1) virus has re-emphasised the important role of respiratory viruses as causes of severe pneumonia. New respiratory viruses—such as human metapneumovirus, coronaviruses NL63 and HKU1, and human bocavirus—have been discovered during the past decade. Importantly, the availability of molecular diagnostic assays (such as PCR) has greatly increased our ability to detect and characterise the epidemiology of respiratory virus infections. Findings of previous studies, in which conventional virological diagnostic techniques were used, have most likely underestimated the role of viruses as pneumonia pathogens.

Epidemiology of pneumonia

According to WHO estimates, 450 million cases of pneumonia are recorded every year; about 4 million people die from this illness, accounting for 7% of total mortality of 57 million people. The highest incidences arise in children younger than 5 years and in adults older than 75 years (figure 1). In developing countries, incidence could be five times higher than in developed regions. In children, 156 million episodes of pneumonia are recorded annually, of which 151 million are present in developing countries. In 2008, 1-6 million children younger than 5 years died from pneumonia. 5 million cases of childhood community-acquired pneumonia are reported yearly in developed countries, but mortality has declined strikingly and is now very rare. In a Canadian study, 25 319 admissions for childhood pneumonia took place during the 9-year study period; 11 deaths were recorded and only one death did not have a comorbid condition. Mortality of 1-2 per million previously healthy young adults has been recorded in the UK. In the USA alone, the economic burden of community-acquired pneumonia has been estimated to be more than US$17 billion annually.

Diagnosis of viral pneumonia

Laboratory diagnosis of viral pneumonia has relied on detection of virus or viral antigen in upper-respiratory specimens (eg, nasopharyngeal aspirates) and lower-respiratory samples (eg, induced sputum) by culture or immunoﬂuorescence microscopy, and on measurement
of antibodies in paired serum samples. Introduction of PCR has increased the ability to detect respiratory viruses, including those that are difficult to culture. At least 26 viruses have now been associated with community-acquired pneumonia (panel).

Despite technological advances, establishing the cause of pneumonia remains challenging. Specimens from the lower-respiratory tract can be hard to obtain, and distinguishing possible prolonged shedding or colonisation from infection can be difficult. For diagnosis of viral pneumonia, reliance on testing of nasopharyngeal specimens presents its own challenges; detection of a virus in the nasopharynx could represent coincidental upper-respiratory infection or a pneumonia pathogen. Measurement of background prevalence of asymptomatic nasopharyngeal viral infection in a control group might help to clarify the size of this diagnostic issue at a population level, but this approach has been used only rarely in aetiological studies. Furthermore, most research has focused on patients admitted to hospital and, therefore, findings might not be representative of mild-to-moderate disease.

Several different types of specimen from the upper and lower airway have been used in aetiological studies of community-acquired pneumonia, including: nasopharyngeal aspirates or washes; swabs from the nasopharynx, nose, or throat; combined nasopharyngeal and throat swabs; expectorated and induced sputum; tracheal aspirates; bronchoalveolar lavage; and lung puncture. Recovery of virus fluctuates according to specimen type, which probably accounts for some of the variability of findings between studies.

Most studies of the cause of viral pneumonia have used upper-respiratory specimens to test for viruses. In children, nasopharyngeal aspirates are generally deemed the specimen of choice because both nasal and nasopharyngeal mucus samples are gathered. Respiratory viruses have been noted in 95% of mucus samples obtained by nasopharyngeal aspiration from children with respiratory infection. Obtaining an aspirate is, however, unpleasant and requires a suction device. Nasal swabs taken with a sterile cotton swab from a depth of 2–3 cm have comparable sensitivity to nasopharyngeal aspirates for culture of all major respiratory viruses, except respiratory syncytial virus. Flocked swabs with nylon fibres in a perpendicular fashion are now preferred by many clinicians because they are convenient to use and have a similar sensitivity to nasopharyngeal aspirates for detection by PCR of respiratory viruses. In adults, nasopharyngeal swabs have a higher sensitivity than throat swabs, but they can be less sensitive than nasopharyngeal washes. Transnasal nasopharyngeal flocked swabs also have high virus detection rates in adults.

Lower-respiratory specimens have obvious advantages for establishing the cause of pneumonia because they come from the site of infection. However, obtaining reliable specimens that are not contaminated by flora from the upper airway is difficult. Induced sputum specimens have been used in paediatric pneumonia studies, although assuring that the specimens are representative of the lower-respiratory tract can be challenging. High-quality specimens can be obtained by thoracic needle aspiration, but this technique has not been adopted widely because of safety concerns, despite a low complication rate.

In general, PCR-based methods are between two and five times more sensitive than conventional virus diagnostic methods (culture, antigen detection, and serological assays) for detection of respiratory viruses.

Panel: Viruses linked to community-acquired pneumonia in children and adults

- Respiratory syncytial virus
- Rhinovirus
- Influenza A, B, and C viruses
- Human metapneumovirus
- Parainfluenza viruses types 1, 2, 3, and 4
- Human bocavirus*
- Coronavirus types 229E, OC43, NL63, HKU1, SARS
- Adenovirus
- Enteroviruses
- Varicella-zoster virus
- Hantavirus
- Parechoviruses
- Epstein-Barr virus
- Human herpesvirus 6 and 7
- Herpes simplex virus
- Mimivirus
- Cytomegalovirus†
- Measles†

*Mostly in children. †Mostly in developing countries.
This benefit applies particularly to adults and elderly people, who might have a smaller nasopharyngeal viral load than children.\(^2^4\)\(^,\)\(^2^5\) Moreover, some respiratory viruses can only be detected readily by PCR. Development of several multiplex assays has enabled simultaneous detection of up to 15 different viruses, and use of these tests is becoming standard for identification of respiratory viruses.\(^2^6\)\(^,\)\(^2^7\)

The ability to differentiate viral from bacterial pneumonia could have important management implications. Despite advances, diagnostic tests still fail to identify causative agents in many affected individuals.\(^2^8\) As a result, other variables have been used to distinguish viral from bacterial pneumonia (table 1). However, no clinical algorithm exists to discern clearly the cause of pneumonia. This absence is perhaps not surprising in view of the probable important interaction between viruses and bacteria in pathogenesis of pneumonia.

Respiratory viruses usually follow seasonal patterns of activity and are most likely to cause pneumonia during those times. Epidemics of respiratory syncytial virus typically happen every or every other year in late autumn, rhinovirus epidemics arise in autumn and spring, whereas influenza peaks are seen during late autumn and early winter. Several viruses can be cocirculating at specific times of the year, even during the highest epidemic peaks of one virus.\(^2^9\)

Although viral pneumonia is being recognised increasingly in adults, it still seems to be most typical in children, especially in infants younger than 2 years.\(^3^0\) According to the British Thoracic Society, fever higher than 38·5°C, a respiratory rate greater than 50 breaths per min, and chest recession are suggestive of bacterial rather than viral pneumonia; by comparison, young age, wheezing, fever less than 38·5°C, and striking chest recession are suggestive of a viral cause.\(^1\) However, clinical signs and symptoms of viral and bacterial pneumonia are highly variable and overlap; therefore, they cannot be relied on. Importantly, typical pneumococcal pneumonia (sudden onset, high fever, chills, pleuritic chest pain, lobar infiltrates, leucocytosis) is only one part of the range of bacterial pneumonia.\(^3^1\)

White-blood-cell count and concentrations in serum of C-reactive protein and procalcitonin are variables studied widely in children and adults with community-acquired pneumonia. In general, these biomarkers are raised significantly in individuals with bacterial pneumonia compared with patients with viral pneumonia (table 1),\(^1^9\)\(^,\)\(^3^2\)\(^–\)\(^3^5\) although none has sufficient sensitivity or specificity to be used in isolation. Use of procalcitonin in clinical practice to identify bacterial infection and help guide antimicrobial treatment has been the focus of many studies. This substance increases within 6–12 h after onset of bacterial infection and halves daily when infection is controlled.\(^3^4\) In the context of pneumonia, concentrations of procalcitonin greater than 0·5 μg/L support bacterial infection, whereas repeatedly low amounts suggest that bacterial infection is unlikely. However, the exact role of procalcitonin in management of pneumonia is still the subject of ongoing discussion and debate.\(^3^5\)

Recommendations from the American Thoracic Society are that diagnosis of pneumonia should be made on the basis of chest radiography.\(^3^6\) Interstitial infiltrates on chest radiographs are generally believed to suggest a viral cause of pneumonia and alveolar infiltrates to indicate a
bacterial cause (figure 2). However, bacteria and viruses alone or together can induce a broad range of chest radiographic changes, and alterations are only helpful in specific cases to confirm a microbial cause of pneumonia. In one study, bacterial infection was noted in 97 (71%) of 137 children with alveolar infiltrates, whereas 97 (72%) of 134 with bacterial pneumonia had alveolar infiltrates. In children with viral pneumonia, 40 (49%) had alveolar changes. Of 85 children with bacteraemic pneumococcal pneumonia, alveolar infiltrates were recorded in 77 (91%) of cases. Prevalence of community-acquired pneumonia, median duration of fever was 14 h after onset of antibiotic treatment. Seven studies were undertaken in developed countries and two in developing countries. Evidence of viral infection was recorded in 49% (range 43–67) of cases. Prevalence of community-acquired pneumonia associated with respiratory syncytial virus (11%), influenza viruses (10%), parainfluenza viruses (8%), and adenovirus (3%) was similar to that reported in studies in which only conventional diagnostic approaches were used. Exact numbers of different viruses are difficult to compare from one study to another because several techniques were applied. When serological assays alone were used, evidence of a viral cause was obtained in 20–43% of children with community-acquired pneumonia, and respiratory syncytial virus was dominant. PCR has increased detection of rhinoviruses (18%) and enteroviruses (7%). Of newly described viruses, human bocavirus was recorded in 5% of cases and human metapneumovirus in 8%. Coronaviruses were seen in 22 (7%) of 338 children in one study. In a 3-year prospective study in Finland, the overall probable cause of pneumonia was recorded in 85% of children, with bacterial infection in 53% and viral infection in 62%. The most comprehensive study from a virological perspective searched for 14 viruses in 338 children with pneumonia over a 2-year period. Prevalence of viral infection was 67%, with respiratory syncytial virus, rhinoviruses, human bocavirus, human metapneumovirus, and parainfluenza viruses being the most common agents.

Many researchers have focused on the role of single respiratory viruses as a cause of childhood community-acquired pneumonia or have studied sole virus infections and looked for pneumonia in their clinical profiles (table 2). Globally, respiratory syncytial virus continues to be the major causative viral agent of pneumonia in children and could be the predominant viral cause of severe pneumonia in this population. With the advent of PCR techniques, rhinoviruses have been detected increasingly in childhood pneumonia. The clinical profile of 643 rhinovirus

Pneumonia	Rhinovirus (n=580)	Respiratory syncytial virus (n=1655)	Adenovirus (n=902)	Parainfluenza virus 1 (n=94)	Parainfluenza virus 2 (n=49)	Parainfluenza virus 3 (n=315)	Influenza A virus (n=544)	Influenza B virus (n=139)
Wheezy bronchitis	18%	16%	8%	9%	6%	14%	9%	8%
Otitis media	22%	32%	2%	2%	4%	8%	6%	6%
Non-specified acute respiratory infection	23%	59%	24%	27%	20%	30%	26%	19%
Bronchiolitis	3%	34%	1%	2%	10%	5%	1%	1%
Laryngitis	2%	2%	1%	37%	53%	10%	5%	4%
Tonsillitis	2%	0	30%	1%	0	2%	5%	4%
Fever without a focus	2%	1%	5%	10%	0	2%	1%	2%
Febrile convolution	1%	2%	7%	4%	0	5%	12%	9%
Fever ≥38°C	44%	63%	81%	77%	76%	63%	94%	89%

Table 2: Occurrence of pneumonia and other findings in 4277 children with laboratory-confirmed viral respiratory infection at Turku University Hospital, Finland.
infections in children admitted to hospital has been reported in seven studies, and 11–53% had pneumonia. However, the role of rhinoviruses in pneumonia is still questioned because of the frequent detection of rhinoviruses in asymptomatic individuals (mean prevalence 15%), strikingly more than for other respiratory viruses (prevalence 1–5%).

Jartti and colleagues suggested that PCR is likely to detect a true but asymptomatic infection. A difficulty with rhinoviruses is the paucity of serological tests to verify acute infection. In immunocompetent individuals, rhinoviral clearance after symptomatic infection is rapid (average 1–3 weeks).

Pneumonia was diagnosed in 10% of children admitted with acute human metapneumovirus respiratory infection, with the highest prevalence (44%) in infants younger than 12 months. It has also been recorded in 11–75% of children with human bocavirus infection. In a study from Thailand of infants younger than 5 years admitted with pneumonia, human bocavirus was the third most prevalent agent detected, after rhinovirus and respiratory syncytial virus, accounting for 12% of all cases.

Although the role of human bocavirus in pneumonia is still being clarified, serological evidence suggests it is a cause of human infection. With a novel IgM and IgG enzyme immunoassay, 96% of children with a high load of human bocavirus in nasopharyngeal aspirates and 92% of wheezy children with viraemia had diagnostic seroresponses. Human bocavirus was identified serologically in 12 (12%) of 101 children with community-acquired pneumonia in Italy.

Although prevalence of adenovirus-associated pneumonia is fairly low (range 2–12%), this type of infection is important to recognise because it might induce severe and fatal necrotising pneumonia (especially serotypes 3, 7, and 14). In China, adenovirus DNA was detected in 9% of post-mortem pulmonary tissue specimens from 175 children with fatal pneumonia. Of note, PCR is substantially more sensitive for identification of adenovirus than is antigen detection.

Human coronaviruses 229E and OC43, and newly discovered types NL63 and HKU1, have been linked to community-acquired pneumonia in children. Infection with human coronavirus was detected in 3% of children and adolescents in a large pneumonia study in Thailand.

Research in adults

We identified ten studies of adults with community-acquired pneumonia (n=2910 episodes) in which PCR was used to test for respiratory viruses. Evidence of viral infection was detected in 22% of cases. In most of these studies, a comprehensive array of conventional virological methods were also implemented to better define the role of viruses in adults with community-acquired pneumonia. Similar to findings of paediatric studies, prevalence of infection with influenza viruses (8%), respiratory syncytial virus (3%), parainfluenza viruses (2%), and adenovirus (2%) is comparable with values recorded with conventional diagnostic methods alone.

Serological techniques only were used in four studies; evidence of viral community-acquired pneumonia was noted in 10–23% of patients. Use of PCR has augmented detection of viruses that are difficult to identify with conventional methods, including rhinoviruses (6%), human coronaviruses (5%), and human metapneumovirus (1%). As a result, overall prevalence of respiratory viral infection in PCR studies (15–56%) is generally higher than for studies in which PCR was not implemented. With a full set of tests, findings of three reports suggest that a third of adult cases of community-acquired pneumonia are associated with viral infection.

Other researchers have focused on the role of specific respiratory viruses in adults with community-acquired pneumonia. Respiratory syncytial virus is recognised increasingly as a cause of illness in adults, and 2–9% of elderly patients admitted with pneumonia in the USA have infection associated with this virus. Infections with respiratory syncytial virus are linked to substantial mortality. Several outbreaks of severe respiratory disease (including fatal pneumonia) in elderly residents of nursing homes have been associated with rhinoviruses.

Adenoviruses have been implicated in 90% of pneumonia-related admissions in basic military trainees. An outbreak of pneumonia associated with adenovirus serotype 14 has been reported. When searched for systematically, coronaviruses have been detected in samples from a small proportion (2–6%) of adults with pneumonia. These patients had clinical illnesses indistinguishable from those in individuals with community-acquired pneumonia associated with other microorganisms. 2% of asymptomatic controls also had human coronavirus infection.

Infections with human metapneumovirus arise throughout adulthood. Outbreaks of this viral infection associated with fatal outcome have been reported from long-term care facilities. Of patients admitted with human metapneumovirus infection, 27% had chest radiographic infiltrates, 12% required ventilatory support, and 7% died. Human bocavirus is an uncommon cause of pneumonia in adults. As part of a surveillance project in Thailand, this virus was detected in five (1%) of 667 adults (age 20 years or older) admitted with pneumonia and in one of 126 (1%) controls without febrile or respiratory illness.

Pneumonia associated with SARS, avian influenza, and 2009 pandemic influenza

During 2002 and 2003, the SARS coronavirus caused severe respiratory infection in more than 8000 people and led to 774 deaths. Up to a third of patients with SARS became critically ill. Pneumonia with lung injury arose in about 16% of all individuals infected with the virus and in 80% of critically ill patients. By contrast with other viral pneumonias, children were fairly well protected from severe illness.
Since November, 2003, avian influenza A (H5N1) virus has caused more than 450 human infections, with a case-fatality proportion of about 60%. Multiorgan failure usually develops within 1 week from onset of illness, with lymphopenia, thrombocytopenia, and raised concentrations of aminotransferase and creatinine. Almost all patients with avian influenza develop pneumonia. Cause of death is most typically progressive respiratory failure.102

Since March, 2009, pandemic influenza A (H1N1) virus has spread in more than 200 countries over the world, causing about 18,000 deaths. In the USA alone, more than 59 million people have been infected.103 In Australia, the rate of admission was 23 per 100,000 population. Critical illness arose most commonly in adults with a median age of 40 years and has been rare in those older than 65 years.104–106 Half of patients with critical illness had viral pneumonitis or acute respiratory distress syndrome.104,106 In Germany, pneumonia was diagnosed in 275 (0.7%) of 40,729 patients with pandemic H1N1 virus infection; half of these were admitted.107 In the UK, 102 (29%) of 349 patients with chest radiographs had findings consistent with pneumonia. Median age of patients with pneumonia was 26 years.108 Poor outcomes from H1N1 virus infection have been recorded in pregnant women, indigenous populations, and individuals with substantial obesity or serious comorbidities.

Chest radiographic infiltrates in SARS, H5N1, and H1N1 infections were most usually interstitial, patchy, and bilateral.109

Detection of several viruses
In 1997, Drews and colleagues110 reviewed eight studies of a total of 1341 cases of respiratory viral infection detected mostly with conventional techniques. These researchers noted dual viral infection in 67 (5%) cases. Detection of several viruses in a fairly high proportion of cases has been a feature of pneumonia aetiological studies in which PCR was used. In particular, for childhood pneumonia, two or three viruses have been detected in 10–20% of children.19,20,25–27 Specifically, human bocavirus is detected frequently in association with other respiratory viruses.67–69 In a Thai pneumonia study, 40 (91%) of 44 children younger than 5 years with human bocavirus infections had co-infection with other viruses.68 The combination of human bocavirus and rhinovirus was the most typical dual infection. In a comprehensive virological study of childhood pneumonia, two or more viruses were detected in 61 (18%) of 338 pneumonia episodes, and three viruses were recorded in nine cases.77 Human bocavirus was associated with other viruses in 33 (69%) of 48 episodes, followed by influenza viruses (13/25; 52%) and respiratory syncytial virus (34/67; 51%). In another study, 64% of children with human bocavirus infection and co-infection with another virus had serological evidence of acute human bocavirus infection.80

The clinical relevance of detection of several viruses in pneumonia, and the association with severe illness, is uncertain.101–103 Viral-viral interaction in vivo is poorly understood. Viruses might interact indirectly or directly, resulting in complementation or inhibition. Children with pneumonia caused by co-infection with human bocavirus and other viruses have more wheezing than with viral pneumonia associated with a sole pathogen.80 In one study, viral co-infections were associated with more severe pneumonia than were single infections, when rates of admission were looked at.81

Viral-bacterial co-infection
Interest has grown with respect to the interaction of bacteria and viruses in the pathogenesis of pneumonia. Evidence from cell culture, ecological, post-mortem, and clinical studies support this area of interest. A favoured hypothesis is that viral infection is followed by secondary bacterial infection. Researchers who reassessed data from the influenza pandemics of 1918, 1957, and 1968 have suggested that most deaths during these periods probably resulted from secondary bacterial pneumonia.104 This finding contrasts with avian H5N1-associated pneumonia, which seems to be a primarily viral infection.102 In patients with 2009 pandemic H1N1 infection, secondary bacterial infection developed in 4–24% of cases.103,104,115

Evidence of probable mixed viral-bacterial infection has been recorded in up to 45% of cases of community-acquired pneumonia in children.21,30,40–46 Not surprisingly, the most typical combination is *Streptococcus pneumoniae* with various respiratory viruses. In developing countries, both viruses and bacteria have been detected directly in lung aspirate samples from children with pneumonia.22 In a study from The Gambia, 45 of 74 children had evidence of pneumococcal community-acquired pneumonia and 15 (33%) of these also had evidence of a respiratory virus infection, shown by virus culture or serological tests.116 In a study from Nigeria,117 virological analysis was done in 122 children with community-acquired pneumonia. 61 (50%) had evidence of viral infection and, of those, ten (16%) also had blood cultures positive for bacteria, most usually *Staphylococcus aureus*. Furthermore, ten (16%) of 62 cases with measles-associated community-acquired pneumonia had bacteraemia.117 Mixed viral-bacterial infections in adults with community-acquired pneumonia seem to be reported less frequently than those in children.19,20,77–80 In one study, both viral and bacterial pathogens were noted in 33 (14%) of 242 cases.16 In another investigation, evidence of mixed viral and bacterial infections was reported in 45 (15%) of 304 patients (median age 70 years). The most frequent combinations were rhinovirus plus *Strep pneumoniae* and influenza A plus *Strep pneumoniae*.118 Undoubtedly, detection of several pathogens will be noted more frequently as more elaborate diagnostic tests are used as...
part of pneumonia aetiological studies. Presuming that viral infection precedes bacterial infection, we are likely to continue underestimating the true incidence of viral-bacterial co-infection because of difficulties detecting the earlier infection.

Evidence, albeit sparse, suggests that mixed infections could induce a more severe inflammatory and clinical disease than individual bacterial or viral infections. Concomitant influenza virus and Staph aureus can cause severe fatal pneumonia in children and adults. Moreover, in one pneumonia study, half of children with treatment failure had evidence of mixed viral-bacterial infection. Similarly, in adults, rhinovirus-pneumococcal and influenza-bacterial pneumonia co-infections are associated with severe pneumonia and raised mortality. Detection of Strep pneumoniae in the nasopharynx of patients with 2009 pandemic H1N1 infection predicted severe disease outcome.

Pathology

Post-mortem studies provide direct evidence for a viral cause of pneumonia and descriptions of characteristics of lung histopathology. Many different respiratory viruses have been detected in lung tissue in case reports or in larger series.

In 200 children who died from serious respiratory infections in Brazil, use of immunohistochemical techniques aided detection of viruses in lung tissue from 53 (34%) with bronchopneumonia and 18 (42%) with interstitial pneumonitis, predominantly respiratory syncytial virus, influenza A and B viruses, adenoaviruses, and parainfluenza viruses types 1, 2, and 3. In another study from Mexico, PCR detected respiratory syncytial virus in lung tissue from 29 (30%) of 98 children who died from pneumonia. Of archived lung tissue from 175 children who died of pneumonia in south China, 20 samples had adenoavirus detected by PCR or by immunohistochemistry. Rhinovirus infection of the lung has also been shown by histopathology.

The nature of histopathological changes in viral pneumonia varies, possibly an indication of differences in viral infections and comorbidity. Generally, interstitial pneumonitis with lymphocytic infiltrations is seen in viral pneumonia. In fatal cases of pneumonia caused by respiratory syncytial virus infection, post-mortem evidence shows infection of both bronchial and alveolar epithelium. Most cells around the bronchioles and in the alveolar interstitium were alveolar macrophages and monocytes, and CD3-positive lymphocytes were also seen frequently around bronchioles. In rhinovirus pneumonia, hyperplasia and desquamation of alveolar-lining cells and immunohistochemical localisation of rhinoviral antigen in alveolar epithelial cells and macrophages were seen. In fatal cases of human metapneumovirus pneumonia, pathological analysis indicated bilateral haemorrhagic bronchopneumonia.

Histopathological findings in fatal cases of SARS and avian H5N1 infection are quite similar and have been characterised by diffuse alveolar damage, desquamation of pneumocytes, oedema, and hyaline-membrane formation. Diffuse alveolar damage has also been recorded in the lungs of people who died of 2009 pandemic H1N1 infections (figure 3). Furthermore, necrotising bronchiolitis, diffuse alveolar damage with alveolar haemorrhage, alveolar septal oedema, hyaline membranes, hyperplasia of type 2 pneumocytes, and necrosis of bronchiolar walls have been noted. Histopathological evidence of bacterial co-infection was reported in 29 of 100 fatal H1N1 cases.

Management

Do all patients with community-acquired pneumonia, including those with evidence of viral infection, need to be treated with antibiotics? To date, no clear consensus exists on this issue. Some experts recommend that all patients with pneumonia should receive antibiotic treatment, because exclusion of the presence of bacterial infection is impossible. Recommendations of the British Thoracic Society are that antibiotic treatment can be withheld in young children with mild illness in whom viral infection is likely. As far as we know, only one randomised placebo-controlled study has been done to investigate the need for antibiotic treatment in childhood community-acquired pneumonia. In 136 children, no clinically significant efficacy of antibiotics was recorded. Most study children had fairly mild disease and the investigation was undertaken during an epidemic of respiratory syncytial virus, so most participants probably had pneumonia caused by this virus. Further randomised placebo-controlled trials of antibiotic treatment for pneumonia are unlikely to happen because of ethical concerns.

Opportunities are currently limited in clinical practice for use of antivirals in the treatment of pneumonia (table 3). Neuraminidase inhibitors, such as oseltamivir
and zanamivir, were developed during the 1990s and now have established roles in early treatment of influenza A and B infections. In children and adults, neuraminidase inhibitors reduce median time to resolution of symptoms by 0·5–2·5 days when administered within 48 h of onset of symptoms.135 Importantly, early use of neuraminidase inhibitors can reduce development of complications such as pneumonia.136 The Infectious Diseases Society of America extends treatment with neuraminidase inhibitors to admitted influenza patients whose onset of symptoms is more than 48 h before presentation.137 Selection of the most appropriate antiviral to treat influenza should be made on the basis of relevant susceptibility data. Before emergence of the 2009 pandemic H1N1 virus, the seasonal H1N1 virus developed resistance to oseltamivir, and treatment with either zanamivir or amantadine or rimantidine was recommended, whereas the seasonal H3N2 virus was resistant to amantadine and rimantidine. If subtype information is unavailable, zanamivir or a combination of oseltamivir and rimantidine is recommended.138 The 2009 pandemic H1N1 virus remains susceptible to neuraminidase inhibitors, and oseltamivir has been used widely for treatment of pneumonia caused by this virus. Although resistance to oseltamivir has been reported in people with 2009 pandemic H1N1 virus infection, it has been largely restricted to immunocompromised individuals.139 All isolates are still susceptible to zanamivir. Intravenous use of peramivir or zanamivir could be lifesaving in critically ill patients with influenza.140,141

Experience with antivirals for community-acquired pneumonia caused by viruses other than influenza is scarce, with existing knowledge mainly from case reports and some treatment studies in immunosuppressed patients. Ribavirin has a broad antiviral range, including respiratory syncytial virus, human metapneumovirus, and parainfluenza and influenza viruses.142 Efficacy of ribavirin aerosol treatment for bronchiolitis and pneumonia caused by respiratory syncytial virus infection is modest at best. Intravenous ribavirin could be considered for treatment of severe pneumonia caused by infection with respiratory syncytial virus, human metapneumovirus, or parainfluenza virus, on the basis of experience in immunosuppressed patients.143

New antiviral agents are in development for respiratory syncytial virus infection, including small interfering RNAs.144 In several case studies of immunocompromised patients, clinical efficacy of cidofovir has been shown for severe adenovirus pneumonia.145 Cidofovir should be considered for treatment of new adenovirus subtype 14 pneumonia. Researchers reported successful management of human metapneumovirus pneumonia with a combination of intravenous ribavirin and immunoglobulin.146 Varicella pneumonia should be treated with aciclovir.147

Use of corticosteroids for treatment of viral community-acquired pneumonia is controversial and can vary according to the causative virus. The ineffectiveness of these agents for treatment of respiratory syncytial virus infections is well established.148 For management of SARS, inconclusive results were reported in 26 treatment studies, and possible harm was indicated in four trials.149 High-dose corticosteroids were administered to a third of patients with 2009 pandemic H1N1 virus infection, but use of these agents is not recommended because of prolonged viral shedding in seasonal influenza and increased mortality in avian H5N1 and, possibly, 2009 pandemic H1N1 virus infections.150 On the other hand, some data suggest that corticosteroids can augment outcome of pneumonia caused by infection with varicella-zoster virus (in combination with aciclovir) and hantavirus.151

Table: Possibilities for antiviral treatment and prevention of severe viral pneumonia

Treatment	Prevention	
Influenza A and B viruses	Oseltamivir (oral); zanamivir (inhaled, intravenous); peramivir (intravenous)	Vaccines (inactivated, live); oseltamivir, zanamivir
Influenza A virus	Amantadine (oral); rimantadine (oral)	
Respiratory syncytial virus	Ribavirin (inhaled, intravenous)	Palivizumab (intramuscular)
Adenovirus	Cidofovir (intravenous)	Vaccine for types 4 and 7*
Rhinovirus	Pleconaril†	Alpha interferon (intranasal)
Enteroviruses	Pleconaril†	–
Human metapneumovirus	Ribavirin (intravenous)	–
Hantavirus	Ribavirin (intravenous)	–
Varicella-zoster virus	Aciclovir (intravenous)	Vaccine

*Long successful use in US military conscripts, no production now. †Has been used for compassionate cases.

Prevention
Possibilities to prevent viral community-acquired pneumonia are limited. Influenza vaccines have been used since the mid 1940s and they now have an established role in prevention of influenza A and B virus infections. Importantly, inactivated influenza vaccine is effective in young children, including those younger than 2 years.152 During the 2009 H1N1 pandemic, a monovalent vaccine against the virus was developed.153 Its active use could have played a part in the course of the initial pandemic wave in some countries—eg, in Finland, only 44 fatal cases were recorded. In addition to vaccines, influenza A and B virus infections can be prevented by prophylactic use of neuraminidase inhibitors.154 Severe respiratory syncytial virus infections in high-risk neonates have been prevented successfully with palivizumab, a humanised monoclonal antibody, which is administered during a respiratory syncytial virus epidemic.155 This agent has been shown to prevent admissions related to respiratory syncytial virus by 50% in premature infants. Since the 1960s, several types of vaccines for respiratory syncytial virus have been developed without success. Live-attenuated vaccines produced by reverse genetics are now in clinical studies.156 Pneumonia caused by adenovirus types 4 and 7 has been prevented in military trainees by an oral vaccine, with 95% efficacy.
Unfortunately, conflict over the manufacturing process stopped production in 1996.\(^6\) Pneumococcal conjugate vaccine was shown to prevent a third of viral pneumonia cases in a study in South Africa, most probably by prevention of superimposed bacterial co-infections.\(^10\)

Future research

Despite many advances, further studies are still needed to better understand the role of viruses in the cause and pathogenesis of community-acquired pneumonia. Increased availability of molecular diagnostic methods enables us to evaluate our understanding of viral pneumonia and to reassess all existing dogma. Further clarification is needed of the role of bacterial-viral interaction in the pathogenesis of pneumonia and of the importance of viruses as pneumonia pathogens in the world after widespread implementation of *H influenzae* type b and pneumococcal conjugate vaccines. Also, examination of regional differences in causes of pneumonia is needed urgently, particularly to obtain additional data from developing countries. Detailed understanding of the viral cause of community-acquired pneumonia will guide antiviral drug and vaccine developments.

Contributors

All authors contributed to the writing of this Seminar.

Conflicts of interest

EL and DRM declare that they have no conflicts of interest. OR has been a consultant to Novartis Vaccines and Abbot. ICJ has received grant support from Hoffmann La-Roche and honoraria or travel assistance from Hoffmann La-Roche, GlaxoSmithKline, Sanofi Pasteur, Baxter, Novartis, Wyeth, and CSL for participation in advisory groups and scientific meetings.

References

1. British Thoracic Society of Standards of Care Committee. BTS guidelines for the management of community acquired pneumonia in childhood. *Thorax* 2002; 57 (suppl 3): i3–14.
2. McIntosh K. Community-acquired pneumonia in children. *N Engl J Med* 2002; 346: 429–37.
3. File TM. Community-acquired pneumonia. *Lancet* 2003; 362: 1991–2001.
4. Durrington HJ, Summers C. Recent changes in the management of community-acquired pneumonia in adults. *BMJ* 2008; 336: 1429–1431.
5. Lim WS, Baudoin SV, George RC, et al. British Thoracic Society guidelines for the management of community acquired pneumonia in adults: update 2009. *Thorax* 2009; 64 (suppl III): iii1–55.
6. Rudan I, Boschi-Pinto C, Biloglav Z, Mulholland K, Campbell H. Epidemiology and etiology of childhood pneumonia. *Bull World Health Organ* 2008; 86: 406–16.
7. WHO. Revised global burden of disease 2002 estimates. 2004, http://www.who.int/healthinfo/global_burden_disease/estimates_regional_2002_revised/en/ (accessed Nov 5, 2010).
8. Jokinen C, Heiskanen L, Juvenen H, et al. Incidence of community-acquired pneumonia in the population of four municipalities in eastern Finland. *Am J Epidemiol* 1993; 137: 977–88.
9. Black RE, Cousens S, Johnson HL, et al., for the Child Health Epidemiology Reference Group of WHO and UNICEF. Global, regional, and national causes of child mortality in 2008: a systematic analysis. *Lancet* 2010; 375: 1969–76.
10. de Wals P, Robin E, Fortin E, Thibault R, Ouakki M. Douville-Pradet M. Pneumonia after implementation of the pneumococcal conjugate vaccine program in the province of Quebec, Canada. *Pediatr Infect Dis J* 2008; 27: 963–68.
11. Simpson JC, Macfarlane JT, Watson J, Woodhead MA. A national confidential enquiry into community acquired pneumonia deaths in young adults in England and Wales. *Thorax* 2000; 55: 1040–45.
12. File TM, Marrie TJ. Burden of community acquired pneumonia in North American adults. *Postgrad Med* 2010; 122: 130–41.
13. Murdoch DR, O’Brien KL, Scott AG, et al. Breathing new life into pneumonia diagnostics. *J Clin Microbiol* 2009; 47: 1405–08.
14. Lieberman D, Lieberman D, Shimonov A, Keren-Naas A, Steinberg R, Shemer-Avni Y. Identification of respiratory viruses in adults: nasopharyngeal versus oropharyngeal sampling. *J Clin Microbiol* 2009; 47: 1349–41.
15. Loens K, Van Heirstraeten L, Melbrotta-Kumar S, Goossens H, leven M. Optimal sampling sites and methods for detection of pathogens possibly causing community-acquired lower respiratory tract infections. *J Clin Microbiol* 2009; 47: 21–31.
16. Ruohola A, Waris M, Allander T, Ziegler T, Heikkinen T, Ruuskanen O. Viral etiology of common cold in children, Finland. *Emerg Infect Dis* 2009; 15: 344–46.
17. Heikkinen T, Marttila J, Salmi AA, Ruuskanen O. Nasal swab versus nasopharyngeal aspirate for isolation of respiratory viruses. *J Clin Microbiol* 2002; 40: 4337–39.
18. Peltova V, Waris M, Osterback R, Sussi P, Ruuskanen O. Hypothesis: Rhinovirus transmission within families with children: incidence of symptomatic and asymptomatic infections. *J Infect Dis* 2008; 197: 382–89.
19. Jennings LC, Anderson TP, Beynon KA, et al. Incidence and characteristics of viral community-acquired pneumonia in adults. *Thorax* 2008; 63: 42–48.
20. Johansson N, Kälkin M, Tiveljung-Lindell A, Giske C, Hedlund J. Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods. *Clin Infect Dis* 2010; 50: 202–09.
21. Lahti E, Peltova V, Waris M, et al. Induced sputum in the diagnosis of childhood community-acquired pneumonia. *Thorax* 2009; 64: 252–57.
22. Adegbola RA, Falade AG, Sam BE, et al. The etiology of pneumonia in malnourished and well-nourished Gambian children. *Pediatr Infect Dis J* 1994; 13: 975–82.
23. Vuori-Holopainen E, Peltoha T. Reappraisal of lung tap: review of an old methods for better etiologic diagnosis of childhood pneumonia. *Clin Infect Dis* 2001; 32: 715–26.
24. Talbot HK, Falsey AR. The diagnosis of viral respiratory disease in older adults. *Clin Infect Dis* 2010; 50: 747–51.
25. She RC, Polage CR, Caram LB, et al. Performance of diagnostic tests to detect respiratory viruses in older adults. *DiaNOSS Microbiol Infect Dis* 2010; 67: 246–50.
26. Tiveljung-Lindell A, Rotzen-Ostlund M, Gupta S, et al. Development and implementation of a molecular diagnostic platform for daily rapid detection of 15 respiratory viruses. *J Med Viral* 2009; 81: 167–75.
27. Arens MQ, Bauler RS, Rankin A, et al. Comparison of the Eragen multi-code respiratory virus panel with conventional viral testing and real-time multiplex PCR assays for detection of respiratory viruses. *J Clin Microbiol* 2010; 48: 2387–95.
28. Murdoch DR, Jennings LC, Bhat N, Anderson TP. Emerging advances in rapid diagnostics of respiratory infections. *Infect Dis Clin North Am* 2010; 24: 791–807.
29. Mäkelä MJ, Puhakka T, Ruuskanen O, et al. Viruses and bacteria in the etiology of the common cold. *J Clin Microbiol* 1998; 36: 519–42.
30. Juvén T, Mertola J, Waris M, et al. Etiology of community-acquired pneumonia in 254 hospitalized children. *Pediatr Infect Dis J* 2000; 19: 293–98.
31. van der Poll T, Opal SM. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. *Lancet* 2009; 374: 1543–56.
32. Flood R, Badik J, Aronoff S. The utility of serum C-reactive protein in differentiating bacterial from nonbacterial pneumonia in children. *Pediatr Infect Dis J* 2008; 27: 95–99.
33. Virkki R, Juvén T, Rikalainen H, Svedström E, Mertola J, Ruuskanen O. Differentiation of bacterial and viral pneumonia in children. *Thorax* 2002; 57: 438–41.
34. Schuetz P, Albrich W, Christ-Crain M, Chastre J, Mueller B. Procalcitonin for guidance of antibiotic therapy. *Expert Rev Anti Infect Ther* 2010; 8: 575–82.
35. Gilbert DN. Use of plasma procalcitonin levels as an adjunct to clinical microbiology. *J Clin Microbiol* 2010; 48: 2325–29.
Hohenthal U, Vainionpää R, Meurman O, et al. Aetiological diagnosis of community acquired pneumonia: utility of rapid microbiological methods with respect to disease severity. *Scand J Infect Dis* 2008; 40: 131–38.

Hohenthal U, Vainionpää R, Nikoskelainen J, Kotilainen P. The role of rhinovirus and enteroviruses in community acquired pneumonia in adults. *Scand J Infect Dis* 2008; 40: 638–59.

Johnstone J, Majumdar SR, Fox JD, Marrie TJ. Viral infection in adults hospitalized with community-acquired pneumonia: prevalence, pathogens, and presentation. *Chest* 2008; 134: 1141–48.

Diederren BMW, Van Der Eerden MM, Vlaespoelder F, Boersma WG, Khytnov AJW, Peeters MF. Detection of respiratory viruses and *Legionella* spp by real-time polymerase chain reaction in patients with community acquired pneumonia. *Scand J Infect Dis* 2009; 41: 45–50.

Lieberman D, Shimoni A, Shemer-Avni Y, Keren-Naos A, Shitainberg R, Lieberman D. Respiratory viruses in adults with community-acquired pneumonia. *Chest* 2010; 138: 811–16.

Ruiz M, Ewig S, Marcos MA, et al. Etiology of community-acquired pneumonia: impact of age, comorbidity, and severity. *Am J Respir Crit Care Med* 1999; 160: 397–405.

Lim WS, Macfarlane JT, Boswell TJC, et al. Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management. *Thorax* 2001; 56: 296–301.

Lauderdale T, Chang F, Ben R, et al. Etiology of community acquired pneumonia among adult patients requiring hospitalization in Taiwan. *Respir Med* 2005; 99: 1079-86.

Almirall J, Boisera R, Bolibar I, et al. Differences in the etiology of community-acquired pneumonia according to site of care: a population-based study. *Respir Med* 2007; 101: 2168–75.

Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. *N Engl J Med* 2005; 352: 1749–59.

Han LL, Alexander JP, Anderson LJ. Respiratory syncytial virus infection in elderly and high-risk adults. *Am J Respir Crit Care Med* 1999; 159: 1079–86.

Imakita M, Shiraki K, Yutani C, Ishibashi-Ueda H. Pneumonia caused by rhinovirus. *Pediatr Infect Dis J* 2001; 20: 179–86.

Johnson JE, Gonzales RA, Olson SJ, Wright PF, Gwaltney JM. Prevention of influenza type A (H1N1) through vaccination: a historical perspective and future opportunity. *JAMA* 2007; 298: 1896–902.

Kumar A, Zarychanski R, Pinto R, et al. Critically ill patients with influenza A (H1N1) infection in Canada. *JAMA* 2009; 302: 1872–79.

Lau SKP, Tsoi H-W, Poon L, et al. Clinical and molecular epidemiology of seasonal influenza H1N1 in Hong Kong. *Thorax* 2010; 65: 465–71.

Poggensee G, Gilsdorf A, Buda S, et al. The first wave of pandemic influenza (H1N1) in Germany: from initiation to acceleration. *EMC Infect Dis* 2010; 10: 155.
127 Donoso AF, León JA, Camacho JF, Cruces PI, Ferrés M. Fatal hemorrhagic pneumonia caused by human metapneumovirus in an immunocompetent child. Pediatr Intern 2008; 50: 1258–67.

128 Huehnhardt R, Poon LL, Lee KC, et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet 2003; 361: 1773–78.

129 Korteweg C, Jiang C. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am J Pathol 2008; 172: 1355–70.

130 Soto-Abraham MV, Soriano-Rosas J, Diaz-Quinonez A, et al. Oseltamivir for treatment of 2009 H1N1 influenza. Am J Respir Crit Care Med 2010; 181: 72–79.

131 Shieh W-J, Blau DM, Denison AM, et al. 2009 pandemic influenza A (H1N1): pathology and pathogenesis of 100 fatal cases in the United States. Am J Pathol 2010; 177: 166–75.

132 Shun-Shin M, Thompson M, Heneghan C, Perera R, Harnden A, Yuen K-Y. Medical treatment of respiratory tract infections in children aged 9 months to 3 years: an observational cohort study. Pediatr Infect Dis 2010; 50: 1258–67.

133 Friis B, Andersen P, Brenoe E, et al. Antibiotic treatment of pneumonia and bronchiolitis. Arch Dis Child 1984; 59: 1038–45.

134 Wong SSY, Yuen K-Y. Antiviral treatment for respiratory tract infections. Respirology 2008; 13: 950–71.

135 Shun-Shin M, Thompson M, Heneghan C, Perera R, Harnden A, Mant D. Neuraminidase inhibitors for treatment and prophylaxis of influenza in children: systematic review and meta-analysis of randomised controlled trials. BMJ 2009; 339: 1172–80.

136 Yu H, Liao Q, Yuan X, et al. Effectiveness of oseltamivir on disease progression and viral RNA shedding in patients with mild pandemic 2009 influenza A H1N1: opportunistic retrospective study of medical charts in China. BMJ 2010; 341: c6779.

137 Harper SA, Bradley JS, Englund JA, et al. Seasonal influenza in adults and children: diagnosis, treatment, chemoprophylaxis, and institutional outbreak management—clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 2009; 48: 1003–12.

138 Birnkrant D, Cox E. The emergency use authorization of palivizumab for treatment of 2009 H1N1 influenza. N Engl J Med 2009; 361: 2204–07.

139 Härter G, Zimmermann O, Maier L, et al. Intravenous zanamivir for patients with pneumonitis due to pandemic (H1N1) 2009 influenza virus. Clin Infect Dis 2010; 50: 1249–51.

140 Yin MT, Brust JCM, van Tieu H, Hammer SM. Antiherpes, anti-hepatitis virus, and anti-respiratory virus agents. In: Richman DD, Whitley RJ, Hayden FG, eds. Clinical virology, 3rd edn. Washington: ASM Press, 2009: 217–64.

141 Hopkins P, McNeil K, Kermeen F, et al. Human metapneumovirus in lung transplant recipients and comparison to respiratory syncytial virus. Am J Respir Crit Care Med 2008; 178: 876–81.

142 Empye KM, Pebbles S, Koll JK. Pharmacologic advances in the treatment and prevention of respiratory syncytial virus. Clin Infect Dis 2010; 50: 1258–67.

143 Doan ML, Mallory GB, Kaplan SL, et al. Treatment of adenovirus pneumonia with cidofovir in pediatric lung transplant recipients. J Heart Lung Transplant 2007; 26: 883–89.

144 Bonney D, Razali H, Turner A, Will A. Successful treatment of human metapneumovirus pneumonia using combination therapy with intravenous ribavirin and immune globulin. Br J Haematol 2009; 145: 667–69.

145 Frangitsis CY, Pneumatikos I. Varicella-zoster virus pneumonia in adults: report of 14 cases and review of the literature. Eur J Intern Med 2004; 15: 364–70.

146 Jartti T, Vanto T, Heikkinen T, Ruuskanen O. Systemic glucocorticoids in childhood expiratory wheezing: relation between age and viral etiology with efficacy. Pediatr Infect Dis J 2002; 21: 873–78.

147 Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med 2006; 3: e343.

148 Falagas ME, Vouloumanou EK, Baskouta E, Rafailidis PI, Polyzos K, Rello J. Treatment options for 2009 H1N1 influenza: evaluation of the published evidence. Int J Antimicrob Agents 2010; 35: 421–30.

149 Cheng VCC, Tang BSF, Wu AKL, Chu CM, Yuen KY. Medical treatment of viral pneumonia including SARS in immunocompetent adult. J Infect 2004; 49: 262–73.

150 Heinonen S, Silvennoinen H, Lehtinen P, Vainionpää R, Ziegler T, Heikkinen T. Effectiveness of inactivated influenza vaccine in children aged 9 months to 3 years: an observational cohort study. Lancet Infect Dis (published online Nov 23, 2010). DOI:10.1016/S1473-3099(10)70255-3.

151 American Academy of Pediatrics. Policy statement: modified recommendations for use of palivizumab for prevention of respiratory syncytial virus infections. Pediatrics 2009; 124: 1694–701.

152 Madhi SA, Klugman KP. The Vaccine Trialist Group. A role for Streptococcus pneumoniae in virus associated pneumonia. Nat Med 2004; 10: 811–13.