SUPER-CLUSTERING OF CONSECUTIVE NUMBERS IN p-SHIFTED RANDOM PERMUTATIONS

ROSS G. PINSKY

Abstract. Let $A_{l,k}^{(n)} \subset S_n$ denote the event that the set of l consecutive numbers \{k, k+1, \ldots, k+l-1\} appear in a set of l consecutive positions. Let $p = \{p_j\}_{j=1}^{\infty}$ be a distribution on \mathbb{N} with $p_j > 0$. Let P_n denote the probability measure on S_n corresponding to the p-shifted random permutation. Our main result, under the additional assumption that $\{p_j\}_{j=1}^{\infty}$ is non-increasing, is that

$$\lim_{l \to \infty} \lim_{n \to \infty} P_n(A_{l,k}^{(n)}) = \left(\frac{k-1}{\prod_{j=1}^{\infty} j \sum_{i=1}^{p_i}} \right) \left(\prod_{j=1}^{\infty} \sum_{i=1}^{p_i} \right),$$

and that if $\lim_{n \to \infty} \min(k_n, n-k_n) = \infty$, then

$$\lim_{l \to \infty} \lim_{n \to \infty} P_n(A_{l,k_n}^{(n)}) = \left(\prod_{j=1}^{\infty} \sum_{i=1}^{p_i} \right)^2.$$

In particular these limits are positive if and only if $\sum_{j=1}^{\infty} j p_j < \infty$.

We say that super-clustering occurs when the limits are positive. We also give a new characterization of the class of p-shifted probability distributions on S_∞.

1. Introduction and Statement of Results

Let S_n denote the set of permutations of $[n] := \{1, \ldots, n\}$. For each $j \in \{2, \ldots, n\}$, define the backward rank $I_{<j}(\sigma)$ of a permutation $\sigma \in S_n$ to be the number of inversions involving j and a number less than j; that is,

$$I_{<j}(\sigma) = |\{1 \leq i < j : \sigma_i^{-1} < \sigma_j^{-1}\}|.$$

As is well-known, a permutation is uniquely determined by its backward ranks; more specifically, for each vector (i_2, \ldots, i_n) satisfying $0 \leq i_j \leq j-1$, there exists a unique permutation in $\sigma \in S_n$ satisfying $I_{<j}(\sigma) = i_j, j = 2000$ Mathematics Subject Classification. 60C05, 05A05.

Key words and phrases. random permutation, p-shifted, backwards rank, clustering, inversion, Mallows distribution.
Similarly, let \(S_\infty \) denote the set of permutations of \(\mathbb{N} \). Then \(I_{<j}(\sigma) \) is defined as above, for \(\sigma \in S_\infty \) and all \(j \in \mathbb{N} \). It is still true that \(\sigma \) is uniquely defined by its backward ranks \(\{I_{<j}\}_{j=1}^\infty \), however not all sets of backward ranks lead to a permutation on \(S_\infty \); for example, there is no permutation \(\sigma \) satisfying \(I_{<j}(\sigma) = j - 1 \), for all \(j \in \mathbb{N} \).

The set of \(l \) consecutive numbers \(\{k, k+1, \ldots, k+l-1\} \subseteq [n] \) appears in a set of consecutive positions in the permutation \(\sigma \in S_n \) if there exists an \(m \) such that \(\{k, k+1, \ldots, k+l-1\} = \{\sigma_m, \sigma_{m+1}, \ldots, \sigma_{m+l-1}\} \). Let \(A_{l,k}^{(n)} \subseteq S_n \) denote the event that the set of \(l \) consecutive numbers \(\{k, k+1, \ldots, k+l-1\} \) appear in a set of \(l \) consecutive positions. In this paper, for a certain class of random permutations, we present a result that gives a quantitative expression of the inverse correlation between the tendency towards inversions and the tendency towards the clustering of consecutive numbers. We will consider sequences \(\{P_n\}_{n=1}^\infty \) of probability measures on the sequence of spaces \(\{S_n\}_{n=1}^\infty \) and will calculate explicitly the expression \(\lim_{l \to \infty} \lim_{n \to \infty} P_n(A_{l,k}^{(n)}) \). When this limit is positive, we will say that the sequence of random permutations exhibits super-clustering.

We now introduce the class of random permutations we will study. A sequence \(\{P_n\}_{n=1}^\infty \) of probability measures on the sequence of spaces \(\{S_n\}_{n=1}^\infty \) will be obtained via a natural projection from a probability measure \(P \) on \(S_\infty \). The class of probability measures \(P \) on \(S_\infty \) will be the so-called \(p \)-shifted distributions, which we now describe.

Let \(p := \{p_j\}_{j=1}^\infty \) be a probability distribution on \(\mathbb{N} \) whose support is all of \(\mathbb{N} \); that is, \(p_j > 0 \) for all \(j \in \mathbb{N} \). Take a countably infinite sequence of independent samples from this distribution: \(n_1, n_2, \ldots \). Now construct a random permutation \(\Pi \in S_\infty \) as follows. Let \(\Pi_1 = n_1 \) and then for \(k \geq 2 \), let \(\Pi_k = \psi_k(n_k) \), where \(\psi_k \) is the increasing bijection from \(\mathbb{N} \) to \(\mathbb{N} - \{\Pi_1, \ldots, \Pi_{k-1}\} \). Thus, for example, if the sequence of samples \(\{n_j\}_{j=1}^\infty \) begins with 7, 3, 4, 3, 7, 2, 1, then the construction yields the permutation \(\Pi \) beginning with \(\Pi_1 = 7, \Pi_2 = 3, \Pi_3 = 5, \Pi_4 = 4, \Pi_5 = 11, \Pi_6 = 2, \Pi_7 = 1. \) The probability measure \(P \) on \(S_\infty \) is then the distribution of this random permutation \(\Pi \). We call \(P \) the \(p \)-shifted distribution and \(\Pi \) a \(p \)-shifted random permutation.
For $\sigma \in S_\infty$, write $\sigma = \sigma_1\sigma_2 \cdots$. For $n \in \mathbb{N}$, define $\text{proj}_n(\sigma) \in S_n$ to be the permutation obtained from σ by deleting σ_i for all i satisfying $\sigma_i > n$. Thus, if $n = 4$ and $\sigma = 2539461 \cdots$, then $\text{proj}_n(\sigma) = 2341$.

Given the p-shifted random permutation $\Pi \in S_\infty$ that was constructed in the previous paragraph, define proj_n, as the distribution of the random permutation $\text{proj}_n(\Pi)$. Equivalently, given the probability measure P on S_∞ defined in the previous paragraph, define the probability measure P_{proj_n} on S_n by $P_{\text{proj}_n}(\sigma) = P(\text{proj}_{n-1}^{-1}(\sigma))$, $\sigma \in S_n$.

We will call P_{proj_n} the p-shifted distribution on S_n and $\text{proj}_n(\Pi)$ a p-shifted random permutation on S_n. Define $P_n = P_{\text{proj}_n}$. This gives us the sought after sequence $\{P_n\}_{n=1}^\infty$ of probability measures on the sequence of spaces $\{S_n\}_{n=1}^\infty$. We note that in the case that $p_j = 1 - q$, where $q \in (0, 1)$, the measure P_n is the so-called Mallows distribution with parameter $q [3]$.

Remark. We assume in this paper that $p_j > 0$, for all j. In fact, the p-shifted random permutation can be constructed as long as $p_1 > 0$, with no positivity requirement on p_j, $j \geq 2$. The positivity requirement for all j ensures that for all n, the support of the p-shifted measure P_n is all of S_n.

It is known [3] that a random permutation under the p-shifted measure P is strictly regenerative, where our definition of strictly regenerative is as follows. For a permutation $\pi = \pi_{a+1}\pi_{a+2} \cdots \pi_{a+m}$, of $\{a+1, a+2, \cdots, a+m\}$, define $\text{red}(\pi)$, the reduced permutation of π, to be the permutation in S_m given by $\text{red}(\pi)_i = \pi_{a+i} - m$. We will call a random permutation Π of S_∞ strictly regenerative if almost surely there exist $0 = T_0 < T_1 < T_2 < \cdots$ such that $\Pi([T_j]) = [T_j]$, $j \geq 1$, and $\Pi([m]) \neq [m]$ if $m \notin \{T_1, T_2, \cdots\}$, and such that the random variables $\{T_k - T_{k-1}\}_{k=1}^\infty$ are IID and the random permutations $\{\text{red}(\Pi[T_k]-[T_{k-1}])\}_{k=1}^\infty$ are IID. The numbers $\{T_n\}_{m=1}^\infty$ are called the renewal or regeneration numbers. Our definition of strictly regenerative differs slightly from that in [3].

Let u_n denote the probability that the p-shifted random permutation Π has a renewal at the number n, that is, the probability that $\Pi([n]) = [n]$. It follows easily from the construction of the random permutation that

$$u_n = \prod_{j=1}^n \left(\sum_{i=1}^j p_i \right) = \prod_{j=1}^n (1 - \sum_{i=j+1}^\infty p_i).$$

(1.1)
Thus, \(u_n > 0 \), for all \(n \). (Note that this positivity, and the consequent aperiodicity of the renewal mechanism, does not require the positivity of all \(p_j \), but only of \(p_1 \).)

A strictly regenerative random permutation is called positive recurrent if
\(ET_1 < \infty \). From standard renewal theory, it follows that

\[
\lim_{n \to \infty} u_n = \frac{1}{ET_1}.
\]

In [1] we showed that under the \(p \)-shifted probability measure \(P \), the random variables \(\{I_{<j}\}_{j=2}^{\infty} \) are independent, and that \(1 + I_{<k} \) is distributed as \(\{p_j\}_{j=1}^{\infty} \), truncated at \(k \):

\[
P(I_{<k} = i) = \frac{p_{i+1}}{\sum_{j=1}^{k} p_j}, \text{ for } i = 0, \cdots, k - 1, \text{ and } k = 2, 3, \cdots.
\]

This offers an alternative way to construct a \(p \)-shifted random permutation in \(S_n \) or in \(S_\infty \). Let \(X \) be a random variable on \(\mathbb{Z}^+ \) whose distribution is characterized by \(1 + X \) having the distribution \(\{p_j\}_{j=1}^{\infty} \); that is,

\[
P(X = j) = p_{j+1}, \text{ } j = 0, 1, \cdots.
\]

Let \(\{X_n\}_{n=2}^{\infty} \) be a sequence of independent random variables with the distribution of \(X_n \) being the distribution of \(X \) truncated at \(n - 1 \):

\[
P(X_n = i) = \frac{p_{i+1}}{\sum_{j=1}^{n} p_j}, \text{ } i = 0, 1, \cdots n - 1.
\]

To construct a \(p \)-shifted random permutation in \(S_n \), set the number 1 down on a horizontal line. Now inductively, if the numbers \(\{1, \cdots, j - 1\} \) have already been placed down on the line, where \(2 \leq j \leq n \), then sample from \(X_j \) independently of everything that has already occurred, and place the number \(j \) on the line in the position for which there are \(X_j \) numbers to its right. Thus, for example, to create a \(p \)-shifted random permutation in \(S_4 \), if \(X_2, X_3, X_4 \) have been sampled independently as \(X_2 = 1 \), \(X_3 = 2 \) and \(X_4 = 0 \), then we obtain the permutation 3214. To obtain a \(p \)-shifted random permutation in \(S_\infty \), one just continues the above scenario indefinitely. Since

\[
EX = \sum_{j=1}^{\infty} P(X \geq j) = \sum_{j=1}^{\infty} \left(\sum_{i=j+1}^{\infty} p_i \right),
\]
it follows from (1.1) and (1.2) that the \(p \)-shifted random permutation is positive recurrent if and only if \(EX < \infty \), or equivalently, if and only if \(\sum_{n=1}^{\infty} np_n < \infty \).

Note that for the random permutation on \(S_n \) or \(S_{\infty} \) created in the previous paragraph, one has \(X_j = I_{<j} \) for all appropriate \(j \). The total number of inversions in a permutation \(\sigma \in S_n \) is given by \(I_n(\sigma) := \sum_{j=2}^{n} I_{<j}(\sigma) \). It follows from the construction in the above paragraph that the inversion statistic \(I_n \) satisfies the following weak law of large numbers as \(n \to \infty \):

\[
\mathbb{I}_n \text{ under } P_n \text{ converges in probability to } EX = \sum_{n=1}^{\infty} np_{n+1} \in (0, \infty].
\]

We now give our quantitative result relating the tendency toward inversions and the tendency toward clustering.

Theorem 1. Let \(A_{i,k}^{(n)} \subset S_n \) denote the event that the set of \(l \) consecutive numbers \(\{k, k+1, \ldots, k+l-1\} \) appear in a set of \(l \) consecutive positions. Let \(\{p_n\}_{n=1}^{\infty} \) be a probability distribution on \(\mathbb{N} \) with \(p_j > 0 \), for all \(j \in \mathbb{N} \). Also assume that the sequence \(\{p_n\}_{n=1}^{\infty} \) is non-increasing. Let \(\{P_n\}_{n=1}^{\infty} \) be the corresponding sequence of \(p \)-shifted distributions on the sequence of spaces \(\{S_n\}_{n=1}^{\infty} \). Then for all \(k \in \mathbb{N} \),

\[
\lim_{l \to \infty} \lim_{n \to \infty} P_n(A_{i,k}^{(n)}) = (\prod_{j=1}^{k-1} \sum_{i=1}^{j} p_i)(\prod_{j=1}^{\infty} P(X \leq j-1)) = (\prod_{j=1}^{k-1} P(X \leq j-1)) (\prod_{j=1}^{\infty} P(X \leq j-1)).
\]

Also, if \(\lim_{n \to \infty} \min(k_n, n - k_n) = \infty \), then

\[
\lim_{l \to \infty} \lim_{n \to \infty} P_n(A_{i,k,n}^{(n)}) = (\prod_{j=1}^{\infty} \sum_{i=1}^{j} p_i)^2 = (\prod_{j=1}^{\infty} P(X \leq j-1))^2.
\]

In particular, the limits in (1.6) and (1.7) are positive if and only if \(EX = \sum_{n=1}^{\infty} np_{n+1} < \infty \), or equivalently, if and only if the \(p \)-shifted random permutation is positive recurrent.

Remark 1. In light of (1.5), the theorem shows that super-clustering occurs if and only if the total inversion statistic \(I_n \) has linear rather than super-linear growth.
Remark 2. Note that \(\prod_{j=1}^{\infty} P(X \leq j - 1) \) and \(\prod_{j=1}^{k-1} P(X \leq j - 1) \) are decreasing with respect to stochastic dominance. Thus, if \(X^{(1)} \) and \(X^{(2)} \) satisfy (1.3) with \(p_{j+1} \) replaced respectively by \(p_{j+1}^{(1)} \) and \(p_{j+1}^{(2)} \), and if \(X^{(1)} \) stochastically dominates \(X^{(2)} \), that is, \(\sum_{j=n}^{\infty} p_j^{(1)} \geq \sum_{j=n}^{\infty} p_j^{(2)} \), for all \(n \in \mathbb{N} \), then the probability of super-clustering for the \(p^{(2)} \)-shifted random permutation is greater than for the \(p^{(1)} \)-shifted random permutation.

Remark 3. If one removes the requirement that the sequence \(\{p_j\}_{j=1}^{\infty} \) be non-increasing, then (1.6) and (1.7) hold with “\(\lim_{l \to \infty} \lim_{n \to \infty} \)” and “\(\lim_{l \to \infty} \lim_{n \to \infty} \)” replaced by “\(\lim_{l \to \infty} \liminf_{n \to \infty} \)” and “\(\lim_{l \to \infty} \liminf_{n \to \infty} \)”. This follows immediately from the proof of the theorem. Thus, for this more general case, the finiteness of \(EX \) is a sufficient condition for super-clustering.

Remark 4. The limits (1.6) and (1.7) were obtained in [1] for the case of the Mallows distribution; namely, \(p_j = \frac{1}{q^j} \). However they were expressed in a form that did not reveal the connection with the random variable \(X \).

Open Problem. It would be interesting to investigate the behavior of the statistic \(P_n(A_{l,k}^{(n)}) \) as \(n \to \infty \) and then \(l \to \infty \) in the case that the \(\{P_n\}_{n=1}^{\infty} \) are the so-called \(p \)-biased distributions; see [3] or [2] for the definition. Under these distributions, which are defined in a somewhat similar way to the \(p \)-shifted distributions, the backwards ranks \(I_{<j} \) are not independent.

We will also prove the following characterization of the class of positive recurrent \(p \)-shifted distributions, which might be of some independent interest. Recall that positive recurrence is equivalent to \(\sum_{n=1}^{\infty} np_n < \infty \).

Proposition 1. The class of positive recurrent \(p \)-shifted distributions, as \(p \) runs over all probability distributions \(\{p_j\}_{j=1}^{\infty} \) whose supports are all of \(\mathbb{N} \), and that satisfy \(\sum_{n=1}^{\infty} np_n < \infty \), coincides with the class of probability distributions \(P \) on \(S_{\infty} \) that satisfy the following three conditions:

i. The random variables \(\{I_{<j}\}_{j=2}^{\infty} \) are independent under \(P \);

ii. A random permutation under \(P \) is strictly regenerative with a positive recurrent renewal mechanism, and the probability \(u_1 \) of renewal at the number 1 is positive;

iii. For all \(n \in \mathbb{N} \), the support of \(P_{\text{proj}_n} \) is all of \(S_n \).
Remark. The proof of the proposition also shows that if one removes the requirement that the support of the distribution \(p \) is all of \(\mathbb{N} \), and only requires that \(p_1 > 0 \) (which in any case is necessary in order to implement the \(p \)-shifted construction), then the proposition holds with property (iii) deleted.

We prove Theorem 1 in section 2 and Proposition 1 in section 3.

2. Proof of Theorem 1

We note that the final statement of the theorem is almost immediate. Indeed, \(\prod_{j=1}^{\infty} P(X \leq j-1) = \prod_{j=1}^{\infty} (1-P(X \geq j)) \), and this infinite product is nonzero if and only if \(\sum_{j=1}^{\infty} P(X \geq j) < \infty \). However, \(\sum_{j=1}^{\infty} P(X \geq j) = E X \).

We now turn to the proofs of (1.6) and (1.7). We use the second method offered in this paper for constructing the \(p \)-shifted random permutation, as described after (1.3). Thus, we consider a sequence of independent random variables \(\{X_n\}_{n=2}^{\infty} \), with \(X_n \) distributed as in (1.4). For the proof, we will use the notation

\[
N_n = \sum_{i=1}^{n} p_i = P(X \leq n), \quad n \in \mathbb{N}, \text{ and } N_0 = 0,
\]

where \(X \) is as in (1.3). Note that \(N_n \) is the normalization constant on the right hand side of (1.4). Although \(P_n \) denotes the \(p \)-shifted probability measure on \(S_n \), we will also use this notation for probability when discussing events related to the random variables \(\{X_j\}_{j=2}^{n} \).

We begin with the proof of (1.6). Fix \(k \in \mathbb{N} \). Consider the event, which we denote by \(B_{l;k} \), that after the first \(k+l-1 \) positive integers have been placed down on the horizontal line, the set of \(l \) numbers \(\{k, k+1, \ldots, k+l-1\} \) appear in a set of \(l \) consecutive positions. Then \(B_{l;k} = \bigcup_{a=0}^{k-1} B_{l;k;a} \), where the events \(\{B_{l;k;a}\}_{a=0}^{k-1} \) are disjoint, with \(B_{l;k;a} \) being the event that the set of \(l \) numbers \(\{k, k+1, \ldots, k+l-1\} \) appear in a set of \(l \) consecutive positions and also that exactly \(a \) of the numbers in \([k-1] \) are to the right of this set. We calculate \(P_n(B_{l;k;a}) \).

Suppose that we have already placed down on the horizontal line the numbers in \([k-1] \). Their relative positions are irrelevant for our considerations.
Now we use X_k to insert on the line the number k. Suppose that $X_k = a$, $a \in \{0, \cdots, k-1\}$. Then the number k is inserted on the line in the position for which a of the numbers in $[k-1]$ are to its right. Now in order for $k+1$ to be placed in a position adjacent to k, we need $X_{k+1} \in \{a, a+1\}$. (If $X_{k+1} = a$, then $k+1$ will appear directly to the right of k, while if $X_{k+1} = a+1$, then $k+1$ will appear directly to the left of k.) If this occurs, then $\{k, k+1\}$ are adjacent, and a of the numbers in $[k-1]$ are to the right of $\{k, k+1\}$. Continuing in this vein, for $i \in \{1, \cdots, l-2\}$, given that the numbers $\{k, \cdots, k+i\}$ are adjacent to one another, and a of the numbers in $[k-1]$ appear to the right of $\{k, \cdots, k+i\}$, then in order for $k+i+1$ to be placed so that $\{k, \cdots, k+i+1\}$ are all adjacent to one another (with a of the numbers in $[k-1]$ appearing to the right of these numbers), we need $X_{k+i+1} \in \{a, \cdots, a+i+1\}$. We conclude then that

$$P_n(B_{l;k;a}) = \prod_{j=0}^{l-1} P_n(X_{k+j} \in \{a, \cdots, a+j\}).$$

Using (1.4), we have

$$(2.1) \quad P_n(B_{l;k;a}) = \prod_{j=0}^{l-1} P_n(X_{k+j} \in \{a, \cdots, a+j\}) = \prod_{j=0}^{l-1} \frac{N_{a+j+1} - N_a}{N_{k+j}}.$$

We now consider the conditional probability, $P_n(A_{l;k}^{(n)} | B_{l;k;a})$, that is, the probability, given that $B_{l;k;a}$ has occurred, that the numbers $k+1, \cdots, n$ are inserted in such a way so as to preserve the mutual adjacency of the set $\{k, \cdots, k+l-1\}$. We will obtain lower and upper bounds on this conditional probability. However, first we note that it is clear from the construction that $P_n(A_{l;k}^{(n)} | B_{l;k;a})$ is decreasing in n. Thus, since $P_n(B_{l;k;a})$ is independent of n, it follows that $P_n(A_{l;k}^{(n)})$ is decreasing in n. Consequently $\lim_{n \to \infty} P_n(A_{l;k}^{(n)})$ exists.

We now turn to a lower bound on $P_n(A_{l;k}^{(n)} | B_{l;k;a})$. Our lower bound will be the probability of the event that all of the remaining numbers are inserted to the right of the set $\{k, \cdots, k+l-1\}$. This event is given by

$$\cap_{j=0}^{n-k-l} \{X_{k+l+j} \leq a+j\}.$$

Thus, we have

$$(2.2) \quad P_n(A_{l;k}^{(n)} | B_{l;k;a}) \geq P(\cap_{j=0}^{n-k-l} \{X_{k+l+j} \leq a+j\}) = \prod_{j=0}^{n-k-l} \frac{N_{a+j+1}}{N_{k+l+j}}.$$
Writing \(P_n(A_{t;k}^{(n)}) = \sum_{a=0}^{k-1} P_n(B_{t;k;a})P(A_{t;k}^{(n)} | B_{t;k;a}) \), (2.1) and (2.2) yield

\[
(2.3) \quad P_n(A_{t;k}^{(n)}) \geq \sum_{a=0}^{k-1} \left(\prod_{j=0}^{l-1} n_{a+j+1} - n_a \right) \left(\prod_{j=0}^{n-k-l} \frac{n_{a+j+1}}{n_{k+l+j}} \right).
\]

We have \(\prod_{j=0}^{n-k-l} \frac{n_{a+j+1}}{n_{k+l+j}} = \frac{n_{a+1} \cdots n_{k+l}}{n_{n-a-l+1} \cdots n_n} \). Using this along with the fact that \(\lim_{n \to \infty} N_n = 1 \) and the fact that the limit on the left hand side of (2.3) exists, we have

\[
(2.4) \quad \lim_{n \to \infty} P_n(A_{t;k}^{(n)}) \geq \sum_{a=0}^{k-1} \left(\prod_{j=0}^{l-1} \left(n_{a+j+1} - n_a \right) \right) \left(\prod_{i=a+1}^{k-l} n_i \right).
\]

We now let \(l \to \infty \) in (2.4). We only consider the term in the summation with \(a = 0 \), because it turns out that the terms with \(a \geq 1 \) converge to 0 as \(l \to \infty \). We obtain

\[
(2.5) \quad \lim_{l \to \infty} \lim_{n \to \infty} P_n(A_{t;k}^{(n)}) \geq \left(\prod_{j=1}^{k-1} N_j \right) \left(\prod_{j=1}^{\infty} N_j \right) = \left(\prod_{j=1}^{k-1} P(X \leq j-1) \right) \left(\prod_{j=1}^{\infty} P(X \leq j-1) \right).
\]

Note that by the assumption that \(\{p_n\}_{n=1}^{\infty} \) is non-increasing, it follows that \(P(X \not\in \{j+1, \ldots, j+l-1\}) \) is increasing in \(j \). Also, note that \(P(X \not\in \{j+1, \ldots, j+l-1\}) > P(X_m \not\in \{j+1, \ldots, j+l-1\}) \) for \(j+l \leq m \). These facts will be used as we turn now to an upper bound on \(P_n(A_{t;k}^{(n)} | B_{t;k;a}) \), the conditional probability given \(B_{t;k;a} \) that the numbers \(k+l, \ldots, n \) are inserted in such a way so as to preserve the mutual adjacency of the set \(\{k, \ldots, k+l-1\} \). First the number \(k+l \) is inserted. The probability that its insertion preserves the mutual adjacency property of the set \(\{k, \ldots, k+l-1\} \) is \(P(X_{k+l} \not\in \{a+1, \ldots, a+l-1\}) \), which is less than \(P(X \not\in \{a+1, \ldots, a+l-1\}) \). If the insertion of \(k+l \) preserves the mutual adjacency, then either \(X_{k+l} \in \{0, \ldots, a\} \) or \(X_{k+l} \in \{a+l, \ldots, k+l-1\} \). If \(X_{k+l} \in \{0, \ldots, a\} \), then in order for the mutually adjacency to be preserved when the number \(k+l+1 \) is inserted, one needs \(P(X_{k+l+1} \not\in \{a+2, \ldots, a+l\}) \), while if \(X_{k+l} \in \{a+l, \ldots, k+l-1\} \), then one needs \(P(X_{k+l+1} \not\in \{a+1, \ldots, a+l-1\}) \). Either of these probabilities is less than \(P(X \not\in \{a+2, \ldots, a+l\}) \). Thus, an upper bound for the conditional.
probability given $B_{t;k:a}$ that the insertion of $k + l$ and $k + l + 1$ preserves the mutual adjacency is $P(X \not\in \{a + 1, \cdots, a + l - 1\})P(X \not\in \{a + 2, \cdots, a + l\})$.

Continuing in this vein, we conclude that

$$
P_n(A_{l;k}^{(n)} | B_{t;k:a}) \leq \prod_{j=1}^{n-k-l+1} P_n(X \not\in \{a, \cdots, a + j - 1\}) = \prod_{j=1}^{n-k-l+1} (1 - N_{a+j+l-1} + N_{a+j}).
$$

(2.6)

Using this upper bound, we obtain an upper bound on $P_n(A_{l;k}^{(n)})$. From (2.1) and (2.6), we have

$$
P_n(A_{l;k}^{(n)}) \leq \sum_{a=0}^{k-1} \left(\prod_{j=0}^{l-1} \frac{N_{a+j+1} - N_a}{N_{k+j}} \right) \left(\prod_{j=1}^{n-k-l+1} (1 - N_{a+j+l-1} + N_{a+j}) \right).
$$

(2.7)

Letting $n \to \infty$ and using the fact that the limit on the left hand side exists, we have

$$
\lim_{n \to \infty} P_n(A_{l;k}^{(n)}) \leq \sum_{a=0}^{k-1} \left(\prod_{j=0}^{l-1} \frac{N_{a+j+1} - N_a}{N_{k+j}} \right) \left(\prod_{j=1}^{\infty} (1 - N_{a+j+l-1} + N_{a+j}) \right).
$$

(2.8)

For $a \in \{1, \cdots, k - 1\}$, we have $\frac{N_{a+j+1} - N_a}{N_{k+j}} < 1 - N_a \in (0, 1)$. Therefore, when letting $l \to \infty$ in (2.8), a contribution will come from the right hand side only when $a = 0$. We obtain

$$
\lim_{l \to \infty} \lim_{n \to \infty} P_n(A_{l;k}^{(n)}) \leq \lim_{l \to \infty} \left(\prod_{j=0}^{l-1} \frac{N_{j+1}}{N_{k+j}} \right) \left(\prod_{j=1}^{\infty} (1 - N_{j+l-1} + N_j) \right) = \left(\prod_{j=1}^{k-1} N_j \right) \left(\prod_{j=1}^{\infty} N_j \right) = \left(\prod_{j=1}^{k-1} P(X \leq j - 1) \right) \left(\prod_{j=1}^{\infty} P(X \leq j - 1) \right).
$$

(2.9)

Now (1.6) follows from (2.5) and (2.9).

We now turn to the proof of (1.7). As with the proof of (1.6), the term with $a = 0$ will dominate. Thus, for the lower bound, using (2.1) and (2.2) with $k = k_n$ and ignoring the terms with $a \geq 1$, we have

$$
P_n(A_{l;k_n}^{(n)}) \geq \left(\prod_{j=0}^{l-1} \frac{N_{j+1}}{N_{k_n+j}} \right) \left(\prod_{j=0}^{n-k_n-l} \frac{N_{j+1}}{N_{k_n+j+l}} \right).
$$

(2.10)
Letting \(n \to \infty \) in (2.10) and using the assumption that \(\lim_{n \to \infty} \min(k_n, n - k_n) = \infty \), it follows that

\[
\liminf_{n \to \infty} P_n(A_{l; k_n}^{(n)}) \geq \left(\prod_{j=1}^{l} N_j \right) \left(\prod_{j=1}^{\infty} N_j \right).
\]

Now letting \(l \to \infty \) gives

\[
(2.11) \quad \lim_{l \to \infty} \liminf_{n \to \infty} P_n(A_{l; k_n}^{(n)}) \geq \left(\prod_{j=1}^{\infty} N_j \right)^2 = \left(\prod_{j=1}^{\infty} P(X \leq j - 1) \right)^2.
\]

For the upper bound, let \(k = k_n \) in (2.7). The second factor in the summand \(\left(\prod_{j=1}^{l-1} N_{a+j+1} - N_a \right) \left(\prod_{j=1}^{k_n-l+1} (1 - N_{a+j+l-1} + N_{a+j}) \right) \) is less than 1, while the first factor in the summand satisfies

\[
\prod_{j=0}^{l-1} \frac{N_{a+j+1} - N_a}{N_{k_n+j}} \leq \frac{N_{a+1} - N_a}{N_{k_n}} \leq \frac{p_{a+1}}{p_1},
\]

for \(a \in \{0, \cdots, k_n - 1\} \) and \(n \geq 1 \). Since \(\sum_{a=0}^{\infty} \frac{p_{a+1}}{p_1} < \infty \), the dominated convergence theorem and the assumption that \(\lim_{n \to \infty} \min(k_n, n - k_n) = \infty \) allow us to conclude upon letting \(n \to \infty \) in (2.7) with \(k = k_n \) that

\[
(2.12) \quad \limsup_{n \to \infty} P_n(A_{l; k_n}^{(n)}) \leq \sum_{a=0}^{\infty} \left(\prod_{j=0}^{l-1} (N_{a+j+1} - N_a) \right) \left(\prod_{j=1}^{\infty} (1 - N_{a+j+l-1} + N_{a+j}) \right).
\]

For \(a \geq 1 \), we have \(N_{a+j+1} - N_a \in (0, 1 - p_1) \). Consequently, when letting \(l \to \infty \) in (2.12), a contribution will come from the right hand side only when \(a = 0 \). We obtain

\[
(2.13) \quad \lim_{l \to \infty} \limsup_{n \to \infty} P_n(A_{l; k_n}^{(n)}) \leq \left(\prod_{j=1}^{\infty} N_j \right)^2 = \left(\prod_{j=1}^{\infty} P(X \leq j - 1) \right)^2.
\]

Now (1.7) follows from (2.11) and (2.13).

3. Proof of Proposition 1

It has already been noted that a \(p \)-shifted random permutation with \(p_1 > 0 \) and \(\sum_{n=1}^{\infty} np_n < \infty \) satisfies properties (i) and (ii) of the proposition. From the construction, it is clear that it also satisfies property (iii), if the support of the distribution \(p \) is all of \(\mathbb{N} \). Thus, we only need prove that if a probability distribution \(P \) on \(S_\infty \) satisfies the three properties stated in the
proposition, then it arises as a \(p \)-shifted permutation for some distribution \(\{p_j\}_{j=1}^{\infty} \) whose support is all of \(\mathbb{N} \) and that satisfies \(\sum_{n=1}^{\infty} np_n < \infty \).

Let \(\Pi \) denote the random permutation under \(P \). By property (ii), \(\Pi \) is strictly regenerative and the probability \(u_1 \) of renewal at the number 1 is positive. (From this it follows that the probability \(u_n \) of renewal at the number \(n \) is positive, for all \(n \). However, for this proof, we only need the fact that \(u_1 > 0 \).) The event that \(n \) is a renewal point, that is, the event \(\Pi([n]) = [n] \), can be written as \(\bigcap_{j=1}^{\infty} \{I_{<n+j} \leq j-1\} \). Thus, we have \(u_n = P(\bigcap_{j=1}^{\infty} \{I_{<n+j} \leq j-1\}) > 0 \). By property (i), this can be rewritten as

\[
(3.1) \quad u_n = \prod_{j=1}^{\infty} P(I_{<n+j} \leq j-1) = \prod_{j=1}^{\infty} (1 - P(I_{<n+j} \geq j)).
\]

Recall that the renewal times are labelled as \(\{T_n\}_{n=1}^{\infty} \). If \(n \) is a renewal point, say \(T_{k_0} = n \), then in order that the reduced permutation \(\text{red}(\Pi|_{[T_{k_0}+1]-[T_{k_0}]} \) have the same distribution as \(\Pi|_{[T_1]} \), we need

\[
(3.2) \quad \text{dist}(\{I_{<n+j}\}_{j=1}^{\infty}|\bigcap_{j=1}^{\infty} \{I_{<n+j} \leq j-1\}) = \text{dist}(\{I_{<j}\}_{j=1}^{\infty}).
\]

By property (i), the above reduces to

\[
(3.3) \quad \text{dist}(I_{<n+j}|I_{<n+j} \leq j-1) = \text{dist}(I_{<j}), \quad \text{for } j = 2, 3, \cdots \text{ and } n = 1, 2, \cdots.
\]

Now (3.3) for any particular \(n \) was obtained under the assumption that \(u_n > 0 \). By property (ii), we have \(u_1 > 0 \). Thus, (3.3) holds for \(n = 1 \). From this it follows that there exist nonnegative \(\{q_j\}_{j=1}^{\infty} \) with \(q_1 > 0 \) such that

\[
(3.4) \quad P(I_{<j} = i) = \frac{q_{i+1}}{\sum_{k=1}^{j} q_k}, \quad i = 0, 1, \cdots j-1 \text{ and } j = 2, 3, \cdots.
\]

We now show that \(\sum_{j=1}^{\infty} q_j < \infty \). Assume to the contrary. Then from (3.4) it follows that \(I_{<j} \) converges in probability to \(\infty \) as \(j \to \infty \). Thus \(\lim_{n \to \infty} P(I_{<n+j} \geq j) = 1 \), for all \(j \) and consequently

\[
\lim_{n \to \infty} \sum_{j=1}^{\infty} P(I_{<n+j} \geq j) = \infty.
\]

From this and (3.1), it follows that \(\lim_{n \to \infty} u_n = 0 \), which contradicts the assumption that the strictly regenerative random permutation is positive recurrent.
Since $\sum_{j=1}^{\infty} q_j < \infty$, without loss of generality we may assume that
$\sum_{j=1}^{\infty} q_j = 1$. Thus, from (3.4), we conclude that $P(I_{<j} = i) = q_{i+1}$, for
$i = 0, 1, \cdots, j - 1$ and $j = 2, 3, \cdots$. From this it follows that the measure P
is the p-shifted measure with p distribution given by $\{q_j\}_{j=1}^{\infty}$. In order for
property (iii) to hold, it is necessary that $q_j > 0$, for all j. \qed

\section*{References}

[1] Pinsky, R. G., \textit{Clustering of consecutive numbers in permutations under a Mallows
distribution}, preprint.

[2] Pinsky, R. G., \textit{Comparing the inversion statistic for distribution-biased and
distribution-shifted permutations with the geometric and the GEM distributions},
preprint.

[3] Pitman, J. and Tang, W., \textit{Regenerative random permutations of integers}, Ann.
Probab., 47 (2019), 1378-1416.

Department of Mathematics, Technion—Israel Institute of Technology,
Haifa, 32000, Israel

Email address: pinsky@math.technion.ac.il

URL: http://www.math.technion.ac.il/~pinsky/