Evaluation of Seed Quality Attributes of Sorghum Germplasm Accessions from Eastern, Coastal and Nyanza Regions, Kenya

C. W. Muui¹, R. M. Muasya², S. Ngulu² & A. Kambura³

¹ School of Agriculture and Enterprise Development, Department of Agricultural Science and Technology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
² School of Agriculture and Veterinary Sciences, Department of Dry Land Agriculture, South Eastern Kenya University, P.O. Box 170-90200, Kitui, Kenya
³ School of Agriculture, Earth and Environmental Science, Taita Taveta, Voi, Kenya

Correspondence: C. W. Muui, School of Agriculture and Enterprise Development, Department of Agricultural Science and Technology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya. E-mail: catherinemuui@gmail.com

Received: March 25, 2020 Accepted: April 25, 2020 Online Published: May 8, 2020
doi:10.5539/sar.v9n3p9 URL: https://doi.org/10.5539/sar.v9n3p9

Abstract

Sorghum (Sorghum bicolor L.) is an important cereal grain used in Kenya. Despite the crop’s importance, the yields attained by farmers in Eastern, Coastal and Nyanza regions of Kenya remain low. Access to good quality seeds of sorghum is one of the constraints facing the subsistence farmers. Good quality seed is important for increasing yield to attain food security. The aim of this study was to evaluate quality attributes of the seed used by farmers. A total of 108 germplasm accessions were obtained from 76 farmers. The seeds were tested for time and percentage of germination, seed vigour index, shoot and root dry weight. Data collected was subjected to analysis of variance. Means were separated using Fisher’s Least Significance Difference test at p ≤ 0.05. Seed samples of 26 accessions attained germination percentage below stipulated standards by Seeds and Plant Varieties Act CAP 326. Majority of seeds showed longer mean germination time with only nine accessions germinating in less than ten days. Seed vigour index was relatively high in most of the accessions, while biomass accumulation varied from high to very low among accessions. Though most of the seeds attained a high germination percentage, about 92% of seeds showed longer mean germination time. The environmental conditions in the fields, pre and post harvest handling practices impact on the seed quality hence the wide variability in germination percentage, germination time, seed vigour index and dry matter accumulation. Therefore the need to improve quality of seeds used by subsistence farmers by providing extension services on best pre and post harvest handling practices. Increasing production of sorghum in these regions will contribute significantly towards realizing food security. Further analysis could be carried out on genetic and sanitary quality aspects of the seeds planted by farmers in Eastern, Nyanza and Coastal regions.

Keywords: attributes, germplasm, seed quality, Sorghum bicolor

1. Introduction

Sorghum (Sorghum bicolor (L.) Moench) is an important cereal grain used and grown in semi-arid areas as food for many families due to its nutritive value (Rao et al., 2016; FAO, 2018). The ability of sorghum to adapt to drought, salinity and high temperatures makes it a critical crop in the dry regions where other cereal crops produce low yields (Mamoudou, 2006). In Kenya, the crop is cultivated and highly consumed in semi-arid regions with low annual rainfall of about 300mm which include Eastern (1385m ASL, 76mm month⁻¹), Coast (185m ASL, 87mm month⁻¹) and Nyanza (1190m ASL, 130mm month⁻¹) (Grieser et al., 2006). With its utilization closely related to maize, sorghum can be an alternative crop in marginal areas (Swigonova et al., 2004). The crop has got a large germplasm which could provide opportunities for a sustainable crop production for food security (Kange et al., 2014).

Sorghum production is mainly by subsistence farmers in marginalized regions in Kenya. Despite the many benefits associated with sorghum its production is still low (Muui et al., 2019). Farmers obtain seed from informal seed system which include retaining seed on-farm from previous harvests to plant the following season.
and farmer-to-farmer seed exchange networks (Ochieng et al., 2011; Muui et al., 2013, 2019). Where formal seed is available, the farmers cannot afford due to high seed prices. The informal seed supply system consists of farmer-managed seed production activities and is based on indigenous knowledge and local diffusion mechanisms. Maintaining crop production in terms of yield and quality grains which give the farmer maximum return requires good seed which carries the genetic, physiological, and physical quality aspects (Muasya et al., 2008; Ahmed et al., 2009). Good seed requires constant care to prevent loss of quality and to ensure high yield for farmers. Seed deterioration usually commences at physiological maturity and continues during harvest, processing and storage and is governed by the genetic constitution, environmental factors during seed development and storage conditions (McDonald, 1999; Muasya et al., 2008).

Seed quality is considered as an important factor for increasing yield unit area to attain food security (Badigannavar et al., 2016). Quality seeds have the ability for efficient utilization of available inputs such as fertilizers and moisture eventually maximizing yields (Jisha et al., 2013). Use of poor quality seed is one of the constraints to sorghum production in Kenya where majority of the farmers rely on the informal seed supply sources resulting to low yields (Ochieng et al., 2011). Poor seed quality at farm level is caused by poor drying of harvested grains, threshing practices, storage conditions (Harrison and Perry, 1976; Songa et al., 1995). Also, many subsistence farmers in Sub-Saharan Africa do not apply fertilizers to their farms (Jama et al., 1998; Ochieng et al., 2011; Muui et al., 2019). This is attributed to the fact that sorghum is often grown under marginal rainfall conditions and fertilizer prices are unfavourably high in relation to sorghum grain price. This practice of using little or no fertilizer affects both seed quality and yield of the crop negatively (Swinkels et al., 1997).

Sorghum landraces germplasm provides a great genetic variability with high preferences based on unique characteristics (Ng’uni et al., 2012). Sorghum being a food crop with the potential of alleviating the problem of food insecurity, there is need for using quality seeds for sustainable production by the subsistence farmers (Mwadalu and Mwangi, 2013). This study aimed at assessing the quality of on farm saved sorghum seeds used by farmers at eastern, coastal and nyanza regions of Kenya. A total of 108 germplasm accessions were collected from farmers to determine germination percentage, germination time, seed vigour index, seedling shoot and root dry weight.

2. Materials and Methods

2.1 Description of experimental Site

The experiment was carried out in Kenyatta University situated in Nairobi County about 20 Km from Nairobi city along Nairobi-Thika road between August and October 2018. The county is characterized by a warm climate with temperatures varying between 12°C and 18.7°C. The rainfall aggregate for the county is 1,000 mm per year. Its geographical coordinates are 1° 10’ 0” S, 36° 50’ 0” E with an elevation of 1,720m above sea level (ASL). The area has a bimodal rainfall pattern with an average of 1,000 mm per annum. The long rains occur between March and May while the short rains set in between October and December. The soils are acrisols, alisols, lixisols and luvisols (Shisanya et al., 2006).

2.2 Experimental Treatments and Design

2.2.1 Experimental Layout and Data Collection

The experiment was carried out in the laboratory and in a greenhouse. The two experiments were arranged in a Complete Randomised Design. A total of 108 sorghum germplasm accessions obtained from farmers comprising of 41 accessions from Eastern, 25 from Nyanza and 42 from Coastal regions of Kenya were used. The sorghum germplasm was collected from farmers in 2018 while conducting a baseline survey to assess the production systems for sorghum in the three regions (Muui et al., 2019).

2.3 Crop Management and Data Collection

Germination percentage and mean germination time experiments were carried out in the laboratory while seed vigour index, shoot and root dry weight was done in the greenhouse.

2.3.1 Germination Percentage

From each of the 108 sorghum germplasm accessions, a sample of 400 seeds was selected at random from the 1,000-seed weight lot and grouped into four replicates of 100 seeds (ISTA, 2012). Each of the four replicates was placed in a germination tray with sterilized filter papers moistened with distilled water as a growth medium. The trays were illuminated with light during the whole period and temperatures maintained at 25±5°C. Distilled water was added as necessary to maintain the correct moisture content. Germination count was done at the end of the fourth day and seedling evaluation at the end of the tenth day. Germination percentage was calculated as
follows:
Germination percentage (%) = (Number of seeds germinated/Number of seeds sown) x100

2.3.2 Mean Germination Time (Days)

The seeds used for testing germination percentage were also used in the determination of mean germination time. Emerged seedlings in each container were counted daily at an interval of 24 hours from the first day to the day no more germination occurred. The mean germination time was calculated using the method described by Khan et al. (2010) as follows:

Mean germination time = (No. of germinated seedlings/Total no. of seeds sown) x Days after sowing

2.3.3 Seed Vigour Index

From the 108 sorghum germplasm accessions, a sample of 200 seeds was selected at random from 1,000-seed weight lot (same seed lot used for germination) and grouped into four replicates of 50 seeds. The fifty seeds were placed in plastic containers (pots) with sterilized forest soil as a growth medium for 21 days. Number of germinated seeds was recorded every 24 hours. Watering was done on daily basis and pots kept weed free throughout the experimental period. After 21 days, the seedlings were uprooted, soils washed off and a ruler used to measure the seedling height. Seed vigour index determination was done using the equation cited by Zhu et al., (2010) as follows:

Seed vigour index (SVI) = Seedling height × ∑ (number of germinated seedlings by end of test period/days after sowing)

2.3.4 Shoot and Root Dry Weight (Grams)

Seedlings used for seed vigour index were also used for dry weight measurement. A random sample of twenty five seedlings was taken and separated into shoot and root, dried in a forced-air oven at 72°C for 48 hours. The samples were fully dried such that no significant changes occurred before the tests were done. The dried shoots and roots were weighed using an electronic balance (model 6354) and recorded in grammes.

2.4 Data Analysis

The data collected on germination percentage, germination time, seed vigour index, shoot and root dry weight were managed in the Ms excel spreadsheet and subjected to one-way analysis of variance (ANOVA) using Statistical Analysis Software (SAS) version 9.1. Means were separated using Fisher’s Least Significance Difference (LSD) test at p≤0.05.

3. Results

3.1 Germination Percentage

There were statistical differences (p≤0.05) in the germination percentage of the germplasm accessions evaluated across the three regions of Kenya; Eastern (41), Nyanza (25) and coast (42). In the Eastern region, thirty-eight of the tested accessions had more than 70% while three accessions had less than 70% with local102 having the lowest germination (18.67%) (Table 1). On the other hand, 29 of the tested accessions from coastal region had 70% germination whereas 13 accessions showed less than 70% germination with the lowest, 18%, from local accession gaddamssp38. In Nyanza, 15 of the tested accessions had 70% germination. A relatively lower than 70% germination percentage was observed in ten germplasm accessions, but Ngware spp2 recorded the lowest germination percentage of 18.0%.
Table 1. Germination percentages for sorghum germplasm accessions obtained from Eastern, Coastal and Nyanza regions in 2018

Germplasm accessions	Eastern region (%)	Coastal region (%)	Nyanza region (%)
Local Variety 68	97.67^ab	Gadam Spp68	60.33^ab
Local Variety 69	84.67^def	Gadam Spp69	66.67^def
Local Variety 70	77.67^hi	Local Variety 70	93.30^h
Kivila Kyaivui71	84.33^def	Local Variety 22	33.33^d
Kidomo72	93.33^bcd	Mixed30	26.67^d
Rasta73	86.67^bdef	Gadam Spp31	86.67^bdef
Kilala74	71.00^ij	Gadam Spp32	80.00^ij
Local Variety 75	71.00^ij	Gadam Spp33	86.67^bcd
Kitaa Kyaivui76	84.33^bcddef	Gadam Spp34	58.00^hi
Kari Mtama-177	95.67^abc	Local Variety 35	29.00kl
Local Variety 78	82.33^efgh	Gadam Spp68	86.30^bcd
local Variety Red79	80.00^efgh	Kautimbi sps37	93.30^ab
local variety 80	97.67^ab	Gadam Spp38	18.00f
Katengu81	100.00^a	Gadam Spp39	97.67^n
local Brown82	100.00^a	Kingundu spp40	95.33^a
local Red83	86.67^bdef	Local Variety 41	100.00^a
Rasta spp84	100.00^a	Local Variety 42	97.67^n
Muruge spp85	97.67^ab	Gadam Spp43	93.00^n
Muveta spp86	100.00^a	Local Variety 44	95.33^ab
Muveta spp87	100.00^a	Local Variety 45	75.67^cdef
Mugeta spp88	100.00^a	Gadam Spp46	100.00^a
Local Red89	66.67^gh	Local Variety 47	60.00^hi
Local Red90	100.00^a	Local Variety 48	93.30^ab
Ciambichi91	71.00^ij	Local Variety 49	69.00^efgh
Vaansa92	64.67^l	Local Variety 50	86.67^bdef
local brown93	100.00^a	Kitaakayi IV VII51	87.00^bcd
Rasta94	97.67^ab	Gadam Spp52	75.33^cdef
Muvuta spp95	91.3^abcde	Local Variety 53	29.00^d
Seren96	100.00^a	Local Variety 54	84.33^bde
Langi wa Mbesa97	100.00^a	Kivilakyaivui55	93.00^ab
Rasta98	100.00^a	Local Variety 56	49.00^i
Kaguru spp99	100.00^a	Local Variety 57	73.33^efgh
Rasta spp100	97.67^ab	Local Variety 58	100.00^a
Light brown101	100.00^a	Local Variety 59	100.00^a
Local102	18.67^e	Gadam Spp60	97.70^e
Local103	100.00^a	Local Variety 61	100.00^a
Repaetaed104 Cultivar	97.67^ab	Local Variety 62	97.70^a
Local brown105	86.67^bdef	Local Variety 63	62.33^bi
Local Red106	100.00^a	Local Variety 64	95.67^ab
Local107	71.00^ii	Local Variety 65	75.66^defg
Local Red108	73.00^ii	Kitaakayi IV VII66	91.33^abc

LSD 11.74 16.24 17.47

Means followed by the same letter within the same column are not significantly different according to Fisher’s Least Significance Difference (LSD) test at p≤0.05.

3.2 Mean Germination Time (Days)

The mean germination time (MGT) revealed statistical differences (p≤0.05) for the germplasm accessions evaluated across the three regions: Eastern, Nyanza and Coast. From Eastern region, local red83, ciambichi91 and local102 had the shortest MGT of 8.40, while Katengu81, local variety 75, Kitaakyaivui 7,
Rasta 73 and Rasta spp 100 had the longest MGT of 21.00 (Table 2). At the Coastal region, mixed30 and local variety35 accessions had the shortest MGT of 5.60 while, local variety28, local variety41, local variety44, kitaakyavili51, kita kya ivui66 and Kavilakyavui55 exhibited the longest MGT of 21.00 respectively (Table 2). In Nyanza Othiwa spp18, Nyakabala spp9 and Gadam spp25 had the shortest MGT of 11.20 while Ngware spp12, Ochutis spp15, Oyundiwi-Joleho23 and Seredo spp24 had the longest MGT of 21.00 respectively (Table 2).

Table 2. Mean germination time (days) of sorghum germplasm accessions obtained from Eastern, Coastal and Nyanza regions in 2018

Eastern region	Coastal region	Nyanza region			
Germplasm accessions	MGT (days)	Germplasm accessions	MGT (days)	Germplasm accessions	MGT (days)
Local Variety68	16.80^{cd}	Gadam Spp26	18.20^{abc}	Nyakatos spp1	18.20^{ab}
Local Variety69	16.80^{cd}	Gadam Spp27	16.80^{cd}	Ngware spp2	19.60^{ab}
Local Variety70	14.00^e	Local Variety28	21.00^a	Ngware spp3	19.60^{ab}
Kivila Kyaiyui71	18.20^{bc}	Local Variety29	19.60^{ab}	C-26 spp4	19.60^{ab}
Kikomo72	18.20^{bc}	Mixed30	5.60^f	Nyadundo5 3	16.80^{bc}
Rasta73	21.00^e	Gadam Spp31	16.80^{cd}	Sered6	19.60^{ab}
Kilala74	16.80^{cd}	Gadam Spp32	18.20^{abc}	Nyakabala spp7	15.40^{ef}
Local Variety75	21.00^e	Gadam Spp33	16.80^{bc}	Nyakatos spp8	19.60^{ab}
Kitaayaiyui76	21.00^e	Gadam Spp34	12.60^{efg}	Nyakatos spp9	11.20^f
Kari Mtama-177	18.20^{bc}	Local Variety35	5.60^f	Ngware spp10	16.80^{bc}
Local Variety78	16.80^{cd}	Gadam Spp36	19.60^{ab}	Ngware (white)spp11	18.20^{abc}
local Variety Red79	18.20^{bc}	Kautimbi spp37	19.60^{ab}	Ngware spp12	21.00^c
local variety80	15.40^{de}	Gadam Spp38	8.40^{ijk}	Nyakabala spp13	16.80^{bc}
Katengu81	21.00^e	Gadam Spp39	18.20^{abc}	Nyakabala spp14	19.60^{ab}
local Brown82	19.60^b	Kingundu spp40	18.20^{abc}	Ochuti spp15	21.00^c
local Red83	8.40^f	Local Variety41	21.00^a	Nyakabala spp16	15.40^{ef}
Rasta spp84	15.40^{de}	Local Variety42	18.20^{abc}	Nyakabala spp17	26.80^{bc}
Muruage spp85	19.60^b	Gadam Spp43	19.60^{ab}	Othiwa spp18	11.20^f
Muveta spp86	16.80^{cd}	Local Variety44	21.00^a	Gadam Spp19	12.60^{de}
Muvula spp87	16.80^{cd}	Local Variety45	9.80^{ef}	Nyakabala spp20	19.60^{ab}
Mugeta spp88	16.80^{cd}	Gadam Spp46	18.20^{abc}	Andiwo spp21	15.40^{ef}
Local Red89	19.60^e	Local Variety47	19.60^{ab}	Ngware spp22	16.80^{bc}
Local Red90	19.60^e	Local Variety48	15.40^{cd}	Oyundiwi-Joleho23	21.00^c
Ciimbich91	8.40^f	Local Variety49	16.80^{bcd}	Seredo spp24	21.00^c
Vaasya92	15.40^{de}	Local Variety50	15.40^{de}	Gadam Spp25	11.20^c
local brown93	19.60^b	Kitaakyavili71	21.00^{ab}		
Rasta94	16.80^{cd}	Gadam Spp52	18.20^{abc}		
Mavuta spp95	16.80^{cd}	Local Variety53	8.40^{ijk}		
Serena96	16.80^{cd}	Local Variety54	18.20^{abc}		
Langi wa Mbasa97	19.60^b	Kivilakyavui55	21.00^a		
Rasta98	21.00^e	Local Variety56	8.40^{ijk}		
Kaguru spp99	14.00^{de}	Local Variety57	15.40^{de}		
Rasta spp100	21.00^e	Local Variety58	21.00^a		
Light brown101	19.60^b	Local Variety59	19.60^{ab}		
Local102	8.40^f	Gadam Spp60	19.60^{ab}		
Local103	19.60^b	Local Variety61	21.00^{ab}		
Repaed104 Cultivar	19.60^b	Local Variety62	15.40^{cde}		
Local brown105	12.60^b	Local Variety63	12.60^d		
Local Red106	14.00^{de}	Local Variety64	16.80^{bcd}		
Local107	12.60^b	Local Variety65	11.20^f		
Local Red108	15.40^{de}	Kita ikya iv vii66	21.00^a		

LSD 3.312 2.98 3.08

Means followed by the same letter within the same column are not significantly different according to Fisher’s Least Significance Difference (LSD) test at p≤0.05.
3.3 Seed Vigour Index (SVI)

Different germplasm accessions exhibited significant differences (p≤0.05) in seed vigour index (SVI) in Eastern, Nyanza and Coastal regions (Table 3). Local103 accession was superior with an SVI of 3499.3 from Eastern region, while local102 had the lowest SVI of 322.3. At Coastal region, SVI superiority was exhibited by accession localvariety41 that recorded 4392.0 followed by the localvariety42 with 4044.3, while Gadam spp38 had the lowest SVI of 507.5. At Nyanza, Nyakabala spp9 and Ochuti spp15 were the superior accessions with a high SVI of 4080.9 and 4060.0 respectively, while Serodo spp24 had the least SVI of 2119.8.

Table 3. Seed vigour index (SVI) for sorghum germplasm accessions obtained from Eastern, Coastal and Nyanza regions in 2018

Germplasm accessions	SVI	Germplasm accessions	SVI	Germplasm accessions	SVI
Eastern region		Coastal region		Nyanza region	
Local Variety68	3196.6 ab	Gadam Spp26	2759.2 bijk	Nyaktos spp1	3570.8 abcde
Local Variety69	2503.9 gh	Gadam Spp27	1713.3 b c	Ngware spp2	3794.4 b c
Local Variety70	1874.0 k lm	Local Variety28	3083.9 defghi	Ngware spp3	3340.4 b cdef
Kivila Kyaiyuvi71	1287.2 no	Local Variety29	1271.5 d	C-26 spp4	3065.4 d e
Kikomo72	1644.5 v k mol	Mixed30	1321.2 c	Nyadundo5 3	2849.2 d efg
Rasta73	2001.0 a	Gadam Spp31	2994.5 efgijk	Seredo6	3004.5 d efg
Kilala74	1264.2 h	Gadam Spp32	2416.3 g	Nyakabala spp7	3161.9 b cdef
Local Variety75	1877.1 k l m	Gadam Spp33	2689.6 j	Ngware spp8	3028.1 d e f
Kitaa Kyaiyuvi76	2008.5 jk	Gadam Spp34	1908.9 g	Ngware spp9	4080.9 b
Kari Mtama-177	1977.6 jk	Local Variety35	624.7 p	Ngware spp10	3893.3 b cdefgh
Local Variety78	1742.5 km	Gadam Spp36	2823.6 de fjk	Ngware (white)spp11	3499.2 ab cdef
local variety Red79	1767.7 k ln m	Kautimbi spp37	3017.8 i j	Ngware spp12	3351.1 b cdef
local variety80	2643.8 eg fh	Gadam Spp38	507.5 l	Nyakabala spp13	3640.1 ab cdefgh
Katengu81	2613.3 eg fh	Gadam Spp39	3864.7 ab c	Nyakabala spp14	3270.6 b cdef
local Brown82	2292.7 hij	Kingundu spp40	3224.0 d e fgh	Ochuti spp15	4060.0 b cdefgh
local Red83	2605.4 eg fh	Local Variety41	4392.0 o	Nyakabala spp16	3499.2 ab cdefgh
Rasta spp84	1723.3 in m	Local Variety42	4044.3 b	Nyakabala spp17	3096.4 ab cdef
Muruge spp85	3036.0 bcde f	Gadam Spp43	2907.5 hijk	Othiwa spp18	3536.5 abcde
Muveta spp86	2960.0 bcdef	Local Variety44	3566.6 cdef g	Gadam spp19	2769.1 b cdef
Muvela spp87	2273.3 hijk	Local Variety45	2787.5 hijk	Nyakabala spp20	2906.9 cdefghi
Mugeta spp88	2666.7 cdefghi	Gadam Spp46	3781.7 ab c	Andiwon spp21	3273.4 abcdefgh
Local Red89	1790.3 km	Local Variety47	2248.4 l m	Ngware spp22	3485.5 abcdefgh
Local Red90	3271.0 ab	Local Variety48	3320.9 ab cdefgh	Oyundiwi-Jolejo23	2615.8 b cdefgh
Cumbichia91	2526.8 eg fh	Local Variety49	2917.4 gh k	Seredo spp24	2119.8 b cdefgh
Vaasya92	2823.7 bcdefghi	Local Variety50	3299.1 ab cdefghi	Gadam spp25	13331.0 b abcde
local brown93	2978.7 bcdefghi	KitaakyaIV VII15	3619.2 b cdefghi	KitaakyaIV VII15	3619.2 b cdefghi
Rasta94	2708.5 cdefghi	Gadam Spp52	2607.3 hijk	KitaakyaIV VII15	3619.2 b cdefghi
Muvuta spp95	3143.3 abcd	Local Variety53	1107.5 pq	KitaakyaIV VII15	3619.2 b cdefghi
Serena96	3167.0 abcde	Local Variety54	2634.8 b cdefghi	KitaakyaIV VII15	3619.2 b cdefghi
Langi wa Mbasa97	2286.0 hij	Kivilakaiyuvi55	3174.4 cdefghi	KitaakyaIV VII15	3619.2 b cdefghi
Rasta98	2708.5 cdefghi	Local Variety56	1321.3 b cdefghi	KitaakyaIV VII15	3619.2 b cdefghi
Kaguru spp99	2275.0 hijk	Local Variety57	2783.1 hijk	KitaakyaIV VII15	3619.2 b cdefghi
Rasta spp100	2677.0 de fghi	Local Variety58	3299.1 ab cdefghi	KitaakyaIV VII15	3619.2 b cdefghi
Light brown101	2405.6 gh lu	Local Variety59	3545.7 bcde fghi	KitaakyaIV VII15	3619.2 b cdefghi
Local102	322.3 h	Gadam Spp60	3610.9 bcdef	KitaakyaIV VII15	3619.2 b cdefghi
Local103	3499.3 a	Gadam Spp61	3131.7 de fghi	KitaakyaIV VII15	3619.2 b cdefghi
Repaeted104 Cultivar	3201.6 ab	Local Variety62	3198.3 cdefghi	KitaakyaIV VII15	3619.2 b cdefghi
Local brown105	2406.5 gh lu	Local Variety63	2440.0 b cdefghi	KitaakyaIV VII15	3619.2 b cdefghi
Local Red106	1835.0 km	Local Variety64	3736.3 abcde	KitaakyaIV VII15	3619.2 b cdefghi
Local Red107	1854.7 jk l km	Local Variety65	3078.1 e ghijk	KitaakyaIV VII15	3619.2 b cdefghi
Local Red108	1436.9 mno	Kitaaka Kyiv vii66	3289.8 b cdefghi	KitaakyaIV VII15	3619.2 b cdefghi
LSD	486.96	758.15	816.13		

Means followed by the same letter within the same column are not significantly different according to Fisher’s Least Significance Difference (LSD) test at p≤0.05.
3.4 Shoot Dry Weight (SDW)

There was a significant difference (p<0.05) in shoot dry weight among various germplasm accessions from Eastern, Nyanza and Coastal regions (Table 4). In Eastern, Ciumbichi91 accession had the highest shoot dry weight of 0.046g, mixed30 accession from Coastal region was the leading in shoot dry weight of 0.073g while, at Nyanza, Ochuti15 was superior, recording 0.075g. Germplasm accessions with the least shoot dry weight were Gadam spp 27 (0.0137g) and Seredo spp 24 (0.0180g) from Coastal and Nyanza regions respectively.

Table 4. Shoot dry weight (SDW) (grams) of sorghum germplasm accessions obtained from Eastern, Coastal and Nyanza regions in 2018

Eastern region	SDW (g)	Coastal region	SDW (g)	Nyanza region	SDW (g)
Germplasm accessions	Gadam spp 26	0.0470	Nyakabala spp 7	0.0590	
Local Variety 68	0.0241	Gadam spp 31	0.0354	Nyakabala spp 10	0.0540
Local Variety 69	0.0297	Gadam spp 37	0.0290	Nyakabala spp 11	0.0640
Local Variety 70	0.0162	Local Variety 28	0.0202	Nyakabala spp 12	0.0530
Kivila Kyaiwuvi 71	0.0071	Local Variety 29	0.0340	Gardama spp 13	0.0410
Kikombo 72	0.0122	Mixed 30	0.0190	Gardama spp 15	0.0750
Rasta 73	0.0320	Gadam spp 32	0.0234	Gardama spp 16	0.0530
Kilala 74	0.0098	Gadam spp 33	0.0350	Gardama spp 17	0.0350
Local Variety 75	0.0260	Gadam spp 36	0.0290	Gardama spp 18	0.0440
Kitaa Kyaiwuvi 76	0.0181	Local Variety 35	0.0220	Gardama spp 20	0.0310
Kari Mtmpa 177	0.0235	Local Variety 37	0.0340	Gardama spp 21	0.0340
Local Variety 78	0.0133	Kautimbi spp 37	0.0340	Gardama spp 22	0.0380
local Variety Red 79	0.0173	Local Variety 38	0.0190	Gardama spp 23	0.0260
local variety 80	0.0228	Gardam spp 39	0.0470	Gardama spp 24	0.0180
Katengu 81	0.0207	Gardam spp 40	0.0289	Gardama spp 25	0.0380
local Brown 82	0.0190	Kingundo spp 40	0.0289	Gardama spp 26	0.0300
local Red 83	0.0262	Local Variety 41	0.0430	Gardama spp 27	0.0340
Rasta spp 84	0.0136	Local Variety 42	0.0360	Gardama spp 28	0.0420
Muruge spp 85	0.0263	Gadam spp 43	0.0370	Gardama spp 29	0.0380
Muvuta spp 86	0.0242	Local Variety 44	0.0328	Gardama spp 30	0.0320
Muvela spp 87	0.0171	Local Variety 45	0.0453	Gardama spp 31	0.0340
Mugeta spp 88	0.0214	Gardam spp 46	0.0540	Gardama spp 32	0.0340
Local Red 89	0.0301	Local Variety 47	0.0500	Gardama spp 33	0.0380
Local Red 90	0.0230	Local Variety 48	0.0045	Gardama spp 34	0.0260
Ciumbichi 91	0.0460	Local Variety 49	0.0510	Gardama spp 35	0.0260
Vaasya 92	0.0450	Local Variety 50	0.0430	Gardama spp 36	0.0380
local brown 93	0.0274	Kitaakyayi V 171	0.0560	Gardama spp 37	0.0360
Rasta 94 0.0230	Gadam spp 52	0.0456	Gardama spp 38	0.0350	
Muvuta spp 95	0.0380	Local Variety 53	0.0390	Gardama spp 39	0.0430
Serana 96	0.0297	Local Variety 54	0.0260	Gardama spp 40	0.0300
Langi wa Mbesa 97	0.0200	Kaiyaiayi V 55	0.0383	Gardama spp 41	0.0380
Rasta 98	0.0230	Local Variety 56	0.0211	Gardama spp 42	0.0340
Kagaru spp 99	0.0180	Local Variety 57	0.0517	Gardama spp 43	0.0360
Rasta spp 100	0.0237	Local Variety 58	0.0330	Gardama spp 44	0.0340
Light brown 101	0.0216	Local Variety 59	0.0382	Gardama spp 45	0.0340
Local 102	0.0088	Gadam spp 60	0.0452	Gardama spp 46	0.0350
Local 103	0.0280	Local Variety 61	0.0280	Gardama spp 47	0.0390
Repaeted 104 Cultivar	0.0260	Local Variety 62	0.0271	Gardama spp 48	0.0300
Local brown 105	0.0200	Local Variety 63	0.0380	Gardama spp 49	0.0360
Local Red 106	0.0120	Local Variety 64	0.0440	Gardama spp 50	0.0300
Local 107	0.0163	Local Variety 65	0.0490	Gardama spp 51	0.0340
Local Red 108	0.0144	Kitaa Kya iv vii 66	0.0487	Gardama spp 52	0.0380
LSD	0.014	0.016	0.111		

Means followed by the same letter within the same column are not significantly different according to Fisher’s Least Significance Difference (LSD) test at p≤0.05.

3.5 Root Dry Weight (RDW) (Grams)

Root dry weight exhibited significant differences (p≤0.05) among germplasm accessions from Eastern, Coastal
and Nyanza regions (Table 5). Vaasya92 (0.0152g), Nyakabala spp9 (0.0188g) and local variety45 (0.039g) from Eastern, Nyanza and Coastal regions respectively had more root dry weight. Kilala74 in Eastern recorded the least root dry weight of 0.0020g while in Nyanza Seredo spp 24 had the least weight of 0.0036g.

Table 5. Root dry weight (RDW) (grams) of sorghum germplasm accessions obtained from Eastern, Coastal and Nyanza regions in 2018

Germplasm accessions	RDW (g)	Eastern region	Germplasm accessions	RDW (g)	Coastal region	Germplasm accessions	RDW (g)	Nyanza region
Local Variety68	0.0052	Gadam Spp26	0.014c	Nyakakos spp1	0.0074			
Local Variety69	0.0121	Gadam Spp27	0.004c	Ngware spp2	0.0070			
Local Variety70	0.0056	Local Variety28	0.006c	Ngware spp3	0.0053			
Kivila Kyavui71	0.0024	Local Variety29	0.009c	C-26 spp4	0.0081			
Kikomo72	0.0037	Mixed30	0.010c	Nyadundo5 3	0.0052			
Rasta73	0.0037	Gadam Spp31	0.01c	Seredo6	0.0060			
Kilala74	0.0020	Gadam Spp32	0.007c	Nyakabala spp7	0.0068			
Local Variety75	0.0102	Gadam Spp33	0.0077c	Nyakakos spp8	0.0051			
Kitata Kyavui76	0.0060	Gadam Spp34	0.014c	Nyakabala spp9	0.0188			
Kari Mtama-177	0.0039	Local Variety35	0.005c	Ngware spp10	0.0071			
Local Variety78	0.0053	Gadam Spp36	0.006c	Ngware (white) spp11	0.0080			
local Variety79	0.0026	Kautimbi spp37	0.010c	Ngware spp12	0.0072			
local variety80	0.0087	Gadam Spp38	0.0004c	Nyakabala spp13	0.0076			
Katengu81	0.0058	Gadam Spp39	0.016bc	Nyakabala spp14	0.0073			
local Brown82	0.0110	Kingundu spp40	0.007	Ochuti spp15	0.0120			
local Red83	0.0050	Gadam Spp41	0.011c	Nyakabala spp16	0.0091			
Rasta spp84	0.0125	Local Variety42	0.117c	Nyakabala spp17	0.0080			
Muruge spp85	0.0110	Gadam Spp43	0.010c	Othiwa spp18	0.0068			
Muveta spp86	0.0097	Local Variety44	0.009c	Gadam Spp19	0.0074			
Muvela spp87	0.0045	Local Variety45	0.039a	Nyakabala spp20	0.0083			
Mugeta spp88	0.0065	Gadam Spp46	0.011c	Andiwii spp21	0.0071			
Local Red89	0.0106	Local Variety47	0.014c	Ngware spp22	0.0086			
Local Red90	0.0049	Local Variety48	0.010c	Oyundwi-Jolejo23	0.0038			
Ciumbichich	0.0058	Local Variety49	0.014c	Seredo spp24	0.0036			
Vaasya92	0.0152	Local Variety50	0.007c	Gadam Spp25	0.0089			
local brown93	0.0029	Kitaaka111VII51	0.015c					
Rasta94	0.0085	Gadam Spp52	0.009					
Muvuta spp95	0.0065	Local Variety53	0.010c					
Serena96	0.0079	Local Variety54	0.006c					
Langi wa Mbasa97	0.0048	Kivilakayavui55	0.010c					
Rasta98	0.0085	Local Variety56	0.010c					
Kagaru spp99	0.0054	Local Variety57	0.012c					
Rasta spp100	0.0106	Local Variety58	0.007c					
Light brown101	0.0045	Local Variety59	0.008c					
Local102	0.0034	Gadam Spp60	0.011c					
Local103	0.0138	Local Variety61	0.005c					
Repaaedt104	0.0058	Local Variety62	0.006c					
Cultivar	0.0054	Local Variety63	0.011c					
local brown100	0.0090	Local Variety63	0.011c					
local Red100	0.0030	Local Variety64	0.031ab					
local Red107	0.0067	Local Variety65	0.014c					
Local Red108	0.0035	Kitaa Kya iv vii66	0.010c					
LSD	0.005		0.015	0.003				

Means followed by the same letter within the same column are not significantly different according to Fisher’s Least Significance Difference (LSD) test at p≤0.05.
4. Discussions

In this study, there was a high variability in the germination percentages for the sorghum seeds obtained from Eastern, Coastal and Nyanza regions of Kenya. A majority of the seeds exhibited a high germination percentage of 70% which is within the set standards by the Seeds and Plant Varieties Act of CAP 326 of the Kenyan constitution for sorghum varieties. However, part of the germplasm had low germination percentages indicating presence of low quality seeds used by farmers. Previous studies have reported that farmers obtain sorghum seeds from previously saved seeds, local markets, borrow from neighbors (Ochieng et al., 2011; Catherine et al., 2013; Kange et al., 2014; Muui et al., 2019). Majority of subsistence farmers in semi arid areas produce crops without fertilizers (Jama et al., 1998; Muui et al., 2013). Results of a baseline survey assessing production systems at coastal, Nyanza and eastern regions revealed that most farmers do not use fertilizers (Muui et al., 2019). This results to low yields and poor quality seeds since most soil nutrients have already been depleted (Songa et al., 1994; Craine et al., 2018). High humidity under elevated temperatures in these regions may have contributed to rapid deterioration of the seeds. There is evidence that elongated exposure to high temperatures and moisture would significantly reduce seed germination potential in many crops (Nagel et al., 2016). Besides, post-harvest seed handling and packaging also influence the rate of seed deterioration and hence has a direct impact on seed germination potential (Kange et al., 2014). Studies conducted in eastern, coast and Nyanza reported that most farmers have low education and therefore do not understand the best agronomic and post harvest handling practices which could help increase the quality of seed (Muui et al., 2013; 2019).

The mean time of germination for a seed indicates the time taken by a seed to develop critical structures crucial for germination success, survival, and for faster and uniform establishment. In this study, the mean germination time observed ranged from short, moderate to long. The shorter the mean germination time, the greater the seed vigour. A prolonged MGT may be an indication of deteriorated seed quality as a result of exposure of the seeds to harsh or unfavourable conditions in the field and after harvesting (Bewley and Black, 2012). Such conditions slows the rate of emergence and growth of the seedlings (Amirmoradi and Feizi, 2017); and eventually limits the seedlings from taking advantage of the available nutrients and resources for maximum yield within a short time (Bradford, 2002).

The seed vigour index variation in this study could be attributed to the diverse conditions during production, source of seeds and post harvest handling practices. Increased seedling vigour is an indication of effective germination, seedling emergence early seedling growth and improved grain yield (Lamichhane et al., 2018). Harsh conditions during the late stage of seed development might have also contributed to hormonal imbalance within the seeds which promotes physiological seed dormancy (Cotado and Munné-Bosch, 2020). Longer storage is associated with deterioration of seed stored microRNAs and other important proteins that have a role in the maintenance of high seed viability (Sahu et al., 2017; Sano and Rajjou, 2020).

The shoot biomass of seedlings varied from high to low attributed to pre and post harvest handling practices. A high shoot biomass is an indicator of increased seed vigour and subsequent crop growth cycles (Maucieri et al., 2016). Rapid development of the shoot is associated with the development of more leaves, which is important for the interception of photosynthetic active radiation that enhances rates of photosynthesis resulting in high biomass accumulation (Ceotto et al., 2013). Furthermore, genotypes with higher shoot dry matter have the capability of withstanding drought due to improved water and nutrient use efficiency (Verma et al., 2018). Majority of the germplasm displayed moderate to low root dry matter. Low root biomass has been reported to be as a result of reduced root growth in germplasm consisting of low quality seeds (Joshi et al., 2017). According to Blaha and Pazderu (2013), high seed quality leads to development of seedling with roots of greater biomass an indication of ability to withstand stress condition and also facilitate formation of high quality grains for the subsequent generations.

5. Conclusion and Recommendations

The ability of sorghum to perform well in semi arid areas makes it an important cereal crop to achieve food security. Farmers in Eastern, Nyanza and Coastal regions plant sorghum seeds obtained from diverse informal sources. The environmental conditions in the field and, pre and post harvest handling practices impact on the seed quality hence the wide variability in germination percentage, germination time, seed vigour index and dry matter accumulation in seedlings. This shows the need to improve and monitor the quality of seeds used by subsistence farmers. The quality of sorghum seeds could be improved by providing extension services on best pre and post harvest handling practices. Increasing production of sorghum in these regions will contribute significantly towards realizing food security. Further analysis could be carried out on genetic and sanitary quality aspects of the seeds planted by farmers in Eastern, Nyanza and Coastal regions.
Acknowledgements
The authors acknowledge farmers from Eastern, Nyanza and Coastal regions of Kenya for providing sorghum germplasm accessions and the County agricultural officers for allowing access to the regions. National Research Fund (NRF), Kenya is gratefully acknowledged for funding this study.

References
Ahmed, H. M. I., Gregg, B. R., & Louwaars, N. P. (2009). Seed Systems for Underutilized crops. Acta Horticultura (ISHS), 806, 459-464. https://doi.org/10.17660/ActaHortic.2009.806.57
Amirmoradi, S., & Feizi, H. (2017). Can mean germination time predict seed vigor of canola (Brassica napus L.) seed lots? Acta Agrobotanica, 70(4), 1729. https://doi.org/10.5586/aa.1729
Badigannavar, A., Girish, G., Ramachandran, V., & Ganapathi, T. R. (2016). Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. The Crop Journal, 4(1), 61-67, https://doi.org/10.1016/j.cj.2015.07.002
Bewley, J. D., & Black, M. (2012). Physiology and biochemistry of seeds in relation to germination: volume 2: viability, dormancy, and environmental control. Springer Science and Business Media.
Blaha, L., & Pazderu, K. (2013). Influence of the root and seed traits on tolerance to abiotic stress. In Agricultural Chemistry. IntechOpen. https://doi.org/10.5772/55656
Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2), 248-260. https://doi.org/10.1614/0043-1745(2002)050[0248:AHTT]2.0.CO;2
Catherine, W. M., Reuben, M. M., & Duncan, T. K. (2013). Identification and evaluation of sorghum (Sorghum bicolor (L.) moench) germplasm from Eastern Kenya. African Journal of Agricultural Research, 8(37), 4573-4579.
Cetto, E., Di Candilo, M., Castelli, F., Badeck, F. W., Rizza, F., Soave, C., & Marletto, V. (2013). Comparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo donax L.) and sweet sorghum (Sorghum bicolor L. Moench). Field Crops Research, 149, 159-166. https://doi.org/10.1016/j.fcr.2013.05.002
Cotado, A., Garcia, M. B., & Munné-Bosch, S. (2020). Physiological seed dormancy increases at high altitude in Pyrenean saxifrage (Saxifraga longifolia Lapeyr.). Environmental and Experimental Botany, 171(August 2019), 103929. https://doi.org/10.1016/j.envexpbot.2019.103929
Craine, J. M., Elmore, A. J., Wang, L., Aranibar, J., Bauters, M., Boeckx, P., & Fang, Y. (2018). Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology and Evolution, 2(11), 1735. https://doi.org/10.1038/s41559-018-0694-0
FAO. (2018). Food and Agricultural Organization of the United Nations Faostatstatistics database. Retrieved from http://www.fao.org/faostat/en/#data/QCProductionofselectedcerealcrops
Grieser, J. (2006). The FAO local climate estimator. Environment and Natural Resources Service Working Paper No. 9. Food and Agriculture Organization 2006. Retrieved from www.fao.org/sd/2002/en1203a_en.htm
Jama, B., Amandou, I., Amadalo, B., Wolf, J., Rao, M. R., & Buresh, R. J. (1998). The Potential of Improved Fallows to Improve and Conserve the Fertility of Nutrients-Depleted Soils of Western Kenya. Agricultural Research and Development for Sustainable Resource Management and Increased Production. Proceedings of the 6th biennial KARI scientific conference. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:38037858
Jisha, K. C., Vijayakumari, K., & Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum, 35(5), 1381-1396. https://doi.org/10.1007/s11738-012-1186-5
Joshii, D. C., Singh, V., Hunt, C., Mace, E., van Oosterom, E., Sulman, R., & Hammer, G. (2017). Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum. Plant methods, 13(1), 56. https://doi.org/10.1186/s13007-017-0206-2
Kange, A. M., Cheruiyot E. K., Ogendo, J. O., Arama, P. F., & Ochola, S. O. (2014). Pre- and post harvest factors affecting sorghum production (Sorghum bicolor L. Moench) among smallholder farming Communities. International Journal of Agronomy and Agricultural Research, 5(4), 40-47. https://doi.org/10.1186/s40066-015-0034-4
Khan, A. Z., Shah, P., Mohd, F., & Zubair, M. (2010). Vigour tests used to rank seed lot quality and predict field emergence in Wheat. *Pakistan Journal of Botany*, 3147-3155. https://www.researchgate.net/publication/287739275pdf

Lamichhane, J. R., Debaeke, P., Steinberg, C., You, M. P., Barbetti, M. J., & Aubertot, J. N. (2018). Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. *Plant and soil*, 1-28. https://doi.org/10.1007/s11104-018-3780-9

Mamoudou, H. D., Hurry, G., Alfred, S., Alphans, G. J., & Van, B. (2006). Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. *African Journal Biotechnology*, 5, 384-395. Retrieved from http://www.academicjournals.org/AJB

Mauclier, C., Cuavallaro, V., Caruso, C., Borin, M., Milani, M., & Barbera, A. (2016). Sorghum biomass production for energy purpose using treated urban wastewater and different fertilization in a Mediterranean environment. *Agriculture*, 6(4), 67. https://doi.org/10.3390/agriculture6040067

McDonald, M. B. (1999). Seed deterioration: physiological, repair and assessment. *Journal of Seed Science and Technology*, 27, 177-237.

Muasya, R. M., Lommen, W. J. M., Muui, C. W., & Struik, P. C. (2008). How weather during development of common bean (*Phaseolus vulgaris* L.) affects the crop’s Maximum attainable seed quality. *NJAS-Wageningen Journal of Life Sciences*, 56, 85-100. https://doi.org/10.1016/S1573-5214(08)80018-8

Muui, C. W, Muasya, R. M., Nguluu, S., Kambura, A, Kathuli, P, Mweu, B, & Odhiambo, D. O. (2019). Sorghum Landraces Production Practices in Nyanza, Coast and Eastern Regions, Kenya. *Journal of Economics and Sustainable Development*, 10(10).

Muui, C. W., Muasya, R. M., & Kirubi, D. T. (2013). Baseline survey on factors affecting sorghum production and use in eastern Kenya. *African Journal of Food, Agriculture Nutrition and Development*, 13, 7339-7342. https://doi.org/10.18697/ajfand.56.11545

Mwadalu, R., & Mwangi, M. (2013). The potential role of sorghum in enhancing food security in semi-arid eastern Kenya: A review. *Journal of Applied Biosciences*, 71(1), 5786-5799. https://doi.org/10.4314/jab.v71i1.98826

Nagel, M., Kodde, J., Pistrick, S., Mascher, M., Börner, A., & Groot, S. P. C. (2016). Barley seed aging: Genetics behind the dry elevated pressure of oxygen aging and moist controlled deterioration. *Frontiers in Plant Science*, 7. https://doi.org/10.3389/fpls.2016.00388

Ng'uni, D., Geleta, M., Hofvander, P., Fathi, M., & Bryngelsson, T. (2012). Comparative genetic diversity and nutritional quality variation among some important Southern African sorghum accessions (*Sorghum bicolor* L. Moench). *Australian Journal of Crop Science*, 6(1), 56-64. Retrieved from https://www.researchgate.net/publication/259752716

Ochieng, L. A., Mathenge, P. W., & Muasya, R. M. (2011). A survey of on-farm seed production practices of sorghum (*Sorghum bicolor* L. Moench) in Bomet district of Kenya. *African Journal of Food, Agriculture, Nutrition and Development*, 11(5), 5232-5253. https://doi.org/10.4314/ajfand.v11i5.70448

Rao, P. S., Vinutha, K. S., Kumar, G. S., Chiranjeevi, T., Uma, A., Lal, P., & Jose, S. (2016). Sorghum: A multipurpose bioenergy crop. *Sorghum: State of the art and future perspectives*, *Agronomy*, 58. https://doi.org/10.2134/agrononomy58.2014.0074

Sahu, A. K., Sahu, B., Soni, A., & Naithani, S. C. (2017). Active oxygen species metabolism in neem (Azadirachta indica) seeds exposed to natural ageing and controlled deterioration. *Acta Physiologica Plantarum*, 39(9). https://doi.org/10.1007/s11738-017-2494-6

Sano, N., & Rajjou, L. (2020). Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. *Plants (Basel)*, 9(3). https://doi.org/10.3390/plants9030347

Shisanya, C. A. Jaetzold R. Schmidt, H., & Hornetz, B. (2006). Natural conditions and farm management information, vol. II, part B: Central Kenya, 1-493. Retrieved from https://library.wur.nl/isric/fulltext/isricu.i00023897_001.pdf

Swigonova, Z., Lai, J., Ma, J., Ramakrishna, W., Llaca, V., Bennetzen, J. L., & Messing, J. (2004). Close split of sorghum and maize genome progenitors. *Genome Research*, 14, 1916-1923. https://doi.org/10.1101/gr.2332504

Swinkels, R. A., Franzel, S., Shepherd, K. D., Ohlsson, E., & Ndufa, J. K. (1997). The economics of short rotation improved fallows: evidence from areas of high population density in Western Kenya. *Agricultural
Verma, R., Kumar, R., & Nath, A. (2018). Drought Resistance Mechanism and Adaptation to Water Stress in Sorghum [Sorghum bicolor (L.) Moench]. *International Journal of Bio-resource and Stress Management*, 9(1), 167-172. https://doi.org/10.23910/IJBSM/2018.9.1.3C0472

Zhu, S. Y., Hong, D. L., Yao, J., Zhang, X. L., & Luo, T. K., (2010). Improving germination, seedling establishment and biochemical characters of aged hybrid rice seed by priming with KNO3 + PVA. *African Journal of Agricultural Research*, 5(1), 078-083. Retrieved from http://www.academicjournals.org/AJAR

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).