Eribulin Regresses a Doxorubicin-resistant Dedifferentiated Liposarcoma in a Patient-derived Orthotopic Xenograft Mouse Model

KENTARO IGARASHI1,2,3, KEI KAWAGUCHI1,2, TASUKU KIYUNA1,2, KENTARO MIYAKE1,2, TAKASHI HIGUCHI1,2,3, NORIO YAMAMOTO3, KATSUHIRO HAYASHI3, HIROAKI KIMURA3, SHINJI MIWA3, SHREE RAM SINGH4, HIROYUKI TSUCHIYA3 and ROBERT M. HOFFMAN1,2

1AntiCancer, Inc., San Diego, CA, U.S.A.; 2Department of Surgery, University of California, San Diego, CA, U.S.A.; 3Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan; 4Basic Research Laboratory, National Cancer Institute, Frederick, MD, U.S.A.

Abstract. Background/Aim: Dedifferentiated liposarcoma (DDLPS) is recalcitrant type of sarcoma. DDLPS has a low survival rate with high recurrence and metastasis. In the present study, we evaluated the efficacy of several drugs against doxorubicin-resistant DDLPS in a patient-derived orthotopic xenograft (PDOX) model for precision oncology. To establish the PDOX model, a tumor from a patient who had recurrent high-grade DDLPS from the retroperitoneum was previously grown orthotopically in the retroperitoneum of nude mice. Materials and Methods: We randomized DDLPS PDOX models into 8 treatment groups when tumor volume became approximately 100 mm3: control, no treatment; G2, doxorubicin (DOX); G3, pazopanib (PAZ); G4, gemcitabine (GEM) combined with docetaxel (DOC); G5, trabectedin (YON); G6, temozolomide (TEM); G7, palbociclib (PAL); G8, eribulin (ERB). Tumor length and width were measured both at the beginning and at the end of treatment. Results: At the end of treatment (day 14), all treatments significantly inhibited DDLPS PDOX tumor growth compared to the untreated control, except DOX. ERB was significantly more effective and regressed tumor volume compared to other treatments on day 14 after initiation of treatment. No significant differences were found in the relative body weight on day 14 compared to day 0 in any group. Conclusion: The clinical potential of ERB against DDLPS is herein presented in a PDOX model.

Liposarcoma is a soft tissue sarcoma (STS). Among STS, dedifferentiated liposarcoma (DDLPS) has the lowest survival rate (1) with high recurrence and metastasis rates even after treatment with first-line therapies (2, 3). Novel more effective therapies are needed. We have previously established a patient-derived orthotopic xenograft (PDOX) nude-mouse model for all major cancers (4-15) including DDLPS (16).

Pazopanib is a tyrosine kinase inhibitor (TKI) that blocks tumor growth and inhibits angiogenesis (17). It was highly efficacious in a Phase 3 study in patients with STS (18). Gemcitabine is a cytidine analog that is extensively used in anti-cancer therapy. Gemcitabine is easily incorporated into DNA and causes cytotoxicity by inhibiting DNA replication (19-22). Docetaxel is a cytotoxic taxane that blocks mitosis (23, 24). The combination of gemcitabine and docetaxel has shown synergism (25) both in vitro (26) and in vivo (27). Recent studies demonstrated that the combination of gemcitabine and docetaxel was highly effective in patients with STS (28-30). Trabectedin is a synthetic, marine-derived alkylating agent derived from the Caribbean tunicate, Ecteinascidia turbinata (31). Trabectedin is active in patients with liposarcoma (32) and has multiple mechanisms of action (33). Temozolomide is a cytotoxic prodrug which exerts cytotoxicity mainly by methylating nucleotide bases (34). Temozolomide has shown clinical...
activity against high-grade brain cancer (35), melanoma (36), and pediatric rhabdomyosarcomas (37-38). A Phase II clinical trial of temozolomide on advanced STS showed an increase in progression-free survival (39).

Cyclin-dependent kinase 4 (CDK4), is amplified in more than 90% of well-differentiated liposarcomas (WDLS)/dedifferentiated liposarcomas (DDLS) (40-42). It has been demonstrated that inhibiting the expression of CDK4 with short hairpin RNA (shRNA) inhibits growth of STS cells in vitro (43).

Eribulin, synthesized from a marine sponge *Halichondria okadai* (44, 45), is a non-taxane microtubule-dynamics inhibitor (46, 47). Eribulin has been approved by the Food and Drug Administration (FDA) for aggressive breast cancer patients (48). In the United States, Eribulin has been used for the treatment of patients with inoperable or metastatic liposarcoma since 2016 (49).

The present report demonstrates that a DDLPS PDOX model identified eribulin as a highly effective drug that regresses tumor volume indicating its clinical potential.

Materials and Methods

Animal care. Male athymic nu/nu nude mice (AntiCancer Inc., San Diego, CA, USA), 4-6 weeks old, were used in the present study. Mouse studies were conducted with an AntiCancer Inc. Institutional Animal Care and Use Committee (IACUC)-protocol specifically approved for this study and in accordance with the principles and procedures outlined in the National Institutes of Health (NIH) Guide for the Care and Use of Animals under Assurance Number A3873-1 (16). To minimize suffering of animals during surgery, anesthesia and analgesics were provided (16).

Patient-derived tumor. A 69-year-old male patient with DDLPS of right retroperitoneum underwent radical resection with *en bloc* right nephrectomy (16). Two years after surgery, local recurrence resulted (16). The patient previously underwent surgical resection at the Department of Surgery, University of California, Los Angeles, USA (UCLA) (16). Written informed consent was obtained from the patient as part of a UCLA Institutional Review Board approval protocol (IRB #10-001857) (16).

Establishment of DDLPS PDOX model. A fresh specimen of the tumor of the patient was previously obtained and transported.

Figure 1. (A) Treatment schema for the DDLPS PDOX model. (B) Efficacy of doxorubicin (DOX), pazopanib (PAZ), gemcitabine combined with docetaxel (GEM+DOC), trabectedin (YON), temozolomide (TEM), palbociclib (PAL) and eribulin (ERB) on the DDLPS PDOX model. Tumor volume was measured pre- and post-treatment. N=8 mice/group. (C) Relative tumor volume for each mouse is presented in a waterfall plot.
immediately to the laboratory at AntiCancer, Inc., on wet ice (16). The detailed procedure of cutting samples into small fragments and their initial implantation subcutaneously in nude mice, to subsequently establish PDOX models and wound closure has been described in our previous publication (16).

Treatment protocols for the DDLPS PDOX model. PDOX mouse models were randomly divided into 8 groups: G1, control no treatment; G2, doxorubicin (DOX) [3 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks]; G3, pazopanib (PAZ) [100 mg/kg, p.o., daily, for 2 weeks]; G4, gemcitabine (GEM) (100 mg/kg, i.p., weekly, for 2 weeks) combined with docetaxel (DOC) (20 mg/kg, i.p., once); G5, trabectedin (YON) [0.15 mg/kg, intravenous (i.v.) injection, weekly, for 2 weeks]; G6, temozolomide (TEM) (25 mg/kg, p.o., daily, for 2 weeks); G7, palbociclib (PAL) (100 mg/kg, p.o., daily, for 2 weeks); G8, eribulin (ERB) (1.5 mg/kg, i.v., weekly, for 2 weeks) (Figure 1A). Each treatment group contained 8 mice. Tumor length and width were measured both before and after treatment. Tumor volume was calculated based on our previous studies (16). The tumor volume ratio is defined as the tumor volume at a post-treatment point relative to pre-treatment tumor volume (50).

Histological examination. Detailed protocols to fix the fresh tumor samples, embedding in paraffin, sectioning and staining were described previously (16). Hematoxylin and eosin (H&E) staining was performed according to a standard protocol (16). Histological examination was performed with a BHS system microscope and images were acquired with INFINITY ANALYZE software (Lumenera Corporation, Ottawa, Canada).

Statistical analysis. All statistical analyses were performed as previously described (50). The Student’s t-test was used to determine the significant differences for continuous variables. Data are presented as mean±standard deviation (SD). A probability value $p \leq 0.05$ was considered a statistically-significant difference.

Results

Drug efficacy. At the end of treatment (Day 14), all treatments significantly inhibited DDLPS tumor growth compared to the untreated control except DOX: (DOX: $p=0.61$; PAZ: $p=0.17$; GEM+DOC: $p=0.11$; YON $p=0.04$; TEM: $p=0.04$; PAL: $p=0.01$; ERB: $p=0.001$). However, ERB was significantly more effective compared to DOX ($p=0.001$), PAZ ($p=0.001$), GEM+DOC ($p=0.001$), YON ($p=0.001$), TEM ($p=0.001$) and PAL ($p=0.01$). In addition, ERB significantly regressed tumor volume by the end of treatment (day 14) compared with day 0 ($p=0.001$) (Figures 1 and 2).
Figure 3. Body weight of (DOX); pazopanib (PAZ); gemcitabine combined with docetaxel (GEM+DOC); trabectedin (YON); temozolomide (TEM); palbociclib (PAL); and eribulin (ERB). Bar graph shows body weight in each group before (day 0) and after treatment (day 14). N=8 mice/group.

Figure 4. Tumor histology. H&E-stained sections of the untreated PDOX tumor (A); PDOX tumor treated with doxorubicin (DOX) (B); PDOX tumor treated with pazopanib (PAZ) (C); PDOX tumor treated with gemcitabine combined with docetaxel (GEM+DOC) (D); PDOX tumor treated with trabectedin (YON) (E); PDOX tumor treated with temozolomide (TEM) (F); PDOX tumor treated with palbociclib (PAL) (G); and PDOX tumor treated with eribulin (ERB) (H). White scale bars: 50 μm.
Body weight. No significant difference was observed in the relative body weight on day 14 compared to day 0 in any treatment group (Figure 3).

Histology. High-power photomicrographs of the untreated control PDOX tumor show spindle cells with hyperchromatic and enlarged nuclei. Mitotic figures and atypical cells are present (Figure 4A). Tumors treated with DOX and PAZ had viable cells with no obvious necrosis or inflammatory changes (Figure 4B and C). Tumors treated with GEM+DOC and YON show changes in cancer-cell shapes and few necrotic cancer cells (Figure 4D and E). Tumors treated with TEM and PAL show changes in cancer-cell shapes, few necrotic cancer cells and also fibrotic areas (Figure 4F and G). In contrast, tumors treated with ERB show decreased tumor cellularity, necrotic cancer cells and tissue fibrosis (Figure 4H).

Discussion

DDLPS is a recalcitrant sarcoma with the lowest survival rate among liposarcoma. DDLPS frequently recurs or metastasizes after first therapy because no current curative options are available (1,2). Therefore, transformative, personalized and effective therapy is urgently needed for DDLPS patients.

PDOX models have provided clinically-relevant individualized mouse models of cancer since PDOX models recapitulate clinical behavior, and mimic tumor-specific drug-sensitivity (51). PDOX models of sarcoma behave very similarly to patient sarcoma in terms of recurrence after surgery (15), and metastasis (52) and invasiveness to surrounding tissue (15,53).

Using PDOX models, multiple therapeutic agents can be tested (53-60), including targeted therapy in a preclinical model (61-66).

In the present study, ERB was found to regress the DDLPS PDOX tumor. The present study, using PDOX models, provides PDOX patients with specific and personalized treatment options. Future studies will label the DDLPS PDOX tumors with fluorescent proteins by growing them in transgenic nude mice expressing fluorescent proteins, whereby the PDOX tumor acquires fluorescent stromal cells. Such labeled tumors will be used to detect metastasis in non-colored mice (52, 67). Thus far, all sarcoma PDOX models have correlated with drug resistance in the patient (68).

Conflicts of Interest

KI, KK, TK, KM, TH, NY, KH, HK, SM and RMH are or were unsalaried members of AntiCancer Inc., which uses PDOX models for contract research. There are no other competing financial interests.

Authors’ Contributions

Conception and design: KI and RMH. Acquisition of data: KI, KK, TK, KM and TH. Analysis and interpretation of data: KI, KK, TK, KM, TH, NY, KH, SM, SRS, HT and RMH. Writing, review, and/or revision of the manuscript: KI, RMH and SRS.

Acknowledgements

This paper is dedicated to the memory of AR Moossa, MD, Sun Lee, MD, Professor Li Jiaxi, and Masaki Kitajima, MD.

References

1 Jones RL, Fisher C, Al-Muderis O and Judson IR: Differential sensitivity of liposarcoma subtypes to chemotherapy. Eur J Cancer 41: 2853-2860, 2005. PMID: 16289617. DOI: 10.1016/j.ejca.2005.07.023

2 Crago AM and Singer S: Clinical and molecular approaches to well differentiated and dedifferentiated liposarcoma. Curr Opin Oncol 23: 373-378, 2011. PMID: 21552124. DOI: 10.1097/CCO.0b013e32834796e6

3 Lorigan P, Verweij J, Papai Z, Rodenhuis S, Le Cesne A, Leahy MG, Radford JA, Van Glabbeke MM, Kirkpatrick A, Hogendoorn PCW and Blay J-Y: Phase III Trial of two investigational schedules of ifosfamide compared with standard-dose doxorubicin in advanced or metastatic soft tissue sarcoma: A European organisation for research and treatment of cancer soft tissue and bone sarcoma Group Study. J Clin Oncol 23: 3144-3150, 2007. PMID: 17634494. DOI: 10.1200/JCO.2006.09.7717

4 Fu X, Guadagni F and Hoffman RM: A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci USA 89: 5645-5649, 1992. PMID: 1608975. DOI: 10.1073/pnas.89.12.5645

5 Hiroshima Y, Maawy A, Zhang Y, Murakami T, Momiyama M, Mori R, Matsuyama R, Katz MHG, Fleming JB, Chishima T, Tanaka K, Ichikawa Y, Endo I, Hoffman RM and Bouvet M: Metastatic recurrence in a pancreatic cancer patient derived orthotopic xenograft (PDOX) nude mouse model is inhibited by neoadjuvant chemotherapy in combination with fluorescence-guided surgery with an anti-CA 19-9-conjugated fluorophore. PLoS One 9:e114310, 2014. PMID: 25463150. DOI: 10.1371/journal.pone.0114310

6 Fu X, Le P and Hoffman RM: A metastatic orthotopic -transplant nude-mouse model of human patient breast cancer. Anticancer Res 13: 901-904, 1993. PMID: 8352558.

7 Fu X and Hoffman RM: Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Proc Natl Acad Sci USA 90: 5845-5849, 1993. PMID: 1608975. DOI: 10.1073/pnas.89.12.5845

8 Wang X, Fu X and Hoffman RM: A new patient-like metastatic model of human lung cancer constructed orthotopically with intact tissue via thoracotomy in immunodeficient mice. Int J Cancer 51: 992-995, 1992. PMID: 1639545. DOI: 10.1002/ijc.2910510626

9 Hiroshima Y, Zhang Y, Zhang N, Maawy A, Mii S, Yamamoto M, Uehara F, Miwa S, Yano S, Murakami T, Momiyama M, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Murata T, Endo I and Hoffman RM: Establishment of a patient-derived orthotopic xenograft (PDOX) model of HER-2-positive cervical cancer
expressing the clinical metastatic pattern. PLoS One 10: e0117417, 2015. PMID: 25689852. DOI: 10.1371/journal.pone.0117417

10 Fu X, Besterman JM, Monosov A and Hoffman RM: Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc Natl Acad Sci USA 88: 9345-9349, 1991. PMID: 1924398. DOI: 10.1073/pnas.88.20.9345

11 Mettildi CA, Kaushal S, Luiken GA, Talamini MA, Hoffman RM and Bouvet M: Fluorescently labeled chimeric anti-CEA antibody improves detection and resection of human colon cancer in a patient-derived orthotopic xenograft (PDOX) nude mouse model. J Surg Oncol 109: 451-458, 2014. PMID: 24249594. DOI: 10.1002/jso.23507

12 Furukawa T, Kubota T, Watanabe M, Kitajima M, Hoffman RM.: Orthotopic transplantation of histologically intact clinical specimens of stomach cancer to nude mice: Correlation of metastatic sites in mouse and individual patient donors. Int J Cancer 53: 608-612, 1993. PMID: 8436434. DOI: 10.1002/jic.2910530414

13 Murakami T, DeLong J, Eilber FC, Zhao M, Zhang Y, Zhang N, Singh A, Russell T, Deng S, Reynoso J, Quan C, Hiroshima Y, Matsuyama R, Chishima T, Tanaka K, Bouvet M, Chawla S, Endo I and Hoffman RM: Tumor-targeting Salmonella typhimurium A1-R in combination with doxorubicin eradicates soft tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) model. Oncotarget 7: 12783-12790, 2016. PMID: 26859573. DOI: 10.18632/oncotarget.7226

14 Kiyuna T, Murakami T, Tome Y, Kawaguchi K, Igarashi K, Zhang Y, Zhao M, Li, You M, Bouvet M, Singh A, Dry S, Eilber FC and Hoffman RM: High efficacy of tumor-targeting Salmonella typhimurium A1-R on a doxorubicin- and dactolisib-resistant follicular dendritic-cell sarcoma in a patient-derived orthotopic xenograft PDOX nude mouse model. Oncotarget 7: 33046-33054, 2016. PMID: 27105519. DOI: 10.18632/oncotarget.8848

15 Igarashi K, Kawaguchi K, Kiyuna T, Murakami T, Miwa S, Nelson SD, Dry SM, Li Y, Singh A, Kimura H, Hayashi K, Yamamoto N, Tsuchiya H, Eilber FC and Hoffman RM: Patient-derived orthotopic xenograft (PDOX) mouse model of adult rhabdomyosarcoma invades and recurs after resection on condition to the subcutaneous ectopic model. Cell Cycle 16: 91-94, 2017. PMID: 27830986. DOI: 10.1080/15384101.2016.1252885

16 Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyaki M, Yamamoto N, Hayashi K, Kimura H, Miwa S, Higuchi T, Singh AS, Chmielowski B, Nelson SD, Russell TA, Eckardt MA, Dry SM, Li Y, Singh SR, Chawla SP, Eilber FC, Tsuchiya H and Hoffman RM: Metabolic targeting with recombining methioninase combined with palbociclib regresses a doxorubicin-resistant dedifferentiated liposarcoma. Biochem Biophys Res Commun 506: 912-917, 2018. PMID: 30392912. DOI: 10.1016/j.bbrc.2018.10.119

17 Schöffski P: Pazopanib in the treatment of soft tissue sarcoma. Expert Rev Anticancer Ther 12: 711-723, 2012. PMID: 22716487. DOI: 10.1586/era.12.41

18 Van Der Graaf WTA, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, Schöffski P, Aglietta M, Staddon AP, Beppu Y, Le Cesne A, Gelderblom H, Judson IR, Araki N, Ouali M, Marreaud S, Hodge R, Dewji MR, Coens C, Demetri GD, Fletcher CD, Dei Tos AP and Hohenberger P: Pazopanib for metastatic soft-tissue sarcoma (PALAETTE): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 79: 1879-1886, 2012. PMID: 22595799. DOI: 10.1016/S0140-6736(12)60651-5

19 Hertel LW and Lawrence TS: Metabolism of 2',2'-Difluoro-2'-Deoxycuridine and radiation sensitization of human colon carcinoma cells. Cancer Res 54: 3218-3223, 1994. PMID: 8205542.

20 Iwasaki H, Huang P, Keating MJ and Plunkett W: Differential incorporation of ara-C, gemcitabine, and fluoradarbine into replicating and repairing DNA in proliferating human leukemia cells. Blood 90: 270-278, 1997. PMID: 9207462.

21 Huang P, Chubb S, Hertel LW, Grindey GB and Plunkett W: Action of 2',2'-difluorodeoxycuridine on DNA synthesis. Cancer Res 51: 6110-6117, 1991. PMID: 1718594.

22 Ross DD and Cuddy DP: Molecular effects of 2,2'-difluorodeoxycuridine (gemcitabine) on DNA replication in intact HL-60 cells. Biochem Pharmacol 48: 1619-1630, 1994. PMID: 7980627. DOI: 10.1016/0006-2952(94)90207-0

23 Schiib PF, Fant J and Horwitz SB: Promotion of microtubule assembly in vitro by taxol. Nature 277: 665-667, 1979. PMID: 423966. DOI: 10.1038/277665a0

24 Rowinsky EK, Onetto N, Canetta RM and Arbuck SG: Taxol: The first of the taxanes, an important new class of antitumor agents. Semin Oncol 19: 646-662, 1992. PMID: 1361079.

25 Smorenburg CH, Sparreboom A, Bontenbal M and Verweij J: Combination chemotherapy of the taxanes and antimebolitas: Its use and limitations. Eur J Cancer 37: 2310-2323, 2001. PMID: 11720827. DOI: 10.1016/s0959-8049(01)00309-4

26 Leu KM, Ostruszka LJ, Shewach D, Zalupski M, Sondak V, Sybil Biertnann J, Lee JSI, Couwlier C, Palazzolo K and Baker LH: Laboratory and clinical evidence of synergistic cytotoxicity of sequential treatment with gemcitabine followed by docetaxel in the treatment of sarcoma. J Clin Oncol 22: 1706-1712, 2004. PMID: 15117993. DOI: 10.1200/JCO.2004.08.043

27 Alexopoulos A, Tryfonopoulos D, Karamouzis M V., Gerasimidis G, Karydas I, Kandlis L, Stavrakakis J, Stavrirides H, Georganta C, Ardavanis A and Rigatos G: Evidence for in vivo synergism between docetaxel and gemcitabine in patients with metastatic breast cancer. Ann Oncol 15: 95-99, 2004. PMID: 14679126. DOI: 10.1093/annonc/mdh028

28 Hensley ML, Maki R, Venkatraman E, Geller G, Lovegren M, Aghajanian C, Sabbatini P, Tong W, Barakat R and Spriggs DR: Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: Results of a phase II trial. J Clin Oncol 20: 2824-2831, 2002. PMID: 12065559. DOI: 10.1200/JCO.2002.11.050

29 Maki RG, Wathen JK, Patel SR, Priebat DA, Okuno SH, Samuels B, Fanucchi M, Harmon DC, Schuetze SM, Reinke D, Thall PF, Benjamin RS, Baker LH and Hensley ML: Randomized Phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: Results of sarcoma alliance for research through collaboration study 002. J Clin Oncol 25: 2755-2763, 2007. PMID: 17602081. DOI: 10.1200/JCO.2006.10.417

30 Bay JO, Ray-Coquard I, Fayette J, Leyvraz S, Cherix S, Pipperno-Neumann S, Chevreau C, Isambert N, Brain E, Emile G, Le Cesne A, Cioffi A, Kwiatkowski F, Coindre JM, Bui NB, Peyrade F and Blay JY: Docetaxel and gemcitabine combination in 133 advanced soft-tissue sarcomas: A retrospective analysis. Int J Cancer 119: 706-711, 2006. PMID: 16496406. DOI: 10.1002/jic.21867

31 Cuevas C and Francesch A: Development of Yondelis® (trabectedin, ET-743): A semisynthetic process solves the supply problem. Nat Prod Rep 26: 322-337, 2009. PMID: 19240944. DOI: 10.1039/b808331m
32 Le Cesne A, Ray-Coquard I, Duffaud F, Chevreau C, Penel N, Bui Nguyen B, Piperno-Neumann S, Delcambre C, Rios M, Chaigneau L, Le Maignan C, Guillemet C, Bertucci F, Bomnap E, Linassier C, Olivier T, Kurtz JE, Even C, Cousin P and Yves J: Trabectedin in patients with advanced soft tissue sarcoma: A retrospective national analysis of the French Sarcoma Group. Eur J Cancer 51: 742-750, 2015. PMID: 25727882. DOI: 10.1016/j.ejca.2015.01.006

33 Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zuccchetti M, Pasqualini F, Nebuloni M, van Rooijen N, Mortarini R, Beltrame L, Marchini S, Fusco Nerini I, Sanfilippo R, Casali PG, Pilotti S, Galmarini CM, Anichini A, Mantovani A, D’Incalci M and Allavenna P: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23: 249-262, 2013. PMID: 23410977. DOI: 10.1016/j.ccr.2013.01.008

34 Tisdale MJ: Antitumour imidazotetrazines – XV. Biochem Pharmacol 39 Garcia Del Muro X, Lopez-Pousa A, Martin J, Buesa JM, Houghton PJ, Stewart CF, Cheshire PJ, Richmond LB, Kirstein MN, Poquette CA, Tan M, Friedman HS and Brent TP: Biochemical correlates of temozolomide sensitivity in pediatric solid tumor xenograft models. Clin Cancer Res 6: 457-462, 1997. DOI: 10.1080/0006-2952(76)90351-0

35 Yung WKA, Prados MD, Yaya-Tur R, Rosenfeld SM, Bui Nguyen B, Piperno-Neumann S, Fuso Nerini I, Sanfilippo R, Casali PG, Pilotti S, Galmarini CM, Anichini A, Mantovani A, D’Incalci M and Allavenna P: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23: 249-262, 2013. PMID: 23410977. DOI: 10.1016/j.ccr.2013.01.008

36 Bleehen NM, Newlands ES, Lee SM, Thatcher N, Selby P, Yung WKA, Prados MD, Yaya-Tur R, Rosenfeld SS, Bui Nguyen B, Piperno-Neumann S, Fuso Nerini I, Sanfilippo R, Casali PG, Pilotti S, Galmarini CM, Anichini A, Mantovani A, D’Incalci M and Allavenna P: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23: 249-262, 2013. PMID: 23410977. DOI: 10.1016/j.ccr.2013.01.008

37 Middlemas DS, Stewart CF, Kirstein MN, Poquette C, Friedman HS, Houghton PJ and Brent TP: Biochemical correlates of temozolomide sensitivity in pediatric solid tumor xenograft models. Clin Cancer Res 6: 998-1007, 2000. PMID: 10741727.

38 Houghton PJ, Stewart CF, Cheshire PJ, Richmond LB, Kirstein MN, Poquette CA, Tan M, Friedman HS and Brent TP: Antitumor activity of temozolomide combined with irinotecan is partly independent of O6-methylguanine-DNA methyltransferase and mismatch repair phenotypes in xenograft models. Clin Cancer Res 6: 4110-4118, 2000. PMID: 11051264.

39 Garcia Del Muro X, Lopez-Pousa A, Martin J, Buesa JM, Martinez-Trufero J, Casado A, Poveda A, Cruz J, Bover I and Jaurel M: A phase II trial of temozolomide in patients with advanced soft tissue sarcoma: A study by the spanish group for research on sarcomas. Cancer 104: 1706-1712, 2005. PMID: 15134771. DOI: 10.1002/cncr.21384

40 Binh MBN, Sastre-Garau X, Guillou L, Pinieux G de, Terrier P, Lagace R, Aurias A, Hostein I and Coindre JM: MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes. Am J Surg Pathol 29: 1340-1347, 2005. PMID: 16160477. DOI: 10.1099/ps.0.000170343.09562.39

41 Sirvent N, Coindre J-M, Maire G, Hostein I, Keslair F, Guillou L, Ranchere-Vince D, Terrier P and Pedeutour F: Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 20 paraffin-embedded tumor samples: Utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol 31: 1476-1489, 2007. PMID: 17895748. DOI: 10.1097/PAS.0b013e3180581ff

42 Tap WD, Eilber FC, Ginther C, Dry SM, Reese N, Barzan-Smith K, Chen H-W, Wu H, Eilber FR, Slamon DJ and Anderson L: Evaluation of well-differentiated/de-differentiated liposarcomas by high-resolution oligonucleotide array-based comparative genomic hybridization. Genes Chromosom Cancer 50: 95-112, 2011. PMID: 21117066. DOI: 10.1002/gcc.20835

43 Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, DeCarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, Mermel CH, Getz G, Antipin Y, Beroukhim R, Major JO, Hatton C, Nicoletto R, Hanna M,Sharpe T, Fennell TJ, Cibulskis K, Onofrio RC, Saito T, Shukla N, Lau C, Nolander S, Silver SJ, Sougnez C, Viale A, Winckler W, Maki RG, Garraway LA, Lash A, Greulich H, Root DE, Sellers WR, Schwartz GK, Antonescu CR, Lander ES, Varmus HE, Ladanyi M, Sander C, Meyerson M and Singer S: Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 42: 715-721, 2010. PMID: 20601955. DOI: 10.1038/ng.619

44 Bai R, Paull KD, Herald CL, Malspeis L, Pettit GR and Hamel E: Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin: Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem 266: 15882-15889, 1991. PMID: 1874739.

45 Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, Aalfs WK, Zheng W, Seletsky BM, Palme MH, Habgood GJ, Singer LA, Diptieto L.V., Wang Y, Chen JJ, Quincy DA, Davis A, Yoshimatsu K, Kishi Y, Yu MJ and Littlefield BA: In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res 61: 1013-1021, 2001. PMID: 11221827.

46 Jordan MA and Wilson L: Microtubules as a target for anticancer drugs. Nat Rev Cancer 4: 253-265, 2004. PMID: 15057285. DOI: 10.1038/nrc1317

47 Okouneva T, Azarenko O, Wilson L, Littlefield BA and Jordan MA: Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase. Mol Cancer Ther 7: 2003-2011, 2008. PMID: 18645010. DOI: 10.1186/1535-7163-MCT-08-0099

48 Ci glam T and Vahdat LT: Eribulin mesylate for the treatment of metastatic breast cancer. Expert Opin Pharmacother 11: 1587-1593, 2010. PMID: 20450446. DOI: 10.1517/14656566.2010.486790

49 Emambux S and Italiano A: Clinical efficacy of eribulin mesylate for the treatment of metastatic soft tissue sarcoma. Expert Opin Pharmacother 18: 819-824, 2017. PMID: 28468516. DOI: 10.1080/14656566.2017.1326908

50 Kawaguchi K, Igarashi K, Murakami T, Chmielowski B, Kiyuna T, Zhao M, Zhang Y, Singh A, Unno M, Nelson SD, Russell TA, Dry SM, Li E, Eilber FC and Hoffman RM: Tumor-targeting Salmonella typhimurium A1-R combined with temozolomide regresses malignant melanoma with a BRAF-V600E mutation in a patient-derived orthotopic xenograft (PDXO) model. Oncotarget 7: 85929-85936, 2016. PMID: 27835903. DOI: 10.18632/oncotarget.13231

51 Hiroshima Y, Maawy A, Zhang Y, Zhang N, Murakami T, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Endo I and Hoffman RM: Patient-derived mouse models of cancer need to be orthotopic in order to evaluate targeted anti-metastatic therapy. Oncotarget 7: 71696-71702, 2016. PMID: 27765934. DOI: 10.18632/oncotarget.13232

52 Oshiro H, Kiyuna T, Tome Y, Miyake K, Kawaguchi K, Higuchi T, Miyake M, Zhang Z, Raszmiioe S, Barani M, Wangsricharoen Igarashi et al: Eribulin Regresses a Dedifferentiated Liposarcoma PDOX
PDGFRA-activated liposarcoma patient-derived orthotopic xenograft (PDOX) nude mouse model. BMC Cancer 18: 840, 2018. PMID: 29737543. DOI: 10.1002/jcb.26792

Higuchi T, Kawaguchi K, Miyake K, Oshiro H, Zhang Z, Razmjooei S, Wangsiricharoen S, Igarashi K, Yamamoto N, Hayashi K, Kimura H, Miwa S, Nelson SD, Dry SM, Li Y, Chawla SP, Eilber FC, Singh SR, Tsutsui H and Hoffman RM: The combination of gemcitabine and nab-paclitaxel as a novel effective treatment strategy for undifferentiated soft-tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Biomed Pharmacother 117: 835-840, 2019. PMID: 30616082. DOI: 10.1016/j.biopha.2018.12.110

Murakami T, Singh AS, Kiyuna T, Dry SM, Li Y, James AW, Igarashi K, Kawaguchi K, DeLong JC, Zhang Y, Hiroshima Y, Russell T, Eckardt MA, Yamagawa J, Federman N, Matsuyma R, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC and Hoffman RM: Effective molecular targeting of CDK4/6 and IGF-1R in a rare FUS-ERG fusion CDKNA2A deletion doxorubicin-resistant Ewing’s sarcoma patient-derived orthotopic xenograft (PDOX) nude mouse model. Oncotarget 7: 47556-47564, 2016. PMID: 27286459. DOI: 10.18632/oncotarget.9879

Miyake K, Kawaguchi K, Kiyuna T, Miyake M, Igarashi K, Zhang Z, Murakami T, Li Y, Nelson SD, Elliott I, Russell T, Singh A, Hiroshima Y, Momiyma M, Matsuyma R, Bouvet M, Chawla SP, Eilber FC, Singh SR, Endo I, Hoffman RM: Regorafenib regresses an imatinib-resistant recurrent gastrointestinal stromal tumor (GIST) with a mutation in exons 11 and 17 of c-kit in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Cell Cycle 17: 722-727, 2018. PMID: 27286459. DOI: 10.18632/oncotarget.9879

Miyake K, Kiyuna T, Kawaguchi K, Higuchi T, Oshiro H, Zhang Z, Wangsiricharoen S, Razmjooei S, Li Y, Nelson SD, Murakami T, Hiroshima Y, Matsuyma R, Bouvet M, Chawla SP, Singh SR, Endo I, Hoffman RM: Regorafenib regressed a doxorubicin-resistant Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Cancer Chemoher Pharmacol 83: 809-815, 2019. PMID: 30758647. DOI: 10.1007/s00280-019-03782-w.

Hoffman RM: Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17(4): 343-359, 1999. PMID: 10759402. DOI: 10.1023/a:1006326203858

Hoffman RM: Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer 15(8): 451-452, 2015. PMID: 26422835. DOI: 10.1038/nrc3972

Hoffman RM: Orthotopic is orthodox: why are orthotopic-transplant metastatic models different from all other models? J Cell Biochem 56(1): 1-3, 1993. PMID: 7806583. DOI: 10.1002/jcb.240560102

Yang M, Reynoso J, Bouvet M and Hoffman RM: A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment. J Cell Biochem 106(2): 279-84, 2009. PMID: 19097136. DOI: 10.1002/jcb.21999

Igarashi K, Kawaguchi K, Murakami T, Miyake K, Kiyuna T, Miyake M, Hayashi K, Higuchi T, Eilber FC, and Hoffman RM: The combination of gemcitabine and nab-paclitaxel as a novel effective treatment strategy for undifferentiated soft-tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Biomed Pharmacother 117: 835-840, 2019. PMID: 30616082. DOI: 10.1016/j.biopha.2018.12.110

Received March 25, 2020
Revised April 14, 2020
Accepted April 21, 2020