On Tighter Generalization Bounds for Deep Neural Networks: CNNs, ResNets, and Beyond

Xingguo Li, Junwei Lu, Zhaoran Wang, Jarvis Haupt, and Tuo Zhao

Abstract

We propose a generalization error bound for a general family of deep neural networks based on the depth and width of the networks, as well as the spectral norm of weight matrices. Through introducing a novel characterization of the Lipschitz properties of neural network family, we achieve a tighter generalization error bound. We further obtain a result that is free of linear dependence on norms for bounded losses. Besides the general deep neural networks, our results can be applied to derive new bounds for several popular architectures, including convolutional neural networks (CNNs), residual networks (ResNets), and hyperspherical networks (SphereNets). When achieving same generalization errors with previous arts, our bounds allow for the choice of much larger parameter spaces of weight matrices, inducing potentially stronger expressive ability for neural networks.

1 Introduction

We aim to provide a theoretical justification for the enormous success of deep neural networks (DNNs) in real world applications (He et al., 2016; Collobert et al., 2011; Goodfellow et al., 2016). In particular, our paper focuses on the generalization performance of a general class of DNNs. The generalization bound is a powerful tool to characterize the predictive performance of a class of learning models for unseen data. Early studies investigate the generalization ability of shallow neural networks with no more than one hidden layer (Bartlett, 1998; Anthony and Bartlett, 2009). More recently, studies on the generalization bounds of deep neural networks have received increasing attention (Dinh et al., 2017; Bartlett et al., 2017; Golowich et al., 2017; Neyshabur et al., 2015, 2017). There are two major questions of our interest in these analysis of the generalization bounds:
(Q1) Can we establish tighter generalization error bounds for deep neural networks in terms of the network dimensions and structure of the weight matrices?

(Q2) Can we develop generalization bounds for neural networks with special architectures?

For (Q1), (Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2017; Golowich et al., 2017) have established results that characterize the generalization bounds in terms of the depth D and width p of networks and norms of weight matrices. For example, Neyshabur et al. (2015) provide an exponential bound on D based on the Frobenius norm $\|W_d\|_F$, where W_d is the weight matrix of d-th layer; Bartlett et al. (2017); Neyshabur et al. (2017) provide a polynomial bound on p and D based on $\|W_d\|_2$ (spectral norm) and $\|W_d\|_{2,1}$ (sum of the Euclidean norms for all rows of W_d). Golowich et al. (2017) provide a nearly size independent bound based on $\|W_d\|_F$.

Nevertheless, the generalization bound depends on other than the spectral norms of the weight matrices may be too loose. In specific, $\|W_d\|_F (\|W_d\|_{2,1})$ is in general \sqrt{p} (p) times larger than $\|W_d\|_2$. Given m training data points and suppose $\|W_d\|_2 = 1$ for ease of discussion, Bartlett et al. (2017) and Neyshabur et al. (2017) demonstrate generalization error bounds as $\tilde{O}(\sqrt{D^3p^2/m})$, and Golowich et al. (2017) achieve a bound $\tilde{O}(p^{D/2} \min(m^{-1/4}, \sqrt{D/m}))$, where $\tilde{O}()$ represents the rate by ignoring logarithmic factors. In comparison, we show a tighter generalization error bound as $\tilde{O}(\sqrt{Dp^2/m})$, which is significantly smaller than existing results and achieved based on a new Lipschitz analysis for DNNs in terms of both the input and weight matrices. We notice that some recent results characterize the generalization bound in more structured ways, e.g., by considering specific error-resilience parameters (Arora et al., 2018), which can achieve empirically improved generalization bounds than existing ones based on the norms of weight matrices. However, it is not clear how the weight matrices explicitly control these parameters, which makes the results less interpretable. Thus, we do not compare with these types of results. We summarize the comparison between existing norm based generalization bounds with our results in Table 1, as well as the results when $\|W_d\|_2 = 1$ for more explicit comparison in terms of the network sizes (i.e, depth and width).

For (Q2), we consider several widely used architectures to demonstrate, including convolutional neural networks (CNNs) (Krizhevsky et al., 2012), residual networks (ResNets) (He et al., 2016), and hyperspherical networks (SphereNets) (Liu et al., 2017b). By taking their structures of weight matrices into consideration, we provide tight characterization of their resulting capacities. In particular, we consider orthogonal filters and normalized weight matrices, which show good performance in both optimization and generalization (Mishkin and Matas, 2015; Xie et al., 2017). This is closely related with normalization frameworks, e.g., batch normalization (Ioffe and Szegedy, 2015) and layer normalization (Ba et al., 2016), which have achieved great empirical performance (Liu et al., 2017a; He et al., 2016). Take CNNs as an example. By incorporating the orthogonal structure of convolutional filters, we achieve $\tilde{O}(\left(\frac{1}{\xi}\right) \frac{D}{\sqrt{Dk^2/m}})$, while Bartlett et al. (2017); Neyshabur et al. (2017) achieve $\tilde{O}(\left(\frac{1}{\xi}\right) \frac{D^{1/4}}{\sqrt{D^3p^2/m}})$ and Golowich et al. (2017) achieve $\tilde{O}(p^{D/2} \min\left(\frac{1}{\sqrt{m}}, \sqrt{D/m}\right)$, where k is the filter size that satisfies $k \ll p$ and s is stride size that is usually
Table 1: Comparison of existing results with ours on norm based generalization error bounds for DNNs. For ease of illustration, we suppose the upper bound of input norm R and the Lipschitz constant $\frac{1}{\gamma}$ of the class of loss functions \mathcal{G} are generic constants. We use $B_{d,2}$, $B_{d,F}$, and $B_{d,2->1}$ as the upper bounds of $\|W_d\|_2$, $\|W_d\|_F$, and $\|W_d\|_{2,1}$ respectively. For notational convenience, we suppose the width $p_d = p$ for all layers $d = 1, \ldots, D$. We further show the results when $\|W_d\|_2 = 1$ for all $d = 1, \ldots, D$, where $\|W_d\|_F = \mathcal{O}(\sqrt{p})$ and $\|W_d\|_{2,1} = \mathcal{O}(p)$ in generic scenarios.

Generalization Bound	Original Results	$\|W_d\|_2 = 1$
Neyshabur et al. (2015)	$\mathcal{O}\left(\frac{2^n \Pi_{d=1}^D B_{d,2}}{\sqrt{m}}\right)$	$\mathcal{O}\left(\frac{2^D p^{D/2}}{\sqrt{m}}\right)$
Bartlett et al. (2017)	$\mathcal{O}\left(\frac{\Pi_{d=1}^D B_{d,2}}{\sqrt{m}} \left(\sum_{d=1}^D B_{d,2}^{2d-1} B_{d,2}^{-1}\right)^{1/2}\right)$	$\mathcal{O}\left(\frac{\sqrt{D^2 p^2}}{\sqrt{m}}\right)$
Neyshabur et al. (2017)	$\mathcal{O}\left(\frac{\Pi_{d=1}^D B_{d,2}}{\sqrt{m}} \sqrt{D^2 p \sum_{d=1}^D B_{d,F}^2}\right)$	$\mathcal{O}\left(\frac{\sqrt{D^2 p^2}}{\sqrt{m}}\right)$
Golowich et al. (2017)	$\mathcal{O}\left(\frac{\Pi_{d=1}^D B_{d,F} \cdot \min \left\{ \frac{1}{\sqrt{m}}, \sqrt{\frac{D}{m}} \right\}}{\sqrt{m}}\right)$	$\mathcal{O}\left(\frac{\sqrt{D^2 p^2}}{\sqrt{m}}\right)$
Our results	Theorem 1: $\tilde{\mathcal{O}}\left(\frac{\Pi_{d=1}^D B_{d,F} \sqrt{D^2 p^2}}{\sqrt{m}}\right)$	$\mathcal{O}\left(\frac{\sqrt{D^2 p^2}}{\sqrt{m}}\right)$

of the same order with k; see Section 4.1 for details. Here we achieve stronger results in terms of both depth D and width p for CNNs, where our bound only depend on k rather than p. Some recent result achieved results that is free of the linear dependence on the weight matrix norms by considering networks with bounded outputs (Zhou and Feng, 2018). We can achieve similar results using bounded loss functions as discussed in Section 3.2, but do not restrict ourselves to this scenario in general. Analogous improvement is also attained for ResNets and SphereNets. In addition, we consider some widely used operations for width expansion and reduction, e.g., padding and pooling, and show that they do not increase the generalization bound. Further numerical evaluation is provided for quantitative comparison in Section 4.5.

Our tighter bounds result in potentially stronger expressive power, hence higher training/testing accuracy for the DNNs. In particular, when achieving the same order of generalization errors, we allow the choice of a larger parameter space with deeper/wider networks and larger matrix spectral norms. We further show numerically that a larger parameter space can lead to better empirical performance. Quantitative analysis for the expressive power of DNNs is of great interest on its own, which includes (but not limited to) studying how well DNNs can approximate general class of functions and distributions (Cybenko, 1989; Hornik et al., 1989; Funahashi, 1989; Barron, 1993, 1994; Lee et al., 2017; Petersen and Voigtlaender, 2017; Hanin and Sellke, 2017), and quantifying the computation hardness of learning neural networks; see e.g., Shamir (2016); Eldan and Shamir (2016); Song et al. (2017). We defer our investigation toward this to future efforts.

Notation. Given an integer $n > 0$, we define $[n] = \{1, \ldots, n\}$. Given a vector $x \in \mathbb{R}^p$, we denote x_i as the i-th entry, and $x_{i:j}$ as a sub-vector indexed from i-th to j-th entries of x. Given a matrix
\(A \in \mathbb{R}^{n \times m} \), we denote \(A_{ij} \) as the entry corresponding to \(i \)-th row and \(j \)-th column, \(A_{i:} \) (\(A_i \)) as the \(i \)-th row (column), \(A_I, I_2 \) as a submatrix of \(A \) indexed by the set of rows \(I_1 \subseteq [n] \) and columns \(I_2 \subseteq [m] \), \(\| A \| \) as a generic norm, \(\| A \|_2 \) as the spectral norm, \(\| A \|_F \) as the Frobenius norm, and \(\| A \|_{2,1} = \sum_{i=1}^n \| A_i \|_2 \). We write \(\{ a_i \}_{i=1}^n = \{ a_1, \ldots, a_n \} \) as a set containing a sequence of size \(n \). Given two real values \(a, b \in \mathbb{R}^* \), we write \(a \leq (\leq) b \) if \(a \leq (\geq) b \) for some generic constant \(c > 0 \). We use the standard notations \(O(\cdot) \) and \(\Omega(\cdot) \) to denote limiting behaviors ignoring constants, and \(\widetilde{O}(\cdot) \) and \(\widetilde{\Omega}(\cdot) \) to further ignore logarithmic factors.

2 Preliminaries

We provide a brief introduction to the generalization error bound; see Kearns and Vazirani (1994); Mohri et al. (2012) for more details. To start with, the output of a class of \(D \)-layer neural networks with bounded norm for weight matrices \(\mathcal{W}_D = \{ W_d \in \mathbb{R}^{p_d \times p_{d-1}} \}_{d=1}^D \) is denoted as

\[
\mathcal{F}_{D,\|\cdot\|} = \{ f(W_D, x) = f_{W_1}(\cdots f_{W_D}(x)) \in \mathbb{R}^{p_D} \mid \forall d \in [D], W_d \in \mathcal{W}_D, \| W_d \| \leq B_d \},
\]

where \(x \in \mathbb{R}^{p_{D-1}} \) is an input, \(f_{W_d}(y) = \sigma_d(W_d \cdot y) : \mathbb{R}^{p_{d-1}} \rightarrow \mathbb{R}^{p_d} \) with an entry-wise activation function \(\sigma_d(\cdot) \), e.g., the rectified linear unit (ReLU) activation (Nair and Hinton, 2010) and the sigmoid activation, and \(\{ B_d \}_{d=1}^D \) are real positive constants. For ease of discussion, we fix the activation function to be the ReLU throughout this paper. The extension to more general activations, e.g., Lipschitz continuous functions, is straightforward. We will specify the norm \(\| \cdot \| \) and the corresponding upper bounds \(B_d \), e.g., \(\| \cdot \|_2 \) and \(B_{d,2} \), or \(\| \cdot \|_F \) and \(B_{d,F} \), when necessary.

Then we denote a class of loss functions measuring the discrepancy between a DNN’s output \(f(W_D, x) \) and the corresponding observation \(y \in \mathcal{Y}_m \) for a given input \(x \in \mathcal{X}_m \) as

\[
\mathcal{G}(\mathcal{F}_{D,\|\cdot\|}) = \{ g(f(W_D, x), y) \in \mathbb{R} \mid x \in \mathcal{X}_m, y \in \mathcal{Y}_m, f(\cdot, \cdot) \in \mathcal{F}_{D,\|\cdot\|} \},
\]

where the sets of bounded inputs \(\mathcal{X}_m \) and the corresponding observations \(\mathcal{Y}_m \) are

\[
\mathcal{X}_m = \{ x_i \in \mathbb{R}^{p_D} \mid \| x_i \|_2 \leq R \text{ for all } i \in [m] \} \subseteq \mathcal{X} \text{ and } \mathcal{Y}_m = \{ y_i \in [p_D] \text{ for all } i \in [m] \} \subseteq \mathcal{Y}.
\]

Then the empirical Rademacher complexity (ERC) of \(\mathcal{G}(\mathcal{F}_{D,\|\cdot\|}) \) given \(\mathcal{X}_m \) and \(\mathcal{Y}_m \) is

\[
\mathcal{R}_m(\mathcal{G}(\mathcal{F}_{D,\|\cdot\|})) = \mathbb{E}_{\epsilon \in \{ \pm 1 \}^m} \left[\sup_{g \in \mathcal{G}, f(\cdot, \cdot) \in \mathcal{F}_{D,\|\cdot\|}} \left| \frac{1}{m} \sum_{i=1}^m \epsilon_i \cdot g(f(W_D, x_i), y_i) \right| \right]_{\mathcal{X}_m, \mathcal{Y}_m},
\]

where \(\{ \pm 1 \}^m \subseteq \mathbb{R}^m \) is the set of vectors only containing entries +1 and −1, and \(\epsilon \in \mathbb{R}^m \) is a vector with Rademacher entries, i.e., \(\epsilon_i = +1 \) or −1 with equal probabilities.

Take the classification as an example. For multi-class classification, suppose \(p_D = N_{\text{class}} \) is the number of classes. Consider \(\mathcal{G} \) with bounded outputs, namely the ramp risk. Specifically, for an input \(x \) belonging to class \(y \in [N_{\text{class}}] \), we denote \(v = (f(W_D, x))_y - \max_{i \neq y} (f(W_D, x))_i \).
For a given real value $\gamma > 0$, the class of ramp risk functions with parameter γ is $\mathcal{G}_\gamma(F_{D,\| \cdot \|}) = \{ g_\gamma(f(W_D,x),y) \mid f_D \in F_{D,\| \cdot \|} \}$, where g_γ is $\frac{1}{\gamma}$-Lipschitz continuous, defined as

$$g_\gamma(f(W_D,x),y) = \begin{cases} 0, & v > \gamma \\ 1 - \frac{v}{\gamma}, & v \in [0,\gamma] \\ 1, & v < 0, \end{cases} \quad (3)$$

For convenience, we denote $g_\gamma(f(W_D,x),y)$ as $g_\gamma(f(W_D,x))$ (or g_γ) in the rest of the paper.

Then the generalization error bound for PAC learning (Bartlett et al., 2017) (Lemma 3.1) states the following. Given any real value $\delta \in (0,1)$ and $g_\gamma \in \mathcal{G}_\gamma$, with probability at least $1 - \delta$, we have that the generalization error is upper bounded with respect to (w.r.t.) the ERC of \mathcal{G}_γ as

$$\mathbb{E}[g_\gamma(f(W_D,x))] - \frac{1}{m} \sum_{i=1}^{m} g_\gamma(f(W_D,x_i)) \leq 2\mathcal{R}_m(\mathcal{G}_\gamma(F_{D,\| \cdot \|})) + 3\sqrt{\log \left(\frac{\gamma}{\delta} \right) \frac{\log(\frac{2}{\delta})}{2m}}. \quad (4)$$

The right hand side of (4) is viewed as a guaranteed error bound for the gap between the testing and the empirical training performance. Since the ERC is generally the dominating term in (4), a small \mathcal{R}_m is desired for DNNs given the loss function \mathcal{G}_γ. Analogous results hold for regression tasks; see e.g., Mohri et al. (2012) for details. Analyzing the ERC of DNNs and several popular architectures in terms of their sizes and weight matrix structures will be the main focus of our paper.

3 Generalization Error Bound for DNNs

Our major focus here is to provide tighter bounds w.r.t. the network sizes based on the spectral norm of weight matrices. A refined result, which is free of the linear dependence on the spectral norm, is provided when the loss function is additionally bounded.

3.1 A Tighter ERC Bound for DNNs

We first provide the ERC bound for the class of DNNs defined in (1) and Lipschitz loss functions in the following theorem. The proof is provided in Appendix A.

Theorem 1. Let \mathcal{G}_γ be a class of $\frac{1}{\gamma}$-Lipschitz loss functions and $F_{D,\| \cdot \|}$ be the class of D-layer networks defined in (1) with spectrally bounded weight matrices, where σ_d is the ReLU activation and $p_d = p$ for all $d \in [D]$. Then the ERC satisfies

$$\mathcal{R}_m(\mathcal{G}_\gamma(F_{D,\| \cdot \|})) = O\left(\frac{R \cdot \prod_{d=1}^{D} B_{d,2}}{\gamma \sqrt{m}} \cdot \sqrt{Dp^2 \log \left(\frac{\gamma \sqrt{Dm} \cdot \max_d B_{d,2}}{\min_d B_{d,2}} \right)} \right). \quad (5)$$
For convenience, we treat R/γ as a constant here. We achieve $\tilde{O}(\prod_{d=1}^{D} b_{d,2} \cdot \sqrt{Dp^2/m})$ in Theorem 1, which is tighter than existing results based on the network sizes and norms of weight matrices, as shown in Table 1. In particular, Neyshabur et al. (2015) show an exponential dependence on D, i.e., $O(2^{D} \prod_{d=1}^{D} b_{d,1}/\sqrt{m})$, which can be significantly larger than ours. Bartlett et al. (2017); Neyshabur et al. (2017) demonstrate polynomial dependence on sizes and the spectral norm of weights, i.e., $\tilde{O}(\prod_{d=1}^{D} b_{d,2} \cdot \sqrt{D^3 p^2/m})$. Our result in (5) is tighter by an order of D, which is significant in practice. Note that $\sqrt{p^2}$ may reduce to \sqrt{p} in Bartlett et al. (2017); Neyshabur et al. (2017) when all weight matrices reduce to rank 1. This is a degenerate case as the overall network is reduced to a rank 1 matrix. Even then, our bound is still tighter if $p \leq D^2$, which usually holds in practice for deep networks. More recently, Golowich et al. (2017) demonstrate a bound w.r.t the Frobenius norm as $\tilde{O}(\prod_{d=1}^{D} b_{d,1} \cdot \min\{\sqrt{\frac{D}{m}}, m^{-\frac{1}{2}} \cdot \log^2 (m) \sqrt{\log(C_1)}\})$, where $C_1 = \frac{R \prod_{d=1}^{D} b_{d,1}}{\sup_{x \in X} \|f(x)\|_2}$. This shows a tighter dependence on network sizes. Nevertheless, $\|W_d\|_F$ is generally \sqrt{p} times larger than $\|W_d\|_2$, which results in an exponential dependence $p^{D/2}$ compared with the bound based on the spectral norm. Moreover, $\log(C_1)$ is linear on D except that the stable ranks $\|W_d\|_F/\|W_d\|_2$ across all layers are close to 1. In addition, it has $m^{-\frac{1}{2}}$ dependence rather than $m^{-\frac{1}{4}}$ except when $D = O(\sqrt{m})$. Note that our bounded is obtained using a novel characterization of Lipschitz properties of DNNs, which may be of independent interest from the learning theory point of view. We refer to Appendix A for detailed analysis.

We also remark that when achieving the same order of generalization errors, our result allows the choices of larger dimensions (D, p) and spectral norms of weight matrices, which lead to stronger expressive power for DNNs. For example, when achieving the same bound with $\|W_d\|_2 = 1$ in spectral norm based results (e.g. in ours) and $\|W_d\|_F = 1$ in Frobenius norm based results (e.g., in Golowich et al. (2017)), they only have $\|W_d\|_2 = O(1/\sqrt{p})$ in Frobenius norm based results. The later results in a much smaller space for eligible weight matrices, which may lead to weaker expressive ability of DNNs. We also demonstrate numerically that when norms of weight matrices are constrained to be very small, both training and testing performance degrade significantly; see further discussion in Section 4.5. A quantitative analysis for the tradeoff between the expressive ability and the generalization for DNNs is deferred to a future effort.

3.2 A Spectral Norm Free ERC Bound

When, in addition, the loss function is bounded, we have the ERC bound free of the linear dependence on the spectral norm, as in the following corollary. The proof is provided in Appendix B.

Corollary 1. In addition to the conditions in Theorem 1, suppose we further let the class \mathcal{G}_y be bounded, i.e., $|g_y| \leq b$ for all $g_y \in \mathcal{G}_y$. Then the ERC satisfies

$$R_m(\mathcal{G}_y (\mathcal{F}_{D, \|\cdot\|_2})) = \tilde{O}\left(\min\left\{\frac{R \prod_{d=1}^{D} b_{d,2}}{\gamma}, b\right\} \cdot \frac{1}{\sqrt{m}} \sqrt{Dp^2 \log\left(\gamma \sqrt{Dm} \cdot \max_{y} \frac{b_{d,2}}{\min_{y} b_{d,2}}\right)}\right).$$

The boundedness of \mathcal{G}_y holds for certain loss functions, e.g., the ramp risk defined in (3). When
is constant (e.g., \(b = 1 \) for the ramp risk) and \(R \prod_{d=1}^{D} B_{d,2} \) is large compared with the margin \(\gamma \), we have that the ERC reduces to \(\tilde{O}(\sqrt{Dp^2/m}) \). This is close to the VC dimension of DNNs, which can be significantly tighter than existing norm based bounds in general. Similar results, which are free of linear dependence on \(\prod_{d=1}^{D} B_{d,2} \), are also achieved recently (Zhou and Feng, 2018; Arora et al., 2018). However, they are different in the sense that Arora et al. (2018) depend on error-resilience parameters, such as Jacobian matrices, intermediate layer output and operations, which are not explicitly interpretable as matrix norms, and Zhou and Feng (2018) study the bound only for CNNs rather than general DNNs. Similar norm free results hold for the architectures discussed in Section 4 using argument for Corollary 1, which we skip for ease of discussion.

4 Exploring Network Structures

The generic result in Section 3 does not highlight explicitly the potential impacts for specific structures of the network and weight matrices. In this section, we consider several popular architectures of DNNs, including convolutional neural networks (CNNs) (Krizhevsky et al., 2012), residual networks (ResNets) (He et al., 2016), and hyperspherical networks (SphereNets) (Liu et al., 2017b), and provide sharp characterization of the corresponding generalization bounds. In particular, we consider orthogonal filters and normalized weight matrices, which have shown good performance in both optimization and generalization (Mishkin and Matas, 2015; Xie et al., 2017). Such constraints can be enforced using regularizations on filters and weight matrices, which can be very efficient to implement in practice. This is also closely related with normalization approaches, e.g., batch normalization (Ioffe and Szegedy, 2015) and layer normalization (Ba et al., 2016), which have achieved tremendous empirical success.

4.1 CNNs with Orthogonal Filters

CNNs are one of the most powerful architectures in deep learning, especially in tasks related to images and videos (Goodfellow et al., 2016). We consider a tight characterization of the generalization bound for CNNs by generating the weight matrices using orthogonal filters. Specifically, we generate the weight matrices using a circulant approach, as follows. For the convolutional operation at the \(d \)-th layer, we have \(n_d \) channels of convolution filters, each of which is generated from a \(k_d \)-dimensional feature using a stride side \(s_d \). Suppose that \(s_d \) divides both \(k_d \) and \(p_{d-1} \), i.e., \(\frac{k_d}{s_d} \) and \(\frac{p_{d-1}}{s_d} \) are integers, then we have \(p_d = \frac{n_dp_{d-1}}{s_d} \). This is equivalent to fixing the weight matrix at the \(d \)-th layer to be generated as

\[
W_d = \begin{bmatrix}
W_d^{(1)} & \cdots & W_d^{(n_d)}
\end{bmatrix}^\top \in \mathbb{R}^{p_d \times p_{d-1}},
\]
where for all \(j \in \{n_d\} \), each \(W_d^{(j)} \in \mathbb{R}^{P_d-1 \times s_d} \) is formed in a circulant-like way using a vector \(w^{(j)} \in \mathbb{R}^{k_d} \) with unit norms for all rows as

\[
W_d^{(j)} = \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}_{\in \mathbb{R}^{d-1-k_d}}
\]

The proof is provided in Appendix C.

Theorem 2. Let \(G\gamma \) be the class of \(\frac{1}{\gamma} \)-Lipschitz loss functions and \(F_{D,\|\cdot\|_2} \) be the class of \(D \)-layer CNNs defined in (1), where \(\sigma_d \) is the ReLU activation, \(s_d = s \), \(k_d = k \), and \(s \) divides both \(k \) and \(p_d \) for all \(d \in [D] \). Suppose the weight matrices in CNNs are formed as in (6) and (7) in all layers \(d \in [D] \), where \(\{w^{(j)}\}_{j=1}^{n_d} \) are orthogonal vectors with unit Euclidean norms, i.e., \(w^{(j)\top} w^{(i)} = 0 \) for all \(i, j \in \{n_d\} \) and \(i \neq j \) with \(\|w^{(j)}\|_2 = 1 \) for all \(j \leq n_d \). Then the ERC for CNNs satisfies

\[
\mathcal{R}_m \left(G\gamma \left(F_{D,\|\cdot\|_2} \right) \right) = O \left(\frac{R \cdot \left(\frac{k}{s} \right)^{D/2}}{\gamma \sqrt{m}} \cdot \sqrt{k \sum_{d=1}^{D} n_d \log \left(\gamma \sqrt{Dm} \right)} \right).
\]

Since \(n_d \leq k \) in our setting, the ERC for CNNs is proportional to \(\sqrt{Dk^2} \) instead of \(\sqrt{Dp^2} \). For the orthogonal filtered considered in Corollary 2, we have \(\|W_d\|_F = \sqrt{pd} \) and \(\|W_d\|_{2,1} = p_d \), which lead to the bounds of CNNs in existing results in Table 2. In practice, one usually has \(k_d \leq p_d \), which exhibit a significant improvement over existing results, i.e., \(\sqrt{Dk^2} \ll \sqrt{Dp^2} \). On the other hand, it is widely used in practice that \(k_d \ll p_d \), which are integers for ease of discussion. Consider the input as a \(p_{d-1} \) dimensional vector obtained by vectorizing a \(\sqrt{p_{d-1}} \times \sqrt{p_{d-1}} \) input matrix. When the 2-dimensional (matrix) convolutional filters are of size \(\sqrt{k_d} \times \sqrt{k_d} \), we form the rows of each \(W_d^{(j)} \) by concatenating \(\sqrt{k_d} \) vectors \(\{w^{(j;i)}\}_{i=1}^{\sqrt{k_d}} \) padded with 0's, each of
Table 2: Comparison with existing norm based bounds of CNNs. We suppose R and γ are generic constants for ease of illustration. The results of CNNs in existing works are obtained by substituting the corresponding norms of the weight matrices generated by orthogonal filters, i.e., $\|W_d\|_2 = \sqrt{k_d/s}$, $\|W_d\|_F = \sqrt{p}$, and $\|W_d\|_{2,1} = p$.

Generalization Bound	CNNs
Neyshabur et al. (2015)	$O(\frac{2^p \cdot \sqrt{p}}{\sqrt{m}})$
Bartlett et al. (2017)	$O\left(\frac{1}{\sqrt{m}} \cdot \sqrt{D \cdot p^2}\right)$
Neyshabur et al. (2017)	$O\left(\frac{1}{\sqrt{m}} \cdot \sqrt{D \cdot p^2}\right)$
Golowich et al. (2017)	$O\left(\frac{p}{\gamma} \cdot \min\left\{\frac{1}{\sqrt{m}}, \frac{1}{\sqrt{D}}\right\}\right)$
Our results	$O\left(\frac{1}{\sqrt{m}} \cdot \sqrt{D \cdot p^2}\right)$

which is a concatenation of one row of the filter of size $\sqrt{k_d}$ with some zeros as follows:

\[
\begin{pmatrix}
 w^{(j,1)}_{1} & 0 & \ldots & 0 & \ldots & 0 & w^{(j,\sqrt{k_d})}_{\sqrt{k_d}} & 0 & \ldots & 0 & \ldots & 0
\end{pmatrix}.
\]

Correspondingly, the stride size is $\frac{s_d}{k_d}$ on average and we have $\|W_d\|_2 \leq \frac{k_d}{s_d}$ if $\|w^{(j,i)}\|_2 = 1$ for all i,j; see Appendix E for details. This is equivalent to permuting the columns of W_d generated as in (7) by vectorizing the matrix filters in order to validate the convolution of the filters with all patches of the matrix input.

Remark 2. A more practical scenario for CNNs is when a network has a few fully connected layers after the convolutional layers. Suppose we have D_C convolutional layers and D_F fully connected layers. From the analysis in Corollary 2, when $s_d = k_d$ for convolutional layers and $\|W_d\|_2 = 1$ for fully connected layers, we have that the overall ERC satisfies $O\left(\frac{p}{\gamma} \cdot \sqrt{D \cdot p^2}\right)$.

4.2 ResNets with Structured Weight Matrices

Residual networks (ResNets) (He et al., 2016) is one of the most powerful architectures that allows training of tremendously deep networks. Specifically, denote the class of D-layer residual networks with bounded norms for weight matrices $\mathcal{V}_D = \{V_d \in \mathbb{R}^{p_d \times q_d} \}_{d=1}^D$, $\mathcal{U}_D = \{U_d \in \mathbb{R}^{q_d \times p_d} \}_{d=1}^D$ as

\[
\mathcal{F}_{\mathcal{D}_D}^{\text{RN}} = \left\{ f(V_D, U_D, x) = f_{V_D, U_D} (\cdots f_{V_1, U_1} (x)) \in \mathbb{R}^{p_D} \mid ||V_D|| \leq B_{V_D}, ||U_D|| \leq B_{U_D} \right\},
\]

where $f_{V_d, U_d} (x) = \sigma (V_d \cdot \sigma (U_d x) + x)$ for all $d = 2, \ldots, D$ and $f_{V_1, U_1} (x) = \sigma (V_1 \cdot \sigma (U_1 x))$. We then provide an upper bound of the ERC for ResNets in the following corollary. The proof is provided
Corollary 3. Let \(\mathcal{G}_\gamma \) be the class of \(\frac{1}{\gamma} \)-Lipschitz loss functions and \(\mathcal{F}^{\text{RN}}_{D,\|\cdot\|_2} \) be the class of \(D \)-layer ResNets with spectrally bounded weight matrices defined in (8), where \(\sigma_d \) is the ReLU activation and \(p_d = p, q_d = q \) for all \(d \in [D] \). Then the ERC satisfies

\[
\mathcal{R}_m(\mathcal{G}_\gamma(\mathcal{F}^{\text{RN}}_{D,\|\cdot\|_2})) = O\left(\frac{R \cdot \prod_{d=1}^{D} B_{V_d,2} B_{U_d,2} + 1}{\gamma \sqrt{m}} \cdot \sqrt{Dpq \cdot \log(C_1)} \right),
\]

where \(C_1 = \gamma \sqrt{Dm} \cdot \max_d \{ B_{V_d,2} + B_{U_d,2} \} / \left(\min_d \{ B_{V_d,2} + B_{U_d,2} \} \cdot \min \{ B_{V_d,2} B_{U_d,2} + 1 \} \right) \).

Compared with the \(D \)-layer networks without shortcuts (1), ResNets have a stronger dependence on the input due to the shortcuts structure, which leads to \(B_{V_d,2} B_{U_d,2} + 1 \) dependence for each layer. When \(B_{V_d,2} \) and \(B_{U_d,2} \) are of order \(1/\sqrt{D} \), we still have \(\prod_{d=1}^{D} B_{V_d,2} B_{U_d,2} + 1 = O(1) \). This partially explains the observation in practice that ResNets have good performance when the weight matrices have relatively small scales. Also note that to achieve the same bound for \(\mathcal{R}_m(\mathcal{G}_\gamma(\mathcal{F}^{\text{RN}}_{D,\|\cdot\|_2})) \), we require \(B_{V_d,F} B_{U_d,F} \leq c \), which leads to a much smaller parameter space than the space corresponding to \(B_{V_d,2}, B_{U_d,2} \leq c \) for the same \(c \).

4.3 Hyperspherical Networks

We also consider the hyperspherical networks (SphereNets) (Liu et al., 2017b), which demonstrate improved performance than the vanilla DNNs. In specific, the class of \(D \)-layer SphereNets is

\[
\mathcal{F}^{\text{SN}}_{D,\|\cdot\|} = \left\{ f \left(\overline{W}_D, x \right) = f_{\overline{W}_1} \left(\cdots f_{\overline{W}_D} (x) \right) \in \mathbb{R}^{p_D} \mid \|\overline{W}_d\| \leq B_{\overline{W}_d} \right\},
\]

where \(f_{\overline{W}_d}(x) = \sigma(\overline{W}_dx) \) for all \(d \in [D] \). Here, \(\overline{W}_d = S_{W_d} W_d \), where \(S_{W_d} \) is a diagonal matrix with the \(i \)-th diagonal entries being the Euclidean norm of the \(i \)-th row of \(W_d \). Note that we do not normalize the input \(x \) as in (Liu et al., 2017b) for ease of the discussion. A direct result of applying Theorem 1 to (9) implies that \(\mathcal{R}_m(\mathcal{G}_\gamma(\mathcal{F}^{\text{SN}}_{D,\|\cdot\|})) = O\left(\frac{R \cdot \prod_{d=1}^{D} B_{\overline{W}_d,2} \cdot \sqrt{Dp^2}}{\gamma \sqrt{m}} \right) \). Such a self-normalization architecture has a benefit that \(B_{\overline{W}_d,2} \) is small (close to 1) in general when the weights are spread out. In addition, it has lower computational costs than the weight normalization based on the spectral norm directly, and effective empirical results have been observed (Liu et al., 2017b,a).

4.4 Extension to Width-Change Operations

Change the width for certain layers is a widely used operation, e.g., for CNNs and ResNets, which can be viewed as a linear transformation in many cases. In specific, denote \(x^{[d]} \in \mathbb{R}^{p_d} \) as the output of the \(d \)-th layer. Then we can use a transformation matrix \(T_d \in \mathbb{R}^{p_{d+1} \times p_d} \) to denote the operation to change the dimension between the output of the \(d \)-th layer and the input of the \((d+1) \)-th layer as \(f_{W_{d+1}}(x^{[d]}) = \sigma(W_{d+1} T_d x^{[d]}) \). Denote the set of layers with width changes by \(\mathcal{I}_T \subseteq [D] \). Combining
with Theorem 1, we have that the ERC satisfies

$$R_m(\mathcal{G}_T(F_{D,∥∥}^m)) = \mathcal{O}\left(\frac{R \cdot \prod_{d=1}^{D} B_{d,2} \cdot \prod_{t \in I_T} ||T_t||_2 \cdot \sqrt{Dp^2}}{\sqrt{m}}\right),$$

(10)

Next, we illustrate several popular examples to show that \(\prod_{t \in I_T} ||T_t||_2\) is a size independent constant. We refer to Goodfellow et al. (2016) for more operations of changing the width.

Width Expansion. Two popular types of width expansion are padding and \(1 \times 1\) convolution. For ease of discussion, suppose \(p_{d+1} = s \cdot p_d\) for some positive integer \(s \geq 1\). Taking padding with 0 as an example, where we plug in \((s - 1)\) zeros before each entry of \(x^{(d)}\), which is equivalent to setting \(T_d \in \mathbb{R}^{p_d \times p_d}\) with \((T_d)_{ij} = 1\) if \(i = js\), and \((T_d)_{ij} = 0\) otherwise. This implies that \(||T_d||_2 = 1\).

For \(1 \times 1\) convolution, suppose that the convolution features are \([c_1, \ldots, c_s]\). Then we expand width by performing convolution (essentially entry-wise product) using \(s\) features respectively. This is equivalent to setting \(T_d \in \mathbb{R}^{p_d \times p_d}\) with \((T_d)_{ij} = c_k\) if \(i = j + (k - 1)s\) for \(k \in [s]\), and \((T_d)_{ij} = 0\) otherwise. It implies that \(||T_d||_2 = \sqrt{\sum_{i=1}^{s} c_i^2}\). When \(\sum_{i=1}^{s} c_i^2 \leq 1\), we have \(||T_d||_2 \leq 1\).

Width Reduction. Two popular types of width reduction are average pooling and max pooling. Suppose \(p_{d+1} = \frac{p_d}{s}\) is an integer for some positive integer \(s\). For average pooling, we pool each nonoverlapping \(s\) features into one feature. This is equivalent to setting \(T_d \in \mathbb{R}^{\frac{D}{s} \times p_d}\) with \((T_d)_{ij} = 1/s\) if \(j = (i - 1)s + k\) for \(k \in [s]\), and \((T_d)_{ij} = 0\) otherwise. This implies that \(||T_d||_2 = \sqrt{1/s}\).

For max pooling, we choose the largest entry in each nonoverlapping feature segment of length \(s\). Denote the set \(I_s = \{i - 1) \times s + 1, \ldots, i \times s\}\). This is equivalent to setting \(T_d \in \mathbb{R}^{\frac{D}{s} \times p_d}\) with \((T_d)_{ij} = 1\) if \(|(x^{(d)}_{(i)})| \geq |(x^{(d)}_{(k)})| \forall k \in I_s, k \neq j\), and \((T_d)_{ij} = 0\) otherwise. This implies that \(||T_d||_2 = 1\). For pooling with overlapping features, similar results hold.

4.5 Numerical Evaluation

To better illustrate the difference between our result and existing ones, we demonstrate some comparison results in Figure 1 using real data. In specific, we train a simplified VGG19-net (Simonyan and Zisserman, 2014) using \(3 \times 3\) convolution filters (with unit norm constraints) on the CIFAR-10 dataset (Krizhevsky and Hinton, 2009). We first compare with the capacity terms in Bartlett et al. (2017) (Bound1), Neyshabur et al. (2017) (Bound2), and Golowich et al. (2017) (Bound3) by ignoring the common factor \(\frac{R}{\sqrt{m}}\) as follows:

- **Ours:** \(\Pi_{d=1}^{D} B_{d,2} \sqrt{k \sum_{d=1}^{D} n_d}\)
- **Bound1:** \(\Pi_{d=1}^{D} B_{d,2} \left(\sum_{d=1}^{D} \frac{B_{d,2}}{B_{d,2}^{3/2}}\right)^{3/2}\)
- **Bound2:** \(\Pi_{d=1}^{D} B_{d,2} \sqrt{D^2 \rho \sum_{d=1}^{D} \frac{p_d B_{d,2}^{3/2}}{B_{d,2}^{3/2}}}\)
- **Bound3:** \(\Pi_{d=1}^{D} B_{d,F} \sqrt{D}\)
Figure 1: Panel (a) shows comparison results for the same VGG19 network trained on CIFAR10 using unit norm filters. The vertical axis is the logarithmic scale of the corresponding bounds. Panel (b) shows the training accuracy (red diamond), testing accuracy (blue cross), and the empirical generalization error using different scales of the filters listed on the horizontal axes.

Note that we do not compare with (Zhou and Feng, 2018; Arora et al., 2018) since we are interested in results with explicit dependence on weight matrix structure (i.e., norms), without further restriction on the network (e.g., bounded activation). Moreover, since we may have more filters n_d than their dimension k, we do not assume orthogonality here. Thus we simply use the upper bounds of norms B_d rather than the form as in Table 2. Following the analysis of Theorem 1, we have $\sqrt{k \sum_{d=1}^{D} n_d}$ dependence rather than $\sqrt{D p^2}$ as $k \sum_{d=1}^{D} n_d$ is the total number free parameter for CNNs, where n_d is the number of filters at d-th layer.

For the same network and corresponding weight matrices, we see from Figure 1 (a) that our result ($10^4 \sim 10^5$) is significantly smaller than Bartlett et al. (2017); Neyshabur et al. (2017) ($10^8 \sim 10^9$) and Golowich et al. (2017) ($10^{14} \sim 10^{15}$). As we have discussed, our bound benefits from tighter dependence on the dimensions. Note that $k \sum_{d=1}^{D} n_d$ is approximately of order $D k^2$, which is significantly smaller than $(\sum_{d=1}^{D} B_{d,2}^{2/3} / B_{d,2}^{2/3})^3$ in Bartlett et al. (2017) and $D^2 p \sum_{d=1}^{D} p_d B_{d,2}^2 / B_{d,2}^2$ in Neyshabur et al. (2017) (both are of order $D^3 p^2$). In addition, this verifies that spectral dependence is significantly tighter than Frobenius norm dependence in Golowich et al. (2017). Further, we show the training accuracy, testing accuracy, and the empirical generalization error using different scales on the norm of the filters in Figure 1 (b). We see that the generalization errors decrease when the norm of filters decreases. However, note that when the norms are too small, the accuracies drop significantly due to a potentially much smaller parameter space. Thus, the scales (norms) of the weight matrices should be neither too large (induce large generalization error) nor too small (induce low accuracy) and choosing proper scales is important in practice as existing works have shown. On the other hand, this also support our claim that when $R_m(\mathcal{G}_{\gamma}(\mathcal{F}_{D,\|\cdot\|}))$ (or other existing bound) attains the same order with our $R_m(\mathcal{G}_{\gamma}(\mathcal{F}_{D,\|\cdot\|}))$, we have better training/testing performance.
5 Discussion

Our investigation on the generalization bound establishes that the spectral norm is a tighter characterization for the norm based analysis of the ERC on DNNs, compared with other norms (e.g., Frobenius norm). This is also closely related to the efficient optimization of DNNs. For example, effective initializations generally require the spectral norms (rather than the Frobenius norm) of weight matrices to be approximately constant (Glorot and Bengio, 2010). Therefore, properly choosing the structure of weight matrices can significantly affect both generalization and optimization performance of DNNs, as is observed in various applications (Goodfellow et al., 2016). On the other hand, the lower bound in Golowich et al. (2017) states that $\mathcal{R}_m(\mathcal{G}_\gamma(\mathcal{F}_{\|\cdot\|_2})) = \Omega\left(\frac{R\Pi_{d=1}^D B_d^2}{\gamma^2}\mathbb{E}[\frac{p}{m}]\right)$, which implies that further improvement may be achievable.

References

Anthony, M. and Bartlett, P. L. (2009). Neural Network Learning: Theoretical Foundations. Cambridge University Press.

Arora, S., Ge, R., Neyshabur, B. and Zhang, Y. (2018). Stronger generalization bounds for deep nets via a compression approach. arXiv preprint arXiv:1802.05296.

Ba, J. L., Kiros, J. R. and Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39 930–945.

Barron, A. R. (1994). Approximation and estimation bounds for artificial neural networks. Machine Learning, 14 115–133.

Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44 525–536.

Bartlett, P. L., Foster, D. J. and Telgarsky, M. J. (2017). Spectrally-normalized margin bounds for neural networks. In Advances in Neural Information Processing Systems.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. and Kuksa, P. (2011). Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12 2493–2537.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2 303–314.

Davis, P. J. (2012). Circulant Matrices. American Mathematical Soc.
Dinh, L., Pascanu, R., Bengio, S. and Bengio, Y. (2017). Sharp minima can generalize for deep nets. *arXiv preprint arXiv:1703.04933*.

Eldan, R. and Shamir, O. (2016). The power of depth for feedforward neural networks. In *Conference on Learning Theory*.

Funahashi, K.-I. (1989). On the approximate realization of continuous mappings by neural networks. *Neural Networks, 2* 183–192.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics*.

Golowich, N., Rakhlin, A. and Shamir, O. (2017). Size-independent sample complexity of neural networks. *arXiv preprint arXiv:1712.06541*.

Goodfellow, I., Bengio, Y., Courville, A. and Bengio, Y. (2016). *Deep learning*, vol. 1. MIT Press Cambridge.

Hanin, B. and Sellke, M. (2017). Approximating continuous functions by relu nets of minimal width. *arXiv preprint arXiv:1710.11278*.

He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition*.

Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward networks are universal approximators. *Neural Networks, 2* 359–366.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In *International Conference on Machine Learning*.

Kearns, M. J. and Vazirani, U. V. (1994). *An Introduction to Computational Learning Theory*. MIT Press.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems*.

Lee, H., Ge, R., Risteski, A., Ma, T. and Arora, S. (2017). On the ability of neural nets to express distributions. *arXiv preprint arXiv:1702.07028*.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B. and Song, L. (2017a). Sphereface: Deep hypersphere embedding for face recognition. In *IEEE Conference on Computer Vision and Pattern Recognition*, vol. 1.
Liu, W., Zhang, Y.-M., Li, X., Yu, Z., Dai, B., Zhao, T. and Song, L. (2017b). Deep hyperspherical learning. In Advances in Neural Information Processing Systems.

Mishkin, D. and Matas, J. (2015). All you need is a good init. arXiv preprint arXiv:1511.06422.

Mohri, M., Rostamizadeh, A. and Talwalkar, A. (2012). Foundations of Machine Learning. MIT Press.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In International Conference on Machine Learning.

Neyshabur, B., Bhojanapalli, S., McAllester, D. and Srebro, N. (2017). A pac-bayesian approach to spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564.

Neyshabur, B., Tomioka, R. and Srebro, N. (2015). Norm-based capacity control in neural networks. In Conference on Learning Theory.

Petersen, P. and Voigtländer, F. (2017). Optimal approximation of piecewise smooth functions using deep relu neural networks. arXiv preprint arXiv:1709.05289.

Shamir, O. (2016). Distribution-specific hardness of learning neural networks. arXiv preprint arXiv:1609.01037.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Song, L., Vempala, S., Wilmes, J. and Xie, B. (2017). On the complexity of learning neural networks. In Advances in Neural Information Processing Systems.

Xie, D., Xiong, J. and Pu, S. (2017). All you need is beyond a good init: Exploring better solution for training extremely deep convolutional neural networks with orthonormality and modulation. arXiv preprint arXiv:1703.01827.

Zhou, P. and Feng, J. (2018). Understanding generalization and optimization performance of deep cnns. arXiv preprint arXiv:1805.10767.
A Proof of Theorem 1

Our analysis is based on the characterization of the Lipschitz property of a given function on both input and parameters. Such an idea can potentially provide tighter bound on the model capacity in terms of these Lipschitz constants and the number of free parameters, including other architectures of DNNs. We first provide an upper bound for the Lipschitz constant of \(f(W_D, x) \) in terms of the input \(x \).

Lemma 1. Given \(W_D \), for any \(f(W_D, \cdot) \in \mathcal{F}_D, \|\cdot\|_2 \) and \(x_1, x_2 \in \mathbb{R}^{p_0} \), we have

\[
\|f(W_D, x_1) - f(W_D, x_2)\|_2 \leq \|x_1 - x_2\|_2 \cdot \prod_{d=1}^{D} B_d.
\]

Proof. We prove by induction. Specifically, we have

\[
\|f(W_D, x_1) - f(W_D, x_2)\|_2 = \|\sigma(W_D f(W_{D-1}, x_1)) - \sigma(W_D f(W_{D-1}, x_2))\|_2 \\
\leq \|W_D f(W_{D-1}, x_1) - W_D f(W_{D-1}, x_2)\|_2 \\
\leq \|W_D\|_2 \cdot \|f(W_{D-1}, x_1) - f(W_{D-1}, x_2)\|_2 \\
\leq B_D \cdot \|f(W_{D-1}, x_1) - f(W_{D-1}, x_2)\|_2,
\]

where (i) comes from the entry-wise 1–Lipschitz continuity of \(\sigma(\cdot) \). For the first layer, we have

\[
\|f(W_1, x_1) - f(W_1, x_2)\|_2 = \|\sigma(W_1 x_1) - \sigma(W_D x_2)\|_2 \leq \|W_1 x_1 - W_1 x_2\|_2 \\
\leq B_1 \cdot \|x_1 - x_2\|_2.
\]

By repeating the argument above, we complete the proof. \(\square \)

Next, we provide an upper bound for the Lipschitz constant of \(f(W_D, x) \) in terms of the parameters \(W_D \).

Lemma 2. Given any \(x \in \mathbb{R}^{p_0} \) satisfying \(\|x\|_2 \leq R \), for any \(f(W_D, x), f(W_D, x) \in \mathcal{F}_D, \|\cdot\|_2 \) with \(W_D = \{W_d\}_{d=1}^{D} \) and \(\widetilde{W}_D = \{\widetilde{W}_d\}_{d=1}^{D} \), we have

\[
\|f(W_D, x) - f(W_D, x)\|_2 \leq R \sqrt{D} \sqrt{\sum_{d=1}^{D} \|W_d - \widetilde{W}_d\|_F^2}.
\]
Proof. Given x and two sets of weight matrices $\{W_d\}_{d=1}^D, \{\overline{W}_d\}_{d=1}^D$, we have

$$
\left\| f_{W_d}(f_{W_{d-1}}(\cdots f_{W_1}(x))) - f_{\overline{W}_d}(f_{\overline{W}_{d-1}}(\cdots f_{\overline{W}_1}(x))) \right\|_2 \\
\leq \left\| f_{W_d}(f_{W_{d-1}}(\cdots f_{W_1}(x))) - f_{\overline{W}_d}(f_{\overline{W}_{d-1}}(\cdots f_{\overline{W}_1}(x))) \right\|_2 \\
+ \left\| f_{\overline{W}_d}(f_{\overline{W}_{d-1}}(\cdots f_{\overline{W}_1}(x))) - f_{W_d}(f_{W_{d-1}}(\cdots f_{W_1}(x))) \right\|_2,
$$

where (i) is from the entry-wise 1–Lipschitz continuity of $\sigma(\cdot)$. On the other hand, for any $d \in [D]$, we further have

$$
\left\| f_{W_d}(\cdots f_{W_1}(x)) \right\|_2 \\
\leq \left\| W_d \cdot (f_{W_{d-1}}(\cdots f_{W_1}(x))) \right\|_2 \leq \left\| W_d \right\|_2 \cdot \left\| f_{W_{d-1}}(\cdots f_{W_1}(x)) \right\|_2 \\
\leq \prod_{i=1}^d \left\| W_i \right\|_2 \cdot \left\| x \right\|_2,
$$

where (i) is from the entry-wise 1–Lipschitz continuity of $\sigma(\cdot)$ and (ii) is from recursively applying the same argument.

Combining (11) and (12), we obtain

$$
\left\| f_{W_d}(f_{W_{d-1}}(\cdots f_{W_1}(x))) - f_{\overline{W}_d}(f_{\overline{W}_{d-1}}(\cdots f_{\overline{W}_1}(x))) \right\|_2 \\
\leq \prod_{d=1}^D \left\| W_d \right\|_2 \cdot \left\| x \right\|_2 \cdot \left\| W_D - \overline{W}_D \right\|_F + \left\| \overline{W}_D \right\|_2 \cdot \left(\prod_{d=1}^{D-1} \left\| W_d \right\|_2 \cdot \left\| x \right\|_2 \cdot \left\| W_{D-1} - \overline{W}_{D-1} \right\|_F \right) \\
+ \left\| \overline{W}_{D-1} \right\|_2 \cdot \left\| f_{W_{D-1}}(\cdots f_{W_1}(x)) - f_{\overline{W}_{D-1}}(\cdots f_{\overline{W}_1}(x)) \right\|_2,
$$

where (i) is from recursively applying arguments above.

Then we provide an upper bound for the ERC of a class of function that is Lipschitz on both parameters and input based on the number of parameters of DNNs.

Lemma 3. Suppose $g(w, x)$ is L_w-Lipschitz over $w \in \mathbb{R}^h$ with $\|w\|_2 \leq K$ and $\alpha = \sup_{g \in \mathcal{G}, x \in X_m} |g(w, x)|$. Then
Then the ERC of $\mathcal{G} = \{g(w,x)\}$ satisfies

$$\mathcal{R}_m(\mathcal{G}) = O\left(\alpha \sqrt{h \log \frac{KL_w \sqrt{m}}{\alpha \sqrt{h}}} \right).$$

Proof. For any $w, \tilde{w} \in \mathbb{R}^h$ and x, we have

$$\Delta(g_1, g_2) = |g_1(x) - g_2(x)| = |g(w, x) - g(\tilde{w}, x)| \leq L_w \|w - \tilde{w}\|_2. \tag{13}$$

Since g is a parametric function with h parameters, then we have the covering number of \mathcal{G} under the metric Δ in (13) satisfies

$$\mathcal{N}(\mathcal{G}, \Delta, \delta) \leq \left(\frac{3KL_w}{\delta} \right)^h.$$

Then using the standard Dudley’s entropy integral bound on the ERC (Mohri et al., 2012), we have the ERC satisfies

$$\mathcal{R}_m(\mathcal{G}) \leq \inf_{\beta > 0} \beta + \frac{1}{\sqrt{m}} \int_\beta^\alpha \sup_{g \in \mathcal{G}} \Delta(g, 0) \sqrt{\log \mathcal{N}(\mathcal{G}, \Delta, \delta)} \, d\delta. \tag{14}$$

We then define

$$\alpha = \sup_{g(w,x) \in \mathcal{G}, x \in X_m} \Delta(g, 0) = \sup_{g \in \mathcal{G}, x \in X_m} |g(w, x)|.$$

Then we have

$$\mathcal{R}_m(\mathcal{G}) \leq \inf_{\beta > 0} \beta + \frac{1}{\sqrt{m}} \int_\beta^\alpha \sqrt{h \log \frac{KL_w}{\delta}} \, d\delta \leq \inf_{\beta > 0} \beta + \alpha \sqrt{h \log \frac{KL_w \sqrt{m}}{\alpha \sqrt{h}}} \leq \frac{\alpha \sqrt{h \log \frac{KL_w \sqrt{m}}{\alpha \sqrt{h}}}}{\sqrt{m}},$$

where (i) is obtained by taking $\beta = \alpha \sqrt{h/m}$. \qed

From Lemma 1 and $\frac{1}{\gamma}$-Lipschitz continuity of g, we have

$$\alpha \leq \frac{L_x R}{\gamma} \leq \frac{R \cdot \prod_{d=1}^2 B_{d,2}}{\gamma}. \tag{15}$$
From Lemma 2, we have
\[L_w \leq \frac{R\sqrt{D} \cdot \prod_{d=1}^{D} B_{d,2}}{\min_d B_{d,2}}. \]

Moreover, when \(p_d = p \) for all \(d \in [D] \), we have
\[K = \sqrt{\sum_{d=1}^{D} \|W_d\|_F^2} \leq p\sqrt{D} \cdot \max_d B_{d,2}. \]

Combining the results above with Lemma 3 and \(h = Dp^2 \), we have
\[R_m(\mathcal{G}) \lesssim R \cdot \prod_{d=1}^{D} B_{d,2} \sqrt{Dp^2 \log \frac{\sqrt{Dm} \max_d B_{d,2}}{\min_d B_{d,2}}} \cdot \frac{\gamma}{\gamma \sqrt{m}}. \]

B Proof of Corollary 1

The analysis follows Theorem 1, except that the bound for \(\alpha \) in (15) satisfies
\[\alpha \leq \min \left\{ b, \frac{R \cdot \prod_{d=1}^{D} B_{d,2}}{\gamma} \right\}, \]

since \(g \) satisfies \(|g| \leq b\) and \(\frac{1}{\gamma} \)-Lipschitz continuous. Then we have the desired result.

C Proof of Corollary 2

We first show that using unit norm filters for all \(d \in [D] \) and \(n_d \leq k_d \), we have
\[\|W_d\|_2 = \sqrt{\frac{k_d}{s_d}}. \]

First note that when \(n_d = k_d \), due to the orthogonality of \(\{w^{(j)}\}_{j=1}^{k_d} \), for all \(i, q \in [k_d], i \neq q \), we have
\[\sum_{j=1}^{k_d} \left(w^{(j)}_i \right)^2 = 1 \quad \text{and} \quad \sum_{j=1}^{k_d} w^{(j)}_q \cdot w^{(j)}_i = 0. \]
When \(n_d = k_d \), we have for all \(i \in [p_d-1] \), the diagonal entries of \(W_d^T W_d \) satisfy

\[
(W_d^T W_d)_{ii} = \sum_{j=1}^{k_d} \| (W_d^{(j)})_{s_i} \|_2^2 = \sum_{j=1}^{k_d} \sum_{h=1}^{k_d/n_d} \left(w_{(i/s_d)+(h-1)s_d}^{(j)} \right)^2 \frac{(i)}{k_d} \frac{k_d}{s_d},
\]

where \((i)\) is from (17). For the off-diagonal entries of \(W_d^T W_d \), i.e., for \(i \neq q, i, q \in [p_d] \), we have

\[
(W_d^T W_d)_{1q} = \sum_{j=1}^{k_d} \left(W_d^{(j)} \right)_{s_q} \left(W_d^{(j)} \right)_{s_i} = \sum_{j=1}^{k_d} \sum_{h=1}^{k_d/n_d} w_{(i/s_d)+(h-1)s_d}^{(j)} \cdot w_{(q/s_d)+(h-1)s_d}^{(j)} = 0,
\]

where \((i)\) is from (17). Combining (18) and (19), we have that \(W_d^T W_d \) is a diagonal matrix with

\[
\| W_d^T W_d \|_2 = \frac{k_d}{s_d} \implies \| W_d \|_2 = \sqrt{\frac{k_d}{s_d}}.
\]

For \(n_d < n_k \), we have that \(W_d \) is a row-wise submatrix of that when \(n_d = k_d \), denoted as \(\tilde{W}_d \). Let \(S \in \mathbb{R}^{n_d \times p_d} \) be a row-wise submatrix of an identity matrix corresponding to sampling the row of \(W_d \) to form \(\tilde{W}_d \). Then we have that (16) holds, and since

\[
\| \tilde{W}_d \|_2 = \sqrt{\| S \cdot W_d^T \tilde{S} \|_2^2} = \sqrt{\frac{k_d}{s_d}}.
\]

Suppose \(k_1 = \cdots = k_D = k \) for ease of discussion. Then following the same argument as in the proof of Theorem 1 using the fact that the number of parameters in each layer is no more than \(kn_d \) rather than \(p^2 \), we have

\[
R \cdot \prod_{d=1}^{D} \tau_d B_{d,2} \sqrt{k \sum_{d=1}^{D} n_d \log \frac{\gamma \sqrt{Dm} \max_{d} B_{d,2}}{\min_{d} B_{d,2}}} = R \cdot \prod_{d=1}^{D} \tau_d \sqrt{k} \sqrt{k \sum_{d=1}^{D} n_d \log \gamma \sqrt{Dm}}.
\]

D Proof of Corollary 3

The analysis is analogous to the proof for Theorem 1, but with different construction of the intermediate results. We omit \(\tau \) for ease of discussion. We first provide an upper bound for the Lipschitz constant of \(f(\mathcal{V}_D, \mathcal{U}_D, x) \) in terms of \(x \).

Lemma 4. Given \(\mathcal{V}_D \) and \(\mathcal{U}_D \), for any \(f(\mathcal{V}_D, \mathcal{U}_D, \cdot) \in \mathcal{F}_{D, \| \|_2} \) and \(x_1, x_2 \in \mathbb{R}^{p_0} \), we have

\[
\| f(\mathcal{V}_D, \mathcal{U}_D, x_1) - f(\mathcal{V}_D, \mathcal{U}_D, x_2) \|_2 \leq \| x_1 - x_2 \|_2 \cdot \tau_{d} B_{d,2} B_{d,2} + 1.
\]
Proof. Consider the ResNet layer, for any $x_1, x_2 \in \mathbb{R}^k$, we have
\[
\|f(V_D, U_D, x_1) - f(V_D, U_D, x_2)\|_2 = \left\| f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_1)) - f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_2)) \right\|_2
\]
\[
= \sigma \left(\tau_D V_D \cdot \sigma \left(U_D \cdot f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_1)) \right) + f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_1)) \right)
- \sigma \left(\tau_D V_D \cdot \sigma \left(U_D \cdot f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_2)) \right) + f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_2)) \right)
\]
\[
\leq \left\| \tau_D V_D \cdot \sigma \left(U_D \cdot f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_1)) \right) - \tau_D V_D \cdot \sigma \left(U_D \cdot f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_2)) \right) \right\|_2
+ \left\| f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_1)) - f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_2)) \right\|_2
\]
\[
\leq (\tau_D \|V_D\|_2 \|U_D\|_2 + 1) \cdot \left\| f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_1)) - f_{V_D, U_D}(\cdots f_{V_1, U_1}(x_2)) \right\|_2,
\]
where (i) is the fact that σ is 1-Lipschitz, and (ii) is from repeating the arguments of (i) and (ii). By recursively applying the argument above, we have the desired result.

Next, we provide an upper bound for the Lipschitz constant of $f(V_D, U_D, x)$ in terms of V_D and U_D.

Lemma 5. Given any $x \in \mathbb{R}^p$ satisfying $\|x\|_2 \leq R$, for any $f(V_D, U_D, x), f(\tilde{V}_D, \tilde{U}_D, x) \in \mathcal{F}_{D, \|\cdot\|_2}$ with $\mathcal{W}_D = \{W_d\}_{d=1}^D$ and $\tilde{\mathcal{W}}_D = \{\tilde{W}_d\}_{d=1}^D$, we have
\[
\|f(V_D, U_D, x) - f(\tilde{V}_D, \tilde{U}_D, x)\|_2 \leq R \sqrt{2D} \cdot \prod_{d=1}^D (\|V_d\|_2 \|U_d\|_2 + 1) \cdot \sqrt{\sum_{d=1}^D \|V_d - \tilde{V}_d\|_F^2 + \sum_{d=1}^D \|U_d - \tilde{U}_d\|_F^2}.
\]

Proof. Given x and two sets of weight matrices $\{W_d\}_{d=1}^D, \{\tilde{W}_d\}_{d=1}^D$, we have
\[
\left\| f_{V_D, U_D}(\cdots f_{V_1, U_1}(x)) - f_{\tilde{V}_D, \tilde{U}_D}(\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) \right\|_2
\leq \left\| f_{V_D, U_D}(\cdots f_{V_1, U_1}(x)) - f_{\tilde{V}_D, \tilde{U}_D}(\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) \right\|_2
+ \left\| f_{\tilde{V}_D, \tilde{U}_D}(\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) - f_{\tilde{V}_D, \tilde{U}_D}(\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) \right\|_2
\]
\[
\leq \left\| V_D \sigma (U_D \cdot f_{V_D, U_D}(\cdots f_{V_1, U_1}(x))) - \tilde{V}_D \sigma (\tilde{U}_D \cdot f_{\tilde{V}_D, \tilde{U}_D}(\cdots f_{\tilde{V}_1, \tilde{U}_1}(x))) \right\|_2
+ \left\| \tilde{V}_D \sigma (\tilde{U}_D \cdot f_{\tilde{V}_D, \tilde{U}_D}(\cdots f_{\tilde{V}_1, \tilde{U}_1}(x))) - \tilde{V}_D \sigma (\tilde{U}_D \cdot f_{\tilde{V}_D, \tilde{U}_D}(\cdots f_{\tilde{V}_1, \tilde{U}_1}(x))) \right\|_2
\]
\[
\leq \left\| V_D - \tilde{V}_D \right\|_F \cdot \|U_D\|_2 \cdot \left\| f_{V_D, U_D}(\cdots f_{V_1, U_1}(x)) \right\|_2
+ \left\| f_{V_D, U_D}(\cdots f_{V_1, U_1}(x)) - f_{\tilde{V}_D, \tilde{U}_D}(\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) \right\|_2
+ \left\| \tilde{V}_D \right\|_2 \cdot \left\| U_D f_{V_D, U_D}(\cdots f_{V_1, U_1}(x)) - \tilde{U}_D f_{\tilde{V}_D, \tilde{U}_D}(\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) \right\|_2,
\] (21)
where (i) and (ii) from the entry-wise 1–Lipschitz continuity of \(\sigma(\cdot) \). In addition, we have
\[
\left\| U_D f_{V_{d-1}, U_{d-1}} (\cdots f_{V_1, U_1}(x)) - \tilde{U}_D f_{\tilde{V}_{d-1}, \tilde{U}_{d-1}} (\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) \right\|_2 \\
\leq \left\| U_D f_{V_{d-1}, U_{d-1}} (\cdots f_{V_1, U_1}(x)) - \tilde{U}_D f_{V_{d-1}, U_{d-1}} (\cdots f_{V_1, U_1}(x)) \right\|_2 \\
+ \left\| \tilde{U}_D f_{V_{d-1}, U_{d-1}} (\cdots f_{V_1, U_1}(x)) - \tilde{U}_D f_{\tilde{V}_{d-1}, \tilde{U}_{d-1}} (\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) \right\|_2 \\
\leq \left\| U_D - \tilde{U}_D \right\|_F \left\| f_{V_{d-1}, U_{d-1}} (\cdots f_{V_1, U_1}(x)) \right\|_2 \\
+ \left\| \tilde{U}_D \right\|_2 \left\| f_{V_{d-1}, U_{d-1}} (\cdots f_{V_1, U_1}(x)) - f_{\tilde{V}_{d-1}, \tilde{U}_{d-1}} (\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) \right\|_2 . \tag{22}
\]

On the other hand, for any \(d \in [D] \), we further have
\[
\left\| f_{\tilde{V}_d, U_d} (\cdots f_{V_1, U_1}(x)) \right\|_2 \leq \left\| V_d \right\|_2 \left\| U_d \right\|_2 \left\| f_{V_{d-1}, U_{d-1}} (\cdots f_{V_1, U_1}(x)) \right\|_2 + \left\| f_{\tilde{V}_{d-1}, U_{d-1}} (\cdots f_{V_1, U_1}(x)) \right\|_2 \\
\leq \prod_{i=1}^d \left(\left\| V_i \right\|_2 \left\| U_i \right\|_2 + 1 \right) \left\| x \right\|_2 . \tag{23}
\]

where (i) is from the entry-wise 1–Lipschitz continuity of \(\sigma(\cdot) \) and (ii) is from recursively applying the same argument.

Combining (21), (22) and (23), we obtain
\[
\left\| f_{\tilde{V}_d, U_d} (\cdots f_{V_1, U_1}(x)) - f_{\tilde{V}_d, \tilde{U}_d} (\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) \right\|_2 \\
\leq \left(\left\| V_d - \tilde{V}_d \right\|_F \left\| U_d \right\|_2 + \left\| U_D - \tilde{U}_D \right\|_F \left\| \tilde{V}_d \right\|_2 \right) \left\| f_{V_{d-1}, U_{d-1}} (\cdots f_{V_1, U_1}(x)) \right\|_2 \\
+ \left(\left\| \tilde{V}_d \right\|_2 \left\| \tilde{V}_d \right\|_2 + 1 \right) \left\| f_{V_{d-1}, U_{d-1}} (\cdots f_{V_1, U_1}(x)) - f_{\tilde{V}_{d-1}, \tilde{U}_{d-1}} (\cdots f_{\tilde{V}_1, \tilde{U}_1}(x)) \right\|_2 \\
\leq \frac{R \sqrt{2D} \cdot \prod_{d=1}^D \left(B_{V_d, 2} B_{U_d, 2} + 1 \right) \max_d \left\{ B_{V_d, 2} + B_{U_d, 2} \right\}}{\min_d \left\{ B_{V_d, 2} B_{U_d, 2} + 1 \right\}} \cdot \left[\sum_{d=1}^D \left\| V_d - \tilde{V}_d \right\|_F^2 + \sum_{d=1}^D \left\| U_D - \tilde{U}_D \right\|_F^2 \right]
\]

where (i) is from recursively applying arguments above. \(\Box \)

Let \(q_1 = \cdots = q_D = q \). Combining Lemma 3, Lemma 4, Lemma 5, and \(h = 2Dpq \), we have
\[
R \cdot \prod_{d=1}^D \left(B_{V_d, 2} B_{U_d, 2} + 1 \right) \cdot \sqrt{Dpq} \cdot \log \left(\frac{\gamma \sqrt{Dm} \max_d \left(B_{V_d, 2} + B_{U_d, 2} \right)}{\min_d \left(B_{V_d, 2} + B_{U_d, 2} \right)} \right) \leq \frac{\gamma \sqrt{m}}{\sqrt{m}}.
\]

22
E Spectral Bound for W_d in CNNs with Matrix Filters

We provide further discussion on the upper bound of the spectral norm for the weight matrix W_d in CNNs with matrix filters. In particular, by denoting W_d using submatrices as in (6), i.e.,

$$W_d = \begin{bmatrix} W_d^{(1)T} & \cdots & W_d^{(n_d)T} \end{bmatrix}^T \in \mathbb{R}^{p_d \times p_{d-1}},$$

we have that each block matrix $W_d^{(j)}$ is of the form

$$W_d^{(j)} = \begin{bmatrix} W_d^{(j)(1,1)} & W_d^{(j)(1,2)} & \cdots & W_d^{(j)(1,\sqrt{p_d-1})} \\ W_d^{(j)(2,1)} & W_d^{(j)(2,2)} & \cdots & W_d^{(j)(2,\sqrt{p_d-1})} \\ \vdots & \vdots & \ddots & \vdots \\ W_d^{(j)(\sqrt{p_d-1},1)} & W_d^{(j)(\sqrt{p_d-1},2)} & \cdots & W_d^{(j)(\sqrt{p_d-1},\sqrt{p_d-1})} \end{bmatrix}, \quad (24)$$

where $W_d^{(j)}(i,l) \in \mathbb{R}^{\sqrt{p_d-1} \times \sqrt{p_d-1}}$ for all $i \in \left[\sqrt{p_d-1} \right]$ and $l \in \left[\sqrt{p_d-1} \right]$. Particularly, off-diagonal blocks are zero matrices, i.e., $W_d^{(j)}(i,l) = 0$ for $i \neq l$. For diagonal blocks, we have

$$W_d^{(j)}(i,i) = \begin{bmatrix} w^{(j,1)}(i) \overbrace{0 \cdots 0}^{\in \mathbb{R}^{\sqrt{p_d-1} \times \sqrt{p_d-1}}} w^{(j,\sqrt{p_d})} \overbrace{0 \cdots 0}^{\in \mathbb{R}^{\sqrt{p_d-1} \times \sqrt{p_d-1}}} \\ \vdots \\ \overbrace{w^{(j,1)}(i) \in \mathbb{R}^{\sqrt{p_d-1} \times \sqrt{p_d-1}}}^{\in \mathbb{R}^{\sqrt{p_d-1} \times \sqrt{p_d-1}}} \overbrace{0 \cdots 0 w^{(j,\sqrt{p_d})} \in \mathbb{R}^{\sqrt{p_d-1} \times \sqrt{p_d-1}}}^{\in \mathbb{R}^{\sqrt{p_d-1} \times \sqrt{p_d-1}}} \end{bmatrix}, \quad (25)$$

where $w^{(j,1)}(i) = w^{(j,1)}(i) \in \mathbb{R}^{\sqrt{p_d-1} \times \sqrt{p_d-1}}$ and $w^{(j,\sqrt{p_d})}(i) = w^{(j,\sqrt{p_d})}(i) \in \mathbb{R}^{\sqrt{p_d-1} \times \sqrt{p_d-1}}$. Combining (24) and (25), we have that the stride for $W_d^{(j)}$ is $\sqrt{\frac{k_d}{p_d}}$. Using the same analysis for Corollary 2. We have $\|W_d\|_2 = 1$ if

$$\sqrt{\sum_i \|w^{(j,i)}\|_2^2} = \frac{k_d}{\sqrt{p_d}}.$$

For image inputs, we need an even smaller matrix $W_d^{(j)}(i,i)$ with fewer rows than (25), denoted...
as

\[
W_d^{(j)}(i, i) = \begin{bmatrix}
w^{(j,1)} & 0 & \cdots & 0 & \cdots & w^{(j,\sqrt{kd})} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & w^{(j,1)} & 0 & \cdots & w^{(j,\sqrt{kd})} & 0 & \cdots \\
0 & \cdots & \cdots & 0 & w^{(j,1)} & \cdots & \cdots & w^{(j,\sqrt{kd})} & \cdots \\
& & & & & \ddots & & & \ddots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & w^{(j,1)} & \cdots \\
\end{bmatrix}
\]

Then \(\|W_d\|_2 \leq 1\) still holds if \(\sqrt{\sum_i \|w^{(j,i)}\|_2^2} = \frac{k_d}{s_d}\) since \(W_d\) generated using (26) is a submatrix of \(W_d\) generated using (25).