Changes in the Vα7.2+ CD161++ MAIT cell compartment in early pregnancy are associated with preterm birth in HIV-positive women

Krithi Ravi1 | Christina Y. S. Chan1 | Charlene Akoto1 | Wei Zhang1 | Manu Vatish1 | Shane A. Norris2 | Paul Klenerman3,4 | Joris Hemelaar1,2

1Nuffield Department of Women’s & Reproductive Health, University of Oxford, The Women’s Centre, John Radcliffe Hospital, Oxford, UK
2South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
3Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
4NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK

Correspondence
Joris Hemelaar, Nuffield Department of Women’s & Reproductive Health, University of Oxford, The Women’s Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK. Email: jorishemelaar@gmail.com

Abstract
Problem: Human immunodeficiency virus (HIV) infection is associated with an increased risk of adverse pregnancy outcomes, including preterm birth (PTB), despite viral suppression with antiretroviral therapy. Mucosal-associated invariant T (MAIT) cells are an immune cell subset involved in antimicrobial immunity at mucosal surfaces. MAIT cells have been found at the maternal-foetal interface, and MAIT cells are typically depleted early in HIV infection. We aimed to investigate changes in MAIT cells in relation to maternal HIV/ART status and PTB.
Method of Study: We conducted flow cytometric analysis of peripheral blood samples from 47 HIV-positive (HIV+) and 45 HIV-negative (HIV−) pregnant women enrolled in a prospective pregnancy cohort study in Soweto, South Africa. Frequencies of Vα7.2+ CD161++ MAIT cells and proportions of CD4+ , CD8+ and double-negative MAIT cells were compared between women with and without HIV infection, and between women with and without PTB or spontaneous preterm labour (Sp-PTL).
Results: Although overall MAIT cell frequencies were the same between HIV+ and HIV− patients, HIV+ patients had a higher proportion of CD8+ MAIT cells in the first two trimesters. Women with PTB and Sp-PTL also had a higher proportion of CD8+ MAIT cells in the first trimester compared to women without these outcomes. The association between changes in MAIT cell subsets and PTB/Sp-PTL was present in both HIV+ and HIV− women, and an additive effect on MAIT cell subsets was seen in women with both HIV infection and PTB.
Conclusions: Interactions between HIV-related and pregnancy-related changes in MAIT cell subsets and distribution may lead to imbalances in peripheral MAIT cell subsets in early pregnancy. This may contribute to the increased risk of PTB in HIV+ patients by altering the overall functionality of the peripheral MAIT cell compartment.

KEYWORDS
antiretroviral therapy, HIV, MAIT cells, mucosal-associated invariant T cells, preterm birth
Evidence suggests that 5%-12% of all births worldwide occur prematurely.\(^1\) Complications of preterm birth (PTB) are the primary cause of death among children under 5 years of age,\(^2\) and lead to significant short-term and long-term morbidity.\(^1\)

In 2014, UNAIDS reported that 91% of HIV-positive (HIV+) pregnant women resided in sub-Saharan Africa.\(^3\) Antiretroviral therapy (ART)-naive maternal HIV infection in this region is associated with an increased risk of PTB, small for gestational age newborns, low birth weight (LBW) and stillbirth.\(^4\) Although ART improves maternal health and reduces the risk of mother-to-child transmission of HIV,\(^5\) its use in pregnant women in low- and middle-income countries has been implicated in adverse pregnancy outcomes, including PTB.\(^6\)

Preconception ART initiation has been reported to be associated with worse perinatal outcomes, including PTB, than antenatal ART initiation.\(^7\)

Both HIV infection and pregnancy induce significant immunological changes. HIV infection is characterized by chronic immune activation\(^8\) and depletion of immune cell subsets—most notably CD4\(^+\) T cells—resulting in immunodeficiency. Placentation, pregnancy maintenance and the timely onset of labour depend on changes at the maternal-foetal interface involving various adaptive and innate immune cell subsets.\(^9\)

Mucosal-associated invariant T (MAIT) cells are important for anti-bacterial immunity at mucosal interfaces.\(^10\) They express a semi-invariant \(\alpha\beta\) T-cell receptor comprising an invariant TCR \(\alpha\) chain and a restricted range of \(\gamma\) chains (\(\text{V}_\gamma 7.2\text{J}_\gamma 33\) paired with \(\text{V}_\beta 2\) or \(\text{V}_\beta 13\)).\(^11\) They can be activated by vitamin B metabolites of bacteria and yeast presented on the MR1 protein,\(^12\) or by innate cytokines.\(^11\) MAIT cells display an intrinsic effector-memory phenotype and secrete pro-inflammatory cytokines and cytolytic products.\(^11\)

Early MAIT cell depletion, irreversible with ART, occurs in HIV+ adults independently of markers of disease severity (eg CD4\(^+\) T cell count or viral load).\(^13,14\) Some suggest that MAIT cells are depleted due to excess activation and subsequent apoptosis\(^15,16\); alternative theories include the downregulation of the MAIT cell marker CD161\(^1,17\) and PD-1-mediated inhibition of MAIT cell proliferation.\(^17\) In HIV infection, MAIT cells have defective cytolytic function,\(^21\) and reduced IFN-\(\gamma\) and TNF-\(\alpha\) expression in response to activating ligands.\(^18\)

The role of MAIT cells in pregnancy is incompletely understood. They accumulate in the placental intervillous space in uncomplicated pregnancies,\(^22\) and are depleted in the peripheral circulation in early-onset pre-eclamptic patients compared with healthy controls.\(^23\)

Given that maternal HIV infection and ART are associated with PTB, and MAIT cells are irreversibly depleted in adults with HIV infection, we investigated circulating MAIT cell frequencies in relation to maternal HIV/ART status and PTB.

## METHODS

### Patients

Blood samples were obtained from patients participating in a prospective cohort study at Chris Hani Baragwanath Academic Hospital, Soweto, South Africa.\(^24\) Patient inclusion criteria were as follows: black South African, living in Soweto, aged 18 or above, spontaneous conception, singleton pregnancy. Exclusion criteria were as follows: multiple pregnancy, body mass index (BMI) \(>35\) kg/m\(^2\) or an intellectual or physical disability. All patients had a first trimester dating ultrasound scan. HIV testing was routinely offered to those not known to be HIV+. Patient data from medical records, antenatal cards and/or interviews were collected on around 200 items, including socioeconomic characteristics; and smoking, alcohol, drug, medical, gynaecological and obstetric history. HIV disease stage, ART initiation timing, use of ART and ART regimens were documented (with consent) for HIV+ women. Perinatal outcomes were recorded at delivery, with birthweight accurately measured by dedicated research midwives within 12 hours of birth.

### Exposure definitions

HIV+ women were categorized as preconception ART initiators if they had started ART before the date of their last menstrual period (LMP) and as antenatal ART initiators if they had started ART after the LMP date. Two patients in the antenatal ART initiation group had samples collected in the first trimester before the ART initiation date, the remaining patients after the ART initiation date.

### Outcome definitions

PTB was defined as any birth before 37 weeks’ gestation, spontaneous preterm labour (Sp-PTL) as spontaneous onset of labour before 37 weeks’ gestation, LBW newborns as newborns weighing under 2500g and small for gestational age (SGA) newborns as newborns under the 10th centile of the INTERGROWTH-21st Newborn Standard birth-weight-for-gestational-age/sex.\(^25\)

### Sample collection and processing

Between 27 November 2013 and 20 October 2015, trained study nurses collected peripheral blood samples in each trimester from HIV+ and HIV– patients, and at delivery and 6 weeks postnatally from a subset of HIV+ patients. For each patient, samples were not necessarily available for all time points. Peripheral blood mononuclear cells (PBMCs) were isolated using standard density gradient centrifugation, frozen in a solution of 50% (v/v) FCS, 10% (v/v) DMSO and R10 media, and stored at \(-80^\circ\)C. Samples were then shipped to Oxford on dry ice, where they were stored in liquid nitrogen.
2.5 | Flow cytometry

South African patient samples were chosen for analysis based on the pregnancy outcome, rather than to be representative of HIV+ or HIV–pregnant women. Healthy HIV-negative (HIV–) non-pregnant control PBMCs were isolated from leukocyte cones (NHS Blood Services, UK) and used to optimize flow staining; these samples are anonymized, so data on age and gender are not available. Frozen PBMCs were thawed in a water bath at 37°C. Each vial of thawed cells (~2.5 × 10⁶ cells) was added to 50 μL of DNase I solution and suspended in warm RPMI medium (37°C). To identify live cells, cells were stained with the Zombie Aqua Fixable Viability Kit (BioLegend) according to the manufacturer’s protocol. Cells were then stained with the following fluorescent antibodies in the dark for 15 minutes: anti-CD3 (REA613), CD4 (OKT4), CD8α (RPA-T8), TCR Vα7.2 (3C10) and CD161 (HP-3G10) (anti-CD3 antibodies from Miltenyi Biotec; other antibodies from BioLegend). MR1 5-OP-RU tetramers were obtained from the NIH Tetramer Core Facility at Emory University, Atlanta, GA, USA. After antibody staining, cells were washed in ice-cold staining buffer (PBS with 10% FBS) and fixed in 200 μL of 2% paraformaldehyde. Fixed cells were resuspended in 300 μL ice-cold staining buffer prior to processing in a LSR II flow cytometer (Becton Dickinson). Flow cytometric analysis, including compensation for spectral overlap, was done using FlowJo V10 software (FlowJo LLC).

2.6 | Statistical analysis

Patient characteristics at baseline were analysed for normality and compared using the Mann-Whitney U test or unpaired t test for continuous variables, and Fisher’s exact test or chi-squared test for categorical variables. Global changes during pregnancy were assessed by comparing values at each trimester with those at every other trimester using the Kruskal-Wallis test. Mann-Whitney U tests were used to compare median cell frequencies/proportions between two groups. For paired samples, a Friedman test followed by a Dunn’s multiple comparisons test was used.

2.7 | Ethical approval

Written informed consent was obtained from all study participants upon enrolment. Ethical approval was obtained from the University of Oxford Tropical Research Ethics Committee (OxTREC Number 1008-13) and the Human Research Ethics Committee (Medical) of the University of Witwatersrand, Johannesburg, South Africa (Numbers M130134 and M180791).

3 | RESULTS

3.1 | Patient characteristics

Characteristics of HIV+ and HIV– patients were largely comparable (Table 1). Maternal age was higher among HIV+ women compared to HIV– women. Maternal age was not associated with overall MAIT cell levels, nor with frequencies of MAIT cell subsets in trimester 1, 2 or 3 except for a weak positive correlation seen between maternal age and CDB+ MAIT cell proportions in trimester 1 (Spearman coefficient = 0.295, P = .037). However, when analysing HIV+ and HIV– patients separately, this correlation was not seen (data not shown). There was a significant difference in maternal education, but, importantly, there were no significant differences in parity, obstetric history, pre-pregnancy BMI, smoking status or alcohol intake.

3.2 | MAIT cell frequencies remain stable throughout pregnancy

In accordance with previous literature, we defined blood MAIT cells as T cells co-expressing the Vα7.2 TCRα chain and high levels of CD161+; the majority of Vα7.2+CD161+ cells stained with an MR1 tetramer loaded with the 5-OP-RU ligand (Figure 1A). Overall, for all patients, the median MAIT cell frequency is between 0.73% and 1.06% of CD3+ lymphocytes during pregnancy. There was no significant change in MAIT cell frequencies during pregnancy in all women (Figure 1B), nor within HIV+ (Figure 1C) or HIV– (Figure 1D) subgroups. In HIV+ women, for some of whom we also took samples at delivery and 6 weeks postnatally, there was no change in MAIT cell frequencies at these later time points (Figure 1C). No changes in MAIT cell frequencies were seen in the paired analysis including only patients who had samples for all time points (Figure S1). For comparison, levels of CD3+ T cells also remained stable throughout pregnancy in all women and in the postnatal period in HIV+ patients (Figure S2).

3.3 | Overall proportions of MAIT cell subsets remain stable throughout pregnancy, but show notable inter-patient variation within trimesters

There was remarkable variation in the proportions of MAIT cell subsets within each trimester (Figure 1). CDB+ MAIT cells form the highest proportion of MAIT cells during pregnancy, delivery and the early postnatal period, accounting for a median of between 57.0% and 79.3% of MAIT cells (range: 21.6%-92%) (Figure 1H-J). CD4– CD8– double-negative (DN) MAIT cells are the second largest MAIT cell subset, constituting a median of 15.9%-31.2% of MAIT cells (range: 3.6%-69.5%) (Figure 1K-M). Finally, CD4+ MAIT cells constitute a median of between 0.62% and 6.94% of the MAIT cell compartment (range: 0%-50.1%) (Figure 1E-G).

No significant changes in the proportions of MAIT cell subsets during pregnancy, at delivery or postnatally were found overall or in HIV+ women. However, in HIV– women, the proportion of CDB+ MAITs increased during pregnancy and was significantly higher in trimester 3 than in trimester 1 (P < .05, Figure 1J), with a reciprocal decrease in the proportion of DN MAITs (P < .01, Figure 1M);
### TABLE 1 Characteristics of HIV-positive (HIV+) and HIV-negative (HIV-) patients

|                                | HIV+ patients | HIV- patients | Statistical comparison (P) |
|--------------------------------|---------------|---------------|----------------------------|
| Number of patients             | 47            | 45            |                            |
| Maternal age (median [IQR])    | 33 [28-37]    | 29 [26-33]    | .036                       |
| Pre-pregnancy BMI (mean [SD])  | 27.7 [4.3]    | 26.2 [3.5]    | .084                       |
| Number of previous pregnancies (median [IQR]) | 2 [1-3]   | 2 [1-3]   | .902                       |
| History of adverse pregnancy outcomes (number [%]) | | | |
| History of low birth weight (LBW) | 4 [9]      | 11 [24]      | .105                       |
| History of preterm birth (PTB) | 10 [21]     | 11 [24]      | .922                       |
| History of stillbirth (SB)     | 2 [4]        | 4 [9]        | .655                       |
| History of neonatal death (NND) | 2 [4]     | 1 [2]        | .859                       |
| History of miscarriage (MC)    | 21 [45]      | 18 [40]      | .355                       |
| At least 1 APO (LBW, PTB, SB, NND, MC) | 26 [55] | 28 [62] | .402                       |
| Unknown                        | 7 [15]       | 7 [16]       |                            |
| Smoking during pregnancy (number [%]) | | | |
| Yes                            | 5 [11]       | 2 [4]        | .435                       |
| No                             | 42 [89]      | 43 [96]      |                            |
| Alcohol intake during pregnancy (number [%]) | | | |
| Yes                            | 8 [17]       | 4 [9]        | .355                       |
| No                             | 39 [83]      | 41 [91]      |                            |
| Number of years of education (median [IQR]) | 12 [11-12] | 12 [12-12] | .0056                      |
| ART initiation category (number [%]) | | | |
| Preconception                  | 17 [36]      | N/A          |                            |
| Antenatal                      | 19 [40]      | N/A          |                            |
| Unknown                        | 11 [23]      | N/A          |                            |
| Number of samples              | 25            | 25            |                            |
| Trimester 1                    | 25            | 25            |                            |
| Trimester 2                    | 37            | 32            |                            |
| Trimester 3                    | 14            | 16            |                            |
| Weeks + days of gestation at sample collection (median [range]) | | | |
| Trimester 1                    | 12 + 4 [8 + 0 - 13 + 6] | 12 + 0 [8 + 0 - 14 + 2] | .573                      |
| Trimester 2                    | 26 + 2 [23 + 4 - 29 + 0] | 26 + 0 [20 + 6 - 27 + 6] | .327                      |
| Trimester 3                    | 35 + 3 [31 + 1 - 37 + 4] | 35 + 4 [30 + 2 - 39 + 0] | .997                      |
| Pregnancy outcomes (number [%]) | | | |
| Term birth (TB)                | 24 [51]      | 20 [44]      | .525                       |
| Preterm birth (PTB)            | 23 [49]      | 25 [56]      |                            |
| Spontaneous term labour (Sp-TL) | 11 [23]  | 11 [24]      | .649                       |
| Induced term labour            | 3 [6]        | 1 [2]        |                            |
| Elective term Caesarean section | 10 [21] | 8 [18] |                            |
| Spontaneous preterm labour (Sp-PTL) | 13 [28] | 12 [27] | .711                       |

(Continues)
the proportion of CD4+ MAITs in HIV− women showed a decreasing trend (Figure 1G). Paired analysis including only patients with samples for all time points showed a similar pattern, although among HIV− women the increase in the proportion of CD8− MAITs was not significant, whereas the decreases in the proportions of CD4+ and DN MAITs were significant (Figure S1). There were no changes in frequencies of CD4+, CD8+ or DN CD3+ T cells during pregnancy among all women and the HIV+ and HIV− subgroups (Figure S2).

3.4 | HIV-positive women have a higher proportion of CD8+ MAIT cells in early pregnancy compared to HIV-negative women

There are no significant differences in overall MAIT cell frequencies between HIV+ and HIV− women in trimester 1, 2 or 3 (Figure 2A). However, HIV+ women have a higher proportion of CD8− and lower proportion of CD4+ MAIT cells in trimesters 1 and 2 than HIV− women (Figure 2B,C). The proportion of DN MAIT cells is also lower in HIV+ women than HIV− women in trimester 1 (Figure 2D). Overall, there is a shift towards CD8− MAIT cells in early pregnancy in HIV infection.

3.5 | Timing of antiretroviral therapy initiation in HIV+ women affects MAIT cell subset proportions in early pregnancy compared to HIV− women

During pregnancy, there are no differences in overall MAIT cell frequencies or in the proportions of individual MAIT cell subsets between HIV+ women who initiated ART preconception or antenatally (Figure 3A). However, in trimester 1, HIV+ women on preconception ART have a higher CD8− and lower CD4+ MAIT cell proportion compared to HIV− women, but antenatal ART initiators have similar CD8− and CD4+ MAIT cell proportions to HIV− women (Figure 3B,C). In trimester 2, both antenatal and preconception ART initiators have a higher CD8− and lower CD4+ MAIT cell proportion than HIV− women.

3.6 | Women with preterm birth have a higher proportion of CD8+ MAIT cells in early pregnancy than women with term birth

There are no differences in total MAIT cell frequencies between women with PTB and term birth (TB) in trimester 1, 2 or 3 overall, or within HIV+ and HIV− subgroups (Figure 4A,E,I). However, in trimester 1, there is a higher proportion of CD8+ MAIT cells in PTB than in TB women overall and within HIV+ and HIV− subgroups (Figure 4C,G,K), and a lower proportion of CD4+ MAIT cells in PTB women overall (Figure 4B). Therefore, within HIV+ women, who already have higher CD8+ MAIT proportions in early pregnancy compared to HIV− women, there is a shift towards even higher CD8+ MAIT cell proportions in those with PTB.

3.7 | Women with spontaneous preterm labour have a higher proportion of CD8+ MAIT cells compared to spontaneous term labour (Sp-TL)

As Sp-PTL leads to the majority of PTBs,28,29 we analysed differences between women with Sp-PTL and those with spontaneous term labour (Sp-TL). As seen with PTB, those with Sp-PTL had a higher proportion of CD8+ MAIT cells in the first trimester overall and within the HIV− subgroup (Figure 5C,K); conversely, the CD4+ MAIT cell proportion was lower in those with Sp-PTL than in those with Sp-TL overall and among HIV− women (Figure 5B,J).

3.8 | The MAIT cell compartment characteristics of women with preterm birth (PTB) and spontaneous preterm labour are specific and do not extend to other adverse pregnancy outcomes

To investigate whether the differences in MAIT cell subsets between those with and without PTB were specific, we analysed MAIT cells in women with small for gestational age (SGA) infants and women with appropriate for or large for gestational age infants (AGA/LGA).

There were no differences in overall MAIT cell frequencies, nor in the proportions of MAIT cell subsets, between SGA and AGA/LGA women in any trimester (Figure S3A,D,G,J,M). This was also the case within HIV+ and HIV− subgroups (Figure S3B,C,E,F,H,I,K,L,N,O).

4 | DISCUSSION

In early pregnancy, the CD8+ MAIT cell proportion is higher (and the CD4+ MAIT cell proportion lower) in HIV+ compared to HIV− women, in those with PTB compared to those with term birth and in those with Sp-PTL compared to those with Sp-TL. There is an additive effect on MAIT cell subsets in women with both HIV infection...
and PTB. No differences were seen between SGA and non-SGA pregnancies. HIV infection is therefore associated with changes in the MAIT cell compartment which are also present in women with PTB and Sp-PTL, but not in women with SGA. Therefore, changes in the MAIT cell compartment may provide a mechanistic link between maternal HIV infection and PTB.

We demonstrate no difference in overall MAIT cell frequencies in peripheral blood between HIV+ and HIV− patients during pregnancy, in contrast to previous findings in non-pregnant populations. Given that peripheral MAIT cell frequencies in our study (median between 0.73% and 1.06% of CD3+ lymphocytes) are lower than those reported for non-pregnant populations, it is possible that reductions in overall MAIT cell levels during pregnancy have resulted in an equalization of MAIT levels between HIV+ and HIV− pregnant women. Differences in MAIT cell frequencies between HIV+ and HIV− women may still be present in other body compartments on account of MAIT cell redistribution in pregnancy, such as recruitment to intervillous blood spaces by placenta-derived chemokines. Furthermore, a notable number of patients have a higher proportion of CD4+ MAIT cells (up to 50.1%) and a lower proportion of CD8+ MAIT cells (as low as 21.6%) than previously described in healthy subjects and in those with chronic inflammation or HIV infection. These differences may be due to pregnancy-specific changes in MAIT cells. MAIT cell frequencies in HIV+ patients remained unchanged until 6 weeks postnatally, although we had very few samples at this time point and it may be too early for pregnancy-specific changes to reverse. We did not have postnatal samples for HIV− patients, or any preconception samples. However, patients with autoimmune diseases commonly experience flares in the later postnatal period, implying that systemic immune changes occur later postnatally. Levels of some cytokines may take up to 3–4 months after delivery to normalize, whereas certain immune cell types appear to normalize within 6 weeks. The importance of early exposure to microbiota for MAIT cell development has been recently shown and may explain some of the variation in MAIT cell frequencies in our study population.

Downregulation of the MAIT cell marker CD161 may be a potential mechanism for the reduction in MAIT cell frequencies in HIV

**FIGURE 1** MAIT cells throughout pregnancy. (A) Gating strategy identifying MR1 tetramer-binding CD161++ Vα 7.2+ MAIT cells among live CD3+ lymphocytes. CD4+, CD8+ and CD4+ CD8− double-negative (DN) subsets are shown. The sample used for this staining was from a healthy HIV-negative non-pregnant control. (B-D) MAIT cell frequencies as percentages of CD3+ lymphocytes in trimester 1 (T1), trimester 2 (T2) and trimester 3 (T3) of pregnancy in all women (B) and HIV-negative (HIV−) women (D); MAIT cell frequencies as percentages of CD3+ lymphocytes in T1, T2, T3, at delivery and at 6 weeks postnatal in HIV-positive (HIV+) women (C). (E-M) MAIT cell subsets throughout pregnancy as percentages of total MAIT cells in all women (E) (H) (K), in HIV+ women (F) (I) (L), and HIV− women (G) (J) (M). Horizontal bars among data points on graphs indicate median values. A Kruskal-Wallis test followed by a Dunn’s multiple comparisons test was used to compare values at each time point with values at every other time point. Results of statistical tests are indicated by horizontal bars above the graphs. *P < .05, **P < .01, ***P < .001, ****P < .0001

**FIGURE 2** MAIT cells in HIV-positive (HIV+) vs HIV-negative (HIV−) women. T1 = trimester 1, T2 = Trimester 2, T3 = Trimester 3. (A) Total MAIT cell frequencies as percentages of CD3+ lymphocytes. (B-D) CD4+ MAIT cell subsets as percentages of total MAIT cells. Horizontal bars among data points on graphs indicate median values. Values for HIV+ and HIV− women were compared within each trimester using a Mann-Whitney U test. Results of statistical tests are indicated by horizontal bars above the graphs. *P < .05, **P < .01, ***P < .001, ****P < .0001
infection. This change may not occur or may be reversed in pregnancy, resulting in equivalent MAIT cell frequencies in HIV+ and HIV− pregnant women. Lectin-like transcript-1 (LLT1), the ligand for CD161, is expressed by human trophoblast cells in the placenta. LLT1 downregulates CD161 expression and inhibits the cytotoxicity and IFN-γ secretion of uterine NK cells. MAIT cells may be maintaining CD161 expression during pregnancy to allow their cytotoxic, pro-inflammatory phenotype to be moderated at the maternal-foetal interface by the CD161-LLT1 interaction. Alternatively, placental cytokines have provided some clarity here, although the differences between the subsets have not yet been fully clarified at a fundamental level (eg through transcriptional studies). CD4+ Va7.2+ CD161++ cells have been described to have lower expression of the transcription factor Eomes compared to bona fide CD8+ MAIT cells, suggesting that they may have low cytotoxicity, although this needs further verification. The differences between CD8+ and DN MAIT cells appear more subtle: Dias et al show CD8+ MAIT cells have greater Eomes and T-bet expression than DN MAIT cells, whereas Kurioka et al show that expression of these transcription factors is comparable between the two subsets. Functionally, Kurioka et al show no difference in the frequency of CD8+ or DN MAIT cells expressing IFN-γ in response to E coli stimulation, but Dias et al report that CD8+ MAIT cells express more IFN-γ. With regard to cytolytic potential, although both studies show similar levels of Granzyme A expression, Dias et al show greater expression of Granzyme B and perforin in CD8+ MAIT cells, whereas Kurioka et al show similar expression of Granzyme B, K and perforin in CD8+ and DN MAIT cells.

The imbalance of cytotoxic CD8+ MAIT cells to DN and CD4+ MAIT cells with reduced cytotoxicity in early pregnancy may be contributing to increased risk of Sp-PTL in HIV infection. In humans, some studies show an association of maternal serum levels of IFN-γ and TNF-α with PTB, whereas others demonstrate no significant associations. IFN-γ and TNF-α have also been associated with embryo toxicity, pregnancy loss and PTB in non-human primates and mouse models. 

**FIGURE 3** MAIT cells in HIV-positive (HIV+) women according to timing of initiation of antiretroviral therapy (ART) and HIV-negative (HIV−) women. AN: antenatal ART initiation. PC: preconception ART initiation. T1 = trimester 1, T2 = trimester 2, T3 = trimester 3. (A) MAIT cells as a percentage of CD3+ lymphocytes. CD4+ (B), CD8+ (C) and CD4+ CD8+ double-negative (DN) (D) MAIT cells as percentages of total MAIT cells. Horizontal bars among data points on graphs indicate median values. Values were compared within each trimester between AN or PC HIV+ women and HIV− women, and between AN and PC HIV+ women using Mann-Whitney U tests. Results of statistical tests are indicated by horizontal bars above the graphs. *P < .05, **P < .01, ***P < .001
As changes in the MAIT cell compartment in trimester 1 have been most consistently associated with HIV infection, PTB and Sp-PTL, it is notable that HIV+ women who started ART preconception, but not those that started ART antenatally, had a higher CD8+ MAIT cell level than HIV- women in the first trimester. This correlates with the finding from a systematic review and meta-analysis that preconception ART initiation is associated with a higher risk of preterm and very preterm delivery compared to antenatal ART initiation; this association was greater in studies done in low- and middle-income countries. It may be that preconception ART initiators have lived with HIV infection for longer and have more deranged MAIT cell immunology. Alternatively, pre-existing immune reconstitution due to ART in combination with the immunological changes during pregnancy in HIV+ women may have altered the MAIT cell compartment. Studies assessing MAIT cell function following ART focus on in-vitro cytokine production and suggest a partial restoration of function, but the effect of ART on overall MAIT cell antimicrobial activity has not been evaluated.

Our study does not investigate MAIT cells at the maternal-foetal interface. MAIT cells from the female genital tract appear to be phenotypically different, with a highly cytotoxic phenotype, producing more IL-17 and IL-22 and less IFN-γ and TNF-α than circulating MAIT cells. Considering intrauterine infection has been implicated in a large proportion of PTB cases, and that maternal immune cells are recruited from intervillous blood in intrauterine infection, deranged placental MAIT cell immunology may be significantly contributing to an increased risk of PTB in HIV+ women. Further exploration of the relationship between circulating MAIT cells and MAIT cells at the maternal-foetal interface in HIV+ women is warranted.

In summary, we found that pregnant women have lower proportions of CD8+ MAIT cells and relatively higher proportions of CD4+ MAIT cells than previously described in healthy non-pregnant subjects, which may indicate a pregnancy adaptation. We found no difference in overall MAIT cell frequencies between HIV+ and HIV- women during pregnancy, but HIV+ women have a higher CD8+ MAIT cell proportion in early pregnancy compared to HIV- women. Moreover, PTB is also associated with a higher CD8+ MAIT cell proportion in early pregnancy. Together, these data suggest that changes in MAIT cell subsets may provide a mechanistic link between maternal HIV infection and PTB. Further characterization of these mechanisms may lead to the development of preventative and therapeutic interventions to reduce the global burden of PTB. Finally, MAIT characteristics...
in early pregnancy may serve as predictive biomarkers for women at risk of delivering preterm.

ACKNOWLEDGMENTS
We thank all the study participants whose blood samples and data contributed to this study. We thank the doctors, nurses and other staff in the Department of Obstetrics and Gynaecology at Chris Hani Baragwanath Academic Hospital who facilitated the study. We thank Dr C. Wedi for training the study nurses and laboratory technician and assisting with coordination of sample collection and processing at the study site. We thank the sonographers who performed the ultrasound scans and the study nurses who collected the data and blood samples. We thank Ritchie Mata for processing and storing the blood samples. MR1 5-OP-RU tetramers were obtained from the NIH Tetramer Core Facility at Emory University, Atlanta, GA, USA.

ORCID
Joris Hemelaar ORCID https://orcid.org/0000-0003-3523-7457

REFERENCES
1. Gotsch F, Gotsch F, Romero R, et al. The preterm parturition syndrome and its implications for understanding the biology, risk assessment, diagnosis, treatment and prevention of preterm birth. J Matern Neonatal Med. 2009;22(sup2):5-23. https://doi.org/10.1080/14767050902860690
2. Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet. 2016;388(10063):3027-3035.
3. UNAIDS. Children and Pregnant Women Living with HIV. Geneva, Switzerland: UNAIDS; 2014.
4. Wedi COO, Kirtley S, Hopewell S, et al. Perinatal outcomes associated with maternal HIV infection: a systematic review and meta-analysis. Lancet HIV. 2016;3(1):e33-e48.
5. UNAIDS. Global Plan Towards the Elimination of New HIV Infections among Children by 2015 and Keeping their Mothers Alive. Geneva, Switzerland: UNAIDS; 2011.
6. Saleska JL, Turner AN, Maierhofer C, Clark J, Kwiek JJ. Use of antiretroviral therapy during pregnancy and adverse birth outcomes among women living with HIV-1 in low- and middle-income countries. JAIDS J Acquir Immune Defic Syndr. 2018;79(1):1-9.
7. Uthman OA, Nachega JB, Anderson J, et al. Timing of initiation of antiretroviral therapy and adverse pregnancy outcomes: a systematic review and meta-analysis. Lancet HIV. 2017;4(1):e21-e30.

8. Paiardini M, Müller-Trutwin M. HIV-associated chronic immune activation. Immunol Rev. 2013;254(1):78-101.

9. Okoye AA, Picker LJ. CD4+ T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev. 2013;254(1):54-64.

10. Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013;31(1):387-411.

11. Ushser JE, Klennerman P, Willberg CB. Mucosal-associated invariant T-cells: new players in anti-bacterial immunity. Front Immunol. 2014;5:450.

12. Cosgrove C, Ussher JE, Rauch A, et al. Early and nonreversible decrease of CD161+MAIT cells in HIV infection. Blood. 2013;121(6):951-961.

13. Leeansyah E, Ganesh A, Quigley MF, et al. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood. 2013;121(7):1124-1135.

14. Saeidi A, Tien VLN, Al-Batran R, et al. Attrition of TCR Vα7.2+ CD161+ MAIT cells in HIV-tuberculosis co-infection is associated with elevated levels of PD-1 expression. PLoS ONE. 2015;10(4):e0124659–https://doi.org/10.1371/journal.pone.0124659

15. Fernandez CS, Amarasena T, Kelleher AD, et al. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol Cell Biol. 2015;93(2):177-188.

16. Spana M, Hullegie SJ, Beudeker BJ, et al. Frequencies of circulating MAIT cells are diminished in chronic HIV, HCV and HIV/HCV coinfection and do not recover during therapy. PLoS ONE. 2016;11(7):e0159243.

17. Freeman ML, Norris SR, Lederman MM. CD161 expression on mucosa-associated invariant T cells is reduced in HIV-infected subjects undergoing antiretroviral therapy who do not recover CD4+ T cells. Pathog Immun. 2017;2(3):335-351.

18. Leeansyah E, Svärd J, Dias J, et al. Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection. PLOS Pathog. 2015;11(8):e1005072.

19. Solders M, Gorchs L, Tlibad E, et al. Recruitment of MAIT cells to the intervillous space of the placenta by placenta-derived chemokines. Front Immunol. 2019;10:1300.

20. Meggyles M, Szanto J, Lajko A, et al. The possible role of CD8+/Vα7.2+/CD161+ T (MAIT) and CD8+/Vα7.2+/CD161+ T (MAIT-like) cells in the pathogenesis of early-onset pre-eclampsia. Am J Reprod Immunol. 2018;79(2):e12805.

21. Santosa W, Staines-Urias E, Tshivivu-Matala C, Norris S, Hemelaar J. Perinatal outcomes associated with maternal HIV and antiretroviral therapy in pregnancies with accurate gestational age in South Africa. AIDS. 2019;33(10):1623-1633. https://doi.org/10.1097/QAD.0000000000002222

22. Villar J, Ismail LC, Victoria CG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):857-868.

23. Reintragonoon R, Corbett AJ, Sakala IG, et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med. 2013;210(11):2305-2320.

24. Kurioka A, Jahn AS, Hannaway RF, et al. Shared and distinct phenotypes and functions of human CD161+ Vα7.2+ T cell subsets. Front Immunol. 2017;8: https://doi.org/10.3389/fimmu.2017.01031

25. Goldberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75-84.

26. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760-765.

27. Walker LJ, Kang Y-H, Smith MO, et al. Human MAIT and CD8αα cells develop from a pool of type-17 precommitted CD8α+ T cells. Blood. 2012;119(2):422-433.

28. Serriari N-E, Eoche M, Lamotte L, et al. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol. 2014;176(2):266-274.

29. Marder W, Littlejohn EA, Somers EC. Pregnancy and autoimmune connective tissue diseases. Best Pract Res Clin Rheumatol. 2016;30(1):63-80.

30. Groer ME, Jevitt C, JI M. Immune changes and dysphoric moods across the postpartum. Am J Reprod Immunol. 2015;73(3):193-198.

31. Lee HR, Kim BJ, Shin S, et al. Maternal circulating dendritic cell subtypes at delivery and during the 1-year postpartum period. Am J Reprod Immunol. 2014;71(3):210-216.

32. Constantinides MG, Link VM, Tamou toutou N, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science. 2019;366(6464):eaax6624, https://doi.org/10.1126/science.aax6624.

33. Rosen DB, Bettadapura J, Alsharifi M, et al. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol. 2005;175(12):7796-7799.

34. Apps R, Sharkey A, Gardner L, et al. Genome-wide expression profile of first trimester villous and extravillous human trophoblast cells. Placenta. 2011;32(1):33-43.

35. Lu W, Mehraj V, Vyboh K, et al. CD4/CD8 ratio as a frontline marker for clinical outcome, immune dysfunction and viral reservoir size in virologically suppressed HIV-positive patients. J Int AIDS Soc. 2015;18(1):20052.

36. McBride JA, Striker R. Imbalance in the game of T cells: What can we learn from a single transcript-1? J Int AIDS Soc. 2015;18(1):20052.

37. Groer ME, Jevitt C, JI M. Immune changes and dysphoric moods across the postpartum. Am J Reprod Immunol. 2015;73(3):193-198.

38. Lee HR, Kim BJ, Shin S, et al. Maternal circulating dendritic cell subtypes at delivery and during the 1-year postpartum period. Am J Reprod Immunol. 2014;71(3):210-216.

39. Constantinides MG, Link VM, Tamou toutou N, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science. 2019;366(6464):eaax6624, https://doi.org/10.1126/science.aax6624.

40. Rosen DB, Bettadapura J, Alsharifi M, et al. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol. 2005;175(12):7796-7799.

41. Apps R, Sharkey A, Gardner L, et al. Genome-wide expression profile of first trimester villous and extravillous human trophoblast cells. Placenta. 2011;32(1):33-43.

42. Groer ME, Jevitt C, JI M. Immune changes and dysphoric moods across the postpartum. Am J Reprod Immunol. 2015;73(3):193-198.

43. Lee HR, Kim BJ, Shin S, et al. Maternal circulating dendritic cell subtypes at delivery and during the 1-year postpartum period. Am J Reprod Immunol. 2014;71(3):210-216.

44. Constantinides MG, Link VM, Tamou toutou N, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science. 2019;366(6464):eaax6624, https://doi.org/10.1126/science.aax6624.

45. Rosen DB, Bettadapura J, Alsharifi M, et al. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol. 2005;175(12):7796-7799.
45. Makhseed M, Raghupathy R, El-Shazly S, et al. Pro-inflammatory maternal cytokine profile in preterm delivery. *Am J Reprod Immunol*. 2003;49(5):308-318.

46. Curry AE, Vogel I, Skogstrand K, et al. Maternal plasma cytokines in early- and mid-gestation of normal human pregnancy and their association with maternal factors. *J Reprod Immunol*. 2008;77(2):152-160.

47. Vogel I, Goepfert AR, Thorsen P, et al. Early second-trimester inflammatory markers and short cervical length and the risk of recurrent preterm birth. *J Reprod Immunol*. 2007;75(2):133-140.

48. Bahar AM, Ghalib HW, Moosa RA, et al. Maternal serum interleukin-6, interleukin-8, tumor necrosis factor-alpha and interferon-gamma in preterm labor. *Acta Obstet Gynecol Scand*. 2003;82(6):543-549.

49. Sadowsky DW, Adams KM, Gravett MG, Witkin SS, Novy MJ. Preterm labor is induced by intraamniotic infusions of interleukin-1β and tumor necrosis factor-α but not by interleukin-6 or interleukin-8 in a nonhuman primate model. *Am J Obstet Gynecol*. 2006;195(6):1578-1589.

50. Robertson SA, Chin P-Y, Femia JG, Brown HM. Embryotoxic cytokines—Potential roles in embryo loss and fetal programming. *J Reprod Immunol*. 2018;125:80-88.

51. Senegas A, Villard O, Neuville A, et al. Toxoplasma gondii-induced foetal resorption in mice involves interferon-γ-induced apoptosis and spiral artery dilation at the maternofoetal interface. *Int J Parasitol*. 2009;39(4):481-487.

52. Carpentier PA, Dingman AL, Palmer TD. Placental TNF-α Signaling in Illness-Induced Complications of Pregnancy. *Am. J. Pathol*. 2011;178(6):2802-2810.

53. Thaxton JE, Nevers T, Lippe EQ, et al. NKG2D blockade inhibits poly(I:C)-triggered fetal loss in wild type but not in IL-10−/− mice. *J Immunol*. 2013;190(7):3639-3647.

54. Solders M, Gorchs L, Erkers T, et al. MAIT cells accumulate in placental intervillous space and display a highly cytotoxic phenotype upon bacterial stimulation. *Sci Rep*. 2017;7(1):6123.

55. Gibbs A, Leeansyah E, Introiina A, et al. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. *Mucosal Immunol*. 2017;10(1):35-45.

56. Heerema-McKenney A. Defense and infection of the human placenta. *APMIS*. 2018;126(7):570-588.

**SUPPORTING INFORMATION**

Additional supporting information may be found online in the Supporting Information section.

---

**How to cite this article:** Ravi K, Chan CYS, Akoto C, et al. Changes in the Vα7.2+ CD161++ MAIT cell compartment in early pregnancy are associated with preterm birth in HIV-positive women. *Am J Reprod Immunol*. 2020;83:e13240. [https://doi.org/10.1111/aji.13240](https://doi.org/10.1111/aji.13240)