The Correlation between Ultrasound Testicular Volume and Conventional Semen Parameters in Albanian Subfertile Males

Adrian Kristo, Evin Dani

1Imaging Service HUC Tirana, Tirana, Albania; 2Male Infertility Center, Tirana, Albania

Abstract

OBJECTIVE: The study is conducted to evaluate the relationship between testicular volume measured by ultrasound and conventional sperm parameters (volume, concentration, total count, motility and morphology) in Albanian subfertile males and to determine a normal limit value of the testicular volume.

MATERIALS AND METHODS: A total of 500 males were observed for this study. The testicular volumes of all subjects were measured by ultrasonography. The semen samples were collected by the process of masturbation after 3-5 days of ejaculatory abstinence and were analyzed according to WHO criteria 2010.

RESULTS: Testicular volume has a strong positive correlation with sperm count, total count and motility and a positive correlation with semen volume.

CONCLUSION: Testicular volume has a direct correlation with semen parameters and the critical total testicular volume indicating normal testicular function is approximately 26.6 ml (the mean testicular volume 13.3 ml). The measurement of testicular volume can be helpful for assessing fertility at the initial physical examination.

Introduction

The examination of the infertile man comprises physical examination, semen analysis, and hormone testing and ultrasound examination. Since the seminiferous tubules comprise 75–85% of the testicular mass, testicular volume is likely to reflect spermatogenesis and semen profiles in infertile men. The testis is composed primarily of seminiferous tubules packed closely together and also interstitial cells. Each tubule is 30–70 cm long and 200-300 microns in diameter. There are approximately 500–600 tubules per testis. The cells within the seminiferous tubules are germ cells that get matured into spermatozoa, and Sertoli cells that serve as supporting cells for developing germ cells. Sertoli cells create a blood-testis barrier and separate the germinall epithelium into basal and luminal compartments. The WHO 2010 criterion for semen are: the lower reference limit for semen volume is 1.5 ml; the lower reference limit for total motility (PR + NP) is 40%; the lower reference limit for sperm concentration is 15 million spermatozoa per ml; the lower reference limit for total sperm number is 39 million spermatozoa per ejaculate; the lower reference limit for sperm morphology is 4 %.

Testicular volume measurement methods involve the use of calipers, orchidometry or ultrasonography. Orchidometry is a conventional method that has been used for many years but the cut off testicular volume that indicates normal testicular function is not established. Some studies have concluded that the ultrasound measurement of testicular volume is more confident that orchidometry [1, 2]. Bahk JY and others have showed that in a...
To estimate the levels of different sperm parameters including testicular volume, mean and standard deviation of the same were worked out. Independent t-test was performed. Pearson correlation coefficient was worked out to assess the linear relationship of testicular volume with different sperm parameters. Data was entered into the computer using Microsoft Excel.

Results and Discussion

The mean age for all participants was 31.48 years with a standard deviation (S.D) of 3.8 years. Among patients, 13 men (2.6 %) failed to give semen (aspermia) even after three attempts. Mean testicular volume in aspermic men was 18.1 ml. Other 79 patients had tests damage post orchitis (29 patients), post herniorraphy (15), post orchipey (15), had criptorchidism (10), had only one testis (8) and in two cases it was malignant tumor testes. For the other 408 patients in the Table 1 is the relationship between total testicular volume (right testicular volume + left testicular volume) and semen volume, sperm count per ml, total sperms per ejaculate, motility and morphology.

Table 1: Correlation between total testicular volume and the variables.

Variables	r	p value
Age	0.02	0.692
Semen Volume	0.247	<0.0001
Concentration	0.499	<0.0001
Mobility	0.484	<0.0001
Morphology	0.392	<0.0001
Total spermatozoa	0.514	<0.0001

*Pearson correlation coefficient.

No correlation is seen between total testicular volume and the age. Significant positive correlation is seen between total testicular volume and semen volume (r = 0.247, p < 0.0001), because the testis contributes only 5 % of the semen volume. Pearson correlation test was strongly significant between testicular volume and total sperm count (r = 0.514, p < 0.0001), between testicular volume and sperm count per ml (r = 0.499, p<0.0001). Highly positive relationship was observed between testicular volume and sperm motility (r=0.484, p < 0.0001).

Table 2: Total count of spermatozoa.

Variables	Total count of spermatozoa	
	Total (n=2023)	Normal (n=185)
TTV	29.58 ± 9.69	36.31 ± 7.44
RTV	13.31 ± 4.38	18.55 ± 3.83
LTV	13.06 ± 4.80	17.87 ± 3.71

TTV:total testicular volume; RTV, right testes volume; LTV, left testes volume.

Both sperm count per ml and total sperm count per ejaculate were directly related to total testicular volume. One hundred and five men had normal total sperm count per ejaculate (39 million and above) demonstrating the average total testicular volume of 36.31 ml (± 7.44), range (20 ml – 63 ml), the mean testicular volume 18.15 ml (the mean right testis 18.55 ml and the mean left testis 17.87 ml).

Two hundred twenty three men had a normal...
total sperm count (< 39 million) demonstrating the average total testicular volume 26.58 ml (± 9.69).

Table 3: Total count of pathological spermatozoa according testes measurement.

Testes measurement	Total count of pathological spermatozoa (≥ 39000000)					
	Average	SD	Median	Mode	Minimum	Maximum
RTL	39.46	4.56	39	39	29	58
RTW	26.37	2.87	27	27	10	35
RTH	17.91	2.93	18	18	7	25
LTL	38.18	4.47	38	38	16	50
LTH	25.96	4.13	26	27	10	34
_______	17.74	2.89	18	18	7	24

The results for testes dimensions are in Table 3 and 4. For a normal sperm count the right testis measures: L = 38.4 mm (± 4.5), W = 26.3 mm (± 4.2), H = 17.9 mm (± 2.9); the left testes measures: L = 38.1 mm (± 4.4), W = 25.9 mm (± 4.1), H = 17.7 mm (± 2.8). For normal sperm count the right testis measures: L = 43.32 mm (± 3.8), W = 29.5 mm (± 1.9), H = 20.19 mm (± 1.37); the left testes measures: L = 42.85 mm (± 3.74), W = 29 mm (± 2), H = 19.97 mm (± 1.4).

The right testis 13.31
ometry, and water displacement.

an testicular volume
orrelation exists between

t testis width; RTH, right testis height; LTL, left testis

range (2 ml – 56 ml), and the mean testicular volume 13.29 ml (the right testis 13.31 ml and the left testis 13.06 ml). This difference of the testis volume is statistically significant (p < 0.0001) (Table 2). Figures 1 and 2 represent two small testes; Figures 3 and 4 represent two normal testes.

Table 4: Total count of pathological spermatozoa according testes measurement.

Testes measurement	Total count of pathological spermatozoa (≥ 39000000)					
	Average	SD	Median	Mode	Minimum	Maximum
RTL	39.32	3.90	43	43	33	51
RTW	25.90	1.95	30	30	24	35
RTH	20.19	1.37	20	20	16	25
LTL	42.85	3.74	43	43	35	51
LTH	29.04	2.00	29	29	23	35
_______	19.97	1.42	20	20	15	25

Figure 1: Scrotal ultrasound of two small testes.

Between 183 males with normal total count 14 males have the TTV < 27 ml, and from this number 6 men have normal spermogram, the other 8 have asthenospermia or teratospermia. From all 117 men that have TTV < 27 ml, only 6 men (5%) have normal spermogram. We did not find any male that have normal spermogram with total testicular volume under 20 ml.

In conclusion, correlation exists between testicular function and testicular volume measured by ultrasound. Smaller testes have poor semen quality, a lower number of spermatozoa, lower motility. Our study shows that the threshold value of normal total testicular volume is 26.6 ml, testicular volume 13.3 ml with tests measures: 38 x 26 x 18 mm. If the total testicular volume is < 27 ml the semen is abnormal for 95% of patients, and if the volume is <20 ml the semen is abnormal for all patients.

References
1. Sakamoto H, Ogaya Y, Yoshida H. Relationship between testicular volume and testicular function: comparison of the Prader orchiometric and ultrasonographic measurements in patients with infertility. Asian J Androl. 2008;10(2):319-24.
2. Sakamoto H, Saito K, Ohta M, Inoue K, Ogawa Y, Yoshida H. Testicular volume measurement: comparison of ultrasonography, orchidometry, and water displacement. Urology. 2007;69(1):152-7.
3. Bahk JY, Jung JH, Jin LM, Min SK. Cut-off value of testes volume in young adults and correlation among testes volume, body mass index, hormonal level, and seminal profiles. Urology. 2010;75(6):1318-23.
4. Bujan L, Mieusset R, Mansat A, Moatti JP, Mondinat C, Pontonner F. Testicular size in infertile men: relationship to semen characteristics and hormonal blood levels. Br J Urol. 1989;64(6):632-7.
5. Condorelli R, Calogero AE, La Vignera S. Relationship between Testicular Volume and Conventional or Nonconventional Sperm Parameters. Int J Androlog. 2013;2013:145792.
6. Mbabsi TU, Okpwe JC, Nwofor AME, Onanusi CK, Mbonu OO. Ultrasound measurements of testicular volume: Comparing the three common formulas with the true testicular volume determined by water displacement. African Journal of Urology. 2013;19(2):69-73.
7. Aribarg A, Kenkeerati W, Voropaiboosak V, Leepipataiboon S, Farley TM. Testicular volume, semen profile and serum hormone levels in fertile Thai males. Int J Androl. 1986;9(3):170-80.
8. Lenz S, Thomsen JK, Giwercman A, Hertel NT, Hertz J, Skakkebaek NE. Ultrasonic texture and volume of testisles in infertile men. Hum Reprod. 1994;9(5):878-81.
9. Jungwirth A, Diemer T, Giwercman A, Kopa Z, Krausz C, Tourane H. Guidelines for the investigation and treatment of male infertility. Eur Urol 2002;42(4):313-22.

http://www.mjms.mk/ http://www.id-press.eu/mjms