Transfer Learning for Brain-Computer Interfaces: A Complete Pipeline
Dongrui Wu, Ruimin Peng, Jian Huang and Zhigang Zeng

Abstract—Transfer learning (TL) has been widely used in electroencephalogram (EEG) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject, and demonstrated promising performance. After EEG signal acquisition, a closed-loop EEG-based BCI system also includes signal processing, feature engineering, and classification/regression blocks before sending out the control signal, whereas previous approaches only considered TL in one or two such components. This paper proposes that TL could be considered in all three components (signal processing, feature engineering, and classification/regression). Furthermore, it is also very important to specifically add a data alignment component before signal processing to make the data from different subjects more consistent, and hence to facilitate subsequent TL. Offline calibration experiments on two MI datasets verified our proposal. Especially, integrating data alignment and sophisticated TL approaches can significantly improve the classification performance, and hence greatly reduce the calibration effort.

Index Terms—Brain-computer interface, EEG, transfer learning

I. INTRODUCTION
A brain-computer interface (BCI) [1], [2] enables a user to communicate directly with an external device, e.g., a computer, using his/her brain signals, e.g., electroencephalogram (EEG). It can benefit both patients [3] and able-bodied people [4], [5].

The flowchart of a closed-loop EEG-based BCI system is shown in Fig. 1. It consists of the following main components [6]:

1) Signal acquisition, which uses a headset to collect EEG signal from the scalp.
2) Signal processing [7]. Because EEG signals are weak, and easily contaminated by artifacts and interferences, e.g., muscle movements, eye blinks, heartbeats, powerline noise, etc., sophisticated signal processing approaches must be used to increase the signal-to-noise ratio. Both temporal filtering and spatial filtering are usually performed. Temporal filtering may include notch filtering to remove the 50Hz or 60Hz powerline interference, and then bandpass filtering, e.g., [8,30] Hz, to remove DC drift and high frequency noise. Spatial filters [8] include the basic ones, e.g., common average reference [9], Laplacian filters [10], principal component analysis [11], etc., and more sophisticated ones, e.g., independent component analysis [12], xDAWN [13], canonical correlation analysis [14], common spatial patterns (CSP) [15], etc.
3) Feature engineering, which includes feature extraction, and sometimes also feature selection. Time domain, frequency domain, time-frequency domain, Riemannian space [16], and/or topoplot features could be used.
4) Classification/regression [17], which uses a machine learning algorithm to decode the EEG signal from the extracted features. Commonly used classifiers include linear discriminant analysis (LDA) and support vector machine (SVM).
5) Controller, which sends a command to an external device, e.g., a wheelchair, according to the decoded EEG signal. Some closed-loop BCI systems, e.g., spellers, do not need a controller, as the decoded EEG trial is directly mapped into an input character.

Motor imagery (MI) is a common paradigm in EEG-based BCIs, and also the focus of this paper. In MI-based BCIs, the user imagines the movements of his/her body parts, which activates different areas of the motor cortex of the brain, e.g., top-left for right-hand MI, top-right for left-hand MI, and top-central for feet MI. A classification algorithm can then be used to decode the recorded EEG signals and map the corresponding MI to a command for the external device.

Because of individual differences and non-stationarity of EEG signals, an MI-based BCI usually needs a long calibration session for a new subject, from 20-30 minutes [18] to hours or even days. This lengthy calibration significantly reduces the utility of BCI systems. Hence, many sophisticated signal processing and machine learning approaches have been proposed recently to reduce or eliminate the calibration [6], [19]–[26].

One of the most promising such approaches is transfer
learning (TL) [27], which uses data/knowledge from source domains (existing subjects) to help the calibration in the target domain (new subject). However, previous TL approaches for BCIs usually considered only one or two components of the closed-loop system in Fig. 1. For example, to consider TL in signal processing, Dai et al. [25] proposed transfer kernel CSP to integrate kernel CSP [28] and transfer kernel learning [29] for EEG trial filtering. To consider TL in classification, Jayaram et al. [26] proposed a multi-task learning (which is a subfield of TL) framework for cross-subject MI classification. To consider TL in feature engineering, Chen et al. [30] extended ReliefF [31] and minimum redundancy maximum relevancy (mRMR) [32] feature selection approaches to class separation and domain fusion (CSDF)-ReliefF and CSDF-mRMR, which optimized both the class separability and the domain similarity simultaneously. They then further integrated CSDF-ReliefF and CSDF-mRMR with an adaptation regularization-based TL classifier [33].

In this paper, we claim that TL should be considered in as many components of a BCI system as possible, and propose a complete TL pipeline for BCIs, shown in Fig. 2.

![Fig. 2. A complete TL pipeline for closed-loop BCI systems.](image)

1) **Data alignment**, which aligns EEG trials from the source domains and the target domain so that their distributions are more consistent. This is a new component, which does not exist in Fig. 1 but will greatly facilitate TL in sequential components.

2) **Signal processing**, where TL can be used to design better filters, especially when the amount of target domain labeled data is small.

3) **Feature engineering**, where TL may be used to extract or select more informative features.

4) **Classification/regression**, where TL can be used to design better classifiers or regression models, especially when there are no or very few target domain labeled data.

We will introduce some representative TL approaches in data alignment, signal processing, and classification, and demonstrate using two MI datasets that incorporate TL in all these components can indeed achieve better classification performance than not using TL, or using TL in only a subset of the components.

The remainder of this paper is organized as follows: Section III introduces some representative TL approaches at different components of a BCI system. Section IV evaluates the performance of the complete TL pipeline in offline MI classification. Section V discusses how TL could be used in feature engineering, an overlooked component so far. Finally, Section VI draws conclusions and points out some future research directions.

II. TL APPROACHES

This section introduces the basic concepts of TL, and how TL could be used in data alignment, signal processing, and classification of a BCI system.

We consider offline binary classification only, and would like to use labeled EEG trials from a source subject to help classify trials from a target subject. When there are multiple source subjects, we can combine data from all source subjects and then view that as a single source subject, or perform TL for each source subject separately and then aggregate them.

Assume the source subject has \(N_s \) labeled samples \(\{X_s^n, y_s^n\}_{n=1}^{N_s} \), where \(X_s^n \in \mathbb{R}^{c \times t} \) is the \(n \)-th EEG trial and \(y_s^n \) the corresponding class label, in which \(c \) is the number of EEG channels, and \(t \) the number of time domain samples. The target subject has \(N_t \) labeled samples \(\{X_t^n, y_t^n\}_{n=1}^{N_t} \), and \(N_u \) unlabeled samples \(\{X_t^n\}_{n=N_t+1}^{N_u} \).

A. TL

TL [27] uses data/knowledge from a source domain to help solve a task in a target domain. A domain consists of a feature space \(\mathcal{X} \) and its associated marginal probability distribution \(P(X) \), i.e., \(\{X, P(X)\} \), where \(X \in \mathcal{X} \). Two domains are different if they have different feature spaces, and/or different \(P(X) \). A task consists of a label space \(\mathcal{Y} \) and a prediction function \(f(X) \), i.e., \(\{Y, f(X)\} \). Two tasks are different if they have different label spaces, and/or different conditional probability distributions \(P(y|X) \).

For BCI calibration, TL usually means to use labeled EEG trials from an existing subject to help the calibration for a new subject. This paper considers the scenario that both subjects have the same feature space and label space, but different \(P(X) \) and \(P(y|X) \), i.e., the subjects perform the same MIIs using the same BCI system. This is the most commonly encountered TL scenario in BCI calibration.

A very simple idea of TL in classifier training is illustrated in Fig. 3. Assume the target domain has only four training samples belonging to two classes (represented by different shapes), whereas the source domain has more. Without TL, we can build a classifier in the target domain using only its own four training samples. Since the number of training samples is very small, this classifier is usually unreliable. With TL, we can combine samples from the source domain with those in the target domain to train a classifier. Since the two domains may not be completely consistent, e.g., the marginal probability distributions may be different, we may assign the source domain samples smaller weights than the target domain
samples. If optimized properly, the resulting classifier can usually achieve better generalization performance.

Fig. 3. Illustration of simple TL in classification.

Fig. 3 illustrates maybe the simplest TL approach in classification. Similar approaches may also be used in signal processing and feature engineering components in Fig. 2. We will introduce some of them next.

B. Euclidean Alignment (EA)

Due to individual differences, the marginal probability distributions of the EEG trials from different subjects are usually (significantly) different; so, it is very beneficial to perform data alignment to make different domains more consistent, before other operations in Fig. 2.

Different EEG trial alignment approaches have been proposed recently [19]–[21], [23], [24]. Among them, Euclidean alignment (EA), proposed by He and Wu [19] and illustrated in Fig. 4, is easy to perform and completely unsupervised (does not need any labeled data from any subject). So, it is used as an example in this paper.

Fig. 4. EA for aligning EEG trials from different domains (subjects).

For the source subject, EA first computes

$$R_s = \frac{1}{N_s} \sum_{n=1}^{N_s} X^n_s (X^n_s)^\top,$$

i.e., the arithmetic mean of all spatial covariance matrices from the source subject, then performs the alignment by

$$\hat{X}^n_s = \sqrt{R_s} X^n_s.$$

Similarly, for the target subject, EA computes the arithmetic mean of all $N_I + N_u$ spatial covariance matrices and then performs the alignment.

After EA, the aligned EEG trials are whitened [21], and their mean spatial covariance matrix from each subject equals the identity matrix [19]; hence, the distributions of EEG trials from different subjects become more consistent. This will greatly benefit TL in subsequent steps.

C. CSP

CSP [13], [34] performs supervised spatial filtering for EEG trials, aiming to find a set of spatial filters to maximize the ratio of variance between two classes.

The traditional CSP uses data from the target subject only. For Class $k \in \{-1, 1\}$, CSP tries to find a spatial filter matrix $W^* = W_k \in \mathbb{R}^{c \times f}$, where f is the number of spatial filters, to maximize the variance ratio between Class k and Class $-k$:

$$W^*_k = \arg \max_{W \in \mathbb{R}^{c \times f}} \frac{\text{tr}(W^T \tilde{C}^k W)}{\text{tr}(W^T \tilde{C}^{-k} W)},$$

where $\tilde{C}^k \in \mathbb{R}^{c \times c}$ is the mean spatial covariance matrix of the N_I labeled EEG trials in Class k, and tr the trace of a matrix. The solution W^*_k is the concatenation of the f leading eigenvectors of $(\tilde{C}^{-k})^{-1}\tilde{C}^k$.

Then, CSP concatenates the $2f$ spatial filters from both classes to obtain the complete filter matrix:

$$W^* = \begin{bmatrix} W^*_{-1} & W^*_{1} \end{bmatrix} \in \mathbb{R}^{c \times 2f},$$

and computes the spatially filtered X^n_t by:

$$\hat{X}^n_t = W^*\top X^n_t \in \mathbb{R}^{2f \times t}.$$

Finally, the log-variances of \hat{X}^n_t can be extracted as features $x^n_t \in \mathbb{R}^{1 \times 2f}$ in later classification:

$$x^n_t = \log \left(\frac{\text{diag} \left(\hat{X}^n_t \left(\hat{X}^n_t \right)^\top \right)}{\text{tr} \left(\hat{X}^n_t \left(\hat{X}^n_t \right)^\top \right)} \right),$$

where diag means the diagonal elements of a matrix, and log is the logarithm operator.

D. Combined CSP (CCSP)

Because the target subject has very few labeled samples, i.e., N_I is small, W^* computed above may not be reliable. The source domain samples can be used to improve W^*.

In the combined CSP (CCSP), we simply concatenate the N_s source domain labeled samples and N_I target domain labeled samples to compute W^*. Note that all samples have the same weight, i.e., source domain and target domain samples are treated equally.

CCSP may be the simplest TL-based CSP approach.

E. Regularized CSP (RCSP)

Regularized CSP (RCSP) [35] was specifically proposed to handle the problem that the target domain has very few labeled samples. Though the original paper did not mention TL, it actually used the idea of TL.

RCSP computes the regularized average spatial covariance matrix for Class k as:

$$\tilde{C}^k(\beta, \gamma) = (1 - \gamma)\tilde{C}^k(\beta) + \gamma \frac{1}{c} \text{tr}(\tilde{C}^k(\beta)) I,$$

where β and γ are two parameters in $[0, 1]$, $I \in \mathbb{R}^{c \times c}$ is an identity matrix, and

$$\tilde{C}^k(\beta) = \frac{(1 - \beta) N_s \tilde{C}^k_s + \beta N_I \tilde{C}^k_I}{(1 - \beta) N_s + \beta N_I}.$$
\(C^k(\beta, \gamma) \) can then be used to replace \(\tilde{C}_t^k \) in (3) to compute the CSP filter matrix.

Note that when \(\beta = 1 \) and \(\gamma = 0 \), RCSP becomes the traditional CSP. When \(\beta = 0.5 \) and \(\gamma = 0 \), RCSP becomes CCSP.

F. LDA

LDA is a popular linear classifier for binary classification. It assumes that the feature covariance matrices (not to be confused with the spatial covariance matrix of an EEG trial) from the two classes have full rank and are both equal to \(\Sigma_t \). The classification for a new input \(\mathbf{x} \) is then

\[
\text{sign} \left(\mathbf{w}^\top \mathbf{x} - \theta \right),
\]

where

\[
\mathbf{w} = \Sigma_t^{-1}(\bar{x}_{t,1} - \bar{x}_{t,-1}),
\]

\[
\theta = \frac{1}{2} \mathbf{w}^\top (\bar{x}_{t,1} + \bar{x}_{t,-1}),
\]

in which \(\bar{x}_{t,-1} \) and \(\bar{x}_{t,1} \) are the mean feature vector of Class \(-1\) and Class \(1\) computed from the \(N_t \) target domain labeled samples, respectively.

G. Combined LDA (CLDA)

When \(N_t \) is small, the above LDA classifier may not be reliable. The combined LDA (CLDA) is a simple TL approach, which concatenates labeled samples from both the source domain and the target domain to train an LDA classifier. All samples from both domains are treated equally.

H. wAR

Wu [22] proposed weighted adaptation regularization (wAR), a TL approach for cross-subject EEG trial classification. It can be used in both online and offline calibration. Though the original experiments were conducted for event-related potential classification, wAR can also be used for MI classification.

wAR learns a classifier \(f^* \) by minimizing the following regularized loss function:

\[
f^* = \arg \min_f \sum_{n=1}^{N_s} w^n_s \ell(f(x^n_s), y^n_s) + \sum_{t=1}^{N_t} w^n_t \ell(f(x^n_t), y^n_t)
+ \lambda_1 \|f\|_K^2 + \lambda_2 D_{f,K}(P_s(x_s), P_t(x_t))
+ \lambda_3 D_{f,K}(P_s(x_s|y_s), P_t(x_t|y_t))
\]

where \(\ell \) is the classification loss, \(w_s \) is the overall weight of samples from the target subject, \(w^n_s \) and \(w^n_t \) are the weights for the \(n \)-th sample from the source sample and the target subject, respectively, \(K \) is a kernel function, \(P_s(x_s) \) and \(P_t(x_t) \) are the marginal probability distribution of features from the source subject and the target subject, respectively, \(P_s(x_s|y_s) \) and \(P_t(x_t|y_t) \) are the conditional probability distribution from the source subject and the target subject, respectively, and \(\lambda_1, \lambda_2 \) and \(\lambda_3 \) are non-negative regularization parameters.

Briefly speaking, the five terms in (12) minimize the classification loss for the source subject, the classification loss for the target subject, the structural risk of the classifier, the distance between the marginal probability distributions of the two subjects, and the distance between the conditional probability distributions of the two subjects, respectively.

Although it looks complicated, (12) has a closed-form solution when the squared loss \(\ell(f(x) - y) = (y - f(x))^2 \) is used [22].

III. Experiments and Results

This section evaluates the offline calibration performances of different combinations of TL approaches on two MI datasets.

A. MI Datasets

Two MI datasets from BCI Competition IV [19] were used in this study. They were also used in our previous research [19–21].

In each experiment, the subject sat in front of a computer and performed visual cue based MI tasks, as shown in Fig. 5. A fixation cross on the black screen (\(t = 0 \)) prompted the subject to be prepared, and marked the start of a trial. After two seconds, a visual cue, which was an arrow pointing to a certain direction, was displayed for four seconds, during which the subject performed the instructed MI task. The visual cue disappeared at \(t = 6 \) second, and the MI also stopped. After a two-second break, the next trial started.

![Timing scheme of the MI tasks](http://www.bbci.de/competition/iv/desc_1.html)

The first dataset (Dataset 1 [36]) consisted of seven healthy subjects. Each subject performed two types of MIs, selected from three classes: left-hand, right-hand, and foot. We used the 59-channel EEG data collected from the calibration phase, which included complete marker information. Each subject had 100 trials per class.

The second MI dataset (Dataset 2a) included nine healthy subjects. Each subject performed four different MIs: left-hand, right-hand, both feet, and tongue. We used the 22-channel EEG data and two classes of MIs (left-hand and right-hand) collected from the training phase, which included complete marker information. Each subject had 72 trials per class.

EEG data preprocessing steps were identical to those in [19]. A causal [8, 30] Hz band-pass filter was used to remove muscle artifacts, powerline noise, and DC drift. Next, we extracted EEG signals between [0.5, 3.5] seconds after the cue onset as our trials for both datasets.

1 http://www.bbci.de/competition/iv/.
2 http://www.bbci.de/competition/iv/desc_1.html.
3 http://www.bbci.de/competition/iv/desc_2a.pdf.
B. Algorithms

We compared the following 13 different algorithms, with various different configurations of TL components:

1) **CSP-LDA**, which used only the target domain labeled data to train the CSP filters, and then performed LDA classification. No source data was used at all, i.e., no TL was used at all.

2) **CSP-CLDA**, which used only the target domain labeled data to train the CSP filters, and then performed CLDA classification by using labeled data from both domains, i.e., only the classifier used a simple TL approach.

3) **CSP-wAR**, which used only the target domain labeled data to train the CSP filters, and then performed wAR classification by using data from both domains, i.e., only the classifier used a sophisticated TL approach.

4) **CCSP-CLDA**, which concatenated labeled data from both domains to train the CCSP filters and performed CLDA classification, i.e., both signal processing and classification used a simple TL approach.

5) **CCSP-wAR**, which concatenated labeled data from both domains to train the CCSP filters, and then performed wAR classification, i.e., signal processing used a simple TL approach whereas classification used a sophisticated TL approach.

6) **RCSP-CLDA**, which used labeled data from both domains to train the RCSP filters, and then performed CLDA classification, i.e., signal processing used a sophisticated TL approach, whereas classification used a simple TL approach.

7) **RCSP-wAR**, which used labeled data from both domains to train the RCSP filters, and then performed wAR classification, i.e., both signal processing and classification used a sophisticated TL approach.

8) **EA-CSP-CLDA**, which performed EA before CSP-LDA, i.e., only the classifier used a simple TL approach, after EA.

9) **EA-CSP-wAR**, which performed EA before CSP-wAR, i.e., only the classifier used a sophisticated TL approach, after EA.

10) **EA-CCSP-CLDA**, which performed EA before CCSP-CLDA, i.e., both signal processing and classification used a simple TL approach, after EA.

11) **EA-CCSP-wAR**, which performed EA before CCSP-wAR, i.e., signal processing used a simple TL approach whereas classification used a sophisticated TL approach, after EA.

12) **EA-RCSP-CLDA**, which performed EA before RCSP-CLDA, i.e., signal processing used a sophisticated TL approach, whereas classification used a simple TL approach, after EA.

13) **EA-RCSP-wAR**, which performed EA before RCSP-wAR, i.e., both signal processing and classification used a sophisticated TL approach, after EA.

Six filters were used in all CSP algorithms.

By comparing between different pairs of the above algorithms, we can individually study the effect of TL in different components of Fig. 2.

C. Experimental Settings and Results

For each dataset, we sequentially selected one subject as the target subject and all remaining ones as the source subjects. As in [19], we combined all source subjects as a single source domain, and performed the corresponding TL. This procedure was repeated for each subject, so that each one became the target subject once.

The number of labeled samples in the target domain (N_t) increased from zero to 20, with a step of 4. We selected a random starting point in the EEG trial sequence of the target subject, and then sampled 20 trials from there continuously. Because there was randomness involved, we repeated this process 30 times and report the average results. Note that for algorithms whose signal processing component did not involve TL, e.g., those with CSP-, when $N_t = 0$, no CSP filters can be trained, and hence no model can be built. All other algorithms used TL in CSP, and hence the source domain labeled data can be used to train the CSP filters even when $N_t = 0$.

The classification accuracies, averaged over 30 random runs, are shown in Fig. 6. The average performances over all subjects are shown in the last panel of each subfigure.

D. The General Effect of TL

In Fig. 6 by comparing CSP-LDA, which did not use TL at all, with the other 12 algorithms, which used simple or sophisticated TL in one or more components of Fig. 2, we can see that when N_t was small, TL almost always resulted in better performance, no matter how much TL was used. However, when N_t increased, CSP-LDA gradually outperformed certain simple TL approaches, e.g., CSP-CLDA and CCSP-CLDA, whereas sophisticated TL approaches, e.g., EA-RCSP-wAR, almost always outperformed CSP-LDA. These results suggest that sophisticated TL may always be beneficial.

To quantitatively study the general effect of TL, we computed the mean classification accuracies of different approaches when N_t increased from 4 to 20 (we did not use $N_t = 0$ because certain approaches did not work in this case), and compared them with that of CSP-LDA. The results are shown in Table I which confirm again that generally more sophisticated TL approaches achieved more performance improvements.

E. The Effect of EA

In Fig. 6 comparing algorithms without EA and their counterparts with EA, e.g., CSP-CLDA and EA-CSP-CLDA, we can observe that every EA version almost always significantly outperformed its non-EA counterpart, suggesting that a data alignment approach such as EA should always be included as a TL preprocessing step in a BCI system.

To quantitatively verify the above conclusion, we also show the mean classification accuracies of algorithms without and with EA in Table II. Clearly, EA significantly improved the classification accuracies, especially on Dataset 1.

F. The Effect of TL in Signal Processing

In Fig. 6 comparing algorithms without TL in signal processing (CSP), with simple TL in signal processing (CCSP),
Fig. 6. Offline classification accuracies (vertical axis) on the MI datasets, with different N_l (horizontal axis). (a) Dataset 1; (b) Dataset 2a.
TABLE I
Classification accuracies of different CSP-LDA approaches, and their improvements over CSP-LDA.

Algorithm	Dataset 1		Dataset 2a	
	Accuracy	(%)	Improvement	(%)
CSP-CLDA	66.95	93.55		9.86
CSP-wAR	69.31	75.19		8.48
CCSP-CLDA	61.91	80.03		29.28
CCSP-wAR	67.56	80.75		19.53
RCSP-CLDA	68.92	80.58		16.92
RCSP-wAR	71.73	81.59		13.74
EA-CCSP-CLDA	75.19	71.57		9.07
EA-CCSP-wAR	80.38	73.91		5.36
EA-RCS-P-wAR	81.59	74.68		4.79

TABLE II
Mean classification accuracies of algorithms without and with EA, and the improvements of the latter over the former.

Dataset 1	Algorithm	w/o EA (%)	w/ EA (%)	Improvement (%)
	CSP-CLDA	66.95	73.55	9.86
	CSP-wAR	69.31	75.19	8.48
	CCSP-CLDA	61.91	80.03	29.28
	CCSP-wAR	67.56	80.75	19.53
	RCSP-CLDA	68.92	80.58	16.92
	RCSP-wAR	71.73	81.59	13.74

Dataset 2a	Algorithm	w/o EA (%)	w/ EA (%)	Improvement (%)
	CSP-CLDA	65.62	71.57	9.07
	CSP-wAR	68.12	71.89	5.54
	CCSP-CLDA	69.04	74.91	5.36
	CCSP-wAR	71.13	74.68	4.99
	RCSP-CLDA	71.10	73.91	2.72
	RCSP-wAR	72.51	75.34	2.83

and with sophisticated TL in signal processing (RCSP), e.g., CSP-CLDA, CCSP-CLDA and RCSP-CLDA, we can observe that simple TL in signal processing may not always work (e.g., CCSP-LDA had worse performance than CSP-LDA on Dataset 1, but better performance on Dataset 2a), but sophisticated TL in signal processing was almost always beneficial (e.g., RCSP-CLDA outperformed both CSP-CLDA and CCSP-CLDA on both datasets). So, sophisticated TL approaches, such as RCSP, should be used in signal processing in a BCI system.

To quantitatively verify the above conclusion, we also show the mean classification accuracies of algorithms without and with TL in the classifier in Table III. Clearly, on average wAR (sophisticated TL in the classifier) always outperformed CLDA (simple TL in the classifier).

Interestingly, when EA was used, the performance improvement of wAR over CLDA became smaller, because EA reduced the discrepancy between the source and target domain data, and hence made classification easier.

G. The Effect of TL in the Classifier

In Fig. 6 comparing algorithms with simple and sophisticated TL in the classifier, e.g., CCSP-CLDA and CCSP-wAR, we can observe that sophisticated TL in the classifier almost always outperformed simple TL, regardless of whether TL was used in other components or not. So, sophisticated TL approaches, such as wAR, should be used in the classifier in a BCI system.

To quantitatively verify the above conclusion, we also show the mean classification accuracies of algorithms without and with TL in the classifier in Table IV. Clearly, on average wAR (sophisticated TL in the classifier) always outperformed CLDA (simple TL in the classifier).

In summary, we can conclude that:

1) Generally, using TL in different components of Fig. 2 can achieve better classification performance than not using it.
2) Generally, a more sophisticated TL approach outperformed a simple one.
3) Data alignment is a very important preprocessing step in TL.
4) TL in different components of Fig. [2] could be complementary to each other, so integrating them can further improve the classification performance.

IV. DISCUSSION

In Introduction, we mention that TL may also be used in the feature engineering block of the BCI system to improve its performance. However, we did not consider that in the previous section. This is because there were very few BCI feature engineering approaches that considered TL. In fact, to our knowledge, the only reference is [40], which proposed CSDF-ReliefF and CSDF-mRMR for EEG feature selection, by optimizing both the class separability and the domain similarity simultaneously. Unfortunately, we were not able to obtain improved performance using CSDF-ReliefF in our study. So, they are not introduced in this paper.

Nevertheless, we did perform experiments to show that considering TL in feature selection may be more beneficial than not considering it at all, on Dataset 1. More specifically, we compared the following four algorithms:

1) **EA-RCSP6-wAR**, which was the best-performing EA-CSP-wAR algorithm in the previous section. RCSP trained six CSP filters.
2) **EA-RCSP20-wAR**, which was similar to EA-RCSP6-wAR, except that 20 CSP filters were used.
3) **EA-RCSP20-ReliefF6-wAR**, which was similar to EA-RCSP20-wAR, except that after RCSP, ReliefF [31] was used to select the six best features, using labeled data from the target subject only.
4) **EA-RCSP20-CReliefF6-wAR**, which was similar to EA-RCSP20-ReliefF6-wAR, except that CReliefF was used to replace ReliefF. CReliefF combined labeled samples from both domains, and then performed ReliefF to select the six best features.

The classification results are shown in Fig. 7. We can observe that:

1) On average, EA-RCSP20-wAR achieved slightly worse performance than EA-RCSP6-wAR, suggesting that more CSP filters are not necessarily better. In practice, it is common to use only 6-10 CSP filters.
2) EA-RCSP20-ReliefF6-wAR almost always gave the worst performance, suggesting that using limited target domain labeled samples only in ReliefF was not adequate to select the best features.
3) EA-RCSP20-CReliefF6-wAR significantly outperformed EA-RCSP20-ReliefF6-wAR, suggesting that it is indeed beneficial to consider TL in feature selection, even though the TL idea is very simple.
4) On average, EA-RCSP20-CReliefF6-wAR had comparable performance as EA-RCSP6-wAR, maybe slightly better when \(N_t \) was large. The former used simple TL in ReliefF to select the six best features, whereas the latter used directly the six leading CSP filters, and hence was simpler to implement.

In summary, using TL in feature engineering could be better than not using it at all; however, more research on more sophisticated TL in feature engineering is needed.

V. CONCLUSIONS AND FUTURE RESEARCH

Transfer learning has been widely used in EEG-based BCIs to reduce the calibration effort for a new subject, and demonstrated promising performance. A closed-loop BCI system includes signal processing, feature engineering, and classification/regression blocks before sending out the control signal to an external device, whereas previous research only considered TL in one or two such components. This paper proposes that TL could be considered in all three components, and it is also very important to specifically add a data alignment component before signal processing to make the source domain and target domain data more consistent. Offline calibration experiments on two MI datasets verified our proposal.

The following directions will be considered in our future research:

1) As mentioned in Section [V], compared with other components, not enough attention has been paid to TL in feature engineering of the BCI system. We will develop more sophisticated TL approaches for feature engineering in the future.
2) Deep learning has started to find successful applications in BCIs [47], [48]. It’s interesting to study if data alignment can also significantly benefit deep learning, and how to better use TL in deep learning, in addition to the currently widely used fine-tuning approach.
3) This paper considers only offline MI classification problems in BCIs. We will also extend the analysis to other BCI paradigms, e.g., event-related potential classification, and BCI regression problems, and also to online calibration.
4) It has been shown [49] that integrating TL with active learning in the classifier can further improve the offline classification performance. It is interesting to study if TL and active learning can be integrated in other components of the BCI system, e.g., signal processing and feature engineering.
