Cost-effectiveness of valbenazine compared with deutetrabenazine for the treatment of tardive dyskinesia

Michael L. Ganz1,2, Ameya Chavan1, Rahul Dhanda1, Michael Serbin2, Michael Ganz3 and Charles Yonan4

1Real-world Evidence, Evidera, Waltham, MA, USA; 2Evidence Synthesis, Modeling & Communication, Evidera, Bethesda, MD, USA; 3Neurocrine Biosciences, Inc, San Diego, CA, USA

ABSTRACT

Aims: To evaluate clinical and economic outcomes associated with valbenazine compared with deutetrabenazine in patients with tardive dyskinesia (TD) using a model that accounts for multiple dimensions of patient health status.

Materials and methods: A discretely integrated condition event model was developed to evaluate the cost-effectiveness of treatment with valbenazine and deutetrabenazine in a synthetic cohort of 1,000 patients with TD who were receiving antipsychotic medication to treat an underlying psychiatric disorder. Clinical inputs were derived from relevant clinical trials or from publicly available sources. Patients were assessed over 1 year using ≥50% improvement from baseline in Abnormal Involuntary Movement Scale (AIMS) total score as the primary definition of response. Response at 1 year using Clinical Global Impression of Change (CGIC) score ≤2 was also assessed. Health outcomes included quality-adjusted life years (QALYs), life years, proportion responding to treatment at 1 year, and number of psychiatric relapses.

Results: Regardless of the definition used for response, patients treated with valbenazine were more likely to have responded to treatment at 1 year, lived longer, and accrued more QALYs than patients who received deutetrabenazine. Using the AIMS response criterion, the incremental cost-effectiveness ratio was $9,951/QALY for valbenazine compared with deutetrabenazine. By comparison, using the CGIC response criterion valbenazine dominated deutetrabenazine with valbenazine-treated patients accumulating more QALYs (3.4 vs 3.3 years) and incurring lower lifetime costs ($252,311 vs $283,208) than deutetrabenazine-treated patients.

Limitations: There are no head-to-head trials of valbenazine and deutetrabenazine, so probabilities of response used in the model were calculated based on an indirect treatment comparison of results from individual trials with one drug or the other, using only those metrics reported across trials.

Conclusions: In patients with TD, treatment with valbenazine is highly cost-effective compared with deutetrabenazine.

Introduction

Tardive dyskinesia (TD) is a persistent and potentially disabling movement disorder associated with prolonged exposure to dopamine receptor-blocking agents (DRBAs), most commonly antipsychotics1–3, which are used by an estimated 86–90% of patients with schizophrenia and 35% of patients with affective disorders4. Characterized by repetitive, abnormal movements of the face (lip-smacking, grimacing, tongue thrusting), trunk (shoulder shrugging, pelvic thrusting), and/or extremities (foot-tapping, piano-playing finger movements), TD can lead to physical and psychological impairments, social isolation, work-related disability, and decreased quality-of-life5,6. As a consequence, some patients may be less compliant with their antipsychotic medications than they would otherwise be without TD, leading to relapse of the underlying psychiatric disorders and increased morbidity and mortality7,8. It is generally accepted that the goal of treatment with antipsychotic agents is to keep patients well in the community, and that its achievement requires clinicians to individually optimize treatment, balancing considerations of efficacy, adverse effects, and cost-effectiveness9–10.

Lifetime TD prevalence has been estimated to range from 20–50% among patients with long-term exposure to DRBAs, with increased prevalence associated with older age, female gender, smoking, and longer duration and type of antipsychotic treatment11–13. The annual incidence of new TD has been reported to be approximately 5% with older antipsychotic agents and 3% with second generation or atypical...
antipsychotics. Although the newer agents are associated with a lower incidence of TD than older antipsychotics, the newer medications are being used to treat a broader range of psychiatric illnesses beyond schizophrenia and schizoaffective disorder, including bipolar disorder, major depression, post-traumatic stress disorder, personality disorders, agitation associated with dementia, and insomnia.

Since the 1950s, when TD was first described, a number of drugs have been studied for potential effectiveness or used off-label for the treatment of TD, but none provided clear evidence of clinical benefit. In 2017, however, the US Food and Drug Administration (FDA) approved valbenazine, a novel and highly selective vesicular monoamine transporter 2 (VMAT2) inhibitor, for the treatment of TD in adults; FDA approval of a second VMAT2 inhibitor, deutetrabenazine, followed later that year. More recently, the American Psychiatric Association (APA) released its evidence-based practice guideline for treatment of patients with schizophrenia, that includes the recommendation (based on results from randomized clinical trials) that patients with moderate-to-severe TD be treated with a VMAT2.

Studies that evaluated the efficacy of once-daily valbenazine included two double-blind, placebo-controlled trials, each of 6-weeks’ treatment duration, in patients 18–85 years of age with schizophrenia, schizoaffective disorder, or mood disorder – KINET 2 (25–75 mg/day) and KINET 3 (40 or 80 mg/day) — and KINET 3 extension in which patients received up to 48 weeks of valbenazine (40 or 80 mg/day) at blinded doses. KINET 4 was a long-term trial in which patients 18–85 years of age with schizophrenia, schizoaffective disorder, or mood disorder received open-label treatment with valbenazine (40 or 80 mg/day) for up to 48 weeks. The efficacy of deutetrabenazine has been established in two randomized, double-blind, placebo-controlled trials, each of 12-weeks’ treatment duration, AIM-TD (12–48 mg/day, divided doses) and ARM-TD (12–36 mg/day), in patients 18–80 years of age with schizophrenia, schizoaffective disorder, or mood disorder, and a long-term, open-label extension study (12–48 mg/day for up to 106 weeks). In the 6-week trials with valbenazine and the 12-week trials with deutetrabenazine, the primary efficacy outcome was the change from baseline to endpoint on the Abnormal Involuntary Movement Scale (AIMS) total score (sum of items 1–7); both valbenazine and deutetrabenazine were observed to be statistically significantly superior compared with placebo, and to provide clinically meaningful benefits to patients. A random effects meta-analysis of efficacy and safety data from randomized, placebo-controlled trials of the VMAT2 inhibitors in patients with TD confirmed that both valbenazine and deutetrabenazine significantly outperformed placebo in reduction in AIMS total score and AIMS response rate, with no increased risk of adverse events (AEs) for the VMAT2 inhibitors as a class or with deutetrabenazine or valbenazine individually.

An indirect treatment comparison (ITC) of valbenazine and deutetrabenazine using the Bucher method showed that valbenazine 80 mg/day at 6 weeks was statistically superior to deutetrabenazine 36 mg/day at 8 weeks in AIMS total score improvement, while valbenazine 40 mg/day was statistically similar to all doses of deutetrabenazine at all time points. There were no significant differences between valbenazine and deutetrabenazine in treatment emergent adverse events (TEAEs), serious adverse events (SAEs), and discontinuations due to TEAEs; incidences of SAEs and treatment discontinuations were low across the studies evaluated.

An initial cost-effectiveness evaluation published shortly after FDA approval of valbenazine and deutetrabenazine (but before publication of the APA practice guideline) suggested that the clinical benefits associated with the VMAT2 inhibitors would result in increased quality-adjusted life expectancy over no treatment for TD, but that estimated lifetime cost-effectiveness of these agents would exceed commonly-cited thresholds. That analysis, however, employed a semi-Markov model, considering only four possible health states for treated patients (improved TD where patients remained on treatment, moderate-to-severe TD where patients had discontinued treatment, discontinued treatment with improved TD, and death). Additionally, it defined lifetime responders/non-responders based on whether or not patients achieved ≥50% improvement in AIMS total score using clinical inputs only from short-term trials. Moreover, the previous model assumed that treatment of TD would have no effect on clinical outcomes or the costs of treating the underlying psychiatric disorder, whereas more recent research has suggested that improvement in TD is associated with improvement in underlying psychiatric status. Given the recent APA practice guidance that recommends VMAT2 inhibitors as the only Level 1 evidence-based therapy for TD, the current study was undertaken to evaluate clinical and economic outcomes associated with valbenazine compared with deutetrabenazine in patients with TD. Further, to address some of the inherent limitations of the previous analysis we designed a model that (1) recognizes continued improvement in symptoms may occur with longer-term therapy, as measured both by the AIMS and other metrics that assess global improvements; (2) evaluates the impact of TD on management of an underlying psychiatric disorder; (3) accounts for differences in overall survival according to psychiatric disorder and presence of TD symptoms; and (4) uses a utility decrement associated with TD derived from quality-of-life assessments in a cohort of real-world patients being treated with antipsychotics.

Materials and methods

Model overview

A discretely integrated condition event (DICE) model was developed using Microsoft Excel (Microsoft Corp., Redmond, WA) to evaluate clinical and economic outcomes associated with valbenazine and deutetrabenazine treatment in a synthetic cohort of 1,000 patients with TD. The DICE model was used because of its ability to incorporate aspects of both state-transition (Markov) and discrete event simulation (of patient-level data) models. The model conceptualizes “conditions” that reflect aspects of the model or patient
attributes that persist and "events" that reflect points in time when conditions may change (Figure 1).

Patient population and perspective

The patient population is a synthetic cohort of 1,000 patients with demographic and clinical characteristics derived from population statistics in the KINECT 3 trial. Means, standard deviations, and correlations between the KINECT 3 baseline characteristics of age, gender, AIMS score, proportion using antipsychotic medications, proportion with schizophrenia/schizoaffective disorder, proportion with bipolar disorder, proportion with major depressive disorder, and proportion with anxiety were used to generate the synthetic cohort (Supplementary Table S1). Patients could have only one underlying psychiatric condition: schizophrenia, bipolar disorder, or major depressive disorder.

The model is analyzed from a US third-party payer perspective over a lifetime horizon. Only direct costs such as drug acquisition costs, disease management costs, and relapse treatment costs are included in the analysis.

Model inputs

Clinical inputs, which were taken primarily from published literature that included TD treatment guidelines, clinical studies, resource use and cost studies, and health technology assessments, are shown in Table 1. Average daily TD medication doses as well as response data, as measured by the AIMS and Clinical Global Impression of Change (CGIC), were derived from an indirect treatment comparison of the VMAT2 inhibitors, based on relevant clinical trials with valbenazine and deutetrabenazine. Weibull survival functions for the time to antipsychotic treatment discontinuation were derived from published survival curves for discontinuation in schizophrenia and bipolar disorder. The hazard ratio for antipsychotic discontinuation among patients responding to TD treatment was calculated from reported persistence with antipsychotic treatment in patients following initiation of valbenazine. Annual relapse risk by antipsychotic medication usage was calculated from reported 12-month relative risks of relapse in schizophrenia and bipolar disorder. Relapse sequelae—likelihood of hospitalization, length of hospital stay, and duration of outpatient treatment—were derived from cost and cost-effectiveness studies of antipsychotics in the treatment of schizophrenia.

The mean utilities for the baseline psychiatric conditions of schizophrenia, bipolar disorder, and major depressive disorder were 0.83, 0.80, and 0.80, respectively. A utility decrement of 0.121 was applied to reflect TD, based on post hoc analyses of a recently published study that used validated health-related quality-of-life assessments (EuroQoL 5-Dimension 5-Level questionnaire) to assess the disutility of TD in a real-world cohort of patients taking antipsychotics who reported "a lot" of impact from TD symptoms, and thus would be most likely to seek treatment. Decrement of 0.081, 0.118, and 0.118 were applied to reflect relapses in schizophrenia, bipolar disorder, and major depressive disorder, respectively. Mortality was modeled using Gompertz parameters derived from survival curves for the general population that were adjusted to reflect condition-specific
hazard ratios in patients with the underlying psychiatric disorders of schizophrenia, bipolar disorder, and major depression. The hazard ratio for mortality used for patients with TD was 1.9047.

Cost inputs (in 2017 US dollars) are shown in Table 2, and include daily medication costs, annual costs to manage TD and the underlying psychiatric disorders, and costs associated with psychiatric disorder relapse. To calculate average TD medication costs, a 27% industry-wide average branded-drug discount was applied to the Wholesale Acquisition Cost of valbenazine and deutetrabenazine. Costs, quality-adjusted life years (QALYs), and life years were discounted at an annual rate of 3%.

Key assumptions

All patients begin the model simulation with TD and doses of their antipsychotic medications optimized. During the first 24 weeks of treatment with valbenazine or deutetrabenazine, patients are assessed every 8 weeks for response, defined in the base case as ≥50% improvement in AIMS total score among patients with any psychiatric condition at baseline. Each response assessment is independent of the others; patients who respond at a given assessment are assumed to suffer no disutility due to TD until at least the next assessment. A final response assessment is conducted at week 48, at which time responders continue TD treatment until death and non-responders discontinue TD treatment. Patients who discontinue one TD treatment will not attempt another.

Alternative scenarios were evaluated using the same assumptions, in which CGIC score ≤2 (rating of “much...
improved” or “very much improved”) was used as the definition of response among patients with any psychiatric condition at baseline, and ≥50% improvement in AIMS total score was used as the response criterion among patient subgroups defined by specific psychiatric diagnosis, use of antipsychotic medication, and employment status at baseline.

Health and cost outcomes

The primary health outcomes to be assessed were QALYs, life years, proportion of patients responding to TD treatment at 1 year, and number of relapses. Cost outcomes included lifetime TD medication costs, antipsychotic medication costs, costs associated with management of the underlying psychiatric disorder, and costs associated with psychiatric disorder relapse. Incremental cost-effectiveness ratios (ICERs), defined as the differences in discounted QALYs between valbenazine and deutetrabenazine divided by the differences in discounted costs between those treatments, are also calculated.

Sensitivity analyses

Deterministic sensitivity analyses (DSA) assessed the impact of varying drug acquisition costs, likelihood of response, risk of relapse, treatment discontinuation during and after the first year, the ITC odds ratio, and hazard ratio for TD mortality by ±20%. One hundred probabilistic sensitivity analysis (PSA) trials assessed the impact of simultaneously varying many of the model inputs across their probability distributions (Supplementary Table S2) on the likelihood that each intervention was cost-effective at willingness-to-pay (WTP) thresholds ranging from $0 to $300,000 per QALY (i.e. the proportion of PSA trials in which the net monetary benefit of each intervention exceeded the WTP thresholds). Two scenario analyses, one stratified by age (<55 and ≥55 years) and the other assuming no effect of response on antipsychotic treatment discontinuation, were conducted to further assess the robustness of the results to underlying assumptions and to obtain results for potentially important cohorts of patients.

Results

Base case analysis

The lifetime health and total cost outcomes for patients with TD who received treatment with a VMAT2 inhibitor are shown in Table 3. In the base case analysis (i.e. ≥50% improvement from baseline in AIMS total score among patients with any underlying psychiatric condition at baseline), patients who were treated with valbenazine experienced reduced TD severity, lived longer, and accrued more QALYs compared with patients who received deutetrabenazine.

Regardless of the response criterion or subgroup analyzed, a larger proportion of patients receiving valbenazine responded to treatment at 1 year than patients receiving deutetrabenazine, resulting in an increased likelihood of continuing treatment, increased life expectancy, fewer psychiatric relapses, and increased accumulation of QALYs. In addition to being more effective, valbenazine was associated with lower total costs (i.e. “dominated” deutetrabenazine) in the analysis of patients with any psychiatric disorder at baseline when response was measured by CGIC score ≤2. In all other scenarios, the ICERs for valbenazine ranged from $9,951 (base case) to $18,888 (analysis of patients without a psychiatric condition at baseline). After 1 year of treatment, the estimated response rates for both valbenazine and deutetrabenazine were higher using the CGIC criterion of score <2 (80% and 65%, respectively) than with the AIMS criterion of ≥50% total score improvement (48% and 29%, respectively).

Drug acquisition costs were the largest contributor to total costs (Table 4) and were higher for valbenazine in all scenarios (except when response was measured using CGIC score), reflecting the higher response rates for valbenazine at 1 year resulting in increased costs as more valbenazine-treated patients continued treatment.

Sensitivity analyses

In the base case analysis using ≥50% improvement in AIMS total score as the response criterion the model was most sensitive to the ITC odds ratio (incremental lifetime
Table 3. Lifetime health and cost outcomes of tardive dyskinesia treatment with valbenazine and deutetrabenazine.

Modeled scenario	QALYs (discounted)	LYS (discounted)	Responders at Year 1, % (undiscounted)	Relapses, n (undiscounted)	Total discounted costs (2017 US $)	Incremental costs/ QALY (discounted)
Deutetrabenazine	3.113	4.239	29	3.006	$191,618	$9951
Valbenazine	3.231	4.266	48	2.958	$192,794	
Response criterion: >50% improvement in AIMS score in patients with any psychiatric disorder at baseline (base case)						
Deutetrabenazine	3.162	4.274	29	2.714	$188,291	
Valbenazine	3.280	4.299	48	2.657	$189,962	$14,109
Response criterion: >50% improvement in AIMS score in patients with any psychiatric disorder at baseline						
Deutetrabenazine	3.131	4.355	29	3.553	$185,630	
Valbenazine	3.250	4.378	49	3.501	$187,510	$15,866
Response criterion: >50% improvement in AIMS score in patients with major depressive disorder at baseline						
Deutetrabenazine	3.102	4.299	29	3.437	$183,006	
Valbenazine	3.222	4.325	49	3.385	$185,124	$17,637
Response criterion: >50% improvement in AIMS score in patients with schizophrenia at baseline						
Deutetrabenazine	3.106	4.181	29	2.770	$195,839	
Valbenazine	3.225	4.208	48	2.696	$197,446	$13,474
Response criterion: >50% improvement in AIMS score in patients using antipsychotic medications at baseline						
Deutetrabenazine	3.147	4.279	29	2.951	$193,459	
Valbenazine	3.263	4.300	48	2.878	$195,385	$16,547
Response criterion: >50% improvement in AIMS score in patients who are employed at baseline						
Deutetrabenazine	3.217	4.385	29	3.127	$195,739	
Valbenazine	3.332	4.402	49	3.052	$197,677	$16,897
Response criterion: >50% improvement in AIMS score in patients without a psychiatric condition at baseline						
Deutetrabenazine	3.521	4.493	30	0.000	$152,659	
Valbenazine	3.638	4.509	49	0.000	$154,868	$18,888
Scenario analysis: age <55						
Deutetrabenazine	3.303	4.500	29.9	3.210	$200,796	
Valbenazine	3.418	4.515	49.5	3.119	$202,812	$17,474
Scenario analysis: age ≥55						
Deutetrabenazine	2.941	4.006	28.5	2.872	$184,057	
Valbenazine	3.059	4.036	47.0	2.791	$185,544	$12,593
Scenario analysis: no effect of response on antipsychotic treatment discontinuation						
Deutetrabenazine	3.112	4.239	29.0	3.110	$190,943	
Valbenazine	3.230	4.266	47.9	3.124	$191,937	$8436

Abbreviations. AIMS, Abnormal Involuntary Movement Scale; CGIC, Clinical Global Impression of Change; LY, life year; QALY, quality-adjusted life year.

Table 4. Lifetime discounted costs (2017 US $) of tardive dyskinesia treatment with valbenazine and deutetrabenazine.

Modeled scenario	TD medication	AP medication	Disease management	Disease relapse	Total
Deutetrabenazine	$137,589	$16,036	$25,841	$13,095	$191,618
Valbenazine	$140,240	$16,164	$23,529	$12,766	$192,794
Response criterion: >50% improvement in AIMS score in patients with any psychiatric disorder at baseline (base case)					
Deutetrabenazine	$231,644	$16,423	$22,485	$12,655	$283,208
Valbenazine	$201,595	$16,976	$20,979	$12,761	$252,311
Response criterion: >50% improvement in AIMS score in all patients regardless of psychiatric condition at baseline					
Deutetrabenazine	$138,305	$13,770	$24,137	$12,078	$188,291
Valbenazine	$141,677	$14,419	$22,175	$11,691	$189,962
Response criterion: >50% improvement in AIMS score in patients with bipolar disorder at baseline					
Deutetrabenazine	$140,726	$14,443	$17,817	$12,644	$185,630
Valbenazine	$144,097	$14,919	$20,275	$11,691	$187,950
Response criterion: >50% improvement in AIMS score in patients with major depressive disorder at baseline					
Deutetrabenazine	$138,657	$14,526	$19,245	$10,579	$183,006
Valbenazine	$142,645	$15,229	$22,275	$9,992	$185,124
Response criterion: >50% improvement in AIMS score in patients with schizophrenia at baseline					
Deutetrabenazine	$136,316	$15,579	$29,974	$13,969	$195,839
Valbenazine	$139,837	$16,342	$28,089	$13,168	$197,446
Response criterion: >50% improvement in AIMS score in patients using antipsychotic medications at baseline					
Deutetrabenazine	$137,170	$16,043	$27,101	$13,146	$193,459
Valbenazine	$140,949	$16,782	$25,134	$12,520	$195,385
Response criterion: >50% improvement in AIMS score in patients who are employed at baseline					
Deutetrabenazine	$139,801	$15,703	$26,591	$13,644	$195,739
Valbenazine	$143,568	$16,378	$24,561	$13,170	$197,677
Response criterion: >50% improvement in AIMS score in patients without a psychiatric condition at baseline					
Deutetrabenazine	$144,486	–	$8,173	–	$152,659
Valbenazine	$148,863	–	$6,005	–	$154,868

Abbreviations. AIMS, Abnormal Involuntary Movement Scale; AP, antipsychotic; CGIC, Clinical Global Impression of Change; TD, tardive dyskinesia.
costs for valbenazine compared with deutetrabenazine ranging from −$53,022 to $39,410), the acquisition cost of valbenazine 80 mg (incremental lifetime costs compared with deutetrabenazine ranging from −$21,771 to $24,123), and acquisition cost of deutetrabenazine 48 mg (incremental lifetime costs compared with deutetrabenazine ranging from −$14,167 to $16,519). Tornado plots for the DSA of lifetime costs and QALYs of valbenazine compared with deutetrabenazine are provided in Figure 2. Sensitivity analysis results demonstrated that, in almost all cases, valbenazine remained cost-effective compared with deutetrabenazine when varying model inputs by ±20%. In all analyses, incremental lifetime costs of valbenazine treatment compared with deutetrabenazine remained below a threshold of $50,000. Only when the ITC odds ratio was decreased by 20% did the QALYs associated with deutetrabenazine treatment exceed those associated with valbenazine.

In the PSA (Figure 3), valbenazine dominated deutetrabenazine in 46% of simulations, was cost-effective at a threshold of $50,000/QALY or less in 11% of simulations, was cost-effective at a threshold greater than $50,000/QALY but less than $100,000/QALY in 10% of simulations, or cost
effective at a threshold greater than $100,000/QALY in 21% of simulations. In 12% of simulations, valbenazine was found to be less effective but also less costly than deutetrabenazine. In no simulation was valbenazine found to be more costly and less effective than deutetrabenazine. The cost-effectiveness acceptability curves for valbenazine and deutetrabenazine are shown in Figure 4. Compared with valbenazine, deutetrabenazine is generally not a cost-effective option at any WTP threshold ≤$300,000.
The results of the two scenario analyses are shown in Table 3. Total lifetime discounted QALYs and costs were slightly higher for patients <55 years of age and were slightly lower for patients ≥55 years of age; the ICERs for both age groups were 25–76% greater than for the base case. Total lifetime discounted QALYs were practically both age groups were 25/C21 slightly lower for patients by AIMS scores. This may reflect the limited applicability of greater probability of response at 1-year than that measured for response to treatment was associated with a substantially disutility associated with TD symptoms. The base case model showed that, compared with deutetrabenazine, treatment with valbenazine resulted in more patients responding at 1-year, longer life expectancy, fewer relapses of the underlying psychiatric condition, and improved quality-of-life measured by QALYs for patients with TD. These findings were consistent across the various scenarios that were modeled; however, the analysis that used a CGIC score ≤2 as the definition for response to treatment was associated with a substantially greater probability of response at 1-year than that measured by AIMS scores. This may reflect the limited applicability of the AIMS to assess subjective well-being, quality-of-life, social stigma, or occupational burden associated with TD/C20, and underscores the importance of including multidimensional perspectives of patient health when gauging the psychosocial impact of TD.

Model results using the CGIC criterion for response further demonstrated that valbenazine was more effective and less costly than deutetrabenazine (i.e. valbenazine dominated deutetrabenazine). Compared with deutetrabenazine, the ICER for valbenazine ranged from $30,897/QALY when response was defined as CGIC score ≤2 to $9,951/QALY when response was defined as ≥50% improvement in AIMS total score in patients with any psychiatric disorder at baseline. In the other modeled scenarios, the ICERs for valbenazine compared with deutetrabenazine ranged from $13,474/QALY to $18,888/QALY, values that are well within thresholds suggested by research evaluating societal WTP for health gains/C21. The current analysis may underestimate the value of VMAT2 inhibitors, since the outcome measures typically used in clinical trials (that provided the clinical inputs utilized in this DICE model) may not adequately capture the full range of impact that TD can have on patients and caregivers, especially in terms of social isolation and the ability to work/C28. It would be expected that patients whose TD is successfully treated with valbenazine or deutetrabenazine would experience more time employed than those receiving no treatment; however, lacking adequate source data to model employment, its impact was not factored into calculations of costs or QALYs in this analysis.

Several limitations of this study should be considered. First, the model assumed that responders to treatment with valbenazine or deutetrabenazine at 1 year would remain on medication and continue to respond indefinitely. Although safety and efficacy data from trials with continuous TD treatment for longer than 1 year are not available, it is almost certain that some patients would discontinue treatment, either for lack of efficacy or adverse events, meaning that the model may have overestimated time on treatment and underestimated discontinuation risk, resulting in an overestimation of both costs and QALYs. Second, although serious adverse events occurred infrequently in clinical trials and at rates similar to placebo, the effects of adverse events on outcomes and costs were not included in the model. Third, there are no head-to-head trials of valbenazine and deutetrabenazine, so probabilities of response were calculated based on an ITC of the results from individual trials with one drug or the other. Although the ITC sought to adjust results according to each compound’s direct comparisons with placebo, it is possible that differences in study designs and patient characteristics may have affected the outcomes reported in the individual clinical trials. Finally, the response to treatment metrics used in this study – while typical of clinical trials – are not specifically designed to measure impairment in subjective well-being, functioning, and quality-of-life. Without information from patient-reported outcomes, caregiver measures, functional scales, and quality-of-life questionnaires, the value of VMAT2 inhibitors in the management of TD may be underestimated.

Conclusions

In patients with TD, treatment with valbenazine was associated with longer life expectancy and better quality-of-life, measured by QALYs, compared with deutetrabenazine. Over a lifetime horizon, valbenazine was more effective than deutetrabenazine, and either less costly or associated with increased costs well below established cost per QALY thresholds, depending on the response criterion evaluated. The effect of reduced TD symptoms on the use of antipsychotic agents and psychiatric relapse should be further explored and new, validated measures that accurately reflect patient and caregiver perspectives on disease burden and quality-of-life are needed. The results of this study may assist payers in making more fully informed decisions regarding treatment of TD.

Transparency

Declaration of funding

This study was sponsored by Neurocrine Biosciences, Inc. Evidera received funding from Neurocrine to conduct this study and prepare the manuscript. The sponsor collaborated on the study design, analysis, interpretation of results, and writing of the manuscript. Editorial and medical writing support for this manuscript was provided by Prescott Medical Communications Group (Chicago, IL), with funding from Neurocrine.
Declaration of financial/other interests

RD, MS, and CY are employees of Neurocrine. MLG and AC are employees of Evidera, which provides consulting and other services to bio-pharmaceutical companies. JME peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Acknowledgements

The authors thank Sean Stern, MS, previously employed by Evidera, for his contributions to the study design and analyses, and his critical review of the manuscript.

Previous presentations

Presented in part at the AMCP Managed Care and Specialty Pharmacy Annual Meeting, 25–28 March 2019, San Diego, CA, and the International Society for Pharmacoeconomics and Outcomes Research Conference, 18–22 May 2019, New Orleans, LA.

ORCID

Michael L. Ganz http://orcid.org/0000-0002-9702-2999
Rahul Dhanda http://orcid.org/0000-0002-6941-3853
Michael Serbin http://orcid.org/0000-0001-6876-7150

References

[1] Waln O, Jankovic J. An update on tardive dyskinesia: from phenomenology to treatment. Tremor Other Hyperkinet Mov (N Y). 2013;3:1–11.
[2] Cloud LJ, Zutshi D, Factor SA. Tardive dyskinesia: therapeutic options for an increasingly common disorder. Neurotherapeutics. 2014;11(1):166–176.
[3] Zutshi D, Cloud LJ, Factor SA. Tardive syndromes are rarely reversible after discontinuing dopamine receptor blocking agents: experience from a university-based movement disorder clinic. Tremor Other Hyperkinet Mov (N Y). 2014;4(4):266.
[4] Domino ME, Swartz MS. Who are the new users of antipsychotic medications? Psychiatr Serv. 2008;59(5):507–514.
[5] Browne S, Roe M, Lane A, et al. Quality of life in schizophrenia: relationship to sociodemographic factors, symptomatology and tardive dyskinesia. Acta Psychiatr Scand. 1996;94(2):118–124.
[6] Rosenheck RA. Evaluating the cost-effectiveness of reduced tardive dyskinesia with second-generation antipsychotics. Br J Psychiatry. 2007;191:238–245.
[7] Ballesteros J, Gonzalez-Pinto A, Bulbena A. Tardive dyskinesia associated with higher mortality in psychiatric patients: results of a meta-analysis of seven independent studies. J Clin Psychopharmacol. 2002;20(2):188–194.
[8] Youssef HA, Waddington JL. Morbidity and mortality in tardive dyskinesia: associations in chronic schizophrenia. Acta Psychiatr Scand. 1987;75(1):74–77.
[9] Leucht S, Corves C, Arbter D, et al. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet. 2009;373(9657):31–41.
[10] Parks J, Radke A, Parker G, et al. Principles of antipsychotic prescribing for policy makers, circa 2008. Translating knowledge to promote individualized treatment. Schizophr Bull. 2009;35(5):931–936.
[11] Carbon M, Hsieh CH, Kane JM, et al. Tardive dyskinesia prevalence in the period of second-generation antipsychotic use: a meta-analysis. J Clin Psychiatry. 2017;78(3):e264–e278.
[12] Woerner MG, Cornel CU, Alvir JM, et al. Incidence of tardive dyskinesia with risperidone or olanzapine in the elderly: results from a 2-year, prospective study in antipsychotic-naive patients. Neuropsychopharmacology. 2011;36(8):1738–1746.
[13] Yassa R, Lal S, Korpassy A, et al. Nicotine exposure and tardive dyskinesia. Biol Psychiatry. 1987;22(1):67–72.
[14] Cornell CU, Leucht S, Kane JM. Lower risk for tardive dyskinesia associated with second-generation antipsychotics: a systematic review of 1-year studies. Am J Psychiatry. 2004;161(3):414–425.
[15] Vijayakumar D, Jankovic J. Drug-induced dyskinesia, part 2: treatment of tardive dyskinesia. Drugs. 2016;76(7):779–787.
[16] Tarsy D, Lungen C, Baldessarini RJ. Epidemiology of tardive dyskinesia before and during the era of modern antipsychotic drugs. Handb Clin Neurol. 2011;100:601–616.
[17] Keepers GA, Fochtmann LJ, Anzia JM, et al. The American Psychiatric Association practice guideline for the treatment of patients with schizophrenia. Am J Psychiatry. 2020;177(9):868–872.
[18] O’Brien CF, Jimenez R, Hauser RA, et al. NBI-98854, a selective monoamine transport inhibitor for the treatment of tardive dyskinesia: a randomized, double-blind, placebo-controlled study. Mov Disord. 2015;30(12):1681–1687.
[19] Hauser RA, Factor SA, Marder SR, et al. KINECT 3: a phase 3 randomized, double-blind, placebo-controlled trial of valbenzine for tardive dyskinesia. Am J Psychiatry. 2017;174(5):476–484.
[20] Factor SA, Remington G, Comella CL, et al. The effects of valbenzine in participants with tardive dyskinesia: results of the 1-year KINECT 3 extension study. J Clin Psychiatry. 2017;78(9):1344–1350.
[21] Marder SR, Singer C, Lindenmayer JP, et al. A phase 3, 1-year, open-label trial of valbenzine in adults with tardive dyskinesia. J Clin Psychopharmacol. 2019;39(6):620–627.
[22] Anderson KE, Stamler D, Davis MD, et al. Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia (AIM-TD): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Psychiatry. 2017;4(8):595–604.
[23] Fernandez HH, Factor SA, Hauser RA, et al. Randomized controlled trial of deutetrabenazine for tardive dyskinesia: The ARM-TD study. Neurology. 2017;88(21):2003–2010.
[24] Fernandez HH, Stamler D, Davis MD, et al. Long-term safety and efficacy of deutetrabenazine for the treatment of tardive dyskinesia. J Neurol Neurosurg Psychiatry. 2019;90(12):1317–1323.
[25] Solmi M, Pigato G, Kane JM, et al. Treatment of tardive dyskinesia with VMAT2 inhibitors: a systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther. 2018;12:1215–1238.
[26] Bucher HC, Guyatt GH, Griffith LE, et al. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol. 1997;50(6):683–691.
[27] Aggarwal S, Serbin M, Yonan C. Indirect treatment comparison of valbenzine and deutetrabenazine efficacy and safety in tardive dyskinesia. J Comp Eff Res. 2019;8(13):1077–1088.
[28] Institute for Clinical and Economic Review. Final evidence report: VMAT2 inhibitors for tardive dyskinesia: effectiveness and value. Boston (MA); 2017. Available from: http://icerorg.wpengine.com/wp-content/uploads/2020/10/NECEPAC_TD_FINAL_REPORT_122217.pdf
[29] Lundt L, Franey E, Yonan C. Chart extraction/clinician survey shows symptom impact and favorable treatment outcomes with VMAT2 inhibitors in patients with tardive dyskinesia [meeting abstract]. Neurology. 2020;94(15 Suppl):14.
[30] Caro JJ. Discretely integrated condition event (DICE) simulation for pharmacoeconomics. Pharmacoeconomics. 2016;34(7):665–672.
[31] Moller J, Davis S, Stevenson M, et al. Validation of a DICE simulation against a discrete event simulation implemented entirely in code. Pharmacoeconomics. 2017;35(10):1103–1109.
[32] Greene M, Yan T, Chang E, et al. Medication adherence and discontinuation of long-acting injectable versus oral antipsychotics in patients with schizophrenia or bipolar disorder. J Med Econ. 2018;21(2):127–134.
[33] Prater PL, Schuster AM, Lee JT, et al. Treatment in motion: analyzing the impact of valbenzine on antipsychotic persistence in a
Medicare population. J Manag Care Spec Pharm. 2018;24(4-a Suppl):57.

[34] Leucht S, Tardy M, Komossa K, et al. Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: a systematic review and meta-analysis. Lancet. 2012;379(9831):2063–2071.

[35] Di Capite S, Upthegrove R, Mallikarjun P. The relapse rate and predictors of relapse in patients with first-episode psychosis following discontinuation of antipsychotic medication. Early Interv Psychiatry. 2018;12(5):893–899.

[36] Derry S, Moore RA. Atypical antipsychotics in bipolar disorder: systematic review of randomised trials. BMC Psychiatry. 2007;7:40.

[37] Panish J, Karve S, Candrilli SD, et al. Association between adherence to and persistence with atypical antipsychotics and psychiatric relapse among US Medicaid-enrolled patients with schizophrenia. J Pharm Health Serv Res. 2013;4(1):29–39.

[38] Park T, Kuntz KM. Cost-effectiveness of second-generation antipsychotics for the treatment of schizophrenia. Value Health. 2014;17(4):310–319.

[39] Rajagopalan K, O’Day K, Meyer K, et al. Annual cost of relapses and relapse-related hospitalizations in adults with schizophrenia: results from a 12-month, double-blind, comparative study of lurasidone vs quetiapine extended-release. J Med Econ. 2013;16(8):987–996.

[40] Ascher-Svanum H, Zhu B, Faries DE, et al. The cost of relapse and the predictors of relapse in the treatment of schizophrenia. BMC Psychiatry. 2010;10:2.

[41] Crump C, Sundquist K, Winkleby MA, et al. Comorbidities and mortality in bipolar disorder: a Swedish national cohort study. JAMA Psychiatry. 2013;70(9):931–939.

[42] Chiu M, Vigod S, Rahman F, et al. Mortality risk associated with psychological distress and major depression: a population-based cohort study. J Affect Disord. 2018;234:117–123.

[43] Herdman M, Gudex C, Lloyd A, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. 2011;20(10):1727–1736.

[44] Caroff SN, Yeomans K, Lenderking WR, et al. RE-KINECT: a prospective study of the presence and healthcare burden of tardive dyskinesia in clinical practice settings. J Clin Psychopharmacol. 2020;40(3):259–268.

[45] Caroff SN, Cutler AJ, Shalhoub H, et al. Health-related quality of life in patients with possible tardive dyskinesia based on patient and clinician assessments. Presented at: the American Psychiatric Association Annual Meeting; 2019 May 18–22. San Francisco, CA.

[46] Arias E. United States life tables, 2012. Natl Vital Stat Rep. 2012; 61(3):1–63.

[47] Chong SA, Tay JA, Subramaniam M, et al. Mortality rates among patients with schizophrenia and tardive dyskinesia. J Clin Psychopharmacol. 2009;29(1):5–8.

[48] Gilmer TP, Dolder CR, Lacro JP, et al. Adherence to treatment with antipsychotic medication and health care costs among Medicaid beneficiaries with schizophrenia. Am J Psychiatry. 2004;161(4):692–699.

[49] Guo JJ, Keck PE, Jr., Li H, et al. Treatment costs and health care utilization for patients with bipolar disorder in a large managed care population. Value Health. 2008;11(3):416–423.

[50] Kane JM, Correll CU, Nierenberg AA, et al. Revisiting the Abnormal Involuntary Movement Scale: proceedings from the tardive dyskinesia assessment workshop. J Clin Psychiatry. 2018;79(3):17cs11959.

[51] Braithwaite RS, Meltzer DO, King JT, Jr., et al. What does the value of modern medicine say about the $50,000 per quality-adjusted life-year decision rule? Med Care. 2008;46(4):349–356.

[52] Hirth RA, Chernew ME, Miller E, et al. Willingness to pay for a quality-adjusted life year: in search of a standard. Med Decis Making. 2000;20(3):332–342.