Prevalence of Tick-Borne Pathogens in *Ixodes ricinus* and *Dermacentor reticulatus* Ticks from Different Geographical Locations in Belarus

Anna L. Reye¹, Valentina Stegniỳ², Nina P. Mishaeva², Sviataslau Velhin², Judith M. Hübschen¹, George Ignatyev², Claude P. Muller¹*

1 Institute of Immunology, Centre de Recherche Public de la Santé / National Public Health Laboratory, Luxembourg, Luxembourg, 2 Clinical and Experimental Laboratory for Chronic Neuroinfections, Republican Research and Practical Centre for Epidemiology and Microbiology, Minsk, Belarus

Abstract

Worldwide, ticks are important vectors of human and animal pathogens. Besides Lyme Borreliosis, a variety of other bacterial and protozoal tick-borne infections are of medical interest in Europe. In this study, 553 questing and feeding *Ixodes ricinus* (n = 327) and *Dermacentor reticulatus* ticks (n = 226) were analysed by PCR for *Borrelia*, *Rickettsia*, *Anaplasma*, *Coxiella*, *Francisella* and *Babesia* species. Overall, the pathogen prevalence in ticks was 30.6% for *I. ricinus* and 45.6% for *D. reticulatus*. The majority of infections were caused by members of the spotted-fever group rickettsiae (24.4%), 9.4% of ticks were positive for *Borrelia burgdorferi sensu lato*, with *Borrelia afzelii* being the most frequently detected species (40.4%). Pathogens with low prevalence rates in ticks were *Anaplasma phagocytophilum* (2.2%), *Coxiella burnetii* (0.9%), *Francisella tularensis* subspecies (0.7%), *Bartonella henselae* (0.7%), *Babesia microti* (0.5%) and *Babesia venatorum* (0.4%). On a regional level, hotspots of pathogens were identified for *A. phagocytophilum* (12.5–17.2%), *F. tularensis ssp.* (5.5%) and *C. burnetii* (9.1%), suggesting established zoonotic cycles of these pathogens at least at these sites. Our survey revealed a high burden of tick-borne pathogens in questing and feeding *I. ricinus* and *D. reticulatus* ticks collected in different regions in Belarus, indicating a potential risk for humans and animals. Identified hotspots of infected ticks should be included in future surveillance studies, especially when *F. tularensis* ssp. and *C. burnetii* are involved.

Introduction

Throughout the world, ticks are important vectors of human and animal pathogens. In Eastern Europe, Lyme Borreliosis (LB) is a major public health threat with annual incidence rates ranging from 4.8 (Poland) to 35 (Lithuania) cases per 100,000 population [1]. In Belarus, 1.0 to 9.1 cases per 100,000 have been reported over a ten year period [2]. Although early manifestations of the disease usually can be diagnosed and treated successfully, late manifestations such as Lyme arthritis, Acrodematitis chronica atrophicans and neuroborreliosis can be severe. The causative agents are members of the *Borrelia burgdorferi* sensu lato (s.l.) complex, of which at least *Borrelia burgdorferi* sensu stricto (s.s.), *B. afzelii* and *B. garinii* are known to be human pathogens, whereas pathogenicity has not been confirmed for *B. spielmani*, *B. lausitanae* and *B. valaisiana*. In the neighbouring countries of Belarus, the prevalence of *Borrelia* species in questing *Ixodes* ticks ranges from 6.2% in Poland, 11% in Lithuania to 40.7% in Russia and 18–51% in Latvia [3–6]. No such prevalence data are available for Belarus, but the three human pathogenic *Borrelia* species have been isolated from ticks before [7].

Six other tick-borne bacterial and protozoal pathogen genera are of medical interest in Europe. *Rickettsia* species of the spotted fever group (SFG) can cause rickettsioses in humans, which are mainly characterized by feverish infections. Little is known about the incidence of spotted fever rickettsioses in Eastern Europe, but surveillance studies revealed that *Rickettsia* prevalence in ticks ranges from about 3% in Poland and 6% in the Ukraine and Slovenia to 15% in Russia [8–11].

Anaplasma phagocytophilum is another rickettsial agent pathogenic for humans, causing granulocytic anaplasmosis. Although the incidence of anaplasmosis in Europe is not well documented, clinical cases seem to be rare. In ticks, a prevalence of 2.9% in Lithuania, 2.9–8.7% in Poland, 3.6% in the Ukraine and 5.0% in Russia have been observed [3,4,10,12,13].

Coxiella burnetii is the causative agent of Q fever in humans, but it also affects domestic and wild ruminants, leading to increased rates of abortion. Although ticks are competent vectors of this pathogen, so far Q fever outbreaks have been linked to exposure to infected animals and their products. Despite only limited studies the prevalence of *C. burnetii* in European ticks, does not seem to exceed 2.6% [9,14–16].
Another tick-borne pathogen that can also be transmitted by aerosol is *Francisella tularensis*, causing tularemia in humans. Prevalence rates in ticks are at least in France and Germany below 1.6% [17,18] and like Q fever, tularemia outbreaks are usually linked to the exposure to contaminated biological matter (faeces, blood, milk, etc.) rather than tick bites.

Bartonella species can be transmitted to humans by various arthropods including ticks and cause diseases like trench fever and cat scratch disease. The prevalence of these bacteria in ticks can vary as much as from 3.7% in Poland to 40% in Russia and France [19–21].

Besides these bacterial agents, also human pathogenic protozoans can be transmitted by tick bites. At least two *Babesia* species, namely *B. microti* and *B. divergens*, are known to cause babesiosis in humans, whereas for *B. venatorum* (previously *Babesia* sp. EU1) human pathogenicity is suspected. In Poland, 3.5% to 5.4% of ticks were found to be infected with *B. microti* [22,23], whereas 1.6% of ticks from Russia were infected with *B. venatorum* [8].

The wide distribution of bacterial and protozoal agents of human pathogenicity and the extreme range of their prevalence in ticks indicate the need for comprehensive studies on tick-borne pathogens in particular in Eastern Europe. So far, comparatively few studies on the prevalence of tick-borne pathogens in ticks from Belarus have been published in peer-reviewed journals [24,25]. However, official data on LB incidence and limited information on *Borrelia burgdorferi* s.l. prevalence in ticks exist [2]. In this study, we investigated the prevalence of seven tick-borne pathogen genera of medical interest in questing and feeding *Ixodes ricinus* and *Dermacentor reticulatus* ticks in Belarus.

Materials and Methods

Belarus is a landlocked country in North-Eastern Europe with a population of 9.4 million, 70% of which reside in urban areas. Its terrain is generally flat, with an average elevation of 160m above sea level and about 40% of the country is covered by forest. The most common tick species in Belarus are *Ixodes ricinus* and *Dermacentor reticulatus* [2].

In April and May 2009, ticks were collected from the vegetation and from cows at 32 collection sites in the administrative regions of Brest (n = 8), Gomel (n = 7), Grodno (n = 2), Minsk (n = 3), Mogilev (n = 7) and Vitebsk (n = 5) (Figure 1). One tick was removed from a dog in Minsk region. Verbal authorisation for collection of feeding ticks was obtained from farmers and animal owners. Collection of questing ticks was performed with the cloth-dragging method; feeding ticks were removed with forceps. Ticks were identified to species level using standard morphological identification keys [26] and stored in 70% ethanol at 4°C. Ticks were washed three times in 1x phosphate buffered saline, rinsed with distilled water and dried on sterile filter paper prior to DNA extraction. Disruption and homogenization was performed in lysis buffer of the InviMag Tissue DNA Mini kit (Invitek, Berlin, Germany) using the TissueLyser II (Qiagen, Venlo, Netherlands) and 5 mm stainless steel beads. The KingFisher 96 Magnetic Particle Processor (Thermo Scientific, Waltham, Massachusetts, USA) was used for the extraction of DNA according to the manufacturers’ instructions. Detection PCRs for *A. phagocytophilum*, *Bartonella* sp., *Babesia* sp., *Borrelia* sp., *C. burnetii*, *Francisella* sp. and *Rickettsia* sp. were carried out using 5μl of raw DNA extract and 1μl of first round products. In addition to the 17kDa PCR used for detection of
Results

Tick collection

In total, 553 ticks belonging either to the species *Iodes ricinus* (59.1%; 327/553) or *Dermacentor reticulatus* (40.9%; 226/553), were collected from the vegetation (81.9%; 453/553), cattle (17.9%; 99/553) and a dog (0.2%; 1/553). The majority of ticks collected from the vegetation were *I. ricinus* (63.8%; 289/453), whereas from cattle mostly *D. reticulatus* was removed (61.6%; 61/99) (Table 2).

Most ticks were collected in Gomel region (53.7%; 297/553), followed by Brest (48.2%; 82/553) and Minsk region (14.3%; 79/553). Only few ticks were collected in Grodno (8.1%; 45/553), Mogilev (5.6%; 31/553) and Vitebsk region (3.4%; 19/553) (Table 2). Adults were the predominant instars (99.6%; 551/553) comprising of 59.5% females (329/553) and 40.1% males (222/553). Only two nymphal *I. ricinus* (0.4%) were collected from the vegetation (Table 2). In the regions Brest, Grodno and Minsk, both tick species were equally prevalent (50 ± 5%), whereas *I. ricinus* was predominant in Mogilev, Grodno and Vitebsk (67.7–97.8%) (Table 2). The overall prevalence of infected questing ticks from Belarus (counting mixed infected ticks only once) was 37.7% (171/453). Questing *I. ricinus* displayed an infection prevalence of 32.9% (95/299), which was significantly lower than for *D. reticulatus* (46.3%; 76/164; p<0.01) (Table 3). The overall prevalence of infections in feeding ticks was 32% (32/100); significantly fewer *I. ricinus* ticks were positive in the pathogen detection PCRs (13.2%; 5/38) than feeding *D. reticulatus* infection rates in feeding ticks was 32% (32/100); significantly fewer *I. ricinus* ticks were positive in the pathogen detection PCRs (13.2% vs. 46.3%; p<0.05) and the *D. reticulatus* ticks were predominantly found in Grodno (9.8%; 29/297) and Grodno region (15.6%; 7/45), respectively. All *Rickettsia* infected ticks were collected at the same site in Minsk region.

Rickettsiidae

Spotted Fever Group (SFG) *Rickettsia* were detected in 24.4% (135/553) of ticks using the 17kDa PCR assay, of which 22.2% (30/135) were identified as *Rickettsia helvetica* and 3.7% (5/135) clustered with *Rickettsia monacensis*/*Rickettsia taura* (Figure 2A). The remaining sequences (74.1%; 100/135) clustered with the *Rickettsia* species *R. amblyommii*, *R. conori*, *R. heilongiangi*, *R. honei*, *R. japonica*, *R. maroni*, *R. montana*, *R. montanensis*, *R. parkeri*, *R. peacockii*, *R. rhipicephala*, *R. rickettsii*, *R. sibirica* and *R. slovaca*, hereafter referred to as the *Rickettsia* rickettsia group (RRG) (Figure 2A; Table 3). From the latter 105 samples, the discriminatory ompA PCR generated 63 amplicons (61.9%; 65/105), corresponding to *R. monacensis* (5/5) and *Rickettsia roulithi* (60/100) (Table 3). Forty RRG positive samples were negative in the ompA PCR assay.

The Rickettsia infection rate was significantly higher (p<0.01) in *D. reticulatus* (43.8%; 99/226) than *I. ricinus* (11.0%; 36/327). In questing *D. reticulatus* ticks, RRG was the most prevalent species (22.0%; 36/164), followed by *R. roulithi* (19.5%; 39/99) (Table 3).

Borrelia species

Borrelia burgdorferi sensu lato was the second most prevalent pathogen and detected in 9.4% (52/553) of all ticks. The predominant species was *B. afzelii* (40.4%; 21/52) followed by *B. garinii* (21.2%; 11/52), *B. burgdorferi* sensu stricto (s.s.) (19.2%; 10/52), *B. valaisiana* (17.3%; 9/52) and *B. lusitaniae* (1.9%; 1/52) (Table 3, Figure 2B). The *Borrelia* prevalence was significantly higher (p<0.05) in *I. ricinus* (14.1%; 46/327) than in *D. reticulatus* (2.7%; 6/226). *I. ricinus* ticks were infected with all *Borrelia* species detected, whereas in *D. reticulatus* ticks only *B. burgdorferi* s.s., *B. afzelii* and *B. valaisiana* were detected (Table 3, Figure 2B). In ticks from the vegetation, the *Borrelia* prevalence (10.4%; 47/453) was twice as high as in those from host animals (5.0%; 5/100) (Table 3). Interestingly, the prevalence of *Borrelia* infected ticks was considerably higher in Brest (15.9%; 13/82) and Grodno (15.6%; 7/45) than in Gomel (7.7%; 23/297; p<0.05) and the remaining regions (5.3–9.7%; not significant). *Borrelia* species diversity was highest in ticks from Gomel (all 5 species detected) and lowest in Vitebsk region (only *B. garinii*).

Low prevalent pathogens

The other pathogens were exclusively detected in questing ticks. *Anaplasma phagocytophilum* (2.6%; 12/453), *Coxiella burnetii* (1.1%; 5/453), *Francisella tularensis* ssp. *tularensis* (0.9%; 4/453), *Babesia microti* (0.7%; 3/453) and *Babesia venatorum* (0.4%; 2/453) were only detected in *I. ricinus* ticks, whereas both tick species harboured *Bartonella henselae* (0.9%; 4/453) (Table 3, Figures 2C-G). *A. phagocytophilum* was detected in three regions and its prevalence in ticks was considerably higher in Minsk (6.3%; 8/79) than in Gomel (2.0%; 6/297; p<0.05) and Grodno (2.2%; 1/45; not significant). Ticks from Brest and Gomel region were infected with *B. henselae* and both *Babesia* species, whereas only ticks from Gomel harboured *F. tularensis* ssp. and *C. burnetii*.

Pathogens in questing and feeding ticks

Overall, the pathogen species composition was significantly more diverse in questing than in feeding ticks (14 vs. 4 species; p<0.05). Questing *I. ricinus* ticks were infected with more pathogen species than questing *D. reticulatus* (13 vs. 5 species; not significant) (Table 4). Interestingly, the pathogen prevalence in *I. ricinus* was significantly lower in feeding than in questing ticks (13.2% vs. 32.9%; p<0.01), whereas it was similar in *D. reticulatus* ticks (42.6% vs. 46.3%; not significant). Mixed infections were detected in 2.3% (14/553) of ticks, the majority of which were formed between members of the two most prevalent pathogen genera *Rickettsia* and *Borrelia* (57.1%; 8/14) (Table 3). Also, mixed infections occurred more often in *I. ricinus* than in *D. reticulatus* ticks (3.4% vs. 1.3%; not significant). Gender specific differences in the pathogen prevalence.
Pathogen	Primer name	Orientation	Target gene	Ref.	Primer sequence	MgCl₂ (μM)	C (°C)	Annealing step	Elongation step
Anaplasma phagocytophilum	EL(569)F	forward	groEL gene	[46]	ATGGTATGCAGTTTGATCGC	0.8	2	61°C for 30 s	72°C for 15 s
	EL(1193)R	reverse	groEL gene	[46]	TCTACTCTGTCTTTGCGTTC	0.8	2	56°C for 30 s	72°C for 30 s
Babesia sp.	BJ1	forward	18S rRNA	[47]	GTCTTGTAATTGGAATGATGG	0.8	2	60°C for 30 s	72°C for 30 s
	BN2	reverse	18S rRNA	[47]	TAGTTTATGGTTAGGACTACG	0.8	2	60°C for 30 s	72°C for 30 s
Bartonella sp.	BH1	forward	groEL gene	[21]	GAAGAAACAACTTCTGACTATG	0.8	1.5	60°C for 30 s	72°C for 30 s
	BH4	reverse	groEL gene	[21]	CGCACAACCTTCACAGGATC	0.8	1.5	60°C for 30 s	72°C for 30 s
Bartonella burgdorferi s.l.	Q1	forward	flaB gene	[49]	AARGAATTGGCAGTTCAATC	0.8	2	59°C for 30 s	72°C for 30 s
	Q2	reverse	flaB gene	[49]	GCATTTTCWATTTTAGCAAGTGATG	0.8	2	59°C for 30 s	72°C for 30 s
Francisella tularensis	Fr1238F.0.1	forward	16S rRNA	[51]	GCCCATTTGAGGGGGATACC	0.4	2	60°C for 30 s	72°C for 30 s
	Fr1281R.0.1	reverse	16S rRNA	[51]	GGACTAAGAGTACCTTTTTGAGT	0.4	2	60°C for 30 s	72°C for 30 s
Rickettsia sp.	Rr17k.1p	forward	17-kDa	[52]	TTTACAAAATTCTAAAAACCAT	0.8	2	56°C for 30 s	72°C for 30 s
	Rr17k.539n	reverse	17-kDa	[52]	TCAATTCACAACTTGCCATT	0.8	2	56°C for 30 s	72°C for 30 s

PCR protocol: 94°C for 3 min; 40 cycles of 94°C for 30 s, specific annealing conditions and 72°C for specific elongation time; subsequent incubation at 72°C for 10 min.

C, concentration; bp, base pairs; PCR, polymerase chain reaction.
in ticks could not be evaluated due to the low number of feeding male ticks (n = 5).

Discussion

This is the first comprehensive study on tick-borne bacterial and protozoan pathogens of human and veterinary interest in Eastern Europe. In this study, the ticks collected both from the vegetation and from hosts were mostly adults. This finding is not surprising for ticks removed from cows, as larger mammals serve as the main blood meal host for adult ticks, whereas immature ticks preferably feed on smaller vertebrates. In contrast, on vegetation immature tick stages are normally more abundant than adults due to high interstadial mortality rates [27]. Although cloth dragging has been described as a suitable collection method also for nymphs [28], our results nevertheless suggest that our collection was biased towards adult ticks.

In questing *I. ricinus* ticks, we observed a prevalence of *Rickettsia* species of 11.7%, which was similar to that reported from questing adult *I. ricinus* ticks from Poland (7.8–11.1%) and Slovakia (6.1%) [9,11,29]. Also, the prevalence of *Rickettsia* in questing *D. reticulatus* (44.5%) was comparable to reports from Poland (40.7%) [30]. Although not all 100 RRG samples were positive in the discriminatory ompA PCR, all amplified sequences allowed the identification of *R. raoultii*, which was comparable to reports from Poland (40.7%) [30]. Also, the prevalence of *I. ricinus* ticks was 11.7%, which was similar to that reported from questing adult ticks from Poland (7.8–11.1%) and Slovakia (6.1%) [9,11,29]. Although not all 100 RRG samples were positive in the discriminatory ompA PCR, all amplified sequences allowed the identification of *R. raoultii*, which is the same as RRG in at least one tick from each RRG positive collection site. *R. raoultii* and RRG were almost exclusively detected in *D. reticulatus*, only two feeding *I. ricinus* ticks were found to be infected by these rickettsiae. This suggests a high adaptation of these bacteria to the former tick species and indeed, high rates of transovarial transmission of 90% to 100% have been reported for *R. raoultii* in *D. reticulatus* and *D. marginatus* ticks [31].

The observed prevalence of *R. raoultii* of 22.6% in questing *D. reticulatus* was comparable to the 22.3% reported from Slovakia [32]. Although *R. raoultii* is endemic in Poland and Russia [31,33], the prevalence in ticks is not known. *R. raoultii* is a member of the spotted fever group rickettsiae and is suspected to cause tick-borne lymphadenopathy (TIBOLA) in humans [34]. Despite the high prevalence of infected *D. reticulatus* and their implication in human TIBOLA infections, there are no such reports from Belarus available.

The overall prevalence of *Borrelia* infected *I. ricinus* collected from the vegetation was 12.5%, which is in the lower range of the prevalences of 10.1–32.7% reported for questing adult *I. ricinus* from Eastern Europe [35]. For questing *D. reticulatus*, the prevalence of *B. burgdorferi* s.l. (1.8%) was also lower than that reported for questing adult *D. reticulatus* from Russia (3.6%) [21]. On a regional level, the highest *Borrelia* prevalence in ticks of 15.9% was observed in Brest region, which seems to be in line with reports of the highest LB incidence in this region [2]. *B. afzelii* and *B. garinii*, the most prevalent *Borrelia* species in this study, have been previously reported to be predominant in Belarus [25]. However, this is the first report on *B. burgdorferi* s.s. and *B. helvetica* prevalence in ticks from Belarus.

Interestingly, the *Borrelia* prevalence was significantly higher in *I. ricinus* ticks collected from the vegetation than in those from cattle. This is surprising, as feeding adult ticks were removed during their third blood meal, whereas questing adults only fed twice. Here, however, the prevalence of feeding and questing adult ticks should be similar as cattle are not considered a competent reservoir host [28]. Also, the prevalence of infected adult ticks was not an artifact due to PCR inhibition. Cattle on pastures may serve as an easier blood meal host than wild animals and thus act as a dilution factor for *Borrelia* infections, which results in the complement-mediated lysis of *B. burgdorferi* s.l. due to the bactericidal activity of bovine serum [35]. Sensitivity testing of our PCR on DNA extracts from feeding and questing ticks spiked with *B. burgdorferi* s.l. excluded a difference in detection sensitivity. This suggests that the reduced *Borrelia* prevalence in feeding ticks was not an artifact due to PCR inhibition. Cattle on pastures may serve as an easier blood meal host than wild animals and thus act as a dilution factor for *Borrelia* prevalence in ticks. This inhibitory influence of less competent

Table 2. Numbers of questing and feeding ticks collected in different regions of Belarus.

Ticks	Source	Brest	Gomel	Grodno	Minsk	Mogilev	Vitebsk	Total
I. ricinus								
Vegetation		40	168	44	37	21	17	327
Vegetation	F	18	82	30	16	–	1	147
Vegetation	M	22	81	14	19	–	4	140
Vegetation	N	–	–	–	–	2	–	2
Host	T	–	–	–	5	–	21	12
Host	F	–	–	–	5	–	18	35
Host	M	–	–	–	–	3	–	3
Host	N	–	–	–	–	–	–	–
D. reticulatus								
Vegetation		42	129	1	42	10	2	226
Vegetation	F	14	106	1	41	2	–	164
Vegetation	M	7	66	1	12	1	–	87
Vegetation	N	–	–	–	–	–	–	–
Host	T	–	–	–	28	23	1	70
Host	F	27	23	–	1	7	2	60
Host	M	1	–	–	–	1	–	2
Host	N	–	–	–	–	–	–	–

1. I, bovines; D, Dermoentor; T, Total; F, Female; M, Male; N, Nymph; -, not found.
doi:10.1371/journal.pone.0054476.t002
reservoir hosts on an enzootic cycle has been modeled before [37,38].

Pathogens of the genera *Anaplasma*, *Babesia*, *Bartonella*, *Coxiella* and *Francisella* were exclusively found in questing ticks from Belarus with low prevalences comparable to reports from questing adult ticks from other Eastern European countries [3,8,9,12,21,22,39], although occasionally also higher prevalences have been reported for these pathogens [3,21,40]. The only study from Belarus reports a prevalence of *A. phagocytophilum* in questing *I. ricinus* from Minsk region of 4.2% [24], which is significantly lower than our findings (13.5%; 5/37; p<0.05).

These observed low prevalences in Belarusian ticks are in line with low incidence reports of these diseases in Eastern Europe. However, so far no such incidence data is available for Belarus and there are limited reports from the neighbouring countries, e.g. a single case report of arthropod-borne tularemia in Poland has been published [41]. Serological studies from Poland and Russia reveal antibody positivities in humans of 5.1 to 11.8% for *Anaplasma phagocytophilum* and 2.6 to 9.0% for *Babesia microti* [42,43]. Interestingly, a high seroprevalence was reported for *Bartonella henselae* from Poland (23.1 to 37.5%); however, this may be due to other routes of transmission like contact to infected cats rather than to tick bites.
Interestingly, hotspots of infection were discovered at sites in Minsk and Gomel region for *A. phagocytophilum* (12.5–17.2%), *F. tularensis* (5.5%) and *C. burnetii* (9.1%). The focality of prevalence rates suggests that zoonotic cycles of these pathogens are well established at least at these sites. Since the inhalation of contaminated aerosols (e.g. dried faeces) is an important route of transmission of *F. tularensis* ssp. and *C. burnetii* [44,45], these sites may represent a significant threat to human health independent of tick exposure. Therefore, studies on the seroprevalence and incidence of these diseases in humans as well as the surveillance of these pathogens not only in ticks but also in reservoir hosts (e.g. members of the Leporidae for *F. tularensis* ssp. and of the Bovidae for *C. burnetii*) at the identified hotspots and neighbouring regions are warranted in order to predict and avoid outbreaks of tularaemia and Q fever.

Gomel region displayed the highest pathogen diversity in the country and is also the region with the largest numbers of ticks, suggesting that it may best reflect the infection status of ticks in Belarus at least for the low prevalent pathogens *Anaplasma*, *Bartonella*, *Babesia*, *Coxiella* and *Francisella*. Nevertheless, the prevalence of *Borrelia* infected ticks in this region seemed to be lower than in the western regions Grodno and Brest, even when only *I. ricinus*, a competent vector of *Borrelia* species, is considered. These differences may be due to habitat differences rather than the geographic location.

We found that pathogen diversity was higher in questing *I. ricinus* than in questing *D. reticulatus* ticks, suggesting that the latter species serves as reservoir for fewer pathogens than *I. ricinus*, at least in Belarus. Our survey revealed a high burden of tick-borne pathogens in questing and feeding *I. ricinus* and *D. reticulatus* ticks collected in different regions in Belarus, indicating a potential risk for humans and animals. The pathogenic potential of RRG and the role of *D. reticulatus* as its arthropod vector require further attention. Identified hotspots of infected ticks, especially when *F. tularensis* ssp. and *C. burnetii* are involved, should be included in future surveillance studies. In addition, the impact of the highly

Table 3. Pathogen prevalence in questing and feeding ticks.

Pathogen species	Total	*I. ricinus*	*D. reticulatus*			
	H (%)	V (%)	H (%)	V (%)		
A. phagocytophilum	–	12 (4.2)	–	–		
Ba. microti	–	3 (0.7)	–	3 (1.0)		
Ba. venatorum	–	2 (0.4)	–	2 (0.7)		
Bt. henselae	–	4 (0.9)	–	3 (1.0)	1 (0.6)	
B. burgdorferi s.s.	5 (5.0)	47 (10.4)	2 (5.3)	46 (14.1)	3 (4.8)	3 (1.8)
B. afzelii	2 (2.0)	19 (4.2)	2 (5.3)	18 (6.2)	–	1 (0.6)
B. burgdorferi s.s.	2 (2.0)	8 (1.8)	–	6 (2.1)	2 (3.2)	2 (1.2)
B. garinii	–	1 (0.2)	–	1 (0.3)	–	–
B. lusitaniae	–	1 (0.2)	–	1 (0.3)	–	–
B. valaisiana	1 (1.0)	8 (1.8)	1 (2.6)	7 (2.4)	1 (0.6)	–
C. burnetii	–	5 (1.1)	–	5 (1.7)	–	–
F. tularensis	–	4 (0.9)	–	4 (1.4)	–	–
Rickettsia species	28 (28)	107 (23.6)	2 (5.3)	34 (11.7)	26 (41.9)	73 (44.5)
R. helvetica	1 (1.0)	29 (6.4)	–	29 (10.0)	1 (1.6)	–
R. monacensis	–	5 (1.1)	–	5 (1.7)	–	–
R. raoultii	23 (23.0)	37 (8.2)	1 (2.6)	–	22 (35.5)	37 (22.6)
RRG	4 (4.0)	36 (7.9)	1 (2.6)	–	3 (4.8)	36 (22.0)
Total*	32 (32.0)	171 (37.7)	5 (13.2)	95 (32.97)	27 (43.5)	76 (46.3)

I., Ixodes; D., Dermacentor; H., Host; V., Vegetation; -, not found; A., Anaplasma; Ba, Babesia; Bt., Bartonella; B., Borrelia; s.l., sensu lato; C., Coxiiella; F., Francisella; R., Rickettsia; RRG, Rickettsia rickettsii group.

*Note that ticks with mixed infections are only counted once.

doi:10.1371/journal.pone.0054476.t003

Table 4. Pathogen diversity in questing *I. ricinus* and *D. reticulatus* ticks.

Pathogen species	Prevalence in *I. ricinus* (%)	Prevalence in *D. reticulatus* (%)
A. phagocytophilum	12 (4.2)	–
B. afzelii	18 (6.2)	1 (0.6)
B. burgdorferi s.s.	6 (2.1)	2 (1.2)
B. garinii	11 (3.8)	–
B. lusitaniae	1 (0.3)	–
B. valaisiana	7 (2.4)	2 (1.2)
Ba. microti	3 (1.0)	–
Ba. venatorum	2 (0.7)	–
Bt. henselae	3 (1.0)	1 (0.6)
C. burnetii	5 (1.7)	–
F. tularensis s.s.	4 (1.4)	–
R. raoultii	–	37 (22.6)
R. helvetica	29 (10.0)	–
R. monacensis	5 (1.7)	–
RRG	–	36 (22.0)

I., Ixodes; D., Dermacentor; A., Anaplasma; B., Borrelia, Ba, Babesia; Bt., Bartonella; C., Coxielia; F., Francisella; R., Rickettsia; RRG, Rickettsia rickettsii group; s.s., sensu stricto; ssp., subspecies.

doi:10.1371/journal.pone.0054476.t004
prevalent *R. raoultii* and other human pathogens on human health should be assessed in clinical and serological studies.

Acknowledgments

The authors would like to thank Stephanie Wolter for skilful experimental assistance.

References

1. Lindgren E, Jaenson TGT (2006) Lyme borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. WHO Regional Office for Europe.
2. Karaban I, Vedenkov A, Yashkova S, Sebut N (2009) Epidemiology of tick-borne encephalitis and Lyme disease in the Republic of Belarus, 1998-2007. Ep Nord 10: 48-57.
3. Zygmund W, Jaros S, Wedrychowicz H (2008) Genotyping of Borrelia burgdorferi sensu lato isolated in Western Poland from Amblyomma americanum, A. americanum (O. Fab.) and A. cajennense ticks. Acta Histochem 110: 1-7.
4. Masuzawa T, Kharitonenkov IG, Okamoto Y, Fukui T, Ohashi N (2008) Host diversity of pathogenic microorganisms in Ixodes persulcatus ticks collected in Japan. Clin Microbiol Infect 14 Suppl 1: 24-29.
5. Bormane A, Lucenko I, Dukas A, Mattchouk V, Ranka R, et al. (2004) Vectors of tick-borne diseases and epidemiological situation in Latvia in 1993-2002. Int J Med Microbiol 295 Suppl 37: 36-47.
6. Motiejunas A, Bunikis J, Barbour AG, Sadziene A (1994) Lyme borreliosis in Lithuania. Scand J Infect Dis 26: 149-155.
7. Trofinov NM, Schelonenok EP, Korenberg EI, Gorlova NB, Postic D, et al. (1998) The genotyping of strains of Borrelia burgdorferi sensu lato isolated in Bulgaria from *Ixodes ricinus* ticks. Med Parasitol (Mosk) 2: 21-22.
8. Movila A, Reye AL, Dubina HV, Tolstenkov OO, Toderas I, et al. (2010) Detection of Babesia sp. EU1 and Members of Spotted Fever Group Ricketsiaceae in Ticks Collected from Migratory Birds at Curonian Spit, North-Western Lithuania. Int J Med Microbiol 298: 412-418.
9. Smetanova K, Schwarzova K, Kocianova E (2006) Detection of *Anaplasma phagocytophilum* in *Ixodes ricinus* ticks from Lublin region in Poland. Zoonoses Public Health. 53(6): 371-374.
10. Rar VA, Fomenko NV, Dobrotvorsky AK, Livanova NN, Rudakova SA, et al. (2006) Incidence of mixed isolates. Res Microbiol 148: 691-702.
11. Spitalska E, Kocianova E (2003) Detection of Coxiella burnetii in ticks collected in Slovakia and Hungary. Eur J Epidemiol 18: 263-266.
12. Sprong H, Tijssen-Klasen E, Langelaar M, De Bruin A, Fonville M, et al. (2011) Prevalence of *Coxiella burnetii* in Ticks After a Large Outbreak of *Q* Fever. Zoonoses Public Health. 58(5): 334-339.
13. Grzeszczuk A, Staniczak J, Kubika-Biernat B, Racewicz M, Kruminis-Lozowska W, et al. (2009) Human anaplasmosis in northeastern Poland seroprevalence in humans and prevalence in *Ixodes ricinus* ticks. Ann Agric Environ Med 16: 99-103.
14. Reye AL, Hubschen JM, Sause A, Muller CP (2010) Prevalence and seasonality of tick-borne pathogens in questing *Ixodes ricinus* ticks from Luxembourg. Appl Environ Microbiol 76: 2925-2931.
15. Bormane A, Lucenko I, Dukas A, Matchouchou V, Ranka R, et al. (2004) Vectors of tick-borne diseases and epidemiological situation in Latvia in 1993-2002. Int J Med Microbiol 295 Suppl 37: 36-47.
16. Motiejunas A, Bunikis J, Barbour AG, Sadziene A (1994) Lyme borreliosis in Lithuania. Scand J Infect Dis 26: 149-155.
17. Trofinov NM, Schelonenok EP, Korenberg EI, Gorlova NB, Postic D, et al. (1998) The genotyping of strains of Borrelia burgdorferi sensu lato isolated in Bulgaria from *Ixodes ricinus* ticks. Med Parasitol (Mosk) 2: 21-22.
18. Movila A, Reye AL, Dubina HV, Tolstenkov OO, Toderas I, et al. (2010) Detection of Babesia sp. EU1 and Members of Spotted Fever Group Ricketsiaceae in Ticks Collected from Migratory Birds at Curonian Spit, North-Western Russia. Vector Borne Zoonotic Dis.
19. Smetanova K, Schwarzova K, Kocianova E (2006) Detection of *Anaplasma phagocytophilum* in *Ixodes burgdorferi* sensu lato isolated in *Ixodes ricinus* ticks. Med Parasitol (Mosk) 21-22.
20. Dietrich F, Schmidgen T, Maggi RG, Richter D, Matuschka FR, et al. (2010) Prevalence of Bartonella henselae and *Borrelia burgdorferi* sensu lato DNA in *Ixodes ricinus* ticks in Europe. Appl Environ Microbiol 76: 1395-1398.
21. Bueno V, Linares J, Galindo L, Sanz MJ, Mora J, et al. (2005) Tick-borne pathogen detection, Western Siberia, Russia. Emerg Infect Dis 11: 1706-1714.
22. Wójcik-Fiatka A, Cisak E, Chmielewska-Badora J, Zwoliński J, Burzek A, et al. (2006) Prevalence of *Babesia microti* in *Ixodes ricinus* ticks from Lublin region (eastern Poland). Ann Agric Environ Med 13: 319-322.
23. Wójcik-Fiatka A, Szymanska J, Widawka L, Burzek A, Dukiewicz J (2009) Coincidence of three pathogens (*Borrelia burgdorferi* sensu lato, *Anaplasma phagocytophilum* and *Babesia microti*) in *Ixodes ricinus* ticks in the Lublin macroregion. Ann Agric Environ Med 16: 151-158.
24. Katarzyna O, Miller J, Alekseev A, Dubina H, Efremova G, et al. (2012) Identification of *Anaplasma phagocytophilum* in tick populations in Estonia, the European part of Russia and Belarus. Clin Microbiol Infect 18: 46-49.
25. Postic D, Korenberg E, Gorlova N, Kowalevsy VY, Bellenger E, et al. (1997) *Borrelia burgdorferi* sensu lato in Russia and neighbouring countries: high incidence of mixed isolates. Res Microbiol 148: 691-702.

Author Contributions

Conceived and designed the experiments: ALR SV JMH NPM GI CPM. Performed the experiments: ALR VS NPM. Analyzed the data: ALR. Contributed reagents/materials/analysis tools: SV GI CPM. Wrote the paper: ALR VS NPM GI CPM.
26. Estrada-Peña A, Bouattour A, Camicas J-L, Walker AR (2004) Ticks of Domestic Animals in the Mediterranean Region. A Guide to Identification of Species.

27. Randolph SE (1998) Ticks are not Insects: Consequences of Contrasting Vector Biology for Transmission Potential. Parasitol Today 14: 186-192.

28. Dobson ADM, Taylor JL, Randolph SE (2011) Tick (Ixodes ricinus) abundance and seasonality at recreational sites in the UK. Hazards in relation to fine-scale habitat types revealed by complementary sampling methods. TTBDBS 2: 67-74.

29. Stanczak J, Raicewicz M, Michalik J, Buczek A (2008) Distribution of Rickettsia helvetica in Ixodes ricinus tick populations in Poland. Int J Med Microbiol 298: 231-234.

30. Stanczak J (2006) Detection of spotted fever group (SFG) rickettsiae in Dermacentor reticulatus (Acari: Ixodidae) in Poland. Int J Med Microbiol 296 Suppl 40: 144-148.

31. Samoylenko I, Shpynov S, Raoult D, Rudakov N, Fournier PE (2009) Evaluation of Dermacentor species naturally infected with Rickettsia raoultii. Clin Microbiol Infect 15 Suppl 2: 303-306.

32. Spitalska E, Stefanidesova K, Kocianova E, Boldis V (2012) Rickettsia slovaca and Rickettsia raoultii in Dermacentor marginatus and Dermacentor reticulatus ticks from Slovak Republic. Exp Appl Acarol 57: 189-197.

33. Matsumoto K, Grzeszczuk A, Brouqui P, Raoult D (2009) Rickettsia raoultii and Rickettsia slovaca in Dermacentor reticulatus ticks collected from Białowieża Primeval Forest European bison (Bison bonasus bonus), Poland. Clin Microbiol Infect 15 Suppl 2: 226-229.

34. Rieg S, Schmoldt S, Theilacker C, de With K, Wolfel S, et al. (2011) Tick-borne pathogens in the Bialystok region. Adv Med Sci 51: 283-286.

35. Rauter C, Hartung T (2005) Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: a metaanalysis. Appl Environ Microbiol 71: 3448-3450.

36. Kurtenbach K, Sewell HS, Ogden NH, Randolph SE, Nuttall PA (2008) Persistence of tick-borne disease and of Disease on Ecosystems Princeton University Press, Princeton: 12-23.

37. Norman R, Bowers RG, Begon M, Hudson PJ (1999) Persistence of tick-borne pathogens. In: Ostfeld RS, Dobson ADM, Fishbein DB, Bloomfield JS, editors. Complement sensitivity as a key factor in Lyme disease ecology. Infect Immun 66: 1249-1251.

38. Kauter C, Hartung T (2005) Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: a metaanalysis. Appl Environ Microbiol 71: 7203-7216.

39. Dolesich JG, Fong ST, Fishbein DB, Bloomfield JS (2006) Molecular identification and analysis of Borrelia burgdorferi sensu lato in Ixodes scapularis and Ixodes pacificus ticks collected in New York and California. J Clin Microbiol 44: 1305-1308.

40. To H, Kako N, Zhang GQ, Otsuka H, Ogawa M, et al. (1996) Q fever pneumonia in children in Japan. J Clin Microbiol 34: 647-651.

41. Barns SM, Grow CC, Okinaka RT, Keim P, Kuske CR (2005) Detection of diverse new Franciscella-like bacteria in environmental samples. Appl Environ Microbiol 71: 2616-2625.

42. Bexell T (1999) Persistence of tick-borne virus in the presence of multiple host species: tick reservoirs and parasite mediated competition. J Theor Biol 200: 111-118.

43. Bexell T (1999) Effects of host diversity on disease dynamics. In: Ostfeld RS, Dobson ADM, Fishbein DB, Bloomfield JS, editors. Complement sensitivity as a key factor in Lyme disease ecology. Infect Immun 66: 1249-1251.

44. Kontos J, Bexell T, Fishbein DB, Bloomfield JS (2006) Effects of host diversity on disease dynamics. In: Ostfeld RS, Dobson ADM, Fishbein DB, Bloomfield JS, editors. Complement sensitivity as a key factor in Lyme disease ecology. Infect Immun 66: 1249-1251.

45. Kontos J, Bexell T, Fishbein DB, Bloomfield JS (2006) Effects of host diversity on disease dynamics. In: Ostfeld RS, Dobson ADM, Fishbein DB, Bloomfield JS, editors. Complement sensitivity as a key factor in Lyme disease ecology. Infect Immun 66: 1249-1251.

46. Kontos J, Bexell T, Fishbein DB, Bloomfield JS (2006) Effects of host diversity on disease dynamics. In: Ostfeld RS, Dobson ADM, Fishbein DB, Bloomfield JS, editors. Complement sensitivity as a key factor in Lyme disease ecology. Infect Immun 66: 1249-1251.