Evaluation of a Newly Designed Immunochromatographic Test using Gold Nanoparticles and Recombinant Antigen \textit{gra7} for Rapid Diagnosis of Human Toxoplasmosis

Hassan Morovati Khamsi 1, Seyyed javad SeyyedTabaei 2, Mehrdad Gholamzad 3 *

1. Department of Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2. Department of Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3. Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

ABSTRACT

**Background:** One of the most important complications of toxoplasmosis is its early diagnosis. It seems that \textit{GRA7} protein can be a good candidate for detection of the acute phase in Toxoplasmosis. Accordingly, the present study aimed to diagnose toxoplasmosis via a newly immunochromatographic test using recombinant antigen \textit{gra7}.

**Methods:** The parasite was cultured in mice and then were used for DNA extraction. The \textit{gra7} gene was amplified by PCR and cloned into the pET-32a (+) plasmid. Thereafter, the recombinant vector was transferred into the \textit{Escherichia coli Rosetta} strain and \textit{gra7} was detected via SDS-PAGE and western blotting. The bacterial lysate was used to purify the protein by Ni-NTA affinity chromatography. Anti-human gold conjugated antibody, test line and control line were injected to conjugate pad and nitrocellulose membrane, respectively, and all the layer were assembled. By using serum of patients and healthy individuals, manufactured kits were evaluated.

**Results:** Our results indicated that the selected gene was correctly cloned and the protein of interest was produced and purified. The test revealed sensitivity and specificity of 100 and 96.7 percent, respectively. The kit was also shown to be stable over 16 weeks in 37°C.

**Conclusion:** The choice of antigen based on cellular and clinical features of the parasite, as well as the use of previous outcomes yielded to develop a rapid diagnostic test for toxoplasmosis.

**Keywords:** Toxoplasmosis, Immunochromatography, \textit{gra7} antigen, RPD, Gold nanoparticles

Received: 2019/11/27; Accepted: 2019/12/09; Published Online: 2020/01/01

Copyright © 2020, This is an original open-access article distributed under the terms of the Creative Commons Attribution-noncommercial 4.0 International License which permits copy and redistribution of the material just in noncommercial usages with proper citation.

Use your device to scan and read the article online

Download citation: BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Send citation to: Mendeley | Zotero | RefWorks

Morovati Khamsi H, SeyyedTabaei SJ, Gholamzad M. Evaluation of a Newly Designed Immunochromatographic Test using Gold Nanoparticles and Recombinant Antigen \textit{gra7} for Rapid Diagnosis of Human Toxoplasmosis. Iran J Med Microbiol. 2020; 14 (1):101-115
**Introduction**

*Toxoplasma gondii* is a mandatory intracellular parasite that causes toxoplasmosis. About 500 million to one billion people in the world are infected with the parasite, which is mainly caused by eating undercooked meat, fruits, vegetables, or being exposed to soil and water contaminated with the parasite’s infected eggs. (1) Manifestations of the disease range from mild flu-like symptoms to lymphadenopathy and Chorioretinitis. Transmission of a primary (acute) infection from a pregnant mother to the fetus is largely asymptomatic and can lead to miscarriage or congenital abnormalities such as hydrocephalus, microcephaly, intracranial calcification, Chorioretinitis, blindness, epilepsy, mental retardation, or problems in motor abilities (2). On the other hand, the activation of a chronic infection in the nervous system following a weakened or impaired immune system in people with AIDS, organ transplants, or in patients with lymphoproliferative diseases can lead to central nervous system damage or complications such as encephalitis for which lack of in time diagnosis and proper treatment can have deadly consequences (3). Early detection of acute and chronic toxoplasmosis, followed by appropriate drug treatment in at-risk individuals, can reduce the severity of symptoms and the occurrence of life-threatening injuries (4). Therefore, the aim of this study was to use recombinant *gra7* protein to design immunochromatographic methods for rapid diagnosis of specific IgG against *T. gondii* in three minutes.

**Materials and Methods**

**Toxoplasma Culture and DNA Extraction**

This experimental study was performed in 2017 with 204 serum samples from different laboratories in Tehran using non-probability sampling method. Toxoplasma-induced RH angles were used in frozen form from the Quality Control Department of the Razi Vaccine and Serum Research Institute. To remove the preservative, the parasite was washed once with PBS solution and then cultured twice by successive intracranial passages in the mouse. For the reproduction and maintenance of the parasite, 0.5 mL of peritoneal fluid containing 2×10⁵ live parasites was injected into each mouse and 100 µL / mL of penicillin was injected intraperitoneally. After 3 to 4 days, the peritoneal cavity of infected mouse was washed with 5 mL of cold PBS buffer, and the tacos were collected and stored at -20°C. To extract the genomic DNA, the toxoid plasma toxins were extracted from the DNA extraction kit by Synagen (Iran) in the DNG method according to the manufacturer’s instructions.

**Primer Design for GRA7 Gene and PCR**

The *gra7* gene sequence was extracted from the NCBI gene bank and designed with the enzyme sites of BglII and XhoI. The sequence of primers was confirmed using Gene Runner software.

GRA7 Forward: CAGCCCATGCTGATGGCACACACGGAT
GRA7 Reverse: GTGGTGCTCGAGTTACTGGCGGGCATCC

The *gra7* gene was amplified using PCR. The *gra7* gene amplification program using PCR includes initial denaturation for 5 minutes and 96°C, secondary denaturation for 30 seconds and 95°C temperature, Annealing for 30 seconds and 58°C temperature, Extension for 1 minute and temperature 72°C and final extension for 10 minutes at 72°C. In this process, 0.4 µM of each primer, 200 µM of any dNTP type, 1.5 unit / mL of Taq polymerase enzyme, 5 µL PCR buffer containing MgSO₄ and 200 ng of the sample DNA with a final volume of 50 µL were used.

**Preparation of Recombinant Plasmid and Cloning**

The plasmid pET-32a (+) vector was first cut using BglII and XhoI and added to the purified PCR product. By adding the enzyme T4 ligase, the gene was added to the Recombinant Plasmid.

The recombinant plasmid was transferred to the Competent Cell *Escherichia coli* DH5α by heat shock. The bacterium was cultured in an LB culture medium containing 100 µg / mL of antibiotic. The recombinant plasmid was extracted using double enzyme digestion on *gra7*-pET-32a (+) and PCR for the *gra7* gene to confirm the accuracy of bacterial transformation.

**Expression, Confirmation and Purification of GRA7 Protein**

The multiplied recombinant plasmid was transferred to *E. coli* Rosetta (DE3). A colony was removed from the newly transformed plate and cultured in a tube containing liquid LB and ampicillin, and the next day in a 25 mL Erlenmeyer flask. Four, six, and eight hours after induction, the environment was sampled. The collected samples were centrifuged at 6000 rpm and the final precipitate was stored in a freezer at -20°C. The Western blot method was used to confirm the gene expression. In order to purify *gra7* by Ni-NTA method, first the cell sediment was melted at room temperature and the cells were lysed and then the cellular lyses were evaluated directly by SDS-PAGE. Also, the lyses-resin mixture was carefully passed through the Ni-NTA chromatography column and its output was collected.

**Blotting Test**

At this stage, the antigen *gra7* was cut on the nitrocellulose paper and after the blocking phase with bovine serum albumin, the serum of patients with toxoplasmosis was evaluated with 1:30 dilutions. In this study, 204 serums from different laboratories that were examined and collected by CLIA method were used. There
were 30 serums for people with clinical symptoms, 70 serums with IgM antibodies to Toxoplasma, 74 serums with IgG antibodies against Toxoplasma and 30 negative serums (no IgG antibodies against Toxoplasma). Also, 30 serum samples of people with IgG antibodies against other diseases, all of which were negative for IgM antibodies and IgG antibodies to toxoplasma, were evaluated for Bovine Serum Albumin (BSA). Ventricular leishmaniasis (n = 5), Strongyloidiasis (n = 1), malaria (n = 13), fascioliasis (n = 4), hepatitis (n = 3), hydatid cyst (n = 4) were used.

**Immunochromatography Strip**

After preparing the colloidal gold and conjugating the Anti-human IgG according to the relevant protocol (18), the tape was designed and tested. The conjugated solution was poured on the conjugation pad. A recombinant gra7 antigen suspension was added to the test line area. The control line was sampled with antibodies against the mouse antibody. All sheets were cut to a width of 4 mm.

The accelerated method was used to evaluate the kit stability time. The shelf life of the kit was calculated for 24 months.

**Results**

After DNA extraction from the parasite, the PCR reaction was performed using specific primers on the gene gra7. The gene proliferation band was 726 base pair (Figure 1).

**Figure 1.** Electrophoresis of gra7 gene on 1% agarose gel. Column 1: Marker 100 bp, Column 2: Multiplied part of the gra7 gene

The purified PCR product as well as the purified pET-32a (+) plasmid were cut with BglII and XhoI cutting enzymes and then connected to each other with the same end, and the recombinant pET-32a (+) -GRA7 plasmid was produced. The recombinant plasmid was then transferred to the bacterium and cultured in the presence of the antibiotic ampicillin. At this stage, the initial recombinant colonies were confirmed by specific primers (Figure 2 a, b).

**Figure 2.** Confirmation of bacterial transformation with recombinant plasmid. a) Quick check test to confirm the presence of recombinant plasmid in bacteria. b) Colony PCR test to confirm gra7 gene in vector.

DNA was extracted from confirmed colonies and finalized by double enzymatic digestion (Figure 3).

Protein expression was induced in IPTG-stimulated bacteria and then confirmed by SDS-PAGE (Figure 4a).

The dot blot test was performed using human serum with IgG antibody against Toxoplasma.
Figure 3. Digestive digestion of pET-32a (+) with XhoI and BglII enzymes and PCR product of G7 toxin gene. Column 1: gra7 gene, Column 2: Plasmid without gra7, Column 3: Plasmid after enzymatic digestion, Column 4: Molecular size index 1 kbp, Column 5: recombinant plasmid plas-32a (+) - gra7.

Figure 4. Electrophoresis of lyse bacterial cell with pET-32a (+)-gra7 plasmid and evaluation of recombinant protein expression r gra7 on SDS-PAGE gel. a) Column 1: pET-32a vector (+), column 2: molecular weight index, column 3: pET-32a-gra7 four hours after induction, column 4: pET-32a-gra7 six hours after induction, column 5: pET-32a-gra7 Eight hours after induction, column 6: recombinant purified protein r gra7. b) Western blot protein gra7 recombinant using conjugated Rabbit anti human IgG. Column 1: Protein marker, Column 2: recombinant GRA7 protein.

Strip Test
The strip test in the control line section showed a significant red color. However such a significant color was not observed in the test line section with dilutions higher than 1:8 (Figure b5). Therefore, to perform this test, all serum samples were diluted with a 1:8 dilution with a buffer. The sensitivity and specificity of the strip test were 100% and 96.7%, respectively.

Figure 5. Strip test for rapid detection of Toxoplasma anti-gra7 antibody. a) Schematic image of preparation of strip test components. b) Initial evaluation with the help of positive serum samples with different dilutions.
Stable Kit Strip

Using the accelerated method, the stabilization time of the kit at 37°C was set at 16 months. Using conventional formulas, it is approximately equivalent to 32 months of stability at 4°C.

Discussion

Most diagnostic tests used are immunological methods of antibody tracking, each of which has its drawbacks. On the other hand, identifying the specific antigen of the acute phase of the disease is a key step in designing diagnostic methods. Some studies have used the potential of GRA7 protein to diagnose with the ELISA test and reported an 80% sensitivity and 90% specificity for the test (11). For an accurate, quick and in time diagnosis, the present study, aimed at using gra7 antigen to design a rapid diagnostic test for toxoplasmosis for the first time, by immunocromatography to eliminate the disadvantages of conventional identification methods as much as possible.

Another group of researchers used SAG2 and ROP2 recombinant antigens to diagnose gonadal toxoplasmosis infection. The suggestion of using the above-mentioned recombinant antigens to make vaccines was emphasized (28). The French researchers also designed the IgG and IgM toxoplasma antibody detection strip in patients’ serum and compared it with Abbott’s CLIA Automatic Architect method, and the sensitivity and specificity were 97% and 96%, respectively. Another group of researchers designed a dedicated IgG strip test against toxoplasma using a recombinant SAG1 antigen that could replace the ELISA method with natural antigens. This number test helped to identify acute phase patients, and therefore suggested that it be used alongside ELISA for further study at the national level (31).

In 2019, another study aimed to develop a simple, portable, and rapid method for detecting toxoplasmosis serum based on the recombinant protein of T. gondii SAG1 (rSAG1) and GRA7 (rGRA7). It was found that IgM rGRA7-Dot-ELISA sensitivity and specificity were 87.5% and 91.1%, respectively (32).

In 2020, a study was performed in Japan to diagnose immunocompromised Gondi antibodies in cats by immunochromatographic imaging based on gra7 antigen. The results of this study showed that TgGRA7-ICT is a reliable test for anti-T diagnosis (33).

Using a test designed by the French company LDBIO, a group of American scientists tested the IgG and IgM antibodies in serum by simply examining them with 100% sensitivity and specificity.

In this study, for the first time, a strip test was designed using a recombinant gra7 antigen to diagnose toxoplasmosis.

This study, by selecting the appropriate antigen based on the important cellular and clinical characteristics of the parasite and using the results of previous tests, led to the successful development and evaluation of the rapid diagnosis of toxoplasmosis. Therefore, the results of this study can reduce the detection time by providing a quick screening solution for people suspected of having toxoplasmosis and also make it easier for a wide range of people to interpret the test results.

Conclusion

In this study, selecting the appropriate antigen based on the important cellular and clinical characteristics of the parasite along with the use of the results of previous tests led to the successful construction and evaluation of the rapid diagnosis of toxoplasmosis. Therefore, the results of this study can reduce the detection time by providing a quick screening solution for people suspected of having toxoplasmosis and also make it easier for a wide range of people to interpret the test results.

Acknowledgment

This work has been supported by Shahid Beheshti University of Medical Sciences with the number 265. The authors thank the Vice Chancellor for Research of Shahid Beheshti University of Medical Sciences.

Conflict of Interest

Authors declared no conflict of interests.
پیشگیری از الکلی‌گویی با استفاده از بررسیهای ایمنی‌ای

**مقدمه**

در حال حاضر، الکلی‌گویی به عنوان یکی از باعثات اصلی مصرف قاچاق در جامعه به‌شمار می‌رود. الکلی‌گویی به‌طور کلی مرگ و میر می‌تواند ایجاد کننده شد. این بیماری به‌طور کلی در افراد مبتلا به ایدز، افراد تحت پیوند عضو و یا مبتلا به ابی‌پلاکتی، انسداد مصرف قاچاق و کاهش سیستم ایمنی می‌تواند باعث عفونت میوه و یا میوه بزرگ شرایط انسداد و کاهش ایمنی شود.

**مواد و روش کار**

ایمپرما یا ایمپرما از پروتئین E.coli Rosetta DE3 بهره‌برداری می‌شود. هدف تولید آن در سیستم باکتریایی و استفاده در روش تشخیص سریع تقویم‌های پلاستیکی مبتنی بر ایمپرما گردید. به‌طور کلی ایمپرما از پروتئین E.coli Rosetta DE3 بهره‌برداری می‌شود. هدف تولید آن در سیستم باکتریایی و استفاده در روش تشخیص سریع تقویم‌های پلاستیکی مبتنی بر ایمپرما گردید.

**پایین‌ها**

مادر گویی، گروه ورد و پیام و روش کار، از نگاه انتخاب و استریفای گرایش مطرح می‌باشد. هدف تولید آن در سیستم باکتریایی و استفاده در روش تشخیص سریع تقویم‌های پلاستیکی مبتنی بر ایمپرما گردید. به‌طور کلی ایمپرما از پروتئین E.coli Rosetta DE3 بهره‌برداری می‌شود. هدف تولید آن در سیستم باکتریایی و استفاده در روش تشخیص سریع تقویم‌های پلاستیکی مبتنی بر ایمپرما گردید.

**نتایج و افکارهای مهم**

نتایج الکتروфорز و وسترن دواینگ باعث کاهش نرخ حساسیت و اختصاص از ترکیب آنتیجین و آنتیژن در سیستم پروکاریوتی بود. حساسیت و اختصاص تست استریفای در این مطالعه به ترتیب 100 درصد و 70 درصد محاسبه شد. تست دسترسی به درمان ترکیب آنتیجین و آنتیژن در سیستم پروکاریوتی بود. حساسیت و اختصاص تست استریفای در این مطالعه به ترتیب 100 درصد و 70 درصد محاسبه شد.

**کلید واژه‌ها**

توکسوپلاسموز، نانوذرات طلا، تست تحقیقی، نانوذرات طلا و آنتیژن gra7، ایمپرما.

**اطلاعات مقاله**

**تاریخچه مقاله**

دریافت: 1398/6/9/9
پذیرش: 1398/10/10
انتشار آنلاین: 1399/10/11

**موضوع:**

انگلیسی پزشک، مهربانی مسئول

**مهدو و دانشگاه:**

گزینه‌های مورد بهبود، افزایش و اصلاح، تست و استریفای و تحقیقی در سیستم پروکاریوتی بود. حساسیت و اختصاص تست استریفای در این مطالعه به ترتیب 100 درصد و 70 درصد محاسبه شد. تست دسترسی به درمان ترکیب آنتیجین و آنتیژن در سیستم پروکاریوتی بود. حساسیت و اختصاص تست استریفای در این مطالعه به ترتیب 100 درصد و 70 درصد محاسبه شد.

**کلید واژه‌ها:**

توکسوپلاسموز، نانوذرات طلا، تست تحقیقی، نانوذرات طلا و آنتیژن gra7، ایمپرما.

**مقدمه**

با وجود حدود 500 میلیون می‌توان به آن اشاره کرد که این بیماری به‌طور مستقیم تأثیر چشمگیری در جمهوری اسلامی ایران دارد و به‌ویژه در افراد مبتلا به ایدز، افراد تحت پیوند عضو و یا مبتلا به ابی‌پلاکتی، انسداد مصرف قاچاق و کاهش سیستم ایمنی می‌تواند باعث عفونت میوه و یا میوه بزرگ شرایط انسداد و کاهش ایمنی شود. این بیماری به‌طور کلی در افراد مبتلا به ایدز، افراد تحت پیوند عضو و یا مبتلا به ابی‌پلاکتی، انسداد مصرف قاچاق و کاهش ایمنی می‌تواند باعث عفونت میوه و یا میوه بزرگ شرایط انسداد و کاهش ایمنی شود. این بیماری به‌طور کلی در افراد مبتلا به ایدز، افراد تحت پیوند عضو و یا مبتلا به ابی‌پلاکتی، انسداد مصرف قاچاق و کاهش سیستم ایمنی می‌تواند باعث عفونت میوه و یا میوه بزرگ شرایط انسداد و کاهش ایمنی شود. این بیماری به‌طور کلی در افراد مبتلا به ایدز، افراد تحت پیوند عضو و یا مبتلا به ابی‌پلاکتی، انسداد مصرف قاچاق و کاهش سیستم ایمنی می‌تواند باعث عفونت میوه و یا میوه بزرگ شرایط انسداد و کاهش ایمنی شود.
روش پژوهش

DNA

کشتن انگل تولاسپاسما و استخراج

این مطالعه تجربی (experimental) در سال 1396 با تعداد 40 نمونه روش انتقالی مختلف تهاره به روش نمونه‌برداری غیراختصاصی در دسترس انجام شد. نمونه‌های انگل‌های تولاسپاسما به صورت مجهز کمیتی RH مورد تشخیص تحقیقات واین و مواد سازی را از ویژه تهیه شد. در این مطالعه، مورد استفاده فرا گرفته شد. هر کدام از آن‌ها به یک مدل انگل تکثیر برای حفظ صافی موش شد. پس از این روش، هر انگل به نوعی به اندازه علیه IgM سطح NAو به سبب متواضع داخل صافی PBS محلول شدند و به روش انتقالی فرآیند تهیه شد. برای اطمینان از نوع، انگل‌های تولاسپاسما به هر موش 5/5 میلی‌لیتر از نمونه صافی داده شدند. پس از گذشت 13/2 روز، آزمایش صافی موش‌های آزاد با میلی‌لیتر PBS بافر سرد مورد شستشو قرار گرفت و تاکی روزی‌های دیگر از سر دستگاه تعداد و زمان، نمونه انگل‌های تولاسپاسما از طبق DNG کبشیده شد. ممکن است==============

PCR

طرحی برای تولید انگل gra7 و انجام

برای بررسی این مطالعه، والئی زئ gra7 با شماره دسترسی NCBI DQ459443 استرازی کلون‌گیری، سایت‌های آنزیم‌های محصولات و BglII در طراحی مدل نظر قرار گرفت. سپس انتخابی والتی XhoI در واکنش به فاکتور انتخابی فاکتور انتخابی والتی Gene Runner برای انتخاب به ویژه و مورد gra7 Forward: CAGCCCCAGATCTGATGGCAGACGACGCAAT gra7 Reverse: GTGGTGCTGAGTTACTGCGGCCATC
انزیمی DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید.gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شاید در برای DNAکه (روی) (Double Digestion) از ژن در حالت Schned gra7 -pET-32a (+) در برای زن PCR و برای زن PCR از دستگاه شایd...
با انتخاب 30 سرم منفی که فاقد آنتی‌بادی علیه توکسپولیاسما بوده‌اند، Cut off به‌دست آمده. برای این کار، سپس از دست آورده مولفه OD بیانگی و همین طور محاسبه انحراف معیار آن برای سرم‌های مورد مطالعه در نظر Cut off به‌عنوان x+3SD گرفته شد.

استرس ایمونوکومپاتورگرافی

برای بررسی زمان پایداری کیت از روش تسریع استفاده کاغذ در روش خلاصه، محلول کونژوگه روی پد های مورد مطالعه در نظر گرفته شود. پس از به‌کارگیری SDS-PAGE بادی علیه gra7- human (ژن نوترکیب Injector- pET) دست آمد. برای این مشابه به یکدیگر متصل شد. پلاسمید نوترکیب - بهمن میانگین و همین طور محاسبه شد. با توجه به روابط ریاضی موجود به 32a (+) RH XhoI زوئیت سویه متر برش زده شد. در این مرحله آنتی‌زن gra7 روی کاغذ نیتروسولوز کوت در این بررسی در نهایت نمونه 30 سرم مورد بررسی قرار گرفت. مولکول ژن بیانگی از آنتی‌زن واکسن در سیستم طراحی شده استفاده شد. تعداد سایر سرم مورد بررسی در این انتخاب آنتی‌زن بود و نمونه در آزمایشگاه پزشکی ایران، سال 16 شماره 1 بهمن- اسفند 1398، بررسی شد. مولکول سرم 5 میل. این با فاصله (A) محیطی 0.1 M حلال مولکول‌پذیر (M NaHPO4: 0.01 M Tris-Cl شده شفاف گردید. سپس با 14000 برای 30 دقیقه در دمای اندازه‌گیری گردید. در صورت بروز روند سلول‌سازی استرس، شدن و مایع روي نگهداری شد. در ادامه معادن پد میلی لیتر 50% NiNTA به 4 میل لیتر از اضطرابات مخلوط شد. سپس مخلوط مورد نظر به دست آورده‌ای 2 دقیقه و 15 دقیقه به طور جداگانه در ویال NiNTA به عنوان یکی از معیار جمعیت از جریان مایع بیاری به کار رفته. سپس با کمک آماده و ایجاد Trx-gra7 pH شیب بپرتو تونریتیک تحقیق شد. پروتئین pH حاصل از چهار کریستال-کرینت (n=5) و مولکول به DTP ساخته شده به‌وسیله مگنت ثابت شده و سپس به روش برادرفورد غلظت آن به‌دست آمد.

آزمایش باپلایینت

در این مرحله آنتی‌زن gra7 روی کاغذ نیتروسولوز کوت در این مورد بررسی در نهایت نمونه 30 سرم مورد بررسی قرار گرفت. مولکول ژن بیانگی از آنتی‌زن واکسن در سیستم طراحی شده استفاده شد. تعداد سایر سرم مورد بررسی در این انتخاب آنتی‌زن بود و نمونه در آزمایشگاه پزشکی ایران، سال 16 شماره 1 بهمن- اسفند 1398، بررسی شد. مولکول سرم 5 میل. این با فاصله (A) محیطی 0.1 M حلال مولکول‌پذیر (M NaHPO4: 0.01 M Tris-Cl شده شفاف گردید. سپس با 14000 برای 30 دقیقه در دمای اندازه‌گیری گردید. در صورت بروز روند سلول‌سازی استرس، شدن و مایع روي نگهداری شد. در ادامه معادن پد میلی لیتر 50% NiNTA به 4 میل لیتر از اضطرابات مخلوط شد. سپس مخلوط مورد نظر به دست آورده‌ای 2 دقیقه و 15 دقیقه به طور جداگانه در ویال NiNTA به عنوان یکی از معیار جمعیت از جریان مایع بیاری به کار رفته. سپس با کمک آماده و ایجاد Trx-gra7 pH شیب بپرتو تونریتیک تحقیق شد. پروتئین pH حاصل از چهار کریستال-کرینت (n=5) و مولکول به DTP ساخته شده به‌وسیله مگنت ثابت شده و سپس به روش برادرفورد غلظت آن به‌دست آمد.

آزمایش باپلایینت

در این مرحله آنتی‌زن gra7 روی کاغذ نیتروسولوز کوت
حسن مروتی خمسی و همکاران | ارزیابی سریع توكسوپلاسموز به روش ایمونوکروماتوگرافی

کلون‌های توتورکب اوپلیا با استفاده از روش‌های Quick Check و کلون‌زن تایید شد (شکل ۲ a, b).

محیط کشت دارای آنتی‌بیوتیک آمپی سیلین رشد کنن. در این مرحله کلون‌زن تایید کپ با استفاده از روش‌های Colony PCR و Kروک از پرایمرهای اختصاصی طراحی شده برای تکثیر гна7 بر روی روي زل آگارز یک درصد. ستون ۱: خاکستر ژن گنا7 با پرایمرهای اختصاصی (726 جفت باز) (شکل ۲).

† متغیر ناپایدار حضور پلاسمید توتورکب در باکتری. (a) تست Colon PCR به منظور تایید حضور پلاسمید توتورکب در باکتری θ гنا7 در وکتور. ستون چپ: شاخص اندازه مولکولی (kbp) ستون راست: محصول PCR بر روی کلون‌های باکتریایی تکثیر یافته θ гنا7 در حضور آنتی‌بیوتیک.

(شکل ۱). الکتروفورز ژن gra7 بر روی ژل آگارز یک درصد. ستون ۱: مارکر 100 bp وزن مولکولی، ستون ۲: قطعه تکثیر شده ژن گنا7 با پرایمرهای اختصاصی (شکل ۲ a, b).

(شکل ۲). تست Colony PCR به منظور تایید حضور پلاسمید توتورکب در باکتری θ гنا7 در وکتور. ستون چپ: شاخص اندازه مولکولی (kbp) ستون راست: محصول PCR بر روی کلون‌های باکتریایی تکثیر یافته θ гنا7 در حضور آنتی‌بیوتیک.

† متغیر ناپایدار حضور پلاسمید توتورکب در باکتری θ гنا7 در وکتور. ستون چپ: شاخص اندازه مولکولی (kbp) ستون راست: محصول PCR بر روی کلون‌های باکتریایی تکثیر یافته θ гنا7 در حضور آنتی‌بیوتیک.

Macrogen که جویی ارسال داد.

بیان پروتئین در باکتری‌های تحریک شده با IPTG ۱.۰ mM توسط SDSD-PAGE استخراج شد (شکل ۳). پروتئین TOTORکه در حجم هزار دنگه و بسیار بیشتر (شکل ۳) مشاهده شد و سپس θ гنا7 با تست وسترن بلات صحبت بیان تایید گردید (شکل ۳). زمان مناسب برای تاییدBNP (۴) باید یافته شود.

IPTG در محدوده وسیع قابلیت استخراج بیان TOTORکه در حجم هزار دنگه و بسیار بیشتر (شکل ۳) مشاهده شده و سپس θ гنا7 با تست وسترن بلات صحبت بیان تایید گردید (شکل ۳). زمان مناسب برای تاییدBNP (۴) باید یافته شود.

از کلون‌های تاییدشده استخراج انجام شد و توسط هضم آنزیمی دوانتی مورد تایید نهایی قرار گرفتند. از این نهایی پلاسمید آماده انتقال به سوی بیایی شد از آنجا که چاپگره بیش در دو استاندارد می‌تواند به سیل پلاسمید به طرف قطعه θ гنا7 قطعه ۱ kb شود محصول این هضم دوانتی می‌باشد به طول ۷۰۶ جفت باز بوده و جدای از یک مربوط به پلاسمید خشک روز زل آگارز قرار گرفت (شکل ۳). همچنین برای اطمنان بیشتر پلاسمید توتورکب θ гنا7-pET-32a (+) به این شرکت ارسال گردید. در این نهایی پلاسمید P4 انتقال به سوی بیایی شد از آنجا که چاپگره بیش در دو استاندارد می‌تواند به سیل پلاسمید به طرف قطعه θ гنا7 قطعه ۱ kb شود محصول این هضم دوانتی می‌باشد به طول ۷۰۶ جفت باز بوده و جدای از یک مربوط به پلاسمید خشک روز زل آگارز قرار گرفت (شکل ۳). همچنین برای اطمنان بیشتر پلاسمید توتورکب θ гنا7-pET-32a (+) به این شرکت ارسال گردید. برای تعیین توالی از طریق شرکت پیشگام برای شرکت Macrogen کره جنوبی ارسال گردید.
پروتئین نوترکیب فوق با روش کروماتوگرافی تخلیص شده و با وسیله SDS-PAGE بررسی شد.

تست دات بلات با سرم انسانی دارای آنتی‌بادی IgG علیه توکسوپلاسما برای تایید امکان‌پذیریتی پروتئین نوترکیب انجام و نتایج دال بر تایید ان است. همچنین نتایج حاصل از این گلظت مناسب آنتی‌ژن را با برای ۵ میکروگرم و وقت مناسب سرم ۱/۱۰۰۰ نشان داد.

![SDS-PAGE](image1)

![SDS-PAGE](image2)

شکل ۳. هضم آنزیمی (+) pET-32a (+)-GRA7 با انزیم‌های BglII و XhoI و محصول PCR زن توکسوپلاسما کوندی. ستون ۱: زن pET-32a (+)-GRA7 ستون ۲: پلاسمید بدون GRA7 ستون ۳: پلاسمید پس از هضم آنزیمی، ستون ۴: شاخص اندازه مولکولی ۱ kbp ستون ۵: پلاسمید نوترکیب pET-32a (+) GRA7

شکل ۴. الکتروفورز لیز سلول باکتریایی واجد پلاسمید pET-32a (+)-GRA7 و ارزنیهای GRA7 پروتئین نوترکیب rGRA7-7. ستون ۱: وکتور pET-32a (+) چهار ساعت بعد از القا، ستون ۲: پلاسمید GRA7 چهار ساعت بعد از القا، ستون ۳: پلاسمید GRA7 نوترکیب rGRA7-7. ستون ۴: پلاسمید GRA7 هشت ساعت بعد از القا، ستون ۵: پلاسمید pET-32a (+)-GRA7 بیش از چهار ساعت بعد از القا، ستون ۶: پلاسمید GRA7 بیش از چهار ساعت بعد از القا. ستون ۱: مارکر پروتئین، ستون ۲: پروتئین GRA7 با استفاده از کونژوگت Rabbit anti human IgG.
تست سریع توکسوپلاسموز به روش ایمونوکروماتوگرافی

秆 نوری کیت، که بیش از 1 میلی‌گرم در سیال (Conjugat Pad) قرار گرفته و خشک شده، همچنین انتی‌ژن Nontarget 7 در خط تست و gra7 در خط کنترل (Sheet) آماده شده و در اندام دلخواه بریش شدند. برای ملکو کردن نانوذرات طلا، به‌همه مورد نیاز برای pH جذب آنتی‌ژن برای ۹ تعبیه شد. در این pH حساسیت و اختصاصیت تست از این امر می‌تواند عوامل موثر برای تشخیص به‌طور دقیق توکسوپلاسموز از جمله مهم‌ترین عوامل موثر برای تولید در کردن نانوذرات طلا نادر نمایی بود که در زمان استرابی کیت مثبت شده در بافر رقیق ماید شناسایی کردن آنها با رقت 1:8 باعث تغییر محلول NaCl می‌شود. البته در این pH حداقل روانی حدوداً معادل ۳۲ ماه پایداری در ۴ درجه سلسیوس است.

بحث

تشخیص به‌موقع و دقیق توکسوپلاسموز از جمله مهم‌ترین عوامل موثر برای جلوگیری از بروز آسیب‌های جانی و مالی جبران نادر نمایی بود که در زمان استرابی کیت مثبت شده در بافر رقیق ماید شناسایی کردن آنها با رقت 1:8 باعث تغییر محلول NaCl می‌شود. البته در این pH حداقل روانی حدوداً معادل ۳۲ ماه پایداری در ۴ درجه سلسیوس است.
تمامی کارشناسانی که با سیاست استفاده از بررسی ایمنولوژیکی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خصوص در زنان باردار، بهترین روش تشخیص توکسوپلاسموز را به‌عنوان یکی از مهم‌ترین روش‌های تشخیصی در بارداری در آمریکا و به خص�
با این تحقیق برای اولین بار تست استریپ با استفاده از آنتی‌زون تورکوکبیوم gDNA برای تشخیص توکسوپلاسموز طراحی شد. این تست بسیار ساده و سریع عملکردی با اختصاصیت بالا نشان داد که می‌تواند باعث سریعتری در تشخیص توکسوپلاسموز شود. در این تحقیق برای اولین بار تست استریپ با استفاده از آنتی‌زون تورکوکبیوم gDNA برای تشخیص توکسوپلاسموز طراحی شد. این تست بسیار ساده و سریع عملکردی با اختصاصیت بالا نشان داد که می‌تواند باعث سریعتری در تشخیص توکسوپلاسموز شود. در این تحقیق برای اولین بار تست استریپ با استفاده از آنتی‌زون تورکوکبیوم gDNA برای تشخیص توکسوپلاسموز طراحی شد. این تست بسیار ساده و سریع عملکردی با اختصاصیت بالا نشان داد که می‌تواند باعث سریعتری در تشخیص توکسوپلاسموز شود. در این تحقیق برای اولین بار تست استریپ با استفاده از آنتی‌زون تورکوکبیوم gDNA برای تشخیص توکسوپلاسموز طراحی شد. این تست بسیار ساده و سریع عملکردی با اختصاصیت بالا نشان داد که می‌تواند باعث سریعتری در تشخیص توکسوپلاسموز شود. در این تحقیق برای اولین بار تست استریپ با استفاده از آنتی‌زون تورکوکبیوم gDNA برای تشخیص توکسوپلاسموز طراحی شد. این تست بسیار ساده و سریع عملکردی با اختصاصیت بالا نشان داد که می‌تواند باعث سریعتری در تشخیص توکسوپلاسموز شود. در این تحقیق برای اولین بار تست استریپ با استفاده از آنتی‌زون تورکوکبیوم gDNA برای تشخیص توکسوپلاسموز طراحی شد. این تست بسیار ساده و سریع عملکردی با اختصاصیت بالا نشان داد که می‌تواند باعث سریعتری در تشخیص توکسوپلاسموز شود. در این تحقیق برای اولین بار تست استریپ با استفاده از آنتی‌زون تورکوکبیوم gDNA برای تشخیص توکسوپلاسموز طراحی شد. این تست بسیار ساده و سریع عملکردی با اختصاصیت بالا نشان داد که می‌تواند باعث سریعتری در تشخیص توکسوپلاسموز شود. در این تحقیق برای اولین بار تست استریپ با استفاده از آنتی‌زون تورکوکبیوم gDNA برای تشخیص توکسوپلاسموز طراحی شد. این تست بسیار ساده و سریع عملکردی با اختصاصیت بالا نشان داد که می‌تواند باعث سریعتری در تشخیص توکسوپلاسموز شود. در این تحقیق برای اولین بار تست استریپ با استفاده از آنتی‌زون تورکوکبیوم gDNA برای تشخیص توکسوپلاسموز طراحی شد. این تست بسیار ساده و سریع عملکردی با اختصاصیت بالا نشان داد که می‌تواند باعث سریعتری در تشخیص توکسوپلاسموز شود. در این تحقیق برای اولین بار تست استریپ با استفاده از آنتی‌زون تورکوکبیوم gDNA برای تشخیص توکسوپلاسموز طراحی شد. این تست بسیار ساده و سریع عملکردی با اختصاصیت بالا نشان داد که می‌تواند باعث سریعتری در تشخیص توکسوپلاسموز شود.

نتیجه‌گیری

در این مطالعه انتخاب آنتی‌زون مناسب براساس شاخص‌های مهم سلولی و بالینی انگل همراه با بهره‌گیری از نتایج آزمون‌های

Reference

1. Dubey JP. The history of Toxoplasma gondii-the first 100 years. J Eukaryot Microbiol. 2008;55(6):467-75. [DOI:10.1111/j.1550-7408.2008.00345.x] [PMID]
2. Wolf A, Cowen D, Paige B. Human toxoplasmosis: occurrence in infants as an encephalomyelitis verification by transmission to animals. Science (Washington). 1939;99(2506). [DOI:10.1126/science.89.2306.226] [PMID]
3. Mamidi A, DeSimone JA, Pomerantz RJ. Central nervous system infections in individuals with HIV-1 infection. J Neurol. 2002;8(3):158-67. [DOI:10.1080/1355028020949723] [PMID]
4. Gross U, Hoplert M, Goebel S. Impact of stage differentiation on diagnosis of toxoplasmosis. Ann Ist Super Sanita. 2004;40(1):65-70.
5. Prince HE, Wilson M. Simplified assay for measuring Toxoplasma gondii immunoglobulin G avidity. Clin Diag Lab Immunol. 2001;8(5):904-8. [DOI:10.1128/CDLI.8.5.904-908.2001] [PMID] [PMCID]
6. Pfrepper K-I, Enders G, Gohl M, Krcauzal D, Hlobil H, Wassenberg D, et al. Seroreactivity to and avidity for recombinant antigens in toxoplasmosis. Clin Diag Lab Immunol. 2005;12(8):977-82. [DOI:10.1128/CDLI.12.8.977-982.2005] [PMID] [PMCID]
7. Roberts A, Hedman K, Luyasu V, Zufferey J, Bessières M-H, Blatz R-M, et al. Multicenter evaluation of strategies for serodiagnosis of primary infection with Toxoplasma gondii. Clin Microbiol Infect. 2001;20(7):467-74. [DOI:10.1016/S1198-743X(00)00118-9] [PMID]
8. Abdizadeh R, Maraghi S, Ghadiri AA, Tavalla M, Shojaee S. Cloning and Expression of Major Surface Antigen 1 Gene of Toxoplasma gondii RH Strain Using the Expression Vector pVAX1 in Chinese Hamster Ovary Cells. Jundishapur J Microbiol. 2010;3(3):e22570. [DOI:10.1590/S0036-47522013000100008] [PMID]
9. Grzybowski MM, Dziadek B, Dziadek J, Gatkowska J, Dzitko K, Dlugonska H. Toxoplasma gondii: cloning, expression and immunoreactivity of recombinant ROP5 and ROP18 antigens. Exp. Parasitol. 2010;150(1-6):68-73. [DOI:10.1016/j.exppara.2010.01.006] [PMID]
10. Kotresha D, Noordin R. Recombinant proteins in the diagnosis of toxoplasmosis. Ann. 2010;118(8):529-42. [DOI:10.1111/j.1600-0463.2010.02629.x] [PMID]
11. Araújo PRB, Ferreira AW. High diagnostic efficiency of IgM-ELISA with the use of multiple antigen peptides (MAP1) from T. gondii ESA (SAG-1, GRA-1 and GRA-7), in acute toxoplasmosis. Rev Inst Med Trop Sao Paulo. 2010;52(2):63-8. [DOI:10.1590/S0036-46652010000200001] [PMID]
12. Dunn JD, Ravindran S, Kim S-K, Boothroyd JC. The Toxoplasma gondii dense granule protein GRA7 is phosphorylated upon invasion and forms an unexpected association with the rho family proteins ROP2 and ROP4. Infect Immun. 2008;76(12):5853-61. [DOI:10.1128/IAI.01667-07] [PMID] [PMCID]
13. Igarashi M, Kano F, Tamemitsu K, Kawasaki P, Navarro I, Verdugo-O, et al. Toxoplasma gondii: cloning, sequencing, expression, and antigenic characterization of ROP2, GRA5 and GRA7. Genet Mol Res. 2008;30:5-13. [DOI:10.4238/vol7-2mrd23] [PMID]
14. Sun X, Wang Z, Li J, Wei F, Liu Q. Evaluation of an indirect ELISA using recombinant granule antigen GRA1,
GRA7 and soluble antigens for serodiagnosis of Toxoplasma gondii infection in chickens. Res Vet Sci. 2015;100:161-4. [DOI:10.1016/j.rvsc.2015.04.011] [PMID]

Wang Z, Ge W, Huang S-Y, Li J, Zhu X-Q, Liu Q. Evaluation of recombinant granule antigens GRA1 and GRA7 for serodiagnosis of Toxoplasma gondii infection in dogs. BMC Vet Res. 2014;10(1):158. [DOI:10.1186/1746-6148-10-158] [PMID] [PMCID]

Wang Z, Ge W, Li J, Song M, Sun H, Wei F, et al. Production and evaluation of recombinant granule antigen protein GRA7 for serodiagnosis of Toxoplasma gondii infection in cattle. Foodborne Pathog Dis. 2014;11(9):734-9. [DOI:10.1089/fpd.2014.1749] [PMID]

Gopal GJ, Kumar A. Strategies for the production of recombinant protein in Escherichia coli. PLoS One. 2012;7(6):e41925. [DOI:10.1016/j.jjvms.19.00593] [PMID]

Wang Y, Wang L, Zhang J, Wang G, Chen W, Chen Q, Liu Q. Preparation of colloidal gold immunochromatographic strip for detection of Paragonimiasis skrjabini. PLoS One. 2014;9(3):e92034. [DOI:10.1016/j.ijpara.2008.03.007] [PMID] [PMCID]

Sag2, Rop2, and Rop3 proteins for serological detection of Toxoplasma gondii infection in cattle. Foodborne Pathog Dis. 2014;11(9):734-9. [DOI:10.1089/fpd.2014.1749] [PMID]

Yee E, Begg A, Begg H, Courtenay A, et al. Development of an immunochromatographic strip for the rapid detection of Toxoplasma gondii circulating antigens. Parasitol Int. 2011;60(1):105-7. [DOI:10.1016/j.parint.2010.11.002] [PMID]

Yan H, Yan H, Tao Y, Chen H, Li G, Gong W, et al. Application and expression of Toxoplasma gondii surface antigen 2 (SAG2) and rhoptry protein 2 (ROP2) from recombinant Escherichia coli strain. Trans R Soc Trop Med Hyg. 2012;106(6):356-62. [DOI:10.1016/j.trstmh.2012.02.008] [PMID]

Chapey E, Wallon M, Peyron F. Evaluation of the LDBIO point of care test for the combined detection of toxoplasomic IgG and IgM Clin Chim Acta. 2017;464:200-1. [DOI:10.1016/j.cca.2016.10.023] [PMID]

Mahinci C, Flori P, Dalaunay E, Guillerme C, Charraoui S, Raberin H, et al. Evaluation of a new ICT test (LDBIO Diagnostics) to detect toxoplasomic IgG and IgM: comparison with the routine Architect technique. J Clin Microbiol. 2017;55(3):247. [DOI:10.3390/pathogens7010025] [PMID] [PMCID]

Teimouri A, Modarressi MH, Shojaee S, Mohebali M, Rezaian M, Keshavarz H. Development, optimisation, and validation of an in-house Dot-ELISA rapid test based on SAG1 and GRA7 proteins for serological detection of Toxoplasma gondii infections. J Glob Antimicrob Resist. 2019; 12:2657. [DOI:10.1016/j.jcm.01106] [PMID] [PMCID]

Kim YH, hoo Lee J, kyu Ahn S, Kim T-S, Hong S-J, Chong C-K, et al. Seroprevalence of Toxoplasmosis using ELISA and Rapid Diagnostic Test among Residents in Gyodong-dо, Inchn city, Korea: A Four-Year Follow-up. Korean J Parasitol. 2017;55(3):247. [DOI:10.3347/kjp.2017.55.3.247] [PMID] [PMCID]

YABANEZ RH, KYAN H, NISHIKAWA Y. Detection of antibodies against Toxoplasma gondii in cats using an immunochromatographic test based on GRA7 antigen. J Vet Med Sci. 2020;19:40606. [DOI:10.1292/jvms.19-0654] [PMID]

Begegin IJ, Lykins J, Zhou Y, Lai BS, Levine P, El Bissati K, et al. Point-of-care testing for Toxoplasma gondii IgG/IgM using Toxoplasma ICT IgG-IgM test with sera from the United States and implications for developing countries. PLoS Negl Trop Dis. 2017;11(6):e005670. [DOI:10.1371/journal.pntd.0005670] [PMID] [PMCID]