THE GENUS FIELDS OF ARTIN-SCHREIER EXTENSIONS

SU HU AND YAN LI

Abstract. Let q be a power of a prime number p. Let $k = \mathbb{F}_q(t)$ be the rational function field with constant field \mathbb{F}_q. Let $K = k(\alpha)$ be an Artin-Schreier extension of k. In this paper, we explicitly describe the ambiguous ideal classes and the genus field of K. Using these results we study the p-part of the ideal class group of the integral closure of $\mathbb{F}_q[t]$ in K. And we also give an analogy of Rédei-Reichardt’s formulae for K.

1. Introduction

In 1951, Hasse [6] introduced genus theory for quadratic number fields which is very important for studying the ideal class groups of quadratic number fields. Later, Fröhlich [3] generalized this theory to arbitrary number fields. In 1996, S.Bae and J.K.Koo [2] defined the genus field for global function fields and developed the analogue of the classical genus theory. In 2000, Guohua Peng [7] explicitly described the genus theory for Kummer function fields.

The genus theory for function fields is also very important for studying the ideal class groups of function fields. Let l be a prime number and K be a cyclic extension of degree l of the rational function field $\mathbb{F}_q(t)$ over a finite field of characteristic $\neq l$. In 2004, Wittmann [12] generalized Guohua Peng’s results to the case $l \nmid q - 1$ and used it to studied the l part of the ideal class group of the integral closure of $\mathbb{F}_q[t]$ in K following an ideal of Gras [4].

Let q be a power of a prime number p. Let $k = \mathbb{F}_q(t)$ be the rational function field with constant field \mathbb{F}_q. Assume that the polynomial $T^p - T - D \in k(T)$ is irreducible. Let $K = k(\alpha)$ with $\alpha^p - \alpha = D$. K is called an Artin-Schreier extension of k (See [5]). It is well known that every cyclic extension of $\mathbb{F}_q(t)$ of degree p is an Artin-Schreier extension. In this paper, we explicitly describe the genus field of K. Using this result we also study the p-part of the ideal class group of the integral closure of $\mathbb{F}_q[t]$ in K. Our results combined with Wittmann [12]’s results give the complete results for genus theory of cyclic extensions of prime degree over rational function fields.

Let O_K be the integral closure of $\mathbb{F}_q[t]$ in K. Let $Cl(K)$ be the ideal class group of the Dedekind domain O_K. Let $G(K)$ be the genus field of K. Our paper
is organized as follows. In Section 2, we recall the arithmetic of Artin-Schreier extensions. In Section 3, we recall the definition of $G(K)$ and compute the ambiguous ideal classes of $Cl(K)$ using cohomological methods. As a corollary, we obtain the order of $\text{Gal}(G(K)/K)$. In Section 4, we described explicitly $G(K)$. And we also give an analogy of Rédei-Reichardt’s formulae [10] for K.

2. The arithmetic of Artin-Schreier extensions

Let q be a power of a prime number p. Let $k = \mathbb{F}_q(t)$ be the rational function field. Let K/k be a cyclic extension of degree p. Then K/k is an Artin-Schreier extension, that is, $K = k(\alpha)$, where $\alpha^p - \alpha = D$, $D \in \mathbb{F}_q(t)$ and D cannot be written as $x^p - x$ for any $x \in k$. Conversely, for any $D \in \mathbb{F}_q(t)$ and D cannot be written as $x^p - x$ for any $x \in k$, $k(\alpha)/k$ is a cyclic extension of degree p, where $\alpha^p - \alpha = D$. Two Artin-Schreier extensions $k(\alpha)$ and $k(\beta)$ such that $\alpha^p - \alpha = D$ and $\beta^p - \beta = D'$ are equal if and only if they satisfy the following relations,

$$
\alpha \rightarrow x\alpha + B_0 = \beta,
$$

$$
D \rightarrow xD + (B_0^p - B_0) = D',
$$

$$
x \in \mathbb{F}_p^*, B_0 \in k.
$$

(See [5] or Artin [1] p.180-181 and p.203-206) Thus we can normalize D to satisfy the following conditions,

$$
D = \sum_{i=1}^{m} \frac{Q_i}{P_i^{e_i}} + f(t),
$$

$$(P_i, Q_i) = 1, \text{ and } p \nmid e_i, \text{ for } 1 \leq i \leq m,$$

$$p \nmid \text{deg}(f(t)), \text{ if } f(t) \notin \mathbb{F}_q,$$

where $P_i(1 \leq i \leq m)$ are monic irreducible polynomials in $\mathbb{F}_q[t]$ and $Q_i(1 \leq i \leq m)$ are polynomials in $\mathbb{F}_q[t]$ such that $\text{deg}(Q_i) < \text{deg}(P_i^{e_i})$. In the rest of this paper, we always assume D has the above normalized forms and denote $\frac{Q_i}{P_i^{e_i}} = D_i$, for $1 \leq i \leq m$. The infinite place $(1/t)$ is splitting, inertial, or ramified in K respectively when $f(t) = 0; f(t)$ is a constant and the equation $x^p - x = f(t)$ has no solutions in $\mathbb{F}_q; f(t)$ is not a constant. Then the field K is called real, inertial imaginary, or ramified imaginary respectively. The finite places of k which are ramified in K are P_1, \cdots, P_m (p.39 of [5]). Let Ψ_i be the place of K lying above $P_i(1 \leq i \leq m)$.

Let P be a finite place of k which is unramified in K. Let $(P, K/k)$ be the Artin symbol at P. Then

$$
(P, K/k)\alpha = \alpha + \left\lfloor \frac{D}{P} \right\rfloor
$$
and the Hasse symbol \(\{ \frac{D}{P} \} \) is determined by the following equalities:

\[
\{ \frac{D}{P} \} \equiv D + D^p + \cdots D^{N(P)/p} \text{mod } P
\]

\[
\equiv (D + D^p + \cdots D^{N(P)/p})
+ (D + D^q + \cdots D^{N(P)/q})^p
+ \cdots
+ (D + D^q + \cdots D^{N(P)/q})^{q/p} \text{mod } P,
\]

\[
\{ \frac{D}{P} \} = \text{tr}_{\mathbb{F}_q/P} \text{tr}_{(O_K/P)/\mathbb{F}_q}(D) \text{ mod } P
\]

(p.40 of [5]).

3. Ambiguous ideal classes

From this point, we will use the following notations:

- \(q \) – power of a prime number \(p \).
- \(k \) – the rational function field \(\mathbb{F}_q(t) \).
- \(K \) – an Artin-Schreier extension of \(k \) of degree \(p \).
- \(G \) – the Galois group \(\text{Gal}(K/k) \).
- \(\sigma \) – the generator of \(\text{Gal}(K/k) \).
- \(S \) – the set of infinite places of \(K \) (i.e., the primes above \(1/t \)).
- \(O_K \) – the integral closure of \(\mathbb{F}_q[t] \) in \(K \).
- \(I(K) \) – the group of fractional ideals of \(O_K \).
- \(P(K) \) – the group of principal fractional ideals of \(O_K \).
- \(P(k) \) – the subgroup of \(P(K) \) generated by nonzero elements of \(\mathbb{F}_q(t) \).
- \(Cl(K) \) – the ideal class group of \(O_K \).
- \(H(K) \) – the Hilbert class field of \(K \).
- \(G(K) \) – the genus field of \(K \).
- \(U_K \) – the unit group of \(O_K \).

Definition 3.1. (Rosen [8]) The Hilbert class field \(H(K) \) of \(K \) (relative to \(S \)) is the maximal unramified abelian extension of \(K \) such that every infinite places (i.e. \(\in S \)) of \(K \) split completely in \(H(K) \).

Definition 3.2. (Bae and Koo [2]) The genus field \(G(K) \) of \(K \) is the maximal abelian extension of \(K \) in \(H(K) \) which is the composite of \(K \) and some abelian extension of \(k \).
For any G-module M, let M^G be the G-module of elements of M fixed by the action of G. Without lost of generality, we will assume K/k is a geometric extension in the rest of this paper. We have the following Theorem.

Theorem 3.3. The ambiguous ideal classes $\text{Cl}(K)^G$ is a vector space over \mathbb{F}_p generated by by $[\mathfrak{p}_1], [\mathfrak{p}_2], \cdots, [\mathfrak{p}_m]$ with dimension

$$\dim_{\mathbb{F}_p} \text{Cl}(K)^G = \begin{cases} m - 1 & K \text{ is real.} \\ m & K \text{ is imaginary.} \end{cases}$$

Before the proof of the above theorem, we need some lemmas.

Lemma 3.4. $H^1(G, P(K)) = 1$.

Proof. From the following exact sequence

$$1 \longrightarrow U_K \longrightarrow K^* \longrightarrow P(K) \longrightarrow 1,$$

we have

$$1 \longrightarrow H^1(G, P(K)) \longrightarrow H^2(G, U_K) \longrightarrow H^2(G, K^*) \longrightarrow \cdots$$

This is because K/k is a cyclic extension and $H^1(G, K^*) = 1$ (Hilbert Theorem 90). Since

$$H^2(G, U_K) = \frac{U_K^G}{NU_K} = \frac{\mathbb{F}_q^*}{(\mathbb{F}_q^*)^p} = 1,$$

we have $H^1(G, P(K)) = 1$. \hfill \Box

Lemma 3.5. If K is imaginary, then $H^1(G, U_K) = 1$.

Proof. Since $U_K = \mathbb{F}_q^*$, we have

$$H^1(G, \mathbb{F}_q^*) = \frac{\{ x \in \mathbb{F}_q^* | x^p = 1 \}}{\{ x^{q-1} | x \in \mathbb{F}_q^* \}} = 1.$$

\hfill \Box

Lemma 3.6. If K is real, then $H^1(G, U_K) \cong \mathbb{F}_p$.

Proof. We denote by \mathcal{D} the group of divisors of K, by \mathcal{P} the subgroup of principal divisors. We define $\mathcal{D}(S)$ to be the subgroup of \mathcal{D} generated by the primes in S and $\mathcal{D}^0(S)$ to be the degree zero divisors of $\mathcal{D}(S)$. From Proposition 14.1 of [9], we have the following exact sequence

$$(0) \longrightarrow \mathbb{F}_q^* \longrightarrow U_K \longrightarrow \mathcal{D}^0(S) \longrightarrow \text{Reg} \longrightarrow (0),$$

where the map from U_K to $\mathcal{D}^0(S)$ is given by taken an element of U_K to its divisor and Reg is a finite group (See Proposition 14.1 and Lemma 14.3 of [9]). By Proposition 7 and Proposition 8 of [11] (p.134), we have $h(U_K) = h(\mathcal{D}^0(S))$,
THE GENUS FIELDS OF ARTIN-SCHREIER EXTENSIONS

where \(h(\ast) \) is the Herbrand Quotient of \(\ast \). By Equation (3.1), we have \(H^2(G, U_K) = 1 \). Thus, we can prove this Lemma by showing \(h(\mathcal{D}^0(S)) = 1/p \).

Let \(\infty \) be any infinite place in \(S \). Thus \(\mathcal{D}^0(S) \) is the free abelian group generated by \((\sigma - 1)\infty, (\sigma^2 - \sigma)\infty, \ldots, (\sigma^{p-1} - \sigma^{p-2})\infty \). And we have

\[
\mathcal{D}^0(S) = \mathbb{Z}[G](\sigma - 1)\infty \approx \frac{\mathbb{Z}[G]}{(1 + \sigma + \cdots \sigma^{p-1})}.
\]

Let \(\zeta_p \) be a \(p \)-th root of unity. We have

\[
(3.3) \quad \frac{\mathbb{Z}[G]}{(1 + \sigma + \cdots \sigma^{p-1})} \cong \mathbb{Z}[\zeta_p],
\]

and the above map is given by taken \(\sigma \) to \(\zeta_p \). From (3.2) and (3.3), we have

\[
H^1(G, \mathcal{D}^0(S)) = \ker N_{\mathcal{D}^0(S)}(I_K) \cong \mathbb{Z}[\zeta_p]/(\zeta_p - 1) \cong \mathbb{F}_p.
\]

Thus \(h(\mathcal{D}^0(S)) = 1/p \).

Proof of Theorem 3.3: From the following exact sequence

\[
1 \rightarrow P(K) \rightarrow I(K) \rightarrow Cl(K) \rightarrow 1,
\]

we have

\[
1 \rightarrow P(K)^G \rightarrow I(K)^G \rightarrow Cl(K)^G \rightarrow H^1(G, P(K)) \rightarrow \cdots
\]

Since \(H^1(G, P(K)) = 1 \) by Lemma 3.4, we have

\[
1 \rightarrow P(K)^G \rightarrow I(K)^G \rightarrow Cl(K)^G \rightarrow 1.
\]

Thus

\[
(3.4) \quad 1 \rightarrow \frac{P(K)^G}{P(k)} \rightarrow \frac{I(K)^G}{P(k)} \rightarrow Cl(K)^G \rightarrow 1.
\]

From the following exact sequence

\[
1 \rightarrow U_K \rightarrow K^* \rightarrow P(K) \rightarrow 1,
\]

we have

\[
1 \rightarrow \mathbb{F}_q^* \rightarrow k^* \rightarrow P(K)^G \rightarrow H^1(G, U_K) \rightarrow 1
\]

and

\[
(3.5) \quad H^1(G, U_K) \cong \frac{P(K)^G}{P(k)}.
\]

Since \(\frac{I(K)^G}{P(k)} \) is a vector space over \(\mathbb{F}_p \) with basis \([\Psi_1], [\Psi_2], \ldots, [\Psi_m] \), by (3.4), (3.5), Lemma 3.5 and Lemma 3.6, we get the desired result.
Remark 3.7. If K is real, it is an interesting question to find explicitly the relation satisfied by $[\Psi_1], [\Psi_2], \cdots, [\Psi_m]$ in $Cl(K)^G$. By Lemma 3.5 if we can find a nontrivial element \bar{u} of $H^1(G, U_K)$, then by Hibiert 90, we have $u = x^{\sigma - 1}$, where $u \in U_K$ and $x \in K$. It is easy to see that
\[
\sum_{i=1}^m \text{ord}_{\Psi_i}(x)[\Psi_i] = 0
\]
in $Cl(K)^G$.

From Proposition 2.4 of [2], we have
\[
(3.6) \quad \text{Gal}(G(K)/K) \cong Cl(K)/(\sigma - 1)Cl(K) \cong Cl(K)^G.
\]
(It should be noted that the last isomorphism is merely an isomorphism of abelian groups but not canonical). Therefore, we get

Corollary 3.8.

\[
\#\text{Gal}(G(K)/K) = \begin{cases}
p^{m-1} & \text{K is real.}
p^m & \text{K is imaginary.}
\end{cases}
\]

4. The genus field $G(K)$

In this section, we prove the following theorem which is the main result of this paper.

Theorem 4.1.

\[
G(K) = \begin{cases}
k(\alpha_1, \alpha_2, \cdots, \alpha_m) & \text{K is real.}
k(\beta, \alpha_1, \alpha_2, \cdots, \alpha_m) & \text{K is imaginary.}
\end{cases}
\]

Where $\alpha_i^p - \alpha_i = D_i = \frac{Q_i}{P_i}(1 \leq i \leq m), \beta^p - \beta = f(t)$, and $D_i, Q_i, P_i, f(t)$ are defined in Section 2.

We only prove the imaginary case. The proof is the same for the real case. Since
\[
(\sum_{i=1}^m \alpha_i + \beta)^p - (\sum_{i=1}^m \alpha_i + \beta) = \sum_{i=1}^m \frac{Q_i}{P_i^p} + f(t) = D,
\]
we can assume $\alpha = \sum_{i=1}^m \alpha_i + \beta$. Before the proof of the above theorem, we need two lemmas.

Lemma 4.2. $E = k(\beta, \alpha_1, \alpha_2, \cdots, \alpha_m)$ is an unramified abelian extension of K.

Proof. Let P be a place of k and let $(1/t)$ be the infinite place of k. If $P \neq P_1, P_2, \cdots, P_m, (1/t)$, then P is unramified in $k(\beta), k(\alpha_i)(1 \leq i \leq m)$, hence unramified in E. Otherwise, without lost of generality, we can suppose $P = P_1$. Since $\alpha = \sum_{i=1}^m \alpha_i + \beta$, we have $E = Kk(\alpha_2, \cdots, \alpha_m, \beta)$. Thus $P = P_1$ is unramified in $k(\alpha_2, \cdots, \alpha_m, \beta)$, hence unramified in E/K. \qed
Lemma 4.3. The infinite places of K are split completely in $E = k(\beta, \alpha_1, \alpha_2, \ldots, \alpha_m)$.

Proof. Since $\alpha = \sum_{i=1}^{m} \alpha_i + \beta$, we have $E = Kk(\alpha_1, \alpha_2, \ldots, \alpha_m)$. Since the infinite place $(1/t)$ of k splits completely in $k(\alpha_1, \alpha_2, \ldots, \alpha_m)$, hence $(1/t)$ also splits completely in E/K.\qed

Proof of Theorem 4.1 From Lemma 4.2 and 4.3 we have

\[(4.1) \quad k(\alpha_1, \alpha_2, \ldots, \alpha_m, \beta) \subset G(K).\]

Comparing ramifications, $k(\beta), k(\alpha_i)(1 \leq i \leq m)$ are linearly disjoint over k, so

\[[k(\alpha_1, \alpha_2, \ldots, \alpha_m, \beta) : k] = p^{m+1} \]

and

\[[k(\alpha_1, \alpha_2, \ldots, \alpha_m, \beta) : K] = p^m. \]

Thus from Corollary 3.8 and (4.1), we get the result.

5. The p-part of $\text{Cl}(K)$

If l is a prime number, K is a cyclic extension of k of degree l, and \mathbb{Z}_l is the ring of l-adic integers, then $\text{Cl}(K)_l$ is a finite module over the discrete valuation ring $\mathbb{Z}_l[\sigma]/(1 + \sigma + \cdots + \sigma^{l-1})$. Thus its Galois module structure is given by the dimensions:

\[\lambda_i = \dim(\text{Cl}(K)_l^{(\sigma - 1)i^j}/\text{Cl}(K)_l^{(\sigma - 1)^i}) \]

for $i \geq 1$, these quotients being \mathbb{F}_l vector spaces in a natural way. In number field situations, the dimensions λ_i have been investigated by Rédei [10] for $l = 2$ and Gras [4] for arbitrary l. In function field situations, these dimensions λ_i have been investigated by Wittmann for $l \neq p$. In this section, we give a formulae to compute λ_2 for $l = p$. This is an analogy of Rédei-Reichardt’s formulae [10] for Artin-Schreier extensions.

If K is imaginary, as in the proof of Theorem 4.1, we suppose that $K = k(\alpha)$, where $\alpha = \sum_{i=1}^{m} \alpha_i + \beta$. We have the following sequence of maps

\[\text{Cl}(K)^G \longrightarrow \text{Cl}(K)/(\sigma - 1)\text{Cl}(K) \cong \text{Gal}(G(K)/K) \hookrightarrow \text{Gal}(G(K)/k) \]

\[\cong \text{Gal}(k(\alpha_1)/k) \times \cdots \times \text{Gal}(k(\alpha_m)/k) \times \text{Gal}(k(\beta)/k). \]

Considering $[\Psi_i] \in \text{Cl}(K)^G(1 \leq i \leq m)$ under these maps, we have

\[[\Psi_i] \longmapsto [\tilde{\Psi}_i] \longmapsto ([\Psi_i], G(K)/K) \longmapsto (\Psi_i, G(K)/K) \]

\[\longmapsto ((P_i, k(\alpha_1)/k), \ldots, (P_i, k(\alpha_m)/k), (P_i, k(\beta)/k)), \]

where the i-th component is $(\Psi_i, G(K)/K)_{k(\alpha_i)}$.

We define the Rédei matrix $R = (R_{ij}) \in M_{m \times m}(\mathbb{F}_p)$ as following:

\[R_{ij} = \frac{D_j}{P_i}, \text{ for } 1 \leq i, j \leq m, i \neq j, \]
and R_{ii} is defined to satisfy the equality:

$$\sum_{j=1}^{m} R_{ij} + \{ \frac{f}{P_i} \} = 0.$$

From the discussions in section 2, we have

$$(\Psi, G(K)/K)\alpha = \alpha,$$

$$(\Psi, G(K)/K)\alpha_j = \alpha_j + \{ \frac{D_j}{P_i} \}, \text{for } i \neq j$$

so it is easy to see the image of $\text{Cl}(K)^G \to \text{Cl}(K)/(\sigma - 1)\text{Cl}(K)$ is isomorphic to the vector space generated by the row vectors $(R_{11}, R_{12}, \cdots, R_{im}, \{ \frac{f}{P_i} \}) (1 \leq i \leq m)$.

We conclude that

$$\lambda_2 = \dim_{\mathbb{F}_p}(\text{Cl}(K)^G_l/(\sigma - 1)\text{Cl}(K)^G_l) = \dim_{\mathbb{F}_p}(\text{Cl}(K)^{(\sigma - 1)^2})$$

$$= \dim_{\mathbb{F}_p}(\ker(\text{Cl}(K)^G \to \text{Cl}(K)/(\sigma - 1)\text{Cl}(K)))$$

$$= \dim_{\mathbb{F}_p}(\text{Cl}(K)^G) - \dim_{\mathbb{F}_p}(\text{Im}(\text{Cl}(K)^G \to \text{Cl}(K)/(\sigma - 1)\text{Cl}(K)))$$

$$= m - \text{rank}(R).$$

Since the proof of real case is similar, we only give the results and sketch the proof.

If K is real, from the discussions in section 2, we have $f(t) = 0$, so

$$D = \sum_{i=1}^{m} D_i.$$

We define the Rédei matrix $R = (R_{ij}) \in M_{m \times m}(\mathbb{F}_p)$ as following:

$$R_{ij} = \{ \frac{D_j}{P_i} \}, \text{ for } 1 \leq i, j \leq m, i \neq j,$$

and R_{ii} is defined to satisfy the equality:

$$\sum_{j=1}^{m} R_{ij} = 0.$$

The same procedure as the imaginary case shows that the image of $\text{Cl}(K)^G \to \text{Cl}(K)/(\sigma - 1)\text{Cl}(K)$ is isomorphic to the vector spaces generated by the row vectors of Rédei matrix. Thus

$$\lambda_2 = \dim_{\mathbb{F}_p}(\text{Cl}(K)^G) - \dim_{\mathbb{F}_p}(\text{Im}(\text{Cl}(K)^G \to \text{Cl}(K)/(\sigma - 1)\text{Cl}(K)))$$

$$= m - 1 - \text{rank}(R).$$

Theorem 5.1. If K is imaginary, then $\lambda_2 = m - \text{rank}(R)$; if K is real, then $\lambda_2 = m - 1 - \text{rank}(R)$, where R is the Rédei matrix defined above.
If $p = 2$, then σ acting on $Cl(K)$ equal to -1. So λ_1, λ_2 equal to the 2-rank, 4-rank of ideal class group $Cl(K)$, respectively. In particular, the above theorem tells us the 4-rank of ideal class group $Cl(K)$ which is an analogue of classical Rédei-Reichardt’s 4-rank formulae for narrow ideal class group of quadratic number fields.

REFERENCES

[1] E.Artin, Algebraic numbers and algebraic functions, AMS CHELSEA PUBLISHING, 2005.
[2] S.Bae and J.K.Koo, Genus theory for function fields, J.Austral.Math.Soc.(Series A)60(1996),301-310.
[3] A.Fröhlich, Central extensions, Galois groups, and ideal classes of number fields, Contemp.Math.24(Amer.Math.Soc.Providence,1983).
[4] G.Gras, Sur les l-classes d'idéaux dans les extensions cycliques relatives de degré premier 11,II,Ann.Inst.Fourier 23(3)(1973)1-48;Ann.Inst.Fourier 23(4)(1973)45-64.
[5] H.Hasse, Theorie der relativ zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper. J.Reine Angew.Math. 172(1934),37-54.
[6] H.Hasse, Zur Geschlecht Theorie in quadratische Zahlkörpern, J.Math.Soc.Japan 3(1951),45-51.
[7] G. Peng, The genus fields of Kummer function fields, J.Number Theory 98(2003), 221-227.
[8] M.Rosen, The Hilbert class field in function field, Exp.Math.5(1987), 365-378.
[9] M.Rosen, Number Theory in Function Fields, Springer-verlag, New York,2002.
[10] L.Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J.Reine Angew Math.171(1935) 55-60.
[11] J.P.Serre, Local fields, Springer-verlag, New York, 1979.
[12] C.Wittmann, l-class groups of cyclic function fields of degree l, Finite Fields Appl.13(2007), 327-347.

DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING 100084, CHINA
E-mail address: hus04@mails.tsinghua.edu.cn, liyan_00@mails.tsinghua.edu.cn