Photosynthetic Physiological Characteristics of *Gazania rigens* L. Under Drought Stress

T T Gao¹, S W Zheng¹, X H Zhou¹, D X Wang¹ and X P Lu¹, ²

¹Key Laboratory of Architecture and Urban Environment, Gold Mantis School of Architecture, Soochow University, Soochow, Jiangsu 215123, P.R. China

E-mail: longzs@suda.edu.cn

Abstract. To investigate the responses of photosynthetic physiological characteristics of *Gazania rigens* L. to drought stress, the changes of three cultivars (‘Xingbai’, ‘XH’ and ‘Hongwen’) photosynthetic values under drought stress were determined via LI-6400 portable photosynthesis analyzer (LI-COR, USA), and the relationships between photosynthesis and drought resistance of each cultivar were analyzed. The results showed that, three cultivars net photosynthetic rate (**Pn**), stomatal conductance (**Gs**), transpiration rate (**Tr**), and light use efficiency (**LUE**) value indicated the trend of decreasing gradually and there existed significant reduction in **Pn** and **Gs** values. There were extremely negative significant correlations between drought stress treatment days and **Pn**, **Gs**, **Tr**, water use efficiency (**WUE**) and **LUE** values. A small amount of leaves began to turn soft and yellow after drought stress treatment for 10 days, but they could recover to grow quickly after rehydration. The **Pn** values of ‘Hongwen’ decreased quickly and changed in a large range, so it had a poor resistance; the **Pn** values of ‘Xingbai’ decreased slowly and changed in a small range, so it had a strong resistance; while the changes of their hybrids –‘XH’ were between its parents. This research would provide a theoretical basis for gazania resistance cultivar breeding and application in landscape.

1. **Introduction**

Gazania (*G. rigens* L.), with another name – treasure flower, belonging to Asteraceae family and *Gazania* spp., is a perennial herb and known for its beautiful flower shape and horticultural appeal. With the characteristics of evergreen, flowering in three seasons, dwarf, interesting flower shape, gazania can be used as potted plant, ground cover plant, flower border and so on [1]. Now it has been widely used in landscaping of the world.

Water is a vital factor that limits plant distribution and growth, and photosynthesis is directly influenced by water [2]. Photosynthesis is one of the main factors determining plants’ biomass. Only
when plants keep high photosynthesis under stress can plants maintain its survival and development. Moreover, the ability to resistance is reflected by the values of photosynthesis [3]. Photosynthesis and the changes of the plant itself response the plant growth condition and stress resistance. The leaves of plants will close its stoma when subjected to drought stress, which leads to decrease photosynthesis rate [4]. \(P_n \) and \(G_s \) values of shrubs and herbs decrease with the reduction of water, which is harmful for plant growth [5].

The photosynthetic physiological characteristics of plants in the Asteraceae family under drought stress were studied by many scholars. Research on Dahlia photosynthetic characteristics showed \(P_n, \ Tr, \ G_s, \ WUE \) values decreased with the prolonged drought stress, while \(C_i \) values increased first and then decreased [6]. Compared with the control group, water stress decreased stomatal density on the surface of the leaf, as well as the \(G_s \) values and moisture loss; water stress reduced leaf values of \(P_n, \ Tr, \ G_s \) and other physiological indexes of \(Flaveria \ bidentis \) [7]. Influence of different degree of drought stress on the photosynthetic physiological characteristics and water use efficiency have been researched, which indicated ground-cover chrysanthemum belonged to cover plants with high drought resistance, and it was suitable to plant ground-cover chrysanthemum in the arid areas [8].

Deficit irrigation can improve plants’ tolerance to stress. Previous studies on different gazania cultivars’ drought resistance are mainly focused on physiological responses to drought stress, such as polyamines, antioxidant enzymes, isozymes, abscisic acid (ABA) and so on [9], while the study of photosynthetic characteristics under drought stress was not involved. Photosynthesis is one of the main performances of plant heterosis, and there exists heterobeltiosis in the hybrids photosynthesis capability, especially under the water stress condition [10]. In order to provide a theoretical basis for gazania resistance cultivar breeding and landscape plants low carbon maintenance, ‘Xingbai’, ‘Hongwen’ and their hybrid ‘XH’ were chosen as experimental materials. Photosynthetic physiological values of three cultivars under drought stress were determined via portable photosynthesis analyzer.

2. Materials and methods

2.1. Materials

‘Xingbai’, ‘Hongwen’ and their hybrid ‘XH’ were chosen as experimental materials. They were propagated in early May 2013 by cutting and these cuttings were transplanted to plastic pots after 30 days growing. Each pot had three holes and the pot volume is \(40 \times 30 \times 15 \text{ cm}^3 \) with uniform substrate (Liangtu common soil for gardening, China) in it. There were 6 pots and every pot had 3 cultivars, 9 plants in total, with each cultivar having three plants. Then they were watered and fertilized with unified management for future experiment.

2.2. Methods

2.2.1. Experimental design. These pots were soaked fully in water at 3:00 PM for 20 minutes to get enough water on the day before the experiment. The treatments were as follows: these plants were in drought stress without watering in the whole experiment period. The artificial drought stress device frame was made of \(200 \times 100 \times 50 \text{ cm}^3 \) aluminum alloy, the top of which was covered with transparent glass as other 4 sides of the device usually was open. These sides were covered only in this case that it
was rainy. In this way, it could not only simulate natural environment as much as possible to let wind and light in freedom but also prevent the interference caused by rainfall. Each treatment had three repeats and the first day of the experiment was chosen as control. Relative photosynthetic indicators were recorded respectively on the 1st, 4th, 7th, 10th, 13th and 16th day of drought stress experiment.

2.2.2. Setting and determination of photosynthetic gas exchange parameters. The second position leaves were chosen as experimental materials in each treatment, and photosynthetic characteristics like Pn, Gs, intercellular CO$_2$ concentration (Ci), and Tr were determined via LI-6400 portable photosynthesis analyzer (LI-COR, USA). The parameters of the analyzer in this experiment are as follows: red and blue light inside the photosynthetic system was used to provide continuous and stable illumination; leaf chamber was 2×3 cm in size and light intensity was 1500 μmol·m$^{-2}$·s$^{-1}$; flow rate of sample chamber was 500 μmol·s$^{-1}$. During determination, the atmospheric CO$_2$ concentration was about 400 μmol·mol$^{-1}$, and the test time was 8:30-11:30 AM with the experimental temperature controlled at 25~27 °C.

2.3. Data processing method

Use SPSS 17.0 (Statistical program for social sciences) and Microsoft Excel 2003 to analyze statics and map. $WUE = Pn / Tr$, $LUE = Pn / Light intensity$ to calculate WUE and LUE values [11]. And the data in this paper was mean values which were derived from three repeats.

3. Results

3.1. Effects of drought stress on gazania Pn

Compared with the 1st day experimental values, ‘Xingbai’, ‘XH’ and ‘Hongwen’ Pn showed the trend of decreasing gradually with the prolonged drought stress (Figure 1), and Pn values decreased significantly from the days 10 to 13. Under the same treatment days, the values of ‘XH’ from days 1 to 10 were lower than its parents ‘Xingbai’ and ‘Hongwen’, while the values of ‘XH’ from days 10 to 16 were between its parents; the values of ‘Hongwen’ from days 1 to 10 were higher than ‘Xingbai’ and ‘XH’, while it decreased greatly than ‘Xingbai’ and ‘XH’ from days 10 to 13 and the value was 10.51 μmol·m$^{-2}$·s$^{-1}$; ‘Xingbai’, ‘XH’ and ‘Hongwen’ decreased 14.31 μmol·m$^{-2}$·s$^{-1}$, 13.38 μmol·m$^{-2}$·s$^{-1}$, 17.02 μmol·m$^{-2}$·s$^{-1}$ respectively compared with the 1st day of experiment.

![Figure 1. Effects of drought stress on gazania net photosynthetic rate.](image1)

![Figure 2. Effects of drought stress on gazania intercellular CO2 concentration.](image2)
3.2. Effects of drought stress on gazania Gs and Tr

With the prolonged drought stress, ‘Xingbai’, ‘XH’ and ‘Hongwen’ Gs showed the trend of decreasing gradually (Table 1). Under the same treatment circumstance, the values of ‘XH’ were between its parents’ from days 4 to 13, and it didn’t reach to significant level; the values of ‘XH’ were a slightly higher than its parents on the 16th day treatment; the three cultivars values reached to the lowest point on the 16th day treatment. What’s more, ‘Xingbai’, ‘XH’ and ‘Hongwen’ decreased 185.45 mmol·m⁻²·s⁻¹, 135.61 mmol·m⁻²·s⁻¹, 258.85 mmol·m⁻²·s⁻¹ respectively compared with the 1st day value. However, the changes of three cultivars’ Tr values were not the same. ‘Xingbai’ Tr showed the trend of decreased gradually while values of ‘XH’ and ‘Hongwen’ decreased firstly, then increased and decreased finally once again. Compared with the 1st day value, treatment values of the 16th day of the three cultivars reached to the lowest point, ‘Xingbai’, ‘XH’ and ‘Hongwen’ decreased 2.29 mmol·m⁻²·s⁻¹, 2.17 mmol·m⁻²·s⁻¹, 3.63 mmol·m⁻²·s⁻¹ respectively. It was obvious that the values of ‘XH’ were between or lower than its parents’ under the same treatment.

Table 1. Stomatal conductance and transpiration rate of gazania under drought stress.

Treatment Days	‘Xingbai’ Gs (mmol·m⁻²·s⁻¹)	‘XH’ Gs (mmol·m⁻²·s⁻¹)	‘Hongwen’ Gs (mmol·m⁻²·s⁻¹)	‘Xingbai’ Tr (mmol·m⁻²·s⁻¹)	‘XH’ Tr (mmol·m⁻²·s⁻¹)	‘Hongwen’ Tr (mmol·m⁻²·s⁻¹)
1 d	214.22a	171.67a	272.96a	3.00a	2.84a	3.92a
4 d	133.46b	134.06b	224.07b	1.94b	1.71c	2.65c
7 d	97.14c	112.28b	173.95c	1.46bc	1.32e	2.45d
10 d	88.42d	114.11b	144.16d	1.34bc	2.08b	3.23b
13 d	64.06e	79.03c	123.58e	1.13bc	1.63d	2.26e
16 d	28.77f	36.06d	14.11f	0.71c	0.67f	0.29f

3.3. Effects of drought stress on gazania Ci

The changes of ‘Xingbai’ Ci was complex under drought stress, but the three cultivars showed the trend of increased firstly and then decreased, finally increased once again in the whole (Figure 2). The values of 16th day treatment were significantly higher than others’ and values of ‘Xingbai’, ‘XH’ and ‘Hongwen’ increased 77.87 μmol·mol⁻¹, 192.77 μmol·mol⁻¹, 156.26 μmol·mol⁻¹ respectively compared with the 1st day treatment. The values of ‘XH’ Ci were between or lower than its parents’ under the same treatment from days 1 to 10, while ‘XH’ values were higher than its parents from treatment days 10 to 16.

3.4. Effects of drought stress on gazania WUE

‘Xingbai’, ‘XH’ and ‘Hongwen’ WUE values increased first and then decreased with the prolonged drought stress (Figure 3). The values of three cultivars reached to the highest point under drought stress for four days. ‘Xingbai’, ‘XH’ and ‘Hongwen’ decreased 4.91 μmol·mmol⁻¹, 6.31 μmol·mmol⁻¹, 8.93 μmol·mmol⁻¹ respectively compared with the 1st day treatment. The values of ‘XH’ were between its parents’ under the same treatment.
3.5. Effects of drought stress on gazania LUE
With the prolonged drought stress, ‘Xingbai’ LUE value increased on the day 4th treatment when the other three cultivars decreased gradually in general (Figure 4). ‘Xingbai’, ‘XH’ and ‘Hongwen’ decreased 9.54 \(\mu \text{mol}\cdot\text{mmol}^{-1} \), 8.92 \(\mu \text{mol}\cdot\text{mmol}^{-1} \), 11.35 \(\mu \text{mol}\cdot\text{mmol}^{-1} \) respectively compared with the 1st day treatment. The values of ‘XH’ were between or lower than its parents under the same treatment. The three cultivars LUE values decreased significantly than others’ and they decreased 4.00 \(\mu \text{mol}\cdot\text{mmol}^{-1} \), 3.84 \(\mu \text{mol}\cdot\text{mmol}^{-1} \), 6.01 \(\mu \text{mol}\cdot\text{mmol}^{-1} \) respectively from days 10 to 13.

3.6. Correlations of gazania photosynthetic indicators under drought stress
There existed a certain correlations among gazania photosynthetic indicators under drought stress (Table 2). The three cultivars \(Pn \), \(Gs \), \(Tr \), \(WUE \), LUE were extremely negative significance with drought days. There was no correlation between ‘Xingbai’ \(Ci \) and treatment days, while there existed extremely positive significance between ‘XH’, ‘Hongwen’ \(Ci \) and treatment days.

Day	\(Pn \)	\(Gs \)	\(Ci \)	\(Tr \)	\(WUE \)
‘Xingbai’	-0.966**	-0.954**	0.853**	0.448	-0.480*
		-0.375	0.729**	0.880**	-0.292
		-0.828**	0.897**	0.567*	-0.612**
					0.853**
					-0.480*
					0.729**
					0.897**
‘XH’	-0.972**	-0.940**	0.924**	0.898**	-0.948**
		-0.919**	0.725**	0.853**	-0.789**
					0.814**
					-0.900**
					0.514*
					0.915**
‘Hongwen’	-0.972**	-0.944**	0.924**	1.000**	0.924**
		-0.948**	0.924**	-0.948**	
					0.725**
					0.514*
					0.915**
** significant differences at P< 0.01 level; * significant differences at P< 0.05 level

	Ci	Tr	WUE	LUE		
Ci	0.839**	-0.910**	-0.807**			
Tr	-0.810**	0.788**	0.882**	-0.868**		
WUE	-0.859**	0.909**	0.873**	-0.815**	0.825**	
LUE	-0.944**	1.000**	0.880**	-0.910**	0.788**	0.909**

4. Discussions
Drought is the main abiotic stress factors limiting plant growth and high recuperative capacity of plants from drought damages is critical for plant survival during drought stress. The impact of drought on the plants photosynthesis and photosynthetic organs will strengthen with the increasing extent of drought stress. Drought stress reduce plant’s photosynthesis, these results are consistent with it [12].

The three cultivars Pn, Gs and LUE decreased gradually while there was a short increasing time for Ci, Tr and WUE. The changes of Pn values were mainly influenced by two factors: stomata limit caused by partial stomata closing, and non-stomata limit caused by photosynthetic activity decreasing in mesophyll cells [13]. Pn value decreased while Ci value increased gradually from days 1 to 7, which indicated the reason that why Pn value was decreased was not the change of Gs, because the changed Gs would lead CO₂ concentration to decrease. It was that non-stomata limit, such as increasing resistance of stomatal diffusion in mesophyll cells, decreasing of CO₂ solubility, reducing affinity of Rubisco enzyme on CO₂, decreasing of RuBP regeneration or decreasing of key components stability for photosynthetic apparatus, hindering the usage of CO₂ caused the accumulation of intracellular CO₂ [14]. Pn value decreased and Gs, Ci decreased as well from treatment days 7 to 10, which indicated that the decrease of Gs limited the entrance of CO₂ - stomata limit. Ci increased gradually from days 10 to 16, which manifested that the main reason causing Pn decreasing was non-stomata limit. Therefore, gazania Pn value is mainly influenced by stomata and non-stomata limits under drought stress. WUE is a stable indicator to evaluate the relation between carbon fixation and water consumption [15], and it can show water usage level meanwhile it limits the adaptability to stress [16].

Three cultivars Tr decreased gradually in general with the prolonged drought stress, which was the same as Gs changed. It is probably because that the decrease of Gs, Tr reduce water loss in plant body. WUE is determined by Pn and Tr. Moreover, WUE value increased first in this experiment from treatment days 1 to 4. WUE value showed the trend of decreasing gradually with the prolonged drought stress and this might be a kind of adaptability to drought stress. Meanwhile, the biggest value of WUE occurred on the 4th day treatment, which revealed that it is not necessarily the highest water use efficiency occurs in high field water-holding capacity condition. Moderate water deficit will improve the plant water utilization rate.

5. Conclusion
There exists extremely significant changes between Pn, Gs, Tr, WUE, LUE and treatment days, so it can be an indicator to evaluate the photosynthetic characteristics response of gazania to drought stress. According to the values and the general trends of different measured variables under drought stress,
we can select cultivar(s) with strong resistance and high ornamental value to enrich the landscape architecture.

References
[1] Goldblatt P, Manning J and Bond P 2000 Cape plants: a conspectus of the Cape flora of South Africa (Pretoria: National Botanical Institute)
[2] Wang N N, Hu Z H and Shen Y B 2011 Acta Botanica Boreali-Occidentalia Sinica 31 0101
[3] Liu J, Yang J Y, Zhang P J, Song X M and Zhang L J 2011 Chinese J. Grassland 33 75
[4] You Y, Sun Y B, Lv F B, Zhu G F and Cao J X 2011 Chinese J. of Trop. Crops 32 1245
[5] Niu S L, Jiang G M, Gao L M, Li Y G and Liu M Z 2003 Acta phytoecological sinica 27 318
[6] Fan S L, Yuan Z H, Feng L J, Wang X H, Ding X M, Zheng H L and Jia X H 2011 Chinese Agric. Sci. Bull. 27 119
[7] Wang X Y 2011 Response of Flaveria bidentis to Soil Water Stress (Hebei China: Agric. Univ. of Hebei Press) p 04
[8] Shi L R, Wang Y P, Liu G R and Li M Z 2011 J. of Henan Agric. Sci. 40 119
[9] Zhou X H, Wang W, Dai B, Wu Y Q and Lu X P 2013 Northern Hort. 09 67
[10] Li B, Zhan Y G, Xu Y G, Zeng F S, Zhang G Q 2012 Acta Botanica Boreali-Occidentalia Sinica 32 2312
[11] Chen K, Hu G Q, Keutgen N, Janssens M J and Lenz F 1999 Scientia Hort. 81 43
[12] Cao H, Xu X F, Han Z H, Wang X W and Guo T Q 2004 Acta Hort. Sinica 31 285
[13] Jones H G 1998 J. Exp. Bot. 49 378
[14] Allen D J and Ort D R 2001 Trends Plant Sci. 6 36
[15] Chen T X, Hao W J, Chen X B and Lu X S 2009 Chinese J. Grassland 31 41
[16] Ray I M, Townsend M S and Muncy C M 1999 Crop Sci. 39 1088