Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Impact of COVID-19 Protocols on Primary and Revision Total Hip Arthroplasty

Michael Sybert, MD, Christian T. Oakley, BS, Thomas Christensen, BS, Joseph Bosco, MD, Ran Schwarzkopf, MD, MSc, James Slover, MD, MS *

Department of Orthopedic Surgery, NYU Langone Health, New York, New York

Background: Surgical site infection (SSI) after total hip arthroplasty (THA) is associated with increased morbidity, mortality, and healthcare expenditures. Our institution intensified hygiene standards during the COVID-19 pandemic; hospital staff exercised greater hand hygiene, glove use, and mask compliance. We examined the effect of these factors on SSI rates for primary THA (pTHA) and revision THA (rTHA).

Methods: A retrospective review was performed identifying THA from January 2019 to June 2021 at a single institution. Baseline characteristics and outcomes were compared before (January 2019 to February 2020) and during (March 2020 to June 2021) the COVID-19 pandemic. Cohorts were compared using the Chi-squared test and independent samples t-test.

Results: A total of 2,682 pTHA (prepandemic: 1,549 [57.8%]; pandemic: 1,133 [42.2%]) and 402 rTHA (prepandemic: 216 [53.7%]; Pandemic: 186 [46.2%]) were included. For primary and revision cases, superficial and deep SSI rates were similar before and during COVID-19. During COVID-19, the incidence of all (−0.43%, P = .029) and deep (−0.36%, P = .049) SSIs decreased between the first and second periods for rTHA. pTHA patients had longer operative times (P < .001) and shorter length of stay (P = .006) during COVID-19. Revision cases had longer operative times (P = .004) and length of stay (P = .046). Both pTHA and rTHA were discharged to skilled nursing facilities less frequently during COVID-19.

Conclusion: During COVID-19, operative times were longer in both pTHA and rTHA and patients were less likely to be discharged to a skilled nursing facility. Although intensified hygienic standards may lower SSI rates, infection rates did not significantly differ after our hospital implemented personal protective guidelines and a mask mandate.

© 2022 Elsevier Inc. All rights reserved.
perioperative metrics of primary and revision THA after the implementation of hospital-wide COVID protocols, including frequent hand washing and continuous mask use.

Materials and Methods

This retrospective study examined all patients aged more than 18 years who underwent primary or revision THA (pTHA and rTHA) between January 2019 and June 2021 at a single academic orthopedic specialty hospital. Exclusion criteria included THA for fracture, oncologic indications, and bilateral THA. Patients were separated into 2 cohorts based on the date of surgery: the pre-pandemic group (January 2019 to February 2020) and the pandemic group (May 2020 to June 2021). We have excluded the months of March and April 2020 because our institution suspended elective surgeries and only performed emergent cases from March 15 through May 4, 2020. The pandemic group was further stratified into 2 time periods: period 1 (May 2020 to November 2020) and period 2 (December 2020 to June 2021). Patient records and data were deidentified as part of our institutional quality improvement program; however, a human-subjects review by our institutional review board was obtained prior to this study.

Data Collection

Patient demographic data including gender, race, body mass index (BMI, kg/m²), American Society of Anesthesiology (ASA) classification, smoking status, and surgical status (pTHA or rTHA) were collected. In addition, clinical data including length of stay (LOS; days), surgical time (minutes), SSI, and discharge disposition were collected from our electronic patient medical record system, Epic (Epic Caboodle, version 15; Verona, Wisconsin) using Microsoft SQL Server Management Studio 2017 (Redmond, Washington). LOS was evaluated in days spent in the hospital following surgery and surgical time was calculated as the time difference between initial skin incision and closure.

Outcome Measures

The primary outcomes included all SSIs, superficial SSIs, and deep SSIs. The secondary outcomes included perioperative data, such as surgical time, LOS, and discharge disposition.

Statistical Analysis

All data were organized and collected using Microsoft Excel software (Microsoft Corporation, Richmond, Washington). A binary variable was created to identify patients who underwent THA during the prepandemic and pandemic periods, and if during the pandemic, periods 1 and 2 as well. Demographic and clinical baseline characteristics of study participants were described as means with standard deviations (SDs) for continuous variables and frequencies with percentages for categorical variables. Statistical differences in continuous categorical variables were detected using independent sample t-test and Chi-squared (χ^2) test, respectively. Changes in the incidence of categorical outcomes were expressed in absolute and relative percentages.

Results

Primary Total Hip Arthroplasty

A total of 2,682 primary THA patients from January 2019 to June 2021 were included: 1,549 (57.8%) in the prepandemic group and 1,133 (42.2%) in the pandemic group. Further sub-analysis of the pandemic cohort yielded 574 (50.7%) patients in period 1 and 559 (49.3%) patients in period 2.

An analysis of demographic characteristics (Table 1) showed a lower proportion of males in the pandemic group (41.8% versus 37.2%, $P = .016$). In addition, there were significant differences in racial demographics between cohorts ($P = .008$), with a 4% decrease in the proportion of White patients and a 3.6% increase in the proportion of Black patients during the pandemic. There were no differences in age ($P = .077$), BMI ($P = .493$), ASA Classification ($P = .121$), and smoking status ($P = .961$). In a subgroup analysis of the pandemic cohort, the first period had younger patients than the second period (65.2 versus 66.5 years, $P = .046$).

For perioperative outcomes (Table 2), the incidence of all SSIs ($P = .372$), superficial SSIs ($P = .242$), and deep SSIs ($P = .221$) did not significantly differ between groups. Operative times were significantly longer (114.7 ± 28.5 versus 104.0 ± 27.6 minutes, $P < .001$) during COVID-19. Hospital LOS decreased during the pandemic period (2.00 ± 1.56 versus 2.15 ± 1.30 days, $P = .006$). Furthermore, there was a significant decrease in hospital LOS between period 1 and period 2 of the pandemic (2.10 ± 1.87 versus 1.90 ± 1.16, $P = .025$). In addition, discharge disposition also differed ($P < .001$): during the pandemic, patients were more likely to be discharged home (94.9% versus 88.9%), less likely to be discharged to skilled nursing facilities (4.1% versus 10.3%), and similarly likely to be discharged to acute rehab centers (1.1% versus 0.8%). There were no additional differences in perioperative outcome metrics between the pandemic subgroups.

Revision Total Hip Arthroplasty

A total of 402 revision THA patients were included, including 216 (53.7%) in the prepandemic group and 186 (46.2%) in the pandemic group. In a subgroup analysis of the pandemic cohort, period 1 had 100 (53.5%) patients and period 2 had 87 (46.5%) patients. At baseline, the prepandemic cohort had a higher mean BMI than the pandemic cohort (29.5 ± 6.7 versus 28.1 ± 6.2, $P = .030$) (Table 1). Age ($P = .206$), gender ($P = .303$), ASA classification ($P = .888$), race ($P = .313$), and smoking status ($P = .232$) did not significantly differ between groups.

For SSI in revision THA, there were no significant differences for all SSIs ($P = .420$), superficial SSIs ($P = .282$), and deep SSIs ($P = .583$) between the prepandemic and pandemic groups. In a subgroup analysis of the pandemic cohort, both all SSIs (−0.43% [−82.9%], $P = .029$) and deep SSIs (−0.36% [−80.5%], $P = .049$) significantly decreased from period 1 to period 2. Similar to the primary THA cohort, the revision THA cohort showed significant differences in operative time, LOS, and discharge disposition (Table 2). During the pandemic, operative times were longer (150.5 ± 57.3 versus 134.8 ± 51.8 minutes, $P = .004$). In contrast to the primary THA cohort, LOS for revision THA increased during the pandemic (3.62 ± 2.64 versus 3.10 ± 2.58 days, $P = .046$). Discharge disposition also differed between groups ($P < .001$). More patients were discharged home (85% versus 83.8%) and to acute rehab centers (8.6% versus 14.4%), whereas few were discharged to skilled nursing facilities (6.4% versus 14.8%).

Discussion

The COVID-19 pandemic provoked a surge in the use of handwashing and personal protective equipment (PPE) both in and out of the hospital setting. In our orthopedic hospital, strict mask use and hand hygiene were enforced in all areas of the hospital for all patients and staff. In addition, patient visitor limitations were employed as a measure of social distancing. The purpose of this article was to retrospectively analyze if the implementation of
Table 1
Demographic Characteristics of Patients Undergoing Total Hip Arthroplasty Before and After the Introduction of COVID-19 Motivated Hygienic Practices.

Time Period	Primary THA Overall	Revision THA Overall				
	Prepandemic^a (n = 1,549)	Pandemic^b (n = 1,133)	P Value	Prepandemic^a (n = 216)	Pandemic^b (n = 186)	P Value
	Period 1^c (n = 574)	Period 2^d (n = 559)		Period 1^c (n = 100)	Period 2^d (n = 87)	
Age (y)	65.0 ± 11.7	65.8 ± 11.2	.077	65.7 ± 10.9	67.1 ± 11.7	.206
Male- no. (%)	644 (41.8)	421 (37.2)	.016^e	104 (48.1)	80 (43.0)	.303
BMI (kg/m²)	29.8 ± 6.2	30.0 ± 6.4	.493	29.5 ± 6.7	28.1 ± 6.2	.030^e
ASA Classification- no. (%)	96 (6.2)	54 (4.8)	121	7 (3.2)	7 (3.7)	6 (6.0)
Race- no. (%)	1,094 (70.6)	755 (66.6)	0.08^e	157 (72.7)	130 (69.5)	70 (70.0)
Smoking Status- no. (%)	197 (12.7)	160 (14.1)	.961	34 (15.7)	32 (17.1)	17 (17.0)

ASA, American Society of Anesthesiologists; BMI, body mass index; No., number; SD, standard deviation; THA, total hip arthroplasty.

^a Before COVID-19 includes all patients undergoing arthroplasty from January 2019 to February 2020.

^b During COVID-19 includes all patients undergoing arthroplasty from May 2020 to June 2021.

^c Period 1 includes all patients undergoing arthroplasty from May 2020 to November 2020.

^d Period 2 includes all patients undergoing arthroplasty from December 2020 to June 2021.

^e P < .05.
Table 2: Outcomes of Patients Undergoing Total Hip Arthroplasty Before and After the Introduction of COVID-19 Motivated Hygienic Practices.

Time Period	Pandemic	Pre-pandemic	Overall Pandemic	Overall Prepandemic	pValue	Period 1	Period 2	Period 1	Period 2	pValue	
	1,549/1.00	1,075/1.00	186/1.00	100/1.00		82.9/1.00	216/1.00	87/1.00	100/1.00		
Infection- no. (%	-0.34 (75.8)	-0.37 (84.1)	-0.36 (80.5)	-0.39 (80.5)		0.26 (79.4)	0.25 (75.8)	0.37 (84.1)	0.26 (79.4)		
Superficial	0 (0.0)	1 (0.1)	-0.08 (32.0)	-0.08 (32.0)	-0.05	-0.03 (51.8)	0.05	0.06 (51.8)	0.03 (51.8)	-0.05	
Deep	0.36 (52.4)	0.37 (52.4)	0.37 (52.4)	0.37 (52.4)	-0.05	0.36 (52.4)	0.37 (52.4)	0.37 (52.4)	0.36 (52.4)	-0.05	
Discharge Position- no. (%)	0.5 (4.1)	0.6 (4.1)	-0.06 (100.0)	-0.06 (100.0)	-0.05	-0.06 (100.0)	0.05	-0.06 (100.0)	0.05	-0.05	
Acute Rehab Center	5 (0.9)	7 (0.9)	-0.06 (100.0)	-0.06 (100.0)	-0.05	0.05	-0.06 (100.0)	0.05	-0.06 (100.0)	0.05	-0.05
Skilled Nursing Facility	10 (10.0)	6 (6.4)	-0.06 (100.0)	-0.06 (100.0)	-0.05	0.05	-0.06 (100.0)	0.05	-0.06 (100.0)	0.05	-0.05
Home	83 (83.0)	74 (70.0)	-0.06 (100.0)	-0.06 (100.0)	-0.05	0.05	-0.06 (100.0)	0.05	-0.06 (100.0)	0.05	-0.05
Discharge Disposition- no. (%)	0.5 (4.1)	0.6 (4.1)	-0.06 (100.0)	-0.06 (100.0)	-0.05	0.05	-0.06 (100.0)	0.05	-0.06 (100.0)	0.05	-0.05
Acute Rehab Center	5 (0.9)	7 (0.9)	-0.06 (100.0)	-0.06 (100.0)	-0.05	0.05	-0.06 (100.0)	0.05	-0.06 (100.0)	0.05	-0.05
Skilled Nursing Facility	10 (10.0)	6 (6.4)	-0.06 (100.0)	-0.06 (100.0)	-0.05	0.05	-0.06 (100.0)	0.05	-0.06 (100.0)	0.05	-0.05
Home	83 (83.0)	74 (70.0)	-0.06 (100.0)	-0.06 (100.0)	-0.05	0.05	-0.06 (100.0)	0.05	-0.06 (100.0)	0.05	-0.05

p < 0.05

p < 0.001

p < 0.01

p < 0.0001

p < 0.0005

p < 0.000001

p < 0.0000001

p < 0.00000001

p < 0.000000001

p < 0.0000000001

p < 0.00000000001

p < 0.000000000001

p < 0.0000000000001

p < 0.00000000000001

p < 0.000000000000001

p < 0.0000000000000001

p < 0.00000000000000001

p < 0.000000000000000001

p < 0.0000000000000000001

p < 0.00000000000000000001

p < 0.000000000000000000001

p < 0.0000000000000000000001

p < 0.00000000000000000000001

p < 0.000000000000000000000001

p < 0.0000000000000000000000001

p < 0.00000000000000000000000001
The COVID-19 pandemic led to the implementation of increased hygiene protocols, mask use, and social distancing throughout the hospital setting. Our study did not show a correlation between the implementation of pandemic protocols and a change in SSI. We did demonstrate longer operative times and decreased discharge to skilled nursing facilities in both pTHA and rTHA during the pandemic. In addition, there was a 9.5% decrease in LOS between periods 1 and 2 of the pandemic. This trend could have been due to an increased proportion of urgent or complex revision cases requiring longer postoperative stays. It is also possible that LOS increased in revision THA due to avoidance of placing patients to skilled nursing facilities for the fear of increased COVID exposure.

Our analysis showed a statistically significant change in discharge disposition for both pTHA and rTHA. For both primary and revision cases, the proportion of patients discharged to skilled nursing facilities decreased by 6.2% and 8.4% during the pandemic, respectively. Moreover, the pTHA group demonstrated a compensatory 6% increase in home disposition, whereas the rTHA group had a 1.2% and 7.2% increase in home and acute rehabilitation center disposition, respectively. In power analysis for the pTHA cohort, discharge to home and skilled nursing facilities were sufficiently powered. Our rTHA cohort was only adequately powered for the acute rehab disposition. This observed trend in discharge disposition during the pandemic likely corresponds with a conscious avoidance of discharging patients to skilled nursing facilities, as many of these facilities had higher COVID-19 case volumes [33].

Limitations

There are limitations to be considered in the present study. This study was retrospective, and therefore, selection bias and the possibility of errors in recorded data cannot be controlled for. Our analysis was underpowered with the exception of pTHA operative time, home and skilled nursing disposition, and rTHA acute rehab disposition. We were unable to adjust for this issue due to the temporal brevity of the COVID-19 pandemic. In addition, factors such as implant design, surgical approach, and the use of robotics and navigation may have also influenced the examined outcomes, but these variables were not recorded in this present study. Moreover, previous studies have found shorter LOS and lower discharge to skilled nursing facility rates during more recent years [34,35], and we were unable to differentiate between the effect of these trends and mask use alone. Finally, our institution employed multiple interventions simultaneously during the pandemic and we were also unable to distinguish between the effect of these changes and masks alone.

Conclusion

The COVID-19 pandemic led to the implementation of increased hygiene protocols, mask use, and social distancing throughout the hospital setting. Our study did not show a correlation between the implementation of pandemic protocols and a change in SSI. We did demonstrate longer operative times and decreased discharge to skilled nursing facilities in both pTHA and rTHA during the pandemic, although these results are likely due to the pandemic itself and not the implementation of hygiene protocols.

References

[1] Fauci AS, Lane HC, Redfield RR. COVID-19 — navigating the uncharted. N Engl J Med 2020;382:1268–9. https://doi.org/10.1056/NEJMep2002387.

[2] Gates B. Responding to COVID-19 — a once-in-a-century pandemic? N Engl J Med 2020;382:1677–9. https://doi.org/10.1056/NEJPeb2003762.

[3] Barnes CL, Zhang X, Stronach BM, Haas DA. The initial impact of COVID-19 on total hip and knee arthroplasty. J Arthroplasty 2021;36:S56–61. https://doi.org/10.1016/j.arth.2021.01.010.

[4] Bedard NA, Elkins JM, Brown TS. Effect of COVID-19 on hip and knee arthroplasty in 2020. J Arthroplasty 2020;35:545–8. https://doi.org/10.1016/j.arth.2020.04.060.

[5] Brown TS, Bedard NA, Rojas EO, Anthony CA, Schwarzkopf R, Barnes CL, et al. The effect of the COVID-19 pandemic on elective surgery in the New York metropolitan area. J Bone Joint Surg Am 2020;102:942–5. https://doi.org/10.2106/JBJS.2000510.

[6] CMS releases recommendations on adult elective surgeries, non-essential medical, surgical, and dental procedures during COVID-19 response. Centers for Medicare & Medicaid Services. 2020.

[7] Asadi S, Cappa CD, Barreda S, Westler AS, Bouvier NM, Ristenpart WD. Efficacy of masks and face coverings in controlling outward aerosol particle emission from respiratory activities. Sci Rep 2020;10:15665. https://doi.org/10.1038/s41598-020-72798-x.

[8] Leung NHL, Chu DKW, Shiu EYC, Chan K-H, McDevitt JJ, Hau BPJ, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med 2020;26:676–80. https://doi.org/10.1038/s41591-020-0843-2.

[9] Gillings DK, Aki EA, Duda S, Solo K, Yacoub S, Schünemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020:395:1973–87. https://doi.org/10.1016/S0140-6736(20)31829-5.

[10] Ma Q, Shan H, Zhang H, Li G, Yang R, Chen J. Potential utilities of mask-wearing and instant hand hygiene for fighting SARS-CoV-2. J Med Virol 2020;92:1567–71. https://doi.org/10.1002/jmv.25805.

[11] Bahli ZM. Does evidence based medicine support the effectiveness of surgical facemasks in preventing postoperative wound infections in elective surgery? J Ayub Med Coll Abbottabad 2009;21:166–70.

[12] Da Zhu C, Sivathondan P, Handa A. Unmasking the surgeons: the evidence base behind the use of facemasks in surgery. J R Soc Med 2015;108:223–8. https://doi.org/10.1177/0141076815583167.

[13] Fraser JA, Briggs KB, Svetaonoff WJ, Rentea RM, Aguayo P, Jang D, et al. Beyond the mask: extended use of surgical masks is not associated with increased risk of surgical site infection. Pediatr Surg Int 2022:38:325–30. https://doi.org/10.1007/s00382-021-05032-8.

[14] Marson BA, Craxford S, Valdes AM, Olivere BJ. Are facemasks a priority for all staff in theatre to prevent surgical site infections during shortages of supply? A systematic review and meta-analysis. Surgery 2021:181:132–9. https://doi.org/10.1016/j.surg.2020.08.014.

[15] Romney MG. Surgical face masks in the operating theatre: re-examining the evidence. J Hosp Infect 2001;47:251–6. https://doi.org/10.1053/jhin.2000.0912.

[16] Tunveall TG. Postoperative wound infections and surgical face masks: a controlled study. World J Surg 1991:15:383–7. https://doi.org/10.1007/BF01658736.

[17] Vincent M, Edwards P. Disposable surgical face masks for preventing surgical wound infection in clean surgery. Cochrane Database Syst Rev 2016:4:CD002929. https://doi.org/10.1002/14651858.CD002929.pub5.

[18] Webster J, Croger S, Lister C, Doig M, Terry MJ, Jones I. Use of face masks by non-scrubbed operating room staff: a randomized controlled trial. ANZ J Surg 2010;80:169–73. https://doi.org/10.1111/j.1445-2197.2009.05200.x.

[19] Bozic KJ. The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J Bone Joint Surg Am 2005;87:1746–51. https://doi.org/10.2106/JBJS.D.02937.

[20] Kurtz SM, Ong KL, Lau E, Bozic KJ. Impact of the economic downturn on total joint replacement demand in the United States. J Bone Joint Surg Am 2014;96:624–30. https://doi.org/10.2106/JBJS.M00285.

[21] Dobson PF, Reed MR. Prevention of infection in primary THA and TKA. EFORT Open Rev 2020:5:604–13. https://doi.org/10.1080/2058-5241.2020.1780004.

[22] Parviz J, Shohat N, Gehrke T. Prevention of periprosthetic joint infection. Bone Joint J 2017:99-B(Suppl 3):1–10. https://doi.org/10.1302/0308-5258.99B3.BJ20161212.R.

[23] Urquhart DM, Hanna FS, Brennan SL, Wuuka AE, Leder K, Cameron PA, et al. Incidence and risk factors for deep surgical site infection after primary total hip arthroplasty: a systematic review. J Arthroplasty 2010;25:1216–222.e3. https://doi.org/10.1016/j.arth.2009.08.011.

[24] Berger SA, Kramer M, Nagar H, Finkelstein A, Frimmerman A, Miller H. Effect of surgical mask position on bacterial contamination of the operative field. J Hosp Infect 1993;23:51–4. https://doi.org/10.1016/0195-6701(93)90130-8.

[25] Ha’eri GB, Wiley AM. The efficacy of standard surgical face masks: an investigation using ‘tracer particles’. Clin Orthop Relat Res 1980;148:160–2.

[26] McCabe HA, Talboys CA, Yentis SM, Azadjan BS. Surgical face masks and downward dispersal of bacteria. Anaesthesia 1998;53:624–6. https://doi.org/10.1046/j.1365-2044.1998.345-fl0528.x.

[27] Cook CR, Gaston T, Woods B, Orozco F, Ong A, Radcliff K. Operative field debris often rises to the level of the surgeon’s face shield during spine surgery: are
orthopedic space suits a reasonable solution? Int J Spine Surg 2019;13:501–6. https://doi.org/10.14444/6067.

[29] Davies C, Khan M, Ghauri A, Ranaboldo C. Blood and body fluid splashes during surgery—the need for eye protection and masks. Ann R Coll Surg Engl 2007;89:770–2. https://doi.org/10.1308/003588407X209301.

[30] Wines MP, Lamb A, Argyropoulos AN, Caviezel A, Gannicliffe C, Tolley D. Blood splash injury: an underestimated risk in endourology. J Endourol 2008;22:1183–8. https://doi.org/10.1089/end.2008.0052.

[31] Kamalarajah S, Ling R, Silvestri G, Sharma NK, Cole MD, Cran C, et al. Presumed infectious endophthalmitis following cataract surgery in the UK: a case-control study of risk factors. Eye 2007;21:580–6. https://doi.org/10.1038/sj.eye.6702368.

[32] Parkinson B, Armit D, Mcween P, Lorimer M, Harris IA. Is climate associated with revision for prosthetic joint infection after primary TKA? Clin Orthop Relat Res 2018;476:1200–4. https://doi.org/10.1007/s11999.000000000000.0144.

[33] Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N Engl J Med 2020;382:2081–90. https://doi.org/10.1056/NEJMoa2008457.

[34] Sarpong NO, Boddapati V, Herndon CL, Shah RP, Cooper HJ, Geller JA. Trends in length of stay and 30-day complications after total knee arthroplasty: an analysis from 2006 to 2016. J Arthroplasty 2019;34:1575–80. https://doi.org/10.1016/j.arth.2019.04.027.

[35] Williams SN, Wolford ML, Bercovitz A. Hospitalization for total knee replacement among inpatients aged 45 and over: United States, 2000–2010. NCHS Data Brief 2015;210:1–8.