On the Non-Real Roots of the Riemann Zeta Function $\zeta(s)$

Mustapha Azkour*

Ministry of National Education, Vocational Training, Higher Education and Scientific Research, Kingdom of Morocco

Abstract

This paper aims to solve a very difficult problem closely related to analytic number theory and specifically to prime numbers. This problem is the Riemann hypothesis according to which the prime numbers follow a very regular distribution among natural numbers. The statement of the Riemann hypothesis is: “All the non-real roots of the complex function $\zeta(s)$ have real part equal exactly to 1/2”. In this paper, we give an original proof to this hypothesis by contradiction. This proof is exceptional and more special because it is based on the relevant property that when $\eta(s)=0$ where $\eta(s)$ is the Dirichlet eta function, the sum of the first m-1 terms of $\eta(s)$ converges to -0.5 multiplied by the mth term with $m \to \infty$ and it is also based on the condition that when we want to replace the complex variable z by z' with $z' \neq z$ in the expression of $\eta(z)$ which is defined on the half-plane $\Re(z)>0$ by $\eta(z)=\sum_{n=1}^{\infty}(-1)^{n+1}n^{-z}$, we have to keep the same infinite number of η-terms beginning from $n=1$ to $n=\infty$ in order to converge exactly to the same function. After the exposure of the proof of the Riemann hypothesis, we give an original method combining two already existing for calculating the approximate value of the integral of any continuous real function f over a closed interval $I=\{a, b\} \subseteq \mathbb{R}$ of course when the primitive of f is not obvious by algebraic computation. This new numerical method is called “The Method of trapezes and half-ellipses THE” and its general approximation formula is defined by the following expression: $\int f(x)dx = \text{THE}_n = \int_{a}^{b} f(x)dx = \sum_{n} \left(1 - \frac{\pi}{4} R_{\eta} + \frac{\pi}{4} M_{\eta} \right)$ where n is the number of subintervals obtained by regular subdivision of the interval $[a, b]$ and $y \in [0, 4\pi]$ and T_{η} is the approximate value of $\int f(x)dx$ using the method of trapezes and M_{η} is the approximate value of $\int f(x)dx$ using the method of rectangles with midpoint and comparing the margins of error, we note that The Method of trapezes and half-ellipses THE is more accurate than the following three known methods: The method of rectangles on the left R_{η}^L, The method of rectangles on the right R_{η}^R, and The method of trapezes T_{η}.

Keywords: Riemann’s hypothesis; Riemann Zeta function; Non-real roots of Riemann Zeta function; Dirichlet Eta function; Analytic number theory; Prime numbers; Numerical integration; The method of trapezes and half-ellipses THE

Introduction

The Riemann zeta function $\zeta(s)$ plays a very important role in analytic number theory; its importance comes essentially from the very close connection it has with prime numbers; this connection that the great German mathematician Georg Friedrich Bernhard Riemann (1826-1866) had shown in his famous manuscript published in 1859 (it is the same date when Charles Darwin (1809-1882) published his work "On the Origin of Species") when he gave an explicit formula linking the prime numbers with the roots of zeta function $\zeta(s)$, namely the solutions $s \in \mathbb{C}$ of the equation $\zeta(s)=0$, this explicit formula given by Riemann is $\pi(x) \sim \frac{x}{\log x} - \sum_{\rho} \frac{x^{\rho}}{\rho}$, where $\pi(x)$ is the function counting the prime numbers and $\log x$ is the Logarithmic integral defined by $\text{Li}(x) = \int_{2}^{x} \frac{1}{\log t} dt$ and ρ represents all the non-real roots of $\zeta(s)$ and in his manuscript, Riemann claimed that it is very likely that all these non-real roots have real part equal exactly to 1/2.

The connection between the prime numbers and zeta function $\zeta(s)$ which is defined on the half-plane $\Re(s)>1$ by $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^s}$ was established before Riemann by the celebrated Euler (1707-1783) product: $\sum_{n=1}^{\infty} \frac{1}{n^s} = \Pi(1 - \frac{r}{s})^{-1}$ where the series $\sum_{n=1}^{\infty} \frac{1}{n^s}$ is absolutely convergent for $\Re(s)>1$ and the product $\Pi(1 - \frac{r}{s})^{-1}$ is being over the prime numbers $p \in P=\{2, 3, 5, 7, 11, \ldots\}$. So, in simple terms, the Riemann hypothesis says: “The non-real roots of $\zeta(s)$ have all real part equal exactly to 1/2.” This has been checked for the first 10,000,000,000,000 roots by experts and no counter-examples have been found. In practical terms, the Riemann hypothesis seems true, but theoretically, no proof to this moment has confirmed it. The validity of the Riemann hypothesis is equivalent to saying that the deviation of the number of the prime numbers from the mean $\text{Li}(x)$ is $\pi(x) = \text{Li}(x) + O(\sqrt{x}\log x)$. In this modest paper, we prove the absolute validity of the great Riemann hypothesis giving a very simple and rigorous proof which does not appeal to any complex theory and is very easy to understand.

Some Proven Results about the Non-Real Roots of $\zeta(s)$

- The non-real roots of the Riemann zeta function $\zeta(s)$ have all real part belonging to the critical strip $0, 1$ and they are symmetric with respect to $\Re(s)=1/2$.
- In 1914, the British mathematician Godfrey Harold Hardy (1877-1947) proved that there are infinitely many roots of $\zeta(s)$ on the critical line $\Re(s)=1/2$.
- The number of roots $s=\sigma + it$ of $\zeta(s)$ in the critical strip $0<\sigma<1$ is asymptotically equal to $N(T) = \frac{T}{2\pi}\log(T/2\pi) - (T/2\pi) + O(\log T)$.

On the other hand, Hardy and Littlewood (1885-1977) had proved in the 1920s a region without root of form $\Re(s)=1-k(\log(\log T))^{-1}$ for any $k>0$. The non-real roots of the Riemann zeta function $\zeta(s)$ have all real part equal exactly to 1/2. This has been checked for the first 10,000,000,000,000 roots by experts and no counter-examples have been found.

*Corresponding author: Mustapha Azkour, Ministry of National Education, Vocational Training, Higher Education and Scientific Research, Kingdom of Morocco, Tel: +21671766462; E-mail: azkour@yahoo.com

Received May 14, 2018; Accepted June 22, 2018; Published June 30, 2018

Citation: Azkour M (2018) On the Non-Real Roots of the Riemann Zeta Function $\zeta(s)$. J Phys Math 9: 279. doi: 10.4172/2090-0902.1000279

Copyright: © 2018 Azkour M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The Riemann hypothesis implies that \(\zeta(s) \) and \(\zeta''(s) \) do not vanish in the strip \(0 < \Re(s) < 1/2 \). There are still more proven results about the non-real roots of \(\{s\} \) apart from these results just mentioned, but all these results are not enough to say that the Riemann hypothesis is true. Fortunately, after several attempts we were able to solve this great problem and we believe that if there are many proofs to the Riemann hypothesis, our proof would probably be the simplest and the most beautiful.

On the Non-Real Roots of \(\zeta(s) \)

Key-question

There is an important question we have to ask ourselves, we wonder if any of the mathematicians who tried to prove the Riemann hypothesis and who failed if asked himself this question, it is the following key-question: "If \(\zeta(s) = 0 \) and \(\eta(1-s) = 0 \), \(\Re(s) < 1 \) and \(\eta(s) \neq 1/2 \), then the limit \(\lim_{n\to\infty} \zeta(1-\zeta(n)) \) has to be finite or infinite? It could be equal to 0? why not?". It is from this intelligent and relevant question and based on the explicit expression of \(\eta(s) \) which is described as an infinite complex series for \(\Re(s) > 0 \) and based on the special form of its general term \((-1)^n n^{-s}\) and referring to universally known formulas and proven theorems that we started our reflection and our reasoning and carefully following the logical and rational implications we were able to find the right answer to the previous question and then to prove the absolute validity of the Riemann hypothesis and it should be noted here that the key result of the concise proof below lies in the expression of \(\eta(s) \).

The proof of the Riemann hypothesis

We know that the Riemann zeta function \(\zeta(s) \) is the analytic function of the complex variable \(s \), defined on the half-plane \(\Re(s) > 1 \) by \(\zeta(s) = \sum_{n=1}^{\infty} n^{-s} \) where the series \(\sum_{n=1}^{\infty} n^{-s} \) is absolutely convergent for \(\Re(s) > 1 \) and the product \(\prod (1-p^{-s})^{-1} \) is being over the prime numbers \(p \in \mathbb{P} = \{2, 3, 5, 7, 11, \ldots\} \) and the function \(\zeta(s) \) is defined in the complex plane \(\mathbb{C} \) by analytic continuation. As shown by Riemann, \(\zeta(s) \) can be continued analytically to \(\mathbb{C} \) as a meromorphic function and has a first order pole at \(s = 1 \) with residue 1. On the other hand, we know that the Riemann zeta function \(\zeta(s) \) is defined for any complex number \(s \) different from 1 and with real part strictly greater than 0 by \(\zeta(s) = \eta(s)/(1-21-s) \) [2] where \(\eta(s) \) is the Dirichlet etta function which is defined on the half-plane \(\Re(s) < 0 \) by \(\eta(s) = \sum_{n=1}^{\infty} (-1)^{n-1}/n^s \) [3]. Noticing that \(1/(1-21-s) \) \(x \rightarrow \infty \) (denote: we remark \(0 = [0, i0, 0+i0] \) and \(oo = oo \) where \(i \in \mathbb{C}, i^2 = -1 \) at least for \(\Re(s) > 0 \), then we have to note the following result: if \(\zeta(s) = 0 \), then \(\eta(s) = 0 \), we thus have the Riemann hypothesis is equivalent to the following statement: "The non-real roots of the Dirichlet etta function \(\eta(s) \) belonging to the critical strip \(0 < \Re(s) < 1 \) have all real part equal exactly to 1/2".

We also know that there is an important relationship between \(\zeta(s) \) and \(\zeta(1-s) \). This relationship is defined for any \(s \) in the complex plane \(\mathbb{C} \) by the following Riemann function equation: \(\xi(s) = \xi(1-s) \) [4] where \(\xi(s) = \eta(1/2-s) \Gamma(s/2) \zeta(s) \), \(\Gamma(s) \) being the Euler gamma function which is defined for any complex number \(s \) such that \(\Re(s) > 0 \) by \(\Gamma(s) = \int_{0}^{\infty} e^{-x}x^{s-1}dx \) [5]. So, the two equations [2] and [4] imply: \(\eta(1-s) \eta(s) = \Lambda(s)\Lambda(1-s) \) where \(\Lambda(s) = e^{\pi i s}/\Gamma(s/2) \). We also know that in 1896, the two mathematicians Jacques Salomon Hadamard (1865-1963) and Charles-Jean de LaVallee Poussin (1866-1962) independently proved that no root of \(\zeta(s) \) could be on the line \(\Re(s) = 1 \), and that all the non-real roots have to be in the interior of the critical strip \(0 < \Re(s) < 1 \), and it is known that this demonstration was a key result in the first complete proof of the prime number theorem \(\{PNT: \lim_{n\to\infty}(\pi(n) - n/\ln(n)) = 0\} \). Now, let’s assume that there is a complex number \(s \) such that \(0 < \Re(s) < 1 \) verifying \(\lim_{n\to\infty}(\Lambda(n) - 1/n) = 0 \). According to this assumption, we have to have: \(\lim_{n\to\infty}(\Lambda(n) - 1/n) = 0 \), so, we have if \(\Re(s) \neq 0, 1 \) and knowing that \(\Gamma(1-s) \) does not vanish for any \(s \) in \(\mathbb{C} \) and has an infinite simple poles with residue \((-1)^{k}/k! \) at \(s = k \) where \(k = 0, 1, 2, 3, 4, 5, \ldots \) etc. then \(\lim_{n\to\infty}(\Lambda(n) - 1/n) = 0 \) \(\Rightarrow \Re(s) = 0 \). Therefore, we have to mention the following property: if \(\Re(s) = 0 \) and \(\Re(s) < 1 \), then \(\eta(1-s) = 0 \).
In general \(\lim_{x \to 0} f(x) = \lim_{y \to 0} g(y) \),

If \(\eta_{n}(z) = \sum (-1)^{m} n^{-m} \) then \(|\eta(z) - \eta_{n}(z)| \leq \lim_{n \to \infty} |\eta(z) - \eta_{n}(z)| \Rightarrow m = m \),

applying this condition we keep the same infinite number of \(\eta \)-terms in order to converge exactly to the same function in numerator and denominator,

To prove the Riemann hypothesis, it seemed to us that it is more convincing to prove the conjecture:

If \(\eta(s)=0 \) and \(0 < \Re(s) < 1 \), then: \(\lim_{s \to 0} \eta(1-z) = 0 \), or \(\Re(s) = \frac{1}{2} \).

And in the conjecture above, we denote: \(0 = (0, 0, 0, 0) \) and \(\mathbb{C} = \{ \infty, 0, 0, 0, 0 \} \) where \(i \in \mathbb{C} \).

The proof of the conjecture [C] [algebraic proof]: We have previously shown that for every complex number \(s \) such that \(0 < \Re(s) < 1 \), we have \(\lim_{s \to 0} \eta(1-s) = 0 \), and we have deduced according to this result that if we have \(\eta(s) = 0 \) and \(0 < \Re(s) < 1 \), then we also must have \(\eta(1-s) = 0 \), and we know that \(\eta \)-function is defined on the half-plane \(\eta > 0 \) by \(\eta(s) = \sum \alpha_{s}(z) \) where \(\alpha_{s}(z) = \sum (-1)^{n} n^{s} \).

To prove the conjecture [C], we have to prove the following proposition:

If \(\eta(s) = 0 \), and \(\eta(1-s) = 0 \) and \(0 < \Re(s) < 1 \), then

\[
\lim_{s \to 0} \eta(1-z) = \lim_{s \to 0} \eta(z) = \lim_{s \to 0} \alpha_{s}(z)
\]

So, let's prove the proposition [P].

Proof: We have:

\[
\eta(z) = \sum_{n=0}^{\infty} \alpha_{s}(z) + \sum_{n=0}^{\infty} \alpha_{s}(z), m \geq 2
\]

We denote:

\[
\eta_{n}(z) = \sum_{n=0}^{m} \alpha_{s}(z) \text{ and } \eta_{m}(z) = \sum \alpha_{s}(z)
\]

So, we have

\[
\lim_{s \to 0} \eta(1-z) = \lim_{s \to 0} \eta_{n}(z) + \eta_{m}(z) = \eta_{m}(z)
\]

and for any \(s \) in the complex plane \(\mathbb{C} \) with \(\Re(s) > 0 \), we have:

\[
\lim_{s \to 0} \eta_{n}(z) = 0 \quad \text{that is to say if then}
\]

\[
\lim_{s \to 0} \eta_{n}(z) = 0 \quad \text{we have:}
\]

\[
\lim_{s \to 0} q_{n}(z) = 0 \quad \text{where } q_{n}(z) = \frac{\eta_{n}(z)}{\eta_{n}(z)}
\]

but if \(\lim_{s \to 0} \eta_{n}(z) = 0 \), it will still remain \(\lim_{s \to 0} q_{n}(z) = 0 \). In the following, we are going to prove \(\lim_{s \to 0} \eta_{n}(z) = 0 \) then \(\lim_{s \to 0} q_{n}(z) = 0 \),

so in general we can simply write:

\[
\lim_{s \to 0} \eta(1-z) = \lim_{s \to 0} \eta(z) = \lim_{s \to 0} \alpha_{s}(z)
\]

If \(m_{*} = m \) (\(m_{*} \) is a necessary condition in the following calculation of limits), then we have:

\[
\eta(s) = \lim_{s \to 0} (\eta_{s}(z) + \eta_{m}(z)) = \lim_{s \to 0} \eta_{s}(z) + \lim_{s \to 0} \eta_{m}(z)
\]

And \(\forall s \geq 1 \) and \(\forall s > 0 \), we have:

\[
\alpha_{s}(z) = (1)^{s} \left(\frac{n}{n+m} \right)^{s} \alpha_{s}(z)
\]

So, for \(m = m_{*} \), we have

\[
\lim_{\eta \to 0} \sum_{j=1}^{\infty} \alpha_{s}(z) = \lim_{\eta \to 0} \sum_{j=1}^{\infty} \alpha_{s}(z) + \sum_{j=1}^{\infty} \alpha_{s}(z)
\]

\[
= \lim_{\eta \to 0} \sum_{j=1}^{\infty} \left(\alpha_{s}(z) + \sum_{j=1}^{\infty} (-1)^{j} \left(\frac{m}{m+j} \right)^{j} \right)
\]

It's trivial that if \(\lim_{\eta \to 0} f(x) \) and \(\lim_{\eta \to 0} g(x) \), then we can write:

\[
\lim_{\eta \to 0} f(x) g(x) = \lim_{\eta \to 0} f(x) \lim_{\eta \to 0} g(x)
\]

We have \(\lim_{\eta \to 0} \alpha_{s}(z) \), exists for \(\Re(s) > 0 \) and is equal to 0, but we have to prove that \(L \) also exists,

where:

\[
\lim_{\eta \to 0} \left[1 + \sum_{j=1}^{\infty} (-1)^{j} \left(\frac{m}{m+j} \right)^{j} \right]
\]

We have

\[
L = \lim_{\eta \to 0} \left[1 + \sum_{j=1}^{\infty} (-1)^{j} \left(\frac{m}{m+j} \right)^{j} \right] = \lim_{\eta \to 0} \left[1 + \sum_{j=1}^{\infty} \left(\left(\frac{m}{m+j} \right)^{j} \right) \right]
\]

Denoting \(\left(\frac{m}{m+j} \right)^{j} \) by \(x_{j}(z, m) \), we note that \(\forall j, m \geq 1 \)

\[
| x_{j}(z, m) | \leq 1
\]

That means \(\forall j, m \geq 1 \) verifying \(| x_{j}(z, m) | \leq 1 \) \(\iff x_{j}(z, m) \) is bounded and \(m \to \infty \) the \(x_{j}(z, m) \) tend to 0.

That is to say \(\forall j, j \geq 1 \) with \(j \neq j' \) when \(z, m \to s_{\infty} \),

\[
x_{j}(z, m) = x_{j}(z, m) = 1 + i 0
\]

And we know that \(\forall |x| < 1, \lim_{\eta \to 0} (-1)^{x} = \left(\frac{1}{1+i} \right)^{x} \)

We thus get,

\[
L = \lim_{\eta \to 0} \left[1 + \sum_{j=1}^{\infty} (-1)^{j} x_{j}(z, m) \right] = 1 + \sum_{j=1}^{\infty} (-1)^{j} x_{j}(z, m)
\]

\[
= 1 + \lim_{\eta \to 0} \frac{1}{1 + x_{j}(z, m)} - 1 = 1 + \frac{1}{1+1} - 1 = 0.5
\]

So, for \(m_{*} = m \) (we must not forget that \(m_{*} = m \) is a necessary condition in calculation of limits):

\[
L = \lim_{\eta \to 0} \alpha_{s}(z) = 0.5 \lim_{\eta \to 0} \sum_{j=1}^{\infty} (-1)^{j} x_{j}(z, m)
\]
That is to say if \(z, m \to s, \infty \) with \(\Re(s) > 0 \), then:
\[
\eta(z) = \eta_n(z) + 0.5\alpha_n(z)
\]
\((*)\)

So, if \(\eta(z) \to 0 \) when \(z, m \to s, \infty \), then we have:
\[
\eta_n(z) \to -0.5\alpha_n(z)
\]

We have to note that if \(\lim_{z \to s} \eta_n(1-z) = 0 \) and \(\lim_{z \to s} \eta_n(z) = 0 \) then,
\[
\lim_{z \to s} \frac{\eta(1-z)}{\eta(z)} = \lim_{z \to s} \frac{\eta_n(1-z)}{\eta_n(z)} = \frac{0}{0} = \frac{0}{0}
\]

So, according to \((*)\), it follows that if \(\eta(s) = 0 \) and \(\eta(l-s) = 0 \), then we must have:
\[
\lim_{z \to s} \frac{\eta(1-z)}{\eta(z)} = \lim_{z \to s} \frac{\eta_n(1-z)}{\eta_n(z)} = 0, z
\]

Thus it has been shown that:
\[
\eta(s) = 0 \quad \text{and} \quad 0 < \Re(s) < 1 \quad \text{implies the following result:}
\]
So, the proposition \([P]\) implies the following result:
\[
\eta(1-z) = \eta_n(1-z) = \alpha_n(z)
\]

In this verification we have taken:
\[
S1 = 1/2 + i14.13472514169931316355316469514012\ldots
\]
\[
S2 = 1/2 + i21.02203963887997875000696870947704\ldots
\]
\[
S3 = 1/2 + i25.01085758011307081110088141463319\ldots
\]
\[
S4 = 1/2 + i30.42442761865581748815209498218248\ldots
\]
\[
S5 = 1/2 + i32.93506158753386271624145502288709\ldots
\]

and using the first 5 roots of the Riemann zeta function \(\zeta(s) \) whose real parts are equal to 1/2 and the imaginary parts are positive and we should note that this numerical verification was done using Microsoft Office Excel 2007.

The first 5 roots of the Riemann zeta function \(\zeta(s) \) are:
\[
\left\{ S1 = 1/2 + i14.13472514169931316355316469514012\ldots, S2 = 1/2 + i21.02203963887997875000696870947704\ldots, S3 = 1/2 + i25.01085758011307081110088141463319\ldots, S4 = 1/2 + i30.42442761865581748815209498218248\ldots, S5 = 1/2 + i32.93506158753386271624145502288709\ldots \right\}
\]

Based on the following condition:
\[
\eta_n(s) = \sum_{n=1}^{\infty} \alpha_n(s) \quad \text{with} \quad \alpha_n(s) = \frac{1}{n^s} \quad \text{for} \quad s = \sigma + it
\]

It has been shown that if \(\eta(s) = 0 \) and \(\eta(l-s) = 0 \) when \(s, m \to s, \infty \), then we get:
\[
\lim_{s \to \infty} \eta(z) = \lim_{s \to \infty} \eta_n(z) = 0
\]

By this condition, we want to say that if someone wants to replace \(z \) by \(z' \neq z \) in the expression of \(\eta_n \), he has to keep the same number of \(\eta \)-terms beginning from \(n = 1 \) to \(n = m = \infty \) to keep exactly the same function and to change only the complex variable \(z \) in the expression of \(\eta_n \) and this condition is valid in the general case.

In short, the most interesting result proved in this paper is the following theorem:

If \(\zeta(s) = 0 \) and \(\Re(s) < 0 \), then \(\Re(s) = 1/2 \) and \(\Im(s) = \pi/\log y \) where \(s \in \mathbb{C} \), and \(y \in]0, 1[\cup]1, +\infty[\).

Numerical verification: We have made the numerical verification for \((*)\) and \((***)\) using the first 5 roots of the Riemann zeta function \(\zeta(s) \) whose real parts are equal to 1/2 and the imaginary parts are positive and we should note that this numerical verification was done using Microsoft Office Excel 2007.

The first 5 roots of the Riemann zeta function \(\zeta(s) \) are:
\[
\left\{ S1 = 1/2 + i14.13472514169931316355316469514012\ldots, S2 = 1/2 + i21.02203963887997875000696870947704\ldots, S3 = 1/2 + i25.01085758011307081110088141463319\ldots, S4 = 1/2 + i30.42442761865581748815209498218248\ldots, S5 = 1/2 + i32.93506158753386271624145502288709\ldots \right\}
\]

For example, for \(t \) being the imaginary part of a non-real root of \(\zeta(s) \) and belonging to the critical line \(\Re(s) = 1/2 \) and \(k \in \mathbb{Z}^* \), we have:
\[
\lim_{s \to \infty} \frac{\alpha_n(z)}{\alpha_n(z)} = \lim_{s \to \infty} \frac{\alpha_n(z)}{\alpha_n(z)} = \frac{0}{0} = \frac{0}{0}
\]

If we look for more precision and rigor, we have to take into consideration in our calculation of limits the following obvious condition (note: this condition is respected in the previous calculation of limits) [6]:
\[
\eta_n(z) = \sum_{n=1}^{\infty} (-1)^{n-1}a_n \quad \text{and} \quad \eta(z) = \sum_{n=1}^{\infty} \alpha_n(z)
\]

It has been shown that if \(\eta(s) = 0 \) and \(\eta(l-s) = 0 \) when \(s, m \to s, \infty \), then we get:
and referring to this result, it has been deduced that:

\[\lim_{n \to \infty} \frac{\eta(1-z)}{\eta(z)} = \lim_{n \to \infty} \frac{\eta_n(1-z)}{\eta_n(z)} = \lim_{n \to \infty} \frac{-0.5\alpha_n(1-z)}{\alpha_n(z)} = \lim_{n \to \infty} \frac{\alpha_n(1-z)}{\alpha_n(z)} \]

and referring to this result, it has been deduced that:

\[\lim_{m \to \infty} \frac{1}{m} \sum_{n=0}^{m} \frac{\eta(1-z)}{\eta(z)} = \lim_{m \to \infty} \frac{1}{m} \sum_{n=0}^{m} \frac{\eta_n(1-z)}{\eta_n(z)} = \lim_{m \to \infty} \frac{1}{m} \sum_{n=0}^{m} \frac{-0.5\alpha_n(1-z)}{\alpha_n(z)} = \lim_{m \to \infty} \frac{1}{m} \sum_{n=0}^{m} \frac{\alpha_n(1-z)}{\alpha_n(z)} \]

Figure 1: The paces of the two quotients \(1/\eta_m(s) \sum \eta(s) \eta_m(s) \) for \(m \) ranging from 10 to 1000000.

Figure 2: Chart explaining the existence and purpose of method of Trapezoids and Half-ellipses T.H.E.

The Method of Trapezoids and Half-Ellipses T.H.E

Purpose

This method is original and its main purpose is the approximate calculation of the integral of any continuous real function \(f \) on a closed interval \([a, b]\) with \(a < b \) replacing each arc of \(f \)-curve \((M_jM_{j+1})\) by an elliptical half-arc (H E) and we remind that this method can be used
m	$\Re (\eta_m(s_1))$	$\Im (\eta_m(s_1))$	$\frac{\Re (\eta_m(s_1))}{\Im (\eta_m(s_1))}$
10	0.192867143	-0.134784134	-1.43,09,33,577
50	0.01263537	-0.044150483	-0.286188715
100	-0.029184638	0.063666475	-0.458398835
150	-0.003723617	0.011241483	-0.331239537
200	0.030322087	-0.06178251	-0.490787555
250	-0.027422519	0.055639584	-0.492860063
300	0.013530651	-0.028224466	-0.479394402
350	0.01216527	-0.023342749	-0.521158498
400	-0.024727443	0.049543065	-0.499110077
450	-0.001542723	0.001944584	-0.690493699
500	0.022164627	-0.044384495	-0.499377699
550	0.007500051	-0.014478126	-0.518026366
600	-0.015631457	0.031554882	-0.495373648
650	-0.017808192	0.035419543	-0.502778706
700	-0.001687111	0.002992738	-0.563734948
750	0.0141525	-0.028510481	-0.496396395
800	0.017224078	-0.034363969	-0.501224931
850	0.007995398	-0.015732746	-0.505821048
900	-0.005300603	0.010845709	-0.488728123
950	-0.014373582	0.028849992	-0.498217885
1000	-0.015351898	0.030640875	-0.501026749
2000	0.009107231	-0.018166118	-0.501330609
3000	0.009108325	-0.018212105	-0.50012478
4000	-0.004315441	0.008606909	-0.50138266
5000	0.003783442	-0.007549603	-0.501144497
6000	-0.005834998	0.01166299	-0.500300352
7000	0.005184651	-0.010374924	-0.499729058
8000	0.001131601	-0.002253545	-0.502162233
9000	-0.005238931	0.010478471	-0.49997094
10000	-0.000950073	0.00189316	-0.501845638
20000	-0.0006394	0.001281242	-0.499047018
30000	-0.001044122	-0.002086959	-0.500307864
40000	0.001316711	-0.002634157	-0.499660487
50000	-0.001201397	0.002403316	-0.4998914
60000	5.52E-01	-1.5162E-05	-0.47912419
70000	0.001548127	-0.003096024	-0.500037144
80000	-0.001414379	0.0028828936	-0.499968539
90000	-0.00087016	0.001740092	-0.500065514
100000	0.001276813	-0.002537352	-0.49997533
200000	-0.001080988	0.002161994	-0.499995837
300000	-0.000629301	0.001258633	-0.499987685
400000	0.00078539	-0.001570776	-0.500001273
500000	-0.000701411	0.001402818	-0.500001426
600000	0.000584699	-0.001169403	-0.49997862
700000	-0.000101445	0.000202903	-0.499967965
800000	-0.000493971	0.000878937	-0.500002531
900000	0.000289333	-0.000578773	-0.499993953
1000000	0.000438865	-0.000877726	-0.500002279

Table 1: Calculation of numerical verification 1.1.
m	$\Re(\eta_m(s_1))$	$\Im(\eta_m(s_1))$	$\Im(\nu_m(s_1))$	$\Re(\nu_m(s_1))$
10	0.09,94,02,356	-0.28,60,65,093	-0.34,74,81,599	
50	-0.07,67,349	0.13,43,53,023	-0.52,60,28,283	
100	0.04,09,08,291	-0.07,71,14,071	-0.53,04,90,616	
150	0.04,07,68,907	-0.080872098	-0.50,41,15,857	
200	-0.01,83,10,429	0.03,43,93,626	-0.53,23,78,558	
250	0.01,58,37,008	-0.030070566	-0.52,66,61,454	
300	-0.02,553,643	0.00,50,36,579	-0.50,70,19,348	
350	0.023824468	-0.04,80,85,954	-0.49,54,55,825	
400	0.00,38,11,944	-0.00,67,44,234	-0.56,52,15,264	
450	-0.02,35,47,985	0.04,71,00,327	-0.49,99,53,748	
500	-0.00,305,4444	0.00,54,78,744	-0.55,75,08,071	
550	0.01,99,69,559	-0.04,01,06,928	-0.49,79,07,967	
600	0.01,31,42,658	-0.02,25,90,282	-0.50,73,83,289	
650	-0.00,82,35,604	0.01,68,49,851	-0.48,87,64,203	
700	-0.01,88,30,511	0.03,76,77,778	-0.49,97,77,641	
750	-0.01,15,45,216	0.02,28,14,158	-0.05,06,05,488	
800	0.00,40,06,358	-0.00,83,13,703	-0.48,18,98,139	
850	0.01,51,78,428	-0.03,04,78,702	-0.49,80,01,129	
900	0.01,58,06,735	-0.03,15,19,545	-0.50,14,89,949	
950	0.00,75,30,681	-0.01,48,42,827	-0.50,73,61,637	
1000	-0.00,380,2202	0.00,78,19,003	-0.48,62,77,087	
2000	0.00,06,48,777	-0.01,30,38,104	-0.49,76,00,725	
3000	0.00,06,21,364	-0.00,12,85,525	-0.48,33,54,272	
4000	-0.00,66,24,574	0.01,32,63,526	-0.49,94,57,987	
5000	0.00,59,74,167	-0.01,19,58,407	-0.49,95,78,832	
6000	-0.00,276,0977	0.00,55,35,461	-0.49,87,97,957	
7000	-0.00,29,72,586	0.00,59,34,484	-0.50,09,005	
8000	0.00,54,74,619	-0.01,09,50,887	-0.49,99,24,709	
9000	0.00,05,77,008	-0.00,11,45,756	-0.50,36,04,607	
1000	-0.00,490,0935	0.00,9819162	-0.49,99,43,949	
2000	0.00,347,7281	-0.006954022	-0.500038826	
3000	0.00,269,1335	-0.00,53,83,116	-0.49,99,58,574	
4000	-0.00,21,25,171	0.00,42,48,849	-0.50,00,58,002	
5000	0.00,18,85,592	-0.00,37,71,481	-0.50,00,47,594	
6000	-0.00,20,41,243	0.00,40,82,467	-0.50,00,02,327	
7000	0.00,10,83,862	-0.00,21,68,029	-0.49,99,26,966	
8000	0.00,10,60,449	-0.00,21,20,641	-0.50,00,60,595	
9000	-0.00,14,21,483	0.00,2843095	-0.49,99,77,313	
10000	-0.00,93,261	0.00,18,65,034	-0.50,00,49,865	
20000	0.00,0285425	-0.00,05,70,773	-0.50,00,67,452	
30000	0.00,06,61,298	-0.00,13,22,565	-0.05,00,17,12	
40000	9.03502E-05	-0.00,01,80,728	-0.49,99,23,642	
50000	-8.95746E-05	0.00,01,79,169	-0.49,99,44,745	
60000	-0.00,02,73,486	0.00,05,46,957	-0.50,00,13,712	
70000	0.00,05,86,941	-0.00,17,788	-0.50,00,00,849	
80000	-0.00,02,61,711	0.00,05,23,431	-0.49,99,91,403	
90000	-0.000440494	0.000880864	-0.05,00,00,277	
100000	0.00,02,39,578	-0.00,47,594	-0.49,99,93,739	

Table 2: Calculation of numerical verification 1.2.
Table 3: Calculation of numerical verification 1.3.

m	\(\eta_m(s_1) \)	\(a_m(s_1) \)	\(\Re(\eta_m(s_1)) \)		
10	-0.298803655	0.090320283	-3.30826748		
50	0.06833117	-0.12002282	-0.569318113		
100	-0.039062783	0.08364493	-0.46876397		
150	0.000838921	-0.007372696	-0.113787548		
200	-0.006958822	0.01022426	-0.68018646		
250	-0.030995955	0.062370315	-0.49696466		
300	0.025512949	-0.049970481	-0.510560405		
350	-0.02218031	0.043391872	-0.51112782		
400	0.024164864	-0.047925056	-0.50422192		
450	-0.021729465	0.043839399	-0.49566065		
500	0.005463041	-0.011826955	-0.461914415		
550	0.016570237	-0.032600321	-0.50824474		
600	-0.01650938	0.033415728	-0.494060162		
650	-0.009686153	0.018808426	-0.51499009		
700	0.016332111	-0.032931023	-0.49594093		
750	0.011016676	-0.021613651	-0.50970165		
800	-0.011529711	0.023400347	-0.492715386		
850	-0.015702739	0.031220641	-0.502960173		
900	0.000767843	-0.001923818	-0.399124553		
950	0.015024203	-0.030172433	-0.497944697		
1000	0.012184744	-0.024148842	-0.504568459		
2000	-0.0101168	0.020280562	-0.498842192		
3000	0.002094356	-0.004250569	-0.49272368		
4000	-2.51383E-05	8.73E-01	-2.8803618		
5000	-0.007089382	0.014138711	-0.500001874		
6000	0.000570098	-0.010125745	-0.500713577		
7000	-0.004304464	0.008596143	-0.500743182		
8000	0.005075981	-0.010145473	-0.500319798		
9000	-0.005128103	0.01025875	-0.499876008		
10000	0.001998329	-0.00406189	-0.498810464		
20000	0.002344438	-0.004685918	-0.500303249		
30000	-0.002882405	0.005765873	-0.499994536		
40000	-0.002395292	0.004799029	-0.499963994		
50000	0.000686115	-0.001371329	-0.500328513		
60000	0.000755687	-0.001512452	-0.499782472		
70000	-0.000869896	0.00174029	-0.49985692		
80000	0.000253446	-0.000507351	-0.49954765		
90000	0.000830553	-0.001660765	-0.500102664		
100000	-0.001569306	0.003138584	-0.500007647		
200000	0.000590745	-0.001181589	-0.499958107		
300000	0.000308187	-0.000616313	-0.500049488		
400000	0.000433172	-0.000866309	-0.500020201		
500000	0.000583069	-0.001186153	-0.499993569		
600000	-0.000642894	0.001286785	-0.500001167		
700000	0.000586993	-0.001173981	-0.50000213		
800000	-0.000553097	0.00106195	-0.49999548		
900000	0.000362932	-0.000725874	-0.49993112		
1000000	8.3178E-05	-0.000166333	-0.500031864		
m	$\Re(\zeta(s))$	$\Im(\zeta(s))$	$\left	\frac{\zeta(s)}{\zeta(0)}\right	$
------	---------------------	--------------------	--		
10	-0.1292896	0.303504857	-0.426621112		
50	0.024809322	-0.074796528	-0.331690824		
100	0.031856819	-0.054744001	-0.58192347		
150	-0.040985555	0.081316112	-0.50402748		
200	-0.034758978	0.069967596	-0.496786798		
250	0.006559889	-0.010485409	-0.625620708		
300	0.01359563	-0.028918581	-0.470134755		
350	-0.01496219	0.031213581	-0.479477642		
400	0.006501864	-0.014254439	-0.45612907		
450	0.00181916	-0.017300011	-0.52982744		
500	-0.0216997	0.043129145	-0.50313309		
550	0.013436983	-0.027484557	-0.488892108		
600	0.012024249	-0.023453269	-0.512689681		
650	-0.017064307	0.034419539	-0.495773839		
700	-0.0095258	0.018550449	-0.513507786		
750	0.014568941	-0.029430994	-0.495020352		
800	0.013409517	-0.028503279	-0.50596904		
850	-0.006910842	0.014203596	-0.486555799		
900	-0.016654744	0.033277771	-0.500476549		
950	-0.006132047	0.011927105	-0.514127024		
1000	0.010083883	-0.020416498	-0.493908554		
2000	0.004762884	-0.009418005	-0.505721116		
3000	-0.008886052	0.017755731	-0.500461062		
4000	-0.007906176	0.015811386	-0.500030548		
5000	0.000170479	-0.00031122	-0.547776493		
6000	0.003995544	-0.008088493	-0.498913341		
7000	-0.004149507	0.005304425	-0.499240706		
8000	0.002342311	-0.004697805	-0.498596998		
9000	0.001217342	-0.002242635	-0.502486755		
10000	-0.004583444	0.009162448	-0.50024293		
20000	0.002646545	-0.005295486	-0.49977377		
30000	-0.000158785	0.000315547	-0.503205545		
40000	-0.000716001	-0.001430734	-0.500443129		
50000	0.002128214	-0.004256695	-0.499968638		
60000	-0.001896133	0.003791986	-0.50003692		
70000	0.001677717	-0.003355161	-0.500040684		
80000	-0.00174951	0.003498942	-0.500011146		
90000	-0.001444982	-0.002890151	-0.499967649		
100000	-0.000193108	0.00038654	-0.499575723		
200000	-0.000949222	0.001898338	-0.500016856		
300000	0.000859276	-0.001718573	-0.499998399		
400000	0.000661334	-0.00132269	-0.499991684		
500000	0.000420039	0.00080054	-0.500014999		
600000	-5.79E+00	0.000115863	-0.499902471		
700000	0.000112173	-0.000224364	-0.49995887		
800000	8.11E+00	-0.00016227	-0.500046219		
900000	-0.00382175	0.000764342	-0.500005233		
1000000	0.000493034	-0.0008607	-0.499998986		

Table 4: Calculation of numerical verification 1.4.
m	$\Re (\eta_j(s))$	$a_j(s)$	$\Re(\eta_j(s))$ / $a_j(s)$
10	0.448284561	-0.159819003	-2.804951555
50	-0.071854242	0.127115345	-0.565268041
100	-0.01904003	0.048915773	-0.389241115
150	0.037357774	-0.076882011	-0.485910469
200	0.031022457	-0.059585908	-0.520634124
250	0.031161654	-0.062681924	-0.497139399
300	-0.009305261	0.016286624	-0.57134376
350	-0.010228407	0.02217931	-0.46166855
400	0.014023613	-0.02926023	-0.478686578
450	-0.009241699	0.019663369	-0.469995706
500	-0.002259912	0.003402611	-0.66419957
550	0.016122602	-0.031579255	-0.51054490
600	-0.019793606	0.039763414	-0.49778437
650	0.003576233	-0.007892821	-0.453360465
700	0.016879458	-0.03341943	-0.504890129
750	-0.010664078	0.021809242	-0.488970593
800	-0.01388918	0.027414235	-0.50652177
850	0.009887957	-0.020178073	-0.490034752
900	0.014835989	-0.029446734	-0.503824601
950	-0.004109635	0.008628723	-0.476273836
1000	-0.015808874	0.03161724	-0.50008034
2000	-0.000363142	0.000865888	-0.419386803
3000	0.006228512	-0.012511409	-0.49726584
4000	0.007872022	-0.015738314	-0.50018204
5000	0.005802183	-0.011623931	-0.499158417
6000	-0.004449285	0.008786266	-0.501120894
7000	0.000276627	-0.000531904	-0.520069411
8000	0.000846807	-0.001710832	-0.49467945
9000	0.000229212	-0.000443778	-0.51650149
10000	-0.002612648	0.005214494	-0.501035767
20000	-0.003116677	0.006235361	-0.499839063
30000	0.002814184	-0.005627784	-0.50051885
40000	0.001051196	-0.002100961	-0.500340558
50000	0.002028101	-0.004055711	-0.50060532
60000	0.000568791	-0.001138395	-0.499642918
70000	-0.001586411	0.003173177	-0.499944062
80000	0.001644039	-0.00328827	-0.499970805
90000	-0.001401291	0.002802825	-0.499956651
100000	0.000747314	-0.001494973	-0.499884613
200000	-0.000953273	0.00190647	-0.500019932
300000	0.000273893	-0.000547713	-0.50006641
400000	-0.000451122	0.000902284	-0.499977834
500000	0.000606E-05	-0.000133966	-0.500131777
600000	0.000625865	-0.001251737	-0.499997204
700000	-0.000533734	0.001067459	-0.500004216
800000	0.000439992	-0.000879973	-0.50000625
900000	0.000470137	0.000940267	-0.500003722
1000000	0.000499695	-0.0009993	-0.5

Table 5: Calculation of numerical verification 1.5.
m	\(\beta_3(s) \)	\(\eta_1(s) \)	\(\phi_4(s) \)
10	0.063087093	-0.272869724	-0.231198581
50	-0.014944382	0.061981361	-0.241110904
100	0.046798444	-0.087219534	-0.53659207
150	-0.016981693	0.027492236	-0.6176905
200	0.017195077	-0.038072556	-0.45169368
250	-0.005785644	0.00842475	-0.686743702
300	-0.027378675	0.055390245	-0.49426945
350	0.024730603	-0.048633538	-0.508592331
400	-0.02073001	0.040518429	-0.511619293
450	0.02170702	-0.042824601	-0.505672252
500	-0.022265473	0.044591728	-0.499290635
550	0.01397341	-0.02865192	-0.487695414
600	0.005046997	-0.009246853	-0.545019583
650	-0.019293777	0.038420892	-0.502168898
700	0.008520338	-0.017631694	-0.483239897
750	0.0148299	-0.02928635	-0.506375837
800	-0.010952313	0.022326121	-0.49058497
850	-0.014020797	0.027736545	-0.505496045
900	0.007607843	-0.01562053	-0.487041285
950	0.015698822	-0.031275817	-0.501947623
1000	0.000493631	-0.000591706	-0.834250455
1000	0.011176058	-0.022343908	-0.50013674
3000	0.006674901	0.01329654	-0.502002852
4000	0.000734637	-0.001518383	-0.48382852
5000	-0.004042275	0.008055075	-0.501829592
6000	-0.004677003	0.009372121	-0.49903357
7000	0.005986961	-0.011940445	-0.4999671
8000	-0.005525843	0.011048668	-0.500136578
9000	0.005265628	-0.01053158	-0.49984618
1000	-0.004263257	0.008532822	-0.499630368
2000	0.001669324	-0.03334707	-0.500590906
3000	0.000643305	-0.001288945	-0.49909422
4000	0.002268274	-0.04537176	-0.49930794
5000	0.00094173	-0.001884465	-0.49973346
6000	-0.001960402	0.003620551	-0.500032266
7000	0.001027013	-0.002053451	-0.500140008
8000	-0.000649735	0.001298953	-0.500199006
9000	0.000902318	-0.00180424	-0.500109741
10000	-0.001393389	0.002786585	-0.50003463
20000	-0.000584187	0.001168492	-0.499949508
30000	0.000870814	-0.00174165	-0.49993684
40000	0.000649223	-0.001298416	-0.500011553
50000	0.000703926	-0.001407854	-0.4999929
60000	-0.000157985	0.000315945	-0.500039564
70000	-0.000268832	0.000537684	-0.499981402
80000	0.00034483	-0.000689672	-0.4999913
90000	-0.00023822	0.000476454	-0.49985308
100000	-0.87141E-05	3.74162E-05	-0.500160358

Table 6: Calculation of numerical verification 1.6.
m	$\Re (\eta_m(s))$	$\Im (s_m)$	$\frac{\Re (\eta_m(s_m))}{\Im (s_m)}$
10	0.743881692	-0.186295877	-3.993012105
50	0.058896264	-0.13246976	-0.444801575
100	-0.008037138	0.030587692	-0.26275255
150	0.000843704	0.06583153	0.12816108
200	-0.021972495	0.039421248	-0.55736951
250	-0.004620945	0.005397286	-0.856160856
300	-0.022151837	0.042272429	-0.524025648
350	-0.016905337	0.035522259	-0.475908275
400	0.025014556	-0.049851106	-0.501785357
450	-0.020871699	0.040929649	-0.509940826
500	0.019049601	-0.037331041	-0.510288502
550	-0.020296719	0.040180224	-0.505141756
600	0.020103667	-0.040348224	-0.498254074
650	-0.01246367	0.02561283	-0.48661823
700	-0.003702041	0.006592795	-0.561528305
750	0.017265557	-0.03426361	-0.503903617
800	-0.011751598	0.023989606	-0.489862068
850	-0.009247696	0.017967146	-0.514700331
900	0.015357509	-0.030917047	-0.496732725
950	0.058108575	-0.009863586	-0.525223226
1000	-0.014941446	0.03002631	-0.497611794
2000	0.003748574	-0.007655995	-0.489625973
3000	0.001040701	-0.002173143	-0.478892093
4000	0.004176745	-0.008301795	-0.503113483
5000	0.000352638	-0.000662262	-0.532475063
6000	0.004564823	-0.000910665	-0.50129476
7000	0.004131647	-0.008281728	-0.498887068
8000	-0.005554139	0.011105475	-0.500126199
9000	0.004476607	-0.008943536	-0.500541061
10000	-0.004068925	0.008128786	-0.500557525
20000	0.003396641	-0.006794685	-0.499896758
30000	0.002517775	-0.005036938	-0.499862218
40000	-0.000945091	0.00189193	-0.499538038
50000	-0.001742758	0.003486351	-0.499880247
60000	-0.000320479	0.000641978	-0.49920558
70000	0.001872554	-0.003744983	-0.500016689
80000	-0.000869719	0.001738848	-0.50016965
90000	0.000120573	-0.000240583	-0.501170074
100000	-1.32844E-05	2.60877E-05	-0.509220821
200000	0.000883075	-0.001766044	-0.50003011
300000	0.000829724	-0.001659407	-0.500012354
400000	-0.000767542	0.001535097	-0.49995766
500000	0.000682612	0.001365212	-0.500004395
600000	-0.000574894	0.001149802	-0.49993912
700000	0.0002836	-0.000567177	-0.500020276
800000	0.000231324	-0.000462667	-0.499979467
900000	-0.000402352	0.000804714	-0.499993787
1000000	0.000401575	-0.000803159	-0.499994397

Table 7: Calculation of numerical verification 1.7.
m	$\zeta(\eta_m(s_i))$	$b_i(s)$	$\zeta(\eta_m(s_i)) / b_i(s)$
10	0.16006872	-0.255526606	-0.626426823
50	-0.045711611	0.049515278	-0.923181952
100	0.050075594	-0.095207106	-0.525964879
150	0.041096814	-0.081383836	-0.50497514
200	-0.027886389	0.058702344	-0.475042783
250	-0.031374863	0.063014834	-0.497896484
300	-0.018605809	0.039323976	-0.473141602
350	0.020757479	-0.039941357	-0.51968893
400	0.000890712	-0.003855806	-0.25436821
450	-0.011008302	0.023387733	-0.470687005
500	0.011750631	-0.024625056	-0.4771819
550	-0.006584136	0.014273394	-0.461287343
600	-0.003622867	0.062199298	-0.58261244
650	0.015158478	-0.029705967	-0.51023944
700	-0.018543516	0.037217019	-0.498253662
750	0.005966035	-0.012622931	-0.472634684
800	0.013217734	-0.025971115	-0.508939797
850	-0.014452169	0.029217328	-0.494643781
900	-0.006492962	0.012496829	-0.52111646
950	0.01537939	-0.039086601	-0.497573637
1000	0.005190006	-0.009920722	-0.523148013
2000	-0.010535022	0.021098182	-0.501448462
3000	-0.009070078	0.018127625	-0.500345633
4000	0.006712936	-0.013456605	-0.49885807
5000	0.007062856	-0.014126621	-0.49953669
6000	0.004564295	-0.009151298	-0.498759302
7000	-0.004318159	0.008618012	-0.501062078
8000	-0.000635297	0.001291671	-0.491841189
9000	0.0002781975	-0.005578913	-0.498568968
10000	-0.002906056	0.005824331	-0.498951038
20000	-0.000981404	0.001957716	-0.501326615
30000	-0.001412192	0.002821806	-0.5004568
40000	0.000314493	-0.004628339	-0.500807
50000	0.001401015	-0.002809957	-0.50015142
60000	0.002015935	-0.004031691	-0.50002199
70000	0.000254944	-0.000510702	-0.499203058
80000	-0.001539029	0.003078377	-0.49948187
90000	0.001662304	-0.00332484	-0.49995187
100000	-0.001581087	0.00316217	-0.50000632
200000	0.000685697	-0.001371528	-0.499951149
300000	0.000308648	-0.000761381	-0.49994418
400000	0.000189421	-0.000378783	-0.500077881
500000	-0.000184504	0.000399049	-0.49994452
600000	0.000939337	-0.000587045	-0.5000247
700000	0.000526306	-0.001052084	-0.49999297
800000	-0.00050891	0.001017811	-0.500004421
900000	0.000340428	-0.000680842	-0.500010281
1000000	-0.000297889	0.000595765	-0.50001091

Table 8: Calculation of numerical verification 1.8.
m	$\Re (\eta_j(s))$	$\Im (\eta_j(s))$	$\Im (\eta_j(s)) / \Re (\eta_j(s))$
10	0.96,21,75,573	-0.28,64,35,644	-33,59,13,352
50	-0.07204829	0.14,13,22,356	-0.50,98,15,234
100	0.03,85,10,014	-0.06,40,90,757	-0.60,08,66,893
150	0.000725 118	0.00,7,49,855	0.09,67,01,096
200	0.00,21,22,301	-0.01,00,08,362	-0.21,20,52,781
250	0.02,88,55,067	-0.05,91,30,526	-0.48,79,89,351
300	0.02,22,05,736	-0.0046269956	-0.47,99,16,947
350	-0.00,85,13,308	0.01,45,94,976	-0.58,33,04,008
400	-0.00,20,19,761	0.04,15,16,874	-0.48,64,91,589
450	0.02,34,56,676	-0.04,6,35,379	-0.50,92,10,028
500	-0.020232304	0.00,39,77,083	-0.50,77,22,197
550	0.01,92,83,981	-0.03,7,69,523	-0.50,78,80,518
600	-0.02,01,37,142	0.04,00,38,679	-0.50,29,42,217
650	0.01,85,40,022	-0.03,7,67,727	-0.49,61,50,649
700	-0.009683806	0.02,01,13,366	-0.48,14,61,233
750	-0.00,59,21,684	0.01,10,75,533	-0.53,46,61,763
800	0.01,72,37,036	-0.034285655	-0.50,27,47,753
850	-0.01,04,26,495	0.02,13,66,588	-0.48,79,81,282
900	-0.00,94,81,895	0.00,18,45,065	-0.51,39,05,743
950	0.01,49,85,393	-0.03,01,69,727	-0.46,70,29,27
1000	0.00,42,88,876	-0.08,07,219	-0.53,13,15,046
2000	0.00,60,46,856	-0.01,22,46,231	-0.49,37,72,819
3000	0.00,89,30,818	-0.017880408	-0.49,94,75,068
4000	-0.00760822	0.01,56,25,417	-0.49,97,12,744
5000	-0.004344305	0.00,86,51,331	-0.50,21,54,524
6000	-0.00,52,10,786	0.01,04,00,146	-0.50,10,30,082
7000	-0.00,50,17,103	0.00,10,94,907	-0.49,92,60,429
8000	0.00,43,39,471	-0.00,86,64,127	-0.50,08,54,962
9000	-0.00,07,92,091	0.00,15,65,065	-0.50,61,07,414
10000	-0.000884296	0.00178475	-0.495473316
20000	0.0003005846	-0.006014678	-0.499751774
30000	0.002808479	-0.005616177	-0.50009531
40000	-0.002400136	0.004799665	-0.50063234
50000	-0.000490229	0.000979016	-0.500736454
60000	-0.000977535	0.001964077	-0.500254064
70000	-0.001872691	0.003745487	-0.49995983
80000	0.000767782	-0.001534864	-0.500215003
90000	0.000473951	0.000948484	-0.49963195
100000	0.000914615	0.001829651	-0.499884951
200000	0.001110497	-0.00221013	-0.499995723
300000	0.000714685	-0.001429306	-0.50022388
400000	0.000593546	0.001187049	-0.500018122
500000	0.000152119	-0.00304283	-0.499926056
600000	-3.79E-05	7.94E-05	-0.500222665
700000	-0.000570392	0.001140077	-0.50003945
800000	6.44E-06	-1.29E-05	-0.50088333
900000	0.000349926	-0.000699866	-0.49989998
1000000	-0.000434838	0.000869679	-0.49999576

Table 9: Calculation of numerical verification 1.9.
m	$\alpha(\eta_m(s))$	$b_m(s)$	$\beta(\eta_m(s))$
10	-0.0999279099	-0.13,90,94,857	0.7409 17235
50	0.02,14,81,704	0.00,52,90,727	4.06,02,55,613
100	0.03,15,987	-0.07,67,61,806	-0.43,19,83,974
150	0.04,11,35,797	-0.08,13,04,603	-0.50,59,46,717
200	-0.03,35,45,701	0.0699988050	-0.50,65,37,362
250	-0.01,31,81,946	0.02,24,40,609	-0.58,74,14,807
300	-0.01,18,55,146	0.03,45,31,501	-0.53,72,32,946
350	-0.02,53,85438	0.05,14,211	-0.49,36,77,459
400	0.01,47,95,353	-0.02,78,63,043	-0.51,00,277
450	0.00,25,89,303	-0.00,68,62,125	-0.37,62,35,974
500	-0.00,95,75,928	0.0204541922	-0.46,82,16,532
550	0.00,91,37,597	-0.01,94,03,534	-0.47,09,24,369
600	-0.00,34,38,645	0.00,79,73,131	-0.50,64,71,913
650	-0.00,8436337	0.01,19,21,176	-0.53,99,07,801
700	0.01,62,42,538	-0.03,20,00,374	-0.50,07,33,882
750	-0.01,17,28,151	0.03,47,94,624	-0.49,66,71,842
800	0.00,39,63,916	-0.008630982	-0.45,92,65,933
850	0.01,36,26,793	-0.02,68,31,688	-0.50,78,81,935
900	-0.01,37,15,647	0.02,77,61,207	-0.49,40,58,021
950	-0.00,6230058	0.0119,33,95	-0.52,20,44,922
1000	0.01,52,24,928	-0.03,05,75,149	-0.49,79,51,065
2000	-0.09,40,613	0.01,87,09,084	-0.50,27,57,377
3000	-0.00,18,94,788	0.00,36,91,117	-0.51,33,37,291
4000	0.00,12,412	-0.00,24,17,921	-0.51,33,33,562
5000	-0.00,55,79,657	0.01,11,87,246	-0.49,87,51,614
6000	-0.00,38,10,271	0.00,76,48,766	-0.49,81,54,997
7000	0.00,32,47,415	-0.06,47,096	-0.50,18,44,394
8000	0.00,35,24,353	-0.007066322	-0.49,87,53,524
9000	-0.00,52,10,759	0.010424091	-0.49,98,76,584
10000	0.001289763	-0.000259037	-0.50002879
20000	-0.001861508	0.003718016	-0.500674202
30000	0.00,06,67,771	-0.00,13,38,615	-0.49,88,52,172
40000	-0.00,06,99,591	0.00,14,01,147	-0.49,92,98,789
50000	-0.00,02,18,168	0.00,36,366	-0.49,99,65,625
60000	-0.00,17,91,963	0.00,35,84,445	-0.49,99,27,604
70000	0.00,02,53,936	-0.00,50,699	-0.50,00,86,984
80000	0.00,15,92,344	-0.00,31,84,995	-0.49995 1805
90000	-0.00,15,97,863	0.00,31,95,542	-0.50,00,82,797
100000	0.00,12,89,763	-0.00257922	-0.50,00,93,32
200000	-0.00,01,29,611	0.00,02,59,037	-0.50,03,57,092
300000	0.000567943	-0.00,11,35,966	-0.49,99,64,788
400000	-0.00,05,22,211	0.00,10,44,469	-0.49,99,77,501
500000	-0.000690552	0.00,13,81,091	-0.50,00,04,706
600000	-0.00,06,44,275	0.00,12,88,549	-0.50,00,00,388
700000	-0.00,01,78,315	0.000356656	-0.49,99,63,35
800000	0.00,05,56,979	-0.00,01,11,796	-0.49,99,99,106
900000	-0.00,03,94,412	0.000788225	-0.50,00,99,515
1000000	0.000246815	-0.00,04,93,617	-0.50,00,13,168

Table 10: Calculation of numerical verification 1.10.
m	$\Re(q_m(s'))$	$q_m(s')$	$\frac{\Re(q_m(s'))}{\Im(q_m(s'))}$
10	-0.001870233	0.04367938	-0.042825574
50	-0.006962498	0.01237139	-0.562789958
100	-0.003286542	0.00618569	-0.531313039
150	0.000543644	-0.000884624	-0.614548102
200	-0.001594816	0.003092649	-0.515646254
250	0.001950134	-0.00390792	-0.499020963
300	0.000246483	-0.00442312	-0.557260486
350	-0.001358336	0.002723944	-0.498665171
400	-0.000785308	0.001546425	-0.507821589
450	0.000423631	-0.000866907	-0.488669488
500	0.000976023	-0.00195396	-0.499510225
550	0.000729462	-0.001448551	-0.503580475
600	0.00011691	-0.000221156	-0.528631373
650	-0.000425434	0.000859106	-0.495205481
700	-0.000680077	0.001361972	-0.499332585
750	-0.000634749	0.001266128	-0.501330829
800	-0.00038963	0.000773212	-0.503910958
850	-7.20E-05	0.000137773	-0.522902165
900	0.000214271	-0.000433453	-0.494335026
950	0.000407904	-0.000818535	-0.49834219
1000	0.000488251	-0.00097698	-0.499755369
2000	0.000244185	-0.00048849	-0.499877173
3000	-0.000158371	0.000316532	-0.50033172
4000	0.000122108	-0.000244245	-0.499940533
5000	-2.34E-05	4.69E-05	-0.498173531
6000	-7.92E-05	0.000158266	-0.500166176
7000	1.03E-05	-2.07E-05	-0.49872573
8000	6.8E-05	-0.000122122	-0.49997134
9000	3.66E-05	-7.31E-05	-0.50031666
10000	-1.17E-05	2.35E-05	-0.49906235
20000	-5.86E-06	1.17E-05	-0.499545032
30000	1.16E-05	-2.32E-05	-0.499931104
40000	-2.93E-06	5.87E-06	-0.499770813
50000	-7.72E-06	1.54E-05	-0.500043397
60000	5.81E-06	-1.16E-05	-0.499964691
70000	5.91E-06	-1.18E-05	-0.500027091
80000	-1.47E-06	2.93E-06	-0.499887536
90000	-5.36E-06	1.07E-05	-0.499997201
100000	-3.86E-06	7.72E-06	-0.500021374
200000	-1.93E-06	3.86E-06	-0.500013063
300000	5.68E-07	-1.14E-06	-0.50002023
400000	-9.65E-07	1.93E-06	-0.500004664
500000	9.09E-07	-1.82E-06	-0.4999978
600000	2.84E-07	-5.68E-07	-0.500011434
700000	-6.19E-07	1.24E-06	-0.499999193
800000	-4.82E-07	9.65E-07	-0.500002591
900000	1.03E-07	-2.05E-07	-0.499987818
1000000	4.54E-07	-9.09E-07	-0.49999945

Table 11: Calculation of numerical verification 1.11.
m	$\Im(\eta_m(s'))$	$\Re(b_m(s'))$	$\arctan(\Im/\Re)$
10	0.05,87,75,434	-0.08,99,60,265	-0.65,33,48,831
50	-0.0,73,75,109	0.01,57,14,596	-0.46,93,15,851
100	-0.0,03,80,811	0.00,78,57,298	-0.48,46,58,976
150	0.00,33,01,521	-0.0066077 14	-0.49,96,46,474
200	-0.0,01,93,419	0.00,39,28,649	-0.49,23,29,551
250	-0.0,04,62,944	0.00,08,53,326	-0.54,25,17,162
300	0.00,16,51,342	-0.00,33,03,857	-0.49,92,82,486
350	0.00,04,49,355	-0.00,08,62,203	-0.52,11,70,766
400	-0.00,09,74,629	0.00,19,64,325	-0.49,16,14,844
450	-0.00,01,02,858	0.00,20,46,153	-0.50,26,89,682
500	-0.000222401	0.00,04,26,663	-0.52,12,56,823
550	0.00,05,43,959	-0.00,10,98,857	-0.49,50,22,555
600	0.00,08,25,817	-0.00,16,51,929	-0.49,91,01,701
650	0.00,06,41,609	-0.00,12,76,245	-0.50,27,31,842
700	0.00,02,20,114	-0.00,04,31,101	-0.51,05,85,686
750	-0.00,02,05,298	0.00,04,17,968	-0.49,11,81,143
800	-0.00,04,89,198	0.00,08,82,162	-0.49,80,82,801
850	-5,84E-04	0.00,11,88,376	-0.49,79,49,59
900	-0.00,05,12,914	0.00,10,23,077	-0.50,13,44,474
950	-0.00,03,33,047	0.00,06,61,841	-0.50,32,13,007
1000	-0.00,01,08,933	0.00,02,13,331	-0.51,06,29,023
2000	-5,38997E-05	0.00,01,06,666	-0.50,53,12,846
3000	-6,20156E-05	0.00,01,04,492	-0.49,77,95,047
4000	-2,68081E-05	5,33329E-05	-0.50,26,55,959
5000	9,72E-05	-1,94E-04	-0.50,01,58,426
6000	-2,61E-05	0,00,00,52,246	-0.49,88,97,523
7000	-7,07E-05	1,41E-04	-0.50,00,82,773
8000	-1,34E-05	2,66664E-05	-0.50,13,27,513
9000	4,18E-05	-8,37E-05	-0.49,80,81,81
10000	4,86E-05	-9,72E-05	-0.50,00,79,213
20000	2,43E-05	-4,86E-05	-0.50,00,40,121
30000	-4,20E-05	2,39E-05	-0.50,08,36,34
40000	1,22E-05	-2,43E-05	-0.50,20,57,55
50000	-6,36E-06	1,27E-05	-0.49,99,51,233
60000	-5,96E-06	1,20E-05	-0,0,04,18,22
70000	4,02E-06	-8,03E-06	-0.49,99,26,43
80000	6,08E-06	-1,22E-05	-0.50,00,10,699
90000	1,46E-06	-2,92E-06	-0.50,00,94,092
100000	-3,18E-06	6,36E-06	-0.49,99,87,48
200000	-1,59E-06	3,18E-06	-0.49,99,85,84
300000	1,57E-06	-3,13E-06	-05
400000	-7,95E-07	1,59E-06	-0.49,99,94,66
500000	-4,17E-07	8,34E-07	-0.50,00,10,795
600000	7,83E-07	-1,57E-06	-0.49,99,26,32
700000	3,56E-07	-7,12E-07	-0.50,00,06,323
800000	-3,97E-07	7,95E-07	-0.49,99,37,49
900000	-5,46E-07	1,09E-06	-0.50,00,02,747
1000000	-2,08E-07	4,17E-07	-0.50,00,05,99

Table 12: Calculation of numerical verification 1.12.
\(m \)	\(\frac{\zeta_m(s)}{\zeta_m(s')} \)	\(\frac{\zeta_m(s)}{\zeta_m(s')} \)
10	3.689741821	3.162277858
50	7078600484	7071076839
100	9.989939317	99.99995
150	12.23517792	12.24744686
200	14.12972581	14.142136
250	1579934786	15.81130597
300	17.30893587	17.32048684
350	18.69717121	18.70825462
400	19.9893288	2.00,00,048
450	21.20294133	21.21320595
500	22.35083149	22.3605654
550	23.44257321	23.4520597
600	24.4857063	24.4948882
650	26.44858426	25.49512053
700	27.377337	26.45730969
750	28.27604478	27.38598194
800	28.27604478	28.2842539
850	29.14678157	29.15478354
900	29.9920262	29.999915
950	30.8144809	30.8205444
1000	31.61533501	31.6227842
2000	44.71598015	44.72157446
3000	54.76782958	54.77287894
4000	63.2413589	63.24535762
5000	70.70715187	70.7105232
6000	77.4568376	77.4598321
7000	83.66307805	83.66605719
8000	89.44000195	89.44244327
9000	94.86559748	94.86848147
10000	99.99764024	99.9999
20000	141.495571	14,14.214
30000	173.2036131	173.2047748
40000	199.2429627	200.0112009
50000	223.5514486	223.7048923
60000	244.9163998	244.461809
70000	264.5124602	264.6271471
80000	282.6427349	281.7625014
90000	300.0219743	300.024477
100000	316.1599247	316.1638253
200000	447.1197902	447.1210085
300000	546.781404	548.259266
400000	632.3240857	632.3295467
500000	707.0654563	707.058613
600000	774.9132585	773.1643492
700000	836.577005	836.5733484
800000	894.7034584	894.223084
900000	948.6862736	950.3575028
1000000	1000.352186	999.9355062

Table 13: Calculation of numerical verification 1.13.
like all other numerical methods when the primitive off is not obvious by algebraic computation (Figure 2) [7,8].

Hypothesis

- It is assumed here that the function- arc (M,M) is concave on [x, X],
- (H E) is the elliptical half-arc passing through the points Mi, M+i and Pj; with: N is the point of intersection of the curve-arc (M,M) and the vertical line whose equation is x=m, where \(m = \frac{X + Y}{2} \)
- \(P \) is the orthogonal projection of \(M_i \) on the axis \(Y \),
- \(X \) is the axis passing through the points \(M_i \) and \(M_{i+1} \), and \(X \perp Y \) where \(X \) and \(Y \) are the two axes of the half-ellipse (H E),
- \(a_1 \) and \(b_1 \) are the two parameters of the half-ellipse (H E),
- \(O \left(\frac{m}{2}, f(x) \right) \) is the origin of the reference \((x,y) \),
- \(Q \) is the point whose coordinates \(x=X \) and \(y=f(x) \),
- \(\alpha = M_1 \), \(M \) and \(\beta = N \hat{N} O \),
- \(c = |N \hat{N} P| \) and \(d = \left(f(m_i) - f(x_{i+1}) \right) \) is the error committed in \([a, b]\) using the method of trapezes.

According to Pythagoras' theorem, we have:

\[
\frac{h}{2} \int \frac{f(x) + f(x+1)}{2} dx = \frac{f(x) + f(x+1)}{2} dx
\]

This implies \(c = d \left(f(x) + f(x+1) - \frac{f(x) - f(x+1)}{2} \right) \)

So, \(h \cdot \Delta x = \left(\frac{f(x) - f(x+1)}{2} \right) - \left(\frac{f(x) - f(x+1)}{2} \right) \)

Approximate calculation of \(\int_a^b f(x) dx \):

Let, \(s = \frac{\pi a h}{2} = \frac{\pi h}{2} \left(f(m_i) - f'(x_{i+1}) \right) \)

\[
\int_a^b f(x) dx = h \left(f(x) + f'(x_{i+1}) \right) + s = \left(1 - \frac{\pi}{4} \right) \left(f(x) + f'(x_{i+1}) \right) + \left(\frac{\pi}{4} \right) h f(m_i)
\]

Approximation formula

Doing the summation for \(i \) ranging from 0 to \(n-1 \) with \(x_{i+1} = a \) and \(x_n = b \), we obtain the following approximation formula:

\[
\int_a^b f(x) dx = \text{THE} = \left(1 - \frac{\pi}{4} \right) \left(f(a) + f'(b) \right) + s = \left(1 - \frac{\pi}{4} \right) \left(f(a) + f'(b) \right) + \left(\frac{\pi}{4} \right) h \sum_{i=1}^n f(m_i)
\]

Note: \(h \left(f(a) + f'(b) \right) \frac{1}{2} \sum_{i=1}^n f(x_i) \) = \(T_n \). The approximate value of the integral of on \([a, b]\) using the method of trapezes.

\[
\frac{h}{2} \sum_{i=1}^n f(m_i) = M_n : \text{The approximate value of the integral of } f \text{ on } [a, b] \text{ using the method of rectangles with midpoint.}
\]

So, the approximation formula of The Method of trapezoid 8 half-ellipses is:

\[
\frac{h}{8} \int_a^b f(x) dx = \text{THE}_n = \left(1 - \frac{\pi}{4} \right) \left(f(a) + f'(b) \right) + \left(\frac{\pi}{4} \right) M_n
\]

Calculation of the theoretical maximum error \(e(n) \)

Let’s call \(e(n) \) the error committed in the subinterval \([x, x_{i+1}]\). Thus, according to the approximation formula previously established, we have:

\[
e(n) = \left(1 - \frac{\pi}{4} \right) \frac{h}{8} \int_a^b f(x) dx = \left(1 - \frac{\pi}{4} \right) \left(f(a) + f'(b) \right) + \left(\frac{\pi}{4} \right) \left(f(a) - f(b) \right)
\]

\[
\left(1 - \frac{\pi}{4} \right) \frac{h}{8} \int_a^b f(x) dx = \left(1 - \frac{\pi}{4} \right) \left(f(a) + f'(b) \right) + \left(\frac{\pi}{4} \right) \left(f(a) - f(b) \right)
\]

Note:

Knowing that \(2T_n = T_{n+} + M_n \), we can write:

\[
\text{THE}_n = \left(1 - \frac{\pi}{4} \right) T_n + \left(\frac{\pi}{4} \right) M_n
\]

The error committed in \([x, x_{i+1}]\) using the method of trapezoids with midpoint, so:

\[
e_{\text{trapeze}} = \left(1 - \frac{\pi}{4} \right) \frac{h}{8} \int_a^b f(x) dx = \left(\frac{\pi}{4} \right) \left(f(a) - f(b) \right)
\]

The error committed in \([x, x_{i+1}]\) using the method of rectangles with midpoint, so:

\[
e_{\text{rectangle}} = \left(\frac{\pi}{4} \right) \left(f(a) - f(b) \right)
\]

We assume that \(f \) is class \(C^2 \) on the interval \([a, b]\), so we know that 003A.

\[
\left| f(x) \right|, \left| f'(x) \right|, \left| f''(x) \right| \leq \left| \frac{\lambda}{12} \right|
\]

where \(\lambda = \sup \left| f(x') \right| x \in \left[x_i, x_{i+1} \right] \)

\(X_{i+1} \), then we have:

\[
\left| e(n) \right| \leq \left(1 - \frac{\pi}{8} \right) \frac{h}{12} \left| \lambda \right|
\]

and denoting \(\lambda = \sup \left(\lambda \right) = \sup \left| f(x') \right| x \in \left[a, b \right] \), we get:

\[
\left| e(n) \right| \leq \left(1 - \frac{\pi}{8} \right) \frac{h}{12} \left| \lambda \right|
\]

Note: If someone replace the elliptical half-arc studied in the previous case by the quarter of the circumference of the ellipse whose parameters are \(h = \frac{b-a}{n} \) and \(\delta = f(x_{i+1}) - f(x_i) \) he gets:

\[
\int_a^b f(x) dx = \text{RQE}_n = \left(1 - \frac{\pi}{4} \right) k_1 + \left(\frac{\pi}{4} \right) k_1
\]

[RQE: Rectangles and Quarters of Ellipses].

where:
• $R_n^{(l)}$ is the approximate value of the integral of on $[a, b]$ using the method of rectangles on the left,
• $R_n^{(r)}$ is the approximate value of the integral of on $[a, b]$ using the method of rectangles on the right,

and assuming that f is class C^1 on the interval $[a, b]$, we get:

$$\left| \int_a^b f(x)dx - RQE_n \right| \leq \frac{(b-a)^2}{2} \sup_{[a,b]} |f'|$$

Conclusion 2

Comparing the margins of error, we note that The Method of trapezes and half-ellipses THE is more accurate and more precise than the following 3 methods:

• The method of rectangles on the left $R_n^{(l)}$,
• The method of rectangles on the right $R_n^{(r)}$ and
• The method of trapezes T_n.

The approximation formula of The Method of trapezes and half-ellipses given above can be considered as a special case of the following general formula:

$$\int_a^b f(x)dx \approx \text{THE}_n = \left(1 - \frac{\gamma}{4}\right) T_n + \left(\frac{\gamma}{4}\right) M_n$$

$$0 \leq \gamma \leq \frac{4}{\pi}$$

$|\varepsilon(f, n)| \leq \left(1 - \frac{\gamma}{4}\right) \sup_{[a,b]} |f'|$ of course if f is C^2 on $[a, b]$.

For $\gamma=0$: THE$_n=T_n$

For $\gamma=\frac{4}{\pi}$: THE$_n=M_n$

So, we can consider The method of trapezes and The method of rectangles (on the left, on the right and with midpoint) as special cases of the general method which is called The Method of trapezes and half-ellipses THE.

References

1. Riemann B, Wilkins R (1998) On the Number of Prime Numbers less than a Given Quantity. Public university in Gottingen, Germany.
2. Julio CB (2012) Andrade Random Matrix Theory and ξ Functions In Function Fields. School of Mathematics, University of Bristol, England.
3. Marek W (2010) Two arguments that the nontrivial zeros of the Riemann zeta function are irrational. Cardinal Stefan Wyszynski University, Warszawa, Poland.
4. Borwein P, Choi S, Rooney B, Weirathmueller A (2010) The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike. Springer Berlin Heidelberg, Springer New York, pp: 1-533.
5. Murad AAA (2016) A Proof of the Riemann Hypothesis and Determination of the Relationship Between Non-Trivial Zeros of Zeta Functions and Prime Numbers. Mutah University, Jordan.
6. Garaev MZ, Yildirim CY (2017) On small distances between ordinates of zeros of $(\zeta(s))$ and $(\zeta'(s))$. Institute of Mathematics, Morelia, Mexico.
7. McPhedran RC (2018) Sum Rules for Functions of the Riemann Zeta Type. University of Sydney, Australia.
8. Vic Dannon H (2009) Riemann Zeta Function: The Riemann Hypothesis Origin, the Factorization Error, and the Count of the Primes. Gauge Institute Journal 5: 15-3.