Research Article

Construction of a Supply Chain Financial Logistics Supervision System Based on Internet of Things Technology

Zhaoyang Wu, Shiyong Wang, Hong Yang, and Xiaokui Zhao

School of Economics and Management, Qinghai Normal University, Xi’ning 810016, Qinghai, China

Correspondence should be addressed to Zhaoyang Wu; 2018130@qhnu.edu.cn

Received 18 March 2021; Revised 7 April 2021; Accepted 15 April 2021; Published 26 April 2021

Academic Editor: Sang-Bing Tsai

Copyright © 2021 Zhaoyang Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, with the rapid development of the global economy and the development trend of more and more stable, well-developed network communications, online shopping has become an increasingly common way; as a result, the logistics industry has emerged from many industries and has become one of the most popular industries. However, due to the extensive involvement of the logistics industry, the overly complex technology, and the huge amount of data and information, the security of logistics has become one of the hot topics of special concern. Based on the background of an intelligent environment, this paper constructs a supply chain financial logistics supervision system based on Internet of Things technology. This article refers to the research experience of previous scholars, briefly introduces the theoretical knowledge of the Internet of Things technology, smart environment, and supply chain finance, and makes a certain analysis of the logistics supervision system. We collect and calculate logistics data through the wolf group hunting and siege formula in the wolf group algorithm and analyze the application performance of the logistics supervision system in reality. Then, we briefly designed the system architecture diagram of the logistics supervision system and compared the freight situation of the logistics supervision system before and after and statistics on the deployment of the logistics supervision system in customs, docks, airports, stations, and other places from 2015 to 2019. Finally, a comparative analysis of the performance of wolf pack algorithm and other algorithms was performed under different path planning. The final result shows that the logistics supervision system has important practical value in the logistics industry; in addition, the deployment of logistics supervision systems in customs, terminals, and other places has increased year by year from 2015 to 2019.

1. Introduction

1.1. Background Meaning. At present, the development of the Internet and sensor network is very rapid [1], e-commerce which has risen from the development of the Internet in recent years has gradually become the most frequently used way of shopping [2], and the complementary logistics industry has become more and more hot and penetrated into our daily life. With the vigorous development of the logistics industry, the frequent occurrence of goods stolen, goods lost, goods delay, and logistics warehouse accidents and other logistics security issues have gradually become the focus of attention [3]. In the process of logistics transportation, the status of goods, logistics itinerary, and other related information directly affect the safety of logistics. In order to understand the specific conditions of the logistics and transportation process, building a supply chain financial logistics supervision system based on the Internet of Things technology has very important practical significance for logistics companies, sellers of goods, and buyers of goods [4].

The Internet of Things is an extension and expansion of the Internet [5]. It connects items in a smart environment with smart devices with functions such as recognition, perception, and calculation to form a “things connected” network and, through wireless communication, wireless sensor network and other technologies to transmit and share data and information between equipment and equipment [6], after a certain amount of processing, and then transfer useful information to the user’s terminal equipment through the network. It is conceived as a transformative method for providing numerous services [7]. The Internet of Things technology largely solves the communication function of
information and can also identify different information and screen out effective information for users. Combining the Internet of Things technology with the logistics supervision system can improve the efficiency of goods sorting [8], can monitor the information of the goods in real time, and timely feedback the situation of the goods to the users, making the logistics supervision efficient, accurate, and more.

1.2. Related Work. The purpose of Bui is to analyze and clarify the potential advantages of Trarong Province from the perspective of logistics and supply chain management, thereby proposing the development of Trarong Province as an economic and logistics hub in the Mekong Delta [9], but the cost of this research is too high. Zulfikar’s research aims to determine how valuable PT’s supply chain performance is [10], XYZ when measured using the green scor model. But, the experimental data of this research are too one sided, and the experimental results are unreliable. Vieira introduced the study of port logistics activities in the port of Santos (Brazil) with a qualitative method [11], but the research data were too large. Chancey analyzed the location of facilities and vehicle routing problems of efficient logistic systems in a practical case study [12], but the experimental results of this study have errors. Zhilun proposed the existence of the drone logistics regulatory issues, analyzed the composition of the logistics industry chain of unmanned aerial vehicles, and discussed the applicability of the regulatory system of the whole industry chain, but the steps of the study are too complex and the cost is too high [13]. Xiaofeng takes enterprise supervision, logistics supervision, and quarantine supervision as the core, adopts the risk assessment method of “three links joint control,” and establishes a supervision system with Chinese characteristics for export wood packaging materials [14]; however, the data collection of this research is too difficult, and it is easy to cause unnecessary wastage. The purpose of Busse is to provide a good foundation for further research on the innovation management of logistics service providers (LSPs) [15], but the research is too simple to fully reflect the experimental results. However, these studies still have shortcomings in the monitoring and management of logistics. This article builds a logistics monitoring system based on the Internet of Things technology based on the research experience of previous scholars.

1.3. Innovation of This Article. The application of the Internet of Things technology has made supply chain finance a further breakthrough in logistics supervision. The innovations of this article are mainly reflected in the following aspects: The application of the Internet of Things technology improves the supervision mechanism of the logistics industry, makes the logistics supervision mechanism real time, and saves the human resources of the logistics department of the logistics industry.

2. Supply Chain Financial Logistics Supervision System Based on Internet of Things Technology

2.1. Internet of Things Technology. The Internet of Things (IoTs) is a network technology that uses various sensing technologies to connect items to the Internet for information exchange and communication to achieve intelligent identification, tracking, and supervision under an agreed agreement. The Internet of Things is a global infrastructure that can connect objects and realize data generation and data sharing [16]. Internet of Things as a new information network technology is still in the development stage, did not form a complete technology framework, and lacks a unified architecture that is standard, but the prototype has been formed. The Internet of Things is considered to be a part of the future Internet, which will contain billions of intelligent communication “things” [17]. The technology system structure of the Internet of Things mainly refers to the IOS/OSI model of the Internet to construct its system structure by means of hierarchical division, which makes the basic system structure of the Internet of Things have typical hierarchical characteristics. The Internet of Things introduces a vision for the future Internet, in which users with sensing and stimulating functions, computing systems, and everyday objects will collaborate with each other with unprecedented convenience and economic benefits [18]. The widely recognized IoT architecture can be divided into a perception layer, network transmission layer, and application layer. It works by perceiving and identifying the surrounding data information through RFID, GPS, QR code and other sensing technologies in the sensing layer, so as to obtain the required information in real time; then, through the network transmission layer, the information obtained by the perception layer is transmitted to the terminals of other users through reliable transmission, in order to realize the sharing and interaction of information between each other; and finally, the data information in the network transmission layer are processed intelligently through smart devices at the application layer and smart computing technologies such as cloud computing, to make decisions and control the surrounding environment. Radio frequency identification has been widely used to support the logistics management of the production workshop [19]. The latest developments in RFID, smart sensors, communication technology, and Internet protocols have promoted the development of IoT [20].

2.2. Smart Environment. The intelligent environment is the embodiment of pervasive computing in the architectural dimension; it uses sensor equipment, computer equipment, various identification equipment, and multimedia imaging equipment in the physical space to provide automated services, in an intelligent environment, and users can perform intelligent services at any time. The intelligent environment has the characteristics of system dynamics, service transparency, and equipment mobility. In the intelligent environment system, the relationship between the units often changes, the focus of computer interaction is integration or mobility, and the terminal equipment in the hands of the user can use the basic equipment in the intelligent environment to complete functions such as calculation, interaction, and sharing. The smart environment is easy to use and supports continuous empirical measurement and iterative development [21]. Intelligence
environment is reflected in the union of matter under the influence of technical things, which not only has the traditional environmental performance ability but also has network communications, information products, equipment, automation, and other functions. The intelligent environment integrates system, structure, and service. It has the characteristics of high efficiency, comfort, safety, and environmental protection and helps the space environment to maintain information exchange with the outside world. The applications in the smart environment together provide real-time human emotional state tracking and recognition [22]. The intelligent environment improves the safety and comfort of the user's living environment and, at the same time, has the characteristics of sustainable development, resource conservation, and environmental protection. In an intelligent environment, ubiquitous services depend on the ability of intelligent objects, which can perceive, calculate, communicate and take some adaptive actions in the environment according to their goals even without human intervention [23].

The sensor is the main communication network unit in the intelligent environment. In the flexible environment, the sensor nodes are set manually in the field and the nodes work together to sense and collect the environmental status information or the field target detection information, and the information is transmitted through the only sensor node, sent to the receiving node through hop count or multihop relay, and finally, the analysis result is sent to the terminal node, mobile network, etc. through the Internet users' awareness of effective monitoring and management of the environment is raised. In large-scale sensor data, exploring and mining patterns (leading to detection of abnormal behavior) is challenging [24]. The sensor node consists of four parts: a processor module, radio frequency module, power supply module, and various sensor modules. The processor is the core of the entire node, responsible for wireless transmission of data, sensor signal calibration, and processing. The radio frequency unit is a physical application of the wireless data receiver; it must be designed, and the distance and penetration of wireless communication are realized. Power modules provide energy for the whole node, due to the relatively small sensor nodes, generally battery powered. Sensor nodes need to consider power consumption, plan the sleep state of the node, collect and upload environmental data regularly, and then, set a hardware timer to enter sleep. When the timer expires, the node is awakened followed by the data collection and transmission cycle.

2.3. Supply Chain Finance. Supply chain finance is a link of supply chain management. It is based on supply chain management and one or more basic commitments, on the premise of ensuring the authenticity of the transaction. The use of accounts receivable, advance payment, inventory, and other methods to close capital flow or control ownership of real estate, bills of lading and orders, and information flow based on the information flow between supply chain members is an effective integration of supply chain and capital flow, and we should provide low-risk financing and financial products to the main body of the supply chain, isolate the credit risk of small- and medium-sized enterprises, and ensure the safe development of loan activities. Many companies have adopted and implemented various supply chain practices and have enhanced collaboration in the supply chain and, more recently, electronic collaboration [25]. While the integration with the supplier complements each other, especially in the high-tech environment, the internal supply chain personnel of the organization are either the source of valuable innovation-related knowledge or the channel [26]. The main functions of supply chain finance include the following: It improves the competitiveness and stability of the supply chain, effectively overcomes the financing difficulties of small- and medium-sized enterprises, and optimizes the business structure of banks. Its essence is that the financial service provider takes the future cash flow generated by the asset as the source of repayment for the less liquid assets in various business processes through the overall assessment of the supply chain members; adopts various financial products under the closed business model to provide financial services to participants; and reduces the operating costs of the entire supply chain by coordinating the entire business ecosystem. The overall framework of supply chain finance includes supply chain objectives, supply chain management, supply chain structure, supply chain resources, and supply chain business processes [27], as shown in Figure 1.

The supply chain financial model is led by logistics companies is a business behavior that integrates logistics, commercial operation, and financial management functions. The advantages of supply chain finance led by logistics companies are as follows: (1) According to the characteristics of the logistics business, it has undertaken transportation, warehousing, transportation, and processing activities during the trade between the two sides, obtained the most basic and true information in the circulation process, and has a high degree of control over the rights of goods in the trade process; (2) based on the understanding of the buyer's and seller's transaction arrangements and the status of the goods, the incidence of subjective defaults by financiers using information asymmetry to deliberately conceal relevant information has been greatly reduced, and the default loss rate has been better controlled; (3) based on the strong control of movable properties, the management methods of logistics companies allow innovative financing activities such as value evaluation and pledge guarantee credit; (4) through platform construction, under the premise that the supply company provides guarantees, the problem of financing difficulties for loan companies is partially solved, and more opportunities are provided for cooperation between banks and enterprises. However, this model still has some flaws in some aspects: (1) The logistics industry has a large asset investment, a low rate of return on investment, and a long investment return period; (2) lack of procedures to control the flow of corporate funds and information and
weak credit risk management capabilities; (3) The added value of capital services is limited, and major suppliers are responsible for overpayment obligations.

2.4. Logistics Supervision System. The logistics supervision framework system model based on the Internet of Things technology mainly includes five parts: information security and sharing, a standard specification system, a portal system, an operation and maintenance system, and the specific implementation subsystem. The relationship between the various subsystems of the logistics system is mainly the transmission of information, and the information flow includes the upward flow from the end of information collection to the end of the application and the downward flow from the client to the hardware. Specific information flow includes terminal data collection, massive data processing, network transmission operators, distributed data storage, application support services, and front-end applications. There are two different methods for the downward flow of information, one is to transmit the information of the query result through the background channel, and the other is to manage the terminal device according to the instruction. The purpose of the design of the entire logistics supervision system based on the Internet of Things is to use RFID, GIS, GPS, and other Internet of Things technologies to perform real-time and comprehensive supervision of the transportation, loading, unloading, warehousing, and distribution processes in the logistics process and then help managers to improve the decision-making level for abnormal logistics. Horizontal cooperation between logistics service providers (LSPs) has become an effective form of organization and is expected to develop further in the future [28]. The entire logistics supervision system based on the Internet of Things technology is based on the logistics guarantee business and provides logistics services for different suppliers and consumers. As a real-time logistics monitoring system, in addition to completing the basic functions of the system, it must also consider the principles of applicability, reliability, sustainability, interface beauty, safety, and real-time.

Logistics flexibility has a positive impact on the quality of logistics services and improves the relationship between satisfaction with the logistics flexibility a positive impact on logistics service quality [29]. A mature logistics supervision system must meet the following requirements: (1) ensure the

Figure 1: Overall structure of supply chain finance.
traceability of logistics and ensure logistics safety; (2) the overall architecture should be based on mature technologies and models to ensure the stability of the system; (3) the logistics system based on the Internet of Things technology takes information exchange as the key, completes the entire logistics system, and realizes the top-down improvement of all links; (4) the system structure of the logistics system should incorporate new technologies and requirements into existing technologies and requirements, laying a foundation with other enterprises for later integration; (5) comprehensively study environmental protection and energy saving issues, and maximize the use of resources in the logistics system; (6) flexible management of different departments according to needs; and (7) improving the efficiency of logistics is the basis for improving logistics competitiveness.

3. Wolves Algorithm Model in the Logistics Supervision System Based on Internet of Things Technology

3.1. Data Collection. The data in this study are mainly derived from the data records of various logistics companies from 2015 to 2019 and the research experience of previous scholars. Data acquisition is achieved based on the networking technology, the use of certain portions of the main service stream AIDC technology for automatic identification and data collection, for example, bar-code printing, bar-code recognition technology, wireless data transmission, and wireless label (RFID) technology. Due to the low cost of bar-code technology, currently, bar-code technology is mainly used for data collection. With the development of RFID technology, the cost of RFID continues to decrease, and more and more manufacturers have begun to use RFID technology.

3.2. Wolves Hunting Model. In order to improve the efficiency of logistics distribution based on the Internet of Things technology under the background of the intelligent environment and optimize the distribution path, we apply the wolf pack algorithm to the logistics distribution according to the actual situation. The wolf group algorithm is proposed based on the intelligent inspiration of the group survival group of the wolf group and has been successfully applied to the optimization problem of complex functions and the conventional 0-1 knapsack problem [30]. The hunting model of wolves is shown in Figure 2.

3.3. Establishment of Wolf Pack Hunting Algorithm. Binary Wolf Pack Algorithm (BWPA) is an intelligent algorithm that can solve combination optimization problems in discrete spaces [31]. Assuming that the hunting range of wolves is in a European space of $N \times M$, it is easier for wolves to find the global optimal value [32]. We add feedback in the process of wolves raiding, increase the communication between the wolf i and the wolf, and automatically adjust the size of the step. When the detective wolf feels the odor concentration is close to the odor concentration felt by the wolves, if you quickly rush to the wolf’s position with a larger step length, the formula is as follows:

$$
\begin{align*}
 x_{id}^{k+1} &= x_{id}^k + \text{step}_{bid}^k, \\
 \text{step}_{bid}^k &= w \times \text{step}_{bid}^k \times \left(\frac{a_d^k + x_{id}^k}{d_{id} - x_{id}^k} \right), \\
 w &= \min \left\{ \frac{u_{min} - \left(u_{max} - u_{min} \right) \left(F_k - F_{min}^k \right)}{F_{avg}^k - F_{min}^k}, 1 \right\}, \\
 F &= F_{avg}, \\
 d_{near} &= \frac{1}{D \times \omega} \sum_{d=1}^{D} \left[\max_d - \min_d \right].
\end{align*}
$$

According to formula (1), to initiate the calling behavior, according to the odor concentration, the value of w is adaptively changed. The calculation formula of w as follows:

$$
\begin{align*}
 u_{min} &= \frac{u_{max} - \left(F_k - F_{min}^k \right)}{F_{avg}^k - F_{min}^k}, \\
 u_{max}, \\
 F &= F_{avg}.
\end{align*}
$$

The wolves will approach the wolf from various positions. If the scent perceived by the wolf is greater than that of the wolf, that is, when $Y_{i} > Y_{lead}$, the fierce wolf initiates the summoning behavior instead of the wolf; otherwise, it will continue to attack until the distance $d \leq d_{near}$ between the fierce wolf and the wolf, and algorithm enters siege behavior. The calculation formula of d_{near} is as follows:

$$
\begin{align*}
 d_{near} &= \frac{1}{D \times \omega} \sum_{d=1}^{D} \left[\max_d - \min_d \right],
\end{align*}
$$

where d_{near} is the distance between the wolf and the wolf when the siege is initiated and ω is the distance judgment factor; its size directly determines whether to enter the siege behavior, the greater the ω, the faster the convergence speed, but if it is too large, the calling behavior will remain unchanged.

When the fierce wolf is very close to the head wolf, it means that it is not far from its prey and needs to be captured by a close siege. It is believed that the smell of prey has the highest concentration of wolf prey direction, and artificial wolves need to move forward in small steps, a thorough search of prey odor concentration values near the value of the fitness function. The formula for the siege behavior of wolves is as follows:

$$
\begin{align*}
 x_{id}^{k+1} &= x_{id}^k + \delta^k \times \eta \times \text{step}_c \times \left| H_{d}^k - x_{id}^k \right|,
\end{align*}
$$

where x_{id}^k represents the position of the k artificial wolf in the M-dimensional space, step_c represents the siege step length, and H_{d}^k represents the position of the k wolf in the M-dimensional space. η is a random number uniformly distributed in the range $[-1, 1]$, δ^k is the siege adjustment value, and its setting method is as follows:

$$
\begin{align*}
 \delta^k &= M, \\
 \delta^k &= C \times \delta^{k-1}, \\
 C &\in [0.9, 0.999], M = 1.
\end{align*}
$$

During the siege, if the odor concentration perceived by the artificial wolf is greater than the target odor
concentration, the position of the artificial wolf will be replaced from the new target position; otherwise, the target position will not change. In order to avoid falling into a local optimal solution, \(k \) new artificial wolf is randomly generated to replace the same number of the worst artificial wolf in the population, and the higher the \(k \) value, the better the diversity of the new species, which also increases the vitality of the wolf pack. But, if \(k \) is too high, the algorithm will tend to search randomly, and if the value of \(k \) is too small, it will lead to a local optimum; therefore, the value of \(k \) should be a whole between \([N/2 \cdot \lambda, N/\lambda]\), where \(\lambda \) is the population renewal factor.

4. Construction of a Supply Chain Financial Logistics Supervision System Based on Internet of Things Technology

4.1. Construction of the Logistics Supervision System Based on Internet of Things Technology. This article uses the Internet of Things technology to construct a supply chain financial logistics supervision system; first, the main system architecture of the logistics supervision system is designed as shown in Figure 3.

According to the architecture diagram in Figure 3, we can know that the main functional modules of the logistics supervision system are information the release query system, transaction payment system, cargo traceability supervision system, warehouse distribution management system, vehicle personnel dispatch system, EID data exchange platform, multimedia transport management system, and special goods transportation management system. The Internet of Things technology and smart devices with functions such as perception are used as part of the application support layer to support the normal operation of the application, and this part of the content is mainly to ensure the security of logistics information, provide SOA architecture and cloud computing technology for applications, and process application data.

4.2. Comparison of Freight Situation of the Logistics Supervision System. Statistics on the freight situation data of the logistics supervision system in a certain area in October 2019, including the total volume of import and export freight, import volume, export volume, and total number of transportation vehicles, and compared with the freight data in October 2018 before the logistics supervision system was established, and the role of the logistics supervision system in cargo transportation was analyzed. The two-year logistics and other conditions were set to be the same. The statistical data are shown in Figure 4.

According to the data in Figure 4, we can see that the traditional freight supervision situation is indeed inferior to the freight supervision situation after the construction of the logistics supervision system. Through the data of the logistics supervision system, we learned that the number of imports and exports in October 2019 increased by 8.9% year-on-year, the number of goods imports increased by 10.5%, the number of exports increased by 6.9%, and the number of transportation vehicles increased by 9.7%. From these data, we can see that the relevant freight situation in 2018 may not be transmitted to the back end of logistics supervision in real time, leading to the loss of some data.

4.3. Application Distribution of the Logistics Supervision System. After the rise of the logistics industry, logistics supervision systems have been widely used all over the world, especially in customs, docks, airports, stations, and other transportation sites. In order to intuitively understand the application of the logistics supervision system in various regions, we have calculated the deployment of the logistics supervision system in customs, terminals, airports, railway stations, high-speed railway stations, and other places from 2015 to 2019. The statistical results are shown in Figure 5.

According to the proportion of data in Figure 5, it can be seen that, in 2015, the logistics supervision system has not been widely used, and there are relatively few customs, terminals, and other places where the logistics supervision system is deployed, and only 15% of the airports and railway stations have the logistics supervision system deployed. In 2019, 30% of railway stations have deployed logistics supervision systems, and almost all locations have reached 20% or more of deployment.

4.4. Comparison of Logistics Supervision Performance between Different Algorithms. In order to understand more clearly the performance of logistics supervision in this study, we compare and analyze the performance of different...
algorithms under different path planning, and the final results are shown in Table 1.

According to the data in Table 1, we can see that the wolf algorithm has the highest success rate among paths of different scales, and the success rate of the fourth path planning reaches 100%. In addition to the 94.1% success rate of the cross-particle algorithm in path 1, the success rate of other path planning is very low, only about 1%. In order to
better observe the performance of wolf pack algorithm in the four paths, we separately extract the four data of the optimal value, the worst value, the average value, and its success rate in the four paths. The results are shown in Figure 6.

According to the data of the optimal value, worst value, and average value of the wolf group algorithm in the four different paths in Figure 6, we can see the performance of the wolf group algorithm in the four paths, according to the data
in Table 1, the success rate of the wolf pack algorithm on the four paths is 99.9%, 98.8%, 99%, and 100%, and it has the best performance on the fourth path, and the second path the performance is relatively poor.

5. Conclusions

The development of the Internet has promoted the development of e-commerce, online trading has become popular, and the logistics industry has also appeared in the public’s view. The logistics industry has brought a lot of convenience to people’s life, and its appearance has changed people’s way of shopping. With the lowest cost, logistics will deliver the goods needed by users to users by means of transportation, escort, and distribution, so as to realize the effective circulation of goods. People transport goods by means of logistics and only need to entrust the goods to the designated logistics company, and they can realize the circulation of goods and save their own time. Also, logistics companies in the process of freight transport have a certain regulatory mechanism, which can ensure the safety of goods, so that users can be assured to use the way of logistics to transport goods. However, the traditional logistics supervision mechanism has some defects, it cannot transmit the real-time logistics freight situation, and its safety factor is not high.

Under the background of intelligent environment, this paper constructs a supply chain financial logistics supervision system based on the Internet of things technology, which uses the characteristics of “things connected” of the Internet of things technology to transmit and interact logistics information through intelligent devices. Also, we use the calculation and recognition functions of basic smart devices in the smart environment, perceive the logistics information of supply chain finance through sensor perception technology and wolf pack algorithm, collect relevant data such as cargo status and cargo journey in the logistics process, calculate the logistics data according to the wolf pack hunting and siege behavior formula in the wolf pack algorithm, analyze the performance of the logistics supervision system in practical applications, and propose improvements to the deficiencies of the logistics supervision system.

According to the final result of the experiment, it can be seen that the logistics supervision system has very good practical significance in the logistics industry, reducing the loss of freight data. Also, with the advancement of science and technology, the development of Internet of Things technology, and the construction of smart environment, the logistics supervision system is becoming more and more perfect, during the period from 2015 to 2019, the number of deployment of logistics supervision systems has increased year by year, and it has been widely used in customs and other places.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the fund of “Research on the Rural Development Model of Qinghai Tibetan Area under the Background of Rural Revitalization Strategy” (No. 19031) and the fund of “Research on the Development of Wellness Tourism in Qinghai in the New Era” (No. 18029).
References

[1] Z. Lv and N. Kumar, “Software defined solutions for sensors in 6G/IoE,” Computer Communications, vol. 153, pp. 42–47, 2020.

[2] C.-H. Wu and S.-B. Tsai, “Using DEMATEL-based ANP model to measure the successful factors of E-commerce,” Journal of Global Information Management, vol. 26, no. 1, pp. 120–135, 2018.

[3] Y. Chen, W. Zheng, W. Li, and Y. Huang, “The robustness and sustainability of port logistics systems for emergency supplies from overseas,” Journal of Advanced Transportation, vol. 2020, Article ID 8868533, 10 pages, 2020.

[4] J.-Y. Yeh and C.-H. Chen, “A machine learning approach to predict the success of crowdfunding fintech project,” Journal of Enterprise Information Management, 2020.

[5] M. Zhou, Y. Wang, Z. Tian, Y. Lian, Y. Wang, and B. Wang, “Calibrated data simplification for energy-efficient location sensing in internet of things,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6125–6133, 2019.

[6] W. Elsayed, M. Elhoseny, S. Sabbeh, and A. Riad, “Self-maintenance model for wireless sensor networks,” Computers & Electrical Engineering, vol. 70, pp. 799–812, 2018.

[7] A. Mosenia and N. K. Jha, “A comprehensive study of security of internet-of-things,” IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 4, pp. 586–602, 2017.

[8] Z. Lv, B. Hu, and H. Lv, “Infrastructure monitoring and operation for smart cities based on IoT system,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1957–1962, 2020.

[9] T. A. Bui, H. T. T. Trinh, B. T. Nguyen, and L. D. Bui, “The potential for tra VINH province to become trade gateway of the mekong delta from logistics and supply chain management perspectives,” The Scientific Journal of Tra Vinh University, vol. 1, no. 4, pp. 23–40, 2020.

[10] D. D. Zulfikar and D. Ernawati, “Pengukuran kinerja supply chain menggunakan metode green score di Pt. Xyz,” Juminten, vol. 1, no. 1, pp. 12–23, 2020.

[11] G. B. B. Vieira, F. J. K. Neto and J. L. D. Ribeiro, “The rationalization of port logistics activities: a study at port of Santos (Brazil),” International Journal of E-Navigation and Maritime Economy, vol. 2, pp. 73–86, 2015.

[12] E. Chancey, J. L. M. Flores, M. B. Palma et al., “Redesign of the supply chain of a restaurant franchise in the food industry,” Global Journal of Business Research, vol. 10, no. 2, pp. 103–111, 2016.

[13] J. Zhilun, L. Xuehai, and L. Binglian, “The design of supervision system for UAV logistics industry based on the whole industry chain,” Forum on Ence and Technology in China, vol. 1, no. 11, pp. 23–24, 2019.

[14] W. Xiaofeng, Z. Rui, J. Rui et al., “Three ring joint control to structure export wooden packaging material management system with the Chinese characteristics,” Plant Quarantine, vol. 29, no. 1, pp. 56–58, 2015.

[15] C. Busse and C. M. Wallenburg, “Innovation management of logistics service providers,” International Journal of Physical Distribution & Logistics Management, vol. 41, no. 2, pp. 187–218, 2016.

[16] F. B. Balo, “Internet of things: a survey,” International Journal of Applied Mathematics Electronics and Computers, vol. 12, no. 4, pp. 104–110, 2016.

[17] J. Granjal, E. Monteiro, and J. Sa Silva, “Security for the internet of things: a survey of existing protocols and open research issues,” IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1294–1312, 2015.

[18] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things: a survey on enabling technologies, protocols, and applications,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2547–2576, 2015.

[19] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[20] R. Y. Zhong, G. Q. Huang, S. Lan, Q. Y. Dai, X. Chen, and T. Zhang, “A big data approach for logistics trajectory discovery from RFID-enabled production data,” International Journal of Production Economics, vol. 165, pp. 260–272, 2015.

[21] M. Tentori, L. Escobedo, and G. Balderas, “A smart environment for children with autism,” IEEE Pervasive Computing, vol. 14, no. 2, pp. 42–50, 2015.

[22] O. Starostenko, X. Cortés, A. Sánchez, and V. Alarcon-Aquino, “Unobtrusive emotion sensing and interpretation in smart environment,” Journal of Ambient Intelligence and Smart Environments, vol. 7, no. 1, pp. 59–83, 2015.

[23] A. P. Volpentesta, “A framework for human interaction with mوبيقيتuous services in a smart environment,” Computers in Human Behavior, vol. 50, pp. 177–185, 2015.

[24] A. Is, “Analisis rantai pasokan (supply chain) komoditas telur ayam ras petelur (layer),” JAS (Jurnal Agri Sains), vol. 3, no. 2, pp. 13–14, 2019.

[25] P. Hove-Sibanda and R. I. D. Pooc, “Enhancing supply chain performance through supply chain practices,” Journal of Transport and Supply Chain Management, vol. 12, pp. 33–34, 2018.

[26] V. Turkulainen and M. L. Swink, “Supply chain personnel as knowledge resources for innovation—a contingency view,” Journal of Supply Chain Management, vol. 53, no. 3, pp. 41–59, 2017.

[27] G. B. Gebremeskel, C. Yi, C. Wang, and Z. He, “Critical analysis of smart environment sensor data behavior pattern based on sequential data mining techniques,” Industrial Management & Data Systems, vol. 115, no. 6, pp. 1151–1178, 2015.

[28] J. S. Raue and A. Wieland, “The interplay of different types of governance in horizontal cooperations,” The International Journal of Logistics Management, vol. 26, no. 2, pp. 401–423, 2015.

[29] K. Yu, J. Cadeaux, and H. Song, “Flexibility and quality in logistics and relationships,” Industrial Marketing Management, vol. 62, pp. 211–225, 2016.

[30] H. S. Wu, F. M. Zhang, R. J. Zhan, H. Li, and X.-L. Liang, “Improved binary wolf pack algorithm for solving multidimensional knapsack problem,” Systems Engineering & Electronics, vol. 37, no. 5, pp. 1084–1091, 2015.

[31] L. Guo and S. Liu, “An improved binary wolf pack algorithm based on adaptive step length and improved update strategy for 0-1 knapsack problems,” Communications in Computer and Information Science, vol. 2, no. 1, pp. 22–24, 2017.

[32] W. Dongxing, Q. Xu, L. Kang et al., “Novel wolf pack optimization algorithm for intelligent medical treatment personalized recommendation,” The Journal of China Universities of Posts and Telecommunications, vol. 25, no. 6, pp. 37–38, 2018.