Single cell and spatial transcriptomic analyses reveal microglia-plasma cell crosstalk in the brain during *Trypanosoma brucei* infection
REVIEWER COMMENTS

Reviewer #2 (Remarks to the Author):

The manuscript from Quintana et al utilizes single cell transcriptomics, including spatial transcriptomics) to examine the CNS response to T. brucei infection. The authors identify that circumventricular organs appear to have the most parasite and corresponding inflammation. The transcriptomic analyses indicate several flavors of microglia/monocytes in the CNS including those with high expression of microglia homeostatic markers and those consistent with activated microglia and monocyte-derived cells. The authors also identify that B cells are a source of IL-10 and microglia are producing BAFF, a survival factor for B cells. The manuscript is likely to be an incredible resource for those studying the biology of chronic T. brucei infection of the brain.

1) For the transcriptomic analysis, my most major comment is on the use of genes like Aif1 and CX3CR1 to define the microglia/monocyte/macrophage clusters. While these genes are highly expressed, they are certainly not unique to microglia. Thus, it would be helpful to possibly rename the clusters to reduce potential confusion regarding the identity of the clusters. Perhaps the clusters could be called based on genes like tmem119, sall1 that are unique to microglia (even if genes like tmem119 are downregulated with inflammation). The text states that cells in some of the clusters are expressing microglia homeostatic genes but at a lower level, which is a more powerful way to define these clusters versus Aif1-expression. Given the high number of CD14-expressing monocytes, it is reasonable to conclude that these cells may differentiate into cells that acquire markers like cx3cr1, MHC II, and Aif1 in particular.

2) Could comment on whether there is evidence of tertiary lymphoid structures forming that would further support B cells in the CNS during infection. Do they preferentially form in the circumventricular organs?

3) The identification of a “disease-associated” microglia population is very interesting, including whether the DAM program is beneficial or detrimental. The authors state that the DAM signature appears when pathology increases, but this may or may not be connected to microglia. The authors should speculate on whether MHC or Dectin-1 (or any others in the DAM signature) are likely to be involved in tissue destruction or a brain-protective immune response. It’s a timely topic and worthy of discussion.

Minor comments:
1) CCL2 is typically associated with the recruitment of CCR2-expressing monocytes and not neutrophils (typically CXCR1 and CXCR2 for PMNs).
2) BAMs also express CX3CR1... What other than Arg1 makes them anti-inflammatory. They are typically defined by CD206 expression, but what else might make them functionally anti-inflammatory?

Reviewer #3 (Remarks to the Author):

The authors have studied the transcriptional response in the brain-hypothalamus to T. brucei using single cell RNA-seq and spatial transcriptomics. The methods are really well described and with the data analysis scripts being made available upon publication the work should be reproducible.

- The authors have used 10x v3.1 to generate single cell RNA-seq data. Though they are targetting the immune cells of the brain which tend to have lower gene expression diversity during tissue homeostasis than, for example, neurons have, the median number of genes detected per cell is really low. The cutoff used was 200 genes per cell and in the naive condition the median nr of genes per cell is 270, just barely above the cutoff. The low gene detection levels should be (and are according to the figures) good enough to distinguish major cell types, but when looking at the transcriptional response to a perturbation a lot of information is lost and bias is introduced. Looking at the data, the quality could probably have been improved by sequencing deeper. Could the authors comment?
In panel 3G, the authors show the result of a DEG analysis in the 6 different microglial clusters between Naive and 25/45dpi. The cell populations, naive, 25dpi, and 45dpi are very different in terms of gene detection level. Seeing this many genes differentially regulated (more than the median gene detection in the cells) indicates that the genes that appear in the DEG list are not robustly expressed across most cells. Furthermore, the comparison within the Aif1/2 types between naive and 25/45dpi is very unbalanced in terms of cells from each condition included in that clusters. The Aif1/2 types hardly contain any naive cells. Both the gene detection level and the cell numbers in each population can lead to overinterpretation of the result.

There are some problems with the tissue used for visium analysis. The brain sections are cracked and some show significant folding. Both these issues cause an over- or underrepresentation of genes in the visium spot. The visium data was aligned to both M musculus and T brucei genomes. Pathway analysis was performed on T brucei transcript but there is no mention of how many genes per spot were detected for that genome. I would assume that gene detection levels are lower than for the mouse genome. How meaningful than is the pathway analysis just on those genes?

Minor:
- Figure 3F, remove the dashed lines to figure 3E. Panel F is not taken from that area in panel E. It would be better to include a representative atlas image.
- The supplemental tables are hard to read without formatting and Table S3C is too small to read.

Reviewer #4 (Remarks to the Author):

Previous work has demonstrated that T. brucei infection results in glial cell activation and neuroinflammation. However, the molecular mechanisms that govern these processes are unknown. This work utilizes two powerful approaches, scRNAseq and spatial transcriptomics, to define the transcriptional responses of different classes of immune cells within a well-defined area of the brain at two different time points in a rodent model of T. brucei infection.

This work is of interest to researchers from diverse fields including molecular parasitologists, immunologists, and bioinformaticians that are working to integrate multiple, distinct, large-scale ‘omics data sets to understand dynamic responses. Overall, I found the study to be well designed and informative. This reviewer agrees that the work represents a useful resource for studying cellular and molecular events that occur during brain infection and provides a model for how the integration of single cell RNA seq and spatial transcriptomics can be used to study host-parasite interactions.

There were several instances where the transcripts mentioned in the text were not listed in the figure and cell clusters mislabeled. It would be important to carefully proofread all figures and text for any discrepancies. I have noted some below in the major and minor points, but they are not exhaustive and there may be additional differences I haven’t detected.

Questions/comments on text:

• Lines 204-209 regarding the identification of outliers. Is it possible to document genes that were flagged as “outliers”. Might it be useful to other researchers to know the identity of these outliers? Also, do genes have to be identified by both approaches before being designed as outliers.? Can the authors provide a reference for “highly variable genes such as long non-coding RNAs such as Malat1”?

• Table “List of RNAscope probes”. To what is “channel” referring? Would it be better to indicate wavelength and/or detector?

• Lines 431-432. How do the 500 genes/cell and 1500 transcript/cell compare to other studies? Is this higher or lower than expected?
• Line 449- in reference to figure 1G- How was the inflammatory module score calculated?

• Line 532- should Figure 3F be Figure 3E?

• Line 607-I could not find Icam1 in the Figure 4F graph

• Line 622, I could not find Sox10 and S100b in figure 1D

• Lines 625-628: There percentages of each cell cluster given in the text does not agree with the image in figure 5A.

• Lines 1025, Figure 5 legend. There is no description of panel L.

• There are several spatial transcriptome figures including Figure 2A, Figure 3E, and Figure 5E that are described differently. Can the authors use consistent descriptors or highlight the differences between the experiments.

Questions/comments on Figures:

• Figure 1A) The right side of the figure panel is not clear. This can likely be solved by more information in the figure legend detailing the significance of the different colors.

• Figure 1C) What are the parameters used to determine clinical score and how are they quantified?

• Figure 1D) How are inflammatory gene module scores determined? I couldn’t not find a reference for “in silico gene module” score

• Figure 1E) I interpreted the heat map to be comparisons among the cell lines in the figure and not between infected and naïve samples. Is that correct?

• Figure 2) I found this figure particularly compelling, and some questions came to mind. Were any brain sections stained for BOTH stumpy and slender markers simultaneously? I am curious whether there might be a mixture of slender and stumpy parasites in different regions. Is there a way to compare the number of parasites present with the amount of transcript detected in the spatial transcripts? For example, is it possible to discriminate between a few, very actively transcribing parasites from more, less actively transcribing parasites? Please provide more information for the left-hand Venn diagram in E. Was the GO Term analysis done only with the 969 transcripts that were found exclusively in the CVOs or for all 1067 transcripts?

• Figure 3: There is a discrepancy regarding significance levels. Figure legend (lines 947-948) indicates “-2 < Log2Fold change < 2 adjusted p value < 0.05” while the text (lines 544-545) indicates “Log2fold change > 0.25 or < -0.25”.

• Figure 3B: It is unclear why some of the transcripts are in bold.

• Figure 3E: Justification for using Adgre1 and Chil3 is not provided.

• Figure 4: Lines 587-591 indicates a 2-fold increase in abundance that is not apparent in the cell proportions indicated in Figure 4D. Also the numbers of each subcluster indicated in the text in lines 589-593 do not match with the cell proportions given in the table in Figure 4D.

• Figure 5 A. Should Cluster 5 be Cluster 0? The percentages given in the text for the clusters in A do not match what is provided in the figure panel 5A. For example, Cluster 1 = 34% (line 625) and Cluster 3 = 8.48% (lines 626). In the figure, there are fewer dots in cluster 1 than 3. There is no description for Panel L.

• Figure 6. How are the average and percent expression in panel D calculated?
• Figure S1. More information is needed to interpret the flow cytometry panels. Are “infected” samples from 25 or 45 dpi? Macs and Micros are not defined. The live dead assay is not provided. The gating strategy in C is not clear from the figure legend. There is not enough information in the legend to interpret panel C. Tnfsf13b and Tnfrsf17 are not shown.

• Figure S2. Could the transcript names be color coded to indicate which cluster they are associated?

• Figure S3. It is unclear to me what the quality controls experiments are testing: the integrity of the brain regions during processes or the reproducibility in the number of transcriptional clusters detected? What should the reader expect to see if the data pass quality control? Also, it is unclear to me what the 18 clusters represent. Are they the same clusters as in Figures 1 and S5?
We thank all the reviewers for their positive assessments and helpful comments. We have summarised the changes made to the manuscript in response, and we believe that they have significantly improved it.

Major points:

1. We have re-annotated the myeloid subsets identified in our single cell dataset to better reflect their potential function (e.g., \(\text{Cd14}^+\) monocytes, homeostatic microglia, infection-associated microglia) as suggested by reviewer 2.

2. We have commented on the potential role of the newly identified infection-associated microglia subsets in the context of chronic infection and speculate how these cells might be interacting with peripheral immune cells to coordinate anti-parasitic responses and during brain pathology, as recommended by reviewer 2.

3. We have addressed the observation of low gene counts per non-neuronal cells at a steady state level and have commented why we believe this might be the case, as raised by reviewer 3. Moreover, we have compared the dataset presented in this manuscript against other previously published articles describing the use of similar technologies to study the murine hypothalamus and/or murine glial cells, as queried by reviewer 4.

4. We have commented on the overall quality of the tissue sections used for spatial transcriptomics, as highlighted by reviewer 4. Both single cell and spatial transcriptomics were used in this study as a starting point to identify novel interactions in the context of chronic brain infections, and the finding derived from these *in silico* predictions were independently validated by several methods throughout the manuscript (e.g., imaging, flow cytometry), further validating our bioinformatic predictions.

5. We have created a searchable database that will enable the community to explore and analyse the single cell data reported in this manuscript: https://cellatlas-cxg.mvls.gla.ac.uk/tbrucei_brain/

Below we have provided point-by-point answers to the major and minor comments raised by these three reviewers.
Reviewer #2 (Remarks to the Author):

The manuscript from Quintana et al utilizes single cell transcriptomics, including spatial transcriptomics) to examine the CNS response to T. brucei infection. The authors identify that circumventricular organs appear to have the most parasite and corresponding inflammation. The transcriptomic analyses indicate several flavors of microglia/monocytes in the CNS including those with high expression of microglia homeostatic markers and those consistent with activated microglia and monocyte-derived cells. The authors also identify that B cells are a source of IL-10 and microglia are producing BAFF, a survival factor for B cells. The manuscript is likely to be an incredible resource for those studying the biology of chronic T. brucei infection of the brain.

We appreciate such positive feedback from this reviewer and their enthusiasm and support for our findings.

1) For the transcriptomic analysis, my most major comment is on the use of genes like Aif1 and CX3CR1 to define the microglia/monocyte/macrophage clusters. While these genes are highly expressed, they are certainly not unique to microglia. Thus, it would be helpful to possibly rename the clusters to reduce potential confusion regarding the identity of the clusters. Perhaps the clusters could be called based on genes like tmem119, sal1 that are unique to microglia (even if genes like tmem119 are downregulated with inflammation). The text states that cells in some of the clusters are expressing microglia homeostatic genes but at a lower level, which is a more powerful way to define these clusters versus Aif1-expression. Given the high number of CD14-expressing monocytes, it is reasonable to conclude that these cells may differentiate into cells that acquire markers like cx3cr1, MHC II, and Aif1 in particular.

We thank the reviewer for their insights. As this reviewer states, clusters 0 and 1 display high expression levels of genes used to identify “homeostatic” microglia such as Tmem119, Sal1, Cx3cr1, Hexb, P2ry12, amongst others. Clusters 4 and 5 do not show detectable expression levels of homeostatic microglia-related genes, but they do display a robust transcriptional programme consistent with disease-associated microglia (DAM) previously reported in neurodegenerative conditions. These include Aif1, Cst3, Cst7, as well as genes associated with phagocytosis and lipid metabolism such as Apoe, Ctsd, and Tyrobp, amongst others (reported in table S2F). Though we agree that some of these genes can be shared by infiltrating myeloid cells that acquire a microglia-like phenotype in the infected brain milieu, as recently reported for myeloid cells during spinal cord injury in mice, we cannot decipher the ontogeny of these cells with the current dataset with enough certainty. We have renamed the Aif1+ clusters as “Infection-associated microglia” (IAM) and the Cx3cr1+ clusters as “homeostatic microglia” throughout the text to better reflect the underlying complexity of these myeloid subsets. These changes are also reflected in the updated figure 3, where we have also included the marker genes for each cluster in panel 3A.

We have changed the following text and associated figures to reflect these changes as follow:

Line 634: Based on these results we catalogued clusters 0 to 5 as follow: Homeostatic microglia (HM) 1 (1,688 cells; 26.77%), HM 2, (1,548 cells; 24.55%), Cd14+ Monocytes (1,396 cells; 22.14%), Mrc1+ border-associated macrophages (Mrc1+ BAMs – 812
cells; 12.6%), Infection-associated microglia (IAM) 1 (587 cells; 9.31%), and IAM 2 (274 cells; 4.34%) (Figure 3C and D). Notably, HM 1 and 2, and Cd14+ monocytes accounted for ~73% of all the microglia detected under homeostatic conditions, but IAM 1 and 2, and Mrc1+ BAMs subclusters progressively increased in frequency over the course of infection, suggesting an adoption of an infection-associated phenotype (Figure 3C and 3D).

2) Could comment on whether there is evidence of tertiary lymphoid structures forming that would further support B cells in the CNS during infection. Do they preferentially form in the circumventricular organs?

This is a really interesting question. The formation of tertiary lymphoid structures in the CNS was recently reported during chronic neuroinflammatory and autoimmune conditions. Based on our own data, we detect genes associated with lymphoid structures such as lymphotoxin b (Ltb), Cxcl13, and Tnfsf13b, among others. We are currently investigating this in more detail.

Line 1131: Notably, the presence of various cell types, including macrophages with tissue remodelling capacity (e.g., Mrc1+ macrophages), follicular-like CD4+ T cells, and plasma cells, resembles the formation of reticular networks typically found in secondary and tertiary lymphoid aggregates. Additionally, we detect a robust expression of genes associated with the formation of lymphoid aggregates such as Cxcl13, Cxcl10, Ltb, and Tnfsf13b, which is similar to those recently reported in neuropsychiatric lupus. Thus, it is tempting to speculate that chronic T. brucei infection leads to the formation of reticular networks resembling tertiary lymphoid aggregates, supported by follicular-like CD4+ T cells, together with stromal cells that might function to support T-B cell interactions (e.g., ependymal cells), ultimately supporting primary humoral responses. We suggest that the Cd138+ plasma cells identified in our study facilitate this response, especially around the CVOs. However, further work is required to determine whether these structures indeed exist in the chronically infected brain, and the individual contribution of the various cell types identified in this study to brain pathogenesis and circadian disruptions in sleeping sickness.

3) The identification of a “disease-associated” microglia population is very interesting, including whether the DAM program is beneficial or detrimental. The authors state that the DAM signature appears when pathology increases, but this may or may not be connected to microglia. The authors should speculate on whether MHC or Dectin-1 (or any others in the DAM signature) are likely to be involved in tissue destruction or a brain-protective immune response. It’s a timely topic and worthy of discussion.

We do not observe demyelination or extensive neurotoxicity at this point of infection using this model of infection. Similarly, we do not observe the overexpression of Clec7a (encoding for Dectin-1), and Tlr2 was only identified in the Cd14+ monocyte subset. We think it is unlikely that any of the responses reported in this manuscript are associated with tissue destruction, beyond potentially tissue remodelling around the ventricular spaces and the meninges, consistent with ventricular and meningeal inflammation. It remains to be explored if the overexpression of MHC leads to the activation of other adaptive immune cells also detected in the brain parenchyma.
during infection, such as CD4+ and CD8+ T cells. As suggested, we have added text to speculate about this:

Lines 1029: In the context of chronic *T. brucei* infection, the acquisition of a IAM phenotype might contribute to pathogen clearance or the timely removal of dying/dead parasites, but it is currently unclear whether these subsets are detrimental or beneficial to limit brain pathology. Notably, the expression of putative genes associated with the recognition of pathogen-associated molecular patterns, such as Toll-like receptors and Dectins, was restricted to specific subsets (e.g., Cd14+ monocytes). Thus, it is tempting to speculate that the “priming” of the myeloid subsets towards an IAM state could be triggered by soluble inflammatory mediators such as cytokines and chemokines (e.g., Ifng, Ccl5, Il1b, Il18) instead of direct contact with *T. brucei*. Additionally, the upregulation of genes associated with antigen presentation suggests an active crosstalk with infiltrating T cells, as recently discussed in other neurodegenerative disorders and infections3–5, but whether the interactions between different subsets are detrimental or beneficial to limit brain pathology remains to be fully elucidated.

Minor comments:

1) CCL2 is typically associated with the recruitment of CCR2-expressing monocytes and not neutrophils (typically CXCR1 and CXCR2 for PMNs).

We thank the reviewer for this comment. We have now amended this in line 728.

2) BAMs also express CX3CR1… What other than Arg1 makes them anti-inflammatory. They are typically defined by CD206 expression, but what else might make them functionally anti-inflammatory?

Myeloid-specific cluster 3 express high levels of Mrc1, which encodes for CD206, in addition to additional markers traditionally associated with anti-inflammatory macrophages. Though this cell population highly expresses several putative anti-inflammatory macrophage markers, we did not detect a cytokine profile typically associated with this function (e.g., Il10 or Il4). Rather, we detected expression of Il1b (pro-inflammatory properties) and Il18bp (anti-inflammatory properties), which may indicate either heterogeneous populations within this cluster, or the expression of mixed cytokines. Nevertheless, we cannot resolve these nuances with the current dataset, and we are now working towards better resolving these populations in vitro and in vivo. We have also amended the text as follows:

Line 623: Cluster 3 expresses putative marker genes associated with border-associated macrophages such as Lyz2, Ms4a7, Ms4a6c, Tgfbi, H2-Ab1, and Lyz26,7, as well as gene sets characteristic of anti-inflammatory responses, such as Mrc1 (encoding for CD206), Chil3, Arg1, and Vegfa (Figure 3B and S2F Table), indicative of an anti-inflammatory phenotype.

Reviewer #3 (Remarks to the Author):

The authors have studied the transcriptional response in the brain-hypothalamus to *T. brucei* using single cell RNA-seq and spatial transcriptomics. The methods are really well described and with the data analysis scripts being made available upon publication the work should be reproducible.

- The authors have used 10x v3.1 to generate single cell RNA-seq data. Though they are targeting the immune cells of the brain which tend to have lower gene expression diversity during tissue homeostasis than, for example, neurons have, the
median number of genes detected per cell is really low. The cutoff used was 200 genes per cell and in the naive condition the median nr of genes per cell is 270, just barely above the cutoff. The low gene detection levels should be (and are according to the figures) good enough to distinguish major cell types, but when looking at the transcriptional response to a perturbation a lot of information is lost and bias is introduced. Looking at the data, the quality could probably have been improved by sequencing deeper. Could the authors comment?

We thank the reviewer for their thoughts on this aspect of the paper and we agree regarding the relatively low median number of genes per cell. To address this, we have described below some points which reassured us that the data generated are of good quality despite the relative low gene counts per cell in the naïve controls:

a. During our optimisation steps, we sequenced two biological replicates in a pilot 10X experiment and consistently detected low number of genes per cell from hypothalamic preparations in naïve samples (Figure 1A). Moreover, the complexity score, which should be >0.8, was higher in the samples included in this study compared to the ones from the pilot dataset (Figure 1B).

b. In all cases, the percentage of live cells was consistently >85% as determined by flow cytometry, ruling out potential issues associated with dying/dead cells. We have added the corresponding % of viability per sample in table S2C.

c. The samples presented in this manuscript were sequenced at a saturation >92%, and so we did not try to increase the depth of sequencing any further as we assumed an additional ~5% sequencing would not resolve this apparent low gene counts drastically. We have added the corresponding % sequencing saturation per sample in table S2C.

d. As the reviewer indicates, our bioinformatic pipeline captured the major non-neuronal cell populations that we would expect to see in the hypothalamus based on previously reported single cell atlases.

e. Given the gene discrepancies between experimental groups, we analysed the integrated dataset using two independent computational approaches (Seurat and STACAS) and detected the same marker genes discussed in this...
manuscript. Notably, the number of genes per cell differs between cell types under homeostatic conditions. We draw this reviewer’s attention to Figure S1B (upper panel), where we reported that the B cells/oligodendrocytes cluster has, on average, twice as many genes per cells than ependymocytes, for example, despite uniform number of UMI per cell (Figure S1B lower panel). This might indicate heterogeneity in the overall gene detection level across cell type within the same sample.

f. We consistently detected greater median gene number per cell in infected samples compared to naïve samples processed in parallel.

It is worth noting that the reported genes and UMIs per cells vary greatly across reports, with some recent studies reporting “low gene counts” for glial cells in both murine and human brain tissues ranging from 400-800 genes/cell and ~1,500-3,000 UMIs/cell.10,11,13–15,1. Though these are important parameters to understand the underlying biology of these cells, we have found that these are inconsistently reported in the currently available literature. We have included further information in the revised table S2A to increase transparency in the results presented in this manuscript.

- In panel 3G the authors show the result of a DEG analysis in the 6 different microglial clusters between Naive and 25/45dpi. The cell populations, naive, 25dpi, and 45dpi are very different in terms of gene detection level. Seeing this many genes differentially regulated (more than the median gene detection in the cells) indicates that the genes that appear in the DEG list are not robustly expressed across most cells.

Broadly, we analyse gene signatures that are present in at least 25% of the cells, as defined in the Findallmarkers function in Seurat. In the context of an experimental infection, we would expect a strong upregulation of genes not transcribed under homeostatic conditions. For instance, several of the pathways reported in figure 3H (e.g., antigen processing and presentation, chemotaxis, etc) are typically found in activated myeloid cells.16–18,19. Thus, the list of significantly dysregulated gene in response to infection is likely to reflect a true biological response to a perturbation, in this case, infection. We draw your attention to line 805 where we stated the following: Most of the upregulated DEGs were detected in the HM 1, HM 2, and Cd14+ monocyte subclusters (Figure 3G).

Furthermore, the comparison within the Aif1/2 types between naïve and 25/45dpi is very unbalanced in terms of cells from each condition included in that clusters. The Aif1/2 types hardly contain any naive cells. Both the gene detection level and the cell numbers in each population can lead to overinterpretation of the result.

We agree with this reviewer that the proportion of Aif1/2 types between naïve and infected samples is unbalanced. To avoid overinterpretation, we have removed this comparison from figure 3G. We have now included an additional figure panel (Figure 3I), showing the gene pathways enriched in Aif1/2 types based on their transcriptional profile (e.g., marker genes). Additionally, we have added additional text to clarify that Aif1/2 clusters were not included in the pathway analysis:

Line 815: We did not include cells within the IAM subclusters as the overall cell proportion is reduced in naive compared to infected mice, potentially confounding DEG analysis. Instead, we analysed these two subclusters separately to better understand their transcriptional features. We found that the cells within the IAM1
subcluster display the expression of gene pathways broadly associated with antigen processing and presentation (H2-Ab1, H2-Aa, H2-Eb1), neutrophil activation (Ccl5, Fcgr4, Fcer1g), and synaptic pruning (C1qc, C1qb, C1qa), whereas those within IAM 2 also upregulate genes associated with translational activity (Rps5, Rps14, Rpsa, Rps15), suggesting a transcriptionally active state (Figure 3I and Table S2I).

We have also removed the Aif1/2 clusters from the DEGs list in supplementary table S2G and S2H. We have included the complete list of enriched pathways in supplementary tables S2I, as well as in the table legend as follow:

Line 1750: S2I) List of gene pathways identified in the IAM1 and IAM2 clusters. Significant pathways are considered those with a false discovery rate (FDR) < 0.05.

- There are some problems with the tissue used for visium analysis. The brain sections are cracked and some show significant folding. Both these issues cause an over- or underrepresentation of genes in the visium spot.

The overall quality, measured by transcript and gene distribution per spot in the array, was consistent across samples. We have included a separate spatial feature plot depicting the overall number of genes per spot in supplementary figure 3A.

The visium data was aligned to both M musculus and T brucei genomes. Pathway analysis was performed on T brucei transcript but there is no mention of how many genes per spot were detected for that genome. I would assume that gene detection levels are lower than for the mouse genome. How meaningful than is the pathway analysis just on those genes?

As discussed in the methods section (line 362), we used a purpose-built reference transcriptome combining the *Mus musculus* and the *T. brucei* transcriptome. We have found in previous work that this approach results in better gene identification and annotation in host-pathogen dual transcriptome studies. To answer this question specifically, we have repeated the alignment using only the reference *T. brucei* transcriptome and have found that ~0.7%, 1.2%, and 1.4% of the total reads map to the *T. brucei* transcriptome, with a median of 9, 7, and 67 *T. brucei*-specific genes per spot in naïve, 25dpi, and 45 dpi samples, respectively. We have included the results from SpaceRanger in the table below to summarise these observations:

Sample	Mean reads per spot	Median *T. brucei* genes per spot	Top *T. brucei* marker genes
Naive	75,224	9	Tb11.v5.0333, Tb11.v5.0349, Tb11.v5.0444, Tb11.v5.0524, Tb11.v5.0653, Tb11.v5.0701, Tb11.v5.0806, Tb11.v5.0813, Tb11.v5.0852
25dpi	67,575	7	Tb11.v5.0813, Tb11.v5.0349, Tb11.v5.0806, Tb11.v5.0653
45dpi	90,379	67	Tb11.v5.0444, Tb11.v5.0852, Tb11.v5.0813, Tb11.v5.0333, Tb11.v5.0349, Tb11.v5.0524, Tb927.1.4540, Tb927.1.2390

We have amended the methods section to report these observations as follow:

Line 364: We have found that this approach leads to a better gene identification in host-pathogen dual transcriptomics experiments. When mapping against the *T. brucei* alone, we identified that ~0.7%, 1.2%, and 1.4% of the total reads map to the *T. brucei* transcriptome, with a median of 9, 7, and 67 *T. brucei*-specific genes per spot in naïve, 25dpi, and 45 dpi samples, respectively. After alignment using the merged reference transcriptome, reads were grouped based on spatial barcode.
sequences and demultiplexed using the UMIs, using the SpaceRanger pipeline version 1.2.2 (10X Genomics).

Regarding the pathway analysis, we included this information using the top *T. brucei*-specific marker genes identified by Seurat to explore potential signatures that define the brain-dwelling parasites compared to those reported in other tissues/ organs, such as the bloodstream, as this remains poorly understood. Though limited, our data suggest that the parasites located in the brain ventricles display signatures of both slender and stumpy developmental forms. Future work is required to explore this at a finer scale (e.g., using FACS to purify ventricle-enriched parasites).

Minor:
- Figure 3F, remove the dashed lines to figure 3E. Panel F is not taken from that area in panel E. It would be better to include a representative atlas image.
We have now amended the figure and as suggested have included a representative atlas image depicting the area from which the images were captured from.
- The supplemental tables are hard to read without formatting and Table S3C is too small to read.
We thank the reviewer for picking up on this. We have increased the font size in all the supplementary tables, including Table S3C.

Reviewer #4 (Remarks to the Author):
Previous work has demonstrated that *T. brucei* infection results in glial cell activation and neuroinflammation. However, the molecular mechanisms that govern these processes are unknown. This work utilizes two powerful approaches, scRNAseq and spatial transcriptomics, to define the transcriptional responses of different classes of immune cells within a well-defined area of the brain at two different time points in a rodent model of *T. brucei* infection.

This work is of interest to researchers from diverse fields including molecular parasitologists, immunologists, and bioinformaticians that are working to integrate multiple, distinct, large-scale 'omics' data sets to understand dynamic responses. Overall, I found the study to be well designed and informative. This reviewer agrees that the work represents a useful resource for studying cellular and molecular events that occur during brain infection and provides a model for how the integration of single cell RNA seq and spatial transcriptomics can be used to study host-parasite interactions.
We thank the reviewer for a positive assessment of the work presented here and the constructive suggestions, which we have addressed in the revised manuscript as well as in the sections below:

There were several instances where the transcripts mentioned in the text were not listed in the figure and cell clusters mislabeled. It would be important to carefully proofread all figures and text for any discrepancies. I have noted some below in the major and minor points, but they are not exhaustive and there may be additional differences I haven’t detected.

Questions/comments on text:

• Lines 204-209 regarding the identification of outliers. Is it possible to document
genes that were flagged as “outliers”. Might it be useful to other researchers to know
the identity of these outliers? Also, do genes have to be identified by both
approaches before being designed as outliers.? Can the authors provide a reference
for “highly variable genes such as long non-coding RNAs such as Malat1?

We thank the reviewer for flagging this. The identification of highly variable genes
(HVGs) is a critical step for the downstream identification of discreet cell populations
20–22. The functions described in the methods section (e.g., using vst selection
method in Seurat’s FindVariableFeatures function, or plotHighestExprs in Scater)
allowed us to identify and reduce the impact of technical outliers (e.g., lowly
expressed genes with high dispersion) through variance stabilisation. Additionally,
the tools that identify HVGs are reported to give different results23, therefore we
employed two independent methods (Seurat and Scater) for internal comparison.
Thus, it is not possible to compute a set number of HVGs as they are likely to vary
depending on the data used as input. Overall, we found that some of the HVGs
identified by Seurat and Scater overlap (e.g., Malat1), but we did not require for them
to be identified by both packages for downstream analysis. We have included the top
25 most variable genes identified by Scater in our dataset in figure S1C as an
example, and have also amended the text in the methods section to clarify this as
follow:

Line 226: To identify gene signatures that represent highly variable genes (HVGs)
we employed two independent approaches: i) The Seurat FindVariableFeatures
function with default parameters, using vst as selection method, and ii) The
plotHighestExprs in Scater package 21 with default parameters, which allowed us to
manually inspect the HVGs detected by these methods (Figure S1C). We then
applied the Seurat function SCTransform for data normalisation, scaling, and
variance stabilisation of HVGs, regressing out for percentage of mitochondrial and
ribosomal genes, total UMIs, genes counts, and cell cycle genes.

•Table “List of RNAscope probes”. To what is “channel” referring? Would it be better
to indicate wavelength and/or detector?

The RNAscope probes are provided in different “channels” enabling multiplexing. In
this table we reported the channels chosen for each of the probes. However,
following your question, we have amended this table to include the fluorescent dye
used in each case (Line 448).

•Lines 431-432. How do the 500 genes/cell and 1500 transcript/cell compare to other
studies? Is this higher or lower than expected?

This is an important question, also raised by reviewer 3. Surprisingly, there is a lot of
variation in the number of genes and transcripts per cell detected in previous studies
using single cell/nuclei transcriptomics for profiling murine hypothalamus. For
instance, a recent report has implemented similar cut-off as the ones reported in our
study using the hypothalamus from aging female mice 14, and led to the identification
of similar cell populations as the ones reported here. On a separate report using
human microglia during Alzheimer’s, the authors reported a median 844 genes/cell
and 1,589 UMIs/cell, with some samples reporting as low as ~400 genes/cell 15. This
is also the case for non-neuronal cells from the murine spinal cord, with a median of
~750 genes/cell 1. However, other reports that profile the transcriptome of neuron and
non-neuron cells in the hypothalamus reported a median of ~2,500 genes/cell and
~6,000 UMIs/cell 10–13,25. These discrepancies might be due to differences in
experimental approaches, or regions profiled within the hypothalamus (e.g., whole hypothalamus, lateral or posterior hypothalamus, etc.).

• Line 449- in reference to figure 1G- How was the inflammatory module score calculated?

We first mined the integrated scRNAseq object to identify pro- and anti-inflammatory cytokines using the function below; We broadly called this compendium of molecules “cytokine list”:

cytokine.list <- c(grep("^Csf", rownames(data), value = T),
 grep("^Ifn", rownames(combined_integrated), value = T),
 grep("^Il", rownames(combined_integrated), value = T),
 grep("^Tnfsf", rownames(combined_integrated), value = T),
 grep("^Cxcl", rownames(combined_integrated), value = T),
 grep("^Cccl", rownames(combined_integrated), value = T),
 "Tslp", "Lif", "Osm", "Tnf", "Lta", "Ltb", "Cd40l", "Fasl",
 "Cd70", "Tgfb1", "Mif", "Cx3cl1")
AddModuleScore(combined, features = list(as.character(cytokine.list)))

To estimate the enrichment of *T. brucei* transcripts in the spatial transcriptomics dataset, we employed a similar approach but mining the normalised spatial transcriptomics for *T. brucei*-specific genes.

The AddModuleScore function calculates the average expression levels of each gene list (in this case, the genes within the cytokine.list set) on a given dataset (e.g., single cell of spatial transcriptomics), subtracted by the aggregated expression of control feature sets randomly selected by the function. This leads to a corrected expression level for genes of interest, in this case, (pro and anti) inflammatory cytokines.

We have added the following text in the Methods section of the revised manuscript describing how this parameter was constructed below, and have made the corresponding codes available: https://zenodo.org/record/6387555#.YkW3tC8w1nk

Line 309: Module scoring for inflammatory mediators were calculated using the AddModuleScore function to assign scores to groups of genes of interest (Ctrl = 100, seed = NULL, pool = NULL), and the scores were then represented in violin plots. This tool measures the average expression levels of a set of genes, subtracted by the average expression of randomly selected control genes. The gene list was collated from the integrated scRNAseq Seurat object using the function grep for known pro- and anti-inflammatory cytokines and chemokines. Once defined, the collated gene list was used to build the module scoring.

Line 392: Module scoring for *T. brucei* genes were calculated using the AddModuleScore function to assign scores to groups of genes of interest (Ctrl = 100, seed = NULL, pool = NULL), and the scores were then represented in violin plots. Once defined, the collated gene list was used to build the module scoring. Statistical tests using the non-parametric Wilcoxon test comparing mean of normalised gene expression (basemean) was conducted in R.

• Line 532- should Figure 3F be Figure 3E?
We thank the reviewer for spotting this. We have now amended this in 626.

• Line 607-I could not find Icam1 in the Figure 4F graph
We draw the reviewer’s attention to the microglia cluster (dark blue; bottom right) where Icam1 is depicted

• Line 622, I could not find Sox10 and S100b in figure 1D
We thank the reviewer for noticing this oversight and have now added these two marker genes to the heatmap in figure 1D. We have also referenced table S2J that should contain all the markers for these clusters as follow:

Line 933: This appeared to represent a heterogeneous grouping of cells expressing high levels of oligodendrocyte markers (Olig1, Sox10, and S100b) and bona fide B cell markers (Cd79a, Cd79b, Igdm) (Figure 1D, S2B and S2J Table).

• Lines 625-628: There percentages of each cell cluster given in the text does not agree with the image in figure 5A.
We thank the reviewer for noticing this error. We have now corrected this issue in figure 5A.

• Lines 1025, Figure 5 legend. There is no description of panel L.
We thank the reviewer for noticing this oversight. We have now added the following text in the figure caption describing the results presented in panel L:

Line 1448: L) qRT-PCR analysis of pro-inflammatory mediators (Il1β and Tnfα) in BV2 microglia cell lines exposed to LPS in the presence of the B cell supernatant with our without an anti-IL-10 blocking antibody. Pairwise comparisons were conducted against cells exposed to LPS alone using Mann-Whitney test. A p values <0.05 were considered statistically significant. * p < 0.05; ** p < 0.005; *** p < 0.0005.

• There are several spatial transcriptome figures including Figure 2A, Figure 3E, and Figure 5E that are described differently. Can the authors use consistent descriptors or highlight the differences between the experiments.
As requested, we have now amended the captions in Figure 2A (line 1303) and Figure 5G (line 1435). Please note that the panels in figure 5 have changed, but that I have updated the one mentioned here.

Questions/comments on Figures:

• Figure 1A). The right side of the figure panel is not clear. This can likely be solved by more information in the figure legend detailing the significance of the different colors.
Thank you for this suggestion. We have amended figure 1A to reflect these proposed changes.

• Figure 1C) What are the parameters used to determine clinical score and how are they quantified?
The clinical score is assessed in accordance with our Home Office animal project license (No. PC8C3B25C). We have included the following statement in the Method section to clarify the clinical scoring system:
The clinical scoring system to assess disease progression was as follows: score 0) normal, healthy, and exploratory mouse; score 1) slow, sluggish, or displaying stary coat; score 2) animals with reduced coordination of hind limbs and/or altered gait; score 3) animals with flaccid paralysis of one hind limb. Animals displaying higher clinical scores (muscle atrophy, complete paralysis, or moribund) were humanely killed immediately in accordance with ethical regulations in our animal project license.

• Figure 1D) How are inflammatory gene module scores determined? I couldn’t find a reference for “in silico gene module” score
Thank you for this question. We have now addressed this as outlined above (line 539).

• Figure 1E) I interpreted the heat map to be comparisons among the cell lines in the figure and not between infected and naïve samples. Is that correct?
Yes, this is correct. The heatmap shows the expression level of the top 25 marker genes for each of the cell clusters identified in the hypothalamus. The heatmap is organized based on abundance of each of the clusters. For instance, cluster “Microglia 1” (far left) has comparatively more cells than the “Ependymocytes” cluster (far right). We have clarified this in the figure legend as follow:

Line 1269: E) Heatmap representing the expression level of the top 25 marker genes for each of the cell clusters identified in the combined dataset.

• Figure 2) I found this figure particularly compelling, and some questions came to mind. Were any brain sections stained for BOTH stumpy and slender markers simultaneously? I am curious whether there might be a mixture of slender and stumpy parasites in different regions.
We thank the reviewer for this question. Indeed, we stained the samples presented in figure 2D with both stumpy and slender markers but did not include the composite image in the original submission for simplicity. However, we have now included the composite in this figure and have amended the legend accordingly. Though we cannot confidently assign spatial segregation of the different forms, we do tend to see slender forms more scattered across the ventricles and surrounding tissue, whereas the stumpy forms are mostly confined to the choroid plexus.

Is there a way to compare the number of parasites present with the amount of transcript detected in the spatial transcripts? For example, is it possible to discriminate between a few, very actively transcribing parasites from more, less actively transcribing parasites?
This is a great question. Unfortunately, we cannot address this question as the 10X Visium data is not resolved at a single cell level. Rather, we are only able to resolve transcriptional spots, in which there might be an enrichment of “slender” transcripts, “stumpy” transcripts, or a mixture of both. Future experiments sorting parasites from various brain regions and comparing them using single cell transcriptomics would allow us to resolve these populations in greater detail.

Please provide more information for the left-hand Venn diagram in E. Was the GO Term analysis done only with the 969 transcripts that were found exclusively in the CVOs or for all 1067 transcripts?
We have amended the figure legend to provide more details. For simplicity, the GO term analysis was conducted on the 969 (~90%) transcripts detected in the CVOs.
We draw the reviewer’s attention to line 1287: E) Ven diagram of the different T. brucei-specific transcripts detected in several brain regions at 45dpi, based on the spatial distribution shown in 4B. Top 10 GO terms that characterise brain-dwelling African trypanosomes located in the CVOs.

• Figure 3: There is a discrepancy regarding significance levels. Figure legend (lines 947-948) indicates “-2 < Log2Fold change < 2 adjusted p value < 0.05” while the text (lines 544-545) indicates “Log2fold change > 0.25 or < -0.25”. We thank the reviewer for noticing this error. We have amended this in line 1324 as follow: These genes were defined as having a -0.25 < Log2 Fold change < 0.25, and an adjusted p value of < 0.05.

• Figure 3B: It is unclear why some of the transcripts are in bold. We thank the reviewer for noticing this and we have amended this in the figure.

• Figure 3E: Justification for using Adgre1 and Chil3 is not provided. We thank the reviewer for this comment. We draw their attention to the text in line 777: Similarly, Arg1 and Chil3, putative marker genes for Mrc1+ BAMs, were predominantly located in the lateral ventricle and the dorsal 3rd ventricle in the infected brain (Figure 3E), further corroborated by immunofluorescence analysis on independent brain sections (Figure 3F).

• Figure 4: Lines 587-591 indicates a 2-fold increase in abundance that is not apparent in the cell proportions indicated in Figure 4D. Also the numbers of each subcluster indicated in the text in lines 589-593 do not match with the cell proportions given in the table in Figure 4D. We thank the reviewer for noticing this. The bar plot in figure 4D represents the three main clusters (1-3) after cluster 0 was removed, as indicated in line 840. We have now amended the text with the correct cell frequencies as follow: Line 856: These populations seemed dynamic over the course of infection, with chronic stages associated with a 1.27- and 1.61-fold increase in the abundance of Cd4+ T cells compared to other subclusters (23.64%, 30.21%, and 38.1% in naïve, 25dpi, and 45dpi, respectively) (Figure 4B and 4D), consistent with previous reports 26,27. Of note, the subcluster identified as cluster 2 Cd8+ T cells (Cd8+ 2 T cells) was only detected in infected samples but not in naive controls (35.98% and 36.5% at 25 and 45dpi, respectively) (Figure 4B), indicating a disease-associated T cell subset in the brain.

• Figure 5 A. Should Cluster 5 be Cluster 0? Thank you for highlighting this. We have now amended cluster 5 and labelled it as cluster 0 in the figure.

The percentages given in the text for the clusters in A do not match what is provided in the figure panel 5A. For example, Cluster 1 = 34% (line 625) and Cluster 3 = 8.48% (lines 626). In the figure, there are fewer dots in cluster 1 than 3. There is no description for Panel L. In line with this comment, we have amended the labelling of the different clusters to represent the corresponding percentages reported in the main text. We have also added the following text to the figure caption describing the results presented in panel L:
Line 1433: L) qRT-PCR analysis of pro-inflammatory mediators (Il1β and Tnfα) in BV2 microglia cell lines exposed to LPS in the presence of the B cell supernatant with or without an anti-IL-10 blocking antibody. Pairwise comparisons were conducted against cells exposed to LPS alone using Mann-Whitney test. A p values <0.05 were considered statistically significant. * p < 0.05; ** p < 0.005; *** p < 0.0005.

•Figure 6. How are the average and percent expression in panel D calculated? This is calculated using the Seurat function “DotPlot” on the integrated layer, splitting by experimental groups. The package automatically calculates the average expression level and the % of cells expressing the gene(s) of interest.

•Figure S1. More information is needed to interpret the flow cytometry panels. Are “infected” samples from 25 or 45 dpi? Macs and Micros are not defined. The live dead assay is not provided. The gating strategy in C is not clear from the figure legend. There is not enough information in the legend to interpret panel C. Tnfsf13b and Tnfrsf17 are not shown.

Based on the reviewer’s comments, we have now amended this figure. We show representative flow cytometry experiments of a typical single cell suspension from murine hypothalamus from naïve (top) and infected samples (bottom) at 25dpi and 45dpi. We have amended the figure legend as follow:

Line 1528: A) Representative flow cytometry analysis from naïve sample (top panel), and infected samples at 25 (middle panel) and 45 days post-infection (bottom panel), showing the relative proportion of macrophages (Cd45^{High} CD11b^{High}), microglia (CD11b^{High} CD45^{Low}), oligodendrocytes (O4⁺), and astrocytes (ACSA2⁺) from the live cells gate. B) Average number of genes (top) and transcripts (bottom) per cell in the hypothalamic scRNAseq after filtering low quality cells, split by biological replicate. For normalisation, we accounted for differential gene and UMI counts using two independent approaches (SCT and STACAS). Both packages broadly identified the same cell populations. C) Top 25 most highly variable genes identified by Scater. The dotted line represents the median gene count. D) Gating strategy for the identification of brain resident CD45⁺ immune cells. Before processing, mice were inoculated i.v. with anti-CD45 antibody conjugated with PE, labelling all circulating CD45⁺ immune cells. After lymphocyte preparation from brain samples using Percoll gradient, samples were re-stained with anti-CD45 antibody conjugated with Brilliant Violet 421 labelling tissue resident CD45⁺ immune cells not previously exposed to anti-CD45-PE. The combination of these fluorophores allows to separate circulating from resident immune cells. This gating strategy was used to identify brain-resident plasma cells, as well as BAFF⁺ microglia.

•Figure S2. Could the transcript names be color coded to indicate which cluster they are associated? This is a great idea, and we thank the reviewer for this suggestion. We have changed the colours of the marker genes based on their cluster of origin.

•Figure S3. It is unclear to me what the quality controls experiments are testing: the integrity of the brain regions during processes or the reproducibility in the number of transcriptional clusters detected? What should the reader expect to see if the data pass quality control?
We apologise for any confusion on this matter. The standard QC metrics for the analysis of 10X Visium datasets includes the analysis of gene density distribution per sport, in addition to the sequencing depth, number of genes and number of transcripts per spot. Some of these parameters are provided in Table S3A, as referenced in the methods section. We have now amended figure S3 (and figure legend) to include spatial feature plots depicting the overall gene density across the tissue sections (figure S3A), in addition to the spatial transcriptional clusters identified (Figure S3B), and the marker genes identifying anatomical regions in the murine brain (Figure S3C). We have also changed the text in the methods section as follow:

Line 371: Downstream analyses of the expression matrices were conducted using the Seurat pipeline for spatial RNA integration (Table S3A), and the overall gene density per spot, as a quality control metric, in the different tissue sections is reported in Figure S3A.

Also, it is unclear to me what the 18 clusters represent. Are they the same clusters as in Figures 1 and S5?

The 13-19 clusters shown in figure S3C represent distinct, spatially resolved transcriptional clusters, that broadly coincide with specific anatomical locations in the mouse brain (e.g., hippocampus, cortex, hypothalamus, thalamus). The clusters identified in Figure 1 and S5 are different from the ones reported in Figure S3. We have clarified this in the methods section as follow:

Line 371: Downstream analyses of the expression matrices were conducted using the Seurat pipeline for spatial RNA integration (Table S3A), and the overall gene density per spot, as a quality control metric, in the different tissue sections is reported in Figure S3A. Specifically, the data was scaled using the SCTransform function with default parameters. We then proceeded with dimensionality reduction and clustering analysis using RunPCA (assay = “SCT”), FindNeighbours and FindClusters functions with default settings and a total of 30 dimensions. We then applied the FindSpatiallyVariables function to identify spatially variable genes, using the top 1,000 most variable genes and “markvariogram” as selection method. The approach enabled us to identify 13-19 distinct, spatially resolved transcriptional clusters in the different tissue sections included in this study. We optimised the parameters to obtain clustering of distinct spatially variable gene sets (Figure S3B) that broadly coincide with several brain regions, including cortex, hippocampus, 3rd and lateral ventricles, thalamus, hypothalamus, striatum, and amygdala (Figure S3C), confirming the robustness, reproducibility, and reliability of our data.

References

1. Brennan, F. H. *et al.* Microglia coordinate cellular interactions during spinal cord repair in mice. *Nature Communications* **13**, 4096 (2022).
2. Stock, A. D. *et al.* Tertiary lymphoid structures in the choroid plexus in neuropsychiatric lupus. *JCI Insight* **4**, (2019).
3. Moseman, E. A., Blanchard, A. C., Nayak, D. & McGavern, D. B. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. *Science Immunology* **5**, (2020).
4. Subbarayan, M. S., Hudson, C., Moss, L. D., Nash, K. R. & Bickford, P. C. T cell infiltration and upregulation of MHCII in microglia leads to accelerated neuronal loss in an α-synuclein rat model of Parkinson’s disease. *Journal of Neuroinflammation* **17**, (2020).
5. Dong, Y. & Yong, V. W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. *Nature Reviews Neurology* **15**, 704–717 (2019).

6. Jordão, M. J. C. *et al.* Neuroimmunology: Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. *Science (1979)* **363**, (2019).

7. Van Hove, H. *et al.* A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontology and tissue environment. *Nature Neuroscience* **22**, 1021–1035 (2019).

8. Surumbayeva, A. *et al.* Preparation of mouse pancreatic tumor for single-cell RNA sequencing and analysis of the data. *STAR Protocols* **2**, (2021).

9. Romanov, R. A. *et al.* Molecular design of hypothalamus development. *Nature* (2020) doi:10.1038/s41586-020-2266-0.

10. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. *Cell Reports* **18**, 3227–3241 (2017).

11. Kim, D. W. *et al.* The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. *Nature Communications* **11**, (2020).

12. Yu, H., Rubinstein, M. & Low, M. J. Developmental single-cell transcriptomics of hypothalamic POMC neurons reveal the genetic trajectories of multiple neuropeptidergic phenotypes. *Elife* **11**, (2022).

13. Mickelsen, L. E. *et al.* Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. *Nature Neuroscience* **22**, 642–656 (2019).

14. Hajdarovic, K. H. *et al.* Single-cell analysis of the aging female mouse hypothalamus. *Nature Aging* (2022) doi:10.1038/s43587-022-00246-4.

15. Olah, M. *et al.* Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. *Nature Communications* **11**, (2020).

16. Pluvinage, J. v. *et al.* CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. *Nature* **568**, 187–192 (2019).

17. Nadjar, A., Wigren, H. K. M. & Tremblay, M. E. Roles of microglial phagocytosis and inflammatory mediators in the pathophysiology of sleep disorders. *Frontiers in Cellular Neuroscience* **11**, 1–11 (2017).

18. Bohlen, C. J., Friedman, B. A., Dejanovic, B. & Sheng, M. Microglia in Brain Development, Homeostasis, and Neurodegeneration. *Annual Review of Genetics* **53**, 263–288 (2019).

19. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. *Nature Reviews Immunology* vol. 18 225–242 Preprint at https://doi.org/10.1038/nri.2017.125 (2018).

20. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902.e21 (2019).

21. Yip, S. H., Sham, P. C. & Wang, J. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data. *Briefings in Bioinformatics* **20**, 1583–1589 (2018).

22. Townes, F. W., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model. *Genome Biology* **20**, (2019).

23. Yip, S. H., Sham, P. C. & Wang, J. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data. *Briefings in Bioinformatics* **20**, 1583–1589 (2018).
24. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. *Bioinformatics* **33**, 1179–1186 (2017).

25. Fujita, A. *et al.* Hypothalamic tuberomammillary nucleus neurons: Electrophysiological diversity and essential role in arousal stability. *Journal of Neuroscience* **37**, 9574–9592 (2017).

26. Laperchia, C. *et al.* Trypanosoma brucei Invasion and T-cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes. *PLoS Neglected Tropical Diseases* **10**, 1–19 (2016).

27. Lyck, R. *et al.* T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: The cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. *Blood* **102**, 3675–3683 (2003).

28. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902.e21 (2019).

29. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587.e29 (2021).
REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

In this revised manuscript, the authors address many of the concerns raised in the initial review. Two primary concerns remain.

1) In response to a concern raised about the ontogeny of the "infection-associated microglia" cluster, the authors state in their point-by-point response: we cannot decipher the ontogeny of these cells with the current dataset with enough certainty. We have renamed the Aif1+ clusters as "Infection-associated microglia" (IAM) and the Cx3cr1+ clusters as "homeostatic microglia" throughout the text to better reflect the underlying complexity of these myeloid subsets.

For the reasons stated by the authors, if they can't discern the ontogeny of the cell types in the clusters, they should consider renaming the clusters as myeloid cells to be accurate. It is well known that microglia and macrophages express Iba-1 and CX3CR1 during inflammation. It is incredibly important to be accurate on these points.

2) In response to a question regarding the anti-inflammatory nature of the mrc1+ cluster, the authors provide additional context that they did not find canonical anti-inflammatory genes in the cluster and also found pro-inflammatory gene expression (ilb), yet continue to describe the cluster as anti-inflammatory in the text and do not include the additional information on ilb and il18bp expression.

Overall, the characterization of the clusters needs to be improved to not be misleading or inaccurate. This should require modifications to the text only.

Reviewer #2 (Remarks to the Author):

The authors have addressed all concerns.

Reviewer #3 (Remarks to the Author):

I appreciate the time and work the authors put into responding to my review. They have adequately addressed my concerns.
Once again, we thank all the reviewers for their positive assessments and helpful comments.

Reviewer #1 (Remarks to the Author):

In this revised manuscript, the authors address many of the concerns raised in the initial review. Two primary concerns remain.

1) In response to a concern raised about the ontogeny of the “infection-associated microglia” cluster, the authors state in their point-by-point response: we cannot decipher the ontogeny of these cells with the current dataset with enough certainty. We have renamed the Aif1+ clusters as “Infection-associated microglia” (IAM) and the Cx3cr1+ clusters as “homeostatic microglia” throughout the text to better reflect the underlying complexity of these myeloid subsets.

For the reasons stated by the authors, if they can’t discern the ontogeny of the cell types in the clusters, they should consider renaming the clusters as myeloid cells to be accurate. It is well known that microglia and macrophages express Iba-1 and CX3CR1 during inflammation. It is incredibly important to be accurate on these points.

We agree that the only way to directly assess the ontogeny of these various cell types is by using lineage tracing approaches. Based on the transcriptional signatures of these clusters we were able to identify several “infection-associated” subsets that are identical to the ones previously reported for “disease-associated microglia” in neurodegenerative disorders, including high expression levels of Apoe, Itgax (encoding CD11c), and Cst7, and low or undetectable expression of signatures associated with homeostatic microglia such as Tmem119, P2ry12, and Cx3cr1, just to name a few. When examining the infection-associated subclusters in more detail, we noted that the cluster “Infection-associated 1”, and to a lesser extent cluster “Infection-associated 2” express low levels of Tmem119, P2ry12, and Cx3cr1, and higher levels of Apoe, Itgax, and Cst7 (Figure 1), strongly suggesting their microglia origin. However, to ensure we adequately reflect these limitations, we have renamed these clusters as “infection-associated mononuclear phagocytes” throughout the text.

We have amended the text in the manuscript to clarify that although we speculate that these are microglia cells, further studies are required to clarify their ontogeny.

Line 640: Based on these results we catalogued clusters 0 to 5 as follow: Homeostatic microglia (HM) 1 (1,688 cells; 26.77%), HM 2, (1,548 cells; 24.55%), Cd14+ Monocytes (1,396 cells; 22.14%),Mrc1+ border-associated macrophages (Mrc1+ BAMs – 812 cells; 12.6%), Infection-associated mononuclear phagocytes (IAMNP) 1 (587 cells; 9.31%), and IAMNP 2 (274 cells; 4.34%) (Figure 3C and D).

Line 1081: Although we propose that the two “infection-associated” myeloid subsets identified are likely to be microglia based on their similarities to previously reported
disease-associated microglia, we cannot exclude the possibility that they might also be derived from perivascular or peripheral myeloid cells that engraft in the brain in response to chronic inflammation.

2) In response to a question regarding the anti-inflammatory nature of the mrc1+ cluster, the authors provide additional context that they did not find canonical anti-inflammatory genes in the cluster and also found pro-inflammatory gene expression (ilb), yet continue to describe the cluster as anti-inflammatory in the text and do not include the additional information on ilb and il18bp expression. Overall, the characterization of the clusters needs to be improved to not be misleading or inaccurate. This should require modifications to the text only.

We thank this reviewer for raising this point. The Mrc1+ cluster does express Il1rn which inhibits the activity of IL-1α and IL-1β as well as Il18bp which can act as a decoy receptor for IL-18 (see table S2F), which together with Chil3, Arg1, and Vegfa are putatively associated with anti-inflammatory/tissue repair macrophages. We have included these two additional genes in figures 3A and 3B, and have also amended the text in the manuscript as follow: Line 623: Cluster 3 expresses putative marker genes associated with border-associated macrophages such as Lyz2, Ms4a7, Ms4a6c, Tgfbi, H2-Ab1, and Lyz2, as well as gene sets characteristic of anti-inflammatory responses, such as Mrc1 (encoding for CD206), Chil3, Arg1, Il1rn, Il18bp, and Vegfa (Figure 3B and S2F Table), indicative of an anti-inflammatory phenotype.

Reviewer #2 (Remarks to the Author):

The authors have addressed all concerns. We thank this reviewer once again for helpful revisions and discussions. It has greatly improved our manuscript.

Reviewer #3 (Remarks to the Author):

I appreciate the time and work the authors put into responding to my review. They have adequately addressed my concerns. We thank this reviewer for their positive appreciation of our work and for raising important questions around our work. We believe the final manuscript is much improved after peer-review.

References

1. Olah, M. et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun 11, (2020).
2. Deczkowska, A. et al. Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell vol. 173 1073–1081 Preprint at https://doi.org/10.1016/j.cell.2018.05.003 (2018).