Rapid Activation of the Cardiac Ryanodine Receptor by Submillisecond Calcium Stimuli

A. Zahradníková,* I. Zahradník,† I. Györke,‡ and S. Györke†

From the *Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic 83334; and †Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430

Abstract The local control concept of excitation–contraction coupling in the heart postulates that the activity of the sarcoplasmic reticulum ryanodine receptor channels (RyRs) is controlled by Ca\(^{2+}\) entry through adjoining sarcolemmal single dihydropyridine receptor channels (DHPRs). One unverified premise of this hypothesis is that the RyR must be fast enough to track the brief (<0.5 ms) Ca\(^{2+}\) elevations accompanying single DHPR channel openings. To define the kinetic limits of effective trigger Ca\(^{2+}\) signals, we recorded activity of single cardiac RyRs in lipid bilayers during rapid and transient increases in Ca\(^{2+}\) generated by flash photolysis of DM-nitrophen. Application of such Ca\(^{2+}\) rises (amplitude ∼10–30 μM, duration ∼0.1–0.4 ms) resulted in activation of the RyRs with a probability that increased steeply (apparent Hill slope ∼2.5) with spike amplitude. The time constants of RyR activation were 0.07–0.27 ms, decreasing with spike amplitude. To fit the rising portion of the open probability, a single exponential function had to be raised to a power n ∼ 3. We show that these data could be adequately described with a gating scheme incorporating four sequential Ca\(^{2+}\)-sensitive closed states between the resting and the first open states. These results provide evidence that brief Ca\(^{2+}\) triggers are adequate to activate the RyR, and support the possibility that RyR channels are governed by single DHPR openings. They also provide evidence for the assumption that RyR activation requires binding of multiple Ca\(^{2+}\) ions in accordance with the tetrameric organization of the channel protein.

Key words: cardiac muscle • sarcoplasmic reticulum • ryanodine receptor • calcium signaling • gating model

Introduction In mammalian heart, the process of excitation–contraction (E-C)\(^{1}\) coupling is mediated by calcium-induced Ca\(^{2+}\) release (CICR, Fabiato and Fabiato, 1979; Bers, 1991; Stern and Lakatta, 1992). It has been postulated that Ca\(^{2+}\) entering through single L-type Ca\(^{2+}\) channels (dihydropyridine receptor channels, DHPRs) locally controls the activity of the release units, composed of Ca\(^{2+}\) release channels/ryanodine receptors (RyRs, Cannell et al., 1995; López-López et al., 1995; Santana et al., 1996; Shorofsky et al., 1998) located in the membrane of the sarcoplasmic reticulum (SR) across a 20-nm wide junctional gap. Single DHPR activity is characterized by brief openings (∼0.2 ms) separated by relatively long closures (∼10 ms, Rose et al., 1992). When the channel opens, Ca\(^{2+}\) in its vicinity immediately rises to levels above 10 μM; when the channel closes, the local Ca\(^{2+}\) gradient dissipates rapidly (microseconds) due to Ca\(^{2+}\) diffusing away (Simon and Llinás, 1985; Stern, 1992a; Naraghi and Neher, 1997; Soeller and Cannell, 1997). Thus, according to the local control concept of CICR, the physiological trigger of calcium release must be a rapid and transient elevation of Ca\(^{2+}\) to above 10 μM lasting <0.5 ms.

The gating properties of the RyRs have been studied after reconstitution of the channels into lipid bilayers. All these studies have been performed under stationary Ca\(^{2+}\) conditions (Rousseau and Meisner, 1989; Ashley and Williams, 1990; Chu et al., 1993; Sitsapesan and Williams, 1994; Zahradníková and Zahradník, 1995; Copello et al., 1997), or during sustained changes in Ca\(^{2+}\), produced by photolysis of “caged calcium” (Györke and Fill, 1993; Györke et al., 1994; Valdivia et al., 1995; Zahradníková et al., 1999a) or mechanical solution exchange (Schiefer et al., 1995; Sitsapesan et al., 1995; Laver and Curtis, 1996; Laver and Lamb, 1998). These studies, although yielding important information on channel behavior, do not reveal how the RyR responds to the brief Ca\(^{2+}\) stimuli that are likely to initiate E-C coupling in vivo.

In the present study, we used the photolabile Ca\(^{2+}\), chelator DM-nitrophen (DMN) to produce brief Ca\(^{2+}\) elevations that mimic the waveform of Ca\(^{2+}\) changes associated with openings of single DHPRs. Photolysis liberates Ca\(^{2+}\) from the DMN-Ca complex much faster than free DMN binds Ca\(^{2+}\) (Zucker, 1993; Ellis-Davies et al., 1996; Escobar et al., 1997). Thus, Ca\(^{2+}\) released from the photolabile DMN-Ca complex is delivered to the RyR in less than 1 ms (Soeller and Cannell, 1997), mimicking the time course of Ca\(^{2+}\) entry into the SR

*Address correspondence to Sandor Györke, Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430. Fax: 806-743-1512; E-mail: physg@ttuhsc.edu

‡Abbreviations used in this paper: CICR, calcium-induced calcium release; DHPR, dihydropyridine receptor; DMN, 1,2-nitro-4,5-dimethoxyphenyl-1,2-diamino-ethane-N,N,N′,N′-tetraacetic acid; E-C, excitation–contraction; H, high activity; RyR, ryanodine receptor; SR, sarcoplasmic reticulum.
of DMN complexation and photolysis (Ellis-Davies et al., 1996; Escobar et al., 1997). Computation were performed with a program written in Mathematica (version 3.0; Wolfram Research).

Modelling of RyR Gating

To simulate the RyR response to Ca$^{2+}$, spikes, we used our previously published minimal gating model of RyR with one Ca$^{2+}$ binding site (Zahradníková and Zahradník, 1996; see Fig. 5 and Model 1Ca in Table II). As alternative models, we used extensions of Model 1Ca, incorporating consecutive binding of two to five Ca$^{2+}$ ions. It was assumed that Ca$^{2+}$ binding sites are identical and behave independently. Subsequent gating steps are possible only if all calcium binding sites are occupied (Table II, Model 2Ca-Mo eld 5Ca). The rate constants of transitions involving Ca$^{2+}$ binding were unchanged. In models with multiple Ca$^{2+}$ binding steps, the ratios of the on and off rates for calcium binding were calculated from the apparent peak and steady state calcium sensitivities of the channel P_o (see Zahradníková and Zahradník, 1996) to provide a mean value identical to that of Model 1Ca. The on rates were optimized for best description of the rate of RyR activation.

Single-channel activity in response to Ca$^{2+}$ stimuli was simulated using the program SCSIm (Zahradníková et al., 1999b). Channel kinetics were described by a matrix of transition rates between individual channel states (Colquhoun and Hawkes, 1983). The time course of theoretical Ca$^{2+}$ spikes for selected initial DMN saturation and percentage of DMN photolyzed were first calculated with 10-μs resolution, and then used as input for channel gating simulations. The theoretical time course of channel open probability during and after the Ca$^{2+}$ spike was calculated in Mathematica (Wolfram Research) by combining the differential equations for DMN complexation and photolysis (Ellis-Davies et al., 1996; Escobar et al., 1997) with those describing channel kinetics (Zahradníková and Zahradník, 1996).

The analysis of statistical significance of differences between models was performed by χ^2 tests, according to the procedure described by Landau and Páez (1997). The values of χ^2 were determined from the sum of squares of differences between experimental data and model prediction, and from the experimental variance. The models that did not pass the χ^2 test at $P = 0.01$ were rejected.

The apparent calcium sensitivity of peak open probability in response to a Ca$^{2+}$ spike was described by the generalized equation (Eq. 1, see Zahradníková and Zahradník, 1996):

$$P_o^{\text{max}} = \frac{[\text{Ca}]^{n_h}}{(K_{\text{Ca}})^{n_h} + [\text{Ca}]^{n_h}}$$ \hspace{1cm} (1)

Table I

The Rate Constants of DMN Complexation and Photolysis Used for Calculating the Time Course of Free Ca$^{2+}$ during the Spike

Description	Constant	Value
Cabinding on rate—DMN	k_{5f}	80 μM$^{-1}$s$^{-1}$
Cabinding off rate—DMN	k_{5b}	0.40 s$^{-1}$
Decomposition of DMN	k_2	80000 s$^{-1}$
Cabinding on rate—photolyzed DMN	k_{5f}	80 μM$^{-1}$s$^{-1}$
Dissociation constant—photolyzed DMN	K_i	3 mM

See Ellis-Davies et al. (1996) and Escobar et al. (1997). *$K_i = k_{3f}$/ k_{5f}.*
TABLE I
Rate Constants of RyR Models Used for Simulation of Channel Activity

Rate constant	Model 1Ca	Model 2Ca	Model 3Ca	Model 4Ca	Model 5Ca	Unit
k_{on}	1.0×10^4	9.2×10^2	8.2×10^2	7.1×10^2	7.1×10^2	$\mu M^{-1} s^{-1}$
k_{off}	1.0×10^4	1.4×10^4	5.5×10^3	3.0×10^3	2.0×10^3	s$^{-1}$
k_{C1C1}	1.0×10^4	1.0×10^4	5.0×10^2	5.0×10^3	2.0×10^3	s$^{-1}$
k_{C2C1}	5.0×10^3	5.0×10^3	2.0×10^3	6.7×10^2	3.0×10^3	s$^{-1}$
k_{C1C2}	5.0×10^3	1.0×10^2	1.0×10^3	6.7×10^2	3.0×10^3	s$^{-1}$
k_{C1C2}	5.0×10^3	5.0×10^3	2.0×10^3	6.7×10^2	3.0×10^3	s$^{-1}$
k_{C1C2}	5.0×10^3	5.0×10^3	2.0×10^3	6.7×10^2	3.0×10^3	s$^{-1}$

*In Model 1Ca, $k_{C1C1} = k_{on}$; $k_{C1C2} = k_{off}$. In Model 2Ca–Model 5Ca, n independent subunits bind Ca$^{2+}$ with the rate constants k_{on} and k_{off}. The rate constants in R \leftrightarrow C1 \leftrightarrow ... \leftrightarrow Cn ... are then: $k_{C1C1} = n \times k_{on}$; $k_{C1C2} = n - 1 \times k_{on}$; $k_{Cn - 1Cn} = k_{on}$; $k_{C2C1} = 2 \times k_{on}$; ... $n \times k_{off}$.

where K_a is apparent calcium sensitivity of the channel, and n_a is the apparent Hill slope. In general, the apparent Hill slope may not necessarily correspond to the actual number (n) of Ca$^{2+}$ binding sites. Specifically, $n_a < n$ when the activation path contains a Ca$^{2+}$-independent closed state (as with our models of RyR), even if the binding sites are equivalent and independent.

RESULTS

Generation of Rapid Ca$^{2+}$ Stimuli for Activation of RyR

Single cardiac RyR channels were reconstituted at a steady state Ca$^{2+}$ concentration of 20 μM. After incorporation of a single RyR, DMN (3 mM) was added to the cytoplasmic (cis) side of the channel. The free Ca$^{2+}$ was titrated to 75–150 nM. Identical precalibrated photolytically induced Ca$^{2+}$ spikes were applied to the channel. After each UV pulse, resting conditions were reestablished by stirring the solution in the cis chamber for at least 30 s. The laser flash-induced Ca$^{2+}$ spike is too fast to be directly measured by any available method, including measurements using the fastest Ca$^{2+}$ indicators (Ellis-Davies et al., 1996; Escobar et al., 1997). Therefore, the amplitude and time course of photolytic Ca$^{2+}$ changes were reconstructed from the pre- and post-flash steady state free Ca$^{2+}$ (see methods). In 21 independent experiments, the calculated free Ca$^{2+}$ rose virtually instantaneously ($\tau_{on} = 6-18 \mu s$) to 9–30 μM, and then decayed with a $\tau_{off} = 106-200 \mu s$ to a final level of 105–190 nM. Ca$^{2+}$ was elevated to over 5 μM for 0.1–0.4 ms and to over 1 μM for 0.3–0.7 ms. A typical example of such a Ca$^{2+}$ spike is shown in Fig. 1 C. The amplitude and duration of this Ca$^{2+}$ stimulus is similar to that expected to occur near a RyR channel during a single brief opening of an adjacent DHPR channel (Rose et al., 1992; Stern, 1992a; Stern, 1992b; Soeller and Cannell, 1997).

Kinetics of RyR Response to Rapid Ca$^{2+}$ Stimuli

We recorded single RyR channel activity in response to such brief free Ca$^{2+}$ stimuli (Fig. 2 and Table III). The required temporal resolution was achieved by recording at a sampling rate of 100 kHz and cut-off filter setting ≥ 5 kHz. Before the flash, the channels exhibited essentially no activity. The channels responded to the Ca$^{2+}$ stimulus in $\sim 25\%$ of the episodes. The activity evoked by DMN photolysis consisted mostly of single openings, after which the channel stayed closed until the end of the episode (Fig. 2 A). To quantify the time course of channel activity, at least 32 single channel records obtained from an individual channel were combined to generate ensemble averages (Fig. 2 A, bottom).

Channel open probability transiently increased upon photolysis of DMN. The time course of activation was best fit by a single exponential association function raised to the power n_a (see Fig. 2, legend). The rising portions of P_o on expanded time scale are shown in B (○) along with the fits (solid lines). At 2 kHz bandwidth, the rise of P_o was relatively slow ($\tau = 0.22$ ms, $n_a = 1.4$). Expanding the bandwidth to 5 kHz resulted in a significant decrease in the rise time of P_o ($\tau = 0.10$ ms). In addition, a notable delay between the application of the laser flash and the ascent of P_o became evident ($n_a = 3$). Increasing the filter cutoff frequency to 10 kHz had no further impact on the observed rate of channel activation ($\tau = 0.09$; $n_a = 2.8$). Therefore, the temporal resolution of our measurements at 5 and 10 kHz was adequate to resolve the kinetics of RyR activation. The rising phase of P_o at both 5 and 10 kHz was best fit by an exponential function with a power close to 3 (solid line), strongly suggesting that binding of several Ca$^{2+}$ ions must occur before the channel can open.
Different symbols denote different power settings of the laser flash. For experiments, the total DMN concentration was always 3 mM. Differed as a function of preflash steady state Ca\(^{2+}\) channel open time was 1.9 ms at 2 kHz. The cumulative first latency distributions (Fig. 3 A). The first flash elicited a Ca\(^{2+}\) spike followed by a small steady [Ca\(^{2+}\)] elevation; the second flash elicited a similar Ca\(^{2+}\) spike, which was followed by a steady [Ca\(^{2+}\)] elevation to a significantly higher level. The increase in steady component of the Ca\(^{2+}\) signal during successive flashes is due to a gradual increase in the saturation of DMN by Ca\(^{2+}\), leaving less DMN for rebinding of Ca\(^{2+}\) after the flash. These results clearly show that the adaptation behavior is determined by the steady component of the [Ca\(^{2+}\)] signal.

RyR Response to Transient versus Sustained Ca\(^{2+}\) Stimuli

Previous studies of RyR activation by photolysis of DMN (Györke and Fill, 1993, 1994; Valdivia et al., 1995) showed only sustained RyR responses decaying (i.e., adapting) with a time constant of ~1 s and displayed no brief responses demonstrated in the present study. To explore the relationship between the rapid and sustained responses, we performed measurements of RyR activity during two sequential laser flashes of equal intensity (Fig. 3 A). It can be seen that while the first flash elicited predominantly single openings (Ca\(^{2+}\) spike response), the second pulse triggered mostly multiple openings (adaptation response). The corresponding changes in free [Ca\(^{2+}\)] (continuous line) calculated from the Ca\(^{2+}\) electrode response (dashed line) using published parameters of complexation and photolysis of DMN (Ellis-Davies et al., 1996) are also presented (Fig. 3 A). The first flash elicited a Ca\(^{2+}\) spike followed by a small steady [Ca\(^{2+}\)] elevation; the second flash elicited a similar Ca\(^{2+}\) spike, which was followed by a steady [Ca\(^{2+}\)] elevation to a significantly higher level. The increase in steady component of the Ca\(^{2+}\) signal during successive flashes is due to a gradual increase in the saturation of DMN by Ca\(^{2+}\), leaving less DMN for rebinding of Ca\(^{2+}\) after the flash. These results clearly show that the adaptation behavior is determined by the steady component of the [Ca\(^{2+}\)] signal.

RyR Response to Ca\(^{2+}\) Spikes of Different Magnitudes

To further characterize the activation of RyRs by Ca\(^{2+}\) spikes, we measured RyR activity in response to laser flashes of different intensities. Fig. 4, A–C, shows channel responses to laser flashes of low, intermediate, and high intensity along with the corresponding calculated free [Ca\(^{2+}\)] spikes in a representative experiment. In this experiment, the amplitude of the Ca\(^{2+}\) spike was estimated to be 9.3, 18.3, and 27.4 μM for low, intermediate, and high intensity pulses, respectively. The Ca\(^{2+}\) spikes decayed with time constants of 0.17, 0.18, and 0.20 ms, respectively. Ca\(^{2+}\) was elevated to over 5 μM for 0.13, 0.27, and 0.34 ms, and to over 1 μM for 0.4, 0.6, and 0.7 ms, respectively. As can be seen, low-intensity flashes caused channel openings only in relatively few occasions (peak P\(_o\) ~ 0.06); increasing flash energy increased the probability of activation (peak P\(_o\) ~ 0.25 and 0.50, respectively). Interestingly, in all cases the responses were composed of isolated openings with a similar duration. The time constants of activation, determined by fitting single exponential association function
raised to the power n to the ensemble averages, progressively decreased with increasing the energy of the laser pulse ($\tau_a = 0.27, 0.09$, and 0.07 ms; $n_a = 3.5, 2.5$, and 2.4, respectively; Fig. 5, D–F). Similar results were obtained in five other experiments. These results are summarized in Fig. 6 F, which plots the peak P_o of the channel as a function of spike amplitude. The $[\text{Ca}^{2+}]$ dependence of P_o could be described by Eq. 1 with a K_{Ca} value of $29 \pm 1 \mu M$ and an apparent Hill slope of 2.5 ± 0.2. The high values of the activation exponent and of the Hill slope further indicate that activation of the RyR channel requires binding of several calcium ions.

Table III

Parameter	2 kHz *	5 kHz *	10 kHz *
t_o	2.22 ± 0.18 ms	1.93 ± 0.24 ms	1.41 ± 0.05 ms
τ_a	0.34 ± 0.02 msd	0.16 ± 0.03 ms	0.14 ± 0.03 ms
n_a	1.77 ± 0.46	2.96 ± 0.74	2.48 ± 0.42
t_d	3.14 ± 0.85 ms	3.03 ± 0.34 ms	3.47 ± 0.60 ms
P_o	0.32 ± 0.08	0.24 ± 0.03	0.22 ± 0.01

*$^n = 5; ^n = 3; ^d$significantly different from the data measured at 5 and 10 kHz z bandwidth ($P < 0.05$).
formed single channel simulations using our published minimal model of RyR gating (Zahradníková and Zahradník, 1996) with two open and three closed states and one Ca$^{2+}$ binding step (Fig. 5 A, left; Table II, Model 1Ca). Similar to experimental observations, the simulated responses consisted mostly of single, ~2-ms long openings (Fig. 5 B). However, other features of simulated channel activity were at odds with the experimental data. For example, contrary to real channels, simulated channels exhibited substantial basal activity. In addition, the ensemble P_o or the distribution of the first latencies of the simulated responses (Fig. 5 C) showed no delay after the Ca$^{2+}$ spike, seen with experimental data.

The excessive background activity and a lack of delay between the Ca$^{2+}$ spike and RyR activation could be ascribed again to the possibility that binding of more than one Ca$^{2+}$ ion is required to produce channel opening. Considering the tetrameric organization of the RyR, we extended our minimal RyR model by including four sequential Ca$^{2+}$ binding steps (Fig. 5 A, right; Table II, Model 4Ca). The ensemble P_o generated using the extended model showed essentially no spontaneous openings before the Ca$^{2+}$ spike. After the Ca$^{2+}$ spike, it exhibited a significant delay similar to the experimentally observed behavior (Fig. 5 B). Furthermore, the first latency distribution (Fig. 5 C) yielded a peak near 0.25 ms, close to the experimentally observed value of 0.2 ms. These results suggest that activation of the RyR by Ca$^{2+}$ spikes may indeed involve binding of multiple, perhaps as many as four, Ca$^{2+}$ ions to the channel.

To further elucidate how many Ca$^{2+}$ binding steps are involved in channel activation, we carried out theoretical simulations using models with different numbers of Ca$^{2+}$ binding sites. We compared the abilities of the models with different numbers of Ca$^{2+}$ binding sites to reproduce the experimentally observed kinetics of RyR activation. This approach is illustrated in Fig. 6, A–E, for the experiment shown in Fig. 4 and for models with one to five Ca$^{2+}$ binding steps, respectively. Differences between the models were statistically analyzed by the χ^2 test, applied to the whole data set of six experiments. The χ^2 values were determined from the sum of squares of differences between experimental data and predictions of the particular model, and from the experimental variance (Landau and Páez, 1997). We obtained χ^2 values of 17,120, 9,821, 6,712, 4,667, and 4,711 (4,510 degrees of freedom) for models with one, two, three, four, and five Ca$^{2+}$ binding sites, respectively. Models with less than four calcium binding sites have failed the χ^2 test at the significance level $P \leq 0.01$, while models with four and five Ca$^{2+}$ binding sites passed the test and can be considered, therefore, compatible with the data. These tests strongly suggest that binding of at least four Ca$^{2+}$ ions are necessary for RyR activation.

Fig. 6 F shows theoretical Ca$^{2+}$-P_o dependence curves obtained from the above series of models along with the Ca$^{2+}$-P_o dependence curve obtained from experimental data. The apparent Hill slopes of the theoretical [Ca$^{2+}$]-P_o relationships yielded by the models with one, two, and three Ca$^{2+}$ binding steps (0.97 ± 0.15, 1.69 ± 0.02, and 2.09 ± 0.01, respectively) were significantly different from those derived from experimental data.
Figure 4. Response of single RyR channels to spikes of different amplitude. In A–C, the flash energy setting was 45, 47.5, and 50, respectively, corresponding to peak Ca^{2+} concentrations of 9, 18, and 27 μM. (Top) Time course of the reconstructed calcium spikes applied to the bilayer. (Middle) Sets of representative single channel records measured at +40 mV. The flash was applied at t = 0 ms (dotted lines). (Bottom) Ensemble currents constructed from 32-96 individual episodes. (E-F) Exponential fits to the rising phase of the ensemble P_o (expanded scale), corresponding to A–C, respectively. The time course of activation was best described by the equation:

\[P_o = P_{max} \left(1 - e^{-\frac{t}{\tau_a}}\right) \]

where \(\tau_a = 0.27 \pm 0.06, 0.09 \pm 0.02, \) and \(0.07 \pm 0.01 \) ms, and \(n_a = 3.5 \pm 1.4, 2.5 \pm 0.8, \) and \(2.5 \pm 0.3 \) for the ensemble averages in A–C, respectively.

Figure 5. Description of the calcium dependence of the kinetics and amplitude of the ensemble open probability by different models of RyR gating. (A–E) Superposition of the experimental channel responses (thin noisy lines; data from the experiment shown in Fig. 4) and theoretical responses of the models (thick lines): Model 1Ca (A), Model 2Ca (B), Model 3Ca (C), Model 4Ca (D), and Model 5Ca (E). (F) The relationship between the peak open probability and the Ca^{2+} spike amplitude. The symbols with their standard deviations represent measured peak open probability at different levels of peak calcium during the spike. The lines represent the theoretical dose-response curves (Eq. 1) for models with one to five Ca^{2+} binding sites. Labels correspond to the number of Ca^{2+} binding steps in the model.
Activation of Ryanodine Receptors by Brief Calcium Spikes

(2.5 ± 0.2) at significance levels of 0.0001, 0.001, and 0.05, respectively. Therefore, these models are not compatible with the experimental results. Models with four and five Ca2+ binding steps (apparent Hill slopes 2.6 ± 0.1 and 2.6 ± 0.1, respectively) were not significantly different from the experimental data even at \(P = 0.5 \). Therefore, the response of the RyR to Ca2+ spikes can be described by our minimal model of the RyR modified by including a total of four Ca2+ binding steps.

Theoretical Dependency of RyR Response on Amplitude-duration Characteristics of Ca2+ Stimulus

The chemistry of DMN limits flash-photolysis experiments to a rather narrow range of amplitude-duration characteristics of Ca2+ spikes. In contrast, the parameters of local Ca2+ signals associated with the activity of DHPRs vary widely. Therefore, to gain further insight into the dependence of the channel activation on the characteristics of the trigger signal, we performed simulations in response to a broad range of rectangular Ca2+ pulses using Model 4Ca with four Ca2+ binding sites described above. The properties of the Ca2+ pulse in the physiological range of durations and amplitudes had a profound effect on peak open probability of the RyR, as illustrated in Fig. 7. Calcium elevations lasting <10 \(\mu \)s had negligible probability to open the RyR in the whole amplitude range. To increase the peak open probability from 5 to 95%, the amplitude of the calcium pulse has to be increased by \(\approx 10 \)-fold for any pulse duration. Prolongation of the Ca2+ pulses above 1 ms was not effective in increasing peak \(P_o \) of the RyR.
from the ensemble average of 4,096 episodes. The pulse, the y axis represents the duration of the pulse, and the z axis represents the peak open probability of the channel estimated from the ensemble average of 4,096 episodes.

In the high Ca²⁺ pulse amplitude range (>10 μM), the dependence of peak \(P_o \) on pulse duration was very steep for short pulse durations (0.1–0.5 ms).

DISCUSSION

In the present study we measured the kinetics of activation of cardiac SR Ca²⁺ release channels/RyRs using fast Ca²⁺ concentration spikes produced by photolysis of DM-nitrophen. The Ca²⁺ spikes mimic the profile of Ca²⁺ produced by openings of single DHPRs in the vicinity of the RyRs. Thus, our results show, for the first time, how single RyRs might respond to a physiological trigger signal.

Under our experimental conditions (~100 nM resting Ca²⁺ and 3 mM DMN), the reconstructed Ca²⁺ spikes were characterized by an activation time constant of ~15 μs, a duration of ~0.1–0.4 ms (at 5 μM Ca²⁺) and a peak amplitude of 10–30 μM (Fig. 1 C). Application of such Ca²⁺ pulses resulted in activation of the RyR with 5–50% probability, depending on spike magnitude. The activity of RyR was characterized by isolated single openings with duration of ~2 ms. It is important that in our experiments we used Cs⁺ instead of Ca²⁺ as the charge carrier. Besides improving the signal-to-noise ratio, this allowed us to determine the parameters of channel kinetics without potential side effects related to “feed-through” influences of luminal Ca²⁺ at the cytosolic activation and inactivation sites (Tripathy and Meissner, 1996).

Previous studies using caged Ca²⁺ did not yield channel activation in response to Ca²⁺ spikes (Györke and Fill, 1993, 1994; Györke et al., 1994; Valdivia et al., 1995). These negative results can be ascribed to lower concentrations of the calcium cage, low time resolution of the measurements, and the presence of a laser flash artifact that could have concealed the occasional, brief channel openings in response to the flash. In the above studies, the effective trigger signal consisted of both a transient (i.e., spike) and a sustained component. The reported time constants of channel activation were 1–2 ms. Our present experiments with improved time resolution showed that rapid Ca²⁺ spikes can activate the channel with much faster kinetics (activation time constant ~0.15 ms).

We believe that our measurements yield the true response time of the channel because channel activation displayed a distinct delay, and the kinetics of the RyR response were unaffected by increasing the filter cutoff frequency from 5 to 10 kHz. The lifetime of isolated RyR channel openings induced by Ca²⁺ spikes \(t_o \sim 2 \) ms was substantially longer than the average channel open time (~1 ms) reported under similar conditions at steady state (Zahradníková and Zahradník, 1995). However, it was similar to the average channel open time within the high activity (H) gating mode (Zahradníková and Zahradník, 1995). The deactivation rate obtained from ensemble averages of the channel responses to the Ca²⁺ spike was ~3 ms, and it corresponded approximately to the average channel open time. These results provide further evidence for the idea that the H-mode activity is the preferred initial regime of channel operation upon activation (Zahradníková and Zahradník, 1996; Zahradníková et al., 1999a).

In previous studies with photolysis of DMN and NP-EGTA, the RyRs activated rapidly, and then the \(P_o \) decayed slowly, by a process termed adaptation (Györke and Fill, 1993; Valdivia et al., 1995). It has been argued that adaptation might simply be a result of the spontaneous deactivation of the RyR after its activation by the rapid Ca²⁺ spike (Lamb et al., 1994). Our direct measurements of the RyR response to Ca²⁺ spikes indicate that the deactivation of the RyR after a Ca²⁺ spike is too fast to account for the adaptation phenomenon. Further, our results with double flashes that induce Ca²⁺ waveforms with similar transient but different steady components (Fig. 3) showed that the adaptation response is evoked only by the Ca²⁺ signal with a large steady component. Thus, it appears that the type of response of the RyR (i.e., rapid or prolonged) is determined by the steady component of the photolytic Ca²⁺ change.

The kinetics and [Ca²⁺] dependence of the response of the RyRs to Ca²⁺ spikes could be well described by our minimal model of RyR (Zahradníková and Zahradník, 1996) with two open and three closed states modified by including three additional (a total of four) Ca²⁺-dependent closed states (Fig. 5 A). We have
shown previously that the minimal model reproduces reasonably well the main aspects of channel behavior, including modal gating activity, under both stationary and nonstationary conditions (Zahradníková and Zahradník, 1996; Zahradníková et al., 1999a). This model consists of three sets of states (i.e., gating modes) connected by slow transitions. The results of our present study with improved time resolution allowed us to refine the state structure of the high activity mode corresponding to the activation path of the channel.

The existence of multiple Ca$^{2+}$ binding steps in the RyR activation path is consistent with the results of analysis of closed time distributions of steady state recordings at low [Ca$^{2+}$], yielding at least five closed states (Sitaspesean and Williams, 1994). Importantly, the four-Ca$^{2+}$ binding site model is also consonant with the molecular structure of the RyR, a protein composed of four homologous subunits with each monomer carrying at least one Ca$^{2+}$ binding site (Coronado et al., 1994).

Based on our model simulations, we suggest that the response of the RyR to a Ca$^{2+}$ spike includes the following steps. (a) Sequential binding of four Ca$^{2+}$ ions to the channel promotes transition from closed states (R–C4) to an open state (O1). The need for binding of four Ca$^{2+}$ ions to open the channel accounts for the delay in channel activation, for the negligible P_o at basal [Ca$^{2+}$], and for the fact that spikes do not always cause channel opening. (b) After termination of the spike, Ca$^{2+}$ dissociates from the channel and the channel deactivates by returning first to the closed states (C4–C1) and eventually to the resting state. Transitions between states C4–O2 and O1–C2 are very slow (~1 s; Zahradníková and Zahradník, 1995); consequently, the probability of the channel entering these late states during brief Ca$^{2+}$ spikes is low. Thus, as we have previously predicted (Zahradníková and Zahradník, 1996), the channel has just enough time to enter the fast access states of the H-mode, but not the slow access states of the L-mode when challenged by brief, calcium spike-like stimuli. The slow transitions between states C4–O2 and O1–C2 can only occur when Ca$^{2+}$ remains elevated in the vicinity of the channel (Zahradníková et al., 1999a; Fig. 3). In this respect, our gating model could be simplified by omitting the slow access states (O2, C5, and I) and still be able to account for most results with brief Ca$^{2+}$ spikes. However, such a truncated model would clearly become inadequate for describing channel behavior in response to sustained Ca$^{2+}$ elevations when the initial passage to rapid access states is followed by a transition to slow access states, accounting for the phenomenon of RyR adaptation (Zahradníková et al., 1999a; Fig. 3). Neither would the truncated model be able to describe steady state activity characterized by modal behavior; i.e., random transitions between periods of high and low activity (Zahradníková and Zahradník, 1995, 1996).

Our results have important ramifications for understanding CICR in vivo. It has been suggested that during E-C coupling Ca$^{2+}$ entering through single L-type Ca$^{2+}$ channels locally controls the activity of the Ca$^{2+}$ release channels, presumably arranged into functionally independent release units (Stern, 1992b; Cannell et al., 1995; López-López et al., 1995; Shorofsky et al., 1997). One important premise of the local control theory is that the RyR must be fast enough to track the fast Ca$^{2+}$ changes associated with single DHPR openings (see introduction). The results of the present study show that brief (~0.5 ms) trigger Ca$^{2+}$ signals are adequate to activate RyRs and are consistent with the possibility that RyR channels are controlled by single DHPR events. Such rapid activation could also provide a means for effective cross-activation of neighboring Ca$^{2+}$ release channels within a single release unit, thus accounting for the synchronization of multiple RyRs during a Ca$^{2+}$ spark (Bridge et al., 1999). At the same time, the presence of four Ca$^{2+}$ binding sites that must be occupied for channel opening would tend to reduce activation by global background Ca$^{2+}$ while still enabling the local Ca$^{2+}$ increase in the diadic cleft to activate the channels efficiently (Stern, 1992b; Stern et al., 1999).

We showed that Ca$^{2+}$ spikes with an estimated amplitude of 10–30 μM, which mimic single DHPR-related signals, have a 5–50% probability of inducing RyR activation. The results of our simulations in a wider range of amplitudes and durations of the Ca$^{2+}$ elevations demonstrate that the probability of activation of a single RyR is graded with the amplitude as well as duration of the triggering Ca$^{2+}$ pulse. These results are consistent with a DHPR–RyR coupling arrangement that could be the subject of physiological modulation and pathological failure in the heart (Gomez et al., 1997). The relatively low efficiency of activation of single RyRs by brief Ca$^{2+}$ stimuli could also reflect the importance of clustering of RyRs in the junctional gap, which would be expected to improve responsiveness of the RyRs (Cannell and Soeller, 1997). While our data suggest that the lower and shorter Ca$^{2+}$ elevations produced by DHPR openings trigger RyR activation with a relatively low probability, the resulting longer RyR openings of higher amplitude can be expected to activate the neighboring RyRs with a much higher probability, giving rise to the stereotypical spatio-temporal shape of a calcium spark (Cannell et al., 1995; López-López et al., 1995; Bridge et al., 1999).
We are grateful to M. Dura and A. Zahradníková, Jr., for technical assistance, and to M. Fill, A. Escobar, and R. Nathan for helpful discussions.

A. Zahradníková was supported in part by an Howard Hughes Medical Institute International Research Scholar’s Award, a Fulbright Scholar’s Award, and VEGA 2/5155; S. Györke by grants from the National Institutes of Health (HL 63043, HL 52620, and HL 03739-01). S. Györke is an Established Investigator of the American Heart Association.

Received: 25 March 1999 Revised: 20 October 1999 Accepted: 26 October 1999 Released online 15 November 1999

R E F E R E N C E S

Ashley, R.H., and A.J. Williams. 1990. Divalent cation activation and inhibition of single calcium release channels from sheep cardiac sarcoplasmic reticulum. J. Gen. Physiol. 95:981–1005.

Bers, D.M. 1991. Excitation–Contraction Coupling and Cardiac Contractile Force. Kluwer Academic Publishers, Boston, MA. 258 pp.

Bridge, J.H., P.R. Erdshel, and M.B. Cannell. 1999. Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes. J. Physiol. 518:469–478.

Cannell, M.B., H. Cheng, and W.J. Lederer. 1995. The control of calcium release in heart muscle. Science. 268:1045–1050.

Cannell, M.B., and C. Soeller. 1997. Numerical simulation of ryanodine receptor activation by L-type channel activity in the cardiac muscle diad. Biophys. J. 73:112–122.

Chu, A., M. Fill, E. Stefani, and M.L. Entman. 1993. Cytoplasmic Colquhoun, D., and A.G. Hawkes. 1983. The principles of the stoichiometry of Ca2+ fluxes. Pflügers Arch. 401:1–10.

Cannell, M.B., H. Cheng, and W.J. Lederer. 1995. The control of calcium release in heart muscle. Science. 268:1045–1050.

Colquhoun, D., and A.G. Hawkes. 1983. The principles of the stochastic interpretation of ion channel mechanisms. In Single Channel Recording. B. Sakmann and E. Neher, editors. Plenum Publishing Corp., New York, NY. 135–175.

Copello, J.A., S. Barg, H. Onoue, and S. Fleischer. 1997. Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors. Biophys. J. 73:141–156.

Coronado, R., J. Morrisette, M. Sukhareva, and D.M. Vaughan. 1994. Structure and function of ryanodine receptors. Am. J. Physiol. 266:C1485–C1504.

Dettbarn, C., S. Györke, and P. Palade. 1994. Many agonists induce “quantal” Ca2+ release or adaptive behavior in muscle ryanodine receptors. M. d. Pharmacol. 46:502–507.

Ellis-Davies, G.C.R., J.H. Kaplan, and R.J. Barsotti. 1996. Laser photolysis of caged Ca2+: rates of calcium release by nitrophenyl-EGTA and DM-nitrophen. Biophys. J. 70:1005–1016.

Escobar, A.L., P. Vélez, A.M. Kim, F. Fuentes, M. Fill, and J. Vergara. 1997. Kinetic properties of DM-nitrophos and calcium indicators: rapid transient response to photolysis. Pflügers Arch. 434:615–631.

Fabiato, A., and F. Fabiato. 1979. Use of chlorotetracycline fluorescence to demonstrate Ca2+–induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature. 281:146–148.

Gómez, A.M., H.H. Valdivia, H. Cheng, M.R. Lederer, L.F. Santana, M.B. Cannell, S.A. McCune, R.A. Altschuld, and W.J. Lederer. 1997. Defective excitation–contraction coupling in experimental cardiac hypertrophy and heart failure. Science. 276:800–806.

Györke, S., and M. Fill. 1993. Ryanodine receptor adaptation: control mechanism of Ca2+-induced Ca2+ release in heart. Science. 260:807–809.

Györke, S., and M. Fill. 1994. Ca2+-induced Ca2+ release in response to flash photolysis. Science. 263:987–988.

Györke, S., P. Vélez, B. Suárez-Isla, and M. Fill. 1994. Activation of single cardiac and skeletal ryanodine receptor channels by flash photolysis of caged Ca2+. Biophys. J. 66:1879–1886.

Lamb, G.D., M.W. Fryer, and D.G. Stephenson. 1994. Ca2+-induced Ca2+ release in response to flash photolysis. Science. 263:986–988.

Landau, R.H., and M.J. Páez. 1997. Computational Physics. John Wiley & Sons., New York, NY. 520 pp.

Laver, D., and B. Curtis. 1996. Response of ryanodine receptor channels to Ca2+ steps produced by rapid solution exchange. Biophys. J. 71:732–741.

Laver, D.R., and G.D. Lamb. 1998. Inactivation of Ca2+ release channels (ryanodine receptors RyR1 and RyR2) with rapid steps in [Ca2+] in and voltage. Biophys. J. 74:2352–2364.

López-López, J., P. Shacklock, C.W. Balke, and W.G. Wier. 1995. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science. 268:1042–1045.

Naraghi, M., and E. Neher. 1997. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17:6961–6973.

Rose, W.C., C.W. Balke, W.G. Wier, and E. Marban. 1992. Macroscopic and unitary properties of physiological ion flux through L-type Ca2+ channels in guinea-pig heart cells. J. Physiol. 456:267–284.

Rousséeu, E., and G. Meissner. 1989. Single cardiac sarcoplasmic reticulum Ca2+ release channel: activation by caffeine. Am. J. Physiol. 256:H328–H333.

Santana, L.F., H. Cheng, A.M. Gomez, M.B. Cannell, and W.J. Lederer. 1996. Relation between the sarcoplasmic Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation–contraction coupling. Circ. Res. 78:166–171.

Schiefer, A., G. Meissner, and G. Isenberg. 1995. Ca2+ activation and Ca2+ inactivation of cardiac ryanodine receptors revealed by rapid changes in ligand concentration. Circ. Res. 77:765–772.

Sitsapesan, R., R.A. Montgomery, and A.J. Williams. 1995. New insights into the gating mechanisms of cardiac ryanodine receptors revealed by rapid changes in ligand concentration. Circ. Res. 77:765–772.

Sitsapesan, R., and A.J. Williams. 1994. Gating of the native and purified cardiac SR Ca2+-release channel with monovalent cations as permeant species. Biophys. J. 67:1484–1494.

Soeller, C., and M.B. Cannell. 1997. Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad. Biophys. J. 73:97–111.

Stern, M.D. 1992a. Buffering of calcium in the vicinity of a channel pore. C. 13:183–192.

Stern, M.D. 1992b. Theory of excitation–contraction coupling in...
cardiac muscle. Biophys. J. 63:497-517.
Stern, M.D., and E. Lakatta. 1992. Excitation-contraction coupling in the heart: the state of the question. FASEB J. 6:3092-3100.
Stern, M.D., L.S. Song, H. Cheng, J.S. Sham, H.T. Yang, K.P. Boheler, and E. Rios. 1999. Local control models of cardiac excitation-contraction coupling: a possible role for allosteric interactions between ryanodine receptors. J. Gen. Physiol. 113:469-489.
Tripathy, A., and G. Meissner. 1996. Sarcoplasmic reticulum luminal Ca\(^{2+}\) has access to cytosolic activation and inactivation sites of skeletal muscle Ca\(^{2+}\) release channel. Biophys. J. 70:2600-2615.
Valdivia, H., J.H. Kaplan, G.C.R. Ellis-Davies, and W.J. Lederer. 1995. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg\(^{2+}\) and phosphorylation. Science. 267:1997-2000.
Zahradníková, A., M. Dura, and S. Györke. 1999a. Modal gating transitions in cardiac ryanodine receptors during increases of Ca\(^{2+}\) concentration produced by photolysis of caged Ca\(^{2+}\). Pflügers Arch. 438:283-288.
Zahradníková, A., P. Maco, P. Me hart, and I. Zahradník. 1999b. A novel dynamic algorithm for stochastic simulation of a group of coupled ionic channels. Biophys. J. 76:A460. (Abstr.)
Zahradníková, A., and I. Zahradník. 1995. Description of modal gating of the cardiac calcium release channel in planar lipid membranes. Biophys. J. 69:1780–1788.
Zahradníková, A., and I. Zahradník. 1996. A minimal gating model for the cardiac calcium release channel. Biophys. J. 71:2996-3012.
Zucker, R.S. 1993. The calcium concentration clamp: spikes and reversible pulses using the photo labile chelator DM-nitrophen. Cell. Calc. 14: 87-100.