Evaluating LSTM Models for Grammatical Function Labelling

Bich Ngoc Do♦ and Ines Rehbein♣

Leibniz ScienceCampus
Universität Heidelberg♦
Institut für Deutsche Sprache Mannheim♣

September 22, 2017
Grammatical Function Labelling

- Grammatical function (GF) labels help to interpret a sentence’s meaning.
Grammatical Function Labelling

- Grammatical function (GF) labels help to interpret a sentence’s meaning.
- Challenge: *case syncretism*. E.g: German

Die Frau Nom/Acc beißt das Pferd Nom/Acc.

"The woman bites the horse. / The horse bites the women."
Grammatical Function Labelling

- Grammatical function (GF) labels help to interpret a sentence’s meaning.
- Challenge: *case syncretism*. E.g: German
 - Die Frau_{Nom/Acc} beißt das Pferd_{Nom/Acc}.
 - The woman bites the horse.
Grammatical Function Labelling

- Grammatical function (GF) labels help to interpret a sentence’s meaning.

- Challenge: *case syncretism*. E.g: German

 Die Frau_{Nom/Acc} beißt das Pferd_{Nom/Acc}.

 The woman bites the horse. / The horse bites the women.

 ”The women bites the horse. / The horse bites the women.”
Related Work

- Most studies assign GF labels to constituency trees (Klenner, 2007; Chrupała and van Genabith, 2006; Seeker et al., 2010)
- Only a few studies model GF labelling as a separate task in dependency parsing:
 - McDonald et al. (2006): label all children of a node in a sequence labelling task using CRFs
 - Zhang et al. (2017): use a two-layer rectifier network to assign a label to each head-dependent pair
Labelling Dependencies with History

- Labelling benefits from context: the parent and grandparent nodes or the siblings...
Labelling Dependencies with History

- Labelling benefits from context: the parent and grandparent nodes or the siblings...
- Well known errors from local parsing models: duplicate subjects
Labelling Dependencies with History

- Labelling benefits from context: the parent and grandparent nodes or the siblings...
- Well known errors from local parsing models: duplicate subjects
 ⇒ Augment the labeller with different LSTM architectures.
Experimental Framework: DeNSe (Zhang et al., 2017)

- Uses a bidirectional LSTM to encode each word in a sentence
- Parsing in two steps
- Input for labelling the edge between head w_i and child w_j is $[b_i; b_j]$ where:

$$b_i = [x_i; h_i^F, h_i^B]$$
Label Prediction as a Sequence Labelling Task

- McDonald et al. (2006) considered all children of a node.
Label Prediction as a Sequence Labelling Task

- McDonald et al. (2006) considered all children of a node.
- We consider all label decisions and feed them to a bidirectional LSTM: given a sequence of words $S = (w_1, ..., w_N)$ and their corresponding head $(h_1, ..., h_N)$:

$$h_{i}^{F(lbl)} = \text{LSTM}^{F}_{lbl}(b_i, b_{h_i}, h_{i-1}^{F(lbl)})$$

$$h_{i}^{B(lbl)} = \text{LSTM}^{B}_{lbl}(b_i, b_{h_i}, h_{i+1}^{B(lbl)})$$
Linear LSTMs

biLSTM(L): Tree nodes are ordered according to their surface order in the sentence (linear order).
BiLSTM(B): Tree nodes are ordered according to a breadth-first traversal (BFS) of the tree, starting from the root node.
Top-down Tree LSTMs

- Top-down tree LSTMs (Zhang et al., 2016):
 - Use 1 (instead of 4) LSTM
 - Do not stack LSTMs
- Hidden state:
 \[h_i^{(lbl)} = \text{treeLSTM}(b_i, h_{i-1}^{(lbl)}) \]
Top-down Tree LSTMs

- **TREELSTM:**
Top-down Tree LSTMs

Notes:

- The input to the LSTM is the hidden representation of a node, not a pair.
- The tree model also has a shorter history chain and information only flows in one direction.
Data

Language	Morphology	Word order	Dataset	Test size
German				
Data

Language	Morphology	Word order	Dataset	Test size
German	Rich(er)	Semi-free	CoNLL 2006	357 sent.
Data

Language	Morphology	Word order	Dataset	Test size
English	Poor	Configurational	PTB	2416 sent.
German	Rich(er)	Semi-free	CoNLL 2006	357 sent.
Data

Language	Morphology	Word order	Dataset	Test size
English	Poor	Configurational	PTB	2416 sent.
German	Rich(er)	Semi-free	CoNLL 2006	357 sent.
Czech	Rich	Free	CoNLL 2006	365 sent.
Data

Language	Morphology	Word order	Dataset	Test size
English	Poor	Configurational	PTB	2416 sent.
German	Rich(er)	Semi-free	CoNLL 2006	357 sent.
			SPMRL 2014	5,000 sent.
Czech	Rich	Free	CoNLL 2006	365 sent.
Setup

- First train the unlabelled parsing models, then train different labellers (2 linear LSTMs, 1 tree LSTM) while fixing the unlabelled parameters
- Do not use any pre-trained embeddings
- Report unlabelled attachment score (UAS) and labelled attachment score (LAS) (excluding punctuations)
Results of Different Labellers

Model	en	cs	de\text{CoNLL}	de\text{SPMRL}
UAS	93.35	89.70	93.09	91.29
Baseline	91.58	83.42	90.22	88.15
biLSTM(l)	91.92*	84.08*	90.87*	88.73*
biLSTM(b)	91.91*	83.80	90.97*	88.74*
treeLSTM	91.92*	83.82	90.89*	88.74*
DeNSE	91.90	81.72	89.60	-

Table: (*) indicates that the difference between the model and the baseline is statistically significant ($p < .001$)
Compare to the SPMRL 2014 Winning Systems

- Our best results are only 0.3% lower than the winning system (Björkelund et al., 2014) without reranker (blended).
Our best results are only 0.3% lower than the winning system (Björkelund et al., 2014) without reranker (*blended*).

When applied on the output of the *blended* system, LAS slightly improves from 88.62% to 88.76% (*treeLSTM*).
Compare to the SPMRL 2014 Winning Systems

- Our best results are only 0.3% lower than the winning system (Björkelund et al., 2014) without reranker (*blended*).
- When applied on the output of the *blended* system, LAS slightly improves from 88.62% to 88.76% (treeLSTM).
- When applied on *unlabelled gold trees*, the distance between our best history-based model and the baseline increases by 1%.
Impact on Core GFs

de$_{SPMRL}$	SB	OA	DA	PD
	# 6,638	# 3,184	# 568	# 1,045
baseline	90.3	83.6	64.7	77.1
BiLSTM(L)	91.4	85.3	67.7	80.0
BiLSTM(B)	91.9	85.4	69.3	80.5
treeLSTM	91.2	85.1	68.6	79.8

de$_{SPMRL}$	AG	PG	OC	OG
	# 2,241	# 388	# 3,652	# 21
baseline	91.3	80.0	90.1	0
BiLSTM(L)	91.3	81.6	90.5	16.0
BiLSTM(B)	91.5	82.4	90.7	37.0
treeLSTM	91.4	81.4	90.2	27.6

Table: SB: subj, OA: acc.obj, DA: dat.obj, PD: pred, AG: gen.attribute, PG: phrasal genitive, OC: clausal obj, OG: gen.obj.
Long Dependencies vs. Head Direction

History-based models is *not* better at handling of long dependencies, but in dealing with the uncertainty in head direction.
Conclusions

- Our proposed models are practically simple and computationally inexpensive (as compared to global training or inference), but still do significantly improve labelling performance.
Conclusions

- Our proposed models are practically simple and computationally inexpensive (as compared to global training or inference), but still do significantly improve labelling performance.

- History is especially important for languages with more word order variation.
Conclusions

- Our proposed models are practically simple and computationally inexpensive (as compared to global training or inference), but still do significantly improve labelling performance.
- History is especially important for languages with more word order variation.
- Presenting the input in a BFS order outperforms other LSTM models on core grammatical functions.
Thank you!
Long Dependencies vs. Head Direction

	GF	en	cs	de_{SPMRL}
dep-length	sb	3.1	3.4	3.9
	dobj	2.5	*2.4	4.2
	iobj	1.7	-	4.7
left-head ratio	sb	4.6	32.5	34.2
	dobj	97.4	*77.5	37.2
	iobj	100.0	-	27.5

Table: Avg. dependency length and ratio of left arcs vs. all (left + right) arc dependencies for args. (*) in the Czech data, Obj subsumes all types of objects, not only direct objects
Björkelund, Anders et al. (2014). “Introducing the IMS-Wroclaw-Szeged-CIS entry at the SPMRL 2014 Shared Task: Reranking and Morpho-syntax meet Unlabeled Data”. In: Proceedings of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical Languages. Dublin, Ireland: Dublin City University, pp. 97–102. URL: http://www.aclweb.org/anthology/W14-6110.

Chrupała, Grzegorz and Josef van Genabith (2006). “Using Machine-learning to Assign Function Labels to Parser Output for Spanish”. In: Proceedings of the COLING/ACL on Main Conference Poster Sessions. COLING-ACL '06. Sydney, Australia, pp. 136–143.

Klenner, Manfred (2007). “Shallow Dependency Labeling”. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions. ACL '07. Prague, Czech Republic, pp. 201–204.

McDonald, Ryan, Kevin Lerman, and Fernando Pereira (2006). “Multilingual Dependency Analysis with a Two-stage Discriminative Parser”. In: Proceedings of the 10th Conference on Computational Natural Language Learning. CoNLL-X ‘06. New York City, New York, pp. 206–210.

Seeker, Wolfgang et al. (2010). “Hard Constraints for Grammatical Function Labelling”. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. ACL ’10. Uppsala, Sweden, pp. 1087–1097.

Zhang, Xingxing, Liang Lu, and Mirella Lapata (2016). “Top-down Tree Long Short-Term Memory Networks”. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, California: Association for Computational Linguistics, pp. 310–320. URL: http://www.aclweb.org/anthology/N16-1035.

Zhang, Xingxing, Jianpeng Cheng, and Mirella Lapata (2017). “Dependency Parsing as Head Selection”. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. EACL’17. Valencia, Spain, pp. 665–676.