LETTER TO THE EDITOR

Effect of prior treatments on selinexor, bortezomib, and dexamethasone in previously treated multiple myeloma

Maria V. Mateos1*, Maria Gavriatopoulou2, Thierry Facon3, Holger W. Auner4, Xavier Leleu5, Roman Hájek6, Meletios A. Dimopoulos7, Sosana Delimpasi8, Maryana Simonova9, Ivan Špička10, Luděk Pour11, Iryna Kriachok12, Halyna Pylypenko13, Vadim Doronin14, Ganna Usenko15, Reuben Benjamin16, Tuphan K. Dolai17, Dinesh K. Sinha18, Christopher P. Venner19, Mamta Garg20, Don A. Stevens21, Hang Quach22, Sundar Jagannath23, Philippe Moreau24, Moshe Levy25, Ashraf Z. Badros26, Larry D. Anderson Jr.27, Nizar J. Bahlis28, Michele Cavo29, Yi Chai30, Jacqueline Jeha30, Melina Arazy30, Jatin Shah30, Sharon Shacham30, Michael G. Kauffman30, Paul G. Richardson31† and Sebastian Grosicki32†

Abstract

Therapeutic regimens for previously treated multiple myeloma (MM) may not provide prolonged disease control and are often complicated by significant adverse events, including peripheral neuropathy. In patients with previously treated MM in the Phase 3 BOSTON study, once weekly selinexor, once weekly bortezomib, and 40 mg dexamethasone (XVd) demonstrated a significantly longer median progression-free survival (PFS), higher response rates, deeper responses, a trend to improved survival, and reduced incidence and severity of bortezomib-induced peripheral neuropathy when compared with standard twice weekly bortezomib and 80 mg dexamethasone (Vd). The pre-specified analyses described here evaluated the influence of the number of prior lines of therapy, prior treatment with lenalidomide, prior proteasome inhibitor (PI) therapy, prior immunomodulatory drug therapy, and prior autologous stem cell transplant (ASCT) on the efficacy and safety of XVd compared with Vd. In this 1:1 randomized study, enrolled patients were assigned to receive once weekly oral selinexor (100 mg) with once weekly subcutaneous bortezomib (1.3 mg/m²) and 40 mg per week dexamethasone (XVd) versus standard twice weekly bortezomib and 80 mg per week dexamethasone (Vd). XVd significantly improved PFS, overall response rate, time-to-next-treatment, and showed reduced all grade and grade ≥2 peripheral neuropathy compared with Vd regardless of prior treatments, but the benefits of XVd over Vd were more pronounced in patients treated earlier in their disease course who had either received only one prior therapy, had never been treated with a PI, or had prior ASCT. Treatment with XVd improved outcomes as compared to Vd regardless of prior therapies as well as manageable and generally reversible adverse events. XVd was associated with clinical benefit and reduced peripheral neuropathy compared to standard Vd in previously treated MM. These results suggest that the once weekly XVd regimen may be optimally administered to patients earlier in their course of disease, as their first bortezomib-containing regimen, and in those relapsing after ASCT.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

*Correspondence: mvmateos@usal.es
1 Paul G. Richardson and Sebastian Grosicki are co-senior authors
2 Hospital Universitario de Salamanca, Salamanca, Spain
Full list of author information is available at the end of the article

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
To the Editor,

Therapeutic options have significantly advanced for patients with multiple myeloma (MM) including combination therapies employing complementary mechanisms or targeting mechanisms distinct from previous regimens [1, 2]. Selinexor is a first-in-class, orally-available, selective inhibitor of nuclear export (SINE) compound that has shown definitive activity with low dose dexamethasone in patients with triple class refractory MM in the STORM study [3] and synergistic activity with bortezomib and dexamethasone (XVd) in patients with 1–3 prior therapies in the BOSTON study [4].

Here we analyzed pre-specified subpopulations from the BOSTON study to determine the impact of prior lines of therapy and identify those who might optimally benefit from the XVd regimen.

Baseline characteristics were well balanced between treatment arms across subgroups (Additional file 1: Table S1). Median progression-free survival (PFS) was longer on XVd versus Vd in patients with 1 prior line ($P = 0.0148$) or 2–3 prior lines ($P = 0.0295$), lenalidomide-naïve ($P = 0.0150$) or lenalidomide-treated ($P = 0.0177$) patients, and PI-naïve patients ($P = 0.0003$), with a strong trend in PI-treated patients. Patients with IMiD-refractory MM had a significantly longer median PFS ($P = 0.0051$), as did patients with or without prior ASCT ($P = 0.0074$ and $P = 0.0341$). A post-hoc analysis showed a trend towards longer PFS with XVd in patients who received limited bortezomib induction prior to ASCT treatment (Table 1).

Treatment with XVd was associated with a significantly higher overall response rate including patients with 1 prior line, 2–3 prior lines, lenalidomide-naïve or treated, PI-naïve or treated, and prior ASCT (Fig. 1). Subgroups with 1 prior therapy, lenalidomide-naïve, and prior PI treatment had significantly higher rates of \geq VGPR (Additional file 1: Table S2). Median time-to-next-treatment was significantly improved with XVd versus Vd: 1 prior line, 2–3 prior lines, lenalidomide-naïve or treated, PI-naïve or treated, and prior ASCT. Across the entire study, overall survival (OS) trended in favor of XVd over Vd (HR, 0.84 [95% CI 0.57–1.23]; $P = 0.19$). The median OS for lenalidomide-naïve and PI-naïve patients was not reached, but favored XVd over Vd (HR, 0.76 [95% CI 0.45–1.29] $P = 0.16$ and HR 0.63 [95% CI 0.25–1.61], $P = 0.16$, respectively) (Additional file 1: Table S3).

Overall grade ≥ 3 adverse events (AEs) occurred more frequently with XVd and were generally well managed. Importantly, grade ≥ 2 peripheral neuropathy occurred significantly less frequently across all XVd subgroups. The incidence of serious AEs and drug discontinuation due to AEs trended higher with XVd (Additional file 1: Table S4). There was no clear trend regarding AEs leading to a fatal outcome, although the slight excess number of deaths with XVd in the PI-treated subgroup were

Patients (n, XVd vs Vd)	Median PFS, months (95% CI)	HR (95% CI)	P value	
	XVd	Vd		
1 prior line (99 vs 99)	16.62 (13.24, NR)	10.68 (7.26, 16.39)	0.6295 (0.4133, 0.9586)	0.0148
2–3 prior lines (96 vs 108)	11.76 (7.39, NR)	9.43 (6.83, 9.69)	0.6949 (0.4760, 1.0147)	0.0295
Lenalidomide naïve (118 vs 130)	16.62 (12.98, NR)	10.61 (8.44, 15.41)	0.6619 (0.4548, 0.9634)	0.0150
Lenalidomide treated (77 vs 77)	9.59 (6.70, NR)	7.23 (4.93, 9.69)	0.6348 (0.4148, 0.9714)	0.0177
PI naïve (47 vs 48)	NR (NR, NR)	9.69 (6.44, NR)	0.2585 (0.1116, 0.5988)	0.0003
PI treated (148 vs 159)	11.73 (7.95, 15.21)	9.43 (7.06, 10.71)	0.7839 (0.5791, 1.0612)	0.0576
IMiD refractory (74 vs 86)	13.93 (6.70, NR)	8.44 (5.78, 9.56)	0.5752 (0.3753, 0.8816)	0.0051
Prior bortezomib only as induction for ASCT (37 vs 30)	13.14 (11.73, NR)	9.43 (5.75, NR)	0.5807 (0.2860, 1.1791)	0.0639
ASCT (76 vs 63)	16.56 (9.59, NR)	9.43 (5.91, 10.87)	0.5527 (0.3411, 0.8955)	0.0074
No ASCT (119 vs 144)	13.24 (10.18, NR)	9.56 (8.11, 13.60)	0.7239 (0.5111, 1.0252)	0.0341

ASCT autologous stem cell transplant, CI confidence interval, IMiD immunomodulatory drug, NR not reached, ORR overall response rate, PFS progression-free survival, PI proteasome inhibitor

Trial registration: ClinicalTrials.gov (NCT03110562). Registered 12 April 2017. https://clinicaltrials.gov/ct2/show/NCT03110562.

Keywords: Selinexor, Exportin-1, Multiple myeloma, SINE compound
restricted to India prior to the institution of increased monitoring, after which there were no additional deaths.

Our observations are particularly noteworthy as the once weekly XvD regimen utilizes ~40% less bortezomib and 25% less dexamethasone and requires ~37% fewer clinic visits for bortezomib injections than the standard Vd regimen. Despite the number of additional, subsequent therapies available to patients in this study, allowing patients on Vd with objective progressive disease to cross-over to a selinexor regimen, and the relatively short follow up, the results were accompanied by favorable trends on OS. Given its unique role in reactiving multiple tumor suppressor proteins and demonstrated synergy with PIs as well as other anti-MM drugs [5–9], these findings are consistent with the use of oral selinexor earlier in the MM treatment course. It is possible that some of the benefits of selinexor in those PI-treated patients may reflect the documented synergy between selinexor and PIs, even cells with marked PI refractoriness [5]. Moreover, benefits in duration and depth of response of XvD over Vd were most pronounced in patients who were PI-naïve, suggesting that selinexor could be an optimal partner for combining with weekly bortezomib as the first PI-containing MM regimen. Moreover, as daratumumab + lenalidomide/dexamethasone (DRd) is increasingly utilized in front-line MM treatment, the once weekly XvD regimen in second line could lead to a marked reduction in the development of prolonged or permanent bortezomib-associated neuropathy [10, 11]. Furthermore, the use of XvD following DRd allows for optimal mechanistic switching, thus preserving second generation agents (PIs, IMiDs and anti-CD38 mAbs) for subsequent lines of therapy where they may be more effective [1, 2, 12].

In conclusion, the earlier use of selinexor in treating MM may provide better, more durable outcomes with lower rates of peripheral neuropathy, using one of the simplest triplet regimens currently available for the treatment of patients with MM [4].

Abbreviations

ASCT: Autologous stem cell transplant; AE: Adverse event; CI: Confidence interval; DRd: Daratumumab plus lenalidomide/dexamethasone; HR: Hazard ratio; IMiDs: Immunomodulatory agents; MM: Multiple myeloma; NR: Not reached; ORR: Overall response rate; OS: Overall survival; PD: Progressive disease; PIs: Proteasome inhibitors; PFS: Progression-free survival; PN: Peripheral neuropathy; TTNT: Time-to-next-treatment; Vd: Bortezomib dexamethasone; VGPR: Very good partial response; XPO1: Exportin-1; XvD: Selinexor bortezomib dexamethasone.
Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13045-021-01071-9.

Additional file 1. Supplementary material.

Acknowledgements
JetPub Scientific Communications, LLC supported by funding from Karyopharm, provided drafts and editorial assistance to the authors during preparation of this manuscript.

Authors’ contributions
MVM, MG (Maria Gavriatopoulou), TF, HWA, XL, RH, MAD, SD, MS, IS, LP, IK, HP, GD, GU, RB, TKD, DKS, CV, MG (Mamta Garg), DAS, HQ, SJ, PM, ML, AZB, LDA, NJB, MC, YC, JJ, MA, JS, SS, MGK, PGR, SG collected the data. SS, MGK and NJB contributed to the study design. YC and JJ analyzed the data. All authors interpreted the data. All authors edited, and reviewed manuscript drafts, and approved the final version.

Funding
This study was supported by Karyopharm Therapeutics.

Availability of data and materials
Karyopharm Therapeutics agrees to share individual participant data that underlie the results reported in this article (after deidentification), including the study protocol and statistical analysis plan. Data availability will begin 9 months after publication and will be available 36 months after publication. To gain access, data requestors should submit a proposal to medicalinformation@karyopharm.com. Proposals will be reviewed by an independent review committee identified for this purpose.

Declarations
Ethics approval and consent to participate
The study was approved and performed in accordance with the International Conference on Harmonization, the Guidelines for Good Clinical Practice, appropriate regulatory requirements, and with approval of institutional review boards at individual enrolling institutions. All patients provided written informed consent before study start.

Consent for publication
Not applicable.

Competing interests
M-VM has served as member of advisory boards or received honoraria from Janssen, BMS-Celgene, Takeda, Amgen, Sanofi, Oncopeptides, GSK, Adaptive, Pfizer, Regeneron, Roche and Sea-Gen. MG reports (Maria Gavriatopoulou) receiving honoraria from Amgen, Karyopharm Therapeutics, Takeda, Genesis Pharma, and Janssen-Cilag. TF reports an advisory board role for Karyopharm, Amgen, Roche and Oncopeptides; an advisory board role and a speaker bureau role for Janssen, Celgene/BMS, and Takeda. HWA reports an advisory role for Celgene, Karyopharm, Janssen-Cilag, Takeda, and Sanofi; and a speaker’s bureau role for Janssen. MGK reports grants and personal fees from Celgene; personal fees from Janssen, Amgen, Takeda, and AbbVie. MG (Mamta Garg) reports support for attending conferences from Takeda, an advisory role for Amgen, Takeda, Janssen, Novartis, and Celgene; and a speaker’s bureau role for Janssen.

References
1. Nijhof IS, van de Donk NWCJ, Ziveegean S, Lokhorst HM. Current and new therapeutic strategies for relapsed and refractory multiple myeloma: an update. Drugs. 2018;78:19–37.
2. Anderson KC. Progress and paradigms in multiple myeloma. Clin Cancer Res. 2016;22:5419–27.
3. Chari A, Vogl DT, Gavriatopoulou M, Nooak AK, Yee AJ, Huff CA, et al. Oral selinexor-desamethasone for triple-class refractory multiple myeloma. N Engl J Med. 2019;381:727–38.
4. Grosci K, Simonova M, Spicka I, Pour L, Krachok I, Gavriatopoulou M, et al. Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label, phase 3 trial. Lancet. 2020;396:1565–73.
5. Bahls N, Sutherland H, White D, Sebag M, Lentzsch S, Kotb R, et al. Selinexor plus low-dose bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma. Blood. 2018;132:2546–54.
6. Chari A, Suvannasankha A, Fay JW, Arnulf B, Kaufman JL, Ifthikharuddin JJ, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130:974–81.
7. Gasparetto C, Lipe B, Tuchman S, Callander NS, Lentzsch S, Baljevic M, et al. Once weekly selinexor, carfilzomib, and dexamethasone (SKd) in patients with relapsed/refractory multiple myeloma (MM). J Clin Oncol. 2020;38:8530–8530.
8. Jakubowiak AJ, Jasielec JK, Rosenbaum CA, Cole CE, Chari A, Mikhail J, et al. Phase 1 study of selinexor plus carfilzomib and dexamethasone for the treatment of relapsed/refractory multiple myeloma. Br J Haematol. 2019;186:549–60.
9. White DJ, Lentzsch S, Gasparetto C, Bahlis N, Chen CL, Lipe BC, et al. Safety and efficacy of the combination of selinexor, lenalidomide and dexamethasone (SRd) in patients with newly diagnosed multiple myeloma. Blood. 2019;134:3165–3165.
10. Richardson PG, Xie W, Mitsiades C, Chanan-Khan AA, Lonial S, Hassoun H, et al. Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol. 2009;27:3518–25.
11. Velasco R, Alberti P, Bruna J, Psimaras D, Argyriou AA. Bortezomib and other proteosome inhibitors—induced peripheral neurotoxicity: from pathogenesis to treatment. J Peripher Nerv Syst. 2019;24:S52-62.
12. NCCN Guidelines Insights: Multiple Myeloma, Version 3.2016 in: Journal of the National Comprehensive Cancer Network Volume 14 Issue 4 (2016) [Internet]. [cited 2020 Feb 5]. https://jnccn.org/view/journals/jnccn/14/4/article-p389.xml

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.