ULTRA–HIGH-ENERGY COSMIC RAYS FROM YOUNG NEUTRON STAR WINDS

P. BLASI
NASA/Fermilab Astrophysics Group, Fermi National Accelerator Laboratory, Box 500, Batavia, IL 60510-0500

R. I. EPSTEIN
Los Alamos National Laboratory, NIS-2, Los Alamos, NM 87545

AND

A. V. OLINTO
Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637

Received 1999 December 3; accepted 2000 March 8; published 2000 April 07

ABSTRACT

The long-held notion that the highest energy cosmic rays are of distant extragalactic origin is challenged by observations that events above \(\sim 10^{20} \) eV do not exhibit the expected high-energy cutoff from photopion production off the cosmic microwave background. We suggest that these unexpected ultra–high-energy events are due to iron nuclei accelerated from young strongly magnetized neutron stars through relativistic MHD winds. We find that neutron stars whose initial spin periods are shorter than \(\sim 10 \) ms and whose surface magnetic fields are in the \(10^{13}–10^{14} \) G range can accelerate iron cosmic rays to greater than \(\sim 10^{20} \) eV. These ions can pass through the remnant of the supernova explosion that produced the neutron star without suffering significant spallation reactions or energy loss. For plausible models of the Galactic magnetic field, the trajectories of the iron ions curve sufficiently to be consistent with the observed, largely isotropic arrival directions of the highest energy events.

Subject headings: acceleration of particles — magnetic fields — MHD — plasmas

The detection of cosmic rays with energies above \(10^{20} \) eV has triggered considerable interest in the origin and nature of these particles. Hundreds of events with energies above \(10^{19} \) eV and about 20 events above \(10^{20} \) eV have now been observed by a number of experiments such as HiRes (Abu-Zayyad et al. 1999), Akeno Giant Air Shower Array (AGASA; Takeda et al. 1998, 1999), Fly’s Eye (Bird et al. 1995, 1993, 1994), Haverah Park (Lawrence, Reid, & Watson 1991), Yakutsk (Afanasiev et al. 1996), and Volcano Ranch (Linsley 1963). Most unexpected is the large flux of events observed above \(5 \times 10^{19} \) eV (Takeda et al. 1998) with no sign of the Greisen-Zatsepin-Kuzmin (GZK) cutoff (Greisen 1966; Zatsepin & Kuzmin 1966). The cutoff should be present if these ultra–high-energy particles are protons produced by sources distributed homogeneously throughout the universe. Cosmic-ray protons of energy above \(5 \times 10^{19} \) eV lose their energy to photopion production off the cosmic microwave background and cannot originate further than about 50 Mpc away from us. Alternatively, if ultra–high-energy cosmic rays (UHECRs) are protons from sources closer than 50 Mpc, the arrival direction of the events should point toward their source. The present data show a mostly isotropic distribution and no sign of the local distribution of galaxies or of the Galactic disk above \(10^{19} \) eV (Takeda et al. 1999). In sum, the origin of these particles with energies tens of millions of times greater than any produced in terrestrial particle accelerators remains a mystery.

In addition to the difficulties with locating plausible sources of UHECRs in our nearby universe, there are great difficulties with finding plausible accelerators for such extremely energetic particles. Acceleration of cosmic rays in astrophysical plasmas occurs when the energy of large-scale macroscopic motion, such as shocks and turbulent flows, is transferred to individual particles. The maximum possible energy \(E_{\text{max}} \) is estimated by requiring that the gyroradius of the particle be contained in the acceleration region (Hillas 1984) and that the acceleration time be smaller than the time for energy losses. The former condition relates \(E_{\text{max}} \) to the strength of the magnetic field \(B \) and the size of the acceleration region \(L \) such that \(E_{\text{max}} \approx Ze BL \), where \(Ze \) is the charge of the particle. For instance, for \(E_{\text{max}} \approx 10^{20} \) eV and \(Z \approx 1 \), the known astrophysical sources with reasonable BL products are neutron stars (\(B \approx 10^{12} \) G and \(L \approx 10 \) km), active galactic nuclei (\(B \approx 10^{4} \) G and \(L \approx 10 \) AU), radio galaxies (\(B \approx 10^{-5} \) G and \(L \approx 10 \) kpc), and clusters of galaxies (\(B \approx 10^{-6} \) G and \(L \approx 100 \) kpc) (Hillas 1984; Berezinsky et al. 1990). However, energy losses usually prevent acceleration to \(E_{\text{max}} \) and no effective mechanism for UHECR acceleration has been shown for any of these objects (Blandford 2000; Bhat-tacharjee & Sigl 1998; Venkatesan, Miller, & Olinto 1997). Here we show that the early evolution of young magnetized neutron stars in our Galaxy may be responsible for the flux of cosmic rays beyond the GZK cutoff. A preliminary study of this idea can be found in Olinto, Epstein, & Blasi (1999).

Neutron stars have been previously suggested as possible sources of UHECRs, from an early attempt by Gunn & Ostriker (1969) to the more recent proposal of Bell (1992). Thus far, these attempts have failed at either reaching the highest energies or reproducing the spectrum or the apparent isotropy of the arrival directions of UHECRs. In the following we describe our alternative. We propose that young neutron stars may accelerate heavy nuclei to the highest observed energies by transferring their rotational energy to particle kinetic energy via a relativistic MHD wind.

Some neutron stars may begin their life rotating rapidly (\(\Omega \approx 3000 \) rad s\(^{-1}\)) and with large surface magnetic fields (\(B_s \approx 10^{13} \) G). The dipole component of the field decreases as the cube of the distance from the star’s surface: \(B(r) = B_s (r_c/r)^3 \), where the radius of the star is \(r_c \approx 10^{6} \) cm. As the distance from the star increases, the dipole field structure cannot be causally maintained, and beyond the light cylinder radius \(R_{lc} = c/\Omega \), the field is mostly azimuthal, with field lines spiraling
outward (Michel 1991). For young, rapidly rotating neutron stars, the light cylinder is about 10 times the stellar radius, \(R_{lc} = 10^5 \Omega_3^{-1} \) cm, where \(\Omega_3 \equiv \Omega/3000 \) rad s\(^{-1}\).

The surface of young neutron stars is composed of iron-peak elements formed during the supernova event. Iron ions can be stripped off the hot surface of a young neutron star because of strong electric fields and can be present throughout much of the magnetosphere (Ruderman & Sutherland 1975; Arons & Scharlemann 1979). Inside the light cylinder, the magnetosphere corotates with the star and the iron density has the Goldreich-Julian value: \(n_{\text{GJ}}(r) = B(r)\Omega/(4\pi c e) \), where \(c \) is the speed of light (Goldreich & Julian 1969). In this estimate, and what follows, we do not include the trigonometric factors related to the relative orientation of the magnetic and rotational axes.

The exact fate of the plasma outside the light cylinder is still a subject of debate (Gallant & Arons 1994; Begelman & Li 1994; Chiuheh, Li, & Begelman 1998; Melatos & Melrose 1996). Observations of the Crab Nebula indicate that most of the rotational energy emitted by the Crab pulsar is converted into the kinetic energy of particles in a relativistic wind (Kennel & Coroniti 1984; Begelman 1998; Emmering & Chevalier 1987). This conversion may be due to properties of the MHD flow, related to magnetic reconnection (Coroniti 1990), or a more gradual end of the MHD limit (Melatos & Melrose 1996). Some analytical and numerical studies show the development of kinetically dominated relativistic winds (see, e.g., Begelman & Li 1994), but at present the theoretical understanding of the wind dynamics is far from complete.

The basic idea of accelerating plasmas by the Poynting flux was proposed by Weber & Davis (1967; then called magnetic slingshot). Later, Michel (1969) showed that for a perfectly spherical flow the complete conversion of the magnetic energy into kinetic energy of the flow could not be achieved. However, Begelman & Li (1994) reconsidered the problem and showed that even small deviations from a spherical flow could imply an efficient conversion of the magnetic energy into kinetic energy of the wind through the so-called magnetic nozzle effect, provided the magnetic field lines have the right geometry.

In the present study we assume that, at least for some neutron stars, most of the magnetic energy in the wind zone is converted into the kinetic energy of the particles in the wind and that the rest mass density of the regions of the wind containing iron ions are not dominated by electron-positron pairs; that is, the electron-positron density is less than \(\sim 10^4 \) times that of the iron ions. With these assumptions, the magnetic field in the wind zone decreases as \(B(r) \propto B_{lc} R_{lc}/r \). For surface fields of \(B_s \equiv 10^3 B_{13} \) G, the field at the light cylinder is \(B_{lc} = 10^{16} B_{13} \Omega_3 \) G. The maximum energy of particles that can be contained in the wind near the light cylinder is

\[
E_{\text{max}} = \frac{Ze B_{lc}}{c} = 8 \times 10^{20} Z_{26} B_{13} \Omega_3^2 \text{ eV},
\]

where \(Z_{26} \equiv Z/26 \). In the rest frame of the wind the plasma is relatively cold, while in the star’s rest frame the plasma moves with Lorentz factors \(\sim 10^3 \).

The typical energy of the accelerated cosmic rays \(E_s \) can be estimated by considering the magnetic energy per ion at the light cylinder: \(E_s = B_{lc}^2/8\pi n_{\text{GJ}} \). At the light cylinder \(n_{\text{GJ}} = 1.7 \times 10^3 B_{13} \Omega_3^2 \) \(\text{cm}^{-3} \), which gives

\[
E_s = 4 \times 10^{20} Z_{26} B_{13} \Omega_3^2 \text{ eV},
\]

similar to \(E_{\text{max}} \) above (Gallant & Arons 1994; Begelman & Li 1994).

The spectrum of accelerated UHECRs is determined by the evolution of the rotational frequency: as the star spins down, the energy of the cosmic-ray particles ejected with the wind decreases. The total fluence of UHECRs between energy \(E \) and \(E + dE \) is

\[
N(E)dE = \frac{\dot{N}}{\Omega} \frac{d\Omega}{dE} dE,
\]

where the particle luminosity is

\[
\dot{N} = \xi n_{GJ} \pi R_{lc}^2 c = 6 \times 10^{34} \frac{B_{11}^2 \Omega_3^4}{Z_{26}} \text{ s}^{-1}
\]

and \(\xi < 1 \) is the efficiency for accelerating particles at the light cylinder. The rotation speed decreases due to electromagnetic and gravitational radiation (Lindblom, Owen, & Morsink 1998; Andersson, Kokkotas, & Schutz 1999). For \(B_s \approx 10^{13} \) G, r-mode gravitational radiation is likely suppressed (Rezzolla, Lamb, & Shapiro 1999) and the spin-down may be dominated by magnetic dipole radiation given by

\[
I \dot{\Omega} = -\frac{B_{11}^2 R_{15}^2 \Omega_3^2}{6c^3}.
\]

For a moment of inertia \(I = 10^{45} \text{ g cm}^2 \), the time derivative of the spin frequency is \(\Omega = 1.7 \times 10^{-3} B_{11}^2 \Omega_3^2 \text{ s}^{-1} \), and equation (2) gives

\[
\frac{dE}{d\Omega} = 1.7 \times 10^{-3} \frac{E}{\Omega_3^2}.
\]

Substituting in equation (3), the particle spectrum from each neutron star is

\[
N(E) = \xi \frac{5.5 \times 10^{31}}{B_{13} E_{20} Z_{26}} \text{ GeV}^{-1},
\]

where \(E = 10^{20} E_{20} \) eV.

Neutron stars are produced in our Galaxy at a rate \(1/\tau \), where \(\tau = 100 t_{25} \) yr, and a fraction \(\epsilon \) of them have the required magnetic fields, initial spin rates, and magnetic field geometry to allow efficient conversion of magnetic energy into kinetic energy of the flow. As discussed below, ultra-high-energy (UHE) iron nuclei scatter and diffuse in the Galactic magnetic field. Taking the confining volume for these particles to be \(V \) and the lifetime for confinement to be \(t_s \), the UHECR density is \(n(E) = \epsilon N(E) t_s / t_{v_f} \), and the flux at the surface of the Earth is \(F(E) = n(E) c / 4 \). For a characteristic confinement dimension of \(R = 10 R_{kpc} \), we can write \(V = 4\pi R^3 / 3 \) and \(t_s = Q R / c \), where \(Q > 1 \) is a measure of the how well the UHECRs are trapped. The predicted UHECR flux at the Earth is

\[
F(E) = 10^{-24} \frac{\xi \epsilon Q}{\tau R^3 B_{13} E_{20} Z_{26}} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}.
\]

By comparing with observations, we can estimate the required efficiency factor, \(\xi \). The AGASA experiment finds that the flux at \(10^{20} \) eV at Earth is \(F(E) = 4 \times 10^{-30} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \). Equating this flux with the estimate of equation (8), we find that the efficiency factor only needs to be \(\xi \epsilon \approx 4 \times \).
The events with energy above $10^{19.5} \, \text{eV}$, however, show supernova star. We now have 14 surrounding the neutron star is, where 2 then disperses with a velocity $1/2$ to the stellar envelope of mass M_{env}. The envelope &

\begin{align*}
&\text{FIG. 1.—Parameter space for which acceleration and escape of the accelerated particles through the ejecta are allowed. The solid lines refer to particle energy } E_p = 10^{20} \, \text{eV} \text{ and dashed lines to } E_p = 3 \times 10^{20} \, \text{eV}. \text{ The curves are plotted for two values of the envelope mass, } M_{\text{env}} = 50 \text{ and } 5 \, M_\odot, \text{ as indicated. The horizontal line at spin period } \approx 0.3 \, \text{ms indicates the minimum period (maximum angular speed) allowed for neutron stars (Haensel, Lasota, & Zdunik 1999).}
\end{align*}

$10^{-6} Q^{-1}$. The smallness of the required efficiency suggests that young, Galactic neutron stars can be the source of UHECRs even if only a small fraction of stars are born with very rapid spin frequencies and high magnetic fields. The observed energy spectrum of cosmic rays below the expected GZK cutoff (i.e., between $\approx 10^8$ and $\approx 10^{15} \, \text{eV}$) has a steep energy dependence $N(E) \propto E^{-\gamma}$, with $\gamma \approx 2.7$ for $E \leq 10^{15} \, \text{eV}$ and $\gamma \approx 3.1$ for $10^{15} \leq E(\text{eV}) \leq 10^{19}$ (Gaisser 1990). The events with energy above $10^{19.5} \, \text{eV}$, however, show a much flatter spectrum with $1 \leq \gamma \leq 2$; the drastic change in slope suggests the emergence of a new component of cosmic rays at ultra–high energies. The predicted spectrum of equation (8) is very flat, $\gamma = 1$, which agrees with the lower end of the plausible range of γ observed at ultra–high energies. Propagation effects can produce an energy dependence of the confinement parameter Q and, correspondingly, a steepening of the spectrum toward the middle of the observed range $1 \leq \gamma \leq 2$.

Even though a young neutron star is usually surrounded by the remnant of the presupernova star, the accelerated particles can escape the supernova remnant without significant degradation as the envelope expands. A requirement for relativistic winds to supply UHECRs is that the column density of the envelope becomes transparent to UHE iron nuclei before the spinning rate of the neutron star decreases to the level at which the star is unable to emit particles of the necessary energy.

To estimate the evolution of the column density of the envelope, consider a supernova that imparts $E_{\text{env}} = 10^{51} E_{51} \, \text{ergs}$ to the stellar envelope of mass $M_{\text{env}} = 10^4 M_\odot$. The envelope then disperses with a velocity $v_e = (2E_{\text{env}}/M_{\text{env}})^{1/2} = 3 \times 10^4 (E_{51}/M_{\odot})^{1/2} \, \text{cm s}^{-1}$. The column density of the envelope surrounding the neutron star is $\Sigma = M_{\text{env}}/4 \pi R_{\text{st}}^2$, where $R_{\text{st}} = R_0 + v_e t$, where R_0 is the characteristic radius of the presupernova star, $R_0 \approx 10^{14} \, \text{cm}$. We now have

\begin{align*}
\Sigma &= \frac{M_{\text{env}}}{4\pi (R_0 + v_e t)^2} = 1.6 \times 10^{16} \frac{M_{\text{env}}}{E_{51}^{1/2}} \left(t \over 1 + t, t \right) \, \text{g cm}^{-2}, \quad (9)
\end{align*}

where t is in seconds and $t_e = R_0/v_e \approx 3 \times 10^4 (M/M_\odot) E_{51}^{1/2}$ s.

The condition for iron nuclei to traverse the supernova envelope without significant losses is that $\Sigma \approx 100 \, \text{g cm}^{-2}$. This “transparency” occurs at times $t \approx t_e = 1.3 \times 10^8 M_{\odot} E_{51}^{1/2} \, \text{s} \gg t_e$.

As the envelope is being ejected, the neutron star spin is slowing due to the magnetic dipole radiation (eq. [5]), so that

\begin{align*}
\Omega_{\text{ns}}(t) &= \frac{\Omega_{\text{ns}}^2}{1 + t/t_e B_{13}^2 \Omega_{\text{ns}}^2}, \quad (10)
\end{align*}

where $3000 \Omega_{\text{ns}} \, \text{rad s}^{-1}$ is the initial spin rate and $t_e = t/10^8 \, \text{s}$. The cosmic-ray energy thus evolves according to

\begin{align*}
E_{\text{cr}}(t) &= 4 \times 10^{20} \, \text{eV} \frac{Z_{26} B_{13}^2 \Omega_{\text{ns}}^2}{1 + t/t_e B_{13}^2 \Omega_{\text{ns}}^2}. \quad (11)
\end{align*}

The condition that a young neutron star could produce the UHECRs is that E_{cr} exceeds the needed energy when the envelope becomes transparent; i.e., $E_{\text{cr}}(t_e) > 10^{20} E_{20} \, \text{eV}$. This translates into the following condition:

\begin{align*}
\frac{3000 \, \text{s}^{-1}}{B_{13}^2 \left(2Z_{26} E_{20}^{-1} - 0.13 M_{\odot} B_{13}^{-1/2} \Omega_{\text{ns}}^{-1} \right)^{1/2}}. \quad (12)
\end{align*}

From this equation, we obtain the allowed regions in the $B_{13}-\Omega$ plane shown in Figure 1 for $E_{20} = 1$ and 3 and $M_{\text{env}} = 5$ and 50 M_\odot.

For the parameters within the allowed region, the acceleration and survival of UHE iron nuclei is not significantly affected by the ambient photon radiation. The most important source of radiation in the wind region is the thermal emission from the star’s surface. The low-energy nonthermal radiation from the neutron star is not significant unless it is more than 10^5 times that of the Crab pulsar. In the time needed for the envelope to become transparent, the surface cools to $\approx 3 \times 10^5$ K (Tsuruta 1998). For these temperatures, photodissociation (see, e.g., Protheroe, Bednarek, & Luo 1998) and Compton drag have minor effects on the energy and composition of the accelerating iron nuclei. Furthermore, synchrotron losses are unimportant because the plasma is essentially cold in the rest frame of the accelerating plasma.

The relativistic MHD wind from a rapidly spinning neutron star may impart more energy to the supernova remnant than the initial explosion. For initial spin rates $\approx 10000 \, \text{rad s}^{-1}$, the rotational energy is $\approx 10^{51} \, \text{ergs}$, comparable to the kinetic energy of most supernova remnants. More rapidly spinning neutron stars may generate highly energetic supernova events, possibly similar to SN 1998bw (Kulkarni et al. 1998). In these cases, the right boundary of the allowed region in Figure 1 should be enlarged because the remnant expands more rapidly than assumed above.

The iron ejected with energies $\approx 10^{20} \, \text{eV}$ will reach Earth after being deflected by the Galactic and halo magnetic fields (Zirakashvili et al. 1998). The gyroradius of these UHECRs in the Galactic field of strength B_{gal} is

\begin{align*}
r_B = \frac{E_{\text{cr}}}{Ze B} = \frac{1.4 \times 10^3 \, \text{eV}}{B_{\text{gal}}} \left(\frac{3 \, \mu\text{G}}{B_{\text{gal}}} \right) E_{20} \, \text{kpc}, \quad (13)
\end{align*}

which is considerably less than the typical distance to a young neutron star ($\approx 8 \, \text{kpc}$). Therefore, ultra–high-energy iron arriving at the Earth would not point at the source. A Galactic iron source is consistent with an approximately isotropic arrival direction distribution as observed by AGASA for UHECRs.
(Zirakashvili et al. 1998). In support of this interpretation, we note that the cosmic-ray component at 10^{18} eV is nearly isotropic with only a slight correlation with the Galactic disk and spiral arms (Hayashida et al. 1999). If these cosmic rays are protons of Galactic origin, their isotropy is indicative of the diffusive effect of the Galactic and halo magnetic fields. Since the iron arrival distribution at 10^{20} eV probes similar trajectories to protons at a few times 10^{18} eV, we expect the iron to show a nearly isotropic distribution with a slight correlation with the Galactic center and disk. This correlation should become apparent if the number of observed events grows by orders of magnitude or if events with energies higher than the present highest energies events are detected. Although some indication of a correlation with the Galactic center for events above 10^{20} eV has been recently reported (Staney & Hillas 1999), the small number of observed events limits the significance of this finding.

In conclusion, we propose that ultra--high-energy cosmic-ray events originate from iron nuclei accelerated by young, strongly magnetic, Galactic neutron stars. Iron from the surface of newborn neutron stars is accelerated to ultra--high energies by a relativistic MHD wind. Neutron stars whose initial spin periods are shorter than $\sim 4(B_s/10^{13})^{1/2}$ ms can accelerate iron nuclei to greater than 10^{20} eV. These ions can pass through the radiation field near the neutron star and the remnant of the supernova explosion that produced the neutron star without suffering significant deceleration or spallation reactions.

The best test of this proposal is unambiguous composition (mass/charge) determination and a correlation of arrival directions for events with energies above 10^{20} eV with the Galactic center and disk. Both aspects will be well tested by future experiments such as the Auger Project (Cronin 1999) and OWL-Airwatch (Ormes et al. 1997). In addition, our model will be severely constrained if the indication of a small-scale clustering among UHECR events (Uchihori et al. 1999) is confirmed by future experiments to be due to an isotropically distributed set of discrete sources.

We are grateful to A. Ferrari, C. Ho, F. K. Lamb, and H. Li for helpful conversations. This research was partly supported by NSF through grant AST 94-20759 at the University of Chicago, by NASA grant NAG5-7092 and by the DOE at Fermilab, at LANL through IGPP, and at the University of Chicago through grant DE-FG0291 ER40606.

REFERENCES

Abu-Zayyad, T., et al. 1999, Proc. 26th Int. Cosmic-Ray Conf. (Salt Lake City), 3, 264
Afanasiev, B. N., et al. 1996, in Proc. Extremely High Energy Cosmic Rays, ed. M. Nagano (Tokyo: Univ. Tokyo Press), 32
Andersson, N., Kokkotas, K., & Schutz, B. F. 1999, ApJ, 510, 846
Arons, J., & Scharlemann, E. T. 1979, ApJ, 231, 854
Begelman, M. C. 1998, ApJ, 493, 291
Begelman, M. C., & Li, Z.-Y. 1994, ApJ, 426, 269
Bell, A. R. 1992, MNRAS, 257, 493
Berezinskii, V. S., Bulanov, S. V., Dogiel, V. A., Ginzburg, V. L., & Ptuskin, V. S. 1990, Astrophysics of Cosmic Rays (Amsterdam: North-Holland)
Bird, D. J., et al. 1995, ApJ, 441, 144
———, 1993, Phys. Rev. Lett., 71, 3401
———, 1994, ApJ, 424, 491
Bhattacharjee, P., & Sigl, G. 2000, Phys. Rep., 327, 109
Blandford, R. D. 2000, in Particle Physics and the Universe, ed. L. Bergstrom, P. Carlson, & C. Fransson (Singapore: World Scientific), in press
Chiueh, T., Li, Z.-Y., & Begelman, M. C. 1998, ApJ, 505, 835
Corottini, F. V. 1990, ApJ, 349, 348
Cronin, J. W. 1999, Rev. Mod. Phys., 71, 165
Emmering, R. T., & Chevalier, R. A. 1987, ApJ, 321, 334
Gaiser, T. K. 1990, Cosmic Rays and Particle Physics (Cambridge: Cambridge Univ. Press)
Gallant, Y., & Arons, J. 1994, ApJ, 435, 230
Goldreich, P., & Julian, W. H. 1969, ApJ, 157, 869
Greisen, K. 1966, Phys. Rev. Lett., 16, 748
Guin, J., & Ostriker, J. 1969, Phys. Rev. Lett., 22, 728
Haensel, P., Lasota, J. P., & Zdunik, J. L. 1999, A&A, 344, 151
Hayashida, N., et al. 1999, Proc. 26th Int. Cosmic-Ray Conf. (Salt Lake City), 3, 256
Hillas, A. M. 1984, ARA&A, 22, 425
Kennel, C. F., & Coroniti, F. V. 1984, ApJ, 283, 694
Kulkarni, S. R., et al. 1998, Nature, 395, 663
Lawrence, M. A., Reid, R. J. O., & Watson, A. A. 1991, J. Phys. G, 17, 773
Lindblom, L., Owen, B. J., & Morsink, S. M. 1998, Phys. Rev. Lett., 80, 4843
Linsley, J. 1963, Phys. Rev. Lett., 10, 146
Melatos, A., & Melfose, D. B. 1996, MNRAS, 279, 1168
Michel, F. C. 1969, ApJ, 158, 727
———, 1991, Theory of Neutron Stars Magnetosphere (Chicago: Univ. Chicago Press)
Olinto, A. V., Epstein, R. I., & Blasi, P. 1999, Proc. 26th Int. Cosmic-Ray Conf. (Salt Lake City), 4, 361
Ormes, J. F., et al. 1997, Proc. 25th Int. Cosmic-Ray Conf. (Durban), 5, 273
Protheroe, R. J., Bednarek, W., & Luo, Q. 1998, Astropart. Phys., 9, 1
Rezzolla, L., Lamb, F. K., & Shapiro, S. L. 1999, preprint (astro-ph/9911188)
Ruderman, M., & Sutherland, P. G. 1975, ApJ, 196, 51
Stanev, T., & Hillas, A. M. 1999, Proc. 26th Int. Cosmic-Ray Conf. (Salt Lake City), 4, 365
Takeda, M., et al. 1998, Phys. Rev. Lett., 81, 1163
———, 1999, ApJ, 522, 225
Tsuruta, S. 1998, Phys. Rep., 292, 1
Uchihori, Y., Nagano, M., Takeda, M., Teshima, M., Lloyd-Evans, J., & Watson, A. A. 1999, preprint (astro-ph/9908193)
Venkatesan, A., Miller, M. C., & Olinto, A. V. 1997, ApJ, 484, 323
Weber, E. J., & Davis, L., Jr. 1967, ApJ, 148, 217
Zatsarin, G. T., & Kazin, V. A. 1966, Soviet Phys.—JETP, 4, 78
Zirakashvili, V. N., Pechkin, D. N., Ptuskin, V. S., & Rogovaya, S. I. 1998, Astron. Lett., 24, 139