Modern imaging and image-guided treatments of the prostate gland: MR and ablation for cancer and prostatic artery embolization for benign prostatic hyperplasia

1,2,3 JOÃO LOPES DIAS and 1,4,5 TIAGO BILHIM, MD, PhD, EBIR, FCIRSE, FSIR

1 Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
2 Department of Radiology, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
3 Department of Radiology, Hospital Lusíadas, Lisbon, Portugal
4 Interventional Radiology, Saint Louis Hospital, Lisbon, Portugal
5 Interventional Radiology Unit, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal

Address correspondence to: Dr Tiago Bilhim
E-mail: tiagobilhim@hotmail.com

ABSTRACT

Multiparametric MRI (mpMRI) has proven to be an essential tool for diagnosis, post-treatment follow-up, aggressiveness assessment, and active surveillance of prostate cancer. Currently, this imaging technique is part of the daily practice in many oncological centres. This manuscript aims to review the use of mpMRI in the set of prostatic diseases, either malignant or benign: mpMRI to detect and stage prostate cancer is discussed, as well as its use for active surveillance. Image-guided ablation techniques for prostate cancer are also reviewed. The need to establish minimum acceptable technical parameters for prostate mpMRI, standardize reports, uniform terminology for describing imaging findings, and develop assessment categories that differentiate levels of suspicion for clinically significant prostate cancer led to the development of the Prostate Imaging Reporting and Data System that is reviewed. Special focus will also be given on the most up-to-date evidence of prostatic artery embolization (PAE) for symptomatic benign prostatic hyperplasia (BPH). Management of patients with BPH, technical aspects of PAE, expected outcomes and level of evidence are reviewed with the most recent literature. PAE is a challenging technique that requires dedicated anatomical knowledge and comprehensive embolization skills. PAE has been shown to be an effective minimally-invasive treatment option for symptomatic BPH patients, that can be viewed between medical therapy and surgery. PAE may be a good option for symptomatic BPH patients that do not want to be operated and can obviate the need for prostatic surgery in up to 80% of treated patients.

INTRODUCTION

More than doing an exhaustive theoretical exposition, the authors preferred to explore the advantages of multiparametric MRI (mpMRI) in the management of prostate cancer within different clinical scenarios that both radiologists and urologists may face. The most up-to-date evidence of prostatic artery embolization (PAE) for symptomatic benign prostatic hyperplasia (BPH) will be reviewed. Management of patients with BPH, technical aspects of PAE, expected outcomes and level of evidence are reviewed with the most recent literature.

PROSTATE CANCER

Multiparametric magnetic resonance imaging (mpMRI)

mpMRI of the prostate gland mpMRI combines morphological and functional sequences: axial, coronal, and sagittal high-resolution T_2 weighted images (T_2WI) are obtained to depict the zonal anatomy prostate and surrounding organs. An axial T_1 weighted imaging (T_1WI) sequence is typically obtained for whole pelvis analysis, allowing the identification of prostatic hemorrhage, abnormal lymph nodes, and suspicious bone lesions. These morphological sequences are combined with diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) images, two functional sequences that increase both sensitivity and specificity on detection and staging of prostate cancer. MR spectroscopy is no longer routinely used in prostate mpMRI.1-6 Table 1 shows detailed technical parameters of our protocol on a 3 T magnet.

The current use of high-quality flexible body coils and properly configured 3T MRI systems makes endorectal coils unnecessary. Some disadvantages were recognized by
many radiologists, including slowed workflow, increased patient discomfort, decreased patient adherence, and risk of rectal injury.7 The first version of Prostate Imaging Reporting and Data System (PI-RADS) was published by the European Society of Urogenital Radiology in 2012. In 2014 the second version (PI-RADS v2) showed some upgrades that have been recently updated to PI-RADS v2.1 and PI-RADS v2.2.8–10 Table 2 resumes PI-RADS v2.1 criteria.

2.2. detection of prostate cancer

The traditional blind transrectal ultrasound (TRUS) biopsy aims to sample the peripheral zone, where the majority of cancers arise. In many urological centers, TRUS biopsy gets two cores per sextant that may miss small, aggressive peripheral cancers, as well as transitional, central or fibromuscular tumors. On the other hand, non-significant peripheral tumors may be diagnosed, thus leading to unnecessary treatments.11–14 Screening strategies involving the use of mpMRI rather than TRUS biopsies have shown higher sensitivity and specificity in the diagnosis of prostate cancer. Moreover, patient morbidity showed an apparent significant decrease, not only during diagnosis—avoiding unnecessary repeated biopsies—but also while choosing treatment—reducing overtreatment in low-risk cancers.15 One of the main advantages of mpMRI is then to identify suspicious lesions that might undergo guided biopsy. Since 40–60% of prostate tumors are invisible at the ultrasound, MRI guidance should also be considered for a more accurate biopsy. It may be performed either directly (in-bore biopsy) or indirectly (using fusion techniques that overlap TRUS images and previously obtained MR images).16–20

In the set of cancer detection, mpMRI reports should always include PI-RADS classification. PI-RADS categories 1 and 2 refer to normal and benign changes, respectively. On the other hand, in categories 4 and 5, clinically significant cancer is likely and highly likely to be present, respectively (Figure 1). A score of 3 includes indeterminate, equivocal findings. According to PI-RADS v2.1, the score assigned on the ADC map and at DWI with high b-values is the dominant parameter for peripheral zone lesions. However, for abnormalities in the transition zone, the evaluation is based primarily on the score assigned at T_2WI. DCE sequences have now more limited importance in the overall assessment of the prostate and only remain useful in the evaluation of peripheral lesions that were given a score of 3 on DWI/ADC analysis. Those lesions will be considered positive at DCE-MRI if a focal abnormality with early and intense enhancement is found, thus increasing the overall PI-RADS score from 3 to 4.21,22

staging

The eighth TNM edition introduced some important exchanges on prostate cancer. Pathological organ-confined disease (after radical prostatectomy)—pT2—is no longer subdivided into pT2a, pT2b, or pT2c. However, the extent of involvement and laterality remain important topics to report in mpMRI since the evolution from whole-gland to minimally invasive focal therapies depends on a more accurate location of prostatic tumors.23 pT3a still refers to tumors with extra capsular extension (ECE) or microscopic invasion of the bladder neck. While ECE may be identified on staging MRI, microscopic invasion of the bladder neck is below its visibility threshold. Multiple criteria are used to detect ECE, including capsule bulging, obliteration of the recto-prostatic angle, asymmetry of the neurovascular bundle, focal capsular retraction and or thickening, tumor/capsule contact greater than 13 mm, or the presence of tumor nodules in fat surrounding tissues. Despite not being specifically included in the TNM system, the evaluation of neurovascular bundles is another key point for patients who are candidates to nerve-sparing surgeries (like robotic-assisted radical laparoscopic prostatectomy) (Figure 2). DWI and DCE increase the accuracy of MRI in the depiction of ECE (and more precisely neurovascular bundle invasion) once truthful protocols are used.24–29 T3b refers to the invasion of the seminal vesicles, typically seen as T_2WI hypointense lesions, restrictive pattern on DWI and enhancement on DCE images. Other findings like enlarged low-signal-intensity ejaculatory ducts and obliteration of the angle between the prostate and the seminal vesicle may be also seen.30

Nodal staging is also performed in routine mpMRI protocols. This remains a challenging and misunderstood field for radiologists since morphological and dimensional criteria still seem to be not enough. The utility of DWI for nodal staging needs more research and may be time-consuming in daily practice.30 Routine mpMRI protocols do not allow an accurate evaluation of bone, not only due to the lack of morphological sequences like fat saturated T_2WI or short tau inversion-recovery but also because the entire skeleton is not within the range of study. Whole body MRI protocols have been developed over the last years and seem to be

Table 1. Acquisition protocol on a 3T magnet

Description	Sequence Details
30 min protocol (including preparation and positioning)	
Without an ERC	
18-channel PPA	
Antiperistaltic drugs (Buscopan\textregistered, Glucagon\textregistered)	
T_2WI; sagittal, axial, and coronal; 3.5 mm, no gap; FOV 200 mm; matrix 384 × 384	
DWI and ADC map; axial; 3.5 mm, no gap; FOV 200 mm; matrix 116 × 116; b-values: 0, 50, 1200, and 1400 s/mm2	
DCE-MRI; axial; 3.5 mm, no gap; FOV 260 mm; maximum temporal resolution 15 s following single dose of contrast agent with an injection rate of 3 ml s$^{-1}$; 30–35 acquisitions during 5 min.	

ADC: apparent diffusion coefficient; DCE: dynamic contrast-enhanced; DWI: diffusion-weighted imaging; ERC: endorectal coil; FOV: field of view; PPA: pelvic phased arrays; T_2WI: T_2 weighted imaging.
Table 2: PI-RADSv. 2.1 criteria

Findings in the peripheral and transition zones at DWI-ADC

1. No abnormality (i.e. normal) on ADC maps and high b-value diffusion-weighted MR
2. Linear/wedge shaped hypointense on ADC and/or linear/wedge shaped hyperintense on high b-value DWI. Non-focal hypointense on ADC and/or hyperintense on high b-value DWI (for transition zone only)
3. Focal (discrete and different from the background) hypointense on ADC and/or focal hyperintense on high b-value DWI; may be markedly hypointense on ADC or markedly hyperintense on high b-value DWI, but not both.
4. Focal abnormality that is markedly hypointense on ADC maps and markedly hyperintense on high b-value diffusion-weighted MR images and measures less than 1.5 cm in greatest dimension
5. Same as score of 4, but abnormality measures 1.5 cm or more in greatest dimension or has definite extraprostatic extension or invasive behavior

Appearance of peripheral zone abnormalities at T₂ weighted MRI

1. Uniformly hyperintense (normal)
2. Linear, wedge-shaped, or diffuse mild hypointensity, usually indistinct margin
3. Noncircumscribed, rounded, moderate hypointensity
4. Circumscribed, homogeneous moderately hypointense focus or mass confined to the prostate and less than 1.5 cm in greatest dimension
5. Same as score of 4, but abnormality measures 1.5 cm or more in greatest dimension or has definite extraprostatic extension or invasive behavior

Appearance of transition zone abnormalities at T₂ weighted MRI

1. Homogeneous intermediate signal intensity (normal) or round, completely encapsulated nodule (“typical nodule”)
2. A mostly encapsulated nodule or a homogeneous circumscribed nodule without encapsulation (“atypical nodule”) or a homogeneous mildly hypointense area between nodules
3. Heterogeneous signal intensity with obscured margins
4. Lenticular or circumscribed, homogeneous, moderately hypointense, and less than 1.5 cm in greatest dimension
5. Same as score of 4, but abnormality measures 1.5 cm or more in greatest dimension or has definite extraprostatic extension or invasive behavior

ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging.
very useful for bone staging in prostate cancer, achieving similar results when comparing to bone scintigraphy and other nuclear studies.31

Active surveillance
Active surveillance is an alternative management for patients with a low clinical stage based on digital rectal examination (DRE) of the prostate, favorable prostate-specific antigen (PSA) levels evolution, low biopsy tumor grade, and minor tumor volume. Strict guidelines are still missing and reported inclusion criteria vary. Most urological departments consider active surveillance in males with low-risk non-metastatic prostate cancer (cT1–cT2; PSA <10 ng ml\(^{-1}\); and biopsy Gleason score of 6).32–38 mpMRI can be used to detect clinically significant prostate cancer in males on active surveillance. Specific criteria for progression are still requiring but some theoretical concepts may be applied, namely size increase of the index lesion, onset of other suspicious lesions and new signs of locally invasive disease. It is theoretically expectable that a decrease in ADC values within a lesion between two examinations corresponds to a histological upgrade of the tumor. However, the noted variability of ADC quantification across imaging platforms and institutions, as well as across different examinations in the same patient even within normal tissue (e.g. due to different positioning of the region of interest), hampers this evaluation. Thus, radiologists should verify the accuracy of quantitative ADC measurements on their own MR system (e.g. using phantoms) and compare their results with those derived from similar MR systems.36–42 Overall, it is clear that mpMRI is useful for monitoring of males on active surveillance, but there is not enough evidence that it may replace the repetition of standard biopsy to detect progression over time.36,37,43

Ablation procedures
Besides the lack of ionizing radiation, interventional MRI (iMRI) offers other interesting advantages: the capability to guide needles and devices in any orientation; the inherent high tissue contrast; the ability to measure tissue firmness and thermal distribution through modern sequences; the development of real-time sequences. However, some disadvantages should not be forgotten, like the need for expensive nonferromagnetic tools and the small apertures and long bores that are typically found in the majority of MRI systems.44,45 Some focal therapies may use MRI as a guiding-method, such as focal laser ablation, cryoablation, and high-intensity focused ultrasound (HIFU). These techniques are clinically safe and effective, with few associated sexual and urinary side-effects. Despite being more commonly used in the initial treatment of prostate cancer, they may be theoretically performed in post-surgical and post-RT local recurrences, whenever it is accessible.44 More specific technical details about each treatment are beyond the scope of this article.

Biochemical failure
PSA level remains the basis of follow-up after curative treatment, but the definition of biochemical failure differs between RP and external beam radiotherapy (EBRT). After RP, it is defined by two consecutive PSA values of >0.2 ng ml\(^{-1}\). After EBRT, with or without short-term hormonal manipulation, it is defined...
Local relapse after RP commonly appears in the retrovesical space and at the vesicourethral anastomosis. It is usually seen as an interruption of the normal hypointense ring of the bladder neck and vesicourethral anastomosis by a tumor with higher signal intensity on T2WI. Moreover, recurrence typically presents as early enhancing nodules on DCE images and as bright foci on DWI at high b-values. In these cases, current guidelines do not contemplate PI-RADS classification.47 After EBRT, fibrosis and changes on parenchymal vascularization modify the biological behavior of tumors and normal tissue. Typical zonal anatomy of the prostate is lost and diffuse low signal intensity is seen on T2WI, thus diminishing the contrast between tumor and irradiated tissue, which hampers recurrence detection on morphological sequences. Despite also being distorted by EBRT, DCE-MRI and DWI are more accurate than T2WI in the depiction of parenchymal recurrence (Figure 3).47

There is no consensus on biochemical failure after transperineal brachytherapy and other less invasive alternative treatment options like cryosurgery and HIFU. Recurrence semiology is similar to that of post-EBRT studies.47 After non-surgical therapies like EBRT, brachytherapy, cryosurgery or HIFU, PI-RADS classification may be used and a guided biopsy may be performed if a suspicious lesion is found. Since post-treatment changes may mimic tumors, essentially on morphological sequences, it is not surprising if the number of PI-RADS 3 is higher than desirable.

PROSTATIC ARTERY EMBOLIZATION FOR BENIGN PROSTATIC HYPERPLASIA

Patient management

Even though BPH is a histologic diagnosis, most patients are diagnosed based on the presence of lower urinary tract symptoms (LUTS) and benign prostatic enlargement (BPE). Biopsy is usually performed to exclude malignancy as histologic findings of BPH are ubiquitous in the older male. BPE may cause bladder...
outlet obstruction (BOO) and LUTS. Multidisciplinary evaluation of patients with symptomatic BPH is paramount as clinical management of these patients may be complex. LUTS may be caused by many other etiologies as bladder dysfunction, bladder neck contractures, nocturnal polyuria, urethral stricture, malignancy and nervous system dysfunction amongst others. The presence and severity of LUTS do not correlate with the presence of BOO or the size of the prostate. Thus, a patient may have BPH and have no LUTS or BOO. The severity of BOO should be evaluated with peak urinary flowrate (Qmax) and post-void residual volume (PVR) measurements in all patients with LUTS because it may lead to complications such as recurrent urinary tract infections, bladder stones, overflow incontinence, gross hematuria, hydronephrosis, acute urinary retention, and renal disease that prompt invasive treatment. However, LUTS and prostatic volume (PV) are the main drivers for seeking medical care, as BOO frequently does not worry the patients. When dealing with these patients there are three main goals: reduce LUTS, decrease PV and relieve BOO severity in order to provide symptom control and possibly prevent disease progression.

The presence and severity of LUTS should be quantified with validated questionnaires such as the international prostate symptom score (IPSS) that is a powerful tool to assess treatment response. The IPSS score has an additional question regarding the quality of life (QoL) related to the LUTS that is very important as this is the main driver to opt for more invasive treatment approaches when QoL >4 points. The IPSS score does not diagnose the presence or severity of BOO, nor the cause of LUTS. Thus, it is important to exclude all potential non-prostatic causes of LUTS before invasive treatment options are pursued. It is also important to assess the presence and severity of BOO with uroflowmetry and bladder ultrasound to assess the Qmax and PVR. BPE should be accurately quantified with transrectal ultrasound and/or MR imaging to assess the PV reduction 1 month, 6 months, 12 months and then yearly after intervention. In order to exclude malignancy, digital rectal examination (DRE), PSA and mpMRI should be performed and biopsy if PSA >4 ng ml⁻¹ and/or suspicious DRE/mpMR. Erectile and ejaculatory function and incontinence severity index (ISI) should be evaluated before and after prostatic interventions. Validated questionnaires as the international index of erectile function (IIEF) and the male sexual health questionnaire-ejaculation disorder (MSHQ-EjD) are proven useful tools.

Patient age, PV, IPSS/QoL, Qmax, PVR and PSA should all be considered when counseling patients with LUTS for PAE. Inclusion criteria are: age above 40 years, PV greater than 40 cm³, IPSS >18 points and/or QoL >3 points, Qmax < 12 ml s⁻¹, PVR <200 cm³ and PSA <4 ng ml⁻¹. If Qmax > 12 ml s⁻¹ and/or PVR...
>200 cm³, when there is clinical suspicion of neurological disease or diabetes, patients under 40 years of age or PV <40 cm³, invasive urodynamic testing should be performed to exclude non-prostatic causes of LUTS. Exclusion criteria include: malignancy, large bladder stones (>4 cm) or diverticula (>5 cm), advanced atherosclerosis (severe stenosis or occlusion) and tortuosity (more than two angulations < 90°) of iliac arteries or non-visualization of prostatic arteries (PAs) on pre-procedural CT angiography (CTA), urinary tract infection or renal insufficiency due to prostatic obstruction. Medical therapy is a first-line treatment option before considering invasive treatments for LUTS and BPH. Generally, PAE may be considered for those patients refractory to medical therapy for more than 6 months, not wishing or not tolerating medical therapy. Acute urinary retention (AUR) is not tolerating medical therapy. Acute urinary retention (AUR) is also a good indication for PAE, as these patients have very good outcomes with embolization. For AUR patients, only PV and PSA should be measured as the IPSS/QoL, IIEF, MSHQ-EjD or ISI scores and Qmax/PVR are not reliable.

Technical aspects
PAE is a challenging technique due to two main reasons: complex anatomy and tortuosity of the PAs that may be very challenging to selective catheterize. PAs are small, lack pathognomonic findings and the internal iliac artery has many other side branches. Thus, one can easily “get lost” inside the pelvic arteries looking for the PAs. The tortuous pelvic arterial anatomy and the presence of atherosclerosis in aging male patients are the main reasons for PAE being successful in only one pelvic side (unilateral PAE) in up to 15% of patients. Two or more PAs can be found in up to 40% of pelvic sides with the most frequent origins being the superior vesical artery (30%), the internal pudendal artery (30%), the anterior division of the internal iliac artery (15%) and the obturator artery (10%). Rare/variant PA origins in up to 15% of pelvic sides include: accessory pudendal arteries (2%), prostaticartery trunks (7%), superior gluteal (1%) and inferior gluteal arteries (4%), aberrant obturators (1%) and penile artery (<1%). In up to 60% of pelvic sides, anastomoses can be detected between the prostatic arterial bed and the surrounding organs including the penis, rectum, bladder and seminal vesicles that may lead to non-target embolization. To overcome these challenges, steep ipsilateral oblique views have been adopted for PAE procedures that may lead to high radiation exposure to both patients and interventionalists.

Either pre-procedural CTA or intra-procedural cone beam CT (CBCT) should be used to guide interventionalists during PAE. Both techniques are equally effective for identifying the PAs. CBCT can also be used to certify correct catheterization of the PAs and exclude anastomoses that may lead to non-target embolization, CTA, even with optimized protocols using sublingual glyceryl trinitrate fails to identify most anastomoses. CBCT data can also be used for automatic vessel detection analysis, obviating the need for extensive anatomical knowledge. MRA has been recently validated to define the anatomy of the PAs with a sensitivity of 92%. When anastomoses to surrounding organs are identified, coil occlusion has been shown to be safe and effective to prevent non-target embolization or to redirect flow into the prostate (Figures 4–8). Relevant variants include accessory pudendal arteries, prostaticartery trunks and aberrant obturators that may be identified with pre-procedural CTA. Besides femoral access, radial access has also been shown to be safe and effective for PAE.

The use of pre-shaped Swan-neck tip microcatheters ≤ 2.4 F are the first-line option for many experienced interventionalists in PAE. The vascular access is usually 5 F and the catheters used vary considerably. When using a femoral approach, the cross-over technique will be necessary and the Wattman loop frequently performed to allow bilateral embolization through a single femoral access. Regarding embolic preference, microspheres 100–500 μm and PVA particles 100–300 μm have been shown to be safe and effective. The use of microspheres <300 μm has the potential to induce more adverse events and untargeted embolization with limited clinical benefit. We advise using microspheres >300 μm or PVA particles 100–300 μm independently of prostate volume or presence of collaterals. No specific embolic agent has proven superiority. We use of 100–200 μg of intra-arterial nitroglycerin inside the PAs just before the start of embolization to avoid spasm and early stasis.

Expected outcomes
The main goals of PAE are: 1. LUTS relief; 2. PV reduction; 3. Relief of BOO with increase in Qmax and PVR reduction. Also, adverse events should be prospectively registered and classified alongside with the collection of the IIEF, MSHQ-EjD and ISI scores. The need for prostatic medication or surgery after PAE should also be assessed with long-term data. Meta-analyses have proved significant treatment efficacy of PAE with IPSS reduction from baseline of 12.93, 14.98, 15.00 points at 1, 3 and 6 months post-PAE (50%–70% symptomatic relief); QoL reduction from baseline of 2.17, 2.18, 2.15 and 2.49 points at 1, 3, 6 and 12 months post-PAE. Mean PV reduction after PAE is approximately 15–30%, with changes from baseline of 15–30 cm³ at 1, 3, 6 and 12 months post-PAE. The Qmax increase after PAE is approximately 4.66 to 5.82 mL s⁻¹ at 1, 3, 6 and 12 months post-PAE. The Qmax increase after PAE is approximately 4.66 to 5.82 mL s⁻¹ at 1, 3, 6 and 12 months post-PAE. PAE has also been shown to reduce significantly after PAE with mean decrease of 1.2 ng mL⁻¹ (15%–20%). IIEF scores after PAE did not show significant changes from baseline and ejaculation has also been prospectively shown to be preserved after PAE and no reports of incontinence after PAE exist so far.

PAE is a very well-tolerated procedure with almost no pain and no nausea or vomiting associated. It is an ideal procedure to be performed on an outpatient setting with the main concern being the arterial access hemostasis that may be obliterated with the use of radial access or femoral closure devices. The overall adverse events rate of PAE is expected to be 33%, with the vast majority (99%) being minor complications that need neither specific medical or surgical treatment nor admission to the hospital. Most of these adverse events include the so-called post-PAE syndrome with frequency and burning sensation in the urethra in up to 40% of patients. Macroscopic hematuria may be present in 5.6%, hematospermia in 0.3% and rectal bleeding in 2.5% of patients in the first week post-PAE. These are the main adverse
Table 3. Prospective Phase II trials of PAE for BPH

Study	Year	Country	N. pts	F.U. (months)	IPSS/QoL reduction	PV reduction	Qmax increase	PVR reduction	PSA reduction	Minor AE	Major AE	Other remarks
Salem et al. Urology	2018	USA	45	12	11.2/2.2 points	18%	9.5 ml s⁻¹	48 ml	NR	58%	0%	
Bagla et al. JVIR	2014	USA	20	6	9.8/2.6 points	18%	NR	NR	NR	42%	0%	
Kurbatov et al. Urology	2014	Russia	88	12	13.6/3.3 points	58 ml (45%)	9.6 ml s⁻¹	56.9 ml	NR	0%	0%	PV >80 ml
Cioso et al. Radiol Med	2015	Italy	13	8	17.1/2.6 points	28%	NR	NR	NR	39.4%	0%	
De Assis et al. CVIR	2015	Brasil	35	3	15.6/3.9 points	43 ml (32%)	8.1 ml s⁻¹	NR	4.7 ng ml⁻¹ (53%)	17.7%	2.9%	PV >90 ml
Grosso et al. Radiol Med	2015	Italy	117	24	17/2 points	49 ml (42%)	6 ml s⁻¹	85 ml	0.3 ng ml⁻¹ (8%)	75%	0%	PV >80 ml
Wang et al. BMC Urol	2015	China	12	3	18.3/3.6	34.4 ml (31%)	7.1 ml s⁻¹	46.3 ml	NR	42%	0%	PV >80 ml
Isaacson et al. JVIR	2015	Portugal	630	78	11.7/1.8	15 ml (19%)	3.3 ml s⁻¹	44.8 ml	1.2 ng ml⁻¹ (23%)	25%	0.4%	
Rápoldi et al. CVIR	2017	Italy	43	13	7.1/3.6	13 ml (20%)	NR	NR	NR	22%	0%	Poor surgical candidates
Bhatia et al. JVIR	2018	USA	93	12	15/3.1	43.6 ml (31%)	5.1 ml s⁻¹	136 ml	3.5 ng ml⁻¹ (46%)	43%	1.1%	PV >80 ml
Brown et al. BJU Int	2018	Australia	51	18	18.8/3.8	37 ml (32.3%)	2.1 ml s⁻¹	42 ml	NR	84.3%	0%	
Tapping et al. CVIR	2018	UK	12	18	NR	NR	NR	NR	NR	0%	0%	Patients with haematuria
Overall (means)	1159	16	14/3	37 ml (29%)	6.4 ml s⁻¹	66 ml	34%					

AE, adverse events; F.U., follow-up time in months; IPSS/QoL, international prostate symptom score/quality of life; NR, not reported; N. pts, number of patients; PSA, prostate-specific antigen; PV, prostatic volume; PVR, post-void residual volume; Qmax, peak urinary flow rate; UK, United Kingdom; USA, United States of America.
events after PAE and subside with conservative measures 1–2 weeks after PAE. Urinary tract infection has been reported in up to 7.6% of patients and AUR in 2.5% of patients after PAE.69 Some patients (<3%) may experience central gland detachment with prostatic fragments inside the urethra or bladder that may prompt removal by cystoscopy.69 Major adverse events that have been reported include a case of radiation dermatitis and those related to non-target embolization (<3%) to the penis, bladder, rectum and seminal vesicles.67,69

Most clinical failures after PAE are patients that never responded to embolization (non-responders)—up to 80% of all patients, with the remainder 20% being patients that initially improved, but then had relapsing symptoms (relapers).70 Therefore, it is important to identify patient/baseline predictors as well as technical predictors of clinical success to help select the best candidates for PAE and exclude those with a low probability of success after PAE. Other useful tools to help predict treatment response include MRI, peak PSA and C-reactive protein values 24 h after PAE and contrast-enhanced ultrasonography.67–70 Younger patients (up to 65 years of age) with acute urinary retention and baseline IPSS of less than 23 points have been identified as responding better to PAE.70 Baseline prostate volume has yielded conflicting results with some studies showing better outcomes with larger prostate as opposed to others failing to prove any advantage.69–80 A cut-off of minimum PV for PAE has been shown to have implications in treatment outcomes—patients with PV <40 cm³ have been shown to have significantly worse outcomes after PAE.73 Patients with PV increase due to a large proportional increase of the central gland have been shown to respond better to PAE.73 Also, patient with multiple large (>1 cm) adenomas in the central gland have been shown to respond better to PAE than those without adenomas. The median lobe and central gland of the prostate are the regions of the prostate that respond better to embolization with higher areas of ischemia and larger volume reductions.72 Quantification parameters with mpMR including perfusion and diffusion parameters have failed to predict treatment outcomes after PAE.75 However, the proportion and the volume of prostate ischemia measured with MR in the first month after PAE have been shown to correlate significantly with the PSA level 24 h after PAE and with clinical outcome.75 MR after PAE should be performed within the first month post-PAE as ischemia usually disappears afterwards. No studies to date have focused in comparing the MR features between unilateral and bilateral PAE. High C-reactive protein values 24 h after PAE have also been shown to predict a good clinical outcome.75 The technique of PAE also has impact on outcomes: bilateral PAE has better outcomes than unilateral PAE.52,70,77 Particle size is a debatable issue68 with some studies failing to prove better outcomes with smaller (<300 µm) microspheres,68,69 whereas others have reported better outcomes.75,77 Predictors of technical difficulty include older age, atherosclerosis, tortuosity of pelvic vessels and PAs originating from the superior vesical artery.77,81 The interventionalist and the use of protective coil embolization have also been shown to significantly influence procedural times and radiation dose.77

Evidence

Table 3 shows some of the most relevant Phase II trials that have proved PAE to be safe and effective.68,82–91 The comparative trials

Table 4. Comparative studies of PAE vs prostatic surgery

Study	Year	Country	N. pts PAE	N. pts OP	Duration (months)	PSA changes	IPSS/QoL reduction	PV reduction	PVR reduction	PSA reduction	AE, F.U.	Other remarks
Gao et al. Radiology 2014	2014	China	57/57	24	Similar	TURP better	Similar	Similar	TURP better	Similar	RCT / TURP	
Russo et al. Urology 2015	2015	Russia	80/80	12	OP better	OP better	OP better	OP better	PAE better	PAE better	PSM / OP	
Carnevale et al. CVIR 2016	2016	Brasil	15/15	12	Similar	TURP better	Similar	Similar	PAE better	PAE better	Prospective / TURP	
Abt et al. BMJ 2018	2018	Switzerland	48/51	3	Similar	TURP better	TURP better	TURP better	PAE better	PAE better	RCT / TURP	
Ray et al. BJU Int 2018	2018	UK	216/89	12	TURP better	PAE better	PSM / TURP					

AE, adverse events; F.U., follow-up time in months; IPSS/QoL, international prostate symptom score/quality of life; N. pts, number of patients; OP, open prostatectomy; PAE, prostatic artery embolization; PSM, propensity score matching (retrospective); PV, prostatic volume; PVR, post-void residual volume; Qmax, peak urinary flowrate; RCT, randomized controlled trial.
of PAE and surgery94–98 are presented in Table 4. The prospective comparative trials comparing PAE and surgery have shown that LUTS relief is similar between the two techniques which has led to widespread adoption in the UK.99 However, the relief of BOO and PV reduction is more effective with prostatic surgery than PAE. The rate of adverse events is lower with PAE, and surgery induces a higher rate of multiple adverse events and more serious adverse events. Recovery from intervention is faster with PAE than with surgery. All of these aspects should be taken into consideration when counseling patients with LUTS for PAE. PAE is effective at relieving LUTS and may be a viable option for patients after failed medication therapy or not tolerating prostatic medication. PAE does not preclude future prostatic surgeries that can always be performed in case the patient does not improve or when severe BOO is still present after embolization. PAE is an effective minimally invasive treatment option for patients with LUTS that can be viewed between medical therapy and surgery. General adoption from most urological societies is still lacking, as PAE is viewed as an experimental technique needing more long-term data and comparative trials.50 PAE may be a good option for patients with LUTS that do not want to be operated and can obviate the need for prostatic surgery in up to 80% of treated patients.

DISCLOSURE

Tiago Bilhim is a paid consultant for Terumo (Tokyo, Japan) and Merit Medical (South Jordan, Utah), an advisory board member for Merit Medical, a paid speaker for Philips (Eindhoven, The Netherlands), and a shareholder in Embolx (Sunnyvale, California).

REFERENCES

1. Dias JL, Pina JM, João R, Fialho J, Carmo S, Leal C, et al. Prostate cancer: the role of multiparametric magnetic resonance imaging. *Acta Med Port* 2015; 28: 240–9. doi: https://doi.org/10.20344/amp.5370
2. Talab SS, Preston MA, Elmi A, Tabatabaei S. Prostate cancer imaging: what the urologist wants to know. *Radiol Clin North Am.* United States 2012; 50: 1015–41.
3. Hegde JV, Mulkern RV, Panych LP, Fennessy FM, Fedorow A, Maier SE, et al. Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. *J Mag Reson Imaging* 2013; 37: 1035–544United States May. doi: https://doi.org/10.1002/mri.23860
4. Turkbey B, Albert PS, Kurdziel K, Choyke PL. Imaging localized prostate cancer: current approaches and new developments. *AJR Am J Roentgenol* 2009; 192: 1471–80. doi: https://doi.org/10.2214/AJR.09.2527
5. Ravizzini G, Turkbey B, Kurdziel K, Choyke PL. New horizons in prostate cancer imaging. *Eur J Radiol* 2009; 70: 212–26. doi: https://doi.org/10.1016/j.ejrad.2008.09.019
6. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR prostate Mr guidelines 2012. *Eur Radiol* 2012; 22: 746–57. doi: https://doi.org/10.1007/s00330-011-2377-y
7. Mazaheri Y, Vargas HA, Nyman G, Shukla-Dave A, Akin O, Hricak H. Diffusion-Weighted MRI of the prostate at 3.0 T: comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI--The impact of SNR on ADC measurement. *Eur J Radiol* 2013; 82: e515–20. doi: https://doi.org/10.1016/j.ejrad.2013.04.041
8. Purysko AS, Rosenkrantz AB, Barentsz JO, Weinreb JC, Macura KJ. PI-RADS version 2: a pictorial update. *Radiographics* 2016; 36: 1354–72. doi: https://doi.org/10.1148/rg.2016150234
9. Rosenkrantz AB, Ginocchio LA, Cornfeld D, Froemming AT, Gupta RT, Turkbey B, et al. Interobserver reproducibility of the PI-RADS version 2 lexicon: a multicenter study of six experienced prostate radiologists. *Radiology* 2016; 280: 793–804. doi: https://doi.org/10.1148/radiol.2016152542
10. Polance S, Helbich TH, Bickel H, Pinker-Domenig K, Georg D, Shariat SF, et al. Head-To-Head comparison of PI-RADS V2 and PI-RADS V1. *Eur J Radiol* 2016; 85: 1125–31. doi: https://doi.org/10.1016/j.ejrad.2016.03.025
11. Santor AO, Hricak H, Wheeler TM, Coleman J, Penson DF, Carroll PR, et al. Evaluating localized prostate cancer and identifying candidates for focal therapy. *Radiol Clin North Am.* U.S. 2012; 50: 1015–41.
12. Turgut AT, Kismali E, Dogra V. Prostate biopsies and controversies. *Ultrasound Clin* 2013; 8: 605–15. doi: https://doi.org/10.1016/j.jcut.2013.07.005
13. Aminsharifi A, Gupta RT, Tsivian E, Sekar S, Sze C, Polascik TJ, et al. RCT biopsy: Combining multiparametric magnetic resonance imaging - transrectal ultrasound fusion targeted biopsy with laterally-directed sextant biopsies – An alternative template for prostate fusion biopsy. *Eur J Radiol* 2018; 2019: 7–13.
14. Takenaka A, Har a R, Ishimura T, Fujii T, Jo Y, Nag a A, et al. A prospective randomized comparison of diagnostic efficacy between transperineal and transrectal 12-core prostate biopsy: prostate cancer prostate dis. *England* 2008; 11: 134–8.
15. Thompson JE, Moses D, Shnier R, Brenner P, Delpozo W, Ponsky L, et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. *Journal of Urology* 2014; 192: 67–74. doi: https://doi.org/10.1016/j.juro.2014.01.014
16. Ahmed HU, Kirschbaum A, Arya M, Illing R, Freeman A, Allen C, et al. Is it time to consider a role for MRI before prostate biopsy? *Nat Rev Clin Oncol* 2009; 6: 197–206. doi: https://doi.org/10.1038/nrclinonc.2009.18
17. Shimizu T, Nishie A, Ro T, Tajima T, Yamaguchi A, Kono S, et al. Prostate cancer detection: the value of performing an MRI before a biopsy. *Acta Radiol* 2009; 50: 1080–8. doi: https://doi.org/10.3109/028418590903216718
18. Kirkham APS, Haslam P, Keanie JY, McCaffrey I, Padhani AR, Pumwani S, et al. Prostate MRI: who, when, and how? report from a UK consensus meeting. *Clin Radiol* 2013; 68: 1016–23. doi: https://doi.org/10.1016/j.crad.2013.03.030
19. Haffner J, Lemaître L, Puech P, Haber G-P, Leroy X, Jones JS, et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. *BJU Int* 2011; 108(8 Pt 2): E171–E178. doi: https://doi.org/10.1111/j.1464-410X.2011.10112.x
20. Watanabe Y, Nagayama M, Araki T, Terai A, Okumura A, Amoh Y, et al. Targeted biopsy based on ADC map in the detection and localization of prostate cancer: a feasibility study. *J Mag Reson Imaging* 2013; 37.
21. Chensais AL, Nef A, Bratan E, Mége-Lechavallerie F, Roche S, Rabilloud M, et al. Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: evaluation of discriminant criteria at multiparametric MRI. Clin Radiol 2013; 68: e323–30. doi: https://doi.org/10.1016/j.crad.2013.01.018

22. Hoeks CMA, Hambrock T, Yakar D, Hulsbergen-van de Kaa CA, Feuth T, Witjes JA, et al. Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 2013; 266: 207–17. doi: https://doi.org/10.1148/radiol.12120281

23. Buyyounouski MK, Choyke PL, McKenney JK, Sartor O, Sandler HM, Amin MB, et al. Prostate cancer - major changes in the American Joint Committee on Cancer Eighth edition cancer staging manual. CA Cancer J Clin 2017; 67: 45–52.United States.

24. Kayat Bittencourt L, Litjens G, Hulsbergen-van de Kaa CA, Turkbey B, Gasparetto EL, Barentsz JO. Prostate cancer: the European Society of Urogenital Radiology prostate imaging reporting and data system criteria for predicting Extraprostatic extension by using 3-T multiparametric MR imaging. Radiology 2015; 276: 479–89. doi: https://doi.org/10.1148/radiol.15141142

25. Fraune C, Salomon G, Beyerdsorff D, Adam G, Tennstedt P, Weinrich JM, et al. Accuracy of multiparametric MR imaging with PI-RADS V2 assessment in detecting infiltration of the neurovascular bundles prior to prostatectomy. Eur J Radiol 2017; 2017: 187–92.

26. McEvoy SH, Raeside MC, Thomas MA, Nagarajan R, et al. Preoperative prostate MRI: a road map for surgery. American Journal of Roentgenology 2018; 211: 383–91. doi: https:// doi.org/10.2214/AJR.17.18757

27. McClure TD, Margolis DJA, Reiter RE, Sayre JW, Thomas MA, Nagarajan R, et al. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy. Radiology 2012; 262: 874–83. doi: https://doi.org/10.1148/ radiol.11103504

28. de Rooij M, Hamoen EHJ, Witjes JA, Barentsz JO, Rovers MM. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol 2016; 70: 233–45. doi: https://doi.org/10.1016/j.eururo.2015.07.029

29. Bloch BN, Genega EM, Costa DN, Pedrosa I, Smith MP, Kressel HY, et al. Prediction of prostate cancer extracapsular extension with high spatial resolution dynamic contrast-enhanced 3-T MRI. Eur Radiol 2012; 22: 2201–10. doi: https://doi.org/10.1007/s00330-012-2475-5

30. Hedgire SS, Pargaonkar VK, Elmi A, Harisinghani AM, Harisinghani MG, imaging Proxod. Pelvic nodal imaging. Radiol Clin North Am 2012; 50: 1111–25. doi: https://doi.org/10.1016/j.rcl.2012.08.002

31. Johnston EW, Latifotjoar A, Sidhu HS, Ramachandran N, Sokolska M, Bainbridge A, et al. Multiparametric whole-body 3.0-T MRI in newly diagnosed intermediate- and high-risk prostate cancer: diagnostic accuracy and interobserver agreement for nodal and metastatic staging. Eur Radiol. Germany 2018; Dec.

32. Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol 2011; 59: 61–71. doi: https://doi.org/10.1016/j.eururo.2010.10.039

33. Large M, Eegener S. Active surveillance for low-risk localized prostate cancer. Oncol (willist Park 2009; 23: 974–9.

34. Lawrenceauhk N, Klotz L. Active surveillance for low-risk prostate cancer: an update. Nat Rev Urol 2011; 8: 312–20. doi: https://doi. org/10.1038/nrurrol.2011.50

35. Margel D, Yap SA, Lawrenceauhk N, Klotz L, Haider M, Hersey K, et al. Impact of multiparametric endorectal coil prostate magnetic resonance imaging on disease reclassification among active surveillance candidates: a prospective cohort study. Journal of Urology 2012; 187: 1247–52. doi: https://doi.org/10.1016/j.juro.2011.11.112

36. Schoots IG, Petrides N, Giganti F, Bokhorst LJ, Rannikko A, Klotz LGiG; Tanner F, et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol 2014; 67: 627–36. doi: https://doi.org/10.1016/j.eururo.2014.05.050

37. Cantiello F, Russo GI, Kaufmann S, Bills G, Delworth M, et al. Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol 2011; 196: 374–81. doi: https://doi.org/10.2214/ajr.11.9441

38. Kitajima K, Takahashi S, Ueno Y, Miyake H, Fujisawa M, Kawakami F, et al. Do apparent diffusion coefficient (ADC) values obtained using high b-values with a 3-T MRI correlate better than a transrectal ultrason sound (TRUS)-guided biopsy with true Gleason scores obtained from radical prostatectomy specimens for patients with prostate cancer? Eur J Radiol 2013; 82: 1219–26. doi: https://doi.org/10.1016/j.ejrad.2013.02.021

39. Witherspoon L, Breau RH, Lavallée LT. Evidence-based approach to active surveillance of prostate cancer. World J Urol 2019; 0123456789. 1–8.

40. Turkbey B, Mani H, Aras O, Ho J, Hoang A, Rastinehad AR, et al. Prostate cancer: can multiparametric MR imaging help identify patients who are candidates for active surveillance? Radiology 2013; 268: 144–52. doi: https://doi.org/10.1148/radiol.13121325

41. Walsh EM, Sze TF, Ross JR, Karamanian AA, Woodrum DA. MRI-guided prostate interventions. American Journal of Roentgenology 2016; 207: 755–63. doi: https://doi.org/10.2214/AJR.16.16663

42. Schulz T, Puccini S, Schneider J-P, Kahn T. Interventional and intraoperative Mr: review and update of techniques and clinical experience. Eur Radiol 2004; 14: 2212–27. doi: https://doi.org/10.1007/s00330-004-2496-9

43. Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 2011; 59: 572–83. doi: https://doi.org/10.1016/j.eururo.2011.01.025

44. Lopes Dias J, Lucas R, Magalhães Pina J, João R, Costa NV, Leal C, et al. Post-treated prostate cancer: normal findings and signs of local relapse on multiparametric magnetic resonance imaging. Abdom Imaging 2015; 40: 2814–38. doi: https://doi.org/10.1007/s00261-015-0473-1

45. Füttérer JJ. Imaging of recurrent prostate cancer. Radiol Clin North Am 2012; 50: 1075–83. doi: https://doi.org/10.1016/j.rcl.2012.08.005

46. Gratzke C, Bachmann A, Descazeaud A, Drake MJ, Madersbacher S, Mamoulakis C, et al. EAU guidelines on the assessment of non-neurogenic male lower urinary tract symptoms
including benign prostatic obstruction. Eur Urol 2015; 67: 1099–109. doi: https://doi.org/10.1016/j.eurouro.2014.12.038

50. Foster HE, Barry MJ, Dahm P, Gandhi MC, Kaplan SA, Kohler TS, et al. Surgical management of lower urinary tract symptoms attributed to benign prostatic hyperplasia: AUA guideline. Journal of Urology 2018; 200: 612–9. doi: https://doi.org/10.1016/j.juro.2018.05.048

51. Bilhim T, Pisco JM, Rio Tinto H, Fernandes L, Pinheiro LC, Furtado A, et al. Prostatic arterial supply: anatomic and imaging findings relevant for selective arterial embolization. J Vasc Interv Radiol 2012; 23: 1403–15. doi: https://doi.org/10.1016/j.ijvir.2012.07.028

52. Bilhim T, Pisco J, Rio Tinto H, Fernandes L, Campos Pinheiro L, Duarte M, et al. Unilateral versus bilateral prostatic arterial embolization for lower urinary tract symptoms in patients with prostate enlargement. Cardiovasc Intervent Radiol 2013; 36: 803–11. doi: https://doi.org/10.1007/s00270-012-0528-4

53. García-Monaco R, Garategui L, Kizilevsky N, Peralta O, Rodriguez P, Palacios-Jaraquemada J. Human cadaveric specimen study of the prostatic arterial anatomy: implications for arterial embolization. J Vasc Interv Radiol 2014; 25: 315–22. doi: https://doi.org/10.1016/j.jvir.2013.10.026

54. Amouyal G, Pellerin O, Del Giudice C, Dean C, Thaounn N, Sapoval M. Variants of patterns of intra- and Extra-prostatic arterial distribution of the prostatic artery applied to prostatic arterial embolization: proposal of a classification. Cardiovasc Intervent Radiol 2018; 41: 1664–73. doi: https://doi.org/10.1007/s00270-018-2064-3

55. Andrade G, Khoury HI, Garzón WJ, Dubourcq F, Redow MF, Monsignore LM, et al. Radiation exposure of patients and interventional radiologists during prostatic arterial embolization: a prospective Single-Operator study. J Vasc Interv Radiol 2017; 28: 517–21. doi: https://doi.org/10.1016/j.jvir.2017.01.005

56. Bagla S, Rholl KS, Sterling KM, van Breda A, Papadouris D, Cooper JM, et al. Utility of cone-beam CT imaging in prostate arterial embolization. J Vasc Interv Radiol 2013; 24: 1603–7. doi: https://doi.org/10.1016/j.jvir.2013.06.024

57. Wang MQ, Duan F, Yuan K, Zhang GD, Yan J, Wang Y. Benign prostatic hyperplasia: cone-beam CT in conjunction with DSA for identifying prostatic arterial anatomy. Radiology 2017; 282: 271–80. doi: https://doi.org/10.1148/radiol.2016152415

58. Desai H, Yu H, Ohana E, Gunnell ET, Kim J, Isaacson A. Comparative Analysis of Cone-Beam CT Angiogram and Conventional CT Angiogram for Prostatic Artery Identification Prior to Embolization. J Vasc Interv Radiol 2018; 29: 229–32. doi: https://doi.org/10.1016/j.jvir.2017.09.020

59. Little MW, Macdonald AC, Boardman P, Bratby MJ, Anthony S, Hadi M, et al. Effects of sublingual glyceryl trinitrate administration on the quality of Preprocedure CT angiography performed to plan prostate artery embolization. J Vasc Interv Radiol 2018; 29: 225–8. doi: https://doi.org/10.1016/j.jvir.2017.09.019

60. Chiaradia M, Radaelli A, Campeggi A, Bouanane M, De La Taille A, Kobeiter H. Automatic three-dimensional detection of prostatic arteries using cone-beam CT during prostatic arterial embolization. J Vasc Interv Radiol 2015; 26: 413–7. doi: https://doi.org/10.1016/j.jvir.2014.11.009

61. Zhang JL, Wang MQ, Shen YG, Ye HY, Yuan K, Xin HN, et al. Effectiveness of contrast-enhanced MR angiography for visualization of the prostatic artery prior to prostatic arterial embolization. Radiology 2019; 291: 370–8. doi: https://doi.org/10.1148/radiol.2019181524

62. Bhatia S, Harward SH, Sinha VK, Narayanan G. Prostate Artery Embolization via Transradial or Transulnar versus Transfemoral Arterial Access: Technical Results. J Vasc Interv Radiol 2017; 28: 898–905. doi: https://doi.org/10.1016/j.jvir.2017.02.029

63. Gonçalves OM, Carnevale FC, Moreira AM, Antunes AA, Rodrigues VC, Srougi M. Comparative Study Using 100–300 Versus 300–500 μm Microspheres for Symptomatic treatment of BPH: Does Polyvinyl Alcohol Particle Size Change the Outcome of Prostatic Artery Embolization? J Vasc Interv Radiol 2016; 27: 1686–97. doi: https://doi.org/10.1016/j.jvir.2016.08.004

64. Mordasini L, Hechelhammer L, Diener P-A, Diebold J, Mattei A, Engeler D, et al. Prostatic Artery Embolization in the Treatment of Localized Prostate Cancer: A Bicentric Prospective Proof-of-Concept Study of 12 Patients. J Vasc Interv Radiol 2018; 29: 589–97. doi: https://doi.org/10.1016/j.jvir.2018.01.766

65. Moreira AM, de Assis AM, Carnevale FC, Antunes AA, Srougi M, Cerri GG. A review of adverse events related to prostatic arterial embolization for treatment of bladder outlet obstruction due to BPH. Cardiovasc Intervent Radiol 2017; 40: 1490–500. doi: https://doi.org/10.1007/s00270-017-1765-3

66. Salem R, Hairston J, Hohlastos E, Riaz A, Kallini J, Gabr A, et al. Prostate artery embolization for lower urinary tract symptoms secondary to benign prostatic hyperplasia: results from a prospective FDA-approved investigational device exemption study. Urology 2018; 120: 205–10. doi: https://doi.org/10.1016/j.urology.2018.07.012

67. Frenk NE, Baroni RH, Carnevale FC, Gonçalves OMG, Antunes AA, Srougi M, et al. MRI findings after prostatic artery embolization for treatment of benign prostatic hyperplasia. J Urol 2014; 191: 612–9. doi: https://doi.org/10.1016/j.juro.2014.05.048

68. Brook OR, Faintuch S, Brook A, Papadouris D, Cooper JM, et al. Does polyvinyl alcohol particle size change the outcome of prostatic arterial embolization for benign prostatic hyperplasia? results from a single-center randomized prospective study. J Vasc Interv Radiol 2013; 24: 1595–602. doi: https://doi.org/10.1016/j.jvir.2013.06.003

69. Brook OR, Faintuch S, Brook A, Goldberg SN, Rosky NM, Lenkinski RE. Embolization therapy for benign prostatic hyperplasia: influence of embolization particle size on gland perfusion. J Magn Reson Imaging 2013; 38: 380–7. doi: https://doi.org/10.1002/jmri.23981

70. Lin Y-T, Amouyal G, Correas J-M, Pereira H, Pellerin O, Del Giudice C, et al. Can prostatic arterial embolisation (PAE) reduce the volume of the peripheral zone? MRI evaluation of zonal anatomy and infarction after PAE. Eur Radiol 2016; 26: 3466–73. doi: https://doi.org/10.1007/s00330-015-4177-2

71. Little MW, Boardman P, Macdonald AC, Taylor N, Macpherson R, Crew J, et al. Adenomatous-Dominant benign prostatic hyperplasia (AdBPH) as a predictor for clinical success following prostatic artery embolization: an age-matched Case-Control study. Cardiovasc Intervent Radiol 2017; 40: 682–9. doi: https://doi.org/10.1007/s00270-017-1602-8
74. Moschouris H, Stamatou K, Kalokairinou Motogna M, Vraka S, Kilienis M, Kladis-Kalentzis K, et al. Early post-interventional sonographic evaluation of prostatic artery embolization. A promising role for contrast-enhanced ultrasonography (CEUS). Med Ultrason 2018; 20: 134–40. doi: https://doi.org/10.11152/mu-1340

75. Abt D, Müllhaupt G, Mordasini L, et al. Outcome prediction of prostatic artery embolization: post hoc analysis of a randomized, open-label, non-inferiority trial. BJU Int 2018;

76. Franiel T, Aschenbach R, Trupp S, Lehmann T, von Rundstedt F-C, Grimm M-O, et al. Prostatic artery embolization with 250-µm spherical Polyzene-Coated hydrogel microspheres for lower urinary tract symptoms with follow-up MR imaging. J Vasc Interv Radiol 2018; 29: 1127–37. doi: https://doi.org/10.1016/j.jvir.2018.03.014

77. Hacking N, Vigneswaran G, Maclean D, Modi S, Dyer J, Harris M, et al. Technical and imaging outcomes from the UK registry of prostate artery embolization (UK-ROPE) study: focusing on predictors of clinical success. Cardiovasc Interv Radiol 2019; 42: 666–76. doi: https://doi.org/10.1007/s00270-018-20156-8

78. Bagla S, Smirniotopoulos JB, Orlando JC, van Breda A, Vadlamudi V, et al. Comparative analysis of prostate volume as a predictor of outcome in prostatic artery embolization. J Vasc Interv Radiol 2015; 26: 1832–8. doi: https://doi.org/10.1016/j.jvir.2015.08.018

79. Wang M, Guo L, Duan F, Yuan K, Zhang G, Li K, et al. Prostatic arterial embolization for the treatment of lower urinary tract symptoms caused by benign prostatic hyperplasia: a comparative study of medium- and large-volume prostates. BJU Int 2016; 117: 155–64. doi: https://doi.org/10.1111/bju.13147

80. Bilhim T. Endovascular resection of the prostate: how much is enough for prostatic artery embolization? J Vasc Interv Radiol 2019; 30: 225–7. doi: https://doi.org/10.1016/j.jvir.2018.10.009

81. du Pisanie J, Abuomoussa A, Donovan K, Stewart J, Bagla S, Isaacson A. Predictors of prostatic artery embolization technical outcomes: patient and procedural factors. J Vasc Interv Radiol 2019; 30: 233–40. doi: https://doi.org/10.1016/j.jvir.2018.09.014

82. Bagla S, Martin CP, van Breda A, Sheridan MJ, Sterling KM, Papadouris D, et al. Early results from a United States trial of prostatic artery embolization in the treatment of benign prostatic hyperplasia. J Vasc Interv Radiol 2014; 25: 47–52. doi: https://doi.org/10.1016/j.jvir.2013.09.010

83. Kurbatov D, Russo GI, Lepetukhin A, Dubsky S, Sitkin I, Morgia G, et al. Prostatic artery embolization for prostate volume greater than 80 cm3: results from a single-center prospective study. Urology 2014; 84: 400–4. doi: https://doi.org/10.1016/j.urology.2014.04.028

84. Grosso M, Balderi A, Arnò M, Sortino D, Antonietti A, Pedrazzini F, et al. Prostatic artery embolization in benign prostatic hyperplasia: preliminary results in 13 patients. Radiol Med 2015; 120: 361–8. doi: https://doi.org/10.1007/s11547-014-0447-3

85. de Assis AM, Moreira AM, de Paula Rodrigues VC, Yoshinaga EM, Antunes AA, Harward SH, et al. Prostatic artery embolization for treatment of benign prostatic hyperplasia in patients with prostate > 90 g: a prospective single-center study. J Vasc Interv Radiol 2015; 26: 87–93. doi: https://doi.org/10.1016/j.jvir.2014.10.012

86. Wang MQ, Guo LP, Zhang GD, Yuan K, Li, K, Duan F, et al. Prostatic arterial embolization for the treatment of lower urinary tract symptoms due to large (>80 mL) benign prostatic hyperplasia: results of midterm follow-up from a Chinese population. BMC Urol 2015; 15: 33. doi: https://doi.org/10.1186/s12894-015-0026-5

87. Wang MQ, Wang Y, Yan JY, Yuan K, Zhang GD, Duan F, et al. Prostatic artery embolization for the treatment of symptomatic benign prostatic hyperplasia in men >25 years: a prospective single-center study. World J Urol 2016; 34: 1275–83. doi: https://doi.org/10.1007/s00345-016-1771-0

88. Isaacson AJ, Raynor MC, Yu H, Burke CT. Prostatic artery embolization using Embosphere microspheres for prostates measuring 80–150 cm3: early results from a US trial. J Vasc Interv Radiol 2016; 27: 709–14. doi: https://doi.org/10.1016/j.jvir.2016.01.146

89. Psco M, Bilhim T, Pinheiro LC, Fernandes L, Pereira J, Costa NV, et al. Medium- and long-term outcome of prostatic artery embolization for patients with benign prostatic hyperplasia: results in 630 patients. J Vasc Interv Radiol 2016; 27: 1115–22. doi: https://doi.org/10.1016/j.jvir.2016.04.001

90. Rampoldi A, Barbosa F, Secco S, Migliorisi C, Galfano A, Prestini G, et al. Prostatic arterial embolization as an alternative to indwelling bladder catheterization to manage benign prostatic hyperplasia in poor surgical candidates. Cardiovasc Interv Radiol 2017; 40: 530–6. doi: https://doi.org/10.1007/s00270-017-1582-8

91. Bhatia S, Sinha VK, Kava BR, Gomez C, Harward S, Punnen S, et al. Efficacy of prostatic artery embolization for Catheter-Dependent patients with large prostate sizes and high comorbidity scores. J Vasc Interv Radiol 2018; 29: 78–84. doi: https://doi.org/10.1016/j.jvir.2017.08.022

92. Brown N, Walker D, McBean R, Pokorny M, Kua B, Gianduzzi T, et al. Prostate artery embolisation assessment of safety and feasibility (P-EASY): a potential alternative to long-term medical therapy for benign prostate hyperplasia. BJU Int 2018; 122(Suppl 5): 27–34. doi: https://doi.org/10.1111/bju.14504

93. Tapping CR, Macdonald A, Hadi M, Mortensen C, Crew J, Protheroe A, et al. Prostatic artery embolization (PAE) for benign prostatic hyperplasia (BPH) with haematuria in the absence of an upper urinary tract pathology. Cardiovasc Intervent Radiol 2018; 41: 1160–4. doi: https://doi.org/10.1007/s00270-018-1941-0

94. Gao Y-an, Huang Y, Zhang Y-dong, Zhang Q, Hou M, et al. Benign prostatic hyperplasia: prostatic arterial embolization versus transurethral resection of the prostate—a prospective, randomized, and controlled clinical trial. Radiology 2014; 270: 920–8. doi: https://doi.org/10.1148/radiol.13122803

95. Russo GI, Kurbatov D, Sansalone S, Lepetukhin A, Dubsky S, Sitkin I, et al. Prostatic arterial embolization vs open prostatectomy: a 1-year matched-pair analysis of functional outcomes and morbidities. Urology 2015; 86: 343–8. doi: https://doi.org/10.1016/j.urology.2015.04.037

96. Carnevale FC, Iscafe A, Yoshinaga EM, Moreira AM, Antunes AA, Srougi M. Transurethral resection of the prostate (TURP) versus original and Perfected prostate artery embolization (PAE) due to benign prostatic hyperplasia (BPH): preliminary results of a single center, prospective, Urodynamic-Controlled analysis. Cardiovasc Intervent Radiol 2016; 39: 44–52. doi: https://doi.org/10.1007/s00270-015-1202-4

97. Abt D, Hechelhammer L, Müllhaupt G, Markart S, Güsewell S, Kessler TM, et al. Comparison of prostatic artery embolisation (PAE) versus transurethral resection of the prostate (TURP) for benign prostatic hyperplasia: randomised, open label, non-inferiority trial. BMJ 2018; 361: k2338. doi: https://doi.org/10.1136/bmj.k2338

98. Ray AF, Powell J, Speakman MJ, Longford NT, DasGupta R, Bryant T, et al. Efficacy and safety of prostatic artery embolization for benign prostatic hyperplasia: an
observational study and propensity-matched comparison with transurethral resection of the prostate (the UK-ROPE study. *BJU Int* 2018; 122: 270–82. doi: https://doi.org/10.1111/bju.14249

99. Mayor S. Nice recommends prostate artery embolisation as a treatment option for BPH symptoms. *BMJ* 2018; 361: k1879. doi: https://doi.org/10.1136/bmj.k1879