Research Article

Maria Gorete Carreira Andrade*, Ermínia de Lourdes Campello Fanti, and Lígia Laís Fêmina

On Poincaré duality for pairs (G,W)

DOI 10.1515/math-2015-0035
Received May 2, 2014; accepted February 3, 2015.

Abstract: Let G be a group and W a G-set. In this work we prove a result that describes geometrically, for a Poincaré duality pair (G, W), the set of representatives for the G-orbits in W and the family of isotropy subgroups. We also prove, through a cohomological invariant, a necessary condition for a pair (G, W) to be a Poincaré duality pair when W is infinite.

Keywords: Poincaré duality pairs, Cohomology of groups, Cohomological invariants

MSC: 20J05, 55P20, 55U30

1 Introduction

Bieri and Eckmann [4] introduced the concept of relative cohomology $H^*(G, S; M)$ for a group pair (G, S), where G is a group, S is a family of subgroups of G and M is a $\mathbb{Z}_2 G$-module. Dicks and Dunwoody [6] worked with that concept from another point of view. Instead of dealing with S a family of subgroups, they worked with a G-set W, defining the groups $H^*(G, W; M)$. In Section 2 we recall some definitions and results about relative cohomology of groups and we describe, in details, the equivalence between the theories of Dicks-Dunwoody and Bieri-Eckmann.

By using the relative cohomology theory, Bieri and Eckmann introduced the concept of Poincaré duality pair (G, S) and gave a topological interpretation for those pairs. Dicks and Dunwoody, with their notation for relative cohomology, also gave a topological interpretation for Poincaré duality pairs (G, W).

In Section 3 we present some concepts about Poincaré duality pairs and a result that describes topologically, for a PD^n-pair (G, W), the set E of orbit representatives and the family S of isotropy subgroups.

In Section 4, based in [1] and [2] and by using the notation from Dicks and Dunwoody, we present a characterization of the types of Poincaré duality pairs and, through of a generalized invariant “end”, a cohomological criterion for a pair (G, W) to be a Poincaré duality pair.

2 The equivalence between the theories of Dicks-Dunwoody and Bieri-Eckmann

To begin with we recall some definitions and results which will be useful in this work. For details see [4] and [6].

*Corresponding Author: Maria Gorete Carreira Andrade: Departament of Mathematics - IBILCE - UNESP - São Paulo State University - Rua Cristovão Colombo, 2265, CEP 15054 - 000 - São José do Rio Preto - SP, Brazil, E-mail: gorete@ibilce.unesp.br
Ermínia de Lourdes Campello Fanti: Department of Mathematics - IBILCE - UNESP - São Paulo State University - Rua Cristovão Colombo, 2265, CEP 15054 - 000 - São José do Rio Preto - SP, Brazil, E-mail: fanti@ibilce.unesp.br
Lígia Laís Fêmina: FAMAT - UFU - Av. João Naves de Avila, 2121, Uberlândia - MG - CEP: 38.408-100, Brazil, E-mail: ligialf@famat.ufu.br

© 2015 Maria Gorete Carreira Andrade et al., licensee De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
Definition 2.1. Let G be a group. A \mathbb{Z}_2G-projective resolution of a \mathbb{Z}_2G-module M is an exact sequence of \mathbb{Z}_2G-modules: $\cdots \rightarrow F_0 \xrightarrow{\delta_0} F_1 \xrightarrow{\delta_1} \cdots \rightarrow F_1 \xrightarrow{\delta_1} F_0 \xrightarrow{\epsilon} M \rightarrow 0$ in which each F_i is projective. The map $F_0 \xrightarrow{\epsilon} M$ is called augmentation map and we denote the projective resolution by $F \rightarrow M$.

Definition 2.2. Let G be a group, M a \mathbb{Z}_2G-module and $F \rightarrow \mathbb{Z}_2$ a projective resolution of \mathbb{Z}_2 over \mathbb{Z}_2G. The homology groups of G with coefficients in M are, for all $n \in \mathbb{Z}$, defined by $H_n(G; M) = H_n(F \otimes_{\mathbb{Z}_2} G)$. The cohomology groups of G with coefficients in M are, for all $n \in \mathbb{Z}$, defined by $H^n(G; M) = H^n(Hom_{\mathbb{Z}_2}(F, Hom_G(M, F)))$.

Let G be a group and let $S = \{S_i, i \in I\}$ be a family of subgroups of G. The pair (G, S) is called a group pair. Consider $\mathbb{Z}_2(G/S)$ the free \mathbb{Z}_2-module generated by the cosets gS_i, which G acts by left multiplication. The map $\varepsilon : \mathbb{Z}_2(G/S) \rightarrow \mathbb{Z}_2$ defined on the generators by $\varepsilon(gS_i) = 1$ is called usual augmentation map and we denote by Δ the kernel of ε.

Now we recall the concept of relative cohomology of groups due to Bieri and Eckmann.

Definition 2.3. Let (G, S) be a group pair, $S = \{S_i, i \in I\}$, M a \mathbb{Z}_2G-module and $F \rightarrow \mathbb{Z}_2$ a \mathbb{Z}_2G-projective resolution of the trivial \mathbb{Z}_2G-module \mathbb{Z}_2. The relative (co)homology groups for (G, S), with coefficients in M are, for all $k \in \mathbb{Z}$, defined by

- $H_k(G, S; M) = H_{k-1}(F \otimes_{\mathbb{Z}_2} (\Delta \otimes_{\mathbb{Z}_2} M))$
- $H^k(G, S; M) = H^{k-1}(Hom_{\mathbb{Z}_2}(G, Hom_{\mathbb{Z}_2}(\Delta, M)))$

where the G-actions in $Hom_{\mathbb{Z}_2}(\Delta, M)$ and $\Delta \otimes_{\mathbb{Z}_2} M$ are given, respectively, by $g f(x) = g f(g^{-1} x)$ and $g(x \otimes m) = g x \otimes g m$ (diagonal actions).

Remark 2.4.

(i) If $S = \emptyset$, the relative cohomology is simply the ordinary cohomology of groups, i.e., $H^k(G, \emptyset; M) = H^k(G; M)$ and $H_k(G, \emptyset; M) = H_k(G; M)$.

(ii) It is convenient to write, for any family $S = \{S_i, i \in I\}$ of subgroups of G,

$$H_k(S; M) = \bigoplus_{i \in I} H_k(S_i; M) \text{ and } H^k(S; M) = \prod_{i \in I} H^k(S_i; M),$$

where M is a \mathbb{Z}_2S-module, i.e., a \mathbb{Z}_2S_i-module for all i. If M is a \mathbb{Z}_2G-module then M is a \mathbb{Z}_2S-module by restrictions.

We will see now the definition of relative cohomology due to Dicks and Dunwoody.

Definition 2.5. Consider W a G-set and \mathbb{Z}_2W the free \mathbb{Z}_2-module generated by W. Let $\eta : \mathbb{Z}_2W \rightarrow \mathbb{Z}$ be the augmentation map, $\Delta' = \ker \eta$, M a \mathbb{Z}_2G-module and $P \rightarrow \Delta'$ a \mathbb{Z}_2G projective resolution of Δ'. The groups of relative cohomology of the pair (G, W), with coefficients in M are, for all $k \in \mathbb{Z}$, defined by

$$H_k(G, W; M) = H_{k-1}(P \otimes_{\mathbb{Z}_2} G M) \text{ and } H^k(G, W; M) = H^{k-1}(Hom_{\mathbb{Z}_2}(P, Hom_{\mathbb{Z}_2}(G, M))).$$

Now we present the equivalence between the Definitions 2.3 and 2.5.

Theorem 2.6. Let G be a group and M a \mathbb{Z}_2G-module. Suppose either

(i) W is a G-set, $E = \{w_i, i \in I\}$ is a set of representatives for the G-orbits in W and $S = \{G w_i | i \in I\}$ is the family of isotropy subgroups; or

(ii) $S = \{S_i | i \in I\}$ is a family of subgroups of G, $W = \bigcup_{i \in I} G/S_i$ and G acts in W by left translation in G/S_i, $i \in I$.

Then the relative (co)homology groups of the pair (G, W) with coefficients in M (given by Definition 2.5) and the relative (co)homology groups of the pair (G, S) with coefficients in M (given by Definition 2.3) are isomorphic, i.e., for all $k \in \mathbb{Z}$, we have

$$H_k(G, W; M) \simeq H_k(G, S; M) \text{ and } H^k(G, W; M) \simeq H^k(G, S; M).$$
Proof. (i) Firstly, consider a pair \((G, W)\) and \(E = \{w_i \mid i \in I\}\) a set of orbit representatives in \(W\). We have
\[
W = \bigcup_{w_i \in E} G(w_i),
\]
where \(G(w_i) = \{g w_i \mid g \in G\}\) is the orbit of the element \(w_i \in E\). Consider, for each \(w_i \in I\), the isotropy subgroup \(G_{w_i} = \{g \in G \mid g w_i = w_i\}\). Using the one-to-one correspondence \(G(w_i) \leftrightarrow G/G_{w_i}\) we have
\[
\mathbb{Z}_2 W = \mathbb{Z}_2 \left[\bigcup_{w_i \in E} G(w_i) \right] = \bigoplus_{w_i \in E} \mathbb{Z}_2 [G(w_i)] = \bigoplus_{w_i \in E} \mathbb{Z}_2 [G/G_{w_i}].
\]
Let \(S = \{G_{w_i} \mid i \in I\}\) be the family of isotropy subgroups. We have \(\mathbb{Z}_2 W = \mathbb{Z}_2 (G/S)\). It follows from Definition 2.3 that \(\mathbb{Z}_2 W\) coincides with the augmentation \(\eta: \mathbb{Z}_2 W \to \mathbb{Z}_2\) from Definition 2.3 coincides with the augmentation \(\eta: \mathbb{Z}_2 W \to \mathbb{Z}_2\) from Definition 2.5. Moreover \(\Delta = \ker \epsilon = \ker \eta\). Consider a \(\mathbb{Z}_2 G\)-projective resolution of the module \(\mathbb{Z}_2\):
\[
F: \cdots \rightarrow F_3 \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow \mathbb{Z}_2 \rightarrow 0.
\]
It follows from Definition 2.3 that \(H_k(G, S; M) = H_{k-1}(F \otimes_{\mathbb{Z}_2} G, \Delta \otimes_{\mathbb{Z}_2} M)\). Now, for all \(k \in \mathbb{Z}\), \(P_k = F_k \otimes_{\mathbb{Z}_2} \Delta\) is a \(\mathbb{Z}_2 G\)-module with diagonal \(G\)-action. Since \(\Delta\) is \(\mathbb{Z}_2\)-free (see [5]), it follows that \(P_k\) is \(\mathbb{Z}_2 G\)-projective and the sequence
\[
P: \cdots \rightarrow \delta_4 \rightarrow \delta_3 \rightarrow \delta_2 \rightarrow \delta_1 \rightarrow \delta_0 \rightarrow \mathbb{Z}_2 \rightarrow 0.
\]
is exact. Thus \(P \rightarrow \Delta\) is a \(\mathbb{Z}_2 G\)-projective resolution of \(\Delta\). By Definition 2.5 we have \(H_k(G, W; M) = H_{k-1}(P \otimes_{\mathbb{Z}_2} G, M)\). Observe that, since \(\Delta\) is \(\mathbb{Z}_2\)-free, we have \(\Delta = \otimes \mathbb{Z}_2\) and thus
\[
P_1 \otimes_{\mathbb{Z}_2} G M = (F_1 \otimes_{\mathbb{Z}_2} \Delta) \otimes_{\mathbb{Z}_2} G M = \oplus (F_i \otimes_{\mathbb{Z}_2} G M).
\]
On the other hand,
\[
F_1 \otimes_{\mathbb{Z}_2} G (\Delta \otimes_{\mathbb{Z}_2} M) = F_1 \otimes_{\mathbb{Z}_2} G (\oplus \mathbb{Z}_2 \otimes_{\mathbb{Z}_2} M) = \oplus (F_i \otimes_{\mathbb{Z}_2} G M).
\]
Therefore \(P \otimes_{\mathbb{Z}_2} G M = F \otimes_{\mathbb{Z}_2} G (\Delta \otimes_{\mathbb{Z}_2} M)\) and we conclude that \(H_k(G, S; M) \simeq H_k(G, W; M)\).

To calculate the cohomology groups due to Bieri-Eckmann we consider the projective resolution (1) and, by Definition 2.3, \(H^k(G, S; M) = H^{k-1}(Hom_{\mathbb{Z}_2 G}(F, Hom_{\mathbb{Z}_2 G}(\Delta, M)))\). Considering now the projective resolution (2) and Definition 2.5, we have \(H^k(G, W; M) = H^k(Hom_{\mathbb{Z}_2 G}(P, M))\). Through the projective resolution (2) we can form the following cochain complex:
\[
Hom_{\mathbb{Z}_2 G}(P, M) : 0 \rightarrow \widetilde{\delta}_0 Hom_{\mathbb{Z}_2 G}(P_0, M) \rightarrow \widetilde{\delta}_1 Hom_{\mathbb{Z}_2 G}(P_1, M) \rightarrow \cdots
\]
where \(\widetilde{\delta}_i(f) = f \circ \delta_{i-1}, i > 0\) and \(\widetilde{\delta}_0 = 0\). Observe that \(Hom_{\mathbb{Z}_2 G}(P, M) = Hom_{\mathbb{Z}_2 G}(P \otimes \Delta, M)\). Thus we have \(H^k(G, S; M) \simeq H^k(G, W; M)\).

(ii) Now, consider a group pair \((G, S)\) where \(S = \{S_i \mid i \in I\}\) is a family of subgroups of \(G\) and let \(W = \bigcup_{i \in I} G/S_i\) be. For all \(w = hS_i \in W\) we have \(g w = ghS_i, \forall g \in G\). This defines a \(G\)-action in \(W\). For \(w \in W\) we have the \(G\)-orbit
\[
G(w) = \{g w \mid g \in G\} = \{g hS_i \mid g \in G\} = G/S_i.
\]
The set \(E = \{w_i = 1S_i \mid i \in I\}\) is a set of orbit representatives and
\[
G_{w_i} = \{g \in G \mid g w_i = w_i\} = \{g \in G \mid g \in S_i\} = S_i
\]
is the isotropy subgroup for \(w_i\). With this notation, and by using the same idea of the first part of the proof, we have \(H_k(G, S; M) \simeq H_k((G, W); M)\) and \(H^k(G, S; M) \simeq H^k((G, W); M)\).
3 Poincaré duality pairs

In this section, before proving the main result, we recall some definitions and results about duality groups and pairs due to Bieri and Eckmann [4] and Dicks and Dunwoody [6].

Definition 3.1. A group G is called a duality group of dimension n, or simply a D^n-group, if there exist a $\mathbb{Z}_2 G$-module C, called the dualizing module of G, and natural isomorphisms

$$H^k(G; M) \cong H_{n-k}(G; C \otimes M)$$

for all integers k and all $\mathbb{Z}_2 G$-modules M. In the special case where $C = \mathbb{Z}_2$, we say that G is a Poincaré duality group of dimension n, or simply a PD^n-group.

Definition 3.2. A duality pair of dimension n, or simply a D^n-pair, consists of a group pair (G, S) and a $\mathbb{Z}_2 G$-module C, where $S = \{S_i, i \in I\}$ is a finite family of D^{n-1}-subgroups of G with dualizing module C and natural isomorphisms

$$H^k(G; M) \cong H_{n-k}(G; S_i \otimes M), \quad (1)$$

$$H^k(G, S; M) \cong H_{n-k}(G; C \otimes M), \quad (2)$$

for all $\mathbb{Z}_2 G$-modules M and all $k \in \mathbb{Z}$. C is called the dualizing module of the D^n-pair (G, S). If $C = \mathbb{Z}_2$ the duality pair (G, S) is called a Poincaré duality pair, or simply a PD^n-pair.

Remark 3.3. If (G, S) is a PD^n-pair we can show that the isomorphisms (1) and (2) in Definition 3.2 are equivalent ([3]). Hence, to show that a group pair (G, S) is a PD^n-pair it is enough to prove only one of the isomorphisms given in Definition 3.2.

In view of Remark 3.3 we can define Poincaré duality pairs in a simpler way.

Definition 3.4. A group pair (G, S) is called of Poincaré duality pair of dimension n (PD^n-pair), if there exists a natural isomorphism

$$H^k(G; M) = H_{n-k}(G, S; M) \quad (3)$$

for all $\mathbb{Z}_2 G$-module M and all $k \in \mathbb{Z}$.

Definition 3.5. A group pair (G, S), with $S = \{S_i, i \in I\}$, is realised by a pair of CW-complexes (X, Y), if X is a $K(G, 1)$-complex and Y is a subcomplex of X whose components $Y_i, i \in I$, are $K(S_i, 1)$ complexes, so that the maps $i_\#: \pi_1(Y_i) \rightarrow \pi_1(X)$ induced by the inclusions $i : Y_i \hookrightarrow X$ are injective and map $\pi_1(Y_i)$ on $S_i \subset G$, after a convenient choice of paths connecting base points. The pair (X, Y) is called an Eilenberg-MacLane pair and is denoted by $K(G, S, 1)$.

The next result provides a topological interpretation for PD^n-pairs (see [4]).

Theorem 3.6. If (G, S) admits an Eilenberg-MacLane pair (X, Y), where X is a compact manifold of dimension n and $Y = \partial X$, then (G, S) is a PD^n-pair.

In the following we present the definition of PD^n-pair and its topological interpretation given by Dicks and Dunwoody in [6].

Definition 3.7. A pair (G, W) is a Poincaré duality pair of dimension n, or simply a PD^n-pair, if there exists a natural isomorphism

$$H^k(G; M) \cong H_{n-k}(G, W; M)$$

for all $\mathbb{Z}_2 G$-modules M and all $k \in \mathbb{Z}$.
Remark 3.8. If (G, W) is a PD^n-pair and $S = \{G_{w_i} \mid i \in I\}$ is the family of isotropy subgroups of a set of orbits representatives $E = \{w_i, \ i \in I\}$ in W then, it follows from Definitions 3.4 and 3.7 and Theorem 2.6, that

$$H^k(G; M) = H_{n-k}(G, W; M) = H_k(G, S; M)$$

Hence (G, S) is a PD^n-pair according to Bieri and Eckmann. By using [4, Theorem 4.2], we have, for a PD^n-pair (G, W), the following results:

(i) W falls into finitely many G-orbits.
(ii) For each $w \in W$, the isotropy subgroup G_w is a PD^{n-1}-group.

Theorem 3.9. Let X be a compact n-manifold, \tilde{X} its universal covering space, and suppose that $\partial \tilde{X}$ and the components of the boundary ∂X are all contractible; let $G = \pi_1(X)$ and let W be the G-set of components of $\partial \tilde{X}$. Then (G, W) is a Poincaré duality pair of dimension n.

The next theorem provides a relation between the topological interpretations for PD^n-pairs given by the Theorem 3.6 due to Bieri Eckmann and Theorem 3.9 due to Dicks-Dunwoody, describing the set of orbit representatives in W and the family of isotropy subgroups.

Theorem 3.10. Let X be a compact n-manifold, which is also a CW-complex, with boundary $\partial X = \bigcup_{i \in I} X_i$, where $X_i, \ i \in I$, are the components of ∂X. Consider \tilde{X} the universal covering of X and suppose that \tilde{X} and the components of the boundary $\partial \tilde{X}$ are all contractible. Let $G = \pi_1(X)$ and W the G-set of components of $\partial \tilde{X}$. Then, (i) $E = \{\tilde{X}_i \mid i \in I\}$ is a set of orbit representatives in W, where, for each $i \in I$, \tilde{X}_i is a copy of the universal covering of X_i. (ii) For each $\tilde{X}_i \in E$, we have $G_{\tilde{X}_i} = \pi_1(X_i)$. (iii) If $S = \{G_{\tilde{X}_i} \mid i \in I\}$ is the family of isotropy subgroups given by E then $(X, \partial X)$ is an Eilenberg-MacLane pair realising the group pair (G, S). Hence, (G, W) is a PD^n-pair according to Dicks-Dunwoody and (G, S) is a PD^n-pair according to Bieri-Eckmann.

Proof. (i) Consider the covering map $p : \tilde{X} \to X$. Since p is a local homeomorphism we have $\partial \tilde{X} = p^{-1}(\partial X)$ and so W is the set of path components of $p^{-1}(\partial X)$. On the other hand, $\tilde{X}_i = p^{-1}(X_i)$ consists of copies of the universal covering of X_i. Thus, for each $i \in I$, we have a set J_i and a family of path connected sets \tilde{X}_{ij}, $j \in J_i$, such that $\tilde{X}_i = \bigcup_{j \in J_i} \tilde{X}_{ij}$. Hence

$$\partial \tilde{X} = \bigcup_{i \in I} \tilde{X}_i = \bigcup_{i \in I} \bigcup_{j \in J_i} \tilde{X}_{ij}.$$

It follows that

$$W = \{\tilde{X}_{ij} \mid i \in I, j \in J_i\} = \bigcup_{i \in I} \{\tilde{X}_{ij} \mid j \in J_i\}.$$
It follows that $g \in A(\overline{X}_i, p_i) = \pi_1(X_i)$ and so, $G\overline{X}_i \subset \pi_1(X_i)$. Therefore $S_i = G\overline{X}_i = \pi_1(X_i), \forall i \in I$.

(iii) It follows from the hypotheses that X is a $K(G, 1)$ and $X_i = K(S_i, 1)$-subcomplex of X for all $i \in I$. Therefore, $(X, \partial X)$ is an Eilenberg-MacLane-pair realising (G, S). Finally, by the hypotheses of the theorem it follows that (G, W) is a PD^n-pair according to Dicks-Dunwoody and from (iii) it follows that (G, S) is a PD^n-pair according to Bieri-Eckmann.

\[\text{4 A cohomological criterion for Poincaré duality pairs}\]

Let (G, S) a group pair with $S = \{S_i \mid i \in I\}$ a family of subgroups with infinite index in G and consider the \mathbb{Z}_2G-module $\mathbb{Z}_2(G/S) = \bigoplus_{i \in I} \mathbb{Z}_2(G/S_i)$. Based in [1], we have defined the algebraic invariant

$$E(G, S, \mathbb{Z}_2(G/S)) = 1 + \dim \ker \text{res}^G_S,$$

where $\text{res}^G_S : H^1(G; \mathbb{Z}_2(G/S)) \to \prod_{i \in I} H^1(S_i; \mathbb{Z}_2(G/S))$ is the restriction map induced by the inclusions $S_i \hookrightarrow G$ for $i \in I$. Denote $E(G, S, \mathbb{Z}_2(G/S))$ by $E(G, S)$.

The following result, based in [2, Theorem 1], provides a necessary condition for a group pair (G, S) to be a PD^n-pair.

Theorem 4.1. If (G, S) is a PD^n-pair, with $[G : S] = \infty$ for all $S \in S$, then $E(G, S) = 1$.

This cohomological criterion can be revised in the notation of Dicks-Dunwoody. Before proving the result we have to make some remarks.

Let G be a group, S a subgroup of G, M a \mathbb{Z}_2G-module and $i : S \to G$ the inclusion map. Consider the restriction map

$$\text{res}^G_S : H^1(G; M) \to H^1(S; M).$$

Lemma 4.2. Let (G, W) be a pair where G is a group and W is a G-set. Consider $w, u \in W$ representatives for the same G-orbit in W. If G_u and G_w are the correspondent isotropy subgroups then $\ker \text{res}^G_{G_u} = \ker \text{res}^G_{G_w}$.

Proof. Consider $w, u \in W$ representatives for the same G-orbit in W. Then there exists $\sigma \in G$ such that $u = \sigma w$ and it is easy to see that $G_u = \sigma G_w \sigma^{-1}$. By [8, Corollary 2-3-2], the inner automorphism $\varphi_\sigma : G \to G$ given by $\varphi(x) = \sigma x \sigma^{-1}$ induces the identity in cohomology, i.e., $id = \varphi_\sigma : H^1(G; M) \to H^1(G; M)$. Besides, $\varphi(G_u) = G_w$ and the induced homomorphism $\varphi_\sigma^* : H^1(G_u; M) \to H^1(G_w; M)$ is an isomorphism. Hence we have the following commutative diagram:

$$
\begin{array}{ccc}
H^1(G; M) & \xrightarrow{\text{res}^G_{G_u}} & H^1(G_u; M) \\
\downarrow{id} & & \downarrow{\varphi_\sigma^*} \\
H^1(G; M) & \xrightarrow{\text{res}^G_{G_w}} & H^1(G_w; M)
\end{array}
$$

Then $\text{res}^G_{G_w} = \varphi_\sigma^* \circ \text{res}^G_{G_u}$ and so, $\ker \text{res}^G_{G_u} = \ker \text{res}^G_{G_w}$.

\[\square\]
Consider now two sets, \(E \) and \(E' \), of orbit representatives for the \(G \)-orbits in \(W \). We have the restriction maps:

\[
\text{res}^G_W : H^1(G, M) \to \prod_{u \in E} H^1(G_u, M) \quad \text{and} \quad \text{res}'^G_W : H^1(G, M) \to \prod_{u \in E'} H^1(G_u, M)
\]

In view of the previous result and by \([2, \S 1, (1.1)]\), it follows that

\[
\ker \text{res}^G_W \cong \bigcap_{w \in E} \ker \text{res}^G_{G_w} = \bigcap_{u \in E'} \ker \text{res}'^G_{G_u} = \ker \text{res}'^G_W.
\]

Hence we have the following result.

Lemma 4.3. In view of the previous considerations, \(\dim \ker \text{res}^G_W \) is independent of the choice of the set \(E \) of orbit representatives.

By using this Lemma, we can adapt the definition of the invariant \(E(G, S) \) to the notation from Dicks and Dunwoody.

Definition 4.4. Let \((G, W)\) be a pair where \(G \) is a group and \(W \) is a \(G \)-set such that \([G : G_w] = \infty \) for all \(w \in E \), where \(E \) is a set of orbit representatives for the \(G \)-orbits of \(W \), and whose morphisms are maps \(\psi : (G, W) \to (G', W') \) consisting of

- A homomorphism \(\alpha : G \to G' \);
- A map of \(G \)-sets \(\phi : W \to W' \), with \(\phi(E) \subseteq E' \), (where \(E \) and \(E' \) are sets of orbit representatives for the \(G \)-orbits of \(W \) and the \(G' \)-orbits of \(W' \), respectively) such that \(\alpha(G_w) \subseteq G_{\phi(w)} \), \(\forall w \in E \).
- A homomorphism \(f : \mathbb{Z}^I W \to \mathbb{Z}^I W' \) satisfying \(f(gw) = \alpha(g)f(w) \) \(\forall g \in G, w \in W \).

Now, we can rephrase Theorem 4.1 providing a necessary condition for a pair \((G, W)\) to be a Poincaré duality pair.

Theorem 4.6. Let \((G, W)\) be a Poincaré duality pair of dimension \(n \). Consider \(E \) a set of representatives to the \(G \)-orbits in \(W \) and suppose \([G : G_w] = \infty \) for all \(w \in E \). Then \(E(G, W) = 1 \).

Proof. Since \((G, W)\) is a \(PD^n \)-pair it follows that \(E \) is finite. The proof is similar to that of \([2, \text{Theorem 1}]\), replacing the group pair \((G, S)\) by the pair \((G, W)\) and putting \(S = \{G_w \mid w \in E\} \). The proof consists in to calculating the groups that appears in the exact sequence

\[
0 \to H^0(G; \mathbb{Z}_2 W) \to \bigoplus_{w \in E} H^0(G_w; \mathbb{Z}_2 W) \xrightarrow{\delta} H^1(G, \mathbb{Z}_2 W) \xrightarrow{J} H^1(G; \mathbb{Z}_2 W) \to \cdots
\]

given in \([4, \text{Proposition 1.1}]\). We have \(H^0(G; \mathbb{Z}_2 W) = \bigoplus_{w \in E} \mathbb{Z}_2(G/G_w)^G = 0 \) and so, \(\delta \) is a monomorphism. By using Shapiro’s Lemma and duality, we have \(H^1(G, \mathbb{Z}_2 W) \cong \bigoplus_{w \in E} \mathbb{Z}_2(G/G_w) \). Hence, \(\dim H^1(G, \mathbb{Z}_2 W) < \infty \).

On the other hand,

\[
\bigoplus_{w \in E} H^0(G_w; \mathbb{Z}_2 W) = \bigoplus_{w \in E} H^0(G_w; \mathbb{Z}_2(G/G_w)) = [\bigoplus_{w \in E} (\mathbb{Z}_2(G/G_w))^{G_w} \oplus \bigoplus_{u \neq w \in E} (\mathbb{Z}_2(G/G_u))^{G_u}].
\]

Since \(\mathbb{Z}_2 \cong \mathbb{Z}_2(G/G_u))^{G_u} \), it follows that

\[
\bigoplus_{w \in E} \mathbb{Z}_2 \cong \bigoplus_{u \neq w \in E} (\mathbb{Z}_2(G/G_u))^{G_u} \cong \left[\bigoplus_{w \in E} (\mathbb{Z}_2(G/G_w))^{G_w} \oplus \bigoplus_{u \neq w \in E} (\mathbb{Z}_2(G/G_u))^{G_u} \right] \cong \bigoplus_{w \in E} \mathbb{Z}_2. \]

Thus, \(\mathbb{Z}_2(G/G_u))^{G_u} \cong \mathbb{Z}_2 \) and \(\mathbb{Z}_2(G/G_u))^{G_u} = 0 \) for all \(w, u \in E \) with \(u \neq w \). It follows that \(\delta \) is an isomorphism and so, \(J \) is trivial which provides \(\ker \text{res}^G_W = 0 \). Then we have \(\dim \ker \text{res}^G_W = 0 \) and \(E(G, W) = 1 \).

\(\square \)
The next result was proved in [7].

Theorem 4.7. Let \((G, S)\) be a \(PD^n\)-pair. Then, only one of the statements is true:

(i) \(S\) consists of only one subgroup \(S\) with \([G : S] = 2\).

(ii) \(S\) consists of two copies of \(G\).

(iii) \([G : S] = \infty\) for all \(S \in S\).

By using this result and Theorem 2.6 we can characterize the types of \(PD^n\)-pairs with the notation of Dicks-Dunwoody.

Theorem 4.8. Let \((G, W)\) be a \(PD^n\)-pair. Then, only one of the statements is true:

(i) \(W\) consists of exactly two elements and the \(G\)-action in \(W\) is transitive.

(ii) \(W\) consists of exactly two elements and the \(G\)-action in \(W\) is trivial.

(iii) \([G : G_w] = \infty\) for all \(w \in W\), and \(W\) is infinite.

Proof. We have that \(W = \bigcup_{w_j \in E} G(w_j) = \bigcup_{w_j \in E} G/G_{w_j}\), where \(E = \{w_j \mid i \in I\}\) is a set of orbit representatives in \(W\). Let \(S = \{S_i = G_{w_j} \mid i \in I\}\) be the family of isotropy subgroups. Since \((G, W)\) is a \(PD^n\)-pair we have that \((G, S)\) is a Poincaré duality pair (according to Bieri-Eckmann). By Theorem 4.7 we have three types of \(PD^n\)-pairs \((G, S)\).

In case (i), we have \(S = \{S\} = \{G_w\}\), with \([G : S] = 2\). Hence \(W = G/G_w\) has two elements and the \(G\)-action in \(W\) is transitive.

In case (ii), we have \(S = \{S_1, S_2\} = \{G_{w_1}, G_{w_2}\} = \{G, G\}\) and, since \(W = \bigcup_{i=1}^{i=2} G/G_{w_i}\), it follows that \(G/G_{w_i} = G/G = \{1\}\) and so, \(G/G_{w_i}\) has one element for \(i = 1, 2\). Therefore \(W\) has exactly two elements. Since \(G_{w_i} = G\) for \(i = 1, 2\) the \(G\)-action in \(W\) is trivial.

Finally, in case (iii), we have that \([G : S_i] = [G : G_{w_i}] = \infty\). Since, for \(w \in W\), there exist \(g \in G\) and \(w_k \in E\) such that \(G_w = gG_{w_k}g^{-1}\) we have \([G : G_w] = \infty\), for all \(w \in W\). Hence, we conclude that \(W\) is infinite, because \(W = \bigcup_{w_j \in E} G/G_{w_j}\). \(\square\)

Example 4.9. The only connected one-manifold-with-boundary is a line segment \(X = \overline{AB}\), with boundary consisting of the two endpoints \(A\) and \(B\) on \(X\) is its own universal covering. We have \(G = \pi_1(X) = \{1\}\) and \(W = \{A, B\}\). The \(G\)-action in \(W\) is trivial and \((G, W)\) is a \(PD^1\)-pair of type (ii). Now, if \(X\) is an annulus, i.e., a region bounded by two concentric circles or a Möbius band, then the universal covering \(\overline{X}\) of \(X\) is an infinity band delimited by two lines \(r\) and \(s\) which are the components of the boundary of \(\overline{X}\). We have \(G = \pi_1(X) = \mathbb{Z}\), \(W = \{s, r\}\). In the first case the \(G\)-action in \(W\) is trivial and \((G, W)\) is a \(PD^2\)-pair of type (ii). In the case of the Möbius band, the \(G\)-action in \(W\) is transitive and \((G, W)\) is a \(PD^2\)-pair of type (i).

Example 4.10. Consider a torus with one hole. We have \(G = \pi_1(X) = \langle t \rangle \ast \langle s \rangle\). If \(W\) consists of the components of boundary of the universal covering of \(X\), by Theorem 3.10, the \(G\)-action in \(W\) is transitive and for all \(w \in W\) we have \(W = G/G_w\), where \(G_w = \langle t s t^{-1} r^{-1} \rangle\). In this case \((G, W)\) is a \(PD^2\)-pair of type (iii), because \(W\) is infinite, and by Theorem 4.6, \(E(G, W) = 1\). But, if \(S = \langle s \rangle\) and \(W = G/S\) then, by considering [1, Example 2.2(c)] and the proof of Theorem 2.6 above, it follows that \(E(G, W) = \infty\). Hence, by Theorem 4.6, in this case, \((G, W)\) is not a \(PD^n\)-pair.

Acknowledgement: The authors’ research was supported by FAPESP (grant 2012/24454-8) and CAPES. The first author also acknowledges the financial support from FAPERG (grant 10/2015).
References

[1] Andrade, M.G.C., Fanti, E.L.C., A relative cohomological invariant for pairs of groups, Manuscripta Math., 1994, 83, 1-18.
[2] Andrade, M.G.C., Fanti, E.L.C., Daccach, J. A., On certain relative invariants, Int. J. Pure Appl. Math., 2005, 21(3), 335-352.
[3] Andrade, M.G.C., Fanti, E.L.C., Fêmina, L.L., Some remarks about Poincaré duality pairs, JP J. Geom. Topol., 2012, 12(2), 159-172.
[4] Bieri, R., Eckmann, B., Relative homology and Poincaré duality for group pairs, J. Pure Appl. Algebra, 1978, 13, 277-319.
[5] Brown, K.S., Cohomology of groups, Grad. Texts in Mat. 87, Springer, Berlin-New York-Heidelberg, 1982.
[6] Dicks, W., Dunwoody, M. J., Groups acting on graphs, Cambridge University Press, Cambridge, 1989.
[7] Kropholler, P. H., Roller, M. A., Splittings of Poincaré duality groups II, J. Lond. Math. Soc., 1988, 38, 410-420.
[8] Weiss, E., Cohomology of Groups, Academic Press Inc., New York, 1969.