Correction to: NuA4 histone acetyltransferase activity is required for H4 acetylation on a dosage-compensated monosomic chromosome that confers resistance to fungal toxins

Hironao Wakabayashi1*, Christopher Tucker1, Gabor Bethlendy2,3, Anatoliy Kravets1, Stephen L. Welle4,5, Michael Bulger5, Jeffrey J. Hayes1 and Elena Rustchenko1

Correction to: Epigenetics & Chromatin (2017) 10:49
https://doi.org/10.1186/s13072-017-0156-y

After the publication of this work [1], it was noticed that an initial was missing from the author name: Jeffrey Hayes. His name should be written as: Jeffrey J. Hayes.

The original article has been corrected.

Author details
1 Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA. 2 Roche Diagnostics Corporation, Indianapolis, IN, USA. 3 Present Address: Parabase Genomics, Dorchester, MA, USA. 4 Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA. 5 Department of Pediatrics, Center for Pediatric Biochemical Research, University of Rochester Medical Center, Rochester, NY, USA.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 October 2017 Accepted: 31 October 2017
Published online: 07 November 2017

Reference
1. Wakabayashi H, Tucker C, Bethlendy G, Kravets A, Welle SL, Bulger M, et al. NuA4 histone acetyltransferase activity is required for H4 acetylation on a dosage-compensated monosomic chromosome that confers resistance to fungal toxins. Epigenet Chromatin. 2017;10:49.

*Correspondence: Hironao_Wakabayashi@urmc.rochester.edu
1 Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA

Full list of author information is available at the end of the article

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.