NMR Structure and Functional Characteristics of the Hydrophilic N Terminus of the Potassium Channel β-Subunit Kvβ1.1*

(Rceived for publication, June 14, 1999, and in revised form, August 27, 1999)

Ralph Wissmann‡, Thomas Baukrowitz‡, Hubert Kalbacher†, Hans Robert Kalbitzer†, J. Peter Ruppersberg‡, Olaf Pongs||, Christoph Antz||‡‡, and Bernd Fakler||§§

From the ‡Department of Physiology II, University of Tübingen, Ob dem Himmelreich 7, 72074 Tübingen, Germany, ||Institute of Physiological Chemistry, University of Tübingen, Ob dem Himmelreich 7, 72074 Tübingen, Germany, †Department of Biophysics and Physical Biochemistry, University of Regensburg, Universitätstr. 31, 93053 Regensburg, Germany, **Otogene AG, Vor dem Kreuzberg 17, 72074 Tübingen, Germany, and ‡‡Zentrum für Molekulare Neurobiologie Hamburg, Falkenried 94, 20251 Hamburg, Germany

Rapid N-type inactivation of voltage-dependent potassium (Kv) channels controls membrane excitability and signal propagation in central neurons and is mediated by protein domains (inactivation gates) occluding the open channel pore from the cytoplasmic side. Inactivation domains (ID) are donated either by the pore-forming α-subunit or certain auxiliary β-subunits. Upon co-expression, Kvβ1.1 was found to endow non-inactivating members of the Kv1 family with fast inactivation via its unique N terminus. Here we investigated structure and functional properties of the Kvβ1.1 N terminus (amino acids 1–62, βN-(1–62)) using NMR spectroscopy and patch clamp recordings. βN-(1–62) showed all hallmarks of N-type inactivation: it inactivated non-inactivating Kv1.1 channels when applied to the cytoplasmic side as a synthetic peptide, and its interaction with the α-subunit was competed with tetraethylammonium and displayed an affinity in the lower micromolar range. In aqueous and physiological salt solution, βN-(1–62) showed no well defined three-dimensional structure, it rather existed in a fast equilibrium of multiple weakly structured states. These structural and functional properties of βN-(1–62) closely resemble those of the “unstructured” ID from Shaker B, but differ markedly from those of the compactly folded ID of the Kv3.4 α-subunit.

Fast N-type inactivation of voltage-gated potassium (Kv) channels shapes the action potential, governs the firing rate (spiking), and controls signal propagation in central neurons (1). Biophysically, N-type inactivation has long served as the model for gating transitions in ion channels and is realized by a “ball plug-in” mechanism. In this mechanism a protein domain termed “inactivation gate” or “inactivation ball” binds to its receptor at the inner vestibule of the open channel and thereby occludes the ion pathway (2–5). Such inactivation gates have been localized in the N terminus of various Kvα subunits and were shown to be functional entities, i.e. they conferred rapid inactivation to “ball-less” Kvα subunits when applied to the cytoplasmic side of the channels as synthetic peptides (5–8). Identical to protein-harbored inactivation domains, the synthetic gates interacted with channels in the open state, blocked the pore with low voltage dependence, and were competed with the channel blocker tetraethylammonium (TEA) (9–11). Recently, the structures of the inactivation domains (ID) from Kv1.4 and Kv3.4 were determined with NMR spectroscopy. Both IDs were found to exhibit well defined and compact folding in aqueous solution (12). In contrast, the ID from Shaker B showed no unique, folded structure (13, 14).

Besides with Kvα subunits owning an N-terminal ID, fast inactivation was observed for a subset of non-inactivating Kvα1 channels when coexpressed with certain β-subunits (15–17). These auxiliary subunits constitute a family of cytoplasmic proteins (subdivided into subfamilies Kvβ1, -2, and -3) that are made up of two distinct regions: a highly conserved core region that shows homology to the superfamilies of aldo-keto reductases and a variable N terminus (18, 19). Fig. 1A, depicts the mechanism for inactivation of a non-inactivating Kvα1 subunit by the coexpressed β-subunit, Kvβ1.1. Kvβ constitutively (and specifically) binds to the Kvα1-subunit via the conserved core region (20, 21) and mediates fast inactivation via its unique N terminus (15, 16, 18). The latter should contain a “ball-like” domain that occludes the channel pore from the cytoplasmic side similar as known for IDs derived from α-subunits. This view is mainly supported by two findings. First, β-induced inactivation was absent when the N terminus of Kvβ1.1 was deleted, and second, inactivation was sensitive to oxidation, similar to that reported for inactivation in fast inactivating Kv channels (16). Although this suggested an N-type mechanism of inactivation, the “β-ball” was never tested for competition with TEA. This competition is considered indicative for N-type inactivation (9, 10). Moreover, there is puzzling controversy on the functionality of a peptide that comprises the N-terminal 24 amino acids of Kvβ1.1 and is supposed to constitute the β-ball. This peptide induced inactivation in some experiments (16) but failed in others (22), although the coexpressed Kvβ1.1 subunit inactivated the Kvα1 subunit in either case.

To get insight into the molecular mechanism of fast β-mediated inactivation, we investigated structure and function of the hydrophilic Kvβ1.1 N terminus using NMR spectroscopy and giant patch clamp recording on a synthetic peptide (βN-(1–62)) that covers the entire hydrophilic domain N-terminal to the well conserved core region of Kvβ1.1.
NMR Structure and Function of the N Terminus of Kvβ1.1

MATERIALS AND METHODS

Electrophysiology—Kv1.1 channels were heterologously expressed in Xenopus oocytes as described elsewhere (23). Giant patch recordings were made at room temperature (approximately 23°C) 3–7 days after injection of capped Kv1.1-specific cRNA. Pipettes used were made from thick walled borosilicate glass, had resistances of 0.3–0.6 MΩ (tip diameter of about 20 μm), and were filled with 5 mM KCl, 115 mM NaCl, 10 mM HEPES, and 1.6 mM CaCl2 (pH 7.2). Currents were sampled at 10 kHz and corrected for capacitative transients with an EPC9 amplifier (HEKA Electronics, Lambrecht, Germany) with an analog filter set to 3 kHz (~decibel). The fast application system used is described elsewhere (8, 24) and allowed for a complete solution exchange in less than 2 ms (24). βN-(1–62) or TEA were dissolved in KCl solution and applied via one barrel of the application system. K

 Structural Analysis—NMR spectra were recorded within less than 3 min. To verify structural properties under physiological conditions, NMR experiments were also performed on βN-(1–62) dissolved in a physiological salt solution (90 mM KCl, 10 mM KH2PO4, 2 mM MgCl2) at pH 6.6.

 RESULTS

βN-(1–62) Interacts with the α-Subunit of Kv 1.1 Channels in a Ball-like Manner—The functional characteristics of βN-(1–62) were tested in inside-out patches from Xenopus oocytes expressing non-inactivating Kv1.1 channels. As shown in Fig. 1B, βN-(1–62) induced rapid inactivation of these channels when present at 50 μM on the cytoplasmic side of the patch; the time course of inactivation depended on the peptide concentration (not shown). βN-(1–62) blocked Kv1.1 channels only in the open state (Fig. 1B), similar to IDs derived from Kvα subunits (6, 10). The latter are known to interact with a receptor that becomes accessible upon opening of the channel and that is competed by the “open channel blocker” TEA (9, 10). Therefore, βN-(1–62)-induced inactivation was investigated in the presence of 1 mM TEA, a concentration which blocked about two-thirds of open Kv1.1 channels. As shown in Fig. 1, C–E, the time-course of βN-(1–62)-mediated inactivation was slowed down by about a factor of 3 (time constants for inactivation in the absence and presence of TEA were 8.0 ± 1.7 and 22.2 ± 3.0, respectively) consistent with the peptide and TEA competing for an overlapping binding site in the pore (11). These results suggested that βN-(1–62) inactivated Kv1.1 channels in a “ball-like manner” via interaction with a receptor site on the α-subunit that is accessible only in the open state.

The interaction between βN-(1–62) and the channel α-subunit was more closely investigated by the “fast application” technique. This technique (see “Materials and Methods”) allows solution exchange at giant inside-out patches in less than 2 ms and enables separate determination for on and off rates of channel-peptide interaction (8, 24). Fig. 2, A and B, shows rapid application and wash-off of 50 μM βN-(1–62); these experiments were performed at a membrane potential of 0 mV under asymmetrical K+ conditions ([K+]o, 5 mM; [K+]i, 120 mM). Inactivation occurred with a time constant of ~10 ms (10.3 ± 1.6 ms, n = 3) and was the same whether determined by fast application (left panel, first activation) or in the continuous presence of βN-(1–62) (left, second activation). Wash-off of βN-(1–62), which should reflect unbinding of the peptide from the
receptor, exhibited a time constant of \(\approx 100 \text{ ms} \) (99.9 ± 16.8 ms, \(n = 3 \)) and could be well fitted with a monoeXponential (Fig. 2B, right). This indicated that interaction between \(\beta N\)-(1–62) and its receptor on the \(\alpha \)-subunit is a first order reaction, with on and off rates (\(k_{\text{on}}, k_{\text{off}} \)) calculated as 1.7 \(\times 10^6 \) mol\(^{-1}\) s\(^{-1}\) and 10.3 s\(^{-1}\) (Fig. 2C). These values were close to the rates determined for the “e-ball” from Shaker B channels (\(k_{\text{on}}, 4.4 \times 10^6\) mol\(^{-1}\)s\(^{-1}\), \(k_{\text{off}} 19.8 \text{ s}^{-1} \), (5)), but differed from those found for the ID from Kv3.4 channels (Kv3.4-ID: \(k_{\text{on}}, 10.2 \times 10^6\) mol\(^{-1}\) s\(^{-1}\), \(k_{\text{off}} 2.6 \text{ s}^{-1} \), Fig. 2C). The binding affinity of \(\beta N\)-(1–62) was about 25-fold lower than that of Kv3.4-ID, but almost equalizes that of the Shaker B inactivation domain (5, 8).

\(\beta N\)-(1–62) Does Not Exhibit a Defined Structure in Solution—The reason(s) for the largely different kinetics observed with the IDs from Shaker B and Kv3.4 channels are not well understood but might be related to their different tertiary structure. Kv3.4-ID shows a well defined and compactly folded three-dimensional structure, whereas the Shaker B ID does not have a unique structure in solution (13, 14, 30).

To get more insight into the structure-function basis of \(\alpha \)-type inactivation in general and \(\beta 1.1 \)-mediated inactivation in particular, we investigated the structural properties of \(\beta N\)-(1–62) with NMR spectroscopy. Experiments were performed under various conditions, in aqueous solution at low pH and in a physiological salt solution at neutral pH (see “Materials and Methods”). The spin systems were completely assigned by two-dimensional NMR methods in the low pH solution and verified under physiological salt and pH conditions. As illustrated in Fig. 3, only sequential NOE contacts were found, with the pattern of NOEs dominated by \(\alpha \)-N, the NOE between the \(\alpha \)-proton of an amino acid and the amide proton of the following one. Stretches of consecutive amide-amide NOEs (dNN) indicative for formation of local structures, were absent as were intermediate or long range NOE contacts. All of the experimentally determined coupling constants between amide and \(\alpha \)-protons showed values very close to those reported for random coil peptides (31) (Fig. 3).

This view was further supported by the deviations of amide and \(\alpha \)-proton chemical shifts (\(\Delta \delta^N \) and \(\Delta \delta^\alpha \)) from the random-coil values (32). As depicted in Fig. 4, some of the shifts slightly deviated from random-coil values. However, analysis of the data with the chemical shift index by Wishard et al. (33) did not lead to identification of a pattern typical for canonical secondary structures (Fig. 4, A and C). Nevertheless, upfield shifts (characteristic for helical structures) and downfield chemical shifts (characteristic for \(\beta \)-pleated structures) can be observed and are distributed uniformly over the sequence. This suggests transient formation of these structures in the
thermal equilibrium. In addition, there are three stretches of downfield shifted amide resonances (between amino acids 2–10, 44–52, and 56–61) indicating a helical propensity in these regions. These results were essentially independent of whether the chemical shifts were determined under low pH or physiological salt and pH conditions (Fig. 4, B and D). Furthermore, experiments performed to determine the rates of H/D exchange of amide protons showed that all these protons were exchanged in <3 min., indicating that none of these protons are protected by formation of hydrogen bonds within an “internal structure.” Rather all amide protons are easily accessible from the solvent, as is typical for not compactly folded peptides. In summary, these results indicated that βN-(1–62) does not exhibit a well defined structure in solution, but rather behaves like a flexible peptide showing only transient formation of local structures.

DISCUSSION

The results presented here show that Kvβ1.1 mediates fast inactivation of Kv1α subunits via an N-type mechanism of inactivation. Accordingly, the unique N terminus of Kvβ1.1 comprises a ball-like domain that blocks the channel via interaction with a receptor site that becomes accessible upon channel opening. This interaction is competed with TEA, very similar to what is known from α-derived IDs. As determined from NMR experiments, the hydrophilic N terminus of Kvβ1.1 does not exhibit a well defined, unique three-dimensional structure. Rather it can be described by a fast conformational equilibrium of weakly structured substates.

With the structural and functional properties described above, the ID of Kvβ1.1 closely resembles the ID from Shaker B, but clearly differs from that of Kv3.4 (5, 8, 12–14, 30, 34). Thus, on rates of inactivation were significantly slower for the unstructured IDs compared with the structured Kv3.4-ID, whereas the respective off rates were considerably faster for the IDs from Shaker B and Kvβ1.1 than for Kv3.4-ID. Interestingly, on and off rates of inactivation mediated by the well ordered Kv3.4-ID changed considerably when its structure was disturbed by protein phosphorylation (8). Partial unfolding of the N-terminal hemisphere of the Kv3.4-ID resulted in a significant slowing of the on rate, whereas destabilization of the C-terminal hemisphere lead to an increase in the off rate of inactivation (8).

These correlations suggest that the structural properties of the IDs in solution affect the characteristics of their receptor binding. Thereby, a compactly folded ID exhibits faster access to its receptor than an unfolded domain, even if the latter is more positively charged (net charges are +2, +6, and +4 for IDs from Shaker, Kvβ1.1, and Kv3.4, respectively). Unbinding is much faster for the nonstructured domains compared with the folded. This may either be because of the higher number of molecular contacts (hydrogen bonds, etc.) formed between the folded domain and the receptor or because of the higher flexibility of the unfolded IDs that destabilizes the ID-receptor interaction. Taken together, the overall structural stability may represent a major determinant of the ID-channel interaction in addition to overall charge and the presence of hydrophobic domains, which were reported previously to govern on and off rates of this interaction (5, 34).

The results about inactivation of Kv1.1 channels with the “core-free” N terminus of Kvβ1.1 differs from the results obtained from coexpression of both subunits. βN-(1–62) induced almost complete inactivation, whereas inactivation mediated by the entire Kvβ1.1 protein was found to be considerably less effective (15, 16, 35, 36). This discrepancy might reflect some variation in binding of Kvβ1.1 to the N terminus of Kv1.1 or might be because of interaction of the α-β complex with other proteins affecting the mobility of the β-inactivation domain. Thus, it was recently suggested that the Kv1.1-Kvβ1.1 complex may interact with the Gβγ dimer, thereby increasing the degree of β-mediated inactivation (35).
Acknowledgment—We appreciate the help of Tanja Bauer with synthesis and purification of the β-peptide.

REFERENCES

1. Hille, B. (1992) Ionic Channels of Excitable Membranes, pp. 127–130, 2nd ed., Sinauer Associates Inc., Sutherland, MA
2. Armstrong, C., and Bezanilla, F. J. (1977) J. Gen. Physiol. 70, 567–590
3. Hoshi, T., Zagotta, W. N., and Aldrich, R. W. (1990) Science 250, 533–538
4. Zagotta, W. N., Hoshi, T., and Aldrich, R. W. (1990) Science 250, 568–571
5. Murrell-Lagnado, R. D., and Aldrich, R. W. (1993) J. Gen. Physiol. 102, 949–975
6. Ruppersberg, J. P., Frank, R., Pongs, O., and Stocker, M. (1991) Nature 353, 657–660
7. Stephens, G. J., and Robertson, B. (1995) J. Physiol. (Lond.) 464, 1–13
8. Antz, C., Bauer, T., Kalbacher, H., Frank, R., Covarrubias, M., Kalbitzer, H., Ruppersberg, J., Baurkowitz, T., and Fakler, B. (1999) Nat. Struct. Biol. 6, 146–150
9. Mackinnon, R., and Yellen, G. (1990) Science 250, 276–279
10. Demo, S. D., and Yellen, G. (1991) Nature 353, 743–753
11. Baurkowitz, T., and Yellen, G. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 13357–13361
12. Antz, C., Geyer, M., Fakler, B., Schott, M. K., guy, H. R., Frank, R., Ruppersberg, J. P., and Kalbitzer, H. R. (1997) Eur. J. Neurosci. 9, 727–275
13. Schott, M. K., Antz, C., Frank, R., Ruppersberg, J. P., and Kalbitzer, H. R. (1998) Eur. J. Neurosci. 9, 79–104
14. Fernandez-Ballester, G., Gavilanes, F., Albar, J. P., Criado, M., Ferragut, J. A., and Gonzalez-Ros, J. M. (1995) Biophys. J. 68, 858–865
15. Heinemann, S. H., Retig, J., Graack, H. K., and Pongs, O. (1996) J. Physiol. (Lond.) 493, 625–633
16. Retig, J., Heinemann, S. H., Wunder, F., Lorra, C., Parej, D. N., Dolly, J. O., and Pongs, O. (1994) Nature 369, 289–294
17. England, S. K., Uebele, V. N., Kodali, J., Bennett, P. B., and Tamkun, M. M. (1995) J. Biol. Chem. 270, 28531–28534
18. McCormack, K., McCormack, T., Tanouye, M., Rudy, B., and Stuhmer, W. (1995) FEBS Lett. 370, 32–36
19. McCormack, T. and McCormack, K. (1994) Cell 79, 1133–1135
20. Yu, W., Xu, J., and Li, M. (1996) Neuron 16, 441–453
21. Sewing, S., Roeppe, J., and Pongs, O. (1996) Neuron 16, 455–463
22. Stephens, G. J., Cockett, M. I., Nawoschik, S. P., Schecter, L. E., and Owen, D. G. (1996) FEBS Lett. 378, 250–252
23. Fakler, B., Brandle, U., Glowatski, E., Weidemann, S., Zenner, H. P., and Ruppersberg, J. P. (1995) Cell 80, 149–154
24. Oliver, D., Hahn, H., Antz, C., Ruppersberg, J. P., and Fakler, B. (1998) Biophys. J. 74, 2318–2326
25. Frank, R., and Gaussepol, H. (1988) Modern Methods in Protein Chemistry, Walter de Gruyter & Co., Berlin
26. Jennes, J. (1979) J. Chem. Phys. 71, 4546–4553
27. Aue, W. P., Bartholdi, E., and Ernst, R. (1976) J. Chem. Phys. 64, 2229–2246
28. Davis, D. G., and Bax, A. (1985) J. Am. Chem. Soc. 107, 2820–2821
29. Neidig, K. P., Geyer, M., Gorler, A., Antz, C., Safrich, R., Beneicke, W., and Kalbitzer, H. R. (1995) J. Biomol. NMR 6, 255–270
30. Aldrich, R. W., Hoshi, T., and Zagotta, W. N. (1999) Cold Spring Harbor Symp. Quant. Biol. 55, 19–27
31. Bundi, A., and Wuthrich, K. (1979) Biopolymers 18, 185–297
32. Wuthrich, K. (1993) Methods Enzymol. 177, 125–131
33. Wishart, D. S., Bigam, C., Holm, A., Hodges, R., and Sykes, B. (1995) J. Biomol. NMR 5, 67–81
34. Murrell-Lagnado, R. D., and Aldrich, R. W. (1990) J. Gen. Physiol. 102, 977–1003
35. Jing, J., Chikvashvili, D., Singer-Lahat, D., Thornhill, W. R., Reuveny, E., and Lotan, I. (1999) EMBO J. 18, 1245–1256
36. Jing, J., Peretz, T., Singer-Lahat, D., Chikvashvili, D., Thornhill, W. B., and Lotan, I. (1997) J. Biol. Chem. 272, 14021–14024