ON EULER CHARACTERISTICS OF SELMER GROUPS FOR
ABELIAN VARIETIES OVER GLOBAL FUNCTION FIELDS

MARIA VALENTINO

Abstract. Let F be a global function field of characteristic $p > 0$, K/F an
ℓ-adic Lie extension ($\ell \neq p$) and A/F an abelian variety. We provide Euler
characteristic formulas for the $\text{Gal}(K/F)$-module $\text{Sel}_A(K)_\ell$.

1. Introduction

Let $\ell \in \mathbb{Z}$ be a prime and let G be a profinite ℓ-adic Lie group of finite dimension
$d \geq 1$. Let M be a G-module and consider the following properties
1. $H^i(G, M)$ is finite for any $i \geq 0$;
2. $H^i(G, M) = 0$ for all but finitely many i.

Definition 1.1. If a G-module M verifies 1 and 2, we define the Euler characteristic
of M as
\[
\chi(G, M) := \prod_{i \geq 0} |H^i(G, M)|^{(-1)^i}.
\]

Let A/F be an abelian variety and, for any extension L/F, let $\text{Sel}_A(L)_\ell$ be the
ℓ-power part of the Selmer group of A over L (for a precise definition see Section
2). When G is the Galois group of a field extension L/F, the study of the Euler
characteristic $\chi(G, \text{Sel}_A(L)_\ell)$ is a first step towards understanding the relation,
predicted by the Iwasawa Main Conjecture, between a characteristic element for
$\text{Sel}_A(L)_\ell$ and a suitable ℓ-adic L-function.

In the number field setting, various papers have considered Euler characteristic
formulas for the Selmer groups. Among these works, we mention that of Coates
and Howson [7], where they considered the extension generated by the p-power
torsion points of an elliptic curve E/F. Interesting generalizations can be found in
the papers of Van Order [16] and Zerbes [17] and [18].

The aim of this paper is to provide Euler characteristic formulas for the Selmer
group in the function field case. Let F be a global function field of characteristic
$p > 0$ and let K/F be an ℓ-adic Lie extension ($\ell \neq p$) with Galois group G and
unramified outside a finite and nonempty set S of primes of F. The case $\ell = p$,
which requires a few more technical tools related to flat cohomology, will be treated
in a different paper [6].

Here is a summary of the present work. In Section 2 we provide two formulations
for $\chi(G, \text{Sel}_A(K)_\ell)$. The first (see Theorem 2.3) mainly depends on the cohomol-
y and Euler characteristic of torsion points while the second (see Theorem 2.5)
involves more directly the Tate-Shafarevich group $\Sha(A/F)$ (hinting at a connection with values of L-functions and the Birch and Swinnerton-Dyer conjecture). In Section $\ref{sec:elliptic}$ we specialize our formulas to the case of elliptic curves (all notation are canonical and will be explained in the next section or soon as they appear) and obtain (see Theorem $\ref{thm:main}$)

Theorem 1.2. Assume $\Sel_{E}(F)_{\ell}$ is finite, $H^{2}(F_{S}/K, E[\ell^{\infty}]) = 0$, $\chi(G, E(K)[\ell^{\infty}])$ and $\chi(G_{v}, E(K_{w})[\ell^{\infty}])$ are well defined for any $w|v \in S$ and the map ψ_{K} in the sequence

\[
\psi_{K} : \Sel_{E}(K)_{\ell} \rightarrow H^{1}(F_{S}/K, E[\ell^{\infty}]) \rightarrow \prod_{v \in S} \Coind^{G_{v}}_{E} H^{1}(K_{w}, E[\ell^{\infty}])
\]

is surjective. If $\ell \geq 5$ we have

\[
\chi(G, \Sel_{E}(K)_{\ell}) = \chi(G, E(K)[\ell^{\infty}]) \frac{\Sha(E/F)[\ell^{\infty}]}{|E(F)[\ell^{\infty}]|^{2}} \cdot \prod_{v \in S} \chi(G_{v}, E(K_{w})[\ell^{\infty}])
\]

\[
\cdot \prod_{v \in S, \text{ cd}_{\ell}(K_{w}) = 0} \left| L_{v}(E, 1) \right|_{\ell} \cdot \prod_{v \in S, \text{ cd}_{\ell}(K_{w}) = 0} \left| L_{v}(E, 1) \right|_{\ell}
\]

1.1. **Setting and notations.** Before moving on we recall the main objects and the setting we shall work with.

Let F be a global function field of characteristic $p > 0$ with finite constant field \mathbb{F}_{q} ($q = p^{r}$ for some $r \in \mathbb{N}$). For any place v of F, let F_{v} be the completion of F at v and its residue field. For any Galois extension L/F and any place v of F, fix a place w of L lying above v and let $G_{v} := \text{Gal}(L_{w}/F_{v})$ be the associated decomposition group. We also fix an embedding of F (a separable algebraic closure of F) into \overline{F} in order to get a restriction map $\text{Gal}(F_{L}/F_{v}) \rightarrow \text{Gal}(\overline{F}/F) = : G_{F}$.

Let K/F be an ℓ-adic Lie extension unramified outside a finite and nonempty set of places S of F. We write $G := \text{Gal}(K/F)$ and assume it has finite dimension d (as ℓ-adic Lie group) and no elements of order ℓ (then the ℓ-cohomological dimension of G is $\text{cd}_{\ell}(G) = d$ by [12 Corollaire (1) p. 413]).

Let F_{S} be the maximal (separable) extension of F unramified outside S, so that $K \subseteq F_{S}$.

Recall that $\text{cd}_{\ell}(\text{Gal}(F_{S}/F)) = 2$ ([10 Corollary 10.1.3 (iii)])

Let A/F be an abelian variety of dimension g. We denote by A^{ℓ} its dual abelian variety and, as usual, $A[\ell^{\infty}]$ will be the scheme of ℓ^{∞}-torsion points of A, with $A[\ell^{\infty}] := \lim_{\longrightarrow} A[\ell^{n}] = \bigcup_{\ell} A[\ell^{n}]$.

For any ℓ-adic Lie group G we denote by

\[
\Lambda(G) = \mathbb{Z}[G][[\ell]] := \lim_{\longrightarrow} \mathbb{Z}[G/U]
\]

the associated *Iwasawa algebra*, where the limit is taken on the open normal subgroups of G.

It is well known that in our setting $\Lambda(G)$ is a Noetherian and (if G is pro-ℓ and has no elements of order ℓ) integral domain.
Let H be a closed subgroup of G. For every $\Lambda(H)$-module N we consider the $\Lambda(G)$-modules

$$\text{Coind}^H_G(N) := \text{Map}_{\Lambda(H)}(\Lambda(G), N)$$

and

$$\text{Ind}^G_H(N) := \Lambda(G) \otimes_{\Lambda(H)} N.$$

For a $\Lambda(G)$-module M, we denote by $M^\vee := \text{Hom}_{\text{cont}}(M, \mathbb{Q}_\ell / \mathbb{Z}_\ell)$ its Pontrjagin dual, which has a natural structure of $\Lambda(G)$-module.

We enlarge our set S so that it contains all primes ramified in K/F and all places of bad reduction for A. Then, the extension $F(A[\ell^\infty])/F$ is contained in F_S/F and $A[\ell^\infty]$ is an unramified G_F-module for every $v \not\in S$. For any Galois extension L/F such that $L \subseteq F_S$, let us consider the map

$$\rho : H^1(F^s/L, A[\ell^\infty]) \to \prod_{v \not\in S} \text{Coind}^G_{G_v} H^1(F^s_{v^w}/L_w, A[\ell^\infty]).$$

Direct computations on local Galois cohomology groups give (for more details see [15, Proposition 1.4.4])

$$Ker(\rho) \simeq H^1(F_S/L, A[\ell^\infty]) \cap Ker(\eta).$$

Let us consider the map:

$$\eta : H^1(F^s/L, A[\ell^\infty]) \to \prod_{v \in S} \text{Coind}^G_{G_v} H^1(F^s_{v^w}/L_w, A[\ell^\infty]).$$

Thanks to the fact that for $\ell \neq p$ the image of the Kummer maps is trivial (see [1, Proposition 3.3]), we have

$$\text{Sel}_A(L) \ell = Ker(\rho) \cap Ker(\eta) \simeq H^1(F_S/L, A[\ell^\infty]) \cap Ker(\eta).$$

Then, we can use the following definition (already employed in [4]) for the Selmer group.

Definition 1.3. For any finite extension L of F, the ℓ-part of the Selmer group of A over L is

$$\text{Sel}_A(L) \ell = Ker \left(H^1(F_S/L, A[\ell^\infty]) \to \prod_{v \not\in S} \text{Coind}^G_{G_v} H^1(F^s_{v^w}/L_w, A[\ell^\infty]) \right)$$

where w is a fixed place of L lying above v.

The Tate-Shafarevich group $\text{III}(A/L)$ is the group that fits into the exact sequence

$$A(L) \otimes \mathbb{Q}_\ell / \mathbb{Z}_\ell \to \text{Sel}_A(L) \ell \to \text{III}(A/L)[\ell^\infty].$$

For infinite extensions we define the Selmer groups by taking direct limits on the finite subextensions. In particular, $\text{Sel}_A(K) \ell$ is a $\Lambda(G)$-module whose structure has been studied in [6].

If L/F is a finite extension the group $\text{Sel}_A(L) \ell$ is a cofinitely generated \mathbb{Z}_ℓ-module (see, e.g. [5 III.8 and III.9]). Whenever we assume that $\text{Sel}_A(L) \ell$ is finite, we have that the \mathbb{Z}-rank of $A(L)$ is 0, hence

$$A(L) \otimes \mathbb{Q}_\ell / \mathbb{Z}_\ell = 0 \quad \text{and} \quad |\text{Sel}_A(L) \ell| = |\text{III}(A/L)[\ell^\infty]|.$$

\footnote{Some texts, e.g. [10], switch the definitions of $\text{Ind}^H_G(N)$ and $\text{Coind}^H_G(N)$.}
2. EULER CHARACTERISTIC FOR ABELIAN VARIETIES

2.1. Cohomological lemmas. We list some useful results on the cohomology of the ℓ-power torsion points.

Lemma 2.1. Let L be a finite extension of F contained in F_S. If $\text{Sel}_{A^i}(L)$ is finite, then

$$H^2(F_S/L,A[\ell^\infty]) = 0.$$

Proof. See (the proof of) [10] Proposition 4.4. □

Lemma 2.2. If $\text{Sel}_{A^i}(F)$ is finite and $H^2(F_S/K,A[\ell^\infty]) = 0$ we have

1. $H^1(G, H^1(F_S/K, A[\ell^\infty])) \simeq H^1(G, A(K)[\ell^\infty]) = 0$ for all $i \geq 1$.

Moreover, let w be any prime of K such that $w \mid v \in S$. Then

2. $H^i(G_v, H^1(K_w, A[\ell^\infty])) \simeq H^i \big(H^1(K_w, A(K)[\ell^\infty]) \big) = 0$ for all $i \geq 1$.

Proof. 1. By [10] Corollary 10.1.3 (iii) and Proposition 3.3.5 we have that $\text{cd}_v(\text{Gal}(F_S/K)) \leq 2$. Therefore, our hypothesis on the cohomology group $H^2(F_S/K,A[\ell^\infty])$ yields

$$H^i(F_S/K,A[\ell^\infty]) = 0 \quad \forall \ i \geq 2.$$

So, from the Hochschild-Serre spectral sequence, we have

$$H^1(G, A(K)[\ell^\infty]) \longrightarrow H^1(F_S/F, A[\ell^\infty]) \longrightarrow H^0(G, H^1(F_S/K, A[\ell^\infty])) \rightarrow \cdots$$

$$H^2(G, A(K)[\ell^\infty]) \longrightarrow H^2(F_S/F, A[\ell^\infty]) \longrightarrow H^1(G, H^1(F_S/K, A[\ell^\infty])) \rightarrow \cdots$$

(by [10] Lemma 2.1.3). Since $\text{cd}_v(\text{Gal}(F_S/F)) = 2$ and, by Lemma 2.1, the group $H^2(F_S/F,A[\ell^\infty])$ is zero, one gets

$$H^i(G, H^1(F_S/K, A[\ell^\infty])) \simeq H^i+2(G, A(K)[\ell^\infty]) \quad \forall \ i \geq 1.\]$$

Moreover, by [10] Lemma 2.1.4, we have the following isomorphisms

$$H^i(G, H^1(F_S/K, A[\ell^\infty])) = E_2^{i1} \simeq E^{i1} = H^i+1(F_S/F, A[\ell^\infty]) \quad \forall \ i \geq 1.$$

Then

$$H^i(G, H^1(F_S/K, A[\ell^\infty])) = 0 \quad \forall \ i \geq 1.$$

2. The argument is the same of part 1. In order to get $H^2(K_w, A[\ell^\infty]) = 0$, just use [10] Theorem 7.2.6 or [10] Theorem 7.1.8 (i) according to K_w being a local field or not (so according to K/F being a finite extension or not). □

2.2. Euler characteristic: Selmer groups and torsion points. Now we give a first formula for the Euler characteristic of $\text{Sel}_A(K)$ which relates it to the (local and global) Euler characteristics of the ℓ^∞-torsion points in K and K_w.

Theorem 2.3. With notations as above, assume that $\text{Sel}_A(F)$ and $\text{Sel}_{A^i}(F)$ are finite, $H^2(F_S/K,A[\ell^\infty]) = 0$, $\chi(G,A(K)[\ell^\infty])$ and $\chi(G_v,A(K_w)[\ell^\infty])$ are well defined for any $w \mid v \in S$ and the map ψ_K in the sequence

$$\text{Sel}_A(K) \hookrightarrow H^1(F_S/K,A[\ell^\infty]) \xrightarrow{\psi_K} \bigoplus_{v \in S} \text{Coind}^G_{K_v} H^1(K_w,A[\ell^\infty]).$$
is surjective. Then $H^i(G, \text{Sel}_A(K)_\ell) = 0$ for any $i \geq 2$, the Euler characteristic of $\text{Sel}_A(K)_\ell$ is well defined and

\[
\chi(G, \text{Sel}_A(K)_\ell) = \chi(G, A(K)[\mathbb{F}_\ell]) \frac{|H^1(F_S/F, A[F])|}{|A(F)[\mathbb{F}_\ell]|} \cdot \prod_{v \in S} \chi(G_v, A(K_v)[\mathbb{F}_\ell]) |H^1(F_v, A[F])|^{-1}. (5)
\]

where, for every $v \in S$, w is a fixed place of K dividing v.

Proof. Let us consider the sequence (4) and take its cohomology with respect to ψ. Recalling that, by Lemma 2.2, $H^i(K_v, A[F])$ is surjective. Then, using Shapiro’s Lemma ([10, Proposition 1.6.4]), Lemma 2.2 and the finiteness of the cohomological dimension of G, we obtain

\[
\text{Sel}_A(K)_\ell \xrightarrow{\psi} H^1(F_S/F, A[F]) \xrightarrow{\chi} H^1(G, \text{Sel}_A(K)_\ell)
\]

and $H^i(G, \text{Sel}_A(K)_\ell) = 0$ for any $i \geq 2$. Therefore

\[
\chi(G, \text{Sel}_A(K)_\ell) = \frac{[\text{Sel}_A(K)_\ell]}{|H^1(G, \text{Sel}_A(K)_\ell)|} = \frac{|H^1(F_S/K, A[F])|}{\prod_{v \in S} |H^1(K_v, A[F])|}. (6)
\]

The Hochschild-Serre spectral sequence yields

\[
H^1(G, A(K)[\mathbb{F}_\ell]) \xrightarrow{\psi} H^1(F_S/F, A[F]) \xrightarrow{|\cdot|} H^2(G, A(K)[\mathbb{F}_\ell])
\]

Recalling that, by Lemma 2.2, $H^i(G, A(K)[\mathbb{F}_\ell]) = 0$ for any $i \geq 3$, we have

\[
|H^1(F_S/K, A[F])| = \frac{|H^1(F_S/F, A[F])| |H^2(G, A(K)[\mathbb{F}_\ell])|}{|H^1(G, A(K)[\mathbb{F}_\ell])|} = \frac{|H^1(F_S/F, A[F])| |\chi(G, A(K)[\mathbb{F}_\ell])|}{|H^0(G, A(K)[\mathbb{F}_\ell])|} = \frac{|H^1(F_S/F, A[F])| |\chi(G, A(K)[\mathbb{F}_\ell])|}{|A(F)[\mathbb{F}_\ell]|}. (7)
\]

The local computations are similar and, substituting in (7), we get (5). \[\Box \]

Example 1. Let us consider $K = F(A[\mathbb{F}_\ell])$. By [11, Proposition 4.5] we know $H^2(F_S/K, A[F]) = 0$. Moreover, it is easy to see that $\chi(G, A[\mathbb{F}_\ell])$ is well defined thanks to [13, Théorème 2]. Besides, if all primes in S are of split multiplicative reduction, then the Mumford parametrization and the form of the ℓ-power torsion points yields $\text{cd}_\ell(K_w) = 0$. So, the Hochschild-Serre spectral sequence provides isomorphisms

\[
H^n(G_v, A(K_w)[\mathbb{F}_\ell]) \cong H^n(F_v, A[\mathbb{F}_\ell]) \quad \forall \ n \geq 0.
\]
Then
\[\chi(G_v, A[\ell^\infty]) = \frac{|A[\ell^\infty](F_v)|}{|H^1(F_v, A[\ell^\infty])|} \]
is well defined thanks to [10] Theorem 7.1.8 and the fact that Tate local duality ([10] Theorem 7.2.6) yields \(H^2(F_v, A[\ell^\infty]) = 0 \). It follows that if both \(Sel_A(F) \) and \(Sel_A(F) \) are finite and the map \(\psi_K \) in [10] is surjective
\[\chi(G, Sel_A(K)) = \chi(G, A[\ell^\infty]) \frac{|H^1(F_S/F, A[\ell^\infty])|}{|A(F)[\ell^\infty]|}. \]

2.3. Euler Characteristic II: descent diagrams. Now we look for a slightly different formulation for the global factor, which is more closely related, especially in the case of elliptic curves, to special values of \(L \)-functions. We consider the classical descent diagram

\[
\begin{array}{c}
Sel_A(F)_\ell \ar[r]^\alpha & H^1(F_S/F, A[\ell^\infty]) \ar[d]^{\beta'} \ar[r]^{\psi'} & \text{Im}(\psi_F) \\
Sel_A(K)^G_\ell \ar[r] & H^1(F_S/K, A[\ell^\infty])^G \ar[d]^{\beta} \ar[r]^{\psi_K} & \text{Im}(\psi_K^G) \\
\end{array}
\]

where \(\text{Im}(\psi_F) \) and \(\text{Im}(\psi_K^G) \) lie in the diagram

\[
\begin{array}{c}
\text{Im}(\psi_F) \ar[r] & \prod_{v \in S} H^1(F_v, A[\ell^\infty]) \ar[r] & \text{Coker}(\psi_F) \\
\downarrow^{\beta'} & & \downarrow^{\gamma = \oplus \gamma_v} \\
\text{Im}(\psi_K^G) \ar[r] & \prod_{v \in S} \text{Coint}^G_{\ell^G} H^1(K_w, A[\ell^\infty])^G \ar[r] & \text{Coker}(\psi_K^G) \\
\end{array}
\]

\[\text{Proposition 2.4. Assume } Sel_A(F)_\ell \text{ is finite. Then, } \]
\[\text{Ker}(\beta) = H^1(G, A(K)[\ell^\infty]) \text{ and } \text{Coker}(\beta) = H^2(G, A(K)[\ell^\infty]). \]

Moreover,
\[\text{Ker}(\gamma) = \prod_{v \in S, \text{cd}(K_w) = 1} H^1(G_v, A(K_w)[\ell^\infty]) \cdot \prod_{v \in S, \text{cd}(K_w) = 0} H^1(F_v, A[\ell^\infty]) \]
\[\text{Coker}(\gamma) = \prod_{v \in S, \text{cd}(K_w) = 1} H^2(G_v, A(K_w)[\ell^\infty]). \]

\[\text{Proof. For the map } \beta \text{ just use the Hochschild-Serre five term exact sequence and Lemma [10].} \]

For the map \(\gamma \), by Shapiro’s Lemma we can rewrite every \(\gamma_v \) as
\[\gamma_v : H^1(F_v, A[\ell^\infty]) \rightarrow H^1(K_w, A[\ell^\infty])^G_v \]
for a fixed place \(w \) of \(K \) dividing \(v \). Using again the five term exact sequence and the fact that \(H^2(F_v, A[\ell^\infty]) = 0 \), one has
\[\text{Ker}(\gamma_v) \cong H^1(G_v, A(K_w)[\ell^\infty]) \text{ and } \text{Coker}(\gamma_v) \cong H^2(G_v, A(K_w)[\ell^\infty]). \]

If \(v \) is totally split we have that \(G_v = 0 \). In this case \(\gamma_v \) is an isomorphism. If \(v \) is inert or ramified, by [10] Theorem 7.1.8 (i) \(\text{cd}(K_w) \leq 1 \). This implies that
when \(cd_t(K_w) = 0 \), \(\gamma_v \) is the zero-map and we have \(\text{Ker}(\gamma_v) \simeq H^1(F_v, A[\ell\infty]) \) and \(\text{Coker}(\gamma_v) = 0 \). The claim follows.

Theorem 2.5. With hypotheses as in Theorem 2.3 one has

\[
\chi(G, Sel_A(K)_\ell) = \chi(G, A(K)[\ell\infty]) \cdot \frac{\prod (A/F)[\ell\infty]}{|A(F)[\ell\infty]| |A^t(F)[\ell\infty]|} \cdot \prod_{v \in S, |cd_t(K_w)| = 1} |A(F_v, A(K)[\ell\infty])| \cdot \prod_{v \in S, |cd_t(K_w)| = 0} |H^1(F_v, A[\ell\infty])|.
\]

Proof. Since we are assuming that \(Sel_A(F)_\ell \) is finite and \(\psi_K \) is surjective, then equation (6) shows that \(\text{Coker}(\psi_K^G) \simeq H^1(G, Sel_A(K)_\ell) \). Therefore

\[
\chi(G, Sel_A(K)_\ell) = \frac{|Sel_A(K)_\ell|}{|\text{Coker}(\psi_K^G)|}.
\]

The snake lemma sequence of diagram (9) yields

\[
|\text{Coker}(\psi_K^G)| = \frac{|\text{Coker}(\gamma')| |\text{Coker}(\psi_F)|}{|\text{Ker}(\gamma')|} = \frac{|\text{Coker}(\psi_F)| |\text{Ker}(\beta')| |\text{Coker}(\gamma)|}{|\text{Coker}(\beta')| |\text{Ker}(\gamma)|}.
\]

Using the snake lemma sequence of diagram (9) one gets

\[
\frac{|\text{Ker}(\beta')|}{|\text{Coker}(\beta')|} = \frac{|\text{Ker}(\beta)|}{|\text{Coker}(\alpha)|} = \frac{|\text{Coker}(\beta)|}{|\text{Ker}(\alpha)|} \cdot \frac{|\text{Sel}_A(K)^G_\ell|}{|H^1(G, A(K)[\ell\infty])|} \cdot \frac{|\text{Sel}_A(F)_\ell|}{|\text{Sel}_A(A)[\ell\infty]|} = \chi(G, A(K)[\ell\infty])^{-1} \frac{|A(F)[\ell\infty]| |\text{Sel}_A(K)^G_\ell|}{\prod |A/F[\ell\infty]|}.
\]

Substituting in \(\text{Coker}(\psi_K^G) \) one gets

\[
|\text{Coker}(\psi_K^G)| = \frac{|\text{Coker}(\psi_F)| |\text{Sel}_A(K)^G_\ell| |A(F)[\ell\infty]| |\text{Coker}(\gamma)|}{\chi(G, A(K)[\ell\infty]) |\prod |A/F[\ell\infty]| |\text{Ker}(\gamma)|}.
\]

and

\[
\chi(G, Sel_A(K)_\ell) = \chi(G, A(K)[\ell\infty]) \frac{|\prod |A/F[\ell\infty]| |\text{Ker}(\gamma)|}{|\text{Coker}(\psi_F)| |A(F)[\ell\infty]| |\text{Coker}(\gamma)|}.
\]

The cardinality of \(\text{Ker}(\gamma) \) and \(\text{Coker}(\gamma) \) can be taken from Proposition 2.4. To conclude observe that \(Sel_A(F)_\ell \) finite yields

\[
\text{Coker}(\psi_F) \simeq (A^t(F)^\ast)^\vee
\]

(where the \(\ast \) denotes the \(\ell \)-adic completion, see, e.g., Proposition 4.4). Hence, since \(A^t(F) \) is finite by hypothesis,

\[
|\text{Coker}(\psi_F)| = |(A^t(F)^\ast)^\vee| = \lim_{n} |A^t(F)/\ell^n| = |A^t(F)[\ell\infty]|.
\]

Example 2. Let \(K = F(A[\ell\infty]) \) as in the example after Theorem 2.3. Suppose that all hypotheses of Theorem 2.3 are verified and that all primes in \(S \) are of split multiplicative reduction. In this case, the formula for the Euler characteristic of \(Sel_A(K)_\ell \) is the following:

\[
\chi(G, Sel_A(K)_\ell) = \chi(G, A[\ell\infty]) \frac{|\prod |A/F[\ell\infty]| |A^t(F)[\ell\infty]|}{|A(F)[\ell\infty]| |A^t(F)[\ell\infty]|} \cdot \prod_{v \in S} |H^1(F_v, A[\ell\infty])|.
\]
In order to observe that this formula coincides with that of the previous example, just note that we have the following exact sequence

$$Sel_A(F) \hookrightarrow H^1(F_S/F, A[\ell^\infty]) \xrightarrow{\psi_F} \prod_{v \in S} H^1(F_v, A[\ell^\infty]) \twoheadrightarrow \text{Coker}(\psi_F)$$

with $|Sel_A(F)| = |\text{III}(A/F)[\ell^\infty]|$ and $|\text{Coker}(\psi_F)| = |A^1(F)[\ell^\infty]|$.

3. Euler Characteristic for elliptic curves

When $A = E$ is an elliptic curve we can find an explicit connection between Euler characteristic and the Hasse-Weil L-function. Replacing, if needed, F by a finite extension, we can (and will) assume that the places of multiplicative reductions are of split multiplicative reduction.

Let \tilde{E}_v be the image of E under the usual reduction map at any prime v. We denote by $\tilde{E}_{v,\text{ns}}$ the group of non singular points of \tilde{E}_v. Moreover, we define two subset of $E(F_v)$ as follows:

$$E_0(F_v) = \{ P \in E(F_v) : \tilde{P} \in \tilde{E}_{v,\text{ns}}(\mathbb{F}_v) \}, \ E_1(F_v) = \{ P \in E(F_v) : \tilde{P} = O \}.$$

Finally, let $c_v(E) = |E(F_v)/E_0(F_v)|$ be the local Tamagawa factor of E at v and $L_v(E, s)$ the Euler factor at v of the Hasse-Weil L-function $L(E, s)$.

Proposition 3.1. The group $H^1(F_v, E[\ell^\infty])$ is finite and has order $\left| \frac{L_v(E, 1)}{c_v(E)} \right|_{\ell}$ (where $| \cdot |_{\ell}$ denotes the normalized ℓ-adic absolute value, i.e., with $|\ell|_\ell = \ell^{-1}$). Moreover, if $v \in S$ is of additive reduction and $\ell \geq 5$, then $|H^1(F_v, E[\ell^\infty])| = 1$ (in particular $|\text{Ker}(\gamma_v)| = 1$ for those primes).

Proof. From [9] Remark I.3.6 we have the following isomorphisms:

$$E(F_v)^* \cong H^1(F_v, E[\ell^\infty])^\vee,$$

where $E(F_v)^* \cong \varprojlim_n E(F_v)/\ell^nE(F_v)$. Consider the exact sequence

$$E_1(F_v) \hookrightarrow E_0(F_v) \twoheadrightarrow \tilde{E}_{v,\text{ns}}(\mathbb{F}_v).$$

Taking inverse limits of appropriate quotients we obtain

$$E_1(F_v)^* \hookrightarrow E_0(F_v)^* \twoheadrightarrow (\tilde{E}_{v,\text{ns}}(\mathbb{F}_v))^* = \tilde{E}_{v,\text{ns}}(\mathbb{F}_v)[\ell^\infty],$$

because $\tilde{E}_{v,\text{ns}}(\mathbb{F}_v)$ is finite. Since $E_1(F_v)$ has no points of order ℓ ([13] Proposition VII.3.1)), the first term in the previous sequence is trivial and

$$E_0(F_v)^* \cong (\tilde{E}_{v,\text{ns}}(\mathbb{F}_v))^*.$$

By the exact sequence

$$E_0(F_v)^* \hookrightarrow E(F_v)^* \twoheadrightarrow (E(F_v)/E_0(F_v))^*,$$

we deduce that the order of $E(F_v)^*$ is the exact power of ℓ dividing the factor $c_v(E)|\tilde{E}_{v,\text{ns}}(\mathbb{F}_v)|$. By [14] Appendix C

$$|\tilde{E}_{v,\text{ns}}(\mathbb{F}_v)| = |\mathbb{F}_v|L_v(E, 1)^{-1}.$$

Since $|\mathbb{F}_v|$ is a power of p the first claim follows.

If $v \in S$ is of additive reduction, by [14] VII, Theorem 6.1 we have that $E(F_v)/E_0(F_v)$
has order at most 4 and (by [11] VII, Proposition 5.1 (c)) \(\tilde{E}_{v,n,s}(F_v) \) is a \(p \)-group. Thus, if \(\ell \geq 5 \), then \(\ell \) does not divide \(c_v[\tilde{E}_{v,n,s}(F_v)[\ell^\infty]] \) and it follows that

\[H^1(F_v, E[\ell^\infty]) = 1. \]

Theorem 3.2. With hypotheses as in Theorem 2.3 if \(\ell \geq 5 \) we have

\[
\chi(G, Sel_E(K)_\ell) = \chi(G, E(K)[\ell^\infty]) \frac{\prod \left| \frac{\ell}{E(F)[\ell^\infty]} \right| \prod_{\nu \in S} \frac{|E(F_\nu)[\ell^\infty]|}{\chi(G, E(K)[\ell^\infty])}}{\prod_{\nu \in S} \frac{|E(F_\nu)[\ell^\infty]|}{\chi(G, E(K)[\ell^\infty])}}.
\]

(10)

Proof. Just adjust the formula of Theorem 2.5 using Proposition 3.1 and recall that an elliptic curve is self dual, i.e., \(E \equiv E \).

Example 3. Suppose that \(G \cong \mathbb{Z}_\ell \), i.e., \(K/F \) is the arithmetic \(\mathbb{Z}_\ell \)-extension of \(F \) (the only one available here, see [2] Proposition 4.3). Since there is no ramification, all elements of \(S \) are of bad reduction and \(cd_{\ell}(K_\nu) = 0 \) cannot happen. By [3] Theorem 4.2 we know that \(E(K)[\ell^\infty] \) is a finite group, then \(|H^0(G, E(K)[\ell^\infty])| = |H^1(G, E(K)[\ell^\infty])| = |H^i(G, E(K)[\ell^\infty])| = 0 \) for any \(i \geq 2 \). Hence

\[
\chi(G, E(K)[\ell^\infty]) = 1,
\]

and with hypotheses as in Theorem 2.3, we have

\[
\chi(G, Sel_E(K)_\ell) = \frac{\prod \left| \frac{\ell}{E(F)[\ell^\infty]} \right| \prod_{\nu \in S} \frac{|E(F_\nu)[\ell^\infty]|}{\chi(G, E(K)[\ell^\infty])}}{\prod_{\nu \in S} \frac{|E(F_\nu)[\ell^\infty]|}{\chi(G, E(K)[\ell^\infty])}}.
\]

Example 4. Let \(F \) be of characteristic \(p > 3 \); consider \(K = F(E[\ell^\infty]) \) with \(\ell \geq 5 \) and assume \(Sel_E(F)_\ell \) is finite. In this setting the only primes in \(S \) are the ones of bad reduction. Moreover, using the Tate parametrization it is not hard to check that primes in \(S \) such that \(cd_{\ell}(K_\nu) = 0 \) are exactly the split multiplicative reduction places and those in \(S \) with \(cd_{\ell}(K_\nu) = 1 \) the additive reduction ones. Moreover

\[
\chi(G, E(K)[\ell^\infty]) = 1
\]

because of [8] Theorem 1. Since in this case \(\psi_K \) is surjective (see [11] Theorem III.27), one has

\[
\chi(G, Sel_E(K)_\ell) = \frac{\prod \left| \frac{\ell}{E(F)[\ell^\infty]} \right| \prod_{\nu \in S} \frac{|E(F_\nu)[\ell^\infty]|}{\chi(G, E(K)[\ell^\infty])}}{\prod_{\nu \in S} \frac{|E(F_\nu)[\ell^\infty]|}{\chi(G, E(K)[\ell^\infty])}}.
\]

For more details on this case see the (unpublished) thesis [11].

Acknowledgment. The author would like to thank A. Bandini for his guidance and many helpful conversations and suggestions.

References

[1] A. Bandini - I. Longhi, *Control theorems for elliptic curves over function fields*, Int. J. Number Theory 5, no. 2 (2009), 229–256.

[2] A. Bandini - I. Longhi, *Selmer groups for elliptic curves in \(\mathbb{Z}_p \)-extensions of function fields of characteristic \(p \)*, Ann. Inst. Fourier 59, no. 6 (2009), 2301–2327.
[3] A. Bandini - I. Longhi - S. Vigni, *Torsion points on elliptic curves over function fields and a theorem of Igusa*, Expo. Math. 27, no. 3 (2009), 175–209.

[4] A. Bandini - M. Valentino, *On Selmer groups of abelian varieties over \(\ell \)-adic Lie extensions of global function fields*, Bull. Braz. Math. Soc. (N.S.) 45, no. 3 (2014), 575–595.

[5] A. Bandini - M. Valentino, *Control Theorems for \(\ell \)-adic Lie extensions of global function fields*, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci., DOI Number: 10.24222036-2145.201304_001

[6] A. Bandini - M. Valentino, *Euler characteristic and Akashi series of Selmer groups over global function fields*, in preparation.

[7] J. Coates - S. Howson, *Euler characteristics and elliptic curves II*, J. Math. Soc. Japan 53, no. 1 (2001), 175–235.

[8] J. Coates - R. Sujatha, *Euler-Poincaré characteristic of abelian varieties*, C.R. Acad. Sci. Paris, Série I 329 (1999), 309–313.

[9] J.S. Milne, *Arithmetic Duality Theorems*, BookSurge, LLC, Second edition, 2006.

[10] J. Neukirch - A. Schmidt - K. Wingberg, *Cohomology of number fields - Second edition*, Grundlehren der Mathematischen Wissenschaften 323, Springer-Verlag, 2008.

[11] G. Sechi, *GL\(_2\) Iwasawa Theory of Elliptic Curves over Global Function Fields*, PhD thesis, University of Cambridge, (2006).

[12] J.P. Serre, *Sur la dimension cohomologique des groupes profinis*, Topology 3 (1965), 413–420.

[13] J.P. Serre, *Sur les groupes de congruence des variétés abéliennes II*, Izv. Akad. Nauk SSSR, Ser. Mat. 35 (1971), 731–737.

[14] J.H. Silverman, *The arithmetic of elliptic curves - Second edition*, GTM 106, Springer-Verlag, 1986.

[15] M. Valentino, *Noncommutative Iwasawa theory for Selmer groups of abelian varieties over global function fields*, PhD thesis, University of Calabria, (2013).

[16] J. Van Order, *On the dihedral Euler characteristic of Selmer groups of abelian varieties*, to appear in “Arithmetic and Geometry”, ed. L. Dieulefait, D. R. Heath-Brown, G. Faltings, Y. I. Manin, B. Z. Moroz and J.-P. Wintenberger, London Math. Soc. Lecture Note Ser. 420, Cambridge University Press (2015).

[17] S.L. Zerbes, *Selmer groups over \(p \)-adic Lie extensions I*, J. London Math. Soc. (2) 70 (2004), 586–608.

[18] S.L. Zerbes, *Generalized Euler characteristic of Selmer groups*, Proc. London Math. Soc. (3) 98 (2009), 775–796.

Scuola Normale Superiore di Pisa, Piazza dei Cavalieri, 7, 56126 Pisa
E-mail address: maria.valentino84@gmail.com