Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait

JILL K. OLOFSSON,† MATHEUS BIANCONI,*† GUILLAUME BESNARD,† LUKE T. DUNNING,* MARJORIE R. LUNDGREN,* HELENE HOLOTA,† MARIA S. VORONTSOVA,‡ ORIANE HIDALGO,‡ ILIA J. LEITCH,‡ PATRIK NOSIL,* COLIN P. OSBORNE* and PASCAL-ANTOINE CHRISTIN*
*Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK, †Laboratoire Évolution & Diversité Biologique (EDB UMR5174), Université de Toulouse, CNRS, ENSFEA, UPS, 118 route de Narbonne, F-31062, Toulouse, France, ‡Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK

Abstract

Physiological novelties are often studied at macro-evolutionary scales such that their micro-evolutionary origins remain poorly understood. Here, we test the hypothesis that key components of a complex trait can evolve in isolation and later be combined by gene flow. We use C₄ photosynthesis as a study system, a derived physiology that increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata includes C₄ and non-C₄ genotypes, with some populations using laterally acquired C₄-adaptive loci, providing an outstanding system to track the spread of novel adaptive mutations. Using genome data from C₄ and non-C₄ A. semialata individuals spanning the species’ range, we infer and date past migrations of different parts of the genome. Our results show that photosynthetic types initially diverged in isolated populations, where key C₄ components were acquired. However, rare but recurrent subsequent gene flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally acquired genes for key C₄ functions were rapidly passed between populations with otherwise distinct genomic backgrounds. Thus, our intraspecific study of C₄-related genomic variation indicates that components of adaptive traits can evolve separately and later be combined through secondary gene flow, leading to the assembly and optimization of evolutionary innovations.

Keywords: adaptation, C₄ photosynthesis, gene flow, lateral gene transfer, phylogeography

Received 22 April 2016; revision received 27 October 2016; accepted 9 November 2016

Introduction

Over evolutionary time, living organisms have been able to colonize almost every possible environment, often via the acquisition of novel adaptations. While impressive changes can be observed across phyla, adaptive evolution by natural selection occurs within populations (e.g. Geber & Griffen 2003; Morjan & Rieseberg 2004). For most complex adaptive novelties, the intraspecific dynamics that lead to their progressive emergence are poorly understood. Indeed, if novel complex traits gain their function only when multiple anatomical and/or biochemical components work together, the order of acquisition of such components raises intriguing questions (Meléndez-Hevia et al. 1996; Lenski et al. 2003). One possibility is that the acquisition of one key component is sufficient to trigger a novel trait (e.g. Ourisson & Nakatani 1994), allowing the subsequent selection of novel mutations for the other components in the genetic pool that fixed the first component. The alternative would assume that components accumulate independently of each other in isolated populations and are later assembled by secondary gene flow and subsequent selection to form the complex trait (Morjan & Rieseberg 2004; Leinonen et al. 2006; Hufford et al. 2013; Ellstrand 2014; Miller et al. 2014).
Differentiating these scenarios requires the inference of the order of mutations for a novel complex trait, as well as their past spread throughout the history of divergence, migration and secondary gene flow in one or several related species. Such investigations must rely on study systems in which variation in an adaptive complex trait, and its underlying genomic basis, can be traced back through time.

C₄ photosynthesis is a physiological state, present in ~3% of plant species (Sage 2016), which results from the co-ordinated action of multiple enzymes and anatomical components (Hatch 1987; Christin & Osborne 2014). C₄ biochemistry relies on well-characterized enzymes that also exist in non-C₄ plants, but with altered abundance, cellular and subcellular localization, regulation and kinetics (Kanai & Edwards 1999). The main effect of C₄ photosynthesis is an increase in CO₂ concentration at the place of its fixation by the enzyme Rubisco in the Calvin–Benson cycle (von Caemmerer & Furbank 2003). This is advantageous in conditions that restrict CO₂ availability, especially in warm and arid environments under the low-CO₂ atmosphere that has prevailed for the last 30 million years (Sage et al. 2012). C₄ plants consequently dominate most open biomes in tropical and subtropical regions, where they achieve high growth rates and large biomass (Griffith et al. 2015; Atkinson et al. 2016). Despite its apparent complexity, C₄ photosynthesis evolved more than 60 times independently over the ancestor C₃ type (Sage et al. 2011), and evolutionary transitions were facilitated by the existence of anatomical and genetic enablers in some groups of plants (Christin et al. 2013b, 2015). However, the micro-evolutionary history of photosynthetic transitions is yet to be addressed.

Most C₄ lineages evolved this photosynthetic system millions of years ago, so that the initial changes linked to C₄ evolution remain obscured (Christin & Osborne 2014). In a couple of groups, closely related species present a spectrum of more or less complete C₄ traits, which is interpreted as the footprint of the gradual evolution of C₄ (e.g. McKown et al. 2005; Christin et al. 2011; Fisher et al. 2015). These groups provide powerful systems to reconstruct the order of changes during the transition to C₄ photosynthesis (e.g. McKown & Dengler 2007; Heckmann et al. 2013; Williams et al. 2013). However, the presumed lack of gene flow among these related species impedes testing hypotheses about the importance of secondary gene flow mixing mutations that were fixed in isolated populations. So far, the presence of genotypes with different photosynthetic types has been reported in only one taxon, the grass *Alloteropsis semialata*.

Alloteropsis semialata includes C₃ and C₄ individuals (Ellis 1974), and a recent study further described individuals with only some of the C₄ anatomical and biochemical components, which allow a weak C₄ cycle (i.e. C₃–C₄ intermediates; Lundgren et al. 2016). Other species in this genus, *Alloteropsis angusta*, *Alloteropsis cimicina*, *Alloteropsis paniculata* and *Alloteropsis papillosa*, are C₄ but perform the C₄ cycle using different enzymes and leaf tissues than *A. semialata*, which points to independent realizations of the C₄ phenotype (Christin et al. 2010). Analyses of genes for key C₄ enzymes in a handful of accessions have revealed that some populations of *A. semialata* carry C₄ genes that have been laterally acquired from distant C₄ relatives (Christin et al. 2012). The laterally acquired genes include one for phosphoenolpyruvate carboxykinase (pck) and three different copies for phosphoenolpyruvate carboxylase (ppc). These laterally acquired genes are integrated into the C₄ cycle of some extant accessions of *Alloteropsis* (Christin et al. 2012, 2013a), but genes for other C₄ enzymes have been transmitted following the species tree (vertically inherited), and gained their C₄ function via novel mutations (Christin et al. 2013a). Some C₄ *Alloteropsis* populations presumably still use the vertically inherited ppc and pck homologs for their C₄ cycles. However, the laterally acquired ppc and pck copies spent millions of years in other C₄ species, where they acquired adaptive mutations that likely increased their fit for the C₄ function before their transfer (Christin et al. 2012). The potential adaptive value of the laterally acquired genes, as well as their restriction to some C₄ populations, provides a tractable system to elucidate gene movements that led to the emergence and strengthening of the complex C₄ adaptive trait. However, the geographical distributions and frequencies of these laterally acquired genes are still poorly understood, and the genome history of *A. semialata* remains largely unexplored.

In this study, we obtain low-coverage whole-genome sequencing data from *A. semialata* individuals spread across the species’ geographical range and differing in photosynthetic type. We use the data to first infer the history of isolation and secondary contact, and then to track the acquisition and spread of the laterally acquired genes. This biogeographic framework allows us to test whether the C₄ complex trait was assembled via the sequential fixation of novel mutations within each isolated gene pool or via gene flow combining mutations that had been fixed in distinct gene pools (Fig. 1). In the first scenario, the history of C₄-adaptive mutations, represented by the laterally acquired genes, would correspond to the sequence of migration and isolation of populations and largely match the history of the rest of the genome (Fig. 1A). In the second scenario, the history of C₄-adaptive mutations would differ from that of the rest of the genome, their selection-driven
plast genomes (Table S1, Supporting information; a previous study that used them to assemble chloro-

©

Molecular Ecology

ter (e.g. Buerkle & Gompert 2013; Fumagalli et al. 2014). This approach has become increasingly attractive for inferring population parameters (e.g. Buerkle & Gompert 2013; Fumagalli et al. 2014) and for studying complex traits (Li et al. 2011). It also allows de novo assembly of high copy number regions of the genome, such as organelle genomes (Besnard et al. 2014; Dodsworth 2015), and can be applied to samples of limited quality and quantity, such as herbarium or museum collections (Besnard et al. 2014). Genome-skimming data for eleven Alloteropsis semialata individuals, and one of each of the congeneric Alloteropsis cimicina and Alloteropsis angusta, were retrieved from a previous study that used them to assemble plastid genomes (Table S1, Supporting information; Lundgren et al. 2015, 2016). The photosynthetic type of these samples has been determined previously, and they encompass non-\(\text{C}_4 \) individuals with and without a weak \(\text{C}_4 \) cycle, as well as multiple \(\text{C}_4 \) accessions (Table S1, Supporting information; Lundgren et al. 2015, 2016). An additional eight Alloteropsis accessions were sampled here to increase the resolution of genome biogeography for the group (Table S1, Supporting information). These include one accession from each of the congeneric species Alloteropsis paniculata and A. angusta, and six additional A. semialata individuals. These samples were selected to increase the plastid and photosynthetic diversity, with a special focus on the Zambezian biogeographic region (spanning Tanzania, Zambia and the Democratic Republic of Congo – DRC; Linder et al. 2012; Table S1, Supporting information), where the majority of the plastomes are available (Lundgren et al. 2015, 2016). Three of the newly sequenced A. semialata accessions (‘DRC3’, ‘TAN3’ and ‘KEN1’) were previously characterized with stable carbon isotopes (Lundgren et al. 2015), which can distinguish plants grown using mainly \(\text{C}_4 \) photosynthesis from those that acquired a significant portion of their carbon via the ancestral \(\text{C}_3 \) cycle, whether or not it is complemented by a weak \(\text{C}_4 \) cycle (Smith & Brown 1973; Cerling et al. 1997). One of these three accessions (‘TAN3’) is isotopically intermediate, indicating that a strong \(\text{C}_4 \) cycle occurs, but that some atmospheric carbon is still fixed directly by the \(\text{C}_3 \) cycle (Peisker 1986; Monson et al. 1988). For four of the new samples, carbon isotopes were measured on a leaf fragment as previously described (Lundgren et al. 2015), which revealed that all of them had carbon isotope values within the \(\text{C}_4 \) range (Table S1, Supporting information).

DNA was extracted, quality checked and sequenced as described in Lundgren et al. (2015), except that the DNA of these accessions was not sonicated prior to the library preparation due to the high degree of DNA degradation in these herbarium specimens. Each sample was individually barcoded and pooled with 23 other samples (from the same or unrelated projects) before paired-end sequencing (100–150 bp) on one Illumina lane (HiSeq-2500 or HiSeq-3000) at the Genopole platform of Toulouse or at the Genoscope platform of Evry (only A. paniculata; Table S1, Supporting information). The final data set consisted of sequence data for a total of 21 individuals, sequenced in six different runs (Table S1, Supporting information).

The genome size was estimated for accessions for which live material was available by flow cytometry following the one-step protocol of Doležel et al. (2007) with minor modifications as described in Clark et al. (2016). We selected Oryza sativa IR36 (2C = 1 pg; Bennett & Smith 1991) and the Ebihara buffer (Ebihara et al.

Fig. 1 Competing scenarios for the assembly of a complex trait. (A) The trait is assembled by sequential fixation of mutations within each genetic pool. (B) Mutations that were fixed in isolation are later assembled via secondary gene flow. The species tree is outlined by thick grey branches, and coloured branches indicate novel mutations on individual genes. Individual gene trees are drawn on the right. In scenario A, the histories of adaptive mutations correspond to the history of the rest of the genome and all gene trees are concordant, while in scenario B, the histories of the adaptive mutations differ from that of the rest of the genome, with gene trees that do not match the species tree.

spread across genetic lineages resulting in more recent coalescence times and gene topologies that differ from the species topology (Fig. 1B). This first intraspecific spatial genomic analysis of key components of the \(\text{C}_4 \) complex trait opens new avenues to understand the micro-evolutionary processes that led to macro-evolutionary innovations.

Material and methods

Sampling, sequencing and genome sizing

A low-coverage whole-genome sequencing approach (genome skimming) was used to reconstruct the genome history of Alloteropsis. This approach has become increasingly attractive for inferring population parameters (e.g. Buerkle & Gompert 2013; Fumagalli et al. 2013) and for studying complex traits (Li et al. 2011). It also allows de novo assembly of high copy number regions of the genome, such as organelle genomes (Besnard et al. 2014; Dodsworth 2015), and can be applied to samples of limited quality and quantity, such as herbarium or museum collections (Besnard et al. 2014). Genome-skimming data for eleven Alloteropsis semialata individuals, and one of each of the congeneric Alloteropsis cimicina and Alloteropsis angusta, were retrieved from a previous study that used them to assemble plastid genomes (Table S1, Supporting information; Lundgren et al. 2015, 2016). The photosynthetic type of these samples has been determined previously, and they encompass non-\(\text{C}_4 \) individuals with and without a weak \(\text{C}_4 \) cycle, as well as multiple \(\text{C}_4 \) accessions (Table S1, Supporting information; Lundgren et al. 2015, 2016). An additional eight Alloteropsis accessions were sampled here to increase the resolution of genome biogeography for the group (Table S1, Supporting information). These include one accession from each of the congeneric species Alloteropsis paniculata and A. angusta, and six additional A. semialata individuals. These samples were selected to increase the plastid and photosynthetic diversity, with a special focus on the Zambezian biogeographic region (spanning Tanzania, Zambia and the Democratic Republic of Congo – DRC; Linder et al. 2012; Table S1, Supporting information), where the majority of the plastomes are available (Lundgren et al. 2015, 2016). Three of the newly sequenced A. semialata accessions (‘DRC3’, ‘TAN3’ and ‘KEN1’) were previously characterized with stable carbon isotopes (Lundgren et al. 2015), which can distinguish plants grown using mainly \(\text{C}_4 \) photosynthesis from those that acquired a significant portion of their carbon via the ancestral \(\text{C}_3 \) cycle, whether or not it is complemented by a weak \(\text{C}_4 \) cycle (Smith & Brown 1973; Cerling et al. 1997). One of these three accessions (‘TAN3’) is isotopically intermediate, indicating that a strong \(\text{C}_4 \) cycle occurs, but that some atmospheric carbon is still fixed directly by the \(\text{C}_3 \) cycle (Peisker 1986; Monson et al. 1988). For four of the new samples, carbon isotopes were measured on a leaf fragment as previously described (Lundgren et al. 2015), which revealed that all of them had carbon isotope values within the \(\text{C}_4 \) range (Table S1, Supporting information).

DNA was extracted, quality checked and sequenced as described in Lundgren et al. (2015), except that the DNA of these accessions was not sonicated prior to the library preparation due to the high degree of DNA degradation in these herbarium specimens. Each sample was individually barcoded and pooled with 23 other samples (from the same or unrelated projects) before paired-end sequencing (100–150 bp) on one Illumina lane (HiSeq-2500 or HiSeq-3000) at the Genopole platform of Toulouse or at the Genoscope platform of Evry (only A. paniculata; Table S1, Supporting information). The final data set consisted of sequence data for a total of 21 individuals, sequenced in six different runs (Table S1, Supporting information).

The genome size was estimated for accessions for which live material was available by flow cytometry following the one-step protocol of Doležel et al. (2007) with minor modifications as described in Clark et al. (2016). We selected Oryza sativa IR36 (2C = 1 pg; Bennett & Smith 1991) and the Ebihara buffer (Ebihara et al.
2005) as the most appropriate internal standard and
nuclei isolation buffer for all but one accessions
(Table S1, Supporting information). For the ‘RSA3’
accession, whose C-value was estimated to be about
three time larger than other accessions, we used the
*Pisum sativum ‘Citrad’ standard (2C = 9.09 pg; Doležel
et al. 1992) and the GPB buffer (Loureno et al. 2007),
supplemented with 3% of PVP.

Assembly and analyses of chloroplast genomes

Complete chloroplast genomes were de novo assembled
for the newly sequenced individuals using the genome
walking method described in Lundgren et al. (2015).
The newly generated chloroplast genomes were manu-
ally aligned with those already available, and a time-
calibrated phylogenetic tree was inferred with BEAST v.
ally aligned with those already available, and a time-
calibrated phylogenetic tree was inferred with BEAST v.
1.5.4 (Drummond & Rambaut 2007), as described in
Lundgren et al. (2015). Monophyly of the outgroup
*(A. cimicina + A. paniculata) and the ingroup *(A. an-
gusta + A. semialata) was enforced to root the phyl-
genomy, which is consistent with all previous analyses
(Ibrahim et al. 2009; Christin et al. 2012; GPWGII 2012;
Lundgren et al. 2015). The root of the tree was fixed to
11 Ma (as found by Lundgren et al. 2015), which was
achieved with a normal distribution of mean of 11 and
standard deviation of 0.0001. Two different analyses
were run for 20 000 000 generations, sampling a tree
every 1000 generations. After checking the convergence
of the runs in TRACER v. 1.5.0 (Drummond & Rambaut
2007), the burn-in period was set to 2 000 000 genera-
tions, and the maximum credibility tree was identified
from the trees sampled after the burn-in period in both
analyses, mapping median ages on nodes.

Genotyping across the nuclear genome

A reference genome for Alloteropsis is currently lacking.
However, the grass *Setaria italica* (comment name: Fox-
tail millet) belongs to the same tribe as *Alloteropsis* (Pan-
iceae) and has a well-assembled reference genome
(*gkv2.0.27; Bennetzen et al. 2012). *Setaria* and *Alloteropsis*
diverged approximately 20 Ma (Christin et al. 2012), a
time that is sufficient for a complete turnover of non-
coding sequences (Ammiraju et al. 2008). However,
reads corresponding to coding regions across the gen-
ome can still be reliably mapped (see Results).

Raw sequencing reads were quality filtered using the
NGS QC TOOLKIT v. 2.3.3 (Patel & Jain 2012). Reads with
more than 20% of the bases having a quality score
below Q20 and reads with ambiguous bases were
removed. Furthermore, low-quality bases (<Q20) were
trimmed from the 3’ end of the remaining reads. The
filtered reads were mapped to the *Setaria* reference
genome, using BOWTIE2 v. 2.2.3 (Langmead et al. 2009).
Raw alignment files were cleaned using SAMTOOLS v.1.2
(Li et al. 2009) and PICARD TOOLS v.1.92 (http://pica
rd.sourceforge.net/). PCR duplicates were removed,
and only uniquely aligned reads in proper pairs were
kept. This will remove most of the reads mapped to
repetitive sequences, such as transposable elements,
while retaining reads mapping to sequences that have
been duplicated after the split of *Alloteropsis* and *Setaria*.
The cleaned alignments were used to call single nucleo-
tide polymorphic variants (SNPs) with SAMTOOLS v.
0.1.19 using the mpileup function followed by the vcfu-
til.pl script with default setting supplied with the pro-
gram. The South African C₄ individual ‘RSA3’ was
excluded during SNP calling to avoid any bias that
might result from the presence of more than two alleles
in this polyploid (see Lundgren et al. 2015 and Table S1,
Supporting information). Genotypes of each accession,
including ‘RSA3’, at all called SNP positions were
extracted from the alignments using the mpileup func-
tion in SAMTOOLS v.0.1.19, supplying the program with
the positions of the called SNPs, and in-house devel-
oped scripts for further processing (Appendix S1, Sup-
porting information). The low-coverage data caused
genotype probabilities to be low, which precluded effec-
tive filtering based on these probabilities. Therefore,
fixed genotype calls were used. To evaluate the propor-
tion of SNPs corresponding to exon sequences, annota-
tions were extracted for the 25 727 coding regions of the
Setaria genome with homologs in maize and rice
 genomes (from now on referred to as SZR homologs).
The positions of the raw SNPs were intersected with
the SZR homolog annotations in BEDTOOLS v.2.19.1 using
default settings (Quinlan & Hall 2010).

SNPs with coverage above 2.5 times the genomewide
coverage (Table S2, Supporting information) were con-
verted to unknown genotype calls. Furthermore, geno-
types with more than two allele calls were also
converted to missing data, and finally, positions with
more than 50% missing data/unknown genotypes were
discarded. The remaining 170 629 positions were used
to infer a phylogenetic tree, using PhyML (Guindon
et al. 2010) and a GTR substitution model (the best fit
model as determined by hierarchical likelihood ratio
tests), after coding heterozygous sites with IUPAC
codes. Support was evaluated with 100-bootstrap pseu-
doreplicates. The low-coverage data likely cause some
alleles to be missed, leading to an overestimate of
homozygosity. However, no bias is expected in the
missing allele, so that the low coverage is unlikely to
lead to spurious groupings.

To test for a bias due to uneven coverage across sam-
ple (Table S2, Supporting information), we repeated
the phylogenetic analysis on a resampled alignment,
where all samples have the same number of bases mapped to the *Setaria* genome. Reads were randomly sampled without replacement from the filtered alignment files until the number of bases across the sampled reads equaled that of the sample with the lowest coverage (Appendix S2, Supporting information). These reanalyses were first conducted with all samples, which resulted in a low number of positions constrained to the samples with the lowest coverage. While analyses on the resampled data set were consistent with the whole-data set analyses, the limited number of characters resulted in reduced support. We consequently repeated the resampling allowing for the full alignment of the two *A. semialata* samples with the lowest coverage and alignment success (‘AUS1’ and ‘RSA2’) to be retained at a slightly lower coverage than the rest of the samples. SNPs were called as outlined above, which allowed for the retention of 22 821 SNPs.

Genetic structure and test for secondary gene flow

Preliminary cluster analyses with a focus on *A. semialata* showed that a more stringent filtering of the SNPs improved convergence of the analyses. Only positions with <10% missing data (2607 SNPs) within this species were consequently kept for analyses of its population structure, using the STRUCTURE software (Pritchard et al. 2000). Ten independent analyses were run for each number of population components (K) from one to ten, under the admixture model. The adequate run length and burn-in periods were determined through preliminary analyses, which indicated that a burn-in period of 300 000 generations followed by 200 000 iterations provided stable estimates for all K values. The optimal K values were determined using the method of Evanno et al. (2005), as implemented in STRUCTURE HARVESTER (Earl & vonHoldt 2012). The results of the ten runs for each K were summarized using CLUMP v. 1.1.2 (Jakobsson & Rosenberg 2007) and graphically displayed using DISTRUCT v. 1.1 (Rosenberg 2004). These analyses were repeated without the polyploid individual ‘RSA3’, which led to the same cluster assignments, showing that differences in ploidy levels do not affect the conclusions. Finally, the cluster analyses were repeated on alignments based on the reads subsampled to similar coverage in all sampled, allowing for 25% missing data per site (retention of 681 SNPs).

Different relationships among fractions of the nuclear genome can result from reticulated evolution or incomplete lineage sorting (Green et al. 2010; Durand et al. 2011). To distinguish these two possibilities, the ABBA–BABA method, which relies on the D statistic to test for asymmetry in the frequencies of incongruent phylogenetic groupings (Green et al. 2010; Durand et al. 2011), was used to test for secondary gene flow on a genome-wide level in cases suggested by phylogenetic and clustering analyses (see Results). The low coverage likely leads to an overestimate of homozygous sites, but no bias is expected towards ABBA or BABA sites, leaving estimations of distorted gene flow unaffected. For each test, a four-taxon phylogeny was selected, consisting of an outgroup and three tips among which secondary gene flow is suspected. Reads mapping to the 170 629 SNPs were recovered from the filtered alignment files using BEDTOOLS v.2.19.1 by intersecting the alignment files with positional information of the SNPs using default settings. The recovered reads were evaluated using the -doAbababa option in the ANGSD program version 0.911 (Korneliussen et al. 2014). A jackknifed estimate of the D statistic and the corresponding Z-value were obtained by the jacknif.R script supplied with the ANGSD program.

Assembly and analyses of selected genes

Two different groups of closely related genes were selected for detailed analyses. The genes selected were two C4-related protein-coding genes, phosphoenolpyruvate carboxylase (*ppc* genes) and phosphoenolpyruvate carboxykinase (*pck* genes), that include some copies acquired by *Alloteropsis* from distantly related species via lateral gene transfer, while other copies were vertically inherited following the species tree (Christin et al. 2012). Previous conclusions regarding the distribution of these genes among accessions of *Alloteropsis* were based on PCR and Sanger sequencing, which can be biased due to the possibility of primer binding mismatches. The presence/absence of the laterally acquired *ppc* and *pck* genes and their vertically inherited homologs across the accessions were therefore re-evaluated here using the genome-skimming data, as well as new PCR and Sanger sequencing with primer verified against the new genomic data. Using molecular dating, the divergence times of the laterally acquired genes were compared to those of vertically inherited homologs belonging to the same set of accessions.

Reads were first mapped on gene segments of the *ppc* and *pck* genes from different accessions of *Alloteropsis* (grass co-orthologs *ppc*-1P3 and *pck*-1P1; Christin et al. 2012, 2015). These segments have been previously sequenced and analysed in a number of other C3 and C4 grasses (Christin et al. 2012). The availability of this rich reference data set allows mapping to closely related accessions of *Alloteropsis*, which improves the alignment success compared to the whole-genome approach described above, and increases the confidence in the assignment. The gene segments cover exons 8–10 for *ppc* and exons 3–10 for *pck*, including introns, and

© 2016 The Authors. *Molecular Ecology* Published by John Wiley & Sons Ltd.
represents approximately 46% (1492 bp) and 63% (1487 bp), respectively, of the full-length coding sequences. In-house Perl scripts (Appendix S3, Supporting information) were used to unambiguously assign reads to genes of these data sets, following the phylogenetic annotation method of Christin et al. (2015). In summary, this approach consists of: (i) building a reference data set of sequences with known identity for closely related gene lineages, (ii) using blast searches to identify all sequences homologous to any of these reference sequences in the query data set (the filtered reads in this case), (iii) independently aligning each homologous sequence to the reference data set and inferring a phylogenetic tree and (iv) establishing the identity of each of the query sequences based on the phylogenetic group in which it is nested. Assignment of reads to the gene lineages was verified by visual inspection of the phylogenetic trees and the alignments. Subsequently, all gene lineages was verified by visual inspection of the phylogenetic tree and (iv) establishing the identity of each of the vertically inherited or laterally acquired genes was added to the genes assembled from short-read data. The data sets were aligned using MUSCLE v3.8.31 (Edgar 2004) with default parameters, and the alignments were manually refined. Maximum-likelihood phylogenetic trees were inferred using PhyML, under a GTR+G model, and with 100-bootstrap pseudoreplicates. Molecular dating was performed on the same alignments using BEAST as described above for chloroplast markers, but with a coalescent prior. The Andropogoneae/Paspaleae group (represented by Sorghum, Paspalum and one of the laterally acquired ppc) was selected as the outgroup, and the root of the tree was calibrated with a normal distribution with a mean of 31 Ma, and a standard deviation of 0.0001, as previously estimated for this node (Christin et al. 2014).

Results

Read alignment and SNP calling

The number of filtered paired-end reads varied across samples, for a genomewide coverage ranging from 0.70 to 4.52 (Table S2, Supporting information). The proportion of filtered paired-end reads that aligned to the Setaria genome varied between 4.04% and 10.23%, and between 1.22% and 2.94% aligned to the coding regions (Table S2, Supporting information). While the mapping was performed across the whole genome of Setaria (excluding the organelle genomes), divergence of noncoding sequences means that high mapping success is expected to be concentrated mostly on coding sequences. About 9% of the Setaria genome corresponds to exons (Bennetzen et al. 2012). Assuming that the total length of exons is similar in the two species, the larger genome of Alloteropsis means that this proportion should be about 4.5%, so that approximately half of the reads corresponding to nuclear exons were mapped. The rest of the reads that belong to exons probably correspond to gene sections that are too divergent between the two species to successfully map.

Only uniquely aligned reads were used to call SNPs, which inherently excludes common repetitive regions such as transposons. However, 1111 raw SNPs had a higher than expected coverage (>5×) across at least 50% of the samples. The positions of 91% (1007) of these high-coverage SNPs fell outside of the SZR homolog regions, and the rest were concentrated to only 14 SZR
homologs. We therefore hypothesize that these high-coverage SNPs stem from genetic regions (mostly non-coding) that have been duplicated after the split between *Alloteropsis* and *Setaria* and they were subsequently removed from the analyses.

A total of 170 629 SNPs with <50% missing data across the 21 accessions were finally selected for downstream analyses. These sites are spread across all chromosomes (Fig. S1, Supporting information) and 96% of them fall within one of 9948 SZR homologs. The 2607 SNPs used for the cluster analysis (<90% missing data across the *Alloteropsis semialata* samples) were equally well spread across the genome (Fig. S1, Supporting information) and 97% fall within one of 848 SZR homologs. Most of the variation in missing data across samples (Table S2, Supporting information) is likely explained by differences in coverage, although the presence/absence of genes within each accession might also influence the individual mapping success.

Overall, our analyses show that our pipeline, despite a low overall coverage and low alignment success due to the large divergence time between *Alloteropsis* and *Setaria*, captures variation in almost 10 000 genes spread across the genomes of grasses.

Phylogenetic trees

The plastid phylogeny identified two C₄ individuals from DRC with haplotypes that form a new C₄ plastid lineage based on divergence times (i.e., lineage G, sister to lineage F; Figs 2 and S2, Supporting information). Relationships based on markers sampled across the nuclear genome confirm the monophyly of *A. semialata* and its sister-group relationship to *Alloteropsis angusta*, but present multiple incongruences with the chloroplast tree within *A. semialata* (Figs 2 and S3, Supporting information). In this genomewide tree, the first divergence leads to a group composed of the non-C₄ accessions of *A. semialata* from South Africa without any known C₄ cycle (Clade I; Fig 2 and S3, Supporting information), and the second divergence leads to a group comprising the non-C₄ accessions from the Zambezian region that use a weak C₄ cycle (Clade II; Fig 2 and S3, Supporting information; C₂-C₄ intermediates sensu Lundgren et al. 2016). The isotopically intermediate accession ‘TAN3’ is then sister to all C₄ accessions (Figs 2 and S3, Supporting information). The two C₄ accessions bearing the plastid lineage G form a paraphyletic clade, while the other C₄ accessions from the Zambezian region (‘TAN4’, ‘DRC3’ and ‘DRC4’) are grouped in a strongly supported clade (Clade III; Figs 2 and S3, Supporting information). The South African polyploid individual ‘RSA3’ is sister to the C₄ individuals sampled outside of the Zambezian region, and the rest of the C₄ accessions form the strongly supported clade IV, with two subclades corresponding to Africa plus Madagascar and Asia plus Australia (Figs 2 and S3, Supporting information). The nuclear phylogeny based on the resampled data set is mostly identical to the one based on the whole data set (Figs S3 and S4, Supporting information).

Genetic structure and secondary gene flow within *Alloteropsis semialata*

Based on the whole-genome clustering analysis, four clusters explain the data set best, and adding groups does not improve the likelihood (Fig. 3B). However, the method of Evanno et al. (2005) indicates that the maximum fit improvement is at two clusters, with four clusters representing the second maximum fit improvement (Fig. 3C). With four clusters, the main clades from the genome wide phylogeny are recovered (Figs 2 and 3A). This genetic structure matches the photosynthetic types rather than the geographic origin, with the non-C₄ clades I and II and the C₄ clades III and IV each forming distinct homogenous groups (Fig. 3A). The three Zambezian individuals that formed a paraphyletic clade in the nuclear phylogeny (‘TAN3’, ‘DRC1’ and ‘DRC2’) are partially assigned to two Zambezian groups, the non-C₄ clade II and the C₄ clade III (Figs 2 and 3A). Finally, the polyploid individual from South Africa, ‘RSA3’, is partially assigned to the two C₄ clades III and IV (Fig. 3A). The cluster results based on the resampled data set are less stable due to a lower number of sites, but the assignments are similar (Figs 3 and S5, Supporting information).

Heterozygosity was estimated for each sample based on the 22 821 SNPs from the resampled data set with similar coverage across samples. While these estimates are based only on sites variable within *Alloteropsis* and should consequently not be interpreted as genomewide heterozygosity, it is possible to compare the estimates between samples. The individuals assigned to multiple clusters had the highest percentage of heterozygous SNPs (Fig. S6, Supporting information), which confirms their genetic diversity.

Together, our intraspecific genetic analyses reveal the existence of distinct gene pools despite overlapping distributions (Figs 3A and 4), but also suggest that genetic exchanges have happened among groups. The incongruences between the phylogenetic structures of the chloroplast and nuclear genomes, together with the assignment of some individuals to multiple genetic clusters, suggest that the three Zambezian individuals ‘TAN3’, ‘DRC2’ and ‘DRC1’ have ancestors from distinct genetic groups, in this case the nuclear clades II and III. ABBA–BABA tests were therefore conducted to
test this hypothesis, using *A. angusta* (individual Ang2) as the outgroup. The individual ‘TAN4’ was selected as the representative of clade III because it is geographically more distant and distinct on all genetic markers (Figs 4, S2 and S3, Supporting information). Significant indications (*P* < 0.05 after correction for multiple testing) of gene flow from the non-C4 clade II (‘TAN2’ and ‘TAN1’) into the populations assigned to multiple clusters (‘TAN3’, ‘DRC2’ and ‘DRC1’) were found (Table 1). In contrast, there is no evidence of a significant secondary contribution of clade II into individuals of clade III (‘DRC3’ or ‘DRC4’; Table 1). However, in one case, a slight excess of BABA sited was detected, which was not significant after correction for multiple testing (Table 1). This would suggest some genetic contribution from one non-C4 population of clade II (‘TAN1’) into the C4 population represented by ‘TAN4’ (Table 1).

Within clade IV, the C4 individual from Madagascar (‘MADI’) was grouped with Asian C4 accessions on plastid genomes but grouped with the African C4 accessions based on markers from across the nuclear genome (Figs S2 and S3, Supporting information). An ABBA–BABA test was conducted to test the hypothesis of secondary gene flow after the split of the African and Asian C4 accessions. The accession ‘TAN4’ was used as the outgroup, being sister to all accessions from clade IV. The Taiwan accession (‘TPE1’) was selected as the Asian sample, while the Burkinabe accession (‘BUR1’) represented Africa. Overall, more ABBA than BABA sites were detected (Table 1), indicating that the Asian accession was closer to the accession from Madagascar (‘MADI’) than to the accession from mainland Africa, but the *D* statistic for this test was not significant after correcting for multiple testing (Table 1). Plastid markers, which represent seed dispersal, group the Madagascan accessions with Asian individuals. Therefore, a possible scenario involves an initial seed dispersal from Africa to Madagascar and then from Madagascar to Asia, with subsequent pollen flow between Africa and Madagascar.

Assembly and analyses of selected genes

The presence/absence of *ppc* and *pck* genes was established by mapping reads directly onto reference
sequences from *Allotropis*. The distribution of the genes was also confirmed by PCR followed by Sanger sequencing (Fig. S7, Supporting information).

Together, the results confirmed previous phylogenetic analyses (Christin et al. 2012), but with a significant increase of the sample size. Reads assigned to the *ppc* gene copy laterally acquired from members of the *Cenchrus* genus (*ppc-1P3_LGT:C*) were detected in the two *A. angusta* accessions and all *A. semialata* accessions, except the two non-C$_4$ accesses from South Africa (Table 2; Figs S7 and S8, Supporting information). The sequences assembled for the laterally acquired *ppc* gene were highly similar between the different accessions, leading to a poorly resolved phylogeny (Fig. S8, Supporting information). By contrast, the sequences assembled for the vertically inherited *ppc* gene were variable among accessions, and the nuclear clades I and II were recovered in their phylogeny, while clades III and IV were not differentiated (Fig. S8, Supporting information). Interestingly, one accession with mixed genetic backgrounds (‘DRC1’) has two divergent alleles, one of which groups with clade II and the other with clade III/IV (Fig. S8, Supporting information). Dating analyses indicate that the divergence of *A. angusta* and *A. semialata* is more recent for the laterally acquired *ppc* than for the vertically inherited copy (Fig. S9, Supporting information). However, the divergence of C$_4$ accessions of *A. semialata* is estimated at a similar time based on the vertically inherited and laterally acquired *ppc* (Fig. 5).

The vertically inherited *ppc* was recovered from all samples, and the assembled gene models were variable enough to partially resolve the phylogeny, with well-supported clades corresponding to the different species (Fig. S10, Supporting information). Although support was limited within *A. semialata*, the non-C$_4$ clades I and II (including sequences from individuals assigned to multiple clades) were sister to a clade composed of the C$_4$ accessions from clade IV nested within those of clade III (Fig. S10, Supporting information). The divergence of vertically inherited *ppc* from C$_4$ accessions (excluding those partially assigned to clusters other than III and IV) matches the divergence of the vertically inherited *ppc* for the same accessions (Fig. 5).

The *ppc* gene laterally acquired from Andropogoneae (*ppc-1P3_LGT:A*) was only detected in the Australian C$_4$ accession (‘AUS1’; Table 2, Figs S7 and S10, Supporting information). An almost complete sequence for the studied segment was assembled, which was identical to those isolated by PCR.

The *ppc* gene laterally acquired from *Setaria palmifolia* complex (*ppc-1P3_LGT:C*) was detected in the C$_4$ accessions from South Africa (‘RSA3’) and the DRC (Table 2, Figs S7 and S10, Supporting information). Although no reads matching exons 8–10 of *ppc-1P3_LGT:C* were detected in the accession ‘TAN3’, a total of seven reads from this individual matched exons 1–7. This suggests that the gene is truncated and probably exists as a pseudogene in this individual. The *ppc-1P3_LGT:C* sequences were largely conserved, although distinct alleles were assembled in one of the accessions with mixed genetic background (‘DRC2’; Fig. S10, Supporting information). The divergence of *ppc-1P3_LGT:C* genes belonging to different C$_4$ accessions was more recent than for the vertically inherited *ppc* and *ppc* of the same accessions (Fig. 5).

The *ppc* gene acquired from Melinidinae (*ppc-1P3_LGT:M*) was identified in nine C$_4$ accesses of *A. semialata*, the isotopically intermediate *A. semialata*, and the two congener *Allotropis cimicina* and *Allotropis paniculata* (Table 2, Figs S7 and S10, Supporting information). Highly divergent alleles of the *ppc-1P3_LGT:M* gene were inferred for *A. cimicina* and *A. paniculata* (Fig. S10, Supporting information). However, the sequences of *ppc-1P3_LGT:M* from *A. semialata* were very similar to each other, and nested within the alleles from *A. cimicina/paniculata* (Fig. S10, Supporting information).
information). The split of *A. semialata* and *A. cimicina* is more recent for ppc-1P3_LGT:M than for the vertically inherited ppc and pck (Fig. S9, Supporting information). In addition, the divergence of C4 accessions of *A. semialata* based on this ppc-1P3_LGT:M gene occurred more recently than the divergence based on the vertically inherited ppc and pck (Fig. 5).

Discussion

Divergence of photosynthetic types in isolation followed by secondary gene flow

Overall, our genomewide analyses reveal a strong genetic structure, which matches photosynthetic types better than geographic origins, although both play a role. All C4 individuals form a monophyletic group based on genomewide markers, which is sister to a clade composed of non-C4 accessions from the Zambezian region with a weak C4 cycle (clade II; Figs 2 and 4), and together, these two groups are sister to the non-C4 accessions from South Africa that lack a C4 cycle (clade I; Figs 2 and 4). The C4 clade contains two clearly distinct subgroups, one from the Zambezian region (clade III; Figs 2 and 4) and the other one encompassing all C4 accessions sampled outside this region, from Western Africa to Australia (clade IV; Figs 2 and 4). The Zambezian region encompasses more genetic diversity than the rest of the species’ range, including a total of five plastid lineages, four of which are endemic (clades B, C, F and G; Figs 2 and S2, Supporting information). This finding further supports this region as the centre of origin for *Alloteropsis semialata* (Lundgren et al. 2015). Based on both plastid and nuclear genomes, the divergence of photosynthetic types likely also happened within this region (Fig. 6). Both C4 and non-C4 populations in the Zambezian region are associated with Miombo woodlands. Periodic cycles of contraction and expansion of these wooded savannas during recent geological times might have isolated populations of *A. semialata* in this geologically and topographically complex region (Cohen et al. 2007; Beuning et al. 2011). The ancestral photosynthetic state is likely non-C4 and mutations altering the leaf anatomy and upregulation of enzymes already present in the non-C4 ancestors likely led to the emergence of a constitutive C4 cycle in some isolated populations (Mallmann et al. 2014; Bräutigam & Gowik 2016). One of the lineages descending from the initial C4 pool, corresponding to clade IV, later left the Miombo of the Zambezian region and rapidly
Table 1 Results of ABBA–BABA tests

Outgroup*	P3*	P2*	P1*	# ABBA sites	# BABA sites	D†	Z	P-value‡	Conclusion
Alloteropsis angusta				2630	1805	0.186	8.279	<0.0001	TAN2 closer to TAN3 than to TAN4
A. angusta	TAN1	TAN3	TAN4	2630	1750	0.201	8.757	<0.0001	TAN1 closer to TAN3 than to TAN4
A. angusta	TAN2	DRC2	TAN4	2037	1546	0.137	5.939	<0.0001	TAN2 closer to DRC2 than to TAN4
A. angusta	TAN1	DRC1	TAN4	2240	1752	0.122	5.463	<0.0001	TAN1 closer to DRC1 than to TAN4
A. angusta	TAN1	DRC4	TAN4	2194	1749	0.113	5.692	<0.0001	TAN1 closer to DRC1 than to TAN4
A. angusta	TAN2	DRC4	TAN4	1177	1164	0.006	0.223	0.824	TAN2 equally close to DRC4 and TAN4/correct phylogeny
A. angusta	TAN1	DRC4	TAN4	1075	1123	0.022	0.866	0.386	TAN1 equally close to DRC4 and TAN4/correct phylogeny
A. angusta	TAN2	DRC3	TAN4	1372	1451	0.028	1.080	0.280	TAN2 equally close to DRC3 and TAN4/correct phylogeny
A. angusta	TAN1	DRC3	TAN4	1248	1431	0.068	2.885	0.004†	TAN1 might be closer to TAN4 than to DRC3
A. angusta	TAN2	DRC4	TAN4	1177	1164	0.006	0.223	0.824	TAN2 equally close to DRC4 and TAN4/correct phylogeny
A. angusta	TAN1	DRC4	TAN4	1075	1123	0.022	0.866	0.386	TAN1 equally close to DRC4 and TAN4/correct phylogeny
A. angusta	TAN2	DRC4	TAN4	1177	1164	0.006	0.223	0.824	TAN2 equally close to DRC4 and TAN4/correct phylogeny

*Outgroup, (P3,(P2,P1)).
†D statistic: (ABBA-BABA)/(ABBA+BABA).
‡P-value for Z score as calculated by jackknife for whether D differs significantly from zero.
§Nonsignificant after Bonferroni correction for multiple testing.

Table 2 Number of read assigned to each of the laterally acquired pck and ppc genes

Species	Accession	Phylogenetic group (plastid; nuclear)	ppc-1P3_LGT:A*	ppc-1P3_LGT:M†	ppc-1P3_LGT:C‡	pck-1P1_LGT:C‡
Alloteropsis cimicina	Cim1	–	0	0	0	0
Alloteropsis paniculata	Pan1	–	0	0	0	0
Alloteropsis angusta	Ang2	–	0	0	0	78
	Ang1	–	0	0	0	49
Alloteropsis semialata	RSA1	A; I	0	0	0	0
	RSA2	A; I	0	0	0	0
	TAN1	C; II	0	0	0	57
	TAN2	B; II	0	0	0	73
	TAN3	B; mixed	0	54‡	56	216§
	DRC1	G; mixed	0	57‡	56	183§
	DRC2	G; mixed	0	29	50‡	95§
	DRC3	E; III	0	6	25	135§
	DRC4	E; III	0	10	12	88§
	TAN4	F; III	0	76	0	83
	RSA3	E; IV	0	55§	63	113
	KEN1	E; IV	0	36	0	85
	BUR1	E; IV	0	26	0	130
	MAD1	D; IV	0	46	0	101
	THA1	D; IV	0	0	0	123
	TPE1	D; IV	0	0	0	118
	AUS1	D; IV	55	0	0	110

*Laterally acquired from Andropogoneae.
†Laterally acquired from Melinidinae.
‡Laterally acquired from Cenchrinae.
§Assembly of more than one allele.
Note that seven reads were retrieved for exons 1–7, which indicates that this gene is truncated in the genome of this accession.

© 2016 The Authors. *Molecular Ecology* Published by John Wiley & Sons Ltd.
Spread across Africa and all the way to Asia and Australia (Figs 4 and 6). This biogeographical history therefore points to the initial emergence of the C₄ physiology in *A. semialata* within the Zambezian region, with subsequent isolation of the C₄ descendants (Fig. 6).

The lack of association between chloroplast and nuclear groups (Figs 2, S2 and S3, Supporting information) in the Zambezian region suggests ancient, but recurrent, secondary gene flow followed by homogenization of the local gene pools. In addition, the presence of three individuals with mixed nuclear backgrounds indicates relatively recent gene flow between previously isolated groups. The maximum expansion of the Miombo woodlands during interglacial periods, as presently occurs, would likely favour seed dispersal over a larger area, leading to secondary contacts (Vincens 1989; Cohen et al. 2007; Beuning et al. 2011), a process frequently reported in Europe (reviewed in, e.g. Hewitt 2000; Schmitt 2007). We propose that this expansion allowed genetic exchanges between previously isolated lineages, some of which had made the transition to a full C₄ physiology during the previous isolation. No evidence of gene flow between C₄ and non-C₄ individuals was found outside of the Zambezian region, and crosses might be prevented in South Africa, the other region where C₄ and non-C₄ individuals overlap, by differences in ploidy levels (Fig. 4; Liebenberg & Fossey 2001). However, our analyses suggest that allopolyploidy contributed to the mixing of nuclear groups III and IV in Southern Africa (Fig. 6). In addition, while the recent divergence decreases statistical confidence, we found suggestions for secondary gene flow between different subgroups of the C₄ clade IV in Madagascar (Fig. 6).

Repeated isolation followed by recurrent, but rare secondary gene flow has created a dynamic population structure whereby adaptive mutations, such as those for the C₄ trait, can appear and sweep to fixation in isolation and later come together through admixing in times of contact. While mutations for increasing the expression of the C₄-related genes and altering the leaf anatomy are unknown, genes for two key C₄ enzymes were laterally acquired by *A. semialata* (Christin et al. 2012). These lateral gene transfers likely took place in *A. semialata* plants that already used C₄ photosynthesis, and once acquired, these genes presumably replaced the function of the vertically inherited gene copies that were overexpressed but not biochemically optimized (Christin et al. 2012). The biogeographic history inferred here for the nuclear genome allows us to estimate the region where these lateral gene transfers likely occurred and track the subsequent spread of these genes among different gene pools.

Spread of C₄-adaptive mutations among gene pools

Our analyses detected the laterally acquired pck gene in all *Alloteropsis angusta* and *A. semialata* individuals apart from two non-C₄ *A. semialata* South African accessions of *A. semialata* from South Africa, confirming previous PCR-based approaches (Table 2; Christin et al. 2012). The divergence time is younger between the laterally acquired pck genes from *A. angusta* and *A. semialata* than between the vertically inherited genes of the same species (Figs 5 and S9, Supporting information). This
sugests that the laterally acquired *ppc* was passed between *A. angusta* and *A. semialata* through secondary gene flow.

The accessions from Taiwan and Thailand do not possess any laterally acquired *ppc* genes, yet carbon isotopes unambiguously indicate that they carry out C4 photosynthesis (Table 2; Lundgren et al. 2015). It is therefore likely that they overexpress their vertically inherited *ppc* and other genes required to generate a working C4 cycle in the absence of repeated rounds of fixation of adaptive amino acids, as observed in older C4 lineages (Christin et al. 2007; Besnard et al. 2009; Huang et al. in press).

Out of the three different *ppc* genes acquired via lateral gene transfers from distant C4 relatives (Table 2; Christin et al. 2012), only *ppc-1P3_LGT:A* is restricted to one of the accessions sampled here (‘AUS1’). This gene was only found in Australia, and it is thus likely that it was recently acquired in this region (Fig. 6). The other two laterally acquired *ppc* genes are absent from some individuals, but spread across multiple populations of *A. semialata* that belong to different genomic clusters (Table 2). This pattern could result from the presence of the gene in the common ancestor and subsequent losses in some populations. However, this scenario is not supported by the lack of phylogenetic structure on the laterally acquired genes (Fig. S10, Supporting information) and the comparison of divergence times, which indicate that the divergence of variants of both *ppc-1P3_LGT:M* and *ppc-1P3_LGT:C* found in C4 accesions is more recent than the divergence of vertically inherited genes in the same accessions (Fig. 5).

The laterally acquired *ppc-1P3_LGT:M* gene was identified in the C4 congeners *Alloteropsis cimicina* and *Alloteropsis paniculata*, as well as all C4 accesions of *A. semialata* from Africa and Madagascar (whether from clade III or IV; Table 2). However, this gene was absent from the Asian/Australian C4 accesions from clade IV and the African non-C4 (clades I and II; Table 2). The divergence time between *ppc-1P3_LGT:M* genes belonging to *A. cimicina* and *A. semialata* is younger than the divergence times for the vertically inherited genes from the same species (Fig. S9, Supporting information). In addition, the higher allelic diversity in *A. cimicina* compared to *A. semialata* suggests that the *ppc-1P3_LGT:M* gene was first acquired by *A. cimicina* and then transferred to *A. semialata*, potentially via hybridization. This gene has subsequently likely spread across distinct genetic groups of *A. semialata* in Africa and Madagascar via secondary pollen flow (Fig. 6). The fixation of the *ppc-1P3_LGT:M* gene within different populations would have been favoured by its improvement of the C4 cycle, a function for which it was already optimized after millions of years spent in another C4 lineage. Once this adaptive gene copy was acquired in a population, the vertically inherited *ppc* copy probably underwent pseudogenization as a result of relaxed selection. Indeed, the vertically inherited *ppc* genes bear frame-shift mutations causing loss of function in two accesions with the laterally acquired *ppc-1P3_LGT:M* (‘TAN4’ and ‘Cim1’), supporting the hypothesis that their function was taken over by the newly acquired gene, making them obsolete.

The last of the laterally acquired *ppc* genes, *ppc-1P3_LGT:C*, was found in the South African C4 polyploid (‘RSA3’) as well as in four C4 and one isotopically intermediate individuals from the Zambezian region, two from clade III and three with genetic contributions from clades II and III (Table 2). This gene was laterally acquired from a species of the *Setaria palmifolia* complex (Christin et al. 2012), which co-occurs with *A. semialata* in Zambezian Africa, where they grow metres apart, but not in South Africa (Clayton 1979). The transfer therefore likely occurred in the Zambezian region and later spread among the C4 populations in this region.
through secondary gene flow (Fig. 6). Once acquired the ppc-1P3_LGT:C gene presumably took over the C4 function, which might have been fulfilled by the previously acquired ppc-1P3_LGT:M. Indeed, ppc-1P3_LGT:M is still expressed in the transcriptome of the South African C4 accession, but possesses internal stop codons that prevent proper translation (Christin et al. 2012). The newly acquired ppc-1P3_LGT:C likely spread to the C4 populations from South Africa, through the putative segmental allopolyploidy event, providing a mechanism to propagate adaptive loci across genetic pools (Fig. 6). However, the Melinidinae ppc-1P3_LGT:M discussed above was spread among diploid individuals from clades III and IV, showing that adaptive loci can be transmitted despite limited gene flow, without the need for polyploidization.

The laterally acquired genes, which can easily be tracked using genome scans, show that the distinct genetic pools in A. semialata constitute reservoirs of genes for the adaptation of other populations within the same species complex. The history of these markers proves that genes for a complex trait can evolve independently in isolated populations and later be combined via natural selection following gene flow. When high-quality genome data accumulate for multiple accessions of A. semialata, such a scenario can be tested for vertically inherited genes, potentially explaining how novel adaptations can evolve in fragmented species complexes.

Conclusions

In this study, we analysed genomic data from multiple accessions of the grass Alloteropsis semialata using low-coverage whole-genome sequencing. Using a biogeographic framework for different parts of the genome, we demonstrate that multiple genetic pools exist, which are generally associated with different photosynthetic types. These pools originated more than 2 million years ago in the Zambezian region and were kept relatively isolated, but with recurrent secondary gene flow, including between non-C4 and C4 individuals. These genetic exchanges contributed to the spread of adaptive loci, as illustrated by key C4 genes acquired laterally in the Zambezian region and then rapidly passed to other African C4 accessions. This process likely gradually optimized the initial C4 pathway of some A. semialata populations through the assembly of different components. These genetic elements evolved in different parts of the species range, where limited gene flow might have facilitated local adaptation, but their subsequent combination likely improved the efficiency of the photosynthetic pathway of some accessions.

Acknowledgements

This work was funded by a Royal Society University Research Fellowship URF120119, a NERC grant NE/M00208X/1, an ERC grant ERC-2014-STG-638333 to PAC and a ‘Ciencia sem Fronteiras’ CNPq scholarship 201373/2014-1 to MB. GB is supported by the ‘Laboratoire d’Excellence (LABEX)’ entitled TULIP (ANR-10-LABX-0041; ANR-11-IDEX-0002-02) and received support from the PhyloAlps project. The authors thank the Royal Botanic Gardens, Kew, the Botanic Garden Meise, and the National Museums of Kenya, Nairobi, which provided the samples used in this study. Olivier Bouchet from the Genopole in Toulouse helped with the Illumina sequencing.

References

Ammiraju JSS, Lu F, Sanyal A et al. (2008) Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell, 20, 3191–3209.

Atkinson RRL, Mockford EJ, Bennett C et al. (2016) C4 photosynthesis boost growth via altered physiology, allocation and size. Nature Plants, 2, 16038.

Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London. Series B, 334, 309–345.

Benetzen J, Schmutz J, Wang H et al. (2012) Reference genome sequence of the model plant Setaria. Nature Biotechnology, 30, 555–561.

Besnard G, Muasya AM, Russier F, Roalson EH, Salamin N, Christin PA (2009) Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Molecular Biology and Evolution, 26, 1909–1919.

Besnard G, Christin PA, Male PJ et al. (2014) From museums to genomics: old herbarium specimens shed light on a C4 to C3 transition. Journal of Experimental Botany, 65, 6711–6721.

Beuning KRM, Zimmerman KA, Ivory SJ, Cohen AS (2011) Vegetation response to glacial-interglacial climate variability near Lake Malawi in the southern African tropics. Palaeogeography, Palaeoclimatology, Palaeoecology, 303, 81–92.

Bräutigam A, Gowik U (2016) Photoserespiration connects C3 and C4 photosynthesis. Journal of Experimental Botany, 67, 2953–2962.

Buerkle CA, Gompert ZA (2013) Population genomics based on low coverage sequencing: how low should we go? Molecular Ecology, 22, 3028–3035.

von Caemmerer S, Farquhar GD (2003) The C4 pathway: an efficient CO2 pump. Photosynthesis Research, 77, 191–207.

Cerling TE, Haris JM, MacFadden BJ et al. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–158.

Christin PA, Osborne CP (2014) The evolutionary ecology of C4 plants. New Phytologist, 204, 765–781.

Christin PA, Salamin N, Savolainen V, Duvall MR, Besnard G (2007) C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Current Biology, 17, 1241–1247.

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Christin PA, Freckleton RP, Osborne CP (2010) Can phylogenetics identify C4 origins and reversals? Trends in Ecology & Evolution, 25, 403–409.
Christin PA, Sage TL, Edwards EJ, Ogbum RM, Khoshరavesh R, Sage RF (2011) Complex evolutionary transitions and the significance of C3–C4 intermediate forms of photosynthesis in Molluginaceae. Evolution, 65, 643–660.
Christin PA, Edwards EJ, Besnard G et al. (2012) Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Current Biology, 22, 445–449.
Christin PA, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP (2013a) Parallel recruitment of multiple genes into C4 photosynthesis. Genome Biology and Evolution, 5, 2174–2187.
Christin PA, Osborne CP, Chatelet DS et al. (2013b) Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 110, 1381–1386.
Christin PA, Arakaki M, Osborne CP, Edwards EJ (2015) Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms. Molecular Biology and Evolution, 32, 846–858.
Christin PA, Spriggs E, Osborne CP, Strömborg CAE, Salamin N, Edwards EJ (2014) Molecular dating, evolutionary rates, and the age of the grasses. Systematic Biology, 63, 153–165.
Clark J, Hidalgo O, Pellicer J et al. (2016) Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytologist, 210, 1072–1082.
Clayton WD (1979) Notes on Setaria (Gramineae). Kew Bulletin, 33, 501–509.
Cohen AS, Stone JR, Beuning KR et al. (2007) Ecological consequences of early late pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 104, 16422–16427.
Dodsworth S (2015) Genome plumbing for next-generation biodiversity analysis. Trends in Plant Science, 20, 525–527.
Dolezel J, Sgrò C, Lucetti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum, 85, 625–631.
Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2, 2233–2244.
Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
Durand EY, Patterson N, Reich D, Slatkin M (2011) Testing for admixture between closely related populations. Molecular Biology and Evolution, 28, 2239–2252.
Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361.
Ebihara A, Ishikawa H, Matsumoto S et al. (2005) Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandensboschia radicans complex (Hymenophyllaceae) in Japan and adjacent areas. American Journal of Botany, 92, 1535–1547.
Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113.

Ellis RP (1974) The significance of the occurrence of both Kranz and non-Kranz leaf anatomy in the grass species Allotroseris semidentata. South African Journal of Science, 70, 169–173.
Ellstrand NC (2014) Is gene flow the most important evolutionary force in plants? American Journal of Botany, 101, 737–753.
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611–2620.
Fisher AE, McDade LA, Kiel CA et al. (2015) Evolutionary history of Elephas (Elephantidae) and the origin of C4 photosynthesis in section Acanthaceae. International Journal of Plant Sciences, 176, 770–790.
Fumagalli M, Vieira FG, Korneliussen TS et al. (2013) Quantifying population genetic differentiation from next-generation sequencing data. Genetics, 195, 979–992.
Geber MA, Griffen LR (2003) Inheritance and natural selection on functional traits. International Journal of Plant Sciences, 164, S21–S42.
GPWG II (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytologist, 193, 304–312.
Green RE, Krause J, Briggs AW et al. (2010) A draft sequence of the Neandertal genome. Science, 326, 710–722.
Griffith DM, Anderson TM, Osborne CP, Strömborg CAE, Forrestel EJ, Still CJ (2015) Biogeographically distinct controls on C3 and C4 grass distributions: merging community and physiological ecology. Global Ecology and Biogeography, 24, 304–313.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: examining the performance of PhyML 3.0. Systematic Biology, 59, 307–321.
Hatch MD (1967) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta, 995, 81–106.
Heckmann D, Schulze S, Denton A et al. (2013) Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell, 153, 1579–1588.
Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913.
Huang P, Studer AJ, Schnable JC, Kellogg EA, Brutnell TP (in press) Cross species selection scans identify components of C4 photosynthesis in the grasses. Journal of Experimental Botany. doi:10.1093/jxb/erw256
Hufud MB, Lubinsky P, Pyhäjärvi T et al. (2013) The genomic signature of crop-wild introgression in maize. PLoS Genetics, 9, e1003477.
Ibrahim DG, Burke T, Ripley BS, Osborne CP (2009) A molecular phylogeny of the genus Allotroseris (Panicoidae, Poaceae) suggests an evolutionary reversion from C4 to C3 photosynthesis. Annals of Botany, 103, 127–136.
Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801–1806.
Kenai R, Edwards GE (1999) The biochemistry of C4 photosynthesis. In: C4 Plant Biology (eds Sage RF, Monson RK), pp. 49–87. Academic Press, San Diego, California.
Kearse M, Moir R, Wilson A et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the
organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.

Korneliusen TS, Albrechtsen A, Nielsen R et al. (2014) ANGS: analysis of next generation sequencing data. BMC Bioinformatics, 15, 356.

Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25.

Leinonen T, Cano JM, Maken H, Merila J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. Journal of Evolutionary Biology, 19, 1803–1812.

Lenski RE, Fossey A (2003) The evolutionary origin of complex features. Nature, 423, 139–144.

Li H, Handsaker B, Wysoker A et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079.

Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR (2011) Low-coverage sequencing: implications for design of complex trait association studies. Genome Research, 21, 940–951.

Liebenberg EJL, Fossey A (2001) Comparative cytogenetic investigation of the two subspecies of the grass Allotropis semialata (Poaceae). Botanical Journal of the Linnean Society, 137, 243–248.

Linder HP, de Klerk HM, Born J, Burgess ND, Fjelds J, Rahbek C (2012) The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. Journal of Biogeography, 39, 1189–1205.

Loureiro J, Rodriguez E, Dolezel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Genome Research, 21, 1021–1029.

Lundgren MR, Besnard G, Ripley BS et al. (2015) Photosynthetic innovation broadens the niche within a single species. Ecology Letters, 18, 397–409.

Lundgren MR, Christin PA, Gonzalez Escobar E et al. (2016) Evolutionary implications of C3-C4 intermediates in the grass Allotropis semialata. Plant, Cell and Environment, 39, 1874–1885.

Mallmann J, Heckmann D, Bräutigam A et al. (2014) The role of photosynthesis during the evolution of C4 photosynthesis in the genus Flaviera. eLife, 3, e02478.

McKown AD, Dengler NG (2007) Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaviera (Asteraceae). American Journal of Botany, 94, 382–399.

McKown AD, Moncalvo JM, Dengler NG (2005) Phylogeny of Flaviera (Asteraceae) and inference of C4 photosynthesis evolution. American Journal of Botany, 92, 1911–1928.

Melendez-Hevia E, Waddell TG, Cascante M (1996) The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution. Journal of Molecular Evolution, 43, 293–303.

Miller CT, Glazer AM, Summers BR et al. (2014) Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait loci. Genetics, 197, 405–420.

Monson RK, Teeri JA, Ku MS, Gurevitch J, Mets LJ, Dudley S (1988) Carbon-isotope discrimination by leaves of Flaviera species exhibiting different amounts of C3- and C4-cycle cofunction. Planta, 174, 145–151.

Morjan CL, Rieseberg LH (2004) How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Molecular Ecology, 13, 1341–1356.

Oursisson G, Nakatani Y (1994) The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chemical Biology, 1, 11–23.

Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE, 7, e30619.

Peisker M (1986) Models of carbon metabolism in C3-C4 intermediate plants as applied to the evolution of C4 photosynthesis. Plant, Cell and Environment, 9, 627–635.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842.

Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137–138.

Sage RF (2016) A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineage, and Hall of Fame. Journal of Experimental Botany, 67, 4039–4056.

Sage RF, Christin PA, Edwards EJ (2011) The C4 plant lineages of planet earth. Journal of Experimental Botany, 62, 3155–3169.

Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annual Review of Plant Biology, 63, 19–47.

Schmitt T (2007) Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Frontiers in Ecology, 4, 11.

Smith BS, Brown WV (1973) The Kranz syndrome in the Gramineae as indicated by carbon isotopic rations. American Journal of Botany, 60, 505–513.

Vincens A (1989) Palaeoenvironmental evolution of the North-Tanganyika basin (Zaire, Burundi, Tanzania). Review of Palaeobotany and Palynology, 61, 69–88.

Williams BP, Johnston IG, Covshoff S, Hibberd JM (2013) Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis. eLife, 2, e00961.

Data accessibility

All raw reads are available in the short sequence archive under Accession no. SRP082653. In the NCBI nucleotide database, all newly assembled chloroplast genomes are available under Accession nos KX752083-KX752090, ppc genes under Accession nos KX788072-KX788087 and pck genes under Accession nos KX788088-KX788109.
P.A.C. analyzed the data. J.K.O., M.B. and P.A.C. interpreted the results and wrote the paper, with the help of all co-authors.

Supporting information

Additional supporting information may be found in the online version of this article.

Figure S1 Distribution of the 171,908 called SNPs along the Setaria italica genome.

Figure S2 Phylogenetic relationships based on complete chloroplast genomes from Alloteropsis.

Figure S3 Phylogenetic relationships based on whole genome sequencing of Alloteropsis accessions.

Figure S4 Phylogenetic relationships based on a sub-set of the whole genome sequencing of Alloteropsis accessions.

Figure S5 Assignment of Alloteropsis semialata individuals to genetic clusters based on a sub-set of the aligned reads from the whole genome sequencing.

Figure S6 Percentage of heterozygous sites for each accession.

Figure S7 Results of PCR amplification of ppc-IP3 and pck-IP1 in Alloteropsis.

Figure S8 Phylogeny of pck-IP1 in Alloteropsis.

Figure S9 Divergence times for different nodes estimated from vertically-inherited and laterally-acquired genes.

Figure S10 Phylogeny of ppc-IP3 in Alloteropsis.

Table S1 Sample and sequencing information.

Table S2 Alignment statistics of the Alloteropsis genome-skimming data to the Setaria reference genome.

Table S3 Primer pairs for amplification of genes copies of phosphoenolpyruvate carboxylase (ppc) and phosphoenolpyruvate carboxykinase (pck).

Appendix S1 Scripts used to genotype the samples and produce a phylip file and an input file for Structure.

Appendix S2 Scripts used to resample a subset of reads.

Appendix S3 Perl scripts used identify and retrieve reads corresponding to different pck and ppc gene lineages.