Exercise medicine in the management of pancreatic cancer: A systematic review

Hao Luo
Edith Cowan University

Daniel A. Galvão
Edith Cowan University

Robert U. Newton
Edith Cowan University

Pedro Lopez Da Cruz
Edith Cowan University

Colin Tang
Edith Cowan University

See next page for additional authors

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

Part of the Diseases Commons, and the Sports Sciences Commons

10.1097/MPA.0000000000001753
Luo, H., Galvão, D. A., Newton, R. U., Lopez, P., Tang, C., Fairman, C. M., ... Taaffe, D. R. (2021). Exercise medicine in the management of pancreatic cancer: A systematic review. *Pancreas, 50*(3), 280-292. https://doi.org/10.1097/MPA.0000000000001753
This Journal Article is posted at Research Online. https://ro.ecu.edu.au/ecuworkspost2013/10254
Authors
Hao Luo, Daniel A. Galvão, Robert U. Newton, Pedro Lopez Da Cruz, Colin Tang, Ciaran M. Fairman, Nigel Spry, and Dennis R. Taaffe
Exercise Medicine in the Management of Pancreatic Cancer
A Systematic Review

Hao Luo, MEd,*† Daniel A. Galvão, PhD,*† Robert U. Newton, PhD,*†† Pedro Lopez, MSc,*† Colin Tang, MBBS,*††‡ Ciaran M. Fairman, PhD,*† Nigel Spry, MBBS, PhD,*††§ and Dennis R. Taaffe, PhD, DSc, MPH*†

Abstract: The aim of this study was to examine the health-related effects of exercise in patients with pancreatic cancer (PanCa) through a systematic review of current evidence. Studies were obtained through searching PubMed, Web of Science, PsycINFO, Embase, CINAHL Plus, and Cochrane Library databases with additional hand searches. All intervention-based studies were included if it involved (1) adult patients with PanCa, (2) exercise training, and (3) findings in quality of life, cancer-related fatigue, psychological distress, and physical function. The review protocol was registered in PROSPERO: CRD42020154684. Seven trials described in 9 publications were included consisting of 201 patients with early-stage and advanced PanCa. Participants were required to perform supervised and/or home-based, low- to moderate-intensity resistance and/or aerobic exercise for 12 to 35 weeks or duration of neoadjuvant therapy. There were no exercise-related adverse events with a reported retention rate of 71% to 90% and exercise attendance of 64% to 96%. The programs were consistently associated with improvements in cancer-related fatigue, psychological distress, and physical function, with mixed effects on quality of life. Exercise training seems to be safe and feasible and may have a beneficial effect on various physical and psychological outcomes in patients with PanCa. Further work with rigorous study designs is required to consolidate and advance current findings.

Key Words: pancreatic cancer, exercise, quality of life, cancer-related fatigue, psychological distress, physical function (Pancreas 2021;50: 280–292)

Pancreatic cancer (PanCa) remains one of the most aggressive malignancies with a 5-year survival rate ranging from 5% to 15% and a rising incidence rate globally. Current treatment options for PanCa including surgery, chemotherapy, and radiotherapy provide limited survival benefits yet impose considerable physical and psychological burden. Patients with PanCa during and after treatments are predisposed to experience loss of skeletal muscle mass, impaired physical function, and increased fatigue and psychological distress. In addition, PanCa is typically diagnosed in patients at an older age (median age, ~70 years) and with advanced disease. Comorbidities such as sarcopenia and cachexia are prevalent in patients with PanCa along with various other debilitating symptoms including pain, insomnia, and nausea. These health conditions resulting from PanCa treatments and the disease can severely compromise patients’ physical functioning and overall quality of life (QoL). Given the relatively short survival time in patients with PanCa after diagnosis (median survival, ~3–26 months), QoL is of paramount importance and is an independent predictor of overall survival. Therefore, strategies that enhance QoL and attenuate decline in physical and psychological function in this patient group are of clinical importance.

Exercise training is increasingly recognized as an effective therapy for patients after cancer diagnosis across the disease spectrum, improving quality and, possibly, quantity of life; reducing treatment side effects; enhancing fitness and health in preparation for surgery and other treatments; and rehabilitating function and structure after treatment. Numerous systematic reviews and meta-analyses indicate that regular exercise can result in improvements in QoL, physical function, cancer-related fatigue (CRF) and psychological health in patients with cancer before, during, and after treatment. In addition, exercise (in particular resistance training) is recommended as an essential intervention component to treat cancer cachexia. Initial evidence suggests that individualized exercise interventions can be well accepted by patients with cancer (including PanCa) with cachexia or in the precachexia phase and is associated with promising efficacy on body mass when delivered concomitantly with nutritional support and anti-inflammatory medications. The substantial benefits of exercise in patients with cancer have prompted the development of various international guidelines recommending patients with cancer to stay physically active according to their clinical needs, personal circumstances, and preferences. However, most patients involved in current exercise oncology research are diagnosed with common types of solid tumors including breast, prostate, lung, and colorectal, and with early-stage disease. A small but growing number of exercise trials in patients with PanCa have been published; however, to date, the research findings regarding the health-related effects of exercise in this patient group have not been systematically appraised and synthesized. Although a recent systematic review has discussed the effects of exercise on physical function and physical activity level in patients with resectable or potentially resectable liver and pancreatic tumors, only 2 experimental studies in patients with PanCa were included. In addition, the effects of exercise on other important health-related outcomes that commonly deteriorate as a result of PanCa and its treatments have not been addressed, including QoL, CRF, and psychological distress.
Therefore, we conducted a systematic review to examine the health-related effects of exercise training in patients with PanCa. The primary end point was the reported change in QoL outcomes measured at different follow-up periods. In addition, the effects of exercise training on CRF, psychological distress, and objectively measured physical function (including muscle strength, cardiovascular fitness, functional ambulation, and balance) were also evaluated. When available, the magnitude of change in the outcome measure was checked for clinical meaningfulness based on an established minimal important difference (MID) (Supplemental Table 1, http://links.lww.com/MPA/A854).

MATERIALS AND METHODS

This review was conducted and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, and the review protocol was registered with the International Prospective Register of Systemic Reviews (PROSPERO ID: CRD42020154684).

Eligibility Criteria

Studies were considered eligible and included in the review if they met the following criteria regarding participants (P), intervention (I), comparator (C), outcomes (O), and study design (S): P—adult men or women (age ≥18 years) diagnosed with PanCa (stages I–IV) who were before or after surgical resection irrespective of therapy administration (such as chemotherapy, radiotherapy, and chemoradiation) or in palliative care; I—any form of exercise training including supervised or home-based programs with varied volumes and intensities; C—with or without a control group undertaking standard care or distinct exercise training from the intervention; O—including at least pre- and postintervention measurements for one or more outcomes of interest (ie, QoL, physical function, CRF, and psychological distress) in patients with PanCa undertaking exercise training; and S—all intervention-based studies including randomized controlled trials (RCTs)/nonrandomized controlled trials and uncontrolled trials.

Studies were excluded if (i) participants consisted of non-PanCa patients unless separate data were available (however, participants with pancreatic and ampullary adenocarcinoma were considered if they were treated similarly to those with pancreatic tumors in the trial); (ii) intervention included only stretch activity (exercise included); (iii) no data regarding the outcomes of interest were artifically reported; or (iv) only qualitative research was conducted.

Search Strategy

Electronic searching of all available records up until January 31, 2020, was undertaken in PubMed, Web of Science, PsycINFO, Embase, CINAHL Plus, and Cochrane Library databases using controlled vocabulary and free-text terms (Supplemental Table 2, http://links.lww.com/MPA/A854). Standardized thesauruses or thesauri were used for the major concepts regarding population and intervention in each database were identified through respective subject headings search tool. Free-text terms were developed based on the predefined search question. All search terms and their combinations were piloted in the selected databases to ensure retrieval of as many relevant studies as possible. No limitations were imposed on search fields during electronic searching. In addition, a rerun of literature searching was conducted before data extraction and synthesis to identify any relevant late-published studies. Beyond database searching, additional methods of literature searching were also used to ensure further identification of eligible studies. For example, the reference lists of identified original studies and reviews were checked. Moreover, publication alerts were set up in PubMed in October 2019 using MeSH terms (ie, pancreatic neoplasms) and 2 groups of free-text terms for population and intervention, respectively.

Selection Strategy

Records yielded from electronic searching were exported and stored in EndNote (X9.3.2, Clarivate, London, UK). Duplicates were removed either automatically (using EndNote) or manually. After deduplication, the titles and abstracts of the remaining records were first reviewed by H.L. to exclude irrelevant articles. Subsequently, peer-reviewed journal articles with full text and published in English were further reviewed by H.L. and D.R.T. independently for eligibility against the predefined inclusion and exclusion criteria. A third reviewer (C.T.) was used when disagreement occurred, and consensus among the 3 reviewers was achieved.

Data Extraction

Data extraction of all included articles was performed by 2 reviewers (H.L. and P.L.) independently using a preestablished form that was developed based on a template recommended by the Cochrane Effective Practice and Organization of Care group. This form was piloted tested by H.L. to ensure all relevant information could be captured. The following data were extracted from all included articles: general study information (such as name of the first author, country, and year of publication), study design, study setting, participant and intervention characteristics, data collection methods, and outcomes of interest for each group/participant. Any discrepancies on extracted data were resolved by discussion between H.L. and P.L., and an agreement was achieved for all data items.

Risk of Bias (Methodological Quality) Assessment

Risk of bias assessment of all included studies was evaluated using the McMaster University Critical Appraisal Tool (CAT) for Quantitative Studies due to the diversified quantitative research designs of the included studies. The CAT includes 14 questions that cover the domains of study purpose, literature review, study sample, outcome measure, intervention, results, and conclusions. Each question was rated as “yes,” “no,” or “not addressed” depending on how well the study met the criterion of the question, in which “yes” was conferred 1 point, whereas “no” and “not addressed” equaled 0 points (pts). A sum score was calculated for each study based on the applicable questions in the CAT, with higher scores indicating higher methodological quality. The risk of bias assessment for all included studies was performed independently by 2 reviewers (H.L. and P.L.). Any disagreements between H.L. and P.L. were resolved by consensus through discussion with a third reviewer (D.R.T.).

RESULTS

Study Selection

A total of 6498 records were identified through all sources, and the process of study selection is shown in Figure 1. After deduplication with EndNote, 5671 records were screened by titles and abstracts. After removal of irrelevant records (n = 5239) and further deduplication manually (n = 389), the full text of 43 articles were evaluated for eligibility. Of these, 34 articles were excluded based on the predefined inclusion and exclusion criteria. No additional records were identified through a rerun of database searching undertaken before the data extraction and synthesis. Therefore, 9 articles based on 7 trials were finally included.
in this review, in which 2 trials reported the outcomes of interest separately in 2 articles.

Risk of Bias Assessment

The risk of bias assessment of the included trials is presented in Table 1. For trials with more than one publication included, the risk of bias was appraised based on the information provided in the first published article. In accordance with the questions applicable to different research designs in the McMaster CAT, there were various levels of bias in all of the included trials except for the trial by Ye et al that scored 14 of 14 pts (100%). Regardless of research design, all included trials satisfied the criteria regarding study purpose, research justification, participants and intervention description, data analysis methods, and clinical significance. In addition, 6 of the 7 included trials scored positively in items 4a (reliability of outcome measures), 4b (validity of outcome measures), and 7 (appropriateness in conclusion). In contrast, the major methodological concerns were observed in items 3b (justification of sample size) and 5c (control of cointervention), which were present in and respectively.

Study Characteristics

Study characteristics of the included publications are presented in Table 2. The findings of the included trials were published between 2012 and 2019, with 3 trials conducted in the United States, 2 in Germany, and 1 in Australia and the United Kingdom, respectively. Of the 7 trials, 2 were RCTs, 1 a single-arm trial, 3 were case reports, and 1 was a case series. In addition, the included trials were conducted either before or after surgery, except for the case report by Niels et al, which was undertaken across different settings (ie, palliative care, neoadjuvant and adjuvant settings).

Participant Characteristics

The number of participants in the case series, single-arm trial, and RCTs ranged from 3 to 102 with both men and women included, whereas each of the 3 case reports included only 1 male patient. In addition, the sample size involved in the trial by Ngo-Huang et al differed in its 2 published articles (ie, n = 20 and 50) due to further recruitment after the initial publication. The age range of participants was 38 to 91 years. However, 2 trials with 4 publications only reported the mean age standard deviation (SD) of the group.
The included trials39–44,46 comprised patients with stage I–IV PanCa. Of them, however, only 2 patients were diagnosed with metastatic disease, with 1 in the case report by Niels et al42 and 1 in the RCT by Wiskemann et al.43 Two trials39,44 contained 5 patients with ampullary or periampullary cancer out of a sample size of 10239 and 43,44 respectively, including ampullary ductal, bile duct, and duodenal adenocarcinoma. Three trials40,43,44,47 consisted of patients with cancer cachexia or sarcopenia (with or without frailty).50 Specifically, Wiskemann et al43,44,47 reported that more than half (55.8\%) of the participants were sarcopenic,49 and of these, 8 were classed as frail (as per Fried’s phenotype criteria for frailty).50

Intervention Characteristics

The characteristics of the exercise interventions are shown in Table 2. Four trials40,42,43,45,46 offered supervised combined resistance and aerobic exercise, 1 trial42 used supervised or home-based resistance training, and 2 trials40,41 prescribed structured home-based walking with or without resistance training. However, in the case reports by Cormie et al40 and McLaughlin et al,42 patients were also encouraged to perform additional home-based aerobic exercise to supplement clinic sessions with the goal of accumulating weekly 150 minutes of moderate-intensity or 75 minutes of vigorous-intensity exercise.51 Moreover, in the case report by McLaughlin et al,42 low-intensity (60% of maximum heart rate) ergometer cycling during the 12 weeks of chemotherapy infusion was performed.

The length of the exercise interventions ranged from 12 to 35 weeks39–42,44,46 or was reported as spanning the period of neoadjuvant therapy.43 All trials except for Yeo et al39 required participants to exercise 2 to 3 times per week with the sessional duration of at least 60 minutes. Resistance training was reported as completing 5 to 10 exercises in each session using machines or resistance bands that cover the major muscle groups of the upper and lower body.40–42,44–46 In addition, 1 to 3 sets of 6 to 20 repetitions/set were performed for each resistance exercise at an intensity of 50\% to 85\% of 1 repetition maximum (1RM) or a rating of perceived exertion (RPE) of 12 to 16 (Borg 6–20 Scale).39–40,42–46

With regard to the aerobic exercise component, 8 to 20 minutes of interval or continuous exercise training (such as walking and cycling) were performed at an intensity of 65\% to 80\% of maximum heart rate or an RPE of 11 to 13.40–42,46

In addition to the exercise program, 3 trials41,43,44 offered participants complementary nutritional support/counseling. Of them, however, only the trial by Ngo-Huang et al41 provided a detailed description of their nutritional support that included at least 20 g of protein intake via a high-protein meal or snack within an hour after completion of the resistance training session and guidance on food selection.

Outcomes of Interest

The effects of the interventions on QoL, CRF, psychological distress, and physical function are shown in Table 2.

Quality of Life

All included trials39–40,42,43,45–47 examined QoL using various scales. Of these trials, inconsistent findings were reported in the RCTs39,45 and the single-arm trial.47 Yeo et al39 measured QoL using the 36-item Short Form Health Survey (version 2.0) (SF-36) physical component summary (PCS) and mental component summary (MCS), and reported statistically (\(P \leq 0.05\)) and clinically significant changes in the PCS (5 pts) and MCS (6 pts)50,52–54 in the exercise group. In the three-arm RCT reported by Steindorf et al,45 the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core module (EORTC QLQ-C30) and the PanCa specific module (QLQ-PAN26) were used, with no significant difference observed at the end of the 6-month study. However, at 3 months, there was a significant difference (\(P = 0.016\)) in the QLQ-C30 global health status/QoL scale between the pooled exercise groups and the
Study, Year, Country	Design	Study Setting	Sample Size by Group, Sex, Age/Mean Age (SD) (Range), Type (% of PanCa), and Staging	Exercise Program	Outcomes	Measures (Clinically Relevant Changes)	Results	Feasibility Profile
Controlled trials								
Yeo et al, 2012.39	RCT ADJ	Ex: 54, M & F, 66 y (38–87 y), PanCa (90%), bile duct and duodenal, stage I–III UC: 48, M & F, 67 y (48–91 y), PanCa (94%), bile duct and duodenal, stage I–III	Type: Walking Length: 3 mo Frequency: progress to 3–5 sessions/wk Duration: progress to 20–40 min/session Volume: progression to 10–30 min of brisk walking/session Intensity: not predetermined and untracked Setting: home Supervision: no	Postsurgery (baseline), and 3–6 mo after discharge	– SF-36 (PCS ↑5 pts, MCS ↑6 pts) – FACIT-F (total score ↑9 pts); FVAS (↓1.3 pts)	– QoL↑† – CRF↑†	No intervention-related AEs; Recruitment rate: 93% Retention rate: 76% (Ex) vs 73% (UC)	
Wiskemann et al, 2019.44	RCT ADJ	Ex1: 9, M & F, 63 (6.4) y, PanCa (78%) and bile duct, stage I–II Ex2: 20, M & F, 61 (8.7) y PanCa (95%) and bile duct stage I–IV UC: 14, M & F, 58 (8.2) y, PanCa (86%), bile duct and ampullary ductal, stage I–II	Type: resistance training Length: 6 mo Frequency: 2 sessions/wk Duration: 60 min/session Volume: 5–8 exercises, 1–3 sets/exercise with 8–20 repetitions/set Intensity: 50%–80% of 1RM (Ex1) or an RPE of 14–16 (Borg 6–20 scale) (Ex2) Setting: exercise facility (Ex1) or home (Ex2) Supervision: yes (Ex1) or no (Ex2)	Pre- and postintervention	– Isokinetic and handheld dynamometer – CPET (VO2max ↑0.1 L/min and ↑0.2 L/min in Ex1 and Ex2, respectively); 6MWT	– Muscle strength↑§ – Cardiovascular fitness ↔	No intervention-related AEs; Recruitment rate: 21% Retention rate: 75% (Ex1) vs 71% (Ex2) vs 77% (UC). Attendance rate: 64% (Ex1) vs 78% (Ex2)	
Steindorf et al, 2019.45	RCT ADJ	As above (see Wiskemann et al, 2019)	As above (see Wiskemann et al, 2019)	Preintervention (baseline), 3 (T1) and 6 mo (T2)	– EORTC QLQ-C30 (the global health status QoL scale ↑11.5 pts at T1 for the pooled Ex group); EORTC QLQ-PAN26 (pancreatic pain: ↓10.3 pts (T1) and ↓8.3 pts (T2) for Ex2; indigestion: ↓9.3 pts (T1) and ↓16.7 pts (T2) for Ex1; body image: ↓10.8 pts (T1) and ↓11.9 pts (T2) for Ex2) – MFI (for the pooled exercise group physical fatigue ↓3.3 pts (T1) and ↓2.6 pts (T2), and reduced activity ↓2.1 pts (T1))	– QoL↑†(T1), ↔(T2) – General fatigue ↔ (T1), ↔(T2); physical fatigue ↑(T1), ↔(T2); mental fatigue ↔(T1), ↔(T2); reduced activity ↑(T1), ↔(T2); reduced motivation ↑(T1), ↔(T2)	As above (see Wiskemann et al, 2019) except for retention rate (±68%) in Ex2 reported differently	
Uncontrolled trials

Authors	CR	ADJ	Ex:	M & F, (9.9) y, PanCa (100%), potentially resectable	No control arm	Type: resistance (R) + walking (W)	Length: median of 17 wk (range, 5–35 wk) over the preoperative period	Frequency: at least 2 (R) or 3 (W) dwk	Duration: at least 60 min/d	Volume: 8 exercises, 3 sets/exercise, 8–12 repetitions/set; (W) at least 20 min/d	Intensity: RPE of 12–13 (Borg 6–20 scale)	Setting: home	Supervision: no	Preintervention (baseline), 10-m walk test (gait speed 1.018 m/s at T1); Dynamic Gait Index (total score 11.2 pts at T1)	Functional ambulation (T1), (T2)	No intervention-related AEs; Retention rate at T1: 75% (50% at T2 because patients not amendable to surgery were excluded from postintervention assessment)
Cormie et al, 2014⁴⁰	CR	ADJ	Ex:	1, M, 49 y, PanCa (100%), stage II	No control arm	Type: resistance (R) + aerobic (A) exercise	Length: 6 mo	Frequency: 2 sessions/wk	Duration: 60 min/session	Volume: (R) 10 exercises, 2–3 sets/exercise; (A) 15–20 min walking and cycling	Intensity: (R) 6–12RM; (A) 65%–80% MHR with an RPE of 11–13 (Borg 6–20 scale)	Setting: exercise clinic and home (accumulating additional 150 min of walking and/or cycling per wk)	Supervision: mixed⁹	Preintervention (baseline), 3 (T1) and 6 mo (T2)	SF-36 (PCS ↑8.3 pts and ↑12.3 pts, MCS ↑11 pts and ↑17.9 pts at T1 and T2, respectively); FACT-Hep (total score ↑31 pts and ↑37 pts at T1 and T2, respectively)	No intervention-related AEs; Attendance rate: 73%
Ngo-Huang et al, 2017⁴¹	SAT	NAJ	Ex:	20, M & F, 64 (9.9) y, PanCa (100%), stage II	No control arm	Type: resistance training (R) + walking (W)	Length: median of 17 wk (range, 5–35 wk) over the preoperative period	Frequency: at least 2 (R) or 3 (W) dwk	Duration: at least 60 min/d	Volume: (R) 10 exercises, 3 sets/exercise, 8–12 repetitions/set; (W) at least 20 min/d	Intensity: RPE of 12–13 (Borg 6–20 scale)	Setting: exercise clinic and home (accumulating additional 150 min of walking and/or cycling per wk)	Supervision: mixed⁹	Preintervention (baseline), 3 (T1) and 6 mo (T2)	SF-36 (PCS ↑8.3 pts and ↑12.3 pts, MCS ↑11 pts and ↑17.9 pts at T1 and T2, respectively); FACT-Hep (total score ↑31 pts and ↑37 pts at T1 and T2, respectively)	No intervention-related AEs; Attendance rate: 73%

(Continued on next page)
Study, Year, Country	Design	Sample Size by Group, Sex, Age/Mean Age (SD) (Range), Type (% of PanCa), and Staging	Exercise Program	Outcomes
Niels et al, 2018,42	CR	Palliative + NAJ + ADJ Ex: 1, M, 46 y, PanCa (100%), stage IV No control arm	Type: resistance (R) + aerobic (A) exercise	Measures (Clinically Relevant Changes)
		Frequency: 2 sessions/wk Duration: unspecified Volume: (R) 6 exercises, 2 sets/exercise, 8-12 repetitions/set; (A) 2 sets of ergometer training, 4-10 min/set		Results
		Intensity: (R) 70%–80% of IRM; (A) 70%–80% MHR with an RPE of 6–7 (Borg 0–10 scale)		Feasibility Profile
		Setting: unspecified Supervision: yes		No intervention-related AEs
		Type: resistance + aerobic exercise		Information or data regarding AEs was not provided; No eligible patients recruited within 8 mo: 3; Percentage of wk with at least 2 sessions attended weekly against the total wk involved: 85%
		Length: over the neoadjuvant therapy		
		Frequency: 2–3 sessions/wk Duration: 60 min/session Volume: 45 min of combined aerobic and resistance exercises		
		Intensity: SS85% of heart-rate reserve or RPE of 7 (Borg 0–10 scale)		
		Setting: fitness facility Supervision: yes		
		Type: resistance + aerobic exercise		QoL (T1), (T2)
		Length: 12 wk	FACT-F (total score	CRF (T1), (T2)
		Frequency: 2 sessions/wk Duration: unspecified Volume: (R) 8 exercises, 3 sets/exercise, 12 repetitions/set; (A) 15 min of continuous cycling	FACT-F (total score	Psychological distress (T1), (T2)
		Intensity: (R) 60% of IRM; (A) 70% of MHR	15 pts at T1 and T2	Depression (T1), (T2)
		Setting: gym, home (accumulating additional 150-min of moderate intensity or 75-min of vigorous intensity exercise per week), and hospital (40 min of cycling during infusion at 60% of MHR)	CTS-D	Anxiety (T1), (T2)
		Supervision: mixed	FACT-HeP	Muscle strength (T1), (T2)
			Submaximal Astrand test	Cardiovascular fitness (T1), (T2)
			12RM tests	Functional ambulation (T1), (T2)
			SSTS	Muscle strength (T1), (T2)
			Stairclimb test; usual- and fast-paced 6-meter walk test	Muscle power (T1), (T2)
			6-in backward walk	Balance (T1), (T2), (T3)
controls, in addition, there were clinically significant improvements in the QLQ-PAN26 symptom scales for the supervised and home-based exercise groups, including pancreatic pain (>8 pts), indigestion (>9 pts), and body image (>10 pts). However, in the single-arm trial by Ngo-Huang et al. that used the Functional Assessment of Cancer Therapy–Hepatobiliary (FACT-Hep) questionnaire, no significant improvements were observed.

In the case reports and case series, positive changes in QoL outcomes were consistently reported. Cormie et al. used the SF-36 and the FACT-Hep questionnaires, and clinically relevant improvements were observed in the SF-36 PCS (>8 pts) and MCS (>11 pts), as well as in the FACT-Hep total score (>31 pts). Niels et al. used the QLQ-C30 with an improvement of ~17 pts in the global health status/QoL scale, suggesting a clinically meaningful improvement in the participant's QoL. In addition, Marker et al. and McLaughlin et al. assessed QoL using the FACT-General and the FACT-Hep questionnaire, respectively. Both trials reported a numerical or percentage increase in the total score of the questionnaire at various follow-up periods, and the increments (≥12 pts) in the trial by Marker et al. were of clinical significance.

Cancer-Related Fatigue

Five trials examined CRF using different scales. Yeo et al. used the Functional Assessment of Chronic Illness Therapy–Fatigue (FACT-F) scale and the Fatigue Visual Analog Scale (FVAS, 0–10), and reported statistically (P ≤ 0.05) and clinically significant changes in the exercise group for both measures (FACT-F: 9 pts; FVAS: 1.3 pts). At the midpoint of the 6-month trial by Steindorf et al., there were significant group differences (P < 0.03) in various fatigue dimensions measured by the Multidimensional Fatigue Inventory, including physical fatigue, reduced activity, and reduced motivation. In addition, the improvements in physical fatigue (≥2.5 pts) and reduced activity (≥2 pts) for the pooled exercise groups of the trial were clinically significant. In the remaining 3 trials, 43, 46, 47 CRF was assessed using the FACT-F, and all reported a higher score after the exercise intervention compared with baseline, indicating a reduction in fatigue, with the magnitude of change in the trials by Cormie et al. (≥28 pts) and Marker et al. (5 pts) being clinically important.

Psychological Distress

Four trials examined variables associated with psychological distress (including anxiety, depression, and somatization) using varied questionnaires that included the Brief Symptom Inventory-18, the Hospital Anxiety and Depression Scale (HADS), and the Center for Epidemiologic Studies Depression Scale. All of these trials reported an improvement in the related symptom scales across various time points, and the change score in the depression subscale of the HADS (≥3 pts) in the case report by Niels et al. was clinically meaningful.

Physical Function

A wide array of objectively-measured physical function parameters were examined in 6 trials, including muscle strength and power, cardiovascular fitness, functional ambulation, and balance. Five trials evaluated muscle strength using various methods. Wiskermann et al. used an isokinetic dynamometer and a handheld dynamometer in their 3-armed trial, with a significant group difference (P = 0.04) in isometric strength observed for knee extension favoring the home-based exercise group. In addition, the authors also reported a significantly greater isokinetic force of elbow flexors (P = 0.02) and elbow

Study	Design	Population	Interventions	Outcome Measures	Results
Ngo-Huang et al. 2014	Single-arm	United States	No intervention	FACT-Hep, QLQ-PAN26	No significant improvements
Marker et al.	Randomized controlled trial	United States	Exercise vs. control	FACT-General, FACT-Hep	Significant improvements
McLaughlin et al.	Randomized controlled trial	United States	Exercise vs. control	FACT-General, FACT-Hep	Significant improvements

When performing statistical analysis, it is important to consider the relevant MID values to determine clinical significance.
extremes ($P = 0.01$) in the supervised exercise group compared with controls. The remaining 4 trials, 40, 43, 46, 47 used either a 1RM, a 12RM, or a grip strength test, with three 40, 42, 46 reporting enhanced muscle strength across various follow-up periods, and the case report by Niels et al 44 reporting a clinically relevant improvement in chest press (>15.6 kg) and leg extension (26.7 kg) strength. 45

In addition, Marker et al 43 in their case series of 3 patients exercising during neoadjuvant therapy (chemotherapy and radiotherapy) reported an improvement in grip strength before surgery.

Four trials 40, 43, 46, 47 measured lower-limb muscle power using either the 5-repetition sit-to-stand (5STS) or the 30-second sit-to-stand test (30STS), and all reported an improvement. Within these trials, Ngo-Huang et al 43 reported a significant within-group change ($P = 0.039$) in participants after preoperative exercise (mean duration of 16 weeks); however, the change was not significant in their first publication, 41 which involved a smaller sample size. In addition, clinically relevant improvements were observed in Cormie et al 40 using the 5STS (time reduced 2.2 seconds) 44 and in Marker et al 43 using the 30STS (6 more repetitions) 45 at varying time points.

All trials but one 43 examined cardiovascular fitness using either a performance-based test or a laboratory test alone or in combination and reported varying magnitudes of gains. Ngo-Huang et al 43 reported a significant within-group change ($P = 0.001$) in the 6-minute walk test, with the improvement of 25.7 m clinically meaningful. 46 In addition, in the 3-arm RCT by Wiskemann et al 44, the improvement in maximal oxygen uptake for the exercise groups (0.1 and 0.2 L/min) measured by the cardiopulmonary exercise test (CPET) also exceeded the MID of 0.05 L/min, 57, 67 although the gains were not statistically significant. Of the remaining 4 trials, 40, 42, 43, 46 clinically relevant improvements were observed by Cormie et al 40 using the 400-m walk test (time reduced by 43.3 seconds) 49 and Niels et al 42 using the CPET (>35-W improvement in maximal cycling capacity) 57, 68.

Four trials 40, 41, 43, 46 assessed functional ambulation using either the 10-m walk test alone or multiple tests (including stair climb, and usual- and fast-pace 6- and 10-m walk). All of the trials 40, 41, 43, 46 reported an improvement at midpoint assessments, and 29, 44 also demonstrated gains at postintervention. In addition, there was a clinically relevant improvement in the 10-m walk test (0.18 m/s faster) 70 in the single-arm trial by Ngo-Huang et al 43, although the change was not statistically significant.

With regard to balance ability, 3 trials 40, 41, 46 assessed dynamic balance with either the 6-m backward walk or the Dynamic Gait Index. In addition, Cormie et al 40 also measured postural balance using the Sensory Organization Test. All trials 40, 41, 46 demonstrated an improvement in balance, and the trial by Ngo-Huang et al 43 also showed a clinically meaningful improvement in the Dynamic Gait Index (1.2 pts). 71

Feasibility Profile

An overview of the feasibility profiles of the exercise interventions is presented in Table 2. All included trials explicitly reported no intervention-related adverse events (AEs) 39, 42, 44–47 or did not provide relevant description in the article. 43 However, there was a range of non-intervention-related AEs in some of the included trials mainly due to the aggressive nature of PanCa and treatment-related side effects. For example, multiple events of death ($n = 18$) and disease progression ($n = 3$) were reported in the trials by Yeo et al 39 and Wiskemann et al 44. In addition, AEs/symptoms including incisional hernia ($n = 1$), fracture ($n = 1$), deep vein thrombosis ($n = 1$), constipation ($n = 1$), nausea and vomiting ($n = 1$), and mucositis ($n = 1$) were reported in 3 trials. 42, 44, 46 All of the AEs resulted in temporary or permanent discontinuance of the exercise programs 39, 42, 44 or a reduction in the prescribed exercise intensity. 46

Apart from the incidence of AEs, other feasibility metrics were provided in the included trials. Yeo et al 39 and Wiskemann et al 44 reported a recruitment rate of 93% and 21%, respectively. In addition, Marker et al 43 also reported that only 3 participants were enrolled during an 8-month recruitment period, and as a result, the study was reported as a case series. The included RCTs 39, 44 and single-arm trial 41 reported dropouts, and the retention rates for the exercise groups were 76%, 39 75% and 71% (for supervised and home-based exercise groups, respectively), 43, 44 and 75% 41 (reported as 90% in the later published article 47 from the trial). However, reasons for dropouts were only provided in the RCTs, including death, 39, 44 disease progression, 44 treatment-related side effects, 44 further resection required, 44 and withdrawal. 39, 44 Participants’ attendance to the planned exercise sessions was reported in 3 trials, 40, 44, 46 and the attendance rates were 73%, 40 64% and 78% (for supervised and home-based sessions, respectively), 44 and 96%. 40 In addition, Marker et al 43 reported that for 85% of the prescribed weeks, participants attended at least 2 sessions per week. Only McLaughlin et al 46 reported the participant’s actual completed exercise intensity, that is, 100% and 69% for supervised sessions in nonchemotherapy and chemotherapy weeks, respectively, and 83% for exercise during infusion.

DISCUSSION

This is the first systematic review examining the multifaceted health-related effects of exercise in patients with PanCa. Given the current evidence, exercise training seems to be safe and feasible and may have a favorable effect on various physical and psychological outcomes in this patient group.

Despite a high number of non-intervention-related AEs, exercise training seems to be safe in patients with PanCa with exercise-related AEs reported across the studies. The high incidence of non-intervention-related AEs is not unexpected given the aggressive nature of PanCa and cumulative toxicities from cancer therapies. Importantly, the feasibility profile seemed favorable with a reported retention rate of 71% to 90% and exercise attendance of 64% to 96%. These findings are similar to a systematic review of exercise interventions in patients with advanced cancer 72 and an exercise study consisting of patients with malignant pleural mesothelioma 73 suggesting that patients with PanCa should not be excluded from exercise. However, the relatively short life expectancy and substantial adverse effects from treatment regimens highlight the need for regular and shorter assessment intervals in this patient group so that the shorter-term benefits of exercise can be determined. This may also facilitate the necessary modifications in an exercise program being made in a timely fashion.

Among the efficacy outcomes in current evidence, we found that exercise training was most consistently associated with improvements in psychological distress. Combined resistance and aerobic exercise reduced symptoms of depression and anxiety irrespective of the disease stage and study setting. 40, 42, 43, 46 This finding is in line with several systematic reviews and meta-analyses of patients with common cancers (predominantly breast). 74–76 Similarly, a recent study in patients with pleural mesothelioma also reported decreased anxiety after a short-term, home-based program that included resistance and aerobic exercise. 77 It has been well established that exercise and, in particular, aerobic exercise are associated with less rates of psychological distress symptoms. 57, 78 This may be associated with improved self-efficacy beliefs after exercise training, which is recognized as a positive contributor to high levels of mental health and psychological functioning. 79
In addition, a range of biological hypotheses have been proposed for the emotional benefits of exercise, including increase in body temperature and cerebral blood flow, and higher levels of endorphins.80

The evidence also suggests that exercise may be effective in attenuating CRF in patients with PanCa; however, the beneficial effect may be moderated by exercise mode. Aerobic exercise with or without resistance training lowered fatigue levels across varying follow-up periods, whereas the improvements in various dimensions of fatigue did not persist throughout the study period in the trial by Steindorf et al,45 which only provided resistance training. Cancer-related fatigue is one of the most common symptoms during chemotherapy and is suggested to be influenced by many constitutional, clinical, and environmental factors in patients with PanCa.81 There is no clear mechanistic explanation yet regarding the role of exercise in regulating CRF during active cancer treatment, although some reports suggest the possible association with improvements in chemotherapy-induced anemia82 and cardiorespiratory capacity83 after exercise training.

The effect of exercise on physical function seems promising. Various improvements were observed in muscle strength and power, cardiovascular fitness, functional ambulation, and balance. This is generally in concordance with exercise studies in other poor prognostic patients with cancer (including mesothelioma and esophageal) receiving active cancer treatments, where enhanced aerobic capacity and lower-limb muscle function were observed.73,84 The declines in muscle strength, balance, and functional ambulation at the postsurgery assessments in the single-arm trial45 and the case series46 may be associated with detraining and incomplete recovery after surgery. In addition, the nonsignificant finding in 5STS in the initial paper by Ngo-Huang et al41 is likely due to the small sample size, as a similar improvement was reported in the subsequent report47 with a larger sample size and was statistically significant.

Regarding the effect of exercise on QoL, the current findings are somewhat mixed. Most of the included studies demonstrated statistically or clinically significant improvements in various QoL scales.39,40,42,43,45,46 However, no effect was observed by Ngo-Huang et al in their single-arm trial.47 In addition, Steindorf et al45 only reported improvement of overall QoL at the midpoint of their 6-month trial. The inconsistent findings in the current evidence may be explained by the complex determinants of QoL in patients with PanCa. Evidence indicates that disease progression is associated with a deterioration of QoL in this patient group.85 There are also a number of other factors identified that may contribute to a worsening in QoL, such as treatments, comorbidities, and various demographic factors (including ethnicity, age, and educational level).16 Although the benefits of exercise in QoL for various patients with cancer (including advanced disease) have been well established,22,24,86,87 its effect for patients with PanCa requires further work and clarification.

There are some limitations of this systematic review. First, more than half of the trials included were uncontrolled studies, with 3 being case reports and 1 being a case series. Thus, caution should be taken when interpreting the findings of this review. In addition, a meta-analysis was not undertaken as less than 2 RCTs provided sufficient data on the same outcome measure, and the heterogeneity in exercise programs and measurement tools/instruments of the included studies was substantial. Lastly, the MID values of the outcome measures in patients with PanCa were limited, so the relevant values for patients with other cancers or clinical conditions were used to determine clinical significance. Nevertheless, the MID values used provide an indication of the meaningfulness of the changes observed in the outcome measures.

Despite these limitations, the preliminary benefits observed with current evidence may provide valuable insights for the management of PanCa. Of importance, the improvements in muscle strength and/or muscle power were reported in 3 studies,43,44,47 which consisted of a large proportion of patients with cachexia or sarcopenia and administered a multimodal intervention (ie, exercise training in combination with nutritional support). The disorders of cancer cachexia and sarcopenia have been well documented leading to progressive muscle weakness and functional impairments88 and are usually difficult to treat in patients with PanCa due to their complex pathophysiology.89

The promising initial findings warrant additional RCTs with larger sample sizes in patients with PanCa. It is particularly important to examine the effects of exercise on cancer-related outcomes to reinforce the role of exercise in this patient group. To date, there is only one study published reporting exercise being associated with normalized tumor vasculature.90 In addition, standardized reporting of AEs in ongoing trials and, in particular, in patients with advanced disease remains essential to confirm the safety of exercise in patients with PanCa. It would also be worthwhile to improve reporting of key exercise variables that are actually delivered (including volume, intensity, frequency, type, and duration) so that compliance can be determined, which is increasingly considered pivotal in exercise oncology research.91,92 Lastly, initial evidence suggests that sport-based programs are also associated with various benefits in patients with cancer (mainly prostate and breast).93 Therefore, investigating alternative physical activities other than traditional exercise training modes may prove beneficial in providing a wider array of activities in which patients with PanCa can safely participate to derive physical and psychological benefits and enhance QoL.

CONCLUSIONS

The current evidence suggests that exercise training is safe and feasible and has a beneficial effect on various physical and psychological outcomes in patients with PanCa. However, as patients with PanCa are an understudied patient group in current exercise oncology research, only a small number of trials were included in this review, with more than half of them being a case report or case series. In addition, there was vast heterogeneity of exercise programs and measurement instruments in the included studies. Therefore, additional RCTs with high methodological quality and homogeneous measurement instruments are required to consolidate and advance our findings.

REFERENCES

1. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391:1023–1075.
2. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
3. Collaborators GBDPC. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol Hepatol. 2019;4:934–947.
4. Halloran CM, Ghanekar P, Bosonnet L, et al. Complications of pancreatic cancer resection. Dig Surg. 2002;19:138–146.
5. Reyes-Gibby CC, Chan W, Abbruzzese JL, et al. Patterns of self-reported symptoms in pancreatic cancer patients receiving chemoablation. J Pain Symptom Manage. 2007;34:244–252.
6. Clark KL, Loscalzo M, Trask PC, et al. Psychological distress in patients with pancreatic cancer—an understudied group. Psychooncology. 2010;19: 1313–1320.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
14. Keane MG, Horsfall L, Rait G, et al. A case-control study comparing the
cancer.
13. Wolfgang CL, Herman JM, Laheru DA, et al. Recent progress in pancreatic
cancer.
12. Henderson SE, Makhijani N, Mace TA. Pancreatic cancer-induced
 cachexia and relevant mouse models.
Pancreas. 2018;47:937–945.
11. Ozola Zalite I, Zykus R, Francisco Gonzalez M, et al. Influence of cachexia
and sarcopenia on survival in pancreatic ductal adenocarcinoma: a
systematic review.
Pancreatology. 2015;15:19–24.
10. Kleeff J, Korc M, Apte M, et al. Pancreatic cancer.
9. Clauss D, Tjaden C, Hackert T, et al. Cardiorespiratory fitness and
muscle strength in pancreatic cancer patients.
Support Care Cancer. 2017;
25:2797–2807.
8. Diouf M, Filleron T, Pointet AL, et al. Prognostic value of health-related
quality of life in patients with pancreatic cancer.
CA Cancer J Clin. 2013;63:318–348.
7. Cooper AB, Slack R, Fogelman D, et al. Characterization of anthropometric
changes that occur during neoadjuvant therapy for potentially resectable
pancreatic cancer.
Ann Surg Oncol. 2015;22:2416–2423.
6. Akiuzi N, Shimizu K, Asai M, et al. Prevalence and predictive factors of
depression and anxiety in patients with pancreatic cancer: a longitudinal
study.
Jpn J Clin Oncol. 2016;46:71–77.
5. Wolfgang CL, Herman JM, Laheru DA, et al. Recent progress in pancreatic
cancer.
4. Henderson SE, Makhijani N, Mace TA. Pancreatic cancer-induced
 cachexia and relevant mouse models.
Pancreas. 2018;47:937–945.
3. Fearon K, Arends J, Baracos V. Understanding the mechanisms and
treatment options in cancer cachexia.
Nat Rev Clin Oncol. 2013;10:90–99.
2. Solheim TS, Laird BJA, Balstad TR, et al. A randomized phase II
feasibility trial of a multimodal intervention for the management of
cachexia in lung and pancreatic cancer.
J Cachexia Sarcopenia Muscle.
2017;8:778–788.
1. Naito T, Mitsunaga S, Miura S, et al. Feasibility of early multimodal
interventions for elderly patients with advanced pancreatic and
non-small-cell lung cancer.
J Cachexia Sarcopenia Muscle. 2019;
10:73–83.
28. Segal R, Zwaal C, Green E, et al. Exercise for people with cancer: a clinical
practice guideline.
Curr Oncol. 2017;24:40–46.
29. Hayes SC, Newton RU, Spence RR, et al. The exercise and sports science
Australia position statement: exercise medicine in cancer management.
J Sci Med Sport. 2019;22:1175–1199.
30. Campbell KL, Winters-Stone KM, Wiskemann J, et al. Exercise
guidelines for cancer survivors: consensus statement from international
multidisciplinary roundtable.
Med Sci Sports Exerc. 2019;51:
2375–2390.
31. Christensen JF, Simonsen C, Hofman P. Exercise training in cancer
care treatment.
Compr Physiol. 2018;9:165–205.
32. O’Neill L, Reynolds S, Sheil G, et al. Physical function in patients with
resectable cancer of the pancreas and liver—a systematic review.
J Cancer Surviv. 2020;14:527–544.
33. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for
reporting systematic reviews and meta-analyses of studies that evaluate
health care interventions: explanation and elaboration.
Ann Intern Med. 2009;151:W65–W94.
34. Cochrane Effective Practice and Organisation of Care (EPOC). Data
collection form [EPOC Resources for review authors]. 2013. Available at:
https://epoc.cochrane.org/resources/ePROC-resources-review-authors.
Accessed January 21, 2020.
35. Law M, Stewart D, Pollock N, et al. Critical review form - quantitative
studies. 2015. Available at: https://srs-mcmaster.ca/research/evidence-based-practice-research-group/#JCdGCOIe. Accessed April 10, 2020.
36. Klotz SGR, Schön M, Ketels G, et al. Physiotherapy management
of patients with chronic pelvic pain (CPP): a systematic review.
Physiother Pract. 2019;35:516–532.
37. Corsini N, Neylon K, Tian EJ, et al. Impact of treatment summaries for
cancer survivors: a systematic review.
J Cancer Surviv. 2020;14:
405–416.
38. Fernandez-Lazaro D, Mielgo-Ayuso J, Seco Calvo J, et al. Modulation of
exercise-induced muscle damage, inflammation, and oxidative markers by
curcumin supplementation in a physically active population: a systematic
review.
Nutrients. 2020;12.
39. Yeo TP, Burrell SA, Sauter PK, et al. A prospective postsection walking
program significantly improves fatigue and health-related quality of life
in pancreas and perianalympary cancer patients.
J Am Coll Surg. 2012;
214:463–475.
40. Cornie P, Spry N, Jasas K, et al. Exercise as medicine in the management
of pancreatic cancer: a case study.
Med Sci Sports Exerc. 2014;46:664–670.
41. Nog-Huang A, Parker NH, Wang X, et al. Home-based exercise during
preoperative therapy for pancreatic cancer.
Langenbecks Arch Surg. 2017;
402:1175–1185.
42. Niels T, Tomaneck A, Schneider L, et al. Exercise improves patient
outcomes in advanced pancreatic cancer patient during medical treatment.
Pancreat Disord Ther. 2018;8:193.
43. Marker RJ, Peters JC, Purcell WT, et al. Effects of preoperative exercise on
physical fitness and body composition in pancreatic cancer survivors
receiving neoadjuvant therapy: a case series.
Rehab Oncol. 2018;
36:E1–E9.
44. Wiskemann J, Clauss D, Tjaden C, et al. Progressive resistance training
to impact physical fitness and body weight in pancreatic cancer patients: a
randomized controlled trial.
Pancreas. 2019;48:257–266.
45. Steindorf K, Clauss D, Tjaden C, et al. Quality of life, fatigue, and sleep
problems in pancreatic cancer patients: a randomized trial on the effects of
exercise.
Dtsch Arztebl Int. 2019;116:471–478.
46. McLaughlin M, Christie A, Campbell A. Case report of exercise to
attenuate side effects of treatment for pancreatic cancer.
Case Rep Oncol.
2019;12:845–854.
47. Ngo-Huang A, Parker NH, Bruera E, et al. Home-based exercise prehabilitation during preoperative treatment for pancreatic cancer is associated with improvement in physical function and quality of life. *Integr Cancer Ther.*** 2019;18:1534735419894061.

48. Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. *Lancet Oncol.* 2011; 12:489–495.

49. Mourtantzis M, Prado CM, Lieffers JR, et al. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. *Appl Physiol Nutr Metab.* 2008;33:997–1006.

50. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. *J Gerontol A Biol Sci Med Sci.* 2001;56:M146–M156.

51. Physical Activity Guidelines Advisory Committee. *Physical Activity Guidelines Advisory Committee report.* Washington, DC: US Department of Health and Human Services; 2008.

52. Ware JE, Snow KK, Kosinski M, et al. *Quality of Well-Being Scale*: preliminary findings. *Social Sci Med.* 1996;43:1613–1619.

53. Hammerlid E, Taft C. Health-related quality of life in long-term head and neck cancer survivors: a comparison with general population norms. *Br J Cancer.* 2001;84:149–156.

54. Bunevicius A. Reliability and validity of the SF-36 Health Survey Questionnaire in patients with brain tumors: a cross-sectional study. *Health Qual Life Outcomes.* 2017;15:92.

55. King MT. The interpretation of scores from the EORTC Quality of Life Questionnaire QLQ-C30. *Qual Life Res.* 1996;5:555–567.

56. Osoba D, Rodrigues G, Myles J, et al. Interpreting the significance of changes in health-related quality-of-life scores. *J Clin Oncol.* 1998; 16:139–144.

57. Reni M, Braverman J, Hendifar A, et al. Evaluation of minimal important difference (MID) for the European Organisation for Research and Treatment of Cancer (EORTC) Pancreatic Cancer Module (PAN26) in patients with surgically resected pancreatic adenocarcinoma. *Ann Oncol.* 2019;30:262–262.

58. Steel JL, Eton DT, Cella D, et al. Clinically meaningful changes in health-related quality of life in patients diagnosed with hepatobiliary carcinoma. *Ann Oncol.* 2006;17:304–312.

59. Cella D, Eton DT, Lai JS, et al. Combining anchor and distribution-based methods to derive minimal clinically important differences on the Functional Assessment of Cancer Therapy (FACT) anemia and fatigue scales. *J Pain Symptom Manage.* 2002;24:547–561.

60. Khanna D, Pope JE, Khanna PP, et al. The minimally important difference for the fatigue visual analog scale in patients with rheumatoid arthritis followed in an academic clinical practice. *J Rheumatol.* 2008;35: 2339–2343.

61. Purcell A, Fleming J, Bennett S, et al. Determining the minimal clinically important difference criteria for the multidimensional fatigue inventory in a radiotherapy population. *Support Care Cancer.* 2010;18:307–315.

62. Lemay KR, Tulloch HE, Pipe AL, et al. Establishing the minimal clinically important difference for the Hospital Anxiety and Depression Scale in patients with cardiovascular disease. *J Cardiopulm Rehabil Prev.* 2019; 39:E6–E11.

63. Araújo Oliveira AL, Rebelo P, Paixão C, et al. Minimal clinically important difference using one-repetition maximum in COPD. *Eur Respir J.* 2019; 54:PA1205.

64. Jones SE, Kon SSC, Canavan JL, et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. *Thorax.* 2013;68:1015–1020.

65. Zanini A, Crisafulli E, D’Andria M, et al. Minimal clinically important difference in 30 second sit-to-stand test after pulmonary rehabilitation in patients with COPD. *Eur Respir J.* 2018;52.

66. Bohannon RW, Crouch R. Minimal clinically important difference for change in 6-minute walk test distance of adults with pathology: a systematic review. *J Eval Clin Pract.* 2017;23:377–381.

67. Puhlin MA, Chandra D, Mosenifar Z, et al. The minimal important difference of exercise tests in severe COPD. *Eur Respir J.* 2011; 37:784–790.

68. Puente-Maestu L, Palange P, Casaburi R, et al. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. *Eur Respir J.* 2016;47:429–460.

69. Kwon S, Perera S, Pahor M, et al. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study). *J Nutr Health Aging.* 2009;13:538–544.

70. Tilson JK, Sullivan KJ, Cen SY, et al. Meaningful gait speed improvement during the first 60 days poststroke: minimal clinically important difference. *Phys Ther.* 2010;90:196–208.

71. Pardasany PK, Latham NK, Jette AM, et al. Sensitivity to change and responsiveness of four balance measures for community-dwelling older adults. *Phys Ther.* 2012;92:388–397.

72. Heywood R, McCarthy AL, Skinner TL. Safety and feasibility of exercise interventions in patients with advanced cancer: a systematic review. *Support Care Cancer.* 2017;25:3031–3050.

73. Olivier C, Grosbois JM, Cortot AB, et al. Real-life feasibility of home-based pulmonary rehabilitation in chemotherapy-treated patients with thoracic cancers: a pilot study. *BMJ Cancer.* 2018;18:178.

74. Craft LL, Vaniterson EH, Helenowski IB, et al. Exercise effects on depressive symptoms in cancer survivors: a systematic review and meta-analysis. *Cancer Epidemiol Biomarkers Prev.* 2012; 21:5–19.

75. Carayol M, Bernard P, Boische J, et al. Psychological effect of exercise in women with breast cancer receiving adjuvant therapy: what is the optimal dose needed?. *Ann Oncol.* 2013;24:291–300.

76. Yeh ML, Chung YC, Hsu MYF, et al. Quantifying psychological distress among cancer patients in interventions and scales: a systematic review. *Curr Pain Headache Rep.* 2014;18:399.

77. Wipfli BM, Rethorst CD, Landers DM. The anxiolytic effects of exercise: a meta-analysis of randomized trials and dose-response analysis. *J Sport Exerc Psychol.* 2008;30:392–410.

78. Rethorst CD, Wipfli BM, Landers DM. The antidepressive effects of exercise: a meta-analysis of randomized trials and dose-response analysis. *J Sport Exerc Psychol.* 2008;30:392–410.

79. Schonfeld P, Brailovskaia J, Bieda A, et al. The effects of daily stress on panic attacks: a pilot study. *Clin Health Psychol.* 2017;8:7.

80. Rethorst CD, Wipfli BM, Landers DM. The antidepressive effects of exercise: what is the optimal dose needed?. *Ann Oncol.* 2013;24:291–300.

81. Wipfli BM, Rethorst CD, Landers DM. The antidepressive effects of exercise: a meta-analysis of randomized trials and dose-response analysis. *J Sport Exerc Psychol.* 2008;30:392–410.

82. Di Marco M, Rubbi I, Baldi A, et al. Evaluation of fatigue in patients with pancreatic cancer receiving chemotherapy treatment: a cross-sectional observational study. *Acta Biomed.* 2018;89:18–27.

83. Mohamady HM, Elsisi HF, Aneis YM. Impact of moderate intensity exercise on inflammatory biomarkers in high-risk patients with breast cancer: a randomized clinical trial. *J Adv Res.* 2017;8:7–12.

84. Ahlberg K, Ekman T, Gaston-Johansson F, et al. Management of cancer-related fatigue in adults. *Eur Respir J.* 2003;18:385–397.

85. Marschner N, Zacharias S, Lordick F, et al. Association of disease progression with health-related quality of life among adults with breast, lung, pancreatic, and colorectal cancer. *JAMA Netw Open.* 2020; 3:e200643.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
86. Gerritsen JK, Vincent AJ. Exercise improves quality of life in patients with cancer: a systematic review and meta-analysis of randomised controlled trials. *Br J Sports Med.* 2016;50:796–803.

87. Peddle-McIntyre CJ, Singh F, Thomas R, et al. Exercise training for advanced lung cancer. *Cochrane Database Syst Rev.* 2019;2:CD012685.

88. Dunne RF, Loh KP, Williams GR, et al. Cachexia and sarcopenia in older adults with cancer: a comprehensive review. *Cancers (Basel).* 2019;11.

89. Peixoto da Silva S, Santos JMO, Costa ESMP, et al. Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. *J Cachexia Sarcopenia Muscle.* 2020;11:619–635.

90. Florez Bedoya CA, Cardoso ACF, Parker N, et al. Exercise during preoperative therapy increases tumor vascularity in pancreatic tumor patients. *Sci Rep.* 2019;9:13966.

91. Nilsen TS, Scott JM, Michalski M, et al. Novel methods for reporting of exercise dose and adherence: an exploratory analysis. *Med Sci Sports Exerc.* 2018;50:1134–1141.

92. Fairman CM, Nilsen TS, Newton RU, et al. Reporting of resistance training dose, adherence, and tolerance in exercise oncology. *Med Sci Sports Exerc.* 2020;52:315–322.

93. Luo H, Galvao DA, Newton RU, et al. Sport medicine in the prevention and management of cancer. *Integr Cancer Ther.* 2019;18:1534735419894063.