In vitro seed germination of *Cymbidium aloifolium* (L.) Sw., a potential medicinal Orchid from Eastern Ghats of Tamil Nadu, India

Philip Robinson, J. · Jyoti Prasad Kakati · Sebastinraj, J. · Suriya K

Received: 1 November 2016 / Revised: 2 December 2016 / Accepted: 13 December 2016

© Korean Society for Plant Biotechnology

Abstract *Cymbidium aloifolium* (L.) Sw. is an exquisite epiphytic orchid of the Kolli Hills (Eastern Ghats) of Tamil Nadu in Southern India. It is fast disappearing from its natural habitats due to deforestation and low germination rate in natural habitat. In the present study, an attempt was made to germinate the seeds from un-dehisced capsule of *Cymbidium aloifolium* (L.) Sw under in vitro condition. The seed germination and protocorm development were recorded in three different well known media namely Knudson C (KC), Half strength Murashige & Skoog (1/2 MS) and Vacin & Went (VW) media. The highest seed germination of 90% was observed KC basal media after 30th days whereas germination percentages were 40% and 30% on 1/2 MS and VW media respectively. The well-developed protocorm were transferred to KC media supplemented with 6-Benzyl Amino Purine (BAP) and Naphthalene acetic acid (NAA) where BAP (1.0 mg/l) and NAA (1.0 mg/l) together were found to be optimum for the highest shoot formation. About 90% of the shoots found to be well rooted after transfer to the KC medium differently supplemented with 1.5 mg/l Indole-3-acetic acid (IAA) and 1.0 mg/l Indole-3-butyric acid (IBA). Though rooting also took place in the two basic media but the duration was longer when compared with the hormone-supplemented media. The rooted plantlets were hardened and kept under greenhouse conditions which can be relocated in natural habitats.

Keywords Protocorm, Orchids, KC, 1/2 MS, VW media, NAA, BAP, IAA and IBA

Introduction

Orchids are outstanding in many ways, like diverse shapes, colors and its medicinal values. They are marketed both as plants and as cut flowers and their production has been increased in recent years due to demand in the floriculture field (Tokuhara and Mii 1993, 2001; Chang and Chang 2000). *In vitro* culture is an important tool to save the species which faces various threats and extinction (Hey and Hey 1966). It can undermine the capacity of many developing countries to conserve resources and meet basic human needs. Increasing pressures due to population on land and other natural resources can aggravate the intensity of natural disasters such as flood and drought. Depletion of the Earth’s biological diversity has much more profound consequences than some other environmentally alarming. Owing to its horticultural significance, it is collected indiscriminately from the nature and as a result it is prone to vulnerable. The present study was undertaken with a view to develop and establish an efficient protocol for mass propagation and consequently commercial exploitation and conservation of this important indigenous orchid.

Hard and intelligent decisions are needed to save the valuable taxa from the vastly changing landscape. As part of an ex-situ conservation strategy, artificial propagation including micro-propagation is successfully employed for recovering certain other species having specific problems in conventional horticulture (Fay, 1994). The advantage of plant tissue culture for the conservation of endemic and endangered species lies in the fact that it makes use of small units without sacrificing ex-plant takes pressure off the wild populations and makes available large number of plants for restoration as well as for horticultural applications. Symbiotic germination methods were only used for a short time before being replaced by non-symbiotic germination procedures (Zeng et al., 2016). With non-symbiotic germination technology, thousands of seedlings could be raised to maturity from a single seed capsule.
also extremely important for vegetative propagation (Griesbach,
2002, Naing et al., 2010). Propagation in- vitro has been
successfully employed for the conservation of crop genetic
resources, particularly with those crops which are vegetative
propagated or possessing recalcitrant seeds, that cannot be
stored under conventional seed bank conditions (Dodds,
1997, Villalolos et al., 1991, Wilkins et al., 1982, Paek et al.,
2011)) while tissue culture is essentially used as a crisis
management tool for the multiplication of the existing
genotypes.

Cymbidium aloifolium (L). Sw. is an exquisite and
medically important epiphytic orchid of the Kolli Hills
(Eastern ghats) of Tamil Nadu in Southern India. The leaf
extract of the plant is also traditionally used to treat ear ache
(Syndhya et al., 2006). The leaf and root extracts are used to
treat asthma and paralysis among the tribal peoples of
Bangladesh (Mohammed et al., 2010, Naing et al., 2011). It is
disappearing at a rapid rate from its natural habitats due to
extensive collections by the orchid enthusiast. The plants
produce very minute seeds and lacks endosperm. Wind acts as
a vector for seed distribution and requires mycorrhizal
association for their germination. Hence, a fast method of
growing and conserving them in the green houses garners
much attention.

In-vitro cultures of orchid seeds have shown that various
species require different and often specific medium composition
for optimum germination and growth. However, the sequential
steps of development and histo-morphological changes from
embryo to seedling have been traced only in a few species,
including those of Vanu (Rao and Avadhani 1964), Cattleya
(Shushan, 1959), Cymbidium (Vij, 1986) and Geodorum (Jon
and Nirmalya, 2001).

Purpose of this article is to report our success in aseptic
seed germination of Cymbidium aloifolium (L). Sw. and to
trace the sequence of developmental changes that take place
from the onset of seed germination and development of
protocorm- like bodies (Plbs).

Materials and Methods

Preliminary assessment to select suitable medium for
germination

The mature undehisced capsules of Cymbidium aloifolium
(L). Sw. were collected from Kolli Hills (Eastern Ghats) of
Tamil Nadu, India and stored at 4°C for 2 days. These
capsules were utilized as seed resource for the further study.
Initially it was washed with mild detergent and then soaked in
15% (v/v) NaOCl augmented with Tween-80 for 15 min.
Capsules were again washed with fungicide (Bavistin) for 10
min. and subsequently rinsed five times with sterile distilled
water. The surface sterilized capsules were longitudinally
dissected and around 100±10 seeds were transferred into a
200 ml sterile glass jar containing 50ml of 0.8% (w/v)
agar-solidified KC, 1/2 MS and VW basal media. Effect of
Coconut water (10% v/v) and Peptone (0.2% w/v) were
studied in modified KC, 1/2 MS and VW media in which both
were supplemented separately. Exact number of seeds was
counted under a microscope after the successful transfer.

Plant cultures were maintained at 25°C±2°C for 12 h
photoperiod provided by White fluorescent lights, M/s:Philips
of 3000 lux intensity. Percentage of germination was
calculated using the following formula:

\[
\text{Percentage of Germination} = \frac{X - Y}{X} \times 100\%
\]

\(X = \text{Number of seeds inoculated}\)
\(Y = \text{Number of seeds germinated}\)

Assessment of suitable conditions for seedling and rooting
formation

The KC was used for proliferation of the protocorm based on
the obtained result (Table 1). In KC media 2% of sucrose
served as carbon source and additionally two different plant
growth regulators (PGRs) namely BAP and NAA were
supplemented to each type of medium in different combinations
as mentioned in the Table 2. The pH of the media was adjusted
to 5.3, followed by an autoclave at 121°C for 15 min under 15
lbs pressure. These cultures were maintained under a 16 h-
photoperiod at 25±2°C The experiment was performed in
triPLICATE and average number of shoots per protocorm was
determined after four weeks.

For the induction of root, the regenerated multiple shoots of
Cymbidium aloifolium were excised and a single shoot was
cultured on KC medium individually fortified with IAA and
IBA (0.5 to 2.5 mg/l) as mentioned in Table 3. The observations
were recorded with regular intervals of one week up to 16
weeks of culture and the obtained root number and their
length was recorded.

Hardening of the seedlings

Well-developed rooted shoots were taken out from the culture
vessels and washed under running tap water then the plantlets
were washed with fungicide solution. Individual regenerates
were placed onto net pots containing equal proportion of
charcoal (0.5 ~ 1.0 cm each), brick-gravels and coconut husk
as supporting materials. The plantlets were sprayed with
Table 1 Effect of different media on the germination and protocorm development in *Cymbidium aloifolium* (L)

Media employed for seed germination	% of germination	Time taken for initiation of germination (days)	Shoot growth (%)
1/2 MS – B	50	85	10
1/2 MS – CW	30	80	-
1/2 MS – P	20	90	-
KC – B	**90**	**65**	**50**
KC – CW	80	70	50
KC – P	70	75	40
VW – B	-	-	-
VW – CW	-	-	-
VW – P	-	-	-

B-Basal medium, CW-Coconut Water (10% v/v), P- Peptone (0.2%, w/v)

Table 2 Effect on BAP and NAA on the development of protocorm into microshoots and regeneration on KC medium

Hormone concentration (mg/l)	Mean number of shoots (M±SD)	Mean length (cm) of shoots (M±SD)	Mean number of roots (M±SD)
BAP			
0.5	1.3±1.34 lm	0.72±0.21 kl	0
1.0	2.0±1.34 i	0.54±0.37 mn	0
1.5	1.4±1.01 k	0.57±0.39 m	1.3±0.64 de
2.0	1.9±1.3 ij	0.80±0.30 h	1.4±0.48 cd
0.5	2.7±1.41 gh	0.73±0.34 ij	0
1.0	2.8±1.46 fg	1.32±0.14 de	0
1.5	4.8±1.46 b	1.46±0.28 c	1.6±0.19 c
2.0	3.2±2.00 ef	1.06±0.55 g	1.4±0.80 cd
0.5	4.5±1.24 bc	1.70±0.15 ab	2.5±1.02 b
1.0	**6.1±1.13 a**	**1.79±0.19 a**	**3.1±1.64 a**
1.5	3.8±0.97 d	1.2±0.31 f	1.6±0.66 c
2.0	3.4±1.42 de	1.4±0.26 cd	0

NAA			
0.5	1.7±0.90 cd	0.3±0.35 hi	
1.0	2.5±0.80 c	0.5±0.45 ef	
1.5	**3.8±0.97 a**	0.6±0.38 cd	
2.0	1.4±0.91 de	**1.74±0.20 a**	
2.5	1.2±0.60 ef	0.41±0.33 gh	
0.5	2.0±0.77 c	0.51±0.31 fg	
1.0	**3.8±0.97 a**	**1.3±1.13 b**	
1.5	1.4±0.8 de	0.6±0.21 e	
2.0	0.6±0.66 g	0.2±0.16 jk	
2.5	0.3±0.64 gh	0.16±0.16 bc	

Table 3 Effect of IAA and IBA on root induction in KC medium after 25th day of inoculation

Medium+ Hormone (mg/l)	Concentration (mg/l)	Mean root number (M±SD)	Mean root (cm) length (M±SD)
IAA	0.5	1.7±0.90 cd	0.3±0.35 hi
	1.0	2.5±0.80 c	0.5±0.45 ef
	1.5	**3.8±0.97 a**	0.6±0.38 cd
	2.0	1.4±0.91 de	**1.74±0.20 a**
	2.5	1.2±0.60 ef	0.41±0.33 gh
	0.5	2.0±0.77 c	0.51±0.31 fg
	1.0	**3.8±0.97 a**	**1.3±1.13 b**
IBA	1.5	1.4±0.8 de	0.6±0.21 e
	2.0	0.6±0.66 g	0.2±0.16 jk
	2.5	0.3±0.64 gh	0.16±0.16 bc

balanced fertilizers (1 g/l 17N-17P-17k) twice weekly. The transplanted plants were finally kept in the shade house for further acclimatization.

Statistical analysis

Data were recorded on the basis of different parameters subjected to analysis of variance (ANOVA) and mean values of treatments were compared by least significant difference (LSD).

Values are Mean ± SD (n = 10) of two independent experiments. Mean values followed by the same letter in a column are not significantly different as indicated by Duncan’s multiple range test (P = 0.05). Values within a column having the same alphabet are not statistically significant and sharing at least one letter are no significantly
Results and Discussion

The first sign of germination on the 30th day on KC basal medium was that the embryo turned into spherical form and was enclosed in dark yellow color. After a few days some adventive tissues appeared on their tips and the embryo ruptured at one of the poles and after a few days it showed 4-5fold increases in size with abundant chloroplasts and starch cells. The embryos by the 50th day exhibited a prominent zone of pro-meristemical cells and developed a pair of leaf primordial (Fig. 1).

The well-developed protocorm like bodies (PLbs) were inoculated with KC media augmented with BAP (1.0 mg/l) and NAA (1.0 mg/l) which yields High frequency of plant regeneration (Table 2). One of the primordial developed more rapidly than the other to produce an unequal pair of first embryogenic photosynthetic leaves. Simultaneously with the development of embryonic leaves at the proximal end of the embryo the marginal cells at the distal end of the embryo started giving rise to tubular and unicellular rhizoids.

The seeds are thin and transparent. The cells of seed coats are varied in size and shape. Such variations that were observed in the present study are in agreement with the observations noted by the previous workers (Clifford & Smith 1969; Ekanthappa, 1981). It has been earlier established that the nature of seed coat is of great taxonomic value within the Orchidaceae (Stoutamire, 1963, Kalimuthu et al., 2007)). Thus the early concept that the orchid seeds are sterile and or at least incapable of germination is no more valid (Arditti, 1967). That the germination of seeds of epiphytic orchids posed no problem has been pointed out by various workers (Stoutamire, 1964a; Stoutamire 1964b; Warcap 1971; Mc Intyre et al., 1972; Mc Intyre et al., 1974). However, they have indicated that difficulty was encountered in the germination
of terrestrial orchid seeds in contrast to those of epiphytic taxa.

The well-developed shoots were removed from the culture tubes and transferred to the rooting media. About 90% of the shoots rooted well after transfer to the KC medium supplemented with 0.2 mg/l IBA.

In the present investigation the developed plantlets were transferred into KC medium supplemented with IAA and IBA separately which was more essential for regeneration of roots. The similar results were obtained in Cymbidium kanran (Shimasaki & Uemoto 1990) and Dendrobium aequum (Philip et al., 2009). In Vanda coerulea the rooting efficiency varied with different concentrations of auxin such as IAA, IBA and NAA. The highest percentage of rooting was significant in 1/2 MS medium supplemented with IAA (1.5 mg/l) (Malabadi, 2004, Naing et al., 2010). In 1922, Lewis Knudson at Cornell University reported that the fungus was not required for germination if the seed was sown on agar containing appropriate salts and sugars. Hence Knudson C medium is still being used to germinate the seed of some species supplemented with the specific hormones.

Conclusion

The present investigation was mainly aimed at understanding the mode of seed germination and organogenesis of the developing seedling. Although different workers have suggested several nutrient media for orchids, three well-known media were tried in the present study to prove into the germination response of seeds selected species. While Knudson C medium promoted the germination of Cymbidium aloifolium better than other media like 1/2 MS and VC.

Acknowledgement

Authors are grateful to Dr. P. Ponmurugan, Professor and Head, Department of Biotechnology, K. S. R College of Technology, Tiruchengode for his encouragement and Dr. K. S. Rangasamy, Chairman, K. S. R. Group of Institutions for his support.

References

Arditti J, 1967. Factors affecting the germination of orchid Seeds. Bot. Rev. 33:1-97. Cell Dev. Biol. 28:1-4
Chang C, Chang WC, 2000. Effects of thidiazuron on bud development of Cymbidium sinense Wild in vitro. Plant Growth Regulator. 30:171-175

Clifford H T, Smith WK, 1969. Seed morphology and classification of orchidaceae. Phytomorphology. 19:133-139
Dodds JH, 1997. Introduction; conservation of plant genetic resources - the need for tissue culture; in Dodds JH (Ed) in vitro methods for conservation of plant genetic resources, chapman and Hall, London. pp 1-9

Ekanthappa KG, 1981. Studies in the orchidaceae. Ph.D Thesis. University of Mysore, Mysore, India.

Fay MF, 1994. In what situation is in vitro culture appropriate to plant conservation; Biodiversity and conservation, 3:176-183
Griesbach RJ, 2002 Development of Phalaenopsis Orchids for the Mass-market, Trends in new crops and new uses, J. Janick and A. Whiple Ed., ASHS press, Alexandria, VA
Hey GL, Hey MG, 1966. Raising rare orchids from seeds. In : DE Garmo LR (ed) Proc. 5th World Orchid Conf., pp. 35-38. Long Beach, USA
Jon RJ, Nirmalya B, 2001. Cultural requirements for in vitro seed germination, protocorm growth and seedling development of Geodorum denciflorum (Lam.) Schltr. Indian Journal of Experimental Biology 39:1041-1047

K. Kalimuthu, R. Senthilkumar and S. Vijayakumar 2007. In vitro micropropagation of orchid, Oncidium sp. (Dancing Dolls), African Journal of Biotechnology Vol. 6 (10), pp 1171-1174
Malabadi RB, Mulgund GS, Nataraja K, 2004. Efficient regeneration of Vanda coerulea, an endangered orchid using thidiazuron. Plant Cell, Tissue and Organ Culture, 76:289-293
Mc Intyre DK, Veitch GJ, Wringley JW, 1972. Australian terrestrial orchid from seed. Amer. Orchid. Soc. Bull. 41:1093-1097
Mc Intyre DK, Veitch GJ, Wringley JW, 1974. Australian terrestrial orchid from seed- II. Improvement in technique and further success. Amer. Orchid. Soc. Bull. 43:52-53
Mohammed R, Kabir TAAB, Rahman M, Hossan S, Khatun Z, Khatun A, Jahan R, 2010. Ethnomedicinal Practices among a Minority Group of Christians Residing in Mirzapur Village of Dinajpur District, Bangladesh. Advances in Natural and Applied Sciences, 4(1):45-51
Naing A.H, Park I S, Hwang Y. J, Chung J. D, and Ki Byung Lim, 2010. In Vitro Micropropagation and Conservation of Rhynchostylis retusa BL, Hort. Environ. Biotechnol. 51(5):440-444
Naing A.H, Myint K. T, Hwang Y.J, Park I.S, Chung J.D, and Lim K.B, 2010. Micropropogation and Conservation of the Wild Medicinal Orchid, Coelogyn cristata, Hort. Environ. Biotechnol. 51(2):109-114
Naing, A.H., Chung, J.D., Park, I.S. et al. Acta Physiol Plant (2011) 33:659

Kee Yoeup Paek, Eun Joo Hahn, and So Young Park, 2011. Micropropogation of Phalaenopsis Orchids via Protocorms and Protocorm-Like Bodies, Plant Embryo Culture: Methods and Protocols, Methods in Molecular Biology, vol. 710:293-306

Philip Robinson J, Balakrishnan V, John Britto S, 2009. In vitro seed germination and protocorm development of Dendrobium aequum Lindl. A rare orchid species from Eastern ghats of Tamil Nadu, Botany research International (2) 51(2):109-114
Rao AN, Avadhani PN, 1964. Some aspects of in vitro Culture of Vanda seeds. Proc. 4th world Orchid Conference, Singapore
Shimasaki K, Uemoto S, 1990. Micropropagation of a terrestrial Cymbidium species using rhizomes developed from seeds and pseudobulbs. Plant Cell Tiss. Organ Cult. 23:237-244
Shushan S, 1959. Developmental anatomy of an orchid, Cattleya Trimos in the Orchids: A scientific survey (Ed. C. L. Withener), Ronald Press, New York
Stoutamire WP, 1963. Terrestrial orchid seedlings. Australian Plants. 2:119-122
Stoutamire WP, 1964a. Terrestrial orchid seedlings - II. Australian Plants. 2:264-26
Stoutamire WP, 1964b. Seeds and seedlings of native orchids. MICH. BOT. 3:107-119
Sandhya B, Thomas S, Isabel W, Shenbagarathai R, 2006. Ethno medicinal plants used by the Valaiyan community of Piramilai Hills (Reserved Forests) Tamil Nadu, India- a Pilot Study, African Journal of traditional, Complementary and Alternative Medicine, 3(1):101-114
Songjun Zeng, Weichang Huang, Kunlin Wu, Jianxia Zhang, Jaime A. Teixeira da Silva, and Jun Duan, 2016. In vitro propagation of Paphiopedilum orchids, Crit Rev Biotechnol, Early Online: 1-14
Tokuhara K, Mii M, 1993. Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Reports. 13:7-11
Tokuhara K, Mii M, 2001. Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (orchidaceae). In vitro Cell Dev. Biol.-Plant. 37:457-461
Vij SP, 1986. Studies on growth and development of Cymbidium aloifolium Sw. seedlings in vitro. Biology, Conservation and culture of Orchids. pp 423-427
Villalolos VM, Ferreira P, Mora A, 1991. The use of biotechnology in the conservation of tropical germplasam, Biotech. Adv., 9:197-215
Warcap JH, 1971. Symbiotic germination of some Australian terrestrial orchids. New Physiol. 72:387-392
Wilkins CP, Bengochea T, Dodds JH, 1982. The use of in vitro methods for plant genetic conservation, outlook of Agri., 11:67-72