Integration of AHP-MOORA Algorithm in Green Supplier Selection in the Indonesian Textile Industry

Dana Marsetiya Utama*, Mochammad Samsul Asrofi, Ikhlasul Amallynda
Department Industrial Engineering, University of Muhammadiyah Malang, Jl. Tlogomas No. 246, 65144 Malang, East Java, Indonesia
*dana@ummm.ac.id

Abstract. In selecting suppliers, one approach that can be used to solve this problem is Multi-Criteria Decision Making (MCDM). MCDM involves several criteria with both quantitative and qualitative assessments. This research attempts to solve the Green Supplier Selection (GSS) problem by using the integration of Analytical Hierarchy Process (AHP) and Multi-Objective Optimization On The Basis Of Ratio Analysis (MOORA). AHP is used as the weighting of the GSS criteria and sub-criteria. Furthermore, MOORA is used to rank the best suppliers. This research was conducted in the textile industry in Indonesia. Eight criteria and 15 sub-criteria GSS are used to select eight suppliers. The results show that the product price has the most excellent weight in supplier selection. In addition, the AHP-MOORA method can be used in solving GSS problems.

Keywords: AHP, Green, Supplier Selection, MOORA

1. Introduction

Recently, the problem of the green supply chain has become a concern of researchers [1]. This problem must consider environmental aspects in solving the problem. One of the causes of green supply chain problems is supplier selection [2]. Green supplier selection (GSS) problems have received much attention from researchers [3] [4]. One of the challenges faced in the Green supply chain is the difficulty of choosing the right supplier of raw materials [5]. The right supplier can positively impact the producer, such as minimizing costs and maximizing service. In addition, reliable suppliers can improve the production process carried out [6].

Several studies on GSS have been carried out. Several integration procedures have proposed for GSS problems such as Analytical Hierarchy Process (AHP)-Simple Additive Weighting [7], AHP-Vikor [8], AHP-Entropy-Technique for order performance by similarity to ideal solution (TOPSIS) [9], Fuzzy AHP-Fuzzy Topsis [10], Fuzzy Topsis-Electre [11], Fuzzy AHP-Taguchi loss function [12], and analytic network process and improved gray relational analysis [13]. One of the critical sectors to be investigated is the textile industry. Several GSS studies with Multi-Criteria Decision Making (MCDM) were found in this sector, such as AHP [14], Topsis [15], grey system [16], and fuzzy topsis [17].

Based on previous research, GSS research in the textile industry sector is still rarely investigated. This research attempts to propose integrating the Analytical Hierarchy Process (AHP) method and the Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA) on GSS problems in the textile industry. The use of the AHP-MOORA method is effective in solving the problems of welding process selection [18], material selection [19], and risk assessment [20]. Unfortunately, AHP-MOORA has never been used to solve GSS problems. It is what motivates researchers to use AHP-MOORA for
GSS. In this study, AHP was chosen as a weighting method, while MOORA was used to determine alternative rankings suppliers.

2. Methods

2.1 Proposed GSS Procedure

In this section, the article outlines the proposed AHP-MOORA procedure for solving GSS problems. The AHP is used to weigh the criteria and sub-criteria. AHP weights are used in the MOORA method for determining supplier rankings. The AHP-MOORA integration framework for GSS problems can be seen in Figure 1.

The first stage in the GSS is the identification of the criteria and sub-criteria. Identification of criteria and sub-criteria based on GSS problems in the company. In addition, at this stage, the criteria and sub-criteria are identified for the type of criteria (benefit or cost). The second stage is to make a Pairwise Comparison for each criterion and sub-criterion. Pairwise comparison is used as input weighting of GSS AHP criteria and sub-criteria. The pairwise comparison rating scale used was 1-9 (1 indicating equal importance to 9 indicating absolute importance). The third stage is supplier assessment based on criteria and sub-criteria. Stage 4 is weighting the criteria and sub-criteria using AHP. The result of the pairwise comparison is made a matrix. The resulting matrix is normalized. From this normalization process, we can then know the weight of each criterion/sub-criterion (W_{ij}), according to equations (1). W_{ij} shows the weighted results. atj describes the row normalization matrix. n denotes the number of criteria being compared.

$$W_{ij} = \frac{a_{ij}}{n}$$

(1)

Each weighting must be calculated the consistency test. The consistency test procedure is obtained by determining the value of the consistency ratio (CR). The formula for determining CR is presented in equation (2)-(4). Data is consistent if the CR value is less than 10% (0.1). λ_{max} shows the maximum eigenvector. n denotes the number of criteria being compared. CI describes the consistency index. RI is the random consistency index.

$$\lambda_{max} = \frac{\Sigma a_{ij}}{n}$$

(2)

$$CI = \frac{(\lambda_{max} - n)}{(n-1)}$$

(3)

$$CR = \frac{CI}{RI}$$

(4)
In stage five is the ranking using MOORA. Supplier assessment in each criterion based on stage 3 is made a decision matrix. The MOORA decision matrix is shown in equation (5). Furthermore, the matrix that has been created is carried out Normalization (equation (6)), determination of the multi-objective optimization value (equation (7)), and followed by determining supplier rankings. x_{ij} shows the Alternative matrix i on criterion j, i describe as the sequence number of attributes or criteria, j denotes the supplier, and m represents the number of alternatives. W_{ij} shows the weight of the AHP calculation.

$$X = \begin{bmatrix} x_{11} & x_{12} & \ldots & x_{1n} \\ x_{21} & x_{22} & \ldots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{m1} & x_{m2} & \ldots & x_{mn} \end{bmatrix}$$ \hspace{1cm} (5)

$$X'_{ij} = \frac{x_{ij}}{\sqrt{\sum_{j=1}^{m} x_{ij}^2}}$$ \hspace{1cm} (6)

$$Y_i = \sum_{j=1}^{g} w_{ij} X'_{ij} - \sum_{j=g+1}^{n} w_{ij} X'_{ij}$$ \hspace{1cm} (7)

2.2 Data collection

The research was conducted on Indonesia's textile industry, which is located in Tulungagung, East Java. Eight suppliers were selected with supplier code A1 - A8. Respondents of this research are procurement managers who are also decision-makers. The GG criteria used can be seen in Table 1. The results of the pairwise comparison of criteria and sub-criteria can be seen in Table 2 to Table 8. Furthermore, supplier assessment data for each sub-criteria is presented in Table 9.

Table 1. Criteria for GSS problems

No	Criteria	Criteria code	Sub-criteria	Sub-Criteria Code	Type
1	Company Profile	CP	a) Relation	CP1	Benefit
			b) Performance history	CP2	Benefit
2	Quality	Q	a) Conformity of raw materials to specifications	Q1	Benefit
			b) Packaging neatness	Q2	Benefit
3	Cost	C	a) Price	C1	Cost
			b) Delivery Cost	C2	Cost
			c) Payment Method	C3	Benefit
			d) Discount	C4	Benefit
4	Delivery	D	a) The accuracy of the order quantity	D1	Benefit
			b) On-time delivery	D2	Benefit
			c) Distance	D3	Cost
5	Service	S	a) Replacement of damaged items	S1	Benefit
			b) Flexibility	S2	Benefit
6	Environment	E	a) Use of environmentally friendly materials	E1	Cost
			b) Environmental certification	E2	Benefit
3. Result and Discussions

Based on calculations using the AHP method, the results of the global weighting of each sub-criterion are presented in Figure 2. These results indicate that the C1 sub-criterion (price) has the highest weight, followed by the Q1 sub-criteria (Conformity of raw materials to specifications) and D1 (Accuracy of order quantity) and D2 (On-time delivery). These results confirm the research conducted by Baroto and Utama [7], which states that product prices have the most excellent supplier selection weight. Industries in developing countries are concerned with product prices because it is crucial for the industry's continuity. In addition, price affects short-term business profits. Furthermore, the criterion that has the next most significant weight is Conformity of Raw Materials to Specifications. Although low prices are an option, the industry also considers raw materials' suitability with specifications in selecting raw materials. Furthermore, environmental criteria are the criteria with the least weight. This research proves that the textile industry pays less attention to environmental aspects. It stands to reason that industry in developing countries has not yet paid attention to environmental aspects as the main criterion.

Table 2. Criteria Pairwise Comparison

Criteria	C	D	Q	CP	S	E
C	1	2	2	5	5	7
D	0.5	1	3	4	4	7
Q	0.5	0.33	1	5	3	5
CP	0.2	0.25	0.2	1	3	5
S	0.2	0.25	0.33	0.33	1	3
E	0.14	0.14	0.2	0.2	0.33	1

Table 3. Sub-Criteria Cost Pairwise Comparison

Sub-Criteria Cost	C1	C2	C3	C4
C1	1	4	4	2
C2	0.25	1	1	1
C3	0.25	1	1	2
C4	0.5	1	0.5	1

Table 4. Sub-Criteria Delivery Pairwise Comparison

Sub-Criteria Delivery	D1	D2	D3
D1	1	1	3
D2	1	1	3
D3	0.33	0.33	1

Table 5. Sub-Criteria Quality Pairwise Comparison

Sub-Criteria Quality	Q1	Q2
Q1	1	2
Q2	0.5	1

Table 6. Sub-Criteria Company Profile Pairwise Comparison

Sub-Criteria Company Profile	CP1	CP2
CP1	1	3
CP2	0.33	1

Table 7. Sub-Criteria Service Pairwise Comparison

Sub-Criteria Service	S1	S2
S1	1	1
S2	1	1
Table 8. Sub-Criteria Environment Pairwise Comparison

Sub-Criteria Environment	S1	S2
E1	1	1
E2	1	1

The results of AHP weighting are used to determine supplier rankings based on MOORA. The results of MOORA’s assessment for each supplier are presented in Table 10. The multi-objective value used by MOORA is the value of Y_i. The Y_i value is used to rank the alternatives based on the criteria used. The higher the Y_i value, the better the ranking of the alternatives. Based on Table 10, supplier A6 is first, while the last rank is filled by supplier A8. This study shows that supplier A6 is the selected supplier, followed by Supplier A7. A6 is a supplier that is close to the home industry. In addition, the raw material prices and shipping costs offered by A6 suppliers are competitive.

Figure 2. Sub-criteria weighting results with AHP

Table 9. Supplier assessment on each Sub-Criteria

Alternatives	A1	A2	A3	A4	A5	A6	A7	A8
C1	65.300	60.500	68.300	59000	63.700	60000	64000	62.500
C2	218.000	120.000	122.000	120.000	195.000	125.000	115.000	210.000
C3	5	3	4	4	3	4	4	4
C4	0.1	0	0.15	0	0.15	0.15	0	0
D1	3	5	3	4	4	4	5	3
D2	4	4	3	4	3	4	3	4
D3	30	20	22	19	30	20	22	31
Q1	5	3	4	4	5	4	3	4
Q2	3	3	3	3	3	3	5	3
CP1	3	3	4	4	3	3	4	3
CP2	4	3	4	4	4	4	3	4
S1	3	3	4	5	3	4	4	4
S2	3	3	4	4	5	4	4	3
E1	2	2	2	2	2	2	2	2
E2	2	2	2	2	2	2	2	2

Table 10. The Rankings GSS alternative

Alternative	Max	Min	Yi	Rank
A1	0.244	0.112	0.132	7
A2	0.250	0.090	0.159	4
A3	0.244	0.100	0.145	5
A4	0.253	0.088	0.165	3
A5	0.252	0.108	0.144	6
A6	0.265	0.091	0.175	1
A7	0.261	0.094	0.167	2
A8	0.232	0.109	0.123	8
4. Conclusion

This study aimed to develop procedures for selecting GSS using AHP and MOORA. The results showed that this study succeeded in proposing the AHP-MOORA integration procedure for GSS problems in Indonesia's textile industry. The results showed that the product price has the highest weight, followed by the suitability of raw materials with specifications. The results of the supplier ranking with MOORA show that supplier A6 gives the highest rating. These results indicate that the AHP-MOORA method can be used to solve the GSS. One of the limitations of this study is that the information for AHP and MOORA data is considered crisp. For further research, it can be developed for the characteristics of Fuzzy information.

References

[1] Ibrahim M F, Putri M M and Utama D M 2020 A literature review on reducing carbon emission from supply chain system: drivers, barriers, performance indicators, and practices IOP Conference Series: Materials Science and Engineering 722 012034
[2] Hsu C-W, Kuo T-C, Chen S-H and Hu A H 2013 Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management Journal of cleaner production 56 164-72
[3] Govindan K, Rajendran S, Sarkis J and Murugesan P 2015 Multi criteria decision making approaches for green supplier evaluation and selection: a literature review Journal of Cleaner Production 98 66-83
[4] Schramm V B, Cabral L P B and Schramm F 2020 Approaches for supporting sustainable supplier selection-A literature review Journal of Cleaner Production 123089
[5] Junior F R L, Osiro L and Carpinetti L C R 2014 A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection Applied Soft Computing 21 194-209
[6] Humphreys P, Wong Y and Chan F 2003 Integrating environmental criteria into the supplier selection process Journal of Materials processing technology 138 349-56
[7] Baroto T and Utama D M 2021 Integrasi AHP dan SAW untuk Penyelesaian Green Supplier Selection. In: Prosiding SENTRA (Seminar Teknologi dan Rekayasa), pp 38-44
[8] Utama D M 2021 Penyelesaian Green Supplier Selection Menggunakan Integrasi AHP dan VIKOR. In: Prosiding SENTRA (Seminar Teknologi dan Rekayasa), pp 31-7
[9] Freeman J and Chen T 2015 Green supplier selection using an AHP-Entropy-TOPSIS framework Supply Chain Management: An International Journal 20 327-40
[10] Çalık A 2021 A novel Pythagorean fuzzy AHP and fuzzy TOPSIS methodology for green supplier selection in the Industry 4.0 era Soft Computing 25 2253-65
[11] Qu G, Zhang Z, Qu W and Xu Z 2020 Green supplier selection based on green practices evaluated using fuzzy approaches of TOPSIS and ELECTRE with a case study in a Chinese Internet company International journal of environmental research and public health 17 3268
[12] Bera A K, Jana D K, Banerjee D and Nandy T 2021 A Decision-Making Framework for Green Supplier Selection Using FAHP and Taguchi Quality Loss Functions. In: Proceedings of the Fifth International Conference on Mathematics and Computing (Springer) pp 137-54
[13] Hashemi S H, Karimi A and Tavana M 2015 An integrated green supplier selection approach with analytic network process and improved Grey relational analysis International Journal of Production Economics 159 178-91
[14] Chan F T and Chan H K 2010 An AHP model for selection of suppliers in the fast changing fashion market The International Journal of Advanced Manufacturing Technology 51 1195-207
[15] Chen Y-J 2011 Structured methodology for supplier selection and evaluation in a supply chain Information Sciences 181 1651-70
[16] Baskaran V, Nachiappan S and Rahman S 2012 Indian textile suppliers' sustainability evaluation using the grey approach International Journal of Production Economics 135 647-58
[17] Jia P, Govindan K, Choi T-M and Rajendran S 2015 Supplier selection problems in fashion business operations with sustainability considerations Sustainability 7 1603-19
[18] Chaudhari P G, Patel P B and Patel J D 2018 Evaluation of MIG welding process parameter using Activated Flux on SS316L by AHP-MOORA method *materials today: proceedings* **5** 5208-20

[19] Patnaik P K, Swain P T R, Mishra S K, Purohit A and Biswas S 2020 Composite material selection for structural applications based on AHP-MOORA approach *Materials Today: Proceedings* **33** 5659-63

[20] Mete S 2019 Assessing occupational risks in pipeline construction using FMEA-based AHP-MOORA integrated approach under Pythagorean fuzzy environment *Human and Ecological Risk Assessment: An International Journal* **25** 1645-60