Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Haiser, Henry J, Kristen L Seim, Emily P Balskus, and Peter J Turnbaugh. 2014. “Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics.” Gut Microbes 5 (2): 233-238. doi:10.4161/gmic.27915. http://dx.doi.org/10.4161/gmic.27915.
Published Version	doi:10.4161/gmic.27915
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:14351165
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics

Henry J. Haiser1, Kristen L. Seim2, Emily P. Balskus2, and Peter J. Turnbaugh1,*

1Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University; Cambridge, MA USA; 2Department of Chemistry and Chemical Biology, Harvard University; Cambridge, MA USA

Keywords: digoxin, Eggerthella lenta, RNA-seq, gnotobiotics, metagenomics, pharmacokinetics, human microbiome

*Correspondence to: Peter J Turnbaugh; Email: pturnbaugh@fas.harvard.edu
Submitted: 11/26/2013
Revised: 01/09/2014
Accepted: 01/20/2014
Published Online: 01/23/2014
http://dx.doi.org/10.4161/gmic.27915

Addendum to: Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013; 341:295-6; PMID:23869020; http://dx.doi.org/10.1126/science.1235872

The human gut microbiota plays a key role in pharmacology, yet the mechanisms responsible remain unclear, impeding efforts toward personalized medicine. We recently identified a cytochrome-encoding operon in the common gut Actinobacterium Eggerthella lenta that is transcriptionally activated by the cardiac drug digoxin. These genes represent a predictive microbial biomarker for the inactivation of digoxin. Gnotobiotic mouse experiments revealed that increased protein intake can limit microbial drug inactivation. Here, we present a biochemical rationale for how the proteins encoded by this operon might inactivate digoxin through substrate promiscuity. We discuss digoxin signaling in eukaryotic systems, and consider the possibility that endogenous digoxin-like molecules may have selected for microbial digoxin inactivation. Finally, we highlight the diverse contributions of gut microbes to drug metabolism, present a generalized approach to studying microbe-drug interactions, and argue that mechanistic studies will pave the way for the clinical application of this work.

Introduction

Dating back to the 1960s, scientists and clinicians have been presenting sporadic reports that suggest the trillions of microbes that colonize the human gastrointestinal tract (the gut microbiota) can influence the fate of therapeutics.1-3 The emerging field of metagenomics, which employs an extensive array of experimental and computational techniques to study the aggregate genomes (the human microbiome) and metabolic activities of these microbial communities has now set the stage to delve deeper into the mechanisms responsible for microbial drug metabolism. This “metagenomic” view of pharmacology promises to elucidate novel biology, while also contributing to efforts at personalized or precision medicine.4-8

A seminal example of the value of such studies comes from work by Redinbo and colleagues.9-11 Their research has shown that inhibition of microbial β-glucuronidase activity ameliorates the enteric side effects of the chemotherapeutic drug, irinotecan, and multiple non-steroidal anti-inflammatory drugs. This work is the first to leverage mechanistic insight about microbial drug metabolism toward directly affecting a clinical outcome, as demonstrated by their in vivo mouse experiments, which show dramatic reductions in toxicity.

We sought to attain a similar degree of mechanistic insight into the bacterial inactivation of the cardiac drug, digoxin, with the long-term goal of discovering new ways of predicting or manipulating microbial drug metabolism. Digoxin is a natural cardiac glycoside that is used to treat atrial fibrillation and chronic heart failure. Positive inotropic effects of digoxin are realized by inhibition of the Na+/K+ ATPase in cardiac myocytes, causing an efflux of Na+ and a net increase in Ca2+ (see ref. 12). Digoxin is particularly noteworthy to microbiologists, as it is well established that...
a subset of individuals receiving digoxin therapy excrete the inactive metabolite, dihydridigoxin, in which the lactone ring is reduced13,14 (Fig. 1). It has been over 40 years since Herrmann and Repke15 first proposed that the saturation of the lactone ring of digoxin might be catalyzed by the gut microbe, after demonstrating drug inactivation following ex vivo incubation with rat and human fecal samples. Lindenbaum and colleagues furthered the work by showing that there was an increase in the excretion of reduced metabolites following the administration of prolonged release digoxin formulations16, and that broad spectrum antimicrobial therapy blocked the formation of reduced digoxin metabolites, with a concomitant increase in the serum levels of the drug.16 Both of these observations supported the hypothesis that the gut microbiota is responsible for digoxin inactivation. The final and key discovery of the Lindenbaum group was the isolation of Eggerthella lenta (originally classified as Eubacterium lentum), as the sole cultured gut bacterium capable of catalyzing the conversion to dihydridigoxin in vitro.17

The isolation of E. lenta allowed us to frame our work around the following broad aims: (1) to identify the genes/gene products that encode digoxin inactivating capability; (2) to uncover the precise nature of the signals that control the expression of the digoxin inactivating genes; and (3) to determine if in vivo digoxin inactivation can be controlled by rational dietary interventions.

Mechanistic Insights into Bacterial Drug Inactivation

We began by using RNA-Seq to identify E. lenta genes that are differentially expressed in the presence of digoxin. This resulted in the identification of a two-gene cytochrome-encoding operon that is significantly (>100 fold) upregulated in the presence of digoxin.18 Comparative genomics supports the hypothesis that these genes encode the factors responsible for digoxin inactivation, as two E. lenta strains that lack the operon are unable to inactivate digoxin.18 We now refer to these genes as the cardiac glycoside reductase \textit{cgr} operon.

Based on sequence homology (PSI-BLAST)19 and secondary structure predictions (IUPred),20 the \textit{cgr} operon is predicted to encode a protein homologous to the NapC/NirT family of cytochrome \textit{c} reductases (Cgr1), as well as a protein related to fumarate reductase (Cgr2). Cytochromes from the NapC/NirT family, such as the Nrf enzyme of Desulfovibrio vulgaris21 (Fig. 2A) are membrane-bound proteins that shuttle electrons from quinones to associated terminal electron reductase partner(s). As Cgr2 exhibits strong sequence and predicted structural homology to FAD-binding fumarate reductase enzymes, we propose that it serves as the soluble reductase partner that interacts with the heme-binding domain of Cgr1, either in a transient or stable complex on the extracytoplasmic side of the membrane. (Fig. 2B). Given the structural and electronic similarities between the \textit{ NapC}-unsaturated lactone of digoxin and the \textit{ NirT}-unsaturated carboxylic acid of fumarate (Fig. 2C), we hypothesize that digoxin and related cardiac glycosides can occupy the binding pocket of Cgr2 and undergo reduction by a similar mechanism. The use of digoxin as an alternative electron acceptor is also supported by the fact that reductases are generally induced by their substrate. Further biochemical characterization of the Cgr proteins is warranted. It will be particularly interesting to measure Cgr activity in the presence of related cardiac glycosides, as well as fumarate, to uncover the extent to which the enzyme processes these compounds and to confirm the natural and/or evolved role(s) for the proteins.

It may be useful to consider if the \textit{cgr} operon has evolved to utilize cardiac glycosides, or if these compounds are cross-reacting with enzymes adapted to
a natural substrate of similar chemical structure, such as fumarate. Our initial structure-function analyses suggest the cgr operon is broadly responsive to compounds containing an \(\beta \)-unsaturated butyrolactone ring.\(^1\) One possibility is that the prevalence of endogenous digitals-like factors in mammals may have selected for the cgr operon.\(^1\) Interestingly, these so-called "non-reducers" of digoxin inactivation have also been shown to be present in the reduced state, and it has been hypothesized that these compounds may be attributable to the gut microbiota.\(^2\) However, there is no obvious selective advantage at play, since we did not detect an increase in the in vitro growth rate or carrying capacity in the presence of digoxin, perhaps supporting the idea that this reduction may simply result from promiscuous enzyme activity, or only provide a fitness advantage under specific conditions. This potential in vivo selective pressure of digoxin on \(E. \) lenta, or lack thereof, might be better understood by studying the gut microbiota of patients or animal models receiving long-term digoxin therapy.

A Microbial Biomarker of Drug Pharmacokinetics

The Lindenbaum group attempted to correlate the presence and abundance of \(E. \) lenta in human fecal samples with digoxin inactivation but found that many individuals deemed "non-reducers" harbored strains of \(E. \) lenta in their feces.\(^3\)\(^4\) We reasoned that the cgr operon might be a more suitable predictor of the drug inactivation phenotype, especially given the strain variation of \(E. \) lenta and the possibility that each individual might harbor multiple strains, as has been shown for other members of the gut microbiota.\(^5\)\(^6\) Quantitative PCR of community DNA isolated from fecal samples from 20 healthy volunteers demonstrated a significant correlation between the "cgr ratio" (cgr abundance normalized by \(E. \) lenta 16S rDNA level) and ex vivo digoxin inactivation, discriminating low vs. high reducers with a sensitivity of 86%, specificity of 83%, and precision of 92%.\(^7\) There was no predictive value of the overall abundance of the \(E. \) lenta species.

This finding yields an intriguing scenario wherein clinical guidelines might be informed by the presence, abundance, and/or expression level of microbial genes known to play an important role in the metabolism of a given drug. In addition, clinicians might one day be able to report on a "genotype" that can more accurately identify individuals that are more likely to experience significant metabolism via their gut microbiota. If expanded to other drugs, this type of screening would almost certainly help manage clinical risk, and fill in some of the gaps that are seen with patient-to-patient variability with respect to drug responses in the clinic.

It is also noteworthy that digoxin, among other cardiac glycosides, has been implicated in several other signaling roles. Digoxin and osain were both recently shown to increase cholesterol synthesis by transcriptionally activating 3-hydroxy-3-methylglutaryl-coenzyme A reductase in human liver cells,\(^8\) cardiac glycosides were shown to be inhibitors of HIF-1—\(\alpha \) hypoxia responsive transcription factor involved in tumor proliferation—resulting in decreased growth of tumor xenografts in mice,\(^9\) and digoxin was identified as an inhibitor of ROC8t transcription which blocks \(T_{H17} \) differentiation, attenuating autoimmune disease.\(^10\) Together, these findings point to a general role for this class of compounds in mediating a wide variety of signaling cascades and suggest that their metabolism by \(E. \) lenta may have much broader consequences than are currently appreciated.

Blocking Microbial Drug Metabolism via Dietary Interventions

While attempting to improve the laboratory growth of \(E. \) lenta, Sperry and Wilkins\(^11\) discovered that growth of \(E. \) lenta requires the amino acid arginine, and it is likely that arginine serves as the main source of nitrogen and carbon for \(E. \) lenta. Dobkin et al.\(^12\) reported that while arginine enhances growth it simultaneously inhibits digoxin inactivation. Thus, elevated levels of arginine from dietary, host, or microbial sources might be exploited to prevent this undesirable microbial activity. To test this hypothesis, we colonized germ-free mice with \(E. \) lenta prior to digoxin administration. The animals were split between two other identical diets: one completely lacking a protein source, and the other providing 20% kcal from protein. Rapidly identifying which group shows increasing dietary protein significantly elevates both serum and urinary digoxin levels, and that this only occurs in mice colonized with the type strain, which is capable of reducing digoxin.\(^13\)

These results suggest that host diet might provide one avenue with which to tune the rate of microbial drug metabolism, and provide further evidence for the intimate links between nutritional status and our associated microbial communities.\(^14\)\(^15\) Of course, the two diets tested in this study reflect dramatic changes to protein consumption, which are unlikely to occur in human patients. Additional work is necessary to determine the relative impacts of diets designed with protein sources containing high or low arginine concentrations (e.g., soy vs. animal protein), supplemented with pure arginine, or subjected to various methods of food processing.

These studies also prompt some additional questions—why and how does arginine block digoxin metabolism? RNA-seq and qRT-PCR revealed that cgr expression is significantly elevated in low arginine concentrations (e.g., high or low arginine) when subjected to various methods of food processing. These results suggest that host diet might provide one avenue with which to tune the rate of microbial drug metabolism, and provide further evidence for the intimate links between nutritional status and our associated microbial communities.\(^14\)\(^15\) Of course, the two diets tested in this study reflect dramatic changes to protein consumption, which are unlikely to occur in human patients. Additional work is necessary to determine the relative impacts of diets designed with protein sources containing high or low arginine concentrations (e.g., soy vs. animal protein), supplemented with pure arginine, or subjected to various methods of food processing.

While attempting to improve the laboratory growth of \(E. \) lenta, Sperry and Wilkins\(^11\) discovered that growth of \(E. \) lenta requires the amino acid arginine, and it is likely that arginine serves as the main source of nitrogen and carbon for \(E. \) lenta. Dobkin et al.\(^12\) reported that while arginine enhances growth it simultaneously inhibits digoxin inactivation. Thus, elevated levels of arginine from dietary, host, or microbial sources might be exploited to prevent this undesirable microbial activity. To test this hypothesis, we colonized germ-free mice with \(E. \) lenta prior to digoxin administration. The animals were split between two other identical diets: one completely lacking a protein source, and the other providing 20% kcal from protein. Rapidly identifying which group shows increasing dietary protein significantly elevates both serum and urinary digoxin levels, and that this only occurs in mice colonized with the type strain, which is capable of reducing digoxin.\(^13\)

These results suggest that host diet might provide one avenue with which to tune the rate of microbial drug metabolism, and provide further evidence for the intimate links between nutritional status and our associated microbial communities.\(^14\)\(^15\) Of course, the two diets tested in this study reflect dramatic changes to protein consumption, which are unlikely to occur in human patients. Additional work is necessary to determine the relative impacts of diets designed with protein sources containing high or low arginine concentrations (e.g., soy vs. animal protein), supplemented with pure arginine, or subjected to various methods of food processing.

These studies also prompt some additional questions—why and how does arginine block digoxin metabolism? RNA-seq and qRT-PCR revealed that cgr expression is significantly elevated in low arginine conditions relative to high arginine; however, it remains unclear how arginine represses the cgr operon and the degree to which this is sufficient to explain the observed decrease in digoxin inactivation. These questions might be elucidated through the computational analysis of transcription factor binding sites, a more in-depth analysis of the transcriptional responses to arginine, screening \(E. \) lenta genomic libraries for transcription factors, the use of tagged arginine (and digoxin) to isolate interacting proteins from cell lysates, or even manipulations of \(E. \) lenta. Successful heterologous expression of the cgr operon, and subsequent purification of the
encoded proteins, would enable testing of any direct interactions with arginine. It will also be important to characterize the degree to which other members of the gut microbiota can promote or inhibit this activity through competition for arginine or other metabolic interactions. As has been demonstrated for the β-glucuronidase inhibitors, this type of mechanistic information might be used to design more sophisticated methods of targeting E. lenta in vivo.

A Framework for Studying Microbial Drug Metabolism

The high degree of inter-individual variation in the abundance of the cgr operon provides a contrast to other well-studied microbial drug metabolism enzymes (e.g., β-glucuronidases and azoreductases), which are considered to be more widely distributed across multiple bacterial taxa and consistently found in the human gut microbiome. Follow-up studies of healthy controls and cardiac patients will be necessary to determine the extent to which cgr abundance is predictive of in vivo digoxin pharmacokinetics and the degree to which this association is stable during the course of therapy. Human intervention studies might be designed to test the ability to limit microbial digoxin reduction by modifying dietary intake. Our results provide the first example of a host-associated microbial operon that predicts drug inactivation, although Westman et al. recently used an activity-based purification scheme to identify the enzyme complex responsible for the inactivation of the antineoplastic compound doxorubicin. An experimental and computational platform for the mechanistic dissection of microbial drug metabolism is now emerging (Fig. 3). This framework could be more broadly applied to drugs that impact the active members of the human gut microbiome, in addition to the >40 known drugs subject to microbial modification. A critical component to furthering this work will be to elucidate the molecular mechanisms responsible via functional metagenomics, single cell methods (e.g., flow cytometry and microfluidics), in-depth enzymatic characterization, and numerous other complementary approaches (Fig. 3). The insights gained from this work promise to aid in the rational design of companion diagnostics such as metabolic, gene, and organism screening, which will ultimately inform co-therapies aimed at modulating the microbiota in a clinically meaningful way (Fig. 4). These targeted therapies could provide an attractive alternative...
to broad-spectrum antibiotics, which, although they have been shown to prevent microbial drug inactivation in patients, can have rapid and long-lasting impacts on the gut microbiome. Considered in light of recent links between antibiotic resistance and the gut microbiome, these studies emphasize that a comprehensive view of pharmacology must encompass the dynamic metabolic activities and structure of our associated microbial communities.

Disclosure of Potential Conflicts of Interest
No potential conflict of interest was disclosed.

Acknowledgments
This work was supported by grants from the National Institutes of Health (PS0 GM068763) and the Harvard Digestive Diseases Center (2F30DK034854-26). H.J.H. is supported by the Canadian Institutes of Health Research (MFE-112991).

References
1. Heik R. The chemical evolution of the tetracycline family. Lancet 1987; 1:1299-300; PMID:3544494; http:// dx.doi.org/10.1016/S0140-6736(87)92724-0
2. Gravel R, Brooks JW, Williams RG. Gut flora and the metabolism of probiotics in the rat. Biochem J 1989; 259:549-56; PMID:2635066
3. Schlueter RR. The metabolism of drugs and other organic compounds by the intestinal microflora. Asia Pacific Pharmacol (Copenb) 1988; 2:352-62; PMID:5797460; http://dx.doi.org/10.3171/japan.1-1.3
4. Nicholas JR, Hoffman E, Wiener D. Gut microflora: microorganisms and the biological action of the cardiac glycosides. Biochem J 1958; 67:186-92; PMID:134505; http://dx.doi.org/10.1042/bj0670186
5. Hoffman E, Krius J, Gibson GR, Bacinelli R, Jr, Wu T, Peterson S, Nicholas JR. Therapeutic modulation of microflora-for-medication interactions. Sci Transl Med 2012; 4:e44. PMID:22873075; http://dx.doi.org/10.1126/scitranslmed.3004684
6. Harel HJ, Turnbaugh PJ. Extremes for an emergenic niche: the origin of the human microbiome. Science 2013; 340:1533-5; PMID:24263425; http://dx.doi.org/10.1126/science.1239009
7. Wallace BD, Reddolfe MR. The human microbiome: in a quest of therapeutic drug targets. Gut Open Biol 2013; 1:37:3-69. PMID:24048050; http://dx.doi.org/10.1038/gob.2013.41; PMID:24048050
8. Harel HJ, Turnbaugh PJ. Developing an emergenic niche: the origin of the human microbiome. Mass Spectrom Rev 2013; 60:10-31; PMID:23992258; http://dx.doi.org/10.1002/mas.20501; PMID:23992258
9. Wallis BO, Reddolfe MR. The human microbiome: in a quest of therapeutic drug targets. Gut Open Biol 2013; 1:37:3-69. PMID:24048050; http://dx.doi.org/10.1038/gob.2013.41; PMID:24048050
10. Grandin LE, Van Stone LD, Sanders LL, McClelland DB, Reddolfe MR. Microbiota-driven hepatic metabolism: a hot topic in pathogen biology. J Med Chem 2013; 56:8074-7; PMID:24063604; http://dx.doi.org/10.1021/jm401016h
11. Suire KS, Zhang C, Lee KK, Fajunno K, Reddolfe MR, Macbeth UF. Bacterial glycosyltransferase inhibition prevents microcirculation in the intestinal microflora. J Med Chem 2013; 56:1012-9; PMID:24063604; http://dx.doi.org/10.1021/jm401016h
12. Goodwin LA, Neumark DL, Chalmers B, Kieftmann BC, Goodman & Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill, ed 12, 2010.
13. Jacob WS, Hoffman A. The relationship between the structure and the biological action of the cardiac glycosides. J Biol Chem 1927; 74:787-92.
36. Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 2013; 152:39-50; PMID:23332745; http://dx.doi.org/10.1016/j.cell.2012.10.052

37. Sousa T, Parnum R, Moore V, Carlsson A, Abrahamsen B, Ritz EJ. The gastrointestinal microbiota as a site for the biotransformation of drugs. J Pharm 2006; 363:1-25; PMID:16683256; http://dx.doi.org/10.1016/j.jpha.2006.07.009

38. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011; 108(Suppl 1):4554-61; PMID:21844794; http://dx.doi.org/10.1073/pnas.1000471108

39. Sela N, Danner A, Stewart CA, Smith J, Boudouh R, Wang Y, Mohr J, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013; 342:967-70; PMID:24284089; http://dx.doi.org/10.1126/science.1240527

40. Viau d S, Saccheri F, Migues G, Yamasaki T, Dufrère R, Hanaki D, Fevre DR, Mitschke C, Duplouis C, Petit M, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342:971-6; PMID:24284090; http://dx.doi.org/10.1126/science.1240537