Meeting the Challenge of Intermolecular Gold(I)-Catalyzed Cycloadditions of Alkynes and Allenes

Michael E. Muratore,[a] Anna Homs,[a] Carla Obradors,[a] and Antonio M. Echavarren*[a,b]
Abstract: The development of gold(I)-catalyzed intermolecular carbo- and hetero-cycloadditions of alkenes and alkenes has been more challenging than their intramolecular counterparts. Here we review, with a mechanistic perspective, the most fundamental intermolecular cycloadditions of alkynes and alkenes with alkenes.

Keywords: alkynes · alkenes · cycloaddition · gold

1. Introduction

The development of gold(I)-catalyzed reactions relied on intramolecular reactions of 1,2-enynes and their allene analogues. Much less attention was given initially to the corresponding intermolecular reactions, which, in principle, are more challenging. In an intermolecular process involving two unsaturated substrates, their possible competitive binding with the gold complex should be considered, as well as the fact that gold catalysts are inherently acidic and therefore can promote the polymerization of alkenes by cationic mechanisms. Nevertheless, in the last few years a number of intermolecular cycloadditions with significant synthetic potential have been discovered. Herein, we review the most fundamental intermolecular reactions of alkynes and alkenes with alkenes that lead to the formation of cyclic compounds.

It is important to remark that in gold(I) chemistry, ligand substitutions usually occur by associative mechanisms in which AuL⁺ species are not formed. Here, for the sake of simplicity, “AuL⁺” is used in mechanistic schemes as a surrogate for cationic 14-electron [AuLL⁺]⁺ complexes, where L’ is a relatively weakly bound substrate (alkyne, allene, or alkene), product, or donor solvent molecule.

2. Cycloadditions of Alkynes

The first intermolecular cycloaddition catalyzed by gold(I) involved electron-rich alkynes and alkenes that reacted to form regioselectively cyclobutanes (Scheme 1). This reaction required the use of sterically hindered gold(I) complex [BuXPhosAu(NCMe)]SbF₆ as catalyst, a member of a family of highly reactive cationic gold(I) complexes such as [JohnPhosAu(NCMe)]SbF₆, which circumvent the addi-

Scheme 1. Gold(I)-catalyzed [2+2] cycloaddition of terminal alkynes and alkenes.

Scheme 2. Mechanistic proposal for the formation of cyclobutanes.
could then undergo ring expansion to form a stabilized tertiary carbocation and finally the cyclobutene after demetalation (Scheme 2).

Density functional theory (DFT) calculations have shown that (2-I) is a highly distorted species between a cyclopropyl gold(I)-carbene and a gold(I)-stabilized homoallylic carbocation,

\[\text{Density functional theory (DFT) calculations have shown that (2-I) is a highly distorted species between a cyclopropyl gold(I)-carbene and a gold(I)-stabilized homoallylic carbocation.} \]

which is usually the most favored pathway.\[^{26}\] Deuteration experiments showed that the free rotation of cyclopropyl intermediate (2-I) does not occur except when the alkene bears an aryl substituent. Furthermore, the gold(I)-carbene could be trapped intermolecularly with another alkene by cyclopropanation.\[^{22}\]

Further studies allowed the development of the [4+2] annihilation of arylamines with alkenes (Scheme 3).\[^{33}\]

Optimal results were observed when employing the electron-donating carbene (IPr)-bound gold(I) catalyst associated to the more coordinating triflimide counterion in chlorinated solvents. The reaction proceeded smoothly in excellent yields with electron-rich alkenes and with different substituents on the aromatic ring such as fluoro, chloro, methoxy, hydroxyl, or thiol. The regioselectivity of this reaction was explained by the initial attack of the electron-rich alkene to the electrophilic arylnitramide–gold(I) complex. This reaction presumably follows a pathway analogous to the [2+2] cycloaddition between alkenes and alkynes, through a cyclopropyl gold(I)-carbene, followed by a Friedel–Crafts reaction and protodemetalation (Scheme 4). When an enol ether was used, elimination of the corresponding alcohol occurred, leading to the aromatization of the final product.

By contrast, when a terminal ynamide and an enol ether were treated with a gold complex with a bulky phosphine ligand, an intermolecular [2+2+2] reaction took place.

\[\text{By contrast, when a terminal ynamide and an enol ether were treated with a gold complex with a bulky phosphine ligand, an intermolecular [2+2+2] reaction took place.} \]
In this case, several substituents on the ynamide group (EWG = methanesulfonyl, toluenesulfonyl, or phenylsulfonyl; R1 = n-butyl, benzyl, or phenyl) and on the alkoxyethene (R2 = H, Me; R3 = Me, Et, tBu) were tolerated, leading to the final product diastereoselectively. [2+2] Cycloadducts were not observed, which indicates that the attack of a second molecule of enol ether is faster than the ring expansion of the cyclopropyl gold-carbene (6Li/6II) required for the [2+4] cycloaddition (Scheme 6). The authors postulated the formation of a more sterically favored oxonium intermediate (6III), which leads to cyclohexenamine (6IV). A [4+2] cycloaddition between propargylic esters or carboxylic acids and alkenes was also developed to build αβ-unsaturated lactones (Scheme 7).[14] In this case, a gold(I) complex bearing the bulky JohnPhos ligand was the catalyst of choice.

1,1-Disubstituted alkenes tolerating silyl groups and ethers on the pendant chain, trisubstituted alkenes, 1,3-dienes, and allenes could be used as reaction partners. Surprisingly, when 1,2-disubstituted alkenes were used, 1,3-dienes were formed stereospecifically by a metathesis-like process (Scheme 8).[14] cis-Substrates gave E,E-products and trans-precursors gave E,Z-dienes exclusively, whereas non-symmetrical substrates reacted with poor regioselectivity.

According to DFT calculations, both the [4+2] cycloaddition and the 1,3-diene synthesis proceed through the formation of cyclopropylgold(I)-carbene (9I) (Scheme 9).[14] In contrast with the previous studies, the alkyne internal carbon becomes the carbene center in this type of substrates. The cyclization of the carboxylate could be a stepwise process (through a gold-stabilized homoallylic carbocation (9II)); however, the overall cycloaddition is stereospecific, which demonstrates that the C=O bond formation occurs faster than the possible C=C bond rotation on the homoallyl carbocation. In addition, 65% ee was obtained.
when the reaction was performed with \((R)\)-DM-SEGPHOS as a ligand, constituting the first example of a direct asymmetric intermolecular cycloaddition between alkenes and alkynes. A mechanism featuring a \(\sigma\)-bond rearrangement was proposed for the enyne metathesis. The formation of a cyclobutene that underwent ring opening was discarded due to the disagreement between the observed stereoselectivity and the one predicted according to the torqueselectronic effect. \([15]\]

An intermolecular \([2+2+2]\) cycloaddition cascade between alkenes and oxoalkenes has also been developed (Scheme 10).\([16]\] Analogously to the cyclization used to form the core of \((+)\)-orientalol \([17]\] and \((-)\)-englerin \(A\),\([18]\) \([3.2.1]\)-oxabicycles were readily built under mild conditions. In this case, the best results were obtained using \([\text{tBuXphosAu(NCMe)}]\)SbF\(_6\) as a catalyst. The cycloaddition proceeded with a variety of aroylacetylenes bearing ortho, meta, and para electron-donating or electron-withdrawing substituents. Hetero- and polyaromatic rings were also tolerated as well as different alkyl and aryl groups at the \(\alpha\)-position of the ketone and on the alkeno moiety. In a few cases, the formation of tetrahydrofurans as side-products was also observed.

The formation of the cyclopropylgold(I)–carbene (11-I) was again suggested as the first step of the intermolecular \([2+2+2]\) cycloaddition, followed by the regioselective nucleophilic attack of the carbonyl (Scheme 11).\([16]\] The oxonium cation (11-II) could then undergo a Prins-type cyclization and finally demetalation to afford the oxabicyclic products (11-III). Although the mechanistic proposal was supported by DFT calculations and deuterium labeling experiments, monitoring of the reaction by \(^1\)H and \(^31\)P NMR spectroscopies showed a more complicated scenario, in which a \(\alpha,\pi\)-digold complex 11-IV was proposed to be the resting state of the system.\([16]\] This dinuclear complex acted as a dead-end, capturing most of the active gold(I) and decreasing the reaction rate. Similar digold(I) complexes have been obtained in other contexts.\([19]\]

The formation of less reactive \(\alpha,\pi\)-digold complexes such as 11-IV requires the deprotonation of the active \(\pi\)-gold(I)–acetylene complexes. Therefore, for the development of efficient intermolecular reactions involving terminal alkenes, the use of a more bulky, non-coordinating, and less basic counteranion could have a significant beneficial effect by slowing down the formation of \(\alpha,\pi\)-digold complexes.\([20]\] This effect was demonstrated in the intermolecular formation of phenols by reaction of furans with alkynes (Scheme 12).\([21]\] A single example of this intermolecular phenol synthesis had been reported before using the Schmidbauer–Bayer bi-
nuclear gold(I) complex \([\{\text{Mes}_3\text{PAu}\}_2\text{Cl}\}]\text{BF}_4^{-}\) as a catalyst, and the reaction required 6 days to complete under neat conditions (Scheme 13).\(^{[22]}\)

The application of NHC ligands combined with \(\text{BAR}_4\) as counteranion remarkably improved the outcome of the procedure.\(^{[21]}\) The scope was expanded to substituted aromatic rings with electron-donating and electron-withdrawing groups as well as aliphatic alkynes. Non-symmetrical furans were also used, leading to phenols with moderate to good regioselectivities. This phenol synthesis proceeds through a complex mechanism based on the formation of a cyclopropylgold(I)–carbene (14-I) between the activated alkyne and the furan, followed by ring opening to form a new gold(I)–carbene (14-II) that cyclizes to generate an oxonium cation (14-III). Elimination of gold(I) generates an oxepin (14-IV), which is in tautomeric equilibrium with an arene oxide (14-V). Phenols are finally obtained by opening of this epoxide (Scheme 14).\(^{[23]}\)

Interestingly, the reaction of 1,3-diphenylisobenzofuran with terminal alkynes led to disubstituted indenes (Scheme 15).\(^{[21]}\) In this case, the intermediate gold(I)–carbene (similar to (14-II), Scheme 14) reacts by a Friedel–Crafts-type process with a phenyl ring, leading to the indene.

A detailed study on the role of the catalyst counterion was performed in the context of gold(I)-catalyzed intermolecular reactions.\(^{[20]}\) Catalysts bearing NHC or phosphine ligands in combination with \(\text{BAR}_4\) as the counteranion were found to impart the highest reactivity. Thus, the cyclobutene formation by \([2+2]\) cycloaddition was improved (yields increased by 10–30%) and the scope of the reaction was expanded to acetylenes substituted with heteroaromatic rings and ortho-substituted arenes. Silyl groups, ethers, and silyl ethers were now tolerated on the alkene partner. Moreover, the new catalysts also led to higher yields in the macrocyclization of 1,\(\pi\)-enynes \((n \geq 10)\) and in the \([2+2+2]\) cycloaddition of alkynes and oxoalkenes.

Kinetic studies together with low-temperature NMR experiments and determination of equilibrium constants revealed a complex system for the formation of the active catalytic species (Scheme 16).\(^{[20]}\) Thus, the rate-determining step of the process was determined to be the ligand exchange to form the \(\pi\)-alkyne–gold(I) complex, which could then undergo nucleophilic attack by the alkene or competitively be deprotonated to produce the unproductive \(\sigma\)-digold complex. Remarkably, when a bulkier and less basic counterion was used, the active species could be observed at up to 0°C whereas with smaller anions it decomposed at –40°C.

Scheme 13. Intermolecular precedent of the formation of phenols.

Scheme 14. Mechanistic proposal for the phenol synthesis—cyclopropylgold(I)–carbene formation/oxy-cyclization/oxepin-arene oxide formation/epoxide opening sequence.

Scheme 15. Formation of indenes by gold(I)-catalyzed cycloaddition of 1,3-diphenylisobenzofuran and alkynes.

Scheme 16. Detailed mechanism of the gold(I)-catalyzed \([2+2]\)-cycloaddition between alkynes and alkenes.
2. Cycloadditions of Allenes

Intramolecular gold-catalyzed cycloadditions of allene derivatives with 1,3-dienes and alkenes are well established and have been studied in detail over the past decade. However, the intermolecular counterpart has drawn little attention until recently, presumably due to the challenges posed by such reactivity. Generally, activated allenes are necessary to overcome both reactivity and regioselectivity issues. In this context, it is not surprising that the first study of a gold-catalyzed cycloaddition of allene derivatives and olefins was not reported until 2011. Over the past few years, several researchers have demonstrated the feasibility and illustrated the scope of [2+2], [3+2], [4+2]- and other types of cycloadditions with allenes.

2.1. [4+2]-Cycloadditions of allenes and dienes

The first studies on gold-catalyzed cycloadditions of allenes and olefins described novel [4+2]-cycloadditions of allenamides/allenyl ether and 1,3-dienes towards the formation of cyclohexene derivatives bearing a pendant functionalized exo-olefin. Similarly to the intramolecular process, this intermolecular cycloaddition may proceed via three main pathways: a concerted [4+2]-pathway reminiscent of the Diels–Alder reaction, a concerted [4+3]-cycloaddition followed by ring contraction, and a stepwise path involving an allylic carbocation (Scheme 17).

Electronically neutral allenes did not react cleanly with 1,3-dienes under a variety of conditions. By contrast, electron-rich allenes such as allenamides are known to be easily accessible and reactive substrates in gold catalysis. This observation was exploited in order to develop a novel intramolecular cycloaddition of allenamides with acyclic dienes. Although various electrophilic gold(I) catalysts promoted this transformation, simple AuCl (and alternatively [IPrAuCl]/AgSbF$_6$) proved to give superior results. Employing this catalytic system, the cyclohexene products were isolated in generally good yields and the competitive formation of the [2+2]-cycloadducts was kept to a minimum. Moreover, these conditions also provided the highest control for the exo-olefin geometry with a large preference for the (Z)-isomer. A range of 1,3-dienes partook in the cycloaddition: 2,3-dimethylbutadiene, 1,3-pentadiene, 2,4-hexadiene, and several other simple 1,3-dienes proved to be good reaction partners. Phenyl-substituted 1,3-dienes as well as an electron-rich enol ether generally afforded higher yields of the cycloadducts (Scheme 18).

Unsubstituted (terminal) or substituted (internal, chiral) allenoxazolidinones reacted similarly in this transformation, the latter giving perfect diastereoselectivity. In addition, through the employment of a chiral oxazolidinone, the transformation showed excellent diastereoselectivity and great potential for the application to the synthesis of enantioenriched cyclohexene frameworks.

Unsubstituted (terminal) or substituted (internal, chiral) allenoxazolidinones reacted similarly in this transformation, the latter giving perfect diastereoselectivity. In addition, through the employment of a chiral oxazolidinone, the transformation showed excellent diastereoselectivity and great potential for the application to the synthesis of enantioenriched cyclohexene frameworks.

The enantioselective version of this reaction was also developed employing newly designed axially chiral NHC ligands coordinated to gold(I). It is worth noting that with usual chiral NHC ligands, only low enantiomeric excess (ee) values were obtained whereas the newly developed ligands provided ee values generally over 90% (Scheme 19).

According to DFT studies, the reaction mechanism is highly dependent on the nature of the diene (enol ethers tend to react prominently via a stepwise pathway) and is also influenced by the nature of the catalyst. In most cases, several of the proposed mechanistic pathways may be operative and competitive in this transformation. However, the stereoselectivity of the reaction (exo-olefin geometry, diastereoselectivity) is accounted for by the energetically most fa-
favorable transition state in all cases. The selectivity for the [4+2]-cycloadduct is also explained by an energetically more demanding pathway towards the [2+2] cycloadduct under AuCl catalysis (stepwise pathway). This is partially true for [IPrAuCl]/AgSbF₆ as a catalyst, and in this case the formation of the [2+2]-cycloadduct (cationic stepwise pathway), which is less energetically disfavored, becomes competitive. This explains why a significant amount of this by-product may be observed under these conditions.³⁰

Simple 1,3-dienes are not the only substrates that react with allenamides through [4+2]-cycloaddition, but 2-vinyl indoles also take part in this type of transformation under gold catalysis. The protection of the indole nitrogen with a carbamate was critical in order to observe the cycloaddition. Interestingly, employing AuCl₃ or [JohnPhosAuNTf₂] as a catalyst selectively afforded two isomeric tetrahydrocarbazole derivatives. In addition, complete (Z)-selectivity of the olefin geometry was observed in all cases. Various β-aryl-substituted 2-vinylindoles were competent cycloaddition partners; however, alkyl-substituted 2-vinylindoles gave moderate yields, and only terminal allenamides were screened in this study (Scheme 20).³¹

The [4+2]-cycloaddition of allenyl ethers and 1,3-dienes was also developed.³² Gold catalysts, in particular a cationic gold(I) species ([PPh₃AuCl]/AgSbF₆), proved to be essential for the reactivity. PtCl₂, PdCl₂, AgSbF₆, and a range of strong Lewis acids were unable to promote this reaction. However, the same transformation was possible without catalyst at higher temperature. Interestingly, gold catalysis and thermal activation produced mainly the (Z)- and (E)-olefin isomers, respectively, which makes these two methods complementary. Various terminal allenyl ethers and monosubstituted cyclopentadienes reacted to form bicyclo[2.2.1]heptenes featuring pendant (Z)-enol ethers. Mixtures of bridgehead-substituted (ortho) and olefin-substituted (para) compounds were obtained in all cases (Scheme 21).

Substituted cyclopentadienes proved to be excellent reaction partners; however, the reactivity of acrylic 1,3-dienes was rather limited and poor to moderate yields of cyclohexenes were obtained, although the (Z/E) ratio remained equally high.

2.2. [2+2]-Cycloadditions of alkenes and allenes

Taking advantage of the observation of a [2+2]-cycloaddition side-product in the reaction between allenamides/allenecarbamates and dienes, the [2+2]-cycloaddition of allenecarbamates and olefins towards the formation of decorated
cyclobutanes was developed (Scheme 22). A highly electrophilic cationic phosphite-bound gold catalyst gave the best results in this reaction. From a practical point of view, dropwise addition of the allenecarbamate cycloaddition partner over one hour was necessary to ensure good yields of cyclobutane adduct. Various styrene derivatives as well as enamides and enecarbamates proved to be excellent olefin partners. However, less activated olefins presented a poor reactivity. The scope with regard to the allene was not studied thoroughly, and only N-allenyloxazolidinone was subjected to this cycloaddition. Notably, this transformation also proceeded with complete diastereoselectivity and afforded the (Z)-exo-olefin isomer exclusively. Mechanistically, there is evidence that this cycloaddition takes place via a stepwise carbocationic pathway.

The cycloaddition with styrene derivatives was later rendered enantioselective by employing chiral phosphoramidite ligands. Ligands CL1 and CL2 generally gave good results. With this approach, aryl-substituted cyclobutanes (bearing the methylene moiety) were synthesized with ee values ranging from 72% to 95% (Scheme 23).

The scope of the [2+2]-cycloadditions was expanded to other activated olefins, namely enol ethers (in particular dihydrofuran and tetrahydropyran). This strategy allows the construction of complex heterocycle-fused and functionalized cyclobutanes (Scheme 24).

It is worth mentioning that allenamides may dimerize through a [2+2]-cycloaddition, which is usually considered as a side reaction. However, it may lead to interesting functionalized bis methylenecyclobutanes.

2.3. Other cycloadditions

Although 1,6-dienes did not participate in a cycloaddition cascade with allenamides towards carbocycles, as in the reaction with alkynes (Scheme 10), oxoalkenes demonstrated to be excellent reaction partners in this type of cascade. This strategy expanded the scope of gold-catalyzed intermolecular cycloaddition to the preparation of oxabridged carbocycles (Scheme 25). This transformation was proposed to proceed through a stepwise pathway. Attack of the olefin on the activated gold allylic carbocation generated from the allenamide should result in the formation of a carbocationic adduct (25-I). In the presence of the intramolecular ketone, this species may undergo nucleophilic attack by the neighboring carbonyl to form an oxocarbenium intermediate (25-II). A subsequent Prins-type reaction (nucleophilic addition of the vinyl–gold species onto this electrophilic moiety) and further elimination of gold(I) accounts for the formation of oxo-bridged polycycles.

The use of cationic gold(I) complexes was essential for this type of reactivity and their nature influenced significantly the stereoelectronic outcome of the reaction. A highly electrophilic phosphite-bound gold catalyst provided the highest reactivity (0.5 mol% were sufficient to observe full conversion), and the Z/E selectivity of the exo-olefin was very high (22:1 Z/E). Several oxoalkenes were good reac-

Scheme 22. Gold(I)-catalyzed [2+2]-cycloaddition of activated olefins and allenecarbamates.

Scheme 23. Gold(I)-catalyzed enantioselective [2+2]-cycloaddition of styrenes and allenesulfonamides.

Scheme 24. Gold(I)-catalyzed [2+2]-cycloaddition of enol ethers and allenesulfonamides.
tion partners, reacting with terminal and internal allenamides and allenesulfonamides to afford oxa-bridged cycloheptane derivatives in generally good yields and good to excellent diastereoselectivities when chiral oxaalkenes or allenamides were used. Remarkably, this cycloaddition was not only suited to the formation of 7-membered rings but also proved very efficient for the formation of oxa-bridged cyclooctanes and cyclononanes (Scheme 26). In addition, by use of chiral ligands, this transformation was further developed as an enantioselective process, with ee values ranging from 64–94%.

3. Heterocycloadditions

A wide range of gold(I)-catalyzed heterocyclization reactions have been reported in the last years. Herein, we cover all the gold(I)-catalyzed intermolecular cycloaddition reactions in which the alkyne or allene partner does not undergo any rearrangement prior to the hetero-nucleophilic attack. Thus, reactions initiated by a gold(I)-promoted 1,2- or 1,3-acyloxy migration, which have been reviewed elsewhere,[37,38] are not covered. The diverse heterocycloadditions are classified based on mechanistic criteria.

3.1. Cycloadditions via trans-alkenylgold(I) intermediates

The first gold(I)-catalyzed HDDAR (hetero-dehydro-Diels–Alder reaction) was developed between dienynes and nitriles, which reacted smoothly in the presence of a gold(I) catalyst to yield pyridines (Scheme 27).[39] The formal [4+2]reaction tolerated different substituents on the enyne partner. Furthermore, alkyl and (hetero)aromatic nitriles as well as vinyl nitrile could serve as nucleophilic partners. The proposed mechanism starts with the π-activation of 1,3-dien-5-ynes, followed by the nucleophilic attack of the nitrile (Scheme 28). The pyridines are formed stepwise by
a Mannich-type cyclization, followed by an elimination–aromatization sequence.\[^{[39]}\]

The main limitation of the reported methodology is the electronic requirement regarding the dienynemoiety: a push–pull system is needed. The reaction was later extended to the synthesis of 5,6-dihydropyridin-2-ones, by reacting the corresponding dienynes with aldimines or silylaldimines (Scheme 29).\[^{[40]}\] In the latter case, the reaction can be catalyzed by simply using AgSbF\(_6\). The cycloaddition takes place with complete diastereo- and regioselectivity.

Employing a somewhat similar strategy, a synthesis of dihydroisoquinolines (DHIQs) from imines and aryl yne-carbamates/ynearyl sulfonamides was developed. This formal [4+2] heterocycloaddition presumably proceeds via regioselective nucleophilic attack of the imine on the aryl-ynamine derivative and subsequent Pictet–Spengler-type cyclization of the arenene onto the transient iminium moiety. As a consequence, only electron-rich aryl-substituted ynamine derivatives led to the efficient formation of DHIQs in moderate to excellent yields (Scheme 30).\[^{[41]}\]

In order to prepare the parent quinolines, 2-aminoaryl carbonyls were treated with ketone-substituted internal alkynes in the presence of a catalytic amount of gold(I) complexes. This resulted in the formation of the desired polyfunctionalized heteroarenes in moderate to excellent yields (Scheme 31).\[^{[42]}\] The reaction proceeded smoothly in DMF at 100°C with [Ph\(_3\)PAuCl]/AgOTf as a catalyst. Among the different aminoaryl coupling partners screened by varying the substituents at the aryl ring, electron-donating groups were found to give better results than strong electron-withdrawing substituents.

The dipolar [3+2]-cycloaddition of allenamides/sulfonamides and azomethine imines led to pyrazolidinone and dihydroisoquinoline cycloadducts in good to excellent yields employing [PPh\(_3\)AuCl]/AgOTf (Scheme 32).\[^{[43]}\] Although a thorough mechanistic study has not been performed, this cycloaddition presumably proceeds via nucleophilic attack of the azomethine imine on the activated gold allylic carbocation formed upon coordination of gold(I) to the allene derivative. Subsequent cyclization of the vinyl–gold moiety on
the iminium ion and protodeauration results in the formation of the observed cycloadducts.

Nitrones are also good dipoles in [3+2]-cycloadditions. The reaction of aryl-substituted nitrones with allenamides and allenesulfonamides under gold catalysis led to the formation of isoxazolidine derivatives (Scheme 33).[44] Moreover, through the use of chiral phosphoramidite ligands, this cycloaddition proved to be highly enantioselective, producing functionalized heterocycles usually with excellent enantiomeric excess (> 94% ee in most cases).

With a fundamentally different approach, sulfonyl ylides were used as carbene transfer agents in the development of a synthesis for 2,4-disubstituted furans (Scheme 34).[45] The ylides reacted with terminal aliphatic alkynes in a [3+2]-cyclization fashion, using simple [PPh3AuNTf2] as a catalyst. The transformation tolerated silyl and alkyl ethers, sulfonamides, and carbamates on the alkyne partner as well as both electron-rich and -poor arylketo-ylides and aliphatic keto-ylides.

The reaction presumably starts with the regioselective attack at the (η^2-alkyne)gold(I) complex (Scheme 35).[45] Back donation of the gold center with concomitant expulsion of the leaving group generates an allylic gold-carbene that is trapped intramolecularly by the carbonyl group. A final demetalation generates the 2,4-disubstituted furans.

A similar strategy involving carbene transfer to synthesize furans and furanones has recently been developed (Scheme 36 and 37).[46] Aryl acetylenes reacted with stabilized sulfonyl ylides in the presence of gold(I) complexes bearing the bulky tBuXPhos ligand. The outcome of the reaction depended on the substituents on the sulfonyl ylides. On one hand, when oxoester/oxoamide/1,3-diketone-derived...
ylides were employed, furans were obtained with very high regioselectivity. In the intermolecular version of this reaction (Scheme 37), arylacetylenes were found to be the most suitable coupling partners, although furans could also be obtained in poor yields starting from alkyl propiolates. On the other hand, when diallylmalonate-derived ylides were used, furanones were formed instead.

The mechanism proposed for both reactions is analogous to the one suggested in Scheme 35. In the case of the allyl substitution, once the furan is generated, a [3,3]-sigmatropic rearrangement of the allyl group takes place forming the quaternary center of the furanone.

3.2. α-Oxo/imido gold–carbene intermediates

The oxidation of alkynes coordinated to gold(I) complexes using pyridine- or quinoline-N-oxide-type oxidants has been proposed to form highly electrophilic α-oxo gold(I)-carbenes. The synthesis of α-functionalized ketones through this process circumvents the use of hazardous α-diazoketones. The resulting α-oxo gold–carbene can be trapped intramolecularly by formal O–H,[47,48] N–H,[49] and C–H[50,51] insertions or by other nucleophilic partners.[52,53] However, it is important to note that in other related cases, the initial involvement of α-oxo gold(I)-carbene has been questioned.[54] So far, very little has been done regarding the intermolecular cycloaddition reactions of oxidized activated π-systems, mainly due to the high reactivity of the aforementioned intermediates.

The first gold(I)-catalyzed oxidative approach leading to a [2+2+1] annihilation involved an alkyne, an external oxidant, and a nitrile source (Scheme 38).[53a] Thus, treating terminal alkynes bearing different substituents with aliphatic nitriles, benzonitriles, or phenylacetonitrile (used as solvents) in the presence of 8-methylquinoline-N-oxide and [Ph3PAuNTf2] resulted in the formation of 2,5-disubstituted oxazoles in good to excellent yields.

The use of bulkier and bidentate ligands such as Mor-DalPhos allowed the formation of an external nucleophile used in stoichiometric amount (Scheme 39).[53b] Terminal alkynes could be coupled to aromatic or α,β-unsaturated carboxamides through a [3+4+2] annulation using 8-methylquinoline-N-oxide and furnishing 2,4-disubstituted oxazoles. Three coordinated gold species were proposed as intermediates. They temper the reactivity of the α-gold–carbene by rendering it less electron-deficient, which leads to the observed chemoselective trapping. The non-phosphorous atom of the P,N- or P,S-bidentate ligands also coordinates to the gold atom, as supported by DFT calculations. Nucleophilic groups on the alkyln moiety decreased the yield due to competition with the intramolecular trapping. A similar reaction with thioamides leads to 2,4-disubstituted thiazoles in good yields.[55]

Instead of using an oxygen-atom transfer agent (e.g., N-oxide), a nitrene transfer agent led to the synthesis of 2,4,5-trisubstituted oxazoles through a [3+2] cycloaddition reaction (Scheme 40).[56] In this case, the nucleophilic counterpart contained functionalities that formed the gold α-imido-carbenoid complex and could also close the ring through a 1,3,N,O-dipolar cycloaddition. The two-center reactants employed were pyridine-N-amidines and ynamides or enol ethers.
The proposed mechanism starts with the coordination of the gold complex to the ynamide that undergoes a nucleophilic attack by the amidine adjacent to the ynamide nitrogen. The resulting cationic intermediate (41-I) cyclizes, forming the new C–O bond (Scheme 41).[56] Subsequent elimination of the pyridine moiety through N–N bond cleavage and demetalation furnishes the oxazoles. More recently, the same procedure has been applied to non-symmetrical internal alkynes affording 2,4,5-(hetero)aryl-substituted oxazoles.[57]

3.3. Alkenylgold(I)–azide intermediates

Since the first reported cycloaddition of (triphenylphosphine)gold(I)–azide to terminal alkynes, the use of azide as nucleophile has become more popular. Organogold products (42-I) could be isolated upon treatment of terminal alkynes with (triphenylphosphine)gold(I)–azide or by treating alkenyl gold(I) complexes with trimethylsilyl azide in protic solvents (Scheme 42).[58] The resulting organogold complexes were found to be stable, in contrast to their copper analogues.

Surprisingly, when the same reaction was carried out using [JohnPhosAu(NCMe)]SbF\textsubscript{6} instead, and CH\textsubscript{2}Cl\textsubscript{2} as solvent, radically different products, such as tetrazole–gold(I) complex (43-I), were isolated (Scheme 43).[59]

This stoichiometric synthesis of gold(I)–tetrazole complexes was further developed into a catalytic procedure (Scheme 44).[60] Terminal alkynes were found to cyclize with TMSN\textsubscript{3} to give tetrazoles involving a C–C bond cleavage with concomitant insertion of four nitrogen atoms. The addition of iPrOH increased significantly the yield of the reaction. Aryl, heteroaryl, and alkyl groups were tolerated on the alkyn moiety, although for the latter, mixtures of regioisomers were obtained. Electron-withdrawing substituents on the aryl ring of the alkyn gave poor results; for instance, with 4-nitrophenylacetylene, no desired product was observed and 1-(1-azidovinyl)-4-nitrobenzene was isolated instead.

The mechanism proposed for the tetrazole synthesis starts with the attack of TMSN\textsubscript{3} on the π-activated triple bond, thus leading to the trans alkenylgold(I)–azide complex (45-I) (Scheme 45).[59,60] A Brønsted acid-catalyzed protodemetalation followed by migration of the R group forms the nitrilium cation (45-II). Competitive migration of the methyl group takes place if the substituent on the alkyn moiety is an alkyl chain. A final [3+2] cycloaddition reaction between HN\textsubscript{3} (formed by reaction of TMSN\textsubscript{3} with iPrOH) and (45-II) yields the tetrazoles. A similar mechanism has been proposed for the transformation of terminal alkynes into amides by use of TMSN\textsubscript{3} in the presence of [Ph\textsubscript{3}PAuCl]/Ag\textsubscript{2}CO\textsubscript{3} in aqueous TFA.[60]

![Scheme 41. Proposed mechanism for [3+2]-cycloaddition reaction between pyridine-N-amidines and ynamides or enol ethers.](image-url)

![Scheme 42. Gold(I)-catalyzed [3+2]-cycloaddition of terminal alkynes and gold(I)-azide complexes and gold-acetylene complexes with TMSN\textsubscript{3}.](image-url)

![Scheme 43. Synthesis of tetrazole–gold(I) complex.](image-url)

![Scheme 44. Gold(I)-catalyzed synthesis of tetrazoles from alkynes through C–C bond cleavage.](image-url)

![Scheme 45. Proposed mechanism for the tetrazole synthesis.](image-url)
Scheme 45. Proposed mechanism for the gold(I)-catalyzed synthesis of tetrazoles—formation of an alkenylgold(I)-azide species/R-migration through nitrogen loss/cycloaddition between nitrilium and azide.

It is worth noting that azide sources may react in a different manner with alkenes; for instance, in this case, the gold catalyst activates the alkenes towards nucleophilic azide addition and formation of allylic azides.[61]

3. Conclusion

The high selectivity of gold(I) towards alkenes (alkynophility) and, to a lesser extent, towards alkenes, allows selective reactions of these substrates with differently substituted alkenes by processes in which the gold(I)-coordinated alkyne or allene acts as the electrophilic partner. In the case of monosubstituted alkenes, the competitive formation of non-reactive α,π-gold complexes is an important side reaction that slows down the overall catalytic efficiency. Although several synthetically useful reactions have been developed, reactions of internal alkenes are still restricted to arylamines or alkynyl ethers. Similarly, in the case of alkenes, only substrates bearing electron-donating NR₂ or OR groups have been successful. Therefore, developing broadly applicable gold(I)-catalyzed cycloadditions of alkenes and alkenes still remains a challenge.

Acknowledgements

We thank the European Research Council (Advanced Grant No. 321066), the MINECO (project CTQ2010-16088/BQU and FPI predoctoral fellowship to A.H.), the MECD (FPU predoctoral fellowship to C.O.), the AGAUR (2009 SGR 47), and the ICIQ Foundation for support of our work in this field.

[1] a) L. Zhang, J. Sun, S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271–2296; b) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7986–7991; c) T. J. Brown, M. G. Dickens, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2006, 45, 3410–3449; d) J. Aydin, A. M. Echavarren, Acc. Chem. Res. 2009, 42, 3268–3280; e) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410–3449; Angew. Chem. 2007, 119, 3478–3519; f) C. O. Braga, P. Pérez-Galán, Angew. Chem. Int. Ed. 2007, 46, 3180–3211; g) Z. Li, C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239–3265; h) T. J. Brown, M. G. Dickens, Acc. Chem. Res. 2008, 41, 1542–1549.

[2] a) W. R. Dolbier, H. Koroniak, K. N. Houk, C. Sheu, Acc. Chem. Res. 1996, 29, 471–477; b) J. M. Um, H. Xu, K. N. Houk, W. Tang, J. Am. Chem. Soc. 2009, 131, 6646–6665; c) J. K. Shih, L. Y. Wang, Y. Liang, J. Am. Chem. Soc. 2008, 130, 1542–1549; d) A. Echavarren, Acc. Chem. Res. 2014, 19, 3547–3551.
[56] P. W. Davies, A. Cremonesi, L. Dumitrescu, Angew. Chem. Int. Ed. 2011, 50, 8931–8935; Angew. Chem. 2011, 123, 9093–9097.

[57] E. Chatzopoulou, P. W. Davies, Chem. Commun. 2013, 49, 8617–8619.

[58] D. V. Partyka, J. B. Updegraff III., M. Zeller, A. D. Hunter, T. G. Gray, Organometalics 2007, 26, 183–186.

[59] M. Gaydou, A. M. Echavarren, Angew. Chem. Int. Ed. 2013, 52, 13468–13471; Angew. Chem. 2013, 125, 13710–13713.

[60] C. Qin, P. Feng, Y. Ou, T. Shen, T. Wang, N. Jiao, Angew. Chem. Int. Ed. 2013, 52, 7850–7854; Angew. Chem. 2013, 125, 8004–8008.

[61] C. Hurtado-Rodrigo, S. Hochne, M. P. Muñoz, Chem. Commun. 2014, 50, 1494–1496.

Received: April 16, 2014
Published online: July 22, 2014