Optimal and typical L^2 discrepancy of 2-dimensional lattices

Bence Borda
Graz University of Technology
Steyrergasse 30, 8010 Graz, Austria
Email: borda@math.tugraz.at

Keywords: continued fraction, quadratic irrational, rational lattice, symmetrization, low discrepancy, limit distribution
Mathematics Subject Classification (2020): 11K38, 11J83

Abstract
We undertake a detailed study of the L^2 discrepancy of rational and irrational 2-dimensional lattices either with or without symmetrization. We give a full characterization of lattices with optimal L^2 discrepancy in terms of the continued fraction partial quotients, and compute the precise asymptotics whenever the continued fraction expansion is explicitly known, such as for quadratic irrationals or Euler’s number e. In the metric theory, we find the asymptotics of the L^2 discrepancy for almost every irrational, and the limit distribution for randomly chosen rational and irrational lattices.

1 Introduction
The L^2 discrepancy of a finite point set $P \subset [0,1)^2$ in the unit square is defined as

$$D_2(P) = \left(\int_{[0,1]^2} (B(x,y) - |P|xy)^2 \, dx \, dy \right)^{1/2},$$

where $B(x,y) = |P \cap ([0,x] \times [0,y])|$ is the number of points of P which fall in the rectangle $[0,x] \times [0,y]$. The L^2 discrepancy is a common measure of equidistribution, with direct applications to numerical integration; for a general introduction we refer to the monograph Drmota–Tichy [14]. A seminal result of K. Roth [22] states that every finite point set P satisfies $D_2(P) \gg \sqrt{\log |P|}$ with a universal implied constant. This is known to be sharp, with several explicit constructions e.g. based on digital nets attaining the optimal order $D_2(P) \ll \sqrt{\log |P|}$, see [13].

In this paper we undertake a detailed study of the L^2 discrepancy of 2-dimensional lattices. Given $\alpha \in \mathbb{R}$ and $N \in \mathbb{N}$, we will consider the N-element set

$$L(\alpha,N) = \left\{ \left\{ n\alpha \right\}, \frac{n}{N} \right\} \in [0,1)^2 : 0 \leq n \leq N - 1 \right\},$$

\[\text{where } \{ \cdot \} \text{ denotes fractional part, and the } 2N\text{-element set} \]

$$S(\alpha,N) = \left\{ \left\{ \pm n\alpha \right\}, \frac{n}{N} \right\} \in [0,1)^2 : 0 \leq n \leq N - 1 \right\}.$$

Note that $L(\alpha,N)$ is the intersection of the unit square $[0,1)^2$ and the lattice spanned by the vectors $(\alpha,1/N)$ and $(1,0)$. We call $S(\alpha,N)$ the symmetrization of $L(\alpha,N)$; more precisely, $S(\alpha,N)$ is the union of $L(\alpha,N)$ and its reflection about the vertical line $x = 1/2$. We study both rational and irrational values of α.

The equidistribution properties of $S(\alpha,N)$ and $L(\alpha,N)$, in particular their L^2 discrepancy, are closely related to the Diophantine approximation properties of α. Throughout this paper,
\(\alpha = [a_0; a_1, a_2, \ldots] \) will denote the (finite or infinite) continued fraction expansion of \(\alpha \), and \(p_k/q_k = [a_0; a_1, \ldots, a_k] \) its convergents. In the rational case it will not matter which of the two possible expansions is chosen. Roughly speaking, we will show that for \(N \approx q_K \),

\[
D_2^2(S(\alpha, N)) \approx \sum_{k=1}^{K} a_k^2 \quad \text{and} \quad D_2^2(L(\alpha, N)) \approx \sum_{k=1}^{K} a_k^2 + \left(\frac{K}{\sum_{k=1}^{K} (-1)^ka_k} \right)^2.
\]

See Propositions 7 and 8 below for a precise formulation.

Our first result characterizes all irrationals for which \(S(\alpha, q_K) \) resp. \(L(\alpha, q_K) \) attains optimal \(L^2 \) discrepancy as \(K \to \infty \). We also consider the same problem for \(S(\alpha, N) \) and \(L(\alpha, N) \) as \(N \to \infty \).

The first equivalence below generalizes a result of Davenport [11], who showed that \(S(\alpha, N) \) attains optimal \(L^2 \) discrepancy whenever \(\alpha \) is badly approximable, i.e. \(a_k \ll 1 \).

Theorem 1. Let \(\alpha = [a_0; a_1, a_2, \ldots] \) be irrational. We have

\[
D_2(S(\alpha, N)) \ll \sqrt{\log N} \iff D_2(S(\alpha, q_K)) \ll \sqrt{\log q_K} \iff \frac{1}{K} \sum_{k=1}^{K} a_k^2 \ll 1, \quad D_2(L(\alpha, q_K)) \ll \sqrt{\log q_K} \iff \frac{1}{K} \sum_{k=1}^{K} a_k^2 \ll 1 \quad \text{and} \quad \frac{1}{\sqrt{K}} \sum_{k=1}^{K} (-1)^ka_k \ll 1.
\]

Remark 1. We also give an almost complete answer for the unsymmetrized lattice \(L(\alpha, N) \) with general \(N \): under the assumption \(a_k \ll \sqrt{k}/\log^2 k \), we have

\[
D_2(L(\alpha, N)) \ll \sqrt{\log N} \iff \frac{1}{K} \sum_{k=1}^{K} a_k^2 \ll 1 \quad \text{and} \quad \frac{1}{\sqrt{K}} \sum_{k=1}^{K} (-1)^ka_k \ll 1.
\]

In the special case of a badly approximable \(\alpha \), this equivalence was observed in [3 7]. Note that \(K^{-1} \sum_{k=1}^{K} a_k^2 \ll 1 \) implies that \(a_k \ll \sqrt{k} \); we do not know whether the slightly stronger extra assumption \(a_k \ll \sqrt{k}/\log^2 k \) can be removed.

More precise results can be deduced for an irrational \(\alpha \) whose continued fraction expansion is explicitly known. The most interesting case is that of quadratic irrationals, whose continued fractions are of the form \(\alpha = [a_0; a_1, \ldots, a_r, \overline{a_{r+1}, \ldots, a_{r+p}}] \), where the overline denotes the period. Note that in this case \(\sum_{k=1}^{K} (-1)^ka_k = A(\alpha)K + O(1) \) with some constant \(A(\alpha) \). In fact, \(A(\alpha) = 0 \) if \(p \) is odd, and \(A(\alpha) = p^{-1} \sum_{k=1}^{p} (-1)^{r+k}a_{r+k} \) (possibly zero) if \(p \) is even. We also have \(\log q_K = \Lambda(\alpha)K + O(1) \) with some constant \(\Lambda(\alpha) > 0 \). In fact, \(A(\alpha) = p^{-1}\log \eta \), where \(\eta > 1 \) is the larger of the two eigenvalues of the matrix

\[
\begin{pmatrix}
0 & 1 \\
1 & a_{r+1}
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & a_{r+2}
\end{pmatrix}
\cdots
\begin{pmatrix}
0 & 1 \\
1 & a_{r+p}
\end{pmatrix}
\]

Theorem 2. Let \(\alpha \) be a quadratic irrational, and let \(A(\alpha) \) and \(\Lambda(\alpha) \) be as above. There exists a constant \(c(\alpha) > 0 \) such that

\[
D_2^2(S(\alpha, N)) = c(\alpha) \log N + O(1),
\]

and

\[
D_2^2(L(\alpha, N)) = \begin{cases}
\frac{3c(\alpha)}{2} \log N + O((\log \log N)^4) & \text{if } A(\alpha) = 0, \\
\frac{A(\alpha)^2}{144\Lambda(\alpha)^2} \log^2 N + O(\log N) & \text{if } A(\alpha) \neq 0.
\end{cases}
\]

The implied constants depend only on \(\alpha \).
We proved the same result for \(S(\alpha, N) \) with the slightly worse error term \(O(\log \log N) \) in a previous paper \cite{9}. In contrast to \(A(\alpha) \) and \(\Lambda(\alpha) \), there seems to be no simple way to compute the value of \(c(\alpha) \) directly from the continued fraction expansion. The latter constant first appeared in certain lattice point counting problems studied in detail by Beck \cite{12,13,14}, who showed that it is related to the arithmetic of the ring of algebraic integers of the real quadratic field \(\mathbb{Q}(\alpha) \), and computed its explicit value for any quadratic irrational; for instance,

\[
c \left(\frac{1 + \sqrt{5}}{2} \right) = \frac{1}{30\sqrt{5}\log \frac{1 + \sqrt{5}}{2}} \quad \text{and} \quad c(\sqrt{3}) = \frac{1}{12\sqrt{3}\log(2 + \sqrt{3})}.
\]

Precise results also follow for non-badly approximable irrationals whose continued fraction expansions are explicitly known. Consider Euler’s number \(e = [2; 1, 2, 1, 1, 4, 1, \ldots, 1, 2n, 1, \ldots] \) as an illustration. Since the “period length” is odd, the square of the alternating sum \(\sum_k (-1)^k a_k^2 = (4/81)K^3 + O(K^2) \). Thus from our general results it easily follows that

\[
D_2(S(e, N)) = \frac{1}{3\sqrt{30}} \left(\frac{\log N}{\log \log N} \right)^{3/2} \left(1 + O \left(\frac{\log \log \log N}{\log \log N} \right) \right),
\]

and

\[
D_2(L(e, N)) = \frac{1}{6\sqrt{5}} \left(\frac{\log N}{\log \log N} \right)^{3/2} \left(1 + O \left(\frac{\log \log \log N}{\log \log N} \right) \right),
\]

In contrast, e.g. for \(\tan 1 = [1; 1, 3, 1, 5, 1, \ldots, 2n - 1, 1, \ldots] \), the “period length” is even, and the alternating sum \(\sum_k (-1)^k a_k^2 = K^4/16 + O(K^3) \) dominates \(\sum_k a_k^2 = K^3/6 + O(K^2) \). Consequently,

\[
D_2(S(\tan 1, N)) = \frac{1}{3\sqrt{30}} \left(\frac{\log N}{\log \log N} \right)^{3/2} \left(1 + O \left(\frac{\log \log \log N}{\log \log N} \right) \right),
\]

but for the unsymmetrized lattice we have the larger order of magnitude

\[
D_2(L(\tan 1, N)) = \frac{1}{12} \left(\frac{\log N}{\log \log N} \right)^2 \left(1 + O \left(\frac{\log \log \log N}{\log \log N} \right) \right).
\]

We also establish precise results for randomly chosen \(\alpha \), starting with the asymptotics a.e. in the sense of the Lebesgue measure.

Theorem 3. Let \(\varphi \) be a positive nondecreasing function on \((0, \infty)\).

(i) If \(\sum_{n=1}^{\infty} 1/\varphi(n) < \infty \), then for a.e. \(\alpha \),

\[
D_2(S(\alpha, N)) \leq \varphi(\log N) + O(\log N \log \log N),
\]

\[
D_2(L(\alpha, N)) \leq \varphi(\log N) + O(\log N \log \log N)
\]

with implied constants depending only on \(\alpha \) and \(\varphi \).

(ii) If \(\sum_{n=1}^{\infty} 1/\varphi(n) = \infty \), then for a.e. \(\alpha \),

\[
D_2(S(\alpha, N)) \geq \varphi(\log N) \quad \text{and} \quad D_2(L(\alpha, N)) \geq \varphi(\log N) \quad \text{for infinitely many } N.
\]

In particular, for a.e. \(\alpha \) we have \(D_2(S(\alpha, N)) \ll \log N(\log \log N)^{1+\varepsilon} \) and \(D_2(L(\alpha, N)) \ll \log N(\log \log N)^{1+\varepsilon} \) with any \(\varepsilon > 0 \), but these fail with \(\varepsilon = 0 \).

Our next result is the distributional analogue of Theorem \cite{2} stating that if \(\alpha \) is chosen randomly from \([0, 1]\) with an absolutely continuous distribution, then after suitable normalization \(D_2^2(S(\alpha, N)) \) converges to the standard Lévy distribution. If \(\alpha \) is chosen randomly with the Lebesgue measure \(\lambda \) or the Gauss measure \(\nu(B) = (1/\log 2) \int_B 1/(1+x) \, dx \) (\(B \subseteq [0, 1] \) Borel) as distribution, then we also estimate the rate of convergence in the Kolmogorov metric.
Theorem 4. If \(\mu \) is a Borel probability measure on \([0, 1]\) which is absolutely continuous with respect to the Lebesgue measure, then for any \(t \geq 0 \),

\[
\mu \left(\left\{ \alpha \in [0, 1] : 5\pi^3 \frac{D_2^2(S(\alpha, N))}{\log^2 N} \leq t \right\} \right) \rightarrow \int_0^t \frac{e^{-1/(2x)}}{\sqrt{2\pi x^{3/2}}} \, dx \quad \text{as } N \rightarrow \infty.
\]

If \(\mu \) is either the Lebesgue measure \(\lambda \) or the Gauss measure \(\nu \), then for any \(N \geq 3 \),

\[
\sup_{t \geq 0} \left| \mu \left(\left\{ \alpha \in [0, 1] : 5\pi^3 \frac{D_2^2(S(\alpha, N))}{\log^2 N} \leq t \right\} \right) - \int_0^t \frac{e^{-1/(2x)}}{\sqrt{2\pi x^{3/2}}} \, dx \right| \leq \frac{(\log \log N)^{1/3}}{(\log N)^{1/3}}
\]

with a universal implied constant.

We conjecture that a similar result holds for the unsymmetrized lattice as well, i.e. if \(\alpha \) is chosen randomly from \([0, 1]\) with an absolutely continuous distribution, then \(D_2^2(L(\alpha, N))/\log^2 N \) has a nondegenerate limit distribution as \(N \rightarrow \infty \).

Our results, especially Theorems 1, 3 and 4 should be compared to the corresponding properties of the discrepancy of the classical sequence \(\{ n\alpha \} \), defined as

\[
\text{Disc}_N(n\alpha) = \sup_{[a, b] \subset [0, 1]} \left| \frac{1}{N} \sum_{n=1}^N I_{[a, b]}(\{n\alpha\}) - N(b - a) \right|
\]

Here and for the rest of the paper, \(I_S \) denotes the indicator function of a set \(S \). Note that \(\max_{1 \leq \ell \leq N} \text{Disc}_\ell(n\alpha) \) is, up to a factor of 2, equal to \(D_\infty(L(\alpha, N)) \), where the \(L^\infty \) discrepancy (also called star-discrepancy) \(D_\infty \) of a finite point set is defined as \(D_2 \) with the \(L^2 \) norm replaced by the \(L^\infty \) norm. Roughly speaking, for \(N \approx q^k \) we have \(\max_{1 \leq \ell \leq N} \text{Disc}_\ell(n\alpha) \approx \sum_{k=1}^K a_k \). By a classical theorem of W. Schmidt [14, p. 41], the optimal rate for the discrepancy is \(\log N \), and we can characterize all irrationals for which the optimum is attained [14, p. 53] as

\[
\text{Disc}_N(n\alpha) \ll \log N \iff \frac{1}{K} \sum_{k=1}^K a_k \ll 1.
\]

The discrepancy \(\text{Disc}_N(n\alpha) \) is also known to satisfy the same asymptotics a.e. as in Theorem 3 [14, p. 63]. A fortiori, the previous two results apply also to \(\max_{1 \leq \ell \leq N} \text{Disc}_\ell(n\alpha) \), and hence to \(D_\infty(L(\alpha, N)) \). We mention two distributional analogues due to Kesten [18]:

\[
\frac{\text{Disc}_N(n\alpha)}{\log N \log \log N} \rightarrow \frac{2}{\pi^2} \quad \text{in measure,}
\]

\[
\frac{\max_{1 \leq \ell \leq N} \text{Disc}_\ell(n\alpha)}{\log N \log \log N} \rightarrow \frac{3}{\pi^2} \quad \text{in measure.}
\]

As a curious observation, we mention that there exists an irrational \(\alpha \) such that

\[
\log N \ll D_2(S(\alpha, N)) \leq D_\infty(S(\alpha, N)) \ll \log N,
\]

and

\[
\log N \ll D_2(L(\alpha, N)) \leq D_\infty(L(\alpha, N)) \ll \log N,
\]

i.e. both \(S(\alpha, N) \) and \(L(\alpha, N) \) have optimal \(L^\infty \) discrepancy, but neither has optimal \(L^2 \) discrepancy. Indeed, it is easy to construct\(^1\) a sequence of positive integers \(a_k \) such that \(K^{-1} \sum_{k=1}^K a_k \ll 1 \) but \(\sum_{k=1}^K a_k^2 \gg K^2 \).

\(^1\)E.g. let \(a_k = k \) if \(k \) is a power of 2, and \(a_k = 1 \) otherwise.
Consider now the case of a rational α. For the sake of simplicity, we will always assume that N is the denominator of α. That is, given a reduced fraction p/q, we study the q-element set
\[
L(p/q, q) = \left\{ \left(\left\{ \frac{np}{q} \right\}, \frac{n}{q} \right) \mid 0 \leq n \leq q - 1 \right\},
\]
and the $2q$-element set
\[
S(p/q, q) = \left\{ \left(\left\{ \pm \frac{np}{q} \right\}, \frac{n}{q} \right) \mid 0 \leq n \leq q - 1 \right\}.
\]
The characterization of all rationals for which the L^2 discrepancy is optimal is exactly the same as in the irrational case.

Theorem 5. Let $p/q = [a_0; a_1, \ldots, a_r]$ be a reduced rational. We have
\[
D_2(S(p/q, q)) \ll \sqrt{\log q} \iff \frac{1}{r} \sum_{k=1}^{r} a_k^2 \ll 1,
\]
\[
D_2(L(p/q, q)) \ll \sqrt{\log q} \iff \frac{1}{r} \sum_{k=1}^{r} a_k^2 \ll 1 \text{ and } \frac{1}{\sqrt{r}} \left| \sum_{k=1}^{r} (-1)^k a_k \right| \ll 1.
\]

As an analogue of the metric results on typical values of α in the sense of the Lebesgue measure above, we also study the L^2 discrepancy for typical values of rationals. In this case, “typical” means choosing a reduced fraction p/q randomly from the set of all reduced rationals with bounded denominator.

Theorem 6. Let F_Q denote the set of all reduced fractions in $[0, 1]$ with denominator at most Q. For any $Q \geq 2$,
\[
\sup_{\ell \geq 0} \left| \frac{1}{|F_Q|} \left| \left\{ \frac{p}{q} \in F_Q : 5 \pi^2 \frac{D_2^2(S(p/q, q))}{\log^2 q} \leq t \right\} \right| - \int_0^t \frac{e^{-1/(2x)}}{\sqrt{2\pi x} x^{3/2}} dx \right| \ll \frac{1}{(\log Q)^{1/2}}
\]
with a universal implied constant.

We conjecture that a similar result holds for the unsymmetrized lattice as well, i.e. if p/q is chosen randomly from F_Q, then $D_2^2(L(p/q, q))/\log^2 q$ has a nondegenerate limit distribution as $Q \to \infty$.

In Section 2, we derive an explicit formula for $D_2(S(\alpha, N))$ and $D_2(L(\alpha, N))$ in terms of the partial quotients of α, see Propositions 7 and 8. Theorems 1, 2 and 5 are proved in Section 2.2. In Section 3, we show how Theorems 3 and 4 follow from classical results on the metric theory of continued fractions and ψ-mixing random variables. The proof of Theorem 6 in Section 4, on the other hand, relies on recent results of Bettin and Drappeau [4] on the statistics of partial quotients of random rationals.

2 L^2 discrepancy via the Parseval formula

2.1 The main estimates

We remind that $\alpha = [a_0; a_1, a_2, \ldots]$ is the (finite or infinite) continued fraction expansion of a real number α, and $p_k/q_k = [a_0; a_1, \ldots, a_k]$ denotes its convergents. For the rest of the paper, we also use the notation
\[
T_n = \sum_{\ell=0}^{n} \left(\frac{1}{2} - \{\ell \alpha\} \right) \quad \text{and} \quad E_N = \frac{1}{N} \sum_{n=0}^{N-1} T_n.
\]
For the sake of readability, \(a = b \pm c\) denotes \(|a - b| \leq c\), and \(\zeta\) is the Riemann zeta function.

Our main tool is an evaluation of the \(L^2\) discrepancy up to a small error, based on the Parseval formula. This method goes back to Davenport [11], and more recently has also been used in [5 6 7 16 21]. We follow the steps in our previous paper [9], where we considered irrationals whose sequence of partial quotients is reasonably well-behaved (e.g., bounded, or increasing at a regular rate such as for Euler’s number). Here we shall need a more refined analysis in order to study arbitrary reals without any assumption on the partial quotients.

Proposition 7. For any \(q_{K-1} \leq N \leq q_K\), we have

\[
D_2^2(S(\alpha, N)) = \sum_{m=1}^{q_K-1} \frac{1}{4\pi^4 m^2 \|m\alpha\|^2} + \xi_S(\alpha, N) \pm \left(\sum_{k=0}^{K-1} \frac{a_{k+1}}{2q_k} + \frac{\zeta(3)}{16\pi^4 N} \sum_{k=0}^{K-2} (a_{k+1} + 2)^3 q_k + 6.28 \right)
\]

with some \(\xi_S(\alpha, N)\) which satisfies both \(0 \leq \xi_S(\alpha, N) \leq \sum_{m=q_{K-1}}^{q_K-1} \frac{1}{2\pi^4 m^2 \|m\alpha\|^2}\) and

\[
\xi_S(\alpha, N) = \sum_{m=q_{K-1}}^{q_K-1} \frac{1}{4\pi^4 m^2 \|m\alpha\|^2} \pm \left(\frac{\zeta(3)}{16\pi^4 N} (a_K + 2)^3 q_K - 1 + 0.07 \right).
\]

Similarly, for any \(q_{K-1} \leq N \leq q_K\), we have

\[
D_2^2(L(\alpha, N)) = \frac{1}{N} \sum_{n=0}^{N-1} \left(T_n^2 + \frac{1}{2} T_n \right) + \left(1 - \frac{1}{2\pi^4 N} \right) \sum_{m=1}^{q_K-1} \frac{1}{4\pi^4 m^2 \|m\alpha\|^2}
\]

\[
+ \xi_L(\alpha, N) \pm \left(\sum_{k=0}^{K-1} \frac{a_{k+1}}{8q_k} + \frac{\zeta(3)}{16\pi^4 N} \sum_{k=0}^{K-2} (a_{k+1} + 2)^3 q_k + 2.78 \right)
\]

with some \(\xi_L(\alpha, N)\) which satisfies both \(0 \leq \xi_L(\alpha, N) \leq \sum_{m=q_{K-1}}^{q_K-1} \frac{1}{2\pi^4 m^2 \|m\alpha\|^2}\) and

\[
\xi_L(\alpha, N) = \left(1 - \frac{1}{2\pi^4 N} \right) \sum_{m=q_{K-1}}^{q_K-1} \frac{1}{4\pi^4 m^2 \|m\alpha\|^2} \pm \frac{\zeta(3)}{16\pi^4 N} (a_K + 2)^3 q_K - 1.
\]

We also prove a simpler form which is sharp up to a constant factor.

Proposition 8. For any \(q_{K-1} \leq N \leq q_K\), we have \(D_2^2(S(\alpha, N)) \ll \sum_{k=1}^{K} a_k^2\). For \(N = q_K\), we also have \(D_2^2(S(\alpha, q_K)) \gg \sum_{k=1}^{K} a_k^2\), and

\[
\sum_{k=1}^{K} a_k^2 + \left(\sum_{k=1}^{K} (-1)^k a_k \right)^2 \ll \sum_{k=1}^{K} a_k^2 + \left(\sum_{k=1}^{K} (-1)^k a_k \right)^2.
\]

The implied constants are universal.

We postpone the proofs to Sections 23 and 24 and now comment on the main terms.

The contribution of the sums \(T_n\) can be written as

\[
\frac{1}{N} \sum_{n=0}^{N-1} \left(T_n^2 + \frac{1}{2} T_n \right) = \frac{1}{N} \sum_{n=0}^{N-1} (T_n - E_N)^2 + E_N^2 + \frac{1}{2} E_N.
\]

Observing a connection with Dedekind sums, Beck showed [11 p. 79 and p. 91] (see also [21]) that for any \(q_{K-1} \leq N \leq q_K\), the “expected value” \(E_N\) is

\[
E_N = \frac{1}{12} \sum_{k=1}^{K} (-1)^k a_k + O \left(\sum_{1 \leq k \leq K} a_k \right).
\]

(1)
For \(N = q_K \), the error term can be improved to

\[
E_{q_K} = \frac{1}{12} \sum_{k=1}^{K} (-1)^k a_k + O(1).
\]

(2)

Both implied constants are universal. Generalizing results of Beck, in a recent paper \[8\] we proved that if \(a_k \leq c k^d \) with some constants \(c > 0 \) and \(d \geq 0 \), then for any \(q_{K-1} \leq N \leq q_K \), the “variance” is

\[
\frac{1}{N} \sum_{n=0}^{N-1} (T_n - E_n)^2 = \sum_{m=1}^{q_{K-1}} \frac{1}{8 \pi^4 m^2 \| m \alpha \|^2} + O \left(\max_{|k-K| \leq \log K} a_k^2 \cdot (\log \log N)^4 \right)
\]

with implied constants depending only on \(c \) and \(d \). See also Lemma \[10\] below.

Finally, we will need two different evaluations of the Diophantine sum appearing in Proposition \[7\] On the one hand, for general \(\alpha \) we have \[10\] p. 110], \[9\]

\[
\sum_{m=1}^{q_{K-1}} \frac{1}{m^2 \| m \alpha \|^2} = \frac{\pi^4}{96} \sum_{k=1}^{K} a_k^2 \pm 152 \sum_{k=1}^{K} a_k.
\]

(4)

On the other hand, Beck [11] p. 176] proved that if \(\alpha \) is quadratic irrational, then for any \(M \geq 1 \),

\[
\sum_{m=1}^{M} \frac{1}{4 \pi^4 m^2 \| m \alpha \|^2} = c(\alpha) \log M + O(1)
\]

(5)

with some constant \(c(\alpha) > 0 \) and an implied constant depending only on \(\alpha \).

2.2 Optimal lattices

In this section, we deduce Theorems \[1\] \[2\] and \[5\] from Propositions \[7\] and \[8\].

Proof of Theorem \[1\] Consider first the symmetrized lattice \(S(\alpha, N) \). We will show the implications

\[
\frac{1}{K} \sum_{k=1}^{K} a_k^2 \ll 1 \implies D_2(S(\alpha, N)) \ll \sqrt{\log N} \implies D_2(S(\alpha, q_K)) \ll \sqrt{\log q_K} \implies \frac{1}{K} \sum_{k=1}^{K} a_k^2 \ll 1.
\]

Assume that \(K^{-1} \sum_{k=1}^{K} a_k^2 \ll 1 \) as \(K \to \infty \). By Proposition \[8\] for any \(q_{K-1} \leq N \leq q_K \) we have \(D_2(S(\alpha, N)) \ll \sum_{k=1}^{K} a_k^2 \ll K \ll \log N \), as claimed. The second implication is trivial. Next, assume that \(D_2(S(\alpha, N)) \ll \sqrt{\log N} \) as \(N \to \infty \). By Proposition \[8\] for \(N = q_K \) we have

\[
\sum_{k=1}^{K} a_k^2 \ll D_2^2(S(\alpha, q_K)) \ll \log q_K \leq \sum_{k=1}^{K} \log(a_k + 1) \ll \sum_{k=1}^{K} a_k \leq \sqrt{K \sum_{k=1}^{K} a_k^2},
\]

and the claim follows. This finishes the proof of the equivalence for \(S(\alpha, N) \).

Consider now the unsymmetrized lattice \(L(\alpha, q_K) \). Assume that \(K^{-1} \sum_{k=1}^{K} a_k^2 \ll 1 \) and \(K^{-1/2} \sum_{k=1}^{K} (-1)^k a_k \ll 1 \) as \(K \to \infty \). By Proposition \[8\] for \(N = q_K \) we have

\[
D_2^2(L(\alpha, q_K)) \ll \sum_{k=1}^{K} a_k^2 \ll \left(\sum_{k=1}^{K} (-1)^k a_k \right)^2 \ll K \ll \log q_K.
\]
as claimed. Next, assume that $D_2 L(\alpha, q_K) \ll \sqrt{\log q_K}$ as $K \rightarrow \infty$. By Proposition \[3\] for $N = q_K$ we have

$$
\sum_{k=1}^{K} a_k^2 + \left(\sum_{k=1}^{K} (-1)^k a_k \right)^2 \ll D_2^2 L(\alpha, q_K) \ll \log q_K.
$$

Hence both $\sum_{k=1}^{K} a_k^2 \ll \log q_K$ and $\left(\sum_{k=1}^{K} (-1)^k a_k \right)^2 \ll \log q_K$. As above, the former estimate shows that $K^{-1} \sum_{k=1}^{K} a_k^2 \ll 1$. In particular, $\log q_K \leq \sum_{k=1}^{K} \log(a_k + 1) \ll \sum_{k=1}^{K} a_k^2 \ll K$, therefore $\left(\sum_{k=1}^{K} (-1)^k a_k \right)^2 \ll K$, as claimed. This finishes the proof of the equivalence for $L(\alpha, q_K)$.

Proof of Theorem \[5\] As Proposition \[8\] applies to both rationals and irrationals, the proof is identical to that of Theorem \[1\].

Proof of Theorem \[2\] Let α be a quadratic irrational. By Proposition \[7\] and formula \[5\], for any $q_{k-1} \leq N \leq q_k$,

$$
D_2^2(S(\alpha, N)) = \sum_{m=1}^{q_{k-1}} \frac{1}{4\pi^2 m^2 \|m\alpha\|^2} + O(1) = c(\alpha) \log N + O(1),
$$

as claimed. Using also formula \[4\], we similarly get

$$
D_2^2(L(\alpha, N)) = \frac{3}{2} c(\alpha) \log N + E_N^2 + \frac{1}{2} E_N + O((\log \log N)^4).
$$

Formula \[1\] shows that here $E_N = \frac{A(\alpha)}{12} K + O(1) = \frac{A(\alpha)}{12 A(\alpha)} \log N + O(1)$, and the claim follows.

2.3 Proof of Proposition \[7\]

Lemma 9.

(i) For any $K \geq 1$,

$$
\sum_{m=1}^{q_{k-1}} \frac{1}{\pi^2 m^2 \|m\alpha\|^2} \leq \frac{K-1}{2 q_k} + 3.12.
$$

(ii) For any $K \geq 1$ and $n \geq 0$,

$$
\sum_{m=q_K}^{\infty} \frac{1}{2\pi^2 m^2} \min \left\{ \frac{1}{4\|m\alpha\|^2}, n^2 \right\} \leq 1.12 \frac{n}{q_K} + 0.61 \frac{n^2}{q_K^2}.
$$

(iii) For any $K \geq 1$ and $N \geq q_{k-1}$,

$$
\sum_{m=1}^{q_{k-1}} \frac{1}{4\pi^4 m^2 \|m\alpha\|^2} \min \left\{ \frac{1}{4\|2m\alpha\|^2}, 1 \right\} \leq \frac{\zeta(3)}{16\pi^4 N} \sum_{k=0}^{K-1} (a_{k+1} + 2)^3 q_k + 0.07.
$$

Proof. The proof of all three claims is based on the following simple observations. Let $k \geq 1$, or $k = 0$ and $a_1 > 1$. For any integer $a \geq 1$ let $J_{k,a} = [a q_k, (a + 1) q_k] \cap [q_k, q_{k+1})$ be a (possibly empty) index set. Let $\delta_k = q_k \alpha - p_k$, and recall from the general theory of continued fractions that $1/(q_{k+1} + q_k) \leq |\delta_k| = \|q_k \alpha\| \leq 1/q_{k+1}$. For any integer $m \in J_{k,a}$, we have $m \alpha = mp_k/q_k + m \delta_k/q_k$, and here the second term is negligible as $m|\delta_k|/q_k < 1/q_k$. Since p_k and q_k are relatively prime, as
If m_α runs in the index set $J_{k,a}$, the numbers $m \alpha_k$ attain each mod q_k residue class at most once. If $m \alpha_k \not\equiv 0, \pm 1 \pmod{q_k}$, then

$$\|m_\alpha\| = \|m \alpha_k + m \delta_k\| \geq \|m \alpha_k\| - \frac{1}{q_k} \geq \frac{1}{2} \|m \alpha_k\|$$

Therefore for any nondecreasing function $f : [2, \infty) \rightarrow [0, \infty)$, we have

$$\sum_{m \in J_{k,a}} f \left(\frac{1}{\|m_\alpha\|} \right) \leq 3f \left(\frac{1}{\|q_k \alpha\|} \right) + \sum_{j=2}^{q_k-3} f \left(\frac{2}{\|j/\alpha\|} \right) \leq 3f \left(\frac{1}{\|q_k \alpha\|} \right) + 2 \sum_{2 \leq j \leq q_k/2} f \left(\frac{2q_k}{j} \right). \quad (6)$$

Note that $3f(1/\|q_k \alpha\|)$ is an upper bound to the contribution of the three terms for which $m \alpha_k \equiv 0, \pm 1 \pmod{q_k}$.

We also have the simpler estimate

$$\sum_{1 \leq m < q_k + 1} f \left(\frac{1}{\|m_\alpha\|} \right) \leq 2 \sum_{1 \leq j \leq q_k + 1/2} f \left(\frac{1}{j\|q_k \alpha\|} \right). \quad (7)$$

Indeed, consider the points $m \alpha$ (mod 1), $1 \leq m < q_k + 1$ and the intervals $H_j = [j\|q_k \alpha\|, (j + 1)\|q_k \alpha\|)$, $j \geq 1$ and $H_{-1} = ((j - 1)\|q_k \alpha\|, j\|q_k \alpha\|)$, $j \leq -1$. Since $\|m_1 - m_2\| \geq \|q_k \alpha\|$ for any $m_1, m_2 \in [1, q_k - 1]$, $m_1 \neq m_2$, each interval H_j contains at most one point $m \alpha$ (mod 1), and (7) follows.

(i) Estimate (6) yields

$$\sum_{m \in J_{k,a}} \frac{1}{\pi^2 m^2 \|m_\alpha\|} \leq \frac{1}{\pi^2 a^2 q_k^2} \left(3\|q_k \alpha\| + 2 \sum_{2 \leq j \leq q_k/2} \frac{2q_k}{j} \right) \leq \frac{1}{\pi^2 a^2 q_k^2} \left(3(q_k + 1) + 4q_k \log \frac{q_k}{2} \right).$$

Summing over $a \geq 1$ and $0 \leq k \leq K - 1$ leads to

$$\sum_{m=1}^{q_k-1} \frac{\pi^2 m^2 \|m_\alpha\|}{K-1} \leq \sum_{k=0}^{K-1} \frac{3q_{k+1} + 3q_k + 4q_k \log(q_k/2)}{6q_k^2} \leq \sum_{k=0}^{K-1} \frac{q_{k+1}}{2q_k} + \sum_{k=0}^{K-1} \frac{3 + 2 \log(q_k/2)}{3q_k} \leq \sum_{k=0}^{K-1} \frac{q_{k+1}}{2q_k} + \sum_{k=0}^{K-1} \frac{3 + 2 \log(F_{k+1}/2)}{3F_{k+1}},$$

where F_{k+1} are the Fibonacci numbers. The numerical value of the series in the previous line is 3.1195..., as claimed.

(ii) Estimate (7) yields

$$\sum_{m \in J_{k,a}} \frac{1}{2\pi^2 m^2} \min \left\{ \frac{1}{4\|m_\alpha\|^2}, n^2 \right\} \leq \frac{1}{2\pi^2 a^2 q_k^2} \left(3n^2 + 2 \sum_{j=2}^{\infty} \min \left\{ \frac{q_k^2}{j^2}, n^2 \right\} \right) \leq \frac{1}{2\pi^2 a^2 q_k^2} \left(3n^2 + 4nq_k \right) .$$

Note that the contribution of the terms $2 \leq j \leq \lfloor q_k/n \rfloor + 1$ and $j \geq \lfloor q_k/n \rfloor + 2$ is at most nq_k each. Summing over $a \geq 1$ and $k \geq K$ leads to

$$\sum_{m=q_k}^{\infty} \frac{1}{2\pi^2 m^2} \min \left\{ \frac{1}{4\|m_\alpha\|^2}, n^2 \right\} \leq \sum_{k=K}^{\infty} \frac{3n^2 + 4nq_k}{12q_k^2} .$$

If $a_1 = 1$, then the term $k = 0$ can be removed.
From the recursion satisfied by q_k one readily sees that $q_{K+\ell} \geq F_{\ell+1}q_K$ for all $\ell \geq 0$, hence the right hand side of the previous formula is at most $c_1 n/q_K + c_2 n^2/q_K^2$ with $c_1 = \sum_{\ell=0}^{\infty} 1/(3F_{\ell+1}) = 1.1199\ldots$ and $c_2 = \sum_{\ell=0}^{\infty} 1/(4F_{\ell+1}) = 0.6065\ldots$, as claimed.

(iii) The contribution of all m such that $|m\alpha| > 1/4$ is negligible:

$$\sum_{1 \leq m \leq q_{K+1}} \frac{1}{4\pi^4 m^2 |m\alpha|^2} \min \left\{ \frac{1}{4N|2m\alpha|}, 1 \right\} \leq \sum_{m=1}^{\infty} \frac{4}{\pi^4 m^2} = \frac{2}{3\pi^2}.$$

On the other hand, $|m\alpha| \leq 1/4$ implies $|2m\alpha| = 2|m\alpha|$, hence the contribution of all such terms is

$$\sum_{1 \leq m \leq q_{K+1}} \frac{1}{4\pi^4 m^2 |m\alpha|^2} \min \left\{ \frac{1}{4N|2m\alpha|}, 1 \right\} \leq \sum_{m=1}^{\infty} \frac{1}{32\pi^4 N^2 |m\alpha|^3}.$$

Estimate (7) gives

$$\sum_{q_k \leq m \leq q_{k+1}} \frac{1}{32\pi^4 N^2 |m\alpha|^3} \leq \frac{1}{16\pi^4 q_k^2} \sum_{j=1}^{\infty} \frac{1}{j^3 q_k \alpha} \leq \frac{\zeta(3)(a_k+1)^3 q_k}{16\pi^4 N}.$$

Summing over $0 \leq k \leq K-1$, we thus obtain

$$\sum_{m=1}^{q_K-1} \frac{1}{4\pi^4 m^2 |m\alpha|^2} \min \left\{ \frac{1}{4N|2m\alpha|}, 1 \right\} \leq \sum_{k=0}^{K-1} \frac{\zeta(3)(a_k+1)^3 q_k}{16\pi^4 N} + \frac{2}{3\pi^2}.$$

Here $2/(3\pi^2) = 0.06754\ldots$, as claimed. \qed

Proof of Proposition 7. We give a detailed proof for the symmetrized lattice $S(\alpha, N)$, and then indicate at the end how to modify the proof for the unsymmetrized lattice $L(\alpha, N)$.

Let $B(x, y) = |S(\alpha, N) \cap ([0, x] \times [0, y])|$ denote the number of points of $S(\alpha, N)$ which fall into the box $[0, x] \times [0, y]$. Integrating on the strips $[0, 1] \times [n/N, (n+1)/N]$ separately leads to

$$D_2^2(S(\alpha, N)) = \sum_{n=0}^{N-1} \int_0^1 \int_{n/N}^{(n+1)/N} (B(x, y) - 2Nxy)^2 \, dy \, dx = M + R + \frac{4}{9}$$

with

$$M := \frac{1}{N} \sum_{n=0}^{N-1} \int_0^1 \left(B \left(x, \frac{n+1}{N} \right) - 2(n+1)x \right)^2 \, dx,$$

$$R := \frac{2}{N} \sum_{n=0}^{N-1} \int_0^1 \left(B \left(x, \frac{n+1}{N} \right) - 2(n+1)x \right) x \, dx.$$

The function

$$B \left(x, \frac{n+1}{N} \right) - 2(n+1)x = \sum_{\ell=0}^{n} (I_{[0,x]}(\{-\ell\alpha\}) + I_{[0,x]}(\{\ell\alpha\}) - 2x)$$

is mean zero, and has Fourier coefficients

$$\int_0^1 \left(B \left(x, \frac{n+1}{N} \right) - 2(n+1)x \right) e^{-2\pi i m x} \, dx = \sum_{\ell=0}^{n} \frac{\cos(2\ell m \pi \alpha)}{\pi i m} = \frac{1}{2\pi i m} \left(\frac{\sin((2n+1)m \pi \alpha)}{\sin(m \pi \alpha)} + 1 \right).$$
The Fourier coefficients of x are $\int_0^1 xe^{-2\pi imx} \, dx = -1/(2\pi im)$, thus by the Parseval formula we have

$$R = \frac{2}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{\infty} \frac{1}{2\pi im} \left(\frac{\sin((2n+1)m\pi\alpha)}{\sin(m\pi\alpha)} + 1 \right), \quad -\frac{1}{2\pi im} = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{\infty} \frac{\sin((2n+1)m\pi\alpha)}{\pi^2 m^2 \sin(m\pi\alpha)} + \frac{1}{6}.$$

The Parseval formula similarly gives

$$M = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{\infty} \frac{1}{4\pi^2 m^2} \left(\frac{\sin((2n+1)m\pi\alpha)}{\sin(m\pi\alpha)} + 1 \right)^2$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{\infty} \frac{\sin^2((2n+1)m\pi\alpha)}{2\pi^2 m^2 \sin^2(m\pi\alpha)} + \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{\infty} \frac{\sin((2n+1)m\pi\alpha)}{\pi^2 m^2 \sin(m\pi\alpha)} + \frac{1}{12}.$$

We can estimate the total error in the previous two formulas using

$$\left| \frac{\sin((2n+1)m\pi\alpha)}{\sin(m\pi\alpha)} \right| \leq \min \left\{ \frac{1}{2\|m\alpha\|}, 2n+1 \right\}$$

and Lemma 9 (i) as

$$\left| \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{\infty} \frac{2\sin((2n+1)m\pi\alpha)}{\pi^2 m^2 \sin(m\pi\alpha)} \right| \leq \frac{1}{N} \sum_{n=0}^{N-1} \left(\frac{q_{K-1}}{\pi^2 m^2 \|m\alpha\|} + \sum_{m=q_K}^{\infty} \frac{2(2n+1)}{\pi^2 m^2} \right)$$

$$\leq \sum_{k=0}^{K-1} \frac{a_{k+1}}{2q_k} + 3.12 + \frac{4N}{\pi^2 q_K}.$$

By the assumption $N \leq q_K$ and the fact $3.12 + 4/\pi^2 + 4/9 + 1/6 + 1/12 < 4.22$, we thus obtain

$$D_2^2(S(\alpha, N)) = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{\infty} \frac{\sin^2((2n+1)m\pi\alpha)}{2\pi^2 m^2 \sin^2(m\pi\alpha)} \leq \left(\sum_{k=0}^{K-1} \frac{a_{k+1}}{2q_k} + 4.22 \right).$$

Lemma 9 (ii) estimates the tail of the infinite series in the previous formula as

$$\sum_{m=q_K}^{\infty} \frac{\sin^2((2n+1)m\pi\alpha)}{2\pi^2 m^2 \sin^2(m\pi\alpha)} \leq \sum_{m=q_K}^{\infty} \frac{1}{2\pi^2 m^2} \sin^2((2n+1)m\pi\alpha) \leq \sum_{m=q_K}^{\infty} \frac{1}{4\|m\alpha\|^2} \sin^2((2n+1)m\pi\alpha) \leq 1.12 \frac{2n+1}{q_K} + 0.61 \frac{(2n+1)^2}{q_K^2}.$$

By the assumption $N \leq q_K$ and the facts $\sum_{n=0}^{N-1} (2n+1)^2 \leq (4/3)N^3$ and $4.22 + 1.12 + (4/3) \cdot 0.61 < 6.16$, we immediately get

$$D_2^2(S(\alpha, N)) = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{q_{K-1}} \frac{\sin^2((2n+1)m\pi\alpha)}{2\pi^2 m^2 \sin^2(m\pi\alpha)} \leq \left(\sum_{k=0}^{K-1} \frac{a_{k+1}}{2q_k} + 6.16 \right).$$

Elementary calculations show that the function $1/\sin^2(\pi x) - 1/(\pi^2 \|x\|^2)$ is increasing on $(0, 1/2]$, hence $1/(\pi^2 \|x\|^2) \leq 1/\sin^2(\pi x) \leq 1/(\pi^2 \|x\|^2) + 1 - 4/\pi^2$ for all x. The error of replacing $\sin^2(m\pi\alpha)$ by $\pi^2 \|m\alpha\|^2$ in the denominator of the previous formula is thus at most

$$\frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{q_{K-1}} \frac{\sin^2((2n+1)m\pi\alpha)(1 - 4/\pi^2)}{2\pi^2 m^2} \leq \sum_{m=1}^{\infty} \frac{1 - 4/\pi^2}{2\pi^2 m^2} = \frac{1 - 4/\pi^2}{12}.$$

Since $6.16 + (1 - 4/\pi^2)/12 < 6.21$, we obtain

$$D_2^2(S(\alpha, N)) = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{q_{K-1}} \frac{\sin^2((2n+1)m\pi\alpha)}{2\pi^4 m^2 \|m\alpha\|^2} + \xi_S(\alpha, N) + \left(\sum_{k=0}^{K-1} \frac{a_{k+1}}{2q_k} + 6.21 \right), \quad (8)$$

11
where we define
\[
\xi_S(\alpha, N) := \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=q_{K-1}}^{q_{K-1} - 1} \frac{\sin^2((2n + 1)m\pi\alpha)}{2\pi^4 m^2 \|m\alpha\|^2}.
\]

Using the trigonometric identity
\[
\frac{1}{N} \sum_{n=0}^{N-1} \sin^2((2n + 1)x) = \frac{1}{2} - \frac{\sin(4Nx)}{4N \sin(2x)},
\]
the first term in (8) simplifies to
\[
\sum_{m=1}^{q_{K-1} - 1} \frac{1}{4\pi^4 m^2 \|m\alpha\|^2} - \sum_{m=1}^{q_{K-1} - 1} \frac{\sin(4N m \pi \alpha)}{8\pi^4 N m^2 \|m\alpha\|^2 \sin(2m \pi \alpha)}.
\]

Here second term can be estimated using Lemma 9 (iii) as
\[
\left| \sum_{m=1}^{q_{K-1} - 1} \frac{\sin(4N m \pi \alpha)}{8\pi^4 N m^2 \|m\alpha\|^2 \sin(2m \pi \alpha)} \right| \leq \sum_{m=1}^{q_{K-1} - 1} \frac{1}{4\pi^4 m^2 \|m\alpha\|^2} \min \left\{ \frac{1}{4N \|2m\alpha\|}, 1 \right\}
\leq \frac{\zeta(3) K - 1}{16\pi^4 N} \sum_{k=0}^{K-2} (a_{k+1} + 2)^3 q_k + 0.07.
\]

Therefore (8) simplifies to
\[
D_2^2(S(\alpha, N)) = \sum_{m=1}^{q_{K-1} - 1} \frac{1}{4\pi^4 m^2 \|m\alpha\|^2} + \xi_S(\alpha, N) + \zeta(3) \frac{(a_K + 2)^3 q_{K-1} + 6.28}{16\pi^4 N},
\]
and it remains to prove the properties of $\xi_S(\alpha, N)$. Clearly, $0 \leq \xi_S(\alpha, N) \leq \sum_{m=1}^{q_{K-1} - 1} \frac{1}{2 \pi^4 m^2 \|m\alpha\|^2}$. On the other hand, repeating arguments from above and from Lemma 9 (iii), we can also write
\[
\xi_S(\alpha, N) = \sum_{m=q_{K-1}}^{q_{K-1} - 1} \frac{1}{4\pi^4 m^2 \|m\alpha\|^2} - \sum_{m=q_{K-1}}^{q_{K-1} - 1} \frac{\sin(4N m \pi \alpha)}{8\pi^4 N m^2 \|m\alpha\|^2 \sin(2m \pi \alpha)}
\leq \sum_{m=q_{K-1}}^{q_{K-1} - 1} \frac{1}{4\pi^4 m^2 \|m\alpha\|^2} \min \left\{ \frac{1}{4N \|2m\alpha\|}, 1 \right\}
\leq \frac{\zeta(3) (a_K + 2)^3 q_{K-1} + 0.07}{16\pi^4 N}.
\]

This finishes the proof for $S(\alpha, N)$.

The proof for $L(\alpha, N)$ is entirely analogous. The only difference is that the number of points $B(x, y) := |L(\alpha, N) \cap ([0, x] \times [0, y])|$ which fall into the box $[0, x] \times [0, y]$ satisfies
\[
B \left(x, \frac{n + 1}{N} \right) = (n + 1)x - \sum_{\ell=0}^{n} \left(\int_{[0, x]}(\{\ell\alpha\}) - x \right),
\]
which is not a mean zero function. Its integral (0th Fourier coefficient) is
\[
\int_0^1 \left(B \left(x, \frac{n + 1}{N} \right) - (n + 1)x \right) dx = \sum_{\ell=0}^{n} \left(\frac{1}{2} - \{\ell\alpha\} \right) = T_n,
\]
which introduces the extra terms \(N^{-1} \sum_{n=0}^{N-1} T_n/2 \) resp. \(N^{-1} \sum_{n=0}^{N-1} T_n^2 \) when the Parseval formula is applied to the analogue of \(R \) resp. \(M \) as above. For the convenience of the reader we mention that the analogue of formula (8) is

\[
D_2^2(L(\alpha, N)) = \frac{1}{N} \sum_{n=0}^{N-1} \left(T_n^2 + \frac{1}{2} T_n \right) + \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=1}^{q_k-1} \frac{\sin^2((n+1)m\pi\alpha)}{2\pi^2 m^2||m\alpha||^2}
\]

\[+ \xi_L(\alpha, N) \pm \left(\sum_{k=0}^{K-1} \frac{a_{k+1}}{8q_k} + 2.78 \right),\]

where

\[\xi_L(\alpha, N) := \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=qK-1}^{qK-1} \frac{\sin^2((n+1)m\pi\alpha)}{2\pi^2 m^2||m\alpha||^2}.\]

\[2.4 \quad \text{Proof of Proposition 8}\]

The following lemma is a simpler form of formula (3), but it applies without any assumption on the partial quotients. As modifying the proof of (3) is not entirely straightforward, we include the details.

Lemma 10. For any \(K \geq 1 \),

\[
\frac{1}{qK} \sum_{n=0}^{qK-1} (T_n - E_{qK})^2 \ll \sum_{k=1}^{K} a_k^2
\]

with a universal implied constant.

Proof. For the sake of readability, set \(p = p_K \) and \(q = q_K \). For any integer \(1 \leq \ell \leq q - 1 \), we have \(\|\ell p/q\| \geq 1/q \) and \(|\ell \alpha - \ell p/q| < q|\alpha - p/q| < 1/q \). Thus there is no integer between \(\ell p/q \) and \(\ell \alpha \), hence

\[
|\{\ell \alpha\} - \left\{ \frac{\ell p}{q} \right\}| \leq \left| \ell \alpha - \frac{\ell p}{q} \right| < \frac{1}{q}.
\]

Consequently, for all \(0 \leq n \leq q - 1 \),

\[
T_n = \sum_{\ell=0}^{n} \left(\frac{1}{2} - \{\ell \alpha\} \right) = \sum_{\ell=0}^{n} \left(\frac{1}{2} - \frac{1}{2q} - \left\{ \frac{\ell p}{q} \right\} \right) + O(1).
\]

Introducing

\[
T_n^* := \sum_{\ell=0}^{n} \left(\frac{1}{2} - \frac{1}{2q} - \left\{ \frac{\ell p}{q} \right\} \right) \quad \text{and} \quad E_{qK}^* := \frac{1}{q} \sum_{n=0}^{qK-1} T_n^*,
\]

we thus have \(T_n - E_q = T_n^* - E_{qK}^* + O(1) \). Therefore \(q^{-1} \sum_{n=0}^{qK-1} (T_n - E_q)^2 \ll q^{-1} \sum_{n=0}^{qK-1} (T_n^* - E_{qK}^*)^2 + 1 \), and it remains to estimate the latter.

The rest of the proof is based on Fourier analysis on the finite cyclic group \(\mathbb{Z}_q \), which we identify by \(\{0, 1, \ldots, q-1\} \). Elementary calculations show that

\[
\sum_{x=0}^{q-1} \left(\frac{1}{2} - \frac{1}{2q} - \left\{ \frac{x}{q} \right\} \right) e^{-2\pi i mx/q} = \begin{cases}
0 & \text{if } m = 0, \\
1/(1 - e^{-2\pi i m/q}) & \text{if } 1 \leq m \leq q - 1.
\end{cases}
\]

13
Therefore by Fourier inversion on \(\mathbb{Z}_q \),

\[
\frac{1}{2} - \frac{1}{2q} - \left\{ \frac{x}{q} \right\} = \frac{1}{q} \sum_{m=1}^{q-1} \frac{e^{2\pi imx/q}}{1 - e^{-2\pi im/q}}, \quad x \in \mathbb{Z}.
\]

We can thus write \(T_n^* \) as

\[
T_n^* = \frac{1}{q} \sum_{m=1}^{q-1} \frac{e^{2\pi im(n+1)p/q}}{1 - e^{-2\pi im/p}} = \frac{1}{q} \sum_{m=1}^{q-1} \frac{1 - e^{2\pi im(n+1)p/q}}{(1 - e^{-2\pi im/p})(1 - e^{2\pi im/p})}.
\]

Letting \(B = q^{-1} \sum_{n=1}^{q-1} (T_n^* - E_n^*)^2 \leq q^{-1} \sum_{n=1}^{q-1} |T_n^* - B|^2 = q^{-1} \sum_{n=1}^{q-1} \frac{1}{q} \sum_{m=1}^{q-1} \frac{e^{2\pi im(n+1)p/q}}{(1 - e^{-2\pi im/p})(1 - e^{2\pi im/p})} \mid T_n^* - B \mid^2.
\]

Expanding the square shows that here

\[
q^{-1} \sum_{m=1}^{q-1} \frac{e^{2\pi im(n+1)p/q}}{(1 - e^{-2\pi im/p})(1 - e^{2\pi im/p})} \mid^2
\]

\[
= q^{-1} \sum_{m=1}^{q-1} \frac{1}{1 - e^{-2\pi im/p}} \mid^2
\]

\[
+ \sum_{m_1 \neq m_2, m_1, m_2 = 1}^{q-1} \frac{e^{2\pi im_1 - m_2(p+1)/q}}{(1 - e^{-2\pi im_1/p})(1 - e^{2\pi im_1/p})(1 - e^{-2\pi im_2/p})(1 - e^{2\pi im_2/p})}.
\]

As \(\sum_{m=0}^{q-1} e^{2\pi im(m_1 - m_2)(n+1)p/q} = 0 \) for all \(m_1 \neq m_2 \), the contribution of the off-diagonal terms is zero. Formula (4) thus leads to

\[
\frac{1}{q} \sum_{n=0}^{q-1} (T_n^* - E_n^*)^2 \leq \frac{1}{q^2} \sum_{m=1}^{q-1} \frac{1}{1 - e^{-2\pi im/p}} \mid^2 \leq \sum_{m=1}^{q-1} \frac{1}{m^2 \|mp/q\|^2} \ll \sum_{k=1}^{K} a_k^2,
\]

as claimed. \(\square \)

Proof of Proposition 8. By Proposition 7 for any \(q_K-1 \leq N \leq q_K \) we have

\[
D_2^2(S(\alpha, N)) \ll q_K^{-1} \sum_{m=1}^{q_K^{-1} \frac{1}{m^2 \|m\alpha\|^2} + \sum_{k=0}^{K-1} a_{k+1} q_k + \sum_{k=0}^{K-2} a_{k+1} q_k}.
\]

Here \(a_{k+1} q_k/N \ll a_{k+1}^2 \), hence formula (14) yields \(D_2^2(S(\alpha, N)) \ll \sum_{k=1}^{K} a_k^2 \), as claimed. Using Lemma 10 and formula (2) we also deduce that for \(N = q_K \),

\[
\frac{1}{q_K} \sum_{n=0}^{q_K-1} (T_n^* + 2T_n) = \frac{1}{q_K} \sum_{n=0}^{q_K-1} (T_n - E_{qK})^2 + E_{qK}^2 + \frac{1}{2} E_{qK} \ll \sum_{k=1}^{K} a_k^2 + \left(\sum_{k=1}^{K} (-1)^k a_k \right)^2,
\]

and the upper bound for \(D_2^2(L(\alpha, q_K)) \) follows.
Next, we prove the lower bounds. Let \(c > 0 \) resp. \(C > 0 \) denote suitably small resp. large universal constants whose values change from line to line. By Proposition \(\ref{prop1} \) and formula \(\ref{eq1} \), for \(N = qK \) we have

\[
D_2^2(S(\alpha, qK)) \geq \frac{qK - 1}{4\pi^4m^2||m\alpha||^2} - \frac{\zeta(3)}{16\pi^4qK} \sum_{k=0}^{K-1} (a_{k+1} + 2)^3q_k - C\sum_{k=1}^{K} a_k
\]

\[
\geq \left(\frac{1}{360} - \frac{\zeta(3)}{16\pi^4} \right) \sum_{k=1}^{K} a_k^2 - C\sum_{k=1}^{K} a_k.
\]

The point is that \(1/360 > \zeta(3)/(16\pi^4) \), i.e. the coefficient of \(a_k^2 \) is positive. The contribution of all \(k \) such that \(a_k \ll 1 \) is \(\ll K \), and for all other terms \(a_k \) dominates \(a_k \). Therefore \(D_2^2(S(\alpha, qK)) \geq c\sum_{k=1}^{K} a_k^2 - CK \). On the other hand, by Roth’s theorem we also have \(D_2^2(S(\alpha, qK)) \gg \log qK \gg K \).

Taking a suitable weighted average of the previous two inequalities establishes the lower bound \(D_2^2(S(\alpha, qK)) \geq c\sum_{k=1}^{K} a_k^2 \).

From Proposition \(\ref{prop1} \) we similarly deduce

\[
D_2^2(L(\alpha, qK)) \geq \frac{1}{qK} \sum_{n=1}^{qK-1} (T_n - E_{qK})^2 + E_{qK}^2 + c\sum_{k=1}^{K} a_k^2.
\]

Here \(qK^{-1} \sum_{n=0}^{qK-1} (T_n - E_{qK})^2 \geq 0 \), and the lower bound for \(D_2^2(L(\alpha, qK)) \) follows from formula \(\ref{eq2} \). \(\square \)

2.5 Proof of Remark \(\ref{rem1} \)

Let \(\alpha \) be an irrational such that \(a_k \ll \sqrt{k}/\log^2 k \). For any \(qK - 1 \leq N \leq qK \) we then have \(\max_{|k-K| \ll \log K} a_k^2 \cdot \log \log N \ll K \), hence formulas \(\ref{eq3} \) and \(\ref{eq4} \) give

\[
\frac{1}{N} \sum_{n=0}^{N-1} (T_n - E_N)^2 = \frac{1}{8\pi^4m^2||m\alpha||^2} + O(K) \ll \sum_{k=1}^{K} a_k^2.
\]

Using this fact instead of Lemma \(\ref{lem7} \) in the proof of Proposition \(\ref{prop8} \) we deduce that \(D_2^2(L(\alpha, N)) \ll \sum_{k=1}^{K} a_k^2 + (\sum_{k=1}^{K} (-1)^k a_k)^2 \) holds for all \(qK - 1 \leq N \leq qK \) (instead of only for \(N = qK \)). In particular, the equivalence stated in Remark \(\ref{rem1} \) follows.

3 Typical irrationals

3.1 Asymptotics almost everywhere

Let us recall certain basic facts about the statistics of the partial quotients of a typical irrational number. Let \(\varphi \) be a positive nondecreasing function on \((0, \infty)\), and let \(A_K = \max_{1 \leq k \leq K} a_k \). It is well known that for a.e. \(\alpha \) we have \(\log q_k \sim \frac{\pi^2}{12 \log 2} k \), and that \(a_k \leq \varphi(k) \) for all but finitely many \(k \) if and only if \(\sum_{n=1}^{\infty} 1/\varphi(n) < \infty \). A classical result of Diamond and Vaaler \(\cite{12} \) on trimmed sums states that for a.e. \(\alpha \),

\[
\frac{\sum_{k=1}^{K} a_k - A_K}{K \log K} \to \frac{1}{\log 2} \quad \text{as } K \to \infty.
\]

Proof of Theorem \(\ref{thm9} \) For any \(N \geq 2 \), let \(K_N(\alpha) \) be the positive integer for which \(q_{K_N(\alpha) - 1} < N \leq q_{K_N(\alpha)} \). In particular, for a.e. \(\alpha \) we have \(K_N(\alpha) \sim \frac{12 \log 2}{\pi^2} \log N \), where \(\frac{12 \log 2}{\pi^2} = 0.8427 \ldots \)
(i) Assume that $\sum_{n=1}^{\infty} 1/\varphi(n) < \infty$. As observed in the Introduction, by a classical discrepancy estimate for the sequence $\{n\alpha\}$ [13, p. 52], we have

$$D_2(S(\alpha, N)) \ll D_\infty(L(\alpha, N)) \ll \sum_{k=1}^{K_N(\alpha)} a_k,$$

$$D_2(L(\alpha, N)) \ll D_\infty(L(\alpha, N)) \ll \sum_{k=1}^{K_N(\alpha)} a_k.$$

The asymptotic relation (9) of Diamond and Vaaler shows that for a.e. α,

$$D_2(S(\alpha, N)) \leq C \sum_{k=1}^{K_N(\alpha)} a_k = CA_{K_N(\alpha)} + O(K_N(\alpha) \log K_N(\alpha)),$$

$$D_2(L(\alpha, N)) \leq C \sum_{k=1}^{K_N(\alpha)} a_k = CA_{K_N(\alpha)} + O(K_N(\alpha) \log K_N(\alpha))$$

with a universal constant $C > 0$. Here $A_{K_N(\alpha)} \leq \varphi(K_N(\alpha))$ and $K_N(\alpha) \leq \log N$ for all but finitely many N. Therefore $D_2(S(\alpha, N)) \leq C\varphi(\log N) + O(\log N \log \log N)$ and $D_2(L(\alpha, N)) \leq C\varphi(\log N) + O(\log N \log \log N)$ with implied constants depending only on α and φ. The factor C can be removed by repeating the argument with $\varphi(x)/C$ instead of $\varphi(x)$.

(ii) Assume that $\sum_{n=1}^{\infty} 1/\varphi(n) = \infty$. By Proposition 3 we have

$$D_2(S(\alpha, qK)) \geq c \left(\sum_{k=1}^{K} a_k^2 \right)^{1/2} \geq cA_K$$

and

$$D_2(L(\alpha, qK)) \geq c \left(\sum_{k=1}^{K} a_k^2 \right)^{1/2} \geq cA_K$$

with a universal constant $c > 0$. Here $A_K \geq \varphi(K)$ for infinitely many K, and $K \geq (\log qK)/2$ for all but finitely many K. Hence $D_2(S(\alpha, qK)) \geq c\varphi((\log qK)/2)$ and $D_2(L(\alpha, qK)) \geq c\varphi((\log qK)/2)$ for infinitely many K. Repeating the argument with $\varphi(2x)/c$ instead of $\varphi(x)$, we deduce that $D_2(S(\alpha, qK)) \geq \varphi(\log qK)$ and $D_2(L(\alpha, qK)) \geq \varphi(\log qK)$ for infinitely many K, as claimed.

3.2 Limit distribution

Let λ be the Lebesgue measure, and $\nu(B) = (1/\log 2) \int_B 1/(1 + x) \, dx$ ($B \subseteq [0, 1]$ Borel) the Gauss measure. If α is chosen randomly from $[0, 1]$ with distribution ν, then its partial quotients are identically distributed random variables with distribution

$$\nu(\{\alpha \in [0, 1] : a_k = n\}) = \frac{1}{\log 2} \log \left(1 + \frac{1}{n(n+2)} \right), \quad k, n \geq 1.$$

If α is chosen randomly from $[0, 1]$ with distribution either λ or ν, then the sequence a_k is ψ-mixing with exponential rate [14, p. 119].

To find the limit distribution of $D_2(S(\alpha, N))/\log^2 N$, we shall need more sophisticated facts about the partial quotients of a typical irrational, which we now gather. Most importantly, a special case of a limit distribution theorem of Samur [23] (see also [8]) states that if μ is a Borel probability measure on $[0, 1]$ which is absolutely continuous with respect to the Lebesgue measure, then for any $t \geq 0$,

$$\mu \left(\left\{ \alpha \in [0, 1] : \frac{2\log^2 2}{\pi K^2} \sum_{k=1}^{K} a_k^2 \leq t \right\} \right) \rightarrow \int_{0}^{t} \frac{e^{-1/(2x)}}{\sqrt{2\pi x^{3/2}}} \, dx \quad \text{as } K \to \infty. \quad (10)$$

16
If μ is either λ or ν, then general results of Heinrich [15] on ψ-mixing random variables imply the rate of convergence

$$
\sup_{t \geq 0} \left| \mu \left(\left\{ \alpha \in [0, 1] : \frac{2 \log^2 \frac{\pi}{2} K^2}{2 t^2} \sum_{k=1}^{K} a_k^2 \leq t \right\} \right) \right| - \int_0^t \frac{e^{-\frac{t}{2(2x)}}}{\sqrt{2\pi x^{3/2}} \ dx} \leq \frac{1}{K^{1-\varepsilon}}
$$

(11)

with an arbitrary $\varepsilon > 0$ and an implied constant depending only on ε. The corresponding result for $\sum_{k=1}^{K} a_k$ in the Gauss measure is also due to Heinrich:

$$
\sup_{t \in \mathbb{R}} \left| \nu \left(\left\{ \alpha \in [0, 1] : \frac{1}{K} \sum_{k=1}^{K} a_k \geq \frac{\log K - \gamma}{\log 2} \leq t \right\} \right) - F(t) \right| \leq \frac{\log^2 K}{K},
$$

where γ is the Euler–Mascheroni constant, and $F(t)$ is the distribution function of the law with characteristic function

$$
\int_{\mathbb{R}} e^{itx} \ dF(t) = \exp \left(-\frac{\pi}{2\log 2} |x| \left(1 + \frac{2i}{\pi} \text{sgn}(x) \log |x| \right) \right).
$$

Note that this is a stable law with stability parameter 1 (and skewness parameter 1). Hence $1 - F(t) \ll \frac{1}{t}$ as $t \to \infty$, and we immediately obtain

$$
\nu \left(\left\{ \alpha \in [0, 1] : \frac{1}{K} \sum_{k=1}^{K} a_k \geq \frac{\log K}{\log 2} \right\} \right) \ll \frac{1}{t} + \frac{\log^2 K}{K},
$$

as $t \to \infty$. (12)

The final ingredient is a similar estimate for the convergent denominators: with a large enough universal constant $C > 0$,

$$
\nu \left(\left\{ \alpha \in [0, 1] : \left| \log q_K - \frac{\pi^2}{12 \log 2} \right| \geq C \sqrt{K \log K} \right\} \right) \ll \frac{1}{\sqrt{K}}.
$$

(13)

This follows from the fact that $\log q_K$ satisfies the central limit theorem with rate $O(1/\sqrt{K})$, as shown by Morita [19]. We mention that a better upper bound can be deduced from the large deviation inequality of Takahasi [25], but (13) suffices for our purposes.

Proof of Theorem 4 Throughout the proof, $C > 0$ is a large universal constant whose value changes from line to line, and $Y_i = Y_i(\alpha, N), i = 1, 2, \ldots$ are error terms. For any $N \geq 2$, let $K_N(\alpha)$ be the positive integer for which $q_{K_N(\alpha)-1} < N \leq q_{K_N(\alpha)}$.

Proposition 7 and formula (4) show that we can write

$$
D^2_2(S(\alpha, N)) = \frac{1}{360} \sum_{k=0}^{K_N(\alpha)-1} a_k^2 + Y_1, \quad \text{where} \quad |Y_1| \leq \frac{1}{180} a_{K_N(\alpha)}^2 + C \sum_{k=1}^{K_N(\alpha)} a_k + C \sum_{k=0}^{K_N(\alpha)-2} a_{k+1}^2 q_k.
$$

Using the general fact $q_{k+2}/q_k \geq 2$, we estimate the last error term as

$$
\frac{1}{N} \sum_{k=0}^{K_N(\alpha)-2} a_{k+1}^2 q_k \leq \frac{1}{N} \sum_{k=1}^{K_N(\alpha)-1} a_k^2 q_k
$$

$$
\leq \sum_{k=1}^{K_N(\alpha)-100 \log K_N(\alpha)} a_k^2 q_{K_N(\alpha)-1} + \sum_{k=K_N(\alpha)-100 \log K_N(\alpha)}^{K_N(\alpha)-1} a_k^2 q_{K_N(\alpha)-1}
$$

$$
\leq \frac{1}{K_N(\alpha)^{10}} \sum_{k=1}^{K_N(\alpha)} a_k^2 + \sum_{k=K_N(\alpha)-100 \log K_N(\alpha)}^{K_N(\alpha)-1} a_k^2.
$$
This leads to the simplified form $D_2(S(\alpha, N)) = (1/360) \sum_{k=1}^{K_N(\alpha)} a_k^2 + Y_2$, where

$$|Y_2| \leq \frac{C}{K_N(\alpha)^{10}} \sum_{k=1}^{K_N(\alpha)} a_k^2 + C \sum_{k=K_N(\alpha) - 100 \log K_N(\alpha)}^{K_N(\alpha)} a_k^2 + C \sum_{k=1}^{K_N(\alpha)} a_k.$$

Set $K = \lceil \frac{12 \log^2 \log N}{\pi^2} \rceil$. The estimate (13) states that

$$\nu \left(\left\{ \alpha \in [0, 1] : |\log q_N - \frac{\pi^2}{12 \log^2 2} K | \geq C \sqrt{K \log K} \right\} \right) \ll \frac{1}{\sqrt{K}}.$$

By the definition of $K_N(\alpha)$ and K, this immediately gives

$$\nu \left(\left\{ \alpha \in [0, 1] : |K_N(\alpha) - K | \geq C \sqrt{K \log K} \right\} \right) \ll \frac{1}{\sqrt{K}}.$$

Roughly speaking, this means that we can replace $K_N(\alpha)$ by K in the above formulas; the point is that the latter does not depend on α. More precisely, outside a set of ν-measure $\ll 1/\sqrt{K}$, we have $D_2(S(\alpha, N)) = (1/360) \sum_{k=1}^{K} a_k^2 + Y_3$, where

$$|Y_3| \leq \frac{C}{K^{10}} \sum_{k=1}^{2K} a_k^2 + C \sum_{k=K - C \sqrt{K \log K}}^{K + C \sqrt{K \log K}} a_k^2 + C \sum_{k=1}^{2K} a_k.$$

Since $5\pi^3/\log^2 N = 720 \log^2 2/(\pi K^2) + O(1/K^2)$, normalizing the previous formula leads to the fact that outside a set of ν-measure $\ll 1/\sqrt{K}$,

$$5\pi^3 \frac{D_2^2(S(\alpha, N))}{\log^2 N} = \frac{2 \log^2 2}{\pi K^2} \sum_{k=1}^{K} a_k^2 + Y_4,$$

where

$$|Y_4| \leq \frac{C}{K^{10}} \sum_{k=1}^{2K} a_k^2 + C \sum_{k=K - C \sqrt{K \log K}}^{K + C \sqrt{K \log K}} a_k^2 + C \sum_{k=1}^{2K} a_k.$$

We now estimate the three error terms in the previous formula. The limit distribution with rate of Heinrich (11) gives

$$\nu \left(\left\{ \alpha \in [0, 1] : \frac{1}{K} \sum_{k=1}^{2K} a_k^2 \geq \frac{1}{K^{1/3}} \right\} \right) \ll \int_{\text{const}.K^{-2/3}}^{\infty} e^{-1/(2x)} \sqrt{2\pi x^{3/2}} \, dx + \frac{1}{K^{1/3 - \varepsilon}} \ll \frac{1}{K^{1/3}}.$$

Since the sequence a_k is strictly stationary, we similarly deduce

$$\nu \left(\left\{ \alpha \in [0, 1] : \frac{1}{K} \sum_{k=K - C \sqrt{K \log K}}^{K + C \sqrt{K \log K}} a_k^2 \geq \frac{(\log K)^{1/3}}{K^{1/3}} \right\} \right)$$

$$= \nu \left(\left\{ \alpha \in [0, 1] : \frac{C \sqrt{K \log K}}{K} \sum_{k=1}^{K} a_k^2 \geq \frac{(\log K)^{1/3}}{K^{1/3}} \right\} \right)$$

$$\ll \int_{\text{const}.K^{-2/3}/(\log K)^{2/3}}^{\infty} e^{-1/(2x)} \sqrt{2\pi x^{3/2}} \, dx + \frac{1}{K^{1/2 - \varepsilon}}$$

$$\ll \frac{(\log K)^{1/3}}{K^{1/3}}.$$
Finally, formula (12) gives
\[\nu\left(\left\{ \alpha \in [0, 1] : \frac{1}{K} \sum_{k=1}^{2K} a_k \geq \frac{1}{K^{1/3}} \right\} \right) \leq \frac{1}{K^{1/3}}. \]

By the previous three estimates, we can finally write
\[5\pi^3 D_2^2(S(\alpha, N)) \leq \frac{2 \log^2 2}{\pi K^2} \sum_{k=1}^{T} a_k^2 + Y_3, \tag{14} \]
where
\[\nu\left(\left\{ \alpha \in [0, 1] : |Y_3| \geq C \frac{(\log K)^{1/3}}{K^{1/3}} \right\} \right) \leq C \frac{(\log K)^{1/3}}{K^{1/3}}. \tag{15} \]

The proof of the theorem is now immediate. Assume first, that \(\mu \) is absolutely continuous with respect to the Lebesgue measure. The theorem of Samur (11) ensures that the main term in (14) converges in distribution to the standard Lévy distribution as \(N \to \infty \), and hence \(K \), goes to infinity. Since \(Y_3 \to 0 \) in \(\nu \)-measure, the same holds also in \(\mu \)-measure, and the convergence to the standard Lévy distribution remains true for the left hand side of (14). This finishes the proof for a general absolutely continuous measure \(\mu \).

Next, let \(\mu \) be either \(\lambda \) or \(\nu \). Then the sequence \(a_k \) is \(\psi \)-mixing with exponential rate, and the limit distribution with rate of Heinrich (11) ensures that the main term in (14) converges to the standard Lévy distribution with rate \(\ll 1/K^{1-\epsilon} \). The estimate (15), which holds also with \(\lambda \) in place of \(\nu \), together with the trivial fact that the distribution function of the Lévy distribution is Lipschitz, shows that this convergence remains true for the left hand side of (14) with the rate \(\ll (\log K)^{1/3}/K^{d/3} \). This finishes the proof of the rate of convergence for \(\lambda \) and \(\nu \). \(\square \)

4 Typical rationals

Let \(F_Q \) denote the set of all reduced fractions in \([0, 1]\) with denominator at most \(Q \), and let us write every \(p/q \in F_Q \) in the form \(p/q = [0; a_1, \ldots, a_r] \). It does not matter which of the two possible expansions is chosen. Note that the partial quotients \(a_1 = a_1(p/q), \ldots, a_r = a_r(p/q) \) as well as the length \(r = r(p/q) \) is a function of \(p/q \). For the sake of simplicity, we use the convention \(a_0 = 0 \) if \(k > r \).

The proof of Theorem 6 is based on recent results of Bettin and Drappeau on the limit distribution of power sums of the partial quotients; they are perfect analogues of the results for typical irrational mentioned in Section 3.2.

Lemma 11 (Bettin–Drappeau [4]). For any \(Q \geq 2 \) and \(\varepsilon > 0 \),
\[\sup_{t \geq 0} \left| \frac{1}{|F_Q|} \left\{ \frac{p}{q} \in F_Q : \frac{\pi^3}{72 \log^2 Q} \sum_{k=1}^{r} a_k^2 \leq t \right\} - \int_0^t e^{-1/(2x)} \frac{dx}{\sqrt{2\pi x^{3/2}}} \right| \ll \frac{1}{(\log Q)^{1-\varepsilon}} \tag{16} \]
and
\[\sup_{t \in \mathbb{R}} \left| \frac{1}{|F_Q|} \left\{ \frac{p}{q} \in F_Q : \frac{1}{\log Q} \sum_{k=1}^{r} a_k - \frac{\log \log Q - \gamma}{\pi^2/12} \leq t \right\} - G(t) \right| \ll \frac{1}{(\log Q)^{1-\varepsilon}} \]
with implied constants depending only on \(\varepsilon \). Here \(\gamma \) is the Euler–Mascheroni constant, and \(G(t) \) is the distribution function of the law with characteristic function
\[\int_{\mathbb{R}} e^{itx} dG(t) = \exp \left(-\frac{6}{\pi} |x| \left(1 + \frac{2i}{\pi} \text{sgn}(x) \log |x| \right) \right). \]
The second limit distribution in Lemma 11 immediately yields
\[
\frac{1}{|F_Q|} \left| \left\{ \frac{p}{q} \in F_Q : \frac{1}{\log Q} \sum_{k=1}^{r} a_k \geq t + \frac{\log \log Q}{\pi^2/12} \right\} \right| \leq \frac{1}{t} + \frac{1}{(\log Q)^{1-\varepsilon}} \quad \text{as } t \to \infty. \tag{17}
\]

Note that (16) was stated in [4] with the rate \(\ll 1/(\log Q)^{1-\varepsilon} \), but the methods of that paper actually give \(\ll 1/(\log Q)^{1-\varepsilon} \). For the sake of completeness, we deduce (16) as stated here in Section 4.1. We now prove a lemma which will serve as a substitute for the fact that the partial quotients are not exactly identically distributed, and then prove Theorem 6.

Lemma 12. For any positive integers \(Q, k, t \), we have
\[
\left| \left\{ \frac{p}{q} \in F_Q : a_k \geq t \right\} \right| \leq \frac{2Q^2}{t}.
\]

Proof. Assume first, that \(k = 1 \). Note that \(a_1 \geq t \) implies that \(0 < p/q \leq 1/t \). In particular, for each \(1 \leq q \leq Q \) there are at most \(q/t \) possible numerators \(p \), hence
\[
\left| \left\{ \frac{p}{q} \in F_Q : a_1 \geq t \right\} \right| \leq \sum_{q=1}^{Q} \frac{q}{t} \leq \frac{Q^2}{t}. \tag{18}
\]

Next, assume that \(k \geq 2 \). Let \(\text{denom}(x) \) denote the denominator of a rational \(x \) (in its reduced form). From the recursion satisfied by the denominator of the convergents one readily deduces the supermultiplicative property
\[
\text{denom}(\{0; a_1, \ldots, a_r\}) \geq \text{denom}(\{0; a_1, \ldots, a_{k-1}\}) \cdot \text{denom}(\{0; a_k, \ldots, a_r\}).
\]

For any fixed positive integers \(b_1, \ldots, b_{k-1} \) we thus obtain
\[
\left| \left\{ \frac{p}{q} \in F_Q : a_1 = b_1, \ldots, a_{k-1} = b_{k-1}, \ a_k \geq t \right\} \right| \leq \left| \left\{ \frac{p}{q} \in F_Q/\text{denom}(\{0; b_1, \ldots, b_{k-1}\}) : a_1 \geq t \right\} \right|.
\]

Summing over \(b_1, \ldots, b_{k-1} \) and applying (18) leads to
\[
\left| \left\{ \frac{p}{q} \in F_Q : a_k \geq t \right\} \right| \leq \sum_{b_1, \ldots, b_{k-1} = 1}^{\infty} \frac{Q^2}{t(\text{denom}(\{0; b_1, \ldots, b_{k-1}\}))^2}.
\]

Recall that the set of real numbers \(\{0; c_1, c_2, \ldots\} \in [0,1] \) such that \(c_1 = b_1, \ldots, c_{k-1} = b_{k-1} \) is an interval whose length is at least \(1/(2 \text{denom}(\{0; b_1, \ldots, b_{k-1}\})^2) \). Since these are pairwise disjoint intervals, we have
\[
\sum_{b_1, \ldots, b_{k-1} = 1}^{\infty} \frac{1}{(\text{denom}(\{0; b_1, \ldots, b_{k-1}\}))^2} \leq 2,
\]
and the claim follows.

Proof of Theorem 6. Throughout the proof, \(C > 0 \) is a large universal constant whose value changes from line to line, and \(Z_i = Z_i(p/q), \ i = 1, 2 \) are error terms.

Proposition 7 and formula (13) show that we can write
\[
D^2_2(S(p/q, q)) = \frac{1}{360} \sum_{k=1}^{r} a_k^2 + Z_1, \quad \text{where} \quad |Z_1| \leq C \sum_{k=1}^{r} a_k + \frac{C}{q} \sum_{k=0}^{r-1} a_{k+1}^3 q_k.
\]

20
Here $a_{k+1}^3 q_k \leq a_{k+1}^2 q_{k+1}$, and $q_k/q = q_k/q_r \leq 1/F_{r-k+1}$, where F_{r-k+1} are the Fibonacci numbers. Hence normalizing the previous formula leads to

$$5\pi^3 D^2_2(S(p/q,q)) = \frac{\pi^3}{72 \log^2 Q} \sum_{k=1}^r a_k^2 + Z_2,$$

where $|Z_2| \leq \frac{C}{\log^2 Q} \sum_{k=1}^r a_k + \frac{C}{\log^2 Q} \sum_{k=1}^r \frac{a_k^2}{F_{r-k+1}}$.

The first error term can be estimated in measure using formula (17) as

$$\frac{1}{|F_Q|} \left| \left\{ \frac{p}{q} \in F_Q : \frac{\log^2 Q}{F_{r-k+1}} \sum_{k=1}^r a_k^2 \geq \frac{1}{(\log Q)^{1/2}} \right\} \right| \ll \frac{1}{(\log Q)^{1/2}}.$$

Note that the map reversing the order of the partial quotients $F_Q \to F_P$, $[0; a_1, a_2, \ldots, a_r] \mapsto [0; a_r, \ldots, a_2, a_1]$ is a bijection; in fact, $[0; a_r, \ldots, a_2, a_1]$ is the reduced fraction q_{r-1}/q_r. Therefore the distribution of (a_r, \ldots, a_2, a_1) is identical to that of (a_1, a_2, \ldots, a_r), and we can apply Lemma 12 to estimate the second error term in measure as

$$\frac{1}{|F_Q|} \left| \left\{ \frac{p}{q} \in F_Q : \frac{\log^2 Q}{F_{r-k+1}} \sum_{k=1}^r a_k^2 \geq \frac{1}{(\log Q)^{3/2}} \right\} \right| \ll \frac{1}{(\log Q)^{3/4}}.$$

Note that we used the convention $a_k = 0$ if $k > r$, and the fact that $|F(Q)| \gg Q^2$. In particular,

$$\frac{1}{|F_Q|} \left| \left\{ \frac{p}{q} \in F_Q : |Z_2| \geq \frac{1}{(\log Q)^{1/2}} \right\} \right| \ll \frac{1}{(\log Q)^{1/2}},$$

and the limit distribution theorem 16 of Bettin and Drappeau yields

$$\sup_{t \geq 0} \left| \frac{1}{|F_Q|} \left| \left\{ \frac{p}{q} \in F_Q : 5\pi^3 D^2_2(S(p/q,q)) \leq t \right\} \right| - \int_0^t e^{-1/2x} \frac{dx}{\sqrt{2\pi x^{3/2}}} \right| \ll \frac{1}{(\log Q)^{1/2}}.$$

The error of replacing $\log^2 Q$ by $\log^2 q$ is easily seen to be negligible compared to $1/(\log Q)^{1/2}$. \hfill \Box

4.1 Proof of Lemma 11

We now deduce the rate $\ll 1/(\log Q)^{1-\varepsilon}$ in 16. Fix $\varepsilon > 0$. Applying the main result [4, Theorem 1.1] of Bettin and Drappeau to, in their notation, $\phi(x) = [1/x]^2$ with $\alpha_0 = 1/2 - \varepsilon$, we conclude that there exist constants $t_0, \delta > 0$ such that for all $|t| < t_0$,

$$\frac{1}{|F_Q|} \sum_{p/q \in F_Q} \exp \left(it \sum_{k=1}^r a_k^2 \right) = \exp \left(U(t) \log Q + O \left(|t|^{1/2-\varepsilon} + Q^{-\delta} \right) \right),$$

where

$$U(t) = \frac{12}{\pi^2} \int_0^1 \frac{e^{it[1/x]^2} - 1}{1 + x} dx + O \left(|t|^{1-\varepsilon} \right) = \frac{12}{\pi^2} \int_1^\infty \frac{e^{it[x]^2} - 1}{x^2 + x} dx + O \left(|t|^{1-\varepsilon} \right).$$
Here t_0, δ and the implied constants depend only on ε.

Our improvement in (16) comes from a more careful estimate for $U(t)$. Assume that $0 < t < t_0$. Since $|x|^2 - x^2| \leq 2x$, the error of removing the integer part function is negligible:

$$|\int_1^\infty e^{ix^2} - e^{ix^2} \frac{dx}{x^2 + x}| \leq \int_1^\infty \min\{2tx, 2\} \frac{dx}{x^2 + x} dx \ll t \log \frac{1}{t}.$$

Therefore

$$U(t) = \frac{12}{\pi^2} \int_1^\infty e^{ix^2} - 1 \frac{dx}{x^2 + x} + O(t^{1-\varepsilon}) = \frac{12\sqrt{t}}{\pi^2} \int_{\sqrt{t}}^\infty e^{ix^2} - 1 \frac{dx}{x^2 + x} + O(t^{1-\varepsilon}).$$

We now compare the remaining integral to its limit, the Fresnel-type integral $\int_0^\infty (e^{ix^2} - 1)/x^2 \, dx = (i - 1)\sqrt{2\pi}/2$. We have

$$\left| \int_{\sqrt{t}}^\infty \frac{e^{ix^2} - 1}{x^2 + x} \, dx - \int_0^\infty \frac{e^{ix^2} - 1}{x^2 + x} \, dx \right| \leq \int_0^{\sqrt{t}} \left| \frac{e^{ix^2} - 1}{x^2 + x} \right| + \int_{\sqrt{t}}^\infty \left| \frac{e^{ix^2} - 1}{x^2 + x} \right| \, dx$$

$$\leq \int_0^{\sqrt{t}} 1 \, dx + \int_{\sqrt{t}}^\infty \min\{x^2, 2\} \frac{\sqrt{t}}{x^2} \, dx$$

$$\ll \sqrt{t} \log \frac{1}{t},$$

hence $U(t) = \frac{6\sqrt{2}\pi/\sqrt{t}}{\pi^{3/2}}(i - 1) + O(t^{1-\varepsilon})$. The case of negative t follows from complex conjugation, thus for $|t| < t_0$,

$$U(t) = -\frac{6\sqrt{2}|t|^{1/2}}{\pi^{3/2}}(1 - \text{sgn}(t)) + O(|t|^{1-\varepsilon}). \quad (20)$$

Now let

$$\varphi_1(t) = \frac{1}{|F_Q|} \sum_{\substack{p/q \in F_Q \colon \frac{\pi^3}{72 \log^2 Q} \sum_{k=1}^r a_k^2 \leq t}} \exp \left(\frac{it}{2\pi x^3/2} \right)$$

and $\varphi_2(t) = \exp(-|t|^{1/2}(1 - \text{sgn}(t)))$; the latter is the characteristic function of the standard Lévy distribution. The Berry–Esseen inequality [20, p. 142] states that the distance of these two distributions in the Kolmogorov metric is, with any $T > 0$,

$$\sup_{t \geq 0} \left| \frac{1}{|F_Q|} \sum_{\substack{p/q \in F_Q \colon \frac{\pi^3}{72 \log^2 Q} \sum_{k=1}^r a_k^2 \leq t}} - \int_0^T e^{-1/2x} \frac{dx}{\sqrt{2\pi x^3/2}} \right| \ll \frac{1}{T} + \int_0^T \frac{\varphi_1(t) - \varphi_2(t)}{t} \, dt.$$

Choose $T = \log Q$. Formulas (19) and (20) show that for $|t| \leq \log Q$,

$$\varphi_1(t) = \varphi_2(t) \exp \left(O \left(\frac{|t|}{\log^2 Q} \log Q + \frac{|t|}{\log^2 Q} \right)^{1-\varepsilon} + Q^{-\delta} \right)$$

$$= \varphi_2(t) \left(1 + O \left(\frac{|t|^{1-\varepsilon}}{\log Q^{1-2\varepsilon}} + Q^{-\delta} \right) \right).$$

Using $|\varphi_2(t)| = e^{-|t|^{1/2}}$, this immediately yields

$$|\varphi_1(t) - \varphi_2(t)| \ll e^{-|t|^{1/2}} \left(\frac{|t|^{1-\varepsilon} + |t|^{1/2-\varepsilon}}{(\log Q)^{1-2\varepsilon}} + Q^{-\delta} \right).$$
It is now easy to see that
\[
\int_{Q^{-100}}^{1} \frac{|\varphi_1(t) - \varphi_2(t)|}{t} \, dt \ll \frac{1}{(\log Q)^{1-2\varepsilon}} \quad \text{and} \quad \int_{1}^{\log Q} \frac{|\varphi_1(t) - \varphi_2(t)|}{t} \, dt \ll \frac{1}{(\log Q)^{1-2\varepsilon}}.
\]
On the other hand, by a very rough estimate we have \(\sum_{k=1}^{r} a_k^2 \leq Q^3\), hence \(|\varphi_1(t) - 1| \ll |t|Q^3\).
Clearly \(|\varphi_2(t) - 1| \ll |t|^{1/2}\), thus
\[
\int_{0}^{Q^{-100}} \frac{|\varphi_1(t) - \varphi_2(t)|}{t} \, dt \ll \int_{0}^{Q^{-100}} \frac{tQ^3 + t^{1/2}}{t} \, dt \ll Q^{-50}.
\]
Therefore
\[
\frac{1}{\log Q} + \int_{0}^{\log Q} \frac{|\varphi_1(t) - \varphi_2(t)|}{t} \, dt \ll \frac{1}{(\log Q)^{1-2\varepsilon}},
\]
as claimed.

Acknowledgments

The author is supported by the Austrian Science Fund (FWF), project F-5510. I would like to thank Sary Drappeau for helpful discussions on Lemma \[1\].

References

[1] J. Beck: *Probabilistic Diophantine Approximation. Randomness in Lattice Point Counting*. Springer Monographs in Mathematics. Springer, Cham, 2014.

[2] J. Beck: *Randomness of the square root of 2 and the giant leap, part 1*. Period. Math. Hungar. 60 (2010), 137–242.

[3] J. Beck: *Randomness of the square root of 2 and the giant leap, part 2*. Period. Math. Hungar. 62 (2011), 127–246.

[4] S. Bettin and S. Drappeau: *Limit laws for rational continued fractions and value distribution of quantum modular forms*. [arXiv:1903.00457](https://arxiv.org/abs/1903.00457).

[5] D. Bilyk: *The \(L^2\) discrepancy of irrational lattices*. Monte Carlo and quasi-Monte Carlo methods 2012, 289–296, Springer Proc. Math. Stat., 65, Springer, Heidelberg, 2013.

[6] D. Bilyk, V. Temlyakov and R. Yu: *Fibonacci sets and symmetrization in discrepancy theory*. J. Complexity 28 (2012), 18–36.

[7] D. Bilyk, V. Temlyakov and R. Yu: *The \(L^2\) discrepancy of two-dimensional lattices*. Recent advances in harmonic analysis and applications, 63–77, Springer Proc. Math. Stat., 25, Springer, New York, 2013.

[8] B. Borda: *On the distribution of Sudler products and Birkhoff sums for the irrational rotation*. [arXiv:2104.06716](https://arxiv.org/abs/2104.06716).

[9] B. Borda: *On the theorem of Davenport and generalized Dedekind sums*. J. Number Theory 172 (2017), 1–20.

[10] B. Borda: *The number of lattice points in irrational polytopes*. Ph.D. Thesis, Rutgers The State University of New Jersey - New Brunswick. ProQuest LLC, 2016.

[11] H. Davenport: *Note on irregularities of distribution*. Mathematika 3 (1956), 131–135.

[12] H. Diamond and J. Vaaler: *Estimates for partial sums of continued fraction partial quotients*. Pacific J. Math. 122 (1986), 73–82.

[13] J. Dick and F. Pillichshammer: *Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration*. Cambridge University Press, Cambridge, 2010.

[14] M. Drmota and R. Tichy: *Sequences, Discrepancies and Applications*. Lecture Notes in Mathematics, 1651. Springer-Verlag, Berlin, 1997.
[15] L. Heinrich: *Rates of convergence in stable limit theorems for sums of exponentially ψ-mixing random variables with an application to metric theory of continued fractions*. Math. Nachr. 131 (1987), 149–165.

[16] A. Hinrichs, R. Kritzinger and F. Pillichshammer: *Extreme and periodic L_2 discrepancy of plane point sets*. Acta Arith. 199 (2021), 163–198.

[17] M. Iosifescu and C. Kraaikamp: *Metrical Theory of Continued Fractions*. Mathematics and its Applications, 547. Kluwer Academic Publishers, Dordrecht, 2002.

[18] H. Kesten: *The discrepancy of random sequences* $\{kx\}$. Acta Arith. 10 (1964/65), 183–213.

[19] T. Morita: *Local limit theorem and distribution of periodic orbits of Lasota–Yorke transformations with infinite Markov partition*. J. Math. Soc. Japan 46 (1994), 309–343.

[20] V. Petrov: *Limit Theorems of Probability Theory. Sequences of Independent Random Variables*. Oxford Studies in Probability, 4. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.

[21] L. Roçadas and J. Schoißengeier: *An explicit formula for the L_2-discrepancy of (na)-sequences*. Computing 77 (2006), 113–128.

[22] K. Roth: *On irregularities of distribution*. Mathematika 1 (1954), 73–79.

[23] J. Samur: *On some limit theorems for continued fractions*. Trans. Amer. Math. Soc. 316 (1989), 53–79.

[24] J. Schoissengeier: *Another proof of a theorem of J. Beck*. Monatsh. Math. 129 (2000), 147–151.

[25] H. Takahasi: *Large deviations for denominators of continued fractions*. Nonlinearity 33 (2020), 5861–5874.