Lower Bounds for the Exponential Domination Number of $C_m \times C_n$

Chassidy Bozeman1 Joshua Carlson1
Michael Dairyko1 Derek Young1 Michael Young1,2

April 22, 2016

Abstract
A vertex v in a porous exponential dominating set assigns weight $(\frac{1}{2})^{\text{dist}(v,u)}$ to vertex u. A porous exponential dominating set of a graph G is a subset of $V(G)$ such that every vertex in $V(G)$ has been assigned a sum weight of at least 1. In this paper the porous exponential dominating number, denoted by $\gamma^*_e(G)$, for the graph $G = C_m \times C_n$ is discussed. Anderson et. al. \cite{1} proved that $\frac{mn}{15.875} \leq \gamma^*_e(C_m \times C_n) \leq \frac{mn}{13}$ and conjectured that $\frac{mn}{13}$ is also the asymptotic lower bound. We use a linear programming approach to sharpen the lower bound to $\frac{mn}{13.7619 + \epsilon(m,n)}$.

Keywords. porous exponential domination, domination, grid, linear programming, mixed integer programming

1 Introduction

Given a graph G, a weight function of G is a function $w : V(G) \times V(G) \rightarrow \mathbb{R}$. For $u, v \in V(G)$, we say that u assigns weight $w(u,v)$ to v. For a set $S \subseteq V(G)$ we denote $w(S,v) := \sum_{s \in S} w(s,v)$.

1Department of Mathematics, Iowa State University, Ames, IA 50011, USA. \{cbozeman, jmsdg7, mdairyko, ddyoung, myoung\}@iastate.edu
2Corresponding author.
Similarly,

\[w(v, S) := \sum_{s \in S} w(v, s). \]

For two weight functions of \(G \), \(w \) and \(w' \), we say \(w' \leq w \), if \(w'(u, v) \leq w(u, v) \) for all \(u, v \in V(G) \).

Let \(D \subseteq V(G) \) and \(w \) be a weight function of \(G \). The pair \((D, w)\) dominates the graph \(G \), if for all \(v \in V(G) \), \(w(D, v) \geq 1 \).

The standard definition of domination is where \(w(u, v) \) is 1 if \(v \) is in the closed neighborhood of \(u \), and 0 if it is not. This type of domination has been widely studied (see [4], [7]). Another well-studied type of domination is total domination, in which \(w(u, v) \) is 1 if \(v \) is in the neighborhood of \(u \) and 0 if it is not (see [5], [8]). There is also \(k \)-domination and \(k \)-distance domination (see [2], [6]). In \(k \)-domination \(w(u, v) \) is \(\frac{1}{k} \) if \(v \) is in the neighborhood of \(u \), 1 if \(u = v \), and 0 otherwise. In \(k \)-distance domination \(w(u, v) \) is 1 if the distance from \(u \) to \(v \) is at most \(k \), and 0 otherwise. For exponential domination, \(w(u, v) = \left(\frac{1}{2} \right)^{\text{dist}(u, v)} - 1 \), where \(\text{dist}(u, v) \) represents the length of the shortest path from \(u \) to \(v \).

A porous exponential dominating set of a graph \(G \) is a set \(D \subseteq V(G) \) such that \((D, w)\) dominates \(G \) when \(w(u, v) = \left(\frac{1}{2} \right)^{\text{dist}(u, v)} - 1 \). The exponential domination number of \(G \), denoted by \(\gamma^*_e(G) \), is the cardinality of a minimum exponential dominating set. This type of exponential domination has also been referred to as porous exponential domination. Some work has been done in non-porous exponential domination, where \(\text{dist}(u, v) \) represents the length of the shortest path from \(u \) to \(v \) that does not have any internal vertices that are in the dominating set (see [3]). For the sake of simplicity, we refer to porous exponential domination as exponential domination.

It is described in [3] that applications of exponential domination relate to the passing of information, and specifically models how information can be spread from a speaker through a crowd. Thus, the exponential domination number represents the minimum number of speakers needed to successfully convey a message to every individual within a crowd.

Within exponential domination, there has been research on the exponential domination number of \(C_m \times C_n \), where \(\times \) is the Cartesian product. Anderson et. al. [1], found lower and upper bounds for \(\gamma^*_e(C_m \times C_n) \). The following theorem shows a sharp upper bound for the exponential domination number of the graph \(C_{13m} \times C_{13n} \).
Theorem 1. \[[1]\] For all \(m \) and \(n \),
\[
\frac{\gamma_e^*(C_{13m} \times C_{13n})}{(13m)(13n)} \leq \frac{1}{13}.
\]

The proof of Theorem 1 is constructive. An exponential dominating set is created by choosing a vertex from each row and column of a \(13 \times 13 \) grid and then periodically tiling \(C_{13m} \times C_{13n} \) with the grid and selecting all the corresponding vertices. This argument was extended to \(C_m \times C_n \), for \(m, n \) arbitrarily large.

Theorem 2. \[[1]\]
\[
\lim_{m,n \to \infty} \frac{\gamma_e^*(C_m \times C_n)}{mn} \leq \frac{1}{13}.
\]

A lower bound can be attained in the following way: Observe that when \(m \) and \(n \) are large enough, for each \(v \in V(C_m \times C_n) \) there exists \(4i \) vertices \(u \in V(C_m \times C_n) \) such that \(\text{dist}(v,u) = i \), when \(i \) is a positive integer. So
\[
w(v,V(C_m \times C_n)) \leq 2 + \sum_{i=1}^{\infty} 4i2^{1-i} = 18.
\]
This implies
\[
\frac{1}{18} \leq \frac{\gamma_e^*(G)}{mn}.
\]

However this bound can be improved to \(\frac{1}{17} \) by adjusting the weight function so that \(v \) assigns weight 1 to itself, resulting in \(w(v,V(C_m \times C_n)) \leq 17 \). A better lower bound was attained in \[[1]\] by showing that the weight function could be adjusted so that each vertex assigns 2.125 less than in the original weight function.

Theorem 3. \[[1]\] For all \(m, n \geq 3 \),
\[
\frac{1}{15.875} < \frac{\gamma_e^*(G)}{mn}.
\]

The above theorems led to the following conjecture.

Conjecture 1. \[[1]\] For all \(m \) and \(n \),
\[
\frac{1}{13} \leq \frac{\gamma_e^*(C_m \times C_n)}{mn}.
\]
In this paper, a better lower bound for $\gamma^e(C_m \times C_n)$ is produced. In section [2], we use linear programming to minimize how much weight is necessary for each vertex in an exponential dominating set to assign. This leads to improved lower bounds in section [3]. For the remainder of the paper, we refer to w as the weight function

$$w(u, v) := \left(\frac{1}{2}\right)^{\text{dist}(u, v) - 1}.$$

2 Linear Program

For the rest of the paper, let $G = C_m \times C_n$ and let $D = \{d_1, d_2, \ldots, d_{|D|}\}$ be an exponential dominating set of G. Given an odd positive integer r, let G_v be the subgraph of G that is an $r \times r$ grid centered vertex $v \in V(G)$, with $V(G_v) = \{v_1, v_2, \ldots, v_{r^2}\}$. Let I_v be the set of interior vertices of G_v.

In this section, a linear program is created where the sum of the weights assigned to the vertices in I_v is minimized. The minimum value attained is of the form $|I_v| + k$, where $0 < k$. A new weight function is then created, which still dominates with D and has v assigning k less weight than before. A sequence of weight functions will be constructed recursively.

2.1 The Grid

First we strategically partition $V(G)$. For each $v_i \in V(G_v)$, define S_i to be the set of vertices $w \in V(G)$ such that the distance between v_i and w is less than the distance between w and any other vertex in G_v. Notice that $S_i = \{v_i\}$, if $v_i \in I_v$. For $1 \leq i \leq r^2$, let $x_i = w(S_i, v_i)$. Therefore, if $1 \leq i, j \leq r^2$, then $w(S_i, v_j) = x_i \left(\frac{1}{2}\right)^{\text{dist}(v_i, v_j)}$. We define $\Gamma = V(G) \setminus \bigcup_{i=1}^{r^2} S_i$ and for $1 \leq j \leq r^2$, let $\epsilon_j = w(\Gamma, v_j)$. Thus,

$$w(D, v_j) \leq \sum_{i=1}^{r^2} w(S_i, v_j) + \epsilon_j = \sum_{i=1}^{r^2} x_i \left(\frac{1}{2}\right)^{\text{dist}(v_i, v_j)} + \epsilon_j.$$

Observe that $|V(\Gamma)| \leq m + n - 1$ and $\text{dist}(\Gamma, V(G_v)) \to \infty$ as $m, n \to \infty$. Thus $0 \leq \epsilon_j \leq (m + n - 1) \left(\frac{1}{2}\right)^{\text{dist}(\Gamma, V(G_v)) - 1}$ for each $1 \leq j \leq r^2$. Therefore
assuming that $\epsilon = \sum_{j=1}^{r^2} \epsilon_j$,

$$\epsilon \leq \sum_{j=1}^{r^2} (m + n - 1) \left(\frac{1}{2} \right)^{\text{dist}(\Gamma,V(G_v)) - 1} \leq r^2(m + n - 1) \left(\frac{1}{2} \right)^{\text{dist}(\Gamma,V(G_v)) - 1},$$

which means $\epsilon \to 0$ as $m, n \to \infty$.

Example 1. Consider $G = C_6 \times C_8$ as shown in Figure 1. For the simplicity of the figure, we remove the edges of G. Choose $r = 3$ and construct G_{v_5} with $V(G_{v_5}) = \{v_1, v_2, \ldots, v_9\}$. We then label the corresponding sets $S_1, S_2, \ldots, S_9, \Gamma$. For instance, observe that S_3 consists of all vertices in G whose distance to v_3 is smaller than their distance to any other vertex of G_{v_5}.

![Figure 1: $C_6 \times C_8$ with edges removed](image)

2.2 The Program

Lemma 1 below proves how to get a lower bound for the exponential domination number of a graph G, given that each vertex in the dominating set assigns more weight to $V(G)$ than needed.
Lemma 1. Let $D = \{d_1, d_2, \ldots, d_{|D|}\}$ be an exponential dominating set of G and $\rho \in \mathbb{R}$ such that $w(d_j, V(G)) \leq \rho$ for all j. If there exists a sequence of weight functions $\{w_j\}_{j=0}^{|D|}$, where $w = w_0$, and the following conditions are satisfied for $1 \leq j \leq |D|$,

1) $w_j < w_{j-1}$,

2) $f(D, w_j)$ dominates G, and

3) there exist $k \in \mathbb{R}$ such that $0 < k \leq w_{j-1}(d_j, V(G)) - w_j(d_j, V(G))$,

then

$$\frac{1}{\rho - k} < \frac{|D|}{|V(G)|}.$$

Proof. Let $\{w_j\}_{j=0}^{|D|}$ be such a sequence of weight functions for the exponential dominating set D. Conditions 1) and 3) imply that $k < w_0(d_j, V(G)) - w_{|D|}(d_j, V(G))$ for all $d_j \in D$. Therefore,

$$k|D| < \sum_{j=1}^{|D|}[w_0(d_j, V(G)) - w_{|D|}(d_j, V(G))].$$

Since condition 2) gives $1 \leq w_{|D|}(D, v)$ for all $v \in V(G)$, then

$$|V(G)| \leq \sum_{j=1}^{|D|} w_{|D|}(d_j, V(G)).$$

Combining these inequalities gives,

$$k|D| + |V(G)| < \sum_{j=1}^{|D|} w_0(d_j, V(G))$$

$$\leq \sum_{j=1}^{|D|} 18 = 18|D|.$$

This implies that

$$\frac{1}{18 - k} < \frac{|D|}{|V(G)|}.$$

\blacksquare
We now construct a recursive set of weight functions that satisfy the conditions of Lemma \[\text{[1]}\] for some \(k\). Let \(d_j \in D\) and \(w_{j-1}\) be a weight function such that \((D, w_{j-1})\) dominates \(G\). Let \(G_d\) be the \(r \times r\) grid \(G_{d_j}\) and \(I = I_{d_j}\). Recall that \(x_i = w(S_i, v_i)\). Let \(A\) be the \(r \times r\) matrix such that \([A]_{ij} = \left(\frac{1}{2}\right)^{\text{dist}(v_i, v_j)}\). Let \(\bar{x} = [x_1, x_2, \ldots, x_r]^T\) and \(\bar{w} = [w(D, v_1), w(D, v_2), \ldots, w(D, v_r)]^T\). Thus, \(\bar{w} \leq A\bar{x}\). In fact, if \(w_0 < w\), then \(\bar{w}_0 < A\bar{x}\).

Let \(c\) be the real-valued vector such that \(c^T\bar{x} = \sum_{v_i \in I} w_{j-1}(D, v_i)\).

The objective function in the linear program will be \(c^T\mathbf{x}\), where \(\mathbf{x}\) is a vector of \(r^2\) variables. Since \((D, w_{j-1})\) dominates \(G\), \(1 \leq \bar{w}_{j-1}\), where \(1\) is the all-1s vector. Therefore, \(1 \leq A\bar{x}\); hence, \(1 \leq A\mathbf{x}\) is a constraint. Let \(b\) be the real-valued vector whose \(i\)th entry is \(1 + \left(\frac{1}{2}\right)^{\text{dist}(v_i, d_j)} + \epsilon\) if \(v_i \in I\) and 18 otherwise. The constraint \(A\mathbf{x} \leq b\) will be added to ensure that for each vertex in \(I\) the weight assigned from \(d_j\) can be decreased by the appropriate amount. Consider the following linear program:

\[
\begin{align*}
\min & \quad c^T\mathbf{x} \\
\text{s.t.} & \quad A\mathbf{x} \geq 1 \\
& \quad A\mathbf{x} \leq b \\
& \quad \mathbf{x} \geq 0.
\end{align*}
\]

Define \(\mathbf{x}^*\) to be an optimal solution to the linear program and \(\mathbf{x}_{\text{min}}\) to be the value attained. Obviously, \(|I| + \epsilon < \mathbf{x}_{\text{min}}\), so \(0 < k = \mathbf{x}_{\text{min}} - \epsilon - |I|\). For each \(i\) with \(v_i \in I\), let

\[y_i = \sum_{s=1}^{r^2} x_s \left(\frac{1}{2}\right)^{\text{dist}(v_i, v_s)} - \epsilon_i - 1.\]

Thus, \(0 \leq y_i \leq \left(\frac{1}{2}\right)^{\text{dist}(v_i, d_j)}\) and \(\sum_{v_i \in I} y_i = k\).

Remark 1. Note that the weights function \(\{w_j\}_{j=0}^{D}\) satisfy conditions 1), 2), and 3) of Lemma \[\text{[1]}\]. Clearly \(w_j < w_{j-1}\), so 1) is satisfied. For each \(v \in V(G) \setminus I\), \(1 \leq w_{j-1}(D, v) = w_j(D, v)\). For each \(v_i \in I\), \(w_j(D, v) = w_{j-1}(D, v) \cdot k = 1 + \epsilon_i\). This implies \((D, w_j)\) dominates \(G\) so 2) is satisfied. Lastly, \(w_j(d_j, V(G)) = w_{j-1}(d_j, V(G)) - k\), so 3) is satisfied.
3 Main Results

In this section, we use Lemma 1 and the weight functions \(\{w_j\}_{j=0}^{D} \) constructed in Section 2 to attain a lower bound for the exponential domination number of \(C_m \times C_n \).

Theorem 4. For all \(m, n \geq 13 \),

\[
\frac{1}{13.7619 + \epsilon} \leq \frac{\gamma_e^*(C_m \times C_n)}{mn},
\]

where \(\epsilon \to 0 \) as \(m, n \to \infty \). Moreover, \(\epsilon = 0 \) when \(m \) and \(n \) are both odd.

Proof. Let \(D \) be a minimum exponential dominating set. For each \(v \in D \), let \(G_v \) be the \(13 \times 13 \) grid centered at \(v \). Recall that \(w(v, V(G)) \leq 18 \) for all \(v \in D \). The solution to the corresponding linear program is \(x_{\min} = 125.2381080608 \). Therefore, it follows that \(k = 125.2381080608 - \epsilon - 121 = 4.2381080608 \), so \(\frac{mn}{13.7618919392} \leq \gamma_e^*(C_m \times C_n) \) by Lemma 1.

The linear program created in Section 2 can be constructed in the form of a mixed integer linear program by adding the constraints \(x_i = 0 \) or 2, when \(v_i \in I_v \). Then the attained \(k \) is 10.94 + \(\epsilon \), by choosing a \(9 \times 9 \) grid as \(G_v \). However, the weight function can only be adjusted at a vertex \(v \in D \), such that no vertices in \(D \cap I_v \) have been adjusted. Rather than using the linear program for all the vertices in \(D \), we will use it for the vertices in \(D \) that are relatively close together and use the mixed integer linear program for those vertices in \(D \) that are not close to the other vertices of \(D \).

Theorem 5. Let \(D \) be an exponential dominating set of \(C_m \times C_n \) and \(\alpha |D| \) be the number of vertices in \(D \) that are not within a \(7 \times 7 \) grid of any other vertex in \(D \). Then

\[
\frac{1}{13.7619 - 2.8218\alpha - \epsilon} \leq \frac{\gamma(C_m \times C_n)}{mn},
\]

where \(\epsilon \to 0 \) as \(m, n \to \infty \).

Proof. Let \(D' \) be the set of vertices that are not within a \(7 \times 7 \) grid of any other vertex in \(D \); so \(|D'| = \alpha |D| \). Choose \(r = 9 \) in \(G_v \) and let \(b' \) be the real-valued vector whose \(i \)th entry is 0 if \(v_i \in I_v \) and 4 otherwise. By taking geometric sums, it is easy to see that \(x_i \leq 4 \), for all \(i \).
The linear program
\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad A x \geq 1 \\
& \quad A x \leq b \\
& \quad x \leq b' \\
& \quad x \geq 0.
\end{align*}
\]
will attain a minimum of 56.06. So each vertex in \(D' \) can be adjusted by \(56.06 - \epsilon_2 - 49 = 7.06 - \epsilon_2 \) to 10.94 + \(\epsilon_2 \), for some \(\epsilon_2 \geq 0 \). As before, the vertices of \(D \setminus D' \) can be adjusted to 13.761891392 + \(\epsilon_1 \), for some \(\epsilon_1 \geq 0 \). So \(mn \leq (1 - \alpha)|D|(13.7619 + \epsilon_1) + \alpha|D|(10.94 + \epsilon_2) \), which implies \(mn \leq |D|(13.7619 - 2.8218 \alpha + \epsilon) \).

Corollary 1 is a direct result of combining Theorems 1 and 3.

Corollary 1. Let \(D \) be an exponential dominating set of \(C_m \times C_n \). For \(m \) and \(n \) large enough, the number of vertices in \(D \) that are not within a \(7 \times 7 \) grid of any other vertex in \(D \) is at most \(.27|D| \).

References

[1] M. Anderson, R. Brigham, J. Carrington, R. Vitray, and J. Yellen, On exponential domination of \(C_m \times C_n \), *AKCE Int. J. Graphs Comb.* 6 (2009), 341–351.

[2] M. Chellali, O. Favaron, A. Hansberg, and L. Volkmann, \(k \)-domination and \(k \)-independence in graphs: a survey, *Graphs and Comb.* 28 (1) (2012), 1–55.

[3] P. Dankelmann, D. Day, D. Erwin, S. Mukwembi, and H. Swart, Domination with exponential decay, *Discrete Math.* 309 (19) (2009), 5877–5883.

[4] D. Gonçalves, A. Pinlou, M. Rao, and A. Thomassé, The domination number of grids, *SIAM J. Discrete Math.*, 25 (3), (2011), 1443-1453.

[5] S. Gravier, Total domination number of grid graphs, *Discrete Appl. Math.*, 121 (1-3) (2002), 119–128.

[6] A. Hansberg, D. Meierling, and L. Volkmann, Distance domination and distance Irredundance in graphs, *Elec. J. Comb.* 14 (2007), #R35.
[7] T. Haynes, S. Hedetniemi, and P. Slater, Domination in Graphs, *Chapman & Hall/CRC Pure and Applied Mathematics*, (1998).

[8] M. Henning, A survey of selected recent results on total domination in graphs, *Discrete Math.* **309** (1), (2009), 32–63.