Altered structure and function of adipose tissue in long-lived mice with growth hormone-related mutations

Justin Darcy \(^{a,b}\), Samuel McFadden \(^a\), and Andrzej Bartke \(^a\)

\(^a\)Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA; \(^b\)Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA

ABSTRACT
A major focus of biogerontology is elucidating the role(s) of the endocrine system in aging and the accumulation of age-related diseases. Endocrine control of mammalian longevity was first reported in Ames dwarf (Prop1\(^{df}\)) mice, which are long-lived due to a recessive Prop1 loss-of-function mutation resulting in deficiency of growth hormone (GH), thyroid-stimulating hormone, and prolactin. Following this report, several other GH-related mutants with altered longevity have been described including long-lived Snell dwarf and growth hormone receptor knockout mice, and short-lived GH overexpressing transgenic mice. One of the emerging areas of interest in these mutant mice is the role of adipose tissue in their altered healthspan and lifespan. Here, we provide an overview of the alterations in body composition of GH-related mutants, as well as the altered thermogenic potential of their brown adipose tissue and the altered cellular senescence and adipokine production of their white adipose tissue.

KEYWORDS
Ames dwarf; aging; bGH; brown adipose tissue; GHR-KO; GHA; growth hormone; Snell dwarf; white adipose tissue

Introduction
Insulin-like growth factor 1 (IGF-1)/insulin signaling (IIS) has gained considerable interest in biogerontology because the effects of IIS on longevity are highly conserved. For example, longevity can be extended in yeast (Saccharomyces cerevisiae),\(^1\) worms (Caenorhabditis elegans),\(^2\) and flies (Drosophila melanogaster)\(^3\) by reducing IIS or homologous signaling. Likewise, a reduction in growth hormone (GH) and IGF-1 signaling (related to IIS and collectively referred to as somatotropic signaling) has been shown to extend longevity in several mutant mice,\(^4-6\) and has also been implicated in human longevity.\(^7\) Since a comprehensive discussion of the mechanism(s) through which reduced IIS and somatotropic signaling increase longevity are outside the scope of this review, interested readers are referred to relevant reviews in.\(^8-10\) This article will specifically focus on how the altered structure, distribution, and function of adipose tissue in GH-mutant mice may impact their longevity.

Growth hormone mutant mice with altered longevity
Since the realization that the somatotropic axis plays a major role in mammalian lifespan, mice with altered GH signaling have been studied to elucidate the mechanisms by which GH impacts longevity. Some of the long-lived GH mutants that have been examined include Ames dwarf, Snell dwarf, and growth hormone receptor/growth hormone binding protein knockout mice (GHR/GHBP-KO, hereafter referred to as GHR-KO mice). Opposite to these dwarf mice are the short-lived bovine GH (bGH) transgenic mice which overexpress GH. In this section, we will provide a brief summary of each of these types of mutant or knockout mice. We will also provide some information on GHR antagonist (GHA) transgenic mice, which have diminished somatotropic signaling, though they have no alterations in longevity.

Ames dwarf mice (Prop1\(^{df}\)): Ames dwarf mice were first described as being dwarf, with the designated genetic symbol \(df\).\(^{11}\) These mice appear normal at birth; however, their growth is quickly retarded, and they only grow to \(\sim 1/3\) the size of their normal littermates. This reduction in growth is due to a recessive Prophet of Pituitary Factor 1 (Prop1) mutation.\(^{12}\) The end result of this mutation is a lack of differentiation of somatotrophs, lactotrophs, and thyrotrophs in the anterior pituitary which results in Ames dwarf mice having essentially no circulating levels of GH, thyroid-stimulating hormone, or prolactin. These mice are also deficient in circulating IGF-1, thyroxine (\(T_4\)), and 3',3,5-triiodothyronine (\(T_3\))\(^{12-14}\) Ames dwarf mice are exceptionally long-lived.
(approximately 40% to over 60% extension of longevity depending on sex and diet), and have measurable health benefits including improved insulin sensitivity, decreased risk of cancer, and improved energy metabolism. This improved “healthspan” (i.e. length of life lived free of frailty and disease) is arguably as important as their extended longevity.

Snell dwarf mice (Pit1^{dw}): Snell dwarf mice were first described as being dwarf, with the designated genetic symbol dw. Similar to Ames dwarf mice, the Snell dwarf mouse suffers from a recessive Pituitary Factor 1 (Pit1) mutation. The Pit1 mutation results in endocrine deficits that are essentially identical to those of Ames dwarf mice described above. Because of this, Snell dwarf mice also have increased lifespan (approximately 42%) and healthspan.

GHR-KO mice: Since both Ames and Snell dwarf mice suffer from endocrine deficits beyond the somatotropic axis, it is important to examine a model of reduced GH signaling that leaves other hormonal axes intact. To evaluate this, Zhou et al. genetically engineered a mouse model of GH-resistance to resemble the human syndrome termed “Laron dwarfism.” As with Laron dwarfs, GHR-KO mice do not have a functional GHR due to targeted disruption of the GHR/GHBP gene. GHR-KO mice have greatly reduced levels of circulating IGF-1, and elevated levels of circulating GH, presumably due to the lack of negative IGF-1 feedback on GH production. These mice have an extension of longevity up to 40% depending on sex and genetic background. As with Ames and Snell dwarf mice, GHR-KO mice have an extension of healthspan as measured by cognition, and end-of-life pathology.

bGH transgenic mice: In bGH transgenic mice, over-expression of the GH transgene is typically driven by the rat phosphoenolpyruvate carboxykinase promoter (PEPCK), though other promoters (e.g. the Metallothionein 1 promoter) have been used as well. Importantly, the rate of GH secretion as a result of this transgene is not under the typical IGF-1 mediated feedback inhibition. These mice have accelerated growth, increased production of hepatic IGF-1, and live approximately 30% shorter, presumably due to the overproduction of GH.

GHA mice: In order to delineate which phenotypes derived from altered somatotropic signaling are important for longevity, it is important to examine a mouse model with altered somatotropic signaling which does not have altered longevity. GHA mice have greatly reduced (not absent) GH signaling due to the introduction of a mutated bGH gene. The peptide resulting from the mutated bGH gene subsequently competes with endogenous GH for a GHR binding site, but provides essentially no downstream signal. Interestingly, these mice have no alterations in their longevity despite their reduction in GH signaling.

Alterations in body composition

Because GH is a major lipolytic hormone, it is of little surprise that GH-deficient and GH-resistant mice have an increase in percentage of body fat. The most drastic increase in percentage of body fat is seen in GHR-KO mice, which can be observed at essentially all ages. Remarkably, the absolute weight of fat depots in male GHR-KO mice has been reported to be equal to that of their normal littermates, despite their diminutive size. It is worth mentioning the effect of GH-resistance on adiposity was shown to be organ-dependent since adipose-specific ablation of the GHR gene results in a fatty phenotype, while liver-specific ablation of the GHR gene does not. Interestingly, despite lacking both GH and thyroid hormone, Ames dwarf mice appear to have an increase in adiposity that is less pronounced and largely age-dependent. It is worth mentioning that while GHR-KO and Ames dwarf mice gain considerable adiposity, they do not naturally become as obese as GHA mice, which become exceptionally obese. As expected, bGH mice have a decrease in adiposity; however, it appears that this is only true in adult mice. The same relationship between GH and adiposity exists in GH-deficient and GH-resistant humans, as well as patients with acromegaly (overproduction of GH), meaning that the findings in GH-mutant mice described below are likely to be applicable to humans. This is very important because studies focused on bioenergetics and metabolism are of increasing interest due to the growing obesity epidemic worldwide, and particularly in the United States.

Effects of altered adipokine production on insulin sensitivity

Ames dwarf mice have low levels of circulating glucose and insulin, while GHR-KO mice have profoundly reduced levels of circulating insulin and a moderate decrease in glucose, indicating these animals are insulin sensitive. The insulin sensitivity of Ames dwarf and GHR-KO mice has been demonstrated through the so-called “intraperitoneal insulin tolerance test,” and has been further demonstrated in Ames dwarf mice through the use of a hyperinsulinemic euglycemic clamp. Importantly, it is believed that their improved insulin sensitivity is critical to their extended longevity. Thus, it has been a central focus of our laboratory to understand how a variety of tissues, including adipose tissue, impact the insulin signaling
in Ames dwarf and GHR-KO mice. It has previously been established that visceral fat negatively impacts insulin sensitivity through the secretion of pro-inflammatory cytokines such as IL-6 and TNF-α. The effect of visceral fat on insulin signaling is best exemplified by the effect of surgically removing visceral fat, which ultimately leads to improved insulin sensitivity, presumably through a reduction in circulating pro-inflammatory cytokines. Interestingly, removal of most of the epididymal and perirenal WAT in Ames dwarf and GHR-KO mice promotes insulin resistance rather than insulin sensitivity. It appears this is mainly due to a shift from pro- to anti-inflammatory cytokine production in their visceral WAT (where IL-6 and TNF-α production is downregulated, and adiponectin production is upregulated). It is worth noting that adiponectin is typically negatively correlated with adiposity, which is the opposite of what is observed in these mice. It does, however, appear that adiponectin levels are positively associated with longevity and negatively associated with GH signaling. Results of an elegant studies of the relationship(s) between GH, adiposity, and adiponectin levels (including the bioactive high molecular weight variant of adiponectin) can be found in. The epididymal WAT depot in Ames dwarf mice also has an upregulation in genes that are beneficial for metabolism, including insulin receptor and PGC-1α.

Interestingly, removal of visceral WAT in Ames dwarf mice downregulated genes in subcutaneous WAT (sWAT) that are involved in insulin signaling. This is important, since sWAT is traditionally considered to be "good" adipose tissue in terms of its impact on insulin sensitivity. Also noteworthy is that the circulating levels of leptin are increased in Ames dwarf (including animals on a high fat diet or calorie restriction) and GHR-KO mice, compared to their respective controls. As expected, circulating levels of leptin are decreased in bGH mice compared to their controls. Interestingly, both circulating leptin and adiponectin levels are increased in GHA mice despite no alterations in longevity.

Reduced senescent cell burden

A study by Stout et al. used a variety of GH-related mutant mice to establish the role of GH in age-related adipose tissue dysfunction and redistribution. Their study demonstrated that 18-month-old Ames dwarf, Snell dwarf, and GHR-KO mice retain a higher ratio of extra- to intra-peritoneal WAT than their respective controls. The reason these mutant mice maintain a high ratio of extra- to intra-peritoneal WAT may be due in part to the retained capacity of their preadipocytes to differentiate, which has been shown to play a role in age-related ectopic lipid redistribution. Importantly, this suggests that GH action contributes to the natural age-related accumulation of intraperitoneal adiposity, which is a predictor of future pathologies. In addition, acromegaly patients have also been shown to ectopically redistribute lipids, thus strengthening the argument that GH action impacts lipid redistribution.

The same study by Stout et al. also showed that the natural age-related accumulation of senescent cells in adipose tissue was delayed in the absence of GH action. Both Snell dwarf and GHR-KO mice have a lower senescent cell burden, along with lower expression of several molecular markers of senescence including p16 and p21, compared to their respective controls. Importantly, bGH mice and Ames dwarf mice treated with GH during the early postnatal period have an increased senescent cell burden, further illustrating the relationship between GH and adipose-specific cellular senescence. These findings are of particular interest because Ames dwarf, Snell dwarf and GHR-KO mice are long-lived, while bGH and GH-injected Ames dwarf mice are short-lived, thus indicating that the GH-dependent acceleration of cell senescence and redistribution of lipids may play a pivotal role in longevity.

Improved thermogenesis in brown adipose tissue

Work in our laboratory indicates that improved energy metabolism may be a “biomarker,” and likely a mechanism, of extended healthspan and lifespan of GH-related mutant mice. GH-deficient mice have improved energy metabolism as measured by an increase in oxygen consumption and heat production per gram body weight, as well as a decrease in respiratory quotient. Because brown adipose tissue (BAT) aids in regulating these parameters, it has become a tissue of interest for our laboratory. The first indication that GH action may alter BAT physiology was observed in a study conducted by Li et al. which showed that GHR-KO mice have an increase in the relative weight of the interscapular BAT (iBAT) depot. Moreover, GHR-KO mice have an increase in the expression of UCP-1 (both protein and mRNA levels) in iBAT. This study also demonstrated that GHA mice show a similar phenotype to GHR-KO mice, while bGH mice have a decrease in both the relative weight of the iBAT depot and UCP-1 mRNA expression. The increased expression of UCP-1 observed in GHR-KO mice may in part be due to these mice having an increase in the BAT mRNA expression of FGF-21, which has been shown to stimulate UCP-1 expression.

Recently, we demonstrated that similar to GHR-KO mice, Ames dwarf mice have BAT that is more active than that of their normal littermates. As seen in GHR-KO mice, Ames dwarf mice have an increase in the
relative weight of the iBAT depot, as well as increased expression of UCP-1 mRNA. Moreover, iBAT from Ames dwarf mice has an increase in the expression of other genes related to thermogenesis (e.g., PGC-1α, ADRβ3, and DIO2) and genes related to fatty acid metabolism (e.g., FAS, HSL, and LPL). Alterations in BAT fatty acid metabolism are important because oxidation of fatty acids plays a major role in BAT-thermogenesis. Further, examination of Hematoxylin/eosin stained iBAT cross-sections revealed that Ames dwarf mice have depleted lipid vacuoles and an increase in the number of nuclei per field, which is indicative of increased BAT activity. Finally, our study showed that surgical removal of the iBAT depot in Ames dwarf mice resulted in an unexpected physiological response: namely, a reduction in the relative weight of the subcutaneous, epididymal, and perirenal adipose depots (in contrast to the increase in relative weight observed in their normal littermates). Moreover, iBAT removal in dwarf mice resulted in a reduction in the size of adipocytes in these WAT depots, while iBAT removal in normal mice resulted in an increase in adipocyte size. Our laboratory interprets this unique physiological response in dwarf mice to possibly be due to the thermal stress caused by the iBAT removal surgery, where the already low body temperature of the dwarf mice (approximately 1.5°C lower than their normal littermates) dropped even lower, resulting in an increased demand for thermogenesis, and therefore, an increased utilization of stored lipids. Because the studies mentioned above were conducted at standard temperature, future studies involving thermoneutral housing (30°C) is an area of extreme interest to our laboratory to delineate the role(s) of body temperature and BAT-thermogenesis in the extended longevity of Ames dwarf mice.

Concluding remarks

Numerous studies involving adipose tissue are related to obesity and metabolic syndromes, both of which greatly increase the risk of developing diabetes and other chronic diseases. While these studies are obviously of extreme importance, data from several laboratories (including our own findings) indicate adipose tissue function and distribution plays a major role in the aging process. Studies conducted to date of adipose tissue in GH-deficient mice. Moreover, preliminary studies from our laboratory, along with studies done by a collaborating laboratory, indicate that some of the observed alterations in adipose tissue may be dependent on ambient temperature. We have found that when long-lived GH mutant mice are housed in thermoneutral conditions, the phenotype of their adipose tissue begins to resemble that of their respective controls (Bartke and Masternak, unpublished observations). Overall, we are intrigued by the prospect that adipose tissue may prove to play a determinate role in the extended longevity of GH-mutant mice. Readers that are interested in learning more about age-related changes in adipose tissue, as well as more detail on the possible mechanisms by which adipose tissue alters longevity, are referred to.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

We would like to thank Lisa Hensley for editorial assistance. We would also like to acknowledge contributions and support from past and present laboratory members, as well as from our collaborators. We sincerely apologize to those whose work pertinent to this topic was not mentioned either due to space limitations or inadvertent omission.

Funding

This work was supported by The National Institute on Aging under grants AG0119899 and AG051869.

ORCID

Justin Darcy [http://orcid.org/0000-0002-0657-3059]
Samuel McFadden [http://orcid.org/0000-0002-2289-5066]
Andrzej Bartke [http://orcid.org/0000-0002-2569-557X]

References

[1] Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch 9 in yeast. Science 2001; 292(5515):288-90
[2] Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997; 277 (5328):942-6
[3] Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 2001; 292(5514):104-6; PMID:11292874
[4] Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature 1996; 384(6604):33
Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism is linked to receptor binding and transcription factor activity. Proc Natl Acad Sci U S A 1999; 96(14):8495-9; PMID:10458983

Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A 2001; 98(12):6793-9; PMID:11176040.

van der Spoel E, Jansen SW, Akintola AA, Ballieux RE, Cobbaert CM, Slagboom PE, Blauw GJ, Westendorp RG, Pijl H, Roelfsema F, et al. Growth hormone hormone signaling is diminished and tightly controlled in humans enriched for familial longevity. Aging Cell 2016 [Epub ahead of print]; PMID:27605408.

Bartke A, Sun LY, Longo V. Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 2013; 93(2):571-98; PMID:23588928.

Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature 2000; 408(6809):255-62; PMID:11089983

Tatar M, Bartke A, Antebi A. The endocrine regulation of ageing by insulin-like signals. Science 2003; 299(5611):1346-51; PMID:12610294

Schaible R, Gowen JW. A new dwarf mouse. Genetics 1961; 46:896

Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, et al. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996; 384(6607):327-33; PMID:8934515

Bartke A. Genetic models in the study of anterior pituitary hormones. In: Shire JGM, editor. Genetic Variation in Hormone Systems. Boca Raton: CRC Press; 1979. p. 113-126

Bartke A. Prolactin-deficient mice. In: Alexander NJ, editor. Animal Models for Research on Contraception and Fertility. Hagerstown: Harper & Row; 1979. p. 360-365

Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A. Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci. 2003; 58(4):291-6; PMID:12663691

Westbrook R, Bonkowski MS, Strader AD, Bartke A. Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice. J Gerontol A Biol Sci Med Sci 2009; 64(4):443-51; PMID:19286975

Snell GD. Dwarf, a new mendelian recessive character of the house mouse. Proc Natl Acad Sci USA 1929; 15:733-4; https://doi.org/10.1073/pnas.15.9.733

Li S, Crenshaw EB, 3rd, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell type results from mutations in the POU-domain gene pit-1. Nature 1990; 347(6293):528-33; PMID:1977085; https://doi.org/10.1038/347528a0

Laron Z, Pertzalan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentration of growth hormone—a new inborn error of metabolism? Isr J Med Sci 1966; 2(2):152-5

Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, et al. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A 1997; 94(24):13215-20; PMID:9371826; https://doi.org/10.1073/pnas.94.24.13215

Kinney BA, Coschigano KT, Kopchick JJ, Steger RW, Bartke A. Evidence that age-induced decline in memory retention is delayed in growth hormone resistant GH-R-KO (Laron) mice. Physiol Behav 2001; 72(5):653-60; PMID:11363996; https://doi.org/10.1016/S0031-9384(01)00423-1

Kinney-Forshee BA, Kinney NE, Steger RW, Bartke A. Could a deficiency in growth hormone signaling be beneficial to the aging brain? Physiol Behav 2004; 80(5):589-94

Ikono Y, Hubbard GB, Lee S, Cortez LA, Lew CM, Webb CR, Berryman DE, List EO, Kopchick JJ, Bartke A. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 2009; 64(5):522-9; PMID:19228785; https://doi.org/10.1093/gerona/glp017

Knapp JR, Chen WY, Turner ND, Byers FM, Kopchick JJ. Growth patterns and body composition of transgenic mice expressing mutated bovine somatotropin genes. J Anim Sci 1994; 72(11):2812-9; PMID:7730173

Kopchick JJ, Bellush LL, Coschigano KT. Transgenic models of growth hormone action. Annu Rev Nutr 1999; 19:437-61; https://doi.org/10.1146/annurev.nutr.19.1.437

Steger RW, Bartke A, Cecim M. Premature ageing in transgenic mice expressing different growth hormone genes. J Reprod Fertil Suppl 1993; 46:61-75; PMID:8100276

Chen WY, Wight DC, Mehta BV, Wagner TE, Kopchick JJ. Glycine 119 of bovine growth hormone is critical for growth-promoting activity. Mol Endocrinol 1991; 5(12):1845-52; PMID:1791834; https://doi.org/10.1210/endo-129-3-1402

Chen WY, White ME, Wagner TE, Kopchick JJ. Functional antagonism between endogenous mouse growth hormone (GH) and a GH analog results in dwarf transgenic mice. Endocrinology 1991; 129(3):1402-8; PMID:1874179; https://doi.org/10.1210/endo-129-3-1402

Chen WY, Wight DC, Chen NY, Coleman TA, Wagner TE, Kopchick JJ. Mutations in the third alpha-helix of bovine growth hormone dramatically affect its intracellular distribution in vitro and growth enhancement in transgenic mice. J Biol Chem 1991; 266(4):2252-8; PMID:1989980

Berryman DE, List EO, Coschigano KT, Behar K, Kim JK, Kopchick JJ. Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm IGF Res 2004; 14(4):309-18; PMID:15231300; https://doi.org/10.1016/j.ghir.2004.02.005

Berryman DE, List EO, Palmer AJ, Chung MY, Wright-Piekarski J, Lubbers E, O’Connor P, Okada S, Kopchick JJ. Two-year body composition analyses of long-lived GHR null mice. J Gerontol A Biol Sci Med Sci 2010; 65(1):31-40; PMID:19901018; https://doi.org/10.1093/gerona/glp175

Bonkowski MS, Pamenter RW, Rocha JS, Masternak MM, Panici JA, Bartke A. Long-lived growth hormone receptor
knockout mice show a delay in age-related changes of body composition and bone characteristics. J Gerontol A Biol Sci Med Sci 2006; 61(6):562-7; PMID:16799137; https://doi.org/10.1093/gerona/61.6.562

[33] Berryman DE, List EO, Kohn DT, Coschigano KT, Seeley RJ, Kopchick JJ. Effect of growth hormone on susceptibility to diet-induced obesity. Endocrinology 2006; 147(6):2801-8; PMID:16556764; https://doi.org/10.1210/en.2006-0086

[34] List EO, Berryman DE, Funk K, Gosney ES, Jara A, Kelder B, Wang X, Kutz L, Troike K, Lozier N, et al. The role of GH in adipose tissue: lessons from adipose-specific GH receptor gene-disrupted mice. Mol Endocrinol 2013; 27(3):524-35; PMID:23349524; https://doi.org/10.1210/me.2012-1330

[35] Fan Y, Menon RK, Cohen P, Hwang D, Clemens T, DiGirolamo DJ, Kopchick JJ, Le Roith D, Trucco M, Sterling MA. Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. J Biol Chem 2009; 284(30):19937-44; PMID:19460757; https://doi.org/10.1074/jbc.M109.014308

[36] Heiman ML, Tinsley FC, Mattison JA, Hauck S, Bartke A. Body composition of prolectin-, growth hormone, and thyrotropin-deficient Ames dwarf mice. Endocrine 2003; 20(1-2):149-154; PMID:12668880; https://doi.org/10.1385/ENDO:20-1:2-149

[37] Berryman DE, Lubbers ER, Magon V, List EO, Kopchick JJ. A dwarf mouse model with decreased GH/IGF-1 activity that does not experience life-span extension: potential impact of increased adiposity, leptin, and insulin with advancing age. J Gerontol A Biol Sci Med Sci 2014; 69(2):131-41; PMID:23693934; https://doi.org/10.1093/gerona/gjo069

[38] Blackburn A, Schmitt A, Schmidt P, Wanke R, Hermanns W, Brem G, Wolf E. Actions and interactions of growth hormone and insulin-like growth factor-II: body and organ growth of transgenic mice. Transgenic Res 1997; 6(3):213-22; PMID:9167269; https://doi.org/10.1007/s107220050654

[39] Olsson B, Bohlooly YM, Fitzgerald SM, Frick F, Ljungberg A, Ahren B, Tornell J, Bergstrom G, Oscarsson J. Bovine growth hormone transgenic mice are resistant to diet-induced obesity but develop hyperphagia, dyslipidemia, and diabetes on a high-fat diet. Endocrinology 2005; 146(2):920-30; PMID:15539551; https://doi.org/10.1210/en.2004-1232

[40] Palmer AJ, Chung MY, List EO, Walker J, Okada S, Kopchick JJ, Berryman DE. Age-related changes in body composition of bovine growth hormone transgenic mice. Endocrinology 2009; 150(3):1353-60; PMID:18948397; https://doi.org/10.1210/en.2009-1154

[41] Laron Z, Ginsberg S, Lifshitz P, Arbib M, Vaisman N. Body composition in untreated adult patients with Laron syndrome (primary GH insensitivity). Clin Endocrinol (Oxf) 2006; 65(1):114-7; PMID:16817829; https://doi.org/10.1111/j.1365-2265.2006.02558.x

[42] Katznelson L. Alterations in body composition in acromegaly. Pituitary 2009; 12(2):136-42; PMID:18369725; https://doi.org/10.1007/s11102-008-0104-8

[43] Borg KE, Brown-Borg HM, Bartke A. Assessment of the primary adrenal cortical and pancreatic hormone basal levels in relation to plasma glucose and age in the unstressed Ames dwarf mouse. Proc Soc Exp Biol Med 1995; 210(2):126-33; PMID:7568282; https://doi.org/10.3181/00379727-210-43931

[44] Dominici FP, Hauck S, Argentino DP, Bartke A, Turyn D. Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. J Endocrinol 2002; 173:81-94; PMID:11927387; https://doi.org/10.1677/joe.0.1730881

[45] Liu JL, Coschigano KT, Robertson K, Lipsett M, Guo Y, Kopchick JJ, Kumar U, Liu YL. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab 2004; 287(3):E405-413; PMID:15138153; https://doi.org/10.1152/ajpendo.00423.2003

[46] Wiesenborn DS, Ayala JE, King E, Masternak MM. Insulin sensitivity in long-living Ames dwarf mice. Age (Dordr) 2014; 36(5):9709; PMID:25163655; https://doi.org/10.1007/s11357-014-9709-1

[47] Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 2013; 9(2):191-200; PMID:23671428; https://doi.org/10.5114/aoms.2013.33181

[48] Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 2003; 52(7):1779-85; PMID:12829646; https://doi.org/10.2337/ diabetes.52.7.1779

[49] Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001; 280(5):E745-751; PMID:11287357

[50] Barzilai N, She L, Liu BQ, Vuguin P, Cohen P, Wang J, Rossetti L. Surgical removal of visceral fat reverses hepatic insulin resistance. Diabetes 1999; 48(1):94-8; PMID:9892227; https://doi.org/10.2337/diabetes.48.1.94

[51] Menon V, Zhi X, Hossain T, Bartke A, Spong A, Gesing A, Masternak MM. The contribution of visceral fat to improved insulin signaling in Ames dwarf mice. Aging Cell 2014; 13(3):497-506; PMID:24690289; https://doi.org/10.1111/acel.12201

[52] Masternak MM, Bartke A, Wang F, Spong A, Gesing A, Fang Y, Salmon AB, Hughes LF, Liberati T, Boparai R, et al. Metabolic effects of intra-abdominal fat in GHRKO mice. Aging Cell 2012; 11(1):73-81; PMID:22040032; https://doi.org/10.1111/acel.12201

[53] Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, Bianco A, Daniele A. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int 2014; 2014:658913; PMID:25110685; https://doi.org/10.1155/2014/658913

[54] Rubbers ER, List EO, Jara A, Sackman-Sala L, Cordoba-Chacon J, Gahete MD, Kineman RD, Boparai R, Bartke A, Kopchick JJ, et al. Adiponectin in mice with altered GH action: links to insulin sensitivity and longevity? J Endocrinol 2013; 216(3):363-74; PMID:23261955; https://doi.org/10.1530/JOE-12-0505

[55] Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab 2008; 7(5):410-20; https://doi.org/10.1016/j.cmet.2008.04.004
Djian P, Roncari AK, Hollenberg CH. In Kirkland JL, Hollenberg CH, Gillon WS. Age, anatomic

[56] Hill CM, Fang Y, Miquet JG, Sun LY, Masternak MM, Bartke A. Long-lived hypopituitary Ames dwarf mice are resistant to the detrimental effects of high-fat diet on metabolic function and energy expenditure. Aging Cell 2016; 15(3):509-21; PMID:26990883; https://doi.org/10.1111/acel.12467

[57] Wang Z, Masternak MM, Al-Regaiey KA, Bartke A. Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and calorie-restricted mice. Endocrinology 2007; 148(6):2845-53; PMID:17347312; https://doi.org/10.1210/en.2006-1313

[58] Alderman JM, Flurkey K, Brooks NL, Naik SB, Gutierrez JM, Srinivas U, Ziara KB, Jing L, Boysen G, Bronson R, et al. Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Exp Gerontol 2009; 44(1-2):26-33; https://doi.org/10.1016/j.exger.2008.05.014

[59] Egecioglu E, Bjursell M, Ljungberg A, Dickson SL, Koppel EO, Berryman DE, Lubbers ER, Escande C, Spong A, Bohlooly YM. Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice. Am J Physiol Endocrinol Metab 2006; 290(2):E317-325; PMID:16174655; https://doi.org/10.1152/ajpendo.00181.2005

[60] Stout MB, Tchkonia T, Pirskhalava T, Palmer AK, List EO, Berryman DE, Lubbers ER, Escande C, Spong A, Masternak MM, et al. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging (Albany NY) 2014; 6(7):575-86; PMID:25063774; https://doi.org/10.18632/aging.100681

[61] Kirkland JL, Hollenberg CH, Gillon WS. Age, anatomic site, and the replication and differentiation of adipocyte precursors. Am J Physiol 1990; 258(2 Pt 1):C206-210; PMID:2305864

[62] Djian P, Roncari AK, Hollenberg CH. Influence of anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture. J Clin Invest 1983; 72(4):1200-8; PMID:6630508; https://doi.org/10.1172/JCI11075

[63] Xu JL, Saunders TJ, Davidson LE, Ross R. Age-related changes in total and regional fat distribution. Ageing Res Rev 2009; 8(4):339-48; https://doi.org/10.1016/j.arr.2009.06.001

[64] Guo SS, Zeller C, Chunmea WC, Siervogel RM. Aging, body composition, and lifestyle: the Fels Longitudinal Study. Am J Clin Nutr 1999; 70(3):405-11; PMID:10479203

[65] Reyez-Vidal CM, Mojahed H, Shen W, Jin Z, Arias-Mendoza F, Fernandez JC, Gallagher D, Bruce JN, Post KD, Freda PU. Adipose Tissue Redistribution and Ectopic Lipid deposition in active acromegaly and effects of surgical treatment. J Clin Endocrinol Metab 2015; 100(8):2946-55; PMID:26037515; https://doi.org/10.1210/jc.2015-1917

[66] Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scramle H, Khosla S, Jensen MD, Kirkland JL. Fat tissue, aging, and cellular senescence. Aging Cell 2010; 9(5):667-84; PMID:20701600; https://doi.org/10.1111/j.1474-9726.2010.00608.x

[67] Panici JA, Harper JM, Miller RA, Bartke A, Spong A, Masternak MM. Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB J 2010; 24(12):5073-9; PMID:20720157; https://doi.org/10.1096/fj.10-163253

[68] Li Y, Knapp JR, Kopchick JJ. Enlargement of interscapular brown adipose tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-disrupted dwarf mice. Exp Biol Med (Maywood) 2003; 228(2):207-15; PMID:12563029; https://doi.org/10.1177/153537020322800212

[69] Brooks NE, Hjortedberg R, Henry BE, List EO, Kopchick JJ, Berryman DE. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and beta-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice. Growth Horm IGF Res 2016; 30-31:22-30; PMID:27585733; https://doi.org/10.1016/j.ghir.2016.08.003

[70] Fisher FM, Maratos-Flier E. Understanding the Physiology of FGF21. Annu Rev Physiol 2016; 78:223-41; PMID:26654352; https://doi.org/10.1146/annurev-physiol-021115-105339

[71] Darcy J, McFadden S, Fang Y, Huber JA, Zhang C, Sun LY, Bartke A. Brown Adipose tissue function is enhanced in Long-Lived, Male Ames Dwarf Mice. Endocrinology 2016; 157(12):4744-53; PMID:27740871; https://doi.org/10.1210/en.2016.1539

[72] Cannon B, Nedergraad J. Brown adipose tissue function: function and physiological significance. Physiol Rev 2004; 84(1):277-359; PMID:14715917; https://doi.org/10.1152/physrev.00015.2003

[73] Hunter WS, Crosen WB, Bartke A, Gentry MV, Meliska CJ. Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol Behav 1999; 67(3):433-7; PMID:10497963; https://doi.org/10.1016/S0031-9384(99)00098-0

[74] Stout MB, Swindell WR, Zhi X, Rohde K, List EO, Berryman DE, Kopchick JJ, Gesing A, Fang Y, Xiaob C, Spong A, Masternak MM. Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. Oncotarget 2015; 6(29):26702-15; PMID:26436954; https://doi.org/10.18632/oncotarget.5760

[75] Stout MB, Justice JN, Nicklas BJ, Kirkland JL. Physiological Aging: Links among adipose tissue dysfunction, diabetes, and frailty. Physiology (Bethesda) 2017; 32(1):9-19; PMID:27927801

[76] Berryman DE, List EO, Sackmann-Sala L, Lubbers E, Munn R, Kopchick JJ. Growth hormone and adipose tissue: beyond the adipocyte. Growth Horm IGF Res 2011; 21(3):113-23; PMID:21470887; https://doi.org/10.1016/j.ghir.2011.03.002