A Meta-Analysis of the Prevalence of Toxoplasmosis in Livestock and Poultry Worldwide

Bahador Hajimohammadi,1,2 Salman Ahmadian,3 Zohre Firoozi,2 Maryam Askari,4 Masoud Mohammadi,5 Gilda Eslami,1,3 Vahideh Askari,1 Elahe Loni,1 Raziyeh Barzegar-Bafrouei,2 and Mohammad Javad Boozhmehrani3

1Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd 8916188638, Islamic Republic of Iran
2Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
4Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
5Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran

Abstract: Toxoplasma gondii causes toxoplasmosis with a global prevalence in the world. A large proportion of human illness is most frequently associated with consuming raw and undercooked meat or other animal products containing infective parasitic stages of T. gondii. This systematic review and meta-analysis study evaluated the prevalence of toxoplasmosis in cattle, sheep, camels, goats, and poultry worldwide. The search was performed in databases including PubMed, WoS, Scopus, Science Direct, Google Scholar, and ISC from 2000 to 2019 in Persian and English. The main inclusion criteria were the prevalence of toxoplasmosis among livestock and poultry and the prevalence indices by sample size. During these 20 years, the overall prevalence of toxoplasmosis in livestock and poultry was 28.3% (95% confidence interval (CI) 25–31.9%) using the random-effects meta-analysis model. The highest prevalence of T. gondii in livestock and poultry animals was found in Asia in 2014 with 89.8% (95% CI 78.5–95.5%). The lowest prevalence was found in Asia in 2013 with 1.26% (95% CI 0.4–3.8%). A quarter of livestock and poultry were infected with T. gondii. Since livestock products are globally important sources of people’s diet, our findings are useful for policymakers to control T. gondii infection in livestock.

Keywords: Toxoplasma gondii, Systematic review, Worldwide, Prevalence, Livestock animals

INTRODUCTION

Toxoplasma gondii is an obligate intracellular opportunistic parasite that is the causative agent of toxoplasmosis with a global prevalence in most parts of the world (Mammari et al. 2019). This zoonotic infection represents a major public health problem in human and veterinary medicine (Aguirre et al. 2019).

T. gondii infects a broad spectrum of warm-blooded vertebrates, including humans as intermediate hosts. On the other hand, cat family members (Felidae) are the only known definitive hosts of this infection (Dubey and Jones 2008). Besides, T. gondii has different forms of trophozoite,
oocyst, and tissue cyst (Dubey et al. 1998). Most transmission routes that humans acquire toxoplasmosis are ingestion of oocysts (shed by infected cats) or tissue cysts of contaminated food or water and raw or semi-raw meat, respectively (Mosallanejad et al. 2011). Also, the consumption of infected raw milk is a possible route of tachyzoite transmission to humans (Koethe et al. 2017). Additionally, *T. gondii* can cross the placenta in some species, particularly humans, sheep, goats, camels, and cattle (Stelzer et al. 2019). These animals become easily infected through ingestion or inhalation of oocysts with food or water sources (Sharif et al. 2015). This parasite is involved in reproductive failure and production losses in livestock. As a result, toxoplasmosis in livestock animals is responsible for economic losses through death, abortion, and neonatal mortality.

It is estimated that 1.5 billion individuals are infected with this parasite worldwide. However, at least one-third of the world’s human population has antibodies against *Toxoplasma* (Hill and Dubey 2013). Infection with *T. gondii* causes clinical manifestations of toxoplasmosis, including lymphadenopathy and blindness (Weiss and Dubey 2009). *T. gondii* infection in healthy adults is asymptomatic, but it has a greater impact on immunocompromised individuals (Wang et al. 2017).

Studies showed that the prevalence of infection caused by *T. gondii* in livestock varies greatly depending on the localities of the world (Dong et al. 2018; Holec-Gasior et al. 2013; Boughattas and Bouratbine 2014). Therefore, consuming contaminated meat and milk of infected animals can damage human health (Boughattas 2017; Dalir Ghaffari and Dalimi 2019; Boughattas and Bouratbine 2015). Because of the high importance of this issue, this systematic review with meta-analysis was performed to evaluate the prevalence of toxoplasmosis in cattle, sheep, camels, goats, and poultry worldwide.

METHODS

Search Strategy

This study was conducted according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA guideline 2009) (Moher et al. 2010). For this purpose, we conducted a systematic search of articles from English and Persian databases to address the prevalence of *T. gondii* infection in livestock animals (cattle, sheep, camels, goats) and poultry all around the world. Data were collected from electronic databases, including PubMed, WoS, Scopus, Science Direct, Google Scholar, and Islamic World Science Citation (ISC) from 2000 to 2019. The inclusion criteria were the main epidemiological parameters of interest: the prevalence of toxoplasmosis among livestock and poultry and the prevalence indices by sample size. This research was conducted using the Medical Subject Headings (MeSH) terms as ”*Toxoplasma*”, ”*Toxoplasma gondii*”, ”Toxoplasmosis”, ”*T. gondii*”, ”Prevalence”, ”Goat”, ”Sheep”, ”Camel”, ”Cattle”, ”Toxoplasmosis in Animal”, and ”Livestock” combined using OR and/or AND.

Selecting Studies and Data Extraction

We searched all mentioned databases comprehensively; then, the relevant articles were selected based on the title and abstract content. Two independent reviewers evaluated the papers in parallel. If the article was rejected, the reason for the rejection was mentioned, and in the case of disagreement between the two reviewers, the third reviewer evaluated the article. The remaining articles were read in full text and screened for eligibility using a checklist of inclusion–exclusion criteria. The data, including title, year of publication, prevalence rate, location of study, the corresponding author, aims, main findings, sample size, and diagnostic methods, were extracted carefully from databases. Additionally, reference lists of published data were examined to extend the research and prevent missing additional studies.

Statistical Analysis

In each study, the prevalence of toxoplasmosis was obtained in livestock animals. The meta-analysis was performed using comprehensive meta-analysis software (Biostat, Englewood, NJ, USA) version 3. The heterogeneity of the studies was assessed by I^2 statistics. Heterogeneity was classified into three categories: heterogeneity less than 25% (low level of heterogeneity), between 25 and 75% (average level of heterogeneity), and more than 75% (high level of heterogeneity). The probability of publication bias in the result was investigated using the funnel plot and Egger’s test. Furthermore, publication bias in the results was measured using Begg and Mazumdar rank correlation test at a significance level of 0.1 due to the large sample size
Meta-regression was used for the sample size to investigate the effects of potentially effective factors on heterogeneity in the prevalence of *T. gondii* worldwide.

RESULTS

Search Output and Eligible Studies

We identified 1111 documents following the initial literature search of national and international databases using relevant keywords; after removing 150 duplicated papers, the number of remaining articles decreased to 961. A total of 400 irrelevant documents were excluded by reviewing the title and/or abstracts. Also, after a full-text review and using a checklist of inclusion–exclusion criteria, 430 irrelevant records were removed. Eventually, 131 articles were qualified to be included in this systematic review and meta-analysis, including 54 studies in Asia, 21 studies in Europe, 37 studies in Africa, 12 studies in South America, and seven studies in North America. A flow diagram depicting the study selection process is presented in Figure 1.

Characteristics of the Eligible Studies

Tables 1, 2, 3 and 4 show the characteristics of the final 131 articles eligible for inclusion which contain information from selected papers, including the name of the researcher, the year and place of the study, the number of samples, the kind of animal, diagnostic assay, and the prevalence of *T. gondii* in the studies. Our analysis contains 61,716 infected animals from 45 countries and five continents. The maximum sample size was related to the study conducted by Verhelst et al. (2014) in Belgium (3170 sheep), and the minimum sample size (n = 24, goat) was reported from Japan by Kyan et al. (2012). The diagnostic methods used in eligible studies were enzyme-linked immunosorbent assay (ELISA), indirect fluorescent antibody test (IFA), total lysate antigens (TLA), direct agglutination test (DAT), modified agglutination test (MAT), latex agglutination test (LAT), polymerase chain reaction (PCR), nested PCR, and real-time PCR.

Heterogeneity and Publication Bias

The heterogeneity of the studies was evaluated using the I^2 test, and the results showed $I^2 = 98\%$. The high I-squares
indicate considerable heterogeneity between the results. Therefore, a random-effects model was used to combine the results of the studies. The funnel plot indicated no publication bias, and Begg’s and Egger’s tests were not statistically significant ($P = 0.890$) (Fig. 2).

Meta-Analysis

In this 20-year survey, the prevalence of toxoplasmosis in livestock and poultry in the continents of Asia, Africa, America (North and South), and Europe was 21.7% (95% CI 18.3–25.6%), 29% (95% CI 23.9–34.7%), 16.4% (95% CI 8.6%–29%), 38.5% (95% CI 31–46.5%), and 43.5% (95% CI 32.1–55.6%), respectively (Figs. 3, 4, 5, 6, 7); and the overall prevalence using the random-effects meta-analysis model was 28.3% (95% CI 25–31.9%) (Fig. 8). The highest prevalence of *T. gondii* in livestock and poultry was in Iran and Asia in 2014 with 89.8% (95% CI 78.5–95.5%), while the lowest prevalence was also in Iran and Asia in 2013 with 1.26% (95% CI 0.4–3.8%). It should be mentioned that the prevalence rate of this parasite in India (2017) was 1.5%.

In Figures 3, 4, 5, 6, 7 and 8, test displays the prevalence of toxoplasmosis based on the random-effects model, with black squares representing the prevalence, square section length showing 95% CI in each study, and the diamond sign indicating the total prevalence in the country for all studies. The studies’ range in the chart is considered between 1 and -1. As can be seen in the figures, the prevalence values are positive and greater than zero.

Meta-Regression

Meta-regression was used for the sample size to investigate the effects of potentially effective factors on heterogeneity in the prevalence of toxoplasmosis in livestock and poultry in the world (Fig. 9). The prevalence of *T. gondii* infection increases with the growing sample size in the studies, and statistically significant differences were found ($P < 0.05$).

Table 1. Baseline Characteristics of Selected Studies Reporting Seroprevalence of *T. gondii* in Animals in Europe.

Authors (References)	Country	Kind of animals	Diagnostic method	Sample size	Prevalence (%)
Deng et al. (2016)	Netherlands	Dairy goat	ELISA	1664	13.3
Lorencova et al. (2016)	Czech	Goat, lamb	ELISA, real-time PCR	57	28.07
Lopes et al. (2015)	Portugal	Cattle, sheep, goat	Nested PCR	75	68
Sechi et al. (2013)	Italy	Sheep	IFA	630	33.97
Misurova et al. (2009)	Czech	Goat	IFA	28	82.1
Cenci-Goga et al. (2013)	Italy	Sheep	IFA	630	34
Balea et al. (2012)	Romania	Sheep, goat	ELISA	513	44.2
Moskwa et al. (2018)	Poland	Sheep	ELISA	103	36.8
Roqueplo et al. (2011)	France	Cattle	ELISA	30	3.3
Tzanidakis et al. (2012)	Greece	Sheep, goat	ELISA	2042	43.8
Garcia et al. (2013)	Spain	Cattle, sheep, goat	ELISA	1501	52.56
Luptakova et al. (2015)	Slovakia	Ewes	real-time PCR, ELISA	80	31.25
Verhelst et al. (2014)	Belgium	Sheep	ELISA (TLA), IFA	3170	87.4
Sroka et al. (2017)	Poland	Goat	DAT, Nested – PCR, real-time PCR	73	70
Vismarra et al. (2016)	Italy	Chicken	ELISA	66	36.4
Villena et al. (2012)	France	Ovine	ELISA, MAT, Bioassay	419	27
Diakoua et al. (2013)	Greece	Sheep, goat	ELISA	833	57.1
Iovu et al. (2012)	Romania	Dairy goat	ELISA	735	52.8
Morley et al. (2008)	UK	Sheep	PCR	29	31
Djokic et al. (2014)	Serbia	Goat	MAT	431	73.3
Stormoen et al. (2012)	Norwegian	Dairy goat	DAT	2188	17

ELISA enzyme-linked immunosorbent assay, *IFA* indirect fluorescent antibody, *TLA* total lysate antigen, *DAT* direct agglutination test, *MAT* modified agglutination test, *PCR* polymerase chain reaction.
Authors (references)	Country	Kind of animals	Diagnostic method	Sample size	Prevalence (%)
Olfaty-Harsini et al. (2017)	Iran	Ewe	Nested PCR	60	48.3
Havakhab et al. (2014)	Iran	Sheep, goat	Sabin-Feldman Dye	402	27.6
Akhoundi and Youssefi (2017)	Iran	Sheep	IFA	764	28.2
Sharif et al. (2005)	Iran	Cattle, sheep, goat	IFA	1278	25.4
Khamesipour et al. (2014)	Iran	Cattle, camel, sheep	PCR	372	6.7
Azizi et al. (2014)	Iran	Sheep, cattle	PCR	120	20.8
Sarkari et al. (2014)	Iran	Turkey reared	PCR, MAT, Bioassay	54	89.8
Tavakoli et al. (2017)	Iran	Sheep, goat	Nested – PCR	240	50.4
Ghazaei (2006)	Iran	Cattle, sheep, goat, chicken	ELISA	750	14.4
Hamidinejat et al. (2009)	Iran	Cattle	MAT	450	15.7
Asgari et al. (2011)	Iran	Sheep, goat	Nested – PCR	78	33.3
Dehkordi et al. (2013)	Iran	Caprine, ovine, buffalo, camel, bovine	Bioassay, ELISA, PCR	889	27.1
Razmi et al. (2010)	Iran	Ovine	IFA	325	5.2
Tavassoli et al. (2013)	Iran	Sheep, goat	PCR	237	1.26
Asgari et al. (2009a, b)	Iran	Chicken	IFA, Nested-PCR	231	25
Asgari et al. (2006)	Iran	Chicken	IFA	122	36.1
Hamidinejat et al. (2008)	Iran	Ewe	ELISA, MAT	150	72.6
Hamidinejat et al. (2013)	Iran	Camel	MAT	254	14.5
Kavari et al. (2013)	Iran	Sheep, goat	ELISA, Nested PCR	186	18.3
Asgari et al. (2009a, b)	Iran	Sheep	IFA	603	26.5
Gorji et al. (2018)	Iran	Sheep	Nested – PCR	140	18.5
Mahami et al. (2017)	Iran	Beef, chicken, lamb	PCR	150	17.3
Armand et al. (2016)	Iran	Sheep	ELISA, Nestad – PCR	370	35.9
Wiengcharoen et al. (2012)	Thailand	Cattle	IFA	389	25.7
Ge et al. (2014)	China	Cattle	ELISA, Nested, RFLP	1040	12.8
Khlaty et al. (2015)	Iraq	Sheep	LAT, PCR	300	33.3
Akhtar et al. (2014)	Pakistan	Chicken	LAT, Bioassay	300	36.3
Ahmad et al. (2014)	Pakistan	Cattle, buffalo	ELISA	822	17.3
Wang et al. (2011)	China	Sheep, goat	IHA	1270	3.3
Lashari et al. (2010)	Pakistan	Sheep	LAT, ELISA	518	19.8
Jung et al. (2014)	Korean	Goat	ELISA	610	5.1
Bawmet et al. (2016)	Myanmar	Goat	LAT	281	11.4
Shah et al. (2013)	Pakistan	Goat, sheep	IHA	640	42.8
Qiu et al. (2012)	China	Cattle	IHA	1803	2.6
Oncel et al. (2006)	Turkey	Sheep	ELISA	181	31
Giangaspero et al. (2013)	Japan	Sheep	ELISA	267	28.7
Sharma et al. (2008)	India	Sheep, cattle, buffalo	ELISA	372	3.2
Kyan et al. (2012)	Japan	Goat	RFLP, LAT	24	75
Matsuo et al. (2014)	Japan	Cattle, chicken	LAT	657	4.7
Alanazi et al. (2013)	Saudi Arabia	Sheep, goat, camel	IFA	1628	34.6
Jittapalapong et al. (2005)	Thailand	Goat	LAT	631	27.9
Zou et al. (2015)	China	Buffalo, sheep, goat	IHA	973	11.9
Toxoplasmosis is considered one of the most widespread zoonotic diseases around the globe that were mainly transmitted to humans via consuming contaminated food (water and vegetables) with oocysts and eating the meat of livestock and poultry harboring tissue cysts (Mosallanejad et al. 2011). Recently, the consumption of raw and semi-raw meat and dairy products has been increasing worldwide. Hence, the safety assessment of livestock and poultry products is worthwhile for public health policymakers. To the best of our knowledge, this is the first meta-analysis to review and evaluate the prevalence of *T. gondii* in livestock (sheep, goats, camels, and cattle) and poultry considering different countries and continents from 2000 to 2019.

According to this meta-analysis, the overall global prevalence of toxoplasmosis in livestock and poultry was 28.3%. This prevalence rate is higher than *Toxoplasma* seroprevalence in pigs (19%) reported by Foroutan (Foroutan et al. 2019). This difference could be explained by the fact that pork consumption is forbidden in Muslim countries, and they mostly consume cattle, sheep, camel, goat, and poultry products.

Also, the highest prevalence rate of toxoplasmosis was 89.8%, while the lowest prevalence was 1.26%. The worldwide prevalence of toxoplasmosis differs from 16.4% in North America to 43.5% in Europe. In previous studies, the toxoplasmosis prevalence has been reported in countries worldwide from 10 to 90% (Torgerson and Mastroiacovo 2013). These variations can be explained by climate, different characteristics of the studies (sample size and various diagnostic serological methods), animal production systems, and specific control measures.

Climatic variations (temperature and humidity) in different parts of the world can cause different prevalences of the parasite (Rostami et al. 2017). The prevalence of *Toxoplasma* in livestock has been studied in most parts of the world for the last 20 years that could be a reason for the heterogeneity in the astonishing findings found. One research has reported that the prevalence of toxoplasmosis is higher in temperate climate and low-altitude regions. Besides, they reported that the prevalence is lower in cold and hot and dry areas (Rahimi et al. 2015). Oocytes do not grow in hot and dry climates, leading to a low prevalence of toxoplasmosis in such areas. Thus, it can be concluded that infections in cats are different among various regions concerning the climate. Our results also demonstrated a significant influence of geographical and climate factors on *T. gondii* seroprevalence so that decreasing and increasing seroprevalence was reported from North and South America, respectively, even though the number of studies was different in North and South America. Moreover, its prevalence in the Middle East (26.4%) differs from other Asian countries (17.8%). (Supplementary file).

With respect to diagnostic methods, our findings suggest that the diagnostic methods may be a source of

Table 2. continued

Authors (references)	Country	Kind of animals	Diagnostic method	Sample size	Prevalence (%)
Ichikawa et al. (2015)	Indonesia	Cattle, pig	ELISA	803	9.2
Singh et al. (2015)	India	Sheep, goat, cattle	PCR, ELISA, IFA	168	50.5
Luo et al. (2017)	China	Cattle, goat, buffalo	IHA	935	14.2
Kalambhe et al. (2017)	India	Sheep, goats	Nested- PCR	400	1.5
Zhou et al. (2016)	Turkey	Sheep, goat, cattle	ELISA	1236	13.6
Celik et al. (2018)	Turkey	Cattle	ELISA	300	18
Bachan et al. (2018)	India	Goat	ELISA, IFA	445	42.4
Chikweto et al. (2011)	India	Sheep, goat, cattle	MAT	503	35.1
Sunanta et al. (2009)	Thailand	Dairy cow	ELISA, IFAT, LAT, PCR	50	54
Aktas et al. (2000)	Turkey	Sheep	Sabin-Feldman (SF)	154	46.8
Al-Rammahi et al. (2010)	Iraq	Cattle, sheep, goat	LAT	745	36.7
Al-dabagh et al. (2014)	Iraq	Sheep	ELISA	100	32

IFA indirect fluorescent antibody, *PCR* polymerase chain reaction, *MAT* modified agglutination test, *ELISA* enzymed-linked immunosorbent assay, *RFLP* restriction fragment length polymorphism, *LAT* latex agglutination test, *IHA* indirect haemagglutination test.
heterogeneity. A fluctuation in outcomes was observed in studies; e.g., in Iran, Akhoundi and Youssefi (2017) reported 28.2% of infection prevalence using the IFA method in Northern Iran, while Tavakoli et al. (2017) reported 50.4% using PCR methods in Eastern Iran. However, it should be taken into consideration that these studies were conducted in different sample sizes and areas.

Our findings demonstrated an association between the prevalence of *T. gondii* and sample size. In the current meta-analyses, we observed that *T. gondii* prevalence in...
Table 4. Baseline Characteristics of Selected Studies Reporting Seroprevalence of *T. gondii* in Animals in America.

Authors (references)	Country	Kind of animals	Diagnostic method	Sample size	Prevalence (%)
North America					
Persad et al. (2011)	Trinidad	Water buffalo	LAT	333	7.8
Alvarado et al. (2013a; b)	Mexico	Dairy goat	MAT	341	15.2
Alvarado et al. (2013a; b)	Mexico	Sheep	MAT	429	23.1
Dubey et al. (2011)	USA	Goat	MAT – Bioassay	234	53.4
Gebreyes et al. (2008)	USA	Swine	ELISA	675	7
Dubey et al. (2008)	USA	Sheep	MAT, PCR, Bioassay	383	27.1
Yaglom et al. (2014)	USA	Boer goat	LAT	367	6.8
South America					
Dubey et al. (2004)	Peru	Chicken	MAT – Bioassay	50	28
Dubey et al. (2003a, b)	Brazil	Chicken	MAT, Bioassay	40	40
Franco et al. (2016)	Colombia	Beef, chicken	PCR	120	45.8
Lopes et al. (2016)	Brazil	Chicken	MAT, ELISA, PCR	108	71.3
Figliuolo et al. (2004)	Brazil	Goat	IFA	394	28.7
Romanelli et al. (2007)	Brazil	Sheep	MAT	305	51.5
Dubey et al. (2002)	Brazil	Chicken	MAT – Bioassay	82	39
Moraes et al. (2011)	Brazil	Goat, sheep	IFA	110	12.7
Guimaraes et al. (2013)	Brazil	Sheep	IFA	795	30.2
Da Silva et al. (2014)	Brazil	Ovine(sheep)	IFA	40	45
Frazao et al. (2011)	Brazil	Cattle	ELISA	77	49.4
Neto et al. (2008)	Brazil	Goat	IFA	366	30.6

LAT latex agglutination test, MAT modified agglutination test, ELISA enzymed-linked immunosorbent assay, PCR polymerase chain reaction, IFA indirect fluorescent antibody.

Figure 2. Funnel plot. Results of toxoplasmosis prevalence in livestock and poultry animals worldwide.
Figure 3. The forest plot of prevalence of toxoplasmosis in livestock and poultry: meta-analysis plot of toxoplasmosis in Asia.
creases with growing the sample size. This increase could be
due to raising the number of animals exposed to the par-
asite.

Considering previous meta-analyses, it can be
acknowledged that a low level of health is an effective factor
for increasing the prevalence of toxoplasmosis in Africa. Also, Hotze (2014) explained that toxoplasmosis is highly
prevalent in poor areas because of low health literacy
(Hotez 2014). Several studies have shown that good hy-
giene in the manufacturing of farms under intensive
management practice can significantly decrease the preva-
lence of T. gondii, but a developing country cannot exploit
these facilities (De Berardinis et al. 2017; Robert-Gangneux
and Darde 2012). According to our results, contrary to
surveys done in Africa, advanced countries like Belgium
also have high infection levels. Therefore, more critical
factors contribute to the prevalence of this infection, which
requires further study. This result indicates that the
prevalence of toxoplasmosis is dependent not only on the
poor condition of countries and socioeconomic factors but
also on the different environmental factors.

The study strengths are the large total sample size,
comprehensive article search, and subgroup analyses.
Moreover, this study included the accurate and strict
methodology and quality assessment that two independent
reviewers performed. However, this study had some limi-
tations, including no review of the effect of age and sex on the infection prevalence and high heterogeneity and variations in sensitivity and specificity of diagnostic methods (bioassay and serological methods).

CONCLUSION

It was found that more than a quarter of livestock animals and poultry are infected with *T. gondii*. Since livestock products are globally important sources of people’s diet...
Figure 7. The forest plot of prevalence of toxoplasmosis in livestock and poultry: meta-analysis plot of toxoplasmosis in Europe.
Figure 8. The forest plot of prevalence of toxoplasmosis in livestock and poultry: meta-analysis plot of toxoplasmosis worldwide.
and will increase with the growing world population, our findings can be useful for policymakers to control toxoplasmosis in livestock.

Acknowledgements

This research was done by Research Center of Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran (ID. No. 6808). We sincerely thank the technical supports of the staff of Research Center of Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

Declarations

Conflict of Interest The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical Approval In ethical approval was not required for this meta-analysis because no human or animal subjects were involved.

References

Abdel-Hafeez E, Kamal A, Abdelgelil N, Abdel-Fatah M (2015) Parasites transmitted to human by ingestion of different types of meat, EL-Minia city, EL-Minia governorate, Egypt. Journal of the Egyptian Society of Parasitology 45:671–680. https://doi.org/10.12816/0017935

Abdel-Rahman M, El-Manyawe SM, Khatib AM, Saha S (2012) Occurrence of Toxoplasma antibodies in caprine milk and serum in Egypt. Assiut Veterinary Medical Journal 58:145–152

Aboelhadiid SM, Abdel-Ghany AE, Ibrahim MA, Mahran HA (2013) Seroprevalence of Toxoplasma gondii infection in chickens and humans in Beni Suef, Egypt. Global Veterinaria 11:139–144. https://doi.org/10.5829/idosi.gv.2013.11.2.74193

Aguirre AA, Longcore T, Barbieri M, Dabritz H, Hill D, Klein PN, Lepczyk C, Lilly E, Mcleod R, Milcarsky J, Murphy CE, Su C, VanWormer E, Yolken R, Sizemore GC (2019) The one health approach to toxoplasmosis: epidemiology, control, and prevention strategies. EcoHealth 16:378–390. https://doi.org/10.1007/s10393-019-01405-7

Ahmad N, Qayyum M (2014) Seroprevalence and risk factors for toxoplasmosis in large ruminants in northern Punjab, Pakistan. Journal of Infection in Developing Countries 8:1022–1028. https://doi.org/10.3855/jidc.4405

Ahmed NE, Al-Akabway LM, Ramadan MY, Abd El-Gawad SM, Moustafa MMA (2017) Serological and PCR-sequencing assays for diagnosis of Toxoplasma gondii and Neospora caninum infecting camels in Egypt. Benha Veterinary Medical Journal 33:200–210. https://doi.org/10.21608/BVMJ.2017.30466

Akhoundi S, Youssefi M (2017) Seroprevalence of sheep toxoplasmosis in north of Iran. Trakia Journal of Science 15:79–82. https://doi.org/10.15547/tjs.2017.01.013

Akhtar M, Ahmed AA, Awais MM, Saleemi MK, Ashraf K, Hisczynska-Sawicka E (2014) Seroprevalence of Toxoplasma gondii in the Backyard chickens of the rural areas of Faisalabad Punjab Pakistan. International Journal of Agriculture and Biology 16:1105–1111

Aktas M, Dumanli N, Babur C, Karaer Z, Ongor H (2000) Determination of seropositivity for Toxoplasma gondii infection in pregnant and aborted sheep in Elaziğ and vicinity by Sabin-Feldman (SF) Test. Turkish Journal of Veterinary and Animal Sciences 24:239–241

Alanazi AD (2013) Determination of seropositivity for Toxoplasma gondii in sheep, goats and camels slaughtered for food and human consumptions in Riyadh municipal abattoirs, Saudi Arabia. Journal of the Egyptian Society of Parasitology 43:569–576. https://doi.org/10.12816/0006414
Al-Dabagh II, Jasim BM, Jarees MT (2014) Seroprevalence of antibodies to toxoplasmosis, brucellosis and chlamydiosis in abattoir sheep in Nineveh governorate, Iraq. *Iraqi Journal of Veterinary Sciences* 28:21–25

Al-Kappany YM, Abbas IE, Develiesziauver B, Dormy P, Jennes M, Cox E (2018) Seroprevalence of anti-Toxoplasma gondii antibodies in Egyptian sheep and goats. *BMC Veterinary Research* 14:120. https://doi.org/10.1186/s12917-018-1440-1

Al-Ramahi HM, Hamza RH, Abdulla MA (2010) Seroprevalence study of toxoplasmosis in domestic animals in Mid-Euphrates region-Iraq. *Journal of University of Babylon* 18:1382–1387

Alvarado-Esquivel C, Estrada-Malacón MA, Reyes-Hernández SO, Pérez-Ramírez J, Trujillo-López J, Villena I, Dubey JP (2013) Seroprevalence of *Toxoplasma gondii* in domestic sheep in Oaxaca State, Mexico. *The Journal of Parasitology* 99:151–152. https://doi.org/10.1645/GE-3220.1

Alvarado-Esquivel C, Silva-Aguilar D, Villena I, Dubey J (2013) Seroprevalence of *Toxoplasma gondii* infection in dairy goats in Michoacan State, Mexico. *The Journal of Parasitology* 99:540–542. https://doi.org/10.1645/12-103.1

Anwar S, Mahdy E, El-Nesr KA, El-Dakhly KM, Shalaby A, Yanai T (2013) Monitoring of parasitic cysts in the brains of a flock of sheep in Egypt. *Revista Brasileira De Parasitologia Veterinária* 22:323–330. https://doi.org/10.1590/S1984-29612013000300002

Amaaria S, Rouatbi M, Rjeibi MR, Nousari H, Sassi L, Mhadhbi M, Gharbi M (2016) Molecular prevalence of *Toxoplasma gondii* DNA in goats' milk and seroprevalence in Northwest Tunisia. *Veterinary Medicine and Science* 2:154–160. https://doi.org/10.1002/vms3.29

Amdouni Y, Rjeibi M, Rouatbi M, Amaaria S, Awadi S, Gharbi M (2017) Molecular detection of *Toxoplasma gondii* infection in slaughtered ruminants (sheep, goats and cattle) in Northwest Tunisia. *Meat Science* 133:180–184. https://doi.org/10.1016/j.meatsci.2017.07.004

Armand B, Solhjojo K, Shabani-Kordshooi M, Davami MH, Sa-deghi M (2016) *Toxoplasma* infection in sheep from south of Iran monitored by serological and molecular methods; risk assessment to meat consumers. *Veterinary World* 9:850–855. https://doi.org/10.14202/vetworld.2016.850-855

Asgari Q, Farzaneh A, Kalantari M, Akrami Mohajeri F, Moazeni M, Zarifi M, Esmaelzadeh B, Motazedian MH (2006) Seroprevalence of free-ranging chicken toxoplasmosis in sub-urban regions of Shiraz, Iran. *International Journal of Poultry Science* 5:262–264. https://doi.org/10.3933/ijps.2006.262.264

Asgari Q, Mehrabani D, Moazzeni M, Akrami-Mohajeri F, Kalantari M, Motazedian M, Hatam G (2009) The seroprevalence of ovine toxoplasmosis in Fars Province, Southern Iran. *Asian Journal of Animal Veterinary Advances* 4:332–336. https://doi.org/10.3933/ajava.2009.332.336

Asgari Q, Motazedian MH, Esmaelzadeh B, Kalantari M, Hatam G (2009) The prevalence of toxoplasmosis infection among free-ranging chickens in Southern Iran using IFA and nested-PCR. *Iranian Journal of Parasitology* 4:29–36

Asgari Q, Sarnevesht J, Kalantari M, Adnani Sadat SJ, Motazedian MH, Sarkari B (2011) Molecular survey of *Toxoplasma* infection in sheep and goat from Fars province, Southern Iran. *Tropical Animal Health and Production* 43:389–392. https://doi.org/10.1007/s11250-010-9704-1

Ataill HB, Ibraheem HH, Shuaib YA, Mohamed AK, Suliman SE, Idris SH, Abdalla MA (2017) Sero-prevalence of toxoplasmosis in sheep and goats in El-Gadarif state. *Journal of Advanced Veterinary and Animal Research* 4:207–213. https://doi.org/10.5455/javar.2017.4205

Ayinmode AB, Abiola JO (2016) Investigating potential sources of toxoplasmosis for humans from slaughtered food animals in Ibadan, Nigeria. *Folia Veterinaria* 60:34–40. https://doi.org/10.1515/fv-2016-0016

Azizi HR, Shiran B, Borjian Boroujeni A, Jafari M (2014) Molecular survey of *Toxoplasma gondii* in sheep, cattle and meat products in Chaharmahal va Bakhtiari Province, Southwest of Iran. *Iranian Journal of Parasitology* 9:429–434

Bachan M, Deb AR, Maharana BR, Sudhakar NR, Sudan V, Sar-avanan BC, Tewari AK (2018) High seroprevalence of *Toxoplasma gondii* in goats in Jharkhand state of India. *Veterinary Parasitology, Regional Studies and Reports* 12:61–68. https://doi.org/10.1016/j.vprsr.2018.02.004

Balea A, Paštiu Al, Györke A, Mircean V, Cozma V (2012) The dynamics of anti-*Toxoplasma gondii* antibodies (IgG) in small ruminants and pigs from Cluj County, Romania. *Science Par-astology* 13:163–168

Bawm S, Maung WY, Win MY, Thu MJ, Che M, Thaing TA, Wai SS, Htun LL, Myaing TT, Tiwananthagon S, Igarashi M, Katakura K (2016) Serological survey and factors associated with *Toxoplasma gondii* infection in domestic goats in Myan-mar. *Scientifica (cairo)* 2016:4794318. https://doi.org/10.1155/2016/4794318

Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. *Biometrics* 50:1088–1101

Boughattas S (2017) Toxoplasmosis infection and milk consumption: meta-analysis of assumptions and evidences. *Critical Re-views in Food Science and Nutrition* 57:2924–2933. https://doi.org/10.1080/10408398.2015.1084993

Boughattas S, Bouratbine A (2014) Prevalence of food-borne *Toxoplasma gondii* in free-ranging chickens sold in Tunisia, Tunisi-a. *Journal of Food Quality and Hazards Control* 1:89–92

Boughattas S, Bouratbine A (2015) Genetic characterization of *Toxoplasma gondii* isolated from chicken meats in Tunisia. *Journal of Food Quality and Hazards Control* 2:97–100

Celik OY, Ipek DNS, Celik BA, Irak K, Akgulp G (2018) Investiga-tion of seroprevalence of *Toxoplasma gondii* in cattle in Siirt province in Turkey. *Indian Journal of Animal Research* 52:1053–1057. https://doi.org/10.18805/ijar.B-827

Cenci-Goga BT, Ciampelli A, Sechi P, Veronesi F, Moretta I, Cambiotti V, Thompson PN (2013) Seroprevalence and risk factors for *Toxoplasma gondii* in sheep in Grosseto district, Tuscany, Italy. *BMC Veterinary Research* 9:25

Chikweto A, Kumtheker S, Tiwari K, Nyack B, Deokar MS, Stratton G, Macpherson CNL, Sharma RN, Dubey JP (2011) Seroprevalence of *Toxoplasma gondii* in pigs, sheep, goats, and cattle from Grenada and Carriacou, West Indies. *The Journal of Parasitology* 97:950–951. https://doi.org/10.1645/GE-2811.1

Dalir Ghaffari A, Dalimi A (2019) Molecular Identification of *Toxoplasma gondii* in the Native Slaughtered Cattle of Tehran Province, Iran. *Journal of Food Quality and Hazards Control* 6:153–161. https://doi.org/10.18502/jfqhc.6.4.1993

Da Silva AS, Tonin AA, Camilo G, Weber A, Lopes LS, Cazareatto CJ, Balzan A, Bianchi AE, Stefani LM, Lopes STA, Vogel FF (2014) Ovine toxoplasmosis: Indirect immunofluorescence for milk samples as a diagnostic tool. *Small Ruminant Research* 120:181–184. https://doi.org/10.1016/j.smallrumres.2014.03.013

Davoust B, Mediniokov O, Roqueplo C, Perret C, Demonceaux JP, Sambou M, Guillot J, Blaga R (2015) Serological survey of animal toxoplasmosis in Senegal. *Bulletin De La Société De
De Berardinis A, Paludi D, Pennisi L, Vergara A (2017) _Toxoplasma gondii_, a foodborne pathogen in the swine production chain from a European Perspective. _Foodborne Pathogens Disease_ 14:637–648. https://doi.org/10.1089/fpd.2017.2305

Dechicha AS, Bachi F, Gharbi I, Gourbdji E, Baazize-Ammi D, Guetarni D (2015) Serological survey on toxoplasmosis in cattle, sheep and goats in Algeria. _African Journal of Agricultural Research_ 10:2113–2119. https://doi.org/10.5897/AJAR2015.9575

Deng H, Dam-Deisz C, Luttikholt S, Maas M, Nielen M, Swart A, Maas M, Nielen M, Swart A, Vellema P, van der Giessen J, Opsteegh M (2016) Risk factors related to _Toxoplasma gondii_ seroprevalence in indoor-housed Dutch dairy goats. _Preventive Veterinary Medicine_ 124:45–51. https://doi.org/10.1016/j.prevetmed.2015.12.014

Diakoua A, Papadopoulos E, Panousis N, Karatzias C, Giadinis N (2013) _Toxoplasma gondii_ and _Neospora caninum_ seroprevalence in dairy sheep and goats mixed stock farming. _Veterinary Parasitology_ 198:387–390. https://doi.org/10.1016/j.vetpar.2013.09.017

Djokic V, Klun I, Musella V, Rinaldi L, Cringoli G, Sotiraki S, Velleman P, van der Giessen J, Opsteegh M (2016) Risk factors related to _Toxoplasma gondii_ seroprevalence in dairy sheep and goats mixed stock farming. _Veterinary Parasitology_ 198:387–390. https://doi.org/10.1016/j.vetpar.2013.09.017

Dubey JP, Rajendran C, Ferreira LR, Martins J, Kwok OCH, Hill DE, Velmurugan GV, Bandini LA, Kwok OCH, Majumdar D, Su C (2008) High prevalence and abundant atypical genotypes of _Toxoplasma gondii_ isolated from lambs destined for human consumption in the USA. _International Journal for Parasitology_ 38:999–1006. https://doi.org/10.1016/j.ijpara.2007.11.012

Dubey JP, Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. _British Medical Journal_ 13:629–634. https://doi.org/10.1136/bmj.315.7109.629

Dubey JP, Sundar N, Hill D, Gilchrist JK, Bandini LA, Kwok OCH, Majumdar D, Su C (2008) High prevalence and abundant atypical genotypes of _Toxoplasma gondii_ isolated from lambs destined for human consumption in the USA. _International Journal for Parasitology_ 41:827–833. https://doi.org/10.1016/j.ijpara.2011.03.006

Dubey JP, Sundar N, Hill D, Velmurugan GV, Bandini LA, Kwok OCH, Majumdar D, Su C (2008) High prevalence and abundant atypical genotypes of _Toxoplasma gondii_ isolated from lambs destined for human consumption in the USA. _International Journal for Parasitology_ 38:999–1006. https://doi.org/10.1016/j.ijpara.2007.11.012

Dubey JP, Levy MZ, Sreekumar C, Kwok OCH, Shen SK, Lehmann T (2003) Isolation and molecular characterization of _Toxoplasma gondii_ isolates from chickens (_Gallus domesticus_) from São Paulo, Brazil: unexpected findings. _International Journal for Parasitology_ 33:99–105. https://doi.org/10.1016/s0304-4017(03)00364-2

Dubey JP, Graham DH, Dahl E, Hilali M, El-Ghaysh A, Sreekumar C, Kwok OCH, Shen SK, Lehmann T (2003) Isolation and molecular characterization of _Toxoplasma gondii_ isolates from chickens (_Gallus domesticus_) from São Paulo, Brazil: unexpected findings. _International Journal for Parasitology_ 33:99–105. https://doi.org/10.1016/s0304-4017(03)00364-2

Dubey JP, Jones JL (2008) _Toxoplasma gondii_ infection in humans and animals in the United States. _International Journal for Parasitology_ 38:1257–1278. https://doi.org/10.1016/j.ijpara.2008.03.007

Dubey JP, Levy MZ, Sreekumar C, Kwok OCH, Shen SK, Dahl E, Thulliez P, Lehmann T (2004) Tissue distribution and molecular characterization of chicken isolates of _Toxoplasma gondii_ from Peru. _The Journal of Parasitology_ 90:1015–1018. https://doi.org/10.1645/GE-329R

Dubey JP, Lindsay DS, Speer CA (1998) Structures of _Toxoplasma gondii_ tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. _Clinical Microbiology Review_ 11:267–299

Dubey JP, Navarro IT, Graham DH, Dahl E, Freire RL, Prudencio LB, Sreekumar C, Vianna MC, Lehmann T (2003) Characterization of _Toxoplasma gondii_ isolates from free range chickens from Paraná, Brazil. _Veterinary Parasitology_ 117:229–234. https://doi.org/10.1016/j.vetpar.2003.09.003

Dubey JP, Rajendran C, Ferreira LR, Martins J, Kwok OCH, Hill DE, Velmurugan GV, Bandini LA, Kwok OCH, Majumdar D, Su C (2011) High prevalence and genotypes of _Toxoplasma gondii_ isolated from goats, from a retail meat store, destined for human consumption in the USA.
A Meta-Analysis of the Prevalence of Toxoplasmosis 71

Hotez PJ (2014) Neglected parasitic infections and poverty in the United States. PLoS Neglected Tropical Diseases 8:e3012. https://doi.org/10.1371/journal.pntd.0003012

Ibrahim HM, Abdel-Ghaffar F, Osman GY, El-Shourbagy SH, Nishikawa Y, Khattab RA (2016) Prevalence of Toxoplasma gondii in chicken samples from delta of Egypt using ELISA, histopathology and immunohistochemistry. Journal of Parasitic Diseases 40:485–490. https://doi.org/10.1007/s12639-014-0530-7

Ibrahim A, Ismail AA, Elkhansa T, Angara TEE (2014) Serological Survey on Toxoplasma gondii in Dairy Cows from the Sudan using ELISA. Global Journal of Animal Sciences, Livestock Production and Animal Breeding 2:114–118

Ibrahim HM, Mohamed AH, El-Sharaawy AA, El-Shqangery HE (2017) Molecular and serological prevalence of Toxoplasma gondii in pregnant women and sheeps in Egypt. Asian Pacific Journal of Tropical Medicine 10:996–1001. https://doi.org/10.1016/j.aptm.2017.09.012

Ichikawa-Seki M, Guswanto A, Allamanda P, Mariamah ES, Wibowo PE, Igarashi I, Nishikawa Y (2015) Seroprevalence of antibody to TgGRA1 antigen of Toxoplasma gondii in livestock animals from Western Java, Indonesia. Parasitology International 64:484–486. https://doi.org/10.1016/j.parint.2015.07.004

Iovu A, Györke A, Mircean V, Gavrea R, Cozma V (2012) Seroprevalence of Toxoplasma gondii and Neospora caninum in dairy goats from Romania. Veterinary Parasitology 186:470–474. https://doi.org/10.1016/j.vetpar.2011.11.062

Jittapalapong S, Sangvananond A, Pinyapanuwat N, Chimmwi W, Khchaeram W, Koizumi S, Maruyama S (2005) Seroprevalence of Toxoplasma gondii infection in domestic goats in Satun Province, Thailand. Veterinary Parasitology 127:17–22. https://doi.org/10.1016/j.vetpar.2004.08.019

Jung BY, Gebeylehu EB, Lee SH, Seo MG, Byun JW, Oem JK, Kim HY, Kwak D (2014) Detection and determination of Toxoplasma gondii seropositivity in native Korean goats (Capra hircus coreanae). Vector Borne and Zoonotic Diseases (larchmont, NY) 14:374–377. https://doi.org/10.1089/vbz.2013.1452

Kalambhe D, Gill JPS, Singh BB (2017) Molecular detection of Toxoplasma gondii in the slaughter sheep and goats from North India. Veterinary Parasitology 241:35–38. https://doi.org/10.1016/j.vetpar.2017.05.009

Kamani J, Mani A, Egwu GO (2009) Seroprevalence of Toxoplasma gondii infection in domestic sheep and goats in Borno State, Nigeria. Tropical Animal Health and Production 42:793–797. https://doi.org/10.1007/s1250-009-9488-3

Kavari A, Nowzari N, Moazen Jula G, Moazeni Jula F, Hashemzadeh H (2013) A serological and molecular study on Toxoplasma gondii infection in sheep and goat in Tabriz. Archives of Razi Institute 68:29–35. https://doi.org/10.7508/jjm.2013.01.005

Khalil KM, Elrayah EI (2011) Seroprevalence of Toxoplasma gondii antibodies in farm animals (camels, cattle, and sheep) in Sudan. Journal of Veterinary Medicine and Animal Health 3:36–39

Khamesipour F, Doosti A, Ianpour Mobarakhe H, Komba EV (2014) Toxoplasma gondii in cattle, camels and sheep in Isfahan and Chaharmahal va Bakhtiyari Provinces, Iran. Journal of Parasitic Diseases 38:470–474. https://doi.org/10.3812/jjm.17460

Khatay AH, Naji N (2015) Molecular and serological detection of T. gondii in sheep in Wasit province. Al-Qadisiyah Journal of Veterinary Medicine Sciences 14:34–42

Koethe M, Schade C, Felhieber K, Ludewig M (2017) Survival of Toxoplasma gondii tachyzoites in simulated gastric fluid and
cow milk. Veterinary Parasiology 233:111–114. https://doi.org/10.1016/j.vetpar.2016.12.010

Kuraa HM, Malek SS (2016) Seroprevalence of Toxoplasma gondii in ruminants by using latex agglutination test (LAT) and enzymelinked immunosorbent assay (ELISA) in Assiut governorate. Tropical Biomedicine 33:711–725

Kyan H, Taira M, Yamamoto A, Inaba C, Zakimi S (2012) Isolation and characterization of Toxoplasma gondii genotypes from goats at an abattoir in Okinawa. Japanese Journal of Infectious Diseases 65:167–170

Lahmar I, Lachkhem A, Slama D, Sakly W, Haouas N, Gorcii M, Pfaff W, A,Candolfi E, Babbage H, (2015) Prevalence of toxoplasmosis in sheep, goats and cattle in Southern Tunisia. Journal of Bacteriology & Parasitology 6:1000245. https://doi.org/10.4172/2155-9597.1000245

Lashari MH, Tasawar Z (2010) Seroprevalence of toxoplasmosis in sheep in Southern Punjab. Pakistan Veterinary Journal 30:91–94

Lazim SAM, Ibrahim AM, Ahmed AB (2018) Seroprevalence of Toxoplasma Gondii in cattle, sheep and goats from River Nile State, Sudan. Multidisciplinary Advances in Veterinary Science 2:332–337

Lopes AP, Vilares A, Francisco N, Rodrigues A, Martins T, Ferreira I, Gargaje MJ, Rodrigues M, Cardoso L (2015) Genotyping characterization of Toxoplasma gondii in cattle, sheep, goats and swine from the north of Portugal. Iranian Journal of Parasitology 10:465–472

Lopes CS, Franco PS, Silva NM, Silva DAO, Ferro EAV, Penha HFJ, Soares RM, Gennari SM, Mineo JR (2016) Phenotypic and genotypic characterization of two Toxoplasma gondii isolates in free-range chickens from Uberlândia, Brazil. Epidemiology and Infection 144:1865–1875. https://doi.org/10.1017/S0950268815003295

Lorencova A, Lambka J, Reslova N, Skorpikova L, Slany M (2016) The meat of goat kids and lambs as a possible source of Toxoplasma gondii for consumers. Maso International, Veterinarini a Farmaceuticka Univerzita Brno 1:19–23

Luo H, Li K, Zhang H, Gan P, Shahzad M, Wu X, Lan Y, Wang J (2017) Seroprevalence of Toxoplasma Gondii infection in zoo and domestic animals in Jiangxi Province, China. Parasite 24:7. https://doi.org/10.1051/parasite/2017007

Luptaková L, Benova K, Renclova A, Petrovova E (2015) DNA detection of Toxoplasma gondii in sheep milk and blood samples in relation to phase of infection. Veterinary Parasitology 208:250–253. https://doi.org/10.1016/j.vetpar.2014.12.002

Mahami-Oskouei M, Moradi M, Follah E, Hamidi F, Akbari N (2017) Molecular detection and genotyping of Toxoplasma gondii in chicken, beef, and lamb meat consumed in northwestern Iran. Iranian Journal of Parasitology 12:38–45

Mammari N, Halabi MA, Yaacob S, Chlala H, Darde ML, Courtioux B (2019) Toxoplasma gondii modulates the host cell responses: an overview of apoptosis pathways. Biomed Research International 2019:6152489. https://doi.org/10.1155/2019/6152489

Matsuo K, Kamai R, Uetsu H, Goto H, Takashima Y, Nagamune K (2014) Serorevalence of Toxoplasma gondii infection in cattle, horses, pigs and chickens in Japan. Parasitology International 63:638–639. https://doi.org/10.1016/j.parint.2014.04.003

Mišurová L, Svobodová V, Pavlata L, Dvořák R (2009) Titres of specific antibodies against Toxoplasma gondii in goats and their kids. Acta Veterinaria Brno 78:259–266. https://doi.org/10.2754/avb200978020259

Moher D, Liberati A, Tetzlaff J, Altman DG The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 21:e1000097. https://doi.org/10.1371/journal.pmed.1000097

Moraes LM, Raimundo JM, Guimarães A, Santos HA, GdeL Macedo Junior, Massard CL, Machado RZ, Baldani CD (2011) Occurrence of anti-Neospora caninum and anti-Toxoplasma gondii IgG antibodies in goats and sheep in western Maranhão, Brazil. Revista Brasileira De Parasitologia Veterinaria 20:312–317. https://doi.org/10.1590/s1984-29612011000400010

Morley EK, Williams RH, Hughes JM, Thomasson D, Terry RS, Duncanson P, Smith JE, Hide G (2008) Evidence that primary infection of Charollais sheep with Toxoplasma gondii may not prevent foetal infection and abortion in subsequent lambs. Parasitology 135:169–173. https://doi.org/10.1017/S0031182007003721

Mosallanejad B, Avizeh R, Zali Jalali MH, Pourmehdi M (2011) A study on serorevalence and coproantigen detection of Toxoplasma gondii in companion cats in Ahvaz area, southwestern Iran. Iranian Journal of Veterinary Research 12:139–144

Mose JM, Kagira JM, Karanja SM, Ngotho M, Kamau DM, Njuguna AN (2016) Detection of natural Toxoplasma gondii infection in chicken in Thika Region of Kenya using nested polymerase chain reaction. BioMed Research International 2016:7589278. https://doi.org/10.1155/2016/7589278

Moskva B, Kornacka A, Cybulsk a, Cabaj W, Reiterova K, Bogdaszewski M, Steiner-Bogdaszewska Z, Bien J (2018) Seroprevalence of Toxoplasma gondii and Neospora caninum infection in sheep, goats, and fallow deer farmed on the same area. Journal of Animal Science 96:2468–2473. https://doi.org/10.1093/jas/sky122

Neto JO, Azevedo SS, Gennari SM, Funada MR, Penha HF, Araújo AR, Batista CS, Silva ML, Gomes AA, Piatti RM, Alves CJ (2008) Prevalence and risk factors for anti-Toxoplasma gondii antibodies in goats of the Seridó Oriental microregion, Rio Grande do Norte state, Northeast region of Brazil. Veterinary Parasitology 156:329–332. https://doi.org/10.1016/j.vetpar.2008.05.013

Ofiaty-Harsini S, Shokrani H, Nayebzadeh H (2017) Toxoplasma gondii infection in slaughtered ewes in Khorrababad, west of Iran: A preliminary molecular study. Iranian Journal of Veterinary Medicine 11:209–215. https://doi.org/10.22059/ijvm.2017.222331.1004780

Oncel T, Vural G (2006) Occurrence of Toxoplasma gondii antibodies in sheep in Istanbul, Turkey. Veterinarski Arhiv 76:547–553

Onyiche TGE, Ademola IO (2015) Seroprevalence of anti-Toxoplasma gondii antibodies in cattle and pigs in Ihadan, Nigeria. Journal of Parasitic Diseases 39:309–314. https://doi.org/10.1007/s12639-013-0350-1

Persad A, Charles R, Adesiyun AA (2011) Frequency of toxoplasmosis in water buffalo (Bubalus bubalis) in Trinidad. Veterinary Medicine International 2011:705358. https://doi.org/10.4061/2011/705358

Qiu JH, Wang CR, Zhang X, Sheng ZH, Chang QC, Zhao Q, Wu SM, Zou FC, Zhu XQ (2012) Seroprevalence of Toxoplasma gondii in beef cattle and dairy cattle in northeast China. Foodborne Pathogens and Disease 9:579–582. https://doi.org/10.1089/fpd.2011.1104

Rahimi MT, Daryani A, Sarvi S, Shokri A, Ahmadpour E, Teshnizi SH, Mizani A, Sharif M (2015) Cats and Toxoplasma gondii: a systematic review and meta-analysis in Iran. Onderstepoort Journal of Agriculture, Human and Animal Sciences 52:1–8. https://doi.org/10.4314/ajhas.v52i3.3

Rahimi MT, Daryani A, Sarvi S, Shokri A, Ahmadpour E, Teshnizi SH, Mizani A, Sharif M (2015) Cats and Toxoplasma gondii: a systematic review and meta-analysis in Iran. Onderstepoort Journal of Agriculture, Human and Animal Sciences 52:1–8. https://doi.org/10.4314/ajhas.v52i3.3
Sharif M, Gholami SH, Ziaei H, Daryani A, Laktarashi B, Ziapour SP, Rafiei A, Vahedi M (2005) Seroprevalence of Toxoplasma gondii in cattle, sheep and goats slaughtered for food in Mazandaran province, Iran, during 2005. *Veterinary Journal* 174:422–424. https://doi.org/10.1016/j.tvjl.2006.07.004

Sharif M, Sarvi S, Shokri A, Hosseini Tehrani S, Rahimi MT, Mizani A, Ahmadvand E, Daryani A (2015) *Toxoplasma gondii* infection among sheep and goats in Iran: a systematic review and meta-analysis. *Parasitology Research* 114:1–16. https://doi.org/10.1007/s00372-014-1476-2

Sharma S, Sandhu KS, Bal MS, Kumar H, Verma S, Dubey JP (2008) Serological survey of antibodies to *Toxoplasma gondii* in sheep, cattle, and buffaloes in Punjab, India. *The Journal of Parasitology* 94:1174–1175. https://doi.org/10.1645/GE-1556.1

Singh H, Tewari AK, Mishra AK, Maharana B, Sudan V, Raina OK, Rao JR (2015) Detection of antibodies to *Toxoplasma gondii* in domesticated ruminants by recombinant truncated SAG2 enzyme-linked immunosorbent assay. *Tropical Animal Health and Production* 47:171–178. https://doi.org/10.1007/s11250-014-0703-5

Sroka J, Kusyk P, Bliska-Zajac E, Karamon J, Dutkiewicz J, Wojcik-Fatla A, Zajac V, Stoejek K, Rozyczki M, Cenczek T (2017) Seroprevalence of *Toxoplasma gondii* infection in goats from the south-west region of Poland and the detection of T. gondii DNA in goat milk. *Folia Parasitologica*. https://doi.org/10.14411/fp.2017.023

Stelzer S, Basso W, Benavides Silván J, Ortega-Mora LM, Maksimov P, Gethmann J, Conraths FJ, Schares G (2019) *Toxoplasma gondii* infection and toxoplasmosis in farm animals: Risk factors and economic impact. *Food and Waterborne Parasitology* 15:e00037

Stormoen M, Tharaldsen J, Hopp P (2012) Seroprevalence of *Toxoplasma gondii* infection in Norwegian dairy goats. *Acta Veterinaria Scandinavica* 54:75. https://doi.org/10.1186/1751-0147-54-75

Sunanta C, Inpankaew T, Pinyopanuwat N, Chimnoi W, Kongsuthikaranont C, Arunwipas P, Maruyama S, Jittapalapong S (2009) Comparison of diagnostic techniques for detection of *Toxoplasma gondii* infection in dairy cows in Thailand. *Kaetsu Journal, Natural Sciences* 43:48–52

Swai ES, Kaaya JE (2012) A survey of *Toxoplasma gondii* antibodies by latex agglutination assay in dairy goats in Northern Tanzania. *Tropical Animal Health and Production* 45:211–217. https://doi.org/10.1007/s11250-012-0193-2

Tavakoli Kareshk A, Mahmouand Van H, Keyhani A, Tavakoli Oliaei R, Mohammad MA, Babaei Z, Hajhosseini ME, Zia-Ali N (2017) Molecular detection and genetic diversity of *Toxoplasma gondii* in different tissues of sheep and goat in Eastern Iran. *Tropical Biomedicine* 34:681–690

Tavassoli M, Ghorbanzadehgan M, Esmaeilnejad B (2013) Detection of *Toxoplasma gondii* in sheep and goats blood samples by PCR-RFLP in Ùrmia. *Veterinary Research Forum* 4:43–47

Tilahun B, Tolossa YH, Tilahun G, Ashenafi H, Shimeles S (2018) Seroprevalence and risk factors of *Toxoplasma gondii* infection among domestic ruminants in East Hararge Zone of Oromia Region, Ethiopia. *Veterinary Medicine International* 2018:4263470. https://doi.org/10.1155/2018/4263470

Torgerson PR, Mastroiacovo P (2013) The global burden of congenital toxoplasmosis: a systematic review. *Bulletin of the World Health Organization* 91:501–508. https://doi.org/10.2471/BLT.12.111732
Tzanidakis N, Maksimov P, Conraths FJ, Kiossis E, Brozos C, Sotiraki S, Schares G (2012) Toxoplasma gondii in sheep and goats: seroprevalence and potential risk factors under dairy husbandry practices. *Veterinary Parasitology* 190:340–348. https://doi.org/10.1016/j.vetpar.2012.07.020

Van der Puije W, Bosompem KM, Canacoo EA, Wastling JM, Akanmori BD (2000) The prevalence of anti-Toxoplasma gondii antibodies in Ghanaian sheep and goats. *Acta Tropica* 76:21–26. https://doi.org/10.1016/s0001-706x(00)00084-x

Verhelst D, De Craeye S, Vanrobaeys M, Czaplicki G, Dorny P, Cox E (2014) Seroprevalence of Toxoplasma gondii in domestic sheep in Belgium. *Veterinary Parasitology* 205:57–61. https://doi.org/10.1016/j.vetpar.2014.07.001

Villena I, Durand B, Aubert D, Blaga R, Geers R, Thomas M, Perret C, Alliot A, Escotte-Binet S, Thebault A, Boireau P, Halos I (2012) New strategy for the survey of Toxoplasma gondii in meat for human consumption. *Veterinary Parasitology* 183:203–208. https://doi.org/10.1016/j.vetpar.2011.08.001

Vismarra A, Mangia C, Barilli E, Brindani F, Bacci C, Kramer L (2016) Meat juice serology for Toxoplasma gondii infection in chickens. *Italian Journal of Food Safety* 5:5586. https://doi.org/10.4081/ijfs.2016.5586

Wang CR, Qiu JH, Gao JF, Liu LM, Wang C, Liu Q, Yan C, Zhu XQ (2011) Seroprevalence of Toxoplasma gondii infection in sheep and goats in northeastern China. *Small Ruminant Research* 97:130–133

Wang ZD, Liu HH, Ma ZX, Ma HY, Li ZY, Yang ZB, Zhu XQ, Xu B, Wei F, Liu Q (2017) Toxoplasma gondii infection in immunocompromised patients: a systematic review and meta-analysis. *Frontiers in Microbiology* 8:389. https://doi.org/10.3389/fmicb.2017.00389

Weiss LM, Dubey JP (2009) Toxoplasmosis: a history of clinical observations. *International Journal of Parasitology* 39:895–901. https://doi.org/10.1016/j.ijpara.2009.02.004

Wiengcharoen J, Nakthong C, Mitchoathai J, Udonsom R, Sukthana Y (2012) Toxoplasmosis and neosporosis among beef cattle slaughtered for food in Western Thailand. *The Southeast Asian Journal of Tropical Medicine and Public Health* 43:1087–1093

Yaglom HD, Rottinghaus AA, Pithua P (2014) Evidence of Toxoplasma gondii exposure in Boer goat herds in Missouri, USA. *Zoonoses and Public Health* 61:395–397. https://doi.org/10.1111/zph.12089

Zhou M, Cao S, Sevinc F, Sevinc M, Ceylan O, Liu M, Wang G, Moumouni PF, Jirapattharasate C, Suzuki H, Nishikawa Y, Xuan X (2016) Enzyme-linked immunosorbent assays using recombinant TgSAG2 and NcSAG1 to detect Toxoplasma gondii and Neospora caninum-specific antibodies in domestic animals in Turkey. *The Journal of Veterinary Medical Science* 78:1877–1881. https://doi.org/10.1292/jvms.16-0234

Zou F, Yu X, Yang Y, Hu S, Chang H, Yang J, Duan G (2015) Seroprevalence and risk factors of Toxoplasma gondii infection in buffaloes, sheep and goats in Yunnan province, southwestern China. *Iranian Journal of Parasitology* 10:648–665