Nonspherical Giant Gravitons and Matrix Theory

Andrei Mikhailov

Kavli Institute for Theoretical Physics,
University of California, Santa Barbara, CA 93106

E-mail: andrei@kitp.ucsb.edu

Abstract

We consider the plane wave limit of the nonspherical giant gravitons. We compute the Poisson brackets of the coordinate functions and find a nonlinear algebra. We show that this algebra solves the supersymmetry conditions of the matrix model. This is the generalization of the algebraic realization of the spherical membrane as the “fuzzy sphere”. We describe finite dimensional representations of the algebra corresponding to the fuzzy torus.

PACS: 11.25.-w, 11.27.+d, 11.30.Pb

On leave from the Institute of Theoretical and Experimental Physics, 117259, Bol. Cheremushkinskaya, 25, Moscow, Russia.
1 Introduction.

Brane polarization [1] provides a remarkable link between algebra and geometry. The simplest example of this phenomenon is the realization of the spherical D2 brane stabilized by the Ramond-Ramond flux as the static configuration of N D0 branes. The worldvolume theory of the N D0 branes is the theory of nine $N \times N$ matrices $X_i(t)$ describing the trajectories of the zero-branes[2]. For the branes moving in flat empty space the equations of motion imply for the static solutions that the matrices $X_i(t)$ for $i = 1, \ldots, 9$ commute with each other. Their common eigenvalues $x_{i,k}(t), k = 1, \ldots, N$ describe the motion of N D0 branes. But in the curved space with the Ramond-Ramond fluxes there are static solutions with $[X_i, X_j] \neq 0$. For example, for the space-time with the constant Ramond-Ramond field strength there are static configurations with X_1, X_2, X_3 generating the N-dimensional representation of the algebra $su(2)$:

$$[X_i, X_j] = r X_k$$

These configurations are known as "fuzzy spheres". In the limit $N \to \infty$ with the fixed Nr such solutions are interpreted as spherical D2 branes. Therefore D2 branes are solutions of the worldvolume theory of the D0 branes. Of course, D0 branes can also be represented as the solutions of the worldvolume theory of the D2 branes. We can think of them as spherical D2 branes carrying the topologically nontrivial $U(1)$ bundle.

It turns out that in curved spaces like AdS massless particles can polarize into massive branes [3]. Polarized massless particles are called "giant gravitons". These giant gravitons were originally described as continuous branes of the spherical shape. But massless particles in eleven dimensions can be described by the Matrix theory [4, 5, 6], therefore we expect that giant gravitons have an algebraic description. Recently the authors of [7] found the matrix description of the plane wave geometries which are certain limits of $AdS_7 \times S^4$. It was shown in [7] that the giant gravitons represented by the M2 branes polarized in the direction of S^4 survive in the plane wave limit and are indeed described in the corresponding matrix model as fuzzy spheres [1]. The algebraic description of the spherical branes in $AdS_7 \times S^4$ and $AdS_3 \times S^7$ was found in [8].

One of the interesting properties of the giant gravitons is that unlike the polarized D0 branes they are deformable. We have found in [9] that spherical giant gravitons are representatives of the families of non-spherical solutions parametrized by the holomorphic functions. In this paper we will argue that the non-spherical giant gravitons correspond in the matrix model to finite-dimensional representations of the nonlinear algebra:

$$[X, \bar{X}] = 2X_3$$
$$[X_3, X] = X - \phi(\bar{X})$$
$$[X_3, \bar{X}] = -\bar{X} + \phi(X)$$

where $\phi(X)$ is an arbitrary function. We will start with considering the nonspherical M2 brane preserving $\frac{1}{4}$ of the supersymmetries. We will describe the plane wave limit of this
configuration and compute the Poisson brackets of the worldsheet coordinates. We will find that (2) is the algebra of the coordinate functions on the spatial slice of the M2 brane. We then consider the supersymmetry conditions on the \(\frac{1}{4} \) BPS configurations in the matrix theory which were formulated by Dongsu Bak in [10] (see also [11, 12]). We show that the algebra (2) solves these conditions. As an example we consider the matrix realization of a toroidal giant graviton.

2 Giant gravitons in pp wave background.

2.1 Giant gravitons in the Penrose limit.

To study the non-spherical giant gravitons in \(AdS_7 \times S^4 \) it is convenient to embed \(AdS_7 \times S^4 \) in the flat space with the signature (2, 11). Consider the flat space \(\mathbb{R}^{2+11} \) with the metric

\[
ds^2 = \sum_{A=1}^{6} dX_A^2 - dX_7^2 - dX_8^2 + \sum_{i=1}^{5} dY_i^2
\]

We embed \(AdS_7 \times S^4 \) as the intersection of two quadrics:

\[
X_7^2 + X_8^2 - \sum_{i=1}^{6} X_i^2 = 4 \\
\sum_{i=1}^{5} Y_i^2 = 1
\]

We will be interested in the Penrose limit of the non-spherical giant gravitons. We will start with considering the Penrose limit of the embedding (4). It corresponds to the following approximate solution:

\[
X_7 + iX_8 = 2 \exp \left[i \left(x_+ + \frac{\epsilon^2}{4} x_- \right) + \frac{1}{8} \epsilon^2 \sum_{a=1}^{6} x_a^2 \right] \\
Y_4 + iY_5 = \exp \left[2i \left(x_+ - \frac{\epsilon^2}{4} x_- \right) - \frac{1}{2} \epsilon^2 \sum_{a=1}^{3} y_a^2 \right] \\
X_a = \epsilon x_a, \quad a = 1, \ldots, 6, \quad Y_a = \epsilon y_a, \quad a = 1, 2, 3
\]

The metric is:

\[
ds^2 = -4dx_+dx_- - 4(dx_+)^2 \left(\sum y_a^2 + \frac{1}{4} \sum x_a^2 \right) + \sum dx_a^2 + \sum dy_a^2
\]

We will consider the giant gravitons which expand inside \(S^4 \). According to the Section 5 of [13], the \(\frac{1}{4} \)-BPS giant gravitons in \(AdS_7 \times S^4 \) correspond to the holomorphic curves.
Given the equation of the curve \(F(z_1, z_2) = 0 \) the equation of the M2 brane worldvolume is given by
\[
F \left(\frac{Y_4 + iY_5}{(X_7 + iX_8)^2}, \frac{Y_1 + iY_2}{(X_7 + iX_8)^2} \right) = 0
\] (9)

In the Penrose limit this reduces to:
\[
\frac{|y|^2 + y_3^2}{2} + ix_- = W(e^{-2ix_+}y)
\] (10)

where \(W \) is a holomorphic function. It is convenient to consider separately the real and the imaginary parts of this equation:
\[
|y|^2 + y_3^2 = W(e^{-2ix_+}y) + \overline{W}(e^{2ix_+}\bar{y})
\] (11)
\[
x_- = \frac{1}{2i}(W(e^{-2ix_+}y) - \overline{W}(e^{2ix_+}\bar{y}))
\] (12)

This determines the shape of the membrane worldvolume in terms of a single holomorphic function \(W \).

2.2 Lightcone gauge and Poisson brackets.

Lightcone gauge is useful in a situation when there exists a lightlike Killing vector field \(\xi, \xi_\mu \xi^\mu = 0 \):
\[
\nabla_\mu \xi_\nu + \nabla_\nu \xi_\mu = 0
\]
\[
\mathcal{L}_\xi G_4 = 0
\]

where \(G_4 \) is the four form field strength. The required lightlike Killing vector in the plane wave background is \(\xi = \frac{\partial}{\partial x_-} \). It satisfies the additional constraints which simplify the formalism:
\[
\nabla_\mu \xi_\nu = 0
\] (13)
\[
\iota_\xi G_4 = 0
\] (14)

The first constraint implies that the one-form \(g_{\mu\nu} \xi^\nu \) is a total derivative:
\[
g_{\cdot\cdot} \left(\frac{\partial}{\partial x_-} \right) = -4dx_+
\]

We will choose \(x_+ \) to be a time coordinate on the worldsheet. The spacial slices \(x_+ = \text{const} \) of the membrane worldvolume have a naturally defined symplectic structure\(^\text{13}\)\(^\text{14}\). This
allows to formulate the theory of membranes as the dynamics on the space of functions X_i with the potential expressed in terms of the Poisson brackets. Let us review the construction of the symplectic form. The momentum corresponding to the Killing vector field $\frac{\partial}{\partial x_-}$ can be computed as an integral

$$P_+ = \int_{M^2, x_+ = \text{const}} \omega$$

(15)

This defines the two-form ω which should be taken as the symplectic form. It is essential that the momentum corresponding to $\frac{\partial}{\partial x_-}$ is carried only by the Born-Infeld term; because of (13) there if no contribution from the Wess-Zumino term. We can describe ω more explicitly. Suppose that we want to compute the integral of ω over the small element of the membrane area at $x_+ = 0$. We should then take the area of this element and multiply by the x_+-component of its velocity which should be orthogonal to the surface of the membrane. Suppose that v_\perp denotes the vector on the membrane worldvolume which is orthogonal to the slice $x_+ = \text{const}$. Then,

$$\omega = \frac{dx_+(v_\perp)}{|v_\perp|}\ Area$$

(16)

where Area is the two-form which measures the area of the membrane.

Let us compute the symplectic structure for the membrane described by the Eq. (10). We will parametrize the worldvolume of the membrane by (x_+, y, \bar{y}). The metric on the worldvolume is

$$ds^2|_{M^2} = -4(|y|^2 + y_3^2)(dx_+)^2 - \frac{2}{i}(W'd(e^{-2ix_+}y) - \bar{W}d(e^{2ix_+}\bar{y}))dx_+ + dyd\bar{y} + (dy_3)^2$$

(17)

where $y_3 = \pm \sqrt{W + \bar{W} - |y|^2}$. One can take

$$v_\perp = \frac{\partial}{\partial x_+} - 2ie^{-2ix_+}W'\frac{\partial}{\partial \bar{y}} + 2ie^{2ix_+}\bar{W}\frac{\partial}{\partial y}$$

(18)

with

$$dx_+(v_\perp) = 1, \quad ||v_\perp||^2 = -4(W + \bar{W} + |W'|^2 - yW' - \bar{y}\bar{W}')$$

(19)

The area element of the slice $x_+ = \text{const}$ is

$$\text{Area} = \sqrt{1 + 4(y_3/\partial y_3)^2}dy \land d\bar{y} = \frac{\sqrt{W + \bar{W} + |W'|^2 - yW' - \bar{y}\bar{W}'}}{y_3} dy \land d\bar{y}$$

(20)

This leads to the simple expression for the symplectic form:

$$\omega = \frac{dy \land d\bar{y}}{y_3}$$

(21)
The Poisson brackets computed with this symplectic form are:

\[
\begin{align*}
\{y, \bar{y}\} &= 2iy_3 \\
\{y_3, y\} &= i(y - W'(\bar{y})) \\
\{y_3, \bar{y}\} &= -i(\bar{y} - W'(y))
\end{align*}
\]

(22)

In the next section we will verify that this algebra satisfies the supersymmetry condition of the Matrix theory.

The time dependence of the worldsheet coordinates can be read from (18):

\[
\frac{dy}{dt} = ie^{it}W'(e^{it}\bar{y})
\]

(23)

where we have denoted \(t = 2x_+ \). This corresponds to the supersymmetric trajectory of the superparticle in the constant magnetic field. Indeed, let us introduce \(z = e^{-it}y \). We can interpret (23) as coming from the Lagrangian:

\[
S = \left| \frac{dz}{dt} \right|^2 + i \left(z \frac{d}{dt} \bar{z} - \bar{z} \frac{d}{dt} z \right) + |z|^2 + |W'(z)|^2 - zW'(z) - \bar{z}W'(\bar{z}) - \\
- iC_{ij}\bar{\xi}^i \frac{d}{dt} \xi^j + C_{ij}\xi^i \bar{\xi}^j - \frac{1}{2} W''(z) \varepsilon_{ij} \xi^i \xi^j + \frac{1}{2} W''(\bar{z}) \varepsilon_{ij} \bar{\xi}^i \bar{\xi}^j
\]

(24)

with the supersymmetry transformations:

\[
\delta \xi^i = \left(\frac{dz}{dt} + i\bar{z} \right) C^{ij} \bar{\xi}^j + i \bar{W}'(\bar{z}) \varepsilon^{ij} \xi^j \\
\delta z = i \varepsilon_i \xi^i
\]

(25)

where the supersymmetry parameter \(\varepsilon_i \) is subject to the reality condition

\[
C^{ij} \bar{\varepsilon}^j = - \bar{\varepsilon}^j \varepsilon_j, \quad C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

(26)

It would be interesting to learn if the Lagrangian (24) has any applications to the matrix description of the giant graviton besides giving the supersymmetric trajectories.

3 Matrix Theory.

3.1 Supersymmetry of the massive matrix model.

Matrix theory describes M theory compactified on a lightlike circle:

\[
x_- \sim x_- + 2\pi R_-
\]

(27)
The matrix model for the M-theory plane waves was introduced in [7]. In this section we will be interested in the solutions of this matrix model with $x_1 = \ldots = x_6 = 0$. The bosonic sector of the model is:

$$S = \int dt \ Tr \left[\sum_{j=1}^{3} \frac{1}{2(2R_-)} (D_0 y^j)^2 + \frac{1}{4} \sum_{j,k=1}^{3} [y^j, y^k]^2 - \frac{2}{(2R_-)^2} \sum_{j=1}^{3} (y^j)^2 - 2i \sum_{j,k,l=1}^{3} \epsilon_{jkl} Tr \ y^j y^k y^l \right]$$ \hspace{1cm} (28)

The generators of the supersymmetry transformation are the nine-dimensional Majorana spinors ϵ explicitly depending on time:

$$\epsilon(t) = e^{-\frac{1}{2} \gamma_{123} t} \epsilon_0$$ \hspace{1cm} (29)

The condition for ϵ to annihilate the solution is:

$$\left(\frac{1}{2R_-} D_0 y^i \gamma^i + \frac{2}{R_-} \sum_{i=1}^{3} y^i \gamma^i \gamma_{123} + \frac{i}{2} [y^i, y^j] \gamma_{ij} \right) \epsilon(t) = 0$$ \hspace{1cm} (30)

The spherical giant graviton preserves all the supersymmetry of the matrix model. It corresponds to constant y^i generating a representation of $su(2)$:

$$[y^i, y^j] = i \frac{R_-}{2} \epsilon^{ijk} y^k$$ \hspace{1cm} (31)

We are interested in the solutions which respect only half of the supersymmetry generators. The preserved supersymmetries are generated by the parameters ϵ satisfying the condition

$$\gamma^3 \epsilon = \epsilon$$ \hspace{1cm} (32)

For such ϵ the condition (30) is equivalent to:

$$D_0 y + 2i y - 2R_- i [y^3, y] = 0$$ \hspace{1cm} (33)

$$y^3 - \frac{R_-}{2} [y, \bar{y}] = 0$$ \hspace{1cm} (34)

$$D_0 y^3 = 0$$ \hspace{1cm} (35)

We will choose the gauge $A = 0$, $D_0 = \frac{\partial}{\partial t}$. The solution to (33) is

$$y^3(t) = y^3(0) = \frac{R_-}{2} [y(0), \bar{y}(0)]$$ \hspace{1cm} (36)

$$y(t) = e^{-2it} e^{2iR_- t y^3} y(0) e^{-2iR_- t y^3}$$ \hspace{1cm} (37)

Supersymmetric solutions to the matrix model equations of motion are subject to the constraint

$$\frac{1}{2} \left([\partial_t y, \bar{y}] + [\partial_t \bar{y}, y] \right) + [\partial_t y^3, y^3] = 0$$ \hspace{1cm} (38)
The solution (36) satisfies this constraint if and only if

\[
[y^3, y] = \frac{1}{R_-}[y, \bar{y}]
\]

(39)

Equations (36) and (39) were derived by Dongsu Bak in [10]. They determine supersymmetric solutions of the matrix model which preserve one half of the supersymmetry. These equations have a solution:

\[
[y, \bar{y}] = \frac{2}{R_-}y^3
\]

\[
[y^3, y] = \frac{1}{R_-}(y - \overline{W'(y)})
\]

\[
[y^3, \bar{y}] = -\frac{1}{R_-}(\bar{y} - W'(y))
\]

(40)

parametrized by a holomorphic function \(W(y)\). This relations determine the associative algebra corresponding (in Matrix theory) to the Poisson brackets (22). Therefore it represents the nonspherical giant graviton.

3.2 Representations for the toroidal giant graviton.

It would be interesting to study the representations of the algebra (40). Our giant gravitons are compact manifolds, which suggests that one should look for the finite-dimensional representations. For the giant gravitons with the shape close to spherical, it should be possible to realize the algebra (40) on the space of a finite dimensional representation of \(su(2)\). Indeed, one can always find three functions \(S_1, S_2, S_3\) with the Poisson brackets \(\{S_i, S_j\} = \epsilon_{ijk}S_k\) and the constraint \(\sum S_i^2 = R^2\) where \(R\) is related to the area of the sphere. (There is no difference between the round sphere and the deformed sphere, from the point of view of the symplectic geometry.) The coordinates \(y_1, y_2, y_3\) can be expressed in terms of \(S_1, S_2, S_3\), which means that they act on the representation space of \(su(2)\).

Here we want to consider the example of the toroidal membrane corresponding to \(W(y) = A \log |y| + C\), with real positive \(A\) and \(C\). The equation for the membrane world-volume follows from (11):

\[
y_3 = \pm \sqrt{2C - |y|^2 + A \log |y|^2}
\]

\[
x_- = A(-2x_+ + \text{Arg}(y))
\]

(41)

(42)

For this solution to make sense after compactification of \(x_-\) we have to impose the periodicity condition

\[
A = 2\pi k R_-, \quad k \in \mathbb{Z}
\]

(43)

For large \(C\) the solution (41) can be interpreted as the spherical \(D2\) brane with \(k\) fundamental strings stretching from the north to the south pole.
The corresponding algebra is:
\[
[y, \bar{y}] = \frac{2}{R}y_3
\]
\[
[y_3, y] = \frac{1}{R} (y - Ay^{-1})
\]
\[
[y_3, \bar{y}] = -\frac{1}{R} (\bar{y} - Ay^{-1})
\]
(44)

We will try the following ansatz for the finite dimensional representations:
\[
y = \sum_{j=1}^{N} q_j E_{j+1,j}
\]
(45)

where \(E_{i,j} \) is the matrix \(||E_{i,j}||_{mn} = \delta_{im} \delta_{jn} \) and we put \(E_{N+1,N} = E_{1,N} \). For example for \(N = 4 \):
\[
y = \begin{pmatrix}
0 & q_1 & 0 & 0 \\
0 & 0 & q_2 & 0 \\
0 & 0 & 0 & q_3 \\
q_4 & 0 & 0 & 0
\end{pmatrix}
\]
(46)

The operators \(y, \bar{y} \) and \(y_3 = \frac{R}{2} [y, \bar{y}] \) satisfy (44) if
\[
2|q_j|^2 - |q_j-1|^2 - |q_j+1|^2 = \frac{2}{R^2} \left(1 - \frac{A}{|q_j|^2} \right)
\]
(47)

We will consider this equation in the continuous approximation which is possible when \(A \gg 1 \). We denote \(\tau_j = \frac{j}{R \sqrt{A/2}} \) and substitute \(|q_j|^2 = A(1 + f(\tau_j)) \). We will get:
\[
f''(\tau) = -\frac{f}{1 + f}
\]
(48)

This has a solution
\[
\tau = \pm \int \frac{df}{\sqrt{2(E - f + \log(1 + f))}}
\]
(49)

The “potential energy” \(U(f) = f - \log(1 + f) \) is a convex function of \(f \) with the minimum \(U(0) = 0 \). This means that for any \(E > 0 \) \(|q_j|^2 \) as a function of \(j \) will be oscillating around \(A \). For finite \(A \), the correct boundary conditions at the turning points will restrict \(E \) to belong to a discreet set. This solution describes the toroidal giant graviton.

Finite dimensional representations of the algebra (44) solve the Matrix theory equations of motion for arbitrary \(A \). But we expect that only the algebras with the integer \(A \) specified by the equation (43) have a physical meaning. Such integrality conditions are necessary when the worldsheet is not simply connected. It would be interesting to understand these conditions from the purely algebraic point of view — what is special about the algebra (44) when \(A \) satisfies (43) with integer \(k \)?

Another interesting problem is to describe finite dimensional representations for general \(W \). A similar problem was solved in [15] for holomorphic membranes in flat space which lead to infinite-dimensional representations.
4 Acknowledgements

This work was supported in part by the National Science Foundation grant No. PHY99-07949, RFFI grant No. 00-02-116477 and the Russian grant for the support of the scientific schools No. 00-15-96557.

References

[1] R.C. Myers, ”Dielectric-Branes”, JHEP 9912 (1999) 022, hep-th/9910053.
[2] E. Witten, ”Bound States Of Strings And p-Branes”, Nucl. Phys. B460 (1996) 335-350, hep-th/9510135.
[3] J. McGreevy, L. Susskind, N. Toumbas, ”Invasion of the Giant Gravitons from Anti-de Sitter Space”, JHEP 0006 (2000) 008.
[4] M. Claudson and M. B. Halpern, ”Supersymmetric Ground State Wave Functions”, Nucl. Phys. B250 (1985) 689-715.
[5] T. Banks, W. Fischler, S.H. Shenker, L. Susskind, ”M Theory As A Matrix Model: A Conjecture”, Phys.Rev. D55 (1997) 5112-5128, hep-th/9610043.
[6] L. Susskind, ”Another Conjecture about M(atrix) Theory”, hep-th/9704080.
[7] D. Berenstein, J. Maldacena and H. Nastase, ”Strings in Flat Space and PP-Waves from N = 4 Super Yang-Mills”, JHEP 0204 (2002) 013, hep-th/0202021.
[8] B. Janssen, Y. Lozano, ”A Microscopical Description of Giant Gravitons”, hep-th/0207199.
[9] A. Mikhailov, ”Giant Gravitons from Holomorphic Surfaces”, hep-th/0010206.
[10] Dongsu Bak, ”Supersymmetric Branes in PP Wave Background”, hep-th/0204033.
[11] K. Sugiyama and K. Yoshida, ”BPS Conditions of Supermembrane on the PP Wave”, hep-th/0206132, ”Giant Graviton and Quantum Stability in Matrix Model on PP-wave Background”, hep-th/0207190.
[12] Seungjoon Hyun and Hyeonjoon Shin, ”Branes From Matrix Theory in PP-Wave Background”, hep-th/0206090.
[13] E. Bergshoeff, E. Sezgin and P.K. Townsend, Phys.Lett. B189 (1987) 75; Ann. Phys. (NY) 185 (1988) 330.
[14] B. de Wit, J. Hoppe and H. Nicolai, Nucl. Phys. B 305 (1988) 545.
[15] L. Cornalba, W. Taylor, ”Holomorphic curves from matrices”, Nucl.Phys. B 536 (1998) 513-552.