Identifying ataxia-telangiectasia in cancer patients: Novel insights from an interesting case and review of literature

Jinyi Cao | Ryan Ying Cong Tan | Shao-Tzu Li | Eliza Courtney | Ronald Chin Hong Goh | Bingwen Eugene Fan | Kiattisa Sommat | Ravichandran Nadarajah | Joanne Ngeow

1Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
2Department of Obstetrics & Gynaecology, Singapore General Hospital, Singapore, Singapore
3Oncology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore
4Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
5Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
6Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
7Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
8Yong Loo Lin School of Medicine, Singapore, Singapore
9Lee Kong Chian School of Medicine, Singapore, Singapore
10Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore

Correspondence
Joanne Ngeow, Lee Kong Chian School of Medicine, 11 Mandalay Road, 308232 Singapore, Singapore.
Email: joanne.ngeow@ntu.edu.sg

Abstract
Timely genetic testing leading to early diagnosis of A-T is crucial due to its plethora of implications on clinical management, particularly in those who develop malignancies. Thus, clinicians have to be astute in identifying diagnostic clues of A-T.

KEYWORDS
ataxia-telangiectasia, cancer genetics, cancer management

1 | INTRODUCTION

Ataxia-telangiectasia (A-T), a rare hereditary cancer syndrome, can present with a myriad of clinical manifestations. Here, we described a case whose diagnosis of A-T was missed till a second malignancy was confirmed. We aim to highlight diagnostic clues of A-T and discussed important considerations in management of malignancies in A-T.

Ataxia-telangiectasia (A-T) (OMIM #208900) is a rare autosomal recessive disorder resulting from biallelic pathogenic variants in the Ataxia-Telangiectasia mutated (ATM) gene (OMIM *607585). Classically, it is characterized by progressive cerebellar ataxia, cutaneous telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. However, variant A-T may have a myriad of presentations. The ATM gene encodes a serine/threonine protein kinase which plays a crucial role in the repair of DNA double-stranded breaks and when impaired leads to carcinogenesis. Studies estimate lifetime cancer risks of 25%-40% of both solid and hematological malignancies. Here, we report a patient with sensorimotor polyneuropathy, metachronous T-cell prolymphocytic leukemia (T-PLL), and cervical carcinosarcoma...
2 | CASE REPORT

A 34-year-old Chinese woman presented with urinary incontinence, intermittent abdominal discomfort, and menorrhagia. On physical examination, a necrotic bleeding vaginal mass was noted. Computed tomography (CT) of the abdomen and pelvis revealed a cervical lesion and right ovarian lesion measuring 8 × 7 cm and 9 × 6 cm, respectively Figure 1. Medical history was significant for possible cerebral palsy that was recently revised to possible Charcot-Marie-Tooth disease when she presented with progressively worsening weakness, with nerve conduction study and electromyography showing diffused sensorimotor axonal polyneuropathy. She was diagnosed with CD4/CD8 double-positive T-PLL Figure 2A with complex cytogenetics at age 31 after an incidental finding of leucocytosis. Bone marrow cytogenetics then showed an abnormal mosaic female chromosome analysis with a normal cell line and one with numerical and structural abnormalities. However, there were no deletions or missense variants involving the ATM locus 11q23, which is present in up to 65% of all cases of T-PLL.11-13 She was placed on expectant management given absence of cytopenia nor rapidly increasing lymphocytosis, B symptoms, lymphadenopathy, or end organ involvement, as per T-PLL International Study Group (TPLL-ISG) guidelines.14 Moreover, given her comorbidities and functional status, she was a poor candidate for most cytotoxic treatments targeting T-PLL or bone marrow transplant. Other comorbidities included type 2 diabetes mellitus, multiple ophthalmological issues and persistently raised alpha-fetoprotein (AFP) with mild transaminitis since age 29 for which investigations were unyielding.

Tumor markers were normal apart from baseline elevated AFP: CEA 1.5 µg/L, CA 125 23.6 u/ml, Beta-hCG < 0.6U/l, AFP 153 µg/L. Cervical biopsy showed squamous cell carcinoma (SCC) while right ovarian biopsy showed adenocarcinoma with focal mucinous differentiation. Our multidisciplinary consensus was that of at least FIGO stage IIB cervical SCC with a synchronous primary ovarian mucinous adenocarcinoma. Initial recommendation was made for definitive treatment with neoadjuvant chemotherapy followed by chemo-radiotherapy for her cervical SCC and sequential debulking surgery for her ovarian adenocarcinoma. She received 2 cycles of paclitaxel (175 mg/m²) and carboplatin (AUC 5) at 3 weekly intervals but did not achieve adequate control of her symptoms of pain and per vagina bleeding. After restaging scans showed local progression of the ovarian mass, she underwent palliative open radical hysterectomy, bilateral salpingo-oophorectomy, and bilateral pelvic lymphadenectomy. Histology revealed cervical carcinosarcoma with heterologous (cartilaginous) differentiation, predominantly comprised of adenosquamous carcinoma with focal neuroendocrine differentiation, admixed with a minor sarcomatous component. There was bilateral parametrium, upper vagina, lower uterine segment, and pelvic lymph node involvement. Histology of the right ovarian lesion revealed adenosquamous carcinoma, favoring metastasis from the cervical tumor as both had similar histology and immunoprofile Figure 2B.

In view of multiple primary cancers at a young age and uncertain underlying neurological condition, she was referred for genetic assessment upon her cervical cancer diagnosis. Born at term, independently ambulant and fully functional initially, she subsequently had difficulty walking and learning around age 9 and became wheelchair bound since age 23 Figure 3. Interview with patient's caregiver revealed that she was thought to have cerebral palsy, and her initial clinicians did not consider a diagnosis of A-T. Unfortunately, specific details regarding her neurological deterioration and the workup then were not available as she was seen in a different institution. There was no family history of consanguinity nor developmental issues. Her father, a nonsmoker, died from lung cancer at age 47. Her paternal grandfather, a smoker, also died from lung cancer in his 30s while her paternal grandmother died from uterine cancer in her 30-40s Figure 4. Saliva collected for germline clinical multi-gene panel testing using next-generation sequencing revealed two pathogenic variants in ATM (NM_000051.3): c. 2304_2305insTT (p.Glu769Leufs*9) and c. 9023G > A (p.Arg3008His). Cytogenetic testing performed on patient's blood revealed an increase in both spontaneous and Gamma-Ray induced chromosome breakage, confirming the diagnosis of ataxia-telangiectasia. Clinical examination did not reveal any cutaneous telangiectasia, although a broad face with coarse eyebrows

FIGURE 1 Computed tomography abdomen pelvis scan showing (i) Cervical tumor (ii) Ovarian metastases
and a few café-au-lait spots were noted. Subsequent testing revealed low IgG and IgA levels with gross pan-cerebellar atrophy on magnetic resonance imaging of the brain in keeping with A-T.

In view of her A-T diagnosis, it was recommended to avoid radiation therapy in subsequent treatment. A postoperative CT revealed a new right lung nodule and a hepatic lesion likely representing metastases. Her diagnosis was revised to FIGO stage IVB cervical carcinosarcoma and she received a further 2 cycles of palliative chemotherapy with etoposide (300 mg/m²) and cisplatin (100 mg/m²), with a 50% dose reduction in view of a diagnosis of A-T. Her disease progressed 3 months later, and she was placed on best supportive care prior to her demise shortly after.

3 | DISCUSSION

This case highlights the potential for missed or delayed A-T diagnoses, especially in cases of variant A-T, and provides an impetus for clinicians to be aware of suggestive signs to facilitate earlier diagnosis. The first clue of our patient’s A-T diagnosis was the regressive loss of developmental milestones from age 9. Second, the early-onset T-PLL concurs with A-T patients having a predisposition to T-cell as opposed to B-cell tumors, and at a significantly younger age of 20-30s compared to a median age of 69 in patients without A-T. Third, multiple primary cancers in patients with A-T are not uncommon, with incidence ranging from 4% to 15%. Of note, solid tumors mainly present in

FIGURE 2 A, Mature-looking T-PLL lymphocyte with cytoplasmic blebs in peripheral blood film. B, Histology slides showing (i) Cervical adenosquamous carcinoma with complex glandular proliferation, papillae, and scattered keratinizing squamous whorls, (ii) Focal malignant cartilaginous nodules associated with cervical adenocarcinoma, (iii) Anastomosing cords of cells punctuated by small tubules, demonstrating cytoplasmic reactivity for synaptophysin on immunostain, and (iv) Ovarian metastasis with similar looking adenosquamous carcinoma with foci of keratinization (*) and some cells containing cytoplasmic mucin (→)
adulthood, with majority being breast, liver, gastric, thyroid, and esophageal carcinomas Appendix 1.2,4,7 Finally, diabetes mellitus and particularly the raised AFP of unknown cause were also consistent with A-T.19-21

A range of phenotypes have been described in individuals with A-T Table 1. Patients with variant A-T have residual ATM kinase activity and thus a milder clinical course than classic A-T.22,23 Variant A-T may present with extrapyramidal signs instead of cerebellar ataxia, milder neurological symptoms, and no lung disease or immunodeficiency. Although residual ATM kinase activity is protective against childhood tumors, variant A-T are still at increased risk of developing cancers22,23 especially solid malignancies given their longer lifespan compared to classic A-T whose average life expectancy is approximately 25 years24 emphasizing the importance of timely genetic testing in this group who may present atypically. Although ATM kinase activity was not tested, based on clinical presentation, our patient is likely to have variant A-T. Furthermore, residual
ATM kinase activity has been demonstrated in another patient with the c. 9023G > A (p.Arg3008His) variant. In comparison, A-T heterozygotes often have a normal clinical phenotype. Although epidemiological studies report increased incidence of malignancies in blood relatives of A-T patients only the risk of breast cancer has been consistently shown to be raised, with lifetime risk of approximately 38%. Female relatives who are A-T heterozygotes should thus be offered surveillance with yearly mammography starting from age 40.

To our knowledge, this is the first clinical report of an association between A-T and cervical cancer though it has been reported in relatives of A-T patients who are obligate heterozygous carriers of ATM variants. The association between somatic alterations in ATM and risk of cervical cancer have also been reported. Despite our patient’s strong family history of young lung cancers, this has not been prominently reported in clinical literature on A-T. Interestingly, up to 40% of lung adenocarcinomas have been reported to lack ATM protein expression due to somatic alterations. ATM rs189037, rs664677, and rs664143 gene polymorphisms have also been reported as risk factors for lung cancer. These ATM variants deserve further study with regards to their association with lung cancer, particularly in Asians where there is a higher incidence of adenocarcinomas in nonsmokers.

While radiation-induced toxicities including death and secondary malignancies are well established in A-T, evidence is lacking for chemotherapy. Certain chemotherapeutic agents have been shown to have increased toxicities Appendix 2, whereas agents such as prednisone, 6-mercaptopurine, asparaginase, and daunorubicin have been shown to be tolerable at normal doses. There are currently no consensus guidelines with regard to dosing of chemotherapy in A-T. Various approaches tried in multiple hematological and solid cancers are summarized in Table 2. Inferences that can be drawn are limited by the heterogeneity of primary malignancies reported over an extended time course whereby the standard dose/regime may have evolved. In general, the most common strategy employed across studies is a 50% dose reduction of the standard regime. Some gradually up titrated the dose as tolerated while taking care to limit doses of certain agents, such as methotrexate and cyclophosphamide. Durable complete remissions have been successfully achieved with modified dose chemotherapy regimens. The largest of these studies by Schoenaker et al demonstrated no significant difference in remission rates for patients with T-cell acute lymphoblastic leukemia receiving modified dose chemotherapy. Studies to better describe safety and efficacy of chemotherapeutic regimes in A-T patients are needed. Ultimately, the decision regarding treatment regime and dosage should be a discussion among all managing healthcare professionals, patient and their family, and individualized based on patient’s underlying comorbidities, functional status, and treatment goals.
Tumor type	Tumor subtypes	Case report/ Series	No. of cases on SD chemo	No. of cases on MD chemo	Stage	*Chemotherapy	% Dose reduction	Toxocities of note	Response rates	Overall survival (OS)
Non-Hodgkin Lymphoma (NHL)	Burkitt's	Sandoval & Swift	7	1	I, II, IV	COP, CHOP, CP, COMV	Ranging from 33% to 75% of SD	*7 of 14 (50%) exposed to CPM ≥ 1200 mg/m² had hemorrhagic cystitis	Burkitt's: CR in 5 of 7 on SD, 1 on RD did not achieve remission	Mean survival of SD vs RD: 12 (1-162 + mo) vs 5 (0.5-28 mo); P = .03
								All 3 on bleomycin (both SD and RD) had pulmonary disease which was fatal in 2	All study patients: CR in 1 of 11 on RD vs 16 of 21 on SD; P = .001	
								Neutropenia, mucositis-2nd cycle DOX reduced to 75% of SD	CR in 5 of 7 on SD, 4 of 4 on RD did not achieve remission	Median survival with CR vs no CR on SD: 32.5 (1-162 + mo) vs 5 (1-22 mo); P = .01
Ben Arush et al			1	0		COMP		Died of severe pneumonia 1 mo later	At least 1 with CCR	
Bienemann et al			0	2	III, IV	B-NHL-BFM 04	50% SD Increased to 75% after 2 cycles for 1 pt VP16 omitted for cycle 1, MTX at 0.5 g/m² for 1 pt	Neutropenia, mucositis—2nd cycle DOX reduced to 75% of SD	EFS at least 6 y	
Upadhyaya et al			0	1	I	CPM, VCR, DOX, Pred	VBL instead of VCR on D6	Neutropenia, mucositis—2nd cycle DOX reduced to 75% of SD	CR in 5 of 7 on SD, 4 of 4 on RD did not achieve remission	See above
Large cell			7	4	I-IV	CHOP, COP, OH, OP, CHVP, HOP, CO, MTX	Ranging from 33% to 75% of SD	See above	See above	
Immunoblastic large cell	Ben Arush et al		1	0		COMP		Died 1 mo later of Acinetobacter sepsis	CR in 1 of 2 on SD, CR in 1 on RD	See above
Lymphoblastic	Sandoval & Swift		2	1	III, IV	CHOP, COP, O Ara-cTG	Ranging from 33% to 75% of SD	See above	See above	
Bienemann et al			0	1	III, NB-RG	NHL-BFM 86	50% SD in protocol I, protocol M stopped because of severe toxicity, protocol II omitted	Toxicity experienced, not elaborated		

(Continues)
Tumor type	Tumor subtypes	Case report/ Series	No. of cases on SD chemo	No. of cases on MD chemo	Stage	Chemotherapy	% Dose reduction	Toxicities of note	Response rates	Overall survival (OS)	
DLBCL		Sandlund et al	0	5	III, IV	LMB-89		2 sepsis, 1 pneumonitis, 2 multi-organ failure, 1 severe VCR peripheral sensory neuropathy, 1 severe pulmonary leak with Ara-C	2 achieved CR	1 induction failure	
								50% of SD	Nil side effects apart from mild reversible liver damage	Remained in CR	32 mo after diagnosis
		Yamada et al	0	1		9104 Standard risk protocol by Tokai Pediatric Oncology Study Group		100% rituximab and prednisolone, 40% CPM, 30% DOX, 70% VCR	Remained in CR	24 mo after diagnosis	
		Rossi et al	0	1	IV-B	Modified dose of R-CHOP		Mostly 50% SD, some gradually uptitrated to 75% and 100%	At least 4 achieved CCR		
		Bienemann et al	0	8	II-III	B-NHL BFM 90, 95, 04	Mostly 50% SD, some gradually uptitrated to 75% and 100%	1 died from treatment-associated toxicity at the end of the fourth course			
		Upadhyaya et al	0	1	IIIIB	Modified LMB protocol	Induction phase—50% SD for CPM, DOX, IV MTX, VBL instead of VCR	Fungemia, transaminits; MTX and DOX further dose reduced due to neutropenia and mucositis			
								Hepatotoxicity, diarrhea, and recurrent varicella and herpes simplex infection; chemo stopped after 5 mo due to life-threatening complications	Achieved CR	EFS ~ 3 y OS 3 ye 8 mo	
T cell		Overberg-Schmidt et al	1	0		Acute lymphoblastic leukemia-Berlin, Frankfurt, Munster 86 protocol			Achieved CR	See above	
NOS		Sandoval & Swift	1	0	IV	CHOPB			Achieved CR	See above	
Table 2 (Continued)

Tumor type	Tumor subtypes	Case report/Series	No. of cases on SD chemo	No. of cases on MD chemo	Stage	*Chemotherapy*	% Dose reduction	Toxicities of note	Response rates	Overall survival (OS)
Hodgkin disease (HD)	Nodular sclerosis (NS)	Tamminga et al	0	1	IIA	Reduced dose OPPA + involved field RT	Procarbazine omitted 1st course 1/3 of SD 2nd course 2/3 of SD 3rd course full dose	Tolerated 1st and 2nd course well NCI grade 3 BM suppression and NCI grades 2-3 paralytic ileus with 3rd course	Achieved CR	EFS: 3 mo (biopsy non-conclusive) OS: 10 mo, due to generalized progressive lymphadenopathy and pneumonia
		Upadhyaya et al	0	1	IVB	VAMP/COP Salvage ICE (MD)	VBL instead of VCR, reduced dose of CPM, DOX, MTX	Prolonged myelosuppression, suspected splenic fungal lesions; worsening ataxia with ICE	Achieved CR	2.5 y—due to relapse
2 NS, 2 lymphocyte depleted		Sandoval & Swift	0	4	IIB, IVB	HOP/ChVPPr, P + VP, ABVD	Ranging from 33% to 75% of SD	See above	All 4 patients did not achieve remission	See above
1 NS, 1 NOS		Ben Anush et al	0	2	COPP/ABV		75% of SD VBL instead of VCR was given after the 1st cycle for 1 patient due to toxicity	Severe SIADH and convulsions after first cycle—either due to VCR or CPM	Both achieved CR	
Mixed cellularity		Irsfeld et al	0	2	IIA, IVB			1 pt received 3 courses of OPPA instead of 2 in place of radiotherapy 1 pt had ABVD instead of COPP to avoid use of CPM	1 had neurological deterioration? related to VCR 1 had CMV pneumonia presumably due to underlying immunodeficiency	1 achieved CR
Classical HD		Bienemann et al	0	1	IVB	Only prednisolone	Only prednisolone			1 mo
Acute Lymphoid Leukemia (ALL)	T-PLL	Geling Li et al	1							

(Continues)
Tumor type	Tumor subtypes	Case report/Series	No. of cases on SD chemo	No. of cases on MD chemo	Stage	*Chemotherapy	% Dose reduction	Toxicties of note	Response rates	Overall survival (OS)
ALL		Sandoval & Swift	4	1		CHOPB, POD,	Ranging from 33% to 75% of SD	See above	CR in 4 of 4 on SD, 1 on RD did not achieve remission	See above
						POLasp, PODLasp, PO + 6-MP, P				
		Toledano & Lange	20	0		A variety of regimes, mainly with VCR, L-asp, MTX, 6-MP, DNM, prednisolone/ prednisone	NA	2 developed severe infections, 1 had neurological deterioration related to VCR		
18 T-ALL, 2 B-cell precursor ALL	Schoenaker et al	11	9 (both B-cell ALL received MD)			A variety of regime:		4 of 11 on upfront SD had severe toxicity (infections, neuropathy, hemorrhagic cystitis, leukopenia) 2 on upfront MD had sepsis Both B-cell precursor ALL had toxicities despite upfront MD—1 persistent leukopenia, 1 sepsis	No sig difference in CR rates between upfront SD and MD in T-ALL: CR in 10 of 11 with upfront SD CR in 7 of 7 with upfront MD	73% vs 57% on upfront SD vs upfront MD

(Continues)
Tumor type	Tumor subtypes	Case report/ Series	No. of cases on SD chemo	No. of cases on MD chemo	Stage	*Chemotherapy	% Dose reduction	Toxicities of note	Response rates	Overall survival (OS)
T-ALL	Ussowicz et al	0	1			ALL-IC-BFM 2002 protocol	SD for induction (protocol I)	Toxiciities after SCT: Grade IV leucopenia with agranulocytosis, grade II mucositis, multiple viral infections, BKV hemorrhagic cystitis, EBV lymphoproliferative disorder	Remained in complete hematological remission 3.5 y after SCT	
						For high-risk chemo then allo-SCT in view of poor prednisone response on D8 of induction therapy	SD for dexamethasone, VCR, L-as, DNR 50% dose of CPM and 1FO 20% dose of MTX 75% dose of cytarabine			
	Bienemann et al	4	2			ALL-BFM MR DEXA ALL-BFM MR PRED ALL-BFM HR PRED	50%-75% dose for DNR, CPM, DOX, VCR, ARA-C, MP Dose reduction up to 20% SD for MTX	Both on MD died of treatment-associated toxicities	At least 3 of 4 on SD achieved CCR	
Pre-B ALL	Brummel et al	0	1			Modified intermediate-risk group ALL-BFM-2000 study protocol	Start with 50% SD Increase to 66% SD for DNR Increase to 75% SD for ARA-C Increase to 100% SD for VCR, L-as Limit CPM to 50% SD, DOX to 66% SD, IV MTX to 20% SD Dexamethasone, IT MTX at 100% SD	Persistent neutropenia with IV MTX Developed pneumonia, candida pelliculosa sepsis, generalized seizures and mutism due to parainfectious encephalitis, recurrent bronchitis	CR on day 15 of therapy Remained in CR > 1 y after end of maintenance therapy	
	Bienemann et al	0	1			ALL-BFM MR DEXA	50%-66% SD for VCR, DNR, ASP, CPM, ARA-C, MP, DOX, CPM; 20% SD for MTX		Remained in CCR 3.5 y after diagnosis	
Acute Myeloid Leukemia (AML)	Schoenaker et al	1	2			POG-AML97A prot (SD), ECM-HCEI course (MD), Oral 6-MP (palliative)	Both SD and palliative patients died of sepsis	SD—did not achieve remission MD—achieved CR		

(Continues)
Tumor type	Tumor subtypes	Case report/ Series	No. of cases on SD chemo	No. of cases on MD chemo	Stage	*Chemotherapy	% Dose reduction	Toxicities of note	Response rates	Overall survival (OS)
Solid tumors	**Nephroblastoma**	Perez-Villena et al	0	1	III	SIOP-TW-01 protocol	25% dose reduction, omitted radiotherapy	Staphylococcus epidermidis bacteremia Septic shock after topotecan given for relapse	Relapse at 34th week of treatment (during last cycle)	40 wk
		Koksal et al	0	1	Carbo 450 mg/m² D1, VP16 100 mg/m² D1-3, bleomycin 10 mg/m² D2	Regime as stated instead of first-line PEB to avoid use of cisplatin	Developed pneumonia after 1st cycle Lung function deterioration—bleomycin stopped after 1 cycle	No evidence of residual or recurrence mass at second year of diagnosis		
		de Vries & Kaplan	1	0	IIIc	Cisplatln + vinblastine x 2 cycles	WHO grade 2 neurotoxicity at the 4th course of treatment	Remained in remission 20 mo after treatment		
	Dysgerminoma	Pecorelli et al	0	1	Ic	Cis-platinum, vinblastine, bleomycin x 5 courses postoperatively	50% of SD			

Abbreviations: 6-MP, 6-mercaptopurine; ABVD, doxorubicin, bleomycin, vinblastine, dacarbazine; Ara-C, cytarabine; CCR, complete clinical remission; CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone; CHOPB, cyclophosphamide, doxorubicin, vincristine, prednisone, bleomycin; CHVP, cyclophosphamide, doxorubicin, etoposide; CO, cyclophosphamide, vincristine; COP, cyclophosphamide, vincristine, prednisone; COVM, doxorubicin, vincristine, vinblatne, methotrextae; CPM, cyclophosphamide; CR, complete remission; DNM, daunomycin; DNR, daunorubicin; DOX, doxorubicin; EFS, event-free survival; HOP, doxorubicin, vincristine, prednisone; HOP/ChVPP, doxorubicin, vincristine, prednisone/chlorambucil, vinblatine, prednisone, procarbazine; IFO, ifosamide; L-aspa, L-asparaginase; M, methotrexate; MD, modified dose; MP, Mercaptopurine; MTX, methotrextae; NOS, not otherwise specified; O Ara-cTG, vincristine, cytarabine, thioguanine; OH, vincristine, doxorubicin; OP, vincristine, prednisone; OPPA, vincristine, prednisone, procarbazine, doxorubicin; P, prednisone; PEB, bleomycin, etoposide, cisplatin; PODL,asp, prednisone, vincristine, daunomycin, asparaginase; RD, reduced dose; SD, standard dose; VBL, vinblatine; VCR, vincristine; VP, P, etoposide, prednisone; VP16, etoposide.

*Based on all patients in the study (regardless of tumor types).
Given significant considerations in the management of malignancies, early diagnosis of A-T, prior to that of malignancy should there be, is of critical importance. Although there are no guidelines for cancer screening in A-T, early diagnosis and hence knowledge of the underlying genetic disorder will allow patients/families to be cognizant of symptoms and prompt clinicians to do the necessary screening and workup, hopefully enabling detection of malignancy, if any, at a more favorable stage. Additionally, allogeneic hematopoietic stem cell transplantation has been shown to correct immunodeficiency and potentially retard deterioration of neurological function in case reports²⁰,²¹ which may be considered in selected cases. Regardless, early diagnosis of A-T also allows for earlier introduction to a multidisciplinary care team,²² with the aim to reduce associated morbidities, such as reducing contractures and maintaining functional activity, improving airway clearance, reducing aspiration risk, appropriate treatment of infections especially if recurrent, earlier detection and management of endocrinopathies, ultimately improving quality of life.

4 | CONCLUSION

There is a need to improve the general genetic literacy of all clinicians. Ataxia-telangiectasia is one of the important hereditary cancer syndromes that clinicians should not only be aware of, but also be astute in identifying the diagnostic clues. Any co-occurrence of neurodevelopmental diagnosis must trigger a consideration for timely genetic testing. Also, AFP should be measured to rule out A-T in children and patients with progressive neurological decline. Early diagnosis is critical as it may significantly alter management, treatment approach in individuals diagnosed with cancer and allow for interventions that may potentially reduce associated morbidities.

ACKNOWLEDGMENTS

We would like to thank our patient for consenting to the publication of the case report. We would also like to express our gratitude to the Lee foundation for their generous donations to the Lee Kong Chian NCCS Cancer Genetics Service fund that help subsidize the cost of testing for many of our patients.

CONFLICT OF INTEREST

We have no conflict of interest to disclose.

AUTHOR CONTRIBUTION

JC: wrote the manuscript. RT: revised the manuscript and contributed to the interpretation of data. STL: revised the manuscript and contributed to the interpretation of genetic data. EC: revised the manuscript and contributed to the interpretation of genetic data. RG: revised the manuscript and contributed to the interpretation of pathological data. EF: revised the manuscript and contributed to the interpretation of data. KS: revised the manuscript. RN: revised the manuscript. JN: contributed to the interpretation of data. EF: contributed to the interpretation of data, revised, and oversaw the writing of the manuscript.

INFORMED CONSENT

Our patient verbally consented to the publication of this case report. Written consent was provided by patient’s mother on behalf of patient due to physical disability.

EDITORIAL POLICIES AND ETHICAL CONSIDERATIONS

Approval by our Centralised Institutional Review Board is not required for case report.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

REFERENCES

1. Choi M, Kipps T, Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther. 2016;15(8):1781-1791. https://doi.org/10.1158/1535-7163.MCT-15-0945
2. Rothblum-Oviatt C, Wright J, Leftron-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(1):159. https://doi.org/10.1186/s13023-016-0543-7
3. Taylor AMR. Molecular pathology of ataxia telangiectasia. J Clin Pathol. 2005;58(10):1009-1015. https://doi.org/10.1136/jcp.2005.026062
4. Suarez F, Mahlaoui N, Canioni D, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the french national registry of primary immune deficiencies. J Clin Oncol. 2015;33(2):202-208. https://doi.org/10.1200/JCO.2014.56.5101
5. Yanofsky RA, Seshia SS, Dawson AJ, et al. Ataxia-telangiectasia: atypical presentation and toxicity of cancer treatment. Can J Neurol Sci. 2009;36(4):462-467. https://doi.org/10.1017/S031716710007794
6. Bielorai B, Fisher T, Waldman D, et al. Acute lymphoblastic leukemia in early childhood as the presenting sign of ataxia-telangiectasia variant. Pediatr Hematol Oncol. 2013;30(6):574-582. https://doi.org/10.3109/08880018.2013.777949
7. Bhatt JM, Bush A, van Gerven M, et al. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia. Eur Respir Rev. 2015;24(138):565-581. https://doi.org/10.1183/16000617.0066-2015
8. Morrell D, Cromartie E, Swift M. Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J Nat Cancer Inst. 1986;77(1):89-92. https://doi.org/10.1093/jnci/77.1.89
9. Olsen JH, Hahnen JM, Borresen-Dale A-L, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the Nordic Countries. J Nat Cancer Inst. 2001;93(2):121-127. https://doi.org/10.1093/jnci/93.2.121
10. Taylor AMR, Metcalfe JA, Thick J, Mak Y-F. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87(2):423-438. https://doi.org/10.1182/blood.V87.2.423.bloodjournal872423
11. Kiel MJ, Velusamy T, Rolland D, et al. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. *Blood*. 2014;124(9):1460-1472. https://doi.org/10.1182/blood-2014-03-559542

12. Stilgenbauer S, Schaffner C, Lutterst A, et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. *Nat Med*. 1997;3(10):1155-1159. https://doi.org/10.1038/nm1097-1155

13. Vofechovsky I, Luo L, Dyer MIS, et al. Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cellleukemia. *Nat Genet*. 1997;17(1):96.

14. Staber PB, Herling M, Bellido M, et al. Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia. *Blood*. 2019;134(14):1132-1143. https://doi.org/10.1182/blood.2019000402

15. Wang C-H, Wu K-H, Yang Y-L, et al. Association between ATM gene polymorphisms and childhood leukemia in Taiwan. *Clin J Physiol*. 2011;54(6):413-418. https://doi.org/10.4077/cjp.2011.AMM106

16. Yuille M, Coignet L, Abraham S, et al. ATM is usually rearranged in T-cell prolymphocytic leukaemia. *Oncogene*. 1998;16(6):789-796. https://doi.org/10.1080/jsi.20161003

17. Spacey SD, Gatti RA, Bebb G. The molecular basis and clinical management of ataxia telangiectasia. *Can J Neurol Sci*. 2000;27(3):184-191. https://doi.org/10.1017/S0317167100000822

18. Spector BD, Filipovich AH, Perry CS, Kersey KS. Epidemiology of ataxia telangiectasia-a cellular and molecular link between cancer, neuroepithetopathy and immune deficiency. New York, NY: John Wiley and Sons; 1982:103-138.

19. Donath H, Hess U, Kieslich M, et al. Diabetes in patients with ataxia telangiectasia: a national cohort study. *Front Pediatr*. 2020;8:317. https://doi.org/10.3389/fped.2020.00317

20. Scheiving JH, de Vries M, van Vugt JMG, et al. Alpha-fetoprotein, a fascinating protein and biomarker in neurology. *Eur J Paediatr Neurol*. 2014;18(3):243-248. https://doi.org/10.1016/j.ejpn.2013.09.003

21. Waldmann TA, McIntire KR. Serum-alpha-fetoprotein levels in patients with ataxiatelangiectasia. *Lancet*. 1972;300(7787):1112-1115. https://doi.org/10.1016/S0140-6736(72)92717-1

22. Reiman A, Srinivasan V, Barone G, et al. Lymphoid tumours and breast cancer in ataxia telangiectasia: a population-based study of 161 families affected by ataxia-telangiectasia. *Br J Cancer*. 2005;93(2):260-265. https://doi.org/10.1016/j.bjc.2005.03.001

23. Olsen JH, Hahnemann JMD, Børresen-Dale A-L, et al. Breast and other cancers in 1445 blood relatives of 75 Nordic patients with ataxia telangiectasia. *Br J Cancer*. 2005;93(2):260-265. https://doi.org/10.1038/sj.bjc.6602658

24. Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. *N Engl J Med*. 1991;325(26):1831-1836. https://doi.org/10.1056/NEJM199112263525602

25. Geoffroy-Perez B, Janin N, Ossian K, et al. Cancer risk in heterozygotes for ataxia-telangiectasia. *Int J Cancer*. 2001;93(2):288-293. https://doi.org/10.1002/jic.1329

26. Thompson D, Duedal S, Kirner J, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. *J Nat Cancer Inst*. 2005;97(11):813-822. https://doi.org/10.1093/jnci/dji141

27. van Os NH, Roeleveld N, Weemaes CMR, et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline: health risks for ataxia-telangiectasia mutated heterozygotes. *Clin Genet*. 2016;90(2):105-117. https://doi.org/10.1111/cge.12710

28. Villaruz LC, Dolsma WV, Leeuw JA, Kamphinga HH. Chemosensitivity testing in patients with ataxia Telangiectasia and Hodgkin disease. *Pediatr Hematol Oncol*. 2002;19(3):163-171. https://doi.org/10.1080/08880012753541314

29. Schoenaker MHD, Suarez F, Szczepanski T, Mahlaoui N, Loeffen WL. Genetic polymorphisms and cervical cancer development: ATM G5557A and p53bp1 C1236G. *Oncol Rep*. 2016;7(36):57714-57725. https://doi.org/10.18632/oncotarget.9757

30. Yan Z, Tong X, Ma Y, et al. Association between ATM gene polymorphisms, lung cancer susceptibility and radiation-induced pneumonitis: a meta-analysis. *BMC Pulm Med*. 2017;17(1):205. https://doi.org/10.1186/s12890-017-0555-7

31. Bergom C, West CM, Higginson DS, et al. The implications of genetic testing on radiation therapy decisions: a guide for radiation oncologists. *Int J Radiat Oncol Biol Phys*. 2019;105(4):698-712. https://doi.org/10.1016/j.ijrobp.2019.07.026

32. Tamminga RYJ, Dolsma WV, Leeuw JA, Kamphinga HH. Chemosensitivity testing in patients with ataxia Telangiectasia and Hodgkin disease. *Pediatr Hematol Oncol*. 2002;19(3):163-171. https://doi.org/10.1080/08880012753541314

33. Salerno RA, Swift M. Treatment of lymphoid malignancies in patients with ataxia-telangiectasia. *Med Pediatr Oncol*. 1998;31:491-497.

34. Schoenaker MHD, Suarez F, Szczepanski T, Mahlaoui N, Loeffen WL. Treatment of acute leukemia in children with ataxia telangiectasia (A-T). *Eur J Med Genet*. 2016;59(12):641-646. https://doi.org/10.1016/j.ejmg.2016.05.012

35. Toledano SR, Lange BJ. Ataxia-telangiectasia and acute lymphoblastic leukemia. *Cancer*. 1980;45:1675-1678.

36. Ben Arush MW, Rosenthal J, Dale J, et al. Ataxia telangiectasia and lymphoma: an indication for individualized chemotherapy dosing—report of treatment in a highly inbred arab family. *Pediatr Hematol Oncol*. 1995;12(2):163-169. https://doi.org/10.3109/08880019502753541314

37. Bendsen J, Nielsen SY, Overgaard M, et al. Risk of secondary malignancy in patients with ataxia telangiectasia. *Int J Radiat Oncol Biol Phys*. 2005;62(4):1080-1086. https://doi.org/10.1016/j.ijrobp.2004.05.026

38. Bendsen J, Nielsen SY, Overgaard M, et al. Risk of secondary malignancy in patients with ataxia telangiectasia. *Int J Radiat Oncol Biol Phys*. 2005;62(4):1080-1086. https://doi.org/10.1016/j.ijrobp.2004.05.026

39. Bendsen J, Nielsen SY, Overgaard M, et al. Risk of secondary malignancy in patients with ataxia telangiectasia. *Int J Radiat Oncol Biol Phys*. 2005;62(4):1080-1086. https://doi.org/10.1016/j.ijrobp.2004.05.026
44. Irsfeld H, Korholz D, Janben G, Wahn V, Schroten H. Fatal outcome in two girls with Hodgkin disease complicating ataxia-telangiectasia (Louis-Bar syndrome) despite favorable response to modified-dose chemotherapy. *Med Pediatr Oncol*. 2000;34:62-64.

45. Koksal Y, Caliskan U, Ucar C, et al. Dysgerminoma in a child with ataxia-telangiectasia. *Pediatr Hematol Oncol*. 2007;24(6):431-436. https://doi.org/10.1080/08880010701451434

46. Pecorelli S, Sartori E, Favalli G, Ugazio AG, Gastaldi A. Ataxia-telangiectasia and endodermal sinus tumor of the ovary: report of a case. *Gynecol Oncol*. 1988;29(2):240-244. https://doi.org/10.1016/0090-8258(88)90219-3

47. Ussowicz M, Musiał J, Duszeńko E, Haus O, Kałwak K. Long-term survival after allogeneic-matched sibling PBSC transplantation with conditioning consisting of low-dose busilvex and fludarabine in a 3-year-old boy with ataxia-telangiectasia syndrome and ALL. *Bone Marrow Transplant*. 2013;48(5):740-741. https://doi.org/10.1038/bmt.2012.207

48. Verhagen MMM, Last JI, Hogervorst FBL, et al. Presence of ATM protein and residual kinase activity correlates with the phenotype in ataxia-telangiectasia: a genotype-phenotype study. *Hum Mutat*. 2012;33(3):561-571. https://doi.org/10.1002/humu.22016

49. deVries CR, Kaplan GW. An unusual case of urinary incontinence, ataxiatelangiectasia, and metastatic dysgerminoma: case report and review of the literature. *Urology*. 1997;50(3):453-455. https://doi.org/10.1016/S0090-4295(97)00244-6

50. Onoda T, Kanno M, Meguro T, et al. Successful treatment of acute myeloid leukaemia in a patient with ataxia telangiectasia. *Eur J Haematol*. 2013;91(6):557-560. https://doi.org/10.1111/ejha.12186

51. How to cite this article: Cao J, Tan RYC, Li S-T, et al. Identifying ataxia-telangiectasia in cancer patients: Novel insights from an interesting case and review of literature. *Clin Case Rep*. 2021;9:995–1009. https://doi.org/10.1002/ccr3.3543
APPENDIX 1

Cancer spectrum of A-T individuals

Majority of malignancies in childhood are leukemias and lymphomas
- T-cell tumors > B-cell tumors (unlike majority of childhood leukemias in non-A-T patients which are pre-B-cell leukemias)
- Myeloid tumors are rare

 Young adult A-T patients predisposed to T-PLL

Adult A-T patients are still at risk of lymphoid tumors but also has increased incidence of solid tumors

APPENDIX 2.

Chemotherapeutic agents of concern in A-T and recommendations

Chemotherapeutic agents	Concerns	Suggested approaches from studies
Alkylating agents	Acts by inducing DNA breaks	Avoid use or consider dose reduction
Bleomycin	Increased risk of pulmonary toxicity despite being administered at a reduced dose	Avoid use
Cyclophosphamide/	Higher risk of hemorrhagic cystitis, thought to be related to the presence of telangiectasia in the bladder	Limit dose to <1200 mg/m², ensure vigorous hydration and concurrent mesna administration
ifosfamide		
Methotrexate	Neutropenia and infections. Gastrointestinal tract toxicities in children	Consider starting at reduced dose, up titrate as tolerated. Aggressive hydration, appropriate alkalization of urine to optimize clearance and use of rescue leucovorin. Close monitoring of methotrexate levels
Topoisomerase II inhibitors	Acts by inhibiting repair of DNA double-stranded breaks	Consider dose reduction
Vinca alkaloids	May worsen or confound progression of underlying neurological status	Consider alternatives, reduced dose and omission in event of neurological deterioration