The Kinetic Activation-Relaxation Technique: A Powerful Off-lattice On-the-fly Kinetic Monte Carlo Algorithm

Fedwa El-Mellouhi, Normand Mousseau and Laurent J. Lewis
Département de Physique and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7

(Dated: May 15, 2008)

Many materials science phenomena, such as growth and self-organisation, are dominated by activated diffusion processes and occur on timescales that are well beyond the reach of standard-molecular dynamics simulations. Kinetic Monte Carlo (KMC) schemes make it possible to overcome this limitation and achieve experimental timescales. However, most KMC approaches proceed by discretizing the problem in space in order to identify, from the outset, a fixed set of barriers that are used throughout the simulations, limiting the range of problems that can be addressed. Here, we propose a more flexible approach — the kinetic activation-relaxation technique (k-ART) — which lifts these constraints. Our method is based on an off-lattice, self-learning, on-the-fly identification and evaluation of activation barriers using ART and a topological description of events. The validity and power of the method are demonstrated through the study of vacancy diffusion in crystalline silicon.

PACS numbers: 02.70.-c, 61.72.Cc, 81.10.Aj, 61.72.jd

Many problems in condensed matter and materials science involve stochastic processes associated with the diffusion of atoms over barriers that are high with respect to temperature and therefore inherently slow under "normal" conditions. Because the associated rates are small, these processes may be considered independent; neglecting the thermal motion of atoms, it is thus possible to deal with them using the kinetic Monte Carlo (KMC) algorithm, a stochastic approach proposed by Bortz et al. [1, 2, 3, 4] and based on transition state theory, whereby the evolution of a system is determined by a set of pre-specified diffusion mechanisms, i.e., whose energy barriers are known beforehand. In KMC simulations, the timescale is determined by the fastest activated processes and, in practice, timescales of ms or longer can be reached — much longer than accessible in traditional molecular-dynamics (MD) simulations.

While KMC has been extensively and successfully used over the past 20 years, it suffers from a number of drawbacks. In particular, the systems investigated must be discretized and mapped onto a fixed lattice in order to define the various diffusion mechanisms that need to be considered at a given moment [3]. Once all processes on the lattice have been identified (and their barriers evaluated) a priori, the simulations simply consist of operating a diffusion event picked at random, updating the list of possible moves in the new configuration, and iterating this procedure long enough to cover the relevant physical timescales. This approach works very well for simple problems (e.g., surface diffusion, metal-on-metal growth) but fails when the systems undergo significant lattice deformations or when long-range elastic effects are important. There have been numerous efforts to lift these limitations, most solutions falling into one of two categories: introduction of continuum approximations for the long-range strain deformations, and on-the-fly evaluation of the energy barriers. The first category retains the lattice formulation but adds long-range contributions — which can be computed through various extrapolation schemes — to the barriers [4, 5]. With the second class of solutions, there is no need to set-up a catalog of all possible activation mechanisms. In a recently proposed self-learning KMC approach, Trushin et al. introduced an on-the-fly search for barriers but displacements were restricted to be on-lattice [6]. In other cases, a limited number of activated events using the the ART-like dimer [8, 9] or eigenvector-following methods [10] are generated at each step in order to construct a small catalog which serves to determine the next move. Thus, these methods [5, 6, 7] are still limited by the lattice description of the problem and the approximate character of the elastic energies. On-the-fly/off-lattice approaches [8, 9, 10], on the other hand, while more flexible, are currently inefficient as they do not take advantage of the knowledge of previously-encountered events, and are therefore only useful for small systems with very few barriers.

In this Letter, we introduce a powerful on-the-fly/off-lattice KMC method which achieves speed-ups as large as 4000 over standard MD for complex systems, while retaining a complete description of the relevant physics, including long-range elastic interactions. Our approach is based on the activation-relaxation technique (ART nouveau) [11, 12] for generating events and calculating barriers; the gain in efficiency is achieved through a topological classification of atomic environments, which allows configurations and events to be recognized and stored efficiently, and used again as the simulation proceeds, i.e., the method is self-learning. We demonstrate the validity and efficiency of this kinetic ART (k-ART) approach by applying it to the problem of vacancy diffusion in crys-
Before describing k-ART, it is useful to discuss the topological characterization. For each configuration, a connectivity graph formed by the network of local neighbors is first constructed. These may correspond to covalently bonded atoms in semiconductors, or faces in the Voronoi tessellation of compact materials. It is important that the configuration be uniquely defined through this network, i.e., the connectivity graph must lead to a unique structure once relaxed with a given interatomic potential. In order to classify the activated processes, a truncated graph is constructed around each atom, as illustrated Fig. 1, the size of which depends on the physics of the system under study. In the case of Si, for example, we define the local environment around an atom by a sphere of radius 5.0 Å, which includes about 40 atoms; two neighbors are bonded if their distance is less than 2.8 Å. An event is defined as a change in the topology of the local graph. This classification is performed using the freely available topological software nauty, developed by McKay [13], which provides the topology index and all information necessary for uniquely identifying each environment, including the permutation key needed to reconstruct a specific geometry from the generic topology and a set of reference positions.

Events which have been learned are stored for subsequent use; in practice, the atomic positions of the initial state as well as the associated topologies for the initial, transition and final truncated graphs are saved in memory. If needed, the transition and final state configurations may be reconstructed from the reference geometry through a series of symmetry operations extracted from the topological analysis. This results in a considerable reduction in the amount of data that needs to be generated and manipulated. For a single vacancy in c-Si, for example, only 20 different topologies are necessary to describe all possible local environments, irrespective of the system size. Moreover, as the system evolves and previously-encountered topologies are recognized, it is only necessary to update the table of active events, the cost of which is negligible as we will see below.

We now turn to a detailed description of the k-ART algorithm. Starting from an initial relaxed configuration, the various local topologies are characterized with nauty and, for each topology, possible events are constructed with ART nouveau [11, 12], which has been shown to efficiently identify the relevant diffusion mechanism in a wide range of systems, either crystalline or amorphous, with both empirical and ab initio methods [14, 15, 16, 17]. Within this approach, the configuration is slowly pushed along a randomly selected direction until an unstable direction appears in the Hessian; this is followed while minimising the energy in the perpendicular hyperplane until the system converges onto a saddle point and the system is then pushed over the barrier and relaxed into a new minimum. Since activated processes involve only a finite number of atoms, each event is initiated by displacing a given atom and its neighbors within a small, local region in a random direction. The exact size of the displacement regions depends on the system under study; in semiconductors, they typically involve first and second nearest-neighbours. The initial convergence criterion for the saddle point search is set to 1.0 eV/Å in order to accelerate convergence (but see below).

To simplify labelling, each event is assigned to the
topology centered on the atom that moved the most during the event, irrespective of the initial trial assignment. The events are stored as displacement vectors from the reference state to the transition and the final states; these are used to reconstruct all specific events associated with a given topology throughout the lattice. Once the list of topologies and associated barriers is set (or has been updated), all low-energy events (which we define for Si as having barriers of 15 $k_B T$ or less) are reconstructed from the topology and re-relaxed with a stricter convergence criterion of 0.1 eV/Å in order to accurately take into account the local environment and the long-range interactions, leading to a precision of about 0.01 eV on the barrier height. At this point, two types of events are in the catalog: (1) “generic” events, that include all high-energy barriers, and (2) “specific” events, where all low-energy barriers, dominating the kinetics, are relaxed individually. We associate a transition rate $r_i = \tau_0 \exp (\Delta E_i / k_B T)$ to each event, where τ_0 is fixed at the outset and, for simplicity, assumed to be the same ($= 10^{13} \text{s}^{-1}$) for all events. From this list, and following Bortz et al. [1], the elapsed time to the next event is computed as $\Delta t = -\ln \mu / \sum_i r_i$, with μ a random number in the $[0,1]$ interval. Finally, an event is selected with a weight proportional to its rate and is operated; the clock is pushed forward and the process starts again: The topology of all atoms belonging to the local environment around the new state is constructed; if a new topology is found, a series of ART nouveau searches are launched; otherwise, we proceed to the next step. After all events are updated, the low-lying barriers are, once again, relaxed before calculating the time increment and selecting the next move.

As the system evolves, it may get trapped in a set of local configurations separated by very low energy barriers that dominate the dynamics without yielding diffusion. An exact solution to dealing with such “flickers” has been proposed by Athenes et al. [18], but we elect here to use a simpler limited-memory Tabu-like approach [19] which proceeds by banning transitions rather than states [20]. In brief, at any given moment, we keep in memory (the “memory kernel”) the n previous transitions. If a planned transition is already in memory, it is blocked and the initial or the final configuration of this move is adopted with the appropriate Boltzmann probability; the transition is also blocked for the next n jumps and removed from the list of possible events. As was shown in Ref. [20], this approach is thermodynamically exact and is kinetically valid as long as the memory is short compared to the timeline of evolution of the system.

We now demonstrate the validity and efficiency of our method by studying the diffusion of systems of two and six vacancies in a 1000-atom Stillinger-Weber c-Si sample. For the 2-vacancy system, we start by removing two second-neighbour Si atoms, then perform a k-ART run for 200 CPU hours on a single 1.5 GHz Itanium 2 processor. During this time, the vacancies perform about 1000 jumps, corresponding to a diffusion time of about 100 μs. Figure 2 (a) shows the total squared displacement of the atoms as a function of KMC steps (i.e., events) and, in the inset, effective time. Two types of behaviour are clearly visible. During the first 400 steps (~ 4 μs), diffusion takes place through correlated single vacancy hops, the two vacancies maintaining a separation oscillating between 3.85 and 4.5 Å. At about step 400, the two vacancies become trapped as a single divacancy, characterized by small local rearrangements, and remain so for about 80 μs before partially breaking apart and resuming its 2-vacancy correlated walk. The correlated motion is best seen in Fig. 2 (b), where we plot the distance between the two vacancies as a function of KMC steps: the two vacancies remain bound in a first or second-neighbour state for the whole simulation, except for occasional excursions to larger distances. This striking result illustrates perfectly the strength of k-ART in handling fully the impact of lattice deformation on diffusion, which here induces the two vacancies to return rapidly to a tightly-correlated configuration.

For the 6-vacancy problem, now, we start with a configuration containing two 3-vacancy clusters placed far away from each other, as shown in the $t = 0$ snapshot in Fig. 3. This configuration is challenging because the dynamics is dominated by a series of local rearrangements and reorientations associated with low-energy barriers that preserve the compactness of the cluster, i.e., breaking it apart is very difficult. To test this, we first ran a 30 ns MD simulation at 500 K; no dissociation or diffusion events were observed. Likewise, nothing happened in a 5000-step k-ART simulation without memory kernel, which covered 8 μs. These two calculations required roughly the same computational effort; we thus already conclude that k-ART is at least 250 times faster than

FIG. 3: (Color online) Total squared displacement as function of KMC steps for the 6-vacancy system.
MD; this is fast, but we can do much better by invoking the memory kernel to eliminate the flicker problem which is inherent to such complex materials.

Thus, we carried out a third simulation of the 6-vacancy problem using k-ART and the memory kernel. Figure 3 shows the squared displacement as function of KMC steps. We observe, in agreement with the previous two simulations, that the initial state is fairly stable: the system flickers during the first 20 µs (160 KMC steps), in agreement with the MD and the k-ART simulation without memory kernel. At 20 µs, one vacancy breaks away from the top right cluster and quickly moves to the other cluster, forming a 4-vacancy chain and leaving a divacancy behind. As in the 2-vacancy simulation, this divacancy diffuses through the box for about 45 µs (525 KMC steps) as a correlated pair. Finally, at event 685 (65 µs), the divacancy breaks apart and one vacancy rapidly joins the larger cluster. The lone monovacancy diffuses through the lattice during 25 µs and eventually joins the 5-vacancy cluster, forming a stable hexavacancy with a total energy 2 eV lower than that of the initial configuration. Not surprisingly, for the last 150 KMC steps (20 µs), the diffusion becomes negligible and we observe only unsuccessful attempts to dissociate the hexavacancy cluster.

In terms of efficiency, k-ART with the memory kernel is about 4000 times faster than MD, with 110 µs simulated in 220 CPU hours. In k-ART most of the computational time is spent in identifying events associated with new topologies. This is clear in Figure 4 where we plot CPU time versus simulated time for k-ART, with the learning phases indicated by arrows. Sampling is considerable: at the end of this run, 17237 different events were generated, associated with 1964 initial topologies, for an average of about 9 events per topology; at each step during the simulation, the system presents about 80 to 120 different topologies. Since each atom is associated with a topology, about 9000 different barriers are considered at each KMC step.

While the cost of k-ART is significantly higher than lattice KMC, it is ideally suited to problems that have been left aside until now because of the importance of off-lattice positions, surface reconstruction and long-range elastic effects, as we have shown in the study of 2 and 6 Si vacancy diffusion. Because the method is inherently local, a number of improvements can be envisaged that will yield considerable acceleration to the code. Parallelizing the management of events and barriers, for example, should speed up the calculations by a factor of 10 or 20. Moreover, because of the topological classification, the catalog of events may be stored and reused at a later time, thus accelerating new simulations. Kinetic ART is an exciting self-learning, off-lattice kinetic Monte-Carlo algorithm that opens the door to the numerical study of problems such as semiconductor growth, self-organization, defect diffusion and interface mixing, that have until now been out of the reach of simulations.

This work has been supported by the Canada Research Chairs program and by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds Qu´eb´ecois de la Recherche sur la Nature et les Technologies (FQRNT). We are grateful to the R´eseau Qu´eb´ecois de Calcul de Haute Performance (RQCHP) for generous allocations of computer resources.

* Electronic address: fel.mellouhi@umontreal.ca
† Electronic address: normand.mousseau@umontreal.ca
‡ Electronic address: laurent.lewis@umontreal.ca

FIG. 4: (Color online) CPU time versus simulated time for the hexavacancy aggregation problems. Red arrows indicate extensive self-learning phases in k-ART.

[1] A. B. Bortz and M. H. Kalos, J. Comput. Phys. 178, 10 (1975).
[2] K. Fichthorn and W. Weinberg, J Chem Phys 95, 1090 (1991).
[3] A. F. Voter, F. Montalenti, and T. C. Germann, Annu. Rev. Mater. Res. 34, 321 (2002).
[4] A. F. Voter, Radiation Effects in Solids. ed. by K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga (Springer, NATO Publishing Unit, Dordrecht, The Netherlands, 2007), vol. 235, chap. Introduction to the Kinetic Monte Carlo Method, pp. 1–24.
[5] D. Mason, R. Rudd, and A. Sutton, J Phys-Condens Mat 16, S2679 (2004).
[6] T. Sinno, J Cryst Growth 303, 5 (2007).
[7] O. Trushin, A. Karim, A. Kara, and T.S. Rahman, Phys Rev B 72, 115401 (2005).
[8] G. Henkelman and J. J´onsson, J. Chem. Phys. 111, 7010 (1999).
[9] F. Hontinfinde, A. Rapallo, and R. Ferrando, Surf Sci 600, 995 (2006).
[10] T. Middleton and D. Wales, J Chem Phys 120, 8134 (2004).
[11] G. T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996).
[12] R. Malek and N. Mousseau, Phys. Rev. E 62, 7723.
(2000).
[13] B. D. McKay, Congressus Numerantium 30, 45 (1981).
[14] Y. Song, R. Malek, and N. Mousseau, Phys. Rev. B 62, 15680 (2000).
[15] F. Valiquette and N. Mousseau, Phys. Rev. B 68, 125209 (2003).
[16] F. El-Mellouhi, N. Mousseau, and P. Ordejón, Phys. Rev. B 70, 205202 (2004).
[17] M.-A. Malouin, F. El-Mellouhi, and N. Mousseau, Phys. Rev. B 76 (2007).
[18] M. Athenes, P. Bellon, and G. Martin, Phil Mag A 76, 565 (1997).
[19] F. Glover and M. Laguna, Tabu Search (Kluwer Academics, Dordrecht, 1997).
[20] M. V. Chubynsky, H. Vocks, G. T. Barkema, and N. Mousseau, J Non-Cryst Solids 352, 4424 (2006).