Roles of IFN-γ and γδT cells in protective immunity against blood-stage malaria

Shin-Ichi Inoue, Mamoru Niikura, Shoichiro Mineo and Fumie Kobayashi *

Malaria is caused by infection with Plasmodium parasites. Various studies with knock-out mice have indicated that IFN-γ plays essential roles in protective immunity against blood-stage Plasmodium infection. However, after Plasmodium infection, increased IFN-γ production by various types of cells is involved not only in protective immunity, but also in immunopathology. Recent reports have shown that IFN-γ acts as a pro-inflammatory cytokine to induce not only the activation of macrophages, but also the generation of uncommon myeloid lymphoid progenitor cells after Plasmodium infection. However, the effects of IFN-γ on hematopoietic stem cells and progenitor cells are unclear. Therefore, the regulation of hematopoiesis by IFN-γ during Plasmodium infection remains to be clarified. Although there are conflicting reports concerning the significance of γδ T cells in protective immunity against Plasmodium infection, γδ T cells may respond to infection and produce IFN-γ as innate immune cells in the early phase of blood-stage malaria. Our recent studies have shown that γδ T cells express CD40 ligand and produce IFN-γ after Plasmodium infection, resulting in the enhancement of dendritic cell activation as part of the immune response to eliminate Plasmodium parasites. These data suggest that the function of γδ T cells is similar to that of NK cells. Although several reports suggest that γδ T cells have the potential to act as memory cells for various infections, it remains to be determined whether memory γδ T cells are generated by Plasmodium infection and whether memory γδ T cells can contribute to the host defense against re-infection with Plasmodium. Here, we summarize and discuss the effects of IFN-γ and the various functions of γδ T cells in blood-stage Plasmodium infection.

Keywords: IFN-γ, γδ T cells, malaria, dendritic cells, αβ T cells, memory cells, hematopoiesis
related to adaptive immunity. γδ T cells play critical roles in protective immune responses against protozoan parasites, bacteria, and viruses that are associated with various infectious diseases (26–32). This review focuses on the protective abilities of γδ T cells and IFN-γ in the response against malaria infection.

IFN-γ MEDIATES PROTECTIVE IMMUNITY AGAINST BLOOD-STAGE Plasmodium parasites

Mice (on a C57BL/6 or CBA background) that are genetically IFN-γ-deficient or IFN-γ receptor (IFN-γR)-deficient or that are treated with anti-IFN-γ antibody and infected with blood-stage P. berghei are unable to control the infecting parasite (33–35). In the cases of infection with blood-stage P. chabaudi and P. yoelii parasites, genetically IFN-γ-deficient or IFN-γ receptor (IFN-γR)-deficient mice or anti-IFN-γ antibody-treated mice on a C57BL/6 or CBA background show delayed elimination of the parasites (36–39). These experimental malaria models demonstrate that IFN-γ is a key pro-inflammatory cytokine for controlling blood-stage Plasmodium parasites (Table 1). IFN-γ is produced by many cell types and involved in many steps of immune responses. αβ T cells, NK cells, NKT cells, and γδ T cells have been shown to produce IFN-γ after infection with Plasmodium parasites. The contributions of producers of IFN-γ to protective immunity against Plasmodium parasites are complicated (Figure 2). Thus, more detailed experiments using IFN-γ signaling-deficient models should be performed to determine the mechanism(s) underlying the involvement of IFN-γ in immune protection against Plasmodium parasites.

IFN-γ PRODUCERS AND THEIR ACTIVATION IN Plasmodium infection

CD4+ αβ T CELLS AND CD8+ αβ T CELLS

Given that MHC class II-deficient mice on a C57BL/6 background are unable to control P. yoelii- and P. chabaudi-infected RBCs (iRBCs), CD4+ αβ T cells respond to Plasmodium-iRBCs after priming with malarial antigens in an MHC class II context on DCs (40). CD4+ αβ T cells strongly increase their ability to produce IFN-γ after infection with P. berghei (32). High proportions of CD4+ αβ T cells from P. falciparum-infected human subjects respond to iRBCs and produce IFN-γ, compared to CD4+ αβ T cells from naïve human subjects (41). Moreover, some studies have shown that CD4+ αβ T cell-depleted C57BL/6 or CBA mice treated with anti-CD4 antibody are unable to control blood-stage P. chabaudi or P. berghei (32, 33, 41, 42). These lines of evidence...
suggest that CD4+ αβ T cells are major sources of IFN-γ and are required for protective immunity against Plasmodium infection, resulting in complete clearance of the parasites. In contrast, the results for Plasmodium-infected mice with CD8+ αβ T-cell depletion are comparable to those for control mice (33, 41, 42). Moreover, CD8+ αβ T cells from highly immunized mice may play critical roles in protective immunity against infection with a lethal P. yoelii strain in C57BL/6 mice (41–43), although CD8+ T cells are not required for the resolution of primary infection with P. chabaudi or P. yoelii parasites in C57BL/6 mice. Interestingly, involvement of perforin molecules is only partial in protective immunity involving CD8+ αβ T cells. IFN-γ and macrophages are key molecular and cellular factors in protective immunity involving CD8+ αβ T cells (43). These data suggest that the role of the CD8+ αβ T cells is redundant in relation to the role of CD4+ αβ T cells in protective immunity in repeatedly immunized mice. A repeat infection with Plasmodium parasites may induce CD4+ αβ T-cell exhaustion (44). Cytokine production by T cells is inhibited by this exhaustion via the signaling of inhibitory receptors, such as PD-1 and LAG3. Since CD4+ αβ T cells are still needed to exert protective immunity against re-infection with the Plasmodium parasites, only partial exhaustion of CD4+ αβ T cells may occur. Therefore, both CD4+ αβ T cells and CD8+ αβ T cells may need to produce adequate quantities of IFN-γ to ensure clearance of the Plasmodium parasites.

DENDRITIC CELLS

Several reports have shown that IFN-γ is also produced by DCs (8–10). The IFN-γ-producing DCs are important for priming lymphocytes (10), although it remains to be determined whether IFN-γ production by DCs enhances protective immunity against Plasmodium parasites, and whether stimulation of Toll-like receptors (TLRs) by parasite components induces IFN-γ production by DCs (45–48).

γδ T CELLS AND NK CELLS

γδ T cells and NK cells are considered to be important IFN-γ producers in blood-stage malaria infections and to be associated with the control of malarial parasites (2, 3, 5). In the early stages of malaria infection, γδ T cells directly recognize the pathogen through MHC-independent mechanisms that involve the γδ TCR, and high levels of IFN-γ production and proliferation are induced (49–51). Several reports have suggested that proliferation of γδ T cells depends on IL-2 (52, 53). Human and murine γδ T cells usually express TLRs, and the expression levels of TLRs are enhanced by γδ TCR stimulation (54–56). Therefore, TLR is another candidate receptor for γδ T-cell responses to malaria antigens (46, 57). Although studies have suggested that γδ T cells have the potential to react to malarial antigens via TLRs, TLR signaling in myeloid cells may be more important for the induction of protective immunity against malaria (58).

A study of experimental P. falciparum infection showed that, in contrast to γδ T cells, NK cells were minor IFN-γ producers in response to iRBCs before and after P. falciparum infection (5). A longitudinal study of children in Papua New Guinea indicated that IFN-γ-producing responses of malaria antigen-specific γδ T cells, but not those of NK cells, were important for protective immunity against P. falciparum infection (59). In contrast, several in vitro

Table 1 | Influence of IFN-γ-signal deficiency on control of Plasmodium parasites in mice.

Plasmodium strain	Host mouse genotype (mAb administration)	Mouse background	Features of host mice after the Plasmodium infection	Reference
P. yoelii 17XNL	IFN-γ KO	B6/129	Delayed elimination of parasites and had higher parasitemia	van der Heyde et al. (37)
P. chabaudi adami 556KA	IFN-γ KO	B6/129	Delayed elimination of parasites and had higher parasitemia	van der Heyde et al. (37)
P. chabaudi chabaudi AS	IFN-γR KO	B6/129	Higher parasitemia during second peak. 77% of the infected mice died Male mice developed higher parasitemia. Female mice delayed elimination of parasites and had higher parasitemia. 100% Male and 40% female mice died	Favre et al. (38), Su and Stevenson (39)
P. berghei XAT	WT (anti-IFN-γ mAb)	CBA	Could not eliminate parasites and died	Waki et al. (33), Yoneoto et al. (35)
P. berghei NK65	WT (anti-IFN-γ mAb)	CBA	P. berghei NK65 is a high virulent strain and induces liver injury in CBA and B6 mice. The mAb-treated mice prolonged survival	Waki et al. (33), Yoshimoto et al. (34)
P. berghei ANKA	IFN-γR KO	CBA	P. berghei ANKA is a high virulent strain and induces neurological symptoms in 129 and B6 mice. The KO mice prolonged survival and did not develop neurological symptoms	Amani et al. (38), Villegas-Mendez et al. (61), Rudin et al. (94)

IFN, interferon; IFN-γR, IFN-γ receptor; mAb, monoclonal antibody.
culture studies have shown that NK cells rapidly induce IFN-γ production in response to *P. falciparum*-iRBCs via IL-12 and IL-18 signaling. These reports suggest that NK cells have the potential to produce IFN-γ in response to *P. falciparum*.

IFN-γ INDUCES PATHOLOGIC EFFECTS IN SEVERE MALARIA

Interferon-γ is not only a key factor in protection against *Plasmodium* infection, but also a pathogenicity factor in severe malaria symptoms (33, 38, 60, 61, 94). It is well-known that *P. berghei* ANKA infection leads to the development of experimental cerebral malaria (ECM), and *P. berghei* NK65 infection induces liver injury. Those *P. berghei*-infected mice are useful models for studies of severe malarial symptoms. IFN-γR-deficient mice on a C57BL/6 or 129 background do not develop ECM. Furthermore, *P. berghei* NK65-infected mice on a C57BL/6 or CBA background treated with anti-IFN-γ antibody live longer than those treated with control-IgG. These reports suggest that IFN-γ is important for the development of severe malarial symptoms (Table 1) (33, 34, 38, 94). ECM also does not develop in *P. berghei* ANKA-infected mice after depletion of CD4+ T cells or CD8+ T cells (62). Cytotoxic CD8+ T cells, which express perforin or granzyme B, have important roles in the development of ECM (63, 64). Although both CD4+ and CD8+ T cells have a similar potential to produce IFN-γ, CD8+ T cells are not an important IFN-γ producer for the development of ECM (61). IFN-γ-producing CD4+ T cells promote recruitment of cytotoxic CD8+ T cells to the brain; in contrast, CD4+ T cells do not accumulate markedly in the brain (60). Because depletion of NK cells can prevent ECM after infection with *P. berghei* ANKA, NK cells are also associated with IFN-γ responses in the development of ECM. NK cells activate CD8α+ DCs that prime CD8+ T cells after infection with *P. berghei* ANKA. Therefore γδ T cells would be also associated with IFN-γ responses in the development of ECM (66). IFN-γ has both protective and pathologic effects on the immune response to *Plasmodium* infections.
Therefore, simply inducing a reduction in blood IFN-γ levels by treatment with an antibody or drug may not be an effective way to treat cerebral malaria. Further studies focused on the regulation of CD8⁺ γδ T-cell activation by DCs are needed to develop a preventative therapy for cerebral malaria.

DOES IFN-γ INDUCE EFFECTIVE HEMATOPOIESIS IN THE HOST?

IFN-γ is an important mediator of hematopoietic stem cell and progenitor cell activation during bacterial infections (67–69). Furthermore, rodent *Plasmodium* infection induces the generation of uncommon myelolymphoid progenitor cells, which express IL7-R⁺ and c-Kit⁺ via IFN-γ signaling. These myelolymphoid progenitor cells can differentiate into both myeloid cells and lymphoid cells (70). Host protection from malaria depends on hematopoietic differentiation (i.e., hematopoiesis) to supply many types of differentiated cells. First, differentiation of erythroid progenitor cells is necessary to avoid the development of severe anemia. Second, differentiation of myeloid progenitor cells is necessary to supply a high number of phagocytic cells for the clearance of *Plasmodium* parasites. Hematopoiesis is a fundamental process for “curing” malaria and other infections. Moreover, several studies have shown IFN-γ-induced inhibition of some steps of hematopoiesis (71–73). Considering important roles of IFN-γ in protective immunity against *Plasmodium* parasites, IFN-γ would be a key factor for regulation of effective hematopoiesis in malaria. There are many cell types of IFN-γ producers in *Plasmodium* infection as mentioned above. Therefore, some of the IFN-γ producers in *Plasmodium* infection may play crucial role for regulation of hematopoiesis by the effect of IFN-γ or a combination of IFN-γ and other factors, which are produced from the IFN-γ-producing cells.

HOST IMMUNE RESPONSES OF γδ T CELLS IN MALARIA

VARIE TIES OF γδ T-CELL FUNCTION

γδ T cells play various roles, including in protective immunity against pathogens, in the curing of injured tissue, tumor surveillance, and as a bridge between innate and adaptive immunity. These multiple functions of γδ T cells are thought to be due to their abilities to produce various cytokines and chemokines. Such abilities are broadly restricted by the Vγ and Vδ repertoires of γδ T cells. The distribution of γδ T-cell subsets differs depending on their resident tissue (74). To examine the physiologic role(s) in the immune response against *Plasmodium* parasites, γδ T-cell subsets should be compared carefully between mice and humans based on their abilities, such as cytokine production or ligands for activation.

γδ T-CELL-RELATED PROTECTIVE IMMUNITY AGAINST BLOOD-STAGE PLASMODIUM INFEC TION

Although previous reports of *in vitro* and *in vivo* experiments have suggested that γδ T cells are associated with protective immune responses during malaria infection, the functions of γδ T cells in the spleen remain largely unknown (75–79). We recently reported on the mechanism of γδ T-cell-related protective immunity against *Plasmodium* parasites using the rodent malaria parasite *P. berghei* XAT (32, 80) (Figure 3). *P. berghei* XAT is an attenuated strain derived from the lethal *P. berghei* NK65 strain (32, 81). *P. berghei* XAT was developed for investigations of vaccines and protective immune responses against *Plasmodium* parasites owing to its potent ability to induce immune memory, even against lethal *P. berghei* NK65 strains. Previous studies have reported the essential cytokines and immune cells required for the clearance of *P. bergh e i* XAT. Since γδ T-cell-deficient mice on a C57BL/6 background are unable to control *P. berghei* XAT infection, γδ T cells are essential for protective immunity against the parasites (32). Other studies using *P. chabaudi* parasites have also suggested that γδ T cells are related to, but not essential for, protective immunity against the parasites (76, 78). Thus, this *P. berghei* XAT strain is useful for investigating the mechanism(s) of γδ T-cell-related protective immunity against *Plasmodium* parasites. In general, the immunologic functions of γδ T cells are largely similar to those of NK cells. The difference in the need for γδ T cells between protective immunity against the two parasite strains may be influenced by the contribution of NK cells to protective immunity.

Although malaria infections in humans, monkeys, and mice lead to increased numbers of γδ T cells in the blood and spleen, the γδ T-cell population is still minor in relation to the total number of lymphocytes (82). It may be possible to explain why such a minor population of lymphocytes plays such key roles in protective immunity against malaria parasites. First, γδ T cells can directly recognize malarial parasites, making them major producers of IFN-γ in response to malaria antigens during the early phase of infection. In contrast, NK cells are reciprocally regulated by DCs. Thus, DC activation is needed first to activate NK cells in malaria infection (3, 83). NK cells are unexpectedly minor producers of IFN-γ in response to malarial antigens in human blood in experimental infections with *P. falciparum* parasites (59). Nevertheless, NK cells also become key players in protective immunity against malarial parasites, as has been shown in many studies (2, 3, 83), although NK cells are not required for the control of *P. berghei* XAT parasites (35). Second, γδ T cells have the ability to interact readily with other central immune players, such as DCs. Our recent report showed that about 30% of splenic γδ T cells

FIGURE 3 | γδ T-cell-related protective immunity. γδ T cells and DCs are activated by *Plasmodium* infection. Activated γδ T cells begin to express CD40L and produce IFN-γ. The activated γδ T cells enhance MHC II and co-stimulatory factors on DCs, and induce high levels of IL-12 production from DCs. The CD40L-expressing γδ T cells enhance DC activation. Activated DCs induce differentiation of naïve CD4⁺ T cells into IFN-γ-producing Tc1 cells.
were localized in the vicinity of DCs even under naïve conditions. A more than twofold increase in the percentage of splenic γδ T cells that adhered to DCs was observed in the early phase of infection (32). The molecular mechanism of this adhesive ability of γδ T cells to DCs remains to be determined. As γδ T cells can produce chemokines, some γδ T-cell-produced chemokines may attract DCs and also αβ T cells to help antigen presentation by DCs (84, 85). Furthermore, our study provided evidence that γδ T cells boost DC activation for protective immunity against *P. berghei* Nax parasites via CD40 ligand expression on γδ T cells. CD40L-CD40 signaling induces the expression of MHC II and co-stimulatory factors, such as CD40, CD80, and CD86 (32). Such signaling to DCs would be synergistically activated by the uptake of *Plasmodium* antigens (86).

MEMORY PHENOTYPE OF γδ T CELLS IN MALARIA

For long-standing protective immunity against pathogens, memory lymphocytes maintain phenotypes to respond against pathogens and live for a long period after infections or vaccination with antigens (87, 88). In general, memory T cells are converted from naïve T cells through three phases (expansion, contraction, and memory phases; Figure 4). In the expansion phase, effector or killer T cells activate and proliferate after pathologic infection. Soon after pathogen clearance, the numbers of expanded antigen-specific T cells are reduced by induction of apoptosis in the contraction phase. Then, a fraction of the remaining antigen-specific T cells become memory T cells, resulting in long-lasting and rapid protective immunity against re-infection with pathogens (memory phase). Memory plasma cells and B cells maintain the potential to generate antigen-specific antibodies, and memory CD4⁺ T cells and CD8⁺ T cells maintain rapid helper and killer responses to antigens, resulting in rapid elimination of re-infecting pathogens. In malaria, those memory lymphocytes would also exist in human subjects who have been infected with *Plasmodium* parasites previously (4, 5). However, there is still controversy over the duration of memory lymphocyte maintenance (89, 90). Previous studies have shown that human γδ T cells generate rapid and amplified responses to a secondary challenge of bacteria and viruses, such as mycobacteria and cytomegalovirus (91, 92). These data suggest that human γδ T cells have the ability to develop memory cells for protection against re-infection. On the other hand, a recent report suggested that human γδ T cells develop effector memory cells after infection with *P. falciparum* parasites (5).

Some details about memory γδ T cells in malaria remain to be uncovered (Figure 4). The first point is the importance of memory γδ T cells in malaria. Although the numbers of malaria antigen-specific γδ T cells certainly increase in the year after primary infection, whether the memory γδ T cells are important for effective protection against re-infection with *Plasmodium* parasites remains to be determined. The second point is the developmental process of memory γδ T cells. γδ T cells function not only in adaptive immunity but also in innate immunity. Thus, the process for the development of memory γδ T cells may differ from that of general memory T cells in malaria or in other infections. The third point is the localization of memory γδ T cells. A recent report showed that memory T cells in lymph nodes and peripheral tissues translocate to bone marrow for the long term (93). It would be difficult to examine whether this hypothesis applies to memory γδ T cells, and other memory lymphocytes, in human subjects. Thus, rodent malaria models are needed for examining the location of memory γδ T cells.

CONCLUDING REMARKS

Many studies have demonstrated that IFN-γ is responsible for protective immunity against *Plasmodium* parasites. The critical cellular source(s) of IFN-γ in malaria patients remains to be determined. γδ T cells are not only a major candidate as the key IFN-γ producer, but are also critical modulators of protective immunity against *Plasmodium* parasites. We should continue to investigate the roles of γδ T cells in host defenses against *Plasmodium* parasites. Thus, it is important to investigate whether the abilities of γδ T cells to produce IFN-γ and mediate immune responses against malarial antigens persist as memory cells. Mechanisms of immune responses in lymphoid tissues, especially in the spleen,
to blood-stage malaria are gradually being uncovered by studies using rodent malaria models. To investigate further the relationship between IFN-γ and γδ T cells in immune responses against malaria, we should make more effort to study the issues using not only rodent malaria models, but also humanized mice that can be infected with P. falciparum parasites. To make this a reality, we first need to refine the humanized mice. Based on studies of γδ T-cell-related protective immunity, we may be able to develop novel strategies for a malaria vaccine.

Inoue et al. IFN-γ and γ T cells in malaria

REFERENCES
1. Aminio R, Thibege S, Martin B, Celli S, Shorte S, Frischknecht F, et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med (2006) 12:220–4. doi:10.1038/nm1350
2. Artavanis-Takounas K, Riley EM. Innate immune response to blood-stage Plasmodium falciparum-infected erythrocytes. J Immunol (2002) 169:2956–63.
3. Ing R, Stevenson MM. Dendritic cell and NK cell reciprocal cross talk promotes gamma interferon-dependent immunity to blood-stage Plasmodium chabaudi AS infection in mice. Infect Immun (2008) 77:770–82. doi:10.1128/IAI.00994-08
4. Roestenberg M, McCall M, Hopman J, Wiersma J, van Gent GR, et al. Protection against a malaria challenge by sporozoite inoculation. N Engl J Med (2009) 361:668–77. doi:10.1056/NEJMoa0805832
5. T eirlinck AC, McCall MB, Roesten-J, Wiersma J, Luty AJ, van Gemert M, et al. Enhancement of dendritic cell acti-
vation via CD40 ligand-expressing T cells in immune responses against infection with Toxoplasma gondii. J Immunol (2005) 174:2485–92.
6. Buchmeier NA, Schreiber RD. Requirement of endogenous interferon-γ production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci U S A (1985) 82:7404–9. doi:10.1073/pnas.82.21.7404
7. Huang S, Hendriks W, Althage A, Hemmi S, Blumenthun H, Kamijo R, et al. Immune response in mice that lack the interferon-γ receptor. Science (1993) 259:1742–5. doi:10.1126/science.2845301
8. Kim BH, Shenyu AR, Kumar P, Das R, Tiwari S, MacKie D. A family of IFN-γ-inducible 65-kD GTases protects against bacterial infection. Science (2011) 332:717–21. doi:10.1126/science.1201711
9. Green AM, Diefaza R, Flynn JL. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol (2013) 190:270–7. doi:10.4049/jimmunol.1200601
10. Murray IW, Rubin BV, Rothermel CD. Killing of intracellu-
lar Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-γ is the activating lymphokine. J Clin Invest (1983) 72:1506–10. doi:10.1172/JCI10972
11. Torrici F, Heremans H, Rivera MT, Van AE, Billauer A, Carlier Y. Endogenous IFN-γ is required for resistance to acute Trypanosoma cruzi infection in mice. J Immunol (1991) 146:3626–32.
12. Scharton-Kersten TM, Wynn TA, Denkers EY, Bala S, Gubbels MJ, Striepen B, et al. Interleukin-12-dependent inter-
feron-γ-inducing factors to direct the development of naive T-helper cells toward the Th1 phenotype. Blood (1997) 90:1920–6.
13. Ohteki T, Fukao T, Suzue K, Maki C, Ito M, Nakamura M, et al. Interleukin 12-dependent interferon-γ production by CD8α− lymphoid dendritic cells. J Exp Med (1999) 188:1981–6. doi:10.1084/jem.189.12.1981
14. Suyama M, Okumura M, Ma JS, Kimura T, Kamiyama N, Saiga H, et al. A cluster of interferon-γ-inducing pilin GTases plays a critical role in host defense against Tox-
oplasma gondii. Immunity (2012) 37:302–13. doi:10.1016/j.immuni.2012.06.009
15. McCaffrey JL, Ohsuki T, Kohno K, Tanabe F, Ishii S, Namba M, et al. Interferon-γ-inducing factor enhances T helper 1 cytokine production. Eur J Immunol (1996) 26:1647–51. doi:10.1002/eji.1830260736
16. Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishi-
moto T, et al. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity (1998) 8:539–90. doi:10.1016/S0897-6061(00)80543-9
17. Okamoto I, Kohno K, Tanimoto T, Ikegami H, Kurimoto M, Development of CD8+ effector T cells is dif-
f erentially regulated by IL-18 and IL-12. J Immunol (1999) 162:5302–11
18. Kamath AT, Sheasby CE, Tough DF. Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-α and IFN-γ. J Immunol (2005) 174:767–76.
19. Munder M, Mallo M, Eichmann K, Modell M. Murine macrophages secrete interferon-γ upon combined stimulation with interleukin (IL-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med (1998) 187:2103–8. doi:10.1084/jem.187.12.2103
20. Otani T, Nakamura S, Toki M, Motoda R, Kurimoto M, Orita K. Identification of IFN-γ-producing cells in IL-12/IL-18-treated mice. Cell Immunol (1999) 198:111–9. doi:10.1006/cimm.1999.1589
21. Frick I, Mitchell D, Mittelstadt J, Leh N, Heine H, Goldmann T, et al. Mycobacteria induce IFN-γ production in human dendritic cells via triggering of TLR2. J Infect Dis (2006) 194:1737–42.
22. Hirota K, Yoshikai Y, Matsuzaki G, Obga S, Muramori K, Matsumoto K, et al. A protective role of γδ T cells in primary infection with Listeria monocytogenes in mice. J Exp Med (1992) 175:49–56. doi:10.1084/jem.175.1.49
23. Rosat JP, MacDonald HR, Louis JA. A role for γδ T cells during experimental infection of mice with Leish-
mania major. J Immunol (1993) 150:850–5.
24. Lisanda H, Nagasawa H, Maeda K, Maekawa Y, Ishikawa H, Ito Y, et al. γδ T cells play an important role in hsp65 expression and in acquir-
ning protective immune responses against infection with Toxoplasma gondii. J Immunol (1995) 155:244–51.
25. Wang T, Gao Y, Scully E, Davis CT, Anderson JF, Welle T, et al. γδ T cells facilitate adaptive immunity against West Nile virus infection in mice. J Immunol (2006) 177:1825–32.
26. Déchanet, J., Merville P, Lim A, Retière C, Pitard V, Lafarge X, et al. Implication of γ δ T cells in the human immune response to cryptogammovirus. J Clin Invest (1999) 103:1437–49. doi:10.1172/JCI9401
27. Egan CE, Dalton JE, Andrew EM, Smith JE, Gubbels MJ, Striepen B, et al. A requirement for the γδ T subset of peripheral γδ T cells in the control of the systemic growth of Toxoplasma gondii and infection-induced pathology. J Immunol (2005) 175:8191–9.
28. Inoue S, Niikura M, Takeda S, Mineo S, Kawai Y, Udaka A, et al. Enhancement of dendritic cell acti-
viation via CD40 ligand-expressing γδ T cells is responsible for protective immunity to Plasmodium parasites. Proc Natl Acad Sci U S A (2012) 109:12129–34. doi:10.1073/pnas.1204840109

ACKNOWLEDGMENTS
This work was supported by the Moritani Scholarship Foundation, the Japan Prize Foundation to Shin-Ichi Inoue. This work was also supported by Grants-in-Aid for Young Scientists (B) to Shin-Ichi Inoue (No. 23590462) and Mamoru Niiikura (No. 24790405) and a Grant-in-Aid for Scientific Research (C) to Fumie Kobayashi (No. 23590493) from the Japan Society for the Promotion of Sci-
ence (JSPS). We thank Mrs. Natsuki Yokota for her support of our work.

www.frontiersin.org
August 2013 | Volume 4 | Article 258 | 7
33. Waki S, Uehara S, Kanbe K, Ono K, Suzuki M, Narushii H. The role of T cells in pathogenesis and protective immunity to murine malaria. *Immunology* (1992) 97:46–50.

34. Yoshimoto T, Takahama Y, Wang CR, Yoneto T, Waki S, Narushii H. A pathogenic role of IL-12 in blood-stage murine malaria lethal strain Plasmodium berghei NK6K infection. *J Immunol* (1998) 160: 5500–5.

35. Yoneto T, Yoshimoto T, Wang CR, Takahama Y, Tsuji M, Waki S, et al. Gamma interferon production is critical for protective immunity to infection with blood-stage Plasmodium berghei XAT but neither NO production nor NK cell activation is critical. * Infect* (1999) 67:2349–56.

36. Favre N, Nyffelf B, Bordmann G, Rudin W. The course of Plasmodium chabaudi chabaudi infections in interferon-γ deficient mice. *Parasite Immunol* (1997) 19:375–83. doi:10.1046/j.1046-3024.1997.02127.x.

37. van der Heyde HC, Pepper B, Batchelder J, Cigel F, Weidanz WP. The time course of selected malarial infections in cytokine-deficient mice. *Exp Parasitol* (1997) 85:206–13. doi:10.1006/expr.1996.4132.

38. Amani V, Vigarao AM, Belnoue E, Marussig M, Fonseca L, Mazier D, et al. Involvement of IFN-γ receptor-mediated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. *J Immunol* (2000) 164:165–55. doi:10.4049/jimmunol.164:1646-AID-JIMMU640:3.0.CO;2-0.

39. Su Z, Stevenson MM. Central role of endogenous γ interferon in protective immunity against blood-stage Plasmodium chabaudi asf infection. * Infect* (2000) 68:4399–406. doi:10.1128/IAI.68.11.4399-4406.2000.

40. Cigel F, Batchelder J, Burns JM Jr, Yañez D, van der Heyde H, Manning DD, et al. Immunity to blood-stage murine malarial parasites is MHC class II dependent. *Immunol Lett* (2003) 90:243–9. doi:10.1016/S0165-2478(03)00152-4.

41. Suss G, Eichmann K, Eury L, Linke A, Langhorne J. Roles of CD4+ and CD8-bearing T lymphocytes in the immune response to the erythrocytic stage of Plasmodium chabaudi. * Infect* (1988) 56:3081–8.

42. Podoba J, Stevenson MM. CD4+ and CD8+ T lymphocytes both contribute to acquired immunity to blood-stage Plasmodium chabaudi AS. * Infect* (1991) 39:51–8.

43. Imai T, Shen J, Chou B, Duan X, Tu L, Tetsutani K, et al. Involvement of CD8+ T cells in protective immunity against murine blood-stage infection with Plasmodium yoelii 17XL strain. *Eur J Immunol* (2010) 40:1035–61. doi:10.1002/eji.200939252.

44. Butler NS, Moebius J, Pewe LL, Traore B, Dombou OK, Tygrett ET, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. *J Immunol* (2011) 183(2):188–95. doi:10.3821/NI.2180.

45. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, et al. Toll-like receptor 9 mediates innate immunity activation by the malaria pigment hemozoin. *J Exp Med* (2005) 201:19–25. doi:10.1084/jem.20041836.

46. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. *Proc Natl Acad Sci U S A* (2007) 104:1914–29. doi:10.1073/ pnas.0700873104.

47. Seixas E, Moura Nunes JF, Matos I, Coutinho A. The interaction between DC and Plasmodium berghei/chabaudi-infected erythrocytes in mice involves direct cell-to-cell contact, internalization and TollR. * Eur J Immunol* (2009) 39:1850–63. doi:10.1002/eji.200838403.

48. Gowda NM, Wu X, Gowda DC. TLR9 and MyD88 are crucial for the development of protective immunity to malaria. *J Immunol* (2012) 188:5073–85. doi:10.4049/jimmunol.1120143.

49. Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Washizu J, Ogawa M, et al. Association of CD8+ T cells bearing invariant VαVδ1/3 induced by Escherichia coli in mice. *J Immunol* (2000) 164:931–40. doi:10.4049/immunol.164:931-AID-JIMMU640:2.0.CO;2-0.

50. Dalvi AJ, Belnoue E, van der Heyde HC, Nogueira-Pereira A, et al. Malaria hemozoin is a Toll-like receptor 2 agonist Pam3Cys. * Infect* (2006) 74:4505–11. doi:10.1128/IAI.00088-06.

51. Pietzschmann K, Beetz S, Welte S, Martens I, Gruen J, Oberg HH, et al. Toll-like receptor expression and function in subsets of human γδ T lymphocytes. *Scand J Immunol* (2009) 70:245–55. doi:10.1111/j.1365-3068.2009.02290.x.

52. Naik RS, Branch OH, Woods AS, Vijayakumar M, Perkins DJ, Nahlen BL, et al. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. *Exp Med* (2000) 192:1563–76. doi:10.1084/jem.192.11.1563.

53. Devdaver MC, Allain S, Doucet C, Bonnerville M, Scotet E. Early triggering of exclusive IFN-γ responses of human VγVδ2 T cells by TLR-activated myeloid and plasmacytoid dendritic cells. *J Immunol* (2009) 183:3625–33. doi:10.4049/immunol.0901571.

54. O’Brian MC, Robinson LJ, Stanisic DJ, Taraka J, Bernard N, Michon P, et al. Association of early interferon-γ and IFN-γ-producing CD8+ T cells with protective immunity to clinical malaria: a longitudinal study among Papua New Guinean children. *Clin Infect Dis* (2008) 47:1380–7. doi:10.1086/592971.

55. Belnoue E, Kaybanda M, Vigarao AM, Deschenin JY, van Rooijen N, Viguer M, et al. On the pathogenic role of brain-sequestered γδ CD8+ T cells in experimental cerebral malaria. *J Immunol* (2002) 169:5639–75.

56. Villegas-Mendez A, Greig R, Shaw TN, de Souza JB, Goyer Findlay E, Stumhofer JS, et al. IFN-γ producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain. *J Immunol* (2012) 189:968–78. doi:10.4049/jimmunol.1200688.

57. Yañez DM, Manning DD, Cooley AJ, Weidanz WP, van der Heyde HC. Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. *J Immunol* (1996) 157:1620–4.

58. Ituño J, Bondueille O, Habib S, Tefti M, Seilhan D, Mazier D, et al. Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. *J Immunol* (2003) 170:2211–8.

59. Haque A, Best SE, Unosson K, Amante FH, de Labastida F, Anesty NM, et al. Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. *J Immunol* (2011) 186:6148–56. doi:10.4049/jimmunol.1004812.

60. Lundie RJ, de Koning-Ward TE, Davey GM, Nie CO, Hansen DS, Lau LS, et al. Blood-stage Plasmodium infec tion induces CD8+ T lymphocytes to parasite-expressed anti gens, largely regulated by CD8α-dendritic cells. *Proc Natl Acad Sci U S A* (2008) 105:14509–14. doi:10.1073/pnas.0806277105.

61. Yañez DM, Batchelder J, van der Heyde HC, Manning DD, Weidanz WP. γδ T cell function in pathogenesis of cerebral malaria in mice infected with Plasmodium berghei ANKA. * Infect* (1999) 67:446–8.

62. Baldrige MT, King KY, Boles NC, Weksberg DC, Goodell MA. Quiescent hematopoietic stem cells are activated by IFN-γ in response to chronic infection. *Nature* (2010) 465:793–7. doi:10.1038/nature09135.

63. Katherine C, MacNamara KC, Oldham K, Martin O, Jones DD, McLaughlin M, et al. Infection-induced myelopoiesis during intracellular bacterial infection is critically dependent upon IFN-γ signaling. *J Immunol* (2011) 186:...
MacNamara KC, Jones M, Martin O, Winslow GM. Transient activation of hematopoietic stem and progenitor cells by IFNγ during acute bacterial infection. PLoS ONE (2011) 6:28669. doi:10.1371/journal.pone.0028669

Belyaev NN, Brown DE, Diaz AL, Rae A, Jarra W, Thompson KP, et al. Induction of an IL-7-Rα′-KIR myeloidophyl dendritic cell that critically depends on IFN-γ signaling during acute malaria. Nat Immunol (2010) 11:477–85. doi:10.1038/ni.1869

Sato T, Selleri C, Young NS, Maclejewski JP. Hematopoietic inhibition by interferon-γ is partially mediated through interferon regulatory factor-1. Blood (1995) 86:373–80.

de Bruin AM, Buitenhuis M, van der Sluijs KF, van Gisbergen KP, Boon L, Noote MA. Eosinophil differentiation in the bone marrow is inhibited by T cell-derived IFN-γ. Blood (2010) 116:2559–69. doi:10.1182/blood-2009-12-261339

Libega ST, Gutiérrez L, de Bruin AM, Wensveen FM, Papadopoulos P, van IJcken W, et al. Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood (2011) 118:6952–62. doi:10.1182/blood-2011-08-376111

Kobayashi F, Niikura M, Waki S, Matsu T, Fujino T, Tsuruhara T, et al. Plasmodium berghei: maintenance and suppressive effects of activated blood γδ T cells on malarial infection; expansion of CD3int γδ T cells in mice inhibits the production of CCL3, CCL4, and CCL5 and suppresses HIV-1 replication. Blood (2012) 119:4013–6. doi:10.1182/blood-2011-11-390153

Vermijlen D, Ellis P, Langford C, Klein A, Engel R, Willimann K, et al. Distinct cytokine-driven responses of activated blood γδ T cells: insights into unconventional T cell poiesis. J Immunol (2007) 178:4304–14.

Schulz O, Edwards AD, Schito M, Aliberti J, Mannikaschning S, Sher A, et al. CD40 triggering of heterodimeric IL–12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity (2000) 13:453–62. doi:10.1016/S1074-7613(00)00045-5

Karch SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol (2002) 2:251–62. doi:10.1038/mt878

Kalia V, Sarkar S, Gourley TS, Rouse AD, Sarkar S, et al. Adaptive immune response of Vγ2Vδ2 T cells with double-negative CD4−CD8− phenotype in the liver. Immunology (2006) 117:127–35. doi:10.1111/j.1365-2567.2005.02273.x

Weidanz WP, LaFleur G, Brown A, Burns JM Jr, Gramaglia L, van der Heyde HC. γδ T cells but not NK cells are essential for cell-mediated immunity against Plasmodium chabaudi malaria. Infect Immun (2010) 78:4331–40. doi:10.1128/IAI.00539-10

Costa G, Loizos S, Guenot M, Mocan I, Halary F, de Saint-Basile A, et al. Gradual decline in malaria-specific memory Th1 CD4 T cells: insights into unconventional T cell poiesis. J Immunol (2007) 178:4304–14.

Inoue et al. IFN-γ and γδ T cells in malaria