A generalization of Scheunert’s Theorem on cocycle twisting of color Lie algebras

Horia C. Pop
Department of Mathematics, University of Iowa
Iowa City, IA 52242-1419

March 31, 2022
preliminary version

Abstract

A classical theorem of Scheunert on G-color Lie algebras, asserts in the case of finitely generated abelian groups, one can twist the algebra structure and the commutation bicharacter on G by a 2-cocycle twist to a super-Lie G graded, algebra. In this paper we show that this can be done for an arbitrary group.

Introduction and notation

We recall first the following definitions (see [Sch] and [Mo]): Let G be a group and $\chi : G \times G \to k^*$ a bicharacter on G, i.e. a bimultiplicative morphism. We assume that χ is symmetric, i.e. $\chi(h, g) \chi(g, h) = 1$ for all $h, g \in G$. Since k is abelian it follows that χ is trivial for every commutator in G so it factors through $G^{ab} \times G^{ab} \to k^*$. Therefore from now on we assume G to be abelian.

In this paper we assume that k is an algebraically closed field, e will denote the the neutral element of G.

We call L a G-color Lie algebra over k with commutation factor χ if L is a G-graded k-vector space and the bracket $[\ ,] : L \times L \to L$ satisfies:

$[a , b] = -\chi(h, g)[b , a]$

$\chi(g, k)[[a , [b , c]] + \chi(k, h)[c , [a , b]] + \chi(h, g)[b , [c , a]]$ for all $a \in L_g, b \in L_h, c \in L_k$

We say that σ is a 2 cocycle on G if $\sigma : G \times G \to k^*$, satisfies

$\sigma(a, bc)\sigma(b, c) = \sigma(a, b)\sigma(ab, c)$. Then we can define a new bracket $[\ ,]_\sigma : L \times L \to L$ by:

$[a , b]_\sigma = \sigma(g, h)[a , b]$ for all $a \in L_g, b \in L_h$.

If σ is a 2 cocycle then $\chi_\sigma(g, h) = \chi(g, h)\sigma(g, h)\sigma^{-1}(h, g)$ is a bicharacter. We denote by L^σ the (new) G-color Lie algebra structure on L for this new bracket $[\ ,]_\sigma$ and the commutation factor given by the twisted bicharacter χ_σ.

1
Let \(G_+ = \{ g|\chi(g, g) = 1 \} \), this is a subgroup of \(G \) of index at most 2, we call these the even elements in \(G \). Define the odd elements by: \(G_- = \{ g|\chi(g, g) = -1 \} \), then \(G = G_+ \cup G_- \).

We may define now \(\chi_o(g|g) = 1 \) iff at least one of \(g \) or \(h \) is even else if both \(G \) and \(H \) are odd \(\chi_o(g|h) = -1 \).

Scheunert’s theorem [Sch] shows that for a \(G \) color Lie algebra \(L \) with bicharacter \(\chi \) and \(G \) a finitely generated abelian group there exists a 2-cocycle \(\sigma \) on \(G \) such that the bicharacter \(\chi \sigma = \chi_o \). Thus \(L^\sigma \) can be regarded as a \(\mathbb{Z}_2 \) graded Lie algebra with the \(\mathbb{Z}_2 \) (super)bicharacter \(\chi_o \).

The proof for an arbitrary abelian group \(G \)

In this section we prove:

Theorem Let \(G \) be any abelian group and let \(L \) be a \(G \) color Lie algebra with commutation factor \(\chi \) Then there exists a bimultiplicative 2-cocycle \(\sigma \) on \(G \) such that the twisted color Lie algebra \(L^\sigma \) is a super-Lie algebra with commutation factor \(\chi_o \).

Proof.

Like in the original proof in [Sche] we may change \(\chi \) to \(\chi \chi_o \) so that we may assume that \(\chi(g, g) = 1 \) for all \(g \in G \). We show then that if \(\chi(g, g) = 1 \) for all \(g \in G \) then there is a cocycle \(\sigma \) on \(G \) with \(\chi(g, h) = \sigma(g, h)\sigma^{-1}(h, g) \) for all \(g, h \in G \). Note that any bimultiplicative map is automatically a 2-cocycle.

To do that we shall use Zorn’s lemma. Define a family of subgroups of \(G \)

\[\mathcal{F} = \{(H, \sigma_H)|H \text{subgroup of } G, \sigma_H \text{ bilinear } 2\text{-cocycle on } H, \chi(g, h) = \sigma(g, h)\sigma^{-1}(h, g)\ni g, h \in H\} \]

We order this family by \((H', \sigma_{H'}) \preceq (H'', \sigma_{H''}) \) iff \(H' \subseteq H'' \) and \(\sigma_{H''}|_{H'} = \sigma_{H'} \). It is clear that \(e \in \mathcal{F} \) so that \(\mathcal{F} \) is non-void. When in the sequel it is clear on what subgroup \(\sigma \) is defined, we shall not show any more the indices.

This way \(\mathcal{F} \) is inductively ordered and by Zorn’s lemma there exists a maximal element of \(\mathcal{F} \), say \((K, \sigma_K) \). Assume \(K \neq G \). We shall prove this contradicts the maximality of \(K \).

Let \(t \) be an element in \(G \) that does not belong to \(K \). We look at the subgroup \(< t > \) generated by \(t \).

If \(< t > \cap K = \{ e \} \) then let \(L = < t > \times K \). Define \(\sigma(k, t) = \chi(k, t) \) and \(\sigma(t, k) = 1 \) for all \(k \in K \) and extend \(\sigma \) bimultiplicatively. Since there are no new relations this is well defined and one can see that \(\chi(g, h) = \sigma(g, h)\sigma^{-1}(h, g) \) holds on \(L \).

If \(< t > \cap K =< t^n > \) then there are some \(k_1, k_2 \ldots k_m \in K \) and some positive integers \(n_1, n_2 \ldots n_m \) such that \(t^n = k_1^{n_1} k_2^{n_2} \ldots k_m^{n_m} \). More than one such relations is possible but we just select one, say with a minimal \(m \).

Define now \(L =< t, K > \) to be the subgroup generated by \(K \) and \(t \). We need to extend \(\sigma \) to \(L \) in such a way that:

1) \(\sigma \) is well defined and bimultiplicative on \(L \)
2) $\chi(g, h) = \sigma(g, h)\sigma^{-1}(h, g)$ for all $g, h \in L$.

Because $t^n = k_1^{n_1}k_2^{n_2} \ldots k_m^{n_m}$ it is clear that for any $u \in L$ we have $\sigma(u, t^n) = \sigma(u, k_1^{n_1}k_2^{n_2} \ldots k_m^{n_m})$.

This means is $\sigma(u, t^n)$ is already determined, so loosely speaking we may say $\sigma(u, t) = \sqrt[n]{\prod_i \sigma(u, k_i^{n_i})}$

The problem is that while we have n-th roots, k being algebraically closed, we do not have a uniform radical function (say like the real radical), so we need to make sure that we define σ as a function multiplicative on both first and second variable.

We start by defining a multiplicative function $f(u) = \sigma(u, t)$, $f : K \rightarrow k^*$ (multiplicative in u) such that:

$$f(u)^n = \sigma(u, t^n) = \sigma(u, k_1^{n_1}k_2^{n_2} \ldots k_m^{n_m})$$ and $f(t^n) = 1$

We let \mathcal{M} be the family of subgroups of K that contain $< t^n >$, on which f can be defined with the above properties, ordered by set inclusion and by the requirement that f extends from the small subgroup to the bigger one.

Then \mathcal{M} is non-void and inductively ordered hence it has a maximal element M. If this maximal element is not K itself say $M \subset K$ and $M \neq K$ then we may contradict the maximality of M.

For an $w \in K - M$ we extend f to $< w, M >$ by:

If $< w > \cap M = \{e\}$ then let $f(w)$ be any selection of $\sqrt[n]{\prod_i \sigma(w, k_i^{n_i})}$. This works since $< w > \cap M = \{e\} < w > \times M$ and contradicts the maximality of M unless $M = K$.

Else if $< w > \cap M = < w^r >$ and $w^r = \prod z_i^{r_i}$, (a finite product) define:

$$f(w) = \sqrt[n]{\prod_i \sigma(z_i, k_i)^{n_i}}$$

This contradicts again the maximality of M and it means there is a multiplicative mapping $f(u) = \sigma(u, t) : K \rightarrow k^*$ such that $f(u)^n = \sigma(u, t^n) = \sigma(u, k_1^{n_1}k_2^{n_2} \ldots k_m^{n_m})$ and $f(t^n) = 1$

We use now the required relation to move u on the right side by defining now an analog of f on the “right”:

$$\sigma(t, u) = \chi(t, u)\sigma(u, t)$$

This is multiplicative in the second variable, i.e. in u, because χ is bimultiplicative and also f is multiplicative.

Since $\chi(g, g) = 1$ was granted we define $\sigma(t, t) = 1$, this is consistent with the previous definitions (and this was the reason we asked $f(< t^n >) = 1$).

Now we define σ on all $< t, K >$ by

$$\sigma(t^\alpha u, t^\beta v) = \sigma(t, v)^\alpha \sigma(u, t)^\beta \sigma(u, v)$$

This is bimultiplicative because of the way it was defined. One can use the fact that f is multiplicative, to show that σ is well defined. One needs to show that σ respects the relation: $t^n = k_1^{n_1}k_2^{n_2} \ldots k_m^{n_m}$, when substituted on either side. For this we look at reduced forms of $t^\alpha u$, with $\alpha < n$. The relation holds because of the way that $f(t)$ was defined. This way we contradict now the maximality of K so we may conclude $K = G$ and the proof of our theorem.
Remark There is another really interesting instance of twisting in the paper by Artin-Schelter-Tate [AST]. It is proved there that the multiparametric quantum general linear group is a twist of the standard quantization of the general linear group.

In fact we are interested in the result of Proposition 1 in [AST], where \(G \) is a free abelian group of dimension \(n < \infty \), it is shown that any cocycle cohomology class in \(H^2(G, k^*) \) contains exactly one bicharacter on \(G \). We conjecture this is the case for an arbitrary abelian group somehow along a construction similar to that of \(\sigma \) in the proof above.

Remark In fact the proof here does not fully use the fact that \(k \) is algebraically closed. Assume that we use transfinite induction to find the following presentation for \(G \): \(G \) is given by a system of generators \(\{ t_\lambda \}_{\lambda \in \Lambda} \) such that for each generator \(t_\lambda \) there is a unique relation \(r(t_\lambda) : t^{n_\lambda} = k_1^{n_1} k_2^{n_2} \ldots k_m^{n_m} \).

In our proof we only used the fact that \(k \) was closed under radicals of orders equal to the numbers \(n_\lambda \).

Corollaries. The ones given in [Sch]: PBW bases and Ado’s Theorem.

References

[AST] M.Artin, W. Schelter. J. Tate, Multiparameter quantum deformation of \(GL_n \) Comm. Pure. Appl. Math 44, 1991, p. 879-895

[Mo] S.Montgomery, Hopf Algebras and their Actions on Rings C.M.B.S., No 82 AMS, 1993

[Sch] M.Scheunert, Generalized Lie Algebras J.Math.Phys.20, 1979, p.712-720