Superconductivity-induced macroscopic resonant tunneling

M.C. Goorden, 1 Ph. Jacquod, 2 and J. Weiss 2

1Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland
2Physics Department, University of Arizona, 1118 E. 4th Street, Tucson, AZ 85721, USA

We show analytically and by numerical simulations that the conductance through π-biased chaotic Josephson junctions is enhanced by several orders of magnitude in the short-wavelength regime. We identify the mechanism behind this effect as macroscopic resonant tunneling through a macroscopic number of low-energy quasi-degenerate Andreev levels.

PACS numbers: 74.45.+c, 74.78.Na, 73.23.-b, 05.45.Mt

Resonant tunneling is the process by which quantum tunneling is enhanced by resonant transfer through intermediate quasi-bound states. The paradigmatic example is a one-dimensional double-barrier structure, where the transmission probability is given by

$$T_{\text{res}}(E) = \frac{T_1 T_2}{1 + R_1 R_2 - 2\sqrt{R_1 R_2} \cos[\Theta(E)]}.$$ \(1\)

in terms of the transmission and reflection probabilities \(T_{1,2} = 1 - R_{1,2}\) of the individual barriers. In the tunneling regime, \(T_{1,2} \ll 1\), narrow quasi-bound states exist between the two barriers, with well resolved quantized energies, \(\epsilon_m\). When the energy of the tunneling particle coincides with one of these energies, \(\Theta(E) = \epsilon_m\) = 0, and in the case of symmetric barriers, \(T_1 = T_2\), the transmission is perfect, \(T_{\text{res}}(\epsilon_m) = 1\). This is to be contrasted with the transmission probability \(T(E) = T_1 T_2/4\) away from resonance, and the incoherent transmission probability \(T(E) = T_1 T_2/(T_1 + T_2)\) one obtains when inelastic scattering occurs between the two barriers.

Resonant tunneling also occurs in higher dimensions. In chaotic systems with no spatial symmetry, there is no degeneracy of the intermediate states. Therefore, considering linear transport at low temperature, resonance occurs with at most one intermediate state at a time, leading at best to an increase of the average conductance by an amount \(G_0 = 2e^2/h\) – it is a microscopic effect of order one. In this article, we show that the proximity of the intermediate system to two superconductors can lead to a totally different phenomenology, where resonant tunneling through a macroscopic number \(N_s\) of intermediate levels occurs at the Fermi energy. This results in a conductance \(G \propto G_0 N_s\) at resonance, much larger than the nonresonant conductance \(G_0 \Gamma_n N_n\). The resonance condition is met when the phase difference between the two superconductors is \(\phi = \pi\). We foresee that this macroscopic resonant tunneling effect might have applications in current switching devices and magnetic flux “transistors”.

The system we investigate is sketched in Fig. 1A. A ballistic metallic quantum dot is connected to two metallic electrodes \((L\) and \(R\), each carrying \(N_n \gg 1\) channels) and two superconducting electrodes \((S_1\) and \(S_2\), each carrying \(N_s \gg 1\) channels). The electrodes are coupled to the dot via tunnel contacts of transparency \(0 < \Gamma_{n,s} \leq 1\), such that \(1 \lesssim \Gamma_n N_n \ll N_n\), and \(\Gamma_s N_s \gg 1\). We are interested in transport between the two normal leads as a function of the phase difference \(\phi\) between the two superconductor’s pair potentials, \(\Delta S_1 = \Delta S_2 \exp[-i\phi]\), \(|\Delta S_{1,2}| = \Delta\).

The physics in our system is to a large extent governed by Andreev reflection. At low energy, this is the dominant reflection process at an interface between a metal and a superconductor, where an electron is retroreflected into a hole, and vice-versa. The process is sketched in Fig. 1B. When the excitation energy \(\epsilon\) is negligible against \(\Delta\) and the Fermi energy \(E_F\), the retroreflection is perfect and the hole (electron) exactly retraces the path previously followed by the electron (hole), with an additional Andreev reflection phase of \(-\pi/2 \pm \epsilon/2\). In absence of normal lead (one then has an Andreev billiard), Andreev reflection renders all classical paths periodic in a cavity that would be chaotic otherwise.

When the cavity is weakly connected to external leads, transport can be resonantly mediated through those peri-
odic orbits that touch the contacts to the leads and both superconductors. Two such orbits are depicted in Fig. 1. Each such orbit represents a family of scattering trajectories constructed from a primitive trajectory, and an Andreev loop that can be traveled \(p \) times, \(p = 0, 1, 2, \ldots \). We indicate segments of trajectories as \(\gamma^{(\alpha)} \) with a superscript \(\alpha = e, h \) denoting whether an electron or a hole travels on the trajectory, and a subscript identifying whether the segment touches a superconducting lead \((a = s_1) \) or only normal leads \((a = n) \). With this convention, the blue trajectory in Fig. 1 represents trajectories coded in Eq. (5). At \(\epsilon = 0 \), the action phase accumulated along such trajectories is given by \(S_\gamma(p) = p(\pi \pm \phi) + \varphi \), where \(\varphi \) is a constant phase that is irrelevant for transport. The crucial element is that the phase difference between the two superconductors cancels out the accumulated Andreev scattering phase when \(\pi = \phi \). Then all members of a family interfere constructively with each other, because \(S_\gamma(p) - S_\gamma(p') = 0 \). This holds simultaneously for all families of trajectories that touch both superconductors, with the topology of the trajectories sketched in Fig. 1. As there are infinitely many such trajectories, the result is macroscopic resonant tunneling with a conductance \(G(\phi = \pi) \propto G_0N_a \), independent of \(N_a \). Neither macroscopic resonant tunneling, nor the associated massive quasi-degeneracy of energy levels of Andreev billiards around \(\epsilon = 0 \) for \(\phi = \pi \) have been noticed in earlier investigations of the density of states of Andreev billiards \(R, L, S \) of transport through the Josephson junction set-up of Fig. 1. We first write the transmission probabilities as

\[
\langle G \rangle / G_0 = (T_{RL}^{ee} \sum_{L} T_{LL}^{ee}).
\]

(2)

Here, \(T_{ij}^{ee} \) gives the transmission probability for a quasi-particle of type \(e \) from the normal lead \(i \) to a quasi-particle of type \(e \) into the normal lead \(j \). To evaluate the resonant contributions to \(\langle T_{RL}^{ee} \sum_{L} T_{LL}^{ee} \rangle \), we follow the semiclassical approach of Ref. 15 (see also Refs. 16). We first write the transmission probabilities as

\[
T_{ij}^{ee} = \frac{1}{2\pi \hbar} \int dy_0 \int dy_1 \sum_{\gamma_1, \gamma_2} A_{\gamma_1} A_{\gamma_2} \exp[i\delta S/h].
\]

(3)

This expression sums over all classical trajectories \(\gamma_1 \) and \(\gamma_2 \) entering the cavity on \(y_0 \) on a cross-section of lead \(i \) and exiting at \(y \) on a cross-section of lead \(j \), while converting an \(\alpha \) quasiparticle into a \(\beta \) quasiparticle. The phase \(\delta S = S_{\gamma_1} - S_{\gamma_2} \) gives the difference in action phase accumulated along \(\gamma_1 \) and \(\gamma_2 \). In presence of tunnel barriers, the stability amplitude \(A_\gamma \), is given by 17, 18

\[
A_\gamma = B_\gamma t_{i,j} \prod_k |y_k|^{l_\gamma(k)},
\]

(4)

where \(l_\gamma(k) \) gives the number of times that \(\gamma \) is reflected back into the system from the tunnel barrier \(k = L, R \), the transmission and reflection amplitudes at the normal leads satisfy \(|t_i|^2 = (1 - |r_i|^2) = \Gamma_{n,i} \) (for \(i = L, R, S_1, \) or \(S_2 \), and \(B_\gamma^2 = (dp_{y_0}/dy_1)^\gamma \) measures the rate of change of the initial momentum \(p_{y_0} \) as the exit position \(y \) of \(\gamma \) is changed, for a fixed sequence of transmissions and reflections at the tunnel barriers.

We use Eqs. (3) and (4) to evaluate the contributions to the total conductance, Eq. (2), arising from trajectories touching both superconductors such as those sketched in Fig. 1. These are the only trajectories that are \(\phi \)-dependent, they are subdivided into class I trajectories, contributing to \(\langle T_{RL}^{ee} \rangle \) (blue trajectory on Fig. 1) and class II trajectories, contributing to \(\langle T_{RL}^{ee} \rangle \) (red trajectory on Fig. 1). From now on, we focus our discussion on class I trajectories. The calculation of class II contributions proceeds along the same lines and will be presented elsewhere 19. Class I trajectories are made of the following sequence

\[
\gamma_{1,t} = 1_{s_1} + 1_{s_1} + p \times \left[1_{s_3} + 1_{s_3} + 1_{s_1} + 1_{s_1} \right],
\]

(5)

where \(s_1 \) and \(s_3 \) can be interchanged, and \(p = 0, 1, 2, \ldots \). They undergo \(2p + 1 \) Andreev reflections, \(2p \) reflections at tunnel barriers \(R, L \), and accumulate an action phase

\[
S_{\gamma_{1,t}} = p(\pi - \phi + \epsilon t_{\tau_{\gamma_{1,t}}}) + 2e t_{\gamma_{s_1}} - (\pi/2 + \phi/2).
\]

(6)

One should substitute \(\phi \rightarrow -\phi \) when interchanging segments \(s_1 \) and \(s_3 \), but the relative sign between \(\pi \) and \(\phi \) does not affect the final result. Here, \(t_{\tau_{\gamma_{1,t}}} \) gives the duration of the Andreev loop [the sequence between bracket in Eq. (5)], \(t_{\gamma_{s_1}} \) the duration of the segment \(\gamma_{s_1} \). We see that at \(\epsilon = 0 \) and \(\phi = \pi \), the phase difference accumulated by any two members (with different \(p \) and \(p' \)) of a given family vanishes, so that all pairs of trajectories within a given family resonate. There is however no resonance between members of different families.

In normal chaotic billiards, the stability \(B_\gamma^2 \) of periodic orbits decreases exponentially with the number of times the orbit is crossed \(20 \). The situation is fundamentally different in presence of superconductivity, where Andreev reflections refocus the dynamics. The stability of a trajectory is then given by the product of the stabilities along the primitive segments (\(\gamma_{s_1} \) and \(\gamma_{s_3} \) for class I, \(\gamma_{s_1}, \gamma_{s_2} \) for class II) that the trajectories are made of, independent of \(p \) \([21]\). This is true as long as half the duration of the Andreev loop is shorter than the Ehrenfest time \(\tau_E \), i.e. the time beyond which an initially narrow wavepacket can no longer fit inside a superconducting lead \(R, L \). For a quantum dot of linear size \(L_c \) and Lyapunov exponent \(\lambda \) (in absence of superconductivity), one has \(\tau_E = \lambda^{-1} \ln[N_s^2/k_B L_c] \), which determines the relative measure of trajectories contributing to macroscopic resonant tunneling, together with the average time \(\tau_D \) between two consecutive Andreev reflections.
We are now ready to evaluate the dominant contributions to conductance close to resonance at $\epsilon = 0$ arising from class I trajectories. We start from Eq. (3), and, following the above considerations, we substitute

$$\sum_{\gamma_1 \gamma_2} A_{\gamma_1} A_{\gamma_2}^{*} \cdots A_{\gamma_1 \gamma_2} \rightarrow (7)$$

$$\Gamma_n^2 \sum_{\gamma = \text{prim}} \sum_{p, p' = 0} \infty B_{\gamma}^2 (1 - \Gamma_n)^a (p + p') \Gamma_s^{p + p' + c} \cdots \gamma, p, p'. \tag{7}$$

To obtain (7), we paired trajectories by class, noting that for a given class, all trajectories have the same stability but differ only by the number of Andreev reflections at the superconductors and normal reflections at the normal leads, and by the different action phases they accumulate along their Andreev loop. The sum over classes is then represented by a sum over primitive trajectories, and the exponents $a = 1$ and $c = 1$ for class I are determined by the number of Andreev and normal reflections in Eq. (5). Reflection phases at the tunnel barriers do not appear because all trajectories are traveled as many times by an electron as by a hole. The evaluation of $\sum B_{\gamma}^2$ proceeds along the lines of Ref. [12], and details will be presented elsewhere [19]. The resonant part of the conductance from class I and II contributions finally reads

$$\langle T_{\text{LL}}^{\text{he}} \rangle_r = \frac{\pi \Gamma_n^2 N_n}{4} \left(\frac{N_n}{2 \Gamma_n N_n + 2 \Gamma_n^2 N_s} \right)^2 \times \left(1 - (1 + \tau_E / \tau_D) \exp[-\tau_E / \tau_D] \right) \times \frac{\Gamma_s}{1 - 2 \Gamma_s (1 - \Gamma_n) \cos[\pi - \phi] + \Gamma_s^2 (1 - \Gamma_n)^2} \times \left(1 - (1 + \tau_E / \tau_D + \tau_s^2 / 2 \Gamma_s^2) \exp[-\tau_E / \tau_D] \right) \times \left(1 + \frac{\Gamma_s^2}{1 - 2 \Gamma_s (1 - \Gamma_n) \cos[\pi - \phi]) + \Gamma_s^2 (1 - \Gamma_n)^2} \right). \tag{8a}$$

$$\langle T_{\text{RL}}^{\text{he}} \rangle_r = \frac{\pi \Gamma_n^2 N_n}{8 N_s} \left(\frac{N_n}{2 \Gamma_n N_n + 2 \Gamma_n^2 N_s} \right)^3 \times \left(1 - (1 + \tau_E / \tau_D + \tau_s^2 / 2 \Gamma_s^2) \exp[-\tau_E / \tau_D] \right) \times \frac{\Gamma_s^2}{1 - 2 \Gamma_s (1 - \Gamma_n) \cos[\pi - \phi] + \Gamma_s^2 (1 - \Gamma_n)^2} \right). \tag{8b}$$

The sum of Eqs. (8a) and (8b) gives the dominant semiclassical contribution to the conductance. It exhibits the functional dependence of resonant tunneling [compare to Eq. (4)], where the resonance is however always at the Fermi level, and is achieved by setting the phase difference between the two superconductors at $\phi = \pi$. This resonance condition is the same for all trajectories. This is why the resonance is macroscopic, $\propto N_n$, and not of order one, as is the case for standard resonant tunneling in chaotic systems. In most instances, $\langle T_{\text{LL}}^{\text{he}} \rangle_r \gg \langle T_{\text{RL}}^{\text{he}} \rangle_r$.

The conductance is the sum of the semiclassical contributions, Eqs. (8), and of quantum universal contributions. We calculated the latter using Nazarov’s circuit theory [22] and obtained $G_{\text{act}} (\pi) / G_0 = \Gamma_n N_n / 2$ [19]. In the tunneling regime, this is smaller than the semiclassical contribution by a factor $\propto \Gamma_n \ll 1$, i.e. semiclassical contributions enhance the conductance by a factor $\Gamma_n^{-1} \gg 1$.

We briefly confirm our predictions numerically. We extend the open kicked rotator of Refs. [6] to take into account both transport between two normal leads and Andreev reflection at two superconducting terminals. We construct a four-terminal scattering matrix from the Floquet operator of the kicked rotator as in Refs. [3] [22], and use the method of Ref. [12] to evaluate the exact expression for the conductance [14],

$$(G) / G_0 = T_{\text{RL}}^{\text{he}} + T_{\text{LL}}^{\text{he}} + 2 \frac{T_{\text{RL}}^{\text{he}} T_{\text{RR}}^{\text{he}} - T_{\text{LR}}^{\text{he}} T_{\text{RL}}^{\text{he}}}{T_{\text{RR}}^{\text{he}} + T_{\text{LR}}^{\text{he}} + T_{\text{RL}}^{\text{he}}}. \tag{9}$$

In our numerics, we restrict ourselves to perfectly connected superconductors, $\Gamma_s = 1$. We average our data over ensembles of systems with fixed classical parameters – such as the width of the leads, the strength of the tunnel barriers and the size and chaoticity of the cavity – but different chemical potentials or lead positions. We focus our investigations on the semiclassical limit $k_F L_c \to \infty$.

In Fig. 2, we show a resonance in the semiclassical regime. We obtain very good agreement between the numerical data (circles) and the analytical prediction (red solid line) with $\tau_E / \tau_D \simeq 0.79$. Without the semiclassical contribution, this agreement would break down close to resonance, where universal contributions give a prediction $G_{\text{act}} (\pi) = 2$ (green line), too small by an order of magnitude. The left inset illustrates the increase of the peak height and narrowness as the semiclassical parameter $k_F L_c$ increases, all classical parameters being kept constant. The four sets of data in this inset correspond to a given classical configuration, with the electronic wavelength decreasing by factors of four from one curve to the next, starting from the bottommost (black) curve. The conductance increases at each step because the number of conductance channels scales linearly with $k_F L_c$. In absence of semiclassical contributions, these four curves would exhibit the same peak-to-valley ratio, but here they obviously do not. This is quantified in the right inset to Fig. 2 where we show both the peak height and the peak-to-valley ratio corresponding to the same configuration as in the main plot, while varying $k_F L_c$.

The connection can be made between the predicted and observed enhancement of conductance at $\phi = \pi$ and resonant tunneling through a macroscopic number of quasi-degenerate Andreev levels. In π-biased closed chaotic Andreev billiards, Bohr-Sommerfeld quantization predicts that all periodic orbits touching both superconductors contribute to a peak in the density of states at the Fermi energy with $\propto N_n$ states. Once electrodes are
In summary, we investigated semiclassically the conductance through quantum chaotic Josephson junctions connected to two external normal leads. We found an order-of-magnitude enhancement of the conductance when the two superconductors have a phase difference of π. We identified the mechanism behind this enhancement as resonant tunneling through a macroscopic number of quasi-degenerate levels at the Fermi energy.

We thank C. Beenakker for drawing our attention to Ref. [13], and M. Büttiker for valuable comments on the manuscript. M. Goorden was supported by the Swiss NSF. P. Jacquod expresses his gratitude to M. Büttiker and the Department of Theoretical Physics at the University of Geneva for their hospitality.

Figure 2: (Color online) Conductance through a chaotic Josephson junction vs. the phase difference ϕ between the two superconductors. Circles are numerical data for the same classical systems of Eqs. (8) with the universal prediction. The green curve), 2048 (green curve) and 8192 (blue curve). Note the ratio G/F for the same classical parameters $k_F L_c/N_n = 20$, $k_F L_c/N_n = 10$ and $K = 10$ as in the main plot, for $k_F L_c = 128$ (black curve), 512 (red curve), 2048 (green curve) and 8192 (blue curve). Note the change in peak-to-valley ratio $G(\pi)/G(0)$ (black circles) and peak conductance $G(\pi)$ (red squares) as a function of $k_F L_c$, for the same classical configuration as in the main plot. Data are averaged over 150–1000 sample realizations.

connected to the billiard, all those $\epsilon = 0$ each level that significantly overlaps with the electrodes contributes one perfect conductance channel to transport via resonant tunneling, which therefore becomes macroscopic. We have numerically checked that the observed increase of conductance is accompanied by the emergence of a large peak around $\epsilon = 0$ in the corresponding Andreev billiard. This and other results will be presented elsewhere [19].

[1] Resonant Tunneling in Semiconductors, Physics and Applications, NATO ASI Series B: Phys. Vol 277, L.L. Chang, E.E. Mendez, and C. Tejedor Eds., Plenum Press, New York (1991).
[2] M. Büttiker, IBM J. Res. Dev. 32, 63 (1988).
[3] A. F. Andreev, Sov. Phys. JETP 19 1228 (1964).
[4] I. Kosztin, D. L. Maslov, and P. M. Goldbart, Phys. Rev. Lett. 75, 1735 (1995).
[5] The segments γ_n and γ_{n+1}, $i = 1, 2, 3$ in Fig.1 might include many intermediate bounces at a tunnel barrier. All possible number of reflections are effectively resummed; see Ref. [17].
[6] J. A. Melsen, P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Physics Scripta T69, 223 (1997).
[7] F. Zhou, P. Charlat, B. Spivak, and B. Pannetier, J. Low Temp. Phys. 110, 841 (1998).
[8] A. Lodder and Yu.V. Nazarov, Phys. Rev. B 58, 5783 (1998); I. Adagideli and C.W.J. Beenakker, Phys. Rev. Lett. 89, 237002 (2002); P. G. Silvestrov, M. C. Goorden, and C. W. J. Beenakker, Phys. Rev. Lett. 90, 116801 (2003); M.G. Vavilov and A.I. Larkin, Phys. Rev. B 67, 115335 (2003).
[9] Ph. Jacquod, H. Schomerus, and C.W.J. Beenakker, Phys. Rev. Lett. 90, 207004 (2003); M.C. Goorden, Ph. Jacquod, and C.W.J. Beenakker, Phys. Rev. B 72, 064526 (2005).
[10] A. Kornányos, Z. Kaufmann, C.J. Lambert, and J. Cserti, Phys. Rev. B 70, 052512 (2004).
[11] B.Z. Spivak and D.E. Khmel’nitskii, JETP Lett. 35, 412 (1982); A.V. Zaitsev, Phys. Lett. A 194, 315 (1994).
[12] C.W.J. Beenakker, J.A. Melsen, and P.W. Brouwer, Phys. Rev. B 51, 13883 (1995).
[13] A. Kadigrobov, L.Y. Gorelik, R.I. Shekhter, and M. Jonson, Superlattices and Microstructures 25, 961 (1999). An effect of the same magnitude as ours was reported in: A. Kadigrobov, A. Zagoskin, R.I. Shekhter, and M. Jonson, Phys. Rev. B 52, R5662 (1995), under the unphysical assumption that the cavity does not mix transport modes.
[14] C.J. Lambert, J. Phys. Cond. Mat. 5, 707 (1993).
[15] Ph. Jacquod and R.S. Whitney, Phys. Rev. B 73 195115 (2006).
[16] K. Richter and M. Sieber, Phys. Rev. Lett. 89, 206801 (2002); S. Rahav and P.W. Brouwer, Phys. Rev. Lett. 96, 196804 (2006).
[17] R.S. Whitney, Phys. Rev. B 75, 235404 (2007).
[18] L. Couchman, E. Ott, and T.M. Antonsen, Phys. Rev. A 46, 6193 (1992).
[19] M.C. Goorden, Ph. Jacquod, and J. Weiss, in preparation.
[20] M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York (1990).
[21] The contributions arising from the trajectories with $p = 0$ are more stable than those with $p \geq 1$, because they do not travel on γ_{n+1}. Their contribution is thus underestimated in our approach, and Eqs. (5) underestimate the conductance by a subdominant correction $\propto G_n/N_n$.
[22] Y.V. Nazarov, Phys. Rev. Lett. 73, 1420 (1994).
[23] J. Tworzydło, A. Tajic, H. Schomerus, and C.W.J. Beenakker, Phys. Rev. B 68, 115313 (2003).