The life cycle and parasitic system of *opisthorchis felineus* in the Irkutsk opisthorchiasis focus

O T Rusinek¹,²*
¹ Baikal Museum of the Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 1 Akademicheskaya str., Listvyanka village 664520 Russia
² Irkutsk State University, 1 Karl Marx str., Irkutsk 664003 Russia
E-mail: rusinek@isc.irk.ru

Abstract. The article for the first time presents generalized data on the parasitic system and the life cycle of *Opisthorchis felineus* (Plathelminthes: Trematoda) in the Irkutsk center of opisthorchiasis on the river Biryus. The relatively low abundance and contagion of the first (mollusks) and second intermediate hosts (fish) clearly demonstrates that the natural and anthropogenic sources of invasion are very minor here. Human, domestic cats are infected with opistorch. However, because of the actual breaking of the chain, their eggs may not be released into the water due to objective circumstances (remoteness, small number or absence of the first intermediate owners). *O. felineus* during the implementation of its life cycle in the parasitic system can complete it as an autogenous species, without leaving the aquatic environment and as an allogeneic species, completing the life cycle in land mammals and in humans.

1. Introduction
The relevance of the study of opisthorchiasis, a pathogenic parasitic human disease, is beyond any doubt. The author has been studying the Irkutsk center of opisthorchiasis relatively since 2010. According to the results of the study of the Irkutsk focus, my colleagues and I published several research articles [11], [14], [17], [12], [15], [13], [16], [20]. According to the content, they can be divided into 3 groups: (q) those papers devoted to the study of fish and mollusks; (2) on physiological and biochemical issues; and (3) on the molecular genetic work conducted to assess the genetic diversity of opisthorchids within their Euro-Asian range.

As a result of the analysis of the obtained results, we were convinced of the need to prepare an article on life cycle assessment and the parasitic system *Opisthorchis felineus*. This is done in order to summarize the knowledge necessary for planning further work.

Research objective is to study the parasitic system of trematodes *Opisthorchis felineus* in the Irkutsk opisthorchiasis focus. First, it is necessary to analyze the life cycle and the elements of the structure of the parasitic system. Second, our task is to provide data on the structure of the parasitic system *Opisthorchis felineus* in the Irkutsk focus.

A parasitic system is a system in which the parasite is combined at all phases of its development (free-living, larval, adults) and host populations (first, second intermediate, reservoir and final) [2], [8], [1], [6]. The *O. felineus* parasitic system is complex and polynomial, since the parasite develops in it in the first and second intermediate and final hosts.
The life cycle of the parasite reflects the size-age structure of its population. In the case of the *O. Felineus* trematode, its population consists of 7 hemipopulations (or subpopulations, or subpopulation groups): marites, eggs, miracidia, sporocysts, redias, cercariae, and metacercariae (Figure 1).

2. The Life Cycle of a Cat Fluke

The complex life cycle of the cat fluke was discovered by Hans Vogel, the German helminthologist. In the 1930s, he published several articles describing the life cycle of *Opisthorchis felineus* [21], [22], [24]. Later, he experimentally proved that the mollusk *Bithynia leachi* participates in the life cycle of *O. felineus* [23].

A total of 3 different generations participate in the life cycle of trematodes – one hermaphroditic (marita) and two (sporocysts and redies), consisting of parthenogenetic females. In the life cycle of a cat fluke, the stages of free life (eggs, cercariae) alternate with parasitic stages (miracidia, sporocysts, redia, metacercariae, and marites). Information on the life expectancy of individual phases of opistorchis development is somewhat different for different authors (Table 1).

Under favorable conditions, the entire life cycle of the parasite is completed within 4-4.5 months. [2]. Eggs and cercariae are the distributional free-living phases of opistorchis. It is known that at a water temperature not lower than 20°C, up to 3.5 thousand cercariae can leave one mollusk per day [18]. The maximum number of metacercariae in old age groups of ide can reach 20-30 thousand in one fish [25].

According to various data, metacercariae in fish remain invasive for 7-8 years or more [4], 46–48 months [19], 24-26 months [18], 12-16 months [5].

Fig. 1. Diagram of the life cycle of *Opisthorchis felineus* [3].
Table 1. The life expectancy of individual phases of the development of *Opisthorchis felineus* (for different authors).

Phases of opisthorchis development	Pustovalova et al., 1999 [25]	Beer, 2005 [3]	Parasitic diseases ..., 2006
Egg (keeps viability in a reservoir soil)	15 months	18-24 months (according to experimental data)	5-6 months
Miracidia	-	-	-
Sporocista	-	Mollusk development time	Mollusk development time from 2 to 10-12 months
Redia	-	2-2.5 months	-
Cercaria	Lifespan 60 hour	30-50 hours of active swimming	-
Metacecaria	After 6 weeks it becomes invasive; a life time in fish from 1 year to 8 years	Up to 3 years or more	After 6 weeks becomes invasive
Marita	From the stomach, the parasite enters the liver and other organs after 3-5 hours. It becomes sexually mature after 4-5 weeks and starts producing eggs. Marita’s age limit in the final host is 10-20 years.	Reaches puberty in 20-25 days	A parasite begins to produce eggs 3-4 weeks after infection of the final host; 20-25 years old – the age limit of maritas in the final host

Note: - no data.

3. The Parasitic System *O. felineus*

It is obvious that the life cycle of a parasite determines the structure of its parasitic system, since in it the parasite naturally combines at all phases of its development and a host or hosts (intermediate, reservoir, final). The number of host species in different habitat conditions of the parasite may vary significantly.

The focal nature of opisthorchiasis suggests that relatively isolated territories exist in different parts of our planet, where the parasite goes through its life cycle as part of the parasitic system formed under these conditions. From the standpoint of the theory and practice of parasitic communities in all parasitic phases of development, *Opisthorchis felineus* belongs to the types of generalists, since it parasitizes in hosts of different species and genera, families and orders (Table 2).

Attention should be paid to the fact that *O. felineus* is an autogenous species (developing in the aquatic environment) up to the metacecaria phase, and in the *Marita* phase it can be an autogenous and allogeneic species depending on the habitat of the final host (Fig. 2). “Autogenous” is when the final hosts are aquatic and near aquatic mammals (otter, muskrat, water vole – the latter two rarely feed on fish but are susceptible to infection by fluke). In turn, “allogeneic” is when it completes its life cycle in land animals (bear, wolf, fox and others). It is allogeneic during the *Marita* phase and in the case of the completion of the cycle in man and domestic animals.

Thus, during the implementation of its life cycle in a parasitic system, *O. felineus* can complete it as an autogenous species, without leaving the aquatic environment, and as an allogeneic species, completing the life cycle in terrestrial mammals. The autogenous path of development is likely to be the most ancient. Allogenic, especially associated with the inclusion of humans and domestic animals, was formed in relatively recent times at the end of the Pleistocene and in the Holocene (15-10 thousand years ago) [3].
Table 2. A taxonomic status of the hosts of *Opisthorchis felineus*.

1st intermediate hosts	2nd intermediate hosts	Definitive hosts
Gastropoda Class	Osteichthyes Class – Bony Fish	Mammalia Class
Squad	Squid Cypriniformes – carps Family Cyprinidae	**Squad Rodentia**
Family Bithyniidae	Genus *Rutilus*	**Family Cricetidae**
Subfamily Bithyniinae	1. Species *B (Bithynia) tentaculata*	**Genus Ondatra**
Subgenus Bithynia	**Genus Leuciscus**	1. Species *O. zibetica* – muskrat
2. Species *B (Codiella) liachii*	2. Species *L. leusciscus baicalensis*	
Subgenus Codiella	**Genus Phoxinus**	**Subspecies**
2. Species *B. (Codiella) liachii*	4. Genus *Ph. phoxinus* – common minnow	**Felis silvestris catus** – domestic cat
Subfamily Mysorellinae	**Genus Abramis**	
Genus Boreolona	5. *A. brama orientalis* – eastern bream	
4. *B. sibirica*	**Genus Scardinius**	
Genus Scardinius	9. *S. pelecs* – sichel	
8. *S. erythrophtalmus* – rudd	**Genus Gulo**	
Genus Scardinius	9. *S. pelecs* – sichel	
8. *S. erythrophtalmus* – rudd	**Genus Martes**	
Genus Carassius	12. *Aspius aspius* – common asp	
14. *C. auratus gibelio* – goldfish	**Genus Mustela**	
Genus Barbus	13. *Barbus barbus* – common barbel	
12. *Aspius aspius* – common asp	**Genus Lutra**	
Genus Carassius	14. *C. auratus gibelio* – goldfish	
Genus Tinca	**Genus Felinae**	
Squad	**Genus Tinca**	
Squad Artiodactyla	**Squad**	

4
15. Species *T. tinca* – tench
Family Suidae
Genus Sus
15. Species *Sus scrofa*
16. Subspecies *Sus scrofa domestica* – domestic pig

Genus Gobio
16. Species *G. gobio* – gudgeon
Squad Primates
Family Hominidae
Genus Homo
17. Species *Homo sapiens* – reasonable man

Genus Leucaspius
17. Species *L. delineatus* - belica

Genus Blicca
18. *B. bjoerkna* – silver bream

Genus Squaliobarbus
19. *Squaliobarbus curruculus* – mustache chub

Family Cobitidae – loachworm
Genus Cobitis
20. Spined loach

4. The Parasitic System *O. felineus* in the Irkutsk Opisthoschiasis Focus

According to the literature and our data, it can be stated that the parasitic system *O. felineus* on the Biryus river operates with the participation of 7 parasite hemipopulations, one population of *Bithynia troscheli* mollusks, four specific populations of the second intermediate hosts and three specific populations of the final hosts (Table 3). It should be understood that these are the actual data and the potential number of participants in this parasitic system may be much larger.

Taking into account the hydrological features of the Biryusa river, its comparative high water content, a low population and an infection of the first intermediate owners [7], as well as a relatively low infection of the second intermediate owners (fish) [11], it can be stated that natural and anthropogenic sources of invasion are very insignificant here. Human, domestic cats are infected with opistorch, but due to the actual breaking of the chain, eggs may not be released into the water due to objective circumstances (remoteness, a small number or absence of the first intermediate owners).

Table 3. The species composition of animals involved in the parasitic system *O. felineus* in the Irkutsk opisthoschiasis focus.

1st intermediate hosts	2nd intermediate hosts	Definitive hosts
Bithynia (Opistorchophorus) *troscheli* (cum.: *B. inflata*, *Boreolona sibirica*)	Dace	Human
	Roach	Cat
	Bream	Muskrat
	Crucian Carp	Otter, water vole, dog can be potential definitive hosts of the parasite.

According to the classification V. D. Zavoykin, the territory of the Irkutsk opisthoschiasis focus refers to hypoendemic, since the infection of people is from 1 to 10% and no cases of the disease have been detected among children [3].

The feline flute parasitic system exists due to close ecological connections between the final, first and second intermediate hosts. In the case of the Irkutsk focus, it is necessary to continue to identify wild animals that can play the role of ultimate owners of the parasite. In addition, it is important to begin...
a systematic work to identify the habitats of Bithynia, i.e. the first intermediate hosts of the parasite and the study of their biology in the conditions of the Biryusa river basin.

A careful attention of various sanitary organizations should be paid to the condition and disinfection of latrines in the settlements along the banks of the Biryusa river.

In addition, it is important to conduct an ongoing outreach to the local population on the treatment of carp fish as a preventive measure against infection with opisthorchis.

5. Acknowledgments

The work was done on the topic “Study of Some Ecosystem Elements of the Territory of Eastern Siberia Based on the Results of Field and Experimental Studies as a Reflection of Changes in Abiotic Environmental Factors.” The state registration number:AAAA-A16-116051910013-0.

References

[1] Balashov Yu S 1991 The Meaning of the ideas of V N Beklemishev on parasitic systems and species life patterns in the development of parasitology Parasitology 25(3) pp 185-195
[2] Beklemishev VN 1970 On the principles of comparative parasitology as applied to blood-sucking arthropods In Biocenological basis of comparative parasitology (pp 250-260). Moscow, Russia.
[3] Beer S A 2005 Biology of opisthorchiasis causative agent (Moscow, Russia: KMK Fellowship Association)
[4] Bliznyuk I D 1969 Experimental infection of fish by free-floating cercaria of the cat fluke Vestnik of Zoology 3 pp 76-79
[5] Vinogradov L I 1970 Circulation of opisthorchiasis Opisthorchis felineus in Semipalatinsk region (Dissertation of the Candidate of Biological Sciences; Almaty, Kazakhstan)
[6] Granovich A I 2009 A parasitic system as a reflection of the parasite population: concept and terms Proceedings of the Zoological Institute RAS 313(3) pp 229-337
[7] Kolokoltsev M M 1988 Distribution and ecology of the Bithynia inflata mollusks of the intermediate host Opisthorcisp felineus in the river basin of Biryusa river Medical Parasitology and Parasitic Diseases 3 pp 58-60
[8] Kontrimavichus V L 1982 Modern problems of ecological parasitology Journal of General Biology 43(6) pp 764-774
[9] Pavlovsky E N 1937 The Doctrine of biocenoses as applied to some parasitological problems. News of the Academy of Sciences of the USSR, Biology Series 4 pp 1388-1422
[10] Sergeeva V P, Lobzina Yu V, and Kozlova S S Eds. 2006 Parasitic human diseases (protozozy and helmitozy): a guide for a guide for doctors (St. Petersburg, Russia: Publishing Folio LLC)
[11] Rusinek O T, and Kondratistov Yu L 2010 Study of the infection of carp fish by trematode metacercaries in the focus of opisthorchiasis (Taishet district, Irkutsk region, Russia) Izvestiya ISU (Series “Earth Sciences”) 3(1) pp 132-142
[12] Rusinek O T, Kondratistov Yu L, and Ivanova A I 2010 The state of the the Irkutsk opisthoschiasis focus (Biryusa river, Taishet district, Irkutsk region, Russia).Journal of Pavlodar State Pedagogical Institute. Biological Sciences of Kazakhstan 3 pp 96-104
[13] Rusinek O T, Kondratistov Yu L, and Rudov R V 2012 Physiological and biochemical bases for the differential diagnosis of metacercarium Opisthorchis felineus and Rhipidocotyle campanula. Russian Parasitological Journal 1 pp 85-95
[14] Rusinek O T, and Kondratistov Yu L 2012 Differential diagnosis of Opisthorchis felineus metacercaria from the metacaracter Rhipidocotyle campanula in carp fish's opisthocytosis Veterinary 10 pp 35-37
[15] Rusynek O T, Sitnikova T. Ya, and Kondratistov Yu L 2012 New data on the Irkutsk opisthoschiasis focus and the need for its study Medical Parasitology and Parasitic Diseases Journal 2 pp 15-18
[16] Rusinek O T, and Sitnikova T Ya 2012 The condition of the Irkutsk center of opisthoschiasis and issues for its further study Proceedings of the Irkutsk State University 3 pp 125-134
[17] Rusinek O T, and Kondratistov Yu L 2013 Differential diagnosis of Opisthorchis felineus metacercarium from muscle metacercaria of non-pathogenic fish for humans in determining parasitological indicators of fish safety Vestnik of the Irkutsk State Agrarian University Named After A A. Ezhnevsky 57(2) pp 45-51
[18] Sidorov E G 1972 Life expectancy of Opisthorchis felineus and Metorchis albidus metacercariae Medical Parasitology 5 pp 611-612
[19] Fattakhov R G 1990 The second intermediate host of opisthorchiasis pathogen in the Ob-Irtysh focus (ecology, epidemiological significance) (Dissertation of the Candidate of Biological Sciences; Almaty, Kazakhstan)

[20] Brusentsov I I, Katokhin A V, Brusentsova I V, Shekhovtsov S V, Borovikov S N, Goncharenko G G, Lider L A, Romashov B V, Rusinek O T, Shobitov S K, Suleymanov M M, Yevtushenko A V … Mordvinov V A 2013 Low genetic diversity in wide-spread Eurasia liver fluke Opisthorchis felineus suggests special demographic history of this Trematode species PLOS ONE 8(4) pp 1-12

[21] Vogel H. 1929 Helminthologische Beobachtungen in Ostpressen insbesondere uder Bothriocephalus latus und Opisthorchis felineus Discti Med. Wschr. 55 pp 1631-1633

[22] Vogel H. 1930 Beobachtungen über die Lebenageschichte von Opisthorchis felineus in Ostpressen Zbl. Bacter. I. Orig. 3/4 pp 250-254

[23] Vogel H 1932 Über den ersten Zwischenwirt und die Zerkarie von Opisthorchis felineus (Riv.) Arch. Schiffs. 36 pp 558-562

[24] Vogel H 1934 Der Entwicklungszyklus von Opisthorchis felineus (Riv.) nebst Bemerkungen uder die Systematik und Epidemiologie Zoologica 33(86) pp 1-103

[25] Pustovalova V Ya, Stepanova T F, and Shonin A L 1999 Opisthorchiasis (Tyumen: Publishing House of TSMA)