Chemical Constituents from Ethanoic Extracts of the Aerial Parts of *Leea aequata* L., a Traditional Folk Medicine of Myanmar

Nay Lin Tun¹,²,³ · Dong-Bao Hu⁴ · Meng-Yuan Xia² · Dong-Dong Zhang¹,² · Jun Yang² · Thaung Naing Oo⁵ · Yue-Hu Wang² · Xue-Fei Yang¹,²,³

Received: 21 March 2019 / Accepted: 21 April 2019 / Published online: 7 May 2019
© The Author(s) 2019

Abstract

We aimed at reporting the chemical constituents and antimicrobial activities of *Leea aequata* L., a traditional folk medicine used in Myanmar for the treatment of wounds and skin diseases. A new neolignan, (7S,8R)-9′-O-acetylcedrusin (1), a new lactam, (3S,4S)-4-chloro-3-hydroxypiperidin-2-one (2), along with 21 known compounds, including five lignans (3–7), four flavonoid glycosides (8–11), and others (12–23), were isolated from the ethanoic extract of the aerial parts of *L. aequata*. The structures of the new compounds were determined by NMR, MS, and ECD spectra. For all the antimicrobial tests of the 23 compounds, only 3,4,5-trihydroxybenzoic acid ethyl ester (17) showed weak inhibitory activities against *Escherichia coli* and *Salmonella enterica* subsp. *enterica*.

Keywords *Leea aequata* · Vitaceae · Traditional medicines · Lignans · Flavonoids

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s13659-019-0209-y) contains supplementary material, which is available to authorized users.
1 Introduction

Medicinal plants and their traditional knowledge are important source for modern drug development. In Myanmar, majority of the populations had been relying on traditional herbal remedy for treatment of various diseases for generations. However, in the past several decades, Myanmar is behind the development of science and technology due to political unease and backward of social economic development, which kept the valuable knowledge and resources on medicinal plants un-known to the world; and thus rarely applied at international scale. Recently, Defilipps and Krupnick summarized the medicinal plants used in Myanmar, showing a total number of 472 plant species from 123 families used as herbal medicine [1].

Medicinal Plant List of Myanmar, a book published by FAME Company in Myanmar, recorded more than 1500 medicinal plant species [2]. Few ethnobotanical studies documented various list of medicinal plants used locally such as in southern Shan State [3], at Natma Taung National Park [4], and in southern Chin State [5]. These publications provide pilot investigations and fundamental information to understand the value of these wealthy biodiversity and culture for medicinal plants in Myanmar. Apart from these, applying modern technology, such as phytochemistry and pharmacology for Myanmar medicinal plant research were also surging. For example, Nwet Nwet Win published a series of papers on natural compounds isolated from Kaempferia pulchra [6], Premna integrifolia [7], and Kayea assamica [8, 9]. Other examples include extracts with anti-influenza virus property from Jatropha multifida [10], along with evaluation of antioxidant and antimicrobial activities of indigenous medicinal plants [11, 12]. However, the discovery of the traditional knowledge, biological constituents, and pharmacological properties of the vast pool of Myanmar medicinal plants just commences, and intensive field explorations and scientific validations are much needed.

The genus Leea belongs to the family of Vitaceae. Species of Leea are distributed from Africa to Asia, northeastern Australia, New Guinea and islands of the Pacific (Fiji, Solomon Islands, Caroline Islands) [13]. Some species are used as traditional folk medicines. For example, the roots of L. asiatica (L.) Ridsdale are used to treat icteric hepatitis in China [14], the roots of L. macrophylla Roxb. ex Hornem are used in medication for guineaworm in Myanmar [1], the leaves of L. guineense G. Don are used against cancers in Guinea [15], and the roots of L. thorelii Gagnep. are used as a tonic in Thailand [16]. Flavanoids and flavanoid glycosides are found to be the major constituents of the genus [16, 17].

Leea aequata is usually a shrub, less often a small tree, distributed in Bangladesh, Bhutan, Cambodia, China, India, Malaysia, Myanmar, Nepal, Philippines, Thailand, and Vietnam [18]. A previous research showed that the seeds, stems, and roots of L. aequata have antibacterial activity [19]. However, no knowledge is available on the chemical constituents of this species. In Mandalay, Myanmar, it is locally known as Kya-petthein (naga-mauk). The fresh leaves of the plant are crushed and externally used for treating wounds and skin diseases by Bamar people. During our field visit for inventory of medicinal plants in central Myanmar in Dec 2015, we collected the specimen of L. aequata and documented the traditional uses by local people around Myingyan, Kyaukpadaung, Po-pa Mountain in Mandalay. In Feb 2018, we continued a further investigation of ethnobotanical knowledge and collected the aerial parts of the species from the same site for phytochemical analysis. We aimed at isolating and understanding the chemical constituents and at testing the antimicrobial activities of this species.

2 Results and Discussion

2.1 Structure Elucidation

Two undescribed compounds (1 and 2, Fig. 1) and 21 known compounds (3–23) were isolated from the ethanoic extracts of L. aequata by silica gel and Sephadex LH-20 column chromatography and semipreparative HPLC.
Compound 1 was found to possess the molecular formula of \(C_{21}H_{24}O_7 \) by \(^{13}\)C NMR data (Table 1) and HRESIMS at \(m/z \) 411.1415 [M + Na]\(^{+} \) (calcd for \(C_{21}H_{24}NaO_7, 411.1420 \)). Its NMR data (Table 1) indicated the presence of one 1,2,4-trisubstituted phenyl ring \([\delta_\text{H} 7.00 (d, J = 1.8 \text{ Hz}), 6.86 (d, J = 8.1, 1.8 \text{ Hz}), \text{ and } 6.78 (d, J = 8.1 \text{ Hz}), \text{ one } 1,2,3,5\text{-tetrasubstituted phenyl ring} \ [\delta_\text{H} 6.62 (\text{br s}) \text{ and } 6.58 (d, J = 1.2 \text{ Hz}), \text{ an acetyl group} \ [\delta_\text{C} 173.1 \text{ and } 20.8; \delta_\text{H} 2.04 (3\text{H, s}), \text{ one methoxy group} \ [\delta_\text{C} 56.4; \delta_\text{H} 3.84 (3\text{H, s}), \text{ four } sp^3\text{ methylenes}, \text{ and two } sp^3\text{ methines}, \text{ which implied that compound 1 might be an acetylated neolignan. By comparing its NMR data with those of cedrusin [20]}, \text{ I} \text{ was deduced to be an acetylated derivative of cedrusin, which was confirmed by COSY and HMBC correlations (Fig. 2). The acetyl group was located at C-9'} \text{ based on the HMBC correlations from H}_2-9' \text{ to C-1}'. The trans relationship between H-7 \text{ and H-8 was elucidated by the ROESY correlations of H-7/ H-8} (Fig. 2), \text{ as well as the chemical shift of C-8} \ [\delta_\text{C} 55.7] [21]. In this type of neolignans, the chemical shift of C-8 is approximately 54 ppm in the trans isomers and is approximately 49 ppm in the cis analogues [21]. The absolute configurations of dihydrobenzofuran neolignans are usually determined by the signs of the band \(^1L_a \) (270–300 nm) or \(^1L_b \) (220–240 nm) in their ECD spectra. The positive signs of the \(^1L_a \) band in the ECD spectra predict the absolute configuration of 7,8-trans-3-methoxydihydrobenzofuran neolignans to be 7S,8R [21–23]. The ECD spectrum of 1 showed a positive Cotton effect at 294 nm (\(\Delta \epsilon + 0.52 \)). Therefore, the structure of 1 was determined to be (7S,8R)-9'-O-acetylcedrusin.

Based on \(^{13}\)C NMR data (Table 2) and HRESIMS with a positive ion at \(m/z \) 172.0135 [M + Na]\(^{+} \) (calcd for \(C_{9}H_{8}CINaN_{2}O_{2}, 172.0141 \)), the molecular formula of 2 was deduced to be \(C_{9}H_{8}ClNO_{2} \). The \(^{13}\)C NMR spectrum of 2 indicated five signals for a carbonyl group, two \(sp^3 \) methylenes, and two \(sp^3 \) methines. According to COSY correlations (Fig. 2), a carbon connection from C-3 to C-6 was confirmed. Based on the HMBC correlations (Fig. 2) from H-6 to C-2, compound 2 was deduced to be a lactam. 3-Hydroxy substitution was elucidated by the COSY correlation of H-3/3-OH. The remaining chlorine atom must attach to the last methine group (C-4). In order to elucidate the relative configuration of 2, H-3 was assumed to be \(\alpha \)-oriented. The trans configuration of H-3 and H-4 was elucidated by the \(J_{3,4} \) value (7.7 Hz) and the ROESY correlation of H-3/H-5.\(\alpha \), which indicated that both H-3 and H-5.\(\alpha \) \([\delta_\text{H} 2.02 \) were axial

![Fig. 2](image-url)
and α-oriented, while H-4 was axial and β-oriented. The absolute configuration of 2 was established as 3S,4S by comparison of the experimental and calculated ECD (Fig. 3). Thus, the structure of 2 was determined to be (3S,4S)-4-chloro-3-hydroxypiperidin-2-one.

9′-O-Acetylisolariciresinol (3) was previously reported without NMR data, which are presented in the paper (Table 1). Other known compounds, 9-O-acetylisolariciresinol (4) [24], (+)-lariciresinol (5) [25], (+)-syringaresinol (6) [26], urolignoside (7) [27], astragalin (8) [28], isorhamnetin 3-O-β-D-glucopyranoside (9) [29], isoquercitrin (10) [30], mauritianin (11) [31], trans-N-p-coumaroityltyramine (12) [32], N-trans-feruloyltyramine (13) [33], vanillic acid (14) [34], syringic acid (15) [35], α-hydroxyacetovanillone (16) [36], 3,4,5-trihydroxybenzoic acid ethyl ester (17) showed weak inhibitory activities against E. coli (43.8% inhibition) and S. enterica subsp. enterica (46.8% inhibition) at a concentration of 128 µg/mL. Inhibitions of other compounds were < 30%.

3 Experimental Section

3.1 General Experimental Procedures

Optical rotations were recorded using a JASCO P-1020 Polarimeter (Jasco Corp., Tokyo, Japan). Ultraviolet (UV) spectra were taken on a Shimadzu UV-2401 PC spectrophotometer (Shimadzu, Kyoto, Japan). Electronic circular dichroism (ECD) spectra were recorded on a Chirascan CD spectrometer (Applied Photophysics Ltd., Leatherhead, UK). 1H and 13C Nuclear magnetic resonance (NMR) spectra were collected on a Bruker AM-400, a Bruker DRX-500, a Bruker Avance III-600, and a Bruker Ascend™ 800 MHz spectrometers (Bruker Corp., Karlsruhe, Germany) with tetramethylsilane (TMS) as an internal standard. Electrospray ionization mass spectrometry (ESIMS) and high-resolution electrospray ionization mass spectrometry (HRESIMS) analyses were performed on an API QSTAR Pulsar 1 spectrometer (Applied Biosystems/MDS Sciex, Foster City, CA, USA). Silica gel G (80–100 and 300–400 mesh, Qingdao Meigao Chemical Co., Ltd., Qingdao, China), C18 silica gel (40–75 µm, Fuji Silysia Chemical Ltd., Aichi, Japan), and Sephadex LH-20 (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) were used for column chromatography, and silica gel GF254 (Qingdao Meigao Chemical Co., Ltd.) was used for preparative thin layer chromatography (TLC) as precoated plates. TLC spots were visualized under UV light at 254 nm and by dipping into 5% H2SO4 in alcohol followed by heating. Semipreparative high-performance liquid chromatography (HPLC) was performed on an Agilent 1200 series pump (Agilent Technologies, Santa Clara, USA) equipped with a diode array detector, an Agilent Zorbax SB-C18 column (5.0 µm, ϕ 4.6 × 300 mm), and a Welch Ultimate AQ-C18 column (5.0 µm, ϕ 4.6 × 300 mm).

Table 2

No.	2 in DMSO-d6	2 in CD3OD	2 in DMSO-d6	2 in CD3OD
δH (J, Hz)	δC	δH (J, Hz)	δC	
2	169.5	172.5		
3	3.78 (br d, 7.7)	72.8		
4	4.20 (ddd, 9.8, 7.7, 3.5)	60.1		
5β	2.23 (m)	29.2		
5α	2.02 (m)	2.12 (m)		
6	3.15 (2H, m)	37.9		
3-OH	5.78 (br s)	3.34 (2H, m)		
NH	7.68 (br s)	39.6		

Fig. 3 Experimental and calculated ECD for compound 2 (23) [42], were determined by comparing their spectroscopic data with those reported in the literature.

2.2 Antimicrobial Assay

All compounds (1–23) from the plants were measured for antimicrobial activities against four bacteria, *Escherichia coli*, *Staphylococcus aureus* subsp. *aureus*, *Salmonella enterica* subsp. *enterica*, and *Pseudomonas aeruginosa*, along with one fungus *Candida albicans*. 3,4,5-Trihydroxybenzoic acid ethyl ester (17) showed weak inhibitory activities against *E. coli* (43.8% inhibition) and *S. enterica* subsp. *enterica* (46.8% inhibition) at a concentration of 128 µg/mL.
3.2 Plant Material

The aerial parts of *L. aequata* were collected from Myingyan, Kyaukpaung, Po-pa Mountain, Trekking trails near Po-pa mountain resort (20°55′05″N and 95°13′38″E), in Dec 2015, and identified by Dr. Jie Cai, at Kunming Institute of Botany, Chinese Academy of Sciences. A voucher specimen (No. 15CS10775) was deposited at the herbarium of the Forest Research Institute (FRI), Myanmar and the KUN, Kunming Institute of Botany, Chinese Academy of Sciences.

3.3 Extraction and Isolation

The air-dried, powdered *L. aequata* plant (3.13 kg) was exhaustively extracted with EtOH (4 × 15 L) at room temperature for 3 days every time. The EtOH extracts (292 g) were suspended in H2O and further partitioned with petroleum ether, ethyl acetate, and n-butanol to yield petroleum ether-soluble (discarded), ethyl acetate-soluble (71.9 g, part A), and n-butanol-soluble parts (40.9 g, part B), respectively.

Part A was subjected to column chromatography (silica gel; petroleum ether-EtOAc, 20:1, v/v) to yield two fractions (A1 and A2). Fraction A1 was separated on an RP-18 silica gel column eluted with MeOH–H2O (30% → 100%) to yield three main subfractions. The 30% MeOH-eluted portion was purified by Sephadex LH-20 column chromatography (MeOH) and semipreparative HPLC [Agilent Zorbax SB-C18 column, MeOH–H2O (containing 0.05% TFA), 30:70, 2 mL/min] to yield 14 (1.2 mg, \(t_R = 19.652 \text{ min} \)) and 15 (2.5 mg, \(t_R = 22.485 \text{ min} \)). The 50% MeOH-eluted portion was purified by Sephadex LH-20 column chromatography (MeOH) and semipreparative HPLC [Agilent Zorbax SB-C18 column, MeOH–H2O (containing 0.05% TFA), 25:75, 2 mL/min] to yield 17 (6.2 mg, \(t_R = 25.766 \text{ min} \)) and 22 (3.1 mg, \(t_R = 43.296 \text{ min} \)). The 60% MeOH-eluted portion was purified by Sephadex LH-20 column chromatography (MeOH) and semipreparative HPLC [Agilent Zorbax SB-C18 column, MeOH–H2O (containing 0.05% TFA), 40:60, 2 mL/min] to yield 18 (10.5 mg, \(t_R = 45.494 \text{ min} \)). Fraction A2 was separated on an RP-18 silica gel column eluted with MeOH–H2O (20% → 100%) to yield one main fraction. The 40% MeOH-eluted portion was purified by Sephadex LH-20 column chromatography (MeOH) to give three main subfractions, A2-1, A2-2, and A2-3. A2-1 was subjected to silica gel column chromatography eluted with CH2Cl2–acetone (20:1) to yield A2-1-1 and A2-1-2. A2-1-1 was isolated by semipreparative HPLC (Agilent Zorbax SB-C18 column, MeOH–H2O, 42:58, 2 mL/min) to yield 16 (3.6 mg, \(t_R = 9.671 \text{ min} \)) and 6 (1.6 mg, \(t_R = 29.399 \text{ min} \)). A2-1-2 was isolated by semipreparative HPLC (Agilent Zorbax SB-C18 column, MeOH/H2O, 42:58, 2 mL/min) to yield 5 (2.3 mg, \(t_R = 14.800 \text{ min} \)), 4 (1.4 mg, \(t_R = 22.348 \text{ min} \)), 3 (1.2 mg, \(t_R = 26.288 \text{ min} \)), and 1 (0.9 mg, \(t_R = 27.934 \text{ min} \)). A2-2 was isolated by a silica gel column eluted by CH2Cl2–MeOH (20:1) and semipreparative HPLC [Agilent Zorbax SB-C18 column, MeOH/H2O, 45:55, 2 mL/min] to yield 12 (3.0 mg, \(t_R = 18.931 \text{ min} \)) and 13 (1.7 mg, \(t_R = 20.902 \text{ min} \)). A2-3 was purified by semipreparative HPLC (Agilent Zorbax SB-C18 column, MeOH–H2O, 40:60, 2 mL/min) to yield 10 (2.7 mg, \(t_R = 19.265 \text{ min} \)), 8 (2.7 mg, \(t_R = 27.377 \text{ min} \)), and 9 (1.4 mg, \(t_R = 33.077 \text{ min} \)).

Part B was subjected to column chromatography (silica gel; CH2Cl2/MeOH, 5:1 → 1:1, v/v) to yield two fractions (B1 and B2). Fraction B1 was separated on an RP-18 silica gel column eluted with MeOH/H2O (10% → 100%) to yield two main subfractions. The 10% MeOH-eluted portion was purified by Sephadex LH-20 column chromatography (MeOH), silica gel column chromatography (CH2Cl2/ MeOH, 20:1), and semipreparative HPLC (Agilent Zorbax SB-C18 column, MeOH–H2O, 20:80, 2 mL/min) to yield 2 (11.6 mg, \(t_R = 17.869 \text{ min} \)). The 20% MeOH eluted part was purified by Sephadex LH-20 column chromatography (MeOH) and semipreparative HPLC (Agilent Zorbax SB-C18 column, MeOH–H2O, 25:75, 2 mL/min) to yield 20 (3.6 mg, \(t_R = 26.426 \text{ min} \)) and 21 (3.3 mg, \(t_R = 28.393 \text{ min} \)). Fraction B2 was separated on an RP-18 silica gel column eluted with MeOH–H2O (5% → 100%) to yield three main subfractions. The 10% MeOH-eluted part was purified by Sephadex LH-20 column chromatography (MeOH) and silica gel column chromatography (CH2Cl2–MeOH, 20:1) to yield 23 (2.3 mg) and 19 (4.0 mg). The 30% MeOH-eluted part was purified by Sephadex LH-20 column chromatography (MeOH), silica gel column chromatography (CH2Cl2–MeOH, 20:1), and semipreparative HPLC (Welch Ultimate AQ-C18 column, CH3CN–H2O, 15:85, 1 mL/min) to yield 7 (2.6 mg, \(t_R = 24.990 \text{ min} \)). The 40% MeOH-eluted part was purified by Sephadex LH-20 column chromatography (MeOH) and semipreparative HPLC (Agilent Zorbax SB-C18 column, MeOH–H2O, 40:60, 2 mL/min) to yield 11 (10.5 mg, \(t_R = 15.128 \text{ min} \)).

3.4 Spectroscopic Data of Compounds

3.4.1 (75,8R)-9'-O-Acetylatedrusin (1)

White needles (MeOH); mp 176–179 °C; [α]D23 = −13 (c 0.06, MeOH); UV (MeOH) \(λ_{max} \) (log ε) 306 (3.00), 283 (3.58), 224 (4.02), 204 (4.52) nm; ECD (c 0.009, MeOH) \(λ_{max} \) (Δε) 294 (+0.52), 241 (+0.47), 226 (−0.73), 211 (+3.66), 202 (−2.84) nm; 1H and 13C NMR data, see Table 1; ESIMS m/z 411 [M + Na]+; HRESIMS m/z 411.1415 [M + Na]+ (calcd for C24H23NaO7, 411.1420).
3.4.2 (35,45)-4-Chloro-3-hydroxypiperidin-2-one (2)

Light yellow solid; [α]D₁₉ -24 (c 0.08, MeOH); UV (MeOH) λ_{max} (log ε) 289 (2.19), 256 (1.92), 197 (3.47) nm; ECD (c 0.016, MeOH) λ_{max} (Δε) 221 (−0.97) nm; 1H and 13C NMR data, see Table 2; ESIMS m/z 172 [M + Na]⁺; HRESIMS m/z 172.0135 [M + Na]⁺ (calcd for C₃H₈CINaO₂, 172.0141).

3.4.3 9'-O-Acetylisolariciresinol (3)

White solid; [α]D₂₅ -6 (c 0.09, MeOH); ECD (c 0.010, MeOH) λ_{max} (Δε) 217 (−0.66), 205 (+0.39) nm; 1H and 13C NMR data, see Table 1; ESIMS m/z 425 [M + Na]⁺.

3.5 In Vitro Antimicrobial Assays

The bacterial strains, *E. coli* ATCC25922, *S. aureus* subsp. *aureus* ATCC29213, *S. enterica* subsp. *enterica* ATCC14028, and *P. aeruginosa* ATCC272853, and the fungal strain, *C. albicans* ATCC10231, were purchased from China General Microbiological Culture Collection Center. The antimicrobial assays were performed according to modified versions of the CLSI (formerly NCCLS) methods as described previously [43, 44]. Ceftriaxone and benzylpenicillin sodium were used as the positive control in the antibacterial assay and amphotericin B was used as the positive control in the antifungal assay.

3.6 ECD Calculations

Computational methods are presented in Supplementary Material.

4 Conclusion

Twenty-three compounds including one new lignan, one new lactam, five known lignans, four flavonoid glycosides, and other compounds were isolated from the ethanol extracts of the aerial parts of *L. aequata* collected from Myanmar. 3,4,5-Trihydroxybenzoic acid ethyl ester (17) showed the weak inhibitory activities against *E. coli* and *S. enterica* subsp. *enterica*.

Acknowledgements We thank Dr. Jie Cai at Kunming Institutes of Botany, Chinese Academy of Sciences, for collecting plant materials. This study was supported by the Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (Grant Nos. 2015CASE-ABRIRG001 and Y4ZK111B01), and the International Partnership Program of Chinese Academy of Sciences (153631KYSB20160004).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. R.A. DeFilipps, G.A. Krupnick, PhytoKeys 102, 1–341 (2018)
2. K.M. Lwin, M.K.T. Lwin, Medicinal Plant List of Myanmar (FAME Publishing House, Yangon, 2015)
3. T. Shin, K. Fujikawa, A.Z. Moe, H. Uchiyama, J. Ethnobiol. Ethnomed. 14, 48 (2018)
4. H.G. Ong, S.M. Ling, T.T.M. Win, D.H. Kang, J.H. Lee, Y.D. Kim, J. Ethnopharmacol. 225, 136–158 (2018)
5. H.G. Ong, S.M. Ling, T.T.M. Win, D.H. Kang, J.H. Lee, Y.D. Kim, J. Herb. Med. 13, 91–96 (2018)
6. N.N. Win, T. Ito, S. Amaiit, T. Kodama, M. Tanaka, H. Ngwe, Y. Asakawa, I. Abe, H. Morita, J. Nat. Prod. 78, 2306–2309 (2015)
7. N.N. Win, S.Y. Woo, H. Ngwe, P. Prema, C.P. Wong, T. Ito, Y. Okamoto, M. Tanaka, H. Imagawa, Y. Asakawa, I. Abe, H. Morita, Fitoterapia 127, 308–313 (2018)
8. N.N. Win, S. Awale, H. Esumi, Y. Tezuka, S. Kadota, Bioorg. Med. Chem. 16, 8653–8660 (2008)
9. N.N. Win, S. Awale, H. Esumi, Y. Tezuka, S. Kadota, Bioorg. Med. Chem. Lett. 18, 4688–4691 (2008)
10. M. Shoji, S.Y. Woo, A. Masuda, N.N. Win, H. Ngwe, E. Takahashi, H. Kido, H. Morita, T. Ito, T. Kuzuhara, BMC Complement. Altern. Med. 17, 96 (2017)
11. T.S. Moe, H.H. Win, T.T. Hlaing, W.W. Lwin, Z.M. Htet, K.M. Mya, J. Integr. Med. 16, 358–366 (2018)
12. T. Li, D. Zhang, T.N. Oo, M.M. San, A.M. Mon, P.P. Hein, Y. Wang, C. Lu, X. Yang, Evid.-Based. Complement. Altern. Med. 45, 78–96 (2018). https://doi.org/10.1155/2018/2812908
13. J.E. Molina, J. Wen, L. Sruwe, Bot. J. Linn. Soc. 171, 354–376 (2013)
14. Z.Y. Zhu, Illustrated Handbook for Medicinal Materials from Nature in Yunnan, vol. 5 (Yunnan Scientific and Technological Press, Kunming, 2009), pp. 115–169
15. J. Graham, M. Quinn, D. Fabricant, N. Farnsworth, J. Ethnopharmacol. 73, 347–377 (2000)
16. W. Lakornwong, K. Kanokmedhakul, S. Kanokmedhakul, Nat. Prod. Res. 28, 1015–1017 (2014)
17. J. Yang, T.J. Huang, J.P. Luo, H. Li, Y.H. Wang, Nat. Prod. Res. Dev. 30, 1382–1386 (2018)
18. Z. Chen, J. Wen, Leeaceae, in Flora of China, vol. 12, ed. by Z.-Y. Wu, P.H. Raven (Missouri Botanical Garden Press, St. Louis, 2007), pp. 115–169
19. S. Jain, N. Manikpuri, K. Manoj, Biosci. Biotechnol. Res. Asia 7, 453–456 (2010)
20. A. Morita, K. Kanokmedhakul, S. Kanokmedhakul, Nat. Prod. Res. 28, 1015–1017 (2014)
21. J. Yang, T.J. Huang, J.P. Luo, H. Li, Y.H. Wang, Nat. Prod. Res. Dev. 30, 1382–1386 (2018)
22. Z. Chen, J. Wen, Leeaceae, in Flora of China, vol. 12, ed. by Z.-Y. Wu, P.H. Raven (Missouri Botanical Garden Press, St. Louis, 2007), pp. 115–169
23. S. Jain, N. Manikpuri, K. Manoj, Biosci. Biotechnol. Res. Asia 7, 453–456 (2010)
23. Z. Wu, Y. Lai, L. Zhou, Y. Wu, H. Zhu, Z. Hu, J. Yang, J. Zhang, J. Wang, Z. Luo, Sci. Rep. 6, 24809 (2016)
24. S.V. Pullela, S. Takamatsu, S.I. Khan, I.A. Khan, Planta Med. 71, 789–791 (2005)
25. L.H. Xie, T. Akao, K. Hamasaki, T. Deyama, M. Hattori, Chem. Pharm. Bull. 51, 508–515 (2003)
26. J.A. Park, H.J. Kim, C. Jin, K.T. Lee, Y.S. Lee, Arch. Pharm. Res. 26, 1009–1013 (2003)
27. G. Jayaprakasha, M. Ohnishi-Kameyama, H. Ono, M. Yoshida, L. Jagannohan Rao, J. Agric. Food Chem. 54, 1672–1679 (2006)
28. A. Kuruüzüm-Uz, Z. Güvenalp, C. Kazaz, L.Ö. Demirezer, Turk. J. Pharm. Sci. 10, 177–184 (2013)
29. M.A. Beck, H. Härberlein, Phytochemistry 50, 329–332 (1999)
30. J.T. Han, M.H. Bang, O.K. Chun, D.O. Kim, C.Y. Lee, N.I. Baek, Arch. Pharm. Res. 27, 390–395 (2004)
31. J.P.V. Leite, L. Rastrelli, G. Romussi, A.B. Oliveira, J.H. Vilegas, W. Vilegas, C. Pizza, J. Agric. Food Chem. 49, 3796–3801 (2001)
32. D.K. Kim, K. Lee, Arch. Pharm. Res. 26, 735–738 (2003)
33. M. Efdi, T. Itoh, Y. Akao, Y. Nozawa, M. Koketsu, H. Ishihara, Bioorg. Med. Chem. 15, 3667–3671 (2007)
34. S.Y. Lee, S.U. Choi, J.H. Lee, D.U. Lee, K.R. Lee, Arch. Pharm. Res. 33, 515–521 (2010)
35. X. Zhang, H. Gao, N.L. Wang, X.S. Yao, Chin. Tradit. Herb. Drugs 37, 652–655 (2006)
36. U. Mühlencebeck, A. Kortenbusch, W. Barz, Phytochemistry 42, 1573–1579 (1996)
37. S. Takaoka, N. Takaoka, Y. Minoshima, J.M. Huang, M. Kubo, K. Harada, H. Hioki, Y. Fukuyama, Tetrahedron 65, 8354–8361 (2009)
38. T. Takahashi, M. Miyazawa, Pharmazie 65, 913–918 (2010)
39. X.N. Zhong, H. Otsuka, T. Ide, E. Hirata, Y. Takeda, Phytochemistry 52, 923–927 (1999)
40. Y. Yamano, M. Ito, Chem. Pharm. Bull. 53, 541–546 (2005)
41. M. Adfa, T. Yoshimura, K. Komura, M. Koketsu, J. Chem. Ecol. 36, 720–726 (2010)
42. M. Miyazawa, J. Anzai, J. Fujioka, Y. Isikawa, Nat. Prod. Res. 17, 337–339 (2003)
43. CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard, M7-A7 (Clinical and Laboratory Standards Institute, Wayne, 2006)
44. NCCLS, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved standard, M38-A (National Committee on Clinical Laboratory Standards, Wayne, 2002)