Microgrids operation by considering Demand response and Supply programs in the presence of IGDT-Based Reverse Risk

MEHRDAD MOVAHEDPOUR1, MOHAMMAD JAVAD KIANI∗1, MAHMOUD ZADEHBAGHERI∗1, SIRUS MOHAMMADI2

1Department of Power Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran.
2Department of Electrical Engineering, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.

ABSTRACT Concerning the advantages of smart microgrids and the importance of selecting and using technologies accustomed to optimized planning and design of typology and capacity of supplies, demand response programs, and energy-storage charges, the existing research has focused on the optimized design of microgrids using ant colony optimization algorithm. Conditions of the optimization problem are enacted on the objective function based on technical and operational limitations of supplies and microgrids, which may lead to the limitation of response space of the problem. Additionally, a methodology is proposed for modeling and analyzing a novel design to consider the uncertainty of production and demand with reverse risk in the design of residential microgrids. The proposed methodology focuses on the uncertainty of photovoltaic production and load demand by solving two-dimensional multipurpose optimization problems based on information gap decision theory (IGDT). In the mentioned approach, the photovoltaic generation’s uncertainty and charge are integrated into an equation to be solved as a problem. Regardless of the likelihood density function of uncertainty parameters and without preparing a firm framework, the current method integrates wind and photovoltaic production into the microgrids. The results of the mentioned method are conclusive, which makes the problems solvable.

INDEX TERMS Ant colony algorithm; Distributed generation units; Demand response; IGDT; Microgrid; Multipurpose stochastic optimization.

ABBREVIATIONS

ACO Ant Colony Optimization
ACSC Annual Capital Service Cost
DRP Demand Response Programming
DG Distributed Generation
DNO Distribution Network Operator
DPF Distributed Particle Filter
DER Distributed Energy Resources
EMS Energy Management System
GA Genetic Algorithm
GHG Green House Gas
IMO Independent Market Operator
IGDT Information Gap Decision Theory
MO Market Operator
MMG Multi-Microgrids
MG Main Grid
O&M Operation and Maintenance
PSO Particle Swarm Optimization
PV Photovoltaic
RER Renewable Energy Resources
ROA Return On Assets
RTP Real Time Pricing
WT Wind Turbine

I. INTRODUCTION

Due to various equipment installed in microgrids, and different types of technology, capacity, technical parameters, investment expenses, and productivity, there is a wide range of responses to microgrid design problems. So, to find the optimized response, the design problem of microgrids can be stated as an optimization problem aimed at minimizing expenses of microgrid design. In recent research, it has been attempted to design an optimized model of microgrids. Nevertheless, a few types of research
have focused on optimized modeling of residential microgrids. The optimized design of microgrids has been investigated as a case study. Robust optimization has been used for local distributed generation units to minimize investment, productivity, and pollution expenses [1]. Capacity planning is investigated separately [2]. Determination of optimized energy storage capacity in microgrids to minimize expenses is investigated [3]. The environmental effects of installing wind and photovoltaic units and diesel units in remote microgrids are investigated [4, 5]. An optimal microgrid design was established considering load and PV power output uncertainties to promote the supply-demand balance using the particle swarm optimization (PSO) algorithm [6]. Some other papers have studied the multi-objective problem in multi-grid networks. Ref [7] designed a market operator (MO) and a distribution network operator (DNO) for a network of microgrids in consideration of multiple objectives. In [8], a new market mechanism has proposed to quantify the value of emergency energy transactions in renewable-based multi-microgrid (MMG) systems. Ref [9] addressed the energy dispatch problem for multi-stakeholder multiple microgrids (MMGs) under uncertainty while considering independent market operators (IMOs). Ref [10] has done an optimal design of microgrid considering the dynamic state of distribution units by distributed particle filter (DPF) technique. The development design of microgrids, including distributed generation units and CHP, is investigated to minimize investment, productivity, and pollution expenses in microgrids [11]. A novel method is proposed for the design and productivity of microgrids connected to the network. The mentioned method is based on a decision tree [12]. In the research, as mentioned earlier, the design of microgrids is generally discussed, and there has not been a point related to residential microgrids. The optimized capacity of photovoltaic units and batteries installed in residential microgrids is calculated to minimize annual expenses [13]. A residential microgrid model including wind-power and photovoltaic units is discussed. The design problem of residential microgrids is expressed as an optimization problem in this research which is investigated using PSCAD in order to evaluate the effect of these units and other parameters on the microgrid [14]. In other researches which have focused on the same subject, potential effect of EVs and inflexible charges are investigated [15-19]. Short-term planning of smart grids has been done to find the optimized control on economic distribution in DSM [20-27]. Due to the usage of renewable resources in microgrids, some of the parameters, including spatial factors, temperature, sunray, and wind speed, can affect the output of photovoltaic systems. These parameters can lead to unexpected changes in PV output [28, 29]. Under the mentioned conditions, suitable methods and approaches must be used to compensate for the complications arising due to the uncertainty of wind and photovoltaic power plants, which affect the productivity of microgrids. For instance, modeling the uncertainty of renewable resources using random techniques and fuzzy approaches has been investigated in many studies [15, 18]. Although advantages of the mentioned techniques have been discussed, these techniques are not free of disadvantages. For instance, random methods such as Monte Carlo [17, 19], scenario-based modeling [16, 30], and point estimation [20] cannot predict uncertainty without probability density function. The fuzzy technique needs a membership function. Additionally, fuzzy numbers are not easy to work with [21]. Recently, information gap decision theory (IGDT) has been a promising method for applicable industrial programs in order to deal with uncertainty. Specially, power system engineers who try to reduce productivity expenses are into using the mentioned method, IGDT. Accordingly, this theory is no dependent upon information related to past inclination of uncertainty parameters [22, 23]. For instance, options of purchasing energy for retailers and wholesalers are mentioned by [24] and [25] respectively. Optimized production strategies of power markets are mentioned based on IGDT [26]. Additionally, [27] have met demands arisen for huge electric consumption based on IGDT. The known theory of IGDT explains uncertainty of power production in wind plants [23, 31-34]. However, daily changes of uncertainty parameters are not investigated. Ref [35] focus on IGDT for models based on UC concerning the uncertainty of wind plants and regardless of simultaneous uncertainty. A hierarchical management system of frequency and energy is mentioned, composed of an island microgrid [36]. However, values of uncertainty parameters are not investigated simultaneously. The novelty of this work lies in the creation of an integrated latent model that takes advantage of different aspects and features of energy consumption in modern energy systems. One of the designed microgrid features is that the load flexibility obtained by using demand response smart grid programs that plan high-consuming electrical appliances like washing machines, dryers, dishwashers, and electric cars is intended to user benefit rather than user benefit their random access. In this paper, in order to evaluate the efficiency of the designed microgrid from the economic and reliability perspective, error occurrence and blackout likelihood in residential...
The recommended method is enacted on a residential microgrid in Okinawa, Japan [37]. The block diagram is shown in Figure 1. Thus, to determine the strength and resistance of the system for supplying the required demand, the maximum uncertainty radius of wind and photovoltaic resources and consumption load are taken into account based on IGDT by solving a multipurpose optimization problem. Time considered in a model is Δt=1 which is discarded to simplify the equations.

\[p_{\text{wind}}^n(t) + p_{\text{PV}}^n(t) + p_{\text{diesel}}(t) \leq p_{\text{grid}}(t) + p_{\text{load}}(t) \]
\[\eta_{\text{AC/DC}} \left[p_{\text{wind}}^n(t) + p_{\text{PV}}^n(t) \right] + p_{\text{diesel}}^n(t) = p_{\text{grid}}(t) \]

According to the fact that production of renewable resources fluctuates and can be affected easily, renewable production can be way higher than consumption. Therefore, renewable production can be limited based on the following restrictions which can restrict power distribution:

\[p_{\text{wind}}^n(t) + p_{\text{PV}}^n(t) \leq N_{\text{wind}} \cdot P_{\text{wind}}(t) \]
\[p_{\text{PV}}^n(t) + p_{\text{wind}}^n(T) \leq N_{\text{PV}} \cdot P_{\text{PV}}(t) \]

The power which is sold to or purchased from the main grid cannot exceed the maximum amount mentioned in the contract:

\[p_{\text{grid}}(t) + p_{\text{load}}^n(t) \leq u(t) \cdot P_{\text{grid}} \]
\[p_{\text{load}}(t) \leq (1 - u(t)) \cdot P_{\text{grid}} \]

Generally, \(u \) is the only binary variable. This variable restricts purchasing power from and selling power to the main grid, which is impossible in the real world. According to the following equation, the production capacity of 1 kW of wind unit per hour can be

![Block diagram of the proposed microgrid.](image-url)
explained as a function of wind speed and parameters of wind turbines:

$$P_{WT}(t) = \begin{cases} 0, & \text{if } v(t) < v_{c1} \text{ or } v(t) > v_{c2} \text{ or } v(t) > v_{r} \left(\frac{v(t) - v_{c1}}{v_{r} - v_{c1}} \right) \\ f, & \text{if } v(t) > v_{r} \text{ and } v(t) < v_{c2}, \text{ if } v(t) > v_{r} \text{ or } v(t) < v_{r}. \end{cases}$$

(7)

Value of the parameters v_{c1}, v_{c2} and v_{r} are 3, 10, and 20 m/s, respectively. The diagram is shown in Figure 2 [37].

FIGURE 2. The output curve of a 1kw wind turbine.

According to [37], N_{WT} is considered a continuous variable. Production output of 1 kW for a photovoltaic unit can be stated as a function of I_{G} and T_{a}:

$$T_{a}(t) = T_{s}(t) + I_{G}(t) \frac{NOCT - 20}{0.8}$$

(8)

$$P_{PV1}(t) = Y_{d} \frac{I_{G}(t)}{I_{S}} \left[1 - \frac{K_{r}}{100} (T_{a}(t) - T_{STC}) \right]$$

(9)

In the above equation, IG per hour depends on the solar panel’s inclination angle, 30 degrees as the optimized angle [37].

B. Charge and Discharge Model Of The Battery

The balance of energy equation for a battery is explained as follows:

$$Q_{B}(t+1) = Q_{B}(t) + \eta_{r} P_{ch}(t) - P_{Dx,b}(t)$$

(10)

In the equation mentioned above, energy stored in the battery at $t+1$ is a function of energy stored at t and the amount of charge and discharge at t. According to the following equations, energy stored in the battery per hour is limited by the minimum and maximum value of SOC:

$$Q_{B}(t) \leq SOC_{B} \cdot N_{B}$$

(11)

$$Q_{B}(t) \geq SOC_{B} \cdot N_{B}$$

(12)

The total reduction of battery capacity at every time can be calculated as the following:

$$Q_{f}(t+1) = Q_{f}(t) + Z_{B} \cdot P_{Dx,b}(t)$$

(13)

According to the above equation, Z_{B} expresses the linear depreciation coefficient, which is investigated in some research for all battery technologies based on long-term measurement of the electric field in the energy storage system. To make sure that all energy expenses are taken into account, energy stored in the battery at the end of the period must be more than the energy at the beginning:

$$Q_{f}(T) \geq SOC_{f} \cdot N_{B}$$

(14)

According to the following equations, the charge and discharge battery’s power is restricted by technical features of the battery:

$$P_{ch}(t) \leq N_{B} \cdot P_{B}$$

(15)

$$P_{Dx,b}(t) \leq N_{B} \cdot P_{B}$$

(16)

C. INVERTER MODEL

According to the following equation, the nominal capacity of the bilateral inverter must be bigger than electrical power passing through the inverter in both directions of AC to DC and vice versa:

$$\eta_{DC/AC} \left[P_{Dx,b}(t) + P_{Dc}(t) \right] \leq N_{iw}$$

(17)

$$\eta_{AC/DC} \left[P_{WT}(t) + P_{PEC}(t) \right] \leq N_{iw}$$

(18)

D. CONSUMPTION LOAD MODEL

In the current paper, consumption load is explained in three ways: Thermal load: TRNSYS software packages are used to predict the annual thermal load required for a Japanese household living in a 100 m² one-story building in Okinawa. According to Figure 3, the consumption load of residential microgrids can be calculated by multiplying the figure’s height by the number of houses.

FIGURE 3. The profile of annual consumption load for a 100 m² residence in Okinawa, Japan [37].
Uncontrollable appliances: Every house is laden with uncontrollable appliances such as cooking machines, hairdryers, vacuum cleaners, lighting, and computers. PNCL indicates these devices.

1 - Controllable loads:
In Table (1), three different patterns of charging time of automobiles are mentioned.

TABLE 1. The electrical appliances and their features.

Appliance	Power (kW)	Duration (h)	Usage Freq	Shifting Window
Washing machine	0.5	1	0.7	(07:00-24:00)
Cloth dryer	1.1	1	0.7	(07:00-24:00)
Dishwasher	0.9	1	1	(18:00-24:00)
EV1	2	3	0.4	(00:00-07:00)
EV2	2	3	0.3	(18:00-24:00)
EV3	2	3	0.3	(00:00-24:00)

According to this modeling methodology, to reduce the problem dimensions and the time required for optimizing consumption loads, both uncontrollable and controllable consumers must be included in the problem. Total consumption load is bigger than or equal to uncontrollable and controllable consumption loads plus unsupplied energy. This equation can be true for every interval at T:

$$\sum_{i \in H} P_L(t) \geq \sum_{m \in A} N_{App}^m P_{App}^m D_{App}^m F_{i,m} + \sum_{i \in H} P_{NCL}(t) \tag{19}$$

In the above relation, $F_{i,m}$ indicates the minimum operational time for m during H_i to D_{App}^m ration, which is shown as the following:

$$F_{i,m} = 1 - \min \left\{ \frac{k_{i,m}}{D_{App}^m}, 1 \right\} \tag{20}$$

Some appliances such as washing machines must be kept on continuously when they are supposed to be used. Some other appliances, such as electric cars, do not need to be continuously connected to the network. They can be charged for an hour, and then they can be disconnected. It is possible to charge them later again. In this relation, $k_{i,m}$ indicates maximum continuous hours H_i/H_m: required for each appliance (m). Additionally, this parameter shows the total hours H_i/H_m: an appliance is on continuously (such as charging electric cars). According to the following relation, consumption load at $t \in T$ must be bigger than or equal to uncontrollable subtraction loads from unsupplied loads at the same time to make sure that controllable loads are supplied:

$$P_L(t) \geq P_{NCL}(t) \tag{21}$$

The following relation shows that for every D-hour period, the total consumption load is equal to the sum of controllable and uncontrollable loads at the same period:

$$\sum_{i \in H} P_L(t) = \sum_{m \in A} N_{App}^m P_{App}^m D_{App}^m + \sum_{i \in H} P_{NCL}(t) \tag{22}$$

Some appliances need a network connection for more than an hour to work. According to table 1, an electric car needs 3×2 kWh, which means 2 kWh for 3 hours. Therefore, to prevent responses that may lead to energy accumulation in an hour, for example, 1×6 kWh for electric cars, the following relation is used to find the most suitable solution for the problem:

$$P_L(t) \leq \sum_{m \in A} N_{App}^m P_{App}^m Z_{t,m} + P_{NCL}(t) \tag{23}$$

Binary coefficient $Z_{t,m}$ is calculated based on consumption time:

$$z_{t,m} = \begin{cases} 1 & \text{if } t \in H_m \\ 0 & \text{if } t \notin H_m \end{cases} \tag{24}$$

E. OBJECTIVE FUNCTION
The objective function of the mentioned problem minimizes the annual grid expenses (ACS). Annual grid expenses include purchase, operation, maintenance (O&M), replacement and purchasing power from the main grid, and outage expenses (unsupplied energy). It is worth noting that profit made out of selling power to the grid is taken into account negatively. Accordingly, the objective function for the residential microgrids is defined as:

$$ACS = P2A \times \left[N_{pv} (p_{pv,ac} + p_{pv,dc}) + N_{inv} (p_{inv,ac} + p_{inv,dc}) + N_{b} (p_{b,ac} + p_{b,dc}) + Q \right] B_{Rep} + N_{rep} \sum_{i \in T} C_{rep}(t) (p_{PV}(t) + p_{Inv}(t) - C(t) p_{PV}(t)) \tag{25}$$

The period is taken three years. In relation (25), $Q_{f} (T)B_{Rep}$ indicates the loss of battery value reduction due to reduced capacity, and it is expressed as the multiplication of battery capacity at the end of the optimization period by replacement expenses. Photovoltaic and wind units do not need replacement expenses to be considered, while inverters need one replacement. All expenses must be calculated annually (annual value). In (25), all expenses must be mentioned annually to express objective function as the function of annual expenses of the considered grid. Because the microgrid simulation is performed only for one day (T), the amount of power bought
from the main grid and sold to the same grid plus unsupplied energy expenses are related to the same day. Therefore, to express the expenses annually, the number of days must be taken into account to calculate the annual operating expenses of the microgrid. Purchase, operation and maintenance expenses, and replacement costs (Table 4) can be indicated in present value. According to [33], the present value coefficient is multiplied by P2A (250). The present value coefficient is calculated as the following:

$$p2A = \frac{I_{int}(1 + I_{int})^{EL}}{(1 + I_{int})^{EL} - 1}$$

(26)

Variables of optimized design for microgrids problem are:

1. Variable 1: installed capacity of wind turbine (N_WT)
2. Variable 2: installed capacity of photovoltaic panels (N_PV)
3. Variable 3: installed capacity of the battery (N_B)
4. Variable 4: installed capacity of the inverter (N_Inv)
5. Variables 5-16: operation hours of appliances as controllable loads, which are expressed as the following:
 - Variable 5: operation hours of appliance 1 (washing machine)
 - Variable 6: operation hours of appliance 2 (cleaner-dryer machine)
 - Variable 7: operation hours of appliance 3 (dishwasher)
 - Variables 8-10: operation hours of appliance 4 (EV1 car) which is 3 hours
 - Variables 11-13: operation hours of appliance 5 (EV2 car) which is 3 hours
 - Variables 14-16: operation hours of appliance 6 (EV3 car) which is 3 hours

Accordingly, variables of the optimization problem can be expressed as $X = [x_1, x_2, ..., x_3, ..., x_{n-1}, x_n]$; in which has gotten 16 members. Variables 5-16 are related to the operation time of controllable appliances. Operation time is calculated by the ACO optimization algorithm, which is generally used to control when response loads are connected to the microgrid.

ACO flowchart is shown in Figure 4.

Stage 1: Information related to input data and system (Tables 4 and 5) as well as parameter regulation of ACO algorithm is investigated. Weighted coefficient and likelihood in the ACO algorithm are calculated for variables of the optimization problem.

Stage 2: This step focuses on producing primary responses, including optimization variables for each member of the population. For each member of the population, which is a 16-member vector of optimization variables, the purchasing power (AC and DC) or the power sold to the main grid (AC), reduction of battery capacity, and supplied power are calculated. Finally, the objective function of each member is determined based on (25).

Stage 3: After generating primary responses and objective functions for each member, the responses and objective functions are put in order and saved in the archive. Random samples are produced based on the probability model for the N_{sample}. The value of the objective function is calculated for each random sample. Random samples are merged with archived ones to delete outliers. The mentioned process repeats until the repetition number of the algorithm finishes.
III. INFORMATION GAP-BASED DECISION THEORY

IGDT method can compensate uncertainty of information-deficit problems to make the optimized decision [22]. The strength function expresses the most considerable uncertainty (failure is impossible) [31, 38]. Assume that the indefinite input parameters vector is indicated by R. Then, X can be a set of decision variables, and Γ can show a set of uncertainty. Unknown input parameters behave like the following:

\[\forall \gamma \in \Gamma(\gamma, \zeta) = \left\{ \gamma : \left| \frac{\gamma - \hat{\gamma}}{\gamma} \right| \leq \zeta \right\} \quad (27) \]

In the above mentioned, γ shows the uncertainty parameter and \(\hat{\gamma} \) is the predicted value of the uncertainty parameter. \(\zeta \) indicates the maximum deviation of the uncertainty parameter from the predicted value. This coefficient is called uncertainty radius. Accordingly, the strength function is:
\[\zeta(X, R_c) = \left\{ \zeta : R(X, \gamma) \geq R_c \right\} \quad (28) \]

In the above relation, \(R(X, \gamma) \) symbolizes the system model. The least requirement of the system can be set by RC. Strength function is shown by \(\zeta(X, R_c) \). It is worth noting that strength value is dependent on decision variables and the least requirements asked by RC. According to the mentioned relation, the general optimization problem is:

\[f(x, \gamma) \leq 0, \quad i \in \Omega_{\text{req}} \quad (29) \]

\[\gamma \in \Gamma \]

It is stated that there are no differences between uncertainty and predicted parameters:

\[f_0 = f(x, \gamma) \leq 0, \quad i \in \Omega_{\text{req}} \quad (32) \]

\[(x, \gamma) = 0, \quad j \in \Omega_{\gamma} \quad (34) \]

The initial value of the objective function shown by \(f_0 \) can be calculated via (34) - (36). If the uncertainty parameter exceeds the predicted value, decision-makers face two different risk-taking and risk aversion strategies. The risk aversion strategy is used for information analysis in the current study. To this end, the uncertainty parameter negatively affects the objective function. Uncertainty parameters can lead to an increase in the objective function. Therefore, finding the maximum radius of uncertainty parameters for inputs is possible using the mentioned strategy. Conservative decision-makers usually choose this strategy. It is expected to take an optimized set of decision-making variables into account to prevent the objective function from deviation. Also, the uncertainty parameter is quite different from the predicted value. It is worth noting that the maximum strength and resistance can be obtained if the objective function is not affected by the maximum radius of the uncertainty parameter. The mathematics of the strategy can be as the following:

\[\zeta = \zeta_c \quad (35) \]

\[(x, \gamma) \leq 0, \quad i \in \Omega_{\text{req}} \quad (36) \]

\[(x, \gamma) = 0, \quad j \in \Omega_{\gamma} \quad (37) \]

\[\left\{ \frac{f(x, \gamma) \leq \Lambda_c}{\Lambda_c = f_0(x, \gamma) + \xi_c |f_0(x, \gamma)|}, \gamma \in \Gamma \right\} \quad (38) \]

\(\Lambda_c \) shows the critical value that the objective function cannot exceed. Although this parameter can be defined based on decision making requirements, it is defined as a sub-function of \(f_0 \). Also, \(\zeta_c \) is a positive parameter that is set by decision-makers to be used to define the critical value of \(\Lambda_c \). Therefore, the mentioned strategy, which is defined for the EMS model, can be expressed as the following:

\[J_o = P2A \times \left[(N_{pv}(PV_{ac} + PV_{dc}) + N_{wt}(WT_{ac} + WT_{dc})) + N_p(B_{ac} + B_{dc}) + \sum_{p_{pv}}[C_p(0 - p_{pv}(0) - p_{pv}(0)) + C_{pv}(0)] \right] \quad (39) \]

\(J_o \) indicates the total expenses of the microgrid design (25). On the other hand, it is assumed that the output power of wind and photovoltaic units and power demands are not matched with the predicted values. According to reverse risk, power generation of wind and photovoltaic units is less than the predicted values, while system demand is more than the predicted demands. Accordingly, the following relations are added to the existing ones:

\[\left\{ \xi_c : \xi_c = \omega_{pv} \xi_{pv} + \omega_{dc} \xi_{dc} + \omega_{\gamma} \xi_{\gamma} \right\} \quad (40) \]

\[J \leq J_o + |J_o| \xi_c \quad (41) \]

\[P_{pv}^{c(h)} = P_{pv}(1 - \xi_{pv}), \forall t \in T \quad (42) \]

\[P_{pv}^{c(h)} = P_{pv}(1 - \xi_{pv}), \forall t \in T \quad (43) \]

In the above relations, \(\omega_{pv} \) and \(\omega_{pd} \) indicate weighted factors for objective functions \(\xi_{pv} \) and \(\xi_{pd} \), respectively. It is worth stating that different methods solve multipurpose optimization problems. Among the available methods, we can point to weighted sum, fuzzy method, and \(\epsilon \)-limitation methods [39]. According to the fact that the weighted sum is simplified [40], it is used in this study to calculate demand and supply simultaneously. It is worth noting that results obtained from weighted sum can be generalized due to conditions used in the mentioned method. Accordingly, other multipurpose optimization methods can provide the same solutions [41].

\[P_{pv}^{act}, P_{pu}^{act} \text{ and } P_{pv}^{act} \text{ can be replaced by } P_{pv}^{act}, P_{pv}^{act} \text{ and } P_{pv}^{act} \text{ in (1)-(4), (17)-(19), and (21)-(23) to increase the generation of wind and photovoltaic units and reduce loads.} \]

IV. RISK AVERTION OF IGDT BASED ON MICROGRID DESIGN

The following steps should be mentioned to examine the proposed model:
Step 1: preparing classified input information as known and predicted data. Available information includes equipment price, equipment features, uncontrollable loads, battery parameters, and inverter parameters. Predicted data for the daily generation of wind and photovoltaic units can be counted as input.

Step 2: according to the inputs prepared in the previous step and formulation of microgrid design, the ACO algorithm named optimization motor triggers problem solving and determination of the optimized equipment sizes and the optimized distribution according to technical requirements mentioned in the previous sections. Then, optimized total expenses can be sent to the following step. It is worth noting that some of the restrictions enacted on the microgrid design are used in the following steps. These restrictions can be taken as the output. This step’s number of optimization variables is 16 decision-making variables defined in section 2.

Step 3: the worsening extent of the objective function is selected to determine the exact threshold for total expenses in the face of uncertainty of renewable generation. Decision-makers set the threshold.

Step 4: IGDT can maximize the uncertainty radius of wind and photovoltaic generation based on the ACO algorithm. At the same time, load demand is met based on different restrictions mentioned in step 2 and enacted in step 3 to satisfy the system. The number of optimization variables of this step is 16 decision-making variables mentioned in step 1, 3 decision-making variables mentioned for uncertainty radius of wind and photovoltaic units and consumption load. The maximum value of these three variables is set to maximize objective function in 43 to prevent design expenses from exceeding critical value. The operational results determine the specific interval of demand and supply. Additionally, precise decision-making about equipment and its distribution is done. The Flowchart mentioned for the following steps can be seen in Figure 5. It is worth noting that the microgrid model can be explained as the summation of the relations mentioned in 48:
V. SIMULATION RESULTS
A simulation of the proposed method has been done for a residential microgrid in Okinawa, Japan [37], as shown in Figure 1. Ant colony optimization (ACO) in MATLAB has been used to simulate the method. The total consumption load for this microgrid is 4000 kWh for 24 hours. The number of subscribers connected to the microgrid is 266. Accordingly, the consumption load of every subscriber is 15 kWh in 24 hours. The effect of controllable loads can be expressed as a percentage of uncontrollable loads. Therefore, demand response is evaluated in 4 steps in which the percentage of controllable demand to consumption load ratio are 0%, 15%, 30%, and 45%, respectively. The diagram of the uncontrollable load is shown in Figure 6 for different deviation levels of wind standards. The average amount of uncontrollable load in every hour of the day can be calculated by averaging the annual values. The average temperature for every annual time can be seen in Figure 7. The average temperature for every day can be calculated by averaging the annual values.
M. Movahedpour et al.: Design of Microgrids Using Uncertainty of Demand and Supply in IGDT-Based Reverse Risk

FIGURE 6. The profile of annual uncontrollable load for every deviation of wind standard.

FIGURE 7. The temperature during the year.

The sunlight diagram can be seen in Figure 8.

The wind speed diagram is shown in Figure 9. The average wind speed is 4.68 m/s.

FIGURE 8. The sunlight diagram for 30 °C for every month of the year.

FIGURE 9. The wind speed diagram for every month of the year.

According to the fact that simulation of the microgrid is done for one sample day, weather data and consumption load collected for one year can be
averaged for one day to simulate data for one 24-hour day. Table 2 gives the information about averaged uncontrollable consumption load, averaged controllable consumption load for every subscriber, average temperature, wind speed, and sunlight for a 24-hour day. Information related to controllable loads is given in Table 1. To conduct the simulation, it must calculate controllable and uncontrollable consumption loads per every percentage of demand response for every demand response between 0% to 45%. To this end, the following hypotheses are considered: If the demand response is 0%, a controllable load is not used. In this case, the number of subscribers is 266. The average consumption load per subscriber and total microgrid load per hour is mentioned in Table 2.

If demand response is 15%, only the first three controllable appliances (washing machine, dishwasher, and dry-cleaner) are used. According to the fact that we have 226 subscribers, the total controllable load is 519 kWh. The uncontrollable load’s diagram must be multiplied by a coefficient to calculate consumption loads of 4000 kWh. The reason is that the total consumption load must be the same in every case to compare the results of various cases. It must be valid for 30% and 40% demand response percentages. In the case that demand response is 30%, almost 60% of subscribers use electric cars in addition to the first three appliances (washing machine, dishwasher, and dry-cleaner). In this case, the number of subscribers is 215 to have equal consumption load in different cases.

If demand response is 45%, all subscribers use all controllable appliances. Considering 190 subscribers for this case, the total uncontrollable load is as follows (Table 3).

Average sunlight (kWh/m²)	Average wind speed (m/s)	Average temperature (°C)	Average uncontrollable load (kW)	Total uncontrollable load (kW)	Hour
0.00	7.2220	22.95	0.4407	117.23	1
0.00	6.9345	22.71	0.3726	99.12	2
0.00	6.4055	22.73	0.3404	90.54	3
0.00	5.8880	22.58	0.3296	87.68	4
0.00	5.7845	22.59	0.3870	102.93	5
0.00	5.5775	22.67	0.4479	119.13	6
0.00	4.8530	22.76	0.4694	124.85	7
2.65	4.4160	22.70	0.5052	134.38	8
6.64	4.6805	22.76	0.5948	158.21	9
7.25	4.7265	22.81	0.7381	196.33	10
12.16	4.7265	22.77	0.7596	202.05	11
15.21	4.6575	22.82	0.7847	208.72	12
16.36	4.6575	22.86	0.8277	220.16	13
15.35	4.4505	22.87	0.7882	209.67	14
11.08	4.3125	22.91	0.8062	214.44	15
7.96	4.5540	23.06	0.8241	219.20	16
3.12	4.1630	23.11	0.8348	222.06	17
1.58	3.6800	23.13	0.8527	226.83	18
0.00	4.0365	22.99	0.9316	247.80	19
0.00	4.8875	22.90	0.8062	214.44	20
0.00	5.1405	22.74	0.6127	162.97	21
0.00	5.5545	22.86	0.5625	149.63	22
0.00	6.5320	22.92	0.5410	143.91	23
0.00	7.1415	22.85	0.4801	127.71	24
TABLE 3. The total uncontrollable load of microgrid for different percentages of demand responses.

Demand response 45% (kW)	Demand response 30% (kW)	Demand response 15% (kW)	Demand response 0% (kW)	Hour
72.96	82.26	102.03	117.23	1
61.69	69.55	86.27	99.12	2
56.35	63.53	78.80	90.54	3
54.57	61.53	76.31	87.68	4
64.06	72.23	89.58	102.93	5
74.15	83.59	103.68	119.13	6
77.70	87.61	108.66	124.85	7
83.64	94.29	116.96	134.38	8
98.46	111.01	137.69	158.21	9
122.19	137.76	170.87	196.33	10
125.75	141.78	175.85	202.05	11
129.90	146.46	181.65	208.72	12
137.02	154.48	191.61	220.16	13
130.50	147.13	182.48	209.67	14
133.46	150.47	186.63	214.44	15
136.43	153.81	190.78	219.20	16
138.21	155.82	193.27	222.06	17
141.17	159.16	197.41	226.83	18
154.22	173.88	215.66	247.80	19
133.46	150.47	186.63	214.44	20
101.43	114.36	141.84	162.97	21
93.13	104.99	130.23	149.63	22
89.57	100.98	125.25	143.91	23
79.48	89.61	111.15	127.71	24

Information about electricity prices bought from the main grid is mentioned in Figure 10. For hours between 7 and 23, the purchase is 0.32 S/kWh while determines 0.12 S/kWh for other hours. The sale price for the main grid is 80% of the purchase price.

The total uncontrollable load of microgrid for different percentages of demand responses is shown in Table 3. Simulation is done for 400 various percentages (0%, 15%, 30%, and 45%) of demand responses to examine the methodology.

TABLE 4. Ecnomics data for system components.

Initial acquisition costs	Initial replacement costs	Yearly O&M costs				
PV ($/kW)	WT ($/kW)	Battery ($/kWh)	Inverter ($/kW)	Battery ($/kWh)	Inverter ($/kW)	2% of initial acquisition costs
3000	2500	195	500	195	500	600

According to the above, the mentioned framework includes some of the recent research through which the framework is explained. Simulation is done for 400 various percentages (0%, 15%, 30%, and 45%) of demand responses to examine the methodology.

TABLE 5. Technical data and fixed values.

Nominal interest rate (%)	Inflation rate (%)	Project lifetime (years)	Pd (kW)	SOC	SOC0
A. BASE CASE (BC)

The current case study assumes that the uncertainty parameters related to wind power, solar energy, and demand equal the predicted values. The base case must be calculated for the objective function in the first stage. To this end, the uncertainty of wind and photovoltaic generation is not taken into account to focus on the determination of optimized annual expenses, equipment optimized sizes required for grid design, and explaining the role of productive resources in meeting demands. Total expenses of microgrid design are mentioned by (41), which is the summation of the purchase price, operation and maintenance expenses, and replacement and exchange prices. The related data is mentioned in Table 6. The objective function value for every percentage of demand response is sent to the second optimization level to conduct case study B. Additionally, the total consumption of energy and cooperation degree of generators in meeting demands (including purchasing power from the main grid, wind unit, photovoltaic unit, and battery which charge itself by discharging) is mentioned in the same Table for every percentage of demand response. In the last column of the same Table, battery charging capacity and the power sold to the main grid are mentioned. Figure 11 depicts the convergence of the objective function in the simulation of case study B for a demand response of 0% done based on ACO. According to this figure, the ACO managed to find the converged optimized response after 221 repetitions. Additionally, it is evident that the objective function starts at 245622 USD and goes to 237349 USD at the end.

FIGURE 11. The convergence process of the objective function regarding the base for demand response of 0%.

Despite complications of the optimization problem, ACO managed to find the optimized response to reduce the objective function into the converged value. The time interval for solving the optimization problem is taken 500 repetitions based on ACO. Consequently, we consider 50 particles, and the time would be 2 minutes. Table 7 represents appliances installed in the microgrid used in the current case study simulation. According to this Table, an increase in demand response leads to a reduction in battery capacity. The main battery in the microgrid can increase operational capacity by transporting consumption loads. Therefore, there is less need for batteries in times of increased demand responses because of the increase in the ability of consumption loads transportation. The increase in demand response leads to a reduction in the capacity of photovoltaic units, which may boost the capacity of wind units. An increase in demand response may cause higher delivery of consumption loads, leading to frequent usage of wind units and fewer photovoltaic ones.

TABLE 6. The summarizes the results of the base case.
Table 6 depicts the convergence of the objective function and the time interval for solving the optimization problem.

Despite complications of the optimization problem, ACO managed to find the optimized response to reduce the objective function into the converged value. The time interval for solving the optimization problem is taken 500 repetitions based on ACO. Consequently, we consider 50 particles, and the time would be 2 minutes. Table 7 represents appliances installed in the microgrid used in the current case study simulation. According to this Table, an increase in demand response leads to a reduction in battery capacity. The main battery in the microgrid can increase operational capacity by transporting consumption loads. Therefore, there is less need for batteries in times of increased demand responses because of the increase in the ability of consumption loads transportation. The increase in demand response leads to a reduction in the capacity of photovoltaic units, which may boost the capacity of wind units. An increase in demand response may cause higher delivery of consumption loads, leading to frequent usage of wind units and fewer photovoltaic ones. |

Summation of battery, power reduction in inverter, power sale to main grid (kWh)	Share of Power purchase from main grid (kWh)	Share of battery (discharging) (kWh)	Share of photovoltaic units (kWh)	Share of wind turbine (kWh)	Value of the load	The effect of demand response on expenses (%)	value of the objective function (f_d) ($)	Load response %
2109.1	1938.22	1290.65	1673.99	1206.23	0	4000	237349	0%
1890.75	1843.88	1088.85	1520.2	1437.82	518.7	3481.3	227389	15%
1585.94	1577.47	898.55	1401.9	1708.02	1193.3	2806.7	220590	30%

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
Battery discharge 30%, ours of the day 19.
e costs. 17. 10; 5 11. 9 9 15%
Sold power 00 when 45%
units increase early and late h
the wind unit response is not
distribution over the microgrid while demand
power and consumption loads in
In the following, the distribution of operational
time is simulated and evaluated

TABLE 7. appliances installed in the residential microgrids for
the base case.

Inverter capacity (kW)	Battery capacity (kWh)	Photovoltaic capacity (kW)	The capacity of wind turbine (kW)	Demand response
199	1784	283	375	0%
182	1413	257	477	15%
169	1151	237	531	30%
124	972	226	585	45%

The objective function for various demand response percentages is shown in Figure 12. So that, Increasing the amount of this percentage may reduce the microgrid’s expenses. If demand response is not considered, the total grid expense is 237349 USD. Consideration of a 15% demand response leads to a 4.2% reduction in expenses. In this case, the grid expense is 227389 USD. 30% and 45% increase in demand response can reduce expenses by 7.06% and 9.14%.

![Cost ($) vs Load response percent](image)

FIGURE 12. The effect of demand response on the objective function.

In the following, the distribution of operational power and consumption loads in a residential microgrid for 24 hours is simulated and evaluated concerning various percentages of demand response in the base case (A). Simulation of other cases leads to the same results; thus, the power distribution of case A is evaluated. Figure 13 shows power distribution over the microgrid while demand response is not considered. According to this figure, the wind unit operational capacity increases in the early and late hours of the day, while photovoltaic units increase at midday. As for charge and discharge ability, electricity is cheaper between 1:00 and 7:00 when microgrid demand is lower. Excess power is purchased from the main grid to charge the battery. On the other hand, electricity is expensive between 8:00 and 23:00 when the battery is used to meet microgrid demand to reduce costs. Obviously, between 11:00 and 14:00, when the photovoltaic generation is high, a part of that power is used to charge the battery. Then, the battery can be used in the early hours of the night when the photovoltaic unit generates no power. Additionally, the wind unit meets the demand at 24:00 when the photovoltaic unit has no generation. Since renewable units have the highest generation at 12:00 - 13:00, some of that power is sold to the grid at midday. Power distribution over the microgrid can be optimized to reduce expenses.

![Power distribution](image)

FIGURE 13. Power distribution over microgrid for the base case (a), and demand response of 0% (b).
The distribution of controllable loads for various demand responses is shown in Figure 14. As for demand response of 15%, controllable loads are postponed to 7:00 and 24:00 when electricity is cheap. A part of the controllable load is delivered to 13:00 when photovoltaic generation is high and the grid is loaded with the excess load. As for demand response of 30%, a part of controllable is delivered to 1:00, 2:00, 3:00, 7:00, and 24:00 when electricity is cheap. A part of the consumption load goes to low-demand hours (between 9:00 and 14:00 when photovoltaic generation is high or between 22:00 and 23:00 when the grid is asked for lower demand). As for demand response of 45%, a part of the consumption load is delivered to 1:00, 2:00, 3:00, and 24:00 when electricity is cheap. Another part is time-restricted and cannot be delivered in cheap hours. In this case, desired times can be 11:00 and 14:00 when photovoltaic generation is high or 22:00 and 23:00 when the grid faces less demand. Therefore, distribution is done in a way that grid expenses may reduce.

Power distribution over microgrid for demand response of 45% is shown in Figure 15. It is shown that wind generation is considered in the early and late hours of the day, while photovoltaic generation is the best option at midday. Between 1:00 and 7:00, when electricity is cheap and the demand is low, the line’s share of the power is bought from the main grid to charge the battery and meet controllable loads. Between 8:00 and 16:00, photovoltaic units can meet consumer demand. Therefore, there is no need to purchase the power or discharge the battery. Between 17:00 and 23:00, when photovoltaic generation reduces and controllable demands must be met, batteries are discharged into the grid. Obviously, at 24:00, when electricity is cheap and photovoltaic generation is zero, the main part of power is purchased from the main grid to meet consumption demands. Distribution over the microgrid represents the optimized power distribution at various hours to reduce microgrid expenses.
1 - IMPERFECT PV PREDICTION

In this case, it is assumed that distributed power flow during 24 hours is predicted. On the other hand, $\xi_{pd} = 0$. Accordingly, demand and supply are the same. Also, it is assumed that wind speed is predicted and $\xi_{wt} = 0$. In a photovoltaic system, a reduction in predicted power can negatively affect the objective function. In other words, expenses rise. According to (46), photovoltaic generation reduces to calculate the maximum uncertainty radius. In this case, ς_c goes from 0 to 40%. It aims to determine the microgrid’s resistance in a risk-averse method. Considering $|I_0| + |I_0| \varsigma_c$, the maximum uncertainty radius of the photovoltaic unit in the risk-averse method is determined. Table 8 summarizes the results of the case study. It is shown that the power supplied by the photovoltaic system is kept fixed while ς_c increases as expected. This Table mentions the power supplied by the various resources, objective function, and total energy consumption. It is worth noting that the energy supplied by the battery is calculated based on discharged power. Figure 16 shows the changes in different options against ς_c. As it is shown, an increase in ς_c may lead to a reduction in photovoltaic generation and its role in supplying demands. Accordingly, bigger batteries and wind units are designed for the microgrid to increase the generation of wind units and batteries. According to the figure, when $\varsigma_c = 36\%$ and expenses soar by 36%, uncertainty is 1 for the photovoltaic unit. On the other hand, the microgrid cannot meet demands when the uncertainty for the photovoltaic unit is 1.

TABLE 8. Summary of results obtained from B-1 for demand response of 45%.

Control ς_c value (%)	Cost function ($)	Value of the load	Wind unit	Photovoltaic unit	The maximum radius of uncertainty	Battery				
		Controllable (kW)	uncontrollable (kW)	Capacity value (kW)	Share (kW)	Capacity value (kW)	Share (kW)	Capacity value (kW)	Share of discharge (kW)	
0	215653	1510	2489	585	1881.72	226	1336.8	0	972	640.79
2	219666	1510	2489	607	1952.5	226	1253.95	0.062	977	644.76
4	224280	1510	2489	620	1994.5	226	1163.04	0.130	977	646.23
6	228592	1510	2489	632	2032.9	226	1030.70	0.229	994	660.18
8	232905	1510	2489	654	2103.7	226	906.37	0.322	996	681.75
10	237218	1510	2489	665	2391.0	226	811.45	0.393	1018	711.84
12	241531	1510	2489	698	2245.2	226	752.63	0.437	1056	734.33
14	245844	1510	2489	708	2277.4	226	652.37	0.512	1063	719.26
16	250157	1510	2489	722	2322.4	226	572.16	0.572	1122	731.58
18	254471	1510	2489	790	2541.1	226	499.97	0.626	1128	728.73
20	258784	1510	2489	800	2573.3	226	442.49	0.669	1128	729.88
22	263097	1510	2489	851	2737.3	226	374.31	0.720	1133	742.18
24	267410	1510	2489	899	2891.7	226	311.48	0.767	1169	773.94
26	271723	1510	2489	914	2940.0	226	267.36	0.800	1172	779.10
28	276036	1510	2489	990	3184.5	226	207.20	0.845	1177	765.56
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3172422, IEEE Access

2 - IMPERFECT WT PREDICTION

The effect of uncertainty on wind turbines is investigated. In a risk-averse strategy, wind turbines behave similarly to photovoltaic units. A reduction in the predicted power can negatively affect the objective function. This way, expenses increase. According to (45), wind turbine generation reduces risk-averse strategy. It is assumed that the power flow is predicted for 24 hours and $\xi^{\text{rd}} = 0$. Consequently, predicted demand and actual demand are the same. Additionally, the output of the photovoltaic system exceeds the predicted value and $\xi^{\text{pv}} = 0$. Under these circumstances, ζ_c changes from 0 to 40% to determine the maximum uncertainty radius to increase wind turbine output. It aims to determine microgrid resistance in risk-averse strategy when expenses for designing microgrid change from 0 to 40%. Table 9 is a summary of the results of this case study. In this Table, power supplied by different resources is mentioned. Figure 17 represents the role of various options against ζ_c. Accordingly, an increase in ζ_c may lead to a decrease in wind turbine output. Therefore, bigger photovoltaic units and batteries are required to increase power generation. The bigger batteries and PV cells lead to increased expenses in this case. According to figure 3, $\zeta_c = 40$% and $\xi^{\text{wt}} = 82.2\%$, only 17.8% of the predicted wind power meets demands.

![Image](72x402 to 310x626)

FIGURE 16. Changes made by different parameter choices in B-1.

Control value ζ_c	Cost function ($)	Value of the load	Wind unit	Photovoltaic unit	Battery					
	Controllable (kWh)	Uncontrollable (kWh)	Capacity value (kWh)	Share (kWh)	The maximum radius of uncertainty	Capacity value (kWh)	Share (kWh)	Capacity value (kWh)	Share (Discharge) (kWh)	
0	215653	1510	2489	585	1881.72	0	226	1336.8	972	640.79
2	219986	1510	2489	585	1772.58	0.058	239	1413.7	1011	666.05
4	224280	1510	2489	585	1682.26	0.106	254	1502.5	1048	689.39
6	228592	1510	2489	585	1618.28	0.140	261	1543.9	1060	697.28
8	232905	1510	2489	585	1550.53	0.176	275	1626.7	1103	724.22
10	237218	1510	2489	585	1460.21	0.224	276	1632.6	1109	729.61
12	241531	1510	2489	585	1409.41	0.251	292	1727.2	1147	752.72
14	245844	1510	2489	585	1324.73	0.296	292	1727.2	1156	760.08
16	250157	1510	2489	585	1241.93	0.340	293	1733.2	1203	801.16
18	254471	1510	2489	585	1181.72	0.372	296	1750.9	1219	813.38
20	258784	1510	2489	585	1100.80	0.415	296	1750.9	1231	824.58
22	263097	1510	2489	585	1016.13	0.460	297	1756.8	1300	872.05
24	267410	1510	2489	585	937.09	0.502	301	1780.5	1323	886.93
26	271723	1510	2489	585	861.82	0.542	301	1780.5	1339	900.78

TABLE 9. Results of B-2 with the demand response of 45%.
3 - IMPERFECT LOAD PREDICTION

Compared to the previous cases, the effect of load uncertainty is investigated here. Therefore, it is assumed that solar energy and wind speed are predicted, and PV output and wind power are the same as the predicted values. It means that \(\xi_{\text{PP}} = \xi_{\text{WT}} = 0 \). In wind turbines and PV units, a decrease in the predicted value can negatively affect objective function, increasing expenses. According to (47), system load is increased to calculate the maximum uncertainty radius in the RA strategy. Table 10 is a summary of the results obtained from this case study. It is shown that power supplied by PV unit is kept fixed while \(\zeta_c \); increases as expected. Figure 18 shows the changes caused by different energy resources. Figure 6 is a comparison between every resource and its base value when \(\zeta_c \); changes from 0 to 24%. It is evident that the energy fed by ESS increases while \(\zeta_c \) goes up while it has the same effect for both \(\zeta_c = 0 \) and \(\zeta_c = 20\% \).

4 - IMPERFECT WT AND PV LOAD PREDICTION

In cases, B-1, B-2, and B-3, the uncertainty of photovoltaic generation, wind power, and load are investigated, respectively. If the effect of uncertainty on both load and photovoltaic units matches the prediction, a multipurpose maximization problem is solved to determine \(\xi_{\text{PP}} \) and \(\xi_{\text{PD}} \). In the following relation, the weighted sum can be used to solve the optimization problem [43]. This method uses prioritization to select weighted coefficients [44, 45]. To this end, daily photovoltaic generation (primary value) is divided by daily consumption. Therefore, \(\omega_{PD} \) is taken as the unit value because deviation from the predicted value can significantly affect expenses which are shown in Figures 3 and 5. Table 11 is a summary of results. It is obvious that any changes in \(\zeta_c \) can lead to reduction in photovoltaic generation while load increases. Figure 19 represents the effect of various resources as well as the maximization of uncertainty on photovoltaic generation, wind power.

Table 10. Summary of results of B-3 for demand response of 45%.

Control value \(\zeta_c \) (%)	Cost function ($)	Value of the load	Wind turbine	Photovoltaic unit	Battery					
		Controllable (kWh)	Uncontrollable (kWh)	The maximum radius of uncertainty	Capacity value (kWh)	Share (kWh)	Capacity value (kWh)	Share (kWh)	capacity value (kWh)	Share (discharge) (kWh)
0		215653	1510	2489	0	585	1881.72	226	1336.8	972
2		219966	1544.73	2546.24	0.023	595	1913.88	240	1419.6	1023
4		224280	1580.97	2605.98	0.047	620	1994.30	263	1555.7	1033
6		228592	1614.19	2660.74	0.069	630	2026.47	270	1597.1	1049
8		232905	1644.39	2710.52	0.089	641	2061.85	290	1715.4	1062
10		237218	1677.61	2765.27	0.111	667	2145.48	296	1750.9	1067
12		241531	1698.75	2800.12	0.125	697	2241.98	300	1774.6	1086
14		245844	1738.01	2864.83	0.151	707	2274.15	313	1851.5	1089
16		250157	1762.17	2904.66	0.167	730	2348.13	319	1886.9	1099
18		254471	1793.88	2956.93	0.188	741	2383.51	325	1922.4	1100
20		258784	1822.57	3004.22	0.207	806	2592.59	330	1952	1101
22		263097	1854.28	3056.49	0.228	816	2624.76	336	1987.5	1105
24		267410	1889.01	3113.73	0.251	826	2656.92	343	2028.9	1131
26		271723	1919.21	3163.51	0.271	837	2692.31	346	2046.7	1132
28		276036	1949.41	3213.29	0.291	857	2756.64	347	2052.6	1132
30		280349	1973.57	3253.12	0.307	868	2792.02	362	2141.3	1155
32		284662	1993.20	3285.48	0.320	903	2904.60	362	2141.3	1171
34		288975	2021.89	3332.77	0.339	914	2939.99	363	2147.2	1175
36		293288	2067.19	3407.44	0.369	934	3004.32	363	2147.2	1181
38		297601	2074.74	3419.88	0.374	964	3100.82	364	2153.1	1204
40		301914	2098.90	3459.71	0.390	976	3139.42	367	2170.9	1231

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
and load compared to the conservative parameter of ζ_C.

![Graphs showing changes while using different parameters in B-2.](image1)

FIGURE 17. Changes while using different parameters in B-2.

![Graphs showing changes caused by various parameters for B-2.](image2)

FIGURE 18. Changes caused by various parameters for B-2.

![Graphs showing changes forced by various selections of the conservative parameter in B-4.](image3)

FIGURE 19. Changes forced by various selections of the conservative parameter in B-4.

VI. CONCLUSION

In this paper, the first step of microgrid design focuses on demand response based on ant colony optimization (ACO). Results have shown that using demand response in all scenarios reduces expenses because there is no longer a need to install batteries and generation units while controllable loads are transferred to cheap hours. Additionally, it is indicated that power distribution, charge, and discharge reduce microgrid expenses. Then, an IGDT-based framework is proposed for microgrid design. Also, the uncertainty of photovoltaic generation, wind power, and load is determined for the microgrid to calculate the expenses of photovoltaic, wind, and load generation while deviation is examined based on IGDT. Results have shown that considering excess expenses in the base case is the easiest way to determine the maximum uncertainty radius for photovoltaic generation, wind power, and load to keep the grid stable. According to the IGDT, the results are valid. Additionally, this method is more expensive while designers and owners of the microgrid believe in its efficiency.

TABLE 11. Summarized the results of B-4 with a demand response of 45%.

Control value ζ_C	Cost function ($\)	Value of the load	Wind unit	Photovoltaic unit	Battery
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

DATA SHARING AND DATA AVAILABILITY
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

VI. REFERENCES

[1] Z. Wang, B. Chen, J. Wang, J. Kim, and M. M. Begovic, "Robust optimization based optimal DG placement in microgrids," IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2173-2182, 2014.

[2] S. Mizani and A. Yazdani, "Design and operation of a remote microgrid," in 2009 35th Annual Conference of IEEE Industrial Electronics, 2009, pp. 4299-4304: IEEE.

[3] J. P. Fossati, A. Galarza, A. Martín-Villate, and L. Fontan, "A method for optimal sizing energy storage systems for microgrids," Renewable Energy, vol. 77, pp. 539-549, 2015.

[4] J. Burrows, E. Scheier, C. Smith, J. Smith, A. Young, and T. Young, "Comparative Life Cycle Assessment of a Thai Island’s Diesel/PV/Wind Hybrid Microgrid."

[5] N. Amiri, M. Shaterabadi, K. Reza Kashyzadeh, and M. Chizari, "A Comprehensive Review on Design, Monitoring, and Failure in Fixed Offshore Platforms," Journal of Marine Science and Engineering, vol. 9, no. 12, p. 1349, 2021.

[6] L. Wen, K. Zhou, S. Yang, and X. Lu, "Optimal load dispatch of community
microgrid with deep learning based solar power and load forecasting," *Energy*, vol. 171, pp. 1053-1065, 2019.

[7] W.-Y. Chiu, H. Sun, and H. V. Poor, "A multiobjective approach to multimicrogrid system design," *IEEE Transactions on Smart Grid*, vol. 6, no. 5, pp. 2263-2272, 2015.

[8] H. Farzin, R. Ghorani, M. Fotuhi-Firuzabad, and M. Moemi-Aghtaie, "A market mechanism to quantify emergency energy transactions value in a multi-microgrid system," *IEEE Transactions on Sustainable Energy*, vol. 10, no. 1, pp. 426-437, 2017.

[9] L. Wang, B. Zhang, Q. Li, W. Song, and G. Li, "Robust distributed optimization for energy dispatch of multi-stakeholder multiple microgrids under uncertainty," *Applied Energy*, vol. 255, p. 113845, 2019.

[10] J. M. Rey, P. P. Vergara, J. Solano, and G. Ordóñez, "Design and optimal sizing of microgrids," in *Microgrids Design and Implementation*. Springer, 2019, pp. 337-367.

[11] A. Zidan, H. A. Gabbar, and A. Eldessouky, "Optimal planning of combined heat and power systems within microgrids," *Energy*, vol. 93, pp. 235-244, 2015.

[12] P. Moutis, S. Skarvelis-Kazakos, and M. Brucoli, "Decision tree aided planning and energy balancing of planned community microgrids," *Applied energy*, vol. 161, pp. 197-205, 2016.

[13] S. Li, H. He, Y. Chen, M. Huang, and C. Hu, "Optimization between the PV and the retired EV battery for the residential microgrid application," *Energy Procedia*, vol. 75, pp. 1138-1146, 2015.

[14] T. Priya et al., "Design and analysis of a sustainable LV residential microgrid," *Procedia Technology*, vol. 21, pp. 139-146, 2015.

[15] A. Arabali, M. Ghofrani, M. Etezadi-Amoli, and M. S. Fadali, "Stochastic performance assessment and sizing for a hybrid power system of solar/wind/energy storage," *IEEE Transactions on Sustainable Energy*, vol. 5, no. 2, pp. 363-371, 2013.

[16] C. K. Ekman, "On the synergy between large electric vehicle fleet and high wind penetration—An analysis of the Danish case," *Renewable Energy*, vol. 36, no. 2, pp. 546-553, 2011.

[17] L. Göransson, S. Karlsson, and F. Johnsson, "Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system," *Energy policy*, vol. 38, no. 10, pp. 5482-5492, 2010.

[18] S. Kahrobaei, S. Asgarpoor, and W. Qiao, "Optimum sizing of distributed generation and storage capacity in smart households," *IEEE Transactions on Smart Grid*, vol. 4, no. 4, pp. 1791-1801, 2013.

[19] Q. Zhang, T. Tezuka, K. N. Ishihara, and B. C. McElhaney, "Integration of PV power into future low-carbon smart electricity systems with EV and HP in Kansai Area, Japan," *Renewable Energy*, vol. 44, pp. 99-108, 2012.

[20] A. Botterud et al., "Demand dispatch and probabilistic wind power forecasting in unit commitment and economic dispatch: A case study of Illinois," *IEEE Transactions on Sustainable Energy*, vol. 4, no. 1, pp. 250-261, 2012.

[21] Y. Guo, M. Pan, Y. Fang, and P. P. Khargonekar, "Decentralized coordination of energy utilization for residential households in the smart grid," *IEEE transactions on smart grid*, vol. 4, no. 3, pp. 1341-1350, 2013.

[22] N. Kunwar, K. Yash, and R. Kumar, "Area-load based pricing in DSM through ANN and heuristic scheduling," *IEEE Transactions on Smart Grid*, vol. 4, no. 3, pp. 1275-1281, 2013.

[23] E. Matallanas et al., "Neural network controller for active demand-side management with PV energy in the residential sector," *Applied Energy*, vol. 91, no. 1, pp. 90-97, 2012.

[24] A.-H. Mohsenian-Rad and A. Leon-Garcia, "Optimal residential load control with price prediction in real-time electricity pricing environments," *IEEE transactions on Smart Grid*, vol. 1, no. 2, pp. 120-133, 2010.

[25] A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia, "Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid," *IEEE transactions on Smart Grid*, vol. 1, no. 3, pp. 320-331, 2010.

[26] A. Molderink, V. Bakker, M. G. Bosman, J. L. Hurink, and G. J. Smit, "Management and control of domestic smart grid technology," *IEEE transactions on Smart Grid*, vol. 1, no. 2, pp. 109-119, 2010.

[27] M. Vasirani, R. Kota, R. L. Cavalcante, S. Ossowski, and N. R. Jennings, "An agent-based approach to virtual power plants of wind power generators and electric
vehicles," *IEEE Transactions on Smart Grid*, vol. 4, no. 3, pp. 1314-1322, 2013.

[28] M. A. Jirdehi and M. Shaterabadi, "A low-carbon strategy using INVELOX turbines in the presence of real-time energy price uncertainty," *Greenhouse Gases: Science and Technology*, vol. 11, no. 3, pp. 461-482, 2021.

[29] M. Shaterabadi and M. A. Jirdehi, "Smart scheduling of transmission line switching: optimization of multi-objective microgrid’s day-ahead energy scheduling with considering high penetration of green energies and INVELOX," *Electrical Engineering*, vol. 103, no. 3, pp. 1753-1767, 2021.

[30] M. Shaterabadi and M. A. Jirdehi, "Multi-objective stochastic programming energy management for integrated INVELOX turbines in microgrids: A new type of turbines," *Renewable Energy*, vol. 145, pp. 2754-2769, 2020.

[31] S. V. Raygani, R. Sharma, and T. K. Saha, "PV power output uncertainty in Australia," in *2015 IEEE Power & Energy Society General Meeting*, 2015, pp. 1-5: IEEE.

[32] A. Soroudi, "Possibilistic-scenario model for DG impact assessment on distribution networks in an uncertain environment," *IEEE Transactions on Power Systems*, vol. 27, no. 3, pp. 1283-1293, 2012.

[33] A. Soroudi and A. Rabiee, "Optimal multi-area generation schedule considering renewable resources mix: a real-time approach," *IET Generation, Transmission & Distribution*, vol. 7, no. 9, pp. 1011-1026, 2013.

[34] M. Urbina and Z. Li, "A fuzzy optimization approach to PV/battery scheduling with uncertainty in PV generation," in *2006 38th North American Power Symposium*, 2006, pp. 561-566: IEEE.

[35] P. Chen, P. Siano, Z. Chen, and B. Bak-Jensen, "Optimal allocation of power-electronic interfaced wind turbines using a genetic algorithm–monte carlo hybrid optimization method," in *Wind power systems*: Springer, 2010, pp. 1-23.

[36] A. Soroudi and T. Amraee, "Decision making under uncertainty in energy systems: State of the art," *Renewable and Sustainable Energy Reviews*, vol. 28, pp. 376-384, 2013.

[37] R. Atia and N. Yamada, "Sizing and analysis of renewable energy and battery systems in residential microgrids," *IEEE Transactions on Smart Grid*, vol. 7, no. 3, pp. 1204-1213, 2016.

[38] D. Ke, F. Shen, C. Chung, C. Zhang, J. Xu, and Y. Sun, "Application of information gap decision theory to the design of robust wide-area power system stabilizers considering uncertainties of wind power," *IEEE Transactions on Sustainable Energy*, vol. 9, no. 2, pp. 805-817, 2017.

[39] M. Charwand and Z. Moshavash, "Midterm decision-making framework for an electricity retailer based on information gap decision theory," *International Journal of Electrical Power & Energy Systems*, vol. 63, pp. 185-195, 2014.

[40] K. Zare, M. P. Moghaddam, and M. K. Sheikh-El-Eslami, "Risk-based electricity procurement for large consumers," *IEEE Transactions on Power Systems*, vol. 26, no. 4, pp. 1826-1835, 2011.

[41] S. Nojavan, K. Zare, and M. R. Feyzi, "Optimal bidding strategy of generation station in power market using information gap decision theory (IGDT)," *Electric Power Systems Research*, vol. 96, pp. 56-63, 2013.

[42] S. Feng and C. P. Chen, "A fuzzy restricted Boltzmann machine: Novel learning algorithms based on the crisp possibilistic mean value of fuzzy numbers," *IEEE Transactions on Fuzzy Systems*, vol. 26, no. 1, pp. 117-130, 2016.

[43] A. Rabiee, S. Nikkhah, A. Soroudi, and E. Hooshmand, "Information gap decision theory for voltage stability constrained OPF considering the uncertainty of multiple wind farms," *IET Renewable Power Generation*, vol. 11, no. 5, pp. 585-592, 2017.

[44] N. Rezaei, A. Ahmadi, A. H. Khazali, and J. M. Guerrero, "Energy and frequency hierarchical management system using information gap decision theory for islanded microgrids," *IEEE Transactions on Industrial Electronics*, vol. 65, no. 10, pp. 7921-7932, 2018.

[45] A. Soroudi, A. Rabiee, and A. Keane, "Information gap decision theory approach to deal with wind power uncertainty in unit commitment," *Electric Power Systems Research*, vol. 145, pp. 137-148, 2017.
M. Movahedpour et al.: Design of Microgrids Using Uncertainty of Demand and Supply in IGDT-Based Reverse Risk

Mehrdad Movahedpour PhD student in power engineering, Azad University Yasouj branch. A faculty member of Technical and Vocational University. Specialized, scientific, and research fields: power systems, microgrids, power network control, photovoltaic, intelligence controller.

E-mail: mehrdad.movahedpoor@gmail.com.

Mohammad Javad Kiani was born in Yasouj, Iran. He received his B.S. and M.S. degrees in Electrical Engineering from the K. N. Toosi University of Technology, Tehran, Iran, in 2003 and 2008, respectively. He received his Ph.D. degree in Electrical Engineering from the Universiti Teknologi Malaysia (UTM), Johor, Skudai, Malaysia, in 2017. He is presently a faculty member in the Department of Electrical Engineering, Islamic Azad University, Yasouj, Iran. His current research interests include Nanotechnology and application, Power electronics, Power Systems, controllers, and Intelligence networks.

E-mail: kianiph@iauyasooj.ac.ir

Mahmoud Zadehbagheri was born in Yasouj, Iran in October 1979. In 2003 he received his B.S. in Electrical Engineering from Kashan University, and in 2008 he received his M.S in Electrical Engineering from the Islamic Azad University, Najafabad Branch. He received his Ph.D. degree in Electrical Engineering from Hakim Sabzvari University & Universiti Teknologi Malaysia (UTM), Johor, Skudai, Malaysia, in 2017. He is with the faculty of the Electrical Engineering Department, Islamic Azad University of Yasouj. His research interests include the fields of power electronics, electrical machines and drives, FACTS devices, and Power Quality.

E-mail: mzadehbgheri@iauyasooj.ac.ir

Sirus Mohammadi was born in mamasani, Fars, Iran in September 1974. In 2000 he received his B.S. in Electrical Engineering from Chamran University of Ahvaz, and in 2005 he received his M.S in Electrical Engineering from Shiraz University. He received a Ph.D. degree in Electrical Engineering from Science and Research Branch, Islamic Azad University, in 2014. He is with the faculty of the Electrical Engineering Department, Islamic Azad University of Gachsaran. His research interests include the fields of power systems, reliability of power systems, FACTS devices, and distribution networks.

E-mail: s.mohammadi@iaugachsaran.ac.ir