Exchange constants and spin dynamics in Mn$_{12}$-acetate
A. Honeckera, N. Fukushimaa,1, B. Normandb, G. Chaboussantc, H.-U. Güdeld

aInstitut für Theoretische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
bDépartement de Physique, Université de Fribourg, 1700 Fribourg, Switzerland
cLaboratoire Léon Brillouin, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
dDepartement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3000 Bern 9, Switzerland

Abstract
We have obtained new inelastic neutron scattering (INS) data for the molecular magnet Mn$_{12}$-acetate which exhibit at least six magnetic peaks in the energy range 5–35 meV. These are compared with a microscopic Heisenberg model for the 12 quantum spins localised on the Mn ions, coupled by four inequivalent magnetic exchange constants. A fit to the magnetic susceptibility under the constraint that the spin of the ground state be $S = 10$ yields two dominant exchange constants of very similar value, $J_1 \approx J_2 \approx 65$ K (≈ 5.5 meV), and two smaller exchange constants J_3 and J_4. We compute the low-lying excitations by exact numerical diagonalisation and demonstrate that the parameters determined from the ground state and susceptibility fit provide qualitative agreement with the excitations observed by INS.

© 2022 Elsevier B.V. All rights reserved.
PACS: 75.30.Et; 75.50.Xx; 78.70.Nx
Keywords: Magnetic molecular materials; Heisenberg model; Susceptibility – magnetic; Neutron scattering – inelastic

Magnetic molecules present a fascinating new class of materials with a wide variety of applications (for a recent review see [1]). Coherent quantum phenomena in these mesoscopic systems are one focus of recent research [2]. Despite being among the first generation of molecular magnets to be synthesised, Mn$_{12}$-acetate [3] remains that with the largest barrier to thermally activated tunnelling. Although much work has been devoted to Mn$_{12}$-acetate over the past decade, the microscopic mechanisms for the observed low-energy phenomena have remained controversial.

Here we discuss a microscopic exchange model for Mn$_{12}$-acetate. Twelve quantum spins S_i are coupled by Heisenberg exchange interactions

$$H = \sum_{i,j} J_{ij} S_i \cdot S_j \quad (1)$$

with four different exchange constants J_1, J_2, J_3 and J_4, as represented in Fig. 1.

Fig. 1. Magnetic exchange model for Mn$_{12}$-acetate. Arrows denote the twelve Mn ions: eight Mn$^{3+}$ ions on the crown have local spin $S = 2$ while four Mn$^{4+}$ ions in the core have $S = 3/2$. Lines show exchange paths with interaction parameters J_1, J_2, J_3 and J_4. Many experimental studies, including inelastic neutron scattering (INS) [4], show that the ground state (GS) of Mn$_{12}$-acetate has total spin $S = 10$. This may
be rationalised by considering an arrangement of 8 parallel spins $S = 2$ on the crown Mn$^{3+}$ ions oriented antiparallel to 4 aligned $S = 3/2$ spins on the core Mn$^{4+}$ ions (Fig. 1). The $S = 10$ GS imposes a strong constraint on the allowed exchange constants in (1), excluding [5,6] a number of parameter sets proposed in the literature, such as that obtained by the \textit{ab initio} local density approximation [7].

The magnetic susceptibility χ is a valuable quantity in the determination of magnetic exchange constants. Fig. 2 shows two results for χ, measured with an ordinary sample under an applied field of 1 T [8], and with a deuterated sample at 0.1 T [6]. Both data sets agree well for temperatures between 40 and 300 K despite the different conditions, demonstrating the reliability of the susceptibility measurement at high temperatures.

Exchange constants can then be determined by comparison with a symbolic high-temperature series expansion. In combination with a numerical test of the ground-state requirement, this restricts the possible parameters to a narrow region around $J_1 \approx J_2 \approx 60 \, K$, $J_3 \approx J_4 = 5-10 \, K$ [6].

Columns A, B and C of Table 1 list three choices of parameters in this region (parameter set A was used in [6]). Columns D and E contain the parameter sets proposed in [9] and [10] respectively. The lines in Fig. 2 show the susceptibility χ obtained from an average of four different Padé approximants to the 8th-order high-temperature series [6] evaluated with the corresponding parameters. The last row of Table 1 lists the effective g-factor entering the absolute value of χ (electron paramagnetic resonance [11] yields $g_{\text{eff}} = 1.968$). Parameter sets A, B and C yield good agreement with the experimental results, whereas the results for sets D and E are in clear disagreement. We conclude that the exchange constants proposed in Refs. [9,10] are incompatible with χ.

A number of magnetic excitations in the range of 5 to 35 meV has been observed by INS experiments performed on different spectrometers [12,6]. The points in Fig. 3 show the spectrum obtained on the MARI spectrometer at ISIS with an incident energy $E_i = 17 \, \text{meV}$. Five magnetic excitations can be identified unambiguously in this data, and are shown by the lines in Fig. 3, which are fits with Gaussian curves on a linear background. Analysis of their Q- and T-dependence identifies these five excitations as magnetic and at least the lowest two of spin $S = 9$ [6]. A further magnetic excitation at 27 meV is the first candidate for an $S = 11$ excitation [6], in accord with high-field magnetisation measurements; this energy sets a lower bound for the numerical calculations.

Fig. 2. Static magnetic susceptibility. Filled and open circles are measured respectively on a deuterated sample under a field of 0.1 T [6] and on a non-deuterated sample at 1 T [8]. Lines are obtained from an 8th-order high-temperature series expansion for the parameter sets in Table 1.

We have performed exact diagonalisation for the model Hamiltonian (1), both to verify the $S = 10$ GS and to determine the low-lying excitations. The lowest excited states in the sectors with spin $S \leq 8$ are listed in Table 1 in ascending order of energy (for sets A, D and E these extend results presented in [6,9,10]). Spatial symmetry is described by a momentum k such that the wavefunction acquires a phase factor $e^{i k}$ under a 90° rotation of the model in Fig. 1. The letters in Fig. 3 show the energies of the lowest $S = 9$ excitations for the corresponding data sets in Table 1. A constant energy 1.29 meV has been added to all calculated energies to account for magnetic anisotropy effects [6].

Fig. 3. Magnetic excitations. Points show the INS spectrum obtained on MARI with $T = 8 \, K$, $E_i = 17 \, \text{meV}$ and $1 \leq Q \leq 2 \, \text{Å}^{-1}$. Lines are Gaussian fits on a linear background. Letters represent numerical results for the $S = 9$ excitations listed in Table 1 for the corresponding parameter choices. A constant energy 1.29 meV has been added to all calculated energies to account for magnetic anisotropy effects [6].
Table 1

Energy E and symmetry k of low-lying excitations for a Mn$_{12}$-acetate exchange model with different parameter sets. Exchange constants are given in Kelvin [K]. The GS has spin $S = 10$ in all five cases. No energetic correction is applied for uniaxial anisotropy of the cluster.

	(A) [6]	(B)	(C)	(D) [9]	(E) [10]
J_1	67.2	J_1	64.5	$J_1 = 64$, $J_2 = 65$,	$J_1 = 119$, $J_2 = 118$,
J_2	61.8	J_2	60.3	$J_3 = 11$, $J_4 = 4$,	$J_1 = 115$, $J_2 = 84$,
J_3	7.8	$J_3 = 4.2$, $J_4 = 6.3$	$J_3 = -8$, $J_4 = 23$,		
J_4	5.6	J_4	6.3	$J_3 = -4$, $J_4 = 17$	

E [K]	k									
$S = 8$		5.52	5.07	5.13	6.82	7.35	8.49			
	π									
$S = 9$	28.48	$\pm \pi/2$	29.15	$\pm \pi/2$	29.92	$\pm \pi/2$	33.99	$\pm \pi/2$		
	π	40.71	π	48.22	π	35.76	π	π		
	0	81.82	0	102.96	0	65.11	0	77.12		
	$\pm \pi/2$	113.42	$\pm \pi/2$	132.51	$\pm \pi/2$	174.55	$\pm \pi/2$	124.63	$\pm \pi/2$	
$S = 10$	154.43	π	175.62	π	267.13	π	179.93	π		
	0	297.02	0	308.05	π	501.03	0	436.52		
$S = 11$	285.58	$\pm \pi/2$	285.63	$\pm \pi/2$	295.02	$\pm \pi/2$	507.87	π	435.95	π
	0	289.27	π	297.79	π	509.01	$\pm \pi/2$	436.83	$\pm \pi/2$	
g_{eff}	1.935	1.935	1.92	2.12	2.1					

Transitions from the $S = 10$ GS to states with $S \leq 8$ are not observable by INS due to selection rules. However, our results predict further low-lying excitations with $S < 9$. In particular, the $S = 8$ excitations in Table 1 may be interpreted as scattering states of a pair of the lowest $S = 9$ states ($k = \pm \pi/2$).

In summary, we have determined the microscopic exchange parameters of Mn$_{12}$-acetate as $J_1 \approx J_2 \approx 65$ K, and $J_3, J_4 \approx 5–10$ K. Earlier proposals [5,9,10] are inconsistent with the magnetic susceptibility, and do not match our new INS results. Further improvements to the optimal parameter set would require a treatment of the uniaxial anisotropies at the single-ion level, which would be expected to reduce the spread of the $S = 9$ levels, thereby improving agreement with the INS data.

Acknowledgments: This work was supported by the Swiss National Science Foundation, the TMR programme Molnanomag of the European Union (No: HPRN-CT-1999-00012), and by the Deutsche Forschungsgemeinschaft through grant SU 229/6-1.

References

[1] J. Schnack, Lect. Notes Phys. 645, 155 (2004).
[2] I. Tupitsyn and B. Barbara, in Magnetism: Molecules to Materials III, edited by J.S. Miller and M. Drillon, (Wiley-VCH, Weinheim, 2002).
[3] R. Sessoli et al., J. Am. Chem. Soc. 115, 1804 (1993).
[4] I. Mirebeau et al., Phys. Rev. Lett. 83, 628 (1999).
[5] C. Raghu et al., Phys. Rev. B 64, 064419 (2001).
[6] G. Chaboussant et al., preprint cond-mat/0404194 to appear in Phys. Rev. B.
[7] D.W. Boukhvalov et al., Phys. Rev. B 65, 184435 (2002).
[8] A.R. Schake et al., Inorg. Chem. 33, 6020 (1994).
[9] N. Renagnet et al., Phys. Rev. B 66, 054409 (2002).
[10] K. Park et al., Phys. Rev. B 69, 014416 (2004).
[11] A.L. Barra et al., Phys. Rev. B 56, 8192 (1997).
[12] M. Hennion et al., Phys. Rev. B 56, 8819 (1997).