COVID-19 e o Coração

COVID-19 and the Heart

Gilson Feitosa¹, Paulo Barbosa¹, Gilson Feitosa Filho¹, Bruno Aguiar, Kin Key¹, Jorge Andion Torreão¹, Joberto Sena¹, Ricardo Peixoto Oliveira¹, Maria Lucia Duarte¹, Angele Mattoso¹, Isabela Pilar¹, Marcus Vinicius Andrade¹, Thiago Pereira¹, Augusto Almeida¹, Fabio Soares¹, Rosembert Silva¹, Adriano Magalhães¹, Belmiro Araújo Jr.¹, Paulo Leão¹, Luiz Claudio Felix¹, Marcus Vinicius Matos¹, Andrea Chagas¹, Antônio Carlos Sales Nery¹, Adriano Dourado¹, Rilson Moitinho¹, Adna Lima¹, Felipe Marques¹, Alessandre Rabello¹, Thais Nascimento¹, Amanda Fraga¹, Délio Medeiros¹, Gabriela Sodré¹, Karoliny Ribeiro¹, Leandro Cavalcanti¹, Leonardo Sanches¹, Luciana Lima¹, Mary Anny Fonseca¹, Milana Prado, Paulo Lobo¹, Rhanniel Villar¹, Rubia Porto¹, José Carlos Brito¹

¹Serviço de Cardiologia do Hospital Santa Izabel (HSI); Salvador, Bahia, Brazil

A pandemia por SARS-CoV-2 traz graves consequências para o aparelho respiratório que se agrava quando há concomitante envolvimento cardíaco, o que não raramente ocorre, principalmente em pacientes internados. As alterações cardíacas são caracterizadas por reações inflamatórias sistêmicas, hipóxia generalizada, tromboses de coronárias epicárdicas ou de pequenos vasos, infecção viral do miocárdio, ou hipertensão pulmonar aguda como resultado do embolismo pulmonar ou trombose local. A lesão miocárdica medida pela elevação de troponina é ominosa. Achados de imagem, principalmente ecocardiograma à beira do leito, assim como a cineangiocoronariografia e a ressonância magnética cardíaca têm sido de grande utilidade para o reconhecimento da lesão. Assim como, arritmias, infarto do miocárdio, insuficiência cardíaca e choque são manifestações principais de envolvimento cardíaco. Nos casos leves a moderados, as medicações prévias, principalmente os inibidores da enzima de conversão da angiotensina (IECA), bloqueadores de receptores de angiotensina (BRA), estatinas e outros correlatos devem ser mantidos. Nos casos graves a atenção se volta para o uso de drogas vasoativas potentes. Uma atenção especial se volta para os cuidados de pacientes que precisam de atendimento pelas manifestações cardiológicas, principalmente o infarto agudo do miocárdio e a insuficiência cardíaca, nesse momento de receio de contaminação hospitalar. Os Serviços têm providenciado ao máximo as medidas de proteção com fluxo distinto para esses pacientes. Após a COVID-19, o retorno às atividades mais exigentes deve ser precedido de cuidadosa avaliação médica para orientações sobre possíveis sequelas.

Palavras-chave: COVID-19; Cardiopatia; Infarto do Miocárdio; Miocardite; Troponina, IECA.

The SARS-CoV-2 pandemic has the potential to manifest by serious pulmonary involvement, which is worse when simultaneous cardiac involvement takes place. This fact is not infrequently, especially in admitted patients. The cardiac manifestations implicated are systemic inflammatory reactions, generalized hypoxia, epicardial and small vessel myocardial thrombosis myocarditis by the virus or acute pulmonary hypertension as a result of pulmonary embolism or local vessel thrombosis. Troponin seems to be a relevant marker of cardiac injury and implies an ominous prognosis.
Bedside echocardiography, cineangiocoronariography, cardiac magnetic resonance have all been of great utility. The main cardiac findings are arrhythmias, acute myocardial infarction, heart failure, and shock. In the mild or moderate cases, ACEi, ARBs, statins, which had been previously in use, should be maintained. In advanced cases, vasoactive drugs are utilized. At this moment of fear by COVID-19’s contamination in hospitals, special attention should be given to other critical-care acute cardiovascular manifestations, such as acute myocardial infarction and acute heart failure. Services should provide adequate protection to all involved. After COVID recovery, the progressive return to activities should precede by careful medical evaluation to avoid sequelae.

Keywords: COVID-19; Heart Disease; Myocardial Infarction; Myocarditis; Troponin, ACE.

Introdução

A infecção pelo coronavirus SARS-CoV-2 foi primeiramente registrada em novembro 2019 em Huwan, na China. Porém, seu reconhecimento como potencialmente importante foi apesentado ao mundo em dezembro de 2019.¹

O alastramento foi rápido passando pela Itália, Iran, Coreia do Sul e Japão, espalhando-se pelo resto do mundo. O primeiro óbito ocorreu na China em 9 de janeiro de 2020. O primeiro óbito fora da China ocorreu na Filipina em 1 de fevereiro do corrente ano e fora da Asia, na França em 14 de fevereiro, segundo relato pelo jornal New York Times.²

A Organização Mundial de Saúde declarou como um surto epidêmico internacional potencialmente sério em 30 de janeiro de 2020 e reconheceu como uma pandemia em 11 de março de 2020.

Nesse exato momento, a COVID-19 encontrase registrada em todas as partes do mundo, já tendo acometido quase 15 milhões de pessoas com mais de meio milhão de óbitos.

O Brasil detém a segunda posição em número de casos com quase 2 milhões de casos e cerca de 75.000 óbitos.

Embora o órgão-alvo para os casos graves da COVID-19 sejam os pulmões,³ o coração desempenha um importante papel nesses casos, sendo frequentemente envolvido e contribuindo para o quadro de gravidade da doença.⁴

Patogenia, Achados Histopatológicos e Macroscópicos Cardíacos

Os relatos anatomopatológicos são ainda escassos face as limitações da autópsia plena, havendo nesses casos um número maior de informações oriundas de micro autópsias,⁵ com punções por agulha post-mortem,⁶ e que não permitem informações detalhadas.

A intensidade inflamatória no coração é geralmente leve,⁷ porém pode ser intensa, parecendo com o que é visto em agressões de hipóxia, que podem ser resultantes da hipóxia sistêmica que se apresenta nos casos mais graves, afetando o cardiomiócito.⁸

A infecção direta pelo SARS-CoV-2 ainda não está inteiramente esclarecida, tais como:⁹

- Partículas virais detectadas em macrófagos no miocárdio deixam dúvidas sobre seu papel patogênico.¹⁰
- Questiona-se o papel da gordura epicárdica como facilitador do envolvimento cardíaco nessa condição.¹¹
- Achados de infarto por rotura de placa aterosclerótica em vasos epicárdicos são registrados em portadores de placas ateroscleróticas pré-existentes que se inflamam no processo e rompem.

Apesar disto, algumas informações importantes já são de conhecimento:

- A atividade inflamatória sistêmica reflete-se no miocárdio, além de trombos de pequenos vasos e de artérias epicárdicas também têm sido reportadas.
- Trombose intracardíaca tem sido registrada.¹² Fenômenos tromboembólicos pulmonares desempenham importante papel no processo de falência cardíaca direita.¹³ E, mais raramente, pericardite.

Apresentação Clínica

Geralmente, a evolução da COVID-19 guarda relação com a idade¹⁴ e comorbididades
presentes. Habitualmente, alterações cardíacas são vistas nos casos de acometimento pulmonar mais grave em pacientes internados na UTI e principalmente naqueles que necessitam de suporte de ventilação invasiva.

Arritmias cardíacas têm importante papel, principalmente a fibrilação atrial. Em recente estudo da Universidade da Pensilvânia, em 700 pacientes, em que 11% foram para a UTI, foi constatada ocorrência de FA em 20%, bradiarritmidas em 8% e de taquicardia ventricular não sustentada (TVNS). Parada cardiorrespiratória foi constatada em 18%. Os pacientes que foram para a UTI tiveram maior prevalência de arritmias e maior mortalidade. Os óbitos foram mais frequentes naqueles que apresentaram arritmias. Outras manifestações foram disfunção ventricular esquerda, falência de ventrículo direito como consequência de trombose de artérias pulmonares, resultantes de embolismo pulmonar ou de trombose local, casos de cardiomiopatia catecolaminérgica — síndrome de takotsubo —, infartos do miocárdio por rotura de placas e oclusão de vasos epicárdicos, resultantes de embolismo pulmonar ou de trombose local, casos de cardiomiopatia catecolaminérgica — síndrome de takotsubo —, infartos do miocárdio por rotura de placas e oclusão de vasos epicárdicos maiores ou por doença de pequenos vasos e, mais raramente, por miocardites fulminantes.

Porém, com o aumento do número de casos da COVID-19, têm sido relatados quadros que fogem a esse padrão, tais como manifestação inicial de síndrome coronariana aguda, com manifestações pulmonares leves ou mesmo ausentes, assim como manifestações cardíacas tardias.

Há de se considerar que esta condição apresenta-se como caracteristicamente contagiosa, o que demanda tomada de atitudes de proteção no cuidado desses pacientes voltada para o pessoal de atendimento médico, de acompanhantes, de outros pacientes e do próprio paciente quando não se confirmar a COVID-19.

Por isso, não é possível ter uma avaliação sistemática de envolvimento cardiovascular em todos os pacientes ambulatoriais ou internados. Nos pacientes que apresentam suspeita de síndrome coronariana aguda, encontra-se, não raramente, a alteração do supradesnivelamento do segmento ST, geralmente difuso e às vezes localizado. O difuso geralmente se deve à miocardite isquêmica, relacionada a doença não obstrutiva. O localizado poderá ser por oclusão de artéria epicárdica e também por miocardite isquêmica, requerendo a coronariografia para esclarecimento definitivo.

As Figuras 1a, 1b e 1c, 2a, 2b e 2c representam casos em nosso hospital com apresentação de síndrome coronariana aguda.

O exame ecocardiográfico, frequentemente à beira do leito, teve sido muito útil. Em uma avaliação de pacientes internados, revelaram-se padrões bem definidos de hipocontratilidade segmentar, hipocontratilidade difusa de aspecto de takotsubo, dilatação de ventrículo direito e derrame pericárdico. Em outras oportunidades tem sido registrada a presença de trombo intracavitário.

As Figuras 3a, 3b e 3c demonstram casos com trombose intracavitária em COVID-19 em nosso hospital.

A ressonância magnética cardíaca tem revelado, além de disfunção ventricular, dilatação de ventrículos e presença de fibrose e edema mesocárdico, como visto no exame das Figuras 4a e 4b.

Em um caso visto em nosso Serviço, um paciente do sexo masculino, 34 anos, previamente hígido, com dispneia aos esforços habituais há 7 dias, evoluiu com dispneia em repouso há 1 dia da admissão. Referia que no 16º dia pós diagnóstico de COVID-19, durante retorno às atividades, iniciou quadro de dispneia aos esforços, cianose de extremidades durante esforço físico, mialgia com fadiga em membros inferiores, febre não aferida e exantema não pruriginoso em tronco. Relatava que procurou emergência sendo aventada a possibilidade de arbovirose. Referiu manutenção dos sintomas com piora da dispneia quando retornou à emergência. Negou dor torácica, tosse, náusea, vômitos, diarreia, coriza, palpitações e disúria.

Realizou ecocardiograma que evidenciou disfunção do ventrículo esquerdo discreta e
Figura 1a. ECG- IAM com supra de ST anterior (59a, sexo masculino).

Figura 1b e 1c. B. Cineangiografia da coronária esquerda com oclusão por trombo de artéria descendente anterior. C. Cinenagiografia após implante do stent.
Figura 2a. ECG - alteração difusa de repolarização ventricular (79 anos, sexo masculino. Insuficiência respiratória aguda, e desconforto precordial).

Figura 2b. Cineangiocoronariografia sem obstruções.
strain normal em ápice e reduzido em base. A ressonância magnética apresentou disfunção sistólica do ventrículo esquerdo de grau discreto, hipocinesia difusa médio basal e normocinesia apical. Presença de fibrose de padrão mesocárdico inferolateral em segmento médio e edema difuso com predomínio inferolateral.

Como biomarcadores têm sido particularmente úteis em classificar os pacientes, uma troponina sérica apresenta-se um importante marcador de risco. Em um estudo, esteve elevada em cerca de 36%. A elevação foi leve (3-9mcg/L) em 455 pacientes, representando 16% de casos. E, mesmo nessas casos, houve aumento de mortalidade comparada a quem não teve aumento de troponina (hazard ratio de 1,75 e 95% de IC 1,37-2,24 com p < 0,001). Já quando o aumento de troponina foi maior (>9mcg/L), o que ocorreu em 530 pacientes (19,4% dos casos) houve aumento ainda mais expressivo de mortalidade (hazard ratio de 3,03 e com 95% do IC de 2,43-3,80 com p < 0,001).

Outros marcadores inflamatórios como a proteína C reativa (PCR), e ferritina têm tido valor prognóstico, e o D-dímero parece particularmente importante para marcar presença ou risco de trombose. A medida da Interleucina 6 relaciona-se à tempestade de citocinas, porém não é medida rotineiramente. O peptídeo natriurético tipo B (BNP) não tem sido muito utilizado nas fases agudas da doença.

Implicações no Atendimento dos Pacientes Portadores de Doenças Cardiovasculares Não Relacionadas à COVID-19

Em todas as partes do mundo houve documentação de uma retração do número de atendimentos de pacientes portadores de doença cardiovascular. A ideia de que o repouso durante a pandemia diminuísse o gatilho para instabilização de placas ateroscleróticas coronarianas, por exemplo, não resiste à constatação do aumento do número de casos de morte súbita na comunidade. O que se coaduna com o constatado atraso no atendimento de pacientes com infarto com supra, resultando em mais casos em choque ou com rotura de parede ventricular ou de septo interventricular.
Figuras 3a e 3b. Angio TC TEP maciço bilateral. A. Corte apical: 4 câmaras com trombo em átrio direito. B. Corte transversal (49 anos, sexo feminino, dispneia aos pequenos esforços, RT PCR COVID-19 positivo).

Figura 3c. Disfunção de VE e trombo apical em VE em paciente de 39 anos, sexo masculino, com sintomas gripais e leve dispneia.

Muito se deve ao receio de pacientes e seus familiares de serem contaminados no ambiente hospitalar o que os leva a evitar ou retardar indesejavelmente o atendimento. O mesmo se aplica para outros atendimentos de emergência e os eletivos foram em boa parte postergados no auge da crise.

Tratamento

Logo no início da pandemia, o desespero levou à procura de soluções terapêuticas que pudessem eliminar o vírus ou apresentar redução do processo inflamatório.

Estudos sobre o uso da cloroquina e hidroxicloroquina nos pacientes internados chegaram a motivar muitas controvérsias, porém o conhecimento foi se consolidando de modo a revelar que essas drogas não tinham maior eficácia na fase já inflamatória da doença; e dada a situação aguda de hipóxia, inflamação e uso de várias drogas que lhes apresentam interações, em realidade acrescentavam risco de graves arritmias mediadas por um prolongamento do intervalo QT.
Figura 4a. Ressonância magnética do coração demonstrando fibrose mesocárdica.

Figura 4b. Ressonância magnética do coração demonstrando edema.
A síndrome coronariana aguda como apresentação ou surgimento no curso da COVID-19 tem peculiaridades quanto ao seu atendimento. Em alguns centros, no pico da pandemia, dada a escassez de recursos existentes, recorreu-se ao emprego de trombolíticos nos casos de infarto agudo do miocárdio (IAM) com supra de ST, reservando para intervenção percutânea os casos de resgate ou complicados.

Entretanto, logo em seguida, as diferentes sociedades de cardiologia intervencionista do mundo emitiram pareceres recomendando o retorno da prática da angioplastia primária. Em muitos centros, recorreu-se ao uso de ecocardiografia à beira do leito para detecção de alteração de contratilidade segmentar, em cujo caso procedia-se com a cinecoronariografia e, quando pertinente, a desobstrução do vaso, com encaminhamento para leitos próprios de COVID-19 nas unidades coronarianas. Nos demais casos, o paciente foi encaminhado para unidades destinadas aos portadores de COVID-19.

Uma atitude observada foi a de resolução imediata de lesões adicionais, quando factível, no procedimento index, de modo a evitar prolongamento da permanência do paciente no hospital.

Nos pacientes hipertensos, com insuficiência cardíaca ou doença coronariana já em uso de inibidores de enzima de conversão de angiotensina ou de bloqueadores de receptores da angiotensina, a despeito de dúvidas iniciais resultantes da constatação do papel da ECA2 como porta de entrada do SARS-CoV-2, concluiu-se com base em evidências subsequentes que não havia malefícios decorrentes do seu uso, o que já justificaria o seu emprego dados os benefícios promovidos pelas condições para as quais estavam sendo usados, assim como talvez até se constatassem benefícios.

Em relação aos antiplaquetários, quando já em uso, não apresentaram complicações específicas, o mesmo ocorrendo com os betabloqueadores. As estatinas parecem exercer um efeito protetor.

Nas fases mais avançadas do processo inflamatório e diante de acometimento cardíaco mais severo, além de se recorrer ao uso de corticoide, sendo melhor a dexametasona, e uso de anticoagulante, é frequente o uso de drogas vasoativas, como os inotrópicos e vasodilatadores.

O uso de ECMO – membrana de oxigenação extracorpórea – e transplante cardíaco foram aventados em possibilidades extremas.

Perspectivas A Longo Prazo

Um trabalho instigante foi obtido na China em sobreviventes da COVID-19. Em 26 pacientes que estiveram internados com formas leves, moderadas ou graves da doença e sobreviveram, uma ressonância magnética cardíaca realizada ambulatorialmente ou cerca de 40 dias após início da doença, foram observados alterações como a dilatação de ventrículo direito, fibrose mesocárdica ou edema em cerca de 40% desses pacientes. A média de idade dos pacientes era de 39 anos. O que nos alerta para a necessidade de planejar um acompanhamento subsequente após a alta hospitalar para aqueles que estiveram internados, com cuidadoso retorno às suas atividades, atentando-se para uma volta a atividades físicas mais exigentes após resolução do quadro ou após conveniente avaliação, como se procede com o retorno às atividades em casos de miocardite em geral.

Também um retorno progressivo às atividades cardiológicas deve ser cuidadosamente programada.

Conclusão

A pandemia da COVID-19 representa um grande desafio médico-sanitário a exigir medidas de enfrentamento baseadas em pressupostos e subsequentes constatações da sua real natureza. O coração é um órgão afetado com frequência no processo e acentua o risco de morte quando esse comprometimento está presente. Além disso, cuidados no seguimento a longo prazo são justificados.
Agradecimentos:

A todos os colegas do Serviço de Cardiologia do Hospital Santa Izabel que neste momento de pandemia de COVID-19 estiveram na linha de frente de cuidado aos pacientes ou que contribuíram com seus conhecimentos e reflexões durante a Discussão de Casos ou em Sessões de Cardiologia.

Referências

1. Wang CHP, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473.
2. New York Times. Coronavirus Live Updates: First Death Outside Asia Reported in France. 15 February 2020.
3. Geng YJ, Wei ZY, Qian HY, Huang J, Lodato R, Castriotta RJ. Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019. Cardiovasc Pathol. 2020;47:107228.
4. Li L, Zhang S, He B, Chen X, Zhao Q. Retrospective study of risk factors for myocardial damage in patients with critical coronavirus disease 2019, in Wuhan. J Am Heart Assoc. 2020:e016706.
5. Beigmohammadi MT, Jahanbin B, Safaei M, et al. Pathological findings of postmortem biopsies from lung, heart, and liver of 7 Deceased COVID-19 Patients. Int J Surg Pathol. 2020:106689629035195.
6. Varga Z, Flammer AJ, Steiger P, et al. Electron microscopy of SARS-CoV-2: a challenging task - Authors’ reply. Lancet. 2020;395:e100.
7. Jaffe AS, Cleland JGF, Katus HA. Myocardial injury in severe COVID-19 infection. Eur Heart J. 2020;41:2080-2082.
8. Babapoor-Farrokhan S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020;253:117723.
9. Zhou R. Does SARS-CoV-2 cause viral myocarditis in COVID-19 patients? Eur Heart J. 2020;41:2123.
10. Bose RJC, McCarthy JR. Direct SARS-CoV-2 infection of the heart potentiates the cardiovascular sequelae of COVID-19. Drug Discov Today. 2020.
11. Kim IC, Han S. Epicardial adipose tissue: fuel for COVID-19-induced cardiac injury? Eur Heart J. 2020;41:2334-2335.
12. Hu D, Liu K, Li B, Hu Z. Large intracardiac thrombus in a COVID-19 patient treated with prolonged extracorporeal membrane oxygenation implantation. Eur Heart J. 2020.
13. Jafari R, Cegolon L, Jafari A, et al. Large saddle pulmonary embolism in a woman infected by COVID-19 pneumonia. Eur Heart J. 2020;41:2133.
14. Kuno T, Takahashi M, Obata R, Maeda T. Cardiovascular comorbidities, cardiac injury, and prognosis of COVID-19 in New York City. Am Heart J. 2020;226:24-25.
15. Iaccarino G, Grassi G, Borghi C, Ferri C, Salvetti M, Volpe M, Investigator S-R. Age and multimorbidity predict death among COVID-19 patients: results of the SARS-RAS study of the Italian Society of Hypertension. Hypertension. 2020:12015324.
16. Kato H, Shimizu H, Shibue Y, Hosoda T, et al. Clinical course of 2019 novel coronavirus disease (COVID-19) in individuals present during the outbreak on the Diamond Princess cruise ship. J Infect Chemother. 2020;26:865-869.
17. Krittanawong C, Virk HUH, Narasimhan B, et al. Coronavirus disease 2019 (COVID-19) and cardiovascular risk: A meta-analysis. Prog Cardiovasc Dis. 2020.
18. Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. N Engl J Med. 2020;382:e102.
19. Guzik TJ, Mohiddin SA, Dimarco A, Patel V, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020.
20. Jain S, Workman V, Ganeshan R, et al. Enhanced ECG monitoring of COVID-19 patients. Heart Rhythm. 2020.
21. Kochav SM, Coromilas E, Nalbandian A, et al. Cardiac Arrhythmias in COVID-19 Infection. Circ Arrhythm Electrophysiol. 2020;13:e008719.
22. Holt A, Gislason GH, Schou M, et al.New-onset atrial fibrillation: incidence, characteristics, and related events following a national COVID-19 lockdown of 5.6 million people. Eur Heart J. 2020.
23. Bangalore S, Slotwiner A, Harari R, et al. ST-Segment Elevation in Patients with Covid-19 — A Case Series. N Engl J Med. 2020;382:2478 -2480.
24. Flower L, Olusanya O and Madhivathanan PR. The Use of Point-of-Care Lung Ultrasound and www.revistacientifica.hospitalsantaizabel.org.br
Echocardiography in the Management of Coronavirus Disease 2019 (COVID-19). J Cardiothorac Vasc Anesth. 2020.
28. Sud K, Vogel B, Bohra C, Garg V, et al. Echocardiographic Findings in Patients with COVID-19 with Significant Myocardial Injury. J Am Soc Echocardiogr. 2020.
29. Gravina P, Issa N, Girard D, Camou F and Cochet H. CMR and serology to diagnose COVID-19 infection with primary cardiac involvement. Eur Heart J Cardiovasc Imaging. 2020.
30. Kermali M, Khalsa RK, Pilai K, Ismail Z and Harky A. The role of biomarkers in diagnosis of COVID-19 - A systematic review. Life Sci. 2020;254:117788.
31. Atallah B, Mallah SI, AbdelWareth L, AlMahmeed W and Fonarow GC. A Marker of Systemic Inflammation or Direct Cardiac Injury: Should Cardiac Troponin Levels be Monitored in COVID-19 Patients? Eur Heart J Qual Care Clin Outcomes. 2020.
32. Imazio M, Klingel K, Kindermann I, et al. COVID-19 pandemic and troponin: indirect myocardial injury, myocardial inflammation or myocarditis? Heart. 2020.
33. Lala A, Johnson KW, Januzzi JL, et al. and Mount Sinai Covid Informatics C. Prevalence and Impact of Myocardial Injury in Patients Hospitalized with COVID-19 Infection. J Am Coll Cardiol. 2020.
34. Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020.
35. De Rosa S, Spaccarotella C, Basso C, et al. Societa Italiana di C and the CCUAigg. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur Heart J. 2020;41:2083-2088.
36. Franco F, Alessandro Z, Carlo C, et al. Impact of COVID-19 epidemic on coronary care unit accesses for acute coronary syndrome in Veneto region, Italy. Am Heart J. 2020;226:26-28.
37. Hall ME, Vaduganathan M, Khan MS, et al. Reductions in Heart Failure Hospitalizations During the COVID-19 Pandemic. J Card Fail. 2020;26:462-463.
38. Toner L, Koshy AN, Hamilton GW, Clark D, Farouque O and Yudi MB. Acute Coronary Syndromes undergoing Percutaneous Coronary Intervention in the COVID-19 Era: Comparable Case Volumes but Delayed Symptom Onset to Hospital Presentation. Eur Heart J Qual Care Clin Outcomes. 2020.
39. Hammad TA, Parikh M, Tashtish N, et al. Impact of COVID-19 pandemic on ST-elevation myocardial infarction in a non-COVID-19 epicenter. Catheter Cardiovasc Interv. 2020.
40. Rimac G, Marzouk M, Dumont E and Paradis JM. When a delayed cardiology consultation leads to a massive left ventricle pseudoaneurysm: collateral effects of the COVID-19 pandemic. Eur Heart J. 2020.
41. Fudulu DP, Angelini GD and Vohra H. The Pan London Emergency Cardiac Surgery service blueprint. J Card Surg. 2020.
42. Gaudino M, Chikwe J, Hameed I, Robinson NB, Frenes SE and Ruel M. Response of Cardiac Surgery Units to COVID-19: An Internationally-Based Quantitative Survey. Circulation. 2020.
43. Mehra MR, Desai SS, Ruschitzka F and Patel AN. RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020.
44. Mehra MR, Ruschitzka F and Patel AN. Retraction-Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020;395:1820.
45. Ramireddy A, Chugh H, Reinier K, et al. Experience With Hydroxychloroquine and Azithromycin in the Coronavirus Disease 2019 Pandemic: Implications for QT Interval Monitoring. J Am Heart Assoc. 2020;9:e017144.
46. Meyerowitz EA, Vanner AGL, Friesen MGN, et al. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J. 2020;34:6027-6037.
47. Jankelson L, Karam G, Becker ML, Chinitz LA and Tsai MC. QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: A systematic review. Heart Rhythm. 2020.
48. Kamp TJ, Hamdan MH and January CT. Chloroquine or Hydroxychloroquine for COVID-19: Is Cardiotoxicity a Concern? J Am Heart Assoc. 2020;9:e016887.
49. Harjai KJ, Agarwal S, Bauch T, et al. Coronary and structural heart disease interventions during COVID-19 pandemic: A road map for clinicians and health care delivery systems. Cardiovasc Revasc Med. 2020.
50. Ganatra S, Dani SS, Shah S, Asnani A, et al. Management of Cardiovascular Disease During Coronavirus Disease (COVID-19) Pandemic. Trends Cardiovasc Med. 2020.
51. Grover A and Oberoi M. A systematic review and meta-analysis to evaluate the clinical outcomes in COVID-19 patients on angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. Eur Heart J Cardiovasc Pharmacother. 2020.
52. Ranard LS, Fried JA, Abdalla M, et al. Approach to Acute Cardiovascular Complications in COVID-19 Infection. Circ Heart Fail. 2020.
53. Kowalewski M, Fina D, Slomka A, et al. COVID-19 and ECMO: the interplay between coagulation and inflammation-a narrative review. Crit Care. 2020;24:205.
54. Kim IC, Hwang I, Kim YS and Kim JB. Successful Heart Transplantation to a Fulminant Myocarditis Patient during COVID-19 Outbreak - Lessons Learned. Korean Circ J. 2020;50:634-637.
55. Mitrani RD, Dabas N and Goldberger JJ. COVID-19 Cardiac Injury: Implications for Long-Term Surveillance and Outcomes in Survivors. Heart Rhythm. 2020.

56. Klok FA, Boon G, Barco S, Endres M, et al. The Post-COVID-19 Functional Status (PCFS) Scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020.

57. Patel V, Jimenez E, Cornwell L, et al. Cardiac Surgery During the Coronavirus Disease 2019 Pandemic: Perioperative Considerations and Triage Recommendations. J Am Heart Assoc. 2020:e017042.