Programmable droplet manipulation and wetting with soft magnetic carpets

Ahmet F. Demirörs,*1 Sümeyye Aykut, Sophia Ganzeboom, Yuki A. Meier, and Erik Polonia

*Complex Materials, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland

Edited by Dino Di Carlo, University of California, Los Angeles, CA, and accepted by the Editorial Board October 8, 2021 (received for review June 18, 2021)

The ability to regulate interfacial and wetting properties is highly demanded in anti-icing, anti-biofouling, and medical and energy applications. Recent work on liquid-infused systems achieved switching wetting properties, which allow us to turn between slip and pin states. However, patterning the wetting of surfaces in a dynamic fashion still remains a challenge. In this work, we use programmable wetting to activate and propel droplets over large distances. We achieve this with liquid-infused soft magnetic carpets (SMCs) that consist of pillars that are responsive to external magnetic stimuli. Liquid-infused SMCs, which are sticky for a water droplet, become slippery upon application of a magnetic field. Application of a patterned magnetic field results in a patterned wetting on the SMC. A traveling magnetic field wave translates the patterned wetting on the substrate, which allows droplet manipulation. The droplet speed increases with an increased contact angle and with the droplet size, which offers a potential method to sort and separate droplets with respect to their contact angle or size. Furthermore, programmable control of the droplet allows us to conduct reactions by combining droplets loaded with reagents. Such an ability of conducting small-scale reactions on SMCs has the potential to be used for automated analytical testing, diagnostics, and screening, with a potential to reduce the chemical waste.

Results and Discussion

Controlling surface-wetting properties is of interest in anti-icing (1), anti-biofouling (2–4), marine (5), and environmental (6–8) applications. Liquid-infused surfaces recently received significant attention because of their success in achieving such desired wetting properties (9, 10). Additionally, surfaces with switchable wetting properties are especially sought after because they offer two or more desired states serving different functions. Recent advances demonstrated examples of switchable wetting upon optical (11), acoustic (12, 13), electrical (14, 15), mechanical (16, 17), and magnetic (18–21) stimuli. Among these options, magnetic fields offer the advantage of untethered, simple, and strong actuation. However, these demonstrations usually lack the ability to pattern the wetting of the surface in a dynamic manner and were limited in spatial control. Although previous work has successfully demonstrated a patterned wetting surface, this has only been achieved via the microfabrication of static patterns (22, 23). Furthermore, the ability to reversibly locate and manipulate multiple droplets over large distances has been challenging (10, 24, 25) because of the static nature of the manipulation designs (26, 27). Some of the methods based on magnetic fields suffered from contamination in the used magnetic particles, requiring a purification step after transportation (28, 29). The possibility of water droplet transport on magnetically responsive surfaces has also been demonstrated (30, 31). However, this system could not be easily scaled up, the droplet motion was unidirectional (especially in the board-like structures) and limited to the transport of relatively small (1 to 6 μL) droplets. Here, we suggest that external field stimuli can be used to dynamically pattern the substrate wetting. Moreover, a strategy to locally move this stimulus on the substrate can potentially lead to droplet motion. We explore this strategy by creating “soft magnetic carpets” (SMCs) through a scalable self-assembly procedure that is based on the Rosensweig instability. Recently, we used similar SMCs with no infusion layer to transport solid and liquid cargos (32). In the current work, while the carpets are infused with a liquid, they also contain soft magnetic pillars that align with magnetic fields. By placing a patterned magnetic field underneath the carpet, the alignment response of the pillars induces a wetting pattern of pin and slip states, in which the pillars are straight or bent, respectively. While the straight pillars pin the droplets that are placed on the substrate, the bent ones allow droplets to move. Furthermore, by translating this patterned magnetic field, the effect of a magnetic wave is created, leading to the spatial control of the pinned droplets on the substrate and a method that transports large droplets without having contamination. Next, we showcase that the spatial control of multiple droplets allows us to conduct reactions by transporting and sequentially merging droplets loaded with chemicals and biological specimens. The ability of conducting small-scale reactions on a soft carpet can be potentially used to automatize analytical testing and diagnostics at an increased rate and reduced costs due to the limited use of the ingredients.

Significance

Controlling surface-wetting properties is of interest in anti-icing (1), anti-biofouling (2–4), marine (5), and environmental (6–8) applications. Liquid-infused surfaces recently received significant attention because of their success in achieving such desired wetting properties (9, 10). Additionally, surfaces with switchable wetting properties are especially sought after because they offer two or more desired states serving different functions. Recent advances demonstrated examples of switchable wetting upon optical (11), acoustic (12, 13), electrical (14, 15), mechanical (16, 17), and magnetic (18–21) stimuli. Among these options, magnetic fields offer the advantage of untethered, simple, and strong actuation. However, these demonstrations usually lack the ability to pattern the wetting of the surface in a dynamic manner and were limited in spatial control. Although previous work has successfully demonstrated a patterned wetting surface, this has only been achieved via the microfabrication of static patterns (22, 23). Furthermore, the ability to reversibly locate and manipulate multiple droplets over large distances has been challenging (10, 24, 25) because of the static nature of the manipulation designs (26, 27). Some of the methods based on magnetic fields suffered from contamination in the used magnetic particles, requiring a purification step after transportation (28, 29). The possibility of water droplet transport on magnetically responsive surfaces has also been demonstrated (30, 31). However, this system could not be easily scaled up, the droplet motion was unidirectional (especially in the board-like structures) and limited to the transport of relatively small (1 to 6 μL) droplets. Here, we suggest that external field stimuli can be used to dynamically pattern the substrate wetting. Moreover, a strategy to locally move this stimulus on the substrate can potentially lead to droplet motion. We explore this strategy by creating “soft magnetic carpets” (SMCs) through a scalable self-assembly procedure that is based on the Rosensweig instability. Recently, we used similar SMCs with no infusion layer to transport solid and liquid cargos (32). In the current work, while the carpets are infused with a liquid, they also contain soft magnetic pillars that align with magnetic fields. By placing a patterned magnetic field underneath the carpet, the alignment response of the pillars induces a wetting pattern of pin and slip states, in which the pillars are straight or bent, respectively. While the straight pillars pin the droplets that are placed on the substrate, the bent ones allow droplets to move. Furthermore, by translating this patterned magnetic field, the effect of a magnetic wave is created, leading to the spatial control of the pinned droplets on the substrate and a method that transports large droplets without having contamination. Next, we showcase that the spatial control of multiple droplets allows us to conduct reactions by transporting and sequentially merging droplets loaded with chemicals and biological specimens. The ability of conducting small-scale reactions on a soft carpet can be potentially used to automatize analytical testing and diagnostics at an increased rate and reduced costs due to the limited use of the ingredients.

Author contributions: A.F.D. designed research; A.F.D., S.A., S.G., Y.A.M., and E.P. performed research; Y.A.M. and E.P. contributed new reagents/analytic tools; A.F.D., S.A., S.G., Y.A.M., and E.P. analyzed data; and A.F.D. and E.P. wrote the paper. The authors declare no competing interest.

This article is a PNAS Direct Submission. D.D.C. is a guest editor invited by the Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: ahmet.demiroers@mat.ethz.ch.

This article contains supporting information online at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111291118/-/DCSupplemental.

Published November 9, 2021.

PNAS 2021 Vol. 118 No. 46 e2111291118

https://doi.org/10.1073/pnas.2111291118 | 1 of 7
The inset shows a three-dimensional reconstruction of images taken in the slip state, in which they are exposed to a magnetic field opposed to the one in the pin state. We observed a variation from 7 to 22° in the previous report. This allows for a direct comparison to the typical values for the fraction of solid surface, φ, lie in the range 0.26 to 0.35 when no magnetic field is applied. However, upon magnetic field manipulation, the fraction of solid surface can be tuned. By decreasing φ with the aid of magnetic fields, we can obtain slipping droplets. This is possible because, at low φ values, F_{pin} and α_{max} also decrease (e.g., $\alpha_{\text{max}} = 9^\circ$ for $\phi = 0.01$). When no magnetic field is applied, $\alpha_{\text{max}} = 53^\circ$ at $\phi = 0.3$, which agrees with our experiments. Finally, the droplet-pinning force F_{pin} is 157 μN for a 20-μL droplet at $\phi = 0.3$. This force is also in the proximity of silicone rubber–water adhesion forces (35).

This switch of the surface wetting can be locally performed by using an array of magnets arranged side by side with alternating polarization directions. When such a magnet array is placed under the liquid-infused layer, the surface is patterned with pin and slip states. As shown in Fig. 2C, a droplet does not move when placed on a pin area of a carpet tilted by 30° and slips when placed on a slip area. The pattern on the surface can be changed by shifting the magnet array with respect to the substrate. This switches the slip and pin states on the carpet, immediately making the slipping droplet to stop and the pinned one to slip. Snapshots of the carpet in Fig. 2C, Bottom demonstrate this dynamic wetting exchange, see also Movie S2. We have characterized the influence of the magnetic field on the contact angle of the droplets to the surface. We found that the contact angle increases with the magnetic field and reaches 120°, which is close to the angle between silicon oil and water (Fig. 2D). The velocity of droplets slipping on a tilted substrate increased as the tilt angle was increased from 20 to 50° (Fig. 2E). An increase of droplet speed with the tilt angle has been observed before (36). Here, we also observe an increase in the droplet velocity with tilt angle increase, in agreement with previous report.

We also varied the viscosity of the silicon oil to determine its effect on the velocity of the droplet on tilted substrates. We observed a variation from 7 to 22° in the angle at which the droplet started slipping by changing the viscosity of the silicon oil from 1 to 30,000 cSt (Fig. 2F). The dependence of the droplet velocity on the silicon oil viscosity indicates that the water droplet is in the cloaking regime i.e., the oil spreads over and...
“cloaks” the droplet (37). This is important because, as a result of the cloaking, the oil interacts with the liquid, causing the droplet slip speed to exhibit a dependence on the oil viscosity. The criterion for cloaking is given by the spreading coefficient, $S_{ow(a)} = \gamma_{oa} - \gamma_{oa} \sim \gamma_{oa}$, where γ is the interfacial tension between the two phases designated by subscripts w (water), o (oil), and a (air). When $S_{ow(a)} > 0$, the oil will cloak the water droplet, whereas $S_{ow(a)} < 0$ implies otherwise (37). The fact that $S_{ow(a)} \sim 6 \text{ mN/m}$ for the silicone oil system agrees with the observed behavior, see SI Appendix, Table S2 for details. Up until here, the mobility of the droplet originates from the gravitational and the tilted substrate. However, our soft, responsive substrates may allow for droplet manipulation by a coordinated motion of the soft pillars, enabling capabilities for droplet transfer and manipulation.

The ability to pattern the pin and slip states on the infused soft carpet allows for droplet transportation when the pattern is moved. This motion is achieved by the use of a traveling magnetic field wave. When the magnetic field is translated, the pinning areas are translated with it, which changes the angles of the pinning pillars with respect to the substrate. This change of configuration triggers the repositioning of the droplets pinned at the edge of a pinning area. Additionally, an infusion layer that does not cloak the water droplet may allow for more freedom in the droplet manipulation. To this end, we performed experiments using mineral oil with a negative spreading coefficient $S_{ow(a)} \sim -7 \text{ mN/m}$. By exposing a mineral oil–infused soft carpet to a translating magnetic field wave, the droplet moves in a direction opposite to the one of the magnetic field (see Materials and Methods and SI Appendix, Fig. S1 for magnetic manipulation). The origin of such behavior is described in the sketches and time lapses shown in Fig. 3 A and B. In these snapshots, while the magnetic field wave is moving to the left, the droplet-pinning pillars are exhibiting a stroke from left to right that pushes the pinned droplet toward the right. Note that effective droplet motion takes place during the backstroke of stretched pillar, which transfers the droplet into a slip region. The droplet stays still at the slip state region, see the middle part of Fig. 3 D. The shift of the droplet under the effect of a single backstroke wave is shown in Fig. 3 E (see also SI Appendix, Fig. S2 for the droplet transport mechanism). The stroke yields a droplet displacement of about 2 mm for a 4 mm displacement of the magnetic array (Movie S3). Fig. 3 F demonstrates the overall droplet motion with the translating magnetic field wave from the top and side views, see also Movies S4 and S5. Similarly, a circular motion of the magnetic field wave can be used to rotate a droplet in a circular path, see Fig. 3 G and H (Movie S6). We have characterized the droplet motion in relation to the magnetic field translation speed, the droplet size, and the spatial density of the magnetic pillars. For this, we have looked at the droplet transportation of a 30-μL droplet on a SMC (pillar height: 2 mm and...
distance between pillars: 1.1 mm) infused with mineral oil at varying magnetic field translation speeds. Although the droplet speed increases with increasing magnetic field translation speed, the efficiency of droplet transport is higher at lower-magnetic field translation speeds. In other words, droplet transport efficiency decreases as the magnetic field translation speed increases (SI Appendix, Fig. S3). Furthermore, we have evaluated the lowest limit of the droplet volume that can be transported by using a soft carpet with a higher density of pillars. This soft carpet had a shorter pillar height of 1 mm and an average distance
between pillars of 0.6 mm. Shorter and denser pillars enabled the transport of droplets as small as 2 μL (SI Appendix, Fig. S3 B and C). However, transportation of 5 μL or smaller droplets on a soft carpet with lower density and taller pillars (pillar height 2 mm and distance between pillars 1.1 mm) was not possible, see SI Appendix, Fig. S3 D and E. This suggests that, for an effective droplet transfer, the interpillar distance should be ideally smaller than the size of the droplets. Finally, we noticed that different droplet sizes have different transport efficiencies on the same carpet. Our analyses showed that the efficiency of droplet transportation increased with increasing droplet size, see SI Appendix, Fig. S3 B, C, and F. We believe that this ability can potentially be used for size-selective droplet sorting.

In our experiments, we have also observed that the translational speed of the droplet depends on the contact angle of the droplet with the soft carpet surface. To demonstrate this, we have made a set of translation experiments with 1×10^{-3} – 2 weight percent (wt%) PAA in a water droplet. We found that with increasing surfactant concentration (thus with a decreasing contact angle) the speed and the efficiency of the droplet motion decreased (Fig. 3 I and J and Movie S7). Here, we define the efficiency as the ratio of the output motion (motion of the droplet) to the input motion, related to the magnetic field wave. In practice, we measure the displacement of the droplet and divide it to the displacement of the magnetic field. This change in the speed of the droplet can be used as a means to sort or merge droplets. In Fig. 3K, we have used this velocity change to displace two droplets at different speeds and intentionally merge them for achieving a controlled mixing experiment (Movie S8). It is likely that this speed difference is due to a simple geometric argument, which is the contact area of the droplet to the substrate. The contact area of a droplet increases with a decreasing contact angle. Therefore, the interface energy needed to move the droplet is expected to increase with a decreasing contact angle.

In addition to speed control via contact angle adjustment, local magnetic manipulations can be used to spatially control multiple droplets on the substrate. The ability to control droplet displacements and their merging allows us to use these droplets as cargo carriers to achieve controlled reactions at a droplet scale. To demonstrate the capability of using droplets as reaction vessels, we have designed droplet-merging experiments carrying different chemistries. In the experiments shown in Fig. 3 L and M, two transparent 50-μL water droplets became pink when merged. The first droplet had a pH of ~14 and was composed of 0.5 M NaOH, whereas the second one carried 0.5% phenolphthalein at pH = 7. Phenolphthalein is a pH indicator and changes color when the pH is in the range of 8.2 to 10. It is colorless at acidic pH below 8.2 and becomes pink above a pH 10. By merging these first two droplets, the pH value increased to ~12, and the phenolphthalein became pink. Subsequently, the merged droplet was brought together with a third one, carrying 70 μL 1 M HCl (pH = 0), which made the pink droplet transparent again. The first coloration change was due to the high pH, which made the phenolphthalein pink. The third droplet brought the pH back to an acidic value (pH < 7), reverting the droplet color to transparent (Movie S9). The ability to independently relocate multiple droplets allows us to design a vast variety of experiments that can yield a magnetically driven, millifluidic platform with potential applications in laboratory tests and in the pharmacy industry.

An alternative to the hydrophobic oil used in the liquid infusion of the soft carpets is to add a ferrofluid to the oil. This infusion has the potential to allow for more complex droplet manipulation scenarios, as the ferrofluid will interact with the magnetic field and may provide another control parameter. Liquid infusion of the soft carpets with a ferrofluid layer allows for two types of droplet manipulation, which are defined by the height of the layer. When enough ferrofluid is infused in the soft carpet (i.e., when the thickness of the infusion layer is about the pillar height), the magnetic field under the carpet induces a dynamic liquid topography. This topography follows the fingerprints of the magnetic flux density generated by the magnets under the substrate and has rounded edges due to surface tension and gravitational forces (Fig. 4A). Fig. 4B shows the magnetic scalar potential associated to the magnetic fields shown in Fig. 4A. In this configuration, the flux density dictates the spatial distribution of the ferrofluid, whereas the scalar potential demonstrates the polarization of the magnets and their interaction with the pillars. When the infusion layer boundary is at the height of the pillar or beyond, the surface topography of the ferrofluid dominates the droplet manipulation (Fig. 4 C and D and Movie S10). This topography follows the magnetic field flux, and the curvature of the surface topography traps the droplet at the slip state. Consequently, the motion of the topography allows for the spatial manipulation of the droplet (Fig. 4D) (see also SI Appendix, Fig. S4). On the other hand, when the boundary of the ferrofluid layer is below the pillar height (i.e., the thickness of the infusion layer is about 0.5 the pillar height), the pillars of the soft carpet interact with the droplet via pin and slip states.

Compared to mineral oil-infiltrated substrates, this configuration exhibits a more efficient droplet transportation (Fig. 4 E and F and Movie S11). Note here that the direction of the droplet motion is opposite to the translating magnetic field wave. In this study, the transport efficiency is quantified with a scale varying from −1 to 1 and defined as the ratio between the displacements of the droplet and of the magnet array. When both the droplet and the array move one unit length along the same direction, the efficiency is at its maximum 1, which is the case depicted in Fig. 4 C and D. For a droplet moving in a direction opposite to the magnetic field motion, the efficiency is negative. Particularly, if both the droplet and the magnet array move one unit in opposite directions, the efficiency is −1. The forward and backward motions observed in Fig. 4 D and F have an efficiency value of 1 and −0.5, respectively. Moreover, the backward motion for a ferrofluid-infused layer is observed to have a higher transport efficiency than the motion in layers infused only with mineral oil, which lies around −0.4. Although both motions have negative efficiencies, a comparison of their absolute values shows that droplets are transported faster if ferrofluid is added to the infusion layer. The lower efficiency obtained for substrates infused only with mineral oil is explained by the inhomogeneity in the pillar heights. When ferrofluid is added to the infusion layer, the layer also becomes magnetic, forming a topography that improves the distinction between the slip and pin states. The ferrofluid infusion of soft carpets offers an alternative mechanism for droplet manipulation.

Ferrofluid infusion with the rotor-shaped magnet assembly was also demonstrated for droplet manipulation (Fig. 4 G and H and Movie S12). Because of the circular path formed, this manipulation is only possible with an excess of ferrofluid in the infusion layer. Here, the ferrofluid predominantly occupies the locations with high magnetic flux and forms a topography for the droplets to organize at the gravitational minima in a similar fashion as in Fig. 4 C and D. When the set of magnets is rotated with one or multiple droplets, these droplets follow the rotation of the magnetic field and exhibit a synchronized circular motion over time (Fig. 4I and Movie S13).

Conclusion

By applying external magnetic fields to a liquid-infused soft carpet, patterned and switchable wetting states on the surfaces were achieved. Spatiotemporal control of these wetting states allowed...
us to design surface forces and manipulate nonmagnetic droplets over the soft pillars infused with a liquid. The infusion of a repellant liquid allows for droplet manipulation without contaminating its content. This enables the use of droplets as small containers to deliver chemical cargo and to combine two distinct chemicals for a reaction or a synthesis. We showcased this capability by merging droplets for specific chemical reactions that demonstrated visual modifications as a result of changing pH values. Furthermore, several control parameters to tune the droplet motion mechanism in Fig. 3. The motion of the surface topography with a moving magnetic wave carries the 20-μL droplet along the same direction of the wave motion. Snapshots show the droplet transport at the slip state over time. (E) A sketch depicting the case of a soft carpet infused with a layer poor in ferrofluid. Here, the surface exhibits both pin and slip states. Droplets pin quickly, and the strokes of these pinning pillars drive the droplet motion, similar to the motion mechanism in Fig. 3. (F) The strokes of the pinning pillars push the 60-μL droplet in an opposite direction to the moving magnetic field wave. Snapshots show the droplet transport at the pin state over time. (G) A rotor-shaped magnet array manipulates ten 50-μL droplets with a ferrofluid infusion. Magnetic flux density of the rotor-shaped magnet array placed under the infused substrate (H) and time lapse of a 50-μL water droplet being manipulated on a circular path (I). (Scale bars, 5 mm.)

The Magnetic Manipulation of SMCs. The magnetic manipulation of the SMCs was achieved by attaching a magnetic track directly to an electric motor or by using a motorized stage to move the magnetic track (see also SI Appendix, Fig. S1). The pillar manipulation performed with our array of permanent magnets may, in principle, also be achieved using electromagnets that can generate similarly complex patterns of magnetic nodes and anti-nodes. To facilitate the use of electromagnets, it is recommended to magnetize the SMCs up to their magnetic saturation level (40). This endows the pillars with a much greater permanent dipole moment so that they can be more readily controlled using external fields generated electrically, which are typically weaker.

Liquid Infusion of Soft Carpets. Liquid infusion was performed by using the following oils: silicon oil with several viscosities (1, 1000, 10,000, and 30,000 cSt of Sigma-Aldrich) and mineral oil (Sigma-Aldrich). The ferrofluid was added by suspending oil-soluble iron oxide nanoparticles (Ferrotec, EMG 1300 M) in mineral oil with a concentration of 1 mg/mL. A small amount of these suspensions was poured on the soft carpets for a low-infusion level, yielding layers with ~50% of the average pillar height for the scarce case.

Contact Angle Measurements. Contact angle measurements were performed at different magnetic fields by taking a sideview picture of the droplet at contact and measuring the angle with ImageJ image analysis software.
Water Droplet Labeling. To label the water droplets, 30 mg rhodamine isothiocyanate or fluorescein isothiocyanate dye was added to 1 mL glycerol. Small aliquots of the liquid were taken for the experiments.

PAA Water Solutions. For the droplet tests, we prepared PAA (Acros, M.W. 5,000 g/mole) at different concentrations, namely at 0.5, 0.05, and 0.005 wt%. These droplets were placed on the substrates with a micropipette.

1. M. J. Kreder, J. Alvarenga, P. Kim, J. Aizenberg, Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 1, 15003 (2016).
2. D. C. Leslie et al., A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat. Biotechnol. 32, 1134–1140 (2014).
3. M. J. Kratohvil et al., Slippery liquid-infused porous surfaces that prevent bacterial surface fouling and inhibit virulence phenotypes in surrounding planktonic cells. ACS Infect. Dis. 2, 509–517 (2016).
4. C. Howells, A. Grinthal, S. Sunny, M. Aizenberg, J. Aizenberg, Designing liquid-infused surfaces for medical applications: A review. Adv. Mater. 30, e1802724 (2018).
5. E. Almeida, T. C. Diamantino, O. de Sousa, Marine paints: The particular case of anti-fouling paints. Prog. Org. Coat. 59, 2–20 (2007).
6. R. K. Manna, P. B. S. Kumar, R. Adhikari, Colloidal transport by active filaments. J. Chem. Phys. 146, 024901 (2017).
7. E. Ueda, P. A. Levkin, Micropatterning hydrophobic liquid on a porous polymer surface for long-term selective cell-repellency. Adv. Healthc. Mater. 2, 1425–1429 (2013).
8. J. Li et al., Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications. ACS Appl. Mater. Interfaces 5, 6704–6711 (2013).
9. P. Bauml et al., Flow-induced long-term stable slippery surfaces. Adv. Sci. (Weinh.) 6, 1900019 (2019).
10. M. Wang et al., Surface charge printing for programmed droplet transport. Nat. Mater. 18, 936–941 (2019).
11. K. Ichimura, S. K. Oh, M. Nakagawa, Light-driven motion of liquids on a photosresponsive surface. Science 288, 1624–1626 (2000).
12. D. Foresti, M. Nabavi, M. Klingauf, A. Ferrari, D. Poulikakos, Acoustophoretic contactless transport and handling of matter in air. Proc. Natl. Acad. Sci. U.S.A. 110, 12549–12554 (2013).
13. A. Ozcelik et al., Acoustic tweezers for the life sciences. Nat. Methods 15, 1021–1028 (2018).
14. H. Geng, J. Feng, L. M. Stabryla, S. K. Cho, Dielectrowetting manipulation for digital microfluidics: Creating, transporting, splitting, and merging of droplets. Lab Chip 17, 1060–1068 (2017).
15. J. Li, N. S. Ha, T. Liu, R. M. van Dam, C.-J. Kim, Ionic-surfactant-mediated electrowetting for digital microfluidics. Nature 572, 507–510 (2019).
16. X. Yao et al., Adaptive fluid-infused porous films with tunable transparency and wetting. Nat. Mater. 12, 529–534 (2013).
17. E. De Jong, Y. Wang, J. M. J. den Toonder, P. R. Onck, Climbing droplets driven by mechanowetting on transverse waves. Adv. Sci. 5, eaaw0914 (2019).
18. Y. Huang et al., A switchable cross-species liquid repellent surface. Adv. Mater. 29, 1604641 (2017).
19. Y. Cui, D. Li, H. Bai, Bioinspired smart materials for directional liquid transport. Ind. Eng. Chem. Res. 56, 4887–4897 (2017).
20. D. Tian et al., Fast responsive and controllable liquid transport on a magnetic fluid/nanoarray composite interface. ACS Nano 10, 6220–6226 (2016).

Data Availability. All study data are included in the article and/or supporting information.

ACKNOWLEDGMENTS. We are very thankful to Prof. André R. Studart at ETH Zurich for support and discussions. This research was supported by the Swiss National Science Foundation through the National Centre of Competence in Research Bio-Inspired Materials (Grant No. 51NF40_182881).

21. Y. Zhou, S. Huang, X. Tian, Magnetoresponsive surfaces for manipulation of non-magnetic liquids: Design and applications. Adv. Funct. Mater. 30, 1906507 (2020).
22. N. Vogel, R. A. Belisle, B. Hatton, T.-S. Wong, J. Aizenberg, Transparency and damage tolerance of patterned omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat. Commun. 4, 2167 (2013).
23. X. Luo et al., Slippery shape memory polymer arrays with switchable isotropic/anisotropic and its application as a reprogrammable platform for controllable droplet motion. Chem. Eng. J. 403, 126356 (2021).
24. C. Yang, Z. Zhang, G. Li, Programmable droplet manipulation by combining a super-hydrophobic magnetic film and an electromagnetic pillar array. Sens. Actuators B Chem. 262, 892–901 (2018).
25. A. Li et al., Programmable droplet manipulation by a magnetic-actuated robot. Sci. Adv. 6, eaay5808 (2020).
26. J. Li et al., Oil droplet self-transportation on oleophobic surfaces. Sci. Adv. 2, e1600148 (2016).
27. C. Yu et al., Drop cargo transfer via unidirectional lubricant spreading on peristome-mimetic surface. ACS Nano 12, 11307–11315 (2018).
28. Y. Zhang, N.-T. Nguyen, Magnetic digital microfluidics—A review. Lab Chip 17, 994–1008 (2017).
29. M. Latikka, M. Backholm, J. V. I. Timonen, R. H. A. Ras, Wetting of ferrofluids: Phenomena and control. Curr. Opin. Colloid Interface Sci. 36, 118–129 (2018).
30. S. Jiang et al., Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer. Nano Lett. 20, 7519–7529 (2020).
31. Y. Song et al., Cross-species bioinspired anisotropic surfaces for active droplet transportation driven by unidirectional microcolumn waves. ACS Appl. Mater. Interfaces 12, 42264–42273 (2020).
32. A. F. Demirors et al., Amphibious transport of fluids and solids by soft magnetic carpets. Adv. Sci. (Weinh.) 10, 100220ds.202102510. (2021).
33. R. E. Rosenweig, Ferrohydrodynamics (Courier Dover Publications, 1997).
34. M. S. Sadullah, J. R. Panter, H. Kusumaatmaja, Factors controlling the pinning force of liquid droplets on liquid infused surfaces. Soft Matter 16, 8114–8121 (2020).
35. G. Hou et al., Foolproof method for fast and reversible switching of water-droplet adhesion by magnetic gradients. ACS Appl. Mater. Interfaces 9, 23238–23245 (2017).
36. T. Maurer, A. Mebus, U. Janoske, Water Droplet Motion on an Inclining Surface, in Ferrohydrodynamics, ed. M. E. Gunther (Courier Dover Publications, 1997).
37. J. D. Smith et al., Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9, 1772–1780 (2013).
38. H. Lu et al., A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 9, 3944 (2018).
39. J. V. I. Timonen et al., A facile template-free approach to magnetodriven, multifunctional artificial cilia. ACS Appl. Mater. Interfaces 2, 2226–2230 (2010).
40. H. Gu et al., Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11, 2637 (2020).