Effects and Detection of Specialized Metabolites in Bumblebees

Supplementary Material

Specialized metabolites in floral resources: effects and detection in buff-tailed bumblebees

Ombeline Sculfort¹, Maxence Gérard²³, Antoine Gekière², Denis Nonclercq⁴, Pascal Gerbaux⁵, Pierre Duez⁶, Maryse Vanderplanck²*

¹Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300 Cayenne, France

²Laboratory of Zoology, Research Institute for Biosciences, University of Mons - UMONS, Place du Parc 23, 7000 Mons, Belgium

³Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden

⁴Laboratory of Histology, Faculty of Medicine and Pharmacy, University of Mons - UMONS, Place du Parc 23, 7000 Mons, Belgium

⁵Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons - UMONS, Place du Parc 23, 7000 Mons, Belgium

⁶Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, University of Mons - UMONS, Place du Parc 23, 7000 Mons, Belgium

*Correspondence:
Maryse Vanderplanck
maryse.vanderplanck@umons.ac.be
Table S1. Purity, provider, CAS (Chemical Abstracts Service) number and naturally occurring concentrations in fresh pollen of the specialized metabolites used during the experiments. Provider, Sigma-Aldrich.

Specialized metabolite$^{(1)}$	CAS number	Naturally occurring concentrations in fresh pollen	Source
Amygdalin ≥97%	29883-15-6	1,889 ppm	London-Shafir et al. (2003)
Sinigrin hydrate ≥99%	3952-98-5	1,892 ppm$^{(2)}$	Ares et al. (2015)
Scopolamine hydrochloride ≥90%	55-16-3	20,014 ppm	Detzel & Wink (1993)

$^{(1)}$ Purity as well as hydrochloride and water molecules were taken into account for calculation of the substance content in pollen diets for bumblebee bioassays and in test solutions for PER experiments.

$^{(2)}$ Original data was expressed as µg/g of dry pollen mass (2.226 µg/g)
Table S2. Different score grades for the five criteria in histological examination.

Criterion 1: Disorganization or loss of the brush-like border	Score	Description
	0	The brush-like border was homogeneous with well-developed microvilli
	1	Focal disorganization or focal loss of the brush-like border (in maximum two cells per villus)
	2	Disorganization or loss of the brush-like border in less than 10% of villus intestinal epithelial cells
	3	Disorganization or loss of the brush-like border in 10-25% of villus intestinal epithelial cells
	4	Disorganization or loss of the brush-like border in 25-50% of villus intestinal epithelial cells
	5	Disorganization or loss of the brush-like border in more than 50% of villus intestinal epithelial cells

Criterion 2: Vacuolization of the epithelial cells (hydropic degeneration)	Score	Description
	0	The morphology of digestive cells appeared to be normal without cytoplasmic vacuolization
	1	Focal cytoplasmic vacuolization (in maximum three cells per villus)
	2	Cytoplasmic vacuolization (hydropic degeneration) in less than 10% of villus intestinal epithelial cells
	3	Cytoplasmic vacuolization (hydropic degeneration) in 10-25% of villus intestinal epithelial cells
	4	Cytoplasmic vacuolization (hydropic degeneration) in 25-50% of villus intestinal epithelial cells
	5	Cytoplasmic vacuolization (hydropic degeneration) in more than 50% of villus intestinal epithelial cells

Criterion 3: Interstitial edema	Score	Description
	0	Absence of interstitial edema in the connective tissue that forms the central axes of intestinal crypts
	1	Mild interstitial edema in maximum two intestinal villi
	2	Severe interstitial edema in less than 10% of intestinal villi
	3	Severe interstitial edema in 10-25% of intestinal villi
	4	Severe interstitial edema in 25-50% of intestinal villi
	5	Severe interstitial edema in more than 50% of intestinal villi
Table S2. Continued.

Criterion 4: Apoptosis

Score	Description
0	The morphology of digestive cells appeared to be normal without pyknotic nucleus. The nuclei had a smooth and regular appearance.
1	Apoptosis features in focal areas with pyknotic nuclei in maximum three cells per villus
2	Karyolysis, pyknosis or karyorrhexis in less than 10% of villus intestinal epithelial cells
3	Karyolysis, pyknosis or karyorrhexis in 10-25% of villus intestinal epithelial cells
4	Karyolysis, pyknosis or karyorrhexis in 25-50% of villus intestinal epithelial cells
5	Karyolysis, pyknosis or karyorrhexis in more than 50% of villus intestinal epithelial cells

Criterion 5: Necrosis

Score	Description
0	No necrotic cells were observed both in the base and at the apex of the intestinal crypts that remained well shaped
1	Isolated necrotic cells (maximum two cells per villus) as well as cellular debris observed in the mesenteron lumen
2	Mild tissue necrosis in less than 10% of intestinal villi with necrotic areas of more than 30%, several cellular debris observed in the mesenteron lumen
3	Severe tissue necrosis in 10-25% of intestinal villi with necrotic areas of more than 30%, several cellular debris observed in the mesenteron lumen
4	Severe tissue necrosis in 25-50% of intestinal villi with necrotic areas of more than 50%, several cellular debris observed in the mesenteron lumen
5	Severe tissue necrosis in more than 50% of intestinal villi with necrotic areas of more than 50%, several cellular debris observed in the mesenteron lumen
6	Severe tissue necrosis in 100% of intestinal villi with complete desquamation of the intestinal epithelial cell layer
Table S3. Effects of diet treatments on *B. terrestris* in micro-colonies, mean (SE) (n = 10 for each treatment). Different letters indicate significant differences (p < 0.05) (post-hoc Tukey analyses with FDR adjustment).

Parameters	Amygdalin	Statistics⁽¹⁾						
	0% (Control)	50%	100%	200%	χ²	df	p	
Pollen collection (g)	19.52 (1.62)	21.42 (0.96)	20.14 (0.99)	17.59 (1.49)	a	6.78	3	0.079
Syrup collection (g)	88.77 (4.38)	92.65 (2.24)	89.17 (2.86)	84.00 (3.05)	4.82	3	0.018	
Pollen dilution	4.66 (0.20)	4.37 (0.14)	4.47 (0.12)	4.98 (0.29)	7.55	3	0.006	
Mass of total eclosed offspring (g)	8.31 (0.62)	9.23 (0.64)	8.53 (0.43)	7.32 (0.60)	5.92	3	0.016	
Pollen efficiency	0.43 (0.01)	0.43 (0.02)	0.43 (0.02)	0.42 (0.03)	0.10	3	0.991	
Larval ejection (%)	22.83 (4.32)	20.28 (3.33)	21.80 (2.82)	16.87 (3.25)	3.19	3	0.363	

Parameters	Scopolamine	Statistics⁽¹⁾					
	0% (Control)	50%	100%	200%	χ²	df	p
Pollen collection (g)	10.62 (0.59)	10.66 (0.55)	12.30 (0.85)	10.12 (0.82)	5.69	3	0.128
Syrup collection (g)	76.33 (5.34)	77.54 (2.61)	81.03 (4.08)	80.11 (3.02)	2.12	3	0.549
Pollen dilution	7.22 (0.33)	7.40 (0.32)	6.71 (0.28)	7.65 (0.50)	3.77	3	0.287
Mass of total eclosed offspring (g)	8.06 (0.66)	8.38 (0.82)	9.19 (0.51)	7.08 (0.86)	5.64	3	0.131
Pollen efficiency	0.76 (0.05)	0.78 (0.05)	0.76 (0.04)	0.74 (0.04)	0.74	3	0.684
Larval ejection (%)	25.48 (6.54)	20.89 (5.50)	24.98 (3.44)	27.27 (6.39)	0.91	3	0.684
Table S3. Continued.

Parameters	Sinigrin	Statistics$^{(1)}$			
	0% (Control)	50%	100%	200%	χ^2 = 1.79, df = 3, $p = 0.618$
Number of eggs	13 (6)	18 (6)	14 (6)	15 (6)	$\chi^2 = 2.73$, df = 3, $p = 0.435$
Number of non-isolated larvae	31 (10)	31 (6)	35 (7)	30 (10)	
Number of pre-defecating larvae	7 (2)	8 (1)	10 (2)	7 (2)	$\chi^2 = 1.61$, df = 3, $p = 0.658$
Number of post-defecating larvae	4 (1) a	3 (1) ab	1 (1) b	1 (1) b	$\chi^2 = 11.31$, df = 3, $p = 0.010$
Number of pupae	5 (1)	7 (2)	6 (1)	6 (1)	$\chi^2 = 4.07$, df = 3, $p = 0.534$
Number of non-emerged drones	1 (1)	1 (0)	1 (0)	0 (0)	$\chi^2 = 6.07$, df = 3, $p = 0.108$
Number of emerged drones	10 (1)	8 (2)	11 (1)	7 (1)	

$^{(1)}\chi^2$: value of the type II Wald chi square, df: degree of freedom, p: p-value of the type II Wald chi square. Significant results are depicted in bold ($p < 0.05$).
Table S4. Digestive damage scores from the different diet treatments, min-max (median) (n = 3-4). Different letters indicate significant differences (p < 0.05) (post-hoc analyses). Scores significantly higher than control are depicted in bold.

Diet treatment	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5	TDS\(^{(2)}\)
Control	0-2 (0.5)\(^{\text{bcd}}\)	1-2 (1.5)\(^{\text{de}}\)	0-2 (1)\(^{\text{cd}}\)	1-3 (2)\(^{\text{bc}}\)	1-3 (2)\(^{\text{bc}}\)	4-10 (7.5)\(^{\text{bc}}\)
Amygdalin 50%	5-5 (5)\(^{\text{a}}\)	5-5 (5)\(^{\text{a}}\)	5-5 (5)\(^{\text{a}}\)	5-5 (5)\(^{\text{a}}\)	4-6 (5)\(^{\text{a}}\)	24-26 (25)\(^{\text{a}}\)
Amygdalin 100%	3-5 (4)\(^{\text{a}}\)	2-5 (3.5)\(^{\text{abc}}\)	1-5 (4)\(^{\text{abc}}\)	2-5 (4.5)\(^{\text{a}}\)	2-6 (4)\(^{\text{ab}}\)	11-26 (19.5)\(^{\text{a}}\)
Amygdalin 200%	1-4 (3)\(^{\text{ab}}\)	3-4 (3.5)\(^{\text{abc}}\)	1-3 (3)\(^{\text{abcd}}\)	3-5 (4)\(^{\text{ab}}\)	2-3 (3)\(^{\text{ab}}\)	13-18 (15.5)\(^{\text{ab}}\)
Scopolamine 50%	1-5 (5)\(^{\text{a}}\)	2-5 (5)\(^{\text{ab}}\)	1-5 (5)\(^{\text{ab}}\)	5-5 (5)\(^{\text{a}}\)	2-6 (4.5)\(^{\text{ab}}\)	11-26 (24.5)\(^{\text{a}}\)
Scopolamine 100%	0-1 (0.5)\(^{\text{cd}}\)	1-1 (1)\(^{\text{e}}\)	0-1 (0.5)\(^{\text{d}}\)	0-1 (0)\(^{\text{d}}\)	0-1 (0.5)\(^{\text{d}}\)	1-4 (2.5)\(^{\text{c}}\)
Scopolamine 200%	0-5 (0)\(^{\text{bcd}}\)	1-5 (1)\(^{\text{cde}}\)	0-5 (1)\(^{\text{bcd}}\)	0-5 (1)\(^{\text{bcd}}\)	1-5 (1)\(^{\text{bcd}}\)	3-25 (3)\(^{\text{bc}}\)
Sinigrin 50%	0-1 (0)\(^{\text{d}}\)	1-2 (1)\(^{\text{de}}\)	0-1 (0.5)\(^{\text{d}}\)	0-2 (1)\(^{\text{cd}}\)	1-1 (1)\(^{\text{cd}}\)	2-7 (3.5)\(^{\text{c}}\)
Sinigrin 100%	0-5 (3)\(^{\text{abc}}\)	1-5 (3)\(^{\text{abcd}}\)	0-5 (2.5)\(^{\text{abcd}}\)	1-5 (4)\(^{\text{ab}}\)	0-6 (3)\(^{\text{ab}}\)	2-26 (15.5)\(^{\text{ab}}\)
Sinigrin 200%	0-0 (0)\(^{\text{d}}\)	0-1 (1)\(^{\text{e}}\)	0-2 (0.5)\(^{\text{d}}\)	0-2 (1)\(^{\text{cd}}\)	0-1 (0.5)\(^{\text{d}}\)	1-5 (3)\(^{\text{c}}\)

Statistics\(^{(1)}\):
\[
\chi^2 = 23.42, \text{ df} = 9, \quad p = 0.005 \\
\chi^2 = 23.79, \text{ df} = 9, \quad p = 0.005 \\
\chi^2 = 17.90, \text{ df} = 9, \quad p = 0.036 \\
\chi^2 = 26.20, \text{ df} = 9, \quad p = 0.002 \\
\chi^2 = 24.04, \text{ df} = 9, \quad p = 0.004 \\
\chi^2 = 24.02, \text{ df} = 9, \quad p = 0.004
\]

\(^{(1)}\)\(\chi^2\): value of the Kruskal-Wallis tests, df: degree of freedom, p: p-value of the the Kruskal-Wallis tests. Significant results are depicted in bold (p < 0.05).

\(^{(2)}\)Total sum of damage scores.
Table S5. Preference tests of specialized metabolites in *B. terrestris*, mean (SE) (n = 14-15 for each treatment). Different letters indicate significant differences (p < 0.05) (post-hoc Tukey analyses).

Diet treatment	Parameters				
	Volume of solution consumed (mL)	Cumulative duration of feeding bouts (s)	Duration of the first contact (s)	Total duration of effective feeding (s)	Number of feeding bouts
Positive control (syrup)	28.95 (2.83)ab	51.50 (7.38)ab	14.69 (3.73)ab	48.52 (7.45)a	2 (0)b
Negative control (quinine)	21.64 (7.24)d	12.59 (5.42)c	1.35 (0.50)d	8.78 (4.44)c	2 (0)b
Amygdalin 50%	18.40 (3.13)d	35.94 (5.88)ab	7.55 (3.98)c	34.05 (5.74)ab	2 (0)b
Amygdalin 100%	23.01 (3.67)bcd	48.56 (10.33)a	10.03 (7.95)c	46.78 (10.25)ab	1 (0)b
Amygdalin 200%	29.04 (4.88)abc	53.19 (10.26)a	33.99 (9.83)a	51.13 (10.27)ab	2 (0)b
Scopolamine 50%	37.81 (4.95)a	54.94 (9.27)ab	27.41 (7.78)a	49.82 (8.80)ab	5 (0)a
Scopolamine 100%	32.76 (5.09)ab	42.94 (6.82)ab	16.39 (3.60)ab	37.49 (5.85)ab	5 (0)a
Scopolamine 200%	34.23 (4.77)a	48.13 (7.78)ab	21.23 (6.37)ab	37.01 (6.27)ab	5 (0)a
Sinigrin 50%	23.01 (5.64)cd	34.49 (7.75)b	6.21 (2.53)cd	32.61 (7.69)b	2 (0)b
Sinigrin 100%	23.43 (5.37)bcd	57.23 (10.65)a	28.27 (10.90)ab	50.04 (10.00)ab	2 (0)b
Sinigrin 200%	18.14 (2.68)d	57.75 (8.13)a	12.87 (5.28)bc	48.70 (7.34)a	2 (0)b

Statistics(1)

| | χ² = 30.42, df = 10, p < 0.001 | χ² = 74.38, df = 10, p < 0.001 | χ² = 57.64, df = 10, p < 0.001 | χ² = 86.77, df = 10, p < 0.001 | χ² = 91.63, df = 10, p < 0.001 |

(1) χ²: value of the type II Wald chi square, df: degree of freedom, p: p-value of the type II Wald chi square. Significant results are depicted in bold (p < 0.05).