NORM-INFLATION RESULTS FOR THE BBM EQUATION

JERRY BONA AND MIMI DAI

Abstract. Considered here is the periodic initial-value problem for the regularized long-wave (BBM) equation

\[u_t + u_x + uu_x - u_{xtt} = 0. \]

Adding to previous work in the literature, it is shown here that for any \(s < 0 \), there is smooth initial data that is small in the \(L^2 \)-based Sobolev spaces \(H^s \), but the solution emanating from it becomes arbitrarily large in arbitrarily small time. This so called norm inflation result has as a consequence the previously determined conclusion that this problem is ill-posed in these negative-norm spaces.

1. Introduction

This note derives from the paper [7] where it was shown that the initial-value problem

\[u_t + u_x + uu_x - u_{xtt} = 0, \quad u(0, x) = u_0(x), \tag{1.1} \]

for the regularized long-wave or BBM equation is globally well posed in the \(L^2 \)-based Sobolev spaces \(H^r(\mathbb{R}) \) provided \(r \geq 0 \). In the same paper, it was shown that the map that takes initial data to solutions cannot be locally \(C^2 \) if \(r < 0 \). This latter result suggests, but does not prove, that the problem (1.1) is not well posed in \(H^r \) for negative values of \(r \). Later, Panthee [15] showed that this solution map, were it to exist on all of \(H^r(\mathbb{R}) \), could not even be continuous, thus proving that the problem is ill posed in the \(L^2 \)-based Sobolev spaces with negative index. Indeed, he showed that there is a sequence of smooth initial data \(\{ \phi_n \}_{n=1}^{\infty} \) such that \(\phi_n \to 0 \) in \(H^r(\mathbb{R}) \) but the associated solutions, \(\{ u_n \}_{n=1}^{\infty} \) have the property that \(\| u(\cdot, t) \|_{H^r} \) is bounded away from zero for all small values of \(t > 0 \) and all \(n \geq 1 \).

The BBM equation itself was initially put forward in [16] and [3] as an approximate description of long-crested, surface water waves. It is an alternative to the classical Korteweg-de Vries equation and has been shown to be equivalent in that, for physically relevant initial data, the solutions of the two models differ by higher order terms on a long time scale (see [3].) It predicts the propagation of surface water waves pretty well in its range of validity [5]. Finally, it is known rigorously to be a good approximation to solutions of the full, inviscid, water-wave problem by combining results in [11], [4] and [13] (see also [14]).

It is our purpose here to show that in fact, for \(r < 0 \), the problem (1.1) is not only not well posed, but features blow-up in the \(H^r \)-norm in arbitrarily short time. This will be done in the context of the periodic initial-value problem wherein \(u_0 \) is

The author M. Dai was partially supported by NSF grant DMS–1517583.
a periodic distribution lying in H^r_{per} for some $r < 0$. Similar results hold for $H^r(\mathbb{R})$, but are not explicated here.

More precisely, it will be shown that, for any given $r < 0$, there is a sequence $\{u_n^0\}_{n=1}^\infty$ of smooth initial data such that $u_n^0 \to 0$ in H^r_{per} and a sequence $\{T_n\}_{n=1}^\infty$ of positive times tending to 0 as $n \to \infty$ such that the corresponding solutions $\{u_n\}_{n=1}^\infty$ emanating from this initial data, whose existence is guaranteed by the periodic version [9] of the theory for the initial-value problem, are such that for $n = 1, 2, 3, \cdots$,

$$\|u(\cdot, T_n)\|_{H^r_{\text{per}}} \geq n.$$

This insures in particular that the solution map S that associates solutions to initial data, which exists on L^2, cannot be extended continuously to all of H^s_{per}, thus reproducing Panthee’s conclusion. Results of this sort go by the appellation norm inflation for obvious reasons. The idea originated in the work of Bourgain and Pavlović [8] for the three-dimensional Navier-Stokes equation. The method of construction there was applied to some other dissipative fluid equations by the second author and her collaborators, see [12, 11, 10]. It suggests that the method is generic as well as sophisticated.

Notation

The notation used throughout is standard. For $r \in \mathbb{R}$, the collection \dot{H}^r_{per} is the homogeneous space of 2π-periodic distributions whose norm

$$\|f\|_{\dot{H}^r_{\text{per}}}^2 = \sum_{k=1}^\infty k^{2r} (|f_k|^2 + |g_k|^2)$$

is finite. Elements in \dot{H}^r_{per} all have mean zero over the period domain $[0, 2\pi]$. Here, the $\{f_k\}$ are the Fourier sine coefficients and the $\{g_k\}$ are the Fourier cosine coefficients of f. Notice that \dot{H}^r_{per} may be viewed simply as the L^2-functions on the period domain $[0, 2\pi]$ with mean zero. If X is any Banach space, the set $C([0, T]; X)$ consists of the continuous functions from the real interval $[0, T]$ into X with its usual norm.

2. Norm inflation

The principal result of our study is the following theorem.

Theorem 2.1. Let $r < 0$ by given. Then there is a sequence $\{u_j^0\}_{j=1}^\infty$ of C^∞, periodic initial data such that

$$u_j^0 \to 0 \quad \text{as} \quad j \to \infty$$

in \dot{H}^r_{per} and a sequence $\{T_j\}_{j=1}^\infty$ of positive times tending to zero as $j \to \infty$ such that if $u_j(x, t)$ is the solution emanating from u_j^0, then

$$\|u(\cdot, T_j)\|_{\dot{H}^r_{\text{per}}} \geq j$$

for all $j = 1, 2, \cdots$.

Proof: Fix $s > 0$, let $r = -s$ and consider a wavenumber $k_1 \in \mathbb{N}$ which, in due course, will be taken to be large. Let $k_2 = k_1 + 1$, define \bar{u} by $\bar{u} = \sin(k_1 x) + \sin(k_2 x)$ and consider the 2π-periodic, men zero initial data $u_0 = k_1^2 \bar{u}$ for (1.1) where $\gamma > 0$ will be restricted presently. Of course, u_0 is smooth, so the theory developed in [9] implies that a unique, global, smooth solution emanates from this initial data.
Notice also that the solution preserves the property of having zero mean, so it lies in $C([0, T]; \dot{H}^s_{\text{per}})$ for all $\rho \in \mathbb{R}$.

Let $\varphi(D_x)$ be the Fourier multiplier operator given in terms of its Fourier transform by $\hat{\varphi}(\xi) u(\xi) = \frac{k}{1 + k^2} \hat{u}(\xi)$. The equation (1.1) can be rewritten as

$$
\begin{align*}
 iu_t &= \varphi(D_x) u + \frac{1}{2} \varphi(D_x) (u^2), \\
 u(0, x) &= u_0(x).
\end{align*}
$$

Let $S(t) = e^{-it\varphi(D_x)}$ be the unitary group defining the evolution of the linear BBM equation. Then, Duhamel’s principle allows the solution of (1.1)-(2.2) to be written in the form

$$
(2.3) \quad u(x, t) = S(t)u_0(x) + u_1(s, t) + y(x, t)
$$

where

$$
(2.4) \quad y(x, t) = \int_0^t S(t - \tau) \varphi(D_x) [G_0(\tau) + G_1(\tau) + G_2(\tau)] d\tau
$$

with

$$
\begin{align*}
 G_0(\tau) &= \frac{1}{2} u_1^2(\tau) + u_1(\tau) S(\tau) u_0, \\
 G_1(\tau) &= u_1(\tau)y(\tau) + y(\tau)S(\tau)u_0, \\
 G_2(\tau) &= \frac{1}{2} y^2(\tau),
\end{align*}
$$

where the spatial dependence has been suppressed for ease of reading. The strategy is to show that by choosing k_1 sufficiently large, u_1 becomes large in a short time in the space $\dot{H}^s_{\text{per}} = \dot{H}^{s - \rho}_{\text{per}}$, while the error term y remains under control in the same space.

In contrast to dissipative equations, the linear dispersion operator $S(t)$ only translates the wave, but does not change its magnitude; more precisely, for $k = 1, 2, \cdots$,

$$
(2.5) \quad S(t) \sin(kx) = \sin \left(kx - \frac{k}{1 + k^2} t \right), \quad S(t) \cos(kx) = \cos \left(kx - \frac{k}{1 + k^2} t \right).
$$

On the other hand, the operator $\varphi(D_x)$ both decreases the amplitude of its argument and adds rotation viz.

$$
(2.6) \quad \varphi(D_x) \sin kx = -i \frac{k}{1 + k^2} \cos kx, \quad \varphi(D_x) \cos kx = i \frac{k}{1 + k^2} \sin kx.
$$

It follows from this that $\varphi(D_x)$ vanishes on constant functions.

It is clear that if $s > 0$, then

$$
(2.7) \quad \| S(t)u_0 \|_{-s} = \| u_0 \|_{-s} \sim k_1^{-s}, \quad \text{while} \quad \| S(t)u_0 \|_0 = \| u_0 \|_0 \sim k_1^s.
$$
As we want the initial data to be small in H^{-s}_{per}, γ is restricted to the range $(0, s)$. The formulas in (2.5) imply

$$S(\tau)\bar{u} = \sin \left(k_1 x - \frac{k_1}{1 + k_1^2} \tau \right) + \sin \left(k_2 x - \frac{k_2}{1 + k_2^2} \tau \right),$$

so that

$$[S(\tau)\bar{u}]^2 = \frac{1}{2} \left[1 - \cos \left(2k_1 x - \frac{2k_1}{1 + k_1^2} \tau \right) \right] + \frac{1}{2} \left[1 - \cos \left(2k_2 x - \frac{2k_2}{1 + k_2^2} \tau \right) \right]$$

$$+ \cos \left((k_1 - k_2)x - \left(\frac{k_1}{1 + k_1^2} - \frac{k_2}{1 + k_2^2} \right) \tau \right)$$

$$- \cos \left((k_1 + k_2)x - \left(\frac{k_1}{1 + k_1^2} + \frac{k_2}{1 + k_2^2} \right) \tau \right).$$

It then follows from (2.6) that

$$\frac{1}{2} \varphi(D_x)[S(\tau)\bar{u}]^2 = -i \frac{2k_1}{4 + 4k_1^2} \sin \left(2k_1 x - \frac{2k_1}{1 + k_1^2} \tau \right)$$

$$- i \frac{2k_2}{4 + 4k_2^2} \sin \left(2k_2 x - \frac{2k_2}{1 + k_2^2} \tau \right)$$

$$+ i \frac{k_1 - k_2}{2 + (k_1 - k_2)^2} \sin \left((k_1 - k_2)x - \left(\frac{k_1}{1 + k_1^2} - \frac{k_2}{1 + k_2^2} \right) \tau \right)$$

$$- i \frac{k_1 + k_2}{2 + (k_1 + k_2)^2} \sin \left((k_1 + k_2)x - \left(\frac{k_1}{1 + k_1^2} + \frac{k_2}{1 + k_2^2} \right) \tau \right)$$

$$\equiv I_1 + I_2 + I_3 + I_4.$$

Consider now the function $\sin (kx - \omega t)$ and calculate as follows:

$$\int_0^t S(t - \tau) \sin(kx - \omega \tau) d\tau = \int_0^t \sin \left(kx - \frac{k}{1 + k^2} (t - \tau) - \omega \tau \right) d\tau$$

$$= \left(\frac{k}{1 + k^2} - \omega \right)^{-1} \left(\cos \left(kx - \frac{k}{1 + k^2} t \right) - \cos \left(kx - \omega t \right) \right)$$

where use has been made of (2.5).
The latter formula, applied four times, allows us to calculate \(u_1 \) explicitly, to wit:

\[
\begin{align*}
u_1 &= k_1^{2\gamma} \int_0^t S(t - \tau) \left[I_1 + I_2 + I_3 + I_4 \right] d\tau \\
&= -\frac{ik_1^{2\gamma}}{12} \left[\frac{1 + k_1^2}{k_1^2} \right] \left[\cos \left(2k_1 x - \frac{2k_1 t}{1 + k_1^2} \right) - \cos \left(2k_1 x - \frac{2k_1}{1 + 4k_1^2} t \right) \right] \\
&\quad - \frac{ik_1^{2\gamma}}{12} \left[\frac{1 + k_2^2}{k_2^2} \right] \left[\cos \left(2k_2 x - \frac{2k_2 t}{1 + k_2^2} \right) - \cos \left(2k_2 x - \frac{2k_2}{1 + 4k_2^2} t \right) \right] \\
&\quad + \frac{ik_1^{2\gamma}}{2} \left[\frac{1 + (k_1 - k_2)^2}{1 + (k_1 - k_2)^2} \right] \left[\cos \left((k_1 - k_2) x - \left(\frac{k_1}{1 + k_1^2} - \frac{k_2}{1 + k_2^2} \right) t \right) - \cos \left((k_1 - k_2) x - \frac{k_1 - k_2}{1 + (k_1 - k_2)^2} t \right) \right] \\
&\quad - \frac{ik_1^{2\gamma}}{2} \left[\frac{1 + (k_1 + k_2)^2}{1 + (k_1 + k_2)^2} \right] \left[\cos \left((k_1 + k_2) x - \left(\frac{k_1}{1 + k_1^2} + \frac{k_2}{1 + k_2^2} \right) t \right) - \cos \left((k_1 + k_2) x - \frac{k_1 + k_2}{1 + (k_1 + k_2)^2} t \right) \right].
\end{align*}
\]

A study of the various constants appearing above reveals that, up to absolute constants,

\[
\begin{align*}
u_1 &\sim -ik_1^{2\gamma} \left[\cos \left(2k_1 x - \frac{2k_1 t}{1 + k_1^2} \right) - \cos \left(2k_1 x - \frac{2k_1}{1 + 4k_1^2} t \right) \right] \\
&\quad - ik_1^{2\gamma} \left[\cos \left(2k_2 x - \frac{2k_2 t}{1 + k_2^2} \right) - \cos \left(2k_2 x - \frac{2k_2}{1 + 4k_2^2} t \right) \right] \\
&\quad + ik_1^{2\gamma} \left[\cos \left(x - \left(\frac{k_1}{1 + k_1^2} - \frac{k_2}{1 + k_2^2} \right) t \right) - \cos \left(x - \frac{t}{2} \right) \right] \\
&\quad - ik_1^{2\gamma} \left[\cos \left((k_1 + k_2) x - \left(\frac{k_1}{1 + k_1^2} + \frac{k_2}{1 + k_2^2} \right) t \right) \right] \\
&\quad - \cos \left((k_1 + k_2) x - \frac{k_1 + k_2}{1 + (k_1 + k_2)^2} t \right). \end{align*}
\]

as \(k_1 \) becomes large. Since

\[
| \cos(kx - \omega_1 t) - \cos(kx - \omega_2 t) | \leq |\omega_1 - \omega_2| t,
\]

straightforward calculations show that the first, second and fourth terms above are uniformly small compared to the third term, for large values of \(k_1 \). Indeed, they are all of order \(k_1^{2\gamma -1} t \), whereas the third term is of order \(k_1^{2\gamma} t \).

It follows from this that for all \(t \geq 0 \),

\[
\| u_1(t, \cdot) \|_{-s} \sim k_1^{2\gamma} t \quad \text{and likewise} \quad \| u_1(t, \cdot) \|_0 \sim k_1^{2\gamma} t.
\]

Thus, by taking \(k_1 \) large, the \(\dot{H}^{-s}_{per} \)-norm of \(u_1 \) can be made as big as we like.

As mentioned earlier, an estimate of the error term \(y \) is needed to complete the argument. It will in fact be shown that \(y \) is even bounded in \(L_2 \), let along \(\dot{H}^{-s}_{per} \).
To this end, use is made of one of a periodic version of one the bilinear estimates in [7].

Lemma 2.2. Let $u, v \in H^q_{per}$ with $q \geq 0$. Then

$$\|\varphi(D_x)(uv)\|_q \lesssim \|u\|_q \|v\|_q$$

where the implied constant only depends upon q.

The proof of this result is the same as the proof of Lemma 1 in [7], with sums replacing integrals.

Introduce the abbreviation X_T for $C([0, T]; L^2)$ for ease of reading. The value of $T > 0$ will be specified momentarily. It follows from (2.10) and the implicit relationship (2.4) for the remainder y that

$$\|y\|_{X_T} \lesssim T \|u_0\|_{X_T}^2 + T \|S(t)u_0\|_{X_T} \|y\|_{X_T} + T \|u_1\|_{X_T} \|y\|_{X_T}$$

$$+ T \|S(t)u_0\|_{X_T} \|y\|_{X_T} + T \|y\|_{X_T}^2$$

(2.11)

$$\lesssim T^3k_1^{4\gamma} + T^2k_1^{3\gamma} + (k_1^{2\gamma}T^2 + k_1^{4\gamma})|y|_{X_T} + T \|y\|_{X_T}^2$$

$$= A + BY + T^2,$$

where $Y = Y(T) = \|y\|_{X_T}$. As $y \in C([0, M]; L^2)$ for all $M > 0$, it follows that $Y(T)$ is a continuous function of T. Moreover, $Y(0) = 0$.

Choose $T_0 = k_1^{-\nu\gamma}$, where $\mu > \frac{\nu}{2}$. With this choice, we see that for $T \leq T_0$,

$$A = O(k_1^{\gamma(4-3\mu)} + k_1^{\gamma(3-2\mu)}) \quad \text{and} \quad B = O(k_1^{2\gamma(1-\mu)} + k_1^{\gamma(1-\mu)}),$$

as $k_1 \to \infty$ and all the exponents are negative.

Choose k_1 large enough that $B < \frac{A}{2}$ and T and A are both small. It follows in this circumstance that the quadratic polynomial

$$p(z) = A + (B - 1)z + Tz^2$$

has two positive roots, the smaller of which is denoted z and the larger \bar{z}. Of course, $p(z) < 0$ for $z \in (z, \bar{z})$.

The inequality (2.11) may be expressed as

$$p(Y(T)) \geq 0.$$

As $Y(T)$ is continuous and $Y(0) = 0$, it follows that $Y(T) \leq \bar{z}$ for all $T \in [0, T_0]$. For k_1 large, $T_0 < 1$. When combined with the fact that $B < \frac{A}{2}$, it is readily deduced that

$$\bar{z} \leq 4A, \quad \text{whence} \quad Y(T) \leq 4A,$$

thus assuring that the remainder $y(\cdot, t)$ is indeed uniformly bounded in \dot{H}_{per}^{-s} for $t \leq T_0$ and large choices of k_1.

Taking a suitably chosen, increasing sequence $\{k_1^{(j)}\}_{j=1}^{\infty}$ of wavenumbers for which

$$\lim_{j \to \infty} k_1^{(j)} = +\infty,$$

and with the indicated choices of γ and μ, (2.7) assures the initial data tends to zero in \dot{H}_{per}^{-s}. The decomposition (2.4) together with (2.7), (2.10) and the bound just obtained on y then implies that the solutions u_j blow up at times $T_j = (k_1^{(j)})^{-\nu\gamma}$. The latter tend to zero as $j \to \infty$ since μ and γ are both positive. This completes the proof of the theorem.
References

[1] A.A. Alazman, J.P. Albert, J.L. Bona, M. Chen and J. Wu. *Comparisons between the BBM equation and a Boussinesq system*. Advances Differential. Eq. 11 (2006) 121–166.

[2] D. Ambrose, J.L. Bona, and D. Nicholls. *On ill-posedness of truncated series models for water waves*. Proc. Royal Soc. London, Series A 470 (2014) 1–16.

[3] T.B. Benjamin, J.L. Bona and J.J. Mahony. *Model equations for long waves in nonlinear dispersive media*. Philos. Trans. Royal Soc. London Series A 272 (1972) 47–78.

[4] J.L. Bona, T. Colin and D. Lannes. *Long wave approximations for water waves*, Archive Rat. Mech. Anal. 178 (2005) 373–410.

[5] J.L. Bona, W.G. Pritchard and L.R. Scott. *An evaluation of a model equation for water waves*, Philos. Trans. Royal Soc. London Series A 302 (1981) 457–510.

[6] J.L. Bona, W.G. Pritchard and L.R. Scott. *A comparison of solutions of two model equations for long waves*, In Lectures in Applied Mathematics 20 (ed. N. Lebovitz) American Mathematical Society: Providence (1983) 235–267.

[7] J.L. Bona and N. Tzvetkov. *Sharp well-posedness results for the BBM equation, Discrete & Continuous Dynamical Systems, Series A* 23 (2009) 1241–1252.

[8] Ill-posedness of the Navier-Stokes equations in a critical space in 3D. Journal of Functional Analysis, 255 (2008) 2233–2247.

[9] H. Chen. *Periodic initial-value problem for the BBM-equation*, Computers and Mathematics with Applications, Special Issue on Computational Methods in Analysis 48 (2004) 1305–1318.

[10] A. Cheskidov and M. Dai. *Norm inflation for generalized Magneto-hydrodynamic system*. Nonlinearity, 28 (2015) 129–142.

[11] A. Cheskidov and M. Dai. *Norm inflation for generalized Navier-Stokes equations*. Indiana University Mathematics Journal, 63 (2014), No. 3 : 869–884.

[12] M. Dai, J. Qing, and M. Schonbek. *Norm inflation for incompressible Magneto-hydrodynamic system in B_{1,-1}^{1,\infty}*. Advances in Differential Equations, 16 (2011), No. 7-8, 725–746.

[13] D. Lannes. *Well-posedness of the water-waves equations*, J. American Math. Soc. 18 (2005) 605–654.

[14] D. Lannes. *The water waves problem: mathematical analysis and asymptotics*. Mathematical Surveys and Monographs 188 American Math. Soc.: Providence (2013).

[15] M. Panthee, *On the ill-posedness result for the BBM equation Discrete & Continuous Dynamical Systems* 30 (2011) 253–259.

[16] D.H. Peregrine, *Calculations of the development of an undular bore*, J. Fluid Mech. 25 (1966) 321–330.