Simple Scoring Tool to Estimate Risk of Hospitalization and Mortality in Ambulatory and Emergency Department Patients with COVID-19

Brandon J. Webb MD1,2, Nicholas M. Levin MD3, Nancy Grisel MPP4, Samuel M. Brown MD5, Ithan D. Peltan MD7, Emily S. Spivak MD, MHS6, Mark Shah MD7, Eddie Stenehjem MD1,2,8, Joseph Bledsoe MD7,9

1Intermountain Healthcare, Division of Infectious Diseases and Clinical Epidemiology, Salt Lake City, UT
2Stanford Medicine, Division of Infectious Diseases and Geographic Medicine, Palo Alto, CA
3University of Utah School of Medicine, Division of Emergency Medicine, Salt Lake City, UT
4Intermountain Healthcare, Enterprise Analytics, Salt Lake City, UT
5Intermountain Medical Center and University of Utah, Division of Pulmonary and Critical Care Medicine, Salt Lake City, UT
6University of Utah School of Medicine, Division of Infectious Diseases, Salt Lake City, UT
7Intermountain Healthcare, Department of Emergency Medicine, Salt Lake City, UT
8Intermountain Healthcare, Office of Patient Experience, Salt Lake City, UT
9Stanford Medicine, Department of Emergency Medicine, Palo Alto, CA

Corresponding Author / Reprints:
Brandon J. Webb, MD
Division of Epidemiology and Infectious Diseases
Intermountain Medical Center
5121 S. Cottonwood Drive
Murray, UT 84157
Telephone: 801-507-7781
Fax: 801-507-7780
Email: Brandon.Webb@imail.org

Running Title: COVID-19 Prediction of Hospitalization

Word Count: Abstract: 300 Manuscript: 1929

Tables: 6

Key Words: Novel Coronavirus, COVID-19, SARS-CoV-2, risk stratification, clinical decision tools
Abstract

Background:
Accurate methods of identifying patients with COVID-19 who are at high risk of poor outcomes has become especially important with the advent of limited-availability therapies such as monoclonal antibodies. Here we describe development and validation of a simple but accurate scoring tool to classify risk of hospitalization and mortality.

Methods:
All consecutive patients testing positive for SARS-CoV-2 from March 25-October 1, 2020 within the Intermountain Healthcare system were included. The cohort was randomly divided into 70% derivation and 30% validation cohorts. A multivariable logistic regression model was fitted for 14-day hospitalization. The optimal model was then adapted to a simple, probabilistic score and applied to the validation cohort and evaluated for prediction of hospitalization and 28-day mortality.

Results:
22,816 patients were included; mean age was 40 years, 50.1% were female and 44% identified as non-white race or Hispanic/Latinx ethnicity. 6.2% required hospitalization and 0.4% died. Criteria in the simple model included: age (0.5 points per decade); high-risk comorbidities (2 points each): diabetes mellitus, severe immunocompromised status and obesity (body mass index≥30); non-white race/Hispanic or Latinx ethnicity (2 points), and 1 point each for: male sex, dyspnea, hypertension, coronary artery disease, cardiac arrhythmia, congestive heart failure, chronic kidney disease, chronic pulmonary disease, chronic liver disease, cerebrovascular disease, and chronic neurologic disease. In the derivation cohort (n=16,030) area under the receiver-operator characteristic curve (AUROC) was 0.82 (95% CI 0.81-0.84) for hospitalization and 0.91 (0.83-0.94) for 28-day mortality; in the validation cohort (n=6,786) AUROC for hospitalization was 0.8 (CI 0.78-0.82) and for mortality 0.8 (CI 0.69-0.9).

Conclusion:
A prediction score based on widely available patient attributes accurately risk stratifies patients with COVID-19 at the time of testing. Applications include patient selection for therapies targeted at preventing disease progression in non-hospitalized patients, including monoclonal antibodies. External validation in independent healthcare environments is needed.
Introduction

COVID-19 is a systemic infection caused by a novel betacoronavirus, SARS-CoV-2.(1) A relatively conserved set of clinical and demographic factors are now recognized to correlate with an increased risk for severe disease requiring hospitalization, mechanical ventilation and death.(2–4) Accurate methods of risk stratifying ambulatory patients at the point of test positivity have many possible applications, including prioritizing patients at highest risk of hospitalization for early treatments aimed to prevent progression to severe disease, such as monoclonal antibodies, which are both limited in availability and also more likely to be effective in high-risk groups. Several risk classification models have been proposed.(3,5–9) We describe development and validation of a simple scoring model to predict hospitalization and mortality in a large cohort of ED and ambulatory patients with COVID-19.

Methods

Intermountain Healthcare is an integrated healthcare system that provides care to more than 1.5 million patients each year in Utah and bordering communities. As part of a systemwide COVID-19 response, Intermountain provides SARS-CoV-2 testing at 32 urgent care facilities, 23 emergency departments, and 16 community drive-up testing sites. During the study period, only polymerase chain reaction (PCR) assays were performed (Thermofisher, Waltham, MA; Cepheid, Sunnyvale, CA; Quidel, San Diego, CA, BioFire, Salt Lake City, UT; Roche, Basel, Switzerland). All testing required an order entered in the electronic health record (EHR) (Cerner, Kansas City, KS) by the ordering clinician through a structured form that requires the clinician to input the patient’s clinical symptoms and epidemiological features. These data are stored in the Intermountain Prospective Observational COVID-19 (IPOC) database, and the enterprise data
This analysis was approved by the Institutional Review Board at Intermountain Healthcare under #1051342.

We queried the IPOC database for consecutive adult patients with positive SARS-CoV-2 tests from March 25-October 1, 2020. Symptom data were extracted from the electronic test order form while demographic and co-morbidity data were obtained from the IPOC database and data warehouse using the Charlson and Elixhauser definitions (10,11). We defined immunosuppression as: recipient of a solid organ or hematopoietic stem cell transplant, on chemotherapy, biologic or other immunosuppressive agents targeting B or T cell activity, chronic corticosteroids at a prednisone-equivalent dose of 20mg per day or greater for more than 30 days, human immunodeficiency virus complicated by acquired immunodeficiency syndrome (AIDS), heritable immunodeficiency. We defined obesity as body mass index (BMI) of greater than or equal to 30 (12). Symptom and demographic data were complete; comorbidity data were complete insofar as patients had prior encounters in the integrated health system. Mortality data was captured via an existing linkage to state death records.

We used a random number generator to divide the cohort into a 70% derivation cohort and 30% validation cohort. In the derivation cohort data, we fitted a multivariable logistic regression model for hospitalization within 14 days of testing, using clinical and demographic features. Predictors were prespecified before model development based on: clinical features that would be available at the time of testing for all ambulatory and emergency department patients regardless of testing venue (a criterion that precludes, for instance, laboratory data), biological plausibility of association with severity, and reproducibility in other studies in existing COVID-19 literature. We intentionally did not fit a model for mortality, but instead planned a priori to validate the ultimate model against that outcome. Model discrimination was evaluated using the
area under the receiver-operator characteristic curve (AUROC) and model fit by evaluating R^2
using the Nagelkerke method (13,14).

We included patients who tested in the ambulatory setting as well as patients who tested positive in the emergency department to ensure that the score would be applicable in both environments. However, we recognized that some patients testing positive in the emergency department (ED) are then subsequently admitted. The decision to admit or not is not immediately known to emergency medicine providers who may still wish to use the score to stratify risk to aid in clinical decision making and selection of therapies. However, because patients who are admitted from the ED may have different characteristics than those tested in the ambulatory setting, we planned *a priori* to perform a sensitivity analysis by repeating the regression above after restricting the cohort to patients who were not admitted to the hospitalization at the time of their test.

We then adapted the original logistic regression model into a simple scoring tool by converting exponentiated β coefficients into weighted point assignments for each variable. We evaluated the test performance characteristics of this simplified clinical prediction tool in the derivation and validation cohorts using AUROC and by calculating the sensitivity, specificity, negative and positive predictive values across the range of scoring thresholds.

Results

From March 25 through October 1, 2020, 22,816 patients had a positive PCR test for SARS-CoV-2. The mean age was 40 years (see Table 1); 11,424 (50.1%) patients were female and 8753 (43.9%) identified as a member of a community of color (either non-white race or Hispanic or Latinx ethnicity). Patients had on average one significant medical comorbidity. 1419
(6.2%) of patients were admitted; of these, 799 (3.6%) tested positive in the emergency department during the encounter that culminated in admission. Overall 93 patients (0.4%) died within 28 days of their positive SARS-CoV-2 assay. Demographic and clinical features were very similar between derivation (n=16,030) and validation (n=6786) cohorts.

In the derivation cohort, the primary multivariable model (see Table 3) demonstrated adequate model diagnostics [AUROC 0.824 (95% CI 0.809-0.840), Nagelkerke R² 0.26]. Age, male sex, self-identification to a community of color, dyspnea and high-risk comorbidities including diabetes mellitus, obesity, immunosuppression and chronic neurologic disease were each associated with significantly greater odds of hospitalization. In an exploratory analysis in which individual comorbidities were replaced in the regression with a count of total comorbidities, the cumulative number of comorbidities was also significant (OR 1.4, 95% CI 1.3-1.5). In the planned sensitivity analysis excluding patients who were tested in the emergency department during their admission to the hospital, the multivariable model had slightly diminished performance [AUROC 0.789 (95% CI: 0.768-0.810), R² 0.164]. Overall, contributions of individual risk factors were similar in this model compared to the model including patients being admitted, (see Table 4) with the exception that the magnitude of risk of dyspnea was less in the ambulatory-only cohort (OR 2.1 vs 3.5), and the odds of immunosuppressed patients without palliative goals of care being admitted were greater (OR 7.0 vs 3.9).

Criteria included in the probabilistic, simplified clinical prediction score are displayed in Table 5. Because cumulative comorbidity count was significantly associated with poor outcomes, we included comorbidities in the simplified tool that were not statistically significant individually in the expanded logistic regression model. In the derivation cohort, the AUROC for
the simplified clinical prediction score for 14-day hospitalization was 0.82 (95% CI: 0.81-0.84) and 0.8 (95% CI: 0.78-0.82) in the validation cohort. AUROC for 28-day all-cause mortality in the derivation cohort was 0.91 (95% CI: 0.83-0.94) and in the validation cohort 0.80 (95% CI: 0.69-0.9). The scoring threshold that optimized sensitivity and specificity (by Youden’s index) was 6 with test characteristics of 71.1% and 76.2% respectively (Table 6)(15).

Discussion

Given recent straining hospital volumes and the emergence of promising but limited-availability outpatient therapies for COVID-19, methods are needed to identify patients with COVID-19 at highest risk of progression to severe disease, hospitalization and death. Here we describe a simple scoring model capable of accurately risk stratifying ambulatory and emergency department patients for COVID-19 for subsequent hospitalization and mortality.

One of the primary strengths of this model is the simplified and easily calculable score using features that are widely accessible. In particular, our score does not require laboratory studies, which are unavailable in the majority of ambulatory patients testing positive for SARS-CoV-2. While preserving discriminative value, this simple scoring system has potential to facilitate more widespread clinical application in settings lacking robust integration of informatics. The model was derived and validated in a very large and diverse population in the western United States and is based on risk factors for severe disease that are largely conserved across global populations, including age (12), male sex, overall comorbid burden (13), and shortness of breath at the time of risk stratification. These factors align closely with those included in models derived in other locations and populations (3,5–9,16,17). As a result, we expect that this tool will be generalizable.
Although race and ethnicity are often omitted from clinical prediction models to prevent illegal or unethical profiling behavior, the National Quality Forum recommended that when applications of risk prediction include patient selection for preventive or therapeutic modalities, omission of race or ethnicity can actually cause inequity in healthcare access and worsen outcomes disparity by underestimating risk using other demographic and clinical features alone. (16) In COVID-19, it is now well-recognized that significant outcome differences among communities of color exist with respect to severe illness and hospitalization (19) despite adjustment for age, gender and underlying medical conditions. (5,6) This remains poorly understood and may be due to social determinants of health, inadequate access to healthcare, or poorly-controlled co-morbidities. Because we anticipated application of this risk stratification model to aid in allocating preventive therapies in COVID, we, like other published models (5,6), chose to include race and ethnicity in our score. In future work, more refined socioeconomic, cultural and healthcare access surrogates would be preferable alternatives.

When emergency use authorization (EUA) was granted by the United States Food and Drug Administration for monoclonal antibodies bamlanivimab and casirivimab/imdevimab for administration in non-hospitalized patients with early mild-moderate COVID-19, most states were experiencing peak community transmission, with thousands of new patients per day. It became clear that not only would the supply of drugs be inadequate initially to treat all patients qualifying under EUA criteria, but the capacity to administer infusions without compromising infection control in infusion sites would be even more limited. To address this limited resource situation, the Utah Crisis Standards of Care scarce medications committee was convened with the goal of equitably and efficiently matching available infusion capacity to patients at highest probability of hospitalization most likely to benefit. The simple scoring tool described herein was
ultimately adopted because of the simplicity, widely accessible clinical features and validation in a large, representative local population (20). By regularly adjusting the eligibility criteria based on the risk score threshold that best calibrates current infusion capacity to the number of new cases in high-risk strata, this risk-targeted drug allocation strategy has provided an equitable and flexible means of drug delivery in the context of still-uncertain efficacy and limited resources.

Limitations of our study include the retrospective, observational design, and the possibility that comorbidity data may have been unavailable or out of date for some patients in the cohort who receive the majority of their medical care outside our integrated healthcare system. Although the large study population and inclusion of widely recognize features improves the likelihood of generalizability, this will need to be confirmed through external validation.

In this large retrospective cohort study, we identified simple risk factors that can easily be calculated at the bedside without laboratory values to risk stratify COVID-positive individuals for risk of hospitalization and death. Applications include guiding allocation of therapies that are limited in availability. External validation is needed to confirm generalizability in diverse and geographically independent population.
Conflicts of Interest: IP reports salary support through a grant from the National Institutes of Health (U.S.A). SB reports salary support from the U.S. NIH, Centers for Disease Control and the Department of Defense; he also reports receiving support for chairing a data and safety monitoring board for a respiratory failure trial sponsored by Hamilton, effort paid to Intermountain for steering committee work for Faron Pharmaceuticals and Sedana Pharmaceuticals for ARDS work, support from Janssen for Influenza research, and royalties for books on religion and ethics from Oxford University Press/Brigham Young University. BW reports partial salary support from a U.S. Federal grant from AHRQ. ES receives partial salary support through grants from the Centers for Disease Control. At the time of submission, Intermountain Healthcare and the University of Utah have participated in COVID-19 trials sponsored by: Abbvie, Genentech, Gilead, Regeneron, Roche, and the U.S. National Institutes of Health ACTIV and PETAL clinical trials networks; several authors (BW, IP, JB, SB, ES) were site investigators on these trials but received no direct or indirect remuneration for their effort. ES, BJW, SMB and MS are members of the Utah crisis standards of care scarce medication committee.

Author Contributions:
Study concept: BJW, JB, IP, PJ, DH, BH, AS, NS, WB, EH, DM, RS, SMB
Study design: BJW, JB IP, SMB, GS
Data collection: BJW, NG
Statistical analysis: BJW, JB, IP, SMB
Interpretation of results: All authors
Manuscript preparation: All authors
Critical review of the manuscript: All authors
Table 1. Patient characteristics, total and by derivation and validation cohorts.

	ALL	DERIVATION	VALIDATION
	N (%) unless noted	N (%) unless noted	N (%) unless noted
All Patients	22816 (100)	16030 (70.3)	6786 (29.7)
Male	11392 (49.9)	8005 (49.9)	3387 (49.9)
Age, years (Mean, SD)	40.4 (16.5)	40.4 (16.5)	40.2 (16.6)
Race			
American Indian or Alaska Native	238 (1.0)	169 (1.1)	69 (1.0)
Asian	349 (1.5)	238 (1.5)	111 (1.6)
Black or African American	341 (1.5)	233 (1.5)	108 (1.6)
Multiple	78 (0.3)	56 (0.3)	22 (0.3)
Native Hawaiian or Pacific Islander	893 (3.9)	626 (3.9)	267 (3.9)
White	16624 (72.9)	11637 (72.6)	4987 (73.5)
Ethnicity			
Hispanic, Latino, or Spanish origin	7027 (30.8)	4980 (31.1)	2047 (30.2)
Communities of Color1	8753 (43.9)	6184 (44.3)	2569 (43.0)
Symptoms (Reported at time of test)			
Fever	7889 (34.6)	5561 (34.7)	2328 (34.3)
Cough	11595 (50.8)	8188 (51.1)	3407 (50.2)
Dyspnea	6008 (26.3)	4273 (26.7)	1735 (25.6)
Myalgia	11341 (49.7)	7985 (49.8)	3356 (49.5)
Rhinorrhea	8843 (38.8)	6203 (38.7)	2640 (38.9)
Anosmia	5164 (22.6)	3681 (23.0)	1483 (21.9)
Pharyngitis	8130 (35.6)	5718 (35.7)	2412 (35.5)
Diarrhea	3648 (16.0)	2573 (16.1)	1075 (15.8)
Comorbidities			
Count, Mean (SD), Range	0.7 (1.3), 0-11	0.7 (1.3), 0-11	0.7 (1.3), 0-10
Diabetes Mellitus	2164 (9.5)	1532 (9.6)	632 (9.3)
Hypertension	3897 (17.1)	2816 (17.6)	1081 (15.9)
Cardiovascular Disease	331 (1.5)	246 (1.5)	85 (1.3)
Cardiac Arrhythmia	2437 (10.7)	1704 (10.6)	733 (10.8)
Chronic Pulmonary Disease	4231 (18.5)	2920 (18.2)	1311 (19.3)
Chronic Kidney Disease	687 (3.0)	507 (3.2)	180 (2.7)
Congestive Heart Failure	536 (2.3)	384 (2.4)	152 (2.2)
Chronic Liver Disease	1320 (5.8)	914 (5.7)	406 (6.0)
Obesity	3395 (14.9)	2376 (14.8)	1019 (15.0)
Immunosuppression	143 (0.6)	101 (0.6)	42 (0.6)
Cerebrovascular Disease	589 (2.6)	409 (2.6)	180 (2.7)
Neurological Disorders	1037 (4.5)	723 (4.5)	314 (4.6)
History of Tobacco Use	3324 (21.5)	2295 (21.2)	1029 (22.1)
Mortality, 28-Day All-Cause	93 (0.4)	73 (0.5)	20 (0.3)
Hospitalization, 14-Day	1419 (6.2)	990 (6.2)	429 (6.3)

Abbreviations: SE: Standard Error

1Self-identifies as either non-white race or Hispanic/Latinx ethnicity
Table 2. Patient characteristics of the derivation cohort stratified by outcome of hospitalization.

	Hospitalized	
	No (%) unless noted	Yes (%) unless noted
N=	15040	990
Male	7472 (49.7%)	533 (53.8)
Age, Years (Mean, SD)	39.5 (16)	54.8 (17.7)
Race		
American Indian or Alaska Native	145 (1.0)	24 (2.4)
Asian	218 (1.4)	20 (2.0)
Black or African American	217 (1.4)	16 (1.6)
Multiple	55 (0.4)	1 (0.1)
Native Hawaiian or Pacific Islander	524 (3.5)	102 (10.3)
White	10940 (72.7)	697 (70.4)
Ethnicity		
Hispanic or Latinx	4622 (30.7)	358 (36.2)
Communities of Color\(^1\)	5671 (43.5)	513 (54.7)
Symptoms (at time of testing)		
Fever	4999 (33.2)	562 (56.8)
Cough	7575 (50.4)	613 (61.9)
Dyspnea	3707 (24.6)	566 (57.2)
Myalgia	7462 (49.6)	523 (52.8)
Rhinorrhea	5961 (39.6)	242 (24.4)
Anosmia	3516 (23.4)	165 (16.7)
Pharyngitis	5476 (36.4)	242 (24.4)
Diarrhea	2379 (15.8)	194 (19.6)
Comorbidities		
Comorbidity Count, (Mean, SD), Range	0.7 (1.2), 0-10	2.1 (2.0) 0-11
Diabetes Mellitus	1145 (7.6)	387 (39.1)
Hypertension	2308 (15.3)	508 (51.3)
Cardiovascular Disease	178 (1.2)	68 (6.9)
Cardiac Arrhythmia	1442 (9.6)	262 (26.5)
Chronic Pulmonary Disease	2620 (17.4)	300 (30.3)
Chronic Kidney Disease	357 (2.4)	150 (15.2)
Congestive Heart Failure	261 (1.7)	123 (12.4)
Chronic Liver Disease	768 (5.1)	146 (14.7)
Obesity	1987 (13.2)	389 (39.3)
Immunosuppression	82 (0.5)	19 (1.9)
Cerebrovascular Disease	315 (2.1)	94 (9.5)
Chronic Neurological Disease	573 (3.8)	150 (15.2)
History of Tobacco Use		
	2012 (20.5)	283 (28.6)
Mortality, 28-Day All-Cause		
	13 (0.1)	60 (6.1)

Abbreviations: SE: Standard Error
\(^1\)Self-identifies as either non-white race or Hispanic/Latinx ethnicity
Table 3. Multivariable logistic regression model for hospitalization in the derivation cohort.

	p	Adjusted Odds Ratio	95% CI
Age (decades)	<0.0001	1.5	1.4-1.6
Male	<0.0001	1.3	1.2-1.6
Communities of color\(^1\)	<0.0001	2.1	1.8-2.4
Dyspnea	<0.0001	3.5	3.0-4.0
Diabetes mellitus	<0.0001	2.2	1.8-2.6
Hypertension	0.001	1.4	1.1-1.7
Coronary Artery Disease	0.45	0.88	0.61-1.3
Cardiac Arrhythmia	0.41	1.1	0.9-1.3
Chronic Pulmonary Disease	0.39	0.92	0.8-1.1
Chronic Kidney Disease	0.29	1.1	0.9-1.5
Congestive Heart Failure	0.07	1.3	1.0-1.8
Chronic Liver Disease	0.98	1.0	0.8-1.2
Obesity	<0.0001	1.9	1.6-2.3
Immunosuppression\(^2\)	0.02	3.9	1.3-12.1
Cerebrovascular Disease	0.74	1.1	0.8-1.4
Chronic Neurologic Disease	<0.0001	1.8	1.4-2.4

\(^1\)Self-identifies as either non-white race or Hispanic/Latinx ethnicity

\(^2\)Excludes patients with metastatic cancer with non-hospitalization goals of care

Table 4. Sensitivity Analysis: multivariable logistic regression model for hospitalization in the derivation cohort, excluding patients admitted from the emergency department

	p	Adjusted Odds Ratio	95% CI
Age (decades)	<0.0001	1.5	1.4-1.6
Male	0.003	1.3	1.1-1.6
Communities of color\(^1\)	<0.0001	1.8	1.5-2.2
Dyspnea	<0.0001	2.1	1.7-2.5
Diabetes mellitus	<0.0001	2.1	1.6-2.6
Hypertension	0.001	1.2	1.0-1.6
Coronary Artery Disease	0.91	1.0	0.6-1.5
Cardiac Arrhythmia	0.39	1.1	0.9-1.4
Chronic Pulmonary Disease	0.12	1.2	1.0-1.4
Chronic Kidney Disease	0.89	1.0	0.7-1.4
Congestive Heart Failure	0.72	1.1	0.7-1.6
Chronic Liver Disease	0.87	1.0	0.8-1.4
Obesity	<0.0001	1.8	1.5-2.3
Immunosuppression\(^2\)	0.003	7.0	2.0-24.9
Cerebrovascular Disease	0.25	1.2	0.7-1.5
Chronic Neurologic Disease	0.81	1.0	1.4-2.4

\(^1\)Self-identifies as either non-white race or Hispanic/Latinx ethnicity

\(^2\)Excludes patients with metastatic cancer with non-hospitalization goals of care
Table 5. Simplified Clinical Prediction Score for COVID-19 Outcomes

Demographic Risk Factors	Points
Male	1
Age	0.5 for every decade: 0-10=0.5, 11-20=1, 21-30=1.5, 31-40=2, 41-50=2.5, 51-60=3, 61-70=3.5, 71-80=4, 81-90=4.5, 91-100=5, >100=5.5
Communities of color\(^1\)	2
High Risk Comorbidities	
Diabetes Mellitus	2
Severely Immunocompromised\(^2\)	2
Obesity (BMI>30)	2
Other Comorbidities	
Hypertension	1
Coronary Artery Disease	1
Cardiac Arrhythmia	1
Congestive Heart Failure	1
Chronic Kidney Disease	1
Chronic Pulmonary Disease	1
Chronic Liver Disease	1
Cerebrovascular Disease	1
Chronic Neurologic Disease	1
Symptom Risk Factor	
Dyspnea	1

\(^1\)Self-identifies as either non-white race or Hispanic/Latinx ethnicity

\(^2\)Solid Organ or Bone Marrow Transplant, AIDS, Active Chemotherapy, or Inherited Immunodeficiency

Table 6. Risk Score test characteristics across thresholds.

Point Threshold	Sensitivity	Specificity	PPV	NPV	% of Positives
3	95.0%	28.5%	7.5%	98.9%	72.8%
4	89.1%	45.7%	9.3%	98.5%	56.3%
5	80.6%	62.8%	12.1%	98.1%	39.8%
6	71.1%	76.2%	16.6%	97.5%	26.7%
7	60.9%	84.1%	20.6%	97.0%	18.7%
8	51.4%	89.2%	24.4%	96.4%	13.4%
9	41.4%	92.8%	28.2%	95.9%	9.4%
10	32.3%	95.2%	31.7%	95.4%	6.5%
11	25.0%	97.0%	36.1%	94.9%	4.4%
12	17.4%	98.1%	38.5%	94.6%	2.9%
References

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine. 2020 Feb 20;382(8):727–33.

2. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061.

3. Wollenstein-Betech S, Silva AAB, Fleck JL, Cassandras CG, Paschalidis IC. Physiological and socioeconomic characteristics predict COVID-19 mortality and resource utilization in Brazil. PLOS ONE. 2020 Oct 14;15(10):e0240346.

4. Pastor-Barriuso R, Pérez-Gómez B, Hernán MA, Pérez-Olmeda M, Yotti R, Oteo-Iglesias J, et al. Infection fatality risk for SARS-CoV-2 in community dwelling population of Spain: nationwide seroepidemiological study. BMJ [Internet]. 2020 Nov 27 [cited 2020 Dec 1];371. Available from: https://www.bmj.com/content/371/bmj.m4509

5. Dashti H, Roche EC, Bates DW, Mora S, Demler O. SARS2 simplified scores to estimate risk of hospitalization and death among patients with COVID-19. medRxiv [Internet]. 2020 Sep 13 [cited 2020 Nov 22]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491527/

6. Jehi L, Ji X, Milinovich A, Erzurum S, Merlino A, Gordon S, et al. Development and validation of a model for individualized prediction of hospitalization risk in 4,536 patients with COVID-19. PLOS ONE. 2020 Aug 11;15(8):e0237419.

7. Fisman DN, Greer AL, Hillmer M, Tuite AR. Derivation and Validation of Clinical Prediction Rules for COVID-19 Mortality in Ontario, Canada. Open Forum Infect Dis [Internet]. 2020 Oct 5 [cited 2020 Nov 30]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650986/

8. Wollenstein-Betech S, Cassandras CG, Paschalidis IC. Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator. Int J Med Inform. 2020 Oct;142:104258.

9. Zhang C, Qin L, Li K, Wang Q, Zhao Y, Xu B, et al. A Novel Scoring System for Prediction of Disease Severity in COVID-19. Front Cell Infect Microbiol [Internet]. 2020 [cited 2020 Dec 5];10. Available from: https://www.frontiersin.org/articles/10.3389/fcimb.2020.00318/full

10. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992 Jun;45(6):613–9.

11. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998 Jan;36(1):8–27.
12. Defining Adult Overweight and Obesity | Overweight & Obesity | CDC [Internet]. 2020 [cited 2021 Feb 16]. Available from: https://www.cdc.gov/obesity/adult/defining.html

13. NAGELKERKE NJD. A note on a general definition of the coefficient of determination. Biometrika. 1991 Sep;78(3):691–2.

14. Maddala GS. Limited-Dependent and Qualitative Variables in Econometrics [Internet]. Cambridge: Cambridge University Press; 1983 [cited 2021 Feb 16]. (Econometric Society Monographs). Available from: https://www.cambridge.org/core/books/limiteddependent-and-qualitative-variables-in-econometrics/69B8DBC75160713AA3AD1AD979D297B8

15. Youden WJ. Index for rating diagnostic tests. Cancer. 1950 Jan;3(1):32–5.

16. Mesas AE, Cavero-Redondo I, Álvarez-Bueno C, Sarriá Cabrera MA, Maffei de Andrade S, Sequí-Dominguez I, et al. Predictors of in-hospital COVID-19 mortality: A comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. PLoS One. 2020;15(11):e0241742.

17. de Terwangne C, Laouni J, Jouffe L, Lechien JR, Bouillon V, Place S, et al. Predictive Accuracy of COVID-19 World Health Organization (WHO) Severity Classification and Comparison with a Bayesian-Method-Based Severity Score (EPI-SCORE). Pathogens. 2020 Oct 24;9(11).

18. NQF: Risk Adjustment for Socioeconomic Status or Other Sociodemographic Factors [Internet]. [cited 2020 Nov 30]. Available from: https://www.qualityforum.org/Publications/2014/08/Risk_Adjustment_for_Socioeconomic_Status_or_Other_Sociodemographic_Factors.aspx

19. CDC. Coronavirus Disease 2019 (COVID-19) [Internet]. Centers for Disease Control and Prevention. 2020 [cited 2020 Nov 30]. Available from: http://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html

20. Utah Department of Health. Monoclonal Antibody Therapy [Internet]. Available from: https://coronavirus.utah.gov/noveltherapeutics/