Soil hydrological properties as influenced by long-term nitrogen application and landscape positions under switchgrass seeded to a marginal cropland

Navdeep Singh* | Jashanjeet Kaur Dhaliwal* | Udayakumar Sekaran | Sandeep Kumar

Abstract
Switchgrass (*Panicum virgatum* L.) has the potential to recover the soil hydrological properties of marginal lands. Nitrogen (N) and landscape position are the key factors in impacting these soil properties under switchgrass. The specific objective of this study was to investigate the responses of N rate (low, 0 kg N/ha and high, 112 kg N/ha) and landscape positions (shoulder and footslope) on near-surface soil hydrological properties that included: infiltration rate (*q*), saturated hydraulic conductivity (*K*\textsubscript{sat}), bulk density (*ρ*\textsubscript{b}), penetration resistance (SPR), water retention (SWR), pore-size distribution (PSD), and carbon (C) and nitrogen (N) fractions under switchgrass production. Data showed that, in general, the N and landscape position significantly influenced soil hydrological properties. Higher N rate decreased *ρ*\textsubscript{b} (1.23 and 1.36 g/cm3 at 0–5 and 5–15 cm, respectively) and SPR (1.06 and 1.53 MPa at 0–5 and 5–15 cm, respectively) at both depths and increased the *q*, *K*\textsubscript{sat} and Green–Ampt estimated sorptivity (*S*) and hydraulic conductivity (*K*) parameters, and SWR (0–5 cm depth) at 0 and −0.4 kPa matric potentials (*ψ*\textsubscript{m}). Furthermore, footslope position significantly decreased *ρ*\textsubscript{b}, SPR at 0–5 and 5–15 cm depths, and increased the *q*, *K*\textsubscript{sat}, *S*, *K*, and SWR (0–5 cm depth) at every *ψ*\textsubscript{m} ranged from 0 to −30.0 kPa. The higher N rate increased the coarse mesopores (60–1,000 μm) and total pores, whereas, footslope position increased the coarse mesopores, micropores (<60 μm), and total pores. Data from this study showed that planting switchgrass with 112 kg N/ha under footslope position helped in improving the soil hydrological properties, those can be beneficial in enhancing the biomass yield under marginal lands.

KEYWORDS
landscape positions, N rates, saturated hydraulic conductivity, soil hydrological properties, soil water retention, switchgrass, water infiltration
In 1985, the United States Department of Energy identified switchgrass (Panicum Virgatum L.) as a renewable energy source that could be an alternative source for fuel instead of petroleum-based transportation fuels in the United States (Lee et al., 2012). Since 1987, the research interest in switchgrass for bioenergy production has exponentially been increased in the USA (Mitchell, Vogel, & Schmer, 2016). In 1991, switchgrass was selected as a “model” potential bioenergy crop for researchers (Wright & Turhollow, 2010). Switchgrass is a perennial warm-season C₄ grass species that is native to North America. It has a high tolerance to soil water deficits and low soil nutrients availability, thereby can successfully adapt to diverse environmental conditions over larger geographic regions and has high potential biomass production on marginal lands (Barney et al., 2009). The production of switchgrass has been increased over the past few decades due to the economic benefits, thus, there is strong need to assess the ecological impacts associated with its production in the United States (Hartman, Nippert, Orozco, & Springer, 2011). Studies have shown that switchgrass production can improve soils and environmental quality (e.g., Lai, Kumar, Osborne, & Owens, 2018) with low on-farm energy requirements and costs (Wright, Perlack, Turhollow, & Eaton, 2011). Switchgrass has prolific and deep root system that can add organic carbon to the soil, reduce soil bulk density (ρ_b), and improve water infiltration rate compared with the row crop annuals (Kahle, Hildebrand, Baum, & Boelcke, 2007).

Soil properties especially ρ_b and infiltration rate are strongly related to soil water movement, porosity, and workability (Friedman, Hubbs, Tugal, Seybold, & Sucik, 2001). Infiltration rate reflects soil functions of regulating and partitioning water and solute flow and filtering, buffering, degrading, detoxifying organic or inorganic materials in crop-soil ecosystems (NRCS, 2015). Furthermore, physically based hydrologic models such as Green–Ampt (Green & Ampt, 1911) are generally used to fit measured infiltration data (Zaibon et al., 2017) to show soil water infiltration with respect to time via physical parameters like sorptivity (S, mm h$^{-1.5}$) and model estimated saturated hydraulic conductivity (K_{sat}, mm/hr). The estimated K_s represents water-transmitting capability of soils under hydraulic head gradient and varies with the antecedent soil water content. As S and K_s are influenced by the management, therefore, quantification of these parameters is crucial in order to assess the soil hydrological conditions. Switchgrass plantation can enhance soil organic matter (Schmer, Liebig, Vogel, & Mitchell, 2011) and impact these soil hydrological properties including the soil water retention (SWR), the actual amount of water retained in the soil for crops (Smith & Kucera, 2018). Switchgrass, when managed with appropriate nitrogen fertilization and the landscape position can help in enhancing these soil hydrological properties.

Nitrogen fertilization rate (N rate) is a key factor in improving the switchgrass biomass production as it is considered a limiting nutrient for switchgrass (Hong et al., 2014). The N rate can improve soil fertility status and the yield (Bowman & Halvorson, 1998). The optimum N rate, however, depends on different soils and environmental conditions (Kering, Biermacher, Butler, Mosali, & Guretzky, 2012) because the impacts of N fertilizer on soil properties are different under various conditions. The N rate can significantly increase the soil organic carbon (SOC) in switchgrass fields (Jung & Lal, 2011). However, few studies reported no significant differences in SOC due to different fertilization rates, for example, Kibet, Blanco-Canqui, Mitchell, and Schacht (2016) and Lu et al. (2011). The increase in N rate significantly decreased the ρ_b at the 0–5 cm depth in a barley (Hordeum vulgare L.)-maize (Zea mays L.) rotation system in Colorado (Halvorson, Reule, & Follett, 1999). However, no significant differences in ρ_b values due to different fertilization rates were observed in other studies for example, Fabrizzi, Garcia, Costa, and Picone (2005) and Zhang, Yang, Wiss, Grip, and Lövdahl (2006). Similarly, infiltration rate was increased with the increase in N rate (Zuzel, Pikul, & Rasmussen, 1990) or unaffected (Walia, Walia, & Dhaliwal, 2010). Nitrogen fertilization can have positive effects on SWR and other hydrological properties because it increases biomass production and C input to soils (Zhang et al., 2006).

Landscape position across a field is also considered a key factor in influencing soil properties under a hillslope scale (Jackson-Gilbert et al., 2015). Elliott and Efetha (1999) reported that similar SOC levels were observed at the 0–10 cm depth at the shoulder and backslope positions, while higher SOC was found in the footslope position in a continuously cropped no-till system (pulse crops-oilseeds rotation). Sauer, Logsdon, Brahana, and Murdoch (2005) found that the upland and side slope soils had consistently lower infiltration rate compared to the soil in the valley bottom in a small forest/pasture watershed in Arkansas, USA. However, infiltration rate at different landscape positions has mixed results from other studies for example, Elliott and Efetha (1999) and Sandhu and Kumar (2017). Therefore, previous studies showed that the benefits of switchgrass plantation depend on different local conditions such as soil type, topography, harvest frequency, agronomic practices, and climate (Lai et al., 2018; Maughan, 2011). Yet, little is known about the information related to the long-term impacts of N rate and landscape position on soil physical and hydrological properties under switchgrass seeded to a marginal land. Therefore, the specific objective of this study was to evaluate the impacts of N rate and landscape position on soil physical and hydrological properties that include ρ_b, infiltration rate, SWR, saturated hydraulic conductivity under switchgrass seeded to a marginally yielding cropland.
MATERIALS AND METHODS

2.1 Study site, experimental design, and soil sampling

This study site was located at 45°16′24.55″N, 97°50′13.34″W, near Bristol, South Dakota, USA. Soils at the study location were classified as Nutley-Sinai (silty clay, mixed, Chromic Hapluderts) with 2%–20% slope. The experimental design at this site was a split-plot design comprised of two nitrogen (N) rates (low, 0 kg N/ha and high, 112 kg N/ha) as whole plots and the two landscape positions (shoulder and footslope) as subplots with four replications. Each plot size was 21.3 × 365.8 m to allow the use of conventional agricultural equipment. The site size was 9.7 ha. Urea was the source of N fertilizer and applied in late May or early June in each year. Switchgrass (cultivar: Sunburst; seeding rate: 10 kg pure live seed/ha) planting was done on May 17, 2008 and it was first harvested annually following a killing frost on October 28, 2009. This site was under maize (Z. mays L.)-soybean (Glycine max. L.) rotation prior to switchgrass establishment. The mean values of SOC under high and low N rates were 24.5 and 26.1 g/kg, at 0–5 cm depth, respectively, in 2009 (Lai et al., 2018).

Intact core samples (n = 2 from each plot) were collected from 0–5 and 5–15 cm soil depths using cores of 5 cm in diameter and height in July 2018 after the application of N fertilizer. Another set of soil cores of 7.6 cm in diameter and height were obtained from the same plots to determine the saturated hydraulic conductivity (Ksat). Soil cores were labeled, trimmed from each end, sealed in a plastic bag, and stored at 4°C pending analysis. Soil samples were also taken from both the depths to measure gravimetric moisture content and carbon and nitrogen fractions.

2.2 Carbon and nitrogen fractions

Water extractable organic carbon and nitrogen fractions were measured using the procedure given by Ghani, Dexter, and Perrott (2003). In brief, 3 g of soil was mixed with 30 ml of distilled water in 50 ml polypropylene centrifuge tubes and shook on vortex shaker for 10 s and then on rotatory shaker for 30 min at 40 revolutions per min (rpm). After shaking, the soil solution was centrifuged at 925.7 g for 25 min at 4°C. After centrifuging, suspensions were filtered by using 0.45 μm pore size syringe filters. The obtained filtrate is cold-water extractable organic carbon (CWC) and nitrogen (CWN). The soil left behind was further mixed with 30 ml of distilled water and shook on vortex shaker for 10 s. This soil solution was put in hot-water bath at 80°C for 12–15 hr, which was followed by shaking on vortex shaker for 10 s, and then centrifuged at 925.7 g for 25 min at 25°C. After centrifuging, suspensions were filtered by using 0.45 μm pore size syringe filters. The filtrate collected here is hot-water extractable organic carbon (HWC) and nitrogen (HWN). The concentration of cold and hot water C and N fractions were determined using the TOC-L analyzer (Shimadzu Corporation, model-TNM-L-ROHS).

2.3 Soil bulk density and soil penetration resistance

Soil bulk density was determined using the core method (Grossman & Reinsch, 2002) for the 0–5 and 5–15 cm depths under all the treatments and was calculated by dividing the oven-dry soil weight with the volume of the soil core. The soil penetration resistance (SPR) was measured for the 0–5 cm and 5–15 cm depths for each treatment using an Eijkelkamp-type hand penetrometer (Herrick & Jones, 2002). Ten readings of SPR were taken from each plot and the average value was used to represent the SPR of each plot at each depth. In order to confirm if the differences in SPR were in response to the soil moisture content or the treatment, soil samples were also taken from both the depths to determine the moisture content.

2.4 Infiltration rate (qs) and model fitted parameters

The qs was measured using a single-ring infiltrometer with 25.4 cm diameter and 20 cm in height using a constant-head method (Reynolds, Elrick, & Youngs, 2002). The qs measurements were conducted for all the four treatments, with two measurements per plot (total n = 32) until a steady state was achieved. Soil samples were also taken in the area surrounding the ring from each treatment in order to determine gravimetric soil water content.

Green and Ampt (1911) model; a physically based infiltration model was used to fit the measured infiltration data. Philip (1957) modified the Green–Ampt infiltration model for time (t) vs cumulative infiltration (I), as follows:

\[
t = \frac{1}{K_s} - \frac{S^2 \ln \left(1 + \frac{2K_s}{S^2}\right)}{2K_s^2}
\]

where t is the time (h), I is the cumulative infiltration (mm), S is the sorptivity (mm/hr0.5), and Ks is the saturated hydraulic conductivity (mm/hr). We will be referring to Green and Ampt (1911) model as Green–Ampt model in this paper. For estimating the S and Ks parameters based on cumulative infiltration, procedures proposed by Clothier and Scotter (2002) were followed. For model fitting, the initial S parameter was estimated from initial infiltration divided by (time)0.5, and the initial Ks value was the final/steady state infiltration rate (mm/hr). The initial infiltration rate strongly depends upon the antecedent soil water content. Therefore, the sorptivity (S) parameter, which is
highly related to initial infiltration rate, is dependent on antecedent soil water content. Both parameters (S and K_s) can be estimated to describe infiltration data. Green–Ampt model is generally used to assess the consistency in estimated physical parameters S and K_s. Fitted parameters serve as an appropriate, compressed description of data and can be used for the predictive purposes (Hopmans, Clausnitzer, Kosugi, Nielsen, & Somma, 1997).

2.5 Saturated hydraulic conductivity

After fixing cheesecloth at the bottom of the soil cores (7.6 cm in diameter and height), these cores were saturated by capillarity prior to the K_{sat} measurements. The K_{sat} was measured with the constant-head method (Klute & Dirksen, 1986) by employing Darcy’s equation:

$$ K_{sat} = \left(\frac{Q}{A} \right) \left(\frac{L}{L + H} \right) $$

where Q is the outflow volume (cm3), A is the cross-sectional area of soil column (cm2), t is the time (hr), L is the length of soil column (cm), H is the height of pounded water at the top of soil column (cm).

2.6 SWR and pore-size distribution

The SWR was measured using the intact soil cores for the 0–5 and 5–15 cm depths for each treatment. The cheesecloth was fixed at the bottom of each soil core, and then these cores were saturated with water by capillarity for 24 to 48 hr depending on the sampling depth. The SWR characteristics were then measured at eight (0, −0.4, −1.0, −2.5, −5.0, −10.0, −20.0, and −30.0 kPa) matric potentials (ψ_m) using a combination of tension table and pressure plate extractors (Soil moisture Equipment Corp.) (Klute & Dirksen, 1986). At each ψ_m soil water content (g/g) was determined gravimetrically by oven-drying the soil samples at 105°C for 48 hr, and this moisture content was converted to volumetric water content (m3/m3) by multiplying with ρ_w and dividing with the density of water.

Furthermore, pore-size distribution (PSD) of the soil was calculated using the measured SWR data by employing the capillary rise equation to estimate four classes of pore size (Jury, Gardner, & Gardner, 1991) that is, macropores (>1,000 μm equivalent cylindrical diameter, ecd), coarse mesopores (60–1,000 μm ecd), fine mesopores (10–60 μm ecd), and micropores (<10 μm ecd).

2.7 Statistical analysis

Statistical comparisons of differences in the soil physical and hydrological properties among different N rates and landscape positions for each depth were obtained using pairwise differences method to compare least-squares means estimated by a mixed model using the generalized linear mixed model (GLIMMIX) procedure in SAS 9.4 (SAS, 2013), where N rate, landscape position, and N rate × landscape position were considered as fixed effects and replication and replication × N rate as random effect. The ANOVA was used to test the fixed effects of the N rate and landscape position on the soil properties on the basis of mixed model. The P values were adjusted by Tukey method in the sas 9.4. Data were transformed when necessary and the transformation was determined using the Box–Cox method (Box & Cox, 1981). Significance was determined at $\alpha = 0.05$ level for all statistical analysis in this study. Pearson’s correlation coefficients between the soil physical, hydrological, and biological properties were determined using correlation (CORR) procedure in SAS 9.4. Microbial biomass carbon and soil organic carbon values used for correlation were extracted from previous published studies (Sekaran, Mc coy, Kumar, & Subramanian, 2018) and (Lai et al., 2018), respectively, from the same experiment. Furthermore, principal component analysis (PCA) was employed to define the most significant and important soil properties influenced by varying N rates and landscape positions. PCA is a mathematical technique that converts a number of correlated variables into a smaller number of uncorrelated or independent variables, based on eigenvector decomposition of the covariance (Vestin, Nambu, Hees, Bylund, & Lundström, 2006).

3 RESULTS

3.1 Soil C and N fractions, bulk density, and SPR

The data on soil HWC, HWN, CWC, and CWN as affected by different N rates and landscape positions at 0–5 and 5–15 cm depths are depicted in Table 1. The HWC fraction was significantly higher (68.8 μg C/g soil) under high N rate as compared to that under low N rate (56.5 μg C/g soil) at 0–5 cm depth. Although, HWC and HWN were not affected by N rate at 5–15 cm depth, but these fractions showed an increasing trend with the increase in N rate application. Further, landscape positions significantly influenced HWC and HWN at both depths. HWC fraction was 12.6 and 12.4 μg C/g soil higher at footslope position than that at shoulder position at 0–5 and 5–15 cm depths, respectively. Likewise, HWN fraction was 24% and 16% higher at footslope as compared to that at shoulder position at 0–5 and 5–15 cm depths, respectively. The CWC and CWN were not affected by N rate at both depths; however, a numerical increase in these fractions with the increase in N rate was observed (Table 1). The landscape positions, in general, had a significant impact on these C fractions. The CWN was significantly higher (4.82 μg N/g soil) at footslope position as compared to that at shoulder (4.18 μg N/g soil) at 0–5 cm depth. Similarly, at 5–15 cm
depth, significantly higher CWC (1.24 times) and CWN (1.17 times) were recorded at footslope position than that at shoulder position, respectively.

Data on ρ_b, SPR, and w as influenced by N rates and landscape positions are presented in Table 2. The N rates and landscape positions significantly affected ρ_b at 0–5 and 5–15 cm depths. The ρ_b was significantly reduced with high N rate at both depths. Similarly, the ρ_b at footslope position was significantly lower (1.18 g/cm3 for 0–5 cm and 1.32 g/cm3 for 5–15 cm) than that at shoulder position (1.41 g/cm3 for 0–5 cm and 1.50 g/cm3 for 5–15 cm). The SPR was significantly impacted by treatments at each depth. Like ρ_b, the SPR was significantly higher with low N rate (1.78 MPa for 0–5 cm and 2.00 MPa for 5–15 cm) compared to that with high N rate (1.06 MPa for 0–5 cm and 1.53 MPa for 5–15 cm). At footslope position, SPR was also significantly lower than that at shoulder position at both depths. No significant difference was observed in the w among the treatments at each depth (Table 2) and hence the differences in the SPR values were in response to the varying N rates and landscape positions.

3.2 Water infiltration rate and saturated hydraulic conductivity

The q_s was significantly influenced by N rates and landscape positions (Table 3). It was 104% higher with high N rate compared to the low N rate. At shoulder position, q_s was significantly lower (151.9 mm/hr) than that at footslope position (329.2 mm/hr). A similar trend was observed in the K_{sat}. The K_{sat} was significantly higher with high N rate (344.8 mm/hr) compared to the low N rate (227.9 mm/hr). At footslope position, K_{sat} was also significantly higher (394.4 mm/hr) as compared to that at shoulder position (178.3 mm/hr).
Green–Ampt model fitted the measured infiltration data considerately well with coefficients of determination (r^2) ranging from 0.98 to 0.99. The S and K_s parameters estimated with Green–Ampt model were significantly higher for the soils managed with high N rate (219.5 mm/hr$^{0.5}$ and 239.9 mm/hr, respectively) as compared to that of soils under low N rate (113.5 mm/hr$^{0.5}$ and 82.6 mm/hr, respectively) (Table 3). Further, Green–Ampt model estimated K_s and S parameters were significantly higher at footslope position than that at shoulder position ($p < 0.01$ for S parameter and $p = 0.02$ for K_s parameter; Table 3).

3.3 SWR and PSD

Data on average SWR at different Ψ_m under different N rates and landscape positions for 0–5 cm depth are illustrated in Table 4. The SWR was significantly influenced at 0 kPa with higher SWR (0.52 m3/m3) for high N rate compared to the low N rate (0.46 m3/m3). The SWR was significantly affected by landscape positions for six of eight Ψ_m (0, −0.4, −1.0, −2.5, −5.0, −10.0, −20.0, and −30.0 kPa). Footslope position retained significantly higher amount of water by 18%, 18%, 15%, 24%, 25%, and 26% compared to that under shoulder position at Ψ_m of 0, −0.4, −1.0, −10.0, −20.0, and −30.0 kPa, respectively.

Data on SWR under different N rates and landscape positions for 5–15 cm depth are shown in Table 5. The N rate did not influence average SWR at different Ψ_m (0, −0.4, −1.0, −2.5, −5.0, −10.0, and −30.0 kPa). However, the landscape position had a significant ($p < 0.01$) impact on SWR for three of eight Ψ_m (0, −0.4 and −1.0 kPa). Average SWR at footslope position at 0, −0.4, and −1.0 kPa was significantly ($p < 0.01$) higher (0.50, 0.49, and 0.45 m3/m3, respectively) compared to that at shoulder position (0.42,
0.40, and 0.38 m3/m3, respectively) (Table 5). SWR was significantly higher at footslope with high N rate compared to the other three treatments at 0, −0.4 kPa Ψ_m for 0–5 cm depth (Figure 1). Significantly higher SWR was observed under footslope with high N rate at −10.0, −20.0, and −30.0 kPa Ψ_m compared to the shoulder managed with high N rate at 0–5 cm depth. Similar trend was observed at 5–15 cm depth, although the significance was observed only at 0, −0.4, and −1.0 kPa Ψ_m.

The PSD under different N rates and landscape positions for 0–5 cm depth are shown in Table 6. Among different categories of pores, that is, macropores, coarse mesopores, fine mesopores, and micropores; majority of the total pores were dominated by the micropores (<10 µm) at each depth. Coarse mesopores and total pores were significantly influenced by N rates at 0–5 cm depth. Soils under switchgrass managed with high N rate increased average coarse mesopores and total pores by 0.048 and 0.055 m3/m3, respectively, in the 0–5 cm depth relative to the low N rate (Table 6). Although other pore classes were not significantly affected by N rate ($p > 0.05$); however, a similar trend was observed, where macropores and fine mesopores were higher by 75% and 4%, respectively, under high N rate compared to the low N rate. Landscape position had a significant impact on coarse mesopores, micropores, and total pores at 0–5 cm depth with footslope position having 39%, 28%, and 18% higher respective pore class than that at shoulder position. A similar trend was noticed in case of macropores among different landscape positions although the differences were not significant (Table 6). The data on PSD as affected by varying N rates and landscape positions for 5–15 cm depth are presented in Table 7. The N rate did not influence PSD ($p > 0.05$), however, in general, all the pore classes, except fine mesopores, were numerically higher for soils treated with high N rate as compared to that of low N rate at 5–15 cm depth. Landscape position had

Table 5

Average soil water content (m3/m3) at different soil water pressures (−kPa) under varying nitrogen rates (low, 0 kg N/ha and high, 112 kg N/ha) applied to switchgrass grown at different landscape (shoulder and footslope) positions for 5–15 cm depth.

Soil water pressure (kPa)	0	−0.4	−1.0	−2.5	−5.0	−10.0	−20.0	−30.0
N Rate								
Low	0.45^a	0.44^a	0.40^a	0.31^a	0.30^a	0.21^a	0.19^a	0.19^a
High	0.46^a	0.45^a	0.43^a	0.30^a	0.29^a	0.21^a	0.20^a	0.19^a
Position								
Shoulder	0.42^b	0.40^b	0.38^b	0.29^a	0.28^a	0.19^a	0.18^a	0.17^a
Footslope	0.50^a	0.49^a	0.45^a	0.32^a	0.31^a	0.22^a	0.21^a	0.21^a

Note. Means with different letters within a column are significantly different at $p < 0.05$ within the nitrogen rate and landscape position.

Figure 1

Soil water retention curves for switchgrass managed with varying nitrogen rates (low, 0 kg N/ha and high, 112 kg N/ha) at different landscape (shoulder and footslope) positions for 0–5 and 5–15 cm depths. S-Low N: shoulder position with low nitrogen rate; S-High N: shoulder position with high nitrogen rate; F-Low N: footslope position with low nitrogen rate; F-High N: footslope position with high nitrogen rate.
a significant impact on coarse mesopores and total pores, where these were 0.054 and 0.082 m3/m3 higher, respectively, at footslope than at the shoulder.

Pearson’s correlation coefficient among different soil variables as influenced by varying nitrogen rates and landscape positions are depicted in Table 8. The ρ_b was significantly and negatively correlated with q_s ($r = -0.55^*$), K_{sat} ($r = -0.68^{**}$), coarse mesopores ($r = -0.73^{***}$), total pores ($r = -0.75^{***}$), Green–Ampt estimated S parameter ($r = -0.81^{***}$), CWC ($r = -0.51^*$), HWC ($r = -0.63^{**}$), and MBC ($r = -0.71^{**}$), while positively correlated with SPR ($r = 0.67^{**}$). The q_s showed significant and positive correlation with water conducting variables such as K_{sat} ($r = 0.53^*$), macropores ($r = 0.51^*$), coarse mesopores ($r = 0.63^{**}$), micropores ($r = 0.52^*$), total pores ($r = 0.79^{***}$), Green–Ampt estimated S and K_s parameter ($r = 0.76^{***}$, $r = 0.97^{***}$, respectively) and also with SOC ($r = 0.69^{**}$), CWC ($r = 0.60^*$), HWC ($r = 0.79^{***}$), and negatively correlated with SPR ($r = -0.56$). Similarly, significantly positive correlation was observed between K_{sat} and other water conducting variables. The SPR showed significantly negative correlation with coarse mesopores ($r = -0.63^{**}$) and total pores ($r = -0.78^{***}$), however, it did not show any significant correlation with SOC and other carbon fractions. The SOC, CWC, HWC, and MBC showed significantly positive correlation with total pores ($r = 0.56^*$, 0.57^*, 0.78^{***} and 0.72^{**}, respectively). The principle component analysis showed that N rates and landscape positions had a significant impact on soil physical and hydrological properties (Figure 2) and placed shoulder and footslope positions opposite in the quadrant. The first principle component explained 78% of the total variation.

Table 6

Treatments	Macropores (>1,000 μm)	Coarse mesopores (60–1,000 μm)	Fine mesopores (10–60 μm)	Micropores (<10 μm)	Total pores
N Rate					
Low	0.008a	0.120b	0.115a	0.217a	0.460b
High	0.014b	0.168a	0.120b	0.213a	0.515a
Position					
Shoulder	0.009a	0.121b	0.128a	0.189b	0.446b
Footslope	0.012a	0.168a	0.107a	0.241a	0.528a

ANOVA (p > F)

N Rate (N)	0.11	0.01	0.68	0.76	<0.01	0.01
Position (P)	0.34	0.01	0.09	<0.01	<0.01	
N × P	0.11	0.02	0.08	0.26	0.13	

Note. Means with different letters within a column are significantly different at $p < 0.05$ within the nitrogen rate and landscape position.

Table 7

Treatments	Macropores (>1,000 μm)	Coarse mesopores (60–1,000 μm)	Fine mesopores (10–60 μm)	Micropores (<10 μm)	Total pores
N Rate					
Low	0.012a	0.140a	0.111a	0.186a	0.450a
High	0.015a	0.157a	0.099a	0.192a	0.463a
Position					
Shoulder	0.014a	0.122b	0.107a	0.173a	0.415a
Footslope	0.013a	0.176a	0.104a	0.205a	0.497a

ANOVA (p > F)

N Rate (N)	0.74	0.22	0.53	0.83	0.44
Position (P)	0.83	<0.01	0.88	0.21	<0.01
N × P	0.19	0.83	0.68	0.25	0.07

Note. Means with different letters within a column are significantly different at $p < 0.05$ within the nitrogen rate and landscape position.
	ρ_b	q_s	K_{sat}	SPR	Macro	CM	FM	Micro	Total pores	S	K_s	SOC	CWC	HWC	MBC	
ρ_b		–		–0.55*	–0.68**	0.67**	0.00	–0.73*	–0.38	–0.75**	–0.81***	–0.46	–0.45	–0.27	–0.62**	–0.71**
q_s	–	0.53*	–	–0.56*	0.51*	0.63**	–0.19	0.52*	0.79***	0.76***	0.97***	0.69**	–0.12	0.53*	0.47	
K_{sat}	–	–0.58*	0.27	0.57*	–0.11	0.25	0.58*	0.64**	0.41	0.19	0.47	0.84***	0.72**			
SPR	–	–0.37	–0.63**	–0.24	–0.22	–0.78***	–0.58*	–0.49	–0.23	–0.30	–0.46	–0.48				
Macro	–	–0.08	0.13	0.24	0.28	0.22	0.49	0.47	0.16	0.19	0.11					
CM	–	–0.26	0.30	0.84***	0.74***	0.57*	0.40	0.18	0.57*	0.72**						
FM	–	–0.63**	–0.11	–0.33	–0.17	–0.47	0.31	0.03	–0.33							
Micro	–	0.59*	0.52*	0.42	0.65**	–0.46	0.24	0.49								
Total pores	–			0.78***	0.69**	0.56*	0.02	0.60*	0.72**							
S	–			0.66**	0.72**	0.11	0.54*	0.65**								
K_s	–			–	0.65**	–0.17	0.42	0.35								
SOC	–			–	–0.11	0.18	0.49									
CWC	–			–	0.25		0.32									
HWC	–			–												
MBC	–			–												

Note: CM: coarse mesopores; CWC: cold-water soluble organic carbon; FM: fine mesopores; HWC: hot-water soluble organic carbon; K_s: estimated saturated hydraulic conductivity parameter from Green–Ampt model; K_{sat}: measured saturated hydraulic conductivity; Macro, macropores; MBC: microbial biomass carbon; Micro: micropores; ρ_b: soil bulk density; q_s: steady state infiltration rate; S: sorptivity; SOC: soil organic carbon; SPR: soil penetration resistance.

*Correlation is significant at the 0.05 level. **Correlation is significant at the 0.01 level. ***Correlation is significant at the 0.001 level.
and the second explained 19%, a two component model thus accounted for 97% of the total variance. The PCA results showed that low and high N rates under footslope position had a significant influence on soil physical and hydrological properties, viz. Green–Ampt estimated K_s parameter, SOC, q_s, K_{sat}, Green–Ampt estimated S parameter, total pores, HWC, coarse mesopores, MBC, and micropores.

DISCUSSION

In the current study, we examined the impacts of varying N rates and different landscape positions on soil physical and hydrological properties under switchgrass production managed for 10 years. Significant changes in the soil hydrological properties in response to the treatments were observed. Soil organic carbon was not impacted by the N rates but impacted by the landscape position (higher value observed at footslope compared to the shoulder) in 2009 (Lai et al., 2018), however, it was higher with the high N rate, and footslope position compared to that under low N rate, in 2016 (data not shown). The impacts of N rates and landscape position on soil C fractions and hydrological properties have been discussed below as:

4.1 Impacts of N rate on soil properties

Significant increase in HWC under high N rate at 0–5 cm depth was observed in this study which could be due to the increase in microbial activity which further accelerates the decomposition rate of plant residues. This can increase the hot-water soluble carbon as it gets easily fragmentized by the soil microorganisms (Mikanová, Šimon, Kopecký, & Ságová-Marečková, 2015). We did not find any significant differences in other labile pools as affected by the N rates.

Our results are in accord with Benbi, Brar, Toor, and Sharma (2015), who also reported nonsignificant influence of N fertilizers on labile carbon pools. The findings from this study showed that the N rate had a significant impact on soil ρ_b in switchgrass plots at each depth. Significant reduction in ρ_b with the high N rate at each depth may probably be due to higher biomass yield (Lee et al., 2018). Further, higher switchgrass root biomass production and residue retention on the soil under high N fertilization can also decrease soil ρ_b (Banashree, Satya, Sreyashi, & Bhaswatee, 2015). As an evidence, significantly negative correlation of ρ_b with HWC and MBC (Table 8) was also found in the present study. These results corroborate the findings of Halvorson, Wienhold, and Black (2002), who also found a decrease in ρ_b with the increasing N rate within the annual crop rotation in North Dakota, USA. Furthermore, reduction in ρ_b could also be due to the application of higher dose of inorganic N fertilizer which increased the SOC of this site (data not shown). Similar findings were also reported by Alvarez (2005). High N rate can enhance microbial and biological activity which can lead to improved soil physical conditions. In another study conducted by Halvorson et al. (1999) showed that ρ_b significantly decreased with increasing N rate at the 0–5 cm depth in a barley ($H. vulgare$)–maize ($Z. mays$) rotation system in Colorado, USA. Similar results have also been reported by Hati, Swarup, Dwivedi, Misra, and Bandyopadhyay (2007). Deep root systems of switchgrass can increase the soil organic matter and hence reduce the soil compaction (Thomas, Haszler, & Blevins, 1996). Furthermore, switchgrass roots penetrate the soil matrix layers to change soil pores structure and hence reduce the soil ρ_b (Blanco-Canqui, 2010). After the 10-year switchgrass establishment in Iowa, Rachman, Anderson, Gantzer, and Alberts (2004) found that the ρ_b was reduced in the switchgrass buffer strips.

The SPR, a measure of soil compaction (Hamza & Anderson, 2003) is dependent on various factors such as water content of the soil, soil texture, soil matric potential (Lipiec, Ferrero, Giovanetti, Nosalewicz, & Turski, 2002), and other soil physical properties that vary among locations or soil horizons. The SPR under different nitrogen rates and landscape
position followed a similar trend as that of ρ_b. The reduction in SPR for high N rate at both depths can be related to lower ρ_b as a result of enhanced microbial community and SOC, which loosens the soil by improving the soil structure. A 13-year experiment conducted by Celik, Gunal, Budak, and Akpinar (2010) also showed that SPR was significantly decreased by N fertilizer at 11–20, 21–30, and 31–50 cm depths in Turkey.

The high N rate was effective in enhancing the q_s due to less compaction (lower ρ_b and SPR, as reported above) and improved pore stability and continuity that can enhance the q_s. A significantly positive correlation of q_s with HWC and SOC (Table 8) also supports these results. In an experiment conducted by Dunjana, Nyamugafata, Nyamangara, and Mango (2014), a significant increase in q_s was observed due to 100 kg N/ha on clayey soil as compared to the control. The q_s significantly increased with the increase in N rate under a long-term experiment in Oregon, USA (Zuzel et al., 1990). The Green–Ampt model estimated S and K_s parameters were also higher for the soils managed with high N rate as compared to those managed with low N rate due to the improved PSD. Further, switchgrass root growth can create channels after decay which can lead to the increased q_s and hence the S and K_s parameters. Wu et al. (2016) also reported improved q_s due to higher root biomass in a grassland. The production of perennial biomass feedstock had significant effects on q_s as it often changes soil physical and biological properties (Bharati, Lee, Isenhart, & Schultz, 2002). This land management system affects soil properties due to differences in litter quantity and quality, root biomass, root penetration, and soil architecture due to activities of microorganisms (de Graaff, Six, Jastrow, Schadt, & Wullschleger, 2013). Switchgrass enriches above and belowground organic carbon through aboveground biomass returned (Blanco-Canqui, 2010) as well as decay and decomposition of older roots, which increase the soil aggregation (Blanco-Canqui, 2016) and q_s. The gradual changes in biopore shape, orientation, and size distribution due to the extensive root system of switchgrass influence the q_s and water flow as well as SWR in the soil (Rasiah & Aylmore, 1998). The relatively compacted soil horizon such as a plow pan and hardpan can be penetrated and alleviated by perennial grass deep roots which increase q_s, nutrient uptake, and groundwater recharge (Blanco-Canqui, 2016). This study indicated that planting switchgrass on degraded soil increased the q_s which can reduce the soil erosion and runoff. When switchgrass is planted on the eroded soil (shallow topsoil thickness treatment) which has poor soil characteristics, the extensive and deeper root systems of switchgrass can improve soil structure that promotes water infiltration (Zaabon et al., 2017).

The K_{sat} was also found to be significantly affected by varying N rates and followed similar trend as that of q_s as well as Green–Ampt model estimated S and K_s parameters in the current study. The K_{sat} is mainly dependent on PSD and pore continuity of the soils. Higher K_{sat} values in the high N rate treatment was likely due to lower ρ_b ($r = -0.68^{**}$, Table 8) and higher macroporosity as well as coarse mesoporosity ($r = 0.57^{*}$, Table 8). Shi, Zhao, Gao, Zhang, and Wu (2016) also reported an increase in K_{sat} with soil amendments including inorganic fertilizers at 0–5 cm depth compared to the control.

Significantly higher SWR was observed in the soils receiving high N rate at saturation (0 kPa) as compared to the low N rate at 0–5 cm depth. However, N fertilizers did not significantly influence SWR characteristics at other Ψ_m at both the depths. Results are in agreement with Walia et al. (2010) who also reported a nonsignificant increase in SWR in response to N fertilization. The results from a long-term (71-year) study indicated that N fertilizer simply maintained SWR capacity (Blanco-Canqui, Hergert, & Nielsen, 2015). Higher categories of pore sizes were observed in the soils treated with higher N rate as compared to that of low N rate, which can partially attribute to lower ρ_b and SPR recorded in the same treatment.

4.2 Landscape position effects on soil properties

Nutrient cycling is greatly controlled by labile fractions of C (e.g., CWC and HWC) (Chan, Bowman, & Oates, 2001), thus an important measure to describe C balance as affected by the management. Soil C and N fractions were significantly higher at footslope compared to the shoulder position probably due to the reason that erosion from shoulder position may have deposited the organic matter at the footslope position. Soil ρ_b and SPR at the footslope position were significantly lower than that at shoulder position at either depths. Topography can result in soil erosion (Guzman & Al-Kaisi, 2011), which can re-distribute SOC (Martinez-Mena et al., 2012). Soil erosion generally occurs at the shoulder and backslope positions and leads to soil deposition at the footslope position (Papiernik et al., 2007), where soil nutrients are accumulated. Therefore, the SOC and other soil parameters are improved at the footslope compared with those at the shoulder position. This can result in increased root biomass and soil aggregation at footslope, and soil degradation at shoulder position. The increase in SOM, soil structure, and root biomass at the footslope can primarily contribute to decreased soil ρ_b (Guzman & Al-Kaisi, 2011) and SPR (Table 2). It is also evident from the significant positive correlation between SPR and ρ_b found in this study (Table 8). The SPR at eroded landscape position was higher than that for the depositional position in a soybean field in South Dakota, USA (Sandhu & Kumar, 2017). Another study also showed that cone index, a measure of soil compaction was significantly lower at the backslope and footslope position than that at summit in Missouri, USA (Jung, Kitchen, Sudduth, Lee, & Chung, 2010).

The q_s was also higher at the footslope than the shoulder position due to higher water conducting macropores and
coarse mesopores observed at the footslope position. A significant positive correlation between q_s, macropores, and coarse mesopores further corroborates this finding. Another reason for enhanced q_s at the footslope may be due to the improved soil structure due to high contents of C and N fractions found at this position compared to the shoulder (Table 1). Guzman and Al-Kaisi (2011) also reported that toeslope position recorded higher q_s as compared to that of summit and midslope positions. Similar findings were reported by Sauer et al. (2005), who found that the upland and side slope soils had consistently lower q_s compared to the soil in the valley bottom in a small forest/pasture watershed in Arkansas, USA. Green–Ampt model estimated S and K_s parameters followed the same trend as that of q_s. This is also evident from highly significant correlation coefficient between q_s and model estimated S and K_s parameters. Higher value of model estimated S and K_s parameters can be attributed to the existence of better soil physical conditions at footslope in terms of lower ρ_b, SPR, and higher porosity.

Similar to q_s and model estimated S and K_s parameters, the K_{sat} was also significantly higher at the footslope than the shoulder position. An isotopic study conducted by Chen, Hu, Nie, and Wang (2017) has also shown that vertical flow velocity was higher at footslope position demonstrating faster hydrological process in this landscape position. A significant positive correlation between K_{sat}, q_s, model estimated S and K_s, and coarse mesoporosity further showed that these hydraulic parameters are strongly influenced by the extent of coarse mesopores present in the soils, which were also found to be significantly higher at footslope than that at shoulder position.

At footslope position, higher SWR at measured matric potentials (0 kPa, −4.0 kPa, −10.0, −20.0, and −30.0 kPa) for 0–5 cm depth (Table 4) could be attributed to greater volume fraction of micropores (Table 6) those are responsible for higher SWR. Furthermore, high content of C and N fractions, those are labile forms of SOC may have aided in enhancing the SWR at footslope position compared to that at shoulder position (Table 1). Significantly higher volume fraction of total pores at surface and subsurface depths at footslope could be attributed to the better soil structure as evident from lower ρ_b, SPR, higher SWR, and C and N fractions (as reported above). High positive correlation of total pores with HWC, SOC, and MBC ($r = 0.60^*, 0.56^* and 0.72^{**}$, Table 8) further corroborate our findings. Landscape positions have strong effect on SOM distribution due to erosion (Guzman & Al-Kaisi, 2011). Erosion might cause the accumulation of organic carbon at footslope position by detaching the soil particles along with organic matter from the shoulder position. Results are in accord with Oguike, Chukwu, and Njoku (2006) who reported an increase in total porosity with the increase in organic carbon. The principle component analysis showed that N rates and landscape positions had a significant impact on soil physical and hydrological properties and placed shoulder and footslope positions opposite in the quadrant and showed that low and high N rates under footslope position significantly improved soil physical and hydrological properties.

Soil physical and hydrological properties play a key role in soil functioning and the restoration of marginal lands. The current study examined the response of physical and hydrological properties of soil to varying N rates and landscape positions under switchgrass. The N rate and landscape positions significantly influenced the soil hydrological properties. The results indicated that higher N rate decreased ρ_b and SPR. A general increasing trend on hot and cold-water soluble carbon and nitrogen fractions with increase in N rate was also observed. Nitrogen applied at higher rate also increased the soil water infiltration rate, saturated hydraulic conductivity; Green–Ampt estimated sorptivity, and hydraulic conductivity and also retained more water at the surface depth. Total porosity was also enhanced with the application of N at higher rate. Among the landscape positions, footslope position recorded higher content of C and N fractions, lower ρ_b and SPR, higher soil water infiltration rate, saturated hydraulic conductivity, Green–Ampt estimated sorptivity and hydraulic conductivity, SWR and an increase in coarse mesoporosity, microporosity, and total porosity. Thus, this study showed that nitrogen fertilization of 112 kg N/ha to switchgrass planted at footslope on a marginally yielding cropland improved the soil physical and hydrological properties, those can be beneficial in enhancing the biomass yield.

ACKNOWLEDGEMENTS

Financial support for this work was provided by the US Department of Agriculture, Natural Resources Conservation Service (grant no. G17AC00337). We thank the US Geological Survey, South Dakota Cooperative Fish & Wildlife Research Unit for administrative assistance with the research work order (RWO 116) at South Dakota State University. We thank Mr. Jerry Roitsch for providing the land for the study.

ORCID

Sandeep Kumar https://orcid.org/0000-0002-2717-5455

REFERENCES

Alvarez, R., & Alvarez, R. (2005). A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. *Soil Use and Management, 21*, 38–52. https://doi.org/10.1079/ SUM2005291

Banashree, S., Satya, S. B., Sreyashi, P., & Bhaswatee, B. (2015). Impact of N fertilization on C balance and soil quality in maize-dhaincha
cropping sequence. *Journal of Agricultural Sciences*, 60, 135–148. https://doi.org/10.2298/jas1502135s

Barney, J. N., Mann, J. J., Kyser, G. B., Blumwald, E., Van Deynze, A., & Ditomaso, J. M. (2009). Tolerance of switchgrass to extreme soil moisture stress: Ecological implications. *Plant Science*, 177, 724–732. https://doi.org/10.1016/j.plantsci.2009.09.003

Benbi, D. K., Brar, K., Toor, A. S., & Sharma, S. (2015). Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. *Pedosphere*, 25, 534–545. https://doi.org/10.1007/s10113-016-0150-z

Bharati, L., Lee, K.-H., Isenhart, T., & Schultz, R. (2002). Soil-water-scape. *Soil Biology and Biochemistry*, 35, 1231–1243. https://doi.org/10.1016/S0038-0717(03)00186-X

Blanco-Canqui, H. (2010). Energy crops and their implications on soil quality. *Agronomy Journal*, 102, 403–419. https://doi.org/10.2134/agronj2009.0333

Blanco-Canqui, H. (2016). Growing dedicated energy crops on marginal lands and ecosystem services. *Soil Science Society of America Journal*, 80, 845–858. https://doi.org/10.2136/sssaj2016.03.0080

Box, G., & Cox, D. (1964). An analysis of transformations revisited, rebutted. Madison, WI: Mathematics Research Center, Wisconsin University.

Chan, K., Bowman, A., & Oates, A. (2001). Oxidizable organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. *Soil Science*, 166, 61–67. https://doi.org/10.1007/1001694-19980300-00009

Clothier, B., & Scotter, D. (2002). 3.5 Unsaturated water transmission parameters obtained from infiltration. *Methods of Soil Analysis: Part 4 Physical Methods*, 5, 879–898.

De Graaff, M.-A., Six, J., Jastrow, J. D., Schadt, C. W., & Wullschleger, S. D. (2013). Variation in root architecture among switchgrass cultivars impacts root decomposition rates. *Soil Biology and Biochemistry*, 58, 198–206. https://doi.org/10.1016/j.soilbi.2012.11.015

Dunjana, N., Nyamugafata, P., Nyamangara, J., & Magoon, N. (2014). Cattle manure and inorganic nitrogen fertilizer application effects on soil hydraulic properties and maize yield of two soils of Murewa district, Zimbabwe. *Soil Use and Management*, 30, 579–587. https://doi.org/10.1111/sum.12152

Elliott, J., & Efetha, A. (1999). Influence of tillage and cropping system on soil organic matter, structure and infiltration in a rolling landscape. *Canadian Journal of Soil Science*, 79, 457–463. https://doi.org/10.4141/S98-075

Fabrizzi, K., Garcia, F., Costa, J., & Picone, L. (2005). Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. *Soil and Tillage Research*, 81, 57–69. https://doi.org/10.1016/j.still.2004.05.001

Friedman, D., Hubbs, M., Tugal, A., Seybold, C., & Sucik, M. (2001) Guidelines for soil quality assessment in conservation planning. Soil Quality Institute, Natural Resources Conservation Service (NRCS), United States Department of Agriculture (USDA). Washington, DC: US Government Printing Office. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051259.pdf

Ghani, A., Dexter, M., & Perrott, K. (2003). Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. *Soil Biology and Biochemistry*, 35, 1231–1243. https://doi.org/10.1016/S0038-0717(03)00186-X

Green, W., & Amp, G. (1911). Studies on soil physics. *Journal of Agricultural Science*, 4, 1. https://doi.org/10.1017/s002185960001441

Grossman, R., & Reinsch, T. (2002). 2.1 Bulk density and linear extensibility. *Methods of Soil Analysis: Part 4 Physical Methods*, 5.4, 201–228. https://doi.org/10.2136/sssabookser5.4.c9

Guzman, J., & Al-Kaisi, M. (2011). Landscape position effect on selected soil physical properties of reconstructed prairies in southcentral Iowa. *Journal of Soil and Water Conservation*, 66, 183–191. https://doi.org/10.2489/jswc.66.3.183

Halvorson, A. D., Reule, C. A., & Follett, R. F. (1999). Nitrogen fertilization effects on soil carbon and nitrogen in a dryland cropping system. *Soil Science Society of America Journal*, 63, 912–917. https://doi.org/10.2136/sssaj1999.634912x

Halvorson, A. D., Wienhold, B. J., & Black, A. L. (2002). Tillage, nitrogen, and cropping system effects on soil carbon sequestration. *Soil Science Society of America Journal*, 66, 906–912. https://doi.org/10.2136/sssaj2002.9060

Hamza, M., & Anderson, W. (2003). Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. *Australian Journal of Agricultural Research*, 54, 273–282. https://doi.org/10.1071/AR02102

Hartman, J. C., Nippert, J. B., Orozco, R. A., & Springer, C. J. (2011). Potential ecological impacts of switchgrass (*Panicum virgatum L.*) biofuel cultivation in the Central Great Plains, USA. *Biomass and Bioenergy*, 35, 3415–3421. https://doi.org/10.1016/j.biombioe.2011.04.055

Hati, K. M., Srubarup, A., Dwivedi, A., Misra, A., & Bandyopadhyay, K. (2007). Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central India after 28 years of continuous cropping, fertilization and manuring. *Agriculture, Ecosystems & Environment*, 127–134. https://doi.org/10.1017/ajagee.2006.06.017

Herrick, J. E., & Jones, T. L. (2002). A dynamic cone penetrometer for measuring soil penetration resistance. *Soil Science Society of America Journal*, 66, 1320–1324. https://doi.org/10.2136/sssaj2002.1320

Hong, C. O., Owens, V. N., Bransby, D., Farris, R., Fike, J., Heaton, E., … Viands, D. (2014). Switchgrass response to nitrogen fertilizer across diverse environments in the USA: A regional feedstock partnership report. *Bioenergy Research*, 7, 777–788. https://doi.org/10.1007/s12155-014-9484-y
Hopmans, J., Clausnitzer, V., Kosugi, K., Nielsen, D., & Somma, F. (1997). Vadose zone measurement and modeling. *Scientia Agricola*, 54, 22–26. https://doi.org/10.1590/S0103-90161997000300004

Jung, J. Y., & Lal, R. (2011). Impacts of nitrogen fertilization on biomass production of switchgrass (*Panicum virgatum* L.) and changes in soil organic carbon in Ohio. *Geoderma*, 166, 145–152. https://doi.org/10.1016/j.geoderma.2011.07.023

Jung, K.-Y., Kitchen, N. R., Sudduth, K. A., Lee, K.-S., & Chung, S.-O. (2012). Biomass yield and nutrient responses of switchgrass to phosphorus application. *Bioenergy Research*, 5, 71–78. https://doi.org/10.1007/s12155-011-9174-y

Kahle, P., Hildebrand, E., Baum, C., & Boelcke, B. (2007). Long-term effects of short rotation forestry with willows and poplar on soil properties. *Agriculture and Soil Science*, 53, 673–682. https://doi.org/10.1080/03650340701648484

Kating, M., Biermacher, J., Butler, T., Mosali, J., & Guretzky, J. A. (2010). Soil compaction varies by crop management system over a claypan soil landscape. *Soil and Tillage Research*, 107, 1–10. https://doi.org/10.1016/j.still.2009.12.007

Kibet, L. C., Blanco-Canqui, H., Mitchell, R. B., & Schacht, W. H. (2016). Root biomass and soil carbon response to growing perennial grasses for bioenergy. *Energy, Sustainability and Society*, 6, 1. https://doi.org/10.1186/s13705-015-0065-5

Kling, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. *Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods*, 5, 1, 687–734.

Lai, L., Kumar, S., Osborne, S., & Owens, V. N. (2018). Switchgrass impact on selected soil parameters, including soil organic carbon, within six years of establishment. *Catena*, 163, 288–296. https://doi.org/10.1016/j.catena.2017.12.030

Lee, D. K., Aberle, E., Anderson, E. K., Anderson, W., Baldwin, B. S., Baltensperger, D., … Owens, V. (2018). Biomass production of herbaceous energy crops in the United States: Field trial results and yield potential maps from the multiyear regional feedstock partnership. *GCB Bioenergy*, 10, 698–716. https://doi.org/10.1111/gcbb.12493

Lee, J., Pedros, G., Linquist, B. A., Putnam, D., Kessel, C., & Six, J. (2012). Simulating switchgrass biomass production across ecoregions using the DAYCENT model. *GCB Bioenergy*, 4, 521–533. https://doi.org/10.1111/j.1757-1707.2011.01140.x

Lipiec, J., Ferraro, A., Giovannetti, V., Nosalewicz, A., & Turski, M. (2002). Response of structure to simulated trampling of woodland soil. *Advances in Geocology*, 35, 133–140.

Lu, M., Zhou, H., Luo, Y., Yang, Y., Fang, C., Chen, J., & Li, B. (2011). Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. *Agriculture, Ecosystems & Environment*, 140, 234–244. https://doi.org/10.1016/j.agee.2010.12.010

Martínez-Mena, M., López, J., Almagro, M., Albarelo, J., Castillo, V., Ortiz, R., & Boix-Fayos, C. (2012). Organic carbon enrichment in sediments: Effects of rainfall characteristics under different land uses in a Mediterranean area. *Catena*, 94, 36–42. https://doi.org/10.1016/j.catena.2011.02.005

Maughan, M. W. (2011). Evaluation of switchgrass, *M. × giganteus*, and sorghum as biomass crops: Effects of environment and field management practices. Urbana, Champaign, IL: University of Illinois at Urbana-Champaign.

Miknová, O., Šimon, T., Kopecký, J., & Ságová-Marečková, M. (2015). Soil biological characteristics and microbial community structure in a field experiment. *Open Life Sciences*, 10, 249–259. https://doi.org/10.1515/biol-2015-0026

Mitchell, R., Vogel, K., & Schmer, M. (2016). Switchgrass (*Panicum virgatum*) for biofuel production [Internet]. pp Page, Extension Publications [cited 2017 January 8]. Retrieved from http://articles.extension.org/pages/26635/switchgrass-panicum-virgatum-for-biofuel-production/Bibliography

Mwanjalolo Jackson-Gilbert, M., Makooma Moses, T., Rao, K. P. C., Musana, B., Bernard, F., Leblanc, B., … Adekunle, A. (2015). Soil fertility in relation to landscape position and land use/cover types: A case study of the Lake Kivu pilot learning site. *Advances in Agronomy*, 2015, 1–8. https://doi.org/10.1155/2015/752936

NRCS. (2015). Soil quality indicators: Physical, chemical, and biological indicators for soil quality assessment and management. Natural Resources Conservation Service (NRCS), United States Department of Agriculture (USDA). file:///F:/A_A_Soil%20yr%20Bristol/References/indicator_sheet_guide_sheet.pdf

Oguke, P., Chukwu, G., & Njoku, N. (2006). Physico-chemical properties of a Haplic Acrisol in Southeastern Nigeria amended with rice mill waste and NPK fertilizer. *African Journal of Biotechnology*, 5:1088–1061.

Papiernik, S., Lindstrom, M., Schumacher, T., Schumacher, J., Malo, D., & Lob, D. (2007). Characterization of soil profiles in a landscape affected by long-term tillage. *Soil and Tillage Research*, 93, 335–345. https://doi.org/10.1016/j.still.2006.05.007

Philip, J. R. (1957). The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. *Soil Science*, 84, 257–264. https://doi.org/10.1097/00010694-195709000-00010

Rachman, A., Anderson, S., Gantzer, C., & Alberts, E. (2004). Soil hydraulic properties influenced by stiff-stemmed grass hedge systems. *Soil Science Society of America Journal*, 68, 1386–1393. https://doi.org/10.2136/ssaj2004.1386

Rasiah, V., & Aylmore, L. (1998). Estimating microscale spatial distribution of conductivity and pore continuity using computed tomography. *Soil Science Society of America Journal*, 62, 1197–1202. https://doi.org/10.2136/sssaj1998.03651995006200050007x

Reynolds, W., Elicick, D., & Youngs, E. (2002). Single-ring and double-or concentric-ring infiltrometers. In J. H. Dane, & G. C. Topp (Eds.), *Methods of soil analysis: Part 4. Physical methods* (pp. 821–826). Madison, WI: SSSA Book Ser. 5, SSSA.

Sandhu, S. S., & Kumar, S. (2017). Impact of three types of biochar on the hydrological properties of eroded and depositional landscape positions. *Soil Science Society of America Journal*, 81, 878–888. https://doi.org/10.2136/sssaj2016.07.0230

SAS. (2013). SAS Institute. *The SAS system for Windows*. Release 9.4. Cary, NC: SAS Inst.

Sauer, T. J., Logan, S. D., Van Brahan, J., & Murdoch, J. F. (2005). Variation in infiltration with landscape position: Implications for forest productivity and surface water quality. *Forest Ecology and Management*, 220, 118–127. https://doi.org/10.1016/j.foreco.2005.08.009

Schmer, M. R., Liebig, M., Vogel, K., & Mitchell, R. B. (2011). Field-scale soil property changes under switchgrass managed for bioenergy. *GCB Bioenergy*, 3, 439–448. https://doi.org/10.1111/j.1757-1707.2011.01099.x

Sekaran, U., Mccoy, C., Kumar, S., & Subramanian, S. (2018). Soil microbial community structure and enzymatic activity responses...
to nitrogen management and landscape positions in switchgrass (*Panicum virgatum* L.). *GCB Bioenergy*, 1–16. https://doi.org/10.1111/gcbb.12591

Shi, Y., Zhao, X., Gao, X., Zhang, S., & Wu, P. (2016). The effects of long-term fertilizer applications on soil organic carbon and hydraulic properties of a loess soil in China. *Land Degradation & Development*, 27, 60–67. https://doi.org/10.1002/lrd.2391

Smith, C. W., & Kucera, M. (2018). Effects on soil water holding capacity and soil water retention resulting from soil health management practices implementation - A review of the literature posted to the NRCS soil health website as of 9/2016. Natural Resources Conservation Service (NRCS), United States Department of Agriculture (USDA). file:///F:/A_A_Soil%2010-yr%20Bristol/References/AWC_Effects_on_Soil_Water_Holding_Capacity_and_Retention.pdf

Thomas, G., Haszler, G., & Blevins, R. (1996). The effects of organic matter and tillage on maximum compactability of soils using the proctor test. *Soil Science, 161*, 502–508. https://doi.org/10.1097/00010694-199608000-00005

Vestin, J. L., Nambu, K., Van Hees, P. A., Bylund, D., & Lundström, U. S. (2006). The influence of alkaline and non-alkaline parent material on soil chemistry. *Geoderma, 135*, 97–106. https://doi.org/10.1016/j.geoderma.2005.11.013

Walia, M. K., Walia, S., & Dhaliwal, S. (2010). Long-term effect of integrated nutrient management of properties of Typic Ustochrept after 23 cycles of an irrigated rice (*Oryza sativa* L.)–wheat (*Triticum aestivum* L.) system. *Journal of Sustainable Agriculture, 34*, 724–743. https://doi.org/10.1080/10440046.2010.507519

Wright, L. L., Perlack, R. D., Turhollow, A. F., & Eaton, L. M. (2011). Promising resources and systems for producing bioenergy feedstocks: Switchgrass production in the USA [internet]. pp Page, IEA Bioenergy [cited 2017 January 8]. Retrieved from http://ieabioenergytask43.org/wp-content/uploads/2013/09/IEA_Bioenergy_Task43_PR2011-03.pdf

Wright, L., & Turhollow, A. (2010). Switchgrass selection as a “model” bioenergy crop: A history of the process. *Biomass and Bioenergy, 34*, 851–868. https://doi.org/10.1016/j.biombioe.2010.01.030

Wu, G.-L., Yang, Z., Cui, Z., Liu, Y., Fang, N.-F., & Shi, Z.-H. (2016). Mixed artificial grasslands with more roots improved mine soil infiltration capacity. *Journal of Hydrology, 535*, 54–60. https://doi.org/10.1016/j.jhydrol.2016.01.059

Zaibon, S., Anderson, S. H., Thompson, A. L., Kitchen, N. R., Gantzer, C. J., & Haruna, S. I. (2017). Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems. *Geoderma, 286*, 46–53. https://doi.org/10.1016/j.geoderma.2016.10.016

Zhang, S., Yang, X., Wiss, M., Grip, H., & Lövdahl, L. (2006). Changes in physical properties of a loess soil in China following two long-term fertilization regimes. *Geoderma, 136*, 579–587. https://doi.org/10.1016/j.geoderma.2006.04.015

Zuzel, J., Pikul, J., & Rasmussen, P. (1990). Tillage and fertilizer effects on water infiltration. *Soil Science Society of America Journal, 54*, 205–208. https://doi.org/10.2136/sssaj1990.03615995005400010032x

How to cite this article: Singh N, Dhaliwal JK, Sekaran U, Kumar S. Soil hydrological properties as influenced by long-term nitrogen application and landscape positions under switchgrass seeded to a marginal cropland. *GCB Bioenergy*. 2019;11:1026–1040. https://doi.org/10.1111/gcbb.12611