Set-theoretical reflection equation: classification of reflection maps

V Caudrelier1, N Crampé2 and Q C Zhang1

1 Centre for Mathematical Science, City University London, Northampton Square, London EC1V 0HB, UK
2 CNRS, Laboratoire Charles Coulomb, Université Montpellier II, UMR 5221, Place Eugène Bataillon—CC070, F-34095 Montpellier, France

E-mail: v.caudrelier@city.ac.uk, nicolas.crampe@um2.fr and cheng.zhang.5@city.ac.uk

Received 18 October 2012, in final form 11 January 2013
Published 15 February 2013
Online at stacks.iop.org/JPhysA/46/095203

Abstract
The set-theoretical reflection equation and its solutions, the reflection maps, recently introduced by two of the authors, is presented in general and then applied in the context of quadrirational Yang–Baxter maps. We provide a method for constructing reflection maps and we obtain a classification of solutions associated with all the families of quadrirational Yang–Baxter maps that have been classified recently.

PACS number: 02.30.Ik

Introduction

The Yang–Baxter (YB) equation, introduced to study a gas of spin with a δ interaction \cite{1} or a two-dimensional solvable statistical model in \cite{2}, has been developed in many directions and found applications in different areas of mathematics and physics. Much of the effort has been concentrated on the so-called quantum YB equation which is at the heart of the field of quantum integrable systems. Although less well-known, the set-theoretical solutions of the YB equation have also attracted some attention. This question goes back to Drinfeld \cite{3} (and even to \cite{4} where a solution was given). Since then, different aspects have been developed and numerous connections have been established with, for example, geometric crystals \cite{5,6}, the soliton cellular automatons \cite{7,8}, the scattering of multicomponent solitons \cite{9–11}, discrete integrable systems \cite{12,13} and the Lax or transfer matrices \cite{14,15}. In view of these applications, there is also a lot of effort put into the possibility of classifying the solutions of the set-theoretical YB equations \cite{16,17}.

In the context of quantum integrable systems with boundaries, there exists, in addition to the YB equation, a second equation: the reflection equation. This equation was introduced to encode the reflection on the boundary of particles in quantum field theory \cite{18} and to prove the integrability of quantum models with boundaries \cite{19}. This equation appears also as the
defining relations for subalgebras of quantum groups [20, 21] which are the symmetry of quantum models such as the \(BC_n\) Sutherland models [22, 23], as a relation to construct the commuting family of time evolutions for a box–ball system with a reflection end [24] and as a consistency relation for the coordinate Bethe ansatz applied to the \(\delta\) gas with boundaries [25] and impurity [26].

Motivated by all these fields of application of the set-theoretical YB equation and of the reflection equation, we propose in this paper to explore the interplay between these two notions and to study the set-theoretical reflection equation. Surprisingly, this equation was introduced only very recently by two of the authors [27] in the context of factorization of vector soliton interactions on the half-line. There, it appeared naturally as the equation ensuring that the interactions of the polarizations of an \(N\)-soliton solution among themselves and with the boundary factorizes consistently as a sequence of soliton–soliton and soliton–boundary interactions. At the origin of the study in [27] lie the results of [28]. The latter falls into the vast area of integrable PDEs on the half-line for which various related approaches can be found in [29] (classical \(r\) matrix approach), [30] (Bäcklund transformations approach), [31] (symmetry algebra approach) or [32] (inverse scattering method approach).

In the first section of this paper, after recalling the important facts about the set-theoretical YB equation, we give the definition of the set-theoretical reflection equation and its solutions, the reflection maps. We also give its parametric version and comment on its graphical representation. We discuss, in this context, the construction of the transfer map to compare with [14] in the case of the YB equation. The second section is dedicated to the construction of reflection maps. The argument is based on a folding technique. Using this for the set-theoretical reflection equation associated with the YB maps classified in [16, 17], we obtain a classification of solutions. Finally, we conclude with the numerous open problems and perspectives related to our study.

1. Set-theoretical reflection equation

We present some elements and facts of the theory of reflection maps and the set-theoretical reflection equation first introduced at the end of the paper [27]. To do so, we first need to recall some definitions related to YB maps (see, e.g., [14]).

1.1. Yang–Baxter maps

Let \(S\) be a set and \(R : S \times S \rightarrow S \times S\) a map from the Cartesian product of \(S\) onto itself,

\[
R (X, Y) = (U, V) \equiv (f(X, Y), g(X, Y)).
\]

(1.1)

Define \(R_{ij} : S^N \rightarrow S^N\) as the map acting as \(R\) on the \(i\)th and \(j\)th copies of \(S\) in the \(N\)-fold Cartesian product \(S^N\) and identically on the others. More precisely, for \(i < j\),

\[
R_{ij} (X_1, \ldots, X_n) = (X_1, \ldots, X_{i-1}, f(X_i, X_j), \ldots, g(X_i, X_j), X_{j+1}, \ldots, X_n),
\]

(1.2)

\[
R_{ji} (X_1, \ldots, X_n) = (X_1, \ldots, X_{i-1}, g(X_j, X_i), \ldots, f(X_j, X_i), X_{j+1}, \ldots, X_n).
\]

(1.3)

In particular, for \(N = 2\), \(R_{12} \equiv R\). If \(R\) satisfies the following YB relation

\[
R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12},
\]

(1.4)

as an identity on \(S \times S \times S\), then \(R\) is called a YB map. In addition, if \(R\) satisfies

\[
R_{21} R_{12} = Id,
\]

(1.5)

then \(R\) is called a reversible YB map.
It is useful to introduce the so-called parametric YB map $\mathcal{R}(a, b)$ which is an important special case obtained by considering $S \times \Sigma$, where Σ is some parameter set (usually \mathbb{C}), instead of only S as before. The corresponding map

$$\mathcal{R}(a, b) : (X, a; Y, b) \mapsto (f_{ab}(X, Y), a; g_{ab}(X, Y), b),$$

is conveniently written as $\mathcal{R}(a, b)$ and seen as acting only on $S \times S$:

$$\mathcal{R}(a, b) : (X, Y) \mapsto (f_{ab}(X, Y), g_{ab}(X, Y)).$$

It satisfies the parametric YB equation

$$\mathcal{R}_{12}(a, b)\mathcal{R}_{13}(a, c)\mathcal{R}_{23}(b, c) = \mathcal{R}_{23}(b, c)\mathcal{R}_{13}(a, c)\mathcal{R}_{12}(a, b),$$

and the corresponding reversibility condition reads

$$\mathcal{R}_{21}(b, a)\mathcal{R}_{12}(a, b) = Id.$$

1.2. Reflection maps

Based on the form of the quantum reflection equation [18, 19] and on the important role played by its set-theoretical version in [27], we now introduce the following general definition of a reflection map.

Definition 1.1. Given a YB map \mathcal{R}, a reflection map \mathcal{B} is a solution of the set-theoretical reflection equation

$$\mathcal{B}_1\mathcal{R}_{21}\mathcal{B}_2 = \mathcal{R}_{21}\mathcal{B}_2\mathcal{R}_{12}\mathcal{B}_1,$$

as an identity on $S \times S$. The reflection map is called involutive if

$$\mathcal{B}\mathcal{B} = Id.$$

![Figure 1. Map \mathcal{R}.](image-url)
To introduce the notion of a parametric reflection map, we need some extension of the above discussion for parametric YB maps in order to encompass known situations. Indeed, a parametric YB map has a trivial action on the parameter set \(\Sigma\) but it is known from the solutions found in [27] for reflection maps that a parametric reflection map can in general have a nontrivial action on the parameter set. In general, this reads

\[
B : (X, a) \mapsto (h_a(X), \sigma(a)), \quad X \in S, \quad a \in \Sigma,
\]

for some maps \(h_a\) and \(\sigma\). One can then use the convenient notation \(B(a)\) for a parametric reflection map but one has to keep in mind the nontrivial action of \(\sigma\) when composing a reflection map with other maps. To illustrate this, we give the definition of a parametric reflection map as follows.

Definition 1.2. Given a parametric YB map \(R_{12}(a, b)\), \(a, b \in \Sigma\) and a map \(\sigma : \Sigma \to \Sigma\), a parametric reflection map \(B(a)\) is a solution of the parametric set-theoretical reflection equation

\[
B_1(a)R_{21}(\sigma(b), a)B_2(b)R_{12}(a, b) = R_{21}(\sigma(b), \sigma(a))B_2(b)R_{12}(\sigma(a), b)B_1(a)
\]

as an identity on \(S \times S\). The reflection map is called involutive if \(\sigma\) is an involution in \(\Sigma\) and

\[
B(\sigma(a))B(a) = Id.
\]

Note that classes of parametric reflection maps were constructed in [27] for \(S = \mathbb{C}^{p^{n-1}}\), \(\Sigma = \mathbb{C}\) and \(\sigma(k) = -k^*\) with \(R_{12}(k_1, k_2)\) being the parametric YB map corresponding to the vector nonlinear Schrödinger equation.

Analogous to the quadrilateral description of a YB map, we introduce a pictorial description of a reflection map as a half-quadrilateral shown in figure 3. The set-theoretical reflection equation can then be depicted as in figure 4. Let us remark that this visualization is reminiscent of the face representation of the reflection equation in [33–35]. There are also similitudes between figure 4 and half of the figure representing the tetrahedron equation for interaction round-a-cube [36, 37]. Explicitly, the left-hand side represents...
the following chain of maps:

\[(X, a; Y, b) \xrightarrow{R_{12}} (X_1, a; Y_1, b) \xrightarrow{B_1} (X_1, a; Y_2, \sigma(b)) \xrightarrow{R_{21}} (X_2, a; Y_3, \sigma(b)) \xrightarrow{B_2} (X_3, \sigma(a); Y_3, \sigma(b)) \]

with

\[X_1 = f_{ab}(X, Y), \quad Y_1 = g_{ab}(X, Y), \quad Y_2 = h_b(Y_1), \quad X_2 = g_{\sigma(b)a}(Y_2, X_1), \quad Y_3 = f_{\sigma(b)a}(Y_2, X_1), \quad X_3 = h_a(X_2).\]

Similarly, the right-hand side means

\[(X, a; Y, b) \xrightarrow{B_1} (X_1', \sigma(a); Y, b) \xrightarrow{R_{12}'} (X_2', \sigma(a); Y_1', b) \xrightarrow{B_2'} (X_2', \sigma(a); Y_3', \sigma(b)) \xrightarrow{R_{31}'} (X_3, \sigma(a); Y_3, \sigma(b)) \]

with

\[X_1' = h_a(X), \quad X_2' = f_{\sigma(a)b}(X_1', Y), \quad Y_1' = g_{\sigma(a)b}(X_1', Y), \quad Y_2' = h_b(Y_1'), \quad Y_3' = g_{\sigma(b)\sigma(a)}(Y_2', X_3'), \quad Y_3' = f_{\sigma(b)\sigma(a)}(Y_2', X_3').\]

So, equation (1.13) ensures that the two ways of obtaining \((X_3, Y_3)\) from \((X, Y)\) lead to the same result.
1.3. Transfer maps

We conclude this presentation on the theory of reflection maps by defining the notion of transfer maps in analogy with that introduced in [14]. Fix $N \geq 2$ and define for $j = 1, \ldots , N$ the following maps of S^N into itself:

$$T_j = R_{j+1} \cdots R_N B^-_{j} R_{jN} \cdots R_{jj+1} R_{j} B_{j+1} R_{j1} \cdots R_{j-1j},$$ \hspace{1cm} (1.15)

where B^+ is a solution of

$$B_1 R_{21} B_2 R_{12} = R_{21} B_2 R_{12} B_1,$$ \hspace{1cm} (1.16)

and B^- a solution of

$$B_1 R_{12} B_2 R_{21} = R_{12} B_2 R_{21} B_1.$$ \hspace{1cm} (1.17)

Then one proves by direct (but long) calculation the following result.

Proposition 1.3. For any reversible YB map \mathcal{R}, the transfer maps (1.15) commute with each other

$$T_j T_\ell = T_\ell T_j, \ j, \ell = 1, \ldots , N.$$ \hspace{1cm} (1.18)

Of course, this result transfers immediately to the case of parametric maps.

2. Reflection maps for quadrirational Yang–Baxter maps

In this section, we provide a classification of solutions for the reflection maps associated with the ten families of quadrirational YB maps found in [16, 17]. To achieve this, we consider a certain class of functions of rational type and use an adaptation of the folding argument used in [27]. This is further combined with a duality property which we derive from the particular properties of quadrirational maps exhibited in [16]. The overall amount of work required is reduced by applying the notion of symmetry as explained below.

2.1. Symmetry and quadrirational Yang–Baxter maps

We first need the following proposition shown in [17].

Proposition 2.1. Let $s(a)$ be an involutive symmetry of the parametric YB map $\mathcal{R}(a, b)$ i.e.

$$s(a)^2 = Id \quad \text{and} \quad s(a) \times s(b) \mathcal{R}(a, b) = \mathcal{R}(a, b) s(a) \times s(b).$$ \hspace{1cm} (2.1)

The map defined by

$$\mathcal{R}^s(a, b) = (s(a) \times Id) \mathcal{R}(a, b) (Id \times s(b))$$ \hspace{1cm} (2.2)

is a YB map.

Such symmetry maps $s(a)$ allow one to relate YB maps that look different a priori. This is in particular the case for quadrirational YB maps i.e. maps of a certain rational form acting on $S = \mathbb{C}P^1$ with parameter set $\Sigma = \mathbb{C}$: the F families and the H families (in the notations of [16, 17]) are related by such symmetry maps. In general, in the context of YB maps, different maps may indeed be related to actual different underlying systems. But in the context of reflection maps, the following proposition shows that symmetries leave the set of solutions invariant.
Table 1. Families F for the quadrirational map.

Type	\(f_{ab}(X,Y) \)	\(g_{ab}(X,Y) \)	\(P \)
\(F_I \)	\(aYP \)	\(bXP \)	\((1 - b)X + b - a + (a - 1)Y\)
\(F_{II} \)	\(\frac{Y}{a}P \)	\(\frac{X}{b}P \)	\(\frac{b(1 - a)X + (a - b)XY + a(b - 1)Y}{X - Y} \)
\(F_{III} \)	\(\frac{Y}{a}P \)	\(\frac{X}{b}P \)	\(\frac{aX - bY}{X - Y} \)
\(F_{IV} \)	\(YP \)	\(XP \)	\(1 + \frac{b - a}{X - Y} \)
\(F_V \)	\(Y + P \)	\(X + P \)	\(\frac{a - b}{X - Y} \)

Proposition 2.2. The map \(B(a) \) is a parametric reflection map for the parametric YB map \(\mathcal{R}(a, b) \) if and only if the map \(B(a) \) is a parametric reflection map for the parametric YB map \(\mathcal{R}'(a, b) \).

Proof. The proof of this proposition consists in writing the set-theoretical reflection equation for \(\mathcal{R}'(a, b) \) thanks to (2.2). Then, remarking for example that \((Id \times s(b))K_1(a) = K_1(a)(Id \times s(b)) \) and using that \(s(a)^2 = Id \), one proves that this equation is equivalent to the set-theoretical reflection equation for \(\mathcal{R}(a, b) \). □

Our proposition therefore implies that the reflection maps for the \(F_I \) to \(F_V \) families are the same as the reflection maps for the corresponding families \(H_I \) to \(H_V \). We can therefore restrict our attention to the \(F \) families, which we reproduce in table 1 for completeness.

Finally, since these families involve parameters, we will work directly with parametric maps.

2.2. Method

We propose an adaptation of the folding method that was used in [27] to obtain families of reflection maps from the YB map associated with the vector nonlinear Schrödinger equation. Roughly speaking, the idea is to see a reflection map as a YB map modulo some folding applied on the variables on which the YB map acts. More precisely, here we start from figure 1 and impose that \(b = \sigma(a) \) for some map \(\sigma \) and that \(Y = \varphi_a(X) \) and \(V = \varphi_a(U) \) for some map \(\varphi_a \), depending on \(a \). For convenience, we assume that \(\sigma \) is an involution as well as \(\varphi_a \), the latter meaning that \(\varphi_{\sigma(a)}(\varphi_a(X)) = X \). (2.3)

Now, since \((U, V) \) is related to \((X, Y)\) by the YB map \(\mathcal{R}(a, b) \), we obtain two possibilities for expressing \(V \) in terms of \(X \)

\[V = \varphi_a \left(f_{\sigma(a)}(X, \varphi_a(X)) \right) = g_{\sigma(a)}(X, \varphi_a(X)) \]. (2.4)

This provides a functional equation constraining admissible functions \(\varphi_a \) and \(\sigma \). So, for each such admissible pair \((\varphi_a, \sigma)\), there is a well-defined map between \(V \) and \(X \) which we denote \(h_a \):

\[V = h_a(X) \]. (2.5)

3 With the understanding that \(F_{III}, H_{III}^a \) and \(H_{III}^b \) share the same solutions and recalling that \(H_{IV} \) does not exist.
and which can be computed using (2.4). The map \(h_a \) together with \(\sigma \) are our candidates to obtain a reflection map \(B \) as in (1.12).

To complete our set of functional equations, we can also look at the folding method from the point of view of the inverse map \(\mathcal{R}^{-1}(a, b) \) which maps \((U, V) \) to \((X, Y) = (g_{ba}(V, U), f_{ba}(V, U)) \) (due to the reversibility of \(\mathcal{R} \)) and the companion map \(\mathcal{R}(b, a) \) which maps \((V, X) \) to \((Y, U) = (f_{ba}(V, X), g_{ba}(V, X)) \).\footnote{Note that conventions for these maps may vary in the literature but results are unaffected by such variations since all four maps \(\mathcal{R}, \mathcal{R}^{-1}, \mathcal{R}, \mathcal{R}^{-1} \) coincide as shown in [16].} From the folding with the inverse map, we obtain the constraints

\[
Y = \varphi_a(g_{\sigma(a)\bar{a}}(\varphi_a(U)), U) = f_{\sigma(a)\bar{a}}(\varphi_a(U), U).
\tag{2.6}
\]

Note that, at first glance, this provides a new constraint for \(\varphi \) and \(\sigma \). However, for the quadrirational maps we consider in this paper, listed in table 1, we have \(\mathcal{R}_{12}(a, b) = \mathcal{R}_{21}(b, a) \) i.e. \(f_{ab}(X, Y) = g_{ba}(Y, X) \). Therefore, the constraint given by (2.6) is equivalent to (2.4). Now, the quadrirational maps considered in this paper satisfy the following additional property:

\[
Y = h_a(\bar{g}_{\sigma(a)\bar{a}}(h_a(X), X)) = \bar{f}_{\sigma(a)\bar{a}}(h_a(X), X).
\tag{2.7}
\]

The quadrirational maps considered in this paper satisfy the following additional property:

\[
\bar{f}_{ab}(X, Y) = g_{ba}(Y, X), \quad \bar{g}_{ab}(X, Y) = f_{ba}(Y, X).
\tag{2.8}
\]

Taking account of these properties, one obtains

\[
Y = h_a(f_{\sigma(a)\bar{a}}(X, h_a(X))) = g_{\sigma(a)}(X, h_a(X)).
\tag{2.9}
\]

Comparing (2.4) and (2.9), we observe that \(\varphi_a \) and \(h_a \) play completely dual roles. Therefore, if \(\varphi_a \) is chosen to be of a certain form, then \(h_a \) should be of the same form and vice versa. This is reminiscent of the properties derived in [16] concerning the quadrirationality of a YB map, its companion map and their inverses. Also, the involutory property (2.3) should hold for \(h_a \).

Combining the ideas of the folding of a YB map and the duality between \(\varphi_a \) and \(h_a \), we are able to classify solutions of the set-theoretical reflection equation for the five families of quadrirational YB maps presented in [16]. In our context, it is natural to choose \(\varphi_a \) and \(h_a \) to be both Möbius maps with coefficients being first-order polynomials in \(a \):

\[
\varphi_a(X) = \frac{p_1(a)X + p_2(a)}{p_3(a)X + p_4(a)}, \quad h_a(X) = \frac{q_1(a)X + q_2(a)}{q_3(a)X + q_4(a)},
\tag{2.10}
\]

where \(p_j(a) = p_j^0 + p_j^1 a \) and \(p_j(a) = q_j^0 + q_j^1 a \). This corresponds to 16 free parameters \textit{a priori}. We also choose \(\sigma \) to be an involutive Möbius map, which gives three additional parameters:

\[
\sigma(a) = \frac{c_1 a + c_2}{c_3 a - c_1}.
\tag{2.11}
\]

We then solve for these 19 parameters by inserting into the following constraints as explained above:

\[
h_a(X) = g_{\sigma(a)}(X, \varphi_a(X)),
\tag{2.12}
\]

\[
\varphi_{\sigma(a)}(\varphi_a(X)) = X, \quad h_{\sigma(a)}(h_a(X)) = X.
\tag{2.13}
\]

The resulting solutions are inserted in the set-theoretical reflection equation to check their validity.
Table 2. Reflection maps for quadrirational map $F_I - F_{IV}$.

Type	$\sigma(a)$	$\psi_a(X)$ (resp. $h_a(X)$)	$h_a(X)$ (resp. $\psi_a(X)$)
F_I	$\frac{\mu^2}{a}$	μX	$\frac{(X(1 + \mu) - \mu - a)\mu}{X(\mu + 1) - (1 + \mu)a}$
	$\frac{a + \mu^2 - 1}{a - 1}$	$\frac{(a + \mu^2 - 1)X}{X(\mu + 1) + a\mu}$	$a + \mu X - 1$
	$\frac{1 - a}{a(\mu^2 - 1) + 1}$	$\frac{X(a - \mu - 1) + a\mu}{(a - 1)X}$	$a - 1$
F_{II}	$\frac{\mu^2}{a}$	$\frac{a}{\mu} (X - 1) + 1$	$-a - aX$
	$\frac{-a + 2\mu}{a}$	$\frac{X}{2X - 1}$	$a - \mu - aX$
F_{III}	$\frac{\mu^2}{a}$	$\frac{aX}{\mu}$	aX
	$\frac{-a + 2\mu}{a}$	$-X$	$X - a + \mu$

2.3. Classification

It is straightforward to check that the identity map (i.e., both h_a and σ are the identity map) is a solution for all families so in the following, we only present nontrivial solutions, by which we mean that either σ or h_a or both are not the identity map. With the exception of one solution for the F_I solution, all the maps satisfying (2.12) and (2.13) are reflection maps as we found by inspection. Note that these operations have been performed with the help of symbolic computation softwares. The final results are reported in table 2. Note that we did not find any solution for the F_V family. The duality property is explicitly shown in the table: the roles of h_a and ψ_a can be swapped. All solutions depend on an arbitrary parameter μ. In view of the results in [27], this could be interpreted as the parameter controlling the boundary and, accordingly, the integrable boundary conditions of the underlying integrable systems associated with the quadrirational YB maps of the F families.

In the geometric construction of the quadrirational maps $F_I - F_{IV}$ in [16], the so-called singular points play an important role. It turns out that we can make use of these points in our construction to obtain other reflection maps, which we call degenerate. This is achieved by allowing $\psi_a(X)$ in (2.4) to take on the singular values of the corresponding family. In general, this can be 0, 1, ∞, $\sigma(a)$. Each time a degenerate case is solved, the reflection equation is satisfied for any map σ. The duality property still holds for these degenerate cases. We present the results in table 3.

Conclusions and perspectives

We introduced the general theory of the set-theoretical reflection equation. The associated notion of reflection maps originally introduced in [27] has been connected to the concept of quadrirational maps which is itself strongly related to the so-called Yang–Baxter (YB) maps and the idea of 3D consistency of equations on quad-graphs. We have used the quadrirational YB maps obtained in [16, 17] to derive a classification of reflection maps associated with them, thus providing a large family of such maps in addition to the two classes originally found by two of the authors in [27] from the study of factorization of vector soliton interactions in
the presence of an integrable boundary. Some ideas of the latter paper were adapted here to perform a rather ‘brute force’ construction. It would be nice to reinterpret our results in more geometrical terms along the lines of the use of results on pencils of conics which led to the classification in [16]. More generally, one can also wonder how the general and abstract construction of YB maps as performed in [38, 39] can be adapted to yield a general construction of the associated reflection maps.

The results of this paper open the way to a wider programme of understanding reflection maps in the context of quad-graph systems and fully discrete integrable systems. Indeed, just like YB maps are one aspect of the idea of discrete integrability related to the 3D consistency approach, one can ask the important question of the meaning of a reflection map in the context of 3D consistency on a quad-graph. We are currently investigating this challenging issue and will report our results in a forthcoming paper. When this is understood, it will be interesting to see if the interpretation of a reflection map as an object encoding the integrable interaction between a soliton and a boundary which was found in [27] in the context of the vector nonlinear Schrödinger equation also holds in the realm of fully discrete integrable systems.

We also believe that reflection maps can have a wide range of applications, for example in quantum algebra, in geometric crystals or in the soliton cellular automaton.

It seems also quite plain to us that different generalizations of the set-theoretical reflection equation introduced in this paper are possible, mimicking existing generalizations of the quantum reflection equation. Indeed, after the introduction of the quantum reflection equation in [18, 19], a more general structure, known as quadratic algebras, was introduced in [40]: the structure that is considered in that paper involves four different matrices subject to general YB-like equations. It could be interesting to study the set-theoretical analogue of these quadratic algebras. Following the same idea, it may be possible to define a reflection-type
equation associated with the dynamical set-theoretical YB equation [41]. In the quantum context, this type of equation has been studied, e.g., in [42].

References

[1] Yang C N 1967 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction Rev. Lett. 19 1312

[2] Baxter R J 1972 Partition function of the eight-vertex lattice model Ann. Phys. 70 193

Baxter R J 1973 Asymptotically degenerate maximum eigenvalues of the eight-vertex model transfer matrix and interfacial tension J. Stat. Phys. 8 25

Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)

[3] Drinfeld V G 1992 Quantum Groups: Proc. Workshop on Some Unsolved Problems in Quantum Group Theory (Leningrad, 1990) (Lecture Notes in Mathematics vol 1510) ed P P Kulish (Berlin: Springer) pp 1–8

[4] Sklyanin E K 1988 Classical limits of SU(2)-invariant solutions of the Yang–Baxter solution J. Sov. Math. 40 93

[5] Berenstein A and Kazhdan D 2010 Geometric and unipotent crystals Visions in Mathematics: GAFA 2000 Special Volume, Part I (Modern Birkhäuser Classics) (Basel: Springer) pp 188–236 (arXiv:math/0912105)

[6] Etingof P 2003 Geometric crystals and set-theoretical solutions to the quantum Yang–Baxter equations Commun. Algebra 31 1961 (arXiv:math/0112278)

[7] Takahashi D and Satsuma J 1990 A soliton cellular automaton J. Phys. Soc. Japan 59 3514

[8] Hatayama G, Kuniba A and Takagi T 2000 Soliton cellular automata associated with crystal bases Nucl. Phys. B 577 619 (arXiv:solv-int/9907020)

[9] Goncharenko V M 2001 Multisoliton solutions of the matrix KdV equation Theor. Math. Phys. 126 81

[10] Tsuda T 2004 N-Soliton collision in the Manakov model Prog. Theor. Phys. 111 151 (arXiv:math/0302059)

[11] Ablowitz M J, Prinari B and Trubatch A D 2004 Soliton interactions in the vector NLS equation Inverse Problems 20 1217

[12] Adler V E, Bobenko A I and Suris Yu B 2003 Classification of integrable equations on quad-graphs. The consistency approach Commun. Math. Phys. 233 513 (arXiv:nlin/0202024)

[13] Papageorgiou V G, Tongas A G and Veselov A P 2006 Yang–Baxter maps and symmetries of integrable equations on quad-graphs J. Math. Phys. 47 083502 (arXiv:math/0605206)

[14] Veselov A P 2003 Yang–Baxter maps and integrable dynamics Phys. Lett. A 314 214 (arXiv:math/0205335)

[15] Suris Y B and Veselov A P 2003 Lax matrices for Yang–Baxter maps J. Nonlinear Math. Phys. 10 223 (arXiv:math/0304122)

[16] Adler V E, Bobenko A I and Suris Yu B 2004 Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings Commun. Anal. Geom. 12 967 (arXiv:math/0307009)

[17] Papageorgiou V G, Tongas A G and Veselov A P 2010 On quadrirational Yang–Baxter maps SIGMA 6 033 (arXiv:0911.2895)

[18] Cherednik I V 1984 Factorizing particles on a half line and root systems Theor. Math. Phys. 61 977

Cherednik I V 1984 Teor. Mat. Fiz. 61 35

[19] Sklyanin E K 1988 Boundary conditions for integrable quantum systems J. Phys. A: Math. Gen. 21 2375

Kulish P P and Sklyanin E K 1992 Algebraic structures related to the reflection equations J. Phys. A: Math. Gen. 25 5963 (arXiv:hep-th/9209054)

[20] Molev A, Nazarov M and Olshansky G 1999 Yangians and classical Lie algebras Russ. Math. Surv. 51 205 (arXiv:hep-th/9904025)

[21] Bernard D, Pasquier V and Serban D Exact solution of long range interacting spin chains with boundaries arXiv:hep-th/9501044

[22] Caudrelier V and Crampe N 2004 Integrable N-particle Hamiltonians with Yangian or reflection algebra symmetry J. Phys. A: Math. Gen. 37 6285 (arXiv:math-ph/0310028)

[23] Kuniba A, Okado M and Yamada Y 2005 Box-ball system with reflecting end J. Nonlinear Math. Phys. 12 475 (arXiv:nlin/041044)

[24] Hallnäs M and Langmann E 2005 Exact solutions of two complementary 1D quantum many-body systems on the half-line J. Math. Phys. 46 052101 (arXiv:math-ph/0404023)

[25] Caudrelier V and Crampé N 2007 Exact results for the one-dimensional many-body problem with contact interaction: including a tunable impurity Rev. Math. Phys. 19 349 (arXiv:cond-mat/0501110)

[26] Caudrelier V and Zhang Q C 2012 Yang–Baxter and reflection maps from vector solitons with a boundary arXiv:1205.1133

[27] Caudrelier V and Zhang Q C 2012 Vector nonlinear Schrödinger equation on the half-line J. Phys. A: Math. Theor. 45 105201 (arXiv:1110.2990)
[29] Sklyanin E K 1987 Boundary conditions for integrable equations Funct. Anal. App. 21 164
[30] Habibullin I T 1991 Integrable initial-boundary value problems Theor. Math. Phys. 86 28
 Bibikov P N and Tarasov V O 1989 A boundary-value problem for the nonlinear Schrödinger equation Theor.
 Math. Phys. 79 334
[31] Gürel B, Gürses M and Habibullin I T 1995 Boundary value problems for integrable equations compatible with
 the symmetry algebra J. Math. Phys. 36 6809 (arXiv: solv-int/9411001)
[32] Fokas A S 2008 A Unified Approach to Boundary Value Problems (CBMS-NSF Regional Conference Series in
 Applied Mathematics) (Philadelphia, PA: SIAM)
[33] Ahn C and Koo W M 1995 Boundary Yang–Baxter equation in the RSOS representation Satellite Meeting of
 Conf. (Tianjin) (arXiv:hep-th/9508080)
[34] Fan H, Hou B-Y and Shi K-J 1995 General solution of reflection equation for eight-vertex SOS model J. Phys.
 A: Math. Gen. 28 4743
[35] Behrend R E, Pearce P A and O’Brien D L 1996 Interaction-round-a-face models with fixed boundary
 conditions: the ABF fusion hierarchy J. Stat. Phys. 84 1 (arXiv:hep-th/9507118)
[36] Baxter R J 1986 The Yang–Baxter equations and the Zamolodchikov model Physica D 18 321
[37] Bazhanov V V, Mangazeev V V and Sergeev S M 2008 Quantum geometry of 3-dimensional lattices J. Stat.
 Mech. 0807 P07004 (arXiv:0801.0129)
[38] Weinstein A and Xu P 1992 Classical solutions of the Yang–Baxter equation Commun. Math. Phys. 148 309
[39] Etingof P, Schedler T and Soloviev A 1999 Set-theoretical solutions of the quantum Yang–Baxter equation
 Duke Math. J. 100 169 (arXiv:math/9801047)
[40] Freidel L and Maillet J M 1991 Quadratic algebras and integrable systems Phys. Lett. B 262 278
[41] Shibukawa Y 2005 Dynamical Yang–Baxter maps Int. Math. Res. Not. 36
 Shibukawa Y 2007 Dynamical Yang–Baxter maps with an invariance condition Publ. Res. Inst. Math.
 Sci. 43 1157 (arXiv:0704.3109)
[42] Fan H, Hou B-Y and Shi K 1997 Representation of the boundary elliptic quantum group $BE_{c,q}(sl_2)$ and the
 Bethe ansatz Nucl. Phys. B 496 551