Linear and Nonlinear Heat Equations on a p-Adic Ball

Anatoly N. Kochubei

Institute of Mathematics,
National Academy of Sciences of Ukraine,
Tereshchenkivska 3, Kiev, 01004 Ukraine,
E-mail: kochubei@imath.kiev.ua

Abstract

We study the Vladimirov fractional differentiation operator D^α_N, $\alpha > 0, N \in \mathbb{Z}$, on a p-adic ball $B_N = \{ x \in \mathbb{Q}_p : |x|_p \leq p^N \}$. To its known interpretations via restriction from a similar operator on \mathbb{Q}_p and via a certain stochastic process on B_N, we add an interpretation as a pseudo-differential operator in terms of the Pontryagin duality on the additive group of B_N. We investigate the Green function of D^α_N and a nonlinear equation on B_N, an analog the classical porous medium equation.

Key words: p-adic numbers; Vladimirov’s p-adic fractional differentiation operator; p-adic porous medium equation; mild solution of the Cauchy problem

MSC 2010. Primary: 35S05. Secondary: 11S80; 35K55; 35R11.
1 Introduction

The theory of linear parabolic equations for real- or complex-valued functions on the field \mathbb{Q}_p of p-adic numbers including the construction of a fundamental solution, investigation of the Cauchy problem, the parametrix method, is well-developed; see, for example, the monographs [16, 21]. In such equations, the time variable is real and nonnegative while the spatial variables are p-adic. There are no differential operators acting on complex-valued functions on \mathbb{Q}_p, but there is a lot of pseudo-differential operators. A typical example is Vladimirov’s fractional differentiation operator $D^\alpha, \alpha > 0$; see the details below. This operator (as well as its multidimensional generalization, the so-called Taibleson operator) is a p-adic counterpart of the fractional Laplacian $(-\Delta)^{\alpha/2}$ of real analysis.

Already in real analysis, an interpretation of nonlocal operators on bounded domains is not straightforward; see [3] for a survey of various possibilities. In the p-adic case, Vladimirov (see [19]) defined a version D^α_N of the fractional differentiation on a ball $B_N = \{x \in \mathbb{Q}_p : |x|_p \leq p^N\}$ as follows. One takes a test function on B_N, extends it onto \mathbb{Q}_p by zero, applies D^α, and restricts the resulting function to B_N. Then it is possible to consider a closure of the obtained operator, for example, on $L^2(B_N)$.

In [16] (Section 4.6), a probabilistic interpretation of this operator was given. Let $\xi_\alpha(t)$ be the Markov process with the generator D^α on \mathbb{Q}_p. Suppose that $\xi_\alpha(0) \in B_N$ and denote by $\xi^{(N)}_\alpha(t)$ the sum of all jumps of the process $\xi_\alpha(\tau), \tau \in [0, t]$ whose p-adic absolute values exceed p^N. Consider the process $\eta_\alpha(t) = \xi_\alpha(t) - \xi^{(N)}_\alpha(t)$. Due to the ultrametric inequality, the jumps of η_α never exceed p^N by absolute value, so that the process remains almost surely in B_N. It is proved in [16] that the generator of the Markov process η_α on B_N equals (on test function) $D^\alpha_N - \lambda I$ where

$$\lambda = \frac{p^{\alpha+1} - 1}{p^{\alpha(1-N)}}.$$

In [16] (Theorem 4.9) the corresponding heat kernel is given explicitly.

In this paper we find an analytic interpretation of the latter operator using harmonic analysis on B_N as an (additive) compact Abelian group (this group property, just as the above probabilistic construction, is of purely non-Archimedean nature and has no analogs in the classical theory of partial differential equations). We give an interpretation of $D^\alpha_N - \lambda I$ as a pseudo-differential operator on B_N, then consider it as an operator on $L^1(B_N)$ and study its Green function, the integral kernel of its resolvent. The choice of $L^1(B_N)$ as the basic space is motivated by applications to nonlinear equations.

The first model example of a nonlinear parabolic equation over \mathbb{Q}_p is the p-adic analog of the classical porous medium equation:

$$\frac{\partial u}{\partial t} + D^\alpha(\Phi(u)) = 0, \quad u = u(t, x), \quad t > 0, x \in \mathbb{Q}_p,$$

where Φ is a strictly monotone increasing continuous real function on \mathbb{R}. Its study was initiated in [13]. Here we consider this equation on B_N, taking the operator D^α_N instead of D^α:

$$\frac{\partial u}{\partial t} + D^\alpha_N(\Phi(u)) = 0.$$
As in [13], our study of Eq. (1.2) is based on general results by Crandall – Pierre [10] and Brézis – Strauss [6] enabling us to consider this equation in the framework of nonlinear semigroups of operators. Following [3] we consider Eq. (1.2) also in $L^\gamma(B_N), 1 < \gamma \leq \infty$.

An important motivation of the present work is provided by the p-adic model of a poropus medium introduced in [14, 15].

2 Preliminaries

2.1. p-Adic numbers [19].

Let p be a prime number. The field of p-adic numbers is the completion \mathbb{Q}_p of the field \mathbb{Q} of rational numbers, with respect to the absolute value $|x|_p$ defined by setting $|0|_p = 0$,

$$|x|_p = p^{-\nu} \text{ if } x = p^n \frac{m}{n},$$

where $\nu, m, n \in \mathbb{Z}$, and m, n are prime to p. \mathbb{Q}_p is a locally compact topological field. By Ostrowski’s theorem there are no absolute values on \mathbb{Q}, which are not equivalent to the “Euclidean” one, or one of $| \cdot |_p$.

The absolute value $|x|_p, x \in \mathbb{Q}_p$, has the following properties:

$$|x|_p = 0 \text{ if and only if } x = 0;$$

$$|xy|_p = |x|_p \cdot |y|_p;$$

$$|x + y|_p \leq \max(|x|_p, |y|_p).$$

The latter property called the ultra-metric inequality (or the non-Archimedean property) implies the total disconnectedness of \mathbb{Q}_p in the topology determined by the metric $|x - y|_p$, as well as many unusual geometric properties. Note also the following consequence of the ultra-metric inequality: $|x + y|_p = \max(|x|_p, |y|_p)$, if $|x|_p \neq |y|_p$.

The absolute value $|x|_p$ takes the discrete set of non-zero values $p^N, N \in \mathbb{Z}$. If $|x|_p = p^N$, then x admits a (unique) canonical representation

$$x = p^{-N} \left(x_0 + x_1 p + x_2 p^2 + \cdots\right), \quad (2.1)$$

where $x_0, x_1, x_2, \ldots \in \{0, 1, \ldots, p - 1\}, x_0 \neq 0$. The series converges in the topology of \mathbb{Q}_p. For example,

$$-1 = (p - 1) + (p - 1)p + (p - 1)p^2 + \cdots, \quad | - 1 |_p = 1.$$

We denote $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leq 1\}$. \mathbb{Z}_p, as well as all balls in \mathbb{Q}_p, is simultaneously open and closed.

Proceeding from the canonical representation (2.1) of an element $x \in \mathbb{Q}_p$, one can define the fractional part of x as the rational number

$$\{x\}_p = \begin{cases}
0, & \text{if } N \leq 0 \text{ or } x = 0; \\
0^{-N} \left(x_0 + x_1 p + \cdots + x_{N-1} p^{N-1}\right), & \text{if } N > 0.
\end{cases}$$

The function $\chi(x) = \exp(2\pi i \{x\}_p)$ is an additive character of the field \mathbb{Q}_p, that is a character of its additive group. It is clear that $\chi(x) = 1$ if and only if $|x|_p \leq 1$.

3
Denote by \(dx \) the Haar measure on the additive group of \(\mathbb{Q}_p \) normalized by the equality
\[
\int_{\mathbb{Q}_p} dx = 1.
\]
The additive group of \(\mathbb{Q}_p \) is self-dual, so that the Fourier transform of a complex-valued function \(f \in L^1(\mathbb{Q}_p) \) is again a function on \(\mathbb{Q}_p \) defined as
\[
(\mathcal{F}f)(\xi) = \int_{\mathbb{Q}_p} \chi(x\xi) f(x) \, dx.
\]
If \(\mathcal{F}f \in L^1(\mathbb{Q}_p) \), then we have the inversion formula
\[
f(x) = \int_{\mathbb{Q}_p} \chi(-x\xi) \tilde{f}(\xi) \, d\xi.
\]

In order to define distributions on \(\mathbb{Q}_p \), we have to specify a class of test functions. A function \(f: \mathbb{Q}_p \to \mathbb{C} \) is called locally constant if there exists such an integer \(l \geq 0 \) that for any \(x \in \mathbb{Q}_p \)
\[
f(x + x') = f(x) \quad \text{if} \quad \|x'\| \leq p^{-l}.
\]
The smallest number \(l \) with this property is called the exponent of local constancy of the function \(f \).

Typical examples of locally constant functions are additive characters, and also cutoff functions like
\[
\Omega(x) = \begin{cases}
1, & \text{if } \|x\| \leq 1; \\
0, & \text{if } \|x\| > 1.
\end{cases}
\]
In particular, \(\Omega \) is continuous, which is an expression of the non-Archimedean properties of \(\mathbb{Q}_p \).

Denote by \(\mathcal{D}(\mathbb{Q}_p) \) the vector space of all locally constant functions with compact supports. Note that \(\mathcal{D}(\mathbb{Q}_p) \) is dense in \(L^q(\mathbb{Q}_p) \) for each \(q \in [1, \infty) \). In order to furnish \(\mathcal{D}(\mathbb{Q}_p) \) with a topology, consider first the subspace \(\mathcal{D}^l_N \subset \mathcal{D}(\mathbb{Q}_p) \) consisting of functions with supports in a ball
\[
B_N = \{ x \in \mathbb{Q}_p : \|x\|_p \leq p^N \}, \quad N \in \mathbb{Z},
\]
and the exponents of local constancy \(\leq l \). This space is finite-dimensional and possesses a natural direct product topology. Then the topology in \(\mathcal{D}(\mathbb{Q}_p) \) is defined as the double inductive limit topology, so that
\[
\mathcal{D}(\mathbb{Q}_p) = \lim_{N \to \infty} \lim_{l \to \infty} \mathcal{D}^l_N.
\]
If \(V \subset \mathbb{Q}_p \) is an open set, the space \(\mathcal{D}(V) \) of test functions on \(V \) is defined as a subspace of \(\mathcal{D}(\mathbb{Q}_p) \) consisting of functions with supports in \(V \). For a ball \(V = B_N \), we can identify \(\mathcal{D}(B_N) \) with the set of all locally constant functions on \(B_N \).

The space \(\mathcal{D}'(\mathbb{Q}_p) \) of Bruhat-Schwartz distributions on \(\mathbb{Q}_p \) is defined as a strong conjugate space to \(\mathcal{D}(\mathbb{Q}_p) \).

In contrast to the classical situation, the Fourier transform is a linear automorphism of the space \(\mathcal{D}(\mathbb{Q}_p) \). By duality, \(\mathcal{F} \) is extended to a linear automorphism of \(\mathcal{D}'(\mathbb{Q}_p) \). For a detailed
theory of convolutions and direct products of distributions on \mathbb{Q}_p closely connected with the theory of their Fourier transforms see [1, 16, 19].

2.2. Vladimirov’s operator [1, 16, 19].

The Vladimirov operator D^α, $\alpha > 0$, of fractional differentiation, is defined first as a pseudo-differential operator with the symbol $|\xi|_p^\alpha$:

$$(D^\alpha u)(x) = \mathcal{F}_x^{-1} \left[|\xi|_p^\alpha \mathcal{F}_y u \right], \quad u \in \mathcal{D}(\mathbb{Q}_p), \quad (2.2)$$

where we show arguments of functions and their direct/inverse Fourier transforms. There is also a hypersingular integral representation giving the same result on $\mathcal{D}(\mathbb{Q}_p)$ but making sense on much wider classes of functions (for example, bounded locally constant functions):

$$(D^\alpha u)(x) = \frac{1 - p^\alpha}{1 - p^{-\alpha - 1}} \int_{\mathbb{Q}_p} |y|_p^{-\alpha - 1}[u(x - y) - u(x)] \, dy. \quad (2.3)$$

The Cauchy problem for the heat-like equation

$$\frac{\partial u}{\partial t} + D^\alpha u = 0, \quad u(0, x) = \psi(x), \quad x \in \mathbb{Q}_p, t > 0,$$

is a model example for the theory of p-adic parabolic equations. If ψ is regular enough, for example, $\psi \in \mathcal{D}(\mathbb{Q}_p)$, then a classical solution is given by the formula

$$u(t, x) = \int_{\mathbb{Q}_p} Z(t, x - \xi)\psi(\xi) \, d\xi$$

where Z is, for each t, a probability density and

$$Z(t_1 + t_2, x) = \int_{\mathbb{Q}_p} Z(t_1, x - y)Z(t_2, y) \, dy, \quad t_1, t_2 > 0, \quad x \in \mathbb{Q}_p.$$

The ”heat kernel” Z can be written as the Fourier transform

$$Z(t, x) = \int_{\mathbb{Q}_p} \chi(\xi x)e^{-t|\xi|_p^\alpha} \, d\xi. \quad (2.4)$$

See [16] for various series representations and estimates of the kernel Z.

As it was mentioned in Introduction, the natural stochastic process in B_N corresponds to the Cauchy problem

$$\frac{\partial u(t, x)}{\partial t} + (D_N^\alpha u)(t, x) - \lambda u(t, x) = 0, \quad x \in B_N, t > 0; \quad (2.5)$$

$$u(0, x) = \psi(x), \quad x \in B_N, \quad (2.6)$$

where the operator D_N^α is defined by restricting D^α to functions u_N supported in B_N and considering the resulting function $D^\alpha u_N$ only on B_N. Note that D_N^α defines a positive definite selfadjoint operator on $L^2(B_N)$, λ is its smallest eigenvalue.
Under certain regularity assumptions, for example if $\psi \in \mathcal{D}(B_N)$, the problem (2.5)-(2.6) possesses a classical solution
\[u(t, x) = \int_{B_N} Z_N(t, x - y)\psi(y) \, dy, \quad t > 0, \, x \in B_N, \]
where
\[Z_N(t, x) = e^{\lambda t}Z(t, x) + c(t), \]
(2.7)
\[c(t) = p^{-N} - p^{-N}(1 - p^{-1})e^{\lambda t} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}t^n\frac{p^{-N\alpha_n}}{1 - p^{-\alpha_n-1}}. \]

Another interpretation of the kernel Z_N was given in [8].

It was shown in [13] that the family of operators
\[(T_N(t)u)(x) = \int_{B_N} Z_N(t, x - y)\psi(y) \, dy \]
is a strongly continuous contraction semigroup on $L^1(B_N)$. Its generator A_N coincides with $D_N^\alpha - \lambda I$ at least on $\mathcal{D}(B_N)$. More generally, this is true in the distribution sense on restrictions to B_N of functions from the domain of the generator of the semigroup on $L^1(Q_p)$ corresponding to D^α.

3 Harmonic analysis on the additive group of a p-adic ball

Let us consider the p-adic ball B_N as a compact subgroup of Q_p. As we know, any continuous additive character of Q_p has the form $x \mapsto \chi(\xi x), \xi \in Q_p$. The annihilator $\{ \xi \in Q_p : \chi(\xi x) = 1 \text{ for all } x \in B_N \}$ coincides with the ball B_{-N}. By the duality theorem (see, for example, [18], Theorem 27), the dual group \widehat{B}_N to B_N is isomorphic to the discrete group Q_p / B_{-N} consisting of the cosets
\[p^m(r_0 + r_1p + \cdots + r_{N-m-1}p^{N-m-1}) + B_{-N}, \quad r_j \in \{0, 1, \ldots, p-1\}, \quad m \in \mathbb{Z}, \, m < N. \]
(3.1)

Analytically, this isomorphism means that any nontrivial continuous character of B_N has the form $\chi(\xi x), x \in B_N$, where $|\xi|_p > p^{-N}$ and $\xi \in Q_p$ is considered as a representative of the class $\xi + B_{-N}$. Note that $|\xi|_p$ does not depend on the choice of a representative of the class.

The normalized Haar measure on B_N is $p^{-N} \, dx$. The normalization of the Haar measure on Q_p / B_{-N} can be made in such a way (the normalized measure will be denoted $d\mu(x + B_{-N})$) that the equality
\[\int_{Q_p} f(x) \, dx = \int_{Q_p / B_{-N}} \left(p^N \int_{B_{-N}} f(x + h) \, dh \right) \, d\mu(x + B_{-N}) \]
(3.2)
Fourier transform is extended, via duality, to the mapping from \(\mathcal{D}(\mathbb{Q}_p) \); see [4], Chapter VII, Proposition 10; [12], (28.54). With this normalization, the Plancherel identity for the corresponding Fourier transform also holds; see [12], (31.46)(c).

On the other hand, the invariant measure on the discrete group \(\mathbb{Q}_p/B_N \) equals \(\delta \)-measures concentrated on its elements multiplied by a coefficient \(\beta \). In order to find \(\beta \), it suffices to compute both sides of (3.2) for the case where \(f \) is the indicator function of the set \(\{ x \in \mathbb{Q}_p : |x - p^{-N-1}|_p \leq p^{-N} \} \). Then the left-hand side equals \(p^{-N} \) while the right-hand side equals \(\beta \). Therefore \(\beta = p^{-N} \).

The Fourier transform on \(B_N \) is given by the formula

\[
(\mathcal{F}_N f)(\xi) = p^{-N} \int_{B_N} \chi(x\xi) f(x) \, dx, \quad \xi \in (\mathbb{Q}_p \setminus B_{-N}) \cup \{0\},
\]

where the right-hand side, thus also \(\mathcal{F}_N f \), can be understood as a function on \(\mathbb{Q}_p/B_{-N} \).

The fact that \(\mathcal{F} : \mathcal{D}(\mathbb{Q}_p) \rightarrow \mathcal{D}(\mathbb{Q}_p) \), implies that \(\mathcal{F} \) maps \(\mathcal{D}(B_N) \) onto the set of functions on the discrete set \(\hat{B}_N \) having only a finite number of nonzero values. This set \(\mathcal{D}(\hat{B}_N) \) with a natural locally convex topology can be seen as the set of functions on \(\hat{B}_N = \mathbb{Q}_p/B_{-N} \). The conjugate space \(\mathcal{D}'(\hat{B}_N) \) consists of all functions on \(\hat{B}_N \) (see, for example, [11]). Therefore the Fourier transform is extended, via duality, to the mapping from \(\mathcal{D}'(B_N) \) to \(\mathcal{D}'(\hat{B}_N) \). A theory of distributions on locally compact groups covering the case of \(B_N \) was developed by Bruhat [7]. To study deeper the operator \(D^0_N \), we need, within harmonic analysis on \(B_N \), a construction similar to the well-known construction of a homogeneous distribution on \(\mathbb{Q}_p \), [19].

Let us introduce the usual Riez kernel on \(\mathbb{Q}_p \),

\[
f_\alpha^{(N)}(x) = \frac{1 - p^{-\alpha}}{1 - p^{-\alpha-1}} |x|_p^{\alpha-1}, \quad \text{Re} \, \alpha > 0, \quad \alpha \not\equiv 1 \pmod{\frac{2\pi i}{\log p} \mathbb{Z}}.
\]

Using the formula [19]

\[
\int_{|x|_p \leq p^N} |x|_p^{\alpha-1} \, dx = \frac{1 - p^{-1}}{1 - p^{-\alpha}} p^{\alpha N},
\]

we introduce a distribution from \(\mathcal{D}'(B_N) \) setting

\[
\langle f_\alpha^{(N)}, \varphi \rangle = \frac{1 - p^{-1}}{1 - p^{-\alpha - 1}} p^{\alpha N} \varphi(0) + \frac{1 - p^{-\alpha}}{1 - p^{-\alpha - 1}} \int_{B_N} [\varphi(x) - \varphi(0)] |x|_p^{\alpha-1} \, dx, \quad \varphi \in \mathcal{D}(B_N).
\]

(3.3)

For \(\text{Re} \, \alpha > 0 \), this gives

\[
\langle f_\alpha^{(N)}, \varphi \rangle = \frac{1 - p^{-\alpha}}{1 - p^{-\alpha - 1}} \int_{B_N} |x|_p^{\alpha-1} \varphi(x) \, dx.
\]

On the other hand, the distribution (3.3) is holomorphic in \(\alpha \not\equiv 1 \pmod{\frac{2\pi i}{\log p} \mathbb{Z}} \). Therefore \(f_\alpha^{(N)} \) makes sense for any \(\alpha > 0 \). Noticing that

\[
\frac{1 - p^{-1}}{1 - p^{-\alpha - 1}} p^{-\alpha N} = \frac{p - 1}{p^\alpha + 1 - p^{-\alpha N + \alpha}} = \lambda
\]
(see Introduction), so that
\[
\langle f^{(N)}_{-\alpha}, \varphi \rangle = \lambda \varphi(0) + \frac{1 - p^\alpha}{1 - p^{-\alpha - 1}} \int_{B_N} |\varphi(x) - \varphi(0)| x^{-\alpha-1} dx.
\] (3.4)

The emergence of \(\lambda \) in (3.4) “explains” its role in the probabilistic construction of a process on \(B_N \) ([16], Theorem 4.9).

Theorem 1. The operator \(D^\alpha_N \), \(\alpha > 0 \), acts from \(\mathcal{D}(B_N) \) to \(\mathcal{D}(B_N) \) and admits, for each \(\varphi \in \mathcal{D}(B_N) \), the representations:

(i) \(D^\alpha_N \varphi = f^{(N)}_{-\alpha} \ast \varphi \) where the convolution is understood in the sense of harmonic analysis on the additive group of \(B_N \);

(ii) \[
(D^\alpha_N \varphi)(x) = \lambda \varphi(x) + \frac{1 - p^\alpha}{1 - p^{-\alpha - 1}} \int_{B_N} |y|^{-\alpha-1}_p [\varphi(x - y) - \varphi(x)] dy, \quad \alpha > 0.
\]

(iii) On \(\mathcal{D}(B_N) \), \(D^\alpha_N - \lambda I \) coincides with the pseudo-differential operator \(\varphi \mapsto \mathcal{F}^{-1}_{N}(P_{N,\alpha}\mathcal{F}_N \varphi) \) where
\[
P_{N,\alpha}(\xi) = \frac{1 - p^\alpha}{1 - p^{-\alpha - 1}} \int_{B_N} |y|^{-\alpha-1}_p [\chi(y\xi) - 1] dy.
\] (3.5)

This symbol is extended uniquely from \((\mathbb{Q}_p \setminus B_{-N}) \cup \{0\} \) onto \(\mathbb{Q}_p/B_{-N} \).

Proof. Denote, for brevity, \(a_p = \frac{1 - p^\alpha}{1 - p^{-\alpha - 1}} \). Let \(x \in B_N \). Assuming that \(\varphi \) is extended by zero onto \(\mathbb{Q}_p \), we find that
\[
(D^\alpha_N \varphi)(x) = a_p \int_{\mathbb{Q}_p} |y|^{-\alpha-1}_p [\varphi(x - y) - \varphi(x)] dy = I_1 + I_2 + I_3
\]
where
\[
I_1 = a_p \int_{B_N} |y|^{-\alpha-1}_p [\varphi(x - y) - \varphi(x)] dy,
\]
\[
I_2 = a_p \int_{|y|_p > p^N} |y|^{-\alpha-1}_p \varphi(x - y) dy,
\]
\[
I_3 = -a_p \varphi(x) \int_{|y|_p > p^N} |y|^{-\alpha-1}_p dy.
\]

We get using properties of \(p \)-adic integrals [19] that
\[
I_2 = a_p \int_{|x-z|_p > p^N} |x - z|^{-\alpha-1}_p \varphi(z) dz = a_p \int_{|z|_p > p^N} |z|^{-\alpha-1}_p \varphi(z) dz = 0;
\]

\[
I_3 = -a_p \varphi(x) \int_{|y|_p > p^N} dy = 0.
\]

\[
I_1 = a_p \int_{B_N} |y|^{-\alpha-1}_p [\varphi(x - y) - \varphi(x)] dy,
\]
\[
I_2 = a_p \int_{|y|_p > p^N} |y|^{-\alpha-1}_p \varphi(x - y) dy,
\]
\[
I_3 = -a_p \varphi(x) \int_{|y|_p > p^N} |y|^{-\alpha-1}_p dy.
\]
\[I_3 = -a_p \varphi(x) \sum_{j=N+1}^{\infty} \int_{|y|=p^j} |y|^{-\alpha - 1} dy = -a_p \varphi(x)(1 - \frac{1}{p}) \sum_{j=N+1}^{\infty} p^{-\alpha j} = \lambda \varphi(x), \]

which implies (ii). Comparing with (3.4) we prove (i).

In order to prove (3.5) we note that

\[\mathcal{F}_N \left(D_N^\alpha \varphi - \lambda \varphi \right) (\xi) = a_p p^{-N} \int_{B_N} \chi(x) dx \int_{B_N} |y|^{-\alpha - 1} [\varphi(x-y) - \varphi(x)] dy \]

\[= a_p p^{-N} \int_{B_N} |y|^{-\alpha - 1} dy \int_{B_N} \chi(x) |\varphi(x-y) - \varphi(x)| dx = P_{n,\alpha} (\mathcal{F}_N \varphi) (\xi), \]

\[\xi \in \mathbb{Q}_p/B_{-N}. \]

An important consequence of the representations given in Theorem 1 is the fact that, in contrast to operators on \(\mathbb{Q}_p \), \(D_N^\alpha : \mathcal{D}(B_N) \to \mathcal{D}(B_N) \), so that we can define in a straightforward way, the action of this operator on distributions. In particular, the pseudo-differential representation remains valid on \(\mathcal{D}'(B_N) \). Below (Theorem 3) this will be used to describe the domain of the operator \(A_N \) on \(L^1(B_N) \).

4 The Green function

In Section 2 (just as in [13]) we defined the operator \(A_N \) as the generator of the semigroup \(T_N \) on \(L^1(B_N) \). We can write its resolvent \((A_N + \mu I)^{-1} \), \(\mu > 0 \), as

\[((A_N + \mu I)^{-1} u) (x) = \int_0^\infty e^{-\mu t} dt \int_{B_N} Z_N(t, x - \xi) u(\xi) d\xi, \quad u \in L^1(B_N), \]

(4.1)

where \(Z_N \) is given in (2.7).

Theorem 2. The resolvent (4.1) admits the representation

\[((A_N + \mu I)^{-1} u) (x) = \int_{B_N} K_\mu(x - \xi) u(\xi) d\xi + \mu^{-1} p^{-N} \int_{B_N} u(\xi) d\xi, \quad u \in L^1(B_N), \mu > 0, \]

(4.2)

where for \(0 \neq x \in B_N \), \(|x|_p = p^m \),

\[K_\mu(x) = \int_{p^{-N+1} \leq |\eta|_p \leq p^{-m+1}} \frac{\chi(\eta x)}{|\eta|^\alpha_p - \lambda + \mu} d\eta. \]

(4.3)

If \(\alpha > 1 \), then for any \(x \in B_N \),

\[K_\mu(x) = \int_{|\eta|_p \geq p^{-N+1}} \frac{\chi(\eta x)}{|\eta|^\alpha_p - \lambda + \mu} d\eta. \]

(4.4)
The kernel K_μ is continuous for $x \neq 0$ and belongs to $L^1(B_N)$. If $\alpha > 1$, then K_μ is continuous on B_N. If $\alpha = 1$, then

$$|K_\mu(x)| \leq C|\log |x||^p, \quad x \in B_N.$$ \hfill (4.5)

If $\alpha < 1$, then

$$|K_\mu(x)| \leq C|x|^{\alpha - 1}, \quad x \in B_N.$$ \hfill (4.6)

Proof. Let us use the representation (2.7) substituting it into the equality

$$\int_{B_N} Z_N(t, x) \, dx = 1$$

(for the latter see Theorem 4.9 in [16]). We find that

$$c(t) = p^{-N} - e^\lambda p^{-N} \int_{B_N} Z(t, y) \, dy,$$

so that

$$Z_N(t, x) = e^\lambda \left[Z(t, x) - p^{-N} \int_{B_N} Z(t, y) \, dy \right] + p^{-N}, \quad x \in B_N.$$

Let us consider the expression in brackets proceeding from the definition (2.4) of the kernel Z. Using the integration formula from Chapter 1, §4 of [19] we obtain that

$$Z(t, x) - p^{-N} \int_{B_N} Z(t, y) \, dy = I_1(t, x) + I_2(t, x)$$

where

$$I_1(t, x) = \int_{|\xi|_p \geq p^{-N+1}} \chi(\xi x) e^{-t|\xi|_p^p} \, d\xi,$$

$$I_2(t, x) = \int_{|\xi|_p \leq p^{-N}} [\chi(\xi x) - 1] e^{-t|\xi|_p^p} \, d\xi,$$

and $I_2(t, x) = 0$ for $x \in B_N$.

Let $|x|_p = p^m, \ m \leq N$. Then there exists such an element $\xi_0 \in \mathbb{Q}_p$, $|\xi_0|_p = p^{-m+1}$, that $\chi(\xi_0 x) \neq 0$. Then making the change of variables $\xi = \eta + \xi_0$ we find using the ultra-metric property that

$$\int_{|\xi|_p \geq p^{-m+2}} \chi(x\xi) e^{-t|\xi|_p^p} \, d\xi = \chi(x\xi_0) \int_{|\eta|_p \geq p^{-m+2}} \chi(x\eta) e^{-t|\eta|_p^p} \, d\eta,$$

so that

$$\int_{|\xi|_p \geq p^{-m+2}} \chi(x\xi) e^{-t|\xi|_p^p} \, d\xi = 0.$$
Therefore
\[I_1(t, x) = \int_{p^{-N+1} \leq |\xi|_p \leq p^{-m+1}} \chi(x\xi) e^{-t|\xi|_p^\alpha} d\xi, \]
thus
\[Z_N(t, x) = e^{\lambda t} \int_{p^{-N+1} \leq |\xi|_p \leq p^{-m+1}} \chi(x\xi) e^{-t|\xi|_p^\alpha} d\xi + p^{-N}, \quad |x|_p = p^m. \]

Substituting this in (4.1) and integrating in \(t \) we come to (4.2) and (4.3). Note that \(|\eta|_p^\alpha > \lambda \), as \(|\eta|_p \geq p^{-N+1} \).

If \(\alpha > 1 \), then the integral in (4.4) is convergent. For \(|x|_p = p^m \) we prove repeating the above argument that
\[\int_{|\eta|_p \geq p^{-m+2}} \frac{\chi(\eta x)}{|\eta|_p^\alpha - \lambda + \mu} \, d\eta = 0. \]
Therefore in this case the representation (4.3) can be written in the form (4.4).

Obviously, \(K_\mu(x) \) is continuous for \(x \neq 0 \). If \(\alpha > 1 \), then there exists the limit
\[\lim_{x \to 0} K_\mu(x) = \int_{|\eta|_p \geq p^{-N+1}} \frac{d\eta}{|\eta|_p^\alpha - \lambda + \mu} < \infty, \]
so that in this case \(K_\mu \) is continuous on \(B_N \).

Let \(\alpha < 1 \). By (4.3) and an integration formula from [19], Chapter 1, §4,
\[K_\mu(x) = \sum_{l=-N+1}^{-m+1} \frac{1}{p^{\alpha l} - \lambda + \mu} \int_{|\xi|_p = p^l} \chi(\xi x) \, d\xi \]
\[= (1 - \frac{1}{p}) \sum_{l=-N+1}^{-m} \frac{p^l}{p^{\alpha l} - \lambda + \mu} - \frac{p^{-m}}{p^{\alpha(-m+1)} - \lambda + \mu}, \quad |x|_p = p^m. \]

For some \(\gamma > 0 \), \(p^{\alpha l} - \lambda + \mu \geq \gamma p^{\alpha l} \). Computing the sum of a progression we obtain the estimate (4.6). Similarly, if \(\alpha = 1 \), then \(|K_\mu(x)| \leq C(-m + N) \), which gives, as \(m \to -\infty \), the inequality (4.5).

If \(\alpha > 1 \), we can also give an interpretation of the resolvent \((A_N + \mu I)^{-1} \) in terms of the harmonic analysis on \(B_N \). We have
\[(A_N + \mu I)^{-1} u = (K_\mu + \mu^{-1}1) * u, \quad u \in L^1(B_N), \quad (4.7) \]
where \(1(x) \equiv 1, \ K_\mu \) is given by (4.4), and the convolution is taken in the sense of the additive group of \(B_N \).

Denote by \(\Pi_N \) the set of all rational numbers of the form
\[p^l \left(\nu_0 + \nu_1 p + \cdots + \nu_{-l+N-1} p^{-l+N-1} \right), \quad l < N, \]
where $\nu_j \in \{0, 1, \ldots, p-1\}$, $\nu_0 \neq 0$. As a set, the quotient group \mathbb{Q}_p/B_N coincides with $\Pi_N \cup \{0\}$, and
\[
\{ \xi \in \mathbb{Q}_p : |\xi|_p \geq p^{-N+1} \} = \bigcup_{\eta \in \Pi_N} (\eta + B_N)
\]
where the sets $\eta + B_N$ with different $\eta \in \Pi_N$ are disjoint.

Taking into account the fact that $\chi(\rho x) = 1$ for $x \in B_N$, $\rho \in B_N$, we find from (4.4) that
\[
K_\mu(x) = p^{-N} \sum_{0 \neq \eta \in \mathbb{Q}_p/B_N} \frac{\chi(\eta x)}{|\eta|_p^\alpha - \lambda + \mu}.
\]

Let us describe the domain $\text{Dom } A_N$ of the generator of our semigroup $T_N(t)$ on $L^1(B_N)$ in terms of distributions on B_N.

Theorem 3. If $\alpha > 1$, then the set $\text{Dom } A_N$ consists of those and only those $u \in L^1(B_N)$, for which $f_{-\alpha}^{(N)} * u \in L^1(B_N)$ where the convolution is understood in the sense of the distribution space $\mathcal{D}'(B_N)$. If $u \in \text{Dom } A_N$, then $A_N u = f_{-\alpha}^{(N)} * u - \lambda u$ where the convolution is understood in the sense of the distributions from $\mathcal{D}'(B_N)$.

Proof. Let $u = (A_N + \mu I)^{-1} f$, $f \in L^1(B_N)$, $\mu > 0$. Representing this resolvent as a pseudo-differential operator, we prove that $f_{-\alpha}^{(N)} * u - \lambda u + \mu u = f$ in the sense of $\mathcal{D}'(B_N)$.

Conversely, let $u \in L^1(B_N)$, $D_B^\alpha u = f_{-\alpha}^{(N)} * u \in L^1(B_N)$ where D_B^α is understood in the sense of $\mathcal{D}'(B_N)$. Set $f = (D_B^\alpha - \lambda I + \mu I) u$, $\mu > 0$. Denote $u' = (A_N + \mu I)^{-1} f$. Then $u' \in \text{Dom } A_N$, and the above argument shows that
\[
(D_B^\alpha - \lambda I + \mu I)(u - u') = 0.
\]

Applying the pseudo-differential representation we see that
\[
[P_{N, \alpha}(\xi) + \mu] [(\mathcal{F}_N u)(\xi) - (\mathcal{F}_N u')(\xi)] = 0, \quad \xi \in \mathbb{Q}_p/B_N.
\]

It is seen from (3.5) that the factor $P_{N, \alpha}(\xi) + \mu$ is real-valued, strictly positive and locally constant on B_N. Therefore the distribution $\mathcal{F}_N u - \mathcal{F}_N u'$ is zero. Since \mathcal{F}_N is an isomorphism (see [7]), we find that $u = u'$, so that $u \in \text{Dom } A_N$. ■

5 Nonlinear equations

Let us consider the equation (1.2) where Φ is a strictly monotone increasing continuous real function, $\Phi(0) = 0$, and the linear operator D_B^α is understood as the operator $A_N + \lambda I$ on $L^1(B_N)$. By the results from [10] and [6], the nonlinear operator $D_B^\alpha \circ \Phi$ is m-accretive, which implies the unique mild solvability of the Cauchy problem for the equation (1.2) with the initial condition $u(0, x) = u_0(x)$, $u_0 \in L^1(B_N)$; see e.g. [2] for the definitions. As in the classical case [3], this mild solution can be interpreted also as a weak solution.

Following [3], we will show that the above construction of the L^1-mild solution gives also L^γ-solutions for $1 < \gamma \leq \infty$.

12
Theorem 4. Let \(u(t, x), t > 0, x \in B_N, \) be the above mild solution. If \(0 < u_0 \in L^\gamma(B_N), \) \(1 \leq \gamma \leq \infty, \) then \(u(t, \cdot) \in L^\gamma(B_N) \) and
\[
\|u(t, \cdot)\|_{L^\gamma(B_N)} \leq \|u_0\|_{L^\gamma(B_N)}. \tag{5.1}
\]

Proof. The case \(\gamma = 1 \) has been considered, while the case \(\gamma = \infty \) will be implied by the inequality (5.1) for finite values of \(\gamma \) (see Exercise 4.6 in [5]).

Thus, now we assume that \(1 < \gamma < \infty. \) It is sufficient to prove (5.1) for \(u_0 \in D(B_N). \)

Indeed, if that is proved, we approximate in \(L^\gamma(B_N) \) an arbitrary function \(u_0 \in L^\gamma(B_N) \) by a sequence \(u_{0,j} \in D(B_N). \) For the corresponding solutions \(u_j(t, x) \) we have
\[
\|u_j(t, \cdot)\|_{L^\gamma(B_N)} \leq \|u_{0,j}\|_{L^\gamma(B_N)}. \tag{5.2}
\]

Since our nonlinear semigroup consists of operators continuous on \(L^1(B_N), \) we see that, for each \(t \geq 0, u_j(t, \cdot) \rightarrow u(t, \cdot) \) in \(L^1(B_N). \) By (5.2), the sequence \(\{u_j(t, \cdot)\} \) is bounded in \(L^\gamma(B_N). \) These two properties imply the weak convergence \(u_j(t, \cdot) \rightarrow u(t, \cdot) \) in \(L^\gamma(B_N) \) (see Exercise 4.16 in [5]).

Next, we use the weak lower semicontinuity of the \(L^\gamma \)-norm (see Theorem 2.11 in [17]), that is the inequality
\[
\liminf_j \|u_j(t, \cdot)\|_{L^\gamma(B_N)} \geq \|u(t, \cdot)\|_{L^\gamma(B_N)}.
\]
Passing to the lower limit in both sides of (5.2), we come to (5.1).

Let us prove (5.1) for \(u_0 \in D(B_N), 1 < \gamma < \infty. \) By the Crandall-Liggett theorem (see [2] or [9]), \(u(t, x) \) is obtained as a limit in \(L^1(B_N), \)
\[
u(t, \cdot) = \lim_{k \to \infty} \left(I + \frac{t}{k} D_N^\alpha \circ \Phi \right)^{-k} u_0,
\]
that is \(u(t, \cdot) = \lim_{k \to \infty} u_k \) where \(u_k \) are found recursively from the relation
\[
\frac{t}{k + 1} D_N^\alpha \circ \Phi(u_{k+1}) + u_{k+1} = u_k. \tag{5.3}
\]

Under our assumptions, \(u(t, x) > 0 \) (this follows from Theorem 4 in [10]). The nonlinear operator \((I + \frac{t}{k} D_N^\alpha \circ \Phi)^{-1} \) is also positivity preserving (Proposition 1 in [10]), so that \(u_k > 0 \) for all \(k. \)

Note that the operator \(D_N^\alpha \) commutes with shifts while the equation (5.3) for \(u_{k+1} \) has a unique solution in \(L^1(B_N). \) As a result, if \(u_0 \in D(B_N), \) then all the functions \(u_k \) belong to \(D(B_N). \)

Rewriting (5.3) in the form
\[
\left(\frac{t}{k + 1} \right)^{-1} (u_{k+1} - u_k) = -D_N^\alpha \circ \Phi(u_{k+1}), \tag{5.4}
\]
multiplying both sides by \(u_{k+1}^{-1} \) and integrating on \(B_N \) we find that
\[
\left(\frac{t}{k + 1} \right)^{-1} \int_{B_N} (u_{k+1} - u_k) u_{k+1}^{-1} dx = - \int_{B_N} u_{k+1}^{-1} D_N^\alpha \circ \Phi(u_{k+1}) dx. \tag{5.5}
\]
Let \(w = u_{k+1}^{\gamma-1} \). Then \(w \in \mathcal{D}(B_N) \). It follows from (5.4) that \(D_N^\alpha \Phi(u_{k+1}) \in \mathcal{D}(B_N) \). Also we have \(\Phi(u_{k+1}) \in \mathcal{D}(B_N) \), so that \(\Phi(u_{k+1}) \) belongs to the domain of a selfadjoint realization of the operator \(D_N^\alpha \) in \(L^2(B_N) \). Therefore we can transform the integral in the right-hand side of (5.5) as follows:

\[
\int_{B_N} u_{k+1}^{\gamma-1} D_N^\alpha \circ \Phi(u_{k+1}) \, dx = \int_{B_N} \Phi(w^{\gamma-1}) D_N^\alpha(w) \, dx. \tag{5.6}
\]

The right-hand side of (5.6) is nonnegative by Lemma 2 of [3]. Now it follows from (5.5) that

\[
\int_{B_N} u_{k+1}^\gamma \, dx \leq \int_{B_N} u_k u_{k+1}^{\gamma-1} \, dx.
\]

Applying the Hölder inequality we find that

\[
\int_{B_N} u_{k+1}^\gamma \, dx \leq \left(\int_{B_N} u_k^\gamma \, dx \right)^{1/\gamma} \left(\int_{B_N} u_{k+1}^{\gamma-1} \, dx \right)^{\frac{\gamma-1}{\gamma}},
\]

which implies the inequality

\[
\|u_{k+1}\|_{L^\gamma(B_N)} \leq \|u_k\|_{L^\gamma(B_N)}
\]

and, by induction, the inequality

\[
\|u_{k+1}\|_{L^\gamma(B_N)} \leq \|u_0\|_{L^\gamma(B_N)}.
\]

Passing to the limit, we prove (5.1). \(\blacksquare \)

Acknowledgment

This work was supported in part by Grant 23/16-18 “Statistical dynamics, generalized Fokker-Planck equations, and their applications in the theory of complex systems” of the Ministry of Education and Science of Ukraine.

References

[1] S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, *Theory of p-Adic Distributions. Linear and Nonlinear Models*. Cambridge University Press, 2010.

[2] V. Barbu, *Nonlinear Differential Equations of Monotone Types in Banach Spaces*, Springer, New York, 2010.

[3] M. Bonforte and J. L. Vázquez, Fractional nonlinear degenerate diffusion equations on bounded domains, *Nonlinear Anal.* **131** (2016), 363–398.

[4] N. Bourbaki, *Elements of Mathematics. Integration II*, Springer, Berlin, 2004.
[5] H. Brézis, *Functional Analysis, Sobolev Spaces and Partial Differential Equations*, Springer, New York, 2011.

[6] H. Brézis and W. Strauss, Semilinear elliptic equations in L^1, *J. Math. Soc. Japan* 25 (1973), 15–26.

[7] F. Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes p-adiques, *Bull. Soc. Math. France* 89 (1961), 43–75.

[8] O. F. Casas-Sánchez and J. J. Rodríguez-Vega, Parabolic type equations on p-adic balls, *Boletín de Mat.* 22 (2015), 97–106.

[9] Ph. Clément et al., *One-Parameter Semigroups*, North-Holland, Amsterdam, 1987.

[10] M. Crandall and M. Pierre, Regularizing effects for $u_t + A\psi(u) = 0$ in L^1, *J. Funct. Anal.* 45 (1982), 194–212.

[11] A. Ya. Helemskii, *Lectures and Exercises on Functional Analysis*, AMS, Providence, 2006.

[12] E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis, Vol. II*, Springer, Berlin, 1979.

[13] A. Khrennikov and A. N. Kochubei, p-Adic analogue of the porous medium equation, *J. Fourier Anal. Appl.* (to appear), arXiv: 1611.08863.

[14] A. Khrennikov, K. Oleschko and M. J. Correa Lopez, Application of p-adic wavelets to model reaction-diffusion dynamics in random porous media, *J. Fourier Anal. Appl.* 22 (2016), 809 – 822.

[15] A. Khrennikov, K. Oleschko and M. J. Correa Lopez, Modeling fluid’s dynamics with master equations in ultrametric spaces representing the treelike structure of capillary networks, *Entropy* 18 (2016), art. 249, 28 pp.

[16] A. N. Kochubei, *Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields*, Marcel Dekker, New York, 2001.

[17] E. H. Lieb and M. Loss, *Analysis*, AMS, Providence, 2001.

[18] S. A. Morris, *Pontryagin Duality and the Structure of Locally Compact Abelian Groups*, Cambridge University Press, 1977.

[19] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994.

[20] V. S. Vladimirov, *Tables of Integrals of Complex-Valued Functions of p-Adic Arguments*, Steklov Mathematical Institute, Moscow, 2003 (Russian). English version, ArXiv: [math-ph/9911027](http://arxiv.org/abs/math-ph/9911027).

[21] W. A. Zúñiga-Galindo, *Pseudodifferential Equations over Non-Archimedean Spaces*, Lect. Notes Math. Vol. 2174 (2016), XVI+175 p.