Toxicological Impact of Herbicides on Cyanobacteria

D. P. Singh¹, J. I. S. Khattar¹, Gurdeep Kaur¹ and Yadvinder Singh²

¹Department of Botany, Punjabi University, Patiala-147002, Punjab, India.
²Department of Botany and Environment Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India.

Authors' contributions

This work was carried out in collaboration between all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARRB/2016/22614

Editor(s):
(1) George Perry, Dean and Professor of Biology, University of Texas at San Antonio, USA.
(2) Reviewers:
(1) Petigrosso Lucas Ricardo, Universidad Nacional de Mar del Plata, Argentina.
(2) Shelley Gupta, Pune University, India.
(3) Kowthar Gad Aly El-Rokiek, National Research Centre, Egypt.
(4) Rosilaine Araldi de Castro, Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol, Brazil.

Complete Peer review History: http://sciencedomain.org/review-history/13074

Received 14th October 2015
Accepted 5th January 2016
Published 25th January 2016

ABSTRACT

The use of herbicides in modern agriculture to eradicate weeds has led to serious environmental contamination resulting in a loss of growth and development of many beneficial micro-organisms. Low cost, easy availability, lax in regulatory mechanism have contributed to the continuous use of the herbicides in tropical and subtropical regions. The removal of these herbicides from soil and aquatic systems is a difficult task and as a result herbicides persist in these ecosystems for a long period of time. Cyanobacteria are a diverse group of gram-negative photosynthetic prokaryotes. Their life processes require only water, carbon dioxide, inorganic substances and light and these organisms contribute greatly to terrestrial as well as aquatic ecosystems through their ability to increase soil fertility by adding nitrogen, enhancing water holding capacity, releasing vitamins and plant stimulating hormones, adding extra cellular polysaccharides and by solubilizing phosphates.

The present paper review responses of cyanobacteria to herbicides and impact of herbicides on photosynthetic pigments, photosynthesis and nitrogen assimilation by cyanobacteria. The tolerance mechanisms and herbicide biodegradation potential of cyanobacteria are also reviewed.
Keywords: Cyanobacteria; herbicide; photosynthesis; respiration; antioxidant system; biodegradation.

1. INTRODUCTION

Feeding of over nine billion people expected to inhabit our planet by 2050 will be an unprecedented challenge for all human beings [1]. The production of enough food for the human population across the globe in 2050 will be possible but at an unacceptable cost. In view of the world’s limited croplands and growing population [2], it is necessary to take all measures to increase crop production in order to ensure food safety [3]. This will largely depend upon the agro-research from high quality seeds to low cost farming practices [4]. More than 8,000 species of weeds, 9,000 species of insects and pests and 50,000 species of plant pathogens damage agricultural crops across the globe. To this loss, weeds account for 13% loss. Insect pests and plant pathogens cause an estimated loss of 14% and 13%, respectively [5]. It has been estimated that without pesticide application, the loss of cereals, vegetables and fruits from pest injury would reach 32, 54 and 78%, respectively [6]. Crop loss from pests declines by 35% from 42% when pesticides are used. Thus, the use of pesticides is indispensable in agricultural production system. Presently, about one-third of the agricultural products are produced by using pesticides [7].

Agriculture plays a major role in the Indian economy as more than 70% of India’s population is directly dependent on it and 27% of country’s gross domestic product stems from it. After many years of struggle with food shortages, India has made good strides in food production from 51 million tonnes in 1950-51 to 212 million tonnes in 2001-02. This is due to introduction of new crop varieties and improved farming practices [4]. Thus, microbial communities in freshwater ecosystems including agri-ecosystem are directly or indirectly affected by these compounds. For example, many commercial herbicides act by binding to Photosystem II (PS-II), which is a pigment-protein membrane complex [11]. PS-II inhibitors have a direct impact on photosynthetic aquatic microorganisms that contain the same PS-II apparatus as the terrestrial weeds targeted by these herbicides. Beside this direct impact on photosynthetic microorganisms, herbicides can also have an indirect impact on non-photosynthetic species that are not susceptible to PS-II inhibitors. These effects on microbial communities can have a critical impact on the overall functioning of freshwater ecosystems. Indeed, microorganisms including cyanobacteria contribute to most of the primary production in these systems [12]. The microorganisms are also involved in nutrient cycling and decomposition [13]. Depending on the kind of ecosystem, both these communities must be considered when attempting to evaluate the impact of herbicides on microbial communities.

Cyanobacteria are morphologically, physiologically and developmentally most diverse group of photosynthetic prokaryotes with low level of cellular differentiation that constitute one of the major eubacteria phyla [14,15]. They also share characteristics of both gram-negative bacteria and photosynthetic eukaryotes. These organisms have existed 2.5 billion years ago in the earth’s geological history as evidenced by the microfossils, detected from early, middle and late Precambrian strata. They seem to have played the most important role in preparing the earth for the evolution of higher life forms by contributing to significant increase in oxygen level [16]. These microorganisms exhibit relatively simple morphology and show maximum three cell types: vegetative cells, heterocysts and akinetes. Heterocyst differentiation occurs under nitrogen starvation. Structurally and functionally, the heterocysts are the ideal sites for nitrogen fixation [17].
Classical taxonomists have classified cyanobacteria into five orders i.e., Chroococcales, Chamaesiphonales, Pleurocapsales, Nostocales and Stigonematales [18,19]. On the basis of number of morphological, physiological and genetic traits, Rippka et al. [20] have taxonomically revised this group and recognized five sections. Section I comprises Chroococcales and Chamaesiphonales which reproduce by binary fission in one, two or three planes or by budding. Section II includes members of Pleurocapsales which reproduce by baeocytes (endospores or exospores) which are formed by multiple fission. Section III comprises non-heterocystous filamentous oscillatorian members. Section IV and V correspond to Nostocales and Stigonematales, respectively, of Desikachary [19]. Following Rippka et al. [20] new classification has been proposed which recognizes Chroococcales, Pleurocapsales, Oscillatoriales, Nostocales and Stigonematales as the five orders of cyanobacteria [21]. Nucelic acid sequencing of cyanobacteria is the beginning to elucidate the evolutionary relationships among cyanobacteria. Recently, Lee [22] suggested three orders of cyanobacteria i.e. Chroococcales (unicellular cyanobacteria), Oscillatoriales (filamentous cyanobacteria) and Nostocales (filamentous cyanobacteria with heterocysts).

Cyanobacteria are ubiquitous in their distribution and grow in all sorts of aquatic and terrestrial environments. They survive in a wide variety of extreme environmental conditions when they are exposed to various types of natural stresses, such as nutrient limitation, pesticides, pollution, drought, salinity, temperature, pH, light intensity and quality, etc. [23]. Illustrating their capacity to acclimate to extreme environments, a protein in the cyanobacterial thylakoid membranes was identified as a sensitive protein to environmental stresses such as drought, nutrition deficiency, heat and chemical stress [24]. Many cyanobacterial species are capable of not only surviving, but thriving in conditions previously thought to be inhabitable.

Cyanobacteria perform biologically two important key activities carbon fixation and nitrogen fixation and enrich the soil with humus and nitrogen content, improve water holding capacity, release vitamins, plant stimulating hormones, extra cellular polysaccharides and also solubilize phosphates [21,25-27]. It has been reported that more than half of the total nitrogen used by paddy crop derives from the native soil nitrogen pool which is maintained through biological nitrogen fixation by both hetero- and autotrophs in soil [28]. Non-heterocystous forms of cyanobacteria which predominantly occur in rice fields may also fix atmospheric nitrogen under anaerobic conditions [29]. *Plectonema* [30], *Trichodesmium* [31], *Phormidium*, *Lyngbya*, *Chlorogloea*, *Gloeocapsa* and *Synechocystis* [32] have been reported to fix atmospheric nitrogen. The characteristics of cyanobacteria to fix carbon as well as nitrogen fixation have made them an important component of both aquatic as well as terrestrial ecosystems. These microorganisms are applied in rice fields as biofertilizer for better crops yield [33].

Soil nitrogen is the main source of nitrogen for crop growth and rice crop consumes 50% N from soil [25]. Nitrogen-fixing cyanobacteria are abundantly present in the rice field and are important microbes for the maintenance of rice field fertility through carbon and nitrogen fixation [26]. The use of cyanobacterial biofertilizer is considered to be a good management of paddy fields since their use not only increases fertility of the soil but is also eco-friendly. Thorough investigations on deleterious effects of pesticides including herbicides on cyanobacteria are required since utilization of cyanobacterial biofertilizer in paddy fields requires that strains be tolerant to a variety of routinely used agrochemicals.

The effects of pesticides on algae have been extensively reviewed from time to time [34-38]. The literature surveyed by the authors revealed that impact of more than fifty five herbicides on cyanobacteria in one or another way has been studied. As per the classification given by Mallory-Smith and Retzinger [39], these herbicides belong to 15 groups according to their mode of action on target plants (Table 1). The parameters studied include growth, tolerance limit, photosynthetic pigments, carbon assimilation, defence mechanism, nitrogen assimilation and biodegradation. In this review current status of impact of herbicides on cyanobacteria is discussed.

2. GROWTH INHIBITION AND TOXICITY

Cyanobacteria are quite sensitive to herbicides, because they share many of the physiological features of higher plants. Differences have been observed between the tolerance to herbicides by cyanobacteria and other organisms. The different algal species exhibit different sensitivity to
different herbicides depending on the species tested, concentration and nature of herbicide used [27,40-43]. For example, it has been observed that hexahydropyridine was more toxic to green algae, diatoms and duckweed than to cyanobacteria, whereas green algae were more tolerant to diquat than cyanobacteria and diatoms [44]. The chronic exposure of hexahydropyridine to cyanobacterial dominant phytoplankton community of a forest lake at 1.0 ppm resulted in reduction of biomass of all dominant phytoplankton groups including cyanobacteria [45]. Ahluwalia et al. [46] proved that the incorporation of relatively higher doses (>5 ppm) of diquat into the culture of Allomonas variabilis and Anabaena inaequalis at EC50 values ranging between1.0 and 8.5 ppm for both growth criteria. In contrast, de-isopropyl atrazine was toxic towards A. variabilis and A. inaequalis with EC50 ranging from 2.5 to 9.2 ppm for both criteria. Both diamino and hydroxyl-paraquat were less toxic to cultures tested yielding EC50 less than 10 ppm [54]. De-Loranzo et al. [38] obtained EC50 value of atrazine at 0.47 ppm for cyanobacterium Anabaena flosaquae. Another study revealed that atrazine at 88 ppb significantly reduced the growth of unicellular cyanobacterium Synechocystis sp. [55]. Low dose of atrazine (10 ppb) did not affect the growth and cell volume of Arthospira and Synechocystis while more than 100 ppb atrazine inhibited growth [53].

Wild type and multiple herbicide resistant (MHR) stain of Anabaena variabilis tolerated pure and formulated form of atrazine up to 4 and 1 ppm, respectively, indicating formulated form of atrazine was more toxic than pure form [56]. Atrazine at 4.2 ppm caused 50% decrease in growth of Microcystis novacekii demonstrating the potential of the organism to tolerate high concentrations of this herbicide in fresh water environments [57]. Ten species of phytoplankton belonging to green algae, diatoms and cyanobacteria were exposed to atrazine for 72 h at EC50 concentrations and light of different intensities to compare their combined effect. The data revealed that cyanobacteria were less tolerant to atrazine than green algae and diatoms [58].

Cyanobacteria Synechocystis PCC 6803 and Anabaena variabilis ATCC 29413 showed high degree of tolerance to glyphosate and its various formulations. Significant differences in growth were observed at 10 mM glyphosate. The decreasing order of toxicity of these formulations were as RoundupR> isopropylamine salt > free acid [59]. Other cyanobacteria such as Anabaena sp., Arthospira fusiformis, Leptolyngbya boryana, Microcystis aeruginosa, Nostoc punctiforme and Spirulina platensis tolerated glyphosate in the range of 1-10 mM [60]. Growth of wild-type and glyphosate-sensitive (Gs) cells of Microcystis aeruginosa was inhibited when they were cultured with 120
ppm glyphosate but after further incubation for several weeks, occasionally the growth of rare cells resistant (Gr) to the herbicide was found [61]. The effect of glyphosate (37-150 ppm) on the growth of *Merismopedia glauca* was dose dependent with maximum growth rate and generation time being 1.5 d^{-1} and 0.44 d^{-1}, respectively [62]. The application of commercial formulation of glyphosate roundup (6 and 12 ppm) on fresh water microbial communities in artificial earthen mesocosms significantly increased the population of cyanobacteria by 4.5 folds in periphytic assemblages [63]. Vera et al. [64] have shown that diatoms were more susceptible than cyanobacteria to glyphosate. In a study on ecological risks assessment of organophosphorus pesticides on bloom forming cyanobacterium *Microcystis wesenbergii*, it was observed that isopropyl ammonium salt of glyphosate (6.84 μM L^{-1}) showed medium growth inhibitory effect [65].

Nitrogen-fixing cyanobacteria were relatively tolerant to 2,4 D compared to non-nitrogen fixing ones under field conditions. Low concentration (1 mM) of 2,4 D and 2-methyl-4-chlorophenoxyacetic acid (MCPA) did not affect the growth of *Anabaena UAM 202, UAM204 and Nostoc UAM205* while higher dose (10 mM) was inhibitory when growth was measured in terms of dry weight biomass [66]. The growth of *Gloeocapsa* was not affected significantly at 100-150 ppm while 175-200 ppm of 2,4 D inhibited growth by 50-75% after 8 days of incubation [67]. Tiwari et al. [68] compared the tolerance level of 28 non-heterocystous filamentous cyanobacteria isolated from rice fields using Chl a as growth parameter. The range of tolerance of cyanobacteria to 2,4 D was 25 to 200 ppm with *Lyngbya spiralis* being the most tolerant (200 ppm). Tripathi et al. [69] revealed that 2,4 D above 600 μM was inhibitory to *Nostoc muscorum* and *Synechococcus PCC 7942*. In a nine day exposure experiment, 50 percent survival of cyanobacterial isolates belonging to genera *Chroococcus, Microcystis* and *Synechocystis* was observed in 6.84 μM L^{-1} of 2,4 D [70].

Herbicide 3-(3,4-dichlorphenyl)-1,1 dimethyl urea (DCMU) along with fluometuron, atrazine, ametryn inhibited the growth of *Plectonema boryanum* [71]. DCMU (0.2 ppm) inhibited the growth of diazotroph *Nostoc muscorum* [72]. The cyanobacterial strain SG2 of *Nostoc* tolerated DCMU up to 15 ppm [73]. *Synechococcus PCC 7042, Nostoc* and *Spirulina platensis* exhibited 80% inhibition in growth by 20 μM DCMU after 48 hr of treatment [69]. DCMU (0.5 ppm) was found to be more toxic as compared to atrazine (0.6 ppm) to both parent and mutant strain of *Anabaena variabilis* [56]. Leunert et al. [74] compared the sensitivity of cyanobacteria and green algae to DCMU using delayed fluorescence decay kinetics. It was found that cyanobacteria were more sensitive to DCMU than green algae.

Monsulfuron at low concentration (0.03-0.3 nmol L^{-1}) stimulated growth of *Anabaena flosaquae, Anabaena azollae* and *Anabaena azotica* while higher concentrations (3-300 nmol L^{-1}) were inhibitory. The most sensitive species was *A. flosaquae* followed by *A. azollae* and *A. azotica* [75]. Studies also revealed that the growth of *A. flosaquae* decreased significantly when exposed to monosulfuron (0.008-800 ppm) under 2000, 3000 and 4000 lux light intensity. The cell number and growth rate were reduced with most sensitive light intensity being 4000 lux followed by 3000 lux and 2000 lux [76]. The supplementation of nitrogen further decreased the growth of *Anabaena flosaquae* in presence of monosulfuron (0.016-0.3 ppm) indicating synergistic effect of herbicide and nitrogen [77].

Butachlor exhibited moderate to high toxicity to cyanobacteria. The growth of *Anacystis nidulans, Nostoc muscorum* and *Anabaena dolioolum* was completely inhibited at 2.5, 5 and 20 ppm, respectively, of butachlor [78]. Butachlor at 6-8 ppm was lethal to *Nostoc linckia, Nostoc calicola, Nostoc* sp., and *A. dolioolum* [79]. Butachlor exhibited low toxicity to *Nostoc* sp., *N. punctiforme, Nostoc calicola, Anabaena variabilis, Gloeocapsa* sp., *Aphanocapsa* sp. and *Aulosira fertilissima* with EC_{50} values between 9.7 and 15 ppm [80 and 81]. In toxicity studies, Ge–Xian–Mi (*Nostoc*) had 96 h EC_{50} value of 169 μM butachlor [82]. *Aulosira fertilissima* had 16 d EC_{50} value equivalent to 65 μM [83]. He et al. [84] observed that butachlor above 120 ppm was lethal to *Nostoc* sp. Another study revealed that *Nostoc muscorum* tolerated butachlor upto 20 ppm [85]. Butachlor (25-36 μM) caused 50% decrease in growth of *Anabaena* 7120, *Anabaena dolioolum* and *Anabaena LC31* [86].
Table 1. Summary list of toxicity tests parameters of herbicides to cyanobacteria

Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
A	Clodinafop-propargyl	prop-2-ynyl (R)-2-(4-(5-chloro-3-fluoro-2-pyridyloxy) phenoxy) propionate	Aryloxyphenoxy-propionate	Nostoc muscorum	Toxicity	Singh et al. [102]
2	Cyhalofop butachlor	(R)-2-(4-(4-cyano-2-luorophenoxy) phenoxy)propanoic acid	Aryloxyphenoxy-propionate	Nostoc muscorum	Toxicity	Singh et al. [102]
3	Diclofop	(RS)-2-(4-(2,4-dichlorophenoxy) phenoxy)propionic acid	Aryloxyphenoxy-propionate	Anabaena flos-aquae, Microcystis flosaquae and Microcystis aeruginosa	Toxicity	Ma et al. [40]
				Microcystis aeruginosa	Growth, protein, ultra cell structure	Ye et al. [98]
				Microcystis aeruginosa	Oxidative stress	Ye et al. [152]
B	Fenoxaprop-p-ethyl	ethyl (R)-2-(4-(6-chloro-1,3-benzoazol-2-yloxy) phenoxy) propionate	Aryloxyphenoxy-propionate	Anabaena sp., Nostoc commune and Anabaena variabilis	Growth, photosynthesis and nitrogen fixation	Okmen et al. [116]
				Anabaena, Nostoc and Nodularia	Photosynthetic pigments and photosynthesis	Chen et al. [82]
				Nostoc spongiforme	Growth and nitrogen fixation	Okmen et al. [88]
				Anabaena sp., Cylindrospermum raciborsckii, Microcystis aeruginosa and Pseudanabaena limnetica	Growth rate	Spencer et al. [89]
				Anabaena sp., Gloeothecae sp., and Synechocystis sp.	Toxicity	Netherland et al. [116]
				Nostoc commun	photosynthetic pigments and photosynthesis	Okmen and Ugur. [145]
2	Chlorosulfuron	1-(2-chlorophenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea	Sulfonylurea	20 fresh water microalgae including cyanobacteria	Growth Inhibition	Nyström et al. [51]
8	Metasulfuron (Methyl metsulfuron)	2-(4-methoxy-6-methyl-1,3,5-triazin-2-ylcarbamoylsulfonyl) benzoic acid	Sulfonylurea	20 fresh water microalgae including cyanobacteria	Growth inhibition	Sabater and Carrasco [52]

Singh et al.; ARRB, 9(4): 1-39, 2016; Article no.ARRB.22614
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
9	Monosulfuron	2-((4-methylpyrimidin-2-yl)carbamoylsulfamoyl) benzoic acid	Pyrimidinylsulfonil-urea	Nostoc muscorum, Anabaena flosaquae, Anabaena azolae and Anabaena azotica	Toxicity, Growth, acetolactate synthetase activity and amino acids	Singh et al. [102], Shen et al. [75]
				Anabaena flosaquae	Growth and photosynthetic pigments	Shen et al. [76 and 77]
				Anabaena flosaquae, Anabaena azolae and Anabaena azotica	Growth, photosynthesis and nitrogenase activity	Shen et al. [133]
10	Sulfosulfuron	1-(4,6-dimethoxypyrimidin-2-yl)-3-(2-ethylsulfonylimidazo(1,2-a)pyridin-3-ylsulfonil) azura	Pyrimidinylsulfonil-urea	Nostoc muscorum, Anabaena flosaquae, Anabaena azolae and Anabaena azotica	Toxicity	Singh et al. [102]
11	Imazamox	2-[[RS]-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-5-methoxymethyl nicotinic acid	Imidazolinone	Anabaena sp., Cylindrospermum raciborsckii, Microcystis aeruginosa and Pseudanabaena limnetica	Toxicity	Netherland et al. [116]
12	Penasulam	3-(2,2-difluoroethoxy)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-α,α,α-trifluorotoluene-2-sulfonamid	Triazolopyrimidine sulphonamide	Anabaena sp., Cylindrospermum raciborsckii, Microcystis aeruginosa and Pseudanabaena limnetica	Toxicity	Netherland et al. [116]
C	Inhibitors of microtubule assembly					
13	Pendimethalin	N-(1-ethylpropyl)-2,6-dinitro-3,4-xyldine	Dinitroaniline	Nostoc muscorum	Toxicity	Singh et al. [102]
14	Trifluralin	α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine	Dinitroaniline	Plectonema boryanum and Cyanophage LPP-1	Growth Inhibition	Mallison and Cannon [71], Aslim and Ozturk [70], Koksoy and Aslim [114]
				Chroococcus sp., Microcystis sp. and Synechococcus sp.	Toxicity	
				Microcystis sp., Synechocystis sp., Chroococcus sp. and Synechococcus sp.	Growth	
D	Synthetic auxin					
15	2,4 D	(2,4, dichlorophenoxy) acetic acid	Phenoxy acids	Anabaena	Nitrogen fixation and ammonia excretion	Subramanian and Shanmugasundaram [139], Leganés and Fernández-Valiente [66], Tözüm-Calgan and Sivaci-Gün [67], Tiwari et al. [68]
				Anabaena, Nostoc and Nodularia	Growth, photosynthesis and nitrogen fixation	
				Gloeocapsa	Growth and nitrogen fixation	
				Pseudanabaena, Limnotrix	Dry weight and generation times	
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
--------	-----------	---------------	-----------------	-------------	----------------------	-----------
1	Phormidium, Microcoleus, Plectonema, Lyngbya and Oscillatoria	Synechococcus PCC7942, Nostoc muscorum and Spirulina platensis	Hypersaline cyanobacterial mat	Nostoc muscorum, N. punctiforme, N. calcicola, Anabaena variabilis, Gloeocapsa sp. and Aphanocapsa sp.	Growth and photosynthesis	Tripathi et. al. [69]
2		Oscillatoria sp.		Oscillatoria sp. dominated cyanobacterial mat	Biodegradation	Singh and Datta [91 and 81]
3		Chroococcus sp., Microcystis sp. and Synechococcus sp.		Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica	Sorption	Singh et al. [90]
4	Anabaena fertilissima				Toxicity	Kumar et. al. [177]
5	Nostoc muscorum				Photosynthetic pigments, carbohydrates, amino acids, protein, phenol, NR, GS and SDH activity	Singh et al. [102]
6	Anabaena variabilis				Toxicity	Singh et al. [27]
7		Microcystis sp., Synechocystis sp., Chroococcus sp. and Synechococcus		Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica	Photosynthetic pigments, photosynthesis, respiration, nitrogen fixation and GS activity	Koksoy and Aslim [114]
8		Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica		Anabaena torulosa	Biodegradation	Kumar et al. [172]
9		Synechococcus aeruginosus			Biosensor	Shing et al. [178]

Singh et al.; ARRB, 9(4): 1-39, 2016; Article no.ARRB.22614
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
16	Methylchloro phenoxy acetic acid (MCPA)	(4-chloro-3-methylphenoxy)acetic acid	Phenoxy acids	Anabaena, Nostoc and Nodularia	Growth, photosynthesis and nitrogenase activity	Leganés and Fernández-Valiente [66]
				Anabaena sp. and Microcystis viridis	Photosynthesis, antioxidant enzymes and DNA damage	Chen et al. [125]
17	Triclopyr	3,5,6-trichloro-2-pyridyloxyacetic acid	Quinolone carboxylic acid	Anabaena flosaquae, Microcystis flosaquae and Microcystis aeruginosa	ToxiCity	Ma et al. [40]

E Inhibitors of photosynthesis at PS-II site A

Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
18	Ametryn	N\(^2\)-ethyl-N\(^4\)-isopropyl-6-methylthio-1,3,5-triazine-2,4-diamine	Triazine	Plectonema boryanum and Cyanophage LPP-1	Growth Inhibition	Mallison and Cannon [71]
				Anabaena flosaquae, Microcystis flosaquae and Microcystis aeruginosa	Toxicity	Ma et al. [40]
19	Atrazine	6-chloro-N\(^2\)-ethyl-N\(^4\)-isopropyl-1,3,5-triazine-2,4-diamine	Triazine	Anabaena flosaquae and Selenastrum capricornutum	Growth Inhibition	Mallison and Cannon [71]
				Anabaena inaequalis, Aphanizomenon flos-aquae, Pseudoanaabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricauda, Selenastrum capricornutum and Vibrio fischeri	Growth	Abou-Waly et al. [180]
				Synechococcus sp.	7-day carbon uptake	Peterson et al. [50]
				Synechocystis sp. strain PCC 6893	Biosensor	Preuss and Hall [181]
				Cyanobacterial strain SG2	Resistance	Narusaka et al. [127]
				Synechocystis sp. strain PCC 6803	psbA1 gene	Sajjaphan et al. [73]
				Synechococcus sp., Arthospira sp., Ankistrodesmus falcatus, Chlorella vulgaris, Staurastrum cristatum, Cyclotella meneghiana, Nitzschia palea, Cryptomonas ovata and Euglena gracilis	Biosensor	Shao et al. [179]
				Synechococcus elongates	Growth Inhibition	Lockert et al. [53]
				Synechococcus elongates and Chlorella vulgaris	Biosensor	Kobilžek et al. [182]
					Herbicide removal	González-Barreiro et al. [173]
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
--------	-------------	---------------	-----------------	--	---	-----------
20	Bromacil	(RS)-5-bromo-3-sec-butyl-6-methyluracil	Uracil	Microbial assemblages, *Thermosyneochococcus elongatus*, *Synecochoccus sp.*, *Pseudokirchneriella subcapitata*, *Isochrysis galbana*, *Dunaliella tertiolecta* and *Pseudodactylum tricornutum*, *Anabaena variabilis*	Chlorophyll a, Carbon assimilation and biomass, Photosystem-II	Downing et al. [183]
				Anabaena variabilis, *Nostoc muscorum*, *Microcystis novacekii*	Low molecular weight molecules, lipids, polysaccharides and proteins	Zimmermann et al. [184]
				Anabaena inaequalis, Aphanizomenon flosaquae, Pseudoanabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricauda, Selenastrum capricornutum and *Vibrio fisheri*	Photosynthetic pigments and photosynthesis	Weiner et. al. [55]
21	Cyanzine	2-(4-chloro-6-ethylamino-1,3,5-triazin-2-ylamino)-2-methylpropiononitrile	Triazine	Anabaena inaequalis, Aphanizomenon flosaquae, Pseudoanabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricauda, Selenastrum capricornutum* and *Vibrio fisheri*	Chlorophyll a, photosynthesis, respiration and heterocyst frequency	Singh et al. [56]
				Anabaena inaequalis, Aphanizomenon flosaquae, Pseudoanabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricauda, Selenastrum capricornutum* and *Vibrio fisheri*	Toxicity	Singh et al. [56]
				Anabaena flosaquae, Microcystis flosaquae and *Microcystis aeruginosa*	Bioaccumulation removal	Campos et al. [57]
				Anabaena inaequalis, Aphanizomenon flosaquae, Pseudoanabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricauda, Selenastrum capricornutum and *Vibrio fisheri*	Toxicity and photosynthesis, 7-day carbon uptake	Debiol et al. [58]
22	Hexazinone	3-cyclohexyl-6-dimethylamino-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione	Triazine	Anabaena flosaquae, Microcystis flosaquae and *Microcystis aeruginosa*	Toxicity	Ma et al. [40]
				Anabaena flosaquae and Selenastrum capricornutum	Growth	Abou-Waly et al. [180]
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
---------	-----------	---------------	----------------	-------------	----------------------	-----------
23	Metribuzin	4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4-triazin-5-one	Triazinone	Anabaena inaequalis, Aphanizomenon flos-aquae, Pseudoanabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricauda, Selenastrum capricornutum and Vibrio fisheri	7-day carbon uptake	Peterson et al. [44 and 50]
24	Prometryne	N²,N⁴-diisopropyl-6-methylthio-1,3,5-triazine-2,4-diamine	Triazinone	Anabaena inaequalis, Aphanizomenon flos-aquae, Pseudoanabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricauda, Selenastrum capricornutum and Vibrio fisheri	Toxicity	Singh et al. [102]
				Nostoc muscorum Anabaena sp.	Photosynthetic pigments Growth and photosynthetic pigments Toxicity	Okmen et al. [120] Shen et al. [185]
25	Simazine	6-chloro-N²,N⁴-diethyl-1,3,5-triazine-2,4-diamine	Triazinone	Anabaena inaequalis, Aphanizomenon flos-aquae, Pseudoanabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricauda, Selenastrum capricornutum and Vibrio fisheri	7-day carbon uptake	Peterson et al. [50]
				Synechococcus elongatus	Biosensor	Kobilžek et al. [182 and 186]
				Anabaena flosaquae, Microcystis flosaquae and Microcystis aeruginosa Synechocystis sp. strain PCC 6803	Toxicity	Ma et al. [40]
26	Simetryn	N²,N⁴-diethyl-6-methylthio-1,3,5-triazine-2,4-diamine	Triazinone	Anabaena flos-aquae, Microcystis flos-aquae and Microcystis aeruginosa	Biosensor	Shao et al. [179]
				Thermosyneochococcus elongatus and Chlorella vulgaris	Toxicity	Ma et al. [40]
27	Terbutryn	N⁴-tert-butyl-N⁴-ethyl-6-methylthio-1,3,5-triazine-2,4-diamine	Triazinone	Synechococcus elongates and Chlorella vulgaris	Herbicide removal	González-Barreiro et al. [173]
				Thermosyneochococcus elongatus	Photosystem-II	Zimmermann et al. [184]
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
--------	-----------	---------------	----------------	-------------	----------------------	-----------
28	Trietazin (Tritazine)	6-chloro-N,N,N,N9-triethyl-1,3,5-triazine-2,4-diamine	Triazine	Thermosyneochococcus elongatus	Photosystem-II	Broser et al. [137]
29	Irgarol	2-methylthio-4-tert-butylamino-6-cyclopropylaminos-triazine	Triazine	Thermosyneochococcus elongatus	Photosystem-II	Zimmermann et al. [184]
				Thermosyneochococcus sp. PCC 7942	Growth, lipids and antioxidant	Deng et al. [100]
30	Bentazon	3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide	Benzothiadiazole	Synechococcus elongatus PCC 7942	Tolerance mechanism	Bagchi et al. [92 and 130]
				Nostoc muscorum	Photosynthesis, photosynthetic pigments and respiration	Galhano et al. [94]
				Anabaena cylindrica	Photosynthetic pigments, protein, carbohydrate, photosynthesis and respiration and antioxidant system	Galhano et al. [93 and 151]
				Anabaena sp.	Photosynthetic pigments	Gulten and Onur [112]
31	Bromoxynil	3,5-dibromo-4-hydroxybenzonitrile	Nitrile	Synechococcus elongatus	Biosensor	Kobiližek et al. [182 and 186]
32	Ioxynil	4-hydroxy-3,5-diiodobenzonitrile	Nitrile	Synechococcus elongatus PCC7942	Stress tolerance mechanism	Bagchi et.al. [92] and Kobiližek et al. [182 and 186]
				Synechococcus elongatus	Biosensor	Zimmermann et al. [184]
				Thermosyneochococcus elongatus	Photosystem-II	Tripathi et al. [69]
33	Diuron (DCMU)	3-(3,4-dichlorophenyl)-1,1-dimethylurea	Urea	Nostoc muscorum	Growth and heterocyst formation	Vaishampayan [187]
				Plectonema boryanum and Cyanophage LPP-1	Growth Inhibition	Mallison and Cannon [71] and Zargar and Dar [80]
				Anabaena, Nostoc and Oscillatoria	Growth and Nitrogen fixation	Preuss and Hall [181]
				Synechococcus sp.	Biosensor	
				Synechocystis sp. strain PCC 6893	Herbicide Resistance	Narusaka et al. [127]
				Synechococcus PCC7942.	Growth and photosynthesis	Tripathi et. al. [69]
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
--------	-----------	---------------	-----------------	-------------	----------------------	-----------
13				Nostoc muscorum and Spirulina platensis	Biosensor	Shao et al. [179]
				Synechocystis sp. strain PCC 6803	Biosensor	Kobilžek et al. [182 and 186]
				Synechococcus elongatus	Photosystem-II	Zimmermann et al. [184]
				Thermosynechococcus elongates	Photosynthetic energy dissipation	Deblis et al. [136]
				Microcystis aeruginosa, Synechocystis sp. and Synechococcus sp.	Photosynthetic pigments and photosynthesis	Singh et al. [56]
				Anabaena variabilis	Chlorophyll a, photosynthesis, respiration and heterocyst frequency	Singh et al. [56]
				Anabaena variabilis	Photosynthesis, antioxidant enzymes and DNA damage	Chen et al. [125]
				Anabaena sp. and Microcystis viridis	Fluorescence Kinetics	Deng et al. [110] Leunert et al. [74]
				Synechococcus sp. PCC 7942	Growth, lipids and antioxidant enzymes	Safi et al. [176]
				Microcystis aeruginosa, Aphanizemenon flosaquae, Scenedesmus obliquus and Desmodesmus subsicus	Cyanobacterial Mat	Mellison and Cannon [71]
				Microcystis aeruginosa, Anabaena cylindrica, A. flosaquae and A. spiroides	Toxicity and biodegradation	Mansy and El-Bestawy [109]
34	Fluometuron	1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea	Urea herbicide	Plectonema boryanum and Cyanophage LPP-1	Biodegradation	Safi et al. [176]
				Microcystis aeruginosa, Anabaena inaequalis and Chlorella kessleri	Growth Inhibition	Mellison and Cannon [71]
				Anabaena variabilis	Toxicity and biodegradation	Mansy and El-Bestawy [109]
				Microcystis aeruginosa, Anabaena inaequalis and Chlorella kessleri	Toxicity and biodegradation	Mansy and El-Bestawy [109]
	Isoproturon	3-(4-isopropylphenyl)-1,1-dimethylurea	Urea herbicide	Anabaena variabilis	Biodegradation	Mostafa and Helling [170]
				Microcystis aeruginosa, Anabaena inaequalis and Chlorella kessleri	Nitrogen metabolism	Aftab et al. [150] Aslim and Ozturk [70]
36	Linuron	3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea	Urea herbicide	Chroococcus sp., Microcystis sp. and Synechococcus sp. Isolates	Toxicity	Aslim and Ozturk [70] Aslim and Ozturk [70]
				Microcystis sp., Synechocystis sp., Synechococcus sp. and Synechococcus sp.	Growth (Chlorophyll a)	Koksoy and Aslim [114]
				Nostoc muscorum	Growth and heterocyst	Vaishampayan [187]
37	Monuron	3-(4-chlorophenyl)-1,1-dimethylurea	Urea herbicide	Nostoc muscorum	Dry weight, protein and Chl a	Inderjit and Kaushik [117]
38	Propanil	3′,4′-dichloropropionanilide	Amide	Anabaena fertilissima	Dry weight, protein and Chl a	Inderjit and Kaushik [117]
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
--------	-------------	---	---------------------	--	---	------------------------------------
39	Tebuthiuron	1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea	Substituted urea herbicide	Anabaena inaequalis, Aphanizomenon flos-aquae, Pseudoanabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricauda, Selenastrum capricornutum and Vibrio fisheri	7-day carbon uptake	Peterson et al. [50]
H	Inhibitors of lipid synthesis			Anabaena, Nostoc and Nodularia	Growth and Nitrogen fixation	Okmen et al. [62]
40	Molinate	S-ethyl perhydroazepine-1-thiocarboxylate	Thiocarbamate	Nostoc muscorum	Photosynthesis, photosynthetic pigments and respiration	Gaihano et al. [94]
				Anabaena cylindrica	Photosynthetic pigments, protein, carbohydrate, photosynthesis and respiration	Gaihano et al. [93]
				Nostoc muscorum	Antioxidant system and fatty acid profile	Gaihano et al. [124]
41	Thiobencarb (Benthiocarb)	S-4-chlorobenzyl diethyl(thiocarbamate)	Thiocarbamate	Anabaena, Nostoc and Oscillatoria	Growth and nitrogen fixation	Zargar and Dar [80]
				Nostoc muscorum	Growth, pigments and nitrogen fixation	Bhunia et al. [106]
				Nostoc spatroides	Growth, photosynthetic pigment and photosynthesis	Xia, J [107]
				Nostoc muscorum	Protein profiling, nitrogenase, glutamine synthetase, oxaloacetic acid transaminase and glutamic pyruvic transaminase activities	Dowidar et al. [144]
				Anabaena variabilis	Growth and photosynthesis	Battah et al. [188]
I	Inhibitor of 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSP)					
42	Glyphosate	N-(phosphonomethyl) glycine	Organophosphorus	Synechocystis PCC6803 and Anabaena variabilis ATCC 29413	Tolerance limit and photosynthesis	Powell et al. [59]
				Anabaena inaequalis, Aphanizomenon flos-aquae, Pseudoanabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricauda,	7-day carbon uptake	Peterson et al. [50]
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
---------	-----------	---------------	-----------------	-------------	---------------------	-----------
				Selenastrum capricornutum and *Vibrio fisheri*	Chlorophyll a fluorescence	Shikha and Singh [129]
				Wild and mutant strains of *Anabaena dolium*	Glyphosate degradation	López-Rodas et al. [61]
				Spirulina sp.	Herbicide tolerance and resistance	Forlani et al. [60]
				Microcystis aeruginosa	Herbicide Tolerance and mineralization	
				Anabaena sp., *Arthroseira fusiformis*, *Leptolyngbya boryanum*, *Microcystis aeruginosa*, *Nostoc punctiforme* and *spirulina platensis*		
				Anabaena fertiissima	Dry weight, protein and Chl a	Inderjit and Kaushik [117]
				Anabaena sp. and *Microcystis viridis*	Photosynthesis, antioxidant enzymes and DNA damage	Chen et al. [125]
				Scenedesmus quadricauda and *Merismopedia glauca*	Growth, cell number, chlorophyll a, proteins and carbohydrates	Issa et al. [62]
				Nostoc muscorum	Toxicity	Singh et al. [102]
				Microcystis wesenbergii	Chlorophyll a fluorescence	Sun et al. [65]
J	Inhibitor of phytoene desaturase (PDS)			*Synechococcus* sp. PCC 7942	Phytoene desaturase	Chamovitz et al. [189]
43	Fluridone	1-methyl-3-phenyl-5-(α,α,α-trifluoro-m-toly)-4-pyridone	Not Known	*Synechococcus* sp. PCC 7942		Chamovitz et al. [189]
44	Norflurazon	4-chloro-5-methylamino-2-(α,α,α-trifluoro-m-toly)pyridazin-3(2H)-one	Pyridazine	*Synechococcus* PCC7942	Carotenoid biosynthesis	Chamovitz et al. [189]
K	Inhibitor synthesis of very long chain fatty acids			*Chloroacetamide*	Biodegradation	El-Nahhal et al. [174]
45	Acetochlor	2-chloro-N-ethoxymethyl-6'-ethylacet-α-toluclidide	Chloroacetamide	*Nostoc muscorum, N. punctiforme, N. calciola, Anabaena variabilis, Gloeocapsa sp. and Aphanocapsa sp.*	Tolerance limit, protein, photosynthetic pigment, photosynthesis and nitrogen fixation	Singh and Datta [91 and 81]
46	Alachlor	2-chloro-2',6'-diethyl-N-methoxymethylacetanilide	Chloroacetamide	*Aphanizomenon flos-aquae, Pseudokirchnerella subcapitato, Daphnia magna, and D. longispina Anabaena variabilis*	Ecotoxicological impact	Abrantes et al. [190]
					Growth, photosynthesis,	Singh et al. [27]
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
---------	-----------	---------------	-----------------	-------------	----------------------	-----------
47	Anilofos	S-4-chloro-N- isopropylcarbaniloylmethyl O,O- dimethyl phosphorodithioate	Organophosphorus	*Nostoc muscorum, N. punctiforme, N. calcicola, Anabaena variabilis, Gloeocapsa sp. and Aphanocapsa sp.*	photosynthetic pigments, respiration, nitrogen fixation and GS activity	Singh and Datta [91 and 81], Singh et al. [90]
				Nostoc muscorum	Toxicity	Singh et al. [42]
				Anabaena variabilis	Growth, photosynthesis, photosynthetic pigments, respiration, nitrogen fixation and GS activity	Singh et al. [27]
				Anabaena torulosa	Tolerance, pigments, photosynthesis, nitrogen assimilation and antioxidants	Singh et al. [42]
48	Butachlor	N-butoxymethyl-2-chloro-2',6'-diethylacetanilide	Chloroacetamide	*Synechocystis* sp. strain PUPCCC 64 *Anabaena, Nostoc, Oscillatoria and Westiellopsis* *Nostoc muscorum, N. punctiforme, N. calcicola, Anabaena variabilis, Gloeocapsa sp. and Aphanocapsa sp.*	Tolerance and mineralization, tolerance, photosynthetic pigments and ammonia excretion, tolerance, photosynthetic pigment, photosynthesis and nitrogen fixation	Singh et al. [43], Selvakumar et al. [119]
				Nostoc	Photosynthetic pigments and photosynthesis	Singh and Datta [91 and 81], Singh et al. [90]
				Aulosira fertilissima	Photosynthetic pigments, photosynthesis and plasma membrane integrity	Kumari et al. [83]
				Nostoc muscorum	Protein profiling, nitrogenase, glutamine synthetase, oxaloacetic acid transaminase and glutamic pyruvic transaminase activities	Dowidar et al. [144]
				Nostoc muscorum	Toxicity	Singh et al. [91]
				Anabaena variabilis	Growth, photosynthesis, photosynthetic pigments, respiration, nitrogen fixation and GS activity	Singh et al. [27]
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
---------	-----------------	--	-----------------	---	---	--
49	Menfenacet	2-benzothiazol-2-ylxyo-N-methylacetonilide	Oxyacetamide	Plectonema boryanum	GS activity	Kumar and Vikash [118]
				Nostoc sp.	Pigments and antioxidant	He et al. [84]
				Anabaena 7120, Anabaena doliolium and Anabaena LC31	Photosynthetic pigments and fluorescence kinetics	Agrawal et al. [86]
				Anabaena variabilis	Proteomics	
				Nostoc muscorum	Nitrogen metabolism	
				Nostoc muscorum	Toxicity and Biodegradation	Aftab et al. [150]
				Nostoc muscorum	Phospholipid fatty acid profiles	Annes et al. [85]
50	Metachlor	2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl-ethyl)acylamide	Chloroacetamide	Plectonema boryanum and Cyanophage LPP-1	Growth Inhibition	Mallison and Cannon [71]
51	Pretilachlor	2-chloro-2',6'-diethyl-N-(2-propoxyethyl)acetonilide	Chloroacetamide	Nostoc muscorum	Soil microbial communities	
				Nostoc muscorum	Phospholipid fatty acid profiles	Murata et al. [191]
				Anabaena fertilissima	Dry weight, protein and Chl a	Inderjit and Kaushik [117]
				Nostoc muscorum	Toxicity	Singh et al. [102]
				Anabaena variabilis	7-day carbon uptake and growth inhibition	Peterson et al. [44]
L	Photosystem-I electron diverters			Anabaena inaequalis, Aphanizomenon flos-aquae, Pseudoanabaena sp., Oscillatoria sp., Microcystis aeruginosa, Cyclotella meneghiana, Nitzschia sp., Scenedesmus quadricula, Selenastrum capricornutum and Duckweed	7-day carbon uptake and growth inhibition	Dragolova et al. [48]
52	Diquat	6,7-dihydrodipyrind(1,2-a:2',1'-c) pyrazine-5,8-dium	Bipyridylum	Anabaena variabilis and Plectonema boryanum	Growth inhibition, alkaline phosphatase, proline, lipids, Biosensor Sorption	Shao et al. [180]
				Synechocystis sp. strain PCC 6803		Kumar et. al. [177]
				Oscillatoria sp. dominated cyanobacterial mat		
				Cylindrospermum raciborskii		Leboulanger et al. [192]
53	Paraquat	1,1'-dimethyl-4,4'-bipyridinium dichloride	Bipyridylum	Anabaena oryzae and Nostoc elliposporum		Pandey et al. [49]
	dichloride					
Sr. no.	Herbicide	Chemical name	Chemical family	Organism(s)	Parameter(s) studied	Reference
--------	-----------------	--	-----------------	---	---	----------------------------------
M	Inhibitors of 4-hydroxyphenyl-pyruvate dioxygenase (4-HPPD)					
54	Mesotrione	2-(4-mesyl-2-nitrobenzoyl)cyclohexane-1,3-dione	Triketone	Cyanobacterial community	Dose-response effects	Singh et al. [102]
N	Inhibitors of protoporphyrinogen oxidase (Protax)					
55	Carfentrazone-ethyl (Shark)	ethyl (RS)-2-chloro-3-[2-chloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]-4-fluorophenyl]proponate	Triazolone	Nostoc spongiforme	Growth rate	Crouzet et al. [175]
56	Oxyfluoren	2-chloro-α,α,α-trifluoro-p-tolyl 3-ethoxy-4-nitrophenyl ether	Dipheneether	Nostoc muscorum and Phormidium foveolarum	Tolerance, Growth, photosynthesis, nutrient uptake, nitrate reductase and alkaline phosphatase	Spencer et al. [89] Ravinderan et al. [96] Sheeba et al. [97]
57	Oxadiazon	5-tert-butyl-3-(2,4-dichloro-5-isoproxyphenyl)-1,3,4-oxadiazol-2(3H)-one	Oxadiazolone	Microcystis aeruginosa Synechocystis and Synechococcus	Photosynthetic energy dissipation	Deblios et al. [136]
O	Membrane disruptor					
58	Dinoseb	2-tert-butyl-4,6-dinitrophenol Dinitrophenol herbicide	Dinitrophenol herbicide	Synechocystis PCC 6803	Resistance, Biosensor	Elanskaya et al. [165] Kobilžek et al. [182 and 186]
Bensulfuron-methyl at low dose (0.1-1.0 ppm) stimulated the growth of Anabaena variabilis KJ-013 and Nostoc commune KJ-018 while high doses (8 and 10 ppm) caused more than 50% growth inhibition after 24 h of incubation [87]. Anabaena sp. and Nostoc sp. tolerated butachlor up to 30 ppm whereas Nodularia sp. was able to tolerate this herbicide up to 50 ppm [88]. Londox, a commercial form of bensulfuron-methyl at 0.028 ppm did not affect the growth of cyanobacterium Nostoc spongiforme when applied in combination with carfentrazone ethyl herbicide [89]. Nostoc muscorum, Nostoc calcicola, Aphanocapsa sp. and Gloeocapsa sp. tolerated anilofos (arozin) up to 5 ppm, Nostoc punctiforme up to 10 ppm and Anabaena variabilis up to 20 ppm [90 and 91]. Other reports showed that Oscillatoria simplicissima grew in Bensulfuron-methyl up to 40 ppm [41], Synechocystis sp. NUPCCC 64 up to 30 ppm [43] and Anabaena torulosa up to 10 ppm of anilofos [42]. Trifluralin (169-467 ppm) and linuron (0.038-0.441 ppm) caused 50% growth reduction in 10 cyanobacterial isolates belonging to Chroococcus, Microcystis, and Synechocystis (4) [70]. Wild and resistant strains of cyanobacterium Synechococcus elongatus PCC 7942 exhibited 50% survival when incubated in 30 and 150 µM bromoxylonil, respectively [92].

Effects of molinate and bentazon were studied on Anabaena cylindrica during a short-term experiment of 72 h [93]. The results revealed that both herbicides had a pleiotropic effect on the cyanobacterium at the range of 0.75-2 mM concentrations. Cyanobacterial growth was more adversely affected by molinate than bentazon. More than 50% growth inhibition was observed after 48 h treatment with 1.5-2 mM of molinate in A. cylindrica. Bentazon and molinate were also toxic to Nostoc muscorum with 72 h EC50 values being 22.7 and 1.2 mM, respectively [94]. In another study Sabater and Carrasco [95] obtained 96 h EC50 value of 13 ppm of molinate for this cyanobacterium. Cyanobacteria Paeudanabaena galeata, Anabaena sp., Nostoc and Nodularia sp. were able to tolerate molinate up to 100 ppm [88].

Oxyfluorfen (20 ppm) inhibited growth (50-67%) when measured in terms of protein content in four isolates of Oscillatoria [96]. Oxyfluorfen showed differential inhibitory effects on Nostoc muscorum and Phormidium foveolarum as indicated by decreased biomass production, photosynthetic pigments and photosynthetic activities. Exposure to 10 and 20 ppm oxyfluorfen caused reduction in dry masses by 41% and 50% in N. muscorum and only by 6% and 15% in P. foveolarum, respectively [97]. Ma et al. [40] in 96 h acute toxicity test demonstrated 50% growth reduction in Anabaena flosaquae, Microcystis flosaquae and Microcystis aeruginosa [40]. Exposure to 10 and 20 ppm diclofop caused reduction in dry biomass by 40-50% in Nostoc muscorum and by 6-15% in Phormidium foveolarum [97]. To explore the enantioselective effect of chiral herbicide dichlofop-methyl and its major metabolite dichlofop acid (DA), the physiological characteristics of Microcystis aeruginosa were investigated using biomass as growth parameter. Stimulation of biomass by R-DA and S-DA was apparent up to 5 ppm concentration. Ultra structural changes in gas vacuole, thylakoids, glycogen, cyanophycean granules, polyhedral bodies indicated different toxicity modes of these chemicals [98].

Lürling and Roessink [99] showed that Scenedesmus (green alga) out competed Microcystis (cyanobacterium) in the absence of herbicide metribuzin whereas the reverse was true in the presence of this herbicide. Herbicide irgarol (0.019 µM) was five times more toxic than diuron (0.097 µM) to Synechococcus sp. PCC 7942 as indicated by their EC50 values in a 96 h growth experiments [100]. A 96 h EC50 value of 7.71 ppm of irgarol for a marine cyanobacterium Chroococcus minor was observed [101]. Herbicide shark, a commercial form of carfentrazone ethyl, at 0.147 ppm did not affect the growth rate of Nostoc spongiforme [89]. The toxicity of thirteen herbicides to Nostoc muscorum has been studied using 94 h growth inhibition test by taking absorbance and chlorophyll a as growth parameters. The order of tolerance level of these herbicides was: 2,4 D > methyl metulsufuron > glyphosate > butachlor > atrazine > sulfosulfuron > metribuzin > pendimethalin > clodinafop propargyl > anilofos > cyhalofop butachlor > pretiachlor > paraquat dichloride. Further these results indicated that toxic effects of herbicides did not correlate with the nature, mode of action and class type of herbicide [102].

Singh et al.; ARRB, 9(4): 1-39, 2016; Article no.ARRB.22614
3. PHOTOSYNTHETIC PIGMENTS

3.1 Chlorophyll a (Chl a)

Chlorophyll biosynthesis is catalysed by several enzymes in multiple steps [103,104]. The effect of different herbicides on Chl a synthesis in cyanobacteria varied due to differential nature and mode of action. Carotenoid inhibiting herbicide fluridone inhibited Chl a pigment in Oscillatoria agardhii in a dose dependent manner [105]. Thiobencarb (2-6 ppm) reduced the Chl a content in Nostoc muscorum by 56-97% and it was suggested that the low pigment may be as a result of photo oxidation arising from inability of Chl a to dissipate its absorbed excitation energy when electron transport was inhibited by herbicide [106]. While other studies demonstrated that thiobencarb (2-10 ppm) did not affect significantly the Chl a pigment in Nostoc sphaeroides [107].

Atrazine (10-100 ppb) inhibited Chl a pigment of Oscillatoria limnetica, Arthrosira sp., and Synechococcus sp. [53,108]. Sub-lethal concentration of pure (6 ppm) and formulated form (2 ppm) of atrazine and DOMU (0.4 and 0.5 ppm) inhibited Chl a content by 74-80% in wild type and 68-77% in multiple herbicide resistant strain of cyanobacterium Anabaena variabilis [56]. Flumeturon (140-1400 ppm) caused reduction in Chl a pigment in time and dose dependent manner in six cyanobacterial strains belonging to Microcystis aeruginosa, Anabaena cylindrica, Anabaena flosaquae and Anabaena spiroides, with complete inhibition after 2-3 days of exposure. The inhibition of Chl a content was species specific. The order of affected species at highest tested dose was: Anabaena spiroides > Microcystis aeruginosa (11) > Microcystis aeruginosa (15) > Microcystis aeruginosa (1) > Anabaena cylindrica > Anabaena flosaquae [109].

Monosulfuron (0.008-800 ppm) exerted its effect on Chl a of Anabaena flosaquae in a dose dependent manner under 2000-4000 lux light intensity. Chl a synthesis was more sensitive under 2000 lux light intensity than other light intensities [76]. The herbicide also exhibited a dose dependent reduction in Chl a of Anabaena flosaquae in presence of different nitrogen contents. The content of Chl a was reduced by 47-73% in presence of 0.05 ppm nitrogen and 85-97% in 0.8 ppm nitrogen after treatment with monosulfuron (0.016-0.30 ppm) for 144 h indicating synergistic effect [77].

Yan et al. [110] observed increased Chl a content (17-62%) in Anabaena sphaerica after 6 days treatment with 5-50 ppm molinate under 300-3000 lux light intensity. While Kobbia et al. [111] verified reduction in Chl a content in Anabaena variabilis at all the tested concentrations (0.2-0.8 ppm) of molinate. The effects of commercial formulations of two selective herbicides molinate (Ordham) and bentazon (Basagran) recommended for integrated weed management (IWM) on rice were laboratory assessed on Anabaena cylindrica during a short-term experiment of 72 h [93]. The results revealed that both herbicides had a pleiotropic effect on the cyanobacterium at the range of concentrations tested (0.75-2 mM). The same authors also reported that molinate (2 mM) inhibited Chl a (20%) in Nostoc muscorum after 72 h treatment as a result of degradation of lipid complex associated with pigments in thylakoids [94]. Xia [107] demonstrated that 10 ppm of thiobencarb had insignificant effect on Chl a synthesis of Nostoc sphaeroides. The constant level of Chl a content of Nostoc muscorum culture exposed to bentazon (0.75-2.0 mM) demonstrated that herbicide had no effect on this photo pigment [93]. While comparing the Chl a content of two strains of Anabaena isolated from Turkey rice fields, Gulten and Onur [112] reported that bentazon (100 ppm) inhibited Chl a content severely in Anabaena sp. GO10 than Anabaena sp. GO4.

Low concentration (1 mM) of 2,4 D and MCPA did not affect the Chl a synthesis in Anabaena UAM 202 while higher dose (10 mM) of both herbicides completely degraded Chl a after 48 h treatment [66]. 2,4 D (5-20 ppm) inhibited Chl a synthesis by 30-52% in immobilized Nostoc muscorum, Nostoc punctiforme, Nostoc calcicola, Anabaena variabilis, Aphanocapsa sp., and Gloeocapsa sp. [91]. The decrease in Chl a content by 60-77% was reported in Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica after treatment with 60-120 ppm of 2,4 D was reported [113]. Koksy and Aslim [114] reported inhibition of Chl a by 2,4 D (123-748 ppm), trifluralin (139-882 ppm) and linurin (0.02-0.77 ppm) in several strain of cyanobacteria.

Anilofos (10 ppm) enhanced Chl a synthesis in Anabaena variabilis ARM310 [115]. The commercial formulation of anilofos, arozin at IGC50 concentration severely affected Chl a in Nostoc muscorum, Gloeocapsa sp. and Aphanocapsa sp. as compared to Anabaena.
variabilis, Nostoc punctiforme and Nostoc calcicola [90]. Immobilized forms of Nostoc muscorum, Nostoc punctiforme, Nostoc calcicola, Anabaena variabilis, Aphanocapsa sp., and Gloeocapsa sp. exhibited a reduction in chl a (44-67%) when treated with at IGC_{50} dose of anilofos [91]. Treatment with anilofos (10-20 ppm) for 6 day caused a reduction in Chl a content by 18-47% in Oscillatoria simplicissima [41] while a decrease of 21-60% in chl a content of Synechocystis sp. PUPCCC 64 by 5-20 ppm [43] and by 21-43% in Anabaena torulosa with 1.25-5.0 ppm anilofos [42] was reported.

Penoxasulam, an acetolactate synthesis inhibiting herbicide, at 100 ppb reduced Chl a by 90% in Anabaena sp. and 58% in Pseudanabaena limnetica but did not affect noxious cyanobacterium Microcystis aeruginosa [116]. Propanil (0.187-1.5 ppm) and glyphosate (10-80 ppm) also suppressed Chl a production by 5-38% in Anabaena fertilissima, while pretialachor (5-40 ppm) exhibited 10-45% reduction in Chl a content [117]. Alachlor (15-20 ppm) and butachlor (10-20 ppm) caused a decrease (27-47%) in Chl a content in immobilized cyanobacteria Nostoc muscorum, Nostoc punctiforme, Nostoc calcicola, Anabaena variabilis, Aphanocapsa sp., and Gloeocapsa sp. [91]. When the wild type and MHR strain of Anabaena variabilis were exposed to 10-100 ppm each of alachlor, arozin, butachlor and 2,4 D, the wild type exhibited 42-58% reduction in Chl a content while MHR strain showed 65-72% decrease [27]. Chl a content in Plectonema boryanum sharply declined (40%) in five day treatment with 40 ppm butachlor [118]. The dose dependent reduction in Chl a of Merismopedia glauca by glyphosate (37-150 ppm) was observed by Issa et al. [62]. Butachlor considerably declined Chl a in Aphanocapsa, Anabaena fertilissima, Anabaena variabilis, Gloeocapsa, Nostoc sp., Nostoc punctiforme, Nostoc calcicola, and N. muscorum [82-84, 91]. Other studies have revealed that butachlor at 3-12 ppm concentrations affected Chl a production in strains of Anabaena, Nostoc and Oscillatoria sp. but did not effect Chl a of Westiellopsis strains [119]. Fenoxaprop-p-ethyl (6.25 ppm) stimulated Chl a contents in Anabaena sp. GO10. Further, increasing herbicide concentrations suppressed Chl a synthesis in a dose dependent manner. Chl a contents was completely suppressed by 100 ppm of fenoxaprop. Another herbicide cyhalofop-butyl at 25 ppm partly stimulated this pigment in this cyanobacterium but pigment synthesis was completely inhibited at 400 ppm fenoxaprop [120].

3.2 Phycobiliproteins

Phycobiliproteins (PBS) are major light harvesting pigments and reserve of nitrogen in cyanobacteria [121] and it has been shown that these pigments are also affected by herbicides. The differential response of PBS to herbicides may be due to their exterior distribution on thylakoid membrane of cyanobacteria and thus direct contact with herbicides. Carotenoid inhibiting herbicide fluoridine did not exhibit inhibitory effect on phycocyanin in filamentous non-heterocystous cyanobacterium Oscillatoria up to 100 ppb [105]. The phycocyanin (PC), phycoerythrin (PE) and allophycocyanin (APC) content in Nostoc sphaeroides significantly declined (60%) on exposure to 10 ppm thiobencarb [107]. Monosulfuron (0.008-0.08 ppm) exerted stimulatory effect on PBS (increased by 11-46%) of Anabaena flosaquae but exhibited inhibitory effect (decreased by 33-98%) at higher concentrations (0.8-800 ppm) of herbicide when exposed to varied light intensities (2000, 3000 and 4000 lux). Further, these biliprotein were more sensitive to herbicide at 2000 lux light intensity than other light intensities [76]. Treatment of Aulosira fertilissima with butachlor (65 µM) for 15 days showed severe inhibition in synthesis of APC (75%) followed by APC (50%) and PE (49%) [83]. The effect of monosulfuron on PBS of Anabaena flosaquae grown in presence of nitrogen source displayed dose dependent affect. Exposure to monosulfuron (0.016-0.30 ppm) in presence of three nitrogen concentrations (0.05-0.8 ppm), the content of biliprotein decreased by 10-37% compared to control cultures [77].

The sub-lethal doses of pure and formulated forms of atrazine and DCMU reduced PC (73-79%) and PE (66-71%) content on day 8 in both wild type and MHR strain of Anabaena variabilis [56]. Phycobilipins were adversely affected by 2,4 D than Chl a and carotenoids in Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica [113].

Commercial formulation of anilofos, arozin (5-20 ppm) inhibited PC and PE content in range of 53-71% and 57-83%, respectively, in immobilized Nostoc muscorum, Nostoc punctiforme, Nostoc calcicola, Anabaena variabilis, Aphanocapsa sp., and Gloeocapsa sp. [91]. Anilofos (10-20 ppm) decreased PC content by 14-36%, APC by
12-32% and PE by 15-37% on day 6 in Oscillatoria simplicissima [41]. In diazotrophic cyanobacterium Anabaena torulosa, anilofos (1.25-5.0 ppm) decreased PC content by 20-50%, APC by 17-46% and PE by 14-48% [42]. Treatment of Synechocystis sp. PUPCCC 64 with 5-20 ppm anilofos for six days caused a loss of PC APC and PE by 55-99%, 25-85% and 47-80%, respectively [43].

Alachlor (15-20 ppm) decreased PC and PE content in the range of 29-75%, in Ca-alginate immobilized Nostoc muscorum, Nostoc punctiforme, Nostoc calcicola, Anabaena variabilis, Aphanocapsa sp., and Gloeocapsa sp. whereas butachlor (10-20 ppm) caused 59-81% reduction. 2,4 D (5-20 ppm), on the other hand reduced PC and PE content in the range of 30-88% in these cyanobacteria [91]. Total PBS content was more adversely affected by commercial formulations of molinate than bentazon in Anabaena cylindrica [93]. Gülten and Onur [112] compared the phycobilins of two species of Anabaena isolated from Turkey paddy fields and found that inhibition of these pigments was more pronounced in Anabaena sp. GO10 than GO4 when treated with 100 ppm bentazon.

Butachlor (3-12 ppm) significantly reduced phycobiliproteins (PBPS) in Anabaena, Nostoc and Oscillatoria strains but did not affect PBPS of Westiellopsis [119]. A reduction in PBPS content in Anabaena dolitulium by machete was reported by Kashyap and Pandey [122]. Chen et al. [82] showed that PC and APC content significantly increased when Ge–Xian–Mi (Nostoc) colonies were treated with 10 µM butachlor, but contents declined with further increase in butachlor concentration. Kumari et al. [83] observed a dose-dependent rise in PE, APC and PC of A. fertilissima cells, while He et al. [84] reported the decline in PBPS content in Nostoc sp. in presence of butachlor. Fenoxaprop-p-ethyl (6.25 ppm) stimulated PBPS in Anabaena sp. GO10. Further, increase in herbicide concentrations suppressed PBPS synthesis in a dose dependent manner. The PBPS was completely suppressed by 100 ppm of fenoxaprop. Other herbicide cyhalofop-butyl at 25 ppm partly stimulated PBPS in this cyanobacterium but completely repressed at 400 ppm concentration [120].

3.3 Carotenoids

Carotenoids are the essential pigments which protect the photosynthetic system from oxidative damage by stressors such as herbicides [123]. Carotenoids in non-nitrogen fixer Oscillatoria agadhai were severely inhibited by herbicide fluridone up to 100 ppb [105]. The carotenoid synthesis in this organism, exposed to 4000 lux light, was more sensitive to herbicide compared to other light intensities. Monosulfuron (0.008-0.08 ppm) reduced carotenoid production in Anabaena flosaquae by 28-90% when colonies were exposed to 3000 and 4000 lux light intensity after 144 h treatment [76]. Treatment for 8 days with sub-lethal doses of pure and formulated forms of atrazine and DCMU exhibited reduction in carotenoids synthesis (40-47%) in both wild type and MHR strain of Anabaena variabilis [56]. The production of carotenoid by Anabaena flosaquae was inhibited synergistically with increase in both nitrogen and monosulfuron concentrations. The content of carotenoids in cells of A. flosaquae was reduced by 31-100% when exposed to 0.05-0.8 ppm nitrogen and 0.016-0.3 ppm monosulfuron [77]. Carotenoids of Anabaena cylindrica were more adversely affected by commercial formulations of molinate (ordham) than bentazon (basagran) at 0.75-2.0 mM concentration [93]. Molinate (0.75-2.0 mM) after 72 h of treatment drastically inhibited carotenoids (96-98%) in Nostoc muscorum [124].

The carotenoid synthesis in diazotrophic Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica was affected in a time and dose dependent manner by 2,4 D. At the end of experiments after 16 days, carotenoids in Anabaena fertilissima were depleted by 80% at 60 ppm of 2,4 D. However, carotenoid content was decreased by 64% at 120 ppm in W. prolifica followed by A. fertilissima where reduction was 72% relative to control [113]. Treatment with anilofos (10-20 ppm) for 6 days caused more than 53% inhibition in synthesis of carotenoids in non-heterocystous Oscillatoria simplicissima [41], 26-45% reduction by 1.25-5.0 ppm in Anabaena torulosa [42] and 32-90% reduction by 5-20 ppm of herbicide in Synechocystis sp. PUPCCC 64 [43].

The addition of 10 µM each of glyphosate and MCPA significantly decreased the carotenoid content in UV irradiated cells of Microcystis novaci and Anabaena sp. while the addition of DCMU (10 µM) did not affect carotenoids in these cyanobacteria [125]. Compared to untreated control cultures, sub-lethal doses of pure and formulated forms of atrazine (2 and 6 ppm) and DCMU (0.4 and 0.5 ppm) reduced...
carotenoids by 40-47% on day 8 in wild type and MHR strain of Anabaena variabilis [56]. Five days exposure to 40 ppm butachlor sharply declined (70%) carotenoids in Plectonema boryanum [118]. Fenoxaprop-p-ethyl (6.25 ppm) stimulated β-carotene in Anabaena sp. GO10. Further, increase of herbicide suppressed this pigment in a dose dependent manner. The β-carotene was completely suppressed by 100 ppm of fenoxaprop. Herbicide cyhalofop-butyl at 25 ppm partly stimulated β-carotene in this cyanobacterium but completely repressed at 400 ppm concentration [120].

4. PHOTOSYNTHESIS

The inhibition of pigment synthesis by alteration in pigment synthesizing enzymes or due to different mode of action of herbicides results in alteration in photochemical activity which may disturb the light harvesting complex or energy transfer within photosystems which ultimately affect photosynthesis [97,126]. Thus, the response of cyanobacteria varied with type and nature of herbicide used. Atrazine was more toxic than its metabolites towards photosynthesis of cyanobacteria Anabaena inaequalis, Anabaena cylindrica, Anabaena variabilis and green algae Chlorella pyrenoidosa and Scenedesmus quadricauda with EC50 values ranging from 0.1 to 0.5 ppm [35]. The supplementation of atrazine (1000 ppm) in growth medium marginally affected photosynthetic rate (10% of control) in resistant SG2 cyanobacterial strains falls of Synechocystis/Pleurcapsa/Microcystis group and had no effect on growth rate. However, more than 89% inhibition in photosynthesis was observed in Synechocystis sp. strain 6803 [73]. This is in contrast to results of Narusaka et al. [127] who showed that several herbicide resistant mutants of Synechocystis sp. strain PCC 6803 which grew slower under photosynthetic growth conditions and evolved 70% less oxygen than control strain grown under herbicide free conditions. Interestingly, Dalla-Chiesa and co-workers [128] reported that mutation in the D1 protein in serine 264 to proline 264 of Synechocystis sp. strain PCC 6803 allowed the strain to grow photoautotrophically and slightly resistant to atrazine, but oxygen evolution was only 60% of that of wild-type control 659 strain. The treatment of carotenoid inhibiting herbicide fluridone up to 100 ppb inhibited photosynthesis in light saturated cells of Oscillatoria agardhii [105]. Exposure to atrazine for 72 h at EG50 doses to ten species of green algae, cyanobacteria and diatoms resulted in significant inhibition of photosynthetic activities of all phytoplankton species acclimated to low to high light conditions. Inhibition of PS-II quantum yield varied between different groups of algae. Data showed that 50% inhibition in quantum yield of PS-II was observed at 315 nM and 282 nM atrazine for diatoms and green algae, respectively, while 50% inhibition in quantum yield of PS-II of cyanobacteria were caused by 102 nM of atrazine [58].

The photosynthetic activities of Nodularia and Nostoc treated with 2,4 D or MCPA at 1 mM were not affected while were inhibited significantly with higher concentrations of herbicide. Addition of 2,4 D at 10 mM to cultures resulted in 80% inhibition in photosynthesis while the effect of MCPA was more severe in a way that the cells began to consume oxygen in presence of light [66]. Photosynthetic electron transport (Hill activity) and oxygen evolution in both wild type and mutant cells of Anabaena dolioium were stimulated by glyphosate (50-200 ppm) but exhibited extreme inhibition by high concentrations (200-400 ppm) of herbicide [129]. Thiodencarb at 10 ppm decreased photosynthesis by nearly 50% in Nostoc sphaeroides [107]. Over 50% inhibition in photosynthesis was observed in Anabaena variabilis and Nostoc commune, when 8 to 10 ppm bensulfuron-methyl was applied to cultures [87].

Mutant strain (Mu1) of Synechococcus sp. PCC 7942 exhibited superior photosynthetic activities in presence of butachlor under regular growth conditions compared to wild type. Further, Mu1 had an increased expression of PsbO at mRNA and protein level and PsbO was tightly bound to Photosystem II, relative to wild type [130]. The effects of the commercial bentazon (basagran) and molinate (ordham), recommended for IWM on rice, were laboratory assessed on Anabaena cylindrica in a short-term experiment of 72 h. The results revealed that photosynthesis was inhibited in a time and dose-response manner and higher concentrations of ordham fully stopped O2 evolution after 48 h [93].

Butachlor and fluchloralin exerted little effect on photosynthetic oxygen evolution in Nostoc muscorum and Gloeocapsa sp. whereas propanil severely inhibited oxygen evolution in both the organisms [131,132]. Exposure of wild type and multiple herbicide resistant (MHR) strain of Anabaena variabilis to 10-100 ppm of alachlor,
arozin, butachlor and 2,4 D, led to the inhibition of photosynthesis by 41-61% at 15 ppm and by 50-55% at 80 ppm, respectively [27]. In another study, butachlor (65 μM) treatment to Aulosira fertilissima for 15 days decreased photosynthesis, PS-I, PS-II and whole chain activity by 24-48% [83]. Butachlor at LC50 dose significantly inhibited PS-I, PS-II and whole chain activities of three species of Anabaena. These activities declined in the range of 33-40% after one day treatment which recovered gradually in subsequent days in Anabaena sp. PCC 7120, while A. dolioolum and Anabaena LC31 exhibited continuous decrease with time [86]. Application of monosulfuron at 0.001-10 ppm exerted an inhibitory effect on photosynthesis in three nitrogen fixing cyanobacteria Anabaena azollae, A. flosaquae, and A. azotica leading to a lower net photosynthetic rate and a smaller Fv/Fm ratio as revealed by chlorophyll a fluorescence studies [133]. DCMU (5 ppm) inhibited oxygen evolution by 75% in cyanobacterial strain SG2 of Synechocystis/Pleurocapsa/Microcystis group as reported by Sajjaphan et al. [73]. DCMU treated wild type (0.4 ppm) and MHR strain (0.5 ppm) of Anabaena variabilis showed 80-87% inhibition in photosynthetic O₂ evolution compared to untreated control cultures [56].

The study of Guanzon and Nakahara [134] revealed that Microcystis aeruginosa evolved 50% less oxygen when treated with 8.4x10⁴ ppb p-nitrophenyl 2,4,6-trichlorophenyl ether compared to untreated control. Anilofos (1.25-5.00 ppm) decreased photosynthetic oxygen evolution by 15-57%, PS-I and PS-II activity by 18-61% and 25-75%, respectively, and whole chain activity by 25-75% in Anabaena torulosa [42]. Issa et al. [62] showed stimulation of photosynthetic activity in Merismopedia glauca by simazine (37-150 ppm) in a dose dependent manner. Inhibition of photosynthesis was maximum at IGCso concentration of 2.4 D in Nostoc muscorum followed by Gloeocapsa sp. and Aphanocapsa sp. [81]. However, in Gloeocapsa sp. and Anabaena UAM202 photosynthesis was inhibited at higher concentration of 2.4 D [66,67]. Photosynthetically driven oxygen evolution was 10% less in resistant strain of Synechocystis strain SG2 while wild strain exhibited 90% inhibition in oxygen evolution in presence of 2.4 D [73]. The rate of photosynthesis in the unicellular cyanobacterium Synechococcus aeruginosus, isolated from rice field of India, declined in time and dose dependent manner in the presence of high concentrations (500-1000 ppm) of 2,4 D [135]. Sheeba et al. [97] reported reduction in photosynthesis, PS-I, PS-II and WCA in Nostoc muscorum and Phormidium foelovarum in presence of 2,4 D with more pronounced effect on former species than later one. When exposed to diuron, the quantum yield of PS-II in Synechocystis sp. and Microcystis aeruginosa decreased while oxadiazon (2.89 μM) decreased PS-II quantum yield only in Synechocystis sp. [136].

Broser et al. [137] presented the first crystal structure of PS-II with bound herbicide terbutryn. The crystallized PS-II core complexes were isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The herbicide terbutryn was bound via at least two hydrogen bonds to the Q(B) of reaction centers. Herbicide binding to PS-II further influenced the redox potential of Q(A), which is known to affect photoinhibition.

5. NITROGEN METABOLISM

5.1 Nitrogen Fixation

Butachlor, fluchloralin and propanil did not affect nitrogenase activity of Nostoc muscorum but in Gloeocapsa sp. caused stimulation in nitrogen fixation [131]. Nitrogenase activity of Nostoc G3 was completely inhibited in presence of golfix (50 and 100 ppm), arelon (15 and 30 ppm), paraquat (10 and 20 ppm) and 1 μM DCMU [138]. Nitrogen fixing capacity of Anabaena inaequalis and Anabaena cylindrica was sensitive to atrazine and its degradation products. Fifty percent reduction in nitrogen fixation was observed with all compounds at more than 100 ppm with the exception of atrazine when tested towards A. inaequalis which gave 50% inhibition at 55 ppm [54]. Low concentration of 2,4 D (1 and 10 ppm) stimulated nitrogen fixation in all the strains of Anabaena while higher dose (100 ppm) inhibited nitrogen fixation in strain ARM 299, ARM 308 and ARM 311 [139]. In another study, cultures of Nostoc muscorum ISU exhibited 2 fold inhibition in nitrogenase activity at IGCso concentration of 2.4 D followed by Gloeocapsa sp. and Aphanocapsa sp. However, such reduction in nitrogenase activity in Gloeocapsa sp. and Anabaena UAM202 was found at much higher concentration 175 ppm and 10 mM, respectively [66,67].
Alachlor (80 ppm) completely inhibited nitrogen fixation in *Anabaena doliolium*, *Nostoc muscorum* and *Aphanotohece stagnina* [140]. Butachlor enhanced the growth of *Anabaena sphaerica* and accelerated nitrogen fixation [141]. Alachlor and butachlor at IGC50 concentration (10-15 ppm) exhibited substantial inhibition in nitrogen fixation in *Nostoc muscorum*, *Gloeocapsa* sp. and *Aphanocapsa* compared to *Anabaena variabilis*, *Nostoc punctiforme* and *Nostoc calcicola* [81]. Likhitkar and Trar [142] reported partial inhibition in nitrogenase activities at 200 ppm of butachlor in *Nostoc commune* and *Nostoc muscorum*.

Isopropyl salt of glyphosate caused significant inhibition in nitrogen fixation by *Anabaena variabilis* compared to free acid. The free acid form of glyphosate had no effect on nitrogen fixation even at 20 mM whereas 5 mM of isopropylamine salt caused 50% inhibition [59]. Nitrogenase activity of *Anabaena variabilis* decreased by 94-98% and by 85-86% in *Nostoc commune* after 24 h of incubation with 10 ppm and 20 ppm of bensulfuron-methyl, respectively [87]. Molinate at 100 ppm inhibited nitrogen fixing capacity of *Anabaena* sp., *Nostoc* and *Nodularia* sp. [88].

Shaaban Dessouki et al. [143] observed that low concentration of thiobencarb (1 ppm) enhanced nitrogenase activity of *Nostoc kihlmani* and *Anabaena oscillatoriodes* while higher concentration was inhibitory. Butachlor (2-20 ppm) exhibited significant reduction in nitrogenase activity (2-54%) of *Nostoc muscorum* than thiobencarb which at 5 and 8 ppm concentrations caused a reduction of 16 and 32%, respectively [144]. Okmen and Ugur [145] compared the effect of herbicide bispyricydm on nitrogen fixing capacity of ten cyanobacterial isolates belonging to *Anabaena*, *Gloeotheca* and *Synechocystis*. Nitrogen fixation was completely inhibited by 100 ppm of bispyribac in *Synechocystis* sp. while in other cyanobacteria 500 ppm bspyribac was effected. The reduction in nitrogen fixation in cyanobacteria by herbicides may be due to low photosynthetic rate [93,107,146] which provides reductant and ATP to nitrogenase and carbon skeleton to fix nitrogen [147,148].

Arozin (10 ppm) has been reported to enhance nitrogenase activity in *Anabaena variabilis* ARM 310 [115]. Likhitkar and Trar [142] reported partial inhibition of nitrogenase activity in *Nostoc commune* and *Nostoc muscorum* at 200 ppm of butachlor. *Nostoc muscorum* ISU, *Gloeocapsa* sp. and *Aphanocapsa* sp. also exhibited substantial inhibition in nitrogenase activity as compared to *A. variabilis*, *N. punctiforme* and *N. calcicola* at IGC50 concentration of butachlor and alachlor [81]. When wild type and MHR strain of *Anabaena variabilis* were exposed to 10-100 ppm alachlor, arozin, butachlor and 2,4 D, the wild type at 15 ppm of all the herbicides exhibited 75-95% nitrogenase activity while MHR strain at 80 ppm of these herbicides exhibited 65-70% nitrogenase activity [27].

5.2 Nitrogen Uptake and Its Assimilation

Cyanobacteria use nitrate, nitrite and ammonium as nitrogen source for growth and development. Scanty reports are available on effect of herbicides on nitrogen source uptake and its assimilation by cyanobacteria. The uptake of nitrate and ammonium was inhibited by Machete and Saturn in *Nostoc* sp., *Nostoc calcicola* and *Anabaena doliolium*. However, 2,4-D (100 ppm) stimulated the uptake of nitrate but not of ammonium but higher doses of 2,4-D inhibited the uptake of both nitrogen sources [79]. Ethyl ester salt of 2,4 D (15-60 ppm) inhibited nitrate reductase and glutamine synthetase activities in a dose dependent manner in *Anabaena fertilissima*, *Aulosira fertilissima* and *Westiellopsis prolifica* [113]. Singh et al. [149] reported that 30 µM of glyphosate inhibited ammonium uptake by *Nostoc muscorum* but the authors did not mention which formulation of glyphosate was used. Nitrate uptake by *Nostoc muscorum* and *Phormidium foveolarum* decreased after exposure to oxyfluorfen (10 and 20 ppm) and UV-treatment. Further, oxyfluorfen alone and together with UV-B drastically decreased NR activity in *N. muscorum* however NR activity increased in *P. foveolarum* [97].

Treat ment with anilofos (5 ppm) for 12 h caused 12% reduction in nitrate and 28% reduction in ammonium uptake with 22% inhibition in glutamine synthetase activity in *Anabaena torulosa*. The decrease in photosynthetic rate by anilofos may probably have caused low rate of nitrate uptake. Interference of herbicide with membrane potential of cyanobacterium may have caused low uptake of ammonium which further reduced GS activity due to less availability of ammonium [42]. Herbicides isoproturon and butachlor at 10 µM inhibited nitrate and nitrite uptake in time dependent manner in *Anabaena variabilis* up to 24 h treatment. Further, nitrate and nitrite reductase activities of this cyanobacterium were also inhibited [150].
6. STRESS TOLERANCE MECHANISM

Toxicity of herbicides may lead to the generation of free radicals and cyanobacteria may respond to this stress by inducing enzymatic as well as non enzymatic antioxidant mechanism [42,43,124,151]. Superoxide dismutase (SOD) is involved in the neutralization of highly reactive oxygen species (ROS) such as superoxide radicals and singlet oxygen resulting in the generation of the lesser toxic hydrogen peroxide (H₂O₂). H₂O₂ is still harmful to cells requiring removal by catalase (CAT) and/or peroxidase (POD) enzymes [123].

6.1 Enzymatic Antioxidant System

Few reports are available in literature on the response of enzymatic antioxidant system of cyanobacteria to herbicides. Bentazon induced oxidative stress is a manifestation of multistep reactions, resulting in membrane damage leading to the production of free radicals which may be scavenged by antioxidant enzymes such as SOD, CAT and POD. Galhano et al. [151] reported significant increase in SOD (13-15%), POD (20-188%) and CAT (35-46%) activities in a time- and dose-dependent manner in Anabaena cylindrica when treated with bentazon (0.75-2 mM). Anilofos (20 ppm) caused 3 fold increase in SOD, 2 fold increase in POD and 2.8 fold increase in CAT activities in Oscillatoria simplicissima [41] while the activity of these enzymes increased by 1.8-3.5 fold in Anabaena torulosa after treatment with 1.25 - 5 ppm of herbicide [42]. The stimulation SOD (137-180%), POD (104-174%) and CAT (109-131%) activities over control by 5-20 ppm of the same herbicide in another cyanobacterium Synechocystis sp. PUPCCC 64 has also been reported [43]. Contrary to these reports, molinate (0.75-2.0 mM) decreased the activity of SOD (34-92%), POD (70-88%) and CAT (25-95%) in a time and concentration dependent manner in Nostoc muscorum [124].

In bloom forming Microcystis novaci and nitrogen fixing Anabaena sp. cultures, the addition of DCMU (10 µM) did not have significant effect on SOD activity in the UV-B irradiated cells however the addition of glyphosate and MCPA decreased SOD activity compared with UV treatment alone and the activity was not restored even after glyphosate and MCPA were removed during recovery process [125]. Wild strain of Synechococcus elongatus PCC 7942 showed an downward trend of SOD and POD activity whereas resistant strain exhibited increasing trend (increased by 2-3 folds) with treatment of 150 µM bromoxynil [92]. To determine whether diclofop acid and its enantiomers affected antioxidants of Microcystis aeruginosa, the activity of SOD was determined after treatment with 1-5 ppm of herbicide. After 48 h exposure, all the species of herbicide increased SOD activity. Diclofop acid (1-5 ppm) increased activity by 1.3-1.53 folds whereas S-enantiomers increased the activity of SOD by 1.91-3.41 folds [152]. The increase in the level of free radicals by butachlor (5-40 ppm) in a five day experiment triggered the production of SOD, POD and CAT in a dose dependent manner in Plectonema boryanum [118]. Butachlor at 40 and 80 ppm enhanced the activities of SOD, CAT, POD and GR significantly in Nostoc sp. [84]. Oxyflurafen (10 ppm) alone increased level of SOD and CAT in Nostoc muscorum, however, when oxyflurafen treatment was combined with UV-B, the activities of these enzymes decreased. On the other hand, in Phormidium foveolarum only 20 ppm oxyflurafen could cause a decrease in CAT activity and 20 ppm herbicide along with UV-B decreased POD activity as well [97].

Irgarol 1051 (0.01 µM) and diuron (0.09 µM) greatly enhanced CAT activity in Synechococcus sp. PCC 7942 which gave evidence of enhanced free radical production under herbicide stress. However, the suppression of CAT activity under high concentrations of Irgarol 1051 (>0.01 µM) and diuron (>0.09 µM) indicated that antioxidant defense enzymes might be an important site of action for Irgarol 1051 and diuron in this cyanobacterium [100].

Glutathion-s-transferase catalyses the conjugation of the reduced form of glutathione (GSH) in response to pollutants in order to make the compounds more soluble [153]. This activity detoxifies endogenous compounds such as peroxidised lipids and enables the breakdown of xenobiotics. GSTs may also bind toxic substances and function as transport proteins [154]. Herbicide stress also influences the activity of GST in cyanobacteria which depends upon its nature and type of cyanobacteria.

Treatment with bentazon (0.75-2 mM) for 72 h significantly increased GST activity by 25-296% in Anabaena cylindrica [151]. In another study, however, molinate (0.75-2.0 mM) decreased the
activity of GST in a time and concentration dependent manner in *Nostoc muscorum* [124]. Wild strain of *Synechococcus elongatus* PCC 7942 exhibited time dependent inactivation of GST in presence of bromoxynil (30 µM). The response of mutant strain on the other hand, was different with the addition of bromoxynil (150 µM) which exhibited significant increase (65-80%) in the activity of GST [92]. Agrawal et al. [86] reported that treatment with butachlor at LC50 appreciably increased the GST activity in three species of cyanobacterium *Anabaena*, being maximum in *Anabaena* LC31 (2.49 fold) followed by *Anabaena* 7120 (2.1 fold) and *A. dolioiulum* (1.92 fold).

6.2 Non-enzymatic Antioxidant System

A number of low molecular weight compounds such as reduced glutathione (GSH), proline, ascorbate, tocopherol and carotenoids are reported to play key role to counter abiotic stress caused by pollutants in plants [123,155]. The primary function of GSH appears to be in the maintenance of intracellular redox homeostasis by affording protection against ROS [156,157]. The effect of abiotic stresses on GSH concentration in cyanobacteria is controversial as some researchers reported an increase in GSH with increasing stress while, others reported a decrease in GSH [158,159]. Bhunia et al. [158] reported that total glutathione (GSH and GSSG) level was reduced in a dose-dependent manner in *Nostoc muscorum* when exposed to the carbamate herbicide benthiocarb. GSH (14-66%) and GSSG (20-54%) levels significantly decreased in time- and concentration dependent manner in a 72 h experiment of bentazon (0.75-2 mM) exposure to *Anabaena cylindrica* [151]. In another study, the same authors have reported a decrease in GSH and GSSG content in *Nostoc muscorum* with treatment of 0.75-2 mM molinate [124]. Cellular GSH content of *Synechocystis* sp PUPCCC 64 was significantly less under stress of 10 and 20 ppm anilofos [43]. Kumari et al. [83] demonstrated a decrease in the total GSH content in *Aulosira fertilissima* with 65 µM butachlor treatment. Since chloroacetanilides are known to react with sulphhydryl group [160] and metachlor (analogue of butachlor) covalently modifies the cysteine residue in vitro [161], therefore, butachlor might react with thiol and glutathione, thereby reducing their contents. The cellular levels of GSH significantly increased in response to treatment with bromoxynil whereas GSSG level reduced in both wild and mutant strains of *Synechococcus elongatus* PCC 7942 [92]. Butachlor at LC50 dose registered a slight increase in total glutathione content in *Anabaena* LC31 (2.7 fold) than in *Anabaena* 7120 (2.5 fold) and *Anabaena dolioiulum* (2.48) [86].

Accumulation of proline has been reported to be an important biomarker of tolerance capacity in plants, bacteria, protozoa, algae, marine invertebrates, and also in cyanobacteria, due to its function as a stabilizer, a metal chelator, an inhibitor of lipid peroxidation, and a scavenger of singlet oxygen and hydroxyl radicals [162 and 163]. Paraquat at concentration ranging from 1-20 x 10−7 M increased proline content by 136-605% in *Anabaena variabilis* and by 105-297% in *Plctonema boryanum* indicating its involvement in detoxification of free radicals [48]. Proline content increased significantly in a time- and dose-dependent manner under bentazon (0.75-2.0 mM) stress conditions in *Anabaena cylindrica*. After 72 h, proline content was higher than control by 31, 166, and 655% in 0.75, 1.5, and 2 mM of bentazon concentration, respectively [151]. Oxyflurafen (10 and 20 ppm) and UV-B individually showed accumulation of proline in *Nostoc muscorum* while in combination of these stresses, proline content decreased indicating severity of toxicity. In contrast to this, proline showed continuous increase in *Phormidium foveolarum* under oxyflurafen and UV-B treatments suggesting its protective role during stress [97]. Molinate (0.75-2.0 mM) treatment significantly increased endogenous level of proline by 45-156% above control in *Nostoc muscorum* [124]. Anilofos (10-20 ppm) stimulated the synthesis of proline in *Oscillatoria simplicissima* in a dose dependent manner and maximum increase (369%) was reported in highest tested dose (20 ppm) of herbicide [41]. Significant enhancement of proline content (1.6 fold over control) by anilofos in *Anabaena torulosa* and *Synechocystis* sp. PUPCCC 64 has also reported [42,43].

Ascorbate functions as a source of reductant for many reactive oxygen species, thereby minimizing the damage caused by pollutant stress. Ascorbate scavenges not only H2O2 but also other free radicals such as O2·− and OH` and lipid hydroperoxide without enzyme catalysis [164]. Only few reports on the role of ascorbate in mitigating the herbicide stress in cyanobacteria are available. Cellular ascorbate content was affected by anilofos in dose dependent manner in *Oscillatoria simplicissima*. Maximum decrease (85%) was reported in 20 ppm of anilofos [41]. In
another study, herbicide anilofos (1.25-5.0 ppm) significantly decreased the ascorbate content by 60-75% in *Anabaena torulosa* [42].

7. BIODEGRADATION OF HERBICIDES

Cyanobacteria have been fully exploited for biological treatment of polluted waters, but only little information is available on how cyanobacteria participates in the process of biodegradation of chemical pollutants. It has been suggested that wild type cells of *Synechocystis* sp. PCC 6803 contain nitroreductase like DrgA protein encoded by Drg A gene which is involved in detoxification of herbicide dinoseb via the reduction of the nitro group(s) and this process is accompanied by the formation of toxic superoxide anions [165].

Cyanobacteria *Anabaena variabilis* and *Synechocystis* 6803 take up intracellularly different formulations of glyphosate when supplied in growth medium in the concentration range of 5-20 mM. The rate of uptake of herbicide was highest for roundup and lowest for free acids [59]. Ravi and Balakumar [166] reported that extracellular phosphatases produced by *Anabaena variabilis* were able to hydrolyze the C-P bond of glyphosate. With regard to degradation of herbicide in aqueous medium, Lipok et al. [167] concluded that mixed culture of *Spirulina* spp. exhibited a remarkable ability to degrade glyphosate. The rate of glyphosate biodegradation in the medium was independent of its initial concentration. They further suggested that glyphosate degradation pathway in *Spirulina* might be different from those exhibited in other bacteria. According to them, occurrence of herbicide metabolism in this cyanobacterium is evident, as the species was able to grow in a medium supplemented with phosphonate herbicide as the only source of phosphorus, where the rate of herbicide transformation was found to be depended upon the cells phosphorus status. Lipok et al. [168] reconfirmed the ability of the *S. platensis* to catalyze glyphosate metabolism. Four cyanobacterial strains (*Anabaena* sp., *Leptolyngbya boryana*, *Microcystis aeruginosa* and *Nostoc punctiforme*), out of the six strains studied by Forlani et al. [60], were able to use the glyphosate as the only source of phosphorus. Dyhrman et al. [169] reported the existence of phosphorous dependent glyphosate transformation in marine cyanobacterium *Trichodesmium erythraeum*.

The cyanobacterium *Anabaena inaequalis* metabolized isoproturon (3-(4-isopropyl phenyl)-1,1- dimethyl urea). The rate of degradation of isoproturon was 25% faster at pH 5.5 than at pH 7.5 when measured in ten day old culture. This was confirmed by using 14C labelled isoproturon and its metabolites accumulated in cells. Four detectable metabolic products such as monodesmethyl-IPU, OH-monodesmethyl-IPU, Didesmethyl-IPU and iso-propylaniline of isoproturon have been identified in this cyanobacterium [170].

Mansy and Bestawy [109] studied the biodegradation potential of fluometuron by six cyanobacterial species belonging to *Microcystis aeruginosa* (three strains), *Anabaena cylindrica*, *Anabaena flosaquae* and *Anabaena spiroides*. Exposure of these cyanobacterial strains to different concentrations of fluometuron (0.14, 0.7 and 1.4 ppm) at different exposure times (1-5 day) showed that biodegradation of herbicide was species specific and primarily correlated with exposure time reaching maximum efficiency after 5 days. Efficiency of these strains to biodegrade fluometuron was in the range 39-100%. Grötzschel et al. [171] studied biodegradation of 2,4 D by hypersaline cyanobacterial dominated mat collected from Guerrero Negro, Mexico under both photoautotrophic and heterotrophic conditions. Within 13 days, light/dark incubated mats degraded 97% of the herbicide in light where as in permanent darkness only 13% herbicide was degraded. Another cyanobacterium *Anabaena fertilissima* was also reported to biodegrade this herbicide. The exposure of cyanobacterium to 60 ppm of 2,4 D produced butyl ester after 4 days while isobutyril acid, allyl ester and 3-bromobutyric acid were recorded after 60 days. The exposure of this cyanobacterium to 80 ppm 2,4 D for 4 days yielded hydroxyl urea and trifluoroacetic acid, 2-methyl propyl ester. Acetic acid 2-propenyl ester, another product of 2,4 D was observed after 16 days of treatment. Another cyanobacterium *Westiellopsis prolifica* produced 2,4 D methyl ester and acetic acid after 4 and 16 days of exposure to 120 ppm of 2,4 D, respectively [172].

Commerially available mixed culture of *Spirulina* spp. exhibited a remarkable ability to biodegrade the widely used herbicide glyphosate that served as a sole source of either phosphorus or nitrogen. Phosphorus starvation of cells influenced the rate of glyphosate degradation. Further, the occurrence of additional peaks in NMR spectra which did not overlap with those of...
the most common intermediate of glyphosate degradation suggested that the cyanobacterium might degrade herbicide through a pathway different from previously elucidated in bacteria [168]. Forlani et al. [60] evaluated the ability of six strains of cyanobacteria to use glyphosate as a source of phosphorus when incorporated in growth medium in the absence of phosphate source. Of these, four cyanobacteria Arthrospira fusiformis, Leptolyngbya boryana, Nostoc punctiforme and Spirulina platensis were able to grow in presence of glyphosate indicating use of herbicide as a source of phosphorus.

The cyanobacterium Synechococcus elongatus takes up triazine herbicides atrazine and terbutryn (0.025-0.75 µM) intracellularly from the growth medium. The maximum uptake (50%) of these herbicides was observed at 12 and 6 h for atrazine and terbutryn, respectively. Data on herbicides bioaccumulation revealed that the limit value of accumulated herbicide after 12 h was 9 µmol g\(^{-1}\) dry biomass for atrazine and 12 µmol g\(^{-1}\) dry biomass for terbutryn after 18 h of incubation [173]. Another cyanobacterium Microcystis novacekii grown in medium containing 50-500 ppb atrazine removed 27% atrazine after 96 h. Spontaneous degradation was found to be less than 9% at 500 ppb concentration indicating a high efficiency for bioaccumulation of atrazine by the test organism. No metabolite was detected in the culture medium at any of the doses studied [57].

Biodegradation of acetachlor by cyanobacterial mat collected from Wadi Gaza near mediterranean sea was studied by El-Nahhal et al. [174]. Acetachlor (0.2-1.0 mg/kg soil) was added to soil and water samples pre-inoculated with cyanobacterial mat were inoculated. Results showed that acetachlor was degraded in both soil and water system with much faster rate in later system. Acetachlor concentration above field rate did not affect the biodegradation process in the water whereas it did in soil. Furthermore, bioremediation in water system was nearly completed in 15 days of treatment but did not reach high percentage of degradation in soil system.

The cyanobacterium Synechocystis sp. strain PUPCCC 64 was able to take up anilofos (10 ppm) intracellularly and metabolized it. The uptake of herbicide by the microorganism was fast in the initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein\(^{-1}\) biomass, pH 8.0 and 30°C. The growth of cyanobacterium in phosphate deficient basal medium supplemented with 2.5 ppm anilofos indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphorus [43].

Crouzet et al. [175] developed a microcosm in laboratory containing soil cyanobacterial communities to study the dissipation of pure form of mesotrione and its formulation callisto. Application of mesotrione at the rate of field application (3.4 µg kg\(^{-1}\)) caused approximately 75% dissipation within 14 days of treatments both in pure and formulation form while application at 10 folds concentration to field dose application, only resulted in 49 and 38% dissipation of initial applied pure mesotrione and formulation, respectively. The cyanobacterial communities in microcosm were able to remove 20% herbicide from 100 fold concentration to field dose. The nitrogen fixing cyanobacterium Nostoc muscorum took up butachlor intracellularly from medium. The GC-MS analysis of cell extract made from butachlor treated cells after 72 h treatment indicated the presence of 1, 2- benzenedicarboxylic acid and phenol as major biodegradation products [85].

Safi et al. [176] investigated the bioremediation of diuron in soil environment by cyanobacterial mats collected from agricultural fields of Gaza, Palestine. Diuron (0.055-0.88 ppm) was injected in water saturated soil samples pre-treated with cyanobacterial mat for several times. Growth of Jews mallow as a test plant was taken as indicator of biodegradation of Diuron. Results revealed that diuron was degraded in soil and degradation was more pronounced when diuron was incubated with cyanobacterial in the irrigation water. These encouraging results suggest that application of cyanobacterial mats could be a suitable method to remediate soil pollution. Sorption of herbicides, Paraquat and 2, 4-D by Oscillatoria sp. dominated cyanobacterial mat was studied as a function of pH, temperature and biomass. Mat biomass was an effective sorbent for paraquat but not for 2, 4 D. Increase in temperature also increased sorption of paraquat while 2,4 D showed opposite trend [177].

8. FUTURE PROSPECTS

- Although effect of herbicides on toxicity, photo pigments and photosynthesis of cyanobacteria are well documented in literature, interaction of herbicides on
enzymes of these physiological processes needs further attention.

- It would be interesting to know the detailed mechanism of degradation of herbicides by cyanobacterial enzymes or genes(s) involved.
- Cyanobacterial biosensors are not popular as compared to bacterial biosensors and thus there is plenty of scope for future research and development in this field.

9. CONCLUSION

The toxic effect of herbicides on photosynthetic pigments, photosynthesis and nitrogen assimilation by cyanobacteria varied with the nature, class and mode of action of chemical(s) and type and nature of organisms. These microorganisms tolerated herbicides by stimulation of enzymatic and non enzymatic antioxidant system or they followed the route of herbicide biodegradation.

ACKNOWLEDGEMENT

The authors thank Head and Coordinator, DRS SAP-II of UGC and FIST of DST for providing facilities to assess literature through net.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Ash C, Jasny BR, Malakoff DA, Sugden AM. Feeding the future. Science. 2010;327:797.
2. Zhang WJ. A forecast analysis on world population and urbanization process. Enviro Develop Sustain. 2008;10:717-30.
3. Zhang WJ, Pang Y. Impact of IPM and transgenics in the Chinese agriculture. In: Peshin R, Dhawan AK, eds, Integrated Pest Management: Dissemination and Impact. Springer. 2009;525-55.
4. Anonymous. Editorial - How to feed a hungry world? Nature. 2010;466:531-532.
5. Pimentel D. Pesticides and pest control. In: Rajinder P, Dhawan A, eds. Integrated pest management: Innovation-development process. Springer. 2009a;1:83-87.
6. Cai DW. Understand the role of chemical pesticides and prevent misuse of pesticides. Bull Agricul Sci Technol. 2008;1:36-38.
7. Liu CJ, Men WJ, Liu YJ, Zhang H. The pollution of pesticides in soils and its bioremediation. Syst Sci Compreh Stud Agricul. 2002;18:295-97.
8. Mukerjee SK. Pesticide use. In: Chadha KL, Swaminathan MS, eds. Environment and Agriculture. New Delhi: Malhotra Publishing House. 2006;211-227.
9. Pimentel D. Environmental and economic costs of the application of pesticides primarily in the United States. In: Rajinder P, Dhawan A. eds. Integrated pest management: Innovation-development process. Springer. 2009b;1:88-11.
10. Dorigo U, Leboulangier C, Béard A, Bouchez A, Humbert JF, Montuelle B. Lotic biofilm community structure and pesticide tolerance along a contamination gradient in a vineyard area. Aquat Microbial Ecol. 2007;50:91-102.
11. Schuler LJ, Rand GM. Aquatic risk assessment of herbicides in fresh water ecosystem of South Floida. Arch Environ Contam Toxicol. 2008;54:571-83.
12. Aoki I. Diversity-productivity-stability relationship in fresh water ecosystems: Whole-systemic view of all trophic levels. Ecol Res. 2003;18:397-04.
13. Fenchel T. The microbial loop-25 years later. J Exp Marine Biol Ecol. 2008;366:99-103.
14. Vermaas WFJ. Photosynthesis and respiration in cyanobacteria. In: Encyclopedia of Life Sciences. London: Nature Publishing Group. 2001;245-51.
15. Berry JP, Gantar M, Perez MH, Berry G, Noriega FG. Cyanobacterial toxins as allelochemicals with potential applications as algaeicides, herbicides and insecticides. Marine Drugs. 2008;6:117-46.
16. Schopf JW. The fossil record: Tracing of the roots of the cyanobacteria lineage. In: Whitton BA, Potts M, eds. The ecology of cyanobacteria: their diversity in time and space. Dordrecht, The Netherland: Kluwer Academic Publishers. 2000;13-35.
17. Wolk CP, Ernst A, Elhai J. Heterocyst metabolism and development. In: Bryant DA, ed. The molecular biology of cyanobacteria. Dordrecht, The Netherlands: Kluwer Academic Publishers. 1994;769-823.
18. Fritsch FE. The structure and reproduction of the algae. Cambridge University Press, Cambridge. 1945;2:796-800.
19. Desikachary TV. *Cyanophyta*. Indian Council of Agricultural Research, New Delhi. 1959;686.

20. Rippka R, Deruelles J, Waterburg JB, Hardman M, Stanier RY. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. *J Gen Microbiol.* 1979; 111:1-61.

21. Whitton BA, Potts M. Introduction to the cyanobacteria. In: Whitton BA, Potts M, eds. *The ecology of cyanobacteria: their diversity in time and space.* Dordrecht, The Netherlands: Kluwer Academic Publishers. 2000;1-11.

22. Lee ED. *Phycology.* Cambridge University Press, United Kingdom. 2008;71.

23. Stal LJ. Cyanobacteria: diversity and versatility. In: Sedbach J, ed. *Algae and cyanobacteria in extreme environments: Cellular origin, life in extreme habitats and astrobiology.* Dordrecht, Netherland: Springer. 2007;659-80.

24. Giardi MT, Masojidek J, Godde D. Effects of abiotic stresses on the turnover of the D1 reaction center II protein. *Plant Physiol.* 1997;101:635-42.

25. Fernández-Valiente E, Ucha A, Quesada A, Leganés F, Carreres R. Contribution of N\textsubscript{2} fixing cyanobacteria to rice production: availability of nitrogen from 15N-labelled cyanobacteria and ammonium sulphate to rice. *Plant Soil.* 2000;221:107-12.

26. Song T, Mårtensson L, Eriksson T, Zheng W, Rasmussen U. Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. *FEMS. Microbial Ecol.* 2005;54:131-40.

27. Singh S, Datta P, Tirkey A. Isolation and characterization of a multiple herbicide resistant strain [Av(MHR)]\textsubscript{A,B,D} of diazotrophic cyanobacterium *Anabaena variabilis*. *Indian J Biotechnol.* 2012;11: 77-85.

28. Roger PA, Ladha JK. Biological N\textsubscript{2} fixation in wetland rice fields: Estimation and contribution to nitrogen balance. *Plant Soil.* 1992;141:41-55.

29. Frank JB, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. *Res Microbiol.* 2003;154:157–164.

30. Stewart WDP, Lex M. Nitrogenase activity in the blue-green alga *Plectonema boryanum* strain 594. *Arch Microbiol.* 1970;73:250-60.

31. Ohki K, Zehr PJ, Fujita Y. Regulation of nitrogenase activity in relation to the light dark regime in the filamentous non-heterocystous cyanobacterium *Trichodesmium* sp. NIBB 1067. *J Gen Microbiol.* 1992;138:2679-85.

32. Kaushik BD. Developments in cyanobacterial biofertilizer. In: Khattar JJS, Singh DP, Kaur G. eds. *Algal Biology and Biotechnology.* New Delhi: IK International Publishing House Pvt. Ltd. 2009;97-108.

33. Mishra U, Pabbi. Cyanobacteria: A potential biofertilizer for rice. *Resonance.* 2004;9:6-10.

34. Padhy RN. Cyanobacteria and pesticides. *Resi Rev.* 1985;95:1-44.

35. Stratton GW. Toxic effects of organic solvents on the growth of blue-green algae. *Bull Environ Contam Toxicol.* 1987;38:1012-19.

36. Pipe AE. Pesticide effects on soil algae and cyanobacteria. *Rev Environ Contam Toxicol.* 1992;127:95-170.

37. Pingali PL, Roger PA. Impact of pesticides on farmer health and the rice environment. *Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995.*

38. De-Lorenzo ME, Scott GI, Ross PE. Toxicity of pesticide to aquatic microorganisms: A review. *Environ Toxicol Chem.* 2001;20:84-98.

39. Mallory-Smith CA, Retzinger Jr EJ. Revised classification of herbicides by site of action for weed resistance management strategies. *Weed Technol.* 2003;17: 605-19.

40. Ma J, Tong S, Wang P, Chen J. Toxicity of seven herbicides to the three cyanobacteria *Anabaena flos-aquae*, *Microcystis flos-aquae* and *Microcystis aeruginosa*. In: *J Environ Res.* 2010;4:347-52.

41. Singh DP, Sandhu B. Effect of anilofos on growth, photosynthetic pigments and stress enzymes of cyanobacterium *Oscillatoria simplicissima*. *Res J Biotechnol.* 2010;5:27-32.

42. Singh DP, Khattar JJS, Kaur K, Sandhu BS, Singh Y. Toxicological impact of anilofos on some physiological processes of a rice field cyanobacterium *Anabaena torulosa*. *Toxicol Environ Chem.* 2012;94: 1304-18.

43. Singh DP, Khattar JJS, Kaur M, Kaur G, Gupta M, Singh Y. Anilofos tolerance and its mineralization by the cyanobacterium
Synechocystis sp. strain PUPCCC 64. PLoS One. 2013;8:e53445.

44. Peterson HG, Boutin C, Freemark KE, Martin PA. Toxicity of hexazinone and diquat to green algae, diatoms, cyanobacteria and duckweed. Aquat Toxicol. 1997;39:111-134.

45. Thompson DG, Holmes SB, Thomas D, MacDonald I, Solomon KR. Impact of hexazinone and metasulfuron methyl on the phytoplankton community of a mixed wood/boreal forest lake. Environ Toxicol Chem. 1993;12:1695-07.

46. Ahluwalia AS, Kaur M, Dahuja S. Toxicity of a rice field herbicide in some nitrogen-fixing algae. Indian J Environ Health. 2002;44:298-302.

47. Kaur M, Ahluwalia AS, Dahuja S. Toxicity of a rice field herbicide in a nitrogen fixing alga, Cylindrospermum sp. J Environ Biol. 2002;23:359-63.

48. Dragolova D, Chaneva G, Gemishev TS, Vassilev G. Physiological changes in the cyanobacteria Anabaena variabilis and Plectonema boryanum caused by paraquat toxicity. C R Acad Bulg Scis. 2002;55:85-88.

49. Pandey FK, Kumar S, Bhatnagar T. Toxic effect of an herbicide on growth and nitrogen formation of two N2-fixing cyanobacteria. Inr J Curr Res. 2011;3:14-16.

50. Peterson HG, Boutin C, Freemark KE, Ruccker NG, Moody NJ. Aquatic phytotoxicity of 23 pesticides applied at exposed at environmental concentration. Aquat Toxicol. 1994;28:275-292.

51. Nyström B, Bjornsater B, Blanck H. Effects of sulfonylurea herbicides on non-target aquatic microorganisms. Growth inhibition of micro-algae and short-term inhibition of adenine and thymidine incorporation in periphyton communities. Aquat Toxicol. 1999;47:9-22.

52. Sabater C, Carrasco JM. Effects of chlorsulfuron on growth of three freshwater species of phytoplankton. Bull Environ Contam Toxicol. 1997;58:807-13.

53. Lockert CK, Hoagland KD, Siegfried BD. Comparative sensitivity of fresh water algae to atrazine. Bull Environ Contam Toxicol. 2006;76:73-79.

54. Stratton GW. Effect of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms. Arch Environ Contam Toxicol. 1984;13:35-42.

55. Weiner JA, De-Lorenzo ME, Fulton MH. Atrazine induced species-specific alteration in the subcellular contents of microalgal cells. Pestl Biochem Physiol. 2007;87:47-53.

56. Singh S, Datta P, Tirkey A. Response of multiple herbicide resistant strain of diazotrophic cyanobacterium, Anabaena variabilis, exposed to atrazine and DCMU. Indian J Experi Biol. 2011;49:298-303.

57. Campos MMC, Faria VHF, Teodoro TS, Barbosa FAR, Magalhães MS. Evaluation of the capacity of the cyanobacterium Microcystis novacekii to remove atrazine from a culture medium. J Environ Sci Health: Part B. 2013;48:101-07.

58. Deblois CP, Dufresne K, Juneau P. Response of variable light intensity in photoacclimated algae and cyanobacteria exposed atrazine. Aquat Toxicol. 2013;126:77-84.

59. Powell HA, Kerbby NW, Rowell P. Natural tolerance of cyanobacteria to the herbicide glyphosate. New Phytophyl. 1991;119:421-426.

60. Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J. Biochemical basis for a wide spread tolerance of cyanobacteria to the phoshonate herbicide glyphosate. Plant Cell Physiol. 2008;49:443-56.

61. López-Rodas V, Flores-Moya A, Maneiro E, Perdigones N, Marva F, Garcia ME, Costas E. Resistance to glyphosate in the cyanobacterium Microcystis aeruginosa as result of pre-selective mutations. Evol Ecol. 2007;21:535-47.

62. Issa AA, Adam MS, Fawzy MA. Alternation in some metabolic activities of Scenedesmus quadricauda and Merismopedia glauca in response to glyphosate herbicide. J Biol Earth Sci. 2013;3:17-28.

63. Pérez GL, Torremorell A, Mugni H, Rodríguez P, Vera MS, do Nascimento M, Allende L, Bustingorry J, Escaray E, Ferraro M, Izaguirre I, Pizarro H, Bonetto C, Morris DP, Zagarese H. Effects of the herbicide roundup on fresh water microbial communities; a mesocosm study. Ecol Applications. 2007;17:2310-22.

64. Vera MS, Lagomarsino L, Sylvester M, Pérez GL, Rodríguez P, Mugni H, Sinistro R, Ferraro M, Bonetto C, Zagarese H, Pizarro H. New evidence of Roundup (glyphosate formulation) impact on
periphyton community and the water quality of freshwater ecosystems. Ecotoxicol. 2010;19:710-21.
65. Sun K, Liu W, Liu L, Wang N, Duan S. Ecological risks assessment of organophosphorus pesticides on bloom of Microcystis wesenbergii. Intl Biodeter Biodegr. 2013;77:98-105.
66. Leganés F, Fernández-Valiente E. Effects of phenoxy acetic herbicides on growth, photosynthesis, and nitrogenase activity in cyanobacteria from rice fields. Arch Environ Contam Toxicol. 1992;22:130-34.
67. Tözüm-Çalgan SRD, Sivaci-Güner S. Effects of 2,4-D and methyl parathion on growth and nitrogen fixation in cyanobacterium Gloeocapsa. Intl J Environ Stud. 1993;43:307-11.
68. Tiwari ON, Prasanna R, Yadav AK, Dhar WD, Singh PK. Growth potential and biocide tolerance of non-heterocyst filamentous cyanobacterial isolates from rice fields of Uttar Pradesh, India. Biol Fertil Soils. 2001;34:291-95.
69. Tripathi A, Sundaram S, Tripathy BC, Tiwari BS, Rahman A. Activity and stability of herbicide treated cyanobacteria as potential biomaterials for biosensors. Res J Environ Sci. 2011;5:479-85.
70. Aslim B, Ozturk S. Toxicity of herbicides to cyanobacterial isolates. J Environ Biol. 2009;30:381-84.
71. Mallison SM, Cannon RE. Effects of pesticides on cyanobacterium Plectonema boryanum and Cyanophage LLP-1. Appl Environ Microbiol. 1984;47:910-14.
72. Modi DR, Singh AK, Rao KS, Chakravarty D, Singh HN. Construction of multiple herbicide resistant ammonia excreting strains of cyanobacterium Nostoc muscorum. Biotechnol Lett. 1991;13:793-798.
73. Sajjaphan K, Shapir N, Judd AK, Wackett LP, Sadowsky MJ. Novel psbA1 gene from a naturally occurring atrazine-resistant cyanobacterial isolate. Appl Environ Microbiol. 2002;68:1358-66.
74. Leunert F, Grossart HP, Gerhardt V, Eckert W. Toxicant induced changes on delayed fluorescence decay kinetics of cyanobacteria and green algae: A rapid and sensitive biotest. PLoS ONE. 2013;8(4):e63127.
75. Shen J, DiTommaso A, Shen M, Lu W, Li Z. Molecular basis for differential metabolic responses to monosulfuron in three nitrogen-fixing cyanobacteria. Weed Sci. 2009;57:133-41.
76. Shen J, Jiang J, Zheng P. Effects of light and monosulfuron on growth and photosynthetic pigments of Anabaena flos-aquae Breb. J Water Resourc Protect. 2009;1:408-13.
77. Shen J, Yang YJ, Lu W. Effects of monosulfuron on photosynthetic pigments of Anabaena flos-aquae Breb. Exposed to different N-content. Mihang Res foundat, 2010 MHZ015; 2010.
78. Pandey KD, Kashyap AK. Differential sensitivity of three cyanobacteria to the rice field herbicide machete. J Basic Microbiol. 1986;26:421-28.
79. Mishra AK, Pandey AB. Toxicity of three herbicides to some nitrogen-fixing cyanobacteria. Ecotoxicol Environ Saf. 1989;17:236-46.
80. Zargar MY, Dar GH. Effect of benthiocarb and butachlor on growth and nitrogen fixation by Cyanobacteria. Bull Environ Contam Toxicol. 1990;45:232-34.
81. Singh S, Juneau P, Qiu B. Effects of three pesticides on the growth, photosynthesis and photoinhibition of the edible cyanobacterium Ge-Xian-Mi (Nostoc). Aquat Toxicol. 2007;81:256-65.
82. Kumari N, Narayan OP, Rai LC. Understanding butachlor toxicity in Aulosira fertilissima using physiological, biochemical and proteomic approaches. Chemosphere. 2009;77:1501-07.
83. He H, Li Y, Chen T, Huang X, Guo Q, Li S, Yu T, Li H. Butachlor induces some physiological and biochemical changes in a rice field biofertilizer cyanobacterium. Pestic Biochem Physiol. 2013;105:224-30.
84. Anees S, Suhail S, Pathak N, Zeeshan M. Potential use of rice rield cyanobacterium Nostoc muscorum in the evaluation of butachlor induced toxicity and their degradation. Bioinform. 2014;10:65-370.
85. Agrawal C, Sen S, Singh S, Rai S, Singh PK, Singh VK, Rai LC. Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena spp. J Proteomics. 2014;96:271-90.
87. Kim, JD, Lee CG. Differential responses of two freshwater cyanobacteria, *Anabaena variabilis* and *Nostoc commune*, to sulfonylurea herbicide bensulfuron-methyl. J Microbiol Biotechnol. 2006;16:52-56.

88. Okmen G, Donmez G, Donmez S. Influence of nitrate, phosphate and herbicide on nitrogenase activities and growth of cyanobacteria isolated from paddy fields. J Appl Biol Sci. 2007;1:57-62.

89. Spencer DF, Liow PS, Lembi CA. Effect of a combination of two Rice herbicides on the cyanobacterium, *Nostoc spongiaeforme*. J Aquat Plant Manage. 2009;47:145-47.

90. Singh S, Datta P, Patel R. Survival and growth of diazotrophic cyanobacteria isolates exposed to rice-field herbicides. Bull Environ Contam Toxicol. 2003;70:1052-58.

91. Singh S, Datta P. Growth and survival potential of immobilized diazotrophic cyanobacterial isolates exposed to common ricefield herbicides. World J Microbiol Biotechnol. 2005;21:441-46.

92. Bagchi SN, Das PK, Banerjee S, Saggu M, Bagchi D. A bentazone-resistant mutant of cyanobacterium, *Synechococcus elongates* PCC7942 adapts different strategies to counteract on bromoxynil- and salt-mediated oxidative stress. Physiol Mol Biol Plants. 2012;18:115-23.

93. Galhano V, Peixoto F, Gomes-Laranjo J, Fernández-valiente E. Differential effects of bentazon and molinate on *Anabaena cylindrica*, an autochthonous cyanobacterium of Portuguese rice fields agro-ecosystems. Water Air Soil Pollut. 2009;197:211-222.

94. Galhano V, Peixoto F, Gomes-Laranjo J, Fernández-Valiente E. Comparative toxicity of bentazon and molinate on growth, photosynthetic pigments, photosynthesis, and respiration of the Portuguese ricefield cyanobacterium *Nostoc muscorum*. Environ Toxicol. 2010;25:147-156.

95. Sabater C, Carrasco JM. Effects of molinate on growth of five freshwater Species of Phytoplankton. Bull Environ Contam Toxicol. 1998;61:534-40.

96. Ravindran CRM, Suguna S, Shanmugasundram, S. Tolerance of *Oscillatoria* isolates to agrochemicals and pyrethroid components. Indian J Exp Biol. 2000;38:402-04.

97. Sheeba Singh VP, Srivastava PK, Prasad SM. Differential physiological and biochemical responses of two cyanobacteria *Nostoc muscorum* and *Phormidium foveolarum* against oxyfluorfen and UV-B radiation. Ecotoxicol Environ Saf. 2011;74:1981-93.

98. Ye J, Wang L, Zhang Z, Liu W. Enantioselective physiological effects of the herbicide diclofen on cyanobacterium *Microcystis aeruginosa*. Environ Sci Technol. 2013;47:3893-901.

99. Lürling M, Roessink I. On the way to cyanobacterial blooms: Impact of the herbicide metribuzin on the competition between a green alga (*Scenedesmus*) and a cyanobacterium (*Microcystis*). Chemosphere. 2006;65:618-26.

100. Deng X, Gao K, Sun J. Physiological and biochemical responses of *Synechococcus* sp. PCC7942 to irgarol 1051 and diuron. Aquat Toxicol. 2012;122-123:s113-19.

101. Zhang AQ, Leung KMY, Kwok KWH, Bao VWW, Lam MHW. Toxicities of antifouling biocide Irgarol 1051 and its major degraded product to marine primary producers. Marine Pollut Bullet. 2008b;57:575-86.

102. Singh DP, Khattra JJS, Amita, Kaur G, Cheema P. Toxicity of herbicides to diazotrophic cyanobacterium *Nostoc muscorum*. J Punjab Acad Sci. 2012;9-10:67-71.

103. Boger P, Sandmann G. Action of modern herbicides. In: Raghavendra AS, ed. Photosynthesis: A comprehensive treatise. London: Cambridge University Press. 1998;337-51.

104. Geoffroy L, Dewez D, Vernet G, Popovic R. Oxyfluorfen toxic effect on *Scenedesmus obliquus* evaluated by different photosynthetic and enzymatic biomarkers. Arch Environ Contam Toxicol. 2003;45:445-52.

105. Millie DF, Greene DA, Johnsen PB. Effects of the carotenoid-inhibiting herbicide, fluridone, on *Oscillatoria agardhii* Gomont (cyanobacteria). Aquat Toxicol. 1990;16:41-52.

106. Bhunia AK, Basu NK, Roy D, Chakraborti A, Banerjee SK. Growth, chlorophyll a content, nitrogen fixing ability and certain metabolic activities of *Nostoc muscorum*: Effect of methyl parathion and benthiocarb. Bull Environ Contam Toxicol. 1991;47:43-50.
107. Xia J. Response of growth, photosynthesis and photoinhibition of the edible cyanobacterium *Nostoc sphaeroides* colonies to thiobencarb herbicide. Chemosphere. 2005;59:561-66.

108. Bérard A, Leboulanger C, Pelté T. Tolerance of *Oscillatoria limnetica* Lemmermann to atrazine in natural phytoplankton population and pure culture: influence of season and temperature. Arch Environ Contam Toxicol. 1999;37:472-79.

109. Mansy El-R A, El-Bestawy E. Toxicity and biodegradation of fluometuron by selected cyanobacterial species. World J Microbiol Biotechnol. 2002;18:125-31.

110. Yan GA, Yan X, Wu W. Effects of the herbicide molinate on mixotrophic growth, photosynthetic pigments, and protein content of *Anabaena sphaerica* under different light conditions. Ecotoxicol Environ Saf. 2001;49:101-05.

111. Koksoy H, Aslim B. Determination of herbicide resistance in aquatic cyanobacteria by probit analysis. J Appl Biol Sci. 2013;7:37-41.

112. Goyal D, Roy-Choudhary P, Kaushik BD. Effect of two new herbicides on the growth and nitrogen fixation in *Anabaena* and *Tolypothrix*. Acta Bot Indica. 1991;19:25-28.

113. Netherland MD, Lembi CA, Glomski M. Potential for selective activity of the ALS inhibitors penoxsulam, bispyribac-sodium and imazamox on algae responsible for harmful blooms. J Aquat Plant Mange. 2009;47:147-50.
Dalla-Chiesa M, Friso G, Deàk Z, Vass I, Barber J, Nixon PJ. Reduced turnover of the D1 polypeptide and photoactivation of electron transfer in novel herbicide resistant mutants of *Synechocystis* sp. PCC 6803. Eur J Biochem. 1997;248: 731–740.

Shikha, Singh DP. Influence of glyphosate on photosynthetic properties of wild type and mutant strains of cyanobacterium *Anabaena* dolium. Current Sci. 2004;86:571-76.

Bagchi SN, Pistorius EK, Michel KP. A *Synechococcus* sp. PCC 7942 mutant with a higher tolerance towards bentazon. Photosynth Res. 2003;75:171-82.

Singh LJ, Tiwari DN. Effects of selected rice field herbicides on photosynthesis, respiration and nitrogen assimilating system of paddy spoil diazotrophic cyanobacteria. Pestic Biochem Physiol. 1988;31:120-28.

Singh LJ, Tiwari DN, Singh HN. Evidence for genetic control of herbicide resistance in a rice field isolate of *Gloeocapsa* sp. capable of aerobic diazotrophic under photoautotrophic conditions. J Gen Appl Microbiol. 1986;32:81-88.

Shen J, Luo W. Effects of monosulfuron on growth, photosynthesis, and nitrogenase activity of three nitrogen-fixing cyanobacteria. Arch Environ Contam Toxicol. 2011;60:34-43.

Guanzon Jr GN, Nakahara H. Growth and photosynthesis inhibition by agricultural pesticides in three freshwater microalgae. Fisheries Sci. 2002;68:144-51.

Lakshmi B, Jyothi K. Toxicity of agricultural herbicide 2,4-Dichlorophenoxyacetic acid on growth, photosynthesis and respiration of rice field cyanobacterium. Int J Scienti Res. 2013;2:54-58.

Deblois CP, Qiu B, Juneau P. Effect of herbicides (diuron and oxadiazon) on photosynthetic energy dissipation process of different species cyanobacteria and two green algae. In: Allen JF, Gaunt E, Golbeck JH, Osmond B, eds. Photosynthesis. Energy from the Sun. Dordrecht, The Netherlands: Springer. 2008;1435-438.

Broser M, Glöckner C, Gabdulkhakov A, Guskov A, Buchta J, Kern J, Müh F, Dau H, Saenger W, Zouni A. Structural basis of cyanobacterial photosystem II inhibition by the herbicide terbutryn. J Biol Biochem. 2011;286:15964-72.

Gadkari D. Effect of some photosynthesis-inhibiting herbicides on growth and nitrogenase activity of a new isolate of cyanobacteria, *Nostoc* G3. J Basic Microbiol. 1988;28:419-26.

Subramanian G, Shanmugasundaram S. Influence of the herbicide 2,4-D on nitrogen fixation and ammonia excretion by the cyanobacterium *Anabaena*. Proc Indian Natl Sci Acad. 1986;52:308-12.

Singh VP, Singh BD, Singh RB, Dhar B, Singh RM, Srivastava JS. Effects of herbicide alachlor on growth and nitrogen fixation in cyanobacteria and rhizobia. Indian J Exp Biol. 1978;16:1325-27.

Suseela MR. Effect of butachlor on growth and nitrogen fixation by *Anabaena* sphaerica. J Environ Biol. 2001;22:201-03.

Likhitkar VS, Tarrar JL. Effect of pre emergence herbicides on the growth and nitrogen fixation by *Nostoc* algae. Ann Plant Physiol. 1996;10:74-77.

Shaaban-Dessouki SA, Soliman AI, Husein MH, Mansour FA. Reactions of *Nostoc* kihmani and *Anabaena* oscillatoroides to oxadiazon (ronstar) and thiobencarb (Satrun). Mansoura Sci Bull B Biol. 1993;20:175-94.

Dowidar SMA, Osman MEH, El-Naggar AH, Khalefa AH. Effect of butachlor and thiobencarb herbicides on protein content and profile and some enzyme activity of *Nostoc muscorum*. J Gen Eng Biotechnol. 2010;8:89-95.

Okmen G, Ugur A. Influence of bispyribac sodium on nitrogenase activity and growth of cyanobacteria isolated from paddy fields. African J Microbiol Res. 2011;5:2760-64.

Khalefa AE. Effect of thiobencarb and butachlor herbicides on some metabolic activities of certain cyanobacteria isolated from rice fields of Kafr El-Sheikh Governorate. M.Sc. Dissertation. Faculty of Science. Egypt: Tanta University; 2005.

Stewart WDP. Physiological studies on nitrogen-fixing blue-green algae. Plant Soil. 1971;35:377-91.

Apte SK. Inter-relationship between photosynthesis and nitrogen fixation in cyanobacteria. J Scient Indusl Res. 1996;55:583-95.
149. Singh AK, Sailaja MV, Singh HN. A class of glyphosate-selected mutants of the cyanobacterium *Nostoc muscorum* showing loss of ammonium transport activity (Amt'), heterocyst formation (Het') and nitrogenase activity (Nif'). FEMS Microbiol. Lett. 1989;60:187-91.

150. Aftab UA, Ahmad IZ, Chaturvedi R. Enzyme alteration in nitrogen metabolism in cyanobacteria under pesticide and herbicide stresses. Intl J Med Appl Sci. 2013;2:36-42.

151. Galhano V, Peixoto F, Gomes-Laranj J. Bentazon triggers the promotion of oxidative damage in the Portuguese ricefield cyanobacterium *Anabaena cylindrica*: response of the antioxidant system. Environ Toxicol. 2010;25:517-526.

152. Ye J, Zhang Y, Chen S, Liu C, Zhu Y, Liu W. Enantioselective changes in oxidative stress and toxin release in *Microcystis aeruginosa* exposed to chiral herbicide diclofop acid. Aquat Toxicol. 2014;146:12-19.

153. Oakley A. Glutathione transferases: A structural perspective. Drug Metab Rev. 2011;43:138-51.

154. Leaver MJ, George SG. A piscine glutathione S-transferase which efficiently conjugates the end-products of lipid peroxidation. Marine Environ Res. 1998;46:71-74.

155. Imlay JA. Pathways of oxidative damage. Ann Rev Microbiol. 2003;57:395-418.

156. Banerjee R, Becker D, Dickman M, Gladyshv G, Ragsdale S. Redox Biochemistry. New Jersey: Wiley Interscience; 2008.

157. Torres MA, Barros MP, Campos SC, Pinto E, Rajamani S, Sayre RT, Colepico P. Biochemical biomarkers in algae and marine pollution: A review. Ecotoxicol Environ Saf. 2008;71:1-15.

158. Bhunia AK, Roy D, Basu NK, Chakrabarti A, Banerjee SK. Response of enzymes involved in the processes of antioxidation towards benthicar and methylparathion in cyanobacteria *Nostoc muscorum*. Bull Environ Contam Toxicol. 1991;47:266-71.

159. Srivastava AK, Bhargava P, Rai LC. Salinity and copper-induced oxidative damage and changes in the antioxidative defence systems of *Anabaena doliolium*. World J Microbiol Biotechnol. 2005;21:1291-98.

160. Lippa KA, Roberts AL. Correlation analyses for bimolecular nucleophilic substitution reactions of chlo-roacetanilide herbicides and their structural analogs with environmentally relevant nucleophiles. Environ Toxicol Chem. 2005;24:2401-09.

161. Eckermann C, Matthes B, Nimtz M, Reiser V, Lederer B, Boger P, Schroder J. Covalent binding of chlo-roacetamide herbicides to the active site cysteine of plant type III polyketide synthases. Phytochem. 2003;64:1045-54.

162. Tamayo PR, Bonjoch NP. Free proline quantification. In: Reigosa Roger MJ, ed. Handbook of plant ecophysiology techniques. Dordrecht, The Netherlands: Kluwer Academic Publishers. 2001;365-82.

163. Fatma T, Khan MA, Choudhary M. Impact of environmental pollution on cyanobacterial proline content. J Appl Physiol. 2007;19:625-29.

164. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press. 1999;936.

165. Elanskaya IV, Chesnachivene EA, Vernotte C, Aster C. Resistance to nitrophenolic herbicides and metronidazole in the cyanobacterium *Synechocystis* sp. PCC 6803 as a result of the inactivation of a nitroreductase-like protein encoded by *drgA* gene. FEBS Lett. 1998;29(428):188-92.

166. Ravi V, Balakumar H. Biodegradation of the C-P bond in glyphosate by the cyanobacterium *Anabaena variabilis* L. J Sci Ind Res India. 1998;57:790-94.

167. Lipok J, Owsiak T, Mlynarz P, Forlani G, Kafarski P. Phosphorus NMR as a tool to study mineralization of organophosphates-the ability of *Spirulina* sp. to degrade glyphosate. Enzyme Microb Technol. 2007;41:286-91.

168. Lipok J, Owsiak T, Mlynarz P, Forlani G, Kafarski P. Phosphorus NMR as a tool to study mineralization of organophosphates-the ability of *Spirulina* sp. to degrade glyphosate. Enzyme Microb Technol. 2007;41:286-91.

169. Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA. Phosphonate utilization by the globally important marine diazotroph *Trichodesmium*. Nature. 2006;439:68-71.

170. Mostafa FIY, Helling CS. Isoproturon degradation as affected by the growth of two algal species at different
concentrations and pH values. J Environ Science Health Part-B. 2001;36:709-727.

171. Grötzschel S, Köster J, de-Beer D. Degradation of 2,4 Dichlorophenoxyacetic acid (2,4- D) by a hypersaline microbial mat and related functional changes in the mat community. Microb Ecol. 2004;48:254-62.

172. Kumar JIN, Amb MK, Kumar RN, Bora A, Khan SR. Studies on biodegradation and molecular characterization of 2,4 D ethyl ester and pencycuron induced cyanobacteria by using GC-MS and 16S rDNA sequencing. Proc Intr Acad Ecol Environ Sci. 2013;3:1-24.

173. González-Barreiro O, Riboó C, Herrero C, Cid A. Removal of triazine herbicides from fresh water systems using photosynthetic microorganisms. Environ Pollut. 2006;144:266-71.

174. El-Nahhal SD, Awad Y, Safi J. Bioremediation of acetochlor in soil and water systems by cyanobacterial mat. J Geosci. 2013;4:880-90.

175. Crouzet O, Wiszniowski J, Donnadieu F, Bonnemoy F, Bohatier J, Mallet C. Dose-dependent effects of the herbicide mesotrione on soil cyanobacterial communities. Arch Environ Contam Toxicol. 2013;64:23-31.

176. Safi J, Awad Y, El-Nahhal Y. Bioremediation of diuron in soil: influence of cyanobacterial mat. American J Plant Sci. 2014;5:1081-89.

177. Kumar D, Prakash B, Pandey JK, Gaur JP. Sorption of pararquat and 2,4 D by Oscillatoria sp dominant cyanobacterial mat. Appl Biochem Biotechnol. 2010;160:2475-85.

178. Shing WL, Lee YH, Surif S. Whole cell biosensor using Anabaena torulosa with optical transduction for environmental toxicity evaluation. J Sensors. 2013;1:1-8.

179. Shao CY, Howe CJ, Porter AJR, Glover LA. Novel biosensor for the detection of herbicides. Appl Enviro Microbiol. 2002;68:5026-33.

180. Abou-Waly H, Abou-Setta MM, Nigg HN, Mallory LL. Growth response of fresh water algae Anabaena flos-aquae and Selenastrum capricornutum to atrazine and hexazinone herbicides. Bull Environ Contam Toxicol. 1991;46:223-29.

181. Preuss M, Hall EAH. Mediated Herbicide inhibition in a Pet Biosensor. Anal Chem. 1995;67:1940-49.

182. Kobilžek M, Malý J, Masojídek J, Komenda J, Kučera T, Giardi MT, Mattoo AK, Pilloton R. A biosensor for the detection of triazine and phenyl urea herbicides designed using photosystem II coupled to a screen printed electrode. Bitechnol Bioengneer. 2002;78:110-16.

183. Downing HF, De-Loranzo ME, Fulton MH, Scott GL, Madden CJ, Kuckick JR. Effects of agricultural pesticides atrazine, chlorothalonil, and endosulfan on South Florida microbial assemblages. Ecotoxicol. 2004;13:245-60.

184. Zimmermann K, Heck M, Frank J, Kern J, Vass I, Zouni A. Herbicide binding and thermal stability of photosystem II isolated from Thermosynechococcus elongatus. Biochim Biophys Acta. 2006;1757:106-14.

185. Shen JY, Lu YT, Cheng GH. Effects of chemical herbicides on toxicity of non-target nitrogen-fixing cyanobacteria in paddy fields. Proc. 20th Asian-Pacific Weed Science Conference. Vietnam: Weed Science Society. 2005;45:664-69.

186. Kobilžek M, Masojídek J, Komenda J, Kučera T, Pilloton R, Mattoo AK, Giardi MT. A sensitive photosystem-II based biosensor for the detection of acrylamide and pesticides. Bitechnol Bioengneer. 1998;60:664-69.

187. Vaishampayan A. Biological effects of a herbicide on a nitrogen-fixing cyanobacterium (blue-green alga): An attempt for introducing herbicide-resistance. New Phytol. 1984;96:7-11.

188. Battah MG, Shabana EF, Kobbia IA, Eladel HM. Differential effects of thiobencarb toxicity on growth and photosynthesis of Anabaena variabilis with changes in phosphate level. Ecotoxicol Environ Saf. 2001;49:235-39.

189. Chamovitz D, Sandmann G, Hirschberg J. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytolene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem. 1993;268:17348-53.

190. Abrantes N, Pereira R, Soares AMVM, Gonçalves F. Evaluation of the toxicological impact of pesticide Lass® on non-target freshwater species, through leaching from nearby agricultural fields, using terrestrial model ecosystems. Water Air Soil Pollut. 2008;192:211-20.
191. Murata T, Takagi K, Ishizaka M, Yokoyama K. Effect of mefenacet and pretilachlor applications on phospholipids fatty acids profiles of soil microbial communities in rice paddy soil. Soil Sci Plant Nutr. 2004;50:349-356.

192. Leboulanger C, Bouvy M, Pagano M, Dufour RA, Got P, Cecchi P. Responses of planktonic microorganisms from tropical reservoirs to paraquat and deltamethrin exposure. Archiv Environ Contam Toxicol. 2009;56:39-51.