Irreversibly increased nitrogen fixation in *Trichodesmium* experimentally adapted to elevated carbon dioxide

David A. Hutchins¹, Nathan G. Walworth¹, Eric A. Webb¹, Mak A. Saito², Dawn Moran², Matthew R. McIlvin², Jasmine Gale¹ & Fei-Xue Fu¹

Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium *Trichodesmium* increase under high carbon dioxide (CO₂) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO₂ increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO₂ levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO₂ levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO₂-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.

¹Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, California 90089, USA. ²Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Massachusetts 02543, USA. Correspondence and requests for materials should be addressed to D.A.H. (email: dahutch@usc.edu).
A
tmospheric dinitrogen (N₂) fixation by marine cyanobacteria is a globally dominant source of the limiting nutrient nitrogen to the ocean’s biosphere. The colony-forming genus *Trichodesmium* is among the most important contributors of newly fixed nitrogen to marine food webs, with some estimates suggesting it may carry out as much as half of total N₂ fixation in the vast subtropical gyre biomes of the ocean. Due to the pivotal role that N₂-fixing cyanobacteria play in the ocean’s nitrogen cycle, environmental factors such as phosphorus, iron and light that can potentially limit *Trichodesmium* N₂ fixation rates have been the subject of intensive study.

A number of recent studies have demonstrated that carbon dioxide (CO₂) may also limit the N₂ fixation rates of marine cyanobacteria, including *Trichodesmium*. Enhancement of *Trichodesmium* N₂ fixation rates by up to 50% at projected year 2100 CO₂ atmospheric levels (~800 p.p.m.) relative to present day concentrations (~400 p.p.m.) points to the possibility that new nitrogen inputs from this cyanobacterium could greatly increase as a result of future anthropogenic CO₂ emissions. Such a CO₂ fertilization effect on marine N₂ fixation would fundamentally change the nitrogen cycle of the ocean. However, most of these previous studies were based on results from only one or two cultured isolates. A recent examination of a diverse global collection of N₂-fixing cyanobacteria offers a more nuanced viewpoint, whereby particular strains, species and perhaps clades appear to be optimized for growth and N₂ fixation under either low or high CO₂ conditions. This observation of taxon-specific CO₂ niche specialization suggests that marine N₂-fixing cyanobacteria may have undergone differential selection by the many spatial and temporal CO₂ fluctuations they have experienced during their long evolutionary history.

Although this indirect evidence suggests that adaptation may be key to understanding the response of *Trichodesmium* to future changes in atmospheric CO₂, none of these previous studies were designed to evaluate its potential evolutionary trajectories under high CO₂. All previous work with *Trichodesmium* used only brief exposures to elevated CO₂, typically on the order of weeks.

This is long enough to determine transient acclimation physiology, but inadequate to ascertain the types of long-term evolutionary responses *Trichodesmium* may exhibit during the up to 19,000 generations that it will have to adapt to rising CO₂ levels over the next century.

To address this issue, here we employ classic experimental evolution methods that provide insights into the fundamental principles of microbial adaptive responses. We grow six replicate cell lines of *Trichodesmium erythraeum* strain IMS 101 for 4.5 years at 380 p.p.m. (current CO₂, ~570 generations) or 750 p.p.m. (projected year 2100 CO₂, ~850 generations), and then evaluate changes in their reproductive fitness using growth rate measurements, as well as changes in their physiological rates of N₂ fixation. Every replicate cell line selected under expected future high-CO₂ conditions exhibits elevated N₂ fixation and growth rates that are constitutively expressed, in that they remain fixed at high levels despite reciprocal transfers back to long-term growth under lower current CO₂ concentrations. This surprising microbial evolutionary response is characterized by apparently permanent changes in diel periodicity of N₂ fixation and increased expression of a DNA-methylating enzyme with a possible regulatory function, and persists even when growth rates are limited by the nutrient phosphorus. *Trichodesmium* reacts to projected anthropogenic CO₂ increases not only through transitory physiological plasticity responses, but also in wholly unexpected adaptive ways that could have large consequences for nitrogen and carbon biogeochemical cycling in the future ocean.

Results

Experimental evolution at 380 and 750 p.p.m. CO₂

Before the experimental evolution study, the ancestral cell lines exhibited a large increase in N₂ fixation rates when stock cultures maintained at 380 p.p.m. CO₂ (380 ancestral) were transferred to 750 p.p.m. CO₂ (750 ancestral) for 2 weeks (Fig. 1, *P* < 0.05, Student’s *t*-test, *n* = 6), as expected based on the previous short-term experiments cited above. At the end of the 4.5 year selection period, N₂ fixation rates of the six 380- and 750-selected cell lines were still 43% higher than those of the 380-selected cultures (Fig. 1a, *P* < 0.05, Student’s *t*-test, *n* = 6). This is consistent with the responses of the ancestral cell line (Fig. 1), and published short-term studies.

We then tested for any adaptive changes arising due to selection under the two CO₂ regimes. Following the 4.5 year selection period, we conducted short-term reciprocal transfers to the opposite CO₂ level for both the 380- and 750-selected cell lines. When subcultures of the six 380-selected cell lines were transferred to 750 p.p.m. CO₂ for 2 weeks (380-selected to 750 switch, Fig. 1), they rapidly increased their N₂ fixation rates to levels very similar to those in the 750-selected cultures (Fig. 1).

High CO₂ irreversibly increases N₂ fixation and growth. Unexpectedly though, the 750-selected cell lines returned to 380 p.p.m. CO₂ for 2 weeks did not show a corresponding decrease in their N₂ fixation rates (750-selected to 380 switch, Fig. 1). Instead, their N₂ fixation rates persisted at very high levels, indistinguishable from those of the 750-selected and 380-selected to 750 switch cultures (*P* > 0.05). These same six 750-selected to 380 switch cell lines were then maintained at the reciprocal CO₂ level of 380 p.p.m. over the subsequent ~2 years, along with the long-term 750-selected and 380-selected cell lines maintained at their respective selection CO₂ levels. N₂ fixation rates of the 750-selected cultures switched back to 380 p.p.m. for

Figure 1 | *Trichodesmium* N₂ fixation rates before and after long-term selection at 380 or 750 p.p.m. CO₂. The ancestral cell line grown at 380 p.p.m. CO₂ (black) and 750 p.p.m. CO₂ (pink) before the selection experiment; and at the end of the 4.5 year CO₂ selection period in 380-selected (red) and 750-selected (yellow) cell lines, as well as in these same selected cell lines 2 weeks after reciprocal transfers (380-to-750-switch, turquoise; and 750-to-380-switch, blue). Values are the means and error bars are the s.d. of six replicate cell lines for each treatment.

© 2015 Macmillan Publishers Limited. All rights reserved.
2 years (>350 generations) remained virtually identical to those of the 750-selected cell lines maintained continuously at 750 p.p.m., with both still ~43% higher relative to rates of the 380-adapted cell lines maintained at 380 p.p.m. (Fig. 2a, Student’s t-test, n = 6). Thus, every cell line selected at 750 p.p.m. CO₂ was unable to reduce their rates when moved back to the ancestral 380 p.p.m. CO₂ level, with N₂ fixation physiology instead becoming ‘stuck in the fast lane’.

Cell-specific growth rates of all six replicate cell lines responded in the same way as N₂ fixation rates. 750-selected to 380 switch cultures maintained at 380 p.p.m. for 2 years grew at the same rates as the 750-selected cell lines maintained continuously at 750 p.p.m.; both grew up to ~44% faster than the 380-selected cultures maintained at 380 p.p.m. (Fig. 2b, Student’s t-test, n = 6). Thus as with N₂ fixation rates, the growth rates of all six 750-selected cell lines became constitutively elevated relative to CO₂ concentration following 4.5 years of selection at high CO₂, with the same universally increased growth rates persisting regardless of whether they were grown at 380 or 750 p.p.m.

Irreversibly shifted diel N₂ fixation patterns. An examination of diel patterns of N₂ fixation in the selected cell lines offers possible insights into the physiological mechanisms behind this unexpected adaptive response to prolonged growth under high CO₂. *Trichodesmium* fixes nitrogen only during daylight hours, with rates often peaking somewhere near mid-photoperiod. Our 380-selected cell lines conformed to this expected pattern, with the highest N₂ fixation rates occurring between 3 and 5 h into the photoperiod (Fig. 3). In both the 750-selected and 750-selected to 380 switch cell lines, however, N₂ fixation rates were not only higher, but the peak fixation period was nearly doubled in duration and shifted to later in the photoperiod (hours 5–9, Fig. 3). A similar shift in diel N₂ fixation patterns has been reported in experiments using *Trichodesmium* grown for shorter periods under high CO₂ (ref. 20), but our results demonstrate that this altered periodicity is an integral feature of the observed irreversible effects of long-term adaptation to elevated CO₂. Despite being moved back to 380 p.p.m. for ~2 years, the 750-selected to 380 switch cell lines maintained a diel N₂ fixation pattern nearly identical to that of the 750-selected cell lines, with higher absolute fixation levels occurring over a longer period of time later in the photoperiod (Fig. 3).

Proteomics and DNA methyltransferase activity. Proteomic analyses of samples taken near the mid-point of the photoperiod from three of the biological replicates from each treatment did not show evidence for differential expression of the ~1,500 distinct proteins detected in the 750-selected and 750-selected to 380 switch cell lines, relative to the 380-selected cell lines (Fig. 4a). In particular, proteins typically associated with elevated N₂ fixation and growth such as those comprising the nitrogenase enzyme complex and photosynthetic systems were detected, but were not more highly expressed in the two high CO₂-selected cell lines (Fig. 4a). This lack of a definitive change in expression of proteins at mid-photoperiod, even those intimately involved in N₂ fixation, suggests that the observed constitutive rate increases following selection at high CO₂ may be due to subtle changes in regulatory controls on N₂ fixation activity, rather than to more obvious quantitative alterations in the proteome. Accordingly, regulatory mechanisms such as DNA methylation and protein phosphorylation have been shown to control numerous cellular processes and genetic networks in bacteria, including the cell cycle, gene expression, motility, DNA repair, heritable phenotypic variation and adaptation to novel environments. To investigate potential regulatory changes in our CO₂-selected *Trichodesmium* cell lines, we tested the activity of DNA methyltransferase enzymes ~20 months following the switch by fluorometrically measuring the total amount of methyl groups transferred to cytosine on a DNA substrate (Methods section). Methyltransferase activity levels were elevated to varying degrees in all six 750-selected to 380 switch cell lines, but were below detection or nearly so in every

Figure 2 | Irreversibly increased *Trichodesmium* N₂ fixation and growth rates following long-term selection by high CO₂. (a) N₂ fixation rates in the 750-to-380 switch cell lines (blue) over the subsequent ~2 years following the reciprocal transfer, while being maintained at the switched CO₂ condition of 380 p.p.m. Also shown are N₂ fixation rates of the long-term 750-selected (yellow) and 380-selected (red) cell lines maintained over the same time period continuously at 750 and 380 p.p.m., respectively. (b) Cell-specific growth rates of the same cell lines and treatments shown in panel (a). Data points represent the means, and error bars the s.d. of six replicate cell lines for each treatment.

Figure 3 | Diel periodicity of N₂ fixation in 380-selected, 750-selected and 750-selected-to-380-switch *Trichodesmium* cell lines. Shown are N₂ fixation rates across the 12-h photoperiod in cell lines selected for ~6.5 years at 380 p.p.m. (red) or 750 p.p.m. (yellow), and in the cell lines selected at 750 p.p.m. for ~4.5 years and then transferred back to 380 for ~2 years (blue). Data points represent the means, and error bars the s.d. of six replicate cell lines for each treatment.
expression levels of proteins associated with the N2-fixing nitrogenase relationships are not significantly different from 1:1. Highlighted in colour are versus the 750-selected (yellow symbols) and versus the 750-selected to levels with linear regressions are plotted for the 380-selected cell lines methyltransferase enzyme activities in the 750-selected to 380 switch, different from 1:1. Symbols are the means and error bars are the standard symbols; these also fall on the regression lines and are not significantly symbols; 380-selected versus 750-selected to 380 switch, light green cellular photosynthetic proteins (380-selected versus 750-selected, purple symbols; 380-selected versus 750-to-380 global proteins, turquoise symbols; and with enzyme complex (380-selected versus 750-selected, brown symbols) and with phosphorus (P)-limited medium (matched yellow and red bars, respectively). Values are the means, and error bars are the s.d. of six replicate cell lines for each treatment.

Figure 4 | Relative expression levels of ~1,500 proteins, and DNA methyltransferase enzyme activities in the 750-selected to 380 switch, 750-selected and 380-selected cell lines. (a). Global protein expression levels with linear regressions are plotted for the 380-selected cell lines versus the 750-selected (yellow symbols) and versus the 750-selected to 380 switch (blue symbols) cell lines. Regressions indicate that both relationships are not significantly different from 1:1. Highlighted in colour are expression levels of proteins associated with the N2-fixing nitrogenase enzyme complex (380-selected versus 750-selected, turquoise symbols; 380-selected versus 750-selected to 380 switch, brown symbols) and with cellular photosynthetic proteins (380-selected versus 750-selected, purple symbols; 380-selected versus 750-selected to 380 switch, light green symbols); these also fall on the regression lines and are not significantly different from 1:1. Symbols are the means and error bars are the standard errors of three replicate cell lines for each treatment (b). Relative DNA methyltransferase enzyme activity (relative fluorescence units per hour per mg cellular protein) 20 months after the reciprocal transfer switch. Shown are enzyme activity levels in the 380-selected (red), 750-selected (yellow) and 750-selected to 380 switch (blue) cell lines. All data points represent the means, and error bars the standard errors of six replicate cell lines for each treatment.

one of the 380-selected and 750-selected cell lines (Fig. 4b). These data suggest that transferring 750-selected cell lines back to 380 could result in increased levels of methyltransferase-mediated regulation, which could potentially be related to the observed constitutive rate increases and associated irreversible shifts in diel N2 fixation patterns. This regulatory enzymatic response, like elevated growth and N2 fixation, has now persisted for more than 350 generations following the switch back to low CO2.

High CO2 adaptation and phosphorus limitation. Phosphorus is one of the key limiting nutrients for N2 fixation in the ocean1,3,5. To examine interactions between phosphorus availability and adaptation to increasing CO2, we cultured our six 750-selected and 380-selected cell lines for 2 months under phosphorus-limited and phosphorus-replete conditions at their respective CO2 selection levels (Methods section). Phosphorus-limited growth rates of both sets of cell lines were lower than phosphorus-replete rates, as expected (Fig. 5a, P < 0.0001, Student’s t-test, n = 6). In phosphorus-replete cultures, the 750-selected cell lines grown at 750 p.p.m. had growth rates that were much higher than those of the 380-selected cell lines growing at 380 p.p.m. (Fig. 5a, P < 0.0001, Student’s t-test, n = 6), again as expected from previous results (Fig. 1a). Notably though, the 750-selected cell lines were still able to grow ~1.3 times faster than the 380-selected cell lines when both were grown under identical phosphorus-limited conditions (Fig. 5, P < 0.007, Student’s t-test, n = 6).

Discussion

Trichodesmium growth rates, a proxy for microbial reproductive fitness13,14, increased almost immediately when cell lines were moved to 750 p.p.m. CO2, but then remained unchanged despite the subsequent ~850 generations of selection at this elevated CO2 level. Thus, beyond the previously documented rapid initial physiological plasticity response, long-term selection by high CO2 did not lead to further measurable fitness increases in the selection environment. However, these same 750-selected cell lines exhibited a 44% fitness increase when transplanted back to the ancestral CO2 condition of 380 p.p.m., relative to the 380-selected and ancestral cell lines. This surprising adaptive response—in which short-term plastic growth rate increases become fixed during extended selection in a novel environment, resulting in permanent large fitness increases even in the ancestral environment—appears to be unique in the microbial experimental evolution literature13,14.

Changes in evolutionary fitness often show tradeoffs in relative fitness across different environments13,14,24. An evolution experiment using a freshwater green alga showed no fitness increases in a high CO2 selection environment, and some but not all high CO2-selected cell lines exhibited fitness decreases when switched back to ambient CO2 concentrations8. Analogous to our Trichodesmium cell lines, in another study measuring Escherichia coli long-term evolutionary adaptation to several temperature regimes all cell lines improved fitness relative to their ancestors in the selection environment. However, these fitness increases occurred only following thousands of generations of exposure, and replicate E. coli cell lines demonstrated considerable heterogeneity in whether fitness was decreased or
unchanged at ancestral temperatures; none exhibited fitness increases in the ancestral environment. Other than CO₂ will be simultaneously in flux. To a comprehensively changing future ocean environment, where gyre ecosystems. It is also necessary, however, to examine to what carbonate chemistry conditions that will be experienced by suggesting that our results are likely applicable to seawater CO₂ concentrations will range within similar bounds around current central gyre biomes will include not only higher CO₂, but also warmer inputs, higher irradiance exposures, expanding hypoxia, and novel competitive and trophic interactions within altered biological communities. Predicting the net adaptive responses of key marine functional groups like N₂-fixing cyanobacteria to the integrated effects of this entire complex matrix of changing environmental variables remains a daunting challenge for the future.

Methods

Culturing Trichodesmium cell lines. Cultures of Trichodesmium strain IMS 101 obtained from the National Center for Marine Algae and Microbiota (NCMAA, Biglow Laboratory for Marine Sciences, East Boothbay Harbor, Maine 04544, USA) were maintained in a modified Aquil medium with standard mixed vitamins and trace metals, containing 500 nM iron and 20 μM phosphate but without combined nitrogen under a light intensity of 120 μmol photons per square meter per second with a light-dark cycle of 12:12 highdark in 26 °C incubators. Six replicate cell lines were used for each treatment to provide robust statistical confidence in the experimental evolution results. & Methods. Semi-continuous dilution culturing methods were practiced in this experiment because they allow for the capture of CO₂ effects during growth, and do not fixate cellular growth rates. The cultures were kept optically thin to avoid self-shading and nutrient limitation and perturbations of targeted CO₂ levels. Each bottle was diluted individually based on the growth rate calculated for that bottle. Growth rates were calculated according to microscopic cell counts for reported values, or using in vivo chlorophyll fluorescence measurements with a Turner 10 AU fluorometer for semi-daily dilution calculations in real time during the experiments. Comparisons between cell counts and in vivo-based growth rates revealed no significant differences between the two methods of assessing biomass changes.

Experimental evolution cultures were continuously bubbled with prepared air/CO₂ mixtures (Praxair) to maintain stable CO₂ concentrations of 380 p.p.m. or 750 p.p.m. CO₂ for ~4.5 years. At this time, a set of short-term 2 week CO₂ reciprocal transfer incubation experiments was performed using the long-term cultures. These two treatments consisted of switching 380 p.p.m. CO₂-conditioned cell lines to 750 p.p.m. CO₂, and 750 p.p.m. CO₂-conditioned cultures to 380 p.p.m. CO₂ (referred to as switch cultures). The switch incubations were performed under experimental conditions and dilution frequencies identical to those of the long-term cultures.

Following the 2 week reciprocal transfers, the six 750 to 380 switch cell lines were then maintained for a further 2 years at 380 p.p.m., in parallel with the 750-selected and 380-selected cell lines maintained at their relative selection CO₂ levels. During this subsequent 2 year period, all culturing protocols for the switch and long-term selected cultures remained the same as outlined above. The classical method to determine fitness changes in microbial experimental evolution experiments is competition of selected cell lines against the ancestral strain. It not possible for Trichodesmium, though, since it is not amenable to cryopreservation. Consequently, we used the best available measurable indicator of relative fitness, specific growth rates, to assess adaptive changes, with the caveat that this proxy may not fully capture all fitness changes in our CO₂-selected Trichodesmium cell lines. For all experiments, significant differences between the six replicates in each treatment were tested using one-way ANOVA followed by student’s t-test.

Phosphorus limitation experiments. The six replicate long-term 750-selected and 380-selected Trichodesmium cell lines were used in experiments assessing the responses of cell-specific growth rates to phosphorus limitation. Medium was prepared for P-replete cultures as described above for experimental cultures, and was prepared in the same way except the phosphate concentration was reduced to 0.25 μM for P-limited cultures. Steady-state growth rates of the semi-continuous cultures were measured after 2 months of growth at 26 °C in the P-limited medium, and results are reported as the means and averages of the six replicate cell lines for
Proteomic analyses. For protein extraction, 1.5 ml of 1% SDS extraction buffer (1% SDS, 0.1 M Tris/HCl pH 7.5, 10 mM EDTA) was added to unfolded 250 filter samples. Each sample was incubated at room temperature (RT) for 15 min, heated at 95 °C for 10 min, and shaken at RT, 350 r.p.m. for 1 h. The protein extract was decanted and placed in a new tube and centrifuged at 14,100g (14,500 r.p.m.) for 20 min at RT. The supernatants were removed and concentrated by membrane centrifugation to ~300 μl in 6 ml, 5 K molecular weight cutoff Vivaspin units (Sartorius Stedim, Goettingen, Germany). Each sample was precipitated with cold 50% methanol (MeOH) 50% acetone 0.5 mM HCl for 3 days at ~20 °C, centrifuged at 14,100g for 30 min at 4 °C, decanted and dried by vacuum concentration (Thermo Savant Speedvac) for 10 min or until dry. Pellets were resuspended in 1% SDS extraction buffer and left at RT for 1 h to completely dissolve. Total protein was quantified (Bio-Rad DC protein assay, Hercules, CA) with BSA as a standard.

For protein digestion, extracted proteins were purified from SDS detergent, reduced, alkylated and trypsin digested while embedded within a polyacrylamide tube gel. A gel piece was made by combining 1 M Tris-HCl (pH 7.5) and 40% Bis-acrylamide L 29:1 (Acros Organics) at a ratio of 1:3. The premix (103 μl) was combined with an extracted protein sample (35–200 μg), Tris EDTA, 7% ammonium persulfate and 3 μl of tetramethylethlenediamine (Acros Organics) to a final volume of 200 μl. After 1 h of polymerization at room temperature 200 μl of gel was removed by combining 1 M Tris-HCl (pH 7.5) and 40% acetic acid in liquid chromatography/mass spectrometry (LC/MS) grade water was added to the top of the gel and incubated at RT for 20 min. Liquid was then removed and the gel was transferred into a new 1.5 ml microtube containing 1.2 ml of gel fix solution then incubated at RT, 350 r.p.m. in a Thermomixer R (Eppendorf) for 1 h. Gel fix solution was then removed and replaced with 1.2 ml destain solution (50% MeOH, 10% acetic acid in H₂O₂) and incubated at 350 r.p.m. for 2 h. Liquid was then removed, gel cut up into 1 mm cubes and then added back to tubes containing 1 ml of 50:50 acetonitrile:25 mM ammonium bicarbonate (am bicarbonate) incubated for 1 h, 350 r.p.m. at RT. Liquid was removed and replaced with fresh 50:50 acetonitrile/3M ammonium bicarbonate for 15 min at RT overnight. The above step was repeated the following morning. Gel pieces were then dehydrated twice in 800 μl of acetonitrile for 10 min at RT and dried for 10 min in a ThermoSavant DNA110 speedvac after removing solvent, 600 μl of 10 mM dithiothreitol in 25 mM acetic acid was added to reduce proteins incubating at 35 °C, 350 r.p.m. for 1 h. Unabsorbed dithiothreitol solution was then removed with volume measured. Gel pieces were washed with 25 mM acetic acid and 600 μl of 55 mM iodacetamide was added to alkylate proteins at RT, 350 r.p.m. for 1 h. Gel cubes were then washed with 1 ml ampicillin for 20 min, 350 r.p.m. at RT. Acetonitrile dehydrations and speedvac drying were repeated as above. Trypsin (Promega V5280) was added in appropriate volume of 25 mM ampicillin to rehydrate and submerge gel pieces at a concentration of 1:200 μg trypsin:protein. Proteins were digested overnight at 350 r.p.m. 37 °C. Unabsorbed solution was removed and transferred to a new tube. 50 μl of peptide extraction buffer (50% acetonitrile, 5% formic acid in water) was added to gels, incubated for 20 min at RT then centrifuged at 14,100g for 2 min. Supernatants was collected and combined with unabsorbed solution. The above peptide extraction step was repeated combining all supernatants. Combined protein extracts were centrifuged at 14,100g for 20 min, supernatants transferred into a new tube and dehydrated down to ~10–20 μl in the speedvac. Concentrated peptides were then diluted in 2% acetonitrile 0.1% formic acid in water for storage until analysis. All water used in the tube gel digestion protocol was LC/MS grade, and all plastic microtubes were ethanol rinsed and dried before use.

For MS global proteome analyses, chromatography was performed using a Micromass Millenium 3000 binary pump and autosampler (Micromass Biorepositories) and a 100 μm inner diameter 15 cm long capillary column with a pulled tip (packed in lab with MAGIC C18AQ 200 Å pore size 3 μm particle size from Micromass Biorepositories). Samples were first loaded on a 200 μl I.D. 1 cm long trap (Thermo Scientific Acclaim PepMap100 nano-trap column, 5 μm particle size) and washed with 50 μl of 2% acetonitrile and 0.1% formic acid in water. The trap was then switched in for the 15 cm column and eluted with a non-linear gradient of 5–35% solvent B (0.1% formic acid in acetonitrile) balanced with solvent A (0.1% formic acid in water) at 500 μl min⁻¹ flow rate.

Electrospray ionization was performed with a Thermo Flex ion source in positive ion mode at 1,400V. Eluting peptides were analysed on a Thermo Fusion mass spectrometer with MS1 scans at an Orbitrap resolution of 60 K, 350–1,800 m/z scan range, 2.0e5 automatic gain control target, and a maximum injection time of 35 ms. MS2 scans were analysed on the linear ion trap in topN data dependent mode at a cycle time of 3 s using normal scan range and with a maximum injection time of 75 ms and a 0.7 m/z isolation window. Charge states of 2–7 were assigned with a dynamic exclusion of 15 s with a mass tolerance of 10 p.p.m. Monoisotopic precursor selection was used, and a user-defined lock mass of 445,1203 m/z.

Protein identifications were made using the SEQUEST peptide mapping algorithm within Proteome Discoverer and the Peptide Prophet algorithm within Scaffold (Proteome Software, Portland, OR, USA) using 99% protein and 95% peptide confidence levels, allowing one minimum peptide per protein, resulting in a 1.1% false discovery rate for proteins and a 0.01% false discovery rate for peptides resulting in 1,499 identified proteins. Clustering relative abundance data between proteins from samples were compared using label-free spectral count enumeration within Scaffold. Spectral counts compare a specific protein’s abundance between treatments, rather than against other proteins, because the sensitivity of spectral counts can vary between proteins depending on the number of tryptic peptides within the sequence and their chemical characteristics. These problems do not affect comparisons of a protein within each treatment between controls and experimental treatments. Each experimental treatment to the total number of spectra collected to correct for small variations in the number of spectra between samples sets; under stable and consistent MS conditions this results in a very small difference. Based on these spectral count enumeration results, the Power Law Global Error Model was used to detect differentially expressed proteins.

DNA methylation analyses. Cultures were rapidly and gently filtered during the middle of the photoperiod onto 5 μm polycarbonate filters (Whatman), washed off of the filters with 2 ml of 50 mM (pH = 7) Tris-HCl into PowerPlant Bead from the PowerPlant Pro DNA Isolation Kit (#13200-100), and put on ice. The tubes were vortexed for 2 min (Vortex Genie 2, Scientific Industries, setting 10), and technical replicates were made for each biological replicate. Protein concentrations were quantified using the Pierce BCA Protein Assay Kit (#23225), and the (Epigentek) Epsiqul DNMT Activity/Inhibition Assay Ultra Kit (Flurometro) (#P-3010) was used to determine DNA methylation activity according the manufacturer’s instructions.

References

1. Zehr, J. P. Nitrogen fixation by marine cyanobacteria. *Trends Microbiol.* 19, 162–173 (2011).
2. Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. *Nat. Rev. Microbiol.* 9, 499–508 (2011).
3. Sañudo-Wilhelmy, S. A. et al. Phosphorous limitation of nitrogen fixation by *Trichodesmium* in the central Atlantic Ocean. *Nature* 411, 66–69 (2001).
4. Kunstka, A. B. et al. Iron requirements for dinitrogen- and ammonium-supported growth in cultures of *Trichodesmium* (IMS 101): comparison with nitrogen fixation rates and iron: carbon ratios of field populations. *Limnol. Oceanogr.* 48, 1869–1884 (2003).
5. Fu, F.-X., Zhang, Y., Bell, P. R. F. & Hutchins, D. A. Phosphate uptake and growth kinetics of *Trichodesmium* (Cyanobacteria) isolates from the North Atlantic Ocean and the Great Barrier Reef, Australia. *J. Physol. 41*, 62–73 (2005).
6. Chappell, P. D., Moffett, J. W., Hynes, A. M. & Webb, E. A. Molecular evidence of iron limitation and availability in the global diazotroph *Trichodesmium*. *ISME J.* 6, 1728–1739 (2012).
7. Hutchins, D. A. et al. CO₂ control of *Trichodesmium N*₂ fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. *Limnol. Oceanogr.* 52, 1293–1304 (2007).
8. Hutchins, D. A., Fu, F.-X., Webb, E. A., Walworth, N. & Tagliabue, A. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. *Nat. Geosci.* 6, 790–795 (2013).
9. Barcelos e Ramos, J. B. E., Biswas, H., Schulz, K. G., LaRoche, J. & Riebesell, U. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer *Trichodesmium*. *Glob. Biogeochem. Cycles* 21, GB2028 (2007).

10. Levitan, O. *et al.* Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium *Trichodesmium*. *Glob. Change Biol.* 13, 531–538 (2007).

11. Fu, F.-X. *et al.* Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium *Crocophlaera*. *Limnol. Oceanogr.* 53, 2472–2484 (2008).

12. Kourbis, B. A., Muthotra, M. R. & Fu, F.-X. Nutrient cycles and marine microbes in a CO2-enriched ocean. *Oceanography* 22, 128–145 (2009).

13. Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. *Nat. Rev. Genet.* 4, 457–469 (2003).

14. Kassen, R. *Experimental Evolution and the Nature of Biodiversity*, 1st edn ISBN-13: 978-1936221462Robert and Co. Publishers, 2014).

15. Collins, S. Many possible worlds: expanding the ecological scenarios in experimental evolution. *Evol. Biol.* 38, 3–14 (2011).

16. Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. Adaptive evolution of a key phytoplankton species to ocean acidification. *Nat. Geosci.* 5, 346–351 (2012).

17. Tatters, A. O. *et al.* Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: Implications for interspecific competitive interactions and community structure. *Evolution* 67, 1879–1891 (2013).

18. Collins, S. & Bell, G. Phenotypic consequences of 1000 generations of selection at elevated CO2 in a green alga. *Nature* 431, 566–569 (2004).

19. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. *Trichodesmium*, a globally significant marine cyanobacterium. *Science* 274, 1221–1229 (1997).

20. Kranz, S. A. *et al.* Combined effects of CO2 and light on the N2-fixing cyanobacterium *Trichodesmium IIM01*: physiological response. *Plant Physiol.* 154, 334–345 (2010).

21. Casadesus, J. & Low, D. A. Programmed heterogeneity: epigenetic mechanisms in bacteria. *J. Biol. Chem.* 288, 13929–13935 (2013).

22. Kondor, J. B. *et al.* Global methylation state at base pair resolution of the *Caulobacter* genome throughout the cell cycle. *Proc. Natl Acad. Sci. USA* 110, E4658–E4667 (2013).

23. Avery, S. V. Microbial cell individuality and the underlying sources of heterogeneity. *Nat. Rev. Microbiol.* 4, 577–587 (2006).

24. MacLean, R. C. & Bell, G. Divergent evolution during an experimental adaptive radiation. *Proc. R. Soc. Lond. B* 270, 1645–1650 (2003).

25. Bennett, A. F., Lenski, R. E. & Mittler, J. E. Evolutionary adaptation to temperature: I. Fitness responses of *Escherichia coli* to changes in its thermal environment. *Evolution* 46, 16–30 (1992).

26. Dutkiewicz, S., Ward, B. A., Monteiro, F. & Follows, M. J. Interconnection of nitrogen fixers and iron in the Pacific Ocean: theory and numerical simulations. *Glob. Biogeochem. Cycles* 26, GB1012 (2012).

27. Moore, C. M. *et al.* Processes and patterns of oceanic nutrient limitation. *Nat. Geosci.* 6, 701–710 (2013).

28. Boyd, P. W. & Doney, S. C. Modelling regional responses by marine pelagic ecosystems to global climate change. *Geophys. Res. Lett.* 29, 1806 (2002).

29. Sarmento, J. L. *et al.* Response of ocean ecosystems to climate warming. *Glob. Biogeochem. Cycles* 18, GB3003 (2004).

30. Garcia, N. S., Fu, F.-X., Sedwick, P. N. & Hutchins, D. A. Iron deficiency increases growth and nitrogen fixation rates of phosphorus-deficient marine cyanobacteria. *ISME J.* 9, 238–245 (2015).

31. Hawaii Ocean Times Series (HOT) http://hahana.soest.hawaii.edu/hot (2014).

32. Bermuda Atlantic Time Series Study (BATS) http://bats.bios.edu (2014).

33. Boyd, P. W., Strzepek, R., Fu, F.-X. & Hutchins, D. A. Environmental control of open ocean phytoplankton groups: now and in the future. *Limnol. Oceanogr.* 55, 1353–1376 (2010).

34. Boyd, P. W., Lennartz, S. T., Glover, D. M. & Doney, S. C. Biological ramifications of climate change-mediated oceanic multi-stressors. *Nat. Clim. Change* 5, 71–79 (2014).

35. Sunda, W. G., Price, N. M. & Morel, F. M. In *Algal Culturing Techniques*, 4th edn, pp. 35–63 (Elsevier Academic Press, 2005).

36. Fu, F.-X. *et al.* Differing responses of marine N2-fixers to warming and consequences for future diazotroph community structure. *Aquat. Microb. Ecol.* 72, 33–46 (2014).

37. Saito, M. A., Goepfert, T. J. & Ritt, J. T. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. *Limnol. Oceanogr.* 53, 276–290 (2008).

38. Lu, X. & Zhu, H. Tube-gel digestion. *Mol. Cell. Proteomics* M500138-MCP200, 1948–1958 (2006).

39. Bertrand, E. M. *et al.* Influence of cobalamin scarcity on diatom molecular physiology and identification of a cobalamin acquisition protein. *Proc. Natl Acad. Sci. USA* 109, E1762–E1771 (2012).

40. Dyhrman, S. T. *et al.* The transcriptional and proteomic of the diatom *Thalassiosira pseudonana* reveal a diverse phosphorus stress response. *PLoS One* 7, e33768 (2012).

41. Saito, M. A. *et al.* Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph *Crocophlaera watsoni*. *Proc. Natl Acad. Sci. USA* 108, 2184–2189 (2011).

42. Pavelka, N. *et al.* A power law global error model for the identification of differentially expressed genes in microarray data. *BMC Bioinformatics* 5, 203 (2004).

Acknowledgements

Grant support was provided by U.S. National Science Foundation OCE 1260490 and OCE 1143760 to D.A.H., E.A.W., and F.-X.F, and OCE 1260233, OCE OA 1220484, and G.B. Moore Foundation 3782 and 3934 to M.A.S.

Author contributions

Authors were conceived and carried out by D.A. Hutchins, F.-X. Fu, N.G. Walworth, E.A. Webb, and M.A. Saito, with experimental and analytical contributions from D. Moran, M. R. McIlvin, and J. Gale. D.A. Hutchins wrote the manuscript, with assistance from F.-X. Fu, N.G. Walworth, E.A. Webb, and M.A. Saito.

Additional information

Data reported in the paper have been archived at the Biological and Chemical Oceanography Data Management Office (http://www.bco-dmo.org/data).