Explicit Ramsey graphs and Erdős distance problem over finite Euclidean and non-Euclidean spaces

Le Anh Vinh
Mathematics Department
Harvard University
Cambridge, MA 02138, US
vinh@math.harvard.edu

February 2, 2008

Abstract

We study the Erdős distance problem over finite Euclidean and non-Euclidean spaces. Our main tools are graphs associated to finite Euclidean and non-Euclidean spaces that are considered in Bannai-Shimabukuro-Tanaka (2004, 2007). These graphs are shown to be asymptotically Ramanujan graphs. The advantage of using these graphs is twofold. First, we can derive new lower bounds on the Erdős distance problems with explicit constants. Second, we can construct many explicit tough Ramsey graphs $R(3,k)$.

1 Introduction

Let \mathbb{F}_q denote the finite field with q elements where $q \gg 1$ is an odd prime power. Let $E \subset \mathbb{F}_q^d$, $d \geq 2$. Then the analog of the classical Erdős distance problem is to determine the smallest possible cardinality of the set

$$\Delta(E) = \{|x-y|^2 = (x_1-y_1)^2 + \ldots + (x_d-y_d)^2 : x, y \in E\},$$

viewed as a subset of \mathbb{F}_q. Suppose that -1 is a square in \mathbb{F}_q, then using spheres of radius 0, there exists a set of cardinality precisely $q^{d/2}$ such that $\Delta(E) = \{0\}$. Thus, we only consider the set $E \subset \mathbb{F}_q^d$ of cardinality $Cq^{d/2+\varepsilon}$ for some constant C. Bourgain, Katz and Tao (11) showed, using intricate incidence geometry, that for every $\varepsilon > 0$, there exists $\delta > 0$, such that if $E \subset \mathbb{F}_q^2$ and $|E| \leq C_\delta q^{2-\varepsilon}$, then $|\Delta(E)| \geq C_\delta q^{1+\delta}$ for some constants C_ε, C_δ. The relationship between ε and δ in their argument is difficult to determine. Going up to higher dimension using arguments of Bourgain, Katz and Tao is quite subtle. Iosevich and Rudnev (16) establish the following results using Fourier analytic methods.
Theorem 1 \((16)\) Let \(E \subset \mathbb{F}_q^d\) such that \(|E| \geq Cq^{d/2}\) for \(C\) sufficient large. Then

\[
|\Delta(E)| \gtrsim \min \left\{ q, \frac{|E|}{q^{d/2}} \right\}.
\]

(1)

By modifying the proof of Theorem 1 slightly, they obtain the following stronger conclusion.

Theorem 2 \((16)\) Let \(E \subset \mathbb{F}_q^d\) such that \(|E| \geq Cq^{d+1/2}\) for sufficient large constant \(C\). Then for every \(t \in \mathbb{F}_q\) there exist \(x, y \in E\) such that \(|x - y|^2 = t\). In other words, \(|\Delta(E)| = q\).

It is, however, more natural to define the analogues of Euclidean graphs for each non-degenerate quadratic form on \(V = \mathbb{F}_q^d, d \geq 2\). Let \(Q\) be a non-degenerate quadratic form on \(V\). For any \(E \subset V\), we define the distance set of \(E\) with respect to \(Q\):

\[
\Delta_Q(E) = \{Q(x - y) : x, y \in E\},
\]

viewed as a subset of \(\mathbb{F}_q\). Our first result is the following.

Theorem 3 Let \(Q\) be a non-degenerate quadratic form on \(\mathbb{F}_q^d, d \geq 2\). Let \(E \subset \mathbb{F}_q^d\) such that \(|E| \geq 3q^{d+\varepsilon}\) for some \(\varepsilon > 0\), then

\[
|\Delta_Q(E)| \geq \min\left\{ \frac{|E|}{3q^{(d-1)/2}}, q \right\}
\]

(2)

for \(q \gg 1\).

An interesting question is to study the analogous of the Erdős distance problem in non-Euclidean spaces. In order to make this paper concise, we will only consider the Erdős distance problem in the finite non-Euclidean plane (or so-called the finite upper half plane). In Section 2, we will see how to obtain various finite non-Euclidean spaces from the action of classical Lie groups on the set of non-isotropic points, lines and hyperplanes. Most of our results in this paper hold in this more general setting. We will address these results in a subsequent paper.

The well-known finite upper half plane constructed in a similar way using an analogue of Poincaré’s non-Euclidean distance. We follow the construction in [24]. Let \(\mathbb{F}_q\) be the finite field with \(q = p^r\) elements, where \(p\) is an odd prime. Suppose \(\sigma\) is a generator of the multiplicative group \(\mathbb{F}_q^*\) of nonzero elements in \(\mathbb{F}_q\). The extension \(\mathbb{F}_q \cong \mathbb{F}_q(\sigma)\) is analogous to \(\mathbb{C} = \mathbb{R}[i]\). We define the finite Poincaré upper half-plane as

\[
H_q = \{z = x + y\sqrt{\sigma} : x, y \in \mathbb{F}_q \text{ and } y \neq 0\}.
\]

(3)

Note that “half-plane” is something of a misnomer since \(y \neq 0\) may not be a good finite analogue of the condition \(y > 0\) that defines the usual Poincaré upper half-plane in \(C\). In fact, \(H_q\) is more like a double covering of a finite upper half-plane. We use the
familiar notation from complex analysis for $z = x + y\sqrt{\sigma} \in H_q$: $x = Re(z), y = Im(z)$, $\bar{z} = x - y\sqrt{\sigma} = z^q$, $N(z) =$ Norm of $z = z\bar{z} = z^{1+q}$. The Poincaré distance between $z, w \in H_q$ is
\[
d(z, w) = \frac{N(z - w)}{Im(z)Im(w)} \in \mathbb{F}_q.
\] (4)

This distance is not a metric in the sense of analysis, but it is $GL(2, \mathbb{F}_q)$-invariant: $d(gz, gw) = d(z, w)$ for all $g \in GL(2, \mathbb{F}_q)$ and all $z, w \in H_q$. Let $E \subset H_q$. We define the distance set with respect to the Poincaré distance:
\[
\Delta_H(E) = \{d(x, y) : x, y \in E\},
\]
viewed as a subset of \mathbb{F}_q. The following result is a non-Euclidean analog of Theorem 3.

Theorem 4 Let $E \subset H_q$ such that $|E| \geq 3q^{1+\frac{\varepsilon}{2}}$ for some $\varepsilon > 0$, then
\[
|\Delta_H(E)| \geq \min\left\{ \frac{|E|}{3q^{1/2}}, q - 1 \right\}
\] (5)
for $q \gg 1$.

We also have the Erdös problem for two sets. Let $E, F \subset \mathbb{F}_q^d, d \geq 2$. Given a non-degenerate quadratic Q form on \mathbb{F}_q^d. We define the set of distances between two sets E and F:
\[
\Delta_q(E, F) = \{Q(x, y) : x \in E, y \in F\}.
\]

We will prove the following analogues of Theorem 3 for the distance set $\Delta_q(E, F)$.

Theorem 5 Let $E, F \subset \mathbb{F}_q^d$ such that $|E||F| \geq 9q^{(d-1)+\varepsilon}$ for some $\varepsilon > 0$, then
\[
\Delta_q(E, F) \geq \min\left\{ \frac{\sqrt{|E||F|}}{3q^{(d-1)/2}}, q \right\}
\]
for $q \gg 1$.

In finite upper half plane, we define the set of distances between two sets $E, F \subset H_q$:
\[
\Delta_H(E, F) = \{d(x, y) : x \in E, y \in F\},
\]
where $d(x, y)$ is the finite Poincaré distance between x and y. Similarly, we have an analog of Theorem 3 for the distance set $\Delta_H(E, F)$.

Theorem 6 Let $E, F \subset H_q$ such that $|E||F| \geq 9q^{1+2\varepsilon}$ for some $\varepsilon > 0$, then
\[
\Delta_H(E, F) \geq \min\left\{ \frac{\sqrt{|E||F|}}{3q^{1/2}}, q - 1 \right\}
\]
for $q \gg 1$.
Note that an analog version of Theorem 3 for q prime was obtained by Iosevich and Koh in [15] (part b of Theorem 3.4) and Shparlinski in [22]. However, the bound we obtained here is better than ones in these papers.

The rest of this paper is organized as follows. In Section 2 we construct our main tools to study the Erdős problem over finite Euclidean and non-Euclidean spaces, the finite Euclidean and non-Euclidean graphs. Our construction follows one of Bannai, Shimabukuro and Tanaka in [8, 7]. In Section 3 we establish some useful facts about these finite graphs. One important result is for infinitely many values of q, these graphs disprove a conjecture of Chvatál and also provide a good lower bound for the Ramsey number $R(3, k)$. We then prove our main results, Theorems 3, 4, 5 and 4, in Section 4.

We also call the reader's attention to the fact that the application of the spectral method from graph theory in sum-product estimates and Erdős distance problem was independently used by Vu in [27].

2 Finite Euclidean and non-Euclidean Graphs

In this section, we summarise main results from Bannai-Shimabukuro-Tanaka [7, 8]. We follow their constructions of finite Euclidean and non-Euclidean graphs.

Let Q be a non-degenerate quadratic form on V. We define the corresponding bilinear form on V:

$$
\langle x, y \rangle_Q = Q(x + y) - Q(x) - Q(y).
$$

Let $O(V, Q)$ be the group of all linear transformations on V that fix Q (which is called the orthogonal group associated with the quadratic form Q). The non-degenerate quadratic forms over \mathbb{F}_q^n are classified as follows:

1. Suppose that $n = 2m$. If q odd then there are two inequivalent non-degenerate quadratic forms Q_{2m}^+ and Q_{2m}^-:

$$
Q_{2m}^+(x) = 2x_1x_2 + \ldots + 2x_{2m-1}x_{2m}, \\
Q_{2m}^-(x) = 2x_1x_2 + \ldots + 2x_{2m-3}x_{2m-2} + x_{2m-1}^2 - \alpha x_{2m}^2,
$$

where α is a non-square element in \mathbb{F}_q. If q even then there are also two inequivalent non-degenerate quadratic forms Q^+ and Q^-:

$$
Q_{2m}^+(x) = x_1x_2 + \ldots + x_{2m-1}x_{2m}, \\
Q_{2m}^-(x) = x_1x_2 + \ldots + x_{2m-3}x_{2m-2} + x_{2m-1}^2 + \beta x_{2m}^2,
$$

where β is an element in \mathbb{F}_q such that the polynomial $t^2 + t + \beta$ is irreducible over \mathbb{F}_q. We write $O_{2m}^+ = O(V, Q_{2m}^+)$ and $O_{2m}^- = O(V, Q_{2m}^-)$.

2. Suppose that $n = 2m + 1$ is odd. If q is odd, then there are two inequivalent non-degenerate quadratic forms Q_{2m+1} and Q'_{2m+1}:

$$
Q_{2m+1}(x) = 2x_1x_2 + \ldots + 2x_{2m-1}x_{2m} + x_{2m+1}^2, \\
Q'_{2m+1}(x) = 2x_1x_2 + \ldots + 2x_{2m-1}x_{2m} + \alpha x_{2m-1}^2,
$$
where α is a non-square element in \mathbb{F}_q. But the groups $O(V, Q_{2m+1})$ and $O(V, Q_{2m+1}')$ are isomorphic. If q is even then there exists exactly one inequivalent non-degenerate quadratic form Q_{2m+1}:

$$Q_{2m+1}(x) = x_1x_2 + \ldots + x_{2m-1}x_{2m} + x_{2m+1}^2.$$

In this case, we write $O_{2m+1} = O(V, Q_{2m+1}).$

2.1 Finite Euclidean Graphs

Let Q be a non-degenerate quadratic form on V. Then the finite Euclidean graph $E_q(n, Q, a)$ is defined as the graph with vertex set V and the edge set

$$E = \{(x, y) \in V \times V \mid x \neq y, Q(x - y) = a\}. \tag{6}$$

In [8], Bannai, Shimabukuro and Tanaka showed that the finite Euclidean graphs $E_q(n, Q, a)$ are not always Ramanujan. Fortunately, they are always asymptotically Ramanujan. The following theorem summarizes (in a rough form) the results from Sections 2-6 in [8] and Section 3 in Kwok [19].

Theorem 7 Let ρ be a primitive element of \mathbb{F}_q.

(a) The graphs $E_q(2m, Q_{2m}^\pm, \rho^i)$ are regular of valency $k = q^{2m-1} \pm q^{m-1}$ for $1 \leq i \leq q - 1$. Let λ be any eigenvalue of the graph $E_q(2m, Q_{2m}^\pm, \rho^i)$ with $\lambda \neq$ valency of the graph then

$$|\lambda| \leq 2q^{(2m-1)/2}.$$

(b) The graphs $E_q(2m+1, Q_{2m+1}, \rho^i)$ are regular of valency $k = q^{2m} \pm q^m$ for $1 \leq i \leq q - 1$. Let λ be any eigenvalue of the graph $E_q(2m+1, Q_{2m+1}, \rho^i)$ with $\lambda \neq$ valency of the graph then

$$|\lambda| \leq 2q^m.$$

2.2 Finite non-Euclidean Graphs

In order to keep this paper concise, we will restrict our discussion to the finite non-Euclidean graphs obtained from the action of the simple orthogonal group on the set of non-isotropic points. Similar results hold for graphs obtained from the action of various Lie groups on the set of non-isotropic points, lines and hyperplanes. We will address these results in a subsequent paper.

2.2.1 Graphs obtained from the action of simple orthogonal group $O_{2m+1}(q)$ (q odd) on the set of non-isotropic points

Let $V = \mathbb{F}_q^{2m+1}$ be the $(2m + 1)$-dimensional vector space over the finite field \mathbb{F}_q (q is an odd prime power). For each element x of V, we denote the 1-dimensional subspace
containing \(x \) by \([x]\). Let \(\Theta, \Omega \) be the set of all square type and the set of all non-square-type non-isotropic 1-dimensional subspaces of \(V \) with respect to the quadratic form \(Q_{2m+1} \), respectively. Then we have \(|\Theta| = (q^{2m} - q^m)/2 \) and \(|\Omega| = (q^{2m} + q^m)/2 \). The simple orthogonal group \(O_{2m+1}(q) \) acts transitively on \(\Theta \) and \(\Omega \).

We define the graphs \(H_q(O_{2m+1}, \Theta, i) \) (for \(1 \leq i \leq (q + 1)/2 \)) as follows (let \(E_i \) be the edge set of \(H_q(O_{2m+1}, \Theta, i) \)):

\[
([x], [y]) \in E_1 \iff \begin{pmatrix} x \\ y \end{pmatrix} . S . \begin{pmatrix} x \\ y \end{pmatrix}^t = \begin{pmatrix} \nu & 1 \\ 1 & \nu^{-1} \end{pmatrix},
\]

\[
([x], [y]) \in E_i \iff \begin{pmatrix} x \\ y \end{pmatrix} . S . \begin{pmatrix} x \\ y \end{pmatrix}^t = \begin{pmatrix} \nu & 1 \\ 1 & \nu^{2i-3} \end{pmatrix}, (2 \leq i \leq (q - 1)/2)
\]

\[
([x], [y]) \in E_{(q+1)/2} \iff \begin{pmatrix} x \\ y \end{pmatrix} . S . \begin{pmatrix} x \\ y \end{pmatrix}^t = \begin{pmatrix} \nu & 0 \\ 0 & \nu \end{pmatrix},
\]

where \(\nu \in \mathbb{F}_q \) is a primitive element of \(\mathbb{F}_q \), \(A^t \) denotes the transpose of \(A \) and \(S \) is the matrix of the associated bilinear form of \(Q_{2m+1} \). Note that for \(m = 1 \) then we have the finite analog \(H_q \) of the upper half plane.

We define the graph \(H_q(O_{2m+1}, \Omega, i) \) (for \(1 \leq i \leq (q + 1)/2 \)) as follows (let \(E_i \) be the edge set of \(H_q(O_{2m+1}, \Omega, i) \)):

\[
([x], [y]) \in E_1 \iff Q_{2m+1}(x + y) = 0,
\]

\[
([x], [y]) \in E_i \iff Q_{2m+1}(x + y) = 2 + 2\nu^{-(i-1)}, (2 \leq i \leq (q - 1)/2)
\]

\[
([x], [y]) \in E_{(q+1)/2} \iff Q_{2m+1}(x + y) = 2,
\]

where we assume \(Q_{2m+1}(x) = 1 \) for all \([x] \in \Omega \).

As in finite Euclidean case, the graphs obtained in this section are always asymptotically Ramanujan. The following theorem summaries the results from Sections 1 and 2 in [7] and from Section 7 in [5].

Theorem 8

a) The graphs \(H_q(O_{2m+1}, \Theta, i) \) (\(1 \leq i \leq (q - 1)/2 \)) are regular of valency \(q^{2m-1} \pm q^{m-1} \). The graph \(H_q(O_{2m+1}, \Theta, (q + 1)/2) \) is regular of valency \(q^{2m-1} \pm q^{m-1}/2 \).

Let \(\lambda \) be any eigenvalue of the graph \(H_q(O_{2m+1}, \Theta, i) \) with \(\lambda \neq \) valency of the graph then

\[
|\lambda| \leq 2q^{(2m-1)/2}.
\]

b) The graphs \(H_q(O_{2m+1}, \Omega, i) \) (\(1 \leq i \leq (q - 1)/2 \)) are regular of valency \(q^{2m-1} \pm q^{m-1} \).

The graph \(H_q(O_{2m+1}, \Omega, (q + 1)/2) \) is regular of valency \(q^{2m-1} \pm q^{m-1}/2 \). Let \(\lambda \) be any eigenvalue of the graph \(H_q(O_{2m+1}, \Omega, i) \) with \(\lambda \neq \) valency of the graph then

\[
|\lambda| \leq 2q^{(2m-1)/2}.
\]

2.2.2 Graphs obtained from the action of simple orthogonal group \(O_{2m}^\pm(q) \) (\(q \) odd) on the set of non-isotropic points

Let \(V = \mathbb{F}_q^{2m} \) be the \(2m \)-dimensional vector space over the finite field \(\mathbb{F}_q \) (\(q \) is an odd prime power). For each element \(x \) of \(V \), we denote the 1-dimensional subspace containing \(x \) by
Let Ω_1, Ω_2 be the set of all square type and the set of all non-square-type non-isotropic 1-dimensional subspaces of V with respect to the quadratic form Q_{2m}^+, respectively. Then we have $|\Omega_1| = |\Omega_2| = (q^{2m-1} - q^{-m-1})/2$. The orthogonal group $O_{2m}^+(q)$ with respect to the quadratic from Q_{2m}^+ over \mathbb{F}_q acts on both Ω_1 and Ω_2 transitively. We define the graph $H_q(O_{2m}^+, \Omega_1, i)$ (for $1 \leq i \leq (q + 1)/2$) as follows (let E_i be the edge set of $H_q(O_{2m}^+, \Omega_1, i)$):

$$([x], [y]) \in E_i \iff \langle x, y \rangle_{Q_{2m}^+} = 2^{-1} \nu^i, (1 \leq i \leq (q - 1)/2)$$

$$([x], [y]) \in E_{(q+1)/2} \iff \langle x, y \rangle_{Q_{2m}^+} = 0,$$

where we assume $Q_{2m}^+(x) = 1$ for all $[x] \in \Omega$.

Let Θ_1, Θ_2 be the set of all square type and the set of all non-square-type non-isotropic 1-dimensional subspaces of V with respect to the quadratic form Q_{2m}^-, respectively. Then we have $|\Theta_1| = |\Theta_2| = (q^{2m-1} + q^{-m-1})/2$. The orthogonal group $O_{2m}^-(q)$ with respect to the quadratic from Q_{2m}^- over \mathbb{F}_q acts on both Θ_1 and Θ_2 transitively. We define the graph $H_q(O_{2m}^-, \Theta_1, i)$ (for $1 \leq i \leq (q + 1)/2$) as follows (let E_i be the edge set of $H_q(O_{2m}^-, \Theta_1, i)$):

$$([x], [y]) \in E_i \iff \langle x, y \rangle_{Q_{2m}^-} = 2^{-1} \nu^i, (1 \leq i \leq (q - 1)/2)$$

$$([x], [y]) \in E_{(q+1)/2} \iff \langle x, y \rangle_{Q_{2m}^-} = 0,$$

where we assume $Q_{2m}^-(x) = 1$ for all $[x] \in \Omega$.

The graphs obtained in this section are always asymptotically Ramanujan. The following theorem summarizes the results from Sections 4 and 5 in [7] and from Section 4 in [5].

Theorem 9 a) The graphs $H_q(O_{2m}, \Theta_1, i)$ (1 \leq i \leq (q - 1)/2) are regular of valency $q^{2m-2} + q^{-m}$. The graph $H_q(O_{2m}, \Theta_2, (q + 1)/2)$ is regular of valency $(q^{2m-2} + q^{-m-1})/2$. Let λ be any eigenvalue of the graph $H_q(O_{2m}, \Theta_1, i)$ with $\lambda \neq$ valency of the graph then

$$|\lambda| \leq 2q^{(2m-2)/2}.$$

b) The graphs $H_q(O_{2m}, \Omega_1, i)$ (1 \leq i \leq (q - 1)/2) are regular of valency $q^{2m-2} + q^{-m-1}$. The graph $H_q(O_{2m+1}, \Omega_2, (q + 1)/2)$ is regular of valency $(q^{2m-2} + q^{-m-1})/2$. Let λ be any eigenvalue of the graph $H_q(O_{2m}, \Omega_1, i)$ with $\lambda \neq$ valency of the graph then

$$|\lambda| \leq 2q^{(2m-2)/2}.$$

3 Explicit Tough Ramsey Graphs

We call a graph $G = (V, E)$ (n, d, λ)-regular if G is a d-regular graph on n vertices with the absolute value of each of its eigenvalues but the largest one is at most λ. It is well-known that if $\lambda \ll d$ then a (n, d, λ)-regular graph behaves similarly as a random graph $G_{n,d/n}$. Precisely, we have the following result (see Corollary 9.2.5 and Corollary 9.2.6 in [3]).

Theorem 10 ([3]) Let G be a (n, d, λ)-regular graph.
For every set of vertices B and C of G, we have

$$|e(B, C) - \frac{d}{n}|B||C|| \leq \lambda \sqrt{|B||C|},$$

where $e(B, C)$ is the number of edges in the induced subgraph of G on B (i.e. the number of ordered pairs (u, v) where $u \in B, v \in C$ and uv is an edge of G).

b) For every set of vertices B of G, we have

$$|e(B) - \frac{d}{2n}|B|^2| \leq \frac{1}{2}\lambda |B|,$$

where $e(B)$ is number of edges in the induced subgraph of G on B.

Let B, C be one of the maximum independent pairs of G, i.e. the “bipartite” subgraph induced on (B, C) are empty and $|B||C|$ is maximum. Let $\alpha_2(G)$ denote the size $|B||C|$ of this pair. Then from (7), we have

$$\alpha_2(G) \leq \frac{\lambda^2 n^2}{d^2}.$$

Let B be one of the maximum independent sets of G. Then from (8), we have

$$\alpha(G) = |B| \leq \frac{n\lambda}{d},$$

and

$$\chi(G) \geq \frac{|V(G)|}{\alpha(G)} \geq \frac{d}{\lambda}.$$

The toughness $t(G)$ of a graph G is the largest real t so that for every positive integer $x \geq 2$ one should delete at least tx vertices from G in order to get an induced subgraph of it with at least x connected components. G is t-tough if $t(G) \geq t$. This parameter was introduced by Chvatáč in [12]. Chvatáč also conjectures the following: there exists an absolute constant t_0 such that every t_0-tough graph is pancyclic. This conjecture was disapproved by Bauer, van den Heuvel and Schmeichel [9] who constructed, for every real t_0, a t_0-tough triangle-free graph. They define a sequence of triangle-free graphs H_1, H_2, H_3, \ldots with $|V(H_j)| = 2^{2j-1}(j+1)!$ and $t(H_j) \geq \sqrt{2j+4}2/2$. To bound the toughness of a (n, d, λ)-regular graph, we have the following result which is due to Alon in [2].

Theorem 11 [2] Let $G = (V, E)$ be an (n, d, λ)-graph. Then the toughness $t = t(G)$ of G satisfies

$$t \geq \frac{1}{3} \left(\frac{d^2}{\lambda d + \lambda^2} - 1 \right).$$

Let G be any graph of the form $E_q(2m, Q_{2m}^\pm, a)$, $E_q(2m + 1, Q_{2m+1}, a)$, $H_q(2m + 1, \Theta, i)$, $H_q(2m + 1, \Omega, i)$, $H_q(2m, \Omega_1, i)$ and $H_q(2m, \Theta_1, i)$ for $a \neq 0 \in \mathbb{F}_q$ and $1 \leq i \leq (q + 1)/2$. Then from Theorems [7] [8] and [9] the graph G is $(c_1 q^n + O(q^{n/2}), c_2 q^{n-1} + O(q^{(n-1)/2}), 2q^{(n-1)/2})$-regular for some $n \geq 2$ and $c_1, c_2 \in \{1, 2\}$. By [10], [11] and [12], we can show that the finite Euclidean and non-Euclidean graphs have high chromatic number, small independent number and high tough number.
Theorem 12 Let G be any graph of the form $E_q(2m, Q^+_m, a)$, $E_q(2m, Q^-_m, a)$, $H_q(2m+1, \Theta, i)$, $H_q(2m+1, \Omega, i)$, $H_q(2m, \Omega_1, i)$ and $H_q(2m, \Theta_1, i)$ for $a \neq 0 \in \mathbb{F}_q$ and $1 \leq i \leq (q+1)/2$. Suppose that $|V(G)| = cq^n + O(q^{(n-1)/2})$.

1. The independent number of G is small: $\alpha(G) \leq (4 + o(1))|V(G)|^{(n+1)/2n}$.
2. The chromatic number of G is high: $\chi(G) \geq |V(G)|^{(n-1)/2n}/(4 + o(1))$.
3. The toughness of G is at least $|V(G)|^{(n-1)/2n}/(12 + o(1))$.

In [26], the authors derived the following theorem using only elementary algebra. This theorem can also be derived from character tables of the association schemes of affine type ([19]) and of finite orthogonal groups acting on the nonisotropic points ([5]).

Theorem 13 Among all finite Euclidean and non-Euclidean graphs, the only triangle-free graphs are

1. $E_q(2, Q^+, a)$ where 3 is square in \mathbb{F}_q.
2. $E_q(2, Q^-, a)$ where 3 is nonsquare in \mathbb{F}_q.
3. $H_q(3, Q, a)$ for at least one element $a \in \mathbb{F}_q^*$.

Theorems [12] and [13] show that the finite Euclidean $E_q(2, Q^+, a)$, where q is a prime of form $q = 12k \pm 5$ and $a \neq 0 \in \mathbb{F}_q$, is an explicit triangle-free graph on $n_q = q^2$ vertices whose chromatic number exceeds $0.5n_q^{1/4}$. Therefore, this disproves the conjecture of Chvátal. In addition, this graph is an explicit construction showing that $R(3, k) \geq \Omega(k^{4/3})$.

The bounds obtained from Theorems [12] and [13] match with the bounds obtained by code graphs in Theorem 3.1 in [2]. These graphs are Caley graphs and their construction is based on some of the properties of certain Dual BCH error-correcting codes. For a positive integer k, let $F_k = GF(2^k)$ denote the finite field with 2^k elements. The elements of F_k are represented by binary vectors of length k. If a and b are two such vectors, let (a, b) denote their concatenation. Let G_k be the graph whose vertices are all $n = 2^k$ binary vectors of length $2k$, where two vectors u and v are adjacent if and only if there exists a non-zero $z \in F_k$ such that $u + v = (z, z^3)$ mod 2 where z^3 is computed in the field F_k. Then G_k is a $d_k = 2^k - 1$-regular graph on $n_k = 2^{2k}$. Moreover, G_k is triangle-free with independence number at most $2n^{3/4}$. Noga Alon gives a better bound $R(m, 3) \geq \Omega(m^{3/2})$ in [1] by considering a graph with vertex set of all $n = 2^{3k}$ binary vectors of length $3k$ (instead of all binary vectors of length $2k$). Suppose that k is not divisible by 3. Let W_0 be the set of all nonzero elements $\alpha \in F_k$ such that the leftmost bit in the binary representation of α^7 is 0, and let W_1 be the set of all nonzero elements $\alpha \in F_k$ for which the leftmost bit of α^7 is 1. Then $|W_0| = 2^{k-1} - 1$ and $|W_1| = 2^{k-1}$. Let G_n be the graph whose vertices are all $n = 2^{3k}$ binary vectors of length $3k$, where two vectors u and v are adjacent if and only if there exist $w_0 \in W_0$ and $w_1 \in W_1$ such that $u + v = (w_0^3, w_0^5) + (w_1^3, w_1^5)$ where the powers are computed in the field F_k and the addition is addition modulo 2. Then G_n is
a $d_n = 2^{k-1}(2^{k-1} - 1)$-regular graph on $n = 2^{3k}$ vertices. Moreover, G_n is a triangle-free graph with independence number at most $(36 + o(1))n^{2/3}$. The problem of finding better bounds for the chromatic number of finite Euclidean and non-Euclidean graphs on the plane and the upper half plane, respectively touches on an important question in graph theory: what is the greatest possible chromatic number for a triangle-free regular graph of order n? A possible approach is to consider the existence of sum-free varieties in high dimensional vector spaces over finite fields. We see that the varieties of degree two only give us triangle-free graphs on vector spaces of dimension two. We hope to address this problem for varieties of higher dimension in a subsequent paper.

4 Erdős distance problem

4.1 Proof of Theorem 3

Let Q be any non-degenerate quadratic of \mathbb{F}_q^n. Recall that the Euclidean graph $E_q(d, Q, a)$ was defined as the graph with vertex set V and edge set

$$E = \{(x, y) \in V \times V | x \neq y, Q(x - y) = a\}.$$

Lemma 1 Let $E \subset \mathbb{F}_q^d$ such that $|E| \geq 3q^{d+1}$. Then $\Delta_Q(E) = \mathbb{F}_q$.

Proof By Theorem 7, each graph $E_q(d, Q, a)$ is a $(q^d, q^d-1+q^{(d-1)/2}, 2q^{(d-1)/2})$-regular graph. By (10), for any $a \neq 0 \in \mathbb{F}_q$, we have

$$\alpha(E_q(d, Q, a)) \leq \frac{2q^{(3d-1)/2}}{q^{d-1} - q^{(d-1)/2}} \leq 3q^{(d+1)/2}. \quad (13)$$

Thus, if $|E| \geq 3q^{d+1}$ then E is not an independent set of $E_q(d, Q, a)$, or equivalently there exist $x, y \in E$ such that $Q(x - y) = a$ for any $a \in \mathbb{F}_q$. This concludes the proof of the lemma. \hfill \Box

Lemma 2 For any $0 < \varepsilon < 1/2$. Let $E \subset \mathbb{F}_q$ such that $|E| \geq 3q^{d+\varepsilon}$. Then

$$|\Delta_Q(E)| \geq q^{d/2+\varepsilon}, \quad (14)$$

for any $q \geq 6^{1/(\varepsilon-1/2)}$.

Proof By Theorem 7, each graph $E_q(d, Q, a)$ is a $(q^d, q^{d-1}+q^{(d-1)/2}, 2q^{(d-1)/2})$-regular graph. By (10), the number of edges of $E_q(d, Q, a)$ in the induced subgraph on E is at most

$$e_{E_q(d, Q, a)}(E) \leq \frac{q^{d-1} + q^{(d-1)/2}}{2q^d} |E|^2 + q^{(d-1)/2}|E|. \quad (15)$$
Suppose that \(\#\Delta_Q(E) < q^{1/2+\varepsilon} \). From (15), we have
\[
\left(\frac{|E|}{2} \right) = \sum_{a \in \Delta_Q(E)} e_{E_q(d,Q,a)}(E) < q^{1/2+\varepsilon} \left\{ \frac{q^{d-1} + q^{(d-1)/2}}{2q^d} |E|^2 + q^{(d-1)/2} |E| \right\} < |E|q^{2\varepsilon - \frac{3}{2}} \left\{ \left(\frac{1}{2} + \frac{1}{2}q^{-(d-1)/2} \right) |E| + q^{(d+1)/2} \right\},
\]
which implies that
\[
q^{2\varepsilon - \varepsilon}(|E| - 1) < (1 + q^{-(d-1)/2}) |E| + 2q^{(d+1)/2} \leq (1 + q^{-1/2} + \frac{2}{3}q^{1/2-\varepsilon}) |E|.
\]
Therefore, we have
\[
q^{2\varepsilon - \varepsilon} > \left(\frac{1}{3}q^{2\varepsilon - \varepsilon} - 1 - q^{\frac{1}{2}} \right) |E| \geq \left(q^{2\varepsilon - \varepsilon} - 3 - 3q^{-\frac{1}{2}} \right) q^{2+\varepsilon},
\]
which is a contradiction if \(q > 6^{1/(1/2-\varepsilon)} \). The lemma follows. \(\square \)

Theorem 3 follows immediately from Lemma 1 and Lemma 2.

4.2 Proof of Theorem 4

For a fixed \(a \in \mathbb{F}_q \), the finite non-Euclidean graph \(V_q(\sigma, a) \) has vertices as the points in \(H_q \) and edges between vertices \(z, w \) if and only if \(d(z, w) = a \). Except when \(a = 0 \) or \(a = 4\sigma \), \(V_q(\sigma, a) \) is a connected \((q + 1) \)-regular graph. When \(a = 0 \), \(4\sigma \) then \(V_q(\sigma, a) \) is disconnected, with one or two nodes, respectively, per connected component. As \(a \) varies, we have \(q - 2 \ (q + 1) \)-regular graphs \(V_q(\sigma, a) \). The question of whether these graphs are always nonisomorphic or not is still open. See [24] for a survey of spectra of Laplacians of this graph.

Lemma 3 Let \(E \subset H_q \) such that \(|E| \geq 2q^{3/2} \). Then \(|\Delta_H(E)| \geq q - 1 \).

Proof Each graph \(V_q(\sigma, a) \) (with \(a \neq 0, 4\sigma \in \mathbb{F}_q \)) is a \((q^2 - q, q + 1, 2q^{1/2}) \)-regular graph. By (10), for any \(a \neq 0, 4\sigma \in \mathbb{F}_q \), we have
\[
\alpha(V_q(\sigma, a)) \leq \frac{2(q^2 - q)q^{1/2}}{q + 1} \leq 2q^{3/2}.
\]
Thus, \(\#E \geq 2q^{3/2} \) then \(E \) is not an independent set of \(V_q(\sigma, a) \) or equivalently, there exist \(x, y \in E \) such that \(d(x - y) = a \) for any \(a \in \mathbb{F}_q - \{0, 4\sigma\} \). This concludes the proof of the lemma. \(\square \)

Note that \(V_q(\sigma, 4\sigma) \) is just a disjoint union of \((q^2 - q)/2 \) edges. So we can have a set \(E \in H_q \) with \(|E| = (q^2 - q)/2 \) and \(\Delta_H(E) = \mathbb{F}_q - \{4\sigma\} \).
Lemma 4 For any $0 < \varepsilon < 1/2$. Let $E \subset \mathbb{F}_q$ such that $|E| \geq 3q^{\frac{d}{2}+\varepsilon}$. Then

$$|\Delta_H(E)| \geq q^{\frac{1}{2}+\varepsilon},$$

(17)

for any $q \geq 9^{1/(\varepsilon-1/2)}$.

Proof For any $a \neq 0, 4\sigma \in \mathbb{F}_q$, each graph $V_q(\sigma, a)$ is a $(q^2 - q, q + 1, 2q^{1/2})$-regular graph. From Theorem 10, the number of edges of $V_q(\sigma, a)$ in the induced subgraph on E is at most

$$e_{V_q(\sigma, a)}(E) \leq \frac{q+1}{2(q^2 - q)}|E|^2 + q^{1/2}|E|.

(18)$$

Suppose that $|\Delta_H(E)| < q^{1/2+\varepsilon}$. From (18), we have

\[
\left(\binom{|E|}{2}\right) = \sum_{a \in \Delta_H(E)} e_{V_q(\sigma, a)}(E)
\leq q^{1/2+\varepsilon}\left\{\frac{q+1}{2(q^2 - q)}|E|^2 + q^{1/2}|E|\right\}
\leq |E|q^{\varepsilon/2}\left\{\left(\frac{1}{2} + \frac{1}{q-2}\right)|E|^{1/2} + q^{3/2}\right\},
\]

which implies that

$$q^{\varepsilon/2}(|E| - 1) < \left(1 + \frac{2}{q-2}\right)|E|^{1/2} + 2q^{3/2}
\leq (1 + \frac{2}{q-2} + \frac{2}{3}q^{\varepsilon/2})|E|.$$

Therefore, we have

$$q^{\varepsilon/2} > \left(\frac{1}{3}q^{\varepsilon/2} - 1 - \frac{2}{q-2}\right)|E|
\geq \left(q^{\varepsilon/2} - 3 - \frac{6}{q-2}\right)q^{1+\varepsilon},$$

which is a contradiction when $q > 9^{1/(1/2-\varepsilon)}$. The lemma follows.

Theorem 4 follows immediately from Lemma 3 and Lemma 4. Similar results hold for others non-Euclidean spaces defined in Section 2. We will discuss these results in a subsequent paper.

4.3 Set of distances between two sets

Now we will prove Theorem 5 and Theorem 6. For any $a \neq 0 \in \mathbb{F}_q$, by Theorem 10, the number of edges of the graph $E_q(d, Q, a)$ in the induced “bipartite” subgraph on (E, F) (two vertex parts are not necessary disjoint) is at most:

$$e_{E_q(d, Q, a)} \leq \frac{q^{d-1} + q^{(d-1)/2}}{q^d} |E||F| + 2q^{(d-1)/2}\sqrt{|E||F|}.

(19)$$

12
Thus, we have

\[|E||F| = \sum_{a \in \Delta Q(E,F)} e_{E_q(d,Q,a)} \]

\[\leq \Delta Q(E,F) \left(\frac{q^{d-1} + q^{(d-1)/2}}{q^d} |E||F| + 2q^{(d-1)/2} \sqrt{|E||F|} \right), \]

which implies that

\[\Delta Q(E,F) \geq \frac{1}{\frac{1}{q^d} + \frac{1}{q^{(d+1)/2}} + \frac{2q^{(d-1)/2}}{\sqrt{|E||F|}}} \quad (20) \]

From the above inequality, we can easily derive the following analog of Lemma 2 for the distance set \(\Delta Q(E,F) \).

Lemma 5 For any \(0 < \epsilon < 1 \). If \(|E||F| \geq 9q^{(d-1)+\epsilon} \) then

\[\Delta Q(E,F) \geq \frac{\sqrt{|E||F|}}{3q^{(d-1)/2}} \geq q^{\epsilon/2} \]

for any \(q \gg 1 \).

By Theorem 7 each graph \(E_q(d, Q, a) \) is a \((q^d, q^{d-1} \pm q^{(d-1)/2}, 2q^{(d-1)/2}) \)-regular graph. By (9), for any \(a \neq 0 \in \mathbb{F}_q \), we have

\[\alpha_2(E_q(d, Q, a)) \leq \left(\frac{2q^{(3d-1)/2}}{q^{d-1} - q^{(d-1)/2}} \right)^2 \leq 9q^{d+1}. \quad (21) \]

Thus, if \(|E||F| \geq 9q^{d+1} \) then \(E, F \) is not an independent pair of \(E_q(d, Q, a) \) for any nonzero \(a \). This implies that there exist \(x \in E \) and \(y \in F \) such that \(Q(x, y) = a \) for any \(a \in \mathbb{F}_q \).

We have the following analog of Lemma 1.

Lemma 6 Let \(E, F \subset \mathbb{F}_q^d \) such that \(|E||F| \geq 9q^{d+1} \). Then \(\Delta Q(E, F) = \mathbb{F}_q \).

Theorem 5 is immediate from Lemma 5 and Lemma 6. The proof of Theorem 6 is similar and is left for the readers. Note that the analog of Lemma 3 for the distance set \(\Delta H(E,F) \) is interesting in its own right.

Lemma 7 Let \(E, F \subset H_q \) such that \(|E||F| \geq 9q^3 \). Then \(|\Delta H(E,F)| \geq q - 1 \).

Acknowledgments

The author is very grateful to Dang Phuong Dung and Si Li for many useful discussions, helpful comments and endless encouragement.
References

[1] N. Alon, Explicit Ramsey graphs and orthonormal labellings, *The Electronic Journal of Combinatorics* **1** (1994), R12, 8pp.

[2] N. Alon, Tough Ramsey graphs without short cycles, *Journal of Algebraic Combinatorics*

[3] N. Alon, J.H. Spencer, *The Probabilistic Method*, 2nd edition, Wiley-Interscience, 2000.

[4] E. Bannai, W.M. Kwok, S.-Y. Song, Ennola type dualities in the character tables of some association schemes, *Mem. Fac. Sci. Kyushu Univ. Ser. A.* **44** (1990), 129-143.

[5] E. Bannai, S. Hao, S.-Y. Song, Character tables of the association schemes of finite orthogonal groups acting on the nonisotropic points, *Journal of Combinatorial Theory Series A* **54** (1990), 164-170.

[6] E. Bannai, S. Hao, S.-Y. Song, H. Wei, Character tables of certain association schemes coming from finite unitary and symplectic groups, *Journal of Algebra* **144** (1991), 189-200.

[7] E. Bannai, O. Shimabukuro, H. Tanaka, Finite analogues of non-Euclidean spaces and Ramanujan graphs, *European Journal of Combinatorics* **25** (2004), 243-259.

[8] E. Bannai, O. Shimabukuro, H. Tanaka, Finite Euclidean graphs and Ramanujan graphs, *Discrete Mathematics* (to appear).

[9] D. Bauer, J. Vandenheuvel and E. Schmeichel, Toughness and Triangle-Free Graphs, *Journal of Combinatorial Theory, Series B* **65** (2) (1995), 208-221.

[10] J. Bourgain, Hausdorff dimension and distance sets, *Israel Journal of Mathematics* **87** (1994), 1993-201.

[11] J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications, *Geom. Funct. Anal.** 14** (2004), 27-57.

[12] V. Chvátal, Tough graphs and hamiltonian circuits, *Discrete Mathematics* **5** (1973), 215-218.

[13] D. Hart, A. Iosevich, J. Solymosi, Sum-product estimates in finite fields via Kloosterman sums, *International Mathematics Research Notices* (to appear).

[14] D. Hart, A. Iosevich, Sums and products in finite fields: an integral geometric viewpoint, preprint.

[15] A. Iosevich, D. Koh, Erdős-Falconer distance problem, exponential sums, and Fourier analytic approach to incidence theorems in vector spaces over finite fields, preprint.
[16] A. Iosevich, M. Rudnev, Erdős distance problem in vector spaces over finite fields, *Transactions of the American Mathematical Society* **359** (12) (2007), 6127-6142.

[17] N.M. Katz, Estimates for Soto-Andrade sums, *J. Reine Angew. Math.* **438** (1993), 143-161.

[18] N.M. Katz, A note on exponential sums, *Finite Fields Appl.* **1** (1995), 395-398.

[19] W.M. Kwok, Character table of association schemes of affine type, *European Journal of Combinatorics*, **13** (1992), 167-185.

[20] W.-C.W. Li, *Number Theory with Applications*, World Scientific, River Edge, NJ, 1996.

[21] A. Medrano, P. Myers, H.M. Stark and A. Terras, Finite analogues of Euclidean space, *Journal of Computational and Applied Mathematics*, **68** (1996), 221-238.

[22] I. E. Shparlinski, On the set of distances between two sets over finite fields, *International Journal of Mathematics and Mathematical Sciences* **2006**, Article ID 59482, 1-5.

[23] T. Tao, Finite field analogues of Erdős, Falconer, and Furstenberg problems, preprint.

[24] A. Terras, Survey of Spectra of Laplacians on Finite Symmetric Spaces, *Experimental Mathematics*, (1996).

[25] L.A. Vinh, Some coloring problems for unit-quadrance graphs, *The proceedings of Australian Workshop on Combinatorial Algorithms*, 2006, 361-367.

[26] L.A. Vinh and D.P. Dung, Explicit tough Ramsey graphs, preprint.

[27] V. Vu, Sum-Product estimates via directed expanders, (preprint), (2007).