ON PSEUDO W_4-SYMMETRIC MANIFOLDS

JAEMAN KIM

Abstract. In this paper, we investigate several properties on a weakly symmetric structure on a Riemannian manifold.

1. Introduction

In [9], Pokhariyal defined some curvature tensors with the help of Weyl’s projective curvature tensor and studied their physical and geometrical properties. One of the curvature tensors introduced in [9] was the W_4-curvature tensor defined by

$$W_4(X, Y, Z, T) = R(X, Y, Z, T) + \frac{1}{n-1}(g(X, Z)r(Y, T) - g(X, Y)r(Z, T))$$

or in local coordinates,

$$W_{4ijkl} = R_{ijkl} + \frac{1}{n-1}(g_{ik}r_{jl} - g_{ij}r_{kl}),$$

where R and r are the Riemannian curvature tensor and the Ricci tensor, respectively. In [7], the author introduced a Riemannian manifold whose W_4-curvature tensor is second order recurrent, and studied the several properties of such a manifold on which some geometric conditions are imposed. In [2], Chalki introduced a type of Riemannian manifold (M^n, g) whose curvature tensor R_{ijkl} of type $(0, 4)$ satisfies the relation

$$R_{ijkl;m} = 2A_mR_{ijkl} + A_iR_{mjk} + A_jR_{imk} + A_kR_{ijm} + A_lR_{ijkm},$$

where A is a nonzero 1-form and the semicolon denotes the covariant differentiation with respect to the metric tensor g. Such a manifold is called a pseudo symmetric manifold. This manifold has received a great deal of attention and is studied in considerable detail by many authors [2,3,4,5,6,8]. Motivated by the above studies, in the present
paper, we introduce a weakly symmetric structure on a Riemannian manifold called a pseudo W_4-symmetric manifold. More precisely, a Riemannian manifold (M^n, g) is said to be pseudo W_4-symmetric if its W_4-curvature tensor W_{4ijkl} of type $(0,4)$ fulfills the following condition:

$$W_{4ijkl;m} = 2A_m W_{4ijkl} + A_j W_{4imkl} + A_k W_{4ijml} + A_l W_{4ijkl},$$

where A is an associated 1-form which is not zero. In particular, if the W_4-curvature tensor W_{4ijkl} of (M^n, g) satisfies

$$W_{4ijkl;m} = 0,$$

then we call the manifold a W_4-symmetric manifold. The purpose of this paper is to investigate the various properties of pseudo W_4-symmetric manifold on which some geometric conditions are imposed.

2. Some properties of W_4-curvature tensor

At first we show

Theorem 2.1. Let (M^n, g) be a Riemannian manifold. If the second Bianchi identity for W_4-curvature tensor holds, then the Ricci tensor r of (M^n, g) is cyclic, i.e., $r_{kl;m} + r_{mk;l} + r_{lm;k} = 0$.

Proof. By virtue of the second Bianchi identity and (1), we have

$$W_{4ijkl;m} + W_{4imkl;j} + W_{4ijml;k}$$

(3) = $(g_{ik} r_{jl;m} - g_{ij} r_{kl;m}) + (g_{lm} r_{jk;i} - g_{ij} r_{mk;l}) + (g_{il} r_{jm;k} - g_{ij} r_{lm;k}).$

By the given condition, the second Bianchi identity for W_4-curvature, (3) reduces to

(4) 0 = $(g_{ik} r_{jl;m} - g_{ij} r_{kl;m}) + (g_{lm} r_{jk;i} - g_{ij} r_{mk;l}) + (g_{il} r_{jm;k} - g_{ij} r_{lm;k}).$

Multiplying (4) by g^{ij}, we get

$$1 - n) (r_{kl;m} + r_{mk;l} + r_{lm;k}) = 0,$$

showing that the Ricci tensor is cyclic. This completes the proof. □

Consequently we also obtain

Theorem 2.2. Let (M^n, g) be a Riemannian manifold. If the second Bianchi identity for W_4-curvature tensor holds, then the scalar curvature s of (M^n, g) is constant.
Proof. According to Theorem 2.1, we have
\[r_{kl;m} + r_{mk;l} + r_{lm;k} = 0. \]
(5)
Multiplying (5) by \(g^{kl} \), we obtain
\[s_{;m} + r_{m;l}^l + r_{m;k}^k = 0, \]
which reduces to
\[2s_{;m} = 0 \]
(6)
because the second Bianchi identity implies \(r_{m;l}^l = \frac{s_{;m}}{2} \). Therefore the relation (6) yields
\[s = \text{constant}. \]
This completes the proof.

A Riemannian manifold \((M^n, g)\) is said to be \(W_4\)-harmonic if its \(W_4\)-curvature tensor is harmonic, i.e.,
\[W_{ijkl;m}^m = 0. \]
(7)
Concerning \(W_4\)-harmonic manifold, we have

Theorem 2.3. Let \((M^n, g)\) be a \(W_4\)-harmonic manifold. Then its scalar curvature \(s\) is constant.

Proof. From (1) and (7), it follows that
\[0 = R_{ijkl;m}^m + \frac{1}{n-1} (\delta_k^m r_{jl;m} - \delta_j^m r_{kl;m}) \]
(8)
Since the second Bianchi identity implies
\[R_{ijkl;m}^m = r_{jl;k} - r_{jk;l} \]
we have from (8)
\[r_{jk;l} - r_{jl;k} = \frac{1}{n-1} (\delta_k^m r_{jl;m} - \delta_j^m r_{kl;m}) \]
(9)
Multiplying (10) by \(g^{kl} \), we get
\[0 = \frac{1}{n-1} (r_{jl;m}^m - s_{;j}) \]
(11)
Using the relation \(r_{jl;m}^m = \frac{s_{;j}}{2} \) obtained from the second Bianchi identity, we have from (11)
\[s_{;j} = 0, \]
showing that the manifold has
\[s = \text{constant}. \]
This completes the proof.

3. Pseudo W_4-symmetric manifolds

Let (M^n, g) be a Riemannian manifold. A vector field A^\sharp is said to be an associated vector field of 1-form A if it satisfies the relation

$$g(X, A^\sharp) = A(X)$$

for each vector field X on M^n. Concerning pseudo W_4-symmetric manifold, we obtain

Theorem 3.1. Let (M^n, g) be a pseudo W_4-symmetric manifold. If its scalar curvature s is constant, then

$$r(X, A^\sharp) = -\frac{s}{2} g(X, A^\sharp),$$

where A^\sharp is the associated vector field of 1-form A in (2).

Proof. Multiplying (2) by g^{il} and then multiplying the relation obtained thus by g_{jk}, we have

$$s_m = 2A_m s + g^{il} A_i r_{ml} + g^{jk} A_j r_{mk} + g^{jk} A_k r_{jm} + g^{il} A_l r_{im}$$

or equivalently

$$\nabla_X s = 2A(X)s + 4r(X, A^\sharp),$$

where ∇ denotes the covariant derivative with respect to the metric tensor g. By virtue of $s=$constant, the last relation reduces to

$$r(X, A^\sharp) = -\frac{1}{2} A(X)s = -\frac{1}{2} s g(X, A^\sharp).$$

This completes the proof.

A Riemannian manifold (M^n, g) is said to be Einstein if its Ricci tensor is proportional to the metric tensor g, that is,

$$r = \frac{s}{n} g.$$

Note that the scalar curvature s of an Einstein manifold is constant [1].

As a consequence, we obtain

Theorem 3.2. Let (M^n, g) be a pseudo W_4-symmetric manifold. If the manifold is Einstein, then its Ricci tensor vanishes identically.
Proof. Since the Einstein condition implies \(s = \text{constant} \), we have from Theorem 3.1

\[
(12) \quad r(X, A^z) = -\frac{1}{2} s g(X, A^z).
\]

On the other hand, according to the Einstein condition \(r = \frac{s}{n} g \), we obtain

\[
(13) \quad r(X, A^z) = \frac{s}{n} g(X, A^z).
\]

From (12) and (13), it follows that

\[
(14) \quad -\frac{s}{2} g(X, A^z) = \frac{s}{n} g(X, A^z).
\]

Substitute \(X = A^z \) into (14), then we get from \(||A|| \neq 0 \)

\[
-\frac{s}{2} = \frac{s}{n} = 0,
\]

showing that the Einstein condition \(r = \frac{s}{n} g \) implies

\[
r = 0.
\]

This completes the proof. \(\square \)

Let \((M^n, g)\) be a Riemannian product manifold \((M^p \times M^{n-p}, \hat{g} + \tilde{g})\). In local coordinates, we adopt the Latin indices (resp. the Greek indices) for tensor components which are constructed on \((M^p, \hat{g})\) (resp. \((M^{n-p}, \tilde{g})\)). Therefore, the Latin indices take the values from 1, \ldots, \(p \) whereas the Greek indices run over the range \(p + 1, \ldots, n \). Now we can state the followings.

Theorem 3.3. Let a Riemannian manifold

\[
(M^n, g) = (M^p \times M^{n-p}, \hat{g} + \tilde{g})
\]

be a pseudo \(W_4 \)-symmetric manifold. Then either one decomposition manifold \((M^p, \hat{g})\) is flat or the other decomposition manifold \((M^{n-p}, \tilde{g})\) is \(W_4 \)-symmetric.

Proof. Since any tensor components of \(W_4 \) and its covariant derivatives with both Latin and Greek indices together should be zero, we have from \(W_{4ijkl,\alpha} = 0 \) and (2)

\[
0 = 2A_\alpha W_{4ijkl},
\]
which leads to either \(A = 0 \) on \((M^{n-p}, \tilde{g})\) or \(W_4 = 0 \) on \((M^p, \hat{g})\). In case of \(A = 0 \) on \((M^{n-p}, \tilde{g})\), we obtain from (2)

\[
W_{4\alpha\beta\gamma\delta;\mu} = 2A_\mu W_{4\alpha\beta\gamma\delta} + A_\alpha W_{4\mu\beta\gamma\delta} + A_\beta W_{4\alpha\mu\gamma\delta} + A_\gamma W_{4\alpha\beta\mu\delta} + A_\delta W_{4\alpha\beta\gamma\mu} = 0,
\]

showing that the decomposition manifold \((M^{n-p}, \tilde{g})\) is \(W_4 \)-symmetric. The other case \(W_4 = 0 \) on \((M^p, \hat{g})\) tells us from (1) that

\[
0 = R_{ijkl} + \frac{1}{n-1}(g_{ik}r_{jl} - g_{ij}r_{kl}).
\]

Multiplying (15) by \(g^{il} \), we get

\[
0 = r_{jk}.
\]

From (15) and (16), it follows that

\[
R_{ijkl} = 0,
\]

showing that the decomposition manifold \((M^p, \hat{g})\) is flat. This completes the proof.

\[\square\]

References

[1] A.L. Besse, *Einstein Manifolds*, Springer, Berlin (1987).
[2] M.C. Chaki, *On pseudo symmetric manifolds*, Analele Stiint Univ. Al-I Cuza 33 (1987), 53-58.
[3] M.C. Chaki, *On generalized pseudo symmetric manifolds*, Publ.Math.Debrercen 45 (1994), 305-312.
[4] M.C. Chaki and U.C. De, *On pseudo symmetric spaces*, Acta Math.Hungar. 54 (1989), 185-190.
[5] M.C. Chaki and S.P. Mondal, *On generalized pseudo symmetric manifolds*, Publ.Math.Debrercen 51 (1997), 35-42.
[6] U.C. De and A.K. Gazi, *On almost pseudo symmetric manifolds*, Ann.Univ.Sci.Budapest Eötvös Sect.Math. 51 (2008), 53-68.
[7] J. Kim, *On W_4-birecurrent manifolds*, Honam Mathematical J. 36 (2014), 723-730.
[8] F. Özen and S. Altay, *On weakly and pseudo symmetric Riemannian spaces*, Indian J.Pure Appl.Math. 33 (2001), 1477-1488.
[9] G.P. Pokhariyal *Curvature tensors and their relativistic significance III*, Yokohama Math.J. 21 (1973), 115-119.
Jaeman Kim
Department of Mathematics Education,
Kangwon National University,
Chunchon 200-701, Kangwon Do, Korea.
E-mail: jaeman64@kangwon.ac.kr