Conformal Tracking for all-silicon trackers at future electron-positron colliders

Erica Brondolin (CERN) erica.brondolin@cern.ch

Seminar at Bristol University - 5th February 2020
Outline

- **Overview**
 Future e^+e^- colliders, detector requirements, tracking challenges

- **Conformal Tracking**
 Conformal mapping, cellular track building and extension

- **Track reconstruction at CLIC**
 CLICdet tracker, event simulation, performance

- **Next steps and conclusions**
Future high-energy e^+e^- colliders

Future Circular Collider (FCC-ee)
- CERN
- e^-e^+, $\sqrt{s}: 90 - 365$ GeV
- (followed by pp, $\sqrt{s}: \sim 100$ TeV)
- Circumference: 97.75 km

International Linear Collider (ILC)
- Japan (Kitakami)
- e^-e^+, $\sqrt{s}: 250$ GeV (500 GeV)
- Length: 17 km (31 km)

Compact Linear Collider (CLIC)
- CERN
- e^-e^+, $\sqrt{s}: 380$ GeV, 1.5 TeV, 3 TeV
- Length: 11 km, 29 km, 50 km

Circular Electron Positron Collider (CEPC)
- China
- e^-e^+, $\sqrt{s}: 90 - 240$ GeV
- (followed by pp, $\sqrt{s}: \sim 100$ TeV)
- Circumference: ~ 100 km

Conformal Tracking for future e^+e^- colliders

Erica Brondolin (erica.brondolin@cern.ch)

Bristol University, 5th Feb 2020
Circular vs. linear e^+e^- colliders

Circular colliders
- Can accelerate beam in many turns
- Can collide beam many times
- Possibility of several interaction regions
- Limited energy due to synchrotron radiation
 - $m_p/m_e \approx 2000$
 - Synchrotron radiation $\sim E^4/(m^4 \cdot \text{Radius})$
- Beam strahlung

Linear colliders
- One interaction region
- Operation in bunch trains
- **Very little synchrotron radiation**
- Can reach high energies
- Have to achieve energy in a single pass
 - High energy \rightarrow High acceleration gradients
 - High luminosity
 - Small beam size and high beam power
 - Beamstrahlung, energy spread
Future high-energy e^+e^- colliders

- **Circular colliders:**
 - Large luminosity at lower energies
 - Luminosity decreases with energy

- **Linear colliders:**
 - Can reach the highest energies
 - Luminosity rises with energy
 - Beam polarisation at all energies

- **Circular & linear e^+e^- colliders**
 - Comparable luminosities in overlap region (ZH, tt)

- **NB.** Peak luminosity at LEP2 (209 GeV) was $\approx 10^{32}\text{cm}^{-2}\text{s}^{-1}$
CC experimental conditions

Property	Unit	FCC-ee (97.8 km)	CEPC (100 km)					
\sqrt{s}	GeV	Z	WW	ZH	tt	Z (2T)	WW	ZH
		91.2	160	240	365	91	160	240
Luminosity	10^{34}/cm2 s	230	28	8.5	1.55	32.1	10.1	2.93
Bunches/beam		16 640	2 000	393	48	12 000	1 524	242
Bunch sep.	ns	20	163	994	3396	25	210	680
Beam σ_{xy}, IP	nm/nm	6.4/28	13/41	14/36	38/68	6/40	13.9/49	20.9/68
Synch. rad. power	MW	\leq 50	\leq 50	\leq 50	\leq 50	16.5	30	30

At Z peak, **high luminosity** combined with high e^+e^- cross section
- Achieve very low statistical uncertainties ($\sim 10^{-4} - 10^{-5}$)
 → Drives detector performance req. to match systematic uncertainties
- High **number of bunches** and **small distance** between bunches
- Very high data rates (physics rates 100 kHz)
 → Triggerless readout can still be possible

Beam-induced background, from beamstrahlung + synchrotron radiation
- Most significant at 365 GeV
- Mitigated through machine-detector interface design and detector design
LC experimental conditions

Property	Unit	ILC	CLIC
\sqrt{s}	GeV	250	500
Site length	km	31	20.5
		20.5/31	11.4
Luminosity	10^{34}/cm2 s	1.35	2.7/5.4
		1.8/3.6	1.5/3
Train rep. rate	Hz	5	5/10
		5	50/100
BX / train		1312	2625
		1312/2625	356
Duty cycle		3.6	7.2
		3.6/7.2	0.0089/0.0078
Bunch sep.	ns	544	272
		544/272	0.5
Beam σ_{xy}, IP	nm/nm	516/7.7	516/7.7
		474/5.9	149/2.9
Beam σ_z, IP	µm	300	300
		300	70

ILC: Crossing angle 14 mrad, electron polarization ±80%, positron polarization ±30%,
CLIC: Crossing angle 20 mrad, electron polarization ±80%, upgrade positron polarization
Linear colliders operate in **bunch trains**:
- Low duty cycle
- Possibility of power pulsing of detectors and triggerless readout
- Bunch separation → Impact on detector design (timing, granularity)

Property

Unit	ILC	CLIC (Upg.)
\sqrt{s}	250 GeV	500 GeV
Site length	31 km	20.5 km
Luminosity	10^{34}/cm2 s	$2.7/5.4 \times 10^{34}$/cm2 s
Train rep. rate	5 Hz	50 Hz
BX / train	1312	2625

Duty cycle

ns	ILC	CLIC (Upg.)
3.6	7.2	3.6/7.2
Bunch sep.	544	544/272
Beam σ_{xy}, IP	516/7.7	474/5.9
Beam σ_z, IP	300	300

| 0.0089/0.0078 | 0.0078 | 0.0178 |
| 0.5 | 0.5 | 0.5 |

ILC: Crossing angle 14 mrad, electron polarization \pm80%, positron polarization \pm30%
CLIC: Crossing angle 20 mrad, electron polarization \pm80%, upgrade positron polarization
Property	Unit	ILC	CLIC
√s	GeV	250	380
Site length	km	31	20.5
Luminosity	10^{34}/cm^{2}s	1.35	2.7/5.4
Train rep. rate	Hz	5	10/50
BX / train		1312	2625
Duty cycle		3.6	7.2
Bunch sep.	ns	544	272

| Beam σ_{xy}, IP | nm/nm | 516/7.7 | 516/7.7 | 474/5.9 | 149/2.9 | -60/1.5 | -40/1 |
| Beam σ_{z}, IP | µm | 300 | 300 | 300 | 70 | 44 | 44 |

- ILC: Crossing angle 14 mrad, electron polarization ±80%, positron polarization ±30%.
- CLIC: Crossing angle 20 mrad, electron polarization ±80%, upgrade positron polarization.

Very small beams and high beam energy → beamstrahlung

Incoherent e^+e^- pairs

γγ → hadrons

Example:

Detector requirements for future high-energy collider experiments - Eva Sicking - 27th Jan 2020
Detector requirements

Physics analysis requirements:

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - $\sigma_{p_T}/p^2_T \sim 2 \times 10^{-5} \text{GeV}^{-1}$ above 100 GeV

- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - $\sigma_E/E \sim 5\% - 3.5\%$ for jets at 50 GeV – 1000 GeV

- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - $\sigma_{r\phi} \sim a \oplus b / (p[\text{GeV}] \sin^{3/2} \theta) \mu\text{m}$
 with $a = 5 \mu\text{m}$, $b = 15 \mu\text{m}$

- Angular coverage
 - Very forward electron and photon tagging
 - Down to $\theta = 10 \text{ mrad}$ ($\eta = 5.3$)

Example:
Higgs → $\mu^-\mu^+$ @3TeV

Example:
W/Z separation

Erica Brondolin (erica.brondolin@cern.ch)

Conformal Tracking for future e^+e^- colliders

Bristol University, 5th Feb 2020
Detector requirements

Physics analysis requirements:

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - $\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \text{ GeV}^{-1}$ above 100 GeV
- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - $\sigma_{E}/E \sim 5\% - 3.5\%$ for jets at 50 GeV – 1000 GeV
- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - $\sigma_{r\phi} \sim a \Theta b / (p[\text{GeV}] \sin^{3/2} \theta) \text{ \mu m}$
 with $a = 5 \text{ \mu m}$, $b = 15 \text{ \mu m}$
- Angular coverage
 - Very forward electron and photon tagging
 - Down to $\theta = 10 \text{ mrad}$ ($\eta = 5.3$)

+ Requirements from beam structure and beam-induced background

Example: $Higgs \rightarrow \mu^- \mu^+$ @3TeV

Example: W/Z separation
Physics analysis requirements:

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - $\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5}$ GeV$^{-1}$ above 100 GeV

- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - $\sigma_E/E \sim 5\% - 3.5\%$ for jets at 50 GeV – 1000 GeV

- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - $\sigma_{r\phi} \sim a \oplus b / (p[GeV] \sin \theta)^{3/2}$ μm
 with $a = 5$ μm, $b = 15$ μm

- Angular coverage
 - Very forward electron and photon tagging
 - Down to $\theta = 10$ mrad ($\eta = 5.3$)

+ Requirements from beam structure and beam-induced background

Differences between ILC, CLIC, FCC-ee, CEPC requirements rather small

Impact on detector designs:

- Shielding
- Granularity
- Timing
- Cooling

Example: Higgs → $\mu^-\mu^+$ @3TeV

Example: W/Z separation
Tracking challenges

- #reco tracks without (with) background ~ $O(100)$ $O(500-1000)$

- Physics requirements:
 - Momentum resolution
 - Impact parameter resolution
 - Best possible angular coverage
 - Beam structure
 - Background rejection

- Tracker requirement:
 - Low material budget tracker
 - High spatial resolution
 - Low occupancy ~3% → High granularity
 - No or $O(1\text{ ns})$ timing requirement
Tracking challenges

- #reco tracks without (with) background ~ O(100) O(500-1000)

- **Physics requirements:**
 - Momentum resolution
 - Impact parameter resolution
 - Best possible angular coverage
 - Beam structure
 - Background rejection

- **Tracker requirements:**
 - Low material budget
 - High spatial resolution
 - Low occupancy ~3% → High granularity
 - No or O(1 ns) timing requirement

- **Detector technologies:**
 - strong R&D programme

- **Software reconstruction:**
 - flexible and efficient tracking algorithm

- **Computing infrastructure:**
 - computing resources

Example: CLIC@3TeV
Proposed e^+e^- collider detectors

- **CLIC**: CLICdet
 - E_{CM} up to 3 TeV
 - 3.5 - 5 T solenoids

- **FCC-ee**: CLD
 - E_{CM} up to 365 GeV
 - 2 - 3 T solenoids

- **ILC**: SiD
- **ILC**: ILD
- **CEPC**: APIDOS

Conformal Tracking for future e^+e^- colliders

Erica Brondolin (erica.brondolin@cern.ch)

Bristol University, 5th Feb 2020
Proposed e^+e^- collider detectors

- **E_{CM} up to 3 TeV**
 - 3.5 - 5 T solenoids
 - CLIC: CLICdet
 - ILC: SiD

- **E_{CM} up to 365 GeV**
 - 2 - 3 T solenoids
 - FCC-ee: CLD
 - ILC: ILD
 - CEPC: APIDOS

Track reconstruction software:
- Flexible (different geometries, …)
- Robust (different beam-backgrounds, …)
- All-silicon tracker
Conformal Tracking
The conformal mapping method is based on the fact that circles passing through the origin of a coordinate system xy can be translated onto straight lines in a new coordinate system uv

$$u = \frac{x}{x^2 + y^2}$$

$$v = \frac{y}{x^2 + y^2}$$
The conformal mapping method is based on the fact that circles passing through the origin of a coordinate system \(xy \) can be translated onto straight lines in a new coordinate system \(uv \):

\[
\begin{align*}
 u &= x / (x^2 + y^2) \\
 v &= y / (x^2 + y^2)
\end{align*}
\]

Conformal Tracking (CT)
Cellular Automaton-based track finding in conformal space

Github repo
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

Seed hit

1) Define seed hits
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

2) Create cellular track candidate
- Define hit neighbour ($\Delta \theta, \Delta z$)
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

2) Create cellular track candidate
- Define hit neighbour ($\Delta \theta, \Delta z$)
- Seed cell is created if hit neighbour:
 - not lie in same det layer
 - located at smaller conf radius
 - hit not used already in other cellular track
- Cell is created with associated weight
 - subsequent link increments the weight by 1
- Cell can be discarded, if too long in uv
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

2) Create cellular track candidate
- Define hit neighbour ($\Delta \theta, \Delta z$)
- Seed cell is created if hit neighbour:
 - not lie in same det layer
 - located at smaller conf radius
 - hit not used already in other cellular track
- Cell is created with associated weight
 - subsequent link increments the weight by 1
- Cell can be discarded, if too long in uv
- Seed cell is extrapolated along seed direction
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

2) Create cellular track candidate
- Define hit neighbour ($\Delta \theta, \Delta z$)
- Seed cell is created if hit neighbour:
 - not lie in same det layer
 - located at smaller conf radius
 - hit not used already in other cellular track
- Cell is created with associated weight
 - subsequent link increments the weight by 1
- Cell can be discarded, if too long in uv
- Seed cell is extrapolated along seed direction
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

3) Select best candidates
- Starting from higher weight back to the seed cell
- For all cellular tracks stemming from the seed hit
 - Hits progressively removed one by one
 - Linear regression fit in \((u,v)\) \(\chi^2_{uv}/ndf\)
 - Linear regression fit in \((s,z)\) \(\rightarrow \chi^2_{sz}/ndf\)
 where \(s\) is arc segment along the helix
 - Reject or accept hit according to total \(\chi^2_{tot}\)
- Clone treatment
 - Clones if \#overlapping hits >= 2
 - Longest track is kept
 - If same length, small \(\chi^2_{tot}\)

4) Mark hits in cellular track as used
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

1) Estimation of p_T with conformal formulas
2) Tracks with higher-p_T are extended first
 - Similar process than building
 (search for neighbours layer by layer)
 - Best hit is chosen based on smallest χ^2_{tot}
 - Mark hits as used
3) Tracks with lower p_T
 - All hits are used (no cut in θ)
 - Quadratic terms in χ^2_{uv} fit added
Track reconstruction at CLIC

Compact Linear Collider

Conformal Tracking for future e+e− colliders
Erica Brondolin (erica.brondolin@cern.ch)
Bristol University, 5th Feb 2020
The CLICdet tracker

- Superconducting solenoid with 4T magnetic field
- Vertex detector
 - 25 × 25 µm² pixels
 - 3 double layers in barrel
 - Spiral arrangement in forward region
 - Air cooling
 - Extremely accurate and light:
 - Single point resolution = 3 µm
 - Material Budget < 0.2 % X₀ per layer
- Silicon Tracker
 - Large pixels/strips
 - Outer R ~ 1.5 m
 - Single point resolution = 7 µm × 90 µm
 - Material budget:
 - Detector: ~1%X₀ per layer
 - Support & cables: ~2.5%X₀
 - Precise timing for background rejection:
 - < 10 ns hit time-stamping in tracking
- Full simulation with DD4hep geometry
The CLICdet tracker

- Superconducting solenoid with 4T magnetic field
- Vertex detector
 - 25 × 25 µm² pixels
 - 3 double layers in barrel
 - Spiral arrangement in forward region
 - Air cooling
 - Extremely accurate and light:
 - Single point resolution = 3 µm
 - Material Budget < 0.2 % X₀ per layer
- Silicon Tracker
 - Large pixels/strips
 - Outer R ~ 1.5 m
 - Single point resolution = 7 µm × 90 µm
 - Material budget:
 - Detector: ~1%X₀ per layer
 - Support & cables: ~2.5%X₀
 - Precise timing for background rejection:
 - < 10 ns hit time-stamping in tracking
- Full simulation with DD4hep geometry
How does an “event” look like?

Event display

\[e^+e^- \rightarrow tt \ @ \ 380 \ GeV \]
+ Background overlay
(10 (20) BX before (after) physics event)
How does an “event” look like?

Event display

{eq}e^+e^- \rightarrow tt \ @ 3 \ TeV\)

+ Background overlay

(10 (20) BX before (after) physics event)
Conformal tracking in CLICdet

Algorithm	Hit collection	Configuration
Build tracks	Vertex barrel	Standard cuts
Extend tracks	Vertex endcap	Standard cuts
Build tracks	Vertex	Looser cuts (angle x 5)
Build tracks	Vertex	Looser cuts (angle x 10; χ^2 x 20)
Extend tracks	Tracker	Looser cuts (angle x 10; χ^2 x 20)
Build tracks	Vertex + Tracker	Displaced cuts

- **5 steps targeting prompt-tracks:**
 - From vertex detector to silicon tracker
 - Min number of hits = 4
 - Standard or looser (angle or χ^2) cuts

- **1 step targeting displaced tracks:**
 - Quadratic terms in conformal space fit added
 - Inverted order search: from silicon tracker to vertex detector
 - Broader search angle than for prompt tracks
 - Min number of hits = 5
Conformal tracking in CLICdet

5 steps targeting prompt-tracks:
- From vertex detector to silicon tracker
- Min number of hits = 4
- Standard or looser (angle or χ^2) cuts

1 step targeting displaced tracks:
- Quadratic terms in conformal space fit added
- Inverted order search: from silicon tracker to vertex detector
- Broader search angle than for prompt tracks
- Min number of hits = 5
Track fitting and selection

- **Track fit**
 - It consists of a Kalman filter (KF) and smoother in global coordinate space
 - Pre-fit step:
 - Helix prefit with three hits (first, middle, last) gives track state to initialize fit
 - KF fit proceeds forward
 - Hits added one by one
 - Hit is acceptance/rejected based on a χ^2 cut
 - Only in the case of failed fit, the KF is tried again in a backward fashion
 - Packages used:
 - *KalTest*: iterative Kalman filter
 - *DDKalTest*: DD4hep - KalTest = interface to provide surfaces

- **Track selection**
 - Clone treatment is repeated one last time
 - Minimum number of hits = 4
Performance
Performance (some definitions)

Associated particle = Simulated MC particle from which the majority of track hits are originated

Reconstructable particle = stable MC particle with following requirements:
- \(p_T > 0.1 \) GeV
- \(|\cos \theta| < 0.99\)
- unique hits \(\geq 4\)

Purity = Number of track hits associated to the same MC particle
- **Pure track** if purity \(\geq 75 \%\)
- **Fake track** if purity < 75 \%

\[
\text{Efficiency} = \frac{\text{#pure tracks associated to MC particle}}{\text{#reconstructable MC particles}}
\]

\[
\text{Fake rate} = \frac{\text{#fake reconstructed tracks}}{\text{#reconstructed tracks}}
\]
Performance for isolated particles

Isolated muons

- Tracking fully efficient in the entire tracker volume and at any transverse momentum more than 0.1 GeV
Performance for isolated particles

Isolated electrons

- Tracking fully efficient in the entire tracker volume and at any transverse momentum more than 0.1 GeV
Performance for isolated particles

Isolated pions

- Tracking fully efficient in the entire tracker volume and at any transverse momentum more than 0.1 GeV
Isolated muons, displaced
Tracks generated uniformly along y-axis with given opening angle

- Tracking fully efficient down to 340 mm
- Sharp drop expected due to the requirement on the number of hits
- Full coverage for b-decay

vertex R = particle production vertex radius
Performance for isolated particles

Isolated muons

- Very good agreement with target values of required physics performance
Performance for isolated particles

Isolated muons, detector optimisation
Performance for complex events

tt events @ 3 TeV

- Similar performance w/ and w/o background
- Efficiency > 98% in the entire tracker volume
- Fully efficient for simulated MC particles with $p_T > 1$ GeV
- Efficiency > 90% down to 200 MeV
Performance for complex events

tt events @ 3 TeV

- Similar performance w/ and w/o background
- Fully efficient in vertex region
- 1% inefficiency for very small distance between particles
Performance for complex events

tt events @ 3 TeV

- Similar performance w/ and w/o background
- Fake rate about per-cent level
- Small increase for tracks with low p_T

Erica Brondolin (erica.brondolin@cern.ch)

Conformal Tracking for future e^+e^- colliders

Bristol University, 5th Feb 2020
Performance for complex events

- Reconstructed tracks and Pandora Particle Flow Objects (PFOs) are used as input to the vertex reconstruction and jet clustering.

- For CLICdet, LCFIPlus software package is used for the vertex fitting, jet clustering and flavor tagging.
CPU execution time

Algorithm	Hit collection	Configuration
Build tracks	Vertex barrel	Standard cuts
Extend tracks	Vertex endcap	Standard cuts
Build tracks	Vertex	Looser cuts (angle x 5)
Build tracks	Vertex	Looser cuts (angle x 10; χ^2 x 20)
Extend tracks	Tracker	Looser cuts (angle x 10; χ^2 x 20)
Build tracks	Vertex + Tracker	Displaced cuts

- For events **without** overlay, the **KF filter** is the most time consuming part.
- For events **with** overlay, the **build tracks** step is the most time consuming part.

- Step 5 is the most time consuming part:
 - For events without overlay, $\frac{1}{2}$ of total build tracks process
 - For events with overlay, $\frac{3}{4}$ of total build tracks process

One core used with 27.5 DB12 machine

Average of 25 event of single tt without (with) overlay:
- #reco tracks = ~ 90 (550)
- ~10 sec (~340 sec) for single tt event without (with) overlay
Conformal tracking @ CLD

- CLD detector configuration
 - Smaller magnetic field 4 T → 2 T
 - Larger tracker 1.5 m → 2.15 m
 - Smaller beam-pipe 29 mm → 15 mm
- Tuning pattern recognition parameters
- Using DD4hep detector description

arXiv:1911.12230
CLD - A Detector Concept for the FCC-ee
Next steps

- Conformal tracking completed its **initial phase**

- Further developments and ideas:
 - Non-homogeneous magnetic field
 - Soft hit-to-track assignment
 - Test performance w/ other backgrounds
 - Further CPU time optimisation
 - Multi-core usage mode
 - Tuning of parameters for displaced and low p_T particles
 - Hit time information in pattern recognition
 - ...
Summary & conclusions

- Future e^+e^- colliders tracking challenges are fertile ground for new ideas:
 - Physics requirements are interesting
 - Beam-induced background not negligible
 - Moreover, detector is available in full simulation

- The conformal tracking provides robust solution for pattern recognition
 - Works in single particle as well as complex events
 - Performs well with displaced tracks
 - Can cope successfully with beam induced backgrounds

- The conformal tracking is flexible
 - Successfully handles different detector geometries
 - Possible to include new iteration easily

- Comprehensive article published recently: doi:10.1016/j.nima.2019.163304
The CLIC project

- **CLIC = Compact Linear Collider**
- High-energy linear e^+e^- collider
- CLIC would be implemented in **three energy stages** (7-8 years each)
 - Centre-of-mass energy from 380 GeV up to 3 TeV
 - Constructing next stage while taking data with current stage

- Physics programme extends over **25–30 years**:
 - Precision measurement of Higgs boson and top quark
 - Precision measurement of new physics (discovered at LHC, CLIC, ...)
 - Search for physics Beyond Standard Model (BSM)

Possibility to adapt the stages to new LHC discovery!
CLIC staging

- **Electron polarisation:**
 - ±80% longitudinal polarization for the electron beam
 - Enhances Higgs production at high-energy stages
 - Helps to characterise new particles in case of discovery

- **Luminosity spectrum:**
 - Effect is dependent on \sqrt{s}
 - Luminosity spectrum can be measured in situ using large-angle Bhabha scattering events, to 5% accuracy at 3 TeV
 - Most of the analyses use the entire lumi spectrum

- **Baseline scenario:**

 ![Graph showing CLIC stages and physics](image)
Challenges for Vertex & Tracker

	Compact Linear Collider	**(HL-) LHC (ATLAS/CMS)**
Material budget (barrel)	1 – 2% X0 (vertex)	10 – 15% X0 (vertex)
	8 – 15% X0 (tracker)	30 – 40% X0 (tracker)
Single-point resolution	3 µm (vertex)	5 µm (vertex)
	7 µm (tracker)	30 µm (tracker)
Time resolution	5 ns	25 ns (1 BX)
Tracking acceptance		
Min. granularity (occupancy)	≤ 25 µm x 100 µm	50 µm x 50 µm
Active area	~1 m² / ~137 m²	~5 - 10 m² / ~200 m²
Radiation tolerance	< 10^{11} n_{eq} / cm² (vertex)	O(10^{16} n_{eq} / cm²) (vertex)
Pixel detectors technologies

Hybrid pixel detectors

- Sensor and readout chip developed independently
- Small pixel cell sizes achievable down to 25μm
- Extensive functionality w/ mixed CMOS circuits
- Bump bonding
 - Cost-driving factor on detector production
 - Limiting factor for the pixel pitch
 - Limiting factor for device thickness: stability

Monolithic pixel detectors

- Sensor and readout produced together
- Example shown here: “High-Resistivity CMOS Sensors”
- Suitable for large-scale systems
- Low material budget, no bump-bonding
 - Facilitated production and reduced cost
- Additional engineering required to separate bias voltage from CMOS voltage
The CLICpix2 prototype

- Example of hybrid pixel detector
- Readout ASIC to meet CLIC vertex requirements
- Timepix/Medipix chip family
 - 128 x 128 pixels (3.2 x 3.2 mm² active area)
 - 65nm CMOS, 25μm x 25μm pitch
 - Per-pixel 5-bit ToT and 8-bit ToA
- Challenge: single-chip bonding of sensors with 25μm pitch
- Promising results from first beam tests
 - Spatial resolution $\sigma_x \sim 5$ μm (130 μm sensor thickness), characterization ongoing
- However, with thin sensors (50 μm) target resolution of 3 μm not achievable at 25 μm pitch
The CLICTD prototype

- Example of monolithic pixel detector
- Fully-integrated sensor for CLIC Tracking Detector
- 180 nm CMOS + High-Resistivity (HR) epitaxial layer
 - 16 x 128 pixels (4.8 x 3.84 mm2 active area)
 - geometry with 8 sub-pixels with 30 μm x 37.5 μm pitch each
 - Per-pixel 5-bit ToT and 8-bit ToA
- Just finished first test beam campaign at DESY
 - Very successful – correlations (space and time) from day 1
 - Currently analyzing data
Power and energy

- Power estimate redone bottom-up for 380GeV CLIC
- Total power: **168 MW**
- Much reduced compared with CDR, from optimised drive-beam complex, more efficient klystrons and injectors, and better estimates of nominal conditions

- CERN’s current energy consumption is approximately 1.2 TWh per year (LHC accounts for 90%)
Cost

- Machine recosted bottom-up in 2017–18
- Total cost for 380 GeV stage: 5.9 BCHF
- From 380 GeV to 1.5 TeV, add 5.1 BCHF (drive-beam RF upgrade and lengthening of main linac)
- From 1.5 TeV to 3 TeV, add 7.3 BCHF (second drive-beam complex and lengthening of main linac)

System	Cost fraction	Cost [MCHF]
Vertex	13	11
Silicon Tracker	43	43
Electromagnetic Calorimeter	180	180
Hadronic Calorimeter	39	39
Muon System	16	16
Coil and Yoke	95	95
Other	11	11
Total	**397**	**397**

System	Cost [MCHF]
Main-Beam Production Injectors	175
Main-Beam Production Damping Rings	309
Main-Beam Production Beam Transport	409
Drive-Beam Production Injectors	584
Drive-Beam Production Frequency Multiplication	379
Drive-Beam Production Beam Transport	76
Main Linac Modules Main Linac Modules	1329
Main Linac Modules Post decelerators	37
Main Linac RF Main Linac Xband RF	0
Beam Delivery and Post Collision Lines Beam Delivery Systems	52
Beam Delivery and Post Collision Lines Final focus, Exp. Area	22
Beam Delivery and Post Collision Lines Post-collision lines/dumps	47
Civil Engineering Civil Engineering	1300
Infrastructure and Services Electrical distribution	243
Infrastructure and Services Survey and Alignment	194
Infrastructure and Services Cooling and ventilation	443
Infrastructure and Services Transport / installation	38
Machine Control, Protection and Safety systems Safety systems	72
Machine Control, Protection and Safety systems Machine Control Infrastructure	146
Machine Control, Protection and Safety systems Machine Protection	14
Machine Control, Protection and Safety systems Access Safety & Control System	23
Total (rounded)	**5890**
Schedule

2013 – 2019
Development Phase
Development of a project plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 – 2025
Preparation Phase
Finalisation of implementation parameters, preparation for industrial procurement, pre-series and system optimisation studies, technical proposal of the experiment, site authorisation

2026 – 2034
Construction Phase
Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2020
Update of the European Strategy for Particle Physics

2026
Ready for construction

2035
First collisions
A landscape for colliders in Europe

	2020-2040	2040-2060	2060-2080	
1st gen technology				
CLIC-all	HL-LHC	CLIC380-1500	CLIC3000 / other tech	
CLIC-FCC	HL-LHC	CLIC380	FCC-h/e/A (Adv HF magnets) / other tech	
FCC-all	HL-LHC	FCC-ee (90-365)	FCC-h/e/A (Adv HF magnets) / other tech	
LE-to-HE-FCC-h/e/A	HL-LHC	LE-FCC-h/e/A (low-field magnets)	FCC-h/e/A (Adv HF magnets) / other tech	
LHeC-FCC-h/e/A	HL-LHC	+ LHeC	LHeC	FCC-h/e/A (Adv HF magnets) / other tech
2nd gen technology				

- All elements related to the CLIC, FCC and LHeC proposals are discussed in their CDRs.
- The LE-to-HE-FCC-h/e/A scenario moves from initially lower-field magnets to higher-field magnets, potentially HTS magnets.
- The LHeC+FCC-h/e/A scenario includes the LHeC and foresees FCC-h/e/A at a later stage directly with high-field magnets.
CLIC input to Yellow Reports:
- CLIC 2018 Summary Report
- CLIC Project Implementation Plan
- The CLIC Potential for New Physics
- Detector technologies for CLIC

Two formal ESU submissions:
- Physics Potential
- Accelerator and Detector

Many more Journal publications and CLICdp Notes

Full list can be found in: http://clic.cern/european-strategy