PI Regulation of a Reaction–Diffusion Equation With Delayed Boundary Control

Hugo Lhachemi Ⓡ, Christophe Prieur Ⓡ, Senior Member, IEEE, and Emmanuel Trélat Ⓡ

Abstract—The general context of this article is the feedback control of an infinite-dimensional system so that the closed-loop system satisfies a fading-memory property and achieves the setpoint tracking of a given reference signal. More specifically, this article is concerned with the proportional–integral (PI) regulation control of the left Neumann trace of a one-dimensional reaction–diffusion equation with a delayed right Dirichlet boundary control. In this setting, the studied reaction–diffusion equation might be either open-loop stable or unstable. The proposed control strategy goes as follows. First, a finite-dimensional truncated model that captures the unstable dynamics of the original infinite-dimensional system is obtained via spectral decomposition. The truncated model is then augmented by an integral component on the tracking error of the left Neumann trace. After resorting to the Artstein transformation to handle the control input delay, the PI controller is designed by pole shifting. Stability of the resulting closed-loop infinite-dimensional system, consisting of the original reaction–diffusion equation with the PI controller, is then established, thanks to an adequate Lyapunov function. In the case of a time-varying reference input and a time-varying distributed disturbance, our stability result takes the form of an exponential input-to-state stability (ISS) estimate with fading memory. Finally, another exponential ISS estimate with fading memory is established for the tracking performance of the reference signal by the system output. In particular, these results assess the setpoint regulation of the left Neumann trace in the presence of distributed perturbations that converge to a steady-state value and with a time derivative that converges to zero. Numerical simulations are carried out to illustrate the efficiency of our control strategy.

1. INTRODUCTION

A. State of the Art

MOITIVATED by the efficiency of proportional–integral (PI) controllers for the stabilization and regulation control of finite-dimensional systems, as well as its widespread adoption by industry [2], [3], the opportunity of using PI controllers in the context of infinite-dimensional systems has attracted much attention in the recent years. One of the early attempts in this area was reported in [21] and [22], then extended in [32], for bounded control operators. More recently, a number of works have been reported on the PI boundary control of linear hyperbolic systems [5], [11], [15], [33]. The use of a PI boundary controller for 1-D nonlinear transport equation has been studied first in [31] and then extended in [8]. In particular, the former tackle the regulation problem for a constant reference input and in the presence of constant perturbations. The regulation of the downside angular velocity of a drilling string with a PI controller was reported in [30]. The considered model consists of a wave equation coupled with ordinary differential equations (ODEs) in the presence of a constant disturbance. A related problem, the PI control of a drilling pipe under friction, was investigated in [4]. Recently, the opportunity to add an integral component to open-loop exponentially stable semigroups for the output tracking of a constant reference input and in the presence of a constant distributed perturbation has been investigated in [28] and [29] for unbounded control operators by using a Lyapunov functional design procedure.

In this article, we are concerned with the PI regulation control of the left Neumann trace of a 1-D reaction–diffusion equation with a delayed right Dirichlet boundary control. Specifically, we aim at achieving the setpoint reference tracking of a time-varying reference signal in spite of the presence of both an arbitrarily large constant input delay and a time-varying distributed disturbance. One of the early contributions regarding stabilization of PDEs with an arbitrarily large input delay deals with a reaction–diffusion equation [14], where the controller was designed by resorting to the backstepping technique. A different approach, which is the one adopted in this article, takes advantage of the following control design procedure initially reported in [25] and later used in [9], [10], and [26] to stabilize semilinear heat, wave, or fluid equations via (undelayed) boundary feedback control: 1) design of the controller on a finite-dimensional model capturing the unstable modes of the original infinite-dimensional system; and 2) use of an adequate Lyapunov function to assess that the designed control law stabilizes the whole infinite-dimensional system. The extension of this design procedure to the delay feedback control of a 1-D linear reaction–diffusion equation was reported in [23]. The impact of the input delay was handled in the control design by the synthesis of a predictor feedback via the classical Artstein transformation [1], [24] (see also [6]). This control
strategy was replicated in [12] for the feedback stabilization of a linear Kuramoto–Sivashinsky equation with delay boundary control. This idea was then generalized to the boundary feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control for either a constant [16], [18] or a time-varying [17], [19] input delay.

B. Investigated Control Problem

Let $L > 0$, let $c \in L^\infty(0, L)$, and let $D > 0$ be arbitrary. We consider the 1-D reaction–diffusion equation over $(0, L)$ with delayed Dirichlet boundary control

$$y_t = y_{xx} + c(x)y + d(t, x), \quad (t, x) \in \mathbb{R}_+ \times (0, L) \quad (1a)$$

$$y(t, 0) = 0, \quad t \geq 0 \quad (1b)$$

$$y(t, L) = u_D(t) \triangleq u(t - D), \quad t \geq 0 \quad (1c)$$

$$y(0, x) = y_0(x), \quad x \in (0, L) \quad (1d)$$

where $y(t, \cdot) \in L^2(0, L)$ is the state at time t, $u(t) \in \mathcal{R}$ is the control input, $D > 0$ is the (constant) control input delay, $d(t, \cdot) \in L^2(0, L)$ is a time-varying disturbance, continuously differentiable with respect to t, and $y_0 \in H^2_0(0, L)$ with $y_0(0) = 0$ and $y_0(L) = u(-D)$ is the initial condition. System (1) is commonly used to model heat distributions over a 1-D domain with applications, e.g., in additive manufacturing, heat networks, or heat exchangers. In this case, the control input u is a heat source, while the distributed perturbation d stands for perturbations of the ambient temperature.

In this article, our objective is to achieve the PI regulation control of the left Neumann trace $y_e(t, 0)$ to some prescribed reference signal, in the presence of the time-varying disturbance d. More precisely, let $r : \mathbb{R}_+ \rightarrow \mathbb{R}$ be an arbitrary continuous function (reference signal). We aim at achieving the setpoint tracking of the time-varying reference signal $r(t)$ by the left Neumann trace $y_e(t, 0)$.

Note that an exponentially stabilizing controller for (1), taking the form of a predictor feedback, was designed in [23] in the disturbance-free case ($d = 0$) for a system trajectory evaluated in the H^1_0-norm.

The control strategy that we develop in this article elaborates on the one of [23], adequately combined with a PI procedure. In this setting, the introduction of the integral component aims at achieving the setpoint tracking of $r(t)$ by the system output $y_e(t, 0)$. First, a finite-dimensional model capturing all unstable modes of the original infinite-dimensional system is obtained by an appropriate spectral decomposition. Following the standard PI approach, the tracking error on the left Neumann trace is then added as a new component to the resulting finite-dimensional system. Before synthesizing the PI controller, the control input delay is handled, thanks to the Artstein transformation. A predictor feedback control, obtained by pole shifting, is then designed to exponentially stabilize the aforementioned truncated model. The core of the proof consists of establishing that this PI feedback controller exponentially stabilizes as well the complete infinite-dimensional system. This is done by an appropriate Lyapunov-based argument. The obtained results take the form of exponential input-to-state stability (ISS) estimates [27] with fading memory of the reference input and the distributed perturbation. In the case where $r(t) \rightarrow r_\infty, d(t) \rightarrow d_\infty$, and $\dot{d}(t) \rightarrow 0$ when $t \rightarrow +\infty$, these estimates ensure the convergence of the state of the system, as well as the fulfillment of the desired setpoint regulation $y_e(t, 0) \rightarrow r_\infty$.

The rest of this article is organized as follows. The proposed control strategy is introduced in Section II. The study of the equilibrium points of the closed-loop system and the associated dynamics is presented in Section III. Then, the stability analysis of the closed-loop system is presented in Section IV, while the assessment of the tracking performance is reported in Section V. The obtained results are illustrated by numerical simulations in Section VI. Finally, Section VII concludes this article.

Notation: The sets of nonnegative integers, positive integers, real, nonnegative real, and positive real are denoted by \mathbb{N}, \mathbb{N}^*, \mathbb{R}, \mathbb{R}_+, and \mathbb{R}^*_+, respectively. All the finite-dimensional spaces \mathbb{R}^p are endowed with the usual Euclidean inner product $(x, y) = x^T y$ and the associated 2-norm $\|x\| = \sqrt{\langle x, x \rangle} = \sqrt{x^T x}$. For any matrix $M \in \mathbb{R}^{p \times q}$, $\|M\|$ stands for the induced norm of M associated with the above 2-norms. For a given symmetric matrix $P \in \mathbb{R}^{p \times p}$, $\lambda_{\min}(P)$ and $\lambda_{\max}(P)$ denote its smallest and largest eigenvalues, respectively. In the following, the time derivative $\partial f/\partial t$ is denoted by either f_t or f_τ, while the spatial derivative $\partial f/\partial x$ is denoted by either f_x or f'. For a given integer $m \geq 1$, $H^m(0, L)$ denotes the usual Sobolev space of order m over $(0, L)$. Finally, $H^1_0(0, L)$ stands for the subset of $H^1(0, L)$ composed of the functions f satisfying $f(0) = f(L) = 0$.

II. CONTROL DESIGN STRATEGY

A. Augmented System for PI Feedback Control

The control design objective is 1) to stabilize the reaction–diffusion system (1) and (2) to ensure the setpoint tracking of the reference signal $r(t)$ by the left Neumann trace $y_e(t, 0)$. We address this problem by designing a PI controller. Following the general PI scheme, we augment the system by introducing a new state $z(t) \in \mathbb{R}$ taking the form of the integral of the tracking error $y_e(t, 0) - r(t)$ (as for finite-dimensional systems, the objective of this integral component is to ensure the setpoint tracking of the reference signal in the presence of the distributed disturbance d).

$$y_t = y_{xx} + c(x)y + d(t, x), \quad (t, x) \in \mathbb{R}_+ \times (0, L) \quad (2a)$$

$$\dot{z}(t) = y_e(t, 0) - r(t), \quad t \geq 0 \quad (2b)$$

$$y(t, 0) = y_0(t), \quad t \geq 0 \quad (2c)$$

$$y(t, L) = u_D(t) \triangleq u(t - D), \quad t \geq 0 \quad (2d)$$

$$y(0, x) = y_0(x), \quad x \in (0, L) \quad (2e)$$

$$z(0) = 0 \quad (2f)$$

where $0 \in \mathbb{R}$ stands for the initial condition of the integral component. As we are only concerned in prescribing the future of the system, we assume that the system is uncontrolled for $t < 0$, i.e., $u(t) = 0$ for $t < 0$. Consequently, due to the input delay $D > 0$, the system is in open loop over the time range $[0, D)$ as the impact of the control strategy actually applies in the boundary condition only for $t \geq D$. Thus, we assume in the remainder of this article that $y_0 \in H^2(0, L) \cap H^1_0(0, L)$.

B. Modal Decomposition

It is convenient to rewrite (2) as an equivalent homogeneous Dirichlet problem. Specifically, assuming that u is continuously differentiable and setting $w(t, x) = y(t, x) - \frac{x}{L} u_D(t)$, we have

$$w_t = w_{xx} + \frac{x}{L} c(x)w + \frac{x}{L} d(t, x), \quad (t, x) \in \mathbb{R}_+ \times (0, L) \quad (3a)$$

$$w(t, 0) = w(t, L) = 0 \quad (3b)$$

$$w(0, x) = y_0(x) \quad (3c)$$

$$z(0) = 0 \quad (3e)$$

for $t > 0$ and $x \in (0, L)$, where we have used that $u_D(0) = u(-D) = 0$. We consider the real state-space $L^2(0, L)$ endowed with its usual inner product $(f, g) = \int_0^L f(x)g(x) \, dx$. Introducing the operator $A = \partial^2_{xx} + \frac{x}{L} \partial_x : D(A) \subset L^2(0, L) \rightarrow L^2(0, L)$ defined on the domain $D(A) = H^2(0, L) \cap H^1_0(0, L)$ and which generates a C_0-semigroup,

\[1\] This property will be ensured by the construction carried out in the following.
(3a)–(3c) can be rewritten as
\[w(t, \cdot) = Aw(t, \cdot) + a(\cdot)u_D(t) + b(\cdot)\dot{u}_D(t) + d(t, \cdot) \quad (4a) \]
\[\dot{z}(t) = w_x(t, 0) + \frac{1}{L} u_D(t) - r(t) \quad (4b) \]
with \(a(x) = \begin{cases} \frac{\xi}{T} & \text{for even } x \in (0, L), \\ -\frac{\xi}{T} & \text{for odd } x \in (0, L) \end{cases} \) and \(b(x) = \begin{cases} \frac{x}{T} & \text{for even } x \in (0, L), \\ -\frac{x}{T} & \text{for odd } x \in (0, L) \end{cases} \) for every \(x \in (0, L) \), with initial conditions (3d) and (3e). Since \(\tilde{A} \) is self-adjoint and has compact resolvent, we consider a Hilbert basis \(\{ e_j \}_{j=1}^{\infty} \) of \(L^2(0, L) \) consisting of eigenfunctions of \(\tilde{A} \) associated with the sequence of real eigenvalues \(-\infty < \cdots < \lambda_j < \cdots < \lambda_1 \) with \(\lambda_j \rightarrow +\infty \).

We note that \(e_j(\cdot) \in H^1_0(0, L) \cap C^1((0, L]) \) for every \(j \geq 1 \) and, from the classical Sturm–Liouville theory [34],
\[e_j'(0) \sim \sqrt{\frac{2}{L}} \sqrt{\lambda_j}, \quad \lambda_j \sim \frac{\pi^2 j^2}{L^2} \quad (5) \]
when \(j \rightarrow +\infty \). The solution \(w(t, \cdot) \in H^2(0, L) \cap H^1_0(0, L) \) of (4a) can be expanded as a series in the eigenfunctions \(e_j(\cdot) \), convergent in \(H^1_0(0, L) \)
\[w(t, \cdot) = \sum_{j=1}^{\infty} w_j(t)e_j(\cdot). \quad (6) \]
Therefore, (4) is equivalent to the infinite-dimensional control system
\[\begin{aligned}
 w_j(t) &= \lambda_j w_j(t) + a_j u_D(t) + b_j \dot{u}_D(t) + d_j(t) \quad (7a) \\
 \dot{z}(t) &= \sum_{j=1}^{\infty} w_j(t)e_j'(0) + \frac{1}{L} u_D(t) - r(t) \quad (7b)
\end{aligned} \]
for \(j \in \mathbb{N}^* \), with
\[\begin{aligned}
 w_j(t) &= \langle w(t, \cdot), e_j \rangle = \int_0^L w(t, x)e_j(x) \, dx \\
 a_j &= \langle a, e_j \rangle = \frac{1}{L} \int_0^L xc_e(x)e_j(x) \, dx \\
 b_j &= \langle b, e_j \rangle = -\frac{1}{L} \int_0^L xe_j(x) \, dx \\
 d_j(t) &= \langle d(t, \cdot), e_j \rangle = \int_0^L d(t, x)e_j(x) \, dx.
\end{aligned} \]
Introducing the auxiliary control input \(v \triangleq \dot{u} \), and denoting \(v_D(t) \triangleq v(t - D) \), (7) can be rewritten as
\[\begin{aligned}
 \dot{u}_D(t) &= v_D(t) \quad (8a) \\
 \dot{w}_j(t) &= \lambda_j w_j(t) + a_j u_D(t) + b_j v_D(t) + d_j(t) \quad (8b) \\
 \dot{z}(t) &= \sum_{j=1}^{\infty} w_j(t)e_j'(0) + \frac{1}{L} u_D(t) - r(t) \quad (8c)
\end{aligned} \]
for \(j \in \mathbb{N}^* \). Since \(u(t) = 0 \) for \(t < 0 \), (8a) imposes that the auxiliary control input is such that \(v_D(t) = 0 \), for \(t < 0 \), and that the corresponding initial condition satisfies \(u_D(0) = u(-D) = 0 \). In the following, we design the control law \(v \) in order to stabilize (8). In this context, the actual control input \(u \) associated with the original system (2) is \(u(t) = \int_0^t v(\tau) \, d\tau \) for every \(t \geq 0 \).

C. Finite-Dimensional Truncated model

In what follows, we fix the integer \(n \in \mathbb{N} \) such that \(\lambda_{n+1} < 0 \leq \lambda_n \).

In particular, we have \(\lambda_j \geq 0 \) when \(1 \leq j \leq n \) and \(\lambda_j \leq \lambda_{n+1} < 0 \) when \(j \geq n + 1 \).

Remark 1: In the case of an open-loop stable reaction–diffusion equation, we have \(n = 0 \). In this particular case, as discussed in the following, the objective of the control design is to ensure the output regulation while preserving the stability of the closed-loop system.

Let us first show how to obtain a finite-dimensional truncated model capturing the \(n \) first modes of the reaction–diffusion equation, we follow [23]. Setting
\[X_1(t) = \begin{pmatrix} u_D(t) \\ w_1(t) \\ \vdots \\ w_n(t) \end{pmatrix}, \quad A_1 = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ a_1 & \lambda_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & \cdots & \lambda_n \end{pmatrix}, \quad B_1 = \begin{pmatrix} 1 \\ b_1 \\ \vdots \\ b_n \end{pmatrix}^\top \]
\[D_1(t) = \begin{pmatrix} 0 \\ d_1(t) \\ \vdots \\ d_n(t) \end{pmatrix}^\top \]
with \(X_1(t) \in \mathbb{R}^{n+1}, \ A_1 \in \mathbb{R}^{(n+1) \times (n+1)}, \ B_1 \in \mathbb{R}^{n+1}, \) and \(D_1(t) \in \mathbb{R}^{n+1} \), (8a) and the \(n \) first equations of (8b) yield
\[\dot{X}_1(t) = A_1X_1(t) + B_1v_D(t) + D_1(t). \quad (9) \]

We could now augment the state vector \(X_1 \) to include the integral component \(z \) in the control design. However, the time derivative of \(z \), given by (8c), involves all coefficients \(w_j(t), j \geq 1 \). Thus, the direct augmentation of the state vector \(X_1 \) with the integral component \(z \) does not allow the derivation of an ODE involving only the \(n \) first modes of the reaction–diffusion equation. To overcome this issue, we set
\[\zeta(t) \triangleq \dot{z}(t) - \sum_{j=1}^{n+1} \frac{e_j'(0)}{\lambda_j} w_j(t). \quad (10) \]
Noting that, from (5), \(|\frac{e_j'(0)}{\lambda_j}|^2 \sim \frac{2L}{\pi^2 j^2} \) when \(j \rightarrow +\infty \) and thus that \((e_j'(0)/\lambda_j) \) and \((w_j(t)) \) are square-summable sequences, using the Cauchy–Schwarz inequality, we see that the series (10) is convergent and that
\[\dot{\zeta}(t) = \dot{\zeta}(t) - \sum_{j=1}^{n+1} \frac{e_j'(0)}{\lambda_j} \dot{w}_j(t) = \alpha u_D(t) + \beta v_D(t) - \gamma(t) + \sum_{j=1}^{n} w_j(t)e_j'(0) \]
where we have used (8b) and (8c), with
\[\alpha = \frac{1}{L} \sum_{j=2}^{n+1} \frac{e_j'(0)}{\lambda_j} a_j, \quad \beta = -\sum_{j=2}^{n+1} \frac{e_j'(0)}{\lambda_j} b_j, \quad \gamma(t) = r(t) + \sum_{j=2}^{n} e_j'(0)\,d_j(t). \quad (11a) \]
\[\gamma(t) = r(t) + \sum_{j=2}^{n} \frac{e_j'(0)}{\lambda_j} d_j(t). \quad (11b) \]

The convergence of the above series follows again by the Cauchy–Schwarz inequality. Then, we have
\[\dot{\zeta}(t) = L_1 \zeta(t) + \beta v_D(t) - \gamma(t) \quad (12) \]
with \(L_1 = (\alpha \ e_1(0) \cdots e_{n+1}(0)) \in \mathbb{R}^{1 \times (n+1)} \). Now, defining the augmented state vector \(X(t) = \begin{pmatrix} X_1(t) \end{pmatrix}^\top \zeta(t) \in \mathbb{R}^{n+2}, \) the exogenous input \(\Gamma(t) = \begin{pmatrix} D_1(t) \end{pmatrix}^\top - \begin{pmatrix} 0 \end{pmatrix} \in \mathbb{R}^{n+2}, \) and the matrices
\[A = \begin{pmatrix} A_1 & 0 \\ L_1 & 0 \end{pmatrix} \in \mathbb{R}^{(n+2) \times (n+2)}, \quad B = \begin{pmatrix} B_1 \end{pmatrix} \in \mathbb{R}^{n+2} \quad (13) \]
we obtain from (9) and (12) the control system
\[\dot{X}(t) = AX(t) + Bv_D(t) + \Gamma(t). \quad (14) \]
which is the finite-dimensional truncated model capturing the unstable part of the infinite-dimensional augmented with an integral component for generating the actual control input and an integral component for setpoint reference tracking. In particular, system (14) only involves the n first modes of the reaction–diffusion equation.

Remark 2. The above developments allow the particular case $n = 0$, which corresponds to the configuration, where (1) is open-loop stable. In this configuration, the vectors and matrices of the truncated model (14) reduce to $X(t) = \begin{bmatrix} u_D(t) & \zeta(t) \end{bmatrix} \in \mathbb{R}^2$, $\Gamma(t) = \begin{bmatrix} 0 & -\gamma(t) \end{bmatrix}^T \in \mathbb{R}^2$

$$A = \begin{pmatrix} 0 & 0 \\ \alpha & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ \beta \end{pmatrix}.$$

In this setting, the control objective consists of ensuring the setpoint tracking of the system output $y_c(t, 0)$ while preserving the stability of the closed-loop system.

Putting together the finite-dimensional truncated model (14) along with (8b) for $j \geq n + 1$, which correspond to the modes of the original infinite-dimensional system neglected by the truncated model, we get the final representation used for both control design and stability analyses

$$\dot{X}(t) = AX(t) + Bv_D(t) + \Gamma(t) \quad (15a)$$

$$\dot{w}_j(t) = \lambda_j w_j(t) + a_j u_D(t) + b_j v_D(t) + d_j(t) \quad (15b)$$

with $j \geq n + 1$.

D. Controllability of the Finite-Dimensional Truncated Model

As mentioned in the introduction, the control design strategy relies now on the two following steps. First, we want to design a controller for the finite-dimensional system (14). Second, we aim at assessing that the obtained PI controller successfully stabilizes the original infinite-dimensional system (2) and provides the desired setpoint reference tracking. In order to fulfill the first objective, we first establish the controllability property for the pair (A, B).

Lemma 1: The pair (A, B) satisfies the Kalman condition.

To prove the result of Lemma 1, we resort to the following lemma, whose proof is given in the Appendix, that generalizes the result of [13, Ch. 12.4] to the case $D \neq 0$.

Lemma 2: Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, and $D \in \mathbb{R}^{p \times m}$ be given matrices. Then, the following properties are equivalent:

i) The pair (A, B) satisfies the Kalman condition and
$$\text{rank} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = n + p.$$

ii) The pair (A, B) satisfies the Kalman condition and
$$\text{rank} \begin{pmatrix} A & 0_{n \times p} \\ C & 0_{n \times p} \end{pmatrix} = p.$$

**Proof of Lemma 1: Considering the structures of A and B defined by (13), we apply Lemma 2. More specifically, from the implication $(i) \Rightarrow (ii)$, we need to check that the pair (A, B) satisfies the Kalman condition and the square matrix
$$\begin{pmatrix} A_1 & B_1 \\ L_1 & \beta \end{pmatrix}$$

is invertible. The first condition is indeed true as straightforward computations show that det$(B_1, A_1 B_1, \ldots, A_1^p B_1) = \prod_{j=1}^p (a_j + \lambda_j b_j) VdM(\lambda_1, \ldots, \lambda_n) \neq 0$, where VdM is a Vandermonde determinant, because all eigenvalues are distinct and, using $AE_j = \lambda_j e_j$ and an integration by parts, $a_j + \lambda_j b_j = -e_j(L) \neq 0$ by Cauchy uniqueness (see also [23]). Thus, we focus on the invertibility condition

$$\det \begin{pmatrix} A_1 & B_1 \\ L_1 & \beta \end{pmatrix} = \det \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ a_1 & \lambda_1 & \cdots & 0 & b_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_n & 0 & \cdots & \lambda_n & b_n \\ \alpha & e'_1(0) & \cdots & e'_n(0) & \beta \end{pmatrix}$$

$$= (-1)^{n+1} \det \begin{pmatrix} a_1 & \lambda_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & \cdots & \lambda_n \\ \alpha & e'_1(0) & \cdots & e'_n(0) \end{pmatrix}.$$

We now consider two distinct cases depending on whether $\lambda = 0$ is an eigenvalue of A or not.

Let us first consider the case where $\lambda = 0$ is not an eigenvalue of A. In particular, $\lambda_1, \ldots, \lambda_n$ are all nonzero, and thus, row operations applied to the last row yield

$$\det \begin{pmatrix} A_1 & B_1 \\ L_1 & \beta \end{pmatrix} = \det \begin{pmatrix} a_1 & \lambda_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & \cdots & \lambda_n \\ \alpha & e'_1(0) & \cdots & e'_n(0) \end{pmatrix} = (-1)^{n+1} \alpha \sum_{j=1}^n \frac{e'_j(0)}{\lambda_j} \prod_{j=1}^n \lambda_j.$$

Consequently, based on the definition of the constant α given by (11a), the above determinant is not zero if and only if

$$\sum_{j=1}^n \frac{e'_j(0)}{\lambda_j} \neq \frac{1}{\alpha}.$$

Hence, (16) holds if and only if $(w_{e,j}(t)) \neq -\frac{1}{\alpha}$, which is equivalent to $(y_{e,j}(t)) \neq 0$. By Cauchy uniqueness, the condition $(y_{e,j}(t)) = 0$, along with $(y_e)_{e,x} + cy_e = 0$ and $y(t) = 0$, implies that $y_e = 0$, which contradicts $y_e(L) = 1$. Thus, (16) holds, and the system is controllable.

Let us now consider the second case, i.e., $\lambda = 0$ is an eigenvalue of A. Based on the definition of the integer n, we have $n \geq 1$ and $\lambda_n = 0$, while $\lambda_k > 0$ for all $1 \leq k \leq n - 1$. Expanding the determinant, first,
along the \((n+1)\)th column, and then, along the \(n\)th row, we obtain
\[
\det \begin{pmatrix}
A_1 & B_1 \\
L_1 & \beta
\end{pmatrix} = a_n c_n'(0) \prod_{i=1}^{n-1} \lambda_i.
\]
By Cauchy uniqueness, we have \(c_n'(0) \neq 0\) (otherwise, \(e_n\) would be solution of a second-order ODE with the boundary conditions \(e_n(0) = e_n'(0) = 0\), yielding the contradiction \(e_n = 0\). Thus, the above determinant is nonzero if and only if \(a_n \neq 0\). We proceed by contradiction. Using \(c_n' + ce_n = \mathcal{A}e_n = 0\) and \(a_n = \frac{1}{2} \int_0^\infty x e(x) e_n(x) \, dx = 0\), we obtain by integration by parts: \(0 = - \int_0^\infty x e'(x) \, dx = -|x e'(x)| \big|_0^\infty + \int_0^\infty e'_n(x) \, dx = -L e'_n(L)\); hence, \(e'_n(L) = 0\). This result, along with \(e_n' + c e_n = 0\) and \(e_n(L) = 0\), yields by Cauchy uniqueness the contradiction \(e_n = 0\). Thus, \(a_n \neq 0\), and the system is controllable. □

The result of Lemma 1 allows us to design a predictor feedback for the truncated model (15a). This design is reported in the next subsection.

E. Control Design Strategy

Using the controllability property of the pair \((A, B)\), we propose to resort to the classical predictor feedback to stabilize the finite-dimensional truncated model (15a). Specifically, interpreting the Artstein transformation (see [1])
\[
Z(t) = X(t) + \int_{t-D}^t e(t-D-\tau) A B v(\tau) \, d\tau
\]
straightforward computations show that
\[
\dot{Z}(t) = A Z(t) + e^{-DA} B v(t) + \Gamma(t).
\]
Since \((A, B)\) satisfies the Kalman condition, the pair \((A, e^{-DA} B)\) also satisfies the Kalman condition, and we infer the existence of a feedback gain \(K \in \mathbb{R}^{1\times(n+2)}\) such that \(A_K = A + e^{-DA} BK\) is Hurwitz. We choose the control law
\[
v(t) = \chi_{[0,\infty)}(t) K Z(t)
\]
where \(\chi_{[0,\infty)}\) denotes the characteristic function of the interval \([0,\infty)\), which is used to capture the fact that we are only concerned by imposing a nonzero control input for \(t > 0\). Then, we obtain the stable closed-loop dynamics
\[
\dot{Z}(t) = A_K Z(t) + \Gamma(t).
\]

Remark 3: The first component of \(Z(t)\) is \(u(t)\). Indeed, denoting by \(E_1 = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{1 \times (n+2)}\), we have
\[
E_1 Z(t) = E_1 X(t) + \int_{t-D}^t E_1 e(t-D-\tau) A B v(\tau) \, d\tau = u(t) + \int_{t-D}^t v(\tau) \, d\tau = u(t)
\]
where we have used that the first row of \(A\) is null, that \(v(t) = \hat{u}(t)\) for \(t \geq 0\), and that \(u(t) = 0\) when \(t \leq 0\).

Remark 4: Putting together (17) and (18) and using the fact that \(v(t) = 0\) for \(t \leq 0\), we obtain that the control input \(v(t)\) is solution of the fixed-point implicit equation
\[
v(t) = \chi_{[0,\infty)}(t) K \left\{ X(t) + \int_{\max(t-D,0)}^t e_{A(t-D-\tau)} B v(\tau) \, d\tau \right\}.
\]
Existence and uniqueness of the solution of the above equation as well as regularity properties and inversion of the Artstein transformation are reported in [6].

Remark 5: Recalling that \(w(0, \cdot) \in H^2(0, L) \cap H^1_0(0, L)\) and that \(d(t, \cdot) \in L^2(0, L)\) is assumed continuously differentiable with respect to \(t\), the well-posedness of the closed-loop system composed of (3) and the control input \(u(t) = \int_0^t v(\tau) \, d\tau + v(\tau)\) given by (18) follows by a classical steps argument (over time intervals of finite length \(D > 0\)) by showing that \(u_D\) is 1) continuous over \(\mathbb{R}_+\) and 2) twice continuously differentiable over \([0, D]\) and \([D, +\infty)\), respectively. Thus, we obtain from classical results regarding the well-posedness of nonhomogeneous evolution equations [20] the regularity \(w \in C^0(\mathbb{R}_+; H^1(0, L) \cap H^2_0(0, L)) \cap C^1(\mathbb{R}_+; L^2(0, L))\).

The main objective is now to establish that the feedback control (18) stabilizes the original infinite-dimensional system as well (or, in the case \(n = 0\), preserves the stability property of the system) while providing a setpoint tracking of the time-varying reference signal \(r(t)\) by the left Neumann trace \(z_D(t, 0)\). After introducing the equilibrium conditions and the related dynamics of deviation in Section III, the stability property is studied in Section IV, while the regulation performance is investigated in Section V.

III. Equilibrium Condition and Related Dynamics

In the following, \(r_e \in \mathbb{R}\) and \(d_e \in L^2(0, L)\) stand for “nominal values” of the time-varying reference signals \(r(t)\) and the distributed disturbance \(d(t)\), respectively. Even if \(r_e\) and \(d_e\) can be selected arbitrarily, the two following (distinct) cases will be of particular interest in the following:
1) \(|r(t) - r_e| \leq \delta_r\) and \(\|d(t) - d_e\| \leq \delta_d\) for some \(\delta_r, \delta_d > 0\);
2) \(r(t) \to r_e\) and \(d(t) \to d_e\) when \(t \to +\infty\).

A. Characterization of Equilibrium for the Closed-Loop System

Setting \(d_{e,j} = (d_e, e_j) = \int_0^L d_e(x) e_j(x) \, dx\) for \(j \geq 1\), \(\Delta r = r - r_e\), \(\Delta d = d - d_e\), \(\Delta d_j = d_j - d_{e,j}\),
\[
\Gamma_e = \begin{bmatrix} 0 & d_{e,1} & \cdots & d_{e,n} & -r_e - \sum_{j \geq n+1} x_j e_j'(0) d_{e,j} \\ 0 & \Delta d_1 & \cdots & \Delta d_n & -r - \sum_{j \geq n+1} x_j e_j'(0) \Delta d_j \end{bmatrix}^T
\]
\[
\Delta \Gamma = \begin{bmatrix} 0 & \Delta d_1 & \cdots & \Delta d_n & -r - \sum_{j \geq n+1} x_j e_j'(0) \Delta d_j \end{bmatrix}^T
\]
we obtain from (15b) and (19) that
\[
\dot{Z}(t) = A_K Z(t) + \Gamma_e + \Delta \Gamma(t)
\]
\[
\dot{w}_j(t) = \lambda_j w_j(t) + a_j u_{D,j} + b_j v_{D,j} + d_{e,j} + \Delta d_j(t)
\]
for \(j \geq n + 1\). We now characterize the equilibrium condition of the above closed-loop system associated with the constant reference input \(r(t) = r_e \in \mathbb{R}\) and the constant distributed disturbance \(d(t) = d_e \in L^2(0, L)\) (i.e., \(\Delta r = 0\) and \(\Delta d = 0\)). In the following, we denote by a subscript “\(e\)” the equilibrium value of the different quantities. For instance, \(Z_e\) denotes the equilibrium value of \(Z\). Noting that \(u_{D,e} = u_e\) and \(v_{D,e} = v_e\), we obtain
\[
Z_e = -A_K^\dagger \Gamma_e
\]
\[
u_e = E_1 Z_e = -E_1 A_K^\dagger \Gamma_e
\]
\[
\dot{w}_j(t) = -a_j \frac{\lambda_j}{\Delta \lambda_j} u_e - \frac{d_{e,j}}{\Delta \lambda_j}, \quad j \geq n + 1.
\]
\(\Delta \lambda_j\) Note that \(u_{D,e}\) is not twice continuously differentiable over \(\mathbb{R}_+\) due to a jump of the first time derivative at \(t = D\).
Moreover, from the Artstein transformation (17) and \(\nu_e = 0 \), we introduce \(X_e = Z_e \) as this yields \(Z_e = X_e + \int_{0}^{t} e^{(t-D-s)} AB u_e \, ds \). Hence, we also obtain that \(AX_e = AZ_e \) and \(AX_e = e^{-DA} BV_e \) as \(K \) being of the right size. Now, combining (13), the expansion of the latter matrix identity yields

\[
\lambda_j w_{j,e} + a_j u_e + d_{e,j} = 0, \quad 1 \leq j \leq n. \tag{20d}
\]

Moreover, the equilibrium condition \(\zeta_e \) of the integral component \(\zeta \) is given by

\[
\zeta_e = E_n + 2 X_e = -E_n + A K^{-1} \Gamma e
\]

where \(E_n + 2 \) is a scalar. Noting that \(\lambda_j w_{j,e} \) and \(\lambda_j \) are square-summable sequences and \(\lambda_j \to \infty \) when \(j \to \infty \), we obtain (20c) and (20e), we have

\[
w_e \triangleq \sum_{j=1}^{n} w_{j,e} e_j \in D(A) = H^2(0, L) \cap H_0^1(0, L)
\]

which is convergent in \(H_0^1(0, L) \). In particular, by first expanding the last line of the matrix \(AX_e + \Gamma e = 0 \), where we recall that \(A \) is given by (13), and then, by using (11a) and (20c), we obtain that

\[
L_1 X_{1,e} = r_e + \sum_{j=1}^{n} \frac{e_j(0)}{\lambda_j} d_{e,j} \Rightarrow \frac{1}{L} u_e = \sum_{j=1}^{n} \frac{e_j(0)}{\lambda_j} a_j u_e + \sum_{j=1}^{n} w_{j,e} e_j(0) = r_e + \sum_{j=1}^{n} \frac{e_j(0)}{\lambda_j} d_{e,j}
\]

\[
\Rightarrow \sum_{j=1}^{n} w_{j,e} e_j(0) + \frac{1}{L} u_e = r_e
\]

\[
\Rightarrow w_e \triangleq \frac{1}{L} u_e = r_e.
\]

Then, introducing \(y_e \triangleq w_e + \frac{1}{L} u_e \in L^2(0, L) \), we obtain \(y_e \triangleq r_e \), which corresponds to the desired reference tracking. Moreover, since

\[
A w_e = \sum_{j=1}^{n} \lambda_j w_{j,e} e_j = -\sum_{1}^{n} a_j e_j u_e - \sum_{j=1}^{n} d_{e,j} e_j = -a u_e - b v_e - d_e
\]

where we have used (20c) and (20d), we have \(A w_e + a u_d, b v_d, e + b v_d, e + d e = 0 \). Finally, based on (10), we introduce the equilibrium condition \(z_e \) of the original integral component \(z \) as follows:

\[
z_e = \zeta_e + \sum_{j=1}^{n} \frac{e_j(0)}{\lambda_j} w_{j,e}
\]

where, based on (5), the series is convergent because \((w_{j,e}) \) is a square-summable sequence.

Remark 6: The above developments show that the equilibrium point of the closed-loop infinite-dimensional system given by (20) is fully determined by the constant values of the reference signal \(r_e \) and the distributed disturbance \(d_e \).

B. Dynamics of Deviations

We now define the deviations of the various quantities with respect to their equilibrium value: \(\Delta X = X - X_e, \Delta Z = Z - Z_e \), \(\Delta w = w - w_e \), \(\Delta w_j = w_j - w_{j,e} \), \(\Delta \zeta = \zeta - \zeta_e \), \(\Delta z = z - z_e \), \(\Delta u = u - u_e \) (first component of \(\Delta Z \)), \(\Delta u_D = u_D - u_e \) (first component of \(\Delta X \)), \(\Delta v = v - v_e \), \(\Delta v_D = v_D - v_{D,e} \), and \(\Delta y = y - y_e \). Then, in \(w \) coordinates, we have

\[
\Delta w_1 = A \Delta w + a \Delta u_D + b \Delta v_D + \Delta d
\]

and

\[
\Delta \dot{x}(t) = A \Delta x(t) + B \Delta v_D(t) + \Delta \Gamma(t)
\]

\[
\Delta \dot{w}_j(t) = \lambda_j \Delta w_j(t) + a_j \Delta u_D(t) + b_j \Delta v_D(t) + \Delta d_j(t)
\]

for \(j \geq n + 1 \) with the auxiliary control input \(\Delta v(t) = \Delta \Gamma(t) \) where \(\nu_e = K Z_e + \Gamma e \) is where

\[
\Delta Z(t) = \Delta X(t) + \int_{0}^{t} e^{(t-D-s)} A B \Delta v(s) \, ds.
\]

In Z coordinates, the closed-loop dynamics is given by

\[
\Delta \dot{z}(t) = A \Delta z(t) + \Delta \Gamma(t)
\]

\[
\Delta \dot{w}_j(t) = \lambda_j \Delta w_j(t) + a_j \Delta u_D(t) + b_j \Delta v_D(t) + \Delta d_j(t)
\]

for \(j \geq n + 1 \). In terms of deviations, the change of coordinates from \(\Delta y \) to \(\Delta w \) is expressed by

\[
\Delta w(t, x) = \Delta y(t, x) - \frac{x}{L} \Delta u_D(t).
\]

Finally, the integral components \(\Delta z \) and \(\Delta \zeta \) are related by

\[
\Delta \dot{z}(t) = \Delta \zeta(t) - \sum_{j=1}^{n} \frac{e_j(0)}{\lambda_j} \Delta w_j(t).
\]

IV. STABILITY ANALYSIS

A. Main Stability Result

The objective of this section is to establish the following stability result, taking the form of an ISS estimate with fading memory of both the reference input \(r \) and the distributed perturbation \(d \).

Theorem 1: There exist \(\kappa, \overline{C}_1 > 0 \) such that, for every \(\epsilon \in [0, 1] \), there exists \(\overline{C}_2(\epsilon) > 0 \) such that

\[
\Delta u_D(t)^2 + \Delta \dot{z}(t)^2 + \| \Delta w(t) \|_{H^1_{0}(0, L)}^2 \leq \overline{C}_1 e^{-2\kappa t} \left(\| \Delta u_D(0) \|^2 + \| \Delta \dot{z}(0) \|^2 + \| \Delta w(0) \|_{H^1_{0}(0, L)}^2 \right) + \overline{C}_2(\epsilon) \left(\Delta D(s)^2 + \| \Delta d(s) \|^2 \right).
\]

Moreover, the constants \(\kappa, \overline{C}_1, \) and \(\overline{C}_2(\epsilon) \) can be chosen independently of \(r_e \) and \(d_e \).

Remark 7: The stability result stated by Theorem 1 holds in \((w, \zeta) \) coordinates. Based on (25) and (26), this result can be transferred to the original coordinates \((y, z) \). Indeed, from (25), we have

\[
\| \Delta y(t) \|_{L^2(0, L)} \leq \| \Delta w(t) \|_{L^2(0, L)} + \frac{\sqrt{3}}{\overline{c}} \| \Delta u_D(t) \|
\]

\[
\leq L \| \Delta w(t) \|_{H^1_{0}(0, L)} + \sqrt{\frac{3}{\overline{c}}} \| \Delta u_D(t) \|
\]

where we have used the Poincaré inequality to derive the last estimate:

\[
\| f \|_{L^2(0, L)} \leq L \| f \|_{H^1_{0}(0, L)} \text{ for every } f \in H^1_{0}(0, L).
\]

Moreover, (26) and the use of Cauchy–Schwarz and Poincaré inequalities show that

\[
| \Delta z(t) | \leq | \Delta \zeta(t) | + L \sqrt{\sum_{j=1}^{n} \left| \frac{e_j(0)}{\lambda_j} \right|^2} \| \Delta w(t) \|_{H^1_{0}(0, L)}
\]

where the series is convergent because, from (5), we have \(\left| \frac{e_j(0)}{\lambda_j} \right|^2 \sim \frac{a_j}{\lambda_j} \) when \(j \to \infty \). \(\diamond \)

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on April 15, 2024 at 02:45:12 UTC from IEEE Xplore. Restrictions apply.
From (25), we deduce from the continuous embedding $H^1_0(0, L) \subset L^\infty(0, L)$ (see, e.g., [7]) the following corollary.

Corollary 1: Let $\kappa > 0$ be provided by Theorem 1. There exists $\tilde{C}_1 > 0$ such that, for every $\epsilon \in [0, 1)$, there exists $C_2(\epsilon) > 0$ such that

$$
\|\Delta y(t)\|_{L^\infty(0, L)} \\
\leq \tilde{C}_1 e^{-\kappa t} \left(|\Delta u_D(0)| + |\Delta \zeta(0)| + \|\Delta w(0)\|_{H^1_0(0, L)} \right) \\
+ C_2(\epsilon) \sup_{0 \leq s \leq t} e^{-\kappa(t-s)} \{ |\Delta r(s)| + \|\Delta d(s)\| \}.
$$

(28)

We also deduce the following corollary concerning the asymptotic behavior of the closed-loop system in the case of convergent reference signal $r(t)$ and distributed disturbance $d(t)$ as $t \to +\infty$.

Corollary 2: Assume that $r(t) \to r_e$ and $d(t) \to d_e$ when $t \to +\infty$. Then, $w(t) \to w_e$ in the H^1_0-norm, $y(t) \to y_e$ in both L^∞- and L^2-norms, $u(t) \to u_e$, $\zeta(t) \to \zeta_e$, and $z(t) \to z_e$, with exponential vanishing of the constant of the initial conditions.

Remark 8: In the particular case $n = 0$, which corresponds to an exponentially stable open-loop reaction–diffusion equation (1), the above results ensure that the stability of the closed-loop system is preserved after introduction of the two integral states v and z.

In order to prove the claimed stability result, we resort as in [23] to the Lyapunov function

$$
V(t) = \frac{M}{2} \Delta Z(t)^T P \Delta Z(t) \\
+ \frac{M}{2} \int_{\max(t-D,0)}^{t} \Delta Z(s)^T P \Delta Z(s) \, ds - \frac{1}{2} \sum_{j \geq 1} \lambda_j \Delta w_j(t)^2
$$

(29)

where the symmetric positive-definite matrix $P \in \mathbb{R}^{(n+2)\times(n+2)}$ is solution of the Lyapunov equation $A^T_K P + PA_K = -I$ and $M > 0$ is chosen such that

$$
M > \max \left(\frac{\gamma_1 \lambda_{\min}(P) - 4 (\gamma_1 |a|^2 + 2 |b|^2 e^{-D A_K^T K})}{\lambda_{\min}(P)} \right)
$$

with $\gamma_1 < 2 \max(1, D_{c}^{2D[A]}) \|BK\|^2$. We recall that $\lambda_{\min}(P)$ and $\lambda_{\max}(P)$ denote the smallest and largest eigenvalues of P, respectively.

Remark 9: The first term in the definition (29) of V accounts for the stability of the finite-dimensional truncated model (24a), expressed in Z coordinates, capturing the n first modes of the reaction–diffusion equation. The motivation behind the second term (integral) term relies on the fact that it allows, in conjunction with (23), the derivation of an upper estimate of $|\Delta X(t)|$ (i.e., the state of the truncated model in its original X coordinates) based on $V(t)$; see Lemma 4 for details. Finally, the last term is used to capture the countable infinite number of modes of the original reaction–diffusion equation (22), including those that were neglected in the control design. Note that $(A\Delta w(t), \Delta w(t)) = \sum_{j \geq 1} \lambda_j \Delta w_j(t)$.\)

B. Preliminary Lemmas for the Proof of Theorem 1

We derive hereafter various lemmas that will be useful in the following to establish the stability properties of the closed-loop system. First, we derive an upper estimate for $|\Delta X(t)|$.

Lemma 3: There exists a constant $M_0 > 0$ such that

$$
|\Delta X(t)|^2 \leq M_0^2 (\Delta r(t)^2 + \|\Delta d(t)\|^2) \quad \forall t \geq 0.
$$

Proof: By definition of $\Delta X(t)$ and using the Cauchy–Schwarz inequality, we have

$$
|\Delta X(t)|^2 = \|\Delta D_1(t)\|^2 + \|\Delta r(t) + \sum_{j \geq n+1} \frac{\epsilon_j(0)}{\lambda_j} \Delta d_j(t)\|^2 \\
\leq \sum_{j = n+1}^{\infty} \|\Delta d_j(t)\|^2 + 2\|\Delta r(t)\|^2 + 2 \sum_{j \geq n+1} \left(\frac{\epsilon_j(0)}{\lambda_j} \right)^2 \sum_{j \geq n+1} \|\Delta d_j(t)\|^2 \\
\leq M_2^2 (\|\Delta r(t)\|^2 + \|\Delta d(t)\|^2)
$$

with $M_2^2 = 2 \max(1, \sum_{j \geq n+1} \left(\frac{\epsilon_j(0)}{\lambda_j} \right)^2) < +\infty$, since, by (5), we have $\sum_{j \geq n+1} \left(\frac{\epsilon_j(0)}{\lambda_j} \right)^2 \approx \frac{2 \epsilon_{n+1}^2}{\epsilon_1^2}$ when $j \to +\infty$. \square

A key step toward the establishment of the stability result stated in Theorem 1 relies on the following estimates of the system trajectories based on $V(t)$.

Lemma 4: There exists a constant $C_1 > 0$ such that

$$
V(t) \geq C_1 \sum_{j \geq 1} (1 + |\lambda_j|) \|\Delta w_j(t)\|^2
$$

(30a)

$$
V(t) \geq C_1 \left(\|\Delta u_D(t)\|^2 + \|\Delta \zeta(0)\|^2 + \|\Delta w(0)\|_{H^1_0(0,L)} \right)
$$

(30b)

$$
V(t) \geq C_1 |\Delta Z(t)|^2
$$

(30c)

for every $t \geq 0$.

Proof: We study the case $n \geq 1$. The case $n = 0$ follows a similar argument. From (23) with $\Delta v(t) = K \Delta Z(t)$ for $t \geq 0$, we obtain that

$$
\|\Delta X(t)\|^2 \\
\leq 2 \|\Delta Z(t)\|^2 \\
+ 2 D_{c}^{2D[A]} \|BK\|^2 \int_{\max(t-D,0)}^{t} \|\Delta Z(s)\|^2 \, ds \\
\leq \gamma_1 \left(\|\Delta Z(t)\|^2 + \int_{\max(t-D,0)}^{t} \|\Delta Z(s)\|^2 \, ds \right)
$$

(31)

with $\gamma_1 = 2 \max(1, D_{c}^{2D[A]} \|BK\|^2) > 0$. Thus, we have

$$
\Delta Z(t)^T P \Delta Z(t) + \int_{\max(-D,0)}^{t} \Delta Z(s)^T P \Delta Z(s) \, ds \\
\geq \frac{\lambda_{\min}(P)}{\gamma_1} \|\Delta X(t)\|^2.
$$

Noting that

$$
\sum_{j \geq 1} \lambda_j \Delta w_j(t)^2 \leq \sum_{j \geq n+1} \lambda_j \Delta w_j(t)^2 + \lambda_1 \sum_{j = 1}^{n} \Delta w_j(t)^2 \\
\leq \lambda_1 \sum_{j \geq n+1} \lambda_j \Delta w_j(t)^2 + \lambda_1 \|\Delta X(t)\|^2
$$

we obtain

$$
V(t) \geq \left(\frac{M \lambda_{\min}(P)}{2\gamma_1} - \frac{\lambda_1}{2} \right) \|\Delta X(t)\|^2 - \frac{1}{2} \sum_{j \geq n+1} \lambda_j |\Delta w_j(t)|^2.
$$

Since $M > \frac{\lambda_{\min}(P)}{\gamma_1} > 0$, we obtain the existence of $\gamma_2 = \frac{1}{2} \min\left(\frac{M \lambda_{\min}(P)}{\gamma_1}, \lambda_1 \right) > 0$ such that

$$
V(t) \geq \gamma_2 \left(\|\Delta X(t)\|^2 - \sum_{j \geq n+1} \lambda_j |\Delta w_j(t)|^2 \right).
$$

(32)
Using now \(\| \Delta X(t) \|^2 \geq \sum_{j=1}^{n} \Delta w_j(t)^2, \lambda_j \geq 0 \) for \(1 \leq j \leq n \), and \(\lambda_j \leq \lambda_{n+1} < 0 \) for \(j \geq n + 1 \), we obtain (30a). Now, as in [23], from the series expansions (6) and (21) that are convergent in \(H^2(L, L) \), we infer that

\[
\| \Delta w(t) \|^2_{H^2(L, L)} = \sum_{j \geq 1} \Delta w_j(t) \Delta w_j(t) \int_0^t e_j(x)e_j(x) dx = \int_0^t e(x) \Delta w(x, t) dx - \sum_{j \geq 1} \lambda_j \Delta w_j(t)^2
\]

where the second equality follows from an integration by part and the facts that \(e_j'' + ce_j = e_j(0) = e_j(L) = 0 \), and \(\{e_j\}_{j \geq 1} \) is a Hilbert basis of \(L^2(0, L) \). Hence, using the fact that \(- \sum_{1 \leq j \leq n} \lambda_j \Delta w_j(t)^2 \leq 0 \), the following estimates hold:

\[
\| \Delta w(t) \|^2_{H^2(L, L)} \leq \| c \|_{L^\infty(L, L)} \sum_{j=1}^{n} \Delta w_j(t)^2 - \sum_{j \geq n+1} \lambda_j \Delta w_j(t)^2 \leq \| c \|_{L^\infty(L, L)} \sum_{j=1}^{n} \Delta w_j(t)^2 - n \sum_{j=n+1}^{\infty} \lambda_j \Delta w_j(t)^2 \leq \gamma_2 \left(\sum_{j=n+1}^{\infty} \lambda_j \Delta w_j(t)^2 \right)
\]

for some constant \(\gamma_2 > 0 \) because \(\lambda_j \to -\infty \) hence \(-\lambda_j - \| c \|_{L^\infty(L, L)} \sim -\lambda_j \) when \(j \to +\infty \) with \(\lambda_j < 0 \) for all \(j \geq n + 1 \). Therefore, we obtain from (32) that

\[
V(t) \geq \gamma_2 (\Delta u_D(t)^2 + \Delta \zeta(t)^2) + \frac{\gamma_2}{\gamma_3} \| \Delta w(t) \|^2_{H^2(L, L)}
\]

which provides (30b). Finally, from the definition of \(V \) given by (29) and using (31), we also have

\[
V(t) \geq \frac{M\lambda_m(P)}{2} \left(\| \Delta Z(t) \|^2 + \int_{\max(t-D,0)}^{t} \| \Delta Z(s) \|^2 ds \right) - \frac{1}{2} \sum_{j=0}^{\infty} \lambda_j \Delta w_j(t)^2 - \frac{1}{2} \| \Delta X(t) \|^2 \geq \frac{1}{2} (M\lambda_m(P) - \lambda_1 \gamma_1) \times \left(\| \Delta Z(t) \|^2 + \int_{\max(t-D,0)}^{t} \| \Delta Z(s) \|^2 ds \right) \geq \gamma_1 \gamma_2 \| \Delta Z(t) \|^2
\]

which gives (30c).

\[\square \]

C. End of Proof of Theorem 1

We are now in a position to establish the stability properties of the closed-loop system and prove Theorem 1. We first study the exponential decay properties of \(V \) for \(t \geq D \).

Lemma 5: There exist \(\kappa, C_2 > 0 \) such that, for every \(\epsilon \in [0, 1) \),

\[
V(t) \leq e^{-\kappa(t-D)} V(D) + C_2 \sup_{0 \leq s \leq t} e^{-\kappa(t-s)} \left\{ \Delta \tau(s)^2 + \Delta \Delta D(s)^2 \right\}
\]

for every \(t \geq D \).

Proof: First, we note that, for \(t > D \),

\[
\frac{d}{dt} \left[\int_{t-D}^{t} \Delta Z(s)^T P \Delta Z(s) ds \right] = \Delta Z(t)^T P \Delta Z(t) - \Delta Z(t-D)^T P \Delta Z(t-D) = \int_{t-D}^{t} \frac{d}{dt} \Delta Z(\tau)^T P \Delta Z(\tau) (s) ds.
\]

Since \(A \) is self-adjoint and since \(\langle A \Delta w(t), \Delta w(t) \rangle = \sum_{j \geq 1} \lambda_j \Delta w_j(t)^2 \), we have from (22) and (24a) that, for every \(t > D \),

\[
V(t) = \frac{M}{2} \| \Delta Z(t) \|^2 + M \| \Delta Z(t) \|^2 \| \Delta \Gamma(t) \| + \frac{M}{2} \int_{t-D}^{t} \| \Delta Z(s) \|^2 ds + M \int_{t-D}^{t} \| \Delta Z(s) \|^2 \| \Delta \Gamma(s) \| ds
\]

and

\[
\int_{t-D}^{t} \| \Delta Z(s) \|^2 ds \leq \int_{t-D}^{t} \| \Delta Z(s) \|^2 ds + D \| \Delta w(t) \|^2 \| \Delta D(t) \|^2 + \sup_{t-D \leq s \leq t} \Delta \rho(s)^2.
\]

Using Cauchy–Schwarz and Young inequalities, we obtain that

\[
\langle A \Delta w(t), \Delta u_D(t) \rangle \leq \frac{1}{4} \| \Delta Z(t) \|^2 + \| P \|^2 M_2^2 \Delta \rho(t)^2
\]

and

\[
\int_{t-D}^{t} \| \Delta z(s) \|^2 ds \leq \int_{t-D}^{t} \| \Delta Z(s) \|^2 ds + D \| \Delta w(t) \|^2 \| \Delta D(t) \|^2 + \sup_{t-D \leq s \leq t} \Delta \rho(s)^2.
\]

Using Cauchy–Schwarz and Young inequalities, we obtain that

\[
\| \langle A \Delta w(t), \Delta u_D(t) \rangle \|^2 \leq \frac{1}{4} \| \Delta Z(t) \|^2 + \| P \|^2 M_2^2 \Delta \rho(t)^2
\]

and

\[
\| \langle A \Delta w(t), b \Delta v_D(t) \rangle \|^2 \leq \frac{1}{4} \| \Delta Z(t) \|^2 + \| b \|^2 \| \Delta D(t) \|^2
\]
\[\left\| A \Delta w(t) \right\|_{L^2(0,L)} + \left\| b^2 \right\|_{K}^2 \left\| \Delta Z(t - D) \right\|^2 \]
\[\leq \frac{1}{4} \left\| A \Delta w(t) \right\|_{L^2(0,L)} + \left\| b^2 \right\|_{K}^2 \left\| \Delta Z(t - D) \right\|^2 \]
\[\leq \frac{1}{4} \left\| A \Delta w(t) \right\|_{L^2(0,L)} + \left\| b^2 \right\|_{K}^2 \left\| e^{-DAK} \right\|_{2}^2 \left\| \Delta Z(t) \right\|^2 + 2\gamma_1^2 \frac{D^2}{2} e^{2DAK} \left\| b^2 \right\|_{K}^2 \sup_{t - D \leq s \leq t} \Delta p(s)^2 \]

where we have used that \(\Delta Z = A\epsilon \Delta \Gamma + \Delta \Gamma \) and thus \(\Delta Z(t - D) = e^{-DAK} \Delta Z(t) + \int_t^{t-D} e^{(t-D-\epsilon)AK} \Delta \Gamma(t) dt \).

Finally, we also have
\[\|A \Delta w(t), \Delta d(t)\| \leq \frac{1}{4} \left\| A \Delta w(t) \right\|_{L^2(0,L)} + \left\| \Delta d(t) \right\|^2. \]

Consequently, we obtain that, for every \(t > D \),
\[V(t) \leq \left(\frac{1}{4} \right) \left(\|A \Delta w(t)\|_{L^2(0,L)} + \left\| \Delta d(t) \right\|^2 \right) \]
\[\leq -\gamma_1 \left(\|A \Delta w(t)\|_{L^2(0,L)} + \left\| \Delta d(t) \right\|^2 \right) \]
\[\leq -\frac{1}{4} \left\| A \Delta w(t) \right\|_{L^2(0,L)} + \gamma_4 \sup_{t - D \leq s \leq t} \Delta p(s)^2 \]
\[\leq -\frac{\gamma_5}{\lambda_M(P)} \left(\|A \Delta w(t)\|_{L^2(0,L)} + \left\| \Delta d(t) \right\|^2 \right) \]
\[\leq -\frac{1}{4} \left\| A \Delta w(t) \right\|_{L^2(0,L)} + \gamma_4 \sup_{t - D \leq s \leq t} \Delta p(s)^2 \]
\[\leq -\gamma_6 \sum_{j=1}^{\infty} \lambda_j \Delta w_j(t)^2 \leq \gamma_6 \left\| A \Delta w(t) \right\|_{L^2(0,L)}^2 \]
\[\leq \gamma_6 \|A \Delta w(t)\|_{L^2(0,L)}^2 + \gamma_4 \sup_{t - D \leq s \leq t} \Delta p(s)^2 \]
\[\leq -\frac{2\gamma_6}{\lambda_M(P)} \frac{M}{2} \]
\[\leq \frac{1}{2} \gamma_6 \frac{M}{\lambda_M(P)} \]
\[\times \left(\Delta Z(t) \right)^T P \Delta Z(t) + \int_t^{t-D} \left(\Delta Z(s) \right)^T P \Delta Z(s) ds \]
\[\leq -\frac{1}{2} \gamma_6 \|A \Delta w(t)\|_{L^2(0,L)}^2 + \gamma_4 \sup_{t - D \leq s \leq t} \Delta p(s)^2 \]

where we have used the fourth inequality that, for a given \(\tau \in [D,t], \tau - D \leq s \leq \tau \) implies \(\tau \leq s + D \). The claimed estimate holds with \(C_2 = \gamma \frac{2\kappa D}{2D} \).

After having assessed the exponential decay of \(V \) for \(t \geq D \), we now need to evaluate the behavior of \(V \) over the time interval \([0,D] \).

Lemma 5: There exist constants \(C_3, C_4 > 0 \) such that
\[V(t) \leq C_3 \left(\Delta u_D(0)^2 + \Delta d(0)^2 + ||\Delta w(0)||_{H^1_0(0,L)}^2 \right) \]
\[+ C_4 \sup_{0 \leq s \leq t} \left(\Delta r(s)^2 + ||\Delta d(s)||^2 \right) \]
for every \(t \in [0,D] \) with \(\Delta u_D(0) = -u_e \).

Proof: For \(0 \leq t \leq D \), we have
\[V(t) = \frac{M}{2} \left(\Delta Z(t) \right)^T P \Delta Z(t) + \int_0^{t-D} \Delta Z(s)^T P \Delta Z(s) ds \]
\[- \frac{1}{2} \sum_{j=1}^{\infty} \lambda_j \Delta w_j(t)^2. \]

We note that, for \(0 \leq t < D \), \(\Delta u_D(t) = u(t - D) - u_e = -u_e = \Delta u_D(0) \) and \(\Delta v_D(t) = v(t - D) - v_e = 0 \); hence, we have
\[V(t) = \frac{M}{2} \left(\Delta Z(t) \right)^T (A \kappa P + PA \kappa) \Delta Z(t) + M \Delta Z(t)^T P \Delta \Gamma(t) \]
\[+ \frac{M}{2} \Delta Z(t)^T P \Delta Z(t) - \langle A \Delta w(t), \Delta w(t) \rangle \]
\[= \frac{M}{2} \left(\Delta Z(t) \right)^T P \Delta Z(t) + \int_0^{t-D} \Delta Z(s)^T P \Delta Z(s) ds \]
\[+ \frac{M}{2} \Delta Z(t)^T P \Delta Z(t) - \langle A \Delta w(t), \Delta w(t) \rangle_{L^2(0,L)} \]
\[- \langle A \Delta w(t), a \rangle \Delta u_D(t) - \langle A \Delta w(t), \Delta d(t) \rangle. \]
achieved in the presence of the distributed disturbance \{\hat{\epsilon}_i\} and \(A_\parallel 1 (0) + L (0) A R_0\) and \(0 C \leq (0 (35) + \Delta\) such that \(C_0 \leq C_{\hat{r}}\) and the \(\dot{C}_{\hat{r}} \parallel + \Delta d(t)\|^2\).

Noting that \(\dot{Z}(t) = A_{\parallel} \dot{Z}(t) + \Delta \Gamma(t)\) and \(\Delta Z(0) = \Delta X(0)\), we have

\[\dot{Z}(t) = e^{A_{\parallel} t} \Delta X(0) + \int_0^t e^{A_{\parallel} (t-\tau)} \Delta \Gamma(\tau) d\tau.\]

Thus, we obtain the existence of \(\gamma_7, \gamma_8 > 0\) such that

\[\dot{V}(t) \leq \gamma_7 ||\Delta X(0)||^2 + \gamma_8 \sup_{0 \leq s \leq t} \Delta p(s)^2\]

for \(0 \leq t < D\) with \(\Delta p(t)^2 = \Delta r(t)^2 + ||\Delta d(t)||^2\); hence, we have

\[V(t) \leq V(0) + D_{\gamma_7} ||\Delta X(0)||^2 + D_{\gamma_8} \sup_{0 \leq s \leq t} \Delta p(s)^2\]

for \(0 \leq t \leq D\). To conclude, using (33), we estimate \(V(0) + D_{\gamma_7} ||\Delta X(0)||^2\) as follows:

\[V(0) + D_{\gamma_7} ||\Delta X(0)||^2 = \frac{M}{2} \Delta X(0)^T P \Delta X(0) + D_{\gamma_7} ||\Delta X(0)||^2 - \frac{1}{2} \sum_{j \geq 1} \lambda_j \Delta w_j(0)^2\]

\[\leq \frac{M \lambda_M(P) + 2D_{\gamma_7}}{2} \left[\sum_{j \geq 1} \Delta w_j(0)^2 + \Delta \zeta(0)^2 + \sum_{j \geq 1} \Delta w_j(0)^2 \right] + \frac{1}{2} \left(||\Delta w(0)||_{H^1_0(0,L)}^2 + ||c||_{L^\infty(0,L)} ||\Delta w(0)||_{L^2(0,L)}^2 \right) \]

\[\leq \frac{M \lambda_M(P) + 2D_{\gamma_7}}{2} \left[\sum_{j \geq 1} \Delta w_j(0)^2 + \Delta \zeta(0)^2 \right] + \frac{1}{2} \left(1 + L^2 \left(||c||_{L^\infty(0,L)} + M \lambda_M(P) + 2D_{\gamma_7} \right) \right) \times ||\Delta w(0)||_{H^1_0(0,L)}^2\]

where we have used the Poincaré inequality to derive the last estimate: \(||f||_{L^2(0,L)} \leq L ||f||_{H^1_0(0,L)}\) for every \(f \in H^1_0(0,L)\). Combining the two latter estimates, the result follows.

Combining Lemmas 5 and 6 dealing with the behavior of \(V(t)\) for \(0 \leq t \leq D\) and \(t \geq D\), respectively, we can now obtain the following result establishing the exponential decay of \(V\) for \(t \geq 0\).

Lemma 7: There exist \(\kappa, C_5 > 0\) such that, for every \(\epsilon \in [0,1]\), there exists \(C_6(\epsilon) > 0\) such that

\[V(t) \leq C_5 e^{-2\kappa t} \left(\sum_{j \geq 1} \Delta w_j(0)^2 + \Delta \zeta(0)^2 + ||\Delta w(0)||_{H^1_0(0,L)}^2 \right) + C_6(\epsilon) \sup_{0 \leq s \leq t} e^{-2\kappa(1-\epsilon) s} \left(||\Delta r(\epsilon)||^2 + ||\Delta d(s)||^2 \right)\]

for all \(t \geq 0\).

Proof: When \(0 \leq t \leq D\), Lemma 6 yields

\[V(t) \leq C_5 e^{-2\kappa D} e^{-2\kappa t} \left(\sum_{j \geq 1} \Delta w_j(0)^2 + \Delta \zeta(0)^2 + ||\Delta w(0)||_{H^1_0(0,L)}^2 \right) + C_4 e^{-2\kappa t} \sup_{0 \leq s \leq t} e^{-2\kappa(1-\epsilon) s} \left(||\Delta r(\epsilon)||^2 + ||\Delta d(s)||^2 \right)\]

because \(D - t \geq 0\) and \(D - t + s \geq 0\) for all \(0 \leq s \leq t \leq D\). When \(t \geq D\), and by using again the notation \(\Delta p(s)^2 = \Delta r(s)^2 + ||\Delta d(s)||^2\), that

\[V(t) \leq e^{-2\kappa(t-D)} V(D) + \frac{C_2 \epsilon}{1 - \epsilon} \sup_{0 \leq s \leq t} e^{-2\kappa(1-\epsilon) s} \Delta p(s)^2\]

\[\leq C_3 e^{-2\kappa(t-D)} \left(\sum_{j \geq 1} \Delta w_j(0)^2 + \Delta \zeta(0)^2 + ||\Delta w(0)||_{H^1_0(0,L)}^2 \right) + C_4 e^{-2\kappa t} \sup_{0 \leq s \leq t} e^{-2\kappa(1-\epsilon) s} \left(||\Delta r(s)||^2 + ||\Delta d(s)||^2 \right)\]

\[+ \frac{C_2 \epsilon}{1 - \epsilon} \sup_{0 \leq s \leq t} e^{-2\kappa(1-\epsilon) s} \left(||\Delta r(\epsilon)||^2 + ||\Delta d(s)||^2 \right)\]

\[\leq C_5 e^{2\kappa D} e^{-2\kappa(1-\epsilon) t} \left(\sum_{j \geq 1} \Delta w_j(0)^2 + \Delta \zeta(0)^2 + ||\Delta w(0)||_{H^1_0(0,L)}^2 \right) + C_4 e^{-2\kappa t} \sup_{0 \leq s \leq t} e^{-2\kappa(1-\epsilon) s} \left(||\Delta r(\epsilon)||^2 + ||\Delta d(s)||^2 \right)\]

The claimed estimate holds with \(C_5 = C_3 e^{2\kappa D} + \frac{C_2 \epsilon}{1 - \epsilon}\) for all \(t \geq 0\).

We are now in a position to prove the main result of this section, namely the stability result stated in Theorem 1. Indeed, from Lemmas 4 and 7, we infer the existence of constants \(C_1 = C_5 / C_1 > 0\) and \(C_2(\epsilon) = C_6(\epsilon) / C_1 > 0\) such that (27) holds. Similarly, we obtain the following estimates, which will be useful in the next section concerning the tracking performance

\[\sum_{j \geq 1} (1 + |\lambda_j|) \Delta w_j(t)^2 \leq C_1 e^{-2\kappa t} \left(\sum_{j \geq 1} \Delta w_j(0)^2 + \Delta \zeta(0)^2 + ||\Delta w(0)||_{H^1_0(0,L)}^2 \right) + C_2(\epsilon) \sup_{0 \leq s \leq t} e^{-2\kappa(1-\epsilon) s} \left(||\Delta r(\epsilon)||^2 + ||\Delta d(s)||^2 \right)\]

for every \(t \geq 0\), and, as \(\Delta v(t) = K \Delta Z(t)\) for \(t \geq 0\) and \(\Delta v(t) = 0\) for \(t < 0\), we have

\[||\Delta v(t)||^2 \leq C_1 e^{-2\kappa t} \left(\sum_{j \geq 1} \Delta w_j(0)^2 + \Delta \zeta(0)^2 + ||\Delta w(0)||_{H^1_0(0,L)}^2 \right) + C_2(\epsilon) \sup_{0 \leq s \leq t} e^{-2\kappa(1-\epsilon) s} \left(||\Delta r(\epsilon)||^2 + ||\Delta d(s)||^2 \right)\]

for every \(t \geq 0\) with \(C_1 = ||K||^2 C_1 e^{2\kappa D} + C_2(\epsilon) = ||K||^2 C_2(\epsilon) e^{2\kappa D} \). This concludes the proof of Theorem 1.

Remark 10: All the constants \(C_i\) for \(1 \leq i \leq 6\), and thus \(C_1, C_2(\epsilon)\), defined in this section are independent of the considered equilibrium condition characterized by the quantities \(r_i\) and \(d_i\). Consequently, the stability estimate (27) provided by Theorem 1 guarantees a form of uniform stability over all the possible equilibrium conditions. This feature will be illustrated in numerical computations in Section VI by changing the steady-state values of the reference signal \(r(t)\) and the distributed disturbance \(d(t)\).

V. SETPOINT REFERENCE TRACKING ANALYSIS

It now remains to assess that the setpoint tracking of the reference signal \(r(t)\) is achieved in the presence of the distributed disturbance \(d(t)\). Specifically, we establish in this section the following tracking result.

Theorem 2: Let \(\kappa > 0\) be provided by Theorem 1. There exists \(C_3 > 0\) such that, for every \(\epsilon \in [0,1]\), there exists \(C_4(\epsilon) > 0\) such
that

\[|y_e(t_0) - r(t)| \leq T_3 e^{-\kappa t} \left(|\Delta u_D(0)| + |\Delta \zeta(0)| + \|\Delta w(0)\|_{L^2(0,L)} \right) + \|A\Delta w(0)\|_{L^2(0,L)} + T_4(\epsilon) \sup_{0 \leq s \leq t} e^{-\kappa(s-t)} \left(|\Delta r(s)| + \|\Delta d(s)\| + \|\dot{d}(s)\| \right). \tag{36} \]

Moreover, the constants \(T_3\) and \(T_4(\epsilon)\) can be chosen independently of the parameters \(r_e\) and \(d_e\).

Corollary 3: Assume that \(r(t) \to r_e\), \(d(t) \to d_e\), and \(d(t) \to 0\) when \(t \to +\infty\). Then, \(y_e(t_0) \to r_e\) with exponential vanishing of the contribution of the initial conditions.

Remark 11: In the particular case \(n = 0\), which corresponds to an exponentially stable open-loop reaction–diffusion equation (1), the above results also ensure that the proposed control strategy achieves the setpoint reference tracking of the reference signal \(r(t)\) while preserving the stability of the closed-loop system.

The remaining of this section is devoted to the proof of the tracking estimate.

Proof of Theorem 2. Based on the identity \(w_{e,x}(0) + \frac{1}{\lambda} u_e = r_e\), we have the estimates

\[|y_e(t_0) - r(t)| \leq \left| w_e(t_0) + \frac{1}{\lambda} u_D(t) - r_e \right| + |\Delta r(t)| \leq |w_e(t_0) - w_{e,x}(0)| + \frac{1}{\lambda} |\Delta u_D(t)| + |\Delta r(t)|. \tag{37} \]

From the estimate of \(\Delta u_D(t)\) provided by (27), it is sufficient to study the term \(w_{e,x}(0) - w_{e,x}(0) = \sum_{j \geq 1} \Delta w_j(t) e_j(0)\). Since \(e_j(0) \sim \sqrt{2/L} \zeta_j\), there exists a constant \(\eta > 0\) such that \(|e_j(0)| \leq \gamma_j \lambda_j \) for all \(j \geq n + 1\). Let \(m = n + 1, k\) such that \(\eta \leq \eta < -\kappa < 0\) for all \(j \geq m\). We infer from the Cauchy–Schwarz inequality that

\[|w_{e,x}(0)| \leq \sum_{j \geq 1} \left| \Delta w_j(t) \right| |e_j(0)| \leq \sum_{j \geq 1} \left| \Delta w_j(t) \right| |e_j(0)| + \gamma_j \sum_{j \geq m} \sqrt{\lambda_j} \left| \Delta w_j(t) \right| \leq \sqrt{\sum_{j \geq m} \left| e_j(0) \right|^2 \sum_{j \geq m} \lambda_j^2 \left| \Delta w_j(t) \right|^2} + \gamma_j \sqrt{\sum_{j \geq m} \lambda_j^2 \left| \Delta w_j(t) \right|^2} \tag{38} \]

where \(\sum_{j \geq m} \frac{1}{\lambda_j} < +\infty\) because \(\lambda_j \sim -\pi^2 j^2 / L^2\). Based on (34), it is sufficient to study the term \(\sum_{j \geq m} \lambda_j^2 \left| \Delta w_j(t) \right|^2\). To do so, we integrate for \(j \geq m\) the dynamics (24b) of the coefficient \(\Delta w_j(t)\) as follows:

\[\lambda_j \Delta w_j(t) = e^{\lambda_j t} \lambda_j \Delta w_j(0) + \int_0^t \lambda_j e^{\lambda_j (t-\tau)} \left\{ a_j \Delta u_D(\tau) + b_j \Delta v_D(\tau) + \Delta d_j(\tau) \right\} d\tau. \tag{39} \]

Now, integrating by parts and noting that \(\Delta d_j(\tau) = \dot{d}_j(\tau)\), we have

\[\int_0^t \lambda_j e^{\lambda_j (t-\tau)} \Delta d_j(\tau) d\tau = -\Delta d_j(t) + e^{\lambda_j t} \Delta d_j(0) + \int_0^t e^{\lambda_j (t-\tau)} \dot{d}_j(\tau) d\tau. \tag{40} \]

Hence

\[|\lambda_j \Delta w_j(t)| \leq e^{\lambda_j t} |\lambda_j \Delta w_j(0)| + \int_0^t (-\lambda_j) e^{\lambda_j (t-\tau)} \left\{ |a_j| |\Delta u_D(\tau)| + |b_j| |\Delta v_D(\tau)| \right\} d\tau \]

\[+ |\Delta d_j(t)| + e^{\lambda_j t} |\Delta d_j(0)| + \int_0^t e^{\lambda_j (t-\tau)} |\dot{d}_j(\tau)| d\tau \leq e^{-\eta t} |\lambda_j \Delta w_j(0)| + |a_j| \int_0^t (-\lambda_j) e^{\lambda_j (t-\tau)} |\Delta u_D(\tau)| d\tau \]

\[+ |b_j| \int_0^t (-\lambda_j) e^{\lambda_j (t-\tau)} |\Delta v_D(\tau)| d\tau + |\Delta d_j(t)| + e^{-\eta t} |\Delta d_j(0)| + \int_0^t e^{-\eta(t-\tau)} |\dot{d}_j(\tau)| d\tau. \tag{41} \]

Now, as \(\lambda_j < -\eta < -\kappa < -\kappa\), the use of estimate (27) and the introduction of the notations \(\Delta CI = \sqrt{\Delta u_D(0) + \Delta \zeta(0)} + \sqrt{\Delta w(0)}\| h_1^*(0,L)\) and \(\Delta p(s) = \sqrt{\Delta r(s)^2 + \|\Delta d(s)\|^2}\) yield

\[\int_0^t (-\lambda_j) e^{\lambda_j (t-\tau)} |\Delta u_D(\tau)| d\tau \leq (-\lambda_j) \sqrt{C_1 e^{\lambda_j t}} \int_0^t e^{-\kappa t} e^{-\kappa \tau} d\tau \Delta CI \]

\[+ |\Delta d_j(t)| + e^{-\eta t} |\Delta d_j(0)| + \int_0^t e^{-\eta(t-\tau)} |\dot{d}_j(\tau)| d\tau. \tag{41} \]

Similarly, the use of the estimate (35) yields

\[\int_0^t (-\lambda_j) e^{\lambda_j (t-\tau)} |\Delta v_D(\tau)| d\tau \leq \frac{\eta}{-\kappa} \sqrt{C_2 e^{-\kappa t}} \Delta CI \]

\[+ \frac{\eta}{-\kappa} \sqrt{C_2 e^{-\kappa t}} \sup_{0 \leq s \leq t} e^{-\kappa s} \Delta p(s). \]

Acknowledgments

This work has been supported by the French National Research Agency (grant ANR-17-CE40-0012). We would like to thank the referees for their helpful comments and suggestions that have improved the presentation of this work.
Finally, since $\eta > \kappa$, we also infer from the Cauchy–Schwarz inequality that
\[
\int_0^t e^{-\eta(t-\tau)}|d_j(\tau)| \, d\tau = \int_0^t e^{-(\eta/\kappa)(t-\tau)} e^{-\kappa(t-\tau)} |d_j(\tau)| \, d\tau \leq \sqrt{\int_0^t e^{-2(\eta/\kappa)(t-\tau)} \, d\tau \int_0^t e^{-2\kappa(t-\tau)} |d_j(\tau)|^2 \, d\tau} \leq \frac{1}{2(\eta/\kappa)} \int_0^t e^{-2\kappa(t-\tau)} |d_j(\tau)|^2 \, d\tau.
\]
Introducing the notation $\Delta P(t) = \sup_{0 \leq s \leq t} e^{-\kappa(t-s)} \Delta p(s)$, we obtain from (41) and the three above estimates that
\[
|\lambda_j \Delta w_j(t)| \leq e^{-\eta t} |\lambda_j \Delta w_j(0)| + \frac{\eta}{\eta - \kappa} \left(|a_j| \sqrt{|C_1|} + |b_j| \sqrt{|C_1|} \right) e^{-\kappa t} \Delta CI + \frac{\eta}{\eta - \kappa} | \left(|a_j| \sqrt{|C_2(\epsilon)|} + |b_j| \sqrt{|C_2(\epsilon)|} \right) \Delta P(t)|^2 + |\Delta d_j(t)| + e^{-\eta t} |\Delta d_j(0)| + \frac{1}{2(\eta - \kappa)} \int_0^t e^{-2\kappa(t-\tau)} |d_j(\tau)|^2 \, d\tau.
\]
Consequently, we have
\[
|\lambda_j \Delta w_j(t)|^2 \leq 6e^{-2\eta t} |\lambda_j \Delta w_j(0)|^2 + \frac{6\eta^2}{(\eta - \kappa)^2} \left(|a_j| \sqrt{|C_1|} + |b_j| \sqrt{|C_1|} \right) e^{-2\kappa t} \Delta CI^2 + \frac{6\eta^2}{(\eta - \kappa)^2} \left(|a_j| \sqrt{|C_2(\epsilon)|} + |b_j| \sqrt{|C_2(\epsilon)|} \right) \Delta P(t)^2 + 6|\Delta d_j(t)|^2 + 6e^{-2\eta t} |\Delta d_j(0)|^2 + \frac{3}{\eta - \kappa} \int_0^t e^{-2\kappa(t-\tau)} |d_j(\tau)|^2 \, d\tau.
\]
Hence
\[
\sum_{j=1}^{m} \lambda_j^2 \Delta w_j(t)^2 \leq 6e^{-2\eta t} \left\| A \Delta w(0) \right\|^2_{L^2(0,L)} + \frac{12\eta^2}{(\eta - \kappa)^2} \left(|a_j|^2 T_1 + |b_j|^2 T_1 \right) e^{-2\kappa t} \Delta CI^2 + \frac{12\eta^2}{(\eta - \eta^2)} \left(|a_j|^2 T_2(\epsilon) + \eta \gamma^2 T_2(\epsilon) \right) \Delta P(t)^2 + 6|\Delta d(t)|^2 + 6e^{-2\eta t} |\Delta d(0)|^2 + \frac{3}{\eta - \kappa} \int_0^t e^{-2\kappa(t-\tau)} \| \ddot{d}(\tau) \|^2 \, d\tau \leq 6e^{-2\eta t} \left\| A \Delta w(0) \right\|^2_{L^2(0,L)} + \frac{12\eta^2}{(\eta - \kappa)^2} \left(|a_j|^2 T_1 + |b_j|^2 T_1 \right) e^{-2\kappa t} \Delta CI^2 + \frac{12\eta^2}{(\eta - \kappa^2)} \left(|a_j|^2 T_2(\epsilon) + \eta \gamma^2 T_2(\epsilon) \right) \Delta P(t)^2 + 6|\Delta d(t)|^2 + 6e^{-2\eta t} |\Delta d(0)|^2 + \frac{3}{\eta - \kappa} \int_0^t e^{-2\kappa(t-\tau)} \| \ddot{d}(\tau) \|^2 \, d\tau.
\]
We deduce the existence of constants $C_T, C_A(\epsilon) > 0$ such that
\[
\sum_{j=1}^{m} \lambda_j^2 \Delta w_j(t)^2 \leq C_T e^{-2\eta t} \left(\Delta u_D(0)^2 + \Delta \zeta(0)^2 + \| \Delta w(0) \|^2_{L^2(0,L)} \right) + \left\| A \Delta w(0) \right\|^2_{L^2(0,L)} + C_A(\epsilon) \sup_{0 \leq s \leq t} e^{-2\kappa(t-s)} \left(\Delta \tau(s)^2 + \| \Delta d(s) \|^2 + \| \ddot{d}(s) \|^2 \right).
\]
Using now (37) along with (38) and estimates (27), (34), and (42), we obtain the existence of the claimed constants $C_T, C_A(\epsilon) > 0$ such that the estimate (36) holds. □

Remark 12: At first sight, it might seem surprising that the estimate (36) on the tracking performance only involves the time derivative d of the distributed disturbance but not the time derivative τ of the reference signal. Such a dissimilarity between the reference signal and the distributed disturbance is due to the explicit occurrence of the distributed perturbation d in the dynamics (24b) of the coefficient of projection Δw_j. Indeed, in order to estimate the term $|\lambda_j \Delta w_j(t)|$ from (39), one needs to estimate the term $\int_0^t \lambda_j e^{\kappa(t-\tau)} \Delta d_j(\tau) \, d\tau$. To do so, one first needs to eliminate the multiplicative factor λ_j using, e.g., either an integration or an integration by parts. Simultaneously, we need to use Parseval identity in order to gather all coefficients $\Delta d_j(t)$. However, contrary to the constant coefficients a_j and b_j, each coefficient $\Delta d_j(t)$ is a function of time and thus cannot be pulled out of the integral. This remark motivates the integration by parts carried out in (40). This way, the multiplicative factor λ_j is eliminated, and the subsequent estimates can be obtained. However, this is at the place of the emergence of the term \dot{d} in the resulting tracking estimate.

VI. NUMERICAL ILLUSTRATION

We take $e = 1.25, L = 2\tau, and D = 1 s$. The three first eigenvalues of the open-loop system are $\lambda_1 = 1, \lambda_2 = 0.25$, and $\lambda_3 = -1$. Only the two first modes need to be stabilized. Thus, we have $n = 2$, and we compute the feedback gain $K \in \mathbb{R}^{1 \times 4}$ such that the poles of the closed-loop truncated model (capturing the two unstable modes of the infinite-dimensional system plus two integral components, one for the control input and one for the reference tracking) are given by $-0.5, -0.6, -0.7,$ and -0.8. The adopted numerical scheme is the modal approximation of the infinite-dimensional system using its first ten modes. The initial condition is $y_0(x) = -\frac{1}{\tau}(1 - \frac{x}{\tau})$.

The simulation results for a time-varying reference $\tau(t)$ evolving within the range $[0,0.5]$ and the constant distributed disturbance $d(t, x) = x$ are depicted in Fig. 1. Applying first the obtained stability results for $t < 30 s$ with $r_e = 0$ and $d_e(x, t) = x$, we obtain that $y \to 0$ in

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on April 15, 2024 at 02:45:12 UTC from IEEE Xplore. Restrictions apply.
Time evolution of the closed-loop system for a time-varying reference signal \(r(t) \) and a constant distributed perturbation \(d(t, x) = x \).

(a) State \(y(t, x) \). (b) Output \(y_x(t, 0) \) tracking the time-varying reference signal \(r(t) \). (c) Delayed control input \(u(t - D) \).

This is compliant with the simulation result observed for increasing values of \(t \) approaching \(t = 30s \). Consequently, the numerical simulation confirms that the proposed control strategy achieves the exponential stabilization of the closed-loop system while ensuring a zero steady-state left Neumann trace. Then, for \(30s < t < 60s \), the tracking error remains bounded in the presence of an oscillatory reference signal. Finally, for \(t > 60s \), we apply again the obtained stability results but for \(r_e = 50 \) and \(d_2(x) = x \). This time, we obtain that \(y \to y_e \neq 0 \) in \(L^\infty(0, L) \) norm and \(u(t) \to u_e \neq 0 \) as \(y_x(t, 0) \to r_e = 50 \) when \(t \to +\infty \). In particular, conforming to the obtained ISS estimates with fading memory (27)–(28) and (36), the impact of the variations of the reference signal around its nominal value \(r_e \), i.e., configuration for which \(\Delta r(t) \neq 0 \), is eliminated as \(t \) increases due to the action of the PI controller. This result provides a numerical confirmation of the

Time evolution of the closed-loop system for a constant reference signal \(r(t) = 50 \) and a time-varying distributed disturbance \(d(t, x) = d_0(t)x \).

(a) State \(y(t, x) \). (b) Output \(y_x(t, 0) \) tracking the constant reference signal \(r(t) = 50 \). (c) Delayed control input \(u(t - D) \). (d) Time-varying component \(d_0(t) \) of the disturbance \(d(t, x) = d_0(t)x \).
efficiency of the proposed PI control strategy for the regulation control of the left Neumann trace of the system.

The simulation results for a constant reference $r(t) = 50$ and the time-varying distributed disturbance $d(t, x) = d_0(t)x$ with d_0 given by Fig. 2(d) are depicted in Fig. 2. First, for time $t < 30s$, the left Neumann trace successfully tracks the reference signal $r(t) = r_e = 50$ under the constant distributed perturbation $d(t, x) = d_0(x) = x$. Then, around $t = 30s$, the magnitude of the perturbation increases from $d_0(t) = 1$ to $d_0(t) = 2$ with an overshoot around the value of 4.5. This time-varying perturbation induces a perturbation on the setpoint reference tracking of the left Neumann trace over the time range $[30, 40]$. However, once the perturbation reaches its steady-state value $d(t, x) = d_0(x) = 2x$, the impact of off-equilibrium perturbations is eliminated providing $y_e(t, 0) \rightarrow r_e = 50$. This is compliant with the obtained ISS estimates with fading memory (27), (28) and (36) as the contribution of the variations of the perturbation around its nominal value d_0, i.e., configuration for which $\Delta d(t) \neq 0$, is eliminated as t increases due to the action of the PI controller.

VII. CONCLUSION

We have achieved the PI regulation control of the left Neumann trace of a 1-D linear reaction–diffusion equation with delayed right Dirichlet boundary control. The proposed control design approach extends to PI control a recently proposed approach for the delay boundary feedback control of infinite-dimensional systems via spectral reduction. Specifically, a finite-dimensional model capturing the unstable modes of the open-loop system has been obtained by spectral decomposition. Based on the classical Artstein transformation (used to handle the delay in the control input) and the pole shifting theorem, a PI controller has been derived. Then, the stability of the full infinite-dimensional closed-loop system has been assessed by using an adequate Lyapunov function, yielding an exponential ISS estimate with fading memory of the time-varying reference signal and the time-varying distributed disturbance. Finally, a similar exponential ISS estimate with fading memory has been derived for the setpoint regulation control of the reference signal by the left Neumann trace.

As a conclusion, we indicate here potential directions for the extension of the work reported in this article.

First, it would be of interest to investigate whether the proposed PI control strategy can be used for the delay boundary regulation control of analogoust PDEs. Good candidates in this direction are the linear Kuramoto–Sivashinsky equation [12] and the wave equation as studied in [10]. Indeed, as the proposed control strategy essentially relies on a spectral reduction of the operator A and the asymptotic behavior (5), it seems reasonable to expect that the proposed control design procedure could be replicated for operators A that can be diagonalized in a Riesz basis and for which the eigenstructures satisfy an adequate asymptotic behavior.

Second, the work presented here was devoted to the control of a 1-D reaction–diffusion. A natural research direction relies in the investigation of whether the proposed PI boundary control strategy could be applied to a multidimensional reaction–diffusion equation. This is not a straightforward extension of the developments presented in this article, since, in particular, we instrumentally used the fact that, in 1-D, $\sum \frac{1}{|\lambda_j|} < +\infty$. Such a condition fails in multidimension.

Third, we assumed in this article that the measure of the full state is available. Future developments may be concerned with the development of an observer and the study of the stability of the resulting closed-loop system.

Finally, the predictor feedback considered in this article has been designed based on the assumption of a constant and known input delay. It was shown in [17] and [19] that a constant delay predictor feedback can be used to stabilize the 1-D reaction–diffusion system in the presence of an uncertain and time-varying input delay. In this context, it would be of interest to investigate whether the control strategy reported in this article, namely, a predictor feedback, augmented with a PI procedure, is also robust with respect to delay mismatches.

APPENDIX PROOF OF LEMMA 2

In order to prove Lemma 2, we will use the following result.

Lemma 8: Let $M \in \mathbb{R}^{n \times n}$ and $N \in \mathbb{R}^{n \times n}$ be given matrices. Assume that (M, N) satisfies the Kalman condition. Then, $\text{Ran} (M N) = \mathbb{R}^n$, i.e., the matrix (M, N) is surjective.

Proof of Lemma 8: Noting that the surjectivity of (M, N) is equivalent to the condition $\ker M^T \cap \ker N^T = \{0\}$, let $\psi \in \mathbb{R}^n$ be such that $\psi^T (M, N) = 0$. We have then $\psi^T N = 0$ and $\psi^T M = 0$; hence, $\psi^T M^T = 0$ for every $k \in \mathbb{N}^*$ and thus $\psi^T M^k N = 0$ for every $k \in \mathbb{N}$. Since (M, N) satisfies the Kalman condition, we infer that $\psi = 0$.

Proof of Lemma 2: $(i) \Rightarrow (ii)$ Let us prove that, if $\psi_1, \psi_2 \in \mathbb{R}^n$ and $\psi_2 \in \mathbb{R}^p$ are such that

$$
\begin{pmatrix}
\psi_1^T \\
\psi_2^T
\end{pmatrix}
\begin{pmatrix}
B & A^2 B & \cdots & A^{n+1} B \\
D & C B & \cdots & C A^{n+1} B
\end{pmatrix}
= 0
$$

then $\psi_1 = \psi_2 = 0$. Indeed, we have then $\psi_1^T B + \psi_2^T D = 0$ and $(\psi_1^T A + \psi_2^T C)A^k B = 0$ for all $0 \leq i \leq n + p - 2$. Noting that $n + p - 2 \leq n - 1$ and since (A, B) satisfies the Kalman condition, we obtain that $\psi_1^T A + \psi_2^T C = 0$. Consequently

$$
\begin{pmatrix}
\psi_1^T \\
\psi_2^T
\end{pmatrix}
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}
= 0
$$

and hence $\psi_1 = \psi_2 = 0$ since (A, B, C, D) is surjective.

$(ii) \Rightarrow (i)$ Let us prove that if $\psi \in \mathbb{R}^n$ is such that $\psi^T (A^k B = 0$ for every $k \in \mathbb{N}$, and then

$$
\psi^T \begin{pmatrix}
B & A^2 B & \cdots & A^{n+1} B \\
D & C B & \cdots & C A^{n+1} B
\end{pmatrix} = 0.
$$

Since the pair $((A^0, C^0), (B, D))$ satisfies the Kalman condition, we obtain $\psi = 0$. This shows that (A, B) satisfies the Kalman condition. Besides, by Lemma 8, since $((A^0, C^0), (B, D))$ satisfies the Kalman condition, $(A, C, 0, B, D)$ is surjective. The lemma is proved.

REFERENCES

[1] Z. Artstein, “Linear systems with delayed controls: A reduction,” *IEEE Trans. Autom. Control*, vol. AC-27, no. 4, pp. 869–879, Aug. 1982.

[2] K. J. Åström and T. Hägglund, *PID Controllers: Theory, Design, and Tuning*, vol. 2. Research Triangle Park, NC, USA: Instrum. Soc. America, 1995.

[3] K. J. Astrom and R. M. Murray, “Feedback systems,” in *An introduction for Scientists and Engineers*. Princeton, NJ, USA: Princeton Univ. Press, 2008.

[4] M. Barreau, F. Gouaisbaut, and A. Seuret, “Practical stability analysis of a drilling pipe under friction with a PI-controller,” *IEEE Trans. Control Syst. Technol.*, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8937529?casa_token=nxwCMp8HYAAAA:wd01v35EeR82UM0SzaDaQk362VtMN3TuS5r4oSt5sJ90lCYMK7jVhQXegaiQ37JfN45NnlDb0

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on April 15, 2024 at 02:45:12 UTC from IEEE Xplore. Restrictions apply.
[5] G. Bastin, J.-M. Coron, and S. O. Tamasioi, “Stability of linear density-flow hyperbolic systems under PI boundary control,” *Automatica*, vol. 53, pp. 37–42, 2015.

[6] D. Bresch-Pietri, C. Prieur, and E. Trélat, “New formulation of predictors for finite-dimensional linear control systems with input delay,” *Syst. Control Lett.*, vol. 113, pp. 9–16, 2018.

[7] H. Brezis, *Functional analysis, Sobolev Spaces and Partial Differential Equations*. New York, NY, USA: Springer, 2010.

[8] J.-M. Coron and A. Hayat, “PI controllers for 1-D nonlinear transport equation,” *IEEE Trans. Autom. Control*, vol. 64, no. 11, pp. 4570–4582, Nov. 2019.

[9] J.-M. Coron and E. Trélat, “Global steady-state controllability of one-dimensional semilinear heat equations,” *SIAM J. Control and Optim.*, vol. 43, no. 2, pp. 549–569, 2004.

[10] J.-M. Coron and E. Trélat, “Global steady-state stabilization and controllability of 1D semilinear equations,” *Commun. Contemporary Math.*, vol. 8, no. 4, pp. 535–567, 2006.

[11] V. Dos Santos, G. Bastin, J.-M. Coron, and B. d’Andréa Novel, “Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments,” *Automatica*, vol. 44, no. 5, pp. 1310–1318, 2008.

[12] P. Guzmán, S. Marx, and E. Cerpa, “Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control,” *IFAC-PapersOnLine*, vol. 52, no. 2, pp. 70–75, 2019.

[13] H. K. Khalil and J. W. Grizzle, *Nonlinear System*, vol. 3. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[14] M. Krstić, “Control of an unstable reaction-diffusion PDE with long input delay,” *Syst. Control Lett.*, vol. 58, nos. 10/11, pp. 773–782, 2009.

[15] P.-O. Lamare and N. Bekiaris-Liberis, “Control of 2×2 linear hyperbolic systems: Backstepping-based trajectory generation and PI-based tracking,” *Syst. Control Lett.*, vol. 86, pp. 24–33, 2015.

[16] H. Lhachemi and C. Prieur, “Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control,” *IEEE Trans. Autom. Control*, to be published, doi: 10.1109/TAC.2019.2975003.

[17] H. Lhachemi, C. Prieur, and R. Shorten, “An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays,” *Automatica*, vol. 109, 2019, Art. no. 108551.

[18] H. Lhachemi, R. Shorten, and C. Prieur, “Control law realification for the feedback stabilization of a class of infinite-dimensional systems with delay boundary control,” *IEEE Control Syst. Lett.*, vol. 3, no. 4, pp. 930–935, Oct. 2019.

[19] H. Lhachemi, R. Shorten, and C. Prieur, “Exponential input-to-state stabilization of a class of diagonal boundary control systems with delay boundary control,” *Syst. Control Lett.*, vol. 138, 2020, Art. no. 104651.

[20] A. Pazy, *Semigroups of Linear Operators and Applications to Partial Differential Equations*, vol. 44. New York, NY, USA: Springer, 1983.

[21] S. Pohjolainen, “Robust multivariable PI-controller for infinite-dimensional systems,” *IEEE Trans. Autom. Control*, vol. AC-27, no. 1, pp. 17–30, 1982.

[22] S. Pohjolainen, “Robust controller for systems with exponentially stable strongly continuous semigroups,” *J. Math. Anal. Appl.*, vol. 111, no. 2, pp. 622–636, 1985.

[23] C. Prieur and E. Trélat, “Feedback stabilization of a 1D linear reaction–diffusion equation with delay boundary control,” *IEEE Trans. Autom. Control*, vol. 64, no. 4, pp. 1415–1425, Apr. 2019.

[24] J.-P. Richard, “Time-delay systems: An overview of some recent advances and open problems,” *Automatica*, vol. 39, no. 10, pp. 1667–1694, 2003.

[25] D. L. Russell, “Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,” *SIAM Rev.*, vol. 20, no. 4, pp. 639–739, 1978.

[26] M. Schmidt and E. Trélat, “Controllability of Couette flows,” *Commun. Pure Appl. Anal.*, vol. 5, no. 1, pp. 201–211, 2006.

[27] E. D. Sontag, “Smooth stabilization implies coprime factorization,” *IEEE Trans. Autom. Control*, vol. 34, no. 4, pp. 435–443, Apr. 1989.

[28] A. Terrand-Jeanne, V. Andrieu, V. D. S. Martins, and C. Xu, “Lyapunov functionals for output regulation of exponentially stable semigroups via integral action and application to hyperbolic systems,” in *Proc. IEEE Conf. Decis. Control*, Miami Beach, FL, USA, 2018, pp. 4631–4636.

[29] A. Terrand-Jeanne, V. Andrieu, V. D. S. Martins, and C. Xu, “Adding integral action for open-loop exponentially stable semigroups and application to boundary control of PDE systems,” *IEEE Trans. Autom. Control*, to be published, doi: 10.1109/TAC.2019.2975349.

[30] A. Terrand-Jeanne, V. D. S. Martins, and V. Andrieu, “Regulation of the downside angular velocity of a drilling string with a PI controller,” in *Proc. Eur. Control Conf.*, Limassol, Cyprus, 2018, pp. 2647–2652.

[31] N.-T. Trinh, V. Andrieu, and C.-Z. Xu, “Design of integral controllers for nonlinear systems governed by scalar hyperbolic partial differential equations,” *IEEE Trans. Autom. Control*, vol. 62, no. 9, pp. 4527–4536, Sep. 2017.

[32] C.-Z. Xu and H. Jerbi, “A robust PI-controller for infinite-dimensional systems,” *Int. J. Control*, vol. 61, no. 1, pp. 33–45, 1995.

[33] C.-Z. Xu and G. Sallet, “Multivariable boundary PI control and regulation of a fluid flow system,” *Math. Control Related Fields*, vol. 4, no. 4, pp. 501–520, 2014.

[34] A. Zettl, *Sturm-Liouville Theory*. Providence, RI, USA: Amer. Math. Soc., 2010.

Hugo Lhachemi received the four-year university degree in mathematics from Université Claude Bernard Lyon I, Villeurbanne, France, in 2011, an engineering degree from the École Centrale de Lyon, Ecully, France, in 2013, and the M.Sc. degree in aerospace engineering and the Ph.D. degree in electrical engineering from Polytechnique Montréal, Montreal, QC, Canada, in 2013 and 2017, respectively. He is currently a Postdoctoral Fellow in automation and control with University College Dublin, Dublin, Ireland. His main research interests include control theory and decision science with applications to aerospace and cyber-physical systems.

Christophe Prieur (Senior Member, IEEE) was born in 1974. He received the Ph.D. degree in control theory from Paris-Sud University, Orsay, France, in 2001. He is a Senior Researcher with the CNRS, GIPSA-Lab, Grenoble, France. His current research interests include nonlinear control theory, hybrid systems, and control of partial differential equations. Mr. Prieur was the Program Chair of the 9th IFAC Symposium on Nonlinear Control Systems 2013 and the 14th European Control Conference 2015. He was a member of the IEEE Control Systems Society Conference Editorial Board and the European Control Association Conference Editorial Board, and an Associate Editor for the *IMA Journal of Mathematical Control and Information*, the *IEEE TRANSACTIONS ON AUTOMATIC CONTROL*, and the *European Journal of Control*. He is an Associate Editor for the *IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY* and the *AIMS Evolution Equations and Control Theory*, a Senior Editor for the *IEEE CONTROL SYSTEMS LETTERS*, and an Editor for the *IMA Journal of Mathematical Control and Information*.

Emmanuel Trélat was born in 1974. He received the Ph.D. degree in control theory from University of Dijon, Dijon, France, in 2000. He is a Full Professor with Sorbonne Université, Paris, France. His research interests include control theory in finite and infinite dimension, optimal control, stabilization, geometry, and numerical analysis. Prof. Trélat is the Editor-in-Chief of *ESAIM: Control, Optimisation and Calculus of Variations* and an Associate Editor for several other journals. He was the recipient of the SIAM Outstanding Paper Prize in 2006, the Maurice Audin Prize in 2010, the Felix Klein Prize from the European Mathematical Society in 2012, the Blaise Pascal Prize from the French Academy of Science in 2014, and the Big Prize Madame Victor Noury from the French Academy of Science in 2016.