Second Best, Third Worst, Fourth in Line

STEVEN FINCH

May 1, 2022

Abstract. We investigate decomposable combinatorial labeled structures more fully, focusing on the exp-log class of type $a = 1$ or $1/2$. For instance, the modal length of the second longest cycle in a random n-permutation is $(0.2350...)n$, whereas the modal length of the second smallest component in a random n-mapping is 2 (conjecturally, given $n \geq 434$). As in earlier work, our approach is to establish how well existing theory matches experimental data and to raise open questions.

Given a combinatorial object with n nodes, our interest is in

- the size of its rth longest cycle or largest component,
- the size of its rth shortest cycle or smallest component

where $r \geq 2$. If the object has no rth component, then its rth largest/smallest components are defined to have length 0. The case $r = 1$ has attracted widespread attention [1, 2]. Key to our prior study were recursive formulas [3, 4] for $L_{k,n}$ and $S_{k,n}$, the number of n-objects whose largest and smallest components, respectively, have exactly k nodes, $1 \leq k \leq n$. Different algorithms shall be used here. As before, an n-object is chosen uniformly at random. For simplicity, we discuss here only n-permutations and n-mappings (from $\{1,2,\ldots,n\}$ to $\{1,2,\ldots,n\}$). Let c_n be the number of n-objects that are connected, i.e., who possess exactly one component:

$$c_n = \begin{cases} (n - 1)! & \text{for permutations,} \\ n! \sum_{j=1}^{n} \frac{n^{n-j-1}}{(n-j)!} & \text{for mappings.} \end{cases}$$

The total number of n-permutations and n-mappings is $n!$ and n^n, respectively. For fixed n, the sequences $\{L_{k,n} : 1 \leq k \leq n\}$ and $\{S_{k,n} : 1 \leq k \leq n\}$ constitute probability mass functions (upon normalization) for $r = 1$. Until recently, calculating analogous sequences for $r \geq 2$ seemed inaccessibly difficult.

The new algorithms, due to Heinz [5], accept as input the integer n and an ordered r-tuple ℓ of nonnegative integers, which may include infinity. We write ℓ as a list $\{i_1,i_2,\ldots,i_r\}$. Given a positive integer j, define ℓ^j to be the list obtained by

Copyright © 2022 by Steven R. Finch. All rights reserved.
(i) appending ℓ with j,

(ii) sorting the $(r + 1)$-tuple in ascendent order, and

(iii) removing its first element.

Define ℓ_j in the same way as ℓ^j except for a revised final step:

(iii') removing its last element.

Note that the lengths of ℓ^j and ℓ_j are always equal to the length of ℓ. Let $p[n, \ell]$ and $q[n, \ell]$ denote row polynomials in x and y associated with large and small components. The algorithms are based on recursions

$$p[n, \ell] = \begin{cases} \sum_{j=1}^{n} c_j p[n - j, \ell^j] \binom{n - 1}{j - 1} & \text{if } n > 0, \\ x^i & \text{if } n = 0; \end{cases}$$

$$q[n, \ell] = \begin{cases} \sum_{j=1}^{n} c_j q[n - j, \ell_j] \binom{n - 1}{j - 1} & \text{if } n > 0, \\ y^{i_r} & \text{if } n = 0 \text{ and } i_r < \infty, \\ y^0 & \text{if } n = 0 \text{ and } i_r = \infty. \end{cases}$$

A computer algebra software package (e.g., Mathematica or Maple) makes exact integer calculations for ample n of $p[n, \ell]$ and $q[n, \ell]$ feasible. These are demonstrated for $n = 4$ in the next section, for the sake of concreteness.

Permutations belong to the exp-log class of type $a = 1$, whereas mappings belong to the exp-log class of type $a = 1/2$. Explaining the significance of the parameter $a > 0$ would take us too far afield [6]. Let

$$E(x) = \int_{x}^{\infty} \frac{e^{-t}}{t} dt = -\text{Ei}(-x), \quad x > 0$$

be the exponential integral. Define [7, 8, 9, 10, 11, 12]

$$\ell G_a(r, h) = \frac{\Gamma(a + 1)a^{r-1}}{\Gamma(a + h)(r - 1)!} \int_{0}^{\infty} x^{h-1} E(x)^{r-1} \exp[-a E(x) - x] dx,$$
which are related to the \(h\)th moment of the \(r\)th largest/smallest component size (in this paper, rank \(r = 2, 3\) or \(4\); height \(h = 1\) or \(2\)). While moment formulas are unerring for \(L\), they are not so for \(S\). While \(sG_a\) is flawless for permutations (and for what are called cyclations [I3]), a correction factor \(\sqrt{2}\) is needed for mappings.

For fixed \(n\) and \(r\), the coefficient sequences associated with polynomials

\[
p[n, \{0, 0, \ldots, 0\}], \quad 0 \leq k \leq \lfloor n/r \rfloor;
\]

\[
q[n, \{\infty, \infty, \ldots, \infty\}], \quad 0 \leq k \leq n - r + 1
\]

constitute probability mass functions (upon normalization). These have corresponding means \(L\mu_{n,r}, s\mu_{n,r}\) and variances \(L\sigma_{n,r}^2, s\sigma_{n,r}^2\) given in the tables. We also provide the median \(L\nu_{n,r}\) and mode \(L\vartheta_{n,r};\) evidently \(s\nu_{n,r}\) and \(s\vartheta_{n,r}\) are bounded for permutations as \(n \to \infty\) (the trend of \(s\nu_{n,r}\) is less clear for mappings). In table headings only, the following notation is used:

\[
\bar{L}\mu_{n,r} = \frac{L\mu_{n,r}}{n}, \quad \bar{L}\sigma_{n,r}^2 = \frac{L\sigma_{n,r}^2}{n^2}, \quad \bar{L}\nu_{n,r} = \frac{L\nu_{n,r}}{n}, \quad \bar{L}\vartheta_{n,r} = \frac{L\vartheta_{n,r}}{n}, \quad s\nu_{n,r} = \frac{s\nu_{n,r}}{n},
\]

\[
s\mu_{n,r} = \begin{cases}
\frac{s\mu_{n,r}}{\ln(n)^r} & \text{if } a = 1, \\
\frac{s\mu_{n,r}}{n^{1/2} \ln(n)^{r-1}} & \text{if } a = 1/2,
\end{cases}
\]

\[
s\sigma_{n,r}^2 = \begin{cases}
\frac{s\sigma_{n,r}^2}{n \ln(n)^{r-1}} & \text{if } a = 1, \\
\frac{s\sigma_{n,r}^2}{n^{3/2} \ln(n)^{r-1}} & \text{if } a = 1/2.
\end{cases}
\]

When \(r = 1\), the mode \(L\vartheta_{n,1}\) is provably 1/2 in the limit as \(n \to \infty\) for permutations (it is 1 for mappings). This limit is more interesting when \(r = 2\), as will soon be seen.

1. **Calculs à la Heinz**

As promised, we exhibit some hand calculations. It is easy to show directly that \(p[3, \{0, 0\}] = 2 + 4x\) for permutations and \(17 + 10x\) for mappings (see Section 3 of [I]). More generally, \(p[3, \{0, 0\}] = c_3 + c_1(c_1^2 + 3c_2)x\). Let us compute \(p[4, \{0, 0\}]\) using Heinz’s algorithm. From

\[
\begin{align*}
p[2, \{1, 1\}] &= c_1p[1, \{1, 1\}]\binom{4}{1} + c_2p[0, \{1, 2\}]\binom{4}{1} \\
&= c_1^2p[0, \{1, 1\}]\binom{6}{1} + c_2x^1 = (c_1^2 + c_2)x,
\end{align*}
\]
we have
\[p[0, \{1, 3\}] = x \]

Also, from
\[p[2, \{0, 2\}] = c_1 p[1, \{1, 2\}] \binom{4}{1} + c_2 p[0, \{2, 2\}] \binom{3}{1}
= c_1^2 p[0, \{1, 2\}] \binom{3}{2} + c_2 x^2 = c_1^2 x + c_2 x^2, \]
\[p[1, \{0, 3\}] = c_1 p[0, \{1, 3\}] \binom{4}{0} = c_1 x, \]
\[p[0, \{0, 4\}] = x^0 = 1 \]
we deduce
\[p[4, \{0, 0\}] = c_1 p[3, \{0, 1\}] \binom{3}{0} + c_2 p[2, \{0, 2\}] \binom{3}{1} + c_3 p[1, \{0, 3\}] \binom{3}{2} + c_4 p[0, \{0, 4\}] \binom{3}{3}
= c_1 \left(c_1^3 + 3c_1c_2 + c_3 \right) x + 3c_2 (c_1^2 x + c_2 x^2) + 3c_3 (c_1 x) + c_4
= c_4 + c_1 \left(c_1^3 + 6c_1c_2 + 4c_3 \right) x + 3c_2 x^2 \]
\[= \begin{cases} 6 + 15x + 3x^2 & \text{for permutations,} \\ 142 + 87x + 27x^2 & \text{for mappings} \end{cases} \]
completing the argument.

It is likewise easy to show that \(q[3, \{0, 0\}] = 2 + y + 3y^2 \) for permutations and \(17 + y + 9y^2 \) for mappings. More generally, \(q[3, \{0, 0\}] = c_3 + c_1^2 y + 3c_1c_2 y^2 \). Let us compute \(q[4, \{0, 0\}] \) using Heinz’s algorithm. From
\[q[2, \{1, 1\}] = c_1 q[1, \{1, 1\}] \binom{4}{1} + c_2 q[0, \{1, 1\}] \binom{4}{1}
= c_1^2 q[0, \{1, 1\}] \binom{3}{1} + c_2 y^1 = (c_1 + c_2) y, \]
\[q[1, \{1, 2\}] = c_1 q[0, \{1, 1\}] \binom{4}{0} = c_1 y, \]
\[q[0, \{1, 3\}] = y^3 \]
we have
\[q[3, \{1, \infty\}] = c_1 q[2, \{1, 1\}] \binom{4}{0} + c_2 q[1, \{1, 2\}] \binom{4}{1} + c_3 q[0, \{1, 3\}] \binom{4}{2}
= c_1 \left(c_1^2 + c_2 \right) y + 2c_2 (c_1 y) + c_3 y^3 = (c_1^3 + 3c_1c_2) y + c_3 y^3. \]
Also, from
\[
q[2, \{2, \infty\}] = c_1 q[1, \{1, 2\}]_0^{(1)} + c_2 q[0, \{2, 2\}]_0^{(1)} = c_1^2 q[0, \{1, 1\}]_0^0 + c_2 y^2 = c_1 y + c_2 y^2,
\]
\[
q[1, \{3, \infty\}] = c_1 q[0, \{1, 3\}]_0^0 = c_1 y^3,
\]
\[
q[0, \{4, \infty\}] = y^0 = 1
\]
we deduce
\[
q[4, \{\infty, \infty\}] = \begin{cases}
\begin{align*}
c_1 & \left(c_3 + 3c_1 c_2 \right) y + c_3 y^3 + c_2 \left(c_1^2 y + c_2 y^2 \right) + 3c_3 (c_1 y^3) + c_4 \\
c_1 & \left(c_1^2 + 6c_2 \right) y + 3c_2 y^2 + 4c_3 c_3 y^3
\end{align*}
\end{cases}
\]
\[
= \begin{cases}
\begin{align*}
6 + 7y + 3y^2 + 8y^3 & \quad \text{for permutations,} \\
142 + 19y + 27y^2 + 68y^3 & \quad \text{for mappings}
\end{align*}
\end{cases}
\]
completing the argument.

2. Modes & Medians

The mode of a continuous distribution is the location of its highest peak; the median is its 50th percentile. The length \(\Lambda_r \) of the \(r \)th longest cycle in a random \(n \)-permutation has cumulative probability

\[
\lim_{n \to \infty} \Pr \{ \Lambda_r < x \cdot n \} = \rho_r \left(\frac{1}{x} \right)
\]

where \(\rho_r(x) \) is the \(r \)th order Dickman function [14]:

\[
x \rho'_1(x) + \rho_1(x - 1) = 0 \quad \text{for} \quad x > 1, \quad \rho_1(x) = 1 \quad \text{for} \quad 0 \leq x \leq 1;
\]

\[
x \rho'_r(x) + \rho_r(x - 1) = \rho_{r-1}(x - 1) \quad \text{for} \quad x > 1, \quad \rho_r(x) = 1 \quad \text{for} \quad 0 \leq x \leq 1
\]

and \(r = 2, 3, 4, \ldots \). For notational simplicity, let us write \(\varphi = \rho_1 \) and \(\psi = \rho_2 \). Observe that \(\rho_r \) should not be confused with a different generalization \(\rho_a \) discussed in [11][15].

From

\[
\varphi'(x) = -\frac{\varphi(x - 1)}{x}, \quad x > 1
\]

we have

\[
\varphi' \left(\frac{1}{x} \right) = -\frac{\varphi \left(\frac{1}{x} - 1 \right)}{x}, \quad 0 < x < 1
\]
hence the density \(f(x) \) is

\[
\frac{d}{dx} \varphi \left(\frac{1}{x} \right) = -x \varphi \left(\frac{1}{x} - 1 \right) \left(-\frac{1}{x^2} \right) = \begin{cases}
\frac{\varphi \left(\frac{1}{x} - 1 \right)}{x} & \text{if } 0 < x \leq 1/2, \\
\frac{1}{x} & \text{if } 1/2 < x < 1.
\end{cases}
\]

Also, from

\[
\varphi''(x) = \frac{\varphi(x - 1)}{x^2} - \frac{\varphi'(x - 1)}{x} = \frac{\varphi(x - 1)}{x^2} + \frac{\varphi(x - 2)}{x(x - 1)}, \quad x > 1
\]

we have

\[
\varphi'' \left(\frac{1}{x} \right) = \frac{\varphi \left(\frac{1}{x} - 1 \right)}{x^2} + \frac{\varphi \left(\frac{1}{x} - 2 \right)}{x(x - 1)}, \quad 0 < x < 1
\]

hence (by the chain rule for second derivatives)

\[
\frac{d^2}{dx^2} \varphi \left(\frac{1}{x} \right) = \varphi' \left(\frac{1}{x} \right) \frac{2}{x^3} + \frac{1}{x^4} \varphi'' \left(\frac{1}{x} \right)
\]

\[
= -2 \varphi \left(\frac{1}{x} - 1 \right) + \frac{\varphi \left(\frac{1}{x} - 1 \right)}{x^2} + \frac{\varphi \left(\frac{1}{x} - 2 \right)}{x^2(1 - x)}
\]

\[
= \begin{cases}
\frac{1}{x^2(1 - x)} - \frac{\varphi \left(\frac{1}{x} - 1 \right)}{x^2} > \frac{1}{x(1 - x)} > 0 & \text{if } 1/3 < x \leq 1/2, \\
-\frac{1}{x^2} < 0 & \text{if } 1/2 < x \leq 1
\end{cases}
\]

since the first condition implies \(3 > 1/x \geq 2 \), i.e., \(1 > 1/x - 2 \geq 0 \) and the second condition implies \(2 > 1/x \geq 1 \), i.e., \(1 > 1/x - 1 \geq 0 \). Thus \(f \) is increasing on the left of \(x = 1/2 \) and \(f \) is decreasing on the right, which implies that the median size of \(\Lambda_1 \) is 1/2.

From

\[
\psi'(x) = \frac{\varphi(x - 1) - \psi(x - 1)}{x}, \quad x > 2
\]

we have

\[
\varphi'(x) - \psi'(x) = -\frac{\varphi(x - 1)}{x} - \frac{\varphi(x - 1) - \psi(x - 1)}{x} = -2 \varphi(x - 1) + \psi(x - 1)
\]
(a lemmata needed shortly) and
\[
\psi'(\frac{1}{x}) = \varphi\left(\frac{1}{x} - 1\right) - \psi\left(\frac{1}{x} - 1\right) \quad \frac{1}{x}, \quad 0 < x < 1/2
\]
hence the density \(g(x)\) is
\[
\frac{d}{dx} \psi\left(\frac{1}{x}\right) = x \left(\varphi\left(\frac{1}{x} - 1\right) - \psi\left(\frac{1}{x} - 1\right) \right) \left(-\frac{1}{x^2} \right)
\]
\[
\psi\left(\frac{1}{x} - 1\right) - \varphi\left(\frac{1}{x} - 1\right)
\]
\[
\psi\left(1 - x\right) \quad x.
\]
Also, from
\[
\psi''(x) = -\frac{\varphi(x - 1) - \psi(x - 1)}{x^2} + \frac{\varphi'(x - 1) - \psi'(x - 1)}{x}
\]
\[
= -\varphi(x - 1) + \psi(x - 1) + \frac{-2\varphi(x - 2) + \psi(x - 2)}{x(x - 1)}
\]
(by the lemmata) we have
\[
\psi''\left(\frac{1}{x}\right) = \frac{-\varphi\left(\frac{1}{x} - 1\right) + \psi\left(\frac{1}{x} - 1\right)}{\frac{1}{x^2}} + \frac{-2\varphi\left(\frac{1}{x} - 2\right) + \psi\left(\frac{1}{x} - 2\right)}{\frac{1}{x} \left(\frac{1}{x} - 1\right)}
\]
hence (by the chain rule for second derivatives)
\[
\frac{d^2}{dx^2} \psi\left(\frac{1}{x}\right) = \psi'\left(\frac{1}{x}\right) \frac{2}{x^3} + \frac{1}{x^4} \psi''\left(\frac{1}{x}\right)
\]
\[
\quad = \frac{\varphi\left(\frac{1}{x} - 1\right) - \psi\left(\frac{1}{x} - 1\right)}{\frac{1}{x}} \frac{2}{x^3}
\]
\[
\quad + \frac{1}{x^4} \left[-\varphi\left(\frac{1}{x} - 1\right) + \psi\left(\frac{1}{x} - 1\right) + \frac{-2\varphi\left(\frac{1}{x} - 2\right) + \psi\left(\frac{1}{x} - 2\right)}{\frac{1}{x} \left(\frac{1}{x} - 1\right)} \right]
\]
\[
\quad = \frac{\varphi\left(\frac{1}{x} - 1\right) - \psi\left(\frac{1}{x} - 1\right)}{x^2} - \frac{2\varphi\left(\frac{1}{x} - 2\right) - \psi\left(\frac{1}{x} - 2\right)}{x^2 (1 - x)}.
\]
There exists a unique $0 < x_0 < 1/2$ for which this expression $g'(x_0)$ vanishes. Plots of $f(x)$ and $g(x)$ appear in [16] and confirm that x_0 is the modal size of Λ_2. Broadhurst [17] obtained an exact equation for x_0, involving Dickman dilogarithms and trilogarithms [18], then applied numerics. We have verified his value x_0 by purely floating point methods.

There is comparatively little to say about medians ξ_r, defined as solutions of [14, 19]

$$\rho_r \left(\frac{1}{x} \right) = \frac{1}{2}$$

except that $\xi_1 = 1/\sqrt{e}$ is well-known and no closed-form representations for ξ_r, $r \geq 2$, seem to exist.

3. Knuth & Trabb Pardo

An alternative to Heinz’s algorithm is one proposed by Knuth & Trabb Pardo [14] for a restricted case. Define $u_r(k, n)$ to be the number of n-permutations whose r^{th} longest cycle has $\leq k$ nodes [20]. The following recursive formulas apply for $r = 1$:

$$u_1(k, n) = \begin{cases} \sum_{m=0}^{k-1} \frac{(n-1)!}{(n-1-m)!} u_1(k, n-1-m) & \text{if } n \geq 1 \text{ and } k < n, \\ n! & \text{if } n \geq 1 \text{ and } k \geq n, \\ 1 & \text{otherwise} \end{cases}$$

and for $r \geq 2$:

$$u_r(k, n) = \begin{cases} \sum_{m=0}^{k-1} \frac{(n-1)!}{(n-1-m)!} u_r(k, n-1-m) + \\ \sum_{m=k}^{n-1} \frac{(n-1)!}{(n-1-m)!} u_{r-1}(k, n-1-m) & \text{if } n \geq 1 \text{ and } k < \lfloor n/r \rfloor, \\ n! & \text{if } n \geq 1 \text{ and } k \geq \lfloor n/r \rfloor, \\ 1 & \text{otherwise.} \end{cases}$$

Clearly $u_1(0, n) = \delta_{0,n}$ and $u_1(1, n) = 1$, hence

$$u_2(0, 4) = u_1(0, 3) + 3u_1(0, 2) + 6u_1(0, 1) + 6u_1(0, 0) = 6.$$

Also $u_2(1, 2) = 2$ and $u_2(1, 3) = 6$, hence

$$u_2(1, 4) = u_2(1, 3) + [3u_1(1, 2) + 6u_1(1, 1) + 6u_1(1, 0)] = 6 + 15 = 21.$$
Finally \(u_2(2, 4) = 24 \). The list

\[
\left\{ u_2(k, 4) \right\}_{k=0}^2 = \{6, 21, 24\} = \{6, 6 + 15, 21 + 3\}
\]

conveys the same information as the polynomial \(p[4, \{0, 0\}] \) did in Section 1, although the underlying calculations differed completely.

A proof is as follows \([14]\). We may think of \(u_r(k, n) \) as counting permutations on \(\{1, \ldots, n\} \) that possess fewer than \(r \) cycles of length exceeding \(k \). Call such a permutation \((r, n) \)-good. Consider now a permutation \(P \) on \(\{0, 1, \ldots, n\} \). The node 0 belongs to some cycle \(C \) within \(P \) of length \(m + 1 \). Let \(P \setminus C \) denote the permutation which remains upon exclusion of \(C \) from \(P \). Suppose \(0 \leq m \leq k - 1 \); then \(P \) is \((r, n + 1)\)-good iff \(P \setminus C \) is \((r, n - m)\)-good. Suppose \(k \leq m \leq n \); then \(P \) is \((r, n + 1)\)-good iff \(P \setminus C \) is \((r - 1, n - m)\)-good. Thus the formula

\[
u_r(k, n + 1) = \sum_{m=0}^{k-1} \frac{n!}{(n-m)!} u_r(k, n-m) + \sum_{m=k}^{n} \frac{n!}{(n-m)!} u_{r-1}(k, n-m)
\]

is true because \(n!/(n-m)! \) is the number of possible choices for \(C \).

An analog of this recursion for mappings remains open, as far as is known. Finding the number of possible choices for a component \(C \) containing the node 0 is more complicated than for a cycle containing 0. Each component consists of a cycle with trees attached; each tree is rooted at a cyclic point but is otherwise made up of transient points. We must account for the position of 0 (cyclic or transient?) and the overall configuration (inventory of tree types and sizes?). It would be helpful to learn about progress in enumerating such \(C \) or, if this is impractical, some other procedure for moving forward.

4. Une conjecture correspondante

Short cycles have always presented more analytical difficulties than long cycles; this paper offers no exception. Everything in this section is conjectural only. Define \(v_r(k, n) \) to be the number of \(n \)-permutations whose \(r \)th shortest cycle has \(\geq k \) nodes \([20]\). The following recursive formulas would seem to apply for \(r = 1 \):

\[
v_1(k, n) = \begin{cases}
 n! & \text{if } n \geq 1 \text{ and } k = 0, \\
 \sum_{m=k-1}^{n-1} \frac{(n-1)!}{(n-1-m)!} v_1(k, n-1-m) & \text{if } n \geq 1 \text{ and } 0 < k \leq n, \\
 0 & \text{if } n \geq 1 \text{ and } k > n, \\
 1 & \text{otherwise}
\end{cases}
\]
and for \(r \geq 2 \):

\[
v_r(k, n) = \begin{cases}
 n! & \text{if } n \geq 0 \text{ and } k = 0, \\
 \Delta_r(k, n) + \\
 \sum_{m=0}^{k-2} \frac{(n-1)!}{(n-1-m)!} v_{r-1}(k, n-1-m) + \\
 \sum_{m=k-1}^{n-1} \frac{(n-1)!}{(n-1-m)!} v_r(k, n-1-m) & \text{if } n \geq 1 \text{ and } 0 < k \leq n - r + 1, \\
 0 & \text{otherwise.}
\end{cases}
\]

The surprising new term \(\Delta_r(k, n) \) has a simple formula for \(r = 2 \):

\[
\Delta_2(k, n) = (n-1)!H_{n-k}, \quad \text{where} \quad \sum_{i=1}^{j} \frac{1}{i} = H_j, \quad \sum_{i=1}^{j} \frac{1}{i^s} = H_{j,s}
\]

and unexpected recursions for \(r = 3 \) and \(r = 4 \):

\[
\Delta_r(k, n) = \begin{cases}
 \frac{1}{2}(n-1)! \left(H_{n-1}^2 - H_{n-1,2} \right) & \text{if } r = 3 \text{ and } k = 1, \\
 \frac{1}{6}(n-1)! \left(H_{n-1}^3 - 3H_{n-1}H_{n-1,2} + 2H_{n-1,3} \right) & \text{if } r = 4 \text{ and } k = 1, \\
 \Delta_r(k-1, n) - \frac{\Delta_{r-1}(k, n)}{n-k+1} & \text{if } k \geq 2 \text{ and } n \geq k, \\
 0 & \text{otherwise.}
\end{cases}
\]

The values \(\Delta_r(1, n) \) are unsigned Stirling numbers of the first kind, i.e., the number of \(n \)-permutations that have exactly \(r \) cycles. (Why should these appear here?) A plausibility argument supporting \(v_r \) bears resemblance to the proof underlying \(u_r \). We may think of \(v_r(k, n) \) as counting permutations on \(\{1, \ldots, n\} \) that possess fewer than \(r \) cycles of length surpassed by \(k \). Call such a permutation \((r, n)\)-bad. Let \(P \& C \) (of lengths \(n+1 \) & \(m+1 \)) be as before. Suppose \(0 \leq m \leq k - 2 \); then \(P \) is \((r, n+1)\)-bad iff \(P \setminus C \) is \((r-1, n-m)\)-bad. Suppose \(k - 1 \leq m \leq n \); then \(P \) is \((r, n+1)\)-bad iff \(P \setminus C \) is \((r, n-m)\)-bad. This would suggest

\[
v_r(k, n+1) = \Delta_r + \sum_{m=0}^{k-2} \frac{n!}{(n-m)!} v_{r-1}(k, n-m) + \sum_{m=k-1}^{n} \frac{n!}{(n-m)!} v_r(k, n-m)
\]

is true with \(\Delta_r = 0 \), but experimental data contradict such an assertion.
Let us illustrate via example, in parallel with Section 3. As preliminary steps,
$v_1(k, 0) = 1$ and $v_1(n + 1, n) = 0$, hence
$$v_1(2, 3) = 2v_1(2, 1) + 2v_1(2, 0) = 2, \quad v_1(3, 3) = 2v_1(3, 0) = 2.$$
Clearly $v_2(0, 4) = 24$. Also $v_2(n, n) = \delta_{0,n}$ and $v_2(n + 1, n) = v_2(n + 2, n) = 0$, hence
$$v_2(1, 2) = \Delta_2(1, 2) + [v_2(1, 1) + v_2(1, 0)] = 1 + 0 = 1,$$
$$v_2(1, 3) = \Delta_2(1, 3) + [v_2(1, 2) + 2v_2(1, 1) + 2v_2(1, 0)] = 3 + 1 = 4,$$
$$v_2(1, 4) = \Delta_2(1, 4) + [v_2(1, 3) + 3v_2(1, 2) + 6v_2(1, 1) + 6v_2(1, 0)] = 11 + 7 = 18.$$
Finally
$$v_2(2, 4) = \Delta_2(2, 4) + v_1(2, 3) + [3v_2(2, 2) + 6v_2(2, 1) + 6v_2(2, 0)] = 9 + 2 + 0 = 11,$$
$$v_2(3, 4) = \Delta_2(3, 4) + [v_1(3, 3) + 3v_1(3, 2)] + [6v_2(3, 1) + 6v_2(3, 0)] = 6 + 2 + 0 = 8.$$
Again, the list
$$\{v_2(k, 4)\}_{k=1}^3 = \{18, 11, 8\} = \{24 - 6, 18 - 7, 11 - 3 = 8\}$$
conveys the same information as the polynomial $q[4, \{\infty, \infty\}]$ did in Section 1. Without the nonzero contribution of $\Delta_r(k, n)$, our modification of Knuth & Trabb Pardo would yield results incompatible with Heinz.

5. Permutations

Here are numerical results for $r = 2$:

n	$L\tilde{\mu}_{n,2}$	$L\tilde{\nu}_{n,2}$	$L\tilde{\vartheta}_{n,2}$	$S\tilde{\mu}_{n,2}$	$S\tilde{\nu}_{n,2}$
1000	0.209685	0.012567	0.2110	0.2350	0.415946
1500	0.209650	0.012562	0.2113	0.2353	0.408887
2000	0.209633	0.012560	0.2115	0.2350	0.404309
2500	0.209623	0.012559	0.2112	0.2352	0.400976

Table 5.1: Statistics for Permute, rank two ($a = 1$)

as well as $S\nu_{n,2} = 2$ for $n > 17$ and $S\vartheta_{n,2} = 1$ for $n > 4$. Also
$$\lim_{n \to \infty} \frac{L\mu_{n,2}}{n} = L\varGamma(2, 1) = 0.20958087428418581398\ldots,$$
$$\lim_{n \to \infty} \frac{L\sigma_{n,2}}{n^2} = L\varGamma(2, 2) - L\varGamma(2, 1)^2 = 0.01255379063590587814\ldots,$$
\[
\lim_{n \to \infty} \frac{L\nu_{n,2}}{n} = \xi_2 = 0.21172114641298273896..., \\
\lim_{n \to \infty} \frac{L\vartheta_{n,2}}{n} = x_0 = 0.23503964593509109370..., \\
\lim_{n \to \infty} \frac{s\mu_{n,2}}{\ln(n)^2} = \frac{e^{-\gamma}}{2} = 0.28072974178344258491..., \\
\lim_{n \to \infty} \frac{s\sigma^2_{n,2}}{n\ln(n)} = sG_P(2,2) = 1.30720779891056809974....
\]

The final $n\ln(n)$ asymptotic is based on [7, 8], not (inaccurate) Theorem 5 in [6].

Here [22] are numerical results for $r = 3$:

n	$L\tilde{\mu}_{n,3}$	$L\tilde{\sigma}^2_{n,3}$	$L\tilde{\nu}_{n,3}$	$L\tilde{\vartheta}_{n,3}$	$S\tilde{\mu}_{n,3}$	$S\tilde{\sigma}^2_{n,3}$
1000	0.088357	0.004499	0.0750	0.0010	0.155997	0.450101
1500	0.088344	0.004497	0.0753	0.0007	0.153079	0.468681
2000	0.088337	0.004496	0.0755	0.0005	0.151161	0.480325
2500	0.088333	0.004496	0.0756	0.0004	0.149752	0.488548

Table 5.2: Statistics for Permute, rank three ($a = 1$)

as well as $s\nu_{n,2} = 7$ for $n > 370$ and $s\vartheta_{n,2} = 2$ for $n > 49$. Also

\[
\lim_{n \to \infty} \frac{L\mu_{n,3}}{n} = LG_1(3,1) = 0.0883160988315363101..., \\
\lim_{n \to \infty} \frac{L\sigma^2_{n,3}}{n^2} = LG_1(3,2) - LG_1(3,1)^2 = 0.00449392318179080474..., \\
\lim_{n \to \infty} \frac{L\nu_{n,3}}{n} = \xi_3 = 0.07584372316630152789..., \\
\lim_{n \to \infty} \frac{L\vartheta_{n,3}}{n} = 0, \\
\lim_{n \to \infty} \frac{s\mu_{n,3}}{\ln(n)^3} = \frac{e^{-\gamma}}{6} = 0.09357658059448086163..., \\
\lim_{n \to \infty} \frac{s\sigma^2_{n,3}}{n\ln(n)^2} = sG_P(3,2) = 0.65360389945528404987....
\]

The final $n\ln(n)^2$ asymptotic is based on [7, 8].

Here [23] are numerical results for $r = 4$:
Table 5.3: Statistics for Permute, rank four \((a = 1)\)

\(n\)	\(\tilde{L}\mu_{n,4}\)	\(\tilde{L}\sigma_{n,4}^2\)	\(\tilde{L}\nu_{n,4}\)	\(\tilde{L}\vartheta_{n,4}\)	\(\tilde{s}\mu_{n,4}\)	\(\tilde{s}\sigma_{n,4}^2\)
1000	0.040353	0.001586	0.0260	0.0010	0.042215	0.118491
1500	0.040351	0.001585	0.0267	0.0007	0.041482	0.126180
2000	0.040349	0.001585	0.0265	0.0005	0.040987	0.131244
2500	0.040348	0.001585	0.0268	0.0004	0.040618	0.134938

as well as \(s\nu_{n,4} = 19\) for \(n > 1482\) and \(s\vartheta_{n,4} = 3\) for \(n > 666\). Also

\[
\lim_{n \to \infty} \frac{L\mu_{n,4}}{n} = LG_1(4,1) = 0.04034198873687046287..., \\
\lim_{n \to \infty} \frac{L\sigma_{n,4}^2}{n^2} = LG_1(4,2) - LG_1(4,1)^2 = 0.00158383677354017280..., \\
\lim_{n \to \infty} \frac{L\nu_{n,4}}{n} = \xi_4 = 0.02713839684981404992..., \\
\lim_{n \to \infty} \frac{L\vartheta_{n,4}}{n} = 0, \\
\lim_{n \to \infty} \frac{s\mu_{n,4}}{\ln(n)^4} = e^{-\gamma}/24 = 0.02339414514862021540..., \\
\lim_{n \to \infty} \frac{s\sigma_{n,4}^2}{n \ln(n)^3} = sG_P(4,2) = 0.21786796648509468329... .
\]

The final \(n \ln(n)^3\) asymptotic is based on [7, 8].

6. Mappings

Our modified Knuth & Trabb Pardo algorithm is unavailable in this setting, thus we turn to Heinz’s program. A general observation for \(2 \leq r \leq 4\) is \(L\vartheta_{n,r} = 0\) always. Here [24] are numerical results for \(r = 2\):

\(n\)	\(L\mu_{n,2}\)	\(L\sigma_{n,2}^2\)	\(L\nu_{n,2}\)	\(s\mu_{n,2}\)	\(s\sigma_{n,2}^2\)	\(s\nu_{n,2}\)
100	0.166817	0.019535	0.1300	0.680589	0.279032	0.1200
200	0.168100	0.019243	0.1400	0.718071	0.323910	0.0750
300	0.168642	0.019121	0.1433	0.737331	0.350358	0.0567
400	0.168959	0.019050	0.1450	0.749928	0.368810	0.0450

Table 6.1: Statistics for Map, rank two \((a = 1/2)\)

as well as \(s\nu_{n,2} = 19\) for \(n > 443\) and \(s\vartheta_{n,2} = 2\) for \(n > 433\). Let us elaborate on the latter statistic (because it seems surprising at first glance: an extended string of
0s abruptly switches to 2s). If \(\pi_r(k, n) \) denotes the probability that the \(r \)th smallest component of a random \(n \)-mapping has exactly \(k \) nodes, then

\[
\left\{ \pi_2(k, 432) \right\}_{k=0}^4 = \{0.0595400, 0.0532617, 0.0594378, 0.0477544, 0.0387585\},
\left\{ \pi_2(k, 433) \right\}_{k=0}^4 = \{0.0594720, 0.0532614, 0.0594373, 0.0477539, 0.0387581\},
\left\{ \pi_2(k, 434) \right\}_{k=0}^4 = \{0.0594044, 0.0532612, 0.0594369, 0.0477535, 0.0387576\},
\left\{ \pi_2(k, 435) \right\}_{k=0}^4 = \{0.0593369, 0.0532609, 0.0594365, 0.0477530, 0.0387571\}.
\]

The maximum probability clearly is at \(k = 0 \) for \(n \leq 433 \) and then shifts to \(k = 2 \) for \(n \geq 434 \). Also

\[
\lim_{n \to \infty} \frac{L \mu_{n,2}}{n} = L G_{1/2}(2, 1) = 0.17090961985966239214..., \\
\lim_{n \to \infty} \frac{L \sigma_{n,2}^2}{n^2} = L G_{1/2}(2, 2) - L G_{1/2}(2, 1)^2 = 0.01862022330678138872..., \\
\lim_{n \to \infty} \frac{L \nu_{n,2}}{n} = 0.148..., \\
\lim_{n \to \infty} \frac{s \mu_{n,2}}{n^{1/2} \ln(n)} = \sqrt{2} S G_{1/2}(2, 1) = 2.06089224152016653900..., \\
\lim_{n \to \infty} \frac{s \sigma_{n,2}^2}{n^{3/2} \ln(n)} = \sqrt{2} S G_{1/2}(2, 2) = 1.40007638550124502818....
\]

No exact equation (akin to one involving \(\rho_r \) in Section 2) is known for the median of \(L \). An \(r \)th order Dickman function \(\rho_{r,1/2} \) of type \(a = 1/2 \) might be needed. What is responsible for mismatches between data and theory for \(S \)? This may be due to uncertainty about how the correction factor \(\sqrt{2} \) should be generalized from \(r = 1 \) to all \(r \geq 1 \). We believe that the sequence \(S \nu_{n,2} \) is bounded; a proof is not known.

Here \[25\] are numerical results for \(r = 3 \):

\(n \)	\(L \bar{\mu}_{n,3} \)	\(L \bar{\sigma}_{n,3}^2 \)	\(L \bar{\nu}_{n,3} \)	\(s \bar{\mu}_{n,3} \)	\(s \bar{\sigma}_{n,3}^2 \)	\(s \bar{\nu}_{n,3} \)
100	0.044147	0.003902	0.126620	0.052261	0.0700	
150	0.045094	0.003902	0.0067	0.133605	0.055079	0.0867
200	0.045642	0.003903	0.0100	0.138200	0.057284	0.0850
250	0.046008	0.003904	0.0120	0.141572	0.059120	0.0880

Table 6.2: Statistics for Map, rank three \((a = 1/2)\)

as well as \(s \nu_{n,3} = 24 \) for \(n > 275 \) and \(s \vartheta_{n,3} = 0 \) for \(n \leq 278 \) at least. Also

\[
\lim_{n \to \infty} \frac{L \mu_{n,3}}{n} = L G_{1/2}(3, 1) = 0.04889742536845958914..., \\
\lim_{n \to \infty} \frac{L \sigma_{n,3}^2}{n^2} = L G_{1/2}(3, 2) - L G_{1/2}(3, 1)^2 = 0.01862022330678138872..., \\
\lim_{n \to \infty} \frac{L \nu_{n,3}}{n} = 0.148..., \\
\lim_{n \to \infty} \frac{s \mu_{n,3}}{n^{1/2} \ln(n)} = 2 S G_{1/2}(3, 1) = 2.06089224152016653900..., \\
\lim_{n \to \infty} \frac{s \sigma_{n,3}^2}{n^{3/2} \ln(n)} = 2 S G_{1/2}(3, 2) = 1.40007638550124502818....
\]
\[
\lim_{n \to \infty} \frac{L_{G,n,3}^2}{n^2} = L_{G,1/2}(3,2) - L_{G,1/2}(3,1)^2 = 0.00392148747204257695..., \\
\lim_{n \to \infty} \frac{SG_{n,3}^2}{n^1/2 \ln(n)^2} = \sqrt{2} S_{G,1/2}(3,1) = 1.03044612076008326950..., \\
\lim_{n \to \infty} \frac{S_{\sigma_{n,3}^2}}{n^{3/2} \ln(n)^3} = \sqrt{2} S_{G,1/2}(3,2) = 0.70003819275062251409....
\]

The median of \(L\) is unknown and mismatches worsen. It is certainly possible that the sequence \(L_{\nu,n,3}\) might be bounded; the trend of \(S_{\nu,n,3}\) is ambiguous. There are presently insufficient data to render judgement.

Here \([26]\) are numerical results for \(r = 4\):

\(n\)	\(L_{\mu,n,4}\)	\(L_{\sigma_{n,4}^2}\)	\(S_{\mu,n,4}\)	\(S_{\sigma_{n,4}^2}\)
100	0.011968	0.000710	0.015300	0.007424
125	0.012324	0.000717	0.016032	0.007682
150	0.012585	0.000722	0.016606	0.007877
175	0.012787	0.000726	0.017077	0.008034

Table 6.3: Statistics for Map, rank four \((a = 1/2)\)
as well as \(L_{\nu,n,4} = 0, S_{\nu,n,4} = 0, S_{\theta,n,4} = 0\) for \(n \leq 183\) at least. Also

\[
\lim_{n \to \infty} \frac{L_{\mu,n,4}}{n} = L_{G,1/2}(4,1) = 0.01514572139988693564..., \\
\lim_{n \to \infty} \frac{L_{G,n,4}^2}{n^2} = L_{G,1/2}(4,2) - L_{G,1/2}(4,1)^2 = 0.00077636923173854484..., \\
\lim_{n \to \infty} \frac{S_{\mu,n,4}}{n^{1/2} \ln(n)^2} = \sqrt{2} S_{G,1/2}(4,1) = 0.34348204025336108983..., \\
\lim_{n \to \infty} \frac{S_{\sigma_{n,4}^2}}{n^{3/2} \ln(n)^3} = \sqrt{2} S_{G,1/2}(4,2) = 0.23334606425020750469....
\]

Again, the median of \(L\) is unknown and mismatches worsen. Although both sequences \(L_{\nu,n,4}\) and \(S_{\nu,n,4}\) seem to be bounded (only 0s observed), we sense that they are still in transience and substantially more data will be required to reach steady state.

7. Acknowledgements

I am indebted to Alois Heinz for providing the algorithms underlying \(p[n, \ell]\) and \(q[n, \ell]\), and to David Broadhurst for calculating \(L_{\tilde{\nu},n,2}, L_{\tilde{\nu},n,3}, L_{\tilde{\nu},n,4}, L_{\tilde{\theta},n,2}\) to high precision as \(n \to \infty\) (permutations only). Many thanks are owed to Jean-Francois Alcover for translating Heinz’s concise Maple code to a form I could understand. The volunteers who edit and maintain OEIS, the creators of Mathematica, as well as administrators of the MIT Engaging Cluster, earn my gratitude every day. A sequel to this paper will be released soon \([27]\).
REFERENCES
[1] S. R. Finch, Permute, Graph, Map, Derange. arXiv:2111.05720
[2] S. R. Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487.
[3] S. W. Golomb and P. Gaal, On the number of permutations of n objects with greatest cycle length k, Adv. in Appl. Math. 20 (1998) 98–107; MR1488234.
[4] D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica 31 (2001) 413–432; MR1855258.
[5] A. P. Heinz, private communications (2021).
[6] D. Panario and B. Richmond, Smallest components in decomposable structures: exp-log class, Algorithmica 29 (2001) 205–226; MR1887304.
[7] L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in a random permutation, Trans. Amer. Math. Soc. 121 (1966) 340–357; MR0195117.
[8] T. Shi, Cycle lengths of θ-biased random permutations, B.S. thesis, Harvey Mudd College, 2014, http://scholarship.claremont.edu/hmc_theses/65/.
[9] P. Flajolet and A. M. Odlyzko, Random mapping statistics, Advances in Cryptology - EUROCRYPT ’89, ed. J.-J. Quisquater and J. Vandewalle, Lect. Notes in Comp. Sci. 434, Springer-Verlag, 1990, pp. 329–354; MR1083961.
[10] X. Gourdon, Combinatoire, Algorithmique et Géométrie des Polynômes, Ph.D. thesis, École Polytechnique, 1996.
[11] R. Arratia, A. D. Barbour and S. Tavaré, Logarithmic Combinatorial Structures: a Probabilistic Approach, Europ. Math. Society, 2003, pp. 21-24, 52, 87–89, 118; MR2032426.
[12] R. G. Pinsky, A view from the bridge spanning combinatorics and probability, arXiv:2105.13834.
[13] N. Pippenger, Random cyclations, Elec. J. Combin. 20 (2013) R9; arXiv:math/0408031 MR3139394.
[14] D. E. Knuth and L. Trabb Pardo, Analysis of a simple factorization algorithm, Theoret. Comput. Sci. 3 (1976) 321–348; also in Selected Papers on Analysis of Algorithms, CSLI, 2000, pp. 303-339; MR0498355.
[15] M. Omar, D. Panario, B. Richmond and J. Whitely, Asymptotics of largest components in combinatorial structures, *Algorithmica* 46 (2006) 493–503; MR2291966.

[16] S. R. Finch, Extreme prime factors, *Mathematical Constants II*, Cambridge Univ. Press, 2019, pp. 171–172; MR3887550.

[17] D. Broadhurst, Higher-order Dickman functions, private communications (2014).

[18] D. Broadhurst, Dickman polylogarithms and their constants, arXiv:1004.0519.

[19] J.-M. De Koninck, Sur les plus grands facteurs premiers d’un entier, *Monatsh. Math.* 116 (1993) 13–37; MR1239141.

[20] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A330858 and A333726.

[21] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A006231, A155521, A332851, A332906, A349979, and A349980.

[22] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000774, A332852, A332907, A350015, and A350016.

[23] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A332853, A332908, A350273, and A350274.

[24] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A350078 and A350079.

[25] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A350080 and A350081.

[26] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A350275 and A350276.

[27] S. R. Finch, Joint probabilities within random permutations, *forthcoming*.

Steven Finch
MIT Sloan School of Management
Cambridge, MA, USA
steven.finch@harvard.edu