CP asymmetry in flavour-specific B decaysa

Ulrich Nierste
Fermi National Accelerator Laboratory, Batavia, IL 60510-500, USA.

I first discuss the phenomenology of \(a_{qfs} \) \((q = d, s)\), which is the CP asymmetry in flavour-specific \(B \) decays such as \(B_d \to X \ell \nu \ell \) or \(B_s \to D^- \pi^+ \). \(a_{qfs} \) can be obtained from the time evolution of any untagged \(B \) decay. Then I present recently calculated next-to-leading-order QCD corrections to \(a_{qfs} \), which reduce the renormalisation scheme uncertainties significantly.

For the Standard Model we predict \(a_{dfs} = - (5.0 \pm 1.1) \times 10^{-4} \) and \(a_{dfs} = (2.1 \pm 0.4) \times 10^{-5} \). As a by-product we determine the ratio of the width difference in the \(B_d \) system and the average \(B_d \) width to \(\Delta \Gamma_d / \Gamma_d = (3.0 \pm 1.2) \times 10^{-3} \) at next-to-leading order in QCD.

1 Preliminaries

The time evolution of the \(B_d - \bar{B}_d \) system is determined by a Schrödinger equation:

\[
\frac{i}{\hbar} \frac{d}{dt} \begin{pmatrix} |B_d(t)\rangle \\ |\bar{B}_d(t)\rangle \end{pmatrix} = \begin{pmatrix} M^d - i \frac{\Gamma^d}{2} \end{pmatrix} \begin{pmatrix} |B_d(t)\rangle \\ |\bar{B}_d(t)\rangle \end{pmatrix},
\]

which involves two Hermitian 2×2 matrices, the mass matrix \(M^d \) and the decay matrix \(\Gamma^d \). Here \(B_d(t) \) and \(\bar{B}_d(t) \) denote mesons which are tagged as a \(B_d \) and \(\bar{B}_d \) at time \(t = 0 \), respectively. By diagonalising \(M^d - i \Gamma^d / 2 \) one obtains the mass eigenstates:

Lighter eigenstate: \(|B_{d,L}\rangle = p|B^0_d\rangle + q|\bar{B}^0_d\rangle \)

Heavier eigenstate: \(|B_{d,H}\rangle = p|B^0_d\rangle - q|\bar{B}^0_d\rangle \) with \(|p|^2 + |q|^2 = 1 \).

We discuss the mixing formalism for \(B_d \) mesons, the corresponding quantities for \(B_s - \bar{B}_s \) mixing are obtained by the replacement \(d \to s \). The coefficients \(q \) and \(p \) in Eq. (2) are also different for the \(B_d \) and \(B_s \) systems. The \(B_d - \bar{B}_d \) oscillations in Eq. (1) involve the three physical quantities \(|M^d_{12}|, |\Gamma^d_{12}| \) and \(\phi_d = \arg(-M^d_{12}/\Gamma^d_{12}) \) (see e.g. [1]). The mass and width differences between \(B_{d,L} \) and \(B_{d,H} \) are related to them as

\[
\Delta M_d = M^d_H - M^d_L = 2|M^d_{12}|, \quad \Delta \Gamma_d = \Gamma^d_L - \Gamma^d_H = 2|\Gamma^d_{12}| \cos \phi_d,
\]

aTalk presented at the Moriond conference on Electroweak Interactions and Unified Theories, 2004.
where \(M_{L}^{d}, \Gamma_{L}^{d} \) and \(M_{H}^{d}, \Gamma_{H}^{d} \) denote the masses and widths of \(B_{d,L} \) and \(B_{d,H} \), respectively.

The third quantity to determine the mixing problem in Eq. (1) is

\[
a_{fs}^{d} = \text{Im} \frac{\Gamma_{12}^{d}}{M_{12}^{d}} = \frac{\Delta \Gamma_{d}}{\Delta M_{d}} \tan \phi_{d}. \tag{4}
\]

\(\alpha_{fs}^{d} \) is the CP asymmetry in flavour-specific \(B_{d} \rightarrow f \) decays, which means that the decays \(\bar{B}_{d} \rightarrow f \) and \(B_{d} \rightarrow \bar{f} \) (with \(f \) denoting the CP-conjugate final state) are forbidden [2]. Next we consider flavour-specific decays in which the decay amplitudes \(A_{f} = \langle f | B_{d} \rangle \) and \(\overline{A}_{f} = \langle \bar{f} | \bar{B}_{d} \rangle \) in addition satisfy

\[
|A_{f}| = |\overline{A}_{f}|. \tag{5}
\]

Eq. (5) means that there is no direct CP violation in \(B_{d} \rightarrow f \). Then \(\alpha_{fs}^{d} \) is given by

\[
\alpha_{fs}^{d} = \frac{\Gamma(\bar{B}_{d}(t) \rightarrow f) - \Gamma(B_{d}(t) \rightarrow f)}{\Gamma(\bar{B}_{d}(t) \rightarrow f) + \Gamma(B_{d}(t) \rightarrow f)}. \tag{6}
\]

Note that the oscillatory terms cancel between numerator and denominator. The standard way to access \(\alpha_{fs}^{d} \) uses \(B_{d} \rightarrow X\ell^{+}H \) decays, which justifies the name semileptonic CP asymmetry for \(\alpha_{fs}^{d} \). In the \(B_{s} \) system one can also use \(B_{s} \rightarrow D_{s}^{-}\pi^{+} \) to measure \(\alpha_{fs}^{s} \). Yet, for example, Eq. (6) does not apply to the flavour-specific decays \(B_{d} \rightarrow K^{+}\pi^{-} \) or \(B_{s} \rightarrow K^{-}\pi^{+} \), which do not obey Eq. (5).

\(\alpha_{fs}^{d} \) measures CP violation in mixing. Other commonly used notations involve the quantities \(|q/p|\) or \(\epsilon_{B} \); they are related to \(\alpha_{fs}^{d} \) as

\[
1 - \left| \frac{q}{p} \right| = \frac{\alpha_{fs}^{d}}{2}, \quad \frac{\text{Re} \epsilon_{B}}{1 + |\epsilon_{B}|^{2}} = \frac{\alpha_{fs}^{d}}{4}. \tag{7}
\]

Here \(\epsilon_{B} = (1 + q/p)/(1 - q/p) \) is the analogue of the quantity \(\tau_{K} \) in \(K^{0} - \bar{K}^{0} \) mixing. Unlike \(\alpha_{fs}^{d} \), it depends on phase conventions and should not be used. In Eq. (7) and future equations we neglect terms of order \((\alpha_{fs}^{d})^{2}\).

\(\alpha_{fs}^{d} \) is small for two reasons: First \(|\Gamma_{12}^{d}/M_{12}^{d}| = O(m_{c}^{2}/M_{W}^{2}) \) suppresses \(\alpha_{fs}^{d} \) to the percent level. Second there is a GIM suppression factor \(m_{c}^{2}/m_{b}^{2} \) reducing \(\alpha_{fs}^{d} \) by another order of magnitude. Generic new physics contributions to \(\arg M_{12}^{d} \) (e.g. from squark-gluino loops in supersymmetric theories) will lift this GIM suppression. \(\alpha_{fs}^{d} \) is further suppressed by two powers of the Wolfenstein parameter \(\lambda \approx 0.22 \). Therefore \(\alpha_{fs}^{d} \) and \(\alpha_{fs}^{s} \) are very sensitive to new CP phases [1, 3], which can enhance \(|\alpha_{fs}^{d}| \) and \(|\alpha_{fs}^{s}| \) to 0.01. |\(\alpha_{fs}^{d} \)| can be further enhanced by new contributions to \(\Gamma_{12}^{d} \), which is doubly Cabibbo-suppressed in the Standard Model.

The experimental world average for \(\alpha_{fs}^{d} \) is [4]

\[
\alpha_{fs}^{d} = 0.002 \pm 0.013.
\]

2 Measurement of \(\alpha_{fs}^{d} \)

2.1 Flavour-specific decays

We first discuss the flavour-specific decays without direct CP violation in the Standard Model. First note that the “right-sign” asymmetry vanishes:

\[
\Gamma(B_{q}(t) \rightarrow f) - \Gamma(\bar{B}_{q}(t) \rightarrow \bar{f}) = 0. \tag{8}
\]
Since we are hunting possible new physics in a tiny quantity, we should be concerned whether Eq. (5) still holds in the presence of new physics. Further no experiment is exactly charge-symmetric, and the efficiencies for $B \rightarrow \bar{f}$ and $B \rightarrow f$ may differ by a factor of $1 + \delta_c$. One can use the “right-sign” asymmetry in Eq. (8) to calibrate for both effects: In the presence of a charge asymmetry δ_c one will measure

$$a_{q,\delta_c}^{\text{right}} = \frac{\Gamma(B_q(t) \rightarrow f) - (1 + \delta_c)\Gamma(\bar{B}_q(t) \rightarrow \bar{f})}{\Gamma(B_q(t) \rightarrow f) + (1 + \delta_c)\Gamma(\bar{B}_q(t) \rightarrow \bar{f})} = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2} - \frac{\delta_c}{2}. \quad (9)$$

Instead of the desired CP asymmetry in Eq. (6) one will find

$$a_{q}^{\text{fs}} = \frac{\Gamma(\bar{B}_d(t) \rightarrow f) - (1 + \delta_c)\Gamma(B_d(t) \rightarrow \bar{f})}{\Gamma(\bar{B}_d(t) \rightarrow f) + (1 + \delta_c)\Gamma(B_d(t) \rightarrow \bar{f})} = a_{q,\delta_c}^{\text{fs}} + a_{q,\delta_c}^{\text{right}}. \quad (10)$$

Thus δ_c and the direct CP asymmetry $(|A_f|^2 - |\bar{A}_{\bar{f}}|^2)/(|A_f|^2 + |\bar{A}_{\bar{f}}|^2)$ enter Eq. (9) and Eq. (10) in the same combination and a_{q}^{fs} can be determined. Above we have kept only terms to first order in the small quantities $1 - |\bar{A}_{\bar{f}}|^2/|A_f|^2$, δ_c and a_{q}^{fs}.

It is well-known that the measurement of a_{q}^{fs} requires neither tagging nor the resolution of the $B_q-\bar{B}_q$ oscillations [2]. Since the right-sign asymmetry in Eq. (8) vanishes, the information on a_{q}^{fs} from Eq. (6) persists in the untagged decay rate

$$\Gamma[f, t] = \Gamma(B_q(t) \rightarrow f) + \Gamma(\bar{B}_q(t) \rightarrow f). \quad (11)$$

At a hadron collider one also cannot rule out a production asymmetry $\delta_p = N_{\bar{B}_q}/N_{B_q} - 1$ between the numbers $N_{\bar{B}_q}$ and N_{B_q} of \bar{B}_q's and B_q's. An untagged measurement will give

$$a_{q,\delta_c}^{\text{fs,unt}(t)} = \frac{\Gamma[f, t] - (1 + \delta_c)\Gamma[\bar{f}, t]}{\Gamma[f, t] + (1 + \delta_c)\Gamma[\bar{f}, t]} = a_{q,\delta_c}^{\text{right}} + \frac{a_{q,\delta_c}^{\text{fs}}}{2} + \frac{\delta_p}{2} \frac{\cos(\Delta M_q t)}{\cosh(\Delta \Gamma_q t/2)}. \quad (12)$$

The use of the larger untagged data sample to determine $a_{q,\delta_c}^{\text{fs}}$ seems to be advantageous at the $\Upsilon(4S)$ B factories, where $\delta_p = 0$. Then the time evolution in Eq. (12) contains enough information to separate $a_{q,\delta_c}^{\text{fs}}$ from $a_{q,\delta_c}^{\text{right}} = a_{q,\delta_c}^{\text{fs,unt}(t = 0)}$.

Eqs. (6), (9) and (10) still hold, when the time-dependent rates are integrated over t. The time-integrated untagged CP asymmetry reads (for $|A_f| = |\bar{A}_{\bar{f}}|$, $\delta_c = \delta_p = 0$):

$$A_{q,\text{fs,unt}}^{\text{fs}} = \frac{\int_0^\infty dt \left[\Gamma[f, t] - \Gamma[\bar{f}, t] \right]}{\int_0^\infty dt \left[\Gamma[f, t] + \Gamma[\bar{f}, t] \right]} = a_{q,\delta_c}^{\text{fs}} \frac{x_q^2 + y_q^2}{x_q^2 + y_q^2 + 1} \quad (13)$$

where $x_q = \Delta M_q/\Gamma_q$, $y_q = \Delta \Gamma_q/(2\Gamma_q)$ and Γ_q is the average decay width in the B_q system. In particular a measurement of $a_{q,\delta_c}^{\text{fs}}$ does not require to resolve the rapid $B_s-\bar{B}_s$ oscillations. In $\Upsilon(4S)$ B factories a common method to constrain $a_{q,\delta_c}^{\text{fs}}$ is to compare the number N_{++} of decays $(B_d(t), \bar{B}_d(t)) \rightarrow (f, f)$ with the number N_{--} of decays to (\bar{f}, \bar{f}), typically for $f = X\ell^+\nu_\ell$. Then one finds $a_{q,\delta_c}^{\text{fs}} = (N_{++} - N_{--})/(N_{++} + N_{--})$.

We next exemplify the measurement of $a_{q,\delta_c}^{\text{fs}}$ from time-integrated tagged $B_s \rightarrow f$ decays, having $f = X\ell^+\nu_\ell$ in mind. This approach should be feasible at the Fermilab Tevatron.

1Direct CP violation requires the presence of a CP-conserving phase. In the case of $B_d \rightarrow D^+\ell^+\nu_\ell$ this phase comes from photon exchange and is small. Also somewhat contrived scenarios of new physics are needed to get a sizeable CP-violating phase in a semileptonic decay. Thus here one needs to worry about $|A_f| \neq |\bar{A}_{\bar{f}}|$ only, once $a_{q,\delta_c}^{\text{fs}}$ is probed at the permille level.
allow the detector to be charge-asymmetric ($\delta_c \neq 0$) and also relax Eq. (5) to $|A_f| \approx |\overline{A}_f|$. Let N_f denote the total number of observed decays of meson tagged as B_s at time $t = 0$ into the final state f. Further \overline{N}_f denotes the analogous number for a meson initially tagged as a \overline{B}_s. The corresponding quantities for the decays $B_s(t) \rightarrow \overline{f}$ and $\overline{B}_s(t) \rightarrow f$ are N_f and \overline{N}_f. One has

$$\overline{N}_f \propto \int_0^\infty dt \Gamma(\overline{B}_s(t) \rightarrow f), \quad N_f \propto (1 + \delta_c) \int_0^\infty dt \Gamma(\overline{B}_s(t) \rightarrow f)$$

with the same constant of proportionality. The four asymmetries

$$\frac{N_f - \overline{N}_f}{N_f + \overline{N}_f} = a_{\text{right}}^s \delta_c, \quad \frac{\overline{N}_f - N_f}{N_f + \overline{N}_f} = a_{\text{right}}^s + a_{\text{fs}}^s,$$

$$\frac{N_f - \overline{N}_f}{N_f + \overline{N}_f} = 1 - \frac{y_s^2}{1 + x_s^2}, \quad \frac{\overline{N}_f - N_f}{N_f + \overline{N}_f} = 1 - \frac{y_s^2}{1 + x_s^2} + \frac{a_{\text{fs}}^s}{2} (14)$$

then allow to determine a_{fs}^s and $(1 - y_s^2)/(1 + x_s^2)$. In the second line of Eq. (14) terms of order a_{fs}^s/x_s^2 have been neglected. (Of course the last asymmetry in Eq. (14) is redundant.)

2.2 Any decay

Since q/p enters the time evolution of any neutral $B_q \rightarrow f$ decay, we can use any such decay to determine a_{fs}^s. The time dependent decay rates involve

$$\lambda_f = \frac{\langle f | B_q \rangle}{\langle f | B_q \rangle}.$$

In Eq. (1.73)-(1.77) of [1] $\Gamma(B_q(t) \rightarrow f), \Gamma(\overline{B}_q(t) \rightarrow f), \Gamma(B_q(t) \rightarrow \overline{f})$ and $\Gamma(\overline{B}_q(t) \rightarrow f)$ can be found for the most general case, including a non-zero $\Delta \Gamma_q$. For the untagged rate one easily finds

$$\Gamma[f,t] \propto e^{-\Gamma_q t} \left\{ 1 + \frac{a_{\text{fs}}^q}{2} \left[\cosh \frac{\Delta \Gamma_q t}{2} + A^\Delta \Gamma \sinh \frac{\Delta \Gamma_q t}{2} \right] - \frac{a_{\text{fs}}^q}{2} \left[A^\text{dir} \cos(\Delta M_q t) + A^\text{mix} \sin(\Delta M_q t) \right] \right\} (15)$$

with

$$A^\text{dir} = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \quad A^\text{mix} = -\frac{2 \text{Im} \lambda_f}{1 + |\lambda_f|^2} \quad \text{and} \quad A^\Delta \Gamma = -\frac{2 \text{Re} \lambda_f}{1 + |\lambda_f|^2}. (16)$$

Hence one can obtain a_{fs}^q from the amplitude of the tiny oscillations in Eq. (15). Once A^dir and A^mix are determined from the $\cos \Delta M_q t$ and $\sin \Delta M_q t$ terms of the time evolution in the tagged $B_q(t) \rightarrow f$ decay. If f is a CP eigenstate, A^dir and A^mix are the direct and mixing-induced CP asymmetries. For example, in $B_d \rightarrow J/\psi K_S$ one has $\lambda_f = -\exp(-2i\beta) + O(a_{\text{fs}})$, so that one can set $A^\text{dir} = 0$ and $A^\text{mix} = -\sin(2\beta)$ in Eq. (15). The flavour-specific decays discussed in the previous section correspond to the special case $\lambda_f = 0$.

3 QCD corrections to a_{fs}^q

$a_{fs}^q = \text{Im} \, \Gamma_{12}^q / M_{12}^q$ is proportional to two powers of the charm mass m_c. A theoretical prediction in leading order (LO) of QCD cannot control the renormalisation scheme of m_c. Therefore the LO result a_{fs}^q suffers from a theoretical uncertainty which is not only huge but also hard to quantify. While next-to-leading order (NLO) QCD corrections to M_{12}^q are known for long [5], the computation of those to Γ_{12}^q has been completed only recently. The LO and a sample NLO diagram are shown in Fig. 1. The NLO result for the contribution with two identical up-type quark lines (sufficient for the prediction of $\Delta \Gamma_s$) has been calculated in [6] and was confirmed in [7]. The contribution with one up-quark and one charm-quark line was obtained recently in [7] and [8]. In order to compute Γ_{12}^q one exploits the fact that the mass m_b of the b-quark is much larger than the fundamental QCD scale Λ_{QCD}. The theoretical tool used is the Heavy Quark Expansion (HQE), which yields a systematic expansion of Γ_{12}^q in the two parameters Λ_{QCD}/m_b and $\alpha_s(m_b)$ [9]. Γ_{12}^q and M_{12}^q involve hadronic “bag” parameters, which quantify the size of the non-perturbative QCD binding effects and are difficult to compute. The dependence on these hadronic parameters, however, largely cancels from a_{fs}^q.

Including corrections of order α_s [6–8] and Λ_{QCD}/m_b [7, 8, 10] we predict [8]

$$a_{fs}^d = 10^{-4} \left[-\frac{\sin \beta}{R_t} (12.0 \pm 2.4) + \left(\frac{2 \sin \beta}{R_t} - \frac{\sin 2\beta}{R_t^2} \right) (0.2 \pm 0.1) \right].$$

Here β is the angle of the unitarity triangle measured in the CP asymmetry of $B_d \to J/\psi K_S$. If $(\bar{\rho}, \bar{\eta})$ denotes the apex of the usual unitarity triangle, then $R_t \equiv \sqrt{(1 - \bar{\rho})^2 + \bar{\eta}^2}$ is the length of one of its sides. For the Standard Model fit to the unitarity triangle with $\beta = 22.4^\circ \pm 1.4^\circ$ and $R_t = 0.91 \pm 0.05$ [11] one finds:

$$a_{fs}^d = -(5.0 \pm 1.1) \cdot 10^{-4}$$

The impact of a future measurement of a_{fs}^d on the unitarity triangle is shown in Fig. 2. The result for the B_s system is

$$a_{fs}^s = (12.0 \pm 2.4) \cdot 10^{-4} |V_{us}|^2 R_t \sin \beta = (2.1 \pm 0.4) \cdot 10^{-5}.$$

From Eq. (3) one finds that $\Delta \Gamma_q / \Delta M_q = -\text{Re}(\Gamma_{12}^q / M_{12}^q)$. This ratio was predicted to NLO in [6] for the B_s system. With the new result of [7, 8] we can also predict $\Delta \Gamma_d / \Delta M_d$. Due to a numerical accident, the Standard Model prediction for the ratio $\Delta \Gamma_q / \Delta M_q$ is essentially the same for $q = d$ and $q = s$:

$$\frac{\Delta \Gamma_q}{\Delta M_q} = (4.0 \pm 1.6) \times 10^{-3}, \quad \frac{\Delta \Gamma_d}{\Gamma_d} = (3.0 \pm 1.2) \times 10^{-3}. \quad (17)$$
Figure 2: Constraint in the $(\bar{\rho}, \bar{\eta})$ plane from a_d^{fs}. Area between solid pair of curves: NLO, for the cases $a_d^{fs} = -5 \times 10^{-4}$ (left) and $a_d^{fs} = -10^{-3}$ (right). Area between dashed curves: LO for $a_d^{fs} = -5 \times 10^{-4}$. The current best fit to the unitarity triangle [11] is also shown.

The precise values for the quark masses, “bag” factors and α_s used for our numerical predictions can be found in Eq. (7) of [8].

We close our discussion with a remark about the B_s system. It is possible that new physics contributions render the $B_s - \bar{B}_s$ oscillations so large that a measurement of ΔM_s will be impossible. In general such new physics contribution will affect the CP phase ϕ_s and suppress $\Delta \Gamma_s$ in Eq. (3). Different measurements of $\Delta \Gamma_s$ can then determine $|\cos\phi_s|$ despite of the unobservably rapid $B_s - \bar{B}_s$ oscillations [12]. A measurement of the sign of $a_s^{fs} \propto \sin\phi_s$ (which will then be enhanced, unless ΔM_s is extreme) through e.g. Eq. (13) will then reduce the four-fold ambiguity in ϕ_s from the measurement of $|\cos\phi_s|$ to a two-fold one.

Acknowledgements

I thank the organisers for the invitation to this very pleasant and stimulating Moriond conference. The presented results stem from an enjoyable collaboration with Martin Beneke, Gerhard Buchalla and Alexander Lenz [8]. I am grateful to Guennadi Borisov for pointing out a mistake in Eq. (13).

Fermilab is operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

References

1. K. Anikeev et al., B physics at the Tevatron: Run II and beyond, [hep-ph/0201071], Chapters 1.3 and 8.3.
2. E. H. Thorndike, Ann. Rev. Nucl. Part. Sci. 35 (1985) 195; J. S. Hagelin and M. B. Wise, Nucl. Phys. B 189 (1981) 87; J. S. Hagelin, Nucl. Phys. B 193 (1981) 123; A. J. Buras, W. Slominski and H. Steger, Nucl. Phys. B 245 (1984) 369.
3. R. N. Cahn and M. P. Worah, Phys. Rev. D 60 (1999) 076006; S. Laplace, Z. Ligeti, Y. Nir and G. Perez, Phys. Rev. D 65 (2002) 094040.
4. O. Schneider, $B^0 - \bar{B}^0$ mixing, [hep-ex/0405012] to appear in S. Eidelman et al. (Particle Data Group), *Review of Particle Physics*.

5. A. J. Buras, M. Jamin and P. H. Weisz, Nucl. Phys. B 347 (1990) 491.

6. M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Phys. Lett. B 459 (1999) 631.

7. M. Ciuchini, E. Franco, V. Lubicz, F. Mescia and C. Tarantino, JHEP 0308, 031 (2003).

8. M. Beneke, G. Buchalla, A. Lenz and U. Nierste, Phys. Lett. B 576 (2003) 173.

9. M. A. Shifman and M. B. Voloshin, in: *Heavy Quarks* ed. V. A. Khoze and M. A. Shifman, Sov. Phys. Usp. 26 (1983) 387; M. A. Shifman and M. B. Voloshin, Sov. J. Nucl. Phys. 41 (1985) 120 [Yad. Fiz. 41 (1985) 187]; M. A. Shifman and M. B. Voloshin, Sov. Phys. JETP 64 (1986) 698 [Zh. Eksp. Teor. Fiz. 91 (1986) 1180]; I. I. Bigi, N. G. Uraltsev and A. I. Vainshtein, Phys. Lett. B 293 (1992) 430 [Erratum-ibid. B 297 (1992) 477].

10. M. Beneke, G. Buchalla and I. Dunietz, Phys. Rev. D 54 (1996) 4419. A. S. Dighe, T. Hurth, C. S. Kim and T. Yoshikawa, Nucl. Phys. B 624 (2002) 377.

11. M. Battaglia et al., *The CKM matrix and the unitarity triangle*, [hep-ph/0304132].

12. Y. Grossman, Phys. Lett. B380 (1996) 99. I. Dunietz, R. Fleischer and U. Nierste, Phys. Rev. D 63 (2001) 114015.