Note on Wess-Zumino-Witten models and quasiuniversality in 2+1 dimensions

Adam Nahum

1Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
(Dated: January 1, 2020)

We suggest that the possibility that the two-dimensional SU(2)k Wess-Zumino-Witten (WZW) theory, which has global SO(4) symmetry, can be continued to 2 + \epsilon dimensions by enlarging the symmetry to SO(4 + \epsilon). This is motivated by the three-dimensional sigma model with SO(5) symmetry and a WZW term, which is relevant to deconfined criticality. If such a continuation exists, the structure of the renormalization group flows at small \epsilon may be fixed by assuming analyticity in \epsilon. This leads to the conjecture that the WZW fixed point annihilates with a new, unstable fixed point at a critical dimensionality d_\epsilon > 2. We suggest that d_\epsilon < 3 for all k, and we compute d_\epsilon in the limit of large k. The flows support the conjecture that the deconfined phase transition in SU(2) magnets is a “pseudocritical” point with approximate SO(5), controlled by a fixed point slightly outside the physical parameter space.

This note makes a conjecture about renormalization group (RG) flows in nonlinear sigma models (NL\sigma Ms) with WZW terms in 2 + \epsilon dimensions. It is speculative, since we do not provide a concrete definition of these models in noninteger dimensions. But we point out that assuming the existence of such a continuation in \epsilon leads to interesting conclusions. The WZW fixed point survives up to a critical \epsilon, at which it annihilates with a new unstable fixed point that did not exist in 2D. This critical \epsilon_c can be calculated easily only at large k, where k is the WZW level, but we conjecture that for all k the annihilation occurs in between 2 and 3 dimensions. Our motivation is the case \epsilon = 1, which is the SO(5)-symmetric NL\sigma M for a 5-component unit vector, in 3D. This is a useful effective field theory for various interesting phase transitions [1-3] that show numerical evidence of emergent SO(5) [4-8]. The scenario obtained here supports, and gives a new way of thinking about, the “quasiuniversal” or “pseudocritical” RG flows conjectured previously for these models [9, 10], since the fixed point annihilation at d_\epsilon \lesssim 3 suggested by this calculation provides a mechanism for slow RG flows in d = 3. We return to this at the end.

The Euclidean action for the SU(2)k WZW model in 2D, in terms of an SU(2) matrix g(x_1, x_2), is [11-15]

\[S = \frac{1}{2\lambda^2} \int d^2 x \text{Tr} (\partial_\mu g^{-1})(\partial_\mu g) + ik \Gamma. \] (1)

\(\Gamma \) is the WZW term, written in terms of an extension \(g(x_1, x_2, x_3) \) of the field to a fictitious 3D “bulk” as

\[\Gamma = \frac{\imath \pi}{4\lambda^2} \int d^3 x \text{Tr} (g^{-1}\partial_\mu g)(g^{-1}\partial_\mu g)\partial_3 g. \]

The field lives on the sphere \(S^3 \), and can be written as a four-component unit vector \(\Phi \) using the Pauli matrices:

\[g = \Phi_0 \mathbb{1} + \imath \sum_{a=1}^3 \Phi_a \sigma^a. \]

Therefore this is also the standard O(4) sigma model, with the addition of the WZW term, which reduces the internal symmetry to SO(4) = [SU(2)_L x SU(2)_R]/\mathbb{Z}_2. For a given k \in \mathbb{Z}, the theory has an unstable, trivial fixed point at \(\lambda^2 = 0 \), and a stable, nontrivial one at \(\lambda^2 = 4\pi/k \) [11, 15].

The construction generalizes to d dimensions, giving the NL\sigma M for a (d + 2)-component “spin”, with a WZW term and SO(d + 2) symmetry (see e.g. [16]):

\[S_d = \frac{1}{\lambda^d} \int (\partial \Phi)^2 + \frac{2\pi k}{\text{area}(S^{d+1})} \int \Phi_a \partial_{x_1} \Phi_{a_2} \ldots \partial_d \Phi_{a_{d+2}} \]

(2)

The most interesting case for us in the above hierarchy of theories is S_3, the SO(5) sigma model in d = 3. In d = 1 the standard kinetic term is irrelevant at low energies, and dropping it leaves the usual coherent-states path integral for a spin of size k/2 [17]. The d = 0 case is an integral: writing \(\Phi_0 + \imath \Phi_1 = e^{i\theta} \), the action is \(S_0 = ik\theta \), and the “correlator” is \(e^{im\theta} = \delta_{m,k} \).

These theories, often with symmetry-breaking anisotropic terms, have many applications to critical phenomena. These applications can usually be understood heuristically from the fact that S_3 is the effective theory on an appropriate \(\ell \)-dimensional defect (built by fixing the configuration of \(d - \ell \) components of \(\Phi \) in the d-dimensional theory S_d). For example, we may construct a hedgehog-like configuration for d components of \(\Phi \). The effective theory at this defect is S_3 for the remaining two components. The above expression for \(e^{im\theta} \) then shows that such defects are forbidden except at the loci of insertions of \(e^{i\theta(x)} \). This is connected to the fact that an anisotropic version of S_3 describes the 3D O(3) model with hedgehog defects forbidden [2, 6, 18-20].

Motivated by this hierarchy of field theories, let us entertain the possibility that the fixed points present in 2D can be tracked to 2 + \epsilon dimensions. Whether this can be made precise is less clear than in the case without a WZW term, where the 2 + \epsilon expansion is standard, because the structure of the topological term depends on the dimensionality [21]. Nevertheless, if we assume the continuation exists, the flows at small \epsilon can be fixed very simply using known results in 2D and assuming analyticity of the RG equations in \epsilon. This is inspired by the treatment of the O(n) model close to \(n = d = 2 \) in Ref. [22].

In two dimensions the one-loop beta function is [11]

\[\frac{d\lambda^2}{d \ln L} = \frac{\lambda^4}{2\pi} \left(1 - \left(\frac{\lambda^2 k}{4\pi} \right)^2 \right) \] (3)
The one-loop approximation is justified at large $|k|$ because the fixed point is at $\lambda^2 = \mathcal{O}(k^{-1})$, so that the entire action is multiplied by a large parameter of order k [11]. For k of order 1 we should use an unknown exact β function, but with the same topology of flows. We write this schematically as

$$ \frac{d\lambda^2}{d\ln L} = \beta_k^{(0)}(\lambda^2). $$

We now go to $d = 2 + \epsilon$, assuming the RG equations are analytic in ϵ:

$$ \frac{d\lambda^2}{d\ln L} = \beta_k^{(0)}(\lambda^2) + \epsilon \beta_k^{(1)}(\lambda^2) + \mathcal{O}(\epsilon)^2. $$

In the limit of small λ^2 we have, trivially,

$$ \beta_k^{(0)}(\lambda^2) = \frac{\lambda^4}{2\pi} + \mathcal{O}(\lambda^6), \quad \beta_k^{(1)}(\lambda^2) = -\lambda^2 + \mathcal{O}(\lambda^4). $$

This is already enough to fix the topology of the RG flows when ϵ is small: see Fig. 1, third panel. At $\epsilon = 0$ we have a marginally unstable fixed point at $\lambda^2 = 0$ and a stable one at λ^2_\ast. The latter remains stable and isolated for small ϵ (but, if the signs predicted by the perturbative expressions are valid, they shift towards the origin by $\mathcal{O}(\epsilon)$, and its irrelevant RG eigenvalue moves slightly towards zero). In contrast, the perturbation splits the fixed point at $\lambda^2 = 0$ into a stable fixed point at $\lambda^2 = 0$ and an unstable fixed point at $\lambda^2_\ast \simeq 2\pi\epsilon$. This splitting in the vicinity of $\lambda^2 = 0$ is similar to the O(N) NLσM without a WZW term; in both cases the unstable fixed point governs a transition between phases with broken/unbroken symmetry. Here however the universality class of the fixed point at λ^2_\ast is different, as is that of the unbroken phase.

The likely situation is that, at some $d_c(k)$, the unstable fixed point which is moving away from the origin collides and annihilates with the stable fixed point which is moving towards the origin — so that in high dimensions there is no fixed point for real λ^2. At $d = d_c(k)$ we have a marginally stable fixed point (Fig. 1).

We can be more concrete when k is large. Consider the scaling $k \gg 1$ with ϵk of order 1. The relevant regime is

![FIG. 2. RG eigenvalues y for stable (lower branch) and unstable (upper branch) fixed points as a function of ϵ at large k.](image)

where λ^2 is of order ϵ. The leading terms are then:

$$ \frac{d\lambda^2}{d\ln L} = -\epsilon \lambda^2 + \frac{\lambda^4}{2\pi} \left(1 - \left(\frac{\lambda^2 k}{4\pi} \right)^2 \right). $$

We see that the annihilation described above indeed occurs, and the critical dimensionality is:

$$ d_c(k) = 2 + \frac{4}{3\sqrt{3} \times k}. $$

Fig. 2 shows the RG eigenvalues of the stable and unstable fixed points for $d < d_c$.

When $d \gtrsim d_c$ we have pseudocritical RG flows. Slow flow for $\lambda^2 \sim 4\pi/\sqrt{\pi k}$, where the flows are approximately

$$ \frac{d\delta\lambda^2}{d\ln L} \simeq -\frac{4\pi(d - d_c)}{\sqrt{3}k} - \frac{(\delta\lambda^2)^2}{2\pi}, $$

yields the exponentially large correlation length $\xi \sim \exp \frac{3^{1/4}\pi\sqrt{k}}{\sqrt{2(d - d_c)}}$, as in other theories with a fixed point annihilation [9, 23–30]. Ref. [10] argued that in such a situation, expanding the RG equations for irrelevant couplings in $d - d_c$ shows that quasiuniversality (independence of UV couplings) holds on long scales, to exponentially good precision in $[d - d_c]^{-1/2}$, despite the fact that λ^2 drifts: different microscopic models travel along the same quasiuniversal flow line in theory space. For $d \gtrsim d_c$ we also have complex, $\text{SO}(d + 2)$-symmetric fixed points with $\text{Im} \lambda^2 \propto \sqrt{d - d_c}$. Complex fixed points have been explored recently in Refs. [31–35].

In the context of deconfined criticality we are interested in 3D models that in the UV have a smaller symmetry than SO(5). If d_c is close enough to 3 to give a large ξ in 3D, and assuming that the four-index symmetric tensor of SO(4 + ϵ) is irrelevant at d_c [4, 10] (this is the case at large k, where scaling dimensions are close to those in 2D) then the above flows will lead to a pseudocritical phase transition with approximate emergent SO(5), by the scenario discussed in Refs. [10, 36]. This scenario is consistent with simulations, and, since it does not require a unitary 3D fixed point, with conformal bootstrap [37–40]. It is also consistent with what we know about various dual gauge theories for deconfined criticality [9, 10], including recent ϵ-expansion results [41–43]. The endpoint of the quasiuniversal flow line is the ordered phase
(\lambda^2 = 0): in the application to deconfined criticality this means that at the very longest scales the emergent symmetry gets spontaneously broken, giving artificial SO(5) “Goldstone modes” with a very small mass [36, 44].

Though speculative, the present lowest-order expansion supports this scenario. If a consistent framework for expanding to higher orders in \epsilon [45] can be defined, then this would be one way to put the pseudocriticality scenario for SO(5) on firm ground. The above also suggests examining numerically the 3D models with k > 1 (or rather related sign-free lattice models which could be based on those relevant to the k = 1 case [6, 7, 9, 46]), to test for pseudocriticality there.

We can consider other, related deformations of the WZW model. At the order to which we have worked, changing the dimension to 2 + \epsilon has the same effect on the RG flows as changing the power of momentum q in the kinetic term to |q|^{2-\epsilon}. This raises the question of whether we can study quasiumiversality in the 3D model, while avoiding the WZW term in noninteger dimensions, by imposing a dispersion of the form |q|^{3-\delta} with \delta > 0. It also raises the question of whether we can obtain pseudo-criticality, fixed point annihilation, complex fixed points, etc., in the one-dimensional (0+1D) model with a WZ term, by taking a coupling that is long-ranged [47, 48] in time, \sim |t - t'|^{-(2-\delta)}, and varying \delta. This model is relevant to the dynamics of a spin coupled to a bath [49–51]. We hope to return to these issues elsewhere.

Related work: After completion of this work, I became aware of independent work by Ruochen Ma and Chong Wang reaching the same essential conclusions (to appear in the same arXiv posting).

Acknowledgments: I thank John Chalker, Patrick Draper, Fabian Essler, John March-Russell, Michael Scherer, and T. Senthil for useful discussions. I thank Ruochen Ma and Chong Wang for sharing results prior to publication. This work was supported by a Royal Society University Research Fellowship.

[1] Akihiro Tanaka and Xiao Hu. Many-body spin berry phases emerging from the π-flux state: Competition against antiferromagnetism and the valence-bond-solid state. Phys. Rev. Lett., 95:036402, Jul 2005.

[2] T. Senthil and Matthew P. A. Fisher. Competing orders, nonlinear sigma models, and topological terms in quantum magnets. Phys. Rev. B, 74:064405, Aug 2006.

[3] T. Senthil, Ashvin Vishwanath, Leon Balents, Subir Sachdev, and Matthew P. A. Fisher. Deconfined quantum critical points. Science, 303:1490, 2004.

[4] Adam Nahum, P. Serna, J. T. Chalker, M. Ortuño, and A. M. Somoza. Emergent so(5) symmetry at the nêd to valence-bond-solid transition. Phys. Rev. Lett., 115:267203, Dec 2015.

[5] Hidemaro Suwa, Arnab Sen, and Anders W. Sandvik. Level spectroscopy in a two-dimensional quantum magnet: Linearly dispersing spinons at the deconfined quantum critical point. Phys. Rev. B, 94:144416, Oct 2016.

[6] GJ Sreejith, Stephen Powell, and Adam Nahum. Emergent so(5) symmetry at the columnar ordering transition in the classical cubic dimer model. Physical Review Letters, 122(8):080601, 2019.

[7] Matteo Ippoliti, Roger SK Mong, Fakher F Assaad, and Michael P Zaletel. Half-filled landau levels: A continuum and sign-free regularization for three-dimensional quantum critical points. Physical Review B, 98(23):235108, 2018.

[8] Zi-Xiang Li, Shao-Kai Jian, and Hong Yao. Deconfined quantum criticality and emergent so(5) symmetry in fermionic systems. arXiv preprint arXiv:1904.10975, 2019.

[9] Adam Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M. Somoza. Deconfined quantum criticality, scaling violations, and classical loop models. Phys. Rev. X, 5:041048, Dec 2015.

[10] Chong Wang, Adam Nahum, Max A Metlitski, Cenke Xu, and T Senthil. Deconfined quantum critical points: symmetries and dualities. Physical Review X, 7(3):031051, 2017.

[11] Edward Witten. Non-abelian bosonization in two dimensions. Communications in Mathematical Physics, 92(4):455–472, 1984.

[12] A Polyakov and Paul B Wiegmann. Theory of nonabelian goldstone bosons in two dimensions. Physics Letters B, 131(1-3):121–126, 1983.

[13] VG Knizhnik and AB Zamolodchikov. Current algebra and wess-zumino model in two dimensions. Nuclear Physics B, 247(1):83–103, 1984.

[14] Ian Affleck and FDM Haldane. Critical theory of quantum spin chains. Physical Review B, 36(10):5291, 1987.

[15] Philippe Francesco, Pierre Mathieu, and David Sénéchal. Conformal field theory. Springer Science & Business Media, 2012.

[16] AG Abanov and Paul B Wiegmann. Theta-terms in non-linear sigma-models. Nuclear Physics B, 570(3):685–698, 2000.

[17] PB Wiegmann. Superconductivity in strongly correlated electronic systems and confinement versus deconfinement phenomenon. Physical review letters, 60(9):821, 1988.

[18] Man-hot Lau and Chandan Dasgupta. Numerical investigation of the role of topological defects in the three-dimensional heisenberg transition. Physical Review B, 39(10):7212, 1989.

[19] Michael Kamal and Ganpathy Murthy. New o (3) transition in three dimensions. Physical review letters, 71(12):1911, 1993.

[20] Olekei I Motrunchik and Ashvin Vishwanath. Emergent photons and transitions in the o (3) sigma model with hedgehog suppression. Physical Review B, 70(7):075104, 2004.

[21] A framework for dimensional regularization of the 2D WZW model has been developed [52–57]. However it does not retain Lorentz invariance in d ≠ 2, so is not suitable for our purpose here.

[22] John L Cardy and Herbert W Hamber. O(n) heisenberg model close to n=d=2. Physical Review Letters, 45(7):490, 1980.

[23] B. Nienhuis, A. N. Berker, Eberhard K. Riedel, and
M. Schick. First- and second-order phase transitions in potts models: Renormalization-group solution. *Phys. Rev. Lett.*, 43:737–740, Sep 1979.

[24] John L. Cardy, M. Nauenberg, and D. J. Scalapino. Scaling theory of the potts-model multicritical point. *Phys. Rev. B*, 22:2560–2568, Sep 1980.

[25] H. Gies and J. Jaeckel. Chiral phase structure of qcd with many flavors. *The European Physical Journal C - Particles and Fields*, 46(2):433–438, 2006.

[26] David B. Kaplan, Jong-Wan Lee, Dam T. Son, and Mikhail A. Stephanov. Conformity lost. *Phys. Rev. D*, 80:125005, Dec 2009.

[27] Adam Nahum, J. T. Chalker, P. Serna, M. Ortuno, and A. M. Somoza. Phase transitions in three-dimensional loop models and the cP^{n-1} sigma model. *Phys. Rev. B*, 88:134411, Oct 2013.

[28] Simone Giombi, Igor R Klebanov, and Grigory Tarnopolsky. Conformal qed d, t-theorem and the ϵ-expansion. *Journal of Physics A: Mathematical and Theoretical*, 49(13):135403, 2016.

[29] Igor F Herbut. Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation. *Physical Review D*, 94(2):025036, 2016.

[30] Sergei Gukov. Rg flows and bifurcations. *Nuclear Physics B*, 919:583–638, 2017.

[31] Victor Gorbenko, Slava Rychkov, and Bernardo Zan. Walking, weak first-order transitions, and complex cfts. *Journal of High Energy Physics*, 2018(10):108, 2018.

[32] Victor Gorbenko, Slava Rychkov, and Bernardo Zan. Walking, weak first-order transitions, and complex cfts ii. two-dimensional potts model at q_i. 4. *SciPost Physics*, 5, 2018.

[33] Han Ma and Yin-Chen He. Shadow of complex fixed point: Approximate conformity of q_i. 4 potts model. *Physical Review B*, 99(19):195130, 2019.

[34] Sergio Benvenuti and Harchya Khachatryan. Qed’s in 2(+1) dimensions: complex fixed points and dualities. *arXiv preprint arXiv:1812.01544*, 2018.

[35] Anton F Faedo, Carlos Hoyos, David Mateos, and Javier G Subils. Holographic complex cfts. *arXiv preprint arXiv:1909.04008*, 2019.

[36] Pablo Serna and Adam Nahum. Emergence and spontaneous breaking of approximate o (4) symmetry at a weakly first-order deconfined phase transition. *Physical Review B*, 99(19):195110, 2019.

[37] F. Kos, D. Poland, and D. Simmons-Duffin. Bootstrap- ping the O(N) vector models. *Journal of High Energy Physics*, 6:91, June 2014.

[38] D. Simmons-Duffin. unpublished.

[39] Yu Nakayama and Tomoki Ohtsuki. Necessary condition for emergent symmetry from the conformal bootstrap. *Phys. Rev. Lett.*, 117:131601, Sep 2016.

[40] David Poland, Slava Rychkov, and Alessandro Vichi. The conformal bootstrap: Theory, numerical techniques, and applications. *Reviews of Modern Physics*, 91(1):015002, 2019.

[41] Bernhard Ihrig, Nikolai Zerf, Peter Marquard, Igor F Herbut, and Michael M Scherer. Abelian higgs model at four loops, fixed-point collision, and deconfined criticality. *Physical Review B*, 100(13):134507, 2019.

[42] Lukas Janssen and Yin-Chen He. Critical behavior of the qed 3-gross-neveu model: Duality and deconfined criticality. *Physical Review B*, 96(20):205113, 2017.

[43] Bernhard Ihrig, Lukas Janssen, Luminita N Mihaila, and Michael M Scherer. Deconfined criticality from the qed 3-gross-neveu model at three loops. *Physical Review B*, 98(11):115163, 2018.

[44] Bowen Zhao, Phillip Weinberg, and Anders W Sandvik. Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet. *Nature Physics*, page 1, 2019.

[45] At large k both nontrivial fixed points (stable and unstable) are close to the origin. If we fix k and treat only ϵ as small, then it is the unstable fixed point that is accessible.

[46] Anders W. Sandvik. Evidence for deconfined quantum criticality in a two-dimensional heisenberg model with four-spin interactions. *Phys. Rev. Lett.*, 98:227202, Jun 2007.

[47] JM Kosterlitz. Phase transitions in long-range ferromagnetic chains. *Physical Review Letters*, 37(23):1577, 1976.

[48] E Brézin, Jean Zinn-Justin, and JC Le Guillou. Critical properties near σ dimensions for long-range interactions. *Journal of Physics A: Mathematical and General*, 9(9):L119, 1976.

[49] Philip W Anderson, G Yuval, and DR Hamann. Exact results in the kondo problem. ii. scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models. *Physical Review B*, 1(11):1464, 1970.

[50] Subir Sachdev. Quantum impurity in a magnetic environment. *Journal of statistical physics*, 115(1-2):47–56, 2004.

[51] Matthias Vojta. Impurity quantum phase transitions. *Philosophical Magazine*, 86(13-14):1807–1846, 2006.

[52] Michiel Bos. Dimensional regularization in the wess-zumino-witten model. *Physics Letters B*, 189(4):435–441, 1987.

[53] Michiel Bos. An example of dimensional regularization with antisymmetric tensors. *Annals of Physics*, 181(2):177–197, 1988.

[54] Zheng-Min Xi. Three-loop beta-function of the wess-zumino-witten model. *Physics Letters B*, 214(2):204–208, 1988.

[55] XI Zheng-Min. Dimensional regularization and three-loop beta function of the wess-zumino-witten model. *Physical Review Letters*, 91(11):134507, 2019.

[56] Bernard de Wit, Marcus T Grisaru, and P Van Nieuwenhuizen. The wznw model at two loops. *Nuclear Physics B*, 349(1):112–128, 1989.

[57] Pablo Serna and Adam Nahum. Emergence and spontaneous breaking of approximate o (4) symmetry at a weakly first-order deconfined phase transition. *Physical Review B*, 99(19):195110, 2019.

[58] F. Kos, D. Poland, and D. Simmons-Duffin. Bootstrap- ping the O(N) vector models. *Journal of High Energy Physics*, 6:91, June 2014.

[59] Yu Nakayama and Tomoki Ohtsuki. Necessary condition for emergent symmetry from the conformal bootstrap. *Phys. Rev. Lett.*, 117:131601, Sep 2016.

[60] David Poland, Slava Rychkov, and Alessandro Vichi. The conformal bootstrap: Theory, numerical techniques, and applications. *Reviews of Modern Physics*, 91(1):015002, 2019.

[61] Bernhard Ihrig, Nikolai Zerf, Peter Marquard, Igor F Herbut, and Michael M Scherer. Abelian higgs model at four loops, fixed-point collision, and deconfined criticality. *Physical Review B*, 100(13):134507, 2019.

[62] Lukas Janssen and Yin-Chen He. Critical behavior of the qed 3-gross-neveu model: Duality and deconfined criticality. *Physical Review B*, 96(20):205113, 2017.

[63] Bernhard Ihrig, Lukas Janssen, Luminita N Mihaila, and Michael M Scherer. Deconfined criticality from the qed 3-gross-neveu model at three loops. *Physical Review B*, 98(11):115163, 2018.