The Implications of $\mathcal{N} = 2$ Supergravity Cosmology
On the Topology of the Calabi-Yau Manifold

Safinaz Salem, Moataz H. Emam, and H. H. Salah

Abstract

When $\mathcal{N} = 1$ $D = 11$ supergravity is compactified on CY threefold to $\mathcal{N} = 2$ $D = 5$ supergravity the action of the last is given in terms of the geometry of the CY manifold space, namely, in terms of the hypermultiplets. There are $z^i (i = 1, \ldots, h^{2,1})$ complex structure moduli in the moduli space of the CY manifold which's a special Kähler manifold with a metric $G_{i\bar{j}}$. We solve the field equations of the complex structure moduli with the solution of the Einstein field equations to the moduli velocity norm $G_{ij}z^i z^\bar{j}$ in case of a 3-brane filled with radiation, dust and energy embedded in the bulk of $D = 5$ supergravity. We get the time dependence of the moduli and the metric. Then we can further deduce the geometry of the moduli space by getting the Kähler potential which directly relates to the volume of the CY manifold.
I Introduction

The compactification of string theory over Calabi-Yau manifolds yields two sets of parameters \([1, 2]\). The parameters corresponding to the structure of Calabi-Yau manifold \(\mathcal{M}\) as a complex manifold and the deformation of the Kähler metric of the complex structure space. And parameters corresponding to the deformation of \(\mathcal{M}\) as a complex Kähler manifold \(\mathcal{M}_K\).

Calabi-Yau 3-folds admit \(H^3\) homology group that can be Hodge decomposed as

\[H^3 = H^{3,0} \oplus H^{2,1} \oplus H^{1,2} \oplus H^{0,3}. \]

So CY 3-folds have a single \((3, 0)\) cohomology form, where the hodge number \(h_{(3,0)} = \dim(H^{3,0}) = 1\).

We will call the holomorphic volume form as \(\Omega\), \((2,1)\) forms related to \(\mathcal{M}_C\), with a Hodge number \(h_{2,1}\) determines the dimensions of \(\mathcal{M}_C\), and \((1,2)\) forms related to \(\mathcal{M}_K\), with a Hodge number \(h_{1,2}\) determines the dimensions of \(\mathcal{M}_K\).

The deformation of \(\mathcal{M}\) can be done by either the deformation of \(\mathcal{M}_C\) or the deformation of the Kähler form \(K\) of \(\mathcal{M}_K\) or both. The Kähler form is defined by

\[K = ig_{mn} \omega^m \wedge \omega^n. \]

The holomorphic coordinates \(i, \bar{j} = 1, ..., m\), where \(2m\) is the dimension of the manifold. The CY metric is defined by

\[g_{mn} = \partial_m \partial_n \kappa, \]

where \(\kappa\) is the Kähler potential. This paper is devoted to explore the space of the complex structure moduli \(\mathcal{M}_C\) that is described by the \((2,1)\) forms

\[\chi_{i|mnp} = -\Omega^p_{mn} \left(\frac{\partial g_{\bar{p}r}}{\partial z^i} \right), \]

where \((z^i : i = 1, ..., h_{2,1})\) are the parameters or the moduli of the complex structure space. Each \(\chi_i\) defines a \((2,1)\) cohomology class. It’s important here to declare that \(z^i\) can be treated as complex coordinates that define a Kähler metric \(G_{i\bar{j}}\) on \(\mathcal{M}_C\) as follows:

\[V_{CY} G_{i\bar{j}}(\delta z^i)(\delta \bar{z}^j) = \frac{1}{4} \int_{\mathcal{M}} g^{m\bar{n}} g^{r\bar{p}} (\delta g_{mr}) (\delta g_{\bar{n}\bar{p}}), \]
where \(V_{CY} \) is the CY volume. \(G_{i\bar{j}} \) is related to the Kähler potential by

\[
G_{i\bar{j}} = \partial_i \partial_{\bar{j}} \kappa
\]

(6)

that leads to a relation between \(\kappa \) and the volume form

\[
\int_{\mathcal{M}} \Omega \wedge \bar{\Omega} = -ie^{-\kappa},
\]

(7)

gives that the Kähler potential is related to the volume of CY manifold simply by \([3, 4]\)

\[
\text{Vol}(\mathcal{M}) = e^{-\kappa}
\]

(8)

We will consider here the Hodge number \(h_{2,1} = 1 \), i.e., we have only one moduli \(z \), a single Kähler metric component \(G \) and the dimension of \(\mathcal{M}_C \) is unity. In this work we aim to find the time dependence of the scalar quantity \(G_{i\bar{j}} \dot{z}^i \dot{\bar{z}}^j \) and then to find:

- The variation of the moduli \(z \) and the Kähler metric \(G \) with time.
- The the time dependence of the Kähler potential \(\kappa \) and the \(\text{Vol}(\mathcal{M}) \).

Our study is based on \(D = 5 \, \mathcal{N} = 2 \) supergravity where the universe is modeled as a 3-brane embedded in a 5 dimensional bulk. Previously \([9]\) we have found that the moduli’s velocity norm \(G_{i\bar{j}} \dot{z}^i \dot{\bar{z}}^j \) correlates to the scale factors of the brane universe or the bulk and significantly corresponds to our own universe cosmological time evolution. We have studied a 3-brane filled by radiation as our very earl universe and a brane filled by dust, where the Friedmann-like equations have been numerically solved for a wide rang of the scale factors initial conditions. In all different cases \(G_{i\bar{j}} \dot{z}^i \dot{\bar{z}}^j \) manifested it self as an agent starts with very large values causes an early epoch of rapid expansion (inflation) then it decays fastly to asymptotic values. Here, we will extend that study and add to the Einstein’s equations a cosmological constant term. We will solve the field equations in case of a 3-brane filled by radiation, dust and energy (cosmological constant \(\Lambda \)), while we consider the bulk’s cosmological constant \(\bar{\Lambda} \) vanishes. Then we will use these results to explore the non- trivial topology of the Calabi-Yau manifold. We use the system of units \(M_p = 1(M_p = 2.4 \times 10^{18} \text{ GeV} = (8\pi G)^{-1/2}) \).

It’s worthy to mention that there are many studies about the geometry of the moduli spaces for a Calabi-Yau manifold like \([5, 6, 7, 8]\), where in \([5]\) for instance CY 3-fold was considered as a
quintic threefold in the \mathbb{P}^4 projection space with $h_{2,1} = 101$. However we don’t need here to make this assumption.

So this paper is organized as follows: in section 2 we introduce the $D = 5 \mathcal{N} = 2$ supergravity as the dimensional reduction of eleven dimensional supergravity theory over a Calabi-Yau 3-fold \mathcal{M}. Then we will solve the field equations. In section 3 we will simplify the moduli field equations and the Kähler metric equation and show how they can be solved using the solution of the moduli’s velocity norm $G_{i\bar{j}} \dot{z}^i \dot{\bar{z}}^j$. In the same section we will introduce the time dependence of the Kähler metric, Kähler potential and Vol (\mathcal{M}).

II $\mathcal{D} = 5 \mathcal{N} = 2$ supergravity and its solution

The five dimensional $\mathcal{N} = 2$ supergravity theory contains two sets of matter fields; the vector multiplets, which we set to zero, and our main interest: the hypermultiplets. These are composed of the universal hypermultiplet $\left(\phi, \sigma, \zeta^0, \tilde{\zeta}_0 \right)$: where ϕ is the universal axion, and the dilaton σ is proportional to the volume of the underlying Calabi-Yau manifold \mathcal{M}. The remaining hypermultiplet scalars are $\left(z^i, \bar{z}^i, \zeta_i, \tilde{\zeta}_i : i = 1, \ldots, h_{2,1} \right)$, where the z’s are the complex structure moduli of \mathcal{M}, and $h_{2,1}$ is the Hodge number determining the dimensions of the manifold \mathcal{M}_C of the Calabi-Yau’s complex structure moduli. The fields $\left(\zeta^I, \tilde{\zeta}_I : I = 0, \ldots, h_{2,1} \right)$ are the axions, which define a symplectic vector space (see [4] for a review and more references). The axions are defined as components of the symplectic vector

$$| \Xi \rangle = \left(\begin{array}{c} \zeta^I \\ -\tilde{\zeta}_I \end{array} \right),$$

such that the symplectic scalar product is defined by, for example,

$$\langle \Xi | \Xi \rangle = \zeta^I \tilde{\zeta}_I - \tilde{\zeta}_I \zeta^I.$$ (9)

A transformation in symplectic space can be defined by

$$\langle d\Xi | A \wedge \ast d\Xi \rangle = 2 \langle d\Xi | V \rangle \wedge \langle \tilde{V} | \ast d\Xi \rangle + 2G^{i\bar{j}} \langle d\Xi | U_j \rangle \wedge \langle U_i | \ast d\Xi \rangle - i \langle d\Xi | \ast d\Xi \rangle,$$ (11)

A ‘bar’ over an index denotes complex conjugation.
where d is the spacetime exterior derivative, \star is the five dimensional Hodge duality operator, and G_{ij} is a special Kähler metric on \mathcal{M}_C. The symplectic basis vectors $|V\rangle$, $|U_i\rangle$ and their complex conjugates are defined by

$$ |V\rangle = e^{\frac{\kappa}{2}} \begin{pmatrix} Z^I \\ F_I \end{pmatrix}, \quad |\bar{V}\rangle = e^{\frac{\kappa}{2}} \begin{pmatrix} \bar{Z}^I \\ \bar{F}_I \end{pmatrix} $$

(12)

where κ is the Kähler potential on \mathcal{M}_C, (Z,F) are the periods of the Calabi-Yau’s holomorphic volume form, and

$$ |U_i\rangle = |\nabla_i V\rangle = \left[\partial_i + \frac{1}{2} (\partial_i \kappa) \right] V \rangle $$

$$ |U_i\rangle = |\nabla_i \bar{V}\rangle = \left[\partial_i + \frac{1}{2} (\partial_i \kappa) \right] \bar{V} \rangle $$

(13)

where the derivatives are with respect to the moduli (z^i, \bar{z}^i). In this language, the bosonic part of the action is given by:

$$ S_5 = \int_5 \left[R \star 1 - \frac{1}{2} d\sigma \wedge \star d\sigma - G_{ij} dz^i \wedge \star dz^j + e^\sigma \langle d\Xi | \Lambda \wedge \star d\Xi \rangle \\
- \frac{1}{2} e^{2\sigma} \left[d\phi + \langle \Xi | \nabla \Xi \rangle \right] \wedge \star \left[d\phi + \langle \Xi | \nabla \Xi \rangle \right] \right]. $$

(14)

The usual $\delta S = 0$ gives the following field equations for the hypermultiplets scalar fields:

$$ (\Delta \sigma) \star 1 + e^\sigma \langle d\Xi | \Lambda \wedge \star d\Xi \rangle - e^{2\sigma} \left[d\phi + \langle \Xi | \nabla \Xi \rangle \right] \wedge \star \left[d\phi + \langle \Xi | \nabla \Xi \rangle \right] = 0 $$

(15)

$$ (\Delta z^i) \star 1 + \Gamma^i_{jk} dz^j \wedge \star dz^k + \frac{1}{2} e^\sigma G^{ij} \partial_j \langle d\Xi | \Lambda \wedge \star d\Xi \rangle = 0 $$

(16)

$$ d^1 \left[e^\sigma |d\Xi\rangle - e^{2\sigma} \left[d\phi + \langle \Xi | d\Xi \rangle | d\Xi \rangle \right] \right] = 0 $$

(17)

$$ d^1 \left[e^{2\sigma} d\phi + e^{2\sigma} \langle \Xi | d\Xi \rangle \right] = 0 $$

(18)

where d^1 is the $D = 5$ adjoint exterior derivative, Δ is the Laplace-de Rahm operator and Γ^i_{jk} is a
connection on \mathcal{M}_C. The full action is symmetric under the following SUSY transformations:

\[
\begin{align*}
\delta_\epsilon \psi^1 &= D\epsilon_1 + \frac{1}{4} \{i e^\sigma [d\phi + \langle \Xi \mid d\Xi \rangle] - Y\} \epsilon_1 - e^2 \langle \bar{V} \mid d\Xi \rangle \epsilon_2 \\
\delta_\epsilon \psi^2 &= D\epsilon_2 - \frac{1}{4} \{i e^\sigma [d\phi + \langle \Xi \mid d\Xi \rangle] - Y\} \epsilon_2 + e^2 \langle V \mid d\Xi \rangle \epsilon_1, \quad (19)
\end{align*}
\]

\[
\begin{align*}
\delta_\epsilon \xi^0_1 &= e^2 \langle V \mid \partial_\mu \Xi \rangle \Gamma^\mu \epsilon_1 - \left\{ \frac{1}{2} \left(\partial_\mu \sigma \right) - \frac{i}{2} e^\sigma \left[\left(\partial_\mu \phi \right) + \langle \Xi \mid \partial_\mu \Xi \rangle \right] \right\} \Gamma^\mu \epsilon_2 \\
\delta_\epsilon \xi^0_2 &= e^2 \langle V \mid \partial_\mu \Xi \rangle \Gamma^\mu \epsilon_2 + \left\{ \frac{1}{2} \left(\partial_\mu \sigma \right) + \frac{i}{2} e^\sigma \left[\left(\partial_\mu \phi \right) + \langle \Xi \mid \partial_\mu \Xi \rangle \right] \right\} \Gamma^\mu \epsilon_1, \quad (20)
\end{align*}
\]

and

\[
\begin{align*}
\delta_\epsilon \xi^i_1 &= e^2 e^{i j} \langle U_j \mid \partial_\mu \Xi \rangle \Gamma^\mu \epsilon_1 - e^{i j} \left(\partial_\mu z^j \right) \Gamma^\mu \epsilon_2 \\
\delta_\epsilon \xi^i_2 &= e^2 e^{i j} \langle U_j \mid \partial_\mu \Xi \rangle \Gamma^\mu \epsilon_2 + e^{i j} \left(\partial_\mu z^j \right) \Gamma^\mu \epsilon_1, \quad (21)
\end{align*}
\]

where (ψ^1, ψ^2) are the two gravitini and (ξ^l_1, ξ^l_2) are the hyperini. The quantity Y is defined by:

\[
Y = \frac{Z^I N_{IJ} dZ^J - Z^I N_{IJ} d\bar{Z}^J}{Z^I N_{IJ} \bar{Z}^J}, \quad (22)
\]

where $N_{IJ} = \Im \left(\partial_I F_J \right)$. The e’s are the beins of the special Kähler metric G_{ij}, the ϵ’s are the five-dimensional $\mathcal{N} = 2$ SUSY spinors and the Γ’s are the usual Dirac matrices. The covariant derivative D is defined by the usual $D = dx^\mu \left(\partial_\mu + \frac{1}{2} \omega_\mu \bar{\mu} \Gamma_{\mu\bar{\mu}} \right)$, where the ω’s are the spin connections and the hatted indices are frame indices in a flat tangent space. Finally, the stress tensor is:

\[
\begin{align*}
T_{\mu\nu} &= -\frac{1}{2} \left(\partial_\mu \sigma \right) \left(\partial_\nu \sigma \right) + \frac{1}{4} g_{\mu\nu} \left(\partial_\alpha \sigma \right) \left(\partial^\alpha \sigma \right) + e^\sigma \langle \partial_\mu \Xi \mid \Lambda \mid \partial_\nu \Xi \rangle - \frac{1}{2} e^\sigma g_{\mu\nu} \langle \partial_\alpha \Xi \mid \Lambda \mid \partial^\alpha \Xi \rangle \\
&\quad - \frac{1}{2} e^{2\sigma} \left(\langle \partial_\mu \phi \rangle + \langle \Xi \mid \partial_\mu \Xi \rangle \right) \left(\langle \partial_\nu \phi \rangle + \langle \Xi \mid \partial_\nu \Xi \rangle \right) + \frac{1}{4} e^{2\sigma} g_{\mu\nu} \left[\langle \partial_\alpha \phi \rangle + \langle \Xi \mid \partial_\alpha \Xi \rangle \right] \left[\langle \partial^\alpha \phi \rangle + \langle \Xi \mid \partial^\alpha \Xi \rangle \right] \\
&\quad - G_{ij} \left(\partial_\mu z^i \right) \left(\partial_\nu z^j \right) + \frac{1}{2} g_{\mu\nu} G_{ij} \left(\partial_\alpha z^i \right) \left(\partial^\alpha z^j \right). \quad (23)
\end{align*}
\]

As our main interest is bosonic configurations that preserve some supersymmetry, the stress tensor can be simplified by considering the vanishing of the supersymmetric variations $\{20, 21\}$; satisfying the BPS condition on the brane. This gives

\[
T_{\mu\nu} = G_{ij} \left(\partial_\mu z^i \right) \left(\partial_\nu z^j \right) - \frac{1}{2} g_{\mu\nu} G_{ij} \left(\partial_\alpha z^i \right) \left(\partial^\alpha z^j \right), \quad (24)
\]
as was detailed out in [10]. We would like to construct a 3-brane that may be thought of as a flat Robertson-Walker universe embedded in $D = 5$. As such we invoke the metric

$$ds^2 = -dt^2 + a^2(t) \left(dr^2 + r^2 d\Omega^2 \right) + b^2(t) \, dy^2,$$

where $d\Omega^2 = d\theta^2 + \sin^2(\theta) \, d\phi^2$, $a(t)$ is the usual Robertson-Walker scale factor, and $b(t)$ is a possible scale factor for the transverse dimension y (the bulk). The brane is located at $y = 0$ and we ignore all possible y-dependence of the warp factors as well as the hypermultiplet bulk fields; effectively only studying the brane close to its location. In this case Einstein equations $G_{MN} + \Lambda g_{MN} = T_{MN}$ reduce to the Friedmann-like form:

$$3 \left(\left(\frac{\dot{a}}{a} \right)^2 + \left(\frac{\dot{a}}{a} \right) \left(\frac{\dot{b}}{b} \right) \right) = G_{ij} \dot{z}^i \dot{z}^j + \rho + \Lambda$$

$$- \left[2 \frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a} \right)^2 + \frac{\ddot{b}}{b} + 2 \left(\frac{\dot{a}}{a} \right) \left(\frac{\dot{b}}{b} \right) \right] = G_{ij} \dot{z}^i \dot{z}^j + p - \tilde{\Lambda}$$

$$3 \left| G_{ij} \dot{z}^i \dot{z}^j \right| = G_{ij} \dot{z}^i \dot{z}^j - \tilde{\Lambda}.$$

Solving these equations numerically in case if the total density equals the dust plus radiation densities $\rho = \rho_r + \rho_m \propto 1/a^4 + 1/a^3$, the total pressure equals to the radiation pressure $p = p_r = \rho_r/3$, $\Lambda = 1$ (de Sitter space), and $\tilde{\Lambda} = 0$ yields the brane’s and the bulk’s scale factors and $\left| G_{ij} \dot{z}^i \dot{z}^j \right|$ as functions in time Fig. [1]. Using suitable fitting functions we get the solution of the velocity norm of the complex structure moduli given by

$$G_{ij} \dot{z}^i \dot{z}^j(t) \simeq -0.5(t + 0.004)^{-0.9}.$$

The brane’s scale factor varies with time exponentially $a(t) \sim e^{0.2 \, t}$ which means the brane- universe undergoes an inflationary expansion. While the bulk scale factor is given by $b(t) \sim 0.06 e^{0.87 \, t}$.

7
Figure 1: The scale factor a is represented by the solid curve, b by the grey curve, while $G_{ij} \dot{z}^i \dot{z}^j$ is shown dashed. $\Lambda = 1$, $\tilde{\Lambda} = 0$, and for initial conditions $a[0] = a'[0] = b[0] = b'[0] = 0$.

As seen the solution shows a correlation between the scale factors of the brane universe and the bulk and the moduli norm $G_{ij} \dot{z}^i \dot{z}^j$.

III Calabi-Yau manifold complex structure space

The field equations of the moduli z^i and \bar{z}^i\cite{16} can be simplified using the BPS condition \cite{10}:

$$e^\sigma \langle \Xi | A | d\Xi \rangle = \frac{1}{2} d\sigma \wedge *d\sigma + \frac{1}{2} e^{2\sigma} [d\phi + \langle \Xi | d\Xi \rangle] \wedge *[d\phi + \langle \Xi | d\Xi \rangle] + 2 G_{ij} \dot{z}^i \wedge *\dot{z}^j,$$

or

so that they can be written as

$$(\Delta z^i) \ast 1 + \Gamma^i_{jk} d\dot{z}^j \wedge \ast d\dot{z}^k + G^{ij} (\partial_j G_{lk}) d\dot{z}^l \wedge \ast d\dot{z}^k = 0$$

$$(\Delta \bar{z}^i) \ast 1 + \Gamma^i_{\bar{j}k} d\dot{\bar{z}}^\bar{j} \wedge \ast d\dot{\bar{z}}^\bar{k} + G^{i\bar{j}} (\partial_{\bar{j}} G_{l\bar{k}}) d\dot{z}^l \wedge \ast d\dot{z}^k = 0.$$

(29)

Dropping the differential forms formulation, we get:

$$\nabla^2 z^i + \Gamma^i_{jk} \partial_\mu z^j \partial_\mu z^k + G^{ij} (\partial_j G_{lk}) \partial_\mu z^l \partial_\mu z^k = 0$$

$$\nabla^2 \bar{z}^i + \Gamma^i_{\bar{j}k} \partial_\mu \bar{z}^\bar{j} \partial_\mu \bar{z}^\bar{k} + G^{i\bar{j}} (\partial_{\bar{j}} G_{l\bar{k}}) \partial_\mu \bar{z}^\bar{l} \partial_\mu \bar{z}^\bar{k} = 0.$$

(30)

The connections or the Christoffel symbols are related to the metric by \cite{4}:

$$\Gamma^i_{jk} = G^{i\bar{p}} \partial_j G_{k\bar{p}}, \quad \Gamma^i_{\bar{j}k} = G^{i\bar{p}} \partial_{\bar{j}} G_{l\bar{p}}.$$

(31)
substitute in (30), we get:

\[
\nabla^2 z_i + G^{i\bar{j}} \partial_j G_{k \bar{p}} \partial_{\mu} z^i \partial^\mu z^k + G^{i\bar{j}} (\partial_j G_{k \bar{p}}) \partial_{\mu} z^j \partial^\mu z^\bar{k} = 0 \\
\nabla^2 z^j + G^{j\bar{i}} \partial_j G_{k \bar{p}} \partial_{\mu} z^j \partial^\mu z^k + G^{j\bar{i}} (\partial_j G_{k \bar{p}}) \partial_{\mu} z^j \partial^\mu z^\bar{k} = 0
\]

(32)

The moduli are independent of the 3- spatial dimensions. And consider the Hodge number \(h_{2,1} = 1 \), which means we have only one moduli \(z \), its complex conjugate \(z^* \), a single Kähler metric component \(G \) and the dimension of the moduli space \(\mathcal{M}_C \) is unity. So that (32) simplify to:

\[
\ddot{z} + \frac{1}{G} (\partial_z G) \dot{z}^2 + \frac{1}{G} (\partial_{z^*} G) \dot{z} \dot{z}^* = 0 \\
\ddot{z}^* + \frac{1}{G^*} (\partial_{z^*} G^*) \dot{z}^* \dot{z}^* + \frac{1}{G^*} (\partial_z G) \dot{z} \dot{z}^* = 0
\]

(33)

From the Robertson-Walker like metric (25), the moduli field equations become:

\[
\ddot{z} + \frac{1}{G} (\partial_z G) \dot{z}^2 + \frac{1}{G} (\partial_{z^*} G) \dot{z} \dot{z}^* = 0,
\]

(34)

\[
\ddot{z}^* + \frac{1}{G^*} (\partial_{z^*} G^*) \dot{z}^* \dot{z}^* + \frac{1}{G^*} (\partial_z G) \dot{z} \dot{z}^* = 0.
\]

(35)

Solving the moduli field equation Equ. (34) with Equ. (27), gives the moduli’s variation with time:

\[
z(t) \approx C + 0.001 + 0.25 \frac{t}{(1 + 250 \, t)^{0.6}}.
\]

(36)

For \(\dot{z}[0] = 0 \). C is the integration constant, for \(z[0] = 1 \), \(C \sim 1 \). We have made a further approximation here by considering the moduli real. In Fig. (34- left) and (34- right) the moduli and the moduli velocity are plotted versus time, respectively.
The Kähler metric can be directly obtained by substituting \(\dot{z} \) solution in Equ. (27). In Fig. (3-left) one component of the metric \(G_{ij} \) multiplied by a factor \(10^{-2} \) is plotted versus time. Generally speaking the Kähler potential is given by:

\[
\kappa = \ln \left[1 + z_i z_j \right] = \ln \left[1 + \bar{\delta}_{ij} z^i \bar{z}^j \right],
\]

in which the Kähler metric Equ. (6) has been drived. We will use Equ. (6) to get \(\kappa \) as a function in time. According to our approximation it can be written as:

\[
G = \partial_z \partial_{\bar{z}} \kappa.
\]
Let all fields depend on time, it becomes:

\[G(t) = \frac{\partial}{\partial t} \left(\frac{1}{2} \frac{\dot{k}}{\dot{z} \dot{z}^*} \right). \] \hspace{1cm} (39)

Solving for the Kähler potential, yields:

\[\kappa(t) = - \left(0.45 \ t + 0.008 \ t^2 \right). \] \hspace{1cm} (40)

Fig. (3-right) shows the absolute value of the potential plotted versus time. According to Equ. (4) the volume of the CY manifold \(\mathcal{M} \) can be obtained as long as the Kähler potential is known. Fig. (4-left) shows the volume of the Calabi-Yau manifold plotted versus time. As seen it increases with time. For the sake of comparison, Fig. (4-right) shows \(G_{ij} \dot{z}^i \dot{z}^j \) plotted versus time as it’s obtained directly from the numeric solution of the field equations (26) without any approximations a long a side as it’s obtained when solving Equ. (27) with Equ. (36).

IV Conclusion

Exploring the non-trivial topology of the Calabi-Yau manifold still a highly demanding quest in theoretical physics. The importance of the Calabi-Yau manifold arises from its vital role in the compactification of many higher dimensional theories. Like when compactifying \(\mathcal{D} = 11 \) supergravity to \(\mathcal{N} = 2, \mathcal{D} = 5 \) supergravity over CY 3-fold. In this work we have studied a 3-brane
embedded in the bulk of $\mathcal{D} = 5$ supergravity, we have solved the Friedmann-like equations in case of a brane filled by radiation, dust and energy. We have shown that in this case the time evolution of the 3-brane coincide with the time evolution of our universe, where the moduli’s velocity norm $G_{i\bar{j}} \dot{z}^i \dot{\bar{z}}^\bar{j}$ strongly correlates to the scale factor of the brane-universe. That means the cosmology of our universe can be interpreted only by the effects of the bulk of a higher dimensional theory. This explanation needs more analysis and initial conditions to be verified which we keep to a further study. We then used the solutions to explore the complex structure space of the CY manifold. Since we knew the time behavior of $G_{i\bar{j}} \dot{z}^i \dot{\bar{z}}^\bar{j}$, we have solved the moduli field equation to get the time dependence of the complex structure moduli, the Kähler metric, the Kähler potential and the volume of the Calabi-Yau manifold. That’s for a Hodge number $h_{2,1} = 1$, which means the dimensions of M_C is unity and there is a single moduli, since z^i are considered the coordinates that define M_C. The time dependence of The Kähler potential is negative like the Kähler metric. The absolute value of the potential increases with time. Also the volume of the CY manifold infinitely increases with time which is a deduction that the brane-world and the bulk are keeping expanding with time.
References

[1] M. R. Douglas, “Calabi-Yau metrics and string compactification,” Nucl. Phys. B 898, 667 (2015) arXiv:1503.02899 [hep-th].

[2] B. R. Greene, “String theory on Calabi-Yau manifolds,” hep-th/9702155.

[3] P. Candelas and X. de la Ossa, “Moduli space of Calabi-Yau manifolds“, XIII International School of Theoretical Physics: The Standard Model and Beyond, (1989).

[4] Moataz H. Emam, [The many symmetries of Calabi-Yau compactification], Class. Quant. Grav. 27 (2010) 163001. arXiv:1007.4847 [hep-th].

[5] P. Candelas, X. de la Ossa, P. S. Green and L. Parkes, “A Pair of Calabi–Yau manifolds as an exactly soluble superconformal field theory“, Nucl. Phys. B 359 (1991) 21–74.

[6] P. Berglund, P. Candelas, X. de la Ossa, A. Font, T. Huebsch, D. Jancic and F. Quevedo, “Periods for Calabi–Yau and Landau–Ginzburg vacua“ , Nucl. Phys. B 355 (1991) 455.

[7] Konstantin Aleshkin and Alexander Belavin, “A new approach for computing the geometry of the moduli spaces for a Calabi-Yau manifold,” J. Phys. A 51 (2018) no.5, 055403 arXiv:1706.05342 [hep-th].

[8] Konstantin Aleshkin, Alexander Belavin, “Special geometry on the 101 dimensional moduli space of the quintic threefold,” JHEP 1803 (2018) 018 arXiv:1710.11609 [hep-th].

[9] Emam, Moataz H. and Salah, H.H. and Salem, Safinaz, “Brane-worlds and the Calabi – Yau complex structure moduli“, Class. Quant. Grav. 37 (2020) no. 19 [arXiv: 2005.10408 [hep-th]].

[10] M. H. Emam, “BPS brane cosmology in N = 2 supergravity,“ Class. Quant. Grav. 32, no. 18, 185014 (2015) arXiv:1509.01651 [hep-th].