CURRENT EVIDENCE

A case for addressing the unresolved role of permeable shelf sediments in ocean denitrification

Emily J. Chua,1,* Markus Huettel,2 Katja Fennel,3 Robinson W. Fulweiler1,4

1Department of Earth & Environment, Boston University, Boston, Massachusetts; 2Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida; 3Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada; 4Department of Biology, Boston University, Boston, Massachusetts

Scientific Significance Statement

Human activities release vast amounts of reactive nitrogen, profoundly influencing the functioning of marine ecosystems. On the inner shelf, where these effects are most pronounced, sediments have emerged as potential hotspots of reactive nitrogen removal—and they are therefore increasingly thought to play a key role in the ocean nitrogen cycle. Despite their potential importance, shelf sediments are still overlooked in global models of ocean nitrogen and carbon cycles, limiting model accuracy and predictive power. Through analysis of recent work, we identified unresolved questions and controversies, and propose a three-pronged approach to improve our mechanistic understanding and modeling of nitrogen removal on the continental shelf and in the global ocean.

Abstract

The marine nitrogen cycle is a main driver of ocean productivity and affects global climate. Despite decades of study, we still have an incomplete understanding of the role of the marine nitrogen cycle in the Earth system. While marine sediments play a major role in nitrogen cycling in the ocean, magnitudes and mechanisms are largely unconstrained. Recent research suggests that permeable sandy sediments on the highly energetic and dynamic continental shelf are key components of the marine nitrogen cycle, but data to quantify their contribution are lacking. Here, we use insights from measurements and modeling studies to substantiate the hypothesis that shelf sediments are an overlooked driver of the marine nitrogen cycle. Specifically, we propose that permeable shelf sediments are sites for intense nitrogen conversions and suggest a three-pronged approach to address unresolved controversies.

The continental shelves play a disproportionate role in global biogeochemical cycling. While they occupy only 8% of the ocean’s area (Hall 2002), they account for approximately 20% of marine primary production (Jahnke 2010). The inner shelf (< 50 m depth) alone is the site of about 48% of the global flux of organic carbon to the seafloor (Dunne et al. 2007). Recent investigations emphasize that shelf sediments act as bioreactors that can efficiently convert carbon

*Correspondence: ejchua@bu.edu

Associate editor: Sarah Fawcett

Author Contribution Statement: EJC and RWF conceived of the initial idea. EJC led the writing effort and overall team management. All authors contributed to idea development and manuscript writing and editing.

Additional Supporting Information may be found in the online version of this article.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
and nutrients (Seitzinger et al. 2006; Jahnke 2010; Bauer et al. 2013; Huettel et al. 2014). However, most prior research has focused on organic matter and nutrient cycling in the water column of the shelf, leaving the role of their sediments largely unconstrained. Many ocean carbon and nutrient cycling models and budgets do not adequately include shelf sediments, leaving out a substantial component of the marine nitrogen cycle.

One distinctive characteristic of the shallow shelf is the abundance of highly permeable sands that cover at least 50% of continental shelves globally (Emery 1968; Hall 2002). Despite the prevalence of permeable sands, most research on shelf sediments to date has been conducted in fine-grained deposits. Fine-grained sediments may have a higher content of organic matter and reactants—the fuel for mineralization processes—while surficial sands typically contain low standing stocks of these substances. Sands were therefore thought to be “geochemical deserts.” Yet, there is an emerging consensus: the high permeability of well-sorted sands permits rapid pore-water exchange that transports organic matter into the seabed where it is swiftly processed and nitrogen subsequently remobilized. Permeable sediments may thus be hotspots of biogeochemical activity and undervalued in present models of the marine and global nitrogen cycles.

In the ocean, reactive nitrogen (Box 1) limits marine primary productivity and subsequent trophic level production. Furthermore, nitrogen availability is essential for carbon dioxide uptake and sequestration in the deep ocean via the biological pump. On the continental shelf, terrestrial runoff and atmospheric deposition are the major sources of reactive nitrogen from anthropogenic sources, with rivers delivering 40–66 Tg N yr$^{-1}$ and atmospheric deposition adding 8.5 Tg N yr$^{-1}$ (Voss et al. 2013). The open ocean laterally transports another 450–600 Tg N yr$^{-1}$, while nitrogen-fixing organisms in shelf waters contribute about 17 Tg N yr$^{-1}$. These numbers have high uncertainties, and recent discoveries of major marine microbial nitrogen fixers have prompted yet more questions concerning the magnitudes of nitrogen sources and sinks, and factors controlling process rates (Zehr and Capone 2020). Given that the marine nitrogen and carbon cycles are inextricably linked, our limited grasp of the first obscures our conception of the second, undermining our ability to predict future climate change (Gruber and Galloway 2008). As humans fundamentally alter the nitrogen cycle, better understanding its role in the earth system is essential to prevent further deterioration of the marine and global environment.

Most estimates of the marine nitrogen budget (Box 1) are bracketed by large uncertainties. We posit that a substantial fraction of this uncertainty is due to the present lack of measurements and mechanistic understanding of processes occurring in a largely overlooked environment: permeable shelf sediments. A small but growing body of work has begun to focus on nitrogen cycling in shelf sands, motivated by the central question of whether they are sites of significant nitrogen removal via denitrification. Here, we synthesize recent work on denitrification in shelf sands, highlight unresolved controversies, and evaluate potential changes to shelf nitrogen cycling in the face of increasing human perturbations to the ocean.

Box 1. Marine nitrogen budget.

Nitrogen (N) exists in many chemical forms, and its cycling is governed by several microbialy mediated transformations that convert biologically inert nitrogen gas (N_2) to various fixed or reactive forms, including ammonium (NH_4^+), nitrite (NO_2^-), and nitrate (NO_3^-). In the simplified nitrogen cycle depicted, N_2 dissolved in the water column is taken up by microbes and fixed to organic N (N_2 fixation). Organisms consume and break down the organic N, releasing NH_4^+ (remineralization). Other microbes convert NH_4^+ to NO_2^-, and then to NO_3^- (nitrification). To complete the cycle, microbes convert nitrate back to N_2 (canonical denitrification). To first order, the inventory of reactive N is controlled by denitrification (defined here as any process that results in loss of fixed nitrogen from the biosphere; Devol 2008) and N_2 fixation (Gruber 2008). Whether the marine nitrogen budget is balanced remains controversial (Zehr and Capone 2020): estimates either find that losses outweigh sources (Galloway et al. 2004; Codispoti 2007; Voss et al. 2013), or that the budget is approximately balanced (Gruber 2008; Wang et al. 2019).

In general, waves and currents sort shelf sediments into a gradient from organic-poor sand beds on the inner shelf to fine-grained sediments richer in organic matter in the mid and deeper shelf (McCave 2002; Fig. 1). Episodic major storm events temporarily—yet profoundly—alter this gradient through the mobilization of decimeter-thick surface sediment...
layers, deep sediment oxygenation, and the redistribution of organic matter and nutrients (Scavia et al. 2002; Osburn et al. 2019; Paerl et al. 2020). In the last three decades, studies focusing on transport and diagenetic reactions (i.e., physical and chemical processes that alter sediments after deposition) in inner shelf sands suggest they play an underappreciated role in biogeochemical cycling. This work was stimulated by early experiments in shallow permeable environments that revealed the effectiveness of water flow through the interconnected pore spaces in transporting reactants into and out of sand beds (Webb and Theodor 1968; Thibodeaux and Boyle 1987). This conveyor-belt like advective transport of substrates can accelerate microbial decomposition processes, transforming sand beds into biocatalytical converters, analogous to trickling bed filters (Webb and Theodor 1968; Thibodeaux and Boyle 1987). This exchange consequently affects the cycling of nitrogen over a wide range of spatial and temporal scales. The largest driver of advective exchange may be the circulation induced by the interaction of bottom flows with seabed topography, which can drive water through the upper 5–50 cm of rippled sand beds (Santos et al. 2012b). Advective transport scales with the direction and strength of bottom currents, as well as with ripple dimensions, resulting in a highly dynamic, four-dimensional environment for sedimentary nitrogen cycling processes. Key parameters governing sedimentary denitrification—including temperature, bottom currents, sediment–water exchange, redox oscillations, sedimentary nitrate concentrations, benthic production, and organic content—may reach highest values in the inner and mid shelf (Fig. 1). We hypothesize that the zone of maximum benthic denitrification is therefore located within the upper section (< 100 m) of the shelf.

At present, the intricate links between biogeochemical reactions within the sand and boundary layer hydrodynamics are not well understood due to limited in situ measurements. The tight coupling between pore-water flow and ensuing reactions makes quantification of the latter challenging, and measurement methods must consider variable environmental drivers. Moreover, denitrification is a particularly difficult process to measure, as its dominant end product (N₂) has a high ambient concentration in the environment. Only over the past 15 yr have studies taken transport into account when attempting to constrain nitrogen loss in permeable sediments (Fig. 2; Table 1). While still small, this ground-breaking body of work has challenged our present notions of nitrogen cycling on the shelf by calling into question results that ignore the dynamic contributions of the benthic environment and permeable sediments. These studies include experiments that attempt to induce realistic pore-water flows in the laboratory, novel in situ methods (benthic chambers and aquatic eddy covariance instruments), and model simulations of advective flow-driven reactions. Methods to generate advective flow are percolated cores, or sediment incubation devices pumped with water (Rao et al. 2007; Gao et al. 2010; Santos et al. 2012a; Evrard et al. 2013; Marchant et al. 2016), and chambers with stirred overlying water (Eyre et al. 2008; Gihring et al. 2010), which can be used in situ or ex situ. The eddy covariance method was first adapted for use underwater by Berg et al. (2003) and enables noninvasive measurements of fluxes across the sediment–water interface. Models of permeable sediments extend the 1D diffusive framework of traditional diagenetic models (Box 2) to accommodate 3D advective flow. Specifically, they calculate pore-water flow fields from pressure gradients at the sediment–water interface and combine these with a reactive transport scheme for the coupled chemical reactions that govern nitrogen biogeochemistry (Cook et al. 2006; Cardenas et al. 2008; Kessler et al. 2012, 2013; Azizian et al. 2015). The results from these laboratory, nearshore, and small-scale modeling studies imply that realistic regional models of the nitrogen conversions in inner shelf sands require reliable information on in situ advective transport for calculating reaction rates. When hydrodynamic regime and physical sediment characteristics are known, models can provide some of the pore-water transport information (Shum 1992; Cardenas et al. 2008). However, existing models have so far only been tested at small scales (on the scale of sand ripples, i.e., meters) and therefore represent idealized cases. Furthermore, validation of model results through in situ measurements is largely missing.

Regional models of permeable sediments that include the dynamics of key environmental drivers are computationally demanding, and their expansion to even modest scales of tens to hundreds of kilometers presently is prohibitive. In existing regional and large-scale biogeochemical models (Box 2), sediments are typically represented by relatively simple parameterizations that can be based on stoichiometric arguments (Fennel et al. 2006), multivariate fits to observations (Bohlen et al. 2012), or output from diagenetic models through the meta-model approach (Laurent et al. 2016). Only recently have diagenetic models been coupled directly to regional biogeochemical models (Moriarty et al. 2018, 2020). However, neither the meta-model approach nor the direct coupling of diffusion-dominated diagenetic models represents permeable sediments well. We therefore require a better mechanistic representation of biogeochemical processing in permeable sediments, and a method to generalize these processes over the shelf scale. To achieve these aims, we must obtain knowledge of spatiotemporally varying parameters such as wave action, sediment permeability, and large- and small-scale topography. Efforts should also be devoted to improving quantitative approaches for scaling up.

Unresolved controversies

The recent body of work on transport and reaction in permeable sands has unearthed many questions about nitrogen
Fig. 1. Hypothesized conceptual model depicting key factors that control denitrification in shelf sediments and a hypothetical zone of maximum benthic denitrification. Top: Shelf depth profile, divided into inner, mid and outer shelf regions. Rows 2–7: Hypothetical influence of key environmental factors controlling denitrification (i.e., temperature (Nowicki 1994; Cornwell et al. 1999), sediment–water exchange (Santos et al. 2012b), redox oscillations (Aller 1994; Huettel et al. 1998; Sun et al. 2002; Skoog and Arias-Esquível 2009), nitrification (Seitzinger and Giblin 1996), and availability of nitrate and organic matter (Nowicki 1994; Cornwell et al. 1999; Fulweiler and Heiss 2014)) in the different shelf regions. Purple circle: The assumed region of maximum sedimentary denitrification, which is located where the cumulative effect of the main controls of benthic denitrification is strongest. Bottom: Cross sections of the seabed in the three shelf regions, with permeable sands, muddy sands, and fine-grained deposits dominating the sediments of the respective regions; purple shading depicts the sedimentary denitrification zone.
cycling in permeable sediments. Central to these inquiries is whether significant denitrification occurs in permeable shelf sands. The conventional view of benthic biogeochemistry assumes that denitrification occurs primarily in fine-grained sediment, which are rich in organic matter—the fuel for denitrification—and low in oxygen, as opposed to permeable sediments, which are poor in organic matter and better oxygenated. Indeed, a recent study on nitrogen cycling across a wide permeability gradient on the Northeast Atlantic Shelf (Toussaint et al. 2021) found that low permeability sediments with a high organic matter content create a more favorable environment for denitrifiers. However, our revised understanding that surface topography/flow interactions efficiently supply reactants in permeable sediments implies that the ensuing dynamic and enhanced interfacial area between oxic and anoxic zones could promote nitrite and nitrate production via nitrification, which in turn feeds denitrification. In other words, permeable sands should act as bioreactors rather than biogeochemical deserts.

At present, the handful of experimental and modeling studies available disagree whether denitrification rates in sands are higher or lower than in fine-grained sediments, and hence whether sands are more efficient at processing reactive nitrogen. For example, a study conducted in subtidal quartz sands in the Gulf of Mexico found a near-complete conversion of remineralized nitrogen to N₂, indicating that these sands are effective sites of denitrification (Gihring et al. 2010). These results are supported by other experimental studies that found high denitrification rates in tropical carbonate sands (Eyre et al. 2013), and temperate silica sands from the Wadden Sea, Northern Europe (Gao et al. 2012; Marchant et al. 2016). In contrast, results of modeling studies have
Table 1. Compilation of denitrification rates measured in permeable sediments on the continental shelf to date. The mean denitrification rate is the value plotted in Fig. 1. Only studies that accounted for advective flushing were included; see the Supporting Information for flushing rate calculations. NR, not reported; GC-IRMS, gas chromatography coupled to isotope ratio mass spectrometry; MIMS, membrane inlet mass spectrometry.

Reference	Location	Rate range (mmol N m\(^{-2}\) d\(^{-1}\))	Rate mean (mmol N m\(^{-2}\) d\(^{-1}\))	Flushing rate (L m\(^{-2}\) d\(^{-1}\))	Method
Inner shelf (0–50 m)					
Braeckman et al. (2014)	Southern North Sea	0–1.80	NR	NR	Ex situ stirred chambers; N\(_2\):Ar ratios measured with MIMS
Cardenas et al. (2008)	Martha’s Vineyard Coastal Observatory, MA, USA	<0.24–0.72	0.48	16–164	Reactive transport model
Cook et al. (2006)	Beach near Marine Biological Lab in Helsingør, Denmark	0.048–3.74	0.48	3.5–87	Reactive transport model
Cook et al. (2006)	Beach near Marine Biological Lab in Helsingør, Denmark	1.68–3.12	0.48	5.3–90	Stirred chambers (ex situ); N\(_2\):Ar ratios measured with MIMS
Evrard et al. (2013)	Port Phillip Bay, Victoria, Australia	0.018–4.5	NR	953	Percolated cores; isotope pairing measured with an elemental analyzer coupled to IRMS
Gao et al. (2010)	Janssand sand flat, Wadden Sea	4.5–11.3	7.2	113	Percolated cores, slurry incubations, stirred bioreactor; isotope pairing measured with GC-IRMS, nitrate measured with microsensors, N\(_2\) (aqueous gas) measured directly with MIMS
Gao et al. (2012)	East Frisian Wadden Sea	3.4–25.3	4.8	NR	Percolated cores and slurry incubations; isotope pairing measured with GC-IRMS
Gihring et al. (2010)	Apalachicola Bay	<0.001–0.011	NR	NR	Ex situ stirred chambers; N\(_2\):Ar ratios measured with MIMS
Gihring et al. (2010)	Gulf of Mexico	0.035–0.099	NR	NR	Ex situ stirred chambers; N\(_2\):Ar ratios measured with MIMS
Johnson et al. (2011)	Half Moon Bay, central California continental shelf	3.98	NR		Eddy correlation; nitrate fluxes measured with a modified In Situ Ultraviolet Spectrophotometer optical nitrate sensor (Johnson and Coletti 2002)
Johnson et al. (2011)	Point Sur, central California continental shelf	1.10	NR		Eddy correlation; nitrate fluxes measured with a modified In Situ Ultraviolet Spectrophotometer optical nitrate sensor (Johnson and Coletti 2002)

(Continues)
Reference	Location	Rate range (mmol N m\(^{-2}\) d\(^{-1}\))	Rate mean (mmol N m\(^{-2}\) d\(^{-1}\))	Flushing rate (L m\(^{-2}\) d\(^{-1}\))	Method
Kessler et al. (2012)	Brighton Beach, Victoria, Australia	1.6	15		Flume tank and reactive transport model; isotope pairing measured with GC-IRMS
Kessler et al. (2013)	Brighton Beach, Victoria, Australia	2.0	NR		Diffusion equilibrium thin layer (DET) gel technique used in a flume tank and reactive transport model; isotope pairing measured with GC-IRMS
Marchant et al. (2014)	East Frisian Wadden Sea	9.6–27.6	NR	86–252	Percolated cores; isotope pairing measured with GC-IRMS, N\(_2\) (aqueous gas) measured directly with MIMS
Marchant et al. (2016)	South-East North Sea	0.52–2.28	1.2	252	Percolated cores; isotope pairing measured with GC-IRMS, N\(_2\) (aqueous gas) measured directly with MIMS
Marchant et al. (2017)	East Frisian Wadden Sea	15.8–77.8	46.8	69	Percolated cores; isotope pairing measured with MIMS
Toussaint et al. (2021)	Southern North Sea	0–10	NR	2.12–24.92	Ex situ stirred chambers; DIN measured with colorimetry and used in a mass balance model
Mid shelf (50–120 m)					
Eyre et al. (2008)	Heron Island reef flat, Gladstone, Australia	0.82–11.5	NR	43 and 213	Benthic chambers (in situ); isotope pairing measured with GC-IRMS
Eyre et al. (2013)	Heron Island reef flat, Gladstone, Australia	1.4–7.3	NR	43	Benthic chambers (in situ); N\(_2\):Ar ratios measured with MIMS
Neumann et al. (2017)	German Bight	0.134–32	2.76	NR	Rhizion-sampled cores; nitrate concentrations measured with nutrient autoanalyzer
Rao et al. (2007)	South-Atlantic Bight, New Jersey continental shelf	0.25–1.4	NR	316	Percolated cores; N\(_2\):Ar ratios measured with MIMS
Santos et al. (2012a)	Heron Island, Great Barrier Reef	0.3–8.1	3.6	744–6000	Percolated cores; N\(_2\):Ar ratios measured with MIMS
Sokoll et al. (2016)	North-West African Shelf	1.31–9.15	3.6	NR	Slurry incubations; isotope pairing measured with GC-IRMS
Box 2. Biogeochemical models and permeable sediments.

Biogeochemical models represent biogeochemical properties and processes using a mathematical formalism to simulate standing stocks of these properties and the fluxes between them. Such models can be analytical or numerical; can represent a steady state or be time dependent, deterministic, or stochastic; and can be spatially explicit or averaged in space. All models require constant or time-dependent input parameters in some form including rate constants, environmental properties, and initial and boundary values.

Here, we distinguish between biogeochemical ocean models that are primarily focused on the water column overlying marine sediments, referred to as 3D regional and global biogeochemical models, and models of these sediments, referred to as diagenetic models. Among the diagenetic models, we distinguish between spatially explicit, time-dependent models, and space- and time-averaged models, referred to as parameterizations.

A. 3D regional and global biogeochemical models: These spatially explicit, time-dependent models are coupled to hydrodynamic models that simulate ocean circulation and describe the distribution and transformations of biogeochemical properties in the water column. They are subject to the same circulation processes as seawater and to additional transformation processes represented by empirical parameterizations. These models typically ignore sediments or represent them relatively crudely (see C below), although there are recent attempts to couple a diagenetic model to a 3D regional model that also consider sediment resuspension and transport (Moriarty et al. 2018, 2020). Regional and global biogeochemical models that ignore marine sediments are likely to significantly underestimate sediment denitrification and thus misrepresent regional to global nitrogen transformations/budgets.

B. Diagenetic models: Most of these models are based on a 1D diffusive framework that represent the sediment as horizontally homogeneous layers in which particulate matter and pore-water solutes are explicitly represented. Advection, if accounted for at all, refers to slow burial or is implicitly represented by large diffusivities in the upper layers of the model. While these models work well for clays and muds, they do not appropriately represent permeable sediments because they neglect advective flow, which is fundamental to the latter’s biogeochemical functioning. Building on pioneering contributions by Shum (1992, 1993, 1995), novel modeling work on permeable sediments

Continued

Box 2. Biogeochemical models and permeable sediments.—cont’d by Cardenas et al. (2008), Cardenas and Wilson (2007a,b), and Meysman et al. (2007) showed the importance of turbulence and oscillatory flows for diagenetic modeling of sands. These models represent the 3D structure of sediments in idealized settings on the scale of multiple sand ripples and are forced by advective flows. Because they are highly localized and computationally demanding, these permeable sediment models cannot presently be scaled up to regional scales of tens to hundreds of kilometers.

C. Sediment parameterizations: This group of approaches does not explicitly represent sediments and the physical transport and biogeochemical transformation processes within them. Instead, they are functional relationships that assume steady state exchange between the sediments and overlying water column and can be approximated independently of location if a set of input parameters is known.

Except for the idealized and localized models of permeable sediments described in B, none of the above represent processes in permeable sediments well. Where diagenetic models have been employed in conjunction with 3D regional or global models, either as the basis for the meta-model approach or directly coupled to the water-column model, the 1D diffusive framework for cohesive sediments was used.
suggested that sands remove only a small amount of reactive nitrogen via denitrification relative to fine-grained sediments (Cook et al. 2006; Cardenas et al. 2008; Kessler et al. 2013; Azizian et al. 2015). According to these studies, advective flows can transport the remaining reactive nitrogen to the overlying water, causing permeable sand beds to act as a net source of reactive nitrogen.

Another well-established paradigm, the redox cascade, states that microbial communities use electron acceptors to oxidize organic matter following a sequence of high-to-low energy yield. Denitrifiers were thought to only use nitrite and nitrate as alternative electron acceptors once oxygen had been depleted—therefore, denitrification is viewed as a strictly anaerobic process that only occurs in a distinct horizontal sediment layer below the oxygenated sediment surface layer (i.e., upper millimeters). Moreover, oxygen was thought to repress expression of the denitrification pathway (Bergaust et al. 2012). Yet, several experimental studies using intertidal and subtidal sands from the South Atlantic Bight (Rao et al. 2007, 2008) and the Wadden Sea (Gao et al. 2010; Marchant et al. 2017) have observed high rates of N2 production under oxic conditions. One explanation for this so-called aerobic denitrification is as follows. As currents remobilize the sand bed, the shifting sediment topography varies the oxygen penetration depths and exposes freshly buried organic matter to anaoxic and oxic conditions. In tidal systems with rapidly fluctuating redox conditions, it may therefore be favorable to constantly express multiple respiratory pathways to capitalize on the variety of energy sources available—in other words, denitrifiers may have adapted to simultaneously use oxygen and nitrate (Gao et al. 2010; Marchant et al. 2017). Aerobic denitrification may not be a universal phenomenon (Evvard et al. 2013), but could also arise due to temporary anaoxic microniche in oxic sediment, as suggested for the water column (Bianchi et al. 2018).

It is also unclear whether other environmental parameters such as bottom water nitrate concentrations are important in driving denitrification rates in submerged sands. Denitrification can either be fueled by nitrate from the overlying water (direct denitrification), or nitrate produced in the sediment (coupled nitrification–denitrification). Measurements in different shelf environments have found that the supply of nitrate from the overlying water may not always drive permeable sediment denitrification. At certain sites, coupled nitrification–denitrification is an important nitrogen loss pathway (South Atlantic Bight, southeast US shelf, Rao et al. 2008; Wadden Sea, northwest European shelf, Gao et al. 2012; German Bight, northwest European shelf, Marchant et al. 2016); at sites where transport predominates over reaction rates, nitrate may pass through the system without much effect on sedimentary denitrification (northwest Africa shelf; Sokoll et al. 2016). On the other hand, reactive transport models suggest that in some environments with permeable sea beds, the majority of denitrification is fed by nitrate from overlying water (Kessler et al. 2012, 2013). These modeling studies predict that during periods with no bedload transport and stationary ripples, upward pore-water flow through a “redox chimney” at ripple peaks causes ammonium release from deeper, anoxic sediments to the overlying water, allowing it to bypass nitrification in the surface oxic zone. Therefore, the models suggest that the coupling between nitrification and denitrification in stationary sand beds is weak and direct denitrification dominates. Given these recent measured and modeled results, the influence of bottom water nitrate on permeable denitrification rates likely depends on the ambient flow regime.

These controversies have practical implications in terms of modeling denitrification at shelf and global scales, and hence for estimating the marine nitrogen budget. The most recent estimates of this budget find that marine nitrogen loss via denitrification exceeds known inputs by 60–234 Tg N yr\(^{-1}\) (Codispoti et al. 2001; Codispoti 2007; Voss et al. 2013). This imbalance largely owes to a high benthic denitrification rate, which in turn is based on sparse observations of denitrification in shelf sediments. If denitrification rates in shelf sands are lower than in finer-grained sediments, it might explain the apparent imbalance in the global nitrogen budget. Substantial denitrification in these sands as suggested by recent findings, on the other hand, would further increase the imbalance. If denitrification can be parameterized with easily measured factors such as water column nitrate and/or oxygen concentrations, then models might be used to predict rates. For example, a recent model used water column nitrate and phosphate concentrations to estimate global patterns of denitrification rates (Wang et al. 2019). Yet, as summarized above, some studies have found that nitrate and/or oxygen concentrations are not the primary or exclusive control of denitrification rates in sands, confounding efforts to take this approach. If this is truly the case, then models of nitrogen loss in shelf sediments that commonly rely on sediment oxygen consumption as a proxy for denitrification (Fennel et al. 2006) may have to be revised. If anaerobic microenvironments exist in the aerobic layer of permeable sediments, either in organic particles (Jahne 1985) or intragranular spaces in carbonate sands (Kessler et al. 2014), approaches like Bianchi et al. (2018)’s—which represents anaerobic microenvironments in sinking particles in a globally applicable parameterization for water-column denitrification—may prove useful. Furthermore, if denitrification rates are governed not only by reaction kinetics but also by metabolic responses to changing electron acceptors, then this feature should be incorporated into reactive transport models.

Fate in a changing environment

Our understanding of permeable shelf sediment nitrogen dynamics is rudimentary, and our knowledge of how they will respond to climate change and other anthropogenic forcings
is even more limited. Here, we hypothesize plausible scenarios largely based on studies from impermeable marine sediments. Ocean water temperatures are increasing globally as are occurrences of extreme heat events (Bronselaer and Zanna 2020; Chen et al. 2015; Liu et al. 2016). We anticipate that elevated water temperature will lead to a series of physical, chemical, and biological changes that could have negative as well as positive effects on permeable shelf sediment nitrogen cycling (Fig. 3).

Warming water temperatures are leading to global decreases in water column oxygen concentrations (Breitburg et al. 2018). Increasing hypoxia may limit coupled nitrification–denitrification, a potential dominant pathway of nitrogen removal in permeable shelf sediments. Second, warming will increase stratification of the shelf water column, ultimately lowering organic matter deposition to the permeable shelf seafloor (Fields et al. 2014). This decrease in organic matter loading to the benthos may be exacerbated by warming-induced decreases in phytoplankton size (Morán et al. 2010), and overall declines in productivity (Gregg 2005; Boyce et al. 2010; Hofmann et al. 2011). Faster metabolic rates can lead to enhanced microbial and zooplankton grazing in the water column (Brown et al. 2004; Sommer and Lengfellner 2008). Thus, warming may decrease the quantity and quality of organic matter reaching permeable shelf sediments, subsequently limiting their “bioreactor” capabilities.

Changes in the timing and magnitude of freshwater inputs to shelf systems may increase stratification but will surely deliver more anthropogenic nutrients. Given the anticipated escalations in extreme precipitation events, we predict that extreme biogeochemical events on shelf environments may follow (Lu et al. 2020). Ensuing larger oscillations in the concentrations of reactive nitrogen, organic matter, and oxygen have the potential to boost sandy shelf sediment denitrification through enhancing spatial and temporal redox gradients and substrate supply. Predicted future changes in wind speeds and the severity of storm events (Young and Ribal 2019) similarly have the potential to enhance nitrogen cycling through increased mixing. Stronger winds result in higher waves, deeper mixing, and enhanced redistribution of dissolved oxygen, nutrients, organic matter, and sediments. Water column mixing induced by storm events could stimulate primary productivity, even on oligotrophic shelves (Chen et al. 2021).

Fig. 3. Hypothesized scenarios depicting how environmental changes caused by human activities could alter denitrification rates in shelf sediments. (A) Present situation. (B) Warming increases water column stratification, which reduces mixing and reoxygenation of the water column and may therefore lower rates of coupled nitrification–denitrification. Warming has also been linked to smaller phytoplankton cells and increased bacterial and zooplankton grazing, which may alter organic matter deposition to sediments and ultimately lower rates of benthic denitrification. (C) Increased freshwater inputs enhance terrestrial nutrient release to the ocean, stimulating phytoplankton production, and organic matter deposition, thereby increasing rates of sedimentary denitrification. (D) Increased wind speeds and storm severity temporarily enhance mixing and reoxygenation of the water column and promote sediment erosion/redistribution, stimulating coupled sediment nitrification–denitrification. Many other scenarios are possible. O$_2$, dissolved oxygen; OM, organic matter.
These examples outline some hypothetical scenarios that may be caused by the changing global climate, but a plethora of other developments is possible, some of which may be beyond our current imagination.

Predicting the future of continental shelf nitrogen cycling thus is challenging given the lack of data, but also due to the large ecological variety of shelf environments. One unifying framework for approaching studies of future change on continental shelves might be binning them by residence time, as Fennel and Testa (2019) suggest. In doing so, we can highlight areas that may be under threat from certain variables.

Moving forward

Evidence is mounting that permeable sediments on continental shelves play a larger role in global biogeochemical cycling than previously thought. However, many global nitrogen budgets still do not even include sediments. To predict future changes in global biogeochemical cycles, we must resolve major uncertainties surrounding the nitrogen removal capacity of continental shelf sediments. These predictions are required now more than ever, given that reactive nitrogen from human inputs exceeds that from natural nitrogen fixation (Voss et al. 2013). This perturbation directly and indirectly contributes to climate change (Pinder et al. 2012), coastal eutrophication, harmful algal blooms, spreading of hypoxic zones (Diaz and Rosenberg 2008), and threatens coastal economies and important fisheries. Furthermore, it may alter the capacity of shelf sediments to process nitrogen.

As our activities continue to push the nitrogen cycle out of balance, pinning down the “ever faster moving target” (Gruber 2016) of the marine nitrogen budget is becoming increasingly challenging. To date, few studies have incorporated both transport and reaction in shelf sediments. Moreover, our sparse collection of studies (Fig. 2) has virtually all focused on temperate shelves; far more work is required in tropical carbonate sands and Arctic shelves.

We suggest three questions to focus future research on shelf sediments, and in particular, permeable shelf sediments:

1. How do anthropogenic influences (nitrogen loading, warming, acidification, oxygen decrease, and sea level rise) impact denitrification?
2. How does denitrification vary with spatial and temporal dynamics (at different latitudes and climates; upwelling shelves vs. river-dominated shelves; seasonal vs. episodic storm events)?
3. What are the present magnitudes and major trends of denitrification?

We propose a three-pronged approach to resolve these questions. First and foremost, we must increase the temporal and spatial resolution of in situ measurements in the inner shelf. These field observations are critical to providing a window into the rates, timing, and location of biogeochemical processes in shelf environments and developing parameterizations for models. Novel in situ measurement techniques currently being developed for dynamic shelf sediments include aquatic eddy covariance instruments (Johnson et al. 2011; Huettel et al. 2020) and underwater mass spectrometers (Bell et al. 2012; Chua et al. 2021). The former can measure sediment-water fluxes of oxygen and nitrate in real time with no disturbances of sediment, light, or hydrodynamics. The latter can resolve multiple dissolved gas species simultaneously at high temporal resolution in the bottom water and within the sediment. Second, it is crucial to conduct laboratory experiments that investigate the transport-driven nitrogen cycling reactions in shelf sediments of different permeabilities under controlled conditions. These studies (Kessler et al. 2012; Marchant et al. 2017) will help us identify the key drivers of nitrogen cycling in permeable and fine-grained sediments, informing the design of field campaigns and providing validation for mechanistic models. Finally, we should further refine diagenetic models that incorporate the complex advective flow in sands (Cook et al. 2006; Cardenas et al. 2008; Kessler et al. 2013) and pursue modeling approaches that can extrapolate field measurements and small-scale model simulations to the shelf scale.

Because the inner shelf is such a dynamic environment, obtaining accurate field observations is a particularly challenging task—while measurement platforms such as gliders and moorings are increasingly being developed for the water column (Chai et al. 2020), we lack similar efforts to design technology to study marine sediments. Consequently, we must develop standardized sampling schemes and technology for simultaneously measuring hydrodynamic patterns and biogeochemical variables (e.g., solute/particle concentrations and fluxes) in sediments in diverse shelf environments and at multiple time scales. Lab and field observations, as well as data from small-scale models, are necessary to determine which factors are key to nitrogen cycling in shelf sediments. To make sense of these observations and data, critical parameters such as sediment type, permeability, bottom current dynamics, and flushing rate should be reported alongside rate data. We expect that the magnitudes and distribution patterns of key parameters affecting benthic denitrification on the shelf (Fig. 1) will change, which may alter the depth and the areal extent of the zone of maximum benthic denitrification. Predicting these changes is challenging, as the complexity of potential coastal ocean changes generates a spectrum of different scenarios.

Developing small-scale diagenetic models will allow us to obtain mechanistic insights into the biogeochemical functioning of permeable sediments, especially when combined with laboratory experiments that explore the impacts of likely drivers over a range of controlled conditions. For large-scale models, one can compare the biogeochemical processing that occurs due to advective pumping of reactants in permeable sediments to subgrid-scale processes in geophysical models of
atmosphere and ocean (e.g., cloud condensation, turbulent diffusion). Some processes cannot be explicitly resolved on large scales and thus must be parameterized. While it is possible to represent turbulent and oscillatory advective flow in permeable sediments through direct Large-Eddy Simulation modeling, doing so at scales of tens to thousands of kilometers will remain intractable for the foreseeable future. We advocate for a meta-model approach where tested process-based, small-scale models are used to derive parameterizations that can be used in large-scale models. The challenge, then, is to determine which factors best explain spatiotemporal variations in sediment biogeochemical processing and can be used as the input variables for such parameterizations. Some obvious candidates are water depth, wave action, bottom currents, sediment permeability, and large- and small-scale topography, but there are likely others that remain to be explored. Accurately representing dynamic biogeochemical inner shelf processes at the global scale poses considerable challenges—but doing so may reduce one of the largest sources of uncertainty in the global nitrogen budget.

Understanding and quantifying nitrogen cycling on the shelf are indispensable for designing global carbon and nutrient models and budgets. Accelerating human-induced changes to coastal and marine systems emphasize the urgency to develop adaptive models that permit a dynamic assessment of the consequences of the environmental changes for shelf and marine ecosystems. To develop these models, we require data from the inner shelf that, at present, are unavailable. Given our growing recognition of the importance of shelf sediments in global nitrogen cycling, we require a concerted effort to develop sensor systems for these environments. Improved measurement methods are fundamental to determining the role of continental shelf sediments in marine nitrogen cycling and predicting how it may change in the Anthropocene. In turn, obtaining a better knowledge of nitrogen cycling will advance our understanding of carbon cycling, and ultimately global climate.

References

Aller, R. C. 1994. Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation. Chem. Geol. 114: 331–345. doi:10.1016/0009-2541(94)90062-0

Azizian, M., S. B. Grant, A. J. Kessler, P. L. M. Cook, M. A. Rippy, and M. J. Stewardson. 2015. Bedforms as biocatalytic filters: A pumping and streamline segregation model for nitrate removal in permeable sediments. Environ. Sci. Tech. 49: 10993–11002. doi:10.1021/acs.est.5b01941

Bauer, J. E., W. J. Cai, P. A. Raymond, T. S. Bianchi, C. S. Hopkinson, and P. A. G. Regnier. 2013. The changing carbon cycle of the coastal ocean. Nature 504: 61–70. doi:10.1038/nature12857

Bell, R. J., W. B. Savidge, S. K. Toler, R. H. Byrne, and R. T. Short. 2012. In situ determination of porewater gases by underwater flow-through membrane inlet mass spectrometry. Limnol. Oceanogr.: Methods 10: 117–128. doi:10.4319/lom.2012.10.117

Berg, P., H. Røy, F. Janssen, V. Meyer, B. B. Jørgensen, M. Huettel, and D. De Beer. 2003. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar. Ecol. Prog. Ser. 261: 75–83. doi:10.3354/meps261075

Bergaust, L., R. J. M. van Spanning, Å. Frostegård, and L. R. Bakken. 2012. Expression of nitrous oxide reductase in Paracoccus denitrificans is regulated by oxygen and nitric oxide through FnrP and NNR. Microbiology 158: 826–834. doi:10.1099/mic.0.054148-0

Bianchi, D., T. S. Weber, R. Kiko, and C. Deutsch. 2018. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11: 1–6. doi:10.1038/s41561-018-0081-0

Bohlen, L., A. W. Dale, and K. Wallmann. 2012. Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models. Global Biogeochem. Cycles 26: GB3029. doi:10.1029/2011GB004198

Boyce, D. G., M. R. Lewis, and B. Worm. 2010. Global phytoplankton decline over the past century. Nature 466: 591–596. doi:10.1038/nature09268

Braeckman, U., M. Foshtomi, D. Ganske, F. Meyskens, K. Soetaert, M. Vincx, and J. Vanaverbeke. 2014. Variable Importance of Macrofaunal Functional Biodiversity for Biogeochemical Cycling in Temperate Coastal Sediments. Ecosystems, 17(4): 720–737. doi:10.1007/s10021-014-9755-7

Breitburg, D., and others. 2018. Declining oxygen in the global ocean and coastal waters. Science 359: eaam7240. doi:10.1126/science.aam7240

Bronsema, B., and L. Zanna. 2020. Heat and carbon coupling reveals ocean warming due to circulation changes. Nature 584: 227–233. doi:10.1038/s41586-020-2573-5

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789. doi:10.1890/03-9000

Cardenas, M. B., P. L. M. Cook, H. Jiang, and P. Traykovski. 2008. Constraining denitrification in permeable wave-influenced marine sediment using linked hydrodynamic and biogeochemical modeling. Earth Planet. Sci. Lett. 275: 127–137. doi:10.1016/j.epsl.2008.08.016

Cardenas, M. B., and J. L. Wilson. 2007a. Hydrodynamics of coupled flow above and below a sediment-water interface with triangular bedforms. Adv. Water Resour. 30: 301–313. doi:10.1016/j.advwatres.2006.06.009

Cardenas, M. B., and J. L. Wilson. 2007b. Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resour. Res. 43: W08412. doi:10.1029/2006WR005787

Chai, F., and others. 2020. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 1: 315–326. doi:10.1038/s43017-020-0053-y
Chen, K., G. Gawarkiewicz, Y. Kwon, and W. G. Zhang. 2015. The role of atmospheric forcing versus ocean advection during the extreme warming of the northeast U.S. continental shelf in 2012. J. Geophys. Res. Oceans 120: 4324–4339. doi: 10.1002/2014JC010547

Chen, Y.-J., and others. 2021. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME Journal. 15: 2986–3004. doi:10.1038/s41396-021-00988-w

Chua, E., T. Short, A. M. Cardenas-Valencia, W. Savidge, and R. W. Fulweiler. 2021. A mass spectrometer-based pore-water sampling system for sandy sediments. Limnol. Oceanogr.: Methods. doi:10.1002/lom3.10460 [Correction added on November 02, 2021, after first online publication: Author name “C. K. Algar” was removed from this reference.]

Codispoti, L. A. 2007. An oceanic fixed nitrogen sink exceeding 400 Tg N a-1 vs the concept of homeostasis in the fixed-nitrogen inventory. Biogeoosciences 4: 233–253. doi:10.5194/bg-4-233-2007

Codispoti, L. A., J. A. Brandes, J. P. Christensen, A. H. Devol, S. W. A. Naqvi, H. W. Paerl, and T. Yoshinari. 2001. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene? Sci. Mar. 65: 85–105. doi:10.3989/scimar.2001.65s285

Cook, P. L. M., and others. 2006. Quantification of denitrification in permeable sediments: Insights from a two-dimensional simulation analysis and experimental data. Limnol. Oceanogr.: Methods 4: 294–307. doi:10.4319/lom.2006.4.294

Cornwell, J. C., W. M. Kemp, and T. M. Kana. 1999. Denitrification in coastal ecosystems: Methods, environmental controls, and ecosystem level controls, a review. Aquat. Ecol. 33: 41–54.

Devol, A. H. 2008. Denitrification including Anammox, p. 263–301. In Nitrogen in the marine environment. Elsevier Inc. doi:10.1016/B978-0-12-372522-6.00006-2

Diaz, R. J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929. doi:10.1126/science.1156401

Dunne, J. P., J. L. Sarmiento, and A. Gnanadesikan. 2007. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles 21: 1–16. doi:10.1029/2006GB002907

Emery, K. O. 1968. Relict sediments on continental shelves of world. AAPG Bull. 52: 445–464. doi:10.1306/SD25C2E7-16C1-11D7-8645000102C1865D

Evard, V., R. N. Glud, and P. L. M. Cook. 2013. The kinetics of denitrification in permeable sediments. Biogeochemistry 113: 563–572. doi:10.1007/s10533-012-9789-x

Eyre, B. D., I. R. Santos, and D. T. Maher. 2013. Seasonal, daily and diel N2 effluxes in permeable carbonate sediments. Biogeoosciences 10: 2601–2615. doi:10.5194/bg-10-2601-2013

Eyre, B. D., R. N. Glud, and N. Patten. 2008. Mass coral spawning: A natural large-scale nutrient addition experiment. Limnol. Oceanogr. 53: 997–1013. doi:10.4319/lo.2008.53.3.0997

Fennel, K., and J. M. Testa. 2019. Biogeochemical controls on coastal hypoxia. Ann. Rev. Mar. Sci. 11: 105–130. doi:10.1146/annurev-marine-010318-095138

Fennel, K., J. Wilkin, J. Levin, J. Moisan, J. O’Reilly, and D. Haidvogel. 2006. Nitrogen cycling in the middle Atlantic bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochem. Cycles 20: 1–14. doi:10.1029/2005GB002456

Fields, L. S., W. W. Nixon, C. Oviatt, and R. W. Fulweiler. 2014. Benthic metabolism and nutrient regeneration in hydrographically different regions on the inner continental shelf of Southern New England. Estuar. Coast. Shelf Sci. 148: 14–26. doi:10.1016/j.ecss.2014.06.007

Fulweiler, R. W., and E. M. Heiss. 2014. A decade of directly measured sediment N2 fluxes: What can Narragansett Bay tell us about the global ocean nitrogen budget? Oceanography 27: 1–13. doi:10.5670/oceanog.2014.22

Galloway, J. N., and others. 2004. Nitrogen cycles: Past, present, and future. Biogeochemistry 70, 153-226: http://www.jstor.org/stable/4151466

Gao, H., and others. 2012. Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol. Oceanogr. 57: 185–198. doi:10.4319/lo.2012.57.1.0185

Gao, H., and others. 2010. Aerobic denitrification in permeable Wadden Sea sediments. ISME J. 5: 776–776. doi:10.1038/ismej.2010.166

Ghiringh, T. M., A. Canion, A. Riggs, M. Huettel, and J. E. Kostka. 2010. Denitrification in shallow, sublittoral Gulf of Mexico permeable sediments. Limnol. Oceanogr. 55: 43–54. doi:10.4319/lo.2010.55.1.0043

Gregg, W. W. 2005. Recent trends in global ocean chlorophyll. Geophys. Res. Lett. 32: L03606. doi:10.1029/2004GL021808

Gruber, N. 2008. The marine nitrogen cycle: Overview and challenges, p. 1–50. In Nitrogen in the marine environment. Academic Press. doi:10.1016/B978-0-12-372522-6.00001-3

Gruber, N. 2016. Elusive marine nitrogen fixation. Proc. Natl. Acad. Sci. USA 113: 4246–4248. doi:10.1073/pnas.1603646113

Gruber, N., and J. N. Galloway. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451: 293–296. doi:10.1038/nature06592

Hall, S. J. 2002. The continental shelf benthic ecosystem: Current status, agents for change and future prospects. Environ. Conserv. 29: 350–374. doi:10.1017/S0376892902000243

Hofmann, M., B. Worm, S. Rahmstorf, and H. J. Schellnhuber. 2011. Declining ocean chlorophyll under unabated anthropogenic CO2 emissions. Environ. Res. Lett. 6: 034035. doi:10.1088/1748-9326/6/3/034035

Huettel, M., P. Berg, and J. E. Kostka. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Ann.
Unresolved role of shelf sediments

Rev. Mar. Sci. 6: 23–51. doi:10.1146/annurev-marine-051413-012706

Huettel, M., P. Berg, and A. Merikhii. 2020. Technical note: Measurements and data analysis of sediment-water oxygen flux using a new dual-optode eddy covariance instrument. Biogeosciences 17: 4459–4476. doi:10.5194/bg-17-4459-2020

Huettel, M., W. Ziebis, S. Forster, and G. W. Luther. 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochim. Cosmochim. Acta 62: 613–631. doi:10.1016/S0016-7037(97)00371-2

Jahnke, R. A. 1985. A model of microenvironments in deep-sea sediments: Formation and effects on porewater profiles. Limnol. Oceanogr. 30: 966–971. doi:10.4319/lo.1985.30.5.0956

Jahnke, R. A. 2010. Global synthesis, p. 597–615. In Carbon and nutrient fluxes in continental margins: A global synthesis. Springer Verlag.

Johnson, K. S., J. P. Barry, L. J. Coletti, S. E. Fitzwater, H. W. Janmasch, and C. F. Lovera. 2011. Nitrate and oxygen flux across the sediment-water interface observed by eddy correlation measurements on the open continental shelf. Limnol. Oceanogr. Methods 9: 543–553. doi:10.4319/lom.2011.9.543

Johnson, K. S., and L. J. Coletti. 2002. In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep Sea Research Part I: Oceanographic Research Papers, 49: 1291–1305. doi:10.1016/S0967-0637(02)00020-1

Kessler, A. J., M. B. Cardenas, I. R. Santos, and P. L. M. Cook. 2014. Enhancement of denitrification in permeable carbonate sediment due to intra-granular porosity: A multi-scale modelling analysis. Geochim. Cosmochim. Acta 141: 440–453. doi:10.1016/j.gca.2014.06.028

Kessler, A. J., R. N. Glud, M. Bayani Cardenas, M. Larsen, M. F. Bourke, and P. L. M. Cook. 2012. Quantifying denitrification in rippled permeable sands through combined flume experiments and modeling. Limnol. Oceanogr. 57: 1217–1232. doi:10.4319/lo.2012.57.4.1217

Kessler, A. J., R. N. Glud, M. B. Cardenas, and P. L. M. Cook. 2013. Transport zonation limits coupled nitrification-denitrification in permeable sediments. Environ. Sci. Technol. 47: 13404–13411. doi:10.1021/es403318x

Laurent, A., K. Fennel, R. Wilson, J. Lehrter, and R. Devereux. 2016. Parameterization of biogeochemical sediment-water fluxes using in situ measurements and a diagenetic model. Biogeosciences 13: 77–94. doi:10.5194/bg-13-77-2016

Liu, W., S. P. Xie, and J. Lu. 2016. Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun. 7: 1–9. doi:10.1038/ncomms10926

Lu, C., J. Zhang, H. Tian, W. G. Crumpton, M. J. Helmers, W-J. Cai, C. S. Hopkinson, and S. E. Lohrenz. 2020. Increased extreme precipitation challenges nitrogen load management to the Gulf of Mexico. Commun. Earth Environ. 1:21. 10.1038/s43247-020-00020-7

Marchant, H. K., G. Lavik, M. Holtappels, and M. M. M. Kuypers. 2014. The fate of nitrate in intertidal permeable sediments. PLoS ONE, 9: e104517. doi:10.1371/journal.pone.0104517

Marchant, H. K., and others. 2017. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 11: 1799–1812. doi:10.1038/ismej.2017.51

Marchant, H. K., M. Holtappels, G. Lavik, S. Ahmerkamp, C. Winter, and M. M. M. Kuypers. 2016. Coupled nitrification-denitrification leads to extensive N loss in subtidal permeable sediments. Limnol. Oceanogr. 61: 1033–1048. doi:10.1002/lo.10271

McCave, I. N. 2002. Sedimentary settings on continental margins—an overview, p. 1–14. In Ocean margin systems. Springer. doi:10.1007/978-3-662-05127-6_1

Meysman, F. J. R., O. S. Galaktionov, P. L. M. Cook, F. Janssen, M. Huettel, and J. J. Middelburg. 2007. Quantifying biologically and physically induced flow and tracer dynamics in permeable sediments. Biogeosciences 4: 627–646. doi:10.5194/bg-4-627-2007

Morán, X. A. G., Á. López-Urrutia, A. Calvo-Díaz, and W. K. Li. 2010. Increasing importance of small phytoplankton in a warmer ocean. Glob. Chang. Biol. 16: 1137–1144. doi:10.1111/j.1365-2486.2009.01960.x

Moriarty, J. M., M. A. M. Friedrichs, and C. K. Harris. 2020. Seabed resuspension in the Chesapeake Bay: Implications for biogeochemical cycling and hypoxia. Estuaries Coasts 44: 103–122. doi:10.1007/s12237-020-00763-8

Moriarty, J. M., C. K. Harris, M. A. M. Friedrichs, K. Fennel, and K. Xu. 2018. Impact of seabed resuspension on oxygen and nitrogen dynamics in the northern Gulf of Mexico: A numerical modeling study. J. Geophys. Res. Oceans 123: 7237–7263. doi:10.1029/2018JC013950

Neumann, A., J. E. E. van Beusekom, M. Holtappels, and K. C. Emeis. 2017. Nitrate consumption in sediments of the German Bight (North Sea). Journal of Sea Research, 127: 26–35. doi:10.1016/j.seares.2017.06.012

Nowicki, B. L. 1994. The effect of temperature, oxygen, salinity, and nutrient enrichment on estuarine denitrification rates measured with a modified nitrogen gas flux technique. Estuar. Coast. Shelf Sci. 38: 137–156. doi:10.1006/ecss.1994.1009

Osburn, C. L., J. C. Rudolph, H. W. Paerl, A. G. Hounshell, and B. R. Van Dam. 2019. Lingering carbon cycle effects of hurricane Matthew in North Carolina’s coastal waters. Geophys. Res. Lett. 46: 2654–2661. doi:10.1029/2019GL082014

Paerl, H. W., and others. 2020. Recent increases of rainfall and flooding from tropical cyclones (TCs) in North Carolina (USA): Implications for organic matter and nutrient cycling in coastal watersheds. Biogeochemistry 150: 197–216. doi:10.1007/s10533-020-00693-4
Pinder, R. W., E. A. Davidson, C. L. Goodale, T. L. Greaver, J. D. Herrick, and L. Liu. 2012. Climate change impacts of US reactive nitrogen. Proc. Natl. Acad. Sci. USA 109: 7671–7675. doi:10.1073/pnas.1114243109

Rao, A. M. F., M. J. McCarthy, W. S. Gardner, and R. A. Jahnke. 2007. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: Rates of carbon and nitrogen cycling from sediment column experiments. Cont. Shelf Res. 27: 1801–1819. doi:10.1016/j.csr.2007.03.001

Rao, A. M. F., M. J. McCarthy, W. S. Gardner, and R. A. Jahnke. 2008. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: N2: Ar and isotope pairing measurements in sediment column experiments. Cont. Shelf Res. 28: 602–613. doi:10.1016/j.csr.2007.11.007

Santos, I. R., B. D. Eyre, and R. N. Glud. 2012a. Influence of porewater advection on denitrification in carbonate sands: Evidence from repacked sediment column experiments. Geochim. Cosmochim. Acta 96: 247–258. doi:10.1016/j.gca.2012.08.018

Santos, I. R., B. D. Eyre, and M. Huettel. 2012b. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuar. Coast. Shelf Sci. 98: 1–15. doi:10.1016/j.ecss.2011.10.024

Scavia, D., and others. 2002. Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25: 149–164. doi:10.1007/BF02691304

Seitzinger, S. P., and A. E. Giblin. 1996. Estimating denitrification in North Atlantic continental shelf sediments. Biogeochemistry 35: 235–260. doi:10.1007/BF02179829

Seitzinger, S. P., J. A. Harrison, J. K. Böhlike, A. F. Bouwman, R. Lowrance, C. Tobias, and G. Van Drecht. 2006. Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl. 16: 2064–2090.

Shum, K. T. 1992. Wave-induced advective transport below a rippled water-sediment interface. J. Geophys. Res. 97: 789–808. doi:10.1029/91JC02101

Shum, K. T. 1993. The effects of wave-induced pore water circulation on the transport of reactive solutes below a rippled sediment bed. J. Geophys. Res. 98: 10289. doi:10.1029/93JC00787

Shum, K. T. 1995. A numerical study of the wave-induced solute transport above a rippled bed. J. Fluid Mech. 299: 267–288. doi:10.1017/S0022112095003508

Skoog, A. C., and V. A. Arias-Esquivel. 2009. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese. Sci. Total Environ. 407: 6085–6092. doi:10.1016/j.scitotenv.2009.08.030

Sokoll, S., G. Lavik, S. Sommer, T. Goldhammer, M. M. M. Kuypers, and M. Holtappels. 2016. Extensive nitrogen loss from permeable sediments off north-west Africa. J. Geophys. Res. Biogeo. 121: 1144–1157. doi:10.1002/2015JG003298

Sommer, U., and K. Lengfellner. 2008. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob. Chang. Biol. 14: 1199–1208. doi:10.1111/j.1365-2486.2008.01571.x

Sun, M. Y., R. C. Aller, C. Lee, and S. G. Wakeham. 2002. Effects of oxygen and redox oscillation on degradation of cell-associated lipids in surficial marine sediments. Geochim. Cosmochim. Acta 66: 2003–2012. doi:10.1016/S0016-7037(02)00830-X

Thibodeaux, L. J., and J. D. Boyle. 1987. Bedform-generated convective transport in bottom sediment. Nature 325: 341–343. doi:10.1038/325341a0

Toussaint, E., E. De Borg, U. Braeckman, A. De Backer, K. Soetaert, and J. Vanaverbeke. 2021. Faunal and environmental drivers of carbon and nitrogen cycling along a permeability gradient in shallow North Sea sediments. Sci. Total Environ. 767: 144994. doi:10.1016/j.scitotenv.2021.144994

Voss, M., H. W. Bange, J. W. Dipper, J. J. Middelburg, J. P. Montoya, and B. Ward. 2013. The marine nitrogen cycle: Recent discoveries, uncertainties and the potential relevance of climate change. Philos. Trans. R. Soc. B: Biol. Sci 368: 20130121. doi:10.1098/rstb.2013.0121

Wang, W. L., J. K. Moore, A. C. Martiny, and F. W. Primeau. 2019. Convergent estimates of marine nitrogen fixation. Nature 566: 205–211. doi:10.1038/s41586-019-0911-2

Webb, J. E., and J. Theodor. 1968. Irrigation of submerged marine sands through wave action. Nature 220: 682–683. doi:10.1038/220682a0

Young, I. R., and A. Ribal. 2019. Multiplatform evaluation of global trends in wind speed and wave height. Science 364: 548–552. doi:10.1126/science.aay9527

Zehr, J. P., and D. G. Capone. 2020. Changing perspectives in marine nitrogen fixation. Science 368: eaay9514. doi:10.1126/science.aay9514

Acknowledgments

EJC was supported by a Warren-McLeod Annual Research Fellowship and a Graduate Writing Fellowship from Boston University. MH was supported by NSF grant OCE 1851290. KF was supported by the Ocean Frontier Institute and NSERC. RWF was supported by RI & MIT Sea Grant as well as by NSF grant CoPe-Coastlines and People 1940085. The authors thank Alia Al-Haj for her help with QGIS.

Conflict of interest

The authors declare no competing interests.