Accumulation of sequence variants in genes of Wnt signaling and focal adhesion pathways in human corneas further explains their involvement in keratoconus

Justyna A Karolak¹, ², Tomasz Gambin ³, Malgorzata Rydzanicz⁴, Piotr Polakowski ⁵, Rafal Ploski ⁴, Jacek P Szaflik ⁵, Marzena Gajecka

¹ Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
² Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
³ Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
⁴ Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
⁵ Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland

Corresponding Author: Marzena Gajecka
Email address: gamar@man.poznan.pl

Background. Keratoconus (KTCN) is a protrusion and thinning of the cornea, resulting in loss of visual acuity. The etiology of KTCN remains unclear. The purpose of this study was to assess the potential involvement of new genetic variants in KTCN etiology based on both the genomic and transcriptomic findings recognized in the same corneal tissues.

Methods. Corneal tissues derived from five unrelated Polish individuals with KTCN were examined using exome sequencing (ES), followed by enrichment analyses. For comparison purposes, the datasets comprising ES data of five randomly selected Polish individuals without ocular abnormalities and five Polish patients with high myopia (HM) were used. Expression levels of selected genes from the overrepresented pathways were obtained from the previous RNA-Seq study.

Results. Exome capture discovered 117 potentially relevant variants that were further narrowed by gene overrepresentation analyses. In each of five patients, the assessment of functional interactions revealed rare (MAF ≤ 0.01) DNA variants in at least one gene from Wnt signaling (VANGL1, WNT1, PPP3CC, LRP6, FZD2) and focal adhesion (BIRC2, PAK6, COL4A4, PPP1R12A, PTK6) pathways. No genes involved in pathways enriched in KTCN corneas were overrepresented in our control sample sets.

Conclusions. The results of this first pilot ES profiling of human KTCN corneas emphasized that accumulation of sequence variants in several genes from Wnt signaling and/or focal adhesion pathways might cause the phenotypic effect and further points to a complex etiology of KTCN.
Accumulation of sequence variants in genes of Wnt signaling and focal adhesion pathways in human corneas further explains their involvement in keratoconus

Justyna A. Karolak1,2, Tomasz Gambin3, Małgorzata Rydzanicz4, Piotr Polakowski5, Rafał Ploski4, Jacek P. Szaflik5, Marzena Gajecka1,2

1Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland;
2Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland;
3Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland;
4Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland;
5Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland.

Corresponding author

Marzena Gajecka1,2

Strzeszynska 32, Poznan, 60-479, Poland;

E-mail address: gamar@man.poznan.pl
Abstract

Background. Keratoconus (KTCN) is a protrusion and thinning of the cornea, resulting in loss of visual acuity. The etiology of KTCN remains unclear. The purpose of this study was to assess the potential involvement of new genetic variants in KTCN etiology based on both the genomic and transcriptomic findings recognized in the same corneal tissues.

Methods. Corneal tissues derived from five unrelated Polish individuals with KTCN were examined using exome sequencing (ES), followed by enrichment analyses. For comparison purposes, the datasets comprising ES data of five randomly selected Polish individuals without ocular abnormalities and five Polish patients with high myopia (HM) were used. Expression levels of selected genes from the overrepresented pathways were obtained from the previous RNA-Seq study.

Results. Exome capture discovered 117 potentially relevant variants that were further narrowed by gene overrepresentation analyses. In each of five patients, the assessment of functional interactions revealed rare (MAF ≤ 0.01) DNA variants in at least one gene from Wnt signaling (VANGL1, WNT1, PPP3CC, LRP6, FZD2) and focal adhesion (BIRC2, PAK6, COL4A4, PPP1R12A, PTK6) pathways. No genes involved in pathways enriched in KTCN corneas were overrepresented in our control sample sets.

Conclusions. The results of this first pilot ES profiling of human KTCN corneas emphasized that accumulation of sequence variants in several genes from Wnt signaling and/or focal adhesion pathways might cause the phenotypic effect and further points to a complex etiology of KTCN.

Introduction
Keratoconus (KTCN) is an eye disease characterized by progressive thinning and conical protrusion of the cornea. The structural abnormalities in different layers of corneal tissue result in altered refractive powers and a loss of visual function. The first symptoms of KTCN usually appear during puberty or early in the third decade of life. The management of this condition depends on the disease state and includes visual correction by contact lenses, corneal collagen cross-linking, or corneal transplant surgery. The incidence of KTCN is one in 2,000 individuals in the general population. However, the incidence may vary depending on the geographic location and ethnicity of the studied population. The estimated incidence of KTCN is higher in Indians, Chinese, Pacific, and Maori ethnicities compared with Caucasians. The environmental factors, such as eye rubbing or contact lens wear, influence disease development. However, genetic triggers also play an important role in KTCN. Several genomic strategies have been implemented for finding candidate genes, including both simple molecular techniques and high-throughput technologies.

Linkage studies, performed in KTCN families, have led to the identification of multiple chromosomal regions linked to KTCN, including two replicated loci at 5q. The genome-wide association studies (GWAS) have identified variants mapped near HGF, COL5A1, FOXO1, RAB3GAP1, or ZNF469, associated with KTCN risk. However, their contribution to KTCN needs to be clarified. Several candidate genes for KTCN have also been identified using Sanger sequencing or next generation sequencing (NGS) including VSX1, SOD1, and DOCK9 or SKP1, MPDZ, FLG, PPIP5K2, and PCSK1, respectively. However, variants detected in those genes were present in a small fraction of KTCN patients or particular populations only.

Analysis of transcriptome profiles of human KTCN and non-KTCN corneas by a high-throughput RNA sequencing (RNA-Seq) showed the deregulation of numerous genes in KTCN.
The significant downregulation was observed among genes in collagen synthesis and maturation pathways, as well as in the TGF-β, Hippo, and Wnt signaling pathways. The results of subsequent RNA studies further support the potential role of genes involved in the extracellular matrix, TGF-β, and Wnt molecular cascades in KTCN pathogenesis. Since these signaling pathways influence the corneal organization and play a role in regulation of extracellular matrix components, the genes encoding the core elements of the mentioned pathways were proposed as novel candidate genes for KTCN.

To assess the involvement of new genetic variants in KTCN etiology, we performed a further molecular investigation of corneas of Polish patients with KTCN, previously tested by RNA-Seq, using exome sequencing (ES) approach.

Materials & Methods

Patients

All patients with KTCN underwent a complete ophthalmic evaluation in the Department of Ophthalmology, Medical University of Warsaw, Poland. The KTCN diagnosis was made based on the criteria previously described. The study protocol was approved by the Institutional Review Board at Poznan University of Medical Sciences (453/14; 755/19). All individuals provided informed consent after the possible consequences of the study were explained, in accordance with the Declaration of Helsinki.

Material collection and DNA extraction

The pairs of whole corneal tissues and blood samples were obtained from previously evaluated five KTCN patients (KC15, KC16, KC17, KC18, and KC19) undergoing a penetrating keratoplasty procedure. The clinical characteristics of these patients are presented in Supplemental Table 1. Genomic DNA samples from the corneas were extracted using the Cells
and Tissue DNA Isolation Kit (Norgen Biotek, Thorold, ON, Canada) according to the manufacturer’s protocol. Genomic DNA samples were isolated from the blood lymphocytes using Gentra Puregene Blood Kit (Qiagen, Hilden, Germany), as previously described.37

Exome sequencing (ES)

This pilot ES study was conducted with 50 ng of genomic DNA of whole corneal tissues (KC15, KC16, KC17, KC18, and KC19) using the SureSelectQXT Reagent Kit combined with the SureSelectXT Human All Exon V5 (Agilent Technologies, Cedar Creek, TX, USA) according to manufacturer’s instruction. Prepared libraries were paired-end sequenced (2x100 bp) on an Illumina HiSeq1500 (Illumina, San Diego, CA, USA). For each cornea sample, >80 mln read pairs were generated resulted in >100x of mean coverage. Sequence readouts were initially analyzed with bcl2fastq software to generate reads in fastq format. These reads were mapped against a human genome reference sequence (GRCh37) using the Burrows-Wheeler Alignment (BWA), which was followed by BAM post-processing and variant calling using HaplotypeCaller and the GATK suite.38 Finally, ANNOVAR39 was used to annotate relevant information about gene names, predicted variant pathogenicity, reference allele frequencies and metadata from external resources, and then to add these to the variant call format (VCF) file.

Variants selection

Sequence variants identified in KTCN corneas were filtered in a step-wise manner to exclude synonymous variants and variants with minor allele frequency (MAF) greater than 0.01 in our internal exome database (DMG) consisting of 3,000 Polish individuals, ExAC Browser (http://exac.broadinstitute.org/), GnomAD database (https://gnomad.broadinstitute.org/), and the 1000 Genomes Project (http://www.1000genomes.org). Moreover, variants predicted as neutral
by MutationTaster40, PolyPhen-241, LRT42, and SIFT43 tools, were filtered out. The additional exclusion criterion was negative conservation scores in PhyloP44 analysis.

Sanger sequencing

To confirm variants detected by ES in five KTCN corneas, Sanger sequencing of DNA in matching blood samples was performed. Briefly, fragments of genes containing particular variants were amplified using Taq DNA Polymerase (Thermo Scientific, San Jose, CA, USA). Following purifications with the use of FastAP Thermosensitive Alkaline Phosphatase and Exonuclease I (Thermo Scientific), the amplicons were sequenced using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems Inc., Foster City, CA, USA). Samples were analyzed on an ABI Prism 3730xl genetic analyzer (Applied Biosystems Inc.). Sequences were assembled using Sequencher 5.0. Software (GeneCodes Corporation, Ann Arbor, MI, USA).

Pathway overrepresentation analysis

The overrepresentation analysis of molecular pathways among genes with identified sequence variants, which met the filtering criteria, was performed using the ConsensusPathDB tool.45 Only pathways with p-value ≤0.01 and sharing at least two genes with our gene set were analyzed.

Ethnically-matched control datasets

For comparison purposes, the datasets comprising ES data of five randomly selected Polish individuals without ocular abnormalities and five Polish patients with high myopia (HM) were used. Variants from control ES data were selected using the same filtering criteria as we used for the KTCN study, followed by enrichment analyses.

Expression analysis

Expression levels of selected genes from overrepresented pathways, given in the gene-level transcripts per million (TPM), were obtained from the RNA-Seq study, which has been
previously performed in the same corneal material. The expression values of the particular genes were compared between corneal samples in which variant(s) was identified and in samples without the analyzed variant.

Results

This pilot ES screening of KTCN corneas revealed 117 potentially relevant variants with MAF ≤ 0.01 in our internal DMG cohort and public databases and fulfilling all of the remaining filtering criteria (Supplemental Table 2). Genes with identified rare nucleotide variants were enriched in 14 molecular pathways, including Wnt signaling (VANGL1, WNT1, PPP3CC, LRP6, FZD2) and focal adhesion (BIRC2, PAK6, COL4A4, PPP1R12A, PTK6) pathways (Table 1). The analysis of functional interactions between genes from overrepresented molecular pathways allowed for further narrowing the number of candidate KTCN variants (Table 2).

Sanger sequencing performed in blood samples derived from the five studied individuals confirmed all variants identified with the use of ES in matched corneas.

The overrepresentation analysis performed among genes filtered in a step-wise manner in control datasets revealed an enrichment in 16 (i.e. O-linked glycosylation, C-type lectin receptors, termination of O-glycan biosynthesis, nucleotide-binding oligomerization domain) and nine (i.e. cargo recognition for clathrin-mediated endocytosis, VLDL clearance, glyoxylate and dicarboxylate metabolism, statin pathway DNA damage recognition in GG-NER) pathways in HM patients and individuals without ocular disease, respectively. No genes involved in pathways enriched in KTCN corneas were overrepresented in our control sample sets containing randomly selected Polish individuals without ocular abnormalities (n=5) and Polish patients with HM (n=5).
The TPM values of genes from overrepresented pathways in corneas of patients carrying particular gene variants and in KTCN individuals without the analyzed gene variation were calculated based on our previous RNA-Seq study data. The expression values of the genes varied between patients with particular variants and the mean expression values of the same genes in the KTCN individuals without these variants. The expression profile of genes from overrepresented pathways in KTCN corneas is presented in Table 3.

The data were deposited in the freely accessible ClinVar database (submission ID: SUB3758236 and SUB4926771).

Discussion

The advent of next generation DNA sequencing methods has greatly improved the ability to detect genetic variations. However, KTCN, like many other ophthalmic diseases, displays genetic heterogeneity hindering identification of a factor unambiguously influencing its development.

The results of this pilot ES study of corneas obtained from five KTCN patients undergoing penetrating keratoplasty revealed various rare possibly pathogenic variants in genes that were overrepresented in several molecular pathways, including the Wnt signaling and focal adhesion. Interestingly, these pathways have been proposed as involved in KTCN etiology based on our previous RNA-Seq study, performed in experimental material derived from the same KTCN patients, as well as other experiments. In addition, each of five patients had at least one variant in genes from these particular pathways. Among genes from overrepresentation gene sets were LRP6, FZD2, COL4A4, and WNT1.

Ocular cells, including corneal epithelial stem cells, express components of the Wnt/β-catenin signaling pathway during eye development. The LRP6 gene encodes the low-density
lipoprotein receptor-related protein, which is a component of a Wnt receptor complex. This complex is involved in Wnt ligands binding resulting in the nuclear translocation of β-catenin and regulation of the transcription of target genes. Knock-out of β-catenin or its both co-receptors (Lrp5 and Lrp6) in mouse corneal stromal cells resulted in premature stratification of the corneal epithelium, suggesting these genes play a role in the regulation of corneal morphogenesis. In this study, the expression of LRP6 in the cornea of the carrier of variant c.4822C>T (KC17) was unchanged compared to the other four KTCN individuals. However, since this variant was identified in KC17 patient in combination with another variant in the gene of Wnt signaling pathway (PPP3CC), we suggest that this variant might be a part of the specific combination of KTCN variants and its identification is not incidental.

The FZD2 gene encodes frizzled class receptor 2, another protein functioning as Wnt ligands receptor, and regulating the eye development through Wnt/β-catenin signaling. Xenopus frizzled-2, a homolog of the human frizzled receptor, is highly expressed in the embryo, including the developing eye. Interestingly, a significant increase of mRNA and protein expression of secreted frizzled-related protein 1 (SFRP1), which is a Wnt antagonist, has been detected in KTCN corneal epithelium and corneal buttons. In contrast, tear SFRP1 level has been significantly decreased in KTCN patients compared to control individuals. The c.1238G>A variant in FZD2 was identified in the cornea of KC16 patient in combination with c.41C>T variant in VANGL1 (Wnt signaling) and c.2347G>A variant in COL4A4 (focal adhesion). It is known that collagens are major components of human corneas, and the thinning of corneal stroma in KTCN may be the final effect of a disorganized collagen lamellae arrangement. The COL4A4 gene is expressed in human cornea and based on several studies it has been reported as a candidate gene for KTCN. However, genetic analyses of this gene
in different populations have given ambiguous results about the role of *COL4A4* in KTCN development.\(^{56-59}\) While there was no difference in expression of *COL4A4* and *VANGL1* in the patient’s cornea, the expression value of *FZD2* in the patient KC16 was lower compared to the expression observed in the other four KTCN individuals. However, further research should be performed to interpret the obtained data.

The combination of variants in *WNT1* and *PTK6* was revealed in the patient KC15. *PTK6* encodes tyrosine kinase 6 protein, which is involved in focal adhesion, as well as in GTPases and MAP kinases regulation. Signaling by PTK6 is implicated in controlling the differentiation of normal epithelium and tumor growth.\(^{60}\) However, there is no report about the role of *PTK6* in the maintenance of corneal epithelium.

Also, in KC18 and KC19 patients, variants in other elements (*BIRC2* and *PAK6* with *PPP1R12A*, respectively) of Wnt signaling and/or focal adhesion pathways were observed. These results further suggest that the alteration of genes regulating these signaling pathways might be an important risk factor for KTCN.

To determine the likelihood of seeing the overrepresentation of genes from Wnt signaling and focal adhesion in KTCN samples by chance, we performed analyses of exome data of five randomly selected Polish individuals without eye disease, as well as five Polish individuals with HM. Variants from control ES data were selected using the same filtering criteria as we used for the KTCN study, followed by enrichment analyses. No genes involved in Wnt signaling or focal adhesion pathways were overrepresented in our control sample sets, confirming that enrichment of variants in genes from these pathways in KTCN individuals was not incidental.

The small sample size disabled a reliable statistical analysis, and due to this limitation, the general conclusions could not be made. However, the results of this pilot study gave additional
insight into the role of the Wnt signaling and/or focal adhesion pathways in KTCN development and showed the possible indications for further KTCN research. The identification of rare variants in different genes further supports the heterogeneity of KTCN with multiple genes underlying its pathogenesis.1,12–15

Conclusions

Summarizing, this first pilot ES profiling of human KTCN corneas indicates that the accumulation of variants in several genes from Wnt signaling and/or focal adhesion pathways might cause the phenotypic effect and further explain the involvement of these pathways in KTCN. Moreover, it also supports the hypothesis about the complex basis of KTCN. Since five patients were evaluated, the role of variants in genes of these overrepresented pathways in KTCN etiology should be further elucidated in a larger group of patients using high throughput methods.

References

1. Karolak JA, Gajecka M. Genomic strategies to understand causes of keratoconus. \textit{Mol Genet Genomics}. 2017;292:251-269. doi:10.1007/s00438-016-1283-z.

2. Rabinowitz YS. Keratoconus. \textit{Surv Ophthalmol}. 1998;42:297-319.

3. Sarezky D, Orlin SE, Pan W, et al. Trends in Corneal Transplantation in Keratoconus. \textit{Cornea}. 2017;36:131-137. doi:10.1097/ICO.0000000000001083.

4. Vazirani J, Basu S. Keratoconus: current perspectives. \textit{Clin Ophthalmol}. 2013;7:2019-2030. doi:10.2147/OPTH.S50119.
5. Pearson AR, Soneji B, Sarvananthan N, et al. Does ethnic origin influence the incidence or severity of keratoconus? *Eye (Lond).* 2000;14 (Pt 4):625-628. doi:10.1038/eye.2000.154.

6. Georgiou T, Funnell CL, Cassels-Brown A, et al. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients. *Eye (Lond).* 2004;18:379-383. doi:10.1038/sj.eye.6700652.

7. Kok YO, Tan GFL, Loon SC. Review: keratoconus in Asia. *Cornea.* 2012;31:581-593. doi:10.1097/ICO.0b013e31820cd61d.

8. Patel D, McGhee C. Understanding keratoconus: what have we learned from the New Zealand perspective? *Clin Exp Optom.* 2013;96:183-187. doi:10.1111/cxo.12006.

9. Gokhale NS. Epidemiology of keratoconus. *Indian J Ophthalmol.* 2013;61:382-383. doi:10.4103/0301-4738.116054.

10. Godefrooij DA, de Wit GA, Uiterwaal CS, et al. Age-specific incidence and prevalence of keratoconus: a nationwide registration study. *Am J Ophthalmol.* December 2016. doi:10.1016/j.ajo.2016.12.015.

11. Hashemi H, Heydarian S, Hooshmand E, et al. The Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis. *Cornea.* September 2019. doi:10.1097/ICO.0000000000002150.

12. Abu-Amero KK, Al-Muammar AM, Kondkar AA. Genetics of keratoconus: where do we stand? *J Ophthalmol.* 2014;2014:641708. doi:10.1155/2014/641708.
13. Bykhovskaya Y, Margines B, Rabinowitz YS. Genetics in Keratoconus: where are we? *Eye Vis (Lond)*. 2016;3:16. doi:10.1186/s40662-016-0047-5.

14. Mas Tur V, MacGregor C, Jayaswal R, et al. A review of keratoconus: Diagnosis, pathophysiology, and genetics. *Surv Ophthalmol*. 2017;62:770-783. doi:10.1016/j.survophthal.2017.06.009.

15. Valgaeren H, Koppen C, Van Camp G. A new perspective on the genetics of keratoconus: why have we not been more successful? *Ophthalmic Genet*. 2018;39:158-174. doi:10.1080/13816810.2017.1393831.

16. Loukovitis E, Sfakianakis K, Syrmakesi P, et al. Genetic Aspects of Keratoconus: A Literature Review Exploring Potential Genetic Contributions and Possible Genetic Relationships with Comorbidities. *Ophthalmol Ther*. 2018;7:263-292. doi:10.1007/s40123-018-0144-8.

17. Tang YG, Rabinowitz YS, Taylor KD, et al. Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. *Genet Med*. 2005;7:397-405. doi:10.109701.GIM.0000170772.41860.54.

18. Li X, Rabinowitz YS, Tang YG, et al. Two-stage genome-wide linkage scan in keratoconus sib pair families. *Invest Ophthalmol Vis Sci*. 2006;47:3791-3795. doi:10.1167/iovs.06-0214.

19. Bisceglia L, De Bonis P, Pizzicoli C, et al. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive Loci. *Invest Ophthalmol Vis Sci*. 2009;50:1081-1086. doi:10.1167/iovs.08-2382.
20. Rosenfeld JA, Drautz JM, Clericuzio CL, et al. Deletions and duplications of developmental pathway genes in 5q31 contribute to abnormal phenotypes. *Am J Med Genet A.* 2011;155A:1906-1916. doi:10.1002/ajmg.a.34100.

21. Bykhovskaya Y, Li X, Taylor KD, et al. Linkage Analysis of High-density SNPs Confirms Keratoconus Locus at 5q Chromosomal Region. *Ophthalmic Genet.* 2016;37:109-110. doi:10.3109/13816810.2014.889172.

22. Li X, Bykhovskaya Y, Haritunians T, et al. A genome-wide association study identifies a potential novel gene locus for keratoconus, one of the commonest causes for corneal transplantation in developed countries. *Hum Mol Genet.* 2012;21:421-429. doi:10.1093/hmg/ddr460.

23. Burdon KP, Macgregor S, Bykhovskaya Y, et al. Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus. *Invest Ophthalmol Vis Sci.* 2011;52:8514-8519. doi:10.1167/iovs.11-8261.

24. Hoehn R, Zeller T, Verhoeven VJM, et al. Population-based meta-analysis in Caucasians confirms association with COL5A1 and ZNF469 but not COL8A2 with central corneal thickness. *Hum Genet.* 2012;131:1783-1793. doi:10.1007/s00439-012-1201-3.

25. Lu Y, Vitart V, Burdon KP, et al. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. *Nat Genet.* 2013;45:155-163. doi:10.1038/ng.2506.

26. Héon E, Greenberg A, Kopp KK, et al. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. *Hum Mol Genet.* 2002;11:1029-1036.
27. Karolak JA, Rydzanicz M, Ginter-Matuszewska B, et al. Variant c.2262A>C in DOCK9 Leads to Exon Skipping in Keratoconus Family. *Invest Ophthalmol Vis Sci.* 2015;56:7687-7690. doi:10.1167/iovs.15-17538.

28. Udar N, Atilano SR, Brown DJ, et al. SOD1: a candidate gene for keratoconus. *Invest Ophthalmol Vis Sci.* 2006;47:3345-3351. doi:10.1167/iovs.05-1500.

29. Lucas SEM, Zhou T, Blackburn NB, et al. Rare, potentially pathogenic variants in 21 keratoconus candidate genes are not enriched in cases in a large Australian cohort of European descent. *PLoS ONE.* 2018;13:e0199178. doi:10.1371/journal.pone.0199178.

30. Karolak JA, Gambin T, Pitarque JA, et al. Variants in SKP1, PROB1, and IL17B genes at keratoconus 5q31.1-q35.3 susceptibility locus identified by whole-exome sequencing. *Eur J Hum Genet.* 2017;25:73-78. doi:10.1038/ejhg.2016.130.

31. Khaled ML, Bykhovskaya Y, Gu C, et al. PPIP5K2 and PCSK1 are Candidate Genetic Contributors to Familial Keratoconus. *Sci Rep.* 2019;9:19406. doi:10.1038/s41598-019-55866-5.

32. Magalhães O de A, Kowalski TW, Wachholz GE, et al. Whole-exome sequencing in familial keratoconus: the challenges of a genetically complex disorder. *Arq Bras Oftalmol.* 2019;82:453-459. doi:10.5935/0004-2749.20190087.

33. Kabza M, Karolak JA, Rydzanicz M, et al. Collagen synthesis disruption and downregulation of core elements of TGF-β, Hippo, and Wnt pathways in keratoconus corneas. *Eur J Hum Genet.* 2017;25:582-590. doi:10.1038/ejhg.2017.4.
330 34. Khaled ML, Bykhovskaya Y, Yablonski SER, et al. Differential Expression of Coding and
Long Noncoding RNAs in Keratoconus-Affected Corneas. *Invest Ophthalmol Vis Sci.*
2018;59:2717-2728. doi:10.1167/iovs.18-24267.

333 35. You J, Corley SM, Wen L, et al. RNA-Seq analysis and comparison of corneal epithelium
in keratoconus and myopia patients. *Sci Rep.* 2018;8:389. doi:10.1038/s41598-017-18480-
x.

336 36. Sharif R, Khaled ML, McKay TB, et al. Transcriptional profiling of corneal stromal cells
derived from patients with keratoconus. *Sci Rep.* 2019;9:12567. doi:10.1038/s41598-019-
48983-8.

339 37. Karolak JA, Gambin T, Rydzanicz M, et al. Evidence against ZNF469 being causative for
keratoconus in Polish patients. *Acta Ophthalmol.* 2016;94:289-294. doi:10.1111/aos.12968.

341 38. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data. *Genome Res.*
2010;20:1297-1303. doi:10.1101/gr.107524.110.

344 39. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from
high-throughput sequencing data. *Nucleic Acids Res.* 2010;38:e164.
doi:10.1093/nar/gkq603.

347 40. Schwarz JM, Rödelsperger C, Schuelke M, et al. MutationTaster evaluates disease-causing
potential of sequence alterations. *Nat Methods.* 2010;7:575-576. doi:10.1038/nmeth0810-
575.
41. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. *Curr Protoc Hum Genet*. 2013;Chapter 7:Unit7.20. doi:10.1002/0471142905.hg0720s76.

42. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. *Genome Res*. 2009;19:1553-1561. doi:10.1101/gr.092619.109.

43. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat Protoc*. 2009;4:1073-1081. doi:10.1038/nprot.2009.86.

44. Pollard KS, Hubisz MJ, Rosenbloom KR, et al. Detection of nonneutral substitution rates on mammalian phylogenies. *Genome Res*. 2010;20:110-121. doi:10.1101/gr.097857.109.

45. Kamburov A, Stelzl U, Lehrach H, et al. The ConsensusPathDB interaction database: 2013 update. *Nucleic Acids Res*. 2013;41:D793-800. doi:10.1093/nar/gks1055.

46. Koboldt DC, Steinberg KM, Larson DE, et al. The next-generation sequencing revolution and its impact on genomics. *Cell*. 2013;155:27-38. doi:10.1016/j.cell.2013.09.006.

47. Stone EM, Braun TA, Russell SR, et al. Missense variations in the fibulin 5 gene and age-related macular degeneration. *N Engl J Med*. 2004;351:346-353. doi:10.1056/NEJMoa040833.

48. Nakatsu MN, Ding Z, Ng MY, et al. Wnt/β-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. *Invest Ophthalmol Vis Sci*. 2011;52:4734-4741. doi:10.1167/iovs.10-6486.
49. Zhang Y, Yeh L-K, Zhang S, et al. Wnt/β-catenin signaling modulates corneal epithelium stratification via inhibition of Bmp4 during mouse development. *Development*. 2015;142:3383-3393. doi:10.1242/dev.125393.

50. Deardorff MA, Klein PS. Xenopus frizzled-2 is expressed highly in the developing eye, otic vesicle and somites. *Mech Dev* 1999;87:229-233.

51. Sutton G, Madigan M, Roufas A, et al. Secreted frizzled-related protein 1 (SFRP1) is highly upregulated in keratoconus epithelium: a novel finding highlighting a new potential focus for keratoconus research and treatment. *Clin Experiment Ophthalmol*. 2010;38:43-48. doi:10.1111/j.1442-9071.2009.02216.x.

52. You J, Wen L, Roufas A, et al. Expression of SFRP Family Proteins in Human Keratoconus Corneas. *PLoS ONE*. 2013;8:e66770. doi:10.1371/journal.pone.0066770.

53. You J, Hodge C, Wen L, et al. Tear levels of SFRP1 are significantly reduced in keratoconus patients. *Mol Vis*. 2013;19:509-xxx.

54. Meek KM, Tuft SJ, Huang Y, et al. Changes in collagen orientation and distribution in keratoconus corneas. *Invest Ophthalmol Vis Sci*. 2005;46:1948-1956. doi:10.1167/iovs.04-1253.

55. Mathew JH, Goosey JD, Söderberg PG, et al. Lamellar changes in the keratoconic cornea. *Acta Ophthalmol*. 2015;93:767-773. doi:10.1111/aos.12811.

56. Stabuc-Silih M, Ravnik-Glavac M, Glavac D, et al. Polymorphisms in COL4A3 and COL4A4 genes associated with keratoconus. *Mol Vis*. 2009;15:2848-2860.
57. Wang Y, Jin T, Zhang X, et al. Common single nucleotide polymorphisms and keratoconus in the Han Chinese population. *Ophthalmic Genet.* 2013;34:160-166. doi:10.3109/13816810.2012.743569.

58. Kokolakis NS, Gazouli M, Chatziralli IP, et al. Polymorphism analysis of COL4A3 and COL4A4 genes in Greek patients with keratoconus. *Ophthalmic Genet.* 2014;35:226-228. doi:10.3109/13816810.2014.946055.

59. Saravani R, Hasanian-Langroudi F, Valid M-H, et al. Evaluation of possible relationship between COL4A4 gene polymorphisms and risk of keratoconus. *Cornea.* 2015;34:318-322. doi:10.1097/ICO.0000000000000356.

60. Brauer PM, Tyner AL. Building a better understanding of the intracellular tyrosine kinase PTK6 – BRK by BRK. *Biochim Biophys Acta.* 2010;1806:66-73. doi:10.1016/j.bbcan.2010.02.003.
Table 1 (on next page)

Top pathways overrepresented across the genes with identified sequence variants in KTCN corneas detected by ConsensusPathDB server (p-value cutoff 0.01).

*Analyses were performed in genes with variants fulfilling the filtering criteria: i) MAF ≤ 0.01 in our internal database, the ExAC Browser, GnomAD database, and the 1000 Genomes Project Variants; ii) positive conservation scores in PhyloP; iii) pathogenic/damaging in MutationTaster, PolyPhen2, LRT, and SIFT tools.
Table 1. Top pathways overrepresented across the genes with identified sequence variants in KTCN corneas detected by ConsensusPathDB server (p-value cutoff 0.01).

Pathway Name	Source	Genes	p-value
Disassembly of the destruction complex and recruitment of AXIN to the membrane	Reactome	FZD2, LRP6, WNT1	0.000873181
Wnt Signaling	Wikipathways	VANGL1, WNT1, PPP3CC, LRP6, FZD2	0.000893629
Type I hemidesmosome assembly	Reactome	PLEC, COL17A1	0.001477943
Wnt Signaling in Kidney Disease	Wikipathways	WNT1, LRP6, FZD2	0.001788119
Wnt signaling pathway - Homo sapiens (human)	KEGG	VANGL1, WNT1, PPP3CC, LRP6, FZD2	0.002830193
RAB GEFs exchange GTP for GDP on RABs	Reactome	ANKRD27, DENND1A, RABGEF1, DENND4C	0.002959219
The activation of arylsulfatases	Reactome	ARSD, ARSB	0.003148218
Epithelial to mesenchymal transition in colorectal cancer	Wikipathways	WNT1, COL4A4, LRP6, FZD2, MEF2D	0.003952926
cGMP-PKG signaling pathway - Homo sapiens (human)	KEGG	ATP2A1, PIK3CG, PPP1R12A, PPP3CC, MEF2D	0.004277236
MicroRNAs in cardiomyocyte hypertrophy	Wikipathways	HDAC9, FZD2, LRP6, PIK3CG	0.004456905
Wnt-beta-catenin Signaling Pathway in Leukemia	Wikipathways	WNT1, LRP6	0.008974682
Rab regulation of trafficking	Reactome	ANKRD27, DENND1A, RABGEF1, DENND4C	0.009329868
Focal Adhesion	Wikipathways	BIRC2, PAK6, COL4A4, PPP1R12A, PTK6	0.009582658
Regulation of RAS by GAPs	Reactome	NF1, SPRED2	0.009787951

*Analyzes were performed in genes with variants fulfilling the filtering criteria: i) MAF ≤0.01 in our internal database, the ExAC Browser, GnomAD database, and the 1000 Genomes Project Variants; ii) positive conservation scores in PhyloP; iii) pathogenic/damaging in MutationTaster, PolyPhen2, LRT, and SIFT tools.
Table 2 (on next page)

The list of nonsynonymous sequence variants in genes from Wnt signaling and focal adhesion pathways, identified in KTCN corneas in ES

\(^a\)Human Genome Browser – hg19 assembly (GRCh37) \(^b\)Minor allele frequency based on internal control exome database covering of 3000 Polish individuals; Department of Medical Genetics (DMG), Medical University of Warsaw, Warsaw, Poland; \(^c\)Minor allele frequency based on GnomAD database v2.1.2; \(^d\) NCBI dbSNP Build 151; \(^e\) Not available
Table 2. The list of nonsynonymous sequence variants in genes from Wnt signaling and focal adhesion pathways, identified in KTCN corneas in ES

Identifier	Gene	Accession Number	Positiona	cDNA	Protein	DMGb	GnomADc	Rs_idd
KC15	WNT1	NM_005430.3	chr12:49375373G>T	c.1063G>T	p.(V355F)	0	NA	rs387907358
	PTK6	NM_005975.3	chr20:62161533G>T	c.1066C>A	p.(P356T)	0	NA	NA
KC16	FZD2	NM_001466.3	chr17:42636294G>A	c.1238G>A	p.(R413Q)	0	0.000002396	rs758351214
	VANGL1	NM_001172411.1	chr1:116194075C>T	c.41C>T	p.(S14L)	0	NA	NA
	COL4A4	NM_000092.4	chr2:227924157C>T	c.2347G>A	p.(G783R)	0.000333	NA	rs1202230056
KC17	LRP6	NM_002336.2	chr12:12274080G>A	c.4822C>T	p.(P1608S)	0	NA	NA
	PPP3CC	NM_001243975.1	chr8:22389795T>C	c.1199T>C	p.(M400T)	0	NA	NA
KC18	BIRC2	NM_001166.4	chr11:102248388A>G	c.1528A>G	p.(I510V)	0.001	0.00002148	rs749829698
KC19	PPP1R12A	NM_0001244992.1	chr12:80266702T>C	c.254A>G	p.(N85S)	0.000667	0.00002422	rs370959842
	PAK6	NM_001276717.1	chr15:40566454C>A	c.1855C>A	p.(P619T)	0	NA	NA

aHuman Genome Browser – hg19 assembly (GRCh37)
bMinor allele frequency based on internal control exome database covering of 3000 Polish individuals; Department of Medical Genetics (DMG), Medical University of Warsaw, Warsaw, Poland
cMinor allele frequency based on GnomAD database v2.1.2
dNCBI dbSNP Build 151
eNot available
Table 3 (on next page)

The expression of genes with rare variants identified in ES analysis.

Grey color indicates the expression level in samples in which variant was present, and white color indicates the expression level of genes in samples without presence of the analyzed variant.
Table 3. The expression of genes with rare variants identified in ES analysis.

Pathway	Gene symbol/Variant	KC_15	KC_16	KC_17	KC_18	KC_19	Mean expression
Wnt Signaling	**WNT1** c.1063G>T	0.051	0.000	0.000	0.018	0.023	0.0103
Focal Adhesion	**PTK6** c.1066C>A	27.705	31.413	22.991	25.809	26.031	26.5610
Wnt Signaling	**FZD2** c.1238G>A	1.254	0.151	2.988	0.453	0.544	1.3098
Wnt Signaling	**VANGLI** c.41C>T	4.655	3.581	4.129	3.132	5.074	4.2475
Focal Adhesion	**COL4A4** c.2347G>A	8.802	8.487	15.100	5.863	7.398	9.2908
Wnt Signaling	**LRP6** c.4822C>T	14.144	13.303	11.900	11.515	12.581	12.8858
Wnt Signaling	**PPP3CC** c.1199T>C	12.523	14.479	9.580	8.556	10.525	11.5208
Focal Adhesion	**BIRC2** c.1528A>G	42.675	45.517	32.853	30.261	40.725	40.4425
Focal Adhesion	**PPP1R12A** c.254A>G	83.939	83.438	61.009	55.103	76.460	70.8723
Focal Adhesion	**PAK6** c.1855C>A	8.818	7.144	5.704	4.970	6.011	6.6590

Grey color indicates the expression level in samples in which variant was present, and white color indicates the expression level of genes in samples without presence of the analyzed variant.