Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury

Louisa M. S. Gerhardt1,*, Jing Liu1,*, Kari Koppitch5, Pietro E. Cippà2,*, and Andrew P. McMahon3,*

*Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2020.

Contributed by Andrew P. McMahon, April 23, 2021 (sent for review December 28, 2020; reviewed by Lloyd G. Cantley and Mark P. de Caestecker)

Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia–reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d (“early”) and 28-d (“late”) time points post-IRI identified specific gene and pathway activity in the injury–repair transition. In particular, we identified Vcam1+/Ccl2+ PTCs at the late injury stage distinguished by marked activation of NF-κB, TNF-, and AP-1–signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1+/Ccl2+ PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1+/Ccl2+ PTCs could be traced to early replicating cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.

Significance

A single acute kidney injury event increases the risk of progression to chronic kidney disease (CKD). Combining single-nucleus RNA sequencing with genetic tracing of injured proximal tubule cells identified a spatially dynamic, evolving injury response following ischemia–reperfusion injury. Failed proximal tubule repair leads to the persistence of a proinflammatory, profibrotic phenotype and a marked transcriptional activation of NF-κB and AP-1 pathway signatures, but no signs of G2/M cell cycle arrest. Insights from this study can inform strategies to improve renal repair and prevent CKD progression.

Author contributions: L.M.S.G., J.L., K.K., P.E.C., and A.P.M. designed research; L.M.S.G., J.L., K.K., and P.E.C. performed research; L.M.S.G., J.L., P.E.C., and A.P.M. analyzed data; and L.M.S.G. and A.P.M. wrote the paper.

Reviews: L.G.C., Yale University School of Medicine; and M.P.d.C., Vanderbilt University Medical Center.

Competing interest statement: A.P.M. is a scientific advisor on kidney-related approaches to human disease for Novartis, eGenesis, Iviva, and Trestle Biotherapeutics. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). See QnAs, e2109575118, in vol. 118, issue 27.

1L.M.S.G. and J.L. contributed equally to this work.

2Present address: Division of Nephrology, Ente Ospedaliero Cantonale, 6500 Lugano, Switzerland.

3To whom correspondence may be addressed. Email: amcmahon@med.usc.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026684118/-/DCSupplemental. Published June 28, 2021.
following the primary IRI event. These data highlight a dynamic injury response identifying cell types, cell pathways, and molecular targets for therapeutic evaluation in the transition of AKI to CKD.

Results and Discussion

In a previous study of the progression from AKI to CKD in a long-term bilateral IRI model, we identified keratin-20 (Krt20) as a marker of injured PTCs (5). To enable the isolation and tracing of Krt20+ cells in renal injury, we generated a Krt20T2A-CE mouse line through homology-directed repair (HDR) following CRISPR-Cas9 cleavage of Krt20 in mouse embryo stem cells and the production of germine chimeras (Fig. 1A). HDR results in the production of a CRE-ERT2 (CE) fusion protein in Krt20-expressing cells through the insertion of a T2A self-cleaving peptide at the carboxyl terminus of Krt20. Crossing Krt20T2A-CE to Gt(Rosa)26Sor1pro(CAG-Sun1/sfGFP)Nrt mice, which express green fluorescent protein (GFP) linked to a nuclear membrane protein in the presence of Cre and are further referred to as INTACT (Isolation of Nuclei TAgged in specific Cell Types) mice (14, 15), enabled tamoxifen-dependent labeling of nuclei in injured PTCs.

To model moderate kidney injury as may occur in a variety of non–life-threatening clinical settings such as in the course of kidney transplant surgery, we assayed various ischemia intervals. In double transgenic male mice, an 18-min ischemia interval resulted in a small but significant increase (twofold to threefold) in basal creatinine and blood urea nitrogen (BUN) levels 48 h post-IRI (SI Appendix, Fig. S1 A and B). Creatinine and BUN levels were restored to baseline by 28 d post-IRI. Double transgenic mice subjected to IRI were injected with tamoxifen on days 5 and 6, or days 26 and 27 post-IRI, and kidneys collected at day 7 (designated “early”; n = 2) or day 28 (designated “late”; n = 3) post-IRI, respectively (Fig. 1B). For snRNA-seq, GFP+ nuclei were isolated using fluorescence-activated cell sorting (FACS) and snRNA-seq profiles identified through 10× Genomics profiling and NextGen sequencing. As a control dataset, we combined our published snRNA-seq data of FACS-sorted GFP+ nuclei where a GFP linked to the histone protein H2B is present in all nephron cells (16), with additional replicate data from this line (one nonsurgery and three sham-operated control mice).

Immunofluorescence studies confirmed successful labeling of Krt20-expressing cells with a labeling efficiency of around 34% (Fig. 1C). The labeling of Krt20+ cells was observed in all tubule segments. Two other closely related clusters showed coexpression of the vasopressin V1a receptor (Slc22a7) and the mitotic spindle protein shown to be up-regulated in response to acute kidney injury identifying cell types, cell pathways, and molecular targets for therapeutic evaluation in the transition of AKI to CKD. Interestingly, several clusters displayed novel S3 marker genes like Slc7a12 in IRI replicates (23), while also showing expected expression of characteristic male S3 segment-specific genes like Cyp7b1 (Fig. 2B). The predicted up-regulation of Slc7a12 in male PTCs after IRI was confirmed by RNAscope in situ hybridization studies (Fig. 3A). Some Slc7a12+ PTCs were positive for Slc22a7, a marker of both female and male proximal tubule segment S3, while others showed coexpression of the vascular cell adhesion molecule-1 (Vcam1), a known marker of inflammatory renal diseases and AKI (21, 24). These data indicate Slc7a12 expression may persist in PTCs that recovered, regaining Slc22a7 and losing Vcam1. Alternatively, Slc7a12 may also be ectopically activated in Slc22a7+ cells without a stable tubule signature consistent with a published snRNA-seq dataset of male kidneys 14 d after unilateral ureteral obstruction through a searchable database (humphreyeslab.com/SingleCell) also showed enriched Slc7a12 expression in PTCs (25). Thus, the activation of a female-like Slc7a12 expression pattern in the male kidney on AKI is not confined to the IRI model.

Gene ontology (GO) term analysis of the differentially expressed genes in each proximal tubule cluster showed enrichment of terms related to normal proximal tubule structure and function in the S1 and S2/S3 clusters across all GO categories. For example, in the category biological process, the terms “organ anion transport” and “drug transport” were enriched, while in the category cellular component, the terms “brush border membrane” and “apical part of cell” were overrepresented (Fig. 2 D and F and Dataset S2). Interestingly, the S1 cluster 7 and the S2/S3 cluster 3 showed enrichment of “respiratory chain,” “mitochondrial inner membrane,” and “cytochrome c oxidase activity” (Dataset S2), possibly indicating increased energy demand in these cells. Snap5, encoding a mitochondrial spindle protein shown to be up-regulated in response to oxidative stress in cancer (26) and in response to high glucose treatment in human podocytes (27), was overrepresented in these clusters as well as in cluster 8 (Fig. 2B).

Among the IRI clusters we identified two “early injured,” two “early + late injured,” and one “late injured” cluster based on the predominant composition of clusters by IRI replicates (Fig. 2 B and C). The early injured clusters showed enriched expression of Haver1 and the cadherin encoding genes Cdh6 and...
Fig. 1. Krt20 inducible Cre-LoxP system traces injured PTCs in post-IRI kidneys. (A) Schematic diagram of CRE-ERT2 (CE) knocked into Krt20 genomic locus through CRISPR. (B) Experimental setup. (C) Colocalization of GFP reporter with Krt20 and Havcr1 on IRI samples. (Scale bar, 20 μm.) (D) Quantification of GFP+ cells per region of interest (ROI) using five ROIs per kidney section (n = 2). (E) Quantification of GFP+ cells per ROI in cortex and cortico-medullary boundary (CMB) using 10 cortical and CMB ROIs per kidney section (n = 2). (F) Quantification of colocalization of GFP reporter, Krt20, and Havcr1 per ROI, 10 ROIs per kidney section (n = 2). (G) UMAP plot of the integrated IRI and control single-nuclei RNA-sequencing datasets. (H) Violin plots of marker genes arranged by cell type; cluster numbers are indicated above the plots. In D–F, the gray box corresponds to the middle 50th percentile, the horizontal line to the median, and the whiskers indicate the 1.5 interquartile range. **p < 0.001.
Fig. 2. PTCs adopt transcriptionally diverse cell states in response to injury. (A) UMAP plot of the PTC clustering. (B) Dot plot of cluster enriched gene expression. Violin plot of male-specific S3 segment marker Cyp7b1 and female-specific S3 segment marker Slc7a12 across clusters split in IRI and control cells. (C) Stacked bar plot of the composition of clusters by group. (D) GO analysis of biological processes and cellular components across clusters. Top three enriched GO terms per cluster are shown. (E) Gene-regulatory network analysis using single-cell regulatory network inference and clustering (SCENIC) across IRI cells. Heatmap showing regulon activity across clusters. Transcription factors representative for each group are highlighted. See Dataset S3 for a complete list of identified regulons.
In the normal kidney, Cdh6 and Cdh13 demarcate cells making up the descending thin limb of the inner stripe of the outer medulla for cortical and juxtamedullary nephrons, respectively (https://cello.shinyapps.io/kidneycellexplorer/) (23). Immunofluorescence studies confirmed the de novo up-regulation of Cdh6 and Cdh13 in injured PTCs (Fig. 3 B and C). The early injured cluster 10 was distinguished by high expression of genes involved in DNA replication such as Mki67 and Top2a, indicative of a cycling cell state (Figs. 2B and 3D). The restriction of a strong replicative response to early injury clusters is in line with the injury-invoked replicative repair.

Early and late injured clusters 1 and 4 were characterized by enriched expression of Cadl1 and Pdgfd, while Kcnip4 was markedly up-regulated in cluster 4 specifically. Cadl1 encodes Caldesmon 1, an actin-linked regulatory protein of the smooth muscle and nonmuscle contractile apparatus that is expressed in fibroblasts in the healthy kidney and has been associated with diabetic nephropathy (28, 29). The platelet-derived growth factor D (Pdgfd) is known to play a role in renal fibrosis (30), and Kcnip4, encoding potassium channel-interacting protein 4, has recently been described to be up-regulated in a distinct proinflammatory, profibrotic PTC state that persists weeks after AKI (21). Consistent with this finding, Kcnip4 was expressed in the late injured cluster 11 although at lower levels than in cluster 4. Cluster 11 was distinguished from other clusters by strong expression of Vcam1 and the monocyte chemoattractant protein-1 encoding gene Ccl2. Ccl2 is tightly linked on mouse chromosome 11 with Ccl7 and the predicted protein coding gene model Gmi17268. All three transcripts were among the most specific markers of the cluster 11 late injury cell population (Dataset S1). The presence of Ccl2+ , Vcam1+ , and Krt20+ cells in the injured kidney 4 wk after AKI was validated by immunofluorescence and RNA-sequence studies (see Fig. 5 A and B and SI Appendix, Fig. S4C).

GO term analysis indicated a clear functional distinction between normal S1, S2/S3, and IRI clusters (Fig. 2 D and F and Dataset S2). None of the terms related to normal proximal tubule structure and function were enriched in the IRI clusters, while new terms associated with changes in epithelial state, de-differentiation, migration, and fibrosis were overrepresented (Fig. 2D). Furthermore, cellular components known to play a role in cell adhesion and migration like “actin cytoskeleton” and “adherens junction” were enriched in the IRI clusters (Fig. 2F and Dataset S2). The early proliferating cluster showed very cluster-specific enrichment of cell cycle related GO terms, underlining the confinement of a cycling cell state to the cells in this cluster (Fig. 2D and Dataset S2).

To obtain further insight into the regulatory states of cells in each cluster, we used single-cell regulatory network inference (SCENIC) to reconstruct gene-regulatory networks (Fig. 2E and Dataset S3) (31). S1, S2, and S3 showed activity of regulons involved in proximal tubule development, including Hnf4a, Hnf1b, and Esra (19, 20, 32). Activity of these regulons associated with core PTC function was predicted to be down-regulated in the IRI clusters, which is in line with the marked loss of normal PTC gene expression profiles. Interestingly, two of the PTC clusters annotated as S1 and S3, cluster 7 and cluster 3, showed predicted regulon activity of Hsp70, encoding a master transcriptional regulator of heat shock proteins involved in stress and cancer (33) and Hefc1 (host cell factor C1), a transcriptional regulator that targets cell cycle genes depending on Hsp90 for its stability (34). In addition, cluster 3 shared activity of some regulons with IRI clusters. Clusters 3 and 7 likely represent PTCs with reduced PTC functions, reflected by reduced Hnf4a activity, and a stressed transcriptional state.

Proliferating early injured cells displayed E2f3 regulon activity consistent with the replicating state of these cells. Gene-regulatory network analysis further suggested involvement of the Hippo signaling pathway in early injured cells: up-regulation of the Tead1 regulon, a nuclear effector in an inactive Hippo signaling state associated with cell proliferation. The Hippo signaling pathway is...
known to respond to altered tension and mechanical constraints in epithelial tissues (35), regulating organ development and growth through the control of cell proliferation and apoptosis. YAP and TAZ, key transcriptional coactivators acting together with Tead DNA binding partners, have been shown to play a role in cystic kidney disease progression and development of renal fibrosis following AKI (36). Consistent with Hippo engagement in early injured cells, differential gene expression analysis showed upregulation of regulators involved in YAP-inactivation and Hippo signaling (e.g., Savi, Stk3), as well as effectors of the transcriptional response when Hippo signaling is silenced (e.g., Yap1, Tead1) (37) and well-known YAP-target genes such as Actn1 and Ctgf. SCENIC also predicted IRI cluster-specific regulon activity of Nfat5, a transcription factor mediating cellular responses to hypertonic stress and hypoxia that has been described to diminish renal injury following IRI by reducing caspase-3-dependent apoptosis (38). Nfat5 expression was enriched in all IRI clusters (Dataset S1).

Late injured cells of cluster 11 showed strongly up-regulated activity of regulons related to the NF-κB (Nfkbia, Nfkbi2, Rela, Relb, Bel3) and activator protein-1 (AP-1; Jun, Junb, Jund, and Fos12) signaling pathways. Similar gene-regulatory networks have been described in many human cancers and provide further evidence for a proinflammatory state of these cells (39). In addition, activity of the Smad3 regulon, an intracellular signal transducer activated by transforming growth factor-β (TGF-β), suggests these PTCs may also respond to TGF-β signaling that is linked to driving renal fibrosis in mesangial cells and adjacent stromal cell types

Fig. 4. Vcam1 and Cd26 proximal tubule subpopulation shows proinflammatory and profibrotic signature, but no G2/M cell cycle arrest. (A) Top 20 enriched KEGG pathways in late injured cluster 11. (B) Depiction of the KEGG pathways TNF and NF-κB signaling with the involved genes up-regulated in cluster 11. (C) Violin plots displaying expression of selected features across proximal tubule clusters. The cluster numbers correspond to Fig. 2A. (D) Gene set enrichment analysis of published cell cycle and (E) senescence/senescence-associated secretory phenotype (SASP) gene sets across clusters. See Dataset S4 for details on used gene sets.
(40, 41). IRI clusters also displayed regulon activity of Myc, encoding the proto-oncogene c-Myc, which has been implicated in tubular cell apoptosis, and Tfp21, which is associated with renal tubule development (42, 43).

Given the presence of the late injury cluster 11 in the kidney after normalization of kidney function, and an AKI linkage to development of CKD (9), we focused further analysis on this cluster. The most strongly enriched GO term in cluster 11 was “small GTPase mediated signal transduction,” and dedicator of cytokinesis protein 10 (Dock10), a guanine nucleotide exchange factor that can activate Rho GTPases, was among the most up-regulated genes in cluster 11 (Fig. 4C and SI Appendix, Fig. S4A). Dock10 has been described to be necessary for GTPase activation in amoeboid invasion of melanoma cells (44). Interestingly, GO terms like “ameboidal-type cell migration” and “epithelium activation” were also enriched in late injured cluster 11 cells, suggesting a migratory phenotype of these cells (SI Appendix, Fig. S4A).

Fig. 5. Immunofluorescence and RNAscope validate Nfkb1 expression in Vcam1+/Ccl2+ PTCs. (A) Immunofluorescence staining validates Nfkb1 and Vcam1 in Krt20+ cells. (B) Combination of RNAscope in situ hybridization (Nfkb1, Ccl2, GFP) and immunofluorescence staining (Vcam1) shows Nfkb1, Ccl2, Vcam1, and Krt20+ INTACT GFP-coexpressing cells. (C and D) Quantification of (C) colocalization of Nfkb1+ with Ccl2 in PTCs and of (D) Ccl2, Vcam1 and Nfkb1 in GFP+ PTCs using five regions of interest (ROIs) per kidney section (n = 3). The gray box corresponds to the middle 50th percentile, the horizontal line to the median, and the whiskers indicate the 1.5 interquartile range. (E) Combination of RNAscope in situ hybridization (Il34, Dock10) and immunofluorescence staining (Vcam1, Krt20-TDT) shows Il34 and Dock10 expression in Vcam1+, Krt20+ cells marked by the fluorescent reporter tandem tomato (TDT) in Krt20+T2A-CE/+;R26RtdTomato/+ mice. (F) Immunofluorescence staining shows Ccl2+, Nfkb1+ inflammatory cells around the Nfkb1+ tubules. See SI Appendix, Fig. S4E for validation of Nfkb1 antibody. (G) Box plots of reads per kilobase per million mapped reads (RPKM) values of indicated genes in bulk RNA-seq analysis of human kidney transplants biopsies in a successfully repaired [1] or a transition state [2] toward a chronically injured state [3]. Biopsy samples from living donors (LDs) were included as a representation of normal kidney tissue. Groups were compared by Mann–Whitney U test. Box corresponds to the middle 50th percentile, the horizontal line to the median, and the whiskers indicate the data range. Data adopted from ref. 7. (Scale bar: A, B, E, F, 20 μm.)
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated a strong up-regulation of TNF and NF-κB signaling: The NF-κB pathway is the primary mediator of TNF signaling (45) and AGE (advanced glycation end-product)/RAGE (AGE receptor) signaling, which has been linked to diabetic nephropathy (Fig. 4 A and B) (46). Differential gene expression analysis revealed up-regulation of the NF-κB complex (Nfkb1, Relb, Rela) as well as of potential activators/mediators (Tnfa, Il-1r, Cld4, Rank), regulators (Malt1), and target genes of the NF-κB signaling pathway (Fig. 4 B and C). Several of the up-regulated NF-κB target genes have been described to play a role in kidney disease: Il34 has been shown to promote macrophage proliferation in the kidney, thus mediating AKI and ensuing fibrosis (47); knockout of the neutrophil chemoattractant Cxcl1 has been described to ameliorate cisplatin-induced AKI (48) and Icam1 deficiency has been shown to be protective in IRI (49). This underscores the importance of late injured Vcam1+/Ccl2+ PTCs in kidney disease progression.

A secondary validation of predictions from the snRNA-seq analysis by RNAseq in situ hybridization and immunofluorescence analysis confirmed the coexpression of Ccl2 and Nfkb1 as well as the expression of Dock10 and Il34 in injured Krt20+ Vcam1+ PTCs (Fig. 5 A–E). Approximately 17% of GFI cells were positive for Ccl2, Nfkb1, and Vcam1, while no cells expressed all four markers in control kidneys (Fig. 5D). Quantification of the percentage of Ccl2, Nfkb1, and Vcam1-copositive cells among Krt20+ cells showed similar results (SI Appendix, Fig. S4 C and D). Furthermore, Nfkb1-expressing PTCs were spatially associated with Cd45+ immune cells, consolidating the role of these cells in persistent renal inflammation weeks after AKI (Fig. 5F).

To examine the human relevance of data from the moderate mouse AKI model, we assessed the expression of genes characteristic of Vcam1+/Ccl2+ cells in a previously published bulk RNA-seq dataset from human kidney transplant biopsies (7). This analysis delineated two distinct transcriptional trajectories in response to human AKI (7): successful repair [1] or disease progression via a transition state [2] to chronic injury [3]. Expression of Vcam1, Ccl2, Nfkb1, and Dock10 were all significantly elevated in kidneys in the chronically injured state (Fig. 5G), further supporting the relevance of Vcam1+/Ccl2+ PTCs in the human AKI pathogenesis.

Consistent with a prediction of up-regulated AP-1 regulon activity (Fig. 2E), expression of several AP-1 family members was increased in cluster 11 cells (Dataset S1). AP-1 also acts as a proinflammatory effector of both the TNF and the AGE/RAGE signaling pathways and has been implicated in development of organ fibrosis (50, 51). In addition, expression of genes linked to TGFB signaling and kidney fibrosis like Tgfβ2, Tgfβ2, Smad1-3, Col4a1, and Col4a2 was enriched in late injured cells. Intriguingly, prosurvival (Birc2, Birc3, Traf1/2) as well as proapoptotic (Fas, Casp4, Apaf1, Pmaip1) target genes of both NF-κB and p53-mediated signaling were up-regulated in late injured cluster 11 cells (Fig. 4C and Dataset S1). Thus, proapoptotic gene activity may be countered by prosurvival networks maintaining dysfunctional epithelial cells within the neprhon weeks after AKI.

Previous studies of long-term injury responses following IRI and other forms of AKI have pointed to PTCs arrested in the G2/M phase of the cell cycle as a trigger of post-AKI fibrosis (12, 13). To examine the cell cycle state of PTCs in this study, we performed gene set enrichment analysis using diagnostic cell cycle gene sets (52, 53). Enrichment of all gene sets indicated the presence of cycling cells in the cycling early injured cluster. However, no enrichment of G2/M phase gene sets could be detected in late injured cells (Fig. 4D). Cell cycle analysis using the CellCycleScoring function in Seurat to assign a S-phase or a G2/M-phase score to every single cell in the dataset yielded the same result (SI Appendix, Fig. S4B). In accordance, immunofluorescence staining with phosphorylated histone 3 at serine 10 (p-H3), a G2/M-phase marker (13), showed that <0.5% of all Vcam1+ cells on day 28 post-IRI expressed p-H3 (SI Appendix, Fig. S4 F and G). These cells were predominantly located in the cortex (SI Appendix, Fig. S4H). The Vcam1+/Ccl2+ cells in the late injured cluster 11, however, comprised 6% of all Vcam1+ cells in the IRI d28 samples of the snRNA-seq dataset. Together, these data argue against a G2/M-phase arrested cell state in the majority of Vcam1+/Ccl2+ injured PTCs in this moderate injury model.

Analyses of age-related organ deterioration and tissue fibrosis have suggested that chronically senescent cells with a shared senescence-associated secretory phenotype (SASP) are involved in the development of tissue inflammation and fibrosis in many organ systems (54–57). Since the phenotype of a senescent cell is dynamic and heterogeneous depending on the type of senescence inducer, and on the cell and tissue type, we compared our data with transcriptomic signatures characteristic of the aging kidney and senescent cells and/or SASP, in various cell types subjected to different methods of senescence induction (Fig. 4E) (58–64). The “senescence core signatures” identified by Hernandez-Segura et al. (62) in fibroblasts, keratinocytes, melanocytes and astrocytes and by Casella et al. (63) in fibroblasts and endothelial cells were not enriched in late injured cells. Furthermore, the top 20 genes up-regulated in aging mouse kidneys by single-cell RNA-seq showed enrichment in any of the clusters (58). However, a list of genes with a concurrent increase in mRNA and protein level in the aging kidney (59) showed significant enrichment in three out of five IRI clusters, including cluster 11. Likewise, genes encoding proteins recently shown to be increasingly secreted by renal cortical epithelial cells upon irradiation induced senescence (64) and other SASP gene sets were significantly overrepresented in cluster 11 late injured cells.

To determine whether late injured cells arise from cells initiating replication in response to the primary IRI, we used a K67/Codex/Ert2 mouse line (65) crossed to INTACT mice and induced labeling with tamoxifen injection either on days 2 and 3 or on days 5 and 6 post-IRI. Following GFP labeling of replicating cells on days 2 and 3 post-IRI to the kidney at day 28 showed that 89% of Vcam1+/Ccl2+ cells at the CMB were GFP+ (Fig. 6A and B). In contrast, only 27% of Vcam1+/Ccl2+ cells in the cortex were GFP+ at the day 28 time point. These observations lead to several conclusions. Cells with cluster 11 characteristics are evident at the site of primary injury in the hypersensitive S3 proximal tubule segments. Cells here initiated injury-invoked replication but failed to regenerate a normal PTC phenotype. In addition, cells with an indistinguishable molecular profile in cortical S1 and S2 segments reflect injury sites not associated with early injury-invoked proliferative repair. Furthermore, no cortical increase was observed in replicating cells among the Vcam1+/Ccl2+ population at 28 d when replicating cells were labeled at 5 and 6 d post-IRI (Fig. 6B). Thus, most cortical Vcam1+/Ccl2+ cells either originate from cells that were injured during the initial IRI, but did not initiate replication or show obvious injury responses at this time, or from a secondary spread of the injury within the CMB to the cortex. The observed spatial shift of the predominant location of Krt20-INTACT GFP positive cells from the CMB on day 7 to the cortex on day 28 post-IRI (Fig. 1E and SI Appendix, Fig. S1 D and F) supports the latter hypothesis.

The extent of renal injury and repair in the absence of an extrinsic trigger of AKI is an open question. Interestingly, a small number of control cells coclustered with injured PTCs (Fig. 2C and SI Appendix, Fig. S2A). Consistent with this finding, Krt20-Cre;Ert2 labeling identified rare Krt20+/Vcam1+ PTCs in healthy mouse kidneys (age: 3 mo; SI Appendix, Fig. S5). Some of the identified Vcam1+ PTCs were Relb+, and transcribed Il34 and Dock10, indicating activation of the NF-κB signaling pathway in these cells, as in cell populations enriched in IRI (SI Appendix, Fig. S5). Rare Vcam1+ and Vcam1+/Havcr1+ PTCs have also been identified in...
CMB
by
paracrine signaling (68). Thus, autocrine and paracrine signaling cells are known to induce senescence in neighboring cells by Ccl2 served with age (Fig. 6 with immunofluorescence staining (Vcam1) shows colocalization of K67-INTACT GFP-positive cells with Vcam1, Krt20, and Ccl2 on day 28 post-IRI when tamoxifen is injected on day 2 and 3 post-IRI. (B) Quantification of GFP reporter in Ccl2+/Vcam1+ cells in the cortex and the cortico-medullary boundary (CMB) at day 28 post-IRI in mice injected with tamoxifen either on day 2 and 3 (n = 4) or on day 5 and 6 (n = 3) post-IRI. (C) Immunofluorescence staining of proximal tubules with Krt20, Vcam1, Hnf4a, and LTL and quantification (D) of Vcam1+ PTCs in uninjured kidneys of 3- and 18-mo-old C57BL/6N mice. The gray box corresponds to the middle 50th percentile, the horizontal line to the median, and the whiskers indicate the 1.5 interquartile range. *P < 0.05. (Scale bar: A and C, 20 μm.)

normal adult human kidney samples (24, 66). These data suggest rare sporadic injury responses in the mouse and human kidney may mirror those initiated broadly in PTCs following IRI. These rare events are likely to increase with age. Consistent with this prediction, when Vcam1+ PTCs were scored in healthy 3- and 18-mo-old C57BL/6N mice, a marked increase of Vcam1+ PTCs was observed with age (Fig. 6 C and D).

Conclusions
PTCs play a major role in the regeneration of kidney structure and function following AKI (9). Our study provides high-resolution profiling of diverse injured PTC states, highlighting a role for NF-κB and AP-1 pathway activity in PTCs, and suggesting these regulatory pathways may drive PTCs to a pathological state. Of particular significance, we identified a Vcam1+/Ccl2+, proinflammatory, profibrotic PTC population, with a SASP that is shared with other organ systems (60–62).

Lineage tracing experiments suggest Ccl2+ PTCs originate from failed repair of cells that initiated replication in response to the initial IRI insult, as hypothesized in a recent study (21), as well as from secondary injury sites within the cortex. Limited replicative labeling studies suggest secondary injury may not associate with cell death induced replicative repair, although additional studies are required for a definitive insight. Intriguingly, Ccl2 has been shown to induce activation of NF-κB and AP-1 signaling as well as IL6 and ICAM1 expression in PTCs in vitro (67), and senescent cells are known to induce senescence in neighboring cells by paracrine signaling (68). Thus, autocrine and paracrine signaling by Ccl2+ PTCs may contribute to the persistence of Ccl2+ PTCs weeks after injury.

Previous studies have described G2/M phase arrest as a characteristic of maladaptive PTCs after AKI (13). However, in our moderate injury model, neither snRNA-seq analysis nor immunocolocalization of p-H3+ cells identified G2/M arrest in direct injury-invoked or secondary injury-associated Vcam1+ cells. In fate-mapping experiments, only a minor fraction of cortical Vcam1+/Ccl2+ cells showed a history of injury-invoked replication, which further supported the absence of G2/M arrest in the majority of these cells. Additionally, a recent snRNA-seq study in a more severe IRI model (21) showed similar qualitative response features to the injury responses reported here. Thus, G2/M arrest may not be a cell-intrinsic feature of proinflammatory PTCs remaining after kidney function is restored following AKI.

Senescent cells have emerged as important players in age-related kidney fibrosis and various kidney diseases (54, 68–70), and NF-κB signaling has been identified as a SASP activator (71). Our data demonstrate that Vcam1+/Ccl2+ PTCs share features with senescent cells including expression of Pflare encoding the urokinase-type plasminogen activator receptor (uPar). The improved outcome from successful removal of uPar+ cells through chimeric antigen receptor (CAR) T cell therapy in a liver fibrosis model (57), suggests a possible experimental route to blocking CKD progression following AKI.

Interestingly, Vcam1+/Ccl2+ cells exhibit an unusual mixed proapoptotic and antiapoptotic phenotype. As observed with cancer cells, despite the abnormal organization and cellular profile, antiapoptotic activities may promote survival of maladaptive PTCs that fail to complete renal repair. Targeting cell-intrinsic antiapoptotic pathways could be an alternative strategy to eliminate Vcam1+/Ccl2+ cells and determine whether their removal prevents progression to CKD.

Materials and Methods
See SI Appendix for a detailed description of materials and methods.
Mice, Surgical Procedures, and Serum Analysis. Mouse husbandry, handling, and surgical procedures were performed according to Institutional Animal Care and Use Committee guidelines at the University of Southern California (protocol numbers 11911 and 20894). IRI experiments were carried out on adult male mice (age, 11–19 wk; weight, 24–30 g) as in ref. 5, with a clamping time of 18 min to achieve a moderate injury level (no mortality until day 28 post-IRI). For sham surgery, the same procedure was performed except for clamping of the renal pedicles. Serum was collected for creatinine and/or BUN analysis at 48 h post-IRI and at collection.

Tissue Collection, Immunofluorescence, RNAscope in Situ Hybridization, and Image Analysis. Tissues were collected after organ perfusion with ice-cold DPBS (HyClone). Tissue sections were prepared and immunofluorescence staining performed as previously described (5). For RNAscope experiments, tissues were fixed at 4 °C and then followed the manufacturer’s protocol (ACD 323100-USB) for fixed-frozen tissues using TSA Plus fluorophores (Life Technologies). Dataset SS lists used antibody and probes. Images were acquired by confocal microscopy and quantified in randomly selected regions of interest or in sagittal sections as indicated (n ≥ 2 for all image analyses) using Fiji (72). Datasets were compared by two-sided Student’s t test or two-sided Wilcoxon test depending on their distribution. P < 0.05 was considered significant.

Nuclei Isolation and FACS Sorting. Nuclei were isolated from flash-frozen tissues with lysis buffer, Dounce homogenization, and filtering as in ref. 25 and resuspended in 1% BSA–DPBS supplemented with RNase inhibitor and Hoechst 33342. GFP+ nuclei were counted according to the method as described in ref. 18. The number of nuclei, and visualization in R Studio (R version 3.6.3). Seurat was used to filter out genes expressed in less than three nuclei and nuclei with low-quality profiles. Data were normalized and scaled using SCTransform (74) and integrated across different integration anchors as described in ref. 18. The number of informative principal components (PCs) was determined using the ElbowPlot function and graph-based clustering performed. Differential gene expression analysis was performed on individual clusters. The subset function was employed to create a new Seurat-object comprising only PTC clusters as previously described (31). The expression matrix generated with the SCTransform function in Seurat was used as input.

Analysis of Published Bulk RNA-Seq Dataset. Data were adopted from ref. 7. Samples were assigned to groups 1 (successfully repaired), 2 (transition), and 3 (chronically injured) according to the pseudotime analysis performed in ref. 7 (see ref. 7, figures 3C and 4A for pseudotime analysis). Groups were compared by Mann–Whitney U test. Box plots were generated using Prism 9.

Data Availability. The single-nuclei RNA sequencing data have been deposited in the Gene Expression Omnibus (GEO) database (accession no. GSE171417). All study data are included in the article and/or supporting information. Previously published data were used for this work (https://doi.org/10.1122/jcisi.123151; https://doi.org/10.1386/42255-020-0238-1).
30. T. Ostendorf, F. Etmer, J. Floege, The PDGF family in renal fibrosis. Pediatr. Nephrol. 27, 1041–1050 (2012).
31. S. Aiba et al., SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
32. F. Massa et al., Hepatocyte nuclear factor 1 δ controls nephron tubular development. Development 140, 886–896 (2013).
33. J. Li, J. Labbadia, R. I. Morimoto, Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol. 27, 895–905 (2017).
34. A. Antonova et al., Heat-shock protein 90 controls the expression of cell-cycle genes by stabilizing Metazoan-specific host-cell factor HCFC1. Cell Rep. 29, 1645–1659.e9 (2019).
35. F.-X. Yu, B. Zhao, K.-L. Guan, Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–826 (2015).
36. C.-L. Kim, S.-H. Choi, J.-S. Mo, Role of the Hippo pathway in fibrosis and cancer. Cells 8, 468 (2019).
37. Y. Wang et al., Cancer Genome Atlas Research Network, Comprehensive molecular characterization of the Hippo signaling pathway in cancer. Cell Rep. 25, 1304–1317.e5 (2018).
38. S. Hao et al., NFAT3 is protective against ischemic acute kidney injury. Hypertension 63, e46–e52 (2014).
39. Z. Ji, L. He, A. Regev, K. Struhl, Inflammatory regulatory network mediated by the joint action of NF-κB, STAT3, and AP-1 factors is involved in many human cancers. Proc. Natl. Acad. Sci. U.S.A. 116, 9453–9462 (2019).
40. X.-M. Meng, D. J. Nikolic-Paterson, H. Y. Lan, TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).
41. T. Hayashida, M. Decaestecker, H. W. Schnaper, Cross-talk between ERK MAP kinase activation is necessary for amoeboid invasion of melanoma cells. Acta Pharmacol. Sin. 40, 1508–1566 (2019).
42. G. Gadea, V. Sanz-Moreno, A. Self, A. Godi, C. J. Marshall, DOCK10-mediated Cdc42 by stabilizing Metazoan-specific host-cell factor HCFC1. Cell Rep. 29, 1645–1659.e9 (2019).
43. R. Eferl et al., Development and prevention of advanced diabetic nephropathy. J. Clin. Invest. 125, 3198–3214 (2015).
44. Y. Yamamoto et al., NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018).
45. J.-H. Baek et al., MCP-1 induces inflammatory activation of human tubular epithelial cells: Involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. J. Am. Soc. Nephrol. 13, 1534–1547 (2002).
46. M. H. Docherty, D. P. Baird, J. Hughes, D. A. Ferenbach, Cellular senescence and se- notheories in the kidney: Current evidence and future directions. Front. Pharmacol. 11, 755 (2020).
47. D. J. Baker et al., Naturally occurring p16(ink4a)-positive cells shorten healthy life-span. Nature 530, 184–189 (2016).
48. J. Liu et al., Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl. Res. 159, 454–463 (2012).
49. A. Salminen, A. Kauppinen, K. Kaarniranta, Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell. Signal. 24, 835–845 (2012).
50. J. Schindelin et al., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
51. A. Dobin et al., STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
52. C. Hafemeister, R. Satija, Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
53. J. Cao et al., The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
54. Y. Gu, L.-G. Wang, Y. Han, Q.-Y. He, clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
55. W. Walter, F. Sánchez-Cabo, M. Ricote, GQplot: An R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912–2914 (2015).