CONNECTEDNESS EXTENSIONS FOR ABELIAN VARIETIES

A. SILVERBERG* AND YU. G. ZARHIN**

1. Introduction

Suppose A is an abelian variety defined over a field F, ℓ is a prime number, and $\ell \neq \text{char}(F)$. Let F^s denote a separable closure of F, let $T_\ell(A) = \lim \leftarrow A_\ell^r$ (the Tate module), let $V_\ell(A) = T_\ell(A) \otimes \mathbb{Z}_\ell \mathbb{Q}_\ell$, and let $\rho_{A,\ell}$ denote the ℓ-adic representation

$$
\rho_{A,\ell} : \text{Gal}(F^s/F) \to \text{Aut}(T_\ell(A)) \subseteq \text{Aut}(V_\ell(A)).
$$

If L is an extension of F in F^s, let $G_{L,A}$ denote the image of $\text{Gal}(F^s/L)$ under $\rho_{A,\ell}$. Let $G_{F,A}$ denote the algebraic envelope of the image of $\rho_{A,\ell}$, i.e., the Zariski closure of $G_{L,A}$ in $\text{Aut}(V_\ell(A)) \cong \text{GL}_{2d}(\mathbb{Q}_\ell)$, where $d = \dim(A)$. Let $F_{\Phi,\ell}(A)$ be the smallest extension F' of F such that $G_{F',A}$ is connected. We call this extension the ℓ-connectedness extension, or connectedness extension.

The algebraic group $G_{F,A}$ and the field $F_{\Phi,\ell}(A)$ were introduced by Serre ([15], [16], [17]), who proved that if F is a global field or a finitely generated extension of \mathbb{Q}, then $F_{\Phi,\ell}(A)$ is independent of ℓ (see also [6], [7], [8]). In such cases, we will denote the field $F_{\Phi,\ell}(A)$ by $F_{\Phi}(A)$. For every integer $n \geq 3$ we have

$$
F_{\Phi}(A) \subseteq F(A_n)
$$

(see [3], [5], Proposition 3.6 of [2], and [23]). Larsen and Pink [8] recently proved that for every integer $n \geq 3$,

$$
F_{\Phi}(A) = \bigcap_{\text{prime } p \geq n} F(A_p).
$$

In [23] we found conditions for the connectedness of $G_{\ell}(F, A)$, while in [24] we used connectedness extensions and Serre’s ℓ-independence results to obtain ℓ-independence results for the intersection of $G_{\ell}(F, A)(\mathbb{Q}_\ell)$ with the torsion subgroup of the center of $\text{End}(A) \otimes \mathbb{Q}$.

Let $F(\text{End}(A))$ denote the smallest extension of F over which all the endomorphisms of A are defined. Then (see Proposition 2.10 of [24]),

$$
F(\text{End}(A)) \subseteq F_{\Phi,\ell}(A).
$$

Therefore, $G_{\ell}(F, A)$ fails to be connected when the ground field is not a field of definition for the endomorphisms of A. For example, if F is a subfield of \mathbb{C}, and A is an elliptic curve over F with complex multiplication by an imaginary quadratic field K which is not contained in F, then $F \neq KF = F(\text{End}(A)) \subseteq F_{\Phi,\ell}(A)$. More generally, if A is an abelian variety of CM-type, and \tilde{K} is the reflex CM-field, then $F(\text{End}(A)) \supseteq \tilde{K}$; if \tilde{K} is not contained in F then $F \neq F(\text{End}(A)) \subseteq F_{\Phi,\ell}(A)$. It is

* Partially supported by the National Science Foundation.

** Partially supported by the Ohio State University Mathematics Research Institute and the Deutsche Forschungsgemeinschaft.
therefore natural to enlarge the ground field \(F \) so that it is a field of definition for the endomorphisms of \(A \).

By enlarging the ground field, we may assume that \(F = F(\text{End}(A)) = F_{\kappa, \ell}(A) \). We then consider the \(F \)-forms \(B \) of \(A \) such that \(F = F(\text{End}(B)) \). For such \(B \), we describe the connectedness extensions \(F_{\kappa, \ell}(B)/F \) (see [23] especially Theorem 3.1 and Corollary 3.2). Properties of Mumford-Tate groups given in [23] allow us to obtain explicit information about the connectedness extensions \(F_{\kappa, \ell}(B)/F \) under additional conditions (see Theorems 3.4 and 3.5). Our conditions in Theorems 3.4 and 3.5 are based on Weil’s philosophy in [25] whereby exceptional Hodge classes arise from certain abelian varieties that have a CM-field embedded in their endomorphism algebras. In §4 we use the results of §3 to explicitly compute non-trivial connectedness extensions in special cases.

Acknowledgments: The authors would like to thank the Mathematische Institut der Universität Erlangen-Nürnberg for its hospitality.

2. Definitions, notation, and lemmas

Let \(\mathbb{Z} \), \(\mathbb{Q} \), and \(\mathbb{C} \) denote respectively the integers, rational numbers, and complex numbers. If \(r \) is an integer, then \(\mathbb{Q}(r) \) denotes the rational Hodge structure of weight \(-2r\) on \(\mathbb{Q} \) (see §1 of [4]). If \(a \) and \(b \) are integers, let \((a, b) \) denote the greatest common divisor of \(a \) and \(b \). If \(F \) is a field, let \(F^s \) denote a separable closure of \(F \) and let \(\bar{F} \) denote an algebraic closure of \(F \). If \(A \) is an abelian variety over a field \(F \), write \(\text{End}_F(A) \) for the set of endomorphisms of \(A \) which are defined over \(F \), let \(\text{End}(A) = \text{End}_F(A) \), and let \(\text{End}^0(A) = \text{End}(A) \otimes \mathbb{Z} \mathbb{Q} \). Let \(Z_A \) denote the center of \(\text{End}(A) \). If \(G \) is an algebraic group, let \(G^0 \) denote the identity connected component.

Lemma 2.1 (Lemma 2.7 of [23]). If \(A \) is an abelian variety over a field \(F \), \(L \) is a finite extension of \(F \) in \(F^s \), and \(\ell \) is a prime number, then

\[
\mathfrak{G}_\ell(L, A) \subseteq \mathfrak{G}_\ell(F, A) \text{ and } \mathfrak{G}_\ell(L, A)^0 = \mathfrak{G}_\ell(F, A)^0.
\]

In particular, if \(\mathfrak{G}_\ell(F, A) \) is connected, then \(\mathfrak{G}_\ell(F, A) = \mathfrak{G}_\ell(L, A) \).

Lemma 2.2. Suppose \(A \) and \(B \) are abelian varieties over a field \(F \), \(L \) is a finite extension of \(F \) in \(F^s \), \(\ell \) is a prime number, \(\ell \neq \text{char}(F) \), \(\mathfrak{G}_\ell(F, A) \) is connected, and \(A \) and \(B \) are isomorphic over \(L \). Then:

(i) \(\mathfrak{G}_\ell(F, B)^0 = \mathfrak{G}_\ell(F, A) \), and

(ii) \(\mathfrak{G}_\ell(L, B) \) is connected, i.e., \(F_{\kappa, \ell}(B) \subseteq L \).

Proof. Since \(A \) and \(B \) are isomorphic over \(L \), and \(\mathfrak{G}_\ell(F, A) \) is connected, we have

\[
\mathfrak{G}_\ell(L, B) = \mathfrak{G}_\ell(L, A) = \mathfrak{G}_\ell(F, A) = \mathfrak{G}_\ell(F, A)^0
\]

\[
= \mathfrak{G}_\ell(L, A)^0 = \mathfrak{G}_\ell(L, B)^0 = \mathfrak{G}_\ell(F, B)^0,
\]

using Lemma 2.1. The result follows. \(\square \)

Proposition 2.3. Suppose \(A \) and \(B \) are abelian varieties over a field \(F \), \(L \) is a field extension of \(F \) in \(F^s \), and \(f : A \to B \) is an isomorphism defined over \(L \). Suppose that for every \(\sigma \in \text{Gal}(F^s/F) \), the element \(f^{-1} \sigma(f) \) of \(\text{Aut}(A) \) commutes with every element of \(\text{End}_L(A) \). Then \(\text{End}_F(A) \cong \text{End}_F(B) \).
Proof. Define an isomorphism \(\varphi : \text{End}_L(A) \to \text{End}_L(B) \) by \(\varphi(\beta) = f \beta f^{-1} \). For every \(\beta \in \text{End}_L(A) \) and \(\sigma \in \text{Gal}(F^s/F) \), we have \(f^{-1} \sigma(f) \beta = \beta f^{-1} \sigma(f) \). Therefore, \(\sigma(f^{-1} \beta f^{-1}) = f \beta f^{-1} \). Thus, \(\beta \in \text{End}_F(A) \) if and only if \(f \beta f^{-1} \in \text{End}_F(B) \). In other words, the restriction of \(\varphi \) to \(\text{End}_F(A) \) induces an isomorphism onto \(\text{End}_F(B) \).

As a corollary we have the following result. See also Lemma 5.1 of [22].

Corollary 2.4. Suppose \(A \) is an abelian variety over a field \(F \). If an element of \(H^1(\text{Gal}(F^s/F), \text{Aut}(A)) \) is represented by a cocycle \(c \) with values in the center of \(\text{End}^0(A) \), and \(B \) is the twist of \(A \) by \(c \), then \(\text{End}_F(A) \cong \text{End}_F(B) \).

Proof. The cocycle \(c \) defines an isomorphism \(f : A \to B \) such that for every \(\sigma \in \text{Gal}(F^s/F) \), \(f^{-1} \sigma(f) = c(\sigma) \). We apply Proposition 2.3.

Lemma 2.5. Suppose \(A \) is an abelian variety over a field \(F \), \(c \) is a cocycle on \(\text{Gal}(F^s/F) \) with values in \(\text{Aut}(A) \), \(B \) is the twist of \(A \) by \(c \), and \(F = F(\text{End}(A)) = F(\text{End}(B)) \). Then \(c \) is a character with values in \(Z^\times_A \), where \(Z_A \) denotes the center of \(\text{End}(A) \).

Proof. Since \(\text{Gal}(F^s/F) \) acts trivially on \(\text{End}(A) \), the cocycle \(c \) is a homomorphism. Let \(f : A \to B \) be the isomorphism induced by \(c \). Then \(c(\sigma) = f^{-1} \sigma(f) \) for every \(\sigma \in \text{Gal}(F^s/F) \). Since \(F = F(\text{End}(A)) = F(\text{End}(B)) \), it easily follows that \(c(\sigma) \in Z_A \) and \(c(\sigma)^{-1} \in Z_A \).

Remark 2.6. If an abelian variety \(B \) over \(F \) is the twist of an abelian variety \(A \) by \(c \in H^1(\text{Gal}(F^s/F), \text{Aut}(A)) \) then one may easily check that the Galois module \(B(F^s) \) is the twist by \(c \) of the Galois module \(A(F^s) \), and therefore the Galois module \(V_\ell(B) \) is the twist by \(c \) of the Galois module \(V_\ell(A) \).

We define the Mumford-Tate group of a complex abelian variety \(A \) (see §2 of [13] or §6 of [26]). If \(A \) is a complex abelian variety, let \(V = H_1(A(\mathbb{C}), \mathbb{Q}) \) and consider the Hodge decomposition \(V \otimes \mathbb{C} = H_1(A(\mathbb{C}), \mathbb{C}) = H^{-1,0} \oplus H^{0,-1} \). Define a homomorphism \(\mu : \mathbb{G}_m \to GL(V) \) as follows. For \(z \in \mathbb{C} \), let \(\mu(z) \) be the automorphism of \(V \otimes \mathbb{C} \) which is multiplication by \(z \) on \(H^{-1,0} \) and is the identity on \(H^{0,-1} \).

Definition 2.7. The Mumford-Tate group \(MT_A \) of \(A \) is the smallest algebraic subgroup of \(GL(V) \), defined over \(\mathbb{Q} \), which after extension of scalars to \(\mathbb{C} \) contains the image of \(\mu \).

It follows from the definition that \(MT_A \) is connected.

Define a homomorphism \(\varphi : \mathbb{G}_m \times \mathbb{G}_m \to GL(V) \) as follows. For \(z, w \in \mathbb{C} \), let \(\varphi(z, w) \) be the automorphism of \(V \otimes \mathbb{C} \) which is multiplication by \(z \) on \(H^{-1,0} \) and is multiplication by \(w \) on \(H^{0,-1} \). Then \(MT_A \) can also be defined as the smallest algebraic subgroup of \(GL(V) \), defined over \(\mathbb{Q} \), which after extension of scalars to \(\mathbb{C} \) contains the image of \(\varphi \). The equivalence of the definitions follows easily from the fact that \(H^{-1,0} \) is the complex conjugate of \(H^{0,-1} \). (See §3 of [13], where \(MT_A \) is called the Hodge group. See also §6 of [26].)

If \(A \) is an abelian variety over a subfield \(F \) of \(\mathbb{C} \), we fix an embedding of \(\bar{F} \) in \(\mathbb{C} \). This gives an identification of \(V_\ell(A) \) with \(H_1(A, \mathbb{Q}) \otimes \mathbb{Q}_\ell \), and allows us to view \(MT_A \times \mathbb{Q}_\ell \) as a linear \(\mathbb{Q}_\ell \)-algebraic subgroup of \(GL(V_\ell(A)) \). Let

\[
MT_{A,\ell} = MT_A \times \mathbb{Q}_\ell.
\]
Proof in the literature, we have included one for the benefit of the reader.

\[\tilde{\rho} \text{ induces an isomorphism from } \]

structure of weight \(q \) \(E \) \(MT \) algebraic subgroup of \(GL \) \(C \) subfield of \(E \) Lemma 2.10. We will denote this \(p \) polarized Hodge structure of weight \(E \) \(\nu \). If \(\nu \) denotes the cyclotomic character. If \(r \) \(\tilde{\rho} \text{ Definition 2.11.} \]

\[\begin{align*}
\text{Let } \tilde{\rho} & : \text{Gal}(F^s/F) \to Z_{\ell}^\times \subset Q_{\ell}^\times \\
\text{denote the cyclotomic character. If } r & \text{ is an integer, then the Gal}(F^s/F)\text{-module } \]

\[Q_{\ell}(r) \text{ is the Gal}(F^s/F)\text{-module } \]

\[Q_{\ell}(r) = Q(r) \otimes Q_{\ell} \text{ we have } \]

\[Q(r) \otimes Q_{\ell} \text{ (see } \S 1 \text{ of } [5]) \]. Suppose \(A \) is an abelian variety over \(F \). Let \(V_\ell = V_\ell(A) \) and let \(V_\ell^* \) be the dual of \(V_\ell \). If \(\nu \in G_m \), let \(\nu \) act on \(Q(1) \) as \(\nu^{-1} \), and we obtain a canonical action of \(GL(V) \times G_m \) on \(T \). (Note that \(V^* \cong V \otimes Q(1) \), since \(V \) is a polarized Hodge structure of weight \(-1\).)

Definition 2.9. The group \(\tilde{MT}_A \) is the subgroup of \(GL(V) \times G_m \) consisting of the elements which fix all rational tensors of bidegree \((0,0)\) belonging to any \(T \).

Lemma 2.10 (Proposition 3.4 of [5]). The algebraic group \(\tilde{MT}_A \) is the smallest algebraic subgroup of \(GL(V) \times G_m \) defined over \(Q \) which, after extension of scalars to \(C \), contains the image of \((\mu, id) : G_m \to GL(V) \times G_m \).

If \(F \) is a field and \(\ell \) is a prime number different from \(\text{char}(F) \), let

\[\chi_{\ell} : \text{Gal}(F^s/F) \to Z_{\ell}^\times \subset Q_{\ell}^\times \]

denote the cyclotomic character. If \(r \) is an integer, then the \(\text{Gal}(F^s/F) \text{-module } Q_{\ell}(r) \) is the \(Q_{\ell}\text{-vector space } Q_{\ell} \) with Galois action defined by the character \(\chi_{\ell}^r \).

We have \(Q_{\ell}(r) = Q(r) \otimes Q_{\ell} \) (see \(\S 1 \) of [5]). Suppose \(A \) is an abelian variety over \(F \). Let \(V_\ell = V_\ell(A) \) and let \(V_\ell^* \) be the dual of \(V_\ell \). If \(\nu \in G_m \), let \(\nu \) act on \(Q_{\ell}(1) \) as \(\nu^{-1} \). We obtain a canonical action of \(GL(V_\ell) \times G_m \) on \(V_\ell^{\otimes p} \otimes (V_\ell^*)^{\otimes q} \otimes Q_{\ell}(r) \).

Define

\[\tilde{\rho}_{A,\ell} : \text{Gal}(F^s/F) \to Aut(V_\ell) \times Q_{\ell}^\times = Aut(V_\ell) \times G_m(Q_{\ell}) \]

by \(\tilde{\rho}_{A,\ell}(\sigma) = (\rho_{A,\ell}(\sigma), \chi_{\ell}^{-1}(\sigma)) \).

Definition 2.11. Let \(\tilde{\Theta}_{\ell}(F,A) \) denote the smallest \(Q_{\ell}\text{-algebraic subgroup of } \)

\[GL(V_\ell) \times G_m \]

whose group of \(Q_{\ell}\text{-points contains the image of } \tilde{\rho}_{A,\ell} \).

If \(A \) is a complex abelian variety, then a polarization on \(A \) (i.e., the imaginary part of a Riemann form) produces an element \(E \) of \(\text{Hom}(\wedge^2 V, Q(1)) \) which is a rational tensor of bidegree \((0,0)\). If \(A \) is an abelian variety over an arbitrary field \(F \), then a polarization on \(A \) defined over \(F \) defines a \(\text{Gal}(F^s/F) \text{-invariant element } E_\ell \text{ of } \text{Hom}(\wedge^2 V_\ell, Q_{\ell}(1)) \) (since the Weil pairing is \(\text{Gal}(F^s/F) \text{-equivariant}). If \(F \) is a subfield of \(C \), and we fix a polarization on \(A \) defined over \(F \), then the line generated by \(E_\ell \) in \(\text{Hom}(\wedge^2 V_\ell, Q_{\ell}(1)) \) is the extension of scalars to \(Q_{\ell} \) of the line generated by \(E \) in \(\text{Hom}(\wedge^2 V, Q(1)) \). (See p. 237 of [11], especially the last sentence.)

The following result implies that the projection map \(GL(V) \times G_m \to GL(V) \) induces an isomorphism from \(\tilde{MT}_A \) onto \(MT_A \). Since we were not able to find a proof in the literature, we have included one for the benefit of the reader.
Proposition 2.12. If A is a complex abelian variety, then there exists a (unique) character $\gamma : MT_A \to G_m$ such that \tilde{MT}_A is the graph of γ.

Proof. Let p_1 and p_2 denote the projection maps from $GL(V) \times G_m$ onto $GL(V)$ and G_m, respectively. By Lemma 2.10, MT_A is the image of \tilde{MT}_A under p_1. Fix a polarization on A. The polarization generates a line D in the Q-vector space $\text{Hom}(\wedge^2 V, Q(1))$, on which \tilde{MT}_A acts trivially. Let $D(-1) = D \otimes Q(-1)$, a line in $\text{Hom}(\wedge^2 V, Q)$. Since \tilde{MT}_A acts trivially on D, \tilde{MT}_A acts on $D(-1)$ via p_2. Let $B = \{\alpha \in GL(V) : \alpha D(-1) \subseteq D(-1)\}$ and let the character $\gamma : B \to \text{Aut}(D(-1)) = G_m$ be induced by the action of $GL(V)$ on $\text{Hom}(\wedge^2 V, Q)$. The action of $GL(V) \times G_m$ on $\text{Hom}(\wedge^2 V, Q)$ factors through $GL(V)$. Therefore $MT_A \subseteq B$, and we have a commutative diagram

$$
\begin{array}{ccc}
\tilde{MT}_A & \xrightarrow{p_1} & MT_A \\
p_2 \downarrow & & \downarrow \\
G_m
\end{array}
$$

which gives the desired result. \qed

Proposition 2.13. If A is an abelian variety over a field F, ℓ is a prime number, and $\ell \neq \text{char}(F)$, then there exists a (unique) character $\gamma_\ell : \tilde{G}_\ell(F, A) \to G_m$ such that

(i) $\tilde{G}_\ell(F, A)$ is the graph of γ_ℓ,

(ii) the restriction of γ_ℓ to $G_{F,A}$ is χ_ℓ^{-1},

(iii) if \tilde{F} is a subfield of C, then $\gamma_\ell = \gamma$ on $MT_{A,\ell} \cap \tilde{G}_\ell(F, A)$.

Proof. Let π_1 and π_2 denote the projection maps from $GL(V_\ell) \times G_m$ onto $GL(V_\ell)$ and G_m, respectively. By the definitions, $\tilde{G}_\ell(F, A)$ is the image of $\tilde{G}_\ell(F, A)$ under π_1. Fix a polarization on A defined over F. The polarization generates a line D_ℓ in the Q_ℓ-vector space $\text{Hom}(\wedge^2 V_\ell, Q_\ell(1))$. Let $D_\ell(-1) = D_\ell \otimes Q_\ell(-1)$, a line in $\text{Hom}(\wedge^2 V_\ell, Q_\ell)$. Since the Weil pairing is $\text{Gal}(F^s/F)$-equivariant, $\text{Gal}(F^s/F)$ acts trivially on D_ℓ. Therefore $\tilde{G}_\ell(F, A)$ acts trivially on D_ℓ, and acts via π_2 on $D_\ell(-1)$. Let $B_\ell = \{\alpha \in GL(V_\ell) : \alpha D_\ell(-1) \subseteq D_\ell(-1)\}$ and let the character $\gamma_\ell : B_\ell \to \text{Aut}(D_\ell(-1)) = G_m$ be induced by the action of $GL(V_\ell)$ on $\text{Hom}(\wedge^2 V_\ell, Q_\ell)$. The action of $GL(V_\ell) \times G_m$ on $\text{Hom}(\wedge^2 V_\ell, Q_\ell)$ factors through the action of $GL(V_\ell)$. Therefore $\tilde{G}_\ell(F, A) \subseteq B_\ell$, and we have a commutative diagram

$$
\begin{array}{ccc}
\tilde{G}_\ell(F, A) & \xrightarrow{\pi_1} & G_\ell(F, A) \\
\pi_2 \downarrow & & \downarrow \gamma_\ell \\
G_m
\end{array}
$$

which gives (i). Since the restriction of π_2 to $G_{F,A}$ is χ_ℓ^{-1}, we have (ii). Now suppose \tilde{F} is a subfield of C. Using the fixed polarization, define D, $D(-1)$, B, and γ as in the proof of Theorem 2.12. Then $B_\ell = B \times Q_\ell$, and therefore $MT_{A,\ell} \subseteq B_\ell$. Since γ
(respectively, \(\gamma\)) is induced by the action of \(GL(V)\) on \(\text{Hom}(\wedge^2 V, \mathbb{Q})\) (respectively, \(GL(V)\) on \(\text{Hom}(\wedge^2 V, \mathbb{Q}_\ell)\)), and \(V_\ell = V \otimes \mathbb{Q}_\ell\), we have (iii).

Write \(\tilde{MT}_{A,\ell}\) for the \(\mathbb{Q}_\ell\)-algebraic subgroup \(\tilde{MT}_{A} \times \mathbb{Q}_\ell\) of \(GL(V_\ell) \times \mathbb{G}_m\). Then \(\tilde{MT}_{A}(\mathbb{Q}_\ell) = \tilde{MT}_{A,\ell}(\mathbb{Q}_\ell)\). We state a reformulation of Theorem 2.8, which we will use in \(\S\) 3.

Theorem 2.14. If \(A\) is an abelian variety over a finitely generated extension \(F\) of \(\mathbb{Q}\), then \(\tilde{G}_{\ell}(F,A)^0 \subseteq \tilde{MT}_{A,\ell}\).

Proof. The result follows directly from Theorem 2.8 and Propositions 2.12 and 2.13.

3. Connectedness extensions

Theorem 3.1. Suppose \(A\) is an abelian variety over a field \(F\), \(\ell\) is a prime number not equal to \(\text{char}(F)\), \(c : \text{Gal}(F^s/F) \to \text{Aut}_F(A) \subseteq \text{Aut}(V_\ell(A))\) is a homomorphism, \(B\) is the twist of \(A\) by the cocycle determined by \(c\), and \(F = F(\text{End}(A)) = F_{\Phi,\ell}(A)\).

Then:

(i) \(c\) induces an isomorphism \(\text{Gal}(F_{\Phi,\ell}(B)/F) \cong \text{Im}(c)/\text{Im}(c) \cap \tilde{G}_{\ell}(F,A)(\mathbb{Q}_\ell))\),

(ii) \(G_{\ell}(F,B)\) is connected if and only if \(\text{Im}(c) \subseteq \tilde{G}_{\ell}(F,A)(\mathbb{Q}_\ell))\),

(iii) if \(M\) is the abelian extension of \(F\) in \(F^s\) cut out by \(c\), then \(c\) induces an isomorphism \(\text{Gal}(M/F_{\Phi,\ell}(B)) \cong \text{Im}(c) \cap \tilde{G}_{\ell}(F,A)(\mathbb{Q}_\ell))\).

Proof. By Lemma 2.3, \(F_{\Phi,\ell}(B) \subseteq M\). The character \(c\) induces isomorphisms \(\text{Gal}(M/F) \cong \text{Im}(c)\) and \(\text{Gal}(M/F_{\Phi,\ell}(B)) \cong \text{Im}(c) \cap \tilde{G}_{\ell}(F,B)^0(\mathbb{Q}_\ell))\).

By Lemma 2.2, we have \(\tilde{G}_{\ell}(F,B)^0 \cong \tilde{G}_{\ell}(F,A)\), and the result follows.

Corollary 3.2. Suppose \(A\) is an abelian variety over a field \(F\), \(\ell\) is a prime number not equal to \(\text{char}(F)\), \(B\) is the twist of \(A\) by a cocycle \(c : \text{Gal}(F^s/F) \to \text{Aut}(A) \subseteq \text{Aut}(V_\ell(A))\), and \(F = F(\text{End}(A)) = F_{\Phi,\ell}(A) = F(\text{End}(B))\).

Then:

(i) \(c\) is a character with values in \(Z_A^X\) (where \(Z_A\) denotes the center of \(\text{End}(A)\)),

(ii) \(c\) induces an isomorphism \(\text{Gal}(F_{\Phi,\ell}(B)/F) \cong \text{Im}(c)/\text{Im}(c) \cap \tilde{G}_{\ell}(F,A)(\mathbb{Q}_\ell))\),

(iii) \(G_{\ell}(F,B)\) is connected if and only if \(\text{Im}(c) \subseteq \tilde{G}_{\ell}(F,A)(\mathbb{Q}_\ell))\).
Proof. By Lemma 2.5 and the assumption that σ is an embedding of k into C, let

\[n_\sigma = \dim_C \{ t \in \text{Lie}(A) \otimes_F C : \iota(\alpha)t = \sigma(\alpha)t \text{ for all } \alpha \in k \}. \]

Write \bar{k} for the composition of σ with the involution complex conjugation of k.

Definition 3.3. If A is an abelian variety over an algebraically closed field C of characteristic zero, k is a CM-field, and $\iota : k \hookrightarrow \text{End}_F^0(A)$ is an embedding, we say (A,k,ι) is of Weil type if $n_\sigma = n_\bar{k}$ for all embeddings σ of k into C.

Although we do not use this fact, we remark that (A,k,ι) is of Weil type if and only if ι makes $\text{Lie}(A) \otimes_F C$ into a free $k \otimes \mathbb{Q}C$-module (see p. 525 of [13] for the case where k is an imaginary quadratic field). Using the semisimplicity of the F-algebra $k \otimes \mathbb{Q}F$ and the C-algebra $k \otimes \mathbb{Q}C$, one may easily deduce that ι makes $\text{Lie}(A) \otimes_F C$ into a free $k \otimes \mathbb{Q}C$-module if and only if ι makes $\text{Lie}(A)$ into a free $k \otimes \mathbb{Q}F$-module.

Suppose (A,k,ι) is of Weil type, and we have an element of

\[H^1(\text{Gal}(\bar{F}/F), \text{Aut}(A)) \]

which is represented by a cocycle c with values in the center of $\text{End}_F^0(A)$. Let B be the twist of A by ι, and let φ be the isomorphism from $\text{End}_F(A)$ to $\text{End}_F(B)$ obtained in Corollary 2.3 and Proposition 2.3. Since (A,ι) and $(B,\varphi \circ \iota)$ are isomorphic over C, it follows that $(B,k,\varphi \circ \iota)$ is of Weil type.

Note that if (A,k,ι) is of Weil type, then $\dim(A)$ is divisible by $[k : \mathbb{Q}]$.

Theorem 3.4. Suppose A is an abelian variety over a finitely generated extension F of \mathbb{Q}, ℓ is a prime number, k is a CM-field, and $\iota : k \hookrightarrow \text{End}_F^0(A)$ is an embedding into the center of $\text{End}_F^0(A)$ such that (A,k,ι) is of Weil type, $c : \text{Gal}(\bar{F}/F) \to k^\times$ is a character of finite order n, $r = 2\dim(A)/[k : \mathbb{Q}] \in \mathbb{Z}$, M is the $\mathbb{Z}/n\mathbb{Z}$-extension of F cut out by c, and B is the twist of A by c. Suppose $F = \text{End}(A)$, $\iota \circ c$ takes values in $\text{Aut}(A)$, r is even, and n does not divide r. Then

(i) $F = \text{End}(B)$,
(ii) either $F \neq F_\varphi(A)$ or $F \neq F_\varphi(B)$,
(iii) if $F_\varphi(A) = F$, then $F_\varphi(B) \subseteq M$ and $[M : F_\varphi(B)]$ divides $n, 2r$,
(iv) if $F_\varphi(A) = F$ and $(n, 2r) = 2$, then $[M : F_\varphi(B)] = 2$.

Proof. The Galois module $V_\ell(B)$ is the twist of $V_\ell(A)$ by c (see Remark 2.6). By applying Corollary 2.4 to the cocycle induced by c, we deduce (i) and we obtain an isomorphism φ from $\text{End}_F(A)$ onto $\text{End}_F(B)$ such that $(B,k,\varphi \circ \iota)$ is of Weil type.

Let $k_\ell = k \otimes \mathbb{Q}_\ell$. For $U = A$ or B, let

\[W_U = \text{Hom}_{\mathbb{Q}}(\wedge^k H_1(U, \mathbb{Q}), \mathbb{Q}_\ell(\frac{r}{2})), \quad W_{U,\ell} = \text{Hom}_{\mathbb{Q}_\ell}(\wedge^{k_\ell} V_\ell(U), \mathbb{Q}_\ell(\frac{r}{2})), \]

where Hom_E means homomorphisms of E-vector spaces, if E is a field. Then W_U is a one-dimensional k-vector space and $W_{U,\ell}$ is a free rank-one k_ℓ-module. The
elements of W_U are called Weil classes for U. Since $V_\ell(U) = H_1(U, \mathbb{Q}) \otimes \mathbb{Q} \mathbb{Q}_\ell$, we have $W_{U,\ell} = W_U \otimes \mathbb{Q} \mathbb{Q}_\ell$. Consider the action of the Galois group $\text{Gal}(\bar{F}/F)$. The Galois module $W_{B,\ell}$ is the twist of the Galois module $W_{A,\ell}$ by the character c^{-r}. Since n does not divide r, this is a non-trivial twist, so the Galois modules $W_{B,\ell}$ and $W_{A,\ell}$ cannot be simultaneously trivial.

By pp. 52–54 of [1] (see also Lemma 2.8 of [14] and p. 423 of [25]), the elements of W_U are Hodge classes (since we are dealing with abelian varieties of Weil type).

Since $\tilde{\mathcal{M}}T_{U,\ell}(\mathbb{Q}_\ell)$ acts trivially on W_U, $\tilde{\mathcal{M}}T_{U,\ell}(\mathbb{Q}_\ell)$ acts trivially on $W_{U,\ell} = W_U \otimes \mathbb{Q} \mathbb{Q}_\ell$. Suppose now that $\mathcal{G}_0(F, A)$ and $\mathcal{G}_0(F, B)$ are both connected. Then $\mathcal{G}_0(F, A)$ and $\mathcal{G}_0(F, B)$ are both connected (by Proposition 2.13). It follows from Theorem 2.14 that $\mathcal{G}_0(F, U) \subseteq \tilde{\mathcal{M}}T_{U,\ell}$. Therefore, $W_{B,\ell}$ and $W_{A,\ell}$ are both trivial as Gal(\bar{F}/F)-modules. This is a contradiction. We therefore have (ii).

Suppose that $F_\Phi(A) = F$. Then $\mathcal{G}_0(F, A)$ is connected, so $\mathcal{G}_0(F, B)$ is disconnected. By Lemma 2.7, $\mathcal{G}_0(M, B)$ is connected. Therefore, $F_\Phi(B) \subseteq M$. By Corollary 2.2, $\text{Gal}(M/F_\Phi(B)) \cong \text{Im}(c) \cap \mathcal{G}_0(F, A)(\mathbb{Q}_\ell)$.

Let $\mu_\sigma(k)$ denote the group of σ-th roots of unity in k^\times. We have

$$\text{Im}(c) = \mu_\sigma(k) \cong \mathbb{Z}/n\mathbb{Z}.$$

Suppose $\alpha \in \text{Im}(c) \cap \mathcal{G}_0(F, A)(\mathbb{Q}_\ell)$. Then $\alpha^n = 1$. By Theorem 2.8 and the facts that $\mathcal{G}_0(F, A) = \mathcal{G}_0(F, A)^0$ and $\alpha \in \text{End}^0(A)$, we have $\alpha \in \text{MT}_A(\mathbb{Q})$. Applying the character γ of Theorem 2.12 we have that $\gamma(\alpha)$ is an n-th root of unity in \mathbb{Q}_ℓ^\times, and therefore $\gamma(\alpha)$ is 1 or -1. By the definition of $W_{A,\ell}$, α acts on $W_{A,\ell}$ as multiplication by $\alpha^{-r}\gamma(\alpha)^{-r/2}$. Since $\alpha \in \text{MT}_A(\mathbb{Q}_\ell)$, α acts trivially on $W_{A,\ell}$. Therefore $\alpha^{-r}\gamma(\alpha)^{-r/2} = 1$, so $\alpha^{2r} = 1$. Let $t = (n, 2r)$. Then

$$\text{Gal}(M/F_\Phi(B)) \cong \text{Im}(c) \cap \mathcal{G}_0(F, A)(\mathbb{Q}_\ell) \subseteq \mu_\sigma(k) \cap \mu_{2r}(k) = \mu_t(k).$$

Therefore, $[M : F_\Phi(B)]$ divides t. Since $\mathcal{G}_0(F, A)$ contains the homotheties G_m (see 2.3 of [14]), we have $-1 \in \mathcal{G}_0(F, A)(\mathbb{Q}_\ell)$. So $-1 \in \text{Im}(c) \cap \mathcal{G}_0(F, A)(\mathbb{Q}_\ell)$ if and only if $-1 \in \text{Im}(c)$, i.e., if and only if n is even. Thus if $t = 2$, then

$$\text{Gal}(M/F_\Phi(B)) \cong \{\pm 1\}.$$

\[\square\]

Theorem 3.5. Suppose X and Y are abelian varieties over a finitely generated extension F of \mathbb{Q}, ℓ is a prime number, $\text{Hom}(X, Y) = 0$, $F = F(\text{End}(X)) = F(\text{End}(Y))$, k is a CM-field, $[k : \mathbb{Q}] = 2\dim(Y)$, and $\dim(X) = \ell\dim(Y)$ for some odd positive integer ℓ. Suppose ι_X and ι_Y are embeddings of k into $\text{End}^0(X)$ and $\text{End}^0(Y)$, respectively, and $(X \times Y, k, \iota_X \times \iota_Y)$ is of Weil type. Suppose c is the non-trivial character associated to a quadratic extension M of F, let Y^c denote the twist of Y by c, let $A = X \times Y$, and let $B = X \times Y^c$. Then

(i) $F = F(\text{End}(B))$,

(ii) either $F(\text{End}(A)) \neq F_\Phi(A)$ or $F(\text{End}(B)) \neq F_\Phi(B)$,

(iii) if $F_\Phi(A) = F$, then $F_\Phi(B) = M$.

Proof. We have $F = F(\text{End}(A))$. Since $\text{Hom}(X, Y) = 0$, we have $\text{End}^0(A) = \text{End}^0(X) \oplus \text{End}^0(Y)$ and $\text{Aut}(A) = \text{Aut}(X) \times \text{Aut}(Y)$. Consider the cocycle c that sends $\sigma \in \text{Gal}(\bar{F}/F)$ to $(1, c(\sigma)) \in \text{Aut}(X) \times \text{Aut}(Y) = \text{Aut}(A)$. All the values of c are of the form $(1, \pm 1)$, and therefore belong to the center of $\text{End}^0(A)$. The abelian
For viewing the Tate modules as free

Let

\(\mathcal{O} \) (abelian variety of CM-type \((K, \mathbf{Z})\) Let \(\Psi \) be the subset of \(\mathbb{Q} \)\n
must be the quadratic extension \(M \) complex multiplication by an imaginary quadratic field \(K \)

have (i), and we obtain an isomorphism \(\varphi \) from \(\text{End}_F(A) \) onto \(\text{End}_F(B) \) such that

\((B, k, \varphi \circ (\tau_X \times \tau_Y)) \) is of Weil type. Let \(k_\ell = k \otimes \mathbb{Q}_\ell \). We have

\[V_\ell(A) = V_\ell(X) \oplus V_\ell(Y), \quad V_\ell(B) = V_\ell(X) \oplus V_\ell(Y^c). \]

Viewing the Tate modules as free \(k_\ell \)-modules, we have

\[\wedge^{t+1} V_\ell(A) = \wedge^{t}_k V_\ell(X) \otimes_{k_\ell} V_\ell(Y), \quad \wedge^{t+1} V_\ell(B) = \wedge^{t}_k V_\ell(X) \otimes_{k_\ell} V_\ell(Y^c). \]

For \(U = A \) or \(B \), let

\[W_{U, \ell} = \text{Hom}_{\mathbb{Q}_\ell}(\wedge^{t+1} V_\ell(U), \mathbb{Q}_\ell((t+1)/2)). \]

The Galois module \(V_\ell(Y^c) \) is the twist of the Galois module \(V_\ell(Y) \) by the character \(c \) (see Remark 2.6), and the Galois module \(W_{B, \ell} \) is the twist of the Galois module \(W_{A, \ell} \) by \(c^{-1} = c \). Since \(c \) is non-trivial, the Galois modules \(W_{B, \ell} \) and \(W_{A, \ell} \) cannot be simultaneously trivial. As in the proof of Theorem 3.4, it follows that \(\Phi_\ell(F, A) \) and \(\Phi_\ell(F, B) \) cannot both be connected. If \(F_\mathfrak{p}(A) = F \), then \(\Phi_\ell(F, B) \) is connected, so \(\Phi_\ell(F, B) \) is disconnected. By Lemma 2.2, \(\Phi_\ell(M, B) \) is connected, and so \(F_\mathfrak{p}(B) \) must be the quadratic extension \(M \) of \(F \).

Remark 3.6. Suppose \(F \) is a subfield of \(\mathbb{C} \), \(Y \) is an elliptic curve over \(F \) with complex multiplication by an imaginary quadratic field \(K \), and \(X \) is an absolutely simple 3-dimensional abelian variety over \(F \) with \(K \) embedded in its endomorphism algebra. Then we can always ensure (by taking complex conjugates if necessary) that the two embeddings of \(K \) into \(\mathbb{C} \) occur with the same multiplicity in the action of \(K \) on the tangent space of the 4-dimensional abelian variety \(X = X \times Y \).

Note that the hypotheses of Theorem 3.4 (or of Theorem 3.3) cannot be simultaneously satisfied with \(\dim(A) < 4 \). In Example 4.2 we exhibit 4-dimensional abelian varieties satisfying the hypotheses of Theorem 3.3.

4. Examples

Using Theorems 3.4 and 3.3, we can construct examples of abelian varieties \(B \) such that \(\Phi_\ell(F, B) \) is disconnected, and compute the connectedness extensions.

Example. Let \(k = \mathbb{Q}(\sqrt{-3}) \) and let \(K \) be the CM-field which is the compositum of \(\mathbb{Q}(\sqrt{-3}) \) with the maximal totally real subfield \(L \) of \(\mathbb{Q}(\zeta_{17}) \). Then

\[\text{Gal}(K/\mathbb{Q}) \cong \text{Gal}(k/\mathbb{Q}) \times \text{Gal}(L/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}. \]

Let \(\Psi \) be the subset of \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \cong \text{Gal}(K/\mathbb{Q}) \) defined by

\[\Psi = \{(0, 0), (0, 1), (0, 4), (0, 7), (1, 2), (1, 3), (1, 5), (1, 6)\}. \]

Let \(\mathcal{O}_K \) denote the ring of integers of \(K \). Let \((A, \iota_K)\) be an 8-dimensional CM abelian variety of CM-type \((K, \Psi)\) constructed from the lattice \(\mathcal{O}_K \) as in Theorem 3 on p. 46 of [20], and defined over a number field \(F \) (this can be done by Proposition 26 on p. 109 of [20]). Then \(A \) is absolutely simple, by the choice of \(\Psi \) and Proposition 26 on p. 69 of [20], and \(\text{End}(A) = \mathcal{O}_K \) (see Proposition 6 on p. 42 of [20]). Further, the reflex field of \((K, \Psi)\) is \(K \). Take the number field \(F \) to be sufficiently large so that \(F_\mathfrak{p}(A) = F \). Let \(\iota \) be the restriction of \(\iota_K \) to \(k \). By the definition of \(\Psi \), if \(\sigma \in \text{Gal}(k/\mathbb{Q}) \) then \(n_\sigma = 4 \). Therefore \((A, k, \iota)\) is of Weil type. Let \(c : \text{Gal} \left(\tilde{F}/F \right) \to k^\times \) be a non-trivial cubic character associated to a cubic extension
M of F, and let B denote the twist of A by c. Applying Theorem 3.4(ii) with $n = 3$ and $r = 8$, then $F(\text{End}(B)) = F$ and $F_B(B) = M$.

4.2. Example. Let J be the Jacobian of the genus 3 curve

$$y^7 = x(1 - x),$$

and let E be the elliptic curve $X_0(49)$. A model for E is given by the equation

$$y^2 + xy = x^3 - x^2 - 2x - 1.$$

Let d be a non-zero square-free integer. If $d \neq 1$ let $E^{(d)}$ be the twist of E by the non-trivial character of $\mathbb{Q}(\sqrt{d})$, and if $d = 1$ let $E^{(d)} = E$. Let

$$A = J \times E, \quad A^{(d)} = J \times E^{(d)}.$$

The abelian varieties $A^{(d)}$ are defined over \mathbb{Q}. Let ζ_7 be a primitive seventh root of unity and let

$$K = \mathbb{Q}(\zeta_7), \quad L_d = K(\sqrt{d}), \quad k = \mathbb{Q}(\sqrt{-7}).$$

If $d = 1$ or -7 then $K = L_d$; otherwise, $[L_d : K] = 2$. The abelian variety J is a simple abelian variety with complex multiplication by K, and the elliptic curves $E^{(d)}$ have complex multiplication by the subfield k of K. We have $\text{Gal}(K/\mathbb{Q}) = \{\sigma_1, \ldots, \sigma_6\}$ where $\sigma_1(\zeta_7) = \zeta_7^4$. The CM-type of J is $(K, \{\sigma_1, \sigma_2, \sigma_3\})$ (see p. 34 of [3] or §15.4.2 of [20]), and the reflex CM-type is $(K, \{\sigma_4, \sigma_5, \sigma_6\})$ (see §8.4.1 of [20]). We can identify $\text{End}(A^{(d)})$ with the direct sum of $\text{End}(J)$ and $\text{End}(E^{(d)})$. By Proposition 30 on p. 74 of [20], the smallest extension of \mathbb{Q} over which all the elements of $\text{End}(J)$ are defined is the reflex CM-field of the CM-type of J, which is K. Similarly, k is the smallest extension of \mathbb{Q} over which all the elements of $\text{End}(E^{(d)})$ are defined. We therefore have

$$K = \mathbb{Q}(\text{End}(A^{(d)})).$$

Next, we will prove that $L_d = \mathbb{Q}_8(A^{(d)})$.

Write \mathcal{O}_Ω for the ring of integers of a number field Ω. If q is a prime number, let $\mathcal{O}_q = \mathcal{O}_\Omega \otimes \mathbb{Z}_q$.

Lemma 4.2.1. If K' is a finite abelian extension of K which is unramified away from the primes above 7, then $[K' : K]$ is a power of 7.

Proof. We have $-1 - \zeta_7 = (1 - \zeta_7^2)/(\zeta_7 - 1) \in \mathcal{O}_K^\times$. Let \mathcal{P} be the prime ideal of K above 7. The reduction map

$$\mathcal{O}_K^\times \to (\mathcal{O}_K/\mathcal{P})^\times \cong (\mathbb{Z}/7\mathbb{Z})^\times$$

is surjective, since $-1 - \zeta_7$ maps to -2, a generator of $(\mathbb{Z}/7\mathbb{Z})^\times$. Moreover, the class number of K is one. Therefore by class field theory, there is no non-trivial abelian extension of K of degree prime to 7 and unramified away from the primes above \mathcal{P}. \hfill \square

Lemma 4.2.2. If p is a prime and $p \equiv 3 \pmod{7}$, then the only field K' such that

(i) $K \subseteq K' \subseteq K(A_p)$, and

(ii) K'/K is unramified away from the primes above 7,

is K itself.
Proof. Since K is a field of definition for the endomorphisms of the CM abelian varieties J and E, the extension $K(J_n)/K$ is abelian for every integer n (see Corollary 2 on p. 502 of [18]). Suppose p and K' satisfy the hypotheses of Lemma 4.2.2. Let $I_p \subseteq \text{Gal}(K(J_p)/K)$ be the inertia subgroup at p. We will first show

$$\#(I_p) = \frac{p^6 - 1}{p^2 + p + 1}. \tag{1}$$

The image of \mathcal{O}_p^\times in $\text{Gal}(K(J_p)/K)$ under the Artin map of class field theory is I_p, and we have natural homomorphisms

$$\text{Gal}(K(J_p)/K) \hookrightarrow \text{Aut}_{\mathcal{O}_k}(J_p) \cong (\mathcal{O}_K/p\mathcal{O}_K)^\times \cong \mathcal{O}_p^\times/(1 + p\mathcal{O}_p).$$

We therefore obtain maps

$$\mathcal{O}_p^\times \to I_p \to \mathcal{O}_p^\times/(1 + p\mathcal{O}_p). \tag{2}$$

Since the first map of (2) is surjective, the order of I_p is the order of the image of the composition. Since $p \equiv 3 \pmod{7}$, we know that p is inert in K/Q, so $(\mathcal{O}_K/p\mathcal{O}_K)^\times$ is a cyclic group of order $p^6 - 1$. Since the greatest common divisor of $p^6 - 1$ and $p^2(p^2 + p + 1) = p^2 + p + 1$, equation (2) will be proved when we show that the composition of maps in (2) sends $u \in \mathcal{O}_p^\times$ to $u^{-p^2(p^2 + p + 1)} \pmod{1 + p\mathcal{O}_p}$. We can view elements of $\text{Gal}(K/Q)$ as automorphisms of \mathcal{O}_p^\times. Proposition 7.40 on p. 211 of [19] implies that the image of u in $\text{Gal}(K/Q)$ is of the form $\alpha(u)/\eta(u)$ (mod $1 + p\mathcal{O}_p$) where $\eta(u) = \sigma_4(u)\sigma_5(u)\sigma_6(u)$ and $\alpha(u) = K^\times \lambda$ for the idele group of K, and for each archimedean prime λ of K, define a Grössencharacter $\psi_\lambda : K^\times \lambda \to \mathbb{C}^\times$ by $\psi_\lambda(x) = (\alpha(x)/\eta(x))_.$. View \mathcal{O}_p^\times as a subgroup of $K^\times \lambda$. Since J has good reduction outside 7, we have $\psi_\lambda(\mathcal{O}_p^\times) = 1$, by Theorem 7.42 of [19]. For $u \in \mathcal{O}_p^\times$, we have $1 = \psi_\lambda(u) = \alpha(u)\lambda = \alpha(u)$. Therefore the image of u in $\mathcal{O}_p^\times/(1 + p\mathcal{O}_p)$ is $1/\eta(u)$ (mod $1 + p\mathcal{O}_p$). Since p is inert in K/Q we have $\text{Gal}(K/Q) \cong \text{Gal}((\mathcal{O}_K/p)/\mathbb{Z}/p) = D_p$, where D_p is the decomposition group at p. The latter group is a cyclic group of order 6 generated by the Frobenius element, and we compute that

$$\sigma_4(u) \equiv u^{p^2}, \quad \sigma_5(u) \equiv u^{p^3}, \quad \sigma_6(u) \equiv u^{p^3} \pmod{1 + p\mathcal{O}_p}$$

(since $p^4 \equiv 4 \pmod{7}$, $p^5 \equiv 5 \pmod{7}$, and $p^6 \equiv 6 \pmod{7}$). Therefore

$$1/\eta(u) \equiv u^{-p^2(p^2 + p + 1)} \pmod{1 + p\mathcal{O}_p},$$

as desired.

We have

$$\text{Gal}(K(E_p)/K) \hookrightarrow \text{Aut}_{\mathcal{O}_k}(E_p) \cong (\mathcal{O}_k/p\mathcal{O}_k)^\times.$$

The order of $(\mathcal{O}_k/p\mathcal{O}_k)^\times$ is $p^2 - 1$, which is not divisible by 7. Therefore $[K(E_p) : K(J_p)]$ is not divisible by 7. By Lemma 4.2.1, $[K' : K]$ is a power of 7. Therefore $K' \subseteq K(J_p)$. Since K'/K is unramified at p, we have $I_p \subseteq \text{Gal}(K(J_p)/K')$. Suppose $K' \neq K$. Then $\#(I_p)$ divides $(p^6 - 1)/7$. By (1), $(p^6 - 1)/(p^2 + p + 1)$ divides $(p^6 - 1)/7$. Therefore 7 divides $p^2 + p + 1$, which contradicts the assumption that $p \equiv 3 \pmod{7}$. Therefore, $K' = K$. \hfill \Box

Suppose p and q are distinct odd primes, and $p \equiv 3 \pmod{7}$. Let $K' = K(A_p) \cap K(A_q)$. Since A has good reduction outside 7, the extension K'/K is unramified.
away from the primes above 7. By Lemma \[4.2.2\] we have \(K' = K \). As mentioned in the introduction, for every integer \(n \geq 3 \) we have
\[
K_\Phi(A) \subseteq K(A_n).
\]
We therefore obtain
\[
K = K_\Phi(A) = Q_\Phi(A).
\]
It follows from Theorem \[3.5\] that
\[
L_d = Q_\Phi(A^{(d)}).
\]
Note that Shioda (see Theorem 4.4 of \[21\]) proved the Hodge Conjecture for \(A \), and therefore also for \(A^{(d)} \). Thus, the Weil classes on \(A^{(d)} \) are algebraic. It follows easily that \(L_d \) is the smallest extension of \(Q \) over which all the algebraic cycle classes on all powers of \(A^{(d)} \) are defined.

Remark 4.2.3. If \(A \) is an abelian variety over a finitely generated extension \(F \) of \(Q \), and if the (as yet unproved) Tate Conjecture is true for all powers of \(A \) over \(F_\Phi(A) \), then the field \(F_\Phi(A) \) is the smallest extension of \(F \) over which all the algebraic cycle classes on all powers of \(A \) are defined.

References

[1] Borovoi, M.: The action of the Galois group on the rational cohomology classes of type \((p, p)\) of abelian varieties (Russian). Mat. Sbornik (N. S.) 94 (136), 649–652 (1974) = Math. USSR Sbornik 23, 613–616 (1974)

[2] Borovoi, M.: The Shimura-Deligne schemes \(MC(G, h) \) and the rational cohomology classes of type \((p, p)\) of abelian varieties (Russian). In: Problems of group theory and homological algebra (Russian) (No. 1, pp. 3–53) Yaroslavl’: Yaroslav. Gos. Univ. 1977

[3] Chi, W.: \(\ell \)-adic and \(\lambda \)-adic representations associated to abelian varieties defined over number fields. Amer. J. Math. 114, 315–353 (1992)

[4] Deligne, P. (notes by J. Milne): Hodge cycles on abelian varieties. In: P. Deligne, et al.: Hodge cycles, motives, and Shimura varieties (Lecture Notes in Mathematics, vol. 900, pp. 9–100) Berlin Heidelberg New York: Springer 1982

[5] Lang, S.: Complex Multiplication (Grundlehren Math. Wiss. Bd. 255) New York Berlin Heidelberg Tokyo: Springer 1983

[6] Larsen, M., Pink, R.: On \(\ell \)-independence of algebraic monodromy groups in compatible systems of representations. Invent. math. 107, 603–636 (1992)

[7] Larsen, M., Pink, R.: Abelian varieties, \(\ell \)-adic representations, and \(\ell \)-independence. Math. Ann. 302, 561–579 (1995)

[8] Larsen, M., Pink, R.: A connectedness criterion for \(\ell \)-adic representations. To appear in Israel J. Math.

[9] Milne, J. S.: Shimura varieties and motives. In: U. Jannsen et al.: Motives (Proc. Symp. Pure Math. vol. 55 , Part 2, pp. 447–523) Providence: Amer. Math. Soc. 1994

[10]Moonen, B., Zarhin, Yu. G.: Hodge classes and Tate classes on simple abelian fourfolds. Duke Math. J. 77, 553–581 (1995)

[11] Mumford, D.: Abelian varieties, Second Edition (Tata Lecture Notes) London: Oxford Univ. Press 1974

[12] Piatetski-Shapiro, I. I.: Interrelations between the Tate and Hodge conjectures for abelian varieties (Russian), Mat. Sbornik 85, 610–620 (1971) = Math. USSR Sbornik 14, 615–625 (1971)

[13] Ribet, K.: Hodge classes on certain types of abelian varieties. Amer. J. Math. 105, 523–538 (1983)

[14] Serre, J-P.: Repr´esentations \(\ell \)-adiques. In: S. Iyanaga: Algebraic Number Theory (Proceedings of the International Taniguchi Symposium, Kyoto, 1976) (pp. 177–193) Tokyo: Japan Society for the Promotion of Science 1977 = # 112 of Œuvres (Vol. III, pp. 384–400) Berlin Heidelberg New York Tokyo: Springer 1986

[15] Serre, J-P.: Letters to K. Ribet, Jan. 1, 1981 and Jan. 29, 1981
[16] Serre, J.-P.: Résumé des cours de 1984–1985, Résumé des cours de 1985–1986, Collège de France

[17] Serre, J.-P.: Propriétés conjecturales des groupes de Galois motiviques et des représentations ℓ-adiques. In: U. Jannsen et al.: Motives (Proc. Symp. Pure Math. vol. 55, Part 2, pp. 377–400) Providence: Amer. Math. Soc. 1994

[18] Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. of Math. 88, 492–517 (1968)

[19] Shimura, G.: Introduction to the arithmetic theory of automorphic functions, Princeton: Princeton Univ. Press 1971

[20] Shimura, G., Taniyama, Y.: Complex multiplication of abelian varieties and its applications to number theory (no. 6) Publ. Math. Soc. Japan 1961

[21] Shioda, T.: Algebraic cycles on abelian varieties of Fermat type. Math. Ann. 258, 65–80 (1981)

[22] Silverberg, A., Zarhin, Yu. G.: Isogenies of abelian varieties. J. Pure and Applied Algebra 90, 23–37 (1993)

[23] Silverberg, A., Zarhin, Yu. G.: Connectedness results for ℓ-adic representations associated to abelian varieties. Comp. math. 97, 273–284 (1995)

[24] Silverberg, A., Zarhin, Yu. G.: Images of ℓ-adic representations and automorphisms of abelian varieties. Preprint.

[25] Weil, A.: Abelian varieties and the Hodge ring (1977c). Œuvres scientifiques (Vol. III, pp. 421–429) New York Heidelberg Berlin: Springer 1979

[26] Zarhin, Yu. G.: Weights of simple Lie algebras in the cohomology of algebraic varieties (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 48, 264–304 (1984) = Math. USSR - Izv. 24, 245–282 (1985)

Department of Mathematics, Ohio State University, 231 W. 18 Avenue, Columbus, Ohio 43210–1174, USA

E-mail address: silver@math.ohio-state.edu

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA.

Institute for Mathematical Problems in Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia

E-mail address: zarhin@math.psu.edu