Modeling and Optimal Control of a Hydrogen Storage System for Wind Farm Output Power Smoothing

M. B. Abdelghany*, M. Faisal, D. Liuzza, V. Mariani, L. Glielmo

GRACE, the Group for Research on Automatic Control Engineering
Department of Engineering
UNIVERSITY OF SANNIO

December 14, 2020
Table of contents

1. INTRODUCTION
2. PROBLEM FORMULATION
3. PROBLEM DESCRIPTION
4. RESULTS AND DISCUSSIONS
Paper key contributions

• Operate devices by means of logic commands (ON, OFF, \ldots)
• The modeling recipe is given by \(\text{MLD} + \text{MPC} + \text{multi-objective} \)
• Convert/electrify suitable amounts of energy/hydrogen
• The minimum weighted power variation over the prediction horizon is computed first (high priority)
• Then it is used as a constraint in the minimization of the load tracking error stage
• Minimise costs for long term profitability
• Ensure the safety of operations
Microgrid under investigation
Mixed logical dynamical modeling I

Automaton for the electrolyzer \((i = e)\) and the fuel cell \((i = f)\).

The devices are modeled with 5 state automata described by

- logic states \(\delta_i^\alpha\)
- states transitions \(\sigma_{\alpha_i}^\beta\)

Logic states and transitions in

- dynamic models
- constraints
- cost functions

- The 5 states of the devices ON, OFF, STB, CLD, WRM characterize the model
Mixed logical dynamical modeling II

$P_i(k)$ depends on the logic state corresponding to the operating condition of the i-th device that is $P_i^\alpha = P_i \delta_i^\alpha(k)$

$$
\begin{cases}
 P_i(k) = 0 & \iff \delta_i^{\text{OFF}}(k) = 1 \\
 P_i(k) = P_i^{\text{CLD}} & \iff \delta_i^{\text{CLD}}(k) = 1 \\
 P_i(k) = P_i^{\text{STB}} & \iff \delta_i^{\text{STB}}(k) = 1 \\
 P_i(k) = P_i^{\text{WRM}} & \iff \delta_i^{\text{WRM}}(k) = 1 \\
 P_i(k) \in [P_i^{\text{min}}, P_i^{\text{max}}] & \iff \delta_i^{\text{ON}}(k) = 1
\end{cases}
$$

Two (boolean) slack variables $z_i^{\geq \gamma}(k), z_i^{\leq \bar{\gamma}}(k)$ are introduced

$$
\begin{align*}
 z_i^{\geq \gamma}(k) &= \begin{cases}
 1 & P_i(k) \geq \gamma \\
 0 & P_i(k) < \gamma
 \end{cases} \\
 z_i^{\leq \bar{\gamma}}(k) &= \begin{cases}
 0 & P_i(k) > \bar{\gamma} \\
 1 & P_i(k) \leq \bar{\gamma}
 \end{cases}
\end{align*}
$$

$(\gamma, \bar{\gamma}) \in \{(0, 0), (P_i^{\text{CLD}}, P_i^{\text{CLD}}), (P_i^{\text{STB}}, P_i^{\text{STB}}), (P_i^{\text{WRM}}, P_i^{\text{WRM}}), (P_i^{\text{min}}, P_i^{\text{max}})\}$
Mixed logical dynamical modeling III

- MLD constraints of the devices logic states

\(P_i(k) \) can be linked to \(\delta^\alpha_i \) with inequalities through \(z_i^{\geq \gamma}, z_i^{\leq \bar{\gamma}} \) (Big M-reformulation)

\[
\begin{align*}
P_i(k) - \gamma &< Mz_i^{\geq \gamma}(k) & -P_i(k) + \bar{\gamma} &< Mz_i^{\leq \bar{\gamma}}(k) \\
-P_i(k) + \gamma &\leq M(1 - z_i^{\geq \gamma}(k)) & P_i(k) - \bar{\gamma} &\leq M(1 - z_i^{\leq \bar{\gamma}}(k)) \\
(1 - \delta^\alpha_i(k)) + z_i^{\geq \gamma}(k) &\geq 1 & (1 - \delta^\alpha_i(k)) + z_i^{\leq \bar{\gamma}}(k) &\geq 1
\end{align*}
\]

The following constrain must be added

\[
\sum_{\alpha} \delta^\alpha_i(k) = 1
\]

where \(\alpha \in \mathcal{A}, \mathcal{A} = \{\text{OFF, CLD, STB, WRM, ON}\} \)
Mixed logical dynamical modeling IV

- MLD constraints of the devices state transitions

The AND operator (\wedge) can be written in terms of inequalities

$$
\mu_3 = \mu_1 \mu_2 \iff \begin{cases}
\mu_3 \leq \mu_1 \\
\mu_3 \leq \mu_2 \\
\mu_3 \geq \mu_1 + \mu_2 - 1
\end{cases}
$$

where $\mu_j \in \{0, 1\}, \ j \in \{1, 2, 3\}$, $\mu_1 = \delta_i^\alpha(k - 1)$, $\mu_2 = \delta_i^\beta(k)$ and $\mu_3 = \sigma_{\alpha,i}^\beta(k)$. All the inadmissible transitions, i.e., those not shown in automata, are set to 0

$$
\sigma_{\text{OFF},i}^{\text{STB},i}(k) = \sigma_{\text{OFF},i}^{\text{WRM},i}(k) = \sigma_{\text{OFF},i}^{\text{ON},i}(k) = \sigma_{\text{OFF},i}^{\text{CLD},i}(k) \\
= \sigma_{\text{WRM},i}^{\text{ON},i}(k) = \sigma_{\text{WRM},i}^{\text{CLD},i}(k) = \sigma_{\text{STB},i}^{\text{ON},i}(k) = \sigma_{\text{STB},i}^{\text{CLD},i}(k) \\
= \sigma_{\text{OFF},i}^{\text{WRM},i}(k) = \sigma_{\text{ON},i}^{\text{WRM},i}(k) = \sigma_{\text{ON},i}^{\text{CLD},i}(k) = 0
$$
Mixed logical dynamical modeling V

- **Operating constraints**

 \[
 \delta_{i}^{\text{CLD}}(k) - \delta_{i}^{\text{CLD}}(k - 1) \leq \delta_{i}^{\text{CLD}}(\tau^{\text{CLD}}) \\
 \delta_{i}^{\text{CLD}}(k) + \cdots + \delta_{i}^{\text{CLD}}(k - T^{\text{CLD}}) \leq T^{\text{CLD}} \\
 \tau^{\text{CLD}} = k + 1, \ldots, k + T^{\text{CLD}} \\
 \delta_{i}^{\text{WRM}}(k) - \delta_{i}^{\text{WRM}}(k - 1) \leq \delta_{i}^{\text{WRM}}(\tau^{\text{WRM}}) \\
 \delta_{i}^{\text{WRM}}(k) + \cdots + \delta_{i}^{\text{WRM}}(k - T^{\text{WRM}}) \leq T^{\text{WRM}} \\
 \tau^{\text{WRM}} = k + 1, \ldots, k + T^{\text{WRM}}
 \]

- **Ramp up constraints**

 \[|((P_i(k + 1) - P_i(k))\delta_{i}^{\text{ON}}| \leq R_i\]
Mixed logical dynamical modeling VI

• Hydrogen dynamics

\[H(k + 1) = H(k) + \eta_e(k) P_e(k) \delta_e^{ON}(k) T_s - \frac{P_f(k) \delta_f^{ON}(k) T_s}{\eta_f(k)} \]

• Operating ranges

\[P_{i_{\text{min}}} \leq P_i(k) \leq P_{i_{\text{max}}} \]

\[H_{\text{min}} \leq H(k) \leq H_{\text{max}} \]

• Power balance

\[P_w(k) - P_e(k) \delta_e^{ON}(k) + P_f(k) \delta_f^{ON}(k) - P_{\text{avl}}(k) - P_{\text{dump}}(k) = 0 \]
ESS operating costs

\[J_i(k + j) := \left(\frac{S_{\text{rep},i}}{NH_i} + C_{i}^{\text{OM}} \right) \delta_{i}^{\text{ON}}(k + j) + C_{\text{ON},i}^{\text{OFF}} \sigma_{\text{ON},i}(k + j) + C_{\text{CLD},i}^{\text{STB}} \sigma_{\text{CLD},i}(k + j) + C_{\text{STB},i}^{\text{OFF}} \sigma_{\text{STB},i}(k + j) + s(k + j)P_{i}^{\text{STB}} \delta_{i}^{\text{STB}}(k + j) + s(k + j)P_{i}^{\text{CLD}} \delta_{i}^{\text{CLD}}(k + j) + s(k + j)P_{i}^{\text{WRM}} \delta_{i}^{\text{WRM}}(k + j) \]

where

- \(S_{\text{rep},i} \): the \(i \)-device stack replacement cost
- \(C_{i}^{\text{OM}} \): the \(i \)-device O&M cost
- \(C_{\text{ON},i}^{\text{OFF}}, C_{\text{CLD},i}^{\text{STB}}, C_{\text{STB},i}^{\text{OFF}} \): the \(i \)-th device cycle costs
- \(P_{i}^{\text{STB}}(k) \): the power at standby
- \(s(k) \): the power spot price
Cost functions

- Power smoothing cost function

\[J_s(k) := \sum_{j=0}^{T-1} \sum_{\tau=1}^{\tau_B} \omega^{k+j,\tau} y^{k+j,\tau}, \]

where \(y^{k+j,\tau} \) is the power increment such that

- \(y^{k+j,\tau} \geq 0 \)
- \(y^{k+j,\tau} \geq |P_{avl}(k+j) - P_{avl}(k+j-\tau)| - \bar{y}^\tau \)

with \(\bar{y}^\tau \) is a given power reference depending on \(\tau \)

- Load tracking cost function

\[J_l(k) := \frac{1}{T} \sum_{j=0}^{T-1} \left(P_{avl}(k+j) - P_{ref}(k+j) \right)^2. \]

- Global cost function

\[J(k) := \sum_{j=0}^{T-1} \rho_l J_l(k+j) + \rho_e J_e(k+j) + \rho_f J_f(k+j), \]
Multi-objective optimization I

$$\min_{C_k} \left\{ J_s(k), J(k) \right\}$$

Subject to
Discrete logical states constraints,
Mode transitions constraints,
Physical constraints,
Hydrogen level dynamics,
Power smoothing constraints.

$$\min_{C_k} J_s(k)$$

s.t.
All constraints.

$$\min_{C_k} J(k)$$

s.t.
All constraints,
$$J_s(k) \leq J^*_s.$$
Multi-objective optimization II

- At each time step k, given the initial state $H(k)$, the MPC provides the optimal control sequences

$$C_k := \{ P_{i,k}^{T-1}, P_{avl,k}^{T-1}, P_{dump,k}^{T-1}, \delta_{i,k}^{\alpha,T-1}, \sigma_{\alpha i,k}^{\beta,T-1}, z_{i,k}^{\gamma,T-1} \},$$

where

$$P_{i,k}^{T-1} = (P_i(k), \ldots, P_i(k + T - 1))^T$$
$$P_{avl,k}^{T-1} = (P_{avl}(k), \ldots, P_{avl}(k + T - 1))^T$$
$$P_{dump,k}^{T-1} = (P_{dump}(k), \ldots, P_{dump}(k + T - 1))^T$$
$$\delta_{i,k}^{\alpha,T-1} = (\delta_{i}^{\alpha}(k), \ldots, \delta_{i}^{\alpha}(k + T - 1))^T$$
$$\sigma_{\alpha i,k}^{\beta,T-1} = (\sigma_{\alpha i}^{\beta}(k), \ldots, \sigma_{\alpha i}^{\beta}(k + T - 1))^T$$
$$z_{i,k}^{\gamma,T-1} = (z_{i}^{\gamma}(k), \ldots, z_{i}^{\gamma}(k + T - 1))^T$$
Figure: Wind and operator power profiles
Figure: Smoothed available power profiles
Figure: Hydrogen levels
Hydrogen-Aeolic Energy with Optimised eLectrolysers
Upstream of Substation

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement № 779469.
Thank you for your attention