Research Article

Dohoon Choi and Subong Lim*

Schneider–Siegel theorem for a family of values of a harmonic weak Maass form at Hecke orbits

https://doi.org/10.1515/forum-2018-0295
Received December 4, 2018; revised May 26, 2019

Abstract: Let \(j(z) \) be the modular \(j \)-invariant function. Let \(\tau \) be an algebraic number in the complex upper half plane \(\mathbb{H} \). It was proved by Schneider and Siegel that if \(\tau \) is not a CM point, i.e., \([\mathbb{Q}(\tau) : \mathbb{Q}] \neq 2 \), then \(j(\tau) \) is transcendental. Let \(f \) be a harmonic weak Maass form of weight 0 on \(\Gamma_0(N) \). In this paper, we consider an extension of the results of Schneider and Siegel to a family of values of \(f \) on Hecke orbits of \(\tau \). For a positive integer \(m \), let \(T_m \) denote the \(m \)-th Hecke operator. Suppose that the coefficients of the principal part of \(f \) at the cusp \(i\infty \) are algebraic, and that \(f \) has its poles only at cusps equivalent to \(i\infty \). We prove, under a mild assumption on \(f \), that, for any fixed \(\tau \), if \(N \) is a prime such that \(N \geq 23 \) and \(N \notin \{23, 29, 31, 41, 47, 59, 71\} \), then \(f(T_m.\tau) \) are transcendental for infinitely many positive integers \(m \) prime to \(N \).

Keywords: Harmonic weak Maass form, CM point, meromorphic differential

MSC 2010: 11F03, 11F25

Communicated by: Jan Bruinier

1 Introduction

Let \(j(z) \) be the modular \(j \)-invariant function on the complex upper half plane \(\mathbb{H} \). Let \(\tau \) be an algebraic number in \(\mathbb{H} \). It was proved by Kronecker [10] and Weber [18] that if \(\tau \) is a CM point, i.e., \([\mathbb{Q}(\tau) : \mathbb{Q}] = 2 \), then \(j(\tau) \) is algebraic. Schneider [15] and Siegel [17] proved that if \(\tau \) is not a CM point, then \(j(\tau) \) is transcendental. By combining these two results, we state the following.

Theorem A (Kronecker, Schneider, Siegel, Weber). Assume that \(\tau \) is an algebraic number in \(\mathbb{H} \). Then \(\tau \) is a CM point if and only if \(j(\tau) \) is algebraic.

Let \(m \) be a positive integer, and let \(T_m \) denote the \(m \)-th Hecke operator. The operators \(T_m \) act on both of modular forms \(f \) and divisors \(D \) of a modular curve, and they are denoted by \(j|T_m \) and \(T_m.D \), respectively. Then \(j(T_m.\tau) = (j|T_m)(\tau) \), and \((j|T_m)(z) \) is a polynomial of \(j(z) \) with rational coefficients. Thus, \(j(T_m.\tau) \) is algebraic for every \(m \) if and only if \(j(\tau) \) is algebraic. Therefore, Theorem A is equivalent to the following theorem.

Theorem B (Kronecker, Schneider, Siegel, Weber). Assume that \(\tau \) is an algebraic number in \(\mathbb{H} \). Then \(\tau \) is a CM point if and only if \(j(T_m.\tau) \) is algebraic for every positive integer \(m \).

*Corresponding author: Subong Lim, Department of Mathematics Education, Sungkyunkwan University, Jongno-gu, Seoul 03063, Republic of Korea, e-mail: subong@skku.edu. http://orcid.org/0000-0003-2768-6172
Dohoon Choi, Department of Mathematics, Korea University, Seoul 02841; and School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea, e-mail: dohoonchoi@korea.ac.kr
In this vein, we consider an extension of the results of Kronecker, Schneider, Siegel and Weber to a family of values of a harmonic weak Maass form \(f \) on Hecke orbits of \(\tau \). Let \(N \) be a positive integer and \(f \) a harmonic weak Maass form of weight 0 on \(\Gamma_0(N) \). In contrast to the case for the \(j \)-invariant function, the value of \(f \) at a CM point \(\tau \) is not algebraic in general. Thus, first we obtain the period of \(f(\tau) \) for a CM point \(\tau \), which is expressed as the regularized Petersson inner product of a cusp form and a meromorphic modular form. Next, by using this result, we obtain an extension of the results of Kronecker, Schneider, Siegel and Weber to a family of values of \(f \) on Hecke orbits of \(\tau \).

Let \(Y_0(N) \) be the modular curve of level \(N \) defined by \(\Gamma_0(N) \setminus \mathbb{H} \), and let \(X_0(N) \) denote the compactification of \(Y_0(N) \) by adjoining the cusps. Let us note that \(X_0(N) \) is a curve defined over \(\mathbb{Q} \). We fix an algebraic closure \(\overline{\mathbb{Q}} \) of \(\mathbb{Q} \). Let \(K \) be a subfield of \(\overline{\mathbb{Q}} \) or the field \(\mathbb{C} \) of complex numbers. Let \(C \) be a curve defined over \(K \). For an extension \(E \) of \(K \), we denote by \(\text{Div}_C(E) \) the group of divisors of \(C \) defined over \(E \). Let \(\mathcal{E} \) be a function on \(C(\mathbb{C}) \setminus S \) for a finite subset \(S \) of \(C(\mathbb{C}) \). If \(D = \sum_{P \in C} n_P P \in \text{Div}_C(\mathbb{C}) \) and the support of \(D \) does not contain any point in \(S \), then we define \(f(D) := \sum n_P f(P) \). The \(m \)-th Hecke operator \(T_m \) acts on \(\text{Div}_{X_0(N)}(\mathbb{C}) \), and it is denoted by \(T_m \).

Let \(k \) be a non-negative even integer. Let \(S_k(\Gamma_0(N)) \) denote the space of cusp forms of weight \(k \) on \(\Gamma_0(N) \). We denote by \(H_k(\Gamma_0(N)) \) the space of harmonic weak Maass forms of weight \(k \) on \(\Gamma_0(N) \). For the differential operator \(\xi_k \) defined by \(\xi_k(f)(z) := 2iy^{-k} \frac{\partial}{\partial y} f(z) \), the assignment \(f(z) \mapsto \xi_k(f)(z) \) gives an anti-linear mapping \(\xi_k : H_k(\Gamma_0(N)) \to M_{k+2}(\Gamma_0(N)) \), where \(M_k(\Gamma_0(N)) \) denotes the space of weakly holomorphic modular forms of weight \(k \) on \(\Gamma_0(N) \). Here, \(y \) denotes the imaginary part of \(z \in \mathbb{H} \). Let \(H^+_k(\Gamma_0(N)) \) be the inverse image of the space \(S_{k+2}(\Gamma_0(N)) \) of cusp forms under the mapping \(\xi_k \).

Definition 1.1. Let \(f \) be a harmonic weak Maass form of weight 0 on \(\Gamma_0(N) \). We say that \(f \) is arithmetic if \(f \) satisfies the following conditions:

1. the principal part of \(f \) at the cusp \(i\infty \) belongs to \(\overline{\mathbb{Q}}[q^{-1}] \), and its constant term is zero;
2. the principal part of \(f \) at each cusp not equivalent to \(i\infty \) is constant.

Here, \(q := e^{2\pi i \tau} \) for a complex number \(\tau \in \mathbb{H} \).

This definition is similar to that of being good in [6]; however, the conditions in this definition are weaker than those in the definition of being good. Furthermore, a harmonic weak Maass form \(f \) is called an arithmetic Hecke eigenform if \(f \) is arithmetic and \(\xi_0(f) \) is a Hecke eigenform.

For \(\tau \in \mathbb{H} \cup \{i\infty\} \cup \mathbb{Q} \), let \(Q_\tau \) be the image of \(\tau \) under the canonical map from \(\mathbb{H} \cup \{i\infty\} \cup \mathbb{Q} \) to \(X_0(N) \) and \(D_\tau := Q_{i\infty} - Q_\tau \in \text{Div}_{X_0(N)}(\mathbb{C}) \).

If \(\tau \) is a CM point, then \(D_\tau \) is defined over \(\overline{\mathbb{Q}} \). Thus, there exists a differential \(\psi_{D_\tau}^{\text{reg}} \) of the third kind associated to \(D_\tau \) such that \(\psi_{D_\tau}^{\text{reg}} \) is defined over \(\overline{\mathbb{Q}} \). Note that \(\psi_{D_\tau}^{\text{reg}} \) can be written as \(\psi_{D_\tau}^{\text{reg}} = 2\pi i f_{\psi_{D_\tau}^{\text{reg}}}(z) \ dz \) for some meromorphic modular form \(f_{\psi_{D_\tau}^{\text{reg}}} \) of weight 2 on \(\Gamma_0(N) \) (see Section 2.3 for details). Let \((\xi_0(f), f_{\psi_{D_\tau}^{\text{reg}}})_{\text{reg}} \) be the regularized Petersson inner product of \(\xi_0(f) \) and \(f_{\psi_{D_\tau}^{\text{reg}}} \) (see Section 3 for the definition of the regularized Petersson inner product). The following theorem shows that, for each positive integer \(m \) prime to \(N \), the period of \(f(T_m \cdot Q_\tau) \) can be expressed as the multiplication of \((\xi_0(f), f_{\psi_{D_\tau}^{\text{reg}}})_{\text{reg}} \) and the eigenvalue of \(\xi_0(f) \) for \(T_m \).

Theorem 1.2. Let \(N \) be a prime and \(f \) a harmonic weak Maass form of weight 0 on \(\Gamma_0(N) \). Assume that \(f \) is an arithmetic Hecke eigenform and that \(\tau \) is a CM point. Let \(\psi_{D_\tau}^{\text{reg}} := 2\pi i f_{\psi_{D_\tau}^{\text{reg}}}(z) \ dz \) be a differential of the third kind associated to \(D_\tau \) defined over \(\overline{\mathbb{Q}} \). Then

\[
f(T_m \cdot Q_\tau) - m^{-1} \lambda_m(\xi_0(f), f_{\psi_{D_\tau}^{\text{reg}}})_{\text{reg}}
\]

is algebraic for every positive integer \(m \) prime to \(N \), where \(\lambda_m \) is the eigenvalue of \(\xi_0(f) \) for \(T_m \).

Theorem 1.2 is applied to study the transcendence of \(f(T_m \cdot Q_\tau) \) for an algebraic number \(\tau \) in \(\mathbb{H} \). Then we have the following theorem concerning an extension of the above results of Kronecker, Schneider, Siegel and Weber to a family of values of \(f \) on Hecke orbits of \(\tau \).
Theorem 1.3. Let \(N \) and \(f \) be given as in Theorem 1.2. Assume that \((g, \zeta_0(f)) \neq 0\) for each Hecke eigenform \(g \in S_2(\Gamma) \). Let \(\tau \) be an algebraic number in \(\mathbb{H} \). Then \(f(T_m, Q_\tau) \) is algebraic for every positive integer \(m \) prime to \(N \) and if only if \(\tau \) is not a CM point and \(nD \) is rational on \(X_0(N) \) for some positive integer \(n \).

Remark 1.4. Assume that \(f \) and \(\tau \) are given as in Theorem 1.3. In fact, if there is a positive integer \(m \) prime to \(N \) such that \(f(T_m, Q_\tau) \) is transcendental, then there are infinitely many such positive integers \(m \) prime to \(N \) (see the proof of Theorem 1.3 in Section 4).

Let \(J_{\Gamma_0(N)} \) be the Jacobian variety of the \(X_0(N) \) defined over \(\mathbb{Q} \). An Albanese embedding \(i_{Q_\infty} : X_0(N) \to J_{\Gamma_0(N)} \) can be defined by sending \(Q \) to \(Q_{\infty} - Q \). Let us note that \(m(Q_{\infty} - Q) \) is rational on \(X_0(N) \) for some positive integer \(m \) if and only if \(i_{Q_\infty}(Q) \) is a torsion point in \(J_{\Gamma_0(N)} \). Let

\[
T_{Q_\infty}(X_0(N)) := \{ Q \in X_0(N)(\mathbb{Q}) \mid i_{Q_\infty}(Q) \text{ is a torsion point in } J_{\Gamma_0(N)} \}.
\]

If the genus of \(X_0(N) \) is larger than or equal to 2, then, by the Mumford–Manin conjecture (proved by Raynaud [13, 14]), \(T_{Q_\infty}(X_0(N)) \) is a finite set.

Let \(X'_0(N) \) denote the quotient of \(X_0(N) \) by the Atkin–Lehner involution \(w_N \). For primes \(N \), Coleman, Kaskel and Ribet [8] conjectured the following statement: for all prime numbers \(N \geq 23 \),

\[
T_{Q_\infty}(X_0(N)) = \begin{cases}
\{ 0, \infty \} & \text{if } g^* > 0, \\
\{ 0, \infty \} \cup \{ \text{hyperelliptic branch points} \} & \text{if } g^* = 0,
\end{cases}
\]

where \(g^* \) denotes the genus of \(X_0(N)^* \). Baker [2] proved this conjecture. Furthermore, for \(N \geq 23 \), \(g^* \) is zero if and only if \(N \in \{ 23, 29, 31, 41, 47, 59, 71 \} \). Thanks to these results on torsion points on the Jacobian of a modular curve, we obtain the following theorem from Theorem 1.3.

Theorem 1.5. Under the assumption as in Theorem 1.3, assume that

\[
N \geq 23 \text{ and } N \notin \{ 23, 29, 31, 41, 47, 59, 71 \}.
\]

Then \(f(T_m, Q_\tau) \) are transcendental for infinitely many positive integers \(m \) prime to \(N \).

The remainder of this paper is organized as follows. In Section 2, we introduce some preliminaries for harmonic weak Maass forms, residues of meromorphic differentials on a modular curve, and differentials of the third kind on a complex curve. In Section 3, we review the definition of a regularized Petersson inner product and prove that the regularized Petersson inner product of a meromorphic modular form, associated with a canonical differential of the third kind of some divisor on \(X_0(N) \), with every cusp form of weight 2 on \(\Gamma_0(N) \) is zero. In Section 4, we prove Theorem 1.2 and 1.3.

2 Preliminaries

In this section, we recall definitions and basic facts about harmonic weak Maass forms, residues of meromorphic differentials on a modular curve, and properties for differentials of the third kind on a complex curve.

2.1 Harmonic weak Maass forms

For details of harmonic weak Maass forms, we refer to [4, 12]. Let \(k \) be an even integer. We recall the weight \(k \) slash operator \((f_k)_y(y) := (cz + d)^{-k}f(yz)\) for any function \(f \) on \(\mathbb{H} \) and \(y = (a \ b \ c \ d) \in \text{SL}_2(\mathbb{Z}) \). Let \(\Delta_k \) denote the weight \(k \) hyperbolic Laplacian defined by

\[
\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + \frac{i}{y} \frac{\partial}{\partial y} \right),
\]

where \(x \) (resp. \(y \)) denotes the real (resp. imaginary) part of \(z \). Now, we give the definition of a harmonic weak Maass form.
Definition 2.1. Let N be a positive integer. A smooth function f on \mathbb{H} is a harmonic weak Maass form of weight k on $\Gamma_0(N)$ if it satisfies the following conditions:

1. $f|_k y = f$ for all $y \in \Gamma_0(N),$
2. $\Delta_k f = 0,$
3. a linear exponential growth condition in terms of y at every cusp of $\Gamma_0(N).

We denote by $H_k(\Gamma_0(N))$ the space of harmonic weak Maass forms of weight k on $\Gamma_0(N)$.

Assume that t is a cusp of $\Gamma_0(N).$ Let $\sigma_t \in \text{SL}_2(\mathbb{Z})$ be a matrix such that $\sigma_t(i\infty) = t,$ and let $\Gamma_0(N)_t$ denote the stabilizer of cusp t in $\Gamma_0(N).$ We define a positive integer a_t by

$$a_t^{-1}\Gamma_0(N)_t \sigma_t = \left\{ \begin{pmatrix} 1 & \ell \alpha_t \\ 0 & 1 \end{pmatrix} : \ell \in \mathbb{Z} \right\}.$$

Recall that $f|_k \sigma_t$ has the Fourier expansion of the form $f|_k \sigma_t = f^+_t + f^-_t,$ where

$$f^+_t(z) = \sum_{n \in \mathbb{Z}, \sigma_t \in \mathbb{Z}} a^+_f(n) e^{2\pi i n z / a_t},$$

$$f^-_t(z) = b^+_f(0) y^{1-k} + \sum_{n \in \mathbb{Z}, n \neq 0} b^-_f(n) \Gamma(\pi n y / a_t, -k + 1) e^{2\pi i n z / a_t},$$

where $\Gamma(x, s)$ denotes the incomplete gamma function defined as an analytic continuation of the function $\int_0^\infty t^s - 1 e^{-t} dt.$ This Fourier series is called the **Fourier expansion of f at a cusp $t.$** The function

$$\sum_{n \leq 0} a^+_f(n) e^{2\pi i n z / a_t}$$

is called the **principal part of f at the cusp $t.$**

For a positive integer $n,$ let T_n denote the n-th Hecke operator. Then the Hecke operator T_n commutes with the differential operator ξ_{-k} in the following way:

$$\xi_{-k}(f|_k T_n) = n^{-k-1}(\xi_{-k}(f)|_{k+2} T_n)$$

for a harmonic weak Maass form f of weight $-k.$

2.2 Residues of a meromorphic differential on $X_0(N)$

Let ψ be a meromorphic differential on $X_0(N).$ Then there exists a unique meromorphic modular form g of weight 2 on $\Gamma_0(N)$ such that $\psi = g(z) dz.$ Assume that t is a cusp of $\Gamma_0(N).$ Assume that, for each cusp $t,$ g has the Fourier expansion of the form $(g|_2 \sigma_t)(z) = \sum a^+_g(n) q^{n/a_t},$ where $q := e^{2\pi i z}$ for $z \in \mathbb{H}.$

For $\tau \in \mathbb{H} \cup \{i\infty\} \cup \mathbb{Q},$ let Q_τ be the image of τ under the canonical map from $\mathbb{H} \cup \{i\infty\} \cup \mathbb{Q}$ to $X_0(N).$ Let $\text{Res}_{Q_\tau} g dz$ denote the residue of the differential $g(z) dz$ at Q_τ on $X_0(N),$ and let $\text{Res}_\tau g$ be the residue of g at τ on $\mathbb{H}.$ We describe $\text{Res}_{Q_\tau} g dz$ in terms of $\text{Res}_\tau g$ as follows. Let \mathcal{C}_N be the set of inequivalent cusps of $\Gamma_0(N).$ For $\tau \in \mathbb{H},$ let e_τ be the order of the isotropy subgroup of $\text{SL}_2(\mathbb{Z})$ at $\tau.$ Then we have

$$\text{Res}_{Q_\tau} g dz = \begin{cases} \frac{1}{2\pi i} \text{Res}_\tau g & \text{if } \tau \in \mathbb{H}, \\ \frac{1}{2\pi i} \alpha_\tau a^+_g(0) & \text{if } \tau \in \mathcal{C}_N. \end{cases}$$

2.3 Differentials of the third kind

In this subsection, we review properties for differentials of the third kind on a complex curve. For details, we refer to [5, 9, 16]. A differential of the third kind on $X_0(N)$ means a meromorphic differential on $X_0(N)$ such that its poles are simple and its residues are integers. Let ϕ be a differential of the third kind on $X_0(N)$ such that ϕ has a pole at P_j with residue m_j and is holomorphic elsewhere.
Then we define a linear map “res” for the space of differentials of the third kind on \(X_0(N) \) to \(\text{Div}_{X_0(N)}(\mathbb{C}) \) by
\[
\text{res}(\phi) = \sum_j m_j P_j.
\]
The image of \(\phi \) under the map “res” is called the residue divisor of \(\phi \). By the residue theorem, the residue divisor \(\text{res}(\phi) \) has degree zero.

Conversely, if \(D \) is a divisor on \(X_0(N) \) whose degree is zero, then there is a differential \(\psi_D \) of the third kind with \(\text{res}(\psi_D) = D \) by the Riemann–Roch theorem and the Serre duality. The differential \(\psi_D \) is unique up to addition of a cusp form of weight 2 on \(\Gamma_0(N) \).

Let \(D \) be a divisor of \(X_0(N) \) with degree zero. Then there is a unique differential \(\Phi_D \) of the third kind such that \(\text{res}(\Phi_D) = D \) and \(\Phi_D = \partial_z h \), where \(h \) is a real harmonic function on \(X_0(N) \) with some log-type singularities. Here, the differential \(\Phi_D \) of the third kind is called the canonical differential of the third kind associated to \(D \) (for example, see [16, Section 1] for more details). Scholl proved the following theorem by using Waldschmidt’s result on the transcendence of periods of differentials of the third kind.

Theorem 2.2 ([16, Theorem 1]). With the above notation, assume that \(D \) is defined over a number field \(F \). Then \(\Phi_D \) is defined over \(\overline{\mathbb{Q}} \) if and only if some non-zero multiple of \(D \) is a principal divisor.

For a differential \(\psi \) of the third kind, we may write \(\psi = 2\pi i f(z) \, dz \), where \(f \) is a meromorphic modular form of weight 2 on \(\Gamma_0(N) \). All poles of \(f \) are simple poles and lie on \(Y_0(N) \), and their residues are integers. The residue of \(\psi \) at the cusp \(t \) is a constant term of the Fourier expansion of \(f \) at the cusp \(t \). By the \(q \)-expansion principle, \(\psi \) is defined over a number field \(F \) if and only if all Fourier coefficients of \(f \) at the cusp \(\infty \) are contained in \(F \).

Therefore, the following theorem [5, Theorem 3.3] follows from Theorem 2.2.

Theorem 2.3 ([5, Theorem 3.3]). Let \(F \) be a number field. Let \(D \) be a divisor of degree 0 on \(X_0(N) \) defined over \(F \). Let \(\Phi_D \) be the canonical differential of the third kind associated to \(D \), and write \(\Phi_D = 2\pi i f(z) \, dz \). If some non-zero multiple of \(D \) is a principal divisor, then all the coefficients \(a(n) \) of \(f \) at the cusp \(\infty \) are contained in \(F \). Otherwise, there exists an integer \(n \) such that \(a(n) \) is transcendental.

3 Regularized Petersson inner product

Petersson introduced an inner product on the space of cusp forms, which is called the Petersson inner product. Borcherds [3] used a regularized integral to extend the Petersson inner product to the case that one of two modular forms is a weakly holomorphic modular form. In this section, we recall the definition of a regularized Petersson inner product of a cusp form and a meromorphic modular form with the same weight by following [3, 7]. Furthermore, we prove that if \(g \) is a meromorphic modular form on \(\Gamma_0(N) \) such that \(2\pi i g(z) \, dz \) is the canonical differential of the third kind associated to some divisor, then the regularized Petersson inner product of \(g \) with every cusp form of weight 2 on \(\Gamma_0(N) \) is zero.

Let \(g \) be a meromorphic modular form of weight \(k \) on \(\Gamma_0(N) \). Let \(\text{Sing}(g) \) be the set of singular points of \(g \) on \(\mathcal{F}_N \), where \(\mathcal{F}_N \) denotes the fundamental domain for the action of \(\Gamma_0(N) \) on \(\mathbb{H} \). For a positive real number \(\varepsilon \), an \(\varepsilon \)-disk \(B_\varepsilon(\tau) \) at \(\tau \) is defined by
\[
B_\varepsilon(\tau) := \begin{cases}
\{ z \in \mathbb{H} : |z - \tau| < \varepsilon \} & \text{if } \tau \in \mathbb{H}, \\
\{ z \in \mathcal{F}_N : \text{Im}(\sigma_j z) > 1/\varepsilon \} & \text{if } \tau \in \{ \infty \} \cup \mathbb{Q}.
\end{cases}
\]

Let \(\mathcal{F}_N(\varepsilon) \) be a punctured fundamental domain for \(\Gamma_0(N) \) defined by
\[
\mathcal{F}_N(\varepsilon) := \mathcal{F}_N - \bigcup_{\tau \in \text{Sing}(g) \cap \mathbb{C}_N} B_\varepsilon(\tau).
\]

Let \(f \) be a cusp form of weight \(k \) on \(\Gamma_0(N) \). The regularized Petersson inner product \((f, g)_{\text{reg}} \) of \(f \) and \(g \) is defined by
\[
(f, g)_{\text{reg}} := \lim_{\varepsilon \to 0} \int_{\mathcal{F}_N(\varepsilon)} f(z) \overline{g(z)} \frac{dx \, dy}{y^{2-k}}.
\]
The following lemma was proved by the Stokes theorem (see [4, Proposition 3.5] or [7, Lemma 3.1]).

Lemma 3.1. Suppose that f is a harmonic weak Maass form in $H^s_\kappa(\Gamma_0(N))$ with singularities only at cusps equivalent to $i\infty$ and that g is a meromorphic modular form of weight $2 - k$. Then

$$
(\xi_k(f), g)_{\text{reg}} = \sum_{m+n=0} \sum_{\kappa \in \mathcal{C}_N} a^m_n(\kappa) a^k_n(\kappa) + \sum_{\kappa \in \mathcal{C}_N} \frac{2\pi i}{\kappa} \text{Res}_\kappa(g) f(\kappa),
$$

where $a^m_n(\kappa)$ and $a^k_n(\kappa)$ are n-th Fourier coefficients of g and f at the cusp κ, respectively.

To use Lemma 3.1 in the proof of Theorem 1.2, we prove the following proposition, which states that the regularized Petersson inner product of a meromorphic modular form associated with a canonical differential of the third kind of some divisor on $X_0(N)$ with every cusp form of weight 2 on $\Gamma_0(N)$ is zero.

Proposition 3.2. Let g be a meromorphic modular form of weight 2 on $\Gamma_0(N)$ associated with a canonical differential of the third kind. Then, for every cusp form f of weight 2 on $\Gamma_0(N)$, we have $(f, g)_{\text{reg}} = 0$

Proof. Let G be a harmonic function on \mathbb{H} with log-type singularities such that $\partial_z G = g$. Then we have

$$
d(f(z)G(z)) = f(z) \partial_z G(z) \, dz = f(z)G(z)(2i) \, dx \, dy.
$$

To apply the Stokes theorem, we give the description of the boundary of $\mathcal{F}_N(g, \varepsilon)$. For a subset D of \mathbb{C}, let ∂D denote the boundary of D. For a positive real number ε, we define

$$
y_\varepsilon(\tau) := \begin{cases}
\{z \in \mathbb{H} : |z - \tau| = \varepsilon\} & \text{if } \tau \in \mathbb{H}, \\
\{z \in \mathcal{F}_N : \text{Im}(\sigma_r z) = 1/\varepsilon\} & \text{if } \tau \in \{i\infty\} \cup \mathbb{Q}.
\end{cases}
$$

Assume that ε is sufficiently small. If we let $\partial^* \mathcal{F}_N(g, \varepsilon)$ be the closure of the set $\partial \mathcal{F}_N(g, \varepsilon) - \partial \mathcal{F}_N$ in \mathbb{C}, then

$$
\partial^* \mathcal{F}_N(g, \varepsilon) = \bigcup_{\text{re}(\text{Sing}(g)) \in \mathbb{C}_N} y_\varepsilon(\tau).
$$

From (3.1), the Stokes theorem implies

$$
\mathcal{K}_N^* (g, \varepsilon) = \int_{\mathcal{K}_N(g, \varepsilon)} \frac{1}{2i} f(z)G(z) \, dz = \int_{\text{re}(\text{Sing}(g)) \in \mathbb{C}_N} \frac{1}{2i} f(z)G(z) \, dz.
$$

For each $\gamma \in \text{SL}_2(\mathbb{Z})$, the absolute value $|f(z)|$ exponentially decays as $\text{Im}(z) \to \infty$ since f is a cusp form. Thus, if $\tau \in \mathbb{C}_N$, then $\lim_{\varepsilon \to 0} \int_{y_\varepsilon(\tau)} \frac{1}{2i} f(z)G(z) \, dz = 0$.

To complete the proof, we assume that $\tau \in \text{Sing}(g)$. Then

$$
\left| \int_{y_\varepsilon(\tau)} \frac{1}{2i} f(z)G(z) \, dz \right| \leq \max \{ |G(z)| : z \in y_\varepsilon(\tau) \} M_1 \int_{y_\varepsilon(\tau)} |dz| (\text{some constant } M_1)
$$

The function G can be expressed around τ as

$$
G(z) = - \log_\varepsilon |z - \tau| + G_0(z),
$$

where $G_0(z)$ is a smooth function around τ. In the definition of \log_ε, we use the principal branch. If ε is sufficiently small, then, for any $z \in y_\varepsilon(\tau)$, we have

$$
|G(z)| \leq |\log_\varepsilon |z - \tau| + G_0(z)|
$$

$$
\leq |\log_\varepsilon |z - \tau| + |G_0(z)|
$$

$$
\leq 2|\log_\varepsilon \varepsilon| + \pi + M_2.
$$
Thus, for sufficiently small ϵ, we obtain
\[\left| \int \frac{1}{2i} f(z) \overline{G(z)} \, dz \right| \leq (2 \log_e |\epsilon| + \pi + M_2) M_1(2\pi \epsilon). \]
This implies that, for $\tau \in \text{Sing}(g)$,
\[\lim_{\epsilon \to 0} \int \frac{1}{2i} f(z) \overline{G(z)} \, dz = 0. \]
Thus, we complete the proof.

\section*{4 Proofs}

In this section, we prove Theorems 1.2 and 1.3. In this section, we always assume that N is a prime. Let D be a divisor of $X_0(N)$. Let ψ_D be a differential of the third kind associated to D. Let A_D be the space of meromorphic differentials, with only simple poles, such that their poles are only at the support of D. If D is defined over \mathbb{Q}, then there is a basis of A_D consisting of meromorphic differentials defined over \mathbb{Q}. Let us note that D is defined over \mathbb{Q} if and only if there exists ψ_D defined over \mathbb{Q}. Thus, for a divisor D defined over \mathbb{Q}, let ψ_D^{alg} be a differential of the third kind associated to D defined over \mathbb{Q}. Let Φ_D be the canonical differential of the third kind associated to D and
\[F_D := \Phi_D - \psi_D^{\text{alg}}. \]
Note that F_D (resp. Φ_D and ψ_D^{alg}) can be written as $2\pi if_D(z) \, dz$ (resp. $2\pi if_{\Phi_D}(z) \, dz$ and $2\pi if_{\psi_D^{\text{alg}}}(z) \, dz$) for some meromorphic modular forms f_{F_D}, f_{Φ_D}, and $f_{\psi_D^{\text{alg}}}$ of weight 2 on $\Gamma_0(N)$. Then f_{F_D} is a holomorphic modular form.

Let us consider special divisors D_τ, where
\[D_\tau = Q_{\text{loc}} - Q_\tau \in \text{Div}_{X_0(N)}(\mathbb{C}) \quad \text{for } \tau \in \mathbb{H}. \]
Let us note that Q_{loc} is defined over $\overline{\mathbb{Q}}$. A modular curve $Y_0(N)$ is defined by an equation $\Phi_N(X, Y) = 0$ such that $\Phi_N(X, Y) \in \mathbb{Q}[X, Y]$ and $\Phi_N(j(z), j(z)) = 0$ for all $z \in \mathbb{H}$. Thus, by Theorem A, $\tau \in \mathbb{H}$ is a CM point if and only if Q_τ is defined over $\overline{\mathbb{Q}}$. Thus, there exists ψ_D^{alg} for D_τ if and only if τ is a CM point.

With these notations, we prove the following lemma.

Lemma 4.1. With the above notation, assume that f is an arithmetic harmonic weak Maass form in $H^*_k(\Gamma_0(N))$ and that $D := Q_{\text{loc}} - Q_\tau$ is defined over $\overline{\mathbb{Q}}$. Let m be a positive integer prime to N. Then the following statements are true.

1. For each m, $f(T_m, Q_\tau) - (\xi_0(fT_m), f_{\psi_D^{\text{alg}}})_{\text{reg}}$ is algebraic. Especially, if f is a Hecke eigenform, then
 \[f(T_m, Q_\tau) - m^{-1} \lambda_m(\xi_0(f), f_{\psi_D^{\text{alg}}})_{\text{reg}} \]
 is algebraic. Here, λ_m is the eigenvalue of $\xi_0(f)$ for T_m.
2. For each m, $f(T_m, Q_\tau)$ is algebraic if and only if $(\xi_0(fT_m), f_{F_D})$ is algebraic.

Proof. (1) By the definition of ψ_D^{alg}, the constant term of $f_{\psi_D^{\text{alg}}}$ at each cusp is an integer. Let
\[E_N(z) := E_2(z) - NE_2(Nz), \]
where $E_2(z) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(d) q^n$ is the Eisenstein series of weight 2. Here, $\sigma_1(n)$ is a function over \mathbb{Q} defined by
\[\sigma_1(n) := \begin{cases} \sum_{d|n} d & \text{if } n \text{ is a positive integer}, \\ 0 & \text{elsewhere}. \end{cases} \]
Since N is a prime, $\Gamma_0(N)$ has only two inequivalent cusps. Thus, there is a rational number c_0 such that the constant term of $f_{\psi_D^{\text{alg}}} - c_0E_N$ is zero at each cusp inequivalent to ∞. Let us note that E_N is orthogonal to
If $\xi_0(f|T_m)$, $\xi_0(f|T_m)_\text{reg}$ is a harmonic weak Maass form, then it is enough to show that $\xi_0(f|T_m)_\text{reg}$ is equal to (4.1). Thus, we need to show that $\xi_0(f|T_m)_\text{reg}$ is a meromorphic modular form of weight ∞ on $\Gamma_0(N)$. If τ is not a CM point, then there are infinitely many positive integers m for which $\xi_0(f|T_m)_\text{reg}$ is not a CM point. Let $\xi_0(f|T_m)_\text{reg}$ be an arithmetic Hecke eigenform. Let τ be an algebraic number on \mathbb{H}. Assume that $D := Q_{i\infty} - Q_{i\tau}$. If τ is not a CM point, then there are infinitely many positive integers m prime to N. $\Prin(f)$ such that

$$\sum_{n \geq 1} a_f(-n)c_{\Phi_0}(mn)$$

is transcedental, where $a_f(n)$ (resp. $c_{\Phi_0}(n)$) is the n-th Fourier coefficient of f^+ (resp. f_{Φ_0}) at the cusp $i\infty$.

Proof. Let A be the set of positive integers n such that $a_f(-n) \neq 0$. Note that A is a finite set. Then we define

$$F(z) := \sum_{n \in A} a_f(-n)(f_{\Phi_0}|U_n)(z).$$

The m-th Fourier coefficient $a_f(m)$ of F at the cusp $i\infty$ is equal to (4.1). Thus, we need to show that F has infinitely many transcendental Fourier coefficients $a_f(m)$ with $(m, N \cdot \Prin(f)) = 1$.

Let $B = \{p_1, \ldots, p_k\}$ be the set of primes p such that $p|N \cdot \Prin(f)$. Using the operators U_n and V_n, we will remove Fourier coefficients $a_f(m)$ with $(m, N \cdot \Prin(f)) \neq 1$. We define $F_0 := F$ and $F_{i+1} := F_i - F_i|U_{p_i} - V_{p_i}$ for $0 \leq i \leq k - 1$. Then it is enough to show that F_k has infinitely many transcedental Fourier coefficients at the cusp $i\infty$.

By the definition of f_{ϕ_0}, we see that f_{ϕ_0} has a singularity at the non-CM point r in \mathbb{H}. We will prove that F_k also has a singularity at a non-CM point in \mathbb{H}. We define

$$f(n,i,\mu_1,\ldots,\mu_k)(z) := \phi_n^\theta \left(\frac{z}{n} + \frac{i}{p_1} + \cdots + \frac{\mu_k}{p_k} \right)$$

for $n \in A$, $0 \leq i \leq n - 1$, $0 \leq \mu_1 \leq p_1 - 1$, \ldots, $0 \leq \mu_k \leq p_k - 1$. Note that

$$F_k(z) = F(z) - (F|U_p|V_p_1)(z) - \cdots - (F|U_p|^n|V_p_1|^n)(z) + \cdots + (-1)^k(F|U_p|^n|V_p_1|^n)(z)$$

$$= \sum_{n \in A} \sum_{0 \leq i \leq n - 1} \sum_{0 \leq \mu_1 \leq p_1 - 1} \cdots \sum_{1 \leq j \leq k} \alpha_{n,i,\mu_1,\ldots,\mu_k}(z)$$

for some non-zero constants $\alpha_{n,i,\mu_1,\ldots,\mu_k}$. We fix $n_0 \in A$. Let

$$\beta := n_0 \tau - \frac{1}{p_1} - \cdots - \frac{1}{p_k}.$$

Then β is not a CM point since τ is not a CM point, and β is a singular point of the function $f_{n_0,0,1,\ldots,1}$. To prove that F_k has a singularity at β, it is enough to show that β is not a singular point of $f(n,i,\mu_1,\ldots,\mu_k)$ if $(n, i, \mu_1, \ldots, \mu_k) \neq (n_0, 0, 1, \ldots, 1)$. Note that the set of singular points of $f(n,i,\mu_1,\ldots,\mu_k)$ is a subset of

$$T(n,i,\mu_1,\ldots,\mu_k) := \left\{ (n(y\tau) - i - \frac{\mu_1}{p_1} - \cdots - \frac{\mu_k}{p_k} : y \in \Gamma_0(N) \right\}.$$

Suppose that $\beta \in T(n,i,\mu_1,\ldots,\mu_k)$. Then, for some $y = (a \ b \ c \ d) \in \Gamma_0(N)$, we have

$$n_0 \tau - \frac{1}{p_1} - \cdots - \frac{1}{p_k} = (n(y\tau) - i) - \frac{\mu_1}{p_1} - \cdots - \frac{\mu_k}{p_k}.$$

This implies that

$$n_0 \tau - n\frac{ar + b}{ct + d} = -i - \frac{\mu_1 - 1}{p_1} - \cdots - \frac{\mu_k - 1}{p_k}.$$

If $c \neq 0$, then τ satisfies a quadratic equation; this is not possible since τ is not a CM point. Thus, $c = 0$. Then we may assume that $a = d = 1$. From this, we have

$$n_0 \tau - n(\tau + b) = -i - \frac{\mu_1 - 1}{p_1} - \cdots - \frac{\mu_k - 1}{p_k}.$$

Since τ is not a rational number, we see that $n = n_0$. Then we obtain

$$-nb + i = -\frac{\mu_1 - 1}{p_1} - \cdots - \frac{\mu_k - 1}{p_k}.$$

This holds only if $\mu_1 = \cdots = \mu_k = 1$ and $b = i = 0$. Thus, β is a singular point only for $f_{n_0,0,1,\ldots,1}$.

Let p be a prime. In a similar argument, we see that $F_k|U_p$ also has a singularity at a non-CM point for every prime p. By the Siegel–Schneider theorem, $F_k|U_p$ is not defined over \mathbb{Q}. Then the q-expansion principle implies there is a Fourier coefficient of $F_k|U_p$ at the cusp $i\infty$ which is transcendental. Therefore, F_k has infinitely many transcendental Fourier coefficients.

Lemma 4.3. Let $f \in H^1_0(\Gamma_0(N))$ be an arithmetic Hecke eigenform. Assume that $(g, \xi(f)) \neq 0$ for every Hecke eigenform $g \in S_2(\Gamma_0(N))$. Let D be a divisor of $X_0(N)$ defined over $\overline{\mathbb{Q}}$. Assume that N is a prime and that Φ_D is not defined over $\overline{\mathbb{Q}}$. Then there exist infinitely many positive integers m prime to N such that $f(T_mD)$ are transcendental.

Proof. Let (f_1, \ldots, f_k) be the set of all normalized Hecke eigenforms in $S_2(\Gamma_0(N))$. Assume that f_i has a Fourier expansion of the form

$$f_i(z) = \sum_{n=1}^{\infty} a_{f_i}(n)e^{2\pi inz}.$$
Then we have
\[(\xi_0(f), f_i) = \sum_{m \geq 0} a_f(m)a_f(n),\]
where \(a_f(n)\) is the \(n\)-th Fourier coefficient of \(f^n\) at the cusp \(i\infty\). Thus, \((\xi_0(f), f_i)\) is algebraic.

Note that \(f_{\mathbb{Q}}\) is a cusp form in \(S_2(\Gamma_0(N))\). Assume that \(f_{\mathbb{Q}}=\sum_{i=1}^{k} \beta_i f_i\) for some \(\beta_i\) and that \(\xi_0(f) = \sum_{i=1}^{k} \alpha_i f_i\) for some \(\alpha_i\). By the assumption, \(\alpha_i \neq 0\) for all \(i\). Let \(m\) be a positive integer prime to \(N\). Then we have
\[
\xi_0(f|T_m) = m^{-1} \xi_0(f)|T_m = m^{-1} \sum_{i=1}^{k} \alpha_i \lambda_{i,m} f_i,
\]
where \(\lambda_{i,m}\) is the eigenvalue of \(f_i\) for \(T_m\). From this, we obtain
\[
(\xi_0(f|T_m), f_{\mathbb{Q}}) = m^{-1} \sum_{i=1}^{k} \alpha_i \lambda_{i,m} = \sum_{j=1}^{\ell} \beta_j \bar{w}_j,
\]
We define \(\beta_i := \alpha_i \bar{\beta}_i(f_i, f_i)\) for \(i = 1, \ldots, k\). Since \(\Phi_D\) is not defined over \(\overline{\mathbb{Q}}\), we see that \(F_{\mathbb{Q}}\) is not defined over \(\overline{\mathbb{Q}}\). This implies that at least one of \(\beta_i\) is transcendental. Note that \(\alpha_i(f_i, f_i)\) is a non-zero algebraic number for all \(i\) since \(\alpha_i(f_i, f_i) = (\xi_0(f), f_i)\) and \(\alpha_i \neq 0\) for all \(i\). Thus, at least one of \(\beta_i\) is transcendental. As a vector space over \(\overline{\mathbb{Q}}\), let \(W\) be the subspace of \(\mathbb{C}\) generated by \(\beta_1, \ldots, \beta_k\). Let \(\{w_1, \ldots, w_{\ell}\}\) be a basis of \(W\), where \(w_1 = 1\). We may assume that
\[
\beta_i = \sum_{j=1}^{\ell} \beta_{ij} w_j \quad (4.2)
\]
for \(i = 1, \ldots, k\) and for some \(\beta_{ij} \in \overline{\mathbb{Q}}\). From this, we have
\[
(\xi_0(f|T_m), f_{\mathbb{Q}}) = m^{-1} \sum_{i=1}^{k} \beta_i \lambda_{i,m} = m^{-1} \sum_{i=1}^{k} \left(\sum_{j=1}^{\ell} \beta_{ij} w_j \right) \lambda_{i,m} = m^{-1} \sum_{j=1}^{\ell} \left(\sum_{i=1}^{k} \beta_{ij} \lambda_{i,m} \right) w_j. \quad (4.3)
\]
By Lemma 4.1 (2) and (4.3), \(f(T_m \cdot D)\) is algebraic if and only if
\[
\sum_{i=1}^{k} \beta_{ij} \lambda_{i,m} = 0 \quad \text{for every } j \geq 2. \quad (4.4)
\]
Suppose that \(f(T_m \cdot D)\) is algebraic for all positive integers \(m\) prime to \(N\). Since at least one of \(\beta_i\) is transcendental, at least one of \(\beta_{ij}\) with \(j \geq 2\) is non-zero by (4.2). From this, there is a positive integer \(j_0 \geq 2\) such that \((\beta_{1,j_0}, \ldots, \beta_{\ell,j_0}) \neq (0, \ldots, 0)\). We define a cusp form \(g\) in \(S_2(\Gamma_0(N))\) by
\[
g := \sum_{i=1}^{k} \beta_{i,j_0} f_i. \quad (4.5)
\]
Note that, by (4.4), \(a_g(m) = 0\) for all positive integers \(m\) prime to \(N\), where \(a_g(m)\) denotes the \(m\)-th Fourier coefficient of \(g\). This implies that \(g|U_N|V_N = g \in S_2(\Gamma_0(N))\) since \(N\) is a prime. By [1, Lemma 16], \(g|U_N\) is a cusp form in \(S_2(\Gamma_0(1))\). Since \(S_2(\Gamma_0(1)) = \{0\}\), this implies that \(g|U_N = 0\). From this, we have \(g = 0\) since \(a_g(m) \neq 0\) only when \(N \mid m\). This is a contradiction due to the fact that \(\{f_1, \ldots, f_k\}\) is a basis of \(S_2(\Gamma_0(N))\) and \((\beta_{1,j_0}, \ldots, \beta_{\ell,j_0}) \neq (0, \ldots, 0)\). Thus, there is a positive integer \(m_0\) prime to \(N\) such that \(f(T_{m_0} \cdot D)\) is transcendental.

By (4.4), there exists \(j_0 \geq 2\) such that \(\sum_{i=1}^{k} \beta_{i,j_0} \lambda_{i,m_0} \neq 0\). If we define \(g\) by (4.5), then \(a_g(m_0) \neq 0\). Thus, the function
\[
g - g|U_N|V_N(z) = \sum_{N \mid m} a_g(m)e^{2\pi imz}
\]
is a non-zero cusp form of weight 2. Therefore, there exist infinitely many positive integer \(m\) prime to \(N\) such that \(a_g(m) \neq 0\). With (4.4), this completes the proof.
Now we prove Theorem 1.3.

Proof of Theorem 1.3. First, we prove that if \(\tau \) is not a CM point or \(nD \) is not rational on \(X_0(N) \) for any positive integer \(n \), then \(f(T_m, Q_\tau) \) is not algebraic for some positive integer \(m \) prime to \(N \). Suppose that \(\tau \) is not a CM point. Then, by Lemma 4.2, there exists a positive integer \(m \) prime to \(N \cdot \text{Prin}(f) \) such that (4.1) is transcendental.

We take a positive integer \(m \) which is prime to \(N \cdot \text{Prin}(f) \). As in the proof of Lemma 4.1, it follows from Lemma 3.1 and Proposition 3.2 that

\[
0 = (\xi_0(f|T_m), f_{D_0})_{\text{reg}} = \sum_{n \geq 1} a_{f|T_m}(-n)c_{D_0}(n) + f(T_m, Q_\tau).
\]

Since \(m \) is prime to \(N \cdot \text{Prin}(f) \), we have \(a_{f|T_m}(-n) = a_f(-n/m) \), and hence, we obtain

\[
f(T_m, Q_\tau) = -\sum_{n \geq 1} a_{f|T_m}(-n)c_{D_0}(n) = -\sum_{n \geq 1} a_f(-n/m)c_{D_0}(n) = -\sum_{n \geq 1} a_f(-n)c_{D_0}(mn).
\]

Therefore, we see that \(f(T_m, Q_\tau) \) is transcendental for some positive integer \(m \) prime to \(N \).

Suppose that \(\tau \) is a CM point and that \(nD \) is not rational on \(X_0(N) \) for any positive integer \(n \). This implies that \(D \) is defined over \(\overline{\mathbb{Q}} \) and that \(D \) is not a principal divisor. By Theorem 2.2, \(\Phi_D \) is not defined over \(\overline{\mathbb{Q}} \). Therefore, there exists a positive integer \(m \) prime to \(N \) such that \(f(T_m, Q_\tau) \) is not algebraic by Lemma 4.3.

Conversely, suppose that \(\tau \) is a CM point and that \(nD \) is rational on \(X_0(N) \) for some positive integer \(n \). Then \(D \) is defined over \(\mathbb{Q} \), and \(D \) is a principal divisor. By Theorem 2.2, \(\Phi_D \) is defined over \(\mathbb{Q} \). Thus, all the Fourier coefficients of \(f_{F_0} \) at the cusp \(i\infty \) are algebraic. Let \(m \) be a positive integer prime to \(N \). Then, by Lemma 3.1, we have

\[
(\xi_0(f|T_m), f_{F_0}) = \sum_{n \geq 1} a_{f|T_m}(-n)c_{F_0}(n),
\]

where \(a_{f|T_m}(n) \) (resp. \(c_{F_0}(n) \)) is the \(n \)-th Fourier coefficient of \((f|T_m)^+ \) (resp. \(f_{F_0} \)) at the cusp \(i\infty \). This implies that \((\xi_0(f|T_m), f_{F_0}) \) is algebraic. Therefore, by Lemma 4.1 (2), \(f(T_m, Q_\tau) \) is algebraic.

\[\square \]

Acknowledgment: The authors appreciate the referee for helpful comments.

References

[1] A. O. L. Atkin and J. Lehner, Hecke operators on \(\Gamma_0(m) \), \textit{Math. Ann.} \textbf{185} (1970), 134–160.

[2] M. H. Baker, Torsion points on modular curves, \textit{Invent. Math.} \textbf{140} (2000), no. 3, 487–509.

[3] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, \textit{Invent. Math.} \textbf{132} (1998), no. 3, 491–562.

[4] J. H. Bruinier and J. Funke, On two geometric theta lifts, \textit{Duke Math. J.} \textbf{125} (2004), no. 1, 45–90.

[5] J. H. Bruinier and K. Ono, Heegner divisors, \textit{L-functions and harmonic weak Maass forms}, \textit{Ann. of Math. (2)} \textbf{172} (2010), no. 3, 2135–2181.

[6] J. H. Bruinier, K. Ono and R. C. Rhoades, Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues, \textit{Math. Ann.} \textbf{342} (2008), no. 3, 673–693.

[7] D. Choi, Poincaré series and the divisors of modular forms, \textit{Proc. Amer. Math. Soc.} \textbf{138} (2010), no. 10, 3393–3403.

[8] R. Coleman, B. Kaskel and K. A. Ribet, Torsion points on \(X_0(N) \), in: \textit{Automorphic Forms, Automorphic Representations, and Arithmetic} (Fort Worth 1996), Proc. Sympos. Pure Math. 66, American Mathematical Society, Providence (1999), 27–49.

[9] P. A. Griffiths, \textit{Introduction to Algebraic Curves}, Transl. Math. Monogr. 76, American Mathematical Society, Providence, 1989.

[10] L. Kronecker, Über die algebraisch auflösbaren Gleichungen, \textit{Berlin K. Akad. Wiss.} (1853), 365–374; Collected works volume 4.

[11] K. Ono, \textit{The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series}, CBMS Reg. Conf. Ser. Math. 102, American Mathematical Society, Providence, 2004.

[12] K. Ono, Unveiling the visions of a master: Harmonic Maass forms and number theory, \textit{Current Develop. Math.} \textbf{2008} (2009), 347–454.

[13] M. Raynaud, Courbes sur une variété abélienne et points de torsion, \textit{Invent. Math.} \textbf{71} (1983), no. 1, 207–233.

[14] M. Raynaud, Sous-variétés d’une variété abélienne et points de torsion, in: \textit{Arithmetic and Geometry. Vol. I}, Progr. Math. 35, Birkhäuser, Boston (1983), 327–352.
[15] T. Schneider, Arithmetische Untersuchungen elliptischer Integrale, *Math. Ann.* 113 (1937), no. 1, 1–13.
[16] A. J. Scholl, Fourier coefficients of Eisenstein series on noncongruence subgroups, *Math. Proc. Cambridge Philos. Soc.* 99 (1986), no. 1, 11–17.
[17] C. L. Siegel, Über die Perioden elliptischer Funktionen, *J. Reine Angew. Math.* 167 (1932), 62–69.
[18] H. Weber, Theorie der Abel'schen Zahlkörper, *Acta Math.* 8 (1886), no. 1, 193–263.