Recent developments in Neutrino Physics

Davide Meloni

Dipartimento di Matematica e Fisica and INFN RomaTre

QFTHEP2015

Samara
Plan

Oscillation sector
- Standard 3-neutrino oscillation
- Anomalies in neutrino data

Flavor sector
- Problem of neutrino masses and mixings: the role of family symmetries

D. Meloni
New data from neutrino oscillation experiments have given precise results on mixing parameters.

Possible leptonic CP violation ($\leq 5\text{ y}$) (T2K, NoVA...)

However:

not a unique extension of the Standard Model that allows to explain:

- origin of masses and mixing angles
- differences with respect to the quark sector

D. Meloni
Neutrinos can be described in terms of mass or weak eigenstates.

\[|\nu_\alpha \rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_i \rangle \]

Simple time evolutions of the vector \(\nu(t) = (\nu_e(t), \nu_\mu(t), \nu_\tau(t)) \):

\[i \frac{d}{dt} |\nu(t) \rangle = H |\nu(t) \rangle \]

\[H = \frac{1}{2E_\nu} U \text{Diag} [0, m_2^2 - m_1^2, m_3^2 - m_1^2] U^+ \]

D. Meloni
Flavour changing transitions

\[P(\nu_\alpha \rightarrow \nu_\beta) = \left| \langle \nu_\beta | \nu_\alpha(t) \rangle \right|^2 = \left| \sum_j U_{\beta j} e^{-i m_j^2 L / 2E_\nu} U_{\alpha j}^* \right|^2 \]

\(\alpha = \beta \rightarrow \text{disappearance} \)
\(\alpha \neq \beta \rightarrow \text{appearance} \)

In the case of two neutrinos only:

\[P(\nu_e \rightarrow \nu_\mu) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E_\nu} \right) \]

\(U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \]

U = unitary matrix

Distance source-detector

Mixing angle
The neutrino mixing matrix depends on 4 real parameters

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

A more complicated mismatch between the ν bases

D. Meloni
Experiments measure...

Mixing angles

\[\begin{align*}
\theta_{13} \\
\theta_{12} \\
\theta_{23}
\end{align*} \]

Mass differences

\[\begin{align*}
\Delta m^2_{23} \\
\Delta m^2_{12}
\end{align*} \]

- unknowns: leptonic CP violation and the ordering of the mass eigenstates
Global fit

Parameter	Result
\(\theta_{12} \)	33.36\(^{+0.81}_{-0.78} \)
\(\theta_{13} \)	8.66\(^{+0.44}_{-0.46} \)
\(\theta_{23} \)	40.0\(^{+2.1}_{-1.5} \)
\(\delta \)	300\(^{+66}_{-138} \)
\(\Delta m^2_{23} \) (10\(^{-3} \) eV\(^2\))	2.47\(^{+0.07}_{-0.07} \)
\(\Delta m^2_{12} \) (10\(^{-5} \) eV\(^2\))	7.50\(^{+0.18}_{-0.19} \)

- Masses @3%
- Angles between 5% and 10%
Global fit

Parameter	Result
θ_{12}	33.36$^{+0.81}_{-0.78}$
θ_{13}	8.66$^{+0.44}_{-0.46}$
θ_{23}	40.0$^{+2.1}_{-1.5}$
δ	300$^{+66}_{-138}$
$\Delta m^2_{23} (10^{-3} \text{eV}^2)$	2.47$^{+0.07}_{-0.07}$
$\Delta m^2_{12} (10^{-5} \text{eV}^2)$	7.50$^{+0.18}_{-0.19}$

\[
|U| = \begin{pmatrix}
0.795 & 0.846 & 0.513 & 0.585 & 0.126 & 0.178 \\
0.205 & 0.543 & 0.416 & 0.730 & 0.579 & 0.808 \\
0.215 & 0.548 & 0.409 & 0.725 & 0.567 & 0.800
\end{pmatrix}
\]
Neutrino oscillation anomalies

- **LSND**

evidence for oscillations $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ with $L/E \sim 1 \text{ km}/\text{GeV} (\nu_e \text{ appearance})$

- **Anomalies in Gallium experiments** *(SAGE & GALLEX)*

 they measured an electron neutrino flux from the Sun smaller than expected ($\nu_e \text{ disappearance}$)

- **Anomalies due to new computations of reactor neutrino fluxes**

 fluxes from reactor neutrinos are $\sim 3.5\%$ larger than in the past \rightarrow

 experiments with $L \leq 100 \text{ m}$ show deficit of neutrinos ($\nu_e \text{ disappearance}$ - Bugey, Rovno...)

In addition there are **null results**: $\nu_\mu \text{ disappearance} (\text{CDHS,SK, MINOS}) \; \nu_e \text{ appearance} (\text{KARMEN, NOMAD, ICARUS, OPERA})$ which gave **no signal**
Neutrino oscillation anomalies

Joachim Kopp
August 21, Aspen

- **LSND**
 - evidence for oscillations
 \[\overline{\nu}_e \rightarrow \overline{\nu}_\mu \ \text{con} \ L/E \sim 1 \ km/GeV \]
- **MiniBooNE**
 - no significative excess of ν_e or $\overline{\nu}_e$ in the LSND preferred region but antinu results consistent with LSND

\[\Delta m^2_{12} \]
\[\Delta m^2_{23} \]
\[\Delta m^2_{34} \]
\[\Delta m^2_{45} \]

explanation in terms of sterile neutrinos

D.Meloni
3+1 scheme

These states are considered as "degenerate"

\[P_{\nu_\alpha \rightarrow \nu_\beta}^{(-)} = \delta_{\alpha\beta} - 4|U_{\alpha 4}|^2 \left(\delta_{\alpha\beta} - |U_{\beta 4}|^2 \right) \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E} \right) \]

\[\sin^2 2\theta_{e\mu} = 4|U_{e4}|^2 |U_{\mu 4}|^2 \text{ of } \nu_\mu \rightarrow \nu_e \text{ transitions.} \]

\[\sin^2 2\theta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2 \right) \text{ of } \nu_e \text{ disappearance} \]

\[\sin^2 2\theta_{\mu\mu} = 4|U_{\mu 4}|^2 \left(1 - |U_{\mu 4}|^2 \right) \text{ of } \nu_\mu \text{ disappearance} \]

\[\Delta m_{34}^2 \]

\[\Delta m_{23}^2 \]

\[\Delta m_{12}^2 \]

\[m_4 \text{ is at a much higher scale, around } 1 \text{ eV}^2: \]

effective description in terms of two-flavor

D.Meloni
Global fit of **nue appearance** data are consistent

\[
\sin^2 2\theta_{\mu e} = 0.013 \\
\Delta m^2_{41} = 0.42 \text{ eV}^2 \\
\chi^2_{\text{min}}/\text{dof} = 87.9/66
\]
\(\nu_e \) disappearance

- Global fit on \(\nu_e \) disappearance data are consistent among themselves

\[
\sin^2 2\theta_{ee} = 0.09 \\
\Delta m^2_{41} = 1.78 \text{ eV}^2 \\
\chi^2_{\text{min}} / \text{dof} = 403 / 427
\]
Global fit on **numu disappearance** data:

Kopp, Machado, Maltoni, Schwetz 2013

no signal \rightarrow strong constraints on masses and mixing

Global picture

Tension between appearance and disappearance

Tension between exp's with and without signal

D. Meloni
The (hard) job of a theorist

Take hints from experiments seriously
And explain:

- Some ideas...
- Smallness of masses
- Values of the mixing angles
Easy part: neutrino Yukawa couplings smaller than those of the other fermions

Neutrinos are Dirac fermions: we have to introduce a right-handed neutrino field

\[\nu \bar{\psi}_L \tilde{H} \nu_R \]

\[\text{electrons: } Y_e \bar{\psi}_L H e^c \]

\[\frac{Y}{Y_e} \sim 10^{-5} \]

But we want to go beyond this “unnatural” scheme...

D. Meloni
Neutrino mass terms

we assume the existence of ν_L and
the SM singlet ν_R

must be conserved: $|\Delta I| = 0$

Weak isospin	ν_L	ν_R	$H = (h^+, h^0)$
I	$1/2$	0	$1/2$
I_3	$1/2$	0	(+1/2, -1/2)

ν | $\bar{\nu}$

Lepton number

1 | -1

• **Dirac mass term**
(same for quarks and leptons)

lepton number L is conserved

$$L_D = m_D \bar{\psi}_L \tilde{H} \nu_R$$

• **Majorana mass term**

lepton number L is not conserved

$$L_M = m_M \nu_R^T \nu_R$$

D. Meloni
The see-saw mechanism

- Total lagrangian

\[L_m = m_D \bar{\psi}_L \tilde{H} \nu_R + m_M \nu_R^T \nu_R \]

Electroweak symmetry breaking → see-saw

\[\langle H \rangle = \begin{pmatrix} 0 \\ \nu \end{pmatrix} \quad \rightarrow \quad m_\nu = \begin{pmatrix} 0 & m_D \\ m_D^T & m_M \end{pmatrix} \]

\[m_\nu = -m_D^T \frac{1}{m_M} m_D \]

D. Meloni
An indicative numerical example

\[m_v \sim \frac{m_D^2}{m_M} \]

for \(m_D \sim 100 \text{ GeV} \), \(m_v \sim 0.05 \text{ eV} \)

\[m_M \sim 10^{14} - 10^{15} \text{ GeV} \]

Probe into GUT!

D. Meloni
Two different approaches and equally (not?) promising

- **Models with non-trivial dynamics**: means that the structure of the mixing matrix is determined by discrete symmetries. Such symmetries are motivated by the fact that the data themselves suggest rotations with fixed special angles ($\frac{1}{2}, 1/3...$), permutational groups like $A_4, S_4 ...$

- **Models where the main idea is that there is no need of introducing additional symmetries to explain the mixing angles**

In such models, the *chance* plays the fundamental role (anarchical models and variants)

D.Meloni
Special mixing matrices

- Mixing angles are obtained from the diagonalization of the mass matrix

\[m^{\text{Diag}}_\nu = U^T m_\nu U \]

- Good starting point suggested by the data:

\[\sin^2 \theta_{23} = \frac{1}{2}, \quad \sin^2 \theta_{13} = 0 \]

\[
\begin{align*}
\text{TBM} & : \quad \sin^2 \theta_{12} = \frac{1}{3} \\
\text{BM} & : \quad \sin^2 \theta_{12} = \frac{1}{2} \\
\text{GR} & : \quad \sin^2 \theta_{12} = \frac{2}{5 + \sqrt{5}}
\end{align*}
\]

D. Meloni
• How good are such starting points?

\[\sin^2 \theta_{12} \]

\[\lambda_c = \text{Cabibbo angle} \]

\[\sin \theta_{13} \]

Corrections are needed to stay on the experimental data

D. Meloni
Special mixing matrices

- in models with no baroque dynamics, all mixing angles receive corrections of the same order of magnitude

\[
\begin{align*}
\text{TBM} & \quad \sin^2 \theta_{12} = \frac{1}{3} + O(\lambda_C^2) \quad \sin^2 \theta_{23} = \frac{1}{2} + O(\lambda_C^2) \quad \sin \theta_{13} = O(\lambda_C^2) \\
\text{BM} & \quad \sin^2 \theta_{12} = \frac{1}{2} + O(\lambda_C) \quad \sin^2 \theta_{23} = \frac{1}{2} + O(\lambda_C) \quad \sin \theta_{13} = O(\lambda_C)
\end{align*}
\]

This pattern seems to be favored

D. Meloni
Possible origin of corrections

- U_{PMNS} receives contributions from the charged lepton diagonalization

\[
\nu_\alpha = U_{\alpha i}^\nu \nu_i \quad l_\alpha = U_{\alpha i}^l l_i
\]

diagonalizes the neutrino mass matrix
diagonalizes the charged lepton mass matrix

\[
\bar{l}_\alpha \gamma_\mu \nu_\alpha W^\mu \rightarrow \left(U_{\alpha i}^l \right)^* U_{\alpha j}^\nu \bar{l}_i \gamma_\mu \nu_j W^\mu
\]
The previous patterns are easily obtained using *flavor symmetries*

- **gauge** symmetries act on members of particle multiplets
- **flavor** symmetries act on different families

Vantages: strong correlation among the entries of the mass matrices, so less free parameters → predictability

D. Meloni
The models work as follows:

- Theory invariant under G_F

- Residual symmetry given by a subset of the generators of G_F

 - in the neutrino sector $G_v \rightarrow U_v$
 - in the charged lepton sector $G_l \rightarrow U_l$

- Symmetry breaking of the flavor group: new scalar fields Φ in the theory with non vanishing vevs

\[
U_{\text{PMNS}} = U_l^+ U_v
\]

D. Meloni

Altarelli-Feruglio 2012
A possible flavor group: A_4

A_4 is the group of even permutation of 4 objects (also the symmetry of a tetrahedron)

The 12 elements are obtained considering all possible even permutations of 1234. They belong to 4 conjugacy classes...

A_4, given a of G $g^{-1} a g$, $\forall g \in G$

A_4 has 4 irreducible representations

- three singlets $1, 1'$ and $1''$
- 1 triplet 3

D. Meloni
A possible flavor group: A_4

After breaking of A_4

- charged lepton mass matrix (residual symmetry generated by T)

$$m_e^{(0)} = v_d \begin{pmatrix} y_e & 0 & 0 \\ 0 & y_\mu & 0 \\ 0 & 0 & y_\tau \end{pmatrix} \eta$$

$$U_l = I$$

- neutrino mass matrix (generated by a non-diagonal generator S of A_4)

$$m_\nu^{(0)} = \begin{pmatrix} x & y & y \\ y & x+z & y-z \\ y & y-z & x+z \end{pmatrix}$$

$$U_\nu = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

$$\sin^2 \theta_{23} = \frac{1}{2} \quad \sin^2 \theta_{12} = \frac{1}{3} \quad \sin^2 \theta_{13} = 0$$

D. Meloni
A possible flavor group: A_4

After breaking of T and S

- Charged lepton rotation

- Neutrino rotation

\[
\sin^2 \theta_{23} = \frac{1}{2} + \mathcal{R}(c_{23}^e) \xi + \frac{1}{\sqrt{3}} \left(\mathcal{R}(c_{13}^\nu) - \sqrt{2} \mathcal{R}(c_{23}^\nu) \right) \xi
\]

\[
\sin^2 \theta_{12} = \frac{1}{3} - \frac{2}{3} \mathcal{R}(c_{12}^e + c_{13}^e) \xi + \frac{2\sqrt{2}}{3} \mathcal{R}(c_{12}^\nu) \xi
\]

\[
\sin \theta_{13} = \frac{1}{6} \left| 3\sqrt{2} (c_{12}^e - c_{13}^e) + 2\sqrt{3} \left(\sqrt{2} c_{13}^\nu + c_{23}^\nu \right) \right| \xi.
\]

\[
\left\langle \Phi \right\rangle \sim O(0.1)
\]

Altarelli, Feruglio, Merlo, Stamou '12

D. Meloni
Typical predictions of A4 models

\[c_{ij} = \text{random complex with abs. value gaussian around 1 with variance 0.5} \]
The chance is the basis of the success

Only abelian U(1) to generate the hierarchies among fermions

- fields transform as: \(\psi \rightarrow e^{iq} \psi \)
- so a mass term transforms as:

\[
y \bar{\psi}_L H \psi_R \rightarrow e^{i(-q_{\psi_R} + q_{\psi_L} + q_H)} y \bar{\psi}_L H \psi_R
\]

If \((-q_{\psi_R} + q_{\psi_L} + q_H) = 0 \) the mass term is allowed, otherwise we need a new scalar field \(\theta \) with charge \(q \) and vev \(v_{\theta} \):

\[
y \bar{\psi}_L H \psi_R \left(\frac{\theta}{\Lambda} \right)^k \rightarrow e^{i(-q_{\psi_R} + q_{\psi_L} + q_H + k q_{\theta})} y \left(\frac{v_{\theta}}{\Lambda} \right)^k \bar{\psi}_L H \psi_R
\]

Models with no special dynamics

D.Meloni

Suppression factor
A GUT example

- Standard Model particles in the 10 and $\bar{5}$ representations (3 copies)

\[
\begin{align*}
\bar{5} &= \begin{pmatrix}
 d^c_1 \\
 d^c_2 \\
 d^c_3 \\
 e \\
 -\nu
\end{pmatrix}_L, \\
10 &= \frac{1}{\sqrt{2}} \begin{pmatrix}
 0 & u^c_5 & -u^c_5 & u_1 & d_1 \\
 -u^c_5 & 0 & u^c_1 & u_2 & d_2 \\
 u^c_2 & -u^c_1 & 0 & u_3 & d_3 \\
 -u_1 & -u_2 & -u_3 & 0 & e^c \\
 -d_1 & -d_2 & -d_3 & -e^c & 0
\end{pmatrix}_L
\end{align*}
\]

- $1 = \text{right-handed neutrino}$

- **SU(5) mass terms:**

\[
\begin{align*}
m_{\text{up}} &\sim 10 \times 10 \\
m_d &= m_e^T \sim 10 \times \bar{5} \\
m_{\nu_D} &\sim \bar{5} \times 1 \\
m_M &\sim 1 \times 1
\end{align*}
\]

D. Meloni
Choosing appropriate U(1) charges we can get several mass matrices structures:

- **Anarchycal models (A)**

 \[q_5 = (0,0,0) \]
 \[q_{10} = (3,2,0) \]
 \[q_1 = (0,0,0) \]

 \[
 m_l = \begin{pmatrix}
 \lambda^3 & \lambda^3 & \lambda^3 \\
 \lambda^2 & \lambda^2 & \lambda^2 \\
 1 & 1 & 1
 \end{pmatrix},
 m_\nu = \begin{pmatrix}
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1
 \end{pmatrix}
 \]

- **Hierachycal model (H)**

 \[q_5 = (2,1,0) \]
 \[q_{10} = (5,3,0) \]
 \[q_1 = (2,1,0) \]

 \[
 m_l = \begin{pmatrix}
 \lambda^7 & \lambda^6 & \lambda^5 \\
 \lambda^5 & \lambda^4 & \lambda^3 \\
 \lambda^2 & \lambda & 1
 \end{pmatrix},
 m_\nu = \begin{pmatrix}
 \lambda^4 & \lambda^3 & \lambda^2 \\
 \lambda^3 & \lambda^2 & \lambda \\
 \lambda^2 & \lambda & 1
 \end{pmatrix}
 \]

D.Meloni
Models with no special dynamics

no see-saw

see-saw

message: \(H \) performs better than \(A \)

D. Meloni
The future (personal view)

Oscillation sector

- Better determination of the oscillation parameters and the mass pattern
- Check for new physics effects

Flavor sector

- Interplay of flavor symmetries and realistic GUT theories
- Differences among quarks and leptons

D. Meloni
backup

D.Meloni
Global fit

$e \rightarrow e \ (\delta m^2, \theta_{12})$

$\mu \rightarrow \mu \ (\Delta m^2, \theta_{23})$

$e \rightarrow e \ (\Delta m^2, \theta_{13})$

$e \rightarrow e \ (\delta m^2, \theta_{12})$

$\mu \rightarrow \mu \ (\Delta m^2, \theta_{23})$

$\mu \rightarrow e \ (\Delta m^2, \theta_{13}, \theta_{23})$

$\mu \rightarrow \tau \ (\Delta m^2, \theta_{23})$

Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric).

(a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], MACRO, MINOS etc.; (d) T2K [plot], MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], MINOS; (g) OPERA [plot], Super-K atmospheric.

D. Meloni
New results from Planck

For $T < m_e$, radiation content of the Universe is

$$\varepsilon_R = \varepsilon_\gamma + \varepsilon_\nu + \varepsilon_x$$

non-electromagnetic contribution is parametrized in terms of effective neutrino species N_{eff}

$$\varepsilon_\nu + \varepsilon_x = \frac{7}{8} \frac{\pi^2}{15} T_\nu^4 N_{\text{eff}} = \frac{7}{8} \frac{\pi^2}{15} T_\nu^4 (N_{\text{eff}}^{\text{SM}} + \Delta N)$$

3.046
(relativistic degrees of freedom)

Planck 2015:

$$N_{\text{eff}} = 3.15 \pm 0.46$$

D. Meloni

Ninetta Saviano,
talk a Moriond2015

Extra radiation, for example from sterile neutrinos

Not a large room for sterile states!
A peculiarity of the neutrino

- For electrons: 4 different helicity states and all of them are needed

- For neutrinos: from experiments we have identified ν_L and $\bar{\nu}_R$ only

if $\nu_L \sim \bar{\nu}_R$ no additive quantum numbers are conserved

D.Meloni
A$_4$ is the discrete group of even permutations of 4 objects
($4!/2 = 12$ elements) generated by S and T

\[S^2 = T^3 = (ST)^3 = 1 \]

The action of the generators S and T can be assigned as follows:
S: $(1234) \rightarrow (4321) \quad T$: $(1234) \rightarrow (2314)$

irreducible representations:
a triplet and 3 different singlets $3, 1, 1', 1''$ (promising for 3 generations)

invariance under S and T is automatic while A_{23} is not contained in A_4

(2-3 symmetry happens in A_4 if $1'$ and $1''$ symm. breaking flavons are absent or have equal VEV's)

D.Meloni
A comment on the CP violating phase

- Long Baseline experiments (T2K) indicates $\delta \sim 3/2 \pi$

- Reactor experiments model the CL form for $\sin^2\theta_{13} \sim 0.02$
Appearance–disappearance tension

\[
\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}
\]