Introduction

Prostate cancer (PCa) has become a major public health problem concern worldwide for its high morbidity and mortality levels. It is the second leading cause of cancer related to death in Europe, North America, Latin America, and some parts of Africa in men. It has been reported that PCa have a prominent variation in incidence among different ethnic groups and geographic regions. For instance, North Americans have the highest incidence, especially the African-Americans in USA, and the lowest is among Asian men [1–3]. However, the etiology and ethnic disparities of PCa are largely unknown. Clinical and epidemiologic data suggest that the development of PCa is a multiphase process. So far, a series environmental and lifestyle factors, including pollutants, smoking habit and diet, as well as geographical and racial factors have been pointed out as possible contributors to the risk of PCa [4]. In addition, the various risk, incidence, and mortality rates among worldwide of PCa suggest that genetic factors also play an important role in PCa initiation and progression, such as individual differences in the susceptibility to cancers, age and family history [5]. Therefore, the occurrence and development of PCa most likely involve a complex interplay between genetic and environmental factors. More specifically, variations in carcinogen metabolism genes may play a critical role in PCa development due to their activation or detoxification functions.

Glutathione S-transferases (GSTs) constitute a superfamily of ubiquitous, multifunctional phase II metabolic enzymes. These enzymes play a crucial function in the detoxification of both endogenous and exogenous carcinogens [6], but also participate in the activation and inactivation of oxidative metabolites of carcinogenic compounds so that to protect DNA from oxidative damage [7]. Hence, it has been speculated that GSTs were
Table 1. Characteristics of eligible studies in the meta-analysis of \textit{GSTM1}, \textit{GSTT1} and \textit{GSTP1} polymorphisms with PCa.

First author	Year	Source	\textit{GSTM1}	\textit{GSTT1}	\textit{GSTP1}	P value for HWE
Caucasians						
Harries LW	1997	HB	10/26	79/76	0.440	
Rebbeck TR	1999	PB	110/126	110/121	46/186	72/159
Wadelius M	1999	PB	75/68	71/49	0.321	
Autrup JL	1999	PB	91/62	154/134	29/124	44/244
Steinhoff C	2000	HB	45/46	57/70	23/68	17/110
Shepard TF	2000	HB	290/300	365/438	0.893	
Gsur A	2001	BPH	75/91	81/85	27/139	33/133
Kote-Jarai Z	2001	PB	153/120	135/135	117/156	140/133
Luscombe CJ	2002	BPH	86/123	66/88	0.883	
Beer TM	2002	PB	61/50	73/74	51/58	63/83
Jeronimo C	2002	mixed	45/60	61/80	0.374	
Kidd LC	2003	/	84/116	100/88	24/178	92/78
Nam RK	2003	HB	235/248	266/282	90/393	127/421
Acevedo C	2003	BPH	37/65	29/99		
Debies JD	2004	PB	369/545	184/298	0.310	
Medeiros R	2004	PB	77/65	91/92	31/114	44/140
Mao GE	2004	HB	56/66	70/65	0.622	
Joseph MA	2004	PB	97/81	142/123	55/122	61/204
Mittal RD	2004	BPH	55/48	35/82	35/68	13/104
Antognelli C	2005	BPH	172/212	220/140	0.498	
Caceres DD	2005	PB	37/65	30/102	6/94	14/115
Srivastava DSL	2005	/	70/57	51/93	41/86	29/115
Asians						
Vijayalakshmi K	2005	HB	15/85	18/75	49/26	43/57
Agalliu I	2006	PB	311/248	248/274	92/466	88/434
Quinones LA	2006	HB	22/38	36/81		
Silig Y	2006	HB	98/54	52/117	34/118	31/138
Rybicki BA	2006	HB	157/206	53/87	0.402	
Mittal RD	2006	BPH	31/23	38/67	24/30	30/75
Lima MM Jr	2008	BPH	69/56	53/47	42/83	22/78
Sivonová M	2009	PB	69/60	130/98	24/105	45/183
Steinbrecher A	2010	PB	126/122	270/221	44/204	77/415
Kumar V	2011	HB+BPH	34/23	15/31	21/32	29/28
Thakur H	2011	HB+BPH	87/63	62/110	82/68	39/111
Rodrigues IS	2011	PB	71/83	86/68	42/112	40/114
Qadri Q	2011	PB+BPH	26/24	59/21	22/23	0.083
Hemelrijk MV	2012	PB	105/98	188/172	35/168	64/296

First author	Year	Source	\textit{GSTM1}	\textit{GSTT1}	\textit{GSTP1}	P value for HWE
Murata M	2001	BPH	57/58	115/85	47/68	104/96
Nakazato H	2003	HB	38/43	53/52	40/41	44/61
Aktaş D	2004	BPH	19/81	14/93		
Guan TY	2005	PB	48/35	48/67		
Komiyama Y	2005	PB	93/93	157/131	74/112	139/149
Wang YL	2005	PB	44/37	40/50	43/38	48/42
probably involved in the development of cancers [3]. As the enzymes are widely distributed in nature and found in essentially all eukaryotic species, individual genetic differences may influence the activity level of GSTs and susceptibility to cancer. To date, the GSTs have been assigned to eight distinct classes: \(\text{GSTM} \), \(\text{GSTM}1 \), \(\text{GSTM}2 \), \(\text{GSTM}3 \), \(\text{GSTM}4 \), \(\text{GSTM}5 \), \(\text{GSTM}6 \), and \(\text{GSTM}7 \). The \(\text{GSTM} \) genes are widely distributed in nature and found in essentially all eukaryotic species, and individual genetic differences may influence the activity level of GSTs and susceptibility to cancer. To date, the GSTs have been assigned to eight distinct classes: \(\text{GSTM} \), \(\text{GSTM}1 \), \(\text{GSTM}2 \), \(\text{GSTM}3 \), \(\text{GSTM}4 \), \(\text{GSTM}5 \), \(\text{GSTM}6 \), and \(\text{GSTM}7 \).

In recent years, \(\text{GSTM1} \), \(\text{GSTM1} \), and \(\text{GSTT1} \) have been studied most. The \(\text{GSTM1} \) and \(\text{GSTT1} \) genes were located on chromosome \(\text{p}13.3 \), \(\text{q}12.1 \), and \(\text{q}12.3 \) respectively \([11,12] \). Both \(\text{GSTM1} \) and \(\text{GSTT1} \) exhibit an inherited homozygous deletion polymorphism (null genotype), which has been associated with the loss of enzyme activity and increased vulnerability to cytogenetic damage \([13] \). As a result of decreased efficiency in protection against carcinogens, the individuals with homozygous deletion polymorphism are considered to be at an increased risk for malignancies \([10,14] \). Whereas for \(\text{GSTP1} \) polymorphism, a single nucleotide polymorphism in exon 5 (Ile105Val, rs1695) received most attention. The A-to-G transition results in an amino acid change from isoleucine to valine so that leading to significantly lower conjugating activity among individuals who carry one or more copies of the G allele (Ile/Val or Val/Val) compared with those who have the A/A (Ile/Ile) genotype \([15–17] \).

Recently, many studies focused on the association between PCa risk and \(\text{GSTM1} \), \(\text{GSTM1} \), or \(\text{GSTT1} \) polymorphisms, but inconsistent results have been reported. In 2009, Zengnan Mo et al. conducted a meta-analysis \([10] \) suggested that \(\text{GSTM1} \) null genotype conferred an increasing risk of PCa on a wide population basis, but no relationship was found between \(\text{GSTT1} \) and \(\text{GSTP1} \) polymorphisms and the PCa risk. During recent three years, many new researches were performed to study the association between PCa risk and \(\text{GSTM1} \), \(\text{GSTM1} \), or \(\text{GSTP1} \) polymorphisms, so an updated meta-analysis is needed.

Materials and Methods

Search Strategy and Selection Criteria

According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Checklist S1), we identified all publications (updated to June 2, 2012) by conducting computer-based searches of PubMed, Embase, Google Scholar and China National Knowledge Infrastructure (CNKI). The combination of key words were as follows: ‘glutathione S-transferase M1’ or ‘\(\text{GSTM1} \)’, ‘glutathione S-transferase T1’ or ‘\(\text{GSTT1} \)’, ‘glutathione S-transferase P1’ or ‘\(\text{GSTP1} \)’, prostate or ‘urothelial’, cancer or ‘carcinoma’ or ‘neoplasm’, ‘polymorphism’ or ‘polymorphisms’. To minimize potential publication bias, no

Table 1. Cont.

First author	Year	Source	Cases	Controls	BPH	P value for HWE												
Lai MT	2005	HB	57/39	55/66														0.373
Yang J	2006	HB	99/64	112/90	89/74	95/107												0.786
Wang YL	2008	PB	41/40	58/32														0.300
Li M	2008	HB	121/87	96/134														0.373
Ansari BS	2009	PB	34/26	25/35	13/47	9/51												0.924
Xu XX	2010	PB	68/35	70/33														0.001
Kwon DD	2011	PB	90/76	125/202	85/81	163/164	117/49	209/118										0.921
Ashiani ZO	2011	PB+BPH	50/60	10/90	47/52	38/72	47/53	37/62										0.540
Safarinejad	2011	PB	72/96	94/242	58/110	70/266	54/114	174/162										<0.001

Africans

First author	Year	Source	Cases	Controls	BPH	Cases	Controls	BPH	P value for HWE
Mallick S	2007	HB	26/108	36/98	30/104	49/85			0.540
Lavander NA	2009	PB	47/141	137/441	36/153	102/482	55/135	186/386	0.001
Souiden Y	2010	PB	58/52	68/54	30/80	18/104			

African-Americans

First author	Year	Source	Cases	Controls	BPH	Cases	Controls	BPH	P value for HWE
Agalliu I	2006	PB	9/22	7/8	7/24	4/11	11/20	1/14	0.019
Rybicki BA	2006	PB	82/192	29/104					

Mixed

First author	Year	Source	Cases	Controls	BPH	Cases	Controls	BPH	P value for HWE
Catsburg C	2012	PB	606/774	321/417	242/1158	153/583	569/843	300/449	0.373

*Null/present.

**Used both healthy people and BPH patients as controls.

GSTM1, glutathione S-transferase M1; GSTT1, glutathione S-transferase T1; GSTP1, glutathione S-transferase P1.

PB, population-based controls; HB, hospital-based controls; BPH, benign prostate hyperplasia.

Table 1. Cont.
restrictions were placed on language, time period, sample size, type of study and population. All eligible articles were retrieved and their references were checked for other relevant studies. The inclusion criteria were: (1) studies which evaluated associations between *GSTM1*, *GSTT1*, and *GSTP1* polymorphisms and PCa risk; (2) control population did not contain malignant tumor patients. The exclusion reasons of studies were: (1) insufficient original data for the calculation of odds ratios (ORs) with corresponding 95% confidence intervals (95%CIs); (2) when multiple reports were available for the same study population, we included only the most recent or the largest report. Two investigators independently reviewed the titles, abstracts to determine if an individual study was eligible for the inclusion and exclusion criteria and all disagreements were resolved during a consensus meeting among all reviewers.

Data Extraction

Table 1 summarized the following information which was extracted from all eligible studies: the name of the first author, year of publication, ethnicity, source of controls, number of cases and controls and P-value for Hardy Weinberg Equilibrium (HWE). To ensure the accuracy of extracted information, two independent researchers (Gong and Dong) extracted raw data according to the inclusion criteria. The conflicting evaluations were settled by a discussion among all investigators. Ethnic groups were mainly defined as Caucasian, Asian, African and African-American. Study designs were stratified into three groups: population-based studies, hospital-based studies and benign prostatic hyperplasia (BPH) based studies.

Statistical Analysis

We used crude ORs with corresponding 95% CIs as a measure of the association between *GSTM1*, *GSTT1* and *GSTP1* polymorphisms and risk of PCa. The significance of the pooled OR was determined by the Z test and P value (two-tailed) < 0.05 was considered significant. In our study, the \bar{F} test was used to assess the heterogeneity between studies (\bar{F} < 25% no heterogeneity; \bar{F} = 25–50% moderate heterogeneity; \bar{F} > 50% large or extreme heterogeneity) [19]. The heterogeneity was considered statistically significant with \bar{F} > 50% or P < 0.10. When there was no heterogeneity (\bar{F} ≤ 50% or P ≥ 0.10), the fixed-effects model (the Mantel-Haenszel method) was used, otherwise, the random-effects model (the DerSimonian and Laird method) was used when the heterogeneity existed (\bar{F} > 50% or P < 0.10) [20,21]. Subgroup analyses were performed by ethnicity, source of controls and gene-gene combinations. In addition, sensitivity analysis was performed by omitting each study in turn to assess the stability of results. To determine the evidence of publication bias, the funnel plot and Egger’s test were both used. An asymmetric plot suggested possible publication bias. For the interpretation of Egger’s test, statistical significance was defined as P < 0.05 [22]. All the statistical analyses were performed with MIX statistical software (Version 1.7 for windows).
Figure 2. Meta-analysis of GSTM1 null genotype and PCa risk.
doi:10.1371/journal.pone.0050587.g002
Results

After searching with our eligibility criteria, initially a total of 94 potentially relevant publications were identified. When screening the title or abstract, 32 studies were excluded because they are not associated with PCa risk and the polymorphisms of GSTM1, GSTT1, and GSTP1. Therefore, we obtained 62 relevant articles that examined the association between the polymorphisms of GSTM1, GSTT1 or GSTP1 and PCa risk. Out of them, three studies were excluded because of the insufficient data for OR calculation. Four researches [23–26] were eliminated because they were conducted on overlapping populations with other eligible studies [27–30]. Hence, 55 studies [27–81] met our inclusion criteria and were selected in this meta-analysis. However, one of the eligible studies [61] provided data of both tissue and blood samples from the overlapping population, and we only considered...
the data of blood samples. In addition, two articles contained separate data on two different ethnic groups [30,58], and we treated them as two separate studies. Finally, a total of 57 studies were involved in our meta-analysis (Fig.1). The following information was collected from each study: the name of the first author, date of publication, ethnicity, control source, number of cases and controls (Table 1). Most of the researches contained in this meta-analysis were case-control studies, except two nested case-control studies [67,79] and one cohort study [81]. Among the studies, 44 discussed the association between the \textit{GSTM1} polymorphism and PCa risk, 37 were about \textit{GSTT1}, and 35 were about \textit{GSTP1}. In all eligible studies, there were 26 studies on \textit{GSTM1} genotype of Caucasians, 13 studies of Asians, 3 studies of Africans, 1 study of African-Americans and 1 of mixed populations. Accordingly, 23 studies on \textit{GSTT1} genotype were of Caucasians, 9 studies of Asians, 3 studies of Africans, 1 study of African-Americans and 1 of mixed populations. About \textit{GSTP1} genotype, there were 25 studies of Caucasians, 6 studies of Asians, 2 studies of African-Americans and 1 of mixed populations. According to the control source, 26 were population-based...
researches, 15 were hospital-based researches, 9 studies were used BPH patients as controls, two were used both healthy people and BPH patients as controls, while the other two studies used hospital-based and BPH patients as controls. In addition, there was one study mixed the healthy people and BPH patients as controls, and the other two were not clarified.

GSTM1

Data from 44 case-control studies comprising 7,893 PCa cases and 9,668 controls were pooled together for analysis of the *GSTM1* polymorphism. The overall data showed that the individuals who carried the *GSTM1* null genotype had a significantly increased PCa risk compared with those who carried the *GSTM1* present genotype in all subjects (OR = 1.2854, 95% CI = 1.1405–1.4487, \(I^2 = 0.0001, F = 69.69\% \), Fig. 2). Because the heterogeneity among studies was significant, the random-effects model was conducted. When stratified by ethnicity, the same dramatic risks were found in Caucasians (OR = 1.3028, 95% CI = 1.1093–1.5301, \(P = 0.0013, F = 72.76\% \)) and Asians (OR = 1.4513, 95% CI = 1.1682–1.803, \(P = 0.0008, F = 61.46\% \)). But it seems that there was no association between PCa risk and the *GSTM1* null genotype in Africans (OR = 0.9108, 95% CI = 0.6943–1.1949, \(P = 0.371, F = 0.0\)). When considered the source of the control groups, two studies [43,55] were excluded for unclear source of controls. Also, high risks were found between PCa and *GSTM1* null genotype in population-based (OR = 1.2192, 95% CI = 1.0489–1.4172, \(P = 0.0009, F = 68.48\% \)), hospital-based (OR = 1.5431, 95% CI = 1.1417–2.0856, \(P = 0.0048, F = 78.24\% \)) or in BPH-based controls (OR = 1.3522, 95% CI = 1.0067–1.8163, \(P = 0.043, F = 64.6\% \)).

GSTT1

Totally, 37 studies met the inclusion criteria and were selected in the meta-analysis with 7,187 cases and 8,761 controls for analysis of the PCa risk and *GSTT1* null genotype. Overall, no enhanced risk was found between the null genotype of *GSTT1* polymorphism and PCa (OR = 1.102, 95% CI = 0.9396–1.2655, \(P = 0.1119, F = 65.96\% \), Fig. 3). As the dramatic heterogeneity, the random-effects model was used. In the subgroup analysis by ethnicity, no associations were observed in Caucasians (OR = 1.3345, 95% CI = 0.8308–2.1436, \(P = 0.1172, F = 65.48\% \)) or Africans (OR = 1.0465, 95% CI = 0.8789–1.2427, \(P = 0.8376, F = 51.39\% \)), in hospital-based (OR = 1.1988, 95% CI = 0.8387–1.7135, \(P = 0.3199, F = 73.55\% \)) or in BPH-based controls (OR = 1.3345, 95% CI = 0.8308–2.1436, \(P = 0.2327, F = 79.51\% \)).

GSTP1

We obtained 35 articles after searching and data extraction based on our eligibility criteria. In total, 8,360 cases and 9,094 controls were pooled for the association between PCa risk and *GSTP1* A131G polymorphism. However, the result showed no significant risk between PCa and the *GSTP1* A131G polymorphism (OR = 1.0643, 95% CI = 0.96–1.2251, \(P = 0.1926, F = 69.27\% \), Fig. 4). As the heterogeneity was observed, the random-effects model was used. Among the 35 studies, there were 15 case-control studies, 9,668 controls were pooled together for analysis of the *GSTP1* polymorphism. The overall data showed that the individuals who carried the *GSTP1* A131G polymorphism had a significantly increased PCa risk compared with those who carried the *GSTP1* A131G present genotype in all subjects (OR = 1.1626, 95% CI = 1.0712–1.2597, \(P = 0.0066, F = 65.48\% \)). Because the heterogeneity among studies was significant, the random-effects model was conducted. When stratified by ethnicity, the same dramatic risks were found in Caucasians (OR = 1.0152, 95% CI = 0.8789–1.1727, \(P = 0.8358, F = 51.39\% \)), in hospital-based (OR = 1.1988, 95% CI = 0.8387–1.7135, \(P = 0.3199, F = 73.55\% \)) or in BPH-based controls (OR = 1.3345, 95% CI = 0.8308–2.1436, \(P = 0.2327, F = 79.51\% \)).

Table 2. Characteristics of eligible studies in the meta-analysis for the combination of *GSTM1*, *GSTT1* and *GSTP1* polymorphisms with PCa.

First author	Year	Source	Both nulla	Totala	Both null &AG+GGa	Totala	Both null &AG+GGa	Totala	Both null &AG+GGa	Totala
Rebeck TR	1999	PB	22/31	468/462	46/92	135/288	22/24	153/288	1/1	91/127
Autrup JL	1999	PB	19/24	153/288	20/25	91/127	10/5	91/127	1/1	91/127
Steinhoff C	2000	HB	8/4	91/127	9/11	75/100				
Kote-Jarai Z	2001	PB	3/5	99/129	21/16	269/263				
Caceres DD	2005	PB	58/14	81/105	5/14	81/105				
Srivastava DSL	2005	/	23/12	127/144	41/25	127/144	25/14	127/144	14/7	127/144
Vijayalakshmi K	2005	HB	48/42	558/521	166/145	558/521	48/49	557/522		
Agalliu I	2006	PB	16/8	57/46	16/12	57/53				
Lima MM Jr	2008	BPH	21/9	125/97						
Kumar V	2011	HB+BPH	16/8	57/46	16/12	57/53				
Thakur H	2011	HB+BPH	23/12	150/172	23/10	150/155				
Nakazato H	2003	HB	38/42	168/336	49/49	168/336	36/36	168/336	26/11	168/336
Safarinejad MR	2011	PB	9/11	75/100						
Sroutil Y	2010	PB	11/17	122/110						

*Cases/controls.
Used BPH patients as controls.
doi:10.1371/journal.pone.0050587.t002
Table 3. Summary of meta-analysis of GSTM1, GSTT1 and GSTP1 polymorphisms and PCa risk.

Groups	No. of studies	No. of subjects	OR (95% CI)	Statistical method	P%	P-value for Z test
GSTM1	44	17561	1.2854(1.1405–1.4487)	Random	69.69	<0.0001
Caucasians	26	10134	1.3028(1.1093–1.5301)	Random	72.76	<0.0001
Asians	13	3997	1.4513(1.1682–1.803)	Random	61.46	0.0008
Africans	3	1266	0.9108(0.6943–1.1949)	Fixed	0.371	
hospital-based studies	12	3821	1.5431(1.1417–2.0856)	Random	78.24	0.0048
population-based studies	23	11091	1.2192(1.0488–1.4172)	Random	68.48	0.0099
BPH-based studies	10	2307	1.3522(1.0067–1.8163)	Random	64.6	0.045
GSTT1	37	15948	1.1020(0.9596–1.2655)	Random	65.96	0.1119
Caucasians	23	9556	1.1626(0.9712–1.3917)	Random	65.48	0.1006
Asians	9	2937	1.0533(0.8015–1.3842)	Random	65.68	0.7096
Africans	3	1273	1.0465(0.4937–2.2181)	Random	83.85	0.9057
hospital-based studies	8	2814	1.1988(0.8387–1.7135)	Random	73.55	0.3199
population-based studies	22	10919	1.0152(0.8789–1.1727)	Random	51.39	0.8376
BPH-based studies	8	1870	1.3345(0.8308–2.1436)	Random	79.51	0.2327
GSTP1	35	17644	1.0845(0.96–1.2251)	Random	69.27	0.1926
GSTP1*	32	16726	1.0572(0.9391–1.1902)	Random	65.87	0.3574
Caucasians	25	12230	1.0944(0.9483–1.2629)	Random	70.19	0.2173
Asians	6	2038	1.1924(0.7953–1.7879)	Random	75.57	0.3945
hospital-based studies	9	4361	0.9667(0.7548–1.238)	Random	66.95	0.7883
population-based studies	18	10604	1.0675(0.9221–1.2359)	Random	62.58	0.3817
BPH-based studies	6	1874	1.2012(0.7568–1.9065)	Random	81.31	0.4367
GSTM1+GSTT1*	11	4550	1.4353(1.0345–1.9913)	Random	55.91	0.0306
GSTT1+GSTP1a	5	2493	1.7335(1.1067–2.7152)	Random	62.42	0.0163
GSTM1+GSTT1+GSTP1b	6	2689	1.3867(0.9763–1.9697)	Random	67.33	0.0679
Three polymorphisms	5	1711	1.6903(0.6823–4.1874)	Random	76.3	0.2568

OR, odds ratio; CI, confidence interval.

*aGSTP1 the total result of after excluding three researches deviated from Hardy-Weinberg equilibrium (HWE).

*bGSTM1 (−/−) and GSTT1 (−/−) vs. GSTM1 (+/−) and GSTT1 (−/−) with GSTM1 (−/−) and GSTT1 (+/−).

*cGSTT1 (−/−) and GSTP1 (AG+GG) vs. GSTT1 (+/−) and GSTP1 (AA) with GSTT1 (−/−) and GSTP1 (AG+GG).

*dGSTM1 (−/−), GSTT1 (−/−) and GSTP1 (AG+GG) vs. the other combinations of the GSTM1, GSTT1 and GSTP1 polymorphisms.

OR = 1.0572, 95% CI = 0.9391–1.1902, P = 0.3574, F = 65.87% was similar with the previous one. We also performed subgroup analysis stratified by ethnicity and control source. By ethnicity, we did not acquire remarkable enhanced risks of PCa with GSTP1 A131G polymorphism either in Caucasians (OR = 1.0944, 95% CI = 0.9463–1.2629, P = 0.2173, F = 70.19%) or in Asians (OR = 1.1924, 95% CI = 0.7953–1.7879, P = 0.3945, F = 75.57%). By control source, two studies [43,55] were eliminated as not mentioned the source of controls. The available data revealed a result that there were no enhanced PCa risks for population-based (OR = 1.0675, 95% CI = 0.9221–1.2359, P = 0.3817, F = 62.58%), hospital-based (OR = 0.9667, 95% CI = 0.7548–1.238, P = 0.7883, F = 66.95%) or BPH-based (OR = 1.2012, 95% CI = 0.7568–1.9065, P = 0.4367, F = 81.31%) controls with the GSTP1 A131G polymorphism.

Combination of Genotypes

Several studies reported the combination of GSTM1, GSTT1 and GSTP1 genotypes (Table 2). For the PCa patients contrast with controls, we detected the remarkable increased PCa risks for people with dual null genotype of GSTM1 and GSTT1 (OR = 1.4353, 95% CI = 1.0345–1.9913, P = 0.0306, F = 55.91%) and people with GSTT1 null genotype and GSTP1 A131G polymorphism (OR = 1.7335, 95% CI = 1.1067–2.7152, P = 0.0163, F = 62.42%). However, when combined the GSTM1 null genotype and GSTP1 A131G polymorphism (OR = 1.3067, 95% CI = 0.9763–1.9697, P = 0.0679, F = 67.33%), or the three genotypes (OR = 1.6903, 95% CI = 0.6823–4.1874, P = 0.2568, F = 76.3%), no dramatic PCa risks were obtained.

Sensitivity Analyses

Sensitivity analyses were performed by sequential omission of individual studies for all subjects and subgroups. The corresponding pooled ORs were not materially altered in all subjects and subgroups of GSTM1, GSTT1 or GSTP1 genotypes (data not shown). The results of sensitivity analyses indicated the stability of the results of this meta-analysis.

Publication Bias

Funnel plot and Egger’s test were both performed to access the publication bias in this meta-analysis. The funnel plot shapes of GSTM1 and GSTP1 polymorphisms were symmetrical (data not
shown) and the P values of Egger’s test were 0.0625 and 0.4738 respectively, so the results showed no evidence of publication biases. However, the shape of $GSTT1$ genotype revealed a little unsymmetrical (data not shown), therefore the Egger’s test was further applied to provide statistical evidence and the result suggested the publication bias might be existed, and the P value was 0.0415. Hence, we conducted the trim-and-fill in order to get further information. The result revealed that the number of imputed studies was zero, and also the corrected OR was 1.102 (95% CI = 0.9596–1.2655) which was the same as the uncorrected one.

Discussion

PCa is the most commonly diagnosed non-skin malignancy among men and its incidence is expected to increase as the population age elevated [82]. The molecular genetics of PCa is poorly understood. Its heterogeneous nature suggests that predisposition to PCa may involve multiple genes and variable phenotypic expression. The glutathiones S-transferases (GSTs) are the most important parts of phase II superfamily of metabolism enzymes. In humans, there are several GST classes that are encoded by distinct gene families [83]. Among them, $GSTM1$, $GSTT1$ and $GSTP1$ should be pointed out because the polymorphisms of these genes may influence the enzyme activity, and eventually increase vulnerability to genotoxic damage [14]. Therefore, the association between the polymorphisms of $GSTM1$, $GSTT1$ or $GSTP1$ and PCa has been intensively investigated.

In this study, association between $GSTM1$, $GSTT1$ or $GSTP1$ genetic variants and PCa risk were examined and all the results of the present meta-analysis were summarized in Table 3. Our result suggested that a significant increased risk existed between PCa and $GSTM1$ null genotype, whereas no elevated PCa risks were observed with the $GSTT1$ null genotype and $GSTP1$ polymorphism. It is consistent with the result of former meta-analysis, which was conducted by Zengnan Mo et al. in 2009. However, we included 11313 cases and 12934 controls from 57 studies in the present meta-analysis, which is much more than the previous one including 7,984 cases and 9,143 controls from 39 case-control studies. Hence, a more stringent and comprehensive result has been obtained.

It is known that the allele frequencies of metabolic genes are not equally distributed throughout the human population but follow diverse ethnic patterns, therefore, the subgroups according to ethnicity were performed. Our results indicated that significant PCa risks of people with $GSTM1$ null genotype are in all subjects, especially in Caucasians and Asians, but not in Africans. The possible reason of the conflicting results among diverse ethnicities could be that different genetic backgrounds and environment they exposed to may have different effects on the PCa risk. Additionally, as limited sample size may have not enough statistical power to detect a real effect or generate a fluctuated estimation, the small sample size of Africans in this meta-analysis should also be taken into consideration.

Furthermore, we also showed that $GSTM1$ null genotype has strikingly increased the risk of PCa susceptibility when stratified by control source. However, we obtained the highest risk of PCa when only considered the hospital-based controls. The possible reason may be that $GSTM1$ null genotype could influence the susceptibility to non-cancer diseases, such as COPD [84], alcoholic liver disease [85], and coronary heart disease [86], so its genotype frequency possibly differed between the hospital-based and population-based controls. Besides, we got a higher PCa risk of BPH-based controls than population controls. For this result, the probably reason could be the selection bias. To be specific, the differences of selection criteria or selection chance between population and BPH-based controls may be the main reasons of the selection bias. On the other hand, we did not exclude that the BPH could be affected by the $GSTM1$ null genotype [97] was one of the reasons for the result. However, the exactly reason need to be further confirmed.

In addition, we first observed the association between the combination of $GSTM1$, $GSTT1$ or $GSTP1$ genotypes and PCa risk and revealed important results. Eleven articles examined the people with dual null genotype of $GSTM1$ and $GSTT1$, and our result proved a remarkable increased PCa risk for these people. Moreover, the result also revealed a very strong risk of PCa for people who with $GSTT1$ null genotype and $GSTP1$ A131G polymorphism from five articles. The present meta-analysis is the earliest one to evaluate the potential interaction of the gene-to-gene and PCa risk. However, we should treat the results with caution for the limited sample size.

For the $GSTT1$ null genotype and $GSTP1$ A131G polymorphism, we failed to find the association between PCa risk and the polymorphisms, even though we stratified for ethnicity and control source, which is consistent with the previous meta-analysis [18].

However, there are some limitations in this meta-analysis. First of all, even though we performed subgroup analyses stratified by ethnicity and control source, the heterogeneity for $GSTM1$ polymorphism among the studies was extreme. It suggested that there were other potential confounding factors in the included studies, such as the genotyping error, selection bias, or population-specific gene-gene or gene-environment interaction, allelic heterogeneity, or chance [88,89]. Although evidence of heterogeneity exists, it was found through sensitivity analysis that studies contribute to the heterogeneity do not significantly alter the estimate of overall odds ratio. Secondly, only published studies were included, therefore the publication bias may have been occurred. The Egger’s test provided statistical evidence of that. We observed the publication bias when only considered studies about the association between $GSTT1$ polymorphism and PCa risk, but did not find it in the studies about the PCa risks with $GSTM1$ and $GSTP1$ polymorphisms. It is known that positive results usually have a greater probability of being published, and such bias may occur when studies with null or unexpected results. In addition, we also performed the trim-and-fill and the corrected OR was the same as the uncorrected one. Therefore, our result of $GSTT1$ null genotype was reliable and stable to some extent. Thirdly, the overall outcomes were based on unadjusted effect estimates. Although the cases and controls were matched on age, sex and residence in all studies, these confounding factors might slightly modify the effective estimates and a more precise evaluation needed to be adjusted by the potentially suspected factors. Finally, as the meta-analysis remains a retrospective research which is subject to the methodological deficiencies of the included studies, we tried to develop a detailed protocol before initiating the study, and then performed an explicit method for study researching, selection, data extraction and data analysis to minimize the likelihood of bias.

Conclusions

In conclusion, our meta-analysis suggested that $GSTM1$ null genotype is associated with a high increased risk of PCa and no significant PCa risks were obtained for $GSTT1$ and $GSTP1$ polymorphisms. To our knowledge, the present study is the first
meta-analysis to date to report the interaction between the combination of GSTM1, GSTT1 or GSTP1 genotypes and PCa risk. In the meta-analysis, we proved remarkable elevated PCa risks for people who with dual null genotype of GSTM1 and GSTT1, and also for people who with GSTT1 null genotype and GSTP1 A131G polymorphism. Larger and more rigorous analytical studies will be required to confirm our findings and evaluate gene-environment interactions with PCa risk.

References

1. Jemal A, Siegel R, Ward E, Murray T, Xu J, et al. (2006) Cancer statistics. CA Cancer J Clin 56: 106–130.
2. Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics. CA Cancer J Clin 51: 15–36.
3. Parkin DM, Bray F, Ferlay J, Pisani P (2002) Global cancer statistics. CA Cancer J Clin 53: 74–108.
4. Flannigan N, Zlotky MA (2007) Prostate cancer prevention: past, present, and future. Cancer 110: 1889–1899.
5. American Cancer Society: Cancer Facts & Figures 2009. 2009.
6. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30: 445–600.
7. Ryberg D, Skauk V, Hower A, Phillips DH, Harries LW, et al. (1997) Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 18: 1205–1209.
8. Rebbeck TR (1997) Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev 6: 733–743.
9. Hayes JD, Spinelli RJ (2000) Glutathione S-transferases polymorphisms and their biological consequence. Pharmacology 61: 154–166.
10. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Ann Rev Pharmacol Toxtcol 45: 51–88.
11. Pearson WR, Vorachek WR, Xu SJ, Berger R, Hart L, et al. (1993) Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13. Am J Hum Genet 53: 220–233.
12. Webb G, Vaska Y, Coggan M, Board P (1996) Chromosomal localization of the gene for the human theta class glutathione transferase (GSTT1). Genomics 33: 121–123.
13. Norga H (2004) Cytogenetic biomarkers and genetic polymorphisms. Toxicol Lett 149: 309–334.
14. McElwain CC, Townend DM, Tew KD (2006) Glutathione S-transferase polymorphisms in cancer incidence and therapy. Oncogene 25: 1639-1648.
15. Ali-Osman F, Akande O, Antoun G, Mao JX, Buolamwini J (1997) Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins J Biol Chem 272: 10004-10012.
16. Xu X, Ji X, Srivastava SK, Xia H, Awasthi S, et al. (1997) Mechanism of differential catalytic efficiency of two polymorphic forms of human glutathione S-transferase Pi1 in the glutathione conjugation of carcinogenic diol epoxide of chrysene. Arch Biochem Biophys 345: 32–38.
17. Sundberg K, Johansson AS, Stenberg G, Widersten M, Seidel A, et al. (1998) Differences in the catalytic efficiencies of allelic variants of glutathione transferase transfrase PI-1 towards carcinoogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis 19: 433–436.
18. Mo Z, Gao Y, Gao F, Jian L (2009) An updating meta-analysis of the GSTM1, GSTT1, and GSTP1 polymorphisms and prostate cancer: a HuGE review. Prostate 69: 662–680.
19. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557–560.
20. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22: 719-748.
21. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188.
22. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315: 629–634.
23. Murata M, Shiraishi T, Fukutome K, Watanabe M, Nagao M, et al. (1998) Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 19: 641–644.
24. Wadelius M, Astrup JL, Stublin MJ, Anderson SO, Johansson JE, et al. (1999) Polymorphisms in NAT2, CYP2D6, CYP2C19 and GSTP1 and their association with prostate cancer. Pharmacogenetics 9: 333–340.
25. Autrup JL, Thomasen LH, Olsen JH, Wolf H, Astrup H (1999) Glutathione S-transferases as risk factors in prostate cancer. Eur J Cancer Prev 8: 525–532.
26. Steinhoff C, Franke KH, Golka K, Thier R, Ronner HC, et al. (2000) Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma. Arch Toxicol 74: 521–526.
27. Sherpa TP, Platz EA, Kantoff PW, Nelson WG, Isaacs WB, et al. (2000) No association between the I105V polymorphism of the glutathione S-transferase PI gene (GSTP1) and prostate cancer risk: A prospective study. Cancer Epidemiol Biomarkers Prev 9: 1267–1268.
28. Gaur A, Haidinger G, Hinteregger S, Bernhofer G, Schatz G, et al. (2001) Polymorphisms of glutathione S-transferase genes (GSTP1, GSTM1 and GSTT1) and prostate-cancer risk. Int J Cancer 95: 152–155.
29. Kote-Jarai Z, Easton D, Jeffries S, Durocher F, et al. (2001) Relationship between glutathione S-transferase M1, P1 and T1 polymorphisms and early onset prostate cancer. Pharmacogenetics 11: 325–330.
30. Lascombe CJ, French ME, Liu S, Sadsey MF, Farrell WE, et al. 2002 Glutathione S-transferase GSTP1 genotypes are associated with response to androgen ablation therapy in advanced prostate cancer. Cancer Detect Prev 26: 376–380.
31. Beer TM, Evans AJ, Hough KM, Lowe BA, McWilliams JE, et al. (2002) Polymorphisms of GSTP1 and related genes and prostate cancer risk. Prostate Cancer and Prostatic Diseases 5: 22–27.
32. Jeronimo C, Vazim G, Herutique R, Oliveira J, Bento MJ, et al. (2002) Identification of genetic polymorphisms at the glutathione S-transferase Pi locus with familial prostate cancer risk in a Japanese population. Anticancer Res 23: 219–902.
33. Kidd LC, Woodson K, Taylor PR, Albanes D, Virtamo J, et al. (2003) Polymorphisms in glutathione S-transferase genes (GST-M1 GST-T1 and GST-P1) and susceptibility to prostate cancer among male smokers of the ATBC cancer prevention study. Eur J Cancer Prev 12: 317–320.
34. Nam RK, Zhang WW, Trachtenberg J, Jewett MA, Emami M, et al. (2003) Polymorphism in CYP1A1 and GSTM1 in relation to prostate cancer in Chinese people. Prostate 57: 111–117.
35. Valderrama R, Vasconcelos A, Costa S, Pinto D, Ferreira P, et al. (2004) Metabolic susceptibility genotypes and prostate cancer risk in a southern European population: The role of glutathione S-transferases GSTM1, GSTM3, and GSTT1 genetic polymorphisms. Prostate 58: 414–420.

Supporting Information

Checklist S1. (DOC)

Author Contributions

Conceived and designed the experiments: RA. Performed the experiments: MG WD ZS. Analyzed the data: MG WD ZS. Contributed reagents/materials/analysis tools: YX WN. Wrote the paper: MG WD.
66. Thakur H, Gupta L, Sobti RC, Janmeja AK, Seth A, et al. (2011) Association of
64. Ashtiani ZO, Hasheminasab SM, Ayati M, Goulian BS, Modarressi MH (2010)
61. Mittal RD, Mishra DK, Mandhani A (2006) Evaluating polymorphic status of
59. Quin˜ones LA, Irarra´zabal CE, Rojas CR, Orellana CE, Acevedo C, et al. (2006)
57. Yang J, Wu HF, Zhang W, Gu M, Hua LX, et al. (2006) Polymorphisms of
55. Srivastava DSL, Mandhani A, Mittal B, Mittal RD (2005) Genetic polymor-
54. Caceres DD, Iturrieta J, Acevedo C, Huidobro C, Varela N, et al. (2005)
52. Komiya Y, Tsukino H, Nakao H, Kuroda Y, Imai H, et al. (2005) Human
51. Antognelli C, Mearini L, Talesa VN, Giannantoni A, Mearini E (2005)
48. Joseph MA, Moysich KB, Freudenheim JL, Shields PG, Bowman ED, et al.

Dietary glucosinolate intake, polymorphisms in selected biotransformation
polymorphisms associated with risk of prostate cancer in Iranian patients? Pathol
Are GSTM1, GSTT1 and CAG repeat length of androgen receptor gene
genes and their genetic susceptibility to prostate cancer in Chinese men. Chin
polymorphisms and susceptibility to prostate cancer in the Japanese population. J Cancer Res Clin Oncol 131: 238–242.
Lai MT, Chen RH, Tsai FJ, Wan L, Chen WC (2005) Glutathione S-
Glutathione S-transferaseM1 gene but not insulin-like growth factor-2 gene or epidermal
thoracic cancer in Asian Pac J Cancer Prev 6: 309–314.
Yang J, Wu HF, Zhang W, Gu M, Hua LX, et al. (2006) Polymorphisms of
metabolic enzyme genes, living habits and prostate cancer susceptibility. Front Biosci 11: 2052–2060.
Agalliu I, Langeberg WJ, Lampe JW, Salmas CA, Stanford JL (2006) Glutathione S-transferase M1, T1, and P1 polymorphisms and prostate cancer in middle-aged men. Prostate 66: 145–156.
Quinones LA, Irrazabal CE, Rojas CR, Orellana CE, Acevedo C, et al. (2006) Joint effect among p53, CYP1A1, GSTM1 polymorphism combinations and smoking on prostate cancer risk: An exploratory genotype-environment interaction. Eur J Epidemiol 20: 79–88.
Srivastava DSL, Mandhani A, Mittal B, Mittal RD (2005) Genetic polymor-
phism of glutathione S-transferasegene (GSTM1, GSTTI, GSTP1) and susceptibility to prostate cancer in Northern India. 95: 170–173.
Vijayakulakshan K, Vertiessley V, Krishnam M, Shroff S, Vishwa-nathan KN, et al. (2005) Polymorphisms at GSTM1 and GSTP1 gene loci and risk of prostate cancer in a South Indian population. Asian Pac J Cancer Prev 6: 309–314.
Wang YL, Jiang J, Wang LF, Lin YF (2005) Polymorphisms of glutathione-S-
transferase genes GSTM1 and GSTT1 in and prostate cancer risk in a Tunisian population. Cancer Epidemiol 34: 598–603.
Sivonová M, Wacezková I, Dobrota D, Mátáková T, Hatok J, et al. (2009) Polymorphisms of glutathione-S-transferase M1 and T1 and prostate cancer risk: a case-control study. J Exp Clin Cancer Res 28: 32.
Kwon DD, Lee JW, Han DY, Seo IY, Park SC, et al. (2011) Relationship between the Glutathione-S-Transferase PI, M1, and T1 Genotypes and Prostate Cancer Risk in Korean Subjects. Korean J Urol 52: 247–252.
Sahar Ansari B, Vaseundeva R, Mirnargari M, Pasimah I, Saharab AR, et al. (2009) Lack of association of glutathione S-transferase gene polymorphisms in Iranian prostate cancer subjects. Am J Biochem & Biotech 5: 30–34.
Wang YL, Jiang J, Wang LF, Lin YF (2005) Polymorphisms of glutathione-S-
transferase genes GSTM1 and GSTT1 and prostate cancer risk in Chinese population. Acta Academicae medicinae medicus tertiaie 10: 1039-1041.
Xu XX, Chang WJ, Hou JG, Xu DF, Cui XG, et al. (2010) Relationship of GSTP1, RASSF1A polymorphisms and environmental agent with susceptibility to prostate cancer: a case-control study. Academic Journal of Second Military Medical University 1: 12–17.
Wang YL, Jiang J, Jin FS, Wang LF, Wang JH (2008) Polymorphisms of glutathione-S-transferase gene GSTP1 and prostate cancer risk in Chinese population. Shanshi Med J 5: 410–412.
Hemelrijck MV, Rohrmann S, Steinbrecher A, Kaaks R, Teucher B, et al. (2012) Heterocyclic Aromatic Amine [HCA] Intake and Prostate Cancer Risk: Effect Modification by Genetic Variants. Nutr Cancer 64: 704–713.
Gerts C, Joshi AD, Corral R, Levi nger JP, Koo J, et al. (2012) Polymorphisms of GSTM1, GSTT1, and prostate cancer risk in Turkish population. Cancer Invest 24: 41–45.
Mittal RD, Mishra DK, Mandhani A (2006) Evaluating polymorphic status of glutathione S-transferase genes in blood and tissue samples of prostate cancer patients. Asian Pacific J Cancer Prev 7: 444–446.
Mallick S, Romana M, Blanchet P, Multiplier L (2007) GSTM1 and GSTT1 polymorphisms and the risk of prostate cancer in a Caribbean population of African descent. Urology 69: 1165–1169.
Li M, Guan TY, Li Y, Na YQ (2008) Polymorphisms of GSTM1 and CYP1A1 genes and their genetic susceptibility to prostate cancer in Chinese men. Chin Med J (Engl) 121: 305–308.
Ashitani ZO, Hasheminasab SM, Ayati M, Goulian BS, Modarresi MH (2010) Are GSTM1, GSTTI and CAG repeat length of androgen receptor gene polymorphisms associated with risk of prostate cancer in Iranian patients? Pathol Oncol Res 17: 269–275.
Kumar V, Yadav CS, Datta SK, Singh S, Ahmned RS, et al. (2011) Association of GSTM1 and GSTT1 polymorphisms with lipid peroxidation in benign prostate hyperplasia and prostate cancer: a pilot study. Dis Markers 30: 163–169.
Tkhatur H, Gupta L, Sehri RC, Jamneja AK, Seth A, et al. (2011) Association of GSTM1 genes with COPD and prostate cancer in north Indian populations. Mol Biol Rep 38: 1733–1739.
Steinbrecher A, Rohrmann S, Timofoeva M, Risch A, Jansen E, et al. (2010) Dietary glucosinolate intake, polymorphisms in selected biotransformation enzymes, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 19: 135–143.
Rodrigues IS, Kuusme H, Losi-Guerbarowski R, Fuganti PE, Gregório EP, et al. (2011) Evaluation of the influence of polymorphic variants CYP1A2, CYP1B1, CYP1A1B, GSTM1, and GSTT1 on prostate cancer. Urol Oncol 29: 654–663.
Lavender NA, Bredorf ML, VanClave TT, Brock GN, Kittles RA, et al. (2009) Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among men of African descent: a case-control study. BMC Cancer 9: 397.
Safarinejad MR, Shafiei M, Safarinejad SH (2011) Glutathione S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) and prostate cancer: a case-control study in Tehran, Iran. Prostate Cancer Prostatic Dis 14: 105–113.
Lima MM Jr, Oliveira ML, Granja F, Trindade AC, De Castro Santos LE, et al. (2008) Lack of association of GSTT1, GSTM1, GSTP1, and CYP1A1 polymorphisms for susceptibility and outcome in Brazilian prostate cancer patients. Folia Biol (Praha) 54: 102–108.
Souslin Y, Mahdousani M, Chaireb K, El Kamel R, Mahdousani K (2010) Polymorphisms of glutathione-S-transferase M1 and T1 and prostate cancer risk in a Tunisian population. Cancer Epidemiol 34: 598–603.
Sivonová M, Wacezková I, Dobrota D, Mátáková T, Hatok J, et al. (2009) Polymorphisms of glutathione-S-transferase M1 and T1, T1 and the risk of prostate cancer: a case-control study. J Exp Clin Cancer Res 28: 32.

GSTM1, GSTT1, and GSTP1 Polymorphisms and PCa Risk