A DECODING SCHEME FOR THE 4-ARY LEXICODES WITH $D = 3$

D. G. KIM and H. K. KIM

Received 21 January 2001 and in revised form 8 July 2001

We introduce the algorithms for basis and decoding of quaternary lexicographic codes with minimum distance $d = 3$ for an arbitrary length n.

2000 Mathematics Subject Classification: 94Bxx.

1. Introduction. In this section, we define some particular operations and discuss q-ary lexicographic codes with minimum distance d. The game-theoretic operations of nim-addition \oplus and nim-multiplication \otimes which are used in the Game of Nim are introduced by Definitions 1.1 and 1.2.

The Game of Nim is played by two players, with one or more piles of counters. Each player, in turn, removes from one to all counters of a pile. The player taking the last counter wins.

Definition 1.1. Let $(\alpha_1 \cdots \alpha_r), (\beta_1 \cdots \beta_r)$ be the binary representation of α, β, respectively. For each i, $\alpha \oplus \beta$ has a 0 digit in the position i where $\alpha_i = \beta_i$, and $\alpha \oplus \beta$ has a 1 in the position i where $\alpha_i \neq \beta_i$. In other words, $\alpha \oplus \beta$ is the Exclusive OR (XOR) of each digit in their binary representations.

For example, the nim-addition table for numbers less than 4 is given in Table 1.1.

Table 1.1

\oplus	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

There is a nim-multiplication \otimes which, together with nim-addition \oplus, converts the integers into a field [1]. With nim-multiplication, we know that $0 \otimes \alpha$ must be 0 which is the zero of the field. Also $1 \otimes \alpha$ must be α. Since the elements other than 0, 1 satisfy $\alpha \otimes \alpha = \alpha \oplus 1$ in the finite field of order 4, we have $2 \otimes 2 = 3$. Next $2 \otimes 3$ cannot be one of 0, 2, 3 and so must be 1.

In general, using the above value α we can define the following nim-multiplication.

Definition 1.2. The nim-multiplication $\alpha \otimes \beta$ is defined by $\alpha \otimes \beta = \text{mex} \{ (\alpha' \otimes \beta') \oplus (\alpha' \otimes \beta') \mid \alpha' < \alpha, \beta' < \beta \}$, where mex (minimal excluded number) means the least nonnegative integer not included.
For example, the nim-multiplication table for numbers less than 4 is given in Table 1.2.

⊗	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	3	1
3	0	3	1	2

The following is an easy rule enabling us to compute nim-additions:
(1) the nim-sum of a number of distinct 2-powers (“2-power” means a power of 2 in the ordinary sense) is their ordinary sum;
(2) the nim-sum of two equal numbers is 0.

For finite numbers, the nim-multiplication follows from the following rules, analogous to those for nim-addition. We will use the term Fermat 2-power to denote the numbers 2^{2^a} in the ordinary sense;
(3) the nim-product of a number of distinct Fermat 2-powers is their ordinary product;
(4) the square of a Fermat 2-power is the number obtained by multiplying it by $3/2$ in the ordinary sense.

In [1], \oplus and \otimes convert the numbers 0, 1, 2, ..., into a field of characteristic 2. Also, for all a, the numbers less than 2^{2^a} form a subfield isomorphic to the Galois field $GF(2^{2^a})$.

Consider the lexicographic codes (for short, lexicodes) with base $B = 2^{2^a}$. A word of this code is a sequence $x = \cdots x_3 x_2 x_1$ of elements of \{0, 1, ..., $2^{2^a} - 1$\}. The set of words is ordered lexicographically, that is, the word $x = \cdots x_3 x_2 x_1$ is smaller than $y = \cdots y_3 y_2 y_1$, written $x < y$, in case of some r we have $x_r < y_r$ and $x_s = y_s$ for all s greater than r.

Lexicodes are defined by saying a word in the code in case it does not conflict with any previous codewords. That is, the lexicode with minimum distance d is defined by saying that two words do not conflict in case the Hamming distance between them is not less than d. We write $\mathcal{G}_{n,d}$ for the 4-ary lexicode consisting of the codewords with length n or less and minimum distance d.

In [2], Conway and Sloane showed that lexicodes with base $B = 2^a$ are closed under nim-addition, and if $B = 2^{2^a}$ the lexicodes are closed under nim-multiplication by scalars. Therefore if B is of the form 2^{2^a}, then the lexicode is a linear code over $GF(B)$.

2. The basis and decoding for $\mathcal{G}_{4,3}$

Lemma 2.1. Let e_n be the basis of length n in $\mathcal{G}_{4,3}$. Then $111 = e_3$, $1012 = e_4$, and $10013 = e_5$.

Proof. Since the weight of e_n must be greater than or equal to 3, the first basis has at least 3 nonzero digits, and so the smallest codeword is 111. The second basis e_4 is the type of $10ab$, where neither a nor b is zero. Let “ab”$_n$ be the first two
digits of \(e_n \). Since “\(ab \)”\(_3\) = “11”, “\(ab \)”\(_4\) is lexicographically ordered “12”, and then \(d(\alpha \otimes e_3, 1012) \geq 3 \), for \(\alpha \in \text{GF}(4) \). Therefore, \(1012 = e_4 \). In a similar way, we obtain \(10013 = e_5 \).

Theorem 2.2. There is no basis \(e_n \), where \(n = 6, 17s + 5 \) (\(s \in \mathbb{N} \)) in \(\mathcal{F}_{4,3} \).

Proof. Suppose that \(1000ab \in \mathcal{F}_{4,3} \). Let \(\alpha \in \text{GF}(4) \). If neither \(a \) nor \(b \) is zero, there exists \(e_i \) (\(3 \leq i \leq 5 \)) such that \(d(1000ab, \alpha e_i) < 3 \). This contradicts the hypothesis. In all other cases, the weight of \(1000ab \) is 2, and so the basis of length 6 does not exist.

Consider the basis \(e_7 \) of length 7. Then \(1000ab \) of length 7 also conflicts with any smaller basis, for all “\(ab \)”. Thus \(1000ab \) needs a digit 1 in the 6th position. If “\(ab \)”\(_7\) = “0b” (\(b \neq 0 \)), then \(110000b \) does not conflict with any smaller codeword. Hence \(1100001 \) is the smallest codeword with more digits than \(e_5 \), that is, \(1100001 = e_7 \).

Therefore, for \(7 \leq n \leq 21 \), “\(ab \)”\(_n\) takes ordered digit from “01” to “33”. As a result, neither \(e_6 \) nor \(e_{17s+5} \) (\(s \in \mathbb{N} \)) exists in \(\mathcal{F}_{4,3} \).

As we have seen in the proof of **Theorem 2.2**, the basis \(e_n \) has digit 1’s in the \(n \)th, 6th, and \((17s+5)\)th positions, for all \(s \in \mathbb{N} \) satisfying \(6 < 17s + 5 < n \).

The following tables give “\(ab \)”\(_n\) corresponding to the length \(n \), where \(7 \leq n \leq 21 \) or \(17p + 6 \leq n \leq 17q + 4 \), for \(p \in \mathbb{N} \) and \(q = p + 1 \).

Table 2.1

ab	00	01	02	03	10	11	12	13
n	7	8	9	10	11	12	13	
ab	20	21	22	23	30	31	32	33
n	14	15	16	17	18	19	20	21

Table 2.2

ab	00	01	02	03	10	11	12	13
n	23	24	25	26	27	28	29	30
ab	20	21	22	23	30	31	32	33
n	31	32	33	34	35	36	37	38
n	48	49	50	51	52	53	54	55

Now we may consider the basis \(e_n \) satisfying \(n \geq 7 \) and \(n \neq 17s + 5 \), \(s \in \mathbb{N} \), in the following algorithm.
Algorithm for the basis \(e_n \)

Step 1. Suppose that \(7 \leq n \leq 21 \). The basis \(e_n \) has digit 1’s in the \(n \)th and 6th positions. And “\(ab \)”\(_n\) takes the \((n-6)\)th lexicographically ordered digit from “01” to “33” (see Table 2.1).

Step 2. Suppose that \(17p + 6 \leq n \leq 17q + 4 \), for \(p \in \mathbb{N} \) and \(q = p + 1 \). Then \(e_n \) has digit 1’s in the \(n \)th, 6th and \((17s + 5)\)th positions, for all \(s \in \mathbb{N} \) satisfying \(6 < 17s + 5 < n \). And “\(ab \)”\(_n\) takes the \((n-17p-5)\)th lexicographically ordered digit from “00” to “33” (see Table 2.2).

The following table gives the basis \(e_n \), where \(n \geq 7 \), \(n \neq 17s + 5 \), for \(s \in \mathbb{N} \):

\(n \)	\(e_n \)
7	\(1100001 \) = \(e_7 \)
8	\(1010000 \) = \(e_8 \)
9	\(1001000 \) = \(e_9 \)
10	\(1000100 \) = \(e_{10} \)
11	\(1000010 \) = \(e_{11} \)
...	
23	\(111 \ldots 100000 \) = \(e_{23} \)
24	\(101 \ldots 100000 \) = \(e_{24} \)
25	\(1001 \ldots 100000 \) = \(e_{25} \)
26	\(10001 \ldots 100000 \) = \(e_{26} \)
27	\(100001 \ldots 100000 \) = \(e_{27} \)
...	

Example 2.3. We take \(n = 19 \) as the length. Since \(7 \leq n \leq 21 \),

\[
100000000 00001000ab = e_{19},
\]

(2.1)

by Step 1. Then “\(ab \)”\(_{19}\) takes the 13th order “31” from “01”. Therefore, we have \(100000000 0000100031 = e_{19} \).

Example 2.4. Let \(n = 27 \). Since \(6 < 17s + 5 < n \) for \(s = 1, e_{27} \) has digit 1’s in the 27th, 22nd, and 6th positions, by Step 2. So we have

\[
1000010 0000000000 00001000ab = e_{27}.
\]

(2.2)

Since \(17p + 6 \leq n \leq 17q + 4 \) for \(p = 1 \) and \(q = 2 \), “\(ab \)”\(_{27}\) takes the 5th order “10” from “00”. Therefore, \(1000010 0000000000 0000100010 = e_{27} \).

Example 2.5. Let \(n = 62 \). Since \(6 < 17s + 5 < n \) for \(s = 1,2,3, e_{62} \) has digit 1’s in the 62nd, 56th, 39th, 22nd, and 6th positions, by Step 2. So we have \(10 000100000 0000000000 00001000ab = e_{62} \). Since \(17p + 6 \leq n \leq 17q + 4 \) for \(p = 3 \) and \(q = 4 \), “\(ab \)”\(_{62}\) takes the 6th order “11” from “00”. Therefore, we have \(10 000100000 0000000000 0100000000 0000000010 0000000000 0000100011 = e_{62} \).
Below we discuss a decoding algorithm for $\mathcal{F}_{4,3}$.

Definition 2.6. For a given received vector $r = a_n a_{n-1} \cdots a_2 a_1$, $a_i \in \text{GF}(4)$, the testing vector, denoted by t, in $\mathcal{F}_{4,3}$ is defined by $t = (a_n \otimes e_n) \oplus \cdots \oplus (a_3 \otimes e_3)$, where $n \neq 6, 17s + 5$, for $s \in \mathbb{N}$.

In the following remark we explain a decoding algorithm of $\mathcal{F}_{4,3}$ in more detail.

Remark 2.7. For a given received vector $r = a_n a_{n-1} \cdots a_2 a_1$, we obtain the testing vector $t = b_n b_{n-1} \cdots b_2 b_1$, by Definition 2.6. Let $s \in \mathbb{N}$ and $\alpha \in \text{GF}(4)$, and let $f_2 f_1$ be the first two digits of e_i in t.

(A) Certainly, the codeword c is a linear combination of some bases by scalar nim-multiplication. From the given received vector, we can guess the bases which may generate the codeword.

If $d(t, r) = 1$, we have the following two cases. First, one of a_1, a_2 is not correct. In the second case, one of the 6th, $(17s + 5)$th digit is not correct. In all cases, t is obtained by bases which do not depend on errored digit. Therefore, we have the desired codeword $c = t$.

(B) Suppose that $d(t, r) > 1$. This means that both a_1 and a_2 are correct. Hence, we have to find $d_2 d_1$ $(d_1, d_2 \in \text{GF}(4))$ such that $b_2 b_1 \oplus d_2 d_1 = a_2 a_1$ because t is more added by a component vector $(a_p \otimes e_p)$ with $d_2 d_1$ of t. Therefore, if such a vector exists, we have the desired codeword $c = t \oplus (a_p \otimes e_p)$.

(C) Suppose that $d(t, r) > 1$. If there is not any component vector $(a_p \otimes e_p)$ with $d_2 d_1$ in t, then one of the nonzero digits in r is not correct, let a_q, for $q \neq 1, 2, 6, 22, \ldots$. Such a digit is obtained from the equation $\alpha \otimes (a_q \otimes f_2 f_1) q = d_2 d_1$. Next, if we obtain a digit $a'_q (\neq a_q)$ satisfying $(a_n \otimes f_2 f_1) q \oplus \cdots \oplus (a'_q \otimes f_2 f_1) q \oplus \cdots \oplus (a_3 \otimes f_2 f_1) q = a_2 a_1$, then the desired codeword c is $(a_n \otimes e_n) \oplus \cdots \oplus (a'_q \otimes e_q) \oplus \cdots \oplus (a_3 \otimes e_3)$.

(D) Suppose that $d(t, r) > 1$ and there is no component vector $(a_p \otimes e_p)$ with $d_2 d_1$ in t. For all α, a_q such that $q \neq 6, 17s + 5$, if it does not satisfy the equation $\alpha \otimes (a_q \otimes f_2 f_1) q = d_2 d_1$, then r has a nonzero leading digit in the 6th or $(17s + 5)$th position. If r has a nonzero leading digit in the 6th position, then we have the desired codeword $c = t \oplus (a_k \otimes e_k)$, for some a_k $(7 \leq k \leq 21)$. If r has a nonzero leading digit in the $(17s + 5)$th position, then we have the desired codeword $c = t \oplus (a_k \otimes e_k)$, for some a_k $(17s + 6 \leq k \leq 17s + 21)$. In fact, we can obtain a_k satisfying $(a_k \otimes f_2 f_1) k = d_2 d_1$.

Decoding Algorithm of $\mathcal{F}_{4,3}$

Step 1. Suppose that $d(t, r) = 1$. Then $c = t$.

Step 2. Suppose that $d(t, r) > 1$ and there is $(a_p \otimes e_p)$ with $d_2 d_1$ in t. Then $c = t \oplus (a_p \otimes e_p)$.

Step 3. Suppose that $d(t, r) > 1$ and there is no $(a_p \otimes e_p)$ with $d_2 d_1$ in t. If there exist α, q such that $\alpha \otimes (a_q \otimes f_2 f_1) q = d_2 d_1$, then $c = t \oplus (a_q \otimes a'_q \otimes e_q)$, where $a'_q (\neq a_q)$ satisfies $(a_q \otimes a'_q) \otimes f_2 f_1) q = a_2 a_1 \oplus i_{3}^{n} (a_i \otimes f_2 f_1) i$.

(Note that $\oplus_{i=3}^{n} (a_i \otimes f_2 f_1) i)$ is the first two digits of t.)
Step 4. Suppose that \(d(t, r) > 1\) and there is no \((a_p \otimes e_p)\) with \(\"d_2 d_1\"\) in \(t\). If there is no \(q\) such that \(\alpha \otimes (a_q \otimes f_2 f_1') = \"d_2 d_1\"\) for all \(\alpha\), then \(c = t \oplus (a_k \otimes e_k)\), where \(a_k\) satisfies \((a_k \otimes f_2 f_1') = \"d_2 d_1\"\) for \(7 \leq k \leq 21\) or \(17s + 6 \leq k \leq 17s + 21\).

Example 2.8. Let \(r = 3001202012\). Then \(t = (3 \otimes e_{10}) \oplus (1 \otimes e_7) \oplus (2 \otimes e_4) = 3001202012\). Since \(d(r, t) = 1\), therefore, \(c = t\).

Example 2.9. Let \(r = 3011202012\). Then \(t = (3 \otimes e_{10}) \oplus (1 \otimes e_8) \oplus (1 \otimes e_7) \oplus (2 \otimes e_4) = 3011302010\), and \(\"d_2 d_1\" = \"02\"\). Since \(d(r, t) > 1\) and there is \((1 \otimes e_8)\) with \(\"02\"\) in \(t\), therefore, \(c = t \oplus (1 \otimes e_8) = 3001202012\).

Example 2.10. Let \(r = 3002202012\). We have \(t = (3 \otimes e_{10}) \oplus (2 \otimes e_7) \oplus (2 \otimes e_4) = 3002102011\), and \(\"d_2 d_1\" = \"03\"\). Then \(d(r, t) > 1\) and there is no \((a_p \otimes e_p)\) with \(\"03\"\) in \(t\). Since there are \(\alpha = 2, a_7 = 2\) satisfying \(\alpha \otimes (a_7 \otimes f_2 f_1') = \"03\"\), \(a_7\) is not correct. We obtain \(a'_7 (= 1)\) satisfying \((2 \otimes a'_7) \otimes \"01\" = \"12\" \oplus \"11\"\), by **Step 3**. Therefore, \(c = t \oplus ((2 \otimes 1) \otimes e_7) = 3001202012\).

Example 2.11. Let \(r = 1202012\). We have \(t = (1 \otimes e_7) \oplus (2 \otimes e_4) = 1102022\), and \(\"d_2 d_1\" = \"30\"\). Then \(d(t, r) > 1\) and there is no \((a_p \otimes e_p)\) with \(\"30\"\) in \(t\). Also, there is no \(q\) such that \(\alpha \otimes (a_q \otimes f_2 f_1') = \"30\"\) for all \(\alpha\). By **Step 4**, we have to obtain \(a_k\) \((7 \leq k \leq 21)\) because \(a_6\) is nonzero. Since \((3 \otimes \"10\" = \"30\"\), we obtain \(a_{10} (= 3)\). Therefore, \(c = t \oplus (3 \otimes e_{10}) = 3001202012\).

Acknowledgements. The first author was supported by the KRF. The second author was supported by the Combinatorial and Computational Mathematics Center (Com² MaC-KOSEF).

References

[1] J. H. Conway, *On Numbers and Games*, London Mathematical Society Monographs, no. 6, Academic Press, London, 1976.

[2] J. H. Conway and N. J. A. Sloane, *Lexicographic codes: error-correcting codes from game theory*, IEEE Trans. Inform. Theory 32 (1986), no. 3, 337–348.

D. G. Kim: Department of Internet and Computer, Chungwoon University, Hongsung, Chungnam, 350-701, South Korea
E-mail address: codekim@chungwoon.ac.kr

H. K. Kim: Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, South Korea
E-mail address: hkkim@euclid.postech.ac.kr
Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

Category	Date
Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com