The potential of antioxidant activity of methanolic extract of *Coscinium fenestratum* (Goetgh.) Colebr (Menispermaceae)

Krishnamoorthy Karthikaa, Gangadharan Gargi a, Senguttuvan Jamuna a, Subramaniyam Paulsamy a,\ast, Mohammad Ajmal Ali b,\ast, Fahad Al-Hemaid b, Mohamed Soliman Elshikh b, Joongku Lee c,\ast

aDepartment of Botany, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
bDepartment of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
cDepartment of Environment and Forest Resources, Chungnam National University, Daeheak-ro, Yuseong-gu, Daejeon, Republic of Korea

A R T I C L E I N F O

Article history:
Received 29 June 2018
Revised 8 August 2018
Accepted 12 August 2018
Available online 12 August 2018

Keywords:
Coscinium fenestratum
Menispermaceae
Biochemical characterization
Antioxidant activity

A B S T R A C T

To explore the possible bioactive compounds and to study the antioxidant capacity of *Coscinium fenestratum* (Goetgh.) Colebr (Menispermaceae), the qualitative and quantitative phytochemical screening for various secondary metabolites were evaluated. Using the GC–MS analysis, a total number of 30 phytochemical compounds were predicted with their retention time, molecular weight, molecular formula, peak area, structure and activities. The most prevailing heterocyclic compound was Bis(2,4,6- triisopropylphenyl) phosphinic azide (6.70%). The antioxidant activity was evaluated by spectrophotometric methods using the reducing power assay and the DPPH\(^*\) and ABTS\(^*\) scavenging assays. The activity was determined to be increased in all the test samples with the increase in the volume of the extract. *C. fenestratum* possess a good source of many bioactive compounds that are used to prevent diseases linked with oxidative stress.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The natural products from plant origin are safer than the synthetic drug molecules, and are widely recognized in the pharmaceutical industries for their broad structural diversity and the pharmacological activities (Newman and Cragg, 2016; Thenmozhi et al., 2018). *Coscinium fenestratum* (Goeth.) Colebr. (commonly known as ‘tree turmeric’, belongs to the family Menispermaceae), is a medicinally important dioecious threatened liana (Tushar et al., 2008), distributed in Vietnam, Singapore, Thailand, Sri Lanka and in isolated regions of the Western Ghats of India (Ved et al., 2015). The stem and root of *C. fenestratum* are used in the traditional system of medicine (Tushar et al., 2008). The active chemical berberine (-a natural isoquinoline alkaloid), ceryl alcohol, hentriacontane, palmitic acid, sitosterol, saponyin with some resinous material and oleic acid have earlier been reported from *C. fenestratum* (Rojsanga et al., 2006) which possess variety of pharmacological activities including antidiabetic, anti-inflammatory, thermogenic and antiseptic activity (Kashyap et al., 2016). The free radicals and the other reactive oxygen species (ROS) generated within the living cells as a result of physiological and biochemical processes of the cells causes oxidative damage to the macromolecules of the cells, which lead to liver diseases (Arteel, 2003), asthma (Lobo et al., 2010; Bharathi et al., 2018), cancer (Kinnula and Crapo, 2004), chronic inflammation, diabetes, multiple sclerosis (Lobo et al., 2010; Bharathi et al., 2018), neural disorders (Sas et al., 2007), rheumatoid arthritis (Lobo et al., 2010; Bharathi et al., 2018), cardiovascular disease (Singh and Jialal, 2006), Alzheimer disease (Smith et al., 2000), Parkinson's disease (Bolton et al., 2000), ulcerative colitis (Ramakrishna et al., 1997), and aging (Hyun et al., 2006). The free radicals and other reactive oxygen species can be scavenged by the protective role of antioxidants from the natural products of wild and medicinal plants (Pietta et al., 1998). Hence, the objective of the present study was to investigate the phytochemical constituents and antioxidant activity of *C. fenestratum*.
2. Materials and methods

2.1. Collection of the plant sample and the preparation of methanolic crude extract

The fresh leaves of *C. fenestratum* were collected from Vellian-giri hills of Western Ghats, Coimbatore, Tamil Nadu, India. The semidry methanolic crude extract [MeOHCF, test compound] was prepared from 50 g of shade dried powdered leaves using soxhlet extractor.

2.2. In vitro antioxidant activity

There are various *in vitro* and *in vivo* methods available for the evaluation of the antioxidant activity of natural products (Alam et al., 2013). The reducing ability (Yildirim et al., 2001), DPPH radical scavenging activity (Blois, 1958), the total phenolic and tannin contents were performed (Harbone, 1973; Trease and Evans, 1983). The total content of flavonoids was determined spectrophotometrically using a standard curve rutin (Zhishen et al., 1999). MeOHCF was then subjected to the gas chromatography–mass spectrometry (GC–MS) analysis using 5975C Agilent Technologies GC systems equipped with DB-5 ms Agilent fused silica capillary column (30 × 0.25 mm ID, 0.25 μm film thickness) operating with electron impact mode at 70 eV. Finally MeOHCF was assigned for comparison of their retention indices and the mass spectra fragmentation patterns with chemical library of NIST (National Institute of Standards and Technology).

2.3. Identification of the phytochemical components of MeOHCF by GC–MS analysis

The qualitative phytochemical analysis of MeOHCF for the phytochemicals viz., alkaloids, cardiac glycosides, glycosides, flavonoids, phenols, resins, steroids, saponins, tannins, triterpenoids terpenoids, were performed (Blos, 1958). The total antioxidant activity (Siddhuraju and Manian, 2007) of MeOHCF were determined using the standard method in order to evaluate the *in vitro* antioxidant activity. One way analysis of variance (ANOVA) test was carried out for statistical analysis using SPSS 10.0.

2.4. Antimicrobial activity

The isolation and identification of **C. fenestratum** were performed (Karthika et al., 2014; Thenmozhi et al., 2015) which may serve as significant indicator for the potential antimicrobial activity. The extract showed significant scavenging effect on the sample of the concentration of the extract from 50 to 250 μg/mL, which might be due to abundance of the flavonoid (42 mg of QE/g extract) content, the most

Table 1

Phytochemical constituents	Trace Qualitative phytochemical analysis
Yield (%)	15.8 ± 0.02
Alkaloids	++ Total alkaloids (mg of dry powder): 52.00 ± 0.19
Flavonoids	+++ Total flavonoids (mg of QE/g extract): 42.01 ± 0.06
Terpenoids	++ –
Triterpenoids	++ –
Glycosides	– –
Cardiac glycosides	++ Total phenols (mg of GAE/g extract): 35.11 ± 0.04
Phenols	++ –
Saponins	+++ –
Steroids	+++ –
Tannins	++ Total tannins (mg of GAE/g extract): 34.46 ± 0.02
Resins	+ –

+: Present, ++: Moderately present, +++: Highly present, GAE: Gallic Acid Equivalent, QE: Quercetin Equivalent. Values were performed in triplicates and represented as mean ± SD.

Table 4

Percentage yield and qualitative phytochemical analysis of MeOHCF.
Yield (%)
Alkaloids
Flavonoids
Terpenoids
Triterpenoids
Glycosides
Cardiac glycosides
Phenols
Saponins
Steroids
Tannins
Resins

The antioxidants molecules helps in preventing diseases by neutralize the effects of ROS (Sindhi et al., 2013). The antioxidant property of MeOHCF was determined using various methods. In reducing power assay, MeOHCF displayed significant activity which was found to increase with the increase in the concentration (Table 3) which may serve as significant indicator for the potential antioxidant activity. The results of the recent study were in accordance with the previous reports (Karthika et al., 2014; Thenmozhi et al., 2015). The percentage of scavenging activity on the DPPH radical varies from 32.54% (50 μg/mL of extract) to 64.80% (250 μg/mL of extract). The *IC*$_{50}$ value of MeOHCF was 182.48 μg/mL. The extract showed significant scavenging effect on the DPPH which was increasing with the increase in the concentration of the sample from 50 to 250 μg/mL, which might be due to abundance of the flavonoid (42 mg of QE/g extract) content, the most

Table 2

Phytochemical constituents	Trace Qualitative phytochemical analysis
Yield (%)	15.8 ± 0.02
Alkaloids	++ Total alkaloids (mg of dry powder): 52.00 ± 0.19
Flavonoids	+++ Total flavonoids (mg of QE/g extract): 42.01 ± 0.06
Terpenoids	++ –
Triterpenoids	++ –
Glycosides	– –
Cardiac glycosides	++ Total phenols (mg of GAE/g extract): 35.11 ± 0.04
Phenols	++ –
Saponins	+++ –
Steroids	+++ –
Tannins	++ Total tannins (mg of GAE/g extract): 34.46 ± 0.02
Resins	+ –

+: Present, ++: Moderately present, +++: Highly present, GAE: Gallic Acid Equivalent, QE: Quercetin Equivalent. Values were performed in triplicates and represented as mean ± SD.

Table 3

Percentage yield and qualitative phytochemical analysis of MeOHCF.
Yield (%)
Alkaloids
Flavonoids
Terpenoids
Triterpenoids
Glycosides
Cardiac glycosides
Phenols
Saponins
Steroids
Tannins
Resins

The antioxidants molecules helps in preventing diseases by neutralize the effects of ROS (Sindhi et al., 2013). The antioxidant property of MeOHCF was determined using various methods. In reducing power assay, MeOHCF displayed significant activity which was found to increase with the increase in the concentration (Table 3) which may serve as significant indicator for the potential antioxidant activity. The results of the recent study were in accordance with the previous reports (Karthika et al., 2014; Thenmozhi et al., 2015). The percentage of scavenging activity on the DPPH radical varies from 32.54% (50 μg/mL of extract) to 64.80% (250 μg/mL of extract). The *IC*$_{50}$ value of MeOHCF was 182.48 μg/mL. The extract showed significant scavenging effect on the DPPH which was increasing with the increase in the concentration of the sample from 50 to 250 μg/mL, which might be due to abundance of the flavonoid (42 mg of QE/g extract) content, the most
S. no.	Name of the compound	RT	Molecular formula	Molecular weight	Peak area (%)	Category of the compound	Activity
1	EthylN-(p-tolylsulfinyl)(α-trifluoromethyl)-α-allylglycinate	4.16	C15H18F3NO3S	349	2.56	Cyclic compound	Antiproliferative and antitumor properties
2	Trimethylester of(4r,5s;4s,5r)-5-(methoxycarbonylmethyl)-1-methyl-2-pyrazolin-3,4,5-tricarboxylic acid	4.98	C15H18NO5	330	1.76	Heterocyclic compound	No activity reported
3	2-Thienylmethylo-(3’-t-butyl > amino-2’-hydroxypropyl) ketoxime	12.60	C6H4N2O5S	283	1.74	Heterocyclic compound	Antioxidant activity
4	Benzaldehyde, 4-hydroxy-3-methoxy-(CAS)	14.11	C6H8O3	152	2.12	Phenolic aldehyde	Anticancer, antioxidant, antimutagenic agents
5	D-friedoolean-14-en-3-one (CAS)	21.72	C22H22O5	424	2.41	Triterpenoid derivatives	Antifungal and antioxidant agents
6	Ethyl N-benzylanthranilate	22.03	C6H12N2O2	255	2.55	Coumarin	Antiinflammatory activity
7	(E)-α-[2-hydroxyphenylethylene]benzeneethanol-D2	23.38	C10H12O2	226	1.64	Heterocyclic compound	No activity reported
8	Himacalol	25.23	C6H12O2	222	2.63	Heterocyclic compound	Insecticidal activity, Antitumor activity
9	1,5,6-Tetrahydro-8,9-dimethoxy-10b-(p-methoxyphenyl)-2-methylene-2H-isoaxazole[3,2-al]soiquinol ne-1-carbonitrile	25.64	C22H22N4O4	378	1.54	Heterocyclic compound	No activity reported
10	1,9-Dimethoxy-10-methyl-2-(carbamoylmethylcarbonyl)-3-(methoxycarbonylmethyl)-10-methyl-anthracene	26.15	C24H24N4O	409	2.82	Heterocyclic compound	Antimicrobial and used for tranquilizing large animals in veterinary medicine.
11	α-Cyperone	26.78	C16H12O2	218	5.81	Aromatic compound	Antiinflammatory activity
12	17-(Cyclopseudynamilk)-(α-1’-dimethylethyl)-4,5-epoxy-18,19-dihydro-3-hydroxy-6-methoxy-α-methyl-5,14-ethenomorphinan-7-methanol	27.19	C22H20N4O4	425	1.68	Heterocyclic compound	Antitumor activity
13	1-P-menth-8-yl acetate	27.74	C10H16O2	196	1.76	Alkaloid	Flavor and fragrance agent
14	6-Bromohexanoic acid, 10-undecenyl ester	28.51	C11H18BrO2	451	2.54	Aromatic aldehyde	No activity reported
15	2-[Diacetylamino]-6-(3’-methyl-5’-oxo-1’-phenyl-2’-pyrazolin-4’-yl)-4-phoenylpyridine-3-carbonitrile	30.32	C11H12N3O4	451	4.80	Aromatic aldehyde	No activity reported
16	Pyranthrene	31.02	C10H16O2	376	5.16	Alkaloid	Antiinflammatory activity
17	Methyl 2-N-cyclohexylamino-2,3-dideoxy-4,6-o-(phenylmethene)-3-c-phenylsulfonyl-α-D-glucopyranoside	31.73	C24H24N4O4	486	5.99	Alkaloid	No activity reported
18	1-Pyrilidino-benzanthra-9,10-quinnone	32.03	C25H22N4O2	331	2.95	Heterocyclic compound	Antibiotic agent
19	(22E)-3ÁAcetoxy-7-alpha, -hydroxyprostigmast-a-5, 22-diene	32.69	C10H16O2	486	1.54	Alkaloid	Piscicidal activity
20	1-Diphenylphosphino-1-dichlorophosphino-[1]-ferrocene	33.34	C22H18Cl2F2P2	470	4.24	Alkaloid	No activity reported
21	Bis(2,4,6-trisopropylphenyl)phosphinicacide	34.15	C25H40N4O2	495	6.70	Alkaloid	No activity reported
22	6-[N-(Cyanoamino)]-3Ámethoxymethoxy-cholestan	36.62	C10H16N2O2	470	3.85	Alkaloid	No activity reported
23	3,3-Bis(3’,4’-dimethoxyphenyl)-5,6-difluorobenzene[b]Furan	36.96	C11H12F2O3	426	4.02	Alkaloid	No activity reported
24	5ÁAndrost-16-en-3Áol-(1-butyl)dimethylsilyl ether	37.43	C22H40Si	388	2.88	Alkaloid	Antidepressant
25	3-(4-Chlorobenzoyl)-7-methyl-(2-methylphenyl)indole	38.00	C21H16ClNO	374	4.62	Alkaloid	Antifungal and antioxidant properties
26	Cyclohexane, 1,4-dimethyl-2-ocdecetyl-(CAS)	38.37	C12H18	364	5.82	Alcohol	Anticancer agent
27	10-[3’5’-Bis(trifluoromethyl)phenyl]-3-(ethoxycarbonylmethyl)isoalloxazine	38.61	C22H24F6N4O4	512	2.20	Tricyclic compound	No activity reported
28	13-Docosanamide, (z)-	39.00	C24H48N2O	337	4.46	Carboxylic acid	Used as a detergent, fabric softener, anti-static agent, anti-sedating agent, germicide, lubricant, ore floating agent, emulsifer, water treatment agent and insecticide.
29	([Thorium-(pentamethylcyclopentadieny1)-tris(trimethylsilylamo)]: 1’2’-ethylideneamino])	39.43	C12H24N4Si1Th	726	4.80	Aromatic compound	No activity reported
30	Methyl-3-deoxy-6-isothiocyanato-2,3,4-tri-ethoxycarbonyl-1-D-galactopyranoside	39.82	C19H27NO3Si1	451	2.40	Organic compound	No activity reported

* Source: Dr. Duke's Phytochemical and Ethnobotanical Databases.
Fig. 1. GC–MS chromatogram of methanolic leaf extract of Coscinium fenestratum.

Fig. 2a. Mass spectrum of Bis(2,4,6-triisopropylphenyl) phosphinicazid.

Fig. 2b. Mass spectrum of Methyl2-N-cyclohexylamino-2,3-dideoxy-4,6-O-(phenylmethylene) -3-C-phenylsulfonyl-ß,D-glucopyranoside.
Table 3
Reducing power activity of MeOHCf compared with certain standard antioxidants.

Sample concentration (μg/mL)	Leaf extract (absorbance at 700 nm)	Sample concentration (μg/mL)	Rutin	BHA	Quercetin	BHT
50	0.610 ± 0.03^a	20	0.238 ± 0.003^a	0.236 ± 0.016^b	0.359 ± 0.012^a	0.224 ± 0.001^a
100	0.645 ± 0.02^a	40	0.350 ± 0.013^a	0.396 ± 0.017^a	0.632 ± 0.023^b	0.368 ± 0.009^b
150	0.723 ± 0.06^b	60	0.408 ± 0.013^c	0.496 ± 0.028^b	0.718 ± 0.019^c	0.478 ± 0.013^c
200	0.816 ± 0.04^d	80	0.476 ± 0.006^b	0.593 ± 0.008^b	0.833 ± 0.044^d	0.517 ± 0.017^d
250	1.060 ± 0.07^c	100	0.557 ± 0.014^c	0.644 ± 0.011^b	0.973 ± 0.029^{bc}	0.584 ± 0.012^c

Values were performed in triplicates and represented as mean ± SD. Mean values followed by different superscript in a column are significantly different (p < 0.05).

Table 4
DPPH scavenging activity of MeOHCf compared with certain standard antioxidants.

Sample concentration (μg/mL)	% of inhibition	IC₅₀ value (μg/mL)	Standard antioxidants	IC₅₀ value (μg/mL)
50	32.54 ± 0.05^a	182.48	Rutin	15.75 ± 0.01
100	32.74 ± 0.04^a	182.48	Quercetin	20.72 ± 0.05
150	44.21 ± 0.03^b	182.48	BHA	21.42 ± 0.11
200	50.09 ± 0.07^b	182.48	BHT	34.74 ± 0.26
250	64.89 ± 0.04^c	182.48		

Values are performed in triplicates and represented as mean ± SD. Mean values followed by different superscripts in a column are significantly different (p < 0.05).
required bio compounds for scavenging activity. Similar trend of this activity was also documented previously in our laboratory (Karthika et al., 2014). MeOHCf exhibited higher ABTS+ scavenging activity. The 2,2’-azinobis (3-ethylbenzothiazoline sulphonate) radical cation (ABTS+) scavenging activity was 2453.7 μmol trolox equivalent/ g extract (Table 4). This high activity could be due to abundance of secondary metabolites in the plant extracts (Rojsanga et al., 2006; Tushar et al., 2008).

Acknowledgement

The first author gratefully acknowledges the authorities of University Grants Commission, Hyderabad for their financial assistance to carry out this work [F.No. MRP – 6371/16 (SERO/UGC) dated 30.6.2017]. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project (RG-1439-84).

Conflict of interest

The authors report no conflicts of interest in this work.

References

Alam, M.A., Bristi, N.J., Rafiquzzaman, M., 2013. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 21 (2), 143–152.

Ali-Ryami, L., Pineda, M.A., Rzepecka, J., Huggan, J.K., Khalaf, A.I., Suckling, C.J., Scott, F.J., Rodgers, D.T., Harnett, M.M., Harnett, W., 2013. Designing anti-inflammatory drugs from parasitic worms: a synthetic small molecule analogue of the Acanthocheloneum vitea product ES-62 prevents development of collagen-induced arthritis. J. Med. Chem. 56, 9982–10002.

Bharathiraja, V., Rengarajan, R.L., Radhakrishnan, R., Hashem, A., Allah, E.F.A., Alqarawi, A.A., Anand, A.V., 2018. Effects of a medicinal plant Macrostyla uniforum (Lam.) Verdc. formulation (MUF) on obesity-associated oxidative stress-related markers. Saudi J. Biol. Sci. 25 (6), 1115–1121.

Blois, M.S., 1958. Antioxidant determination by the use of a stable free radical nature. Nature 181, 1199–1200.

Bolton, J.L., Trush, M.A., Penning, T.M., Dryhurst, G., Monks, T.J., 2000. Role of quinones in toxicity. Chem. Res. Toxicol. 13, 135–160.

Chandra, J., Nanjaiah Lakshmidevi, S., 2015. GC-MS analysis of phytochemicals in the methanolic extract of Ceclia petolla (Lam) Hook. F& Thomson. Int. J. Pharm. Sci. 6, 423–440.

Dass, N.P., Pereira, T.A., 1990. Effect of flavonoids on thermal auto oxidation of palm oil. J. Agric. Food Chem. 38, 674–677.

Furst, S., Hosztrafi, S., Friedmann, T., 1995. Structure-activity relationships of synthetic and semisynthetic opioid agonists and antagonists. Curr. Med. Chem. 1, 423–440.

Arteel, G.E., 2003. Oxidants and antioxidants in alcohol induced liver disease. Gastroenterol. 124, 778–790.

Barboni, B., 1973. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. second ed., Chapman and Hall, New York, USA.

Huyen, D.H., Hernandez, J.O., Mattson, M.P., de Cabo, R., 2006. The plasma membrane redox system in aging. Aging Res. Rev. 5, 209–220.

Jungwirth, U., Xanthos, D.N., Gojo, J., Bytzek, A.K., Korner, W., Heffeter, P., Abramkin, S.A., 2003. Oxidants and antioxidants in the high-density lipoprotein subfractions: a review of recent studies. J. Lipid Res. 44, 1323–1342.

Kinnula, V.L., Crapo, J.O., 2004. Superoxide dismutases in malignant cells and human tumors. Free Radic. Biol. Med. 36, 718–744.

Leonardo, D., Piera, T., Renzo, L., 2014. Recent advances in the Stereoselective synthesis of aziridines. Chem. Rev. 114, 7881–7929.

Lobo, V., Patil, A., Phatak, A., Chandra, N., 2010. Free radicals, antioxidants and functional foods: impact on human health. Pharmacol. Rev. 4, 118–126.

Newman, D.J., Cragg, G.M., 2016. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79 (3), 629–661.

Obadoni, B.O., Ochuko, P.O., 2001. Phytochemical studies and comparative efficacy of the crude extracts of some homeostatic plants in Edo and Delta States of Nigeria. Glob. J. Pure Appl. Sci. 8, 203–208.

Oksana, S., Marian, B., Mahendrata, R., Hongbo, S., 2012. Plant phenolic compounds for food, pharmaceutical and cosmetics production. J. Med. Pl. Res. 6, 2526–2539.

Patek, K., Gademaw, E., Tripathi, R., Prasad, S.K., Patel, Dinesh Kumar, 2012. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid ‘Harmine’. Asian Pac. J. Trop. Biomed. 2, 660–664.

Peacock, A.J., Zamboni, W., Vizza, C.D., 2015. Aminobenzotriazole for the treatment of adults with pulmonary arterial hypertension: a review. Curr. Med. Res. Opin. 31, 1793–1807.

Pietra, P., Simonetti, P., Mauri, P., 1998. Antioxidant activity of selected medicinal plants. J. Agric. Food Chem. 46 (11), 4487–4490.

Ramakrishna, B.S., Varghese, R., Jayakumar, S., Mathan, M., Balasubramanian, K.A., 1997. Circulating antioxidants in ulcerative colitis and their relationship to disease severity and activity. J. Gastroenterol. Hepatol. 12, 490–494.

Ramesh, J., Annapreet, K., Tapan, M.K., Priya, R., 2016. Phytochemical analysis and biological studies of Indian medicinal plants Myristica fragrans and Tinospora cordifolia. J. Int. Adv. Res. 4, 243–258.

Rojsanga, P., Gritsanapan, W., Suntornvisut, L., 2006. Determination of berberine content in the stem extract of Coscinium fenestratum by TLC densitometry. Med. Princ. Pract. 15, 373–378.

Sas, K., Robertka, H., Toldi, J., Vecsei, L., 2007. Mitochondrial, metabolic disturbances, oxidative stress and kynurenine system, with focus on neurodegenerative disorders. J. Neurol. Sci. 257, 221–239.

Siddhuraju, P., Becker, K., 2003. Antioxidant properties of various solvent extracts of total phenolics constituents from three different agroecological origins of drumstick tree leaves (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 51, 2144–2155.

Siddhuraju, P., Manian, S., 2007. The antioxidant activity and free radical scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniforum (Lam.) Verdc.) seeds. Food Chem. 105, 950–958.

Sindhu, V., Gupta, V., Sharma, K., Bhatnag, S., Kumari, R., Dhaka, N., 2013. Potential applications of antioxidants – a review. J. Pharm. Res. 7 (9), 828–835.

Singh, U., Jialal, I., 2006. Oxidative stress and atherosclerosis. Pathophysiol. 13, 29–142.

Smith, M.A., Rottkamp, C.A., Nunomura, A., Raina, A.K., Perry, G., 2000. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta 1502, 139–144.

Thennozhi, K., Anusuya, N., Ajmal Ali, M., Jamuna, S., Karthika, K., Ved, D., Halapalathy, A., Al-Hemaid, F.M., Fakh, M.A., Paulsamy, S., 2018. Pharmacological credence of the folklore use of Bauhinia malabarica in the management of jaundice. Saudi J. Biol. Sci. 25, 22–26.

Thennozhi, K., Karthika, K., Jamuna, S., Paulsamy, S., Manian, S., Chitravadivu, C., 2015. In vitro antioxidant and radical scavenging abilities of aqueous methanolic extracts of Cassia obtusa L. plant parts (Casaeispinisaeae). Int. J. Pharm. Pharmaceut. Sci. 7, 340–344.

Tzure, G.E., Evans, W.C., 1983. Textbook of Pharmacognosy. Tindall, London, UK, 12th edition, 1983.

Tushar, K.V., Satheesh, G., Remashree, A.B., Balachandran, D., 2008. Coscinium fenestratum (Gaertn.) Coleb.-a review on this rare, critically endangered and highly-traded medicinal species. J. Plant Sci. 3, 133–145.

Tyler, V.E., Brady, L.R., Robbers, J.E., 1988. Pharmacognosy. Lea and Febiger. Philadelphia, p. 131.

Ved, D., Saha, D., Ravikumar, K., Haridasan, K., 2013. Coscinium fenestratum. The IUCN Red List of Threatened Species. e.T50120585A50131325.

Wijliring, A., Mani, A., Kara, A.A., 2001. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agri. Food Chem. 49, 4038–4043.

Zhishen, J., Mengcheng, T., Jianming, W., 1999. The determination of flavonoids in mulberry and their scavenging effects on super oxides radicals. Food Chem. 64, 555–559.