Conversion of straight-run gas-condensate benzenes into high-octane gasolines based on modified ZSM-5 zeolites

V Erofeev¹, V Reschetilowski², A Tatarkina³, I Khomajakov⁴, I Egorova⁵ and T Volgina⁶
¹,²,³,⁵,⁶ Tomsk Polytechnic University, Tomsk, Russia
³ Dresden University of Technology, Dresden, Germany

Email: ¹erofeevvi@mail.tomsknet.ru, ²wladimir.reschetilowski@chemie.tu-dresden.de, ³tatarkina.nastya@mail.ru, ⁴khomyakov_i.s.@mail.ru, ⁵egorova xf tsu@mail.ru, ⁶volgina_t@mail.ru

Abstract. This paper describes the conversion of straight-run benzene of gas condensate into high-octane gasoline based on zeolite catalyst ZSM-5, modified in binary system oxide-based Sn (III) and Bi (III). It was defined that the introduction of the binary system oxide-based Sn(III) and Bi (III) into the basic zeolite results in the 2-fold increase of its catalytic activity. High-octane gasoline converted from straight-run benzene is characterized by a low benzol content in comparison to the high-octane benzenes produced during the catalytic reforming.

1. Introduction
Today one of the basic processes in petroleum refining is catalytic reforming, i.e. a technological process where high-octane benzenes are produced from straight-run gasoline. The catalytic reforming proceeds at 450-500 °C in a hydrogen-containing gas environment based on alumino-platinum catalysts. Alumino-platinum catalyst reforming is rather sensitive to different micro-impurities, therefore, raw hydrocarbons should be preliminarily subjected to high purification from sulphur-, oxygen and nitrogen compounds. Produced high-octane benzene in catalytic reforming based on alumino-platinum catalysts includes up to 50-70 % aromatic hydrocarbon and up to 7-15% benzol, which, in this case, requires additional separation of arene and especially benzol so as to produce finished motor gasoline from liquid reforming products [1-2].

In this respect, the most practical process is zeoforming[3] on zeolite-containing catalysts-ZSM-5 type for production of high-octane benzenes with low aromatic hydrocarbon content. Zeolites have a unique property [4]: they have high activity and selectivity in such reactions as dehydration, cracking isomerization, oligomerization and dehydrocyclization of various hydrocarbon source groups due to their unique microporous structure (micropore size-0.5-0.8 nm) and molecular and size analysis properties. The application of zeolite-containing catalysts excludes the preliminarily raw material hyrofining.

The conversion process of straight-run gasoline based on zeolite catalysts is quite different from that of catalyst reforming as the first produces high-octane benzene with low benzol content (not more than 1-3%), total aromatic hydrocarbon content-not more than 30-35 % and sulphur- not more than 0.05-0.10 mass %. It should also be noted that preliminarily raw hydrocarbon hydrofiningis excluded due to the application of different modified zeolite-containing catalysts [5-9].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
The target of this research is to investigate the conversion process of straight-run benzene-gas condensate into high-octane gasoline based on zeolite catalysts, modified by binary systems on complex tin and bismuth oxides.

2. Experimental procedure and applied methods
High-silica zeolites (HSZ-G) with high silic-module 50 was produced from alkaline aluminosilicic gel at 175-180°C during 3-4 days applying organic structure-forming additive hexamethylenediamine as template. After crystallization synthesized zeolites are flushed out in distilled water several times, dried at 110°C and then calcinated at 550°C for 6 hours. Reactive HSZ-G zeolites were converted in 1m NH₄NO₃ water solution at 90°C for 2 hours and further drying-out at 110°C and calcinating at 550°C for 6 hours (Na₂O content in decactionated zeolites is less than 0.01%). Modified HSZ-G is produced by liquid infiltration of 0. 1 M HCl solution, containing tin and bismuth oxides in the following element ratio: Sn/Bi = 10:1, to zeolite saturation capacity[10]. Complex tin and bismuth oxides are produced by coprecipitated hydroxide calcination. After this, zeolites with compound Sn and Bi oxide coating (1-5mass%) are dried at 110°C and calcinated at 550°C for 6 hours.

To identify the produced zeolite catalysts HSZ-G, infrared spectroscopy (infrared Fourier spectroscopy Nicolet 5700) and X-ray phase analysis (X-ray unit DRON-3-Mo-anode; Ni-filter) were applied. Infrared-spectrum was conducted within the range of 450-2000 cm⁻¹. The X-ray of synthesized samples showed lines with the following interplanar spacing (d, Å): 11.05, 10.19, 4.26, 4.07, 3.87, 3.83, 3.73, 3.66, typical for high-silica zeolites ZSM-5 type. Produced zeolite infrared -spectra showed absorption bands at 1000–1200, 795–800, 451 and 541 cm⁻¹, as in this range, the absorption bands (a,b) of the major oscillations of AlO₄, SiO₄ tetrahedron skeleton are found. Intense absorption band of 1000-1200 cm⁻¹ is conditioned by antisymmetric stretch vibrations of TO₄ tetrahedron; band of 794 cm⁻¹ is related to the valence vibration in which SiO₄ tetrahedron is the basic one, whereas, the position of this band influences the silicate module (SiO₄/Al₂O₃) in zeolite scaffold. Absorption band of 541 cm⁻¹ is stipulated by five-membered rings in the zeolite skeleton and indicates the fact that this zeolite is of the ZSM group. All synthesized HSZ-G samples according to infrared spectroscopy and X-ray phase analysis could be related to zeolite group.

Conversion of straight-run benzene fraction of gas condensate at 70–170°C based on modified zeolite catalysts was performed in a circulating catalytic unit with a fixed-bed catalyst (reactor volume 8 cm³) within the temperature interval of 350–425°C at feed space velocity of raw material2 hrs⁻¹, atmosphere pressure and exposure for each fixed temperature process was 1 hour.

The analysis of gaseous hydrocarbons was performed in the stainless steel packed column (length-3m; inner diameter-3mm), filled up with 5% NaOH to Al₂O₃ (fraction- 0.25–0.50 mm), liquid hydrocarbons- in the quartz-glass capillary column (100 m. x 0.25 mm. x 0.25 mkm) with a fixed-bed of stationary phased ZB-1. Quantitative analysis of gaseous and liquid conversion products of straight-run benzene was performed by the following method: gas chromatography via hardware and software package of gas chromatographer “Chromatek-kristall 500”, error-correcting by “Chromatek Analitik” program. Positional error of gaseous and liquid hydrocarbons by chromatography method is ±2.5%.

According to the hydrocarbon composition group, straight-run benzene fraction of 70 – 170°C gas condensate includes: 35 mass% n-paraffine,40 % isoalkane, 20 % naphthenes and 4 % arenes. The octane number of straight-run benzene fraction of 70 – 170°C gas condensate is 65 points in investigated method (IM). The catalytic activity unit was the number of produced arenes from straight-run benzene.

3. Results and discussion
The straight-run benzene conversion temperature effect on virgin zeolite catalyst HSZ-G activity showed that with a rise in process temperature from 375 to 425°C and straight-run benzene feed space velocity of 2 hrs⁻¹ high-octane gasoline yield from straight-run benzene decreases from 63.2 to 54.8 % due to the increasing conversion intensity of raw hydrocarbons (table1, figure1). Firstly, gaseous product yield increases from 34.8 at 375°C to 45.1 % at 425°C, mainly paraffins C₃–C₄, while arene
C₆–C₉ content in liquid products increases from 23.4 to 26.7%. Toluene and xylene are predominant in the arene group, where, with a rise in process temperature from 1.5 and 1.2 at 375°C to 2.0 and 1.3% at 425°C benzol and olefine C₅+ content increases, respectively; whereas, naphthene and n/isoparaffin hydrocarbon C₅+ content decreases with a rise in temperature (Table 1). Among the gaseous products of the straight-run benzene conversion process the predominant products are propane and butane, where with a rise in temperature from 375 to 425°C the propane concentration among other gaseous products increases from 57.6 to 59.3%; while the total content of propane and butane among gaseous products is 93–97% and methane and ethane content- not more than 3–7%.

Introducing tin and bismuth oxides into HSZ-G (samples: 1% (Sn:Bi = 10:1)/99% HSZ-G) significantly increases the content of arenes up to 32.9–43.8% in straight-run benzene conversion process liquid products and the decreases the content of iso-paraffin and naphthene hydrocarbons from 27.4–34.9% and 18.0–21.8%, respectively. High-octane benzene yield in the straight-run benzene conversion process with a rise in temperature from 375 to 425°C and feed space velocity of 2 hrs.⁻¹, based on these catalysts, changes from 62.6 to 49.3%, while octane number increases with a rise in temperature from 93.1 to 96.3 units according to IM.

The most active of investigated samples in the conversion of straight-run benzene into high-octane gasoline was the catalyst 1% (Sn:Bi = 10:1)/99% HSZ-G. For example, based on the catalyst 1% (Sn:Bi = 10:1)/99% HSZ-G with a rise in temperature in straight-run benzene conversion process from 375 to 425°C liquid product yield decreases from 60.5 to 52.4%, while octane number of these liquid products increases from 94.6 to 95.3 units according to IM. With a rise in temperature arene and benzol content in liquid products of straight-run benzene conversion process increases from 35.0 to 43.8% and from 2.1 to 3.7%, respectively.

Table 1. Composition of conversion products of straight-run benzene gas condensate based on catalysts:

Item	Catalyst type										
	1	2	3	4							
Temperature, °C	375	400	425	375	400	425	375	425			
Gas phase, mass %	36.8	43.0	45.1	39.5	45.9	47.6	37.4	45.5	50.7	13.2	18.7
Liquid phase, mass %	63.2	57.1	54.8	60.5	54.1	52.4	62.6	54.5	49.3	86.8	81.3
Gas phase composition, mass%											
Methane	0.5	0.9	1.6	0.3	0.5	1.0	0.3	0.5	1.0	0.2	0.5
Ethane	1.5	2.3	3.5	1.3	2.1	3.3	1.3	2.1	3.3	1.1	1.9
Ethylene	0.6	0.9	1.3	0.4	0.7	0.9	0.4	0.6	1.0	1.8	4.4
Propane	57.6	58.5	59.3	57.4	58.9	61.4	56.0	59.5	61.7	52.6	47.0
Propylene	1.5	2.0	2.7	0.8	1.5	1.8	0.7	1.2	1.8	3.9	10.3
Iso-butan	19.6	18.2	16.1	22.5	20.6	17.9	23.0	20.6	17.8	19.7	15.1
n-butan	17.2	15.2	13.3	17.3	15.5	13.3	18.1	15.3	13.0	17.1	13.6
Iso-butene	1.3	1.6	1.8	0.1	0.3	0.4	0.3	0.3	0.4	3.5	7.1
It should be noted that the produced high-octane gasoline from straight-run benzene based on zeolite catalysts modified 1–3 % (Sn:Bi = 10:1)/99-97 % HSZ-G fully complies with the corresponding motor gasoline “Evro-4 and 5”. Further increase of tin and bismuth content (catalyst 5 % (Sn: Bi = 10:1)/95 % HSZ-G) significantly decreases the arene content from 12.6–15.0 % in liquid products of the straight-run benzene conversion, while arene formation selectivity is not more than 30 %.

Liquid phase composition mass %	23.4	26.7	26.7	35.0	40.0	43.8	33.8	32.9	43.0	13.0	12.6
Arenes	1.5	2.0	2.0	2.1	3.2	3.7	1.9	1.9	4.2	0.4	0.6
Benzol	41.8	40.7	40.7	34.0	31.6	28.5	34.9	34.6	27.4	38.6	37.3
Isoalkanes	19.1	18.0	17.9	21.0	18.0	18.0	21.8	21.2	18.5	30.4	28.7
Naphthenes	14.5	13.3	13.4	8.6	9.0	8.2	8.4	10.0	8.2	15.2	16.3
Alkanes	1.2	1.3	1.3	1.4	1.3	1.5	1.2	1.3	3.0	2.8	5.0
Olefines	89.7	91.7	90.5	94.6	94.3	95.3	93.1	93.3	96.3	79.7	80.8

Figure 1. Yield dependence of arene from process temperature

Temperature C⁰ aromatic hydrocarbons HSZ-G

Thus, introducing tin and bismuth oxide mixture as 1–3 % (catalysts: 1–3 % (Sn:Bi = 10:1)/99-97 % HSZ-G) into zeolite ZSM-5 significantly increases the catalyst activity in the conversion process of straight-run benzene into high-octane gasoline. In this case, produced zeolites modified by complex tin and bismuth oxide mixture already show a high aromatic activity at the temperature from 375–400 °C. at the temperature reaction of 375 °C for sample 1 - 1 % (Sn:Bi = 10:1)/99 % HSZ-G , the aromatic hydrocarbon yield is 35 %, which is 1.5 times higher than in the case of catalyst HSZ-G at
the same temperature. This proves the perspective application of zeolite catalysts, modified by complex tin and bismuth oxide mixture in the conversion process of straight-run benzene into high-octane gasoline.

4. Conclusion
Thus, introducing modified complex additive based on tin and bismuth oxide mixture into zeolite ZSM-5 significantly increases the catalyst activity in the conversion process of straight-run benzene into high-octane gasoline, in comparison to HSZ-G feed. The most perspective are HSZ-G catalysts, modified 1–3 % complex tin and bismuth oxide mixture.

References

[1] Gureyev A A, Zhorov Yu M and Smidovich Ye V 1981 *Proizvodstvo vysokoooktanovыkh benzинов* (Moskva: Khimiya) s 224 [in Russian]

[2] Maslyanskiy G N and Shapiro R N 1985 *Kataliticheskiy riforming benzinov* (Leningrad: Khimiya) s 224 [in Russian]

[3] Stepanov V G and Ione K G 2005 *Proizvodstvo motornых topliv iz pryamogonnykh fraktsiy neftey i gazovykh kondensatov s primeneniym protsessa «Tseoforming»* Khimiya v interesakh ustoichivogo razvitiya 13 809-822 [in Russian]

[4] Christopher J Rhodes 2007 *Zeolites: physical aspects and environmental Applications, Annu. Rep. Prog. Chem., Sect. C. 103* 287–325

[5] Vosmerikov A V, Velichkina L M, Korobitsyna L L, Antonova N V, Vagin A I and Yerofeyev V I 1977 Prevrashcheniye uglevodorodnykh fraktsiy gazovogo kondensata na tseolitsoderzhashchikh katalizatorakh *Neftepererabotka i neftekhimiya* 2 16 – 19 [in Russian]

[6] Barbashin Ya E, Ryabov Yu V, Vosmerikov A V, Velichkina L M, Korobitsyna L L and Yerofeyev V I 1998 Dezaktivatsiya tseolitnykh katalizatorov v protsessakh prevrashcheniya metanola, geksana i benzinovoy fraktсii gazovogo kondensata *Neftepererabotka i neftekhimiya* 8 17 – 21 [in Russian]

[7] Yerofeyev V I, Medvedev A S, Koval L M, Khomyakov I S, Yerofeyev M V and Tarasenko V F 2011 *Vliyanie UF aktivatsii na kislotnyye i kataliticheskiye svoystva tseolitsoderzhashchikh katalizatorov v protsesse prevrashcheniya pryamogonnykh benzинов gazovogo kondensata v vysokoooktanovyye benziny* Russian Journal of Applied Chemistry 84 (10) 1668–1674 [in Russian]

[8] Yerofeyev V I, Medvedev A S, Khomyakov I S and Yerofeyeva Ye V 2013 Prevrashcheniye pryamogonnykh benzинов gazovogo kondensata v vysokoooktanovyye benziny na tseolitnykh katalizatorakh, modifitsirovannых nanoporoshkami metallov *Russian Journal of Applied Chemistry* 86 (7) 1044–1051 [in Russian]

[9] Yerofeyev V I, Khomyakov I S and Yegorova L A 2014 Polucheniyе vysokoooktanovyykh benzинов iz pryamogonnykh benzинов na modifitsirovannых tseolitakh ZSM-5 *Theoretical Foundations of Chemical Engineering* 48 (1) 77 – 82 [in Russian]

[10] Pat. 2313488, RF, MPKS 01V 39/48 *Sinteitcheskiy tseolit i sposob yego polucheniya* Yerofeyev V I, Koval L M – Zayavl. 24.04.2006 Opubl. 27.12.2007 [in Russian]