Reply to: Uncertainty in near-term temperature evolution must not obscure assessments of climate mitigation benefits

Bjørn H. Samset 1✉, Jan S. Fuglestvedt 1 & Marianne T. Lund 1

REPLYING TO A. Lanson et al. *Nature Communications* https://doi.org/10.1038/s41467-022-31425-x (2022)

In response to our recent paper1 (hereafter SFL20) concerning the relation between natural variability in the climate system and the time to detect a response to emissions mitigation, Lanson et al.2 (hereafter L22) call for ‘a broader debate on how to best assess and communicate emerging effects of climate mitigation in the light of natural variability’. We welcome a broader debate on this aspect of global responses to climate change, attempt to reconcile our views in the following.

The scientific community should provide the best possible knowledge to policy makers and the public, while also considering their perspectives and stated needs. Applying this to the expected effects of emission mitigation in the current geophysical and political context, there are two overall approaches that can be taken. One, advocated by L22, treats quantification of this response as an exercise in detection and attribution (D&A), i.e. the statistical detection of a change relative to an expected situation and the attribution of this change to a specific cause. The other, used in SLF20 and other recent works3–5, focuses on detection of emergence, through observable, well communicated properties of the climate system such as global mean surface temperature (GMST)6. Emergence is defined as the time at which the observed signal of a change, with the influence of internal variability removed, evolves outside the range expected from this variability.

L22 rightly point out that D&A of anthropogenic climate influence in the presence of natural variability is well established7–11. The technique would be crucial for communication in a situation where emissions decline while GMST keeps rising due to natural variability and the inertia of the climate system. The challenge is that it requires thorough explanation to avoid being perceived as counter to the key message of climate science: That more emissions imply higher temperature.

Focusing solely on GMST evolution, as was done in SFL20, differs from this approach, by not formally utilizing decomposition of the temperature trend in terms of its underlying drivers. We emphasize that in the present situation of high emissions and a positive warming rate, mitigation of warming emissions acts to reduce future human induced climate related hazards, whether it is formally detectable or not12–14. When we still caution that we should curb our expectations for the near-term climate impacts from mitigation, it is because the focus on GMST as the sole indicator of progress in terms of the ambitions of the Paris Agreement has been made so strong in the media and public debate.

In line with previous arguments15, we therefore encourage applying both perspectives. We need to be clear on how much is known about the climate system and how we affect it through anthropogenic activities and individual drivers of climate change. We also need to be clear on the magnitude of this influence, relative to natural variability, on shorter timescales such as 10 or even 5 years.

L22 make an example of the so-called 'global hiatus' period, which has later been diagnosed in detail with D&A and other tools16, and has taught us much about energy transport through the climate system. At the time, however, communications were challenging, as GMST was the sole quantity of discussion in many fora13; even though the science of forcing and response was as established then as it is today.

Such a situation can easily arise again, through either temporary lower warming rates in the presence of continued emissions, or high warming in a situation of very strong mitigation. This is well known in the scientific community, but not so well established in the public debate. In fact, both combinations can be found in the simulations used in SFL20, persisting for a decade or more. See Fig. 1, where we have picked two example realizations of temperature evolution from MAGICC617 combined with natural variability from the CESM Large Ensemble18. Through most of 2020–2030, a high-emission pathway (RCP8.5) is associated with global temperatures markedly below that of a low-emission projection (RCP2.6). For the 5-year period 2021–2025, the average difference is >0.2 °C. Both evolutions also show substantial, and statistically equivalent, multi-decadal warming trends, and approach similar warming in 2030.

---

1 CICERO Center for International Climate Research, Oslo, Norway. ✉email: b.h.samset@ cicero.oslo.no
The results of Fig. 1 are not surprising, but serve as an illustration of the influence of past human emissions, and the strength of natural variability in GMST relative to the forced climate response, on such short timescales. Given that the CO₂ emissions gap between RCP2.6 and RCP8.5 is nearly 30 GtCO₂ in 2030, the communication challenge in such a situation would lie in reconciling this vast mitigation effort with a potential perceived lack of observable results.

In addition to advancing the D&A approach, as advocated by L22, a fruitful avenue of research and communication is to consider the co-evolution of several observable quantities with (fully or partially) uncorrelated variability. The climate community has long been clear that surface temperature is only one aspect of climate change. Heightened communications focused on the evolution also of other quantities (combined with other co-benefits from emissions reductions) would reduce the reliance of the public and policy debates on this one quantity, showcasing a broader spectrum of ongoing changes. Possibilities include the rate and intensity of extreme heat and precipitation events, the diurnal temperature range over land, sea ice extent, ocean heat content, and indicators from the biosphere. These indicators will have different regional patterns and signal-to-noise ratios, and would together yield more information than GMST alone. Dashed lines show 20-year trends (2011–2030).

Data availability
MAGICC6 is publicly available at live.mAGICC.org. CESM LENS simulations are available through http://www.cesm.ucar.edu/projects/community-projects/LENS/. The emission scenarios designed for SFL20 and re-used in the present reply, and the corresponding output from MAGICC6, are available through Figshare (https://doi.org/10.6084/m9.figshare.12366335.v1).

Received: 4 September 2020; Accepted: 15 June 2022; Published online: 14 July 2022

References
1. Samset, B. B., Fuglestvedt, J. S. & Lund, M. T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 11, 3261 (2020).
2. Lanson, A., Pfeiferer, P., Lehner, F. & Schleussner, C. F. Uncertainty in near-term temperature evolution must not obscure assessments of climate mitigation benefits. ESSOAr https://doi.org/10.1002/essoar.10504049.1 (2020).
3. Tebaldi, C. & Friedlingstein, P. Delayed detection of climate mitigation benefits due to climate inertia and variability. Proc. Natl Acad. Sci. USA 110, 17229–17234 (2013).
4. Marotzke, J. Quantifying the irreducible uncertainty in near-term climate projections. Wiley Interdiscip. Rev.: Clim. Change https://doi.org/10.1002/wcc.563 (2018).
5. Maher, N., Lehner, F. & Marotzke, J. Quantifying the role of internal variability in the temperature we expect to observe in the coming decades. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab7d02 (2020).
6. Hawkins, E. et al. Observed Emergence of the Climate Change Signal: from the familiar to the unknown. Geophys. Res. Lett. https://doi.org/10.1029/2019gl086259 (2020).
7. Haustein, K. et al. A real-time global warming index. Sci. Rep. 7, 15417 (2017).
8. Marotzke, J. & Forster, P. M. Forcing, feedback and internal variability in global temperature trends. Nature 517, 565–570 (2015).
9. Bindoff, N. L. et al. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 10 (Cambridge University Press, 2013).
10. Trenberth, K. E. Attribution of climate variations and trends to human influences and natural variability. Wiley Interdiscip. Rev.: Clim. Change 2, 925–930 (2011).
11. Wu, T., Hu, A., Gao, F., Zhang, J. & Meehl, G. A. New insights into natural variability and anthropogenic forcing of global/regional climate evolution. npj Clim. Atmos. Sci. https://doi.org/10.1038/s41612-019-0075-7 (2019).
12. IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC, 2019).
Additional information

Correspondence and requests for materials should be addressed to Bjørn H. Samset.

Peer review information Nature Communications thanks Susanne Moser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022