On electromagnetic interactions for massive mixed symmetry field

Yu. M. Zinoviev *

*E-mail address: Yurii.Zinoviev@ihep.ru

Abstract

In this paper we investigate electromagnetic interactions for simplest massive mixed symmetry field. Using frame-like gauge invariant formulation we extend Fradkin-Vasiliev procedure, initially proposed for investigation of gravitational interactions for massless particles in AdS space, to the case of electromagnetic interactions for massive particles leaving in (A)dS space with arbitrary value of cosmological constant including flat Minkowski space. At first, as an illustration of general procedure, we re-derive our previous results on massive spin 2 electromagnetic interactions and then we apply this procedure to massive mixed symmetry field. These two cases are just the simplest representatives of two general class of fields, namely completely symmetric and mixed symmetry ones, and it is clear that the results obtained admit straightforward generalization to higher spins as well.
Introduction

It has been known since a long time that it is not possible to construct standard gravitational interaction for massless higher spin $s \geq 5/2$ particles in flat Minkowski space (see [1] and references therein). At the same time, it has been shown [2, 3] that this task indeed has a solution in $(A)dS$ space with non-zero cosmological term. The reason is that gauge invariance, that turns out to be broken when one replaces ordinary partial derivatives by the gravitational covariant ones, could be restored with the introduction of higher derivative corrections containing gauge invariant Riemann tensor. These corrections have coefficients proportional to inverse powers of cosmological constant so that such theories do not have naive flat limit. However it is perfectly possible, for cubic vertices, to have a limit where both cosmological term and gravitational coupling constant simultaneously go to zero in such a way that only interactions with highest number of derivatives survive [4, 5].

Besides gravitational interaction one more classical and important test for any higher spin theory is electromagnetic interaction. The problem of switching on such interaction for massless higher spin particles looks very similar to the problem with gravitational interactions. Namely, if one replaces ordinary partial derivatives by the gauge covariant ones the resulting Lagrangian loses its gauge invariance and this non-invariance (arising due to non-commutativity of covariant derivatives) is proportional to field strength of vector field. In this, for the massless fields with $s \geq 3/2$ in flat Minkowski space there is no possibility to restore gauge invariance by adding non-minimal terms to Lagrangian and/or modifying gauge transformations. But such restoration becomes possible if one goes to $(A)dS$ space with non-zero cosmological constant. By the same reason, as in the gravitational case, such theories do not have naive flat limit, but it is possible to consider a limit where both cosmological constant and electric charge simultaneously go to zero so that only highest derivative non-minimal terms survive [5, 6].

It is natural to suggest that in any realistic higher spin theory (like in superstring) most of higher spin particles must be massive and their gauge symmetries spontaneously broken. As is well known, for massive higher spin particles any attempt to switch on standard minimal gravitational or electromagnetic interactions spoils a consistency of the theory leading first of all to appearance of non-physical degrees of freedom and/or non-causality. But having in our disposal mass $m$ as a dimensionfull parameter even in a flat Minkowski space we can try to restore consistency of the theory by adding to Lagrangian non-minimal terms containing the linearized Riemann tensor ($e/m$ field strength). Naturally such terms will have coefficients proportional to inverse powers of mass $m$ so that the theory will not have naive massless limit. However, it is natural to suggest that there exists a limit where both mass and gravitational coupling constant (electric charge) simultaneously go to zero so that only some interactions containing Riemann tensor ($e/m$ field strength) survive. Note that such a picture agrees with the results obtained from (super)strings [7, 8, 9].

As is well known, in four dimensions to describe all possible higher spins it is enough to consider completely symmetric (spin-)tensors only. But in dimensions greater than four it is necessary to consider mixed symmetry (spin-)tensors as well. There exists a number of works devoted to investigation of possible interactions for such fields [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], but till now most of them produce so called "no-go" results (note however light-cone results [22] and recent work [23]).
In this paper we investigate electromagnetic interactions for simplest massive mixed symmetry field ("hook"). In this, we extend Fradkin-Vasiliev procedure, initially proposed for investigation of gravitational interactions for massless particles in $AdS$ space and then successfully applied to other massless higher spin actions \cite{24, 25, 26, 23}, to the case of electromagnetic interactions for massive particles leaving in $(A)dS$ space with arbitrary value of cosmological constant including flat Minkowski space. One of the essential ingredients of the procedure is the frame-like formalism, initially introduced for completely symmetric (spin-)tensors \cite{27, 28, 29} (see also \cite{30, 31}) and then extended to the case of massless \cite{32, 33, 34, 35, 36, 37, 38, 39} and massive \cite{40, 41, 42, 43} mixed symmetry (spin-)tensors.

Briefly, the procedure can be described as follows.

- Take as input frame-like gauge invariant formulation for massive particle.
- Using explicit form of gauge transformations construct for all fields (both physical and auxiliary) gauge invariant objects which in what follows we will call "curvatures" though there will be one, two and three forms among them.
- Rewrite free Lagrangian as an expression quadratic in these curvatures. Note that in general even if one requires that all higher derivatives terms were absent and kinetic terms were diagonal one still faces some ambiguity in the choice of coefficients.
- Find deformations of these curvatures supplemented with appropriate corrections to gauge transformations such that their gauge variations be proportional to free curvatures. In the case of electromagnetic interactions the only non-trivial task is to find deformation for electromagnetic field strength while all we have to do with other curvatures is to replace $AdS$ covariant derivatives with the fully covariant ones.
- In the free Lagrangian replace free curvatures with the deformed ones and adjust free parameters so that all variations vanish on-shell. Note that at least in some cases this resolves ambiguity with the parameters in the free Lagrangian as well.
- Determine corrections to gauge transformations such that all gauge variations vanish off-shell.

The plan of the paper is simple. In Section 1, as an illustration of general procedure, we re-derive our previous results on massive spin 2 electromagnetic interactions \cite{44}. All physical results are the same, but derivation becomes much more simple and transparent. Then in Section 2 we apply this procedure to the electromagnetic interactions for simplest massive mixed symmetry tensor.

**Notations and conventions.** We work in $(A)dS$ space with $d \geq 4$ dimensions. We will use notation $e^{a}_{\mu}$ for background (non-dynamical) frame of $(A)dS$ space and $D_{\mu}$ for $(A)dS$ covariant derivatives normalized so that

$$[D_{\mu}, D_{\nu}]\xi^{a} = -\kappa e^{a}_{[\mu} \xi_{\nu]}, \quad \kappa = \frac{2\lambda}{(d-1)(d-2)}$$

We use Greek letters for world indices and Latin letters for local ones. Surely, using frame $e_{\mu}^{a}$ and its inverse $e^{\mu}_{a}$ one can freely convert world indices into local ones and vice-vers
and we indeed will use such conversion whenever convenient. But separation of world and local indices plays very important role in a frame-like formalism. In particular, all terms in the Lagrangians can be written as a product of forms, i.e. as expressions completely antisymmetric on world indices and this property greatly simplifies all calculations. For that purpose we will often use notations \( \{ \mu^\nu_{ab} \} = e_\mu^a e_\nu^b - e_\nu^a e_\mu^b \) and so on.

## 1 Massive spin 2

In this section, as an illustration of general procedure, we re-derive our previous results on spin 2 electromagnetic interactions \[6, 44\].

### 1.1 Lagrangian and gauge transformations

Frame-like gauge invariant formulations for massive spin 2 particles \[40, 30\] requires three pairs of physical and auxiliary fields: \((\omega^a_{\mu b}, f^a_{\mu}),(B^a_{\mu b}, B_{\mu a})\) and \((\pi^a, \varphi)\). The free Lagrangian in the constant curvature space with arbitrary value of cosmological constant has the form:

\[
\mathcal{L}_0 = \frac{1}{2} \{ \mu^\nu_{ab} \} \omega_\mu^a \omega_\nu^b - \frac{1}{2} \{ \mu^\alpha_{abc} \} \omega_\mu^a D_\nu f_\alpha^c + \frac{1}{4} B^2_{ab} - \frac{1}{2} \{ \mu^\nu_{ab} \} B_{\mu} D_\nu B_{\mu} - \frac{1}{2} \pi_a^2 + \epsilon^a_{\mu} \pi^\nu D_\mu \varphi + m \{ \mu^\alpha_{ab} \} \omega_\mu^a B_\nu + \epsilon^a_{\mu} B^a_{\mu b} f_\mu^b \]  

\[
+ \frac{d}{(d-2)} m^2 \varphi^2 \]

(1)

Here \( M^2 = m^2 - \frac{\kappa (d-2)}{2} \), \( \tilde{M} = 2 \sqrt{\frac{(d-1)}{(d-2)}} M \).

This Lagrangian is invariant under the following gauge transformations:

\[
\delta_0 f^a_{\mu} = D_\mu \xi^a + \eta^a_{\mu} + \frac{2m}{(d-2)} \epsilon^a_{\mu} \Lambda, \quad \delta_0 \omega^a_{\mu b} = D_\mu \eta_{ab} - \frac{2M^2}{(d-2)} \epsilon_{[a}^\mu \xi_{b]} \]

\[
\delta_0 B_{\mu} = D_\mu \Lambda + m \xi_{\mu}, \quad \delta_0 B^a_{\mu b} = -2m \eta_{ab}, \quad \delta_0 \varphi = \tilde{M} \Lambda, \quad \delta_0 \pi^a = -m \tilde{M} \xi^a \]  

(2)

Note that in a de Sitter space (\( \kappa > 0 \)) there exists so called partially massless limit \[45, 46, 47, 48, 49, 50\] where spin 0 component completely decouples leaving us with the Lagrangian

\[
\mathcal{L}_0 = \frac{1}{2} \{ \mu^\nu_{ab} \} \omega_\mu^a \omega_\nu^b - \frac{1}{2} \{ \mu^\alpha_{abc} \} \omega_\mu^a D_\nu f_\alpha^c + \frac{1}{4} B^2_{ab} - \frac{1}{2} \{ \mu^\nu_{ab} \} B_{\mu} D_\nu B_{\mu} + m \{ \mu^\alpha_{ab} \} \omega_\mu^a B_\nu + \epsilon^a_{\mu} B^a_{\mu b} f_\mu^b \]  

(3)

which is invariant under the following gauge transformations

\[
\delta_0 f^a_{\mu} = D_\mu \xi^a + \eta^a_{\mu} + \frac{2m}{(d-2)} \epsilon^a_{\mu} \Lambda, \quad \delta_0 \omega^a_{\mu b} = D_\mu \eta_{ab} \]

\[
\delta_0 B_{\mu} = D_\mu \Lambda + m \xi_{\mu}, \quad \delta_0 B^a_{\mu b} = -2m \eta_{ab} \]  

(4)
1.2 Gauge invariant objects

For all six fields (both physical and auxiliary) we can construct corresponding gauge invariant object ("curvature"):

\[
F_{\mu \nu}^{ab} = D_{[\mu} \omega_{\nu]}^{ab} - \frac{m}{(d-2)} e_{[\mu} B_{\nu]}^{a b} - \frac{2 M^2}{(d-2)} e_{[\mu} f_{\nu]}^{a b} + \frac{2 m M}{(d-1)(d-2)} e_{[\mu} e_{\nu]}^{a b} \varphi
\]

\[
T_{\mu \nu}^{a} = D_{[\mu} f_{\nu]}^{a} - \omega_{[\mu, \nu]}^{a} + \frac{2 m}{(d-2)} e_{[\mu} B_{\nu]}^{a}
\]

\[
B_{\mu}^{ab} = D_{\mu} B_{ab} - m f_{[\mu, \nu]} + \frac{M}{2} B_{\mu}^{a c} B_{\nu}^{c b} + m M f_{a}^{a b} - \frac{2 m^2}{(d-2)} e_{[\mu} a \varphi
\]

\[
\Pi_{\mu}^{a} = D_{\mu} \pi^{a} + \frac{M}{2} B_{\mu}^{a c} B_{\nu}^{c b} + m M f_{a}^{a b} - \frac{2 m^2}{(d-2)} e_{[\mu} a \varphi
\]

As it has been shown in [31] for arbitrary spin massive particles the free Lagrangian can be rewritten as expression quadratic in these gauge invariant curvatures. For the case at hands the most general such Lagrangian can be written as follows:

\[
L_0 = a_1 \{ \frac{\mu \nu \alpha \beta}{abcd} \} F_{\mu \nu}^{ab} F_{\alpha \beta}^{cd} + a_2 \{ \frac{\mu \nu}{abc} \} F_{\mu \nu}^{ab} + a_3 \{ \frac{\mu \nu}{ab} \} B_{\mu}^{ac} B_{\nu}^{bc} + a_4 \{ \frac{\mu}{ab} \} \Pi_{\mu}^{a} \Pi_{\nu}^{b} + b_1 \{ \frac{\mu \alpha}{abc} \} T_{\mu \nu}^{a} B_{\alpha}^{bc} + b_2 \{ \frac{\mu \nu}{ab} \} B_{\mu}^{ab} \Phi_{\nu}
\]

Note that even if we require that higher derivatives terms were absent and kinetic terms were diagonal there still exists some ambiguity in the choice of coefficients. In what follows (see below) we will use the following simple concrete choice:

\[
L_0 = a_1 \{ \frac{\mu \nu \alpha \beta}{abcd} \} F_{\mu \nu}^{ab} F_{\alpha \beta}^{cd} + a_3 \{ \frac{\mu \nu}{ab} \} B_{\mu}^{ac} B_{\nu}^{bc} + b_2 \{ \frac{\mu \nu}{ab} \} B_{\mu}^{ab} \Phi_{\nu}
\]

where

\[
\tilde{a}_1 = \frac{16(d-3)}{(d-2)} a_1 = \frac{1}{4 M^2}, \quad a_3 = \frac{1}{8 M^2}, \quad b_2 = -\frac{1}{2 M}
\]

Note that up to normalization it is just the Ponomarev-Vasiliev Lagrangian (4.20) in [31].

1.3 Deformations

Now let us turn to the electromagnetic interactions. We prefer to work with real fields, so from now on all components of massive spin 2 will become doublets \( f_{\mu}^{a} \rightarrow f_{\mu}^{a i}, i = 1, 2 \) and so on. Our first task — to find appropriate deformations of all gauge invariant curvatures given above as well of electromagnetic field strength. As for massive spin 2 curvatures, the answer appears to be very simple: all we have to do is to replace \( (A)dS \) covariant derivatives by fully covariant ones:

\[ D_{\mu} \quad \Rightarrow \quad \nabla_{\mu}^{ij} = \delta^{ij} D_{\mu} + e_{0} e^{ij} A_{\mu} \]

where \( e_{0} \) — electric charge. As for the electromagnetic field strength, having in our disposal explicit expressions for curvatures and gauge transformations it is not hard to find desired result.
Let us consider the following ansatz for such deformation:

\[ \hat{F}_{\mu\nu} = F_{\mu\nu} + a_0 \varepsilon^{ij} [\omega_{[\mu}^{\, a} \omega_{\nu]}^{\, b} \omega_{\eta \xi}^{\, ab} + \alpha_1 B_{[\mu}^{\, a} V_{\nu]}^{\, b} + \alpha_2 f_{[\mu}^{\, a} f_{\nu]}^{\, b} + \alpha_3 B_{\mu}^{\, i} B_{\nu}^{\, j} + \alpha_4 B_{\mu\nu}^{\, \phi} ] \]

Its variation under \( \eta^{ab} \) gauge transformations has the form:

\[ \delta \hat{F}_{\mu\nu} = 2 a_0 \varepsilon^{ij} \left[ -D_{[\mu}^{\, a} \omega_{\nu]}^{\, b} \eta_{\phi}^{\, ab} + 2 m \alpha_1 B_{[\mu}^{\, a} \eta_{\nu]}^{\, b} + \alpha_2 f_{[\mu}^{\, a} \eta_{\nu]}^{\, b} + m \alpha_4 \phi^{i} \eta_{\mu\nu}^{\, j} \right] \]

Now we introduce correction to e/m field gauge transformations:

\[ \delta A_{\mu} = 2 a_0 \varepsilon^{ij} \omega_{\mu}^{\, a} \eta_{\phi}^{\, ab} \]

As a result we obtain:

\[ \delta \hat{F}_{\mu\nu} = 2 a_0 \varepsilon^{ij} \left[ D_{[\mu}^{\, a} \omega_{\nu]}^{\, b} \eta_{\phi}^{\, ab} - 2 m \alpha_1 B_{[\mu}^{\, a} \eta_{\nu]}^{\, b} + \alpha_2 f_{[\mu}^{\, a} \eta_{\nu]}^{\, b} + m \alpha_4 \phi^{i} \eta_{\mu\nu}^{\, j} \right] \]

Comparing this expression with

\[ 2 a_0 \varepsilon^{ij} T_{\mu\nu}^{\, a} \xi^{\phi} = 2 a_0 \varepsilon^{ij} \left[ D_{[\mu}^{\, a} f_{\nu]}^{\, b} - \omega_{[\mu}^{\, a} \xi^{\phi} \right] \]

we see that we have to put

\[ \alpha_1 = - \frac{1}{(d - 2)}, \quad \alpha_2 = \frac{4 M^2}{(d - 2)}, \quad \alpha_4 = \frac{4 M}{(d - 1)(d - 2)} \]

Similarly, variation under \( \xi^a \) transformations:

\[ \delta \hat{F}_{\mu\nu} = 2 a_0 \varepsilon^{ij} \left[ -\alpha_2 D_{[\mu}^{\, a} \eta_{\nu]}^{\, b} \xi^{\phi} + \frac{4 M^2}{(d - 2)} \omega_{[\mu}^{\, a} \xi^{\phi} \right] \]

together with corresponding correction

\[ \delta A_{\mu} = 2 a_0 \alpha_2 \varepsilon^{ij} f_{[\mu}^{\, a} \xi_{\nu]}^{\, b} \]

produce

\[ \delta \hat{F}_{\mu\nu} = 2 a_0 \varepsilon^{ij} \left[ \alpha_2 \omega_{[\mu}^{\, a} \eta_{\nu]}^{\, b} \xi^{\phi} + \frac{4 M^2}{(d - 2)} \omega_{[\mu}^{\, a} \xi^{\phi} \right] \]

Comparing this expression with

\[ 2 a_0 \alpha_2 \varepsilon^{ij} T_{\mu\nu}^{\, a} \xi^{\phi} = 2 a_0 \alpha_2 \varepsilon^{ij} \left[ D_{[\mu}^{\, a} f_{\nu]}^{\, b} - \omega_{[\mu}^{\, a} \xi^{\phi} \right] \]

we get

\[ \alpha_3 = - \frac{8 M^2}{(d - 2)^2} \]
All the unknown coefficients are already fixed, but as a useful check one can easily see that variation under \( \Lambda \) transformations

\[
\delta \hat{F}_{\mu \nu} = a_0 \varepsilon^{ij}[-2\alpha_3 D_{[\mu} \Lambda^i B_{\nu]} + \frac{4m\alpha_2}{(d-2)} f_{[\mu, \nu]}^i \Lambda^j + \tilde{M} \alpha_4 B_{\mu \nu}^i \Lambda^j]
\]
together with

\[
\delta A_\mu = 2\alpha_3 a_0 \varepsilon^{ij} B_\mu^i \Lambda^j
\]
give the desired result:

\[
\delta \hat{F}_{\mu \nu} = a_0 \varepsilon^{ij}[2\alpha_3 D_{[\mu} B_{\nu]}^i \Lambda^j + \frac{4m\alpha_2}{(d-2)} f_{[\mu, \nu]}^i \Lambda^j + \tilde{M} \alpha_4 B_{\mu \nu}^i \Lambda^j] = -\frac{16M^2 a_0}{(d-2)^2} \varepsilon^{ij} B_{\mu \nu}^i \Lambda^j
\]
Collecting all pieces together, we obtain finally

\[
\hat{F}_{\mu \nu} = F_{\mu \nu} + a_0 \varepsilon^{ij} \omega_{[\mu, a, b, \nu]}^{\alpha i} \eta^{ab j} - \frac{1}{(d-2)} B_{[\mu}^{a i} B_{\nu]}^{a j} + \frac{4M^2}{(d-2)} f_{[\mu, \nu]}^{a i} f_{a j} - \frac{8M^2}{(d-2)^2} B_{[\mu}^i B_{\nu]}^j + \frac{4M}{(d-1)(d-2)} B_{\mu \nu}^i \varphi^j
\]
In this, under massive spin 2 gauge transformations supplemented with the following corrections to \( e/m \) field gauge transformations:

\[
\delta A_\mu = 2a_0 \varepsilon^{ij} [\omega_{[\mu, a, b, \nu]}^{\mu i} \eta^{ab j} + \frac{4M^2}{(d-2)} f_{[\mu, \nu]}^{a i} \xi^{a j} - \frac{8M^2}{(d-2)^2} B_{[\mu}^i \Lambda^j]
\]
this tensor transforms as:

\[
\delta \hat{F}_{\mu \nu} = 2a_0 \varepsilon^{ij} [F_{\mu \nu}^{ab i} \eta^{ab j} + \frac{4M^2}{(d-2)} T_{\mu \nu}^{a i} \xi^{a j} - \frac{8M^2}{(d-2)^2} B_{\mu \nu}^i \Lambda^j]
\]
Now, following general procedure, we consider Lagrangian:

\[
\mathcal{L}_0 = a_1 \left\{ \frac{\mu \nu \alpha \beta}{abcd} \right\} \hat{F}_{\mu \alpha}^{ab} \hat{F}_{\nu \beta}^{cd} + a_3 \left\{ \frac{\mu \nu}{ab} \right\} \hat{B}_{\mu}^{ab} \hat{B}_{\nu}^{bc} + b_2 \left\{ \frac{\mu \nu}{ab} \right\} \hat{B}_{\mu}^{ab} \hat{\Phi}_\nu - \frac{1}{4} \hat{F}_{\mu \nu}^2
\]

### 1.4 Gauge invariance

Now we have to calculate variations of this Lagrangian in the first non-trivial approximation and to adjust parameters so that all such variations vanish on-shell. This in turn would imply that they can be compensated by appropriate corrections to gauge transformations.

\( \eta^{ab} \) transformations. In this case we obtain the following variations of our Lagrangian:

\[
\delta_\eta \mathcal{L} = -4a_1 \varepsilon_{\mu \nu} \varepsilon^{ij} \{ \mu \nu \} [4\mathcal{F}_{\mu \nu}^{ac i} \eta^{bd j} - \mathcal{F}_{\mu \nu}^{ab i} \eta^{cd j}] F_{ac}^{cd} + \varepsilon^{ij} \mathcal{F}_{\mu \nu}^{ab i} [8a_1 \varepsilon_{\mu \nu} \eta^{ab j} F_{ab}^i - a_0 F_{\mu \nu} \eta^{ab i}]
\]
Terms in the first line clearly vanish on-shell being proportional to free \( f_{\mu \nu}^a \) equations. Now, using explicit expressions for free curvatures it is not hard to check that the following identity holds:

\[
\mathcal{F}_{[\mu \nu, a]} = -D_{[\mu} T_{\nu a]} - \frac{2m}{(d-2)} \varepsilon_{\mu \nu}^a B_{\nu a]
\]
Thus \( \mathcal{F}_{[\mu\nu,\alpha]}^a \) vanish on-shell and as a consequence we obtain
\[
\mathcal{F}_{[\mu\nu,\alpha]}^a = 0 \quad \Rightarrow \quad \mathcal{F}_{ab,cd} = \mathcal{F}_{cd,ab}
\]
So if we set \( a_0 = 8a_1\epsilon_0 \) then all \( \eta^{ab} \) variations vanish on shell and can be compensated by appropriate corrections to gauge transformations. For simplicity we restrict ourselves with the corrections to gauge transformations for physical fields only which in this case have the form:
\[
\delta f^a_{\mu^i} = 4a_0\epsilon^{ij}[F^b_{\mu^i}\eta^{ab,j} - \frac{1}{2(d-2)}c^a_{\mu}(F\eta)^j] \quad (14)
\]
\( \xi^a \) transformations. Here we obtain simply
\[
\delta \xi L = -\frac{4M^2}{(d-2)^2}a_0\epsilon^{ij}F^{\mu\nu}T_{\mu\nu}^{a,i}\xi^{a,j}
\]
This term vanish on-shell, in this it can be compensated by corresponding corrections to \( \omega_{\mu,ab} \) transformations.
\( \Lambda \) transformations. Here we get
\[
\delta \Lambda L = -\frac{8M^2}{(d-2)^2}a_0\epsilon^{ij}F^{\mu\nu}\hat{B}_{\mu\nu}^{i}\Lambda^{j}
\]
This term also vanish on-shell and can be compensated by corresponding corrections to \( B^{ab} \) transformations.

### 1.5 Results

Thus we have seen that the following Lagrangian
\[
\mathcal{L}_0 = a_1 \left\{ \mu^{\alpha\beta} \right\} \mathcal{F}_{\mu\nu}^{ab} \mathcal{F}_{\alpha\beta}^{cd} + a_3 \left\{ \frac{\mu^{\alpha\beta}}{ab} \right\} \hat{B}_{\mu}^{ac} \hat{B}_{\nu}^{bc} + b_2 \left\{ \frac{\mu^{\alpha\beta}}{ab} \right\} \hat{B}_\mu^{ab} \hat{B}_\nu - \frac{1}{4}\mathcal{F}_{\mu\nu}^2
\]
is indeed gauge invariant in the linear approximation provided we introduce corresponding corrections to gauge transformations
\[
\delta A_{\mu} = 2a_0\epsilon^{ij}[\omega_{\mu}^{ab,i}\omega^{ab,j} + \frac{4M^2}{(d-2)}f^a_{\mu,i}\xi^{a,j} - \frac{8M^2}{(d-2)^2}\hat{B}_{\mu}^{i}\Lambda^{j}] \quad (15)
\]
\[
\delta f_{\mu}^{a,i} = 4a_0\epsilon^{ij}[F_{\mu}^{b,\eta^{ab,j}} - \frac{1}{2(d-2)}c^a_{\mu}(F\eta)^j] \quad (16)
\]
Note that in agreement with our previous results in [44] it is impossible to take partially massless limit \( M \to 0 \) in de Sitter space without switching off minimal e/m interactions. At the same time, nothing prevents us from considering massless limit in anti de Sitter space \( m = 0, M^2 = -\kappa(d-2) \). In this limit we obtain simple Lagrangian
\[
\mathcal{L} = a_1 \left\{ \mu^{\alpha\beta} \right\} \mathcal{F}_{\mu\nu}^{ab} \mathcal{F}_{\alpha\beta}^{cd} - \frac{1}{4}\mathcal{F}_{\mu\nu}^2 \quad (17)
\]
where
\[
\mathcal{F}_{\mu\nu}^{ab} = \nabla_{[\mu\omega_{\nu}]}^{ab} - \frac{2M^2}{(d-2)}c_{[\mu}^{a}f_{\nu]}^{b]}
\]
\[
\hat{F}_{\mu\nu} = F_{\mu\nu} + a_0\epsilon^{ij}[\omega_{[\mu}^{a,b,i}\omega_{\nu]}^{a,b,j} + \frac{4M^2}{(d-2)}f_{[\mu}^{a,i}f_{\nu]}^{a,j}]
\]
2 Mixed symmetry tensor

In this section we apply the same procedure to construct electromagnetic interactions for simplest massive mixed symmetry tensor ("hook").

2.1 Lagrangian and gauge transformations

In this case frame-like gauge invariant description requires four pairs of physical and auxiliary fields: \((\Omega^\mu_{\alpha\beta c}, \Phi^a_{\mu
u}), (\omega^a_{\mu \nu b}, h^a_{\mu}), (C^{abc}, C^\mu_{\nu})\) and \((B^a_{\mu}, B^b_{\nu})\). Free Lagrangian has the form:

\[
\mathcal{L}_0 = -\frac{3}{4} \{_{\mu}^{\nu} \} \Omega^\mu_{\alpha\beta c} \Omega^\nu_{\beta\delta d} + \frac{1}{4} \{_{\mu
u}^{\alpha\beta} \} \Omega^\mu_{\alpha\beta c} D_\nu \Phi^d_{\alpha\beta d} + \frac{1}{2} \{_{\mu}^{\nu} \} \omega^\mu_{\alpha \beta c} \omega^\nu_{\beta \delta d} - \frac{1}{2} \{_{\mu\nu}^{\alpha\beta} \} \omega^\mu_{\alpha \beta c} D_\nu f^c_{\alpha} - \frac{1}{6} C_{abc}^2 + \frac{1}{6} \{_{\mu\nu}^{\alpha\beta} \} C^{abc} D_\mu C_{\nu\alpha} + \frac{1}{4} B_{ab}^2 - \frac{1}{2} \{_{\mu}^{\nu} \} B_{ab} D_\mu B_\nu + m_1 \{_{\mu}^{\nu} \} \omega^\mu_{ab} C_\nu + \{_{ab}^{\mu} \} B_{ab} f^b_{\mu} + \tilde{m}_1 \{_{ab}^{\mu} \} B_{ab} C_{\mu \nu}
\]

(19)

parameters \(m_{1,2}\) satisfy a relation

\[
8m_1^2 - 24m_2^2 = -3(d-3)\kappa
\]

while \(\tilde{m}_{1,2} = \sqrt{\frac{2\kappa}{d-3}} m_{1,2}\). This Lagrangian is invariant under the following set of gauge transformations:

\[
\delta_0 \Phi^a_{\mu \nu} = D_\mu z^a_\nu + \eta^a_{\mu \nu} + \frac{2m_1}{3(d-3)} e^a_{[\mu} \xi^\nu_{\nu]} + \frac{4m_2}{(d-3)} e^a_{[\mu} \zeta^\nu_{\nu]},
\]

\[
\delta_0 \Omega^\mu_{\alpha\beta c} = D_\mu \eta^{\alpha\beta c} + \frac{4m_1}{3(d-3)} e^\mu_{[\alpha \beta} \gamma^{\gamma c]},
\]

\[
\delta_0 f^a_{\mu} = D_\mu \xi^a_{\mu} + \eta^a_{\mu} + 4m_1 z^a_{\mu} + \frac{4m_2}{(d-2)} e^a_{\mu} \Lambda
\]

(20)

\[
\delta_0 \omega^a_{\mu \nu} = D_\mu \eta^{a\nu} - 2m_1 \eta^a_{\mu \nu}, \quad \delta_0 C^{\mu \nu} = D_\mu \zeta^{\mu \nu} - 2m_2 z^{\mu \nu}, \quad \delta_1 C^{abc} = 6m_2 \eta^{abc},
\]

\[
\delta_0 B^a_{\mu} = D_\mu \Lambda + 2\tilde{m}_1 \xi^a_{\mu} + 4\tilde{m}_1 \zeta^a_{\mu}, \quad \delta_0 B^b_{\nu} = -4\tilde{m}_2 \eta^{ab}
\]

As the relation on the parameters \(m_{1,2}\) clearly shows for non-zero values of cosmological constant \(\kappa\) it is not possible to set both \(m_1\) and \(m_2\) equal to zero simultaneously. In \(AdS\) space \((\kappa < 0)\) one can set \(m_2 = 0\). In this case, the whole system decomposes into two disconnected subsystems. One of them with the Lagrangian and gauge transformations:

\[
\mathcal{L}_0 = -\frac{3}{4} \{_{\mu}^{\nu} \} \Omega^\mu_{\alpha\beta c} \Omega^\nu_{\beta\delta d} + \frac{1}{4} \{_{\mu
u}^{\alpha\beta} \} \Omega^\mu_{\alpha\beta c} D_\nu \Phi^d_{\alpha\beta d} + \frac{1}{2} \{_{\mu}^{\nu} \} \omega^\mu_{\alpha \beta c} \omega^\nu_{\beta \delta d} - \frac{1}{2} \{_{\mu\nu}^{\alpha\beta} \} \omega^\mu_{\alpha \beta c} D_\nu f^c_{\alpha} - m_1 \{_{\mu}^{\nu} \} \omega^\mu_{ab} C_\nu + \{_{ab}^{\mu} \} B_{ab} f^b_{\mu}
\]

(21)
\[ \delta_0 \Phi_{\mu\nu}^a = D_{[\mu} z_{\nu]}^a + \eta_{\mu\nu}^a + \frac{2m_1}{3(d-3)} e_{[\mu}^a \xi_{\nu]} \]
\[ \delta_0 \Omega_{\mu}^{abc} = D_{\mu} \eta^{abc} + \frac{4m_1}{3(d-3)} e_{\mu}^{[a} \eta^{bc]} \]
\[ \delta_0 f_{\mu}^a = D_{\mu} \xi^a + \eta_{\mu}^a + 4m_1 z_{\mu}^a \]
\[ \delta_0 \omega_{\mu}^{ab} = D_{\mu} \eta^{ab} - 2m_1 \eta_{\mu}^{ab} \]

(22)

corresponds to massless representation of AdS group (which differs from that of Poincare group [51]), while the other one just gives gauge invariant description of massive antisymmetric second rank tensor. In turn, in dS space one can set \( m_1 = 0 \). In this case the whole system also decomposes into two disconnected subsystems. One of them with the Lagrangian and gauge transformations:

\[ \mathcal{L}_0 = -\frac{3}{4} \{ \frac{\mu\nu}{ab} \} \Omega_{\mu}^{abcd} \Omega_{\nu}^{abcd} + \frac{1}{4} \{ \frac{\mu\nu\alpha\beta}{abcd} \} \Omega_{\mu}^{abcd} \Phi_{\alpha\beta}^d + \frac{1}{6} C_{\mu}^{abc}^2 + 1 \{ \frac{\mu\nu}{abc} \} C_{\mu}^{abc} \Phi_{\nu} + m_2 \{ \frac{\mu\nu}{abc} \} C_{\mu}^{abc} \Phi_{\nu} + 4 \{ \frac{\mu\nu}{abcd} \} \Phi_{\mu}^{abcd} \]

(23)

corresponds to massless representation of dS group, while the other one describes a so called partially massless spin 2 particle [45, 46, 47, 48, 49, 50, 30].

2.2 Gauge invariant objects

Having in our disposal explicit form of the gauge transformations we can construct gauge invariant curvatures for all eight fields (both physical and auxiliary):

\[ \mathcal{R}_{\mu\nu}^{abc} = D_{[\mu} \Omega_{\nu]}^{abc} + \frac{4m_1}{3(d-3)} e_{[\mu}^{a} \omega_{\nu]}^{bc} + \frac{4m_2}{3(d-3)} e_{[\mu}^{a} C_{\nu]}^{bc} \]
\[ T_{\mu\nu}^a = D_{[\mu} \Phi_{\nu]}^a - \Omega_{[\mu,\nu]}^a + \frac{2m_1}{3(d-3)} e_{[\mu}^{a} f_{\nu,\alpha]} + \frac{4m_2}{3(d-3)} e_{[\mu}^{a} C_{\nu\alpha]} \]
\[ \mathcal{F}_{\mu\nu}^{ab} = D_{[\mu} \omega_{\nu]}^{ab} + 2m_1 \Omega_{[\mu,\nu]}^{ab} - \frac{2m_2}{(d-2)} e_{[\mu}^{a} B_{\nu]}^{b]} \]
\[ T_{\mu\nu}^a = D_{[\mu} f_{\nu]}^a - \omega_{[\mu,\nu]}^a - 4m_1 \Phi_{\mu\nu}^a + \frac{4m_2}{(d-2)} e_{[\mu}^{a} B_{\nu]} \]
\[ C_{\mu}^{abc} = D_{\mu} C^{abc} - 6m_2 \Omega_{\mu}^{abc} - \frac{2m_1}{(d-2)} e_{\mu}^{[a} B^{bc]} \]
\[ C_{\mu\nu}^a = D_{[\mu} C_{\nu]}^{a} - C_{[\mu,\nu]}^a + 2m_2 \Phi_{[\mu,\nu]}^a \]
\[ B_{\mu}^{ab} = D_{\mu} B^{ab} + 4m_2 \omega_{\mu}^{ab} + \frac{4m_1}{3} C_{\mu}^{ab} \]
\[ B_{\mu\nu} = D_{[\mu} B_{\nu]} - B_{\mu\nu} - 2m_2 f_{[\mu,\nu]} - 4m_1 C_{\mu\nu} \]

(25)
Similarly to massive spin 2 case, if we consider the most general Lagrangian quadratic in these curvatures and require that all higher derivatives terms were absent and kinetic terms were diagonal, we will still have some ambiguity in the choice of coefficients. In what follows we will use the following concrete form of free Lagrangian (see below):

\[
\mathcal{L}_0 = \{_{\mu\nu\alpha\beta}^{abcd}\}[a_1 R_{\mu\nu}^{\ ab} R_{\alpha\beta}^{\ cd} + a_2 F_{\mu\nu}^{\ ab} F_{\alpha\beta}^{\ cd}] + \{_{\mu}^{\ ab}\}[a_3 C_{\mu}^{\ abc} C_{\nu}^{\ bcd} + a_4 B_{\mu}^{\ ac} B_{\nu}^{\ bc}] + \\
b_1 \{_{\mu\nu\alpha\beta}^{abcd}\} R_{\mu\nu}^{\ abc} R_{\alpha\beta}^{\ d} + b_2 \{_{\mu\nu}^{\ ab}\} C_{\mu}^{\ abc} B_{\nu}^{\ ac}
\] (26)

\[
a_1 = -\frac{9}{512m_1^2}, \quad a_2 = \frac{2}{3(d-3)}a_1 = -\frac{3}{256(d-3)m_1^2} \quad a_3 = \frac{32(d-4)}{9(d-3)}a_1 = -\frac{(d-4)}{16(d-3)m_1^2}, \quad a_4 = \frac{4(d-3)}{(d-2)}a_2 = -\frac{3}{64(d-2)m_1^2}
\]

\[
b_1 = -\frac{1}{32m_1}, \quad b_2 = \frac{1}{24m_1}
\]

2.3 Deformations

Our next task is to construct appropriate deformations for all gauge invariant objects. As in the case of massive spin 2 particle all we have to do with curvatures for mixed symmetry tensor is to replace \((A)dS\) covariant derivatives with the fully covariant ones. Using explicit form of free gauge transformations and free curvatures it is straightforward to find appropriate deformation for e/m field strength. Indeed, let us consider the following ansatz for such deformation:

\[
\hat{F}_{\mu\nu} = a_0 \varepsilon^{ij}[\Omega_{\mu}^{\ abc,i} \Omega_{\nu}^{\ abc,j} + \alpha_1 \omega_{[\mu}^{\ ab,i} \omega_{\nu]}^{\ ab,j} + \alpha_2 C_{[\mu}^{\ ab,i} C_{\nu]}^{\ ab,j} + \alpha_3 B_{[\mu}^{\ a,i} B_{\nu]}^{\ a,j}]
\]

Its variation under the \(\eta^{abc}\) transformations has the form:

\[
\delta \hat{F}_{\mu\nu} = 2a_0 \varepsilon^{ij}[-D_{[\mu}^{\ i} \eta_{\nu]}^{\ abc,j} \Omega_{\nu}^{\ abc,i} - 2m_1 \alpha_1 \omega_{[\mu}^{\ ab,i} \eta_{\nu]}^{\ ab,j} + 6m_2 \alpha_2 C_{[\mu}^{\ ab,i} \eta_{\nu]}^{\ ab,j}]
\]

Introducing appropriate correction:

\[
\delta A_{\mu} = 2a_0 \varepsilon^{ij} \Omega_{\mu}^{\ abc,i} \eta_{\nu}^{\ abc,j}
\]

we obtain:

\[
\delta \hat{F}_{\mu\nu} = 2a_0 \varepsilon^{ij}[D_{[\mu}^{\ i} \eta_{\nu]}^{\ abc,j} - 2m_1 \alpha_1 \omega_{[\mu}^{\ ab,i} \eta_{\nu]}^{\ ab,j} + 6m_2 \alpha_2 C_{[\mu}^{\ ab,i} \eta_{\nu]}^{\ ab,j}]
\]

Comparing this expression with

\[
2a_0 \varepsilon^{ij} R_{\mu\nu}^{\ abc,i} \eta_{\nu}^{\ abc,j} = 2a_0 \varepsilon^{ij}[D_{[\mu}^{\ i} \eta_{\nu]}^{\ abc,j} + \frac{4m_1}{(d-3)}e_{[\mu}^{\ a} \omega_{\nu]}^{\ bc,i} + \frac{4m_2}{(d-3)}e_{[\mu}^{\ a} C_{\nu]}^{\ bc,i} \eta_{\nu}^{\ abc,j}]
\]

we see that we have to put

\[
\alpha_1 = \frac{2}{(d-3)}, \quad \alpha_2 = -\frac{2}{3(d-3)}
\]
Similarly, variation under the $\eta^{ab}$ transformations:

$$\delta \hat{F}_{\mu \nu} = 2a_0 \varepsilon^{ij} \left[ -\alpha_1 D_{[\mu} \eta^{ab,j} \omega^{i]} + \frac{4m_1}{(d-3)} \Omega^{[\mu}_{\mu} e^{bc,i} \eta^{bc,j} - 4\tilde{m}_2 \alpha_3 B_{[\mu} \eta^{b} \eta^{a]} \right]$$

together with the following correction

$$\delta A_{\mu} = 2\alpha_1 a_0 \varepsilon^{ij} \omega^{ab,i} \eta^{ab,j}$$

give us

$$\delta \hat{F}_{\mu \nu} = 2a_0 \varepsilon^{ij} \left[ a_1 D_{[\mu} \eta^{ab,j} \omega^{i]} + \frac{4m_1}{(d-3)} \Omega^{[\mu}_{\mu} e^{bc,i} \eta^{bc,j} - 4\tilde{m}_2 \alpha_3 B_{[\mu} \eta^{b} \eta^{a]} \right]$$

Comparing this expression with

$$2\alpha_1 a_0 \varepsilon^{ij} \mathcal{F}_{\mu \nu}^{ab,i} \eta^{ab,j} = 2\alpha_1 a_0 \varepsilon^{ij} \left[ D_{[\mu} \omega^{i]} \eta^{bc,j} + 2m_1 \Omega^{[\mu}_{\mu} \omega^{i]}} - \frac{4\tilde{m}_2}{(d-2)} e^{a} B_{b}^{a} \eta^{ab,j} \right]$$

we obtain

$$\alpha_3 = -\frac{2}{(d-2)(d-3)}$$

Thus we obtain finally

$$\hat{F}_{\mu \nu} = F_{\mu \nu} + a_0 \varepsilon^{ij} \left[ \Omega^{[\mu}_{\mu} e^{bc,i} \eta^{bc,j} + \frac{2}{(d-3)} \omega^{i]} \eta^{bc,j} - \frac{2}{3(d-3)} C^{[\mu}_{i} C^{i]} \eta^{bc,j} - \frac{1}{2(d-3)(d-2)} B_{[\mu} \eta^{b} \eta^{a]} \right] \tag{27}$$

In this, if we supplement this deformation with the following corrections to e/m field transformations:

$$\delta A_{\mu} = 2a_0 \varepsilon^{ij} \left[ \Omega^{[\mu}_{\mu} e^{bc,i} \eta^{bc,j} + \frac{2}{(d-3)} \omega^{i]} \eta^{bc,j} \right]$$

then under massive mixed tensor gauge transformations we obtain:

$$\delta \hat{F}_{\mu \nu} = 2a_0 \varepsilon^{ij} \left[ \mathcal{R}_{\mu \nu}^{ab,i} \eta^{ab,j} + \frac{2}{(d-3)} \mathcal{F}_{\mu \nu}^{ab,i} \eta^{ab,j} \right] \tag{29}$$

Thus, following general procedure, we consider the following Lagrangian:

$$\mathcal{L} = \left\{ \mu^{\alpha \beta}_{\ab} \right\} \left\{ a_1 \hat{R}_{\mu \nu}^{abc} \hat{R}_{\alpha \beta}^{d} + a_2 \hat{F}_{\mu \nu}^{ab} \hat{F}_{\alpha \beta}^{cd} \right\} + \left\{ \mu^{\alpha \beta}_{\ab} \right\} \left\{ a_3 \hat{C}_{\mu}^{abc} \hat{C}_{\nu}^{bcd} + a_4 \hat{B}_{\mu}^{ac} \hat{B}_{\nu}^{bc} \right\} + b_1 \left\{ \mu^{\alpha \beta}_{\ab} \right\} \hat{R}_{\mu \nu}^{abc} \hat{T}_{\alpha \beta}^{d} + \left\{ \mu^{\alpha \beta}_{\ab} \right\} b_2 \hat{C}_{\mu}^{abc} \hat{B}_{\nu}^{bc} \hat{B}_{\nu}^{bc} - \frac{1}{4} \hat{F}_{\mu \nu}^{2} \tag{30}$$
2.4 Gauge invariance

Now we have to calculate variations of this Lagrangian in the first non-trivial approximation and to adjust parameters so that all such variations vanish on-shell. This in turn would imply that they can be compensated by appropriate corrections to gauge transformations.

$\eta^{abc}$ transformations. In this case we obtain the following variations of our Lagrangian:

$$\delta \mathcal{L} = -a_0 \varepsilon^{ij} F^{\mu\nu} \mathcal{R}_{\mu
u}{}^{cde,i} \eta^{cde,j} + 8a_1 e_0 \varepsilon^{ij} \mathcal{R}_{\mu
u}{}^{cde,i} F^{cd} \eta^{\mu\nu,e,j} +$$
$$+4a_1 e_0 \varepsilon^{ij} \{\mu_{ab} \} \{-4\mathcal{R}_{\mu
u}{}^{ace,i} \eta^{bde,j} + \mathcal{R}_{\mu
u}{}^{abe,i} \eta^{cde,j}\} F^{cd} +$$
$$+6b_1 e_0 \varepsilon^{ij} \{\mu_{ab} \} \{T_{\mu\nu}{}^{a,i} \eta^{bcd,j} + T_{\mu\nu}{}^{c,i} \eta^{abd,j}\} F^{cd}$$

All terms in the second and the third lines clearly vanish on-shell being proportional to $\Phi^{a}$

and it is not hard to check that the following identity holds:

$$\eta^{abc} F^{cde} \mathcal{R}_{ab,cde} = \frac{1}{3} F^{ab} \eta^{cde} \mathcal{R}_{ab,cde}$$

Thus $\mathcal{R}_{[\mu\nu,\alpha\beta]}^a$ vanish on-shell, in this the following consequence appears:

$$\mathcal{R}_{[\mu\nu,\alpha\beta]}^a = 0 \implies \eta^{abc} F^{cde} \mathcal{R}_{ab,cde} = \frac{1}{3} F^{ab} \eta^{cde} \mathcal{R}_{ab,cde}$$

Thus if we put $a_0 = \frac{8e_0 a_1}{(d-3)}$ then all variations vanish on-shell and can be compensated with the corresponding corrections to gauge transformations. Again we restrict ourselves with the corrections for physical fields only which have the following form:

$$\delta \Phi^{a,i} = 2a_0 \varepsilon^{ij} [2F^{b}{}_{[\mu} \eta^{a}{}_{\nu]} - \frac{1}{(d-3)} e^{[\mu}_{[\nu} (F\eta)_{\nu]}]$$

$\eta^{ab}$ transformations. Here we obtain the following variations:

$$\delta \eta = -2a_2 e_0 \varepsilon^{ij} \{\mu_{ab} \} \{4F^{\mu\nu}{}^{ac,i} \eta^{bde,j} - F^{\mu\nu}{}^{ab,i} \eta^{cde,j}\} F^{cd} -$$
$$-2a_0 \varepsilon^{ij} F^{\mu\nu} F^{\mu\nu}{}^{ab,i} \eta^{ab,j} + 8a_2 e_0 \varepsilon^{ij} F^{\mu\nu} F^{\mu\nu}{}^{ab,i} F^{ab} \eta^{\mu\nu,j}$$

Terms in the first line vanish on-shell being proportional to free $f^{a}_\mu$ equations. As for the second line, it is not hard to check that the following identity holds:

$$F^{[a\mu\nu]} = -D_{[\mu} T_{\nu\alpha]}{}^{a} - 4m_1 T_{\mu\nu}{}^{a} - \frac{4m_2}{(d-2)} e^{[\mu}_{[\nu} (F\eta)_{\nu]}$$

This means that $F^{[a\mu\nu]}$ vanish on-shell. Thus if we put $a_0 = 4a_2 e_0 (d-3)$ then all variations vanish on-shell. Comparing this relation with $a_0 = \frac{8e_0 a_1}{3(d-3)}$ we see that $a_2 = \frac{2a_1}{3(d-3)}$ and this explains our choice of concrete form for the free Lagrangian. Corrections to gauge transformations for physical fields look as follows:

$$\delta f^{a,i} = \frac{2a_0}{(d-3)} \varepsilon^{ij} [2F^{b}{}_{[\mu} \eta^{a}{}_{\nu]} - \frac{1}{(d-2)} e^{[\mu}_{[\nu} (F\eta)_{\nu]}]$$

$\xi^{a}$ and $\Lambda$ transformations. In these cases we obtain simply:

$$\delta \mathcal{L} = b_1 e_0 \varepsilon^{ij} \{\mu_{abcd} \} \mathcal{R}_{\mu\nu}{}^{abc,i} \xi^{d,j} + b_2 e_0 \varepsilon^{ij} \{\mu_{abc} \} \mathcal{C}_{\mu}{}^{abc,i} F_{\nu\alpha}{}^{\Lambda,j}$$

and these variations can be compensated by:

$$\delta \Phi^{a,i} = -8b_1 e_0 \varepsilon^{ij} F^{\mu\nu} \xi^{a,j}, \quad \delta \mathcal{C}^{i} = 6b_2 e_0 \varepsilon^{ij} F^{\mu\nu} \Lambda^{j}$$
2.5 Results

Thus we have seen that the following Lagrangian:

\[ \mathcal{L} = \{ \mu^\alpha \nu^\beta \} \left[ a_1 \hat{R}_{\mu^\nu} a^b c e + a_2 \hat{F}_{\mu^\nu} a^b c d e \right] + \{ \mu^\nu \} \left[ a_3 \hat{C}_{\mu} a^c d e + a_4 \hat{B}_{\mu} a^b c \right] + b_1 \{ \mu^\alpha \nu^\beta \} \hat{R}_{\mu^\nu} a^b c d e + \{ \mu^\nu \} b_2 \hat{C}_{\mu} a^b c \hat{B}_{\nu} a - \frac{1}{4} \hat{F}_{\mu^\nu}^2 \] (38)

is indeed gauge invariant in the linear approximation provided we supplement it with the following corrections to gauge transformations:

\[
\begin{align*}
\delta A_\mu &= 2a_0 \varepsilon^{ij} \Omega_{\mu, [abc, j]} \eta^{abc, i} + \frac{2}{(d-3)} \omega_{\mu, [abc, i]} \eta^{abc, j} \\
\delta \Phi_{\mu^\nu}^{a,i} &= 2a_0 \varepsilon^{ij} \left[ 2F_{\mu^\nu}^b \eta_{abj} - \frac{1}{(d-3)} \epsilon_{[\mu} a \left( F_{\eta} \right)_{\nu]} \right] - 8b_1 \varepsilon^{ij} F_{\mu^\nu} \eta^{a,j} \\
\delta f_{\mu^\nu}^{a,i} &= \frac{2a_0}{(d-3)} \varepsilon^{ij} \left[ 2F_{\mu^\nu}^b \eta_{abj} - \frac{1}{(d-2)} \epsilon_{[\mu} a \left( F_{\eta} \right)_{\nu]} \right] \\
\delta C_{\mu^\nu}^{i} &= 6b_2 \varepsilon^{ij} F_{\mu^\nu} \Lambda^j
\end{align*}
\] (39)

As we have seen from the formulas above, electric charge \(e_0 \sim a_0 m_1\) so it is impossible to take (partially) massless limit \(m_1 \to 0\) in de Sitter space without switching off minimal e/m interactions. In this, nothing prevent us from considering (partially) massless limit \(m_2 \to 0\) in anti de Sitter space. In this limit we obtain the following simple Lagrangian:

\[ \mathcal{L} = \{ \mu^\alpha \nu^\beta \} \left[ a_1 \hat{R}_{\mu^\nu} a^b c e + a_2 \hat{F}_{\mu^\nu} a^b c d e \right] + b_1 \hat{R}_{\mu^\nu} a^b c d e + \frac{1}{4} \hat{F}_{\mu^\nu}^2 \] (40)

where:

\[
\begin{align*}
\hat{F}_{\mu^\nu} &= F_{\mu^\nu} + a_0 \varepsilon^{ij} \left[ \Omega_{\mu} a^{b,c,i} \Omega_{\nu} a^{b,c,j} + \frac{2}{(d-3)} \omega_{\mu} a^{b,i} \omega_{\nu} a^{b,j} \right] \\
\hat{R}_{\mu^\nu}^{abc} &= D_{[\mu} \Omega_{\nu]}^{abc} + \frac{4m_1}{3(d-3)} \epsilon_{[\mu} a \Omega_{\nu]}^{bc} \\
\hat{F}_{\mu^\nu}^{ab} &= D_{[\mu} \omega_{\nu]}^{ab} + 2m_1 \Omega_{[\mu} \omega_{\nu]}^{ab} \\
T_{\mu^\nu}^{a} &= D_{[\mu} \omega_{\nu]}^{a} - \omega_{[\mu} a^{b} - 4m_1 \Phi_{\mu^\nu}^{a} \]
\] (41)

Conclusion

Thus we have seen that using frame-like gauge invariant formulation it is indeed possible to extend Fradkin-Vasiliev procedure to the case of electromagnetic interactions of massive particles. We constructed two explicit examples: spin 2 and simplest mixed symmetry tensor. These two cases are just the simplest representatives of two general class of fields, namely completely symmetric and mixed symmetry ones, and it is clear that the results obtained admit straightforward generalization to higher spins as well.

Acknowledgment

Author is grateful to N. Boulanger, E. Skvortsov and M. Vasiliev for many useful discussions.
References

[1] X. Bekaert, N. Boulanger, P. Sundell "How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples", arXiv:1007.0435

[2] E. S. Fradkin, M. A. Vasiliev "On the gravitational interaction of massless higher-spin fields", Phys. Lett. B189 (1987) 89.

[3] E. S. Fradkin, M. A. Vasiliev "Cubic interaction in extended theories of massless higher-spin fields", Nucl. Phys. B291 (1987) 141.

[4] Yu. M. Zinoviev "On spin 3 interacting with gravity", Class. Quantum Grav. 26 (2009) 035022, arXiv:0805.2226.

[5] N. Boulanger, S. Leclercq, P. Sundell "On The Uniqueness of Minimal Coupling in Higher-Spin Gauge Theory", JHEP 0808 (2008) 056, arXiv:0805.2764.

[6] Yu. M. Zinoviev "On spin 2 electromagnetic interactions", Mod. Phys. Lett. A24 (2009) 17, arXiv:0806.4030.

[7] M. Taronna "Higher Spins and String Interactions", arXiv:1005.3061.

[8] A. Sagnotti, M. Taronna "String Lessons for Higher-Spin Interactions", Nucl. Phys. B842 (2011) 299, arXiv:1006.5242.

[9] O. Schlotterer "Higher Spin Scattering in Superstring Theory", arXiv:1011.1235.

[10] C. Bizdadea, E. M. Cioroianu, I. Negru, S. O. Salariu "Lagrangian interactions within a special class of covariant mixed-symmetry type tensor gauge fields", Eur. Phys. J. C27 (2003) 457, arXiv:hep-th/0211158.

[11] X. Bekaert, N. Boulanger, M. Henneaux "Consistent deformations of dual formulations of linearization gravity: A no-go result", Phys. Rev. D67 (2003) 044010, arXiv:hep-th/0210278.

[12] C. Bizdadea, C. C. Ciobirca, E. M. Cioroianu, S. O. Salariu, S. C. Sararu "Interacting mixed-symmetry type tensor gauge fields of degrees two and three: a four-dimensional cohomological approach", arXiv:hep-th/0303079.

[13] C. Bizdadea, C. C. Ciobirca, E. M. Cioroianu, S. O. Salariu, S. C. Sararu "Interactions of a massless tensor field with the mixed symmetry of the Riemann tensor. No-go results", Eur.Phys.J. C36 (2004) 253-270, arXiv:hep-th/0306154.

[14] S. O. Salariu "Consistent interactions in a three-dimensional theory with tensor gauge fields of degrees two and three", Int. J. Mod. Phys. A18 (2003) 4451, arXiv:hep-th/0304121.

[15] N. Boulanger, S. Cnockaert "Consistent deformations of [p,p]-type gauge field theories", JHEP 0403 (2004) 031, arXiv:hep-th/0402180.
[16] X. Bekaert, N. Boulanger, S. Cnockaert "No Self-Interaction for Two-Column Massless Fields", J. Math. Phys. 46 (2005) 012303, arXiv:hep-th/0407102.

[17] C. C. Ciobirca, S. O. Saliu "Generalized couplings between an Abelian p-form and a (3,1) mixed symmetry tensor field", arXiv:hep-th/0702018.

[18] C. Bizdadea, C. C. Ciobirca, I. Negru, S. O. Saliu "Couplings between a single massless tensor field with the mixed symmetry (3,1) and one vector field", Phys. Rev. D74 (2006) 045031, arXiv:0705.1048.

[19] C. Bizdadea, C. C. Ciobirca, E. M. Cioroianu, S. O. Saliu "Interactions between a massless tensor field with the mixed symmetry of the Riemann tensor and a massless vector field", J. Phys. A: Math. Gen. 39 (2006) 10549-10564, arXiv:0705.1054.

[20] C. Bizdadea, D. Cornea, S. O. Saliu "No cross-interactions among different tensor fields with the mixed symmetry (3,1) intermediated by a vector field", J. Phys. A Math. Theor. 41 (2008) 285202, arXiv:0901.4059.

[21] C. Bizdadea, E. M. Cioroianu, A. Danehkar, M. Iordache, S. O. Saliu, S. C. Sararu "Consistent interactions of dual linearized gravity in D=5: couplings with a topological BF model", Eur. Phys. J. C63 (2009) 491-519, arXiv:0908.2169.

[22] E. S. Fradkin, R. R. Metsaev "Cubic scattering amplitudes for all massless representations of the Poincare group in any space-time dimension", Phys. Rev. D52 (1995) 4660.

[23] K. B. Alkalaev "FV-type action for AdS(5) mixed-symmetry fields", arXiv:1011.6109.

[24] M. A. Vasiliev "Higher-Spin Gauge Theories in Four, Three and Two Dimensions", Int. J. Mod. Phys. D5 (1996) 763, arXiv:hep-th/9611024.

[25] M. A. Vasiliev "Cubic Interactions of Bosonic Higher Spin Gauge Fields in AdS5", Nucl.Phys. B616 (2001) 106-162; Erratum-ibid. B652 (2003) 407, arXiv:hep-th/0106200.

[26] K. B. Alkalaev, M. A. Vasiliev "N=1 Supersymmetric Theory of Higher Spin Gauge Fields in AdS(5) at the Cubic Level", Nucl.Phys. B655 (2003) 57-92, arXiv:hep-th/0206068.

[27] M. A. Vasiliev "'Gauge' form of description of massless fields with arbitrary spin", Sov. J. Nucl. Phys. 32 (1980) 439.

[28] V. E. Lopatin, M. A. Vasiliev "Free massless bosonic fields of arbitrary spin in d-dimensional de sitter space", Mod. Phys. Lett. A3 (1988) 257.

[29] M. A. Vasiliev "Free massless fermionic fields of arbitrary spin in d-dimensional de sitter space", Nucl. Phys. B301 (1988) 26.

[30] Yu. M. Zinoviev "Frame-like gauge invariant formulation for massive high spin particles", Nucl. Phys. B808 (2009) 185, arXiv:0808.1778.
[31] D. S. Ponomarev, M. A. Vasiliev "Frame-Like Action and Unfolded Formulation for Massive Higher-Spin Fields", Nucl. Phys. B839 (2010) 466, arXiv:1001.0062.

[32] Yu. M. Zinoviev "First Order Formalism for Mixed Symmetry Tensor Fields", arXiv:hep-th/0304067.

[33] K. B. Alkalaev, O. V. Shaynkman, M. A. Vasiliev "On the Frame-Like Formulation of Mixed-Symmetry Massless Fields in (A)dS(d)", Nucl. Phys. B692 (2004) 363, arXiv:hep-th/0311164.

[34] K. B. Alkalaev "Two-column higher spin massless fields in AdS(d)", Theor. Math. Phys. 140 (2004) 1253, arXiv:hep-th/0311212.

[35] K. B. Alkalaev, O. V. Shaynkman, M. A. Vasiliev "Lagrangian Formulation for Free Mixed-Symmetry Bosonic Gauge Fields in (A)dS(d)", JHEP 0508 (2005) 069, arXiv:hep-th/0501108.

[36] K. B. Alkalaev, O. V. Shaynkman, M. A. Vasiliev "Frame-like formulation for free mixed-symmetry bosonic massless higher-spin fields in AdS(d)", arXiv:hep-th/0601225.

[37] E. D. Skvortsov "Mixed-Symmetry Massless Fields in Minkowski space Unfolded", JHEP 0807 (2008) 004, arXiv:0801.2268.

[38] E. D. Skvortsov "Frame-like Actions for Massless Mixed-Symmetry Fields in Minkowski space", Nucl. Phys. B808 (2009) 569, arXiv:0807.0903.

[39] E. D. Skvortsov, Yu. M. Zinoviev "Frame-like Actions for Massless Mixed-Symmetry Fields in Minkowski space. Fermions", Nucl. Phys. B843 (2011) 559, arXiv:1007.4944.

[40] Yu. M. Zinoviev "First Order Formalism for Massive Mixed Symmetry Tensor Fields in Minkowski and (A)dS Spaces", arXiv:hep-th/0306292.

[41] Yu. M. Zinoviev "Towards frame-like gauge invariant formulation for massive mixed symmetry bosonic fields", Nucl. Phys. B812 (2009) 46, arXiv:0809.3287.

[42] Yu. M. Zinoviev "Frame-like gauge invariant formulation for mixed symmetry fermionic fields", Nucl. Phys. B821 (2009) 21-47, arXiv:0904.0549.

[43] Yu. M. Zinoviev "Towards frame-like gauge invariant formulation for massive mixed symmetry bosonic fields. II. General Young tableau with two rows", Nucl. Phys. B826 (2010) 490, arXiv:0907.2140.

[44] Yu. M. Zinoviev "On massive spin 2 electromagnetic interactions", Nucl. Phys. B821 (2009) 431-451, arXiv:0901.3462.

[45] S. Deser, A. Waldron "Gauge Invariance and Phases of Massive Higher Spins in (A)dS", Phys. Rev. Lett. 87 (2001) 031601, arXiv:hep-th/0102166.

[46] S. Deser, A. Waldron "Partial Masslessness of Higher Spins in (A)dS", Nucl. Phys. B607 (2001) 577, arXiv:hep-th/0103198.
[47] S. Deser, A. Waldron "Null Propagation of Partially Massless Higher Spins in (A)dS and Cosmological Constant Speculations", Phys. Lett. B513 (2001) 137, arXiv:hep-th/0105181.

[48] Yu. M. Zinoviev "On Massive High Spin Particles in (A)dS", arXiv:hep-th/0108192.

[49] E. D. Skvortsov, M. A. Vasiliev "Geometric Formulation for Partially Massless Fields", Nucl. Phys. B756 (2006) 117, arXiv:hep-th/0601095.

[50] S. Deser, A. Waldron "Partially Massless Spin 2 Electrodynamics", Phys. Rev. D74 (2006) 084036, arXiv:hep-th/0609113.

[51] L. Brink, R. R. Metsaev, M. A. Vasiliev "How massless are massless fields in AdS_d", Nucl. Phys. B586 (2000) 183, arXiv:hep-th/0005136.