Measurement of Inclusive Jet Cross Sections in $Z/\gamma^*\rightarrow e^+e^-$+jets Production in p$\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

T. Aaltonen,23 J. Adelman,13 T. Akimoto,54 M.G. Albrow,17 B. Álvarez González,11 S. Amerio,42 D. Amidei,34 A. Anastassov,51 A. Annoi,19 J. Antos,14 M. Aoki,24 G. Apollinari,17 A. Apresyan,47 T. Arisawa,36 A. Artikov,15 W. Ashmanskas,17 A. Attal,3 A. Aurisano,52 F. Azfar,41 P. Azzi-Bachetta,42 P. Azzurri,45 N. Bachetta,42 W. Badgett,17 A. Barbaro-Galtieri,29 V.E. Barnes,47 B.A. Barnett,25 S. Baroiant,7 V. Bartsch,30 G. Bauer,32 P.-H. Beauchemin,33 F. Bedeschi,45 P. Bednar,14 S. Behari,25 G. Bellettini,45 J. Bellinger,58 A. Belloni,22 D. Benjamim,16 A. Beretvas,17 J. Beringer,29 T. Berry,29 A. Bhatti,49 M. Binkley,17 D. Bisello,42 I. Bizjak,30 R.E. Blair,2 C. Blocker,6 B. Blumenfeld,25 A. Bocci,16 A. Bodek,58 V. Boisvert,48 G. Bolla,47 A. Bolshov,32 D. Bortoletto,37 J. Boudreau,46 A. Boveia,10 B. Brau,10 A. Bridgeman,24 L. Brigliadori,5 C. Bromberg,35 E. Brubaker,13 J. Budagov,15 H.S. Budd,48 S. Budd,24 K. Burkett,17 G. Busetto,42 P. Bussey,21 A. Buzatu,33 K.L. Byrum,2 S. Cabrera,16 M. Campanelli,35 M. Campbell,34 F. Canelli,17 A. Canepa,44 D. Carlsmith,58 R. Carosi,45 S. Carrillo,18 S. Carron,33 B. Casal,11 M. Casarsa,17 A. Castro,5 P. Catastini,45 D. Cauz,53 M. Cavalli-Sforza,5 A. Cerri,28 L. Cerrito,30 S.H. Chang,27 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,45 G. Chlachidze,17 F. Chlebana,17 K. Cho,27 D. Chokheli,15 J.P. Chou,22 G. Choudalakis,32 S.H. Chuang,51 K. Chung,12 W.H. Chung,58 Y.S. Chung,48 C.I. Ciobanu,24 M.A. Ciocci,45 A. Clark,20 D. Clark,6 G. Compstella,42 M.E. Convery,17 J. Conway,7 B. Cooper,30 K. Copie,34 M. Cordelli,19 G. Cortiana,42 F. Crescioli,45 C. Cuenca Almenar,7 J. Cuevas,41 R. Culbertson,17 J.C. Culty,34 D. Dagenhart,17 M. Datta,17 T. Davies,21 P. de Barbaro,48 S. De Cecco,50 A. Deisher,28 G. De Lendtедер,48 G. De Lorenzo,3 M. Dell’Orso,45 L. Demortier,49 J. Deng,16 M. Deninno,5 D. De Pedis,50 P.F. Derwent,17 G.P. Di Giovanni,43 C. Dionisi,50 B. Di Ruza,53 J.R. Dittmann,4 M. D’Onofrio,34 S. Donati,45 P. Dong,8 J. Donini,42 T. Dorigo,42 S. Dube,51 J. Efron,38 R. Erbacher,7 D. Errede,24 S. Errede,24 R. Eusebi,17 H.C. Fang,28 S. Farrington,39 W.T. Fedorko,13 R.G. Feild,59 M. Feindt,29 J.P. Fernandez,31 F. Ferrazza,45 R. Field,18 G. Flanagan,45 R. Forrest,7 S. Forrester,7 M. Franklin,22 J.C. Freeman,29 I. Furic,18 M. Gallinaro,9 J. Galyardt,12 F. Garberson,10 J.E. Garcia,45 A.F. Garfinkel,47 H. Gerberich,24 D. Gerdes,34 S. Giagu,50 V. Giakoumopoulos,45 P. Giannetti,45 K. Gibson,46 J.L. Gimmell,48 C.M. Ginsburg,17 N. Giokaris,15 M. Giordani,53 P. Giromini,19 M. Giunta,45 V. Glagolev,15 D. Glenshain,17 M. Gold,36 N. Goloschmidt,18 A. Golossanov,17 G. Gomez,11 G. Gomez-Ceballos,42 M. Goncharov,52 O. González,31 I. Gorelov,36 A.T. Goshaw,16 K. Goulianos,49 A. Gresele,42 S. Grinstein,22 C. Grosso-Pilcher,13 R.C. Group,17 U. Grundler,24 J. Guimaraes da Costa,22 Z. Gunay-Unalan,35 C. Haber,28 K. Hahn,52 S.R. Hahn,17 E. Halkiadakis,51 A. Hamilton,20 B.Y. Han,48 J.Y. Han,48 R. Handler,58 F. Happacher,19 K. Hara,54 D. Hare,51 M. Hare,55 S. Harper,41 R.F. Harr,57 R.M. Harris,17 M. Hartz,46 K. Hatakeyama,49 J. Hauser,8 C. Hays,41 M. Heck,26 A. Heijboer,44 B. Heinemann,26 J. Heinrich,44 C. Henderson,32 M. Herndon,58 J. Heuser,26 S. Hewamanage,4 D. Hidas,16 C.S. Hill,10 D. Hirschbuehl,26 A. Hocker,17 S. Hou,1 M. Houben,29 S.-C. Hsu,9 B.T. Huffman,41 R.E. Hughes,38 U. Husemann,35 J. Huston,35 J. Incandela,10 G. Intorzo,45 M. Iori,50 A. Ivanov,7 B. Iyutin,32 E. James,17 B. Jayatilaka,16 D. Jeans,16 E.J. Jean,27 S. Jindariani,18 W. Johnson,7 M. Jones,47 K.K. Joo,27 S.Y. Jun,12 J.E. Jung,27 T.R. Junk,24 T. Kamon,52 D. Kar,18 P.E. Karchin,57 Y. Kato,40 R. Kephart,17 U. Kerzel,26 V. Khotilovich,52 B. Kilminster,38 D.H. Kim,27 H.S. Kim,27 J.E. Kim,27 M.J. Kim,17 S.B. Kim,27 S.H. Kim,54 Y.K. Kim,13 N. Kimura,54 L. Kirsch,6 S. Klimenko,18 M. Klute,32 B. Knutsen,42 B.R. Ko,16 S.A. Koay,16 D.J. Kong,27 J.J. Konigsberg,18 A. Korytov,18 A.V. Kotwal,16 J. Kraus,24 M. Kreps,26 J. Kroll,44 N. Krumnack,4 M. Kruse,16 V. Krutjelyov,10 T. Kubo,54 S.E. Kuhlmann,2 T. Kuhr,26 N.P. Kulkarni,57 Y. Kusakabe,56 S. Kwang,17 A.T. Laasanen,47 S. Lai,33 S. Lami,45 S. Lammel,17 M. Lancaster,30 R.L. Landers,7 K. Lannon,38 A. Lathi,51 G. Latino,45 I. Lazizzera,42 T. LeCompte,2 J. Lee,48 J. Lee,27 Y.J. Lee,27 S.W. Lee,92 R. Lefèvre,20 N. Leonardo,32 S. Leone,45 S. Levy,13 J.D. Lewis,17 C. Lin,59 C.S. Lin,28 J. Linacre,41 M. Lindgren,17 E. Lipeles,9 A. Lister,7 D.O. Litvinsov,17 T. Liu,17 N.S. Lockyer,44 A. Loginov,59 M. Loretii,42 L. Lovas,14 R.-S. Lu,1 D. Lucchesi,42 J. Lukec,26 C. Luci,50 P. Lujan,28 P. Lukens,17 G. Lungu,18 L. Lyons,41 J. Lys,28 R. Lysak,14 E. Lytken,47 P. Mack,26 D. MacQueen,43 R. Madrak,17 K. Maeshima,17 K. Makhouli,32 T. Maki,23 P. Maksimovic,25 S. Malde,11 S. Malik,36 G. Manca,29 A. Manousakis,15 F. Margaroli,37 C. Marino,26 C.P. Marino,24 A. Martin,59 M. Martin,25 V. Martin12 M. Martinez-Ballarin,31 T. Maruyama,54 P. Mastrandrea,50 T. Masubuchi,54 M.E. Mattson,57 P. Mazzauti,5 K.S. McFarland,48 P. McIntyre,52 R. McNulty,29 A. Mehta,29 P. Mehtala,23 S. Menzemer,51 A. Menzione,45 P. Merkel,47 C. Mesropian,49 A. Messina,35 T. Miao,17
Inclusive jet cross sections in Z/γ^* events, with Z/γ^* decaying into an electron-positron pair, are measured as a function of jet transverse momentum and jet multiplicity in proton-proton collisions at $\sqrt{s} = 1.96$ TeV with the upgraded Collider Detector at Fermilab in Run II, based on an integrated luminosity of 1.7 fb^{-1}. The measurements cover the rapidity region $|y_{\text{jet}}| < 2.1$ and the transverse momentum range $p_T > 30 \text{ GeV/c}$. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.

PACS numbers: 12.38.Aw, 13.85.-t, 13.87.-a
The measurement of the inclusive production of collimated jets of hadrons in association with a Z/γ^*+ boson in $p\overline{p}$ collisions provides a stringent test of perturbative quantum chromodynamics (pQCD) \cite{1}. The understanding of Z/γ^*+jets final states is a crucial part of the physics program at the Tevatron since they constitute important irreducible backgrounds in searches for new physics. Previous results \cite{2} from Run I at the Tevatron have been compared with leading-order (LO) plus parton shower Monte Carlo predictions affected by large scale uncertainties. This Letter reports new and more precise measurements of the inclusive jet cross sections in $Z/\gamma^*\rightarrow e^+e^-$ production using 1.7 fb$^{-1}$ of data collected by the CDF experiment in Run II. Inclusive jet differential cross sections as a function of jet transverse momentum p_T^{jet} \cite{3} and total cross sections as a function of jet multiplicity N_{jet} are measured. The data are compared to next-to-leading order (NLO) pQCD predictions \cite{4} including non-perturbative contributions.

The CDF II detector is described in detail elsewhere \cite{5}. The detector has a charged particle tracking system immersed in a 1.4 T magnetic field aligned coaxially with the beam line that provides tracking coverage in the pseudorapidity \cite{6} range $|\eta| \leq 2$. Segmented sampling calorimeters, arranged in a projective tower geometry, surround the tracking system and measure the energy of interacting particles for $|\eta| < 3.6$. The central electromagnetic and hadronic calorimeters \cite{7} cover the region $|\eta| < 1$, while the end-wall hadronic calorimeter \cite{8} provides forward coverage out to $|\eta| < 1.3$. Forward electromagnetic and hadronic calorimeters \cite{9} cover the regions $1.1 < |\eta| < 3.6$ and $1.3 < |\eta| < 3.6$, respectively. The calorimeters are instrumented with finely segmented detectors \cite{6, 10} to measure the shower profile at a longitudinal depth close to the location of a typical electromagnetic shower maximum. Cherenkov counters in the region $3.7 < |\eta| < 4.7$ measure the number of inelastic $p\overline{p}$ collisions to compute the luminosity \cite{10}.

Monte Carlo event samples are used to determine detector acceptance and reconstruction efficiency, estimate background contributions, and unfold the measurements back to the hadron level \cite{11}. Samples of simulated inclusive $Z/\gamma^*\rightarrow e^+e^-+jets$ events have been generated using the \textsc{pythia} 6.216 \cite{12} Monte Carlo generator. CTEQ5L \cite{13} parton distribution functions (PDFs) are used for the proton and antiproton. The \textsc{pythia} samples have been created using a special tuned set of parameters, denoted as \textsc{pythia}-\textsc{tune} \textsc{a} \cite{14}, that includes enhanced contributions from initial-state gluon radiation and secondary parton interactions between proton and antiproton beam remnants and provides an accurate description of the measured jet shapes and energy flows in $Z/\gamma^*\rightarrow e^+e^-+jets$ final states \cite{15}. Monte Carlo samples for background processes are generated using \textsc{pythia}-\textsc{tune} \textsc{a}. The samples are passed through a full CDF detector simulation (based on \textsc{geant} 3 \cite{10} where the \textsc{gflash} \cite{17} package is used to simulate the energy deposition in the calorimeters) and reconstructed and analyzed with the same analysis chain as for the data.

Events are collected using a three-level trigger system \cite{18}. At the first-level trigger, events are required to have a central electromagnetic calorimeter cluster ($|\eta| < 1$) with E_T \cite{3} above 8 GeV and an associated track with p_T^{track} above 8 GeV/c. Similarly, at the second-level (third-level) trigger a central electromagnetic cluster with $E_T > 16$ GeV ($E_T > 18$ GeV) and an associated track with $p_T^{\text{track}} > 8$ GeV/c ($p_T^{\text{track}} > 9$ GeV/c) are required. The events are then required to have two electrons \cite{19} with $E_T > 25$ GeV and a reconstructed invariant mass in the range $66 < M_{ee} < 116$ GeV/c^2 around the Z boson mass. The electron candidates are reconstructed using criteria described in \cite{20}. In this study, one electron is required to be central ($|\eta| < 1$) and fulfill tight selection cuts, while the second electron is required to pass a looser selection and to be either central (CC final-state configuration) or forward ($|\eta| > 1$) and fulfill tight selection cuts. The events are selected to have a reconstructed primary vertex with z-position within 60 cm around the nominal interaction point, and at least one jet with corrected transverse momentum $p_T^{\text{jet}} > 30$ GeV/c (see below), rapidity \cite{3} in the range $|\eta| < 2.1$, and $\Delta R_{e-jet} > 0.7$, where ΔR_{e-jet} denotes the distance $(y - \phi)$ space between the jet and each of the two electrons in the final state. The final sample contains 6203, 650, 57, and 2 events with at least one, two, three, and four jets, respectively.

Jets are reconstructed in data and Monte Carlo simulated events from the energy deposits in the calorimeter towers with transverse momenta \cite{21} above 0.1 GeV/c. The towers associated with the reconstructed electrons in the final state are excluded from the jet search. Jets are searched for using the midpoint algorithm \cite{22} with cone radius $R = 0.7$ and a merging/splitting fraction of 0.75, starting from seed towers with transverse momenta above 1 GeV/c. The same algorithm is applied to the final state.
particles in the Monte Carlo generated events, excluding Z/γ^* decay products, to define jets at the hadron level.

The rapidity and azimuthal angle of the jets, y_{jet} and ϕ_{jet}, are well reconstructed in the calorimeter with a resolution better than 0.05 units in both y and ϕ. The measured jet transverse momentum $p_{T,\text{cal}}^{\text{jet}}$ systematically underestimates that of the hadron-level jet. For $p_{T,\text{cal}}^{\text{jet}}$ values about 30 GeV/c, the jet transverse momentum is underestimated by about 30%. The systematic shift decreases with increasing $p_{T,\text{cal}}^{\text{jet}}$ down to about 11% for $p_{T,\text{cal}}^{\text{jet}} > 200$ GeV/c. This is mainly attributed to the presence of inactive material and the non-compensating nature of the calorimeter [22]. An average correction, as a function of $p_{T,\text{cal}}^{\text{jet}}$ and y_{cal}, is applied to the measured $p_{T,\text{cal}}^{\text{jet}}$ to account for these effects [24]. The measured $p_{T,\text{cal}}^{\text{jet}}$ also includes contributions from multiple $p\bar{p}$ interactions per crossing at high instantaneous luminosity. Multiple interactions are identified via the presence of additional primary vertices reconstructed from charged particles. For each jet, $p_{T,\text{cal}}^{\text{jet}}$ is corrected for this effect by removing a certain amount of transverse momentum, $\delta p_T^{\text{mi}} = 1.06\pm0.32$ GeV/c, for each additional primary vertex in the event, as determined from data [24].

The main backgrounds to the $Z/\gamma^*(\rightarrow e^+e^-)+$jets sample arise from inclusive-jets and $W+$jets events, and are estimated from the data. First, an inclusive jet data sample is employed to estimate the probability f_{e}^{jet} for a jet to pass a given electron selection. The probabilities are parametrized as a function of $p_{T,\text{cal}}^{\text{jet}}$ and are typically around 0.02 and 0.005 for central and forward loose electrons, respectively. Second, a sample of events in data with exactly one reconstructed tight central electron is selected. For each jet in the event, the E_T of a fake electron is determined, and the invariant mass of the tight-central electron and jet final state is then computed. Event-by-event, all electron-jet combinations that fulfill the E_T cuts and with an invariant mass within $66 < M_{e^-\text{jet}} < 116$ GeV/c2 are considered in the background calculation, where each combination is weighted by the corresponding f_{e}^{jet} value and divided by the number of accepted electron-jet combinations in the event. The total inclusive-jets and $W+$jets background is then computed in each measured distribution. Other background contributions from $\bar{\nu}$, $Z/\gamma^*(\rightarrow e^+e^-)+\gamma$, WW, WZ, ZZ, and $Z/\gamma^*(\rightarrow \tau^+\tau^-)+$jets final states are estimated using Monte Carlo samples. The total background in inclusive $Z/\gamma^*(\rightarrow e^+e^-)+$jets production is about 12% for $N_{\text{jet}} \geq 1$, and increases up to about 17% for $N_{\text{jet}} \geq 3$. Good agreement is observed in the total number of events between the data and the $Z/\gamma^*(\rightarrow e^+e^-)+$jets signal plus background predictions. A χ^2 test, where only statistical uncertainties are considered, gives χ^2 probabilities that vary between 80% and 25% as N_{jet} increases.

Raw inclusive jet differential cross sections as a function of $p_{T,\text{cor}}^{\text{jet}}$ are defined as $d\sigma/dp_{T,\text{cor}}^{\text{jet}} = \int \left(N_{\text{cor}} / \Delta p_{T,\text{cor}}^{\text{jet}} \right) / \left(N_{\text{jet}} / \Delta p_{T,\text{cor}}^{\text{jet}} \right)$, where N_{cor} denotes the total number of jets in a given $p_{T,\text{cor}}^{\text{jet}}$ bin, $\Delta p_{T,\text{cor}}^{\text{jet}}$ is the size of the bin, and L is the luminosity. N_{cor} is corrected bin-by-bin for background contributions and trigger inefficiencies. The measured cross sections are then corrected for acceptance and smearing effects back to the hadron level using PYTHIA-TUNE A Monte Carlo event samples, and a bin-by-bin unfolding procedure that also accounts for the efficiency of the $Z/\gamma^*(\rightarrow e^+e^-)$ selection criteria. The final results refer to hadron level jets with $p_{T} > 30$ GeV/c and $|y_{\text{jet}}| < 2.1$, in a limited and well-defined kinematic range for the Z/γ^* decay products: $E_T > 25$ GeV, $|\eta_{e}| < 1.0$, $|\eta^{\gamma}| < 1.2$, $2.8 < M_{ee} < 116$ GeV/c2, and $\Delta R_{e^-\text{jet}} > 0.7$. In order to avoid any bias on the correction factors due to the particular PDF set used, which translates into slightly different simulated $p_{T,\text{cal}}^{\text{jet}}$ distributions, the PYTHIA-TUNE a Monte Carlo event sample is re-weighted until it accurately follows the measured $p_{T,\text{cal}}^{\text{jet}}$ spectra. The unfolding factors $U(p_{T,\text{cor}}^{\text{jet}})$ are computed separately for the different measurements and vary between 2.0 at low p_{T} and 2.3 at high p_{T}.

A detailed study of the systematic uncertainties was carried out [13]. A $\pm1.5\%$ uncertainty on the trigger efficiency translates into $\pm1.5\%$ and $\pm0.06\%$ uncertainties on the cross sections for CF and CC configurations, respectively. The uncertainty on the p_{T}^{jet} dependence of the electron identification efficiency introduces a $\pm5\%$ uncertainty on both CC and CF results. The measured jet energies are varied by $\pm2\%$ at low p_{T}^{jet} to $\pm2.7\%$ at high p_{T}^{jet} to account for the uncertainties on the absolute energy scale in the calorimeter [24]; this introduces uncertainties on the final measurements which vary between $\pm5\%$ at low p_{T}^{jet} and $\pm12\%$ at high p_{T}^{jet}. The y_{jet} dependence of the average correction applied to $p_{T,\text{cal}}^{\text{jet}}$ introduces a $\pm2\%$ uncertainty on the measured cross sections, approximately independent of p_{T}^{jet}. The uncertainty on $\sigma_{\text{jet}}^{\text{mi}}$ has a negligible effect on the measured cross sections. The uncertainty on the $p_{T,\text{cal}}^{\text{jet}}$ dependence of f_{e}^{jet} introduces a $\pm15\%$ uncertainty on the inclusive-jets and $W+$jets background estimation, that translates into a less than 2% uncertainty on the measured cross sections. A conservative $\pm30\%$ uncertainty on the normalization of the rest of the background contributions, as extracted from Monte Carlo samples, introduces a less than 1% effect on the final results. If the unfolding procedure is carried out using unweighted PYTHIA-TUNE A, the effect on the measured cross sections is less than 1%. Positive and negative deviations with respect to the nominal cross section values are added separately in quadrature to define the total systematic uncertainty. The final results are obtained from the combination of CC and CF measurements. Finally, a 5.8% uncertainty on the total luminosity is included in the measured cross sections.
PYTHA-TUNE A Monte Carlo samples, as the ratio between the nominal p_T^{jet} distribution and the one obtained by turning off both the interactions between proton and antiproton remnants and the string fragmentation in the Monte Carlo samples. The correction decreases as p_T^{jet} increases from about 1.2 (1.26) at p_T^{jet} of 30 GeV/c to 1.02 (1.01) for $p_T^{\text{jet}} > 200$ GeV/c for $N_{\text{jet}} \geq 1$ ($N_{\text{jet}} \geq 2$), and is dominated by the underlying event contribution. In order to estimate the uncertainty on C_{had}, PYTHA samples are generated with a different set of parameters, denoted as TUNE DW [23], that governs the underlying event activity and also describes the $Z/\gamma^* (\rightarrow e^+ e^-) + \text{jets}$ final states. The uncertainty on C_{had} is about 10% (17%) at low p_T^{jet} and goes down to 1% at high p_T^{jet} for $N_{\text{jet}} \geq 1$ ($N_{\text{jet}} \geq 2$). The ratios between data and theory as a function of p_T^{jet} are shown in Fig. 1(b,c). Good agreement is observed between the measured cross sections and the nominal theoretical predictions. A χ^2 test, where the sources of systematic uncertainty on the data are considered independent but fully correlated across p_T^{jet} bins, and the uncertainty on C_{had} is also included, gives a χ^2 probability of 99% (22%) for $N_{\text{jet}} \geq 1$ ($N_{\text{jet}} \geq 2$).

Figure 2
(a) Measured total cross section for inclusive jet production in $Z/\gamma^* (\rightarrow e^+ e^-)$ events as a function of N_{jet} compared to LO and NLO pQCD predictions. The shaded bands show the total systematic uncertainty, except for the 5.8% luminosity uncertainty. (b) Ratio of data and NLO to LO pQCD predictions versus N_{jet}. The measured event cross sections are: $\sigma_{N_{\text{jet}}} = 7003 \pm 146(\text{stat}) \pm 470(\text{syst}) \pm 406(\text{lum}) \mu$b, $\sigma_2 = 695 \pm 37(\text{stat}) \pm 59(\text{syst}) \pm 40(\text{lum}) \mu$b, and $\sigma_3 = 60 \pm 11(\text{stat}) \pm 3.5(\text{syst}) \pm 8(\text{lum}) \mu$b, for $N_{\text{jet}} \geq 1$, $N_{\text{jet}} \geq 2$, and $N_{\text{jet}} \geq 3$, respectively. The data are compared to LO and NLO pQCD predictions. The parton-to-hadron non-perturbative corrections vary between 1.1 and 1.4 as...
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\(p_T^{\text{jets}} \) & \(\frac{d\sigma}{dp_T^{\text{jets}}} \) & \(C_{\text{had}} \) \\
\hline
[GeV/c] & [fb/(GeV/c)] & (parton \to\text{hadron}) \\
\hline
30 - 35 & 413.3 \pm 13.3 & 1.209 \pm 0.010 \pm 0.134 \\
35 - 41 & 263.3 \pm 9.4 & 1.146 \pm 0.010 \pm 0.096 \\
41 - 47 & 178.3 \pm 7.5 & 1.114 \pm 0.011 \pm 0.077 \\
47 - 54 & 128.5 \pm 5.9 & 1.097 \pm 0.012 \pm 0.066 \\
54 - 62 & 80.5 \pm 4.3 & 1.086 \pm 0.013 \pm 0.059 \\
62 - 72 & 52.5 \pm 3.2 & 1.078 \pm 0.013 \pm 0.053 \\
72 - 83 & 32.4 \pm 2.0 & 1.072 \pm 0.015 \pm 0.049 \\
83 - 110 & 16.0 \pm 1.1 & 1.063 \pm 0.012 \pm 0.043 \\
110 - 146 & 4.9 \pm 0.5 & 1.051 \pm 0.012 \pm 0.035 \\
146 - 195 & 1.1 \pm 0.2 & 1.040 \pm 0.008 \pm 0.027 \\
195 - 400 & 0.08 \pm 0.03 & 1.021 \pm 0.005 \pm 0.013 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\(p_T^{\text{jets}} \) & \(\frac{d\sigma}{dp_T^{\text{jets}}} \) & \(C_{\text{had}} \) \\
\hline
[GeV/c] & [fb/(GeV/c)] & (parton \to\text{hadron}) \\
\hline
30 - 35 & 52.9 \pm 3.5 & 1.262 \pm 0.022 \pm 0.217 \\
38 - 47 & 37.0 \pm 2.9 & 1.207 \pm 0.024 \pm 0.169 \\
47 - 59 & 21.2 \pm 1.8 & 1.164 \pm 0.025 \pm 0.130 \\
59 - 79 & 10.5 \pm 1.0 & 1.123 \pm 0.024 \pm 0.093 \\
79 - 100 & 5.7 \pm 0.6 & 1.087 \pm 0.026 \pm 0.062 \\
100 - 179 & 0.88 \pm 0.15 & 1.052 \pm 0.020 \pm 0.030 \\
179 - 300 & 0.15 \pm 0.04 & 1.026 \pm 0.010 \pm 0.008 \\
\hline
\end{tabular}
\end{table}

TABLE I: Measured inclusive jet differential cross section in \(Z/\gamma^*\)\((\to e^+e^-) \)+jets production as a function of \(p_T^{\text{jets}} \) with \(N_{\text{jet}} \geq 1 \) and \(N_{\text{jet}} \geq 2 \). The systematic uncertainties are fully correlated across \(p_T^{\text{jets}} \) bins. The parton-to-hadron correction factors \(C_{\text{had}}(p_T^{\text{jets}}, N_{\text{jet}}) \) are applied to the pQCD predictions.

\(N_{\text{jet}} \) increases. For \(N_{\text{jet}} \geq 1 \) and \(N_{\text{jet}} \geq 2 \), the LO pQCD predictions underestimate the measured cross sections by a factor about 1.4, which corresponds to \(\chi^2 \) probabilities of 0.07\% and 2.7\%, respectively. Good agreement is observed between data and NLO pQCD predictions, with \(\chi^2 \) probabilities better than 83\%. For \(N_{\text{jet}} \geq 3 \), where no NLO pQCD prediction is available, the measured cross section indicates that the data can be described by a LO-to-NLO theoretical factor independent of \(N_{\text{jet}} \).

In summary, we report new results on inclusive jet production in \(Z/\gamma^*\)\((\to e^+e^-) \) events in \(\sqrt{s} = 1.96 \) TeV for jets with \(p_T^{\text{jets}} > 30 \) GeV/c and \(|y^{\text{jets}}| < 2.1 \), based on 1.7 fb\(^{-1}\) of CDF Run II data. The measured cross sections are well described by NLO pQCD predictions including non-perturbative corrections.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucléaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community’s Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland.

[1] D.J. Gross and F. Wilczek, Phys. Rev. D 8, 3633 (1973).
[2] T. Affolder et al. (CDF Collaboration), Phys. Rev. D 63, 072003 (2001).
[3] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 77, 448 (1996).
[4] We use a cylindrical coordinate system about the beam axis with polar angle \(\theta \) and azimuthal angle \(\phi \). We define \(E_T = E \sin \theta, \rho_T = p \sin \theta \), pseudorapidity \(\eta = -\ln(\tan(\frac{\theta}{2})) \), and rapidity \(y = \frac{1}{2} \ln(\frac{\rho_T+\eta}{\rho_T-\eta}) \).
[5] J. Campbell and R.K. Ellis, Phys. Rev. D 65, 113007 (2002).
[6] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[7] L. Balka et al., Nucl. Instrum. Methods A 267, 272 (1988).
[8] S. Bertolucci et al., Nucl. Instrum. Methods A 267, 301 (1988).
[9] R. Oishi, Nucl. Instrum. Methods A 453, 277 (2000).
[10] M.G. Albrow et al., Nucl. Instrum. Methods A 480, 524 (2002).
[11] G. Apollinari et al., Nucl. Instrum. Methods A 412, 515 (1998).
[12] D. Acosta et al., Nucl. Instrum. Methods A 494, 57 (2002).
[13] The hadron level in the Monte Carlo generators is defined using all final-state particles with lifetimes above 10\(^{-11}\) s.
[14] T. Sjöstrand et al., Comp. Phys. Comm. 135, 238 (2001).
[15] H.L. Lai et al., Eur. Phys. J. C 12, 375 (2000).
[16] T. Affolder et al. (CDF Collaboration), Phys. Rev. D 65, 092002 (2002).
[17] O. Saltó, Ph.D. Thesis, U.A.B., Barcelona (2008).
[18] R. Brun et al., Tech. Rep. CERN-DD/EE/84-1, 1987.
[19] G. Grindhammer, M. Rudowicz, and S. Peters, Nucl. Instrum. Methods A 290, 469 (1990).
[20] B. L. Winer, Int. J. Mod. Phys. A 16S1C, 1169 (2001).
[21] Charge conjugation is implied throughout the paper.
[22] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 091803 (2005).
[23] The momentum is computed using the energy and the position with respect to the primary interaction vertex.
[24] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 74, 071103(R) (2006).
[25] S.R. Hahn et al., Nucl. Instrum. Methods A 267, 351 (1988).
[26] A. Bhatti et al., Nucl. Instrum. Methods A 566, 375 (2006).
[27] J. Pumpin et al., J. High Energy Phys. 0207, 012 (2002).
[28] S.D. Ellis and D.E. Soper, Phys. Rev. D 48, 3160 (1993).
[29] J. Pumpin et al., Phys. Rev. D 65, 014013 (2002).
[30] R. Field, FERMILAB-CONF-06-408-E, FNAL (2005).