Emergence of extensively drug-resistant Acinetobacter baumannii complex over 10 years: Nationwide data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program

Shu-Chen Kuo1,2,3, Shan-Chwen Chang4,5, Hui-Ying Wang1, Jui-Fen Lai1, Pei-Chen Chen1, Yih-Ru Shiau1, I-Wen Huang1 and Tsai-Ling Yang Lauderdale1*; TSAR Hospitals

Abstract

Background: Acinetobacter baumannii complex (ABC) has emerged as an important pathogen causing a variety of infections. Longitudinal multicenter surveillance data on ABC from different sources in Taiwan have not been published. Using data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) conducted biennially, we investigated the secular change in resistance of 1640 ABC from 2002 to 2010 (TSAR period III to VII) to different antimicrobial agents and identified factors associated with imipenem-resistant and extensively drug-resistant ABC (IRABC and XDRABC).

Methods: Isolates were collected by TSAR from the same 26 hospitals located in all 4 regions of Taiwan. Minimum inhibitory concentrations (MIC) were determined by reference broth microdilution method. Isolates nonsusceptible to all tested aminoglycosides, fluoroquinolones, β-lactam, β-lactam/β-lactam inhibitors, and carbapenems were defined as extensively drug-resistant (XDR). Multivariate logistic regression analysis was performed to assess the relationship between predictor variables among patients with resistant ABC and patients with non-resistant ABC.

Results: The prevalence of IRABC increased from 3.4% in 2002 to 58.7% in 2010 (P < 0.001; odds ratio [OR], 2.138; 95% confidence interval [CI], 1.947 to 2.347) and that of XDRABC increased from 1.3% in 2002 to 41.0% in 2010 (P < 0.001; OR, 1.970; 95% CI, 1.773-2.189). The rates of non-susceptibility to other antimicrobial agents remained high (>55%) over the years with some fluctuations before and after TSAR V (2006) on some agents. Multivariate analysis revealed that recovery from elderly patients, origins other than blood, from ICU settings, or geographic regions are independent factors associated with IRABC and XDRABC. Although the prevalence of XDRABC increased in all four regions of Taiwan over the years, central Taiwan had higher prevalence of XDRABC starting in 2008. Susceptibility to polymyxin remained high (99.8%).

Conclusions: This longitudinal multicenter surveillance program revealed significant increase and nationwide emergence of IRABC and XDRABC in Taiwan over the years. This study also identified factors associated with IRABC and XDRABC to help guide empirical therapy and at-risk groups requiring more intense interventional infection control measures with focused surveillance efforts.

Keywords: Extensively drug-resistant, Acinetobacter baumannii complex, Antimicrobial resistance
Background

Acinetobacter spp., especially *Acinetobacter baumannii* complex (ABC), has emerged as an important pathogen causing a variety of infections including urinary tract infection, skin and soft tissue infections, and pneumonia and bloodstream infections with high morbidity and mortality [1]. The ability to chronically colonize patients and cause outbreaks which are usually hard to eradicate poses significant challenge to infection control and increases healthcare expenditure [2]. In addition to its intrinsic resistance to many commonly used antibiotics, this troublesome pathogen can gain additional mechanism rapidly in response to new broad-spectrum antibiotics [3,4]. Due to treatment failure, drug-resistant strains have been associated with higher mortality and prolonged hospital stay compared with susceptible ones [5,6].

Carbapenems such as imipenem and meropenem are the last resort of drugs for the treatment of multidrug-resistant pathogens including ABC. However, the incidence of carbapenem resistance in ABC increased steadily in the 2000s [4,7]. In Europe, the MYSTIC program in 2006 revealed a considerable increase in carbapenem resistance rates to 42.5% [8]. Worldwide, the SENTRY program documented an overall increase in imipenem nonsusceptibility from 34.5% in 2006 to 59.8% in 2009 [9]. Imipenem-resistance in Taiwan ranged from 22% in 2000 to 25% in 2005 [10]. Ampicillin/sulbactam, tigecycline, and colistin are possible options for imipenem-resistant ABC but decreasing susceptibility to these agents has also been reported [1]. Surveillance is therefore important in providing useful information for physicians in choosing empirical antibiotics. It also helps to address specific resistant issues within a region to help identify targeted intervention measures [11,12].

Although there have been reports of the high prevalence of drug-resistant ABC in Taiwan [13,14], longitudinal nationwide surveillance data on isolates from different sources in Taiwan have not been published. The Taiwan Surveillance of Antimicrobial Resistance (TSAR) is a nationwide program at the National Health Research Institutes [11] and has been conducted biennially since 1998 [15]. Using data from TSAR, we aimed at detailing the secular change of resistance to various antimicrobial agents in ABC from different sources over 10 years and identify factors associated with imipenem-resistant and extensively drug-resistant ABC (IRABC and XDRABC).

Methods

Study period and isolate collection process

The study period spanned from 2002 to 2010 (corresponding to TSAR period III to VII). Bacterial isolates were collected biennially from July to September by the TSAR program from the same 26 hospitals except TSAR V (2006), in which one hospital did not participate. These hospitals comprised 11 medical centers and 15 regional hospitals, and are located in all 4 regions of Taiwan including 7, 8, 8, and 3 in the north, central, south and east region, respectively. The majority of the Taiwan’s population lives in the western part (north, central and south regions) while the eastern part is the least populated region. The collection protocol was similar for all 5 rounds of TSAR as described previously [16,17]. Briefly, each hospital first collected 50 outpatient isolates, 30 adult ICU and 100 non-ICU inpatient isolates, and 20 pediatric isolates. After completion of the above collection, an additional 20 (for TSAR III to V) to 50 (for TSAR VI and VII) isolates from blood and sterile body sites were collected. The isolates were collected sequentially without specifying species. All isolates were stored at −80°C for subsequent testing. The bacterial isolates recovered from clinical samples taken as part of standard care. The study was approved by the Research Ethics Committee of National Health Research Institutes (EC960205).

Bacterial isolates and information

For *Acinetobacter* spp., isolates were subcultured to blood agar and McConkey agar plates at our laboratory for purity check and to confirm species identification. Either Vitek I (prior to 2008) or Vitek II (2008 and 2010) GN card was used (bioMérieux, Marcy l’Etoile, France). In addition, conventional biochemical tests including oxidase, Triple Sugar Iron, 42°C, malonate, and hemolysis on sheep blood agar were used to aid in confirmation of the *A. baumannii* complex [18]. The hospital also provided information on specimen source and patient age. For analysis, samples from upper respiratory tract were designated as respiratory origin. Samples from pus/discharge included those from abscesses or wounds.

Antimicrobial susceptibility

Minimum inhibitory concentrations (MIC) of different agents were determined by reference broth microdilution test following the guidelines of Clinical and Laboratory Standards Institute (CLSI) using custom designed Sensititre panels (Trek Diagnostics, West Essex, England) [19] Amikacin, ampicillin/sulbactam, ceftazidime, cefepime, ciprofloxacin, gentamicin, levofloxacin, imipenem, and piperacillin/tazobactam were tested on all isolates from each study year. Polymyxin B and tigecycline were tested on imipenem-resistant isolates in 2002 and 2004 and on all isolates from 2008–2010. Trimethoprim-sulfamethoxazole was tested on all isolates from 2002, 2004 and 2010. Control strains included *Pseudomonas aeruginosa* ATCC 27853, *Escherichia coli* ATCC 25922 and ATCC 35218. Results were interpreted using the CLSI breakpoints except for colistin
and tigecycline, for which the EUCAST breakpoints (for Enterobacteriaceae) were used (http://www.eucast.org/clinical_breakpoints). Isolates nonsusceptible to all the tested aminoglycosides, fluoroquinolones, β-lactam, β-lactam/β-lactam inhibitors, and carbapenems were defined as extensively drug-resistant (XDR) [20,21]. This is a modification of the ECDC definition for XDR, which is defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories [20].

Data and statistical analysis

For analysis of susceptibility rates in different year and patient groups, we used the Whonet software [22]. Univariate analysis was done using Student’s t test/Mann–Whitney U test, or Fisher’s exact tests as appropriate. Multivariate logistic regression analysis was performed to assess the relationship between predictor variables among patients with resistant ABC and patients with non-resistant ABC. The variables included those identified in the univariate analysis as possibly being associated with resistance rate ($P<0.05$). For comparison of resistance between regions and specimen types, these variables were entered in the multivariate analysis in a dummy form (resistance rate in northern Taiwan or that of blood samples as the reference group, respectively). For the trend test calculation, a continuous variable (TSAR period III to VII corresponding to 3 to 7, respectively) was used [23]. All analyses were performed with the Statistical Package for the Social Sciences version 18.0 (SPSS, Chicago, IL, USA). A $P<0.05$ was considered to be statistically significant.

Results

Bacterial isolates

Between 2002 and 2010, a total of 1,681 Acinetobacter spp. isolates were collected and ABC comprised 97.6% (1,640 isolates). Non-ABC isolates were excluded from subsequent data analysis. Among the 1640 ABC isolates, the mean age of patients was 66.8 ± 19.8 years. Table 1 lists the source breakdown of the isolates for each round of TSAR. Isolates were mostly recovered from respiratory samples (822 isolates, 50.1%), followed by blood (244, 14.9%), pus/discharge (219, 13.4%) and urine (216, 13.2%). Seven hundred and thirty-five (44.8%) were from medical centers and 600 (36.6%) were from ICU. Isolates from central Taiwan comprised the largest proportion (627, 38.2%) (Table 1).

Changes in non-susceptibility to different antimicrobial agents over the years

Rates of non-susceptibility to different antimicrobial agents between 2002 and 2010 are shown in Table 2.
The secular trend of non-susceptibility to amikacin, cef-tazidime, levofloxacin, and imipenem over the 10 years is also shown in Figure 1 to highlight the sharp increase of carbapenem (imipenem) non-susceptibility from 3.4% in 2002 to 58.7% in 2010 ($P < 0.001$; odds ratio [OR], 2.138; 95% confidence interval [CI], 1.947 to 2.347). The increased carbapenem-resistance was observed in isolates from elderly as well as non-elderly patients, and in those from different specimen types, ICU and non-ICU patients, and throughout different regions of Taiwan (Figure 2).

The rates of non-susceptibility to other antimicrobial agents remained high (>55%) over the years although fluctuations were observed before and after TSAR V (2006) on some agents (Table 2 & Figure 1); non-susceptibility to amikacin, cefepime, cefazidime, levofloxacin, and piperacillin/tazobactam increased significantly before 2006 (TSAR V), then stayed at a plateau and even declined thereafter (Table 2). In contrast, the rates of non-susceptibility to ampicillin/sulbactam (range 56.1% - 64.1%) fluctuated over 10 years without significant change ($P = 0.971$; OR, 1.003; 95% CI, 0.852-1.180), while that of gentamicin decreased slightly since 2004 ($P = 0.034$; OR, 0.883; 95% CI, 0.787 to 0.991). The overall rate of susceptibility to tigecycline (MIC \leq 2 mg/L) and polymyxin B was 97.7% and 99.8%, respectively in 1,160 tested isolates and 98.1% and 100%, respectively in IRABC.

Factors associated with emergence of imipenem-resistant A. baumannii complex (IRABC)

Table 3 presents the factors associated with the emergence of IRABC. Isolates from elderly patients (> 65 years old), respiratory tract origin, ICU settings, or central Taiwan were significantly associated with imipenem resistance whereas rates of imipenem-resistance were lower in isolates from blood or pus/discharge, medical centers, southern or northern Taiwan (Figure 2). Multivariate analysis revealed recovery from elderly patients, origins other than blood, ICU settings, geographic region, and latter collection year remained independent factors (Table 3).

Table 2 Secular trend of antimicrobial non-susceptibility in Acinetobacter baumannii complex from the 2002 to 2010 Taiwan Surveillance of Antimicrobial Resistance (TSAR) program

Antimicrobial agentsa	Resistance rate (%) by year	2002 to 2006b	2006 to 2010b								
	2002 (298)	2004 (259)	2006 (304)	2008 (418)	2010 (361)	P	OR	95% CI	P	OR	95% CI
Amikacin	63.1	68	70.7	66.5	64.3	0.046	1.19	1.003-1.411	0.081	0.865	0.735-1.018
Amp/Sulb	57.4	61.4	57.6	61.5	59.6	0.971	1.003	0.852-1.180	0.637	1.038	0.889-1.212
Cefepime	64.1	70.7	74	71.3	60.9	0.008	1.265	1.062-1.507	<0.001	0.731	0.619-0.864
Cefazidime	68.1	73.4	76.6	74.6	70.4	0.019	1.241	1.036-1.486	0.063	0.848	0.712-1.009
Ciprofloxacin	68.8	75.3	76	75.4	75.3	0.047	1.202	1.002-1.441	0.853	0.983	0.824-1.174
Gentamicin	73.5	78.8	76.6	70.3	72.9	0.367	1.09	0.904-1.315	0.311	0.915	0.770-1.087
Imipenem	3.4	18.1	31.6	51.4	58.7	<0.001	3.043	2.348-3.944	<0.001	1.732	1.478-2.029
Levofloxacin	66.1	72.6	74.3	73.9	71.2	0.027	1.222	1.023-1.458	0.349	0.921	0.775-1.094
Pip/Tazo	62.8	76.8	75.3	74.6	68.4	0.001	1.363	1.139-1.631	0.041	0.835	0.703-0.992
TMP/SMX	73.8	75.7	NTc	NT	71.5	NDd	ND	ND	ND	ND	

aAmp/Sulb, Ampicillin/sulbactam; Pip/Tazo, Piperacillin/tazobactam; TMP/SMX, trimethoprim/sulfamethoxazole.
bOR, odds ratio; CI, confidence interval.
cNT, not tested.
dND, not done.

Emergence of extensively drug-resistant A. baumannii complex (XDRABC)

The prevalence of XDRABC increased significantly from 1.3% in 2002 to 41.0% in 2010, respectively ($P < 0.001$; OR, 1.970; 95% CI, 1.773-2.189), with an overall prevalence of 26.1% (428 isolates) over the 10 years. The increased XDRABC also occurred in isolates from elderly and non-elderly patients both, and in those from different specimen types, ICU as well as non-ICU patients, while central region saw a sharp increase of XDRABC in 2008–2010 (Figure 3). Ten (2.3%) of the XDRABC had tigecycline > 2 mg/L and all were susceptible to polymyxin B. Trimethoprim-sulfamethoxazole was tested on 187 XDRABC isolates and all but 4 were resistant.

Factors associated with emergence of XDRABC

Factors associated with XDRABC strains included recovery from elderly patients (> 65 years old), respiratory tract origin, ICU settings, or central Taiwan (Table 4). The extensively drug-resistant rates over 10 years stratified by these independent factors are shown in Figure 3. Isolates from blood or pus/discharge, medical center, southern or northern Taiwan were less likely to be XDR.
The independent factors associated with XDRABC included recovery from elderly patients, origins other than blood, ICU settings, geographic region, and latter collection year (Table 4).

Discussion

This nationwide longitudinal study of 1,640 ABC over 10 years revealed the continuous increase of non-susceptibility to imipenem and emergence of XDRABC. For most other antibiotics, resistance rate increased from 2002 to 2006 but ceased to increase or even decreased thereafter. The prevalence of IRABC and XDRABC was independently affected by age of patients, specimen types, healthcare settings, and geographic regions.

Resistance to imipenem, which is often accompanied with resistance to multiple other agents, has increased in all parts of the world, ranging from 14.1% in Europe to 39.4% in Latin America in 2004–2006 [24], and from 34.5% in 2006 to 59.8% in 2009 overall worldwide [9]. Our study revealed the rapid increase in the prevalence of imipenem-resistance over 10 years in Taiwan, from 3.4% in 2002 to 58.7% in 2010. The imipenem-nonsusceptible rate of 62.6% in isolates from Asia-Pacific in 2009 reported by the SENTRY study was comparable to our result [9].

Although XDRABC in Taiwan has been observed in other pilot studies [10,14], this is the first study addressing the emergence of XDRABC in Taiwan over a long period. However, the variety of definition regarding XDR precluded the comparison of our data with previous...
Table 3 Factors associated with imipenem-resistant *Acinetobacter baumannii* complex (IRABC) in Taiwan

Characteristic	Non-IRABC	IRABC	P	OR	95% CI	P	
Number	1060	580					
Mean age ± SD^c	65.0 ± 20.2	70.0 ± 18.8	<0.001				
Age 65 and older^c	629 (61.1)	401 (71.9)	<0.001	1.464	1.122-1.912	0.005	
Specimen types							
Respiratory tracts	481 (45.4)	341 (58.8)	<0.001	2.597	1.888-3.570	<0.001	
Blood	192 (18.1)	52 (9.0)	<0.001		Reference		
Pus/discharge	160 (15.1)	59 (10.2)	0.005	1.934	1.240-3.018	0.004	
Urine	140 (13.2)	76 (13.1)	>0.99	2.138	1.401-3.263	<0.001	
Healthcare settings							
Medical centers	507 (47.8)	228 (39.3)	0.001	0.814	0.631-1.049	0.112	
ICU Settings	328 (30.9)	272 (46.9)	<0.001	1.919	1.482-2.486	<0.001	
Geographic regions							
Northern	336 (31.7)	136 (23.4)	<0.001		Reference		
Central	341 (32.2)	286 (49.3)	<0.001	2.43	1.791-3.296	<0.001	
Southern	258 (24.3)	85 (14.7)	<0.001	1.178	0.812-1.710	0.388	
Eastern	125 (11.8)	73 (12.6)	0.635	2.24	1.489-3.370	<0.001	
TSAR period^d					2.277	2.054-2.523	<0.001

^aP value by chi-square test.
^bP value by multivariate analysis; OR, odds ratio; CI, confidence interval.
^cThe patient ages for 50 patients were unknown.
^dTaiwan Surveillance of Antimicrobial Resistance (TSAR) III (2002) to VII (2010).

Figure 3 Secular trend of extensively drug-resistance rate in *Acinetobacter baumannii* complex recovered from 2002 to 2010 in Taiwan. Differences in resistance rates were stratified by (a) patient age (b) sample origins (c) healthcare settings (d) geographic regions based on the Taiwan Surveillance of Antimicrobial Resistance (TSAR) data.
ones. The definition of XDR in our study was in accordance to that of Tan et al. [21] and approached the consensus of European Centre for Disease Prevention and Control [20] except that not all isolates were tested for trimethoprim-sulfamethoxazole. However, almost all of XDRABC tested showed resistance to it.

Prolonged hospitalization, ICU stay, invasive medical procedures, and prior broad-spectrum antibiotic use, especially carbapenem, third-generation cephalosporins, and fluoroquinolones, have been shown to be risk factors for acquisition of IRABC [4,7,25]. These factors, as well as clonal dissemination [26,27], likely all contributed to the increased prevalence of IRABC and XDRABC in Taiwan over the years. A recent study found carbapenem use in Taiwan hospitals increased by 86% between 2003 and 2008, which was significantly associated with frequent transportation of patients and high density of hospitals in Taiwan. The advanced age may imply the underlying conditions of the patients. Higher prevalence of IRABC and XDRABC in ICU and regional variations within Taiwan likely reflect differences in patient populations and antibiotic use [28,30].

The rate of resistance to polymyxin B in our study was only 0.2%, which is similar to that found in isolates from the Asia-Western Pacific region between 2006 and 2009 [9]. In contrast, one study in Korea reported a resistance rate of 18.1% [31]. As for tigecycline, 0.2% of IRABC isolates had MIC > 2 mg/L in Asia region [32] whereas our study found it to be 1.9% in Taiwan. Susceptibility to polymyxin remained high even for the XDRABC isolates in our study. However, in a pilot study by Jean et al., [14], the authors reported higher rate of resistance to colistin and tigecycline in Taiwan. The source of isolates differed in the two studies. Ours were from different patient groups of both teaching and regional hospitals while theirs were from ICUs of ten

Table 4 Factors associated with extensively drug-resistant *Acinetobacter baumannii* complex (XDRABC) in Taiwan

Characteristic	Non-XDRABC	XDRABC	P*	ORb	95% CIb	Pb
Number	1212	428				
Mean age ± SDc	65.4 ± 20.2	70.6 ± 18.1	<0.001	2.102	1.507-2.932	<0.001
Age 65 and olderc	733 (71.2)	297 (28.8)	<0.001	1.39	1.052-1.836	0.021
Specimens						
Respiratory tracts	571 (47.1)	251 (58.6)	<0.001	2.102	1.507-2.932	<0.001
Blood	210 (17.3)	34 (7.9)	<0.001	1.39	1.052-1.836	0.021
Pus/discharge	176 (14.5)	43 (10.0)	0.02	1.598	0.996-2.568	0.052
Urine	160 (13.2)	56 (13.1)	>0.99	1.759	1.130-2.739	0.012
Healthcare settings						
Medical centers	570 (47.0)	165 (38.6)	0.003	0.804	0.617-1.046	0.104
ICU settings	404 (33.3)	196 (45.8)	<0.001	1.468	1.126-1.915	0.005
Geographic regions						
Northern	365 (30.1)	107 (25.0)	0.047		Reference	
Central	404 (33.3)	223 (52.1)	<0.001	1.965	1.466-2.671	<0.001
Southern	290 (23.9)	53 (12.4)	<0.001	0.814	0.544-1.216	0.314
Eastern	153 (12.6)	45 (10.5)	0.263	1.303	0.847-2.006	0.229
TSAR periodd						
				1.97	1.773-2.189	<0.001

*aP value by chi-square test.

*bP value by multivariate analysis; OR, odds ratio; CI, confidence interval.

*cThe patient ages of 50 patients were unknown.

*dTaiwan Surveillance of Antimicrobial Resistance (TSAR) III (2002) to VII (2010).
major teaching hospitals. The underlying conditions, disease severity, and amount of colistin and tigecycline used would be different. However, both studies revealed that compared to other antibiotics, tigecycline and polymyxin B (or its less toxic derivatives, colistin) remained an intravenous effective antimicrobial agent for the treatment of IRABC or XDRABC in Taiwan.

Conclusion
This longitudinal multicenter surveillance program revealed significant increase and nationwide emergence of IRABC and XDRABC in Taiwan despite that nonsusceptibility to other antibiotics remained stable or declined over the past 6 years. This study also identified factors associated with their resistance to help guide empirical therapy and at-risk groups requiring more intense interventional infection control measures with focused surveillance efforts.

Abbreviations
IRABC, Imipenem-Resistant Acinetobacter baumannii Complex. XDRABC, Extensively Drug-Resistant Acinetobacter baumannii Complex.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SCC participated in the design and data interpretation of the study and finalized the manuscript. HYW, JFL, PCC, YRS and IWH carried out the laboratory assays and helped to finalize the manuscript. SCC participated in the design and data interpretation of the study and finalized the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements
We thank the following 26 hospitals for participating in the Taiwan Surveillance of Antimicrobial Resistance (TSAR): Buddhist Tzu Chi General Hospital, Cathay General Hospital, Changhua Christian Hospital, Cheng-Ching Hospital, Chung Shan Medical University Hospital, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Far Eastern Memorial Hospital, Hualien Hospital, Jen-Ai Hospital, Kaohsiung Armed Forces General Hospital, Kaohsiung Chang Gung Memorial Hospital of the C. G. M. F, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Veterans General Hospital, Kuang Tien General Hospital, Ho-Hou Foundation, Inc., Lotung Poli-Hai Hospital, Menmonite Christian Hospital, Min-Sheng Healthcare, National Cheng Kung University Hospital, Saint Mary’s Hospital Luzhong, Show Chwan Memorial Hospital, Tungs’ Taichung MetroHarbor Hospital, Taichung Veterans General Hospital, Tainan Sin-Lau Hospital - the Presbyterian Church in Taiwan, Taipei City Hospital, Heping Fuyou Branch, Taipei City Hospital, Zhongxiao Branch, Tri-Service General Hospital.

Author details
1National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan, Taiwan 35053. 2Institute of Clinical Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan. 3Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. 4Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. 5Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.

Published: 28 August 2012

Received: 11 June 2012 Accepted: 23 August 2012

References
1. Peleg AY, Seifert H, Paterson DL: Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008, 21:538–582.
2. Dijkshoorn L, Nemec A, Seifert H: An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 2007, 5:939–951.
3. Neamati K, Spandios DA, Petinaki E: Confronting multidrug-resistant Acinetobacter baumannii: a review. Int J Antimicrob Agents 2011, 37:102–109.
4. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA: Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2007, 51:3471–3484.
5. Kwon KT, Oh WS, Song JH, Chang HL, Jung SI, Kim SW, Ryu SY, Heo SJ, Jung DS, Rhee JY, et al: Impact of imipenem resistance on mortality in patients with Acinetobacter baumannia. J Antimicrob Chemother 2007, 59:252–253.
6. Sunenshine RH, Wright OM, Maragakis LL, Harris AD, Song X, Heibden J, Cosgrove SE, Anderson A, Carmeli J, Jernigan DB, et al: Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis 2007, 13:99–103.
7. Peleg AY, Paterson DL: Multidrug-resistant Acinetobacter: a threat to the antibiotic era. Intern Med J 2006, 36:479–482.
8. Turner PJ: Meropenem activity against European isolates: report on the MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) 2006 results. Diagn Microbiol Infect Dis 2008, 60:185–192.
9. Gales AC, Jones RN, Sader HS: Polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–09). J Antimicrob Chemother 2011, 66:2070–2074.
10. Jean SS, Hsuw P-R: High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents 2011, 37:291–295.
11. Lauderdale TL, Clifford McDonald L, Shiau YR, Chen PC, Wang HY, Lai JF, Ho M: The status of antimicrobial resistance in Taiwan among gram-negative pathogens: the Taiwan surveillance of antimicrobial resistance (TSAR) program, 2000. J Antimicrob Chemother 1999, 42:529–532.
12. White AR, Surveillance BWPoR: The British Society for Antimicrobial Chemotherapy Resistance Surveillance Project: a successful collaborative model. J Antimicrob Chemother 2008, 62:i13–i14.
13. Tseng SH, Lee CM, Lin TY, Chang SC, Chang FY: Emergence and spread of multi-drug resistant organisms: think globally and act locally. J Microbiol Immunol Infect 2011, 44:157–165.
14. Jean SS, Hsuw P-R, Lee W-S, Chang H-T, Chou M-Y, Chen I-S, Wang J-H, Lin C-F, Shyr J-M, Ko W-C, et al: Nationwide surveillance of antimicrobial resistance among non-faecal Gram-negative bacteria in Intensive Care Units in Taiwan: SMART programme data 2005. Int J Antimicrob Agents 2005, 33:266–271.
15. Ho M, McDonald L, Lauderdale TL, Yeh LL, Chen PC, Shiau YR: Surveillance of antibiotic resistance in Taiwan, 1998. J Microbiol Immunol Infect 1999, 32:239–249.
16. Chen FJ, Huang IW, Wang CH, Chen PC, Wang HY, Lai JF, Shiau YR, Lauderdale TL: mecA-positive Staphylococcus aureus with low-level oxacillin MIC in Taiwan. J Clin Microbiol 2012, 50:1679–1683.
17. Wu H, Wang JY, Shiau YR, Wang HY, Lauderdale TL, Chang SC: A multicenter surveillance of antimicrobial resistance on Stenotrophomonas maltophilia in Taiwan. J Microbiol Immunol Infect 2012, 45:120–126.
18. Schreierberger PC, van Graevenitz A: Acinetobacter, Achromobacter, Alcaligenes, Moraxella, and other nonfermentative Gram-negative rods. p. 539–560. In Manual of Clinical Microbiology, 7th edition. Edited by Murray PR, Baron EJ, PfIlger MA, Tenover FC, Yolken RH, Washington. D.C.: American Society for Microbiology; 1999.
19. Clinical and Laboratory Standards Institute (CLSI): Performance Standards for Antimicrobial Susceptibility testing; Twenty-First Information Supplement. CLSI, Wayne, PA: CLSI document M100-S21, 2011.
20. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Hlett B, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012, 18:268–281.

21. Tan TY, Lim TP, Lee WH, Sasakula S, Hsu LY, Iwa AL. In vitro antibiotic synergy in extensively drug-resistant Acinetobacter baumannii: the effect of testing by time-kill, checkerboard, and Etest methods. Antimicrob Agents Chemother 2011, 55:436–438.

22. Stelling JM, O’Brien TF. Surveillance of antimicrobial resistance: the WHONET program. Clin Infect Dis 1997, 24(Suppl 1):S157–168.

23. Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, Stern Y. Physical activity, diet, and risk of Alzheimer disease. JAMA 2009, 302:627–637.

24. Reinfert RR, Low DE, Rossi F, Zhang X, Wattal C, Dowzicky ML. Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother 2007, 60:1018–1029.

25. Falagas ME, Kopterides P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. J Hosp Infect 2006, 64:7–15.

26. Lin MF, Kuo HY, Yeh HW, Yang CM, Sung CH, Tu CC, Huang ML, Liou ML. Emergence and dissemination of bla(OXA-23)-carrying imipenem-resistant Acinetobacter sp. in a regional hospital in Taiwan. J Microbiol Immunol Infect 2011, 44:39–44.

27. Lu PL, Doumith M, Livermore DM, Chen TP, Woodford N. Diversity of carbapenem resistance mechanisms in Acinetobacter baumannii from a Taiwan hospital: spread of plasmid-borne OXA-23 carbapenemase. J Antimicrob Chemother 2009, 63:641–647.

28. Su CH, Wang JT, Hsiung CA, Chen LJ, Chi CL, Yu HT, Chang FY, Chang SC. Increase of carbapenem-resistant Acinetobacter baumannii infection in acute care hospitals in Taiwan: association with hospital antimicrobial usage. PLoS One 2012, 7:e37788.

29. Smani Y, Lopez-Rojas R, Dominguez-Herrera J, Docobo-Perez F, Marty S, Vila J, Pachon J. In vitro and in vivo reduced fitness and virulence in ciprofloxacin-resistant Acinetobacter baumannii. Clin Microbiol Infect 2012, 18:E1–E4.

30. Cao J, Song W, Gu B, Mei YN, Tang JP, Meng L, Yang CO, Wang H, Zhou H. Correlation between carbapenem consumption and antimicrobial resistance rates of Acinetobacter baumannii in a university-affiliated hospital in China. J Clin Pharmacol 2012, Feb 02 [Epub ahead of print].

31. Ko KS, Suh JH, Kwon KT, Jung SJ, Park KS, Kang CI, Chung CR, Peck KR, Song JH. High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. J Antimicrob Chemother 2007, 60:1163–1167.

32. Farrell DJ, Turnidge JD, Bell J, Sader HS, Jones RN. In vitro evaluation of tigecycline tested against pathogens isolated in eight countries in the Asia-Western Pacific region (2008). J Infect 2010, 60:440–451.

Cite this article as: Kuo et al. Emergence of extensively drug-resistant Acinetobacter baumannii complex over 10 years: Nationwide data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program. BMC Infectious Diseases 2012 12:200.