Summary: We prove that, for any finite set $A \subset \mathbb{Q}$ with $|AA| \leq K|A|$ and any positive integer k, the k-fold product set of the shift $A + 1$ satisfies the bound

$$|\{(a_1 + 1)(a_2 + 1) \cdots (a_k + 1) : a_i \in A\}| \geq \frac{|A|^k}{(8k^4)^k K}.$$

This result is essentially optimal when K is of the order $c \log |A|$, for a sufficiently small constant $c = c(k)$. Our main tool is a multiplicative variant of the Λ-constants used in harmonic analysis, applied to Dirichlet polynomials.

MSC:

- 11P70 Inverse problems of additive number theory, including sumsets
- 11B30 Arithmetic combinatorics; higher degree uniformity

Keywords:

- Dirichlet polynomials
- product sets

Full Text: DOI arXiv

References:

[1] Amoroso, F.; Viada, E., Small points on subvarieties of a torus, Duke Math. J., 150, 3, 407-442, (2009) · Zbl 1234.11081
[2] Beukers, F.; Schlickewei, H. P., The equation \(x + y = 1\) in finitely generated groups, Acta Arith., 78, 2, 189-199, (1996) · Zbl 0880.11034
[3] Bourgain, J., More on sum-product phenomenon in prime fields and its applications, Int. J. Number Theory, 1, 1-32, (2005) · Zbl 1173.11130
[4] Bourgain, J.; Chang, M.-C., On the size of \(\text{texit}\{k\text{-fold sum and product sets of integers}\}, J. Amer. Math. Soc., 17, 2, 473-497, (2004) · Zbl 1034.05003
[5] Chang, M.-C., The Erdős-Szemerédi problem on sum set and product set, Ann. of Math. (2), 157, 3, 939-957, (2003) · Zbl 1055.11017
[6] Chang, M.-C., Sum and product of different sets, Contrib. Discrete Math., 1, 1, 47-56, (2006) · Zbl 1134.11008
[7] Erdős, P.; Szemerédi, E., On sums and products of integers, Studies in Pure Mathematics, 213-218, (1983), Birkhäuser: Birkhäuser, Basel
[8] Evertse, J. H.; Győry, K.; Stewart, C. L.; Tijdeman, R., On s-unit equations in two unknowns, Invent. Math., 92, 3, 461-477, (1988) · Zbl 0662.10012
[9] Evertse, J.-H.; Schlickewei, H. P.; Schmidt, W. M., Linear equations in variables which lie in a multiplicative group, Ann. of Math. (2), 155, 3, 807-836, (2002) · Zbl 1026.11038
[10] Garaev, M. Z.; Shen, C.-Y., On the size of the set \(\text{texit}\{A\} \setminus (\text{texit}\{A\} + 1)\), Math. Z., 265, 1, 125-132, (2010)
[11] Hanson, B.; Roche-Newton, O.; Zhelezov, D.
[12] Jones, T. G. F.; Roche-Newton, O., Improved bounds on the set \(\text{texit}\{A\} \setminus (\text{texit}\{A\} + 1)\), J. Combin. Theory Ser. A, 120, 3, 515-526, (2013) · Zbl 1267.11011
[13] Konyagin, S. V.; Shkredov, I. D., On sum sets of sets, having small product set, Proc. Steklov Inst. Math., 290, 288-299, (2015) · Zbl 1366.11054
[14] Shakan, G.
[15] Shkredov, I. D., Some remarks on sets with small quotient set, Sb. Math., 208, 12, 144-158, (2017)
[16] Tao, T.; Vu, V., Additive Combinatorics, (2006), Cambridge University Press
[17] Zhelezov, D.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original
paper as accurately as possible without claiming the completeness or perfect precision of the matching.