Many Intraoperative Monitoring Modalities Have Been Developed To Limit Injury During Extreme Lateral Interbody Fusion (XLIF/MIS XLIF): Does That Mean XLIF/MIS XLIF Are Unsafe?

Nancy E. Epstein M.D.

Professor of Clinical Neurosurgery, School of Medicine, State University of New York at Stony Brook, New York, and Chief of Neurosurgical Spine and Education, NYU Winthrop Hospital, NYU Winthrop NeuroScience/Neurosurgery, Mineola, New York 11501, United States.

E-mail: *Nancy E. Epstein, M.D. - nancy.epsteinmd@gmail.com

INTRODUCTION

Extreme lateral interbody fusions (XLIF) and Minimally Invasive (MIS) XLIF place the lumbar plexus, ilioinguinal, iliohypogastric, genitofemoral, lateral femoral cutaneous, and subcostal nerves at risk.
of injury during surgery [Table 1]. In 2016, Epstein reviewed the varying incidences of multiple nerve injuries occurring in various studies where XLIF/MIS XLIF were performed. These included: sensory deficits (13.28%-0.75%; permanent in 62.5%), motor deficits (0.7-33.6%), iliopsoas weakness (14.3%-31%), overall plexus injuries 13.28%, and anterior thigh/groin pain (12.5%-34%). Here we reviewed several of the intraoperative neural monitoring (IONM) modalities that have been developed to reduce these injuries; the use of finger electrodes during operative dissection, employing motor evoked potentials (MEP), eliminating (no) muscle relaxants (NMR), and using “triggered” EMGs. If you need any or all of these monitoring modalities to avoid neurological injuries during XLIF/MIS XLIF, are they inherently unsafe?

Nerves at Risk with XLIF

The lumbar plexus includes the L1-L4 nerves, and the subcostal nerve (T12). The sensory portion of the ilioinguinal nerve innervates the genital regions and some of the upper anterior/-medial thigh, while motor branches subserves the internal oblique and transversus abdominal muscles. The iliohypogastric nerve contributes to sensation over the

Author Ref. Year	Study Design	Findings	Findings	Findings	Conclusions
Chaudhary 2015[5]	EMG does not detect impending neural deficits MEP does= defines femoral N. injury for transpsoas XLIF	Triggered EMG Predicts neuropaxia postop for 3 L45 XLIF	MEP defined changes during XLIF without EMG changes	MEPs lost during/ after retraction of 25, 27, and 61 minutes; No EMG Changes	Two MEP changes =postoperative quadriceps deficits One MEP loss resolved= no deficits
Uribe 2015[6]	Triggered electromyography (t-EMG) during psoas retraction for XLIF reduced postop neural deficits	323 L4-L5 MIS XLIF 21 Sites Helped predict postop deficits	t-EMG thresholds with posterior retractor blade stimulation Recorded q 5 min during operative retraction	Postop 13 (4.5 %) exhibited new motor deficits/ lumbar plexus nerve injuries	Prolonged retraction time /increases in t-EMG predictors declining nerve integrity
Narita 2016[6]	Finger Electrode for L4-L5 XLIF for DS Reduced AE	36 patients vs. 18 historical controls	Finger electrode thresholds before/ after psoas dissections	No Finger electrode group AE 7 (38%) of 18 cases	With Finger Electrode 5 (14%) of 36 cases
Epstein 2016[4]	High risk of XLIF for neural injury: Sensory/Motor	Sensory (13.28%: 0-75%; permanent in 62.5%), Motor (0.7-33.6%), Iliopsoas weakness (14.3%-31%)	Motor deficits/ iliopsoas weakness (14.3%-31%)	No EMG Predicts 5 (2.2%) Included acute weakness”.	Up to 75% sensory 33.6% motor
Epstein 2016[4]	Femoral nerve lumbar plexus trauma due to 230 transpsoas MIS XLIF	Used NCS and EMG	Postop 6 (2.6%) new femoral or femoral/ obturator neuropathy	5 (2.2%) Included acute weakness”.	Five of six (83%) demonstrated axonotmesis
Riley 2018[7]	tcMEPs << risk surgeon-induced postop deficits following XLIF EMG only equals high risk deficits	3 Protocols: SD-EMG NC-EMG NC-MEP	Sensory deficits NC-MEP 20.5% NC-EMG 34.3% SD-EMG 36.9%	Motor deficits NC-MEP 5.7% SD-EMG 17.0% NC-EMG 17.1%	<<Permanent/long-term motor deficits NC-MEP 0.9% NC-EMG 6.9% SD-EMG 11.0%
Fogel 2018[5]	74 patients 150 levels XLIF No Muscle Relaxants NMR	Vs. 124 XLIF with Muscle Relaxants	< Neural Injury without NMR 8/74 =0.8% vs. With Muscle MR 3(6/125=28.8%)	Eliminating MRs=free running EMG more reliable and accurate	NMR better predicts proximity neurologic structures-reduces injury with XLIF

VB=Vertebral Body, DLS=Degenerative Lumbar Scoliosis, DLSt-Degenerative Lumbar Stenosis, AE=Adverse Event, DS=Degenerative Spondylolisthesis, NCS=Nerve Conduction Studies, EMG=Electromyography, MEP=Motor Evoked Potentials, LILF=Lateral Lumbar Interbody Fusions, SD=EMG=Surgeon Directed EMG Monitoring, NC-EMG=Neurophysiologist-Controlled EMG monitoring, NC-MEP=Neurophysiologist-controlled T-EMG monitoring supplemented with MEP monitoring, NMR=No Muscle Relaxants, Ref=References, q=every, MR=Muscle relaxants
lateral gluteal region, and provides motor innervation to the external/internal oblique, and transverse abdominus muscles. Sensation to the upper anterior thigh and genital regions is provided by the genitofemoral nerve, while sensation to the skin inferior to the iliac crest and gluteal regions is attributed to the lateral femoral cutaneous nerve. Lastly, the subcostal nerve (origin ventral ramus of T12 thoracic nerve) supplies motor innervation to the transversus abdominis, rectus abdominis, and pyramidalis.

Intraoperative Neural Monitoring to Avoid Neurological Deficits with XLIF/MIS XLIF

Use of Nerve Conduction Studies (NCS) and Electromyography (EMG)

Abel et al. (2018) evaluated the extent of trauma to the femoral nerve and lumbar plexus occurring during 230 transpsoas MIS XLIF procedures utilizing different electrodiagnostic protocols [Table 1].[1] Immediately postoperatively, “... 6 patients (2.5%) had new postoperative femoral or femoral/obturator neuropathy, 5 (2.2%) of which included acute weakness”. At six postoperative weeks, 5 (83%) demonstrated fixed/permanent axonotmesis.

Use of Finger Electrodes to Avoid Neurological Complications of XLIF

In 2016, Narita et al. studied whether using a finger electrode while performing L4-L5 XLIF for DS (degenerative spondylolisthesis) would reduce the incidence of new postoperative neurological deficits [Table 1].[6] The results of 36 monitored XLIF patients (before and after psoas muscle dissection) were contrasted with 18 of their own previous unmonitored historical controls (XLIF performed without this device). They found the finger electrodes significantly reduced the transient neurological symptoms (e.g. a lesser 5 [14%] of 36 cases) vs. unmonitored controls (7 [38%] of 18 controls).[6]

Motor Evoked Potential Monitoring (MEP) Decreases Deficits with XLIF

Several authors demonstrated that adding intraoperative MEP monitoring to EMG for XLIF, where EMG's typically showed no changes, could reduce or limit the incidence of new postoperative neurological deficits [Table 1].[2,7] Chaudhary et al. (2015) evaluated whether changes in transcranial MEP monitoring could help reduce the incidence of femoral nerve injuries occurring during transpsoas L4-L5 XLIF where no EMG changes occurred [Table 1].[2] MEPs were lost but EMG’s were maintained in these 3 procedures with respective retraction times of 25, 27, and 61 minutes; 2 patients had new postoperative quadriceps deficits, while one with a transient MEP loss (e.g. recovered intraoperatively), remained intact. They concluded that adding MEP to EMG monitoring of XLIF could reduce future neurological deficits, particularly by prompting surgeons to reduce retraction times. In 2018, Riley et al. also analyzed the efficacy of MEP and/or EMG monitoring for XLIF. They used 3 treatment groups (followed for 12 months); (1) surgeon-directed EMG monitoring (“SD-EMG”), (2) neurophysiologist-controlled EMG monitoring (“NC-EMG”), and (3) neurophysiologist-controlled EMG with MEP monitoring (“NC-MEP”) [Table 1].[7] Both sensory and motor deficits following XLIF were reduced with NC-MEP monitoring, (sensory 20.5%, motor 5.7%) vs. NC-EMG (sensory 34.3%, motor 17.0%), and SD-EMG monitoring (36.9% sensory, motor 17.1%). They concluded that MEPs (adductor longus, quadriceps, and tibialis anterior muscles) reduced the risk of surgeon-induced postoperative sensory/motor deficits following XLIF, and should be used routinely.

No Muscle Relaxants (NMR) Avoids Neurological Injuries with XLIF

A typical complication of XLIF performed with muscle relaxants is proximal thigh pain and weakness involving the L3-L4, and L4-L5 levels. In 2018, Fogel et al. asked whether eliminating muscle relaxation during XLIF would reduce the risk of neural injury.[11] They studied 74 consecutive patients undergoing 150 level XLIF with no muscle relaxants (NMR) vs. 124 patients undergoing XLIF at 238 levels performed with muscle relaxation (MR); the incidence of thigh pain/motor deficits was lower in the NMR (8/74 =0.8%) vs. MR 36/125=28.8%) groups [Table 1]. They concluded; “Eliminating MRs altogether appears to have allowed the evoked and free running EMG to be more reliable and accurate in predicting the proximity of the neurologic structures.”

Use of Triggered EMG to Predict Neuropraxia After MIS XLIF

Uribe et al. (2015) evaluated whether triggered EMG utilized during 323 L4-L5 MIS XLIF (from 21 study sites) during psoas retraction and XLIF would reduce postoperative neurological dysfunction [Table 1].[4] Original t-EMG thresholds were obtained utilizing posterior retractor blade stimulation, and also every 5 min during operative retraction. After surgery, 13 (4.5 %) patients exhibited new motor deficits/lumbar plexus nerve injuries (e.g. symptomatic neuropraxia (SN)), and concluded; “Prolonged retraction time and coincident increases in t-EMG thresholds are predictors of declining nerve integrity.” Therefore, routinely using t-EMG during retraction, and limiting retraction time could limit postoperative neuropraxia.

CONCLUSION

Here we have presented multiple intraoperative neural monitoring (IONM) modalities developed to reduce nerve injuries following XLIF/MIS XLIF, including; finger electrodes,
motor evoked potentials (MEP), no muscle relaxants (NMR), and using “triggered” EMGs [Table 1]. We ask again, if you need so many monitoring techniques to limit neural injuries incurred during XLIF/MIS XLIF, are these procedures inherently unsafe?

Financial support and sponsorship
None.

Conflicts of interest
There are no conflicts of interest.

Disclaimer
The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Journal or its management.

REFERENCES
1. Abel NA, Januszewski J, Vivas AC, Uribe JS. Femoral nerve and lumbar plexus injury after minimally invasive lateral retroperitoneal transpsoas approach: electrodiagnostic prognostic indicators and a roadmap to recovery. Neurosurg Rev. 2018 Apr;41(2):457-464.
2. Chaudhary K, Speights K, McGuire K, White AP. Trans-cranial motor evoked potential detection of femoral nerve injury in trans-psoas lateral lumbar interbody fusion. J Clin Monit Comput. 2015 Oct;29(5):549-54.
3. Epstein NE. Extreme lateral lumbar interbody fusion: Do the cons outweigh the pros? Surg Neurol Int. 2016 Sep 22;7(Suppl 25):S692-S700.
4. Epstein NE. High neurological complication rates for extreme lateral lumbar interbody fusion and related techniques: A review of safety concerns. Surg Neurol Int. 2016 Sep 22;7(Suppl 25):S652-S655.
5. Fogel GR, Rosen L, Koltsov JCB, Cheng I. Neurologic adverse event avoidance in lateral lumbar interbody fusion: technical considerations using muscle relaxants. J Spine Surg. 2018 Jun;4(2):247-253.
6. Narita W, Takatori R, Arai Y, Nagae M, Tonomura H, Hayashida T, et al. Prevention of neurological complications using a neural monitoring system with a finger electrode in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2016 Oct;25(4):456-463.
7. Riley MR, Doan AT, Vogel RW, Aguirre AO, Pieri KS, Scheid EH. Use of motor evoked potentials during lateral lumbar interbody fusion reduces postoperative deficits. Spine J. 2018 Oct;18(10):1763-1778.
8. Uribe JS, Isaacs RE, Youssef JA, Khajavi K, Balzer JR, Kanter AS, et al. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J. 2015 Apr;24 Suppl 3:378-85.