Research Article

Simin Liu, Hongyan Xu*, Yongqin Cui, and Pan Gong

Results on analytic functions defined by Laplace-Stieltjes transforms with perfect ϕ-type

https://doi.org/10.1515/math-2020-0118
received January 10, 2020; accepted November 12, 2020

Abstract: In this paper, we introduce the concept of the perfect ϕ-type to describe the growth of the maximal molecule of Laplace-Stieltjes transform by using the more general function than the usual. Based on this concept, we investigate the approximation and growth of analytic functions $F(s)$ defined by Laplace-Stieltjes transforms convergent in the half plane and obtain some results about the necessary and sufficient conditions on analytic functions $F(s)$ defined by Laplace-Stieltjes transforms with perfect ϕ-type, which are some generalizations and improvements of the previous results given by Kong [On generalized orders and types of Laplace-Stieltjes transforms analytic in the right half-plane, Acta Math. Sin. 59A (2016), 91–98], Singhal and Srivastava [On the approximation of an analytic function represented by Laplace-Stieltjes transformations, Anal. Theory and Appl. 31 (2015), 407–420].

Keywords: perfect ϕ-type, approximation, Laplace-Stieltjes transform, half plane

MSC 2020: 44A10, 30D15

1 Introduction

Let $L(s, F, \alpha)$ be a class of Laplace-Stieltjes transforms

$$F(s) = \int_0^{+\infty} e^{\sigma t} d\alpha(x), \quad s = \sigma + it,$$

where $\alpha(x)$ is a bounded variation on any finite interval $[0, Y]$ ($0 < Y < +\infty$), and σ and t are real variables. If we choose a suitable $\alpha(t)$, then $F(s)$ can be represented as a Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} a_n e^{\lambda_n s},$$

where a_n ($n = 1, 2, \ldots$) are nonzero complex numbers, and the sequence $\{\lambda_n\}_{n=1}^{\infty}$ satisfies

$$0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n \uparrow + \infty.$$
Denote\[
A_n^* = \sup_{\lambda_n < \lambda < \lambda_{n+1}, -\infty < \xi < +\infty} \left| \int_{\lambda_n}^\xi e^{iy} da(y) \right|, \]
if\[
\limsup_{n \to \infty} \log A_n^* = 0
\]
and\[
\limsup_{n \to \infty} (\lambda_{n+1} - \lambda_n) = h < +\infty, \quad \limsup_{n \to \infty} \frac{n}{\lambda_n} = D < \infty,
\]
then in view of the Valiron-Knopp-Bohr formula [1], it leads to $\sigma_u^F = 0$, that is, $F(s)$ is analytic in the left half plane, where σ_u^F is the abscissa of uniform convergence of $F(s)$. If (1.3) is replaced by\[
\limsup_{n \to \infty} \log A_n^* = -\infty,
\]
then it yields $\sigma_u^F = +\infty$, that is, $F(s)$ is called as an entire function. For convenience, for $-\infty < \beta < +\infty$, we denote\[
\tilde{L}_\beta = \{ F(s) \in L(s, F, \alpha) | \sigma_u^F = \beta, \text{ and } \{\lambda_n\} \text{ satisfy (1.2), (1.4)} \},
\]
and\[
L_\infty = \{ F(s) \in L(s, F, \alpha) | A_n^*, \{\lambda_n\} \text{ satisfy (1.2), (1.4), (1.5)} \}.
\]
Thus, if $F(s) \in L_0$ and $-\infty < \beta < 0$, then $F(s) \in \tilde{L}_\beta$.

In order to estimate the growth of $F(s)$, Yu [1] introduced the concepts of the maximal term $\mu(\sigma, F)$, the maximal molecule $M_0(\sigma, F)$ and the order of $F(s)$ and also studied that the value distribution of entire functions defined by Laplace-Stieltjes transforms converge in the complex plane. After his wonderful works, many scholars studied the value distribution and the growth of analytic functions represented by Laplace-Stieltjes transforms converge in the whole plane or the half plane, and obtained a large number of important and interesting results (see [2–14]).

Define\[
\mu(\sigma, F) = \max_{n \in \mathbb{N}} [A_n^* e^{\lambda_n \sigma}], \quad M_0(\sigma, F) = \sup_{0 < k < \infty, -\infty < \xi < +\infty} \left| \int_0^\xi e^{(\sigma+\xi)i} da(y) \right|, \quad (\sigma < 0).
\]
For $F(s) \in L_0$, in view of $M_0(\sigma, F) \to +\infty$ as $\sigma \to 0^-$, the concepts of order and type can be usually used in estimating the growth of $F(s)$ precisely.

Definition 1.1. [15, Definition 1.1] If Laplace-Stieltjes transform $F(s) \in L_0$ satisfies, we define the order and the lower order of $F(s)$ as follows:

\[
\rho = \limsup_{\sigma \to -0^-} -\log(\log^* M_{0}(\sigma, F)), \quad \mu = \limsup_{\sigma \to -0^-} -\log(\log^* M_{0}(\sigma, F)), \quad 0 \leq \mu \leq \rho \leq +\infty,
\]

where $\log^* x = \max\{\log x, 0\}$. Furthermore, if $\rho \in (0, +\infty)$, the type and the lower type of $F(s)$ are defined by

\[
T = \limsup_{\sigma \to -0^-} \frac{\log^* M_{0}(\sigma, F)}{\left(-\frac{1}{\sigma}\right)^p}, \quad t = \liminf_{\sigma \to -0^-} \frac{\log^* M_{0}(\sigma, F)}{\left(-\frac{1}{\sigma}\right)^p}, \quad 0 \leq t \leq T \leq +\infty.
\]

Remark 1.1. However, if $\rho = 0$ and $\rho = +\infty$, we cannot estimate the growth of such functions precisely by using the concept of type.
Remark 1.2. We say that $F(s)$ is of regular growth, if $\rho = \mu$; furthermore, $F(s)$ is of perfect regular growth, if $T = t$, that is,

$$T = \lim_{\sigma \to 0} \frac{\log \log M_{\phi}(\sigma, F)}{(-\frac{1}{2})^\sigma}. $$

If Laplace-Stieltjes transform (1.1) satisfies $A_n^* = 0$ for $n \geq k + 1$, and $A_k^* \neq 0$, then $F(s)$ may be called as an exponential polynomial of degree k usually denoted by p_k, i.e., $p_k(s) = \int_0^s \exp(\sigma y) \, d\mu(y)$. If we choose a suitable function $\alpha(y)$, the function $p_k(s)$ may be reduced to a polynomial in terms of $\exp(\sigma \lambda)$, that is, $\sum_{i=1}^k b_i \exp(\sigma \lambda_i)$. We denote Π_k to be the class of all exponential polynomials of degree almost k, that is,

$$\Pi_k = \left\{ \sum_{i=1}^k b_i \exp(\sigma \lambda_i) : (b_1, b_2, \ldots, b_k) \in \mathbb{C}^k \right\}.$$

For $F(s) \in \mathcal{L}_\beta$, $-\infty < \beta < 0$, we denote by $E_d(F, \beta)$ the error in approximating the function $F(s)$ by exponential polynomials of degree n in uniform norm as

$$E_d(F, \beta) = \inf_{p \in \Pi_n} \|F - p\|_\beta, \quad n = 1, 2, \ldots,$$

where

$$\|F - p\|_\beta = \max_{-\infty < \xi < \infty} |F(\beta + it) - p(\beta + it)|.$$

For convenience, the error $E_{d-n}(F, \beta)$ is always supposed to be not null.

For $F(s) \in L_0$, Singh and Srivastava [16] in 2015 studied the approximation of $F(s)$ with finite order, and obtained as follows.

Theorem 1.1. [16] If Laplace-Stieltjes transform $F(s) \in L_0$, and is of order ρ ($0 < \rho < \infty$) and of type T, then for any real number $-\infty < \beta < 0$, we have

$$\rho = \limsup_{n \to \infty} \frac{\log \log [E_{d-n}(F, \beta) \exp(-\beta \lambda_n)]}{\log \lambda_n - \log \log [E_{d-n}(F, \beta) \exp(-\beta \lambda_n)]}$$

and

$$T = \limsup_{n \to \infty} \frac{(\log [E_{d-n}(F, \beta) \exp(-\beta \lambda_n)])^{\rho+1}}{(\rho+1)\rho^{\rho+1} \lambda_n^\rho}. \quad (1.6)$$

From Remark 1.2 and Theorem 1.1, the following question will be suggested naturally:

Question 1.1. What will happen when $F(s)$ is of perfect regular growth, that is, $T = t$ in Theorem 1.1?

To answer Question 1.1, we first introduce the following definition of ϕ-type of Laplace-Stieltjes transform $F(s)$, which can estimate the growth of $M_{\phi}(\sigma, F)$ or $\mu(\sigma, F)$ more widely by utilizing more general function than $(-\frac{1}{2})^\sigma$ in Definition 1.1.

Definition 1.2. Let \mathcal{E}_0 be the set of positive unbounded function ϕ on $(-\infty, 0)$ such that the derivative ϕ' is positive, continuous and increasing to $+\infty$ on $(-\infty, 0)$. If $\phi \in \mathcal{E}_0$ and Laplace-Stieltjes transform $F(s) \in L_0$ satisfies

$$T_\phi = \limsup_{\sigma \to 0} \frac{\log M_{\phi}(\sigma, F)}{\phi(\sigma)}, \quad 0 \leq T_\phi \leq +\infty,$$
then T is called the ϕ-type of $F(s)$. Similarly, the lower ϕ-type of $F(s)$ is defined by

$$t_\phi = \liminf_{\sigma \to 0^-} \frac{\log M_\phi(\sigma, F)}{\phi'(\sigma)}, \quad 0 \leq t_\phi \leq +\infty.$$

Remark 1.3. Obviously, $0 \leq t_\phi \leq T_\phi \leq +\infty$. Besides, if $t_\phi = T_\phi$, then we say that $F(s)$ is of perfect ϕ-type, that is,

$$\lim_{\sigma \to 0^-} \frac{\log M_\phi(\sigma, F)}{\phi'(\sigma)} = T_\phi.$$

Let φ be the inverse function of ϕ', then φ is continuous on $(0, +\infty)$ and increases to 0, and let $\phi \in \Xi_0$ and $\psi(x) = x - \frac{\phi(x)}{\phi'(x)}$, then in view of [17], ψ is an increasing function on $(-\infty, 0)$, and $\psi(x) \to 0$ as $x \to 0$.

Besides, let ψ^{-1} be the inverse function of ψ. Then ψ^{-1} is an increasing function on $(-\infty, 0)$ and $\phi'(\psi^{-1}(\sigma))$ increases to $+\infty$ on $(-\infty, 0)$. For $0 < a < b < +\infty$ and $q > 0$, let

$$G_1(a, b, q, \phi) = \frac{ab}{b-a} \int_a^b \frac{\phi(qt)}{t^2} dt$$

and

$$G_2(a, b, q, \phi) = \phi\left(\frac{1}{b-a} \int_a^b \psi(qt) dt\right).$$

Now, we list our main results below to show the relations among the perfect ϕ-type, the error $E_n(F, \beta)$, λ_n and A_n^* for Laplace-Stieltjes transforms $F(s)$ with the perfect ϕ-type.

Theorem 1.2. If Laplace-Stieltjes transform $F(s) \in L_0$ satisfies

$$\limsup_{\sigma \to -\infty} \frac{-\log(\sigma)}{\phi'(\sigma)} = 0,$$

then for any real number $-\infty < \beta < 0$ and $0 < T_\phi < +\infty$, we have

$$\lim_{\sigma \to 0^-} \frac{\log M_\phi(\sigma, F)}{\phi'(\sigma)} = T_\phi \iff (i) \limsup_{n \to +\infty} \frac{\lambda_n}{\Omega_n(F, \beta, \lambda_n, \phi', \psi^{-1})} = T_\phi;$$

(ii) There exists a non-decreasing positive integer sequence $\{n_v\}$ satisfying

$$\lim_{v \to +\infty} \frac{\lambda_{n_v}}{\Omega_n(F, \beta, \lambda_{n_v}, \phi', \psi^{-1})} = T_\phi$$

and

$$\lim_{v \to +\infty} \frac{G_1(\lambda_{n_v}, \lambda_{n_v}, T_\phi, \phi)}{G_2(\lambda_{n_v}, \lambda_{n_v}, T_\phi, \phi)} = 1,$$

where

$$\Omega_n(F, \beta, \lambda_n, \phi', \psi^{-1}) = \phi'\left(\psi^{-1}\left(1 + \frac{1}{\lambda_n} \log \frac{1}{E_{n-1}(F, \beta)\exp[-\beta\lambda_n]}\right)\right)$$

and

$$\Omega_n(F, \beta, \lambda_n, \phi', \psi^{-1}) = \phi'\left(\psi^{-1}\left(1 + \frac{1}{\lambda_n} \log \frac{1}{E_{n-1}(F, \beta)\exp[-\beta\lambda_n]}\right)\right).$$
Theorem 1.3. If Laplace-Stieltjes transform $F(s) \in L_0$ satisfies (1.7), then

$$\lim_{\sigma \to 0} \frac{\log M_\sigma(\sigma, F)}{\phi(\sigma)} = T_\phi \iff (i) \lim_{n \to \infty} \frac{\lambda_n}{\Omega_n(F, A_n^+, \lambda_n, \phi', \psi')} = T_\phi;$$

(ii) There exists a non-decreasing positive integer sequence $\{n_\sigma\}$ satisfying (1.9) and

$$\lim_{\nu \to \infty} \frac{\lambda_n}{\Omega_n(F, A_n^+, \lambda_n, \phi', \psi')} = T_\phi, \quad (1.10)$$

where

$$\Omega_n(F, A_n^+, \lambda_n, \phi', \psi') = \phi' \left(\psi^{-1} \left(\frac{1}{\lambda_n} \log \frac{1}{A_n^+} \right) \right)$$

and

$$\Omega_n(F, A_n^+, \lambda_n, \phi', \psi') = \phi' \left(\psi^{-1} \left(\frac{1}{\lambda_n} \log \frac{1}{A_n^+} \right) \right).$$

Particularly, if $F(s) \in L_0$ is of finite order ρ, let $\phi(\sigma) = (-\frac{1}{\sigma})^\rho$, in view of Theorems 1.2 and 1.3, we can obtain the following corollaries.

Corollary 1.1. If $F(s) \in L_0$ is of finite order $\rho (0 < \rho < \infty)$, then for any real number $-\infty < \beta < 0$, we have

$$\lim_{\sigma \to 0} \frac{\log M_\sigma(\sigma, F)}{\left(\frac{1}{\sigma} \right)^\beta} = T \iff (i) \lim_{n \to \infty} \frac{\log \left[E_{\sigma_n}(F, \beta) \exp[-\beta \lambda_n] \right]}{\log \left[\lambda_n \right]} = \frac{(\rho + 1)^{\beta + 1}}{\rho^\beta} - T;$$

(ii) There exists a non-decreasing positive integer sequence $\{n_\sigma\}$ satisfying

$$\lim_{\nu \to \infty} \frac{\log \left[E_{\sigma_n}(F, \beta) \exp[-\beta \lambda_n] \right]}{\log \left[\lambda_n \right]} = \frac{(\rho + 1)^{\beta + 1}}{\rho^\beta} - T, \quad \lim_{\nu \to \infty} \frac{\lambda_n}{\lambda_{n-1}} = 1. \quad (1.11)$$

Corollary 1.2. If $F(s) \in L_0$ is of finite order $\rho (0 < \rho < \infty)$, then

$$\lim_{\sigma \to 0} \frac{\log M_\sigma(\sigma, F)}{\left(\frac{1}{\sigma} \right)^\beta} = T \iff (i) \lim_{n \to \infty} \frac{\log A_n^+}{\log \lambda_n} = \frac{(\rho + 1)^{\beta + 1}}{\rho^\beta} - T;$$

(ii) There exists a non-decreasing positive integer sequence $\{n_\sigma\}$ satisfying

$$\lim_{\nu \to \infty} \frac{\log A_n^+}{\log \lambda_n} = \frac{(\rho + 1)^{\beta + 1}}{\rho^\beta} - T, \quad \lim_{\nu \to \infty} \frac{\lambda_n}{\lambda_{n-1}} = 1.$$

Remark 1.4. In view of Corollaries 1.1 and 1.2, this shows that our results are some generalizations and improvements of Theorem 1.1.

2 Some lemmas

To prove our results, we also need to give the following lemmas.

Lemma 2.1. [17, Lemma 2.2] If Laplace-Stieltjes transform $F(s) \in L_0$, for any $(-\infty < \sigma < 0)$ and $\epsilon (>0)$, we have

$$\frac{1}{p} \mu(\sigma, F) \leq M_\sigma(\sigma, F) \leq C \frac{\mu((1-\epsilon)\sigma, F)}{\sigma},$$

where $p > 2$ and $C (\neq 0)$ are constants.
Lemma 2.2. Let $\phi \in \Xi$ and $0 < T_\phi + \infty$, then the conclusion that $\log \mu(\sigma, F) \leq T_\phi \phi(\sigma)$ for any $\sigma \in (-\infty, 0)$ holds if and only if $\log A_n^* \leq -\lambda_n \psi \left(\frac{\lambda_n}{T_\phi} \right)$ for all $n \geq 0$.

Proof. Suppose that $\log A_n^* \leq -\lambda_n \psi \left(\frac{\lambda_n}{T_\phi} \right)$ for all $n \geq 0$. Thus, for any $\sigma < 0$ and $x < 0$, we have

$$(\sigma - x) \phi(x) \leq \int_x^{\sigma} \phi'(t) dt = \phi(\sigma) - \phi(x).$$

Hence, it follows

$$\log \mu(\sigma, F) \leq \max \left[-\lambda_n \psi \left(\frac{\lambda_n}{T_\phi} \right) + \lambda_n \sigma : n \geq 0 \right] \leq \max \left[T_\phi (-t \phi(t) + t \sigma) : t \geq 0 \right]$$

$$= \max \left[-\phi'(x) \phi(x) + \sigma + \phi^2(x) : x < -\infty \right] = T_\phi \max \left[(\sigma - x) \phi(x) + \phi(x) : x < -\infty \right]$$

$$= T_\phi \phi(\sigma).$$

On the other hand, assume that $\log \mu(\sigma, F) \leq T_\phi \phi(\sigma)$ for any $\sigma \in (-\infty, 0)$, then it yields $\log A_n^* \leq T_\phi \phi(\sigma) - \sigma \lambda_n$ for all $n > 0$ and $\sigma \in (-\infty, 0)$. Let $\sigma = \phi'(x)$ and by considering with ϕ being the inverse function of ϕ', thus for all $n \geq 0$, it leads to

$$\log A_n^* \leq T_\phi \phi \left(\frac{\lambda_n}{T_\phi} \right) - \lambda_n \phi \left(\frac{\lambda_n}{T_\phi} \right) = -\lambda_n \phi \left(\frac{\lambda_n}{T_\phi} \right) - \phi \left(\frac{\lambda_n}{T_\phi} \right) = -\lambda_n \psi \left(\frac{\lambda_n}{T_\phi} \right).$$

Therefore, we complete the proof of Lemma 2.2. \square

Lemma 2.3. For $0 < a < b < \infty$ and $q > 0$, we have

$$G_1(a, b, q, \phi) < G_2(a, b, q, \phi).$$

Proof. First, denote $G(x) = G_1(a, x, q, \phi) - G_2(a, x, q, \phi)$, for $x \in (a, +\infty)$. Thus, it is easy to get that $G(x) \to 0$ as $x \to a^+$. Here, we only prove that $G(x)$ is a decreasing function on $(a, +\infty)$. In view of the definitions G_1 and G_2, it follows

$$\frac{d}{dx} G_1(a, x, q, \phi) = \frac{a}{(x - a)^2} \left[\phi(\phi(qx)) - \frac{a}{x} \phi(\phi(qx)) - a \int_a^x \frac{\phi(qt)}{t^2} dt \right]$$

$$= \frac{a}{(x - a)^2} \left[\phi(\phi(qx)) - \frac{a}{x} \phi(\phi(qx)) + a \left(\phi(\phi(qx)) \frac{1}{x} - \phi(\phi(qx)) \frac{1}{a} \right) \right.$$

$$\left. - \int_a^x q \frac{\phi(qt)}{t} \phi'(qt) dt \right]$$

$$= \frac{aq}{(x - a)^2} \left(t - a \right) d\phi(qt)$$

$$= \frac{aq}{(x - a)^2} \left(t - a \right) d\phi(qt)$$

$$= \frac{aq}{(x - a)^2} \left(x - a \phi(qx) - \int_a^x \phi(qt) dt \right)$$

and
\[
\frac{d}{dx} G_2(a, x, q, \phi) = \phi' \left(\frac{1}{x-a} \int_a^x \varphi(q(t)) dt \right) \frac{1}{(x-a)^2} \int_a^x \varphi(q(t)) dt + \frac{1}{x-a} \varphi(q(x)) \\
= \phi' \left(\frac{1}{x-a} \int_a^x \varphi(q(t)) dt \right) \frac{1}{(x-a)^2} \left((x-a)\varphi(q(x)) - \int_a^x \varphi(q(t)) dt \right).
\] (2.2)

Since \(\varphi \) is an increasing function, then for \(x > a \), it follows

\[
(x - a)\varphi(q(x)) - \int_a^x \varphi(q(t)) dt > 0, \quad \phi' \left(\frac{1}{x-a} \int_a^x \varphi(q(t)) dt \right) > qa.
\] (2.3)

In view of (2.1)–(2.3), it yields that

\[
\frac{d}{dx} G(x) = \frac{d}{dx} G_1(a, x, q, \phi) - \frac{d}{dx} G_2(a, x, q, \phi)
\]
\[
= \frac{1}{(x-a)^2} \left((x-a)\varphi(q(x)) - \int_a^x \varphi(q(t)) dt \right) \left(aq - \phi' \left(\frac{1}{x-a} \int_a^x \varphi(q(t)) dt \right) \right) < 0,
\] (2.4)

which means that \(G(x) \) is a decreasing function on \((a, +\infty)\). Thus, \(G(x) < G(a) \to 0 \) as \(x \to a^+ \), that is, \(G(x) < 0 \) for all \(x > a \). Hence, it follows that \(G_1(a, b, q, \phi) < G_2(a, b, q, \phi) \). Therefore, this completes the proof of Lemma 2.3.

Lemma 2.4. Suppose that \(F(s) \in L_0, T_\phi \in (0, +\infty) \), and if for some positive integer sequence \(\{n_k\}_{k=1}^{\infty} \) increasing to \(+\infty \),

\[
\log A_m^* \geq -\lambda_m \psi \left(\frac{\lambda_m}{T_\phi} \right).
\] (2.5)

then for all \(k \geq k_0 \) and all \(\sigma \in \left[\varphi \left(\frac{\lambda_m}{T_\phi} \right), \varphi \left(\frac{\lambda_{m+1}}{T_\phi} \right) \right] \) we have

\[
\log \mu(\sigma, F) \geq T_\phi \phi(\sigma) \frac{G_1(\lambda_{m+1}, \lambda_{m+1}, T_\phi^{-1}, \phi)}{G_2(\lambda_m, \lambda_{m+1}, T_\phi^{-1}, \phi)}.
\] (2.6)

Proof. Set

\[
H(\sigma) = \sup \left\{ -\lambda_m \psi \left(\frac{\lambda_m}{T_\phi} \right) + \sigma \lambda_{m+1} ; \ k \geq 1 \right\}
\]
and

\[
\eta_k = \frac{\lambda_{m+1} \psi \left(\frac{\lambda_{m+1}}{T_\phi} \right) - \lambda_m \psi \left(\frac{\lambda_m}{T_\phi} \right)}{\lambda_{m+1} - \lambda_m}.
\]

Then, in view of (2.5), it follows that \(H(\sigma) \leq \log \mu(\sigma, F) \) for all \(\sigma < 0 \). Since \((t\psi(\varphi(t)))' = (t\varphi(t) - \phi(\varphi(t)))' = \varphi(t) \), it leads to

\[
\eta_k = \frac{1}{\lambda_{m+1} - \lambda_m} \int_{\lambda_m}^{\lambda_{m+1}} \varphi \left(\frac{t}{T_\phi} \right) dt.
\] (2.7)

Since \(\varphi \) is continuous on \((0, +\infty)\) and increases to 0, thus in view of (2.6), it yields that \(\eta_k \to 0 \) as \(k \to +\infty \) and \(\varphi \left(\frac{\lambda_m}{T_\phi} \right) < \eta_k < \varphi \left(\frac{\lambda_{m+1}}{T_\phi} \right) \).
For \(\eta_{k-1} \leq \sigma \leq \eta_k \), if \(j < k \), it follows that

\[
- \lambda_{n_j} \psi \left(\frac{\lambda_{n_j}}{T \phi} \right) + \sigma \lambda_{n_j} - \frac{\lambda_{n_j}}{T} + \sigma \lambda_{n_j} = - \sum_{p=j+1}^{k} \left(\lambda_{n_p} \psi \left(\frac{\lambda_{n_p}}{T \phi} \right) - \lambda_{n_p-1} \eta_{n_p-1} \psi \left(\frac{\lambda_{n_p-1}}{T \phi} \right) \right) + \sigma (\lambda_{n_j} - \lambda_{n_j}) \tag{2.8}
\]

Similarly, if \(j > k \), we get

\[
- \lambda_{n_j} \psi \left(\frac{\lambda_{n_j}}{T \phi} \right) + \sigma \lambda_{n_j} - \frac{\lambda_{n_j}}{T} + \sigma \lambda_{n_j} = - \sum_{p=k+1}^{j} \left(\lambda_{n_p} \psi \left(\frac{\lambda_{n_p}}{T \phi} \right) - \lambda_{n_p-1} \eta_{n_p-1} \psi \left(\frac{\lambda_{n_p-1}}{T \phi} \right) \right) + \sigma (\lambda_{n_j} - \lambda_{n_j}) \tag{2.9}
\]

Hence, for \(\eta_{k-1} \leq \sigma \leq \eta_k \), it yields

\[
\begin{align*}
H(\sigma) &= - \lambda_{n_j} \psi \left(\frac{\lambda_{n_j}}{T \phi} \right) + \sigma \lambda_{n_j}.
\end{align*}
\tag{2.10}
\]

Thus, for \(\eta_{k-1} \leq \phi \left(\frac{\lambda_{n_j}}{T \phi} \right) \leq \sigma \leq \eta_k \), we can deduce

\[
\begin{align*}
\left(\frac{H(\sigma)}{\phi(\sigma)} \right)' &= \lambda_{n_j} \phi(\sigma) - \phi' \left(\frac{\lambda_{n_j}}{T \phi} \right) \left[\alpha \lambda_{n_j} - \lambda_{n_j} \psi \left(\frac{\lambda_{n_j}}{T \phi} \right) \right] = \frac{\lambda_{n_j} \psi' \left(\frac{\lambda_{n_j}}{T \phi} \right) - \psi(\sigma)}{\psi'(\sigma)} \leq 0,
\end{align*}
\tag{2.11}
\]

which implies

\[
\frac{H(\sigma)}{\phi(\sigma)} \geq \frac{H(\eta_k)}{\phi(\eta_k)} = \frac{\lambda_{n_j} \psi \left(\frac{\lambda_{n_j}}{T \phi} \right) + \eta_k \lambda_{n_j}}{G_1(\lambda_{n_j}, \lambda_{n_j-1}, T \phi^{-1}, \phi)}
\]

\[
= \frac{\lambda_{n_j} \left[\lambda_{n_j} \psi \left(\frac{\lambda_{n_j}}{T \phi} \right) - \lambda_{n_j} \psi \left(\frac{\lambda_{n_j}}{T \phi} \right) \right] - \lambda_{n_j} \psi \left(\frac{\lambda_{n_j}}{T \phi} \right) - \lambda_{n_j} \psi \left(\frac{\lambda_{n_j}}{T \phi} \right)}{G_1(\lambda_{n_j}, \lambda_{n_j-1}, T \phi^{-1}, \phi)}
\tag{2.12}
\]

\[
= \frac{\lambda_{n_j} \lambda_{n_j+1}}{\lambda_{n_j+1} - \lambda_{n_j}} \int_{\lambda_{n_j}}^{\lambda_{n_j+1}} T \phi' \psi \left(\frac{t}{T \phi} \right) \, dt
\]

\[
= \frac{\lambda_{n_j} \lambda_{n_j+1}}{\lambda_{n_j+1} - \lambda_{n_j}} \int_{\lambda_{n_j}}^{\lambda_{n_j+1}} \phi \left(\frac{t}{T \phi} \right) \, dt
\]

\[
= \frac{T \phi \lambda_{n_j} \lambda_{n_j+1}}{\lambda_{n_j+1} - \lambda_{n_j}} \int_{\lambda_{n_j}}^{\lambda_{n_j+1}} \frac{\phi \left(\frac{t}{T \phi} \right)}{t} \, dt
\]

\[
= \frac{T \phi G_1(\lambda_{n_j}, \lambda_{n_j+1}, T \phi^{-1}, \phi)}{G_2(\lambda_{n_j}, \lambda_{n_j+1}, T \phi^{-1}, \phi)}.
\]
Let \(\eta_k \leq \sigma \leq \eta \frac{\lambda_{n+1}}{t_0} \), then it follows that \(H(\sigma) = -\lambda_{n+1} \psi\left(\frac{\lambda_{n+1}}{t_0}\right) + \alpha \lambda_{n+1} \) and

\[
\left(\frac{H(\sigma)}{\phi(\sigma)} \right) = \frac{\lambda_{n+1} \phi'(\sigma) - \phi'(\sigma) \left(\alpha \lambda_{n+1} - \lambda_{n+1} \right)}{\phi' \left(\frac{\lambda_{n+1}}{t_0} \right)} = \frac{\lambda_{n+1} \phi'(\sigma)}{\phi' \left(\frac{\lambda_{n+1}}{t_0} \right)} \geq 0, \tag{2.13}
\]

which shows that \(\frac{H(\sigma)}{\phi(\sigma)} \) is nondecreasing on \(\left[\eta_k, \eta \frac{\lambda_{n+1}}{t_0} \right] \). By combining with (2.12), for all \(k \geq k_0 \) and all \(\sigma \in \left[\frac{\lambda_{n+1}}{t_0}, \frac{\lambda_{n+1}}{t_0} \right] \), it yields that

\[
\frac{H(\sigma)}{\phi(\sigma)} = \frac{H(\eta_k)}{\phi(\eta_k)} = \frac{G_0(\lambda_{n+1}, \lambda_{n+1}, T_{\phi}^{-1}(\phi))}{G_2(\lambda_{n+1}, \lambda_{n+1}, T_{\phi}^{-1}(\phi))},
\]

Hence, it is easy to get (2.6).

\[\square\]

Lemma 2.5. [15, Lemma 2.6]. If \(F(s) \in L_0 \) and \(y \) is any real number, then for \(\sigma (0) \) sufficiently reaching 0, we have \(\mu(\sigma, F) \leq 4M_0(\sigma, F) \) and

\[
\left| \int_{\lambda_k}^{\infty} \exp\left((y + it)|y|\right) d\alpha(y) \right| \leq 2 \sum_{n=0}^{\infty} A_n^\sigma \exp\left|y\lambda_{n+1}\right|.
\]

3 Proofs of Theorems 1.2 and 1.3

3.1 The proof of Theorem 1.2

First of all, we prove the necessity of Theorem 1.2. Suppose that

\[
\lim_{\sigma \to 0} \log^\ast M_0(\sigma, F) = T_\phi,
\]

then for any sufficiently small \(\varepsilon (\varepsilon > 0) \), there exists \(\sigma_0 < 0 \) such that

\[
(T - \varepsilon) \phi(\sigma) \leq \log^\ast M_0(\sigma, F) \leq (T_\phi + \varepsilon) \phi(\sigma), \quad \text{as} \quad \sigma_0 < \sigma < 0.
\]

In view of (1.7) and Lemma 2.1, it follows that

\[
(T_\phi - \varepsilon) \phi(\sigma) \leq \log^\ast \mu(\sigma, F) \leq \log^\ast M_0(\sigma, F) \leq (T_\phi + \varepsilon) \phi(\sigma), \quad \text{as} \quad \sigma_0 < \sigma < 0.
\]

Since \(F(s) \in L_0 \), thus it follows \(F(s) \in L_\beta \) for any \(\beta (-\infty < \beta < 0) \). And for \(\beta < \sigma < 0 \), we have

\[
E_n(F, \beta) \leq \| F - p_n \|_{\beta} \leq |F(\beta + it) - p_n(\beta + it)|
\]

\[
\leq \left| \int_{0}^{\infty} \exp((\beta + it)y) d\alpha(y) - \int_{0}^{\infty} \exp((\beta + it)y) d\alpha(y) \right|
\]

\[
= \int_{0}^{\infty} \exp((\beta + it)y) d\alpha(y).
\]

In view of Lemma 2.6, it yields that \(A_n^\sigma \leq 4M_0(\sigma, F) e^{-\alpha k} \) for any \(\sigma < 0 \). By combining with this and (3.3), we obtain that

\[
E_n(F, \beta) \leq 2 \sum_{k=n+1}^{\infty} A_{k-1}^n \exp(\beta \lambda_k) \leq 8M_0(\sigma, F) \sum_{k=n+1}^{\infty} \exp(\beta - \sigma) \lambda_k.
\]
In view of (1.4), we can choose \(h' (0 < h' < h) \) such that \((\lambda_{n+1} - \lambda_n) \geq h' \) for \(n \geq 0 \). Then for \(\sigma \geq \frac{\beta}{2} \), in view of (3.4), we can deduce that

\[
E_n(F, \beta) \leq 8M_d(\sigma, F) \exp\{\lambda_n(\beta - \sigma)\} \sum_{k=n+1}^{\infty} \exp\{\lambda_k - \lambda_{n+1}\}(\beta - \sigma)
\]

\[
\leq 8M_d(\sigma, F) \exp\{\lambda_n(\beta - \sigma)\} \exp\left\{-\frac{\beta}{2}h'(n + 1)\right\} \sum_{k=n+1}^{\infty} \exp\left\{-\frac{\beta}{2}h'k\right\}
\]

\[
= 8M_d(\sigma, F) \exp\{\lambda_n(\beta - \sigma)\} \left(1 - \exp\left\{-\frac{\beta}{2}h'\right\}\right)^{-1},
\]

that is,

\[
E_{n-1}(F, \beta) \leq KM_d(\sigma, F) \exp\{\lambda_0(\beta - \sigma)\},
\]

where \(K \) is a constant and only depends on \(h \) and \(\beta \).

Thus, from (3.2) and (3.5), it follows that

\[
\log [E_{n-1}(F, \beta) \exp\{-\beta\lambda_n\}] \leq (T_\phi + \epsilon)\phi(\sigma) - \sigma\lambda_n - \log K,
\]

for all \(n > 0 \) and \(\sigma_0 < \sigma < 0 \). Let \(\sigma = \frac{\lambda_n}{T_\phi + \epsilon} \), and by using the same argument as in Lemma 2.2, it yields

\[
\log [E_{n-1}(F, \beta) \exp\{-\beta\lambda_n\}] \leq -(1 + o(1))\lambda_n\psi\left(\frac{\lambda_n}{T_\phi + \epsilon}\right),
\]

which implies

\[
\limsup_{n \to \infty} \frac{\lambda_n}{\Omega_n(F, \beta, \lambda_n, \phi', \psi')} \leq T_\phi.
\]

Now, we prove that the inequality

\[
\limsup_{n \to \infty} \frac{\lambda_n}{\Omega_n(F, \beta, \lambda_n, \phi', \psi')} = T' < T_\phi
\]

does not hold. In view of (3.8), for any sufficiently small \(\epsilon\left(0 < \epsilon < \frac{T_\phi - T'}{3}\right) \), there exists a positive integer \(n_1 \) such that

\[
\log [E_{n-1}(F, \beta) \exp\{-\beta\lambda_n\}] \leq -\lambda_n\psi\left(\frac{\lambda_n}{T' + \epsilon}\right), \quad n > n_1.
\]

And since

\[
A_n^* \exp\{\beta\lambda_n\} \leq \sup_{\lambda_n < \infty} \left| \int_{-\infty}^{\infty} \frac{\exp\{\beta y\} \, \phi(y) \, \exp\{\beta\lambda_n\}}{\lambda_n} \right| \exp\{\beta\lambda_n\}
\]

\[
\leq \sup_{\lambda_n < \infty} \left| \int_{-\infty}^{\infty} \frac{\exp\{(\beta + it) y\} \, \phi(y) \, \exp\{\beta\lambda_n\}}{\lambda_n} \right| \exp\{\beta\lambda_n\}
\]

\[
\leq \sup_{-\infty < \infty} \left| \int_{-\infty}^{\infty} \frac{\exp\{(\beta + it) y\} \, \phi(y) \, \exp\{\beta\lambda_n\}}{\lambda_n} \right| \exp\{\beta\lambda_n\}
\]

thus for any \(p \in \Pi_{n-1} \) and \(\beta < 0 \), it yields

\[
A_n^* \exp\{\beta\lambda_n\} \leq |F(\beta + it) - p(\beta + it)| \leq \|F - p\|_\beta,
\]

and there exists \(p_1 \in \Pi_{n-1} \) such that

\[
\|F - p_1\| \leq 2E_{n-1}(F, \beta),
\]
Hence, we can conclude in view of (3.10) and (3.11) that
\[A_n^* \exp[\beta A_n^*] \leq 2E_{n-1}(F, \beta), \]
(3.12)
for any \(\beta < 0 \) and \(F(s) \in L_0 \). Then from (3.9) and (3.12), it follows
\[\log A_n^* \leq -(1 + o(1))n\lambda_n \psi \left(\frac{\lambda_n}{T^* + \varepsilon} \right), \]
(3.13)
By Lemma 2.2, it yields
\[\log \mu(\sigma, F) \leq (T^* + \varepsilon)\phi(\sigma). \]
Thus, in view of Lemma 2.1, (1.7) and \(0 < \varepsilon < \frac{T_0 - T^*}{3} \), we obtain
\[\limsup_{\sigma \to 0} \frac{\log M_n(\sigma, F)}{\phi(\sigma)} \leq T^* + 2\varepsilon < T_0, \]
which is a contradiction with (3.1). Therefore, we have
\[\limsup_{n \to \infty} \frac{\lambda_n}{\Omega_n(F, \beta, \lambda_n, \phi', \psi^{-1})} = T_0. \]
(3.14)
To prove (1.8), in view of (3.14), we only need to prove
\[\liminf_{n \to \infty} \frac{\lambda_n}{\Omega_n(F, \beta, \lambda_n, \phi', \psi^{-1})} = T_0. \]
In view of (3.2), we can conclude that there exists a positive integer subsequence \(\{n_0\} \) such that
\[\log [E_{n_0-1}(F, \beta) \exp[\beta A_{n_0}]] \geq -\lambda_{n_0} \psi \left(\frac{\lambda_{n_0}}{T_0 - \varepsilon} \right), \]
(3.15)
and
\[(T_0 + \varepsilon) G_1'(\lambda_{n_0}, \lambda_{n_0}^*, (T_0 + \varepsilon)^{-1}, \phi) \geq (T_0 - \varepsilon) G_2'(\lambda_{n_0}, \lambda_{n_0}^*, (T_0 + \varepsilon)^{-1}, \phi), \]
(3.16)
where
\[G_1'(\lambda_{n_0}, \lambda_{n_0}^*, (T_0 + \varepsilon)^{-1}, \phi) = \frac{\lambda_{n_0} \lambda_{n_0}^*}{\lambda_{n_0}^* - \lambda_{n_0}} \int_{\lambda_{n_0}}^{\lambda_{n_0}^*} \phi \left(\frac{t}{T_0 + \varepsilon} \right) \frac{dt}{t^2}, \]
\[G_2'(\lambda_{n_0}, \lambda_{n_0}^*, (T_0 + \varepsilon)^{-1}, \phi) = \phi \left(\frac{1}{\lambda_{n_0}^* - \lambda_{n_0}} \right) \int_{\lambda_{n_0}}^{\lambda_{n_0}^*} \phi \left(\frac{t}{T_0 + \varepsilon} \right) \frac{dt}{t}. \]
Indeed, we suppose that such sequence \(\{n_0\} \) does not exist, that is, there exist two sequences \(\{n_0'\}, \{n_0''\} \) increasing to \(+\infty\) such that
\[\log [E_{n_0'}(F, \beta) \exp[\beta A_{n_0}]] < -\lambda_{n_0'} \psi \left(\frac{\lambda_{n_0'}}{T_0 - \varepsilon} \right), \text{ for } n_0' \leq p \leq n_0'', \]
(3.17)
and
\[(T_0 + \varepsilon) G_1'(\lambda_{n_0'}, \lambda_{n_0'}^*, (T_0 + \varepsilon)^{-1}, \phi) < (T_0 - \varepsilon) G_2'(\lambda_{n_0'}, \lambda_{n_0'}^*, (T_0 + \varepsilon)^{-1}, \phi). \]
(3.18)
Assume that \(\lambda_{n_0'+1} > \lambda_{n_0}' \). Denote
\[\eta_{n_0}' = \frac{\lambda_{n_0} \psi \left(\frac{\lambda_{n_0}^*}{T_0 + \varepsilon} \right) - \lambda_{n_0}' \psi \left(\frac{\lambda_{n_0}^*}{T_0 + \varepsilon} \right)}{\lambda_{n_0}^* - \lambda_{n_0}'}. \]
Thus, by Lemma 2.4, it follows that
\[
\eta_v^1 = \frac{1}{\lambda_{n^*} - \lambda_{n'}} \int_{\lambda_{n'}}^{\lambda_{n^*}} \varphi \left(\frac{t}{T_\theta + \epsilon} \right) dt,
\]
(3.19)
and \(\eta_v^1 \to 0 \) as \(k \to +\infty, \varphi(\frac{\lambda_{n'}}{T_\theta + \epsilon}) < \eta_v^1 < \varphi(\frac{\lambda_{n^*}}{T_\theta + \epsilon}) \).

If \(\lambda_p < \lambda_{n^*} \), then we have
\[
\left(-\lambda_p \psi \left(\frac{\lambda_p}{T_\theta + \epsilon} \right) + \eta_v^1 \lambda_p \right)' = -\varphi \left(\frac{\lambda_p}{T_\theta + \epsilon} \right) + \eta_v^1 > -\varphi \left(\frac{\lambda_{n^*}}{T_\theta + \epsilon} \right) + \eta_v^1 > 0,
\]
which means that
\[
-\lambda_p \psi \left(\frac{\lambda_p}{T_\theta + \epsilon} \right) + \eta_v^1 \lambda_p < -\lambda_{n^*} \psi \left(\frac{\lambda_{n^*}}{T_\theta + \epsilon} \right) + \eta_v^1 \lambda_{n^*}.
\]
(3.20)

If \(\lambda_p > \lambda_{n^*} \), then
\[
\left(-\lambda_p \psi \left(\frac{\lambda_p}{T_\theta + \epsilon} \right) + \eta_v^1 \lambda_p \right)' = -\varphi \left(\frac{\lambda_p}{T_\theta + \epsilon} \right) + \eta_v^1 < -\varphi \left(\frac{\lambda_{n^*}}{T_\theta + \epsilon} \right) + \eta_v^1 < 0,
\]
which means that
\[
-\lambda_p \psi \left(\frac{\lambda_p}{T_\theta + \epsilon} \right) + \eta_v^1 \lambda_p < -\lambda_{n^*} \psi \left(\frac{\lambda_{n^*}}{T_\theta + \epsilon} \right) + \eta_v^1 \lambda_{n^*}.
\]
(3.21)

Since
\[
-\lambda_p \psi \left(\frac{\lambda_{n^*}}{T_\theta + \epsilon} \right) + \eta_v^1 \lambda_{n^*} = -\lambda_{n^*} \psi \left(\frac{\lambda_{n^*}}{T_\theta + \epsilon} \right) + \eta_v^1 \lambda_{n^*},
\]
(3.22)
thus in view of (3.20)–(3.22), it yields that for any \(\lambda_p \not\in [n', n''] \)
\[
-\lambda_p \psi \left(\frac{\lambda_p}{T_\theta + \epsilon} \right) + \eta_v^1 \lambda_p \leq \frac{\lambda_{n^*} \lambda_{n^{*\prime}}}{\lambda_{n^*} - \lambda_{n'}} \left(\psi \left(\frac{\lambda_{n^*}}{T_\theta + \epsilon} \right) - \psi \left(\frac{\lambda_p}{T_\theta + \epsilon} \right) \right)
\]
\[
= \left(T_\theta + \epsilon \right) \frac{\lambda_{n^*} \lambda_{n^{*\prime}}}{\lambda_{n^*} - \lambda_{n'}} \int_{\lambda_{n'}}^{\lambda_{n^*}} \frac{\phi \left(\frac{t}{T_\theta + \epsilon} \right)}{t^2} dt.
\]
(3.23)

In view of (3.5), (3.12), (3.17)–(3.19) and (3.23), we can deduce
\[
\log \mu(\eta_v^1, F) \leq \sup \left\{ \log \left[E_p(\lambda_p, \beta) \exp \left(-\beta \lambda_p \right) \right] + \eta_v^1 \lambda_p + O(1) : p > 0 \right\}
\]
\[
= \sup \left\{ \sup \left\{ \log \left[E_p(\lambda_p, \beta) \exp \left(-\beta \lambda_p \right) \right] + \eta_v^1 \lambda_p + O(1) : p \not\in [n', n''] \right\}, \sup \left\{ \log \left[E_p(\lambda_p, \beta) \exp \left(-\beta \lambda_p \right) \right] + \eta_v^1 \lambda_p + O(1) : p \in [n', n''] \right\} \right\}
\]
\[
< \sup \left\{ \left(T_\theta + \epsilon \right) \frac{\lambda_{n^*} \lambda_{n^{*\prime}}}{\lambda_{n^*} - \lambda_{n'}} \int_{\lambda_{n'}}^{\lambda_{n^*}} \frac{\phi \left(\frac{t}{T_\theta + \epsilon} \right)}{t^2} dt, \right. \right.
\]
\[
\left. \sup \left\{ \left(1 + o(1) \right) \lambda_p \psi \left(\frac{\lambda_p}{T_\theta + \epsilon} \right) + \eta_v^1 \lambda_p : p \in [n', n''] \right\} \right\}
\]
\[
\leq \sup \left\{ \left(T_\theta + \epsilon \right) G(\lambda_{n^*}, \lambda_{n^{*\prime}}, (T_\theta + \epsilon)^{-1}, \phi), (T_\theta + \epsilon) \phi(\eta_v^1) \right\} \leq (T_\theta + \epsilon) \phi(\eta_v^1),
\]
which is a contradiction with (3.2). Hence, we conclude that there exists a positive integer subsequence \(\{n_k\} \) satisfying (3.15) and (3.16). Let \(v \to 0^+ \) and \(\varepsilon \to 0^+ \), and by combining with (3.14) and Lemma 2.3, then we can deduce (1.8) and (1.9).

Thus, the proof of the necessity for Theorem 1.2 is completed.

Now, we prove the sufficiency of Theorem 1.2. Suppose that

\[
\lim_{n \to \infty} \frac{\lambda_n}{\Omega_d(F, \beta, \lambda_n, \phi, \psi^v)} = T_\phi,
\]

then in view of (3.12), for any sufficiently small \(\varepsilon(>0) \), there exists a positive integer \(n_2 \) such that

\[
\log A_n^* \leq -(1 + o(1))\lambda_n \psi\left(\phi\left(\frac{\lambda_n}{T_\phi + \varepsilon}\right)\right) \quad \text{for } n > n_2.
\]

(3.24)

Thus, in view of (1.7), (3.24) and Lemmas 2.1 and 2.2, we can easily obtain

\[
\lim_{\sigma \to 0^+} \frac{\log M_\sigma(\sigma, F)}{\phi(\sigma)} = T_\phi.
\]

(3.25)

On the other hand, in view of (1.8), it follows that for any sufficiently small \(\varepsilon(>0) \), there exists a positive integer \(n_3 \) such that

\[
\log \left[E_{n_3}(F, \beta) \exp[-\beta \lambda_{n_3}] \right] \geq -\lambda_{n_3} \psi\left(\phi\left(\frac{\lambda_{n_3}}{T_\phi - \varepsilon}\right)\right).
\]

(3.26)

Then, from (1.7), (3.5) and by Lemma 2.1, it yields

\[
\log A_n^* \geq -(1 + o(1))\lambda_n \psi\left(\phi\left(\frac{\lambda_n}{T_\phi - \varepsilon}\right)\right).
\]

So, by Lemma 2.4, it follows that for all \(v \geq v_0 \) and all \(\sigma \in \left[\phi(\lambda_{n_3}) \tau_\phi, \phi(\lambda_{n_3,1}) \tau_\phi \right] \), we have

\[
\log \mu(\sigma, F) \geq (T_\phi - \varepsilon) \phi(\sigma) \frac{G_d(\lambda_{n_3}, \lambda_{n_3,1}, (T_\phi - \varepsilon)^{-1}, \phi)}{G_d(\lambda_{n_3}, \lambda_{n_3,1}, (T_\phi - \varepsilon)^{-1}, \phi)}.
\]

Hence, by combining with (1.9), it leads to

\[
\log \mu(\sigma, F) \geq (T_\phi - \varepsilon) \phi(\sigma),
\]

which implies

\[
\lim_{\sigma \to 0^+} \frac{\log \mu(\sigma, F)}{\phi(\sigma)} \geq T_\phi.
\]

(3.27)

Thus, in view of (3.25) and (3.26), and by applying Lemma 2.1, (3.1) holds. The proof of the sufficiency for Theorem 1.2 is completed.

Therefore, this completes the proof of Theorem 1.2.

3.2 The proof of Theorem 1.3

By using the same argument as in the proof of Theorem 1.3, and combining with the relation between \(E_{n_1}(F, \beta) \exp[-\beta \lambda_{n_1}] \) with \(A_n^* \) (see (3.5) and (3.12)), it is easy to prove the conclusions of Theorem 1.3.
4 Proofs of Corollaries 1.1 and 1.2

4.1 The proof of Corollary 1.1

Without loss of generalization, assume that \(T_\phi = 1 \). Set \(\phi(x) = (-\sigma)^{-\rho} \), otherwise, let \(\phi(x) = T(-\sigma)^{-\rho} \). Thus,

\[
\varphi(x) = \frac{x}{\rho} \left(\frac{1}{\rho^\rho} \right)
\]

and

\[
x\varphi(x) = -(\rho + 1) \left(\frac{x}{\rho} \right)^{\rho^\rho}
\]

Thus, it yields that

\[
\varphi(x) = \frac{1}{\rho^{\rho^\rho}} \left(\frac{1}{\rho} \right)
\]

and

\[
G_1(a, b, 1, \phi) = (\rho + 1) \rho^{\rho^\rho} \left(\frac{ab}{b-a} \left(\frac{a^{\rho^\rho} - b^{\rho^\rho}}{\rho} \right) \right).
\]

Thus, it yields that

\[
\Omega_n(F, \beta, \lambda_n, \phi', \psi') = \varphi' \left(\frac{1}{\lambda_n} \log \left(\frac{1}{E_{n-1}(F, \beta) \exp(-\beta \lambda_n)} \right) \right)
\]

\[
= \frac{(\rho + 1)^{\rho^\rho}}{\rho^\rho} \left(\frac{\lambda_n}{\log^\rho \left(E_{n-1}(F, \beta) \exp(-\beta \lambda_n) \right)} \right)^{\rho^\rho}.
\]

and

\[
G_2(\lambda_n, \lambda_{n+1}, 1, \phi) = (\rho + 1)^{\rho^\rho} \left(\frac{\lambda_n \lambda_{n+1}}{\lambda_n - \lambda_{n+1}} \left(\frac{1}{\rho^{\rho^\rho}} \right) \right).
\]

Thus, in view of (4.1), and by combining with the conclusions of Theorem 1.2, we can prove that the conclusion of Corollary 1.1(i) and the first conclusion of Corollary 1.1(ii) hold. Thus, it remains to prove that (4.2) is equivalent to the second formula of (1.11).

Set \(\lambda_{n+1} = (1 + \delta_\nu) \lambda_n \). Then (4.2) becomes the following form:

\[
f(\delta_\nu) = \frac{(\rho + 1)^{\rho^\rho}}{\rho^\rho} \left(\frac{1}{\delta_\nu} \right)^{\rho^\rho} \left(\frac{1}{1 + \delta_\nu} \right)^{\rho^\rho}.
\]

By the aforementioned arguments and in view of Theorem 1.2, it remains to prove that \(f(\delta_\nu) \to 1 \) as \(\nu \to +\infty \) if and only if \(\delta_\nu \to 0 \) as \(\nu \to +\infty \). Since \(\lambda_{n+1} > \lambda_n \), it follows \(\delta_\nu > 0 \). Assume that \(f(\delta_\nu) \to 1 \) as \(\nu \to +\infty \), we will prove that \(\delta_\nu \to 0 \) as \(\nu \to +\infty \) as follows.

If \(\limsup \delta_\nu = +\infty \), then for some increasing sequence \(\nu_j \), it follows

\[
f(\delta_{\nu_j}) = \frac{(\rho + 1)^{\rho^\rho}}{\rho^\rho} \left(\frac{1}{\delta_{\nu_j}} \right)^{\rho^\rho} \to 0, \quad \text{as} \quad j \to +\infty,
\]

which is a contradiction with \(f(\delta_\nu) \to 1 \) as \(\nu \to +\infty \).

If \(\limsup \delta_\nu = \delta > 0 \), then for some increasing sequence \(\nu_j \), it follows
\[f(\delta_v) = (1 + o(1)) \frac{(\rho + 1)^{\rho + 1}}{\rho^\delta} \left(1 + \delta \left(1 - \frac{1}{\delta} \left(\frac{(1 + \delta)^{\rho + 1}}{\rho} - 1 \right) \right) \right)^\rho, \]

as \(j \to +\infty \). Set \(x = (1 + \delta)^{1/(\rho + 1)} \), then \(x > 1 \) and \(f(\delta_v) = (1 + o(1)) g(x) \), where

\[g(x) = \frac{(\rho + 1)^{\rho + 1}}{\rho^\delta} x^\rho x(1 - x) \left(\frac{x^\rho - 1}{x^{\rho + 1} - 1} \right)^\rho. \]

Let

\[g_1(x) = (\rho + 1)^{\rho + 1} x(1 - x) - \rho^\rho \left(\frac{x^\rho - 1}{x^{\rho + 1} - 1} \right)^\rho, \]

then

\[\frac{d}{dx} g(x) = ((\rho + 1)^{\rho + 1} x^\rho - \rho x^{\rho + 1} - 1) \frac{(\rho + 1)^{\rho + 1} x^\rho - 1 - \rho^\rho (x^\rho - 1)}{(x^{\rho + 1} - 1)^2 (x^\rho - 1)^{\rho + 1}}. \]

In view of \((\rho + 1)^{\rho + 1} x^\rho - \rho x^{\rho + 1} - 1 < 0 \) and for all \(x > 1 \) \((\rho + 1)^{\rho + 1} x^\rho - \rho (x^{\rho + 1} - 1) > 0 \), then we obtain \(\frac{d}{dx} g(x) < 0 \) for all \(x > 1 \). Since \(\lim_{x \to 1} g(x) = (\rho + 1)^\rho - (\rho + 1)^\rho = 0 \) and \(\lim_{x \to +\infty} g(x) = -\rho^\rho < 0 \), thus \(g(x) < g(1) = 0 \) for all \(x > 1 \), that is,

\[(\rho + 1)^{\rho + 1} x(1 - x) - \rho^\rho \left(\frac{x^\rho - 1}{x^{\rho + 1} - 1} \right)^\rho < 0. \]

Hence, for all \(x > 1 \), we can deduce

\[g(x) = \frac{(\rho + 1)^{\rho + 1}}{\rho^\delta} x^\rho x(1 - x) \left(\frac{x^\rho - 1}{x^{\rho + 1} - 1} \right)^\rho < 1. \]

Thus, for all \(\delta > 0 \), it yields

\[\frac{(\rho + 1)^{\rho + 1}}{\rho^\delta} \frac{1 + \delta}{1 - \frac{1}{\delta^\rho} \left(\frac{(1 + \delta)^{\rho + 1}}{\rho} - 1 \right)^\rho} < 1, \]

which is a contradiction with \(f(\delta_v) \to 1 \) as \(v \to +\infty \).

If \(\lim_{v \to +\infty} \delta_v = 0 \), then

\[
\begin{align*}
\frac{d}{dx} g(x) &= (\rho + 1)^{\rho + 1} x^\rho - \rho x^{\rho + 1} - 1 - \rho^\rho (x^\rho - 1) \left(\frac{x^\rho - 1}{x^{\rho + 1} - 1} \right)^\rho \\
&= (\rho + 1)^{\rho + 1} x^\rho - \rho x^{\rho + 1} - 1 - \rho^\rho (x^\rho - 1),
\end{align*}
\]

and \(f(\delta_v) \to 1 \) as \(v \to +\infty \).

Therefore, \(f(\delta_v) \to 1 \) as \(v \to +\infty \) if and only if \(\delta_v \to 0 \) as \(v \to +\infty \). Thus, (1.9) is equivalent to \(\lim_{v \to +\infty} \frac{\delta_v}{\delta_v^{}\rho + 1} = 1 \).

This completes the proof of Corollary 1.1.

4.2 The proof of Corollary 1.2

By using the same argument as in the proof of Corollary 1.1, it is easy to prove the conclusions of Corollary 1.2.

Acknowledgments: The authors thank the referee(s) for reading the manuscript very carefully and making a number of valuable and kind comments which improved the presentation.
Conflict of interest: The authors declare that they have no competing interests.

Author contributions: Conceptualization, H. Y. Xu; writing-original draft preparation, H. Y. Xu; writing-review and editing, H. Y. Xu, S. M. Liu, Y. Q. Cui and P. Gong; funding acquisition, S. M. Liu, H. Y. Xu and P. Gong.

Funding: This work was supported by the National Natural Science Foundation of China no. 11561033, the Natural Science Foundation of Jiangxi Province in China no. 20181BAB201001 and no. 20151BAB201008 and the Foundation of Education Department of Jiangxi no. GJJ190876 and no. GJJ190895 of China.

Data availability: No data were used to support this study.

References

[1] Jiaron Yu, Borel's line of entire functions represented by Laplace-Stieltjes transformation, Acta Math. Sinica 13A (1963), 471–484.
[2] C. J. K. Batty, Tauberian theorem for the Laplace-Stieltjes transform, Trans. Amer. Math. Soc. 322 (1990), no. 2, 783–804.
[3] Konrad Knopp, Über die Konvergenzabszisse des Laplace-Integrals, Math. Zeits. 54 (1951), 291–296.
[4] Yinying Kong and Yingying Huo, On generalized orders and types of Laplace-Stieltjes transforms analytic in the right half-plane, Acta Math. Sin. 59A (2016), 91–98.
[5] Yinying Kong and Yan Yang, On the growth properties of the Laplace-Stieltjes transform, Complex Var. Elliptic Equ. 59 (2014), 553–563.
[6] A. Mishkelyavichyus, A Tauberian theorem for the Laplace-Stieltjes integral and the Dirichlet series, Litovsk. Mast. Sb. 29 (1989), no. 4, 745–753.
[7] Olena Posiko and Myroslav Sheremeta, Logarithms of Laplace-Stieltjes integral and maximum of the integrand, Integral Transforms Spec. Funct. 18 (2007), no. 4, 271–283.
[8] Lina Shang and Zongsheng Gao, The growth of entire functions of infinite order represented by Laplace-Stieltjes transformation, Acta Math. Sci. 27A (2007), no. 6, 1035–1043.
[9] Lina Shang and Zongsheng Gao, The value distribution of analytic functions defined by Laplace-Stieltjes transforms, Acta Math. Sin. 51A (5) (2008), 993–1000.
[10] M. N. Sheremeta and S. I. Fedynyak, On the derivative of a Dirichlet series, Sib. Math. J. 39 (1998), no. 1, 181–197.
[11] David Vernon Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, 1946.
[12] Hongyan Xu and Sanyang Liu, The approximation of Laplace-Stieltjes transforms with finite order, J. Inequal. Appl. 2017 (2017), 164.
[13] Hongyan Xu and Zuxing Xuan, The growth and value distribution of Laplace-Stieltjes transformations with infinite order in the right half-plane, J. Inequal. Appl. 2013 (2013), 273.
[14] Hongyan Xu and Yinying Kong, The approximation of analytic function defined by Laplace-Stieltjes transformations convergent in the left half-plane, Houston J. Math. 43 (2017), 783–806.
[15] Hongyan Xu and Yinying Kong, The approximation of Laplace-Stieltjes transformations with finite order on the left half plane, C. R. Math. Acad. Sci. Paris 356 (2018), 63–76.
[16] Chhaya Singhal and G. S. Srivastava, On the approximation of an analytic function represented by Laplace-Stieltjes transformations, Anal. Theory and Appl. 31 (2015), 407–420.
[17] Hongyan Xu and Hua Wang, The growth and approximation for an analytic function represented by Laplace-Stieltjes transforms with generalized order converging in the half plane, J. Inequal. Appl. 2018 (2018), 185.