Applying a Firefly Algorithm for Optimum Allocation of Solar Photovoltaic Units in a Distribution System

Ahmed S. Tukke, Mohammed J. Alali, and Mahmood K. Zarkani

1 Department of Petroleum Engineering, University of Kerbala, 56001, Karbala, Iraq
2 Department of Electrical and Electronic Engineering, University of Kerbala, 56001, Karbala, Iraq
3 Department of Biomedical Engineering, University of Kerbala, 56001, Karbala, Iraq

Abstract. Electrical power companies are currently competing to provide the best services to consumers, by providing both stability and environmental benefits. The integration of renewable energy sources into distribution systems represents the best solution for these requirements, and Solar Photovoltaic units (solar P.V.) are among the fastest growing and most powerful energy resources in the world. Solar P.V. units are installed customer side to improve the profile of buses’ voltage and to minimise losses in the system. The optimum allocation of such units provides several benefits, while choosing the wrong site could lead to over or under voltage and increase losses in the power system. This paper presents a Firefly Algorithm (FA) that can be used to locate the optimal placement for a solar P.V. in distribution systems. A Fast Voltage Stability Index (FVSI) is utilised to select candidate buses for the installation of the solar P.V. panels within the system, with the aim being to improve the voltage profile and minimise total power losses. The implemented algorithm was then examined on the IEEE 33-bus test system and the results were compared with those calculated by executing the genetic algorithm method (GA). The percentage of reduction in real power losses obtained using the FA method was 6.46 % compared with the 6 % obtained by the GA method, and an improvement in the system voltage profile was also observed.

Keyword: distributed generation (DG), Solar photovoltaic, firefly Algorithm (FA), fast voltage stability index (FVSI), power losses

1. Introduction

Distributed generation (DG) refers to any small electricity generating unit placed at the distribution zone of an electrical grid near the customer side; this may be connected by either the consumer or an electricity producer [1]. DG units are also associated with the use of generation units that exist in or are close to demand centres. Based on the power source used to generate electricity, DG sources can be classified into non-renewable, which depend on classic fuels such as steam turbines, combustion turbines, micro turbines, and reciprocating engine turbines, and renewable energy, which use sources such as wind, solar, biomass, geothermal, and small-hydro [2] [3]. The penetration of DG units within the grid affects the stability of the whole system by adding extra power to the grid. Thus, several schemes must be prepared by the system operator to protect the network from an overload situation [4].

Solar photovoltaic is a method of generating direct current electricity by converting solar radiation into electrical power using semiconductor materials with a photovoltaic effect; it still comes behind hydro and wind energy in terms of globally installed capacity, however [5]. Installation of solar P.V units within the distribution network generally has a positive effect, offering access to an inexhaustible cheap energy source in addition to offering ease of operation and environmentally friendly use. Additionally, there are no rotary parts, no pollution and do not produce any noise as well.
However, the placing of PV units in an inappropriate location requires changing some of the characteristics of the feeder technical parameters that might otherwise produce a negative impact on the power system as a whole. Thus, it is very important to identify the optimum locations in which to install solar P.V units within a distribution system [6].

Several studies using met-heuristic optimisation methods have been conducted to determine the optimal placement and sizing of DG units as an optimisation issue. The improvement in voltage profile was affected significantly by both active and reactive powers of DG units, in addition to different load models. A Firefly Algorithm (FA) method has thus been presented in order to evaluate the optimal location and sizing of DG units within power distribution networks in order to minimise the total real power losses related to changes in the power system [7]. A new methodology using an Artificial Bee Colony algorithm (ABC) was also presented to detect the optimum placement of DG units in a radial distribution system in [8]. This ABC algorithm is crucially simpler in nature than PSO and GA algorithms, taking less computation time and reducing active power losses as well as improving the voltage profile. In [9], a two-phase hybrid technique based on a particle swarm optimisation (PSO) algorithm was proposed. This technique was implemented to determine the minimum reactive power dispatch (RPD), and the PSO method was utilised in order to determine the best location in conjunction with a direct search local optimisation mechanism for finer convergence. This approach improved the solution quality and reduced the computation time. PSO methodology was also presented in [10] to deal the optimal DG unit allocation to minimise total power losses. In [11], a GA was considered as one of the most popular approaches to solve evolutionary problems; the author employed GA to determine the optimal sizing and allocation of DG units. The main objectives of that study were the improvement of voltage profile and the reduction of power losses.

In this paper, a firefly optimising algorithm is employed to determine the optimum location and sizing of a solar P.V within a radial IEEE 33- bus test system. A review of previous studies was presented in section 1, and thus in section 2, the problem is formulated, and the objective function discussed. In section 3, the firefly optimizing method is discussed in more detail, then section 4 presents the methodology for finding the best location for the solar P.V. plant considered as a single objective function for minimising system active power losses, taking into consideration any improvement in voltage profile related to the tested systems. The research findings are described and compared in depth in section 5, generating relevant discussion.

2. Problem Formulation
The distribution networks in power systems may be classified as complex and large and the primary purpose for installing generating units is to improve a network's stability indices. Consequently, power loss is investigated as one of the most crucial factors in such distribution systems. The main target of this study is to minimise real power losses and to enhance the voltage profile within acceptable constraints.

2.1. Objective Function
To facilitate the generation of a solution and shorten the time required to find the best allocation of solar P.V. units inside the test system, a Fast Voltage Stability Index (FVSI) was employed to identify candidate buses for installation of the solar P.V. plant.

2.1.1 Determination of Critical Buses in the Test System
The fast voltage stability index is derived from the quadratic voltage equation for the selected two-bus system; this can be used to determine candidate buses within the tested system for the installation of the solar P.V. panels [12][13]. The single line diagram of a two buses system is clarified in Figure 1 below.
The voltage at the receiving end bus (i.e. bus 2) in figure 1 is

\[V_2^2 = \left(\frac{R}{X} \sin \delta \cos \delta \right) V_1 V_2 + \left[X + \frac{R^2}{X} \right] Q_2 = 0 \]

Equation (1) can be rearranged as

\[\frac{4Z^2Q_2}{V_1^2(\sin \delta + X \cos \delta)} < 1 \]

Equation (2)

As \(\delta \) is extremely small, \(\sin \delta \approx 0 \) and \(X \cos \delta \approx X \); thus, FVSI can be defined as

\[FVSI_{i,j} = \frac{4Z^2Q_j}{V_i^2 X} \]

Equation (3)

where \(Z \) and \(X \) are the line impedance and line reactance respectively, \(Q_j \) represents the reactive power at the receiving end, and \(V_i \) represents the sending end voltage.

FVSI can thus be considered as a stability indicator and used to distinguish the weakest bus, from which any voltage collapse begins. The bus with highest magnitude of FVSI is treated as unstable and identified as the weakest bus [14][15].

2.1.2 Total Power Losses:

Although power system reliability is the primary concern for utilities, network losses are also a key consideration of the twin drivers for efficiency, environmental and economic concerns. The integration of solar P.V. units within distributed systems leads to changes in the power flows which in turn lead to changes in power losses. The total power losses in a distribution system that includes \(n \) buses can be evaluated by employing the following equation [16]:

\[TPL = \sum_{i=1}^{n \text{buses}} I_{si}^2 R_{i} \]

Equation (4)

where \(TPL \) is the total power loss; \(I_i \) is the branch current that consists of two parts, the active component \((I_a) \) and the reactive component \((I_r) \); and \(R \) represents the resistance of branch \(i \).

The total active and reactive power losses of tested system are thus

\[TPL_a = \sum_{i=1}^{n \text{buses}} I_{ai}^2 R_{i} \]

Equation (5)

\[TPL_r = \sum_{i=1}^{n \text{buses}} I_{ri}^2 R_{i} \]

Equation (6)

The addition of any generating unit leads to a change in the current of the branches, thus changing the total losses. Assume that a solar P.V is to be placed at bus \(y \); \(b_n \) is considered as the set of branches that connect the resource and bus \(y \). The solar P.V. produces an active current denoted by \(I_{\text{solar P.V.}} \). Therefore, the active component of the current related to branch set \(b_n \) changes for the radial network only, and the currents of the rest of the branches are not affected. The new current of these branches becomes
\[i_{at}^{\text{new}} = i_{at} + D_i \cdot I_{\text{solar p.v}} \]

(7)

where \(D_i = 1 \) if \(i \in b_s \), else \(D_i = 0 \)

The losses of the system after adding a solar P.V. thus become

\[TPL_a = \sum (i_{at} + D_i \cdot I_{\text{solar p.v}})^2 \cdot R_i \]

(8)

2.2. Constraints

2.2.1. Constraints of Power

The flow of current through network impedances with fundamental frequency leads to the loss of a certain amount of energy; these power losses can be evaluated by utilising Equation (9) where the voltage satisfies the harmonic limits. As the system harmonic currents are very small, this leads to very little power loss, and as a consequence, the total power losses are determined by employing the current’s elementary frequency only.

In general, the power constraint is thus given by the following formula:

\[\sum_{i=1}^{N_{\text{load}}} P_{\text{loss},n} + \sum_{n=1}^{N_{\text{br}}} P_{L_{\text{loss},n}} - \sum_{i=1}^{N_{\text{DG}}} P_{DG,i} - P_{\text{grid}} = 0 \]

(9)

2.2.2. Constraints of the Voltage

The voltage of the buses of the test system must remain within the permissible limits, as shown below [17]:

\[V_{\text{min}} \leq |V_i| \leq V_{\text{max}} \quad ,i=1,2,\ldots,N_{\text{bus}} \]

(10)

The bus voltage and the voltage limit magnitudes are thus determined at the fundamental frequency, taken to be between 0.95 pu and 1.1 pu.

3. Firefly Algorithm (FA) Overview

The Firefly Algorithm (FA) is a met-heuristic optimization technique invented by Xin-She Yang [18] which emulates the social behaviours of a group of fireflies. Such groups of fireflies communicate as well as attracting prey or finding mates by utilising rhythmic flashing lights created by bioluminescence.

The FA algorithm is thus a swarm-based search algorithm with a set of “fireflies” moving within the search space, each representing a potential solution to be selected by fitness. The search procedures are primarily guided by two key factors, variation of light intensity (brightness) and the formulation of attractiveness.

The optimisation mechanism begins by initialising a random swarm population. The initial swarm population of the fireflies, denoted by \(P_0 \), is generated from the objective function given as

\[P_0(f) = (f_1, f_2, f_3 \ldots f_n)^T \]

(11)

\[\text{for } f_i = (1, 2, 3 \ldots n) \]

(12)

The density of the light, \(I \), is recognised to vary inversely with the square of increased distance or radius denoted by \(r \):

\[I(r) \propto \frac{1}{r^2} \]

(13)

Additionally, the intensity of light in real situations also relies on a coefficient, known as the absorption coefficient, \(\gamma \). For a given medium with a fixed light absorption factor \(\gamma \), the light intensity can thus be represented as
\[I_i = I_0 e^{-\gamma r^2} \] \hspace{1cm} (14)

where \(I_i \) is the light intensity at the \(i^{th} \) iteration such that \(I_0 \) is the initial light intensity; \(\gamma \) is the light absorption coefficient, \(\gamma \in [0, \infty] \); and \(r \) is the distance between two fireflies.

The brightness of a firefly at location \(x, I(x) \) can be considered as proportional to the attractiveness of the firefly. Thus, the light intensity formula can be transformed to clarify firefly attractiveness, denoted by \(\beta \), as follows:

\[\beta_i = \beta_0 e^{-\gamma r^2} \] \hspace{1cm} (15)

where \(\beta_i \) represents the attractiveness at the \(i^{th} \) iteration, and \(\beta_0 \) is the attractiveness when \(r = 0 \) (in most cases \(\beta_0 = 1 \)).

The brightness of a firefly determines their movement. A less bright firefly \(f_i \) will move towards a brighter firefly \(f_j \) as given by the following equation:

\[x_i(t+1) = x_i(t) + \beta_0 e^{-\gamma r_{ij}^2} (x_j(t) - x_i(t)) + \alpha (rand - \frac{1}{2}) \] \hspace{1cm} (16)

where \(x_i(t) \) and \(x_i(t+1) \) represent the position of the firefly \(i \) at the \(t \) and \(t+1 \) iterations respectively. The travel distance can thus be calculated using the Cartesian distance between two flashing fireflies, \(f_i \) and \(f_j \) as follows:

\[d_{ij} = \| f_i - f_j \| = \sqrt{\sum (f_i - f_j)^2} \] \hspace{1cm} (17)

4. Optimal Solar Photovoltaic Allocation Methodology

Due to the current challenges in the energy market, the penetration of any type of distributed generation such as solar P.V. into distribution systems requires identification of the best solution. Finding the optimal location and size of solar P.V. panels requires assessment of performance of several system characteristics to identify the best compromise in economic and technical terms. The technical aspects are associated with feeder voltage stability and the goal to reduce power losses.

Conceptually, the technical methodology of the implemented algorithm is based on several steps as outlined below:

Step 1: Assign the magnitudes for the main parameters of the Firefly algorithm, which include initial population and the rated power of each solar P.V. unit.
Step 2: Read the bus and line data of the test system.
Step 3: Run the power flow-based NR method to obtain all remaining variables for the best case.
Step 4: Calculate total power loss using equation (5) and equation (6).
Step 5: Calculate the FVSI for each bus of the system to select candidate buses using equation (3).
Step 6: Apply the FA method to find the optimal size of solar P.V. for each candidate bus.
Step 7: Calculate total power losses in the test system after adding each solar P.V. using equation (8).
Step 8: Check for violations of limits for all new solutions using equations (9) and (10).

5. Research Findings and Analysis

5.1 Test System

MATLAB 2014 software was used to implement the proposed methodology with a radial IEEE 33-bus system. The given system included 33 nodes, 32 lines, 32 loads, and one main source. The total demand was 3.72 MW and 2.3 MVar for all sections of the system, as shown in Figure 2. The real and reactive power losses related to the system were 221.4346 kW and 150.1784 kVar, respectively. [19]
Figure 2. IEEE 33-bus redials test system

5.2 Results and Discussions
To identify which buses within the system are candidates for the installation of a solar P.V., the power flow strategy was applied and $FVSI$ was calculated for the best case of the test system. The voltage profile was also determined for all buses. The results for these parameters are presented in Table 1.

Bus Number	Voltage profile	$FVSI$	Bus Number	Voltage profile	$FVSI$
1	1	0.0187	18	0.9038	0.0918
2	0.9975	0.0181	19	0.9965	0.0521
3	0.9829	0.0136	20	0.9929	0.0422
4	0.9754	0.0238	21	0.9922	0.0520
5	0.9682	0.0121	22	0.9916	0.0553
6	0.9549	0.0135	23	0.9793	0.0559
7	0.9461	0.0390	24	0.9726	0.0532
8	0.9323	0.0271	25	0.9693	0.0688
9	0.9326	0.0261	26	0.9476	0.0657
10	0.9201	0.0174	27	0.9450	0.0754
11	0.9192	0.0125	28	0.9335	0.0774
12	0.9177	0.0256	29	0.9253	0.0938
13	0.9115	0.0280	30	0.9218	0.0970
14	0.9092	0.0245	31	0.9176	0.0963
15	0.9078	0.0353	32	0.9167	0.0989
16	0.9064	0.0568	33	0.9147	0.0965
17	0.9044	0.0926			
As illustrated in table 1, buses 32, 30, 33, 31, 29, 17 and 18 have the largest FVSI values. Therefore, these buses are candidate buses for this analysis. To find the optimal place for the solar P.V. units and their respective optimal sizes, the candidate buses are thus tested using both the firefly algorithm (FA) and the genetic algorithm (GA). The purpose of implementing both algorithms is to make a comparison between them regarding their effectiveness. The analysis of the related fitness function employed in this section seeks to minimise network losses. The related sizes of the solar P.V. units thus range from 1 to 30 kW. The findings for both FA and GA algorithms are shown in Table 2.

Method	Total power losses without Solar P.V	Location of Solar P.V	Optimal Solar P.V size kW	Total power reduction kW	Total power losses with Solar P.V kW
Firefly	221.4346 kW	17	29.7496	13.126	208.3086
		18	29.8732	14.304	207.1306
		29	29.3058	12.813	208.6216
	221.4346 kW	30	29.3293	13.521	207.9136
		31	29.4023	13.754	207.6806
		32	29.8538	13.968	207.4666
		33	29.8661	14.115	207.3196
GA	221.4346 kW	17	29.4253	12.914	208.5206
		18	29.5510	13.307	208.1276
		29	29.0814	11.714	209.7206
	221.4346 kW	30	29.0196	11.780	209.6546
		31	29.1822	12.853	208.5816
		32	29.3434	12.898	208.5366
		33	29.4066	13.018	208.4166

As shown in table 2, candidate bus 18 is the optimal location for placing the solar P.V. units, offering a total power loss reduction of 14.304 kW using the firefly optimising method compared with the 13.307 kW reduction offered by the genetic algorithm method. The optimal size of the solar P.V. is given as 29.8732 kW by FA and 29.5510 kW by GA. The total power losses of the system are 207.1306 kW according to FA and 208.1276 kW as evaluated by GA.

The voltage profiles of the system are increased after adding solar P.V units at the optimal allocation points while remaining within acceptable power limits. Figure 3 offers a comparison of the voltage profiles with and without solar P.V. of optimal location and size.
These curves highlight that most of the voltage profile is related to the buses. The best case without installation of solar P.V. units has a lower voltage than the other cases with multiple buses having voltages less than 0.95 pu. The voltages of most system buses are improved after the installation of solar P.V. units at the proposed location using the utilized algorithms, with a range of voltages between 0.95 and 1.05 pu. This implies that higher voltage buses are preferred. Among the system buses from both methods, the lowest voltage from FA is the best, 0.9508 pu at bus 18, whilst the best from GA is 0.9315 pu. Clearly, FA is a more effective method for enhancing the voltage profile for this IEEE 33-bus radial system.

6. Conclusion
In this work, an effective firefly optimisation algorithm (FA) was utilised in order to find the optimum location and size for solar photovoltaic (solar P.V) units installed in a 33-bus IEEE test system. The selected objective function in terms of total power losses was considered to be optimised towards the minimum values for the test system. A fast voltage stability index (FVSI) was thus proposed as a guide for selecting candidate buses to improve the voltage profile. The results from using the IEEE 33-bus distribution network indicated that the total real power losses related to the system could be reduced effectively by installing solar P.V units. In addition, a meta-heuristic genetic algorithm was applied to optimise both the location and size of the solar P.V units, and a comparison of results illustrated an increase in performance under FA with regard to GA. It is clear that, the total real power losses are minimised after installation of a solar P.V. within the system, and that, by applying an FA algorithm, the decrease in the real power losses is 14.304 kW, a 6.46% reduction, so that the total real power losses of the whole system become 207.1306 kW. This compares favourably with the 13.307 kW or 6 % reduction and total real power losses of 208.1276 kW when applying the GA algorithm. The installation of solar P.V. also leads to an improvement in the voltage profile of the system, with the voltage level of weakest bus (bus 18) increased from 0.9038 pu to 0.9508 pu.
References

[1] Thomas Ackermann, Goran Andersson, Lenart Soder, "Distributed generation: a definition," Electric Power Systems Research, Volume 57, Issue 3, Pages 195-204, 20 April 2001.

[2] G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. D'haeseleer, "Distributed generation: definition, benefits and issues", Energy Policy, vol. 33, pp. 787-798, 2005.

[3] A. A. B. Rujula, J. M. Amada, J. L. Bernal-Agustín, J. M. Y. Loyo, Navarro, "Definitions for Distributed Generation: A Revision", International Conference on Renewable Energy and Power Quality, March 16-18 2005.

[4] M.L. Othman, M.K. Hadi, N.I.A Wahab, "A Corrective Action Scheme for Contingency Monitoring of Transmission Line Overloading", Pertanika J. Sci. & Technol., 25 (S): 129 - 138 2017.

[5] IEEE standard 929. Recommended practice for utility interface of photovoltaic (PV) systems, 2000.

[6] Gudimetla.B, Katriraei.F Aquero.J.R and Enslin.J.H.R, “Integration of Micro-Scale Photovoltaic Distributed Generation on Power Distribution Systems:”, IEEE Transmission and Distribution Conference and Exposition, 7 May 2012.

[7] Sulaiman, M. H., Mustafa, M. W., Azmi, A., Aliman, O., & Rahim, S. A. (2012, June). Optimal allocation and sizing of distributed generation in distribution system via firefly algorithm. In Power Engineering and Optimization Conference (PEDCO) Melaka, Malaysia, 2012 Ieee International (pp. 84-89). IEEE.

[8] Lalitha, M. P., Reddy, N. S., & Reddy, V. V. (2010). Optimal DG Placement for maximum loss reduction in radial distribution system using ABC Algorithm. International journal of reviews in computing, 3, 44-52.

[9] Amed R. Abdelaziz and Walid M. Ali, “Dispersed Generation Planning Using A New Evolutionary Approach", Proceedings of Power Tech Conference, Bologna, Italy, 23-26 June 2003.

[10] G. Celli and F. Pilo, “Optimal Distributed Generation Allocation in MV Distribution Networks”, Power Engineering Society International Conference on Power Industry Computer Applications, Sydney, NSW, Australia, 20-24 May 2001.

[11] M. Gandomkar, M. Vakilian and M. Ehsan, “A Combination of Genetic Algorithm and Simulated Annealing for Optimal DG Allocation in Distribution Networks”, Proceedings of Canadian Conference on Electrical and Computer Engineering, Saskatchewan, Canada, 1-4 May 2005.

[12] Vadivelu, K. R., and G. V. Marutheswar. "maximum loadability estimation for weak bus identification using fast voltage stability index in a power transmission system by real-time approach." (2014).

[13] Abedelatti, A. E., et al. "Weakest Bus Based on Voltage Indices and Loadability." Parizad, A., A. Khazali, and M. Kalantar. "Optimal placement of distributed generation with sensitivity factors considering voltage stability and losses indices." Electrical Engineering (ICEE), 2010 18th Iranian Conference on. IEEE, 2010.

[14] Ghatak, S. Roy, and P. Acharjee. "Performance Assessment of Power System by Incorporating Distributed Generation and Static VAR Compensator."

[15] Devi, A. Lakshmi, and A. Chaithanya. "A New Analytical Method for the Sizing and Siting of DG in Radial System to Minimize Real Power Losses." International Journal Of Computational Engineering Research 2.7 (2012): 31-37.

[16] Vinothkumar, K., Selvan, M. P., & Srinath, S. (2010, July). Impact of DG model and load model on placement of multiple DGs in distribution system. In 2010 5th International Conference on Industrial and Information Systems (pp. 508-513). IEEE.
[17] Lim, L.W.; Wibowo, A.; Desa, I.M.; Haron, H. A Biogeography-based optimization algorithm hybridized with tabu search for the quadratic assignment problem. Comput. Intell. Neurosci. 2016, doi:10.1155/2016/5803893.

[18] X.-S. Yang, “Firefly Algorithm, Levy Flights and Global Optimization”, Research and Development in Intelligent Systems XXVI (Eds M. Bramer, R. Ellis, Petridis), Springer London, 2010, pp. 209-21

[19] M. E. Baran and F. F.Wu, “ Network reconfiguration in distribution systems for loss reduction and load balancing,” IEEE Transactions on Power Delivery, vol. 4, no. 2, pp.1401-1407, 1989.

Acknowledgement
The authors would like to thank the University of Kerbala (UoK) and the Iraqi Ministry of Higher Education and Scientific Research (Iraq) for their valuable support.