Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2

Graphical Abstract

Highlights
- Soluble human ACE2 can inhibit SARS-CoV-2 infections
- SARS-CoV-2 can directly infect human blood vessel and kidney organoids
- Human organoids as model systems to study SARS-CoV-2 infections/COVID-19

Authors
Vanessa Monteil, Hyesoo Kwon, Patricia Prado, ..., Nuria Montserrat, Ali Mirazimi, Josef M. Penninger

Correspondence
ali.mirazimi@sva.se (A.M.), josef.penninger@ubc.ca (J.M.P.), nmontserrat@ibecbarcelona.eu (N.M.)

In Brief
Clinical-grade recombinant human ACE2 can reduce SARS-CoV-2 infection in cells and in multiple human organoid models.
Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2

Vanessa Monteil, Hyesoo Kwon, Patricia Prado, Astrid Hagelkruys, Reiner A. Wimmer, Martin Stahl, Alexandra Leopoldi, Elena Garreta, Carmen Hurtado del Pozo, Felipe Prosper, Juan Pablo Romero, Gerald Wirsberger, Haibo Zhang, Arthur S. Slutsky, Ryan Conder, Nuria Montserrat, Ali Mirazimi, and Josef M. Penninger

1Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, 17177 Stockholm, Sweden
2National Veterinary Institute, 751 89 Uppsala, Sweden
3Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
4Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
5STEMCELL Technologies, Vancouver, BC V6A 1B6, Canada
6Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
7Apeiron Biologics, Campus Vienna Biocenter 5, 1030 Vienna, Austria
8Keenan Research Centre for Biomedical Science at Li Ka Shing Knowledge Institute of St. Michael Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
9Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
10Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
11Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
12Lead Contact
*Correspondence: nmontserrat@ibecbarcelona.eu (N.M.), ali.mirazimi@sva.se (A.M.), josef.penninger@ubc.ca (J.M.P.)
https://doi.org/10.1016/j.cell.2020.04.004

SUMMARY

We have previously provided the first genetic evidence that angiotensin converting enzyme 2 (ACE2) is the critical receptor for severe acute respiratory syndrome coronavirus (SARS-CoV), and ACE2 protects the lung from injury, providing a molecular explanation for the severe lung failure and death due to SARS-CoV infections. ACE2 has now also been identified as a key receptor for SARS-CoV-2 infections, and it has been proposed that inhibiting this interaction might be used in treating patients with COVID-19. However, it is not known whether human recombinant soluble ACE2 (hrsACE2) blocks growth of SARS-CoV-2. Here, we show that clinical grade hrsACE2 reduced SARS-CoV-2 recovery from Vero cells by a factor of 1,000–5,000. An equivalent mouse rsACE2 had no effect. We also show that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids, which can be inhibited by hrsACE2. These data demonstrate that hrsACE2 can significantly block early stages of SARS-CoV-2 infections.

INTRODUCTION

Outbreaks of emerging infectious diseases continue to challenge human health. The reported incidence of emerging and re-emerging zoonotic disease is increasing in many parts of the world. The severe acute respiratory syndrome coronavirus (SARS-CoV) first emerged 17 years ago (Drosten et al., 2003). In December 2019, a novel coronavirus (SARS-CoV-2) crossed species barriers to infect humans (Gorbalenya et al., 2020; Andersen et al., 2020; Zhu et al., 2020). Phylogenetic analysis of SARS-CoV-2 demonstrated that this virus belongs to lineage B of the betacoronavirus genus (Chan et al., 2020; Letko et al., 2020). The receptor binding domain (RBD) of SARS-CoV-2 is similar to the SARS-CoV RBD, suggesting a possible common host cell receptor. ACE2 was identified as the functional SARS-CoV receptor in vitro and, by our group, in vivo (Mai et al., 2005; Kuba et al., 2005). Overexpression of human ACE2 enhanced disease severity in mice infected with older patients with other co-morbidities. The WHO has declared that COVID-19 is a public health emergency of pandemic proportions (https://www.who.int/). The SARS-CoV-2 pandemic is not only an enormous burden to public health but has already markedly affected civil societies and the global economy.
SARS-CoV, demonstrating that ACE2-dependent viral entry into cells is a critical step (Yang et al., 2007). We reported that injecting SARS-CoV spike into mice decreased ACE2 expression levels, thereby worsening lung injury (Imai et al., 2005; Kuba et al., 2005). Thus, ACE2 serves both as the entry receptor of SARS-CoV and to protect the lung from injury (Zhang et al., 2020b).

Three recent cryoelectron microscopy (cryo-EM) studies demonstrated that SARS-CoV-2 spike protein directly binds to ACE2, and the SARS-CoV-2 spike protein recognizes human ACE2 with even higher binding affinity than Spike from SARS-CoV (Walls et al., 2020; Wan et al., 2020; Wrapp et al., 2020).

Recently, it has been demonstrated in cell culture that soluble ACE2 fused to Ig (Wrapp et al., 2020) or a nonspecific protease inhibitor called camostat mesylate (Hoffmann et al., 2020), can inhibit infections with a pseudovirus bearing the S protein of SARS-CoV-2. High doses (100 μg/mL) of camostat mesylate were also shown to partially reduce SARS-CoV-2 growth, as expected from previous studies with other viruses (Hoffmann et al., 2020).

In a normal adult human lung, ACE2 is expressed primarily in alveolar epithelial type II cells, which can serve as a viral reservoir (Zhao et al., 2020). These cells produce surfactant that reduces surface tension, thus preventing alveoli from collapsing, and hence are critical to the gas exchange function of the lung (Dobbs, 1989). Injury to these cells could explain the severe lung injury observed in COVID-19 patients. We and others have also shown that ACE2 is expressed in multiple extrapulmonary tissues including heart, kidneys, blood vessels, and intestine (Crackower et al., 2002; Danilczyk and Penninger, 2006; Ding et al., 2004; Gu et al., 2005; Hamming et al., 2004; Zhang et al., 2020b). The ACE2 tissue distribution in these organs may explain the multi-organ dysfunction observed in patients (Guan et al., 2020; Huang et al., 2020). Here, we report that clinical-grade human recombinant soluble ACE2 (hrsACE2), which has already been tested in phase 1 and phase 2 clinical trials (Haschke et al., 2013; Khan et al., 2017), can reduce viral growth in Vero E6 cells by a factor of 1,000–5,000. Moreover, we show that human blood vessel organoids and kidney organoids can be readily infected, which can be significantly inhibited by hrsACE2 at the early stage of infection.

RESULTS

Isolation of a SARS-CoV-2

To study potential therapeutic interventions for COVID-19, in early February 2020 we isolated the SARS-CoV-2 from a nasopharyngeal sample of a patient in Sweden with confirmed COVID-19. After successful culture on Vero E6 cells, the isolated virus was sequenced by next-generation sequencing (GenBank: MT093571). Electron microscopy showed the prototypic coronal shape of viral particles of our SARS-CoV-2 isolate (Figure 1A). Phylogenetic analysis showed the virus belongs to the clade A3 (Figure 1B).

hrsACE-2 Can Inhibit SARS-CoV-2 Infection in a Dose-Dependent Manner

hrsACE2 has already undergone clinical phase 1 and phase 2 testing (Khan et al., 2017) and is being considered for treatment of COVID-19 (Zhang et al., 2020b). Because ACE2 is the SARS-CoV-2 receptor, we wanted to provide direct evidence that clinical-grade hrsACE2 can indeed interfere with SARS-CoV-2 infections. To this end, we infected Vero-E6 cells (cells used for SARS-CoV-2 isolation) with different numbers of SARS-CoV-2: 10^3 plaque-forming units (PFUs; MOI 0.02), 10^5 PFUs (MOI 2), and 10^6
PFUs (MOI 20). Viral RNA as a marker for replication was purified from cells and assayed by qRT-PCR (Figure 2A). Infection of cells in the presence of hrsACE2 during 1 h, followed by washing and incubation without hrsACE2 significantly inhibited SARS-CoV-2 infections of Vero-E6 15 h post-infection (Figure 2A).

These data demonstrate that hrsACE2 inhibits the attachment of the virus to the cells. Importantly, as expected from a neutralizing agent, this inhibition was dependent on the initial quantity of the virus in the inoculum and the dose of hrsACE2 (Figure 2A), establishing dose-dependency. In contrast to hrsACE-2, the equivalent mouse recombinant soluble ACE2 (mrsACE2), produced in the same way as hrsACE2, did not inhibit the infection (Figure 2B).

Finally, we performed experiments where cells were infected with SARS-CoV-2 in the presence of hrsACE2 or mrsACE2 for 15 h, to capture any newly produced virus particles during the 15 h that could infect neighboring cells. Again, we observed significantly reduced virus infections in the presence of hrsACE2 (Figure 2C), but not mrsACE2 (Figure 2D). Of note, addition of human or mouse rsACE2 was not toxic to the Vero-E6 cells, monitored for 15 h (data not shown). These data show that hrsACE2 significantly reduces SARS-CoV-2 infections in vitro.

hrsACE-2 Inhibits SARS-CoV-2 Infections of Human Capillary Organoids

A primary site of SARS-CoV-2 infection appears to be the lung, which may be a source for viral spread to other tissues such as the kidney and intestine, where virus has been found (stool [Wang et al., 2020; Young et al., 2020] and urine [Ling et al., 2020]). Moreover, viremia is established during the course of the disease, although viral RNA in blood is only infrequently observed (Wang et al., 2020). However, the virus has a size of 80–100 nm indicating that viremic SARS-CoV-2 must first infect blood vessels prior to local tissue infections. To test this hypothesis, we established human capillary organoids from induced pluripotent stem cells (iPSCs) (Figure 3A) and infected them with our SARS-CoV-2 isolate. Of note, these organoids closely resemble human capillaries with a lumen, CD31+ endothelial lining, PDGFRα+ pericyte coverage, as well as formation of a basal membrane (Wimmer et al., 2019). The capillary organoids were analyzed by qRT-PCR for the presence of viral RNA at day 3 and 6 after primary SARS-CoV-2 exposure. Importantly, following infection, we could detect viral RNA in the blood vessel organoids with viral RNA increasing from day 3 to day 6 post-infection (Figure 3B), indicating active replication of SARS-CoV-2.

Superantigen of infected organoids collected at day 6 post-infection could efficiently infect Vero E6 cells (Figure 3C), showing that the infected capillary organoids produced progeny virus. Importantly, addition of hrsACE2 markedly reduced SARS-CoV-2 infections of the engineered human blood vessels (Figure 3D). Of note, addition of human or mouse rsACE2 was not toxic to human blood vessels, monitored for 3 days (data not shown). These data show that human capillary organoids can be infected with SARS-CoV-2, and this infection can be significantly inhibited by hrsACE2.

hrsACE-2 Can Inhibit SARS-CoV-2 Infections of Human Kidney Organoids

We and others have previously shown that ACE2 is strongly expressed in kidney tubules (Danilczyk and Penninger, 2006). Moreover, it has been reported that SARS-CoV-2 can be found in the urine (Ling et al., 2020). To test whether SARS-CoV-2 can directly infect human tubular kidney cells, we generated kidney organoids from human embryonic stem cells into 3D suspension culture, adapting our own protocol (Garreta et al., 2019). Importantly, kidney differentiation organoids demonstrated prominent tubular-like structures as detected by Lotus tetraglobus lectin (LTL) as a marker of proximal tubular epithelial cells (Figure 4A). Tubular-like cells also expressed the solute carrier SCL3A1 (Figure S1A) together with SCL27A2 and SCL5A12. Furthermore, LTL-positive (LTL+) cell fractions from organoids expressed markers of proximal tubular identity (Figures S1B and S1C). Single-cell profiling of kidney organoids showed the presence of cells expressing ACE2 in the proximal tubule and podocyte II cell clusters that express key marker genes of proximal tubular cells (SLC3A1 and SLC27A2) and podocytes (PODXL, NPHS1, and NPHS2), respectively (Figure S2). Thus, kidney organoids contain cell clusters that express ACE2 in a similar fashion to that observed in the native tissue (Lin et al., 2020).

Infections of kidney organoids were monitored 6 days after SARS-CoV-2 infection and assayed for the presence of viral RNA using qRT-PCR. Progeny virus was determined as above using re-infections of Vero E6 cells. As expected from cells and tissues that express ACE2, SARS-CoV-2 replicated in kidney organoids (Figure 4B). Superantigen of infected kidney organoids collected at day 6 post-infection could efficiently infect Vero E6 cells (Figure 4C), showing that the engineered kidney organoids produced infectious progeny virus. Importantly, addition of hrsACE2 significantly reduced SARS-CoV-2
infections of the human kidney organoids in a dose-dependent manner (Figure 4D). Of note, addition of human or mouse rsACE2 was not toxic to the kidney, monitored for 3 days (data not shown). These data indicate that besides blood vessels, engineered human kidney organoids can also be infected with SARS-CoV-2, and this infection can be inhibited by hrsACE2.

DISCUSSION

ACE2 took center stage in the COVID-19 outbreak as the key receptor for the spike glycoprotein of SARS-CoV-2, as demonstrated in multiple structural and biochemical interaction studies (Wrapp et al., 2020; Zhou et al., 2020b). Moreover, multiple drug development projects, including development of vaccines are focusing on the ACE2-SARS-CoV-2 Spike interactions. We initially identified mammalian ACE2 when we realized that flies carry two orthologs of ACE (angiotensin-converting enzyme). Our first ace2 mutant mice then demonstrated that ACE2 is a negative regulator of the renin-angiotensin system (RAS) and genetically controls cardiovascular function and damage of multiple organs such as the lung, liver, and kidney (Clarke and Turner, 2012; Crackower et al., 2002). ACE2 catalytically removes the last amino acid of angiotensin II, thereby counterbalancing ACE and Ang II actions and generating “beneficial” downstream peptides such as Ang1-7. ACE2 also catalytically acts on other peptides such as in the Apelin/APJ system (Clarke and Turner, 2012).

Importantly, we reported that ACE2 protects from lung injury, based on its catalytic domain, and ACE2 is the critical in vivo SARS-CoV spike glycoprotein receptor (Imai et al., 2005; Kuba et al., 2005). Initially two receptors had been identified for SARS-CoV in cell lines, namely ACE2 (Li et al., 2003) and the lectin L-SIGN (Jeffers et al., 2004). The severity of SARS could be partially explained by SARS-CoV Spike protein binding to ACE2 at a molecular interaction site that does not interfere with its catalytic activity (Li et al., 2005), which then leads to endocytosis of the virus and loss of ACE2 (Kuba et al., 2005), establishing a vicious circle of viral infection and local loss of lung injury protection. This led to the initiation of a drug development program—the development of soluble recombinant human ACE2, a drug that has undergone phase 1 testing in healthy volunteers and phase 2 testing in some patients with acute respiratory distress syndrome (ARDS) (Haschke et al., 2013; Khan et al.,...
Our data now show that this clinical-grade human ACE2 molecule—but not mouse soluble ACE2—can significantly inhibit SARS-CoV-2 infections and reduce viral load by a factor of 1,000–5,000. However, as observed in antibody neutralizing experiments of many viruses, the inhibition is not complete, although clearly dose-dependent. This may be due to the fact that there might be other co-receptors/auxiliary proteins or even other mechanisms by which viruses can enter cells, as had been initially proposed for SARS (Jeffers et al., 2004; Qi et al., 2020). Such a second receptor has also been suggested based on clinical data: SARS transmissibility was very low possibly due to the low level expression of ACE2 in the upper respiratory tract (Bertram et al., 2012; Hamming et al., 2004; Zhang et al., 2020b), suggesting that SARS-CoV-2 could also infect these tissues. We now show that blood vessels as well as kidney organoids can be readily infected by SARS-CoV-2. SARS-CoV-2 must enter the bloodstream to infect other tissues. However, the size of the infectious viral particles is \(\frac{80–100}{24}\) nm (Wrapp et al., 2020). Thus, unless there is already tissue damage, the virus must enter vascular endothelial cells to migrate into the organs. Our data in engineered human capillary organoids now suggest that SARS-CoV-2 could directly infect blood vessel cells. Infected blood vessel organoids also shed progeny viruses. Importantly, hrsACE2 markedly inhibited SARS-CoV-2 infections of the vascular organoids.

ACE2 is expressed in various tissues including the heart, kidney tubules, the luminal surface of the small intestine, and blood vessels (Crackower et al., 2002; Danilczyk and Penninger, 2006; Ding et al., 2004; Gu et al., 2005; Hamming et al., 2004; Zhang et al., 2020b), suggesting that SARS-CoV-2 could also infect these tissues. We now show that blood vessels as well as kidney organoids can be readily infected by SARS-CoV-2. SARS-CoV-2 must enter the bloodstream to infect other tissues. However, the size of the infectious viral particles is \(\frac{80–100}{24}\) nm (Wrapp et al., 2020). Thus, unless there is already tissue damage, the virus must enter vascular endothelial cells to migrate into the organs. Our data in engineered human capillary organoids now suggest that SARS-CoV-2 could directly infect blood vessel cells. Infected blood vessel organoids also shed progeny viruses. Importantly, hrsACE2 markedly inhibited SARS-CoV-2 infections of the vascular organoids.

ACE2 is strongly expressed in kidney tubules, controlling a local RAS circuit (Clarke and Turner, 2012; Hashimoto et al., 2012). As an infection model, we therefore engineered human kidneys organoids from stem cells differentiated to contain tubular networks (Garreta et al., 2019). We now show that SARS-CoV-2 can infect such human kidney organoids, resulting in infectious viral progeny, inhibited by hrsACE2. Clinically,
SARS-CoV-2 has been found in the urine (Ling et al., 2020), and many patients with COVID-19 present with cardiovascular and renal dysfunctions (Huang et al., 2020; Yang et al., 2020; Zhang et al., 2020a; Zhou et al., 2020a). Whether direct viral infection of the vasculature and kidneys directly contributes to the observed multi-organ damage in COVID-19 patients needs to be established. Given the fact that cardiac cells express high levels of ACE2, and heart alterations were the first phenotype observed in our ace2 mutant mice (Crackower et al., 2002), it will be important to expand on our studies to heart and in particular lung organoids to better understand the multi-organ dysfunction in patients with COVID-19.

Our Study Has Limitations

The design of our studies focused on the early stages of infection, demonstrating that hrsACE2 can block early entry of SARS-CoV-2 infections in host cells. As such, we cannot make any predictions with respect to the effect of hrsACE2 in later stages of the disease process. Second, we did not study lung organoids, and the lung is the major target organ for COVID-19. Finally, the RAS system represents a complex network of pathways that are influenced by external processes that are not simulated in our model systems. To address these issues, further studies are needed to illuminate the effect of hrsACE2 at later stages of infection in vitro and in vivo.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead Contact
 - Materials Availability
 - Data and Code Availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Virus
 - Cells and human capillary organoids
- **METHOD DETAILS**
 - Preparation of soluble recombinant human and murine ACE2
 - Kidney organoid differentiation
 - Phylogenetic analysis
 - Treatments of Vero E6 cells with human rsACE2 and murine rsACE2
 - SARS-CoV-2 infections of kidney and blood vessel organoids
 - Treatment of organoids with hrsACE2
 - Cytotoxicity assay
 - qRT-PCR
 - Single cell sequencing of kidney organoids
 - Histological analysis
 - Flow cytometry
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
 - Kidney Organoid scRNA-seq Data Analysis
 - Statistics

ACKNOWLEDGMENTS

We thank all members of our laboratories for critical input and suggestions. J.M.P. is supported by the Canada 150 Research Chair program. This work was partially supported by the Canadian Institute of Health Research (CIHR, Canada) (440347, FDN143285, and OVS-170344). This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation Programme (STG-2014-640525, REGMAMKID to P.P. and N.M.). N.M. is also supported by the Spanish Ministry of Economy and Competitiveness/FEDER (European Regional Development Fund, European Union) (SAF2017-89782-R), the Generalitat de Catalunya and CERCA (Centres de Recerca de Catalunya, Spain) Program (2017 SGR 1306), Asociación Española contra el Cáncer (LABAE16006) and the “Centro de Excelencia Severo Ochoa”, funded by the Agencia Estatal de Investigación (Spain, SEV2014-0425 and CEX2018-000789-S). C.H.d.P. is supported by Marie Skłodowska-Curie Individual Fellowships (IF) (grant agreement 796590). E.G. is funded by the EFSD/Boehringer Ingelheim European Research Programme in Microvascular Complications of Diabetes. A.M. is supported by the Swedish Research Council (2018-05766). F.P. is funded by the Carlos III Health Institute (ISCIII, Spain) (RD16/0011/0005) and the network of biomedical research centers (CIBER, Spain) (CB16/12/00489) cofinanced with FEDER funds.

AUTHOR CONTRIBUTIONS

V.M. performed all of the experiments involving SARS-CoV-2, including isolation, and helped with manuscript editing. J.M.P., N.M., and A.M. designed the project and wrote the manuscript. H.K. performed all the qRT-PCR for virus isolated experiment. A.L., A.H., and R.A.W. developed blood vessel organoids for infectious studies. E.G., P.P., and C.H.d.P. derived kidney organoids and tubular cells and performed subsequent analysis including qPCR, immunofluorescence, and the preparation of kidney organoid samples for RNA sequencing. F.P. and J.P.R. performed RNA single-cell analysis. G.W. developed and produced clinical-grade hrsACE2. M.S., H.Z., A.S.S., and R.C. helped with manuscript editing and design of experiments.

DECLARATION OF INTERESTS

J.M.P. declares a conflict of interest as a founder, supervisory board member, and shareholder of Apeiron Biologics. G.W. is an employee of Apeiron Biologics. Apeiron holds a patent on the use of ACE2 for the treatment of lung, heart, or kidney injury and applied for a patent to treat COVID-19 with hrsACE2 and use organoids to test new drugs for SARS-CoV-2 infections. R.C. and M.S. are employees of STEMCELL Technologies Inc. A.S.S. has been a consultant to Apeiron Biologics. All other authors declare no competing interests.

REFERENCES

Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., and Garry, R.F. (2020). The proximal origin of SARS-CoV-2. Nat. Med. Published online March 17, 2020. https://doi.org/10.1038/s41591-020-0820-9.

Becker, M.M., Graham, R.L., Donaldson, E.F., Rocks, B., Sims, A.C., Sheahan, T., Pickles, R.J., Corti, D., Johnson, R.E., Baric, R.S., Denison, M.R., et al. (2008). Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc. Natl. Acad Sci. U S A 105, 19944–19949.

Bertram, S., Heurich, A., Lavender, H., Glierer, S., Danisch, S., Perin, P., Lucas, J.M., Nelson, P.S., Pohlmans, S., and Soilleux, E.J. (2012). Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS ONE 7, e35876.
Chan, J.F., Kok, K.H., Zhu, Z., Chu, H., To, K.K., Yuan, S., and Yuen, K.Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 9, 221–236.

Clarke, N.E., and Turner, A.J. (2012). Angiotensin-converting enzyme 2: the first decade. Int. J. Hypertens. 2012, 307315.

Crackower, M.A., Sarao, R., Oudit, G.Y., Yagil, C., Kozieradzki, I., Scanga, S.E., Oliveira-dos-Santos, A.J., da Costa, J., Zhang, L., Pei, Y., et al. (2002). Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417, 822–828.

Danilczyk, U., and Penninger, J.M. (2006). Angiotensin-converting enzyme II in the heart and the kidney. Circ. Res. 98, 463–471.

Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., et al. (2004). Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J. Pathol. 203, 622–630.

Dobbs, L.G. (1989). Pulmonary surfactant. Annu. Rev. Med. 40, 431–446.

Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brotz, H.R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R.A., et al. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976.

Elbe, S., and Buckland-Merret, G. (2017). Data, disease and diplomacy: GI-disease. N. Engl. J. Med. Published online February 28, 2020. https://doi.org/10.1056/NEJMoa2002032.

Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. Published online March 4, 2020. https://doi.org/10.1016/j.cell.2020.02.052.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506.

Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Sarao, R., Wada, T., Leong-Poi, H., et al. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436, 112–116.

Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemilla, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D., Jr., Thackray, L.B., Young, M.D., Mason, R.J., et al. (2004). CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 101, 15748–15753.

Jiang, S., Du, L., and Shi, Z. (2020). An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerg. Microbes Infect. 9, 275–277.

Khan, A., Benthin, C., Zeno, B., Albertson, T.E., Boyd, J., Christe, J.D., Hall, R., Poirier, G., Ronco, J.J., Tisdwell, M., et al. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit. Care 21, 234.

Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Yang, P., Zhang, Y., Deng, W., et al. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11, 875–879.

Lekto, M., Marzi, A., and Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5, 562–569.

Li, W., Moore, M.J., Vasiliev, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., Greenough, T.C., et al. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454.

Li, F., Li, W., Farzan, M., and Harrison, S.C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864–1868.

Lin, W., Hu, L., Zhang, Y., Ooi, J.D., Meng, T., Jin, P., Ding, X., Peng, L., Song, L., Xiao, Z., Ao, X., Xiao, X., Zhou, Q., Xiao, P., Fan, J., Zhong, Y., et al., 2020. Single-cell Analysis of ACE2 Expression in Human Kidneys and Bladders Reveals a Potential Route of 2019-nCoV Infection. bioRxiv. https://doi.org/10.1101/2020.02.08.939892. https://www.biorxiv.org/content/biorxiv/early/2020/02/18/2020.02.08.939892.full.pdf 2020. (Accessed 18 February 2020).

Ling, Y., Xu, S.B., Lin, Y.X., Tian, D., Zhu, Z.Q., Dai, F.H., Wu, F., Song, Z.G., Huang, W., Chen, J., et al. (2020). Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin. Med. J. (Engl). Published online February 28, 2020. https://doi.org/10.1097/CM9.0000000000000774.

Lu, R., Zhao, L., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574.

Lukassen, S., Chua, R.L., Trefzer, T., Kahn, N.C., Schneider, M.A., Muley, T., Winter, H., Meister, M., Veith, C., Boots, A.W., et al. (2020). SARS-CoV-2 receptor ACE2 and TMPRSS2 are predominantly expressed in a transient secretion cell type in subsegmental bronchial branches. bioRxiv. https://doi.org/10.1101/2020.03.13.991455.

Motulsky, H.J., and Brown, R.E. (2006). Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics 7, 123.

Qi, F., Qian, S., Zhang, S., and Zhang, Z. (2020). Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. Published online March 18, 2020. https://doi.org/10.1016/j.bbrc.2020.03.044.

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to Image: 25 years of image analysis. Nat. Methods 9, 671–675.
Cell

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.

Treml, B., Neu, N., Kleinsasser, A., Gritsch, C., Finsterwalder, T., Geiger, R., Schuster, M., Janzek, E., Lohbner, H., Penninger, J., and Loeckinger, A. (2010). Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit. Care Med. 38, 596–601.

Walls, A.C., Park, Y.-J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. Published online March 6, 2020. https://doi.org/10.1016/j.cell.2020.02.036.

Wan, Y., Shang, J., Graham, R., Baric, R.S., and Li, F. (2020). Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J. Virol. 94, e00127-20.

Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., and Tan, W. (2020). Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. Published online March 11, 2020. https://doi.org/10.1001/jama.2020.3786.

Wimmer, R.A., Leopoldi, A., Aichinger, M., Wick, N., Hantusch, B., Novatchkova, M., Taubenschmid, J., Hämmerle, M., Esk, C., Bagley, J.A., et al. (2019). Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510.

Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.L., Abiona, O., Graham, B.S., and McLellan, J.S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263.

Wu, Z., and McGoogan, J.M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. Published online March 3, 2020. https://doi.org/10.1001/jama.2020.3204.

Young, B.E., Ong, S.W.X., Kalimuddin, S., Low, J.G., Tan, S.Y., Loh, J., Ng, O.-T., Marimuthu, K., Ang, L.W., Mak, T.M., et al.; Singapore 2019 Novel Coronavirus Outbreak Research Team (2020). Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. Published online March 20, 2020. https://doi.org/10.1001/jama.2020.03.21.

Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y., and Zuo, W. (2020). Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. https://doi.org/10.1101/2020.01.26.91998.

Zhou, F., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., et al. (2020a). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., et al.; China Novel Coronavirus Infection and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. Published online March 4, 2020. https://doi.org/10.1001/jama.2020.02.036.

Yang, X.H., Deng, W., Tong, Z., Liu, Y.X., Zhang, L.F., Zhu, H., Gao, H., Huang, L., Liu, Y.L., Ma, C.M., et al. (2007). Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp. Med. 57, 450–459.

Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., et al. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. Published online February 24, 2020. https://doi.org/10.1016/S2213-2600(20)30079-5.

Yeung, M.L., Yao, Y., Jia, L., Chan, J.F., Chan, K.H., Cheung, K.F., Chen, H., Poon, V.K., Tsang, A.K., To, K.K., et al. (2016). MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2. Nat. Microbiol. 1, 16004.

Zhao, Y., et al. (2020a). Clinical course and outcomes of critically ill patients with COVID-19 in Wuhan, China: a retrospective cohort study. medRxiv. https://doi.org/10.1101/2020.03.21.20040121.

Zhong, H., Penninger, J.M., Li, Y., Zhong, N., and Slutsky, A.S. (2020b). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 46, 586–590.

Zhao, Y., et al. (2020b). Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCoV. bioRxiv. https://doi.org/10.1101/2020.01.26.91998.

Zhou, F., et al. (2020a). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062.
STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Fluorescein labeled Lotus Tetragonolobus (LTL)	Vector Labs	Cat#FL-1321; RRID:AB_2336559
Anti-SLC3A1 polyclonal antibody	Merck	Cat#HPA038360-100U; RRID:AB_2675975
Anti-SGLT2	Abcam	Cat#ab37296; RRID:AB_777895
Anti-LAMININ	Merck	Cat#L9393; RRID:AB_477163
Human Nephrin Affinity Purified Polyclonal Ab antibody	R&D Systems	Cat#af4269; RRID:AB_2154851
Recombinant Anti-Sodium Potassium ATPase antibody	Abcam	Cat#ab209299; RRID:AB_1968790
Bacterial and Virus Strains		
SARS-CoV-2, GENBANK: MT093571	Isolated from patient	N/A
Chemicals, Peptides, and Recombinant Proteins		
CHIR99021	Merck	Cat#SML1046; CAS: 252917-06-9
Recombinant human FGF9	PeproTech	Cat#100-23
Heparin	Merck	Cat#H3149; CAS: 9041-08-1
Activin A	Vitro	Cat#338-AC-050
Parafomaldehyde solution 4% in PBS	Santa Cruz	Cat#sc-281692
1% Triton X-100	Merck	Cat#T8787
Glutaraldehyde	Sigma-Aldrich	Cat#G7776
srhACE2	Apeiron	N/A
Trizol	ThermoFisher	Cat#15596018
Recombinant Human VEGF165	Peprotech	Cat#100-20
Human FGF-2	Miltenyi Biotech	Cat#130-093-841
Critical Commercial Assays		
streptavidin/biotin blocking kit	Vector Labs	Cat#SP-2002
CellTiter-Glo® Luminescent cell viability assay	Promega	Cat#G7570
Direct-zol RNA MiniPrep kit	Zymo Reasearch	Cat#R2051
Chromium Single Cell 3’ Library & Gel Bead Kit V3	10X Genomics (USA)	Cat#PN-1000075
NSQ 500/550 Hi Output KT v2.5 (75 CYS)	Illumina (San Diego, CA 92122 USA)	Cat#20024906
Sytox® blue dead cell stain	Thermofisher (Eugene, Oregon, USA)	Cat#S34857
Deposited Data		
Kidney Organoid scRNA-seq	This paper	GEO: GSE 147863
Experimental Models: Cell Lines		
ES[4] Human Embryonic Stem Cell line	The National Bank of Stem Cells (ISCIII, Madrid)	https://www.isciii.es/QueHacemos/Servicios/ BIOBANCOS/BNLC/Lists/Lineas%20embionarias/ Attachments/6/Caracteristicas%20-%20Documento_Deposito_Lineas_v32_ES4_def.pdf
Vero E6 cells	ATCC	CRL-1586
Oligonucleotides		
Primer: RPLP0	N/A	N/A
Forward: CCAATCTATCATCAACGGGTACAA		
Reverse: AGCAAAGTGAAAAGGTGTAATCC		
Primer: SLC3A1	N/A	N/A
Forward: CACCAAATGCAGTGGGACAAAT		
Reverse: CTGGGCTGAGTCTTTTTGGAC		

(Continued on next page)
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Joseph Penniger (josef.penninger@ubc.ca).

Materials Availability
All unique organoids generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability
Raw sequencing data for the single cell kidney organoid reported in this paper were deposited in Gene Gene Expression Omnibus (GEO) under the accession number GEO: GSE147863, GSM4447249.

Scripts reproducing the single cell kidney analysis are deposited in: https://github.com/jpromeror/SC_KidneyOrganoid_ACE2

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Virus
SARS-CoV-2 was isolated on Vero-E6 cells, from a nasopharyngeal sample of a patient in Sweden. Virus was titered using a plaque assay as previously described (Becker et al., 2008) with fixation of cells 72 hours post infection. The SARS-CoV-2 isolate was...
Cells and human capillary organoids
Vero-E6 cells (ATCC) were grown in Dulbecco’s Modified Eagle’s Medium (DMEM, Thermofisher) supplemented with 1% Non-Essential Amino-Acid (Thermofisher), 10mM HEPES (Thermofisher) and 10% FBS at 37°C, 5% CO2. Blood vessels organoids were engineered from human iPS cells and immunostained as previously described (Wimmer et al., 2019).

METHOD DETAILS

Preparation of soluble recombinant human and murine ACE2
Clinical-grade soluble recombinant human ACE2 (amino acids 1-740) was produced by Polymun Scientific (contract manufacturer) from CHO cells according to Good Manufacturing Practice guidelines and formulated as a physiologic aqueous solution. The equivalent domain of murine ACE2 was similarly overexpressed in CHO cells under serum free conditions and purified by sequentially performing a capture step on DEAE-Sepharose, ammonium sulfate precipitation, purification via a HIC-Phenyl Sepharose column, followed by purification via a Superdex 200 gel filtration column. The purity of the murine protein was determined via HPLC, concentrations were determined with 280nm photometric measurements.

Kidney organoid differentiation
Human embryonic stem cells were grown on vitronectin coated plates (1001-015, Life Technologies) and incubated with 0.5mM EDTA (Merck) at 37°C for 3 minutes for disaggregation. 100,000 cells/well were plated on a 24 multi-well plate coated with 5 μl/ml vitronectin and further incubated with supplemented Essential 8 Basal medium at 37°C overnight. The day after (day 0), cells were treated for 3 subsequent days in Advanced RPMI 1640 basal medium (ThermoFisher) supplemented with 8 μg/ml CHIR (Merck) and 1% Penicillin-Streptomycin and 1% of GlutaMAX TM (ThermoFisher). The medium was changed every day. From day 3 to 4, media were changed to Advanced RPMI supplemented with 200ng/ml FGF9 (Peprotech), 1 μg/ml heparin (Merck) and 10ng/ml activin A (Vitro). On day 4, cultures were rinsed twice with PBS, and resuspended in Advanced RPMI supplemented with 5 μg/ml CHIR, 200ng/ml FGF9 and 1 μg/ml Heparin. Cellular suspensions were seeded in V-shape 96 multi-well plate at a final concentration of 100,000 cells/well and centrifugated at 2000 rpm for 3 minutes. The resulting spheroids were incubated during 1h at 37°C. Culture media was replaced by Advanced RPMI supplemented with 200ng/ml FGF9 and 1 μg/ml Heparin for 7 additional days, the media was changed every second day. From day 11 to 16, developing organoids were incubated only in the presence of Advanced RPMI, the media was every second day.

Phylogenetic analysis
To generate a phylogenetic tree, we created a genomic epidemiology map of different SARS-CoV-2 isolates using NextStrain tools (https://nextstrain.org) (Hadfield et al., 2018). The sequences of the different isolates were obtained from GISAID (https://www.gisaid.org/) (Elbe and Buckland-Merret, 2017). Screenshots is used under a CC-BY-4.0 license.

Treatments of Vero E6 cells with human rsACE2 and murine rsACE2
Vero E6 cells were seeded in 48-well plates (5.10^4 cells per well) (Sarstedt) in DMEM containing 10% FBS. 24 hours post-seeding, hrsACE2 or mrsACE2 were mixed with different concentration of virus (1:1) in a final volume of 100μl per well in DMEM (0% FBS) at 37°C. After 30 minutes, Vero-E6 were infected either with mixes containing hrsACE2/SARS-CoV-2 and mrsACE2/SARS-CoV-2 for 1 hour followed by washing or for 15 hours without washing, cells were washed 3 times with PBS and 500μl of new complete medium supplemented with hrsACE2 or mrsACE2 were added. 15 hours post-infection, supernatants were removed, cells were washed 3 times with PBS and then lysed using Trizol (Thermofisher) before analysis by qRT-PCR for viral RNA detection.

SARS-CoV-2 infections of kidney and blood vessel organoids
Kidney organoids were infected with 10^3 or 10^5 SARS-CoV-2 infectious particles in advanced RPMI medium (Thermofisher). Blood vessels organoids were infected with 10^2, 10^3, or 10^5 SARS-CoV-2 infectious particles in StemPro complete media containing 15% FBS (GIBCO cat.10500064), 100ng/ml of VEGF-A (Peprotech cat. no. 100-20) and 100ng/ml of FGF-2 (Milteny Biotech cat. no. 130-093-841) as previously described (Wimmer et al., 2019) in a volume of 50μl per well of a 96-well ultra-low attachment plate for 1 hour. One hour post-infection, organoids were washed 3 times with PBS and kept in 100μl of corresponding medium for 3 to 6 days. On day 3 post-infection, organoids were washed 3 times with PBS before being lysed with Trizol (Thermofisher). At day 6 post-infection, supernatants were recovered and organoids washed 3 times with PBS before to lysis with Trizol (Thermofisher). Samples were then analyzed for the presence of viral RNA by qRT-PCR. 100μl of each supernatant were used to infect Vero E6 in 48-well plate plates. Cells were recovered 48 hours post-infection, pooled (5 blood vessels organoids/condition, 3 kidney organoids/condition), and the level of infection was determined by viral RNA detection using qRT-PCR.
Treatment of organoids with hrsACE2
Different concentrations of hrsACE2 were mixed with 10^6 particles of SARS-CoV-2 for 30min at 37°C in a final volume of 50μl per well in STemPro 34 complete medium (blood vessels) or advanced RPMI medium (Kidneys) as described above. Organoids were then infected with the mixes for 1 hour at 37°C, washed 3 times with PBS and 100μl per well of new medium was added. To detect intracellular viral RNA, organoids were washed 3 times with PBS, pooled (5 organoids/condition for blood vessels; 3 organoids/condition for kidneys) and lysed using Trizol (Thermofisher) before analysis by qRT-PCR for viral RNA detection.

Cytotoxicity assay
To determine whether human or mouse rsACE2 are toxic to cells, 10^4 Vero E6 cells per well were seeded in a 96-well plate. 24h post-seeding, 25μl of different concentrations (25 – 200 μg/ml of rsACE2 were added in triplicate and incubated for 15h. 15h post-treatment, cytotoxicity was determined using the CellTiter-Glo® Luminescent cell viability assay (Promega) following the following the manufacturer’s protocol using 50μl of CellTiter-Glo® Reagent per well.

qRT-PCR
Samples were extracted using Direct-zol RNA MiniPrep kit (Zymo Research). qRT-PCR was performed using E-gene SARS-CoV-2 primers/probe following guidelines by the World Health Organization (https://www.who.int/docs/default-source/coronaviruse/wuhan-virus-assay-v1991527e5122341d99287a17c111902.pdf).

Forward primer: 5′-ACAGGTACGTTAAAGTTAGCGT-3′
Reverse primer: 5′-ATATTAGCAGCAGTACGACACAA-3′
Probe: FAM-ACACTAGCCATCCTTACTGCGCTTCG-QSY
RNase P was used as an endogenous gene control to normalize the levels of intracellular viral RNA.

Forward primer: AGATTGGACCTGCGGAGCAGC
Reverse primer GAGCGGCTGTCTCCACAAATG
probe: FAM-TTCTGACCTGAAGGCTCTGCGCG-MGB

Primers used for tubular markers in kidney organoids are listed in the Key Resources Table.

Single cell sequencing of kidney organoids
Kidney organoids were homogenized using 21G and 26 1/2G syringes and further dissociated using Accumax (07921, Stem Cell Technologies) for 15 min at 37°C followed by Trypsin-EDTA 0.25% (wt/vol) trypsin (25300-054, Life Technologies) for additional 15 min at 37°C. The reaction was deactivated by adding 10% FBS. The solution was then passed through a 40 μm cell strainer and frozen in Advanced RPMI 1640 basal medium (ThermoFisher) in the presence of DMSO 10%. Cells were thawed and centrifuged at 1,500 RPM for 5 minutes, stained with sytox blue (Thermofisher) and sorted by FACS to remove the nonviable cells, generating a single cell suspension with greater than 90% viability analyzed using the cellometer K2 (Nexcelom Biocience). Libraries were prepared using the Chromium Single Cell 3’ GEM, v3, (PN-1000075, 10X genomics) following the manufacturer’s instructions and sequenced with a NEXTseq500 (R1:28, R2: 55, i7:8) up to 30.000 reads per cell.

Histological analysis
Kidneys organoid and LTL+ cells were washed with PBS. Next samples were fixed with 4% paraformaldehyde (153799, Aname) for 20 min at room temperature. Specimens were washed twice with PBS and further blocked using Tris-buffered saline (TBS) with 6% donkey serum (S30, Millipore) and 1% Triton X-100 (T8787, Sigma) for 1h at room temperature. After three rinses with antibody dilution buffer, samples were treated for 4h at room temperature with fluorescent conjugated secondary antibodies (Alexa Fluor (A) Cy3- or A647-; 1:200). A previous blocking step with a streptavidin/biotin blocking kit (SP-2002, Vector Labs) was performed for biotinylated LTL (B-1325, Vector Labs) and Alexa Fluor 488-conjugated streptavidin (SA5488, VectorLabs) to detect LTL+ cells. Antibodies to NEPHRIN (R&D SYSTEMS 4269; 1:100) and LAMININ (Sigma L9393; 1:50), SGLT2 (Abcam AB37296; 1:100), NaKAT-Pase (Abcam; AB209299; 1:200) and SLC3A1 (Sigma HPA038360; 1:50) were used overnight at 4°C diluted in antibody dilution buffer consisting of TBS with 6% donkey serum and 0.5% Triton X-100. Nuclei were detected using 4,6-diamidino-2-phenylindole (DAPI; 1:5000, D1306, Life Technologies) for 30min. For mounting, samples were immersed in Fluoromount-G (0100-01, Southern Biotech). Sample confocal images were acquired with an SP5 Leica microscope and LTL+ were analyzed using ImageJ.

Flow cytometry
For the isolation of LTL+ cells kidney organoids were stained with fluorescein-conjugated LTL (FL-1321, Vector Laboratories). Then specimens were dissociated to single cells using Accumax (07921, Stem Cell Technologies) for 15min followed by 0.25% (wt/vol) trypsin (25300-054, Life Technologies) for 15min at 37 °C. For LTL+ cells isolation FACSDiva software version 8.0.1 (BD Biosciences) was used in the FACS Aria Fusion instrument (BD Biosciences).
QUANTIFICATION AND STATISTICAL ANALYSIS

Kidney Organoid scRNA-seq Data Analysis
Libraries were pre-processed using Cell Ranger (3.0.1) from 10X Genomics. The computational analysis was performed using Seurat (3.0.2) (Stuart et al., 2019). Initial quality control parameters were defined based on the distributions of the number of detected genes per cell, the number of UMIs per cell and the % of UMIs assigned to mitochondrial genes. The selected thresholds were: 668 < UMIs per cell < 23101, 489 < Genes per cell < 5651 and % UMIs assigned to mitochondrial genes < 50. The dataset was subjected to normalization, identification of highly variable features and scaling using the SCTransform function of the Seurat package. Principal component analysis was performed, and 20 components were kept for further analysis. Clustering was performed by setting the resolution parameter to 0.4. Dimensional reduction was done using the RunUMAP function of the Seurat R package. Cell markers were identified by using a Wilcoxon test. Genes with adjusted p.value < 0.5 were retained. Clusters were labeled by comparing the expression of the identified markers with publicly available databases (Wu et al., 2018b) located in KIT (Kidney Interactive Transcriptomics webpage (http://humphreyslab.com/SingleCell/)).

Statistics
Statistical analyses were conducted using GraphPad Prism 8 (GraphPad) and significance was determined by Student’s t test.
Figure S1. Human Kidney Organoids as a Surrogate of Human Proximal Tubule Cell Culture Model, Related to Figure 4
(A) Left image corresponds to a kidney organoid at day 20 of differentiation visualized using light microscopy. Scale bar 100 μm. Confocal microscopy images of tubular-like structures labeled with Lotus Tetraglobus Lectin (LTL, in green) and the proximal tubular cell marker SCL3A1 (in red). DAPI labels nuclei. A magnified view of the boxed region shows a detail of the tubular structures. Scale bars 250 and 50 μm, respectively. (B) Expression changes of SLC3A1, SLC5A12 and SLC27A2 of bulk samples at day 20 of organoid differentiation. (C) Left image corresponds to LTL+ cells visualized using light microscopy. Scale bar 100 μm. Confocal microscopy images of LTL+ cells labeled with Lotus Tetraglobus Lectin (LTL, in green) and the proximal tubular cell markers NaK ATPase (NaK, in red) and the solute carrier SGLT2 (in red). DAPI was used to visualize nuclei. Scale bars 100 μm.
Figure S2. Single-Cell RNA-Seq Analysis of Kidney Organoids Reveals ACE2 Expression in Proximal Tubule Cells, Related to Figure 4
(A) UMAP plot displaying the results after unbiased clustering. Subpopulations of renal endothelial-like, mesenchymal, proliferating, podocyte and tubule cells were identified. (B) Expression of ACE2 projected in the UMAP reduction. (C) Expression of different cellular markers: SLC3A1, SLC27A2 (Proximal Tubule); PODXL, NPHS1, NPHS2 (Podocyte); CLDN4, MAL (Loop of Henle) and CD93 (Renal Endothelial-like cells).