Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control

Clara L Hedegaard\textsuperscript{1,2} and Alvaro Mata\textsuperscript{1,2,3,4,5,6}\footnote{Author to whom any correspondence should be addressed. E-mail: a.mata@nottingham.ac.uk}

\textsuperscript{1} School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
\textsuperscript{2} Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
\textsuperscript{3} School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
\textsuperscript{4} Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
\textsuperscript{5} Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
\textsuperscript{6} Keywords: bioprinting, self-assembly, hierarchy, tissue engineering

Abstract
Nature has evolved to grow and regenerate tissues and organs using self-assembling processes capable of organizing a wide variety of molecular building-blocks at multiple size scales. As the field of biofabrication progresses, it is essential to develop innovative ways that can enhance our capacity to build more complex macroscopic structures using molecular and nanoscale components in a rational manner. In this review, we highlight the emerging opportunities, advantages, and challenges of incorporating self-assembly with biofabrication for the development of more biologically relevant, active, and functional structures. The review is organized in four sections. First, to better appreciate the benefits of this integrated approach, we summarize recent advances in self-assembly and biofabrication aimed at improving hierarchical control. Then, we discuss work focused on combining self-assembly with biofabrication in three areas including a) conventional bioprinting techniques using self-assembling bioinks; b) new methods where self-assembly drives the fabrication process, and c) techniques based on cellular self-assembly. The ultimate goal of this review is to emphasize the importance of structural hierarchy in biological systems and to highlight the potential behind the integration of biofabrication and self-assembly towards the development of more functional structures for tissue engineering and regenerative medicine.

1. Introduction
Nature has evolved in a hierarchical manner to achieve outstanding material properties and complex organisational behaviours (figure 1). From the efficient nutrient flow exhibited by a plant’s stem as a result of its multiscale structure \cite{1} to the adhesive and locomotive properties of the gecko’s feet due to the hierarchical organization of its spatulae and setae \cite{2} (figure 1(a)), hierarchy is a ubiquitous organizing and functional principle of natural systems \cite{3}. Equivalently, the human body relies on levels of structural organization, where each level builds on the next, to achieve complexity and functionality. For example, tendons are multi-level structures with aligned cells embedded between fibrils made from smaller fascicles, which in turn consist of smaller crimp fibres made from even smaller microfibrils of aligned collagen proteins (figure 1(b)). This strong hierarchical organization gives tendons their remarkable time-dependent viscoelastic properties \cite{4}. Similarly, dental enamel is made of a complex, yet ordered, organization of apatitic calcium phosphate nanocrystals bundled-up into meandering and intertwined prismatic structures that grow over large uneven areas \cite{5} (figure 1(c)). This hierarchical inorganic structure gives rise to the hardest tissue in our body, dissipating masticatory forces and protecting our teeth with outstanding durability throughout most of our life.

Multiscale organization is essential even at the most fundamental levels of biological systems. Within the cell, organelles act as organized molecular machines, which in turn depend on the
precise organization of the molecular building-blocks that form them. These molecules rely on specific sequences of amino acids, phospholipids, or nucleic acids to acquire precise conformations and perform their functions. In a similar manner, outside the cell, molecular and macromolecular components come together to form the extracellular matrix (ECM); a hierarchical framework of nano and microfibers, pores, membranes, chemical gradients, and anisotropic landscapes of varying stiffnesses, which plays a key role in biological systems. The building-blocks of the ECM rely on their multiscale organization to collectively signal cells, enable cell-cell communication, and overall facilitate proper cell and tissue function. As we move down in size-scale, hierarchy continues to be fundamental. Proteins depend on both the order of their amino acids at the molecular scale as well as the coordinated manner in which they organize at higher sizescales [13]. For example, different types of collagens possess their characteristic triple helix but distinct tertiary and quaternary structures give rise to specific functions including fibrils, networks, anchoring molecules, or transmembrane or basement membrane collagens. These examples illustrate not only the importance of multiscale organization in functionality but the versatility and diversity that it generates.

In tissue engineering (TE) and regenerative medicine (RM), it is essential to design materials, structures, and processes with hierarchy as a central principle. Traditional TE and RM strategies have mostly been based on either 'top-down' (etching down of bulk material) or 'bottom-up' (arrangement of smaller components into larger assemblies) methods. However, while each one of these approaches carries unique advantages, they also suffer from disadvantages that have limited their ability to recreate the hierarchy and function of biological systems. For example, in three-dimensional (3D) bioprinting, a layer-by-layer deposition approach is used to create macroscale structures [14]. While this method enables fabrication of precise macroscale features (e.g. porosity and topography) down to a few tens of microns, the method does not allow for control over the key nano and molecular scales. On the other hand, self-assembling systems are able to build a wide variety of precise nanostructures from specific molecular building-blocks but suffer from a limited capacity to organize them beyond the high nano-scale. However, these two approaches have emerged from fundamentally different areas of expertise and consequently are based on fundamentally different mechanistic principles, which have delayed their integration.
Biofabrication is ‘the automated generation of biologically functional products...through bioprinting or bioassembly and subsequent tissue maturation processes’ [15]. Bioprinting is defined as the controlled two-dimensional (2D) or 3D positioning of materials (and cells) in a defined spatial organization using dispensing mechanisms and computer-aided designs [15, 16]. In the context of TE and RM, bioprinting includes both a technique that defines the process of creation and a bioink that materializes into the desired structure or tissue. In this section, we highlight key material considerations of bioinks, describe recent work focused on improving their capacity to create more complex and hierarchical structures, and summarize the state of the art in self-assembling materials with potential use as bioinks.

2. Top-down and bottom-up strategies to achieve hierarchy

Biofabrication is ‘the automated generation of biologically functional products...through bioprinting or bioassembly and subsequent tissue maturation processes’ [15]. Bioprinting is defined as the controlled two-dimensional (2D) or 3D positioning of materials (and cells) in a defined spatial organization using dispensing mechanisms and computer-aided designs [15, 16]. In the context of TE and RM, bioprinting includes both a technique that defines the process of creation and a bioink that materializes into the desired structure or tissue. In this section, we highlight key material considerations of bioinks, describe recent work focused on improving their capacity to create more complex and hierarchical structures, and summarize the state of the art in self-assembling materials with potential use as bioinks.

2.1. Bioink materials and opportunities

2.1.1. Single component inks

Bioinks are composed of either cells or cells plus biomaterials [17]. Here, we focus on bioinks that contain a mixture of cells and biomaterials. Several criteria are considered when selecting the optimal material. On the one hand, the bioinks should be biocompatible, preferably pre-exist in native tissue, enable interaction with cells, have low stiffness, and exhibit high porosity to facilitate cell migration and flow of nutrients [14, 18]. On the other, bioinks should possess rapid gelation, mechanical stability, sufficient stiffness to retain shape, and behave as a simple fluid to predict flow/droplet behaviour for maximum print resolution [19–21]. These are opposing criteria, which have traditionally resulted in a trade-off between the bioink’s biological performance and its resolution. Commonly used bioink materials can be synthetic (e.g. polymers) or natural (e.g. proteins, polysaccharides, and decellularized tissues) [22]. Synthetic polymers such as polyethylene glycol (PEG) [23, 24], polycaprolactone (PCL) [25], and gelatin methcrylamide (GelMA) [26] tend to be FDA approved, exhibit fluid behaviour, and can be used with most bioprinting techniques but have limited chemical complexity or bioactivity. Conversely, natural materials such as collagen [27, 28], fibrinogen and fibrin [29, 30], hyaluronic acid (HA) [31, 32], silk [33, 34], alginate [32, 35, 36], agarose [37, 38], and chitosan [39, 40] offer biological activity but often require reinforcement using synthetic polymers to improve resolution and mechanical stability.

2.1.2. Multicomponent inks

To improve the complexity and resolution of bioprinting beyond that provided by the printing device, multicomponent bioinks are being explored. These materials combine two or more building-blocks either through mixing or simultaneous deposition. For example, by mixing gelatine with natural biopolymers such as fibrinogen and alginate it facilitated extrusion of microfilaments down to 500 μm in diameter while increasing the biological relevance by including ECM components [41]. This approach also enables integration of synthetic and natural materials.
within a single ink. For example, using simultaneous extrusion of PCL, gelatine, and cell-laden fibrin, it was possible to recreate sections of skeletal muscle [42]; while by combining PCL and alginate with cells and growth factors, osteochondral constructs were fabricated [43]. An elegant approach was developed by Highley et al, who devised an ink made up of multiple types of polymer microgels jammed together to form an extrudable filament [44]. By using different polymers, the authors were able to modulate the bioink's viscosity, printability, and cell viability. An increasingly popular approach is the use of decellularized ECM (dECM) [45]. This approach offers the advantage of being patient-specific and the possibility to be combined with synthetic materials [46] but has raised concerns of tissue sterilization and patient-compatibility [45, 47]. A comparable patient-specific ink used platelet-rich plasma with alginate [48]. Collectively, these approaches have improved the chemical diversity of bioinks, but the capacity to spatially control the location and distribution of biological cues [49] remains elusive. In this context, supramolecular bioinks could not only enable molecular design and diversity but also offer the ability to organize these cues spatially and hierarchically, taking us a step closer to the way biological systems operate.

2.2. Self-assembling materials and opportunities

Self-assembly is the automated aggregation of individual molecules into well-defined and reproducible higher-ordered structures using non-covalent interactions such as van der Walls, hydrogen, hydrophobic, and electrostatic forces. From the precise folding of individual proteins (figure 3(a1)) or DNA molecules (figure 3(a2)) to higher-order assemblies of phospholipids into cell membranes or proteins (figures 3(a3) and (a4)) into the tobacco mosaic virus, self-assembly is nature’s primary way to fabricate, turning small molecules into hierarchical and functional structures [50] (figure 3(a)). As we continue to devise ways to better recreate the complexity of biological scenarios, tissues, and organs, we must take into account the fundamental role that self-assembly plays in them.

In the context of TE and RM, self-assembly offers an unparalleled opportunity to not only build with unprecedented programmability but also to fabricate structures with innovative properties and the capacity to interact with cells with high selectivity [51] (figure 3(b)). Through this approach, functional nanomaterials have been developed using peptides [52–55] (figure 3(b1)), proteins [56], DNA [57, 58] (figure 3(b2)), and polymers [59] among others [60, 61].

2.2.1. DNA- and protein-based self-assembling hydrogels

DNA- and protein-based self-assembling hydrogels offer an opportunity to use some of biology’s most functional building blocks. For example, collagen-based hydrogels have shown how chondrocytes preferentially reside on fibres [62] and fibrillar hydrogels mimicking the ECM structure can be made from self-assembling cellulose [63]. Furthermore, using a recombinant elastin protein, sophisticated supramolecular structures can be generated, and used to guide mineralization at multiple scales [10, 64, 65] (figure 3(b4)). Other functional macromolecules such as DNA have also been used to assemble into macroscopic materials with functions such as programmable mechanosensing [66] (figure 3(b2)). However, the inherent complexity of larger biomolecules limits the capacity to manipulate them and control their assembly. A way to overcome these restrictions is to modify the ink material. For example, Mooney et al modified alginate with biotin/streptavidin to allow for enhanced controlled assembly [67]. Another example is to use materials that promote cellular self-assembly. Examples of this approach include the use of a polymer hydrogel (PEG) combined with a flow bioreactor to promote cellular self-assembly of a vascular network [68] and the use of patterned substrates to drive self-assembly of cells into a controllable sized aggregate [69].

2.2.2. Peptide-based self-assembling hydrogels

Peptides, on the other hand, offer the possibility to design self-assembling systems with a higher level of control and reproducibility as a result of the shorter chains of amino acids. These systems take advantage of both the properties of the individual building-blocks as well as their chemical makeup to direct their assembly. For example, the H-bonding forces that enable α-helix, β-sheet, or β-hairpin conformations in proteins are exploited to direct the assembly of the individual components into the specific higher-ordered structure. Along these lines, ground-breaking work from Stupp et al has demonstrated the possibility to use peptide amphiphiles (PAs) (figure 3(b1)) to build well-defined nanofibres capable of stimulating cartilage [70], bone [71], and spinal cord regeneration [72]. Other leading work includes that of Zhang et al who have developed ECM-like matrices with broad impact in cell culture [73] or Gázit et al who have pioneered minimalistic self-assembling material platforms based on dipeptides [74].

Inspired by these systems, peptide hydrogel materials with exciting properties have been developed such as the capacity to adapt to environmental conditions [75], stimulate immune responses [76], exhibit antimicrobial properties [77], possess self-healing properties [78], and even recreate protein structures such as collagen [79]. Another advantage of self-assembling peptides is the possibility to generate well-defined microstructures by manipulating their self-assembled nanostructure. For example, different strategies have been used to manipulate PAs
### Self-assembly in nature

| Nature       | Synthetic Systems       |
|--------------|-------------------------|
| **Protein conformation**  |
| (e.g. selectivity, recognition, signaling) | **Peptide nanofibres** |
| (a1) | (b1) |
| ![Protein conformation](image) | ![Peptide nanofibres](image) |
| **DNA organization** |
| (e.g. selectivity, precision, programming) | **DNA origami** |
| (a2) | (b2) |
| ![DNA organization](image) | ![DNA origami](image) |
| **Lipid bilayer** |
| (e.g. protection, communication, control) | **Lipid-guided assembly** |
| (a3) | (b3) |
| ![Lipid bilayer](image) | ![Lipid-guided assembly](image) |
| **Silk protein** |
| (e.g. structure, strength, locomotion) | **Protein supramolecular assembly** |
| (a4) | (b4) |
| ![Silk protein](image) | ![Protein supramolecular assembly](image) |

**Figure 3.** Self-assembly in nature and synthetic systems. Illustrations of (a) four examples of self-assembling systems found in nature including (a1) protein conformation [84] ©1996 Springer Nature Publishing AG, (a2) DNA double helical organisation [85], (a3) cell lipid bilayer membrane [86] ©2011 Elsevier, and (a4) silk protein folding [56] ©2012 ACS Publications, and (b) four examples of how these systems inspire synthetic self-assembling ones including (b1) self-assembling peptide nanofibres [52] ©2001 AAAS, (b2) DNA origami [57] ©2016 AAAS, (b3) lipid-guided assembly [87] ©2013 AAAS, and (b4) protein supramolecular assembly [10] ©2018 Springer US.

into hydrogels with aligned nanofibres [80], surface microtopographies [81] or hollow hierarchical gels [82]. The ability to assemble peptides into aligned nanostructures at multiple scales within a printed construct is highly advantageous towards mimicking anisotropic tissues such as muscle, nerve, cartilage, or cornea. This approach has also opened the possibility to co-assemble and integrate different types of building blocks, further enhancing the complexity of the generated materials [83]. Nonetheless, these materials have traditionally suffered from two key characteristics that have restricted their use in bioprinting, namely a limited capacity to control their assembly beyond the nanoscale and lack of suitable mechanical properties.

### 3. Self-assembling bioinks (SABs) in conventional biofabrication

It is exciting to think of the possibilities that would emerge from combining biofabrication and self-assembly [88]. Both of these approaches have tackled TE and RM challenges from completely different angles, which consequently has forged them into technologies dominated by fundamentally different underlying principles and with distinct sets of
advantages and disadvantages. However, there is an untapped opportunity to develop novel methods that integrate biofabrication and self-assembly. In many ways, the advantages of one approach tend to overcome the disadvantages of the other (table 1). Imagine the ability to bioprint with multiple types of biomolecules that immediately assemble into a milieu of defined nanostructures that selectively stimulate cells while organizing them into precise anatomical geometries with hierarchical order (figure 4). However, reaching this goal will not only require integration of traditionally unrelated fields but also new ways of thinking about biofabrication that surpass established conceptual boundaries. In this section, we highlight studies that use either extrusion, inkjet, or electrospinning techniques with self-assembling bioinks (SABs). We define SABs as those that comprise smaller components such as peptides, proteins, polymers, or DNA and that assemble into well-defined higher-ordered structures in a reproducible manner. Thus, we will focus exclusively on examples that create higher-ordered structures using a combination of self-assembly and biofabrication.

3.1. Extrusion

Extrusion, also known as ‘direct ink writing’, uses pneumatic or mechanical pressure to extrude a continuous filament of ink. The ink must either gel at the nozzle opening or exhibit a shear-thinning behaviour whereby a solid gel temporarily behaves like a liquid and flows under pressure.

3.1.1. Adapting self-assembling materials to extrusion printing

Self-assembling materials are particularly attractive for extrusion systems, as well as general injection, given their shear-thinning behaviour as a result of reversible non-covalent interactions [89–93]. The adaptation of peptides for extrusion has directly translated into a variety of commercial SABs. For example, the company BiogelX™ sells a SAB based on Fmoc-diphenylalanine and Fmoc-serine, which assemble into nanofibers [94, 95] while BIOGEL™ uses short chain oligo-peptides that assemble into nanofibres, which has been used to print filaments down to ∼300 µm diameter [96]. Conversely, the adaptation of natural self-assembling building blocks, such as proteins and polysaccharides, is restricted by their inherent complexity, which also makes them more difficult to control and manipulate. As such, their use in extrusion requires modification to enhance flowability and mechanical properties, often done by combining them with a polymer. For example, while silk is prone to clogging the extrusion nozzle due to shear-induced β-sheet crystallisation, Das et al combined silk with gelatine to prevent crystallisation and enable the formation of sub 90 µm diameter filaments [97]. In addition, SABs offer the possibility to avoid the use of post-processing steps, which can often be cytotoxic. For example, extruded structures using a silk/gelatine bioink can be stabilized by simply using sonication to promote β-sheet assemblies between the two components [98]. In another example, recombinant silk was mixed with fibroblasts and gelled at physiological temperature before extruding [99]. These studies exemplify the possibilities arising from extruding self-assembling materials.

3.1.2. Opportunities, advantages, and limitations

SABs offer the unique advantage of not only providing a rich landscape of ECM-like nanoscale structures, networks, and pores but also a precise presentation of biological signals. For example, self-assembling nanofibers can display bioactive epitopes only on their surface [100, 101]. This feature offers opportunities to improve the functionality of extrusion SABs. For example, Yan et al used PAs with the laminin mimetic head group sequence IKVAV conjugated to a thiolated-gelatine bioink, which

| Table 1. Overview of the advantages and challenges within biofabrication (top-down) and self-assembly (bottom-up) strategies. |
| --- |
| **Biofabrication** | **Self-assembly** |
| Advantages | - Precise micro-to-macro scale control |
| - Precise porosity, shape, geometry |
| - Control of surface topographies |
| - High reproducibility |
| - Easy replication of structure from CAD scans |
| - Tends to be inexpensive |
| - High scalability |
| - Limited molecular-to-nano control |
| - Material compatibility restrictions |
| - Limited communication with cells |
| - Limited recreation of biological nanostructures |
| - Limited capacity for precise bioactivity |
| - Limited to superficial/external features |
| - Fabrication time tends to be slow |
| | - Precise molecular-to-nano control |
| - Use of functional bio- and macro-molecules |
| - Selective communication with cells |
| - Capacity to recreate biological nanostructures |
| - Capacity for precise bioactivity |
| - Physical/chemical features within the bulk |
| | - Rapid material assembly |
| Challenges | - Low scalability |

---

NOTE: The table above summarizes the advantages and challenges of biofabrication and self-assembly strategies. Biofabrication offers precise control over scale, geometry, and surface properties, while self-assembly provides versatile molecular interactions. However, self-assembly faces challenges in material reproducibility and scalability, whereas biofabrication can be more expensive and time-consuming.
selectively presented the IKVAV on the surface of the nanofibers to promote bile-duct formation \[102\] (figure 5(a)). The SAB was used to extrude \(~250\ \mu m\) diameter filaments forming controllably spaced pores. While increasing the PA concentration led to increased nanofiber density in the bioink, the printability was reduced. Thus, there are competing advantages between optimal peptide concentration and printability. Another advantage of SABs is the possibility to optimize network density to control nanoscale porosity and consequently, parameters such as nutrient diffusion and cell-cell communication. For example, using a silk/PEG material, Zheng et al developed an extrusion-based SAB where gelation occurs as a function of the \(\beta\)-sheet-driven assembly of silk molecules \[33\]. By modulating the concentration of the molecules, the extruded structures exhibited different levels of permeability. These examples demonstrate the opportunities that emerge when SABs are incorporated within extrusion printing, integrating physical and chemical features at the nanoscale with macroscale pores and structures.

Self-assembly also facilitates the design of self-healing materials, which have enabled extrusion within supporting hydrogels. In this review, we focus exclusively on self-healing properties arising from self-assembling mechanisms and not through the reversibility of covalent bonds. Taking advantage of the transient non-covalent interactions of self-assembling materials, Burdick and colleagues developed a guest-host modified HA that, as a result of its shear thinning behaviour, can be extruded into a supporting self-healing hydrogel \[103, 104\] (figure 5(b)). The system is capable of fabricating filamentous structures down to \(~35\ \mu m\) in diameter and exhibiting twists and turns. Moreover, the supramolecular nature of the SAB enables incorporation of cell-interactive peptides or UV cross-linkable sequences to create perfusable paths \[103\] that can be used, for example, as in vitro models for angiogenesis \[104\]. Similarly, O’Bryan et al used a self-assembling block co-polymer combining diblock (polystyrene-block-ethylene/propylene) and triblock (polystyrene-block-ethylene/butylene-block-polystyrene) polymers capable of self-assembling into \(~1−2\ nm\) structures with polystyrene cores surrounded by ethylene-based coronas \[105\]. In pure triblock polymer mixtures, the intermolecular bridges between the ethylene/butylene blocks lead to an unprintable solid macroscopic network. However, the addition of diblock polymers disrupts the bridges, resulting in self-assembling micro-organogels with tuneable rheological properties within which silicone elastomer structures down to \(~250\ \mu m\) in size can be printed \[105\].

Another opportunity for SABs is their potential to serve as selective and responsive materials for the controlled and targeted delivery of macromolecules such as drugs and growth factors. This feature has been demonstrated to be compatible with injectable inks, which are similar in requirements to that of extrusion \[53, 106, 107\]. While relatively unexplored in SABs, the function of molecular entrapment through non-covalent interaction with the fibrillar network has been explored. For example, Xia et al reported 3D bioprinting with a SAB based on complementary
peptide sequences (KFEFKFEF) designed to reversibly incorporate metal ions to induce fluorescent behaviour \[108\]. Importantly, the incorporation of these molecules did not affect the shear-thinning or assembling properties of the SAB. Conversely, DNA has been used in extrusion to take advantage of its responsiveness, biodegradability, the permeability of nutrients, and non-swelling/non-shrinking properties. Shin et al developed a conductive SAB by dispersing carbon nanotubes (CNTs) in a mixture of DNA and either GelMA or HA and self-assembling with them through $\pi$-$\pi$ and hydrophobic interactions, respectively \[109\] (figure 5(c)). The materials exhibited a high shape fidelity as a direct result of the non-swelling/shrinking properties of DNA and fibrous structures arising from the coated CNTs. Similarly, Gaharwar et al demonstrated that bioactive silicate nanoparticles induce osteogenic differentiation in human mesenchymal stem cells (hMSCs) \[110\].

These examples elucidate the opportunities that SABs offer as a result of their self-assembling nature. However, the properties that give them their versatility and reversibility are also responsible for their limited mechanical strength (<1 kPa). Nonetheless, some modulation of their mechanical properties is possible by simply tuning the density of the assembled nanostructures. For example, diphenylalanine based injectable inks can be tuned to assemble into hydrogels ranging in stiffness from $\sim$5–150 kPa simply by altering the peptide concentration \[106\]. Within extrusion, aliphatic ultrashort peptides conjugated with a lysine-based ink have been shown to assemble into hydrogels with stiffnesses of up to $\sim$40 kPa \[111\]. Similarly, using a $\beta$-hairpin peptide-based...
bioink, stiffnesses between ~400 to 2900 Pa can be achieved simply by modulating the peptide concentration [91]. Interestingly, in this case, not only can these hydrogels regain their stiffness after undergoing shear-thinning during printing, but they can actually become stiffer [91].

It is important to keep in mind that, as most biological structures develop, they begin as soft environments that experience a gradual increase in stiffness. With this in mind, bioinks that offer immediate high stiffness are likely to have limitations in the context of TE and RM. SABs may offer the opportunity to bioprint a soft, dynamic, and highly hydrated environment but at the same time enable sufficient strength, stability, and speed of assembly. Nonetheless, we expect that new supramolecular strategies capable of providing SABs with dramatically enhanced and more versatile mechanical properties will continue to emerge [112–114].

3.2. Inkjet
Inkjet technology, also known as droplet-on-demand, deposits arrays of ink droplets that fuse together to form continuous lines. The ink solution must, therefore, exhibit a viscosity that is both sufficiently low to allow droplet formation and sufficiently high to retain its shape post-printing.

3.2.1. Adapting self-assembling materials to inkjet printing
While SABs are increasingly being used for a broad range of applications in extrusion printing, their use in inkjet bioprinting remains relatively under-explored. Nonetheless, there are emerging examples of inkjet bioprinting with peptides, DNA, or polymers which highlight the opportunities of pursuing this approach. In general, two approaches are being explored for SABs in inkjet printing including overlaying droplets of two or more self-assembling components (i.e. A onto B) [111, 115, 116] and printing of one component into a bath of the other (i.e. A into B) [117]. In both cases, self-assembly does not occur in the print-head but rather at the collector site.

3.2.2. Opportunities, advantages, and limitations
Conventional inkjet inks require physical crosslinking post-printing to stabilize the printed structures on a layer-by-layer basis. The crosslinking strategies (e.g. UV light, thermal energy) are often not cell compatible, restricting the choice of material. In comparison, inkjet printing with SABs removes the need for crosslinking steps and consequently can result in a more cell-friendly printing process. In an interesting example, Loo et al demonstrated that lysin-containing hexapeptides can be printed sequentially with phosphate-buffered saline (PBS) to induce gelation [111] (figure 6(a)). These hexapeptides change their secondary structure depending on the concentration used, from random coil to α-helix to β-turn. These shifts dictate the acquired nanostructure. For example, from α-helix to β-turn, there is a reversible formation of nanofibers, which at higher concentrations condense to bundles of nanofibers [118]. The authors used the β-turn stage to form networks of self-assembled nanofibers, which were used to encapsulate small molecules, proteins, and cells. In addition, using inkjet printing, the authors fabricated multidomain scaffolds with spatially organized endothelial cells in the core surrounded by a gel with embedded fibroblasts and keratinocytes on the surface. The study exemplifies the potential of combining self-assembly with inkjet printing by developing tuneable nanostructures that can be organized into higher-ordered constructs able to form anisotropic multicellular environments.

The lack of immediate mechanical strength of self-assembling materials has particularly hampered the use of SABs in inkjet printing. To address this challenge, multicomponent SABs have been used. For example, Li et al grafted single-stranded DNA onto a polypeptide backbone, which in the presence of complementary strands of DNA, resulted in the self-assembly of polypeptide-DNA nanofibrous gels with storage moduli of ~5 kPa [115] (figure 6(b)). In combination with a microvalve-based 3D bioprinter comprising separate cartridges, sequential prints of polypeptide-DNA and DNA linker were used to fabricate easily handled printed millimetre-sized structures of 5–20 layers. Given the high affinity provided by the complementary DNA strands, the material exhibited both self-healing properties and degradation via proteases or nucleases. Another approach to enhance the mechanical strength and inkjet printability of SABs relies on the use of supramolecular polymers with the capacity to self-assemble. Hart et al used the π–π-driven assembly of pyrenyl-end groups with chain folding polydiimide to create self-assembling polymer gels [116, 119, 120] (figure 6(c)). The two motifs were conjugated onto low molecular weight polymers, which were then printed sequentially to permit supramolecular network formation [116, 120]. Using inkjet printing, macro-sized structures were printed using ~15 μm diameter drops (~15 pl), which thanks to the polymer design, exhibited fluorescent properties. Interestingly, only the individual polymer layers were fluorescent, with the supramolecular network of the two types of polymers exhibiting colour in visible light instead. The authors, thus demonstrated the possibility to change the colour depending on the divalent polymer used [116]. Other advantages of supramolecular polymers are that they are inherently cheaper than most peptides, can be designed to be biodegradable, contain multiple binding sites, and can entrap macromolecules in their entangled fibrous network. For example, bioactive silica nanoparticles can be embedded within a
Figure 6. Self-assembly in inkjet. (a) Sequential printing of a PA-based ink and PBS buffer to form microgels with hMSCs aligning along the peptide fibres (Reproduced with permission from [111] ©2015 ACS Publications), (b) inkjet printing of a polypeptide-DNA ink overlain with DNA linker permitting the formation of handleable 3D structures consisting of up to 20 layers (Reproduced with permission from [115] ©2015 Wiley-VCH Verlag), and (c) sequential printing of a supramolecular polymer-based network and silica particles to create a pyramid structure (Reproduced with permission from [119] ©2016 ACS Publications).

3.3. Electrospinning
Electrospinning relies on the evaporation of an organic solvent or cooling of a polymer to solidify spun fibres. The use of organic solvents or high temperatures prevents cell encapsulation within the ink. However, compared with extrusion and inkjet, electrospinning has the advantage of creating fibrillar structures ranging from nanometres to microns in diameter with high mechanical tunability.

3.3.1. Adapting self-assembling materials to electrospinning
Conventional electrospinning relies on organic solvents, which represents a disadvantage not only for many biofabrication applications but also for SABs. For example, while self-assembling biopolymers (e.g. silk, gelatin, or fibrinogen) have been used extensively in electrospinning [121, 122], the organic solvents tend to disrupt their molecular conformation [121]. For instance, the use of fluorolcohols disrupts the characteristic triple-helix structure of collagen [123], and the rapid evaporation of organic solvents hinder the molecular rearrangement of keratin from an $\alpha$-helix conformation into stable $\beta$-sheets [124]. Due to this compatibility issue, proteins have been spun in combination with synthetic polymers to provide structural stability of the spun fibres through the polymer backbones [124–126]. Despite potential conformational disruptions, the use of proteins within SABs improves the overall viability of cells by providing bioactive epitopes such as cell binding sequences [125]. In one example, the authors propose that the electrospinning process can expose hidden epitopes of fibrinogen and enhance cellular activity [127, 128], However, to take full advantage of the potential of SABs in biofabrication, the process should support the formation of well-defined self-assembled nanostructures in aqueous solvents.

3.3.2. Opportunities, advantages, and limitations
Recombinant proteins have been explored as SABs for electrospinning, for example, a water-soluble silk-elastin-like mimetic protein [129]. In addition to permitting aqueous solutions, proteins also enable the design of SABs with tuneable secondary structures.

polymer SAB without disrupting the printing process and generating macroscopic structures with feature sizes down to 10–20 $\mu$m [119].
For instance, Khadka et al designed an anionic polypeptide, which was spun in water and resulted in a shift from random coil to $\beta$-sheet [130] (figure 7(a)). This shift generated a stable fibre while the collector geometry controlled the fibre orientation (random or aligned). Moreover, the authors argue that although the sequence is not protein mimetic, the modularity of this approach can be used to modulate cell behaviours or introduce functionalities such as aromatic side groups that can act as nucleation points for guiding protein folding. In contrast, self-assembling peptides are still considered broadly unsuitable for electrospinning given their need for aqueous assembly conditions and limited mechanical properties. However, recently, a method of electrospinning self-assembling peptides was reported by Pugliese et al [131] (figure 7(b)). Here, the peptides were combined with low concentrations of the crosslinker genipin in the organic solvent Hexafluoroisopropanol (HFIP) to produce partially crosslinked spun nanofibers. Despite these improvements, further crosslinking by immersion in a genipin bath was required for stability. The resulting fibres contained randomly orientated nanofibers with an average diameter of 294 nm. Collectively, studies demonstrate the feasibility and potential of aqueous electrospinning with synthetic self-assembly-based materials, thus, introducing a potential new route for presenting bioactivity in electrospun scaffolds.

An alternative method to introduce bioactivity into electrospun synthetic polymer scaffolds is to functionalize the spun fibre surfaces with self-assembling materials. For example, Viswanathan et al used an amphiphilic diblock copolymer (polyoligo(ethylene glycol)methacrylate) with RGD to functionalize poly(D,L-lactide) spun scaffolds [132]. In another example, PCL fibres with diameters between 300–400 nm were coated with 8–10 nm diameter PA nanofibers to precisely display cell-binding and enzymatically-cleavable sequences on the fibre surfaces [133] (figure 7(c)). Interestingly, the PA nanofibers preferentially coated the PCL fibres as thin 60 nm thick layers as opposed to filling the scaffold pores, thereby increasing the level of hierarchy and spatial control. Moreover, the selective presentation of bioactive sequences transformed the passive PCL into bioactive scaffolds generating a significant increase in cell adhesion and spreading. Similarly, electrospun composite fibres from premixed PCL and self-assembling peptides based on repeats of the amino acid sequence EAK similarly resulted in surface-enriched fibres with embedded peptides as well as enhanced hydrophilicity, more uniform surface topography, and decreased ductility [134]. Interestingly, the use of self-assembling peptides resulted in higher levels of mRNA transcription for bone matrix factors, with higher osteoblast vitality and calcium deposition.
3.4. Laser-assisted bioprinting

Laser-assisted bioprinting covers many techniques including, for example, laser direct writing (LDW) and laser-induced forward transfer (LIFT). Common to all laser-assisted techniques is their nozzle-free bioprinting method. For example, in LDW, a laser is applied onto a structure consisting of a glass slide, an absorbent layer, and a gel with embedded cells. Focusing the laser creates a local pressure point in the absorbent layer, which releases a droplet from the underlying material/cell layer. The technique has been used to arrange multiple cell-types in 3D structures made from collagen, generating skin mimetic scaffolds [135]. The technique has also been used to create cell arrays to observe cell-cell behaviour, such as work by Gruene et al using adipose-derived stem cells and endothelial colony-forming cells [136]. In this way, it is possible to control the layer height and composition as well as the cell-cell ratio and type. In another study, Corr and colleagues used LDW to place cells in predefined arrays, which then aggregate via cellular-driven self-assembly into embryoid bodies [137]. In this example, the bioprinting aspect complements the self-assembly by permitting control over colony size and cell density. While the area of laser-assisted bioprinting has offered many advantages in bioprinting [138], to our knowledge the work involving self-assembling materials has primarily focused on non-living materials, such as self-assembling co-polymers to create nano-scale architectures [139]. In an effort to concentrate this review only on the fabrication of bioscaffolds, the topic was not explored further in this review.

4. Self-assembly-driven biofabrication techniques

The previous section provides an overview of different approaches that integrate self-assembling materials with conventional biofabrication techniques. However, given the distinct nature and inherent versatility of both self-assembly and biofabrication, new approaches are emerging and inspiring new ways of thinking about biofabrication. In this section, we describe how new biofabrication methods are using self-assembly as a central role in the process beyond its application as a SAB to offer higher levels of complexity and structural hierarchy.

4.1. Using external stimuli to direct self-assembly

Hydrodynamic forces developed through fluid flow offer an opportunity to guide molecular self-assembly and fabricate scaffolds with a higher degree of structural hierarchy [93, 140, 141]. For example, using confined unidirectional flow to direct the assembly of chitosan and gellan gum, Sant et al reported on the fabrication of tubular hydrogel scaffolds (~1 mm diameter) comprising microscopic bundles of aligned fibrils of 1–5 µm in diameter that recapitulate the structure of native collagen bundles [142] (figure 8(a)). By modulating the hydrodynamic forces of the process (unidirectional flow or random mixing), it was possible to fabricate similar tubular structures with either aligned or randomly oriented fibrils. Using a similar mechanism, Patel et al exploited the capacity to incorporate multiple components and demonstrated the possibility to fabricate polysaccharide fibres assembled with graphene flakes, which organised as horizontal sheets in response to the hydrodynamic forces [143]. This approach can also be used with self-assembling peptides. For example, Chin et al used a cylindrical container attached to a rotating rod to direct PA nanofibers into circumferential alignment driven by shear forces from the rotating rod [144] (figure 8(b)). By simultaneously retracting the metal rod to allow an influx of calcium ions, the assembly was restricted to the walls of the cylinder, creating a hollow tubular gel made from aligned PA nanofibers. Moreover, the molecular versatility of the process permitted the incorporation of polymer-conjugated PAs, which enabled the fabrication of similar structures with the polymers selectively displayed on the surface.

Flow-directed assembly can be further modulated using processes such as liquid immiscibility, magnetic levitation, or immiscibility. For example, Shi et al used a liquid-liquid moulding process which controls the assembly of nanoparticles such as cellulose nanocrystals at the interface between two immiscible liquids (oil/water) [145]. In another example, a liquid-in-liquid 3D printing technique was used to fabricate perfusable channels with high stability, which permitted printing of connecting bridge microchannel arcs formed by dragging the ejection nozzle from one print to the next [146]. The authors used a dispersion of nanoclay printed within an oil-based surfactant to create a stable formation of nanoclay-polymer surfactant at the liquid-liquid interface forming the microchannel walls. In addition, the rapid self-healing properties of this material (~milliseconds) permitted real-time disruption of bridge connections to redirect flow. In an elegant approach, Durmus et al used magnetic levitation to develop a biofabrication approach whereby magnetic fields can be used to assemble microgels into defined complementary structures [147, 148] (figure 8(c)). The process permits assembly of multiple building-blocks by adjusting parameters such as polymer composition, density, stiffness, elastic modulus, or porosity. Furthermore, cells can be encapsulated within each microgel. Interestingly, as a result of differences in cell density, different cell types exhibited variations in the level of levitation, which may be used to manipulate cells [147]. In another example, the immiscibility of oil and aqueous solutions can be used to drive and control self-assembly. For example, Villar et al controllably ejected picolitre droplets of an
aqueous solution within an oil bath, promoting the formation of lipid monolayers around each droplet and bilayers with neighbouring droplets. By precise printing, dynamic hierarchical structures were fabricated [87].

Another area is mesoscale assemblies driven by immiscibility. For example, Du et al contained individual hydrogels within a prepolymer solution and subjected them to a secondary photocrosslinking step, which resulted in the self-assembly of the hydrogels by minimizing the surface tension [149]. In this way, the authors were able to create 3D assembled hydrogels of, for instance, linear, branched, and lock-and-key shaped hydrogels. Another approach takes advantage of molecular recognition. For example, Harada et al synthesised acrylamide-based gels which they functionalised with guest/host-moieties whereby the hydrogels subsequently assemble according to the specific recognition [150].

These examples demonstrate how fabrication processes can use exogenous forces to guide self-assembly while enabling hierarchical control. Furthermore, these techniques are advantageous as they are non-contact and non-invasive methods of assembly, which enable the incorporation of multiple types of building-blocks and can increase the overall cell viability and bioactivity of the system.

4.2. Supramolecular biofabrication

Approaching biofabrication from the bottom-up, it is possible to develop fabrication methods where the level of resolution and hierarchy is not limited by the printing technique but rather by the inherent nature of the self-assembly process and the capacity to modulate it. As such, self-assembly is not only able to define the molecular-to-nanoscale structure (e.g. nanofibers, fibrillar gels), but also guide the assembly at multiple sizescales. We name this approach ‘supramolecular biofabrication’. The underlying opportunity here is provided by the emergence of new assembling phenomena, structures, and material properties that can result from synergistic interactions between the building blocks and the top-down technique [83, 151].

For example, taking advantage of a thermal pathway capable of turning isotropic solutions of PAs into liquid crystals and subsequently lamellae-to-fibre transitions, Stupp and colleagues developed a mechanism to generate higher-ordered bundles of PA nanofibers [80] (figure 9(a)), which can be further
manipulated to incorporate topographical features [81]. This group also developed another hierarchical process based on the co-assembly of PAs with HA at liquid–liquid interfaces. In this case, the process leads to the formation of a diffusion barrier that prevents chaotic mixing and leads to a directional and organized molecular-nano-microscopic assembly. By modulating the mixing conditions, it is possible to fabricate membranes, sacs, or strings [82, 152]. By applying an electrical current, the co-assembly mechanism can be modulated to create thinner or thicker membranes [153].

Inspired by these approaches, our group has focused on developing supramolecular biofabrication methods that take advantage of emerging phenomena arising from compartmentalization, concentration gradients, and controlled ionic transport. For example, Inostroza-Brito et al developed a dynamic SAB based on the co-assembly of PAs with elastin-like proteins (ELPs) (figure 9(b)) [154]. A key molecular design element is the use of PAs as ‘molecular chaperones’ that co-assemble with and modulate the conformation of the ELP molecules as a diffusion-reaction mechanism leads to a multi-layered membrane with the capacity to dis-assemble, seal to interfaces, and self-heal. Upon external manipulation, it is possible to grow the membrane in specific directions, resulting in a ‘touch-and-pull’ interfacial fabrication process capable of generating macroscopic tubular structures exhibiting micro and nanoscale features [154, 155]. This approach enables the incorporation of bioactive peptides and additional building-blocks to fabricate more complex and functional constructs.

Building on this, Hedegaard et al used a co-assembling system based on PAs and structural proteins (e.g. keratin, fibronectin, collagen) with drop-on-demand printing to fabricate microgels with a spectrum of shapes (i.e. spherical, hollow, toroidal) and the capacity to be assembled into well-defined macroscopic structures [117] (figure 9(c)). This study also exploited hydrodynamic forces to guide the assembly to generate hydrogels with aligned or randomly aligned nanofibres, surface microtopographies, and distinct geometrical shapes. These kinds of multicomponent self-assembling
Figure 10. Self-assembly: An emerging field within biofabrication. Schematic representation of the two established fields within biofabrication (Reproduced with permission from [15] ©2016 IOP Publishing), with the addition of a bridging third field integrating self-assembly and biofabrication.

Materials are being used to develop more effective in vitro models [156]. Self-assembly approaches facilitate the engineering of new materials and material properties by systematically modulating the co-assembling components. Taking advantage of this opportunity, Wu et al has recently reported on the use of ELPs to co-assemble with and modulate the organization of graphene oxide (GO) flakes into functional tubular structures [157] (figure 9(d)). As in the case of ELP/PA, these tubes form naturally simply by injecting a droplet of ELP into a solution of GO, which initiates the assembly and eventually opening into a tube. However, in this case, the disordered nature of the ELP leads to a unique ELP-GO complex, which results in a material with radically improved properties and functionality. In this case, the material can be used as an extrusion SAB for fabricating functional macroscopic fluidic devices with resolutions down to \( \sim 10 \, \mu m \) in size, embedded cells, and a variety of material properties that resemble biological structures. This approach is being used to fabricate more biologically relevant organs-on-a-chip.

These studies demonstrate that self-assembly can be exploited to develop new fabrication processes based on the organization of molecular and nanoscale building-blocks at multiple scales. Furthermore, they inspire innovative biofabrication approaches that offer new opportunities for TE and RM by operating outside traditional conceptual boundaries.

5. Cellular self-assembly-driven biofabrication

Until now, we have concentrated our discussion on SABs based on either natural or synthetic molecules. However, cells alone can serve as self-assembling building-blocks of larger structures such as organoids or tissue spheroids. This section highlights biofabrication studies at the interface between bioassembly, bioprinting, and self-assembly. The general idea is to exploit the inherent need for cells to interact and communicate to prepare spheroids and assemble them using external stimuli such as fluid movement, physical confinement, or mechanical placement. For example, Jakab et al developed a method capable of positioning individual spherical tissue spheroids within a collagen matrix to allow tissue fusion and maturation [158, 159]. Manning et al used agarose-based moulds to create defined shapes of microtissues, such as toroidal or honeycomb, which were then stacked using a free-fall chamber to allow tissue fusion [160]. In another example, aggregated cell strands were used as an extrusion ink, thereby creating layer-by-layer structures of aggregated cell tubes, which over time mature to form solid tissue blocks [161].

Alternatively, spherical microtissues can be injected into a pre-fabricated porous support structure to permit tissue fusion across the inert scaffold [162]. The same method can also be used with a suspension of individual cells, removing the need to prefabricate microtissues [163, 164]. In contrast, non-contact methods such as using magnetic fields are being explored as less invasive methods of assembly. For example, by dispersing magnetic particles in an alginate/cell solution, toroidal bundles can be fabricated from magnetic fibres which fuse through cellular driven assembly [165, 166]. More recently, it was shown that magnetic levitation can be used to controllably assemble single cells into constructs without the presence of additional materials [147, 167, 168]. This method permits the organization of multiple cell types within a microscale structure without direct
Table 2. Examples benefiting from advantages provided by both biofabrication and self-assembly.

| Biofabrication | Self-assembly | Integration | Advantages biofabrication | Advantages self-assembly | Reference |
|----------------|---------------|-------------|----------------------------|----------------------------|-----------|
| Guest/host moieties | Extrusion within a hydrogel | Complex patterns within a hydrogel/free standing structures | Permits the printing of a hydrogel within a hydrogel through reversible non-covalent bonds | [103, 104] |
| PA/thiolated gelatin | Immersion in crosslinking solution post printing | Reproducible grid-matrix for experimental consistency | Bioactive hydrogel with functionalized sequences | [102] |
| Extrusion | ELP/GO | Extrusion within a solution | Defined internal 3D prism structures | Formation of reproducible tubular structures | [157] |
| DNA/polypeptide | Sequential printing | Fabrication of 3D structures with up to 20 defined layers | Integration of DNA in the printed material | [115] |
| PA/PBS | Sequential printing | Formation of multidomain hydrogels with spatially defined cell positioning | Reversible formation of secondary molecular structures | [111] |
| Inkjet | DNA/polypeptide | Coating post electrospinning | Reproducible and structurally stable fibres | Fibrous network and surface display of cell adhesive sequence | [133] |
| PA | Spinning with genipin and organic solvent | Bundling of polymer microfibres | Nanofibers shifting from random to aligned | [131] |
| Electrospinning | Polypeptide | Spinning in aqueous solution | Spinning into durable tubes | Selective presentation of binding sites and biomimetic sequences | [130] |
| Laser-assisted | Cellular | LDW with hydrogel incl. cells | Controllable matrix array, cell density and positioning | Ability to go from independent units to functional bodies with natural maturation | [137] |

(continue),
Table 2. (continued).

| Self-assembly-driven fabrication | Material          | Advantages assembly method                                                                 | Advantages material          | Reference |
|---------------------------------|-------------------|---------------------------------------------------------------------------------------------|------------------------------|-----------|
| Shear                           | PA/PBS PA/CaCl2 solution | Ability to bundle and align microfibres and tube formation by constraint                     | Assembly into microfibres    | [142, 144]|
| Magnetic                        | Polymer-based hydrogels | Cell friendly and touch-free organisation of microgels                                       | Compatibility with a range of materials + uses magnetism of cells directly | [148]     |
| Liquid–liquid attraction/immiscibility | Polymeric solution | Cell friendly and touch-free organisation of microgels                                       | Complex shapes through delicate interactions | [146, 149]|
| Supramolecular                  | PA/ELP            | Self-driven assembly into a tubular shape                                                    | Selective presentation and density of epitopes | [154]     |

contact. A recent study by Kingsley et al used laser-based bioprinting to controllably eject microcapsules of cells within an alginate-chitosan shell [169]. In this way, the authors are able to create arrays of cellular microbeads with cells aggregating to fill each sphere.

In this topical review, we have focused our discussion on systems that are based on the use and manipulation of organic molecules or cells. However, it is important to keep in mind that self-assembly can also be exploited to grow and fabricate hierarchical structures based on inorganic components. We refer the interested reader to other review articles where pure cellular approaches have been thoroughly discussed [5, 170–172].

6. Conclusion and future trends

The success of tissue engineering and regenerative medicine relies on the ability to recreate the structures and functions of biological systems. In this regard, biofabrication is playing an increasingly important role. The possibility to biofabricate with the capacity to manipulate and control the assembly of biomolecules and nanostructures into functional hierarchical structures is an exciting one. In this review, we have demonstrated that by combining biofabrication and self-assembly, a variety of opportunities are emerging where the advantages of one approach are helping to overcome the limitations of the other. We propose that through this strategy it is possible to enhance conventional bioprinting methods, expand the traditional biofabrication tool-box, and develop new ways of thinking about building, fabricating, and growing more biologically relevant and functional structures (figure 10).

We have featured methods that integrate self-assembly with biofabrication to create structures with unprecedented hierarchy that expand from the precise presentation of molecular signals to the creation of anatomical geometries. Table 2 provides an overview of the main highlighted examples summarising key advantages arising from either the self-assembly side or the biofabrication side. These approaches also enable enhanced biomimicry, molecular versatility, communication with cells, and overall bioactivity. However, there are also important challenges to overcome, such as the capacity to self-assemble immediately robust structures, high costs, and scalability constraints. Nonetheless, given the need to better recreate the distinctive molecular, structural, and cellular complexity of biology, we envision that self-assembly will continue to be integrated with biofabrication through both emerging self-assembling platforms as well as enhanced printing methods. For example, the ability to print within complex environments enabling simultaneous extrusion and growth of self-assembling structures [157] could significantly enhance resolution, bioactivity, and level of biomimicry. Another important step will likely come from improved self-assembling systems that enhance structural integrity, for example through the addition of host-guest interactions [173] modulation of mechanical properties via interactions between different components through non-covalent [174], or covalent co-assembling processes [175].

Overall, advances in recombinant technologies, nanotechnologies, and supramolecular chemistry, as well as, a growing understanding of fundamental processes emerging from fields such as structural and systems biology are likely to continue enhancing the
integration of these two approaches and accelerating incorporation within industrial manufacturing processes.

Acknowledgments

This work was supported by the ERC Starting Grant (STROFUNSCAFF), the UKRMP2 Smart Materials Hub, and the AO Foundation AOCMF-17-19M grant.

Conflict of interest

There are no conflicts of interest to declare.

ORCID iDs

Clara I Hedegaard https://orcid.org/0000-0003-3096-1980
Alvaro Mata https://orcid.org/0000-0002-6739-9111

References

[1] Gibson L J 2012 The hierarchical structure and mechanics of plant materials J. R. Soc. Interface 9 2749–66
[2] Hansen W R and Autumn K 2005 Evidence for self-cleaning in gecko setae Proc. Natl. Acad. Sci. 102 385–9
[3] Mengistu H, Huizinga J, Mouret J-B and Clune J 2016 The evolutionary origins of hierarchy ed O Sporns PLoS Comput. Biol. 12 e1004829
[4] Sensini A and Cristofolini L 2018 Biofabrication of electrospun scaffolds for the regeneration of tendons and ligaments Materials 11 1963
[5] Elsharkawy S and Mata A 2018 Hierarchical biomimORIZATION: from nature’s designs to synthetic materials for regenerative medicine and dentistry Adv. Healthcare Mater. 7 1800178
[6] Xia D Z, Niewiarowski D P H and Hu S Gecko 2019 Adhesive System: the secret of it GIT Lab. J. (https://www.laboratory-journal.com/science/material-science/gecko-s-adhesive-system-secret-it)
[7] Marieb E N and Hoehn K N 2011 Anatomy & Physiology 4th edn (New York: Pearson Education, Inc.)
[8] Colbourne H 2007 Inquiry into Biology (New York: McGraw-Hill) pp 335
[9] Moshiri A 2013 Tendon and ligament tissue engineering, healing and regenerative medicine J. Sports Med. Doping Stud. 03 1000126
[10] Elsharkawy S et al 2018 Protein disorder—order interplay to guide the growth of hierarchical mineralized structures Nat. Commun. 9 2145
[11] La Fontaine A, Zavgrodnny A, Liu H, Zheng R, Swain M and Cairney J 2016 Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel Sci. Adv. 2 e1601145
[12] Chen J, Kenna N L and Fisk N M 2007 Placental mesenchymal stem cells Am. J. Obstet. Gynecol. 196 e18
[13] Kornreich M, Avinery R, Malka-Gibor E, Laser-Azogui A and Beck R 2015 Order and disorder in intermediate filament proteins FEMS Lett. 589 2464–76
[14] Aljohani W, Ullah M W, Zhang X and Yang G 2018 Bioprinting and its applications in tissue engineering and regenerative medicine Int. J. Biol. Macromol. 107 261–75
[15] Groll J et al 2016 Biofabrication: reappraising the definition of an evolving field Biofabrication 8 013001
[16] Sun W, Starly B, Nam J and Darling A 2005 Bio-CAD modeling and its applications in computer-aided tissue engineering Comput. Des. 37 1097–114
[17] Groll J et al 2018 A definition of bioinks and their distinction from biomaterial inks Biofabrication 11 013001
[18] Cidonio G, Glinka M, Dawson J and Orefio R O C 2019 The cell in the ink: improving biofabrication by printing stem cells for skeletal regenerative medicine Biomaterials 209 10–24
[19] Murphy S V, Skardal A and Atala A 2013 Evaluation of hydrogels for bio-printing applications J. Biomed. Mater. Res. A 101A 272–84
[20] Juntj T, Smolan W, Schacht K, Scheibel T and Groll J 2016 Strategies and molecular design criteria for 3D printable hydrogels Chem. Rev. 116 1496–539
[21] Malda J, Visser J, Mekhels F P, Jüngst T, Hennink W E, Dhert W J A, Groll J and Hutmacher D W 2013 25th anniversary article: engineering hydrogels for biofabrication Adv. Mater. 25 5011–28
[22] Gungor-Ozkerim P S, Inci I, Zhang Y S, Khademhosseini A and Dokmeci M R 2018 Bioinks for 3D bioprinting: an overview Biomater. Sci. 6 915–46
[23] Gao G, Yonezawa T, Hubbell K, Dai G and Cui X 2015 Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging Biotechnol. J. 10 1568–77
[24] Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S and Kim K 2015 A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks Biofabrication 7 045009
[25] Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, Song L, Atala A and Zhao W 2017 3D bioprinting of urethra with PCL/PCL/blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment Acta Biomater. 50 134–64
[26] Costantini M, Idászek I, Szőke K, Jarošezewicz J, Dentini M, Barbetta A, Brinchmann J E and Szwieczkowski W 2016 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation Biofabrication 8 035002
[27] Isaacson A, Swioklo S and Conn C J 2018 3D bioprinting of a corneal stroma equivalent Exp. Eye Res. 173 188–93
[28] Duarte Campos D F, Bonnin Marquez A, O’Searain, C, Fischer H, Blaeser A, Vogt M, Corallo D and Awee S 2019 Exploring cancer cell behavior in vitro in three-dimensional multilaminar bioprintable collagen-based hydrogels Cancers 11 180
[29] Lee C, Abelseth E, de la Vega L and Willerth S M 2019 Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening Mater. Today Chem. 12 78–84
[30] Homan K A, Kolesky D B, SKFyler-Scott M A, Herrmann J, Obohohi H, Moisan A and Lewis J A 2016 Bioprinting of 3D convoluted renal proximal tubules on perfusable chips Sci. Rep. 6 34845
[31] Skardal A, Devarasetty M, Kang H-W, Seol Y-J, Forsythe S D, Bishop C, Shupe T, Soker S and Atala A 2016 Bioprinting cellularized constructs using a tissue-specific hydrogel bioink J. Vis. Exp. 21 e55606
[32] Rajaram A, Schreyer D and Chen D 2014 Bioplotting alginate/algic acid hydrogel scaffolds with structural integrity and preserved Schwann cell viability 3D Print. Addit. Manuf. 1 194–203
[33] Zheng Z, Wu J, Liu M, Wang H, Li C, Rodriguez M J, Li G, Wang X and Kaplan D L 2018 3D bioprinting of self-standing silk-based bioink Adv. Healthcare Mater. 7 1701026
[34] Kim S H et al 2018 Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing Nat. Commun. 9 1620

[35] Lode A, Kruijts F, Brüggemeier S, Quade M, Schütz K, Knaack S, Weber J, Bley T and Gelinsky M 2015 Green bioprinting: fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications Eng. Life Sci. 15 177–83

[36] Jiang T, Munugia-Lopez J, Flores-Torres S, Grant J, Vijayakumar S, De Leon-Rodriguez A and Kinsella J M 2018 Bioprintable alginate/gelatin hydrogel in vitro model systems induce cell spheroid formation J. Vis. Exp. 137 e57826

[37] Köpf M, Campos D F D, Blaeser A, Sen K S and Fischer H 2016 A tailored three-dimensionally printable agarose–collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells Biofabrication 8 025011

[38] López-Marcial G R, Zeng A Y, Osuna C, Dennis J, García J M and O’Connell G D 2018 Agarose-based hydrogels as suitable bioprinting materials for tissue engineering ACS Biomater. Sci. Eng. 4 3610–16

[39] Zhang J, Allardyce B J, Rajkhowa R, Zhao Y, Dilley R J, Redmond S L, Wang X and Liu X 2018 3D printing of silk particle–reinforced chitosan hydrogel structures and their properties ACS Biomater. Sci. Eng. 4 3036–46

[40] Akkineni A R, Ahlfeld T, Lode A and Gelinsky M 2016 A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs Biofabrication 8 045001

[41] Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, Cheng S and Sun W 2014 Three-dimensional printing of Hela cells for cervical tumor model in vitro Biofabrication 6 035001

[42] Kim J H, Seol Y-J, Ko I K, Kang H-W, Lee Y K, Yoo J J, Atala A and Lee S J 2018 3D bioprinted human skeletal muscle constructs for muscle function restoration Sci. Rep. 8 12307

[43] Shim-I H, Lee J-S, Kim J Y and Cho D-W 2012 Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system J. Micromech. Microeng. 22 085015

[44] Highley C B, Song K H, Daly A C and Burdick J A 2019 Jammed microgel inks for 3D printing applications Adv. Sci. 6 1801076

[45] Taylor D A, Sampaio L C, Ferdous Z, Gobin A S and Taitt I J 2018 Decellularization protocols in regenerative medicine Acta Biomater. 74 74–89

[46] Pati F, Jang J, Ha D-H, Won Kim S, Rhie J-W, Shim J-H, Kim D-H and Cho D-W 2014 Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink Nat. Biomed. Eng. 5 3935

[47] Faulk D M and Badyak S F 2014 Natural biomaterials for regenerative medicine applications Regenerative Medicine Applications in Organ Transplantation (Amsterdam: Elsevier) pp 101–12

[48] Faramarzi N et al 2018 Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds Adv. Healthcare Mater. 7 1701347

[49] Higuera G A et al 2015 Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo Biomaterials 61 190–202

[50] Mendes A C, Baran E T, Reis R L and Azevedo H S 2013 Self-assembly in nature: using the principles of nature to create complex nanopatterned materials Wiley Interdiscip. Rev. Nanomol. Nanobiotechnol. 5 582–612

[51] Radvar E and Azevedo H S 2019 Supramolecular polymer/polymer hybrid hydrogels for biomedical applications Macromol. Biosci. 19 1800221

[52] Hartgerink J D, Beniash E and Stupp S I 2001 Self-assembly and mineralization of peptide-ampiphile nanofibers Science 294 1684–8

[53] Mahler A, Reches M, Rechter M, Cohen S and Gazit E 2006 Rigid, self-assembled hydrogel composed of a modified aromatic dippeptide Adv. Mater. 18 1365–70

[54] Toledano S, Williams R J, Jayawarna V and Ulijn R V 2006 Enzyme-triggered self-assembly of peptide hydrogels via reversible hydrolysis J. Am. Chem. Soc. 128 1070–1

[55] Collier J H and Messersmith P B 2003 Enzymatic modification of self-assembled peptide structures with tissue transglutaminase Bioconjug. Chem. 14 748–55

[56] Lu Q, Zhu H, Zhang C, Zhang F, Zhang B and Kaplan D L 2012 Silk self-assembly mechanisms and control from thermodynamics to kinetics Biomacromolecules 13 826–32

[57] Veneziano R, Ratanalert S, Zhao Y, Zhang K, Zhang F, Van H, Chiu W and Bathe M 2016 Designer nanoscale DNA assemblies programmed from the top down Science 352 1534

[58] Stephanopoulos N, Freeman R, North H A, Sur S, Jeong S J, Tantakitti F, Kessler J A and Stupp S I 2015 Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons Nano Lett. 15 603–9

[59] Aida T, Meier J W and Stupp S I 2012 Functional supramolecular polymers Science 335 813–17

[60] Boekhoven J and Stupp S I 2014 25th anniversary article: supramolecular materials for regenerative medicine Adv. Mater. 26 1642–59

[61] Prince E and Kumacheva E 2019 Design and applications of man-made biomimetic fibrillar hydrogels Nat. Rev. Mater. 4 99–115

[62] Rhee S, Potteet J L, Mason B N, Reinhart-King C A and Bonassar L J 2016 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering ACS Biomater. Sci. Eng. 2 1800–5

[63] Chau M, Sriskandha S E, Pichugin D, Thérien-Aubin H, Nykypanchuk D, Chauve G, Methot M, Bouchard J, Gang O and Kumacheva E 2015 Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals Biomacromolecules 16 2455–62

[64] Tejeda-Montes E, Kýmová A, Nejadnik M R, Alonso M, Rodríguez-Cabello J C, Walboomers X F and Mata A 2014 Mineralization and bone regeneration using a bioactive elastin-like recombinomer membrane Biomaterials 35 8339–47

[65] Li Y, Rodríguez-Cabello J C and Aparicio C 2017 Intracellular mineralization of self-assembled elastin-like recombinomer fibrils ACS Appl. Mater. Interfaces 9 8538–46

[66] Meirond R, Delechiave G, Heinen L, Catalani L, H and Walther A 2019 Modular design of programmable mechanofluorescent DNA hydrogels Nat. Commun. 10 528

[67] Hu Y, Mao A S, Desai R M, Wang H, Weitz D A and Mooney D J 2017 Controlled self-assembly of alginate microgels by rapidly binding molecule pairs Lab Chip 17 2481–90

[68] kaushik G et al 2019 Quantitative label-free imaging of 3D vascular networks self-assembled in synthetic hydrogels Adv. Healthcare Mater. 8 1–12

[69] Xie A W, Binder B Y K, Khalil A S, Schmitt S K, Johnson H J, Zacharias N A and Murphy W L 2017 Controlled self-assembly of stem cell aggregates instructs pluriotency and lineage bias Sci. Rep. 7 1–5

[70] Shah R N, Shah N A, Del Rosario Lim M M, Hsieh C, Nuher G and Stupp S I 2010 Supramolecular design of self-assembling nanofibers for cartilage regeneration Proc. Natl Acad. Sci. 107 3293–8

[71] Mata A, Geng Y, Hendriksen K J, Aparicio C, Stock S R, Satcher R L and Stupp S I 2010 Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix Biomaterials 31 6004–12

[72] Tysseling-Mattie V M, Sahni V, Niece K L, Birch D, Cezicier C, Fehlings M G, Stupp S I and Kessler J A 2008
Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury J. Neurosci. 28 3814–23

[73] Zhang S 2003 Fabrication of novel biomaterials through molecular self-assembly Nat. Biotechnol. 21 1171–8

[74] Makam P and Gazit E 2018 Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology Chem. Soc. Rev. 47 3496–20

[75] Pappas C G, Shaft R, Sasselli I R, Siccardi H, Wang T, Narang V, Abzalimov R, Wijerathne N and Ulijn R V 2016 Dynamic peptide libraries for the discovery of supramolecular nanomaterials Nat. Nanotechnol. 11 960–7

[76] Rudra J S, Tian Y F, Jung J P and Collier J H 2010 A self-assembling peptide acting as an immune adjuvant Proc. Natl. Acad. Sci. 107 622–7

[77] Schnaidner J, et al 2017 Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity Nat. Commun. 8 1365

[78] Trapaidze A, D’Antuono M, Fratzl P and Harrington M J 2018 Exploring mussel byssus fabrication with peptide-polymer hybrids: role of pH and metal coordination in self-assembly and mechanics of histidine-rich domains Eur. Polym. J. 109 229–36

[79] O’Leary L E R, Fallas J A, Bakota E L, Kang M K and Hartgerink J D 2011 Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel Nat. Chem. 3 821–8

[80] Zhang S, Greenfield M A, Mata A, Palmer L C, Bitton R, Mantei J R, Aparicio C, de la Cruz M O and Stupp S I 2010 A self-assembly pathway to aligned monodomain gels Nat. Mater. 9 594–601

[81] Mata A, Hsu L, Capito R, Aparicio C, Henrikson K and Stupp S I 2009 Micro patterning of bioactive self-assembling gels Soft Matter 5 1228

[82] Capito R M, Azevedo H S, Velichko Y S, Mata A and Stupp S I 2008 Self-assembly of large and small molecules into hierarchically ordered sacs and membranes Science 319 1812–16

[83] Okesola O B and Mata A 2018 Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design Chem. Soc. Rev. 47 3721–36

[84] Emsley P, Charles I G, Fairweather N F and Isaacs N W 1996 Structure of Bordetella pertussis virulence factor P 69 peptides and proteins in material design Acta Biomater. 11 233–46

[85] Chang H, Jiang T, Schweinlin M, Ewald A, Groll J and Collier J H 2010 A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics Adv. Mater. 22 622–7

[86] Smith K H, Tejeda-Montes E, Peck M and Mata A 2011 Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials Chem. Soc. Rev. 40 14563

[87] Schneider J P, Pochan D J, Ozbas B, Rajagopal K, Pakstis L and Kretsinger J 2002 Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide J. Am. Chem. Soc. 124 15030–7

[88] Smith K H, Rajagopal K, Branco M, Salick D, Rughani R, Pilara M, Lamm M S, Pochan D J and Schneider J P 2007 Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells Proc. Natl Acad. Sci. 104 7791–6

[89] Yan C, Altunbas A, Yucel T, Nagarkar R P, Schneider J P and Pochan D J 2010 Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels Soft Matter 6 5143

[90] Lu H D, Chararti M B, Kim I L and Burdick J A 2012 Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism Biomaterials 33 2145–53

[91] Loo Y and Hauser C A E 2015 Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications Biomater. 11 014103

[92] Pochan D J, et al 2016 Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage ACS Nano 10 899–909

[93] Zhou M, Smith A M, Das A K, Hodgson N W, Collins R F, Ulijn R V and Gough J E 2009 Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells Biomaterials 30 2523–30

[94] Van M, Lewis P L and Shah R N 2018 Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation Biofabrication 10 035010

[95] Nasiri M, Offield M and Park D 2011 Injectable hydrogels for tissue engineering Biomaterials 32 5906–14

[96] Xia Y, Yue B, Qin M, Cao Y, Li Y and Wang W 2017 Injectable hydrogels based on self-assembling peptides Sci. Rep. 7 9691

[97] Shah R N, et al 2016 A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics Adv. Mater. 28 3280–9

[98] Gaharwar A K, Mhaila S M, Swami A, Patel A, Sant S, Reis R L, Marques A P, Gomes M E and Khademhosseini A 2013 Bioactive silicone nanoplatelets for osteogenic differentiation of human mesenchymal stem cells Adv. Mater. 25 3329–36
[111] Luo Y, Lakshmanan A, Niu M, Toh L L, Wang S and Hauser C A E E 2015 Peptide bioinks: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures Nano Lett. 15 6919–25

[112] Clarke D E, Parminter C D J and Scherman O A 2018 Tunable pentapeptide self-assembled β-sheet hydrogels Angew. Chem. Int. Ed. 57 7709–13

[113] Scelsi A, Bochicchio B, Smith A, Workman V L, Castillo Diaz L A, Saiani A and Pepe A 2019 Tuning of hydrogel stiffness using a two-component peptide system for mammalian cell culture J. Biomed. Mater. Res. A 107 535–44

[114] Jung J P, Jones J L, Cronier S A and Collier J H 2008 Modulating the mechanical properties of self-assembled peptide hydrogels via native chemical ligation Biomaterials 29 2143–51

[115] Li C et al 2015 Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three-dimensional multilayer bioprinting Angew. Chem. Int. Ed. 54 3957–61

[116] Hart L R, Harries J L, Greenland B W, Colquhoun H M and Hayes W 2015 Supramolecular approach to new inkjet printing inks ACS Appl. Mater. Interfaces 7 8906–14

[117] Hedegaard C L, Collin E C, Redondo-Gómez C, Nguyen L T H H, Ng K W, Castrejón-Pita A A, Castrejón-Pita J R M and Mata A 2018 Hydrodynamically guided hierarchical self-assembly of peptide-protein biosinks Adv. Funct. Mater. 28 1703716

[118] Hauser C A E et al 2011 Natural tri- to hexapeptides self-assemble in water to amyloid -type fiber aggregates by unexpected -helical intermediate structures Proc. Natl Acad. Sci. 108 1361–6

[119] Hart L R, Li S, Sturgess C, Wildman R, Jones J R and Hayes W 2016 3D printing of biocompatible supramolecular polymers and their composites ACS Appl. Mater. Interfaces 8 5115–22

[120] Hart L R, Harries J L, Greenland B W, Colquhoun H M and Hayes W 2015 Molecular design of a discrete chain-folding polypeptide for controlled inkjet deposition of supramolecular polymers Polym. Chem. 6 7342–52

[121] Khadka D B and Haynie D T 2012 Protein- and peptide-based electrop spun nanofibers in medical biomaterials Nanome. Nanotechnol., Biol. Med. 8 1242–62

[122] Humenik M, Lang G and Scheibl T 2018 Silk nanofibril self-assembly versus electrosprining Wiley Interdiscip. Rev. Nanomol. Nanobiotechnol. 10 e1509

[123] Zeugolis D I, Khew S T, Yew E S Y, Ekapatra A K, Tong Y W, Yung L-Y L, Hutmacher D W, Sheppard C and Tong Y W 2015 Electro-spinning of pure collagen and gelatin/PCL composite fibrous scaffolds for three-dimensional organotypic tissue engineering scaffold in a rat cell culture model J. Biomed. Mater. Res. A 72B 156–65

[124] Alusi A, Vineis C, Varesano A, Mazzucchetti G, Ferrero F and Tonin C 2008 Structure and properties of keratin/PEO blend fibrous nanoblend eur. Polym. J. 44 2465–75

[125] Edwards A, Jarvis D, Hopkins T, Pixley S and Bhattachari N 2015 Poly(ε-caprolactone)/keratin-based composite nanofibers for biomedical applications J. Biomed. Mater. Res. B Appl. Biomater. 103 21–30

[126] Zhang X, OuYang H, Lim C T, Kewaskhina S and Huang Z-M 2005 Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds J. Biomed. Mater. Res. 72B 66–75

[127] McManus M, Boland E, Sell S, Bowen W, Koo H, Simpson D and Bowlin G 2007 Electrop spun nanofibre fibrinogen for urinary tract tissue reconstruction Biomaterials 28 257–62

[128] McManus M G, Boland E D, Simpson D G, Barnes C P and Bowlin G L 2007 Electrosprining fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model J. Biomed. Mater. Res. A 81A 299–309

[129] Ner Y, Stuart J A, Whited G and Sotzing G A 2009 Electrosprinning nanoribbons of a bioengineered silk- elastin-like protein (SELP) from water Polymer 50 5828–36

[130] Khadka D B, Cross M C and Haynie D T 2011 A synthetic polypeptide electrosprun biomaterial ACS Appl. Mater. Interfaces 3 2994–3001

[131] Pugliese R, Maleki M, Zuckermann R N and Gelain F 2019 Self-assembling peptides cross-linked with genipin: resilient hydrogels and self-standing electrosprun scaffolds for tissue engineering applications Biomater. Sci. 7 76–91

[132] Viswanathan P, Themistou E, Ngamkham K, Reilly G C, Arni R O and Battaglia G 2015 Controlling surface topology and functionality of electrop spun fibers on the nanoscale using amphiphilic block copolymers to direct mesenchymal progenitor cell adhesion Biomacromolecules 16 66–75

[133] Tambrafi A, Blakeney B, Anderson J, Kushwaha M, Andukuri A, Dean D and Jun H-W 2009 A hybrid biomimetic scaffold composed of electrop spun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers Biomaterials 1 025001

[134] Detten M et al 2015 Electrosprun scaffolds for osteoblast cells: peptide-induced concentration-dependent improvements of polycaprolactone ed F Gelain PLoS ONE 10 e0137505

[135] Koch L et al 2012 Skin tissue generation by laser cell printing Biotechnol. Bioeng. 109 1855–63

[136] Grune M et al 2011 Laser printing of three-dimensional multilayer arrays for studies of cell–cell and cell–environment interactions Tissue Eng. C Methods 17 973–82

[137] Dias A D, Unser A M, Xie Y, Chrisey D B and Corr D T 2014 Generating size-controlled embryoid bodies using laser direct-write Biofabrication 6 025007

[138] Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W and Xing M 2018 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances Biomater. 3 144–56

[139] Jin H M et al 2016 Laser writing block copolymer self-assembly on graphene light-absorbing layer ACS Nano 10 3435–42

[140] Gouvdiren M, Molde J, Soares R M D and Kohn J 2016 Designing biomaterials for 3D printing ACS Biomater. Sci. Eng. 2 1679–93

[141] Haque M A, Kamita G, Kurokawa T, Tsuji K and Gong J P 2010 Unidirectional alignment of lamellar bilayer in hydrogel: one-dimensional swelling, anisotropic modulus, and stress/train tunable structural color Adv. Mater. 22 5110–14

[142] Sant S, Coutinho D F, Gaharwar A K, Neves N M, Reis R L, Gomes M E and Khademhosseini A 2017 Self-assembled hydrogel fiber bundles from oppositely charged polyelectrolytes mimic micro–nanoscale hierarchy of collagen Adv. Funct. Mater. 27 1606273

[143] Patel A, Xue Y, Hartley R, Sant V, Eles J R, Cui X T, Stolz D B and Sant S 2018 Hierarchically aligned fibrous hydrogel films through microfluidic self-assembly of graphene and polycarboxylates Biofabrication Bioeng. 115 263–67

[144] Chin S M et al 2018 Covalent-supramolecular hybrid polyesters as muscle-inspired anisotropic actuators Nat. Commun. 9 2395

[145] Shi S, Liu X, Li Y, Wu X, Wang D, Forth J and Russell T P 2018 Liquid letters Adv. Mater. 30 1–5

[146] Feng W, Chai Y, Forth J, Ashby P D, Russell T P and Helms B A 2019 Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices Nat. Commun. 10 10995

[147] McManus M G, Teken H C, Guven S, Siddhar K, Arslan Yildiz A, Calibasi G, Ghiran I, Steinmetz L M and Demirci U 2015 Magnetic levitational assembly for living material fabrication Proc. Natl Acad. Sci. 112 E3661–8

[148] Tasoglu S, Yu C H, Iatouskaya V, Guven S, Migliaresi C and Demirci U 2015 Magnetic levitational assembly for living material fabrication Adv. Healthcare Mater. 4 1469–76
[149] Du Y, Lo E, Ali S and Khademhosseini A 2008 Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs Proc. Natl Acad. Sci. 105 9522–7

[150] Harada A, Kobayashi R, Takashima Y, Hashidzume A and Yamaguchi H 2011 Macroscopic self-assembly through molecular recognition Nat. Chem. 3 34–37

[151] Wu Z I and Gong J P 2011 Hydrogels with self-assembling ordered structures and their functions NPJ Asia Mater. 3 57–64

[152] Różkiewicz D I, Myers B D and Stupp S I 2011 Interfacial self-assembly of cell-like filamentous microcapsules Angew. Chem. Int. Ed. 50 6324–7

[153] Velichko Y S, Mantei J R, Bitton R, Carvajal D, Shull K R and Stupp S I 2012 Electric field controlled self-assembly of hierarchically ordered membranes Adv. Funct. Mater. 22 369–77

[154] Inostroza-Brito K E et al 2015 Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system Nat. Chem. 7 897–904

[155] Inostroza-Brito K E, Collin E C, Majkowska A, Elsharkawy S, Rice A, Del Rio Hernández A E, Xiao X, Rodríguez-Cabello J and Mata A 2017 Cross-linking of a biopolymer-peptide co-assembling system Acta Biomater. 58 80–89

[156] Derkus B, Oksola B O, Barrett D W, D'Este M, Chowdhury T T, Eglin D and Mata A 2020 Multicomponent hydrogels for the formation of vascularized bone-like constructs in vitro Acta Biomaterialia 109 82–94

[157] Wu Y et al 2020 Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices Nat. Commun. 11 1182

[158] Bulanova E A et al 2017 Bioprinting of a functional vascularized mouse thyroid gland construct Biofabrication 9 034105

[159] Jakab K, Norotte C, Marga F, Murphy K, Vinjak-Novakovic G and Forcago G 2010 Tissue engineering by self-assembly and bio-printing of living cells Biofabrication 2 22001

[160] Manning K L, Thomson A H and Morgan J R 2018 Funnel-guided positioning of multicellular microtissues to build macrotissues Tissue Eng. C Methods 24 557–65

[161] Yu Y, Moncal K K, Li J, Peng W, Rivero I, Martin J A and Ozbolat I T 2016 Three-dimensional bioprinting using self-assembling scalable scaffold-free "tissue strands" as a new bioink Sci. Rep. 6 28714

[162] Mekhilleri N V, Lim K S, Brown G C J J, Mutreja L, Schon B S, Hooper G J and Woodfield T B F F 2018 Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs Biofabrication 10 024103

[163] Daly A C and Kelly D J 2019 Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers Biomaterials 197 194–206

[164] Bhattacharjee T et al 2016 Liquid-like solids support cells in 3D ACS Biomater. Sci. Eng. 2 1787–95

[165] Sun T, Shi Q, Huang Q, Wang H, Xiong X, Hu C and Fukuda T 2018 Magnetic alginate microfibers as scaffolding elements for the fabrication of microvacular-like structures Acta Biomater. 66 272–81

[166] Sun T, Shi Q, Yao Y, Sun J, Wang H, Huang Q and Fukuda T 2019 Engineered tissue micro-rings fabricated from aggregated fibroblasts and microfibers for bottom-up tissue engineering approach Biofabrication 11 035029

[167] Parfenov V A et al 2018 Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly Biofabrication 10 034104

[168] Anil-Inevi M, Yamam S, Yildiz A A, Mese G, Yalcın-Ozyusal O, Tekin H C and Ozcivici E 2018 Biofabrication of in situ self assembled 3d cell cultures in a weightlessness environment generated using magnetic levitation Sci. Rep. 8 7239

[169] Kingsley D M, Roberge C L, Rudkouskaya A, Faulkner D E, Okesola B O, Lau H K, Derkus B, Boccorh D K, Wu Y, Wark et al 2020 Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices Nat. Commun. 11 1182

[170] Aizenberg J and Fratzl P 2009 Biological and biomimetic materials Adv. Mater. 21 387–8

[171] Diab M and Mokari T 2018 Bioinspired hierarchical porous structures for engineering advanced functional inorganic materials Adv. Mater. 30 1706349

[172] Barge L M et al 2015 From chemical gardens to chemobionics Chem. Rev. 115 8652–703

[173] Redondo-Gómez C, Abdouni Y, Becer C R and Mata A 2019 Self-assembling hydrogels based on a complementary host-guest peptide amphiphile pair Biomacromolecules 6 2276–85

[174] Oksola B O, Wu Y, Derkus B, Gani S, Wu D, Knani D, Smith D K, Adams D J and Mata A 2019 Supramolecular self-assembly to control structural and biological properties of multicomponent hydrogels Chem. Mater. 31 7883–97

[175] Oksola B O, Lau H K, Derkus B, Boccorh D K, Wu Y, Wark A W, Kiick K L, Mata A 2020 Covalent co-assembly between resilin-like polypeptide and peptide amphiphile into hydrogels with controlled nanosturcture and improved mechanical properties Biomolecular Sciences 8 846–57