The Influence of Precipitation Regimes and Elevated CO$_2$ on Photosynthesis and Biomass Accumulation and Partitioning in Seedlings of the Rhizomatous Perennial Grass *Leymus chinensis*

Zhuolin Li1, Yuting Zhang1, Dafu Yu1, Na Zhang1, Jixiang Lin2, Jinwei Zhang1, Jiahong Tang1, Junfeng Wang1, Chunsheng Mu1,*

1 Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China, 2 Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field Ministry of Education, Alkali Soil Nature Environmental Science Center, Northeast Forestry University, Harbin, China

Abstract

Leymus chinensis is a dominant, rhizomatous perennial C$_3$ species in the grasslands of Songnen Plain of Northern China, and its productivity has decreased year by year. To determine how productivity of this species responds to different precipitation regimes, elevated CO$_2$ and their interaction in future, we measured photosynthetic parameters, along with the accumulation and partitioning of biomass. Plants were subjected to combinations of three precipitation gradients (normal precipitation, versus normal ± 40%) and two CO$_2$ levels (380±20 μmol mol$^{-1}$, 760±20 μmol mol$^{-1}$) in controlled-environment chambers. The net photosynthetic rate, and above-ground and total biomass increased due to both elevated CO$_2$ and increasing precipitation, but not significantly so when precipitation increased from the normal to high level under CO$_2$ enrichment. Water use efficiency and the ratio of root:total biomass increased significantly when precipitation was low, but decreased when it was high under CO$_2$ enrichment. Moreover, high precipitation at the elevated level of CO$_2$ increased the ratio between stem biomass and total biomass. The effect of elevated CO$_2$ on photosynthesis and biomass accumulation was higher at the low level of precipitation than with normal or high precipitation. The results suggest that at ambient CO$_2$ levels, the net photosynthetic rate and biomass of *L. chinensis* increase with precipitation, but those measures are not further affected by additional precipitation when CO$_2$ is elevated. Furthermore, CO$_2$ may partly compensate for the negative effect of low precipitation on the growth and development of *L. chinensis*.

Introduction

In the grassland ecosystems of the eastern Eurasian steppes, *Leymus chinensis* is a typical perennial C$_3$ grass with rhizomatous propagation that is distributed widely in areas including the Russian Baikal, the northern and eastern parts of Mongolia, the North China Plain, and the Inner Mongolian plateau of China [1], [2]. It is a dominant plant species in those relatively dry areas due to its tolerance of drought and saline-alkaline soils [3]. It is also an economically and ecologically important forage grass in Northern China because it is rich in protein, minerals, carbohydrates, and is palatable to many large herbivores. Recently, the area of grassland on the steppes has been decreasing due to the effects of human disturbances, including poor land use management, overgrazing, and climate change [4]. As a consequence, grassland productivity (dominated by the productivity of *L. chinensis*) has been reduced severely.

Atmospheric carbon dioxide (CO$_2$) concentrations have been increasing globally at an unprecedented rate [5]–[7]. In particular, regional climate models predict that climatic changes induced by CO$_2$ will exacerbate the dryness of the semiarid region of China [8], [9]. The ecosystems of China's arid and semiarid regions are driven mainly by precipitation, which is limiting and is therefore a key determinant of vegetation productivity [10]. Net primary productivity is positively correlated with precipitation [11]–[13]. In general, mild or moderate water stress will decrease the transpiration rate (E) of plants by reducing stomatal conductance (g$_s$), and it will also decrease the net photosynthetic rate (P_n) [13]. Severe drought will damage the photosynthetic system and lead to lower productivity. In many regions with low precipitation, plants are smaller and have relatively smaller leaf areas, but they have more roots to absorb nutrients and water in order to maintain normal growth patterns [14]. Therefore, considerable evidence shows that plant will increase the allocation of biomass to their root systems when water or nutrients are limiting [15]. In contrast, high water content in soils or fully submerged conditions typically lead to a decline in biomass allocation to roots [16].
Elevated CO₂ generally decreases gₛ and E, stimulates Pₚₙ and increases net primary production [17] – [20]. Elevated CO₂ has been shown to enhance production in many grassland ecosystems, such as those in Switzerland and New Zealand, and Kansas tallgrass prairie and Colorado shortgrass steppe in the United States [21]. However, plants with different photosynthetic pathways have responded differently to elevated levels of CO₂. Increased CO₂ enhances the response of C₃ plants but not C₄ plants, because the ambient CO₂ concentration is enough to satisfy the needs of the unique photosynthetic pathway in C₁ plants [22], [25]. An indirect effect of elevated CO₂ is improving water use efficiency (WUE), which can sustain plant growth and development to some degree during dry periods [24] – [26]. As most plants respond to elevated CO₂ with an increase in photosynthesis and biomass, at least in the short term, the allocation of biomass to roots will increase in order to enable better access to nutrients [16], [27] – [28]. However, Nowak et al. [29] suggested that the allocation to below-ground biomass may not increase under elevated CO₂ levels, and the impact on stem and leaf biomass allocation is ambiguous. Overall, there is no clear pattern regarding the effect of elevated CO₂ on biomass allocation in plants [16], [30].

In semiarid grassland ecosystems, water is believed to regulate plant responses to elevated levels of CO₂ in the air; this relationship is fundamental, as CO₂ and precipitation are essential factors that determine plant growth, development and function. Therefore, the interaction between precipitation regime and CO₂ level is even more important for driving plant growth and development in semiarid regions. Evidence shows that plant growth and productivity are stimulated more by elevated CO₂ during water stress than under well-watered conditions [31] – [33]. However, some research suggests that plant responses to elevated CO₂, in terms of growth and productivity, are constrained by drought [34] – [36]. The conflicting conclusions depend mainly on the severity and duration of aridness, as well as the plant species under study.

Earlier studies have considered the effect of water stress or elevated CO₂ on growth of L. chinensis. However, to our knowledge few studies have addressed that subject by simulating the gradient involved in real precipitation regimes. The objective of this study was to assess changes in the growth of a dominant grassland species in response to such environmental variation; this is important to understand because overall community properties are strongly influenced by the characteristics of dominants. Thus, we measured photosynthetic parameters, and biomass accumulation and partitioning in L. chinensis, along a gradient of three precipitation levels (normal precipitation and normal ± 30%) and two CO₂ levels (380 ± 20 µmol mol⁻¹ and 760 ± 20 µmol mol⁻¹), to investigate the strategy that this drought-tolerant grass uses to adapt to current environmental stresses.

Typically, elevated levels of CO₂ and precipitation stimulate the growth of C₃ species, and rising atmospheric CO₂ improves the efficiency of water use by plants, possibly helping to alleviate the impacts of drought via water-saving effects [37]. We therefore predicted that: (1) there would be a synergistic effect of increased precipitation and CO₂ levels on photosynthesis and biomass accumulation of L. chinensis; (2) elevated CO₂ would compensate partly for the negative effect of low precipitation in the response variables; (3) biomass allocation would be altered under elevated CO₂ and different precipitation regimes.

Materials and Methods

Ethics Statement

No specific permissions were required to conduct the field research described, because the Songnen Artificial Grassland Ecological Research Station belongs to Northeast Normal University. The field site is not privately owned or protected in any way, and the study did not involve endangered or protected species. Activities followed the research guidelines of the University.

Soil and plant cultures

Soil and seeds of the “yellow-green” ecotype of L. chinensis were obtained from the Field Station, which is part of the Institute of Grassland Science, Jilin Province, in northeastern China (123° 44’E, 44° 44’N, 167 m elevation). This region has a semiarid, continental monsoon climate with a frost-free period of about 140 d. Annual mean temperature is 6.4°C, and annual mean precipitation is 361.6 mm (2000–2011), most of which (70%) occurs during the summer months of Jun-Aug. The ecosystem’s main soil type is mollisol.

The soils were sieved through 2-mm mesh to remove roots and other visible debris, mixed well, and then put into plastic pots with an inside diameter of 19 cm, and height of 14 cm. Each pot was filled with 3.3 kg dry soil. The total nitrogen, organic carbon content, EC and pH of the mollisol soil were 6.8%, 0.3%, 180 mg kg⁻¹ and 8.63, respectively. To produce enough seedlings of uniform size, on 1 Sep 2012 about 20 seeds were sown in each of 24 plastic pots for a total of 480 seeds, at 15 d after sowing the seedlings were thinned to 10 per pot.

Experimental pots were placed in the phytotron (LT/ACR-2002 Phytotron System, E-Sheng Tech., Beijing, China) at Northeast Normal University in Changchun. In the phytotron, high-stress sodium lamps (Philips) with photosynthetically active radiation provided light at a rate of 350 µmol m⁻² s⁻¹ for 14 h per day. The relative humidity was maintained at 40–60%, and the temperature regime was 22°C from 8:30–10:30, 25°C from 10:30–11:30, 28°C from 11:30–14:30, 25°C from 14:30–17:30, 22°C from 17:30–19:30 and 18°C from 19:30–5:30. Air temperature in each chamber was monitored and adjusted every 10 s throughout the day and night, and maintained within ±1°C of treatment set points. The pots were irrigated with 240 mL of water every 3 d (equivalent to 8 mm of precipitation, totaling 80 mm per month), with the soil water content maintained at 50–60% of field capacity. The length of diurnal/nocturnal periods was chosen to mimic the typical length of daylight hours in the Songnen grassland during summer. Temperatures matched the minimum, maximum, and average summer temperatures from 2000–2011 in the same region (Meteorological Bureau of Changling County, China, the grown site of L. chinensis) (Fig. 1 and Fig. 2).

Precipitation regime and CO₂ treatments

Precipitation and CO₂ treatments commenced one month after sowing, and the experiment spanned three months. The pots of seedlings were placed randomly (and equally) into two controlled-environment growth chambers. One chamber was randomly assigned to ambient CO₂ at 380 ± 20 µmol mol⁻¹. The other chamber was assigned to an elevated level of 760 ± 20 µmol mol⁻¹, because atmospheric CO₂ concentrations are predicted to double by the end of this century, which might have an important influence on the productivity of grasslands dominated by L. chinensis and their community structure. The CO₂ was supplied from a tank and delivered through 0.64 cm tubing, and the...
concentrations were monitored every 5 s and adjusted every 10 s throughout the day and night.

In each CO2 chamber, pots were assigned to one of three precipitation levels: normal, high (normal +40%), and low (normal −40%). Total monthly precipitation was supplied in ten equal amounts to represent the normal monthly water level (i.e., 8 mm of precipitation every 3d). This was based on the region’s average amount and frequency of precipitation during the summers of 2000–2011 (Fig. 2a and 2b). Based on data for the Songnen grassland over the last 12 years, we found that precipitation in wet and dry years measured 40% higher or lower than the average, so we used that variation to define our experimental water regime.

In order to ensure that each plant experienced similar light conditions, the pot positions were randomly changed every 3 d during the treatment. Further, because there were no chamber replicates in this study, we rotated the treatments between the two chambers every 2 weeks, changing the environmental settings so that all pots were handled as similarly as possible during the experiment.

Leaf gas exchange

Leaf CO2 exchange parameters were measured with an LI-6400 gas exchange system (LI-6400XT, Li-Cor, Inc., Lincoln, NE, USA) on the youngest available fully expanded leaves (3 leaves per pot, 4 pots per treatment) before sampling. P_n, g_s, and E were measured with a LiCOR red/blue LED light source in a standard 2×3 cm chamber. The photosynthetically active radiation (PAR) was set at 350 μmol m⁻² s⁻¹ to equal the light of the phytotron, and the reference CO2 concentration was maintained at 380±20 μmol mol⁻¹ in the control and 760±20 μmol mol⁻¹ in the elevated CO2 growth chamber using CO2 control modules. Samples were allowed to acclimate for a few minutes until the P_n stabilized and the coefficient of variation was below 0.5. WUE (defined as mmol of net CO2 uptake per mol of H2O lost) was derived from the ratios of P_n to E.

Soil water content and biomass

After three months of treatment, we collected plants from 4 pots per treatment, carefully washed the soil from the roots in running water, and separated the plants into leaves, stems, roots and

Figure 1. The average maximum, minimum and mean air temperatures on the semi-arid Songnen Grassland during summers (Jun-Aug) from 2000 to 2011. Data were collected by the Meteorological Bureau of Changling County, China.
doi:10.1371/journal.pone.0103633.g001

Figure 2. The frequency and amount of rainfall precipitation in summer (Jun-Aug) from 2000 to 2011. The average monthly precipitation was ~80 mm. Data were collected by the Meteorological Bureau of Changling County, China.
doi:10.1371/journal.pone.0103633.g002
rhizomes. A soil sample of about 10 g was collected from each pot and placed in an aluminum can for measurement of soil water content (SWC). Plant parts and soils were dried to a constant mass at 65°C and weighed.

Statistical analysis

Data were analyzed as a split-plot design with CO_2 being the main plot and precipitation regime being the subplot (SPSS Inc, Chicago, IL, USA). Values for the photosynthetic parameters, biomass accumulation and biomass partitioning were tested for normality and homogeneity, and were transformed appropriately if necessary. For each parameter, the difference between the two CO_2 treatments was determined with a t-test, and differences among precipitation treatments were determined with a one-way ANOVA. Levels of P<0.05 were considered to be significant.

Results

Soil water content

Soil water content increased significantly with precipitation at both CO_2 levels (P<0.001), and showed a weak increase in elevated CO_2 although it was not statistically significant (P=0.074). Soil water content was not significantly affected by the interaction of precipitation and elevated CO_2 (Table 1, Fig. 3).

Gas exchange parameters

Both precipitation regime and elevated CO_2 had a significant influence on the P_\text{a}, g, C, E, and WUE (Table 1). Ambient CO_2, P_\text{a}, g, and E increased significantly with increasing precipitation (Fig. 4a, b, d), whereas WUE showed a significant decline under high precipitation, compared to ambient CO_2 (P<0.001) (Fig. 4e). Photosynthetic characters of L. chinensis under elevated CO_2 responded in a similar way as under ambient CO_2. However, P_\text{a} under normal and high precipitation exhibited no significant response, although it was higher in plants grown under high precipitation compared to normal levels (Fig. 4a). WUE decreased as precipitation increased at the elevated level of CO_2 (Fig. 4e).

Elevated CO_2 significantly increased P_\text{a} — the greatest change was under low precipitation, at 82.4%, with a change of 36.7% and 14.0% at the normal and high levels of precipitation. There was no difference under high precipitation (P>0.05) (Fig. 4a). C, g responded in a similar way as P_\text{a} (Fig. 4e). Compared to in the ambient CO_2 conditions, g, decreased significantly by 40%, 50% and 58.8% at the low, normal and high levels of precipitation, respectively (P<0.001) (Fig. 4b). E decreased by 60.5%, 65.6%, and 71.9% (P<0.001) (Fig. 4d), whereas WUE increased by 396.3%, 307.3% and 308% (P<0.001) (Fig. 4e). These results indicated that elevated CO_2 had a greater effect on the P_\text{a} and WUE of seedlings, especially under drier conditions, likely to compensate for the negative effects induced by drought.

Biomass accumulation and allocation

Overall, precipitation had a significant influence on above-ground, below-ground, and total biomass. Elevated CO_2 also had a significant influence on above-ground biomass, total biomass and root: shoot ratio. Their interaction, however, affected only below-ground biomass and root: shoot ratio (Table 1). At ambient CO_2, the above-ground, below-ground, and total biomass of individuals increased significantly with increasing precipitation (Table 2; P<0.05). Under elevated CO_2, low precipitation significantly decreased individual biomass, while high precipitation caused a slight increase in above-ground biomass. Notably, that enhancement caused by increasing precipitation was not observed under elevated CO_2 when precipitation increased from the normal to high level.

Elevated CO_2 increased above-ground biomass by 29.6%, 32.6% and 22.9%, compared to plants with a similar watering regime (from low to high) at ambient CO_2, although only the effect under normal precipitation was significant (P<0.05). Below-ground biomass increased significantly at low precipitation and decreased at high precipitation under CO_2 enrichment compared to ambient CO_2 conditions (P<0.05). Therefore, elevated CO_2 significantly increased individual total biomass at low precipitation, but this enhancement was not seen under high precipitation conditions. Furthermore, elevated CO_2 significantly decreased the root: shoot ratio under normal and high precipitation conditions (P<0.05). Thus, elevated CO_2 advanced above-ground vegetation growth under favorable water conditions, and increased below-
ground biomass under drought conditions, presumably to facilitate water absorption.

Both precipitation and CO₂ had a significant influence on biomass allocation to stems and roots, whereas no significant effect of interaction was detected between precipitation and CO₂ on biomass allocation (Table 1). Stem biomass allocation increased with precipitation at both CO₂ levels, but only elevated CO₂ caused a significant effect (Fig. 5; P<0.05). Biomass allocation to roots responded in opposite directions: it tended to decrease with increasing precipitation and elevated CO₂, but there was no effect with ambient CO₂.

At a given level of precipitation, elevated CO₂ significantly increased biomass allocation to stems under normal and high precipitation compared to ambient CO₂ (P<0.05), and decreased biomass allocation to roots under high precipitation conditions (P<0.05).

Discussion

In arid and semiarid regions, precipitation is the key variable that affects the growth and development of vegetation, and it can also affect plant metabolism and signal transduction. As elevated levels of atmospheric CO₂ are the main cause of global climate change, we investigated the interaction of precipitation and CO₂ levels to provide a more comprehensive assessment of how current environmental changes may be affecting plant growth in a semiarid region. Substantial research efforts have demonstrated that elevated CO₂ causes an increase in P_a and the accumulation of biomass in plants, while drought has the opposite effect [13], [20], [32] – [33], [38] – [40]. However, results concerning the interaction between precipitation regime and elevated CO₂ have been ambiguous [41] – [43]. The results of our research support our predictions 2 and 3, that increasing precipitation and elevated CO₂ improve biomass and P_a of *L. chinensis*, and moreover, those effects were greater under low precipitation conditions than under high precipitation. Those findings indicated that elevated CO₂ could lead to increased soil water content and compensate for the negative effect of drought on the growth of this grass species. The allocation of biomass among the parts of individual plants had changed too. Furthermore, soil EC decreased with increasing precipitation and elevated CO₂, but pH did not change much (from 8.15 to 8.6; data not shown). Ma and Liang [44] suggested that seed germination and seedling growth of *L. chinensis* are highest when pH is between 8.0 and 8.5. Consequently, elevated CO₂ and precipitation effects mediated through decreased salinity and alkalinity is expected to have minor effects in this study. Intriguingly, we found that P_a did not respond to elevated CO₂ under high precipitation conditions, which, contrary to our first prediction, means that elevated CO₂ and increasing precipitation did not have a synergistic effect on P_a. Therefore, biomass accumulation in *L. chinensis* did not change much in response to elevated CO₂ when precipitation increased by 40%.

Additional precipitation does not enhance biomass accumulation and net photosynthetic rate under CO₂ enrichment

L. chinensis is highly tolerant to drought, and the water holding capacity of soils where it grows site on the Songnen grassland is 50–60% in the summer months (Jun-Aug). In this study, the water holding capacity of soils under high precipitation conditions

Table 1. Analysis of variance to assess the impacts of precipitation, CO₂, and their interaction on soil water content, photosynthetic parameters, biomass accumulation and biomass allocation in the grass species *L. chinensis*.

Source of variation	CO₂	Precipitation	CO₂×Precipitation			
	F	P	F	P	F	P
Soil water content	3.844	0.074	304.408 <0.001	0.642	0.543	
Photosynthetic parameters						
F_n	400.232	<0.001	12.992 <0.001	7.771	<0.001	
Ci	741.983	<0.001	18.223 <0.001	4.985	<0.001	
g_s	290.268	<0.001	222.368 <0.001	48.112	<0.001	
E	1116.369	<0.001	363.371 <0.001	144.112	<0.001	
WUE	400.232	<0.001	12.992 <0.001	7.771	<0.001	
Biomass						
Above-ground	21.731	<0.01	34.501 <0.001	0.534	0.599	
Below-ground	0.068	0.798	115.944 <0.001	20.072	<0.001	
Total biomass	10.132	<0.01	72.149 <0.001	2.901	0.094	
Root/shoot	27.192	<0.001	1.308 0.306	11.576	<0.01	
Biomass allocation						
Leaf	1.254	0.285	3.550 0.062	2.089	0.167	
Stem	13.809	0.003	9.317 0.004	1.532	0.255	
Root	26.459	<0.001	19.799 <0.001	1.467	0.269	
Rhizome	1.046	0.327	5.690 0.018	0.596	0.566	

Note: Data are significant at P<0.05 level (bolded values).

doi:10.1371/journal.pone.0103633.t001
climbed to 80% or more, so above-ground biomass per plant increased weakly when precipitation increased from the normal to high level (Table 2). A similar trend was observed in P_n. Elevated CO$_2$ can directly increase the carboxylation efficiency of C$_3$ species, or induce stomatal closure and then limit the rate of transpiration indirectly, causing an increase in WUE [31], [40].

Figure 4. Effect of precipitation on photosynthetic rate (P_n), stomatal conductance (g_s), intercellular CO$_2$ concentration (C_i), transpiration rate (E) and water use efficiency (WUE) of *Leymus chinensis* under two CO$_2$ concentrations. Different lower-case letters indicate a significant difference among different levels of precipitation and different capital letters indicate a significant difference between the two CO$_2$ levels ($P<0.05$). LP, P, HP represents low precipitation (-40%), normal precipitation and high precipitation ($+40\%$), respectively.

doi:10.1371/journal.pone.0103633.g004

Table 2. Effect of precipitation on biomass of *L. Chinensis* under two CO$_2$ concentrations.

CO$_2$ concentration	Index (g plant$^{-1}$)	Precipitation (mm)	
	Low(LP)	Normal(P)	High(HP)
Ambient CO$_2$ (380 μmol mol$^{-1}$)			
Above-ground biomass	0.27±0.02aA	0.43±0.01bA	0.48±0.03bA
Below-ground biomass	0.36±0.01aA	0.66±0.03bA	0.72±0.01cA
Total biomass	0.64±0.04aA	1.09±0.03bA	1.21±0.03cA
Root: shoot ratio	1.34±0.06aA	1.54±0.06aA	1.50±0.06aA
Elevated CO$_2$ (760 μmol mol$^{-1}$)			
Above-ground biomass	0.35±0.03aA	0.57±0.04bB	0.59±0.01bA
Below-ground biomass	0.49±0.01aB	0.65±0.03bA	0.62±0.02bB
Total biomass	0.84±0.03aB	1.22±0.07bA	1.21±0.04bA
Root: shoot ratio	1.42±0.06aA	1.15±0.04bB	1.06±0.06bB

Note: Different lower-case letters indicate a significant difference among precipitation levels and different capital letters indicate a significant difference between the two CO$_2$ levels ($P<0.05$). Low/High precipitation were defined as normal precipitation $+/-40\%$.

doi:10.1371/journal.pone.0103633.t002
Elevated CO₂ would not increase above-ground biomass and \(P_n \) in the grass species that we studied, because decreased transpiration at elevated levels of CO₂ would provide little additional benefit in increased soil moisture [45]. Xu et al. [14] also found that mild and moderate drought had no significant influence on the biomass of \(L. \) chinensis, whereas mild drought (field capacity: 60–65%) stimulates the accumulation of biomass, consistent with the pattern observed in our study. Furthermore, some researchers have found that the below-ground biomass of grasses is suppressed by elevated CO₂ [46]; that trend occurred in our system in the high precipitation treatment, leading to no change in total biomass, which may be because the soil moisture levels were adequate for growth so more roots were not needed to increase water absorption. This may be a typical growth strategy and ecological adaptation of \(L. \) chinensis in the semiarid Songnen grassland. Therefore, we infer that extra precipitation is essentially redundant, as it does not augment biomass accumulation and \(P_n \) under higher CO₂ levels due to the high resistance of this species to soil water stress.

Elevated CO₂ might partly compensate for the negative effect of drought on net photosynthetic rate and biomass

In line with our predictions, elevated CO₂ seemed to partly compensate for the negative effect of drought on \(P_n \) and biomass of \(L. \) chinensis. Our results support the notion that some herbaceous species are more stimulated by elevated CO₂ under water stress than under well-watered conditions [23], [24], [31], [33], [45].

Elevated CO₂ reduced \(g_s \), and the effect of elevated CO₂ on the percent change of \(g_s \) was smallest at the low precipitation level (Fig. 4b). This maybe because both drought and elevated CO₂ caused a decline in \(g_s \) to limit \(E \), and elevated CO₂ has a minimum effect on \(g_s \) under low precipitation in order to maintain levels of photosynthesis. However, although elevated CO₂ increased the substrate concentration under high precipitation conditions, \(g_s \) decreased quickly to restrain absorption of CO₂. Therefore, at the elevated CO₂ level, the increasing percent change of \(P_n \) for grass plants grown under low precipitation conditions was considerably higher than for those grown under high precipitation conditions.

In general, in the arid and semi-arid grassland, \(WUE \) is also an important factor that stimulates primary productivity [47], especially in years with low precipitation. We found that elevated CO₂ significantly improved \(WUE \) (Table 1, Fig. 4e), and slightly increased soil water content under low precipitation conditions although the change was not significant (Table 1, Fig. 3a). In the Kansas Tallgrass Prairie experiment, volumetric soil water content was generally higher in elevated CO₂ plots than under ambient levels of the gas, mainly during periods when precipitation limited normal plant growth due to drought [21]. This phenomenon occurred in a healthy dry ecosystem. \(WUE \) improved \(\sim 3 \)–4 fold when CO₂ concentration was doubled, which means that the amount of water plants needed to fix one unit of CO₂ decreased by \(\sim 3 \)–4 fold [48]. This is important in regions experiencing drought and dry soils due to low precipitation. Therefore, although the
effect of elevated CO₂ on plant growth is limited under low precipitation conditions, elevated CO₂ still partly compensated for the negative effect of drought on \(P_a \) of \(L. \) *chinensis*.

The increase in \(P_a \) indicates that the ability of plants to fix carbon can be enhanced. From low to high precipitation levels, elevated CO₂ increased total biomass per plant by 31.3%, 11.9% and 0%, respectively, as compared to at ambient CO₂ levels. The trend for \(P_a \) was similar. Furthermore, root: shoot ratios increased at low precipitation, yet decreased at high precipitation and high precipitation, which is consistent with the findings of other studies [23], [34], [35]. Plants still suffer water stress even if elevated CO₂ leads to higher WUE and an enhanced ability of soils to maintain water, therefore, plants will increase their below-ground biomass to absorb more water and nutrients. The increase of root: shoot ratio may be the best strategy for plants to adapt to water stress [14]. However, some other studies demonstrate that plants have greater stimulation owing to elevated CO₂ under well-watered conditions than under drought [34] – [36]. The differences among these results may be due to the varying resistance of plants to drought, as well as different drought scales and other variation in the precise conditions studied. Our results indicate that elevated CO₂ could partly compensate for the negative effects of drought on \(P_a \) and biomass of *L. chinensis*.

Biomass allocation

Most archetypal vascular plants have leaves that fix carbon, stems that provide mechanical support and a hydraulic pathway, and roots that absorb nutrients and water [16]. Rhizomes function as storage organs in many clonal plants. Allocating biomass differently among these organs enables plants to balance growth and adapt environmental changes [49]. In our study, low precipitation significantly increased the allocation of biomass to roots under two levels of CO₂, effectively enabling plants to absorb more water and nutrients and have more above-ground vegetation growth, which is in line with results of many other studies [14], [16].

We showed that elevating the environmental concentration of CO₂ also altered the allometric relationships of biomass among plant tissues. Under normal and high precipitation conditions, elevated CO₂ significantly increased the biomass allocation to stems, but decreased allocation to roots (Table 1, Fig. 5b, c). Plants allocate more biomass to stems in order to facilitate competition for light and the acquisition of carbon [17]. However, much evidence shows that elevated CO₂ generally decreases the nitrogen concentration in leaves. Thus, it is possible that a plant allocates more biomass to roots to enable increased uptake of nutrients in order to sustain increases in biomass [16]. In contrast, a plant may regulate its root morphology and physiology rather than allocating more biomass to its roots when soil water and nutrients are abundant [30], [31]. Furthermore, biomass allocation was not affected by elevated CO₂, as has been widely observed in managed grasslands [52], [53]. The differing results are likely due to differences in the conditions being studied, such as other environmental factors, plant species, developmental stages, etc.

In summary, our results suggest that the biomass of *L. chinensis* increases with precipitation levels at ambient levels of CO₂. However, further precipitation is redundant, in that it does not augment biomass accumulation or the net photosynthetic rate of this grass species, and in fact it decreases biomass allocation to roots under conditions of CO₂ enrichment. In effect, our experiments show that elevated CO₂ may partly compensate for the negative effect of low precipitation on the growth and development of *L. chinensis*.

Acknowledgments

The authors sincerely acknowledge the technical assistance of Xindan Ding and Jianqiong He in the laboratory.

Author Contributions

Conceived and designed the experiments: ZLL CSM. Performed the experiments: ZLL YTZ DFY JWZ NZ JT. Analyzed the data: ZLL JXL JFW. Contributed reagents/materials/analysis tools: DFY JWZ CSM ZLL. Wrote the paper: ZLL CSM.

References

1. Wang Y, Zhou G, Wang Y (2007) Modeling responses of the meadow steppe dominated by Leymus chinensis to climate change. Climatic Change 82: 437–452.
2. Wang Z, Li L, Han X, Dong M (2004) Do rhizome severing and shoot defoliation affect clonal growth of *Leymus chinensis* at ramet population levels. Acta Oecologica 26: 253–260.
3. Huang ZH, Zhu JM, Mu XJ, Liu JX (2002) Advances on the mechanism of low sexual reproductive of *Leymus chinensis*. Grassland China 24: 53–60.
4. Jia B, Zhou G, Wang Y, Wang F, Wang X (2006) Effects of temperature and soil water-contention soil respiration of rared and ungrazed Leymus chinensis steppes, Inner Mongolia. J Arid Environ 67: 60–76.
5. IPCC (2012) Summary for policymakers. In: Field GB, Barros V, Stocker TF, et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press. Cambridge, New York, pp:1–19.
6. Peter GP, Malard G, Le QC, Boudre T, Cancellot JG, et al (2012) Rapid growth in CO₂ emissions after the 2008-2009 global financial crisis. Nat Clim Change 2: 2–4.
7. Meinshausen M, Smith SJ, Calvin K, Kainuma MLT, Lamarque JF, et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109: 213–241.
8. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO₂]: mechanisms and environmental interactions. Plant Cell Environ 30: 236–250.
9. Li XZ, Liu XD, Ma ZG (2004) Analysis on the drought characteristics in the main arid regions in the world since recent hundred-odd years. Arid Zone Res 21: 97–103.
10. Rao LE, Allen EB (2010) Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia 162: 1035–1046.
21. Morgan J, Newton P, Nosberger J, Owensby C (2001a) The influence of rising atmospheric CO2 on grassland ecosystems. Proceedings of the XIX International Grasslands Congress: 973–980.

22. Kakani V, Reddy KR (2007) Temperature response of C4 species big bluestem (Andropogon gerardii) is modified by growing carbon dioxide concentration. Environ Exp Bot 61: 281–290.

23. Mishra R, Abdin M, Upreti D (1999) Interactive effects of elevated CO2 and moisture stress on the photosynthesis, water relation and growth of Brassica species. J Agroen Crop Sci 182: 223–230.

24. Wang H, Zhou GS, Jiang YL, Shi YH, Xu ZZ (2012) Interactive effects of changing precipitation and elevated CO2 concentration on photosynthetic parameters of Stipa breviflora. Chinese J Plant Ecol 36: 597–606.

25. Korner C (2000) Biophase responses to CO2 enrichment. Ecol Appl 10, 1590–1619.

26. Drake BG, González MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2. Annu Rev Plant Biol 48: 609–639.

27. Arnone JA, Zaller JG, Spehn EM, Niklaus PA, Wells CE, et al. (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol 147: 73–85.

28. Milchunas DG, Morgan JA, Mosier AR, Lecain DR (2005) Root dynamics and demography in shrubsteppe under elevated CO2, and comments on minirhizotron methodology. Global Change Biol 11: 1037–1055.

29. Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162: 253–260.

30. Wandel SJ, Midgley G, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biol 5: 723–741.

31. Morgan JA, Lecain DR, Pendall E, Blumenthal DM, Kimball BA, et al. (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semiarid grassland. Nature 476: 202–205.

32. Atwell BJ, Henery ML, Rogers GS, Seneweera SP, Treashwell M, et al. (2007) Canopy development and hydraulic function in Eucalyptus tereticornis grown in drought in CO2-enriched atmospheres. Funct Plant Biol 34: 1137–1149.

33. Poorter H, Perez M (2001) The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129: 1–20.

34. Erice G, Reddy KR, Sanchez M, Arice JC, Oostveen S (2007) Effect of drought, elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting. Plant Sci 172: 903–912.

35. Xu Z, Zhou G, Wang Y (2007) Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant Soil 301, 87–97.

36. Smith SD, Huxman TE, Zitzer SF, Charlet TN, Houman DC, et al. (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408: 79–82.

37. Volder A, Edwards EJ, Evans JR, Robertson RG, Schortemeyer M. (2004) Does greater night-time, rather than constant warming alter growth of managed pasture under ambient and elevated atmospheric CO2? New Phytol 162: 397–411.

38. Xu Z, Shimizu H, Yagasaki Y, Ito S, Zheng Y, et al. (2015) Interactive Effects of Elevated CO2, Drought, and Warming on Plants. J Plant Growth Regul 32: 692–707.

39. Ziska L, Scharl G, George K, Mohan J (2007) Rising atmospheric carbon dioxide and potential impacts on the growth and toxicity of poison ivy (Toxicodendron radicans). Weed Science 55: 288–292.

40. Amosworth EA, Long SP (2000) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 145: 351–372.

41. Bhattacharya N, Hileman D, Ghosh P, Masner R, Bhattacharya S, et al. (2006) Interaction of enriched CO2 and water stress on the physiology of and biomass production in sweet potato grown in open-top chambers. Plant Cell Environ 13: 933–940.

42. Ottman M, Kimball B, Pinter P, Wall G, Vanderlip R, et al. (2001) Elevated CO2 increases sorghum biomass under drought conditions. New Phytol 150: 261–273.

43. Tolley LC, Strain B (1984) Effects of CO2 enrichment and water stress on growth of Liquidambar styraciflua and Pinus taeda seedlings. Canadian J Bot 62: 2135–2139.

44. Ma HY, Liang ZW (2007) Effects of different soil pH and soil extracts on the germination and seedling growth of Leymus chinensis. Chinese Botanical Bulletin 24: 181–188.

45. Tolley LC, Strain B (1984) Effects of CO2 enrichment and water stress on growth of Liquidambar styraciflua and Pinus taeda seedlings. Canadian J Bot 62: 2135–2139.

46. Yang PA, Pelley HW, Jn VI, Aspinwall MJ (2012) Productivity of well-watered Panicum virgatum does not increase with CO2 enrichment. J Plant Ecol 5, 366–375.

47. Shaw MR, Cavaletto ES, Chiariello NR, Glenday EA, Mooney HA, et al. (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298: 1897–1899.

48. Niu S, Xing X, Zhang Z, Xia J, Zhou X, et al. (2013) Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Global Change Biol 17: 1073–1082.

49. Gao SH and Guo JP (2004) Initial study into the CO2 concentration and soil moisture effects on the photosynthesis impact mechanism of Leymus chinensis. Pratacultura Sci 21: 23–27.

50. Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct Ecol 16: 326–331.

51. Arnone JA, Zaller JG, Spehn EM, Niklaus PA, Wells CE, et al. (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol 147: 73–85.