COMPARISON OF CONSTRUCTIVE MULTI-TYPED THEORY
WITH SUBSYSTEMS OF SECOND ORDER ARITHMETIC

FARIDA KACHAPOVA

Abstract. This paper describes an axiomatic theory BT for constructive mathematics. BT has a predicative comprehension axiom for a countable number of set types and usual combinatorial operations. BT has intuitionistic logic, is consistent with classical logic and has such constructive features as consistency with formal Church thesis, and existence and disjunction properties. BT is mutually interpretable with a so called theory of arithmetical truth $PATr$ and with a second-order arithmetic SA that contains infinitely many sorts of sets of natural numbers. We compare BT with some standard second-order arithmetics and investigate the proof-theoretical strengths of fragments of BT, $PATr$ and SA.

1. Introduction

Beeson [1–3] and Feferman [7,8] introduced axiomatic theories containing operations and sets. These theories are intended for developing constructive mathematics in Bishop’s style [4,5]. The theories have intuitionistic logic and are consistent with classical logic. Kashapova [12] generalised the Beeson’s theory $BEM + (CA)$ [2] to a language with infinitely many types of sets. The resulting axiomatic theory was studied further in [10] and [11]. In [10] we constructed a realizability and a set-theoretical model for BT, and proved existence property of BT. In [11] we constructed an interpretation of BT in a so called theory of arithmetical truth $PATr$ obtained from Peano arithmetic by adding infinitely many truth predicates.

In this paper we study other metamathematical properties of the theory BT. One of them is the disjunction property. We show that BT is mutually interpretable with $PATr$ and with a second-order arithmetic SA containing infinitly many sorts for sets of natural numbers. We also show that BT is interpretable in the second-order arithmetic with Δ^1_1 comprehension axiom. We prove that each fragment BT_s with types $\leq s$ is weaker than next fragment BT_{s+1}. In particular, BT is stronger that the Beeson’s theory $BEM + (CA)$.

In section 2 we give a detailed definition of the theory BT and describe its constructive properties: existence and disjunction properties, and consistency with formal Church thesis.

In section 3 we define the multi-sorted arithmetic SA and interpret it in the second-order arithmetic with Δ^1_1 comprehension axiom.

2010 Mathematics Subject Classification. 03E70 Nonclassical and second-order set theories; 03F50 Metamathematics of constructive systems.

Key words and phrases. Constructive mathematics, predicative comprehension, second-order arithmetic, equiconsistency, truth predicate, disjunction property, existence property.
In section 4 we define the theory of arithmetical truth $PATr$. In section 5 we prove that the theories BT, BT with classical logic, SA and $PATr$ are interpretable in one another, and so are their corresponding fragments.

In section 6 we show that each fragment BT_{s+1} is proof-theoretically stronger than the previous fragment BT_s ($s \geq 0$). The same is proven for corresponding fragments of the theories $PATr$ and SA.

In the rest of the introduction we explain some notations and terminology.

All theories considered in this paper are first-order axiomatic theories (a well-known definition of a first-order axiomatic theory can be found, for example, in [13]).

The symbol \equiv means “equals by definition”. The symbol \circ denotes a logical connective \land, \lor or \supset, and the symbol Q denotes a quantifier \forall or \exists. In each of our axiomatic theories we have the logical constant \bot for falsity and we regard $\neg \varphi$ as an abbreviation for $\varphi \supset \bot$. The complexity of a formula φ is the number of occurrences of logical symbols (the main three connectives and quantifiers) in φ. For any formula φ we denote $\overline{\varphi}$ the closure of φ, that is, the formula φ with universal quantifiers over all its parameters. We denote $\tau[x_1, \ldots, x_n/t_1, \ldots, t_n]$ the result of proper substitution of terms t_1, \ldots, t_n for variables x_1, \ldots, x_n in an expression τ. The complexity of a term t is the number of occurrences of functional symbols in t.

We fix a one-to-one coding of all finite sequences of natural numbers such that 0 is the code for the empty sequence. In a theory containing first-order arithmetic we use the notations:

- (n_1, \ldots, n_k) as the code for sequence n_1, \ldots, n_k;
- $(n)_i$ for the ith element of the sequence with code n;
- $lh(n)$ for the length of the sequence with code n.

We fix a numbering of partial recursive functions and denote $\{e\}(n)$ the value at n of the partial recursive function with number e if this value is defined.

For a natural number n we denote \overline{n} the formal arithmetical term for n, that is $\overline{n} = 1 + 1 \ldots + 1$ (n times).

We assume that for any axiomatic theory K some Gödel numbering of its expressions is fixed. For an expression q we denote $\overline{\varphi}$ the Gödel number of φ in this numbering; t_m and φ_m denote the term and formula with Gödel number m, respectively.

The notation $K \vdash \varphi$ means that formula φ is derivable in theory K. The theory K is consistent if it is not true that $K \vdash \bot$. $\text{Proof}_K(m, n)$ denotes the arithmetical formula stating that n is the Gödel number of a formal proof in the theory K for formula φ_m. The formula $\text{Proof}_K(m) \equiv \exists n \text{Proof}_K(m, n)$ means that φ_m is derivable in the theory K. The formula $\text{Con}_K \equiv \neg \text{Proof}_K(\bot, \bot)$ means that the theory K is consistent.

In this paper we consider axiomatic theories where variables have superscripts for types or sorts. A superscript for a variable is usually omitted when the variable is used for the second time or more in a formula or in a proof (so its type or sort is obvious). In metamathematical proofs we use classical logic.
2. Axiomatic theory BT

2.1. Definition of theory BT. Theory BT was first introduced in [12] as a generalisation of Beeson’s theory $BEM + (CA)$ [2]. The language of the theory BT has the following variables:

- m, n, \ldots over natural numbers (variables of type ω) and
- X^k, Y^k, Z^k, \ldots of type k ($k = 0, 1, 2, \ldots$).

We will identify the variables X^0, Y^0, Z^0, \ldots of type 0 with variables x, y, z, \ldots, respectively, which we call operation variables. We consider the type ω to be smaller than any other type. Variables of type 0 are interpreted as operations and variables of types ≥ 1 are interpreted as sets.

BT has a numerical constant 0 and the following operation constants:

- combinatorial constants k, s, d, p, p_1, p_2
- and comprehension constants c_n ($n \geq 0$), which are used for constructing sets.

There are no functional symbols in BT.

Predicate symbols:

- $Ap(f, x, y)$, $x =_{\omega m}$ m, $x =_{0k}$ Y^k, $X^k \in_k Y^{k+1}$ ($k \geq 0$).

$Ap(f, x, y)$ means that y is the result of application of operation f to x.

Atomic formulas are obtained from predicate symbols by substituting constants and variables of corresponding types. Formulas are constructed from atomic formulas and \bot using logical connectives and quantifiers.

The language of BT is defined. A formula of BT is said to be n-elementary if it contains only types $\leq n$, no quantifiers over variables of type n and no predicate symbol $=_{0n}$.

External terms are defined recursively as follows.

1. Every constant and variable is an external term.
2. If t and τ are external terms, then $t\tau$ is an external term.

$t\tau$ is interpreted as the result of application of operation t to τ. External terms are generally not part of the language BT. The notation $t_1t_2t_3\ldots t_n$ means $(\ldots((t_1t_2)t_3)\ldots)t_n$.

We consider each operation to have one argument. A function f with n arguments can be written as an operation that is applied n times, i.e. instead of $f(x_1, x_2, \ldots, x_n)$ we use $(\ldots(f(x_1)x_2)\ldots)x_n)$.

For an external term t we define a relation $t \simeq x$ by induction on the construction of t as follows.

1. If t is a constant or a variable of type s, then $t \simeq x \equiv x =_{0s} t$.
2. If t is t_1t_2, then $t \simeq x \equiv \exists y, z(t_1 \simeq y \land t_2 \simeq z \land Ap(y, z, x))$.

These are some more notations for external terms:

- $t \downarrow \equiv \exists x(t \simeq x)$;
- $t \simeq \tau \equiv \exists x(t \simeq x \land \tau \simeq x)$;
- $t \equiv \tau \equiv \forall x(t \simeq x \equiv \tau \simeq x)$;
- $\varphi(t) \equiv \exists x(t \simeq x \land \varphi(x))$.

We fix Gödel numbering of all expressions of the language BT.

The theory BT has the following axioms.
1. Intuitionistic predicate logic.

2. Equality axioms
 1) \(x =_0 x \).
 2) \(u =_{0k} X^k \land v =_{0k} X \land u =_{0n} Y^n \supset v =_{0n} Y(k \geq 0, n \geq 0) \).
 3) \(u =_{0\omega} m \land v =_{0\omega} m \supset u =_{00} v \).
 4) \(u =_{0\omega} m \land u =_{00} v \supset v =_{0\omega} m \).
 5) \(Ap(f, x, y) \land f =_{00} g \land x =_{00} u \land y =_{00} v \supset Ap(g, u, v) \).
 6) \(X^k \in_k Y^{k+1} \land X^k =_k U^k \land Y^{k+1} =_{k+1} Z^{k+1} \supset U \in_k Z(k \geq 0) \).

3. Combinatorial axioms
 1) \(Ap(f, x, y) \land Ap(f, x, z) \supset y = z \).
 2) \(\lambda x y z \vdash x \).
 3) \(\lambda \overline{xy} \vdash \overline{x} \overline{yz} \equiv \overline{xz}(yz) \).
 4) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).
 5) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).
 6) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).
 7) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).
 8) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).
 9) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).
 10) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).
 11) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).
 12) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).
 13) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).
 14) \(\lambda \overline{xy} \vdash \overline{zx} \equiv \overline{xz}(yz) \).

In \(BT \) the successor of a natural number \(n \) is given by \(\overline{pn}0 \).

Any natural number \(m \) is represented by a term \(\overline{m} = \overline{...p(0000...0)} \), which we denote \(\overline{m} \).

4. Induction over natural numbers

\[\overline{\varphi[n/0]}, \quad \overline{\varphi} \supset \exists m (\overline{mn}0 \equiv m \land \overline{\varphi[n/m]}) \]

where \(\varphi \) is any formula of \(BT \).

Finite sequences are introduced in \(BT \) using the pair operation:

\[\langle x_1 \rangle \equiv x_1 ; \]
\[\langle x_1, x_2, \ldots, x_{n+1} \rangle \equiv \overline{p} \langle \overline{x_1, x_2, \ldots, x_n} \rangle x_{n+1} . \]

For brevity we will denote an external term \(\tau((t_1, t_2, \ldots, t_n)) \) as \(\tau(t_1, t_2, \ldots, t_n) \).

5. Comprehension axiom

\[\exists U^{k+1} \left[\overline{c_n}(\overline{X}) \equiv U \land \forall Z^k (Z \in_k U \equiv \varphi) \right], \]

where \(n = \downarrow Z^k \overline{X} \varphi \downarrow \leq (k + 1) \), and \(\varphi \) is a \((k + 1)\)-elementary formula with all its parameters in the list \(Z^k, \overline{X} \).

This completes the definition of the theory \(BT \). We denote \(BT_s \) the fragment of \(BT \) containing only types not greater than \(s \) (\(s \geq 0 \)).

As usual in combinatorial logic, for any external term \(t \) and variable \(x \) we can construct an external term \(\lambda x.t \) with the property:

\[BT \vdash \lambda x.t \downarrow (\lambda x.t)x \equiv t. \]

Using \(\lambda \)-terms we can define in \(BT_0 \) recursion operator, \(\mu \)-operator and all primitive recursive functions. Thus, \(BT_0 \) contains the intuitionistic arithmetic \(HA \).
2.2. Constructive properties of BT. In [10] we defined a realizability $fr\varphi$ for formulas of BT. In particular:

$$fr(\psi \lor \chi) \iff \exists k, u \left[f \simeq \langle k, u \rangle \land (k = 0 \lor ur\psi) \land (k \neq 0 \lor ur\chi) \right]. \quad (1)$$

The following lemma and theorem about the realizability were proven in [10].

Lemma 2.1. $BT\vdash fr\varphi \supset \varphi$.

Theorem 2.2. Soundness of the realizability.

If $BT\vdash \varphi$, then for some external term t, $BT\vdash t \downarrow \land tr\varphi$.

Theorem 2.3. Existence property of BT.

If $BT\vdash \exists Y \varphi$, then for some external term t, $BT\vdash \exists Y (t \simeq Y) \land \varphi[Y/t]$.

Here Y is a variable of any type.

Proof. A proof using the realizability was given in [10]. □

Next we will show that BT also has disjunction property.

In [10] we constructed for each fragment BT_s a set-theoretical model with domains, which are sets of external terms. In particular, the domain for numerical variables is $H = \{ \bar{m} \mid m \in \mathbb{N} \}$.

The notation $\gamma \models^p \varphi$ means that in the model for BT_{p-1} formula φ holds under evaluation γ.

Theorem 2.4. Soundness of the model.

$$BT_{p-1} \vdash \varphi \Rightarrow (\gamma \models^p \varphi),$$

where $p \geq 1$ and γ is the empty evaluation.

Proof. Proof was given in [10]. □

For external terms t and τ the notation $t \succeq \tau$ means that t can be reduced to τ using the properties of operation constants in axioms 3.2), 4), 8), 11) and 12). The following two lemmas were proven in [10].

Lemma 2.5. $t \succeq \tau \Rightarrow BT \vdash t \downarrow \supset (t \simeq \tau)$.

Lemma 2.6. $\gamma \models^p (t \simeq x) \iff t' \succeq \gamma(x)$, where t' is the external term t evaluated by γ.

Theorem 2.7. Disjunction property of BT. For closed formulas φ and ψ:

if $BT \vdash \varphi \lor \psi$, then $BT \vdash \varphi$ or $BT \vdash \psi$.

Proof. Suppose $BT \vdash \varphi \lor \psi$. By Theorem 2.2 for some external term τ, $BT \vdash \tau \downarrow \land tr(\varphi \lor \psi)$. Denote τ' the closed term obtained from τ by substituting appropriate constants for all parameters of τ (that is, 0 for numerical parameters, k for operation parameters and $\xi_{j \neq j}$ for parameters of type $j \geq 1$). Then $BT \vdash \tau' \downarrow \land tr'(\varphi \lor \psi)$.

Denote $t = p[\tau']$. By (1), $BT \vdash \exists k(t \simeq k)$ and by Lemma 2.1

$$BT \vdash (t = 0 \lor \varphi) \land (t \neq 0 \lor \psi). \quad (2)$$
Since any proof in BT is finite, there is $p \geq 1$ such that

$$BT_{p-1} \vdash \exists k (t \simeq k).$$

By Theorem 2.4, $\gamma \models \exists k (t \simeq k)$ for the empty evaluation γ and by Lemma 2.6 ($\exists r \in \mathcal{H}(t \simeq r)$. Therefore $t \simeq m$ for some natural number m. By Lemma 2.6, $BT \vdash t \simeq m$.

So if $m = 0$, then $BT \vdash t = 0$ and by (2) $BT \vdash \varphi$.

If $m \neq 0$, then $BT \vdash t \neq 0$ and by (2) $BT \vdash \psi$. \square

In [12] we showed that BT is consistent with the following form of the formal Church thesis:

$$(\forall f \in \mathbb{N}) \exists e \forall n (fn \simeq \{e\}(n)).$$

The existence and disjunction properties of BT as well as its consistency with the formal Church thesis are all evidence of the constructive nature of BT.

3. Multi-sorted second-order arithmetic SA

3.1. Definition of theory SA. The language of theory SA has the following variables:

- $n_1, n_2, \ldots, m, n, \ldots$ over natural numbers
- $x^{(k)}_1, x^{(k)}_2, \ldots, x^{(k)}_m, y^{(k)}, \ldots$ of sort k over sets of natural numbers ($k = 1, 2, \ldots$).

The language of SA has two numerical constants 0 and 1, and functional symbols \cdot and $+$. There are the following predicate symbols:

- $=$ (equality of natural numbers) and \in_k ($k = 1, 2, \ldots$).

Numerical terms are constructed from numerical variables and constants using functional symbols. Atomic formulas are:

- $t = \tau; t \in_k x^{(k)}$, where t and τ are numerical terms.

Formulas are constructed from atomic formulas and \perp using logical connectives and quantifiers. The language of SA is defined.

A formula φ of SA is called k-simple if it has no quantifiers over set variables and it has no variables of sorts greater than k.

Equality of sets is introduced as an abbreviation:

$$x^{(k)} =_k y^{(k)} \iff \forall n (n \in_k x \equiv n \in_k y).$$

For brevity we will often omit indices in $=_k$ and \in_k. We fix a standard numbering of pairs of natural numbers and denote (m, n) the number of pair m, n in this numbering.

Axiomatic theory SA has the following axioms.

1. Classical predicate logic with equality.
2. Peano axioms.

- $\neg(n + 1 = 0)$.
- $n + 1 = m + 1 \supset n = m$.
- $n + 0 = n$.
- $n + (m + 1) = (n + m) + 1$.
- $n \cdot 0 = 0$.
- $n \cdot (m + 1) = n \cdot m + n$.
3. Induction axiom. $\varphi(0) \land \forall n [\varphi(n) \supset \varphi(n + 1)] \supset \forall n \varphi(n)$,

where φ is any formula of SA.
4. Comprehension axiom. \[\exists z^{(k)} \forall n(n \in z \equiv \varphi(n)), \]
where \(\varphi \) is a \(k \)-simple formula not containing the variable \(z^{(k)} \).

5. Choice axiom.

\[
\forall n \exists! x^{(k)} \varphi(n, x) \supset \exists y \exists z^{(k)}[\varphi(n, x) \land \forall m(m \in x \equiv (n, m) \in y)],
\]

where \(\varphi \) is a \(k \)-simple formula.

This completes the definition of the theory \(SA \). For \(s \geq 0 \) we denote \(SA_s \) the fragment of \(SA \) containing only sorts not greater than \(s \). Thus, \(SA_0 \) is the Peano arithmetic \(PA \).

In the rest of this section we compare \(SA \) with some standard second-order arithmetics.

3.2. Predicative second-order arithmetic \(Ar \)

The language of theory \(Ar \) has variables:

- \(n_1, n_2, \ldots, m, n, \ldots \) over natural numbers and
- \(x_1, x_2, \ldots, x, y, \ldots \) over sets of natural numbers.

The language of \(Ar \) has two numerical constants 0 and 1, and functional symbols \(\cdot \) and \(+ \). There are two predicate symbols: \(= \) (equality of natural numbers) and \(\in \).

Numerical terms are constructed from numerical variables and constants using functional symbols. Atomic formulas are:

\[t = \tau; \ t \in x, \]

Formulas are constructed from atomic formulas and \(\bot \) using logical connectives and quantifiers.

Axiomatic theory \(Ar \) has the following axioms.

1. Classical predicate logic with equality.
2. Peano axioms (the same as in \(SA \)).
3. Induction axiom. \(\varphi(0) \land \forall n[\varphi(n) \supset \varphi(n + 1)] \supset \forall n \varphi(n), \)

where \(\varphi \) is any formula of \(Ar \).

4. Comprehension axiom. \[\exists z \forall n(n \in z \equiv \exists u \psi(n, u)), \]

where formulas \(\varphi \) and \(\psi \) have no quantifiers over set variables and do not contain the variable \(z \).

This completes the definition of the theory \(Ar \).

3.3. Interpretations of \(SA \) in weak second-order arithmetics

Clearly, \(SA \) is proof-theoretically stronger than \(Ar \). However, \(SA \) can be interpreted in some extensions of \(Ar \).

Equality of sets is introduced in \(Ar \) as an abbreviation:

\[x = y \iff \forall n(n \in x \equiv n \in y). \]

We define the following two formulas in the language of \(Ar \).

\[(AC!) \quad \forall k \exists! x \varphi(k, x) \supset \exists y \forall k \exists x[\varphi(k, x) \land \forall m(m \in x \equiv (k, m) \in y)], \]

where \(\varphi \) has no quantifiers over set variables and does not contain the variable \(y \).

\[(\Delta_1^1 - C) \quad \forall n[\forall \psi \varphi(n, v) \equiv \exists u \psi(n, u)] \supset \exists z \forall n[n \in z \equiv \exists u \psi(n, u)], \]

where formulas \(\varphi \) and \(\psi \) have no quantifiers over set variables and do not contain the variable \(z \).

Theorem 3.1.

1. The theory \(SA \) is interpretable in \(Ar + (AC!) \).
2. The theory \(Ar + (AC!) \) is a sub-theory of \(Ar + (\Delta_1^1 - C) \).
Proof. 1. For a formula φ of SA we define its interpretation φ^\wedge by induction on the complexity of φ.

$(t = \tau)^\wedge \iff t = \tau$.

$(t \in_k x_i^{(k)})^\wedge \iff t \in x_{(k,i)}$.

$\bot^\wedge \iff \bot$.

$(\psi \circ \chi)^\wedge \iff \psi^\wedge \circ \chi^\wedge$.

$(Qn\psi)^\wedge \iff Qn\psi^\wedge$.

$(Qx_i^{(k)}\psi)^\wedge \iff Qx_{(k,i)}\psi^\wedge$.

Thus, φ^\wedge is obtained from φ by removing all sorts and renaming all set variables. Clearly, each axiom of $Ar + (AC!)$ can be obtained from a corresponding axiom of SA in the same way. Therefore:

$SA \vdash \varphi \implies Ar + (AC!) \vdash \varphi^\wedge \implies Ar + (AC!) \vdash \overline{\varphi}^\wedge$.

2. It is sufficient to show that $(AC!)$ is derived in $Ar + (\Delta_1^1 – C)$.

Consider a formula φ that has no quantifiers over set variables and does not contain y. Denote:

$\psi(n,x) \iff \exists k, m[n = (k,m) \land \varphi(k,x) \land m \in x]$

$\chi(n,x) \iff \exists k, m[n = (k,m) \land (\varphi(k,x) \supset m \in x)]$.

Assume the premise in $(AC!)$, that is

$\forall k \exists! x \varphi(k,x)$. (3)

Then for any n:

$\forall v \chi(n,v) \equiv \exists w \psi(n,u)$. (4)

By axiom $(\Delta_1^1 – C)$ there exists y such that

$\forall n[n \in y \equiv \exists u \psi(n,u)]$. (5)

It remains to prove: $\forall k \exists x[\varphi(k,x) \land \forall m(m \in x \equiv (k,m) \in y)]$.

Consider an arbitrary k. By (3) there exists x such that

$\varphi(k,x)$. (6)

If $m \in x$, then for $n = (k,m)$ we have $\psi(n,x)$ and $n \in y$ by (5).

If $(k,m) \in y$, then for $n = (k,m)$ we have $\exists u \psi(n,u)$ by (5) and $\forall v \chi(n,v)$ by (4).

So $\chi(n,x)$. By (6) $\varphi(k,x)$ and $m \in x$ by the definition of χ.

Corollary 3.2. Theory SA is interpretable in $Ar + (\Delta_1^1 – C)$.
4. Theory of arithmetical truth PAT_r

This theory was introduced in [11]. Theory PAT_r is based on the axiomatic theory PA for the first-order arithmetic. The language of PAT_r is obtained from the language of PA by adding predicate symbols $\text{Tr}_k(m,l), k = 1, 2, \ldots$. For any $s \geq 1$, the language PAT_{r_s} is obtained from the language of PA by adding predicate symbols $\text{Tr}_k(m,l), 1 \leq k \leq s$. The language PAT_{r_0} is just the language of PA.

Let us fix G"odel numbering of expressions of the language PAT_r. It will be clear from context whether we use G"odel numbering for expressions of PAT_r or BT. Next we introduce some arithmetical formulas.

$\textbf{Form}(k,m) \equiv "m\text{ is the G"odel number of a formula of } \text{PAT}_r".$

$\textbf{Subform}(m,r) \equiv "r\text{ is the G"odel number of a subformula of the formula with G"odel number } m".$

$\textbf{Param}(m,i) \equiv "n_i\text{ is a parameter of the expression of } \text{PAT}_r\text{ with G"odel number } m".$

The following formula means that a sequence l is an evaluation of all parameters of the expression with G"odel number m:

$\text{Ev}(m,l) \equiv (\forall i \leq m)[\text{Param}(m,i) \supset lh(l) \geq i].$

Clearly, the last four formulas define primitive recursive relations.

We denote eval and subst the primitive recursive functions such that:

$\text{eval}(m,l)$ equals the value of term $t_m \text{ under evaluation } l$;

$\text{subst}(l,i,n)$ equals the evaluation l, in which the i-th element is substituted by n.

Axiomatic theory PAT_r has classical predicate logic with equality and the following non-logical axioms.

1. Peano axioms (the same as in SA).

2. Induction axiom. $\varphi(0) \land \forall n[\varphi(n) \supset \varphi(n + 1)] \supset \forall n\varphi(n)$, where φ is any formula of PAT_r.

3. Axioms for truth predicates (for any $k \geq 1$).

 (Tr1) $\text{Tr}_k(m,l) \supset \text{Form}(k-1,m) \land \text{Ev}(m,l);$
 (Tr2) $\text{Ev}(m,l) \supset \"\varphi_m \text{ is } t_i = t_j\" \supset [\text{Tr}_k(m,l) \equiv (\text{eval}(i,l) = \text{eval}(j,l))];$

 (Tr3) $\text{Ev}(m,l) \supset \"\varphi_m \text{ is } \text{Tr}_k(t_i,t_j)\"$

 $\supset [\text{Tr}_{k+1}(m,l) \equiv \text{Tr}_k(\text{eval}(i,l),\text{eval}(j,l))];$

 (Tr4) $\lnot \text{Tr}_k(t,t,\ldots,t);$

 (Tr5) $\text{Ev}(m,l) \supset \"\varphi_i \land \varphi_j\" \supset [\text{Tr}_k(m,l) \equiv (\text{Tr}_k(i,l) \land \text{Tr}_k(j,l))];$

 (Tr6) $\text{Ev}(m,l) \supset \"\varphi_m \text{ is } Qn_\varphi_j\" \supset [\text{Tr}_k(m,l) \equiv \text{Qn}\text{Tr}_k(j,\text{subst}(l,i,n))].$

The axioms (Tr1)-(Tr6) describe Tr_k as the truth predicate for formulas of $\text{PAT}_{r_{k-1}}$; that is, $\text{Tr}_k(m,l)$ means that the formula φ_m is true under evaluation l.

This completes the definition of the theory PAT_r. Denote PAT_{r_s} the fragment of PAT_r in the language PAT_{r_s}. Clearly, PAT_{r_0} is just the first-order arithmetic PA.
5. Mutual interpretability of theories BT, $PATr$ and SA

5.1. Interpretation of BT in $PATr$. In [11] we constructed an interpretation $\varphi \rightarrow \varphi^\triangle$ and proved the following theorem and corollary.

Theorem 5.1. For $s \geq 0$, if $BT_s \vdash \varphi$, then $PATr_s \vdash \varphi^\triangle$.

Corollary 5.2. If $BT \vdash \varphi$, then $PATr \vdash \varphi^\triangle$.

5.2. Interpretation of $PATr$ in SA. For $k \geq 1$ denote \vec{x} the list of variables $x_1^{(2)}, \ldots, x_{k-1}^{(k)}$; when $k = 1$, this list is empty. We define the following three formulas in SA.

$$A_k(r, l, \vec{x}, y^{(k)}) \Rightarrow \exists i, j \left[\left(\varphi_r \text{ is } t_i = t_j \right) \land \text{eval}(i, l) = \text{eval}(j, l) \right]$$

$$\lor \bigvee_{q=1}^{k-1} \left(\left(\varphi_r \text{ is } Tr_q(t_i, t_j) \right) \land \left(\text{eval}(i, l), (\text{eval}(i, l), \text{eval}(j, l)) \right) \right)$$

$$\lor \left(\left(\varphi_r \text{ is } \varphi_i \lor \varphi_j \right) \land \left((i, l) \in y \land \left(j, l \right) \right) \right)$$

$$\lor \left(\left(\varphi_r \text{ is } Qn_i \varphi_j \right) \land Qn \left(\left(j, subst(l, i, n) \right) \right) \right) .$$

$$FTrset_k(m, \vec{x}, y^{(k)}) \equiv \text{Form}(k-1, m) \land \forall p \left[p \in y \right.$$

$$\left. \equiv \exists r, l \left[p = (r, l) \land \text{Subform}(m, r) \land \text{Ev}(r, l) \land A_k(r, l, \vec{x}, y) \right] \right].$$

The last formula means that set y contains Gödel numbers of all true evaluated subformulas of formula φ_m of $PATr_{k-1}$ given that x_1, \ldots, x_{k-1} are corresponding truth sets for formulas of $PATr_0, \ldots, PATr_{k-2}$, respectively.

$$Trset_k(\vec{x}, z^{(k+1)}) \equiv \left(\forall p \in z \right) \exists m, q \left[p = (m, q) \land \text{Form}(k-1, m) \right]$$

$$\land \forall m \left\{ \text{Form}(k-1, m) \supset y^{(k)} \left[FTrset_k(m, \vec{x}, y) \land \forall n \left[n \in y \equiv (m, n) \in z \right] \right] \right\} .$$

The last formula means that set z contains Gödel numbers of all true evaluated formulas of $PATr_{k-1}$ assuming that x_1, \ldots, x_{k-1} are corresponding truth sets for formulas of $PATr_0, \ldots, PATr_{k-2}$, respectively.

By the comprehension axiom and the definition of set equality we have:

$$SA \vdash \exists z^{(k)} \forall n \left[n \in z \equiv \varphi(n) \right].$$

So for a k-simple formula φ we can introduce in SA a functional symbol $\{ n \mid \varphi(n) \}$ of sort k.

We can introduce the following notations:

$$[x]_m = \{ n \in x \mid \exists r, l \left[n = (r, l) \land \text{Subform}(m, r) \right] \} ;$$

$$\emptyset^{(k)} = \{ n \mid \neg (n = n) \} .$$

Lemma 5.3. The following formulas are derived in SA_s.

1. $\text{Form}(k-1, m) \supset \exists y^{(k)} \text{FTrset}_k(m, \vec{x}, y)$, where $1 \leq k \leq s$.

2. $\text{Form}(k-1, m) \land \text{Subform}(m, r) \land \text{FTrset}_k(m, \vec{x}, y)$

 $$\supset \text{FTrset}_k(r, \vec{x}, [y]_r)$$

 , where $1 \leq k \leq s$.

3. $\exists z^{(k+1)} \text{Trset}_k(\vec{x}, z)$, where $1 \leq k < s$.
Proof. 1. Proof is by induction on m using the definition of $FTrset_k$.
 2. This follows from part 1 and the definition of $FTrset_k$.
 3. Fix \bar{x}. Denote $\psi(m,y^{(k)}) \iff$
 \[
 [Form(k-1,m) \supset FTrset_k(m,\bar{x},y)] \land [\neg Form(k-1,m) \supset y = \emptyset^{(k)}].
 \]
 By part 1, $\forall m \exists y^{(k)} \psi(m,y)$. By the choice axiom there exists $v^{(k+1)}$ such that:
 \[\forall m \exists y^{(k)} [\psi(m,y) \land \forall n(n \in y \equiv (m,n) \in v)].\]
 Then for $z^{(k+1)} = \{q \in v \mid \exists m,n(q = (m,n))\}$ we have $Trset_k(\bar{x},z)$.
 The uniqueness follows from part 1 and the definition of $Trset_k$. \qed

By Lemma 5.3.3 for $k = 1$, $SA_2 \vdash \exists! z^{(2)}Trset_1(z)$, so we can introduce in SA_2
a constant $a_1^{(2)}$ such that $SA_2 \vdash Trset_1(a_1)$.

By Lemma 5.3.3 for $k = 2$, $SA_3 \vdash \exists! z^{(3)}Trset_2(a_1,z)$, so we can introduce in SA_3
a constant $a_2^{(3)}$ such that $SA_3 \vdash Trset_2(a_1,a_2)$.

Continuing by induction, we can introduce in SA_{k+1} a constant $a_k^{(k+1)}$ such that
\[SA_{k+1} \vdash Trset_k(a_1,\ldots,a_{k-1},a_k).\] (7)

By Lemma 5.3.1,
\[SA_k \vdash \forall m \exists! y^{(k)} \{[Form(k-1,m) \supset FTrset_k(m,a_1,\ldots,a_{k-1},y)]
 \land [\neg Form(k-1,m) \supset y = \emptyset^{(k)}]\}.\]

So we can introduce in SA_k a functional symbol $g_k(m)^{(k)}$ such that
\[SA_k \vdash Form(k-1,m) \supset FTrset_k(m,a_1,\ldots,a_{k-1},g_k(m)).\] (8)

Lemma 5.4. For $1 \leq k < s$:
\[SA_s \vdash n \in_k g_k(m) \equiv (m,n) \in_{k+1} a_k.\] \qed

Proof. Proof follows from the definitions and formulas (7), (8).

Next for each formula φ of $PATr$ we define its interpretation φ^\sim in SA
by induction on the complexity of φ.
\[(t = \tau)^\sim \iff t = \tau.\]
\[Tr_k(t,\tau)^\sim \iff (t,\tau) \in_k g_k(t), k \geq 1.\]
\[\bot^\sim \iff \bot.\]
\[(\psi \circ \chi)^\sim \equiv \psi^\sim \circ \chi^\sim.\]
\[(Qn\psi)^\sim \equiv Qn\psi^\sim.\]

Clearly, if φ is a formula of $PATr_s$, then φ^\sim is a formula of SA_s ($s \geq 0$).

Theorem 5.5.
(1) For an arithmetical formula φ, φ^\sim is the same as φ.
(2) For $s \geq 0$: if $PATr_s \vdash \varphi$, then $SA_s \vdash (\varphi)^\sim$.
Proof. 1. This follows immediately from the definition of φ^\sim.
2. Both $PATr_0$ and SA_0 are the same as the first-order arithmetic PA.
For $s \geq 1$ proof is by induction on the length of derivation of φ. Since logical connectives and quantifiers are preserved in this interpretation, the statement is obvious for the induction axiom and the classical predicate logic. Peano axioms are the same in both theories.
For axioms (Tr_1)–(Tr_6) the statement follows from Lemmas 5.3, 5.4 and the definitions of a_k and g_k. □

Corollary 5.6. If $PATr \vdash \varphi$, then $SA \vdash (\varphi)^\sim$.

5.3. Interpretation of SA in BT with classical logic. We will use the following notations in BT:

\(\{n\}^0 = n, \{n\}^{k+1} = \{\{n\}\}^k \).

For $k \geq 1$: $M_k(X^k) \models (\forall Z^{k-1} \in X) \exists n (\{n\}^{k-1} \simeq Z)$. $M_k(X^k)$ means that X is an interpretation of a set of natural numbers of sort k.

For every formula φ of SA we define its interpretation φ^* by induction on the complexity of φ.

\[(t = \tau)^* = t = \tau \quad (\text{we identify arithmetical terms in } SA \text{ with corresponding arithmetical terms in } BT).\]

\[\top^* = \top.\]

\[(\psi \circ \chi)^* = \psi^* \circ \chi^*.\]

\[(Qn\psi)^* = Qn\psi^*.\]

\[(\forall x_i^{(k)} \psi)^* \equiv \forall X_i^k [M_k(X_i) \supset \psi^*].\]

\[(\exists x_i^{(k)} \psi)^* \equiv \exists X_i^k [M_k(X_i) \land \psi^*].\]

Clearly, if φ is a formula of SA_s, then φ^* is a formula of BT_s ($s \geq 0$).
The following is proven by induction on k:

\[\{n\}^k \simeq x \quad \text{is a } 0\text{-elementary formula.} \quad (9)\]

This implies:

\[\{t \in_k x_i^{(k)}\}^* \quad \text{is a } k\text{-elementary formula;} \quad (10)\]

\[M_k(X^k) \quad \text{is a } k\text{-elementary formula.} \quad (11)\]

Using (9) and (10) the following is proven by induction on the complexity of φ:

\[\text{If } \varphi \text{ is a } k\text{-simple formula, then } \varphi^* \text{ is a } k\text{-elementary formula.} \quad (12)\]

We denote BT^{cl} the theory BT with classical logic and BT^{cl}_s the theory BT_s with classical logic.

Theorem 5.7. (1) If ψ is an arithmetical formula (that is, a formula of PA), then $BT^{cl}_0 \vdash \psi^* \equiv \psi$.

(2) For $s \geq 0$: if $SA_s \vdash \psi$, then $BT^{cl}_s \vdash (\overline{\psi})^*$.

Corollary 5.8. If \(S A \vdash \psi \), then \(BT^{cl} \vdash \overline{\psi}^* \).

5.4. Interpretation of \(BT^{cl} \) in \(BT \). We generalise the negative interpretation defined in [9] to the theory \(BT \). For any constant \(a \), which is not a comprehension constant \(\xi \), we define \(a^- = a \).

By simultaneous induction on Gödel numbers we define interpretation \(\phi^- \) for any formula \(\phi \) of \(BT \) and interpretation \(\xi^- \) for any comprehension constant \(\xi \).

1) Interpretation \(\phi^- \).

If \(\phi \) is an atomic formula, then \(\phi^- = \neg \neg \phi \), where \(\neg \phi \) is obtained from \(\phi \) by replacing each constant \(a \) by \(a^- \).
\(\bot^- \equiv \bot. \)

\[(\psi \circ \chi)^- \equiv \psi^- \circ \chi^- \text{ if } \circ \text{ is a connective } \land \text{ or } \lor. \]

\[(\psi \lor \chi)^- \equiv \neg(\psi^- \lor \chi^-). \]

\[(\forall \chi \psi)^- \equiv \forall \chi \psi^-, \]

\[(\exists \chi \psi)^- \equiv \neg \exists \chi \psi^-, \text{ where } X \text{ is any variable of } BT. \]

2) In case when \(n \) has the form \(\downarrow \mathcal{Z}^k \cdot \vec{X} \cdot \varphi \cdot \), we define \(\mathcal{Z}^- = \mathcal{Z}^-_{\varphi^-} \), where \(n^- = \downarrow \mathcal{Z}^k \cdot \vec{X} \cdot \varphi^- \). In other cases we take \(\mathcal{Z}^- = 0. \)

For any external term \(t \) its interpretation \(t^- \) is obtained from \(t \) by replacing each constant \(a \) by its interpretation \(a^- \).

Lemma 5.9.

1. For any external terms \(t \) and \(\tau \) with no types \(> s \):

\[BT_s \vdash (t \simeq \tau)^- \equiv \neg \neg (t^- \simeq \tau^-). \]

2. For any formula \(\varphi \) of \(BT_s \):

\[BT_s \vdash \neg \neg \varphi^- \equiv \varphi^- \]

3. If an arithmetical formula \(\varphi \) expresses a primitive recursive predicate, then:

\[BT_0 \vdash \varphi^- \equiv \varphi. \]

Proof.

1. Proof is by induction on the construction of the terms.

2. Proof is by induction on the complexity of \(\varphi \).

3. Since \(\varphi \) is an arithmetical formula, then \(\varphi^- \equiv \neg \neg \varphi \) (it is proven by induction on the complexity of \(\varphi \)). Since \(\varphi \) expresses a primitive recursive predicate, then \(\neg \neg \varphi \equiv \varphi \). \(\square \)

Theorem 5.10. For \(s \geq 0 \) : if \(BT_s^d \vdash \psi \), then \(BT_s \vdash \psi^- \).

Proof.

Proof is by induction on the length of derivation of \(\psi \). For axioms and derivation rules of classical logic the proof is standard, see, for example, [6]. We consider only the case when \(\psi \) is the comprehension axiom:

\[\exists \mathcal{U}^{k+1} \left[\mathcal{U}_n(\vec{X}) \simeq U \land \forall \mathcal{Z}^k(Z \in U \equiv \varphi) \right] \]

where \(0 \leq k < s \), \(n = \downarrow \mathcal{Z}^k \cdot \vec{X} \cdot \varphi \cdot \), and \(\varphi \) is a \((k+1) \)-elementary formula. By the definition \(\varphi^- \) is also a \((k+1) \)-elementary formula, so

\[\exists \mathcal{U}^{k+1} \left[\mathcal{U}_n(\vec{X}) \simeq U \land \forall \mathcal{Z}^k(Z \in U \equiv \varphi^-) \right] \]

By Lemma 5.9, \(\neg \neg \varphi^- \equiv \varphi^- \). Therefore:

\[\neg \neg \exists \mathcal{U}^{k+1} \left[\neg \neg (\mathcal{U}_n(\vec{X}) \simeq U) \land \forall \mathcal{Z}^k(\neg \neg (Z \in U \equiv \varphi^-) \right]. \]

By Lemma 5.9, \(\neg \neg (\mathcal{U}_n(\vec{X}) \simeq U) \equiv (\mathcal{U}_n(\vec{X}) \simeq U)^- \). Therefore

\[\neg \neg \exists \mathcal{U}^{k+1} \left[(\mathcal{U}_n(\vec{X}) \simeq U)^- \land \forall \mathcal{Z}^k(Z \in U \equiv \varphi)^- \right], \]

which is \(\psi^- \). \(\square \)

Corollary 5.11. If \(BT^d \vdash \psi \), then \(BT \vdash \psi^- \).
5.5. **Summary of interpretabilities.**

Theorem 5.12. The fragments $BT_s, BT_{s}^{cl}, PATr_s$ and SA_s are interpretable in one another.

Proof. Using symbol \rightarrow for “interpretable” we can summarise the results of this section:

- $BT_s \rightarrow PATr_s$ (Theorem 5.1);
- $PATr_s \rightarrow SA_s$ (Theorem 5.5.2);
- $SA_s \rightarrow BT_{s}^{cl}$ (Theorem 5.7.2);
- $BT_{s}^{cl} \rightarrow BT_s$ (Theorem 5.10).

This means that the four fragments are interpretable in one another. □

Theorem 5.13. The theories $BT, BT_{s}^{cl}, PATr$ and SA are interpretable in one another.

Proof. This follows from Corollaries 5.2, 5.6, 5.8 and 5.11 similarly to the previous theorem. □

5.6. **Comparison of SA with Simpson’s subsystems of second order arithmetic.** In [14] Simpson introduced several formal theories for reverse mathematics. All these theories are subsystems of second order arithmetic and have classical logic; most of the theories have only restricted induction axiom:

$$0 \in X \land \forall n(n \in X \supset n + 1 \in X) \supset \forall n(n \in X).$$

Let us denote SA^r the theory SA where the induction axiom is restricted to formulas with no set quantifiers. Then SA^r is equivalent to the theory SA where the induction axiom has the form:

$$0 \in z(k) \land \forall n(n \in z \supset n + 1 \in z) \supset \forall n(n \in z), \ k \geq 1.$$

If we similarly restrict the induction axiom in the theories BT, BT_{s}^{cl} and $PATr$, then the theorem about their mutual interpretability still holds, as well as the theorem about the mutual interpretability of their corresponding fragments.

With respect to proof-theoretical strength, the theory SA^r is between the Simpson’s theories ACA_0 (the second-order arithmetic with arithmetical comprehension) and $\Delta^1_1 - CA_0$ (the second order arithmetic with Δ^1_1 comprehension).

Ordinary mathematics can be developed in SA in a similar way that Simpson [14] develops it in the theory ACA_0. We believe that some definitions can be simplified in SA due to its multi-sorted language but this requires more research.

6. **Comparison of the proof-theoretical strengths of fragments BT_s, $PATr_s$ and SA_s**

It follows from Theorem 5.13 that the theories $BT, BT_{s}^{cl}, PATr$ and SA are equiconsistent. It follows from Theorem 5.12 that for each $s \geq 0$ the fragments $BT_s, BT_{s}^{cl}, PATr_s$ and SA_s are equiconsistent.

Theorem 6.1. For $s \geq 0$:

1. $PATr_{s+1} \vdash \text{Con}_{PATr_s}$;
2. $BT_{s+1} \vdash \text{Con}_{BT_s}$;
3. $SA_{s+1} \vdash \text{Con}_{SA_s}$.
Proof. 1. This was proven in [11] as Lemma 3.b.
2. By Theorem 2 in [11],
\[
\text{PATr}_{s+1} \vdash \text{Con}_{BT,s}.
\] (15)
By Theorem 5.5.1, 2, \(SA_{s+1} \vdash \text{Con}_{BT,s}\), since \(\text{Con}_{BT,s}\) is a closed arithmetical formula.
Similarly, by Theorem 5.7.1, 2, \(BT_{s+1}^d \vdash \text{Con}_{BT,s}\) and by Theorem 5.10 \(BT_{s+1} \vdash (\text{Con}_{BT,s})^-\).
The formula \(\text{Con}_{BT,s}\) is \(\forall n \neg \text{Proof}_{BT,s}((\bot,n))\), which is a closed formula and \(\text{Proof}_{BT,s}((\bot,n))\) expresses a primitive recursive predicate. So by Lemma 5.9.3,
\[
(\text{Con}_{BT,s})^- \equiv \forall n \neg(\text{Proof}_{BT,s}((\bot,n)))^- \equiv \forall n \neg \text{Proof}_{BT,s}((\bot,n)) \equiv \text{Con}_{BT,s}.
\]
Therefore \(BT_{s+1} \vdash \text{Con}_{BT,s}\).
3. By formalising the proofs of Theorems 5.7.2 and 5.10 in \(\text{PATr}_{s+1}\) we get:
\[
\text{PATr}_{s+1} \vdash \text{Pv}_{SA,s}(m) \supset \text{Pv}_{BT,s}((\bot,m)^{-})^-.\]
In particular, for \(m = \bot\) we have:
\[
\text{PATr}_{s+1} \vdash \text{Pv}_{SA,s}(\bot) \supset \text{Pv}_{BT,s}(\bot).
\]
So \(\text{PATr}_{s+1} \vdash \neg \text{Pv}_{BT,s}(\bot) \supset \neg \text{Pv}_{SA,s}(\bot)\), that is
\[
\text{PATr}_{s+1} \vdash \text{Con}_{BT,s} \supset \text{Con}_{SA,s}
\]
and by [13], \(\text{PATr}_{s+1} \vdash \text{Con}_{SA,s}\).
By Theorem 5.5.1, 2, we get \(SA_{s+1} \vdash \text{Con}_{SA,s}\). □

Clearly, the Beeson’s theory \(BEM + (CA)\) is the same as the fragment \(BT_1\).
This implies the next corollary.

Corollary 6.2. (1) \(BT_2 \vdash \text{Con}_{BEM + (CA)}\).
(2) \(BT \vdash \text{Con}_{BEM + (CA)}\).

7. **Discussion**

In this paper we described the axiomatic theory \(BT\), which is a suitable formal theory for developing constructive mathematics, due to its constructive properties such as the existence and disjunction properties, and consistency with the formal Church thesis. Also \(BT\) is interpretable in relatively weak versions \(Ar + (AC!)\) and \(Ar + (\Delta_1 - C)\) of second-order arithmetic.

We studied the proof-theoretical strength of \(BT\) by comparing it with the axiomatic theories \(\text{PATr}\) and \(SA\), and we showed that all three theories are interpretable in one another. We also showed that the fragments \(BT_s, \text{PATr}_s\) and \(SA_s\) are interpretable in one another and that each of them is weaker than a corresponding next fragment. In particular, this means that each of the theories \(BT, \text{PATr}\) and \(SA\) is stronger than the predicative second-order arithmetic.

Next we plan to use the advantage of multi-typed language of \(BT\) to state and prove constructive versions of theorems of classical mathematics in \(BT\). We also plan to investigate the consistency of \(BT\) with a stronger version of the formal Church thesis.
References

[1] M. Beeson, Some relations between classical and constructive mathematics, The Journal of Symbolic Logic 43 (1978), no. 2, 228–246.
[2] ———, A type-free Gödel interpretation, The Journal of Symbolic Logic 43 (1978), no. 2, 213–227.
[3] ———, Foundations of constructive mathematics. Metamathematical studies, Springer, 1985.
[4] E. Bishop, Foundations of constructive analysis, Ishi Press, 2012.
[5] E. Bishop and D. Bridges, Constructive analysis, Springer, 2011.
[6] A. G. Dragalin, Mathematical intuitionism. Introduction to proof theory, American Mathematical Society, Providence, RI, 1987.
[7] S. Feferman, A language and axioms for explicit mathematics, Lecture Notes in Math 450 (1975), 87–139.
[8] ———, Constructive theories of functions and classes, Logic Colloquium 78 (Mons) 450 (1979), 159–224.
[9] M. Friedman, The consistency of classical set theory relative to a set theory with intuitionistic logic, The Journal of Symbolic Logic 38 (1973), no. 2, 315–319.
[10] F. Kachapova, Realizability and existence property of a constructive set theory with types, Proceedings of the 13th Asian Logic Conference (2015), 136–155.
[11] ———, Interpretation of constructive multi-typed theory in the theory of arithmetical truth, Lobachevskii Journal of Mathematics 36 (2015, to be published), no. 4.
[12] F. Kashapova, Isolation of classes of constructively derivable theorems in a many-sorted intuitionistic set theory equivalent to a second-order arithmetic, Doklady Akademii Nauk 29 (1984), no. 3, 583–587.
[13] E. Mendelson, Introduction to mathematical logic, Chapman and Hall/CRC, Boca Raton, Florida, 2009.
[14] S.G. Simpson, Subsystems of second order arithmetic, Cambridge University Press, 2010.

School of Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
E-mail address: farida.kachapova@aut.ac.nz