RESEARCH ARTICLE

Geographical and Ethnic Distributions of the MTHFR C677T, A1298C and MTRR A66G Gene Polymorphisms in Chinese Populations: A Meta-Analysis

Xingmin Wang*, Jinjian Fu*, Qianxi Li*, Dingyuan Zeng*

Department of Gynecology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China

☯ These authors contributed equally to this work.

* zdylzsy@126.com

Abstract

Background

The geographical and ethnic distributions of the polymorphic methylenetetrahydrofolate reductase (MTHFR) mutations (C677T and A1298C) and methionine synthase reductase (MTRR) mutation (A66G) remain heterogeneous in China. The goal of this study was to estimate the pooled frequencies of the alleles and associated genotypes of these gene polymorphisms among healthy populations in Mainland China.

Objective and Methods

We systematically reviewed published epidemiological studies on the distributions of 3 genetic variants in Chinese healthy populations living in Mainland China through a meta-analysis. The relevant electronic databases were searched. All of the raw data of the eligible citations were extracted. The frequency estimates were stratified by geography, ethnicity and sex.

Results

Sixty-six studies were identified with a total of 92277 study participants. The meta-analysis revealed that the frequencies of the MTHFR C677T, A1298C, and MTRR A66G gene polymorphisms varied significantly between different ethnic groups and along geographical gradients. The frequencies of the 677T allele and 677TT genotype increased along the southern-central-northern direction across Mainland China (all P values < 0.001). The frequencies of the 1298C, 1298CC, 66G and 66GG genotypes decreased along the southern-central-northern direction across the country (all P values < 0.001).
Conclusions

Our meta-analysis strongly indicates significant geographical and ethnic variations in the frequencies of the C677T, A1298C, and A66G gene polymorphisms in the folate metabolism pathway among Chinese populations.

Introduction

Multiple epidemiological studies have demonstrated that homocysteine is an important biomarker with biological functions in the folate metabolism pathway. Hyperhomocysteinemia (HHCY) is a medical health problem characterized by elevated homocysteine concentrations in the plasma that has been identified as a key pathophysiological risk factor for a series of adverse events, including neural-tube defects, vascular dementia, pregnancy complications, cancers and psychiatric disorders [1–4]. Previous studies have revealed that the regulation of the plasma levels of homocysteine are quite complex and involve both environmental factors (such as folate acid and vitamin B12 intake) and hereditary components [5]. However, how a number of genes and hereditary determinants might contribute to HHCY remains unclear. Mutations in some key genes encoding homocysteine-metabolizing enzymes, such as methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C and methionine synthase reductase (MTRR) A66G, may contribute to the risk of the development of hyperhomocysteinemia and thus lead to clinical disorders [6].

The enzyme MTHFR catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, which is the carbon donor for the methylation of homocysteine to methionine [7]. The C677T polymorphism is a point mutation at position 677 of the MTHFR gene that causes the substitution of alanine with valine, which leads to a reduction in enzyme activity and causes mild to moderate hyperhomocysteinemia and reduces plasma folate levels. Genome-wide association studies (GWASs) have confirmed the association between the MTHFR C677T genotype and homocysteine levels in healthy populations [8]. Along with those investigations, several studies have proposed that double 677CT/1298AC heterozygosity can result in a reduction in enzymatic activity that represents an important risk factor for congenital anomalies, particularly in patients with low blood folate and vitamin B12 concentrations [9].

The frequency distributions of MTHFR and MTRR polymorphisms, especially C677T, vary substantially between different regional and ethnic groups. For example, the frequency of the 677T allele has been found to be highest in north India (16.7%) and lowest was in east India (1.1%). Moreover, the highest frequency of the 677TT genotype has been found in the Rajput population (7.8%), and this genotype is absent in the Kom, Meitei, Paite, Thadou, Kabui, Munda, Oraon and Naikda population groups in India [10]. A number of studies have investigated the C677T and A1298C in MTHFR and A66G in MTRR polymorphisms in different ethnic and geographical regions in Chinese general populations, however, the results have been irreproducible and inconclusive [11].

Accurate information about the geographical and ethnic distributions of the alleles and associated genotypes of MTHFR and MTRR in Mainland China will enable the design of proper interventions (e.g., folic acid supplementation) in the general population to reduce the rates of some medical diseases [12].

We conducted this comprehensive meta-analysis that integrated multiple studies to provide an overall assessment of the key polymorphisms in the major folate pathway genes among
general Chinese populations. Sex-stratified and northern-central-southern gradients in the heterozygosities and allele frequencies were also assessed.

Materials and Methods

Literature database

The following major electronic literature databases were searched in September 2015 without language restrictions: PubMed, the Chinese National Knowledge Infrastructure (CNKI), the Chinese Wanfang Database, the Chinese VIP Database, and Google Scholar. The keywords and medical subject headings “MTHFR”, “MTRR”, “methylene tetrahydrofolate reductase”, “methionine synthase reductase”, “folate pathway”, “polymorphisms” or “SNP”, and “Chinese” or “China” were used to scan for potentially relevant studies.

Inclusion/exclusion criteria

The identified studies were eligible for inclusion if they met the following criteria: (1) published in Chinese or English, (2) the study participants were general Chinese populations who lived in Mainland China, (3) the evaluation of data related to any or all of the polymorphisms in MTHFR or MTRR in general Chinese populations, and (4) included data regarding genotype/allele counts of the C677T, A1298C and A66G polymorphisms among the population for the estimation of the frequencies and 95% confidence intervals (95% CIs). Studies were excluded if they met the following criteria: (1) reviews, lectures, editorials or correspondence letters, (2) the study participants were evaluated in terms of folate pathway gene polymorphisms associated with relevant diseases, (3) duplicated studies were eliminated, and only recently published studies were ultimately selected, and (4) if the same data were published in English and Chinese, only the English-language articles were included.

Data extraction

Two authors (XM Wang and JJ Fu) independently extracted the following information: the first author’s name, publication year, investigated location, ethnic groups, age, sample source, sample size, genotyping method, genotype distribution, frequency, and 95% CI.

Statistical analysis

The Hardy-Weinberg equilibrium (HWEs) were evaluated to determine whether the MTHFR C677T and A1298C and MTRR A66G genotype distributions were in genetic equilibrium (threshold set to 0.05) [13]. Meta-analyses of the prevalences of the allele frequencies (e.g., C677T: TT vs. total genotypes) and allele contrasts (e.g., C677T: T vs. total C+T) were performed using Stata statistical software version 13.0 (Stata corporation LP, College Station, Texas, USA). A random-effects model was used to account for the pooled relevant genotype frequencies and their corresponding 95% CIs. Stratified analyses were performed according to the northern-central-southern gradient, ethnicity, and sex. The heterogeneity among the studies was evaluated with the Cochrane chi-square (χ^2) and quantified with the I^2 statistic [14–15]. Publication bias was evaluated using Begg’s funnel plots and Egger’s test (significant at $P<0.1$) [16–17].

Results

Characteristics of the studies

In total, 495 articles were identified, of which 471 potentially relevant citations were included for further evaluation. Eventually, 68 articles (66 on the C677T, 51 on the A1298C, and 43 on
the A66G polymorphisms) with a total of 92277 participants met the inclusion criteria [18–85] (Fig 1). The main characteristics of the studies on the MTHFR C677T and A1298C and MTRR A66G polymorphisms are listed in Tables 1–3, respectively. In the majority of the studies, buccal cells were obtained and tested with real-time polymerase chain reaction (RT-PCR); otherwise, blood samples were tested with restriction fragment length polymorphism (RFLP) analysis. The genotype frequencies indicated that all of the polymorphisms were in HWE in all of the samples.

Pooled frequencies of the allele genotypes of the three gene polymorphisms in the Chinese general population

Table 4 illustrates the summarized national estimates of the 677TT and 677T frequencies among healthy populations from 1998 to 2015. Taking all populations together, the frequencies of the 677TT genotype and the 677T allele in the healthy Chinese population were 20% (18%-23%) and 42% (38%-45%), respectively (S1 and S2 Files). Overall, the combined estimated frequencies of the 1298CC genotype and the 1298C allele in the healthy Chinese population were 5% (4%-5%) and 20% (18%-22%), respectively (S3 and S4 Files). The average frequencies of the 66GG genotype and the 66G allele in the healthy Chinese population were 7% (6%-7%) and 26% (25%-28%), respectively (S5 and S6 Files).

Geographical distributions of the three polymorphisms in the folate pathway

The allele and genotype frequencies of the three polymorphisms according to geographical region are given in Table 5. The genotype frequencies of the MTHFR C677T and 677T alleles and the 677TT genotype frequency exhibited increases in the southern-central-northern direction in Mainland China. The frequencies of the 677T allele and the 677TT genotype increased from lower values (5% and 17%, respectively) in Guangxi, to intermediate values (12% and 32%, respectively) in Anhui, to higher values (39% and 62%, respectively) in Shandong. Taken together, the frequencies of the 677TT genotype and the 677T allele along the geographical gradient were 7% (5%-8%) and 25% (23%-27%) in southern, 19% (16%-21%) and 41% (36%-
Author	Publicationyear	Location	Ethnicgroup	Age	Sample	Sample collection	Sample size(male/female)	Method	Genotype	Tallelic		
Yu JM	2000	mixed	mixed	not given	blood	convenient	200	RFLP	84	100	16	132
Pei LJ	2000	mixed	mixed	not given	blood	populational-based	277	RFLP	97	126	54	234
Zhu HP	1998	mixed	mixed	not given	blood	convenient	117	RFLP	50	50	17	84
Yang BH	2001	Anhui	Han	20–55	blood	convenient	55(30/25)	RFLP	19	21	15	51
Chen SQ	2002	Guangdong	Han	average 40	blood	convenient	143(68/75)	RFLP	90	50	3	56
Sun WP	2003	Shanxi	Han	37–78	blood	populational-based	96(58/38)	RFLP	26	53	17	87
Shen LP	2005	Guangxi	Han	23–34	blood	convenient	200(female)	RFLP	119	68	13	94
Xiao Y	2005	Guangxi	mixed	18–22	blood	populational-based	317(138/179)	RFLP	221	90	6	102
Zhang CS	2005	Shandong	Han	44.7±7.5	blood	convenient	86(42/44)	RFLP	11	42	33	108
Li AF	2007	Henan	Han	56±8	blood	populational-based	500(274/226)	RFLP	163	173	164	501
Dai X	2008	Ningxia	mixed	18–22	blood	convenient	315(124/191)	RFLP	47	221	47	315
Mao FR	2008	mixed	mixed	not given	blood	populational-based	1015	RFLP	430	505	80	665
Chen F	2009	Henan	Han	35–76	blood	convenient	495(320/175)	RFLP	181	182	132	446
Shan KR	2009	Guizhou	Miao	not given	blood	populational-based	108	RFLP	88	17	3	23
Chen YX	2010	Shanxi	Han	25–35	blood	not given	50(female)	RFLP	6	24	20	64
He XM	2010	mixed	Han	not given	blood	populational-based	1017(female)	RFLP	355	422	220	882
Jiang HO	2010	Hunan	Han	20–70	blood	populational-based	120	RFLP	64	41	15	71
Zhang QF	2010	Hainan	mixed	19–46	buccal cells	convenient	100(8female)	RT-PCR	559	310	139	588
Zhang L	2010	Guangxi	mixed	not given	blood	populational-based	1466(723/743)	RFLP	682	678	106	890
Lao HH	2011	Hainan	mixed	not given	buccal cells	populational-based	11437(female)	RT-PCR	6678	3741	1018	5777
Zhang Y	2012	Sichuan	Han	not given	buccal cells	populational-based	2573(female)	RT-PCR	1047	1171	355	1881
Wu HZ	2011	Henan	Han	20–35	blood	populational-based	78(39/39)	RFLP	38	31	9	49
He YX	2012	Henan	Han	19–44	buccal cells	convenient	109(female)	RT-PCR	198	493	402	1297
Yang Y	2012	Jiangsu	Han	27.0±4.4	buccal cells	convenient	2885(female)	RT-PCR	877	1378	630	2638
Cong YY	2012	Shandong	Han	29.4±7.7	buccal cells	convenient	1041(female)	RT-PCR	130	457	454	1365
Zhang YL	2012	Shandong	Han	28.7±5.8	buccal cells	convenient	825(female)	RT-PCR	138	398	289	976
Chen HB	2012	Shanxi	Han	not given	blood	convenient	63(31/32)	RT-PCR	10	31	22	75
Gao LJ	2012	Guangdong	Han	27.6±4.0	buccal cells	convenient	359(female)	RT-PCR	186	134	39	212
Du LL	2013	Guangxi	Zhuang	70–104	blood	populational-based	973(339/634)	RT-PCR	677	252	44	340
Yang BY	2013	Guangxi	mixed	18–47	blood	populational-based	15357(952/14405)	RT-PCR	4939	6791	3827	14045
Wang LN	2012	Xinjiang	mixed	19–65	blood	convenient	300(144/156)	RFLP	58	196	46	288
Xiu X	2013	Shandong	Han	19–40	buccal cells	convenient	2934(female)	RT-PCR	442	1354	1138	3630
Chen YX	2013	Shanxi	Han	22–73	blood	convenient	192(94/98)	RFLP	32	97	63	223
Wang WP	2013	Hubei	Han	28.2±3.3	buccal cells	convenient	289(female)	RT-PCR	1069	1367	463	2293
Gao H	2013	Hubei	Han	18–53	buccal cells	convenient	1902(female)	RT-PCR	696	902	304	1510
Wan LJ	2013	Yunnan	Han	27.5±4.0	buccal cells	convenient	297(female)	RT-PCR	116	139	42	223
Yan ZM	2013	Hainan	Han	27.2±5.3	buccal cells	convenient	122(female)	RT-PCR	756	390	75	540
Zhang T	2013	Guizhou	minority	mixed	blood	populational-based	597(318/279)	RT-PCR	398	180	19	218
Author	Publicationyear	Location	Ethnicgroup	Age	Sample	Sample collection	Sample size(male/female)	Method	Genotype	Tallelic		
---------	----------------	----------	-------------	-------	--------	-------------------	--------------------------	--------	----------	----------		
Huang GX	2013	Hainan	mixed	mixed	buccal cells	convenient	1841(female)	RT-PCR	1219 548 74	696		
Luo XL	2014	Hubei	Han	27.3±5.2	buccal cells	convenient	1077(female)	RT-PCR	429 482 166	814		
Wang FX	2014	Shannxi	Han	22–35	buccal cells	convenient	1508(female)	RT-PCR	918 249 341	931		
Hao YY	2014	Xinjiang	mixed	mixed	buccal cells	convenient	210(female)	RT-PCR	83 86 41	168		
Yan Q	2014	Shandong	Han	28.8±3.4	buccal cells	convenient	2670(female)	RT-PCR	497 1313 860	3033		
Xing JF	2014	Henan	Han	28.2±4.2	buccal cells	convenient	425(female)	RT-PCR	57 207 158	523		
Hu JW	2015	Sichuan	Han	25.4±4.3	buccal cells	convenient	4865(female)	RT-PCR	1443 1845 675	3195		
Huang QH	2015	Jiangsu	Han	26.5±4.3	buccal cells	convenient	348(female)	RT-PCR	99 192 58	308		
Li JH	2015	Hebei	Han	27.3±4.9	buccal cells	convenient	1267(female)	RT-PCR	220 617 430	1477		
Xiang CG	2015	Sichuan	Han	26.0±4.8	buccal cells	convenient	656(female)	RT-PCR	238 302 116	534		
Jiang W	2014	Guangxi	Han	28.0±4.5	buccal cells	convenient	948(female)	RT-PCR	572 315 61	437		
Ouyang QQ	2014	Shandong	Han	22–39	blood	convenient	98(female)	RFLP	24 52 22	96		
Chen XL	2014	Guangxi	Han	27.7±4.4	buccal cells	convenient	564(female)	RT-PCR	82 271 211	693		
Ma LM	2015	Heilongjiang	Han	28.1±5.5	buccal cells	convenient	455(female)	RT-PCR	78 240 137	514		
Tang HY	2014	Shandong	Han	27.7±3.8	buccal cells	convenient	787(female)	RT-PCR	107 373 307	987		
Tian Y	2014	Jiangsu	Han	27.0±4.8	buccal cells	convenient	524(female)	RT-PCR	185 240 99	438		
Lu GR	2014	Shandong	Han	28.5±5.0	buccal cells	convenient	1352(female)	RT-PCR	201 625 526	1677		
Jiao FY	2014	Shandong	Han	28.2±4.2	buccal cells	convenient	529(female)	RT-PCR	93 261 175	611		
Gao X	2014	Hebei	Han	28.3±4.3	buccal cells	convenient	860(female)	RT-PCR	158 429 273	829		
Luo SQ	2015	Guangxi	Miao	not given	buccal cells	convenient	818(female)	RT-PCR	593 208 12	242		
Yu YH	2015	Jilin	Han	28.5±4.3	buccal cells	convenient	2620(female)	RT-PCR	551 1253 816	2885		
Li XX	2015	Jiangsu	Han	26.7±3.6	buccal cells	convenient	4008(female)	RT-PCR	1290 1984 734	1431		
Wang SY	2015	Hunan	Han	26.7±4.6	buccal cells	convenient	1701(female)	RT-PCR	725 762 214	1190		
Wu WQ	2015	Jiangsu	Han	26.4±4.5	buccal cells	convenient	644(female)	RT-PCR	189 308 147	602		
Mao WC	2015	Guizhou	mixed	not given	buccal cells	convenient	1232(female)	RT-PCR	468 416 158	832		
Cui HL	2015	Henan	Han	28.9±4.7	buccal cells	convenient	1253(female)	RT-PCR	201 542 510	1562		
Liu XL	2014	Ningxia	Han	29.4±5.3	buccal cells	convenient	443(female)	RT-PCR	113 228 102	432		

doi:10.1371/journal.pone.0152414.t001

Table 1. (Continued)
Author	Publication year	Location	Ethnic group	Age	Sample	Sample collection	Sample size (male/female)	Method	Genotype	C allelic		
Zhu HP	1998	mixed	mixed	not given	blood	convenient	117	RFLP	AA 69	AC 41	CC 7	55
Sun WP	2003	Shannxi	Han	37–78	blood	population-based	96(58/38)	RFLP	AA 61	AC 32	CC 3	38
Xiao Y	2005	Guizhou	mixed	not given	blood	population-based	317(138/179)	RFLP	AA 100	AC 184	CC 33	250
Zhang CS	2005	Shandong	Han	44.7±7.5	blood	convenient	86(42/44)	RFLP	AA 67	AC 19	CC 0	19
Mao FR	2008	mixed	mixed	not given	blood	population-based	998	RFLP	AA 391	AC 385	CC 222	829
Chen F	2009	Henan	Han	35–76	blood	convenient	495(320/179)	RFLP	AA 387	AC 105	CC 3	111
He XM	2010	mixed	Han	not given	blood	population-based	1017(female)	RFLP	AA 649	AC 322	CC 46	414
Zhang QF	2010	Hainan	mixed	19–46	blood	convenient	1008(female)	RT-PCR	AA 585	AC 342	CC 81	504
Lao HH	2011	Hainan	not given	blood	population-based	11437(female)	RT-PCR	AA 6481	AC 4145	CC 811	5767	
Zhang Y	2012	Sichuan	Han	44.7±7.5	blood	convenience	317	RFLP	AA 1612	AC 800	CC 1122	166
Wu HZ	2011	Anhui	Han	20–35	blood	population-based	78(39/39)	RFLP	AA 46	AC 30	CC 2	34
He YX	2012	Henan	Han	19–44	blood	convenient	1093(female)	RT-PCR	AA 798	AC 269	CC 26	321
Yang Y	2012	Jiangsu	Han	27.0±4.4	blood	convenient	2885(female)	RT-PCR	AA 1993	AC 791	CC 101	993
Cong YY	2012	Shandong	Han	29.4±7.7	blood	convenient	1041(female)	RT-PCR	AA 822	AC 204	CC 15	234
Zhang YL	2012	Shandong	Han	28.7±5.8	blood	convenient	825(female)	RT-PCR	AA 627	AC 178	CC 20	218
Gao LJ	2012	Guangdong	Han	27.6±4.0	blood	convenient	359(female)	RT-PCR	AA 221	AC 112	CC 26	164
Yang BY	2013	mixed	Han	18–47	blood	population-based	13473	RT-PCR	AA 9000	AC 3944	CC 529	5002
Xiu X	2013	Shandong	Han	19–40	blood	convenient	2934(female)	RT-PCR	AA 2224	AC 672	CC 38	744
Wang WP	2013	Hubei	Han	28.2±3.3	blood	convenient	2899(female)	RT-PCR	AA 1901	AC 866	CC 132	1130
Gao H	2013	Hubei	mixed	18–53	blood	population-based	1902(female)	RT-PCR	AA 1283	AC 558	CC 61	680
Wan LJ	2013	Yunnan	Han	27.5±4.0	blood	convenient	297(female)	RT-PCR	AA 194	AC 95	CC 8	111
Yan ZM	2013	Hainan	Han	27.2±5.3	blood	convenient	1221(female)	RT-PCR	AA 699	AC 435	CC 87	609
Zhang T	2013	Guizhou	minority	mixed	blood	population-based	597(318/279)	RT-PCR	AA 311	AC 243	CC 43	329
Wang P	2013	Xinjiang	mixed	Not given	blood	convenient	300(female)	RT-PCR	AA 204	AC 91	CC 5	101
Huang GX	2013	Hainan	mixed	blood	convenient	1841(female)	RT-PCR	AA 999	AC 694	CC 148	990	
Luo XL	2014	Hubei	Han	27.3±5.2	blood	convenient	1077(female)	RT-PCR	AA 702	AC 347	CC 28	403
Wang FX	2014	Shanxi	Han	22–35	blood	convenient	1508(female)	RT-PCR	AA 542	AC 912	CC 54	1020
Hao YY	2014	Xinjiang	mixed	mixed	blood	convenient	210(female)	RT-PCR	AA 135	AC 64	CC 11	86
Yan Q	2014	Shandong	Han	28.8±3.4	blood	convenient	2670(female)	RT-PCR	AA 1936	AC 685	CC 49	783
Xing JF	2014	Henan	Han	28.2±4.2	blood	convenient	425(female)	RT-PCR	AA 316	AC 102	CC 4	110
Hu XW	2015	Hubei	NA	28.2±4.2	blood	convenient	3963(female)	RT-PCR	AA 2661	AC 1168	CC 134	1436
Jia XP	2015	Sichuan	Han	25.4±4.3	blood	convenient	4865(female)	RT-PCR	AA 3096	AC 1555	CC 214	1983
Huang QH	2015	Jiangsu	Han	26.5±4.3	blood	convenient	348(female)	RT-PCR	AA 231	AC 106	CC 10	126
Li JH	2015	Hebei	Han	27.3±4.9	blood	convenient	1267(female)	RT-PCR	AA 947	AC 296	CC 24	344
Xiang CG	2015	Sichuan	Han	26.0±4.8	blood	convenient	656(female)	RT-PCR	AA 428	AC 205	CC 23	251
Jiang W	2014	Guangxi	Han	28.0±4.5	blood	convenient	948(female)	RT-PCR	AA 535	AC 344	CC 69	482
Chen XL	2014	Guangxi	Han	27.7±4.4	blood	convenient	564(female)	RT-PCR	AA 409	AC 144	CC 11	166
Ma LM	2015	Heilongjiang	Han	28.1±5.5	blood	convenient	455(female)	RT-PCR	AA 336	AC 110	CC 9	128

(Continued)
Table 2. Distribution of the MTHFR 677C>T polymorphism among populations in China.

Author	Publication Year	Location	Ethnic Group	Age	Sample Collection	Sample Size (Female/Male)	Method	Genotype
Tang HY	2014	Shandong	Han	27.7±3.8	Buccal cells	787 (female)	RT-PCR	AA 607
Tian Y	2014	Jiangsu	Han	27.0±4.8	Buccal cells	524 (female)	RT-PCR	AC 361
Lu GR	2014	Shandong	Han	28.5±5.0	Buccal cells	1352 (female)	RT-PCR	CC 1027
Jiao FY	2014	Shandong	Han	28.2±4.2	Buccal cells	529 (female)	RT-PCR	
Gao X	2014	Hebei	Han	28.3±4.3	Buccal cells	860 (female)	RT-PCR	
Luo SQ	2014	Jiangsu	Miao	27.0±4.8	Buccal cells	518 (female)	RT-PCR	
Li XX	2015	Jiangsu	Han	26.7±3.6	Buccal cells	4008 (female)	RT-PCR	
Wang SY	2015	Hunan	Han	26.7±4.6	Buccal cells	1701 (female)	RT-PCR	
Wu WQ	2015	Jiangsu	Han	26.4±4.5	Buccal cells	644 (female)	RT-PCR	
Mao WC	2015	Guizhou	Mixed	28.9±4.7	Buccal cells	1253 (female)	RT-PCR	
Cui HL	2015	Henan	Han	29.4±5.3	Buccal cells	443 (female)	RT-PCR	
Liu XL	2015	Ningxia	Han	28.5±4.3	Buccal cells	2620 (female)	RT-PCR	
Yu YH	2015	Jilin	Han	28.5±4.3	Buccal cells	2620 (female)	RT-PCR	

Table 3. Distribution of the MTRR A66G polymorphism among populations in China.

Author	Publication Year	Location	Ethnic Group	Age	Sample Collection	Sample Size (Female/Male)	Method	Genotype
He XM	2010	Mixed	Han	19–46	Blood populational-based	1017 (female)	RFLP	AA 567
Zhang QF	2010	Hainan	Mixed	19–46	Buccal cells	1008 (female)	RT-PCR	AG 516
Lao HH	2011	Hainan	Not given	19–44	Buccal cells	11437 (female)	RT-PCR	GG 5616
Zhang Y	2012	Sichuan	Han	Not given	Buccal cells	2573 (female)	RT-PCR	
He YX	2012	Henan	Not given	19–44	Buccal cells	1093 (female)	RT-PCR	
Yang Y	2012	Jiangsu	Han	27.0±4.4	Buccal cells	2885 (female)	RT-PCR	
Cong YY	2012	Shandong	Han	29.4±7.7	Buccal cells	1041 (female)	RT-PCR	
Zhang YL	2012	Shandong	Han	28.7±5.8	Buccal cells	825 (female)	RT-PCR	
Gao LJ	2012	Guangdong	Han	27.6±4.0	Buccal cells	359 (female)	RT-PCR	
Yang BY	2013	Mixed	Han	18–47	Blood populational-based	15357 (952/14405)	RT-PCR	
Xiu X	2013	Shandong	Han	19–40	Buccal cells	2934 (female)	RT-PCR	
Wang WP	2013	Hubei	Han	28.2±3.3	Buccal cells	2899 (female)	RT-PCR	
Gao H	2013	Hubei	Mixed	18–53	Buccal cells	1902 (female)	RT-PCR	
Wan LJ	2013	Hainan	Han	27.2±5.3	Buccal cells	297 (female)	RT-PCR	
Yan ZM	2013	Hainan	Han	27.2±5.3	Buccal cells	1221 (female)	RT-PCR	
Lu XC	2013	Guangxi	Zhuang	Mixed	Buccal cells	300 (female)	RT-PCR	
Huang GX	2013	Hainan	Mixed	28.5±5.3	Buccal cells	300 (female)	RT-PCR	
Luo XL	2014	Hubei	Han	27.3±5.2	Buccal cells	1077 (female)	RT-PCR	

(Continued)
Author	Publicationyear	Location	Ethnicgroup	Age	Sample	Sample collection	Sample size (male/female)	Method	Genotype	G allelic		
Wang FX	2014	Shanxixi	Han	22–35	buccal cells	convenient	1508(female)	RT-PCR	820	595	92	780
Hao YY	2014	Xinjiang	mixed		buccal cells	convenient	210(female)	RT-PCR	96	91	23	137
Yan Q	2014	Shandong	Han	28.8±3.4	buccal cells	convenient	2670(female)	RT-PCR	1459	1018	193	1404
Xing JF	2014	Henan	Han	28.2±4.2	buccal cells	convenient	425(female)	RT-PCR	241	162	19	200
Jia XP	2015	Sichuan	Han	25.4±4.3	buccal cells	convenient	4865(female)	RT-PCR	2748	1795	322	2439
Huang QH	2015	Jiangsu	Han	26.5±4.3	buccal cells	convenient	348(female)	RT-PCR	217	118	12	142
Li JH	2015	Hebei	Han	27.3±4.9	buccal cells	convenient	1267(female)	RT-PCR	705	496	66	628
Xiang CG	2015	Sichuan	Han	26.0±4.8	buccal cells	convenient	656(female)	RT-PCR	371	239	46	331
Jiang W	2014	Guangxi	mixed	28.0±4.5	buccal cells	convenient	948(female)	RT-PCR	501	376	71	518
Chen XL	2014	Guangxi	Han	27.7±4.4	buccal cells	convenient	564(female)	RT-PCR	324	209	31	271
Ma LM	2015	Heilongjiang	Hungarian	28.1±5.5	buccal cells	convenient	455(female)	RT-PCR	245	184	26	236
Tang HY	2014	Shandong	Han	27.7±3.8	buccal cells	convenient	787(female)	RT-PCR	444	288	55	398
Tian Y	2014	Jiangsu	Han	27.0±4.8	buccal cells	convenient	524(female)	RT-PCR	298	191	35	261
Lu GR	2014	Shandong	Han	28.5±5.0	buccal cells	convenient	1352(female)	RT-PCR	779	498	75	648
Jiao FY	2014	Shandong	Han	28.2±4.2	buccal cells	convenient	529(female)	RT-PCR	285	200	44	288
Gao X	2014	Hebei	Han	28.3±4.3	buccal cells	convenient	860(female)	RT-PCR	460	334	66	530
Luo SQ	2015	Guangxi	Miao	not given	buccal cells	convenient	818(female)	RT-PCR	410	343	65	473
Yu YH	2015	Jilin	Han	28.5±4.3	buccal cells	convenient	2620(female)	RT-PCR	1479	977	164	1305
Li XX	2015	Jiangsu	Han	26.7±3.6	buccal cells	convenient	4008(female)	RT-PCR	2179	1543	286	1057
Wang SY	2015	Hunan	Han	26.7±4.6	buccal cells	convenient	1701(female)	RT-PCR	918	668	115	898
Wu WQ	2015	Jiangsu	Han	26.4±5.5	buccal cells	convenient	644(female)	RT-PCR	343	260	41	342
Mao WC	2015	Guizhou	mixed	not given	buccal cells	convenient	1232(female)	RT-PCR	718	437	76	590
Cui HL	2015	Henan	Han	28.9±4.7	buccal cells	convenient	1253(female)	RT-PCR	704	481	68	617
Liu XL	2014	Ningxia	Han	29.4±5.3	buccal cells	convenient	443(female)	RT-PCR	247	169	27	223
Hu XW	2015	Hubei	NA	28.2±4.2	buccal cells	convenient	3963(female)	RT-PCR	2247	1470	246	2962
Polymorphisms	Genetic model	No. of studies	No. of provinces	No. of frequencies	Investigated number	Prevalence (95% CI)	Heterogeneity					
---------------	---------------	----------------	------------------	-------------------	---------------------	---------------------	--------------					
MTHFR C677T	TT vs. total genotypes	66	23	18302	92277	0.20 (0.18–0.23)	100.0 0.000					
	Allele contrast	66	23	73823	184554	0.42 (0.38–0.45)	100.0 0.000					
MTHFR A1298C	CC vs. total genotypes	51	18	4051	85616	0.05 (0.04–0.05)	100.0 0.000					
	Allele contrast	51	18	33649	171232	0.20 (0.18–0.22)	100.0 0.000					
MTTR A66G	GG vs. total genotypes	43	16	5957	84636	0.07 (0.06–0.07)	100.0 0.000					
	Allele contrast	43	16	44508	169272	0.26 (0.25–0.28)	100.0 0.000					

Table 5. Summarized prevalence with 95% confidence intervals of genetic polymorphisms in the folate pathway with geographical distribution among Chinese populations.

Polymorphisms	Latitude	Genetic model	No. of studies	No. of provinces	No. of frequencies	Investigated number	Prevalence (95%CI)	Heterogeneity
MTHFR C677T	southern China	TT vs. total genotypes	20	7	2131	27332	0.07 (0.05–0.08)	100.0 0.000
	central China	TT vs. total genotypes	19	6	7588	39205	0.19 (0.16–0.21)	100.0 0.000
	northern China	TT vs. total genotypes	27	10	8557	25569	0.28 (0.25–0.31)	100.0 0.000
MTHFR A1298C	southern China	CC vs. total genotypes	13	4	1705	26653	0.07 (0.05–0.09)	100.0 0.000
	central China	CC vs. total genotypes	19	7	1432	38936	0.04 (0.03–0.04)	100.0 0.000
	northern China	CC vs. total genotypes	19	7	692	19029	0.03 (0.02–0.03)	100.0 0.000
MTTR A66G	southern China	GG vs. total genotypes	4	3	402	4839	0.08 (0.06–0.10)	100.0 0.000
	central China	GG vs. total genotypes	19	6	2710	41728	0.06 (0.06–0.07)	100.0 0.000
	northern China	GG vs. total genotypes	20	7	1192	19759	0.06 (0.05–0.06)	100.0 0.000
45%) in central, and 28% (25%-31%) and 53% (51%-55%) in northern China, respectively. There were significant geographical gradients in the variations in the frequencies of the 677T allele and 677TT genotype (both \(P \) values ≤0.001).

The frequency of the MTHFR A1298C polymorphism exhibited the reverse trend; i.e., this frequency decreasing from southern to central to northern China. The pooled geographical gradient frequencies of the 1298C allele and 1298CC genotype were found to be 28% (24%-31%) and 7% (5%-9%) in southern, 18% (17%-19%) and 4% (3%-4%) in central, and 17% (16%-19%) and 3% (2%-3%) in northern China, respectively (Table 5). There were significant geographical gradients in the frequencies of the 1298C allele and 1298CC genotype (both \(P \) values ≤0.001).

The mean frequencies of the MTRR 66G allele and 66GG genotype decreased from 29% (28%-30%) and 8% (6%-10%) in southern China, to 25% (23%-27%) and 6% (6%-7%) in central China, and 24% (23%-25%) and 6% (5%-6%) in northern China (Table 5) in a pattern similar to that observed in the gradients of the MTHFR 1298C allele and 1298CC genotype frequencies (both \(P \) values ≤0.001).

The frequencies of the MTHFR C677T, A1298C, and MTRR A66G polymorphisms by ethnicity

The allele and genotype distributions of MTHFR and MTRR by ethnicity are presented in Table 6. The distributions of the MTHFR 677T allele and the 677TT genotype exhibited ethnic variations (with both \(P \) values ≤0.001). The 677T allele frequencies in the minority groups (e.g., Miao, Zhuang, She, Shui, etc.) and Chinese Han were 28% (25%-31%) and 45% (41%-49%), respectively. The 677TT genotype frequencies in the minority groups and Chinese Han were 5% (4%-6%) and 22% (20%-25%), respectively.

In contrast to C677T, the distribution of the A1298C polymorphism by ethnicity demonstrated the reverse trend: the 1298C allele was much more common among the minority groups [26%, (23%-30%)] than the Chinese Han [19% (17%-20%); \(P \) value ≤0.001]. The 1298CC genotype exhibited similar variability with frequencies of 7% (5%-9%) in the minority groups and 4% (3%-5%) in the Chinese Han (\(P \) value ≤0.001).

The frequencies of the MTRR 66G allele and 66GG genotype varied by ethnic group and geographical location. The frequency of the 66G allele was slightly higher among the minority groups [35% (35%-36%)] compared with 25% (24%-26%) among the Chinese Han group (\(P \) value ≤0.001). The frequencies of the 66GG genotype were 10% (8%-12%) in the minority groups and 6% (5%-7%) in the Chinese Han group, which were similar to those of the MTHFR A1298C polymorphism (\(P \) value ≤0.001).

The frequencies of MTHFR C677T, A1298C and MTRR A66G polymorphisms by sex

Table 7 provides the pooled frequencies of the variant alleles and genotypes of MTHFR C677T and A1298C and MTRR A66G according to sex. A total of 88255 samples with reported C677T polymorphisms were obtained. Based on all these samples, we did not find any difference between the males [19% (12%-25%)] and females [21% (19%-24%)] in terms of 677TT genotype frequency.

Only 41 studies reported the frequency of the MTHFR A1298C polymorphism and included 82352 females of reproductive age. The 1298C allele and 1298CC genotype frequencies in females were 19% (18%-21%) and 4% (4%-5%), respectively. Among the 43 articles that reported on the MTRR A66G polymorphism, 42 studies included 84416 females. The 66G allele and 66GG genotype frequencies in females were 26% (25%-27%) and 7% (6%-7%), respectively.
Table 6. Summarized prevalence with 95% confidence intervals of genetic polymorphisms in the folate pathway with ethnicity distribution among Chinese populations.

Polymorphisms	Ethnicity	Genetic model	No. of studies	No. of ethnic groups	No. of provinces	No. of frequencies	Investigated number	Prevalence(95% CI)	Heterogeneity	
									I²(%)	P
MTHFR C677T	Minority	TT vs. total genotypes	17	19	11	381	7559	0.05(0.04–0.06)	100.0	0.000
		Allele contrast	17	19	11	3390	15118	0.28(0.25–0.31)	100.0	0.000
Han		TT vs. total genotypes	55	1	22	16973	78852	0.22(0.20–0.25)	100.0	0.000
		Allele contrast	55	1	22	66065	157704	0.45(0.41–0.49)	100.0	0.000
MTHFR A1298C	Minority	CC vs. total genotypes	10	8	4	368	4669	0.07(0.05–0.09)	100.0	0.000
		Allele contrast	10	8	4	2494	9338	0.26(0.23–0.30)	100.0	0.000
Han		CC vs. total genotypes	44	1	17	3228	74454	0.04(0.03–0.05)	100.0	0.000
		Allele contrast	44	1	17	28205	148908	0.19(0.17–0.20)	100.0	0.000
MTRR A66G	Minority	GG vs. total genotypes	8	5	4	436	4792	0.10(0.08–0.12)	100.0	0.000
		Allele contrast	8	5	4	2918	9584	0.35(0.35–0.36)	100.0	0.000
Han		GG vs. total genotypes	39	1	15	5210	75357	0.06(0.05–0.07)	100.0	0.000
		Allele contrast	39	1	15	38367	150714	0.25(0.24–0.26)	100.0	0.000

Table 7. Summarized prevalence with 95% confidence intervals of genetic polymorphisms in the folate pathway with sex distribution among Chinese populations.

Polymorphisms	Gender	Genetic model	No. of studies	No. of provinces	No. of frequencies	Investigated number	Prevalence(95% CI)	Heterogeneity	
								I²(%)	P
MTHFR C677T	Male	TT vs. total genotypes	11	6	462	2507	0.19(0.12–0.25)	100.0	0.000
		Allele contrast	11	6	2380	5014	0.49(0.41–0.58)	100.0	0.000
	Female	TT vs. total genotypes	53	17	17311	85748	0.21(0.19–0.24)	100.0	0.000
		Allele contrast	53	17	69098	171496	0.44(0.40–0.47)	100.0	0.000
MTHFR A1298C	Female	CC vs. total genotypes	41	17	3733	82532	0.04(0.04–0.05)	100.0	0.000
		Allele contrast	41	17	31883	165064	0.19(0.18–0.21)	100.0	0.000
MTRR A66G	Female	GG vs. total genotypes	42	15	5907	84416	0.07(0.06–0.07)	100.0	0.000
		Allele contrast	42	15	44351	168832	0.26(0.25–0.27)	100.0	0.000

doi:10.1371/journal.pone.0152414.t006

doi:10.1371/journal.pone.0152414.t007
Publication bias

Tables 4–7 presents information related to heterogeneity and publication bias. We noted significant heterogeneity within the studies and the subgroups (all P values were ≤0.001, I² = 100.0).

Discussion

Methylenetetrahydrofolate reductase (MTHFR) (C677T and A1298C) and methionine synthase reductase (MTRR) mutations (A66G) cause mild hyperhomocysteinemia and low folate level and are associated with several disorders. The geographical and ethnic distributions of these alleles and the associated genotypes are important to study worldwide.

The frequencies of the MTHFR C677T and A1298C and MTRR A66G polymorphism in 68 epidemiological studies covering 23 provinces in Mainland China were pooled and investigated in the present study. Currently, there is a lack of national data regarding the prevalences of gene polymorphisms in the folate metabolism pathway in healthy general populations in China. We documented distinctive geographical and ethnic variations in the frequencies of the C677T and A1298C polymorphisms of the MTHFR gene and the A66G polymorphisms of the MTRR gene among nation-wide samples in China.

Worldwide data have revealed that significant heterogeneities in the frequencies of the T allele and TT homozygosity exist in every population and even with racial groups. One investigations conducted in Texas reported that the frequency of the 677T was lowest among African-Americans (11.9%), followed by in Caucasians (32.7%) and Ashkenazi Jews (47.7%), and the highest frequency exists among the Hispanic population (47.9%) [86]. In the Chinese Han, the frequencies of the 677T allele have been found to be lowest in Hainan (24.0%) followed by Hubei (40.3%) and Jiangsu (43.5%), and the highest frequency has been observed in Shandong (63.1%) [51].

Population genetic comparisons provide an appropriate method for picturing geographical and ethnic variations and can suggest that environmental factors may exert selective pressures on genetic mutations. A north-to-south increase in the frequency of the 677T allele has been observed in Europe [87]. North-to-south increases in dietary folate intake have also been encountered in European populations [88]. Thus adequate folic acid intakes have presumed enabled increase in the MTHFR 677T frequency in these populations [89]. Economic and dietary habits might have played important roles in the spread of the 677T allele worldwide. For example, the frequency of the 677T allele is high in the USA with an average frequency of 36.2% in Texas [86]. Another study conducted in India observed the highest frequency of the 677T allele among the Sindhi population (23.8%). In contrast, the 677T allele is absent in the Kom, Thadou and Munda populations, and its average frequency is 10.1% across all 23 populations in India [10]. The low frequencies of the 677T allele among the tribal groups (i.e., the Kom, Thadou and Munda populations) may have been influenced by folate deficiencies because the majority of the population in India has a vegetarian diets that is low in vitamin B₁₂ [10]. The populations of America carried higher frequencies of the 677T allele, which may be related to abundant nutritional statuses and particularly with folic acid and vitamin B₁₂ supplementation, which are associated with low levels of homocysteinemia. Across all 23 of the studied provinces, we observed increases in the 677T allele and 677TT genotype frequencies in the southern-central-northern direction across Mainland China. Because high 677T allele and 677TT genotype frequencies were observed in the northern populations, we assumed that the folic acid intakes are greater in the northern populations than in the southern populations; however, the opposite pattern has been observed in nutritional studies. One such nutritional investigation revealed that the geometric mean of the blood folate concentration is lower in the northern populations than the southern populations [90].
Worldwide epidemiological data have revealed that the frequency of A1298C homozygosity varies from continent to continent. The frequencies of the 1298C allele range from 18% to 70% in East Asia, 17% to 44% in Asia, 24% to 40% in Europe, 0% to 15% in South America and 14.7% in North America [91]. The present data revealed variation in the frequency of the 1298C allele within China. In contrast to the distribution of 677T, the frequency of the 1298C allele was found to be the lowest in northern China [18% (17%-19%)], intermediate in central China [18% (17%-19%)], and highest in southern China [28% (24%-31%)]. The mean frequency of the 1298C allele was 20% (18%-22%).

Based on all 8 of the investigated minority ethnic populations (e.g., the She, Xibo, and Uygur), the minority ethnic populations seemed to carry greater 1298C allele frequencies than the Chinese Han population. Notably, the frequency of the 1298C allele has been reported to vary between different ethnic populations worldwide, and the lowest frequency has been found in Indians (10%) [92] followed by the Chinese (18.4%) [51] and Tamils (35%) [93], and the highest frequency has been observed in the Lebanese [94].

Although A1298C homozygotes do not exhibit elevated blood homocysteinemia levels, many investigations have revealed that compound heterozygotes for C677T/ A1298C may be at risk for hyperhomocysteinemia and low folate levels, which can contribute to many disorders, such as neural tube defects [6] and abortions [95].

Because lifestyle and environmental factors, such as folate supplementation, vary across different ethnic populations and may influence the frequencies of the C677T and A1298C alleles, these factors cannot be ruled out when considering the influences of environmental-genetic interactions on the distributions of MTHFR gene polymorphisms.

Our pooled data revealed that the frequencies of the 66G allele and 66GG genotype exhibited variations across geographical gradients and ethnic populations. Globally, the distributions of the MTRR 66G allele and 66GG genotype frequencies also exhibit geographical and ethnic variations. For example, the frequencies of the 66G allele have been reported to be 58% in the Yadav, 62% in the Scheduled Castes, and 71% in the rural Sunni Muslim population in Uttar Pradesh in India [96,97]. Our study observed a 66GG genotype frequency of 7% across Mainland China, which is much lower than those in Brazil (23%), Australia (10%), and Ireland (17.5%) [98–100]. MTRR is involved in the homocysteine and folate metabolic pathway via its activation of methionine synthase via reductive methylation and is consequently a critical determinant of homocysteinemia levels [101]. Therefore, the MTRR A66G mutation may indirectly contribute to many medical disorders, such as neural tube defects and congenital heart disease [102], due to its key role in the folate metabolism pathway. However, due to limited sample sizes and the lower frequency of studies of the A66G polymorphisms in MTRR, no solid evidence has been found to relate the MTRR A66G variant with the risks of diseases. Long-term data and larger sample sizes are necessary to determine the real connections between the distribution of the A66G variant and the risks of diseases.

Conclusions
In conclusion, our meta-analysis revealed significant geographical variations in the frequencies of the MTHFR C677T and A1298C and MTRR A66G polymorphisms in the folate metabolism pathway between different ethnic populations in China. Our findings provide an overall picture of these three genetic polymorphisms in the folate metabolism pathway among the general populations in Mainland China, and these evidence-based genomic data should be integrated into medical and public health practices.
Supporting Information

S1 File. The average frequencies of the 677TT genotype in the healthy Chinese population.

S2 File. The average frequencies of the 677T allele in the healthy Chinese population.

S3 File. The average frequencies of the 1298CC genotype in the healthy Chinese population.

S4 File. The average frequencies of the 1298C allele in the healthy Chinese population.

S5 File. The average frequencies of the 66GG genotype in the healthy Chinese population.

S6 File. The average frequencies of the 66G allele in the healthy Chinese population.

Author Contributions

Conceived and designed the experiments: DYZ. Performed the experiments: XMW JJF. Analyzed the data: QXL JJF. Contributed reagents/materials/analysis tools: XMW JJF QXL DYZ. Wrote the paper: XMW JJF. Guided the writing: QXL. Revised the manuscript: DYZ.

References

1. Brustolin S, Giugliani R, Félix TM. Genetics of homocysteine metabolism and associated disorders. Braz J Med Bir Res 2010 43: 1–7.

2. Hogeveen M, Blom HJ, den Heijer M. Maternal homocysteine and small-for-gestational-age offspring: systematic review and meta-analysis. Am J ClinNutr 2012 95: 130–6. doi:10.3945/ajcn.111.016212

3. Martí-Carvajal AJ, Solà I, Lathyris D, Karakitsiou DE, Simancas-Racines D. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Databese Syst Rev 2013 31: CD006612.

4. Ferretti A, Parisi P, Villa MP. The role of hyperhomocysteinemia in neurological features associated with celiac disease. Med Hypotheses 2013 81: 524–31. doi: 10.1016/j.mehy.2013.06.025 PMID: 23891042

5. Yakub M, Moti N, Parveen S, Chaudhry B, Azam, Iqbal MP. Polymorphisms in MTHFR, MS and CBS genes and homocysteine levels in a Pakistani population. PLoS One 2012 7(3): e33222. doi: 10.1371/journal.pone.0033222 PMID: 22470444

6. Zhang T, Lou J, Zhong R, Wu J, Zou L, Yu S, et al. Genetic variants in the folate pathway and the risk of neural tube defects: a meta-analysis of the published literature. PLoS One 2013 8(4): e59570. doi: 10.1371/journal.pone.0059570 PMID: 23593147

7. Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, et al. Human methylene-tetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 1994 7 (4): 195–200.

8. Lange LA, Croteat-Chonka DC, Marvelle AF, Qin L, Gaulton KJ, Kuzawa CW, et al. Genome-wide association study of homocysteine levels in Filipinos provides evidence for CPS1 in women and a stronger MTHFR effect. Hum Mol Genet 2010 19(10): 2050–8. doi: 10.1093/hmg/ddq062 PMID: 20154341

9. van der Put NM, Gabriels F, Stevens EM, Smeitink JA, Trijbeels FJ, Eskes TK, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 1998 62(5): 1044–1051. PMID: 9545395

10. Saraswathy KN, Asghar M, Samhani R, Murry B, Mondal PR, Ghosh PK, et al. Spectrum of MTHFR gene SNPs C677T and A1298C: a study among 23 population groups of India. MolBiol Rep 2012 39 (4): 5025–31.
11. Yan ZM, Lu YQ, Li Y, Chen X, Xu SZ. Polymorphisms of MTHFR and MTRR among the Han nationality women in Qionghai city. Hai Nan Yi Xue Yuan XueBao 2013 19(1):18–20.

12. Chen PL, Li WT, Wang J, Jiang YD, Wu P, Chen T, et al. Association between MTHFR gene polymorphisms (C677T, A1298C) and genetic susceptibility to prostate cancer: a meta-analysis. Genet Mol Res 2015 14(4):1919–202. doi: 10.4238/2015.December.29.29 PMID: 26782572

13. Ott J. Utility programs for analysis of genetic linkage, Program, HWE version 1.10. New York: Columbia University; 1988.

14. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002 21(11):1539–1558. PMID: 12111919

15. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003 327(7414):557–560. PMID: 12958120

16. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994 50(4):629–634. PMID: 7786990

17. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997 315(7109):629–634. PMID: 9310563

18. Yu JM, Chen BB, Zhang GY, Fu SB, Li P. The 677C>T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene in five Chinese ethnic groups. Hum Hered 2000 50(4):268–270. PMID: 10782023

19. Xue YL, Yu JM, Wan Q, Fu SB, Cheng F, Huang CB, et al. Distribution of a common methylenetetrahydrofolate mutation in six Chinese population groups. Anthropol Anz 2005 58(3):253–257. PMID: 11082782

20. Pei LJ, Zhu HP, Shen WY, Zhao RB, Dao JJ, Li Z, et al. Comparing the distribution of genetic polymorphism of MTHFR thermolabile between Mongolian population and Hans of China. Yi Chuan 2000 22(6):369–371.

21. Zhu HP, Zhao RB, Dao JJ, Gao Q. Genetic polymorphism of homocysteine metabolic enzymes among populations of minority ethnicities in north China. ZhongGuo You Sheng You Yu Yi Chuan ZaZhi 2000 10(4):22–23.

22. Liang JN, Chen SQ. Detection of the methylenetetrahydrofolate gene in 143 individuals. Guangzhou Yi Xue Yuan XueBao 2002 30(1):38–40.

23. Sun WP, Wan Q, Su MQ. Two genetic polymorphisms of 5,10- methylenetetrahydrofolate reductase and pregnant outcomes in Guanxi healthy women of reproductive age.ZhongGuo Lin Chuang Kang Fu 2005 9(27):8–9.

24. Xiao Y, Shan KR, Li Y, Zhao Y, Qi XL, Xie Y, et al. Comparing the distribution of genetic polymorphism of MTHFR reductase between Han populations of Libo and Miao of Leishan in Guizhou. ZhongGuo You Sheng Yu Yi ChuanZaZhi 2005 13(5):14–16.

25. Xiao Y, Shan KR, Li Y, Zhao Y, Guan ZZ, et al. 5,10- methylenetetrahydrofolate reductase polymorphism in three nationalities in Guizhou Province. ActaNatropologicaSinica 2005 24(4):315–318.

26. Mao RF, Fan YH, Chen F, Sun DL, Bai J, Fu SB, et al. Polymorphisms of MTHFR among Han population in Henan area. Zhong Zhou Da XueXueBao (Yi Xue Ban) 2009 44(2):317–320.
35. Shan KR, Xiao Y, Chen Z, He Y, Zhang T, Li Y, et al. Study of gene polymorphism of CBS and MTHFR in Miao of Guizhou. ZhongGuo You Sheng Yu Yi Chuan ZaZhi 2009 17(4): 16–18.
36. Chen XY, Wu YJ, Shen LL. Polymorphism of methylenetetrahydrofolate reductase and cystathionine beta-synthase in child-bearing women. ZhongGuo Gong Gong Wei Sheng 2010 26(8): 958–959.
37. He XM, Zhang Q, Yang Q, Zheng FF, You FZ, Lao HH, et al. Study on the methylenetetrahydrofolate reductase and methionine synthase reductase polymorphism. ZhongGuoJi Hua Sheng Yu Xue ZaZhi 2010 1: 13–18.
38. Jiang HO. Detection of genetic polymorphism of MTHFR of Han population in Huaihua. ZhongGuo You Sheng Yu Yi Chuan ZaZhi 2010 18(5): 18–19.
39. Zhang QF, Lin YL, Xue YY, He XM. Determination of capacity of folate utilization of pregnant and lying-in women. ZhongGuo Gong Gong Wei Sheng 2010 26(8): 958–959.
40. He XM, Zhang Q, Yang Q, Zheng FF, You FZ, Lao HH, et al. Study on methylenetetrahydrofolate reductase and methionine synthase reductase polymorphism among the Han and Li women in Hainan Province. ZhongGuo Ji Hua Sheng Yu Xue ZaZhi 2011 19(11): 655–657.
41. Zhang L, Yin RX, Liu WY, Miao L, Wu DF, Aung LHH, et al. Association of methylenetetrahydrofolate reductase C677T polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis 2010 9(10): 123.
42. Zhang Y, Zhu ZY, Wang W, Liu L, Bi J, Wang DC, et al. Polymorphism of MTHFR and MTRR among Han women in Sichuan. ZhongGuoXun Zheng Yi Xue ZaZhi 2012 12(6): 631–634.
43. Wu HZ, Zhao YL, Wang YJ, Wu SW. Polymorphism in the 5,10- methylenetetrahydrofolate reductase gene in Bengbu Han population. BaoTou Yi Xue Yuan XueBao 2011 27(2): 4–7.
44. He YX, Gong JM, Shen Y, Jia LT, Li XP, Wang Y, et al. The study of folic acid usage in women of child bearing age in Henan province. Shi Yong Jian Yan Yi Shi ZaZhi 2012 4(1): 6–10.
45. Yang Y, Lu YQ, Rui XY, Cao XY, Xu XF, Tao Y. Study on the MTHFR and MTRR polymorphism among the Han women in Zhuzhou. BaoTou Yi Xue Yuan XueBao 2012 27(2): 4–7.
46. Cheng HB, Chen YX, Wu YJ, Zhang XY. Study of level of plasma homocysteine and polymorphism of methylenetetrahydrofolate reductase in old population. Chang Zhi Yi Xue Yuan XueBao 2012 26(6): 401–403.
47. Gao LJ, Lu YQ, Rui XY, Lin XB. Polymorphism distribution of methylenetetrahydrofolate reductase and methionine synthase reductase among the Han women in Huizhou. Zhong Shan Da Xue XueBao (Medical Science) 2013 34(1): 140–143.
48. Du LL, Lu ZZ, Liu CW, Luo H, Hu CY, Yang Y, et al. Association between the MTHFR C677T polymorphism and serum lipid levels and longevity in the long-lived cohort in Guangxi, Hongshuihe river basin. ZhongGuo Dong Mai Zhou Yang Ying Hua ZaZhi 2013 24(4): 325–330.
49. Yang BY, Liu YY, Li YF, Fan SJ, Zhi XY, Lu XX, et al. Geographical distribution of MTHFR C677T, A1298C and MTRR A66G gene polymorphisms in China: findings from 15357 adults of Han nationality. PLoS One 2013 8(3):e57917. doi:10.1371/journal.pone.0057917 PMID: 23472119.
50. Wang LN, Pu XM. Polymorphism of 5,10-methylenetetrahydrofolate reductase gene in Xinjiang Uygur and Han nationality. Zhong Hua Pi Fu Ke ZaZhi 2012 45(3): 178–180.
51. Xiu X, Mou YY, Tao HJ, Zhao JH, Lian WJ. Folic acid usage in women of child bearing age in Weifang. Shan Dong Yi Yao 2013 53(9): 31–33.
52. Chen YX, Cheng HB, Wu YJ, Zhang XY. Polymorphism of methylenetetrahydrofolate reductase gene and concentration of homocysteine in Changzhi population. Shan Xi Yi Ke Da Xue XueBao 2013 44(2): 130–133.
53. Wang WP, Lu YQ, Rui XY, Ni NH. Study on the distribution of gene polymorphism of methylenetetrahydrofolate reductase and methionine synthase reductase among the Han women in Hubei province. Zhong Guo Fu You Bao Jian 2013 28(1): 140–142.
54. Guo H, Hu XW, Wang B. Analysis of factors impacting the gene polymorphism of methylenetetrahydrofolate reductase and methionine synthase reductase. Jian Yan Yi Xue Yu Lin Chuang 2013 10(13): 1655–1657.
55. Zhang T, Xie Y, Li Y, Shan KR, Guan ZZ. Methylenetetrahydrofolate reductase polymorphism in three nationality in Guizhou. Chongqing Medicine 2013 42(28): 3413–5.
58. Huang GX, Lu YQ, Li Y, Wang X, Xie HY, Chen CB. Polymorphisms of MTHFR and MTRR among Han and Li nationality women in Lingshui county, Hainan. China Tropical Medicine 2013 13(12): 1446–8.

59. Luo XL, Lu YQ, Guo WZ, Li FC, Wei ZG, Fu M, et al. Geographical distribution of MTHFR C677T, A1298C and MTRR A66G gene polymorphisms among the Han gestational age women in Songzi city. J of Pub Health and Prev Med 2014 25(2): 29–32.

60. Wang FX, Ding LL, Zou AM, Chen BL. Study on the Distribution of gene polymorphism of folate metabolism-related enzyme gene among the Han women in Shaanxi Province. J Mod Lab Med 2014 29(1): 35–8.

61. Hao YY, Zhao H, Lu YQ, Li Y, Ma EHB, Yang Q. Comparison of single nucleotide polymorphisms of MTHFR gene and MTRR gene between Uighur women and Han women. ZhongGuo Fu You Bao Jian 2014 29: 3495–7.

62. Yan Q, Lu YQ, Li Y, Shi CH, Jiang L, Yu CT. Polymorphisms of MTHFR and MTRR in women of Chinese Han population in Yantai city. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES) 2014 52(1): 79–85.

63. Xing JF, Jia LT, Yuan EW, Zhang X, Meng XY, Hu YF. Genetic polymorphism impact lowering homocysteine with folic acid in childbearing age women. J Medical Forum 2014 35(5): 10–1.

64. Hu XW, Wang WP. Polymorphisms of two loci in MTFHR gene and the relationships with MTRR gene polymorphism. ZhongGuo Fu You Bao Jian 2015 25: 4336–9.

65. Jia XP, Lu YQ, Ma SJ, Fang ZD, Zhou F, Yang Q. Genetic polymorphism of methylenetetrahydrofolate reductase and methionine synthase in Han ethnic women in Pixian county of Chengdu city. J of Wan-nan Medical College 2015 34(4): 317–21.

66. Huang QH, Lu YQ, Ma SJ, Xue Y, Yang Q. Distribution of gene polymorphisms of methylenetetrahydrofolate reductase and methionine synthase among the Han women in Jingang Town. Chin J Fam-Plann 2015 23(1): 15–7.

67. Li JH, Lu YQ, Ma SJ, Zhao YJ, Yang Q. Distribution of gene polymorphisms of methylenetetrahydrofolate reductase and methionine synthase among the Han women in Langfang City. Basic& Clinical Medicine 2014 11(11): 1564–5.

68. Xiang CG, Lu YQ, Ma SJ, Xue Y, Xin YL, You RF, et al. Analysis of MTHFR and MTRR gene polymorphisms of Han women in 656 cases. Shan Dong Yi Yao 2015 55(14): 22–5.

69. Jiang W, Lu YQ, Li Y, Shen YC, Huang WT, Qin D, et al. A comparison of single nucleotide polymorphisms of MTHFR and MTRR in women between Chinese Zhuang and Han population in Nanning City. Guang Xi Yi Xue 2014 36(11): 1517–9.

70. Ouyang QQ, Zhao W, Li S, Yu DY. Genetic polymorphism of methylene-tetrahydrofolate reductase C667T in Han women of childbearing age in Qingdao. ZhongGuo You Sheng Yu Yi ChuanZaZhi 2014 22(6):6–7.

71. Chen XL, Lu YQ, Ma SJ, Tang YP, Yang Q. Study on the distribution of gene polymorphism of methylenetetrahydrofolate reductase and methionine synthase among Han women in Jiyuan City. Chinese Journal of Women and Children Health 2014 5(4): 17–20.

72. Ma LM, Lu YQ, Li Y, Gao H, Chen YQ, Liu TT, et al. Genetic polymorphisms of MTHFR and MTRR among the Han women in Shangzhi City. PractPrev Med 2015 22(3): 289–91.

73. Tang HY, Lu YQ, Li Y, Li DQ, Yang Q. Polymorphisms of MTHFR and MTRR among the Han women in Shouguang City. China Medical Herald 2014 11(23): 8–11.

74. Tian Y, Hu YZ, Lu YQ, Ma SJ, Yang Q. Polymorphism analysis of MTHFR and MTRR among women in Wuji. Xin Yi Xue2014 45(4): 253–8.

75. Lu GR, Lu YQ, Ma SJ, Ma AJ, Wang P, Wang XL, et al. Polymorphisms of MTHFR and MTRR gene among the Han gestational age women in Xinxiang City. Henan Medical Research 2014 23(7): 7–10.

76. Jiao FY, Lu YQ, Li Y, Sun CY, Yu HP, Zhang WW, et al. Gene polymorphisms of MTHFR and MTRR among the women in Muping district. MolDiagnTher 2014 6(2): 105–9.

77. Gao X, Lu YQ, Ma SJ, Yang Q. Geographical distribution of MTHFR C677T, A1298C and MTRR A66G gene polymorphisms among the Han gestational age women in Zhangjiakou city. ZhongGuo You Sheng Yu Yi ChuanZaZhi 2014 22(11): 35–7.

78. Luo SQ, Qiu P, Yan TZ, Yang FH, Lian YT, Chang RN, et al. Study on the MTHFR and MTRR polymorphism among the Miao nationality women in Luzhou city. ZhongGuo You Sheng Yu Yi Chuan-ZaZhi 2015 23(9): 20–3.

79. Yu YH, Lu YQ, Li Y, Tang P, Song JX, Feng TL, et al. Polymorphisms of MTHFR and MTRR among the Han women in Yanbian Prefecture. Chin J FamPlann2015 23(9): 591–4.
80. Li XX, Lu YQ, Ma SJ, Gong MX, Yuan YQ, Huang YX, et al. The distribution of gene polymorphism of methylenetetrahydrofolate reductase and methionine synthase among Han women in Zhangjiagang city. Basic & Clinical Medicine 2015 35(9): 1228–31.

81. Wang SY, Lu YQ, Ma SJ, Huang JX, Yang KY, Xiong M, et al. Relationship of plasma homocysteine with gene polymorphisms of MTHFR and MTRR among Han women in Xiangtan City. Tianjin Med J 2015 42(12): 1205–9.

82. Wu WQ, Zhou YZ, Lu YQ, Ma SJ, Wang Q. Gene polymorphisms of MTHFR and MTRR in the women of Han population in Suzhou City. Jiangsu Med J 2015 41(1): 71–3.

83. Mao WC, Lu YQ, Xue Y, Yang Q, Chen SF, Tian M, et al. Study on gene polymorphism of methylenetetrahydrofolate reductase and methionine synthase among the Han, Miao and Tujia women in Guizhou Province. Chin J Fam Plann 2015 23(5): 310–3.

84. Cui HL, Lu YQ, Ma SJ, Xue Y, Wang T, Duan GH, et al. Geographical distribution of MTHFR and MTRR gene polymorphisms among the Han women in Zhengzhou city. J Cent South Univ (Med Sci) 2015 40(7): 710–4.

85. Liu XL, Lu YQ, Li Y, Yang YQ, Wang Q. Polymorphisms of MTHFR and MTRR among the Han women in Yinchuan City. Journal of Ningxia Medical University 2014 36(11): 1216–20.

86. Rady PL, Szucs S, Grady J, Hudnall SP, Kellner LH, Nitowsky H, et al. Genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) in ethnic populations in Texas; a report of a novel MTHFR polymorphic site, G1793A. Am J Med Genet 2002 107(2):162–8. PMID: 11807892

87. Wlicken B, Barmforth F, Li Z, Zhu H, Ritzvane A, Renlund M, et al. Geographical and ethnic variation of the 677 C>T allele of 5,10- methylenetetrahydro- drofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas worldwide. J Med Genet 2003 40(8): 619–625. PMID: 12920077

88. Guéant-Rodriguez RM, Guéant JL, Debard R, Thirion S, Hong LX, Bronowicki JP, et al. Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status: a comparative study in Mexican, West Africa, and European populations. Am J Clin Nutr 2006 83(3): 701–707.

89. Reyes-Engel A, Muñoz E, Gaitán MJ, Fabre E, Gallo M, Dieguez JL, et al. Implications on human fertility of the 677C>T and 1298 A>C polymorphisms of the MTHFR gene: consequences of a possible genetic selection. Mol Hum Reprod 2002 8(10): 952–957. PMID: 12356947

90. Hao L, Ma J, Stamper MJ, Ren A, Tian Y, Tang Y, et al. Geographical, seasonal and gender differences in folate status among Chinese adults. J Nutr 2003 133(11): 3630–3635. PMID: 14608086

91. Amouzou EK, Chabi NW, Adjalla CE, Rodriguez-Guéant RM, Feillet F, Villaume C, et al. High prevalence of hyperhomocysteinemia related to folate deficiency and the 677C>T mutation of the gene encoding methylenetetrahydrofolate reductase in coastal West Africa. Am J Clin Nutr 2004 79(4): 619–24.

92. Markan S, Sachdeva M, Sehrawat BS, Kumari S, Jain S, Khullar M. MTHFR 677CT/ MTHFR1298CC genotypes are associated with increased risk of hypertension in Indians. Mol Cell Biochem 2007 302(1–2): 125–131. PMID: 17333388

93. Angeline T, Jeyaraj N, Granito S, Tsongalis GJ. Prevalence of MTHFR gene polymorphisms (C677T and A1298C) among Tamillians. Exp Mol Pathol 2004 77(2): 85–88.

94. Sabbagh AS, Mahfoud Z, Taher A, Zaatar G, Daher R, Mahfouz RA. High prevalence of MTHFR gene A1298C polymorphism in Lebanon. Genetic Test 2008 12(1): 75–80.

95. Callejón G, Mayor-Olea A, Jiménez AJ, Gaitán MJ, Palomares AR, Martínez F, et al. Genotypes of the C677T and A1298C polymorphisms of the MTHFR gene as a cause of human spontaneous embryo loss. Hum Reprod 2007 22(12): 3249–54. PMID: 17965025

96. Rai V, Yadav U, Kumar P. MTRR A66G polymorphism among two caste groups of Uttar Pradesh (India). Indian J Med Sci 2012 66(5–6): 136–140. doi: 10.4103/0019-5359.114200 PMID: 23806987

97. Rai V, Yadav U, Kumar P, Yadav SK. Analysis of methionine synthase reductase polymorphism (A66G) in Indian Muslim population. Indian J Hum Genet 2013 19(2): 183–7. doi: 10.4103/0971-6866.116123 PMID: 24019620

98. Barbosa PR, Stabler SP, Trentin R, Carvalho FR, Luchessi AD, Hirata RD, et al. Evaluation of nutritional and genetic determinants of total homocysteine, methylmalonic acid and S-adenosylmethionine/S-adenosylhomocysteine values in Brazilian childbearing-age women. Clin Chim Acta 2008 388(1–2): 139–47.

99. Svetenko AL, Fowdar J, Nelson J, Colson N, Tajouri L, Csurhes PA, et al. No association between MTHFR A1298C and MTRR A66G polymorphisms, and MS in Australian cohort. J Neurol Sci 2007 252(1):49–52.
100. Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IS, Yarnell JW, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 2001 157(2): 451–6. PMID: 11472746

101. Yamada K, Gravel RA, Toraya T, Matthews RG. Human methionine synthase reductase is a molecular chaperone for human methionine synthase. Proc Natl Acad Sci USA 2006 103(25): 9476–9481.

102. Cai BX, Zhang T, Zhong R, Zou L, Zhu B, Chen W, et al. Genetic variant in MTRR, but not MTR, is associated with risk of congenital heart disease: an integrated meta-analysis. PLoS One 2014 9(3): e89609. doi: 10.1371/journal.pone.0089609 PMID: 24595101