Chemical Plant Explosion Accident (Cause) Analysis Using AcciMap and FRAM

Chae-Chil Koo† • Dong-Hyun Seo* • Tae-Ho Kim**
Department Header, Korea Occupational Safety and Health Agency,
Senior Manager, Korea Occupational Safety and Health Agency,
Director General of Ulsan Office, Korea Occupational Safety and Health Agency

(Received September 8, 2021; Revised September 30, 2021; Accepted October 6, 2021)

ABSTRACT
To prevent accidents in chemical plants, it is important to identify the root cause of the accident and suggest countermeasures. When accident factors are known, eliminating the cause of the accident can increase its prevention. The number of factors, including social factors, in addition to human factors, is increasing. When analyzing the cause of an accident when it is complex, advanced, and the connection between processes is high, there is a growing need to approach it with an integrated system analysis method related to the organization, along with a sequential approach to determine the direct cause of the accident. Several countries have introduced and applied techniques for integrated analysis of accidents from a systematic viewpoint, such as AcciMap and the functional resonance accident model (FRAM) that were developed around 2000. However, it remains difficult to find cases or research results applied in Korea. In this study, accidents in Korean chemical factories are analyzed using systematic accident analysis techniques, and a plan to utilize systematic analysis techniques for future accident investigations is developed.

Keywords: Accident analysis technique, The map of an accident (AcciMap), Functional resonance analysis method (FRAM)
시스템을 바라보고 접근할 필요성이 증가하고 있다. 이와 같은 이유로 보안과 시스템의 통합적인 분석을 필요로 하고 있으며, 최근에는 국외에서는 시스템을 통합적으로 분석하기 위해 2000년 전후로 FRAM(5)과 AcciMap(6,7) 등이 사용되고 있다.

2. AcciMap and FRAM

2.1 AcciMap

2.1.1 개념

acciMap은 Rasmussen이 1997년에 발표한 사고분석 모델로, Figure 2와 같이 복잡한 사회-기술적 시스템을 개인과 조직 및 관계자의 계층적 구조로 구성되어 있다고 보고 있으며, 모델에서의 안전 개념은 각 계층 또는 수준 간의 상호작용(interaction)으로부터 나타나는 속성으로 간주한다(8,9).

acciMap는 사회-기술적 시스템의 모든 부분에 있는 인간들이 어떻게 사고에 기여했는지를 입증하는 데 특히 유용하고, 사고를 명확하고 간결하게 요약한 정보를 제공할 수 있으며, 전체 시스템 구조에 걸친 사고의 전파를 시각화(visualization)할 수 있는데 이것은 상위 수준에서 안전에 대한 개입을 쉽게 할 수 있다(12).

2.1.2 분석방법 및 절차

acciMap 기법은 사고와 인과관계를 분석할 때 이를 입증하는 데 특화되어 있으며, 사고를 정량화하고 검정하게 요약한 정보를 제공할 수 있고, 전체 시스템 구조에 걸친 사고의 전파를 시각화할 수 있는데 이것은 상위 수준에서 안전에 대한 개입을 쉽게 할 수 있다(12).

2.2 FRAM

2.2.1 개념

Functional resonance analysis method (FRAM)은 레질리언스 엔지니어링(resilience engineering) 및 Safety-II 사고를 반영하는 분석 도구 중 하나로 볼 수 있으며(13), Hollnagel(14)이 2004년에 발표하였다. FRAM의 목적은 일반적으로 발생하는 정상적인 작업에 대한 간결하고 체계적인 설명을 제공하는 것이다. FRAM은 일종의 방법론으로 현상이 발생하는 방식에 대한 "성공과 실패의 동등성 원칙", "근사 조정 원칙", "변화되는 결과의 원칙", 기능들의 관계에서의 "기능공명의 원칙" 등 4가지 원칙에 기반을 두고 있다(15).

FRAM은 활동(작업의 일부, 일련의 동작)이 일반적으로 발생하는 방식을 설명하거나 표현하기 위한 체계적인 접근 방식이며, 그 표현방식이 FRAM 모델이라 할 수 있다. FRAM 모델은 Figure 3과 같이 시스템에서 작동하고 있는 기능(function)을 도출하고, 기능의 6가지 측면(입력, 출력, 10,한국화재소방학회 논문지, 제35권 제5호, 2021년
3.1.2 사고 발생 공정

 전체 공정은 ① 유리를 제작하는데 필요한 원료를 공급 받아 계량하고 혼합하여 가마로 공급한 후, ② 계량하여 혼합된 유리 원료를 고온의 용융으로 내부에서 녹여 유리 성형의 초기단계인 유리물을 형성, ③ 운송된 유리를 성형공과 하 여 발원해 놓은 후, 성형된 유리를 사장하여 고장도의 유리를 생성하는 공정이며, 사고는 계량되어 혼합된 유 리 원료를 고온의 용융으로 내부에서 녹여 유리 성형의 초기 단계인 유리를 형성한 공정에서 발생하였다.

3.1.3 사고발생 물질 및 설비

 사고 발생 물질은 원료인 수소(H2)와 질소(N2), 분위기 가스인 혼합가스(H2 + N2)를 사용하며, 분위기 가스는 Bath 상부의 노출을 통해 공급되며 10개의 섹션으로 나누어져 있고, 상하에서 운전되며 운전 온도는 730℃~1,200℃이다.

3.2 분석방법

 사고 관련 자료는 안전보건공단에서 작성한 재해조사의 전사와 사고 조사자 및 일본 사업장 담당, 한국 사업장 공장장, 업무담당자와의 면담을 통해 수집하였다. 수집한 자료를 바탕으로 AcciMap 및 FRAM 분석 방법에 따른 사고 모델을 작성하고, 사고 관련 요소를 도출하였다.

4. 사고분석 결과

4.1 AcciMap 분석 결과

 AcciMap을 통해 도출된 사고 관련 원인 요소들은 Figure 4와 같다. 그림에서 파란색으로 표시한 항목은 재해조사 의견서에서 제시된 사항이고, 붉은색으로 표시한 사정은 면담을 통해 추가로 파악된 사고 관련 요소이다. 재해조사 의견서에 제시된 내용을 보면 관리적인 측면에서 보면 운전절차에 안전성 평가를 확인하고 제거하는 절차가 있었고, 신설 설비에 대한 공정 위험성 평가를 실시하지 않았으며, 간접 위험에 대한 안전작업 허가서를 발행하지 않았다. 한국공장의 관리감독자는 인화성 가스가 존재하는 지역에 대하여 폭발위험장소 설정을 검토하지 않았고, 정비 보수 협력업체 관리감독자는 신설 설비에 대하여 작업 위험성을 알고 작업하였다. 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험이 있음에도 불구하고 동 동이나 환기 등의 위험성 제거조치를 하지 않았고, 인화성 가스의 노동 측정과 Bath 내부에 인화성 가스가 유입된 상태에서 예방조치를 하지 않고 전원을 공급하였다. 추가적인 면담을 통해 확인한 결과 일본 경영진은 설계, 개발 단계 위험성 평가 결과를 한국 경영진에 공유하지 않았고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험이 있음에도 불구하고 동 동이나 환기 등의 위험성 제거조치를 하지 않았고, 인화성 가스의 노동 측정과 Bath 내부에 인화성 가스가 유입된 상태에서 예방조치를 하지 않고 전원을 공급하였다. 추가적인 면담을 통해 확인한 결과 일본 경영진은 설계, 개발 단계 위험성 평가 결과를 한국 경영진에 공유하지 않았고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험이 있음에도 불구하고 동 동이나 환기 등의 위험성 제거조치를 하지 않았고, 인화성 가스의 노동 측정과 Bath 내부에 인화성 가스가 유입된 상태에서 예방조치를 하지 않고 전원을 공급하였다. 추가적인 면담을 통해 확인한 결과 일본 경영진은 설계, 개발 단계 위험성 평가 결과를 한국 경영진에 공유하지 않았고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었고, 한국공장의 정비 보수 협력업체 작업자는 인화성 가스가 체류할 위험을 모른 것도 있었다.
Figure 4. AcciMap analysis results.

산림·정비보수팀·관리감독자와 정비보수를 위한 협력체간의 여러 가지 다양한 요소들 간의 사고와 관련된 원인을 계층별로 도출할 수 있었으며, 원인 요소들 간의 상호관계를 그림에서 파악할 수 있다.

한국화재소방학회 논문지, 제35권 제5호, 2021년
Table 1. System Functions, the Variance of Functions, and the Resonance Effects

Major function	Variance of function	Resonance effect of the variance (Casual factor of accident)
1. Establishment of basic plan for facility expansion (Management of Japan)	Basic plans can be established without considering the overall circumstances of Korea when establishing plans to expand facilities.	When establishing a facility expansion plan, it is not confirmed that the risks of the design phase are identified in advance.
2. Establishment of basic plan for facility expansion (Korea management)	If the facility is similar to the existing facility, the risk assessment of the new facility may be omitted at the design stage.	Expanded facilities similar to existing facilities, omitted the risk assessment of facilities during the design phase.
3. Establishment of basic plan for expansion of facilities by production team (both countries)	Differences in communication between the two countries exist when establishing a master plan for the expansion of new facilities.	Communication and basic planning between production team employees dispatched from Japan and employees belonging to Korean factories were not smooth.
4. Establishment of detailed plans for expansion of facilities by production team (both countries)	In the case of discrepancy between Korean and Japanese laws when establishing detailed plans for expansion of new facilities, it will interfere with the establishment of detailed plans.	Operation of the new facility expansion was not properly carried out in accordance with the guidelines for change management of the Fair Safety Management System, a domestic law.
5. Establishment of extension plan for Korean production team	Failure to meet domestic regulations may result in a disruption in the establishment of a facility expansion plan.	Safety measures and removal of flammable substances are not implemented when handling flammable substances in the Industrial Safety and Health Regulations.
6. Identify facility manufacturing and installation companies (Korea Maintenance Team)	If there is no manufacturing or installation company with sufficient experience and know-how, installation and operation may be disrupted.	The concentration of flammable gas shall be measured from time to time during operation of the facility, but no measurement is made.
7. Identify facility manufacturing and installation companies (Korea Maintenance Team)	The variability is low.	-
8. Facility manufacturing and installation contract	If there is no manufacturing or installation company with sufficient experience and know-how, installation and operation may be disrupted.	The concentration of flammable gas shall be measured from time to time during operation of the facility, but no measurement is made.
9. Communicate health and safety information to suppliers	If information on risk assessment and safety health is not delivered properly, there is a high risk of accidents such as serious industrial accidents during work.	Risk assessment such as power outage test and mixed gas mixing test was not conducted, and risk was not properly communicated to suppliers.
10. Support for the establishment of safety work plans for suppliers	There is a possibility that there will be a deviation depending on the applicant's experience and skill level when supporting the establishment of a safety plan for partner companies.	Not aware of the possibility of internal fire or explosion atmosphere after disassembly, repair of hydrogen-based facilities.
11. Review Partner Safety Work Plan	If there is no standardized manual when reviewing a safety work plan, the review of the safety work plan may be omitted.	Hazardous atmosphere caused by combustible mixer occurs because information on inactivation is not mentioned when supplying atmospheric gas to Bath facility.
12. Risk assessment of new facilities and processes (production and maintenance team)	Risk assessment results for new facilities may not be shared in advance.	Experts such as piping, valves, and process design did not participate in the risk assessment because the organization of the assessment team was defined only as "experts who know technical matters about the process clearly".
13. Share new facility process risk assessment results to partner companies	May not take action based on risk assessment results	-
14. Expansion of new facilities	If the process risk assessment of the new facility is not shared with the partner company, there is a high risk of accidents such as serious industrial accidents during work.	Risk assessment of hazardous work such as power failure test and mixed gas mixing test was not conducted, and risk was not properly communicated to suppliers.
15. Pre-operation inspection for facility testing	Failure to issue a safety work permit may result in an accident.	Electricity-related power outage tests are at risk of electric shock due to high voltage, but no safety work permit has been issued.
16. Test operation in the order of combination- kiln-Bath-LEHR process	Missing items in accordance with pre-operation inspection instructions will not result in accurate inspection.	Accident occurred before pre-operation inspection.
17. Preparation of safety work procedures	Less likely to be up and running by reorder.	When supplying atmospheric gas to the Bath facility, the information on deactivation is not mentioned in detail, causing a dangerous atmosphere due to the combustible mixer.
18. Prototype production	The variability is low.	-

4.2 FRAM 분석 결과

FRAM 분석에 필요한 기능(function)을 도출하기 위한 시스템의 범위는 일본의 설계・개발 및 운영단계에서부터 한국의 제조공장에서의 제작・설치 및 시운전단계의 일반의 작업을 수행하는 과정으로 설정하였다. 사고와 관련된 원인요소들은 Figure 5와 같이 나타내었다. 모델에서 일본의 설계, 개발 및 운영과 관련된 기능은 녹색, 한국의 설계, 개발 및 운영과 관련된 기능은 회색, 위험성 평가와 관련된 기능은 황색, 안전운전절차와 관련된 부분은 적색, 설비를 제작・설치하기 위한 협력업체로 관련된 기능은 청색으로 표시하였다. 이와 같이 작성된 FRAM 모델로부터 기능의 변동성과 그 파급효과를 파악하여 Table 1에 정리하였다.
구채칠·서동현·김태호

한국화재소방학회 논문지, 제35권 제5호, 2021년

Figure 5. A FRAM model related to accident.

Figure 5에서와 같은 모델을 이용하면 시스템을 구성하는 기능간의 연결 관계를 파악할 수 있으며, 각 기능으로부터 파생되는 위험성에 대한 예측도 가능하다. 예를 들어 "신설 설비 및 공정의 위험성 평가" 기능에서 생성되는 출력은 "안전작업 하기, 안전운전 지침서 작성" 등 많은 부분에 연결되어 있어 변동성에 따른 파급효과가 큰 것을 예상할 수 있으며, "안전작업 절차서 준비" 기능은 "가동전 점검, 사운전 기능"과 연결되어 있기 때문에 이 또한 변동성의 파급효과가 클 것임을 예상할 수 있다.

4.3 분석 결과 비교

4.3.1 사고 원인 관련 요소 도출 결과

AcciMap, FRAM을 이용한 사고 분석결과 모두에서 사고 조사의견서에서 제시한 사고 원인보다 더 많은 사고원인 관련 요소를 포함하고 있는 것으로 나타났다. AcciMap 기법에 따른 분석 결과를 FRAM 기법에 반영할 경우 일부 내용을 재료으로 두 기법의 결과는 유사하게 나타났지만 일부 차이를 발견할 수 있다. 이러한 이유는 FRAM 분석기법에서는 기술적인 부분은 변동성이 작은 것으로 간주되는 특성 때문으로 판단되었다.

4.3.2 사고 모형

AcciMap 모형은 그 자체가 사고 원인과 관련된 요소를 포함하고 있기 때문에 모형을 처음 작성한 후 계속해서 사고 관련 원인 요소들을 추가하고 관계도를 수정하는 작업을 반복하는 것이 필요했다. 또한, 모델 자체에 사고의 원인이나 결정 사항이 기술되어 있기 때문에 모델링 과정을 통해 사고 발생에 기여한 직접적인 원인이나 관련 요인들을 찾아 나갈 수 있었다.

FRAM 분석에서는 시스템의 범위를 설정한 후 기능 (function)을 도출하고, 도출된 기능간의 연결 관계를 찾아서 새로운 기능을 추가하거나 변경하면서 모형을 수정하는 작업이 필요했다. FRAM 모형은 각 기능으로 구성되어 있고, 각 기능간의 연결 관계를 파악할 수 있는 기회를 제공하였지만, 기능의 수가 많아짐에 따라 가독성 (readability)이 떨어지는 경향을 보였다. FRAM 분석은 기본적으로 제시된 모델이 없기 때문에 시스템의 범위를 어떻게 설정하는지에 관련 정책을 미쳤다.

5. 결론 및 제언

화학공장과 같이 복잡하고 고도화되어 있으며, 공정 간의 연관성이 높은 공정과 관련된 사고를 예방하기 위해서는 사고를 분석할 때 사고의 직접적 원인을 찾아 제거하는 기존의 순차적 접근 방식뿐만 아니라 사회, 기술 및 조직 등과 관련된 전반적인 시스템의 측면에서 접근할 필요가 있다. AcciMap을 이용하면 회사의 경영진, 생산팀, 정비보
수립·관리감독자와 정비보수를 위한 협력업체 등 여러 가지 다양한 요소들 간의 사고가 관련된 원인을 계층별로 도출할 수 있고, 원인 요소들 간의 상호 관계를 파악할 수 있다. FRAM을 이용하면 사고가 다양한 원인에 의해 다양한 방식으로 발생할 수 있다는 것을 보여주고 있으며 기능적 축면을 고려할 수 있는 장점이 있으나, 공간적·시간적 상호 의존관계를 명확하게 설명할 수 없는 단점이 있다. 이와 같이 사고를 분석할 경우에는 임차적인 사고 원인을 밝혀내는 것과 달리 여러 각각의 계층별 문제점과 구성요소 간의 상호관계 및 의사소통의 문제점을 파악하면 전체적인 측면에서 시스템 전체의 구성요소별로 사고를 예방하기 위한 대안도 제시가 가능할 것이다. 본 연구에서 분석한 사례는 관련 기관이나 사업장에서 사고예방을 위한 사 전 위험성 평가 및 사고가 발생하였을 경우 사고조사 시 관련 전문가가 활용할 수 있을 것이다.

References

1. Occupational Safety and Health Act (2021).
2. C. C. Koo and J. W. Choi, “A Study of Fire and Explosion Prevention of Internal Floating Roof Tank”, Fire Science and Engineering, Vol. 33, No 1, pp. 1-5 (2019). https://doi.org/10.7731/KIFSE.2019.33.1.045
3. C. C. Koo and J. W. Choi, “Analysis of Cause of Fire and Explosion in Internal Floating Roof Tank: Focusing on Fire and Explosion Accidents at the OO Oil Pipeline Corporation”, Fire Science and Engineering, Vol. 34, No 2, pp. 86-93 (2020). https://doi.org/10.7731/KIFSE.2b5f1251
4. D. H. Seo, K. W. Lee, W. S. Han, Y. R. Choi, D. W. Seo, “Disaster investigation study during non-routine operations at PSM target sites”, Korea Occupational Safety and Health Agency, Occupational Safety and Health Research Institute, (2019).
5. D. H. Ka, “The application of functional resonance analysis method for analysis of complex system accidents”, Master’s Degree thesis, Korea Advanced Institute of Science and Technology, pp. 1-16 (2017).
6. J. Y. Yang, “A Review of Resilience Engineering”, Korea Occupational Safety and Health Agency, Safety and Health Issue Report, Vol. 13, No 1, pp. 14-23 (2019).
7. J. Y. Yang, J. C, Ko, S. J, Lee, J. S. Im and Y. N. Kim, “A Study for the Transition of the Industrial Safety Paradigm”, Korea Occupational Safety and Health Agency, cupational Safety and Health Research Institute (2019).
8. E. Grant, P. M. Salmon, N. J. Stevens, N. Goode and G. J. Read, “Back to the future: What do accident causation models tell us about accident prediction?”, Safety Science, Vol. 104, pp. 99-109 (2018). https://doi.org/10.1016/j.ssci.2017.12.018
9. J. Rasmussen, “Risk Management in a Dynamic Society: A Modelling Problem”, Safety Science, Vol. 27, No. 2-3, pp. 183-213 (1997). https://doi.org/10.1016/S0925-7535(97)00052-0
10. K. Brandford, N. Naikar and A. Hopkins, “Learning from High Reliability Organizations. Chapter: Guidelines for AcciMap Analysis”, CCH, pp. 193-212 (2009).
11. Salmon, P. M., Miranda Cornelissen, margaret J. Trotter, “System-based accident analysis methods: A comparision of AcciMap, HFACS, and STAMP”, Safety Science, No, 50, pp. 1158-1170 (2012). https://doi.org/10.1016/j.ssci.2011.11.009
12. P. Underwood and P. Waterson, “A critical review of the STAMP, FRAM and AcciMap systemic accident analysis models. Advances in Human Aspects of Road and Rail Transportation”, CRC Press, pp. 385-394 (2012).
13. J. Yang, J. Ko, S. Lee, J. Lim and Y. Kim, “Establishing Systemic Strategy to Introduce Innovative Safety Concepts and Methods”, OSHRI, KOSHA, (2019).
14. E. Hollnagel, “Barriers and Accident Prevention”, Ashgate (2004).
15. E. Hollnagel, J. Hounsgaard and L. Colligan, “FRAM – a handbook for the practical use of the method”, Centre for Quality, pp. 8-29 (2014).