INTRODUCTION

Traumatic dental injury in children can result in pulp necrosis and subsequent arrest of root maturation (1). These nonvital immature permanent teeth have thin dentinal walls and wide-open apices. The absence of an apical stop to support conventional obturation is the principal concern. Therefore, it is highly desirable to induce apical root-end closure. Traditionally calcium hydroxide apexification has been advocated to induce root maturation with increased root length and thickness. However, the intended outcome is not achieved predictably and an intraradicular post cannot be placed after this procedure (3).

Mineral trioxide aggregate (MTA) as a root-end barrier material has been widely recommended for the successful management of a tooth with an open apex. It has an excellent sealing ability, tissue compatibility and bio-inductive properties (4, 5). The technique for MTA apical barrier placement involves chemo-mechanical preparation, inter-appointment dressing with a suitable...
intracanal medicament and subsequent placement of an MTA apical plug, either in a single or two-step procedure (6, 7). The thickness of the MTA apical barrier has been extensively researched, and it has been documented that a 4mm plug is sufficient for an adequate apical seal (8).

Immature teeth with open-apices have incompletely formed root with irregular apical dentinal walls (9). MTA apical barriers placed up to the radiographic root-end in these teeth, can result in overfill and a less favourable outcome may ensue (10). It is common for case series and prospective studies to place MTA apical barrier up to the radiographic root end (11, 12). The present preliminary clinical study aimed to evaluate the effect of the apical extent of MTA apical barrier on periapical healing of a non-vital immature permanent incisor tooth with an open apex.

MATERIALS AND METHODS

Subject enrolment

The institutional research Ethics Committee approved the study protocol (Ref. No. IESC/T-422/26-08-2015, RT-25/2015) following the principles of Helsinki (version 2008).

Inclusion and exclusion criteria

Healthy participants of either gender in the age group of 8-18 year requiring nonsurgical endodontic therapy in bilateral permanent maxillary central incisor teeth with a diagnosis of pulp necrosis and asymptomatic apical periodontitis exhibiting radiographic periapical index (PAI) score ≥3 (13) and associated Cvek’s stage 4 of root development (14) were enrolled between July 2015 and December 2017. Radiographic examination was carried using a size-1.5 CMOS RVG sensor (EzSensor Classic™, VaTech, Korea) exposed by paralleling cone technique at standardized X-ray operating parameters (70 kV, 7mA, and 0.12s). Teeth with extensive bone loss, a history of previous endodontic intervention, and non-restorable teeth were excluded. Verbal information regarding the study aim, associated procedures, and written bilingual patient information sheet was provided. Written informed consent was obtained from either of the parent or legal guardian.

Sample selection and randomization method

In the absence of related literature and since this was a preliminary clinical study, a convenience sample size comprising of six participants with traumatized bilateral nonvital immature permanent maxillary central incisor teeth (n=12) were selected for a split-mouth study design. In each subject, the bilateral nonvital immature permanent maxillary central incisor teeth were randomly assigned using permuted block randomization to either group I (n=6, MTA apical barrier up to the radiographic root-end) or group II (n=6, MTA apical barrier 2 mm short of the radiographic root-end). The participants were blinded to the treatment allocation.

Interventions

Nonsurgical endodontic therapy

It was performed by a single operator (KT). A standardized two-visit protocol was followed. The tooth was anaesthetized with 2% lignocaine with 1:200,000 adrenaline (LOX 2%, Neon Laboratories Ltd., Mumbai, India). The access cavity was prepared under rubber dam isolation using a sterile round carbide bur (Dentsply Maillefer, Ballaigues, Switzerland). The canal terminus was determined and working length (WL) at that position was opted for with an electronic apex locator (Tri Auto-ZX, J Morita USA) operated as per manufacturer’s recommendations and confirmed radiographically. In case of discrepancy between the measured WL, the radiographic WL was taken as the final (15). Minimal mechanical instrumentation of the canal was carried out with ISO K-files (Dentsply Maillefer, Ballaigues, Switzerland). The entire instrumentation was supplemented with copious irrigation of the canal with 5.25 % sodium hypochlorite (NaOCl) (PRIME Dental Products Pvt. Limited, Pune, Maharashtra, India). The canal was irrigated with 17% Ethylenediaminetetraacetic acid (EDTA) (Largal ultra Septodont, Codex, France) for 1 minute and the final flush was carried out with distilled water. To limit extrusion of the irrigant in the periapical area, the Endovac irrigation delivery system (EndoVac™ system; Kerr Dental, Orange, CA, USA) was used. The canal was dried with a sterile absorbent paper points (Dentsply Maillefer, Ballaigues, Switzerland), and an intracanal medicament of calcium hydroxide slurry was placed with a lentulo spiral (Dentsply Maillefer, Ballaigues, Switzerland). The access cavity was restored with Cavit™ G (3M ESPE Dental AG, Seefeld/Oberbay, Germany). The patients were recalled at a one-week interval. The root canal was re-accessed following the above endodontic protocol. Calcium hydroxide was removed with 10 ml each sequential irrigation of 17% EDTA and 5.25% NaOCl solution. This was aided with ultrasonic activation (16). If there was a persistent discharge from the root canal, another dressing of calcium hydroxide slurry was placed until a dry canal was obtained. Two teeth required additional calcium hydroxide intracanal medication. Subsequently, an MTA (White ProRoot® MTA, Dentsply Maillefer, Ballaigues, Switzerland) apical barrier was placed.

MTA apical barrier

To serve as an internal matrix for placement of the MTA apical barrier, sterile resorbable collagen sponge was sized into a suitable piece. In Group I, the rubber stopper of the hand plunger was adjusted up to established WL, and collagen pellet was placed flush to the radiographic root end. In Group II, the rubber stopper of the hand plunger was adjusted 2 mm short of the established WL and was used to place the collagen pellet short of the radiographic root end. MTA powder was mixed as per the manufacturer’s recommendation. It was carried into the root canal in increments using the Dovgan MTA carrier (Dentsply Maillefer, Wey bridge, UK) and condensed with Schilder pluggers (Dentsply Caulk, Milford, USA) until an appropriate thickness of 4 mm was achieved. A moist cotton pellet was placed over it. To confirm the correct placement of the MTA apical plug, a digital intraoral periapical radiograph was exposed at standardized parameters (70 kV, 7mA, and 0.12s) on a size-1.5 CMOS RVG sensor (EzSensor Classic™, VaTech, Korea). The access cavity was restored with Cavit™ G (3M ESPE Dental AG, Seefeld/Oberbay, Germany). The patient was recalled after twenty-four hours. The tooth was re-accessed under aseptic conditions. The setting of the MTA was confirmed. Obturation was performed using an AH plus® sealer (Dentsply DeTreY GmbH, Konstanz, Germany) and Calamus®
Dual thermoplastic injection system (Dentsply Maillefer, Ballaigues, Switzerland). The access cavity was sealed with an Optra Bond® All in one (Dentsply DeTrey GmbH, Konstanz, Germany) and composite resin material (Ceram.X® SphereTEC™ one Composite, Dentsply DeTrey GmbH, Konstanz, Germany).

Clinical evaluation
The cases were evaluated clinically at twelve and twenty-four months. Tenderness to palpation, percussion, mobility, pus discharge, and the absence or presence of sinus were noted and compared with previous records.

Radiographic evaluation
The pre and twenty-four months post-operative PAI scores of the teeth were radiographically evaluated (Figs. 1-3) and compared by two trained endodontist who were blinded to the study objectives and methodology. The examiners repeated the scoring after the one-month interval. Inter-rater and intra-rater agreement scores were calculated using Cohen’s kappa analysis. The scores were 0.818 and 0.83, respectively.

Statistical analysis
The data collected was entered in Microsoft Excel and subjected to statistical analysis using Statistical Package for Social Sciences (IBM SPSS Inc., version 20.0, Chicago, IL, USA). The level of significance was fixed at 5% and P≤0.05 was considered statistically significant. Kolmogorov-Smirnov test and Shapiro-Wilks test were employed to test the normality of data. The categorical data were represented in frequency (n)/percentages (%). Mann Whitney U test, Kruskal Wallis and post hoc analysis was performed for quantitative variables.

RESULTS
No case was lost to follow up at the end of the observation period of twenty-four months. All patients reported no symptoms associated to the teeth in question, suggesting that the treatment was successful. In this study, the PAI score was considered as an ordinal scale. They were dichotomized as healed, PAI scores <3 or non-healed, PAI scores ≥3. On inter-group comparison between the frequency distribution of baseline

Figure 1. (a) Preoperative intraoral periapical radiograph of teeth #11 and #21 with non-blunderbuss canal and open apex associated PAI scores of 5 and 4 respectively. (b) Immediate postoperative intraoral periapical radiograph of tooth #21 showing MTA apical barrier 2 mm short and tooth #11 showing MTA apical barrier up to radiographic root end. (c) & (d) Follow up intraoral periapical radiograph exhibiting resolution of the periapical lesion at 12 and 24 months

Figure 2. (a) Preoperative intraoral periapical radiograph of teeth #11 and #21 with non-blunderbuss canal and open apex associated PAI scores of 5 and 5 respectively. (c) Immediate postoperative intraoral periapical radiograph of tooth #11 showing MTA apical barrier 2 mm short of radiographic root end and tooth #21 showing MTA apical barrier up to radiographic root end. (c) & (d) Follow up intraoral periapical radiograph exhibiting resolution of the periapical lesion at 12 and 24 months
Beyond the confines of the root-end was considered as an open apex. This type of root canal is an indication for an MTA apical barrier.

MTA has diverse clinical applications (19) and has been extensively used for apical barrier formation in a nonvital tooth with an immature apex (20, 21). In retrospective studies, the clinical and radiographic outcome of teeth treated by MTA apical barrier placement, a success rate of 90-93% was observed. This method produces a predictable apical barrier, reduces treatment time, and is an evidence-based technique for the management of permanent nonvital tooth with an open apex (22, 23). The thickness of the MTA apical barrier has been extensively evaluated, and a 4 mm MTA apical barrier is ideal for preventing bacterial leakage (24). Hence the same thickness was preferred.

The results of the present study demonstrated that despite placing MTA apical barrier up to the radiographic root end periapical healing was evident in all the teeth and there was no significant difference (P=1.0). At 24 months follow up interval, on inter-group comparison between the proportion of teeth healed and non-healed (radiographic), no statistically significant difference was observed (P=1.0) (Table 1). This study reported a 100% success rate with a complete resolution of periapical radiolucency in both the groups.

DISCUSSION

This study was aimed to determine the optimal apical extent of the MTA apical barrier in a nonvital immature permanent anterior tooth with an open apex. Based on the results of this study, it was observed that there was no influence on treatment outcome (i.e. healing of apical periodontitis) between the two treatment protocols.

The definition of open apex varies according to the authors (17, 18). In this study, the anterior maxillary tooth that had radiographic evidence of non-blunderbuss canal (Cvek’s stage 4) and in which an ISO size #80 K file could passively pass beyond the confines of the root-end was considered as an open apex. This type of root canal is an indication for an MTA apical barrier.

MTA has diverse clinical applications (19) and has been extensively used for apical barrier formation in a nonvital tooth with an immature apex (20, 21). In retrospective studies, the clinical and radiographic outcome of teeth treated by MTA apical barrier placement, a success rate of 90-93% was observed. This method produces a predictable apical barrier, reduces treatment time, and is an evidence-based technique for the management of permanent nonvital tooth with an open apex (22, 23). The thickness of the MTA apical barrier has been extensively evaluated, and a 4 mm MTA apical barrier is ideal for preventing bacterial leakage (24). Hence the same thickness was preferred.

The results of the present study demonstrated that despite placing MTA apical barrier up to the radiographic root end periapical healing was evident in all the teeth and there was no influence on treatment outcome (i.e. healing of apical periodontitis) between the two treatment protocols.

TABLE 1. Demographic profile, clinical and radiographic outcome

Case	Age (Years)	Gender	Tooth no.	Demographic profile and radiographic outcome	Outcome 24 months	
				Radiographic postoperative PAI score	Clinical	
1	14	M	11*	5	1	Asymptomatic
2	15	M	11*	3	1	Asymptomatic
3	10	M	21*	4	1	Asymptomatic
4	17	M	11*	3	1	Asymptomatic
5	14	F	21*	5	1	Asymptomatic
6	18	M	21*	4	1	Asymptomatic

*MTA placed up to the radiographic root end, **MTA placed 2 mm short of the radiographic root end*
CONCLUSION

In a nonvital immature permanent anterior tooth, MTA apical plug can be placed either at or 2 mm short of the radiographic root end.

Disclosures

Conflict of interest: Authors declared no conflict of interest.

Ethics Committee Approval: The institutional research Ethics Committee approved the study protocol (Ref. No. IESC/T-422/26-08-2015, RT-25/2015) following the principles of Helsinki (version 2008).

Peer-review: Externally peer-reviewed.

Financial Disclosure: No financial support is taken.

Authorship contributions: Concept – A.L.; Design – K.M.T., A.L.; Supervision – K.M.T., A.L.; Funding - A.L.; Materials - None; Data collection &or processing – K.M.T.; Analysis and/or interpretation – K.M.T., A.L.; Literature search – K.M.T.; Writing – K.M.T.; Critical Review – K.M.T., A.L.

REFERENCES

1. Torneck CD. Effects and clinical significance of trauma to the developing permanent dentition. Dent Clin North Am 1982; 26(3):481–504.
2. Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol 2002; 18(3):134–7.
3. Shah N, Logani A, Bhaskar U, Aggarwal V. Efficacy of revascularization to induce apicification/apexogenesis in infected, nonvital, immature teeth: a pilot clinical study. J Endod 2008; 34(8):919–25.
4. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-Part I: chemical, physical, and antibacterial properties. J Endod 2010; 36(1):16–27.
5. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review—part II: leakage and biocompatibility investigations. J Endod 2010; 36(2):190–202.
6. Simon S, Rilliard F, Berdal A, Machtou P. The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study. Int Endod J 2007; 40(3):186–97.
7. Sarris S, Tahmassebi JF, Duggal MS, Cross IA. A clinical evaluation of mineral trioxide aggregate for root-end closure of non-vital immature permanent incisors in children—a pilot study. Dent Traumatol 2008; 24(1):79–85.
8. Valois CR, Costa ED Jr. Influence of the thickness of mineral trioxide aggregate on sealing ability of root-end fillings in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004; 97(1):108–11.
9. Friend LA. The treatment of immature teeth with non-vital pulps. J Br Endod Soc 1967; 1(2):28–33.
10. Nosrat A, Nekoofar MH, Bolhari B, Dummer PM. Unintentional extrusion of mineral trioxide aggregate: a report of three cases. Int Endod J 2012; 45(12):1165–76.
11. Pace R, Giuliani V, Nieri M, Di Nasso L, Pagavino G. Mineral trioxide aggregate as apical plug in teeth with necrotic pulp and immature apices: a 10-year case series. J Endod 2014; 40(8):1250–4.
12. Cehreli ZC, Sara S, Uysal S, Turgut MD. MTA apical plugs in the treatment of traumatized immature teeth with large periapical lesions. Dent Traumatol 2011; 27(1):59–62.
13. Orstavik D, Kerekes K, Eriksen HM. The periapical index: a scoring system for radiographic assessment of apical periodontitis. Endod Dent Traumatol 1996; 11(3):20–34.
14. Cvek M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol 1992; 8(2):45–55.
15. Kim YJ, Chandler NP. Determination of working length for teeth with wide or immature apices: a review. Int Endod J 2013; 46(6):483–91.
16. Capar ID, Ozcakar E, Arslan H, Ertas H, Aydinbelge HA. Effect of different final irrigation methods on the removal of calcium hydroxide from an artificial standardized groove in the apical third of root canals. J Endod 2014; 40(3):451–4.
17. Mente J, Seidel J, Buchalla W, Koch MJ. Electronic determination of root canal length in primary teeth with and without root resorption. Int Endod J 2002; 35(5):447–52.
18. Moore A, Howley MF, O’Connell AC. Treatment of open apex teeth using two types of white mineral trioxide aggregate after initial dressing with calcium hydroxide in children. Dent Traumatol 2011; 27(3):166–73.

19. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010; 36(3):400–13.

20. Bonte E, Beslot A, Boukpessi T, Lasfargues J. MTA versus Ca(OH)2 in apicification of non-vital immature permanent teeth: a randomized clinical trial comparison. Clin Oral Investig 2015; 19(6):1381–8.

21. Alobaid AS, Cortes LM, Lo J, Nguyen TT, Albert J, Abu-Melha AS, et al. Radiographic and clinical outcomes of the treatment of immature permanent teeth by revascularization or apicification: a pilot retrospective cohort study. J Endod. 2014; 40(8):1063–70.

22. Büchner K, Meier F, Diegritz C, Kaaden C, Hickel R, Kühnisch J. Long-term outcome of MTA apicification in teeth with open apices. Quintessence Int 2016; 47(6):473–82.

23. Jeeruphan T, Jantaraj J, Yanpiset K, Suwannapan L, Khewsawai P, Hargreaves KM. Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apicification methods: a retrospective study. J Endod 2012; 38(10):1330–6.

24. Al-Kahtani A, Shostad S, Schifferle R, Bhambhani S. In-vitro evaluation of microleakage of an orthograde apical plug of mineral trioxide aggregate in permanent teeth with simulated immature apices. J Endod 2005; 31(2):117–9.

25. Chen CL, Huang TH, Ding SJ, Shie MY, Kao CT. Comparison of calcium and silicate cement and mineral trioxide aggregate biologic effects and bone markers expression in MG63 cells. J Endod 2009; 35(5):682–5.

26. Tani-Ishii N, Hamada N, Watanabe K, Tujimoto Y, Teranaka T, Umemoto T. Expression of bone extracellular matrix proteins on osteoblast cells in the presence of mineral trioxide. J Endod 2007; 33(7):836–9.

27. Chong BS, Pitt Ford TR. Root-end filling materials: rationale and tissue response. Endod Top 2005; 11(1):114–30.

28. Storm B, Eichmiller FC, Tordik PA, Goodell GG. Setting expansion of gray and white mineral trioxide aggregate and Portland cement. J Endod 2008; 34(1):80–2.

29. Silujjai J, Linsuwanont P. Treatment Outcomes of apicification or revascularization in nonvital immature permanent teeth: a retrospective study. J Endod 2017; 43(2):238–45.

30. Hakki SS, Bozkurt SB, Hakki EE, Belli S. Effects of mineral trioxide aggregate on cell survival, gene expression associated with mineralized tissues, and biomineralization of cementoblasts. J Endod 2009; 35(4):513–9.

31. Songtrakul K, Azarpajouh T, Malek M, Sigurdsson A, Kahler B, Lin LM. Modified apicification procedure for immature permanent teeth with a necrotic pulp/apical periodontitis: a case series. J Endod 2020; 46(1):116–23.