SHALIKA GERMS FOR TAMELY RAMIFIED ELEMENTS IN
GL_n

OSCAR KIVINEN AND CHENG-CHIANG TSAI

Abstract. Degenerating the action of the elliptic Hall algebra on the Fock space, we give a combinatorial formula for the Shalika germs of tamely ramified regular semisimple elements γ of GL_n over a nonarchimedean local field. As a byproduct, we compute the weight polynomials of affine Springer fibers in type A and orbital integrals of tamely ramified regular semisimple elements.

We conjecture that the Shalika germs of γ correspond to residues of torus localization weights of a certain quasi-coherent sheaf \mathcal{F}_γ on the Hilbert scheme of points on \mathbb{A}^2, thereby finding a geometric interpretation for them.

As corollaries, we obtain the polynomiality in q of point-counts of compactified Jacobians of planar curves, as well as a virtual version of the Cherednik-Danilenko conjecture on their Betti numbers. Our results also provide further evidence for the ORS conjecture relating compactified Jacobians and HOMFLY-PT invariants of algebraic knots.

CONTENTS

1. Introduction 2
1.1. The formulas 3
1.2. Outline of the paper 7
Acknowledgments 7
2. Orbital integrals 7
2.1. Shalika germs 8
2.2. Steinberg germs 10
2.3. Parabolic induction 11
2.4. Moy-Prasad theory 12
3. Symmetric functions and combinatorics 12
3.1. Combinatorics 12
3.2. The ring of symmetric functions 13
3.3. Orbital integrals and symmetric functions 15
4. The elliptic Hall algebra 15
4.1. Double affine Hecke algebras 19
5. Knot invariants 21
5.1. Algebraic knots 21
5.2. Superpolynomials 22

1The genesis of this manuscript is as follows: In 2018, CCT showed OK his unpublished computations of Shalika germs of GL_n. These were in many examples checked to match predictions from the knot theory side by OK, which led to the strategy pursued in this paper.

CCT subsequently told OK that Waldspurger had given an algorithm for the germs in [64,65], which OK later found to match a recursion on the knot theory/symmetric function side. The final outcome is this paper, mostly written by the first author. CCT is nevertheless included as the second author, as neither understanding the proof method nor deciphering the difficult papers [64,65] would have been possible without his generous aid. The application to compactified Jacobians is also originally CCT’s idea.
Shalika germs are a family of functions on a neighborhood of the identity in an algebraic group G defined over a nonarchimedean field F. They were introduced in [59] and further studied in for example [16, 38, 55, 64]. We refer to [37] for a survey. More precisely, given $f \in C^\infty_c(G(F))$ an Iwahori bi-invariant function on G, the Shalika germ expansion [16, 59] states that

$$I_\gamma(f) = \sum_{\mathcal{O} \in G(0)} \Gamma_{\mathcal{O}}(\gamma) I_{\mathcal{O}}(f)$$

Where $G(0)$ is the set of nilpotent orbits in G, $I_\gamma, I_{\mathcal{O}}$ are orbital integrals and $\Gamma_{\mathcal{O}}: U_{\mathcal{O}} \to \mathbb{C}$ are functions defined on an open subset $\gamma \in U \subseteq G$, called the Shalika germs.

See Corollary 2.6 for a more precise version we will use. Computing the Shalika germs for a given group G is an important, in general open problem, which refines formulas for regular semisimple orbital integrals as well as character values of supercuspidal representations [46]. In the present paper, we find a new mathematical incarnation of the Shalika germs of tamely ramified elements in terms of the Hilbert scheme of points on $\text{Hilb}^n(A^2)$. From now on, we let γ be tamely ramified, meaning $F(\gamma)$ is a product of tamely ramified extensions of F.

In [65], Waldspurger gives a rather complicated inductive formula for (almost, see Theorem 2.14 and Section 6) the Shalika germs of γ in this case, built inductively from those of elements of smaller depth. Here depth is meant in the sense of Moy-Prasad theory, see Definition 2.27. The algorithm in [65] rests on a clever choice of test functions and a version of "Kazhdan’s lemma", using which one can bootstrap computation of the germs to what is essentially just linear algebra. A similar idea is used again by Waldspurger in [66] and also by the second author in [62] based on a lemma of Kim-Murnaghan [35] to obtain less precise results for general groups. Waldspurger mentions similar strategies due to Kazhdan, Henniart, and others. The issue is that the resulting linear algebra is usually cumbersome to carry out and many steps of the algorithm have no obvious conceptual meaning. As noted by Waldspurger in [65]:

"L’auteur est convaincu qu’il existe une bonne combinatoire, moins naïve que celle utilisée ici, qui devrait permettre de calculer les germes."

- J.-L. Waldspurger [65]
Our method of computation of the germs will use Waldspurger’s techniques from [64, 65], the most notable difference being in our use of the Lie algebra \mathfrak{gl}_n in place of GL_n, and replacing, or rather extending, his PSH-algebra calculations by the elliptic Hall algebra. This greatly clarifies the resulting combinatorics, giving a formula which is essentially computable "by hand" 2.

The elliptic Hall algebra (EHA) has appeared in many guises related to automorphic forms, starting with the original article of Burban and Schiffmann [10]. For us, it appears through a "shuffle algebra" action on the algebra of symmetric functions in infinitely many variables [49, 57]. More precisely, much of this paper is concerned with a symmetric function we denote $f_\gamma = f_{p,q}$, which can be constructed using this action, as we will explain in Section 5. We have called $f_{p,q}$ "the master symmetric function" for lack of a better name. In modern language, it is the $t \to 1$ limit of the $n \to \infty$ limit of a symmetric polynomial in n variables, which appears in the definition superpolynomial for an iterated torus knot [12, 27].

In [64, 65], Waldspurger already essentially introduces this symmetric function, but mostly as a bookkeeping tool which turns out to be helpful because of the relation to calculations in the Hall algebra of $GL_n(\mathbb{F}_q)$. Apparently, the relationship of Shalika germs to this Hall algebra was first suggested to him by B. Srinivasan.

We make the case that the master symmetric function is a completely natural object and arises as a vector in the Fock space representation of the elliptic Hall algebra. By the results of [6, 58] the elliptic Hall algebra is the decategorification of a form of induction-restriction functors for a coherent realization affine character sheaves, and one expects this to be mirrored on the constructible side of Langlands duality. Indeed, in an appropriate sense each γ gives rise to $G(F)$-equivariant constructible sheaf on $g(F)$ by taking the extension by zero of the constant sheaf on the conjugacy class and one may view our induction as some shadow of yet-to-be-defined induction-restriction functors for affine character sheaves of this sort. While we only work with the elements γ themselves it would be compelling to make the induction more precise on the level of affine character sheaves.

On the decategorified level, we also lack an understanding of our computations directly in terms of the cocenters of affine Hecke algebras of GL_n, but this is likely possible with current technology. The appearance of the Fock space representation on the harmonic analysis side seems to stem from the natural "cyclotomic" quotient map from the affine Hecke algebra down to the finite one in type A. Note that these maps respect parabolic induction. This is exactly the same phenomenon as in the skein-theoretic version [45].

1.1. The formulas. Let us now state our main results in some detail. Let $G = GL_n$, $\mathfrak{g} = \text{Lie}(G) = \mathfrak{gl}_n$, $\mathcal{K} = \mathbb{C}((t))$, $\mathcal{O} = \mathbb{C}[[t]]$ and $\gamma \in \mathfrak{g}(\mathcal{K})$ be a regular semisimple (elliptic) element. We endow \mathcal{K} and its extensions with the standard valuation. We will only be interested in conjugation-invariant notions, but it will be helpful for us to choose a nice representative in the conjugacy class of γ. Further, we will only be concerned with the orbital integrals (and some related geometric objects like affine Springer fibers) of γ, which further allows us to mod out by a large power of the uniformizer t.

2Computer code available at https://www.math.toronto.edu/salomon/Shalika.zip and in the arXiv submission.
Let
\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & t \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \ddots & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 \\
0 & \cdots & 0 & 0 & 1
\end{pmatrix}
\]
(1.1)
and note that \(u^n = t \).

Lemma 1.2. For any topologically nilpotent elliptic regular semisimple \(\gamma' \in \mathfrak{gl}_n(K) \) there exists an element \(\gamma \in \mathfrak{gl}_n(K) \) of the form
\[
\gamma = \sum_{i=1}^{d} a_i u^{nr_i}
\]
for some \(d \geq 0 \), \(a_i \in \mathbb{C} \) and positive rational numbers \(r_1, \ldots, r_d \) with \(nr_i \in \mathbb{Z} \), such that the corresponding affine Springer fibers satisfy \(\mathrm{Sp}_\gamma \cong \mathrm{Sp}_{\gamma'} \) (meaning that there is an isomorphism of underlying reduced ind-projective varieties). Without loss of generality, we may take \(r_1 > r_2 > \cdots > r_d \). Additionally, the set \(\{ r_i \}_{i=1}^{d} \) coincides with the set of root valuations of \(\gamma \), in the sense of [24]

Proof. The regular conjugacy classes in \(\mathfrak{gl}_n(K) \) are parametrized by the characteristic polynomials. Write \(\text{char}(\gamma) = x^n - b_1 x^{n-1} + \cdots + b_n \) for \(b_i \in K \).

The Newton-Puiseux algorithm (see e.g. [18] for a reference relevant to this paper) allows one to solve \(\text{char}(\gamma) = 0 \) for \(x \) as a Puiseux series \(x = \sum a_i t^{r_i} \) in \(t \). The exponents in this Puiseux series are all rational numbers whose denominator divides \(n \). To get the assertion \(\mathrm{Sp}_\gamma \cong \mathrm{Sp}_{\gamma'} \) we may use Artin approximation, see e.g. [47, Section 3.6.] for this particular case. In effect, we may take \(b_i \in \mathbb{C}[t^\mathbb{Q}] \) which also makes this Puiseux series finite. Replacing \(t^{1/n} \) by \(u \) and using Cayley-Hamilton gives the first claim.

As to the last claim, note that \(u^{nr_i} \) has all root valuations equal to \(r_i \) and over the field of Puiseux series, all the terms in the expansion of \(\gamma \) may be simultaneously diagonalized. Now the result is easy to check using standard properties of the valuation and the Puiseux expansion. \(\square \)

Remark 1.3. Lemma 1.2 works over other residue fields as well, provided \(K(\gamma) \) is a tamely ramified extension of \(K \) [14, Chapter IV.6.].

Definition 1.4. Writing the exponents \(r_i \) appearing in Eq. (1.2) as \(r_1 = m_1/n_1, r_2 = m_2/n_1n_2 \) etc. gives the Puiseux pairs \((m_1, n_1), \ldots, (m_d, n_d) \) of \(\gamma \). Rewriting the Puiseux expansion of \(\text{char}(\gamma) \) as
\[
x = t^{q_d/p_d}(a_d + t^{q_{d-1}/p_{d-1}}(a_{d-1} + \cdots (a_2 + a_1 t^{q_1/p_1 \cdots p_d}) \cdots))
\]
we get the Newton pairs \((p_1, q_1), \ldots, (p_d, q_d) \) of \(\gamma \). We will write \((\tilde{p}, \tilde{q})\) for this sequence. We will also impose the (harmless) requirement \(q_d \geq p_d \). (Note that ours is the opposite of the conventions used in e.g. [18]).

Remark 1.5. Knowledge of the Puiseux (equivalently, Newton) pairs is equivalent to knowing the topological type of the singularity \(\{ \text{char}(\gamma) = 0 \} \). Recall that this is by definition the knot in \(S^3 \) determined by intersecting \(\{ \text{char}(\gamma) = 0 \} \subset \mathbb{C}^2 \) with a small three-sphere centered at the origin.
Example 1.6. Let $n = 4$ and

$$
\gamma = u^6 + u^7 = \begin{pmatrix}
0 & t^2 & t^2 & 0 \\
0 & 0 & t^2 & t^2 \\
t & 0 & 0 & t^2 \\
t & t & 0 & 0
\end{pmatrix}
$$

Then $r_1 = 7/4, r_2 = 3/2$ and

$$\text{char}(\gamma) = x^4 - 2tx^2 - 4tx - t^7 + t^6$$

The Puiseux pairs are $(m_1, n_1) = (7, 2), (m_2, n_2) = (3, 2)$ and the Newton pairs are $(p_1, q_1) = (1, 2), (p_2, q_2) = (2, 3)$. The link is the "(2, 13)-cable of the trefoil". This example features also for example in [18, p. 58].

Recall that rational Dyck paths of slope m/n are lattice paths in an m by n rectangle fitting under the diagonal. See Definition 3.6.

As explained in Section 4, one may define a homomorphism from the ring of symmetric functions to itself $\varphi_{m/n} : \text{Sym}_q \rightarrow \text{Sym}_q$ by sending each e_k to

$$E_{m,n,k} = \sum_{\pi \in D_{m,n}} q^{\text{area}(\pi)} e_{x}$$

see Section 3 for the notation. Our first main theorem is the following.

Theorem 1.7. Let $\gamma \in \mathfrak{gl}_n(K)$ be an elliptic regular semisimple (tamely ramified) element. Let $(p_1, q_1), \ldots, (p_d, q_d)$ be the Newton pairs of γ. Then the master symmetric function $f_\gamma = f_{\beta, d}$ only depends on the Newton (or Puiseux) pairs of γ and is given by

$$f_\gamma = \varphi_{q_1/p_1} \cdots \varphi_{q_d/p_d}(e_1) \cdots$$

There is a version of this Theorem for not necessarily elliptic elements. Essentially, if γ belongs to a Levi $L(\lambda)$, we take f_γ to be the product of the master symmetric functions of the factors, see Definition 6.27. This is uniquely determined by the Puiseux series of the branches of the spectral curve (which correspond to the different blocks of γ).

As explained in Section 6, the Shalika germs are obtained from the master symmetric function f_γ by expanding it in the plethystically transformed homogeneous symmetric functions \tilde{h}_λ (Lemma 3.8). Similarly, one gets what we call "Steinberg germs" from Theorem 2.14 by expanding in the untransformed homogeneous symmetric functions.

On the harmonic analysis side, our recursion boils down to writing $\gamma^c = \gamma - a_d u^{nr_2}$. It lies in the center of the centralizer of γ, which is F^c for some tamely ramified extension F'/F of degree e (see Section 6). Let d be the F'-valuation of $\gamma - \gamma^c$. We can use the Shalika expansion for γ^c and compare the two.

This translates the Dyck path recursion to the following formula for the Shalika germs using compositions, see Theorem 6.19.

Theorem 1.8. The transition matrix between the Shalika germs for γ and γ^c is given by

$$M_{\lambda, \lambda'} = \left(c_{\lambda'} \sum_{\mu, \nu'} |S_{\lambda} \cap C_{\mu'}| \prod_{i=1}^{t(\nu)} \left(\sum_{\alpha \in S_{\mu}} \text{wt}(\alpha) \frac{d/(e) \tilde{h}_{\alpha}}{\tilde{h}_{\lambda}} \right) \right)_{\lambda, \lambda'}$$
where $|h_{n\lambda}|$ means we pick the coefficient of \tilde{h}_{λ}. Here $\text{wt}(\alpha)_{d/e}$ is as in Eq. (5.11), $|S_{\lambda} \cap C_{\mu}|$ is the number of elements in the symmetric group S_n which belong to both the Young subgroup S_{λ} and have cycle type μ, and

$$c_{\lambda'} = (1 - q)^{n'} [X_{\lambda'}]_q!,$$

$$b_\mu = \prod_{i=1}^{\ell(\mu)} (1 - q^{\mu_i})$$

Remark 1.9. So far, we have been restricting to the case where F'/F is totally ramified. In the case where the residue field is $k = F_q$ and our extension is unramified, the above theorem also works with appropriate modifications, as explained in Section 6. Of course, in this case one needs to modify the statement of Theorem 1.7 to account for intermediate unramified extensions.

Finally, the point counts of affine Springer fibers/their weight polynomials/integrals of characteristic functions of standard parahorics over the orbit of γ are obtained easily from the master symmetric function by pairing it with elementary symmetric functions:

Theorem 1.10. Let $\lambda \vdash n$ be a partition and 1_λ the characteristic function of the Lie algebra of the associated standard parahoric. Then

$$I_\gamma(1_\lambda) = q^{\dim \text{Sp}_\gamma} \langle f_\gamma, e_\lambda \rangle_{q^{-1}}$$

where we pair using the usual Hall inner product and Sp_γ is the affine Springer fiber of γ. See Remark 5.11 for the normalizations.

The following is more or less obvious from above and has been a folklore conjecture for quite long. We give details in Section 7.2.

Corollary 1.11. The point-counts of (local) compactified Jacobians of plane curves are polynomials in q and only depend on the Newton-Puiseux pairs of γ. In addition, they are polynomials with nonnegative integer coefficients.

Proof. Theorem 1.10 combined with Proposition 7.10 implies that $q^{\dim \text{Sp}_\gamma} \langle f_\gamma, e_\lambda \rangle_{q^{-1}}$ is the number of points of the projective variety $X_\gamma = \text{Sp}_\lambda \gamma / \Lambda$ after spreading out and modding out by q outside a finite set of primes. On the other hand, it is well known that $\langle e_\mu, e_\lambda \rangle$ counts the number of certain nonnegative integer matrices with row sums μ and column sums λ and in particular is a nonnegative integer. Since $f_\gamma = \sum a^{\lambda}(q)e_\lambda$ with $a^{\lambda}(q) \in \mathbb{N}[q]$ by Theorem 1.7, we get

$$|X_\gamma(F_q)| \in \mathbb{N}[q]$$

as desired. \qed

Note that the element γ does not have to be elliptic for this to hold. Indeed, as explained in Section 2 the point-counts on regular semisimple affine Springer fibers can be reduced to those of elliptic elements. The above is also in line with the expectation that all local compactified Jacobians (for elliptic γ, say) are paved by affines.

Our final result follows from our method using the elliptic Hall algebra. In Section 8 we connect this Theorem to the geometry of Hilbert schemes of points on \mathbb{A}^2.
Theorem 1.12. The master symmetric function \hat{f}_γ admits a canonical t-deformation \hat{f}_γ which admits a t-deformed version of the Shalika germ expansion:

$$\hat{f}_\gamma = \sum_{\lambda \vdash n} \sum_{\gamma} \tilde{H}_\lambda (\gamma) \tilde{\Gamma}_\lambda$$

where \tilde{H}_λ are the modified Macdonald polynomials.

It is unlikely the methods in this paper will yield results for other groups, in that the elliptic Hall algebra seems to be confined to work with $G = GL_n$ only. There are also a number of geometric simplifications in this case for the affine Springer fibers. It is however interesting to ponder what part of the theory carries through to other G.

Another direction of generalization is to the wildly ramified elements. For some of our methods, especially on the harmonic analysis side, there is no issue in using other nonarchimedean fields, in particular extensions of \mathbb{Q}_p. The geometric interpretation of orbital integrals from [23,34,40] still goes through but the geometry is now replaced by the Witt vector affine flag varieties of [68]. It would be interesting to consider the geometry of affine Springer fibers in this case.

1.2. Outline of the paper. In Section 2, we review some general theory of orbital integrals and various versions of the Shalika germ expansion. In Section 3 we introduce background on symmetric functions, and in Section 4 we define and study a degenerate version of the Elliptic Hall Algebra. Section 5 is devoted to making the connection of our results to HOMFLY type knot invariants precise. It appears before the technical heart of the paper, Section 6, because results of the latter are strongly guided by the computation of the knot superpolynomials. Finally, we discuss some applications in Section 7 and the relationship of our results to the Hilbert scheme of points on \mathbb{A}^2 in Section 8.

Acknowledgments. The authors thank Pierre-Henri Chaudouard, Stephen DeBacker, Thomas Hales, Yen-Chi Roger Lin, Anton Mellit, Fiona Murnaghan, Alexei Oblomkov, Koji Shimizu, Yan Soibelman, Loren Spice, Minh-Tam Trinh, Zhiwei Yun, and Wei Zhang for interesting conversations.

OK wants to especially thank Francois Bergeron, Eugene Gorsky and Andrei Negut for their insights about the EHA at $t = 1$, and the second author for introducing him to p-adic harmonic analysis.

2. Orbital integrals

In this section, we fix k a finite field and let F be a non-archimedean local field with residue field k and \mathcal{O} its ring of integers. For any $\gamma \in G(F)$ and $f \in C_c^\infty(G(F))$ (henceforth complex-valued), the orbital integral is

$$I_\gamma(f) := \int_{g \in G(F)(\gamma) \backslash G(F)} f(g^{-1}\gamma g) dg$$

Definition 2.1. The measure dg is defined as follows. On $G(F)$ we have the up to a scalar unique Haar measure, which we will choose to be normalized so that $G(\mathcal{O})$ has measure 1.

In general, we will be interested in tori which are products of general linear groups over extensions F' of F, and we also normalize these with the condition $\mu(\mathcal{O}_F^\times) = 1$.
When γ is semisimple, the centralizer $C_{G(F)}(\gamma)$ is reductive (so unimodular), and we choose the Haar measure on it so that the maximal compact subgroup has measure 1. We let dg above be the quotient measure in this case. In general, the orbit of γ is locally closed and the centralizer unimodular, therefore the orbit of γ under the adjoint action admits an invariant measure.

An alternative way to construct dg is to identify the orbit with the orbit inside $\mathfrak{gl}_n(F)^* \times \mathfrak{gl}_n$ via the natural embedding $GL_n \to \mathfrak{gl}_n$ and the Killing form. The coadjoint orbit admits a natural symplectic structure (even in this non-archimedean setting), whose top wedge is an invariant volume form.

When γ is unipotent, we will normalize the measure as follows, following [32, 64]. Let $\lambda \vdash n$ and consider the standard (Richardson) parabolic $P = P(\lambda')$ for the unipotent orbit associated to λ. Let N be its unipotent radical, M its Levi factor and for $f \in C_c^\infty(G(F))$ let $f^P \in C_c^\infty(M(F))$ be defined by

$$f^P(m) = \delta_P(m)^{1/2} \int_{G(O) \times N} f(k^{-1}mnk) \, dndk$$

where δ_P is the modular function for P. By [32, Proposition 5], the linear forms given by the nilpotent orbital integrals $I_\lambda(-)$ for $\lambda \vdash n$ are proportional to $f \mapsto f^P(1)$. We normalize the measure on the unipotent orbit so that $I_\lambda(f) = f^P(1)$.

This viewpoint of unipotent orbital integral is further generalized in Proposition 2.24 below.

2.1. Shalika germs. For any subset $\Omega \subset G(F)$ we denote by $J(\Omega)$ the space of invariant distributions on $G(F)$ supported on elements of the form $g^{-1}\gamma g$ with $g \in G(F)$, $\gamma \in \Omega$. The famous Howe conjecture states that

Theorem 2.2 ([32], [30], [15], [5]). For any compact subset $\Omega \subset G(F)$ and an open subgroup $K \subset G(F)$, the restriction of $J(\Omega)$ to $C_c(G(F)/K)$ is finite-dimensional.

The same is true when we replace Ω by a compact subset in $\mathfrak{g}(F)$, K by an open sub-\mathfrak{O}-module in $\mathfrak{g}(F)$ and $C_c(G(F)/\mathfrak{O})$ by $C_c(\mathfrak{g}(F)/K)$. In this article we will make use of precise versions of the above finiteness. A particularly important one is the following [28, Thm. 1]:

Theorem 2.3. Recall that $G = GL_n$. Let $U \subset G(F)$ be the (F-points of the) unipotent variety and $I \subset G(F)$ be an Iwahori subgroup. Then the restriction of $J(G(F))$ to $C_c(G(F)/I)$ is equal to that of $J(U)$ to $C_c(G(F)/I)$. Both restrictions have a basis given by unipotent orbital integrals.

Remark 2.4. Hales [28] works over characteristic zero F, as does Waldspurger [64, 65]. However, the most essential ingredient for Hales is the original Shalika expansion [59], which also works in positive characteristic assuming finiteness of unipotent orbits and convergence of the unipotent orbital integrals. This was proved in [44] when the characteristic is good for G. In particular, for GL_n it holds in arbitrary characteristic. The same is true for the Lie algebra situation below.

Remark 2.5. As far as invariant distributions are concerned, any test function in $C_c(G(F)/K)$ can be averaged by K-conjugation into $C_c(K\backslash G(F)/K)$. Likewise in Theorem 2.3 we can replace $C_c(G(F)/I)$ by $C_c(1\backslash G(F)/I)$.

The above theorem is a variant of the so-called Shalika germ expansion, reinterpreted as:
Corollary 2.6. For any $\gamma \in G(\mathcal{O})$, there exists constants $\Gamma_\lambda(\gamma)$ where λ runs over unipotent orbits of $G(F)$ (i.e. partitions of n) such that for any $f \in C_c(G(F)/I)$, we have

$$I_\gamma(f) = \sum_\lambda \Gamma_\lambda(\gamma) I_\lambda(f).$$

For the Lie algebra case one has the following which works also for arbitrary connected reductive group G provided that char$k >> \text{rank } G$.

Theorem 2.7. [Thm. 2.1.5., [16]] Let $\mathcal{N} \subset \mathfrak{g}(F)$ be the (F-points of the) nilpotent cone and $\text{LieI} \subset \mathfrak{g}(F)$ be an Iwahori subalgebra. Then the restriction of $J(\mathfrak{g}(\mathcal{O}))$ to $C_c(\mathfrak{g}(F)/\text{LieI})$ is equal to that of $J(\mathcal{N})$ to $C_c(\mathfrak{g}(F)/\text{LieI})$. Both restrictions have a basis given by nilpotent orbital integrals.

As in Corollary 2.6, Theorem 2.7 gives the notion of Shalika germs for the Lie algebra, which we will again denote by $\Gamma_\lambda(\gamma)$. The notion for the Lie group and that for the Lie algebra agree in the following sense:

Proposition 2.8. Let $\gamma \in \mathfrak{g}(\mathcal{O})$. Fix a nilpotent orbit λ in $\mathfrak{g}(F)$ – it corresponds to a unipotent orbit in $G(F)$ under $x \mapsto 1 + x$. Under this matching, the following are equal:

1. The Lie algebra Shalika germ $\Gamma_\lambda(\gamma)$ from Theorem 2.7.
2. The Lie algebra Shalika germ $\Gamma_\lambda(c + \gamma)$ from Theorem 2.7, for any $c \in \mathcal{O}$.
3. The Lie group Shalika germ $\Gamma_\lambda(c + \gamma)$ from Theorem 2.3 and Corollary 2.6, for any $c \in \mathcal{O}$ such that $c + \gamma \in G(\mathcal{O})$.

Proof. (1) equals (2) since the central translation doesn’t affect orbital integrals.

Just like the unipotent orbital integrals on $G(F)$ may be computed using Eq. (2.1), so may the nilpotent ones on $\mathfrak{g}(F)$. This is particularly true for the characteristic function of any standard parahoric subalgebra, whose restriction to $G(\mathcal{O})$ is the characteristic function of the corresponding standard parahoric subgroup. By [65, Lemme IV 3.], if the integral of the characteristic function of any parahoric agrees on two orbits, then the two orbits have the same Shalika germs, either for the group or the algebra. Therefore (2) equals (3). □

In the Lie algebra setup, for a nilpotent orbit $\mathcal{O} \subset \mathfrak{g}(F)$ the Shalika germs enjoy the following homogeneity property.

Proposition 2.9. For $G = GL_n$, we have

$$\Gamma_\mathcal{O}(t \gamma) = |t|^{-\frac{1}{2} \dim \mathcal{O}} \Gamma_\mathcal{O}(\gamma).$$

Remark 2.10. For general reductive group when chark is very good we have $\Gamma_\mathcal{O}(t^2 \gamma) = |t|^{-\dim \mathcal{O}} \Gamma_{t^{-2} \mathcal{O}}(\gamma) = |t|^{-\dim \mathcal{O}} \Gamma_\mathcal{O}(\gamma)$ since \mathcal{O} and $t^{-2} \mathcal{O}$ are the same orbit in $\mathfrak{g}(F)$. However \mathcal{O} and $t^{-1} \mathcal{O}$ are typically different orbits and the same identity in Proposition 2.9 would not hold.

Remark 2.11. In terms of partitions, if $\mathcal{O} \leftrightarrow \lambda \vdash n$,

$$\frac{1}{2} \dim \mathcal{O} = \sum_{i=1}^{\ell(\lambda')} (i-1) \lambda'_i =: n(\lambda')$$
2.2. Steinberg germs. Another way to make use of Theorem 2.3, analogous to that of Corollary 2.6, is proposed by Waldspurger [65, Prop. 2.4.]. In fact, Waldspurger goes further to study $J(G(F))_c$ as defined below.

Definition 2.12. Let us say an element $g \in G(F) = GL_n(F)$ is **compact mod center** if all its eigenvalues have the same valuation; we will suppress the “mod center” from now on and just call them **compact**. Let $G(F)_c \subset G(F)$ be the subset of all compact elements. We will denote its characteristic function by 1_c.

Let us also call $\gamma \in g(F)$ compact if it belongs to some parahoric subalgebra, or equivalently that it is conjugate to an element in $g(O)$.

Definition 2.13. Let St_n be the Steinberg representation of $G(F) = GL_n(F)$. More generally, for λ any partition of n (Definition 3.1) let $P(\lambda) \subset GL_n(F)$ be the corresponding parabolic and $L(\lambda)$ its Levi subgroup. Let St_λ be the parabolic induction3 of the Steinberg representation of $L(\lambda)$ to $G(F)$.

We will henceforth identify St_λ with its character, an invariant distribution on $G(F)$. Finally, denote by J_{St} the space of invariant distributions on $G(F)$ spanned by (characters of) St_λ.

Theorem 2.14 (Proposition 2.4., [64]). The restriction of $J(G(F)_c)$ to $C_c(I\backslash G(F)/I)$ is the same as that of J_{St}.

In fact, write $C_c(I\backslash G(F)/I) = \bigoplus_{d \in \mathbb{Z}} C_c(I\backslash G(F)^{val=d}/I)$ where $G(F)^{val=d}$ is the subset of elements whose determinant has valuation d. Its characteristic function is denoted 1_d. In [64, Proposition 2.4.], Waldspurger proved:

Theorem 2.15. For $d \in \mathbb{Z}$ the restriction of St_λ to $C_c(I\backslash G(F)^{val=d}/I)$ is non-zero iff λ is divisible by $n'/\gcd(d,n)$. The restriction of J_{St} to $C_c(I\backslash G(F)^{val=d}/I)$ has a basis given by the restrictions of these St_λ.

A corollary of this is (see also [65, Proposition III 4.1])

Corollary 2.16. For any $\gamma \in G(F)^{val=d}$ that is compact mod center and $n' := n'/\gcd(d,n)$, there exists constants $\Gamma^St_\lambda(\gamma)$ where $\lambda \vdash \gcd(d,n)$, so that for any $f \in C_c(I\backslash G(F)/I)$ we have

$$I_{\gamma}(f) = \sum_{\lambda} \Gamma^St_\lambda(\gamma) St_{n'\lambda}(f)$$

We shall call the constants $\Gamma^St_\lambda(\gamma)$ the Steinberg germs of γ.

Remark 2.17. The "St"-superscript is for Steinberg, and should not be confused with the notion of "stability" in the automorphic forms literature.

Remark 2.18. As both $I_{\lambda}(-)$ and $St_\lambda(-)$ span the restriction of $J(G(F)_c)$ to $C_c(I\backslash G(F)^{val=0}/I)$, one may ask about the transition matrix between the two bases.

In the setting of Theorem 1.7, it turns out that this transition matrix is exactly the transition matrix sending the elementary symmetric functions e_λ to the plethystically transformed complete homogeneous symmetric functions h_λ. In hindsight, this already follows by comparing [64, Proposition 4.2.] with [65, Lemme V.11].

3In general there is a choice of an unramified character as a normalization factor. However the choice has no effect for us since we will only care about compact elements, on which the unramified character is trivial.
2.3. Parabolic induction.

Definition 2.19. Suppose $M \subset P = MN \subset G$ are compatible Levi subgroup and parabolic subgroup defined over \mathcal{O}. For $f \in C_{c}^{\infty}(G(F))$, we define its parabolic restriction $\text{Res}_{M}^{G}(f) \in C_{c}^{\infty}(M(F))$ as

$$\text{Res}_{M}^{G}(f)(m) := \int_{G(O)\backslash N(F)} f(gmn^{-1}) \, dg$$

where the measure is normalized so that $G(O)$ and $N(O)$ have measure 1.

Remark 2.20. One has obviously that $\text{Res}_{M}^{G}(1_{G(O)}) = 1_{M(O)}$. Moreover, for $f \in C_{c}(G(O)\backslash G(F)/G(O))$, we have $\text{Res}_{M}^{G}(f) \in C_{c}(M(O)\backslash M(F)/M(O))$.

Proposition 2.21. Suppose $\gamma \in M(F)$ is G-regular, meaning γ is regular when viewed as an element of G. Then

$$L_{\gamma}^{G}(f) = \left| \det(\text{Ad}(\gamma)|_{\text{Lie} G/\text{Lie} M} - \text{id}|_{\text{Lie} G/\text{Lie} M}) \right|^{-1/2} \cdot I_{\gamma}^{M}(\text{Res}_{M}^{G}(f))$$

Since such I_{γ}^{M} are dense in the space of invariant distributions on $M(F)$, we have

Corollary 2.22. The image of $\text{Res}_{M}^{G}(f)$ in the $M(F)$-coinvariant of $C_{c}^{\infty}(M(F))$ does not depend on the choice of the parabolic P.

Recall that $J(G(F)) := (C_{c}^{\infty}(G(F))^*)^{G(F)} = (C_{c}^{\infty}(G(F))_{G(F)})^{*}$ is the space of invariant distributions on $G(F)$.

Definition 2.23. We define $\text{Ind}_{M}^{G} : J(M(F)) \to J(G(F))$ to be the adjoint of Res_{M}^{G}. It is called parabolic induction.

In particular, Proposition 2.21 effectively says that we have the equality of invariant distributions

$$\left| \det(\text{Ad}(\gamma)|_{\text{Lie} G/\text{Lie} M} - \text{id}|_{\text{Lie} G/\text{Lie} M}) \right|^{-1/2} \cdot \text{Ind}_{M}^{G} I_{\gamma}^{M}(-) = I_{\gamma}^{G}(-)$$

Proposition 2.24. Suppose \mathfrak{O} is an unipotent orbit of $M(F)$ and \mathfrak{O} is the induced orbit in the sense of Lusztig-Spaltenstein, i.e. \mathfrak{O} contains an open dense subset of $\mathfrak{O} \cdot N(F)$. Then $\text{Ind}_{M}^{G} I_{\gamma}^{M} = I_{\gamma}^{G}$.

Remark 2.25. In terms of partitions (in the sense of Definition 3.1), if $M = GL_{n_1} \times \cdots \times GL_{n_r}$, and \mathfrak{O} is a unipotent orbit corresponding to a sequence of partitions

$$\lambda^{(1)} \vdash n_1, \ldots, \lambda^{(r)} \vdash n_r$$

the induced orbit is

$$\mathfrak{O} \leftrightarrow (\lambda^{(1)}_1 + \cdots + \lambda^{(r)}_1, \ldots, \lambda^{(1)}_k + \cdots + \lambda^{(r)}_k)$$

where k is the length of the longest $\lambda^{(i)}$. For example, when $M = T$, the zero orbit in T induces to the principal one in GL_n.

Corollary 2.26. For $\gamma \in M(\mathcal{O})$, we have

$$\Gamma_{\mathfrak{O}}^{G}(\gamma) = \begin{cases} 0 & \text{if } \mathfrak{O} \text{ is not induced from } M, \\ \Gamma_{\mathfrak{O}}^{M}(\gamma) & \text{if } \mathfrak{O} \text{ is induced from } \mathfrak{O} \in M(F). \end{cases}$$

where $\Gamma_{\mathfrak{O}}^{G}(\gamma)$ is as in 2.6 and $\Gamma_{\mathfrak{O}}^{M}(\gamma)$ is likewise but for $G = M$.
2.4. Moy-Prasad theory. Introducing some Moy-Prasad theory will be convenient for the statement of our results – we will do it in this section. However, this section may be skipped on a first reading, and is not essential for any of our proofs. We will only sketch this for $G = GL_n$. For any point the Bruhat-Tits building of G, denoted $x \in \mathcal{B}$, as well as a real number $r \in \mathbb{R}$, Moy and Prasad define subspaces $\mathfrak{g}_{x, \geq r} \subset \mathfrak{g}(F)$ (and also $\mathfrak{g}_{x, r}, \mathfrak{g}_{x, > r}$, etc.). Suppose x lies in the apartment of our chosen maximal torus, then $\mathfrak{g}_{x, \geq r}$ can be described as

$$\mathfrak{g}_{\alpha}(F)_{x, \geq r} = \bigoplus_{(\alpha, x) + i \geq r} t^i \mathfrak{g}_{\alpha}$$

e.g. for generic x this is an Iwahori subalgebra, and for $x = 0$ the hyperspecial $\mathfrak{g}(O)$.

There are analogous notions for the group G itself, which we denote $G_{x, \geq r}$. Basically, they can be defined using the exponential map between root subalgebras and subgroups. Again, if $x = 0$ (in our chosen coordinates) we get the hyperspecial and if x is generic, say in the fundamental alcove, we get the ”standard” Iwahori.

Definition 2.27. The depth of $\gamma \in G(F)$ (respectively, $\gamma \in \mathfrak{g}(F)$) is the smallest r for which there exists $x \in \mathcal{B}$ so that $\gamma \in G_{x, \geq r}$ (resp. $\gamma \in \mathfrak{g}_{x, \geq r}$).

Remark 2.28. For GL_n, the depth of γ coincides with its smallest root valuation.

3. Symmetric functions and combinatorics

In this section, we review some theory of symmetric functions relevant to the computation of Shalika germs. The theory is very well covered in many sources, see for example [29, Section 3].

3.1. Combinatorics. We begin with two combinatorial definitions.

Definition 3.1. A partition of an integer $n > 0$, written $\lambda \vdash n$ or $\lambda \in P(n)$ is a nonincreasing sequence of positive integers

$$\lambda_1 \geq \ldots \geq \lambda_k > 0, \sum \lambda_i = n$$

and a composition of n, written $\alpha \vdash n$ is an ordered collection $(\alpha_1, \ldots, \alpha_k)$ of positive integers such that $\sum \alpha_i = n$. In both cases, we write $\ell(\lambda) = \ell(\alpha) = k$ for the length of the composition or partition and denote by λ^t, α^t the conjugate partition (resp. composition).

We will draw the Young/Ferrers diagrams of partitions in French notation. We think of them as lying in $\mathbb{Z}_{\geq 0}^2$ with the first box always at $(0,0)$. For a box $\square \in \lambda$ with coordinates (i, j) we denote

$$a(\square) = \lambda_i - i - 1, \ell(\square) = \lambda_j^t - j - 1, a'(\square) = i, \ell'(\square) = j$$

the arm, leg, coarm, and coleg lengths of the box. The q,t-content of a box is defined to be $q^{a'(\square)}t^{\ell'(\square)}$. Finally, we have

Definition 3.2. For two partitions (or compositions) λ, μ define

$$\mathcal{M}(\lambda, \mu)$$

to be the set of nonnegative integer matrices (of size $\ell(\lambda) \times \ell(\mu)$) whose rows sum to λ and columns sum to μ.

Definition 3.3. A standard Young tableau is a filling of the Ferrers diagram of $\lambda \vdash n$ with the letters $1, \ldots, n$ such that the letters increase in columns and rows.
Given a Young tableau and a box i labeled i, we define the arm length as $a(\Box_i)$ and so on. We let z_i be the q,t-content of the box \Box_i.

We will also need the following Lemma in Sections 5, 6.

Lemma 3.4. To each composition $\alpha \vdash n$ is associated a unique Young tableau $T(\alpha)$ defined as follows. To each α_i we assign the sequence of numbers $\sum_{j=1}^{i-1} \alpha_j + 1, \sum_{j=1}^{i-1} \alpha_j + 2, \ldots, \sum_{j=1}^{i} \alpha_j$ and form a tableau by taking one-row diagrams with these fillings, and then dropping them on top of each other, with the rule that gravity brings boxes as low as possible. In particular, the tableau decomposes as a sequence of horizontal α_i-strips.

Example 3.5. To the compositions $4 = 2 + 2$, $4 = 1 + 2 + 1$ and $4 = 1 + 3$ we assign the tableaux

$$
\begin{array}{ccc}
3 & 4 & 1 \\
1 & 2 & 2 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 3 & 4 \\
\end{array}
$$

The final combinatorial gadget we will need are Dyck paths.

Definition 3.6. Let $m, n, k \geq 1, (m, n) = 1$. Then the set

$$
\mathbb{D}_{km, kn}
$$

will be the collection of lattice paths in a $kn \times km$-rectangle in $\mathbb{Z}_{\geq 0}^2$, fitting under the diagonal (which has slope m/n).

The area of a Dyck path $D \in \mathbb{D}_{km, kn}$ is defined to be the number of full squares between the path and the diagonal.

3.2. The ring of symmetric functions.

Let $\text{Sym}_{q,t}$ be the ring of symmetric functions over $\mathbb{Q}(q,t)$ in the alphabet \{X_1, \ldots, X_{n, \ldots}\} and denote the five usual bases of monomial, homogeneous, elementary, Schur, and power sum symmetric functions by

$$
\{m_{\lambda}\}, \{h_{\lambda}\}, \{e_{\lambda}\}, \{s_{\lambda}\}, \{p_{\lambda}\}
$$

Here λ is a partition in the sense of Definition 3.1. Note that the first four are also bases of Sym_q, while the last one needs a ring containing \mathbb{Q}.

Recall that the modified Macdonald polynomials $\tilde{H}_{\lambda}[X; q, t], \lambda \vdash n$ are the unique symmetric functions with the properties

\begin{align}
\tilde{H}_{\mu}[X(1-q); q, t] & \in \mathbb{Q}(q, t)\{s_{\lambda} | \lambda \geq \mu\} \\
\tilde{H}_{\mu}[X(1-t); q, t] & \in \mathbb{Q}(q, t)\{s_{\lambda} | \lambda \geq \mu^t\} \\
\langle \tilde{H}_{\mu}[X; q, t], s_{(n)} \rangle & = 1
\end{align}

Here the last pairing is the Hall inner product, defined in Definition 3.10.

We do not require much of the advanced theory of Macdonald polynomials, but let us note down the following definition as well as some specializations.

Definition 3.7. The operator ∇ of Bergeron and Garsia scales by definition each \tilde{H}_{λ} by $q^{n(\lambda)}e^{n(\lambda')}$ where $n(\lambda) = \sum_{i=1}^{\ell(\lambda)} (i - 1) \lambda_i$.

From [29, Proposition 3.5.8.] we have

Lemma 3.8 (The limit of \tilde{H}_{λ} as $q \to 1$). The modified Macdonald symmetric function \tilde{H}_{λ} at $q = 1$ is given by

\begin{align}
\tilde{H}_{\lambda}(X; 1, t) & = (1 - t)^{|\lambda|}[\lambda]!h_{\lambda'}[X/(1-t)] =: \bar{H}_{\lambda'}[X; t]
\end{align}
in other words a plethystically transformed homogeneous symmetric function, up to normalization.

From the \(q,t\)-symmetry of \(\tilde{H}_\lambda\) we immediately have

Corollary 3.9 (The limit as \(t \to 1\)).

\[
\tilde{H}_\lambda(X; q, 1) = \tilde{h}_\lambda[X; q]
\]

We will denote \(\tilde{h}_\lambda \cdot = \tilde{H}_\lambda[X; q, 1]\) and call these the specialized Macdonald symmetric functions or the plethystically transformed homogeneous symmetric functions. Later on, we will also need the prefactor

\[
(3.6) \quad c_\lambda(q) := (1 - q)^{\lambda} = \prod_{i=1}^{\lambda} \prod_{j=1}^{\lambda} (q^j - 1)
\]

in Eq. (3.5).

Note that compared to the Macdonald polynomials, \(\tilde{h}_\lambda\) are much simpler in behaviour. For instance, they are multiplicative:

\[
\tilde{h}_\lambda \cdot \tilde{h}_\mu = \tilde{h}_{\lambda + \mu}
\]

and one can deduce combinatorial expansions for them in terms of the other standard bases via known relations between \(h_\lambda\) and these bases. This will turn out to be important in the proof of Theorem 6.19. Further, the \(\nabla\)-operator is a ring homomorphism on symmetric functions in this limit.

We will also need a few different inner products on the ring of symmetric functions, the interplay of whom turns out to play a key role. We remark that by "inner product" we simply mean a symmetric bilinear form valued in \(\mathbb{Q}(q,t)\).

Definition 3.10.

1. The **Hall inner product** is the inner product on \(\text{Sym}_{q,t}\)

\[
\langle s_\lambda, s_\mu \rangle = \delta_{\lambda\mu}
\]

2. The **\(q\)-inner product** is

\[
\langle f, g \rangle_q := \langle f, g[X/(1 - q)] \rangle
\]

3. The **\(q,t\)-inner product** is

\[
\langle f, g \rangle_{q,t} := \langle f, g[X(1/t)] \rangle
\]

4. The **geometric inner product** is

\[
(f, g) = -q^{\deg f} \langle (\nabla^{-1}(f))[X(1-t^{-1})], g[X(1-t^{-1})] \rangle_{q,t^{-1}}
\]

Remark 3.11. There is a natural Frobenius characteristic map from the direct sum of the representation rings of symmetric groups

\[
\bigoplus_{n \geq 0} \text{Rep}(S_n) \to \text{Sym}_\mathbb{Z}
\]

Endowing the source with the natural inner product on characters, and the target with the Hall inner product ((1) in the above Definition), this map is an isomorphism of Hopf algebras and an isometry.

Similarly, if we let

\[
\text{Hall}(GL(F_q))
\]
be the Hall algebra of the general linear groups as n ranges from 0 to ∞ there is a natural inner product on this space, again coming from the convolution product on characters, and a map
\[\text{Hall}(GL(F_q)) \rightarrow \text{Sym}_q \]
which is an isomorphism of Hopf algebras and an isometry with respect to the inner product (2) $\langle \cdot, \cdot \rangle_q$.

Remark 3.12. The last inner product will be used in Section 8 and is the one naturally arising from the geometry of Hilbert schemes of points. It can be more easily characterized as the unique inner product satisfying
\[(\tilde{H}_\lambda, \tilde{H}_\mu) = \delta_{\lambda\mu}g_\lambda \]
where
\[g_\lambda = \prod_{\gamma \in \lambda} (1 - q^{a(\gamma)}e^{-l(\gamma)-1})(1 - q^{-a(\gamma)-1}e^{l(\gamma)}) \]

3.3. Orbital integrals and symmetric functions.

Let us review how symmetric functions arise in the theory of orbital integrals on GL_n, following [64, 65]. The following two propositions will be important to us.

Proposition 3.13 (Proposition 4.2. [64]). Let ψ_λ be the characteristic function of the standard parahoric subgroup of $GL_n(F)$ corresponding to the partition λ. Let $I_\mu(-)$ be the orbital integral over the unipotent class of type μ. Then we have
\[I_\lambda(\psi_\mu) = c_\lambda(q)(e_\mu, h_\lambda)_q \]
where $(-,-)_q$ is the q-inner product from Definition 3.10. Note that in terms of the usual Hall scalar product,
\[I_\lambda(\psi_\mu) = \langle e_\mu, \tilde{h}_\lambda \rangle \]

Remark 3.14. Warning: Waldspurger uses the notation φ_λ for our ψ_λ. For him, ψ_λ denotes a different function. Note also that Waldspurger has an additional $c_\mu(q)/c_{\lambda}(q)$ in the formula, this stems from a slightly different normalization for Shalika germs and the inner product.

Proposition 3.15. Suppose $e \geq 1, (d,e) = 1$ and $\lambda \in P(n/e)$ Let $f_{\alpha}^{d,e}$ be the characteristic function of $u^{nd/e}I_\lambda$ where I_λ is the standard parahoric associated to λ. Here u is the matrix in Eq. (1.1).

Then
\[\text{St}(1_{nd/e}e^{d,e}_\mu) = (-1)^{ne-dde}(e_\mu, h_\lambda) \]
where the pairing is the Hall inner product.

In particular, when $d = 0$, we have $\text{St}(1_{d/e}e^{d,e}_\mu) = \langle e_\mu, h_\lambda \rangle$ and $1_{d/e}f^{d,e}_\mu = f_\mu$.

4. The elliptic Hall algebra

In this section, we define the elliptic Hall algebra (EHA) and recall some necessary facts about it. Apart from Theorem 4.9 results in this section are contained in [20, 27, 48–51, 56–58, 61]. For the basic theory, our main references are [20, 48, 61] and for the results on symmetric functions, one may refer to [48–51, 57].

For most of the paper, in particular for the application in the proofs of our main results in Section 2, we want to understand the $t \rightarrow 1$ degeneration of the Fock space representation of the EHA.
Definition 4.1. The *elliptic Hall algebra* (quantum toroidal \mathfrak{gl}_1) is the \mathbb{C}-algebra $\mathcal{E} = \mathcal{E}_{q_1,q_2,q_3}$ depending on $q_1, q_2, q_3 \in \mathbb{C}^*$, $q_1 q_2 q_3 = 1$, generated by elements

$$P_{m,n}, \ (m,n) \in \mathbb{Z}^2 \setminus (0,0)$$

and satisfying the relations

$$[P_{m_1,n_1}, P_{m_2,n_2}] = 0$$

if $(m_1, n_1), (m_2, n_2)$ lie on the same line through the origin, and

$$[P_{m_1,n_1}, P_{m_2,n_2}] = \frac{\theta_{m_1+m_2,n_1+n_2}}{\alpha_1}$$

if $(m_1, n_1), (m_2, n_2), (m_1 + m_2, n_1 + n_2)$ form a quasi-empty triangle. Here

$$\exp(\sum_{k=1}^{\infty} P_{km,kn} \alpha_k x^k) = \sum_{\ell=1}^{\infty} \theta_{\ell m, \ell n} x^\ell$$

for $(m, n) = 1$ and

$$\alpha_k = \frac{(q_1^k - 1)(q_2^k - 1)(q_3^k - 1)}{k}$$

Proposition 4.2 (Triangular decomposition). Let \mathcal{E}^\geq be the subalgebra generated by the $P_{1,n}, n \in \mathbb{Z}$, \mathcal{E}^\leq be the subalgebra generated by the $P_{-1,n}, n \in \mathbb{Z}$, and $\mathcal{E}^= \mathcal{E}$ be the subalgebra generated by $P_{0,k}, k \in \mathbb{Z}_{>0}$. The multiplication map gives a \mathbb{C}-linear isomorphism

$$\mathcal{E}^\geq \otimes \mathcal{E}^0 \otimes \mathcal{E}^\leq \rightarrow \mathcal{E}$$

For the rest of this paper, we may as well restrict our attention to the positive part \mathcal{E}^\geq of the EHA, or rather the nonnegative part \mathcal{E}^\geq which is by definition generated by $P_{1,n}, \ n \in \mathbb{Z}, P_{0,k}, \ k > 0$. Further, we wish to study the $q_3 \to 1$ limit of this algebra and the Fock space representation. The relationship of the parameters q_1, q_2, q_3 to the Macdonald theory parameters is $q_1 = q, q_3 = t^{-1}$ so that this limit amounts to setting $t = 1$. We will use these identifications freely.

Note that since the definition of \mathcal{E} is symmetric in the q_i, this choice is immaterial for many things. Importantly, it does matter for the Fock space representation (to be introduced soon), whose definition is not symmetric in the q_i.

Let us now remark on the structure of \mathcal{E} in the limit $t \to 1$ as an abstract algebra, although this will not be important for us. Consider the quantum torus in one variable, or in other words the algebra of q-difference operators on \mathbb{C}^*. It is the $\mathbb{C}[q^\pm]$-algebra

$$\mathfrak{D} := \mathbb{C}[q^\pm] \langle X^\pm, D^\pm \rangle / DX - q XD.$$

Considering this associative algebra as a Lie algebra we get a 2-dimensional central extension \mathfrak{D}_{c_1,c_2} [20] with central charges $c_1, c_2 \in \mathbb{C}$ defined as

$$[X^{i_1} D^{j_1}, X^{i_2} D^{j_2}] = (q^{j_1 i_2} - q^{-j_2 i_1}) X^{i_1+i_2} D^{j_1+j_2} - \delta_{(i_1,j_1),(-i_2,-j_2)} q^{i_1 j_1} (i_1 c_1 + j_1 c_2).$$

By [20] we may view \mathcal{E} as a quantization of the universal enveloping algebra of \mathfrak{D}_{c_1,c_2}, and taking the $q_3 \to 1$ limit recovers just this universal enveloping algebra, at least up to a completion.

For example for the limit $q_3 \to 1$, we have (see [61, Proposition 5.6.]) that

$$(1 - q) P_{1,m} = D^m X, (q^{-1} - 1) P_{-1,m} = X^{-1} D^m$$

and

$$(1 - q^{-m}) P_{0,m} = D^m.$$
Remark 4.3. It is not possible to directly set \(q_3 \to 1 \) in the defining relations of the EHA as given above. A way to circumvent this is to redefine:

\[
\exp((1 - q_3) \sum_{k=1}^{\infty} P_{km, kn} \alpha_k x^k) = \sum_{\ell=1}^{\infty} \theta_{\ell m, \ell n} x^\ell
\]

or alternatively to rescale the generators of \(\mathcal{E}^c \) by \(1 - q_2 \) and those of \(\mathcal{E}^c \) by \(1 - q_1 \).

Effectively, this gives an integral form of \(\mathcal{E} \) in the sense of Lusztig. See e.g. [61, Section 5.4.] and [52] for details.

As the name suggests, \(\mathcal{E} \) specializes to the Hall algebra of coherent sheaves on an elliptic curve over a finite field (when \(q_1 \) is the Frobenius eigenvalue on \(H^1 \) and \(q_2 \) its conjugate). In that setting, the slope of vector bundles gives rise to natural Hall subalgebras. These lift to \(\mathcal{E} \), and are by definition the commutative subalgebras "living on lines through the origin".

Definition 4.4. Let \(m, n \in \mathbb{Z}_{\geq 0} \), \((m, n) = 1 \). The \(\frac{m}{n} \)-subalgebra of \(\mathcal{E}^{m/n} \) is the subalgebra \(\mathcal{E}^{m/n} \) generated by \(P_{km, kn}, k \geq 0 \).

Theorem 4.5 ([48]). Let \(\text{Sym}_{q, t} \) be the algebra of symmetric functions over \(\mathbb{C}(q, t) \) as introduced in Section 3. There is an algebra isomorphism

\[
\varphi_{m/n} : \text{Sym}_{q, t} \to \mathcal{E}^{m/n}
\]

sending \(p_k \mapsto P_{km, kn} \).

We will call this homomorphism the slope \(m/n \) plethysm.

4.0.1. The Fock space.

Definition 4.6. The Fock space is the \(\mathbb{C}(q, t) \)-vector space \(\mathcal{F} \) spanned by the basis

\[
\{ |\lambda\rangle \}_{\lambda, n, n \geq 0}
\]

Recall that \(\mathcal{F} \) appears naturally from the Hilbert scheme of points on \(\mathbb{A}^2 \) or symmetric functions over \(\mathbb{C}(q, t) \). We will freely identify \(\mathcal{F} \) with the space of symmetric functions \(\text{Sym}_{q, t} \) (see Section 3) so that the basis \(|\lambda\rangle \) corresponds to the Macdonald basis \(\tilde{H}_\lambda \). The reason for our usage of the Fock space as opposed to just \(\text{Sym}_{q, t} \) will become clear in Section 8.

Theorem 4.7 ([21, 57]). There is an action of \(\mathcal{E}_{q_1, q_2, q_3} \) on \(\mathcal{F} \) by so called shuffle algebra operations.

We will be interested in the action of the operators \(P_{km, kn} \in \mathcal{E}^{m/n} \) and more generally the slope \(m/n \) subalgebras \(\mathcal{E}^{m/n} \) in the Fock space, especially in the \(t \to 1 \) limit. For example, the operators \(P_{0, m} \) act as multiplication by the symmetric functions \(p_m \), and the operator \(P_{1, 0} \) is a so called Macdonald eigenoperator.

In [49] the matrix coefficients of the operators \(P_{km, kn} \) in the basis \(|\lambda\rangle \) are computed (see also [21]). Below the orthogonalizing inner product \(\langle \lambda | \mu \rangle = \delta_{\lambda \mu} g_{\lambda} \) corresponds to the geometric inner product \((\cdot, \cdot)\) on symmetric functions, see Definition 3.10.

Theorem 4.8 ([49], see Eq. (37) in [27]). We have

\[
\langle \lambda | P_{km, kn} | \mu \rangle = \frac{\kappa_{kn}}{[k]_q} \cdot \frac{g_\lambda}{g_\mu} \sum_{\mu = \lambda + \delta_1 + \ldots + \delta_{kn}} \sum_{j=0}^{\text{SYT}} (qt)^j \frac{z_{n(k-1)+1} z_{n(k-2)+1} \ldots z_{n(k-j)+1}}{z_{n(k-1)} z_{n(k-2)} \ldots z_{n(k-j)}}.
\]
\[
\frac{\prod_{i=1}^{kn} z_i^{s_{m,n}(i)}}{(1 - qt \frac{z_i}{z_1}) \cdots (1 - qt \frac{z_{kn}}{z_1})} \prod_{1 \leq i < j \leq kn} \omega' - 1 \left(\frac{z_j}{z_i} \right) \prod_{1 \leq i \leq kn} \omega' - 1 \left(\frac{z(\square)}{z_i} \right)
\]

where
\[
\omega'(x) = \frac{(x - 1)(x - qt)}{(x - q)(x - t)}, \quad \gamma = \frac{(q - 1)(t - 1)}{qt(qt - 1)}
\]

and
\[
S_{m/n}(i) := \left\lfloor \frac{im}{n} \right\rfloor - \left\lfloor \frac{(i - 1)m}{n} \right\rfloor
\]

Although we do not need the full strength of the formula in Theorem 4.8, it is recorded here for our computations in Section 5 and possible generalizations. The \(t \to 1 \) limit of this formula for \(\mu = \varnothing \) is studied in Proposition 5.17.

We will now begin to study the degeneration of the representation on \(\mathcal{F} \) as \(t \to 1 \). The most important fact about the \(t = 1 \) limit is the following.

Proposition 4.9. In the Fock representation at \(t = 1 \), the positive half \(\mathcal{E}^{\geq}_{q,1/q,1} \) acts by multiplication operators.

Proof. As shown in [52], the operators \(P_{m,n} \) for \((m,n) \in \mathbb{Z} \times \mathbb{N} \) generate \(\mathcal{E}^{\geq} \) over \(\mathbb{Z}[q_1^\pm, q_2^\pm] \), as do the operators \(H_{m,n} \) which are defined by the identity

\[
1 + \sum_{s=1}^{\infty} \frac{H_{m,n}}{x^s} = \exp \left(\sum_{s=1}^{\infty} \frac{P_{m,n}}{sx^s} \right)
\]

By [51, Theorem 2.15.], one can write the action of either \(H_{m,n} \) or \(P_{m,n} \) as a contour integral, for example:

\[
H_{m,n} \cdot f[X] = \int_{0 \leq x < |z_0| < \cdots < |z_1| < \infty} \prod_{i=1}^{n-1} (1 - qt \frac{z_i}{z_1}) \prod_{i < j} \omega'(z_j/z_i) S_{m/n}(i)
\]

\[
\Lambda^* \left(\frac{-X}{z_1} \right) \cdots \Lambda^* \left(\frac{-X}{z_n} \right) \cdot f \left[X - (1 - q)(1 - t) \sum_{i=1}^{n} z_i \right] \prod_{a=1}^{n} \frac{dz_a}{2\pi i z_a}
\]

Where \(\Lambda^* (\frac{-X}{Z}) = \sum_{k=0}^{\infty} \frac{h_k}{Z^k} \). Here the contours are concentric circles in the prescribed order and are contained between the poles \(0, x_1, \ldots, \infty \), see e.g. [49, 51] for details.

Now the plethystic operator

\[
f[X] \mapsto f[X \pm (1 - q)(1 - t)z] = \exp \left[\pm \sum_{k=1}^{\infty} \frac{p_k z^k}{k} \right] \cdot f[X]
\]

at \(t = 1 \) becomes just the identity, so that this is a multiplication operator. \(\square \)

Remark 4.10. We note that this Proposition is conjectured in [8, 9].

Remark 4.11. The operators \(P_{1,n}, n \in \mathbb{Z} \) can be described as follows, see e.g. [9]. In plethystic notation, their action on the Fock space is given by

\[
P_{1,n} \cdot f[X] = f\left[X + \left(\frac{1-t}{z} \right)(1-q) \sum_{i \geq 0} (-z)^i e_i[X] \right] \bigg|_{z^n}
\]

where by \(|_{z^n} \) we mean extracting the coefficient of \(z_i \) in this series. At \(t = 1 \) this becomes just multiplication by \(e_n \). It is however not true that the algebra generated by these operators over \(\mathbb{Z}[q_1^\pm, q_2^\pm] \) is all of \(\mathcal{E}^{\geq} \) anymore.
In addition to the \(P_{m,n} \) we want to understand the elements \(E_{km,kn} := \varphi_m f_n(\epsilon_k) \) from [50, 56, 57] in the limit \(t \to 1 \).

Proposition 4.12. Suppose that \(m, n > 0 \) and \(\gcd(m, n) = 1 \). At \(t = 1 \) the operator \(\varphi_m f_n(\epsilon_k) \rvert_{t=1} \) becomes a multiplication operator by the symmetric function:

\[
E_{m,n,k} := \sum_{D \in \mathbb{D}_{km,kn}} q^{\text{area}(D)} e_D.
\]

Here \(D \) is a Dyck path in \((kn \times km)\) rectangle below the diagonal, \(\text{area}(D) \) is the area between \(D \) and the diagonal, and \(e_D := \prod_{\text{horizontal steps } h_i(D)} e_{h_i(D)} \).

Proof. Given Proposition 4.9, this is [8, Eq. (4.5.4)] (see also [7]). \(\square \)

Remark 4.13. In fact, according to [20] while the construction of the limit \(t = q_3 \to 1 \) of the algebra \(\mathcal{E} \) is independent of our choice in \(q_1, q_2, q_3 \), the construction of the Fock representation \(\mathcal{F} \) naturally breaks the symmetry (in physics, this is related to the threefold symmetry of the refined topological vertex). The action of the skein algebra of the torus on that of the solid torus made explicit in [45] corresponds to the \(q_2 = (qt)^{-1} \to 1 \) limit, and can be thought of as a "rotation" of our representation by 120 degrees.

4.1. Double affine Hecke algebras

In order to define the superpolynomials in the next section, it will be relevant for us to treat \(\mathcal{E} \) as the limit of the spherical double affine Hecke algebras as \(n \to \infty \), and the Fock space representation as a limit of the polynomial representations of the spherical DAHA. This point of view is adopted in e.g. [56].

Definition 4.14. The **double affine Hecke algebra** (DAHA) \(\mathbb{H}_n \) is the \(\mathbb{Q}(q,t) \)-algebra generated by

\[
X_1^\pm, \ldots, X_n^\pm, Y_1^\pm, \ldots, Y_n^\pm, T_1, \ldots, T_n
\]

with the relations

\[
\begin{align*}
[X_i, X_j] &= 0 & [Y_i, Y_j] &= 0 \\
(T_i - t)(T_i + t^{-1}) &= 0 & [T_i, T_j] &= 0, \ T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \\
T_i X_j &= X_j T_i & T_i Y_j &= Y_j T_i \\
T_i X_i T_i &= X_{i+1} & T_i^{-1} Y_i T_i^{-1} &= Y_{i+1} \\
Y_1 X_1 \cdots X_n &= q X_1 \cdots X_n Y_1 & Y_2^{-1} X_1 Y_2 X_1^{-1} &= T_1^2
\end{align*}
\]

where \(|i - j| > 1 \).

The **spherical DAHA** is the subalgebra

\[
\mathbb{SH}_n := e \mathbb{H}_n e
\]

where \(e := \prod_{w \in S_n} t^{l(w)} t_w \) is the symmetrizing idempotent for the finite Hecke algebra. Note also that \(\mathbb{H}_n \) contains two affine Hecke algebras of \(S_n \) as subalgebras, namely one generated by the \(T_i, X_i \) and another one generated by the \(T_i, Y_i \). We will denote these by \(\mathcal{H}_n^{a,f,X}, \mathcal{H}_n^{a,f,Y} \).

The following is proved in [12, 27, 56] and will be essential for our computations:

Lemma 4.15. There is an action of the braid group \(B_3 = \mathcal{S}\mathcal{L}_2(\mathbb{Z}) \) on \(\mathbb{H}_{q,t} \) by algebra automorphisms.

Proof. See [12, Section 1.3.]. \(\square \)
The generators of this action are
\[
\tau_+ := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \tau_- = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}
\]
and they act by
\[
\begin{align*}
\tau_+ : T_i & \mapsto T_i, \quad X_i \mapsto X_i, \quad Y_i \mapsto Y_i X_i(T_1 \cdots T_{i-1})^{-1}(T_{i-1} \cdots T_1)^{-1} \\
\tau_- : T_i & \mapsto T_i, \quad X_i \mapsto X_i Y_i(T_1 \cdots T_{i-1})(T_{i-1} \cdots T_1), \quad Y_i \mapsto Y_i
\end{align*}
\]
Next, let
\[
(4.6) \quad P_{0,k}^{(n)} = e \left(\sum_{i=1}^{n} Y_i^k \right) e \in \mathbb{H}_n
\]
For arbitrary integers \((a,b) \in \mathbb{Z}^2 \setminus 0\) we have the following.

Proposition 4.16 (Section 2.2., [56]). Let \(k = \gcd(a,b)\) and \(\gamma_{a/b,k/b} \) be any matrix of the form
\[
\gamma_{a/b,k/b} = \begin{pmatrix} * & a/b \\ * & b/k \end{pmatrix} \in \text{SL}_2(\mathbb{Z})
\]
Then the elements
\[
(4.7) \quad P_{(a,b)}^{(n)} := \gamma_{a/b,k/b}(P_{0,k}^{(n)})
\]
are well-defined, i.e. do not depend on the chosen matrix.

Proposition 4.17. The elements \(P_{a,b}^{(n)}\) generate \(\mathbb{H}_n\) as an algebra.

Further, one can show the \(P_{a,b}^{(n)} \in \mathbb{H}_n\) satisfy relations similar to those of \(P_{a,b} \in \mathcal{E}\).

In fact, by [56, Theorem 4.6.], we have

Proposition 4.18. There is a surjective algebra homomorphism
\[
(4.8) \quad \mathcal{E} \to \mathbb{H}_n
\]
for all \(n\), sending
\[
P_{a,b} \mapsto P_{a,b}^{(n)}
\]
This map restricts to a surjection
\[
\mathcal{E}^+ \to \mathbb{H}_n^+
\]
where \(\mathbb{H}_n^+\) is generated by \(P_{a,b}^{(n)}\) with \(a > 0\) or \(a = 0, b > 0\).

It remains to connect these facts to the Fock space. Recall the following

Definition 4.19. The polynomial representation of \(\mathbb{H}_n\) is
\[
\text{Ind}_{\mathbb{H}_{aff,Y,n}}^{\mathbb{H}_n} 1 \cong \mathbb{C}(q,t)[X_1^+, \ldots, X_n^+]
\]
The polynomial representation of \(\mathbb{H}_n\) is \(\mathbb{C}(q,t)[X_1^+, \ldots, X_n^+]\).

It is clear from the above that by restricting the action of \(\mathbb{H}_n\) on the polynomial representation to the positive part \(\mathbb{H}_n^+\) we get an action on symmetric polynomials in \(n\) variables \(\mathbb{C}(q,t)[X_1, \ldots, X_n]^S_n\).

Theorem 4.20 (Section 5.1, [56]). This action together with the Fock representation of \(\mathcal{E}\) intertwine the surjections \(\text{Sym}_{n,t} \to \mathbb{C}(q,t)[X_1, \ldots, X_n]^S_n\) and \(\mathcal{E}^+ \to \mathbb{H}_n^+\).
5. Knot invariants

5.1. Algebraic knots. Recall from Definition 1.4 and Remark 1.5 that to any (reduced) germ of a plane curve \(\{ f = 0 \} \subset \mathbb{C}^2 \) we may associate both a Puiseux expansion and the link \(\text{Link}_0(f) \subset S^3 \). To simplify the discussion, we let \(f \) be irreducible, although appropriately interpreted all our results hold for any \(f \). These correspond to each other as follows. For a single Newton pair, we have the torus knot \(T(p,q) \). It is the braid closure of the \(q \)-th power of the Coxeter braid \(\text{cox}_p \) (see Fig. 1).

Next, for knots \(L_1, L_2 \) in the solid torus, or more precisely elements in the skein algebra of the annulus, we define the satellite of \(L_1 \) by \(L_2 \), denoted \(L_1 \ast L_2 \) by thickening \(L_1 \) to an annulus and placing the diagram of \(L_2 \) inside this annulus. Note that this operation is "acting on the right". Denote \(T^a_p \) the annular closure of the diagram of \(\text{cox}^a_p \) shown in Fig. 1 (in the blackboard framing). Finally, for a given sequence \((\bar{p}, \bar{q})\) define the iterated torus knot

\[
T(\bar{p}, \bar{q}) := T^q_d \ast (T^{q_d-1}_{p_d} \ast (\cdots \ast (T^q_{p_1})\cdots))
\]

where we think of these as links in \(S^3 \) by filling the core of the thickened annulus.

Remark 5.1. The sequence, or pair of sequences \((\bar{p}, \bar{q})\) is denoted \((\bar{r}, \bar{s})\) in [12]. Note that it can be any sequence of (coprime) integers, in which generality we obtain iterated torus knots. However, the Newton pairs are always positive and eventually have \(p_k = 1 \).

An alternative way to draw the iterated torus link is by cabling (see [18, Appendix A]), for which we need yet another sequence \((\bar{a}, \bar{d})\) where \(a_i = q_i + p_i + q_i, 1 \leq i < d \). For a pair of coprime integers \((p, a)\) we let the \((p, a)\)-cable of a link \(L \subset S^3 \) be the link \(\text{Cab}(p, a)(L) \) formed by thickening \(L \) to a small solid torus and placing the torus knot \(T(p,a) \) inside it. Note that this operation is "acting on the left". Then it is an instructive exercise to check that

\[
T(\bar{p}, \bar{q}) = \text{Cab}(p_1, a_1) \cdots (\text{Cab}(p_d, a_d))(\bigcirc) \cdots
\]

Remark 5.2. We are again opposite to the conventions in [12, 18, 42]. Note that in [12] the notation \((\bar{a}, \bar{d})\) is used instead. For the satellite construction, we refer to [42, Section 4].
5.2. Superpolynomials. The superpolynomial for links in S^3 has been proposed as a three-variable polynomial specializing to the HOMFLY-PT polynomial [17]. There are two main definitions for it:

1) as the Poincaré polynomial

$$P_L(a,q,t) := \sum_{i,j,k} q^{i} t^{j} a^{k} \dim \text{HHH}^{i,j,k}(L)$$

of the triply graded Khovanov-Rozansky homology (or HOMFLY homology) $\text{HHH}(L)$. This is a homology theory for knots and links in S^3 defined using a braid presentation of L and Soergel bimodules. For more details, we refer to [36].

2) For iterated torus links, a definition of $P_L(a,q,t)$ was given by Cherednik-Danilenko [12] using double affine Hecke algebras; see also [4, 27] and will be repeated in Definition 5.5.

The first and second definitions are known to agree for torus knots (see [26] for a survey with more references) and conjectured to agree in general, but this is still unproven at the time of writing. We will use the second definition in this paper, but this also comes with a caveat. Namely, the polynomial is defined using a cabling presentation as in Eq. 5.1 and the topological invariance is not clear.

More precisely, it is not known whether there exist two distinct presentations of some iterated torus knot (link) L as iterated cables, so that the resulting polynomials are different (see e.g. [45, p. 5]). In other words, this second version of the superpolynomial is not immediately a topological invariant of L. On the other hand, in this paper we only care about algebraic knots, where any ambiguity in the resulting isotopy type of the link is fixed by setting $q_1 > p_1$ (this is reflected in the choice of a coordinate in the Puiseux expansion). In other words, we may speak of $P_L(a,q,t)$ as an invariant of the algebraic knot.

Next, we will recall the approaches of Cherednik-Danilenko and Gorsky-Negut [12, 27] to superpolynomials of iterated torus knots and how they degenerate at $t=1$. In fact [27] only work out the torus knot case, while [12] do not use the elliptic Hall algebra, so one should regard what is below as a mixture of the two.

In [27], the approach is as follows. For a sequence of pairs of coprime integers $(p_1,q_1), \ldots, (p_d,q_d)$ we have an iterated torus knot $T(\tilde{p},\tilde{q}) = T_{q_d}^{p_d} \cdots T_{q_1}^{p_1}$ as above. By Theorem 4.5, we have also have algebra homomorphisms $\text{Sym}_{q_i,t} \to \mathcal{E}^{q_i/p_i}$, $i=1,\ldots,d$ sending $p_k \mapsto P_{kq_i,kp_i}$. By Theorem 4.7 the algebra \mathcal{E} acts on the Fock space $\mathcal{F} \cong \text{Sym}_{q,t}$ by shuffle algebra operations. We denote the action of $E \in \mathcal{E}$ on $f \in \text{Sym}_{q,t}$ by $E \cdot f$.

Definition 5.3. The full, or deformed master symmetric function associated to (\tilde{p},\tilde{q}) is

$$\bar{f}_{\tilde{p},\tilde{q}} = \varphi_{q_d/p_d}(\cdots (\varphi_{q_2/p_2}(P_{q_1,p_1} \cdot 1) \cdots) \cdot 1$$

A recursive description is thus as follows. Set $f_{(p_1,q_1)} = P_{q_1,p_1}^{-1}$, and for $j=2,\ldots,d$ define $f_{(p_1,q_1),\ldots,(p_{j-1},q_{j-1})}$ as follows. First, expand $f_{(p_1,q_1),\ldots,(p_{j-1},q_{j-1})}$ in terms of the power sum symmetric functions p_k and replace all p_k in the resulting expression by the operators $P_{q_j,kp_j,k}$, then act on $1 \in \mathcal{F}$ the Fock representation. The result is a symmetric function.

Define the evaluation vector from [27, Eq. (39)]:

$$v(a) = \sum_{\mu} \bar{H}_\mu \prod_{i=1} f_{\mu} \prod_{\mu} (1 - aq^e(\square) \rho^f(\square))$$
where
\[g_\mu = \prod_{\omega \in \Omega} (1 - q^{a(\omega)} t^{-l(\omega)} - 1) \prod_{\rho \in \mu} (1 - q^{-a(\rho)} t^l(\rho)) \]
and \(a'(\square), l'(\square) \) denote the coarm and coleg of a box in the Ferrers diagram.

Remark 5.4. The factor \(g_\mu \) is the product of the weights of the \(\mathbb{G}^n_\mu \)-representation \(\Lambda^\bullet T_\mu \parallel \text{Hilb}^n(A_2) \).

Definition 5.5. Let \(L = T(\bar{p}, \bar{q}) \) be an iterated torus link. The superpolynomial of \(L \) is defined to be
\[P_L(a, q, t) = (\bar{t}_{\bar{p}, \bar{q}}, \nu(a)) \]
where \(\nu(a) \) is defined in Eq. (5.3). Note that we are using the geometric inner product.

Remark 5.6. We make three remarks on the above definitions.

1. Note that the full master symmetric function and the superpolynomial depend on three variables \(q, t, u \). At \(u = 0 \) the evaluation vector simplifies to
\[\nu(0) = \sum_{\mu \in \mathbb{N}} \bar{H}_\mu g_\mu \]
and it is indeed the quantity
\[(f_{\bar{p}, \bar{q}}, \nu(0)) = (f_{\bar{p}, \bar{q}}, e_n) \]
at \(t = 1 \) that gives the spherical orbital integrals in Section 2.

2. The homogeneity property of Shalika germs from Proposition 2.9 is reflected in the \(\bar{H}_\lambda \)-expansion of \(T_{\bar{p}, \bar{q}} \). Namely, the operator \(\nabla \) of Bergeron and Garsia scales each \(\bar{H}_\lambda \) by \(q^{n(\lambda)} \) where \(n(\lambda) = \sum_{i=1}^{\ell(\lambda)} (i - 1) \lambda_i \), and in the \(t = 1 \) limit this will turn into scaling the \(\bar{H}_\lambda \) in the expansion of \(f_\lambda \) by \(q^{n(\lambda)} \). Note that on the level of the link of the singularity, this scaling \(\gamma \mapsto t^\gamma \) corresponds to adding a full twist.

3. Note also that the full master symmetric function could be decorated by a partition or even a sequence of partitions, by replacing the first vacuum state "1" in the Fock space by a modified Macdonald polynomial \(a = b = 0 \).

Let us now discuss how the above connects to the approach in [12]. In loc. cit., the following "evaluation homomorphism" or "coinvariant" \(\{ - \}_{ev} : \mathbb{H}_n \rightarrow \mathbb{C}(q, t) \) on the DAHA is defined:
\[\{ - \}_{ev} : X_a \mapsto q^{-a(\rho, a)}, \ Y_b \mapsto q^{-a(\rho, b)}, \ T_i \mapsto t \]
Recall also from the discussion around Definition 4.19 that the DAHA acts on its polynomial representation
\[\mathbb{C}(q, t)[X_1^\pm, \ldots, X_n^\pm] \]
and this restricts to an action of \(\mathbb{S}_n \) on symmetric polynomials in \(n \) variables.

Recall also the \(SL_2(\mathbb{Z}) \)-action and the elements \(P_{a, b}^{(n)} \in \mathbb{H}_n \). The DAHA-Jones polynomial of Cherednik-Danilenko is defined in [12, Eq. (4.26)] (with slightly different notation) as
\[JD_{\bar{p}, \bar{q}}^{(n)}(q, t) = \{ \gamma_{q_1/p_1}(\cdots(\gamma_{q_{d-1}/p_{d-1}}(P_{a, b}^{(n)} \cdot 1) \cdot 1) \cdot 1) \}_{ev} \]
This is related to the superpolynomial P_L from above by

Theorem 5.7 (Cherednik’s stabilization conjecture, Section 3.4., [27]). We have

$$JD_{\beta,q}^{(n)}(q,t) = P_L(t^n,q,t)$$

Remark 5.8. When $m = 0$, the superpolynomials coincide with the Poincaré polynomials of triply graded Khovanov-Rozansky homologies of L by the explicit computations in [19,31,43]. It is an important open problem to verify this for algebraic links and more general iterated torus links.

We now come to explicit combinatorial formulas for the superpolynomials and the master symmetric functions. We will first recall the full torus knot case as in [27], and then work out the general formula at $a = 0, t = 1$.

The following formula for the full master symmetric function of a torus knot is given by [27, Theorem 1.1]. Let T be a standard Young tableau on n letters. For the box labeled i in its diagram, denote by z_i the q,t-content of the box. Recall also that

$$\omega'(x) = \frac{(x-1)(x-qt)}{(x-q)(x-t)}$$

and

$$S'_i := S_{q,t}(i)' = \lfloor \frac{iq}{p} \rfloor - \lfloor \frac{(i-1)q}{p} \rfloor$$

and define $\nu := \frac{(1-q)(1-t)}{(1-qt)}$. Then we have the following.

Theorem 5.9 (Theorem 1.1. and Eq. (37), [27]).

\[
(5.5) \quad \tilde{\Phi}_{m,n} = \sum_{\lambda \vdash n} \nu^n \tilde{H}_\lambda \sum_{\lambda \vdash n} \prod_{i=1}^n \frac{z_i^{S'_i m/n(i)} (qtz_i - 1)}{(1 - qt z_i) \ldots (1 - qt z_{i+1}^{z_n})} \prod_{i < j} \omega'(\frac{z_j}{z_i})^{-1}
\]

Note that to pass from this description to the case of iterated cables is rather cumbersome. Namely, one should expand each \tilde{H}_λ in the power sum symmetric functions (or perhaps the elementary ones [50]), replace each p_k by operators of the form $P_{k,q,kp}$, use the formula [27, Eq. (37)], and proceed, but it is not obvious if this gives rise to any simple combinatorial formula.

However, at $t = 1$ the above formula massively simplifies and we may write down the general result. To do this, let us introduce some notation.

Definition 5.10. The degenerate master symmetric function (or just master symmetric function in the rest of the text) of an iterated torus knot $T(\tilde{p}, \tilde{q})$, is the $t = 1$ specialization of $\tilde{\Phi}_{p,q}$:

$$\Phi_{\tilde{p},\tilde{q}} := \tilde{\Phi}_{\tilde{p},\tilde{q}}|_{t=1}$$

Remark 5.11. This definition stems from a somewhat unfortunate notation clash between knot homology, symmetric functions and point-counting on affine Springer fibers – it would possibly be more appropriate to define $\Phi_{\tilde{p},\tilde{q}} = \tilde{\Phi}_{\tilde{p},\tilde{q}}|_{q=1}$ and then replace t by q everywhere. Since the q,t-formulas are transposition-symmetric under switching q,t, this will affect our formulas by a transposition and a $q \rightarrow q^{-1}$ in the Shalika germ expansion as well as the orbital integrals.

Definition 5.12. We call the coefficient of \tilde{H}_λ in Eq. (5.5) for a fixed $T \in \text{SYT}(\lambda)$ the (q,t)-weight of the SYT T. We will denote it by $\tilde{w}_T(m/n)(T)$. Note that the weight depends on m/n.
Lemma 5.13. By comparison to Eq. (5.5), a convenient formula for the weight is given by

\[
\bar{\omega}_{m/n}(T) = \frac{\prod_{i=1}^{n} z_{i}^{S_{m/n}(i)-1}}{\prod_{i=2}^{n} (1 - \frac{1}{z_{i}})(1 - qt \frac{z_{i}}{z_{i-1}}) \prod_{i<j} \omega \left(\frac{z_{i}}{z_{j}} \right)}
\]

where

\[
\omega(x) = \frac{(1-x)(1-qt)}{(1-qx)(1-tx)}
\]

and

\[
S_{m/n}(i) = \left\lfloor \frac{im}{n} \right\rfloor - \left\lfloor \frac{(i-1)m}{n} \right\rfloor
\]

Proof. First, note that \(S_{m/n}(n-i) = S_{m/n}(i)\) and \(\omega'(x^{-1}) = \omega(x)\). In particular, reversing the labeling on the \(z_{i}\) we see

\[
\text{wt}_{m/n}(T) = \frac{\text{v}^{n} z_{i}^{S_{m/n}(i)}}{g_{\lambda} \prod_{i=2}^{n} (1 - qt \frac{z_{i}}{z_{i-1}}) \prod_{i<j} \omega \left(\frac{z_{i}}{z_{j}} \right)}
\]

On the other hand, one can check that

\[
g_{\lambda} = z_{1} \cdots z_{n} \nu^{n} \prod_{i=1}^{n} (1 - \frac{1}{z_{i}})(1 - qt z_{i}) \prod_{i<j} \omega \left(\frac{z_{i}}{z_{j}} \right) \omega \left(\frac{z_{j}}{z_{i}} \right)
\]

Plugging the latter equation into the former one, we are done. \(\square\)

Let us now study the limit as \(t \to 1\).

Proposition 5.14.

1. Let \(T \in \text{SYT}(\lambda)\), then the order of vanishing of the weight \(\text{wt}(T)_{m/n}\) at \(t = 1\) equals

\[
v(T) = |\lambda| - \ell(\lambda) - \pi(T)
\]

where \(\pi(T)\) is the number of pairs of consecutive boxes \(\square_{i}, \square_{i+1}\) in \(T\) s.t. they lie in consecutive columns. Note that this number is always \(\geq 0\) and independent of \(m/n\).

2. Suppose that \(v(T) = 0\), so that the weight does not vanish at \(t = 1\). Then it is equal to

\[
\frac{\prod_{i=1}^{n} z_{i}^{S_{m/n}(i)-1}}{\prod_{i=2}^{n} (1 - \frac{1}{z_{i}})(1 - qt \frac{z_{i}}{z_{i-1}})}
\]

Here \(z_{i}\) are \((q, t)\)-contents of boxes in \(T\) now specialized at \(t = 1\) and as in [27], we simply ignore \(\ell(\lambda) - 1 + n(T)\) zero factors in the denominator.

Proof. From the formula for the weight in Eq. (5.6) independence of the subscript \(m/n\) is clear. Looking at the denominator, we have the claimed factor and the factors

\[
\omega \left(\frac{z_{i}}{z_{j}} \right) = \frac{(1 - \frac{z_{i}}{z_{j}})(1 - qt \frac{z_{i}}{z_{j}})}{(1 - q \frac{z_{i}}{z_{j}})(1 - t \frac{z_{i}}{z_{j}})}, \; i < j
\]
At a first glance it looks like this factor is always just 1 at $t = 1$. However, this only holds if $\frac{z}{z_j} \notin \{ \frac{1}{q}, \frac{1}{t}, \frac{1}{qt} \}$ (wheel conditions). For example, if $\frac{z}{z_j} = 1/q$, then we get

$$\omega \left(\frac{z}{z_j} \right) = \frac{(1 - 1/q)(1 - t)}{(1 - 1/q)}$$

which gives a zero at $t = 1$ or order 1. Similarly, for $\frac{z}{z_j} = 1/t$ we get a zero of order 1 from $\frac{(1 - 1/t)(1 - q)}{(1 - 1/t)}$, and at $\frac{z}{z_j} = 1/qt$ we get a pole of order 1 from $\frac{(1 - 1/qt)}{(1 - 1/qt)(1 - 1/q)}$. Since each box which has a box to the right of it contributes a zero, each box with a box above it contributes a zero, and a box with a box diagonally above it contributes a pole, we see that this gives a total number of $|\lambda| - 1$ zeros.

The factors $(1 - z^{-1})$ in the denominator vanish at $t = 1$ iff $z_j = t^k$ for some $k \geq 1$, i.e. \ominus_j is at the beginning of a row and we ignore the first factor. Therefore, they contribute a pole of order $\ell(\lambda) - 1$.

Finally, the factors $(1 - q t z_{i-1}/z_i)$ contribute a pole of order $\pi(T)$ at $t = 1$, since this factor vanishes at $t = 1$ iff $z_i = q z_{i-1}$. The result follows. \(\Box\)

Remark 5.15. The first author thanks Eugene Gorsky for explanations related to the combinatorics of this Proposition.

Recall from Lemma 3.4 that to each composition $\alpha = n$ there is associated an unique Young tableau.

Lemma 5.16. The weight $wt(T)_{m/n}$ does not vanish iff T comes from a composition.

Proof. We need to show that only the tableaux coming from compositions have $v(T) := |\lambda| - \ell(\lambda) - \pi(T) = 0$, cf. Eq. (5.7). Note that $v(T) = 0$ iff $\pi(T) = |\lambda| - \ell(\lambda)$. Additionally, the latter is an upper bound (i.e. the condition is satisfied for every box except the ends of the rows, which is obviously the maximum number of boxes), so we are looking to maximize the number of consecutive pairs of boxes in consecutive columns.

For a tableau of shape λ, coming from a composition $\alpha = \alpha_1 + \cdots + \alpha_r$ we have exactly

$$\pi(T) = (\alpha_1 - 1) + \cdots + (\alpha_r - 1) = |\alpha| - \ell(\alpha)$$

by construction. Conversely, if $\pi(T) = |\lambda| - \ell(\lambda)$, the horizontal strip coming from the top boxes in the diagram must have consecutive labels. Stripping it away gives α_r, and we continue inductively to build $\alpha_1 + \cdots + \alpha_r$. \(\Box\)

At $t = 1$ we then finally have

Proposition 5.17.

(5.8) \quad $P_{m,n} \cdot 1 = \sum_{\alpha \vdash n} wt(\alpha)_{m/n} \tilde{h}_\alpha = \sum_{\alpha \vdash n} (-1)^{n-\ell(\alpha)} z_1^{S_1} \cdots z_n^{S_n} \tilde{h}_\alpha$ \quad $c_{\alpha-1}(q)$

where $S_i = \left\lceil \frac{im}{n} \right\rceil - \left\lfloor \frac{(i-1)m}{n} \right\rfloor$. Here $(m,n) = 1$.

Proof. From the second part of Proposition 5.14 we have that the denominator of $wt(\alpha)_{m/n}$ is

$$\prod_{i=2}^n \frac{1}{(1 - z_i^{-1})(1 - q z_{i-1}/z_i)}$$

with the convention that zero factors are ignored.
Arranging the q,t-contents at $t = 1$ into a vector by reading the tableau box by box, we write
\[z(\alpha) = (1, q, \ldots, q^{\alpha_i - 1}, 1, q, \ldots, q^{\alpha_{i+1}-1}, 1, \ldots, q^{\alpha_r - 1}) \]
and by definition $z(\alpha)_i = z_i$.

It is easy to see that the $1 - qz_i/z_{i+1}$ factors are only nonvanishing at the ends of the parts of α so this becomes
\[
\prod_{j=1}^{r} \frac{1}{(1 - q^{-1}) \cdots (1 - q^{-\alpha_j - 1})} \prod_{j=1}^{r-1} \frac{1}{1 - q^{\alpha_j}} = \frac{(-1)^{n - \ell(\alpha)} z_1 \cdots z_n}{(1 - q)^{n-1}[\alpha_1]! \cdots [\alpha_{r-1}]! [\alpha_r - 1]!} = \frac{(-1)^{n - \ell(\alpha)} z_1 \cdots z_n}{c_{\alpha - 1}(q)}
\]
where $[m] = \prod_{j=1}^{m} (1 - q^m)/(1 - q)$ and $\alpha - 1$ is the composition where we remove 1 from the last part.

Since the numerator was $z_1^{S_{m/n(1)} \cdots z_n^{S_{m/n(n)} - 1}}$ we get the result. For further reference, we will denote the coefficient for a fixed α the weight of α:
\[
(5.9) \quad \text{wt}(\alpha)_{m/n} = \frac{(-1)^{n - \ell(\alpha)} z_1^{S_{m/n(1)} \cdots z_n^{S_{m/n(n)} - 1}}}{c_{\alpha - 1}(q)}
\]
\[\square \]

In order to write down the transition matrix of Shalika germs, we will also need the case when m, n are not coprime. This is the $t \to 1$ limit of the formula in Theorem 4.8 at $\mu = \emptyset$.

Proposition 5.18.
\[
(5.10) \quad P_{km, kn} \cdot 1 = \sum_{\alpha = kn} \text{wt}(\alpha)_{m/n} \widehat{h}_\alpha
\]
where for $\alpha = kn$
\[
(5.11) \quad \text{wt}(\alpha)_{m/n} = \left(1 + \sum_{j=1}^{k-1} q^j \frac{z_1^{z(k-j)\cdots z(k-1)n}}{z_1^{z(k-j)n+1} \cdots z_1^{z(k-1)n+1}} \right) \frac{(-1)^{n - \ell(\alpha)} z_1 \cdots z_n}{c_{\alpha - 1}(q)}
\]

Proof. Comparing to Theorem 4.8 and Proposition 5.17 this is proved exactly in the same way, but we also have the coefficient
\[
\sum_{j=0}^{k-1} q^j \frac{z_1^{z(n-k-1) + 1} \cdots z_1^{z(n-k+j+1)}}{z_1^{z(n-k-1)} \cdots z_1^{z(n-k+j)}}
\]
where the first summand is to be just read as 1. \[\square \]

6. The combinatorial formulas

In this section, we state and prove the inductive combinatorial formula for the Shalika germs and the Steinberg germs, as well as the orbital integrals themselves. Our method is on the harmonic analysis side heavily based on results of [65], in particular the combinatorial result Lemme V. 12. therein. Currently, it can be regarded as the most technical part of our computations, but we also hope the results in this section give insight to the rather brute-force approach in [65].

Definition 6.1. Let $m \geq n \geq 0$, let $\lambda \vdash m$ have n parts and $\mu \vdash n$ and consider the set $\mathcal{Y}_\lambda^\mu \subset \mathbb{Z}^n$ defined by
\[\Upsilon^\mu_\lambda := \begin{cases} (d_1, \ldots, d_n) | \left(\sum_{i=1}^k d_i \right) (\sum_{i=k+1}^n \lambda_i) - \left(\sum_{i=1}^k \lambda_i \right) (\sum_{i=k+1}^n d_i) \\ = 0, & \text{if there is a } j \text{ so that } k = \sum_{i=1}^j \mu_i, \ k = 1, \ldots, n - 1 \\ > 0, & \text{otherwise} \end{cases} \]

Example 6.2. Let \(m = n, \mu = (n) \) and \(\lambda = (1^n) \). Then
\[\Upsilon^{(n)}_{(1^n)} = \left\{ \lambda \mid (n-k) \cdot \sum_{i=1}^k d_i - k \cdot \sum_{i=k+1}^n d_i > 0, k = 1, \ldots, n - 1 \right\} \]

Proposition 6.3. The subset \(D_{d,n} \subseteq \Upsilon^{(n)}_{(1^n)} \) given by \(\bar{d} \) with \(\sum_{i=1}^n d_i = d \) is in bijection with the slope \(d/n \) rational Dyck paths \(D^\lambda_{d,n} \) strictly under the diagonal.

Proof. Giving a Dyck path is the same as giving the sequence of its horizontal steps. If we are looking at \(d/n \)-Dyck paths, these steps have to sum to \(d \) and there are at most \(n \) steps, which gives us a sequence \((d_1, \ldots, d_n)\). Since such a Dyck path lies above the line with slope \(d/n \), we must have
\[(n-k) \left(\sum_{i=1}^k d_i \right) - k \left(\sum_{i=1}^k d_i \right) = n \left(\sum_{i=1}^k d_i - kd \right) > 0 \]
for all \(k \) (if we allowed all Dyck paths, for noncoprime \(d, n \) equality could also hold). The converse is clear.

\[\square \]

Example 6.4. Let \(n = 4, d = 3 \). The allowed sequences are
\[(3,0,0,0), (2,1,0,0), (2,0,1,0), (1,2,0,0), (1,1,1,0) \]
and these correspond to the Dyck paths

Now let \(P = \sum_d a_d X^d \in \mathbb{Z}[X_1, \ldots, X_n] \prod X_i \) and define
\[(6.1) \quad \Upsilon^\mu_\lambda(P) := \sum_{d \in \Upsilon^\mu_\lambda} a_d X^d \]

Remark 6.5. The notation used in [65, I 10] for \(\Upsilon^\mu_\lambda \) is \(\Gamma^\mu_\lambda \), but we have avoided this notation in order not to get it confused with the shalika germs \(\Gamma_\lambda(-) \). Note also that on pages 856 and 878 of loc. cit. the confusing notation \(\Gamma^\mu_\lambda P \) is used, but this seems to be due to a printing/typographical error.

In general, one should think of the elements of \(\Upsilon^\mu_\lambda \) Lie-theoretically as follows. \(\mathbb{Z}^n \) is the weight lattice of \(GL_n \), and each collection of \(n \) integers \(\lambda_1, \ldots, \lambda_n \) gives
a linear form on \mathbb{Z}^n as defined above. On the other hand, μ gives a parabolic subgroup of GL_n, and the (in)equalities above decide that this linear form should (not) vanish on the relative root subspaces of the corresponding Levi subgroup. This cuts out a cone in the apartment of T. Fixing the coordinatewise sum is intersecting this cone with an affine hyperplane. We remark that the definition of \mathcal{Y}_λ is related to the definition of “Hecke-regular functions” in [3, Section 4].

6.1. Comparison to Waldspurger’s recursion. Let us recall the setup of [65, Sécion VI–VII], in slightly simplified form (the simplification being that for us $E = F$ and $r = 1$ in the notation of loc. cit.). Now F is a nonarchimedean local field of characteristic zero (but see Remark 2.4), F'/F is a tamely ramified extension of F, and $n' = n/ef$ where f is the residual degree and e the ramification index. Let $G' = GL_{n'}(F')$. Consider $\gamma \in GL_n(F)$ that is elliptic.

Definition 6.6. We call $\delta \in F'^\ast$ cuspidal for F'/F if $(\text{val}_{F'}(\delta), e) = 1$ and if the reduction of $t^{\text{val}_{F'}(\delta)}\delta_e$ in the residue field of $\mathcal{O}_{F'}$ generates the residue field over that of \mathcal{O}_F.

Let $I_{G'}^1$ be the unipotent radical of the Iwahori of G'. We can always write $\gamma = \delta \gamma'$ where δ is $F' := F(\delta)/F$-cuspidal and $\gamma' \in I_{G'}^1$ (see Lemme VI 3. in loc. cit.). Note that γ', δ are not uniquely determined but $n', e, f, \text{val}_{F'}(\delta)$ are, and so is the extension F', up to isomorphism.

Remark 6.7. If we are working with a totally ramified extension, in terms of the Puiseux expansion, this is like writing

$$a_d u^{nr_d} + \cdots + a_1 u^{nr_1} = a_d u^{nr_d} \left(1 + \frac{a_{d-1}}{a_d} u^{(r_d-1-r_d)} + \cdots + \frac{a_1}{a_d} u^{(r_1-r_d)} \right)$$

which is analogous to our $\gamma - a_d u^{nr_d} = \gamma^e$. Namely, we inductively reduce to elements of smaller depth in the smaller group $GL_{n'}$, cf. Definition 2.27.

Following loc. cit. if we further suppose $\gamma \equiv 1 \mod \varpi_F(\gamma) \mathcal{O}_F(\gamma)$ where ϖ is some chosen uniformizer, for example if $\gamma = 1 + a_d u^{nr_d} + \cdots + a_1 u^{nr_1}$ then we may write

$$\gamma = \eta \left(1 + \delta \gamma' \right)$$

where $\eta \equiv 1 \mod \varpi_F \mathcal{O}_F$ where ϖ_F is a chosen uniformizer, e.g. t in the function field case. Write then $\delta \gamma' =: \gamma'^e$. This is also an analog of our γ^e, but note that since Γ^St are only defined on the group, which is where Waldspurger is working, we need to pass through the map $x \mapsto 1 + x$ as in Proposition 2.8. This, with homogeneity, will ensure $\Gamma_\lambda(\gamma^e) = \Gamma_\lambda(\gamma')$, but we tacitly avoid keeping track of group vs. Lie algebra Shalika germs in order to not overburden the notation.

Definition 6.8. Let $X(T) = \sum_{i \geq 0} h_i T^i \in \text{Sym}_{q,d}[T]$. Fix $\lambda' \vdash n'$ and number the squares in its diagram $1, \ldots, n'$. Let

$$P = \prod_{k=1}^{n'} X(X_k)$$

and let $x_n(d\lambda', q)$ be the coefficient of T^n in the series

$$\mathcal{Y}_{\lambda'}(P)$$

evaluated at $X_\gamma = q^{\varepsilon(\lambda'-1)/2}T$, where $\mathcal{Y}_{\lambda'}$ is as defined in Eq. (6.1) and where i, j run over the coordinates of the boxes in λ'. See [65, Section I 10., V 12.].
In [65, Lemme VII 5.], Waldspurger proves the following.

Proposition 6.9. We have
\begin{equation}
(6.2) \quad \sum_{\lambda \to n} \Gamma_{\lambda}^{St}(\gamma, q) h_{\lambda} = q^{n/2} \sum_{\lambda \to n} (-1)^{\frac{1}{2} - t(\lambda)} \Gamma_{\lambda}^{St}(\gamma'', q) x_n(d\lambda', q)
\end{equation}
where \(x_n(d\lambda', q)\) is as defined in Definition 6.8 and the Steinberg germs are as in Theorem 2.14.

We refer the reader to [65, Lemme VII 5., Lemme V 12.] for details. We warn the interested reader that there are some printing errors in the latter lemma, e.g. the second displayed equation on p. 880 should have a subscripted \(X_2\), a sentence after it there seems to be an extra "\(A\)" in front of \(\lambda\), and on line 7 of p. 881 another subscript seems to have gone astray. Also in the statement the "\(q\)" should not be a subscript of \(t(\lambda)\) but on the same line as \((-1)\).

Definition 6.10. Let \(\gamma \in GL_n(\mathcal{O})\) be elliptic. By Corollary 2.6 we have the group Shalika germs \(\Gamma_{\lambda}(\gamma)\) for \(\gamma\) and the Steinberg germs \(\Gamma_{\lambda}^{St}(\gamma)\). Let the master symmetric function of \(\gamma\) be
\[
\mathbf{f}_\gamma := \sum_{\lambda} \Gamma_{\lambda}(\gamma) \tilde{h}_\lambda
\]
or equivalently by Propositions 3.13, 3.15 \(\mathbf{f}_\gamma := \sum_{\lambda} \Gamma_{\lambda}^{St}(\gamma) h_{\lambda}\). If \(\text{val}_{\mathcal{F}}(\det(\gamma)) = d\), we define
\[
\mathbf{f}_\gamma := \sum_{\lambda} \Gamma_{\lambda}^{St}(\gamma) h_{\lambda}
\]
but note that there is no obvious analog of the Shalika germs in this case. Of course, one may define these via a change of basis a posteriori, but the harmonic analysis meaning is unclear.

Similarly, if \(\gamma \in \mathfrak{gl}_n(F)\) define
\[
\mathbf{f}_\gamma := \sum_{\lambda} \Gamma_{\lambda}(\gamma) \tilde{h}_\lambda
\]
It is clear from Proposition 2.8 that this coincides with \(\mathbf{f}_\gamma\) above if for example \(\gamma\) is of the form \(1 + \gamma'\) where \(\gamma'\) is topologically nilpotent. In this case we also have \(\mathbf{f}_\gamma = \mathbf{f}_\gamma'\).

Definition 6.11. Let \(\gamma\) be as above. The coefficients of the expansion of \(\mathbf{f}_\gamma\) in the elementary symmetric polynomials are called the Dydek germs of \(\gamma\). This is also the definition for \(\gamma\) non-elliptic, where \(\mathbf{f}_\gamma\) is as in Definition 6.27.

By construction, our recursion for \(\mathbf{f}_{\beta, \delta}\) from Section 5 which is essentially the totally ramified case yields
\begin{equation}
(6.3) \quad \sum_{\lambda \to n} \sigma_{\lambda}(\gamma) e_{\lambda} = \sum_{\lambda \to n / e} \sigma_{\lambda}(\gamma''') E_{d, e, \lambda'}
\end{equation}
Where \(\sigma_{\lambda}\) are the "Dydek germs" of Definition 6.11. A good example to keep in mind here is \(\gamma = 1 + u^6 + u^7 = 1 \cdot (1 + u^6(1 + u)) \in GL_4(\mathcal{O})\), with \(\gamma'' = \delta \gamma'\), \(\delta = u^6\), \(\gamma' = (1 + u)\) and \(\eta = 1\). Also in this case, \(f = 1, e = 2, n' = 4/2 = 2, d = 3\).

The main goal of this section is to compare the construction of \(\mathbf{f}_{\beta, \delta}\) from Section 5 to \(\mathbf{f}_\gamma\) introduced above. We start with a Lemma.

Lemma 6.12. We have \(x_n(d\lambda', q) = q^{n/2} \prod_{\lambda \to n} \left(\sum_{\pi \in D_{\lambda', \lambda}} q^{\text{area}(\pi)} e_{\pi} \right)\) where we only sum over Dyck paths strictly under the diagonal.
Theorem 6.13. The right-hand sides of Eqs. \(q\) single factor in the product. Up to replacing \(\ell(x')/\ell(x')^T\) by \(q^T\) in Definition 6.8, this follows from Proposition 6.3.

Proof. Since
\[
x_{e\lambda}(d\lambda', q) = \prod_{i=1}^{\ell(x')} x_{e\lambda'}(\lambda'_i, d, q)
\]
(see e.g. the second displayed equation of p. 883 in [65]), we may restrict to a single factor in the product. Up to replacing \(q^T\) by \(q^T\) in Definition 6.8, this follows from Proposition 6.3.

Our main theorem is

Theorem 6.13. The right-hand sides of Eqs. (6.2) and (6.3) are equal. That is,
\[
q^{n^2d^2/2 - n/2} \sum_{\lambda' \in \Lambda} (-1)^{\ell(x')} \Gamma_{\lambda'}^{St}(\gamma'') x_n(d\lambda', q) = \sum_{\lambda' \in \Lambda} \sigma_{\lambda'}(\gamma'') E_{e, d, \lambda'}
\]
In particular, the left-hand sides are also equal.

Proof. We will prove this by induction. It is clearly true for \(n/e = 1\). Start by writing
\[
\sum_{\lambda' \in \Lambda} \sigma_{\lambda'}(\gamma'') E_{e, d, \lambda'}
\]
where \(E_{e, d, \lambda'} := \prod_{i=1}^{\ell(x')} E_{e, d, \lambda'_i}\) and
\[
E_{e, \lambda'} := \sum_{\pi \in \mathcal{P}_{\lambda'}} q^{area(\pi)} e_{\pi}
\]
as before.

The analogous equation on the left is [65, p. 883]
\[
x_n(d\lambda', q) = \prod_{i=1}^{\ell(x')} x_{e\lambda'}(\lambda'_i, q)
\]
where
\[
x_{e\lambda}(d\lambda, q) = \sum_{\pi \in \mathcal{P}_{\lambda}} q^{area(\pi)} e_{\pi}
\]
by Lemma 6.12.

Let \(E_{e, \lambda'} := \sum_{\pi \in \mathcal{P}_{\lambda'}} q^{area(\pi)} e_{\pi}\), which is the same as \(E_{e, \lambda'}\) where we only sum over Dyck paths strictly under the diagonal. This is again by Lemma 6.12 the same as \(x_{e\lambda}(d\lambda, q)\) up to a factor. In order to get rid of the factor, we prefer to again renormalize \(P\) from Definition 6.8 by replacing \(q^{-(\ell(x')^{-1})/2}\) by \(q^T\), replacing the exponent by the arm length of the Dyck path thought of a partition inside a staircase shape (not that the arm sequence of a Dyck path determines the area).

For example when \(\lambda\) is a single row, it is easy to check the two series differ exactly by \(q^{(ed(n)^2 - cn')}/2 = q^{(n'ed - n')}\).

Now, note that from the equation \(\sum_{k=1}^{n} (-1)^k h_{n-k} e_k = 0\) it follows that
\[
e_n = \sum_{\alpha \in \mathcal{N}} (-1)^{\ell(\alpha)} h_{\alpha}
\]
where we sum over all compositions of \(n\). On the other hand, we have
\[
E_{e, \lambda'} := \sum_{\alpha \in \lambda'} \sum_{\pi \in \mathcal{P}_{\lambda', d\lambda'}} q^{area(\pi)} e_{\pi}
\]
where \(touch(\pi) = \alpha\) specifies that \(\pi\) touches the diagonal at \(\alpha\).
Suppose by induction then that
\[
\sum_{\lambda' \vdash n/e} \Gamma_{\lambda'}^S(\gamma'', q) h_{\lambda'} = \sum_{\lambda' \vdash n/e} \sigma_{\lambda'}(\gamma'') e_{\lambda'}.
\]

Writing \(\lambda' = (\lambda'_1, \ldots, \lambda'_{\ell(\lambda')})\) we then have
\[
e_{\lambda'} = \prod_{i=1}^{\ell(\lambda')} (-1)^{\ell(\alpha_i)} h_{\alpha_i}.
\]

Now, for two arbitrary compositions denote by \(\alpha + \beta\) their concatenation. By sorting, this gives a partition of \(|\alpha| + |\beta|\) of length \(\ell(\alpha) + \ell(\beta)\). Given a collection \(\hat{\alpha}\) of compositions \(\alpha^{(1)} \vdash \lambda'_1, \ldots, \alpha^{(\ell(\lambda'))} \vdash \lambda'_{\ell(\lambda')}\) write \(\hat{\alpha} \leftrightarrow \lambda'\). In particular, for a fixed \(\mu' \vdash n/e\) collecting all compositions whose sum has associated partition \(\mu'\) we see that
\[
\Gamma_{\mu'}^S(\gamma'') = \sum_{\lambda' \vdash n/e} (-1)^{\ell(\lambda')} \sigma_{\lambda'}(\gamma'') e_{\lambda'} \tag{6.3}
\]

It now remains to replace \(E_{d,e,\lambda'}\) by a similar expansion. Indeed, by definition we have
\[
E_{d,e,\lambda'} = \prod_{i=1}^{\ell(\lambda')} \left(\sum_{\alpha = \lambda'_i} \sum_{\pi \in \lambda'_i \vdash d} q^{\text{area}(\pi)} e_{\pi} \right)
\]

but also that
\[
\sum_{\pi \in \lambda'_i \vdash d} q^{\text{area}(\pi)} e_{\pi} = \prod_{i=1}^{\ell(\alpha)} E_{d,e,\alpha_i}.
\]

Again collecting all \(\hat{\alpha} \leftrightarrow \mu'\) and by our inductive assumption, we see that
\[
\sum_{\lambda' \vdash n/e} (-1)^{\ell(\lambda')} \Gamma_{\lambda'}^S(\gamma'') h_{\lambda'} = \sum_{\lambda' \vdash n/e} \sigma_{\lambda'}(\gamma'') E_{d,e,\lambda'}
\]

\[\square\]

Example 6.14. We illustrate this theorem in the simplest nontrivial example, \(n = 4, e = 2, d = \text{odd}\). Then we can write the RHS of Eq. (6.3) as
\[
\sigma_{11} E_{d,e,11} + \sigma_{2} E_{d,e,2} = \sigma_{11} E_{d,e,1}^2 + \sigma_{2} E_{d,e,2}
\]
\[
= \sigma_{11}(E_{d,e,1}^2) + \sigma_{2}((E_{d,e,2} + (E_{d,e,1}))^2) = (\sigma_{11} + \sigma_{2})(E_{d,e,1}^2) + \sigma_{2} E_{d,1,e,1}.
\]

On the other hand, we have
\[
\sigma_{2}E_{2} + \sigma_{11}E_{11} = \sigma_{2}(h_{11} - h_2) + \sigma_{11}h_{11}
\]
\[
= (\sigma_{2} + \sigma_{11}) h_{11} + (-1)^{2-1}\sigma_{2}h_2.
\]

This does not quite yet cover the induction for general tamely ramified \(\gamma\) over nonarchimedean local \(F\) as outlined in [65, Section VII 7.], in which each intermediate step may carry some unramified extension.

For example, in the notation introduced above and in [65, VII 1.], namely \(\gamma = \delta\gamma'\), suppose \(F(\delta)/F\) has residue degree \(f \geq 1\), \(\text{val}_F(\det_G(\delta)) = nd/e = a\). By Theorem 2.14 there is a Steinberg germ \(\Gamma_{\lambda'}^S\) for each \(\lambda \vdash n/e\). Note that even though we are working on \(GL_n\), these are partitions of \(n/e\). Similarly, we have germs \(\Gamma_{\lambda'}^S(\gamma')\) for
\(\lambda \mapsto n/e_f \). The associated master symmetric functions are \(f_{\gamma} = \gamma^{s\lambda(\gamma)} h_{\lambda} \) and similarly for \(f_{\gamma'} \). From [65, Proposition VII 2] we then have

Proposition 6.15.

\[
 f_{\gamma} = (-1)^{n-d-e} f_{\gamma'}[X^f]
\]

We will also denote this latter plethysm/Adams operation by \(\tau_r : f[X] \to f[X'] \). Note that when \(f = 1 \) this allows us to compare Steinberg germs of \(\gamma \) and \(\gamma' \) directly.

Let us finally note that in [64, Théorème 1.3.] the following situation, which is implicit in the above, is addressed. Suppose \(F' = F(\gamma)/F \) is unramified of degree \(f \), and write \(\gamma = 1 + t^a X + t^b Y \) where \(a < b \), \(X \in \mathcal{O}_{F(\gamma)} \) generates the residue field of \(F' \) and \(Y \) is such that \(F'(Y) \) is a degree \(n'/n \) extension. Suppose also \(\gamma' = 1 + t^a X \). Translating the notation to ours, we have

Theorem 6.16.

\[
 f_{\gamma} = (-1)^{n-n'} \nabla_r \tau_f (f_{\gamma'})
\]

where \(\nabla \) is the Macdonald eigenoperator from Definition 3.7.

Proof. One notices that in order to compare the Shalika germs \(s_\lambda(\gamma) \) in loc. cit. to ours, there is a factor of \(c_\lambda(q) \) and another of \(c_\lambda(q^f) \) inside the plethysm. This is explained by the fact that there is a mismatch between [64, 65], namely we use the master symmetric function in the latter whereas in the former paper the Shalika germs are collected into a generating function

\[
 \sum_{\lambda} s_\lambda(\gamma,q)c_\lambda(q)h_{\lambda}
\]

instead of \(\sum_{\lambda} \tau_f (f_{\gamma'}) \) which has an additional plethysm \(X \rightarrow X/(1-q) \). Composing this with \(\tau_f \) explains the power \(q \mapsto q^f \) as well as the sign.

Finally, on the LHS of the Theorem in loc. cit. we have factors of the form \(q^{na(X')^f} \) which are exactly the ones coming from homogeneity of Shalika germs as observed in Remark 5.6.

Proof. Follows from comparing Propositions 3.13, 3.15.

Remark 6.17. In [65] an unramified character and some "twisted" Steinberg germs appear. While these are not studied in the present paper, we expect them to have nice expressions and combinatorics in terms of symmetric functions. For example, we do not know what the fundamental lemma proved in [65] looks like in our language.

Let us end this section with introducing a canonical \(t \)-deformation of \(f_\gamma \) as defined above for either \(\gamma \in G(F) \) or \(\gamma \in \mathfrak{g}(F) \). Note that by induction, as explained in [65, VII 7.], \(f_\gamma \) is constructed using the steps in Theorem 6.13 as well as Proposition 6.15 (or Theorem 6.16), which are operations on symmetric functions, namely compositions of slope \(m/n \) plethysms \(\varphi_{m/n} : \text{Sym}_q \rightarrow \text{Sym}_q \), the specialized nabla operator \(\nabla \), scalar multiplication, and the Adams operations \(\tau_f \). Promoting \(\nabla \) to \(\text{Sym}_q \) \(\rightarrow \text{Sym}_q \) the slope \(m/n \) plethysms to a family of operators coming from \(\text{Sym}_q \) \(\rightarrow \mathcal{E}^{m/n} \), and keeping the \(\tau_f \) as they are, we may run the similar recursion which only depends on the datum of \(\gamma \). We recover in the totally ramified case the deformed master symmetric function \(\bar{f}_{\bar{\gamma}, \bar{d}} \) from Section 5, and in general have proved Theorem 1.12 from the introduction, namely
Theorem 6.18. Let $\gamma \in g(F)$ be compact and elliptic. Then the master symmetric function admits a canonical t-deformation, namely
\[\bar{T}_\gamma = \sum_\lambda \bar{\Gamma}_\lambda(\gamma) \bar{H}_\lambda \]
where \bar{H}_λ are the modified Macdonald polynomials. In particular, the Shalika germs $\Gamma_\lambda(\gamma)$ admit a canonical t-deformation.

6.2. The formula for Shalika germs. In this section, we will state and prove the main formula for Shalika germs. Let
\[f_{\mu,q} = \sum_{\lambda+n} \Gamma_\lambda(\gamma) \bar{h}_\lambda \]
be the Shalika expansion of the master symmetric function for γ elliptic. The cabling process passing from γ^e to γ with new Newton exponents (p,q) (above, the correspondence is $p = e, q = d$) expands $f_{\mu,q}$ in the $\{e_\lambda\}$, replacing each e_λ by $E_{q,p,\lambda}$. On the level of Shalika expansions, denote the transition matrix between the bases $\{h_\lambda\}_{\lambda+n}$ and $\{h_\lambda\}_{\lambda+n}$ by $M = \{M_{\lambda,\lambda'}\}$. Denote also $n' = n/p$.

Theorem 6.19. The matrix M has a combinatorial description as follows:
\[M_{\lambda,\lambda'} = \left(c_{\lambda'} \sum_{\mu+n'} \frac{|S_\lambda \cap C_\mu|}{b_\mu \lambda!} \prod_{i=1}^{\ell(\mu)} \left(\sum_{\alpha \in P_\mu} \text{wt}(\alpha) q^{/\lambda(\alpha)} \right) \right) \bigg|_{f_{\mu,q}} \]
In particular, it is possible to interpret this sum combinatorially as follows: For each λ', take the partitions μ which refine it. Next, consider the compositions the parts of ϵ_μ and attach to each composition the respective weight. Finally, sum up the result (weighted with the appropriate prefactors above).

Proof. We need to compute the slope "q/p plethysm" of the functions \bar{h}_λ', i.e. expand them in the p_μ and replace each p_k by P_k, k and bring the result back to the basis \bar{h}_λ. In order to do this, we note that by the untransformed complete homogeneous symmetric functions satisfy
\[h_\lambda = \sum_{\mu+n} \frac{|S_\lambda \cap C_\mu|}{\lambda!} p_\mu \]
where $|S_\lambda \cap C_\mu|$ is the number of permutations simultaneously lying in the Young/parabolic subgroup $S_\lambda := S_{\lambda_1} \times \cdots \times S_{\lambda_\ell}$ and the conjugacy class C_μ of permutations with cycle type μ.

Since
\[\bar{h}_\lambda' = c_{\lambda'} h_\lambda'[X/(1 - q)], \]
we get
\[\bar{h}_\lambda' = c_{\lambda'} \sum_{\mu+n'} \frac{|S_\lambda \cap C_\mu|}{\lambda'! b_\mu} p_\mu \]
where $b_\mu = \prod_i (1 - q^{\mu_i})$ is the principal specialization of p_μ and $c_{\lambda'}$ is as before.

Now, $\varphi_{q/p}(p_\mu) = \prod_i \mu_i^{b_\mu} P_{\mu,q,p}$ which at $t = 1$ we know how to write down using Proposition 5.17. Using the prescription of Lemma 3.4 and the fact that $\bar{h}_{\lambda} h_\mu = \bar{h}_{\lambda+\mu}$,
\[P_{\mu,q,p} = \prod_i \left(\sum_{\alpha \in P_\mu} \text{wt}_{q/p}(\alpha) \bar{h}_\alpha \right) \]
is a linear combination of \tilde{h}_λ, $\lambda \to N$ where the coefficient of each \tilde{h}_λ is the sum of the weights associated to all compositions of the rows of μ adding up to λ after sorting.

\begin{remark}
One may view Theorem 6.19 as giving a combinatorial expression for the ”λ'-colored” master symmetric functions of torus knots at $a = 0, t = 1$.
\begin{remark}
There is a ”slope zero” analog of this Theorem, where F'/F is an unramified extension, say of residue degree r. By Proposition 6.15 this amounts to applying the Adams operation τ_r. In this case, we only need to take $\text{wt}(\alpha)_{0/r}$ to be defined as in Eq. (5.11) but with $S_{0/r}(i) := 0$ for all i.
\end{remark}

6.2.1. Graphs. In this section, we conjecture a different combinatorial approach to the renormalized Shalika germs.

We start with a lemma. Let $\lambda, \mu \vdash n \geq 1$. Let $G(\lambda)$ be the set of directed graphs (loops allowed) with vertex set the boxes of the Ferrers diagram of λ, labeled with $\{1, \ldots, n\}$ and edges only between boxes in the same row. Further, require each vertex to have in- and outdegree 1. Let $G(\lambda, \mu) \subset G(\lambda)$ be the subset of graphs whose connected components sort to give the partition μ. Note that μ is necessarily a refinement of λ.

\begin{lemma}
There is a natural bijection $S_\lambda \cap C_\mu \leftrightarrow G(\lambda, \mu)$
\end{lemma}

\begin{proof}
Writing a cycle decomposition for elements on the left gives rise to a graph by drawing the boxes labeled 1, \ldots, n and adding edges $a_i \to a_{i+1}$ for each cycle $(a_1\cdots a_k)$. The converse is clear.
\end{proof}

Next, we note that by deleting at least one edge from each cycle of a graph $G \in G(\lambda)$, we get a composition of n, by remembering the ordering on the original boxes of λ. This composition naturally refines λ. Accordingly for $G \in G(\lambda)$, we say $\alpha \vdash n$ refines G if we can obtain the composition α by deleting edges from G. Finally, for $e \geq 1$, let eG be the graph obtained by e-dilating each cycle in G.

In order to only have one kind of combinatorial object, we may further associate to each $G' \in G(\lambda', \mu)$ and a composition $\alpha \leq eG'$ exactly $\prod_{i=1}^{\ell(\mu)_{\mu}}$ different graphs by cyclic permutation of vertices in G'. It is easy to see these graphs $G \leq mG'$ are the ones coming exactly from mG' by removal of one or more edges so that the resulting composition is α.

Next, define the weight of a graph to be
\[
\text{wt}(G)_{M/N} = q^{\sum_{v \in G} \text{coarm}(v) S_{M/N}(v)}
\]
where coarm is the i-coordinate of the vertex minus 1, counting from the start of the chain v belongs to.

\begin{conjecture}
In the renormalized basis $h_\lambda[X^{-1/q}] = \widetilde{h}_\lambda[C_\lambda]$, the transition matrix of Shalika germs of Shalika germs is given by
\[
(6.5) \quad M'_{\lambda,\lambda'} = \frac{c_\lambda}{c_{\lambda'}} M_{\lambda,\lambda'} = (-1)^{N-\ell(\lambda)} \frac{1}{\lambda^!} \sum_{\varphi \in G(\lambda)} (-1)^{n-\ell(\alpha(\varphi))} \sum_{G \in G(\lambda)} \text{wt}(G)_{M/N}
\]
\end{conjecture}

This is a purely combinatorial conjecture, which we expect to be verifiable by direct comparison of Eqs. (6.4) (6.5).
While it may not seem obvious from this formula, from the easily checked fact that the symmetric functions $c_\lambda e_\lambda$ expand with $\mathbb{Z}[q]$-coefficients in the basis \tilde{h}_λ it is also clear that this latter transition matrix has entries in $\mathbb{Z}[q]$.

Corollary 6.24. The renormalized Shalika germs $c_\lambda \Gamma_\lambda(\gamma)$ are integral, i.e. $c_\lambda \Gamma_\lambda(\gamma) \in \mathbb{Z}[q]$.

Remark 6.25. Eq. (6.5) was conjectured in a slightly different form by the second author in 2018, based on extensive computer experiments, a slightly different algorithm based on [62], and an expectation for (6.5) when $q \to 1$.

Remark 6.26. The renormalized Shalika germs are not in $\mathbb{N}[q]$ in general, even up to an overall sign. In particular it is easy to find examples for which $c_\lambda \Gamma_\lambda(\gamma)$ has both positive and negative integer coefficients.

6.3. The formulas for orbital integrals.

In this section, we give a combinatorial formulation of the orbital integrals and comment on the non-elliptic case.

Definition 6.27. For $\gamma \in M \subset G$, where M is a Levi subgroup conjugate to $L(\mu)$, we define the master symmetric function to be

$$f_\gamma = \prod_{i=1}^{\ell(\mu)} f_{\gamma_i}$$

Remark 6.28. This is only a definition at $t = 1$. For the equivalued, deformed case the relevant symmetric functions are defined in [7]. In the DAHA-version, the superpolynomials (in general) are defined in [13, Section 4.2.], but as far as the authors are aware, this has not been explored on the level of the elliptic Hall algebra.

Theorem 6.29. Let γ be compact and regular semisimple, and let 1_λ be the characteristic function of the standard parahoric P_λ associated to $\lambda \vdash n$. Then

$$I_\gamma(1_\lambda) = q^{\dim \text{Sp}_\gamma}(f_\gamma, e_\lambda)$$

where we pair using the Hall inner product and f_γ is as above.

Proof. Assume first γ is elliptic. From Theorem 2.14, we have

$$I_\gamma(1_\lambda) = \sum_{\mu} \Gamma^{St}_\mu(\gamma) \text{St}_\mu(1_\lambda)$$

and by Theorem 6.13 plus Definition 6.10 we have

$$\sum_{\mu} \Gamma^{St}_\mu(\gamma) h_\mu = \sum_{\mu} \Gamma_\mu(\gamma) \tilde{h}_\mu = \sum_{\mu} \sigma_\mu(\gamma) e_\mu = f_\gamma$$

The result then follows from Propositions 3.13, 3.15 and Proposition 2.8.

For general γ, suppose γ belongs to a Levi of type μ, WLOG to the standard one and has blocks $\gamma_1, \ldots, \gamma_{\ell(\mu)}$. Then by Proposition 2.21

$$I_{\gamma}(1_\lambda) = |\text{det}(\text{Ad}(\gamma))|_{\text{Lie}(G)/\text{Lie}(M)}|^{1/2} I_\gamma(\text{Res}^G_M(1_\lambda))$$

Let us write $\text{Res}_\mu = \text{Res}^G_M$. By [65, Lemme IV 3.], we get

$$\text{Res}_\mu(1_\lambda) = \sum_{m \in M(\lambda, \mu)} \theta_{j=1}^{\ell(\mu)} 1_{m_{-j}}$$
where \(1_{m,j}\) is the characteristic function of the corresponding standard parahoric and \(M(\lambda, \mu)\) is as in Definition 3.2. It is clear that this implies

\[
I^M_\gamma(\text{Res}_\mu(1_\lambda)) = \sum_{m \in M(\lambda, \mu)} \prod_{j=1}^{\ell(\mu)} (e_{m,j}, f_{\gamma_j})
\]

On the other hand, the first displayed equation on [65, p. 883] implies that we may write the RHS of the above equation as

\[
\langle e_\lambda, \prod f_{\gamma_j} \rangle
\]

Comparing to Definition 6.27 and the dimension formula for affine Springer fibers we are done. \(\square\)

In particular, given the Newton pairs of an elliptic \(\gamma\), we compute \(I_\gamma(1_\lambda)\) by forming the master symmetric function \(f_\gamma\) recursively using Dyck paths, and then expand it in the elementary symmetric functions. In this expansion, we give the coefficient of \(e_\mu\), the weight \(\langle e_\lambda, e_\mu \rangle\) and sum the result up (and finally invert the inner product is always one, so this is just summing up the coefficients in the expansion.

6.4. Examples.

Example 6.30. Let \(\gamma = u^7 + u^6 \in \mathfrak{gl}_4(F)\), following Example 1.6. Then on the second step of our induction \(n = 4, n' = 2\). Suppose we want to compute the entry \(M_{211,2}\) of our transition matrix.

We compute

\[
c_2 = (q - 1)(q^2 - 1), \quad b_2 = (1 - q^2), \quad b_{11} = (1 - q)^2, \quad z_2 = z_{11} = 2
\]

and therefore \(\tilde{h}_2 = \frac{2q^2}{1-q}p_1 + \frac{1+2q}{2}p_2\). Now since \((p_2, q_2) = (3, 2)\) we must apply the slope \(3/2\) plethysm and replace \(p_{11} \mapsto P^2_{3,2}; P_{2} \mapsto P_{6,4}\).

Now by formula (5.8) we have \(P^2_{3,2} = \frac{1}{1-q^2}h_{1111} - \frac{2q}{1-q}h_{211} + \frac{q^2}{1-q}h_{22}\)

There are 8 compositions of 4, and we compute

\[
S_{3/2}(1) = 2, \quad S_{3/2}(2) = 1, \quad S_{3/2}(3) = 2, \quad S_{3/2}(4) = 1
\]

Plugging this in to Eq. (5.11) gives

\[
\text{wt}(2 + 1 + 1)_{3/2} = \frac{-q(1 + q^2)}{(1-q)^2(1-q^2)}, \quad \text{wt}(1 + 2 + 1)_{3/2} = \frac{-2q^2}{(1-q)^2(1-q^2)}.
\]

\[
\text{wt}(1 + 1 + 2)_{3/2} = \frac{-q(1 + q)}{(1-q)^3},
\]

so that the coefficient of \(\tilde{h}_{211}\) in \(P_{6,4}\) is

\[
-q(1 + q^2)(1-q)^2(1-q^2) + \frac{-2q^2}{(1-q)^2(1-q^2)} + \frac{-q(1 + q)}{(1-q)^3} = \frac{-2q^2 - 2q}{(q-1)^3}
\]

Taken together, we get

\[
\frac{-2q(q+1)}{2(1-q)^2} + \frac{(1-q)(-2q^2 - 2q)}{2(q-1)^3} = 0
\]
One verifies in Sage that the slope 3/2 plethysm of \tilde{h}_2 has vanishing coefficient for \tilde{h}_{211}. Let us write down the master symmetric function.

$$f_{(1,2),(3,2)} = \varphi_{3/2}(\varphi_{3/2}(1)) = \varphi_{3/2}(e_2) =$$

$$= (q^2 + q + 1) + (q^6 + q^4 + q^3 + q^2 + 2q) e_{2,1,1} +$$

$$+ (q^7 + q^6 + 2q^5 + q^4) e_{3,1} + q^8 e_4$$

Indeed, there are 23 Dyck paths in a 6×4 rectangle with these horizontal steps and area statistics. The weight polynomial of the spherical affine Springer fiber is

$$q^{\dim_{Sp}} \langle f_{(1,2),(3,2)}, e_4 \rangle_{q-q^{-1}} = 1 + q + 2q^2 + 3q^3 + 4q^4 + 4q^5 + 4q^6 + 3q^7 + q^8$$

and that of the Iwahori affine Springer fiber is

$$q^{\dim_{Sp}} \langle f_{(1,2),(3,2)}, e_{1111} \rangle_{q-q^{-1}} = 1 + 4q + 10q^2 + 20q^3 + 34q^4 + 48q^5 + 54q^6 + 48q^7 + 24q^8$$

Note that the first one is just the sum of the coefficients of the various e_λ up to normalization. It agrees up to $q \mapsto q^{-1}$ with the computation in [12, Eq. (3.1)] – it seems that there is a typo in their paper, repeating one from Piontkowski’s work [54].

Example 6.31. The simplest elliptic case with three Puiseux pairs appears in [12, Eq. (3.8.)] as well as in [54] as an example where previous methods fail. This example corresponds to the plane curve singularity $\mathbb{C}[t^8, t^{12} + t^{14} + t^{15}]$, so we have $(p_1, q_1) = (p_2, q_2) = (2, 1), (p_3, q_3) = (2, 3)$. The dimension of the ASF is 42 in this case. Using Sage, we compute

$$q^{12} \langle f_7, e_8 \rangle_{q-q^{-1}} =$$

$$q^{42} + 7q^{41} + 24q^{40} + 56q^{39} + 104q^{38} + 166q^{37} + 236q^{36} + 306q^{35} + 370q^{34} +$$

$$+ 424q^{33} + 465q^{32} + 492q^{31} + 507q^{30} + 510q^{29} + 504q^{28} + 488q^{27} + 466q^{26} +$$

$$+ 437q^{25} + 406q^{24} + 370q^{23} + 335q^{22} + 298q^{21} + 264q^{20} + 230q^{19} + 199q^{18} +$$

$$+ 168q^{17} + 143q^{16} + 118q^{15} + 97q^{14} + 78q^{13} + 63q^{12} + 48q^{11} + 38q^{10} +$$

$$+ 28q^9 + 21q^8 + 15q^7 + 11q^6 + 7q^5 + 5q^4 + 3q^3 + 2q^2 + q + 1$$

which by Theorem 1.10 is the weight polynomial of the compactified Jacobian in this case. We refer the reader to the attached computer program for computing the Shalika germs and other data in this case.

Example 6.32. Let $G = GL_4$ and $\gamma = a^6$. This is an element whose characteristic polynomial is $x^4 - t^6$, so that the link is a $(6,4)$-torus knot. The element γ is conjugate to one in a Levi isomorphic to $GL_2 \times GL_2$, and on each of the blocks we have an equivalued element of valuation 3/2. We compute the master symmetric function to be the product of the two factors in this case, namely $f_\gamma = (e_{11} + qe_2)^2$. The Shalika expansion of f_γ reads

$$f_\gamma = \left(\frac{1}{q^2 - 2q + 1}\right) \tilde{h}_{1111} + \left(\frac{-2q}{q^2 - 2q + 1}\right) \tilde{h}_{211} + \left(\frac{q^2}{q^2 - 2q + 1}\right) \tilde{h}_{22}$$

Theorem 6.29 gives that $I_\gamma(1_{(4)}) = q^8 + 2q^7 + q^6$ and $I_\gamma(1_{(1)}) = 24q^8 + 24q^7 + 6q^6$. Note that up to $q \mapsto t$, the first result agrees with the numerator of [31, Example 1.3.] at $a = 0, q = 1$.

Example 6.33. Let us work out an unramified example. Suppose $k = \mathbb{F}_q$ and $a \in \mathbb{F}_q^\times - (\mathbb{F}_q^\times)^2$. Let
\[
\gamma = \begin{pmatrix} 0 & at \\ t & 0 \end{pmatrix}
\]
Then γ splits over a degree two unramified extension of F. By Hilbert’s Theorem 90, stable conjugacy in GL_n is rational conjugacy, so by [67, (3.5.4)] we should have
\[
I_{\gamma}^{GL_n}(1_{g(O)}) = SO_{\gamma}(1_{sl_n(O)}) = q + 2
\]
where SO_{γ} is the stable orbital integral in SL_n, defined as in [67, Section 3.5.3.].

Indeed, we are in a situation where $1 + \gamma \sim 1 + tX$ with X generating \mathbb{F}_q^2 over \mathbb{F}_q, and by Theorem 6.16 and Proposition 2.8
\[
f_\gamma = -\nabla_{t=1} r_2(e_1) = e_{11} + 2q e_2
\]
By Theorem 6.29 we get
\[
I_\gamma(1_{(2)}) = q(f_{\gamma}, e_2)|_{q^{-q-1}} = q + 2
\]
as desired.

7. Applications

7.1. Affine Springer fibers. Let $G = GL_n/K$ where $K = k((t))$ as before, with $k = \mathbb{F}_q$ now. Appropriately modifying the definition of Sp_γ below to account for mixed characteristic F, we get similar results but leave these for the interested reader. Suppose $P \subseteq G(K)$ is a parahoric subgroup. Let $Fl_P = G(K)/P$ be the corresponding partial affine flag variety.

Definition 7.1. The affine Springer fiber is the reduced ind-subscheme of Fl_P defined by
\[
Sp_\gamma^P(k) = \{ gP | Ad(g^{-1})\gamma \in Lie(P) \}
\]
Let T_γ be the centralizer of γ. Then it acts naturally on Sp_γ^P, and in particular gives rise to an action of $T_\gamma(K)/T_\gamma(O) =: \Lambda_\gamma$ on Sp_γ^P.

Unraveling the definitions, it is not hard to prove

Proposition 7.2. When γ is totally ramified,
\[
|Sp_\gamma^P(k)/\Lambda_\gamma(k)| = I_\gamma(1_P)
\]
where the Haar measure on the right is normalized as in Definition 2.1.

Combined with Theorem 6.29 this implies

Corollary 7.3. If P is of type λ,
\[
|Sp_\gamma^P(k)/\Lambda_\gamma(k)| = q^{dim Sp_\gamma^P(f_{\gamma}, e_\lambda)}|_{q^{-q-1}}
\]
which is a polynomial in q with nonnegative coefficients.

We note that for more general γ, the orbital integral also seems to be a polynomial in q with nonnegative coefficients. Let us also note the following application to components of affine Springer fibers.

Theorem 7.4. Let $\gamma \in G$ be compact, tamely ramified and regular semisimple. Then the number of irreducible components of Sp_γ^1/Λ is always at most the order of the Weyl group of GL_n, and always divides this number.
Proof. By [63, Eq. (4.5)], the number of irreducible components is the coefficient of the leading term in \(q \) of the integral of \(1_{11 \ldots 1} \) along the orbit of \(\gamma \). By Theorem 6.29, this orbital integral can be computed using \(f_\gamma \) by pairing it with \(e_{11 \ldots 1} \). On the other hand, \(f_\gamma \) is formed by multiplying the master symmetric functions for the blocks of \(\gamma \). Suppose for a moment \(\gamma \) is totally ramified. By Lemma 7.5 the smallest power in the Dyck germs is 1, it appears with coefficient one, and it appears for the least dominant partition. Since pairing with \(e_\lambda \) does not introduce powers of \(q \), the highest power of \(q \) appearing in

\[
q^{\dim \text{Sp}_\gamma} \langle f_\gamma, e_{11 \ldots 1} \rangle_{q^{r-1}}
\]

is \(q^{\dim \text{Sp}_\gamma} \) and it appears with coefficient \(\langle e_\lambda, e_{11 \ldots 1} \rangle = \frac{|W|}{|W_{x\gamma}|} \) where \(\lambda \) is the smallest partition in the dominance order appearing in the Dyck expansion of \(f_\gamma \). This proves the claim in the totally ramified case.

For the general case where the construction \(f_\gamma \) involves the operator \(\tau_f \), cf. Proposition 6.15, note that the plethysm \(\tau_f \) is designed so that for any homogeneous symmetric function \(f \) of degree \(n' = n/f \), \(\lambda \vdash n \), we have

\[
\langle e_\lambda, \tau_f(f) \rangle = \begin{cases}
\langle e_{\lambda f/f}, f \rangle, & \text{if } \lambda \text{ is divisible by } f \\
0, & \text{if } \lambda \text{ is not divisible by } f
\end{cases}
\]

In particular, we may reduce these cases to the computation above. \(\square \)

Lemma 7.5. Let \(\gamma \) be elliptic and totally ramified. Then the smallest power of \(q \) appearing in the coefficients (i.e. Dyck germs) of \(f_{\beta, \overline{q}} = \sum_\lambda \sigma_\lambda(\gamma) e_\lambda \) is 1 = \(q^0 \) and it only appears in front of the smallest partition in dominance order for which \(\sigma_\lambda(\gamma) \neq 0 \). In addition, it appears with coefficient 1.

Proof. We will prove this by induction. For one Puiseux pair it is clear, as there is always a Dyck path with area 0. Suppose it holds for Newton pairs \((p_1, q_1), \ldots, (p_{i-1}, q_{i-1})\). Then by the recursive construction of \(f_{\beta, \overline{q}} \), the “least dominant” horizontal steps appearing in all the possible concatenations of Dyck paths when applying the plethysm \(\varphi_{q_1/p_1} \) appear from those smallest in the dominance order before applying the plethysm. This combined with the facts that there is always a unique Dyck path with area 0 and

\[
\varphi_{q_1/p_1}(e_\lambda) = \prod_{j=1}^{\ell(\lambda)} \left(\sum_{\pi \in \mathbb{P}_j} q^{\text{area}(\pi)} e_\pi \right)
\]

we are by induction done. \(\square \)

Remark 7.6. Let \(m/n \) be the minimal root valuation of \(\gamma \). When \(\gamma \) is totally ramified and elliptic, the above shows that the minimal partition appearing in the \(e_\lambda \)-expansion is formed from the horizontal steps of the maximal staircase partition fitting under a line of slope \(m/n \), i.e. the one with parts \(\left\lfloor \frac{(m-k)n}{m} \right\rfloor, k = 1, \ldots, m \). For example, when \(m/n = 3/7 \) this gives the partition \(4 + 2(+0) \), and the corresponding Dyck path in the \(3 \times 7 \) rectangle has horizontal steps 3, 2, 2. In particular when \(m/n = 1 \) the horizontal steps give the one-column partition. It is easy to extend this to \(\gamma \) non-elliptic by multiplying the corresponding \(e_\lambda \) together. This gives another (slightly more general) proof of a Theorem of Z. Yun in type A, which states that the minimal reduction type of \(\gamma \) determines the number of components in the Iwahori affine Springer fiber.
Remark 7.7. Theorem 7.4 proves [63, Conjecture 8.7.] in type A. From the main result of [63], there are always exactly $n!$ components when the depth is > 1. In fact the last statement is true for depth ≥ 1 because any depth-1 element either differs from a depth > 1 element by a central element, or is contained in a Levi subalgebra in which case we can reduce the assertion to the Levi case as in the proof of Theorem 6.29.

Theorem 7.4 has the following interesting corollary about the W-representation given by $H^*(\text{Sp}_I^\nu/\Lambda)$. Let us assume that γ is totally ramified, and note that the top degree part of the cohomology is always pure. A well-known argument using finite Springer theory tells us there is a graded isomorphism of W-representations for the affine Springer action:

$$H^*(\text{Sp}_I^\nu/\Lambda) \cong H^*(\text{Sp}_I^\nu/\Lambda)^{W_\nu}.$$

In particular, knowing the dimensions of the top degree cohomologies of each Sp_I^ν/Λ tells us exactly all the dimensions of the W_ν-invariants of the representation on top degree cohomology of Sp_I^ν/Λ. Recall that using the Hall inner product, this is the same as knowing the inner products of the Frobenius character with h_λ. Since the h_λ are a basis of the ring of symmetric functions, this uniquely determines the representation. A similar argument shows that assuming purity, f_γ actually determines the Frobenius character of $H^*(\text{Sp}_I^\nu/\Lambda)$ in the elliptic case. In fact, since $\omega(h_\lambda) = e_\lambda$ and the standard involution on symmetric functions is an isometry for the Hall inner product, the Frobenius character will simply be $\omega(f_\gamma)$.

More precisely, we get

Theorem 7.8. The $W = S_n$-representation on $H^{\text{top}}(\text{Sp}_I^\nu/\Lambda)$ has Frobenius character $h_\nu = \omega(e_\nu)$, where ν is the smallest partition in dominance order appearing in the e_λ-expansion of f_γ. In particular, when γ has depth ≥ 1, this is the regular representation by above.

If γ is further elliptic and totally ramified and we assume the purity conjecture, $\omega(f_\gamma)$ is the Frobenius character of $H^*(\text{Sp}_I^\nu/\Lambda)$.

Remark 7.9. Note that this proves [25, Conjecture 7.17.] in type A.

Suppose for a moment γ is a split element, i.e. lies in some split maximal torus. In [11], Zongbin Chen proves that the generating function (summing over elements of varying root valuation data) for the number of points on a so called fundamental domain of Sp_γ is rational, and that the number of points only depends on the root valuation datum. This is further related to the "weighted" Shalika expansion of Arthur, indeed the rationality is proved using homogeneity properties of these functions. See [11] for more details. We have not compared our techniques with the weighted Arthur-Shalika expansion, but it would be interesting to see how Chen's results could be combined with ours to yield stronger rationality results.

7.2. **Compactified Jacobians.** In this section, we apply Theorem 1.10 to show that the point-counts of compactified Jacobians of rational, unibranch plane curves are polynomials in q.

Let us recall some relevant material from [40]. Let C be a reduced, projective and geometrically connected curve over the residue field k, with only planar singularities. Suppose for simplicity that the normalization of C is rational. Let $\mathcal{Pic}(C)$ be the compactified Picard scheme of C. It is the moduli space whose closed points
parametrize torsion-free rank one sheaves on C. For each $c \in \text{Sing}(C)$ fix an isomorphism $\hat{\mathcal{O}}_{C,c} \cong k[[x,y]]/f$ and let Sp_c be the affine Springer fiber associated to $\gamma_c := \gamma_f \in \mathfrak{gl}_{\text{deg}(f)}$. Let Λ_c be the lattice part of the centralizer of γ_f and $\Lambda = \text{Pic}(C)/\text{Jac}(C)$. Fix a section $\Lambda \rightarrow \text{Pic}(C)$ of the quotient map.

From [40, Proposition 2.3.1.] we have

Proposition 7.10. There is a universal homeomorphism

$$\prod_{c \in \text{Sing}(C)} \text{Sp}_c/\Lambda_c \rightarrow \text{Pic}(C)/\Lambda$$

If k is a finite field, we have

Corollary 7.11. Let k'/k be a finite extension. Then

$$\left| \prod_{c \in \text{Sing}(C)} \text{Sp}_c(k')/\Lambda_c \right| = |\text{Pic}(C)(k')/\Lambda|$$

Combined with Corollary 7.3, we have

Theorem 7.12. The number of points on $\text{Pic}(C)$ is a polynomial in $q = |k|$. In addition, it is a polynomial with nonnegative integer coefficients.

A standard spreading-out argument, combined with [33, Theorem 1] and the previous Theorem gives

Corollary 7.13. Let $k = \mathbb{C}$. Then $X = \overline{\text{Pic}}(C)$ is strongly polynomial-count in the sense of Katz [33], and the E-polynomial

$$E_X(x,y) := \sum_{p,q} e_{p,q} x^p y^q$$

is given by the weight polynomial of $\overline{\text{Pic}}(C)$ as $E_X(x,y) = P_X(xy)$, defined by

$$P_X(q) = \sum_{i,j} (-1)^i q^i \dim \text{gr}_W^i H^j(\overline{\text{Pic}}(C))$$

Yet another corollary of Corollary 7.3 together with Corollary 7.11 and Definition 5.5 is a virtual version of [12, Conjecture 2.4.(iii)], which compares Betti numbers of Jacobian factors with superpolynomials at $q = 1$ (or $t = 1$).

Proposition 7.14. For unibranch C, the weight polynomial of $\overline{\text{Jac}}(C)$ is given by the superpolynomial at $a = 0, q = 1$, with t replaced by q.

7.3. Orbital integrals.

Let us finally comment on possible other applications of our results, as the explicit computation of orbital integrals bears on many problems in number theory and automorphic forms.

For example, in [60] Shin and Templier prove an equidistribution theorem for "families" of automorphic L-functions (for any G). Their main result [60, Theorem 1.3.] rests on an explicit, residue-characteristic independent bound for the size of orbital integrals derived by Kottwitz from the Shalika germ expansion. For $G = \text{GL}_n$, our methods should be applicable to give sharper bounds and as they remark, possible improvements on their analytic results. It would be interesting to see more analytic applications of our results.

In his Beyond Endoscopy -proposal [39], Langlands computes global orbital integrals for $\text{GL}(2)$ using "elementary" methods. In the thesis of Espinosa Lara [41],
which builds on work of Altug [1], the corresponding local orbital integrals are computed and compared via a product formula to Langlands’ results. In Altug’s work analysis of orbital integrals is used to “isolate” the contribution of the trivial representation to a certain trace formula Langlands introduces.

A priori, as suspected by Arthur in [2], it should be possible to use an explicit computation of the local orbital integrals (which is where our results come in) to have similar results for GLₙ. It would be interesting to see how the possible application to Beyond Endoscopy plays out.

8. Hilbert schemes of points

In this section, we give a conjectural geometric expression for the Shalika germs of γ in terms of the Hilbert scheme of points on A². Here we work over a field K, which is algebraically closed of characteristic zero.

Let Hilbⁿ(A²) be the Hilbert scheme of n points on A², see e.g. [29]. There is a natural action of Gm on it given by scaling the coordinates on A².

Proposition 8.1 ([29]). The direct sum of the equivariant K-theory groups of Hilbⁿ(A²), n ≥ 0 is naturally isomorphic to

\[\mathbb{K}(\text{Hilb}) := \bigoplus_{n \geq 0} K[G_m^{\mathbb{Z}}(\text{Hilb}^n(A^2))] \otimes_{\mathbb{C}[q^*,t^*]} \mathbb{C}(q,t) \cong \mathcal{F} \cong \text{Sym}_{q,t} \]

The fixed point basis on the left corresponds to the basis \(|\lambda\rangle = H_\lambda \) on the right.

Proposition 8.2. Under the isomorphism of Proposition 8.1, the action of E on the Fock space \(\mathcal{F} \) is realized on \(\mathbb{K}(\text{Hilb}) \) by certain geometric correspondences.

Recall from [25] that to each (conjugacy class of) γ we may associate a quasi-coherent sheaf \(\mathcal{F}_\gamma \in \text{QCoh}(\text{Hilb}(T^*G_m)) \) using a \(\mathbb{Z} \)-algebra construction.

We now sketch an extension of this construction along the lines of [22] to give a sheaf

\[\mathcal{F}_\gamma \in \text{QCoh}^{G_m \times G_m}(\text{Hilb}(A^2)) \]

in which the other grading records the "number of points" grading on the Hilbert scheme of points of the spectral curve/a generalized affine Springer fiber associated to the companion matrix of γ as in [22] (this is just the intersection of the positive part of the affine Grassmannian with the affine Springer fiber for γ conjugated to a specific form).

Namely, let γ be the companion matrix of a polynomial \(f \in \mathbb{K}[x] \) and let \(\chi(t) = \text{diag}(t^{n-1}, t^{n-2}, \ldots, t, 1) \). Then we have

Lemma 8.3. For any k, the matrix

\[\chi^{-k} t^k \gamma \chi^k \]

is the companion matrix of \(f(t^k x) \).

We denote by \(C_k \) the germ of the plane curve singularity

\[\{ \text{char}(t^k \chi^{-k} \gamma \chi^k) = 0 \} \]

Now we will use the \(\mathbb{Z} \)-algebra construction in [25, Section 5] when we take our flavor symmetry to be constructed using this cocharacter of G. Namely, we let
\(\eta_k \) be the action on \(\text{Ad}(K) + V(K) \) sending \(\gamma \mapsto t^k \chi^{-k} \gamma \chi^k \) and \(v \mapsto v \), so that \((1,0,\ldots,0)^t \mapsto (1,\ldots,0)^t \). Since this is just a twisted form of the cocharacter \(\gamma \mapsto t^k \gamma \), the \(\mathbb{Z} \)-algebra we get should be (but we have not checked carefully) the Gordon-Stafford \(\mathbb{Z} \)-algebra. Assuming this is the case, the construction of \([25, \text{Section 7}]\) yields a sheaf \(F_\gamma \) on \(\text{Hilb}^n(\mathbb{A}^2) \) such that by the main theorem of \([22]\) the global sections of \(O(k) \otimes F_\gamma \) are given by the Borel-Moore homologies of Hilbert schemes of points on \(C_k \): \[
abla^0(O(k) \otimes F_\gamma) = H_* \left(\text{Hilb}^n(C_k) \right)
\]

If all of the above works out, one hopes to compare the constructions of \([57]\) and \([49]\) to our results as follows. Recall from above the convolution action of the EHA on the \(K \)-theory \(K(\text{Hilb}) \) (see Proposition 8.2). Similar to the construction of the full master symmetric function of Definition 5.3, one constructs a \(K \)-class \([G_\gamma]\) of a complex of coherent sheaves from the datum of \(\gamma \), with \[
[G_\gamma] = \overline{\Gamma}_\gamma = \sum_{\lambda \vdash n} \overline{\Gamma}_\lambda(\gamma) \tilde{H}_\lambda
\]

Remark 8.4. Similarly, one may think of the passage from \(\gamma^c \) to \(\gamma \) by addition of the largest depth part as an “action” by the EHA on the constructible side but we have not made this precise.

Note that the sheaf \(F_\gamma \) is \(\mathbb{G}_m^2 \)-equivariant, so we may write its class in localized equivariant \(K \)-theory as the sum of fixed point classes. Recall from Proposition 8.1 that the fixed points are indexed by \(\lambda \vdash n \) and correspond to \(\tilde{H}_\lambda \) in the Fock space. Now writing \[
[F_\gamma] = \sum_{\lambda \vdash n} \overline{\Gamma}_\lambda(\gamma) \tilde{H}_\lambda
\] inside \(K(\text{Hilb}) \) gives us coefficients \(\overline{\Gamma}_\lambda(\gamma) \in \mathbb{Q}(q,t) \).

We should emphasize that we do not know whether \(\overline{\Gamma}_\lambda = \tilde{\Gamma}_\lambda \). But according to \([25, \text{Conjecture 1.9.}]\), the sheaf \(F_\gamma \) or at least its \(K \)-theory class \([F_\gamma]\) agrees with the one constructed using shuffle algebra techniques, i.e. the one denoted \([G_\gamma]\) above. In other words, the \(K \)-class of \([F_\gamma]\) is presumably the full master symmetric function from Definition 5.3. This would also imply the following conjecture.

Conjecture 8.5. The coefficients \(\overline{\Gamma}_\lambda(\gamma) \) limit to the Shalika germs \(\Gamma_\lambda(\gamma) \) of \(\gamma \) as \(t \to 1 \). In particular, they can be thought of as a natural \(t \)-deformation of the Shalika germs of \(\gamma \) and

\[
[F_\gamma] \xrightarrow{t \to 1} f_{\rho,\bar{q}}
\]

Remark 8.6. When \(\gamma \) is homogeneous i.e. its characteristic polynomial is quasi-homogeneous with the Puiseux pair \((m,n)\) these coefficients appear, up to multiplication by a combinatorial factor, at the end of \([53, \text{Section 5}]\) under the name \(g_{m/n} \) and some values for them are computed using explicit combinatorics of the Hilbert schemes on the spectral curves. One can check that these coefficients limit to the Shalika germs as \(t \to 1 \).

Our conjecture applies to any compact regular semisimple element. For example, when \(\gamma \) is the split unramified element from \([23]\), one knows only the leading Shalika germ is nonvanishing, see Proposition 2.21. However, the above suggests

\[
[F_\gamma] = \nabla p^n_1
\]
whose expansion in the modified Macdonald polynomials is quite nontrivial (but limits as $t \to 1$ to the Shalika expansion).

From the point of view of harmonic analysis, this t–deformation seems fascinating. If one further had a version of the Shalika germ expansion enhanced with this second variable, one could then try to mimic the strategy of Waldspurger’s recursion to say that the symmetric function attached to the constructible side is obtained from an action of the EHA. There is a combinatorial candidate already, coming from the construction of the master symmetric function using Theorem 4.8. We leave these explorations for future work.

References

[1] Altug, Salim Ali. Beyond Endoscopy via the trace formula. Diss. Princeton University, 2013.
[2] Arthur, James. "A stratification related to characteristic polynomials." Advances in Mathematics 327 (2018): 425-469.
[3] Arthur, James, and Laurent Clozel. Simple algebras, base change, and the advanced theory of the trace formula. No. 120. Princeton University Press, 1989.
[4] Aganagic, Mina, and Shamik Shatikov. "Knot homology and refined Chern–Simons index." Communications in Mathematical Physics 333.1 (2015): 187-228.
[5] Barbasch, Dan, and Allen Moy. "A new proof of the Howe conjecture." Journal of the American Mathematical Society 13.3 (2000): 639-650.
[6] Ben-Zvi, David, David Nadler, and Anatoly Preygel. "A spectral incarnation of affine character sheaves." Compositio Mathematica 153.9 (2017): 1908-1944.
[7] Bergeron, Francoise, et al. "Compositional (km, kn)-shuffle conjectures." International Mathematics Research Notices 2016.14 (2016): 4229-4270.
[8] Bergeron, Francois. "Open questions for operators related to rectangular Catalan combinatorics." arXiv preprint arXiv:1609.04476 (2016).
[9] Bergeron, Francois. "Symmetric Functions and Rectangular Catalan Combinatorics." arXiv preprint arXiv:2112.09799 (2021). Journal of Combinatorics Vol. 8, No. 4 (2017), 673–703.
[10] Burban, Igor, and Olivier Schiffmann. "On the Hall algebra of an elliptic curve, I." Duke Mathematical Journal 161.7 (2012): 1171-1231.
[11] Chen, Zongbin. "On the local behavior of weighted orbital integrals and the affine Springer fibers." arXiv preprint arXiv:2103.15091 (2021).
[12] Cherednik, Ivan, and Ivan Danilenko. "DAHA and iterated torus knots." Algebraic & Geometric Topology 16.2 (2016): 843-898.
[13] Cherednik, Ivan, and Ivan Danilenko. "DAHA approach to iterated torus links." Categorification in geometry, topology, and physics 684 (2017): 159-267.
[14] Chevalley, Claude. Introduction to the theory of algebraic functions of one variable. No. 6. American Mathematical Soc., 1951.
[15] Clozel, Laurent. "Orbital integrals on p-adic groups: a proof of the Howe conjecture." Annals of Mathematics 129.2 (1989): 237-251.
[16] DeBacker, Stephen. "Homogeneity results for invariant distributions of a reductive p-adic group." Ann. Sci. Éc. Norm. Supér (2002): 391-422.
[17] Dunfield, Nathan M., Sergei Gukov, and Jacob Rasmussen. "The superpolynomial for knot homologies." Experimental Mathematics 15.2 (2006): 129-159.
[18] Eisenbud, David, and Walter D. Neumann. Three-dimensional link theory and invariants of plane curve singularities. No. 110. Princeton University Press, 1985.
[19] Elias, Ben, and Matthew Hogancamp. "On the computation of torus link homology." Compositio Mathematica 155.1 (2019): 164-205.
[20] Feigin, Boris, et al. "Quantum toroidal gl_n-algebra: Plane partitions." Kyoto Journal of Mathematics 52.3 (2012): 621-659.
[21] Feigin, B. L., and A. I. Tsybulya. "Equivariant K-theory of Hilbert schemes via shuffle algebra. Kyoto J. Math. 51 (4), 831–854 (2011)." arXiv preprint arXiv:0904.1679: 21562261-1424875.
[22] Garner, Niklas, and Oscar Kivinen. "Generalized Affine Springer Theory and Hilbert Schemes on Planar Curves." International Mathematics Research Notices (2022).
[23] Goresky, Mark, Robert Kottwitz, and Robert Macpherson. "Homology of affine Springer fibers in the unramified case." Duke Mathematical Journal 121.3 (2004): 509-561.
[24] Goresky, Mark, Robert Kottwitz, and Robert MacPherson. "Codimensions of Root Valuation Strata." Pure and Applied Mathematics Quarterly 5.4 (2009): 1253-1310.
[25] Gorsky, Eugene, Oscar Kivinen, and Alexei Oblomkov. "The affine Springer fiber-sheaf correspondence." arXiv preprint arXiv:2204.00303 (2022).
[26] Gorsky, Eugene, Oscar Kivinen, and José Simental. "Algebra and geometry of link homology Lecture notes from the IHES 2021 Summer School." (2021).
[27] Gorsky, Eugene, and Andrei Neguţ. "Refined knot invariants and Hilbert schemes." Journal de mathématiques pures et appliquées 104.3 (2015): 403-435.
[28] Hales, Thomas C. "Unipotent Representations and Unipotent Classes SL(N)." American Journal of Mathematics 115.6 (1993): 1347-1383.
[29] Haiman, Mark. "Combinatorics, symmetric functions and Hilbert schemes." Current developments in mathematics 2002.1 (2002): 39-111.
[30] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Preface and notes by S. DeBacker and P. Sally, University Lecture Series, vol. 16, American Mathematical Society, Providence, RI, 1999. CMP 99:16
[31] Hogancamp, Matthew, and Anton Mellit. "Torus link homology." arXiv preprint arXiv:1909.00418 (2019).
[32] Howe, Roger. "The Fourier transform and germs of characters (case of GL_n over a p-adic field)." Mathematische Annalen 208.4 (1974): 305-322.
[33] Katz, Nicholas. Appendix to Hausel, Tamás, and Fernando Rodriguez-Villegas. "Mixed Hodge polynomials of character varieties." Inventiones mathematicae 174.3 (2008): 555-624.
[34] Kazhdan, David, and George Lusztig. "Fixed point varieties on affine flag manifolds." Israel Journal of Mathematics 62.2 (1988): 129-168.
[35] Kim, Ju-Lee, and Fiona Murnaghan. "Character expansions and unrefined minimal K-types." American journal of mathematics 125.6 (2003): 1199-1234.
[36] Khovanov, Mikhail. "Triply-graded link homology and Hochschild homology of Soergel bimodules." International journal of mathematics 18.08 (2007): 869-885.
[37] Kottwitz, Robert E. "Harmonic analysis on reductive p-adic groups and Lie algebras." Harmonic analysis, the trace formula, and Shimura varieties. Vol. 4. Amer. Math. Soc. Providence, RI, 2005. 393-522.
[38] Langlands, Robert P. "Orbital integrals on forms of $SL(3)$, I." American Journal of Mathematics 105.2 (1983): 465-506.
[39] Langlands, Robert P. "Beyond endoscopy." Contributions to automorphic forms, geometry, and number theory 611 (2004): 697.
[40] Laumon, G. "Fibres de Springer et jacobiennes compactifiées, Algebraic geometry and number theory, 515–563." Progr. Math 253.
[41] Lara, Malors Emilio Espinosa. Explorations on Beyond Endoscopy. Diss. University of Toronto, 2022.
[42] Maulik, Davesh. "Stable pairs and the HOMFLY polynomial." Inventiones mathematicae 204.3 (2016): 787-831.
[43] Mellit, Anton. "Homology of torus knots." arXiv preprint arXiv:1704.07630 (2017).
[44] McNinch, George J. "Nilpotent orbits over ground fields of good characteristic." Mathematische Annalen 329.1 (2004): 49-85.
[45] Morton, Hugh, and Peter Samuelson. "The HOMFLYPT skein algebra of the torus and the elliptic Hall algebra." Duke Mathematical Journal 166.5 (2017): 801-854.
[46] Murnaghan, Fiona. "Local character expansions and Shalika germs for $GL(n)$." Mathematische Annalen 304.1 (1996): 423-455.
[47] Ngô, Bao Châu. "Le lemme fondamental pour les algèbres de Lie." Publications Mathématiques de l’IHÉS 111.1 (2010): 1-169.
[48] Neguţ, Andrei. "The shuffle algebra revisited." International Mathematics Research Notices 2014.22 (2014): 6242-6275.
[49] Neguţ, Andrei. "Moduli of flags of sheaves and their K-theory." Algebraic Geometry (2015).
[50] Neguţ, Andrei. "The m/n Pieri rule." International Mathematics Research Notices 2016.1 (2016): 219-257.
[51] Neguţ, Andrei. "Operators on symmetric polynomials." arXiv preprint arXiv:1310.3515 (2013).
Neguț, Andrei. "An integral form of quantum toroidal gl_1." arXiv preprint arXiv:2209.04852 (2022).

Oblomkov, Alexei, Jacob Rasmussen, and Vivek Shende. "The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link." Geometry & Topology 22.2 (2018): 645-691.

Piórkowski, Jens. "Topology of the compactified Jacobians of singular curves." Mathematische Zeitschrift 255.1 (2007): 195-226.

Repka, Joe. "Shalika’s germs for p-adic $GL(n)$. I. The leading term." Pacific Journal of Mathematics 113.1 (1984): 165-172.

Schifflmann, Olivier, and Eric Vasserot. "Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on \mathbb{A}^2." Publications mathématiques de l’IHÉS 118.1 (2013): 213-342.

Schifflmann, Olivier, and Eric Vasserot. "The elliptic Hall algebra and the K-theory of the Hilbert scheme of \mathbb{A}^2." Duke Mathematical Journal 162.2 (2013): 279-366.

Schifflmann, Olivier, and Eric Vasserot. "Hall algebras of curves, commuting varieties and Langlands duality." Mathematische Annalen 353.4 (2012): 1399-1451.

Shalika, Joseph A. "A theorem on semi-simple p-adic groups." Annals of Mathematics 95.2 (1972): 226-242.

Shin, Sug Woo, and Nicolas Templier. "Sato–Tate theorem for families and low-lying zeros of automorphic L-functions: With appendices by Robert Kottwitz [A] and by Raf Cluckers, Julia Gordon, and Immanuel Halupczok [B]." Inventiones mathematicae 203 (2016): 1-177.

Tsymbaliuk, Alexander. "The affine Yangian of gl_1 revisited." Advances in Mathematics 304 (2017): 583-645.

Tsai, Cheng-Chiang. "Inductive structure of Shalika germs and affine Springer fibers." arXiv preprint arXiv:1512.00445 (2015).

Tsai, Cheng-Chiang. "Components of affine Springer fibers." International Mathematics Research Notices (2020): 1882-1919.

Waldspurger, J. L. "Sur les germes de Shalika pour les groupes linéaires." Mathematische Annalen 284.2 (1989): 199-221.

Waldspurger, J-L. "Sur les intégrales orbitales tordues pour les groupes linéaires: un lemme fondamental." Canadian Journal of Mathematics 43.4 (1991): 852-896.

Waldspurger, J-L. "Endoscopie et changement de caractéristique." Journal of the Inst. of Math. Jussieu (2006): 423-525.

Yun, Z. "Lectures on Springer theories and orbital integrals." In: Geometry of Moduli Spaces and Representation Theory. IAS/PCMI Series Vol. 24. American Mathematical Society (2017)

Zhu, Xinwen. "Affine Grassmannians and the geometric Satake in mixed characteristic." Annals of Mathematics 185.2 (2017): 403-492.

EPFL
Academia Sinica and NSYSU