THE EFFICACY OF COENZYME Q₁₀ IN COMBINATION WITH ATORVASTATIN ON CORONARY HEART DISEASE

YUANYUAN WANG ¹, ZHILI QIAO ², TINGTING LU ¹, KUN LI ¹*

¹Department of Cardiology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, China
²Department of Emergency, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, China

*corresponding author: dr_likunmdj@yeah.net

Abstract

The aim of this study was to evaluate the efficacy of coenzyme Q₁₀ (CoQ₁₀) in combination with atorvastatin on coronary heart disease (CHD). In this study there were included 84 patients with CHD and divided into two groups, a control group (42 patients), treated with atorvastatin and an experimental group (42 patients) that received atorvastatin and CoQ₁₀. CoQ₁₀ levels, transaminase activities (ALT and AST), blood lipid, cardiac function, and hemodynamic, were measured and evaluated before the treatment and 3 months after the treatment. Both treatments were safe and effective in the clinical management if lipidic imbalance in CHD, but the experimental group had better therapeutic effects. The CoQ₁₀ level in the experimental group increased after the treatment (p < 0.05), while in the control group decreased significantly (p < 0.05). ALT and AST levels did not changed significantly after the treatment in the experimental group, while in the control group, it was observed a significant increase (p < 0.05). After treatment, the left ventricular diastolic function of the experimental group was improved significantly (p < 0.05). Meanwhile, the left ventricular diastolic function of the control group was also improved to some extent, but the difference was not statistically significant (p > 0.05). In conclusion, CoQ₁₀ supplementation could avoid the increase of transaminases caused by atorvastatin, and could enhance the lipid–lowering effect of atorvastatin and improve the cardiac function effectively.

Rezumat

Scopul acestui studiu a fost evaluarea eficacității coenzimei Q₁₀ (CoQ₁₀) în combinație cu atorvastatină în bolile coronariene (CHD). Au fost incluși 84 de pacienți cu CHD, împărtăși în două grupe: o grupă control (42 de pacienți), grupul tratat cu atorvastatină și un grup experimental (42 de pacienți) care a primit atorvastatină și CoQ₁₀. Nivelurile CoQ₁₀, activitatea transaminazelor (ALT și AST), a lipidelor plasmatice, funcția cardiacă și hemodinamica au fost evaluate înainte de tratament și după 3 luni. Ambele terapii au fost sigure și eficiente în managementul clinic al dezechilibrului lipidic în CHD, dar grupul experimental a prezentat efecte terapeutice superioare. Nivelul CoQ₁₀ în grupul experimental a crescut după tratament (p < 0.05), în timp ce în grupul martor a scăzut semnificativ (p < 0.05). Nivelurile ALT și AST nu au modificat semnificativ după tratament în grupul experimental, în timp ce în grupul martor s-a observat o creștere semnificativă (p < 0.05). După tratament, funcția diastolică a ventriculului stâng în grupul experimental a fost îmbunătățită. Funcția diastolică a ventriculului stâng în grupul martor a fost, de asemenea, îmbunătățită. În concluzie, suplimentarea cu CoQ₁₀ ar putea evita creșterea transaminazelor în terapia cu atorvastatină, iar și ar putea îmbunătăți profilul lipidic și funcția cardiacă.

Keywords: coronary heart disease, coenzyme Q₁₀, atorvastatin, blood lipids

Introduction

Coronary heart disease (CHD) is the most common type of disease in the corresponding arterial blood supply organs caused by atherosclerosis [1]. In recent years, with the widespread use of statins, clinical studies have focused on the correlation between statins and coenzyme Q₁₀ (CoQ₁₀). By inhibiting the activity of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase, statins reduce not only the intracellular cholesterol synthesis but also of some intermediate related to cholesterol synthesis, including the mevalonic acid (MVA). MVA is necessary for CoQ₁₀ synthesis and a decrease of MVA will lead to the unavailability of CoQ₁₀ production [2-4]. CoQ₁₀ is an endogenous cofactor, whose major function is to participate in the electron transfer on the mitochondrial respiratory chain. It also has the functions of scavenging oxygen free radicals, stabilizing cell membranes, and prevent lipid peroxidation [5, 6]. Theoretically, while inhibiting cholesterol synthesis, statins also cause a decrease in CoQ₁₀ levels in vivo [7], leading to a dysfunction of the respiratory chain of the mitochondria in the cells. Eventually, it causes side effects in patients, such as myalgia, sarcopenia and liver damage [8, 9]. However, whether CoQ₁₀ has a protective effect on another statins-induced side effect, i.e., liver damage dominated by elevated transaminases activity, and whether CoQ₁₀ supplementation impacts the lipid-lowering effects of statins, are seldom reported. In this study, the effects of atorvastatin on CoQ₁₀ levels in CHD patients and the reversal effect of oral CoQ₁₀ were investigated in order to explore the possibility of the beneficial co-administration in the treatment of CHD.
Materials and Methods

Patients
Eighty-four CHD patients aged between 42 and 73 years, treated from July 2018 to September 2019 in the Affiliated Hongqi Hospital of Mudanjiang Medical University, China, were included in the study. The patients were randomly divided into an experimental group (42 cases) and a control group (42 cases). Before the experiment, the age, gender, height, body mass index (BMI), blood pressure, history of smoking, family disease history, history of diabetes mellitus, and carotid artery plaque of each patient were recorded. The Ethics Committee of Affiliated Hongqi Hospital of Mudanjiang Medical University approved this study, and all subjects signed an informed consent for their participation in the study.

Inclusion criteria: (1) Patients whose computed tomography (CT) angiography or coronary angiography results showed at least one of the three branches of the left anterior descending coronary artery, the left circumflex branch and the right coronary artery had coronary artery stenosis of more than 50%. (2) Patients who had not undergone surgical treatments, such as percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG), and had no indication for surgical interventions shortly. (3) Patients who could follow the instructions of doctors, take medication regularly and timely, do follow-up tests for indicators such as blood lipids, liver function, renal function, and blood routine examination, and record all adverse reactions accurately. (4) Patients whose initial testing of blood lipids showed compliance with at least one of the following results: low-density lipoprotein cholesterol (LDL-C) ≥ 130 mg/dL (3.37 mmol/L), cholesterol ≥ 201 mg/dL (5.18 mmol/L), triglycerides ≥ 200 mg/dL (2.27 mmol/L).

Exclusion criteria: (1) Patients who had taken other lipid-lowering drugs before the consultation. (2) Patients with various acute and chronic hepatitis and kidney diseases, liver dysfunction and renal insufficiency. (3) Patients with various tumorous lesions, biliary obstruction, acute and chronic pancreatitis, acute and chronic gastrointestinal, and other malabsorption disorders or over-exhaustive underlying diseases. (4) Women of child-bearing age who were pregnant or were preparing to become pregnant within one year of follow-up. (5) Patients with various peripheral vascular diseases and myopathy. (6) Patients with poor compliance or who were unable to be followed-up for indicator examination. (7) Patients who were diagnosed with acute myocardial infarction or other severely high-risk heart diseases.

Treatment
Patients in the control group received atorvastatin (Liptor®, Pfizer, USA) in doses of 20 mg once a day, before bedtime in addition to conventional medication for 3 months. In addition to the above treatment, patients in the experimental group received CoQ10 (Guangdong CAXIN Biotechnology, China) in doses of 15 mg for 3 times per day, after meals for 3 months. During the study period, patients should not eat foods rich in CoQ10, such as animal offal, chicken and fish. Biochemistry parameters

The fasting venous blood samples were collected from each patient before the treatment and 3 months after the treatment. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and blood lipid indicators as total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were determined using an automatic analyser (Beckman, USA) using routine reagent kits and assays. In the same time, the markers of liver function, renal function, cardiac function, blood routine examination, and urine routine exam were determined for each patient before and 3 months after the treatment.

The level of plasma CoQ10 was determined by HPLC (Hitachi, Japan) from plasma, after n-hexane extraction, as follows: 0.3 mL of the plasma sample was pipetted into the centrifuge tube, mixed with 1 mL of n-hexane (Liaoning Yufeng Chemical Co., Ltd., China), vortexed for 2 min, and centrifuged at 8000 r/min for 10 min. Then, the supernatant was pipetted and analysed. The adverse reactions during the medication, such as myalgia, myolysis, nausea and epigastric discomfort, were recorded. The serious cardiovascular events, such as arrhythmias, acute myocardial infarction, heart failure, and even death, were also recorded. The number of patients who were forced to undergo vascular reconstruction therapy, i.e., percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG), due to their medical conditions during the three months of medication was recorded.

Doppler echocardiography

All patients underwent a Doppler echocardiography by Doppler ultrasonic diagnosis apparatus (Siemens, Germany) for the determination of left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), and left ventricular end-systolic diameter (LVESD) before the treatment and 3 months after the treatment.

Measurement of hemodynamic indicators

A digital non-invasive hemodynamic detector (Shenzhen Maidean Medical Equipment Co., Ltd., China) was used to measure the cardiac function parameters of patients in the experimental group and the control group before and 3 months after the treatment. These parameters included thoracic fluid level (TFC), acceleration index (ACI), velocity index (VI) and heart rate (HR), systolic time ratio (STR), pre-ejection period (PEP), left ventricular ejection time (LVET), mean arterial pressure (MAP), cardiac output (CO), cardiac index (CI), stroke volume (SV), cardiac index (SI), left ventricle stroke work index (LVSWI), left ventricular work index (LVWI) were measured.
Indicators that requested treatment discontinuation

(1) patients who had visible intolerable adverse reactions; (2) creatine kinase (CK) > triple the upper limits of normal reference ranges (25 - 200 U/L for males and 25 - 170 U/L for females), (3) severe liver damage: alanine aminotransferase (ALT) > 120 U/L (triple the upper limit of the normal reference range - 40 U/L); aspartate aminotransferase (AST) > 105 U/L, (triple the upper limit of the normal reference range - 35 U/L); and bilirubin > 3 times the upper limit of the reference range (1.71 - 7 µmol/L).

Statistical methods. The obtained clinical data were analysed by IBM SPSS 19.0 statistics software package (IBM, USA). The obtained blood lipid indicators were evaluated for normality and homogeneity by normal and homogeneity test of variance. All measurement data were expressed as mean number ± standard deviation. Intra-group data processing were performed using independent-sample t-test. The paired-samples t-test was used for intra-group comparison. The Chi-square test was used for the group comparison of count data. A value of p < 0.05 was considered statistically significant.

Results and Discussion

General clinical data

There were no significant differences in general clinical data (age, gender, BMI, hypertension, history of smoking, family disease history, diabetes mellitus and carotid artery plaque) between the two groups of patients at the beginning of the study (Table I).

Table I

Parameters	The experimental group	The control group
Age (years)	56.74 ± 7.98	59.25 ± 8.76
Gender (male/female)	24/18	22/20
BMI	22.08 ± 0.57	22.15 ± 0.54
History of smoking (cases)	17	19
Hypertension (cases)	28	23
Diabetes mellitus (cases)	14	16
Family disease history (cases)	7	3
Carotid atherosclerotic plaque (cases)	14	15

CoQ10 and transaminase levels before and 3 months after the treatment

There were no significant differences in CoQ10 level and serum aminotransferase levels between the two groups before the treatment (p < 0.05). In the experimental group, after 3 months of treatment, the levels of CoQ10 significantly increased compared with those before the treatment (p < 0.05). There was no significant increase in ALT and AST levels after the treatment compared to the levels before the treatment in the experimental group (p > 0.05). In the control group, after 3 months of treatment, the level of CoQ10 decreased significantly compared to the levels before the treatment (p < 0.01) and the levels of ALT and AST increased significantly (p < 0.01). After the treatment, CoQ10 levels were significantly increased in the experimental group compared to the control group, while the levels of ALT and AST significantly decreased (p < 0.05) (Table II).

Table II

Parameters	Experimental group	Control group
CoQ10 (µg/mL) Before the treatment	0.48 ± 0.11	0.49 ± 0.11
After the treatment	0.65 ± 0.17**	0.40 ± 0.12*
ALT (IU/L) Before the treatment	24.06 ± 9.82	18.54 ± 7.35
After the treatment	24.29 ± 9.17*	42.64 ± 12.64*
AST (IU/L) Before the treatment	20.67 ± 7.08	19.14 ± 7.48
After the treatment	21.68 ± 6.48*	38.76 ± 10.24*
LDL-C (mmol/L) Before the treatment	3.89 ± 1.26	3.87 ± 1.11
After the treatment	2.0 ± 0.47**	2.45 ± 0.54*
HDL-C (mmol/L) Before the treatment	1.46 ± 0.36	1.46 ± 0.38
After the treatment	1.73 ± 0.34	1.61 ± 0.46
TC (mmol/L) Before the treatment	5.52 ± 1.65	5.58±1.73
After the treatment	3.59 ± 0.49**	4.34 ± 0.54*
TG (mmol/L) Before the treatment	3.91 ± 1.01	3.96 ± 0.98
After the treatment	2.51 ± 0.51**	2.99 ± 0.34*

*p < 0.05 compared with the levels before the treatment; *p < 0.05 compared with the control group

Variations in blood lipids before and 3 months after the treatment

After 3 months of treatment, the TC, TG, and LDL-C levels were all lower than those before the treatment (p < 0.05), while the HDL-C level increased without reaching the statistical significance (p > 0.05). Compared with the control group, the TC, TG, and LDL-C levels in the experimental group decreased...
significantly (p < 0.05) and the HDL-C level increased, without reaching the statistical significance (Table II). LDL-C less than 2.6 mmol/L (100 mg/dL) was taken as the standard value. If LDL-C was less than 2.6 mmol/L, it was considered meeting the standard. Blood lipid compliance rate = (number of people meeting the standard/total number of people × 100%). A total of 38 patients in the experimental group met the standard (90.47%), and a total of 27 patients in the control group met the standard (64.28%). The comparison between the two groups showed significant differences (p < 0.05).

Cardiac function parameters before and after the treatment in the experimental and control group
After the treatment, the cardiac function parameters in the experimental group significantly improved compared to the control group (p < 0.05) (Table III).

Table III
Cardiac function parameters in the two groups

Parameters	Experimental group	Control group		
	Before the treatment	Before the treatment	After the treatment	After the treatment
LVEDD (mm)	72.23 ± 2.13	72.18 ± 2.04	72.62 ± 1.97*	
LVESD (mm)	57.87 ± 1.85	58.28 ± 1.86	54.83 ± 1.84*	
LVEF (%)	38.77 ± 1.64	38.54 ± 1.57	41.18 ± 1.84*	

Left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), left ventricular ejection fraction (LVEF).

* p < 0.05 compared with the results before the treatment.

Hemodynamic parameters before and after the treatment in the experimental and control group
In both the experimental group and the control group, the hemodynamic parameters significantly increased compared to the results before the treatment (p < 0.05). After the treatment, the hemodynamic parameters significantly increased in the experimental group compared to the control group (p < 0.05) (Table IV).

Table IV
Hemodynamic parameters in the two groups

Parameters	Experimental group	Control group		
	Before the treatment	Before the treatment	After the treatment	After the treatment
CO (L/min)	4.75 ± 0.54	4.87 ± 0.57	5.24 ± 0.62*	
CI (L/[min·m²])	2.21 ± 0.46	2.09 ± 0.51	2.79 ± 0.42*	
SV (mL)	66.22 ± 8.54	64.45 ± 9.08	70.12 ± 7.14*	
SI (mL/m²)	38.61 ± 7.43	35.60 ± 7.35	40.32 ± 6.25*	
LVSWI [g/(min·m²)]	40.33 ± 9.35	40.08 ± 7.42	43.31 ± 4.26*	
LCWI [kg/(min·m²)]	2.65 ± 0.61	2.73 ± 0.54	3.03 ± 0.37*	
VI (×10⁻⁵/s)	41.92 ± 8.22	40.13 ± 6.15	44.57 ± 5.65*	

Cardiac output (CO), Left Ventricular Ejection Time (LVET), Cardiac Index(CI), Stroke Volume(SV), Cardiac Index(SI), Left Ventricular Stroke Work Index(LVSWI), Left Ventricular Work Index(LVWI) and Velocity Index(VI). Compared with the results before the treatment, *p < 0.05; compared with the control group, #p < 0.05

Side effects
There were no reported myalgia and rhabdomyolysis in the two groups during the 3 months of treatment. No adverse events, such as serious arrhythmias and fatal/non-fatal myocardial infarction, occurred in both groups during the treatment. Only minor side effects as the increase of ALT levels above the normal range, gastrointestinal reactions and muscular weakness were observed in both groups without significant difference between the two groups (Table V).

Table V
Side effects incidents during the treatment in the two groups

Parameters	Experimental group	Control group
ALT > The normal value	1	2
ALT > Triple the normal value	0	0
CK > The upper limit of normal value	0	0
Gastrointestinal reactions	3	4
Myalgia	0	0
Muscular weakness	0	3
Rhabdomyolysis	0	0

Studies have shown that a person with increased serum TC and/or LDL-C levels, or those with reduced HDL-C levels present increasing morbidity and mortality of cardiovascular cause [10, 11]. Numerous experiments and clinical studies have proved that the LDL-C can promote the occurrence and development of coronary atherosclerosis, while HDL-C can inhibit the occurrence and development of coronary atherosclerosis [12, 13]. Therefore, clinically, decreasing serum TC, LDL-C and TG levels while increasing the HDL-C levels is the main lipid regulation pathway...
that helps in preventing and treating coronary atherosclerotic heart disease. Atorvastatin belongs to the statin family [14]. It prevents the synthesis of cholesterol in the liver by inhibiting the activity of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase [15]. Atorvastatin reduces free cholesterol in the cell. Through negative feedback, the number of LDL-C receptors in the cell is increased and its activity is enhanced, which has promoted the elimination of LDL and very-low-density lipoprotein (VLDL) from the blood, thereby reducing the endogenous blood lipid content in the blood [16,17]. The major feature of atorvastatin in lipid-lowering is to reduce TC and LDL-C levels and a lower effect on decreasing TG level [18, 19]. As the dose is doubled, the lipid-lowering effect does not increase linearly, while the adverse effects increase [22]. Therefore, the clinical use of statins alone for lipid regulation has certain limitations, which hinders the regulation of blood lipids in patients with CHD in clinical practices. In this study, by comparing the treatment only with statins alone and the combination of statins and CoQ10, it was found that the exogenous supplementation of CoQ10 could reverse the decrease of CoQ10 levels in the body caused by atorvastatin. In the same time, it is observed a limitation of the increase of transaminases activity caused by statins. ALT and AST are a group of enzymes that reflect liver cell damages. They are mainly present in the cytoplasm of hepatocytes. AST is also distributed in the mitochondria. Once CoQ10 is lacking, different oxidative respiratory chain functions in the mitochondria of the cell become impaired, and the oxygen-free radicals increased, which produce liver damage and increase the ALT and AST levels. CoQ10 supplementation can be used to maintain the integrity of cell structure and function, promote the repair of liver cells, and thus have a certain protective effect on the liver damage [23, 24]. On the other hand, CoQ10 can also reduce the increase of intracellular calcium concentration caused by statin lipid-lowering drugs, prevent Ca2+ influx, and reduce liver cell damage caused by intracellular Ca2+ overload [25]. The results of this study also showed that the combination of CoQ10 and atorvastatin had better results in reducing TC, TG, and LDL-C levels and increasing HDL-C levels. CoQ10 prevents lipids and proteins from peroxidation and scavenges free radicals. It is used to reduce oxidative damage to different tissues and as an inhibitor of LDL cholesterol oxidation [26], which may be a mechanism for CoQ10 to promote lipid metabolism. The results of this experiment showed that after the treatment, the CO, CI, SV, SI, LVSWI, LCWI and VI values of the experimental group and the control group were significantly higher than those before the treatment, with a significant increase in the experimental group compared with the control group. Besides, the left ventricular diastolic function of the experimental group was significantly improved after the treatment compared to the control group. Atorvastatin had no significant side effects on the central functions of CHD patients, and its possible mechanisms include (1) antioxidant effects and inhibition of inflammatory response [27]; (2) improvement of vascular endothelial function [28]; (3) neuroendocrine regulation and inhibition of ventricular remodelling [29]. Atorvastatin associated with CoQ10 can promote the improvements of cardiac functions and hemodynamic in earlier stages. The mechanism may be related to the improvement of myocardial energy metabolism by CoQ10 [30]. It has been shown that the cardiac functions of CHD patients who were treated with atorvastatin and CoQ10 could be improved effectively.

Conclusions

There were no significant differences in adverse reactions between the control group and the experimental group. During the course of treatment, no serious adverse reactions occurred. Both groups were safe in the treatment of CHD. Therefore, the use of a combination of atorvastatin and CoQ10 could be promoted in clinical practice.

Acknowledgement

This work was supported by Scientific Research Project of Heilongjiang Health and Family Planning Commission (Project No.: 2014-191).

Conflict of interest

The authors declare no conflict of interest.

References

1. Watanabe T, Ando K, Daidoji H, Otaki Y, Sugawara S, Matsui M, Ikeno E, Hiroto O, Miyawaki H, Yashiro Y, Nishiyama S, Arimoto T, Takahashi H, Shishido T, Miyashita T, Miyamoto T, CHERRY study investigators, A randomized controlled trial of eicosapentaenoic acid in patients with coronary heart disease on statins. J Cardiol. 2017; 70(6): 537-544.
2. Heller DJ, Coxson PG, Penko J, Fletcher MJ, Odden MC, Kazi DS. Evaluating the impact and cost-effectiveness of statin use guidelines for primary prevention of coronary heart disease on statins. Circulation. 2017; 136(12): 1087-1098.
3. Mohammadi-Bardbobi A, Najibi A, Amirzadegan N, Ghafarian R, Dashi A, Omidi M, Saeedi A, Ghafarian-Coenzyme Q10 remarkably improves the bio-energetic function of rat liver mitochondria treated with statins. Eur J Pharmacol., 2015; 762: 270-274.
4. Choi HK, Won EK, Chong SY. Effect of Coenzyme Q10 supplementation in statin-treated obese rats. *BioMed Ther (Seoul)*, 2016; 24(2): 171-177.

5. Eghbal MA, Abdoli N, Azarni Y. Efficiency of hepatocyte pretreatment with coenzyme Q10 against statin toxicity. *Arh Hig Rada Toksikol.*, 2014; 65(1): 101-108.

6. Khalil MS, Khamis N, Al-Drees A, Abdulghani HM. Does coenzyme-Q have a protective effect against atorvastatin induced myopathy? A histopathological and immunohistochemical study in Albino rats. *Histol Histopathol.*, 2015; 30(3): 383-390.

7. Takahashi H, Shimoda K. Coenzyme Q10 in neurodegenerative disorders: Potential benefit of CoQ10 supplementation for multiple system atrophy. *World J Neurol.*, 2014; 4(1): 1-6.

8. Hergheliegu AM, Prada GI, Nacu R, Kozma A, Alexa ID. Statins use and risk of sarcopenia in community dwelling older adults. *Farmaciu*, 2018; 66(4): 702-707.

9. Liu CS, Liu CK, Chang LL, Kuo CL, Cheng WL, Su SL, Tsai CW, Chen HW. Atorvastatin increases blood ratios of vitamin E/low-density lipoprotein cholesterol and coenzyme Q10/low-density lipoprotein cholesterol in hypercholesterolemic patients. *Nurtit Res.*, 2010; 30(2): 118-124.

10. Wang H, Li Z, Guo X, Chen Y, Chang Y, Chen S, Sun Y. The impact of nontraditional lipid profiles on left ventricular geometric abnormalities in general Chinese population. *BMC Cardiovasc Disord.*, 2018; 18(1): 1-11.

11. Vu KN, Ballantyne CM, Hoogeveen RC, Nambi V, Volckik KA, Boerwinkle E, Morrison AC. Causal role of alcohol consumption in an improved lipid profile: The atherosclerosis risk in communities (ARIC) study. *PLoS One*, 2016; 11(2): 1-11.

12. Zálar DM, Pop C, Buzuługan E, Todca D, Mogoşan CI. The atherosclerosis-inflammation relationship – a pathophysiological approach. *Farmaciu*, 2019; 65(6): 941-947.

13. Elsharly MB, Quispe R, Michos ED, Sniderman AD, Toth PP, Banach M, Kullkarni KR. Patient-level discordance in population percentiles of the total cholesterol to high-density lipoprotein cholesterol ratio in comparison with low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol: The very large database of lipids study (VLDL-2B). *Circulation*, 2015; 132(8): 667-676.

14. Wang XM, Cai WH, Li LM, Sun CQ, Zhao HW, Wang H, Liu RC. Effects of atorvastatin calcium, amiodipine, in combined with nursing intervention on the carotid atherosclerosis in patients with primary hypertension. *J Hainan Med Univ.*, 2016; 22(12): 131-134.

15. Anagnostis P, Adamidou F, Slavakis A, Polyzos SA, Selalmatzidou D, Panagiotou A. Comparative effect of atorvastatin and rosuvastatin on 25-hydroxy-vitamin D levels in non-diabetic patients with dyslipidemia: A prospective randomized open-label pilot study. *Open Cardiovasc Med J.*, 2014; 8: 55-60.

16. Kashi Z, Mahrooz A, Kianmehr A, Alizadeh A. The role of metformin response in lipid metabolism in patients with recent-onset type 2 diabetes: HbA1c level as a criterion for designating patients as responders or non-responders to metformin. *PLoS One*, 2016; 11(3): 1-10.

17. Mygind ND, Harutyunyan MJ, Mathiasen AB, Ripa RS, CLARICOR Trial Group. The influence of statin treatment on the inflammatory biomarkers YKL-40 and HS-CRP in patients with stable coronary artery disease. *Inflamm Res.*, 2011; 60(3): 281-287.

18. Chen Y, Jiang C, Liu M, Liu F, Fan Y. (Efficacy and safety comparison of different statins in elderly patients) *Zhonghua Xin Xue Guang Bing Za Zhi*, 2014; 42(11): 910-915.

19. Wang YB, Fu XH, Gu XS, Fan WZ, Jiang YF, Hao GZ, Miao Q, Cao J, Fu B, Li Y. Effects of intensive pitavastatin therapy on glucose control in patients with non-ST elevation acute coronary syndrome. *Am J Cardiovasc Dis.*, 2017; 7(4): 89-96.

20. Adhikari BK, Minjie G, Xiaoping M. GW24-e2327 effect of sugarcane vinegar on blood lipids level in hyperlipidaemic patients. *Heart.*, 2013; 99(Suppl3): A252.

21. Zheng XD, Li QX, Zhang JH, Xia C, Han YL, Chen HS. Preliminary study on the efficacy and safety of atorvastatin in northern Han patients with acute ischemic cerebrovascular disease. *Med J Chinese People's Liberation Army*, 2015; 40: 519-525.

22. Lee KH, Hyun SP, Yong HY, Young BS, Young CB, Dae HK, Sung KK, Myoung SK. Antihyperlipidemic effect of complex of medicinal plant products on hyperlipidemic rats induced by high cholesterol diet. *Korean J Med Crop Sci.*, 2015; 23(2): 109-116.

23. Farrag SM, Hamzawy MA, El-Yamany MF, Saad MA, Nassar NN, Atorvastatin in nano-particulate formulation abates muscle and liver affinity when coalesced with coenzyme Q10 and/or vitamin E in hyperlipidemic rats. *Life Sci.*, 2018; 203: 129-140.

24. Choi HK, Won EK, Chong SY. Effect of Coenzyme Q10 supplementation in statin-treated obese rats. *Biomolecules&Therapeutics*, 2016; 24(2): 171-177.

25. Al Mamun Bhuyan A, Nüüsle S, Cao H, Zhang S, Lang F, Simvastatin, a novel stimulator of eryptosis, the suicidal erythrocyte death. *Cell Physiol Biochem.*, 2017; 43(2): 492-506.

26. Tomoda H, Ohbayashi N, Morikawa Y, Kumagai H, Omura S, Binding site for fungal beta-lactone hymeglusin on cytosolic 3-hydroxy-3-methylglutaryl coenzyme A synthase. *Biochim Biophys Acta*, 2004; 1636(1): 22-28.

27. Duan HY, Liu DM, Qian P, Wang SL, Yan LJ, Wu JT, Yang HT, Fan XW, Chu YJ. Effect of atorvastatin on plasma NT-proBNP and inflammatory cytokine expression in patients with heart failure. *Genet Mol Res.*, 2015; 14(4): 15739-15748.

28. Oikonomou E, Siusos G, Zaromitidou M, Hatzis G, Mourouzis K, Chrysohoou C. Atorvastatin treatment improves endothelial function through endothelial progenitor cells mobilization in ischemic heart failure patients. *Atherosclerosis*, 2015; 238(2): 159-164.

29. Mozaffarian D, Minami E, Letterer RA, Lawler RL. The effects of atorvastatin (10 mg) on systemic inflammation in heart failure. *Am J Cardiol.*, 2005; 96(12): 1699-1704.

30. Molyneux SL, Florkowski CM, Richards AM, Lever Coenzyme Q10: an adjunctive therapy for congestive heart failure? *N Z Med J.*, 2009; 122(1305): 74-79.