GENERALIZED ARTIN-MUMFORD CURVES OVER FINITE FIELDS

MARIA MONTANUCCI AND GIOVANNI ZINI

Abstract. Let \mathbb{F}_q be the finite field of order $q = p^h$ with $p > 2$ prime and $h > 1$, and let $\mathbb{F}_\bar{q}$ be a subfield of \mathbb{F}_q. From any two \bar{q}-linearized polynomials $L_1, L_2 \in \mathbb{F}_q[T]$ of degree q, we construct an ordinary curve $X_{(L_1, L_2)}$ of genus $g = (q - 1)^2$ which is a generalized Artin-Schreier cover of the projective line \mathbb{P}^1. The automorphism group of $X_{(L_1, L_2)}$ over the algebraic closure \mathbb{F}_q of \mathbb{F}_q contains a semidirect product $\Sigma \rtimes \Gamma$ of an elementary abelian p-group Σ of order q^2 by a cyclic group Γ of order $\bar{q} - 1$. We show that for $L_1 \neq L_2$, $\Sigma \rtimes \Gamma$ is the full automorphism group $\text{Aut}(X_{(L_1, L_2)})$ over $\mathbb{F}_\bar{q}$; for $L_1 = L_2$ there exists an extra involution and $\text{Aut}(X_{(L_1, L_2)}) = \Sigma \rtimes \Delta$ with a dihedral group Δ of order $2(\bar{q} - 1)$ containing Γ. Two different choices of the pair (L_1, L_2) may produce birationally isomorphic curves, even for $L_1 = L_2$. We prove that any curve of genus $(q - 1)^2$ whose \mathbb{F}_q-automorphism group contains an elementary abelian subgroup of order q^2 is birationally equivalent to $X_{(L_1, L_2)}$ for some separable \bar{q}-linearized polynomials L_1, L_2 of degree q. We produce an analogous characterization in the special case $L_1 = L_2$. This extends a result on the Artin-Mumford curves, due to Arakelian and Korchmáros [1].

1. INTRODUCTION

The Artin-Mumford curve \mathcal{M}_c of genus $(p - 1)^2$ defined over a field \mathbb{F} of odd characteristic p is the nonsingular model of the plane curve with affine equation

$$(X^p - X)(Y^p - Y) = c, \quad c \in \mathbb{F}^*.$$

Artin-Mumford curves, especially over non-Archimedean valued fields of positive characteristic, have been investigated in several papers; see [3], [2], and [4]. By a result of Cornelissen, Kato and Kontogeorgis [2] valid over any non-Archimedean valued field $(\mathbb{F}, | \cdot |)$ of positive characteristic, if $|c| < 1$ then $\text{Aut}_{\mathbb{F}}(\mathcal{M}_c)$ is the semidirect product

$$(C_p \times C_p) \rtimes D_{p-1},$$

where C_p is a cyclic group of order p and D_{p-1} is a dihedral group of order $2(p - 1)$. This result holds over any algebraically closed field; see [12].

The interesting question whether the genus $(p - 1)^2$ together with an automorphism group as in [2] characterize the Artin-Mumford curve has been solved so far only for curves defined over \mathbb{F}_p; see [1].

A natural generalization of Artin-Mumford curves arises when the polynomials $X^p - X$ and $Y^p - Y$ in [1] are replaced by separable linearized polynomials L_1, L_2 of equal degree. Our aim is to investigate such generalized Artin-Mumford curves, especially their automorphism groups. To present our results, we need some notation that will also be used throughout the paper.

For an odd prime p and powers $\bar{q} = p^h$ and $\bar{q} = \bar{q}^m$, $\mathbb{F}_p = \mathbb{F}_\bar{q}$, \mathbb{F}_q are the finite fields of order p, \bar{q}, q; \mathbb{K} is the algebraic closure of \mathbb{F}_p; $L_1(T), L_2(T) \in \mathbb{K}[T]$ are separable polynomials of degree q which are \bar{q}-linearized. We admit that one, but not both, is \bar{q}-linearized, for some $k \geq 2$. With this notation, the generalized Artin-Mumford curve $X_{(L_1, L_2)}$ is the nonsingular model of the plane curve with affine equation

$$(3) \quad X_{(L_1, L_2)}: \quad L_1(X) \cdot L_2(Y) = 1.$$

The family of generalized Artin-Mumford curves is denoted by:

$$S_{\bar{q} | \bar{q}} = \{ X_{(L_1, L_2)} \mid L_1(T), L_2(T) \in \mathbb{K}[T], \deg(L_1) = \deg(L_2) = q, L_1, L_2 \text{ are separable} \}.$$
\[\bar{q} \text{-linearized, not both } q^k \text{-linearized for any } k \geq 2 \].

An interesting feature of a generalized Artin-Mumford curve \(\mathcal{X}_{(L_1, L_2)} \) is that its genus only depends on \(q \), namely \(g(\mathcal{X}_{(L_1, L_2)}) = (q - 1)^2 \). Also, \(\mathcal{X}_{(L_1, L_2)} \) is an ordinary curve, that is, its genus and \(p \)-rank are equal. A complete description of the automorphism group of any generalized Artin-Mumford curve is given in the following two theorems.

Theorem 1.1. The full automorphism group of \(\mathcal{X}_{(L, L)} \) is the semidirect product
\[
\Sigma \rtimes \Delta,
\]
where
- \(\Sigma = \{ (X, Y) \mapsto (X + \alpha, Y + \beta) \mid L(\alpha) = L(\beta) = 0 \} \) is an elementary abelian \(p \)-group of order \(q^2 \);
- \(\Delta = \langle \theta, \xi \rangle \) is a dihedral group of order \(2(\bar{q} - 1) \), where \(\theta : (X, Y) \mapsto (\lambda X, \lambda^{-1} Y) \) with \(\lambda \) a primitive \((\bar{q} - 1) \)-th root of unity, and \(\xi : (X, Y) \mapsto (Y, X) \).

Theorem 1.2. If \(L_1 \neq L_2 \), the full automorphism group of \(\mathcal{X}_{(L_1, L_2)} \) is the semidirect product
\[
\Sigma \rtimes \Gamma,
\]
where
- \(\Sigma = \{ (X, Y) \mapsto (X + \alpha, Y + \beta) \mid L_1(\alpha) = L_2(\beta) = 0 \} \) is an elementary abelian \(p \)-group of order \(q^2 \);
- \(\Gamma = \langle \theta \rangle \) is a cyclic group of order \(\bar{q} - 1 \), where \(\theta : (X, Y) \mapsto (\lambda X, \lambda^{-1} Y) \) with \(\lambda \) a primitive \((\bar{q} - 1) \)-th root of unity.

For \(\bar{q} = q \), the size of \(\text{Aut}(\mathcal{X}_{(L_1, L_2)}) \) is approximately \(2(g(\mathcal{X}_{(L_1, L_2)}) + 1)^{3/2} \). Since the groups given in Theorems 1.1 and 1.2 are solvable, \(\mathcal{X}_{(L_1, L_2)} \) attains, up to the constant, the bound given in [8].

Our main result is that \(\text{Aut}(\mathcal{X}_{(L_1, L_2)}) \) together with \(g(\mathcal{X}_{(L_1, L_2)}) \) characterize the curves in \(S_{\bar{q} q} \). This result can be viewed as a generalization of [1] Theorem 1.1] on Artin-Mumford curves.

Theorem 1.3. Let \(X \) be a (projective, non-singular, geometrically irreducible, algebraic) curve of genus \(g = (q - 1)^2 \) defined over \(\mathbb{K} \). If \(\text{Aut}(X) \) contains an elementary abelian subgroup \(E_{q^2} \) of order \(q^2 \), then \(X \) is birationally equivalent over \(\mathbb{K} \) to some \(X_{(L_1, L_2)} \in S_{\bar{q} q} \), where \(\bar{q} \) is the largest power of \(p \) such that \(\text{Aut}(X) \) contains a cyclic subgroup \(C_{\bar{q} - 1} \) of order \(\bar{q} - 1 \).

In the case \(L_1 = L_2 \), the assumption on the genus can be weakened under a stronger assumption on the automorphism group, as follows.

Theorem 1.4. Let \(X \) be a curve of genus \(g \leq (q - 1)^2 \) defined over \(\mathbb{K} \). If \(\text{Aut}(X) \) contains a semidirect product \(E_{q^2} \rtimes (C_2 \times C_2) \) (where \(E_{q^2} \) is elementary abelian of order \(q^2 \) and \(C_2 \times C_2 \) is a Klein four-group), then \(X \) is birationally equivalent over \(\mathbb{K} \) to some \(X_{(L_1, L_2)} \in S_{\bar{q} q} \), where \(\bar{q} \) is the largest power of \(p \) such that \(\text{Aut}(X) \) contains a cyclic subgroup \(C_{\bar{q} - 1} \) of order \(\bar{q} - 1 \).

In Section 2 preliminary results on automorphism groups of ordinary curves and curves of even genus are collected. In Section 3 we give the proofs of Theorems 1.1 and 1.2 doing so we also show the relevant properties of generalized Artin-Mumford curves; see Lemma 3.1. The proof of Theorems 1.3 and 1.4 is given in Section 4 where additional classification results of independent interest are found, as well. Here we only mention that Theorem 1.5 gives the following characterization.

Theorem 1.5. Let \(Y \) be a curve of genus \(q - 1 \) defined over \(\mathbb{K} \) whose automorphism group \(\text{Aut}(Y) \) contains an elementary abelian subgroup \(E_q \) of order \(q \). Then one of the following holds.
(I) \(\mathcal{Y} \) is birationally equivalent over \(\mathbb{K} \) to the curve \(\mathcal{Y}_{L,a} \) with affine equation
\[
L(y) = ax + \frac{1}{x},
\]
for some \(a \in \mathbb{K}^* \) and \(L(T) \in \mathbb{K}[T] \) a separable \(p \)-linearized polynomial of degree \(q \). For the curve \(\mathcal{Y}_{L,a} \) the following properties hold:
(i) \(\mathcal{Y}_{L,a} \) is ordinary and hyperelliptic;
(ii) \(\mathcal{Y}_{L,a} \) has exactly \(2q \) Weierstrass places, which are the fixed places of the hyperelliptic involution \(\mu \).
(iii) The full automorphism group \(\text{Aut}(\mathcal{Y}_L) \) of \(\mathcal{Y}_{L,a} \) has order \(4q \) and is a direct product \(\text{Dih}(E_q) \times \langle \mu \rangle \).

(II) \(p \neq 3 \) and \(\mathcal{Y} \) is birationally equivalent over \(\mathbb{K} \) to the curve \(Z_{L,b} \) with affine equation
\[
L(y) = x^3 + bx,
\]
for some \(a \in \mathbb{K} \) and \(L(T) \in \mathbb{K}[T] \) a separable \(p \)-linearized polynomial of degree \(q \). For the curve \(Z_{L,b} \) the following properties hold:
(i) \(Z_{L,b} \) has zero \(p \)-rank;
(ii) \(\text{Aut}(Z_{L,b}) \) contains a generalized dihedral subgroup \(\text{Dih}(E_q) = E_q \times \langle \nu \rangle \).

Theorem 1.5 provides a generalization of [13, Proposition (2.2) and Corollary (2.3)].

Our proof uses function field theory, especially the Hurwitz genus formula and the Deuring-Shafarevich Theorem 1.5, together with deeper results on finite groups, especially the classification theorem on finite non-abelian simple groups whose Sylow 2-subgroups are dihedral or semidihedral. In doing so we adopt the approach worked out by Giulietti and Korchmáros in [3].

2. Background and Preliminary Results

We keep the notation used in Introduction. Also, \(\mathcal{X} \) is a (projective, non-singular, geometrically irreducible, algebraic) curve of genus \(g \geq 2 \) defined over \(\mathbb{K} \), \(\mathbb{K}(\mathcal{X}) \) is the function field of \(\mathcal{X} \), and \(\text{Aut}(\mathcal{X}) \) is its full automorphism group over \(\mathbb{K} \).

For a subgroup \(G \) of \(\text{Aut}(\mathcal{X}) \), let \(\tilde{\mathcal{X}} \) denote a non-singular model of \(\mathbb{K}(\mathcal{X})^G \), that is, a curve with function field \(\mathbb{K}(\mathcal{X})^G \), where \(\mathbb{K}(\mathcal{X})^G \) consists of all elements of \(\mathbb{K}(\mathcal{X}) \) fixed by every element in \(G \). Usually, \(\tilde{\mathcal{X}} \) is called the quotient curve of \(\mathcal{X} \) by \(G \) and denoted by \(\mathcal{X}/G \).

The field extension \(\mathbb{K}(\mathcal{X})/\mathbb{K}(\mathcal{X})^G \) is Galois of degree \(|G| \).

Let \(\Phi \) be the cover of \(\mathcal{X}/\tilde{\mathcal{X}} \) where \(\tilde{\mathcal{X}} = \mathcal{X}/G \). A place \(P \) of \(\mathbb{K}(\mathcal{X}) \) is a ramification place of \(G \) if the stabilizer \(G_P \) of \(P \) in \(G \) is nontrivial; the ramification index \(e_P \) is \(|G_P| \). The \(G \)-orbit of \(P \) in \(\mathbb{K}(\mathcal{X}) \) is the subset \(o_P = \{ R \mid R = g(P), g \in G \} \) of the set of the places of \(\mathbb{K}(\mathcal{X}) \), and it is long if \(|o_P| = |G| \), otherwise \(o_P \) is short. For a place \(Q \), the \(G \)-orbit \(o \) lying over \(Q \) consists of all places \(P \) of \(\mathbb{K}(\mathcal{X}) \) such that \(\Phi(P) = Q \). If \(P \in o \) then \(|o| = |G|/|G_P| \) and hence \(P \) is a ramification place if and only if \(o \) is a short \(G \)-orbit.

If every non-trivial element in \(G \) is fixed–point-free on the set of the places of \(\mathbb{K}(\mathcal{X}) \), the cover \(\Phi \) is unramified. For a non-negative integer \(i \), the \(i \)-th ramification group of \(\mathcal{X} \) at \(P \) is denoted by \(G_P^{(i)} \) and defined to be
\[
G_P^{(i)} = \{ \alpha \in G_P \mid v_P(\alpha(t) - t) \geq i + 1 \},
\]
where \(t \) is a local parameter at \(P \); see [11]. Here \(G_P^{(0)} = G_P \).

Let \(\tilde{g} \) be the genus of the quotient curve \(\tilde{\mathcal{X}} = \mathcal{X}/G \). The Hurwitz genus formula [6] Theorem 7.27] gives the following equation
\[
2\tilde{g} - 2 = |G|(2\tilde{g} - 2) + \sum_{P \in \mathcal{X}} d_P,
\]
where the different \(d_P \) at \(P \) is given by

\[
d_P = \sum_{i \geq 0} (|G_P^{(i)}| - 1),
\]

see [6, Theorem 11.70]. Let \(\gamma \) and \(\bar{\gamma} \) be the \(p \)-ranks of \(\cal{X} \) and \(\bar{\cal{X}} \) respectively. The Deuring-Shafarevich formula [6, Theorem 11.62] states that

\[
\gamma - 1 = |G| (\bar{\gamma} - 1) + \sum_{i=1}^{k} (|G| - \ell_i)
\]

where \(\ell_1, \ldots, \ell_k \) are the sizes of the short orbits of \(G \).

A subgroup \(G \) of \(\text{Aut}(\cal{X}) \) is tame if \(\gcd(p, |G|) = 1 \), otherwise \(G \) is non-tame. The stabilizer \(G_P \) of a place \(P \in \cal{X} \) in \(G \) is a semidirect product \(G_P = Q_P \rtimes U \) where the normal subgroup \(Q_P \) is a \(p \)-group while the complement \(U \) is a tame cyclic group; see [6, Theorem 11.49].

The following result is due to Nakajima; see [10, Theorems 1, 2 and 3] and [6, Lemma 11.75].

Theorem 2.1. Let \(\cal{X} \) be a curve with \(g(\cal{X}) \geq 2 \) defined over an algebraically closed field of characteristic \(p \geq 3 \), and \(H \) be a Sylow \(p \)-subgroup of \(\text{Aut}(\cal{X}) \). Then the following hold.

(I) When \(g(\cal{X}) \geq 2 \), we have

\[
|H| \leq \frac{p}{p-2} (\gamma(\cal{X}) - 1) \leq \frac{p}{p-2} (g(\cal{X}) - 1).
\]

(II) If \(\cal{X} \) is ordinary \((i.e. \ g(\cal{X}) = \gamma(\cal{X})) \) and \(G \leq \text{Aut}(\cal{X}) \), then \(G_P^{(2)} = \{1\} \) and \(G_P^{(1)} \) is elementary abelian, for every \(P \in \cal{X} \).

(III) If \(\cal{X} \) is ordinary then \(|\text{Aut}(\cal{X})| \leq 84(g(\cal{X}) - 1)g(\cal{X}) \).

(IV) If \(g(\cal{X}) = 1 \) then \(H \) is cyclic.

The following results are due to Giulietti and Korchmáros; see [5].

Lemma 2.2. Let \(H \) be a solvable automorphism group of an algebraic curve \(\cal{X} \) of genus \(g(\cal{X}) \geq 2 \) containing a normal \(d \)-subgroup \(Q \) of odd order such that \(|Q| \) and \([H : Q] \) are coprime. Suppose that a complement \(U \) of \(Q \) in \(H \) is abelian, and that \(N_H(U) \cap Q = \{1\} \). If

\[
|H| \geq 30(g(\cal{X}) - 1),
\]

then \(d = p \) and \(U \) is cyclic.

The odd core \(O(G) \) of a group \(G \) is its maximal normal subgroup of odd order. If \(O(G) \) is trivial, then \(G \) is an odd core-free group.

Lemma 2.3. Let \(\cal{X} \) be a curve of even genus, and \(G \) be an odd core-free automorphism group of \(\cal{X} \) with a non-abelian simple minimal normal subgroup \(M \). Up to isomorphism, one of the following cases occurs for some prime \(d \) and odd \(k \):

(i) \(M = \text{PSL}(2, d^k) \leq G \leq \text{PGL}(2, d^k) \) with \(d^k \geq 5 \);

(ii) \(M = \text{PSL}(3, d^k) \leq G \leq \text{PGL}(3, d^k) \) with \(d^k \equiv 3 \pmod{4} \);

(iii) \(M = \text{PSU}(3, d^k) \leq G \leq \text{PGU}(3, d^k) \) with \(d^k \equiv 1 \pmod{4} \);

(iv) \(M = G = A_7, \) the alternating group on 7 letters;

(v) \(M = G = M_{11}, \) the Mathieu group on 11 letters.

Lemma 2.4. If \(\cal{X} \) is a curve of even genus then \(\text{Aut}(\cal{X}) \) has no elementary abelian \(2 \)-subgroup of order 8.

Lemma 2.5. Let \(\cal{X} \) be a curve of even genus and \(G \leq \text{Aut}(\cal{X}) \). If \(G \) has a minimal normal subgroup of order 2 then \(G = O(G) \rtimes S_2 \), where \(S_2 \) is Sylow 2-subgroup of \(G \), unless \(S_2 \) is a generalized quaternion group.
For a positive integer d, C_d stands for a cyclic group of order d, D_d for a dihedral group of order $2d$, E_d for an elementary abelian group of order d, and $Dih(E_d)$ for a generalized dihedral group $E_d \rtimes C_2$ of order $2d$.

3. THE AUTOMORPHISM GROUP OF X_{L_1, L_2}

Lemma 3.1. For the curve X_{L_1, L_2} as in [3], $X_\infty = (1 : 0 : 0)$ and $Y_\infty = (0 : 1 : 0)$, the following properties hold:

i) X_∞ and Y_∞ are q-fold ordinary points;
ii) X_{L_1, L_2} is ordinary with $g(X_{L_1, L_2}) = \gamma(X_{L_1, L_2}) = (q - 1)^2$;
iii) If $L_1 \neq L_2$, $\text{Aut}(X_{L_1, L_2})$ contains the subgroup $\Sigma \times \Gamma$ defined in [3];
iv) If $L_1 = L_2 = L$, $\text{Aut}(X_{L_1, L_2})$ contains the subgroup $\Sigma \times \Delta$ defined in [3];

v) In both cases iii) and iv), the group Σ is a Sylow p-subgroup of $\text{Aut}(X_{L_1, L_2})$.

vi) The quotient curves $X_{L_1, L_2}/x_1$ and $X_{L_1, L_2}/y_0$ are rational curves, where $x_1 = \{\tau_{\alpha, \beta} \in \Sigma | \beta = 0\}$ and $y_0 = \{\tau_{\alpha, \beta} \in \Sigma | \alpha = 0\}$.

Proof. Let $\tilde{P}_{x=\alpha}$, with $L_1(\alpha) = 0$, be the q distinct zeros and $\tilde{P}_{x=\alpha}$ be the unique pole of $L(x)$ in $\mathbb{K}(x)$. Then

$$v_{\tilde{P}_{x=\alpha}}(1/L_1(x)) = -1, \quad v_{\tilde{P}_{x=\alpha}}(1/L_1(x)) = q,$$

and $1/L_1(x)$ has valuation zero at any other place of $\mathbb{K}(x)$. Thus, the function field $\mathbb{K}(X_{L_1, L_2}) = \mathbb{K}(x, y)$ with $L_1(x) \cdot L_2(y) = 1$, is a generalized Artin-Schreier extension of $\mathbb{K}(x)$ of degree q; see [11, Proposition 3.7.10]. The places $\tilde{P}_{x=\alpha}$ are totally ramified while any other place is unramified. The genus of X_{L_1, L_2} is given by

$$g(X_{L_1, L_2}) = q \cdot g(\mathbb{K}(x)) + \frac{q - 1}{2} \cdot (-2 + 2q) = (q - 1)^2.$$

The places $P_{x=\alpha}$, lying over $\tilde{P}_{x=\alpha}$, $i = 1, \ldots, q$, are the poles of y and they are centered at Y_∞. The unique zero of y is place $P_{x=\infty}$ lying over $\tilde{P}_{x=\infty}$. Analogously, x has q distinct poles $P_{y=\beta}$, with $L_2(\beta) = 0$, which are simple and centered at X_∞, and a unique zero $P_{y=\infty}$. Note that $P_{x=\infty} = P_{y=0}$ and $P_{y=\infty} = P_{x=0}$. Let $\Sigma = \{\tau_{\alpha, \beta} : (X, Y) \mapsto (X + \alpha, Y + \beta) | L_1(\alpha) = L_2(\beta) = 0\}$. By direct computation Σ is an elementary abelian p-subgroup of $\text{Aut}(X_{L_1, L_2})$ of order q^2. From Theorem [2.11], Σ is a Sylow p-subgroup of $\text{Aut}(X_{L_1, L_2})$. Thus the Galois group of $\mathbb{K}(x, y) / \mathbb{K}(x)$ is contained in Σ up to conjugation, and hence $\mathbb{K}(x, y)^\Sigma$ is rational. By direct computation Σ has at least two short orbits of length q, namely

$$\Omega_x = \{P_{y=\beta} | L_2(\beta) = 0\}, \quad \Omega_y = \{P_{x=\alpha} | L_1(\alpha) = 0\}.$$

From the Deuring-Shafarevich formula [3] applied to the extension $\mathbb{K}(x, y) / \mathbb{K}(x, y)^\Sigma$,

$$q^2 - 2q = g(X_{L_1, L_2}) - 1 \geq \gamma(X_{L_1, L_2}) - 1 \geq q^2(0 - 1) + 2(q^2 - q) = q^2 - 2q.$$

Therefore the curve X_{L_1, L_2} is ordinary. By direct checking, if $L_1 \neq L_2$, then Σ and Γ are subgroups of $\text{Aut}(X_{L_1, L_2})$, Γ normalizes Σ, and $\Gamma \cap \Sigma = \{1\}$. Analogously, if $L_1 = L_2$, then Σ and Δ are subgroups of $\text{Aut}(X_{L_1, L_2})$, Δ normalizes Σ, and $\Delta \cap \Sigma = \{1\}$.

In order to prove vi), set $\eta = L_1(x)$. Then $\mathbb{K}(\eta, y) \subset \mathbb{K}(X_{L_1, L_2})^{\Sigma_y}$. Since $[\mathbb{K}(X_{L_1, L_2}) : \mathbb{K}(\eta, y)] \leq q$, this implies $\mathbb{K}(X_{L_1, L_2})^{\Sigma_x} = \mathbb{K}(\eta, y)$ and

$$X_{L_1, L_2}/x_1 : \ L_2(y) = \frac{1}{\eta}.$$

This shows that $X_{L_1, L_2}/x_1$ is rational, and the same holds for $X_{L_1, L_2}/y_0$.

The following result follows from the proof of Lemma 3.1.
Corollary 3.2. The group Σ has exactly two short orbit Ω_x and Ω_y, both of length q. Namely,
\[\Omega_x = \{ P_y = \beta \mid L_2(\beta) = 0 \}, \quad \Omega_y = \{ P_x = \alpha \mid L_1(\alpha) = 0 \}. \]
Moreover $\kappa(x, y)^\Sigma$ is rational and the principal divisors of the coordinate functions are given by
\[(x) = q P_y = 0 - \sum_{P \in \Omega_y} P, \quad (y) = q P_x = 0 - \sum_{P \in \Omega_x} P. \]

Lemma 3.3. Let C be a cyclic subgroup of $\text{Aut}(X_{(L_1, L_2)})$ containing $\Gamma = (\theta)$, where $\theta : (X, Y) \mapsto (\lambda X, \lambda^{-1} Y)$ with λ a primitive $(\bar{q} - 1)$-th root of unity. Suppose that C is contained in the normalized N of Σ in $\text{Aut}(X_{(L_1, L_2)})$. Then $C = \Gamma$.

Proof. First of all we observe that $C \cap \Sigma = \{1\}$. In fact by direct checking Γ does not commute with any non trivial p-element $\tau_{x, y} \in \Sigma$. From Lemma 3.1(v), C is tame. Since $C \leq N$, C is isomorphic to an automorphism group C of $X_{(L_1, L_2)}/\Sigma$. Denote by Γ the subgroup of $PGL(2, \kappa)$ which is isomorphic to Γ. Moreover, from Corollary 3.2 C acts on $\Omega_x \cup \Omega_y$, and $C \leq PGL(2, \kappa)$ as $X_{(L_1, L_2)}/\Sigma$ is rational. From [7, Hauptsatz 8.27] both C and Γ fix exactly two places on $X_{(L_1, L_2)}/\Sigma$ which are then the two places P_x and P_y lying under Ω_x and Ω_y, respectively. Hence, from Corollary 3.2 C fixes the pole divisors of x and y. From the Orbit stabilizer theorem C fixes at least one place in Ω_x and one place in Ω_y. By direct computation Γ fixes $P_x = 0 \in \Omega_y$ and $P_y = 0 \in \Omega_x$, acting semiregularly on $\Omega_x \setminus \{ P_y = 0 \}$ and $\Omega_y \setminus \{ P_x = 0 \}$. Thus, C fixes $P_y = 0$ and $P_x = 0$ and hence the zero divisors of x and y are preserved by C from Corollary 3.2. This implies that the generator c of C has the form $c : (x, y) \mapsto (\gamma x, \delta y)$, for some $\gamma, \delta \in \kappa$. By direct computation $\gamma^{\bar{q} - 1} = \delta^{\bar{q} - 1} = 1$, and so $C = \Gamma$. \hfill \Box

Corollary 3.4. Let C be a cyclic subgroup of the normalizer N of Σ in $\text{Aut}(X_{(L_1, L_2)})$ such that $(\bar{q} - 1) \mid |C|$ and $(\bar{q} - 1) \mid (\bar{q} - 1)$. Then $C = \Gamma$.

3.1. Proof of Theorem [1.1]

In this section, $L_1 = L_2 = L$ and we refer to Σ and Δ as defined in Theorem [1.1] For $q = p$ Theorem [1.1] was proved in [1, Theorem 1.1]. Thus, we suppose that $q > p$.

Lemma 3.5. The normalizer N of Σ in $\text{Aut}(X_{(L_1, L_2)})$ is $N = \Sigma \rtimes \Delta$.

Proof. From Corollary 3.2 $\bar{N} = N/\Sigma$ is a tame subgroup of $PGL(2, \kappa)$ containing a dihedral group $\bar{\Delta}$ which is isomorphic to $\Delta = \Gamma \rtimes \xi$, where $\Gamma = (\theta)$. Now we show that there are no involutions in $N \setminus (\Sigma \rtimes \Delta)$. Let $\iota \in N$ be an involution and let $\bar{\iota}$ be the induced involution in $PGL(2, \kappa)$. Denote by P_x and P_y the places lying under Ω_x and Ω_y, respectively. From [7, Hauptsatz 8.27] there exists a unique involution in $PGL(2, \kappa)$ fixing P_x and P_y, and it is induced by $\theta^{(\bar{q} - 1)/2}$. Thus, if $\iota \not\in \Gamma$ then ι switches Ω_x and Ω_y. From Corollary 3.2 ι maps x to $a(x + \alpha)$ and y to $b(x + \beta)$ where $a, b \in \kappa$ and $L(\alpha) = L(\beta) = 0$. Since the order of ι is equal to 2, we have that $\alpha = \beta = 0$ and $\alpha = \beta \in \{-1, 1\}$. Hence, $\iota = \xi$ or $\iota = \theta^{(\bar{q} - 1)/2} \cdot \xi$, and so $\iota \in \Delta$. From [7, Hauptsatz 8.27], one of the following holds:

1. \bar{N} is isomorphic either to A_4 or S_4 or A_5.
2. \bar{N} is isomorphic to a dihedral group D_d of order $2d$.

Suppose $\bar{N} \cong \text{A}_4$. If $\bar{q} \neq 3$, Δ is not contained in \bar{N}. If $\bar{q} = 3$ then \bar{N} is not tame, a contradiction.

Suppose $\bar{N} \cong \text{S}_4$. In this case $\bar{q} = 3$, which is impossible as \bar{N} is tame, or $\bar{q} = 5$, which is impossible as \bar{N} contains more than the 5 involutions contained in $\bar{\Delta} \cong D_5$.

Suppose that $\bar{N} \cong \text{A}_5$. Then as before $\bar{q} = 3$ which is not possible.

Therefore, case (2) occurs. From Lemma 3.3 $d = \bar{q} - 1$ and the claim follows. \hfill \Box
In order to prove that \(\text{Aut}(X_{L,L}) = N \), several cases are distinguished according to the structure of the minimal normal subgroups of \(\text{Aut}(X_{L,L}) \). Recall that every finite group admits a minimal normal subgroup, which is either elementary abelian or a direct product of isomorphic simple groups.

Lemma 3.6. If \(\text{Aut}(X_{L,L}) \) has a minimal normal subgroup \(E_{dk} \) which is an elementary abelian \(d \)-group, then \(\text{Aut}(X_{L,L}) \) admits an elementary abelian minimal normal subgroup \(M \) which is a \(p \)-group.

Proof. Assume that \(d \neq p \). Since \(\Sigma \) normalizes \(E_{dk} \), from Lemma 3.2, \(|E_{dk} \times \Sigma| < 30(\sigma(X_{L,L}) - 1) \) or \(N_H(\Sigma) \cap E_{dk} = E_{dh} = \{1\} \) with \(0 < h \leq k \).

- Assume that \(N_H(\Sigma) \cap E_{dk} = E_{dh} = \{1\} \) with \(0 < h \leq k \). From Lemma 3.5, \(E_{dk} \leq \Delta \) up to conjugation, and hence \(d^h = 4 \) or \(h = 1 \). If \(d^h = 4 \), then \(\text{Aut}(\omega) = E_{dk} = \langle \xi \rangle \times \langle \theta \rangle \rangle \) from Lemma 2.4. By direct checking \(E_{dk} \) does not commute with \(\Sigma \), a contradiction. Hence \(E_{dk} = C_d \leq C_{q-1} \).

If \(d = 2 \) then \(\text{Aut}(X_{L,L}) = O(\text{Aut}(X_{L,L})) \times S_2 \) by Lemma 2.6. Thus \(O(\text{Aut}(X_{L,L})) \) contains a minimal normal subgroup of \(\text{Aut}(X_{L,L}) \), and we can assume \(d \) to be odd. Assume that \(d \neq p \) is odd. Since \(C_d \leq \Gamma \) and \(E_{dk} \) is abelian, we have that \(E_{dk} \) fixes \(P_{y=0} \) and \(P_{x=0} \), acts on \(\Omega_x \setminus \{P_{y=0}\} \) and \(\Omega_y \setminus \{P_{x=0}\} \).

- Assume that \(|E_{dk} \times \Sigma| < 30(\sigma(X_{L,L}) - 1) \). By direct computation \(d^k < 30 \). Since no subgroup of \(\Sigma \) commutes with \(E_{dk} \), we have that \(\Sigma \) is isomorphic to a subgroup of \(\text{GL}(k,d) \).

If \(d^k \neq 27 \) then \(GL(k,d) \) has no elementary abelian subgroup of odd square order. If \(d^k = 27 \) then \(d = p = 3 \), a contradiction.

Remark 3.7. We have shown in Lemma 2.6 that \(\text{Aut}(X_{L,L}) \) does not admit elementary abelian normal \(d \)-subgroups for \(d \neq p \) odd. If \(\text{Aut}(X_{L,L}) \) admits an elementary abelian minimal normal subgroup then it also admits a minimal normal \(p \)-subgroup.

Proposition 3.8. If \(\text{Aut}(X_{L,L}) \) admits an elementary abelian minimal normal subgroup \(M \), then \(\text{Aut}(X_{L,L}) = \Sigma \times \Delta \).

Proof. From Lemma 3.6 we can assume that \(M \leq \Sigma \). Let \(\Sigma \) be a Sylow \(p \)-subgroup of \(\text{Aut}(X_{L,L}) \). Then \(M \subseteq \Sigma \cap \Sigma \). For any \(\tau_{\alpha\beta} \in M \) and \(\sigma \in \text{Aut}(X_{L,L}) \), we have \(\sigma(\tau_{\alpha\beta}) = \tau_{\alpha'\beta'} \) for some \(\alpha', \beta' \). Therefore \(\sigma \) acts on the poles of \(x \) and \(y \), that is, \(\sigma \) acts on \(\Omega_y \) and on \(\Omega_x \). Suppose by contradiction that there exists \(\omega \) in \(\Sigma \setminus \Sigma \) fixing a place \(P \in \Omega_x \cup \Omega_y \). Then \(\text{Aut}(X_{L,L}) \) admits a Sylow \(p \)-subgroup \(\Sigma \) containing \(\omega \) and the stabilizer \(\Sigma_P \) of \(P \) in \(\Sigma \). Thus the order of \(\Sigma_P \) is strictly greater than the order of \(\Sigma \), a contradiction. This proves that \(\Sigma_P = \Sigma_P \) for all \(P \in \Omega_x \cup \Omega_y \), and hence \(\Sigma = \Sigma \). The claim follows from Lemma 3.6.

Proposition 3.9. \(\text{Aut}(X_{L,L}) \) admits an elementary abelian minimal normal subgroup.

Proof. Suppose by contradiction that \(\text{Aut}(X_{L,L}) \) admits no elementary abelian minimal normal subgroup. Thus, \(\text{Aut}(X_{L,L}) \) is odd-core free. In fact if \(O(\text{Aut}(X_{L,L})) \neq \{1\} \) then \(O(\text{Aut}(X_{L,L})) \) contains a minimal normal subgroup which is then elementary abelian by the Feit-Thompson theorem. From Lemma 2.3 one of the following cases occurs:

(i) \(M := \text{PSL}(2, d^k) \subseteq \text{Aut}(X_{L,L}) \leq \text{PGL}(2, d^k) \). In this case \(\Sigma/(\Sigma \cap M) \) is isomorphic to a subgroup of \(\text{PGL}(2, d^k) \). Since \([\text{PGL}(2, d^k) : \text{PSL}(2, d^k)] = 2 \) and \(\text{PGL}(2, d^k) \) is cyclic of order \(k \), we have that \(\Sigma/(\Sigma \cap M) \) is cyclic. Then either \(\Sigma/(\Sigma \cap M) = \{1\} \) or \(\Sigma/(\Sigma \cap M) = C_{q^2} \).

When \(r \) is an odd prime, the Sylow \(r \)-subgroups of \(\text{PSL}(2, d^k) \) are cyclic unless \(r = d \). Since \(q > p \), this implies that \(d = p \) and either \(d^k = q^2 \) or \(d^k = q^2/p \). In both cases, arguing as in the proof of Proposition 3.8, we have that any element of \(\text{Aut}(X_{L,L}) \) normalizing \(\Sigma \cap M \) normalizes the whole.
group Σ. Therefore from [7] Hauptsatz 8.27 $\text{Aut}(\chi_{L_1, L_2})$ contains a cyclic group of order $q^2 - 1$ or $q^2/p - 1$ normalizing Σ, a contradiction to Lemma 3.5.

(ii) $M := \text{PSL}(3, d^k) \leq \text{Aut}(\chi_{L_1, L_2}) \leq \text{PGL}(3, d^k)$. We have $[\text{PGL}(3, d^k) : \text{PSL}(3, d^k)] \in \{1, 3\}$ and $\text{PGL}(3, d^k)/\text{PGL}(3, d^k)$ is cyclic of order k. Hence $\Sigma/(\Sigma \cap M)$ is cyclic. Then either $\Sigma/(\Sigma \cap M) = \{1\}$ or $\Sigma/(\Sigma \cap M) = C_p$. If $d = p$ then a contradiction is obtained since a Sylow d-subgroup of $\text{PSL}(3, d^k)$ is not abelian. If either $\gcd(3, d^k - 1) = 1$, or $\gcd(3, d^k - 1) = 3$ and $p \neq 3$, then a contradiction follows from Lemma 2.1. Suppose that $\gcd(3, d^k - 1) = 3$ and $p = 3$. In this case a contradiction is obtained because the Sylow 3-subgroup of M is not abelian (see [7] Satz 7.2), and hence cannot be contained in Σ.

(iii) $M := \text{PSU}(3, d^k) \leq \text{Aut}(\chi_{L_1, L_2}) \leq \text{PGU}(3, d^k)$. We have $[\text{PGL}(3, d^k) : \text{PSL}(3, d^k)] \in \{1, 3\}$ and $\text{PGL}(3, d^k)/\text{PGL}(3, d^k)$ is cyclic of order k. Hence $\Sigma/(\Sigma \cap M)$ is cyclic. Then either $\Sigma/(\Sigma \cap M) = \{1\}$ or $\Sigma/(\Sigma \cap M) = C_p$. If $d = p$ then a contradiction is obtained since a Sylow d-subgroup of $\text{PSL}(3, d^k)$ is not abelian. If either $\gcd(3, d^k + 1) = 1$, or $\gcd(3, d^k + 1) = 3$ and $p \neq 3$, then a contradiction follows from Lemma 2.1. Suppose that $\gcd(3, d^k + 1) = 3$ and $p = 3$. In this case a contradiction is obtained because the Sylow 3-subgroup of M is not abelian (see [6] Theorem A.10 Case (iii)), and hence cannot be contained in Σ.

(iv) $\text{Aut}(\chi_{L_1, L_2}) = A_7$. Since $|A_7| = 2^4 \cdot 3^2 \cdot 5 \cdot 7$, we have $q = 3 = p$, which is impossible.

(v) $\text{Aut}(\chi_{L_1, L_2}) = M_{11}$. Since $|M_{11}| = 2^4 \cdot 3^2 \cdot 5 \cdot 11$, we have $q = 3 = p$, which is impossible.

From Propositions 3.8 and 3.9 Theorem 1.2 follows.

3.2. Proof of Theorem 1.2.

In this section, $L_1 \neq L_2$ and we refer to Σ and Γ as defined in Theorem 1.2.

Lemma 3.10. The normalizer N of Σ in $\text{Aut}(\chi_{L_1, L_2})$ is $N = \Sigma \rtimes \Gamma$.

Proof. From Corollary 3.2 $\tilde{N} = N/\Sigma$ is a tame subgroup of $\text{PGL}(2, \mathbb{K})$ containing a cyclic group $\tilde{\Gamma}$ which is isomorphic to Γ. Arguing as in the proof of Lemma 3.5, N has no involution other than $\theta^{(q-1)/2}$, because by direct checking $\xi : (x, y) \mapsto (y, x)$ is not in $\text{Aut}(\chi_{L_1, L_2})$. From [7] Hauptsatz 8.27, one of the following holds:

1. \tilde{N} is isomorphic either to A_4 or S_4 or A_5.
2. \tilde{N} is isomorphic to a cyclic group C_d.

Arguing as in the proof of Lemma 3.5 Case (1) is not possible because \tilde{N} is tame and it contains only one involution. Therefore, case (2) occurs. From Lemma 3.3 $d = \tilde{q} - 1$ and the claim follows.

The proofs of the following results are analogous to the ones of Lemma 3.9, Proposition 3.8, and Proposition 3.9, and are omitted.

Lemma 3.11. If $\text{Aut}(\chi_{L_1, L_2})$ has a minimal normal subgroup E_{d^k} which is an elementary abelian d-group, then $\text{Aut}(\chi_{L_1, L_2})$ admits an elementary abelian minimal normal subgroup M which is a p-group.

Proposition 3.12. If $\text{Aut}(\chi_{L_1, L_2})$ admits an elementary abelian minimal normal subgroup, then $\text{Aut}(\chi_{L_1, L_2}) = \Sigma \rtimes \Gamma$.

Proposition 3.13. $\text{Aut}(\chi_{L_1, L_2})$ admits an elementary abelian minimal normal subgroup.

From Propositions 3.12 and 3.13 Theorem 1.2 follows.
4. Curves with automorphism group containing E_{q^2}

We need the following result on curves admitting E_{q^2} as an automorphism group.

Proposition 4.1. For a curve X defined over \mathbb{K}, assume that one of the following holds.

(A) X has genus $g \leq (q - 1)^2$ and the automorphism group $\text{Aut}(X)$ has a subgroup $H = E_{q^2} \times (C_2 \times C_2)$.

(B) X has genus $g = (q - 1)^2$ and the automorphism group $\text{Aut}(X)$ has a subgroup $H = E_{q^2}$.

Let $\{M_i\}_i$ be the set of subgroups of E_{q^2} of order q. Then the following hold.

1. X is an ordinary curve of genus $(q - 1)^2$;
2. Up to relabeling the indeces, the cover $X \mid X/M_i$ is unramified for each $i \neq 1, 2$;
3. E_{q^2} has only two short orbits Ω_1 and Ω_2 on X, each of size q. The places of Ω_1 share the same stabilizer M_i for $i \in \{1, 2\}$, and $M_1 \neq M_2$. Moreover, X/M_1 and X/M_2 are rational.

Proof. Let g and γ, \bar{g} and $\bar{\gamma}$, be the genus and p-rank of X, $\bar{X} := X/E_{q^2}$ respectively. Also, denote by $k \in \mathbb{N}$ the number of short orbits of E_{q^2} on X, by $\Omega_i (1 \leq i \leq k)$ the i-th short orbit of E_{q^2}, by $\ell_i \in \{p, p^2, \ldots, q^2/p\}$ the length of Ω_i, and by M_i the stabilizer of a given place $P_i \in \Omega_i$ in E_{q^2}, of size q^2/ℓ_i. Note that M_i coincides with the stabilizer in E_{q^2} of any place in Ω_i, because E_{q^2} acts on the fixed places of its normal subgroup M_i.

(A) Case $g \leq (q - 1)^2$ and $H := E_{q^2} \times (C_2 \times C_2) \leq \text{Aut}(X)$.

If $\gamma = 0$, then every element of E_{q^2} fixes exactly one place of X from [6] Lemma 11.129]. Since E_{q^2} is abelian all elements of E_{q^2} have the same fixed place P, which is fixed also by H. Thus, H/E_{q^2} is cyclic by [6] Theorem 11.49, a contradiction to $H/E_{q^2} \cong C_2 \times C_2$. If $\gamma = 1$ then E_{q^2} is cyclic by Theorem 2.1 (IV), a contradiction. Hence $\gamma \geq 2$. The Deuring-Shafarevich formula 8 applied to E_{q^2} yields

\[
\gamma - 1 = q^2(\bar{\gamma} - 1) + \sum_{i=1}^{k} (q^2 - \ell_i).
\]

If $k = 0$ then $\bar{\gamma} = (\gamma - 1)/q^2 + 1 > 1$, and hence $q^2 \leq \gamma - 1 \leq g - 1 \leq q^2 - 2q$, a contradiction. Therefore $\bar{\gamma} \leq 1$ and $k \geq 1$.

Assume that $\bar{\gamma} = 1$. The Riemann-Hurwitz formula together with $\bar{g} \geq \bar{\gamma}$ yields $\bar{g} = 1$. If $k \geq 2$ then $\gamma - 1 \geq 2(q^2 - q^2/p)$ by equation (10), a contradiction to $\gamma \leq g$. This yields $k = 1$. Since $C_2 \times C_2$ normalizes E_{q^2} which has a unique short orbit Ω_1, the induced group $C_2 \times C_2$ fixes one place of the elliptic curve \bar{X}. From [6] Theorem 11.94 (ii) and its proof, $C_2 \times C_2$ is cyclic, a contradiction.

Therefore $\bar{\gamma} = 0$. If $k \geq 3$ then equation (10) together with $g \geq \gamma$ yields a contradiction. If $k = 1$ then equation (11) reads $2 \geq \gamma = 1 - \ell_1$, a contradiction. Thus $k = 2$ and equation (11) reads

\[
\gamma = q^2 + 1 - (\ell_1 + \ell_2).
\]

We prove that $\bar{g} = 0$. From the Riemann-Hurwitz formula applied to $X \rightarrow \bar{X}$ we have that

\[
q^2 \bar{g} \leq \ell_1 + \ell_2 - 2q \leq 2q^2/p - 2q,
\]

which implies $\bar{g} = 0$. Since $C_2 \times C_2$ normalizes E_{q^2}, the induced group $\bar{C}_2 \times \bar{C}_2$ is a subgroup of $\text{PGL}(2, \mathbb{K})$ acting on the two places \bar{P}_1 and \bar{P}_2 lying under Ω_1 and Ω_2. From [7] Hauptsatz 8.27, $\bar{C}_2 \times \bar{C}_2$ switches \bar{P}_1 and \bar{P}_2 and hence $\ell_1 = \ell_2 = \ell$. Let $P \in \Omega_1$. From [6] Lemma 11.75 (v)] either $(E_{q^2})^{(2)}$ is trivial, or $(E_{q^2})^{(2)} = E_{q^2}$, or $1 < \left|\left(E_{q^2}\right)^{(2)}_P\right| = \cdots = \left|\left(E_{q^2}\right)^{(2)}_P\right| < q^2$. By direct checking with the Riemann-Hurwitz formula applied to $X \rightarrow \bar{X}$, the second and the third case are not possible; hence $(E_{q^2})^{(2)}_P$ is trivial for all P, which implies $\ell = q$. Now the Deuring-Shafarevich formula yields $\gamma = (q - 1)^2 \geq g$; hence, $\gamma = g = (q - 1)^2$ and the claim (1) follows. Since M_i, $i = 1, 2$, is the stabilizer in E_{q^2} of any place in Ω_i, we have that any other subgroup M_j of order q of E_{q^2},
Theorem 4.2. \[13\), Proposition 2.2 and Corollary 2.3\). \(\ell\) an elementary abelian subgroup \(E\). Let \(Y\) be a curve of genus \(q - 1\) defined over \(K\) whose automorphism group \(\text{Aut}(Y)\) contains an elementary abelian subgroup \(E_q\) of order \(q\). Then one of the following holds.

\[q = 2(q^2 - 2q) \geq 2q(q_0 - 1) + 2q(q - 1).

Hence \(q_i = 0\) for \(i = 1, 2\) and equality holds in (11). This proves that \(M_i\) has no fixed place out of \(\Omega_i\), and so \(M_1 \neq M_2\).

(B) Case \(g = (q - 1)^2\) and \(H := E_{q^2} \leq \text{Aut}(\mathcal{X})\).

Suppose \(c = 0\). Then by [6, Lemma 11.129) every element of \(H\) fixes exactly one place, which is the same place \(P\) for all of them. The Riemann-Hurwitz formula \([6]\) applied to the cover \(\mathcal{X} \to \mathcal{X}/H\) yields \(\bar{g} = 0\), \(H_p^{(2)} \neq \{1\}\), and

\[\sum_{i=2}^{\infty} (|H_p^{(i)}| - 1) = 2(q - 1)^2.

From [6, Th. 11.78], \(\mathcal{X}/H_p^{(2)}\) is rational; hence, the Riemann-Hurwitz formula applied to \(\mathcal{X} \to \mathcal{X}/H_p^{(2)}\) yields

\[\sum_{i=2}^{\infty} (|H_p^{(i)}| - 1) = 2q^2 - 4q + 2|H_p^{(2)}|.

Equations (12) and (13) provide a contradiction to \(H_p^{(2)} \neq \{1\}\). Suppose \(c = 1\). Then \(H\) is cyclic by Theorem [2, IV], a contradiction.

Therefore \(c = 2\). As in Case (A), \(\bar{c} \leq 1\) and \(k \geq 1\); also, if \(\bar{c} = 1\), then \(k = 1\).

Suppose \(\bar{c} = 1\) and \(k = 1\). From \(\bar{g} \geq \gamma\) and the Deuring-Shafarevich formula applied to \(\mathcal{X} \to \bar{\mathcal{X}}\) we have \(\bar{g} = 1\) and \(\ell_1 \geq 2q\); hence, \(pq\) divides \(\ell_1\). The Riemann-Hurwitz formula applied to \(\mathcal{X} \to \bar{\mathcal{X}}\) reads

\[2(q - 1)^2 = q^2(2 \cdot 0 - 2) + \ell_1 \sum_{i=0}^{\bar{c}} (|H_p^{(i)}| - 1)

for any \(P\) in \(\Omega_1\). This implies that \(\ell_1\) divides \(q\), a contradiction to \(pq \mid \ell_1\).

Therefore \(\bar{c} = 0\). Arguing as in the proof of Proposition [4, we have \(k = 2\), \(\gamma = q^2 + 1 - (\ell_1 + \ell_2)\), and \(\bar{g} = 0\). From the Riemann-Hurwitz formula applied to \(\mathcal{X} \to \bar{\mathcal{X}}\),

\[2(\ell_1 + \ell_2) - 4q = \ell_1c_1 + \ell_2c_2 \geq 0,

where \(c_j := \sum_{i=2}^{\infty} (|H_p^{(i)}| - 1) \geq 0\) for \(j = 1, 2\). From Equation (14), the integers \(\ell_1\) and \(\ell_2\) cannot be multiple of \(pq\) at the same time. Hence \(\ell_1 \leq q\) or \(\ell_2 \leq q\); say \(\ell_1 \leq q\). We have \(|H_p^{(2)}| < q^2/\ell_1\) and \(|H_p^{(2)}| < q^2/\ell_2\); otherwise, Equation (14) would imply \(2(\ell_1 + \ell_2) - 4q \geq q^2 - \ell_1\) or \(2(\ell_1 + \ell_2) - 4q \geq q^2 - \ell_2\), which is impossible because \(\ell_1 \leq q\) and \(\ell_2 \leq q^2/p\). Therefore, for \(j = 1, 2\), \(c_j\) is a multiple of \(p\) (possibly zero) from [6, Lemma 11.75 (v)]. Suppose \(\ell_2 \geq pq\). As \(c_2 \neq 2\), Equation (14) implies that \(\ell_2\) divides \([4q + (c_1 - 2)\ell_1]\); hence, \(p\) divides \(2(2q/\ell_1 - 1)]\), a contradiction. Therefore, \(\ell_2 \leq q\). Thus, from Equation (14), \(\ell_1 = \ell_2 = q\). The rest of the claim follows as in Case (A).

\[\square\]

Theorem 4.2 provides a characterization which generalizes a result by van der Geer and van der Vlugt; see [13, Proposition 2.2 and Corollary 2.3].
The proof is divided in several steps.

Proof. We show that \mathcal{Y}_L,a has genus $q − 1$ and Aut(\mathcal{Y}_L,a) contains a subgroup $\text{Dih}(E_q) \times \langle \mu \rangle$. Let $\overline{\mathcal{Y}}_0$ and $\overline{\mathcal{Y}}_\infty$ be the zeros and pole of x in $\mathbb{K}(x)$, respectively. Then $\mathbb{K}(\mathcal{Y})|\mathbb{K}(x)$ is a generalized Artin-Schreier extension [11, Proposition 3.7.10]) which ramifies exactly over the simple poles $\overline{\mathcal{Y}}_0$ and $\overline{\mathcal{Y}}_\infty$.

Let $\mathcal{Y} \rightarrow \mathbb{C}$ be a curve of genus q. Thus, the Deuring-Shafarevich formula applied to $\mathcal{Y} \rightarrow \mathbb{C}$ shows that \mathcal{Y} is birationally equivalent over \mathbb{K} to the curve $Z_{L,b}$ with affine equation

\[L(y) = ax^3 + bx, \]

for some $a \in \mathbb{K}$ and $L(T) \in \mathbb{K}[T]$ a separable p-linearized polynomial of degree q. For the curve $Z_{L,b}$ the following properties hold:

(i) $Z_{L,b}$ has zero p-rank;

(ii) $\text{Aut}(Z_{L,b})$ contains a generalized dihedral subgroup $\text{Dih}(E_q) = E_q \rtimes \langle \nu \rangle$.

We show that \mathcal{Y}_L,a is ordinary and hyperelliptic with hyperelliptic involution μ.

(iii) The full automorphism group $\text{Aut}(\mathcal{Y}_L)$ of \mathcal{Y}_L,a has order $4q$ and is a direct product $\text{Dih}(E_q) \times \langle \mu \rangle$.

We show that \mathcal{Y} is birationally equivalent over \mathbb{K} to the curve $Z_{L,b}$ with affine equation

\[L(y) = ax^3 + bx, \]

for some $a \in \mathbb{K}$ and $L(T) \in \mathbb{K}[T]$ a separable p-linearized polynomial of degree q. For the curve $Z_{L,b}$ the following properties hold:

(i) $Z_{L,b}$ has zero p-rank;

(ii) $\text{Aut}(Z_{L,b})$ contains a generalized dihedral subgroup $\text{Dih}(E_q) = E_q \rtimes \langle \nu \rangle$ of order $4q$ of \mathcal{Y}_L,a.

We show that \mathcal{Y}_L,a is birationally equivalent over \mathbb{K} to the curve $Z_{L,b}$ with affine equation

\[L(y) = ax^3 + bx, \]

for some $a \in \mathbb{K}$ and $L(T) \in \mathbb{K}[T]$ a separable p-linearized polynomial of degree q. For the curve $Z_{L,b}$ the following properties hold:

(i) $Z_{L,b}$ has zero p-rank;

(ii) $\text{Aut}(Z_{L,b})$ contains a generalized dihedral subgroup $\text{Dih}(E_q) = E_q \rtimes \langle \nu \rangle$ of order $4q$ of \mathcal{Y}_L,a.

We show that \mathcal{Y}_L,a has genus $q − 1$ and Aut(\mathcal{Y}_L,a) contains a subgroup $\text{Dih}(E_q) \times \langle \mu \rangle$.

Let P_0 and P_∞ be the zero and pole of x in $\mathbb{K}(x)$, respectively. Then $\mathbb{K}(\mathcal{Y})|\mathbb{K}(x)$ is a generalized Artin-Schreier extension [11, Proposition 3.7.10]) which ramifies exactly over the simple poles P_0 and P_∞ of $ax + 1$. Hence, $g(\mathcal{Y}_L,a) = q − 1$. The maps

\[E_q = \{ \tau_\alpha : (x,y) \mapsto (x, y + \alpha) \mid L(\alpha) = 0 \}, \quad \nu : (x,y) \mapsto (1/ax,y), \quad \mu : (x,y) \mapsto (1/ax,y), \]

generate an automorphism group $\text{Dih}(E_q) \times \langle \mu \rangle = (E_q \rtimes \langle \nu \rangle) \times \langle \mu \rangle$ of order $4q$ of \mathcal{Y}_L,a.

We show that \mathcal{Y}_L,a is ordinary and hyperelliptic with hyperelliptic involution μ, and that the Weierstrass places of \mathcal{Y}_L,a are the 2q fixed places of μ.

Let P_0 and P_∞ the places of \mathcal{Y} lying over P_0 and P_∞. The group E_q and the involution ν fix P_0 and P_∞, while the involution μ interchanges P_0 and P_∞. Let $\overline{\mathcal{Y}} = \mathcal{Y}/E_q$ and $\overline{\mathcal{Y}}' = \mathcal{Y}/\langle \mu \rangle$. The Riemann-Hurwitz formula applied to the cover $\mathcal{Y} \rightarrow \overline{\mathcal{Y}}$ shows that $\overline{\mathcal{Y}}$ is rational and P_0, P_∞ are the unique fixed places of any element of E_q. Thus, the Deuring-Shafarevich formula applied to $\mathcal{Y} \rightarrow \overline{\mathcal{Y}}$ shows that \mathcal{Y} has p-rank $q − 1$; hence, \mathcal{Y} is ordinary. Let P_1 and P_2 be the distinct zeros of $ax^2 + 1$ in $\mathbb{K}(x)$, and P_1^1, \ldots, P_1^p and P_2^1, \ldots, P_2^p be the distinct places of \mathcal{Y} lying over P_1 and P_2. By direct checking, μ fixes $P_1^1, \ldots, P_1^p, P_2^1, \ldots, P_2^p$. Then the Riemann-Hurwitz formula applied to $\mathcal{Y} \rightarrow \overline{\mathcal{Y}}'$ shows that μ has no other fixed places and $\overline{\mathcal{Y}}'$ is rational; hence, \mathcal{Y} is hyperelliptic with hyperelliptic involution μ. Since $2q > 4$, the 2q fixed places of μ are Weierstrass places of \mathcal{Y} from [11, Theorem 11.112]. Moreover, \mathcal{Y} has exactly $2q$ Weierstrass places from [6, Theorem 7.103].

We show that \mathcal{Y}_L,a has genus $q − 1$ and admits an automorphism group $\text{Dih}(E_q)$.

The curve $Z_{L,b}$ admits the automorphism group $\text{Dih}(E_q) = E_q \rtimes \langle \nu \rangle$, where

\[E_q = \{ \tau_\alpha : (x,y) \mapsto (x, y + \alpha) \mid M(\alpha) = 0 \}, \quad \nu : (x,y) \mapsto (1/ax,y). \]

From [6] Lemma 12.1 (i), $Z_{L,b}$ has zero p-rank.

Let \mathcal{Y} be a curve of genus $q − 1$ admitting an automorphism group E_q with p fixed places. We show that, if $\lambda = 1$, then $p \neq 3$ and \mathcal{Y} is birationally equivalent to some $Z_{M,b}$.

Let $\overline{\mathcal{Y}} = \mathcal{Y}/E_q$. The Riemann-Hurwitz formula applied to $\mathcal{Y} \rightarrow \overline{\mathcal{Y}}$ shows that $\overline{\mathcal{Y}}$ has genus zero and

\[2(q − 1) = \sum_{i=2}^{\infty}((E_q)^{(i)}|p − 1) + \sum_{i} t_idp, \]
where ℓ_i are the lengths of the short orbits Ω_i of E_q other than $\{P\}$ and P_i is a place of Ω_i; hence, the second summation in Equation (18) is multiple of p. From [6] Lemma 11.75 (v), the first summation in (18) is the sum of a multiple of p and $j(q-1)$, where j is the largest integer such that $(E_q)^{(j+1)} = E_q$. Thus $j = 2$, $E_q = \ldots = (E_q)^{(3)}_{P}, (E_q)^{(4)}_{P} = \{1\}$, and $\{P\}$ is the unique short orbit of E_q. Let $x \in \mathbb{K}(\mathcal{Y})$ with $\mathbb{K}(\mathcal{Y}) = \mathbb{K}(x)$ and P be the place of \mathcal{Y} lying under P. Up to conjugation in $\text{Aut}(\mathcal{Y}) \cong \text{PGL}(2, \mathbb{K})$, \bar{P} is the simple pole of x. Since $\mathbb{K}(\mathcal{Y})|\mathbb{K}(x)$ is a generalized Artin-Schreier extension ([11] Proposition 3.7.10), $\mathbb{K}(\mathcal{Y})$ is defined as $\mathbb{K}(x,y)$ by $M(y) = h(x)$, where $M(T) \in \mathbb{K}[T]$ is a separable p-linearized polynomial of degree q and $h(x) \in \mathbb{K}(x)$. Since P is the unique ramified place in $\mathbb{K}(x,y)|\mathbb{K}(x)$, Proposition 3.7.10 in [11] implies that $h(x)$ is a polynomial function in $\mathbb{K}[x]$ and, in order for the genus of \mathcal{Y} to be $q - 1$, the valuation of x at P is -3 and coprime to p. Hence, $h(T) \in \mathbb{K}[T]$ has degree 3 and $p \neq 3$. Up to a linear transformation in x, we can assume that $h(x)$ has the form $x^3 + bx + c$; up to a translation in y, we can then assume that $c = 0$.

- Let \mathcal{Y} be a curve of genus $q - 1$ admitting an automorphism group E_q with λ fixed places. We show that, if $\lambda \neq 1$, then \mathcal{Y} is birationally equivalent to some $\mathcal{Y}_{L,a}$.

 Let $\mathcal{Y} = \mathcal{Y}/E_q$ with genus \bar{g}. From the Riemann-Hurwitz formula applied to $\mathcal{Y} \to \mathcal{Y}$,

$$2q - 4 = q(2\bar{g} - 2) + 2\lambda(q - 1) + \sum_{i=1}^{\lambda} \sum_{j=2}^{\infty} |(E_q)^{(j)}_{Q_i}| - 1 + \sum_1^{\infty} \ell_i d_{P_i},$$

where Q_1, \ldots, Q_λ are the fixed places of E_q, ℓ_i are the lengths of the short orbits of E_q other than $\{Q_i\}$, and P_i is a place of the i-th short orbit. Note that ℓ_i is a multiple of p. If $\lambda = 0$, then Equation (19) yields a contradiction modulo p. Then $\lambda \geq 2$. Hence, from Equation (19), $\bar{g} = 0$, $\lambda = 2$, and E_q has no short orbits other than the two fixed places P and Q. Let $x \in \mathbb{K}(\mathcal{Y})$ with $\mathbb{K}(\mathcal{Y})|\mathbb{K}(x)$ is a generalized Artin-Schreier extension ([11] Proposition 3.7.10), $\mathbb{K}(\mathcal{Y})$ is defined as $\mathbb{K}(x,y)$ by $L(y) = h(x)$, for some separable p-linearized polynomial $L(T) \in \mathbb{K}[T]$ of degree q. Also, from [11] Proposition 3.7.10, P and Q are the unique poles of $h(x)$, and they are simple poles. Up to conjugation in $\text{Aut}(\mathcal{Y}) \cong \text{PGL}(2, \mathbb{K})$, \bar{P} and \bar{Q} are the zero and the pole of x. Therefore, $h(x) = (x - r)(x - s)/x$ for some $r, s \in \mathbb{K}$. Up to formal replacement of x and y with rsx and $y + \delta$, where $\delta \in \mathbb{K}$ satisfies $L(\delta) = -r - s$, the equation $L(y) = h(x)$ is the equation defining the curve $\mathcal{Y}_{L,r,s}$.

- Finally, we show that $\text{Aut}(\mathcal{Y}_{L,a})$ is the group $\text{Di}h(E_q) \times \langle \mu \rangle = (E_q \times \langle \nu \rangle) \times \langle \mu \rangle$ described in (17).

 Let $\mathcal{Y}' = \mathcal{Y}/\mu$. Then $\text{Aut}(\mathcal{Y}')$ contains the group $G' \cong \text{Aut}(\mathcal{Y})/\langle \mu \rangle$ induced by $\text{Aut}(\mathcal{Y})$, and in particular the subgroup $E_q' \times \langle \nu' \rangle \cong E_q \times \langle \nu \rangle$ induced by $E_q \times \langle \nu \rangle$. The group E_q' is a Sylow p-subgroup of G', because E_q is a Sylow p-subgroup of $\text{Aut}(\mathcal{Y})$ from Theorem 2.1 (II). From [6] Theorem 11.98 and [7] Hauptsatz 8.27, either $G' \cong \text{PSL}(2,q)$, or $G' \cong \text{PGL}(2,q)$, or $G' = E_q \times C_m$, where C_m is cyclic of order m with $m \mid (q - 1)$.

 Assume that G' contains a subgroup $E_q' \times C_m$ with $m \mid (q - 1)$. Up to conjugation, E_q' is the group induced by E_q as in (17). Let C be a tame subgroup of $\text{Aut}(\mathcal{Y})$ inducing C_m. Since C normalizes E_q, C acts on the two places of \mathcal{Y} fixed by E_q and acts on the other orbits of E_q; since C commutes with μ, C acts on the fixed places of μ, which form two orbits of E_q. Thus, the group \bar{C} is C-induced by C on the rational curve $\mathcal{Y} = \mathcal{Y}/E_q$ acts on two couples of places. From [7] Satz 8.5, \bar{C} has two fixed places and no other short orbits on \mathcal{Y}; hence, C has order 2. This implies $m = 2$. For $q - 1 > 2$ the Lemma is then proved, because both $\text{PGL}(2,q)$ and $\text{PSL}(2,q)$ contain subgroups $E_q \times C_{q-1}$ of order $q(q - 1)$; see [7] Hauptsatz 8.27 and [12].

 Assume $q = 3$. The case $G' \cong \text{PSL}(2,3)$ is not possible, since $\text{PSL}(2,3)$ contains no subgroup $\text{Di}h(E_q)$. Suppose $G' \cong \text{PGL}(2,3)$. Let ρ' be an element of G' of q order 4, and $\rho \in G$ an element of q order 4 inducing ρ'. From [7] Sätze 8.2 and 8.4 and [12], ρ' does not fix the place P' of \mathcal{Y} lying under the fixed places P, Q of E_q. Hence, P and Q are in a long orbit of ρ. Therefore, ρ' has a short orbit of length 2 on \mathcal{Y}. This is impossible, since from [7] Satz 8.5 (see also [12]) ρ' has two
fixed places and no other short orbits on \mathcal{Y}. We conclude that $G' = E_{q}^{x} \times C_{m}^{2}$, and $m = 0$ follows as above. The Lemma is thus proved.

\[\square\]

Proposition 4.3. For a curve X defined over \mathbb{K}, assume that one of the following hold.

(A) X has genus $g \leq (q - 1)^{2}$ and $\text{Aut}(X)$ contains a subgroup $H = E_{q^{2}} \times (C_{2} \times C_{2})$;

(B) X has genus $g = (q - 1)^{2}$ and $\text{Aut}(X)$ contains a subgroup $H = E_{q^{2}}$.

Then $E_{q^{2}}$ has a subgroup T of order q such that the quotient curve X/T is birationally equivalent over \mathbb{K} to the curve $\mathcal{Y}_{L,a}$ in [11], for some $a \in \mathbb{K}^{*}$ and $L(T) \in \mathbb{K}[T]$ a separable p-linearized polynomial of degree q.

Proof. From Proposition (4.1), X is ordinary of genus $(q - 1)^{2}$ and $E_{q^{2}}$ admits a subgroup T of order q such that the cover $X \rightarrow X/T$ is unramified. From the Riemann-Hurwitz formula and the Deuring-Shafarevich formula applied to $X \rightarrow X/T$, the curve X/T is ordinary of genus $q - 1$. Since T is normal in $E_{q^{2}}$, $\text{Aut}(X/T)$ contains a subgroup $E_{q^{2}}/T \cong E_{q}$. From Theorem 4.2, X/T is birationally equivalent over \mathbb{K} to $\mathcal{Y}_{L,a}$ for some a and L. \[\square\]

Proposition 4.4. Let X be a curve admitting an automorphism group $E_{q^{2}}$ such that, for some $E_{q} \leq E_{q^{2}}$ the quotient curve X/E_{q} has affine equation

$$L(y) = ax + \frac{1}{x},$$

for some $a \in \mathbb{K}^{*}$ and $L(T) \in \mathbb{K}[T]$ a separable p-linearized polynomial of degree q. Then the following hold:

(1) $\mathbb{K}(X/E_{q^{2}}) = \mathbb{K}(x)$.

(2) If X is an ordinary curve with genus $(q - 1)^{2}$, then $E_{q^{2}}$ contains a subgroup M of order q different from E_{q} such that the quotient curve X/M has affine equation

$$\tilde{L}(z) = b + \frac{1}{x},$$

for some $z \in \mathbb{K}(X), b \in \mathbb{K}$, and $\tilde{L}(T) \in \mathbb{K}[T]$ a separable p-linearized polynomial of degree q.

Proof. Since $[\mathbb{K}(X) : \mathbb{K}(x)] = q^{2} = [\mathbb{K}(X) : \mathbb{K}(X/E_{q^{2}})]$, it is enough to prove that $\tau(x) = x$ for any $\tau \in E_{q^{2}} \setminus E_{q}$. Since τ and E_{q} commute, τ induces an automorphism τ' of $\mathbb{K}(x,y)$. If τ' is trivial then $\tau(x) = x$ and (1) follows. Otherwise, τ' has order p. Clearly $E_{q^{2}}/E_{q} \cong E_{q}$, where E_{q} is an elementary abelian subgroup of $\text{Aut}(\mathcal{Y}_{L})$ of order q. Arguing as in the proof of Theorem [11], $\text{Aut}(\mathcal{Y}_{L})$ has a unique elementary abelian group F of order q, namely

$$F = \{\tau_{\alpha} : (x, y) \mapsto (x, y + \alpha) \mid L(\alpha) = 0\},$$

and hence $F = \bar{E}_{q}$. Hence $\tau(x) = x$ for every $\tau \in E_{q^{2}} \setminus E_{q}$ and (1) follows. From (1), $\mathbb{K}(X/E_{q^{2}}) = \mathbb{K}(x)$, that is, $X/E_{q^{2}} = \mathbb{P}^{1}(\mathbb{K})$. The curve \mathcal{Y}_{L} is the quotient curve $X_{(L,L)}/H$, where

$$H = \{\tau_{\alpha,\alpha} : (x, y) \mapsto (x + \alpha, y + \alpha) \mid L(\alpha) = 0\}.$$

In fact it is sufficient to consider the functions $\eta, \theta \in \mathbb{K}(X_{(L,L)})$ with $\eta = L(y)$ and $\theta = x + y$. By direct checking $L(\theta) = \eta + 1/\eta$ and $\mathbb{K}(X_{(L,L)}/H) = \mathbb{K}(\eta, \theta)$. Since $X_{(L,L)}$ is an ordinary curve of genus $(q - 1)^{2}$ and the cover $X_{(L,L)} \rightarrow X_{(L,L)}/H$ is unramified, from the Deuring-Shafarevich formula and the Riemann-Hurwitz formula, we have that \mathcal{Y}_{L} is an ordinary curve of genus $q' = q - 1$. The Deuring-Shafarevich formula applied to E_{q} shows that the extension $\mathbb{K}(X)/\mathbb{K}(\mathcal{Y}_{L})$ is unramified. Let P_{0} and P_{∞} be respectively the zero and pole of x in $\mathbb{K}(x)$. Then P_{0} and P_{∞} are totally ramified in the extension $\mathbb{K}(\mathcal{Y}_{L})|\mathbb{K}(x)$ and no other place of $\mathbb{P}^{1}(\mathbb{K})$ ramifies; see [11] Proposition 3.7.10. Therefore, both P_{0} and P_{∞} split completely in X. Let M be the stabilizer in $E_{q^{2}}$ of a place P_{∞} of X lying over P_{∞}. We show that P_{∞} is unramified in the extension $\mathbb{K}(X/M)|\mathbb{K}(x)$. Note that $|M| = q$, since P_{∞} splits in q distinct places in X. Furthermore, since $E_{q^{2}}$ is
4.1. Proof of Theorems 1.3 and 1.4.

From the Deuring-Shafarevich formula applied to the extension $K(x) / K$, we have that $K(x)$ has only one place that ramifies in $K(X/M) / K(x)$, and this place must be P_0.

We prove that the quotient curve X/M has affine equation

$$\hat{L}(z) = b + \frac{1}{x},$$

for some $z \in K(x)$, $b \in K$, and $\hat{L}(T) \in K[T]$ a separable p-linearized polynomial of degree q. Since $K(X/M) / K(x)$ is a generalized Artin-Schreier extension ([11, Proposition 3.7.10]), we have that $K(X/M) = K(x, y)$ where $\hat{L}(y) = f(x)/g(x)$ for some separable p-linearized polynomial $\hat{L}(T) \in K[T]$ of degree q and $f(x)/g(x) \in K(x)$. Recall that P_0 is the unique pole of $f(x)/g(x)$, and it is a simple pole.

- Suppose that $\deg(f) > \deg(g)$. Then $f(x)/g(x)$ has a pole at P_0, a contradiction.
- Suppose that $\deg(f) = \deg(g) > 0$. Let $g(x) = x \cdot r(x)^p$ with $r(x) \in K[x]$, then $f(x) = (x + \alpha)s(x)^p$ with $\alpha \in K$ and $s(x) \in K[x]$. If $r(x)$ has a zero β then by [11, Proposition 3.7.10] it is easily checked that $f(x)/g(x)$ has a corresponding pole of multiplicity at least $p-1$, a contradiction. Therefore, $g(x) = \beta x$ and $f(x) = x + \alpha, \alpha, \beta \in K$. Applying a linear transformation to x, the claim follows.
- Suppose that $\deg(f) < \deg(g)$ and $\deg(g) > 0$. Then, arguing as in the previous case, $f(x) = \alpha$ and $g(x) = \beta x$ with $\alpha, \beta \in K$. Applying a linear transformation to x, the claim follows.
- Suppose that $\deg(g) = 0$. This is impossible since P_0 is a pole of $f(x)/g(x)$.

\[\square \]

4.1. Proof of Theorems 1.3 and 1.4.

We keep our notation introduced in the previous sections. From Proposition 4.3, E_{q^2} contains a subgroup T of order q such that the quotient curve X/T is the curve $Y_{L, a}$ with affine equation

$$L(y) = ax + \frac{1}{x},$$

for some $a \in K^*$ and $L(T) \in K[T]$ a separable p-linearized polynomial of degree q. Let $K(x, y)$ be the function field $K(X/T)$. From Proposition 4.1, the p-rank of X is $\gamma = q = (q-1)^2$. Thus by Proposition 4.4 $K(X)$ has a subfield $K(x, z)$ defined by

$$\hat{L}_1(z) = b + \frac{1}{x},$$

for some $z \in K(X)$, $b \in K$, and $\hat{L}_1(T) \in K[T]$ a separable p-linearized polynomial of degree q. Hence, the compositum $K(x, y, z)$ of $K(x, y)$ and $K(x, z)$ is a subfield of $K(X)$ such that

$$L(y) = ax + \frac{1}{x},$$

Therefore, $K(x, y, z) = K(y, z)$ with

$$\{L(y) = ax + \frac{1}{x},
\hat{L}_1(z) = b + \frac{1}{x}\}$$

Therefore, $K(x, y, z) = K(y, z)$ with

$$\{L_1(z) = b + \frac{1}{x}\}$$

From Proposition 4.3, $K(x, z) = K(X)^M$ and $K(x, y) = K(X)^T$, where $M \neq T$ is an elementary abelian p-subgroup of E_{q^2} of order q. Thus,

$$Gal(K(X) / K(y, z)) = Gal(K(X) / K(X/M)) \cap Gal(K(X) / K(X/T)) = M \cap T.$$
Since the cover $\mathcal{X} \to \mathcal{X}/T$ is unramified, we have $M \cap T = \{1\}$ and hence $K(\mathcal{X}) = K(y, z)$.

Remark 4.5. Every p-element of $\text{Aut}(\mathcal{X})$ is an element of E_{q^2}.

Proof. Let σ be a p-element of $\text{Aut}(\mathcal{X})$. By Nakajima’s bound, Theorem 2.1 (I), $|\langle E_{q^2}, \sigma \rangle| \leq q^2 = |E_{q^2}|$. Therefore $\sigma \in E_{q^2}$.

Let $z' = z - \delta$, with $L_1(\delta) = b$. Then $K(y, z) = K(y, z')$ where

$$L_1(z')L(y) - L_1(z')^2 = a. \tag{22}$$

Up to a \mathbb{F}-scaling of z' and y, we can assume that both L_1 and L are monic. Let Z be the plane curve with affine equation $L_1(Z')L(Y) - L_1(Z')^2 = a$. By Remark 4.5 and Proposition 4.1, $E_{q^2} = \{\tau_{\alpha, \beta} : (y, z') \mapsto (y + \alpha, z' + \beta) \mid L(\alpha) = L_1(\beta) = 0\} \leq \text{Aut}(Z)$ has exactly two short orbits Ω_1 and Ω_2, which have length q and are centered at the points at infinity $P_1 = (1 : 0 : 0)$ and $P_2 = (1 : 0 : 0)$, respectively. The q distinct tangent lines to Z at P_1 have equation $\ell_i : Y - Z' = \epsilon_i, i = 1, \ldots, q$, and the intersection multiplicity at P_1 of Z and ℓ_i is equal to the intersection multiplicity at P_1 of the curve $W : L(Y) - L_1(Z') = 0$ with the line ℓ_i. Since W has degree q, this implies that W splits into linear factors $\ell_1, \ell_2, \ldots, \ell_q$. Therefore $L(Y) - L_1(Z') = L_2(Y - Z')$ for some separable p-linearized polynomial $L_2(T) \in \mathbb{F}[T]$ of degree q. Thus, Equation (22) is the equation (3) defining $\mathcal{X}_{(L_1, L_2)}$, up to the formal replacement of $y - z'$ with Y and of z' with bX, where $b^q = a$.

Let \bar{q} be the largest power of p such that $\text{Aut}(\mathcal{X})$ contains a cyclic subgroup C of order $\bar{q} - 1$. Up to conjugation in $\text{Aut}(\mathcal{X})$, C contains the group

$$\Gamma = \{(X, Y) \mapsto (X + \alpha, Y + \beta) \mid L_1(\alpha) = L_2(\beta) = 0\}.$$

Then $\mathcal{X} \in S_{\bar{q}^{L_1}}$ from Theorems 1.1 and 1.2. Thus, Theorem 1.3 is proved.

If $L_1 \neq L_2$, then from Theorem 1.2, $\mathcal{X}_{(L_1, L_2)}$ does not admit any automorphism group $C_2 \times C_2$. Thus, also Theorem 1.4 is proved.

5. Acknowledgments

This research was supported by the Italian Ministry MIUR, Struttura Geometriche, Combinatoria e loro Applicazioni, PRIN 2012 prot. 2012XZE22K, and by GNSAGA of the Italian INdAM. The authors would like to thank Nazar Arakelian and Gábor Korchmáros for useful comments and suggestions.

References

[1] N. Arakelian and G. Korchmáros, A characterization of the Artin-Mumford curve, J. Number Theory, 154 (2015), 278-291.
[2] G. Cornelissen and F. Kato, Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J., 166, (2003), 431-470.
[3] G. Cornelissen and F. Kato, Discontinuous groups in positive characteristic and automorphisms of Mumford curves, Math. Ann., 320, (2001), 55-85.
[4] G. Cornelissen and F. Kato, Mumford curves with maximal automorphism group, Proceedings of the American Mathematical Society, 132, (2004), 1937-1941.
[5] M. Giulietti and G. Korchmáros, Algebraic curves with many automorphisms, preprint (2016).
[6] J.W.P. Hirschfeld, G. Korchmáros, and F. Torres, Algebraic Curves over a Finite Field, Princeton Series in Applied Mathematics, Princeton (2008).
[7] B. Huppert, Endliche Gruppen. 1, Grundlehren der Mathematischen wissenschaften 134, Springer, Berlin, 1967, xii+793 pp.
[8] G. Korchmáros and M. Montanucci, Ordinary algebraic curves with many automorphisms in positive characteristic, arXiv:1610.05252v2 2016.
[9] A. Kontogeorgis and V. Rotger, On abelian automorphism groups of Mumford curves, Bull. London Math. Soc. 40 (2008), 353-362.
[10] S. Nakajima, p-ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc. 303 (1987), 595-607.
[11] H. Stichtenoth, Algebraic function fields and codes, 2nd edn. Graduate Texts in Mathematics 254, Springer, Berlin (2009).
Authors’ addresses:

Maria MONTANUCCI
Dipartimento di Matematica, Informatica ed Economia
Università degli Studi della Basilicata
Contrada Macchia Romana
85100 Potenza (Italy).
E–mail: maria.montanucci@unibas.it

Giovanni ZINI
Dipartimento di Matematica e Informatica
Università degli Studi di Firenze
Viale Morgagni
50134 Firenze (Italy).
E–mail: gzini@math.unifi.it

[12] R. Valentini and M. Madan, A Hauptsatz of L.E. Dickson and Artin-Schreier extensions, *Journal für die reine und angewandte Mathematik*, (1980), 156-177.

[13] G. van der Geer and M. van der Vlugt, Kloosterman sums and the p-torsion of certain Jacobians, *Math. Ann.* 290, Birkhäuser, Basel, (1991), 549-563.