Looking for packing units of the protein structure

Wei-Mou Zheng*, 1, Hui Zeng1, Dong-Bo Bu2, Ming-Fu Shao2, Ke-Song Liu1, Chao Wang2

1 Institute of Theoretical Physics, Academia Sinica, Beijing 100190, China
2 Institute of Computing Technology, Academia Sinica, Beijing 100190, China

* To whom correspondence should be addressed.

Abstract

Lattice-model simulations and experiments of some small proteins suggest that folding is essentially controlled by a few conserved contacts. Residues of these conserved contacts form the minimum set of native contacts needed to ensure foldability. Keeping such conserved specific contacts in mind, we examine contacts made by two secondary structure elements of different helices or sheets and look for possible ‘packing units’ of the protein structure. Two short backbone fragments of width five centred at the Cα atoms in contact is called an H-form, which serves as a candidate for the packing units. The structural alignment of protein family members or even across families indicates that there are conservative H-forms which are similar both in their sequences and local geometry, and consistent with the structural alignment. Carrying strong sequence signals, such packing units would provide 3D constraints as a complement of the potential functions for the structure prediction.

Key words: Protein structures; Fragment packing; Packing units.

1 Introduction

Assessing structural similarity and defining common patterns through protein structure comparison is important in functional and evolutionary studies of proteins. Commonly occurring structural motifs provide insight into the conservation of protein structure, the types of structural interactions preferred in nature, and the relationships among sequence, structure, and function. Structural motifs are more sensitive in finding distantly related homologs than structural alignment methods.[1] Local structural motifs consist of a relatively small number of successive residues. Many sequence segments often adopt a single or just a few local structures although interactions associated with a long sequence separation may affect these local structures.[2] The local structures adopted by the most closely related short sequence segments can be extracted from protein structure databases; sequence information is useful for prediction of local structural motifs. Local structure predictions have been successfully incorporated into fold recognition or fold prediction methods.[3] As a direct extension of short local structures, supersecondary structural elements have been exhaustively classified, which turn out to be sufficient to describe all known folds, either common or novel.[4] Commonly occurring global motifs usually consist of several secondary structure elements (SSEs) that are not specific to any single fold or protein family. Thus, they are capable of representing substructures of most protein structures although these proteins may have little in common as a whole, both in terms of structure and sequence. Detection of global structural similarity hiding in globally dissimilar structures is complicated by the presence of strong local structural similarities. The fold definition concerns only the architecture and topology of major SSEs without consideration of subtle differences in 3D coordinates.[5] Some methods for global motifs take into account, besides the match of SSE types and topology, also the handednesses of connections between SSEs, coordinates of SSE starts and ends, types of interactions between SSEs, β-sheet definitions and other features.[6]

The task of structure classification is quite different from that of structure prediction. An ab initio method for protein structure prediction assumes that all the information of a structure is contained in
its sequence of amino acids, and the native structure has the lowest free energy, but to locate the native state among native-like structures is exceedingly difficult. Although Rosetta’s potential function contains ‘sequence independent terms’ of secondary structure vector interaction there is still a lack of good distance constraints based on the sequence information to fix the spatial arrangement among SSEs.[7]

It is observed that many protein structures may share a local substructure which consists of several short backbone fragments closely surrounding a particular amino acid as the center. A library of so-called ‘local descriptors (LDs)’, which is general enough to allow assembly of protein structures, has been constructed.[8] Such local protein structure representations incorporate contacts between residues (of long-range in sequence separation) to characterize local neighborhoods of amino acids including short and long-range interactions. Furthermore, it is possible to identify meaningful sequence similarity in groups of such LDs, and then hopefully to describe the sequence-structure relationship within each group in the folding space.

Lattice-model simulations and experiments suggest that folding is essentially controlled by a few conserved contacts, which form very early in the folding process, and, after their assembling together, lead to the folding core of the protein. Residues of these conserved contacts form the minimum set of native contacts needed to ensure foldability. Their mutations have quite dramatic effects on the stability of the transition state nucleus and the folding kinetics. While these conserved residues form most of their contacts in the transition state, others only do so on reaching the native conformation.[9, 10] In other words, the contacts most responsible for foldability and stability are most conservative, and hence carry the strongest sequence information. On the contrary, the others are ‘dragged’ by the former into the finally compact shape.

Keeping such conserved specific contacts in mind, we look for what we call ‘packing units’ of the protein structure. As the folding core is our concern, we focus on SSEs. Each unit will contain only two SSEs, being minimal. We require that there is at least a ‘contact’ between the two SSEs. That is, a pair of residues, each on one of the two separated SSEs, meet some distance criterion, say with two C_α atoms being within 8.5 Å. Two short backbone fragments (of width 5) centred at these C_α atoms in contact, which will be called an H-form, serve as a candidate for the packing units. For strands on the same β-sheet, there are many nearby ‘contacts’ of hydrogen binding. They are less responsible for the overall packing than those coming from different sheets or between sheets and helices. We shall ignore the contacts within a sheet when considering H-forms. For an H-form to be a packing unit, it should appear in certain commonly occurring global motif to satisfy geometric specificity, moreover its sequence is highly conservative. We shall discuss the characterization of packing units, their identification from structure databases, and their relation to other substructure motifs.

2 Methods: From H-forms to packing units

The two SSEs of an H-form are from different helices or sheets. The N- and C-terminal SSEs of an H-form are referred as SS1 ($a_{-2}a_{-1}a_0a_1a_2$) and SS2 ($b_{-2}b_{-1}b_0b_1b_2$), respectively. We require that the DSSP states of a_0 and b_0 belong to \{B, E\} → E and \{H, I, G\} → H. Some a_i and b_j other than a_0 and b_0 are allowed to be on loops. We require further that a_0 and b_0 belong to different helix or sheet according to DSSP annotation.

2.1 Characterization of the local geometry for an H-form

An H-form is a geometric object in 3D space. We first need to determine the axis direction of an SSE. For a long SSE, its axis direction can be defined as the line that has the minimal sum of distances to all the C_α atoms of the SSE. This does not work for our short fragments here. We determine the axis direction by fitting the given four C_α atoms $a_{-2}a_{-1}a_0a_1$ (or $b_{-2}b_{-1}b_0b_1$) to the ‘standard helix’ which is described by

$$x = a \cos \theta, \quad y = a \sin \theta, \quad z = b \theta,$$ \hspace{1cm} (1)

where a is the radius, and $2\pi b$ the pitch. A strand can be viewed as an extended helix. Denote the position vectors of four C_α atoms $a_{-2}a_{-1}a_0a_1$ by \mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3 and \mathbf{r}_4, respectively. Let \mathbf{u} be the unit vector of the axis,
if fragment $a_{-2}a_{-1}a_0a_1$ forms a helix. Thus, we have

$$(r_2 - r_1) \cdot u \equiv r_{21} \cdot u = b, \quad (r_{32} - r_{21}) \cdot u = 0.$$ \hspace{1cm} (2)

This means that vector $r_{32} - r_{21} = r_3 - 2r_2 + r_1$ is perpendicular to u. For a general case of four successive points not in a plane, u is then determined by

$$u \propto (r_4 - 2r_3 + r_2) \times (r_3 - 2r_2 + r_1).$$ \hspace{1cm} (3)

For the in-plane case, we may take u along $(r_4 - 2r_3 + r_2) - (r_3 - 2r_2 + r_1)$. Of course, such a vector u has no direct meaning for a fragment on a loop, which is not in our concern here.

Let r_{ba} be the vector from C_α atom of a_0 to that of b_0, and u_a and u_b be axes of fragments $a_{-2}a_{-1}a_0a_1$ and $b_{-2}b_{-1}b_0b_1$, respectively. The relative orientation of the H-form is described by the angles

$$\theta_a = \arccos \left[\frac{u_a \cdot r_{ba}}{|r_{ba}|} \right], \quad \tau_{ab} = \text{sgn} [u_a \cdot (r_{ba} \times u_b)] \cdot \arccos \left[\frac{(u_a \times r_{ba}) \cdot (r_{ba} \times u_b)}{|u_a \times r_{ba}| \cdot |r_{ba} \times u_b|} \right], \quad \theta_b = \arccos \left[\frac{u_b \cdot r_{ba}}{|r_{ba}|} \right].$$ \hspace{1cm} (4)

Thus, the local geometry of the H-form is characterized by $(d \equiv |r_{ba}|; \theta_a, \tau_{ab}, \theta_b)$. These quantities are intrinsic, and independent of the reference frame. Another important feature of an H-form is its sequence separation ℓ which may be taken as the difference between the site indices of a_0 and b_0. Sometimes other features like solvent accessibility can be also considered.

Generally, side-chains are more responsible for contact packing. It is often to consider C_β atoms or some representative points for distance criteria. However, their information is not directly available in early stages of structure prediction. The contact statistics are qualitatively, even quantitatively, similar when using either C_α or C_β atoms.[12] Thus, we consider only C_α atoms to facilitate treatment and to make the obtained results easily and widely applicable.

2.2 Structure alignment based on a pair of similar H-forms

An H-form is only an object of local geometry. A packing unit has to be a commonly occurring motif which exhibits structural and sequential similarities with other members in the same motif, and at the same time occurs as a part of certain structure alignments. That is, a packing unit tends to be aligned together with some other SSEs in two structures. When inspecting a group of closely related structures, e.g. a SCOP family, for packing units, their good candidates can be found simply by structure alignment. When a pair of similar H-forms are from two distant structures, an ordinary structure alignment tool usually does not work. For this purpose, we design a tool for structure alignment based on a pair of similar H-forms. This tool uses the ‘zoom-in’ technique of our ClePAPS.[13] We determine the transform based on the two H-forms to superimpose the two structures they belong to. At a large threshold for coordinate deviation, we enlarge the list of correspondence, which originally consists of only the H-form pair. (In doing this, an efficient way is to use our conformational letters.) We then update the transform based on the enlarged correspondence, and use a more stringent criterion for deviation cutoff to again update the correspondence. This is an iteration. Usually, three iterations are enough for judging whether the H-form pair occurs as a part in a structure alignment containing also H-forms other than the given pair.

Of course, the final alignment depends on the deviation cutoffs for ‘zoom-in’. Generally, the ‘zoom-in’ helps to escape from a local trapping, and ensures the alignment found is more or less global. In the extreme case when the pair of H-forms for the initial alignment are supported by no other SSEs, the initial alignment would survive iterations only at rather stringent deviation cutoffs.

3 Results and discussion

3.1 CI2 as a case study

Chymotrypsin inhibitor 2 (CI2, PDB-ID 2ci2) was taken as the target conformation for a detailed examination in Ref. [9]. Two residues were considered to be in contact if the distance between their C_β atoms (C_α for G...
was \(\leq 7.5\text{Å} \) and if they were more than two units apart from each other along the sequence. It was inferred that A16, I20, L49, V51 and I57 to belong to the conserved folding nucleus. (The numbering of residues here is shifted by 19 from theirs, e.g. A16 here would be their A35.) The protein belongs to Pfam protein family PF00280, whose seed alignment contains four known structures.\[14\]

Since CI2 is a small molecule of Length 65, a loose distance threshold 8.5Å is taken for H-forms. We find seven H-forms in CI2 as listed in Table 1. Residue I57 is on a loop, so does not appear. Besides the remaining four inferred sites, there are several extra sites, e.g. L8 in the first H-form. This contact formed by L8 and A16 is responsible for the packing of two helices, which, connecting through a short turn (of width 4), compose a supersecondary structure. We shall discuss other sites later.

A known structure in the seed alignment of PF00280 is one with PDB-ID 1vbw. It has 21 H-forms. The DALI pairwise structure alignment \[15\] between 2ci2 and 1vbw is mainly a shift of 3, e.g. A16 of 2ci2 aligns against A19 of 1vbw. All the H-forms of 1vbw which have their corresponding H-forms of 2ci2 in the alignment are listed in Table 2, where listed are also the BLOSUM62 similarity scores of the aligned fragments. The fragment of V13 of 2ci2, which is the SS1 of the second, third and fourth H-forms in Table 1, has a rather low similarity score (−4) with its aligned partner in 1vbw, so the fragment of V13 is not very conservative and V13 turns being not among the inferred sites. The similarity scores between 2ci2 and 1vbw for the sixth H-form are both high, but the difference in distance \(d \) is large, indicating a distortion between the two H-forms. Finally, only the fifth and seventh H-forms exhibit both sequential and structural similarities between the two proteins. These two H-forms involve sites A16, I20, L49 and V47. A16 of 1vbw is shifted by 19 from theirs, e.g. A35.) The protein belongs to Pfam protein family PF00280, whose seed alignment contains four known structures.\[14\]

We have further examined another known structure 1mit of the PF00280 seed alignment. It has 28 H-forms. The DALI pairwise structure alignment between 2ci2 and 1mit is mainly a shift of 4. All the H-forms of 1mit which have their corresponding H-forms of 2ci2 in the alignment are listed in Table 3. Since 1mit has only one helix no counterpart of the first H-form of 2ci2 exists in 1mit. As for the other H-forms, the situation is very similar to that of 1vbw. It should be mentioned that the third H-form shows both sequential and structural similarities between 1vbw and 1mit, so there is still a possibility for the H-form to be identified as a packing unit after more structures are inspected.

There are pairs of H-forms between 2ci2 and 1vbw or 1mit which show both sequential and structural similarities, but conflict with the structure alignment. Two examples are

\[
2\text{ci2 K17:I29 EAKKV} \sim \text{AQIVV} \sim 1\text{vbw K20:V52 AAKAV} \sim \text{VRVWV} \quad (11.5; -0.2, -0.5, 0.0, 0.4)
\]

\[
\sim 1\text{mit K21:I53 VAKAI} \sim \text{VRIVW} \quad (9.6; -0.1, -0.4, 0.5, 0.6)
\]

where at the end of each line the similarity comparison is given in the format (two sequence similarity scores; distance difference, and differences in three angle \((\theta_a, \tau_{ab}, \theta_b) \)). Such pairs of H-forms usually have quite diverse sequence separation. The possible physical rationale for occurrence of such correspondence might be the adjustment of SSEs to make an optimal physical interaction in a later packing stage. Generally, if an H-form of 2ci2 is compared with H-forms of 1vbw or 1mit, there is no similarity either in subsequences or in local substructure geometry. A few of pairs of H-forms might have one similarity, but seldom exhibit both. There is a good chance for those similar in both sequence and structure to be consistent with the structure alignment.

3.2 Inspecting a SCOP super-family for packing units

Let us inspect six domains from SCOP-40 super-family d.122.1, which contains three families with at least two members. Two domains d1y8oa2 and d1gkza2 belong to family d.122.1.4. The CATH domain, which consists of d1y8oa2 and C-terminus of 1y8o, is about a hundred longer than d1y8oa2. The alignment between 1y8o and 1gkz shows that the C-terminus contributes to the alignment. We shall refer d1y8oa2 to the longer CATH domain for our analysis here. Domains d1y8oa2 and d1gkza2 have 124 and 74 H-forms, respectively. Taking the similarity criteria: 1) BLOSUM62 sequence similarity scores \(\geq 0 \) for both fragments; 2) \(\Delta d \leq 1.5\text{Å}, \Delta\theta \leq 0.6, \text{and } \Delta\tau \leq 0.8 \), we find 80 pairs of 'similar' H-forms, among that 54 pairs coincide with the structure alignment. (Without requiring the sequence similarity there would be 698 pairs of H-forms similar in geometry.) Many of these pairs are clustered in their positions. For example,
those dragged-in. Compared between different families those leading in packing will have a larger chance to be shared than domain d1gkza2 as the template, which mainly consists of three long helices (18 aligned pairs of similar H-forms between d1id0a and d1i58a, and 15 between d1s14a and d1h7sa2). Taking d1h7sa2 of d.122.1.2. The situation within a single family is similar to that in family d.122.1.4. There are in these 54 pairs are: ∆d ≤ 1.0 Å, ∆θ ≤ 0.3, and ∆τ ≤ 0.6. We expect that when these H-forms are compared between different families those leading in packing will have a larger chance to be shared than those dragged-in.

We next examine four domains from the other two families: d1id0a, d1i58a of d.122.1.3, and d1s14a, d1h7sa2 of d.122.1.2. The situation within a single family is similar to that in family d.122.1.4. There are 18 aligned pairs of similar H-forms between d1id0a and d1i58a, and 15 between d1s14a and d1h7sa2. Taking domain d1gkza2 as the template, which mainly consists of three long helices (h1 to h3) and one sheet of five strands (β1 to β5), arranged as h1β1h2β2h3β4β5), we can align all the other five domains against d1gkza2 with a large aligned portion. The common region overlaps with h2β2β3h3β4β5. We find that many pairs of similar H-forms are shared among the six domains. Three common H-forms (of types HH, HE and HE) of the three families are shown in Table 4.

In fact, there are other H-forms shared at the superfamily level, e.g. 15 KIIIEK - 57 YILPE and 137 YAEYL - 142 GGSLQ of d1gkza2, which are respectively responsible for packing h1h2 and h2β4 of d1gkza2.

3.3 A global packing motif as a combination of packing units

We have further examined SCOP40 family c.2.1.2 by taking domain d1e7wa as the template. Roughly speaking, the structure of d1e7wa is relatively simple, consisting of a main sheet of seven strands (β1 to β7) and six helical regions (h1 to h6) between every two successive strands. There are four styles of H-forms (h1h2, h1h6, h3h4, and h4h5) responsible for packing of helices, and nine styles related to supersecondary structures. The remaining four styles of H-forms between helices and the sheet are β2h3, β4h6, β5h6 and h5β7. Packing units are identified as H-forms shared by many members of a family or even across families. Some representative packing units identified for d1e7wa are

- h1h2 15 LGRSI - 42 NALSA; h1h6 17 RSIAE - 239 DVVIF; h3h4 85 LVAAC - 135 IKAF; h4h5 121 ADLFG - 171 YTIYT; β1h1 6 ALVTG - 18 SIAEG; h3β2 18 SIAEG - 28 YAVCL; h2β3 29 AVCLH - 87 AACYT; β4h6 98 VLVNN - 239 DVVIF; β5h6 155 SIINM - 242 IFLCS.

We have also examined domain d1u0sy of SCOP c.23.1.1. Its structure consists of a single sheet of five strands and five intervened helices. There are three styles of H-forms (h1h5, h2h3, and h3h4) responsible for packing of helices, nine styles related to supersecondary structures, and five other styles between helices and the sheet. We have identified packing units for d1u0sy by inspecting also some members of c.23.1.1 and c.23.1.2. or c.23.1.3. For example, the representative packing units for helices are

- h1h5 20 DIITK - 110 RVVEA; h2h3 34 TNGRE - 63 IDAIK; h3h4 61 NGIDA - 91 IEAIK.

The size of d1u0sy is less than half of that of d1e7wa, but a large proportion of d1u0sy can be aligned to d1e7wa by DALI at RMSD of 2.7 Å. Thus, we expect that they would share some packing units. Four such units are listed in Table 5. The first two H-forms are supersecondary structures, which might be formed under a mechanism more or less different from that for SSEs distant in sequence, and then exhibit also some conservation in their connecting loops.

After packing units of domains (or families) have been identified, their H-forms as consisting elements may be merged in groups according to their similarity in sequence and local geometry. The packing units just found are such examples. We may then describe a global packing motif as a combination of packing unit groups.

3.4 Structure alignment based on similar H-forms

We select three pairs of similar H-forms from domains d1gkza2 and d1id0a:

- 1, 55 LDYIL - 132 PTSRA ~ 46 FVEVM - 114 AVARE, (0 4; 0.6 0.4 -0.2 0.0);
The first pair is consistent with the DALI alignment of the two domains while the second has a shift in SS1. (Residue L25 of d1gkza2 should align to V19 of d1id0a instead of L16.) The third has no correspondence to the DALI alignment. As one can expect, indeed, at the first case the alignment based on the pair of H-forms agrees with the DALI alignment regardless of whether a zoom-in is performed or not.

The pairs of similar H-forms with a shift at one helix in comparison with the global alignment are often seen. The second case is an example. The alignment based on the pair is

d1gkza2: \texttt{RRLCE-YILPELLKNA_MR-RISDR-GTDVY},
d1id0a: \texttt{SALK_EVMGNVLDNA_CK-VVEDD-GARME},

where the deviation cutoff is 3.0 Å, the minimal width of aligned segments is 4, and the H-forms taken for the initial alignment are underlined. If a zoom-in is conducted the global alignment can be still recovered. However, in the third case the final alignment is almost only the initial H-forms themselves no matter with or without a zoom-in. The alignment without a zoom-in is

d1gkza2: \texttt{NAMRA-T-VPDVVI},
d1id0a: \texttt{AVARE-I-EGKIVA G},

We have also take the following pair from Table 5

d1e7wa: 17 RSIAE 239 DVVIF \sim 1u0s_y: 16 MMLKD 109 SRVVE

as initial alignment to align the two domains. The final alignment is

d1e7wa: \texttt{PVALVTG-GRSIAE-GLHAEGYAV-COVLVNIINMVD-VNGVG-DVVIFCS},
d1u0s_y: \texttt{KRVLIVD-_AMLM_DIITKAGYEV-PDIVTM-IVVCSA-KDFIV-SRVVEALN}.

Indeed, many fragments including all the SSEs list in Table 5 are consistent with the H-form in the structure alignment.

3.5 A comparison with LDs

A kind of multifragment structure motifs is the so-called local descriptors (LDs).[8] An LD has a center residue and several fragments of width at least five which closely surround the center in 3D space but not necessarily near each other along the protein sequence. With a LD as a seed, many structurally similar LDs are organized as a group, and then a library may be built from such groups. A good library of LDs should have many possible applications, including protein structure analysis, classification, alignment, identification of structure domains, and structure and function prediction.

With “GROUP: 1lara1\#1574: 7” taken as an example, its seed LD is from domain d1lara1, and the seed center is residue 11574 of the domain. This group have seven members, each of which consists of four fragments (of widths 10, 9, 5 and 5, respectively). Except the third fragment, which is on a loop, the other three are on three different helices; the center of each LD sits on the fourth fragment. If two closely related structures can be aligned against each other at totally 29 sites there should be a good chance for the alignment to coincide with the pairwise structure alignment. The seven members come from six protein domains, namely 1fpza_#189, 1jlna_#532, 2shpa_#514, 1g4us2\#527, 1lara2\#1862, 1lara2\#1865 and 1lara1\#1574. In fact, two members 1lara2\#1862 and 1lara2\#1865 come from the same domain 1lara2. Three fragments from 1lara2\#1862, 1lara2\#1865 are the same, while that the center sits shift three residues generate that two similar local descriptors in the same group. Another redundancy is that even the same central residue may give rise to two different local descriptors, though both are very similar. The member 1jlna_#532 above have four fragments, another local descriptor have three fragments, which also called 1jlna_#532 in “GROUP: 1qgra_#821: 1917”

Taking 1lara1 as the template, we align the other five domains against 1lara1 with DALI.[15] Indeed, four LDs agree with the DALI alignments of domain structures, but two LDs have the fragments where the center sits (DQYQL of 1lara2 and SQFVQ of 1g4us2) shifted roughly by a helical turn. The shifts are small in 3D space, but cause a large drop in sequence similarity.

We list here the first and fourth fragments of 1lara1 and 1g4us2 of this group:

\texttt{1lara1 RTGCFIVIDA - VFIHE \sim 1g4us2 RTGMAALV - SQFVQ}.

A pair of H-forms between the two helices related to these two fragments are
The BLOSUM62 similarity score between VFIHE and SQFVQ of LDs is −6, while that between EDQYV and ASQFV of H-forms is 11. We expect that the sequence signal for the latter would be much stronger. As shown, the differences in distance d and in three angles are all small. The RMSD tolerance used for grouping LDs seems not sensitive enough. Moreover, since LDs are collected based on a central residue it is often seen that many LDs belong to the same structure alignment.

4 Conclusions

Our argument about the existence of packing units for the structure is in logic rather than in causality. From the examined examples we have seen that there are many H-forms similar in the local geometry between two structures in a same family. However, the pairs of H-forms with also sequence similarity are much fewer, and those consistent with the structure alignment are even fewer. The pairs of similar H-forms shared by several family members or even among families should play a fundamental role in packing although our analysis does not involve the physical interaction in H-forms. Such H-forms are conservative in both structure and sequence, serve as packing units, and carry strong sequence signals. After extracting such packing units from different families, we may further organize them into a database library. A structure database will map to a network of packing unit groups linked by the SSEs shared among packing units. This is under study.

From the viewpoint of packing units, contacts are a mixture of those leading in packing and those dragged-in. The latter carry much weaker sequence signal than the former, so impede a reliable prediction. The former separated from the latter would provide trusty 3D constraints for the structure prediction and structure annotation. So far, we have not discussed the formation of a sheet from strands. A primitive observation indicates that there are key contacts which are more conservative than other contacts of hydrogen bonding pairs among strands of a sheet.

We have described a way to do structure alignment based on a pair of highly similar H-forms. The number of pairs of highly similar H-forms between two protein structures usually is not very large. Thus, we may develop a tool for structure alignment by taking a pair of highly similar H-forms as a trial to initiate the alignment.

The packing units discussed above are mainly for domains, but they are valid for analyzing packing across domains and even at the interface of a protein complex. The packing units across two structures of a protein complex help us understand the docking. The structure alignment based on a similar pair of such H-forms can be developed for that purpose.

This work is supported by the National Natural Science Foundation of China and the National Basic Research Program of China (2007CB814800).

References

[1] Shapiro J, Brutlag D. FoldMiner: Structural motif discovery using an improved superposition algorithm. Protein Sci 2004;13:278-294.

[2] Sander O, Sommer I, Lengauer T. Local protein structure prediction using discriminative models. BMC Bioinformatics 2006;7:14 p.1-13.

[3] Bonneau R, Baker D. Ab Initio Protein Structure Prediction: Progress and Prospects. Rev Biophys Biomol Struct 2001;30:173-89.

[4] Fernandez-Fuentes N, Dybas JM, Fiser A. Structural characteristics of novel protein folds. PLoS Comput Biol 2010;6:e1000750 p.1-11. (Smotifs)

[5] Michalopoulos I, Torrance GM, Gilbert DR, Westhead DR. TOPS: an enhanced database of protein structural topology. Nucleic Acids Res 2004;32:D251-D254.
[6] Shi SY, Chitturi B, Grishin NV. ProSMoS server: a pattern-based search using interaction matrix representation of protein structures. Nucleic Acids Res 2009;37:W526-531.

[7] Simons KT, Ruczinski I, Kooperberg C, Fox BA, Bystroff C, Baker D. Improved Recognition of Native-like Protein Structures using A Combination of Sequence-dependent and Sequence-independent Features of Proteins. Proteins 1999;34:82-95.

[8] Hvidsten TR, Kryshtafovych A, Fidelis K. Local descriptors of protein structure: A systematic analysis of the sequence-structure relationship in proteins using short- and long-range interactions. Proteins 2009;75:870-884.

[9] Shakhnovich EI, Abkevich VA, Ptitsyn O. Conserved residues and the mechanism of protein folding. Nature 1996;379:96-98.

[10] Camilloni C, Sutto L, Provasi D, Tiana G, Broglio RA. Early events in protein folding: Is there something more than hydrophobic burst? Protein Sci 2008;17:1424-1433.

[11] Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577-2637.

[12] da Silveira CH, Pires DEV, Minardi RC, et al. Protein cutoff scanning: A comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in proteins. Proteins 2009;74:727-743.

[13] Wang S, Zheng WM. CLEPAPS: Fast pair alignment of protein structures based on conformational letters. J Bioinfor Comput Biol 2008;6:347-366.

[14] Sonnhammer ELL, Eddy SR, Durbin R. Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins 1997;28:405-420.

[15] Holm L, Sander C. Dictionary of Recurrent Domains in Protein Structures. Proteins 1998;33:88-96.

[16] Gao M, Skolnick J. iAlign: a method for the structural comparison of protein-protein interfaces. Bioinformatics 2010;26:2259-65.
Table 1. The H-forms of CI2. Pos1: the position of the center of SS1; Pos2: that of SS2; Type: types of the two SSEs; \(d \): distance between the \(C_\alpha \) atoms at Pos1 and Pos2; \(\theta_a, \theta_b \): the angles between the joint direction from Pos1 to Pos2 and the two SSE axes; \(\tau_{ab} \): dihedral angle made by the three directions. Distance is in Å units and angle in radian.

Pos1	Pos2	Type	\(d \)	\(\theta_a \)	\(\tau_{ab} \)	\(\theta_b \)	
1	8	16	HH	6.4	1.4	0.2	1.6
2	13	31	HE	8.0	1.6	0.1	1.3
3	13	49	HE	7.6	1.4	-0.2	1.9
4	13	51	HE	7.9	2.2	0.0	1.3
5	16	49	HE	8.4	1.8	-0.3	1.5
6	17	29	HE	7.3	1.4	-0.5	1.6
7	20	47	HE	8.1	1.7	-0.3	1.6

Table 2. The H-forms of 1vbw corresponding to those of CI2. Sim1: the BLOSUM62 similarity score between the SS1s of the corresponding H-forms; Sim2: that between the SS2s; the last four columns are the differences of distance and angles of CI2 from those of corresponding ones in 1vbw (see the caption of Table 1).

Pos1	Pos2	Sim1	Sim2	\(\Delta d \)	\(\Delta \theta_a \)	\(\Delta \tau_{ab} \)	\(\Delta \theta_b \)	
1	11	19	23	6	0.4	0.0	0.0	0.1
2	16	34	-4	6	1.6	0.2	-0.3	0.1
3	16	52	-4	15	1.0	0.2	0.2	-0.1
4	16	54	-4	6	1.4	0.0	-0.2	0.0
5	19	52	6	15	0.8	0.0	0.1	-0.1
6	20	32	11	6	1.9	0.3	-0.3	0.0
7	23	50	5	21	0.1	0.0	0.0	-0.1

Table 3. The H-forms of 1mit corresponding to those of CI2 (see the caption of Table 2).

Pos1	Pos2	Sim1	Sim2	\(\Delta d \)	\(\Delta \theta_a \)	\(\Delta \tau_{ab} \)	\(\Delta \theta_b \)	
1		-	-	-	-	-	-	
2	17	35	-7	8	2.0	0.2	0.2	-0.2
3	17	53	-7	16	0.8	0.2	0.6	0.3
4	17	55	-7	13	0.7	-0.1	0.3	0.5
5	20	53	6	16	0.9	0.2	0.7	-0.1
6	21	33	9	6	2.6	0.4	0.4	0.0
7	24	51	4	17	1.5	0.0	0.1	0.2

Table 4. The H-forms shared among domains of SCOP-40 d.122.1.

H-form 1	H-form 2	H-form 3
d1gkza2		
d1y8oa2		
d1id0a		
d1i58a		
d1s14a		
d1h7sa2		

Table 5. The H-forms shared between domains of SCOP-40 c.2.1 and c.23.1.
SCOP domain	H-form 1 (EH)	d θ₀ τ θ₀	H-form 2 (HE)	d θ₀ τ θ₀
1e7wa	6 ALVTG 18 SIAEG 6.5 1.5 0.5 1.2	18 SIAEG 28 YAVCL 6.6 1.0 0.5 1.7		
1e6ua	6 VFIAG 18 AIRRQ 7.2 1.7 –0.2 1.1	18 AIRRQ 29 VELVL 8.0 1.1 0.6 1.7		
c.2.1.2	1bdha 9 VLIAC 21 ALVDR 7.6 1.4 0.6 1.2	21 ALVDR 31 AKVAF 6.6 1.0 0.6 1.7		
	1fjha 5 IVISG 17 ATRKV 7.3 1.4 0.8 1.2	17 ATRKV 27 HQIVG 7.0 1.1 0.5 1.6		
	1hxha 10 ALVTG 22 EVVKL 6.9 1.6 0.2 1.1	22 EVVKL 32 AKVAF 6.5 1.0 1.0 1.9		
c.2.1.5	1y7ta 8 VAVTG 20 SLLFR 8.3 1.3 1.0 1.2	20 SLLFR 37 VILQL 8.2 1.1 0.3 1.6		
	1dbwa 7 VHIVD 19 SLAFM 6.9 1.6 0.1 1.2	19 SLAFM 29 FAVKM 6.5 0.9 1.6 1.9		
	1u0sy 5 VLIVD 17 MLKDI 8.0 1.8 –0.1 1.1	17 MLKDI 27 YEVEG 6.6 1.2 0.1 1.1		
	1s8na 7 VLIAD 19 DLAEM 7.7 1.5 0.1 1.3	–		
	1kgsa2 5 VLVVE 17 LITEA 6.8 1.7 0.0 1.2	17 LITEA 27 FTVDV 6.3 1.0 1.4 2.1		
c.23.1.2	1dca 11 VLVMD 23 VTKGL 7.1 1.9 –0.4 1.2	23 VTKGL 33 CEVTT 6.1 1.1 0.8 1.9		
SCOP domain	H-form 3 (HH)	d θ₀ τ θ₀	H-form 4 (EH)	d θ₀ τ θ₀
-------------	--------------	-------------	--------------	-------------
1e7wa	17 RSIAE 239 DVVIF 7.0 1.4 2.4 1.1	155 SIINM 242 IFLCS 7.9 2.0 –0.3 1.3		
1e6ua	17 SAIR 219 AASIIH 7.8 1.7 2.0 1.1	101 KLLFL 222 IHVME 8.2 1.5 –0.9 1.5		
c.2.1.2	1bdha 20 RALVD 222 GAYVF 7.9 1.4 2.2 1.0	137 NVIIFT 225 VFFAT 7.1 1.9 –0.7 1.3		
	1fjha 16 AATRK 204 SVIAF 7.2 1.5 2.3 1.0	109 AAVVI 207 AFLMS 7.2 2.0 –0.7 1.4		
	1hxha 21 LEVVK 225 GLVL 6.9 1.5 2.4 1.1	133 SIINN 228 LFLAS 7.1 2.1 –0.2 1.4		
c.2.1.5	1y7ta 19 YSLLF 244 NAAIE 8.0 1.6 2.4 1.1	126 KVLV 247 IEVIR 8.0 1.5 –1.4 1.6		
	1dbwa –	–	78 PSIVI 113 IEAIAE 7.1 1.6 –1.0 1.8	
	1u0sy 16 MMLKD 109 SRVVE 8.4 1.0 1.8 1.3	77 KIIVC 112 VEALN 7.4 1.5 –0.8 1.9		
	1krwa –	–	78 PVIVI 113 VALVE 7.9 1.4 –0.5 1.5	
	1kgsa2 16 DLLTE 108 RELIA 8.3 1.3 2.0 1.3	76 PVML 111 IARVR 7.7 1.5 –0.8 1.7		
c.23.1.3	1q00d 26 DALVL 113 HRVLP 7.8 1.0 1.9 1.2	81 TLVAL 116 LPVLV 8.0 1.8 0.1 1.9		