Partial cubes with pre-hull number at most 1

Norbert Polat
I.A.E., Université Jean Moulin (Lyon 3)
6 cours Albert Thomas
69355 Lyon Cedex 08, France
norbert.polat@univ-lyon3.fr

Abstract

We prove that a connected bipartite graph G is a partial cube if and only if the set of attaching points of any copoint of G is convex. A consequence of this result is that any connected bipartite graph with pre-hull number at most 1 is a partial cube. We show that the class of partial cubes with pre-hull number at most 1 is closed under gated subgraphs, gated amalgams and cartesian products.

Keywords: Geodesic convexity; Copoint; Attaching point; Pre-hull number; Bipartite graph; Partial cube; Median graph, Netlike partial cube.

1 Introduction

The (geodesic) pre-hull number $ph(G)$ of a graph G is a parameter which measures the intrinsic non-convexity of $V(G)$ in terms of the number of iterations of the pre-hull operator associated with the interval operator I_G which are necessary, in the worst case, to reach the canonical minimal convex extension of copoints of $V(G)$ when they are extended by the adjunction of an attaching point. In [9], where this concept was introduced, the question whether any connected bipartite graph with pre-hull number at most 1 is a partial cube was considered, but only partial results were obtained [9, Sections 6 and 7]. Note that a connected bipartite graph with pre-hull number greater than 1 may or may not be a partial cube. The first part of the present paper deals with the research of a definitive answer to this question.

In [9] we proved that, for any copoint K of a partial cube G, the set $Att(K)$ of all attaching points of K is convex (Att-convexity of G). In the first part of this paper (Section 3), we show that Att-convexity is a necessary and sufficient condition for a (finite or infinite) connected bipartite graph to be a partial cube. The affirmative answer to the above question follows immediately: any connected bipartite graph with pre-hull number at most 1 is a partial cube.
The class of partial cubes with pre-hull number at most 1 contains most of the mainly studied partial cubes such as: median graphs, cellular bipartite graphs, benzenoid graphs and netlike partial cubes. We show that this class is closed under gated subgraphs (but not convex ones), gated amalgams and cartesian products.

2 Preliminaries

2.1 Graphs

The graphs we consider are undirected, without loops or multiple edges, and may be finite or infinite. If \(x \in V(G) \), the set \(N_G(x) := \{ y \in V(G) : xy \in E(G) \} \) is the neighborhood of \(x \) in \(G \). For a set \(S \) of vertices of a graph \(G \) we put \(N_G(S) := \bigcup_{x \in S} N_G(x) - S \), and we denote by \(\partial_G(S) \) the edge-boundary of \(S \) in \(G \), that is the set of all edges of \(G \) having exactly one end-vertex in \(S \). Moreover, \(G[S] \) is the subgraph of \(G \) induced by \(S \), and \(G - S := G[V(G) - S] \).

Paths are considered as subgraphs rather than as sequences of vertices. Thus an \((x, y)\)-path is also a \((y, x)\)-path. If \(u \) and \(v \) are two vertices of a path \(P \), then we denote by \(P[u, v] \) the segment of \(P \) whose end-vertices are \(u \) and \(v \).

Let \(G \) be a connected graph. The usual distance between two vertices \(x \) and \(y \), that is, the length of any \((x, y)\)-geodesic (= shortest \((x, y)\)-path) in \(G \), is denoted by \(d_G(x, y) \). A connected subgraph \(H \) of \(G \) is isometric in \(G \) if \(d_H(x, y) = d_G(x, y) \) for all vertices \(x \) and \(y \) of \(H \). The (geodesic) interval \(I_G(x, y) \) between two vertices \(x \) and \(y \) of \(G \) consists of the vertices of all \((x, y)\)-geodesics in \(G \).

2.2 Convexities

A convexity on a set \(X \) is an algebraic closure system \(\mathcal{C} \) on \(X \). The elements of \(\mathcal{C} \) are the convex sets and the pair \((X, \mathcal{C})\) is called a convex structure. See van de Vel [10] for a detailed study of abstract convex structures. Several kinds of graph convexities, that is, convexities on the vertex set of a graph \(G \), have already been investigated. We will principally work with the geodesic convexity, that is, the convexity on \(V(G) \) which is induced by the geodesic interval operator \(I_G \). In this convexity, a subset \(C \) of \(V(G) \) is convex provided it contains the geodesic interval \(I_G(x, y) \) for all \(x, y \in C \). The convex hull \(\text{co}_G(A) \) of a subset \(A \) of \(V(G) \) is the smallest convex set which contains \(A \). The convex hull of a finite set is called a polytope. A subset \(H \) of \(V(G) \) is a half-space if \(H \) and \(V(G) - H \) are convex.

A copoint at a point \(x \in X \) is a convex set \(C \) which is maximal with respect to the property that \(x \notin C \); \(x \) is an attaching point of \(K \). Note that \(\text{co}_G(K \cup \{x\}) = \text{co}_G(K \cup \{y\}) \) for any two attaching points \(x \) and \(y \) of \(K \). We denote by \(\text{Att}(K) \) the set of all attaching points of \(K \), i.e.,

\[
\text{Att}(K) := \text{co}_G(K \cup \{x\}) - K.
\]
We denote by I_G the pre-hull operator of the geodesic convex structure of G, i.e. the self-map of $P(V(G))$ such that $I_G(A) := \bigcup_{x,y \in A} I_G(x, y)$ for each $A \subseteq V(G)$. The convex hull of a set $A \subseteq V(G)$ is then $co_G(A) = \bigcup_{n \in \mathbb{N}} I_G^n(A)$. Furthermore we will say that a subgraph of a graph G is convex if its vertex set is convex, and by the convex hull $co_G(H)$ of a subgraph H of G we will mean the smallest convex subgraph of G containing H as a subgraph, that is,

$$co_G(H) := G[co_G(V(H))].$$

2.3 Bipartite graphs and partial cubes

All graphs considered here are connected.

For an edge ab of a graph G, let

$$W^G_{ab} := \{x \in V(G) : d_G(a, x) < d_G(b, x)\},$$

$$U^G_{ab} := \{x \in W_{ab} : x \text{ has a neighbor in } W_{ba}\}.$$

If no confusion is likely, we will simply denote W^G_{ab} and U^G_{ab} by W_{ab} and U_{ab}, respectively. Note that the sets W_{ab} and W_{ba} are disjoint and that $V(G) = W_{ab} \cup W_{ba}$ if G is bipartite and connected.

Two edges xy and uv are in the Djoković-Winkler relation Θ if

$$d_G(x, u) + d_G(y, v) \neq d_G(x, v) + d_G(y, u).$$

If G is bipartite, the edges xy and uv are in relation Θ if and only if $d_G(x, u) = d_G(y, v)$ and $d_G(x, v) = d_G(y, u)$. The relation Θ is clearly reflexive and symmetric.

Lemma 2.1. Let C be a convex set of a bipartite graph G. Then $C \subseteq W_{ab}$ for any edge $ab \in \partial_G(C)$ with $a \in C$.

Proof. Let $x \in C$ and $ab \in \partial_G(C)$ with $a \in C$. Suppose that $x \notin W_{ab}$. Then $b \in I_G(x, a)$, and thus $b \in C$ by the convexity of C, contrary to the fact that $ab \in \partial_G(C)$.

Remark 2.2. If G is bipartite, then, by [4] Lemma 11.2, the notation can be chosen so that the edges xy and uv are in relation Θ if and only if

$$d_G(x, u) = d_G(y, v) = d_G(x, v) - 1 = d_G(y, u) - 1,$$

or equivalently if and only if

$$y \in I_G(x, v) \text{ and } x \in I_G(y, u).$$

From now on, we will always use this way of defining the relation Θ. Note that, in this way, the edges xy and yx are not in relation Θ because $y \notin I_G(x, x)$ and $x \notin I_G(y, y)$. In other word, each time the relation Θ is used, the notation of an edge induces an orientation of this edge.
We recall the main characterizations of partial cubes, that is of isometric subgraphs of hypercubes (see [4]). Partial cubes are particular connected bipartite graphs.

Theorem 2.3. (Djoković [3, Theorem 1] and Winkler [11]) A connected bipartite graph \(G \) is a partial cube if and only if it has one of the following properties:

(i) For every edge \(ab \) of \(G \), the sets \(W_{ab} \) and \(W_{ba} \) are convex.

(ii) The relation \(\Theta \) is transitive.

It follows in particular that the half-spaces of a partial cube \(G \) are the sets \(W_{ab} \), \(ab \in E(G) \). Furthermore we can easily prove that the copoints of a partial cube are its half-spaces. The following technical lemma will be used later.

Lemma 2.4. Let \(G \) be a partial cube, \(F \) an isometric subgraph of \(G \), and \(ab \) an edge of \(F \). Then

- \(W_{ab}^F = W_{ab}^G \cap V(F) \) and \(W_{ba}^F = W_{ba}^G \cap V(F) \)
- \(U_{ab}^F \subseteq U_{ab}^G \cap V(F) \).

If moreover \(F \) is convex in \(G \), then

- \(U_{ab}^F = U_{ab}^G \cap V(F) \).

Proof. The first assertions are immediate consequences of the definitions of \(W_{ab} \) and \(U_{ab} \), and of the fact that \(F \) is isometric in \(G \). Assume now that \(F \) is convex in \(G \). Let \(x \in U_{ab}^G \cap V(F) \), and let \(y \) be the neighbor of \(x \) in \(U_{ba}^G \). Then \(y \in I_G(x,b) = I_F(x,b) \) since \(F \) is convex. Hence \(x \in U_{ab}^F \). Therefore \(U_{ab}^F \supseteq U_{ab}^G \cap V(F) \), and we are done by the above converse inclusion. \(\square \)

In the following lemma we list some well-known properties of partial cubes.

Lemma 2.5. Let \(G \) be a partial cube. We have the following properties:

(i) Each interval of \(G \) is finite and convex.

(ii) Each polytope of \(G \) is finite.

(iii) Let \(x, y \) be two vertices of \(G \), \(P \) an \((x,y)\)-geodesic and \(W \) an \((x,y)\)-path of \(G \). Then each edge of \(P \) is in relation \(\Theta \) with some edge of \(W \).

(iv) A path \(P \) in \(G \) is a geodesic if and only if no two distinct edges of \(P \) are \(\Theta \)-equivalent.

3 A characterization of partial cubes

Definition 3.1. A bipartite graph \(G \) is said to be \(\text{Att-convex} \) if for each copoint \(K \) of \(G \), the set \(\text{Att}(K) \) is convex.

We now state the main result of this section.

Theorem 3.2. A connected bipartite graph \(G \) is a partial cube if and only if it is \(\text{Att-convex} \).
To prove this theorem we will need several properties of expansions of a graph, a concept which was introduced by Mulder \[5\] to characterize median graphs and which was later generalized by Chepoi \[2\].

The cartesian product \(G_1 \square G_2\) of two graphs \(G_1\) and \(G_2\) is the graph with vertex set \(V(G_1) \times V(G_2)\), two vertices being adjacent if they have one coordinate adjacent and the other equal.

Definition 3.3. A pair \((V_0, V_1)\) of sets of vertices of a graph \(G\) is called a proper cover of \(G\) if it satisfies the following conditions:
- \(V_0 \cap V_1 \neq \emptyset\) and \(V_0 \cup V_1 = V(G)\);
- there is no edge between a vertex in \(V_0 - V_1\) and a vertex in \(V_1 - V_0\);
- \(G[V_0]\) and \(G[V_1]\) are isometric subgraphs of \(G\).

Definition 3.4. An expansion of a graph \(G\) with respect to a proper cover \((V_0, V_1)\) of \(G\) is the subgraph of \(G \square K_2\) induced by the vertex set \((V_0 \times \{0\}) \cup (V_1 \times \{1\})\) (where \(\{0, 1\}\) is the vertex set of \(K_2\)).

An expansion of a partial cube is a partial cube (see \[6\]). If \(G'\) is an expansion of a graph \(G\), then we say that \(G\) is a \(\Theta\)-contraction of \(G'\), because, as we can easily see, \(G\) is obtained from \(G'\) by contracting each element of some \(\Theta\)-class of edges of \(G'\). More precisely the natural surjection of \(G'\) onto \(G\) is a contraction, that is, an application which maps any two adjacent vertices to adjacent vertices or to a single vertex. A \(\Theta\)-contraction of a partial cube is a partial cube as well (see \[6\]).

In Lemmas 3.5–3.10, \(G\) will be a connected bipartite graph and \(G'\) an expansion of \(G\) with respect to a proper cover \((V_0, V_1)\) of \(G\). The following notation will be used.

- For \(i = 0, 1\) denote by \(\psi_i : V_i \rightarrow V(G')\) the natural injection \(\psi_i : x \mapsto (x, i), x \in V_i\), and let \(V'_i := \psi_i(V_i)\). Note that \(V'_0\) and \(V'_1\) are complementary half-spaces of \(G'\). It follows in particular that these sets are copoints of \(G'\).
- For any vertex \(x\) of \(G\) (resp. \(G'\)), denote by \(i(x)\) an element of \(\{0, 1\}\) such that \(x\) belongs to \(V_{i(x)}\) (resp. \(V'_{i(x)}\)). If \(x \in V(G')\) and also if \(x \in V(G) - (V_0 \cap V_1)\), then \(i(x)\) is unique; if \(x \in V_0 \cap V_1\) it may be 0 or 1.
- For \(A \subseteq V(G)\) put
 \[
 \psi(A) := \psi_0(A \cap V_0) \cup \psi_1(A \cap V_1).
 \]

Note that in the opposite direction we have that for any \(A' \subseteq V(G')\),

\[
\text{pr}(A') = \psi_0^{-1}(A' \cap V'_0) \cup \psi_1^{-1}(A' \cap V'_1),
\]

where \(\text{pr} : G \square K_2 \rightarrow G\) is the projection \((x, i) \mapsto x\).

The following lemma is a restatement with more precisions of \[7, Lemma 4.5\].

Lemma 3.5. Let \(G\) be a connected bipartite graph and \(G'\) an expansion of \(G\) with respect to a proper cover \((V_0, V_1)\) of \(G\), and let \(P = (x_0, \ldots, x_n)\) be a path in \(G\). We have the following properties:
Proof. We have
\[S \subseteq \psi(\text{pr}(S)) \subseteq \psi(\text{co}_{G'}(\text{pr}(S))). \]
By Corollary 3.6, \(\psi(\text{co}_{G'}(\text{pr}(S))) \) is convex in \(G' \). Hence \(\text{co}_{G'}(S) \subseteq \psi(\text{co}_{G'}(\text{pr}(S))). \) Therefore \(\text{pr}(\text{co}_{G'}(S)) \subseteq \psi(\text{co}_{G'}(\text{pr}(S))). \)

Lemma 3.8. Let \(K' \) be a convex set of \(G' \) which meets both \(V_0' \) and \(V_1' \). Then \(K := \text{pr}(K') \) is a convex set of \(G \).

Proof. Let \(u, v \in K \). If \(i(u) \neq i(v) \), then \(I_G(u, v) = \text{pr}(I_{G'}(u', v')) \) by Lemma 3.5 and hence \(I_G(u, v) \subseteq K \).

Now assume that \(i(u) = i(v) \), say \(i(u) = i(v) = 0 \). Let \(P = \langle x_0, \ldots, x_n \rangle \) be a \((u, v)\)-geodesic in \(G \) with \(x_0 = u \) and \(x_n = v \). In general, not all \(P \) is contained in \(G[V_0] \). Let \(0 = i_0 < i_1 < \ldots < i_{2p+1} = n \) be subscripts such that the segments \(P[x_{i_{2k}}, x_{i_{2k+1}}] \) are alternatively contained in \(G[V_0] \) and \(G[V_1] \). Thus \(x_{i_0}, \ldots, x_{i_{2p}} \in V_0 \cap V_1 \). Since \(G[V_0] \) is isometric in \(G \) there is an \((x_{i_{2k-1}}, x_{i_{2k+1}})\)-segment of \(P \) in \(G[V_0] \), \(h = 1, \ldots, p \). Replacing each \((x_{i_{2k-1}}, x_{i_{2k}})\)-segment of \(P \) by the corresponding \(P_h \) one obtains a new \((u, v)\)-geodesic \(P_0 \) with \(V(P_0) \subseteq V_0 \). Hence \(\psi_0(P_0) \) is a \((u', v')\)-geodesic in \(G' \), and therefore \(V(P_0) \subseteq K \).

It follows in particular that \(\psi_0(x_{i_k}) \in K' \cap V_0', k = 1, \ldots, 2p \). By hypothesis there exists a vertex \(w \in K' \cap V_1' \). From the construction of \(G' \) it then follows that \(y_k := \psi_1(x_{i_{2k}}) \in I_{G'}(\psi_0(x_{i_k}), w) \), and hence \(y_k \in K' \). Since \(G[V_1] \) is an isometric subgraph of \(G \) we deduce that \(\psi_1(P[x_{i_{2k-1}}, x_{i_{2k}}]) \) is a \((y_{2k-1}, y_{2k})\)-geodesic. Hence \(V(P[x_{i_{2k-1}}, x_{i_{2k}}]) \subseteq K \), and therefore \(V(P) \subseteq K \).
Lemma 3.9. If K' is a copoint of G' which meets both V'_0 and V'_1, then $K := \text{pr}(K')$ is a copoint of G such that $\text{Att}(K) = \text{pr}(\text{Att'}(K'))$ (where Att and Att' denote the sets of attaching points in G and G', respectively).

Proof. Let $u \in \text{Att}'(K')$ and abbreviate $i(u)$ by i. Thus $u \in V'_i$. By Lemma 3.8 K is a convex set of G. Moreover $x := \text{pr}(u) \notin K$. Suppose that K is not a copoint at x. Then G contains a convex set K_0 with $x \notin K_0$ and $K \subseteq K_0$. By Corollary 3.6, $\psi(K_0)$ is a convex set of G' which strictly contains K'. Hence $u \in \psi(K_0)$ because K' is a copoint at u, contrary to the fact that $x \notin K_0$. Consequently K is a copoint at x.

It follows that $\text{pr}(\text{Att'}(K')) \subseteq \text{Att}(K)$. On the other hand, by Lemma 3.8 $\text{pr}(\text{co}_{G'}(\{u\} \cup K'))$ is a convex set of G containing $\{x\} \cup K$. Hence $\text{Att}(K) \subseteq \text{pr}(\text{Att'}(K'))$.

Going from G to G' we have:

Lemma 3.10. If K is a copoint of G which meets $V_0 \cap V_1$, then $K' := \psi(K)$ is a copoint of G' such that $\text{Att'}(K') = \psi(\text{Att}(K))$.

Proof. Let $x \in \text{Att}(K)$. By Corollary 3.6 $\psi(K)$ is a convex set of G' such that $\psi_i(x)(x) \notin \psi(K)$. Let K' be a copoint of G' at $\psi_i(x)(x)$ which contains $\psi(K)$. Then $K' \cap V'_1 \neq \emptyset$ for $i = 0, 1$. By Lemma 3.9 $\text{pr}(K')$ is a copoint of G at x which contains K, and thus is equal to K. Hence $K' = \psi(K)$. Now $\text{Att'}(\psi(K)) \subseteq \psi(\text{Att}(K))$ by Lemma 3.9 and moreover $(u, 0), (u, 1) \in \psi(K)$ for each $u \in K \cap V_0 \cap V_1$. It follows that $\text{Att'}(\psi(K)) = \psi(\text{Att}(K))$.

Lemma 3.11. G is Att-convex if so is G'.

Proof. Assume that G' is Att-convex. Let K be a copoint of G. We will show that $\text{Att}(K)$ is convex. We distinguish two cases.

Case 1. $K \cap V_i = \emptyset$ for some $i \in \{0, 1\}$.

Say $i = 0$. Hence $K \subseteq V_1 - V_0$. Then $K = \psi(K)$ is convex in G' by Corollary 3.6. Let $A := \psi(\text{Att}(K))$. Then $K \cup A = \psi(\text{Att}(K))$, and thus $K \cup A$ is convex in G' by Corollary 6.6 since $K \cup \text{Att}(K)$ is convex in G.

Let $u \in A \cap V'_1$, $u' = \psi_1(u)$, and let K' be a copoint at u' in G' containing K or equal to K. Suppose that $K' \cap V'_0 \neq \emptyset$. Then, by Lemma 3.9 $\text{pr}(K')$ is a copoint at u in G with $K \subseteq K'$, contrary to the fact that K is a copoint at u. Therefore

$$K' \subseteq V'_1. \quad (1)$$

Suppose that $\text{Att'}(K') \cap V'_0 \neq \emptyset$. Then, because $K' \subseteq V'_1$ by (1) and since V'_1 is convex, there exists a vertex $x_0 \in \text{Att'}(K') \cap V'_0 \cap N_{G'}(K')$. Let x_1 be the neighbor of x_0 in V'_1. Then $x_1 \in K'_1$ and $x_1 \in I_{G'}(u', x_0)$ by Lemma 2.4, contrary to the fact that $\text{Att'}(K')$ is convex since G' is Att-convex by assumption. Therefore

$$\text{Att'}(K') \subseteq V'_1. \quad (2)$$
Suppose that \(A \cap K' \neq \emptyset \), and let \(x \in \text{Att}(K) \) be such that \(\psi_1(x) \in K' \). Because \(K \cup \text{Att}(K) = \text{co}_G(K \cup \{x\}) \) since \(K \) is a copoint at \(x \), it follows that \(u \in \text{co}_G(K \cup \{x\}) \). Hence \(u' \in \text{co}_G(K \cup \{\psi_1(x)\}) \) is \(K' \), contrary to the facts that \(K' \) is a copoint at \(u' \). Therefore

\[
A \cap V' \subseteq \text{Att}'(K').
\]

We distinguish two subcases.

Subcase 1.1. \((K \cup \text{Att}(K)) \cap V_0 = \emptyset\).

Then \(\text{Att}(K) = \text{pr}(A) = A \subseteq \text{Att}'(K') \) by (3). Hence \(\text{co}_G(\text{Att}(K)) \cap K = \emptyset \) since \(\text{Att}'(K') \) is convex and disjoint from \(K' \), and thus from \(K \). Therefore \(\text{Att}(K) \) is convex since so is \(K \cup \text{Att}(K) \).

Subcase 1.2. \((K \cup \text{Att}(K)) \cap V_0 \neq \emptyset\).

Then \(\text{Att}(K) \cap V_0 \cap V_1 \neq \emptyset \), and thus \(A \cap V_i' \neq \emptyset \) for \(i = 0, 1 \). The set \(A \cap V_0' \) is equal to \((K \cup A) \cap V_0'\), and the set \((K \cup A) \cap V_1'\) are convex since so are the sets \(K \cup A \). \(V_0' \) and \(V_1' \). By (3) and the fact that \(\text{Att}'(K') \) is convex since \(G' \) is \(\text{Att} \)-convex by assumption, we infer that \(\text{co}_G'(A \cap V_0') \subseteq \text{Att}'(K') \), and thus \(\text{co}_G'(A \cap V_0') \cap K = \emptyset \) since \(K' \subseteq K' \). Because \((K \cup A) \cap V_1' = K \cup (A \cap V_1')\) is convex, it follows that \(A \cap V_1' \) is also convex. Hence \(A \), which is equal to the union of the two convex sets \(A \cap V_0' \) and \(A \cap V_1' \), is convex by Lemma 3.5. Therefore \(\text{Att}(K) = \text{pr}(A) \) is convex by Lemma 8 since \(A \cap V_i' \neq \emptyset \) for \(i = 0, 1 \).

Case 2. \(K \cap V_0 \cap V_1 \neq \emptyset \).

By Lemma 3.10 \(K' := \psi(K) \) is a copoint of \(G' \) such that \(\text{Att}'(K') = \psi(\text{Att}(K)) \). The set \(\text{Att}'(K') \) is convex because \(G' \) is \text{Att}-convex by assumption. Furthermore \(K' \cap V_i' \neq \emptyset \) for \(i = 0, 1 \). Hence, by Lemma 3.9 \(\text{pr}(K') \) is a copoint of \(G \) such that \(\text{Att}(\text{pr}(K')) = \text{pr}(\text{Att}'(K')) \). Because \(\text{Att}(K) \subseteq \text{pr}(\text{Att}'(K')) \) and since \(K \) is a copoint, it follows that \(K = \text{pr}(K') \) and \(\text{Att}(K) = \text{pr}(\text{Att}'(K')) \).

If \(\text{Att}'(K') \cap V_i' \neq \emptyset \) for \(i = 0, 1 \), then \(\text{Att}(K) \) is convex by Lemma 3.5 since \(\text{Att}'(K') \) is convex. Suppose that \(\text{Att}'(K') \subseteq V_i' - V_{i-1}' \) for some \(i = 0 \) or \(1 \). Then \(\text{Att}(K) = \psi^{-1}(\text{Att}'(K')) \subseteq V_i' - V_{i-1}' \). It follows that \(\text{Att}(K) = \text{Att}'(K') \). Therefore \(\text{Att}(K) \) is convex since so is \(\text{Att}'(K') \).

Consequently \(G \) is \text{Att}-convex.

\[\square \]

Lemma 3.12. A bipartite graph \(G \) is a partial cube if and only if every polytope of \(G \) induces a partial cube.

Proof. We only have to prove the sufficiency. Let \(ab \) be an edge of \(G \), and let \(cd \) and \(ef \) be two other edges of \(G \) such that each of them is in relation \(\Theta \) with \(ab \). Then the polytope \(A := \text{co}_G(a, b, c, d, e, f) \) induces a partial cube \(F \) by hypothesis. Because \(F \) is a convex subgraph of \(G \), it follows that both the edges \(cd \) and \(ef \) are in relation \(\Theta \) with \(ab \) in \(F \). Because \(F \) is a partial cube, we infer from Theorem 2.3 that these edges are in relation \(\Theta \) in \(F \), and thus in \(G \). Consequently the relation \(\Theta \) in \(G \) is transitive, which proves that \(G \) is a partial cube by Theorem 2.3.

\[\square \]
Lemma 3.13. Any convex subgraph of an Att-convex graph is also Att-convex.

Proof. Let H be a convex subgraph of an Att-convex graph G, and let K be a copoint at a vertex x of H. Then K is convex in G, and thus it is contained in a copoint K' at x in G. Clearly $K = K' \cap V(H)$. Moreover $\text{Att}(K) \subseteq \text{Att}(K') \cap V(H)$. Because $V(H)$ and $\text{Att}(K')$ are convex in G, it follows that $\text{Att}(K)$ is contained in a convex subset of $V(H)$ which does not meet K. It follows that $\text{Att}(K)$ is convex because so is $K \cup \text{Att}(K)$.

Proof of Theorem 3.2 We only have to prove the sufficiency because of [9, Theorem 6.7] which in particular states that a connected bipartite graph G is a partial cube if and only if it is Att-convex and $N_G(K) \subseteq \text{Att}(K)$ for each copoint K of G.

Case 1. G is finite.

The proof will be by induction on the order of G. This is obvious if G has one or two vertices since K_1 and K_2 are hypercubes. Let $n \geq 2$. Suppose that every connected bipartite graph whose order is at most n and which is Att-convex is a partial cube. Let G be an Att-convex connected bipartite graph whose order is $n + 1$.

Because G is finite, there exists a copoint K of G which is maximal with respect to inclusion. Then $\text{Att}(K) = V(G) - K$, since otherwise there would exist a copoint at some vertex $x \not\in K \cup \text{Att}(K)$ strictly containing K, contrary to the maximality of K. Because G is Att-convex, $\text{Att}(K)$ is convex and thus K is a half-space. Therefore the edges in $\partial_G(K)$ are pairwise in relation Θ.

Let F be the graph obtained from G by identifying, for each edge between K and $V(G) - K$, the endvertices of this edge. Clearly G is an expansion of F. Note that F is a bipartite graph whose order is at most n, and that it is Att-convex by Lemma 3.11. Hence F is a partial cube by the induction hypothesis. Therefore G is also a partial cube by the properties of expansions.

Case 2. G is infinite.

We denote by \mathcal{C} the class of all Att-convex connected bipartite graphs whose vertex set is a polytope. Let $H \in \mathcal{C}$. A subset S of $V(H)$ such that $V(H) = \text{co}_H(S)$ is called a spanning set of H. We define:

$$d(S) := \sum_{x,y \in S} d_H(x,y)$$

$$d(H) := \min \{d(S) : S \text{ is a finite spanning set of } H\}.$$

Claim. Any $H \in \mathcal{C}$ is a finite partial cube.

We first prove by induction on $d(H)$ that any $H \in \mathcal{C}$ is finite. This is obvious if $d(H) = 0$ since $H = K_1$. Let n be a non-negative integer. Suppose that any $H \in \mathcal{C}$ such $d(H) \leq n$ is finite. Let $H \in \mathcal{C}$ be such that $d(H) = n + 1$, and let S be a finite spanning set of H such that $d(S) = d(H)$. By [10], $V(H)$ cannot be the union of a non-empty chain of proper convex subsets. Hence $V(H)$ contains a maximal convex subset K. Then K is a copoint of any element of $V(H) - K$, i.e. $\text{Att}(K) = V(H) - K$. It follows that K is a half-space since $\text{Att}(K)$ is
convex because H is Att-convex by hypothesis. Therefore the edges in $\partial_H(K)$ are pairwise in relation Θ.

Let F be the graph obtained from H by identifying, for each edge between K and $V(H) - K$, the endvertices of this edge. Clearly H is an expansion of F. By Lemma 3.11 F is Att-convex. Let S be a finite spanning set of H. By Lemma 3.7 we have

$$V(F) = \text{pr}(V(H)) = \text{pr}(\text{co}_H(S)) \subseteq \text{co}_F(\text{pr}(S)) \subseteq V(F).$$

Hence $V(F) = \text{co}_F(\text{pr}(S))$, i.e. $\text{pr}(S)$ is a finite spanning set of F. It follows that $F \in \mathcal{C}$. On the other hand, because S is a finite spanning set of H, and because K is a half-space, it follows that K and $V(H) - K$ have non-empty intersections with S. Therefore $d(F) \leq d(\text{pr}(S)) < d(S) = d(H) = n + 1$. Hence $d(F) \leq n$, and thus, by the induction hypothesis, F is finite. It follows that H, which is an expansion of F, is also finite.

H is then a finite connected bipartite graph which is Att-convex. We then deduce, by Case 1 of this proof, that H is a partial cube, which completes the proof of the claim.

Now, let G be an infinite Att-convex bipartite graph. By Lemma 3.13 each polytope of G is Att-convex, and thus is a partial cube by the above claim. Consequently G is itself a partial cube by Lemma 3.12.

Proposition 3.14. Let G be a connected bipartite graph. The following assertions are equivalent:

(i) G is a partial cube.

(ii) G is Att-convex.

(iii) For every convex subgraph F of G, any maximal proper convex subset of $V(F)$ is a half-space of F.

Proof. (i) \Rightarrow (iii): Let F be a convex subgraph of a partial cube G. Then F itself is a partial cube. Let K be a maximal proper convex subset of $V(F)$. Then $K = W_{ab}$ for some edge $ab \in \partial_F(K)$ with $a \in K$. Hence $V(F) - K = W_{ba}$, which proves that K is a half-space of F by Theorem 2.3.

(iii) \Rightarrow (ii): Assume that G satisfies (iii), and let K be a copoint of G. Then $X := K \cup \text{Att}(K)$ is convex, and K is a maximal proper convex subset of X. Hence K is a half-space of $G[X]$ by (iii). Therefore $\text{Att}(K)$ is convex in $G[X]$, and thus in G.

(ii) \iff (i) is Theorem 3.2.

4 Partial cubes with pre-hull number at most 1

We begin by recalling some definitions and results from [9]. In that paper we introduced and studied the concept of pre-hull number of a convexity. We recall its definition in the particular case of the geodesic convexity of a graph.
Definition 4.1. Let G be a graph. The least non-negative integer n (if it exists) such that $\text{co}_G(C \cup \{x\}) = \mathcal{I}_G^n(C \cup \{x\})$ for each vertex x of G and each copoint C at x, is called the pre-hull number of a graph G and is denoted by $\text{ph}(G)$. If there is no such n we put $\text{ph}(G) := \infty$.

Proposition 4.2. (Polat and Sabidussi [9, Corollary 3.8]) The pre-hull number of a connected bipartite graph G is zero if and only if G is a tree.

Definition 4.3. (Polat and Sabidussi [9, Definition 7.1]) Call a set A of vertices of a graph G ph-stable if any two vertices $u, v \in \mathcal{I}_G(A)$ lie on a geodesic joining two vertices in A.

The condition of Definition 4.3 which is symmetric in u and v, can be replaced by the formally “one-sided” condition: for any two vertices $u, v \in \mathcal{I}_G(A)$ there is a $w \in A$ such that $v \subseteq \mathcal{I}_G(u, w)$.

Proposition 4.4. (Polat and Sabidussi [9, Theorem 7.4]) Let G be a bipartite graph. Then $\text{ph}(G) \leq 1$ if and only if, for every copoint K of G, the set $\text{Att}(K)$ is convex and $\mathcal{N}_G(K) \cap \text{Att}(K)$ is ph-stable.

The following result follows immediately from the above proposition.

Proposition 4.5. (Polat and Sabidussi [9, Theorem 7.5]) Let G be a partial cube. Then $\text{ph}(G) \leq 1$ if and only if U_{ab} and U_{ba} are ph-stable for every edge ab of G.

From Theorem 3.2 and Proposition 4.4 we infer the second main result of this paper.

Theorem 4.6. Any connected bipartite graph G such that $\text{ph}(G) \leq 1$ is a partial cube.

Note that a bipartite graph whose pre-hull number is greater than 1 may or may not be a partial cube. For example, 2 is the pre-hull number of both $K_{2,3}$, which is the smallest connected bipartite graph which is not a partial cube, and of the partial cube Q_5^- (i.e. the 3-cube Q_3 minus a vertex). A lot of well-known partial cubes have a pre-hull number equal to 1: median graphs, benzenoid graphs, cellular bipartite graphs and more generally netlike partial cubes.

We will now study some properties of partial cubes whose pre-hull number is at most 1, with in particular the closure of the class of these graphs under usual operations of partial cubes.

Proposition 4.7. Let G be a partial cube such that any finite subgraph of G is contained in a finite convex subgraph of G whose pre-hull number is at most 1. Then $\text{ph}(G) \leq 1$.

Proof. Let $ab \in E(G)$ and $u, v \in \mathcal{I}_G(U_{ab})$. Let P_u and P_v be geodesics joining vertices in U_{ab} on which lie u and v, respectively. Then $(a, b) \cup P_u \cup P_v$ is contained in a finite convex subgraph F of G such that $\text{ph}(G) \leq 1$. The set U_{ab}^F is ph-stable since $\text{ph}(F) \leq 1$, and thus u, v lie on an (x, y)-geodesic R for some
Figure 1: $M_{4,1}$ with a copy of Q_3^- as a convex subgraph.

As was shown in [9, Remark 8.1], the class of all partial cubes whose pre-hull number is at most 1 is not closed under convex subgraphs. The graph $M_{n,1}$, $n \geq 4$, i.e. the cube Q_n from which a pair of antipodal vertices has been removed, has a pre-hull number equal to 1. On the other hand $M_{n,1}$ contains copies of Q_{n-1}^- (the cube Q_{n-1} with only one vertex deleted) as convex subgraphs (see Figure 1 for $n = 4$, where Q_3^- is depicted by the big points and the thick lines), and $\text{ph}(Q_{n-1}) = 2$ by [9, Theorem 5.8]. It was also shown in [8, Remark 3.3] that Q_3^- is a retract of $M_{1,1}$, which proves that the class of all partial cubes whose pre-hull number is at most 1 is not closed under retracts. However, we will see that it is closed under gated subgraphs.

A set A of vertices of a graph G is said to be gated if, for each $x \in V(G)$, there exists a vertex y (the gate of x) in A such that $y \in I_G(x,z)$ for every $z \in A$. Any gated set is convex. Moreover the set of gated sets of a graph with the addition of the empty set is a convexity, and thus is closed under any intersections. We will say that a subgraph of a graph G is gated if its vertex set is gated.

Lemma 4.8. Let G be a partial cube, F a gated subgraph of G, and ab an edge of F. Then the gate in F of any $x \in U_{ab}^G$ belongs to U_{ab}^F.

Proof. This is trivial if $x \in V(F)$. Assume that $x \in V(G - F)$, and let y be the neighbor of x in U_{ba}^G. Clearly, by Lemma 3.4

\begin{align*}
W_{ab}^F &\subseteq W_{ab}^G \quad \text{and} \quad W_{ba}^F \subseteq W_{ba}^G \\
U_{ab}^F &\subseteq U_{ab}^G \quad \text{and} \quad U_{ba}^F \subseteq U_{ba}^G
\end{align*}

since F is convex in G.

\end{proof}
Denote by \(g(x) \) and \(g(y) \) the gates in \(F \) of \(x \) and \(y \), respectively. Then \(g(x) \in I_G(x,a) \) and \(g(y) \in I_G(y,b) \). Hence \(g(x) \in W^F_{ab} \) and \(g(y) \in W^F_{ba} \). On the other hand, \(g(x) \in I_G(x,g((y))) \) and \(g(y) \in I_G(y,g(x)) \). It easily follows that the vertices \(g(x) \) and \(g(y) \) are adjacent. Therefore \(g(x) \in U^F_{ab} \) and \(g(y) \in U^F_{ba} \).

\[\square\]

Theorem 4.9. Let \(F \) be a gated subgraph of a partial cube \(G \) such that \(ph(G) \leq 1 \). Then \(ph(F) \leq 1 \).

Proof. Let \(u \) be an edge of \(F \). By Lemma 4.6, we have \(U^F_{ab} \subseteq U^G_{ab} \) and \(U^F_{ba} \subseteq U^G_{ba} \) since \(F \) is convex in \(G \). We will show that \(U^F_{ab} \) is \(ph \)-stable.

Let \(x, y \in I_F(U^F_{ab}) \). Because \(I_F(U^F_{ab}) \subseteq I_G(U^G_{ab}) \), and since \(U^G_{ab} \) is \(ph \)-stable by Proposition 4.5, it follows that \(y \in I_G(x,z) \) for some \(z \in U^G_{ab} \). By Lemma 4.8, the gate \(g(z) \) of \(z \) in \(F \) belongs to \(U^F_{ab} \). Moreover \(y \in I_F(x,g(z)) \) since \(g(z) \in I_G(y,z) \). Consequently \(U^F_{ab} \) is \(ph \)-stable.

In the same way we can prove that \(U^F_{ba} \) is \(ph \)-stable. We infer that \(ph(F) \leq 1 \) from Proposition 4.5.

We recall that a graph \(G \) is the *gated amalgam* of two graphs \(G_0 \) and \(G_1 \) if \(G_0 \) and \(G_1 \) are isomorphic to two intersecting gated subgraphs \(G_0' \) and \(G_1' \) of \(G \) whose union is \(G \). More precisely we also say that \(G \) is the gated amalgam of \(G_0 \) and \(G_1 \) *along* \(G_0' \cap G_1' \). The gated amalgam of two partial cubes is clearly a partial cube.

Theorem 4.10. Let \(G \) be the gated amalgam of two partial cubes \(G_0 \) and \(G_1 \). Then \(ph(G) \leq 1 \) if and only if \(ph(G_i) \leq 1 \) for \(i = 0, 1 \).

Proof. The necessity is clear by Theorem 4.9 since \(G_0 \) and \(G_1 \) are isomorphic to two gated subgraphs of \(G \). Conversely, assume that \(G = G_0 \cup G_1 \) where, for \(i = 0, 1 \), \(G_i \) is a gated subgraph of \(G \) such that \(ph(G_i) \leq 1 \). The subgraph \(G_01 := G_0 \cap G_1 \) is also gated in \(G \) as an intersection of gated subgraphs. Let \(u \) be an edge of \(G \). We will show that \(U^G_{ab} \) is \(ph \)-stable. We distinguish two cases.

Case 1. \(U^G_{ab} = U^{G_i}_{ab} \) for some \(i = 0 \) or 1.

Then \(U^G_{ab} \) is \(ph \)-stable since it is \(ph \)-stable by Proposition 4.5.

Case 2. \(U^G_{ab} \neq U^{G_i}_{ab} \) for \(i = 0, 1 \).

Then, for \(i = 0, 1 \), \(G_i \) has an edge which is \(\Theta \)-equivalent to \(u \). Hence \(G_01 \), which is gated in \(G \), also has an edge \(\Theta \)-equivalent to \(u \). Then, without loss of generality, we can suppose that \(ab \in E(G_01) \). For any \(x \in V(G) \) and \(i = 0, 1 \), we denote by \(g_i(x) \) the gate of \(x \) in \(G_i \). Clearly

\[W^G_{ab} = W^G_{ab0} \cup W^G_{ab1} \quad \text{and} \quad W^G_{ba} = W^G_{ba0} \cup W^G_{ba1} \quad (4) \]

\[U^G_{ab} = U^G_{ab0} \cup U^G_{ab1} \quad \text{and} \quad U^G_{ba} = U^G_{ba0} \cup U^G_{ba1} \quad (5) \]

\[I_G(U^G_{ab0}) \cup I_G(U^G_{ab1}) \subseteq I_G(U^G_{ab}) \quad (6) \]

Let \(u, v \in I_G(U^G_{ab}) \). If \(u, v \in I_G(U^G_{ab_i}) \) for some \(i = 0 \) or 1, then \(v \in I_G(u,w) \) for some \(w \in U_G(ab) \). Hence we are done because \(v \in I_G(u,w) \) by Lemma 3.4 and \(w \in U_G(ab) \) by 3.3.
Suppose that \(u \in V(G_0) - V(G_1) \) and \(v \in V(G_1) - V(G_0) \). We first show that \(u \in I_{G_0}(U_{ab}^{G_0}) \). Because \(u \in V(G_0) - V(G_1) \), we can suppose that \(u \in I_G(x,y) \) for some \(x \in U_{ab}^{G_0} \) and \(y \in U_{ab}^{G_1} \). Then \(g_0(y) \in U_{ab}^{G_0} \) by Lemma 4.8 and thus \(u \in I_{G_0}(x,g_0(y)) \) since \(g_0(y) \in I_{G_0}(u,y) \). It follows that \(g_1(u) \in I_{G_1}(g_1(x),g_0(y)) \subseteq I_{G_1}(U_{ab}^{G_1}) \). Analogously \(v \in I_{G_1}(U_{ab}^{G_1}) \). Hence \(v \in I_{G_1}(g_1(u),w) \) for some \(w \in U_{ab}^{G_1} \) because \(U_{ab}^{G_1} \) is ph-stable by Proposition 4.5. We infer that \(v \in I_G(u,w) \), which proves that \(U_{ab}^{G_1} \) is ph-stable.

In the same way we can prove that \(U_{ba}^{G_1} \) is ph-stable. Consequently \(ph(G) \leq 1 \) by Proposition 4.5.

We recall below three well-known properties of the cartesian product that we will use in the proof of the next theorem. The cartesian product of two partial cubes is clearly a partial cube.

Proposition 4.11. Let \(G = G_0 \square G_1 \) be the cartesian product of two connected graphs. We have the following properties:

- Distance Property: \(d_G(x,y) = d_{G_0}(pr_0(x),pr_0(y)) + d_{G_1}(pr_1(x),pr_1(y)) \) for any \(x, y \in V(G) \).
- Interval Property: \(I_G(x,y) = I_{G_0}(pr_0(x),pr_0(y)) \times I_{G_1}(pr_1(x),pr_1(y)) \) for any \(x, y \in V(G) \).
- Convex Subgraph Property: A subgraph \(F \) of \(G \) is convex if and only if \(F = pr_0(F) \square pr_1(F) \), where both \(pr_0(F) \) and \(pr_1(F) \) are convex.

Theorem 4.12. Let \(G = G_0 \square G_1 \) be the cartesian product of two partial cubes \(G_0 \) and \(G_1 \). Then \(ph(G) \leq 1 \) if and only if \(ph(G_i) \leq 1 \) for \(i = 0, 1 \).

Proof. Assume that \(ph(G) \leq 1 \). Let \(F_i \) be a \(G_i \)-fiber of \(G \) for some \(i = 0 \) or 1. Then \(F_i \) is a gated subgraph of \(G \). Indeed, by the Distance Property of the cartesian product, the projection onto \(F_i \) of any vertex \(x \) of \(G \) is the gate of \(x \) in \(F_i \). Therefore, by Theorem 4.9 \(F_i \), and thus \(G_i \), has a pre-hull number which is at most 1.

Conversely, assume that \(ph(G_i) \leq 1 \) for \(i = 0, 1 \). For any \(x \in V(G) \), we denote by \(x_0 \) and \(x_1 \) the projections of \(x \) onto \(G_0 \) and \(G_1 \), respectively, i.e. \(x = (x_0,x_1) \). Let \(ab \in E(G) \). Then \(a_i = b_i \) for exactly one \(i \), say \(i = 1 \). We will show that \(U_{ab}^{G} \) is ph-stable.

Clearly, for any \(cd \) of \(G \) is \(\Theta \)-equivalent to \(ab \) if and only if \(c_1 = d_1 \\) and \(c_0 d_0 \) is \(\Theta \)-equivalent to \(a_0 b_0 \). Hence

\[
U_{ab}^G = U_{a_0b_0}^{G_0} \times V(G_1). \tag{7}
\]

Let \(u, v \in I_G(U_{ab}^G) \). By the Interval Property of the cartesian product, \(u_0, v_0 \in I_{G_0}(U_{ab}^{G_0}) \). Then, because \(U_{a_0b_0}^{G_0} \) is ph-stable by Proposition 4.5, it follows that \(v_0 \in I_{G_0}(u_0,w_0) \) for some \(w_0 \in U_{a_0b_0}^{G_0} \). In the case where \(u_0 = v_0 \), we can choose \(w_0 \) as any element of \(U_{a_0b_0}^{G_0} \). Let \(w := (w_0,v_1) \). Then \(w \in U_{ab}^G \) by (7), and \(v \in I_G(u,w) \) by the Distance Property of the cartesian product. This proves that \(U_{ab}^{G_1} \) is ph-stable.

In the same way we can prove that \(U_{ba}^{G_1} \) is ph-stable. Consequently \(ph(G) \leq 1 \) by Proposition 4.5. \qed
From the above theorems we infer the following result:

Corollary 4.13. The class of all partial cubes whose pre-hull number is at most 1 is closed under gated subgraphs, gated amalgams and cartesian products.

References

[1] H.-J. Bandelt, Characterizing median graphs, manuscript, 1982.

[2] V. Chepoi, d-Convexity and isometric subgraphs of Hamming graphs, Cybernetics 34 (1988), 6–11.

[3] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory. Ser. B 14 (1973), 263–267.

[4] R. Hammack, W. Imrich and S. Klavžar, “Handbook of Product Graphs”, Second Edition, CRC Press (2011).

[5] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978), 197–204.

[6] S. Ovchinnikov, Partial cubes: structures, characterizations, and constructions, Discrete Math. 308 (2008), 5597–5621.

[7] N. Polat, Netlike partial cubes I. General properties, Discrete Math. (2007) 307 (2007), 2704–2722.

[8] N. Polat, Netlike partial cubes II. Retracts and netlike subgraphs, Discrete Math. 309 (2009), 1986–1998.

[9] N. Polat and G. Sabidussi, On the geodesic pre-hull number of a graph, European J. Combin. 30 (2009), 1205–1220.

[10] M. van de Vel, “Theory of Convex Structures”, North-Holland, Amsterdam (1993).

[11] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984), 221–225.