Paleohistology of the crocodyliform *Mariliasuchus amarali* Carvalho & Bertini, 1999 (Mesoeucrocodylia, Notosuchia) based on a new specimen from the Upper Cretaceous of Brazil

Mariana Valéria de Araújo SENA, Rafael Cesar Lima Pedroso de ANDRADE, Luciana Barbosa de CARVALHO, Sergio Alex Kugland de AZEVEDO, Juliana Manso SAYÃO & Gustavo Ribeiro OLIVEIRA
Paleohistology of the crocodyliform *Mariliasuchus amarali* Carvalho & Bertini, 1999 (Mesoeucrocodylia, Notochurica) based on a new specimen from the Upper Cretaceous of Brazil

Mariana Valéria de Araújo SENA
Laboratório de Paleontologia da URCA-LPU, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri, Rua Carolino Sucupira – Pimenta, Crato, Ceará 63105-010 (Brazil)
and Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Centre de recherche en paléontologie — Paris (CR2P, UMR 7207), 4 Place Jussieu, Paris, BC 104, 75005 (France)
mari.araujo.sena@gmail.com (corresponding author)

Rafael Cesar Lima Pedroso de ANDRADE
Laboratório de Paleontologia da URCA-LPU, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri, Rua Carolino Sucupira – Pimenta, Crato, Ceará 63105-010 (Brazil)
rafaclpa@gmail.com

Luciana Barbosa de CARVALHO
Sergio Alex Kugland de AZEVEDO
Departamento de Geologia e Paleontologia, Universidade Federal do Rio de Janeiro, Museu Nacional, Quinta da Boa Vista, s/nº, São Cristóvão, Rio de Janeiro, 20940-040 (Brazil)
lucbc@acd.ufrj.br
sazevedo@mn.ufrj.br

Juliana Manso SAYÃO
Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/nº, São Cristóvão, Rio de Janeiro, Rio de Janeiro, 20370-078 (Brazil)
jmsayao.prof@gmail.com

Gustavo Ribeiro OLIVEIRA
Laboratório de Paleontologia e Sistemática (LAPASI), Departamento de Biologia, Universidade Federal Rural de Pernambuco. Rua Dom Manoel de Medeiros, s/nº, Dois Irmãos, Recife, Pernambuco, 52171-900 (Brazil)
gustavoliveira@gmail.com

Submitted on 30 October 2019 | Accepted on 20 January 2021 | Published on 5 May 2022

ABSTRACT

Mariliasuchus amarali Carvalho & Bertini, 1999 was a terrestrial quadruped crocodyliform from the Late Cretaceous of the Bauru Group, Brazil. In this paper we present the first study of the bone
INTRODUCTION

Archosauromorpha, a group of diapsids that are more closely related to birds and crocodylians than to squamates, has one of the most diverse fossil records within the Sauropsida. It radiated during the Triassic and gave rise to the crown group, Archosauria. Archosaurs diverged into two lineages, the Pseudosuchia (Crocodyliformes and relatives) and the Ornithodira (pterosaurs and dinosaurs, including birds) (Nesbitt 2011; Ezcurra 2016).

The Notosuchia were a diverse clade of crocodyliforms that thrived during the Cretaceous and whose remarkable diversity is mainly represented by the Neuquén Basin, Argentina (e.g. Pol & Laredi 2015; Laredi et al. 2018) and the Bauru Group, Brazil (e.g. Marinho & Carvalho 2009; Campos et al. 2011; Pol et al. 2014). Our knowledge of the early members of the Mesoeucrocodilia (sensu stricto Benton & Clark 1988) has been largely derived from notosuchian records in Africa and South America (Ortega et al. 2000). In Brazil, the Bauru Group has yielded a diverse notosuchian fauna, with more than 30 species reported (Iori & Campos 2016; Iori et al. 2016; Martinelli et al. 2018).

Mariliasuchus Carvalho & Bertini, 1999 belongs to the advanced notosuchians, a group of heterodont crocodyliforms found in the South American landmasses during the Cretaceous (Pol et al. 2014). The genus consisted of two species: Mariliasuchus amarali Carvalho & Bertini, 1999 and Mariliasuchus robustus Nobre, Carvalho, Vasconcellos & Nava, 2007, both from Marília County, Adamantina Formation, Bauru Group (Brusatte et al. 2017). This formation is stratigraphic unit that dates from the Campanian-Maastrichtian and its paleoenvironment is classified as a warm semiarid system (Zaher et al. 2006; Andrade & Bertini 2008; Fernandes & Ribeiro 2015). Mariliasuchus amarali was a small-bodied notosuchian (Augusta & Zaher 2019) from this ecosystem. The species is considered terrestrial due to the presence of a short skull, lateral orbits, frontal external nares, and long, robust limbs indicating a quadrupedal posture (Vasconcellos & Carvalho 2005). Mariliasuchus amarali is characterized by anatomical features, such as the presence of four premaxillary teeth and fore-af jaw movements (Pol et al. 2014). Additionally, Notosuchus terrestris Woodward, 1896 (Santonian, Neuquén group) and Mariliasuchus share more advanced traits such as the presence of quadrate and maxillo-palatine fenestrae (Andrade & Bertini 2008).

To date, several paleohistological studies on both extinct and extant taxa have been published that elucidate growth strategies in archosauromorphs (Veiga et al. 2019), thermomtabolism (Legendre et al. 2016) and lifestyle (Ponce et al. 2017). In this study, we describe the osteohistology of the Archosauromorpha using the bones of Mariliasuchus amarali to compare growth strategies and lifestyle to other archosauromorphs taxa.

GEOLOGICAL SETTING

Mariliasuchus amarali UFRPE 5311 remains were collected in an outcrop of the Adamantina Formation on the right margin of the Água Formosa Creek, 10 km south of the Marília County. It is located 500 m from the secondary road between Marília and Ocaçu counties in the state of São Paulo, Brazil (Fernandes & Coimbra 2000; Brusatte et al. 2017). The age of this formation is uncertain, however, has been dated to late Campanian-early Maastrichtian ages (Santucci & Arruda-Campos 2011; Brusatte et al. 2017; Batezelli et al. 2018). The outcrops cover a broad range of the western part of the São Paulo and Minas Gerais states.
This formation overlaps the basalts of the Serra Geral Group which represents a significant volcanic event consequential of the separation of South America and Africa during the Early Cretaceous (Renne et al. 1992). The Adamantina Formation presents at its base reddish mudstone and sandstone layers intercalated on planar-parallel bedding. The desert lithologies decrease upwards through the formation and the lacustrine and fluvial clays and massive sandstones begin to appear in the middle-to-upper portion of the unit deposited in warm and humid conditions, with carbonatic nodules and root marks (Marsola et al. 2016; Brusatte et al. 2017). The specimen herein was found in a semi-arid paleoenvironment with a fluvial distributary system.

MATERIAL AND METHODS

MATERIAL

UFRPE 5311 is composed of the humerus, ulna, and radius from the right forelimb and three ribs (Fig. 1). These elements were assigned to Mariliasuchus amarali by association with other complete specimens that were diagnosed as M. amarali using cranial and post-cranial morphology. The specimen is housed in the paleontological collection at the Universidade Federal Rural de Pernambuco (UFRPE), Brazil. Osteohistological terminology follows Francillon-Vieillot et al. (1990) and Enlow (1969).

SAMPLING METHODS

Samples of 0.5 cm in thickness were removed from the diaphysis of each element, in order to prepare the histological slides. Thin sections were prepared at the Laboratório de Paleobiologia e Microestrutura, Centro Acadêmico de Vitória of the Universidade Federal de Pernambuco (CAV/UFPE) and at the Laboratório de Paleontologia e Sistemática of the Universidade Federal Rural de Pernambuco (LAPASI/UFRPE). The specimens were hand-measured and photographed as per protocols proposed by Lamm (2013). Thin sections were then prepared using standard fossil histology techniques (Chinsamy & Raath 1992; Lamm 2013). Samples were embedded in clear epoxy resin Resapol T-208, catalyzed with Butanox M50, and cut with a diamond-tipped blade mounted on a saw. The mounting-side of the sections was wet-ground using a metallographic polishing machine (Aropol-E, ArotecLtda) with Arotec abrasive sandpapers of increasing grit size (60/P60, 120/P120, 320/P400, 1200/P2500) until a 60 μm thick section was reached.

IMAGE ANALYSIS

Thin sections were observed under normal light and cross-polarized light with lambda compensator using two optical microscopes. Images were obtained from an AxioCam digital sight camera (Zeiss Inc., Barcelona, Spain) mounted to an Axio Imager.M2 (Zeiss Inc. Barcelona, Spain) and an Olympus BX51 (Olympus Corporation, Tokyo, Japan), mounted to an Olympus DP26 (Olympus Corporation, Tokyo, Japan). The images were taken at CAV/UFPE and Laboratório de Gemo-

ABBREVIATIONS

CCCB compacted coarse cancellous bone;
CGM cyclical growth marks;
EFS external fundamental system;
LAG line of arrested growth.

Repository and institutional abbreviation

UFRPE Universidade Federal Rural de Pernambuco, Recife.
TABLE 1. — Bone histology of some Archosauromorpha taxa shows different growth patterns related to their lifestyle and posture.

Archosauromorpha species	Posture and lifestyle	Growth pattern and bone tissues	Studies
Vancleavea campi Long & Murry, 1995 (Triassic)	Quadruped aquatic	Slow growth rate – lamellar-zonal bone	Nesbitt et al. 2009; Ponce et al. 2017
Trilophosaurus buettneri Case, 1928 (Triassic)	Quadruped terrestrial		
Steneosaurus Geoffroy, 1825 (Jurassic)	Quadruped marine		
Susisuchus anatoceps Salisbury, Frey, Martill & Buchy, 2003 (Cretaceous)	Quadruped semi-aquatic		
Pepesuchus diegae Campos, Oliveira, Figueiredo, Riff, Azevedo, Carvalho & Kellner, 2011 (Cretaceous)	Quadruped terrestrial		
Iberosuchus macrodon Antunes, 1975 (Eocene)	Quadruped semi-aquatic		
Recent crocodylian, Alligator mississippiensis Daudin, 1802	Quadruped semi-aquatic		
Aenigmastropheus parringtoni Ezcurra, Scheyer & Butler, 2014 (Permian)	Quadruped terrestrial		
Terrestrisuchus Crush, 1984 (Triassic)	Quadruped terrestrial		
Proterosuchus Broom, 1903 (Triassic)	Quadruped terrestrial		
Stenauorhynchus stockleyi/ Haughton, 1932 (Triassic)	Quadruped semi-aquatic		
Pepesuchus diegae	Quadruped semi-aquatic	Alternate fast and moderate growth rates	Sena et al. 2018 Company & Pereira-Suberbiola 2017
Acrodon sp. Buscalioni, Ortega & Vasse, 1997 (Cretaceous)	Quadruped semi-aquatic		
Extinct and recent Caimaninae			
Alligator mississippiensis			
Sacisaurus agudoensis Ferigolo & Langer, 2007 (Triassic)	Biped terrestrial	Unceasing fast growth composed of uninterrupted fibrolamellar	Ferigolo & Langer 2007; Grinham et al. 2019; Veiga et al. 2019
Erythrosuchus Broom, 1905 (Triassic)	Quadruped terrestrial		
Lewisuchus admixtus Romer, 1972 (Triassic)	Quadruped terrestrial		
Lesothosaurus Galton, 1978 (Jurassic)	Biped terrestrial		

RESULTS

RIB

Some remodeling processes in the perimedullary and medullary regions were observed, forming cancellous bone which is highlighted by trabeculae and resorption cavities (Fig. 2A, B). Cross-sections have a high level of bone compactness (0.89) with the cortical thickness of approximately 0.9 mm. The cortex is composed of parallel-fibered bone tissue interrupted by four single lines of arrested growth (LAGs) and one double LAG (Fig. 2B). These growth marks become closely spaced toward the periosteal margin (Fig. 2C, E) and these lines divide the cortex into five distinct growth zones, the third being the largest (Fig. 2E). The periosteal cortex shows simple vascular canals and primary osteons, but scattered secondary osteons are also present (Fig. 2D).

HUMERUS

The medullary cavity was infilled with iron oxides during the fossil diagenetic processes (Fig. 3A), also as this bone is fragmented compactness (0.58) must be underrated. Most of the endosteal region shows primary bone with no trace of remodeling (Fig. 3D). The primary bone (cortical thickness approximately 5 mm) appears to be a combination of lamellar and parallel-fibered bone tissue (Fig. 3B). The parallel-fibered bone tissue is highly vascularized and shows longitudinally oriented primary osteons and primary reticular canals branch up to the external bone surface (Fig. 3E).

In the mid-cortex, at least three LAGs are observed (Fig. 3F). The osteocyte lacunae exhibit either flat or globular shapes that are randomly spread out. Towards the outer margin, some Sharpey’s fibers and four LAGs are visible in the outer cortex (Fig. 3C).

ULNA

The ulna contains iron oxides and some cracks derived from taphonomic processes (Fig. 4A). Bone remodeling is visible in the endosteal layer (Fig. 4B, C) and the cortical thickness is approximately 4 mm with a bone compactness of 0.88. This cortex exhibits a poorly organized parallel-fibered arrangement and contains at least five LAGs and the woven bone matrix is visible in some portions (Fig. 4D, E). The vascularization pattern is composed of longitudi-
dinally-oriented vascular canals (Fig. 4D) which become radially-oriented toward the external bone surface (Fig. 4E). In the lamellar matrix osteocyte lacunae have a flat aspect distributed in concentric rows.

RADIUS

Remarkably this radius, found in articulation with the previously described humerus and ulna, exhibited a sharply different pattern in bone microstructure. Medullary cavity in the radius is infilled with spongy bone (Fig. 5A) and the cancellous bone is composed of resorption cavities surrounded by thin lamellar bone tissue (Fig. 5B). In the endosteal region, compacted coarse cancellous bone (CCCB) is constituted of sinuous convolutions of lamellae (Fig. 5C). A scalloped and conspicuous resorption line marks the boundary between the compacted coarse

Fig. 2. — Transverse histological sections: A, B, microanatomical overview of the rib of *Mariliasuchus amarali* Carvalho & Bertini, 1999 UFRPE 5311; C, close-up of A, showing typical features of the cortex of the rib: parallel-fibered tissue and LAGs; D, close-up of A, the medullary region is marked by secondary trabeculae, resorption cavities and a secondary osteon; E, close-up of A, showing five distinct growth zones separated by LAGs in the cortex, the third zone is the largest. Abbreviations: MC, medullary cavity; PO, primary osteon; RC, resorption cavity; SO, secondary osteon; SVC, simple vascular canal; Tr, trabecula. The white arrows correspond to LAGs. Images: normal transmitted light (A, C and D) and cross polarized light with lambda compensator (B). Scale bars: A, B, 1 mm; C, 100 μm; D, E, 200 μm.
FIG. 3. — A-D, Transverse histological sections: A, microanatomical overview of the humerus of Mariliasuchus amarali Carvalho & Bertini, 1999 UFRPE 5311; B, close-up of A, showing the limit between parallel-fibered bone and lamellar bone; C, close-up of A, showing Sharpey’s fibers on the periosteal surface; D, close-up of A, showing parallel-fibered bone filling endostal region near medullary cavity; E, close-up of A, showing simple vascular canals in the outer cortex; F, close-up of A, showing LAGs in the mid-cortex. Abbreviations: LB, lamellar bone; MC, medullary cavity; PFB, parallel-fibered bone; PO, primary osteon; RVC, reticular vascular canal; ShF, Sharpey’s fibers; SVC, simple vascular canal. The white arrows correspond to LAGs. Images: normal transmitted light (A-C) and cross polarized light with lambda compensator (D and F). Scale bars: A, 1 mm; B, D, F, 200 μm; C, 100 μm; E, 5 μm.
Paleohistology of the crocodyliform *Mariliasuchus amarali*

Fig. 4. — **A, B**, Transverse histological sections: **A**, microanatomical overview of the ulna of *Mariliasuchus amarali* Carvalho & Bertini, 1999 UFRPE 5311; **B, C**, close-up of **A**, showing lamellar bone surrounding the medullary cavity; **D**, close-up of **A**, showing most of the endosteal cortex formed by woven bone; **E**, close-up of **A**, showing radial vascular canals toward the bone periphery; **F**, close-up of **A**, showing lines of growth arrested interrupting the bone deposition. Abbreviations: **EL**, endosteal lamellae; **LVC**, longitudinal vascular canal; **MC**, medullary cavity; **PFB**, parallel-fibered bone; **RVC**, radial vascular canal; **yellow arrows**, resorption line; **WB**, woven bone. The **white arrows** correspond to LAGs. Images: normal transmitted light (**A, B, D and E**) and cross polarized light with lambda compensator (**C and F**). Scale bars: **A**, 1 mm; **B, C-F**, 200 μm.
cancellous bone and the periosteal cortex (cortical thickness approximately 1 mm; bone compactness is 0.87) (Fig. 5B). The primary lamellar bone tissue is poorly vascularized and growth marks are featured by five LAGs and one double LAG (Fig. 5B, E). Parts of mid-cortex are comprised of woven bone tissue (Fig. 5F). This bone contains flattened and scarce osteocyte lacunae that follow the orientation of collagen fibers.
DISCUSSION

COMPARING GROWTH PATTERNS AND LIFESTYLE IN *MARILIASUCHUS AMARALI* TO OTHER ARCHOASAUROMORPHS

Since the Late Permian, different lineages of Archosauromorpha exhibit very diverse growth patterns, and in archosauromorphs, bone growth appears to be related to posture (Werning & Irims 2010; Ponce et al. 2017), lifestyle (Woodward et al. 2011; Company & Pereda-Suberbiola 2017; Andrade et al. 2018) or even to both (Ricqlès et al. 2003, 2008; Botha-Brink & Smith 2011; Ezcurra et al. 2014; Mukherjee 2015; Werning & Nesbitt 2016). In early ontogenetic stages, they appear to have higher growth rates, which seems to decrease over time, a pattern that is commonly observed in Permo-Triassic terrestrial archosauromorphs (Allen 2003; Ricqlès et al. 2003, 2008; Botha-Brink & Smith 2011; Ezcurra et al. 2014; Mukherjee 2015; Werning & Nesbitt 2016). On the other hand, terrestrial archosauriforms from the Triassic-Jurassic show continuous bone apposition, as evidenced by cortices composed of uninterrupted fibrolamellar tissue (Ferigolo & Langer 2007; Ricqlès et al. 2008; Knoll et al. 2010; Grinham et al. 2019; Marsà et al. 2019; Veiga et al. 2019). Slower growth rates as indicated by cortices composed of lamellar-zonal bone tissue are present in Archosauromorphs at least since the Permian. For example, this is a common growth strategy adopted by extinct and extant crocodyliforms with different lifestyles. Nevertheless, semi-aquatic crocodyliforms are capable of rapid growth for some periods (Table 1).

The bony elements of *Mariliasuchus amarali* showed differences in the types of the tissue deposited throughout life, a fact considered to be directly related to endogenous responses to biomechanical forces and lifestyle. In the humerus and ulna, growth was still active shortly before death, as indicated by vascular canals being open to the surface. However, the rib presents a slow growth that is evidenced by the poorly vascularized parallel-fibered bone. The bony tissues of the humerus and ulna of *M. amarali* have similarities to Triassic quadruped archosauriforms such as the protorochampsian *Chanaresuchus* Romer, 1971 (Ricqlès et al. 2008; Trotteyn et al. 2013; Ponce et al. 2017; Arcucci et al. 2019; Grinham et al. 2019) and the terrestrial pseudosuchian *Battachotosuchus kupferzellensis* Gower, 1999 (Sues & Schoch 2013; Klein et al. 2017; Grinham et al. 2019). These species had fast to moderate appositional growth rates with temporary cessation of the bone growth during annual cycles (Ricqlès et al. 2008; Klein et al. 2017).

GROWTH MARKS IN *MARILIASUCHUS AMARALI*

Both LAGs and annuli are cyclical growth marks (CGMs) driven by annual changes in the environment (Castanet et al. 1995). However, the LAGs were the only CGMs present in *M. amarali* and varied in number among the bone elements. Such variability may be explained by the medullary expansion (Woodward et al. 2014) or different rhythms of osteogenesis (Cullen et al. 2014). The highest number of LAGs were observed in the UFRPE 5311 humerus, suggesting an age of seven years for this individual at time of death. The absence of an external fundamental system (EFS) indicates that growth had not completely ceased in the sampled bone elements, suggesting that skeletal maturity had not been attained by UFRPE 5311. Notwithstanding, the endosteal lamellae surrounding the medullary cavity in the ulna indicate cessation of medullary expansion (Chinsamy et al. 2008). These traits indicate a sub-adult ontogenetic state for this specimen.

BONE REMODELING

The large amount of the CCCB in the perimedullary region suggests that the radius is the least resistant within the limb bones, this occurs because primary cortical bone is more resistant than the secondary bones (Ray & Chinsamy 2004). The compacted coarse cancellous bone formation occurred during the remodeling process when cancellous bone in the medullary region of the metaphysis was converted into compacted coarse cancellous bone as the metaphysis was relocated and became the diaphysis at an advanced ontogenetic stage (Enlow 1962a, b; Prondvai et al. 2012). The presence of this bone in the cortex has been reported in *Iberosuchus macrodon* Antunes, 1975 (2 m in total length; see Ortega et al. 2000) IPS 4932 in Cubo et al. (2017), and considered by the authors as a compacted spongiosa related to muscle insertion or as a radial fibrolamellar bone.

However, *Mariliasuchus amarali* (c. 1.4 m body length) shares with the neosuchian *Susisuchus anatoceps* Salisbury, Molnar, Frey & Willis, 2006 (c. 1.10 m body length) the remodeled trabecular bone in the ribs. In the case of the neosuchian *Guanisuchus munizii* Barbosa, Kellner & Viana, 2008 (c. 2.79-3.43 m), the remodeling process in the rib forms Haversian systems (Hastings et al. 2010; Andrade et al. 2015; Sayão et al. 2016). The latter must repair microdamages caused by an intense biomechanical strain on the rib (Martin & Burr 1982; Lee et al. 2002). The osteohistology of rib described here suggest that the axial skeleton of *M. amarali* was affected by a low strain level, comparable with that seen in *Susisuchus anatoceps*.

CONCLUSIONS

Mariliasuchus amarali resembles *Chanaresuchus* (Arcucci et al. 2019) and *Battachotosuchus kupferzellensis* (Klein et al. 2017) in growth patterns, with the presence of woven and parallel-fibered bone tissues periodically interrupted by growth marks throughout the cortex. This suggests that these Triassic quadruped archosauriforms shared similar growth rates. Bone microstructure of *Mariliasuchus amarali* (UFRPE 5311) indicates active growth. The assessment of intraskeletal variability reveals variable appositional growth within the skeletal elements of *Mariliasuchus amarali*. The compacted coarse cancellous bone in the midshaft region of the radius highlights the hypothesis that this bone had the lowest resistance among limb bones. In the ribs of *Mariliasuchus amarali* and *Susisuchus anatoceps* (Sayão et al. 2016), the remodeling process forms trabecular bones, whereas in *Guanisuchus munizii* (Andrade et al. 2015) it occurs through Haversian reconstruction.
Acknowledgements
We gratefully thank Professor Dr S. B. Barreto and Dr L. Montefalco, who permitted analyses in the Laboratório de Gemo-
logia (LABGEM/UFPE). We wish to thank Dr I. Cerda for re-
viewing an earlier version of the manuscript. We are especially
grateful to Dr J. Cubo and an anonymous reviewer, and the edi-
tor-in-chief, M. Laurin, for their constructive comments. We
thank S. Thomson, Universidade de São Paulo, and M. G. Faure-Brac, Center of Interdisciplinary Biosciences of
Kosice, for their writing assistance. We express our gratitude
for the CNPq and FUNCAP for financial support grants to J. Sayão (grant numbers 310799/2014-7, 458164/2014-3), M. Sena (grant number 142636/2015-0 and PV1-0187-00066.01.00/21) and R. Andrade (grant number 147466/2014-8).

REFERENCES
ALLEN D. J. 2003. — Ontogenetic determination of a new specimen
of Terrestriusuchus to be a junior synonym of Saltoposuchus. Pa-
leontological Association Newsletter 53: 72-74.
AMPINO R. 1947. — La structure du tissu osseux envisagée como
expression de différences dans la vitesse de l’accroissement. Ar-
ces de biologie 58: 315-330.
ANDRADE M. B. & BERTINI R. J. 2008. — Morphological and an-
atomical observations about Mariliasuchus amaranali and Notosuchus
terrastis (Mesoeucrocodylia) and their relationships with other
South American notosuchians. Archivos del Museo Nacional del
Rio de Janeiro 66: 5-62.
ANDRADE R. C. L. P., BANTIM R. A. M., LIMA F. J., CAMPOS L. S.,
ELEUTÉRIO L. H. S. & SAYAO J. M. 2015. — New data about the
presence and absence of the external fundamental system in
archosaurs. Cadernos de Cultura e Ciência 50 (4): 495-503. https://doi.org/10.1111/let.12203
ARCUCCI A., PREVITERA E. & MANCUSO A. C. 2019. — Ecomor-
phology and bone microstructure of Proterochampsia from the Chañares Formation. Acta Pa-
aeontologica Polonica 64 (1): 157-170. https://doi.org/10.4202/app.00536.2018
AUGUSTA B. G. & ZAHIER H. 2019. — Enamel dentition micro-
structure of Mariliasuchus amaranali (Crocodiliformes, Crocodylia)
from the Upper Cretaceous (Turonian–Santonian) of the Bauru Basin, Brazil. Cretaceous Research 99: 255-268. https://doi.org/10.1016/j.cretres.2019.03.013
BAZETELLI A., LADERA F. S. B., NASCIMENTO D. L. & SILVA M. L.
2018. — Facies and palaeosol analysis in a progradational dis-
tributive fluvial system from the Campusian–Maastrichtian Bauru Group, Brazil. Sedimentology 66 (2): 699-735. https://doi.org/10.1111/sed.12507
BENTON M. J. & CLARK J. M. 1988. — Archosaur phylogeny and the relationships of the Crocodylia, in BENTON M. J. (ed.), The Phy-
ology and Classification of Tetrapods: Amphibians, Reptiles, Birds, Vol. 1. Oxford University Press, Oxford: 295-338.
BJORKDAL K., BOLTON A. B., BENNETT R. A., JACOBSON E. R.,
WRONSKI T. J., VALESKI J. J. & ELIAZAR P. J. 1998. — Age
and growth in sea turtles: limitations of skeletochronology
for demographic studies. Copeia 1: 23-30. https://doi.org/10.2307/1447698
BOTHA-BRINK J. & SMITH R. M. H. 2011. — Osteohistology of the
Triassic archosauromorphs Proterosuchus, Euparkeria, and
Erythrosuchus from the Karoo Basin of South Africa. Journal of Vertebrate Paleontology 31 (6): 1238-1254. https://doi.org/10.1080/02724564.2011.6.21797
BROWN E. E., BUTLER R. J., EZCURRA M. D., BHULLA B. A. & LAUTENSCHLAGER S. 2019. — Endocranial anatomy and life
habits of the early Triassic archosauromorph Proterosuchus fergusii. Palaeontology 63 (2): 1-28. https://doi.org/10.1111/pal.12454
BRUSATTE S. L., CANDEIRO C. R. A. & SIMBAS M. F. R. 2017. — The
last dinosaurs of Brazil: the Bauru Group and its implications for the end-Cretaceous mass extinction. Anais da Academia Brasileira de Ciências 89 (3): 1465-1485. https://doi.org/10.1590/0001-
3765201720160918
CAMPOS D. A., OLIVEIRA G. R., FIGUEIREDO R. G., RIFF D.,
AZEVEDO S. A. K., CARVALHO L. B. & KELLNER A. W. A. 2011. — On a new peirosaurid crocodyliform from the Upper
Cretaceous, Bauru Group, southeastern Brazil. Anais da Academia Brasileira de Ciências 83 (1): 317-327. https://doi.org/10.1590/50001-37652011000100020
CASTANET J., FRANCILLON-VIEILLOT H., MEUNIER F. J. & RICQUÉS A. 1993. — Bone and individual aging, in HALL B. K. (ed.), Bone
Growth – Bone Volume 7. CRC Press, Boca Raton: 245-283.
CHINSAMY A. & RAATH M. A. 1992. — Preparation of fossil bone
for histological examination. Palaeontologia Africana 29: 39-44.
CHINSAMY A., CODORNUI L. & CHIPPE L. 2008. — Development-
growth patterns of the filter-feeder pterosaur, Pterodaustro
guazussui. Biology Letters 4 (3): 282-285. https://doi.org/10.1098/rsbl.2008.0004
COMPANY J. & PEREDA-SUBERBIOLA X. 2017. — Long bone his-
tology of a Eusuchia crocodyliform from the Upper Cretaceous of Spain: implications for growth strategy in extinct croco-
diles. Cretaceous Research 72: 1-7. https://doi.org/10.1016/j.
cretres.2016.12.002
CRUICKSHANK A. R. I. 1972. — The proterosuchian thecodonts, in
JOYSEY K. A. & KEMP T. S. (eds), Studies in Vertebrate Evolution.
Oliver and Boyd, Edinburgh: 89-119.
CUBO J., KOHLER M. & BUFFRENIL V. 2017. — Bone histology of
Hornosuchus macaon (Schoenochis, Crocodylomorpha), Lethaba
50 (4): 495-503. https://doi.org/10.1111/lel.12203
CULLEN T. M., EVANS D. C., RYAN M. J., CURRIE P. J. & KOBAYASHI Y.
2016. — The phylogenetic relationships of basal archosaur-
iforms, with an emphasis on the systematics of proterosuchian archosauromorphs. Lethaia 49 (2): 157-170. https://doi.org/10.1111/let.12392
CURREY J. 2002. — The mechanical properties of bone, in CURREY J.
ed.), Bones: Structure and Mechanics. Princeton University Press,
New Jersey: 54-123.
ENLOW D. H. 1962a. — A study of the post-natal growth and remodeling of bone. American Journal of Anatomy 110 (2):
79-101. https://doi.org/10.1002/aja.1001100202
ENLOW D. H. 1962b. — Functions of the haversian system. American
Journal of Anatomy 110 (3): 269-305. https://doi.org/10.1002/aja.
1001100305
ENLOW D. H. 1969. — The bone of reptiles, in GANS C., BEL-
LAIRS A. & PARSONS T. (eds), Biology of the Reptilia. Vol. 1.
Morphology A. Academic Press, Cambridge: 45-77.
EZCURRA M. D. 2016. — The phylogenetic relationships of basal
archosauromorphs, with an emphasis on the systematics of
proterosuchian archosauriforms. PeerJ 4: e1778. https://doi.
org/10.7717/peerj.1778
EZCURRA M. D., SCHIEFER T. M. & BUTLER R. J. 2014. — The
Origin and Early Evolution of Sauria: Reassessing the Permian
Saurian Fossil Record and the Timing of the Crocodile-Lizard
Divergence. PLoS ONE 9: e89165. https://doi.org/10.1371/
journal.pone.0089165

358

COMPTES RENDUS PALEO • 2022 • 21 (17)
PONCE D. A., CERDA I. A., DESJOJ B. J. & NESBITT S. J. 2017. — The osteoderm microstructure in doswelliids and proterochampsids and its implications for palaeobiology of stem archosaurs. *Acta Palaeontologica Polonica* 62 (4): 819-831. https://doi.org/10.4202/app.00381.2017

PRONDVAI E., STEIN K., ÖSI A. & SANDER M. P. 2012. — Life history of *Rhamphorhynchus* inferred from bone histology and the diversity of pterosaurian growth strategies. *PLoS ONE* 7: e31392. https://doi.org/10.1371/journal.pone.0031392

RAY S. & CHINASMY A. 2004. — *Diictodon feliceps* (Therapsida, Dicyonodontia): bone histology, growth, and biomechanics. *Journal of Vertebrate Paleontology* 24 (1): 180-194. https://doi.org/10.1671/1914-14

RENNE P. R., ERNESTO M., PACCA I. G., COE R. S., GLEN J. M., PREVOT M. & PERRIN M. 1992. — The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous Boundary. *Science* 258: 975-979. https://doi.org/10.1126/science.258.5084.975

RICQLES A. J., PADIAN K. & HORNER J. R. 2003. — On the bone histology of some Triassic pseudosuchian archosaurs and related taxa. *Annales de Paléontologie* 89 (2): 67-101. https://doi.org/10.1016/S0003-0082(03)00005-3

RICQLES A. J., PADIAN K., KNOX F. & HORNER J. R. 2008. — On the origin of high growth rates in archosaurs and their ancient relatives: complementary histological studies on Triassic archosauriforms and the problem of a "phylogenetic signal" in bone histology. *Annales de Paléontologie* 94 (2): 57-76. https://doi.org/10.1016/j.annahist.2008.03.002

RIFF D., SOUSA R. G., CIDADE G. M., MARTINELLI A. G. & SOUZA-FILHO J. P. 2012. — Crocodilomorfo: a maior diversidade de répteis fossis do Brasil. *Terra* 9: 12-40.

SANTUCCI R. M. & ARRUDA-CAMPOS A. C. 2011. — A new saur- pod (Macronaria, Titanosauria) from the Adamantina Formation, Bauru Group, Upper Cretaceous of Brazil and the phylogenetic relationships of Aelosaurusini. *Zootaxa* 3085 (1): 1-33. https://doi.org/10.11646/zootaxa.3085.1.1

SAYAO J. M., BANTIN R. A. M., ANDRADE R. C. L. P., LIMA F. J., SARAIVA A. A. F., FIGUEIREDO R. G. & KELLNER A. W. A. 2016. — Paleohistology of *Susisaurus agudoensis* (Crocodyliformes, Notosuchia) from the Middle Triassic of the Ruhuhu Basin of Tanzania. *Comp- tes Rendus Palevol* 15 (1-2): 163-175. https://doi.org/10.1016/j.crpl.2015.03.004

WOODWARD H. N., HORNER J. R. & FARLOW J. O. 2011. — Osteohistological evidence for determinate growth in the American Alligator. *Journal of Herpetology* 45 (3): 339-342. https://doi.org/10.1670/10-274.1

WOODWARD H. N., HORNER J. R. & FARLOW J. O. 2014. — Quantification of intraskeletal histovariability in *Alligator mississippiensis* and implications for vertebrate osteohistology. *PeerJ* 2: e422. https://doi.org/10.7717/peerj.422

ZAHNER H., POL D., CARVALHO A. B., PICCONI C., CAMPOS D. & NAVA W. 2006. — Redescription of the cranial morphology of *Mariliasuchus amarali*, and its phylogenetic affinities (Crocodyliformes, Notosuchia). *American Museum Novitates* 3512: 1-40. https://doi.org/10.1206/0003-0082(2006)3512[1:ROTCMO]2.0.CO;2

Submitted on 30 October 2019; accepted on 20 January 2021; published on 5 May 2022.

Sena M. V. de A. et al.
APPENDIX

APPENDIX 1. — Schematic black (bone) and white (vascular spaces and medullary cavities) drawings of the extinct Mariliasuchus amarali Carvalho & Bertini, 1999 (UFRPE 5311) prepared for use with bone profiler: A, rib; B, humerus; C, radius; D, ulna.