Towards balanced clustering - part 1 (preliminaries)

Mark Sh. Levin *

The article contains a preliminary glance at balanced clustering problems. Basic balanced structures and combinatorial balanced problems are briefly described. A special attention is targeted to various balance/unbalance indices (including some new versions of the indices): by cluster cardinality, by cluster weights, by inter-cluster edge/arc weights, by cluster element structure (for element multi-type clustering). Further, versions of optimization clustering problems are suggested (including multicriteria problem formulations). Illustrative numerical examples describe calculation of balance indices and element multi-type balance clustering problems (including example for design of student teams).

Keywords: balanced clustering, combinatorial optimization, heuristics, applications

Contents

1 Introduction 1
2 Basic balanced structures 4
3 Combinatorial balancing problems 6
4 Balance/unbalance indices for clustering solution 7
5 Optimization problem formulations for balanced clustering 9
6 Illustrative examples 10
 6.1 Illustration example for description of cluster structure 10
 6.2 Network-like illustration example 10
 6.3 Cluster structure based balanced clustering for student teams 13
7 Conclusion 15
8 Acknowledgments 15

1. Introduction

Balancing processes play central roles in many theoretical and practical fields (Fig. 1) [9,10,12,31,33,36,40,54,66,68,91,93,101,120,129,134,139,150]. The corresponding balancing problems are basic ones in various engineering domains, for example: manufacturing systems, computing systems, power/electricity systems, radio engineering systems, communication systems, and civil engineering systems. Similar balancing problems are examined in engineering management (e.g., coordination science), communications (e.g., synchronization as time-based balancing), organization science, psychology. In recent decades, the balancing approaches are very significant from the viewpoint of system modularity [16,65,86,103,112].

*Mark Sh. Levin: Inst. for Inform. Transmission Problems, Russian Academy of Sciences; http://www.mslevin.iitp.ru; email: mslevin@acm.org
The basic balancing problem consists in partitioning the element set (while taking into account element parameters, structure over the elements) into interconnected element groups (clusters) which are balanced (by cardinality of cluster elements, weight of cluster as a total weight of cluster elements, weight of cluster interconnections, structure of cluster, etc.). A general framework of balancing problems domain is depicted in Fig. 2.

It is reasonable to point out the following main application domains with using the balanced structures:
1. hierarchical organization of storage and search processes in information systems and in computer systems (e.g., various balanced search trees BSTs: AVL trees, red-black trees, splay trees) [2][3][8][9][10][11][12][13];
2. balanced parallel scheduling of computing processes (e.g., computing in multi-processor systems, distributed computing) [12][13][14];
3. service partitioning in a grid environment [19][20];
4. balanced partitioning in networks (e.g., modularization), balanced allocation of centers in networks [18][21];
5. balanced partitioning of algorithms [22];
6. balanced manufacturing scheduling in manufacturing systems (e.g., assembly line balancing problems) [23][24][25][26][27][28];
7. design of balanced hierarchical structures in organizations [29][30];
8. design and management in communication systems (network design, routing, etc.) based on balanced hierarchical structures [31][32], and
9. design of distributed defence systems [33][34].

Evidently, balanced clustering problems (including combinatorial clustering, constrained clustering, etc.) are used as the basic balancing combinatorial models for all domains [19][20][31][32]. Some basic balanced clustering problems are pointed out in Table 1.

In general, the clustering problem is the following. Let \(A = \{a_1, ..., a_j, ..., a_n\} \) be the initial set of elements (items, objects). Usually, the following characteristics are examined:

1. parameters of each element \(a_j \in A \) as vector \(\mathbf{p}(a_j) = (p_{1}(a_j), ..., p_{i}(a_j), ..., p_{m}(a_j)) \);
2. structure(s) (binary relation(s)) over the elements set \(A \): \(G = (A, E) \) where \(E \) is a set of edges/arc.

A clustering solution consists of a set of clusters (e.g., without intersections) [30][31]:
\(\bar{X} = \{X_1, ..., X_\lambda, ..., X_\lambda\} \).
i.e., dividing the set A into clusters: $X_i \subseteq A \forall i = 1, \lambda$, $\eta_i = |X_i|$ is the cluster size (cardinality of cluster X_i, $i \in [1, \lambda]$).

No.	Basic types of initial data	Results	Some source(s)
1.	Set of elements, element parameters	Set of balanced clusters	103, 107, 110, 104, 106
2.	Set of elements with relations:		
2.1	Set of elements with precedence relation	(1) chain over balanced clusters (balanced one-processor scheduling)	111, 114, 141, 154
		(2) parallel balanced element groups (precedence over elements in each group, multiprocessor scheduling)	115, 144, 17, 195
2.2	Set of elements with various binary relation(s) (e.g., precedence, inclusion)	(1) Tree/forest/hierarchy over balanced clusters (search structure, hierarchical storage paging, balanced broadcasting)	102, 103, 128
		(2) k-layer network architecture (hierarchical communications, hierarchical distributed computing)	142, 151, 152, 154
3.	Set of element chains (trajectories)	Special time interval balanced scheduling of element chains (scheduling in homebuilding)	35
4.	Set of element structures (e.g., programs, data structures, groups of technological operations, teams)	Set of balanced clusters of element structures (e.g., distributed computing, technological plans)	104, 106

The basic balance (or unbalance/mismatch) index (parameter) for clustering solution is the difference between the maximal cardinality of a cluster and minimal cardinality of a cluster (in the considered clustering solution):

$$B^c(\tilde{X}) = \max_{i=1,\lambda} \eta_i - \min_{i=1,\lambda} \eta_i.$$

Thus, the balanced clustering problem is targeted to search for the clustering solution with minimum balance index (e.g., index above). Clearly, additions to the balanced problem statement can involve the following: (a) some constraints: the fixed number of clusters, restriction(s) to cluster sizes (including specified integer interval), etc.; (b) objective function(s) (e.g., minimization of total interconnections weight between clusters, maximization of total element connections weight in clusters).

This material contains an author preliminary outline of balanced clustering problems. The basic balanced structures are pointed out. New balance/unbalance indices for clustering solutions are suggested. Formulations of balanced optimization problems are described (including multicriteria problem formulations). Several numerical examples illustrate calculation of balance/unbalance indices for clustering solutions. A special example for design of student teams (as element multi-type cluster structure balanced clustering problem) is described. The material can be considered as a continuation of the author preprint on combinatorial clustering [104] and the corresponding article [105].
2. Basic balanced structures

The following basic balanced structures can be pointed out:

1. Balanced set partition (by cardinality, by element weights, element structure; in the general case, the obtained subsets can have intersections): (a) a basic illustration (Fig. 3), (b) balancing by element structure in each subset (Fig. 4).

2. Chain of balanced clusters (balanced manufacturing line, balanced chain of computing tasks groups, etc.) (Fig. 5).

3. Balanced packing of bins (e.g., multi-processor scheduling) (Fig. 6).

4. Balanced β-layer clustering (i.e., partitioning the initial element set into clusters and layers; e.g., to obtain a two-layer hierarchy with balances at the layer of clusters and at the layer of cluster groups, this is a two-balancing case) (Fig. 7).

5. Balanced trees \([3,49,93]\):
 - 5.1. balanced trees: by height (Fig. 8), by degree (Fig. 9),
 - 5.2. balanced search trees (as search index structures): (a) AVL trees, self-balancing (or height balancing) binary search tree \([2]\), (b) \(B\)-trees (path length from the root to each leaf equals \(b\) or \(b+1\) (where \(b\) is a constant) (Fig. 8) \([20,49,93]\), (c) Red-Black trees (symmetric binary B-tree) \([21,49]\), etc.

6. Balanced graph partition (e.g., partition of a graph into balanced subgraphs/communities while taking into account vertex weights or/and edge weights) (Fig. 10).

7. \(k\)-optimal partition of directed graph (path partition) \([22,26,27]\) (Fig. 11).

8. Balanced signed graph \([4,75,79,133,134]\) (Fig. 12).

9. Multi-layer structure of balanced clusters in networking: 9.1 hierarchy over balanced clusters (networking) (Fig. 13); 9.2 balanced clustering based multi-layer network structure (Fig. 14).

10. Balanced matrices \([25,47,131]\).
3. Combinatorial balancing problems

A list of basic balancing combinatorial optimization problems is presented in Table 2.

Table 2. Basic balancing combinatorial (optimization) problems

No.	Combinatorial problem	Some sources
I.	Balanced partitioning problems:	
1.1	Balanced partition problems (partition of set into balanced subsets)	75[4,115]
1.2	k-balanced partitioning problem (partition of set into k balanced subsets)	69[73]
1.3	Partitioning (hierarchically clustered) complex networks via size-constrained graph clustering	104[116]
1.4	Uniform k-partition problem	58
1.5	Quadratic cost partition problem	76
1.6	Multi-constraint partitioning problem	81
1.7	Tree-balancing problems	213[88,143]
1.8	Minimum graph bisection problem	75[83]
1.9	Simple graph partitioning problem	75[144]
1.10	Balanced graph partitioning (partition of graph into balanced components)	81[2,12,25,35]
1.11	Balanced partitioning of trees	66[72,113]
1.12	Balanced partitioning of grids and related graphs	71[100,103]
1.13	Directed acyclic graph (DAG) partition	68
1.14	Graph-clique partitioning problem	29[99]
1.15	Multiply balanced k-partitioning of graphs	30[32,43,63,75]
1.16	Partitioning a sequence into clusters with restrictions on their cardinalities	29[24,53,90]
1.17	General partition data model	117
II.	Some basic balanced combinatorial optimization problems:	
2.1	Balanced knapsack problems, knapsack load balancing	15[75,114]
2.2	Balanced bin packing, container loading	53[57,75]
2.3	Balanced parallel processor scheduling, balanced job scheduling in grids	42[75,145]
2.4	Balanced allocation	11[24,33,90]
2.5	Balanced k-center problem, balanced k-weighted center problem	18[70,108]
2.6	Matrix balancing	17[11,115,137,153]
2.7	Load balancing problems in distributed systems:	
2.7.1	Load balancing in computer systems, in multiple processor systems	45[56,106,109]
2.7.2	Load balancing in telecommunications networks	12[1]
2.7.3	Load balancing in structuring P2P systems	13[8]
2.7.4	Load balancing in web-server systems	13[0]
2.7.5	Load balancing in sensor networks	8[4]
2.7.6	Special partition of multi-hop wireless network (via graph coloring) for scheduling	78
2.8	Assembly line balancing problems	59[36,37]
2.9	Balanced graph matching	30[136]
2.10	Route balancing problems	87[96,124,124,125]
2.11	Partition and balancing in meshes	59[60,146,147,148]
2.12	Balanced combinatorial cooperative games	6[7]
4. Balance/unbalance indices for clustering solution

Here, balance/unbalance indices are described for clustering solution $\tilde{X} = \{X_1,...,X_{\lambda}\}$. Let $p_{bal}(X_i)$ be a total parameter for cluster X_i ($i = 1,...,\lambda$) (e.g., the number of elements, total weight). In general, a balance/unbalance index for clustering solution \tilde{X} can be defined via two methods:

Method 1: The balance (unbalance) index is defined as the following:

$$B(\tilde{X}) = \max_{i=1,\lambda} p_{bal}(X_i) - \min_{i=1,\lambda} p_{bal}(X_i).$$

Note, assessment of $p_{bal}(X_i)$ can be based on various scales: quantitative, ordinal, poset-like (e.g., multiset-based) [101][103]. Now, the following additional element parameters are considered:

1. The weight of item $w(a_j) \forall a_j \in A$ (e.g., $w(a_j) \geq 0$).
2. The weight of edge/arc between items $v(a_{j_1},a_{j_2}) \forall a_{j_1},a_{j_2} \in A$, $(a_{j_1},a_{j_2}) \in E$ (e.g., $v(a_{j_1},a_{j_2}) \geq 0$).
3. The structure of cluster by elements types is defined as a special multiset estimate [101][103]. As a result, the number of components in each multiset estimate of cluster structure will be the same.

In addition, a special “empty” element type is considered with the number $\theta_0 = 1$.

As a result, the following balance indices for clustering solution can be examined (for method 1):

(1.1) balance index by cluster cardinality is:

$$B^c(\tilde{X}) = \max_{i=1,\lambda} |X_i| - \min_{i=1,\lambda} |X_i|.$$

(1.2) balance index by total cluster weight:

$$B^w(\tilde{X}) = \max_{i=1,\lambda} \sum_{a_j \in X_i} w(a_j) - \min_{i=1,\lambda} \sum_{a_j \in X_i} w(a_j).$$

(1.3) balance index by total inter-cluster edge/arc weight:

$$B^v(\tilde{X}) = \max_{i=1,\lambda} \sum_{a_{j_1},a_{j_2} \in X_i} v(a_{j_1},a_{j_2}) - \min_{i=1,\lambda} \sum_{a_{j_1},a_{j_2} \in X_i} v(a_{j_1},a_{j_2}).$$

(1.4) balance index by total cluster structure:

$$B^\omega(\tilde{X}) = \max_{i=1,\lambda} e(X_i) - \min_{i=1,\lambda} e(X_i).$$

Method 2. Here, the balance/unbalance index is defined as the following:

$$\hat{B}(\tilde{X}) = \max_{i=1,\lambda} |p_{bal}(X_i) - p_0|,$$

where p_0 is a special specified (e.g., average) parameter of a special reference (e.g., average) cluster X^0 (size, weight, interconnection weight, structure estimate). Thus, the following balance indices for clustering solution can be examined:
The balance index by cluster cardinality is:

\[\hat{B}_c(\tilde{X}) = \max_{i=1, \ldots, \lambda} | |X_i| - p_{iX_0}| |, \]

where \(p_{iX_0} \) is a special specified (e.g., average) cluster size.

The balance index by total cluster weight:

\[\hat{B}_w(\tilde{X}) = \max_{i=1, \ldots, \lambda} | \sum_{a_j \in X_i} w(a_j) - p_{w0} | |, \]

where \(p_{w0} \) is a special specified (e.g., average) cluster weight.

The balance index by total inter-cluster edge/arc weight:

\[\hat{B}_v(\tilde{X}) = \max_{i=1, \ldots, \lambda} | \sum_{a_{j1}, a_{j2} \in X_i} v(a_{j1}, a_{j2}) - p_{e0} | |, \]

where \(p_{e0} \) is a special specified (e.g., average) cluster weight of inter-cluster interconnections (i.e., edges/arcs).

The balance index by total cluster structure:

\[\hat{B}_s(\tilde{X}) = \max_{i=1, \ldots, \lambda} | e(X_i) - e_{p0} | |, \]

where \(e_{p0} \) is a special specified (e.g., average) multiset estimate of cluster structure.

Table 3 contains the list of the considered balance indices. Note, a hybrid balancing (i.e., by several balance parameters) can be examined as well.

No.	Description	Notation
I.	Method 1 (difference between maximal and minimal values of cluster total parameters):	
1.1	Balance index by cluster cardinality	\(B^c(\tilde{X}) \)
1.2	Balance index by total cluster weight	\(B^w(\tilde{X}) \)
1.3	Balance index by total inter-cluster edge/arc weight	\(B^v(\tilde{X}) \)
1.4	Balance index by cluster element structure	\(B^s(\tilde{X}) \)
II.	Method 2 (maximal difference between cluster total parameters and special reference specified (fixed) cluster total parameter):	
2.1	Balance index by cluster cardinality	\(\hat{B}^c(\tilde{X}) \)
2.2	Balance index by total cluster weight	\(\hat{B}^w(\tilde{X}) \)
2.3	Balance index by total inter-cluster edge/arc weight	\(\hat{B}^v(\tilde{X}) \)
2.4	Balance index by cluster element structure	\(\hat{B}^s(\tilde{X}) \)
5. Optimization problem formulations for balanced clustering

Thus, the balanced clustering problem is targeted to search for the clustering solution with minimum balance index (e.g., index above). Clearly, additions to the balanced problem statement can involve the following: (a) some constraints: the fixed number of clusters, restriction(s) to cluster sizes (including specified integer interval), etc.; (b) objective function(s) (e.g., minimization of total interconnections weight between clusters, maximization of total element connections weight in clusters).

The described balanced indices for clustering solutions can be used as objective functions and a basis for constraints in formulations of optimization balanced clustering models, for example:

Problem 1:

\[
\min B^c(\tilde{X}) \quad \text{s.t.} \quad B^w(\tilde{X}) \leq w^0, \quad B^s(\tilde{X}) \preceq e^0,
\]

where \(w^0 \) is a constraint for cluster weight difference, \(e^0 \) is a constraint for cluster structure difference.

Problem 2:

\[
\min B^w(\tilde{X}) \quad \text{s.t.} \quad B^c(\tilde{X}) \leq c^0, \quad B^s(\tilde{X}) \preceq e^0,
\]

where \(c^0 \) is a constraint for cluster cardinality difference, \(e^0 \) is a constraint for cluster structure difference.

Problem 3:

\[
\min B^w(\tilde{X}) \quad \text{s.t.} \quad B^c(\tilde{X}) \leq c^0, \quad |\tilde{X}| \leq \lambda^0,
\]

where \(c^0 \) is a constraint for cluster cardinality difference, \(\lambda^0 \) is a constraint for numbers of clusters in the clustering solution.

Evidently, multicriteria optimization models can be examined as well, for example:

Problem 4:

\[
\min \tilde{B}^c(\tilde{X}), \quad \min \tilde{B}^w(\tilde{X}) \quad \text{s.t.} \quad B^w(\tilde{X}) \leq w^0, \quad \tilde{B}^s(\tilde{X}) \preceq \tilde{e}^0,
\]

where \(w^0 \) is a constraint for cluster weight difference, \(\tilde{e}^0 \) is a constraint for cluster structure difference based on a reference value.

Problem 5:

\[
\min \tilde{B}^c(\tilde{X}), \quad \min \tilde{B}^w(\tilde{X}), \quad \min \tilde{B}^v(\tilde{X}) \quad \text{s.t.} \quad \tilde{B}^s(\tilde{X}) \preceq \tilde{e}^0, \quad |\tilde{X}| \leq \lambda^0,
\]

where \(\tilde{e}^0 \) is a constraint for cluster structure difference based on a reference value, \(\lambda^0 \) is a constraint for numbers of clusters in the clustering solution.

Problem 6:

\[
\min B^w(\tilde{X}), \quad \min \tilde{B}^w(\tilde{X}) \quad \text{s.t.} \quad B^c(\tilde{X}) \leq c^0, \quad \tilde{B}^s(\tilde{X}) \preceq \tilde{e}^0,
\]

where \(c^0 \) is a constraint for cluster cardinality difference, \(\tilde{e}^0 \) is a constraint for cluster structure difference based on a reference value.
6. Illustrative examples

6.1. Illustration example for description of cluster structure
Table 4 contains a description of cluster structures and corresponding multiset estimates for example from Fig. 4 (seven clusters, tree types of elements and additional “empty” element type). Table 5 contains the simplified proximity (or distance) between the multiset estimates of the clusters: \(\delta(e(X_i_1), e(X_i_2)) \), \(i_1, i_2 \in \{1, ..., 7\} \).

Table 4. Cluster structures for example from Fig. 4

Cluster \(X_i \)	Element type: \(\theta_1, \theta_2, \theta_3, \theta_4 \) (“empty” element)	Multiset estimate \(e(X_i) \)
\(X_1 \)	1 1 3 2	(1,1,3,2)
\(X_2 \)	1 1 3 2	(1,1,3,2)
\(X_3 \)	1 1 4 1	(1,1,4,1)
\(X_4 \)	1 1 3 2	(1,1,3,2)
\(X_5 \)	1 1 2 3	(1,1,2,3)
\(X_6 \)	2 1 4 0	(2,1,4,0)
\(X_7 \)	1 2 4 0	(1,2,4,0)

Table 5. Proximity for cluster structures (example from Fig. 4): \(\delta(e(X_i_1), e(X_i_2)) \)

Cluster \(X_i \)	Cluster \(X_j \)	\(X_1 \)	\(X_2 \)	\(X_3 \)	\(X_4 \)	\(X_5 \)	\(X_6 \)	\(X_7 \)
\(X_1 \)	\(X_1 \)	0	0	1	0	1	4	3
\(X_2 \)	\(X_2 \)	0	0	1	0	1	4	3
\(X_3 \)	\(X_3 \)	1	1	0	1	2	3	2
\(X_4 \)	\(X_4 \)	0	0	1	0	1	4	3
\(X_5 \)	\(X_5 \)	1	1	1	1	0	5	4
\(X_6 \)	\(X_6 \)	4	4	3	4	5	0	1
\(X_7 \)	\(X_7 \)	3	3	2	3	4	1	0

For clustering solution from Fig. 4, the following balance indices are obtained:
\(B^c(\tilde{X}) = 7 - 4 = 3 \), \(B^s(\tilde{X}) = e(\tilde{X}_6) - e(\tilde{X}_5) = (2, 1, 4, 0) - (1, 1, 2, 3) = \delta(e(\tilde{X}_6), e(\tilde{X}_5)) = 5 \).

Further, cluster \(X_1 \) is considered as a reference cluster with corresponding its parameters. As a result, the following balance indices are obtained:
\(\hat{B}^c(\tilde{X}) = |X_6| - |X_1| = 2 \), \(\hat{B}^s(\tilde{X}) = \delta(e(\tilde{X}_6), e(\tilde{X}_1)) = \delta((2, 1, 4, 0), (1, 1, 3, 2)) = 4 \).

6.2. Network-like illustration example
In general, a wireless sensor network (WSN) can be considered as a multi-layer system (Fig. 15): (1) sensors, (2) clusters, (3) cluster heads, (4) sink, (5) database server, and (6) decision/control center. The design process of the architecture is based on element multi-type clustering (i.e., sensor/end nodes, cluster heads, etc).

![Multi-layer architecture of WSN](image-url)
Here, a numerical example from Fig. 10 is considered (three types of elements: ordinary nodes, nodes for relay, cluster heads): $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$. Parameters of elements and their interconnection are presented in Table 6 (element weights, element types) and Table 7 (weights of edges, symmetric weighted binary relation). The considered four-cluster solution is: $\bar{X}^i = \{X_1^i, X_2^i, X_3^i, X_4^i\}$ where $X_1^i = \{8, 9, 13, 14\}$, $X_2^i = \{1, 3, 4\}$, $X_3^i = \{2, 5, 6, 10\}$, and $X_4^i = \{7, 11, 12, 15\}$. Proximities between cluster structures are presented in Table 8. Fig. 16 depicts the poset-like scale $P_{4.4}$ for cluster structure, where multiset estimate of the cluster structure is: $e(X_p) = (\alpha_{\theta_1}, \alpha_{\theta_2}, \alpha_{\theta_3}, \alpha_{\theta_4})$.

Fig. 16. Poset-like scale $P_{4.4}$ for $e(X_p) = (\alpha_{\theta_1}, \alpha_{\theta_2}, \alpha_{\theta_3}, \alpha_{\theta_4})$.

The resultant integrated parameters of the clusters are contained in Table 9.

Finally, the following balance indices on the basis of method 1 are obtained (clustering solution $\bar{X}^i = \{X_1^i, X_2^i, X_3^i, X_4^i\}$): $B^c(\bar{X}^i) = 1$, $B^p(\bar{X}^i) = 6.7$, $B^\omega(\bar{X}^i) = 13.9$, $B^\theta(\bar{X}^i) = 4$.

Further, the following reference specified parameters for clusters are considered: $p_{|X_0|} = 4$, $p_{w_0} = 12.0$, $p_{v_0} = 15.0$.

The reference cluster structure is: $e_p^r = (1, 1, 2, 0)$. Thus, the balance indices based on method 2 are: $\tilde{B}^c(\bar{X}^i) = 1$, $\tilde{B}^w(\bar{X}^i) = 4.7$, $\tilde{B}^\omega(\bar{X}^i) = 7.3$, $\tilde{B}^\theta(\bar{X}^i) = 2$.

The resultant integrated parameters of the clusters are contained in Table 9.

Finally, the following balance indices on the basis of method 1 are obtained (clustering solution $\bar{X}^i = \{X_1^i, X_2^i, X_3^i, X_4^i\}$): $B^c(\bar{X}^i) = 1$, $B^p(\bar{X}^i) = 6.7$, $B^\omega(\bar{X}^i) = 13.9$, $B^\theta(\bar{X}^i) = 4$.

Further, the following reference specified parameters for clusters are considered: $p_{|X_0|} = 4$, $p_{w_0} = 12.0$, $p_{v_0} = 15.0$.

The reference cluster structure is: $e_p^r = (1, 1, 2, 0)$. Thus, the balance indices based on method 2 are: $\tilde{B}^c(\bar{X}^i) = 1$, $\tilde{B}^w(\bar{X}^i) = 4.7$, $\tilde{B}^\omega(\bar{X}^i) = 7.3$, $\tilde{B}^\theta(\bar{X}^i) = 2$.

The resultant integrated parameters of the clusters are contained in Table 9.

Finally, the following balance indices on the basis of method 1 are obtained (clustering solution $\bar{X}^i = \{X_1^i, X_2^i, X_3^i, X_4^i\}$): $B^c(\bar{X}^i) = 1$, $B^p(\bar{X}^i) = 6.7$, $B^\omega(\bar{X}^i) = 13.9$, $B^\theta(\bar{X}^i) = 4$.

Further, the following reference specified parameters for clusters are considered: $p_{|X_0|} = 4$, $p_{w_0} = 12.0$, $p_{v_0} = 15.0$.

The reference cluster structure is: $e_p^r = (1, 1, 2, 0)$. Thus, the balance indices based on method 2 are: $\tilde{B}^c(\bar{X}^i) = 1$, $\tilde{B}^w(\bar{X}^i) = 4.7$, $\tilde{B}^\omega(\bar{X}^i) = 7.3$, $\tilde{B}^\theta(\bar{X}^i) = 2$.

The resultant integrated parameters of the clusters are contained in Table 9.
Table 6. Parameters of elements (example from Fig. 10)

Element a_j	Cluster number ι (X'_{ι})	Element weight $w(a_j)$	Element type $\theta(a_j)$
a_1	2	4.2	1
a_2	3	5.1	1
a_3	2	1.1	3
a_4	2	2.0	3
a_5	3	3.1	2
a_6	3	3.2	2
a_7	4	1.0	3
a_8	1	3.4	2
a_9	1	5.0	1
a_{10}	3	0.9	3
a_{11}	4	4.5	1
a_{12}	4	4.8	1
a_{13}	1	0.8	3
a_{14}	1	3.4	2
a_{15}	4	3.7	2

Table 7. Interconnection edge weights for example from Fig. 10

a_{j_1}	a_{j_2}:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		1	4.1	2.1												
		2		4.4	4.5											
		3			4.1	1.5										
		4	2.1	1.5	3.0	2.9	0.7									
		5		4.4		3.6		3.0	1.0							
		6		4.5			3.6			0.8						
		7						2.5	3.2							
		8			3.0		4.0			3.2						
		9		2.9	3.0	4.0	1.6		3.1	6.0						
		10		0.7	1.0	0.8	1.6	5.0			3.3					
		11		2.5		5.0	6.2		4.3							
		12		3.2		6.2		4.2								
		13				3.1			5.0							
		14			3.2	6.0			5.0	2.5						
		15				3.3	4.3	4.2	2.5							

Table 8. Proximity for cluster structures (example from Fig. 10): $\delta(e(X'_{\iota_1}), e(X'_{\iota_2}))$

Cluster X'_{ι_1}	Cluster X'_{ι_2}:	X_1'	X_2'	X_3'	X_4'
X_1'	0	2	0	1	
X_2'	2	0	3	4	
X_3'	0	3	0	1	
X_4'	1	4	1	0	

Table 9. Parameters of clusters (example from Fig. 10)

| Cluster | $\eta_i(X'_{\iota}) = |X'_{\iota}|$ | $\sum_{a_{j_1} \in X'_{\iota}} w(a_{j_1})$ | $\sum_{a_{j_1}, a_{j_2} \in X'_{\iota}} v(a_{j_1}, a_{j_2})$ | $e(X'_{\iota})$ |
|---------|----------------------------------|---------------------------------|--|----------------|
| X_1' | 4 | 12.6 | 21.3 | (1, 2, 1, 0) |
| X_2' | 3 | 7.3 | 7.7 | (1, 0, 2, 1) |
| X_3' | 4 | 12.3 | 15.4 | (1, 2, 1, 0) |
| X_4' | 4 | 14.0 | 21.6 | (2, 1, 1, 0) |

The second considered four-cluster solution is: $\bar{X}'' = \{X''_1, X''_2, X''_3, X''_4\}$ where $X''_1 = \{4, 8, 9, 13, 14\}$, $X''_2 = \{1, 3\}$, $X''_3 = \{2, 5, 6\}$, and $X''_4 = \{7, 10, 11, 12, 15\}$.

Proximities between cluster structures are presented in Table 10. The resultant integrated parameters of the clusters are contained in Table 11.
Finally, the following balance indices on the basis of method 1 are obtained (clustering solution $X'' = \{X'_1, X''_2, X''_3, X''_4\}$): $B^c(X''') = 3$, $B^w(X''') = 9.6$, $B^v(X''') = 25.8$, $B^s(X''') = 6$.

The basic reference specified parameters for clusters are considered as for previous clustering solution (i.e., X'): $p_{X'_{10}} = 4$, $p_{X'_{20,1}} = 12.0$, $p_{X'_{20,2}} = 15.0$.

The reference cluster structure is: $e_{ρ_ρ} = (1, 1, 3, 0)$. Thus, the balance indices based on method 2 are: $\tilde{B}^c(X''') = 2$, $\tilde{B}^w(X''') = 6.7$, $\tilde{B}^v(X''') = 11.9$, $\tilde{B}^s(X''') = 4$.

Table 12 contains the obtained balance indices for the considered clustering solutions \tilde{X}' and \tilde{X}''.

Table 10. Proximity for cluster structures (example from Fig. 10): $δ(e(X''_i), e(X''_j))$

Cluster X''_i	Clustering X''_j	X''_1	X''_2	X''_3	X''_4
X''_1	5	0	5	2	1
X''_2	5	0	3	6	
X''_3	2	3	0	3	
X''_4	1	6	3	0	

Table 11. Parameters of clusters (example from Fig. 10)

Cluster X''_i	$\eta_i(X''_i) = \sum_{a_{i,j} \in X''_i} w(a_{i,j})$	$\sum_{a_{i,j, a_{j,2}} \in X''_i} v(a_{i,j, a_{j,2}})$	$e(X''_i)$
X''_1	5	14.6	(1, 2, 0, 0)
X''_2	2	5.3	(1, 0, 1, 3)
X''_3	3	11.4	(1, 2, 0, 2)
X''_4	5	14.9	(2, 1, 2, 0)

Table 12. Balance indices of clustering solutions \tilde{X}' and \tilde{X}''

No.	Description	Solution X'	Solution X''
I.	Method 1:		
1.1	Balance index by cluster cardinality	$B^c(\tilde{X}') = 1$	$B^c(\tilde{X}'') = 3$
1.2	Balance index by total cluster weight	$B^w(\tilde{X}') = 6.7$	$B^w(\tilde{X}'') = 9.6$
1.3	Balance index by total inter-cluster edge/arc weight	$B^v(\tilde{X}') = 13.9$	$B^v(\tilde{X}'') = 25.8$
1.4	Balance index by cluster element structure	$B^s(\tilde{X}') = 4$	$B^s(\tilde{X}'') = 6$
II.	Method 2:		
2.1	Balance index by cluster cardinality	$\tilde{B}^c(\tilde{X}') = 1$	$\tilde{B}^c(\tilde{X}'') = 2$
2.2	Balance index by total cluster weight	$\tilde{B}^w(\tilde{X}') = 4.7$	$\tilde{B}^w(\tilde{X}'') = 6.7$
2.3	Balance index by total inter-cluster edge/arc weight	$\tilde{B}^v(\tilde{X}') = 7.3$	$\tilde{B}^v(\tilde{X}'') = 11.9$
2.4	Balance index by cluster element structure	$\tilde{B}^s(\tilde{X}') = 2$	$\tilde{B}^s(\tilde{X}'') = 4$

6.3. Cluster structure based balanced clustering for student teams

The considered numerical example is a modification of an example from [104]. There is a set of 13 students $A = \{a_1, ..., a_j, ..., a_{13}\}$ (Table 13) in the field of radio engineering. Four inclination/skill properties of the students are considered as parameters/criteria (student estimates are shown in Table 13): (i) inclination (skill) for mathematics C_1, (2) inclination (skill) for theoretical radio engineering C_2, (3) skill for technical works in radio engineering (usage of radio devices, design of scheme, analysis of signals, etc.) C_3, (4) writing skill (e.g., to prepare a laboratory work report/paper) C_4. The following scale is used: $[0, 1, 2, 3]$, where 0 corresponds to absent inclination/skill, 1 corresponds to low level of inclination/skill, 2 corresponds to medium level of inclination/skill, 3 corresponds to high level of inclination/skill). As a result, each student $j (j = 1, 13)$ has a vector (4 component) estimate $\xi(a_j) = (\xi^1(a_j), \xi^2(a_j), \xi^3(a_j), \xi^4(a_j))$. It is assumed, each student has as minimum one “positive” inclination/skill estimate (or more).

A symmetric weighted binary relation of student friendship $R^f = \{e(a_{j_1}, a_{j_2})\} (j_1, j_2 = 1, 13)$ (ordinal scale $[0, 1, 2, 3]$, 0 corresponds to incompatibility) is contained in Table 14.

Some notations are as follows. The structure of cluster is $X_i = \{b_1, ..., b_r, ..., b_{\mu_i}\}$.

Then the following cluster characteristics are examined:
1. The total vector estimate of the cluster structure is: $\xi(X_i) = (\xi^1(X_i), \xi^2(X_i), \xi^3(X_i), \xi^4(X_i))$.
where $\xi^k(X_i) = \max_{r=1}^{\mu_i} \xi^k(b_r)$, $\forall k = 1,4$ (index of criteria/parameter).

2. The total estimate of the cluster by quality of intercluster compatibility is:

$\varepsilon(X_i) = \sum_{b_{\tau_1},b_{\tau_2}\in X_i} \xi^k(b_{\tau_1},b_{\tau_2})$.

Table 13. Items/students, estimates upon criteria

Item (student)	C_1 ($\xi^1(a_j)$)	C_2 ($\xi^2(a_j)$)	C_3 ($\xi^3(a_j)$)	C_4 ($\xi^4(a_j)$)	Vector estimate $\xi(a_j)$
Student 1 (a_1)	1 2 3 3	(1,2,3,3)			
Student 2 (a_2)	0 1 2 1	(0,1,2,1)			
Student 3 (a_3)	2 3 3 2	(1,3,3,2)			
Student 4 (a_4)	2 2 1 3	(3,2,1,3)			
Student 5 (a_5)	0 1 2 1	(0,1,2,1)			
Student 6 (a_6)	3 3 3 3	(3,3,3,3)			
Student 7 (a_7)	0 1 1 1	(0,1,1,1)			
Student 8 (a_8)	0 2 2 2	(0,2,2,2)			
Student 9 (a_9)	0 2 3 1	(0,2,3,1)			
Student 10 (a_{10})	3 3 2 3	(3,3,2,3)			
Student 11 (a_{11})	0 1 3 2	(0,1,3,2)			
Student 12 (a_{12})	0 2 3 1	(0,2,3,1)			
Student 13 (a_{13})	0 1 1 1	(0,1,1,1)			

Table 14. Ordinal estimates of student friendship (compatibility) $R^f = \{\varepsilon(a_{j1},a_{j2})\}$

a_{j1} / a_{j2}	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}	a_{12}	a_{13}
a_1	2	2	3	1	2	2	2	2	2	3	3	2	
a_2	2	3	1	2	2	2	2	0	0	2	2	1	
a_3	3	3	3	2	3	3	3	3	3	3	3	2	
a_4	1	1	2	2	2	2	2	3	3	3	3	3	
a_5	3	3	3	2	3	3	2	3	3	3	2	3	
a_6	1	1	2	0	3	3	3	3	3	3	3	3	
a_7	3	3	3	2	3	3	3	3	3	3	3	3	
a_8	3	3	3	2	3	3	3	3	3	3	3	3	
a_9	3	3	3	2	3	3	3	3	3	3	3	3	
a_{10}	3	3	3	2	3	3	3	3	3	3	3	3	
a_{11}	3	3	3	2	3	3	3	3	3	3	3	3	
a_{12}	3	3	3	2	3	3	3	3	3	3	3	3	
a_{13}	3	3	3	2	3	3	3	3	3	3	3	3	

The clustering problem can be considered as the following:

Find the clustering solution $\tilde{X} = \{X_1,...,X_\lambda\}$ (i.e., a set of student teams as clusters/groups without intersection) for implementation of special laboratory work(s) (e.g., in radio engineering) while taking into account some requirements:

(a) constraints for the number of elements (students) in each cluster (i.e., cluster cardinality):

$\eta_{\text{min}} \leq |X_i|$

(b) constraint for total inclination/skill in the cluster: $\xi(X_i) \geq \xi_0 = (2,3,3,2)$

(c) the objective function 1 is to minimize the balance index by cluster cardinality $B^c(\tilde{X})$:

(d) the objective function 2 is to maximize (multicriteria case) the worst cluster structure estimate;

(e) the objective function 3 is to maximize the worst inter-cluster cluster estimate of element compatibility.

The version of the optimization problem for the example above can be considered as follows:

$$\min B^c(\tilde{X}) = \max_{i=1,\lambda} |X_i| - \min_{i=1,\lambda} |X_i|, \quad \max_{i=1,\lambda} \xi(X_i), \quad \max_{i=1,\lambda} \varepsilon(X_i)$$

s.t. $3 \leq |X_i| \leq 4 \quad \forall i = 1,\lambda, \quad \xi(X_i) \geq \xi_0 = (2,2,3,2) \quad \forall i = 1,\lambda$.
The combinatorial optimization models of this kind are very complicated (i.e., NP-hard). Thus, enumerative algorithms or heuristics (metaheuristics) are used.

Now, it is reasonable to describe a simplified heuristic (for the example above):

Stage 1. Counting an approximate number of clusters (e.g., 4).

Stage 2. Selection of the most important criteria: 1st choice: criterion 3, 2nd choice: criterion 2.

Stage 3. Selection of the best elements (about 4) from the viewpoints of the selected criteria (e.g., by Pareto-rule) as kernels (“domain(s) leaders”) of the future clusters/teams. In general, small cliques or quasi-cliques can be considered as the kernels. In the example, the elements are: a_1, a_3, a_6, a_9.

Stage 4. Extension of each kernel above by other elements while taking into account element compatibility. As a result, the following clustering solution can be considered: $	ilde{X} = \{X_1, X_2, X_3, X_4\}$ ($B^v(\tilde{X}) = 1$), where the clusters are:

1. $X_1 = \{a_1, a_2, a_4\}$, $\xi(X_1) = (2, 2, 3, 3)$, $\varepsilon(X_1) = 8$;
2. $X_2 = \{a_3, a_7, a_8\}$, $\xi(X_2) = (2, 3, 3, 2)$, $\varepsilon(X_2) = 8$;
3. $X_3 = \{a_6, a_5, a_{11}\}$, $\xi(X_3) = (3, 3, 3, 3)$, $\varepsilon(X_3) = 8$;
4. $X_4 = \{a_9, a_{10}, a_{12}, a_{13}\}$, $\xi(X_4) = (3, 3, 3, 3)$, $\varepsilon(X_4) = 15$.

Note, balance index by total inter-cluster edge weight is $B^v(\tilde{X}) = 7$.

Fig. 17 depicts the obtained four clusters solution $\tilde{X} = \{X_1, X_2, X_3, X_4\}$ (edge weight/compatibility estimates are pointed out).

7. **Conclusion**

The paper describes the author preliminary outline of various combinatorial balancing problems including new balance indices for clustering solutions, multicriteria combinatorial models and examples. It may be reasonable to point out some prospective future research directions:

1. special investigation of balance indices for balanced structures (degree of balance, etc.);
2. study of various balancing problems in combinatorial optimization (e.g., balanced knapsack-like problems, balanced allocation problems, balanced bin packing problems);
3. taking into account uncertainty in the balancing models;
4. examination of balancing clustering problems in networking (e.g., design of multi-layer communication networks, routing);
5. study of augmentation approaches to balance structures while taking into account the improvement of the structures balance; and
6. usage of the described approaches in CS/engineering education.

8. **Acknowledgments**

The research was done in Institute for Information Transmission Problems of Russian Academy of Sciences and supported by the Russian Science Foundation (grant 14-50-00150, “Digital technologies and their applications”).

REFERENCES

1. A.A. Abbasi, M. Younis, A survey on clustering algorithms for wireless sensor networks. Comp. Commun., 30(14-15), 2826–2841, 2007.
2. G.M. Adelson-Velsky, E.M. Landis, An algorithm for the organization of information. Soviet Math. Doklady, 3, 1259–1263, 1962.
3. A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algorithms. Addison-Wesley, Readings, MA, 1983.
4. J. Akiyama, D. Avis, C. Chvatal, H. Era, Balancing sign graphs. Discr. Appl. Math., 3(4), 227–233, 1981.
5. M. Amen, Heuristic methods for cost-oriented assembly line balancing: a comparison on solution quality and computing time. Int. J. of Prod. Res., 69, 255–264, 2001.
6. M. Amen, Cost-oriented assembly line balancing: Model formulations, solution difficulty, upper and lower bounds. EJOR, 168(3), 747–770, 2006.
7. A. Amir, J. Ficler, R. Krauthgamer, L. Roditty, O.S. Shalom, Multiply balanced k-partitioning. In: LATIN14, pp. 586–597, 2014.
8. K. Andreev, H. Racke, Balanced graph partitioning. Theory of Comput. Syst., 39(6), 929–939, 2006.
9. C. Andres, C. Miralles, R. Pastor, Balancing and scheduling tasks in assembly lines with sequence-dependent setup times. EJOR, 187(3), 1212–1223, 2008.
10. N.S. Argyres, B.S. Silverman, R&D, organization structure, and the development of corporate technological knowledge. Strategic Management J., 25(8-9), 929–958, 2004.
11. Y. Azar, A.Z. Broder, A.R. Karlin, E. Upfal, Balanced allocations. SIAM J. on Computing, 29(1), 180–200, 1999.
12. D.A. Bader, H. Meyerhenke, P. Sanders, D. Wagner (eds), Graph Partitioning and Graph Clustering. AMS, 2013.
13. J.-L. Baer, B. Schwab, A comparison of tree-balancing algorithms. Commun. of the ACM, 29(5), 322–330, 1977.
14. A. Balakrishnan, T. Magnanti, P. Mirchandani, A dual-based algorithm for multi-level network design. Manag. Sci., 40(5), 567–581, 1994.
15. M.M. Baldi, G. Perboli, R. Tadei, The three-dimensional knapsack problem with load balancing. Appl. Math. Comput., 218(19), 9802–9818, 2012.
16. C.Y. Baldwin, K.B. Clark, Design Rules: The Power of Modularity. MIT Press, Cambridge, Mass., 2000.
17. M.L. Balinski, G. Demange, Algorithms for proportional matrices in reals and integers. Math. Programming, 45, 193–210, 1989.
18. J. Bar-Ilan, G. Kortsarz, D. Peleg, How to allocate network centers. J. of Algorithms, 15(3), 385–415, 1993.
19. S. Basu, I. Davidson, K. Wagstaff (eds), Constrained Clustering: Advances in Algorithms, Theory, and Applications. CRC Press, 2008.
20. R. Bayer, E. McCreight, Organization and maintenance of large ordered indexes. Acta Informatica, 1(3), 173–189, 1972.
21. R. Bayer, Symmetric binary B-Trees: Data structure and maintenance algorithms. Acta Informatica, 1(4), 290–306, 1972.
22. I. Ben-Arroyo Hartman, Berge’s conjecture on directed path partitions - A survey. Discrete Math., 306(19-20), 2498–2514, 2006.
23. U. Benlic, J.K. Hao, An effective multilevel tabu search approach for balanced graph partitioning. Comp. and Oper. Res., 38(7), 1066–1075, 2011.
24. P. Berenbrink, A. Czumaj, A. Steger, B. Vocking, Balanced allocations: The heavily loaded case. In: Proc. of the 32nd Annual ACM Symp. on Theory of Computing (STOC), pp. 745–754, 2000.
25. C. Berge, Balanced matrices. Mathematical Programming, 2(1), 19–31, 1972.
26. C. Berge, k-optimal partitions of a directed graph. Eur. J. Comb., 3(2), 97–101, 1982.
27. E. Berger, I. Ben-Arroyo Hartman, Proof of Berge’s strong path partition conjecture for k = 2. Eur. J. of Combinatorics, 29(1), 179–192, 2008.
28. R. van Bevern, A.E. Feldmann, M. Sorge, O. Suchy, On the parameterized complexity of computing balanced partitions in graphs. Theory of Comput. Syst., 57(1), 1–35, 2015.
29. R. van Bevern, R. Brederoek, M. Chopin, S. Hartung, F. Huffner, A. Nichterlein, O. Suchy, Fixed-parameter algorithms for DAG partitioning. Electr. prepr., 33 p., Nov. 27, 2016. [http://arxiv.org/abs/1611.08809 [cs.DS]]
30. J. Bhasker, The clique-partitioning problem. Computers & Math. with Appl., 22(6), 1–11, 1991.
31. C.-E. Bichot, P. Siarry (eds), Graph Partitioning, Wiley-ISTE, 2013.
32. K. Biswas, V. Muthekkumarasamy, E. Sithirasenan, Maximal clique based clustering scheme for wireless sensor networks. In: 2013 Eight Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing, pp. 237–241, 2013.
33. A. Bonivento, C. Fischione, L. Necchi, F. Pianegiani, A. Sangiovanni-Vincentelli, System level design for clustered wireless sensor networks. IEEE Trans. Ind. Inf., 3(3), 202–214, 2007.
34. S. Borgwardt, S. Om, Efficient solutions for weighted-balanced partitioning problems. Discr. Optim., 21, 71–84, 2016.
35. P.A. Borisovsky, X. Delorme, A. Dolgui, Balancing reconfigurable machining lines via a set partitioning model. Int. J. of Prod. Res., 52(13), 4052–4036, 2014.
36. N. Boysen, M. Fliedner, A. Scholl, A classification of assembly line balancing problems. EJOR, 183(2), 674–693, 2007.
37. N. Boysen, M. Fliedner, A. Scholl, Assembly line balancing: Which model to use when. Int. J. of Prod. Res., 111(2), 509–528, 2008.
38. A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, C. Schulz, Recent advances in graph partitioning. Electr. prepr., 37 p., Feb 3, 2015. http://arxiv.org/abs/1311.3144 [cs.DS]
39. V. Cardellini, M. Colajanni, S.Yu. Philip, Dynamic load balancing on web-server systems. IEEE Internet Computing, 3(3), 28–39, 1999.
40. D. Cartwright, F. Harary, Structural balance: A generalization of Heider’s theory. Psychol. Rev., 63, 277–293, 1956.
41. Y. Censor, S.A. Zenios, Interval-constrained matrix balancing. Linear Algebra and Its Applications, 150, 393–421, 1991.
42. R.-S. Chang, J.-S. Chang, P.-S. Lin, An ant algorithm for balanced job scheduling in grids. Future Generation Computer Systems, 25(1), 20–27, 2009.
43. I. Charon, O. Hudry, A branch and bound method for a clique partitioning problem. In: Extended Abstracts of 9th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, Cologne, Germany, May 25-27, CTW 2010, pp. 43–46, 2010.
44. H. Cheng, S. Yang, Genetic algorithms with elitism-based immigrants for dynamic load balanced clustering problem in mobile ad hoc networks. In: 2011 IEEE Symp. on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), pp. 1–7, 2011.
45. T.C.K. Chou, J.A. Abraham, Load balancing in distributed systems. IEEE Trans. on Software Engrg., 8(4), 401–412, 1982.
46. Y.C. Chow, W.H. Kohler, Models for dynamic load balancing in a heterogeneous multiple processor system. IEEE Trans. on Comp., 28(5), 354–361, 1979.
47. M. Conforti, G. Cornuejols, K. Vuskovic, Balanced matrices. In: K. Aardal, G.L. Nemhauser, R. Weismantel (eds), Handbooks in Operations Research and Management Science, Elsevier, vol. 12, pp. 277–319, 2005.
48. R.W. Conway, W.L. Maxwell, L.W. Miller, Theory of Scheduling. Addison-Wesley, Readings, Mass., 1967.
49. T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms. 3rd ed., MIT Press and McGraw-Hill, 2009.
50. T. Cour, P. Srinivasan, J. Shi, Balanced graph matching. In: Neural Information Processing Systems (NIPS), pp. 313–320, 2006.
51. J. Current, C. ReVelle, J. Cohon, The hierarchical network design problem. EJOR, 27(1), 57–66, 1986.
52. G. Cybenko, Dynamic load balancing for distributed memory multiprocessors. Paral. Distr. Comput., 7, 279–301, 1989.
53. A. Czumaj, C. Riley, C. Scheideler, Perfectly balanced allocation. In: Proc. of the 7th Int. Workshop on Randomized and Approximation Techniques in Computer Science (RANDOM’03), pp. 240–251, 2003.
54. J. Dai, S. Wang, Clustering-based interference management in densely deployment femtocell networks. Digital Commun. and Netw., 2(4), 175–183, 2016.
55. A.P. Davies, E.E. Bischoff, Weight distribution considerations in container loading. EJOR 114(3), 509–527, 1999.
56. J.A. Davis, Clustering and structural balance in graphs. Human Relations, 20(2), 181–187, 1967.
57. P. Dell’Olmo, M.G. Speranza, Approximation algorithms for partitioning small items in unequal bins to minimize the total size. Discr. Appl. Math., 94(1-3), 181–191, 1999.
58. P. Dell’Olmo, P. Hansen, S. Pallottino, G. Storchi, On uniform \(k \)-partition problem. Discr. Appl. Math., 150(1–3), 121–139, 2005.
59. R. Diekmann, R. Preis, F. Schlimbach, C. Walshaw, Aspect ratio for mesh partitioning. In: Proc. of Euro-Par’98, LNCS 1470, Springer, pp. 347–351, 1998.
60. R. Diekmann, R. Preis, F. Schlimbach, C. Walshaw, Shape-optimized mesh partitioning and load balancing for parallel adaptive FEM. Paral. Comput., 26, 1555–1581, 2000.
61. A. Dolgui, Balancing assembly and transfer lines. EJOR, 168(3), 663–665, 2006.
62. A. Dolgui, N. Guschinsky, G. Levin, A special case of transfer lines balancing by graph approach. EJOR, 168(3), 732–746, 2006.
63. P. Erdős, R. Faudree, E.T. Ordman, Clique partitions and clique coverings. Discr. Math., 72, 93–101, 1988.
64. E. Erel, S.C. Sarin, A survey of the assembly line balancing procedures. Production Planning and Control, 9(5), 414–434, 1998.
65. S.K. Ethiraj, D. Levinthal, Modularity and innovation in complex systems. Manag. Sci. 50(2), 159–173, 2004.
66. G. Even, J. Naor, S. Rao, B. Schieber, Fast approximate graph partitioning algorithms. SIAM J. on Comput., 28(6), 2187–2214, 1999.
67. U. Faigle, W. Kern, On some approximately balanced combinatorial cooperative games. Zeitschrift fur Operations Research, 38(2), 141–152, 1993.
68. A.E. Feldmann, Balanced partitioning of grids and related graphs: a theoretical study of data distribution in parallel finite element model simulation. Cuvillier ETH Zurich, 2012.
69. A.E. Feldmann, Fast balanced partitioning is hard even on grids and trees. Theor. Comp. Sci., 485, 61–68, 2013.
70. A.E. Feldmann, Fixed parameter approximations for \(k \)-center problems in low highway dimension graphs. Electr. prepr., 15 p., May 9, 2016. [http://arxiv.org/abs/1605.02530 [cs.DS]]
71. A.E. Feldmann, L. Foschini, Balanced partitions of trees and applications. Algorithmica, 71(2), 354–376, 2015.
72. T.A. Feo, M. Khellaf, A class of bonded approximation algorithms for graph partitioning. Networks, 20(2), 181–195, 1990.
73. T.A. Feo, O. Goldschmidt, M. Khellaf, One-half approximation algorithms for the \(k \)-partition problem. Oper. Res., 40, 170–173, 1992.
74. Y.-G. Fu, J. Zhou, L. Deng, Yi-Ge Fu, Jie Zhou, Lei Deng, Surveillance of a 2D plane area with 3D deployment cameras. Sensors, 14(2), 1988–2011, 2014.
75. M.R. Garey, D.S. Johnson, Computers and Intractability. The Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.
76. B. Goldengorin, D. Ghosh, A multilevel search algorithm for the maximization of submodular functions applied to the quadratic cost partition problem. J. of Glob. Optim., 32(1), 65–82, 2005.
77. G. Gupta, M. Younis, Load-balanced clustering of wireless sensor networks. In: IEEE Int. Conf. on Communications ICC’03, vol. 3, pp. 1848–1852, 2003.
78. G.R. Gupta, N.B. Shroff, Practical scheduling schemes with throughput guaranties for multi-hop wireless networks. Comp. Netw., 54(5), 766–780, 2010.
79. F. Harary, On the notion of balance in signed graph. Michigan math., 2, 143–146, 1953.
80. T.R. Hoffmann, Assembly line balancing: a set of challenging problems. Int. J. of Prod. Res., 28, 1807–1815, 1990.
81. G. Horn, B.J. Oommen, Towards a learning automata solution to the multi-constraint partitioning problem. In: 2006 IEEE Conf. on Cybernetics and Intelligent Systems, pp. 1–8, 2006.
82. E. Horowitz, S. Sahni, Computing partitions with applications to the knapsack problem. J. of the ACM, 21(2), 277–292, 1974.
83. J. Hromkovic, B. Monien, The bisection problem for graphs of degree 4 (configuring transputer systems). In: 16th Symp. on Mathematical Foundations of Computer Science (MFCS), LNCS 520, Springer, pp. 211–220, 1991.
84. N. Israr, A. Awan, Coverage based inter-cluster communication for load-balancing in heterogeneous
wireless sensor networks. Telecommun. Syst., 38, 121–132, 2008.
85. X. Ji, J.E. Mitchell, Branch-and-price-and-cut on the clique partitioning problem with minimum clique size requirements. Discr. Optim., 4(1), 87–102, 2007.
86. A. Jose, M. Tollenare, Modular and platform methods for product family design: literature analysis. J. Intell. Manuf. 16, 371–390, 2005.
87. N. Jozeffowicz, F. Semet, E.G. Talbi, An evolutionary algorithm for the vehicle routing problem with route balancing. EJOR, 195(3), 761–769, 2009.
88. P.L. Karlton, S.H. Fuller, R.E. Scroggs, E.B. Kaehler, Performance of height-balanced trees. Commun. of the ACM, 19(1), 23–28, 1976.
89. A.V. Kel’manov, S.A. Khamidullin, V. I. Khandeev, L. V. Mikhailova, An approximation algorithm for one NP-hard problem of partitioning a sequence into clusters with restrictions on their cardinalities. In: Book of abstracts of the 11th Int. Conf. “Intelligent Data Processing” (IDP-2016), pp. 72–73, 2016.
90. K. Kenthapadi, R. Panigrahy, Balanced allocation on graphs. In: Proc. of the Seventeenth Annual ACM-SIAM Symp. on Discrete Math., SIAM, pp. 434–443, 2006.
91. A.W. Khan, A.H. Abdullah, M.H. Anisi, J.I. Bangash, A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors, 14(2), 2510–2548, 2014.
92. J.T. Kim, D.R. Shin, New efficient clique partitioning algorithms for register-transfer synthesis of data paths. J. Korean Phys. Soc., 40, 754–758, 2002.
93. D. Knuth, The Art of computing Programming. Vol. 3: Sorting and Searching, 3rd ed., Addison-Wesley, pp. 458–475, 1997.
94. R.E. Korf, A complete anytime algorithm for number partitioning. Artif. Intell., 106(2), 181–203, 1998.
95. R. Krauthgamer, J. Naor, R. Schwartz, Partitioning graphs into balanced components. In: Proc. of the 20th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 942–949, 2009.
96. M.N. Kritikos, G. Ioannou, The balanced cargo vehicle routing problem with time windows. Int. J. of Prod. Econ., 123(1), 42–51, 2010.
97. P. Kuila, S.K. Gupta, P.K. Jana, A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolution and Computation, 12, 48–56, 2013.
98. P. Kuila, P.K. Jana, Approximation schemes for load balanced clustering in wireless sensor networks. The J. of Supercomput., 68(1), 87–105, 2014.
99. J. Leskovec, L. Backstrom, J. Kleinberg, Meme-tracking and the dynamics of the news cycle. In: Proc. of the 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD’09), pp. 497–506, 2009.
100.M.Sh. Levin, An extremal problem of organization of data. Eng. Cybern., 19(5), 87–95, 1981.
101.M.Sh. Levin, Multiset estimates and combinatorial synthesis. Electr. prepr., 30 p., May 9, 2012. [http://arxiv.org/abs/1205.2046] [cs.SY]
102.M.Sh. Levin, Towards design of system hierarchy (research survey). Electr. prepr., 36 p., Dec. 7, 2012. [http://arxiv.org/abs/1212.1735] [math.OC]
103.M.Sh. Levin, Modular System Design and Evaluation, Springer, 2015.
104.M.Sh. Levin, Towards combinatorial clustering: preliminary research survey. Electr. prepr., 102 p., May 28, 2015. [http://arxiv.org/abs/1505.07872] [cs.AI]
105.M.Sh. Levin, On combinatorial clustering: literature review, methods, examples. J. of Commun. Technol. and Electronics, 60(12), 1403–1428, 2015.
106.M.Sh. Levin, Data allocation on disks with solution reconfiguration (problems, heuristics). Elec. prepr., 10 p., Dec. 18, 2016. [http://arxiv.org/abs/1612.04519] [cs.DC]
107.Y. Liao, H. Qi, W. Li, Load-balanced clustering algorithm with distributed self-organization for wireless sensor network. IEEE Sensors J., 13(5), 1498–1506, 2013.
108.A. Lim, B. Rodrigues, F. Wang, Zh. Xu, k-Center problem with minimum coverage. Theor. Comp. Sci., 332(1–3), 1–17, 2005.
109.F.C.H. Lin, R.M. Keller, The gradient model load balancing method. IEEE Trans. on Software Engrg., 13, 32–37, 1987.
110.X. Liu, A survey on clustering routing protocols in wireless sensor networks. Sensors, 12(8), 11113–11153, 2012.
111. C.P. Low, C. Fang, J.M. Ng, Y.H. Ang, Efficient load-balanced clustering algorithms for wireless sensor networks. Comp. Commun., 31(4), 750–759, 2008.
112. J. Ma, G.E. Okudan Kremer, A systematic literature review of modular product design (MPD) from the perspective of sustainability. Int. J. Adv. Manuf., 86(5), 1509–1539, 2016.
113. R.M. MacGe Cor, On Partitioning of Graphs: a Theoretical and Empirical Study. PhD thesis, Univ. of California, Berkeley, 1978.
114. K. Mathur, An integer-programming-based heuristic for the balanced loading problem. Oper. Res. Lett., 22(1), 19–25, 1998.
115. S. Mertens, A complete anytime algorithm for balanced number partitioning. Electr. prepr., 12 p., Mar. 9, 1999. [http://arxiv.org/abs/9903011] [cs.DS]
116. H. Meyerhenke, P. Sanders, C. Schulz, Partitioning (hierarchically clustered) complex networks via size-constrained graph clustering. J. of Heuristics, 22(5), 759–782, 2016.
117. A. Molnar, A General Partition Data Model and a Contribution to the Theory of Functional Dependencies. PhD thesis, Eotvos Lorand Univer., Faculty of Informatics, Hungary, 2007.
118. C.L. Monma, T. Carpenter, Variations on Matrix Balancing for Telecommunication Demand Forecasting. Technical Report, Telcordia, 1997.
119. S.B. Musunoori, G. Horn, Ant-based approach to the quality aware application service partitioning in a grid environment. In: 2006 IEEE Int. Conf. on Evolutionary Computation, pp. 589–596, 2006.
120. S.B. Musunoori, G. Horn, Intelligent ant-based solution to the application service partitioning problem in a grid environment. In: Sixth Int. Conf. on Intelligent Systems Design and Applications, vol. 1, 416–424, 2006.
121. L.M. Ni, K. Hwang, Optimal load balancing in a multiple processor system with many job classes. IEEE Trans. on SE, 11(5), 491–496, 1985.
122. G. Nikolakopoulos, S. Kortesia, A. Synofaki, R. Kalfakakou, Solving a vehicle routing problem by balancing the vehicles time utilization. EJOR, 152(2), 520–527, 2004.
123. C. Obreque, M. Donoso, G. Gutierrez, V. Marianov, A branch and cut algorithm for the hierarchical network design problem. EJOR, 200(1), 28–35, 2010.
124. J. Oyola, A. Lokketangen, Grasp-asp: An algorithm for the cvrp with route balancing. J. of Heuristics, 20(4), 361–382, 2014.
125. V. Pandiri, A. Singh, Swarm intelligence approaches for multidepot salesmen problems with load balancing. Applied Intelligence, 44(4), 849–861, 2016.
126. J. Pattillo, S. Butenko, Clique, independent set, and graph coloring. In: J. Cochran (ed), Encyclopedia of Operations Research and Management Science, Wiley, pp. 3150–3163, 2011.
127. M. Pavan, M. Pelillo, Dominant sets and pairwise clustering. IEEE Trans. PAMI, 29(1), 167–172, 2007.
128. H. Pirkul, J. Current, V. Nagarajan, The hierarchical network design problem: A new formulation and solution procedures. Transp. Sci., 25(3), 175–182, 1991.
129. S. Raisch, Balanced structures: Designing organizations for profitable growth. Long Range Planning, 41(5), 483–508, 2008.
130. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, I. Stoica, Load balancing in structuring P2P systems. In: Int. Workshop on Peer-to-Peer Systems, Springer, pp. 68–79, 2003.
131. D.M. Rayan, J.C. Falkner, On the integer properties of scheduling set partitioning models. EJOR, 35(3), 442–456, 1988.
132. R. Rees, Minimal clique partitions and pairwise balanced designs. Discr. Math., 61(2–3), 269–280, 1986.
133. F.R. Roberts, Discrete Mathematical Models with Applications Social, Biological and Environmental Problems. Prentice Hall, Englewood Cliffs, NJ, 1976.
134. F.R. Roberts, Graph Theory and Its Applications to Problems of Society. SIAM, Philadelphia, 1976.
135. D. Saha, D. Menasce, S. Porto, Static and dynamic processor scheduling disciplines in heterogeneous parallel architectures. J. of Parallel and Distributed Computing, 28(1), 1–18, 1995.
136. T. Sawik, Balancing and scheduling of surface mount technology lines. Int. J. of Prod. Res., 40(9), 1973–1991, 2002.
137. M.H. Schneider, S.A. Zenios, A comparative study of algorithms for matrix balancing. Oper. Res., 38, 439–455, 1990.
138. R. Schoonderwoerd, O.E. Holland, J.L. Bruten, L.J. Rothkrantz, Ant-based load balancing in telecommunications networks. Adaptive Behavior, 5(2), 169–207, 1997.
139. W. Shang, J.A.B. Fortes, Independent partitioning of algorithms with uniform dependencies. IEEE Trans. on Computers, 41(2), 190–206, 1992.
140. F. Shang, Y. Lei, An energy-balanced clustering routing algorithm for wireless sensor network. Wirel. Sens. Netw., 2(10), 777–783, 2010.
141. L.S. Shapley, On balanced sets and cores. Nav. Res. Log. Quart., 14, 453–460, 1967.
142. D. Simplot-Ryl, I. Stojmenovic, J. Wu, Energy efficient broadcasting, activity scheduling and area coverage in sensor networks. In: I. Stojmenovic (ed), Handbook of Sensor networks: Algorithms and Architectures, Wiley, pp. 343–379, 2005.
143. D.D. Sleator, R.E. Tarjan, Self-adjusting binary search trees. J. of the ACM, 32, 652–686, 1985.
144. M.M. Sorensen, Facet-defining inequalities for the simple graph partitioning polytope. Discr. Optim., 4(2), 221–231, 2007.
145. L.-H. Tsai, Asymptotic analysis of an algorithm for balanced parallel processor scheduling. SIAM J. Comput., 21(1), 59–64, 1992.
146. C. Walshaw. Variable partition inertia: Graph repartitioning and load balancing for adaptive meshes. In: M. Parashar, X. Li (eds), Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications, pp. 357-380. 2010.
147. C. Walshaw, M. Cross, Mesh partitioning: A multilevel balancing and refinement algorithm. SIAM J. on Scient. Comput., 22(1), 63-80, 2000.
148. C. Walshaw, M. Cross. Multilevel mesh partitioning for heterogeneous communication networks. Fut. Gen. Comp. Syst., 17(5), 601-623, 2001.
149. L. Wang, L. Da Xu, Z. Bi, Y. Xu, Data cleaning for RFID and WSN integration. IEEE Trans. on Industrial Informatics, 10(1), 408–418, 2014.
150. E. Yildiz, K. Akkaya, E. Sisiloglu, M. Sir, Optimal camera placement for providing angular coverage in wireless video sensor networks. IEEE Trans. on Computers, 63(7), 487–503, 2014.
151. O. Younis, S. Farmy, HEED: A hybрид, energy-efficient, distributed clustering approach for Ad Hoc sensor networks. IEEE Trans. on Mob. Comput., 3(4), 660–669, 2004.
152. O. Younis, M. Krinz, S. Ramasubramanian, Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Networks, 20(3), 20–25, 2006.
153. S.A. Zenios, A. Drud, J.M. Mulvey, Balancing large social accounting matrices with nonlinear network programming. Networks, 19, 569–585, 1989.
154. M. Zhao, Y. Yang, C. Wang, Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks. IEEE Trans. on Mob. Comput., 14(4), 770–785, 2015.