Abstract—The availability of larger and larger graph datasets, growing exponentially over the years, has created several new algorithmic challenges to be addressed. Sequential approaches have become unfeasible, while interest on parallel and distributed algorithms has greatly increased. Appropriately partitioning the graph as a preprocessing step can improve the degree of parallelism of its analysis. A number of heuristic algorithms have been developed to solve this problem, but many of them subdivide the graph on its vertex set, thus obtaining a vertex-partitioned graph. Aim of this paper is to explore a completely different approach based on edge partitioning, in which edges, rather than vertices, are partitioned into disjoint subsets. Contribution of this paper is twofold: first, we introduce a graph processing framework based on edge partitioning, that is flexible enough to be applied to several different graph problems. Second, we show the feasibility of these ideas by presenting a distributed edge partitioning algorithm called DFEP. Our framework is thoroughly evaluated, using both simulations and an Hadoop implementation running on the Amazon EC2 cloud. The experiments show that DFEP is efficient, scalable and obtains consistently good partitions. The resulting edge-partitioned graph can be exploited to obtain more efficient implementations of graph analysis algorithms.

I. INTRODUCTION

One of the latest trend in computer science is the emergence of the “big data” phenomena that concerns the retrieval, management and analysis of datasets of extremely large dimension, coming from wildly different settings. For example, astronomers need to examine the huge amount of observations collected by the new telescopes that are being built both on Earth and in orbit [8]. Biological experiments create large genomic and proteomic datasets that need to be processed and understood to reach new breakthroughs in the study of drugs [9]. Governments can improve the quality of life of their citizens by analyzing the huge collections of individual events related to traffic, economy, health-care and many other areas of everyday life [7]. The scale of such datasets keeps increasing exponentially, moving from gigabytes to terabytes and now even to petabytes.

Although the collected data is often structured, several interesting datasets are unstructured and can be modeled as graphs. An obvious example is the World Wide Web, but there are many other examples such as social network topologies, biological systems or even road networks. While graph problems have been studied since before the birth of computer science, the sheer size of these datasets makes even classic graph problems extremely difficult. Even solving the shortest path problem needs too many iterations to complete when the graph is too big to fit into memory. The big Internet players (such as Google, Yahoo and Facebook) have invested large amount of money in the development of novel distributed frameworks for very large graph analysis and are working on new solutions of many interesting classic problems in this new context [15], [2].

While parallel (multi-cpu, multi-core) systems have been used to deal with this deluge of data, there are many cases in which distributed approaches are the only viable road. The disadvantages of distribution cannot be ignored, though: they are inherently more difficult to develop and implement, and they bring a larger communication overhead. Nevertheless, the advantages outweigh the disadvantages. A distributed system is able to cope with potentially unlimited datasets, is more robust to hardware failures, is often cheaper and, with the emergence of distributed frameworks for data analysis, is also much easier to use than it was a decade ago. These new distributed frameworks abstract away most of the challenges of building a distributed system and give to the analyst simple programming models to write their data analysis programs.

A very common pattern in both parallel and distributed computing is to first partition the data, then work on each partition separately, minimizing the amount of communication between threads, processes or nodes. On graph datasets, this typically means partitioning the vertices into non-overlapping subsets, called partitions. Edges between vertices that have been assigned to distinct partitions act as communication channels between the partitions themselves.

When such partitions are assigned to a set of independent computing entities (being them actual machines or virtual executors like processes and threads, or even mappers and reducers in the MapReduce model), their size matters: the largest of them must fit in the memory of a single computing entity. A common solution to the problem of optimizing the usage of memory in such cases, is to compute partitions that have similar sizes. Dividing the vertex set in equal sized partitions can still lead to an unbalanced subdivision, though: having the same amount of vertices does not imply that the corresponding subgraph have the same size, given the unknown distribution of their edge degrees.

In this paper we make the case for a different approach: edges are partitioned into disjoint subsets, while vertices are associated to edges and thus may belong to several partitions at the same time. Our contribution is twofold: first, we propose a novel edge-based distributed graph processing framework called ETSCH, in which computation is associated to edges rather than vertices, and we show that such framework can
be used to compute the most common properties of graphs. Second, we design the first building block of this framework by proposing DFEP, a distributed edge-partitioning algorithm that can be used in the pre-processing phase to obtain the disjoint edge partitions to be fed into ETSCH.

The paper thoroughly evaluates ETSCH and DFEP, using both simulations and an Hadoop implementation running on the Amazon EC2 cloud. The experiments show that DFEP is efficient, scalable and obtains consistently good partitions. The resulting edge-partitioned graph is easier to analyze than the unpartitioned graph and can be exploited to obtain more efficient implementations of graph analysis algorithms.

The rest of the paper is structured as follows. Section II introduces the main concepts related to edge partitioning. Section III shows how to organize a distributed computation over an edge-partitioned graph in ETSCH. We then move to our second contribution by proposing, in Section IV, our novel distributed edge partitioning algorithm called DFEP. The experimental results are presented in Section V. Section VI presents the related work. The paper finishes with the conclusions in Section VII.

II. Edge partitioning

The task of subdividing a graph into partitions of similar size, or partitioning, is a classical problem in graph processing, and has many clear applications in both distributed and parallel graph algorithms. Most solutions, from Lin’s and Kernighan’s algorithm [11] in the 70’s to more recent approaches [12], try to solve vertex partitioning. This approach, however, may lead to unbalanced partitions, because even if they end up in having the same amount of vertices, an unbalanced distribution of edges may cause some subgraphs to be much larger than others. Approaching the problem from an edge perspective, thus, may bring us to interesting and practical results.

Given a graph $G = (V, E)$ and a parameter K, an edge partitioning of G subdivides all edges into a collection E_1, \ldots, E_K of non-overlapping edge partitions, i.e.

$$E = \bigcup_{i=1}^{K} E_i \quad \forall i, j : i \neq j \Rightarrow E_i \cap E_j = \emptyset$$

The i-th partition is associated with a vertex set V_i, composed of the end points of its edges:

$$V_i = \{u : (u, v) \in E_i \lor (v, u) \in E_i\}$$

The edges of each partition, together with the associated vertices, form the subgraph $G_i = (V_i, E_i)$ of G, as illustrated in Figure 1.

The size of a partition is proportional to the amount of edges and vertices $|E_i| + |V_i|$ belonging to it. Given that each edge $(u, v) \in E_i$ contributes with at most two vertices, $|V_i| = O(|E_i|)$ and the amount of memory needed to store a partition is strictly proportional to the number of its edges. This fact can be exploited to distribute fairly the load among machines.

Vertices may be replicated among several partitions, in which case are called frontier vertices. We denote with $F_i \subseteq V_i$ the set of vertices that are frontier in the i-th partition. These vertices are the channels through which the partitions communicate.

III. Working with edge partitionings

When a graph is subdivided using a vertex partitioning algorithm, each subgraph has a number of external edges that connect vertices across partitions. These are cut edges that are not really part of the subgraph, since the partition does not have knowledge of the other endpoint of the edge. The approach in this case is to consider vertices as computational entities that “send” messages to their neighbors, potentially across partitions using the cut edges.

This is not the case with edge partitioning. Both vertices and edges of a local graph can be associated with local state. Edges are part of exactly one subgraph, so their state belongs exactly to one partition. The same happens with vertices that do not belong to the frontier. Frontier vertices, on the other hand, are replicated in different partitions and their state need to be periodically reconciled. These idea are at the basis of ETSCH, our graph processing framework based on edge partitioning.

Figure 2 shows the organization of ETSCH. First of all, the graph is decomposed into K partitions by an edge partitioning algorithm like DFEP. Each partition is assigned to a different worker, which executes the following steps:

1) The initialization phase is run once, by taking the subgraph representing the partition as input and initializing the local state of vertices and edges.

2) Once completed the initialization, each subgraph state is fed to the local computation phase, that runs an independent instance of a sequential algorithm that updates the local state of the subgraph.

3) The aggregation phase logically follows the local computation: for each frontier vertex, the framework collects the distinct states of all replicas and computes a new state, that is then copied into the replicas.

Step (2) and (3) are executed iteratively, until the desired goal is reached and the distributed algorithm has completed its goal.

The initialization, local computation and aggregation functions can be customized to solve different problems, while the framework takes care of providing the subgraph to each worker, collecting the independent states from replicas and copying the aggregated state back to replicas.
To provide a couple of examples, Algorithms 1 and 2 show how to compute the distances of vertices from a source vertex and to identify the connected components of a graph using our framework. Both are basic problems that can be used as building blocks for other, more complex computations. For example, the problem of distance computation is needed to compute properties like betweenness centrality. It is also possible to implement Luby’s maximal independent set algorithm in ETSCH by spreading the random values in the local phase and choosing if a vertex must be added to the set in the aggregation phase.

Algorithm 1: Distance computation

```java
function init(Vertex[] V)
    foreach v ∈ V do
        if v = source then
            v.dist = 0;
        else
            v.dist = ∞;

function localComputation(Vertex[] V)
    PQ = new PriorityQueue<Vertex>();
    foreach v ∈ V do
        PQ.add(v);
    while not PQ.empty() do
        u = PQ.pop();
        foreach v ∈ u.neighbors do
            if v.dist > u.dist + 1 then
                v.dist = u.dist + 1;
                PQ.update(v);

function Distance aggregation(Distance[] D)
    return min(D);
```

Algorithm 2: Connected components computation

```java
function init(Vertex[] V)
    foreach v ∈ V do
        v.id = random();

function localComputation(Vertex[] V)
    PQ = new PriorityQueue<Vertex>();
    foreach v ∈ V do
        PQ.add(v);
    while not PQ() do
        q = PQ.pop();
        foreach v ∈ q.neighbors do
            if v.id > q.id then
                v.id = q.id;
                PQ.update(v);

function aggregation(ID[] D)
    return min(D);
```

For the problem of distance computation (Algorithm 1), each vertex is associated with a state containing just the distance parameter dist. Initially, all vertices are initialized to +∞, apart from the source vertex which is initialized to 0. In the local computation phase, vertices are inserted in a priority queue sorted by distance, from which are extracted to update the distance of their neighbors (following the Dijkstra algorithm on the subgraph). In the aggregation phase, replicated states of vertices are represented as a vector of distances, from which the minimum distance is taken.

Computing the connected components works in a similar way (Algorithm 2). Each vertex is associated with a connected component identifier id, which is generated randomly for each vertex. The local computation phase epidemically spread the smallest component identifier by passing it through the local edges, until all vertices have been reached. In the aggregation phase, replicated states of vertices are represented as a vector of distances, from which the minimum distance is taken.
phase, the smallest identifier is selected from all the replicas and returned as their connected component identifier. Eventually, each connected component will be identified by a single value, which is the smallest identifier randomly generated in each connected component.

IV. DISTRIBUTED FUNDING-BASED EDGE PARTITIONING

The properties that a “good” partitioning must possess are the following:

- **Balance**: partition sizes should be as close as possible to the average size $|E|/K$, where K is the number of partitions. In this way, the amount of work needed in each partition is as equal as possible.
- **Communication efficiency**: given that the amount of communication that crosses the border of a partition depends on the number of its frontier vertices, the total sum $\sum_{i=1}^{K} |F_i|$ must be reduced as much as possible.
- **Connectedness**: the subgraphs induced by the partitions should be connected. This is not a strict requirement (later in this section we illustrate a variant of our algorithm that does not guarantee connected partitions), but it allows us to see each subgraph as a completely independent entity.
- **Path compression**: a path between two vertices in G is composed by a sequence of edges. If some information must be passed across this path, it will need to cross partitions every time two consecutive edges belong to different partitions. The smallest the number of partitions to be traversed, the better.

Balance is the main goal; note, however, that it would be simple to just split the edges in K sets of size $\approx |E|/K$, but this could have severe implications on communication efficiency, connectedness and path compression. The approach proposed here is thus heuristic in nature and provides an approximate solution to the above requirements.

Since the purpose is to compute the edge partitioning as a preprocessing step to help the analysis of very large graphs, we need the edge partitioning algorithm to be distributed as well. As with most distributed algorithms, we are mostly interested in minimizing the amount of communication steps needed to complete the partitioning.

Ideally, a simple solution could work as follows: to compute K partitions, K edges are chosen at random and each partition grows around those edges. Then, all partitions take control of the edges that are neighbors (i.e., they share one vertex) of those already in control and are not taken by other partitions. All partitions will incrementally get larger and larger until all edges have been taken. Unfortunately, this simple approach does not work well in practice, since the starting position may greatly influence the size of the partitions. A partition that starts from the center of the graph will have more space to expand than a partition that starts from the border and/or very close to another partition.

To overcome this limitation, we introduce DFEP (Distributed Funding-based Edge Partitioning), an algorithm based on concept of “buying” the edges through an amount of funding that is assigned to each partition. Initially, each partition is assigned the same amount of funding and an initial, randomly-selected vertex. The algorithm is then organized in a sequence of rounds. During each round, each partition makes an offer to acquire the edges that are neighbors to those already taken. An edge is then sold to the partition that makes the larger offer, and that partition has to pay one unit of funding. At the end of each round, a coordinator monitors the sizes of each partition and sends additional units of funding. Partitions that are smaller than average get more units of funding, to help them overcome the slow start, while larger partitions receive only a small amount of units. By tuning the amount of units given at the initialization step and the amount of units sent during the execution it is possible to obtain balanced partitions.

Table I: Notation

Notation	Description
$d(v)$	degree of vertex v
$E(v)$	edges incident on vertex v
$V(e)$	vertices incident on edge e
$M_i[v]$	amount of units of partition i in vertex v
$M_i[e]$	amount of units of partition i in edge e
E_i	edges bought by partition i until now
$owner[e]$	the partition that owns edge e

Table I contains the notation used in the pseudocode of the algorithm. For each vertex and edge we keep track of the amount of units that each partition has committed to that vertex or edge. Algorithm 3 presents the code executed at the initialization step: each partition chooses a vertex at random and assigns all the initial units to it. The edges are initialized as unassigned. Each round of the algorithm is then divided in three steps. In the first step (Algorithm 4), each vertex propagates the units of funding to the outgoing edges. For each partition, the vertex can move its funding only on edges that are free or owned by that partition, dividing the available units of funding equally among all these eligible edges. During the second step (Algorithm 5), each free edge is bought by the partition which has the most units committed in that edge and the units of funding of the losing partitions are sent back in equal parts to the vertices that contributed to that funding. The winning partition loses an unit of funding to pay for the edge and the remaining funding is divided in two equal parts and sent to the vertices composing the edge. In the third step (Algorithm 6), each partition receives an amount of funding inversely proportional to the number of edges it has already bought. This funding is distributed between all the vertices in which the partition has already committed a positive amount of funding.

A couple of examples are illustrated in Figures 3-4. The red and blue color represents partitions, while black edges are still free. Figure 3 illustrates step 1 of the algorithm. The vertex has 8 units on the blue partition, 9 units on the red one. Two edges are owned by the red partition, one by the blue, and the black one is still unassigned. When step 1 is concluded, the 9 red units have been committed to the two red edges and the black one, while the 8 blue units have been committed to the blue edge and the black one. The blue partition will be allowed to buy the black edge. Figure 4 illustrates step 2...
executed on a single edge. The edge receives 5 red units and 4 blue units, and thus is assigned to the red partition. All the blue units are returned to the sender while the remaining 5−1 red units are divided equally between the two vertices.

DFEP creates partitions that are connected subgraphs of the original graph, since the funding cannot traverse an edge that has not been bought by that partition. It can be implemented in a distributed framework: both step 1 and step 2 are completely decentralized; step 3, while centralized, needs an amount of computation that is only linear in the number of partitions.

In our implementation, the amount of initial funding is equal to what would be needed to buy an amount of edges equal to the optimal sized partition. A smaller quantity would not decrease the precision of the algorithm, but it would slow it down during the first rounds. The cap on the units of funding to be given to a small partition during each round (10 in our implementation) avoids the overfunding of a small partition during the first rounds.

A. DFEP Variant

If the diameter is very large, there is the possibility that a poor starting vertex is chosen at the beginning of the round. A partition may be cut off from the rest of the graph, thus creating unbalanced partitions. A possible solution for this problem involves adding an additional dynamic, at the cost of losing the connectedness property.

A partition is called poor at round \(i \) if its size is less than \(\mu\), with \(\mu\) being the average size of partitions at round \(i \) and \(p\) being an additional parameter; otherwise, it is called rich. A poor partition can commit units on already bought edges that are owned by rich partitions and try to buy them. This addition to the algorithm allows small partition to catch up to the bigger ones even if they have no free neighboring edges and results in more balanced partitions.

V. RESULTS

This section starts by introducing the different metrics that have been measured during the experiments and the datasets that have been used. Then, the evaluation is split in two parts: first, using a simulation engine, we evaluate in detail the behavior of DFEP; then, using the Amazon EC2 cluster,
we evaluate whether ETSCH actually improves the computing time of the shortest path algorithm introduced in Section\[III\]

A. Metrics

In the Amazon EC2 cluster, the most important metric is the actual running time of our algorithm and how does it scale with the number of machines. The simulation engine, on the other hand, allows us to obtain a better understanding of the behavior of DFEP; the metrics considered in such case are the following:

Number of rounds: the number of rounds executed by DFEP to complete the partitioning. This is a good measure of the amount of synchronization needed and can be a good indicator of the eventual running time in a real world scenario.

Balance: Each partition should be as close as possible to the same size. To obtain a measure the balance between the partitions we first normalize the sizes, so that a partition of size \(1\) represent a partition with exactly \(|E|/K\) edges. We then measure both the size of the largest partition and the standard deviation of the sizes, computed as in the following formula.

\[
E = \text{number of vertices, } K = \text{number of partitions and } |E_i| = \text{the size of the } i\text{-th partition}:
\]

\[
\text{NSTDEV} = \sqrt{\frac{\sum_{i=1}^{K} \left(\frac{|E_i|}{E/K} - 1 \right)^2}{K}}
\]

Communication cost: As illustrated in Section\[III\] at the end of each round all vertices that appear in multiple partitions must collapse their state to a common value. The amount of messages needed by ETSCH when executed on a specific edge partitioning is computed using the following formula (\(F_i\) is the set of frontier vertices of partition \(i\)).

\[
\text{MESSAGES} = \sum_{i=1}^{K} F_i
\]

Path compression: A good edge-partitioning will also reduce the number of rounds needed by ETSCH to finish its computation. How much will it improve ETSCH performance depends on the specific problem, therefore we chose the shortest path algorithm presented in Section\[III\] as a representative. We thus call the gain of an edge-partitioning of a graph the fraction of total iterations avoided by the shortest path algorithm implemented in ETSCH.

B. Datasets

Since the simulation engine is not able to cope with larger datasets, we used different datasets for the experiments in the simulation engine and the real world experiments. For both types of datasets we list the size of the graphs, the diameter \(D\), the clustering coefficient \(CC\) and the clustering coefficient \(RCC\) of a random graph with the same size.

Table \[II\] contains the characteristics of the four different datasets used in the simulation engine. ASTROPH is a collaboration network in the astrophysics field, while EMAIL-ENRON is an email communication network from Enron. Both datasets are small-world, as shown by the small diameter. The USROADS dataset is a road networking the US, and thus is a good example of a large diameter network. Finally, WORDNET is a synonym network, with small diameter and very high clustering coefficient.

The three larger graphs that are used to run the Hadoop implementation of both DFEP and ETSCH are presented in Table\[III\]. DBLP is the co-authorship network from the DBLP archive, YOUTUBE is the friendship graph between the users of the service while AMAZON is a co-purchasing network of the products sold by the website.

All the networks have been taken from the SNAP graph library\[12\] and cleaned for our use, making directed edges undirected and removing disconnected components.

C. Simulations

Figure\[5\] shows the performance of the two versions of DFEP against the parameter \(K\), in the ASTROPH and USROADS datasets. As expected, the larger the number of partitions, the larger is the variance between the sizes of those partitions and the amount of messages that will have to be sent across the network. The rounds needed to converge to a solution go down with the number of partitions, since it will take less time for the partitions to cover the entire graph. Finally, the gain obtained by using ETSCH is larger when there are only few partitions, since the paths are more compressed. This property will emerge also from the experimental results on the EC2 cloud.

The diameter of a graph is a strong indicator of how our proposed approach will behave. To test DFEP on graphs with similar characteristics but different diameter we followed a specific protocol: starting from the USROADS dataset (a graph with a very large diameter) we remapped random edges, thus decreasing the diameter. The remapping has been performed in such a way to keep the number of triangles as close as possible to the original graph.

Figure\[3\] shows that changing the diameter leads to completely different behaviors. The size of the largest partitions and the standard deviation of partitions size rise steeply with the growth of the diameter, since in a graph with higher diameter the starting vertices chosen by our algorithm affect more deeply the quality of the partitioning. As expected, the number of rounds needed also rise linearly with the diameter,

Table II: Datasets used in the simulation engine

| Name | \(|V|\) | \(|E|\) | \(D\) | \(CC\) | \(RCC\) |
|-----------|---------|---------|-------------|----------------|----------------|
| ASTROPH | 17903 | 196972 | 14 | \(1.34 \times 10^{-4}\) | \(1.23 \times 10^{-3}\) |
| EMAIL-ENRON | 33696 | 180881 | 13 | \(3.01 \times 10^{-2}\) | \(3.19 \times 10^{-4}\) |
| USROADS | 126146 | 161950 | 617 | \(1.45 \times 10^{-2}\) | \(2.03 \times 10^{-5}\) |
| WORDNET | 75606 | 231622 | 14 | \(7.12 \times 10^{-2}\) | \(8.10 \times 10^{-5}\) |

Table III: Datasets used on the Amazon EC2 cloud

| Name | \(|V|\) | \(|E|\) | \(D\) | \(CC\) | \(RCC\) |
|----------|---------|---------|-------------|----------------|----------------|
| DBLP | 317080 | 1049866 | 21 | \(1.28 \times 10^{-4}\) | \(2.09 \times 10^{-5}\) |
| YOUTUBE | 1134890 | 2987624 | 20 | \(2.08 \times 10^{-3}\) | \(4.64 \times 10^{-6}\) |
| AMAZON | 400727 | 2349869 | 18 | \(5.99 \times 10^{-2}\) | \(2.93 \times 10^{-5}\) |
as does the gain of ETSCH. While the partitions may be less balanced, they will be more interconnected and thus the amount of messages sent across the network will decrease steeply.

Finally, we compare the two version of DFEP against the JaBeJa[16] algorithm. Since JaBeJa is a vertex- partitioning algorithm, its output must be converted into an edge-partitioning. Two approaches have been considered: running the algorithm directly on the line graph of the input graph, creating a vertex for each edge in the original graph, or assigning each edge to a partition by following the vertex-partitioning and assigning each cut edge randomly to one of the two neighboring partitions. Since the line graph can be orders of magnitude bigger than the original graph we followed the second approach.

Figure 7 shows the experimental results over 100 samples, on the four different datasets. A pattern can be discerned: the algorithms have wildly different behaviors in the small world dataset than in the road network. In the small world datasets our approaches results in more balanced partitions, while keeping the gain similar to JaBeJa. In the USROADS dataset JaBeJa creates more balanced partitions, but the gain is much lower and, more importantly, the amount of messages that have to been sent is roughly ten times higher. This result shows the importance of creating partitions that are as much connected as possible.

Since JaBeJa uses simulated annealing to improve the candidate solution, the number of round needed is mostly independent from the structure of the graph. As shown in Figure 6 the number of rounds DFEP needs depend mostly
from the diameter of the graph.

D. Amazon EC2

Both DFEP and ETSCH have been also implemented in Apache Hadoop, in the MapReduce model and tested over the Amazon EC2 cloud. All the experiments have been repeated 20 times on m1.medium machines initiated by the Apache Whirr tool, using the version 1.2.1 of Hadoop.

In the DFEP implementation the K edges from which the partitions should start are chosen using a simple selection algorithm: each edge computes a random number in the Map phase and through first the usage of Combiners and finally of a single Reducer the K edges that chose the smallest K numbers are selected and assigned to a single partition each. It was not possible to implement DFEP using a single Map-Reduce round for each iteration while keeping exactly the same structure. Each instance of the Map function is executed on a single vertex, which will output messages to its neighbor and a copy of itself. Each instance of the Reduce function will receive a vertex and all the funding sent by the neighbors on common edges. The part of the algorithm that should be executed on each edge is instead executed by both its neighboring vertices, with special care to make sure that both executions will get the same results to avoid inconsistencies in the graph. This choice, which sounds counterintuitive, allows us to use a single Map-Reduce round for each iteration of the algorithm, thus decreasing the communication and sorting costs inherent in the MapReduce model.

Figure 8 presents the scalability results for the DFEP algorithm, when run with the three different datasets that are listed in Table III with K = 20. The algorithm scales with the number of computing nodes, with a speedup larger than 5 with 16 nodes instead of 2.

To test the practical advantages of ETSCH we prepared a Hadoop implementation of the framework in which the user can define the three functions as defined in Section III. We used the edge-partitioning obtained by running DFEP, setting the number of desired partitions equal to the number of available nodes, and run the ETSCH implementation of the shortest path algorithm. We compare this approach against running our baseline vertex-based implementation of the shortest path algorithm on the unpartitioned graph. Figure 9 shows that our approach is much more efficient when the number of processing nodes is small, since the partitions are larger and paths are more easily compressed. When the number of partitions grows, the baseline approach gets closer to ETSCH, but still seems less efficient.

While the baseline implementation could easily be optimized, the same can be said about our implementation of the ETSCH framework. The experimental results thus show that ETSCH and edge-partitioning is a promising approach.

VI. RELATED WORK

This section is organized in two parts: first we introduce the most used frameworks for distributed graph analysis, briefly discussing their pros and cons. The second part presents and compare several known approaches for graph partitioning.

A. Distributed frameworks for data analysis

The MapReduce programming model 4 has been introduced by Google to facilitate the development and execution of algorithms on very large quantities of data. This model inherits the map and reduce functions from functional programming to create a simple and inherently parallelizable programming model. While the MapReduce programming model has been
proposed by Google, the most common open-source implementation is Apache’s Hadoop [2].

While one of the original examples of MapReduce application was PageRank [4], the programming model is not very efficient for graph analysis. The graph structure has to be passed across the map and reduce functions and the entire graph must be read and rewritten at each iteration whenever an iterative execution of the MapReduce paradigm is needed.

Pregel [15] was developed again by Google as an answer to these issues. In similar vein to the Bulk Synchronous Parallel model [19], each iteration is composed of two phases, computation and communication, terminated by a single synchronization barrier. Each vertex is represented as a process, with knowledge of its own neighbors. In the first phase, the processes independently execute a number of computation steps and possibly issue messages to other processes. During the second phase, all the messages are sent across the network and delivered to the processes. The synchronization barrier makes sure that all vertices receive all messages sent to them during the current iteration before the start of the next one. During the computation phase each process updates its state by using the messages arrived during the previous iteration, sends messages to its neighbors and may vote to halt the computation. If all vertices vote to terminate, all processes are stopped and the output is written to disk.

A different approach is offered by the GraphLab framework [13], with the asynchronous Gather-Apply-Scatter pattern. In the Gather phase each vertex receives the states of neighboring vertices, changes to the local states are implemented in the Apply phase and eventual changes are spread across outgoing edges in the Scatter phase.

B. Graph Partitioning

The literature on the graph partitioning problem is huge, but given that edge partitioning has not been studied in equal depth, we will focus on the different approaches developed to solve vertex graph partitioning. The edge partitioning problem can be reduced to the vertex partitioning problem by using the line graph of the original graph, but the massive increase in size makes this approach unfeasible.

In both versions, the partitioning problem is not only NP-Complete, but even difficult to approximate [1]. Most work in this field are thus heuristics algorithms with no guaranteed approximation rate. Kernighan and Lin developed the most well-known heuristic algorithm for binary graph partitioning in 1970 [11]. At initialization time, each vertex in the network is randomly assigned to one of the two partitions and the algorithm tries to optimize the vertex cut by exchanging vertices between the partitions. This approach has been later extended to run efficiently on multiprocessors by parallelizing the computation of the scoring function used to choose which vertices should be exchanged [6].

METIS [10] is a more recent and highly successful project that uses a multilevel partitioning approach to obtain very high quality partitions. The graph is coarsened into a smaller graph, which is then partitioned and the solution is then refined to adapt to the original graph. An effort to create a parallelizable version of the program has lead to P-METIS, a version built for multicore machines. The quality of the partitions obtained with this approach does not seem to be of the same quality than the centralized version, as expected.

The presence of additional constraints has driven the research field towards more specialized algorithms. For example, in the streaming scenario it is unfeasible to use the classical
The exchange decreases the vertex cut size. An additional layer is added to the random vertices obtained via a peer selection algorithm, if an exchange occurs. It then tries to exchange its mapping with one of its neighbors or with one of the random vertices obtained via a peer selection algorithm, if the exchange decreases the vertex cut size. An additional layer of simulated annealing decreases the likelihood of returning to a local minima. JaBeJa is similar in approach to Kernighan and Lin’s algorithm, but moves the choices from the partition level to the vertex level, greatly increasing the possibility for parallelization.

VII. CONCLUSIONS

This paper introduced the concept of edge partitioning for distributed graph analysis. Since solving this problem exactly is unfeasible, we presented DFEP, an heuristic distributed edge partitioning algorithm based on a simple funding model. The edge-partitioned graph resulting from DFEP can then be processed by ETSCH, our graph processing framework. Our experimental results, obtained through simulation and through an actual deployment on an Amazon EC2 cluster, show that DFEP scales well and is able to obtain reasonably balanced partitions. Our implementation of ETSCH in the Hadoop framework is much more efficient than the baseline solution, showing the promise of our approach.

As future work, we plan to thoroughly study the ETSCH framework, both from a theoretical and a practical point of view. We plan to investigate how flexible the model is, to understand which type of graph problems are solvable and which ones need a completely different framework. For some problems, the classical solutions could be easily translated into ETSCH, while for others novel algorithms could be needed. On the technical side, our Hadoop implementation of ETSCH is still just a proof of concept. We plan to implement it more efficiently and study if other frameworks such as GraphLab, Stratosphere or Giraph lend themselves better to be the building block for ETSCH.

REFERENCES

[1] K. Andreev and H. Räcke. Balanced graph partitioning. In Proc. of the 16th annual ACM symposium on Parallelism in algorithms and architectures, SPAA ’04, pages 120–124. ACM, 2004.

[2] A. Bialecki, M. Cafarella, D. Cutting, and O. O’Malley. Hadoop: a framework for running applications on large clusters built of commodity hardware. Wiki at http://lucene.apache.org/hadoop, 2005.

[3] U. Brandes. A faster algorithm for betweenness centrality*. Journal of Mathematical Sociology, 25(2):163–177, 2001.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[5] J. Gehweiler and H. Meyerhenke. A distributed diffusive heuristic for clustering a virtual p2p supercomputer. In Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE Int. Symposium on, pages 1–8. IEEE, 2010.

[6] J. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a message-passing multiprocessor. Int. Journal of Parallel Programming, 16(6):427–449, 1987.

[7] M. Hardey. The city in the age of web 2.0 a new synergistic relationship between place and people. Information, Communication & Society, 10(6):867–884, 2007.

[8] A. Hassan and C. J. Fluke. Scientific visualization in astronomy: Towards the petascale astronomy era. Publications of the Astronomical Society of Australia, 28(2):150–170, 2011.

[9] D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W. Hide, D. P. Hill, R. Kania, M. Schaeffer, S. St Pierre, et al. Big data: The future of biocuration. Nature, 455(7209):47–50, 2008.

[10] G. Karipis and V. Kumar. Metis-structured graph partitioning and sparse matrix ordering system, version 2.0. 1995.

[11] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell system technical journal, 1970.
[12] J. Leskovec. Stanford large network dataset collection. URL http://snap.stanford.edu/data/index.html, 2011.

[13] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Graphlab: A new framework for parallel machine learning. arXiv preprint arXiv:1006.4990, 2010.

[14] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM journal on computing, 15(4):1036–1053, 1986.

[15] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph processing. In Proc. of the 2010 international conference on Management of data, pages 135–146. ACM, 2010.

[16] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi. Ja-be-ja: A distributed algorithm for balanced graph partitioning, 2013.

[17] L. Ramaswamy, B. Gedik, and L. Liu. A distributed approach to node clustering in decentralized peer-to-peer networks. Parallel and Distributed Systems, IEEE Transactions on, 16(9):814–829, 2005.

[18] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. Fennel: Streaming graph partitioning for massive scale graphs. Microsoft Research, 2012.

[19] L. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–111, 1990.