X-ray magnetic circular dichroism study of Dy-doped Bi$_2$Te$_3$ topological insulator thin films

A.I. Figueroaa, A.A. Bakera,b, S.E. Harrisonb,c, K. Kummerd, G. van der Laana, T. Hesjedalb,*

a Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE UK
b Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU UK
c Department of Electrical Engineering, Stanford University, Stanford, CA, 94305 USA
d European Synchrotron Radiation Facility, BP 220, Grenoble Cedex, F-38043 France

A R T I C L E I N F O

Article history:
Received 27 January 2016
Received in revised form 8 August 2016
Accepted 21 August 2016
Available online 24 August 2016

Keywords:
Topological insulators
Magnetic doping
Magnetic spectroscopy
XMCD
Molecular beam epitaxy

A B S T R A C T

Magnetic doping of topological insulators (TIs) is crucial for unlocking novel quantum phenomena, paving the way for spintronics applications. Recently, we have shown that doping with rare earth ions introduces large magnetic moments and allows for high doping concentrations without the loss of crystal quality, however no long range magnetic order was observed. In Dy-doped Bi$_2$Te$_3$, we found a band gap opening above a critical doping concentration, despite the paramagnetic bulk behavior. Here, we present a surface-sensitive x-ray magnetic circular dichroism (XMCD) study of an in situ cleaved film in the cleanest possible environment. The Dy M$_5$ absorption spectra measured with circularly polarized x-rays are fitted using multiplet calculations to obtain the effective magnetic moment. Arrott–Noakes plots, measured by the Dy M$_5$ XMCD as a function of field at low temperatures, give a negative transition temperature. The evaporation of a ferromagnetic Co thin film did not introduce ferromagnetic ordering of the Dy dopants either; instead a lowering of the transition temperature was observed, pointing towards an antiferromagnetic ordering scenario. This result shows that there is a competition between the magnetic exchange interaction and the Zeeman interaction. The latter favors the Co and Dy magnetic moments to be both aligned along the direction of the applied magnetic field, while the exchange interaction is minimized if the Dy and Co atoms are antiferromagnetically coupled, as in zero applied field.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Magnetic doping of topological insulators (TIs) [1], resulting in the breaking of time-reversal symmetry (TRS), is crucial for unlocking novel quantum phenomena [2]. In three-dimensional TIs, the topological surface state (TSS) is protected by TRS, and magnetic doping leading to long-range ferromagnetic order with out-of-plane anisotropy is one possibility to open a gap in the TSS [3]. Such a magnetically induced band gap was first experimentally confirmed in Mn-doped Bi$_2$Se$_3$ using angle-resolved photoemission electron spectroscopy (ARPES) [4]. Long-range ferromagnetic ordering was induced in the prototypical 3D-TIs Bi$_2$Se$_3$ and Bi$_2$Te$_3$ upon Mn [5,6] and Cr doping [7–9].

Recently, we have shown that doping Bi$_2$Te$_3$ thin films with rare-earth (RE) ions, such as Gd, Ho, or Dy, introduces large magnetic moments and allows for high doping concentrations, however, no long-range magnetic order was observed [10–13]. In Dy-doped Bi$_2$Te$_3$ we found a band gap opening above a critical doping concentration using ARPES [14], persisting up to a temperature of 300 K, despite the paramagnetic bulk behavior [13]. However, the question of the origin of this band gap remains unanswered.

Despite the paramagnetic bulk behavior of Dy-doped films, there is the possibility of surface ferromagnetic ordering via the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction between the localized Dy moments and the TSS [1,3,15,16]. However, recent reports have also shown different scenarios, e.g., a band gap arising from magnetic surface clusters in the case of Cr-doped Bi$_2$Se$_3$ [17], or hybridization causing a temperature-independent gap of ~100 meV in Mn-doped Bi$_2$Se$_3$ [18]. As the intricate details of the interplay between the competing magnetic interactions depend critically on the chemical potential of the material [19], only surface-sensitive experiments on ultra-clean surfaces can determine the effective magnetic order in a given materials system.

Here, we present a surface-sensitive x-ray magnetic circular dichroism (XMCD) study of the structural and magnetic properties of an in situ cleaved film of Dy-doped Bi$_2$Te$_3$ in the cleanest possible UHV environment [20]. The magnetic order is investigated using the Arrott–Noakes criterion, which yields an estimate of the
critical temperature of the sample. No ferromagnetic ordering was found at the surface of a cleaved sample, which is identical to the one that showed a gap opening in ARPES [14]. Next, we attempted to introduce ferromagnetic order via proximity-coupling of Co adatoms. Instead of finding increased ordering, we measured a decrease of the critical temperature of the Dy-doped sample [21], which may be due to antiferromagnetic alignment between the Dy and Co atoms at the interface.

2. Sample fabrication and magnetic properties

(Dy$_{1-x}$Bi$_x$)$_2$Te$_3$ thin films, with x denoting the substitutional Dy concentration, were grown by molecular beam epitaxy (MBE) on c-plane sapphire substrates [13]. The rhombohedral films were prepared using a two-step growth recipe with a final substrate temperature of 300 °C. The films are free of secondary phases as confirmed by x-ray diffraction and transmission electron microscopy [14]. The growth recipe and the structural properties of the films are described in detail in Refs. [13,14]. The films investigated in this study have a Dy concentration of $x=0.055$ and 0.113. For the lower concentration the TSS band structure remains intact and shows a linear dispersion, whereas for the higher concentration a sizeable gap was observed in ARPES [14], suggesting a possible change in magnetic properties.

The bulk magnetic properties of (Dy$_{1-x}$Bi$_x$)$_2$Te$_3$ thin films was measured using a superconducting quantum interference device (SQUID) magnetometer with the field applied in-plane; the data is shown in Ref. [13]. No hysteretic behavior is observed. As discussed in detail in Ref. [13], the saturation magnetization of Dy-doped samples is doping concentration-dependent—much different from Gd- and Ho-doped Bi$_2$Te$_3$ samples [11,12]. The inverse susceptibility $1/\chi = H/M$ of the samples can be fitted by a straight line, as expected from a paramagnetic system following the Curie–Weiss law.

3. X-ray spectroscopy

3.1. Experimental

X-ray absorption spectroscopy (XAS) and XMCD measurements were performed on beamline I10 at the Diamond Light Source, UK, and beamline ID32 at the European Synchrotron Radiation Facility (ESRF), France. XAS was detected simultaneously in bulk-sensitive fluorescence yield (FY) and total-electron-yield (TEY) mode. TEY is surface sensitive giving a probing depth of ~4 nm at the Co $L_{2,3}$ edge [20], increasing to ~6 nm at the Dy $M_{4,5}$ edge [22]. The XMCD was obtained as the difference between two XAS spectra recorded with the helicity vector antiparallel and parallel to the applied magnetic field ($\mu^+ - \mu^-$), where μ is the absorption coefficient. Measurements were performed with the x-ray beam, which is parallel to the applied magnetic field, impinging at 20° grazing incidence on the sample.

XAS and XMCD measurements were performed on the (Dy$_{1-x}$Bi$_x$)$_2$Te$_3$ samples after in situ cleaving in the UHV environment ($\leq 10^{-9}$ Torr) of the superconducting magnet chamber. The XAS and XMCD spectra for the $x=0.055$ sample are shown in Fig. 1 (a) and (b), respectively, measured in both TEY and FY mode. The maximum of the Dy M_5 edge is located at 1292.9 eV photon energy [22]. There are considerable differences in line shape between the TEY and FY spectra that are not due to saturation and self-absorption effects, which are small for low concentrations. A comparison for the Dy M_5 XMCD shows that the positive peak at ~1289 eV is smaller, but the negative peak at ~1293 eV is larger in FY than in TEY. This behavior is in agreement with the multiplet spectra calculated by van Veenendaal and Benoist [23]. The reason for the discrepancy is that, in contrast to the TEY, the FY is not proportional to the absorption cross-section because it also depends on the decay rate. The latter varies with the intermediate (XAS) state, where states at higher photon energies normally have higher fluorescence decay rates [20].

FERROMAGNETIC Co was evaporated onto the pristine surface of the $x=0.055$ sample, with the goal of introducing or enhancing the ferromagnetic order through proximity coupling [21], using an electron beam-evaporator mounted in the XAS measurement chamber. The sample was kept at 10 K during this process to inhibit reactions between the incident Co atoms and the clean sample surface [24]. The base pressure during evaporation was $< 1 \times 10^{-9}$ Torr. The XMCD measurements were performed in regular intervals during the deposition to check lineshape and remanent magnetization. This way, the final thickness of the Co layer was determined to be ~3 nm. Fig. 1 (c) and (d) shows the XAS and XMCD for the thin Co layer deposited onto the cleaved sample. The spectra show no evidence of alloying between Co and the underlying sample.

The magnetic proximity effect in the Dy-doped TI is measured using the surface sensitive TEY signal, which only probes the region close to the Co capping.

3.2. Calculated spectra

Electric-dipole transitions from the 3d core level in REs are allowed to empty 4f states, but forbidden to 5d and 6s valence states. For the multi-electronic configuration of the Dy$^{3+}$, the $4f^9 \rightarrow 3d^q 4f^{9-q}$ transitions can be calculated using atomic multiplet
and XMCD edges. (a) Calculated XAS for left spin moment on the Dy atoms, SQUID + – spectra to the ground state expectation values of the and an effective (moment and any . SQUID magnetometry of this and with only a few percent of Coulomb and exchange \(= 15/\)) gives a Landé splitting factor \(4/3 \mu_B\). (b) Experimental \(M_{4f}\) spectrum. Assuming that \(\mu_B = 4/3\) alignment of the x-ray helicity is compared for sign convention \(\mu_F\) and \(\mu_B\). \(\mu_F\) and \(\mu_B\) are shown in Fig. 2(a) for parallel \(J\) and \(J\) orbit interaction was kept at 100%. The Dy \(M_{4f}\) absorption structure is well suited to determine the relative contributions of the three fundamental spectra, \(I_{-1}, I_0,\) and \(I_{+1}\), since their respective peaks are well separated in photon energy by \(~2\) eV each. Fig. 2(a) shows that the main peak at 1292.9 eV is almost purely \(I_{+1}\) with only a few percent of \(I_0\). Likewise, the lower-energy peak is almost purely \(I_{-1}\). On the other hand, the \(M_{4f}\) intensity is much lower and less suitable for polarization analysis. Nonetheless, also here the measured XAS and XMCD is in good agreement with the calculation [22,32].

The experimental Dy \(M_{4f}\) spectra, \(\mu^-\) and \(\mu^+\), for the cleaved sample with \(x=0.055\) at 7 T and 6.2 K at grazing incidence were fitted using the calculated \(I_{-1}, I_0,\) and \(I_{+1}\) spectra from (a), yielding the relative intensity ratios given in Eq. (1). Spectra have been offset for clarity. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

\[\mu^- = 62.5%I_{-1} + 29.5%I_0 + 8.0%I_{+1}, \]
\[\mu^+ = 12.5%I_{-1} + 32.3%I_0 + 55.2%I_{+1} \] (1)

which gives polarization scaling factors for the magnetic moment of 0.545 and 0.427, respectively. The polarization factor for \(\mu^-\) is lower due to the extra intensity in the experimental spectra around 1296 eV, which is less pronounced in the calculation. Since the \(\mu^-\) spectrum shows no such deficiency, its result is more accurate. Hence we take the somewhat higher polarization factor for \(\mu^-\).

The LS-coupled Hund’s rule ground state, Dy\(^{3+}\) 4f\(^{6}\) \((^7H_{15/2})\) with spin, orbital, and total magnetic moments, \(S = 5/2, L = 5,\) and \(J = 15/2\) gives a Landé splitting factor \(\beta_J = 4/3\) and an effective magnetic moment \(\mu_{\text{eff}} = \beta_J(\xi_{10} + 11) = 10.65 \mu_B/\text{Dy}\). Assuming that the x-ray beam is fully polarized, the \(\mu^-\) spectrum gives a magnetic moment that is 54.5% of the Hund’s rule ground state value. Hence, from the XMCD on our sample, we obtain an effective magnetic moment of \(\mu_{\text{eff}} \approx 5.8 \mu_B/\text{Dy}\). SQUID magnetometry of this sample yielded a saturation magnetization of \(\mu_{\text{eff}} \approx 8.3 \mu_B/\text{Dy}\), which is also less than the free ion Hund’s rule value. While the XMCD measures only the 4f moment on the Dy atoms, SQUID measures all moments including also the Dy 5d moment and any induced magnetization on the Te atoms.

These results show that the Dy atoms are far from completely magnetized. However, the observed dichroism is similar in size as was seen for other polarized Dy spectra in the literature [33–35]. We expect that the common cause of the reduced moment is the

theory, in which spin–orbit and electrostatic interactions are treated on an equal footing [22,25]. The intra-atomic electrostatic interactions include the 3d–4f and 4f–4f Coulomb and exchange interactions. The wave functions of the initial- and final-state configurations are calculated in intermediate coupling using Cowan’s atomic Hartree–Fock code with relativistic corrections [25–27].

Following the standard procedure to account for interatomic interactions [22], the parameters of the Slater integrals for the Coulomb and exchange interactions were reduced to 65%, while the spin–orbit interaction was kept at 100%. The Dy \(M_5\) line spectra were convoluted with a Lorentzian of \(I = 0.25\) eV (0.5 eV) for intrinsic lifetime broadening and a Gaussian of \(\sigma = 0.35\) eV for instrumental broadening. The intrinsic lifetime at the \(M_4\) edge is broader than at the \(M_5\) edge due to Coster–Kronig decay [22].

The calculated spectra \(I_q\) are shown in Fig. 2(a) for parallel \((q = 1)\) and antiparallel \((q = -1)\) alignment of the x-ray helicity vector and applied magnetic field, and for linear polarization along the magnetization direction \((q = 0)\). Also shown are the isotropic spectrum \((I_{-1} + I_0 + I_{+1})\) and XMCD \((I_{-1} - I_{+1})\); for sign convention see Ref. [20].

Sum rules relate the integrated intensities of the XAS and XMCD \(M_{4f}\) spectra to the ground state expectation values of the orbital and spin moments [28,29], and were used for the \(I_{2,3}\) edges of Mn, Fe, and Co dopants and adatoms in TIs [9,24].

For the REs the sum rule analysis is less straightforward [30] because of (i) the large \(jj\) mixing between the \(3d_{5/2}\) and \(3d_{3/2}\), which requires a correction factor, (ii) the linear dichroism, which has to be taken into account in the sum spectra for the normalization per hole, and (iii) the presence of a usually large magnetic dipole term \(T_\sigma\).

Under the condition that the 4f crystalline electrostatic field is small compared to the 4f spin–orbit interaction, the spin and orbital moments remain parallel, so that their ratio is fixed [31]. Then, as a function of the magnetization, \(M\), the XMCD intensity scales with \(M\), while the isotropic intensity remains constant. Thus the scaling factor for the magnetic moment is directly obtained from the reduction in the asymmetry \((\mu^- - \mu^+)/\mu^+\) compared to the theoretical value \((I_{-1} - I_{+1})/(I_{-1} + I_{+1})\). This method has been used in Refs. [6,11].

Here, we will employ an alternative method to determine the magnetic moments. This method is based on the fact that for most heavy REs the multiplet structure has distinct peaks that can be assigned to left- and right-circular polarization [22]. The Dy \(M_5\) absorption structure is well suited to determine the relative contributions of the three fundamental spectra, \(I_{-1}, I_0,\) and \(I_{+1},\) since their respective peaks are well separated in photon energy by \(~2\) eV each. Fig. 2(a) shows that the main peak at 1292.9 eV is almost purely \(I_{+1}\) with only a few percent of \(I_0\). Likewise, the lower-energy peak is almost purely \(I_{-1}\). On the other hand, the \(M_5\) intensity is much lower and less suitable for polarization analysis. Nonetheless, also here the measured XAS and XMCD is in good agreement with the calculation [22,32].
presence of a small crystal field on the Dy $4f$ electrons. Crystal-field effects might play an important role in explaining the reduction of the effective magnetic moment observed for Dy dopants since the Dy atoms are substituting Bi in the Bi$_2$Te$_3$ lattice, which are in an octahedral environment of Te atoms. The importance of crystal field effects at low temperatures is well established in the literature, but difficult to quantify theoretically [36].

4. Arrott–Noakes analysis

In order to investigate the magnetic order on the surface of the pristine (Dy$_{0.055}$Bi$_{0.945}$)Bi$_2$Te$_3$ thin film, the critical behavior was analyzed using the Arrott–Noakes plot criterion. This leads to an estimation of the critical temperature, T_c, of a transition from a non-magnetic to a magnetically ordered system. The criterion consists of plotting the isothermal variations of M^2 as a function of H/M, with M being the magnetization and H the applied field, which should yield straight lines according to [21,37]

$$M^2 = A(H/M) + B(T - T_c),$$

where T is the temperature, and A and B are constants. The intercept of the isotherms with the H/M axis, i.e., where $M^2 = 0$, is positive (negative) for $T > T_c$ ($T < T_c$), so that T_c is equal to that temperature for which the intercept is zero.

Arrott and Noakes [38] generalized this criterion to express the equation of state for a magnetic system near its critical temperature in terms of the critical exponents β and γ, as

$$M^{1/\beta} = C_1(T - T_c) + C_2(H/M)^{1/\gamma},$$

where C_1 and C_2 are constants. In the long-range mean-field model, these exponents are $\beta = 0.5$ and $\gamma = 1$, which yields Eq. (2).

In the nearest-neighbor 3D Heisenberg model, the corresponding values are $\beta = 0.36$ and $\gamma = 1.386$.

Fig. 3 shows M vs H, Arrott plots (i.e., M^2 vs H/M) and Arrott–Noakes plots (i.e., M^2 vs $(H/M)^{1/\gamma}$) at various temperatures for the (Dy$_{0.055}$Bi$_{0.945}$)Bi$_2$Te$_3$ thin film with $x=0.113$. We use the background-corrected Dy M_s, XMCD asymmetry, $(\mu^- - \mu^+)/(|\mu^- + \mu^+|)$, which is directly proportional to M at the Dy site. The top panel depicts surface-sensitive TEY measurements, while the lower panel shows results for bulk-sensitive FY. M^2 vs H/M curves (Fig. 3(b) and (e)) do not yield linear behavior, which indicates that the mean-field model does not appropriately describe this material. Instead, we applied the Arrott–Noakes criterion which uses the values of β and γ for the 3D Heisenberg model. These curves are shown in Fig. 3 (c) and (f). By fitting parallel straight lines to the high-field regions (forcing the gradient of all lines to the same value) we obtain the $(H/M)^{1/\gamma}$ intercepts, collected in Fig. 5(a). The zero points of these intercepts give $T_c = (−14±1)$ K and $(−9±2)$ K for the TEY and FY data, respectively.

Similarly, M vs H, Arrott, and Arrott–Noakes plots for the $x=0.055$ sample are shown in Fig. 4. A comparison of the M vs H plot obtained for the as-cleaved sample and that with the Co overlayer measured at 14 K is depicted in Fig. 4(a). The fact that the latter curve lies underneath the as-cleaved sample indicates a decrease in M, which, at the same time, suggests a decrease in T_c for the Dy atoms at the interface of the Dy-doped sample and the Co layer.

The full set of Arrott–Noakes plots, measured in TEY mode, for the $x=0.055$ sample with an Co overlayer are shown in Fig. 4(d). The $(H/M)^{1/\gamma}$-intercepts obtained from the linear fits of the high-field region of each isotherm are plotted in Fig. 5(b). T_c extracted from the zero point of the intercept yields a value of $(−2.0±0.8)$ K. Note that this value is greater than that found for the $x=0.113$ sample $(−14±1)$ K, but given the different Dy doping

Fig. 3. Magnetization as a function of field, measured by XMCD at various temperatures for the $x=0.113$ sample. Plotted (in arbitrary units) are the isothermal variations of M as a function of H, where H is the applied field and M is the magnetization as determined by the XMCD asymmetry of the Dy M_s peak. Measurements in TEY detection mode are depicted in the top panels and those in FY in the bottom panels. (a,b) M vs H, (c,d) Arrott plots (i.e., M^2 vs H/M), and (e,f) Arrott–Noakes plots [i.e., M^2 vs $(H/M)^{1/\gamma}$]. For the plots in (e,f), the 3D-Heisenberg model values of $\beta = 0.36$ and $\gamma = 1.386$ were used. Solid lines are guides to the eye only. Dashed lines are linear fits to the high-field region of each isotherm.
concentrations for the two samples resulting in different magnetic properties [13], only the relative trends can be compared. These results show that the Co top layer has an adverse effect on the magnetic ordering of the Dy dopants in the Bi$_2$Te$_3$ sample in that T_C is decreased. This suggests antiferromagnetic coupling between the Co and Dy atoms at the interface. Even though the Co L$_{2,3}$ XMCD measured in remanence does not indicate antiferromagnetic coupling, one has to bear in mind that, at the temperatures measured, the (Dy,Bi$_{1-x}$)Te$_3$ film is paramagnetic so that the exchange interaction between Dy and Co atoms is weak. Furthermore, the remanent field of the superconducting magnet of ~ 30 mT may be enough to align the Dy and Co atoms.

In RE–transition metal (TM) compounds, the TM 3d orbitals are hybridized with the RE 5d orbitals with an antiferromagnetic coupling between the spins. In the RE atom, the localized 4f electrons couple parallel to the 5d spins, so that the resulting indirect 4f–3d exchange coupling is antiferromagnetic [39]. This has been experimentally confirmed for Dy/Fe and Dy/FeCo amorphous alloys [40] and Dy$_{x}$Co$_{1-x}$ compounds [41]. This mechanism also holds for RE–TM interface layers, such as Gd/Fe [42], Gd/CoFe, Tb/NiFe [43], and Dy/CoFe [44]. While magnetically doped TIs do not necessarily behave the same as the aforementioned alloys, compounds, or layer systems, it indicates that an antiferromagnetic coupling is possible.

Clearly, our experimental results show that there is a competition between the magnetic exchange interaction and the Zeeman interaction. The latter favors the Co and Dy magnetic moments to be both aligned in the direction of the applied magnetic field, whereas the atomic exchange interaction is minimized if the Dy and Co atoms are antiferromagnetically aligned, i.e., in zero applied field. However, in order to measure the magnetic moments an applied field is needed to align them. This dilemma is broken by using Arrott plots, where extrapolation to zero field evidences an antiferromagnetic coupling.

5. Summary and conclusions

In summary, we studied the magnetic properties of the surfaces of Dy-doped Bi$_2$Te$_3$ in greater detail using surface-sensitive XMCD

Fig. 4. Magnetization as a function of field, measured by XMCD at various temperatures for the $x=0.055$ sample with Co layer on top. (a) Comparison of M vs H plots measured at 14 K on the as-cleaved surface (pink curve, circles) and after evaporating a thin layer of Co on top (green curve, squares). (b), (c), and (d) show the full set of M vs H, Arrott, and Arrott-Noakes plots, respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
on in situ cleaved thin films. We determined the effective magnetic moment for the x=0.055 sample in 7 T field at 6.2 K from multiplet calculation fits to the circularly polarized Dy $M_{4,5}$ spectra to $\sim 5.8 \mu_B$/Dy. Co adatoms were deposited in an attempt to introduce ferromagnetic long-range order in the films. Using XAS, no change in the chemical state of the Dy atoms was observed as is, in principle, ideal for proximity coupling to the Dy-doped films. The magnetic order on the surfaces was studied in detail using the Arrott–Noakes analysis of the XMCD hysteresis plots as a function of temperature. Using the nearest-neighbor 3D Heisenberg model, the intercepts yield a transition temperature of about -14 K in surface-sensitive TEY mode of the FM Co layer on top (-2.0 ± 0.8 K).

Acknowledgments

Diamond Light Source is acknowledged for beamtime allocated on I10 (SI-10207) and the ESRF for beamtime on ID32 (HC/1282). This publication arises from research funded by the John Fell Oxford University Press (OUP) Research Fund. RCaH is acknowledged for their hospitality. We thank L.J. Collins-McIntyre for help with the MBE growth.

References

[1] Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi, S.-C. Zhang, Magnetic impurities on the surface of a topological insulator, Phys. Rev. Lett. 102 (2009) 156603, http://dx.doi.org/10.1103/PhysRevLett.102.156603.
[2] K. He, Y. Wang, Q.-K. Xue, Quantum anomalous hall effect, Natl. Sci. Rev. 1 (2014) 38, http://dx.doi.org/10.1093/nsr/nwt029.
[3] D.A. Abanin, D.A. Pesin, Ordering of magnetic impurities and tunable electronic properties of topological insulators, Phys. Rev. Lett. 106 (2011) 136802, http://dx.doi.org/10.1103/PhysRevLett.106.136802.
[4] Y.L. Chen, J.-H. Chu, J.G. Analytis, Z.K. Liu, K. Igarashi, H.-H. Kuo, X.L. Qi, S.-K. Mo, R.G. Moore, D.H. Lu, M. Hashimoto, T. Sasagawa, S.C. Zhang, I.R. Fisher, Z. Hussain, X.Z. Shen, Massive Dirac fermion on the surface of a magnetically doped topological insulator, Science 329 (2010) 659-662, http://dx.doi.org/10.1126/science.1189924.
[5] D. Zhang, A. Richardella, D.W. Rench, S.-Y. Xu, A. Kandalca, T.C. Flanagan, H. Beidenkopf, A.L. Yeats, B.B. Buckley, P.V. Klimov, D.D. Awschalom, A. Yazdani, P. Schier, M.Z. Hasan, N. Samarth, Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator, Phys. Rev. B 86 (2012) 205127, http://dx.doi.org/10.1103/PhysRevB.86.205127.
[6] M. Watson, L. Collins-McIntyre, A. Coldea, D. Prabhakaran, L.R. Shellford, S. C. Speller, T. Mousavi, C. Grovenor, Z. Salomon, S. Girvin, G. van der Laan, T. Hesjedal, Study of the structural, electric and magnetic properties of Mn-doped Bi$_2$Te$_3$ single crystals, New J. Phys. 15 (2013) 103016, http://dx.doi.org/10.1088/1367-2630/15/10/103016.
[7] P.P. Haazen, J.-B. Laloe, T.J. Nam, H.J.M. Swagten, P. Jarillo-Herrero, D. Heiman, J.S. Moodera, Ferromagnetism in thin-film Cr-doped topological insulator Bi$_2$Se$_3$, Appl. Phys. Lett. 100 (2012) 082404, http://dx.doi.org/10.1063/1.3688043.
[8] L.J. Collins-McIntyre, S.E. Harrison, P. Schönherr, N.-J. Steinke, C.J. Kinane, T. R. Charlton, D. Alba-Veneroa, A. Pushp, A.J. Kellock, S.S.P. Parkin, J.S. Harris, L. Langridge, G. van der Laan, T. Hesjedal, Magnetic ordering in Cr-doped Bi$_2$Se$_3$ thin films, Europhys. Lett. 107 (2014) 57009, http://dx.doi.org/10.1209/0295-5075/107/57009.
[9] A.I. Figueroa, G. van der Laan, L.J. Collins-McIntyre, S.-L. Zhang, A.A. Baker, S. E. Harrison, P. Schönherr, C. Gubin, T. Hesjedal, Magnetic Cr doping of Bi$_2$Se$_3$: evidence for d Avalent Cr from x-ray spectroscopy, Phys. Rev. B 90 (2014) 134402, http://dx.doi.org/10.1103/PhysRevB.90.134402.
[10] S. Li, S.E. Harrison, Y. Huo, A. Pushp, H.T. Yuan, B. Zhou, A.J. Kellock, S.S. Parkin, Y.-L. Chen, T. Hesjedal, J.S. Harris, Magnetic properties of gadolinium substituted Bi$_2$Te$_3$ thin films, Appl. Phys. Lett. 102 (2013) 242412, http://dx.doi.org/10.1063/1.4812292.
[11] S.E. Harrison, L.J. Collins-McIntyre, S. Li, A.A. Baker, L.R. Shellford, Y. Huo, A. Pushp, S.S.P. Parkin, J.S. Harris, E. Arenal, G. van der Laan, T. Hesjedal, Study of Gd-doped Bi$_2$Te$_3$ thin films: molecular beam epitaxy growth and magnetic properties, J. Appl. Phys. 115 (2014) 023904, http://dx.doi.org/10.1063/1.4861615.
[12] S.E. Harrison, L.J. Collins-McIntyre, S.-L. Zhang, A.A. Baker, A.J. Figueroa, A. J. Kellock, A. Pushp, Y.L. Chen, S.S.P. Parkin, J.S. Harris, G. van der Laan, T. Hesjedal, Study of Ho-doped Bi$_2$Te$_3$ topological insulator thin films, Appl. Phys. Lett. 107 (2015) 182406, http://dx.doi.org/10.1063/1.4951239.
[13] S.E. Harrison, L.J. Collins-McIntyre, S.-L. Zhang, A.A. Baker, A.J. Figueroa, A. J. Kellock, A. Pushp, S.S.P. Parkin, J.S. Harris, G. van der Laan, T. Hesjedal, Study of Dy-doped Bi$_2$Te$_3$: thin film growth and magnetic properties, J. Phys.: Condens. Matter 27 (2015) 245602, http://dx.doi.org/10.1088/0953-8984/27/24/245602.
[14] S.E. Harrison, L.J. Collins-McIntyre, P. Schönherr, A. Vaillions, V. Srot, P.A. van Aken, A.J. Kellock, A. Pushp, S.S.P. Parkin, J.S. Harris, B. Zhou, Y.L. Chen, T. Hesjedal, Massive Dirac fermion observed in lanthanide-doped topological insulator thin films, Sci. Rep. 5 (2015) 15767, http://dx.doi.org/10.1038/srep15767.
[15] R.R. Biswas, A.V. Balatsky, Impurity-induced states on the surface of three-
