Is the physical activity environment surrounding primary schools associated with students’ weight status, physical activity or active transport, in regional areas of Victoria, Australia? A cross-sectional study

Jane Jacobs, Nic Crooks, Steven Allender, Claudia Strugnell, Kathryn Backholer, Melanie Nichols

ABSTRACT

Objectives To explore whether the physical activity (PA) environment (walkability, greenspace and recreational facilities) surrounding regional primary schools is associated with children’s PA levels, active transport and weight status. Limited research on this topic has been conducted outside of major cities.

Design Cross-sectional ecological study using baseline data from two large-scale obesity prevention interventions.

Setting Eighty (n=80) primary schools across two regional areas in Victoria, Australia.

Participants Students aged 8–13 years (n=2144) attending participating primary schools.

Outcome measures Measured weight status (body mass index z-score, proportion overweight/obese) and self-reported PA behaviours (meeting PA recommendations and active travel behaviour).

Results When adjusted for student and school demographics, students had significantly increased odds of using active transport to or from school when the school neighbourhood was more walkable (OR 1.21 (95% CI 1.20 to 1.53)), had a greater number of greenspaces (OR 1.35 (95% CI 1.20 to 1.53)) and a greater number of recreational facilities (OR 1.18 (95% CI 1.07 to 1.31)). A higher cumulative PA environment score was also associated with a higher proportion of children using active transport (OR 1.33 (95% CI 1.28 to 1.51)). There were no significant associations between the PA environment measures and either weight status or meeting the PA recommendations in adjusted models.

Conclusions This study is the first of its kind exploring school neighbourhood environments and child weight status and PA in regional areas of Australia. It highlights the potential of the environment surrounding primary schools in contributing to students’ active travel to and from school. Further research with the use of objective PA measurement is warranted in regional areas that have been under-researched.

Trial registration number Australian New Zealand Clinical Trials Registry (ANZCTR.org.au) identifier 12616000980437; Results.

Strengths and limitations of this study

▸ There has been limited research conducted on environmental drivers of physical inactivity and obesity in children outside of major cities, particularly in areas surrounding schools.

▸ Multilevel linear and logistic regressions were used to assess associations between elements of the school neighbourhood physical activity (PA) environment and students’ weight status and PA behaviours.

▸ Comparisons were made between PA environments of school neighbourhoods surrounding high and low socioeconomic position schools and between inner and outer regional areas.

▸ Strengths of the study include the use of measured student height and weight from large studies with high participation rates and objectively measured PA environments.

▸ Study limitations include the use of self-reported PA behaviour data and the inability to determine how far children lived from the schools.

BACKGROUND

Built and natural environments significantly impact children’s behaviours, particularly levels of physical activity (PA).1 Inadequate PA is a key risk factor for the development of childhood obesity2 as well as many other chronic conditions.3 Nationally representative Australian surveys show that approximately a quarter of children aged 5–17 have overweight or obesity,4 and only a quarter of 5–14-year-olds meet the recommended levels of daily PA,5 a figure reflected internationally.6

Research into environmental influences on children’s PA and weight status has typically focused either on the neighbourhoods.
around children’s homes or the characteristics of the environment within school grounds. Children spend a significant portion of their time both at school and in transit to and from school. Environments surrounding schools provide important PA opportunities and potential settings for interventions to increase the PA levels of children. School neighbourhoods may also provide a useful proxy for activity centres within communities, within which children may have opportunities to participate in sports and other physically active behaviours before or after school. An Australian study found that organised sport accounted for only a small portion of student’s overall PA levels indicating that other forms of PA, such as active transport and informal play, are important contributors.

Limited research has been conducted on the PA environment outside of major cities in Australia and internationally. Australian data indicate that overweight and obesity prevalence have significantly increased outside of major city areas since 2010, whereas it appears to have plateaued in major cities. Compared with children living in major cities, children living outside of major cities have been reported to be more physically active overall, although have lower levels of active transport. Several major city-based studies have reported that key determinants of whether a child uses active forms of transport to and from school include distance to school, population density and street connectivity, which are all aspects of the environment that are likely to differ between major cities and regional and remote areas.

Reviews including primarily children in major cities have found that increased availability of greenspace, walkability of neighbourhoods and availability of sport facilities were associated with increased levels of PA. Evidence also suggests that the presence of walking or bike paths and overall neighbourhood walkability are associated with increased active transportation to and from school. Children who use active forms of transport to and from school have been found to have higher overall levels of PA; however, there are mixed results for the association of this behaviour with weight status. It is unclear how PA environments may impact on variation in activity levels and weight status in students outside of major city areas.

Given lower population densities, regional students may typically need to travel greater distances to school and it could be hypothesised that these children will be more reliant on motorised transport. More work is needed to understand the relationship between PA environments surrounding schools in regional areas and PA patterns and weight status among students.

In this study, we aimed to quantify the relationships between PA environments surrounding primary schools and (1) students’ weight status, (2) PA levels, (3) active transport, in regional areas of Victoria, Australia. Findings from this study may aid in the prioritisation and targeting of policies and programmes to improve PA environments around schools, so that all children have the opportunity to engage in PA, regardless of where they live.

METHODS
The Methods section is written to address the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement.

Study design
This study used a cross-sectional ecological design to assess the associations between school–neighbourhood PA environments and the self-report measures of PA and active transport and measured weight status among primary school students.

Setting
The study was conducted across two regional areas in Victoria, Australia. This covers nine local government areas in the South-West and Goulburn Valley regions, with a total population of 225 895, which includes a number of moderately-sized regional towns (eg, 10 000 to 30 000 people) and 142 government, Catholic and Independent primary schools. Data were collected between April 2015 and September 2016.

Participants
Child-level data used in this study were collected as part of the baseline measurements for two large-scale system-based obesity prevention interventions. The evaluations have been described previously and were conducted in the same way in both study regions. In brief, in the 2015 (South-West region) and 2016 (Goulburn Valley region) data collection periods, all primary schools (government, independent and Catholic) were invited to participate. In participating schools, all students in year 2 (aged approximately 7–8 years), year 4 (aged approximately 9–10 years) and year 6 (aged approximately 11–12 years) were invited to participate via an opt-out recruitment approach. Catholic school data were not included in 2015 as approval to use passive (opt-out) recruitment processes were not granted by Catholic schools in that year, and evidence shows that opt-in consent can result in up to 5% lower overweight and obese prevalence detection.

Weight status
Anthropometric measures of height and weight were taken by trained staff according to a standardised protocol. Height was measured to the nearest 0.1 cm and weight to the nearest 0.05 kg. All students were measured two times and where the two initial measures differed, by more than 0.5 cm or 0.1 kg for height and weight, respectively, a third measurement was taken. An average of these height and weight measures was used to calculate body mass index (BMI) z-scores according to the WHO Child Growth Reference, and weight status categories were derived using the following cut-offs, as recommended by the WHO; overweight: > +1 SD to < +2SD, obese: ≥ +2SD.
BMI z-score and overweight or obese (yes/no) were included in the analysis.

Physical activity behaviours and demographic questions
Students completed an electronic self-report questionnaire in class time on tablet computers, with guidance from a trained supervisor. Students in years 4 and 6 self-reported their gender, date of birth, language usually spoken at home, Aboriginal and/or Torres Strait Islander background, residential postcode and country of birth. The PA components of the questionnaire used for this study were the demographic information and the Core Indicators and Measures of Youth Health—Physical Activity and Sedentary Behaviour Module, which has been shown to be reliable in this age group.

PA was assessed as students participating in at least 60 min of moderate to vigorous PA on five school days (Monday to Friday) (yes/no), consistent with the Australian National Physical Activity Guidelines at the time. Students’ usual mode of transport to and from school was categorised as either active (walking, cycling, public bus, other active) or nonactive (car, school bus, other inactive).

Table 1 Description of independent, dependent and control variables used in the analysis

Independent variables*	Measurement method	Level of data	Data source
Walkability	Population density+land use mix+connectivity.	Continuous	Australian Urban Research Infrastructure Network
Greenspace	Count of greenspaces	Continuous	datavic ‘features of interest’
Recreation facilities	Count of recreation facilities	Continuous	datavic ‘features of interest’
Total PA environment	Each independent variable broken into tertiles (lowest to highest) and tertiles summed	Continuous	Tertiles created based on above measures

Dependent variables	Measurement method	Level of data	Reference for variable definition
Active travel	Active travel to or from school on typical day	Dichotomous	Australian National Physical Activity Guidelines
Physical activity	Meeting PA guidelines on 5 school days in typical week	Dichotomous	Australian National Physical Activity Guidelines
Weight status	Classified overweight or obese based on WHO growth chart	Dichotomous	WHO growth chart
BMI z-score	Age and gender BMI z-score based on WHO growth chart	Continuous	WHO growth chart

Control variables	Measurement method	Level of data	Data source
Socio-economic position	ICSEA (school-level SEP)	Continuous	Australian Curriculum Assessment and Reporting Authority
Remoteness	Classified into five levels—major city, inner regional, outer regional, remote, very remote	Categorical	Accessibility/Remoteness Index of Australia
School type	Classified as government, independent, catholic	Categorical	Australian Curriculum Assessment and Reporting Authority

*Within a 1 km walkable distance from the school.
BMI, body mass index; BMI, body mass index; ICSEA, index of community socio-educational advantage; PA, physical activity; SEP, socio-economic position.
children will walk to school. A walkability score for this buffer area and the count of recreational facilities and greenspaces intersecting this buffer were determined for each school. A 50m trim distance was used around the road centres, to capture greenspace and facilities accessible from the defined street network.

Walkability scores were generated for all primary schools in the study regions, using the ‘Walkability Index with gross density for regions’ tool through the AURIN portal. Scores are based on standardised scores for population density, land use mix and street connectivity, which have been associated with increased walking. A z-score for each of the three domains is generated for all schools in the included regions, with the sum of these giving an overall walkability score for each school.

Features of interest (FOI) data were accessed via the Victorian Government data website (Layer: VMFEAT_ FOI_POLYGON) and are produced by the Department of Environment, Land, Water and Planning. FOI data are projected as polygons and used to determine the presence of facilities that may be used by students for PA. For the purpose of this study, we limited the categories of features to three key feature types; recreational resources (e.g., skate parks), sporting facilities (e.g., tennis court, netball courts, golf course, sporting complexes) and reserves (e.g., public parks and gardens).

For this analysis, recreational resources and sporting facilities were combined and termed ‘recreational facilities’ and reserves termed ‘greenspace’. Recreational facilities and greenspace were counted as being within a school’s neighbourhood if any part of the feature intersected with the walkability buffers (i.e., they were within 1km walking distance of the school). If a reserve contained recreational facilities, it was counted as both recreational facility and greenspace.

Manual verification of locations of recreational facilities and greenspace were conducted on a convenience sample of three schools (two inner regional and one outer regional) by authors JJ and NC. Following this process, a number of reserves in the FOI data set were combined and termed ‘recreational facilities’ and reserves termed ‘greenspace’. Recreational facilities and greenspace were counted as being within a school’s neighbourhood if any part of the feature intersected with the walkability buffers (i.e., they were within 1km walking distance of the school). If a reserve contained recreational facilities, it was counted as both recreational facility and greenspace.

Demographic data collected in 2015 and 2016 were combined as one cohort for analysis. School neighbourhoods (street network buffers) were imported from the AURIN results into ArcMap (ArcGIS Desktop, V.10.7.1 ESRI, Redlands, California). The FOI data, which included greenspace and recreation facility locations projected as polygons, were also imported into ArcMap. Within ArcMap, the intersect tool was used to produce an attribute table including all recreational facilities and greenspaces that were within, or intersected with, the 1km walkable neighbourhood around included primary schools. Duplicates were removed within school neighbourhood (where a polygon intersected with the buffer multiple times). This table was exported to Stata SE V.15 (StataCorp, College Station, Texas) for analysis.

Demographics at the school level were tabulated according to remoteness and SEP (low/high), as measured by ISCEA, as aspects of the PA environment have been shown to vary by these factors. Two sample t-tests and proportion tests were used to determine differences between groups.

Multilevel mixed effects logistic regression were fitted to test the association between independent variables: (1) the count of recreational facilities within, or intersecting with, the 1km walkability buffer, (2) the count of greenspaces within, or intersecting with, the 1km walkability buffer, (3) the school walkability score and each of three dependent variables; (1) weight status (overweight or obese) (yes/no), (2) adherence to PA guidelines (yes/no) and (3) use of active transport (yes/no) as separate regressions. Multilevel linear regression models were fitted to test the associations between all three PA environment independent variables and the dependent variable of BMI z-score. For all models, clustering was accounted for at the school level. Initial models (model 1) did not include any adjustment for covariates. In model 2, adjustments were made for school-level SEP (measured by ICSEA), student’s gender and age (in years) and school type (government, Catholic, independent). A third
regression model (model 3) included all independent variables related to the PA environment. Geographical location (according to remoteness) is a direct input into the calculation of ICSEA. Correlation analysis shows that the two variables are collinear in this sample (pairwise correlation p<0.05) and, therefore, remoteness was not adjusted for any of the models. A p value <0.05 for all associations was considered significant.

A secondary analysis was conducted to assess the impact of the total PA environment by creating a composite score. Each of the three exposure variables was coded into tertiles (low=1, moderate=2, high=3), then summed for each school. This total PA environment score was used as the independent variable for analysis with each of the weight and PA behaviour outcomes.

Patient and public involvement

The wider trials from which the baseline data are drawn on for this manuscript involved extensive collaboration with numerous community-based organisations (eg, health services, primary care partnerships and local councils). Key local agencies contributed to recruitment and student-level data collection.

The outcome measurements (weight and health behaviours) were developed in conjunction with community-based organisations (eg, health services, primary care partnerships) due to an absence of locally available data on the prevalence of childhood obesity and associated modifiable behaviours.

RESULTS

Data were collected from 65% (84/129) of eligible schools for two large-scale system-based obesity prevention interventions, with 79% (3476/4386) of eligible students within those schools participating in the study. Of these eligible students, 2269 were in years 4 and 6. For this analysis, three special development schools were excluded due to not being assigned an ICSEA score and one further school did not have complete data on any year 4 or 6 students. This resulted in 80 schools being in the final analysis. These schools included 2144 students with complete measures (94% of eligible year 4 and 6 students). There was some variation in gender and year level within the excluded students (n=72 boys, n=53 girls; n=74year 6s, n=51year 4s).

Descriptive statistics of the participating schools are presented in **Table 2**, stratified by school-level SEP (ICSEA) and remoteness classification. Stratification by ICSEA shows a significantly greater number of recreation facilities and greenspaces and higher mean walkability scores in low compared with high SEP school neighbourhoods. A significantly higher proportion of students attending low SEP schools used active transport to or from school, but a higher proportion of students attending high SEP schools met the PA guidelines, and students attending high SEP schools had a lower mean BMI z-score.

There were a number of differences between schools in inner and outer regional areas, with a lower number of recreation facilities and greenspaces, lower walkability scores and lower total PA environment scores in outer compared with inner regional areas. Furthermore, a lower proportion of students used active forms of transport in outer compared with inner regional areas.

Table 3 shows that the analysis did not find any significant associations between the schools’ PA environment and either students’ weight status or the odds of students meeting PA guidelines once adjusted for demographics of the students and schools.

Significant associations were found between each of the independent variables (recreation facilities, greenspace and walkability) and the odds of a student using active transport to or from school. When adjusted for age, gender, school SEP and school type (model 2), the biggest effect size was for greenspace, with every additional greenspace in a school neighbourhood increasing the odds of a student using active transport to or from school by 35% (OR 1.35, 95% CI 1.20 to 1.53). The association between greenspace and active transport also remained when adjusted for the other independent variables (model 3) (OR 1.30, 95% CI 1.09 to 1.54).

In the secondary analysis, significant associations were found between the summed ‘total PA environment’ score and using active transport and weight outcomes in the unadjusted model. However, in the adjusted model, only a significant result remained for active transport (OR 1.33, 95% CI 1.28 to 1.51).

DISCUSSION

This study assessed associations between the PA environment of 80 primary schools, and child weight status and PA behaviours, in regional Australia. There were significantly higher odds of students using active transport to and/or from school with increasing number of greenspaces and recreational facilities in the school neighbourhood and with increasing school neighbourhood walkability scores. Students also had significantly higher odds of using active transport with increasing total PA environment score of their school neighbourhood. No significant associations were found between individual features of the PA environment surrounding schools and weight status or PA levels in adjusted models.

Strengths of this study include the use of measured height and weight data from large regional studies with a very high student participation rate (79%). This high student participation rate, using an opt-out recruitment approach, is likely to reduce the impact of measurement error introduced through nonparticipation bias on estimates of behaviours and overweight and obesity. Additionally, manually verifying the recreational facilities and greenspaces within the 1 km walkable neighbourhood of a sample of participating schools improved the validity of our environmental data and allowed refinements of the
classification methods for greenspaces and recreation facilities for analysis.

Using a 1 km walkable neighbourhood is more accurate than other approaches such as the Euclidean distance to measure the environment as it uses existing road networks that are likely to be used for active transport, reflecting actual transport routes. By contrast, Euclidean buffers do not account for road networks and access, and simply reflect the density, but not accessibility, of environmental features within a given area. The 1 km neighbourhood also represents a distance that has been shown to be realistic for children to travel before or after school.

There were also a number of limitations with this study. Inherent issues exist with the use of self-report measures of PA, particularly among children. These include recall and social-desirability biases and challenges with accurate comprehension and reporting. The use of objective measures (such as accelerometry) to gain more accurate assessment of PA would be beneficial in future studies. Additionally, the exclusion of Special Development schools due to these schools not being assigned a school-level SEP measure may impact the generalisability of the results, in particular, regarding applicability of the results to students attending these schools.

Another limitation is the cross-sectional study design, which meant we were unable to determine causation between the PA environment and the outcomes explored. Self-selection into a particular area, in this instance, by a child’s parents, may also influence the results, particularly considering those of higher SEP may be less likely to be obese and choose environments more conducive to PA. However, in this study, more recreational facilities and greenspaces and higher walkability scores were found in areas surrounding schools classified as lower compared with higher SEP. These results highlight the complexity of these relationships, with factors such as quality and accessibility also playing important roles.

A further limitation is that we did not have data on the distance that the children lived from the school that may

Exposures	Low SEP	High SEP	Inner regional	Outer regional	All schools
Mean (SD) features per neighbourhood	3.71 (2.81)	2.25 (1.75)*	3.40 (2.82)	2.90 (1.86)*	3.28 (2.62)
Range	0–11	0–7	0–11	0–7	0–11
Greenspace	2.40 (1.96)	1.62 (1.86)*	2.43 (2.11)	1.40 (1.10)*	2.18 (1.95)
Range	0–8	0–8	0–8	0–4	0–8
Walkability	−0.39 (2.71)	−1.64 (1.56)*	−0.41 (2.69)	−1.84 (1.24)*	−0.76 (2.48)
Range	−3.91–6.96	−3.76–1.22	−3.91–6.96	−3.77–0.47	−3.91–6.96
Total PA score	5.2 (1.93)	4.00 (1.29)	5.10 (1.94)	4.05 (1.19)	4.84 (1.83)
Range	3–9	3–7	3–9	3–6	3–9
Proportion meeting PA guidelines 5 school days	0.24 (0.42)	0.30 (0.46)*	0.27 (0.44)	0.22 (0.42)	0.26 (0.44)
Proportion using AT to or from school	0.33 (0.47)	0.18 (0.38)*	0.32 (0.47)	0.17 (0.37)*	0.29 (0.46)
Proportion overweight/obese	0.39 (0.49)	0.33 (0.47)	0.38 (0.49)	0.37 (0.48)	0.38 (0.48)
Mean (SD) BMI z-score	0.69 (1.22)	0.59 (1.1)*	0.67 (1.2)	0.65 (1.18)	0.67 (1.19)

Low SEP=ICSEA<1000; high SEP=ICSEA≥1000.

*Significant t-test or proportion test result (p<0.05) for difference between inner and outer regional schools, or difference between high and low SEP schools scores.

AT, active transport; BMI, body mass index; ICSEA, index of community socio-educational advantage; PA, physical activity; SEP, socioeconomic position.
particularly influence the active transport outcome. These data would enhance the analysis; however, we hypothesise that the school neighbourhood may act as a proxy for the community PA environment, where children may play before and after school as well as an area that could enhance active transportation.

The potential impact of residual confounding by other factors that were not able to be controlled for also needs to be considered. These may include individual socio-economic factors, parent’s perception of the neighbourhood or safety, family car ownership and distance to school. Additionally, although multiple tests have been conducted, consistent associations with active transport and the PA environment are found, and results remain consistent with adjustment of the p value threshold to <0.01.

A lack of association between the individual PA environment measures surrounding schools and PA levels or weight status in students may be due to lack of heterogeneity in our sample of those environmental characteristics that are deterministic of behaviour, a lack of genuine associations between environments and these outcomes or insufficient power to detect differences. In regards to weight status, there are many complex determinants of weight,64 of which PA is only one. Other environmental factors such as the food environment and individual factors also play a role but are beyond the scope of this study. While associations were found between the environment and active transport, it has been suggested that active transport alone may not result in sufficient energy expenditure to impact on obesity levels.65

This impact of the overall PA environment warrants further study, with more standardised measures that take in multiple aspects of the PA environment, as is done to calculate walkability scores.

The walkability score used in this study included connectivity, land-use mix and population density measures. Combining different aspects of the environment into a composite score is a common approach to assess walkability.42 66 Reviews looking at individual components of

Table 3	Associations between PA environment, weight and behavioural outcomes (students n=2144)								
	Model 1	OR	95% CI	Model 2	OR	95% CI	Model 3	OR	95% CI
Meeting PA guidelines									
Recreational facilities	0.97	0.92 to 1.02	0.98	0.93 to 1.04	1.00	0.93 to 1.07			
Greenspace	0.96	0.89 to 1.04	0.98	0.91 to 1.06	1.00	0.90 to 1.11			
Walkability	0.96	0.90 to 1.02	0.97	0.92 to 1.04	0.98	0.90 to 1.07			
Total PA environment	0.94	0.87 to 1.00	0.95	0.87 to 1.04	––	––			

Using AT 1+trip

	Model 1	OR	95% CI	Model 2	OR	95% CI	Model 3	OR	95% CI
Recreational facilities	1.23†	1.11 to 1.37	1.18†	1.07 to 1.31	1.05	0.94 to 1.18			
Greenspace	1.41†	1.24 to 1.61	1.35†	1.20 to 1.53	1.30†	1.09 to 1.54			
Walkability	1.26†	1.14 to 1.41	1.21†	1.09 to 1.35	1.01	0.87 to 1.17			
Total PA environment	1.40†	1.23 to 1.58	1.33†	1.28 to 1.51	––	––			

Overweight/obese

	Model 1	OR	95% CI	Model 2	OR	95% CI	Model 3	OR	95% CI
Recreational facilities	1.03	1.00 to 1.06	1.01	0.98 to 1.04	1.01	0.97 to 1.04			
Greenspace	1.04*	1.00 to 1.09	1.03	0.99 to 1.07	1.03	0.97 to 1.08			
Walkability	1.03	0.99 to 1.07	1.01	0.98 to 1.05	1.00	0.95 to 1.04			
Total PA environment	1.05*	1.00 to 1.10	1.03	0.99 to 1.08	––	––			

BMI z-score

	Model 1	OR	95% CI	Model 2	OR	95% CI	Model 3	OR	95% CI
Recreational facilities	0.01	−0.01 to 0.29	0.00	−0.02 to 0.02	0.00	−0.03 to 0.02			
Greenspace	0.03*	0.00 to 0.05	0.02	−0.01 to 0.04	0.03	−0.01 to 0.06			
Walkability	0.01	−0.01 to 0.03	0.00	−0.02 to 0.02	−0.01	−0.04 to 0.02			
Total PA environment	0.03*	0.00 to 0.06	0.01	−0.01 to 0.04	––	––			

Model 1: unadjusted; model 2: adjusted for age (years), gender, school type and ICSEA (school-level SEP); model 3: adjusted for age (years), gender, school type, ICSEA (school-level SEP) and other independent variables.

* p<0.05. † p<0.01.
‡ Mean change in BMI z-score.
AT, active transport; BMI, body mass index; ICSEA, index of community socio-educational advantage; PA, physical activity; SEP, socio-economic position.
walkability have found more diverse land-use mix, population density, and street connectivity to be associated with increased PA levels or active travel in children and adolescents. However, a majority of published studies have been conducted in major city settings. The impact and relative importance of each of these measures may differ for regional compared with major city communities. To elicit differences between regional and major city environments, it may be useful to look at these components separately in a broader cross-section of environments, with further heterogeneity in levels of remoteness (from major cities to very remote).

Our findings on the association between walkability scores of school neighbourhoods and active transport are in line with other studies, but represents one of very few studies focused on regional areas. Distance to school has been shown to be an important factor in the choice or ability to use active forms of transport for school commutes. With increasing remoteness, distances travelled to school tend to increase, thus impacting active transport levels. This is supported by our results showing a significantly greater proportion of children from inner regional schools actively commuted to school compared with those in outer regional schools, a result reflected in other Australian studies. While walkability was associated with a greater proportion of students using active forms of transport for their journeys to and from school, the overall number of children actively commuting remained below one quarter in our sample. A Canadian study that considered active transport for children who live within walking distance of their school defined as 1.6km found much higher rates (up to 67%) of active transport.

We have used a 1 km buffer from primary schools in line with other research regarding the distances that children would walk. However, there is debate regarding the optimal walking distance to use to define the local neighbourhood and to reflect accessible environments for children where they are likely to access services and recreational opportunities. In the food environment literature, there is some evidence that a larger buffers should be used. Additionally, it may be that a larger buffer is more relevant in regional locations, where there is a greater reliance on cars, less public transport and greater distances between homes and schools.

CONCLUSIONS
This study is the first of its kind exploring school neighbourhood environments and child weight status and PA behaviours in regional areas of Australia. It highlights the importance of the environment surrounding primary schools in contributing to students’ active travel to and from school. Further research with the use of objective PA measurement is warranted in regional and remote areas to further our understanding of the broader healthy school environment.
8 Timpero A, Crawford D, Ball K, et al. Typologies of neighbourhood environments and children’s physical activity, sedentary time and television viewing. *Health Place* 2017;43:121–7.
9 Timpero A, Reid J, Veitch J. Playability; built and social environment factors that promote physical activity within children. *Curr Obes Rep* 2015;4:460–76.
10 Morton KL, Atkin AJ, Corder K, et al. The school environment and adolescent physical activity and sedentary behaviour: a mixed-studies systematic review. *Obes Rev* 2016;17:142–58.
11 de Véet E, de Rijder DTD, de Wit JBF. Environmental correlates of physical activity and dietary behaviours among young people: a systematic review of reviews. *Obes Rev* 2011;12:e130–42.
12 Black IE, Menzel NN, Bungum TJ. The relationship among playground areas and physical activity levels in children. *J Pediatr Health Care* 2015;29:156–68.
13 Button B, Trites S, Janssens I. Relations between the school physical environment and school social capital with student physical activity levels. *BMJ Public Health* 2013;13:1191.
14 Koorts H, Timpero A, Arundell L, et al. Is sport enough? contribution of sport to overall child active transport, recreational and intensity physical activity among adolescents. *J Sci Med Sport* 2019;22:1119–24.
15 Denstel KD, Broyles SL, Larouche R, et al. Active school transport and weekday physical activity in 9-11-year-old children from 12 countries. *Int J Obes Suppl* 2015;5:S100–6.
16 Larouche R, Saunders TJ, Faulkner GEJ, et al. Associations between active school transport and physical activity, body composition, and cardiovascular fitness: a systematic review of 68 studies. *J Phys Act Health* 2014;11:206–27.
17 Parter JR, Jones AP, van Sluijs EM. Environmental determinants of active travel to school: a review and framework for future research. *Int J Behav Nutr Phys Act* 2008;5:34.
18 Abbott RA, Macdonald D, Nambiar S, et al. The association between walking to school, daily step counts and meeting step targets in 5- to 16-year-old Australian children. *Pediatr Exerc Sci* 2009;21:520–32.
19 D’Haeze S, Vandenhende D, Remon G, Hinkenbeck K, et al. Cross-continental comparison of the association between the physical environment and active transport in children: a systematic review. *Int J Behave Nutr Phys Act* 2015;12:145.
20 Hardy LL, Minshahabi S, Drayton BA, et al. NSW schools physical activity and nutrition survey (spans) 2015. Sydney: NSW Department of Health, 2016.
21 Bell L, Ullah S, Olds T, et al. Prevalence and socio-economic distribution of eating, physical activity and sedentary behaviour among South Australian children in urban and rural communities: baseline findings from the opal evaluation. *Public Health* 2016;140:196–205.
22 Merom D, Tudor-Locke C, Bauman A, et al. Active commuting to school among NSW primary school children: implications for public health. *Health Place* 2006;12:678–87.
23 Pont K, Ziviani J, Wijayatilake Y, et al. Environmental correlates of children’s active transportation: a systematic literature review. *Health Place* 2009;15:849–62.
24 Gutiérrez-Zornoza M, Sánchez-López M, Garcia-Hermoso A, et al. Active commuting to school, weight status, and cardiometabolic risk in children from rural and urban areas: the Cuenca study. *Health Educ Behav* 2015;42:231–9.
25 Giles-Corti B, Wood G, Pikora T, et al. School site and the potential to walk to school: the impact of street connectivity and traffic exposure in school environments. *Int J Behav Nutr Phys Act* 2011;17:545–50.
26 McCrorie PRW, Fenton C, Ellaway A. Combining GPS, GIS, and accelerometers to explore the physical activity and environment relationship in children and young people - a review. *Int J Behav Nutr Phys Act* 2014;11:93.
27 Ding D, Sallis JF, Kerr J, et al. Neighborhood environment and physical activity among youth a review. *Am J Prev Med* 2011;41:442–55.
28 Sarmiento OL, Lemoine P, Gonzalez SA, et al. Relationships between active school transport and adiposity indicators in school-age children from the middle- and high-income countries. *Int J Obes Suppl* 2015;5:S107–14.
29 von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. *Int J Surg* 2014;12:1495–9.
30 Australian Bureau of Statistics. Population - Local Government Area, Victoria, TableBuilder. Findings based on use of ABS TableBuilder data, 2016. Available: https://www.abs.gov.au/webstedsb/censushome.nsf/home/tablebuilder
31 Allender S, Millward-Pillay P, et al. Whole of systems trial of prevention strategies for childhood obesity: who stops childhood obesity. *Int J Environ Res Public Health* 2016;13:1143.
32 Whelan J, Struggnell C, Allender S, et al. Protocol for the measurement of changes in knowledge and engagement in the stepped wedge cluster randomised trial for childhood obesity prevention in Australia: (reflexive evidence and systems interventions to prevent obesity and noncommunicable disease) (Res) Trials (Note). *BMJ Open* 2020;2:1–1.
33 Crooks N, Struggnell C, Bell C, et al. Establishing a sustainable childhood obesity monitoring system in regional Victoria. *Health Promot J Austr* 2017;28:96–102.
34 Struggnell C, Orellana L, Hayward J, et al. Active (Opt-In) consent under the data processing provisions of the Australian privacy management framework (Privacy Act 1988). Evidence from the healthy together Victoria and childhood obesity study. *Int J Environ Res Public Health* 2018;15:1030004. [Epub ahead of print: 13 Apr 2018].
35 de Onis M, Onyango AW, Borghi E, et al. Development of a who growth reference for school-aged children and adolescents. *Bull World Health Organ* 2007;85:660–7.
36 Card A, Manske S, Mammen G. Core indicators and measures of youth health physical activity & sedentary behaviour module: indicators and questions to use with youth responders and/or school setting assessments. St John’s, Newfoundland and Labrador: Memorial University of Newfoundland, 2012.
37 Wong SL, Leatherdale ST, Manske SR. Reliability and validity of a school-based physical activity questionnaire. *Med Sci Sports Exerc* 2006;38:593–600.
38 Commonwealth Department of Health. Australia’s physical activity and sedentary behaviour guidelines for children (5–12 years), 2014. Available: https://extranet.who.int/nccds/Data/AUS_B11_National%20Physical%20Activity%20Guidelines%20for%20children%205–12.pdf
39 AURIN. Catchment generator, 2019. Available: https://aurin.org.au/resources/workbench-user-guides.portal-user-guides/analysing-your-data/walkability-tools/catchment-generator/
40 Panter J, Corder K, Griffin SJ, et al. Individual, socio-cultural and environmental predictors of walking and maintenance of active commuting in children: longitudinal results from the speedy study. *Int J Behav Nutr Phys Act* 2013;10:83.
41 Aurin: Walkability index with gross density (regions), 2019. Available: https://aurin.org.au/resources/workbench-user-guides/portal-user-guides/analysing-your-data/walkability-tools/walkability-index-around-points/
42 Frank LD, Sallis JF, Saelens BE, et al. The development of a walkability index; application to the neighborhood quality of life study. *Br J Sports Med* 2010;44:924–32.
43 data.vic.gov.au. Victorian government, 2021. Available: http://services.land.vic.gov.au/catalogue/metadatata anzlid=ANZV08030306342&publicid=guest&extractionProviderId=1#tab1
44 Bader MD, Mooney SJ, Bennett B, et al. The promise, practicalities, and perils of virtually auditing neighborhoods using Google street view. *Int J Health Geogr* 2017;16:1–18.
45 Australian Statistical Geography Standard (ASGS). The Australian statistical geography standard (ASGS) remoteness structure, 2016. Available: http://www.abs.gov.au/webstedsb/D3310114.nst/home/ remoteness-structure
46 University of Adelaide. Australian Bureau of statistics ARIA (Accessibility/Remoteness index of Australia), 2016. Available: https://www.adelaide.edu.au/apmrc/research/projects/category/about_aria.html
47 ACARA my Schools. My school – terms of use, 2019. Available: https://www.myschools.edu.au/
48 Environmental Systems Research Institute. ESRI: ArcGIS 10.2.2 for desktop. Redlands, CA: Environmental Systems Research Institute, 2014.
49 StataCorp. Stata statistical software: release 15. College Station TSL: StataCorp, 2017.
50 Jacobs J, Alston L, Needham C, et al. Variation in the physical activity environment according to area-level socio-economic position-A systematic review. *Obes Rev* 2019;20:686–700.
51 Morrissey B, Allender S, Strugnell C. Dietary and activity factors influence poor sleep and the Sleep–Obesity nexus among children. *Int J Environ Res Public Health* 2019;16:1778.
52 Boscoe FP, Henry KA, Zdeb MS. A nationwide comparison of driving distance versus straight-line distance to hospitals. *Prof Geogr* 2012;64:188–96.
53 Rodriguez-Lopez C, Salas-Faríña ZM, Villa-González E, et al. The threshold distance associated with walking from home to school. *Health Educ Behav* 2017;44:857–66.
54 Sharman SJ, Skouteris H, Powell MB, et al. Factors related to the accuracy of self-reported dietary intake of children aged 6 to 12 years elicited with interview: a systematic review. *J Acad Nutr Diet* 2016;116:76–114.
Boone-Heinonen J, Gordon-Larsen P, Guikey DK, et al. Environment and physical activity dynamics: the role of residential self-selection. *Psychol Sport Exerc* 2011;12:54–60.

Jones A, Hillidon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Kessel A, Green J, Pinder R, et al. Multidisciplinary research in public health: a case study of research on access to green space. *Public Health* 2009;123:32–8.

Svastisalee C, Schipperijn J, Hostein BE, et al. Exposure to physical activity resources by neighborhood sociodemographic characteristics in Copenhagen. *J Phys Act Health* 2012;9:1065–73.

Ellaway A, Kirk A, Macintyre S, et al. Nowhere to play? the relationship between the location of outdoor play areas and deprivation in Glasgow. *Public Health* 2007;13:557–61.

Jones A, Hillsdon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Boone-Heinonen J, Gordon-Larsen P, Guilkey DK, et al. Environment and physical activity dynamics: the role of residential self-selection. *Psychol Sport Exerc* 2011;12:54–60.

Jones A, Hillidon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Kessel A, Green J, Pinder R, et al. Multidisciplinary research in public health: a case study of research on access to green space. *Public Health* 2009;123:32–8.

Svastisalee C, Schipperijn J, Hostein BE, et al. Exposure to physical activity resources by neighborhood sociodemographic characteristics in Copenhagen. *J Phys Act Health* 2012;9:1065–73.

Ellaway A, Kirk A, Macintyre S, et al. Nowhere to play? the relationship between the location of outdoor play areas and deprivation in Glasgow. *Public Health* 2007;13:557–61.

Jones A, Hillsdon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Boone-Heinonen J, Gordon-Larsen P, Guilkey DK, et al. Environment and physical activity dynamics: the role of residential self-selection. *Psychol Sport Exerc* 2011;12:54–60.

Jones A, Hillidon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Kessel A, Green J, Pinder R, et al. Multidisciplinary research in public health: a case study of research on access to green space. *Public Health* 2009;123:32–8.

Svastisalee C, Schipperijn J, Hostein BE, et al. Exposure to physical activity resources by neighborhood sociodemographic characteristics in Copenhagen. *J Phys Act Health* 2012;9:1065–73.

Ellaway A, Kirk A, Macintyre S, et al. Nowhere to play? the relationship between the location of outdoor play areas and deprivation in Glasgow. *Public Health* 2007;13:557–61.

Jones A, Hillsdon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Boone-Heinonen J, Gordon-Larsen P, Guilkey DK, et al. Environment and physical activity dynamics: the role of residential self-selection. *Psychol Sport Exerc* 2011;12:54–60.

Jones A, Hillidon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Kessel A, Green J, Pinder R, et al. Multidisciplinary research in public health: a case study of research on access to green space. *Public Health* 2009;123:32–8.

Svastisalee C, Schipperijn J, Hostein BE, et al. Exposure to physical activity resources by neighborhood sociodemographic characteristics in Copenhagen. *J Phys Act Health* 2012;9:1065–73.

Ellaway A, Kirk A, Macintyre S, et al. Nowhere to play? the relationship between the location of outdoor play areas and deprivation in Glasgow. *Public Health* 2007;13:557–61.

Jones A, Hillsdon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Boone-Heinonen J, Gordon-Larsen P, Guilkey DK, et al. Environment and physical activity dynamics: the role of residential self-selection. *Psychol Sport Exerc* 2011;12:54–60.

Jones A, Hillidon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Kessel A, Green J, Pinder R, et al. Multidisciplinary research in public health: a case study of research on access to green space. *Public Health* 2009;123:32–8.

Svastisalee C, Schipperijn J, Hostein BE, et al. Exposure to physical activity resources by neighborhood sociodemographic characteristics in Copenhagen. *J Phys Act Health* 2012;9:1065–73.

Ellaway A, Kirk A, Macintyre S, et al. Nowhere to play? the relationship between the location of outdoor play areas and deprivation in Glasgow. *Public Health* 2007;13:557–61.

Jones A, Hillsdon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Boone-Heinonen J, Gordon-Larsen P, Guilkey DK, et al. Environment and physical activity dynamics: the role of residential self-selection. *Psychol Sport Exerc* 2011;12:54–60.

Jones A, Hillidon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Kessel A, Green J, Pinder R, et al. Multidisciplinary research in public health: a case study of research on access to green space. *Public Health* 2009;123:32–8.

Svastisalee C, Schipperijn J, Hostein BE, et al. Exposure to physical activity resources by neighborhood sociodemographic characteristics in Copenhagen. *J Phys Act Health* 2012;9:1065–73.

Ellaway A, Kirk A, Macintyre S, et al. Nowhere to play? the relationship between the location of outdoor play areas and deprivation in Glasgow. *Public Health* 2007;13:557–61.

Jones A, Hillsdon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. *Prev Med* 2009;49:500–5.

Boone-Heinonen J, Gordon-Larsen P, Guilkey DK, et al. Environment and physical activity dynamics: the role of residential self-selection. *Psychol Sport Exerc* 2011;12:54–60.