Assessment and comparison of distal radial artery diameter in anatomical snuff box with conventional radial artery before coronary catheterization

Surender Deora a,*, Shubham Kumar Sharma a, Rahul Choudhary a, Atul Kaushik a, Pawan Kumar Garg b, Pushpinder Singh Khera b, Kuldeep Singh a, Sanjay Shah c, Tejas M. Patel c

a Department of Cardiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
b Department of Diagnostic and Interventional Radiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
c Department of Cardiology, Smt NHL Medical College & Apex Heart Institute, Ahmedabad, Gujarat, India

Abstract

Background: The distal radial artery (dRA) approach at anatomical snuff box has gained attention of the interventional cardiologist in last few years. The procedural success rate by this novel approach depends on size of the radial artery and therefore the study was planned to study the size of distal radial artery.

Methods: Total of 1004 patients of >18 years of age undergoing coronary catheterization were included in the study. The vessel diameter was measured from media to media in the anatomical snuff box a day prior to coronary catheterization.

Results: The mean diameter of right radial artery at conventional access site was 2.56 ± 0.35 mm and at distal access site 2.23 ± 0.39 mm (p < 0.001). Females had significantly smaller radial artery diameter as compared to males at right conventional access site (2.42 ± 0.36 mm vs 2.60 ± 0.34 mm; p < 0.001) and distal access site (2.09 ± 0.38 mm vs 2.27 ± 0.39 mm; p < 0.001). The diameter of the right dRA was not significantly correlated with age (r² linear = 0.002, p = 0.0475) but was positively correlated with height and weight (r² linear = 0.076, p < 0.001 and r² linear = 0.005, p < 0.001) and negatively correlated with BMI (r² linear = 0.076, p = 0.519).

Conclusions: This study has shown the size of right dRA 2.27 ± 0.39 mm in males and 2.09 ± 0.38 mm in females. Diabetes, hypertension, height and weight are important predictors of dRA diameter.

© 2022 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
base is formed by the distal margin of the retinaculum of extensor muscles and vertex by the tendons of extensor pollicis longus and extensor pollicis brevis muscles. The main advantage of dTRA is greater comfort to patient during the procedure especially with left dRA as the forearm is in more natural and comfortable position. Another advantage as shown in some studies is lower incidence of RAO therefore, this study was proposed to measure normal size of the radial artery at conventional puncture site and in anatomical snuff box.

2. Methods

Total of 1004 patients of >18 years of age undergoing coronary catheterization were included in the study from two tertiary cardiac care centres of India. The study was approved by Institutional Ethics Committee and written informed consent was taken from all patients. The vessel diameter was measured from media to media of right and left radial artery at conventional puncture site over the palmar side of the wrist 2 cm proximal to styloid process and in the anatomical snuff box (Fig. 1). The measuring point of dRA was over the scaphoid and trapezium bone where the vessel is superficial and safe to puncture. All measurements were performed a day prior to coronary catheterization using commercially available ultrasound system (EPIC 7C, Philips Medical Systems) with vascular probe (8–11 MHz). Baseline demographic characteristics i.e., age, gender, weight, height, body mass index (BMI), smoking, diabetes, hypertension, eGFR were recorded. Patients with past history of coronary catheterization by either cTRA or dTRA and those with feeble palpable pulse were excluded.

Categorical variables are presented as numbers and percentages. Continuous variables are shown as the mean ± standard deviation and were compared between the groups by the unpaired t test. The association between the groups was evaluated by Pearson correlation coefficient method. A p-value < 0.05 was considered as statistically significant. The statistical analysis was performed with IBM-SPSS-26.0 software package (SPSS Inc., Chicago, Illinois, USA).

3. Results

Table 1 shows the baseline characteristic of total 1004 patients who were enrolled in the study. Out of these 785 (78.2%) were males and 219 (21.8%) were females. The number of hypertensive and diabetic patients were 378 (37.6%) and 285 (28.4%) respectively.

Table 2 shows the mean diameter of right radial artery in all patients undergoing CAG or PCI at conventional access site (cRA) was 2.56 ± 0.35 mm and at distal access site (dRA) was 2.23 ± 0.39 mm (p < 0.001) whereas the size of left cRA was 2.50 ± 0.35 mm and dRA was 2.17 ± 0.39 mm (p < 0.001). In male patients, the mean diameter on right cRA was 2.60 ± 0.34 mm and dRA was 2.27 ± 0.39 mm (p < 0.001). Similarly, on left side the mean diameter of cRA was 2.54 ± 0.34 mm and dRA was 2.21 ± 0.39 mm (p < 0.001). In females, the mean diameter on right cRA was 2.42 ± 0.36 mm and dRA 2.09 ± 0.38 mm (p < 0.001). Similarly, on left side the mean diameter of CRA was 2.35 ± 0.38 mm and dRA was 2.02 ± 0.37 mm (p < 0.001).

Table 3 shows gender difference in radial artery at conventional and distal access site. Females had significantly smaller radial artery diameter as compared to males at right conventional access site (2.42 ± 0.36 mm vs 2.60 ± 0.34 mm; p < 0.001) and distal access site (2.09 ± 0.38 mm vs 2.27 ± 0.39 mm; p < 0.001). Similarly on left side females have smaller radial artery diameter at conventional access site (2.35 ± 0.38 mm vs 2.54 ± 0.34 mm; p < 0.001) and distal access site (2.02 ± 0.37 mm vs 2.21 ± 0.39 mm; p < 0.001).

Table 4 shows the significant difference in radial artery diameter between non-hypertensive and hypertensive patients at both conventional and distal access site on both sides. The mean diameter of right cRA in hypertensive was 2.51 ± 0.37 mm and in non-hypertensive patients was 2.59 ± 0.34 mm and (p < 0.001). Simi-

Table 1: Baseline descriptive statistics of study population.

Variable	n	Mean ± SD
Number of patients	1004	
Age (years)	785	57.75 ± 11.8
Male (n, %)	785	78.2%
Height (cm)	165.93 ± 7.3	
Weight (kg)	68.99 ± 11.4	
BMI (kg/m²)	25.04 ± 3.8	
Diabetes (n, %)	285	28.4%
Hypertension (n, %)	378	37.6%
Smoking (n, %)	213	21.2%

Values are mean ± SD, median [Inter Quartile Range], or n (%). BMI = Body Mass Index.
Effect of diabetes, hypertension and smoking on size of radial and distal radial arteries.

Hypertension (n = 378)	Non hypertensive (n = 626)	p-value	
Right cRA	Right dRA		
Right cRA	2.51 ± 0.37	2.59 ± 0.34	<0.001
Right dRA	2.18 ± 0.41	2.26 ± 0.38	0.001
Left cRA	2.44 ± 0.37	2.53 ± 0.34	<0.001
Left dRA	2.11 ± 0.41	2.20 ± 0.38	0.001
Diabetic (n = 285)	Non-diabetic (n = 719)		
Right cRA	2.55 ± 0.36	2.57 ± 0.35	0.351
Right dRA	2.18 ± 0.44	2.26 ± 0.38	0.004
Left cRA	2.46 ± 0.37	2.51 ± 0.35	0.024
Left dRA	2.09 ± 0.41	2.20 ± 0.38	<0.001
Smoker (n = 213)	Non-smoker (n = 791)		
Right cRA	2.59 ± 0.33	2.55 ± 0.36	0.193
Right dRA	2.27 ± 0.38	2.22 ± 0.39	0.082
Left cRA	2.53 ± 0.31	2.49 ± 0.36	0.103
Left dRA	2.23 ± 0.36	2.15 ± 0.40	0.016

Values are mean ± SD.

4. Discussion

The dTRA approach has gained attention of the interventional cardiologist in last few years. The initial feasibility of dTRA for CAG and PCI was reported by Kiemeneij in 70 patients where left dRA was accessed. Then later many studies reported its feasibility in various clinical settings like primary PCI, Left main bifurcations, Chronic total occlusions. The dRA in ASB is smaller and tortuous therefore its access is relatively more difficult as compared to cRA. Also, as the size of radial artery is an important predictor of RAO there is still an uncertainty about the incidence of RAO with dTRA approach. Therefore, the size of dRA must be known in the population before using dTRA as default approach for CAG and PCI.

There is paucity of data available for the size of cRA and no data available for dRA in Indian population and therefore the study was planned. The size of the right cRA in our study was 2.60 ± 0.34 mm in males and 2.42 ± 0.36 mm in females. A study by Benival et al in 204 patients from southern Rajasthan has shown the diameter of cRA in males 2.37 ± 0.41 mm and females 2.26 ± 0.39 mm which was smaller than what has been observed in our study. Also, in our study the size of dRA was significantly smaller than the size of cRA. There are small studies available from Japan and Korea of the size of dRA. A study by Naito et al in 120 patients from Japan has shown the size of dRA to be 2.04 ± 0.43 mm in males and 1.96 ± 0.44 mm in females. As in our study, the diameter of dRA was significantly smaller than cRA. Similarly, a study by Norimatsu et al in 142 patients from Japan has shown the diameter of dRA (2.60 ± 0.34 mm) to be significantly smaller as compared to cRA (3.10 ± 0.4 mm) and the difference was seen in both males and females. Similar to our results the females in the study had smaller dRA diameter (2.5 ± 0.4 mm) as compared to males (2.60 ± 0.5 mm). A study by Kim et al in 117 patients from Korea has shown average diameter of left dRA of 2.57 ± 0.50 mm and the females had smaller size (2.40 ± 0.53 mm) as compared to males (2.65 ± 0.46 mm). In our study, the size of left dRA was 2.17 ± 0.39 mm with significantly smaller diameter in females (2.02 ± 0.37 mm) as compared to males (2.21 ± 0.39 mm). A study from Canada by Hadjivassiliou in 287 patients undergoing interventional radiology procedures has shown the mean diameter of left cRA 2.55 ± 0.39 mm and dRA 2.34 ± 0.36 mm (p = 0.001) and the difference was significant in both genders.

In our study, diabetic and hypertensive patients have smaller radial arteries as compared to non-diabetic and normotensives. This may be because of increased atherosclerosis and poor...
compliance to medications in these patients. Similar observations were noted by Ruengkularh and colleagues where atherosclerosis and diabetes were independent predictors of small radial arteries. We also found positive correlation between the size of dRA with height, weight and negative correlation with body mass index. In a study by Norimatsu et al, dRA was not correlated with age and height but was positively correlated with both body weight and body mass index.11

The smaller size of dRA as compared to cRA makes the vascular access difficult, more chances of spasm or injury and may also have increased RAO. Therefore, the sizing of dRA before the procedure helps in choosing appropriate sheath size during CAG and PCI so that incidence of RAO can be decreased as radial artery diameter is an important predictor of RAO. The other predictors are inadequate anticoagulation and inappropriate radial artery compression post procedure.15 But with the available data, the dRA has been shown to have lesser RAO rate as compared to cRA. Hamandi et al performed a metaanalysis of five studies with 4676 patients (four observational and one randomised trial) and has shown RAO in dRA to be significantly less as compared to cRA (2.30 versus 4.86%; p = 0.004).16 Similarly, Eid-Lidt et al in a prospective randomised study in 282 patients has shown 30-days RAO to be significantly less in dRA as compared to cRA (6.4% vs 0.6%; p = 0.007).17 Our study of the radial artery diameter has shown significant mean difference of 0.3 mm between cRA and dRA, therefore it is recommended to choose a one size smaller sheath. With the availability of thinner sheaths by various manufacturers, same size sheath may be used for dTRA (Fig. 3). The outer diameter of 6 F conventional radial artery Glidesheath™ (Terumo, Japan) is 2.63 mm and that of 6 F Glidesheath Slender® (Terumo, Japan) is 2.44 mm and therefore preferred for use in dTRA (Fig. 4). The ongoing randomized controlled trials TENDERa (NCT04211584) and DISCO Radial (NCT04171570), comparing conventional vs distal radial access will help us in understanding complications especially late RAO with dTRA approach.

5. Conclusion

The knowledge of the size of dRA is important for clinical and technical success of CAG and PCI from dTRA. This study has shown the size of right dRA 2.27 ± 0.39 mm in males and 2.09 ± 0.38 mm
Diabetes, hypertension, height and weight are important predictors of dRA diameter.

Declaration of competing interest
None.

Acknowledgments
Nil.

References
1. Ferrante G, Rao SV, Juni P, et al. Radial versus femoral access for coronary inter-
ventions across the entire spectrum of patients with coronary artery dis-
ease: a meta-analysis of randomized trials. JACC Cardiovasc Interv. 2016;9:
1419–1434.
2. Pancholy SB. Comparison of the effect of intra-arterial versus intravenous
heparin on radial artery occlusion after transradial catheterization. Am J Cardiol.
2009;104:1083–1085.
3. Alkagiet S, Petroglou D, Nikas DN, et al. Access-site complications of the
transradial approach: rare but still there. Curr Cardiol Rev. 2021;17:279–293.
4. Wang H, Peng WJ, Liu YH, et al. A comparison of the clinical effects and safety
between the distal radial artery and the classic radial artery approaches in
percutaneous coronary intervention. Ann Palliat Med. 2020;9:2568–2574.
5. Kiemeneij F. Left distal transradial access in the anatomical snuffbox for cor-
onary angiography (ldTRA) and interventions (ldTRI). EuroIntervention. 2017;13(7):
851–857.
6. Kim Y, Lee JW, Lee SY, et al. Feasibility of primary percutaneous coronary
intervention via the distal radial approach in patients with ST-elevation
myocardial infarction. Kor J Intern Med. 2021;36(Suppl 1):S53–S61.
7. Gasparini GL, Garbo R, Gagnor A, et al. First prospective multicentre experience
with left distal transradial approach for coronary chronic total occlusion in-
terventions using a 7 Fr Glidesheath SLENDER. EuroIntervention. 2019;15(1):
126–128.
8. Kim Y, Jeong MH, Kim MC, et al. Successful percutaneous coronary intervention
with two-stent technique for unprotected true left main bifurcation lesion via
left snuffbox Approach. J Invasive Cardiol. 2019;31(3):E55.
9. Benawal S, Bhargava K, Kausik SK. Size of distal radial and distal ulnar arteries
in adults of southern Rajasthan and their implications for percutaneous coronary
interventions. Indian Heart J. 2014;66(5):506–509.
10. Naito T, Sawaoka T, Sasaki K, et al. Evaluation of the diameter of the distal
radial artery at the anatomical snuff box using ultrasound in Japanese patients.
Cardiovasc Interent Ther. 2019;34:312–316.
11. Norimitsu K, Kusumoto T, Yoshimoto K, et al. Importance of measurement of
the diameter of the distal radial artery in a distal radial approach from the
anatomical snuffbox before coronary catheterization. Heart Vesi. 2019;34(10):
1615–1620.
12. Kim Y, Ahn Y, Kim MC, et al. Gender differences in the distal radial artery
diameter for the snuffbox approach. Cardiol J. 2018;25:639–641.
13. Hadjiavassiliou A, Cardarelli-Leite L, Jalal S, et al. Left distal transradial access
(ldTRA): a comparative assessment of conventional and distal radial artery size.
Cardiovasc Intervent Radiol. 2020;43(6):850–857.
14. Ruengsakulrach P, Sinclair R, Komeda M, et al. Comparative histopathology of
radial artery versus internal thoracic artery and risk factors for development of
intimal hyperplasia and atherosclerosis. Circulation. 1999;100:I139–I144.
15. Kotowycz MA, Johnston KW, Ivanov J, et al. Predictors of radial artery size in
patients undergoing cardiac catheterization: insights from the Good Radial
Artery Size Prediction (GRASP) study. Can J Cardiol. 2014;30(2):211–216.
16. Hamandi M, Saad M, Hasan R, et al. Distal versus conventional transradial ar-
tery access for coronary angiography and intervention: a meta-analysis. Car-
diovasc Revascularization Med. 2020;21(10):1209–1213.
17. Eid-Lidt G, Rivera Rodríguez A, Jimenez Castellanos J, et al. Distal radial artery
approach to prevent radial artery occlusion trial. JACC Cardiovasc Interv.
2021;14(4):378–385.