T-Tubule Depolarization-induced SR Ca\(^{2+}\) Release Is Controlled by Dihydropyridine Receptor- and Ca\(^{2+}\)-dependent Mechanisms in Cell Homogenates from Rabbit Skeletal Muscle

KRISTIN ANDERSON and GERHARD MEISSNER

From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260

ABSTRACT In vertebrate skeletal muscle, the voltage-dependent mechanism of rapid sarcoplasmic reticulum (SR) Ca\(^{2+}\) release, commonly referred to as excitation-contraction (EC) coupling, is believed to be mediated by physical interaction between the transverse (T)-tubule voltage-sensing dihydropyridine receptor (DHPR) and the SR ryanodine receptor (RyR)/Ca\(^{2+}\) release channel. In this study, differential T-tubule and SR membrane monovalent ion permeabilities were exploited with the use of an ion-replacement protocol to study T-tubule depolarization-induced SR \(^{45}\)Ca\(^{2+}\) release from rabbit skeletal muscle whole-cell homogenates. Specificity of Ca\(^{2+}\) release was ascertained with the use of the DHPR antagonists D888, nifedipine and PN200-110. In the presence of the "slow" complexing Ca\(^{2+}\) buffer EGTA, homogenates exhibited T-tubule depolarization-induced Ca\(^{2+}\) release comprised of an initial rapid phase followed by a slower release phase. During the rapid phase, \sim 20\% of the total sequestered Ca\(^{2+}\) (~ 30 nmol \(^{45}\)Ca\(^{2+}\)/mg protein), corresponding to 100\% of the caffeine-sensitive Ca\(^{2+}\) pool, was released within 50 ms. Rapid release could be inhibited fourfold by D888. Addition to release media of the "fast" complexing Ca\(^{2+}\) buffer BAPTA, at concentrations \geq 4 mM, nearly abolished rapid Ca\(^{2+}\) release, suggesting that most was Ca\(^{2+}\) dependent. Addition of millimolar concentrations of either Ca\(^{2+}\) or Mg\(^{2+}\) also greatly reduced rapid Ca\(^{2+}\) release. These results show that T-tubule depolarization-induced SR Ca\(^{2+}\) release from rabbit skeletal muscle homogenates is controlled by T-tubule membrane potential-and by Ca\(^{2+}\)-dependent mechanisms.

Address correspondence to Gerhard Meissner, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260.

Dr. Anderson's present address is Department of Pharmacology, Duke University, Durham, NC 27708.
INTRODUCTION

In skeletal and cardiac muscle, excitation-contraction (EC) coupling refers to the process in which an action potential propagated along the surface membrane and its infoldings, the transverse (T)-tubules, triggers the rapid release of Ca²⁺ ions from an intracellular membrane compartment, the sarcoplasmic reticulum (SR). The resulting rise in myoplasmic Ca²⁺ allows contraction to occur. Coupling between T-tubule depolarization and SR Ca²⁺ release is believed to occur at junctional T-tubule SR regions, commonly referred to as triads, and is believed to be mediated by the T-tubule voltage-sensing/dihydropyridine receptor (DHPR) and SR ryanodine receptor (RyR)/Ca²⁺ release channel, respectively (for reviews, see Rios and Pizarro, 1991; Schneider, 1994). Based primarily on the observation that extracellular Ca²⁺ is required for EC coupling in cardiac (Beuckelmann and Wier, 1988; Fabiato, 1985) but not skeletal muscle (Armstrong, Bezanilla, and Horowicz, 1972; Brum, Stefani, and Rios, 1987; Miledi, Parker, and Zhu, 1984), different mechanisms of EC coupling have been proposed for these two tissues. In cardiac muscle, a small amount of extracellular Ca²⁺ entering the cell in response to surface membrane depolarization is believed to provide the initial trigger for SR Ca²⁺ release by activating the RyR/Ca²⁺ release channels. Extracellular Ca²⁺ entry is believed to be primarily mediated by the DHPR, which functions in this tissue as a voltage-sensitive Ca²⁺ channel. In contrast, in skeletal muscle the mechanical coupling model proposes that a T-tubule depolarization-induced conformational change in the DHPR is sensed by RyRs via a direct physical interaction between the two receptors, resulting in RyR/Ca²⁺ release channel opening (Rios and Pizarro, 1991; Schneider, 1994).

In addition to direct activation by DHPRs, the involvement of Ca²⁺ as an activator of SR Ca²⁺ release during EC coupling in skeletal muscle has been postulated. The most direct evidence for a role of Ca²⁺ in regulating SR Ca²⁺ release channel activity has been obtained from vesicle-ion flux and single-channel measurements. It has been shown that micromolar concentrations of Ca²⁺ activate whereas millimolar concentrations inhibit the Ca²⁺-release channel (for review, see Meissner, 1994). However, because it is not known whether isolation of SR vesicles and Ca²⁺ release channels, leading to detachment of release channels from the T-tubule, affects channel behavior, the physiological significance of these studies has been questioned.

Unlike purified SR vesicle and RyR/Ca²⁺-release channel preparations, intact triad complexes isolated from rabbit skeletal muscle have provided the opportunity to study regulation of RyR/Ca²⁺ release channels which have remained linked to the T-tubule membrane. T-tubule depolarization-induced SR Ca²⁺ release has been studied in vitro on a time scale of milliseconds (Ikemoto, Antoniu, and Meszaros, 1985) to seconds (Corbett, Bian, Wade, and Schneider, 1992). The question of whether or not the DHPR directly participates in mediating SR Ca²⁺ release was not addressed in these studies. Recently, an M₉ 28,000 T-tubule membrane protein, rather than the DHPR, was implicated in mediating rapid SR Ca²⁺ release during EC coupling (Brandt, Caswell, Brunschwig, Kang, Antoniu, and Ikemoto, 1992).

Freeze-fracture morphological studies of toadfish swimbladder have suggested that only every other SR RyR is directly faced by a group of four T-tubule DHPRs (Block, Imagawa, Campbell, and Franzini-Armstrong, 1988). This observation led to specu-
lation that half the RyRs are linked to DHPRs and that during EC coupling only these DHPR-linked RyRs open in direct response to T-tubule depolarization. The resulting released Ca\(^{2+}\) then activates neighboring unlinked RyRs to amplify the Ca\(^{2+}\) release signal (Rios and Pizarro, 1991). Determination of DHPR/RyR ratios in rabbit and frog skeletal muscle have indicated that a significant population of RyRs may be unlinked to DHPRs in these species as well, consistent with the presence of two RyR activation mechanisms during EC coupling (Anderson, Cohn, and Meissner, 1994).

Evidence for a Ca\(^{2+}\) activation mechanism during EC coupling has been also obtained in studies with skinned, cut, and intact skeletal muscle fibers. Early reports of studies with skinned frog fiber preparations indicated that Ca\(^{2+}\) activation of SR Ca\(^{2+}\) release is significant only at nonphysiological levels of Ca\(^{2+}\) and Mg\(^{2+}\), which raised doubts as to the physiological relevance of the Ca\(^{2+}\) activation mechanism (for review see Endo, 1977). Stephenson (1985), Volpe and Stephenson (1986), and Lamb and Stephenson (1990) showed the presence of a Ca\(^{2+}\)-sensitive component of depolarization-induced Ca\(^{2+}\) release in skinned frog fibers under more physiological conditions, but in these studies Ca\(^{2+}\) release was measured only on a slow time scale of seconds. An important role for Ca\(^{2+}\) in regulating SR Ca\(^{2+}\) release has been also obtained from studies in which microinjection into frog fibers of relatively high concentrations of fast complexing Ca\(^{2+}\) buffers such as BAPTA or fura-2 caused changes in the amount of Ca\(^{2+}\) released (Schneider, 1994).

Here we describe an in vitro assay we have developed for measuring T-tubule depolarization-induced SR Ca\(^{2+}\) release in cell homogenates from rabbit skeletal muscle. Our studies show that homogenates exhibit rapid T-tubule depolarization-induced SR Ca\(^{2+}\) release which is specifically inhibited by the DHPR antagonists D888, nifedipine and PN200-110, demonstrating that RyR/Ca\(^{2+}\) release channels have remained functionally coupled to DHPR/voltage sensors. Using these preparations and the "fast" Ca\(^{2+}\) buffer BAPTA, we find that depolarization-induced Ca\(^{2+}\) release is controlled by T-tubule depolarization-dependent and by Ca\(^{2+}\)-dependent mechanisms.

METHODS

Materials

\(^{45}\)Ca\(^{2+}\) was purchased from ICN Biomedicals (Irvine, California). S-Devapamil\((\text{(-)-D888})\) and PN200-110 were gifts from Drs. Grunhagen and Unger, Knoll AG (Ludwigshafen, Germany) and Sandoz Research Institute (East Hanover, NJ), respectively, and nifedipine was from Sigma Chemical Co. (St. Louis, MO). All other chemicals were of analytical grade.

Preparation of Muscle Homogenates and Membrane Fractions

Whole-muscle homogenates were prepared by homogenizing rabbit leg and back muscle in a Waring blender (two times 30 s, high setting) in 8 vol of 0.1 M NaCl, 5 mM Tris maleate, pH 6.8, 2 mM EDTA, 0.2 mM EGTA, and various protease inhibitors (0.2 mM PMSF, 100 nM aprotinin, 1 µM leupepin, 1 µM pepstatin A, and 1 mM benzamidine). A crude microsomal fraction was obtained from the homogenate as a 2,500–30,000 g pellet. After resuspension for 1 h in 50 ml buffer A (100 mM NaCl, 10 mM K PIPES, pH 6.8, 100 µM EGTA, 75 µM Ca\(^{2+}\), 1 µM leupepin, and 0.2 mM PMSF), the crude microsomal fraction was repelleted by centrifug-
Millipore Corp., Bedford, MA) under vacuum and prerinsed with 3 ml of T-tubule polarizing 45Ca2+ uptake medium containing 50 μM EGTA, but no Ca2+. The membranes on the filters were then washed for 50–1,000 ms using a Biologic Rapid Filtration apparatus (Meylan, France) with either T-tubule polarizing Ca2+ release media (50 nM valinomycin and 150 mM K gluconate), also referred to as control media, or T-tubule depolarizing Ca2+ release media (100 nM valinomycin and either 150 mM Tris Cl or 150 mM Na gluconate). Ca2+ release media flow rates during rapid filtration were 3, 3, and 1 ml/s resulting in total wash volumes of 0.15, 0.6, and 1 ml, for the 50-, 200-, and 1,000-ms time points, respectively. Unless otherwise indicated, T-tubule depolarizing and control media contained 5 mM Na4ATP, 5 mM MgCl2, 10 mM PIPES, pH 7.0, and varying concentrations of Ca2+, ruthenium red (RR), and EGTA or BAPTA (Na + salts) as indicated in the figure legends. The 45Ca2+ radioactivity remaining with the samples on the filters was quantitated by liquid scintillation counting. The statistical significance of effects of different release media on 45Ca2+ efflux was analyzed by paired t test. If P < 0.05, the difference was considered to be significant.

Determination of Free Ca2+ Concentrations

The free Ca2+ concentration of 45Ca2+ release and uptake solutions was determined with a Ca2+-selective electrode (World Precision Instruments, Inc., Sarasota, FL). Free Ca2+ concentrations of < 1 μM were achieved by including in solutions the appropriate amounts of EGTA or BAPTA, and Ca2+ as determined using the stability constants and computer program published by Schoenmakers, Visser, Flik, and Theuvene (1992).

Determination of 45Ca2+ Sequestered by Homogenates

Total Ca2+ present in homogenates was determined as follows. Homogenate protein was precipitated with 5% trichloroacetic acid and removed by centrifugation. After neutralization, the Ca2+ content of the supernatant was determined photometrically using the Ca2+ dye, antipyrpyrazole. The Ca2+ concentration of the homogenates was found to be ~0.7 mM, which corresponds to 6 μmol Ca2+ per g wet muscle or 325 nmol Ca2+ per mg protein. Next, homogenates were diluted with 4 vol of 100 mM NaCl, 10 mM Na PIPES, pH 7.0 buffer followed by dilution with 10 vol of 45Ca2+ uptake medium which contained no ATP. After a 2-h incubation at 23°C, which has been previously shown to result in equilibration of 45Ca2+ across SR vesicle membranes (Meissner, 1984), active 45Ca2+ uptake for 1 min at 37°C was initiated by addition of ATP to the uptake medium. After placing the sample on a filter and rinsing with Ca2+-release channel inhibitory medium containing 5 mM Mg2+, 5 mM EGTA, and 20 μM RR, the total 45Ca2+/mg protein sequestered was determined by liquid scintillation counting. This
amounted to \(\sim 30\ \text{nmol/mg}\), \(\sim 95\%\) of which could be released within 1 min of exposure to release media containing the \(\text{Ca}^{2+}\) ionophore, A23187 (10 \(\mu\text{g/ml}\)).

Determination of Protein Concentration

Protein was determined by the Lowry method using bovine serum albumin as a standard.

RESULTS

The initial goal of this work was to use isolated membrane fractions enriched in T-tubule–SR junctional complexes (triads) for studying the mechanism of T-tubule mediated SR \(\text{Ca}^{2+}\) release. Although triad-enriched membrane preparations, obtained from sucrose density gradients as previously described (Anderson et al., 1994), were found to exhibit SR \(\text{Ca}^{2+}\) release upon exposure to T-tubule depolarization media, in our hands, the \(\text{Ca}^{2+}\) release observed was slow and only partially inhibited by DHPR antagonists (data not shown). Because whole-cell homogenates, prepared as described in Methods, were found to exhibit significant rapid T-tubule depolarization-induced SR \(\text{Ca}^{2+}\) release which could be effectively inhibited by DHPR antagonists, these preparations were used in most of our studies.

Rationale of \(\text{Ca}^{2+}\) Release Assay

Our procedure for inducing T-tubule membrane potential-dependent SR \(\text{Ca}^{2+}\) release is based on the different monovalent ion permeabilities of T-tubule and SR membranes. Except during depolarization when \(\text{Na}^+\) and \(\text{K}^+\) channels are activated, the T-tubule membrane is largely impermeable to ions (for review, see Sabbadini and Dahms, 1989). In contrast, the SR membrane is highly permeable to monovalent ions due to the presence of SR monovalent ion channels which are open under the conditions used in this study (for review, see Meissner, 1983). We have exploited these differences in membrane permeability by exposing membranes to ionic conditions that create membrane potential changes across the T-tubule, but not the SR, membrane (Fig. 1). Samples equilibrated in 100 mM NaCl (equilibration in 150 mM Na gluconate was found to produce essentially identical results) in the presence and absence of a DHPR antagonist, were diluted into T-tubule polarizing—\(^{45}\text{Ca}^{2+}\) uptake medium which contained 150 mM K gluconate, 5 mM MgATP, 475 nM free \(^{45}\text{Ca}^{2+}\), and the \(\text{K}^+\)-selective ionophore, valinomycin. In this medium, along with active SR \(^{45}\text{Ca}^{2+}\) uptake via the SR \(\text{Ca}^{2+}\) pump, T-tubule membrane polarization comparable to that in resting muscle cells was expected to occur primarily as a result of valinomycin-mediated movement of \(\text{K}^+\) down the concentration gradient into the T-tubule lumen (Dunn, 1989). Two other processes that may have contributed to T-tubule membrane polarization were the outward movement of \(\text{Cl}^-\) from the T-tubule lumen, and cycling of the electrogenic T-tubule membrane \(\text{Na}^+\), \(\text{K}^+\) ATPase. Unless otherwise indicated, T-tubule membrane depolarization was achieved by rapidly exposing the polarized membranes on a filter under vacuum to Na gluconate release media which contained valinomycin. Because of the low \(\text{K}^+\) concentration, these media were expected to cause rapid collapse of the T-tubule membrane potential (depolarization), as a result of reversed \(\text{K}^+\) movement out of the T-tubule lumen. Polarized membranes were exposed in parallel to K gluconate
control (polarizing) release media. Because of the high K+ concentration, these media were expected to leave the T-tubule membrane potential intact. Depolarization-induced Ca2+ release is defined as %45Ca2+ release that could be inhibited by the DHPR antagonist, D888, in Na gluconate depolarizing media.

Ca2+ Release from Whole-Cell Homogenates

Ca2+ release from whole-cell homogenates was measured as described in Methods, using a phenylalkylamine (desmethoxyverapamil, D888) as a specific DHPR antagonist. Because D888 appears to bind most effectively to DHPRs when the T-tubule membrane is not polarized (Erdmann and Luttgau, 1989), homogenates were initially incubated in the presence and absence of D888 before dilution into T-tubule-polarizing-45Ca2+ uptake medium. The effect of T-tubule membrane potential and D888 on SR Ca2+ release was investigated by exposing samples for different lengths of time to various depolarizing and control (polarizing) release media.

The total amount of 45Ca2+ that could be released from SR vesicles containing Ca2+ release channels was determined by exposing homogenates to release media which contained 1 mM EGTA and 20 mM caffeine. Activation by caffeine is a distinguishing characteristic of the RyR/Ca2+ release channel, believed to occur via direct interaction of caffeine with the channel and which bypasses release channel
control by T-tubule membrane voltage sensors. Both depolarizing and control, caffeine-containing release media (Fig. 2 A, circles and squares, respectively) resulted in Ca\(^{2+}\) release which was comprised of an early rapid phase with 17% ± 3% (n = 5) of the sequestered \(^{45}\text{Ca}^{2+}\) being released in the first 50 ms, followed by a much slower phase with an additional 15% ± 4% (n = 5) Ca\(^{2+}\) released by the end of 1 s. Control release media containing no caffeine resulted in comparatively slow Ca\(^{2+}\) release rates (Fig. 2 A, triangles). Paired t tests showed no significant differences between caffeine-induced release under depolarizing or control conditions in the presence and absence of D888 at each time point shown (Fig. 2 A, circles and squares, P > 0.05), demonstrating that caffeine-activated release channels override voltage sensor control, and are not inhibited by D888. Because the caffeine release media used in these experiments have been shown previously to empty heavy SR Ca\(^{2+}\) stores in <1 s (Rousseau et al., 1988), the ~17% Ca\(^{2+}\) release observed in these media in the first 50 ms was assumed to represent the caffeine-sensitive SR Ca\(^{2+}\) pool. Sequestered Ca\(^{2+}\) not rapidly released in the presence of caffeine was assumed to be located primarily in SR vesicles lacking RyR/Ca\(^{2+}\) release channels.

Background, nonspecific Ca\(^{2+}\) release was determined by including in depolarizing and control media 5 mM Mg\(^{2+}\), 5 mM EGTA, and 20 μM ruthenium red (RR), which in combination strongly inhibit the RyR/Ca\(^{2+}\) release channel (Fig. 2 B). With this condition, almost identical, slow time courses of \(^{45}\text{Ca}^{2+}\) release (P > 0.05) were observed in depolarizing and control media in the presence and absence of D888. As described in METHODS, the total Ca\(^{2+}\) sequestered by homogenate fractions was determined to be ~30 nmol \(^{45}\text{Ca}^{2+}/mg\) protein (data not shown).

It has been well established that in the presence of 5 mM MgATP (0.7 mM free Mg\(^{2+}\)) micromolar concentrations of Ca\(^{2+}\) strongly activate the Ca\(^{2+}\) release channels in SR vesicle preparations, indicating a direct action of these ligands on the release channel (Meissner, 1994). To isolate T-tubule membrane mediated from Ca\(^{2+}\)-activated Ca\(^{2+}\) release the addition to release media of 50 μM EGTA was made. This concentration, taking into account the presence of 5–10 μM contaminating Ca\(^{2+}\), buffers the free Ca\(^{2+}\) concentration close to the resting muscle cell level of 100–200 nM (Baylor, Chandler, and Marshall, 1983). Control Ca\(^{2+}\) release media containing 50 μM EGTA caused slow release rates comparable to those observed in the presence of 1 mM EGTA (Fig. 2 A). When these media were made depolarizing by the addition of Na gluconate, homogenates exhibited initially rapid release followed by a slower release phase (Fig. 2 C, open circles). During the rapid phase 17% ± 2% (n = 4) of the total sequestered Ca\(^{2+}\), corresponding to 100% ± 11% (n = 4) of the caffeine-sensitive Ca\(^{2+}\) pool, was released within the first 50 ms. This rapid release represents a sixfold increase compared to the control condition and could be inhibited fourfold by D888 (Fig. 2 C, filled circles). The slow Ca\(^{2+}\) release phase, amounting to ~10% additional release by the end of 1 s, was not significantly inhibited by D888 (P = 0.20) and was therefore assumed to represent Ca\(^{2+}\) release from SR uncoupled from T-tubule membranes. We also tested two dihydropyridines (PN200-110, nifedipine) known to inhibit charge movement and EC coupling (Rios and Pizarro, 1991). Both were found to inhibit depolarization-induced Ca\(^{2+}\) release (Table I). These results indicate that homogenates exhibit SR \(^{45}\text{Ca}^{2+}\) release that has remained functionally coupled to T-tubule voltage sensors.
FIGURE 2. Muscle homogenates exhibit caffeine- and Na gluconate- T-tubule depolarization-induced SR Ca\(^{2+}\) release. (A) Caffeine-induced Ca\(^{2+}\) release is not inhibited by D888. 45Ca\(^{2+}\) release was measured in the absence (open symbols) and presence (filled symbols) of 5 \(\mu\)M D888 in media containing 1 mM EGTA, 5 mM MgATP, and either (O, O) 150 mM Na gluconate, 100 nM valinomycin, and 20 mM caffeine (depolarizing + caffeine), (D, l) 150 mM K gluconate, 50 nM valinomycin, and 20 mM caffeine (control + caffeine), or (A, &) 150 mM K gluconate and 50 nM valinomycin (control minus caffeine). (B) 45Ca\(^{2+}\) release was measured in the absence (open symbols) and presence (filled symbols) of 5 \(\mu\)M D888 in Ca\(^{2+}\) release channel inhibiting media containing 5 mM Mg\(^{2+}\), 5 mM EGTA, 20 \(\mu\)M RR, and either (O, O) 150 mM Na gluconate (depolarizing) or (D, l) 150 mM K gluconate (control). (C) Na gluconate depolarization-induced Ca\(^{2+}\) release is inhibited by 5 \(\mu\)M D888 and by 4 mM BAPTA, but not by EGTA. 45Ca\(^{2+}\) release was measured in the absence (open symbols) and presence (filled symbols) of 5 \(\mu\)M D888 in depolarizing media containing 150 mM Na gluconate, 5 mM MgATP, 100 nM valinomycin, and either (O, O) 50 \(\mu\)M EGTA, (\(\Delta\), \(\Delta\)) 4 mM EGTA, or (D, l) 4 mM BAPTA. Data (mean \(\pm\) SD) are the averages of four experiments carried out in triplicate.
In Fig. 3 it is shown that partial replacement of Na gluconate by K gluconate in depolarizing Ca$^{2+}$ release media reduces rapid 45Ca$^{2+}$ release. Half maximal release was observed in the presence of 75 mM K$^+$. Reduction of the K$^+$ concentration from 150 to 15 mM, 1.5, or nominally 0 mM resulted in release of the caffeine-sensitive SR Ca$^{2+}$ pool in 50 ms. Applying the Nernst equation and assuming that valinomycin renders T-tubule membranes selectively permeable to K$, we calculate that a membrane potential change of 60 mV is effective in releasing the caffeine-sensitive SR Ca$^{2+}$ pool.

The importance of Ca$^{2+}$ during depolarization-induced Ca$^{2+}$ release was investigated by adding millimolar concentrations of Ca$^{2+}$ chelators, either EGTA or BAPTA, to release media. When the free Ca$^{2+}$ concentration in depolarizing media was lowered to $<10^{-9}$ M by the addition of 4 mM EGTA, rapid depolarization-induced Ca$^{2+}$ release occurred which was similar in rate and extent to that seen in the presence of 50 μM EGTA. Rapid Ca$^{2+}$ release could be largely inhibited by D888 (Fig. 2 C, triangles). If the free Ca$^{2+}$ concentration in depolarizing media was lowered to $<10^{-9}$ M by the addition of 4 mM BAPTA, instead of 4 mM EGTA, depolarization-induced Ca$^{2+}$ release occurring in the first 50 ms was reduced from 19 ± 3% to 6 ± 2% (n = 4) of the total sequestered Ca$^{2+}$ (Fig. 2 C, squares). This release was inhibited two- to threefold by D888 ($P = 0.04$).

Our rationale for comparing the effects of EGTA vs BAPTA on depolarization-induced Ca$^{2+}$ release and our interpretation of the contrasting results obtained with these two Ca$^{2+}$ buffers is as follows. Although EGTA and BAPTA have similar K_Ds for Ca$^{2+}$, BAPTA has a 1000-fold higher association rate constant (Stern, 1992). Modeling has indicated that due to this difference in association rate constants, millimolar concentrations of BAPTA will be more effective at suppressing a rise in the Ca$^{2+}$ concentration of release media during SR Ca$^{2+}$ release when compared with EGTA (Stern, 1992). The use of EGTA and BAPTA therefore potentially allows the distinction to be made between the importance of Ca$^{2+}$ at the time of T-tubule depolarization versus the importance of a rapidly rising Ca$^{2+}$ phase after depolarization. The marked decrease in rapid depolarization-induced Ca$^{2+}$ release observed in the presence of 4 mM BAPTA, compared with 4 mM EGTA, suggests that initially

Addition to depolarizing release medium	%45Ca$^{2+}$ released in 50 ms	P
No drug	15 ± 5.2	
5 μM D888	2.4 ± 1.1	0.04
5 μM PN200-110	2.7 ± 1.1	0.034
5 μM nifedipine	5.8 ± 2.3	0.038

45Ca$^{2+}$ release was measured in the absence of any drug or in the presence of either 5 μM D888, 5 μM PN200-110, or 5 μM nifedipine in standard T-tubule depolarization Ca$^{2+}$ release medium. Data (mean ± SD) are from three experiments carried out in duplicate.
released Ca\textsubscript{2+} amplifies SR Ca\textsubscript{2+} release, presumably by binding to the Ca\textsubscript{2+} activation sites of RyR/Ca\textsubscript{2+} release channels.

In previously reported studies with triad-enriched vesicle fractions (Ikemoto et al., 1985) and skinned fibers (Stephenson, 1985; Lamb and Stephenson, 1990), T-tubule depolarization was induced by changing the major anion in the sample medium from a relatively impermeant one to chloride ion. We found also that exposure of homogenates to depolarizing media which contained Tris Cl instead of Na gluconate resulted in T-tubule depolarization-induced rapid SR Ca\textsubscript{2+} release which was inhibited by D888 and by 4 mM BAPTA. These data are summarized in Table II.

Compared in Fig. 4 are the amounts of Ca\textsubscript{2+} released from homogenates after exposure to depolarizing and control release media containing <10-8-10-4 M free Ca\textsubscript{2+}. The indicated free Ca\textsubscript{2+} concentrations were obtained by adding 1 mM BAPTA and the appropriate amounts of Ca\textsubscript{2+} to release media. The level of 45Ca\textsubscript{2+} release was dependent on free Ca\textsubscript{2+} in both depolarizing and control release media, although the medium Ca\textsubscript{2+} concentration yielding half-maximal activation was shifted from ~1.0 to ~0.07 \textmu M, respectively. When the free Ca\textsubscript{2+} concentration was 10–100 \textmu M, the range reported from studies with purified vesicle and protein preparations to be optimal for direct Ca\textsubscript{2+} activation of RyR/Ca\textsubscript{2+} release channels (Meissner, 1994), the Ca\textsubscript{2+} release induced by depolarizing and control media was not substantially different.

The depolarization-induced shift in Ca\textsubscript{2+} sensitivity of Ca\textsubscript{2+} release, shown in Fig. 4, can be interpreted in two ways. One possibility is that depolarization triggers a conformational change in the RyR/Ca\textsubscript{2+} release channel, via mechanical coupling, which increases its sensitivity to activating Ca\textsubscript{2+}. It is also possible that the Ca\textsubscript{2+} buffer

![Figure 3. T-tubule depolarization-induced 45Ca\textsubscript{2+} release from homogenates is dependent on the K+ concentration of depolarizing release media. 45Ca\textsubscript{2+} release was measured in the absence (○) and presence (●) of 5 \textmu M D888 in Ca\textsubscript{2+} release media containing 5 mM Na\textsubscript{4}ATP, 5 mM MgCl\textsubscript{2}, 50 \textmu M EGTA (free Ca\textsubscript{2+} 200 nM), 10 mM Na PIPES, pH 7.0, and varying concentrations of Na and K gluconate to result in the K+ concentration indicated on the abcissa and a gluconate concentration which remained constant at 150 mM. Data (mean ± SD) are from three experiments carried out in duplicate.]
system used in this experiment (1 mM BAPTA) fails to sufficiently suppress the T-tubule depolarization-induced rise in Ca\(^{2+}\) concentration, such that Ca\(^{2+}\)-induced amplification of Ca\(^{2+}\) release occurs. To distinguish between these two possibilities, depolarization-induced Ca\(^{2+}\) release was measured at a constant free Ca\(^{2+}\) concentration of 200 nM, but with varying levels of BAPTA. Table III shows that depolarization-induced Ca\(^{2+}\) release decreased greatly, from 20% of the total sequestered Ca\(^{2+}\) released in 50 ms to 2% released, as the uncomplexed BAPTA concentration was increased from 0.3 to 7.0 mM. In contrast, when 10 mM EGTA was added to release media no significant inhibition of T-tubule depolarization-induced rapid SR Ca\(^{2+}\) release was observed (Table III). It was therefore concluded that the shift in Ca\(^{2+}\) sensitivity of Ca\(^{2+}\) release resulted not simply from a change in the Ca\(^{2+}\) sensitivity of the release channel, but at least partly from Ca\(^{2+}\)-induced amplification of Ca\(^{2+}\).

![Figure 4](image-url)

Figure 4. Ca\(^{2+}\) sensitivity of rapid SR Ca\(^{2+}\) release from homogenates under depolarizing and polarizing conditions. 45Ca\(^{2+}\) release was measured in the absence (open symbols) and presence (filled symbols) of 5 \(\mu\)M D888 in media containing 5 mM MgATP and the indicated free Ca\(^{2+}\) concentration (buffered by 1 mM BAPTA), and either (○, ●) 150 mM Na gluconate (depolarizing) or (□, ■) 150 mM K gluconate (control). Data (mean ± SD) are averages of four experiments carried out in triplicate.
TABLE III
Rapid T-tubule Depolarization-induced SR Ca\(^{2+}\) Release Is Inhibited by Millimolar Concentrations of Either BAPTA, Ca\(^{2+}\), or Mg\(^{2+}\), and by Deletion of MgATP from the Release Medium

Addition to depolarizing medium	Free \([\text{Ca}^{2+}]\) mM	Uncomplexed \([\text{Ca}^{2+} \text{ buffer}]\) mM	\%45 Ca\(^{2+}\) released in 50 ms	\(P\)	
1. 5 mM Mg\(^{2+}\), 5 mM ATP, 50 \(\mu\)M EGTA	0.2	<0.03	20 ± 3	5 ± 2	0.007
2. 5 mM Mg\(^{2+}\), 5 mM ATP, 1 mM BAPTA	0.2	0.3	20 ± 2	5 ± 0.5	0.005
3. 5 mM Mg\(^{2+}\), 5 mM ATP, 4 mM BAPTA	0.2	2.0	11 ± 1.5	3 ± 1	0.009
4. 5 mM Mg\(^{2+}\), 5 mM ATP, 10 mM BAPTA	0.2	7.0	2 ± 2	1 ± 2	0.6
5. 5 mM Mg\(^{2+}\), 5 mM ATP, 10 mM EGTA	<0.001	10.0	30 ± 5	3 ± 2	0.03
6. 5 mM Mg\(^{2+}\), 5 mM ATP, 1 mM Ca\(^{2+}\)	337	0	5 ± 4	3 ± 3	0.2
7. 6 mM Mg\(^{2+}\), 5 mM ATP, 50 \(\mu\)M EGTA	0.2	<0.03	4 ± 3	2 ± 2	0.5
8. 0 mM Mg\(^{2+}\), 0 mM ATP, 50 \(\mu\)M EGTA	0.2	<0.03	6 ± 5	1 ± 2	0.1

\(^{45}\text{Ca}^{2+}\) release was measured in the absence and presence of 5 \(\mu\)M D888 in T-tubule depolarizing Ca\(^{2+}\) release media containing 150 mM Na gluconate, 50 nM valinomycin and the indicated additions. In the first four entries, the free Ca\(^{2+}\) concentration was kept constant at 200 nM while the Ca\(^{2+}\) buffering capacity of release media was varied. In the fifth entry, 10 mM EGTA was included which resulted in a nominal free Ca\(^{2+}\) concentration of <0.001 \(\mu\)M in the release medium. In the sixth entry, 1 mM Ca\(^{2+}\) was added in the absence of a specific Ca\(^{2+}\) chelator. Because of partial complexation by ATP, the free Ca\(^{2+}\) concentration in this case was 337 \(\mu\)M. In the seventh entry, the Mg\(^{2+}\) concentration was raised from 5 to 6 mM, which resulted in an increase of free Mg\(^{2+}\) concentration from 0.7 to 1.5 mM. In the eighth entry, the depolarizing medium contained no Mg\(^{2+}\) or ATP. Data (mean ± SD) are from three experiments carried out in duplicate.

Figure 5. Crude membrane fractions exhibit T-tubule depolarization-induced SR Ca\(^{2+}\) release which is inhibited by D888. \(^{45}\text{Ca}^{2+}\) release was measured in the absence (open symbols) and presence (filled symbols) of 5 \(\mu\)M D888 in depolarizing (150 Na gluconate) or control (150 mM K gluconate) media containing 5 mM MgATP and 50 \(\mu\)M EGTA (○, ■, ▲, ▲), or in media containing 5 mM MgATP, 1 mM EGTA and 20 mM caffeine (▽, ▼). \(^{45}\text{Ca}^{2+}\) release was also measured in (○, ■) Ca\(^{2+}\) release channel inhibiting media containing 150 mM Na gluconate, 5 mM Mg\(^{2+}\), 5 mM EGTA, and 20 \(\mu\)M RR. Data (mean ± SD) are the averages of three experiments carried out in triplicate.
release. The uncomplexed form of BAPTA was recently reported to directly inhibit IP₃ binding to the IP₃ receptor/Ca²⁺ channel (Richardson and Taylor, 1993). We found that caffeine-activated Ca²⁺ release was not inhibited by 10 mM uncomplexed BAPTA (data not shown), arguing against direct BAPTA inhibition of the release channel. However, we cannot rule out effects of BAPTA on the voltage sensor.

The effects of millimolar Ca²⁺ on rapid T-tubule depolarization-induced Ca²⁺ release, and of Mg²⁺ in the presence of EGTA and 200 nM free Ca²⁺, were examined. As shown in Table III, 1 mM Ca²⁺ (free Ca²⁺, 337 μM) or an increase in Mg²⁺ concentration from 5 to 6 mM (free Mg²⁺ from 0.7 to 1.5 mM) resulted in nearly complete inhibition of D888-sensitive Ca²⁺ release, suggesting that T-tubule depolarization-induced Ca²⁺ release is inhibited both by high concentrations of BAPTA and by millimolar concentrations of either Ca²⁺ or Mg²⁺. Removal of MgATP from depolarizing Ca²⁺ release media similarly inhibited ⁴⁵Ca²⁺ release (Table III).

Ca²⁺ Release from Crude Membrane Fractions

Crude membrane fractions were also found to exhibit rapid T-tubule depolarization-induced Ca²⁺ release, with 13 ± 4% release observed in 50 ms (Fig. 5). However, this release represented only ~25% of the caffeine-sensitive pool and corresponded to only a 1.5-fold increase in release over the D888 control. The reduced T-tubule depolarization-induced Ca²⁺ release signal observed with crude membrane fractions, when compared with homogenates, indicates substantially less coupling in these preparations.

DISCUSSION

We describe in this report an in vitro assay for studying the mechanism of T-tubule depolarization-induced SR Ca²⁺ release from skeletal muscle whole-cell homogenates. Whole-cell homogenates from rabbit skeletal muscle sequestered ~30 nmol ⁴⁵Ca²⁺/mg protein, about one-fifth of which could be released in 50 ms by caffeine and was thus defined as the caffeine-sensitive SR Ca²⁺ pool. Upon exposure to T-tubule depolarizing conditions in the presence of EGTA, homogenates exhibited a rapid Ca²⁺ release phase followed by a slower release phase. During the rapid release phase, an amount corresponding to the caffeine-sensitive SR Ca²⁺ pool was released in 50 ms. The rapid release which represented a sixfold increase over the control could be largely inhibited by the DHPR antagonist, D888. This drug has been suggested to inhibit EC coupling by stabilizing the inactivated state of the voltage sensor (i.e., presumably the DHPR) (Erdman and Luttgau, 1989). Studies with D600, a highly related drug, have indicated that in voltage-clamped skeletal muscle fibers phenylalkylamines block SR Ca²⁺ release in a use-dependent manner without fully inhibiting charge movement (Pizarro, Brum, Fill, Fitts, Rodriguez, Uribe, and Rios, 1988). A subsequent study suggested that D600 causes voltage-dependent inhibition of charge movements that control SR Ca²⁺ release (Feldmeyer, Melzer, and Pohl, 1990). In our studies, D888 appeared to specifically inhibit T-tubule depolarization-induced SR Ca²⁺ release, because direct activation of SR Ca²⁺ release by caffeine (Fig. 2 and Table II) or by medium Ca²⁺ (Fig. 4) was not significantly inhibited by the drug. Inhibition by D888 also showed that T-tubule depolarization-induced SR Ca²⁺
release was not due to osmotic effects of depolarization media (Meissner, 1983). The slow Ca2+ release phase, which amounted to release of an additional 10–20% after 1 s of exposure, had a slope similar to that under control (nondepolarizing) conditions and was thus assumed to represent Ca2+ release not mediated by the DHPR. We conclude that homogenate preparations contain RyRs which have remained functionally coupled to DHPRs and should thus be useful for studying parameters believed to affect EC coupling.

We have used this preparation to investigate the importance of Ca2+ as an activator of SR Ca2+ release during EC coupling, by comparing depolarization-induced Ca2+ release in the absence and presence of millimolar concentrations of EGTA or BAPTA, which represent "slow" and "fast" complexing Ca2+ chelators, respectively. In the presence of 4 mM EGTA (nominal free Ca2+ concentration of <10-9 M), depolarization-induced Ca2+ release occurring in 50 ms was similar to that observed in 50 μM EGTA (nominal free Ca2+ concentration of 200 nM), and amounted to ~20% of the total sequestered Ca2+. However, when a free Ca2+ concentration of 200 nM was established with 4 or 10 mM BAPTA, the depolarization-induced Ca2+ release occurring in 50 ms corresponded to only 11 and 2%, respectively (Table III). We conclude that, in addition to T-tubule depolarization, amplification of SR Ca2+ release by initially released Ca2+ appears to be important during EC coupling. Furthermore, our studies indicate that the Ca2+-dependent component is large relative to the T-tubule-dependent component, although we cannot rule out the possibility that our preparations exhibit a low level of voltage-activated SR Ca2+ release because of partial loss of coupling or because of suboptimally activating T-tubule depolarization produced by depolarizing release media. We also found that rapid T-tubule depolarization–induced Ca2+ release was significantly inhibited by 1 mM Ca2+, consistent with the presence of Ca2+-dependent inactivation of SR Ca2+ release during EC coupling. Similar inhibition was observed when free Mg2+ was increased from 0.7 to 1.5 mM in release medium containing 50 μM EGTA. This observation may be of physiological significance, although the exact free Mg2+ concentration in resting muscle is not well known. The free Mg2+ concentration in resting muscle has been estimated to range from 0.5 to 1.0 mM, although concentrations as low as 0.2 mM and as high as 6 mM have been reported (Gupta and Moore, 1980; Baylor, Chandler, and Marshall, 1982). Deletion of MgATP from release media also inhibited rapid release (Table III). These results are consistent with studies with skinned fibers of toad (Lamb and Stephenson, 1991) and with isolated rabbit skeletal SR vesicles (Meissner, 1994) which have also shown a requirement of ATP for rapid SR Ca2+ release and inhibition by Ca2+ or Mg2+ when these exceeded millimolar concentrations. The effects of Mg2+ at concentrations <0.7 mM were not tested in this study because it is well known that a decrease in free Mg2+ concentration in the presence of ATP directly activates the rabbit skeletal muscle SR Ca2+ release channel (Meissner, 1994).

Triad-enriched membrane fractions isolated from rabbit skeletal muscle have been previously reported to exhibit T-tubule mediated SR Ca2+ release in vitro. T-tubule depolarization induced by rapid ion replacement was reported by Ikemoto et al. (1985) to result in three phases of Ca2+ release: (a) a lag phase; (b) the rapid release of a small amount of Ca2+ with a rate constant of \(k = 100 \text{ s}^{-1} \); and (c) the slow release
of a larger amount of Ca\(^{2+}\) with \(k \sim 1 \text{ s}^{-1}\). DHPR antagonists and antibodies have implicated the DHPR and the SR integral membrane protein, triadin, in mediating the slow release phase while a 28-kD protein, not part of the DHPR, was implicated in mediating the rapid release phase (Brandt et al., 1992). These results challenge the idea of DHPR-mediated control of rapid SR Ca\(^{2+}\) release during EC coupling. Corbett et al. (1992) have also described T-tubule depolarization–induced Ca\(^{2+}\) release from triads present in triad-enriched membrane fractions. However, in this study, Ca\(^{2+}\) release was measured only on a slow time scale of seconds and the question of participation of the DHPR in mediating SR Ca\(^{2+}\) release was not addressed. In neither of the above described in vitro studies was the role of Ca\(^{2+}\) in amplifying SR Ca\(^{2+}\) release during EC coupling specifically addressed.

Studies with muscle fibers have shown that the extent of SR Ca\(^{2+}\) release is dependent on the extent of T-tubule membrane depolarization, with maximal release occurring upon depolarization from \(\sim -90\) to 0 mV (Miledi et al., 1984). In our studies, we could not directly correlate the extent of \(^{45}\text{Ca}^{2+}\) release with the extent of T-tubule depolarization due to uncertainty of the T-tubule K\(^+\), Na\(^+\), and Cl\(^-\) ion permeabilities and their lumenal concentrations before T-tubule depolarization. However, we were able to show that \(^{45}\text{Ca}^{2+}\) release depended on the K\(^+\) concentration in the depolarizing release medium. Using the Nernst equation, we calculated that a T-tubule membrane potential change of 60 mV is effective in releasing the caffeine-sensitive SR Ca\(^{2+}\) pool in 50 ms. Using triad-enriched vesicle fractions, Corbett et al. (1992) and Ikemoto, Antoniu, and Kang (1992) also found T-tubule depolarization–induced Ca\(^{2+}\) release to be a function of the degree of ionic replacement. Using the fluorescent potential-sensitive probe, WW781, and fluo-3, Ikemoto and Antoniu (1994) recently measured simultaneously membrane depolarization and Ca\(^{2+}\) release from a triad-enriched vesicle fraction and reported a voltage-dependent pattern of SR Ca\(^{2+}\) release which was similar to that of an intact fiber. Similar experiments using whole muscle homogenates are difficult to perform because of the low T-tubule content of mammalian skeletal muscle (<0.3% of cell volume and <5% of membrane content; Eisenberg, 1983), resulting in low signal-to-noise ratios.

The mechanism of T-tubule depolarization–induced Ca\(^{2+}\) release has also been investigated using ion replacement protocols with skinned amphibian skeletal muscle fibers. Some of the results obtained with this approach have been contradictory. Stephenson (1985) concluded that KCl or choline Cl replacement of K Mes produced T-tubule depolarization–induced \(^{45}\text{Ca}^{2+}\) efflux comprised of a small Ca\(^{2+}\)-insensitive component, measured in the presence of EGTA, and a much larger Ca\(^{2+}\)-dependent component. Volpe and Stephenson (1986) reported that application of the Na\(^{+}(K^+)/H^+\) exchanger, monensin, or the K\(^+\)/Na\(^+\) channel former, gramicidin D, to Ca\(^{2+}\)-loaded fibers elicited T-tubule depolarization–induced \(^{45}\text{Ca}^{2+}\) efflux which was entirely Ca\(^{2+}\) dependent. Lamb and Stephenson (1990) described D600-sensitive contractions, induced by replacement of K HDTA with either Na HDTA or choline Cl, which were considered to be largely Ca\(^{2+}\)-independent. In none of these studies were fast Ca\(^{2+}\) buffers used to address the importance of Ca\(^{2+}\) in amplifying Ca\(^{2+}\) release. The effect of Mg\(^{2+}\) on T-tubule depolarization–induced Ca\(^{2+}\) release has been also examined using skinned fibers. Millimolar concentrations were reported to inhibit both \(^{45}\text{Ca}^{2+}\) efflux initiated by Cl\(^-\) replacement of propionate\(^-\) (Stephenson
and Podolsky, 1977) and D600-sensitive contractions initiated by Na+ replacement of K+ (Lamb and Stephenson, 1991). The above cited skinned fiber studies were carried out on a nonphysiologically slow time scale of seconds, making the physiological relevance of the results difficult to assess.

It is of interest to compare the results of our study showing an inhibition of depolarization-induced SR Ca2+ release by BAPTA with the changes in SR Ca2+ release produced by BAPTA and fura-2 in frog skeletal muscle fibers. In voltage-clamped intact and cut frog muscle fibers, depolarization of the surface membrane normally results in an intracellular Ca2+ transient comprised of an early peak, occurring in ≤50 ms, and a quasi-steady component which is maintained until repolarization of the surface membrane. The latter component is believed to be under the direct control of the T-tubule voltage sensor (Rios and Pizarro, 1991). The rising and falling phases of the early peak have been postulated to result from Ca2+ activation and Ca2+ inactivation of SR Ca2+ release, respectively (Baylor et al., 1983; Melzer, Rios, and Schneider, 1984; Simon, Klein, and Schneider, 1991). Studies with purified SR vesicle and RyR preparations confirmed that Ca2+ concentrations of 1–50 μM activate, whereas relatively high concentrations of Ca2+ (>100 μM in the presence of physiological concentrations of Mg2+ and ATP) inhibit the SR Ca2+-release channel (Meissner, 1994). The intracellular microinjection into intact frog muscle fibers of relatively high concentrations (~2–4 mM) of fast complexing Ca2+ buffers such as BAPTA or fura-2 was found by Jacquemond, Csernoch, Klein, and Schneider (1991) to cause elimination of the early peak component of depolarization-induced Ca2+ release while leaving the maintained quasi-steady level unaffected. These results suggested that the early peak component of Ca2+ release is activated by Ca2+, because it was eliminated by fast calcium Ca2+ buffers. In contrast, Hollingworth, Harkins, Kurebayashi, Konishi, and Baylor (1992) found that the injection of fura-2 into intact fibers increased the amount of Ca2+ released during an action potential. Pape, Jong, Chandler, and Baylor (1993) and Jong, Pape, Chandler, and Baylor (1993) observed that the rate and amount of SR Ca2+ release in cut frog muscle fibers during action potential stimulation and depolarization was dependent on the concentration of the Ca2+ buffer present in their fiber preparations. Fura-2 concentrations of 0.5–3 mM increased both the amount of Ca2+ release and the rate of release, which was attributed to the removal by fura-2 of Ca2+-induced inactivation of Ca2+ release. When the fura-2 concentration was increased to ~6–8 mM, SR Ca2+ release was reduced, which was considered to be possibly due to a reduction of Ca2+-induced Ca2+ release or to a pharmacological effect not related to Ca2+ buffering. Our results showing an inhibition of T-tubule depolarization-induced SR Ca2+ release by high [BAPTA] and 1 mM Ca2+ provides direct evidence for the idea that the released Ca2+ activates and inhibits the SR Ca2+ release channel during T-tubule depolarization, depending on the Ca2+ concentration in the junctional gap.

In the presence of high BAPTA or millimolar Ca2+ or Mg2+, a small remaining release of Ca2+ was seen. Although this release was not statistically significant, it was consistent with the idea that the T-tubule coupled release component is relatively insensitive to these inhibitors (Rios and Pizarro, 1991). We did not observe a consistent potentiation of Ca2+ release by EGTA and BAPTA. One reason for our failure to detect an increase in Ca2+ release by Ca2+ buffers may have been the
limiting time resolution of our methodology. No additional Ca\(^{2+}\) release in the presence of millimolar concentrations of BAPTA or EGTA was expected since our caffeine controls indicated that essentially all the releasable Ca\(^{2+}\) was released in 50 ms in our control condition (i.e., in the presence of 50 µM EGTA).

Activation of the SR Ca\(^{2+}\) release channel by caffeine at high [BAPTA] argued against a direct effect of BAPTA on the channel, although we cannot rule out effects of BAPTA on the voltage sensor. Csernoch, Jacquemond, and Schneider (1993) observed that control injections with the poorly buffering BAPTA analogue anisidine did not produce a substantial suppression of the early peak component of depolarization-induced Ca\(^{2+}\) release, which also indicated that the effect of BAPTA is most likely related to Ca\(^{2+}\) buffering.

In this study, the earliest time point of measuring Ca\(^{2+}\) efflux was 50 ms. This time resolution is not adequate, however, for resolving the rising and falling phases of the initial Ca\(^{2+}\) peak which is observed in muscle fibers. This represents a major disadvantage of the approach which could possibly be overcome with the use of a Ca\(^{2+}\) indicator dye. The rapid mixing/Ca\(^{2+}\) dye method described by Ikemoto et al. (1985) allowed measurement of changes in Ca\(^{2+}\) concentration within 5 ms of stimulation. However, our approach offers two major advantages. First, upon exposure of vesicles to Ca\(^{2+}\) release medium, the released ⁴⁵Ca\(^{2+}\) is continuously removed by filtration, making it possible to directly measure Ca\(^{2+}\) release in the presence of MgATP without concern for Ca\(^{2+}\) reuptake. Second, with our approach there is no limitation on the concentration of Ca\(^{2+}\) and/or Ca\(^{2+}\) buffer which may be included in Ca\(^{2+}\) release media, making it therefore possible to evaluate the effects of Ca\(^{2+}\) on SR Ca\(^{2+}\) release during EC coupling.

Some caution is necessary when comparing mammalian and amphibian muscle preparations. Biochemical analysis, and cloning and sequencing of the complementary DNAs of the RyR have revealed that mammalian skeletal muscle expresses a single isoform (RyRI), whereas amphibian muscle expresses two RyR isoforms (termed α and β) (Olivares, Tanksley, Airey, Beck, Ouyang, Deersink, Ellisman, and Sutko, 1991; Murayama and Ogawa, 1992; Lai, Liu, Xu, El-Hashem, Kramarcy, Seclock, and Meissner, 1992). The α and β amphibian isoforms are present as discrete homooligomers, have immunological properties characteristic of the mammalian skeletal and cardiac RyR isoforms, respectively, and may differ in their Ca\(^{2+}\) sensitivity. There is morphological evidence to suggest that, at least in some skeletal muscle, only a subpopulation of RyRs are mechanically linked to a group of four DHPRs (for review, see Franzini-Armstrong and Jorgensen, 1994). This observation has raised the possibility that Ca\(^{2+}\) released by DHPR-linked Ca\(^{2+}\) release channels could serve to amplify SR Ca\(^{2+}\) release by opening Ca\(^{2+}\)-release channels not linked to DHPRs. [³H]PN200-110 and [³H]ryanodine binding measurements indicating a low DHPR/RyR of ~1 and 0.6 for rabbit and frog skeletal muscle, respectively, support the idea of the presence of DHPR-linked and -unlinked RyRs in mammalian and amphibian skeletal muscle (Anderson et al., 1994). Considering the presence of two RyR isoforms, six different forms of SR Ca\(^{2+}\) release must then be considered to possibly take place in amphibian skeletal muscle: voltage-dependent Ca\(^{2+}\) release by DHPR-linked RyR α and β isoforms, and Ca\(^{2+}\)-dependent Ca\(^{2+}\) release involving both DHPR-linked and -unlinked α and β isoforms. In mammalian skeletal muscle,
because of the presence of a single RyR isoform, the number of possible activation mechanisms is reduced by half.

Stern (1992) describes a method for determining the free Ca2+ concentration gradient near a Ca2+-conducting channel. He derived a simple expression (Eq. 13 of his paper) which allows calculation of the Ca2+ concentration as a function of distance, if the initial rate of Ca2+ flux through the channel and the initial concentrations of total and uncomplexed Ca2+ and Ca2+ buffer are known. Therefore, the concentrations of Ca2+ and Ca2+ buffer which result in inhibition of depolarization-induced Ca2+ release can in theory be used to estimate the distance between the Ca2+-release channel pore and Ca2+-activation sites. We calculated this distance using the following constants for Ca2+ and BAPTA: \(k_{on} = 1.7 \times 10^9 \text{ M}^{-1} \text{s}^{-1} \); \(K_d = 4 \times 10^{-7} \text{ M} \), \(D_{Ca} = 3 \times 10^{-6} \text{ cm}^2 \text{s}^{-1} \), \(D_{BAPTA} = D_{CaBAPTA} = 10^{-5} \text{ cm}^2 \text{s}^{-1} \). The number of Ca2+-release channels (\(\sim 0.4 \text{ pmol/mg protein} \)) was determined by measuring the \(B_{max} \) value of high affinity \([\text{H}]\text{ryanodine} \) binding (Anderson et al., 1994). Using this value and the release of 6,000 pmol Ca2+/mg protein at 50 ms, which is our earliest time point of measuring \(^{45}\text{Ca} \) release, we estimate that each Ca2+ release channel releases \(\sim 15,000 \text{ Ca} 2+ \) which corresponds to a current of \(\sim 0.1 \text{ pA} \). This may represent an underestimate because of release of most of the 15,000 Ca2+ in <50 ms. Assuming that the current falls within the range of 0.1–1.0 pA and that 1 \(\mu \text{M} \text{ free Ca} 2+ \) is sufficient to activate the release channel, then the near complete inhibition of Ca2+ release by 7 mM uncomplexed BAPTA gives a lower limit of 15 nm (for a current of 0.1 pA) and 25 nm (for a current of 1 pA) for the distance separating the Ca2+ channel pore and Ca2+-activation site(s). The purified rabbit skeletal muscle RyR/Ca2+-release channel complex has been interpreted to exhibit dimensions of 27 \(\times \) 27 \(\times \) 14 nm (Wagenknecht, Grassucci, Frank, Saito, Inui, and Fleischer, 1989). If Ca2+-release channels are assumed to lie adjacent to one another in the SR membrane (Franzini-Armstrong and Jorgensen, 1994), 15–25 nm would appear to be a reasonable distance for Ca2+ leaving one channel to travel before reaching the activation site(s) of a nearby channel. Another possibility we cannot rule out, however, considering the large size of the Ca2+-release channel complex, is that released Ca2+ amplifies SR Ca2+ release by interacting with activation sites located on the same channel.

In conclusion, the results reported here support the mechanical coupling mechanism of EC coupling in skeletal muscle, but also show that Ca2+-dependent mechanisms play an important role in controlling skeletal muscle SR Ca2+ release. The mechanical coupling mechanism proposes that DHPR conformational changes induced by T-tubule depolarization trigger the opening of RyR/Ca2+ release channels that are physically linked to DHPRs. The involvement of additional proteins in mediating this interaction has been invoked (Brandt et al., 1992). As shown in this study with the use of the fast Ca2+ buffer BAPTA, the initially released Ca2+ amplifies SR Ca2+ release by binding to Ca2+ activation sites of the same channel or neighboring Ca2+ release channels which may or may not be linked to DHPRs. The data do not distinguish between these possibilities because the size of the Ca2+-release channel complex is comparable to the distance between neighboring channels and it is not known in which way linkage to the DHPR alters regulation of the RyR by Ca2+. Rapid release of Ca2+ is dependent on the presence of MgATP, whereas an
increase in the free Ca$^{2+}$ or Mg$^{2+}$ concentration to millimolar levels inhibits the release channels. In support of the mechanical coupling model, peptides derived from the DHPR were recently shown to activate the purified rabbit skeletal muscle SR Ca$^{2+}$-release channel (Lu, Xu, and Meissner, 1994).

We thank Dr. Judy Heiny for the computer program and her help in estimating the Ca$^{2+}$ gradient near the Ca$^{2+}$ release channel. The program is based on Eq. 13 of the paper by Stern, 1992.

This work was supported by United States Public Health Services grant AR18687.

Original version received 25 May 1994 and accepted version received 3 November 1994.

REFERENCES
Anderson, K., A. H. Cohn, and G. Meissner. 1994. High affinity [3H]PN200-110 and [3H]ryanodine binding to rabbit and frog skeletal muscle. American Journal of Physiology. 266:C462-C466.

Armstrong, C. M., F. Bezanilla, and P. Horowitz. 1972. Twitches in the presence of ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Biochimica et Biophysica Acta. 267:605-608.

Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1982. Optical measurements of intracellular pH and magnesium in frog skeletal muscle fibres. Journal of Physiology. 331:105-137.

Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1983. Sarcoplasmic reticulum calcium release in frog skeletal muscle fibers estimated from arsenazo III calcium transients. Journal of Physiology. 344:625-666.

Beuckelmann, D. J., and W. G. Wier. 1988. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. Journal of Physiology. 405:233-255.

Block, B. B., T. Imagawa, K. P. Campbell, and C. Franzini-Armstrong. 1988. Structural evidence for interaction between the molecular components of the transverse-tubule/sarcoplasmic reticulum junction in skeletal muscle. Journal of Cell Biology. 107:2587-2600.

Brandt, N. R., A. H. Caswell, J. P. Brunschwig, J. J. Kang, B. Antoniu, and N. Ikemoto. 1992. Effects of anti-triadin antibody on Ca$^{2+}$ release from sarcoplasmic reticulum. FEBS Letters. 299:57-59.

Brum, G., E. Stefani, and E. Rios. 1987. Simultaneous measurements of Ca$^{2+}$ currents and intracellular Ca$^{2+}$ concentrations in single skeletal muscle fibers of the frog. Canadian Journal of Physiology and Pharmacology. 65:681-685.

Corbett, A. M., J. Bian, J. B. Wade, and M. F. Scheider. 1992. Depolarization-induced calcium release from isolated triads measured with impermeant fura-2. Journal of Membrane Biology. 128:165-179.

Csernoch, L., V. Jacquemond, and M. F. Schneider. 1993. Microinjection of strong calcium buffers suppresses the peak of calcium release during depolarization in frog skeletal muscle fibers. Journal of General Physiology. 101:297-333.

Dunn, S. M. J. 1989. Voltage-dependent calcium channels in skeletal muscle transverse tubules. Journal of Biological Chemistry. 264:11053-11060.

Eisenberg, B. R. 1983. Quantitative ultrastructure of mammalian skeletal muscle. In Handbook of Physiology. Section 10. Skeletal Muscle. L. D. Peachey, R. H. Adrian, and S. R. Geiger, editors. American Physiological Society. 73-112.

Endo, M. 1977. Calcium release from the sarcoplasmic reticulum. Physiological Reviews. 57:71-108.

Erdmann, R., and H. C. Luttgau. 1989. The effect of the phenylalkylamine D888 (devapamil) on force and Ca$^{2+}$ current in isolated frog skeletal muscle fibers. Journal of Physiology. 413:521-541.

Fabiato, A. 1985. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. Journal of General Physiology. 85:247-289.
Feldmeyer, D., W. Melzer, and B. Pohl. 1990. Effects of gallopamil on calcium release and intramembrane charge movements in frog skeletal muscle fibres. *Journal of Physiology.* 421:543–562.

Franzini-Armstrong, C., and A. O. Jorgensen. 1994. Structure and development of E-C coupling units in skeletal muscle. *Annual Review of Physiology.* 56:509–534.

Gupta, R. K., and R. D. Moore. 1980. 31P NMR studies of intracellular free Mg$^{2+}$ in intact frog skeletal muscle. *Journal of Biological Chemistry.* 255:3987–3993.

Hollingworth, S., A. B. Harksins, N. Kurebayashi, M. Konishi, and S. M. Baylor. 1992. Excitation-contraction coupling in intact frog skeletal muscle fibers injected with millimolar concentrations of Fura-2. *Biophysical Journal.* 63:224–234.

Ikemoto, N., B. Antoniu, and L. G. Meszaros. 1985. Rapid flow chemical quench studies of calcium release from isolated sarcoplasmic reticulum. *Journal of Biological Chemistry.* 260:14096–14100.

Jacquemond, V., L. Csernoch, M. G. Klein, and M. F. Schneider. 1991. Voltage-gated and calcium-gated calcium release during depolarization of skeletal muscle fibers. *Biophysical Journal.* 60:867–873.

Jong, D. S., P. C. Pape, W. K. Chandler, and S. M. Baylor. 1993. Reduction of calcium inactivation of sarcoplasmic-reticulum calcium release by Fura-2 in voltage-clamped cut twitch fibers from frog muscle. *Journal of General Physiology.* 102:333–370.

Meissner, G. 1983. Monovalent ion and calcium ion fluxes in sarcoplasmic reticulum. *Molecular and Cellular Biochemistry.* 55:65–82.

Meissner, G. 1984. Adenine nucleotide stimulation of Ca$^{2+}$-induced Ca$^{2+}$ release in sarcoplasmic reticulum. *Journal of Biological Chemistry.* 259:2365–2374.

Meissner, G. 1994. Ryanodine receptor/Ca$^{2+}$ release channels and their regulation by endogenous effectors. *Annual Review of Physiology.* 56:485–508.

Miledi, R., I. Parker, and P. H. Zhu. 1984. Extracellular ions and excitation—contraction coupling in frog twitch muscle fibres. *Biophysical Journal.* 45:637–641.

Meissner, G. 1983. Monovalent ion and calcium ion fluxes in sarcoplasmic reticulum. *Molecular and Cellular Biochemistry.* 55:65–82.
Paper, P. C., D. S. Jong, W. K. Chandler, and S. M. Baylor. 1993. Effect of fura-2 on action potential-stimulated calcium release in cut twitch fibers from frog muscle. *Journal of General Physiology.* 102:295–332.

Pizarro, G., G. Bruin, M. Fill, R. Fitts, M. Rodriguez, I. Uribe, and E. Rios. 1988. The voltage sensor of skeletal muscle excitation-contraction coupling: a comparison with Ca\(^{2+}\) channels. In *The Calcium Channel: Structure, Function and Implications.* M. Morad, W. Nayler, S. Kazda, and M. Schramm, editors. Springer Verlag, Berlin. 138–157.

Richardson, A., and C. W. Taylor. 1993. Effects of Ca\(^{2+}\) chelators on purified inositol 1,4,5-trisphosphate (InsP\(_3\)) receptors and InsP\(_3\)-stimulated Ca\(^{2+}\) mobilization. *Journal of Biological Chemistry.* 268:11528–11533.

Rios, E., and G. Pizarro. 1991. Voltage sensor of excitation-contraction coupling in skeletal muscle. *Physiological Reviews.* 71:849–908.

Rousseau, E., J. LaDine, Q. Y. Liu, and G. Meissner. 1988. Activation of the Ca\(^{2+}\) release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. *Archives of Biochemistry and Biophysics.* 267:75–86.

Sabbadini, R. A., and A. S. Dahms. 1989. Biochemical properties of isolated transverse tubular membranes. *Journal of Bioenergetics and Biomembranes.* 21:163–213.

Schneider, M. F. 1994. Control of calcium release in functioning skeletal muscle fibers. *Annual Review of Physiology.* 56:463–484.

Schoenmakers, J. M., G. J. Visser, G. Flik, and A. P. R. Theuvene. 1992. CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. *BioTechniques.* 12:870–879.

Simon, B. J., M. G. Klein, and M. F. Schneider. 1991. Calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers. *Journal of General Physiology.* 97:437–471.

Stephenson, E. W., and R. J. Podolsky. 1977. Influence of magnesium on chloride-induced calcium release in skinned muscle fibers. *Journal of General Physiology.* 69:17–35.

Stephenson, E. W. 1985. Excitation of skinned muscle fibers by imposed ion gradients. I. Stimulation of \(^{45}\)Ca\(^{2+}\) efflux at constant [K] [Cl] product. *Journal of General Physiology.* 86:815–832.

Stern, M. D. 1992. Buffering of calcium in the vicinity of a channel pore. *Cell Calcium.* 13:185–192.

Wagenknecht, T., R. Grassucci, J. Frank, A. Saito, M. Inui, and S. Fleischer. 1989. Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. *Nature.* 338:167–170.