Abstract

The purpose of this paper is to introduce the notion of fuzzy pairwise R_0 axiom in fuzzy bitopological spaces and study some of its properties. Several interesting results have been obtained viz. it satisfy hereditary, good extension, productive and projective properties.

Key words: Fuzzy R_0 topological space, Fuzzy pairwise R_0 bitopological spaces, Hereditary property, Good extension property, Productive and projective properties.

1. Introduction

Fuzzy R_0 spaces have been introduced and studied earlier by Hutton and Reilly and Srivastava et al. independently. We follow here the definition given by Srivastava et al. We introduce it as a generalization of F-R_0 spaces. We see that FP-R_0 spaces satisfy hereditary, productive and projective properties. We have also seen that it is good extension of P-R_0 in bitopological spaces.

2. Preliminaries:

Here we shall follow Lowen’s definition of a fuzzy topological spaces (in short, an fts). The symbol $[0,1]$ will denote the unit interval $[0,1]$ and I^X denotes the set of all fuzzy sets in X. All other undefined concepts are taken from.

Definition 2.1. A triple (X, τ_1, τ_2), where X is a non empty set and τ_1, τ_2 are arbitrary fuzzy topologies on X, is called a fuzzy bitopological space (in short, fbts).

Definition 2.2. Let $(X_i, \tau_{1i}, \tau_{2i})$ be a family of fbts. Then the product (X, τ_1, τ_2) is called the product of $(X_i, \tau_{1i}, \tau_{2i})$ with the underlying set A. Induced by $\tau_{1i}, i = 1, 2$, then $(A, \tau_{1A}, \tau_{2A})$ is called the subspace fuzzy topology on A.

Definition 2.3. Let (X, τ_{1}, τ_{2}) be a family of fbts. Then the space $(X, \tau_{1A}, \tau_{2A})$ is called their product where τ_{1A} denotes the usual product fuzzy topology of the family $(\tau_{1i}, i \in A)$ of fuzzy topologies on $X, k=1, 2$.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)
A property P is called productive if the product fts $(X, \tau_1 \Pi \tau_2)$ has P if each coordinate fuzzy space has P. A property P is called projective if the product fts $(X, \tau_1 \Pi \tau_2)$ has P implies that each coordinate fuzzy space has P.

A property P of an fts (X, π, τ) is said to be hereditary if every subspace of the space possesses P.

The ‘good extension’ property in the sense of Lowen5 has been extended to the case of fuzzy bitopological spaces as follows:

A fuzzy bitopological analogue FP of a bitopological property P is said to be a good extension of P if for every bitopological space (X, T_1, T_2) possesses P if the fts $(X, \omega (T_1), \omega (T_2))$ possesses FP.

3. Fuzzy Pairwise R_0 bitopological spaces:

In this section, we introduce the concept of fuzzy R_0 bitopological spaces and study some of its properties.

Definition 3.1: A bitopological space (X,T_1,T_2) is pairwise R_0 (in short, $P-R_0$) iff for all $x,y\in X, x\neq y$ whenever there is a $U\in T_1$ such that $U(x)=1, U(y)=0$ there is also $V\in T_2$ such that $V(y)=1, V(x)=0$.

Definition 3.2: A fuzzy bitopological space (X,τ_1,τ_2) is fuzzy pairwise R_0 (in short, $FP-R_0$) iff for all $x, y\in X, x\neq y$ whenever there is a $U\in \tau_1$, such that $U(x)=1, U(y)=0$ there is also $V\in \tau_2$ such that $V(y)=1, V(x)=0$.

The definition of fuzzy pairwise R_0 bitopological spaces are good extension of pairwise R_0 as seen below:

Theorem 3.1: A bitopological space (X,T_1,T_2) is $P-R_0$ iff the bitopological spaces $(X,\omega(T_1),\omega(T_2))$ is $FP-R_0$.

Proof: Let us assume that (X, T_1, T_2) is $P-R_0$. Take $x,y\in X, x\neq y$. Suppose $\exists \ U \in \omega(T_1)$ such that $U(x)=1, U(y)=0$. Then $U^{-1}[0,1] \in T_1$ and is such that $x \in U^{-1}(0,1], y \in U^{-1}(0,1]$. Now since (X, T_1, T_2) is R_0 there is $V\in T_2$ such that $x \notin V, y \in V$. Now considering $V \in o(T)$ we found that $V(y)=1, V(x)=0$. Hence (X, T_1, T_2) is fuzzy pairwise R_0. Conversely let (X, τ_1, τ_2) be fuzzy pairwise R_0. Take $x,y\in X$ $x \neq y$ Then whenever $\exists U \in T_1$ such that $x \in U \text{ and } y \notin U$ then the crisp fuzzy open set U is such that $U(x)=1, U(y)=0$ and since $(X, \omega(T_1), \omega(T_2))$ is fuzzy R_0 there is $V \in \omega(T)$ Then $V^{-1}(0,1] \in T_2$ such that $x \notin V^{-1}(0,1]$ and $y \in V^{-1}(0,1]$ implying that (X, T_1, T_2) is pairwise R_0.

Next we show that $FP-R_0$ satisfy hereditary property as:

Theorem 3.2: Every subspace of fuzzy pairwise R_0 fuzzy bitopological space is also fuzzy pairwise R_0.

Proof: Let the fts (X, τ_1, τ_2) be a fuzzy pairwise R_0. Let (Y, τ_1y, τ_2y) be its subspace. Let $x, y \in Y \subseteq X, x \neq y$. Since (X, τ_1, τ_2) is fuzzy pairwise R_0 whenever there is a $U \in \tau_1$ such that $U(x)=1, U(y)=0$ there is also $V \in \tau_2$ such that $V(y)=1, V(x)=0$. Now we see that whenever there is a $U_1(x)=U \cap Y(x)=1, U_2(y)=U \cap Y(y)=0$ there is also $V \in \tau_2$ such that $V(y)=V \cap Y(x)=1, V(x)=V \cap Y(x)=0$. This implying that (Y, τ_1y, τ_2y) is also fuzzy pairwise R_0.

Proposition 3.1: An fts (X, τ_1, τ_2) is fuzzy pairwise R_0 iff the fts (X, τ_1) and (X, τ_2) are fuzzy R_0.

Proof: First let us suppose that the fts (X, τ_1, τ_2) is fuzzy pairwise R_0. Then for $x,y\in X, x\neq y$ whenever there is a $U_1 \in \tau_1$ such that $U_1(x)=1, U_1(y)=0$ there is also $V_1(y)=1$ and $V_1(x)=0$. Now if we take $y,x\in X, x\neq y$ then whenever there is a $U_2 \in \tau_1$ such that $U_2(x)=0, U_2(y)=1$ there is also $V_2 \in \tau_2$ such that $V_2(y)=1, V_2(x)=0$. Thus for $x,y\in X, x\neq y$ we have seen that whenever there is τ_1-fuzzy sets U_1 and U_2 such that $U_1(x)=1, U_1(y)=0$ and $U_2(x)=0, U_2(y)=1$ there is τ_2-fuzzy open set V_1 and V_2 such that $V_1(x)=0, V_1(y)=1$ and $V_2(x)=1, V_2(y)=0$. Thus (X, τ_1) and (X, τ_2) is fuzzy R_0.

Conversely suppose that (X, τ_1) and (X, τ_2) is fuzzy R_0. Then first taking (X, τ_1) fuzzy R_0, for $x,y\in X, x\neq y$ whenever there is a $U \in \tau_1$ such that $U(x)=1, U(y)=0$ there is also $V \in \tau_1$ such that $V(x)=0, V(y)=1$. Next taking (X, τ_2) fuzzy
R₀, for y, x ∈ X, y ≡ x whenever there is U ∈ τ₂ such that U(y) = 1, U(x) = 0 there is a V ∈ τ₂ such that V(x) = 0, V(y) = 1. Thus for x, y ∈ X, x ∼ y whenever there is U ∈ τ₁ such that U(x) = 1, U(y) = 0 there is also V ∈ τ₂ such that V(x) = 0, V(y) = 1. Imposing that (X, τ₁, τ₂) is fuzzy pairwise R₀.

Next we show that FP-R₀ satisfies productive and projective properties:

Theorem 3.3: Let \((X_i, τ_i, τ'_i), \text{i} ∈ A\) be a family of fts. Then the product fts \((ΠX_i, Πτ_i, Πτ'_i)\) is FP-R₀ iff each coordinate space \((X_i, τ_i, τ'_i)\) is FP-R₀.

Proof: First let each coordinate space \((X_i, τ_i, τ'_i), \text{i} ∈ A\) be FP-R₀. Then show that the product fts is FP-R₀, let x, y ∈ X, x ∼ y. Let x = \(Π_{x_i = x_i, y = y_i}\) where xᵢ ≠ yᵢ for some j ∈ A. Now take xᵢ, yᵢ ∈ Xᵢ. Since \((X_i, τ_i, τ'_i)\) is FP-R₀ whenever there is a Uᵢ ∈ τᵢ such that Uᵢ(xᵢ) = 1, Uᵢ(yᵢ) = 0 there is a Vⱼ ∈ τⱼ such that Vⱼ(yⱼ) = 1, Vⱼ(xⱼ) = 0. Now consider U = ΠUᵢ and V = ΠVⱼ, where Uᵢ = Vᵢ for i ≠ j, Uᵢ = Uᵢ and Vⱼ = Vⱼ then whenever there is a U in τ₁ such that U(x) = 1, U(y) = 0 there is a V in τ₂ such that V(y) = 1, V(x) = 0. Thus the product fuzzy bitopological space is FP-R₀.

Conversely, let \((ΠX_i, Πτ_i, Πτ'_i)\) be fuzzy pairwise R₀. Consider any coordinate spaces say \((X_i, τ_i, τ'_i)\) choose xᵢ, yᵢ ∈ Xᵢ, xᵢ ∼ yᵢ. Construct x, y ∈ X such that x = \(Πxᵢ = xᵢ\), y = \(Πyᵢ = yᵢ\) where \(⇒ \forall r < \inf Uᵢ(xᵢ)\) for all j ∈ A ⇒ \(∀ r < Uᵢ(xᵢ)\) for all j ∈ A ⇒ U(y) = 0 ⇒ ΠUᵢ(y) = 0. Then there is a fuzzy point yᵢ ∈ V such that there exist a basic fuzzy open set ΠVⱼ ∈ τⱼ such that yᵢ ∈ ΠVⱼ and \(⇒ s < Vⱼ(yⱼ)\) for all j ∈ A and \(ΠVⱼ(y) = 0\).

Now \(ΠUᵢ(y) = 0 \Rightarrow Uᵢ(yᵢ) = 0\). Hence \(Uᵢ(yᵢ) = Uᵢ(xᵢ)\) \(⇒ r\). Similarly \(ΠVⱼ(y) = 0 \Rightarrow Vⱼ(yⱼ) = 0\). Thus \(Vⱼ(xⱼ) = Vⱼ(yⱼ)\) \(⇒ s\). Consider \(Uᵢ = Uᵢ ∈ τᵢ\) and \(Sup Vⱼ = Vⱼ ∈ τⱼ\) whenever there is a \(U(xᵢ) = 1\), \(U(yᵢ) = 0\) there is a \(Vⱼ ∈ τⱼ\) such that \(Vⱼ(yⱼ) = 1\), \(Vⱼ(xⱼ) = 0\). Imposing that \((X_i, τ_i, τ'_i)\) is fuzzy pairwise R₀.

Conclusion

In this paper the concept of fuzzy pairwise R₀ axiom in a fuzzy bitopological spaces has been introduced. The appropriateness of our definition is established by proving some interesting relevant results. We proved that FP-R₀ in fuzzy bitopological spaces is good extension of the corresponding concept of P-R₀ in bitopological spaces. Our definition of FP-R₀ also satisfy hereditary, productive and projective properties.

References

1. A. Kandil, S. Saleh and M.M. Yakout, Fuzzy topology on Fuzzy sets: Regularity and Separation Axioms, American Academic and Scholarly Research Journal 4(2), 151-156 (2012).
2. B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems 3, 93-104 (1980).
3. D.M. Ali and F.A. Azam, Some Remarks on Fuzzy R₀, R₁ and Regular topological spaces, J. Sci. Res. 4 (2), 327-336 (2012).
4. L.Y. Ming and L.M. Kang, Fuzzy Topology, World Scientific Publishers, Singapore, (1997).
5. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56, 621-633 (1976).
6. R. Srivastava, S.N. Lal and A.K. Srivastava, On fuzzy T₀ and R₀ topological spaces, J. Math. Anal. Appl. 136(1), 66-73 (1988).
7. R. Srivastava, Manjari Srivastava, On pairwise Hausdorff fuzzy bitopological spaces, J. Fuzzy Math. 5(3),553-564 (1997).