The theoretical aspects of two leading twist transversity single spin asymmetries, one arising from the Collins effect and one from the interference fragmentation functions, are reviewed. Issues of factorization, evolution and Sudakov factors for the relevant observables are discussed. These theoretical considerations pinpoint the most realistic scenarios towards measurements of transversity.

1 Collins effect asymmetries

The Collins effect refers to a nonzero correlation between the transverse spin \(s_T \) of a fragmenting quark and the distribution of produced hadrons. More specifically, a transversely polarized quark can fragment into particles (with nonzero transverse momentum \(k_T \)) having a \(k_T \times s_T \) angular distribution around the jet axis or, equivalently, the quark momentum, see Fig. 1. The Collins effect will be denoted by a fragmentation function \(H^\perp_1(z, k_T) \) and is expected to be nonzero due to final state interactions between a measured final state hadron (e.g. a \(\pi \)) and the rest of the jet (X). The Collins effect can lead to single spin asymmetries (SSA) in \(e p^+ \rightarrow e' \pi + X \) and \(p p^+ \rightarrow \pi + X \).

There exist some experimental indications that the Collins effect is nonzero, e.g. SSA measured by HERMES \(^1\) and SMC \(^2\) at relatively low energies.

1.1 Collins effect in semi-inclusive DIS

Collins \(^3\) considered semi-inclusive DIS \(e + p^+ \rightarrow e' + \pi + X \), where the spin of the proton is orthogonal to the direction of the virtual photon \(\gamma^* \) and one observes the transverse momentum \(P_T^\perp \) of the \(\pi \) in the jet, which has an angle \(\phi^\pi_\tau \) compared to the lepton scattering plane (\(\phi \) in Fig. 2). Collins has shown...
that the cross section for this process has an asymmetry that is proportional to the transversity function $A_T \propto \sin(\phi^e_\pi + \phi^\Sigma_h) |S_T| h_1 \ H_1^\perp$. To discuss this SSA further, we will first project it out from the cross section (cf. Ref. 3). Consider the cross sections integrated, but weighted with a function $W = W(|P_{\perp}^\pi|, \phi^e_\pi)$ of the transverse momentum of the π:

$$\langle W \rangle \equiv \int d^2 P_{\perp}^\pi W \frac{d\sigma_{[e p \rightarrow e' \pi \pi]}}{dx dy dz d\phi^e},$$

where we restrict to the case of $|P_{\perp}^\pi|^2 \ll Q^2$. We will focus on

$$O = \frac{\langle \sin(\phi^e_\pi + \phi^\Sigma_h) |P_{\perp}^\pi| \rangle}{4\pi \alpha^2 s/Q^2 M_{\pi}} = |S_T| (1-y) \sum_{a,\bar{a}} c^a_\alpha x h_1^a(x) z H_1^{\perp(1)a}(z),$$

where

$$H_1^{\perp(1)}(z) \equiv \int d^2 k_T \frac{k_T^2}{2 z^2 M_{\pi}^2} H_1^\perp(z, k_T^2).$$

At present all phenomenological studies of the Collins effect are performed using such tree level expressions. On the other hand, the leading order (LO) evolution equations are known for h_1 (NLO even) and $H_1^{\perp(1)}$ (at least in the large N_c limit). Both functions evolve autonomously and vanish asymptotically. The following question arises: if one measures O at different energies, can one relate them via LO evolution? The answer is: yes, the LO Q^2 corrections to the tree level observable O arise only from the evolution of h_1 and $H_1^{\perp(1)}$. This is a nontrivial result, since this semi-inclusive process is not a case where collinear factorization applies. In the differential cross section $d\sigma/d^2 P_{\perp}^\pi$ itself, beyond tree level soft gluon corrections do not cancel; Sudakov factors need to be taken into account; a more complicated factorization theorem applies.
Here we will briefly consider the effects of Sudakov factors in the explicit example of the Collins effect asymmetry in semi-inclusive DIS $e^p \rightarrow e'\gamma^*(q_T)p \rightarrow e'\pi X$ ($q_T = -zP_T^\perp$ and $q_T^2 \equiv Q_T^2 \ll Q^2$)

\[
d\sigma(e^p \rightarrow e'\pi X) \propto \{1 + |S_T| \sin(\phi^e_\pi + \phi^e_\gamma) A(q_T)\}. \tag{4}
\]

To get an idea about the effect of Sudakov factors, we will assume Gaussian transverse momentum dependence for H_1^\perp. The asymmetry analyzing power is then given by

\[
A(q_T) = \frac{\sum_a e^2_a B(y) h_a^\perp(x) H_{a-1}^\perp (z)}{\sum_b e^2_b A(y) f_1^b(x) D_{a-1}^b (z)} A(Q_T), \tag{5}
\]

where $A(y) = (1-y+\frac{1}{3}y^2)$, $B(y) = (1-y)$. Furthermore, since the nonperturbative Sudakov factor (S_{NP}) is not determined from SIDIS experiments (despite the ZEUS data), for illustration purposes we will use the parameterization of Ladinsky-Yuan.\cite{10} In Fig. 3 $A(Q_T)$ is given at $Q = M_Z$ and compared to the tree level result for Gaussian transverse momentum widths chosen such as to minimize that result (values more typical of a tree level analysis produce a larger asymmetry factor). We refer to Ref.\cite{9} for details. We see that $A(Q_T)$

at $Q = M_Z$ becomes considerably smaller ($\max(A(Q_T)) \sim Q^{-0.5} - Q^{-0.6}$) and broader than the tree level expectation. Thus, tree level estimates tend to overestimate transverse momentum dependent azimuthal spin asymmetries and Sudakov factors cannot be ignored at present-day collider energies.
1.2 Collins effect in $e^+ e^- \rightarrow \pi^+ \pi^- X$

In order to obtain the Collins function, one can measure a $\cos(2\phi)$ asymmetry in $e^+ e^- \rightarrow \pi^+ \pi^- X$, that is essentially proportional to the Collins function squared (at average momentum fractions). A first indication of such a nonzero asymmetry comes from a preliminary analysis of the 91-95 LEP1 data (DELPHI). Also, the possibilities at BELLE are currently being examined. The extraction of the Collins function from this asymmetry is not straightforward, since there is asymmetric background from hard gluon radiation (with $Q_T \sim Q$) and from weak decays. Moreover, using the tree level asymmetry expression is not sufficient and beyond tree level Sudakov factors need to be included.

If the differential cross section is written as

$$\frac{d\sigma(e^+ e^- \rightarrow \pi^+ \pi^- X)}{d\Omega dz_1 dz_2 dq_T^2} \propto \{1 + \cos(2\phi_1)A(q_T)\},$$

with $q_T^2 \ll Q^2$, then assuming again Gaussian transverse momentum dependence for the Collins function, we find

$$A(q_T) = \frac{\sum a c_a^2 B(y) H_1^{(1)a}(z_1) H_1^{(1)a}(z_2)}{\sum a c_a^4 A(y) D_1^{a}(z_1) D_1^{a}(z_2)} A(Q_T),$$

with somewhat different $A(y), B(y)$. Surprisingly there is also no determination of $S_{NP}(b)$ from $e^+ e^- \rightarrow A B X$, so for illustration purposes we use again Ladinsky-Yuan’s $S_{NP}(b)$. The result is displayed in Fig. 4 and compared to a conservative (i.e. expected to be too small) tree level curve. This generic example shows that Sudakov factors produce an order of magnitude suppression at $Q = M_Z$ ($\max(A(Q_T)) \sim Q^{-0.9} - Q^{-1.0}$), hence this Collins effect observable is best studied with two jets events at $\sqrt{s} \ll M_Z$.

\[Figure 4. \text{ Kinematics of } l l' \rightarrow P_1 P_2 X, \text{ where } l, l' \text{ are the momenta of } e^-, e^+; P_1, P_2 \text{ are the momenta of hadrons in opposite jets.} \]
Figure 5. The asymmetry factor $A(Q_T)$ (in units of M^2). The solid curve is a generic Sudakov factor result (at $Q = 90$ GeV) multiplied by a factor 10. The other curve is the tree level quantity for certain Gaussian transverse momentum widths.

2 Interference fragmentation functions

Jaffe, Jin and Tang14 pointed out the possibility that the Collins effect averages to zero in the sum over final states X. Instead, they proposed to measure two pions in the final state $\langle (\pi^+ \pi^-)_{\text{out}} X \rangle$ ($\pi^+, \pi^- \text{ belong to the same jet}$), which presumably depends on the strong phase shifts of the ($\pi^+ \pi^-$) system. The interference between different partial waves could give rise to a nonzero chiral-odd fragmentation function called the interference fragmentation function (IFF). The IFF would lead to single spin asymmetries in $ep^1 \rightarrow e'(\pi^+ \pi^-)X$ and $pp^1 \rightarrow (\pi^+ \pi^-)X$, both proportional to the transversity function. The SSA expression for $ep^1 \rightarrow e'(\pi^+ \pi^-)X$ is

$$\langle \cos(\phi_{S_T} + \phi_{R_T}) \rangle \propto |S_T| |R_T| F(m^2) \sum_{a,a'} e_a^2 x h_1^a(x) \delta\hat{q}_I(z), \quad (8)$$

where $z = z^+ + z^-; R_T = (z^+ k^- - z^- k^+)/z$; m^2 is the $\pi^+ \pi^-$ invariant mass; and $F(m^2) = \sin \delta_0 \sin \delta_1 \sin(\delta_0 - \delta_1)$, where δ_0, δ_1 are the $\ell = 0, 1$ phase shifts. Note the implicit assumption of factorization of z and m^2 dependence, which leads to the prediction that on the ρ resonance the asymmetry is zero (according to the experimentally determined phase shifts). But more general z, m^2 dependences have been considered15 and should be tested.

The asymmetry expression is based on a collinear factorization theorem (soft gluon contributions cancel, no Sudakov factors appear). Theoretically this is very clean and an analysis beyond tree level is conceptually straightforward. The evolution of $\delta\hat{q}_I(z)$ is the same as for the transversity fragmentation

function $H_1(z)$, e.g. the LO evolution equation is given by

$$\frac{\partial z\hat{q}_I(z)}{\partial \ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} C_F \int_z^1 dy \left[\frac{3}{2} \delta(y-z) + \frac{2z}{y(y-z)_+} \right] y\hat{q}_I(y). \quad (9)$$

A NLO analysis is feasible and analogous to $A_{TT}^{DY} \propto \cos(\phi_{S_1} + \phi_{S_2}) h_1 \bar{h}_1$.

For the extraction of the interference fragmentation functions one can study a $\cos(\phi_{R_1} + \phi_{R_2})$ asymmetry in $e^+ e^- \rightarrow \pi^+ \pi^- \text{jet}_1 \pi^+ \pi^- \text{jet}_2 X$ which is proportional to $\langle \delta \hat{q}_I \rangle^2$. This is again possible at BELLE and in this case there is no expected asymmetric background. Combining such a result with for instance the single spin asymmetry in $pp \uparrow \rightarrow \pi^+ \pi^- X$ to be measured at RHIC, seems –at present– to be one of the most realistic ways of obtaining information on the transversity function.

Acknowledgments

I thank Matthias Grosse Perdekamp, Bob Jaffe, Jens Soeren Lange, Akio Ogawa, Werner Vogelsang for helpful discussions. Furthermore, I thank RIKEN, Brookhaven National Laboratory and the U.S. Department of Energy (contract number DE-AC02-98CH10886) for providing the facilities essential for the completion of this work.

References

1. HERMES Collab., A. Airapetian et al, *Phys. Rev. Lett.* **84**, 4047 (2000).
2. D. Boer, [hep-ph/9912311](http://arxiv.org/abs/hep-ph/9912311).
3. A. Bravar (for SMC), *Nucl. Phys. B (Proc. Suppl.)* **79**, 520 (1999).
4. J.C. Collins, *Nucl. Phys. B* **396**, 161 (1993).
5. D. Boer, P.J. Mulders, *Phys. Rev. D* **57**, 5780 (1998).
6. F. Balducchi et al, *Fortsch. Phys.* **30**, 505 (1981).
7. A.A. Henneman, D. Boer, P.J. Mulders, [hep-ph/0104271](http://arxiv.org/abs/hep-ph/0104271).
8. J.C. Collins, D. Soper, *Nucl. Phys. B* **193**, 381 (1981).
9. D. Boer, *Nucl. Phys. B* **603**, 195 (2001), [hep-ph/0010207](http://arxiv.org/abs/hep-ph/0010207).
10. G. Ladinsky, C.-P. Yuan, *Phys. Rev. D* **50**, R4239 (1994).
11. D. Boer et al, *Nucl. Phys. B* **504**, 345 (1997); *Phys. Lett. B* **424**, 143 (1998).
12. A.V. Efremov et al, *Nucl. Phys. B (Proc. Suppl.)* **79**, 554 (1999).
13. M. Grosse Perdekamp, J.S. Lange, A. Ogawa, private communication.
14. R.L. Jaffe, X. Jin and J. Tang, *Phys. Rev. Lett.* **80**, 1166 (1998).
15. A. Bianconi et al, *Phys. Rev. D* **62**, 034008 (2000).
16. X. Artru, J.C. Collins, *Z. Phys. C* **69**, 277 (1996).