Multiplicative Dirac structures on Lie groups

Cristián Ortiz*

Instituto Nacional de Matemática Pura e Aplicada
cortiz@impa.br

Abstract

We study multiplicative Dirac structures on Lie groups. We show that the characteristic foliation of a multiplicative Dirac structure is given by the cosets of a normal Lie subgroup and, whenever this subgroup is closed, the leaf space inherits the structure of a Poisson-Lie group. We also describe multiplicative Dirac structures on Lie groups infinitesimally.

Résumé

Nous étudions les structures de Dirac multiplicatives sur les groupes de Lie. On montre que le feuilletage caractéristique d’une structure de Dirac multiplicative est donné par les classes à gauche (respectivement à droite) d’un sous-groupe distingué et, quand ce sous-groupe est fermé, l’espace des feuilles est muni d’une structure de groupe de Lie-Poisson. Nous décrivons aussi la version infinitésimale des structures de Dirac multiplicatives sur les groupes de Lie.

Version française abrégée

Un groupe de Lie-Poisson est un objet du type groupe de Lie dans la catégorie des variétés de Poisson, c’est-à-dire un groupe de Lie G muni d’une structure de Poisson $\pi \in \Gamma(\bigwedge^2 T G)$ telle que la multiplication $m : G \times G \rightarrow G$ soit une application de Poisson, le produit $G \times G$ étant muni de la structure de Poisson produit. De manière équivalente, le tenseur de Poisson satisfait la condition multiplicative $\pi_{gh} = (L_g)_* \pi_h + (R_h)_* \pi_g$. Les groupes de Lie-Poisson ont été introduits par Drinfeld ([4]). Ces structures apparaissent aussi dans l’étude des propriétés Hamiltonniennes des transformations d’habillage de certains systèmes intégrables([7]).

La donnée infinitésimale associée à un groupe de Lie-Poisson G est son algèbre de Lie \mathfrak{g} accompagnée d’une structure supplémentaire: l’espace dual \mathfrak{g}^* hérite d’une structure d’algèbre de Lie, satisfaisant une condition de compatibilité avec le crochet de Lie sur \mathfrak{g} (cf. par exemple [4, 5]). Une telle paire d’algèbres de Lie $(\mathfrak{g}, \mathfrak{g}^*)$ s’appelle une bialgèbre de Lie. Réciproquement, toute bialgèbre de Lie $(\mathfrak{g}, \mathfrak{g}^*)$ est la bialgèbre de Lie d’un groupe de Lie-Poisson G connexe et simplement connexe ([4]).

Une structure de Poisson peut être vue comme un cas particulier d’une structure géométrique plus générale: la structure de Dirac. La notion de structure de Dirac a été introduite par Courant et Weinstein dans le cadre des systèmes mécaniques ([2, 3]). Les structures de Dirac incluent les

*This research was supported by Capes-Brazil via a PEC-PG scholarship.
structures pré-symplectiques et les structures de Poisson, de même que les feuilletages réguliers. Si
\((G, \pi)\) est un groupe de Lie-Poisson, la multiplicativité de \(\pi\) est équivalente au fait que l’application
fibrée induite \(\pi^\sharp : T^*G \longrightarrow TG\) soit un morphisme de groupoïdes. Dans ces conditions, la structure
de Dirac associée \(L_\pi = \text{graph}(\pi^\sharp) \subseteq TG \oplus T^*G\) est un sous-groupoïde de Lie.

Dans cet exposé, nous étudions les groupes de Lie équipés d’une structure de Dirac \(L\)
multiplicative dans le sens où \(L \subseteq TG \oplus T^*G\) est un sous-groupoïde. Nous appellerons un tel couple
\((G, L)\) un groupe de Lie-Dirac.

Cet exposé est organisé de la manière suivante: dans le deuxième paragraphe, nous étudions les
feuilletages multiplicatifs sur un groupe de Lie \(G\), c’est-à-dire les structures de Dirac multiplicatives
induites par des distributions régulières involutives sur \(TG\). Etant donné un sous-groupe de Lie
connexe \(H\) d’un groupe de Lie \(G\), il existe un feuilletage canonique de \(G\), dont les feuilles sont les
classes à droite de \(H\). Nous montrons que ce feuilletage est multiplicatif si et seulement si \(H\) est un
sous-groupe normal de \(G\).

Dans le troisième paragraphe, nous étudions le feuilletage caractéristique d’une structure de
Dirac multiplicative. Nous montrons que le noyau d’une structure de Dirac multiplicative sur un
groupe de Lie \(G\) est une distribution régulière involutive, que s’intègre comme un feuilletage régulier
et multiplicatif de \(G\). À l’aide de la description des feuilletages multiplicatifs donnés au paragraphe
2, nous déduisons que le feuilletage caractéristique d’un groupe de Lie-Dirac \((G, L)\) est simple et que
l’espace des feuilles est un groupe de Lie-Poisson. C’est-à-dire que les groupes de Lie-Dirac, après
un quotient canonique deviennent des groupes de Lie-Poisson. Enfin, nous appliquons ce résultat
as ainsi que la correspondance de Drinfeld entre les groupes de Lie-Poisson et les bialgèbres de Lie pour
obtenir la version infinitésimale des groupes de Lie-Dirac.

1 Introduction

A Poisson-Lie group is a Lie group \(G\) with a multiplicative Poisson structure \(\pi \in \Gamma(\Lambda^2 TG)\), that
is, the multiplication map \(m : G \times G \longrightarrow G\) is a Poisson map \([4, 5, 7]\). Equivalently, the bundle
map \(\pi^\sharp : T^*G \longrightarrow TG\) is a groupoid morphism, where the tangent and cotangent bundles have
the groupoid structures induced by \(G\) (see e.g. \([6]\)). Therefore, the multiplicativity property of the
Poissom bivector \(\pi\) is equivalent to saying that the associated Dirac structure \([2, 3]\)
\(L_\pi = \text{graph}(\pi^\sharp)\) is a Lie subgroupoid of the direct-sum \(\mathcal{VB}\)-groupoid \(TG = TG \oplus T^*G\). This motivates the following
definition: a Dirac structure \(L\) on a Lie group \(G\) is multiplicative if \(L \subseteq TG\) is a subgroupoid. We
refer to a Lie group equipped with a multiplicative Dirac structure as a Dirac-Lie group.

Clearly Poisson-Lie groups are particular examples of Dirac-Lie groups. On the other extreme,
one can check that there are no interesting multiplicative 2-forms on Lie groups – the only one is the
zero 2-form. Another class of examples is obtained as follows: Let \(p : G_1 \longrightarrow G_2\) be a homomorphism
of Lie groups which is a surjective submersion. If \(\pi\) is a multiplicative Poisson structure on \(G_2\), then
its pull back (in the sense of Dirac structures \([1]\)) turns out to be a multiplicative Dirac structure
on \(G_1\), whose pre-symplectic leaves are the inverse images by \(p\) of the symplectic leaves of \(G_2\), and
whose characteristic foliation is given by the fibres of the submersion \(p\). Our main observation in
this note is that, modulo a regularity condition, all multiplicative Dirac structures on Lie groups
are of this form.
2 Preliminaries

2.1 Multiplicative foliations

Let G be a Lie group. If $F \subseteq TG$ is a regular integrable distribution, one can check that the corresponding Dirac structure $L_F = F \oplus \text{Ann}(F)$ is multiplicative if and only if $F \subseteq TG$ is a Lie subgroup, where TG has the natural Lie group structure induced from G.

Proposition 2.1. Let \mathcal{F} be the foliation integrating a multiplicative distribution $F \subseteq TG$. The following holds:

1. The leaf through the identity $\mathcal{F}_e \subseteq G$ is a normal Lie subgroup.

2. The foliation \mathcal{F} is given by cosets of \mathcal{F}_e.

Proof. Since $F \subseteq TG$ is a subgroup, it is closed under multiplication in TG, that is $dm(g,h)(X_g, X_h) = dR_h(g)X_g + dL_g(h)X_h \in F_{gh}$ for every $X_g, X_h \in F$. In particular, for $X_h = 0$ we see that F is right invariant, i.e. $dR_h(g)X_g \in F_{gh}$. Similarly we obtain left invariance of F: $dL_g(h)X_h \in F_{gh}$. This says that the distribution at each $g \in G$ is given by $F_g = dL_g(e)F_e = dR_g(e)F_e$. (1)

Consider now \mathcal{F}_e, the leaf of F through the identity $e \in G$. For every $a, b \in \mathcal{F}_e$ there exist paths $a(t), b(t) \in G, t \in [0, 1]$, tangent to the distribution F, joining the identity $e \in G$ to a and b, respectively. We want to prove that $c = ab \in \mathcal{F}_e$. For this, take the path $c(t) = a(t)b(t)$, which joins the identity to $c = ab$. The path $c(t)$ is tangent to the distribution F: indeed, the bi-invariance of F implies that

$$c'(t) = dR_b(t)(a(t))a'(t) + dL_a(t)(b(t))b'(t) \in F_{c(t)},$$

since $a'(t) \in F_{a(t)}$ and $b'(t) \in F_{b(t)}$. This shows that $c \in \mathcal{F}_e$. A similar computation shows that \mathcal{F}_e is closed by the inversion map. Therefore the leaf through the identity is a subgroup of G. Moreover, it follows from (1) that the Lie algebra of \mathcal{F}_e is Ad-invariant, which is equivalent to \mathcal{F}_e being a normal subgroup. The assertion in (ii) follows from the bi-invariance in (1).

2.2 Functorial properties of multiplicative Dirac structures

Let M be a smooth manifold. The generalized tangent bundle of M is the direct-sum vector bundle $\mathbb{T}M = TM \oplus T^*M$. Given a smooth map $\varphi : M_1 \to M_2$ and $x \in M_1$, we say that the elements $\eta = (X, \alpha) \in (\mathbb{T}M_1)_x$ and $\xi = (Y, \beta) \in (\mathbb{T}M_2)_{\varphi(x)}$ are φ-related if $Y = d\varphi(X)$ and $\alpha = d\varphi^* \beta$. For a Lie group G with Lie algebra \mathfrak{g}, TG is a Lie group, T^*G is a Lie groupoid over \mathfrak{g}^* and we consider the groupoid $\mathbb{T}G = TG \oplus T^*G$; we denote the groupoid multiplication in $\mathbb{T}G$ by $\xi * \xi'$, when ξ, ξ' are composable.
Lemma 2.1. Let \(\varphi : G_1 \to G_2 \) be a homomorphism of Lie groups, which is a surjective submersion. If \(\xi_{\varphi(g)}, \xi'_{\varphi(h)} \in T_{g}G_2 \) are \(\varphi \)-related to \(\eta_g, \eta'_h \in T_{g_1}G_1 \), respectively, then \(\xi_{\varphi(g)} \), \(\xi'_{\varphi(h)} \) are composable if and only if \(\eta_g, \eta'_h \) are composable. Moreover, \(\xi_{\varphi(g)} \ast \xi'_{\varphi(h)} \in T_{g_2}G_2 \) is \(\varphi \)-related to \(\eta_g \ast \eta'_h \in T_{g_1}G_1 \).

Proof. The pull back bundles \(\varphi^*(TG_2), \varphi^*(T^*G_2) \) have natural groupoid structures in such a way that \(d\varphi : TG_1 \to \varphi^*(TG_2) \) and \(d\varphi^* : \varphi^*(T^*G_2) \to T^*G_1 \) are morphisms of groupoids. The statements follow from this fact and a direct computation using that \(\varphi \) is a surjective submersion.

Corollary 2.1. Let \(\varphi : G_1 \to G_2 \) be a homomorphism of Lie groups, which is a surjective submersion. Assume that \(L_1, L_2 \) are Dirac structures on \(G_1, G_2 \), respectively. If \(\varphi \) is a forward Dirac map and \(L_1 \) is multiplicative, then \(L_2 \) is multiplicative. Also, if \(\varphi \) is a backward Dirac map and \(L_2 \) is multiplicative, then \(L_1 \) is multiplicative.

Proof. Recall that \(\varphi \) is a forward Dirac map if and only if \(L_2 \) is the bundle of all \(\varphi \)-related elements to elements in \(L_1 \). A backward Dirac map is defined in a similar way, see [1]. The statement follows from Lemma 2.1.

3 The main result

Let \(L \) be a Dirac structure on a smooth manifold \(M \). Let us denote by \(p_T \) the canonical projection of \(TM \oplus T^*M \) on \(TM \). The manifold \(M \) carries a singular foliation tangent to the generalized distribution \(p_T(L) \subseteq TM \), and each leaf of this foliation inherits a canonical pre-symplectic structure whose kernel is \(\text{ker}(L) = L \cap TM \). If the distribution \(\text{ker}(L) \) has constant rank, then it is integrable. If the corresponding foliation \(\mathcal{K} \) is simple, then the leaf space \(M/\mathcal{K} \) has a natural Poisson structure obtained by identifying functions on the quotient with admissible functions on \(M \), see [2] for details. The foliation \(\mathcal{K} \) is called the characteristic foliation of \(L \).

In the special case of Dirac-Lie groups our main result is the following.

Theorem 3.1. Let \(G \) be a Lie group with a multiplicative Dirac structure \(L \subseteq TG \oplus T^*G \). Then:

1. The kernel of \(L \) is a multiplicative integrable distribution, and the leaves of the characteristic foliation \(\mathcal{K} \) are cosets of the normal Lie subgroup \(K_e \subseteq G \).

2. If \(K_e \) is closed\(^1\), then the leaf space \(G/K \) is smooth and the induced Poisson structure \(\pi \) is multiplicative (i.e., \(G/K \) becomes a Poisson-Lie group). Moreover, \(L \) is the pull back of \(\pi \) by the quotient map \(G \to G/K \).

\(^1\)Notice that not always the characteristic leaf through the identity \(K_e \subseteq G \) is a closed subgroup. Indeed, if \(G \) is the torus and \(K \subseteq G \) is a dense geodesic, then the Dirac structure associated to the foliation of \(G \) by cosets of \(K \) is a multiplicative Dirac structure whose characteristic leaf through the identity is dense.
Proof. Since L is multiplicative, we have that $\ker(L) = L \cap TG \subseteq TG$ is a subgroup, hence \(\ker(L) \) has constant rank. In particular it defines an involutive distribution, whose leaves are given by cosets of the normal Lie subgroup $K = K_e$ (the leaf through the identity) by Prop. 2.1. If K is closed, then G/K is a Lie group and the projection $G \rightarrow G/K$ is a surjective submersion which is both a forward and backward Dirac map \(\Pi \), where G/K is equipped with the natural Poisson structure induced by L. The multiplicativity property of this Poisson structure is a consequence of Corollary 2.1.

Combining Theorem 3.1 and Drinfeld’s correspondence between Poisson-Lie groups and Lie bialgebras \(\Pi \), we obtain the infinitesimal counterpart of Dirac-Lie groups.

Corollary 3.1. Let G be a Lie group with Lie algebra \mathfrak{g}. If G is equipped with a multiplicative Dirac structure L, then $\mathfrak{k} = \ker(L)_e$ is an ideal in \mathfrak{g} and the quotient $\mathfrak{g}/\mathfrak{k}$ inherits the structure of a Lie bialgebra.

Proof. The multiplicativity of the characteristic distribution implies that $\mathfrak{k} \subseteq \mathfrak{g}$ is an ideal. Now consider the connected and simply connected Lie group T integrating the quotient Lie algebra $\mathfrak{g}/\mathfrak{k}$. The canonical projection $\mathfrak{g} \rightarrow \mathfrak{g}/\mathfrak{k}$ integrates to a homomorphism of Lie groups $\phi: \tilde{G} \rightarrow T$, where \tilde{G} denotes the universal covering of G. The subgroup $H = \ker(\phi)$ is closed and normal in \tilde{G}, therefore the connected component of the identity H_0 is closed and normal as well and the quotient group \tilde{G}/H_0 inherits a Poisson-Lie structure. Since \tilde{G}/H is locally diffeomorphic to \tilde{G}/H_0, the Lie algebra $\mathfrak{g}/\mathfrak{k}$ inherits a Lie bialgebra structure. In the situation of Corollary 3.1 we say that (G, L) is an integration of the infinitesimal data $(\mathfrak{g}, \mathfrak{k})$, where $\mathfrak{k} \subseteq \mathfrak{g}$ is ideal and $\mathfrak{g}/\mathfrak{k}$ is a Lie bialgebra.

Corollary 3.2. If G is connected and simply connected and $\mathfrak{k} \subseteq \mathfrak{g}$ is an ideal such that $\mathfrak{g}/\mathfrak{k}$ is a Lie bialgebra, then there is a unique multiplicative Dirac structure on G integrating $(\mathfrak{g}, \mathfrak{k})$.

Proof. Let T be the connected and simply connected Lie group integrating $\mathfrak{g}/\mathfrak{k}$. Consider the homomorphism $\phi: G \rightarrow T$ and $H \subseteq G$ as in the proof of Corollary 3.1. The quotient group $G/H \cong T$ has a multiplicative Poisson structure π_T integrating the Lie bialgebra $\mathfrak{g}/\mathfrak{k}$. Since ϕ is a surjective submersion, we induce a multiplicative Dirac structure L on G according to Corollary 2.1. This shows that (G, L) is an integration of $(\mathfrak{g}, \mathfrak{k})$.

Acknowledgements

I would like to thank Henrique Bursztyn for helpful discussion and valuable comments. I thank also Marius Crainic for helpful suggestions. Finally I thank the Department of Mathematics at Utrecht University for hospitality while part of this work was carried out.
References

[1] H. Bursztyn, O. Radko, Gauge Equivalence of Dirac Structures and Symplectic Groupoids,
Ann. Inst. Fourier (Grenoble) 53, 309-337 (2003)

[2] T. Courant, Dirac Manifolds, *Trans. Amer. Math. Soc.* 319, 631-661 (1990)

[3] T. Courant, A. Weinstein, Beyond Poisson Structures, *Action hamiltonnienes de groupes. Troisieme theoreme the Lie* (Lyon, 1986), 39-49, *Hermann, Paris* (1988)

[4] V. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and geometric meaning of
the classical Yang- Baxter equations, *Soviet Math. Dokl.* 27 (1) 68-71 (1983)

[5] J.H. Lu, A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decomposi-
tions, *Journal of Differential Geometry* 31, 501-526 (1990)

[6] K. Mackenzie, General Theory of Lie groupoids and Lie algebroids, *Lecture Notes London Math. Soc.* 213 (2005)

[7] M. Semenov-Tian-Shansky, Dressing transformation and Poisson-Lie group actions, *Publ. RIMS, Kyoto University* 21, 1237-1260 (1985)