Super-resolving Herschel imaging: a proof of concept using Deep Neural Networks

Lynge Lauritsen, Hugh Dickinson, Jane Bromley, Stephen Serjeant, Chen-Fatt Lim, Zhen-Kai Gao, Wei-Hao Wang

lynge.lauritsen@open.ac.uk
Why super-resolve Herschel SPIRE images?

- JCMT SCUBA-2 provides data with vastly improved PSF FWHM and confusion noise
- Herschel SPIRE covers a much larger area of the sky

Lim et al. 2020, Oliver et al. 2012

Characteristic	Herschel SPIRE	JCMT SCUBA-2		
Wavelength (μm)	250	350	500	450
PSF FWHM (")	18.1	24.9	36.6	7.9
Confusion noise (σ, mJy/beam)	5.8 ± 0.3	6.3 ± 0.4	6.8 ± 0.4	1
Pixel scale (")	6	8.33	12	1
How did we build the network?

- The network is an autoencoder in a UNET configuration.
- Architecture based on the GalaxyGAN generator (Schawinski et al. 2017).
- Sigmoid activation function is used to suppress noise in the output images.
- Training is done on an alternating set of simulated and real data.
Training the Network – Simulated Data

• The simulated data is simulated using the Empirical Galaxy Generator

• Custom loss function combining
 • L1-loss
 • Mean flux difference
 • Median flux difference
 • Aperture flux differences based on sources identified in the simulated target data
Training the Network – Simulated Data

- The simulated data is simulated using the Empirical Galaxy Generator

- Custom loss function combining
 - L1-loss
 - Mean flux difference
 - Median flux difference
 - Aperture flux differences based on sources identified in the simulated target data

- The aperture loss identifies source locations in the simulated data and compare aperture fluxes at these coordinates between the simulated and generated data.

\[L_{Aperture} = \frac{1}{N_s^{\text{target}}} \times \sum_{i=1}^{N_s^{\text{target}}} |f_{i}^{\text{target}} - f_{i}^{\text{generated}}| \]
Training the Network – Real Data

• The real data is from the Herschel SPIRE HerMES and the JCMT SCUBA-2 STUDIES surveys

• Custom loss function combining
 • L1-loss
 • Mean flux difference
 • Median flux difference
 • Aperture flux differences based on sources identified in the real target data
 • Aperture flux differences based on sources identified in the generated data

• The aperture loss identifies source locations in both the real generated data and cross-compare aperture fluxes at these coordinates between the real and generated data.

\[
L_{Aperture} = \frac{1}{N_s^{\text{target}}} \times \sum_{i=1}^{N_s^{\text{target}}} |f_i^{\text{target}} - f_i^{\text{generated}}| + \frac{1}{N_s^{\text{generated}}} \times \sum_{i=1}^{N_s^{\text{generated}}} |f_i^{\text{target}} - f_i^{\text{generated}}|
\]
Network output I

- The network is designed to not recreate a realistic noise profile in the image.

- Many recreated galaxies can be found in the Herschel SPIRE 250 µm image but their relative brightness is adjusted to reflect the 450 µm wavelength.
Network output I

- The network is designed to not recreate a realistic noise profile in the image.
- Many recreated galaxies can be found in the Herschel SPIRE 250 µm image but their relative brightness is adjusted to reflect the 450 µm wavelength.
Network output I

- The network is designed to not recreate a realistic noise profile in the image.
- Many recreated galaxies can be found in the Herschel SPIRE 250 µm image but their relative brightness is adjusted to reflect the 450 µm wavelength.
The network is designed to not recreate a realistic noise profile in the image.

Many recreated galaxies can be found in the Herschel SPIRE 250 µm image but their relative brightness is adjusted to reflect the 450 µm wavelength.
Network output II

• The output achieves a PSF FWHM comparable to that of the JCMT SCUBA-2 450 µm images

• The generated PSF is more regular due to reduced noise
Network output III

- Positional reconstruction is generally inside ~12 arcsec
- A few generated sources are more than 20 arcsec from a real source, these are likely artefacts from the generator
Network output IV

• The network achieves a good flux reconstruction in galaxies brighter than 9 mJy

• The network overestimates the flux of the faintest galaxies
Network output V

- Completeness (Recall) = \[\frac{TP}{TP + FN} \]
- Purity (Precision) = \[\frac{TP}{TP + FP} \]
- Network Completeness plateaus about 95% for sources brighter than 15 mJy
- High Purity of the Network as the Purity never drops below 87%
Future work

- Super-resolve all the Herschel SPIRE imaging from the COSMOS field and make a source catalogue
- Super-resolve the fields used in the JCMT SCUBA-2 RAGERS project
- Cross-correlate super-resolved sources with existing catalogues

Thank you for listening

lynge.lauritsen@open.ac.uk

arXiv:2102.06222