On the Ambarzumyan’s theorem for the Quasi-periodic Problem

Alp Arslan Kiraç

Department of Mathematics, Faculty of Arts and Sciences, Pamukkale University, 20070, Denizli, Turkey

Abstract
We obtain the classical Ambarzumyan’s theorem for the Sturm-Liouville operators \(L_t(q) \) with \(q \in L^1[0, 1] \) and quasi-periodic boundary conditions, \(t \in [0, 2\pi) \), when there is not any additional condition on the potential \(q \).

Keywords: Ambarzumyan theorem; inverse spectral theory; Hill operator

1. Introduction

In this study we consider the Sturm-Liouville operator \(L_t(q) \) generated in the space \(L^2[0, 1] \) by the expression

\[-y'' + q(x)y\] (1)

and the quasi-periodic boundary conditions

\[y(1) = e^{it}y(0), \quad y'(1) = e^{it}y'(0),\] (2)

where \(q \in L^1[0, 1] \) is a real-valued function and \(t \) is a fixed real number in \([0, 2\pi)\). Note that the operator \(L_t(q) \) is self-adjoint and the cases \(t = 0 \) and \(t = \pi \) correspond to the periodic and antiperiodic problems, respectively. Since the spectrum \(S(L(q)) \) of Hill operator \(L(q) \) generated in the space \(L^2(-\infty, \infty) \) by expression (1) with periodic potential \(q \) is the union of the spectra \(S(L_t(q)) \) of the operators \(L_t(q) \) for \(t \in [0, 2\pi) \) (e.g., see [1]), the operators \(L_t(q) \) have a fundamental role in the spectral theory of the operator.

Email address: aakirac@pau.edu.tr

Preprint submitted to Elsevier

March 9, 2015
In 1929, Ambarzumyan [2] obtained the following theorem considered as the first theorem in inverse spectral theory:

If \(\{ n^2 : n = 0, 1, \ldots \} \) is the spectrum of the Sturm-Liouville operator with Neumann boundary condition, then \(q = 0 \) a.e.

In [3], Chern and Shen proved Ambarzumyan’s theorem for the Sturm-Liouville differential systems with Neumann boundary conditions. Later, in [4], by imposing an additional condition on the potential they extended the classical Ambarzumyan’s theorem for the Sturm-Liouville equation to the general separated boundary conditions. See basics and further references in [5, 6].

At this point we refer in particular to [7, 8]. In [7], for the vectorial Sturm-Liouville problem under periodic or antiperiodic boundary conditions, Yang-Huang-Yang found two analogs of Ambarzumyan’s theorem. Their result supplements the Pöschel-Trubowitz inverse spectral theory [9]. More recently, Cheng-Wang-Wu [8] proved the following theorem:

\((a) \) If all eigenvalues of the operator \(L_0(q) \) are nonnegative and they include \(\{ (2n\pi)^2 : n \in \mathbb{N} \} \), then \(q = 0 \) a.e.

\((b) \) If all eigenvalues of the operator \(L_\pi(q) \) are not less than \(\pi^2 \) and they include \(\{ (2n\pi - \pi)^2 : n \in \mathbb{N} \} \), and

\[
\int_0^1 q(x) \cos(2\pi x) \, dx \geq 0,
\]

then \(q = 0 \) a.e.

The present work was stimulated by the papers [4, 8]. For the first time, we obtain Ambarzumyan’s theorem for the operator \(L_t(q) \) with \(t \in [0, 2\pi) \), generated by quasi-periodic boundary conditions [2]. The result established below show that the potential \(q \) can be determined from one spectrum and there is not any additional condition on \(q \) such as (3) for the operator \(L_t(q) \) with \(t = \pi \) (see also [4, 7]). The result of this paper is the following.

Theorem 1. If first eigenvalue of the operator \(L_t(q) \) for any fixed number \(t \) in \([0, 2\pi) \) is not less than the value of \(\min \{ t^2, (2\pi - t)^2 \} \) and the spectrum \(S(L_t(q)) \) contains the set \(\{ (2n\pi - t)^2 : n \in \mathbb{N} \} \), then \(q = 0 \) a.e.

2. Preliminaries and Proof of the result

We now introduce some preliminary facts. In [10] (see also [?]), without using the assumption \(q_0 = 0 \), they proved the following result:
The eigenvalues $\lambda_n(t)$ of the operator $L_t(q)$ for $q \in L^1[0,1]$ and $t \neq 0, \pi$, satisfy the following asymptotic formula

$$\lambda_n(t) = (2\pi n + t)^2 + q_0 + O\left(n^{-1} \ln|n|\right) \quad \text{as } |n| \to \infty,$$

(4)

where $q_n = (q, e^{i2\pi nx})$ for $n \in \mathbb{Z}$ and $(.,.)$ is the inner product in $L^2[0,1]$.

Note that when $q = 0$, $(2\pi n + t)^2$ for $n \in \mathbb{Z}$ is the eigenvalue of the operator $L_t(0)$ for any fixed $t \in [0,2\pi)$ corresponding to the eigenfunction $e^{i(2\pi n + t)x}$.

Proof of Theorem 1. Using the assumption that, for any $n \in \mathbb{N}$, $(2n\pi - t)^2$ belongs to the spectrum $S(L_t(q))$ and taking into account that, for sufficiently large $|n|$, the asymptotic formulas (4) for $t \neq 0, \pi$, and, in [8], (1.2)-(1.3) for $t = 0, \pi$ (see Theorem 1.1. of [8]), we obtain

$$q_0 = \int_0^1 q(x) \, dx = 0.$$

(5)

Let us show that, for fixed $t \in [0,2\pi)$, the first eigenvalue of the operator $L_t(q)$ is either t^2 or $(2\pi - t)^2$ corresponding to the eigenfunctions $y = e^{itx}$ or $y = e^{i(-2\pi + t)x}$, respectively. First, suppose that the value of $\min\{t^2, (2\pi - t)^2\}$ is t^2. By the variational principle and (5), we have for $y = e^{itx}$

$$t^2 \leq \lambda_0(t) \leq \frac{\int_0^1 -yy'' \, dx + \int_0^1 q(x)|y|^2 \, dx}{(y, y)} = t^2 + q_0 = t^2.$$

(6)

This implies that the first eigenvalue of the operator $L_t(q)$ is $\lambda_0(t) = t^2$ and the test function $y = e^{itx}$ is the first eigenfunction of the operator. Thus, Substituting the expressions $y = e^{itx}$ and $\lambda_0(t) = t^2$ into the equation

$$-y'' + q(x)y = \lambda y,$$

we get $q = 0$ in $L^1[0,1]$. Similarly, one can readily show that if the value of $\min\{t^2, (2\pi - t)^2\}$ is $(2\pi - t)^2$, then the function $y = e^{i(-2\pi + t)x}$ is the first eigenfunction corresponding to the first eigenvalue $(2\pi - t)^2$ and $q = 0$ in $L^1[0,1]$. \qed

Remark 1. Note that instead of the subset $\{(2n\pi - t)^2 : n \in \mathbb{N}\}$ of the spectrum $S(L_t(q))$ in Theorem 1 if we use either of the subsets

$\{(2n\pi + t)^2 : n \in \mathbb{N}\}$, $\{m^2 : m \text{ is either } (2n\pi - t) \text{ or } (2n\pi + t) \text{ for all } n \in \mathbb{N}\}$,

then the assertion of Theorem 1 remains valid.
References

[1] M. S. P. Eastham, The Spectral Theory of Periodic Differential Operators, Scottish Academic Press, Edinburgh, 1973.

[2] V. Ambarzumian, Über eine Frage der Eigenwerttheorie, Zeitschrift für Physik 53 (1929) 690–695.

[3] H. H. Chern, C. L. Shen, On the n-dimensional Ambarzumyan’s theorem, Inverse Problems 13 (1) (1997) 15–18.

[4] H. H. Chern, C. K. Lawb, H. J. Wang, Corrigendum to Extension of Ambarzumyan’s theorem to general boundary conditions, J. Math. Anal. Appl. 309 (2005) 764–768.

[5] B. M. Levitan, M. G. Gasymov, Determination of a differential equation by two of its spectra, Usp. Mat. Nauk 19 (1964) 3–63.

[6] H. Hochstadt, B. Lieberman, An inverse sturm-liouville problem with mixed given data, SIAM J. Appl. Math. 34 (1978) 676–680.

[7] C. F. Yang, Z. Y. Huang, X. P. Yang, Ambarzumyan’s theorems for vectorial sturm-liouville systems with coupled boundary conditions., Taiwanese J. Math. 14 (4) (2010) 1429–1437.

[8] Y. H. Cheng, T. E. Wang, C. J. Wu, A note on eigenvalue asymptotics for Hill’s equation., Appl. Math. Lett. 23 (9) (2010) 1013–1015.

[9] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, Boston, 1987.

[10] O. A. Veliev, M. Duman, The spectral expansion for a nonself-adjoint Hill operator with a locally integrable potential, J. Math. Anal. Appl. 265 (2002) 76–90.

[11] O. A. Veliev, A. A. Kıraç, On the nonself-adjoint differential operators with the quasiperiodic boundary conditions, International Mathematical Forum 2 (35) (2007) 1703–1715.