Low Mach and thin domain limit for the compressible Euler system

Matteo Caggio1 · Bernard Ducomet2 · Šárka Nečasová1 · Tong Tang3

Received: 24 January 2020 / Accepted: 26 September 2020 / Published online: 9 October 2020
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
We consider the compressible Euler system describing the motion of an ideal fluid confined to a straight layer \(\Omega_\delta = (0, \delta) \times \mathbb{R}^2, \ \delta > 0 \). In the framework of dissipative measure-valued solutions, we show the convergence to the strong solution of the 2D incompressible Euler system when the Mach number tends to zero and \(\delta \to 0 \).

Keywords Compressible Euler equations · Dissipative measure-valued solutions · Low Mach number · Thin domain

Mathematics Subject Classification 35Q31 · 76N10

1 Introduction

The present paper is devoted to the problem of the limit passage from three-dimensional to two-dimensional geometry, and from compressible to incompressible inviscid fluid. In the infinite straight layer

\[\Omega_\delta = (0, \delta) \times \mathbb{R}^2, \ \delta > 0, \quad (1.1) \]

we consider the compressible Euler system describing the motion of a barotropic fluid,

\[\partial_t \rho_e + \text{div}_x (\rho_e \mathbf{u}_e) = 0, \quad (1.2) \]

\[\partial_t (\rho_e \mathbf{u}_e) + \text{div}_x (\rho_e \mathbf{u}_e \otimes \mathbf{u}_e) + \frac{1}{\epsilon^2} \nabla_x p(\rho_e) = 0, \quad (1.3) \]

supplemented with the initial conditions

\[\rho_e(x,0) = \rho_0(x), \quad \mathbf{u}_e(x,0) = \mathbf{u}_0(x), \]

where \(\rho_e \) and \(\mathbf{u}_e \) are the density and velocity of the fluid, respectively, and \(\epsilon \) is the Mach number.
\[\rho_e(0, \cdot) = \rho_{0,e}, \quad \rho_e u_e(0, \cdot) = m_{0,e}, \tag{1.4} \]

and the far field conditions
\[u_e \to 0, \quad \rho_e \to \tilde{\rho} \quad \text{as} \quad |x| \to \infty, \tag{1.5} \]

with \(\tilde{\rho} > 0 \) constant.

The above system is written in its non-dimensional form, with \(\epsilon \) the Mach number (the Strouhal number allowed by the scale analysis is set equal to one). Here, \(\rho_e = \rho_e(x, t) \) \(u_e = u_e(x, t) \) and \(p = p(\rho_e, (x, t)) \) represents the mass density, the velocity vector and the pressure respectively (for assumptions on the pressure see Theorem 3.1).

In the context of the low Mach number limit, the convergence of the solution of the compressible Euler system to the solution of the incompressible system was shown in several papers for well-prepared initial data of the compressible system, namely data for which the acoustic waves are not allowed, and for smooth solutions of the compressible flow (see [2, 22, 32, 35, 39]). Indeed, it is known that solutions of the compressible Euler system develop singularities in a finite time independently how smooth and/or small the initial data are. Moreover, it was shown by Feireisl et al. [24], it is very hard to prove that the life span of the smooth solutions is independent of the Mach number. Consequently, smooth solutions are quite restrictive for compressible inviscid flows. Precisely speaking, in [29, 30] it is assumed that the initial density \(\rho_0 \) has compact support and \(\rho_0^{(2-1)/2} \in H^m \) is small. Moreover, the crucial assumption on the velocity field is that \(D(v_0) \in L^\infty, D^2(v_0) \in H^{m-1} \) and there exists \(\epsilon > 0 \) such that for any \(x \in \mathbb{R}^d, \text{dist}(\text{Sp}(Dv_0(x)), R_{-}) \geq \epsilon \) (with \(H^m \) we denote the homogeneous Sobolev spaces). Recently, these results have been extended by Blanc et al. [6] for the Euler system coupled to the Helmholtz or Poisson equations without assumption on the compact support of initial density.

In order to obtain global existence results, it is necessary to move into weak solutions. As mentioned by Feireisl et al. [24], the recent theory of convex integration has shown the existence of a “large number” of global-in-time weak solutions for regular initial data, even if “most of them” violate the basic energy inequality associated to the system (see [14, 19]). Moreover, there exist a family of “wild” initial data producing infinitely many weak solutions satisfying the so-called admissibility criteria (see, for example, [16, 17, 19]). Despite the present results the existence of global-in-time admissible weak solutions for arbitrary (smooth) initial data remains an open problem for the compressible Euler system. However, a recent analysis by Breit et al. [8] proposed a new concept of dissipative solutions to the compressible Euler system.

Therefore, for the purpose of the present analysis, we move into the so-called dissipative measure-valued (DMV) solutions. Let us mention that such type of solutions were recently developed by Demoulini et al. [20] in the context of polyconvex elastodynamics, while in context of fluid dynamics were studied by Gwiadza et al. [25, 31] (measure-valued solutions in the sense of DiPerna [18] can be found, e.g., [7, 33, 36]). Indeed, for the Euler system, the advantage of DMV solutions is that they exist globally in time for any finite energy initial data even if, in general, the solutions are not uniquely determined by the initial data. In this framework, very recently, the low Mach number limit analysis for the compressible Euler system was developed by Feireisl et al. [24] for the case of well-prepared and ill-prepared initial data, namely the acoustic waves are present and they are dispersed in the low Mach number limit. For other recent results concerning singular limit analysis in the framework of DMV solutions the reader can refer, for example, to [12, 23]. While, for heat conducting inviscid fluid to [9, 10].
In the context of thin domain limit analysis, recently Caggio et al. [13] consider the compressible Navier–Stokes system describing the motion of a viscous fluid confined in the straight layer (1.1). They show that the weak solutions in the 3D domain converge strongly to the solution of the 2D incompressible Navier–Stokes equations (Euler equations) when the Mach number tends to zero as well as \(\delta \to 0 \) (and the viscosity goes to zero). For other works related to a dimension reduction limit the reader can refer, for example, to [5, 11, 21, 34]. Compared with Navier–Stokes equations, it is interesting and natural to investigate the low Mach number limit for compressible Euler system in the context of thin domain limit analysis. Based on the analysis of Caggio et al. [13] and Feireisl et al. [24], our goal is to rigorously justify the asymptotic limit of solutions for \(\varepsilon, \delta \to 0 \) in the framework of DMV solutions. The analysis will be developed for ill-prepared data. The well-prepared case is an easy consequence.

Formally, for \(\varepsilon, \delta \to 0 \), namely the low Mach and thin domain limit, the limit system is expected to satisfy the two-dimensional incompressible Euler system

\[
\text{div}_h \mathbf{v} = 0,
\]

\[
\partial_t \mathbf{v} + \mathbf{v} \nabla_h \mathbf{v} + \nabla_h \Pi = 0,
\]

with \(\mathbf{v} = \mathbf{v}(x, t) \) the velocity, \(\Pi = \Pi(x, t) \) the pressure, and the initial condition

\[
\mathbf{v}(0, \cdot) = \mathbf{v}_0.
\]

Here, we meant \(\mathbf{v} = (v_1, v_2) \) a vector field in \(\mathbb{R}^2 \), with

\[
\nabla_h = (\partial_{x_1}, \partial_{x_2}), \quad \text{div}_h = \nabla_h \cdot.
\]

We assume the thickness \(\delta \) of the domain depending on \(\varepsilon \) such that \(\delta(\varepsilon) \to 0 \) as \(\varepsilon \), and, for a function \(f \) defined in \(\Omega_\delta \), we denote its average in the \(x_3 \)-direction as

\[
\bar{f}(x_h) = f^\delta(x_h) = \frac{1}{\delta} \int_0^\delta f(x_h, x_3) dx_3,
\]

where \(x_h = (x_1, x_2) \). Namely, a bar over a function denotes the average over \(x_3 \in (0, \delta) \). We will show that, if the average value of the initial data of the compressible Euler system converges, in a certain sense specified below, to the initial data of the incompressible Euler system, namely \((\bar{\rho}_{0,\varepsilon}, \bar{\mathbf{u}}_{0,\varepsilon}) \to (1, \mathbf{v}_0) \), then the limit \((\bar{\rho}, \bar{\mathbf{u}}) \)—the (space) average of the solutions \((\rho_{\varepsilon}, \mathbf{u}_{\varepsilon}) \) of the compressible Euler system—corresponds to the (classical) solution of the incompressible Euler system in \(\mathbb{R}^2 \).

The paper is organized as follows. In Sect. 2, we introduce the definition of dissipative measure-valued solutions, relative energy and the other necessary material. In Sect. 3, we perform the analysis of the acoustic waves and state our main theorem. Section 4 is devoted to deriving uniform bounds of the Euler system independent of \(\varepsilon \). The proof of the main theorem is completed in Sect. 5.

2 Measure-valued solutions and relative energy inequality

In this section, we introduce the DMV solutions and the relative energy inequality as key tool of our analysis. Smooth solution of the incompressible Euler system will be also discussed.
2.1 Dissipative measure-valued solutions

Before introducing the notion of DMV solutions, for convenience of readers, we give a short introduction of some concepts following the presentation of [10]. For more details see, for example, [15, 33].

First, we introduce the phase-space associated to the solutions \([\rho, m] = [\rho, \mu]\), namely

\[
\mathcal{Q} = \{[\rho, m] \mid \rho \in [0, \infty), m \in \Omega_{\beta}\}.
\]

Now, let \(L_{\text{weak}-(\ast)}^\infty((0, T) \times \Omega; \mathcal{P}(\mathcal{Q}))\) be the space of essentially bounded weakly-(\ast) measure maps \(Y : (0, T) \times \Omega \to \mathcal{P}(\mathcal{Q}), (t, x) \mapsto Y_{t,x}\). By virtue of fundamental theorem on Young measures (see Ball [3]) there exists a subsequence of \(\{\rho_\epsilon, m_\epsilon\}_{\epsilon > 0}\) and parameterized family of probability measures \(\{Y_{t,x}\}_{(t,x) \in (0,T) \times \Omega}\)

\[
[(t, x) \mapsto Y_{t,x}] \in L_{\text{weak}-(\ast)}^\infty((0, T) \times \Omega; \mathcal{P}(\mathcal{Q})),
\]

such that a.a. \((t, x) \in (0, T) \times \Omega\)

\[
\langle Y_{t,x}; G(\rho, m) \rangle = \widehat{G(\rho, m)}(t, x) \quad \text{for any} \quad G \in C_c(\mathcal{Q}), \quad \text{and} \quad \text{a.a.} \quad (t, x) \in (0, T) \times \Omega
\]

whenever

\[
G(\rho_\epsilon, m_\epsilon) \to \widehat{G(\rho, m)}(t, x) \quad \text{weakly} - (\ast) \quad \text{in} \quad L^\infty((0, T) \times \Omega).
\]

Above, the hat over a function is intended as weak limit. The parameterized family of measures \(\{Y_{t,x}\}_{(t,x) \in (0,T) \times \Omega}\) is called Young measure associated to the sequence \(\{\rho_\epsilon, m_\epsilon\}_{\epsilon > 0}\). If \(G \in C(\mathcal{Q})\) is such that

\[
\int_0^T \int_{\Omega} |G(\rho_\epsilon, m_\epsilon)| dx \leq C, \quad \text{uniformly for} \ \epsilon \to 0, \quad (2.1)
\]

then \(G\) is \(Y_{t,x}\) integrable for almost all \((t, x) \in (0, T) \times \Omega\)

\[
[(t, x) \mapsto \langle Y_{t,x}; G(\rho, m) \rangle] \in L^1((0, T) \times \Omega),
\]

and

\[
G(\rho_\epsilon, m_\epsilon) \to \widehat{G(\rho, m)}(t, x) \quad \text{weakly} - (\ast) \quad \text{in} \quad \mathcal{M}((0, T) \times \Omega).
\]

Note that the Young measure \([(t, x) \mapsto \langle Y_{t,x}; G(\rho, m) \rangle]\) is a parameterized family of nonnegative measures acting on the phase space \(\mathcal{Q}\), while \(\widehat{G(\rho, m)}(t, x)\) is a signed measure on the physical space \([0, T] \times \Omega\). In conclusion, the difference

\[
\mu_G \equiv \widehat{G(\rho, m)} - [(t, x) \mapsto \langle Y_{t,x}; G(\rho, m) \rangle] \in \mathcal{M}((0, T) \times \Omega),
\]

is called concentration defect measure. It vanishes whenever the family \(G(\rho, m)\) is equi-integrable in \(L^1((0,T), \Omega)\).

Remark 2.1 As mentioned in [10], \([(t, x) \mapsto \langle Y_{t,x}; G(\rho, m) \rangle]\) can be identified as the “biting limit” of the family \(G(\rho_\epsilon, \rho_\epsilon \mu_\epsilon)_{\epsilon > 0}\) (see [4]). Moreover, the same holds for any \(G : \mathcal{F} \to \mathbb{R} \cup \{-\infty, +\infty\}\) satisfying (2.1) and such that there exists a sequence \(G_m \in C_c(\mathcal{F}), G_m \to G\) in \(\mathcal{F}\).

\(\copyright\) Springer
The following definition was introduced in [25] (see also [24]): A dissipative measure-valued (DMV) solution of the Euler system (1.2)–(1.3) is a Young measure \(\{Y_{t,x}\}_{t \in [0,T], x \in \Omega_\delta} \) satisfying:

- **Equation of continuity**
 \[
 \int_0^T \int_{\Omega_\delta} \left[(Y_{t,x};\rho) \frac{\partial \rho}{\partial t} + \langle Y_{t,x};m \rangle \nabla_x \varphi \right] dx dt = -\int_{\Omega_\delta} \langle Y_{0,x};\rho \rangle \varphi(0) dx, \tag{2.2}
 \]
 for all \(\varphi \in C_c^\infty((0,T) \times \Omega_\delta) \).

- **Momentum equation**
 \[
 \int_0^T \int_{\Omega_\delta} \left[(Y_{t,x};m) \frac{\partial \rho}{\partial t} + \langle Y_{t,x};m \rangle \rho \right] \nabla_x \varphi dx dt + \int_0^T \int_{\Omega_\delta} \langle Y_{t,x};p(\rho) \rangle \nabla \varphi dx dt = -\int_{\Omega_\delta} \langle Y_{0,x};m \rangle \varphi(0) dx - \int_0^T \int_{\Omega_\delta} \nabla_x \varphi : d\mu^M_D, \tag{2.3}
 \]
 for all \(\varphi \in C_c^\infty((0,T) \times \Omega_\delta;\mathbb{R}^3) \) and a signed measure \(\mu^M_D \in \mathcal{M}([0,T] \times \Omega_\delta;\mathbb{R}^3 \times \mathbb{R}^3) \) characterizing the concentration defect.

- **Energy inequality**
 \[
 \int_{\Omega_\delta} \langle Y_{t,x}; \frac{1}{2} \frac{|m|^2}{\rho} + (\rho^P - P'(\rho^*) (\rho - \rho^*) - P(\rho^*)) \rangle dx + D(t) \leq \int_{\Omega_\delta} \langle Y_{0,x}; \frac{1}{2} \frac{|m|^2}{\rho} + (\rho^P - P'(\rho^*) (\rho - \rho^*) - P(\rho^*)) \rangle dx \tag{2.4}
 \]
 for a.a \(t \in (0,T) \), where
 \[
 P(\rho) = \rho \int_{\rho^*}^\rho \frac{p(z)}{z^2} dz, \tag{2.5}
 \]
 and the nonnegative function \(D \in L^\infty(0,T) \) is the so-called dissipation defect.

- **Compatibility conditions**
 \[
 \int_0^T \int_{\Omega_\delta} |\mu^M_D| dx dt \leq C \int_0^T \xi(t) D(t) dt, \quad \text{for a.a } t \in (0,T), \quad \text{for some } \xi \in L^1(0,T). \tag{2.6}
 \]

Remark 2.2 The functions
\[
[\rho,m] \mapsto \frac{m \otimes m}{\rho}, \quad [\rho,m] \mapsto \frac{|m|^2}{\rho}
\]
are singular on the vacuum set \(\rho = 0 \). We set
\[
\frac{|m|^2}{\rho} = \begin{cases} \infty, & \text{if } \rho = 0 \quad \text{and} \quad m \neq 0, \\ 0, & \text{otherwise}. \end{cases}
\]
Accordingly, it follows from the energy inequality (2.4) that the function \([\rho,m] \mapsto \frac{|m|^2}{\rho} \) is \(Y_{t,x} \) integrable for a.a. \((t,x)\). In particular,
Namely, if the measure $Y_{t,x}$ “allows” vacuum zones, it must be only for $m = 0$ (see Remark 2.7 in [10]).

Remark 2.3 The measure $Y_{0,x}$ plays the role of initial conditions.

Remark 2.4 The proof of an existence of DMV solutions of Euler system was done in the pioneer work by Neustupa, [36]. Feireisl et al. [9, 10] proved the existence of (DMV) solutions to the full Euler system. The existence of DMV solutions to (1.1)−(1.3) can be obtained by analogous methods as in [10].

Remark 2.5 In the sense of Alibert and Bouchitté [1], the concentration defect measure ∇M is the Young measure associated to the so-called “recession function” corresponding to the sum of the convective and pressure terms in the momentum equation. The concentration defect measure in the continuity equation is equal to zero because of the equi-integrability of the density and momentum (see [10], Section 2.1.3).

Remark 2.6 The dissipation defect D arises in the energy inequality of the problem as the limit of energy inequality satisfying the approximate dissipative solution. Precisely,

$$D(\tau) =: \mu_E - \int_{\Omega} \langle Y_{t,x}, \frac{1}{2} \frac{\|m\|^2}{\rho} + (P(\rho) - P'(\rho)(\rho - \tilde{\rho}) - P(\tilde{\rho})) \rangle dx,$$

where

$$\mu_E$$

is the weak limit of

$$\frac{1}{2} \frac{\|m\|^2}{\rho} + (P(\rho) - P'(\rho)(\rho - \tilde{\rho}) - P(\tilde{\rho}))(\tau) \quad \text{in} \quad M((0,T) \times \Omega).$$

For more details see [10], Remark 2.5. Similarly to μ^M_D, the dissipation defect D can be given in terms of the “recession function” associated to the energy $\frac{1}{2} |\sqrt{\rho}u|^2 + P(\rho)$.

2.2 Relative energy inequality

Motivated by [24] (see also [27]), we introduce the following modified relative energy functional

$$\mathcal{E}(\rho, m|r, U) = \frac{1}{\delta} \int_{\Omega_\delta} \langle Y_{t,x}, \frac{1}{2} \rho \frac{m}{\rho} \rangle dx + \frac{1}{2} (r - \tilde{r})^2 + (P(\rho) - P'(\rho)(\rho - \tilde{\rho}) - P(\tilde{\rho}))(\tau) \leq \frac{1}{\delta} \int_0^\tau \mathcal{R}(\rho, m|r, U) dt,$$

where $r > 0$, U are smooth functions such that $r - \tilde{r}$, U are compactly supported in Ω_δ. Any DMV solution of (1.1) satisfies the relative energy inequality (see [24, 28])

$$\mathcal{E}(\rho, m|r, U)|_{t=0} + D(\tau) \leq \frac{1}{\delta} \int_0^\tau \mathcal{R}(\rho, m|r, U) dt,$$

with the remainder
Here, the acoustic contribution comes from the density perturbation described by s, for $r, U \in C^1([0, T] \times \Omega_\delta), r - \bar{r}, U$ compactly supported in Ω_δ.

2.3 Solution of the incompressible Euler system

As shown by Oliver [37], the incompressible Euler system (1.6)-(1.7) possesses a unique strong solution

$$v \in C([0, T]; W^{m,2}(\mathbb{R}^2)), \quad \Pi \in C([0, T]; W^{m,2}(\mathbb{R}^2)), \quad m \geq 3,$$ \hspace{1cm} (2.10)

for any

$$v_0 \in W^{m,2}(\mathbb{R}^2), \quad \text{div} v_0 = 0.$$ \hspace{1cm} (2.11)

3 Initial-data and acoustic waves

In order to introduce the contribution coming from the acoustic waves, we consider the initial data for the system (1.2)–(1.3) in the following form

$$\rho_s(0, \cdot) = \rho_{0,e} = \bar{\rho} + \varepsilon s_{0,e}, \quad u_s(0, \cdot) = u_{0,e}$$ \hspace{1cm} (3.1)

for $s_0 \in L^\infty \cap L^1(\mathbb{R}^2)$ and $\bar{u}_0 = v_0 + \nabla_s \Psi_0$, $\text{div}_r(\bar{\rho} v_0) = 0$. Here, the acoustic contribution comes from the density perturbation described by s, and the gradient of the acoustic potential Ψ. We assume ill-prepared initial data, namely

$$\frac{1}{\delta} \int_{\Omega_\delta} \left(Y_{0,e} - \frac{1}{2} \rho \right) \frac{m}{\rho} \left| \nabla - u_{0,e}(x) \right|^2 + \frac{1}{\varepsilon^2} (P(\rho) - P(\rho_{0,e})(\rho - \rho_{0,e}) - P(\rho_{0,e})) \, dx \to 0$$ \hspace{1cm} (3.2)

as $\varepsilon \to 0$. This could be rephrased as follows

$$\frac{\rho_{0,e} - \bar{\rho}}{\varepsilon} \quad \text{bounded in} \quad L^\infty(\mathbb{R}^2), \quad \frac{\rho_{0,e} - \bar{\rho}}{\varepsilon} \to s_0 \quad \text{in} \quad L^1(\mathbb{R}^2), \quad \frac{u_{0,e}}{\varepsilon} \to \bar{u}_0 \quad \text{in} \quad L^2(\mathbb{R}^2, \mathbb{R}^3).$$ \hspace{1cm} (3.3)

The corresponding (two-dimensional) acoustic system reads

$$\begin{cases}
\varepsilon \partial_t s_\varepsilon + \bar{\rho} \Delta_h s_\varepsilon = 0, \\
\varepsilon \partial_t \nabla_h \Psi_\varepsilon + \frac{P'(\bar{\rho})}{\bar{\rho}} \nabla_h s_\varepsilon = 0,
\end{cases}$$ \hspace{1cm} (3.4)

with the initial data

$$s_\varepsilon(0, \cdot) = s_0, \quad \nabla_h \Psi_\varepsilon(0, \cdot) = \nabla_h \Psi_0.$$ \hspace{1cm} (3.5)
For technical reasons, the initial data must be smoothed and cut-off via suitable regularization operators, namely
\[
\tilde{s}_\varepsilon(0, \cdot) = s_{0, \eta} = \frac{\tilde{\rho}}{p'(\tilde{\rho})} \left[\frac{p'(\tilde{\rho})}{\rho} s_0 \right]_\eta, \quad \nabla_h \Psi_\varepsilon(0, \cdot) = \nabla_h \Psi_{0, \eta} = \nabla_h [\Psi_0]_\eta, \tag{3.6}
\]
where \([\cdot]_\eta\) denotes the regularization.

Denoting the corresponding (smooth) solutions of the acoustic system as \((s_{\varepsilon, \eta}, \Psi_{\varepsilon, \eta})\), the energy conservation and the standard energy estimates hold in two-dimension, namely
\[
\frac{d}{dt} \int_{\mathbb{R}^2} \frac{1}{2} \left[p'(\tilde{\rho}) \left| s_{\varepsilon, \eta}(t, \cdot) \right|^2 + \tilde{\rho}^2 \left| \Psi_{\varepsilon, \eta}(t, \cdot) \right|^2 \right] dx = 0 \tag{3.7}
\]
with \(p'(\tilde{\rho}) = a^2, a > 0\) velocity of sound, and
\[
\sup_{t \in [0, T]} \left[\| s_{\varepsilon, \eta}(t, \cdot) \|_{W^{m,2}(\mathbb{R}^2)} + \| \Psi_{\varepsilon, \eta}(t, \cdot) \|_{W^{m,2}(\mathbb{R}^2)} \right] \leq C(m, \eta) \left[\| \nabla_x \Psi_{0, \eta} \|_{W^{m,2}(\mathbb{R}^2)} + \| s_{0, \eta} \|_{W^{m,2}(\mathbb{R}^2)} \right]. \tag{3.8}
\]
for any fixed \(m \geq 0\) and \(\eta > 0\).

Moreover, the so-called dispersive estimate reads as follows (see [38])
\[
\|\Psi_{\varepsilon, \eta}(t, \cdot)\|_{L^q(\mathbb{R}^2, W^k_p(\mathbb{R}^2))} + \| s_{\varepsilon, \eta}(t, \cdot)\|_{L^q(\mathbb{R}^2, W^{k+1}_p(\mathbb{R}^2))} \leq C \varepsilon^{\frac{k+1}{2}} \| \nabla_x \Psi_{0, \eta} \|_{W^{m,2}(\mathbb{R}^2)} + \| s_{0, \eta} \|_{W^{m,2}(\mathbb{R}^2)} \tag{3.9}
\]
for any
\[
p \in (2, \infty), \quad \frac{2}{q} = \frac{1}{2} - \frac{1}{p}, \quad q \in (4, \infty),
m \geq 0, \quad k = 0, 1, \ldots, m - 1. \tag{3.10}
\]

3.1 Incompressible limit on thin domain—main result

Our main result reads as follows.

Theorem 3.1 Let \(p \in C^1(0, \infty) \cap C[0, \infty)\) satisfying
\[
p'(\rho) > 0 \text{ for all } \rho > 0, \quad \lim_{\rho \to \infty} \frac{p(\rho)}{\rho} = P_\infty < \infty, \quad \lim \inf_{\rho \to \infty} \frac{p(\rho)}{p'} \geq p_\infty > 0 \text{ for some } \gamma > 1.
\]

Let \(\{Y^\varepsilon_{1, \lambda}\}_{1, \lambda \in [0, T] \times \Omega}\) be a family of DMV solutions to the scaled compressible Euler system (1.2)-(1.3) satisfying the compatibility condition (2.6) with a function \(\xi\) independent of \(\varepsilon\).

Let the initial data \(\{Y^\varepsilon_{0, \lambda}\}_{\lambda \in \Omega}\) be ill-prepared, namely (3.2) holds.

Then,
\[D^\varepsilon \to 0 \text{ in } L^\infty(0, T), \]
\[\text{ess sup}_{t \in (\eta, T)} \frac{1}{\delta} \int_0^\delta \int_B \left(Y_{t,x}^\varepsilon \frac{1}{2} \rho \left(\frac{m}{\rho} - v \right)^2 + \frac{1}{\epsilon^2} (P(\rho) - P'(\bar{\rho})(\rho - \bar{\rho}) - P(\bar{\rho})) \right) dx \to 0 \]

as \(\epsilon \to 0 \) for any compact \(B \subset \mathbb{R}^2 \) and any \(0 < \eta < T \), where \(v \) is the solution of the incompressible Euler system (1.6)-(1.7) with initial data \(v_0 = P(\bar{v}_0) \), where \(P \) denotes the standard Helmholtz projection onto the space of solenoidal functions.

The rest of the paper is devoted to the proof of Theorem 3.1.

4 Energy bounds

We introduce the following decomposition (see for example [26])
\[h(\rho, m) = [h]_{ess}(\rho, m) + [h]_{res}(\rho, m), \quad [h]_{ess} = \psi(\rho)h(\rho, m), \quad [h]_{res} = (1 - \psi(\rho))h(\rho, m), \]
where
\[\psi \in C^\infty_c(0, \infty), \quad 0 \leq \psi(\rho) \leq 1, \quad \psi(\rho) = 1 \text{ for all } \rho \in \left[\frac{1}{2} \min \tilde{\rho}, 2 \max \tilde{\rho} \right]. \]

The right-hand side of the energy inequality (2.4) is bounded uniformly for \(\epsilon \to 0 \). Consequently, we have
\[\text{ess sup}_{t \in (0, T)} \frac{1}{\delta} \int_{\Omega_3} \left\{ Y_{t,x}^\epsilon \frac{1}{2} \left(\frac{|m|}{\rho} \right)^2 + \frac{1}{\epsilon^2} (P(\rho) - P'(\bar{\rho})(\rho - \bar{\rho}) - P(\bar{\rho})) \right\} dx \leq C. \quad (4.1) \]

Now, in order to derive further bounds, we follow the analysis in [24]. Since
\[P''(\rho) = \frac{P'(\rho)}{\rho}, \quad \text{for } \rho > 0, \]
the convexity of \(P(\rho) \) gives
\[|\rho - \tilde{\rho}|^2 \leq C(\xi)(P(\rho) - P'(\tilde{\rho})(\rho - \tilde{\rho}) - P(\tilde{\rho})) \]
whenever \(0 < \xi \leq \rho, \quad \tilde{\rho} \leq \frac{1}{\xi}, \quad \xi > 0; \quad (4.2) \]
\[1 + |\rho - \tilde{\rho}| + P(\rho) \leq C(\xi)(P(\rho) - P'(\tilde{\rho})(\rho - \tilde{\rho}) - P(\tilde{\rho})) \]
if \(0 < 2\xi < \tilde{\rho} < \frac{1}{\xi}, \quad \rho \in [0, \xi) \cup \left(\frac{1}{\xi}, \infty \right), \quad \xi > 0. \quad (4.3) \]

The above estimates give
\[\text{ess sup}_{t \in (0, T)} \frac{1}{\delta} \int_{\Omega_3} \left\{ Y_{t,x}^\varepsilon \left[\frac{|\rho - \tilde{\rho}|^2}{\varepsilon^2} \right]_{ess} + \left(Y_{t,x}^\varepsilon \left[\frac{P(\rho) + 1}{\varepsilon^2} \right]_{res} \right) \right\} dx \leq C. \quad (4.4) \]

Moreover, we have...
\[
\frac{1}{\delta} \int_{\Omega_0} \left\langle Y_{t,x}^c : |m|^2 \right\rangle \, dx \leq \frac{1}{\delta} \int_{\Omega_0} \left\langle Y_{t,x}^c : \left[\rho \left| \frac{m}{\rho} \right|^2 \right] \right\rangle \, dx \leq C. \quad (4.5)
\]

From
\[
\left| |m| \right|_{\text{res}} \leq \frac{|m|}{\sqrt{\rho}} \left| \sqrt{\rho} \right|_{\text{res}},
\]
we have
\[
\left[|m| \right]_{\text{res}} \leq C \left(\varepsilon \rho \left| \frac{m}{\rho} \right|^2 + \frac{1}{\varepsilon} \left| \rho^p \right|_{\text{res}} \right).
\]
Consequently
\[
\frac{1}{\delta} \int_{\Omega_0} \left\langle Y_{t,x}^c : |m|^{2 \varepsilon} \right\rangle \, dx \leq \varepsilon C. \quad (4.6)
\]
Finally, we obtain
\[
\left\langle Y_{t,x}^c : \bar{m} \right\rangle \text{ bounded in } L^\infty(0,T;L^2(\mathbb{R}^2)) + L^{2\varepsilon}(\mathbb{R}^2),
\]
\[
\left\langle Y_{t,x}^c : \left[\frac{\bar{\rho} - \tilde{\rho}}{\varepsilon} \right] \right\rangle \text{ bounded in } L^\infty(0,T;L^2(\mathbb{R}^2)), \quad (4.7)
\]
\[
e^{-\varepsilon t} \left\langle Y_{t,x}^c : |\bar{\rho}|_{\text{res}} \right\rangle \text{ bounded in } L^\infty(0,T;L^2(\mathbb{R}^2)),
\]
where we averaged in the sense of (1.9), noticing
\[
\left[|\bar{m}| \right]_{\text{ess}} \leq \left[|\bar{m}|^2 \right]_{\text{ess}} \text{ bounded in } L^\infty(0,T;L^1(\mathbb{R}^2)),
\]
\[
\left[|\bar{m}| \right]_{\text{ess}} \leq \left[|m|^{2 \varepsilon} \right]_{\text{ess}} \text{ bounded in } L^\infty(0,T;L^1(\mathbb{R}^2)),
\]
\[
\left[\left| \frac{\bar{\rho} - \tilde{\rho}}{\varepsilon} \right|^2 \right]_{\text{ess}} \leq \left[\left| \frac{\rho - \tilde{\rho}}{\varepsilon} \right|^2 \right]_{\text{ess}} \text{ bounded in } L^\infty(0,T;L^1(\mathbb{R}^2)),
\]
\[
es_{\text{ess}} \sup_{t \in (0,T)} \left\| \bar{\rho} \right\|_{L^1(\mathbb{R}^2)} \leq \varepsilon s_{\text{ess}} \sup_{t \in (0,T)} \left\| \rho^p \right\|_{L^1(\mathbb{R}^2)} \leq ce^2;
\]
and where we used the following Jensen’s inequality
\[
\left\langle Y_{t,x}^c : |f|^p \right\rangle \leq \left\langle Y_{t,x}^c : |f|^p \right\rangle, \quad p \geq 1.
\]

5 Convergence

The proof of Theorem 3.1 is based on the ansatz \(r = \tilde{\rho} + \varepsilon s_{\varepsilon, \eta} \) and \(U = \nabla \tilde{\rho} \Psi_{\varepsilon, \eta} \) in the relative energy inequality (2.8). Here, \(\nabla \varepsilon \) is solution of incompressible Euler system (1.6)-(1.7), and \((s_{\varepsilon, \eta}, \Psi_{\varepsilon, \eta}) \) solution of the acoustic system (3.4) with \(\nabla \varepsilon \Psi_{\varepsilon, \eta} = (\nabla \tilde{\rho} \Psi_{\varepsilon, \eta}, 0) \).
For simplicity, we drop the subscript e, η in $(s_{e, \eta}, \Psi_{e, \eta})$. Moreover, we assume $\tilde{\rho} = 1$. In the following, we estimate each \mathcal{R}_j $(j = 1, 2, 3)$ in (2.9).

5.1 The convective term

We write

$$
\frac{1}{\delta} \int_0^\tau \mathcal{R}_1 dt = \frac{1}{\delta} \int_0^\tau \int_{\Omega_\delta} \langle Ye_{t,x}((\partial_t U + U \cdot \nabla_x U) \cdot (\rho U - m)) \rangle dx dt
$$

$$
+ \frac{1}{\delta} \int_0^\tau \int_{\Omega_\delta} \langle Ye_{t,x} : \left(\frac{m}{\rho} - U \right) \cdot \nabla_x U \cdot (\rho U - m) \rangle dx dt.
$$

(5.1)

The last term is controlled by

$$
\int_0^\tau \| \nabla_x \eta(T, \cdot)\|_{L^\infty(\mathbb{R}^3)} \mathcal{E}(t) dt + \frac{1}{\delta} \int_0^\tau \int_{\Omega_\delta} \langle Ye_{t,x} : \left(\frac{m}{\rho} - U \right) \cdot \nabla_x \nabla_x \psi \cdot (\rho U - m) \rangle dx dt
$$

$$
\leq \int_0^\tau c(t) \mathcal{E}(t) dt - \frac{1}{\delta} \int_0^\tau \int_{\Omega_\delta} \langle Ye_{t,x} : m \otimes m : \nabla_x \nabla_x \psi \rangle dx dt
$$

$$
+ \frac{2}{\delta} \int_0^\tau \int_{\Omega_\delta} \langle Ye_{t,x} : (m \otimes U) \cdot \nabla_x \nabla_x \psi \rangle dx dt
$$

$$
- \frac{1}{\delta} \int_0^\tau \int_{\Omega_\delta} \langle Ye_{t,x} : \rho (U \otimes U) \cdot \nabla_x \nabla_x \psi \rangle dx dt.
$$

(5.2)

For the $\frac{m}{\rho} \otimes m$ term and from (4.1), we have

$$
\left| \frac{1}{\delta} \int_0^\tau \int_{\Omega_\delta} \langle Ye_{t,x} \cdot \frac{m}{\rho} \otimes m : \nabla_x \nabla_x \psi \rangle dx dt \right| \leq c(T) \left\| \frac{m}{\rho} \right\|_{L^\infty_t(L^1(\mathbb{R}^3))} \left\| \nabla^2 \psi \right\|_{L^1_t(L^\infty(\mathbb{R}^3))}
$$

$$
\leq c(\eta, T) \left\| \frac{m}{\rho} \right\|_{L^\infty_t(L^1(\mathbb{R}^3))} \left\| \nabla^2 \psi \right\|_{L^1_t(L^\infty(\mathbb{R}^3))} \leq c(\eta, T) e^{\frac{1}{\delta}}
$$

(5.3)

Moreover, by using the uniform bound of $(Y_{t,x} ; \vec{m})$ in $L^\infty(0, T; L^2 + L^{2\theta}(\mathbb{R}^3))$,

$$
\left| \frac{1}{\delta} \int_0^\tau \int_{\Omega_\delta} \langle Ye_{t,x} : (m \otimes U) \cdot \nabla_x \nabla_x \psi \rangle dx dt \right|
$$

$$
\leq c(T) \left\| Y_{t,x} \vec{m} \right\|_{L^\infty_t(L^2 + L^{2\theta}(\mathbb{R}^3))} \left\| U \right\|_{L^\infty_t(L^4 + L^{4\theta}(\mathbb{R}^3))} \left\| \nabla^2 \psi \right\|_{L^1_t(L^\infty(\mathbb{R}^3)) + L^1_t(L^2(\mathbb{R}^3))}
$$

$$
\leq c(T) c(\eta) \left(e^{\frac{1}{\delta}} + e^{\frac{1}{\delta}} \right) \leq c(\eta, T) e^{\frac{1}{\delta}}.
$$

(5.4)

For the last $U \otimes U$ term in (5.2), we have
\[
\left| \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; \partial_t U \otimes U \rangle : \nabla_x \nabla_x \Psi \rangle \, dx \, dt \right| \\
\leq e \left| \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; \frac{\partial - 1}{e} (U \otimes U) : \nabla_x \nabla_x \Psi \rangle \, dx \, dt \right| + \left| \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e (U \otimes U) : \nabla_x \nabla_x \Psi \rangle \, dx \, dt \right| \\
\leq c(T)e + c(\eta, T)e^\frac{1}{2} \leq c(\eta, T)e^\frac{1}{2}.
\]

(5.5)

For the first term on the right side of (5.1),
\[
\frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; (\partial_t U + U \cdot \nabla U + V \cdot \nabla V) \rangle \, dx \, dt \\
= \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; (\partial_t V + \nabla V \cdot V) \rangle \, dx \, dt + \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; \partial_t \nabla \Psi \cdot (\partial_t U - m) \rangle \, dx \, dt \\
+ \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; \nabla \nabla \nabla \Psi \cdot (\partial_t U - m) \rangle \, dx \, dt
\]

(5.6)

Since \(V = (v, 0) \) and \(v \) is the solution to the Euler equations (1.7), we have
\[
\frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; (\partial_t V + V \cdot \nabla V) \rangle \, dx \, dt = I_1 + I_2,
\]

where
\[
I_1 = \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; \nabla \Pi \rangle \, dx \, dt = \frac{1}{\delta} \int_{\Omega_h} \langle Y_{t,x}^e \partial \Pi \rangle \, dx \bigg|_{t=0} - \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e \partial \Pi \rangle \, dx \, dt
\]
\[
eq \frac{1}{\delta} \int_{\Omega_h} \langle Y_{t,x}^e \partial \Pi \rangle |_{t=0} \, dx - \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e \partial \Pi \rangle \, dx \, dt \leq c(\eta, T) e.
\]

(5.7)

with \(\nabla \Pi = (\nabla_h \Pi, 0) \) and \(\Pi \) the pressure in (1.7), and
\[
|I_2| = \left| \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; \partial U \cdot \nabla \Pi \rangle \, dx \, dt \right| \leq \left| \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e (\partial - 1) \cdot U \cdot \nabla \Pi \rangle \, dx \, dt \right|
\]
\[
+ \left| \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; U \cdot \nabla \Pi \rangle \, dx \, dt \right|.
\]

(5.8)

Similarly to the analysis above, for the first term on the right hand side of (5.8), we have
\[
\left| \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; (\partial - 1) \cdot U \cdot \nabla \Pi \rangle \, dx \, dt \right| \leq e \left| \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e ; (\partial - 1) \cdot U \cdot \nabla \Pi \rangle \, dx \, dt \right|
\]
\[
\leq c(T)e.
\]

For the second term on the right hand side of (5.8), we have
Performing integration by parts in the first term on the right-hand side of (5.9), we have
\[
\frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \nabla_x \nabla \Pi \rangle \, dx \, dt = \frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \nabla \cdot \nabla \Pi \rangle \, dx \, dt
\]
thanks to incompressibility condition, \(\nabla \cdot \mathbf{V} = 0 \). For the second term on the right-hand side of (5.9) using integration by parts and acoustic equation, we have
\[
\frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \nabla_x \Psi \cdot \nabla_x \Pi \rangle \, dx \, dt = -\frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \Delta_x \Psi \Pi \rangle \, dx \, dt
\]
(5.10)
\[
\begin{aligned}
&= \epsilon \frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \partial_x \Psi \rangle \, dx \, dt \\
&= \epsilon \left[\frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \Psi \rangle \, dx \, dt \right]_{t=0}^{t=T} - \frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \partial_x \Psi \rangle \, dx \, dt,
\end{aligned}
\]
that it goes to zero for \(\epsilon \to 0 \). Moreover, by using similar argument as above, the last two terms in (5.6) are of order
\[
c(\eta, T)(1 + \epsilon) \| \nabla_x \Psi \|_{L^2_t(L^{1,\infty}(\mathbb{R}^2))} \leq c(\eta, T) \epsilon^{\frac{1}{2}}.
\]
(5.11)
Finally, using \(\nabla \cdot \mathbf{V} = 0 \), we get
\[
\frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \partial_x \nabla_x \Psi \cdot (\rho \mathbf{U} - \mathbf{m}) \rangle \, dx \, dt = -\frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \mathbf{m} \cdot \partial_x \nabla_x \Psi \rangle \, dx \, dt
\]
(5.12)
\[
\begin{aligned}
&+ \frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; (\rho - 1) \mathbf{V} \cdot \partial_x \nabla_x \Psi \rangle \, dx \, dt \\
&+ \frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \rho \partial_t \nabla_x \Psi \cdot \nabla_x \Psi \rangle \, dx \, dt.
\end{aligned}
\]
The first term on the right side of (5.12) will be canceled later by the pressure term while, by using the acoustic wave equations (3.4), the second term equals to
\[
\begin{aligned}
&\frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \frac{\rho - 1}{\epsilon} \rho \partial_t \nabla_x \Psi \cdot \mathbf{V} \rangle \, dx \, dt = -\frac{1}{\delta} \int_0^T \int_{\Omega_0} \langle Y_{t,x}^e; \frac{\rho - 1}{\epsilon} \rho \partial_t \nabla_x \Psi \cdot \mathbf{V} \rangle \, dx \, dt \\
&\leq c(T) \left\| \frac{\rho - 1}{\epsilon} \right\|_{L^p_t(L^2 + L^2; \mathbb{R}^2)} \| \mathbf{V} \|_{L^p_t(L^1 + L^{\frac{4}{3}}; \mathbb{R}^2)} \| \nabla_x \Psi \|_{L^p_t(L^1 + L^{\frac{4}{3}}; \mathbb{R}^2)} \\
&\leq c(\eta, T) \epsilon^{\frac{1}{2}}, \quad \gamma_2 = \min\{2, \gamma\}.
\end{aligned}
\]
(5.13)
Finally, by using the acoustic equations,
\[
e \partial_t \nabla_x \Psi = -a^2 \nabla_x s,
\]
We recall that

\[\frac{1}{\delta} \int_0^T \int_{\Omega_i} \langle Y^c_{t,x}: \partial_t \nabla_x \Psi \cdot \nabla_x \Psi \rangle \, dx \, dt \]

\[= -a^2 \frac{1}{\delta} \int_0^T \int_{\Omega_i} \langle Y^c_{t,x}: \frac{\partial - 1}{\varepsilon} \nabla_x s \cdot \nabla_x \Psi \rangle \, dx \, dt + \frac{1}{2} \int_{\mathbb{R}^2} \langle Y^c_{t,x}: |\nabla_h \Psi|^2 \rangle \, |t = 0| \, dx \]

\[\leq c(\eta, T) e^\frac{1}{\varepsilon} + \frac{1}{2} \int_{\mathbb{R}^2} \langle Y^c_{t,x}: |\nabla_h \Psi|^2 \rangle \, |t = 0| \, dx. \]

From (5.1) to (5.14) we find

\[\frac{1}{\delta} \int_0^T \mathcal{R}_2 \, dt \leq c(\eta, T) e^\frac{1}{\varepsilon} + \int_0^T c(t) E(t) \, dt + \frac{1}{2} \int_{\mathbb{R}^2} \langle Y^c_{t,x}: |\nabla_h \Psi|^2 \rangle \, |t = 0| \, dx \]

\[- \frac{1}{\delta} \int_0^T \int_{\Omega_i} \langle Y^c_{t,x}: \partial_t \nabla_x \Psi \rangle \, dx \, dt. \]

\[(5.15) \]

5.2 Terms depending on the pressure

We recall that

\[\frac{1}{\delta} \int_0^T \mathcal{R}_2 \, dt = \frac{1}{\varepsilon^2} \frac{1}{\delta} \int_0^T \int_{\Omega_i} \langle Y^c_{t,x}(\rho - r) \partial_t P'(r) - p(\rho) \text{div}_x U - m \cdot \nabla_x P'(r) \rangle \, dx \, dt, \]

where \(r = 1 + \varepsilon s \). We have

\[\frac{1}{\varepsilon^2} \frac{1}{\delta} \int_0^T \int_{\Omega_i} \langle Y^c_{t,x}: m \cdot \nabla_x P'(r) \rangle \, dx \, dt = \frac{1}{\varepsilon} \frac{1}{\delta} \int_0^T \int_{\Omega_i} \langle Y^c_{t,x}: m \cdot \nabla_x s P''(r) \rangle \, dx \, dt \]

\[= \frac{1}{\delta} \int_0^T \int_{\Omega_i} \langle Y^c_{t,x}: m \cdot \nabla_x \left(\frac{P''(1 + \varepsilon s) - P''(1)}{\varepsilon} \right) \rangle \, dx \, dt + \frac{1}{\delta} \frac{1}{\varepsilon} \int_0^T \int_{\Omega_i} \langle Y^c_{t,x}: a^2 m \cdot \nabla_x s \rangle \, dx \, dt \]

since \(P''(1) = P'(1) = a^2 \). Realizing that

\[\left| \frac{P''(1 + \varepsilon s) - P''(1)}{\varepsilon} \right| \leq c |s|, \]

the first term on the right side is controlled by

\[c(\eta, T) \left\| \langle Y^c_{t,x}: \dot{\bar{m}} \rangle \right\|_{L^2_T(L^2 + L^2 + L^2(R^2))} \left\| s \right\|_{L^\infty_T(L^1 + L^2 + L^2)(R^2)} \left\| \nabla h s \right\|_{L^2_T(L^2 + L^2)(R^2)} \left\| \nabla h s \right\|_{L^2_T(L^2 + L^2)(R^2)} \]

\[\leq c(\eta, T) e^{\min\left\{ \frac{1}{\delta}, \frac{1}{\varepsilon} \right\}}. \]

By using the acoustic equations,

\[-\frac{1}{\delta} \frac{1}{\varepsilon} \int_0^T \int_{\Omega_i} \langle Y^c_{t,x}: a^2 m \cdot \nabla_x s \rangle \, dx \, dt = -\frac{1}{\delta} \int_0^T \int_{\Omega_i} \langle Y^c_{t,x}: m \cdot \partial_t \Psi \rangle \, dx \, dt, \]

which cancels the same term appeared on the right side of (5.12). Now we write
\[
\frac{1}{\epsilon^2} \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e, \frac{\partial}{\partial t} P^\prime(r) - p(\varphi) \Delta \varphi \rangle \, dx \, dt \\
= \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e, \frac{\partial}{\partial t} P^\prime(r) \rangle \, dx \, dt + \int_0^T \int_{\mathbb{R}^2} \langle Y_{t,x}^e, s P''(r) \partial_s \rangle \, dx \, dt \\
- \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e, \frac{p(\varphi) - p'(1)(\varphi - 1) - p(1)}{\epsilon^2} \Delta \varphi \rangle \, dx \, dt \\
- \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e, p'(1) \rangle \frac{\partial}{\partial t} \Delta \varphi \rangle \, dx \, dt.
\]

(5.17)

Note that

\[
\frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e, \frac{\partial}{\partial t} P^\prime(r) \rangle \, dx \, dt = \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e, \frac{\partial}{\partial t} P^\prime(1) \rangle \, dx \, dt \\
+ \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e, \frac{\partial}{\partial t} (P'((r) - P'(1)))) \rangle \, dx \, dt.
\]

We find the first term on the right side is canceled by the last term in (5.17), while the remaining term equals to

\[
- \frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e, \frac{\partial}{\partial t} P^\prime(r) \rangle \, dx \, dt \\
\leq c(T) \left\| \frac{\partial}{\partial t} - 1 \right\|_{L^\infty_t(L^2(L^2(\mathbb{R}^2)))} \left\| s \right\|_{L^\infty_t(L^4 + L^{8/3}(\mathbb{R}^2))} \left\| \Delta_h \Psi \right\|_{L^2_h(L^4(L^4(\mathbb{R}^2)))} \\
\leq c(\eta, T) \epsilon^{\frac{1}{8}}.
\]

(5.18)

Similarly,

\[
\int_0^T \int_{\mathbb{R}^2} \langle Y_{t,x}^e, s P''(r) \partial_s \rangle \, dx \, dt = \int_0^T \int_{\mathbb{R}^2} \langle Y_{t,x}^e, s P''(1) \partial_s \rangle \, dx \, dt \\
+ \int_0^T \int_{\mathbb{R}^2} \langle Y_{t,x}^e, s (P'(r) - P'(1)) \partial_s \rangle \, dx \, dt \\
\leq \frac{1}{2} \int_{\mathbb{R}^2} \langle Y_{t,x}^e, \partial_t \left[|s|^2 \right] \rangle \, dx + c(T) \left\| s \right\|_{L^\infty_t(L^2(\mathbb{R}^2))} \left\| s \right\|_{L^\infty_t(L^4(\mathbb{R}^2))} \left\| \Delta_h \Psi \right\|_{L^2_h(L^4(\mathbb{R}^2))} \\
\leq \frac{1}{2} \int_{\mathbb{R}^2} \langle Y_{t,x}^e, \partial_t \left[|s|^2 \right] \rangle \, dx + c(\eta, T) \epsilon^{\frac{1}{8}}.
\]

(5.19)

Finally, realizing that \(\frac{1}{\epsilon} \frac{p(\varphi) - p'(1)(\varphi - 1) - p(1)}{\epsilon^2} \) is uniformly bounded in \(L^\infty(0, T; L^1(\Omega_h)) \),

\[
\frac{1}{\delta} \int_0^T \int_{\Omega_h} \langle Y_{t,x}^e, \frac{p(\varphi) - p'(1)(\varphi - 1) - p(1)}{\epsilon^2} \Delta \varphi \rangle \, dx \, dt \\
\leq c(T) \left\| \Delta_h \Psi \right\|_{L^2_h(L^\infty(\mathbb{R}^2))} \leq c(T) \left\| \nabla_h \Psi \right\|_{L^2_h(W^{2,4}(\mathbb{R}^2))} \leq c(\eta, T) \epsilon^{\frac{1}{8}}.
\]

(5.20)

From (5.16) to (5.20) we conclude that
\[\frac{1}{\delta} \int_{0}^{\tau} R_2 \, dt \leq \frac{1}{2} \int_{\mathbb{R}^2} \langle v^e, a^2 |s|^2 \rangle \, dx_h + c(\eta, T)e^a, \quad \alpha = \min \left\{ \frac{1}{8}, \frac{1}{4y} \right\}. \tag{5.21} \]

5.3 Concentration measure term

Finally, we can control the concentration measure through the use of the compatibility conditions (2.6), namely

\[\frac{1}{\delta} \int_{0}^{\tau} R_3 \, dt = \frac{1}{\delta} \int_{0}^{\tau} \int_{\Omega_b} \nabla_x U : \mu_D^M \, dx \leq \| \nabla_x U \|_{L^\infty(\mathbb{R}^3)} \int_{0}^{\tau} \xi(t) D(t) \, dt. \]

Using the conservation of energy for acoustic wave system and all estimates in the above three subsections, we find

\[\mathcal{E}(\rho, u \mid r, U)(\tau) + D(\tau) \leq c(\eta, T)e^a + \int_{0}^{\tau} c(t) \mathcal{E}(t) \, dt + \int_{0}^{\tau} \xi(t) D(t) \, dt, \]

where \(c(t) = \| \nabla_h v(t, \cdot) \|_{L^\infty(\mathbb{R}^3)} \leq \| v(t, \cdot) \|_{W^{1,2}(\mathbb{R}^2)} \) according to Sobolev’s embedding lemma. By Gronwall’s inequality,

\[\mathcal{E}(\rho, u \mid r, U)(\tau) \leq c(\eta, T)e^a + c(T)\mathcal{E}(0), \quad \text{a.e.} \quad \tau \in (0, T), \tag{5.22} \]

where \(c(T) = \exp \int_{0}^{T} \| \nabla_h v(\cdot) \|_{L^\infty(\mathbb{R}^2)} \, dt. \) Sending \(\epsilon \to 0 \) and then \(\eta \to 0 \) we find

\[\lim_{\eta \to 0} \mathcal{E}(\rho_{c, u_{c}}, r_{c, \eta}, U_{c, \eta})(\tau) = 0 \text{ uniformly in } \tau \in (0, T), \]

as well as

\[\lim_{\epsilon \to 0} \mathcal{E}(\rho_{c, u_{c}} \mid r_{c, \epsilon}, U_{c, \epsilon})(\tau) = 0 \text{ uniformly in } \tau \in (0, T), \]

where \(r_{c} = 1 + s_{c}, \quad U_{c} = (v + \nabla_h \Psi_{c, \eta}, 0). \) We thus conclude the proof of Theorem 3.1 by realizing that \(\nabla_h \Psi_{c, \eta} \to 0 \) in \(L^q(0, T; L^p(\mathbb{R}^2)) \) as \(\epsilon \to 0 \) for any \(p > 2, \quad q > 4 \) according to the dispersive estimates (3.9). Indeed, for any compact set \(K \subset \mathbb{R}^2, \)

\[\left\| \sqrt{a_{c}} u_{c} - v \right\|_{L_{t}^{2}(L^{2}(K))} \leq \left\| \sqrt{a_{c}} u_{c} - U_{c, \eta} \right\|_{L_{t}^{2}(L^{2}(\mathbb{R}^2))} + c(T, K) \left\| \nabla_h \Psi_{c, \eta} \right\|_{L_{t}^{2}(L^{2}(K))}, \]

which vanishes as \(\epsilon \to 0 \) and then \(\eta \to 0. \)

Acknowledgements The research of Š.N. leading to these results has received funding from the Czech Sciences Foundation (GAČR), GA19-04243S and in the framework of RVO: 67985840. The research of T.T. is supported by the Nsfc Grant No. 11801138. The research of B.D. is partially supported by the ANR project INFAMIE (ANR-15-CE40-0011). The research of M.C. is supported by the Institute of Mathematics, CAS and in the framework of RVO: 67985840. Last modifications have been written during his stay in the Department of Mathematics, Faculty of Science, University of Zagreb, where M.C. is fully supported by the Croatian Science Foundation under the project MultiFM IP-2019-04-1140.
References

1. Alibert, J.J., Bouchitté, G.: Non-uniform integrability and generalized Young measures. J. Convex Anal. 4(1), 129–147 (1997)
2. Asano, K.: On the incompressible limit of the compressible Euler equation. Jpn. J. Appl. Math. 4(3), 455–488 (1987)
3. Ball, J. M.: A version of the fundamental theorem for Young measures. PDEs and continuum models of phase transitions (Nice: Lecture Notes in Phys., 344. Springer, Berlin 1988, 207–215 (1988)
4. Ball, J.M., Murat, F.: Remarks on Chacons biting lemma. Proc. Am. Math. Soc. 107, 655–663 (1989)
5. Bella, P., Feireisl, E., Novotný, A.: Dimension reduction for compressible viscous fluids. Acta Appl. Math. 134, 111–121 (2014)
6. Blanc, X., Danchin, R., Ducomet, B. Nečasová, Š.: The global existence issue for the compressible Euler system with Poisson or Helmholtz couplings, arxiv:1906.08075
7. Bellout, H., Bloom, F., Nečas, J.: Young measure-valued solutions for non-Newtonian incompressible fluids. Commun. Partial Differ. Equ. 19(11–12), 1763–1803 (1994)
8. Breit, D., Feireisl, E., Hofmanova, M.: Generalized solutions to models of inviscid fluids, arXiv:1907.00757
9. Březina, J., Feireisl, E.: Measure-valued solutions to the complete Euler system revisited, Z. Angew. Math. Phys. 69, Art. 57, 17 pp (2018)
10. Březina, J., Feireisl, E.: Measure-valued solutions to the complete Euler system. J. Math. Soc. Jpn. 70, 1227–1245 (2018)
11. Březina, J., Kreml, O., Mácha, V.: Dimension reduction for the full Navier–Stokes–Fourier system. J. Math. Fluid Mech. 19(4), 659–683 (2017)
12. Bruell, G., Feireisl, E.: On a singular limit for stratified compressible fluids. Nonlinear Anal. Real World Appl. 44, 334–346 (2018)
13. Caggio, M., Donatelli, D., Nečasová, Š., Sun, Y.: Low Mach number limit on thin domains. Nonlinearity 33, 840–863 (2020)
14. Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ. 11, 493–519 (2014)
15. Chiodaroli, E., Feireisl, E., Kreml, O., Wiedemann, E.: A free rigidity and applications to the compressible Euler system. Ann. Mat. Pura Appl. 196, 1557–1572 (2017)
16. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157–1190 (2015)
17. Chiodaroli, E., Kreml, O.: On the energy dissipation rate of solutions to the compressible isentropic Euler system. Arch. Ration. Mech. Anal. 214(3), 1019–1049 (2014)
18. DiPerna, R.J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88(3), 223–270 (1985)
19. De Lellis, C., Székelyhidi, L.: Jr, On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195, 225–260 (2010)
20. Demoulini, S., Stuart, D., Tzavaras, A.: Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal. 205(3), 927–961 (2012)
21. Ducomet, B., Caggio, M., Nečasová, Š., Pokorný, M.: The rotating Navier–Stokes–Fourier–Poisson system on thin domains. Asymptot. Anal. 109(3–4), 111–141 (2018)
22. Ebin, D.B.: The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 105, 141–200 (1977)
23. Feireisl, E., Tang, T.: On a singular limit for the stratified compressible Euler system. Asymptot. Anal. 114, 59–72 (2019)
24. Feireisl, E., Klingenberg, C., Markfelder, S.: On the low Mach number limit for the compressible Euler system. SIAM J. Math. Anal. 51(2), 1496–1513 (2019)
25. Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Dissipative measure-valued solutions to the compressible Navier–Stokes system, Calc. Var. Partial Differential Equations, 55, Art. 141, 20 pp (2016)
26. Feireisl, E., Jin, J.B., Novotný, A.: Inviscid incompressible limits of strongly stratified fluids. Asymptot. Anal. 89, 307–329 (2014)
27. Feireisl, E., Jin, J.B., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14, 717–730 (2012)
28. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel (2009)
29. Grassin, M., Serre, D.: Global smooth solutions to Euler equations for an isentropic perfect gas. C. R. Acad. Sci. Paris 325, 721–726 (1997)
30. Grassin, M.: Global smooth solutions to Euler equations for a perfect gas. Indiana Univ. Math. J. 47, 1397–1432 (1998)
31. Gwiazda, P., Swierczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity 28, 3873–3890 (2015)
32. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)
33. Málek, J., Nečas, J., Rokyta, M., Ružička, M.: Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, London (1996)
34. Maltese, D., Novotný, A.: Compressible Navier-Stokes equations on thin domains. J. Math. Fluid Mech. 16(3), 571–594 (2014)
35. Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90 (2001)
36. Neustupa, J.: Measure-valued solutions of the Euler and Navier-Stokes equations for compressible barotropic fluids. Math. Nachr. 163, 217–227 (1993)
37. Oliver, M.: Classical solutions for a generalized Euler equation in two dimensions. J. Math. Anal. Appl. 215, 471–484 (1997)
38. Strichartz, R.S.: A priori estimates for the wave equation and some applications. J. Functional Analysis 5, 218–235 (1970)
39. Ukai, S.: The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26(2), 323–331 (1986)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.