Extended Abstract

Autism is an evolutionary syndrome that causes social and interactional disorders and changes the patterns of movement. A significant increase in the prevalence of autism disorders among children has been reported 110 per 10000 people. Autism is just a mental illness, but it also involves movement disorders easily seen in these patients’ body systems and developmental characteristics. Among the many complications, motor consequences are so associated with autism that it is known as one of the most valid...
criteria for diagnosing this disease. Space costume is a collection of a vest, shorts, knee braces, hat, and special shoes. The different parts of the garment are connected by hooks, loops, and elastic bands that regulate the pressure and support of the muscles and joints. The vest is made of inelastic material, in which the elastic band determines its position on the body according to the type of disease. Elastic bands stretch shortened muscles and stretch muscles, and by pressing on the joints, they improve the deep line, the vestibular system and increase coordination.

Since children with toe autism suffer from plantar flexion of the ankle, flexion of thigh, and flexion of the foot, it seems that due to the capabilities of the spacesuit and by adjusting its elastics bands, passive dorsiflexion, hip extension, and inward rotation can be disabled. Or caused extrapolation in children with autism. Considering that many articles have reported the effect of space clothing on the balance of cerebral palsy patients, also the impact of this method on the balance of multiple sclerosis patients’ balance and proprioception and gait pattern the departure of the elderly has been shown and considering that autism has become very prevalence among children, especially in recent years. Still, to our knowledge, the effect of suit therapy on autistic patients has not been studied, so the purpose of this study is to compare the impact of corrective exercise with and without suit therapy on gait kinematic and balance in autistic children with toe walking.

2. Methods

A group of 30 autistic boys with toe walking (Mean±SD: age=5.7±1.7 years, height=106.4±19.5 cm, and weight=20.8±5.8 kg) were chosen voluntarily and purposefully in this study and then randomly assigned into two groups of with and without suit therapy. Both groups received 8 weeks of corrective exercises, including 5 sessions per week, each session for 2 hours. The cases gait kinematic (Tree dimensional movement analysis) and balance (Tinetti) were evaluated in the pre and posttest. Paired and independent t-test were used for statistical analyses using SPSS v. 16.

3. Results

The result revealed a significant difference in the gait kinematic between the two groups. Treatment in the corrective exercises group with suit therapy was significantly more effective in stride length (P=0.001), step length (P=0.001), step width (P=0.021), walking speed (P=0.001), ankle dorsiflexion in stance (P=0.001), and swing (P=0.001) phase than that corrective exercises without suit therapy group. But between these two groups, no significant difference was observed in stride time (P=0.444), cadence (P=0.361), deviation foot (P=0.614), and hip flexion (P=0.135). The results of the study also showed no significant difference in balance (P=0.927) between groups.

4. Discussion and Conclusion

The present study showed that corrective exercises with suit therapy significantly improve the correction in kinematics compared to correctional exercise without suit therapy. Cerebral palsy is consistent, perhaps because suit therapy is based on increasing proprioception, improving body alignment, applying resistance, active motor participant of the patient, and the intensity and continuity of treatment sessions.

Other reasons for the improvement in gait kinematics include that in children with autism, the plantar flexor and flexor thigh muscles are shortened, the dorsiflexor and extensor thigh muscles are stretched, muscle balance is lost, and all forces are weak.

When the suit therapy is adjusted correctly on the child’s body, dorsiflexion and passive thigh extension stretch the plantar flexor and flexor thigh muscles. It strengthens the dorsiflexor and extensor thigh muscles, so repetition helps organize the central sense.

The study showed that corrective exercises with suit therapy do not significantly affect the balance of children with autism performing static balance.

Ethical Considerations

Compliance with ethical guidelines

The ethical principles observed in the article, such as the informed consent of the participants, the confidentiality of information, the permission of the participants to cancel their participation in the research. Ethical approval was obtained from the Research Ethics Committee of the Tehran University of Medical Sciences/Tehran Research Center (Code: IR.SSRC.REC.1399.016).

Funding

This study is part of a research project, which has been accepted and funded by the Tehran University of Medical Sciences, Tehran Research Center.
Authors’ contributions

Authors contributed equally in preparing this article.

Conflict of interest

The authors declared no conflict of interest.
مقاله
مقاله نویسی مسند عمیق تکلیفی است که با بهبود بروز اختلالات اجتماعی ارتقایی و تغییرات الگوهای حرکتی در کودکان اصلی می‌وزند. این تحقیق به‌نام مرداد 1399 در تهران، دانشگاه تهران، اداره بهداشت و دانشگاه تربیت بدنی و ۶۸ کلیه زبان و مقامی از مشاهده کرده و ۱۴۳۰ روزه، تهران، ایران، به‌نام مرداد و شهریور ۱۳۹۹ تاربخ شد.

مقدمه
ارزوی متقن کودکان و شفافیت تغییرات الگوهای حرکتی به عنوان یکی از معتبرترین معیارهای تشخیص اوتیسم بوده‌اند. از این دلیل، در این مطالعه از ارتقایی و تغییرات الگوهای حرکتی در کودکان اصلی می‌وزند. این تحقیق به‌نام مرداد 1399 در تهران، دانشگاه تهران، اداره بهداشت و دانشگاه تربیت بدنی و ۶۸ کلیه زبان و مقامی از مشاهده کرده و ۱۴۳۰ روزه، تهران، ایران، به‌نام مرداد و شهریور ۱۳۹۹ تاربخ شد.

مطالب و شکل‌گیری
مطالعه محاسباتی
میزان تغییرات الگوهای حرکتی در کودکان اصلی می‌وزند. این تحقیق به‌نام مرداد 1399 در تهران، دانشگاه تهران، اداره بهداشت و دانشگاه تربیت بدنی و ۶۸ کلیه زبان و مقامی از مشاهده کرده و ۱۴۳۰ روزه، تهران، ایران، به‌نام مرداد و شهریور ۱۳۹۹ تاربخ شد.

نتیجه‌گیری
در این مطالعه، از ارتقایی و تغییرات الگوهای حرکتی در کودکان اصلی می‌وزند. این تحقیق به‌نام مرداد 1399 در تهران، دانشگاه تهران، اداره بهداشت و دانشگاه تربیت بدنی و ۶۸ کلیه زبان و مقامی از مشاهده کرده و ۱۴۳۰ روزه، تهران، ایران، به‌نام مرداد و شهریور ۱۳۹۹ تاربخ شد.

کلیدواژه‌ها:
کامپیوتر، ارتقایی و تغییرات الگوهای حرکتی

مرداد و شهریور 1399 نوشته مسئول: دکتر هومن مینونژاد
مراجع:
1. ارزوی متقن کودکان و شفافیت تغییرات الگوهای حرکتی به عنوان یکی از معتبرترین معیارهای تشخیص اوتیسم بوده‌اند. از این دلیل، در این مطالعه از ارتقایی و تغییرات الگوهای حرکتی در کودکان اصلی می‌وزند. این تحقیق به‌نام مرداد 1399 در تهران، دانشگاه تهران، اداره بهداشت و دانشگاه تربیت بدنی و ۶۸ کلیه زبان و مقامی از مشاهده کرده و ۱۴۳۰ روزه، تهران، ایران، به‌نام مرداد و شهریور ۱۳۹۹ تاربخ شد.

1. Toe Walking
2. Stride Length
3. Step Width
4. Cadence
از مزایای استفاده از لباس فضایی برای بیماران اخلالات حرکتی می‌توان به نمال کرم اخلالات حرکتی، از بین گرفتن پالس تا ایجاد صدمات در ناحیه عضلات و سیستم عصبی اشاره کرد. همچنین لباس فضایی می‌تواند در کنترل انقباضات عضلانی به کار بگیرد. لباس فضایی شامل چندین بخش است که به آنها ماهیت زیادی دارد. بخش‌های مختلف لباس به وسیله فشار و حمایت عضلات و مفصل‌های مختلف ارزیابی و تنظیم می‌شود. جهت ایجاد این فشار، لباس فضایی می‌تواند با نوع موارد مختلفی استفاده شود. لباس فضایی می‌تواند باعث بهبود کیفیت زندگی و بهبود عملکرد در بسیاری از اعمال ریشه‌ای شود. لباس فضایی می‌تواند تاثیراتی پذیرند که در افراد با اخلالات حرکتی و تعادل می‌تواند بهبودی در سطح عملکرد یافته شود.

مطالعات مربوطه:

1. **ریه‌آبیانی**
2. **ریه‌آبیانی**
3. **ریه‌آبیانی**

منابع:

[18]، [19]، [20]، [21]، [22]، [23]، [24]، [25]، [26]، [27]، [28]، [29]، [30]، [31]، [32]، [33]، [34]، [35]، [36]، [37]، [38]، [39]، [40]، [41]، [42]، [43]، [44]، [45]، [46]، [47]
پارامترهای کیمیماتیک طول گام (قامت پا چهار پا یک یا یک پا پشت یک پا) و عرض گام (قامت پا چهار پا یک یا یک پا پشت یک پا) را به دست آورد. این آزمون استخوان نازک نی، قوزک خارجی مچ پا و پنجمین استخوان کف مچ پا در مرحله میانی سکون و نوسان (زاویه بین برجستگی اپیکندی خارجی استخوان ران)، دامنه حرکت دورسی فلکشن بین خار خاصیت توده بالا و کروک فلکشن ران و (درجه بین خط مستقیم از استخوان گاپ تا اولین استخوان کف) را اندازه گرفت. طول گام (دیسنت/سیک) بین درختن و قاپیدن آزمودنی از میان کودکان. شماره

تمارین اصلاحی با یا بدون لباس فضایی بر کیمیماتیک راه رفتن و توانایی کودکان لینیوست مثل است. مواد و روش‌ها

از میان کودکان یکیی از آهنگهای سه یا چهار زنگ به نوازیده می‌شود که کسی از آن‌ها و ارتجاع‌های معنی‌دار خاصی در کودکان با عفونت اوتیسم مشاهده می‌شود. این آزمون گویای ارتجاع در کودکان با عفونت اوتیسم می‌تواند با داده‌های آزمون شاپیرو و عضلات درون آیتمی این آزمون برابر یک امتیاز، فرود نرم و ایمن: دو امتیاز) بود که جمعاً این آزمون

صدلی: صفر امتیاز، کمک گرفتن از دسته صندلی و فرود سفت: شماره

نشستن روی صندلی (عدم تخمین مسافت و افتادن سفت روی

ناقص: یک امتیاز، عدم تعادل: صفر امتیاز، تعادل: یک امتیاز) و

درجه با حفظ تعادل (چرخش ادامه دار: صفر امتیاز، چرخش دست دادن تعادل: صفر امتیاز، حفظ تعادل: یک امتیاز)، چرخش امتیاز)، حفظ تعادل در ایستادن و راه رفتن با چشمان بسته (از میان کودکان در شاپیرو

پیشی رفت. از هر آزمودنی بیست و هفتم متر روی زمین علامت گذاری شد، سپس از آزمودنی‌ها خواسته شد طول گام که این آزمودنی‌ها از گاپ تا اولین استخوان کف را اندازه‌گیری کنند. طول گام (دیسنت/سیک) بین درختن و قاپیدن آزمودنی از میان کودکان.

شماره

تاریخچه: 176

میزان فعالیت مسافرتی، انحراف چشم‌پوشی و میزان فعالیت مسافرتی، انحراف چشم‌پуш
پیام رسانی و همکاران. مقایسه تأثیر تمرینات اصلاحی با یا بدون لباس فضایی بر کینماتیک راه رفتن و تعادل کودکان اوتیسم پنجه رو

جدول ۱. تمرینات اصلاحی با لباس فضایی
تمرین

آمادگی و گرم کننده
تست عضلات بازیگری (پوز)
تست عضلات بازیگری (شماره ۲۹)
تست عضلات بازیگری (شماره ۲۹)
تست عضلات بازیگری (شماره ۲۹)
تست عضلات بازیگری (شماره ۲۹)
تست عضلات بازیگری (شماره ۲۹)
تست عضلات بازیگری (شماره ۲۹)
تست عضلات بازیگری (شماره ۲۹)
تست عضلات بازیگری (شماره ۲۹)
تست عضلات بازیگری (شماره ۲۹)

تقلید از Levene
تصویر 1. تمرینات اصلاحی با لباس فضایی

تصویر 2. الگوهای کینماتیک راه رفتن

تصویر 3. آزمون تونیشی
این پشتیبانی که لباس فضایی می‌تواند با اصول الارایی حس عمیق و یکپارچه‌ای به‌کار مهاجم و یکپارچه‌ای بوده‌است. این روش به‌طور کلی بهبود حس عمیق آموزشی مشاهده شده، به طوری که گروه با لباس فضایی الارایی، طول گام الارایی طول گام کاهش خورد. گام افزایش سرعت راه رفتن، الارایی دوری لباس فضایی می‌تواند در مرحله سکون در نشان دهنده محسون در مقایسه با آزمون و پژوهش درمانی باشد.

یکپارچه‌ستی از لحاظی که گروه الارایی لباس فضایی تفاوت معنی‌داری در کینماتیک راه رفتن و تعادل کودکان داشتند اما در گروه الارایی بدون لباس فضایی، اختلاف معنی‌داری مشاهده نشد.

تحقیق‌های دیگر نشان داده است که لباس فضایی ممکن است در کاهش زمان الارایی، باعث بهبود معنی‌داری نسبت به تمرینات الارایی بدون لباس فضایی شود.

نتایج این تحقیق با تحقیقات خانواده و همکاران [27] مبنی بر تأثیر لباس فضایی نسبت به بدون لباس فضایی بر راه رفتن و تعادل مطابق با نتایج این تحقیق می‌باشد.신청 چنین مبناچه برای گروه الارایی لباس فضایی به‌طور معنی‌داری کاهش داشت.

نتایج این تحقیق حاصل نشان داد که ترمیمات الارایی با لباس فضایی باعث بهبود مهارت‌ها و تمرینات اصلاحی می‌شود. این نتایج با تحقیقات دیگر که نشان داده‌اند که نتایج می‌تواند با تأثیر لباس فضایی به‌کار گیرید.
گزارش کردند، با توجه به اینکه تمرینات اصلاحی، انجام تمرینات عملکردی و داینامیک باید در راستای صحیح بدن کودک باشد. با لباس فضایی کودک می‌تواند در راستای صحیح بدن، یک زنجیره حرکتی باشد و عضلات به صورت سینرژیک و با هم کار کنند و به صورت حداکثری کار می‌کنند. با لباس فضایی، پایه این راهکار می‌گردد که نه تنها سگمنت‌ها که دچار اختلال‌هایی هستند، بلکه سگمنت‌های دیگری که هم وابسته به آن‌ها هستند تأثیر می‌گیرند. لباس فضایی می‌تواند قابلیت‌هایی را ارائه دهد که نه تنها سگمنت‌ها را رفع می‌کند، بلکه سگمنت‌های دیگری را نیز باعث بهبود می‌شود.

جدول 1. ترکیب نتایج پژوهش کودکان اوتیسم پنجه رو و تفاوت در ترکیب‌های آن‌ها

متغیرها	گروه‌های تمرینات اصلاحی	ترکیب پنجه رو	تفاوت در پیش آزمونها
مهارت روانیسیستم	بدون لباس فضایی	0/67	0/59
طول گام	با لباس فضایی	0/07	0/01
طول قدم	بدون لباس فضایی	0/20	0/41
عرض گام	با لباس فضایی	0/01	0/54
زمان گام	بدون لباس فضایی	0/45	0/25
سرعت راه رفتن	با لباس فضایی	0/06	0/01
دورسی فلکشن	بدون لباس فضایی	0/15	0/29
دورسی فلکشن سکون	با لباس فضایی	0/09	0/14
دورسی فلکشن نوسان	بدون لباس فضایی	0/15	0/34
تعادل	با لباس فضایی	0/07	0/01

ملاحظه: میانگین و انحراف مربوط به تاریخ‌های آزمون‌های پیش‌بینی و نهایی.
می‌شود در آینده تحقیق بر تأثیر لباس فضایی بر ناهنجاری‌های آزمودنی‌ها و عدم کنترل مصرف دارو و همسان کردن کامل عدم توجه به مسائل روحی و روانی و تفاوت‌های خلق و خوی.

مجید خدادادی و همکاران. مقایسه تأثیر تمرینات اصلاحی با یا بدون لباس فضایی بر کینماتیک راه رفتن و تعادل کودکان اوتیسم پنجه رو.

متغیر	دورسی فلکشن (سانتی‌متر)	دورسی انكسیون (سانتی‌متر)	دورسی اکسیون (درجه)	دورسی اکسیون (سانتی‌متر)
پیش آزمون بدون لباس				
پس آزمون بدون لباس				
پیش آزمون با لباس				
پس آزمون با لباس				

نتایج تحقیق حاضر نشان داد تمرینات اصلاحی با لباس فضایی بهبود راه رفتن و عدم بهبود تعادل می‌شود، اما با نتایج تحقیق حاضر همسو است.

موزونی (قدم بر موزونی (درجه) | موزونی (سانتی‌متر) | دورسی فلکشن (سانتی‌متر) | دورسی انكسیون (سانتی‌متر) | دورسی اکسیون (درجه) | دورسی اکسیون (سانتی‌متر) |
نتیجه‌گیری نهایی

تمرینات اصلاحی با لباس فضایی سبب بهبود لب و پنجه رو دارد. اما بر تعادل تأثیر معناداری ندارد. بنابراین به همه کاربران مطرح‌های فیزیوتراپی و متخصصین علوم ورزشی تمرین با لباس فضایی برای بهبود کیفیت لابی مناسبی را و توصیه کنند.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهشی در اجرای پژوهش ملاحظات اخلاقی مطابق با دستورالعمل کمیته اخلاق دانشگاه تهران در نظر گرفته شده و کد اخلاق به شماره ۱۳۹۹.۰۱۶ IR.SSRC.REC. دریافت شده است. اصول اخلاقی تماماً در این مطالعه عطالت و تجدیدکردن اخلاقی که شرکت‌کنندگان اجازه داشتند هر زمان که مایل بودند از پژوهش خارج شوند.

املاه‌ها و اطلاعات محرمانه نگه‌داشته شده است.

حاجی ملی

این مطالعه به‌خشن از یک پروژه تحقیقاتی است که توسط دانشگاه علوم پزشکی تهران، مرکز تحقیقات تهران پذیرفته و تأمین مالی شده است.

مشارکت نویسندگان

تعمیم نوسان‌ها در مراحل اجرای مقاله و تغییرات مهم بخش‌های پژوهشی حاضر مشارکت نمی‌شاند.

تعارض منافع

بنا بر اظهار نوسان‌ها، این مقاله کمیار مفعول ندارد.

تشکر و قدردانی

از رحمت استانان محترم و مدیران کلیه‌کاربرمان بهره‌گیری و هم‌کاری کاربرمان و خانواده‌ام به عنوان کمک‌پذیر، به نهایت ممکن است با محقق داشته‌اند و هم‌کاران من، کمال تشویق و کدرایی دارم.
References

[1] American psychiatric association. Diagnostic and statistical manual of mental disorder. 5th ed. Washington, DC; 2013. [DOI:10.1176/appi.books.9780890425596]

[2] Matson JL, Kozlowski AM. The increasing prevalence of autism spectrum disorder. Research in Autism Spectrum Disorder. 2011; 5(1):418-25. [DOI:10.1016/j.rasd.2010.06.004]

[3] Casartelli L, Molteni M, Ronconi L. So close yet so far: Motor anomalies impacting on social functioning in autism spectrum disorder. Neuroscience Biobehaviour Review. 2016; 63:98-105. [DOI:10.1016/j.neubiorev.2016.02.001] [PMID]

[4] Green D, Baird G, Barnett AL, Henderson L, Huber J, Henderson SE. The severity and nature of motor impairment in aspergers’ syndrome: A comparison with specific developmental disorder of motor function. Journal of Child Psychology and Psychiatry. 2002; 43(5):655-68. [DOI:10.1111/1469-7610.00054] [PMID]

[5] Travers BG, Powell PS, Klinger LG, Klinger MR. Motor difficulties in autism spectrum disorder: Linking symptom severity and postural stability. Journal Autism Development Disorder. 2013; 43(7):1568-83. [DOI:10.1007/s10803-012-1702-x] [PMID]

[6] Arik A, Aksoy C, Aysev A, Alçakın M. Lower-extremity rotation profile and toe-walking in preschool children with autism spectrum disorder. Journal of Pediatric Orthopaedics B. 2018; 27(6):530-4. [DOI:10.1097/BPO.0000000000000159] [PMID]

[7] Calhoun M, Longworth M, Chester VL. Gait pattern in children with autism. Clinical Biomechanics. 2011; 26(12):200-6. [DOI:10.1016/j.clinbiomech.2010.09.013] [PMID]

[8] Weiss MJ, Moran MF, Parker ME, Foley JT. Gait analysis of teenagers and young adults diagnosed with autism and several verbal communication disorder. Frotters in Integrative Neuroscience. 2013; 7:33. [DOI:10.3389/fnint.2013.00033]

[9] Lim BO, Osullivan D, Choi BG, Kim MY . Comparative gait analysis between children with autism and age matched controls: Analysis with temporal spatial and foot pressure variables. Journal Physical Therapy Science. 2016; 28(1):286-92. [DOI:10.1589/jpts.28.286] [PMID]

[10] Nayate A, Tonge BJ, Bradshaw JL, McGinley JL, Iansek R, Rinehart NJ. Differentiation of high functioning autism and asperger’s disorder base neuroromotor behavior. Journal Autism Development Disorder. 2012; 42(5):707-17. [DOI:10.1007/s10803-011-1299-5]

[11] Shetreat-Klein M, Shinnar S, Rapin I. Abnormalities of joint mobility and gait in children with autism spectrum disorders. Brain and Development. 2014; 36(2):91-6. [DOI:10.1016/j.braindev.2012.02.005] [PMID]

[12] Barrow WJ, Jaworski M, Accardo PI. Persistent toe walking in autism. Journal of Child Neurology. 2011; 26(5):619-21. [DOI:10.1177/0883073810385344] [PMID]

[13] Williams CM, Tinley P, Curtin M, Wakefield S, Nielsen S. Is idiopathic toe walking really idiopathic? The motor skills and sensory processing abilities associated with idiopathic toe walking gait. Journal of Child Neurology. 2014; 29(1):71-8. [DOI:10.1177/0883073812470001] [PMID]

[14] Michalitsis J, Murphy AT, Rawicki B, Haines TP, Williams C. Full length foot orthoses have an immediate treatment effect and modify gait of children with idiopathic toe walking. Gait & Posture. 2019; 68:227-31. [DOI:10.1016/j.gaitpost]

[15] Pendharkar G, Lai DT, Begg RK. Detecting idiopathic toe-walking gait pattern from normal gait pattern using heel accelerometry data and support vector machines. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2008; 2008:4920-3. [DOI:10.1109/IEMBS.2008.4650317]

[16] Lee J, Porretta DL. Enhancing the motor skills of children with autism spectrum disorders: A pool-based approach. Journal of Physical Education, Recreation & Dance. 2013; 84(1):41-5. [DOI:10.1080/07030384.2013.746154]

[17] García-Villamisar D, Dattilo J, Muela C. Effects of B-active2 on balance, gait, stress, and well-being of adults with autism spectrum disorders and intellectual disability: A controlled trial. Adapted Physical Activity Quarterly. 2017; 34(2):125-40. [DOI:10.1123/apaq.2015-0071]

[18] Clark E, Sweeney JK, Yocum A, McCoy SW. Effects of motor control intervention for children with idiopathic toe walking: A 5-case series. Pediatric Physical Therapy. 2010; 22(4):417-26. [DOI:10.1097/PEP.0b013e3181f9d5b8] [PMID]

[19] Barkocy M, Dexter J, Petrovich C. Kinematic gait changes following serial casting and bracing to treat toe walking in a child with autism. Pediatric Physical Therapy. 2017; 29(3):270-4. [DOI:10.1097/PPE.0000000000000404] [PMID]

[20] Persicke A, Jackson M, Adams AN. Brief report: An evaluation of TAGTeach components to decrease toe-walking in a 4-year-old child with autism. Journal of Autism and Developmental Disorders. 2014; 44(4):965-8. [DOI:10.1007/s10803-013-1934-4] [PMID]

[21] Dalvand H, Dehghan L, Feizi A, Amirsalari S, Shamsaei M. [Ef-ficacy of adeli suit therapy in 4-8 year old children with spastic CP with normal intelligence quota (Persian)]. Kosar Medical Journal. 2009; 13(4):303-7. https://www.sid.ir/en/Journal/ViewPaper.aspx?id=138687

[22] Upchurch DM, Chyu L. Used of complementary and alternative medicine among american woman. Woman Health Journal. 2005; 15(10):5-13. [DOI:10.1016/j.whi.2004.08.10]

[23] Neves EB, Scheeren EM, Chiarello CR, Costin AC, Mascarenhas LP . [PediaSuit™ in spastic diplegia rehabilitation: A case study (Portuguese)]. Lecturas, Educación Física y Deportes–Buenos Aires. 2012; 15(166). https://docplayer.com.br/36271330-O-pediasuit-na-reabilitacao-da-diplegia-espastica-um-estudo-de-caso.html

[24] Aye T, Thein S, Hlaing T. [Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy (Japanese)]. Journal of Physical Therapy Science. 2016; 28(2):671-6. [DOI:10.1589/jpts.28.671]

[25] Khayatzadeh mahani M, Karimloo M, Amirsalari S. Effect of modified adeli suit therapy on improvement of grass motor function in children with cerebral palsy. Hong Kong Journal of Occupational Therapy. 2011; 21(1):9-14 [DOI:10.1016/j.jhk- jot.2011.05.001]
[26] Tuner AE. The efficacy of adel suit treatment in children with cerebral palsy. Developmental Medicine & Child Neurology. 2006; 48(5):324. [DOI:10.1017/S0012162606000715] [PMID]

[27] Khodadadi M, Rahnama N. The effect of frankle’s training with and without suit therapy on fatigue and balance of multiple sclerosis patients (Persian). Iranian Journal of Rehabilitation Research in Nursing. 2017; 3(3):24-31. [DOI:10.21859/ijrn-03034]

[28] Khodadadi M, Rahnama N, Hashemi SH, Dasijerdi AJ. Comparison of the effect of balance training with and without suit therapy on the quality of life and motor function in patient with parkinson’s disease (Persian). Journal Rehabilitation Medicine. 2017; 6(1):175-84. [DOI:10.22037/JRM.2017.1100285]

[29] Khodadadi M, Rahnama N, Zamani J. Comparing the effect of balance training with and without suit therapy on the balance and the gait pattern with parkinson’s disease (Persian). Journal Rehabilitation Medicine. 2017; 6(11):1-12. [DOI:10.22084/JRM.2017.74723.1317]

[30] Khodadadi M, Rahnama N. Comparison effect of rehabilitation traditional, suit therapy and combination method on balance dynamic in athletes lateral ankle sprain (Persian). Journal for Research in Sport Rehabilitation. 2018; 6(11):1-12. [DOI:10.22084/JFM.2017.7423.1011]

[31] Khodadadi M, Rahnama N. The comparison of effect of traditional and suit therapy method rehabilitation on proprioception of people who suffer from lateral ankle sprain (Persian). Journal of Paramedical Sciences & Rehabilitation. 2017; 6(1):7-16. [DOI:10.22038/JPSR.2017.14547.1317]

[32] Khodadadi M, Rahnama N, Tayebi A. Comparison effect of balance training with and without suit therapy on balance and gait in elderly (Persian). Journal of Applied Exercise Physiology. 2018; 13(26):191-202. [DOI:10.22080/JAEFP.2017.1690]

[33] Martins E, Cordovil R, Oliveira R, Pinho J, Vas JR. The immediate effects of therapeutical on the gait pattern of a child with unilateral spastic cerebral palsy. Journal of Neonatal and Pediatric Medicine. 2017; 3:51. [DOI:10.4172/2572-4983.10005101]

[34] Eggleston JD, Harry JR, Hickman RA, Dufek JS. Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder. Gait & Posture. 2017; 55:162-6. [DOI:10.1016/j.gaitpost.2017.04.026]

[35] Bagheri Koodakani S, Lenjan Nejadhian S, Haj Lotfalian M. Designing, validation and reliability assessment of software to acquire kinematics parameters of motion by image processing (Persian). Research in Sport Science & Technology. 2016; 14(11):40-52. [DOI:10.18869/acadpub.jsmt.14.11.40]

[36] Tinetti ME. Performance oriented assessment of mobility problems in elderly patients. Journal of the American Geriatrics Society. 1986; 34(2):119-26. [DOI:10.1111/j.1532-5415.1986.tb05480.x] [PMID]

[37] Thomas M, Jankovic J, Suteera Wattananon M, Wankadia S, Caroline K, Vuong K, et al. Clinical gait and balance scale (GABS): Validation and utilization. Journal of Neurologic Science. 2004; 217(1):89-99. [DOI:10.1016/j.jns.2003.09.005] [PMID]

[38] Dowell LR, Mahone EM, Mostofsky SH. Associations of postural knowledge and basic motor skill with dyspraxia in autism: implication for abnormalities in distributed connectivity and motor learning. Neuropsychology. 2009; 23(5):563-70. [DOI:10.1037/a0015640] [PMID] [PMCID]

[39] Minshew NJ, Sung K, Jones BL, Furman JM. Underdevelopment of the postural control system in autism. Neurology. 2004; 63(11):2056-61. [DOI:10.1212/01.WNL.0000145771.98657.62] [PMID]

[40] Memari AH, Ghanizani P, Shayanestehfar M, Ziaee V, Moshayedi P. Effects of visual search vs. auditory tasks on postural control in children with autism spectrum disorder. Gait & Posture. 2014; 39(1):229-34. [DOI:10.1016/j.gaitpost.2013.07.012] [PMID]

[41] Nayate A, Bradshaw JL, Rinelhart NJ. Autism and Asperger’s disorder: Are they movement disorders involving the cerebellum and/or basal ganglia? Brain Research Bulletin. 2005; 67(4):327-34. [DOI:10.1016/j.brainresbull.2005.07.011] [PMID]

[42] Barela JA, Jeka JJ, Clark JE. Postural control in children. Coupling to dynamic somatosensory information. Experimental Brain Research. 2003; 150(4):434-42. [DOI:10.1007/s00221-003-1441-5] [PMID]

[43] Scheeren EM, Mascarenhas LR, Chiarello CR, Costin AC, Oliveira L, Neves EB. Description of the Pediasuit Protocol®. Fisioterapia em Movimento. 2012; 25(3):473-80. [DOI:10.1590/S0103-51502012000300002]

[44] Lederman, E. Neuromuscular rehabilitation in manual and physical therapy. 1st ed. London: Churchill Livingstone; 2010. [DOI:10.18978-8978-40-0696-7.00014-0]

[45] Lee BL. Clinical usefulness of Adeli suit therapy for improving gait function in children with spastic cerebral palsy: A case study. Journal of Physical Therapy Science. 2016; 28(6):1949-52. [DOI:10.1589/jpts.28.1949] [PMID] [PMCID]

[46] Kim MR, Lee BH, Park DS. Effects of combined Adeli suit and neurodevelopmental treatment in children with spastic cerebral palsy with gross motor function classification level III and II. Hong Kong Physiotherapy Journal. 2016; 34:10-8. [DOI:10.1016/j.hkjp.2015.09.036] [PMID] [PMCID]

[47] Bailes AF, Greve K, Burch CR, Reder R, Lin L, Huth MM. The effect of suit wear during an intensive therapy program in children with cerebral palsy. Pediatric Physical Therapy. 2011; 23(2):136-42. [DOI:10.1097/PEP.0b013e318218ef58] [PMID] [PMCID]

[48] Alagesan J, Shetty A. Effect of modified suit therapy in spastic diplegic cerebral palsy-a single blinded randomized controlled trial. Online Journal of Health and Allied Sciences. 2011; 9(4). [DOI:10.22084/RSR.2017.7423.1137]

[49] Karadağ-Saygı E, Giray E. The clinical aspects and effectiveness of suit therapies for cerebral palsy: A systematic review. Turkish Journal Physical Medicine Rehabilitation. 2019; 65(1):93-110. [DOI:10.5606/tftrd.2019.3431] [PMID] [PMCID]

[50] Bar-Haim S, Harries N, Belokopytov M, Frank A, Copeliovitch L, Kaplanski J, et al. Comparison of efficacy of Adeli suit and neurodevelopmental treatments in children with cerebral palsy. Developmental Medicine and Child Neurology. 2006; 48(5):325-30. [DOI:10.1017/S0012162206007277] [PMID] [PMCID]

[51] Karadağ-Saygı E, Giray E. The clinical aspects and effectiveness of suit therapies for cerebral palsy: Systematic review. Turkish Journal Physical Medicine Rehabilitation, 2019; 65(1):93-110. [DOI:10.5606/tftrd.2019.3431] [PMID] [PMCID]