Sharp bounds for the Neuman-Sándor mean in terms of the power and contraharmonic means

Wei-Dong Jiang and Feng Qi
Sharp bounds for the Neuman–Sándor mean in terms of the power and contraharmonic means

Wei-Dong Jiang¹ and Feng Qi²,³,4*

Abstract: In the paper, the authors obtain sharp bounds for the Neuman–Sándor mean in terms of the power and contraharmonic means.

Subjects: Science; Mathematics & Statistics; Advanced Mathematics; Analysis - Mathematics; Real Functions; Special Functions

Keywords: sharp bound; Neuman–Sándor mean; power; contraharmonic mean

AMS Subject Classifications: Primary: 26E60; Secondary 26D05; 33B10

1. Introduction
For positive numbers \(a, b < 0\) with \(a \neq b\), the second Seiffert mean \(T(a, b)\), quadratic mean \(S(a, b)\), Neuman–Sándor mean \(M(a, b)\), and contraharmonic mean \(C(a, b)\) are respectively defined in Neuman and Sándor (2003), and Seiffert (1995) by

\[
T(a, b) = \frac{a - b}{2 \arctan((a - b)/(a + b))}, \quad S(a, b) = \sqrt{\frac{a^2 + b^2}{2}} \tag{1.1}
\]

\[
M(a, b) = \frac{a - b}{2 \arcsinh((a - b)/(a + b))}, \quad C(a, b) = \frac{a^2 + b^2}{a + b} \tag{1.2}
\]

ABOUT THE AUTHOR
Feng Qi is a full Professor in Mathematics at Henan Polytechnic University and Tianjin Polytechnic University, China. He was the founder and the former Head of School of Mathematics and Informatics at Henan Polytechnic University. He was ever a visiting professor at Victoria University in Australia, and University of Hong Kong, and ever a part-time professor at Henan University, Henan Normal University, and Inner Mongolia University for Nationalities in China. He received his PhD degree of Science in Mathematics from University of Science and Technology of China. He is the editor of several international journals. He has published over 500 research articles in reputed international journals. His research interests include the classical analysis, analytic combinatorics, special functions, mathematical inequalities, mathematical means, integral transforms, complex functions, analytic number theory, differential geometry, and mathematical education at universities. For more information, please see his home page at http://qifeng618.wordpress.com and related links therein.

PUBLIC INTEREST STATEMENT
In the paper, the authors obtain a sharp lower bound and a sharp upper bound for the Neuman–Sándor mean in terms of the power and contraharmonic means.

© 2015 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Page 2 of 7
It is well known Neuman (2012, 2011), and Neuman and Sándor (2006) that the inequalities
\[M(a, b) < T(a, b) < S(a, b) < C(a, b) \]
hold for all \(a, b < 0 \) with \(a \neq b \).

In Chu and Hou (2012), Chu, Hou, and Shen (2012), the inequalities
\[S(\alpha a + (1 - \alpha) b, \alpha b + (1 - \alpha) a) < T(a, b) < S(\beta a + (1 - \beta) b, \beta b + (1 - \beta) a) \]
and
\[C(\lambda a + (1 - \lambda) b, \lambda b + (1 - \lambda) a) < T(a, b) < C(\mu a + (1 - \mu) b, \mu b + (1 - \mu) a) \]
were proved to be valid for \(\frac{1}{2} < \alpha, \beta, \lambda, \mu < 1 \) and for all \(a, b < 0 \) with \(a \neq b \) if and only if
\[\alpha \leq \frac{1}{2} \left(1 + \sqrt{\frac{16}{\pi^2} - 1} \right), \quad \beta \geq \frac{3 + \sqrt{6}}{6} \]
\[\lambda \leq \frac{1}{2} \left(1 + \sqrt{\frac{4}{\pi^2} - 1} \right), \quad \mu \geq \frac{3 + \sqrt{3}}{6} \]
respectively. In Jiang and Qi (2014) and its preprint Jiang and Qi (2013a), the double inequality
\[S(\alpha a + (1 - \alpha) b, \alpha b + (1 - \alpha) a) < M(a, b) < S(\beta a + (1 - \beta) b, \beta b + (1 - \beta) a) \]
was proved to be valid for \(\frac{1}{2} < \alpha, \beta < 1 \) and for all \(a, b > 0 \) with \(a \neq b \) if and only if
\[\alpha \leq \frac{1}{2} \left\{ 1 + \sqrt{\frac{1}{(\ln(1 + \sqrt{2}))^2} - 1} \right\}, \quad \beta \geq \frac{3 + \sqrt{3}}{6} \]
For more information on this topic, please refer to recently published papers Chu, Wang, and Gong (2011), Jiang and Qi (2012), Li, Long, and Chu (2012), Li and Qi (2013) and references cited therein.

For \(t \in (\frac{1}{2}, 1) \) and \(p \geq \frac{1}{2} \) let
\[Q_{t, p}(a, b) = C^p(ta + (1 - t)b, tb + (1 - t)a)A^{1-p}(a, b) \]
where \(A(a, b) = \frac{a + b}{2} \) is the classical arithmetic mean of \(a \) and \(b \). Then, by definitions in (1.1) and (1.2), it is easy to see that
\[Q_{t, 1/2}(a, b) = S(ta + (1 - t)b, tb + (1 - t)a) \]
\[Q_{t, 1}(a, b) = C(ta + (1 - t)b, tb + (1 - t)a) \]
and \(Q_{t, p}(a, b) \) is strictly increasing with respect to \(t \in (\frac{1}{2}, 1) \).

Motivating by results mentioned above, we naturally ask a question: what are the greatest value \(t_1 = t_1(p) \) and the least value \(t_2 = t_2(p) \) in \((\frac{1}{2}, 1) \) such that the double inequality
\[Q_{t_1, p}(a, b) < M(a, b) < Q_{t_2, p}(a, b) \]
holds for all \(a, b < 0 \) with \(a \neq b \) and for all \(p \geq \frac{1}{2} \).
The aim of this paper is to answer this question. The solution to this question may be stated as the following Theorem 1.1.

Theorem 1.1 Let $t_1, t_2 \in \left(\frac{1}{2}, 1\right)$ and $p \in \left[\frac{1}{2}, \infty\right)$. Then the double inequality (1.9) holds for all $a, b < 0$ with $a \neq b$ if and only if

$$t_1 \leq \frac{1}{2} \left[1 + \sqrt{\left(\frac{1}{t_1}\right)^{1/p}} - 1\right] \quad \text{and} \quad t_2 \geq \frac{1}{2} \left(1 + \frac{1}{\sqrt{6p}}\right)$$

(1.10)

where

$$t^* = \ln \left(1 + \sqrt{2}\right) = 0.88 \ldots\quad (1.11)$$

Remark 1.1 When $p = \frac{1}{2}$ in Theorem 1.1, the double inequality (1.9) becomes (1.6).

Remark 1.2 If taking $p = 1$ in Theorem 1.1, we can conclude that the double inequality

$$C(\lambda a + (1 - \lambda)b, \lambda b + (1 - \lambda)a) < M(a, b) < C(\mu a + (1 - \mu)b, \mu b + (1 - \mu)a)$$

(1.12)

holds for all $a, b > 0$ with $a \neq b$ if and only if

$$\frac{1}{2} < \lambda \leq \frac{1}{2} \left[1 + \frac{1}{\sqrt{\ln(1 + \sqrt{2})}} - 1\right] \quad \text{and} \quad 1 > \mu \geq \frac{1}{2} \left(1 + \frac{\sqrt{6}}{6}\right)$$

(1.13)

Remark 1.3 We note that the paper Li and Zheng (2013) is worth to being read.

2. Lemmas

In order to prove Theorem 1.1, we need the following lemmas.

Lemma 2.1 (Anderson, Vamanamurthy, & Vuorinen, 1997, Theorem 1.25) For $-\infty < a < b < \infty$, let $f, g : [a, b] \to \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). If $g'(x) \neq 0$ and $\frac{f(x)}{g(x)}$ is strictly increasing (or strictly decreasing, respectively) on (a, b), so are the functions

$$\frac{f(x) - f(a)}{g(x) - g(a)} \quad \text{and} \quad \frac{f(x) - f(b)}{g(x) - g(b)}$$

(2.1)

Lemma 2.2 The function

$$h(x) = \frac{(1 + x^2)\text{arcsinh } x}{x}$$

(2.2)

is strictly increasing and convex on $(0, \infty)$.

Proof This follows from the following arguments:

$$h'(x) = \frac{x\sqrt{1 + x^2} - \text{arcsinh } x + x^2 \text{arcsinh } x}{x^2} \triangleq \frac{h_1(x)}{x^2}$$

$$h''(x) = x \left(\frac{3x}{\sqrt{1 + x^2}} + 2\text{arcsinh } x\right) \triangleq xh_2(x)$$

$$h'''(x) = \frac{5 + 2x^2}{(1 + x^2)^{3/2}} < 0$$
on \((0, \infty)\) and
\[
\lim_{x \to 0^+} h_1(x) = \lim_{x \to 0^-} h_2(x) = 0
\]

Lemma 2.3 For \(u \in [0, 1] \text{ and } p \geq \frac{1}{2}\) let

\[
f_{u, p}(x) = p \ln(1 + ux^2) - \ln x + \ln \text{arsinh } x
\]

on \((0, 1)\). Then the function \(f_{u, p}(x)\) is positive if and only if \(6pu \geq 1\) and it is negative if and only if \(1 + u \leq \left(\frac{1}{t} \right)^{1/p}\), where \(t^*\) is defined by (1.11).

Proof It is ready that

\[
\lim_{x \to 0^+} f_{u, p}(x) = 0
\]

and

\[
\lim_{x \to 1^-} f_{u, p}(x) = p \ln(1 + u) + \ln(t^*)
\]

An easy computation yields

\[
f'_{u, p}(x) = \frac{2pxu}{1 + ux^2} + \frac{1}{\sqrt{1 + x^2} \text{arsinh } x} - \frac{1}{x}
\]

\[
= u \left[(2p - 1)x^2 \sqrt{1 + x^2} \text{arsinh } x + x^3 \right] - \left[\sqrt{1 + x^2} \text{arsinh } x - x \right]
\]

\[
x(1 + ux^2) \sqrt{1 + x^2} \text{arsinh } x
\]

\[
= (2p - 1)x^2 \sqrt{1 + x^2} \text{arsinh } x + x^3 \left[u - \frac{g_1(x)}{g_2(x)} \right]
\]

where

\[
g_1(x) = \text{arsinh } x - \frac{x}{\sqrt{1 + x^2}} \quad \text{and} \quad g_2(x) = (2p - 1)x^2 \text{arsinh } x + \frac{x^4}{\sqrt{1 + x^2}}
\]

Furthermore, we have

\[
g_1(0) = g_2(0) = 0
\]

and

\[
\frac{g_1'(x)}{g_2'(x)} = \frac{1}{2(2p - 1)\sqrt{1 + x^2} h(x) + (2p + 1)x^2 + 2p + 2}
\]

where \(h(x)\) is defined by (2.2). From Lemma 2.2, it follows that the quotient \(\frac{g_1'(x)}{g_2'(x)}\) is strictly decreasing on \((0, 1)\). Accordingly, from Lemma 2.1 and (2.7), it is deduced that the ratio \(\frac{g_1(x)}{g_2(x)}\) is strictly decreasing on \((0, 1)\).

Moreover, making use of L'Hôpital's rule leads to

\[
\lim_{x \to 0} \frac{g_1(x)}{g_2(x)} = \frac{1}{6p}
\]
and

$$\lim_{x \to 1} g_1(x) = \frac{\sqrt{2} t^*-1}{\sqrt{2} (2p-1) t^* + 1}$$ \hspace{1cm} (2.10)$$

When \(u \geq \frac{1}{6p} \), combining (2.6) and (2.9) with the monotonicity of \(\frac{g_1(x)}{g_2(x)} \), shows that the function \(f_{u,p}(x) \) is strictly increasing on \((0, 1)\). Therefore, the positivity of \(f_{u,p}(x) \) on \((0, 1)\) follows from (2.4) and the increasingly monotonicity of \(f_{u,p}(x) \).

When \(u \leq \frac{\sqrt{2} t^*-1}{\sqrt{2} (2p-1) t^* + 1} \), combining (2.6) and (2.10) with the monotonicity of \(\frac{g_1(x)}{g_2(x)} \), reveals that the function \(f_{u,p}(x) \) is strictly decreasing on \((0, 1)\). Hence, the negativity of \(f_{u,p}(x) \) on \((0, 1)\) follows from (2.4) and the decreasingly monotonicity of \(f_{u,p}(x) \).

When \(\frac{\sqrt{2} t^*-1}{\sqrt{2} (2p-1) t^* + 1} < u < \frac{1}{6p} \), from (2.6), (2.9), (2.10) and the monotonicity of the ratio \(\frac{g_1(x)}{g_2(x)} \), we conclude that there exists a number \(x_0 \in (0, 1) \) such that \(f_{u,p}(x) \) is strictly decreasing in \((0, x_0)\) and strictly increasing in \((x_0, 1)\). Denote the limit in (2.5) by \(h_p(u) \). Then, from the above arguments, it follows that

$$h_p \left(\frac{1}{6p} \right) = p \ln \left(1 + \frac{1}{6p} \right) + \ln(t^*) > 0$$ \hspace{1cm} (2.11)$$

and

$$h_p \left(\frac{\sqrt{2} t^*-1}{\sqrt{2} (2p-1) t^* + 1} \right) = p \ln \left[1 + \frac{\sqrt{2} t^*-1}{\sqrt{2} (2p-1) t^* + 1} \right] + \ln(t^*) < 0$$ \hspace{1cm} (2.12)$$

Since \(h_p(u) \) is strictly increasing for \(u > -1 \), so it is also in \(\left[\frac{\sqrt{2} t^*-1}{\sqrt{2} (2p-1) t^* + 1}, \frac{1}{6p} \right) \). Thus, the inequalities in (2.11) and (2.12) imply that the function \(h_p(u) \) has a unique zero point \(u_0 = (\frac{1}{1})^{1/p} - 1 \) in \(\left(\frac{\sqrt{2} t^*-1}{\sqrt{2} (2p-1) t^* + 1}, \frac{1}{6p} \right) \) such that \(h_p(u) < 0 \) for \(u \in \left[\frac{\sqrt{2} t^*-1}{\sqrt{2} (2p-1) t^* + 1}, u_0 \right) \) and \(h_p(u) > 0 \) for \(u \in (u_0, \frac{1}{6p}) \). As a result, combining (2.4) and (2.5) with the piecewise monotonicity of \(f_{u,p}(x) \) reveals that \(f_{u,p}(x) < 0 \) for all \(x \in (0, 1) \) if and only if \(\frac{\sqrt{2} t^*-1}{\sqrt{2} (2p-1) t^* + 1} < u < u_0 \). The proof of Lemma 2.3 is complete.

3. Proof of Theorem 1.1

Now we are in a position to prove our Theorem 1.1.

Since both \(Q_{t,p}(a, b) \) and \(M(a, b) \) are symmetric and homogeneous of degree 1, without loss of generality, we assume that \(a > b \). Let \(x = \frac{a-b}{a+b} \in (0, 1) \). From (1.2) and (1.8), we obtain

$$\ln \frac{Q_{t,p}(a, b)}{T(a, b)} = \ln \frac{Q_{t,p}(a, b)}{A(a, b)} - \ln \frac{T(a, b)}{A(a, b)}$$

$$= p \ln \left[1 + (1 - 2t)^2 x^2 \right] - \ln x + \ln \arcsinh x$$

Thus, Theorem 1.1 follows from Lemma 2.3.

Remark 3.1 This is a slightly modified version of the preprint Jiang and Qi (2013b).
Funding
The first author was partially supported by the Project of Shandong Province Higher Educational Science and Technology Program [grant number J11LA57], China. The second author was partially supported by the Natural Science Foundation [grant number 2014JQ1006] of Shaanxi Province of China and by the National Natural Science Foundation [grant number 11361038] of China.

Author details
Wei-Dong Jiang1
E-mail: jackjwd@163.com; jackjwd@hotmail.com
ORCID ID: http://orcid.org/0000-0001-6239-2968

Feng Qi2,3,4
E-mail: qifeng618@gmail.com; qifeng618@hotmail.com; qifeng618@qq.com
1 Department of Information Engineering, Weihai Vocational College, Weihai City, Shandong Province, 264210, China.
2 College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China.
3 Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China.
4 Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China.

Citation information
Cite this article as: Sharp bounds for the Neuman–Sándor mean in terms of the power and contraharmonic means, W.-D. & F. Qi, Cogent Mathematics (2015), 2: 995951.

References
Anderson, G. D., Vamanamurthy, M. K., & Vuorinen, M. (1997). Conformal invariants, inequalities, and quasiconformal maps. New York, NY: John Wiley & Sons.
Chu, Y. M., & Hou, S. W. (2012). Sharp bounds for Seiffert mean in terms of contraharmonic mean. Abstract and Applied Analysis, 2012, 6 p. Article ID 425175. doi:10.1155/2012/425175
Chu, Y. M., Hou, S. W., & Shen, Z. H. (2012). Sharp bounds for Seiffert mean in terms of root mean square. Journal of Inequalities and Applications, 2012, 11, 6 p. doi:10.1186/1029-242X-2012-11
Chu, Y. M., Wang, M. K., & Gang, W. M. (2013). Two sharp double inequalities for Seiffert mean. Journal of Inequalities and Applications, 2011, 14, 7 p. doi:10.1186/1029-242X-2011-44
Jiang, W. D., & Qi, F. (2012). Some sharp inequalities involving Seiffert and other means and their concise proofs. Mathematical Inequalities and Applications, 15, 1007–1017. doi:10.7153/mia-15-86
Jiang, W. D., & Qi, F. (2013a) Sharp bounds for Neuman–Sándor mean in terms of the root-mean-square. Retrieved from http://arxiv.org/abs/1301.3267
Jiang, W. D., & Qi, F. (2014). Sharp bounds for Neuman–Sándor’s mean in terms of the root-mean-square. Periodica Mathematica Hungarica, 69, 134–138. Retrieved from http://dx.doi.org/10.1007/s10998-014-0057-9
Jiang, W. D., & Qi, F. (2013b) Sharp bounds in terms of the power of the contra-harmonic mean for Neuman–Sándor’s mean. Retrieved from http://arxiv.org/abs/1301.3554
Li, Y. M., Long, B. Y., & Chu, Y. M. (2012). Sharp bounds for the Neuman–Sándor mean in terms of generalized logarithmic mean. Journal of Mathematical Inequalities, 6, 567–577. doi:10.7153/jmi-06-54
Li, W. H., & Qi, F. (2013) A unified proof of inequalities and some new inequalities involving Neuman–Sándor mean. Retrieved from http://arxiv.org/abs/1312.3500
Li, W.H., & Zheng, M. M. (2013). Some inequalities for bounding Toader mean. Journal of Function Spaces and Applications, 2013, 5 p. Article ID 394194. doi:10.1155/2013/394194
Neuman, E. (2011). Inequalities for the Schwab–Borchardt mean and their applications. Journal of Mathematical Inequalities, 5, 601–609. doi:10.7153/jmi-05-52
Neuman, E. (2012). A note on a certain bivariate mean. Journal of Mathematical Inequalities, 6, 637–643. doi:10.7153/jmi-06-62
Neuman, E., & Sándor, J. (2003). On the Schwab–Borchardt mean. Mathematica Pannonica, 14, 253–266.
Neuman, E., & Sándor, J. (2006). On the Schwab–Borchardt mean II. Mathematica Pannonica, 17, 49–59.
Seiffert, H.-J. (1995). Aufgabe β 16. Die Wurzel, 29, 221–222.