RESEARCH ARTICLE

Expression of a β-Mannosidase from Paenibacillus polymyxa A-8 in Escherichia coli and Characterization of the Recombinant Enzyme

Xi Bai, Hong Hu, Huaping Chen, Quanbin Wei, Zeshen Yang, Qianming Huang

1. College of Science, Sichuan Agricultural University, Yaan, Sichuan 625000, P. R. China, 2. College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P. R. China, 3. Liang Shan Zhong Ze New Technology Development Co., Ltd, Xichang, Sichuan 615000, P. R. China

*huangqianming666@aliyun.com

These authors contributed equally to this work.

Abstract

Paenibacillus polymyxa A-8, which secretes β-mannosidase, was isolated from the soil sample under a pine tree located in the “Laoban” mountain region of Sichuan, China. The β-mannosidase gene (MANB) was isolated from P. polymyxa A-8, using primers according to the complete genome. The MANB (2,550 bp) encoding 849 amino acid residues was expressed in Escherichia coli. The specific activities of β-mannosidase produced by P. polymyxa A-8 and E. coli pET30a-MANB were 12 nkat/mg and 635 nkat/mg respectively. SDS-PAGE analysis indicated that the molecular mass of the recombinant MANB was approximately 96 kDa. The recombinant MANB had the optimal activity at pH 7.0–8.5 with the maximum activity at pH 7.0. It had good pH stability and adaptability. The MANB had the optimal temperature of 35°C and was relatively stable at 35–40°C. In addition, the MANB activity was enhanced by K+, Ca2+, Mn2+, and Mg2+ and inhibited by Zn2+, Cu2+, and Hg2+.

Introduction

Mannan is the second largest component of the hemicellulose and is distributed in plant cell walls [1–2]. It is classified into four subfamilies: galactoglucomannan, galactomannan, glucomannan and linear mannan. These saccharans contain β-1,4-mannose or α-1,6-mannose and mannose residues [3]. Due to the structural complexity and heterogeneity of plant mannan, its complete hydrolysis needs the
synergistic action of mannanases, galactosidases and mannosidases. One of these important mannan-degrading enzymes is β-mannosidase [4–7].

β-Mannosidase (EC 3.2.1.25, MANB) catalyzes the hydrolysis of β-1,4-mannosidic bonds by releasing a single β-D-mannose unit from the nonreducing end of mannooligo saccharides [8–11]. There are many potential applications for mannosidases in industrial fields, such as increasing the quality of animal feed and food, bleaching of softwood pulp in paper industry, and producing the oligosaccharides for the medical industry [12–15].

The various microorganisms, including bacteria, archaea, fungi and actinomycetes, have been reported to secrete β-mannosidases [16–19]. However, the application of β-mannosidases is still not extensive in the animal feed industry due to its low production level. Therefore, the identification of a new mannosidase with high activity is very desirable. Recently, the exogenous expression of enzymes has attracted considerable interest in order to improve their production level. In addition, the pET vectors are the most effective plasmids for the expression of proteases in *Escherichia coli* under the control of the bacteriophage T7 promoter, which can greatly increase their production level [20–21].

In the present work, the bacterium *Paenibacillus polymyxa* A-8 was isolated from the soil sample under a pine tree located in the “Laoban” mountain region of Sichuan, China. The β-mannosidase gene (*MANB*) from *P. polymyxa* A-8 was cloned and expressed in *E. coli* with the vector pET30α. In addition, the biochemical properties of the recombinant MANB were fully determined.

Materials and Methods

Strains, media and plasmids

This experiment was approved by Sichuan Agricultural University. *P. polymyxa* was isolated from the soil under a pine tree located in the “Laoban” mountain region near Sichuan Agricultural University (Address: Yaan, Sichuan 625000 P. R. China). The *P. polymyxa* was cultivated at 30°C for 24 h in Konjac flour medium to induce β-mannosidase. *E. coli* BL21 was used to express the gene MANB. The pTG19-T (Generay, China) was the T-cloning plasmid. The expression plasmid, pET30a, was stored in our laboratory.

The sequence analysis of 16S rRNA

The 16S rRNA of the isolated microorganism was obtained by polymerase chain reaction (PCR) with the universal primers 5'-AGAGTTTGATCCTGGCTCAG-3' (forward) and 5'-TACCTTGTTACCACTT-3' (reverse). The PCR reaction mixtures (25 μL) included approximately 10 ng of isolated strain DNA, 0.1 μM each primer, and 12.5 μl PCR premix (Tiangen, China). The thermal program was as follows: 6 min at 94°C; followed by 32 cycles of 94°C for 38 s, 59°C for 50 s, and 72°C for 1.5 min. The purified PCR products were ligated into the vector pTG19-T and sequenced by Generay.
Cloning of the *P. polymyxa* A-8 MANB gene

Genomic DNA extracted from *P. polymyxa* A-8 was used as the template DNA for PCR. To amplify the MANB gene, both primers were designed according to complete genome of *P. polymyxa* M1 [22]. The forward primer was 5’-GCTGGTACCATTAATGTGATAGGGTTGG -ATG-3’ (MANBF, the *Kpn*I restriction site is underlined and the start codon was removed), and the reverse primer was 5’-ATTGCCGGCCGCCTAACCTTGTATCCAATTGATCA-3’ (MANBR, the *Not*I restriction site is underlined). The PCR mixtures and program were similar to the above description. The resulting product was inserted into the pTG19-T vector.

Sequence analysis

The sequence analysis of MANB from *P. polymyxa* A-8 was performed by the ClustalW program, DNAstar 7.1 software and the BLAST server in GeneBank.

Expression of the MANB gene in *E. coli*

The vector pTG19-MANB was double-digested with *Kpn*I and *Not*I, and the isolated MANB fragment was ligated into the pET30a vector. Next, the resulting vector pET30a-MANB was transformed into *E. coli* BL21.

The single *E. coli* pET30a-MANB harboring MANB was cultivated in 50 mL fresh LB medium kanamycin (30 μg/ml) and grown at 37°C for 4 h. Then, isopropyl β-D-thiogalactopyranoside (IPTG) was added into the culture broth at a final concentration of 1 mM. After cultivation for an additional 4 h, the cells were collected and fully resuspended in 10 mL of 0.05 M Tris/HCl buffer (pH 7.0), followed by ultrasonication. After centrifugation, the supernate was stored at −70°C.

SDS-PAGE

SDS–PAGE was performed on a 12% running gel and stained by Coomassie brilliant blue [23].

Protein purification

The supernatants containing the crude recombinant MANB were purified by a 6 × His-Tagged Protein Purification kit (Cwbiotech, China) according to the manuals. The purified recombinant protein was stored at −70°C for analysis.

Enzyme activity assay

The MANB activity was determined according to the methods described by Fliedrová et al. [19]. Standard assay mixtures contained 50 μl of 1.25 mM p-nitrophenyl-β-D-mannopyranoside (pNPM), 100 μl of 50 mM of the enzyme solution and 400 μl of 0.05 M Tris/HCl buffer (pH 7.0) at 45°C for 30 min. The
reaction was stopped by the addition of 3 ml of 0.2 M sodium carbonate solution, and the release of pNP was measured at 410 nm. One unit of enzyme activity (U) was defined as the amount of enzyme that released 1 μmol of p-nitrophenol per minute under the assay conditions.

The effect of pH, temperature and metal ions on the activity of the recombinant MANB

The optimal pH of MANB was examined at 35˚C for 30 min by using various buffers of pH 6–9 (50 mM citrate phosphate, pH=6; 50 mM Tris/HCl, pH=7–9). The pH stability of MANB was tested by pre-incubating the enzyme in different buffers (pH 6–9) for 30 min without substrate before detecting its residual activity.

The optimum temperature of the recombinant enzyme was determined at 20 to 50˚C and pH 7.0. To examine its temperature stability, the MANB was incubated at 35˚C, 40˚C, and 45˚C, respectively, for 30 min. In addition, its thermostability was determined by incubating the recombinant MANB for various times (30, 60, 90 and 120 min) at different temperatures (35˚C and 45˚C), and its residual mannosidase activity was then detected under the standard conditions as described above.

The effect of different metal ions on the activity of recombinant MANB was examined in 50 mM Tris/HCl buffer (pH 7.0) which contained 10 mM of ZnCl₂, KCl, FeCl₃, CaCl₂, MnCl₂, MgCl₂, CuCl₂ or HgCl₂. After the reaction, the mixture was centrifuged. Then the supernatant was used to determine its activity. The mannosidase activity of the assay system in the absence of any additives was considered to be 100%.

Results and Discussion

Isolation and identification of P. polymyxa A-8

According to the forming of clear zones around the colonies, the plate technique was used to isolate mannosidase microorganisms [24]. As shown in Figure 1, 10 colonies produced clear zones of hydrolysis in the agar broth. The results indicated that the specific MANB activity of strain A-8 was 12 nkat/mg, which was higher than the β-mannosidase activity in Thermotoga neapolitana 5068 reported by Duffaud et al. (1997) [25]. Therefore, the strain A-8 was chosen for further investigation.

Compared to the morphology, the microbial 16S rRNA sequence can more easily and accurately be used to classify a bacterium [26]. In the present study, the 16S rRNA of the strain A-8 (1459 bp) was amplified to identify its species. The GeneBank database and Mega 5.1 software were used to build a phylogenetic tree according to the alignment of the 16S rRNA sequence, and the results indicated that the A-8 strain was genetically more similar to P. polymyxa L1-9 than to the
other microorganisms (Figure 2). Consequently, the A-8 strain was identified to be \(P. \) polymyxa.

Cloning and sequencing of MANB

The targeted DNA fragment was amplified from the genomic DNA of \(P. \) polymyxa A-8 using the sequence-specific PCR primers MANBF and MANBR. The resulting fragment was 2550 bp, encoding 849 amino acid (aa) residues with an evaluated MW of 96.3 kDa. Use of the BLAST program by NCBI showed that the nucleotide sequence of MANB gene had 94%, 80% and 77% identity to the \(Paenibacillus \) polymyxa M1 genome (HE577054), \(Arthroderma \) otae CBS MANB (XM_002846187) and \(Trichophyton \) verrucosum HKI MANB (XM_003022716).

![Figure 1. Bacterial isolates with zone of hydrolysis on the agar broth containing 0.4% congo red and 0.5% konjac powder.](doi:10.1371/journal.pone.0111622.g001)

Figure 2. The phylogenetic tree of strain A-8 based on the sequence of 16S rRNA. The 16S rRNA of the strain A-8 sequence showed over 99% identity with the \(P. \) polymyxa L1-9.

![Diagram](doi:10.1371/journal.pone.0111622.g002)
The sequence for MANB was deposited in the GeneBank database under the accession number of KF576220.

β-Mannosidases are grouped into family 1, 2, and 5 of Glycosyl hydrolases (GHs) [8, 17, 27], and the amino acid sequence analysis indicated that the MANB of P. polymyxa A-8 belongs to the GHs family 2 (Figure 3). This family includes β-mannosidase, β-glucuronidase and β-galactosidase activities [17].

Expression and purification of MANB in E. coli

The gene which encodes MANB was expressed in E. coli. The recombinant E. coli pET30a-MANB was cultivated in LB broth and induced by IPTG. SDS-PAGE analysis revealed that the MW of the expressed protein was approx. 96 kDa corresponding with that evaluated from the amino acid sequence (Figure 4). The specific activity of the cultured containing the crude recombinant MANB was 635 nkat/mg, which was higher than the MANB activity secreted by P. polymyxa A-8 and many other bacteria [5, 25].

The crude protein containing recombinant MANB was purified by a 6 × His-Tagged Protein Purification kit, and a single band of approx. 96 kDa was presented on SDS-PAGE gel (Figure 4).

The properties of MANB

The properties of the recombinant MANB expressed by E. coli were determined at different pH (6–9) and temperature (20–50°C) values. The recombinant MANB
showed maximal activity at pH 7.0, and more than 70% of its optimal activity was maintained at pH 7.0–8.5 (Figure 5A). Similarly, the optimal pH values of β-mannosidases produced by *Streptomyces* sp., *Cellulomonas fimi* and *Thermobifida fusca* are 7.0–7.2 [3, 8, 17]. However, different optimum pH values exist in some strains such as *Thermoascus aurantiacus* (optimum pH: 2.5–3.0) and *Aspergillus niger* ATCC-46890 (optimum pH: 2.4–5.0) [10, 15]. In addition, the recombinant MANB from *E. coli* pET30a-MANB had considerable pH stability and over 59% of the maximal activity remained after incubation at 35°C and pH 5.0–9.0 for 30 min (Figure 5B), which corresponded with that of β-mannosidase from *E. coli* pET-man2S27 [5].

Figure 5. Biochemical properties of MANB. A. Effect of pH on the MANB activity. B. The pH stability of MANB. C. Effect of temperature on the MANB activity. D. The temperature stability of MANB. E. The enzymatic thermostability. The maximum value was considered to be 100%. The values presented correspond to the mean values of at least three replicates.

doi:10.1371/journal.pone.0111622.g005
The temperature optima for the MANB produced by *E. coli* pET30a-MANB was 35˚C (Figure 5C), which was lower than that reported previously [5,8,17]. This is probably attributed to the protein structure. Unlike other β-mannosidases, the MANB protein has no disulfide bridges or N-terminal thermostabilizing domain [17]. The recombinant MANB was relatively stable at 35 ˚C and 40 ˚C, and it retained over 80% of the total activity at these temperatures for 2 h (Figure 5D–E). However, it was rapidly inactivated at 45˚C for 30 min (Figure 5D).

Effect of metal ions on MANB activity

The effect of metal ions on the recombinant MANB activity was also detected (Figure 6). The effect of Fe³⁺ on the MANB activity was negligible, while K⁺, Ca²⁺, Mn²⁺ and Mg²⁺ significantly enhanced the MANB activity (135–157%). However, its activity was markedly inhibited by Zn²⁺, Cu²⁺ and Hg²⁺. Similar results have been reported for *Streptomyces sp.* S27 β-mannosidases activity which was increased by Mg and inhibited by Zn²⁺, Cu²⁺ and Hg²⁺ [5].

Conclusions

The MANB gene was successfully cloned from *P. polymyxa* A-8 and expressed in *E. coli* BL21. The recombinant MANB produced in *E. coli* pET30a-MANB had considerable pH and temperature stability. Moreover, the development of more powerful expression systems such as *Picha pastoris* will be considered in our laboratory for further research.

Acknowledgments

This study was supported by the Technology Program of Sichuan Provincial Science and Technology Department (12ZC2220).
Author Contributions
Conceived and designed the experiments: XB HH QH. Performed the experiments: XB HH HC QW ZY. Analyzed the data: XB HH. Contributed reagents/materials/analysis tools: XB HH. Wrote the paper: XB HH.

References

1. Liepman AH, Nairn CJ, Willats WG, Sørensen I, Roberts AW, et al. (2007) Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of mannans in plants. Plant Physiol 143: 1881–1893.

2. Leroux O, Leroux F, Mastroberti AA, Santos-Silva F, Van Loo D, et al. (2013) Heterogeneity of silica and glycan-epitope distribution in epidermal idioblast cell walls in Adiantum raddianum laminae. Planta: 1–12.

3. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27: 197–216.

4. Offen WA, Zechel DL, Withers SG, Gilbert HJ, Davies GJ (2009) Structure of the Michaelis complex of β-mannosidase, Man2A, provides insight into the conformational itinerary of mannoside hydrolysis. Chem Commun 18: 2484–2486.

5. Shi P, Yao G, Cao Y, Yang P, Yuan T, et al. (2011) Cloning and characterization of a new β-mannosidase from Streptomyces sp. S27. Enzyme and microbial technology, 49, 277–283.

6. Eneyskaya EV, Sundqvist G, Golubev AM, Ibatullin FM, Ivanen DR, et al. (2009) Transglycosylating and hydrolytic activities of the β-mannosidase from Trichoderma reesei. Biochimie 91(5): 632–638.

7. Zahura UA, Rahman MM, Inoue A, Ojima T (2012) Characterization of a β-D-mannosidase from a marine gastropod, Aplysia kurodai. Comp Biochem Phys B 162: 24–33.

8. Zhang M, Jiang Z, Li L, Katrolia P (2009) Biochemical characterization of a recombinant thermostable β-mannosidase from Thermotoga maritima with transglycosidase activity. J Mol Catal B-Enzym 60: 119–124.

9. Andreotti G, Giordano A, Tramice A, Mollo E, Trincone A (2005) Purification and characterization of a β-d-mannosidase from the marine anaspidean Aplysia fasciata. J Biotechnol 119: 26–35.

10. Gomes J, Terler K, Kratzer R, Kainz E, Steiner W (2007) Production of thermostable β-mannosidase by a strain of Thermoaescus aurantiacus: Isolation, partial purification and characterization of the enzyme. Enzyme Microb Tech 40: 142–147.

11. Kanamasa S, Kawaguchi T, Takada G, Kajiwara S, Sumitani J, et al. (2007) Development of an efficient production method for β-mannosidase from Aspergillus aculeatus. Lett Appl Microbiol 45: 142–147.

12. Moreira LRS (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biot 79: 165–178.

13. Nashiru O, Zechel DL, Stoll D, Mohammadzadeh T, Warren RAJ, et al. (2001) β-Mannosynthase: Synthesis of β-Mannosides with a Mutant β-Mannosidase. Angew Chem 113: 431–434.

14. Kurakake M, Komaki T (2001) Production of β-mannanase and β-mannosidase from Aspergillus awamori K4 and their properties. Curr Microbiol 42: 377–380.

15. Ademark P, Lundqvist J, Hägglund P, Tenkanen M, Torto N, et al. (1999) Hydrolytic properties of a β-mannosidase purified from Aspergillus niger. J Biotechnol 75(2): 281–289.

16. Mo B, Bewley DJ (2002) β-Mannosidase (EC 3.2. 1.25) activity during and following germination of tomato (Lycopersicon esculentum Mill.) seeds. Purification, cloning and characterization. Planta 215: 141–152.

17. Béki E, Nagy I, Vanderleyden J, Jäger S, Kiss L, et al. (2003) Cloning and heterologous expression of a β-D-mannosidase (EC 3.2. 1.25)-encoding gene from Thermobifida fusca TMS1. Appl Environ Microb 69(4): 1944–1952.
18. Reddy SK, Rosengren A, Klaubauf S, Kulkarni T, Karlsson EN, et al. (2013) Phylogenetic analysis and substrate specificity of GH2 β-mannosidases from Aspergillus species. FEBS Lett, http://dx.doi.org/10.1016/j.febslet.2013.08.029.

19. Fliedrová B, Gerstorferová D, Křen V, Weignerová L (2012) Production of Aspergillus niger β-mannosidase in Pichia pastoris. Protein Expr Purif 85: 159–164.

20. Hu H, He J, Yu B, Zheng P, Huang Z, et al. (2012) Expression of a keratinase (kerA) gene from Bacillus licheniformis in Escherichia coli and characterization of the recombinant enzymes. Biotechnol Lett 2013, 35(2): 239–244.

21. Eum JH, Bottjen RC, Pruijssers AJ, Clark KD, Strand MR (2010) Characterization and kinetic analysis of protein tyrosine phosphatase-H2 from Microplitis demolitor bracovirus. Insect Biochem Mol Biol 40: 690–696.

22. Niu B, Rueckert C, Blom J, Wang Q, Borriss R (2011) The genome of the plant growth-promoting rhizobacterium Paenibacillus polymyxa M-1 contains nine sites dedicated to nonribosomal synthesis of lipopeptides and polyketides. J Bacteriol 193: 5862–5863.

23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

24. Sreedevi S, Reddy BN (2013) Screening for efficient phytase producing bacterial strains from different soils. Int J Biosci 3: 76–85.

25. Duffaud GD, McCutchen CM, Leduc P, Parker KN, Kelly RM (1997) Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Appl Environ Microb 63(1): 169–177.

26. Chen X, Yu Z, Guo L, Li L, Meng H, et al. (2012) Life cycle of Haemaphysalis doiitzi (Acari: Ixodidae) under laboratory conditions and its phylogeny based on mitochondrial 16S rDNA. Exp Appl Acarol 56(2): 143–150.

27. Tailford LE, Money VA, Smith NL, Dumon C, Davies GJ (2007) Mannose Foraging by Bacteroides thetaiotaomicron: structure and specificity of the β-mannosidase, BtMan2A. J Biol Chem 282: 11291–11299.