Inefficiency of voting in Parrondo games

Abstract

We study a modification of the so-called Parrondo’s paradox where a large number of individuals choose the game they want to play by voting. We show that it can be better for the players to vote randomly than to vote according to their own benefit in one turn. The former yields a winning tendency while the latter results in steady losses. An explanation of this behaviour is given by noting that selfish voting prevents the switching between games that is essential for the total capital to grow. Results for both finite and infinite number of players are presented. It is shown that the extension of the model to the history-dependent Parrondo’s paradox also displays the same effect.

Key words: Parrondo’s paradox, Majority rule, Brownian ratchets
PACS: 02.50.-r, 05.40.-a, 87.23.Ge

1 Introduction

The dynamics of a flashing ratchet can be translated into a counterintuitive phenomenon in gambling games which has recently attracted considerable attention. It is the so-called Parrondo’s paradox consisting of two losing games, A and B, that yield, when alternated, a winning game.

In game A, a player tosses a coin and makes a bet on the throw. He wins or loses 1 euro depending on whether the coin falls heads or tails. The probability of winning is \(p_1 = 1/2 - \epsilon \) with \(0 \leq \epsilon \ll 1 \); so game A is fair when \(\epsilon = 0 \) and losing when \(\epsilon > 0 \). By losing, winning, and fair games here we mean that the average capital is a decreasing, increasing, and a constant function of the number of turns, respectively.

The second game —or game B— consists of two coins. The player must throw coin 2 if his capital is not a multiple of three, and coin 3 otherwise. The probability of winning with coin 2 is \(p_2 = 3/4 - \epsilon \) and with coin 3 is \(p_3 = \)
Fig. 1. Rules of the two Parrondo games

1/10 − ε. They are called “good” and “bad” coins respectively. It can be shown that game B is also a losing game if ε > 0 and that ε = 0 makes B a fair game [3,4]. The rules of both game A and B are depicted in fig. 1.

Surprisingly, switching between games A and B in a random fashion or following some periodic sequences produces a winning game, for ε > 0 sufficiently small, i.e., the average of player earnings grows with the number of turns. Therefore, from two losing games we actually get a winning game. This indicates that the alternation of stochastic dynamics can result in a new dynamics, which differs qualitatively from the original ones.

Alternation is either periodic or random in the flashing rachet and in the paradoxical games. On the other hand, we have recently studied the case of a controlled alternation of games, where information about the state of the system can be used to select the game to be played with the goal of maximising the capital [5]. This problem is trivial for a single player: the best strategy is to select game A when his capital is a multiple of three and B otherwise. This yields higher returns than any periodic or random alternation. Therefore, choosing the game as a function of the current capital presents a considerable advantage with respect to “blind” strategies, i.e., strategies that do not make use of any information about the state of the system, as it is the case of the periodic and random alternation. Also, in a flashing ratchet, switching on and off the ratchet potential depending on the location of the Brownian particle allows one to extract energy from a single thermal bath, in apparent contradiction with the second law of thermodynamics [6]. This is nothing but a Maxwell demon, who operates having at his disposal information about the position of the particle; and it is the acquisition or the subsequent erasure of this information what has an unavoidable entropy cost [7], preventing any violation of the second law.

Whereas a controlled alternation of games is trivial for a single player, interesting and counter-intuitive phenomena can be found in collective games.
We have recently considered a collective version of the original Parrondo’s paradox. In this model, the game —A or B— that a large number \(N\) of individuals play can be selected at every turn. It turns out that blind strategies are winning whereas a strategy which chooses the game with the highest average return is losing \([5]\).

In this paper, we extend our investigation of controlled collective games considering a new strategy based on a majority rule, i.e., on voting. This type of rule is relevant in several situations, such as the modelling of public opinion \([8,9]\) or the design of multi-layer neural networks by means of committee machines \([10,11]\). We will show that, in controlled games, the rule is very inefficient: if every player votes for the game that gives him the highest return, then the total capital decreases, whereas blind strategies generate a steady gain. The same effect can be found for the capital-independent games introduced in \([4]\). As mentioned above, for a single player, the majority rule does defeat the blind strategies. The inefficiency of voting is consequently a purely collective effect.

The paper is organised as follows. In Section 2 we present the model and the counter-intuitive performance of the different strategies. In Section 3 we discuss and provide an intuitive explanation of this behaviour. In Sec. 4 we analyse how the effect depends on the number of players. In Section 5 we extend these ideas to the capital-independent games introduced in \([4]\). Finally, in Sec. 6 we present our main conclusions.

2 The model

The model consists of a large number \(N\) of players. In every turn, they have to choose one of the two original Parrondo games, described in the Introduction and in fig. 1. Then every individual plays the selected game against the casino.

We will consider three strategies to achieve the collective decision. a) The random strategy, where the game is chosen randomly with equal probability. b) The periodic strategy, where the game is chosen following a given periodic sequence. The sequence that we will use throughout the paper is \(ABBABB\ldots\) since it is the one giving the highest returns. c) The majority rule (MR) strategy, where every player votes for the game giving her the highest probability of winning, with the game obtaining the most votes being selected.

The model is related to other extensions of the original Parrondo games played by an ensemble of players, such as those considered by Toral \([12,13]\). However, in our model the only interaction among players can occur when the collective decision is made. Once the game has been selected, each individual plays, in a
completely independent way, against the casino. Moreover, in the periodic and random strategies there is no interaction at all among the players, the model being equivalent to the original Parrondo’s paradox with a single player.

The MR makes use of the information about the state of the system, whereas the periodic and random strategies are blind, in the sense defined above. One should then expect a better performance of the MR strategy. However, it turns out that, for large N, these blind strategies produce a systematic winning whereas the MR strategy is losing. This is shown in figure 2 where the capital per player as a function of the number of turns is depicted for the three strategies and an infinite number of players (see Appendix A for details on how to obtain fig. 2).

3 Analysis

How many players vote for each game? The key magnitude to answer this question and to explain the system’s behaviour is $\pi_0(t)$, the fraction of players whose money is a multiple of three at turn t. This fraction $\pi_0(t)$ of players vote for game A in order to avoid the bad coin in game B. On the other hand, the remaining fraction $1 - \pi_0(t)$ vote for game B to play with the good coin. Therefore, if $\pi_0(t) \geq 1/2$, there are more votes for game A and, if $\pi_0(t) < 1/2$, then game B is preferred by the majority of the players.

Let us focus now on the behaviour of $\pi_0(t)$ for $\epsilon = 0$ when playing both games separately. If game A is played a large number of times, $\pi_0(t)$ tends to 1/3 because the capital is a symmetric and homogenous random walk under the rules of game A. On the other hand, if B is played repeatedly, $\pi_0(t)$ tends to 5/13. This can be proved by analyzing game B as a Markov chain [3,4]. It is also remarkable that, for $\pi_0(t) = 5/13$, the average return when game B is
Fig. 3. Schematic representation of the evolution of $\pi_0(t)$ under the action of game A and game B. The prescription of the MR is also represented.

Fig. 4. Evolution of $\pi_0(t)$ (left) and the capital per player (right) for $N = \infty$, $\epsilon = 0$ for the MR and random strategies. The MR chooses game B when π_0 is below the straight line depicted at 1/2 and game A otherwise.

Figure 3 represents schematically the evolution of $\pi_0(t)$ under the action of each game, as well as the prescription of the MR strategy explained above. Now we are ready to explain why the MR strategy yields worse results than the periodic and random sequences.

We see that, as long as $\pi_0(t)$ does not exceed 1/2, the MR strategy chooses game B. However, playing B takes π_0 closer to 5/13, well below 1/2, and thus more than half of the players vote for game B again. After a number of runs, the MR strategy gets trapped playing game B forever. Then π_0 asymptotically approaches 5/13, and as this happens, game B turns into a fair game when $\epsilon = 0$. As a consequence, the MR will not produce earnings any more, as can be seen in figure 4.

The introduction of $\epsilon > 0$ turns game B into a losing game if played repeatedly. Consequently, the MR strategy becomes a losing one as in figure 2. To overcome this losing tendency, the players must sacrifice their short-range profits, not only for the benefit of the whole community but also for their own returns in the future. Hence, some kind of cooperation among the players is needed.
The above discussion for an infinite ensemble allows us to give a qualitative explanation. The difference between large and small N is the magnitude of...
the fluctuations of \(\pi_0(t) \) around its expected value. If game B is chosen a large number of times in a row, then the expected value of \(\pi_0(t) \) is 5/13. On the other hand, the MR selects B unless \(\pi_0(t) \) is above 1/2. Therefore, for the MR to select A, fluctuations must be of order \(1/2 - 5/13 = 3/26 \simeq 0.115 \). For \(N \) players, the fraction of players with capital multiple of three, \(\pi_0(t) \), will be a random variable following a binomial distribution, at least if B has been played a large number of times in a row. If the expected value of \(\pi_0(t) \) is 5/13, fluctuations of \(\pi_0(t) \) around this value are of order \(\sqrt{5/13 \times 8/13} \times 1/N \). Then, fluctuations will allow the MR strategy to choose A if \(N \simeq 20 \). Far above this value, fluctuations that drive \(\pi_0(t) \) above 1/2 are very rare, and MR chooses B at every turn. On the other hand, for \(N \) around or below 20, there is an alternation of the games that can even beat the optimal periodic strategy.

We see that the MR strategy can take profit of fluctuations much better than blind strategies, but it loses all its efficiency when these fluctuations are small. We believe that this is closely related to the second law of thermodynamics. The law prohibits any decrease of entropy only in the thermodynamic limit or for average values. On the other hand, when fluctuations are present, entropy can indeed decrease momentarily and this decrease can be exploited by a Maxwell demon.

5 History dependent games

A similar phenomenon is exhibited by the games introduced in Ref. [4], whose rules depend on the history rather than on the capital of each player. Game A is still the same as above, whereas game B is played with three coins according to the following table:

Before last	Last	Prob. of win	Prob. of loss
\(t - 2 \)	\(t - 1 \)	at \(t \)	at \(t \)
loss	loss	\(p_1 \)	\(1 - p_1 \)
loss	win	\(p_2 \)	\(1 - p_2 \)
win	loss	\(p_2 \)	\(1 - p_2 \)
win	win	\(p_3 \)	\(1 - p_3 \)

with \(p_1 = 9/10 - \epsilon \), \(p_2 = 1/4 - \epsilon \), and \(p_3 = 7/10 - \epsilon \).

Introducing a large number of players but allowing just a randomly selected fraction \(\gamma \) of them to vote and play, the same “voting paradox” is recovered for sufficiently small \(\gamma \). Again, blind strategies achieve a constant growth of
the average capital with the number of turns while the MR strategy returns a decreasing average capital, as it is shown in figure 6.

6 Conclusions

We have shown that the paradoxical games based on the flashing ratchet exhibit a counterintuitive phenomenon when a large number of players are considered. A majority rule based on selfish voting turns to be very inefficient for large ensembles of players. We have also discussed how the rule only works for a small number of players, since in that case it is able to exploit capital fluctuations.

The interest of the model presented here is threefold. First of all, it shows that cooperation among individuals can be beneficial for everybody. In this sense, the model is related to that presented by Toral in Ref. [13]. Since John Maynard Smith first applied game theory to biological problems [14], games have been used in ecology and social sciences as models to explain social behaviour of individuals inside a group. Some generalizations of the voting model might be useful for this purpose. For instance, it could be interesting to analyse the effect of mixing selfish and cooperative players or the introduction of players who could change their behaviour depending on the fraction of selfish voters in previous turns.

Secondly, the effect can also be relevant in random decision theory or the theory of stochastic control [15] since it shows how periodic or random strategies can be better than some kind of optimization. In this sense, there has been some work on general adaptive strategies in games related with Parrondo’s...
Thirdly, this model and, in particular, the analysis for N finite, prompts the problem of how information can be used to improve the performance of a system. In the models presented here, information about the fluctuations of the capital is useful only for a small number of players, that is, when these fluctuations are significant. It will be interesting to analyse this crossover in further detail, not only in the case of the games but also for Brownian ratchets. Work in this direction is in progress.

Acknowledgements

The authors gratefully acknowledge fruitful discussions with Christian Van den Broeck, who suggested us the introduction of the MR strategy. We also thank H. Leonardo Martínez for valuable comments on the manuscript. This work has been financially supported by grant BFM2001-0291-C02-02 from Ministerio de Ciencia y Tecnología (Spain) and by a grant from the New del Amo Program (Universidad Complutense).

A Evolution equations

In this Section we describe the semi-analytical solution of the model for an infinite number of players, used to depict fig. 2. Let $\pi_i(t)$, be the fraction of players whose capital at turn t is of the form $3n+i$ with $i=0,1,2$ and n an integer number.

If game A is played in turn t, these fractions change following the expression [4]:

\[
\begin{pmatrix}
\pi_0(t+1) \\
\pi_1(t+1) \\
\pi_2(t+1)
\end{pmatrix} =
\begin{pmatrix}
0 & 1/2 + \epsilon & 1/2 - \epsilon \\
1/2 - \epsilon & 0 & 1/2 + \epsilon \\
1/2 + \epsilon & 1/2 - \epsilon & 0
\end{pmatrix}
\begin{pmatrix}
\pi_0(t) \\
\pi_1(t) \\
\pi_2(t)
\end{pmatrix}
\]

which can be written in a vector notation as:

\[
\vec{\pi}(t+1) = \Pi_A \vec{\pi}(t). \tag{A.1}
\]

Similarly, when B is played, the evolution is given by:

\[
\vec{\pi}(t+1) = \Pi_B \vec{\pi}(t) \tag{A.3}
\]
with
\[
\Pi_B = \begin{pmatrix}
0 & 1/4 + \epsilon & 3/4 - \epsilon \\
1/10 - \epsilon & 0 & 1/4 + \epsilon \\
9/10 + \epsilon & 3/4 - \epsilon & 0
\end{pmatrix}.
\]
(A.4)

Now we can write the evolution equation for each strategy. For the random strategy:
\[
\overrightarrow{\pi}(t + 1) = \frac{1}{2} [\Pi_A + \Pi_B] \overrightarrow{\pi}(t).
\]
(A.5)

For the periodic strategy (ABBABB..):
\[
\overrightarrow{\pi}(3(t + 1)) = \Pi_B^3 \Pi_A \overrightarrow{\pi}(3t).
\]
(A.6)

Finally, with the MR strategy the ensemble plays game A if \(\pi_0(t) \geq 1/2\) and B otherwise. Therefore:
\[
\overrightarrow{\pi}(t + 1) = \begin{cases}
\Pi_A \overrightarrow{\pi}(t) & \text{if } \pi_0(t) \geq 1/2 \\
\Pi_B \overrightarrow{\pi}(t) & \text{if } \pi_0(t) < 1/2.
\end{cases}
\]
(A.7)

Notice that the MR strategy is the only one inducing a nonlinear evolution in the population fractions. To calculate the evolution of the capital, we compute the winning probability in each game:

\[
p^A_{\text{win}}(t) = \frac{1}{2} - \epsilon \\
p^B_{\text{win}}(t) = \frac{1}{10} \pi_0(t) + \frac{3}{4} (1 - \pi_0(t)) - \epsilon.
\]
(A.8)

Finally, the average capital \(\langle X(t) \rangle\) per player evolves as:
\[
\langle X(t + 1) \rangle = \langle X(t) \rangle + 2p_{\text{win}}(t) - 1
\]
(A.9)

and \(p_{\text{win}}(t)\) is replaced by \(p^A_{\text{win}}(t)\) or \(p^B_{\text{win}}(t)\), depending on the game played at turn \(t\) in each strategy.

References

[1] G.P. Harmer and D. Abbott, Statistical Science 14, 206 (1999).
[2] G.P. Harmer and D. Abbott, Nature 402, 846 (1999).
[3] G.P. Harmer and D. Abbott, Fluct. and Noise Lett. 2, R71 (2002).
[4] J.M.R. Parrondo, G.P. Harmer, and D. Abbott, Phys. Rev. Lett., 85, 24 (2000).
[5] L. Dinis and J.M.R. Parrondo, Europhys. Lett. 63, 319 (2003).
[6] J.M.R. Parrondo and B.J. de Cisneros, Appl. Phys. A 75, 179 (2002).
[7] H.S. Leff and A.F. Rex, Maxwell’s Demon. Entropy, Information, Computing (Adam Hilger, 1990).
[8] S. Galam, Physica A 320, 571 (2003).
[9] P.L. Krapivsky and S. Redner, Phys. Rev. Lett. 90, 238701 (2003).
[10] E. Barkai, D. Hansel and H. Sompolinsky, Phys. Rev. A 45, 4146 (1992).
[11] C. Van den Broeck and J.M.R. Parrondo, Phys. Rev. Lett. 71, 2355 (1993).
[12] R. Toral, Fluct. and Noise Lett. 1, L7 (2001).
[13] R. Toral, Fluct. and Noise Lett. 2, L305 (2002).
[14] J. Maynard Smith. Evolution and the Theory of Games. (Cambridge University Press, 1982).
[15] D.J. White, Markov Decision Processes (Wiley, 1993).
[16] E. Behrends, Parrondo’s paradox: a priori and adaptive strategies. Preprint.
[17] S. Rahmann, Optimal adaptive strategies for games of the parrondo type. Preprint.