Abstract

Doors are important landmarks for indoor mobile robot navigation and also assist blind people to independently access unfamiliar buildings. Most existing algorithms of door detection are limited to work for familiar environments because of restricted assumptions about color, texture and shape. In this paper we propose a novel approach which employs feature based classification and uses the Kohonen Self-Organizing Map (SOM) for the purpose of door detection. Generic and stable features are used for the training of SOM that increase the performance significantly: concavity, bottom-edge intensity profile and door edges. To validate the robustness and generalizability of our method, we collected a large dataset of real world door images from a variety of environments and different lighting conditions. The algorithm achieves more than 95% detection which demonstrates that our door detection method is generic and robust with variations of color, texture, occlusions, lighting condition, scales, and viewpoints.

References

- D. Anguelov, D. Koller, E. Parker, and S. Thrun. Detecting and modeling doors with
mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004.
- D. Kim and R. Nevatia. A method for recognition and localization of generic objects for in-door navigation. InARPA Image Understanding Workshop, 1994.
- S. A. Stoeter, F. L. Mauff, and N. P. Papanikolopoulos. Real-time door detection in cluttered environments. In Proceedings of the 15th IEEE International Symposium on Intelligent Control, 2000.
- I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish: An office-navigating robot. AI Magazine, 16(2):53–60, 1995.
- J. Hensler, M. Blaich, and O. Bittel. Real-time Door Detection Based on AdaBoost Learning Algorithm. International Conference on Research and Education in Robotics, Eurobot 2009.
- G. Cicirelli, T. D’orazio, A. Distante. Target recognition by components for mobile robot navigation. Journal of Experimental & Theoretical Artificial Intelligence, Volume 15, Number 3, July-September 2003, pp. 281-297(17).
- Z. Chen and S. Birchfield. Visual Detection of Lintel-Occluded Doors from a Single Image. IEEE Computer Society Workshop on Visual Localization for Mobile Platforms CVPR 2008. Anchorage, Alaska, June 2008.
- J. Hensler, M. Blaich, and O. Bittel. Real-time Door Detection Based on AdaBoost Learning Algorithm. International Conference on Research and Education in Robotics, Eurobot 2009.
- J. F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.
- P. D. Kovesi. MATLAB and Octave functions for computer vision and image processing. School of Computer Science & Software Engineering, The University of Western Australia. Available from:http://www.csse.uwa.edu.au/?pk/research/matlabfns/.
- A. C. Murillo, J. Kosecka, J. J. Guerrero, and C. Sagues. Visual door detection integrating appearance and shape cues. Robotics and Autonomous Systems, 2008.
- T. Kohonen, "The self-organizing map, Proceedings of the IEEE, 1990, vol. 78 , Issue:9, pp. 1464.
- Xiaodong Yang and Yingli Tian. Robust Door Detection in Unfamiliar Environments by Combining Edge and Corner Features, Proceedings of the IEEE, 2010

Index Terms
Computer Science
Pattern Recognition
Keywords
Self-Organizing Map Door Detection Canny Edge Detection Indoor Environment