CUBIC HAMILTONIANS

P.L. ROBINSON

Abstract. We determine a precise necessary and sufficient condition for completeness of the Hamiltonian vector field associated to a homogeneous cubic polynomial on a symplectic plane.

0. Introduction

The flow of the Hamiltonian vector field generated by a smooth function on a symplectic manifold is a familiar object of study. Let the symplectic manifold be simply a symplectic vector space: the Hamiltonian flow generated by a homogeneous linear function is a one-parameter group of translations; the Hamiltonian flow generated by a homogeneous quadratic function is a one-parameter group of linear symplectic transformations. In each of these two cases, the Hamiltonian flow is complete: each maximal integral curve of the Hamiltonian vector field is defined for all time. The case of cubic Hamiltonian functions is different: for some cubics the flow is complete whereas for others it is incomplete.

Our primary objective in this paper is to establish a simple necessary and sufficient condition for the cubic \(\psi \) on a symplectic plane \((Z, \Omega) \) to generate a complete Hamiltonian flow. In Section 1 we associate with \(\psi \) a suitably symmetric linear map from \(Z \) to the symplectic Lie algebra \(\text{sp}(Z, \Omega) \); following this map with the determinant yields a quadratic map \(\Delta : Z \to \mathbb{R} \). In Section 2 we analyze an arbitrary integral curve \(z : I \to Z \) of the Hamiltonian vector field \(\xi^\psi \) defined by \(\psi \); we find that the second time-derivative \(\ddot{z} \) equals \(2Fz \), where the scalar function \(F := \Delta \circ z : I \to \mathbb{R} \) satisfies the equation \(\ddot{F} = 6F^2 \) familiar from the theory of elliptic functions. In Section 3 we achieve our primary objective, proving that the Hamiltonian vector field \(\xi^\psi \) is complete if and only if the determinant \(\Delta \) is identically zero; beyond this, we comment on the nonconstant integral curves of \(\xi^\psi \) in the complete case and the incomplete case. Finally, we assemble several remarks on issues arising from the main body of the paper: in particular, we remark that \(\Delta \) is identically zero if and only if \(\psi \) is a monomial; these remarks we plan to develop more fully in subsequent papers.

In a subsequent paper we also plan to present a similar treatment of quartic Hamiltonian functions; for now, we merely note one difference between the cubic case and the quartic case. In the cubic case, the scalar function \(F \) satisfies the differential equation \(\ddot{F} = 6F^2 \) whose elliptic solutions are always Weierstrass P\(\e\) functions associated to triangular lattices, with \(g_2 \) zero; in the quartic case, the corresponding scalar functions include Weierstrass functions associated to rectangular lattices, with \(g_2 \) nonzero.

1. Symplectic Algebra

Let \((Z, \Omega) \) be a real symplectic vector space: thus, \(Z \) is a vector space and \(\Omega : Z \times Z \to \mathbb{R} \) a nonsingular alternating bilinear form. Though it is not necessary for some of what we shall say, we suppose throughout that \(Z \) is two-dimensional, so that \((Z, \Omega) \) is a symplectic plane. The
symplectic algebra $\text{sp}(Z, \Omega)$ is the (commutator bracket) Lie algebra comprising all linear maps $C : Z \to Z$ such that for all $x, y \in Z$

$$\Omega(Cx, y) + \Omega(x, Cy) = 0.$$
As a vector space, $\text{sp}(Z, \Omega)$ is canonically isomorphic to the space of all symmetric bilinear forms on Z: to $C \in \text{sp}(Z, \Omega)$ there corresponds the symmetric bilinear form $Z \times Z \to \mathbb{R} : (x, y) \mapsto \Omega(x, Cy)$.

Now, let $\psi : Z \to \mathbb{R}$ be a homogeneous cubic polynomial. To ψ we associate the (fully) symmetric trilinear function $\Psi : Z \times Z \times Z \to \mathbb{R}$ with value at $(x, y, z) \in Z \times Z \times Z$ given by

$$\Psi(x, y, z) = \psi(x + y + z) - \{\psi(y + z) + \psi(z + x) + \psi(x + y)\} + \psi(x) + \psi(y) + \psi(z).$$

When $z \in Z$ is fixed, $\Psi(x, y, z)$ is symmetric bilinear in $(x, y) \in Z \times Z$; it follows that there exists a unique $\Gamma_z \in \text{sp}(Z, \Omega)$ such that for all $x, y \in Z$

$$\Psi(x, y, z) = 2\Omega(x, \Gamma_y z).$$

Full symmetry of Ψ guarantees that the resulting linear map

$$\Gamma^\psi = \Gamma : Z \to \text{sp}(Z, \Omega)$$
is symmetric in the sense that for all $x, y \in Z$

$$\Gamma_x y = \Gamma_y x.$$

Note that if $z \in Z$ then

$$2\Omega(z, \Gamma_z z) = \Psi(z, z, z) = \{27 - (3 \times 8) + 3\}\psi(z) = 6\psi(z)$$
or

$$\psi(z) = \frac{1}{3}\Omega(z, \Gamma_z z).$$

Differentiation of this formula for ψ yields the result that if $v, z \in Z$ then

$$\psi'_z(v) = \frac{1}{3}\{\Omega(v, \Gamma_z z) + \Omega(z, \Gamma_v z) + \Omega(z, \Gamma_z v)\}$$
whence by symmetry of $\Gamma : Z \to \text{sp}(Z, \Omega)$ it follows that

$$\psi'_z(v) = \Omega(v, \Gamma_z z).$$

Of course, as ψ is a cubic, the first derivative ψ'_z is quadratic in $z \in Z$. As a bilinear form, the second derivative ψ''_z at $z \in Z$ furnishes another means of introducing Ψ and Γ: indeed, if also $x, y \in Z$ then

$$\psi''_z(y, x) = \Psi(x, y, z) = 2\Omega(x, \Gamma_z y).$$

This equation represents ψ''_z by $2\Gamma_z$ relative to the symplectic form Ω; consequently, the classical Hessian of ψ is $\text{Det}(2\Gamma_z)$.

According to the Cayley-Hamilton theorem, if $z \in Z$ then

$$\Gamma_z \Gamma_z - (\text{Tr} \Gamma_z) \Gamma_z + (\text{Det} \Gamma_z) I = 0$$
whence the fact that $\Gamma_z \in \text{sp}(Z, \Omega)$ is traceless implies that

$$\Gamma_z \Gamma_z = -(\text{Det} \Gamma_z) I.$$

We define the scalar function $\Delta^\psi = \Delta : Z \to \mathbb{R}$ by requiring that for each $z \in Z$

$$\Delta(z) = -(\text{Det} \Gamma_z)$$
so that

$$\Gamma_z \Gamma_z = \Delta(z) I.$$
Theorem 1. If \(z \in Z \) then \(\Delta(\Gamma_z z) = \Delta(z)^2 \).

Proof. If \(z = 0 \) then both sides of the alleged equation plainly vanish. If \(z \neq 0 \) then apply the special case \(\Gamma_{\Gamma_z z} = \Gamma_z \Gamma_z z \) of symmetry repeatedly: a first application gives
\[
\Delta(\Gamma_z z)z = \Gamma_z \Gamma_z \Gamma_z z = \Gamma_z \Gamma_z \Gamma_z z = \Gamma_z \Delta(z)z
\]
and a second application gives
\[
\Delta(z)\Gamma_z z = \Delta(z)\Gamma_z z = \Delta(z)\Delta(z)z = \Delta(z)^2 z
\]
whence the alleged equation follows by cancellation. \(\square \)

2. Cubic Hamiltonians

We shall now view \((Z, \Omega)\) as a symplectic manifold in the natural way. Thus, the vector space \(Z \) is naturally a smooth manifold; if \(z \in Z \) then there is a natural isomorphism from the vector space \(Z \) to the tangent space \(T_z Z \) sending \(v \in Z \) to the directional derivative operator \(v|_z \in T_z Z \) given by the rule that whenever \(f : Z \to \mathbb{R} \) is a smooth map,
\[
v|_z(f) = f'_z(v) = \frac{d}{dt} f(z + tv)|_{t=0}.
\]
Also, \(\Omega \) serves double duty as a nonsingular alternating bilinear form on the vector space \(Z \) and as a nonsingular closed two-form on the smooth manifold \(Z \); explicitly, if \(x, y, z \in Z \) then the value \(\Omega_z \) of the two-form at \(z \) is given by
\[
\Omega_z(x|_z, y|_z) = \Omega(x, y).
\]

When \(f : Z \to \mathbb{R} \) is a smooth (Hamiltonian) function, the corresponding Hamiltonian vector field \(\xi_f \in \text{Vec}Z \) on \(Z \) is defined by the requirement
\[
\xi_f \lrcorner \Omega = -df
\]
where \(\lrcorner \) signifies contraction as usual. An integral curve of the vector field \(\xi_f \) is a smooth map \(z : I \to Z \) (on some open interval \(I \ni t \)) satisfying the Hamilton equations: for each \(t \in I \) the tangent vector to \(z \) at \(t \) equals the value of \(\xi_f \) at \(z_t \), thus
\[
\frac{dz_t}{dt} = \xi_f(z_t).
\]

We shall focus on the case of a homogeneous cubic \(\psi : Z \to \mathbb{R} \) as Hamiltonian function. The value of \(\xi_{\psi} \) at \(z \in Z \) is a vector made tangent at \(z \); say
\[
\xi_{\psi} = x_{\psi}(z)|_z
\]
with \(x_{\psi} : Z \to Z \) a smooth vector-valued function. Now, let \(v, z \in Z \): on the one hand,
\[
(\xi_f \lrcorner \Omega)_z(v|_z) = \Omega_z(\xi_{\psi}^z, v|_z) = \Omega_z(x_{\psi}(z)|_z, v|_z) = \Omega(x_{\psi}(z), v);
\]
on the other hand,
\[
-\,d\psi_z(v|_z) = -\psi'_z(v) = -\Omega(v, \Gamma_z z) = \Omega(\Gamma_z z, v).
\]
As the symplectic form \(\Omega \) is nonsingular, it follows that
\[
x_{\psi}(z) = \Gamma_z z.
\]
Accordingly, the Hamilton equation for \(z : I \to Z \) reads
\[
\frac{\dot{z}}{\dot{z}} = \Gamma_z z.
\]

Let \(z : I \to Z \) be a solution of this Hamilton equation. Take a further derivative: as \(\Gamma \) is symmetric,
\[
\frac{\ddot{z}}{\dot{z}} = \Gamma_z z + \Gamma_z \frac{\dot{z}}{\dot{z}} = 2\Gamma_z \frac{\dot{z}}{\dot{z}} = 2\Gamma_z \Gamma_z z
\]
by a further application of the Hamilton equation. Recall that if \(w \in Z \) then \(\Gamma_w \Gamma_w = \Delta(w)I \) and write
\[
F := \Delta \circ z : I \to \mathbb{R}.
\]
It then follows that \(z : I \to Z \) satisfies the second-order equation
\[
\overset{\circ}{\overset{\circ}{z}} = 2Fz.
\]
Note here that \(\Delta \) is defined on the whole space \(Z \) while \(F \) is defined only along the integral curve \(z \).

Theorem 2. The scalar function \(F \) satisfies the second-order equation
\[
\overset{\circ}{\overset{\circ}{F}} = 6F^2.
\]

Proof. From the definition
\[
FI = \Gamma_z \Gamma_z
\]
we deduce by repeated differentiation that
\[
\overset{\circ}{\overset{\circ}{F}} I = \Gamma_z \Gamma_z + \Gamma_z \Gamma_z
\]
and
\[
\overset{\circ}{\overset{\circ}{F}} I = \Gamma_z \Gamma_z + 2\Gamma_z \Gamma_z + \Gamma_z \Gamma_z.
\]
Here, the first and last terms on the right both equal \(2FTP \Gamma_z = 2F^2I \) on account of \(\overset{\circ}{\overset{\circ}{z}} = 2Fz \) while \(\Gamma_z \Gamma_z \) equals \(F^2I \) on account of \(\overset{\circ}{z} = \Gamma_z z \) and Theorem 1. \(\square \)

We may at once deduce a first-order integral of this second-order equation: multiply through by \(2F \) to obtain
\[
2F \overset{\circ}{\overset{\circ}{F}} I = 12F^2I \overset{\circ}{\overset{\circ}{F}}
\]
from which there follows
\[
(F)^2 = 4F^3 - g_3
\]
for some real constant \(g_3 \). This notation is deliberately chosen to accord with the theory of elliptic functions. In fact, the solutions to this first-order differential equation are as follows:

- if \(g_3 \) is nonzero then \(F(t) = \varphi(t - a) \) for some real \(a \) where \(\varphi \) is the Weierstrass Pe function associated to a triangular lattice (the so-called equianharmonic case);
- if \(g_3 \) is zero then either \(F(t) = (t - a)^{-2} \) for some real \(a \) or \(F \) is identically zero.

Note that when \(F \) is a (shifted) Weierstrass Pe function, \(\overset{\circ}{\overset{\circ}{z}} = 2Fz \) is a (vectorial) Lamé equation and may be solved accordingly; for example, see page 285 of [Forsyth].

3. Completeness Characterized

We continue to let \(\Gamma : Z \to \text{sp}(Z, \Omega) \) be the symmetric linear map corresponding to the homogeneous cubic \(\psi : Z \to \mathbb{R} \) on the symplectic plane \((Z, \Omega) \); we also continue to let \(z : I \to Z \) be an integral curve of the associated Hamiltonian vector field \(\xi^\psi \). We shall suppose that the curve \(z \) has initial point \(z_0 \) and hence initial velocity \(\overset{\circ}{z}_0 = \Gamma_{z_0} z_0 \). Our aim in this section is to decide precisely when such an integral curve may be defined for all time; that is, precisely when the maximal domain of definition \(I \) is \(\mathbb{R} \) itself.

The critical case is decided immediately. Let \(\xi^\psi \) (equivalently, \(d\psi \)) vanish at \(z_0 \); thus, \(z \) has initial velocity \(\overset{\circ}{z}_0 = \Gamma_{z_0} z_0 = 0 \). In this critical case, the solution \(z : I \to Z \) is plainly given by \(z_t = z_0 \) for all \(t \in I \) and the maximal \(I \) is indeed \(\mathbb{R} \). In this connexion, note further that if an integral curve \(z : I \to Z \) vanishes at any point then so does its velocity vector and hence \(z \) itself is identically zero.

Now let the integral curve \(z : I \to Z \) be other than critical; thus, \(\Gamma_{z_0} z_0 = \overset{\circ}{z}_0 \neq 0 \) and of course \(z_0 \neq 0 \). We distinguish two cases.
For the first case, suppose there exists some \(s \in I \) such that \(0 \neq F(s) = \Delta(z_s) \) and therefore \(\bar{F}'(s) = \bar{F}(s)^2 > 0 \). The comments after Theorem 2 show that \(F \) has a double pole at some real \(a \); thus \(\Gamma_z \Gamma_z = F(t)I \) is unbounded as \(t \to a \) and so \(z_t \) itself is unbounded as \(t \to a \). In this case, the maximal domain of \(z \) omits \(a \) and thereby falls short of \(\mathbb{R} \).

For the second case, suppose that \(F(t) = 0 \) whenever \(t \in I \). Note that the linear map \(\Gamma_{z_0} \) kills \(\Gamma_{z_0}z_0 \) (because \(\Gamma_{z_0}\Gamma_{z_0} = F(0)I = 0 \)) but does not kill \(z_0 \) (because \(\Gamma_{z_0}z_0 = z_0 \neq 0 \)); thus \(z_0 \) and \(z_0 \) constitute a basis for the plane \(Z \) and so

\[
\{s(z_0 + t \bar{z}_0) : s, t \in \mathbb{R}\} = (Z \setminus \mathbb{R} \bar{z}_0) \cup \{0\}.
\]

The supposition \(F \equiv 0 \) implies that \(\bar{z} = 2Fz \equiv 0 \) so that \(z_t = z_0 + t \bar{z}_0 \) for all \(t \in I \); essentially as in the critical case, the maximal \(I \) is therefore \(\mathbb{R} \). Now \(\Delta \) vanishes on \(z_0 + t \bar{z}_0 \) whenever \(t \in \mathbb{R} \) (as \(F \) is identically zero) and hence vanishes on \(s(z_0 + t \bar{z}_0) \) whenever \(s, t \in \mathbb{R} \) (as \(\Delta \) is homogeneous); the continuous function \(\Delta \) now vanishes on the dense set \((Z \setminus \mathbb{R} \bar{z}_0) \cup \{0\} \) and therefore vanishes on the whole of \(Z \). This proves that if \(\Delta \) vanishes on the image of some non-critical integral curve then \(\Delta \) vanishes identically.

We may now marshal these facts towards the following result.

Theorem 3. Let \(\psi : Z \to \mathbb{R} \) be a homogeneous cubic and \(\Delta^{\psi} \) the associated determinant.

- If \(\Delta^{\psi} = 0 \) then \(\xi^{\psi} \) is complete; each non-constant integral curve is an affine line.
- If \(\Delta^{\psi} \neq 0 \) then \(\xi^{\psi} \) is incomplete; only the constant integral curves are defined for all time.

Proof. If \(\Delta \equiv 0 \) then each maximal integral curve \(z \) has \(F \equiv 0 \) so that \(\bar{z} = 2Fz \equiv 0 \) and \(z \) on \(\mathbb{R} \) is affine, as we have seen. If \(\Delta \neq 0 \) and the integral curve \(z \) is not critical, then \(F \neq 0 \) so that \(z \) experiences finite-time blow-up, as we have seen.

Looking ahead to the next section, we remark that \(\Delta^{\psi} \) is identically zero if and only if \(\psi \) is monomial in the sense that there exists \(w \in Z \) such that for all \(z \in Z \)

\[
\psi(z) = \frac{1}{3} \Omega(w, z)^3.
\]

4. Remarks

In this closing section, we record a number of miscellaneous remarks that stem from the body of this paper.

COORDINATE EXPRESSIONS

Though our whole approach has been intentionally coordinate-free, it is also of interest to see the development in terms of linear symplectic coordinates, not least because this may offer glimpses of a fresh perspective on classical invariant theory.

To this end, let \(u, v \in Z \) satisfy \(\Omega(u, v) = 1 \) and so constitute a symplectic basis for \((Z, \Omega)\). Decompose \(z \in Z \) as

\[
z = pu + qv
\]

with

\[
p = p(z) = \Omega(z, v), \quad q = q(z) = \Omega(u, z).
\]

Write

\[
a = \Omega(u, \Gamma_u u), \quad b = \Omega(u, \Gamma_v u),
\]

\[
c = \Omega(v, \Gamma_u v), \quad d = \Omega(v, \Gamma_v v).
\]

With these conventions, the cubic

\[
\psi(z) = \frac{1}{3} \Omega(z, \Gamma z z)
\]
has coordinate form
\[\psi(z) = \frac{1}{3}(ap^3 + 3bp^2q + 3cpq^2 + dq^3) \]
and the (vector) Hamilton equation
\[\circ z = \Gamma_z z \]
becomes the familiar scalar pair
\[\circ p = -\frac{\partial \psi}{\partial q}, \quad \circ q = \frac{\partial \psi}{\partial p}. \]
The associated determinant
\[\Delta(z) = -(\text{Det } \Gamma_z) \]
assumes the form
\[\Delta(z) = (b^2 - ac)p^2 + (bc - ad)pq + (c^2 - bd)q^2 \]
and is the Hessian of \(\psi \) (up to scale). We are not the first to observe that the discriminant
\[(bc - ad)^2 - 4(b^2 - ac)(c^2 - bd) \]
of this quadratic is precisely the discriminant
\[a^2d^2 - 3b^2c^2 + 4ac^3 + 4b^3d - 6abcd \]
of the cubic
\[ap^3 + 3bp^2q + 3cpq^2 + dq^3; \]
for example, see page 60 of [Salmon].

Of course, a purely coordinate-based approach is possible. Let us indicate partial derivatives more succinctly by means of subscripts. With the cubic
\[\psi(z) = \frac{1}{3}(ap^3 + 3bp^2q + 3cpq^2 + dq^3) \]
as above, direct computation reveals that \(\psi_{pq}\psi_q - \psi_p\psi_{qq} \) is divisible by \(p \) and \(\psi_{pp}\psi_p - \psi_q\psi_{qp} \) is divisible by \(q \); in each case, the quotient is precisely \(2\{(b^2 - ac)p^2 + (bc - ad)pq + (c^2 - bd)q^2\} \) and we recover (twice) the determinant \(\Delta \) in coordinate form. In fact, when the Hamilton equations
\[\circ \circ p = \psi_{pq}\psi_q - \psi_p\psi_{qq}, \quad \circ \circ q = \psi_{pp}\psi_p - \psi_q\psi_{qp} \]
are differentiated by time once more, they yield precisely
\[\circ \circ z = 2Fz. \]

CANONICAL FORMS

The simplest type of homogeneous cubic is a monomial: for \(w \in \mathbb{Z} \) define \(\psi^w : \mathbb{Z} \rightarrow \mathbb{R} \) by requiring that for all \(z \in \mathbb{Z} \)
\[\psi^w(z) = \frac{1}{3}\Omega(w, z)^3. \]
For this cubic, the corresponding symmetric linear map \(\Gamma^w : \mathbb{Z} \rightarrow \text{sp}(\mathbb{Z}, \Omega) \) is given by
\[\Gamma^w v = \Omega(z, w)\Omega(w, v)w \]
whenever \(z, v \in \mathbb{Z} \), and the associated determinant \(\Delta^w \) is identically zero.
Conversely, let the cubic ψ with corresponding symmetric linear map Γ be such that the associated determinant Δ is identically zero. We claim that $\psi = \psi^w$ for a unique $w \in Z$; to justify this claim, we may of course assume that Γ is not itself identically zero. Note that if $z \in Z$ then $\Gamma_z \Gamma_z = 0$ so that $\text{Ran} \Gamma_z \subseteq \text{Ker} \Gamma_z$ with equality precisely when $\Gamma_z \neq 0$. Note also that if $x, y \in Z$ then

$$\Gamma_y \Gamma_y + \Gamma_y \Gamma_x = \{\Delta(x+y) - \Delta(x) - \Delta(y)\}I = 0.$$

When $x, y, z \in Z$ let us write

$$\gamma(x, y, z) = \Gamma_x \Gamma_y \Gamma_z.$$

Observe that this expression is now antisymmetric in its first pair of variables and was already symmetric in its last pair; thus

$$\gamma(x, y, z) = \gamma(x, z, y) = -\gamma(z, x, y) = -\gamma(z, y, x) = \gamma(y, z, x) = \gamma(y, x, z) = -\gamma(x, y, z)$$

and so γ vanishes identically. This proves that if $x, y \in Z$ then

$$\text{Ran} \Gamma_y \subseteq \text{Ker} \Gamma_x$$

and choosing any $z \in Z$ with $\Gamma_z \neq 0$ then gives

$$\text{Ran} \Gamma_z \subseteq \cup_{y \in Z} \text{Ran} \Gamma_y \subseteq \cap_{x \in Z} \text{Ker} \Gamma_x \subseteq \text{Ker} \Gamma_z$$

with equality of the end terms and hence equality throughout, whence

$$\cup_{y \in Z} \text{Ran} \Gamma_y = \cap_{x \in Z} \text{Ker} \Gamma_x$$

is a distinguished line in the plane Z. Let $w \in Z$ be a basis vector for this line. If $z \in Z$ then $\Gamma_z = \lambda_z(\cdot)w$ for some linearly z-dependent λ_z in the dual Z^*: as Γ_z kills w so does λ_z and therefore $\lambda_z = \mu_z \Omega(w, \cdot)$ for some $\mu_z \in \mathbb{R}$ also linear in z; this shows that

$$\Gamma_z = \mu_z \Omega(w, \cdot)w$$

for some $\mu \in Z^*$. Symmetry of Γ forces μ to kill w so that $\mu = \nu \Omega(\cdot, w)$ for some $\nu \in \mathbb{R}$. In the resulting formula

$$\Gamma_z = \nu \Omega(z, w) \Omega(w, \cdot)w$$

the cube root of the scalar ν may be absorbed into w; this renders w unique and we conclude that $\Gamma = \Gamma^w$ as claimed.

Thus, the assignment $w \mapsto \Gamma^w$ is a (cubic!) bijection from Z to the set of all symmetric linear maps $Z \to \text{sp}(Z, \Omega)$ for which the associated determinant Δ is identically zero.

The same conclusion may be reached efficiently (though prosaically) using coordinates. From the identical vanishing of Δ in the form

$$(b^2 - ac)p^2 + (bc - ad)pq + (c^2 - bd)q^2 \equiv 0$$

we deduce (by setting $q = 0, p = 0$, and $pq \neq 0$ in turn) that $b^2 = ac, c^2 = bd$, and $ac = bd$. Let λ be the cube root of a and μ the cube root of d; then

$$(\lambda^2 \mu)^3 = a^2 d = a \cdot ad = a \cdot bc = b \cdot ac = b \cdot b^2 = b^3$$

so that $\lambda^2 \mu = b$ and $\lambda \mu^2 = c$ likewise; it follows that the cubic is a monomial, namely

$$ap^3 + 3bp^2q + 3cpq^2 + dq^3 = (\lambda p + \mu q)^3.$$

When the determinant Δ is not identically zero, there are three possibilities:

- $\Delta(z) = 0$ for z on a line-pair through 0 and Δ takes values of each sign elsewhere;
- $\Delta(z) = 0$ for z on a line through 0 and Δ is positive elsewhere;
- $\Delta(0) = 0$ and Δ is positive elsewhere;

and canonical forms may be developed for each of these. In connexion with these possibilities, we remark (from Theorem 1) that if Δ takes negative values then it also takes positive values.
EVALUATION OF g_3

Let $\psi : Z \to \mathbb{R}$ be a homogeneous cubic and let the Hamiltonian vector field ξ^ψ have $z : I \to Z$ as an integral curve. As we have seen, $\overset{\circ}{\psi} = 2Fz$ where the scalar function $F : I \to \mathbb{R}$ satisfies $(\overset{\circ}{F})^2 = 4F^3 - g_3$ for some constant g_3 that depends on the integral curve z.

Let the initial point z_0 be such that $\psi(z_0) = 0$; as the Hamiltonian ψ is constant along the integral curve, it follows that $\psi(z_t) = 0$ for all $t \in I$. If z_0 itself is zero, then of course $F \equiv 0$ and $g_3 = 0$. Now assume that z_0 is nonzero, so that z_t is nonzero for all $t \in I$. For each $t \in I$ we have $0 = 3\psi(z_t) = \Omega(z_t, \overset{\circ}{z}_t)$ whence (as Z is a plane) $\overset{\circ}{z}_t$ is parallel to z_t; say $\overset{\circ}{z} = \lambda z$ for some scalar function $\lambda : I \to \mathbb{R}$. On the one hand,

$$Fz = \Gamma_z z = \lambda z = \lambda z = \lambda \overset{\circ}{z} = \lambda \overset{\circ}{z} + \lambda Fz.$$

on the other hand,

$$2Fz = \overset{\circ}{z} = \lambda z + \lambda \overset{\circ}{z} = \overset{\circ}{z} + \lambda Fz.$$

Thus

$$\overset{\circ}{\lambda} = F = \lambda^2$$

and so

$$\overset{\circ}{F} = (\lambda^2)\overset{\circ}{\lambda} = 2\lambda \overset{\circ}{\lambda} = 2\lambda F = 2\lambda^3.$$

It follows that in this case,

$$g_3 = 4F^3 - (\overset{\circ}{F})^2 = 4(\lambda^2)^3 - (2\lambda^3)^2 = 0.$$

In short, an initial point z_0 with $\psi(z_0) = 0$ spawns an integral curve for which $g_3 = 0$.

Let us offer some sample computations in coordinates. If $\psi = \frac{1}{3}(p^3 - q^3)$ then $\overset{\circ}{p} = -\psi_q = q^2$ and $\overset{\circ}{q} = \psi_p = p^2$ so that $\overset{\circ}{p} = 2(pq)p$ and $\overset{\circ}{q} = 2(pq)q$; thus $F = pq$ so $\overset{\circ}{F} = F\psi_p - F_p\psi_q = p^3 + q^3$ and $g_3 = 4F^3 - (\overset{\circ}{F})^2 = 4p^3q^3 - (p^3 + q^3)^2 = -(p^3 - q^3)^2$ or $g_3 = 9\psi^2 \leq 0$. Similarly, if $\psi = p^2q + pq^2$ then $F = p^2 + pq + q^2$ and $\overset{\circ}{F} = (q - p)(2p + q)(p + 2q)$; after considerable simplification, $g_3 = 4F^3 - (\overset{\circ}{F})^2$ yields $g_3 = 27\psi^2 \geq 0$.

Finally, we remark (without proof - but see page 100 of [Salmon]) that classical invariant theory reappears in general: if

$$\delta = a^2d^2 - 3b^2c^2 + 4ac^3 + 4b^3d - 6abcd$$

denotes the discriminant of the cubic 3ψ then

$$g_3 = -9\delta \psi^2$$

so

$$(\overset{\circ}{F})^2 = 4F^3 + 9\delta \psi^2.$$

REFERENCES

[Forsyth] A.R. Forsyth, Theory of Functions of a Complex Variable, Cambridge, First Edition (1893).

[Salmon] G. Salmon, Lessons Introductory to the Modern Higher Algebra, Dublin, First Edition (1859).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE FL 32611 USA

E-mail address: paulr@ufl.edu