Minimum spanning trees and random resistor networks in d dimensions

N. Read

Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120, USA

(April 11, 2005)

We consider minimum-cost spanning trees, both in lattice and Euclidean models, in d dimensions. For the cost of the optimum tree in a box of size L, we show that there is a correction of order L^θ, where $\theta \leq 0$ is a universal d-dependent exponent. There is a similar form for the change in optimum cost under a change in boundary condition. At non-zero temperature T, there is a crossover length $\xi \sim T^{-\nu}$, such that on length scales larger than ξ, the behavior becomes that of uniform spanning trees. There is a scaling relation $\theta = -1/\nu$, and we provide several arguments that show that ν and $-1/\theta$ both equal ν_{perc}, the correlation length exponent for ordinary percolation in the same dimension d, in all dimensions $d \geq 1$. The arguments all rely on the close relation of Kruskal’s greedy algorithm for the minimum spanning tree, percolation, and (for some arguments) random resistor networks. The scaling of the entropy and free energy at small non-zero T, and hence of the number of near-optimal solutions, is also discussed. We suggest that the Steiner tree problem is in the same universality class as the minimum spanning tree in all dimensions, as is the traveling salesman problem in two dimensions. Hence all will have the same value of $\theta = -3/4$ in two dimensions.

I. INTRODUCTION

Minimum spanning trees are a problem of combinatorial optimization [1,2]. Suppose we are given an undirected connected graph G, with vertex set V and edge set E, and a cost (or weight, or “length”) ℓ_{ij} assigned to each edge $(ij) \in E$ (where $i, j \in V$). The problem is to find a spanning tree T (i.e. a connected subgraph of G that includes all vertices in V, but whose edges form no cycles; such a tree must have $|V| - 1$ edges), such that the total cost of the edges in T,

$$\ell = \sum_{(ij) \in T} \ell_{ij} \quad (1)$$

is as small as possible. Thus the minimization is over the set T of spanning trees in G.

In this paper we are interested in the case in which G is a simply-connected portion Λ of a regular lattice in $d \geq 1$ dimensions (with edges connecting nearest-neighbor lattice vertices only; the nearest-neighbor distance is fixed at 1 throughout this paper), including the case when Λ tends to the entire lattice, and the edge costs are independent, identically-distributed random variables, for example ℓ_{ij} uniformly distributed on $[0, 1]$. We will also consider geometries with periodic boundary conditions, in which Λ has no boundary. The results also apply without significant modification to cases with other distributions, and/or with short-range correlations of the ℓ_{ij}s, and to the Euclidean minimum spanning tree, in which $N = |V|$ points are distributed independently and uniformly (with density 1) in a portion Λ of d-dimensional Euclidean space, and the cost of an edge (ij) is the Euclidean distance between i and j, for any pair $i \neq j$.

The motivation for this work is to understand disordered systems at low temperatures better, beginning with those in which quantum-mechanical effects are negligible. Here “disordered” means that the Hamiltonian (or energy as a function of the system configuration) contains random variables, and the minimum energy must be found for fixed (or “quenched”) values of these random variables. Such systems include classical Ising spin glass models. There is a great deal of overlap between this field and that of random optimization, including some common models [3]. There is even a strongly-disordered spin-glass model that maps onto minimum spanning trees [4]. The results in this paper can be considered as a rare case in which some exact results (or exact mapping to another problem) can be found for a fairly natural system with quenched disorder.

The questions of interest here include the dependence of the total cost of the minimum spanning tree (MST) on the size of the system Λ, and on certain changes of boundary conditions to be defined below. The expectation value of the cost ℓ_{OPT} of the MST is expected to take the form (overlines denote the average over all ℓ_{ij})

$$\overline{\ell_{\text{OPT}}} \sim \sum_{i=0}^{d} \beta_i V_{d_i} + \ell_{\text{fin}} \quad (2)$$

asymptotically as the size of $\Lambda \to \infty$, keeping the shape fixed [5]. Here β_i are non-universal constants (the values of which will change if the ℓ_{ij}s are correlated, or for the Euclidean problem), and V_{d_i} are $d_i = d - i$-dimensional volumes of Λ and its boundary. That is, $V_d = |V|$ is the d-dimensional volume of Λ, V_{d-1} is the $d-1$-dimensional “area” of the boundary, V_{d-2} is the $d-2$-dimensional “length” of the edges of the boundary, . . . , down to V_0, the number of zero-dimensional corners of Λ. $\beta_0 = \beta$ has been extensively studied (see e.g. Ref. [2] for a review), while bounds on β_1 have been established in $d = 2$ (Ref. [6] for the Euclidean case). The most interesting part is the subsequent terms ℓ_{fin}, the leading corrections to the bulk part of the cost in a finite-size system. These are shape dependent, and may be difficult to separate from the term $\beta_1 V_0$, since as we will see ℓ_{fin} can be of order 1 for the MST. Here for simplicity we will take Λ in the
form of a hypercube of side \(L \), with periodic boundary conditions (so all \(V_d \), with \(i > 0 \) are zero). Then we find as \(L \to \infty \) [5]

\[
\mathcal{T}_{\text{fin}} \sim -\ell_c + \lambda^* L^\theta .
\]

(3)

Here \(\ell_c \) is the (non-universal) value of the cost of an edge at the percolation threshold, which is the stage in Kruskal’s greedy algorithm [7,1] at which the growing trees percolate across the system, for \(L \to \infty \); in the above model of \(\ell_{ij} \) uniformly distributed in \([0,1] \), \(\ell_c = p_c \), the threshold for bond percolation. Also, \(\lambda^* \) is a \(d \)-dependent non-universal constant. We will argue that (i) \(\theta \) is universal (but depends on \(d \)), (ii) \(\theta \leq 0 \) for all \(d \), and (iii) in fact

\[
\theta = -1/\nu_{\text{perc}},
\]

(4)

where \(\nu_{\text{perc}} \) is the correlation length exponent for classical percolation in \(d \) dimensions. It is known that \(\nu_{\text{perc}} = 1 \) \((d = 1), 4/3 \((d = 2)\), and \(\nu_{\text{perc}} = 1/2 \) for \(d \geq d_c \), where \(d_c \) is a critical dimension, \(d_c = 6 \) for percolation; there are approximate values for \(\nu_{\text{perc}} \) for other intermediate \(d \).

We also consider the effect of a change in boundary conditions. We can study the mean change in optimum cost produced when a constraint, that the tree must possess at least \(k \) distinct branches that cross between two ends of the system, for example between the ends of a cylinder of length \(L \) (in one direction) and width \(W \) (in \(d - 1 \) directions), is imposed. We argue that the mean change in cost per unit length scales as

\[
\lim_{L \to \infty} \frac{\ell_{\text{OPT}}(k) - \ell_{\text{OPT}}}{L} \sim \lambda^*_k W^{\theta-1},
\]

(5)

as \(W \to \infty \), for all dimensions \(d \), again with \(\theta = -1/\nu_{\text{perc}} \).

These finite-size corrections to the mean cost, and its sensitivity to boundary conditions, are analogous to those for the ground-state energy of disordered classical systems, such as spin glasses [8,9], and the application of such ideas to optimization was begun in Ref. [10]. It was previously argued [11] for the traveling salesman problem that similar forms hold in \(d = 2 \) with \(\theta \) replaced by 0 (and with \(L^\theta \) in \(\ell_{\text{OPT}} \) replaced by a logarithm in some cases), and should also hold for MSTs. It now appears that the coefficient \(\lambda \) of those terms [11] is zero, at least for MSTs.

The size-dependent terms in \(\ell_{\text{OPT}} \) are related to the non-zero-temperature behavior of weighted spanning trees. In this, we give each spanning tree a (Boltzmann-Gibbs) probability proportional to \(e^{-\ell/T} \), where \(T \) is the temperature. The probabilities are normalized by dividing by the partition function

\[
Z = \sum_{T \in \mathcal{T}} \prod_{(ij) \in T} e^{-\ell_{ij}/T}.
\]

(6)

In the limit as \(T \to 0 \), the sum over trees is dominated by those with the lowest total cost \(\ell \). This approach allows methods of equilibrium statistical mechanics to be applied. We argue that at a small positive temperature, the entropy per vertex in the limit as the size of \(L \) tends to infinity, \(s \), (essentially the logarithm of the number of near-optimal spanning trees accessible at temperature \(T \), divided by \(|V| \)) behaves as

\[
s \sim a T^\psi,
\]

(7)

as \(T \to 0 \), where \(\psi \) is another universal exponent, most likely equal to 1 for MSTs (this has also been discussed in Ref. [12]). Correspondingly, \(\langle \varepsilon \rangle \), the change in the thermal (as well as \(\ell_{ij} \)) average cost per vertex relative to the optimum, is

\[
\langle \varepsilon \rangle = \lim_{|V| \to \infty} \frac{|\ell - \ell_{\text{OPT}}|}{|V|} \sim b T^{\psi+1}.
\]

(8)

For a large system, \(\langle \varepsilon \rangle \) is the thermal and \(\ell_{ij} \) average of the notion of “fractional relative error” in optimization theory, within a factor of \(\beta \). Inverting these formulas implies that the logarithm of the typical number of spanning trees with cost within a factor \(1 + \varepsilon \) of \(\ell_{\text{OPT}} \) (where “typical” can be made precise using the Boltzmann-Gibbs probability), divided by \(|V| \), is

\[
s \sim a T^{\psi/(\psi+1)}
\]

(9)

as \(\varepsilon \to 0 \). Note that these formulas are for the limit \(|V| \to \infty \) before \(T \to 0 \); the arguments that suggest that \(\psi = 1 \) also suggest that \(s \) and \(\langle \varepsilon \rangle \) are dominated by local, independent excitations, with a density of order \(1/T^\psi \), and so there is a length scale \(\xi_T \sim T^{-1/(d\psi)} \) such that these results hold for system size \(L \gg \xi_T \).

In addition to the cost, one may also ask about correlation properties of the trees, either at \(T = 0 \) (i.e. for MSTs), or in the positive-\(T \) generalization. For example, one may consider the expected number of trees that possess \(k \) distinct branches that cross between two balls separated by distance \(r \), as a function of \(r \), and so define correlation exponents (see e.g. [13,14]). Another exponent is obtained from the Hausdorff dimension of the path between two given points on the (same) tree. These universal exponents serve to distinguish universality classes. One may ask whether the exponents for the statistics of the MSTs are the same as for uniform spanning trees. Uniform spanning trees (USTs) arise if we set all \(\ell_{ij} = 0 \), or put \(T = \infty \), in the positive-temperature weighted spanning trees. Thus, every spanning tree has equal (“uniform”) Boltzmann-Gibbs probability. We will argue the following: non-zero temperature is a relevant perturbation (in the renormalization-group sense), and leads to a correlation or crossover length \(\xi \) (\(\xi \gg \xi_T \) for \(d > 1 \)), such that for correlation functions over distances much larger than \(\xi \), the behavior of USTs is recovered, even if \(T \) is very small. In an infinite system, this length diverges as
\[\xi \sim c T^{-\nu} \]

as \(T \to 0 \). We argue, using results from the extensively-studied related problem of random (classical) resistor networks (RRNs), which again is related to percolation, that \(\nu = \nu_{\text{perc}} = -1/\theta \). That is, \(-\theta\) is the scaling dimension for the temperature \(T \).

These results then imply that if we choose a typical spanning tree with \(\ell \) within about \(1 + \varepsilon \) of \(\ell_{\text{OPT}} \), then its statistical properties on length scales larger than \(\xi \) are those of USTs. The crossover length scale is \(\xi \sim c \varepsilon^{-\nu/(\psi+1)} \). When \(\xi \) is of order the system size \(L \), or on length scales smaller than \(\xi \), the correlations are those of MSTs, which should be different from those of USTs, at least in high dimensions \(d \). Arguments by Newman and Stein [4] show that for MSTs, for \(d > 8 \) the MST in any finite portion of size \(W \) of the system breaks up, as \(|\Lambda| \to \infty \), into order \(W^{d-8} \) trees of size of order \(W \), each tree having Hausdorff dimension \(8 \) (their arguments also used a relation with percolation). Thus \(8 \) is a critical dimension for MSTs, above which the exponents mentioned above take simple values, related to the Hausdorff dimension \(8 \) that determines the \(k \)-crossing exponents, while (by a simple extension of the arguments of NS) the Hausdorff dimension of the path between two points becomes \(2 \), as for a Brownian walk. By contrast, USTs have similar behavior, but consist of trees of Hausdorff dimension \(4 \) for dimension bigger than \(4 \) [15]. However, a relation between the two in low dimensions, in particular \(d = 2 \), has not been ruled out, and exists, albeit somewhat trivially, in \(d = 1 \).

It is interesting that the properties of MSTs fall into two parts. For properties involving the costs, the critical dimension is argued here to be \(d_c = 6 \). On the other hand, the geometric correlations of the trees themselves exhibit a critical dimension of \(8 \). We note that the costs are independent of the tree geometry in the sense that, given the MST, the costs of the edges used cannot be recovered (in the lattice models, though this can be done in the Euclidean case). In the absence of a field theoretic formulation, analogous to that for equilibrium positive-\(T \) critical phenomena, the presence of two distinct critical dimensions should not seem so surprising.

This paper is structured as follows. Section II considers the MST problem, and its nonzero temperature generalization, for large systems. The main results of this section are the exponent for the crossover length \(\xi \), \(\nu = \nu_{\text{perc}} \), and the behavior of the entropy and mean cost (per vertex) at low temperature. In section III A, aspects of finite-size systems are considered, first for zero temperature (MSTs). Using finite-size scaling arguments for percolation, the two corrections in \(T_{\text{fin}} \) are obtained. The change in cost produced by a change in boundary condition on a long cylinder is considered in section III B. Finally, scaling at both finite size and positive temperature is considered. Section IV considers other optimization problems, including minimum cost Steiner tree, traveling salesman, and minimum weighted matching. Some of these are argued to be in the same universality class as MSTs.

II. MSTS, RRNS, AND PERCOLATION

This section begins with a mapping of the general weighted spanning tree problem to the calculation of a determinant of a Laplacian matrix on \(G \). The resulting linear-algebra problem is related to other problems of physical interest, including RRNs. This problem is then solved as \(T \to 0 \), and related to Kruskal’s greedy algorithm and to a class of corresponding percolation problems. At nonzero temperature, the connection with RRNs gives the behavior (as \(T \to 0 \)) of the crossover length \(\xi \) to uniform spanning tree behavior at large length scales. The entropy and mean extra cost (per vertex) are considered next, and related to the number of near-optimal spanning trees. Finally some comments on the mobility edge in the lattice Laplacian are made, in the strong disorder regime \(T \to 0 \).

A. Mappings between problems

The partition function \(Z \) can be reformulated as a determinant, by the matrix-tree theorem extended to include weights \(K_{ij} = e^{-\ell_{ij}/T} \) [16],

\[Z = \det' \Delta, \]

where \(\det' \) denotes the determinant of a matrix, from which any one row and the corresponding column have been deleted, and \(\Delta = NKN^t \) is defined as follows. \(N \) is the incidence matrix of \(G \) viewed as a directed graph by adding an arrow to every edge in an arbitrary fashion; then for vertices \(i \) and edges \(e \),

\[N(i, e) = \begin{cases} 0 & \text{if } i \text{ is not on } e, \\ 1 & \text{if } i \text{ is the head of } e, \\ -1 & \text{if } i \text{ is the tail of } e. \end{cases} \]

\(N^t \) denotes the transpose of \(N \), and \(K \) is the diagonal \(|E| \times |E| \) matrix with entries \(K(e, e) = K_{ij} = e^{-\ell_{ij}/T} \) for the edge \(e = (ij) \).

The matrix \(\Delta = NKN^t \) can be regarded as a Laplacian on \(G \). It has a zero mode, the vector \((1, 1, \ldots, 1)^t \), and is positive semi-definite (if all \(\ell_{ij}/T \) are real), as can be seen by writing \(N^t = NK^{1/2} \), and \(\Delta = N^tN^t \). The deletion of a row and column from \(\Delta \) before calculating the determinant removes the zero mode, which would otherwise cause the determinant to vanish.

Now we suppose, as in the introduction, that the graph \(G \) is a portion \(\Lambda \) of a \(d \)-dimensional lattice, and that the costs are random variables. Then there are some physical
problems that can be associated with the mathematical system defined by Δ. For example, consider the eigenvalue problem for the matrix Δ,

$$\Delta v = \lambda v.$$

(13)

This is similar to the problem of finding the eigenfrequencies $\pm \sqrt{\lambda}$ for a collection of unit masses connected by springs with random spring constants $K_{ij} > 0$ (but with scalar rather than vector displacements), or similarly the spectrum of linearized magnons in a magnet with random exchange constants. The exact zero mode is associated with the spontaneous breaking of a symmetry. Such problems have been studied for a long time (see e.g. Refs. [17–19] and Ref. [20] contains a review), although as $T \to 0$ the probability distribution for K_{ij} we consider is particularly broad. The eigenvalue problem is considered further in the following.

Another problem, which goes back to work by Khinchoff, associated with this linear system is that of a resistor network. Let $I = (I_e)$ be the column vector of currents (in the direction of the arrow) along the edges e. In the absence of any external current sources, the net current into any vertex is zero, that is

$$NI = 0.$$

(14)

If potentials ϕ_i are associated with each vertex i (forming a column vector $\phi = (\phi_i)$), then Ohm’s law states that

$$I = -K N^t \phi,$$

(15)

where $K_{ij} = (R_{ij})^{-1}$ is the reciprocal of the resistance (i.e. the conductance) of the edge $e = (ij)$. Eliminating the currents then gives $\Delta \phi = 0$, which of course is solved by the zero mode, $\phi = \text{constant}$. If one wishes to find the resistance between any two vertices, by connecting an external current source across the vertices, by connecting an external current source across them, then this also uses the matrix Δ. If a current J_i enters the network at each vertex i, then forming the column vector $J = (J_i)$, we now have

$$NI = -J$$

(16)

so $\Delta \phi = J (\sum_i J_i = 0$, otherwise there will be no solutions). Then

$$\phi = \Delta'^{-1}J$$

(17)

(plus an arbitrary constant), where Δ' denotes Δ restricted to the subspace orthogonal to the zero mode, so that

$$\Delta'^{-1} = \sum_{n \neq 0} \frac{v_{(n)}v_{(n)}^t}{\lambda_n},$$

(18)

where $\lambda_n, v_{(n)}$ are the eigenvalues and normalized eigenvectors of Δ, and the zeroth eigenvalue $\lambda_0 = 0$ is omitted from the sum. From ϕ, the current flowing along any edge in the presence of arbitrary sources J can be found. Then the resistance between vertices i and j can easily be shown to be

$$R_{\text{equiv}ij} = (\Delta'^{-1})_{ii} + (\Delta'^{-1})_{jj} - 2(\Delta'^{-1})_{ij}.$$

(19)

One popular version of the random resistor network problem is that in which the resistors R_{ij} on the edges are either a constant R, or infinity, with independent probabilities $p, 1 - p$ respectively. This has an obvious connection with percolation [21]. In this paper we are instead interested in the case where R_{ij} has a continuous, but very broad distribution, as in Ref. [22]. The specific form in which we are interested, because of its connection with weighted spanning trees, is $R_{ij} = e^{\ell_{ij}/T}$, with ℓ_{ij} random variables, and T going to zero (it arises, for example, if ℓ_{ij} is the Euclidean distance between vertices i and j that represent localized states, T is the localization length, treated as a constant, and is one aspect considered in Ref. [22]). This form also has a less obvious connection with percolation, as we will see. Our simplest model, in which ℓ_{ij} are independent and uniformly distributed on $[0,1]$, has been studied before [23,24,21,25]. The distribution of conductances on the edges is then $P(K_{ij}) = TK_{ij}^{-1}$ for $K_{ij} \in [e^{-1/T}, 1]$.

B. Solution of eigenvalue problem as $T \to 0$

The next step we will take is to study the eigenvalue problem for strong disorder, T small, first in the extreme limit as $T \to \infty$ for a fixed finite graph G with given weights ℓ_{ij}. In this limit, the eigenvalues and eigenvectors are determined by a simple procedure, that is related both to the greedy (Kruskal [7]) algorithm which solves the MST problem [1], and to the real-space renormalization group method for strong disorder that has been applied to quantum problems (from this point of view, Δ is the Hamiltonian for a one-particle hopping problem). Since Δ contains terms that vary greatly in magnitude, we may begin by finding the largest K_{ij}, all other terms being negligible compared with this (since we are interested eventually in the random version with a continuous distribution, in which with probability one no two K_{ij} are equal, we neglect the possibility of equal $K_{ij}s$).

Let us relabel the vertices so that those connected by the largest K_{ij} are 1 and 2. At this level of approximation, the matrix breaks into a 2×2 block, and $|V| - 2$ other 1×1 zero blocks. The 2×2 block has a normalized eigenvector $(1,-1)^t/\sqrt{2}$ that has eigenvalue $2K_{12}$, and another eigenvector $(1,1)^t$ with eigenvalue 0. Then we find the next strongest K_{ij}. This either connects two vertices (which can be relabeled as 3, 4) distinct from 1 and 2, or else it connects either 1 or 2 to a vertex 3 (we may relabel so that it is K_{23}). In the first case, two
eigenvectors of the 3–4 block can be found as for 1 and 2. In the second case, in the strong disorder ($T \to 0$) limit, K_{12} is much larger than K_{23}. We have a situation of degenerate perturbation theory, in which the eigenvalue $2K_{12}$ has a negligible correction from K_{23}, while the remaining $|V| - 1$ orthogonal vectors have zero eigenvalue when K_{23} is neglected. When K_{23} is included, we derive a reduced Hamiltonian by projecting the K_{23} terms to the subspace of zero eigenvalues of the previous step. This contains only one 2×2 nonzero block, and it turns out that this produces a nonzero eigenvalue $3K_{23}/2$, with normalized eigenvector $(1, 1, -2, 0, \ldots)^t/\sqrt{6}$ in the original basis, as well as a zero mode $(1, 1, 1, 0, \ldots)^t/\sqrt{3}$. Hence the subspace of remaining zero modes has a basis that consists of the latter vector which involves three vertices that have been connected by the couplings K_{12} and K_{23}, and $|V| - 2$ vectors, each for a single vertex that has not yet been connected. These form the degenerate subspace within which the next largest K_{ij} must be considered. Similarly, in the first case, the zero-mode subspace has a basis that consists of two eigenvectors that involve two vertices each, and $|V| - 4$ that involve one each.

This procedure can be easily iterated. After each step, the space of remaining zero modes possesses a natural basis with one basis vector for each of a number of clusters of vertices, which have been connected by the couplings K_{ij} that were considered at earlier stages. For each cluster, of say n vertices, the zero-mode eigenvector is a non-zero constant on those vertices, and zero elsewhere. The next strongest K_{ij} that has not already been considered (or “tested”) must be projected into this zero-mode subspace. One additional possibility occurs in general, as the K_{ij} are considered in decreasing order. Sometimes the next strongest K_{ij} connects two vertices that already in the same cluster. In this case, the resulting 1×1 block produces an eigenvalue 0 and no change in the eigenvector. Thus these couplings may be ignored. The interesting inductive step thus involves a $K_{ij} = K$ that couples two zero-mode clusters containing, say, n and m vertices respectively. The projected matrix in the subspace spanned by these two normalized eigenvectors takes the form

$$\begin{pmatrix} K/n & -K/\sqrt{nm} \\ -K/\sqrt{nm} & K/m \end{pmatrix},$$

and has eigenvalues $(n + m)K/(nm)$, with eigenvector $(\sqrt{m}, -\sqrt{n})^t/\sqrt{n + m}$, and zero, with eigenvector $(\sqrt{n}, \sqrt{m})^t/\sqrt{n + m}$. In the original basis, the zero-mode eigenvector is again of the form of a constant on the connected cluster of $n + m$ vertices and zero elsewhere, which allows the induction to proceed. This procedure can be followed until $|V| - 1$ non-zero eigenvalues have been found, and there is the one remaining zero mode of Δ itself, which in the original basis is $(1, 1, \ldots, 1)^t/|V|^{1/2}$.

We see that this procedure takes the K_{ij} in sequence, beginning with the largest (corresponding to the smallest ℓ_{ij}), and discarding those that connect vertices that have already been connected. Hence at each step, the clusters of vertices formed by the zero modes each take the form of a tree, connected by the stronger couplings K_{ij} that correspond to non-zero eigenvalues, but which do not form a cycle. The clusters form a spanning forest of trees (some trees may contain only a single vertex and no edges), until the last step at which a single spanning tree is formed. This procedure of constructing a tree by adding the lowest-cost edges unless they form a cycle is exactly Kruskal’s greedy algorithm for finding the MST [7]. To see that it solves the MST problem, we may construct the partition function. The determinant det$'\Delta$ is essentially the product of the non-zero eigenvalues of Δ. We have shown that this product is approximately $|V|e^{-\sum_{\ell_{ij}} \ell_{ij}/T}$, where T is the spanning tree obtained by the above procedure. The removal of one row and column before calculating the determinant removes the factor $|V|$. Our approach has constructed the leading term in the partition function as $T \to 0$, and gives a proof that the greedy algorithm is correct (there are of course other ways to show that [1], without linear algebra, but the present approach will be useful to us).

C. Connection with percolation

It is of interest to study the structure of the eigenvectors of Δ, especially in a large portion Λ of the d-dimensional cubic lattice (Λ will be assumed to be a connected domain with a smooth boundary, such as a cube). First we establish a connection with percolation. Suppose that the set of costs ℓ_{ij} is given. Then at a step where all edges of cost $\ell_{ij} < \ell$ have been tested, the clusters formed by the zero modes can be thought of as (a sample of) bond percolation clusters (even when a probability distribution on the ℓ_{ij} has not been specified). Moreover, if we are only interested in which vertices are connected in the clusters that represent the zero modes at a particular step, then it makes no difference to include the edges that were tested earlier but discarded as they formed a cycle. Now we will suppose that the ℓ_{ij} are random variables, but not necessarily that the costs for distinct edges are statistically independent (note that this includes the Euclidean model, as well as general lattice models). If all edges with cost $\ell_{ij} < \ell$ are “occupied”, then we have a general form of bond percolation, with correlated bond-occupation probabilities. We will always assume that the correlations in the ℓ_{ij} are short-ranged (falling, say, exponentially with distance), and translationally-invariant, and that the cumulative probability for any single ℓ_{ij} is continuous. In percolation, there is a percolation threshold at $\ell = \ell_c$, such that in
the limit $\Lambda \rightarrow \mathbb{Z}^d$, for $\ell < \ell_c$ any connected cluster is finite (with probability one), while for $\ell > \ell_c$ there is a single infinite cluster, as well as many finite ones (except when ℓ reaches the supremum of the support of the probability density of ℓ_{ij}). In the simplest model that we use, which contains the generic (or universal) behavior of short-range correlated percolation, the costs ℓ_{ij} are statistically independent, and each is distributed uniformly in $[0,1]$. The corresponding percolation model is then that in which the bonds (edges of Λ) are occupied (independently) with probability $p = \ell$, and unoccupied with probability $1-p$. The percolation threshold in this model will be denoted p_c. In this model, in one dimension, $p_c = 1$, and in two dimensions $p_c = 1/2$ on the square lattice, by duality arguments. In the Euclidean model of MSTs, each ℓ_{ij} is the Euclidean distance between i and j, where the $|V|$ points are (in the simplest Euclidean model) independently and uniformly distributed over the domain Λ (with density 1). In this model, the corresponding percolation problem becomes (the Voronoi, or “lily pad”, form of) continuum percolation.

In the simplest, independent-edge, model of bond percolation, the finite clusters above and below p_c have typical size ξ_{perc} which diverges at $p \rightarrow p_c$ as $\xi_{\text{perc}}(p) \sim \nu_{\text{perc}}(p-\nu_{\text{perc}})$, where ν_{perc} is a universal d-dependent exponent. As $p \rightarrow p_c$, these typical clusters are fractals with Hausdorff dimension D_{perc}. For $d > 6$, $\nu_{\text{perc}} = 1/2$ and $D_{\text{perc}} = 4$: the clusters behave as branched polymers (trees) with no, or negligibly many, cycles (even though cycles are not forbidden in percolation). These properties are also believed to hold, with the same exponents, for the more general models with short-range correlations of the ℓ_{ij}, with $\ell (\ell_c)$ in place of $p (p_c$, respectively), provided that the probability density for each single ℓ_{ij} is smooth at ℓ_c. ℓ_c is non-universal, that is it depends on the details of the probability distribution. In the following, results will be given in terms of the simplest model, but hold equally for the other models.

The relation we have described of the growing trees in Kruskal’s algorithm to percolation is similar to that [4,26–29] between Prim’s algorithm [30,1] (which for a given finite sample ultimately produces the same MST) and invasion percolation [31]. Invasion and ordinary percolation (at the percolation threshold) are believed to be in the same universality class.

The eigenvectors with non-zero eigenvalues are always a combination of two clusters from the preceding step in the algorithm, that are connected by the next-strongest coupling K_{ij}, with amplitudes that are constant on each of the two clusters. More precisely, the amplitudes are

$$\frac{1}{\sqrt{n+m}} \sqrt{\frac{m}{n}}$$

(21)

for each vertex on the cluster of n vertices, and minus the same but with n and m interchanged on the cluster of m vertices. Hence, for $\ell_{ij} < p_c$, where both clusters typically have size of order ξ_{perc} (evaluated at $p = \ell_{ij}$), the eigenvector is localized on a length scale also of order ξ_{perc}. For $\ell_{ij} > p_c$, there is an infinite cluster, i.e. one that occupies a finite fraction of the vertices as $\Lambda \rightarrow \mathbb{Z}^d$. In this case, by letting $n \rightarrow \infty$, we find that the normalized eigenfunction is concentrated on the finite cluster of m vertices, and so is also localized, with localization length diverging as ξ_{perc} as $p \rightarrow p_c$. Thus, with the exception of the zero mode, in the strong disorder limit all eigenvectors of Δ are localized, except at $p \rightarrow p_c$ where the localization length diverges. The mean localization length presumably increases monotonically as the ℓ_{ij} corresponding to the eigenvalue increase to p_c, then for $\ell_{ij} > p_c$ decreases monotonically as $\ell_{ij} \rightarrow 1$.

D. Effective resistance in the strong disorder limit

We now apply the preceding results to the effective resistance between any two vertices, $R_{\text{(equiv)}}(ij)$, using eqns. (19), (18), in the strong disorder ($T \rightarrow 0$) limit.

Each eigenvector has the structure described in the previous Section, with constant amplitude on two clusters of sizes n, m connected by the next strongest coupling, K say, and zero elsewhere, and can only contribute to $R_{\text{(equiv)}}(ij)$ if at least one of i, j lies on one of the clusters. Suppose there is nonzero amplitude at both i and j. If both are in the same cluster, then the contributions to $R_{\text{(equiv)}}(ij)$ cancel. If they are on opposite clusters, the contribution to $R_{\text{(equiv)}}(ij)$ is

$$\frac{1}{m+n} \left(\frac{m}{n} + \frac{n}{m} + 2\right) \frac{nm}{(n+m)K}$$

(22)

which simplifies to $1/K$. Finally, if one of i, j, say i, is on a cluster (say, the one of n vertices) but the other j is not, then the contribution is $m^2/[(n+m)^2]K$.

In the procedure that generates the eigenvectors, the sizes of the clusters are monotonically increasing. For given i and j, the situation that one of i, j is on one cluster, the other on the other occurs only once, at the stage where those two clusters get connected, so there is only a single contribution of the form $1/K$. The situation where only one of i and j is in a cluster occurs at larger values of the couplings than this K. For smaller couplings than K, both vertices are both in the same cluster, or neither is on a cluster. Then as $T \rightarrow 0$, this single term $1/K$ dominates the equivalent resistance. This is consistent with the picture that in the strong disorder limit, the current from i to j is carried along a single non-self-intersecting path of edges, such that the sum of resistances along the path is minimized. However, the total resistance of a path is dominated by the largest resistance on the path, and this is exactly the resistance $1/K$.

We see that the current must pass through the edge of resistance $1/K$ that we have singled out, in a particular
direction that is also determined (this could be verified also by calculating the current on any edge, using formulas from the previous section). Then the current injected at \(i \) must pass along the edges to the correct end of this edge. In the strong disorder limit, we may use the above arguments again to find the resistance between these vertices, which is again dominated by a single resistor of resistance \(< K^{-1} \). This construction can be repeated until the complete path of lowest resistance from \(i \) to \(j \) has been found. Each resistor on the path is one of those that corresponds to a non-zero eigenvalue of \(\Delta \), and so lies on the MST. It follows that in the strong disorder limit, the path of least resistance between any two vertices lies along the MST. In other words, the MST is the solution to the following problem (the all-pairs minimax path problem) [32]: given a “resistance“ on each edge of a connected graph \(G \), for each pair of vertices \(i, j \), find the path from \(i \) to \(j \) that minimizes the value of the largest resistance on the path, and take the union of these paths over all pairs of vertices \(i, j \).

E. Effect of small non-zero temperature

Now we turn to the behavior at a small non-zero temperature \(T \), which means a finite strength of disorder; here, we present arguments using only percolation theory, leaving the behavior of the eigenvalue problem for a later section.

RRNs in \(d \) dimensions with resistances of the form \(R_{ij} = e^{\ell_{ij}/T} \) for \((ij)\) an edge connecting nearest neighbors, \(R_{ij} = \infty \) otherwise, have been considered in several earlier works [22–25]. As the distribution of resistances is very broad for \(T \) small, the following picture of the network emerges. If we consider the clusters that are connected by resistors with \(\ell_{ij} < \ell \), then for \(\ell < \ell_c \) these do not percolate. They consist of low resistances, which can be considered to be essentially zero (like superconducting links). Resistors with \(\ell_c - T < \ell_{ij} < \ell_c + T \) (the exact coefficient of \(T \) in these bounds is not precisely defined, but is order 1, and is set to 1 for illustration) are all of a similar magnitude, and connect the superconducting clusters into a network that spans a positive fraction of the system. Finally, the resistors with \(\ell_{ij} > p_c + T \) connect other clusters to this network, but these clusters are shorted out by the lower resistors and do not contribute to conduction on large scales. On large scales, the resistance or conductance of the system is that of an effectively uniform medium described by a conductivity \(\sigma \) (note that the conductance [the reciprocal of the resistance] of a cube of size \(L \) is \(\Sigma = \sigma L^{d-2} \)), with

\[
\sigma \propto e^{-\ell_c/T} \times \begin{cases}
T^{(d-2)/\nu_{perc}}, & d \leq 6, \\
T^2, & d \geq 6.
\end{cases}
\] (23)

This arises as follows: there is a conductance of around \(e^{-\ell_c/T} \) for each “critical” edge [22], and negligible resistance for the clusters connected by these edges. Then for dimensional reasons, the density of critical edges that connects clusters contributes a factor of length to the \(d-2 \) power, and this length must be the size of the clusters used, which is \(\xi_{perc}(p = \ell_c - T) \propto T^{-\nu_{perc}} \). For \(d > 6 \), there is an additional power \(e^{\ell_c\nu/6} \) which is the number of distinct connected percolation clusters in a window of size \(\xi_{perc} \) at criticality [21] (this number is of order one for \(d \leq 6 \)—this is the breakdown of hyperscaling relations for \(d > 6 \), expressed in terms of the geometry of the clusters [21,33]); these distinct conducting channels add since they are in parallel. The possibility of an additional power of \(T \) (as would occur in some different models of RRNs [21]) was investigated, and bounds on its exponent were found [23]. Le Doussal [24] argued that the power of \(T \) in \(\sigma \) is exactly as given in eq. (23). It should be noted that in these earlier works the length scale above which the effective medium, with negligible fluctuations in conductivity, applies is \(\xi_{perc} \propto T^{-\nu_{perc}} \). This length scale has also been identified in a recent work that examined finite-size scaling properties of the RRN [25]. This length scale is an important result for weighted spanning trees (i.e. MSTs at positive \(T \)) as well:

\[
\xi \propto T^{-\nu},
\] (24)

with \(\nu = \nu_{perc} \).

F. Cost and entropy at positive temperature

In this section, we address the positive-temperature properties of weighted spanning trees directly, that is in terms of trees, not resistor networks.

The most elementary excitation of a spanning tree is to move an edge. By this we mean that an edge on the tree is removed, thus cutting the tree into two parts, which are then reconnected by adding a different edge (not on the initial tree). The change in cost is simply the difference for dimensional reasons, the density of critical edges that connects clusters contributes a factor of length to the \(d-2 \) power, and this length must be the size of the clusters used, which is \(\xi_{perc}(p = \ell_c - T) \propto T^{-\nu_{perc}} \). For \(d > 6 \), there is an additional power \(e^{\ell_c\nu/6} \) which is the number of distinct connected percolation clusters in a window of size \(\xi_{perc} \) at criticality [21] (this number is of order one for \(d \leq 6 \)—this is the breakdown of hyperscaling relations for \(d > 6 \), expressed in terms of the geometry of the clusters [21,33]); these distinct conducting channels add since they are in parallel. The possibility of an additional power of \(T \) (as would occur in some different models of RRNs [21]) was investigated, and bounds on its exponent were found [23]. Le Doussal [24] argued that the power of \(T \) in \(\sigma \) is exactly as given in eq. (23). It should be noted that in these earlier works the length scale above which the effective medium, with negligible fluctuations in conductivity, applies is \(\xi_{perc} \propto T^{-\nu_{perc}} \). This length scale has also been identified in a recent work that examined finite-size scaling properties of the RRN [25]. This length scale is an important result for weighted spanning trees (i.e. MSTs at positive \(T \)) as well:

\[
\xi \propto T^{-\nu},
\] (24)

with \(\nu = \nu_{perc} \).

F. Cost and entropy at positive temperature

In this section, we address the positive-temperature properties of weighted spanning trees directly, that is in terms of trees, not resistor networks.

The most elementary excitation of a spanning tree is to move an edge. By this we mean that an edge on the tree is removed, thus cutting the tree into two parts, which are then reconnected by adding a different edge (not on the initial tree). The change in cost is simply the difference for the edges, with probability one either it is the unique MST, or it is possible to move one edge such that the total cost decreases [34]. Hence there are no true “metastable states” (i.e. local, but not global, minima with respect to moving a single edge) in the MST problem, at least not on a finite graph as assumed in these arguments.

At low temperatures \(T \), there will be thermal excitation of single-edge moves, which can occur independently. Consider the following situation. In the greedy algorithm, suppose that edge \((ij)\) is added to the MST when \(\ell_{ij} = \ell \). Suppose further that, before this edge is added, the trees (clusters) already grown are such that
in the same limit, where \(\psi = 1 \). Since we have included only a subset of the possible excitations, these statements should be taken as a lower bound on \(s \), so that \(\psi \leq 1 \). This notion of TLS is generic for many disordered systems \([35]\), and the behavior \(s \propto T \) is typical for these applications. (A similar picture of TLSs for MSTs was also used in Ref. \([12]\) to obtain the behavior of the cost of the minimum spanning tree that differs from the global MST by a given fraction of edges.) Note that in these statements we did not need to explicitly perform the disorder average, as the thermodynamic \(|V| \to \infty \) limit of these quantities self-averages.

In this argument, we used only TLSs that demonstrably were completely independent as excitations. There could of course be other low-energy TLSs, possibly involving moving more than one edge, that can only be excited conditionally on the states of other edges. But in general, by a TLS we will mean a compact (localized) excitation. We note that the above arguments do not apply in the one-dimensional case, which however can be solved directly. For a system of \(L \) vertices with a periodic boundary condition, the entropy and mean excitation cost are of order \(\ln LT \) and \(T \) (not \(\propto L^d \), unlike the \(d > 1 \) cases), respectively, as \(L \to \infty \) with \(T \) fixed; they can be calculated exactly for the simplest model of independent edges each distributed uniformly in \([0, 1]\).

So far we were careful to move edges that were not close in cost to the percolation threshold. Now we examine these in detail, using the simplest model for which the corresponding percolation problem is uncorrelated bond percolation model. The idea is similar to that used in the RRN point of view in the previous section. If we run the greedy algorithm until all edges of cost between this limit (\(p_c - T \)) and \(p_c \) plus of order \(T \), then we obtain a giant cluster that contains a nonzero fraction of the vertices as \(|V| \to \infty \). We are interested in the subset of these edges that connect distinct components (which can be viewed either as clusters or as trees) of the spanning forest for \(\ell = p_c - T \); we call these critical edges. Clearly not all of these critical edges can be on the MST. But for the positive-temperature weighted spanning tree problem, the many different ways of adding a subset of the critical edges so as to obtain only trees have similar Boltzmann-Gibbs weight. We can construct a reduced graph that has the critical edges as its edge set, and the connected components for \(\ell = p_c - T \) as its vertices. We will assume that the reduced graph is connected. Then if we sum over all spanning trees of this reduced graph with the corresponding Boltzmann-Gibbs weights, then as the differences in cost are only of order \(T \) when any one edge is moved, this problem is approximately a uniform spanning tree problem. It is essentially counting all the spanning trees. As in the TLS argument, the choice of a spanning tree on the reduced graph does
not affect the remaining edges to be added of still higher cost, which complete a spanning tree of \(G\), because the spanning trees of the reduced graph all connect the same vertices of \(G\).

The connectivity properties, such as the probability that \(k\) distinct branches of the tree cross between two chosen balls (as discussed in the introduction), and corresponding scaling dimensions and Hausdorff dimensions are unaffected by TLSs of size smaller than the scale on which these correlations are studied. But on scales larger than \(\xi_{\text{perc}}(p_c - T)\), the argument here, which is essentially a coarse-graining or renormalization group argument, suggests that the connectivity properties become those of uniform spanning trees (USTs). In the UST problem, which corresponds to the \(T \to \infty\) limit of the weighted spanning trees, disorder (randomness) in the costs \(\ell_{ij}\) can be shown to be irrelevant, that is it has no effect on the large-scale universal properties. As we have seen that temperature is a relevant perturbation of the zero-temperature (MST) limit, it makes sense that the crossover is to USTs at large length scales. This is consistent with the arguments of the previous section, in which the conductivity at large scales becomes essentially non-random, because we can identify the non-random \(T \geq 0\) (uniform) spanning tree problem with a resistor network with a constant resistor on each edge of the lattice. We see again that the crossover length scale diverges as \(\xi \propto T^{-\nu}\) as \(T \to 0\), with \(\nu = \nu_{\text{perc}}\). As noted in the Introduction, by using the above results for the cost and entropy, this can be interpreted as saying that for a typical spanning tree that has cost within \(1 + \epsilon\) of \(\ell_{\text{OPT}}\), the length scale is \(\xi \propto \epsilon^{-\nu/(\psi+1)}\) at \(|V| \to \infty\), for \(\epsilon \to 0\).

We should emphasize that saying that temperature is a relevant perturbation of the zero-temperature MST fixed point does not, in our view, entirely rule out the possible equivalence of the universality classes of statistical connectivity properties in the MST at \(T = 0\) and USTs. That is because the averages are different in the two cases. For the MST, we mean the average of a quantity over the random costs with respect to which the optimum must be found. For the UST, there is a nonzero (or even infinite) temperature. Theoretically, it still appears possible that the universality classes for geometric or connectivity properties are the same, in sufficiently low dimensions (indeed, in \(d = 1\) the resulting probability distributions on trees are the same, though the connectivity properties are trivial). For \(d = 2\), this would imply conformal invariance of the MST. However, the universality classes for \(d = 2\) have been compared numerically by looking at certain exponents [29,36], and while the early results may not have ruled out their equality, recent numerical evidence [37] seems also to be against these universality classes being the same, and against the conformal invariance of the \(d = 2\) MST.

The reduced-graph (or coarse-graining) idea can be used to estimate the contribution to the entropy of the network of critical edges. On large length scales, the reduced graph behaves as a finite-dimensional system. Hence, the entropy of the uniform spanning trees formed using the critical edges only should be of order the number of vertices of the reduced graph. For \(d \leq 6\), there is of order one connected percolation cluster per correlation volume \(\xi_{\text{perc}}(p_c - T)^d\), and hence the contribution to the entropy per vertex is \(\xi_{\text{perc}}(p_c - T)^{-d} \propto T^{d\nu}\) for \(d > 1\). For \(d > 6\), there are of order \(\xi_{\text{perc}}^{d-6}\) connected clusters per correlation volume [21]. Hence we expect that the contribution to the entropy per vertex is \(\xi_{\text{perc}}(p_c - T)^{-6} \propto T^3\) for \(d > 6\). In either case, the result is smaller than \(T\) as \(T \to 0\) when \(d > 1\). For \(2 \leq d < 6\), we predict then that the entropy per vertex has the form

\[
s \sim aT + a_1T^2 + a_2T^{d\nu} + \ldots
\]

as \(T \to 0\), where \(a, a_1, a_2\) are non-universal coefficients. This form can be viewed as an “analytic part”, in integer powers of \(T\), which we have continued to order \(T^2\) (because \(d\nu > 2\) for \(d \geq 2\)), plus a non-analytic or singular part \(T^{d\nu}\). (Such a form is familiar from ordinary critical phenomena at nonzero temperature.) The free energy per vertex, \(f = \lim_{|V| \to \infty} F/|V|\) divided by temperature has a similar expansion, as does the internal energy per vertex over temperature, only the coefficients \(a, a_i\) being changed in obvious ways in each case. Thus, the earlier arguments that the leading term \(T^\psi\) in \(s\) in fact has \(\psi = 1\) is an argument that the leading effects are localized excitations that contribute to the analytic part. A power \(\psi < 1\) would be viewed as a non-analytic part, and would presumably indicate that the leading contribution is from large-scale collective excitations. The singular part \(T^{d\nu}\) for \(d < d_c\) is of the form expected when hyper-scaling applies in critical phenomena, except that here it applies to \(F/T\) instead of to \(F\). That is because we dealing with a fixed point (or critical point) at zero temperature, and the natural quantity that scales is \(F/T\), which controls the probabilities of different configurations (whereas at a transition at nonzero \(T = T_c\), one can expand \(F/T_c\) in powers of \(T - T_c\)). Hence we expect on general grounds that these expansions are of the correct form. For \(d \geq d_c = 6\), the singular part takes the form \(T^3\) which apparently we cannot distinguish unambiguously from the analytic part. This difference from ordinary critical phenomena occurs because only \(T \geq 0\) is available.

G. Implications for the eigenvalue problem at \(T \neq 0\)

In this section, we apply the results obtained in previous sections from RRNs and from percolation to the eigenvalue problem for the matrix \(\Delta\), in the regime of strong but finite disorder, \(T\) non-zero and small. The results of this section are not used elsewhere in this paper.
As we saw, when $T \to 0$ in a large system, de-localized eigenvectors (other than the zero mode) occur only at the percolation threshold p_c. On the other hand, when T is non-zero there is a well-defined probability density for the K_{ij}s. One then expects de-localized (in fact, extended) eigenvectors to occur at sufficiently low eigenvalues if $d > 2$, while for $d = 2$, the localization length diverges as the eigenvalue $\lambda \to 0$ [18]. We also expect that for $d > 2$, in the strong disorder limit as $T \to 0$, the fraction of extended eigenvectors tends to zero. One would like to understand how these two descriptions of the spectrum are connected in the limit. We will present a partial answer to this question.

When T is small and non-zero, the method used for $T \to 0$ breaks down when the assumption that K_{ij}s for distinct edges are very different breaks down. A typical way for this to happen is provided by the configurations that gave the TLS in the previous section. When ℓ_{ij} and ℓ_{kl} connect the same two clusters (zero modes of couplings stronger than either of these), and are within T of each other, then both must be included in the reduced 2×2 block, and the eigenvectors and non-zero eigenvalue they produce are modified, though the eigenvector is still localized. This does not affect later eigenvectors, and in the partition function produces the thermal effects we have described using the TLS picture.

It is very plausible that the extended eigenvectors for small T are produced by the critical edges only, that is those with ℓ_{ij} within T of ℓ_c that connect clusters of size of order ξ. This is connected with the crossover to the UST behavior at large length scales, and to the effectively uniform conducting medium in the RRM point of view. Hence, one expects that using these clusters, on length scales larger than ξ, the Laplacian Δ can be represented by $\Delta_{\text{eff}} = -\sigma \nabla^2$. Then the density of eigenvalues λ (per unit volume and per unit λ) is predicted to be $\propto \sigma^{-d/2} \lambda^{d-2}/2$ as $\lambda \to 0$. This appears to be consistent with other approaches for the $d = 1$ case, which is essentially soluble [17,19] (and the value of σ can also be easily verified for this case [24]).

Next, there is the question of the behavior of the mobility edge (the value of λ above which, in a large system, eigenvectors are localized), or alternatively the fraction of eigenvectors that are extended. We will not enter into a full study of the spectrum here, but only make a crude estimate, which may capture the correct asymptotic behavior. Using Δ_{eff}, we expect that the number of states (per unit volume) with eigenvalue less than λ scales as $\propto \sigma^{-d/2} \lambda^{d/2}$ as $\lambda \to 0$. Δ_{eff} is valid only for scales $> \xi$, so this can hold only until the number of states it predicts reaches ξ^{-d}. This gives a “critical” value for λ,

$$\lambda_c \propto e^{-\ell_c/T} \times \begin{cases} T^{d/2}, & d \leq 6, \\ T^3, & d \geq 6, \end{cases}$$

as $T \to 0$. This value is our prediction for the mobility edge for $d > 2$, though it is possible that the correct value is larger for $d \geq 6$ because the number of clusters of size ξ that can be used to construct the extended states is of order ξ^{-6} per unit volume, not ξ^{-d}. The exponential dependence, $e^{-\ell_c/T}$, agrees with the fact that in the $T = 0$ limit, delocalization occurs only at $\ell = \ell_c$, so only the sub-exponential dependence on T can be in question.

The fate at $T \neq 0$ of the eigenvalues of the $T \to 0$ limit at $\ell_{ij} > \ell_c$ is a puzzle. They should remain localized, but their density of states appears to overlap that of the extended eigenvectors. We cannot resolve this here, and so our description of the spectrum for $d > 2$ and for small $T \neq 0$ must remain somewhat tentative.

III. Finite-size and Boundary-Condition Effects on the Total Cost

In this section we consider the effect of finite system size on the optimum cost of the spanning tree, and of changing the boundary conditions (imposing additional constraints) on this minimum cost. The arguments are largely independent of those in the last section, except that the relation to percolation again appears. The results take the form of a term in the subleading (in inverse powers of system size, L say) behavior of the cost that features an exponent θ, which is again related to percolation, $\theta = -1/\nu_{\text{perc}}$. Finally, we obtain a scaling form for the free energy, which exhibits the crossover between the zero temperature cost and the infinite-size limit at fixed positive temperature, which is related to the results of the previous section.

A. Finite-size scaling of the mean cost

The relation of MSTs to percolation was explained in Section IIIC. In the most general case, when all edges of cost less than $\tilde{\ell}$ are occupied, we have a subgraph of G which consists of one or more connected components, called clusters (there may be clusters consisting of a single vertex and no edges). This number will be denoted $\mathcal{N}(\tilde{\ell}|G)$, and depends implicitly on the set of edge costs ℓ_{ij}. For $\tilde{\ell} < \min_{ij} \ell_{ij}$, $\mathcal{N}(\tilde{\ell}|G) = |V|$, and for $\tilde{\ell} > \max_{ij} \ell_{ij}$, $\mathcal{N}(\tilde{\ell}|G) = 1$. Between these limits, $\mathcal{N}(\tilde{\ell}|G)$ obviously has a sequence of downward steps of unit magnitude. The MST for the same graph G with the same set of costs consists of those edges which, as $\tilde{\ell}$ is increased from its lower to its upper limit, decrease the number of connected clusters by 1. Then we have the general formula for the optimum cost (without averaging):

$$\ell_{\text{OPT}} = -\int_{-\infty}^{\infty} d\ell \lambda \frac{\partial \mathcal{N}(\tilde{\ell}|G)}{\partial \ell}.$$

It follows that the mean cost of the MST is exactly
\[t_{\text{OPT}} = - \int_{-\infty}^{\infty} d\ell \ell \, \frac{\partial \overline{N}(\ell|G)}{\partial \ell}, \]
\[t_{\text{OPT}} = - \int_0^1 dp \, p \, \frac{\partial \overline{N}(p|G)}{\partial p}, \]

where \(\overline{N}(\ell|G) \) is the mean number of connected clusters in the corresponding percolation problem. (This idea is certainly known to probabilists, and is contained in Frieze’s [38] exact calculation of \(t_{\text{OPT}} \) as \(|V| \to \infty \) for the case of the complete graph [i.e. one edge \(\langle ij \rangle \) for every pair \(i, j \) of vertices] with independent costs for the edges.) For the simplest model, in which the costs are fixed and will be used below.

For the complete graph, the result as \(|V| \to \infty \) is [38] \(t_{\text{OPT}} = \zeta(3) \), where \(\zeta \) is the Riemann zeta function. In this paper, we specialize to graphs \(G \) that are a portion \(\Lambda \) of a cubic lattice in \(d \) dimensions, and we will further assume here that \(\Lambda \) is a cube of side \(L \) (parallel to the lattice axes), with periodic boundary conditions. For this system, we write the mean number of percolation clusters as \(\overline{N}(p|G) \). Again, the results found below also apply to the more general models as delimited in the previous section. The following arguments could be extended further to study the boundary terms in eq. (2), or further finite-size corrections.

The function \(\overline{N}(p|G)/L^d \) should have a well-defined monotonically-decreasing limit:

\[Y(p) = \lim_{L \to \infty} \overline{N}(p|G)/L^d, \]

where the limit is taken with \(p \) fixed. Thus

\[\beta = - \int_0^1 dp \, p \, \frac{\partial Y(p)}{\partial p}. \]

The expected fraction of edges of cost between \(p \) and \(p + dp \) that lie on the MST as \(L \to \infty \) is

\[- \int_0^1 dp \, \left(\frac{1}{d} \frac{\partial Y(p)}{\partial p} \right) \]

for the (hyper-)cubic lattice; this function has been calculated and plotted in Ref. [29] for some lattices in dimensions \(d = 2 \) and 3 (though without making this connection with percolation, and the singular contributions we discuss below are not visible). There is a simple but important relation involving \(Y \), which originates from the facts \(\overline{N}(1, L) = 1 \), \(Y(1) = 0 \). It can be written as:

\[- \int_0^1 dp \, \left(\frac{\partial \overline{N}(p|G)}{\partial p} \right) - L^d \frac{\partial Y(p)}{\partial p} = -1, \]

and will be used below.

We may now substitute these forms to obtain a result for \(t_{\text{OPT}} \):

\[t_{\text{OPT}} = \beta L^d - \int_0^1 dp \, p \, \left(\frac{\partial \overline{N}(p|G)}{\partial p} - L^d \frac{\partial Y(p)}{\partial p} \right) = \beta L^d - p_c \]

using eq. (35). Notice that in more general models, the term \(-p_c\) is replaced by the value \(-\ell_c\) of the cost at the percolation threshold, as claimed in the introduction. Next, we present arguments that the remaining integral goes to zero as \(L \to \infty \), and find its magnitude.

In percolation, \(\overline{N}(p|G) \) plays the role of the free energy of a statistical mechanics problem [21] (this can be made precise by using the relation of percolation to the \(Q \to 1 \) limit of the \(Q \)-state Potts model on the arbitrary graph \(G \)). In the case of a lattice in dimension \(d \), \(Y(p) \) has a singular (nonanalytic) behavior at \(p = p_c \) (\(p_c \) is the percolation threshold of the infinite system), which for \(d \geq 2 \) has the form [5]

\[Y(p) \sim \left(Y(p_c) + (p - p_c) Y'(p_c) + \frac{1}{2} (p - p_c)^2 Y''(p_c) \right) + C_{+} |p - p_c|^{2-\alpha} + \ldots \]

as \(p \to p_c \). Here \(\alpha \) is another universal exponent, \(C_{+} \), \(C_{-} \) are non-universal \(d \)-dependent constants for the cases \(p < p_c \), \(p > p_c \), respectively, and the leading terms on the right hand side vanish more slowly than \(|p - p_c|^{2-\alpha}\). For \(d < d_c = 6 \), \(2 - \alpha = \nu_{\text{perc}} \) (and apparently varies monotonically), while \(2 - \alpha = 3 \) for \(d \geq 2 \). As \(2 < 2 - \alpha \leq 3 \) when \(d \geq 2 \), the non-analytic part of \(Y \) does not necessarily contradict the monotonic decrease of \(Y(p) \) with increasing \(p \). We will define

\[Y(p)_{\text{sing}} = C_{+} |p - p_c|^{2-\alpha}, \]

for all \(p \), so as to match the non-analytic behavior; \(Y(p)_{\text{sing}} \) will be used only in the vicinity of \(p_c \). For \(d = 1 \), \(p_c = 1, \nu_{\text{perc}} = 1 \), \(Y(p) = 1 - p \), and the singular piece cannot be separated from the background, though \(Y(p) \) does obey the expected linear form as \(p \to p_c \). \(Y \) must be positive, so cannot be smoothly continued to \(p > 1 \); this can perhaps be viewed as a non-analyticity.

The idea for completing an estimate of the final integral in eq. (36) is that the difference of derivatives in the integrand, which must obviously be smaller than \(L^d \) as \(L \to \infty \), is in fact much smaller, and concentrated at \(p = p_c \). At finite \(L \), \(L^d Y\partial Y/\partial p \), which has a nonanalyticity at \(p_c \), is replaced by \(\partial \overline{N}(p|G)/\partial p \), which is analytic in \(p \) for all \(p \) (in fact, it is a polynomial in \(p \) - and hence \(Y \) is a polynomial in \(p \)). The derivative of the number of clusters is sensitive to the finite size of the system only through correlation effects. Consequently, sufficiently far from \(p_c \) that \(L \gg L_{\text{perc}} \propto |p - p_c|^{-\nu_{\text{perc}}} \) as \(p \to p_c \), the difference between the two functions is of order \(e^{-cL/\xi_{\text{perc}}} \). Hence, the final integral converges, and one would expect it to be bounded by \(\lambda L^{-1/\nu_{\text{perc}}} \). [this
would follow immediately, by using the identity \((35)\) once again, if we had more information about the sign of the integrand in this identity. The following arguments provide a detailed support for this idea, and indicate that this conservative bound is likely to be the precise order of this correction term in most cases.

We will use the notion of finite-size scaling [39], which generalizes the scaling statements to finite size \(L\). This follows the form for conventional equilibrium phase transitions (see especially Ref. [40,41]), which percolation closely resembles (some rigorous results can be found in Ref. [33,42]). We will briefly review the form of these arguments, so as to include the cases \(d > d_c\). While \(\bar{N}_{\text{sing}}(p, L)\) is analytic in \(p\) for finite \(L\), we wish to identify a part (traditionally termed “singular”) that in the vicinity of \(p = p_c\) tends to \(L^d Y_{\text{sing}}(p)\) as \(L \to \infty\). This may be defined by subtracting the nonsingular part of \(Y(p)\):

\[
\bar{N}_{\text{sing}}(p, L) = N(p, L) - L^d(Y(p) - Y_{\text{sing}}(p)),
\]

(39)

which again will be used only in the region \(p \approx p_c\). Then according to the theory of finite-size scaling for equilibrium phase transitions, as \(L \to \infty\), \(\bar{N}_{\text{sing}}(p, L)\) obeys the scaling form

\[
\bar{N}_{\text{sing}}(p, L) = n(tL^{y_t}, uL^{y_u}),
\]

(40)

where \(t = p - p_c\) and \(u\) is an additional parameter (a coupling constant) that in a field theoretic calculation [43] is treated as independent, and \(y_t\) and \(y_u\) are universal scaling dimensions (which depend on \(d\)). The scaling form is supposed to hold for some finite function \(n\) as \(L \to \infty\) with the arguments \(tL^{y_t}\), \(uL^{y_u}\) held fixed, and thus does apply only for \(p\) close to \(p_c\). The correlation length, in an infinite system, scales as \(\xi_{\text{perc}} \sim |p - p_c|^{-\nu_{\text{perc}}}\), where \(\nu_{\text{perc}} = 1/y_t\). For \(d < d_c\), \(u\) renormalizes to a fixed point value and can be dropped (unless it is desired to find corrections to scaling). For \(d > d_c\), \(u\) renormalizes towards zero \((y_u \propto d - d < 0)\), but cannot be dropped as the free energy \(n\) depends on it in a singular fashion:

\[
n(x, z) = z^p n^*(x z^{p_z})
\]

(41)
as \(z \to 0\). The authors of Ref. [40] showed that \(p_1 = 0\), and this should also hold for percolation. Then the mean number of clusters takes the form

\[
\bar{N}_{\text{sing}}(p, L) = \begin{cases}
n(tL^{y_t}), & \text{for } d \leq d_c, \\
n^*(tL^{y_u}), & \text{for } d > d_c, \end{cases}
\]

(42)
in which \(u^{p_z}\) has been absorbed into the non-universal scale factors that accompany \(t\). Here \(y^* = y_t + p_2 y_u\), and for percolation the field-theoretic formulation leads to \(y_u = (6 - d)/2\), \(p_2 = -2/3\), \(y^* = d/3 = y d/d_c\) [44] for \(d \geq 6\). The implication of these scaling statements is that the analytic background that has been subtracted has negligible (exponentially small) \(L\) dependence, even at \(p_c\). The finite-size scaling form given should be of order \(L^d\) as \(L \to \infty\) with \(t\) fixed, and must match \(L^d Y_{\text{sing}}(p)\), so we must have

\[
\begin{align*}
\bar{n}(tL^{y_t}) & \sim C_{\pm} L^d |t|^{d/y_t} \propto L^d \xi_{\text{perc}}^{-d} & \text{for } d \leq d_c, \\
\bar{n}^*(tL^{y_u}) & \sim C_{\pm} L^d |t|^{d/y_u} \propto L^d \xi_{\text{perc}}^{-d} & \text{for } d > d_c,
\end{align*}
\]

(43)

for \(|t|L^{y_t}\) (resp., \(|t|L^{y_u}\)) large, for both signs of \(t\). These scaling behaviors are consistent with the above forms for \(\alpha\), and \(L^d Y_{\text{sing}}(p)\) itself satisfies the same scaling behavior as \(\bar{N}_{\text{sing}}(p, L)\), \(L^d Y_{\text{sing}}(p) = \bar{N}(tL^{y_t}) (\bar{N}(tL^{y_u})) \) for \(d \geq d_c\). For \(d = d_c\) there may be logarithmic corrections to these scaling forms, which we will neglect.

Now the integral in eq. (36) contains only \(\bar{N}_{\text{sing}}(p, L)/\partial p - L^d \partial Y_{\text{sing}}(p)/\partial p\), and for \(d \leq d_c\) only can be rewritten using the scaling behavior in terms of \(x = tL^{y_t}\) (we turn to the \(d > d_c\) cases below):

\[
-L^{-y_u} \int_{-\infty}^{\infty} dx \left(\frac{dn(x)}{dx} - d \bar{Y}(x)\right).
\]

(44)

The difference of derivatives is expected to behave as \(e^{-c''|x|^{y_{u'}}}\) for some \(d\)-dependent constant \(c''\) at large \(|x|\), because the leading error is due to correlations that propagate around the system, and will involve the linear size \(L/\xi_{\text{perc}}\). It follows that the integral converges, and we have obtained

\[
\bar{t}_{\text{OPT}} \sim \beta L^d - p_c + \lambda' L^\theta
\]

(45)
as \(L \to \infty\), with \(\theta = -y_u\).

As an aside, we point out that \(n(x) - \bar{Y}(x)\) cannot go to zero at large positive \(x\), but must approach 1 as \(p \to 1\). We have pointed out that \(\bar{N}(p, L) - L^d Y(p)\) approaches 1 as \(p \to 1\); now we are arguing that this difference of order 1 exists all the way to the vicinity of \(p = p_c\), and so the integrand in eq. (35) behaves as a \(\delta\)-function when \(L \to \infty\). This effect is due to the “giant” percolation cluster that occupies a positive fraction of vertices when \(p > p_c\). If we start at \(p = 1\), and decrease \(p\), then edges are removed at random. Some of these removals disconnect some vertices from the giant cluster. However, the resulting value of \(L^{-d} \partial \bar{N}(p, L)/\partial p\) has only small finite size corrections, of relative order \(e^{-c'' L/\xi_{\text{perc}}}\). The giant cluster does not disappear until the critical region is reached (where it cannot be distinguished from clusters of size \(\xi_{\text{perc}} \approx L\)), and so \(\bar{N}(p, L) - L^d Y(p)\) remains close to 1 down to the same region.

A useful check on the arguments is provided by the \(d = 1\) case, in which \(\bar{N}(p, L) = L(1-p)+p^L\), \(n(x) - \bar{Y}(x) = e^{x} (x \leq 0\) for \(d = 1\). Thus

\[
\bar{t}_{\text{OPT}} = L/2 - 1 + L^{-1} + \ldots
\]

(46)
in \(d = 1\) (higher terms are of order \(L^{-2}\)), that is \(\beta = 1/2\), \(\lambda' = 1\). It is likely that \(\lambda' > 0\) for all \(d\).

For \(d > d_c\), the use of the scaling forms with \(n^*\) in place of \(n\) would lead to the final integral being of order \(L^{-y_u'}\). This result is incorrect. The error is that
while the scaling form for \(\mathcal{N}(p, L) \) correctly describes the \textit{leading} behavior as \(p \to p_c \), the integral we wish to calculate contains the difference of derivatives, from which the leading part has been subtracted. It turns out that there is a subleading part of \(\mathcal{N}(p, L) \) that dominates this subtracted form. Mean-field theory yields a nonanalytic contribution to \(\mathcal{N}(p, L) \) that is precisely of the form \(L^d \mathcal{Y}(p, L) \) due to Gaussian fluctuations at all wavevectors (within a field-theoretic formulation) is \(\sim C_n^0 L^d |t|^{d_{perc}} \) (times \(\ln |t| \) when \(d \) is even), which is smaller than \(L^d Y_s(p) \) as \(t \to 0 \). (For comparison, for \(d > d_c \), the universal scaling function \(n^*(tL^{2y}) \) comes entirely from the “zero-mode” fluctuations [41].) However, when \(L^d Y(p) \) is subtracted, the leading singularity \(L^d Y_s(p) \) is removed, and so is \(C_n^0 L^d |t|^{d_{perc}} \), but a finite-size correction to the latter remains. This finite-size correction is of the form

\[
\mathcal{N}(p, L) - L^d Y(p) = -\frac{1}{2} \left[\sum_q \ln(q^2 + |t|) \right] - L^d \int \frac{d^d q}{(2\pi)^d} \ln(q^2 + |t|) \right]. \tag{47}
\]

The ultraviolet divergence in this expression is cut off on the lattice; \(q^2 \) is replaced by a lattice expression that is periodic over the Brillouin zone (to which the sum and integral are restricted), and which reduces to \(q^2 \) at small \(q \). The sum is over wavevectors \(q = 2\pi(n_1, \ldots, n_d)/L \), where \(n_i \) are integers. Some numerical factors multiplying \(t \) have been neglected. One finds that \(\mathcal{N}(p, L) - L^d Y(p) \propto e^{-L^{|t|^{1/2}} / 12} \) as \(L \to \infty \). This correction is significant when \(|t| < L^{-1/\nu_{perc}} \). For \(d > d_c \), the region \(|t| < L^{-1/\nu_{perc}} \) is much larger than \(|t| > L^{-y_i} \), within which the other effects are important. In the wider region, the Gaussian fluctuations dominate, as the interaction term \(u \) is weak (and perturbation theory is infrared convergent for \(d > d_c \)). The contribution of the giant cluster also is significant over the same window. Then \(\partial \mathcal{N}(p, L)/\partial p - L^d \partial Y(p)/\partial p \) possesses a scaling limit that is a function of \(L^{y_c} \) only, where \(y_c = 2 \) in this case. Hence the rescaling argument in this case produces \(\lambda L^{1/\nu_{perc}} \) also. There are also other corrections for \(d > d_c \), including an effective finite-size shift in the value of \(p_c \), of order \(L^{-(d-4)} \), which is smaller than the width of the critical region \([p_c - \Delta p_c, p_c] \times L^{-y_i} \). This shift contributes an amount of order \(L^{-(d-4)} \) to \(\ell_{OPT} \), smaller than \(L^0 \). For \(d \leq d_c \), all fluctuation effects are of similar order as the leading mean-field term, and have to be resummed using the renormalization group; they contribute to the same universal scaling functions \(n \) and \(Y \), and the present arguments for \(d > d_c \) do not apply there.

The generalization to finite sizes with periodic boundary conditions, but for a cuboid of general aspect ratio (held fixed as \(L \to \infty \)) in place of the hypercub, is straightforward. Another generalization is to a long cylinder, of length \(L \), and hypercubic with periodic boundary conditions with period \(W \) in the \(d - 1 \) transverse dimensions. In this case, the mean optimum cost per unit length tends to a \(W^{-1} \) (and \(d \)-dependent) limit as \(L \to \infty \), and by similar arguments (using methods from Ref. [41] for this geometry) this behaves as

\[
\lim_{L \to \infty} \ell_{OPT}/L \sim \beta W^{-d-1} + \lambda'' W^{d-1}, \tag{48}
\]

with the same exponent \(\theta \), as \(W \to \infty \).

Finally, the application of similar ideas to the simplest model MST on the complete graph with \(N = |V| \) vertices, to obtain finite-\(N \) corrections to the result of Ref. [38], should give (using an analysis like Ref. [41], and similar to the \(L^{-y_i} = N^{-1/3} \) for \(d > d_c \) that we argued is incorrect in the finite-\(d \) lattice case, but should be correct here)

\[
\ell_{OPT} \sim \zeta(3) - 1/N + \lambda'' N^{-4/3} \tag{49}
\]

[we note that the percolation threshold is \(p_c = 1/N \) (see e.g. Ref. [45]), and all terms are smaller by \(1/N \) than in the lattice cases].

B. Effect on the mean cost of a change of boundary condition

In this subsection, we consider the long-cylinder geometry, described in the introduction and at the end of section III A. We consider the effect of a change in boundary condition, that is imposed by demanding that the minimum cost spanning tree have \(k \) distinct branches crossing from one end to the other, instead of the one that is typical for the usual MST. We call the minimum cost for this constrained spanning tree \(\ell_{OPT}(k) \). Thus, outside of the end regions of the cylinder, there are (at least) \(k \) trees, forming a spanning forest of minimum cost. This type of change of boundary condition could be handled by the Hamiltonian methods described in Ref. [41], if we had a direct field theory for the MST problem. This would lead us to expect the change in optimum cost per unit length to scale the same way as the finite \(W \) correction to the optimum, that is as \(W^{-\theta} \). This expectation is correct, but as such a formulation is not presently available, we will turn to a different approach, which produces an upper bound, and which can also be applied to other combinatorial optimization problems.

The idea is to begin with the MST on the long cylinder without the additional constraint, and now modify it so as to grow \(k - 1 \) additional disconnected trees that extend from one end to the other. This must increase the total cost, and we estimate the resulting increase, thus producing an upper bound on this change.

It is useful to give two versions of this procedure; the first version is simple and produces a rather conservative bound, while the second, more refined upper bound is tighter. When expressed in terms of an exponent \(\theta \), which
should be the same as the other θs in this paper, the first says that $\theta \leq 0$, and the second that $\theta \leq -1/\nu_{\text{perc}}$. The second bound presumably cannot be tightened further in most cases.

We begin with some definitions for the MST on a long cylinder. There is a path on the tree from one end of the cylinder to the other, which with probability approaching 1 as $L/W \to \infty$ is unique outside the end regions (of length of order W). As the end regions are unimportant, this path is essentially unique, and we will refer to it as the trunk of the tree. The remainder of the tree consists of side-branches, which are trees rooted on the trunk; the side-branches presumably have linear size of order W or less. The basic procedure, which we describe for $k = 2$ as the generalization to $k > 2$ is simple, is to modify the tree in a sequence of steps so as to grow a second tree, distinct from what remains of the first one except in the end regions, that possesses a trunk extending from one end to the other of the cylinder. This is done by beginning at one end of the cylinder, and cutting off parts of side-branches (by removing an edge) from the original MST and joining them to the new tree. Each side-branch of the original tree that is cut must be adjacent to the new, growing tree so that it can be reattached to it, by including an edge that was not part of the original MST. We end up with two disjoint trees, which together span the vertices, one of which has the same trunk as the original MST. The side-branches, and the cutting and attaching edges, are selected so as to minimize the increase in cost of the final k trees relative to the MST.

In the first, simple procedure, at each step we look for a side-branch attached to the trunk of the original MST that is adjacent to the growing tree, and which extends in the growth direction. This will typically be of size W, and will touch the growing tree at a distance of order W from the trunk of the MST. The cut is made at an arbitrary point between the re-attachment point (which is also chosen arbitrarily) and the trunk. The growing tree thus grows by order W towards the target end. The number of steps required will be of order L/W, and each increases the cost by order one, so the change in cost is of order L/W, and the pair of trees constructed provides an upper bound on the true minimal increase in cost relative to the MST. For the general k-tree version, $k - 1$ additional trees can be grown in parallel, and each step makes progress by $W/k^{1/(d-1)}$, similar to arguments in Ref. [13]. The total change in cost is then roughly of order $k^{d/(d-1)}L/W$.

In the second, improved version, we will recognize that the selection of edges to cut and to add can be optimized to significantly reduce the increase in cost per step. In fact, the edges that will be moved will again be “critical edges”, here meaning those with cost within W^θ of ℓ_c.

If the greedy algorithm is applied to any one of our models on the cylinder, then we can run it up to a value of $\tilde{\ell} < \ell_c$ such that $\xi_{\text{perc}} < W$, say $\xi_{\text{perc}} = W/10$. If W is large, this means $\tilde{\ell} = \ell_c$ minus of order $W^{-1/\nu_{\text{perc}}}$. At this stage, there are many clusters of size ξ_{perc}, but it is rare for a cluster to percolate around the “circumference” $W \ll L$ of the cylinder (the probability in a length of order W along the cylinder is of order $e^{-cW/\xi_{\text{perc}}}$). We will ignore these exceptional cases, for now, and return to this oversimplification later. Now we continue the greedy algorithm up to $\ell = \ell_c$ plus of order $W^{-1/\nu_{\text{perc}}}$. There will now be many large clusters that have size $\gg W$ along the long direction of the cylinder, and which together occupy a positive fraction of vertices as $L \to \infty$. However, we cannot guarantee that there is a single giant cluster that percolates the full length of the cylinder with probability one. There is always a nonzero probability that the cluster is broken somewhere, even though this probability may be exponentially small in W. (For finite W, on length scales $> W$ the problem maps onto an effectively one dimensional percolation problem, in which $p_c = 1$.) In fact, if above ℓ_c the correlation length is ξ_{perc}, then the probability per unit length of a break in the clusters is of order $e^{-(\ell_c/\xi_{\text{perc}})}$ when $W \gg \xi_{\text{perc}}$. This will not affect the argument, and we may continue as if there is a giant cluster and a path on the corresponding tree that runs from one end to the other (this path will be the trunk of the MST when the greedy algorithm is finished). After giving the argument under this simplifying but incorrect assumption, we will return to and correct for this oversimplification also.

We can choose $\ell - \ell_c$ large enough so that there are actually two (or more generally, k) paths from end of the cylinder to the other on the giant percolation cluster, which have no edges or vertices in common with one another. We will assume that the paths are separated by of order $W/2$ (or $W/k^{1/(d-1)}$ for $k \geq 2$) along almost all of their length (again, this may be an oversimplification, but should not affect the scaling). Now on the corresponding tree (which is a subset of the edges of the cluster), there is only one path (or trunk) running from one end to the other. Take the trunk as one of the two disjoint paths on the cluster. The second path runs along the tree, but suffers many breaks at edges that are part of the cluster but not of the tree. The parts of the path that are edges on the tree lie on side-branches off the trunk, and typically some of the edges that connect this path to the trunk were not present at $\ell = \ell_c - W^{-1/\nu_{\text{perc}}}$. If we take this tree and remove one of these edges, and replace them with the edges on the cluster that complete the second path, then we have satisfied the constraint on the tree, and the remainder of edges of the MST can be added to these two trees without producing any cycles. Thus we have constructed two trees that together span the vertices, with two disjoint paths running from one end to the other, at an increase in cost of order W^θ per length W, with $\theta = -1/\nu_{\text{perc}}$. Note that, as in the simple version of the argument, we expect that only of order
one edge (i.e. a fixed number as $W \to \infty$) must be moved per length W along the cylinder in order to construct the second path.

The existence of breaks on the trunk of the MST when the algorithm stops at ℓ when the tree is not spanning does not affect the above argument (after all, we can easily ensure that the second path is disjoint from the whole trunk of the MST). The second path that is constructed will also have breaks on it. These can be filled as ℓ increases further. They become exponentially rare when $W \gg \xi_{\text{perc}}$, so that the increase in cost for moving the second trunk will converge to W^{θ} per length W, as claimed. Similarly, the clusters that encircle one (or more) of the periodic directions of the cylinder when $\ell = \ell_c - W^{-1/\nu}$ are avoided if we go to even smaller ℓ. The total contribution of these events will converge and still scale as claimed.

The refined version of the argument thus suggests that the change in cost per unit length is bounded by, and most likely actually of order of, ℓ when $W \to \infty$ with $\ell \to \ell_c$, as claimed. Likewise, the finite-size contributions in the singular part of $F(T,L)$ are of order $d > d_c$, we find some difficulty in obtaining a convincing scaling form that reproduces the limits in previous sections. This is due to hyperscaling being violated in the positive temperature results ($F(T,L)_{\text{sing}} \propto L^{d/2} T^4$), but not in the finite size results ($F_0(0,L) - \beta L^d + \ell_c \propto L^{-1/\nu}$). Possibly the problem is due to the singular part of the positive temperature result not being unambiguously distinguishable from the analytic behavior, as we have already discussed. Likewise, the finite-size contribution at $T = 0$ is due to long-range correlation effects, but is an integer power of L (L^{-2}). It cannot in principle be distinguished from a nonsingular part of the same order. Even though we did not find such a term, we did have to subtract a term of order L^0. As we saw in the case of percolation, above the critical dimension there may be contributions to the free energy that scale in distinct ways. We suspect that we must write the general form as

$$\xi_{\text{sing}}(T,L) = TF_1(TL^{y_T}) + TF_2(TL^{y_T})$$

The functions in this expression have the limiting behavior

$$F_1(x) \propto \begin{cases} O(x^{d/y_T}), & \text{as } x \to \infty, \\ x^{-1}, & \text{as } x \to 0. \end{cases}$$

and $y_T = -\theta = 1/\nu = 2$ for $d \geq d_c = 6$, while

$$F_2(x) \propto \begin{cases} x^{d/y_T}, & \text{as } x \to \infty, \\ O(x^{-1}), & \text{as } x \to 0. \end{cases}$$

where $y_T = y_T d/d_c = d/3$ for $d \geq 6$. (Here, as usual, $X = O(Y)$ as $Z \to \infty$ means $|X/Y|$ is bounded as $Z \to \infty$.) Each of the two previous scaling limits is reproduced by one of these two functions, while the other is smaller in that limit. In the two scaling limits of this paragraph, in each of which some combination of T and L is held fixed in the limit, one of the two functions dominates (and takes a limit form calculated in one of the previous sections), while the other (the one that is a function of the combination held fixed) describes subleading corrections. A more complete study of this issue would be of interest.

IV. OTHER OPTIMIZATION PROBLEMS

In this section we consider possible extensions of the results to other combinatorial optimization problems that
have a geometric flavor.

The first one to mention is the minimum Steiner tree (MStT) problem [2,46]. In its Euclidean version, there are N “mandatory” points marked in a region Λ, and we must find a tree that visits all of them with minimum total Euclidean length for its edges, similar to the Euclidean MST, but now it is allowed to have vertices of the tree that are not mandatory. There is also a version on a graph, in which a subset of the vertices are mandatory, costs are assigned to the edges, and a minimum cost tree must be found that visits all the mandatory points. While the MST can be solved in a time polynomial in $|V|$ (using e.g. the greedy algorithm [1]), the MStT is NP-hard (i.e. the decision version, asking the question whether there exists a Steiner tree with cost less than some given value, is NP-complete [47]) and presumably cannot be solved in polynomial time. Both optimization problems produce a tree that (in the random version of the problem) fills space on large scales (with high probability), thus similar connectivity and boundary-condition properties can be defined. It is plausible that the scaling dimensions for the MStT are the same as for the MST, including θ and ν as defined in this paper. This would be analogous to universality arguments in statistical mechanics problems such as Ising spin problems, in which universality classes can be distinguished on the basis of the locality and symmetry of the Hamiltonian and of the type of disorder involved. For geometric problems of the type considered here, there are no local order parameters (analogous to spins), but topological properties such as the connectivity we have used should take their place.

We can consider coarse-graining methods, which we here describe schematically. Coarse graining, or renormalization, is designed to preserve the properties that define universality classes. If we consider the points within a window of size W within the sample, then the tree passes through its boundary at one or more points (with probability approaching 1 as W increases). Only the fact that each of these is or is not connected through the interior of the window to each other such point (for the given window) is relevant to the tree outside. Thus minimization of the cost over the interior can be performed for each such boundary condition. If the system is partitioned into such windows of equal size, then patching together the windows subsequently, one can minimize the total cost in stages that are performed locally, at the cost of storing a large amount of information about the results for different boundary conditions. The information that needs to be stored is reduced by coarse-graining, that is assuming that fine details of the structure will not be important. In particular, in low dimensions (less than eight [4]) there will typically be only a finite number of large (size of order W) trees visible within each window, even for large windows. The reduced objects can be represented as trees, but with a lower density of vertices. These are the usual ideas of the renormalization group, applied to geometric objects. In general, the cost for given connections within a window will depend on the connections in a complicated way, and cannot be expressed simply as a sum over some “occupied” edges. One property that should be maintained as coarse-graining proceeds is that if two disconnected portions are connected, the cost will increase. Thus, the simple form of the cost for the MST, and the less simple (in terms of the mandatory vertices) form for the MStT, are just two examples, and all models will become more complicated under coarse-graining anyway. It is then likely that the universality classes (one for each dimension d) in which all the (short-range correlated, d-dimensional) MST problems lie are actually larger and contain some more general tree-optimization problems. Hence it is not at all implausible that the MST and MStT are in the same universality class for each d.

There are also other popular problems, such as the traveling salesman problem (TSP), and minimum weighted matching. The scaling forms for various quantities given in previous sections should also apply to these (in their d-dimensional version), though the universal numbers, including the exponents and critical dimensions, may be different. For the TSP, we can define θ from the finite-size correction to the total cost, say for periodic boundary conditions on a hypercube, as $L^{\theta} = \beta L^d + \lambda L^\theta + \ldots$. For the TSP, Rhee [48] raised the question (for $d = 2$) of whether for periodic boundary conditions, in our notation, $(L^{\theta} - \beta L^2)/L \to 0$ as $L \to \infty$. Our answer to this question would be affirmative. We note that the order one term in L^{θ} for MST with periodic boundary conditions can be traced back to the fact that ℓ is a sum of $|V| - 1 = L^d - 1$ terms, not $|V| = L^d$. For the TSP, ℓ is a sum of exactly $|V|$ terms. Alternatively, we can define θ by considering the change in cost when the tour is required to travel from one end of a cylinder to the other k times, as in Ref. [11].

For the TSP at nonzero temperature, no phase transition is found in mean-field theory [49], and so we expect none in any dimension d. The high-temperature limit of TSP is a sum over all tours of the graph, so could be called “uniform Hamiltonian cycles”, but this is also essentially what is called dense polymers (self-avoiding walks constricted in volume). However, we should caution that uniform Hamiltonian cycles on some two-dimensional lattices are known to be in different universality classes from the more generic dense polymers; these are called fully-packed loop models. In dense polymers, weak disorder is an irrelevant perturbation, so it is reasonable to imagine that the renormalization group can flow to the high-temperature fixed point. Given the absence of a transition at finite non-zero T, we expect that any positive temperature is relevant, and so that $\theta \leq 0$. Assuming that $\theta \leq 0$, there will be a crossover length $\xi \propto T^{-\nu}$ that diverges as $T \to 0$, with again the scaling relation $\nu = -1/\theta$. We can also try to bound θ
as in section III B. In the absence of detailed information, we can still use an argument similar to the simple bound given there. In particular, in two dimensions, the tour is equivalent to the boundary of a tree, so that the argument is really the same, and we conclude again that $\theta \leq 0$. In Ref. [11], it was assumed that $\theta = 0$ for $d = 2$, and some support for this was found numerically.

More speculatively, since the two-dimensional TSP is equivalent to minimizing a complicated but local cost function for a tree, the type of coarse-graining arguments outlined above suggest that $\theta_{\text{TSP}}(d = 2) = \theta_{\text{MST}}(d = 2) = -3/4$ (and that other corresponding exponents also are equal, as suggested in Ref. [11]). Even if this suggestion is correct, the universality classes for TSP in dimensions $d > 2$ do not have to join smoothly with the MST class at $d = 2$. There are actually (at least) two probability measures for space-filling curves (or dense polymers) in $d = 2$, depending on whether they are strictly non-intersecting, or self-intersections are discouraged but not forbidden [51]. Whether or not TSP is in the same universality class as dense polymers in any dimension, or for any subset of its properties, a similar topological distinction probably holds for TSP [11]. A two-dimensional version of the TSP that allows the curves to cross can be obtained using a tour in a three-dimensional slab of small thickness in one direction, that is large in the two orthogonal directions. On large scales, this problem is effectively two dimensional, and the optimum tour projected into these two dimensions will intersect itself. Such problems will define a distinct universality class of TSPs from the usual planar (non-self-intersecting) one. It will be the natural continuation of the TSP universality class for $d > 2$ to $d = 2$, as in the case of dense polymers [51,11]. The suggestion in Ref. [11] that the TSP is in the universality class of dense polymers for $d \geq 2$ (where the $d = 2$ case means the version with intersections) implies that the critical dimension is 2, at least for the geometric correlation properties (that is, $d = 2$ is analogous to $d = 8$ for MSTs [4]). It would be interesting to use the mean-field approach [49] in finite dimensions to calculate a mean-field value of θ for the TSP for sufficiently high d, and to find the value of d_c for the TSP.

In an interesting paper, Moore [10] applied the idea of θ (which he called y) to combinatorial optimization problems. He argued that for the TSP, $\theta = 1$ for all dimensions d. His argument was based on the analysis of the relative error in a partitioning algorithm by Karp [50]. Inspection of this analysis shows that the relative error is related to the first boundary term in an expansion for a hypercube with free boundaries, $t_{\text{OPT}} \sim \beta L^d + \beta_1L^{d-1} + \ldots$ (β_1 has been shown to be positive [48]). If a large system is partitioned into such cubes, which are solved separately, then there will be errors of this form for each cube [50], which would be absent in a better scheme. Further, as we have seen, the boundary terms for the whole system do not scale with exponent θ. Accordingly, we do not believe that this is a valid determination of the value of θ for the TSP.

A perfect matching is by definition a subgraph of G that includes all the vertices of G, such that every vertex is on exactly one edge of the matching. In minimum weighted matching, one must find a perfect matching such the cost, which is the sum of the costs of the “occupied” edges (those on the matching), is minimized [1,2,46]. The case in which G is bipartite (there are two sets of vertices U and V, with $|U| = |V| = N$, and only edges that connect a member of U to one of V) is a little easier to solve, and is also known as the assignment problem. The Euclidean bipartite minimum matching problem (which is also known as two-sample matching), in which the vertices in $U \cup V$ are distributed, for example, independently and uniformly over a domain such as $[0,L]^d$ (with $N/L^d = 1$) has the curious property (as quoted in Ref. [2]) that, at least for two dimensions, the mean optimum cost is of order $L^2(\ln L)^{1/2}$. This is not the case for the unrestricted (non-bipartite) Euclidean problem [2]. Minimum weight matching occurs (though not with Euclidean distance as the cost) in finding the ground state of an Ising spin glass in two dimensions, with free boundary conditions, and also in other physical problems. Leaving aside cases like the two-dimensional Euclidean bipartite one that may require special treatment, we again argue that $\theta \leq 0$, on the basis of the absence of a transition in mean-field theory [52]. There is a similar picture of positive temperature causing a flow to the “uniform matchings” problem, also known as “dimer packing”; in this, the high temperature limit of the partition function, the sum is over all matchings with equal Boltzmann-Gibbs weight.

It should not be imagined that $\theta < 0$ in all combinatorial optimization problems, even in those that can be solved in polynomial computation time. The shortest path problem (for two given vertices separated by distance L, find the path between them of lowest total cost, where non-negative random costs are assigned independently to each edge of a lattice) is equivalent to the directed polymer problem (see especially Ref. [53]). The variations in the cost of the optimal path scale as L^θ, with $\theta > 0$ for all dimensions $d \geq 1$, and $\theta = 1/3$ in two dimensions. If the cost is viewed as “time”, then shortest-path becomes first-passage percolation. Other generalizations of shortest-path have been considered in statistical physics, including that in which the directed path is replaced by a d-dimensional surface (e.g. a domain wall) in $d + 1$-dimensional space, each point of the surface has a unique projection to the $x_{d+1} = 0$ coordinate hyperplane, and the cost (or energy) is the sum of random costs assigned to faces of the lattice occupied by the surface [54]. We will assume here that the projection of the surface to $x_{d+1} = 0$ is a d-dimensional hypercube of side L, and that the boundary of the surface is fixed in the $x_{d+1} = 0$ hyperplane. For $d \geq d_c = 4$, θ takes
on the mean-field–like value $d - 2$, when $-\theta$ is defined as the scaling dimension for temperature [54]. However, the leading finite-size correction to βL^d in the mean optimum cost (ground state energy) involves the disorder, which is irrelevant for $d \geq 4$, and hence the correction term is $\xi L^{d-2}/L^{d-4} = \lambda L^2$.

V. CONCLUSION

The central results of this paper concern the behavior of the correlation length $\xi \propto T^{-\nu}$ as $T \to 0$, and the finite size correction to the optimum cost $\propto L^\theta$, with the scaling relation $\nu = -1/\theta$. We find that $\nu = \nu_{\text{perc}}$, the correlation length exponent in classical percolation, for all dimensions d. This result rests on the identification of the “critical edges” that have cost close to the percolation threshold, as these edges connect the tree over large scales, and can be replaced by one another at low change in cost (of order T or $L^{-1/\nu}$ per edge for the positive temperature, and finite size situations, respectively). Although it is sometimes said that there is no phase transition behavior in optimization, the results presented here can be understood as a transition occurring right at $T = 0$.

We used Kruskal’s greedy algorithm in many of the arguments, but the results we obtain are about the MST (or near optimal, thermally excited trees), and do not depend on the algorithm used. Thus this is not an “analysis of an algorithm” in a traditional sense. There may still be more to be learned by using other algorithms. It would be interesting to analyze other problems that possess polynomial-time algorithms (notably, minimum matching) in a similar manner.

The discussion of universality classes, and our suggestions (see also Ref. [11]) that minimum spanning tree, minimum Steiner tree, and even two-dimensional traveling salesman problem may be in the same universality class, serves to illustrate that the universal scaling properties discussed in this paper may have very little to do with the computational complexity issues of P versus NP [47], which seem to depend entirely on details of the definition of the optimization problem at short length scales (some related observations are made in Ref. [55]). Possibly this is due to the difference between the average-case behavior that is analyzed here and related to universality classes, and the worst-case computational complexity characterized by P or NP. On the other hand, the scaling properties may be very useful for understanding the effectiveness of algorithmic techniques (such as local search and randomized algorithms) and approximation schemes, when they are applied to hard random problems in d dimensions.

I am grateful to S. Girvin, P. Jones, R. Kannan, S. Sachdev, H. Saleur, and D. Wilson for helpful discussions, references, and correspondence. This work was supported by the NSF under grant no. DMR-02-42949.

[1] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Dover Publications, Mineola, NY, 1998), Ch. 12.
[2] J.M. Steele, Probability Theory and Combinatorial Optimization (SIAM, Philadelphia, PA, 1997).
[3] Spin Glass Theory and Beyond, edited by M. Mezard, G. Parisi, and M. Virasoro (World Scientific, Singapore, 1987).
[4] C.M. Newman and D.L. Stein, Phys. Rev. Lett. 72, 2286 (1994).
[5] Throughout this paper, we use notation $X \sim Y$ as $Z \to \infty$ in the strict sense: $\lim_{Z \to \infty} X/Y = 1$. Likewise, $X \sim Y_1 + Y_2 + \ldots$ as $Z \to \infty$ means that $\lim_{Z \to \infty} X/Y_1 = 1$, $\lim_{Z \to \infty} (X - Y_1)/Y_1 = 1$, and so on.
[6] P. Jaillet, Oper. Res. Lett. 14, 73 (1993).
[7] J.B. Kruskal, Proc. Amer. Math. Soc. 7, 48 (1956).
[8] A.J. Bray and M.A. Moore, J. Phys. C 17, L463 (1984); Phys. Rev. B 31, 631 (1985); W.L. McMillan, ibid. 31, 340 (1985); J. Phys. C 17, 3179 (1984); D.S. Fisher and D.A. Huse, Phys. Rev. Lett. 56, 1601 (1986); Phys. Rev. B 38, 386 (1988).
[9] J.P. Bouchaud, F. Krzakala, and O.C. Martin, Phys. Rev. B 68, 224404 (2003).
[10] M.A. Moore, Phys. Rev. Lett. 58, 1703 (1987).
[11] J.L. Jacobsen, N. Read, and H. Saleur, Phys. Rev. Lett. 93, 038701 (2004).
[12] D. Aldous and A.G. Percus, Proc. Nat. Acad. Sci. USA 100, 11211 (2003) [= cond-mat/0301035].
[13] M. Aizenman, A. Burchard, C.M. Newman, and D.B. Wilson, Random Struct. Algorithms. 15, 319 (1999).
[14] N. Read, Phys. Rev. E 70, 027103 (2004).
[15] R. Pemantle, Ann. Prob. 19, 1559 (1991).
[16] J.H. van Lint and R.M. Wilson, A Course in Combinatorics (Cambridge University, Cambridge, 1992), Chapter 34.
[17] P.J. Dyson, Phys. Rev. 92, 1331 (1953).
[18] S. John, H. Sompolinsky, and M.J. Stephen, Phys. Rev. B 27, 5592 (1983).
[19] T.A.L. Ziman, Phys. Rev. Lett. 49, 337 (1982).
[20] V. Gurarie and J.T. Chalker, Phys. Rev. B 68, 134207 (2003).
[21] D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 2nd Ed., 1994).
[22] V. Ambegaokar, B.I. Halperin, and J.S. Langer, Phys. Rev. B 4, 2612 (1971).
[23] E. Charlaix, E. Guyon, and S. Roux, Transp. Porous Media 2, 31 (1987); S. Tyč and B.I. Halperin, Phys. Rev. B 39, 877 (1989).
[24] P. Le Doussal, Phys. Rev. B 39, 881 (1989).
[25] Z. Wu et al., cond-mat/0411062.
[26] M. Cieplak, A. Maritan, J.R. Banavar, Phys. Rev. Lett. 72, 2320 (1994).
[27] A.-L. Barabási, Phys. Rev. Lett. 76, 3750 (1996).
[28] M. Cieplak, A. Maritan, J.R. Banavar, Phys. Rev. Lett. 76, 3754 (1996).
[29] R. Dobrin and P.M. Duxbury, Phys. Rev. Lett. 86, 5076 (2001).
[30] R.C. Prim, Bell System Tech. J. 36, 1389 (1957); E.W. Dijkstra, Numerische Mathematik 1, 269 (1959).
[31] R.C. Prim, Bell System Tech. J. 36, 1389 (1957); E.W. Dijkstra, Numerische Mathematik 1, 269 (1959).
[32] T.C. Hu, Oper. Res. 9, 898 (1961).
[33] M. Aizenman, Nucl. Phys. B 485, 551 (1997).

One way to show this is as follows: Compare the given tree with the MST edge by edge, starting with the least-costly edge on the MST. If the tree is not the MST, we can find the least-costly edge (say, \((ij)\)) on the MST that is not on the given tree. Adding this to the given tree creates a cycle. This cycle must include at least one edge not on the MST; choose the least costly one (suppose it is \((kl)\)). This edge \((kl)\) has \(\ell_{kl} \geq \ell_{ij}\) (otherwise there is a contradiction with the greedy algorithm). Hence it can be moved from \((kl)\) to \((ij)\) to (with probability one, strictly) lower the cost.

[34] One way to show this is as follows: Compare the given tree with the MST edge by edge, starting with the least-costly edge on the MST. If the tree is not the MST, we can find the least-costly edge (say, \((ij)\)) on the MST that is not on the given tree. Adding this to the given tree creates a cycle. This cycle must include at least one edge not on the MST; choose the least costly one (suppose it is \((kl)\)). This edge \((kl)\) has \(\ell_{kl} \geq \ell_{ij}\) (otherwise there is a contradiction with the greedy algorithm). Hence it can be moved from \((kl)\) to \((ij)\) to (with probability one, strictly) lower the cost.

[35] P.W. Anderson, B.I. Halperin, and C.M. Varma, Phil. Mag. 25, 1 (1972); W.A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
[36] A.A. Middleton, Phys. Rev. B 61, 14787 (2000).
[37] B. Wieland and D.B. Wilson, Phys. Rev. E 68, 056101 (2003); D.B. Wilson, Phys. Rev. E 69, 037105 (2004).
[38] A.M. Frieze, Discrete App. Math. 10, 47 (1985).
[39] M.E. Fisher and M.N. Barber, Phys. Rev. Lett. 28, 1516 (1972).
[40] K. Binder, M. Nauenberg, V. Privman, and A.P. Young, Phys. Rev. B 31, 1498 (1985).
[41] E. Brezin and J. Zinn-Justin, Nucl. Phys. B 257, 867 (1985).
[42] C. Borgs, J.T. Chayes, H. Kesten, and J. Spencer, Commun. Math. Phys. 224, 153 (2001).
[43] A.B. Harris, T.C. Lubensky, W.K. Holcomb, and C. Dasgupta, Phys. Rev. Lett. 35, 327 (1975).
[44] J.L. Jones and A.P. Young, cond-mat/0412150.
[45] B. Bollobás, Random Graphs (Cambridge University Press, Cambridge, UK, 2001).
[46] E. Lawler, Combinatorial Optimization: Networks and Matroids (Dover Publications, Mineola, NY, 2001), Ch. 7.
[47] C.H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1994).
[48] W. Rhee, Oper. Res. Lett. 16, 19 (1994).
[49] M. Mezard and G. Parisi, J. Physique (Paris) 47, 1285 (1986); Europhys. Lett. 2, 913 (1986); W. Krauth and M. Mezard, ibid. 8, 213 (1989).
[50] R.M. Karp, Math. Oper. Res. 2, 209 (1977).
[51] J.L. Jacobsen, N. Read, and H. Saleur, Phys. Rev. Lett. 90, 090601 (2003).
[52] M. Mezard and G. Parisi, J. Physique Lett. (Paris) 46, 771 (1985); Europhys. Lett. 2, 913 (1986); J. Physique Lett. (Paris) 48, 1451 (1987); G. Parisi and M. Ratiéville, cond-mat/0204595.
[53] D.A. Huse, C.L. Henley, and D.S. Fisher, Phys. Rev. Lett. 55, 2924 (1985); D.S. Fisher and D.A. Huse, Phys. Rev. B 43, 10728 (1991).
[54] G. Grinstein and S.-K. Ma, Phys. Rev. B 28, 2588 (1983); D.S. Fisher, Phys. Rev. Lett. 56, 1964 (1986).
[55] C. Moore, cond-mat/0109010.