Hölder conditions and τ-spikes for analytic Lipschitz functions

Stephen Deterding *

February 19, 2020

Abstract

Let U be an open subset of \mathbb{C} with boundary point x_0 and let $A_\alpha(U)$ be the space of functions analytic on U that belong to $\text{lip}_\alpha(U)$, the “little Lipschitz class”. We consider the condition $S = \sum_{n=1}^{\infty} 2^{(t+\lambda+1)n} M_{s+\alpha}^1(A_n \setminus U) < \infty$, where t is a non-negative integer, $0 < \lambda < 1$, $M_{s+\alpha}^1$ is the lower $1+\alpha$ dimensional Hausdorff content, and $A_n = \{ z : 2^{-n-1} < |z-x_0| < 2^{-n} \}$. This is similar to a necessary and sufficient condition for bounded point derivations on $A_\alpha(U)$ at x_0. We show that $S = \infty$ implies that x_0 is a $(t+\lambda)$-spike for $A_\alpha(U)$ and that if $S < \infty$ and U satisfies a cone condition, then the t-th derivatives of functions in $A_\alpha(U)$ satisfy a Hölder condition at x_0 for a non-tangential approach.

1 Introduction

This paper concerns necessary and sufficient conditions for bounded point derivations on various function spaces. Given a compact subset X in \mathbb{C} and a Banach Space B on X, a point $x_0 \in X$ is said to admit a bounded point derivation for B if there exists a constant $C > 0$ such that $|f'(x_0)| \leq C||f||$, for all $f \in B$, where $|| \cdot ||$ is the norm of the Banach space. Bounded point derivations were originally studied in the case of the space $R(X)$, the uniform closure of rational functions with poles off X. An important problem in the theory of rational approximation was to determine conditions for which $R(X) = C(X)$, the space of continuous functions on X, because if $R(X) = C(X)$, then every continuous function on X can be uniformly approximated.

*email: stephen.deterding@westliberty.edu
by rational functions with poles off X. To solve this problem, the concepts of peak points and non-peak points were developed in papers such as [1,3,4]. A point $x_0 \in X$ is said to be a peak point for a uniform algebra A on X if there exists $f \in A$ such that $f(x_0) = 1$ and $|f(x)| < 1$ for all other $x \in A$; otherwise it is a non-peak point. Bounded point derivations on $R(X)$ are generalizations of non-peak points, and thus provide information about approximation of derivatives of rational functions. Some of the earlier results in connection with this problem can be found in [2] and [11]. Hence it is of great value to determine necessary and sufficient conditions for bounded point derivations. Moreover, the conditions mentioned in this paper depend only on the point x_0 under consideration and the geometry of the set X.

Hallstrom was the first to determine necessary and sufficient conditions for bounded point derivations, which he determined for the space $R(X)$, the uniform closure of rational functions with poles outside X [5]. These conditions are given in terms of a quantity known as analytic capacity, which is defined as follows. Let X be a compact subset of \mathbb{C}. A function f is said to be admissible on X if

1. $|f(z)| \leq 1$ for $z \in \mathbb{C} \setminus X$
2. $f(\infty) = 0$
3. f is analytic outside X

and the analytic capacity of X is denoted by $\gamma(X)$ and defined by

$$\gamma(X) = \sup f'(\infty) = \sup \lim_{z \to \infty} zf(z)$$

where the supremum is taken over all admissible functions. Hallstrom’s conditions for bounded point derivations are summarized in Theorem 1. In it, and throughout the rest of the paper A_n denotes the annulus $\{z : 2^{-n-1} < |z - x_0| < 2^{-n}\}$.

Theorem 1. Let X be a compact subset of the complex plane, $x_0 \in X$, and let t be a non-negative integer. Then there exists a bounded point derivation on $R(X)$ at x_0 of order t if and only if

$$\sum_{n=1}^{\infty} 2^{(t+1)n} \gamma(A_n \setminus X) < \infty.$$
In [7], O’Farrell considered the problem of what happens if the integer \(t \) in Hallstrom’s theorem is replaced with a non-integer. He was able to show two results in opposite directions. The first result concerns sets that satisfy a cone condition. A set \(X \) is said to satisfy a cone condition at a point \(x_0 \) if there exists a cone \(\mathcal{C} \) with vertex at \(x_0 \) and midline \(J \) that satisfies the following property: there exists a constant \(C > 0 \) such that if \(x \in J \) and \(z \) is outside \(\mathcal{C} \) then \(|x - x_0| \leq C|z - x| \). The midline \(J \) is also known as a non-tangential ray to \(x_0 \) and the limit as \(x \to x_0, x \in J \) is called a non-tangential limit to \(x_0 \). O’Farrell’s first result shows that replacing the \(t \) in Hallstrom’s theorem with \(t + \lambda \), where \(0 < \lambda < 1 \), implies a Hölder condition for the \(t \)-th derivative of \(f \), as long as the set \(X \) satisfies a cone condition.

Theorem 2. Suppose \(X \) is a compact subset of \(\mathbb{C} \) which satisfies a cone condition at \(x_0 \) and \(J \) is a non-tangential ray to \(x_0 \). Let \(t \) be a non-negative integer and let \(0 < \lambda < 1 \). If

\[
\sum_{n=1}^{\infty} 2^{(t+\lambda+1)n} \gamma(A_n \setminus X) < \infty
\]

then there is a constant \(C > 0 \) such that

\[
\frac{|f^{(t)}(x) - f^{(t)}(x_0)|}{|x - x_0|^\lambda} \leq C ||f||_\infty
\]

for all \(x \) in \(J \) and \(f \in R(X) \).

O’Farrell’s second result involves representing measures and \(\tau \)-spikes. Let \(\mu \) be a measure and let \(\mu^\tau = \int \frac{d|\mu(\zeta)|}{|\zeta - z|^\tau} \). Then \(\mu \) is a representing measure on for a point \(x_0 \in X \) on a Banach space \(B \) if \(\int f d\mu = f(x_0) \) for all \(f \) in \(B \) and a point \(x_0 \in X \) is a \(\tau \)-spike for \(B \) if \(\mu^\tau(x_0) = \infty \) whenever \(\mu \) is a representing measure for \(x_0 \) on \(B \). On \(R(X) \) a peak point is a \(\tau \)-spike for all \(\tau > 0 \). O’Farrell’s second result shows that if \(x_0 \) is a \((t + \lambda)\)-spike for \(R(X) \) only if (1) holds.

Theorem 3. Suppose \(X \) is a compact subset of \(\mathbb{C} \), \(x_0 \in X \), \(0 < \lambda < 1 \) and let \(t \) be a non-negative integer. If \(\sum_{n=1}^{\infty} 2^{(t+\lambda+1)n} \gamma(A_n \setminus X) = \infty \) then \(\mu^{t+\lambda} = \infty \) whenever \(\mu \) is a representing measure for \(x_0 \) on \(R(X) \).

For the remainder of the paper, we consider bounded point derivations on \(A_\alpha(U) \), the space of functions that are analytic on an open set \(U \) and belong to the “little Lipschitz class”. Let
U be an open subset in the complex plane and let $0 < \alpha < 1$. A function $f : U \rightarrow \mathbb{C}$ satisfies a Lipschitz condition with exponent α on U if there exists $k > 0$ such that for all $z, w \in U$

$$|f(z) - f(w)| \leq k|z - w|^\alpha. \quad (2)$$

Let $\text{Lip}_\alpha(U)$ denote the space of functions that satisfy a Lipschitz condition with exponent α on U. $\text{Lip}_\alpha(U)$ is a Banach space with norm given by $||f||_{\text{Lip}_\alpha(U)} = \sup_U |f| + k(f)$, where $k(f)$ is the smallest constant that satisfies (2). If we let $||f||'_{\text{Lip}_\alpha(U)} = k(f)$ then $||f||'_{\text{Lip}_\alpha(U)}$ is a seminorm on $\text{Lip}_\alpha(U)$.

The little Lipschitz class, $\text{lipo}_\alpha(U)$, is the subspace of $\text{Lip}_\alpha(U)$ which consists of those functions in $\text{Lip}_\alpha(U)$ that also satisfy the additional property that for each $\epsilon > 0$, there exists $\delta > 0$ such that for all z, w in U, $|f(z) - f(w)| \leq \epsilon|z - w|^\alpha$ whenever $|z - w| < \delta$. Lipschitz functions form an important class of functions and much work has been done on approximations of Lipschitz functions by rational functions in papers such as [8–10].

Let $A_\alpha(U)$ denote the space of functions that are analytic on U and belong to $\text{lipo}_\alpha(U)$. A point $x_0 \in \overline{U}$ is said to admit a bounded point derivation on $A_\alpha(U)$ if there exists a constant $C > 0$ such that $|f'(x_0)| \leq C||f||_{\text{Lip}_\alpha(\mathbb{C})}$ for all $f \in A_\alpha(U)$. In [6], Lord and O’Farrell determined the necessary and sufficient conditions for bounded point derivations on $A_\alpha(U)$, which is given in terms of an appropriate Hausdorff content.

The Hausdorff content of a set is defined using measure functions. A measure function is a monotone nondecreasing function $h : [0, \infty) \rightarrow [0, \infty)$. For example, r^β is a measure function for $0 \leq \beta < \infty$. If h is a measure function then the Hausdorff content M_h associated to h is defined by

$$M_h(E) = \inf \sum h(\text{diam } B),$$

where the infimum is taken over all countable coverings of E by balls and the sum is taken over all the balls in the covering. If $h(r) = r^\beta$ then we denote M_h by M^β. The lower $(1 + \alpha)$-dimensional Hausdorff content is denoted by $M_\ast^{1+\alpha}(E)$ and defined by

$$M_\ast^{1+\alpha}(E) = \sup M_h(E),$$
where the supremum is taken over all measurable functions \(h \) such that \(h(r) \leq r^{1+\alpha} \) and \(r^{-1-\alpha}h(r) \) converges to 0 as \(r \) tends to 0. The lower \((1 + \alpha)\)-dimensional Hausdorff content is a monotone set function; i.e. if \(E \subseteq F \) then \(M_{*}^{1+\alpha}(E) \leq M_{*}^{1+\alpha}(F) \). The result of Lord and O’Farrell characterizing bounded point derivations on \(A_{\alpha}(U) \) in terms of Hausdorff content is summarized in the following theorem.

Theorem 4. Let \(U \) be an open subset of \(\mathbb{C} \), \(x_0 \in \partial U \) and let \(t \) be a non-negative integer. Then there exists a bounded point derivation of order \(t \) on \(A_{\alpha}(U) \) if and only if

\[
\sum_{n=1}^{\infty} 2^{(t+1)n} M_{*}^{1+\alpha}(A_n \setminus U) < \infty. \tag{3}
\]

A natural question to ask is what is the significance of a non-integer \(t \) in (3). In analogy with \(R(X) \), results similar to Theorem 2 and Theorem 3 should hold for \(A_{\alpha}(U) \). In this paper we prove the following results.

Theorem 5. Suppose \(U \) is an open subset of \(\mathbb{C} \) which satisfies a cone condition at \(x_0 \) and \(J \) is a non-tangential ray to \(x_0 \). Let \(t \) be a non-negative integer and let \(0 < \lambda < 1 \). If

\[
\sum_{n=1}^{\infty} 2^{(t+1+n)} M_{*}^{1+\alpha}(A_n \setminus U) < \infty
\]

then there is a constant \(C > 0 \) such that

\[
\frac{|f^{(t)}(x) - f^{(t)}(x_0)|}{|x - x_0|^\lambda} \leq C||f||_{\text{Lip}_\alpha(\mathbb{C})}
\]

for all \(x \in J \) and \(f \in A_{\alpha}(U) \).

Theorem 6. Suppose \(U \) is an open subset of \(\mathbb{C} \), \(x_0 \in \overline{U} \), \(0 < \lambda < 1 \), and let \(t \) be a non-negative integer. Also let \(\mu_{\beta}(z) = \int \frac{d|\mu(\zeta)|}{|\zeta - z|^\beta} \). If \(\sum_{n=1}^{\infty} 2^{(t+\lambda+1)n} M_{*}^{1+\alpha}(A_n \setminus U) = \infty \) then \(\mu^{t+\lambda} = \infty \) whenever \(\mu \) is a representing measure for \(x_0 \) on \(A_{\alpha}(U) \).

The next section contains some preliminary lemmas that are used in the proofs of Theorems 5 and 6. In Section 3 we prove Theorem 5 and in Section 4 we prove Theorem 6.
2 Preliminary lemmas

Throughout the remainder of the paper, we make use of the following factorization lemma.

Lemma 7. For complex numbers a and b and positive integer n,

$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1}).$$

We will also make use of the following closely related lemma which is less well known.

Lemma 8. Let a and b be non-zero complex numbers and let n be a negative integer. Then

$$a^n - b^n = \frac{b - a}{ab} \cdot (a^{n+1} + a^{n+2}b^{-1} + \ldots + b^{n+1}).$$

Proof. Let $z = a^{-1}$ and $w = b^{-1}$. Then it follows from Lemma 7 that

$$a^n - b^n = z^n - w^n$$

$$= (z - w)(z^{n-1} + z^{n-2}w + \ldots + w^{n-1})$$

$$= \frac{b - a}{ab} \cdot (a^{n+1} + a^{n+2}b^{-1} + \ldots + b^{n+1}).$$

\[\square\]

Another key lemma is the following Cauchy type theorem for Lipschitz functions which appears in the paper of Lord and O’Farrell [6, pg.110].

Lemma 9. Let Γ be a piecewise analytic curve bounding a region $\Omega \in \mathbb{C}$, and suppose that Γ is free of outward pointing cusps. Let $0 < \alpha < 1$ and suppose that $f \in \text{lip}_\alpha(\mathbb{C})$ is analytic outside a closed region S. Then there exists a constant $\kappa > 0$ such that

$$\left| \int f(z)dz \right| \leq \kappa \cdot M_\ast^{1+\alpha}(\Omega \cap S) \cdot ||f||_{\text{Lip}_\alpha(\Omega)}.$$

The constant κ only depends on α and the equivalence class of Γ under the action of the conformal group of \mathbb{C}. In particular this means that κ is the same for any curve obtained from Γ by rotation or scaling.
The next lemma is an immediate corollary of the cone condition that is applicable in a wide variety of situations.

Lemma 10. Suppose that J is a non-tangential ray to x_0 in a cone \mathcal{C}, $x \in J$ and z is outside \mathcal{C}, then for all positive integers t, there exists a constant $C > 0$ depending only on t such that

$$\frac{1}{|z-x|^t} \leq \frac{C}{|z-x_0|^t}.$$

Proof. Since x lies on J, which is a non-tangential ray to x_0, there exists a constant $K > 0$ such that for $z \notin \mathcal{C}$, $\frac{|x-x_0|}{|z-x|} \leq K$. Thus for $z \notin U$, $\frac{|z-x_0|}{|z-x|} \leq 1 + \frac{|x-x_0|}{|z-x|} \leq 1 + K$. Hence

$$\frac{1}{|z-x|^t} \leq \frac{(1+K)^t}{|z-x_0|^t}.$$

Finally, we will need the following decay lemma which was first proved by Lord and O’Farrell [6, pg.109].

Lemma 11. Let α be such that $0 < \alpha < 1$, let K be a compact subset of \mathbb{C} and let $f \in \text{Lip}_\alpha(\mathbb{C})$ be analytic outside K and vanish at ∞. Then there is a constant C depending on α but not on K or f such that the following estimates hold.

1. $||f||_\infty \leq C||f||_{\text{Lip}_\alpha(\mathbb{C})} \cdot M_1^{1+\alpha}(K)^{\frac{\alpha}{1+\alpha}}$

2. For $z \notin K$, $|f(z)| \leq \frac{C||f||'_{\text{Lip}_\alpha(\mathbb{C})} \cdot M_1^{1+\alpha}(K)}{\text{dist}(z,K)}$

3 A Hölder condition for derivatives

In this section we present the proof of Theorem 5.4

Proof. To prove Theorem 5.4 we first note that by translation invariance we may suppose that $x_0 = 0$. Moreover by replacing f by $f - f(0)$ if needed, we may suppose that $f(0) = 0$. In addition, we may suppose that U is contained in the ball $\{z : |z| < \frac{3}{2}\}$.

It is a result of Lord and O’Farrell [6, Lemma 1.1] that $A_\alpha(U \cup \{x_0\})$ is dense in $A_\alpha(U)$. (Note that in this paper what we refer to as $A_\alpha(U)$ is denoted by $a(U)$.) Hence we may suppose...
that \(f \) is analytic at 0 and thus there is a neighborhood \(\Omega \) of 0 such that \(f \) is analytic on \(\Omega \). We can further suppose that \(U \subseteq \Omega \). Let \(B_n \) denote the ball centered at 0 with radius \(2^{-n} \). Then there exists an integer \(N > 0 \) such that \(\Omega \) contains \(B_N \) and hence \(f \) is analytic inside the ball \(B_N \). Since \(J \) is a non-tangential ray to 0, it follows that there is a sector in \(U \) with vertex at 0 that contains \(J \). Let \(C \) denote this sector. It follows from the Cauchy integral formula that

\[
f^{(t)}(x) - f^{(t)}(0) = \frac{t!}{2\pi i} \int_{\partial(C \cup B_N)} \frac{f(z)}{(z-x)^{t+1}} - \frac{f(z)}{z^{t+1}} \, dz
\]

where the boundary is oriented so that the interior of \(C \cup B_N \) lies always to the left of the path of integration. (See Figure 1.) We can factor an \(x \) out of the integrand.

\[
f^{(t)}(x) - f^{(t)}(0) = \frac{t!}{2\pi i} \int_{\partial(C \cup B_N)} \frac{f(z)}{(z-x)^{t+1}} - \frac{f(z)}{z^{t+1}} \, dz
\]

\[
= \frac{t!}{2\pi i} \int_{\partial(C \cup B_N)} \frac{f(z) \cdot (z^{t+1} - (z-x)^{t+1})}{z^{t+1}(z-x)^{t+1}} \, dz
\]

\[
= \frac{t!}{2\pi i} \int_{\partial(C \cup B_N)} \frac{f(z) \cdot (z - (z-x)) \cdot (z^t + z^{t-1}(z-x) + \ldots + (z-x)^t)}{z^{t+1}(z-x)^{t+1}} \, dz
\]

\[
= \frac{t!}{2\pi i} \int_{\partial(C \cup B_N)} f(z) \cdot x \sum_{k=0}^{t} z^{k-t-1}(z-x)^{-k-1} \, dz.
\]

Thus

\[
\frac{f^{(t)}(x) - f^{(t)}(0)}{x^\lambda} = \frac{t!x^{1-\lambda}}{2\pi i} \int_{\partial(C \cup B_N)} f(z) \sum_{k=0}^{t} z^{k-t-1}(z-x)^{-k-1} \, dz.
\]
Let $D_n = A_n \setminus C$. Then

$$\frac{f^{(t)}(x) - f^{(t)}(0)}{x^\lambda} = \frac{t! x^{1-\lambda}}{2\pi i} \sum_{n=1}^{N} \int_{\partial D_n} f(z) \sum_{k=0}^{t} z^{k-t-1} (z - x)^{-k-1} dz + \frac{t! x^{1-\lambda}}{2\pi i} \int_{|z| = \frac{1}{2}} f(z) \sum_{k=0}^{t} z^{k-t-1} (z - x)^{-k-1} dz.$$

We first bound the second integral. Since x lies on J, which is a non-tangential ray to x_0, it follows from Lemma 10 that $|z - x|^{-k-1} \leq C |z|^{-k-1}$. Thus by the triangle inequality,

$$\left| \frac{t! x^{1-\lambda}}{2\pi i} \int_{|z| = \frac{1}{2}} f(z) \sum_{k=0}^{t} z^{k-t-1} (z - x)^{-k-1} dz \right| \leq \frac{t! |x|^{1-\lambda}}{2\pi} \int_{|z| = \frac{1}{2}} \sum_{k=0}^{t} |z|^{-t-2} dz \leq C \frac{t! |x|^{1-\lambda}}{2\pi} (t + 1) 2^{t+2} \sup_U f \leq C \sup_U f. \tag{4}$$

To bound the sum, we note that since $x^{1-\lambda} f(z) \sum_{k=0}^{t} z^{k-t-1} (z - x)^{-k-1}$ is analytic on $D_n \setminus U$ for $M \leq n \leq N$, an application of Lemma 9 shows that

$$\left| x^{1-\lambda} \int_{\partial D_n} f(z) \sum_{k=0}^{t} z^{k-t-1} (z - x)^{-k-1} dz \right| \leq \kappa M^{1+\alpha} (D_n \setminus U) \cdot \left\| x^{1-\lambda} f(z) \sum_{k=0}^{t} z^{k-t-1} (z - x)^{-k-1} \right\|_{Lip^\alpha(D_n)} \tag{5}.$$

Recall that the constant κ is the same for curves in the same equivalence class. Since the regions D_n differ from each other by a scaling it follows that κ doesn’t depend on n in (5).

The remainder of the proof is to show that $\left\| x^{1-\lambda} f(z) \sum_{k=0}^{t} z^{k-t-1} (z - x)^{-k-1} \right\|_{Lip^\alpha(D_n)}$ can be bounded by a constant independent of f and x. It follows from the definition of the Lipschitz seminorm that

$$\left\| x^{1-\lambda} f(z) \sum_{k=0}^{t} z^{k-t-1} (z - x)^{-k-1} \right\|_{Lip^\alpha(D_n)} = \sup_{z,w \in D_n, z \neq w} \frac{|x^{1-\lambda} f(z) \sum_{k=0}^{t} z^{k-t-1} (z - x)^{-k-1} - x^{1-\lambda} f(w) \sum_{k=0}^{t} w^{k-t-1} (w - x)^{-k-1}|}{|z - w|^\alpha} \tag{6}.$$
and it follows from an application of the triangle inequality that (6) is bounded by

\[\sup_{z,w \in D_n; z \neq w} \frac{|x^{1-\lambda}(f(z) - f(w)) \sum_{k=0}^{t} z^{k-t-1}(z - x)^{-k-1}|}{|z - w|^\alpha} \]

(7)

\[\sup_{z,w \in D_n; z \neq w} \frac{|x^{1-\lambda} \cdot |f(w)| \cdot \sum_{k=0}^{t} z^{k-t-1}(z - x)^{-k-1} - w^{k-t-1}(w - x)^{-k-1}|}{|z - w|^\alpha} \]

(8)

We can determine upper bounds for both (7) and (8). To bound (7) we recall that

\[\|f\|_{Lip_n(D_n)} = \sup_{z,w \in D_n; z \neq w} \frac{|f(z) - f(w)|}{|z - w|^\alpha} \]

It follows from Lemma 10 that since \(x \) is on a non-tangential ray and \(z \in D_n \), and \(|z - x|^{-k-\lambda} \leq C|z|^{-k-\lambda} \), and it follows from the cone condition that \(|x^{1-\lambda}| \leq C|z - x|^{1-\lambda} \). Hence

\[\frac{|x^{1-\lambda}(f(z) - f(w)) \sum_{k=0}^{t} z^{k-t-1}(z - x)^{-k-1}|}{|z - w|^\alpha} \leq C\|f]\|_{Lip_n(D_n)}|z|^{-t-1-\lambda} \leq C2^{n(t+1+\lambda)}\|f\|_{Lip_n(C)}' \]

(9)

Now we bound (8). By the triangle inequality, this is bounded by

\[\sup_{z,w \in D_n; z \neq w} \frac{|x^{1-\lambda}f(w) \cdot \sum_{k=0}^{t} z^{k-t-1} - w^{k-t-1}(z - x)^{-k-1}|}{|z - w|^\alpha} \]

(10)

\[+ \frac{|x^{1-\lambda}f(w) \cdot \sum_{k=0}^{t} w^{k-t-1}((z - x)^{-k-1} - (w - x)^{-k-1})|}{|z - w|^\alpha} \]

(11)

We first obtain a bound for (10). Since \(z, w \in D_n, |z| \leq 2|w| \) and \(|w| \leq 2|z| \). Also it follows from Lemma 10 that for all integers \(m < 0, |z - x|^m \leq C|z|^m \) and it follows from the cone condition that \(|x^{1-\lambda}| \leq C|z - x|^{1-\lambda} \). Hence it follows from Lemma 10 that
and it follows from the cone condition that

\[|z - w|^\alpha \leq \sup_{z,w \in D_n; z \neq w} \frac{|z - w|^\alpha}{|z - w|} \]

Since \(f(0) = 0 \), it follows that for \(w \in \mathbb{C} \), \(\frac{|f(w)|}{|w|^{\alpha}} \leq ||f||'_{\text{Lip}_\alpha(\mathbb{C})} \). Hence

\[\sup_{z,w \in D_n; z \neq w} \frac{|f(w)|}{|z - w|^{1-\alpha}} \leq \sup_{z,w \in D_n; z \neq w} \frac{||f||'_{\text{Lip}_\alpha(\mathbb{C})}}{||z - w|^{1-\alpha} - 2 - \lambda} \]

Since \(z \) and \(w \) both belong to \(D_n \), \(|z - w| \leq C|w| \) and hence

\[\sup_{z,w \in D_n; z \neq w} ||f||'_{\text{Lip}_\alpha(\mathbb{C})} \cdot |z - w|^{1-\alpha} \leq C2^{n(t+1+\lambda)}||f||'_{\text{Lip}_\alpha(\mathbb{C})}. \]

Thus

\[\sup_{z,w \in D_n; z \neq w} |x^{1-\lambda} f(w)| \leq C2^{n(t+1+\lambda)}||f||'_{\text{Lip}_\alpha(\mathbb{C})}. \hspace{1cm} (12) \]

We next obtain a bound for \((11)\). Since \(z, w \in D_n \), \(|z| \leq 2|w| \), and \(|w| \leq 2|z| \). Also it follows from Lemma\(\ref{lemma10}\) that for all integers \(m < 0 \), \(|z - x|^m \leq C|z|^m \) and \(|w - x|^m \leq C|w|^m \) and it follows from the cone condition that \(|x^{1-\lambda}| \leq C|z - x|^{1-\lambda} \). Hence it follows from Lemma\(\ref{lemma8}\) that
Since \(f(0) = 0 \) it follows that for \(w \in \mathbb{C}, \frac{|f(w)|}{|w|^\alpha} \leq ||f||_{\text{Lip}(\mathbb{C})} \). Hence

\[
\sup_{z,w \in D_n; z \neq w} |f(w)| \cdot |z - w|^{-\alpha} \leq \sup_{z,w \in D_n; z \neq w} ||f||'_{\text{Lip}(\mathbb{C})} \cdot |z - w|^{-t-2-\lambda + \alpha}.
\]

Since \(z \) and \(w \) both belong to \(D_n \), \(|z - w| \leq C|w| \) and hence

\[
\sup_{z,w \in D_n; z \neq w} ||f||'_{\text{Lip}(\mathbb{C})} \cdot |z - w|^{-t-2-\lambda + \alpha} \leq C 2^{n(t+1+\lambda)} ||f||'_{\text{Lip}(\mathbb{C})}.
\]

Thus

\[
\sup_{z,w \in D_n; z \neq w} \frac{|x^1 \cdot f(w)| \cdot \sum_{k=0}^{t} w^{k-1}((z - x)^{-k-1} - (w - x)^{-k-1})}{|z - w|^\alpha} \leq 2^{n(t+1+\lambda)} ||f||'_{\text{Lip}(\mathbb{C})}.
\]

(13)

By applying (12) and (13) it follows that (8) is bounded by \(C 2^{n(t+1+\lambda)} ||f||'_{\text{Lip}(\mathbb{C})} \) and it follows from this and (9) that

\[
\left| x^{1-\lambda} \int_{\partial D_n} f(z) \sum_{k=0}^{t} z^{k-t-1}(z - x)^{-k-1} dz \right| \leq C 2^{n(t+1+\lambda)} M_{1+\alpha}^1(D_n \setminus U) ||f||'_{\text{Lip}(\mathbb{C})}.
\]

Since Hausdorff content is monotone, \(M_{1+\alpha}^1(D_n \setminus U) \leq M_{1+\alpha}^1(A_n \setminus U) \) and hence by the hypothesis of the theorem,
\[x^{1-\lambda} \sum_{n=M}^{N} \int_{\partial D_n} f(z) \sum_{k=0}^{t} z^{k-t-1}(z-x)^{-k-1}dz \leq C \sum_{n=1}^{\infty} 2^{\eta(t+1+\lambda)} M_{*}^{1+\alpha} (A_n \setminus U) ||f||'_{Lip(\mathbb{C})} \]
\[\leq C ||f||'_{Lip(\mathbb{C})}, \]

and thus it follows from this and (4) that

\[\frac{|f^{(t)}(x) - f^{(t)}(0)|}{|x|^{\lambda}} \leq C ||f||_{Lip(\mathbb{C})} \]

for all \(f \in A_{\alpha}(U) \) and \(x \in J \).

4 Representing measures and bounded point derivations

We now prove Theorem 6.

Proof. As before we will assume that \(x_0 = 0 \) and \(X \) is contained in the ball \(\{ z : |z| < \frac{1}{2} \} \). Choose a sequence \(\epsilon_n \to 0 \) such that \(\sum_{n=1}^{\infty} 2^{(t+\lambda+1)n} \epsilon_n M_{*}^{1+\alpha} (A_n \setminus U) = \infty \) and \(2^{(t+\lambda+1)n} \epsilon_n M_{*}^{1+\alpha} (A_n \setminus U) \leq 1 \) for all \(n \). Then for each integer \(N \), there exists an integer \(M > N \) such that

\[1 \leq \sum_{n=N}^{M} 2^{(t+\lambda+1)n} \epsilon_n M_{*}^{1+\alpha} (A_n \setminus U) \leq 2. \]

By Frostman’s Lemma [6 2.2], for each integer \(n \) with \(N \leq n \leq M \) there exists a positive measure \(\nu_n \) with support on \(A_n \setminus U \) such that \(\int \nu_n = C \epsilon_n M_{*}^{1+\alpha} (A_n \setminus U) \), where the constant \(C > 0 \) and does not depend on \(n \) or \(U \). Now define a function \(f_n \) by

\[f_n(z) = \int \frac{d\nu_n(\zeta)}{z-\zeta}. \]

\(f_n \) belongs to \(A_{\alpha}(U) \) and is analytic off \(A_n \). In addition, it follows from Lemma [11] that \(|f_n(z)| \leq C 2^{-\lambda n} \) and if \(z \notin A_{n-1} \cup A_n \cup A_{n+1} \), then \(|f_n(z)| \leq \frac{CM_{*}^{1+\alpha} (A_n \setminus U)}{dist(z, A_n)}. \)
Now define $g_N(z)$ by

$$g_N(z) = |z|^\lambda z^{t+1} \sum_{n=N}^{M} 2^{(t+\lambda+1)n} f_n(z)$$

and consider the sequence $\{g_N\}_1^\infty$. We will show that this sequence is uniformly bounded on the unit disk.

Suppose that $z \in A_j$ for some positive integer j. By Lemma [11] if $n \neq j-1, j, j+1$ then

$$|f_n(z)| \leq C2^j M^{1+\alpha}(A_n \setminus U)$$

and if $n = j-1, j, j+1$ then

$$|f_n(z)| \leq C2^{-\lambda n} \leq C$$

since n is a positive integer. From these estimates it follows that

$$|g_N(z)| \leq |z|^{\lambda+t+1} \left(3C \cdot 2^{(t+\lambda+1)j} + \sum_{n=N}^{M} C2^{(t+\lambda+1)n} 2^j M^{1+\alpha}(A_n \setminus U) \right).$$

Since $z \in A_j$, $|z|^{\lambda+t+1} \leq C2^{-(t+\lambda+1)j}$ and

$$|g_N(z)| \leq 3C + |z|^{\lambda+t} 2C.$$

Thus $\{g_N(z)\}$ is uniformly bounded on the unit disk. Next define $h_N(z)$ by $h_N(z) = |z|^{-\lambda} z g_N(z)$, and consider the sequence $\{h_N(z)\}$. Because $g_N(z)$ is uniformly bounded on the unit disk, so also is $h_N(z)$ and since $h_N(z)$ is analytic outside the ball $\{|z| \leq 2^{-N}\}$, a subsequence (also denoted $\{h_N\}$) converges pointwise on $\mathbb{C} \setminus \{0\}$ to a function h which is also analytic on $\mathbb{C} \setminus \{0\}$. Moreover, g_N is uniformly bounded near 0 for each N and hence $h(0) = 0$. Thus h is entire.

Let $k_N(z)$ be defined by $k_N(z) = z^{t-2} h_N(z)$. Then
\[k'_N(\infty) = \lim_{z \to \infty} zk_N(z) \]
\[= \lim_{z \to \infty} z^{-t-1} h_N(z) \]
\[= \lim_{z \to \infty} |z|^{-\lambda} z^{-t} g_N(z) \]
\[= \lim_{z \to \infty} z \sum_{n=N}^{M} 2^{(t+\lambda+1)n} f_n(z). \]

Since \(\lim_{z \to \infty} zf_n(z) = \int \nu_n = C e_n M_1^{1+\alpha}(A_n \setminus U) \), it follows that \(0 < C \leq |k'_N(\infty)| \leq 2C \). Thus passing to a second subsequence, still denoted by \(\{k'_N\} \), we find that \(\{k'_N(\infty)\} \) converges to \(\beta \) for some \(C \leq \beta \leq 2C \). Thus \(\lim_{z \to \infty} zk_N(z) = \beta \) and hence \(g_N(z) \) converges pointwise to \(\beta |z|^\lambda z^t \).

Assume that there exists a measure \(\mu \) which represents 0 on \(A_\alpha(U) \) such that \(\mu^{t+\lambda} < \infty \). Then \(|z|^{-\lambda} z^{-t} \mu \) is a finite measure. Let \(L_N(z) = |z|^{-\lambda} g_N(z) \). Then \(L_N(z) \) is analytic in a neighborhood of 0 and belongs to \(A_\alpha(U) \). Hence

\[0 = L_N^{(t)}(0) = t! \int \frac{L_N(z)}{z^t} d\mu(z) \]
\[= t! \int \frac{g_N(z)}{|z|^\lambda z^t} d\mu(z) \]
\[\rightarrow t! \int \beta d\mu(z) = t! \cdot \beta, \]

which is a contradiction. Hence \(\mu^{t+\lambda} = \infty \).

\[\square \]

References

[1] Bishop, E.: A minimal boundary for function algebras. Pacific J. Math. 9, 629-642 (1959)

[2] Browder, A.: Point derivations on function algebras. J. Funct. Anal. 1, 22-27 (1967)

[3] Curtis, P.C.: Peak points for algebras of analytic functions. J. Funct. Anal. 3, 35-47 (1969)

[4] Gonchar, A. A.: On the minimal boundary of \(A(E) \). Isv. Akad. Nauk. SSSR ser. mat. 27, 949-955 (1963) (Russian)
[5] Hallstrom, A.P.: On Bounded point derivations and analytic capacity. J. Funct. Anal. 3, 35-47 (1969)

[6] Lord, D.J., O’Farrell, A.G.: Boundary smoothness properties of Lipα analytic functions. J. Anal. Math. 63, 103119. (1994)

[7] O’Farrell, A. G.: Analytic capacity, Hölder conditions, and τ spikes. Trans. Amer. Math. Soc. 196, 415-424 (1974)

[8] O’Farrell, A. G.: Lip 1 rational approximation. J. Lond. math. Soc. 11, 159-164 (1975)

[9] O’Farrell, A. G.: Hausdorff content and rational approximation in fractional Lipschitz norms. Trans. Am. math. Soc. 228, 187-206 (1977)

[10] O’Farrell, A. G.: Rational approximation in Lipschitz norms - I. Proc. R. IR. Acad. 77 A (10), 113-115 (1977)

[11] Wermer, J.: Bounded point derivations on certain Banach algebras. J. Funct. Anal. 1 28-36 (1967)