Investigation of the molecular mechanisms underlying metastasis in prostate cancer by gene expression profiling

XINGHUA ZHANG¹, XIAOLI YAO², CONG QIN¹, PENGCHENG LUO¹ and JIE ZHANG¹

 Departments of ¹Urology and ²Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China

Received March 23, 2015; Accepted April 28, 2016

DOI: 10.3892/etm.2016.3376

Abstract. The present study aimed to screen potential genes associated with metastatic prostate cancer (PCa), in order to improve the understanding of the mechanisms underlying PCa metastasis. The GSE3325 microarray dataset, which was downloaded from the Gene Expression Omnibus database, consists of seven clinically localized PCa samples, six hormone-refractory metastatic PCa samples and six benign prostate tissue samples. The Linear Models for Microarray Data package was used to identify differentially-expressed genes (DEGs) and a hierarchical cluster analysis for DEGs was performed with the pheatmap package. Furthermore, potential functions for the DEGs were predicted by a functional enrichment analysis. Subsequently, microRNAs (miRNAs) potentially involved in the regulation of PCa metastasis were identified by WebGestalt software, and the miRNA-DEG regulatory network was visualized using Cytoscape. In addition, a pathway enrichment analysis for DEGs in the regulatory network was performed. A total of 306 and 2,073 genes were differentially expressed in both groups. A total of 306 and 2,073 genes were differentially expressed in both groups. The present study identified seven clinically localized PCa samples, six hormone-refractory metastatic PCa samples and six benign prostate tissue samples. The Linear Models for Microarray Data package was used to identify differentially-expressed genes (DEGs) and a hierarchical cluster analysis for DEGs was performed with the pheatmap package. Furthermore, potential functions for the DEGs were predicted by a functional enrichment analysis. Subsequently, microRNAs (miRNAs) potentially involved in the regulation of PCa metastasis were identified by WebGestalt software, and the miRNA-DEG regulatory network was visualized using Cytoscape. In addition, a pathway enrichment analysis for DEGs in the regulatory network was performed. A total of 306 and 2,073 genes were differentially expressed in both groups. A total of 306 and 2,073 genes were differentially expressed in both groups.

Introduction

Prostate cancer (PCa) is the most common cancer among European and American men, and accounts for 27% (233,000) of cancer incidences in men in the USA (1). It has a high mortality rate as a result of its high propensity for metastasis (2,3). PCa has been shown to preferentially metastasize to the bone marrow stroma of the axial skeleton (4); however, the precise mechanism underlying PCa metastasis is currently unclear. Therefore, the identification of specific metastasis biomarkers and novel diagnostic targets is required in order to improve the prognosis and treatment of the disease.

Previous studies have made considerable progress in identifying the key regulators in the PCa metastatic process. E-cadherin, which is attached to the actin cytoskeleton via intracellular catenin, has been implicated in the process of PCa metastasis; in primary PCa, reduced E-cadherin expression was associated with bone metastasis and a poor prognosis (5). In addition, the expression of the DLC1 tumor-suppressor gene in metastatic PCa cells has been shown to upregulate the expression of E-cadherin, resulting in the suppression of highly metastatic PCa cell invasion by inhibiting the activity of RhoA-GTP and RhoC-GTP (6). The activation of Rho GTPases is dependent on the downstream Ras protein, which has a major influence on cell signaling (7). Members of the Rho GTPase family are involved in cancer cell motility by regulating actin dynamics and controlling morphological changes (8). A previous study demonstrated that the suppression of the farnesyl and geranyl-geranyl prenylation pathways markedly reduced the migration and motility of PCa cells by inhibiting Ras prenylation and concurrent Ras activation (9). Furthermore, activation of the phosphoinositide 3-kinase/protein kinase B (AKT) signaling pathway has been more frequently observed in resistant and metastatic PCa compared with primary PCa, and thus targeting this signaling pathway may improve the outcome of patients with aggressive PCa (10). Previous studies have reported various genes able to promote PCa tumorigenesis and metastasis, including CCL2 (11), SERPINB5 (12), SRC (13), TMPRSS2-ERG gene fusion and PCA3 (14). In addition, microRNAs (miRNAs), which are considered to be important regulators of gene expression, have been associated with the development of metastatic PCa. For instance, miR-203 (15), miR-16 (16), miR-205 (17), miR-24 (18),

Correspondence to: Dr Jie Zhang, Department of Urology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, Hubei 430060, P.R. China
E-mail: zhaniej@163.com

Key words: metastatic prostate cancer, differentially expressed genes, microRNA, regulatory network, pathway
miR-29a (19) and miR-145 (16) have all been implicated in PCa metastasis.

Varambally et al (20) performed an integrative genomic and proteomic analysis of benign prostate and metastatic PCa; they reported 48-64% concordance between protein and transcript levels and demonstrated that proteomic alterations between metastatic and clinically localized PCa, which map concordantly to gene transcripts, can serve as predictors of clinical outcome in PCa as well as other solid tumors. However, to the best of our knowledge, the potential miRNAs involved in metastatic PCa, and the interactions of differentially-expressed genes (DEGs) targeted by miRNAs, have yet to be investigated. Therefore, the present study aimed to further elucidate the molecular mechanisms underlying the metastasis of PCa by analyzing the microarray data of benign prostate, clinically localized and metastatic PCa deposited by Varambally et al (20) in the Gene Expression Omnibus (GEO) database. Initially a hierarchical cluster analysis for DEGs was performed, followed by a Gene Ontology (GO) functional enrichment analysis. Furthermore, potential miRNAs in metastatic PCa were identified and a miRNA-DEG regulatory network was constructed. Finally, a pathway enrichment analysis for DEGs in the regulatory network was performed. The results of this bioinformatics analysis may shed light on the molecular mechanisms underlying the metastasis of PCa and provide novel diagnostic biomarkers.

Materials and methods

Affymetrix microarray data. The GSE3325 gene expression profile data (20) was downloaded from the GEO (http://www.ncbi.nlm.nih.gov/geo/) and was based on the GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array platform. A total of 19 human prostate tissue samples were available for further analysis, including seven clinically localized PCa samples, six hormone-refractory metastatic PCa samples and six benign prostate tissue samples.

CEL and probe annotation files were downloaded from GEO, and the gene expression data for all samples were preprocessed via Robust MultiChip Averaging background correction, quantile normalization and probe summarization (21) in the affy software package (version 1.34.0; http://bioconductor.org/packages/release/bioc/html/affy.html), as described previously (22).

DEGs screening. The Linear Models for Microarray Data package of R (https://bioconductor.org/packages/release/bioc/html/limma.html) was used to identify genes that were differentially expressed in the primary PCa and metastatic PCa groups, as compared with the benign prostate group, as described previously (23). The raw P-value was adjusted according to the false discovery rate (FDR) using the Benjamin and Hochberg method (24). Only genes with a cut-off criteria of log2 fold change ≥1 and FDR<0.01 were considered to be differentially expressed.

Hierarchical cluster analysis for DEGs. Hierarchical clustering is a common method used to determine clusters of similar data points in a multidimensional space (25). The pheatmap package (version 1.0.2; https://cran.r-project.org/web/packages/pheatmap/index.html) was used to perform hierarchical clustering of the DEGs via joint between-within distances, as described previously (26). Expression values from multiple clones or probe sets mapping to the same Unigene Cluster ID were averaged.

GO functional enrichment analysis for DEGs. The Database for Annotation, Visualization and Integrated Discovery (DAVID; https://david.ncifcrf.gov/) provides a comprehensive set of novel and powerful tools for assigning biological meaning to a set of genes (27). FDR<0.05 was used as the cut-off criterion for GO functional enrichment analysis by DAVID.

Integrated miRNA-DEG regulatory network construction. The common miRNAs in Gene set B, as predicted by the databases of miRecords (http://c1.accurascience.com/miRecords/), TarBase (http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index) and TargetScan (http://www.targetscan.org/), were selected using WEB-based GEnE SfA AnaLysis Toolkit software (update 2013; http://bioinfo.vanderbilt.edu/webgestalt/), and P<0.05 was used as the cut-off criterion. Subsequently, the Search Tool for the Retrieval of Interacting Genes (http://string-db.org/) was used to analyze the interactions between the DEGs targeted by miRNAs by calculating their combined score; a score of >0.4 was set as the cut-off criterion. Finally, the integrated miRNA-DEG regulatory network was visualized using Cytoscape (http://cytoscape.org/).

Pathway enrichment analysis for DEGs in the regulatory network. Pathway enrichment analysis was conducted as described previously (28) to identify significant metabolic pathways for the DEGs. P<0.05 was used as the cut-off criterion for the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis using DAVID.

Results

Identification of DEGs. Based on the cut-off criteria, 2,727 DEGs were identified for the clinically localized PCa and metastatic PCa groups, of which 306 were differentially expressed in the clinically localized PCa group only (Gene set A). A total of 2,073 genes were differentially expressed in the metastatic PCa group only (Gene set B) and 174 genes were differentially expressed in both groups (Gene set C; Fig. 1), as compared with the benign prostate group.

Hierarchical cluster analysis. An unsupervised hierarchical cluster analysis of the data revealed that the DEGs could be used to accurately classify prostate samples as benign, clinically localized prostate cancer or metastatic disease (Fig. 2).

GO functional enrichment analysis for Gene sets A, B and C. In Gene set A, DLX2, DLX1, HOXD10 and HOXD11 DEGs were associated with proximal/distal pattern formation (FDR=3.55E-04), whereas RBP4, PDE3B and PPARG were implicated in the response to insulin (FDR=7.8400), homeostatic processes (FDR=9.6200), chemical homeostasis (FDR=0.0019) and responses to peptide hormones (FDR=0.0023) and organic substances (FDR=0.0029) (Table I).
In Gene set B, the DEGs were predominantly associated with the cell cycle: \textit{PRC1, ZAK, PTTG1, TGFbeta2, CDC6, CDC8, and CCNB1} were associated with the cell cycle process (FDR=5.2300); \textit{PRC1, PTTG1, CCNE1, CDC2, and CDC6} were involved in cell division (FDR=4.6100); and \textit{HRAS, CD38, IL6ST, PDGFA, TP63, MAF} and \textit{TGFbeta3} were associated with the regulation of cell proliferation (FDR=0.0012) (Table I).

In Gene set C, the DEGs were also predominantly associated with the cell cycle. \textit{DLGAP5, SGOL1, NUSAP1, PBK, BIRC5, and CCNB1} were associated with the cell cycle process (FDR=3.3000), \textit{M phase (FDR=2.7400), mitosis (FDR=4.5000), and organelle fission (FDR=6.3000)}, whereas \textit{SH3BP4, KIF2C, CCNB2, CENPA, and CAMK2D} were associated with the cell cycle only (FDR=1.1800) (Table I).

Analysis of the miRNA-DEG regulatory network. A total of 10 miRNAs were identified in Gene set B, including \textit{miR-374, miR-128, miR-182, miR-30, miR-302c, and miR-524}. Notably, \textit{miR-30} targeted the majority of the DEGs (11 DEGs, including \textit{CAMK2D, PCDH17, EDNRB, KCNJ3, and SOX4}), and \textit{miR-182} targeted seven DEGs, including \textit{EDNRB, MAF, ADCY2, PCDH17, RET, SH3BP4, and BCL11A} (Table II).

The miRNA-DEG regulatory network in Fig. 3 contained 10 miRNAs and 43 corresponding DEGs. \textit{ADCY2} was regulated by \textit{miR-128, miR-34B, and miR-182}; \textit{EDNRB} was regulated by \textit{miR-30, miR-182 and miR-302c}; \textit{CAMK2D} was regulated by \textit{miR-30, PCDH17 was modulated by miR-217, miR-30, miR-182, SH3BP4 was modulated by miR-182; and MAF interacted with miR-182, miR-302c and BCL11A}.

Pathway enrichment analysis for the DEGs in the regulatory network. The DEGs in the regulatory network were enriched in two pathways, including the calcium signaling pathway \textit{(EDNRB, ADCY2 and CAMK2D)}, and thyroid cancer \textit{(RET and MYC; Table III)}.

Discussion

The present study identified 306 and 2,073 genes that were differentially expressed in the clinically localized PCA group and the metastatic PCA group, respectively, as compared with the benign prostate group. Of these, 174 genes were differentially expressed in both the clinically localized PCa and metastatic PCa groups.

\textit{ADCY2}, which encodes adenylate cyclase 2, and \textit{CAMK2D}, which encodes calcium/calmodulin-dependent protein kinase II \(\delta\) (29,30), were found to be enriched in the calcium signaling pathway. Metastasis is the predominant cause of mortality in patients with PCa, and Ca\(^{2+}\) is a crucial regulator of cell migration (31). Elevated intracellular concentrations of Ca\(^{2+}\) may facilitate the metastasis of PCa by triggering the activation of the Akt signaling pathway and promoting PCa cell (PC3) attachment (32). \textit{CAMK2D} encodes components of the Wnt/\(\beta\)-catenin-signaling pathway, the inhibition of which delays metastatic PCa cell cycle progression and proliferation (33). In the present study, \textit{CAMK2D} was associated with the cell cycle, which is known to be a critical event in tumor growth and metastasis (34). Furthermore, \textit{CAMK2D} was observed to be regulated by miR-30. As a tumor suppressor, miR-30 has been shown to be downregulated by oncogenic signals, such as hepatocyte growth factor and epidermal growth factor, in PCa samples (35), and overexpression of miR-30 in PCa cells was
Table I. Enriched terms for Gene sets A, B and C.

Category	Term	No. of genes	FDR	Genes
Gene set A	GO:0009954~proximal/distal pattern formation	5	3.5500	DLX2, DLX1, GREM1, HOXD10, HOXD11
	GO:0032868~response to insulin stimulus	8	7.8400	RBP4, EIF4EBP1, FADS1, PPARG, PDE3B, STXB4P4, GAL, VLDLR
	GO:0042592~homeostatic process	24	9.6200	RBP4, SLIC12A2, PPARG, F2RL1, PRDX4, PDE3B, CACNG2, ITPR3, PPARGC1A, MUC6...
	GO:0001501~skeletal system development	14	0.011	RBP4, HOXD10, HOXD11, MSX2, DLX2, DLX1, COL9A2, BCL2, CLEC3A, NAB1...
	GO:0048878~chemical homeostasis	18	0.019	RBP4, F2RL1, NOX1, PPARG, PDE3B, PPARGC1A, PRKCB, CCL11, MALL, ATP7B...
	GO:0021877~forebrain neuron fate commitment	3	0.022	DLX2, DLX1, LHx6
	GO:0043434~response to peptide hormone stimulus	9	0.023	RBP4, EIF4EBP1, FADS1, BCL2, PPARG, PDE3B, STXB4P4, GAL, VLDLR
	GO:0010033~response to organic substance	22	0.029	RBP4, ADCY1, GNRH1, FADS1, LOC646626, PPARG, PTGS1, PDE3B, COLEC12, STXB4P4...
	GO:0009725~response to hormone stimulus	14	0.038	RBP4, ADCY1, GNRH1, FADS1, PTGS1, PPARG, PDE3B, STXB4P4, GAL, EIF4EBP1...
	GO:0034637~cellular carbohydrate biosynthetic process	6	60.0038	RBP4, ISYNA1, UAP1, GNE, PPARGC1A, ACN9
Gene set B	GO:0022402~cell cycle process	102	5.2300	PRC1, ZAK, AIF1, BTRC, CDC8, CDC6, CENPF, PTTG1, AURKB, TGFβ2...
	GO:0051726~regulation of cell cycle	68	1.1100	E2F2, PTGS2, ZAK, FAM175A, PKMYT1, PDC4D, PTEN, GTSE1, TGFβ2, MYC...
	GO:0007049~cell cycle	128	1.8200	ZAK, PRC1, AIF1, BTRC, PKMYT1, RBM7, AURKA, AURKB, PTTG1, TGFβ2...
	GO:0051301~cell division	61	4.6100	PRC1, PTTG1, CCNE1, CDC2, CDC6, CABLES2, CDC5, CCNA2, ASPM, CDK1...
	GO:0022403~cell cycle phase	78	4.7700	E2F1, PRC1, PKMYT1, RBM7, AURKA, AURKB, PTTG1, GTSE1, CCNE1, CDC8...
	GO:0010035~response to inorganic substance	47	6.4600	CAV1, GCLC, PTGS2, PDGFA, SNCA, TPM1, PTEN, KCNMB1, FOS, GSN...
	GO:0007346~regulation of mitotic cell cycle	38	0.0011	CAV2, HOXA13, PML, PKMYT1, ASNS, ANLH, ZNF655, RCC1, SCRIB, MYC...
	GO:0042127~regulation of cell proliferation	126	0.0012	HRAS, CD38, IL6ST, PDGFA, TP63, MAF, TGFβ3, STRN, PNP, TGFβ2...
Table I. Continued.

Category	Term	No. of genes	FDR	Genes
GO:0030030~cell projection organization	70	0.0015		**CAV2, HOXA13, PML, PKMYT1, ANLN, ZNF655, RCC1, SCRIB, GTSE1, MYC...**
GO:0000278~mitotic cell cycle	70	0.0018		**E2F1, PRC1, BTRC, PKMYT1, AURKA, AURKB, PTTG1, GTSE1, CCNE1, NDE1...**
Gene set C	GO:0022402~cell cycle process	21	3.3000	**MKI67, DLGAP5, SGOL1, NUSAP1, BIRC5, PBK, CDKN3, CCNB1, CENPA, CAMK2D...**
	GO:0022403~cell cycle phase	18	3.5700	**MKI67, DLGAP5, SGOL1, NUSAP1, TTK, BIRC5, PBK, CDKN3, CCNB1, CENPA, CAMK2D...**
	GO:0000278~mitotic cell cycle	17	4.0700	**DLGAP5, SGOL1, NUSAP1, TTK, BIRC5, PBK, CDKN3, CCNB1, CENPA, CAMK2D...**
	GO:0000279~M phase	15	2.7400	**MKI67, DLGAP5, SGOL1, NUSAP1, TTK, BIRC5, PBK, UBE2C, CCNB1, KIF2C...**
	GO:0007049~cell cycle	22	1.1800	**DLGAP5, SGOL1, NUSAP1, BIRC5, PBK, CCNB1, SH3BP4, KIF2C, CENPA, CAMK2D...**
	GO:0000280~nuclear division	11	4.5000	**CCNB1, KIF2C, CCNB2, DLGAP5, SGOL1, NUSAP1, BIRC5, PBK, UBE2C, ERCC6L...**
	GO:0007067~mitosis	11	4.5000	**CCNB1, KIF2C, CCNB2, DLGAP5, SGOL1, NUSAP1, BIRC5, PBK, UBE2C, ERCC6L...**
	GO:0000087~M phase of mitotic cell cycle	11	5.2300	**CCNB1, KIF2C, CCNB2, DLGAP5, SGOL1, NUSAP1, BIRC5, PBK, UBE2C, ERCC6L...**
	GO:0048285~organelle fission	11	6.3000	**CCNB1, KIF2C, CCNB2, DLGAP5, SGOL1, NUSAP1, BIRC5, PBK, UBE2C, ERCC6L...**
	GO:0007346~regulation of mitotic cell cycle	9	9.6800	**DLGAP5, CAMK2D, NUSAP1, TTK, BIRC5, AFAP1L2, GAS1, UBE2C, MYC**

Gene set A represents the genes only differentially expressed in the clinically localized prostate cancer group; Gene set B represents the genes only differentially expressed in the metastatic prostate cancer group; Gene set C represents the genes differentially expressed in both groups. FDR, false discovery rate.
reported to suppress the epithelial-to-mesenchymal transition and inhibit cell migration and invasion (36).

ADCY2 was observed to be modulated by miR-182. A previous study demonstrated that ectopic expression of miR-182 in PC3 significantly reduced protein expression levels of GNA13, GNA13-3′-untranslated region (UTR)-reporter activity and extracorporeal invasion of these cells (37). In addition, aberrant overexpression of miR-182 was shown to promote the proliferation, increase the invasion, facilitate the G1/S cell cycle transition and reduce early apoptosis of PC3 cells; and, miR-182 was able to suppress the expression of the NDRG1 tumor suppressor gene by directly targeting the NDRG1 3′-UTR (38). Therefore, CAMK2D and ADCY2 may be involved in the metastasis of PCa via calcium signaling and regulation by miR-30 and miR-182, respectively.

MAF, which was also modulated by miR-182 in the present study, was associated with the regulation of cell proliferation. MAF acts as a macrophage-activating factor and is generated from a precursor protein termed the Gc protein (39). Deglycosylation of the Gc protein prevents its conversion to MAF, inhibiting macrophage activation and resulting in immunosuppression (40). In a previous study, patients with metastatic PCa were administered Gc protein with MAF precursor activity (100 ng/week), and were shown to have serum activity

Table II. Enriched microRNAs in Gene set B.

microRNA	P-value	Count	Genes targeted by microRNA
hsa_TATTATA, MIR-374	2.1100	10	RORB, HOMERI, KIF20A, SYBU, DACH1, GATA3, ARHGAP28, AFAP1L2, SOX4, SYT1
hsa_CACTGTG, MIR-128	0.0003	9	RORB, FBLN2, ADCY2, ACOT11, INSM1, SYT1, FOXQ1, MME, BCL11A
hsa_ATGCAGT, MIR-217	0.0003	6	STX1A, MAF, PCDH17, DACH1, EZH2, BCL11A
hsa_TGGTTAC, MIR-30	0.0005	11	SOBP, CAMK2D, COL13A1, SLC36A1, PCDH17, AFAP1L2, EDNRB, KCNJ4, SOX4, MATR3,
hsa_ACAACTT, MIR-382	0.0032	4	NDRG2, SYT1, MATR3, DACH1
hsa_ACTGCCT, MIR-34B	0.0032	6	INSM1, SOX4, MYC, ADCY2, PIEZO2, JAKMIP1
hsa_TGCGCA, MIR-182	0.0036	7	EDNRB, MAF, ADCY2, PCDH17, RET, SH3BP4, BCL11A
hsa_CTTTGT, MIR-524	0.0036	8	SOBP, CRTRC1, PCDH17, ECT2, ID4, RCAN2, HOXD13, SOX4
hsa_ATGTAA, MIR-302C	0.0038	6	EDNRB, SALL3, MAF, MATR3, DACH1, BCL11A
hsa_TGCACCT, MIR-519	0.0038	8	SOBP, RORB, SYBU, NETO2, SOX4, SYT1, APCDD1, JAKMIP1

Count represents the number of differentially-expressed genes targeted by microRNA. Gene set B represents the genes only differentially expressed in the metastatic prostate cancer group.

Table III. Enriched pathways for the differentially-expressed genes in the regulatory network.

Term	Description	Count	P-value	Genes
hsa04020	Calcium signaling pathway	3	0.02231	EDNRB, ADCY2, CAMK2D
hsa05216	Thyroid cancer	2	0.03927	RET, MYC

Figure 3. Regulatory network containing microRNAs and their corresponding differentially expressed genes for metastatic prostate cancer. Dark grey nodes represent upregulated genes; light grey nodes represent downregulated genes; and diamonds represent microRNAs.
levels of Nagalase equivalent to those of healthy controls, thus suggesting that these patients were tumor-free (41). Furthermore, MAF expression has been associated with the receptor tyrosine kinase, platelet-derived growth factor receptor (PDGFR)-β status (42). In the miRNA-DEG regulatory network, MAF was also modulated by miR-302c, and it has been reported that miR-302c is downregulated in clinical PCa samples (43). In addition, MAF interacted with BCL11A, which was observed to be upregulated in PC3 holoclones (44). Therefore, MAF may have an important role in the metastasis of PCa by interacting with miR-182, miR-302c and BCL11A. In the present study, the downregulated DEG SH3BP4 was shown to be associated with the cell cycle and was also regulated by miR-182. SH3BP4 encodes SH3-domain binding protein 4 (45). SH3 domains are found in a variety of proteins, including tyrosine kinases, such as Abl and Src, and are involved in endocytosis, intracellular sorting and the cell cycle (46). Another downregulated DEG PCDH17, which encodes protocadherin 17, was shown to interact with miR-182 and miR-30. PCDH17 methylation is a common tumor-specific event in PCa and has been associated with a shorter biochemical recurrence-free survival rate and a reduced overall survival rate of patients with PCa following a radical prostatectomy (47). Therefore, SH3BP4 and PCDH17 may be responsible for the metastasis of PCa via their interactions with miR-182 and/or miR-30. Furthermore, miR-374 was significantly enriched in Gene set B. Previous studies have reported that miR-374 is markedly downregulated in PCa (48,49). Furthermore, miR-374b, which is a subtype of miR-374, has been shown to be downregulated in prostate fluid or serum samples from prostate cancer patients, and thus may serve as a PCa biomarker in clinical diagnosis (50).

In conclusion, the present study identified numerous important DEGs, including ADCY2, CAMK2D, MAF, SH3BP4 and PCDH17, that may be involved in the metastasis of PCa. However, the results of the present study require validation by further experiments, and the molecular mechanisms underlying metastatic PCa require further investigation.

Acknowledgements

The present study was supported by the National Science Foundation of China (grant no. 81470923).

References

1. Siegel R, Ma J, Zou Z and Jemal A: Cancer statistics, 2014. CA Cancer J Clin 64: 9-29, 2014.
2. Ferlay J, Parkin DM and Steliarova-Foucher E: Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 46: 765-781, 2010.
3. Watahiki K, Wang Y, Morris J, Dennis K, O'Dwyer HM, Gleave M, Gout PW and Wang Y: MicroRNAs associated with metastatic prostate cancer. PLoS One 6: e24950, 2011.
4. Sun YX, Schneider A, Jung Y, Wang J, Dai J, Wang J, Cook K, Osman NI, Koh-Paige AJ, Shim H, et al: Skeletal localization and neutralization of the SDF-1 (CXCL12)/CXC4R4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20: 318-329, 2005.
5. Cheng L, Nagabhushan M, Pretlow TP, Amini SB and Pretlow TG: Expression of E-cadherin in primary and metastatic prostate cancer. Am J Pathol 148: 1375-1380, 1996.
6. Tripathi V, Popescu NC and Zimonic DB: DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion. Oncogene 33: 724-733, 2013.
7. Hu L, Shi Y, Hsu JH, Gera J, Van Ness B and Lichtenstein A: Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 101: 3126-3135, 2003.
8. Aziz A: Rho family GTPases. Biochem Soc Trans 40: 1378-1382, 2012.
9. Khafagy R, Stephens T, Hart C, Ramani V, Brown M and Clarke N: In vitro effects of the prenyl transferase inhibitor AZD3409 on prostate cancer epithelial cells. J Clin Oncol 22: 4744, 2004.
10. Toren P and Zoubaidi A: Targeting the PI3K/Akt pathway in prostate cancer: Challenges and opportunities (review). Int J Oncol 45: 1793-1801, 2014.
11. Zhang J, Patel L and Pienta KJ: CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev 21: 41-48, 2010.
12. Huang DW, Tan W, Ricono JM, Morchinsky O, Zhang M, Gonias SL, Cheres DA and Karin M: Nuclear cytokine-activated IKBalpha controls prostate cancer metastasis by repressing Maspin. Nature 446: 690-694, 2007.
13. Cai H, Smith DA, Memarzadeh S, Lowell CA, Cooper JA and Witte ON: Differential transformation capacity of Src family kinases during the initiation of prostate cancer. Proc Natl Acad Sci USA 108: 6579-6584, 2011.
14. Salagierski M and Schalken JA: Molecular interpretation of prostate cancer: PCA3 and TMPS52: ERG gene fusion. J Urol 187: 795-801, 2012.
15. Sainsi S, Maji S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y and Dahiya R: Regulatory role of miR-203 in prostate cancer progression and metastasis. Clin Cancer Res 17: 5287-5298, 2011.
16. Schaefer A, Jung M, Mollenkopf HJ, Wagner L, Stephan C, Lentzsch F, Miller M, Christiansen G and Jung K: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126: 1166-1176, 2010.
17. Gandellini F, Polini M and Zaffarini N: Towards the definition of prostate-cancer-related microRNAs: Where are we now? Trends Endocrinol Metab 15: 381-390, 2009.
18. Szczypka J, Lörich E, Wach S, Jung V, Unteregger G, Barth S, Grobholz R, Wieland W, Stöhr R, Hartmann A, et al: The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res 8: 529-538, 2010.
19. Volinia S, Calif GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257-2262, 2006.
20. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB, Chandran U, Monzon FA, Becich MJ, et al: Integrated genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8: 393-406, 2005.
21. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonelis KJ, Scherf U and Speed TP: Exploration, normalization and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249-264, 2003.
22. Gautier L, Cope L, Bolstad BM and Irizarry RA: affy-analysis of Affy/metrix GeneChip data at the probe level. Bioinformatics 20: 307-315, 2004.
23. Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, 2004.
24. Verhoeven KJ, Simonsen KL and McIntyre LM: Implementing false discovery rate control: Increasing your power. Oncol 108: 643-647, 2005.
25. Olson CF: Parallel algorithms for hierarchical clustering. Parallel Computing 21: 1313-1325, 1995.
26. Kolde R: Pheatmap: Pretty Heatmaps. R package version 0.7. 7, 2012.
27. Huang DW, Sherman BT, Tan Q, Collins JR, Alvdor G, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki RA: The DAVID Gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8: R183, 2007.
28. Huang DW, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res 37: 1-13, 2009.
29. Visel A, Alvarez-Bolado G, Thaller C and Eichele G: Genome-wide analysis of the expression patterns of the adenylate cyclase gene family in the developing and adult mouse brain. J Comp Neurol 496: 684-679, 2006.
30. Hagemann D, Bohlender J, Hoch B, Krause EG and Kastenholz P: Expression of the heat shock inducible protein kinase II delta-subunit isoforms in rats with hypertensive cardiac hypertrophy. Mol Cell Biochem 220: 69-76, 2001.
31. Prevarskaya N, Skryma R and Shuba Y: Calcium in tumour metastasis: New roles for known actors. Nat Rev Cancer 11: 609-618, 2011.

32. Liao J, Schneider A, Datta NS and McCauley LEK: Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res 66: 9065-9073, 2006.

33. Rajan P, Sudbery IM, Villasevil ME, Mui E, Fleming J, Davis M, Ahmad I, Edwards J, Sansom OJ, Sims D, et al: Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy. Eur Urol 66: 32-39, 2014.

34. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO and Botstein D: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13: 1977-2000, 2002.

35. White R and Kung H: miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene 33: 2495-2503, 2014.

36. Kao C, Martiniez A, Shi X, Yang J, Evans C, Dobi A, Devere White R and Kung H: miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene 33: 2495-2503, 2014.

37. Rasheed SA, Teo CR, Beillard EJ, Voorhove PM and Casey PJ: MicroRNA-182 and microRNA-200a control G-protein subunit α-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells. J Biol Chem 288: 7986-7995, 2013.

38. Liu R, Li J, Teng Z, Zhang Z and Xu Y: Overexpressed microRNA-182 promotes proliferation and invasion in prostate cancer PC-3 cells by down-regulating N-myc downstream regulated gene 1 (NDRG1). PLoS One 8: e68982, 2013.

39. Nagasawa H, Uto Y, Sasaki H, Okamura N, Murakami A, Kubo S, Kirk KL and Hori H: Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity. Anticancer Res 25: 3689-3695, 2005.

40. Yamamoto N, Naraparaju VR and Ashell SO: Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients. Cancer Res 56: 2827-2831, 1996.

41. Yamamoto N, Suyama H and Yamamoto N: Immunotherapy for prostate cancer with Gc protein-derived macrophage-activating factor, GcMAF. Transl Oncolo 1: 65-72, 2008.

42. Sharad S, Srivastava A, Ravulapalli S, Parker P, Chen Y, Li H, Petrovics G and Dobi A: Prostate cancer gene expression signature of patients with high body mass index. Prostate Cancer Prostatic Dis 14: 22-29, 2011.

43. Coppola V, De Maria R and Bonci D: MicroRNAs and prostate cancer. Endocr Relat Cancer 17: F1-F17, 2010.

44. Zhang K and Waxman DF: PC3 prostate tumor-initiating cells with molecular profile FAM65Bhigh/MF1low/LEF1low increase tumor angiogenesis. Mol Cancer 9: 319, 2010.

45. Dunlevy JR, Koppelman ED and Kolberg JB: The expression of a SH3BP4-related protein in retinal cells. Invest Ophthalmol Vis Sci 46: 2996-2996, 2005.

46. Dunlevy JR, Berryhill BL, Vergnes JP, SundarRaj N and Hassell JR: Cloning, chromosomal localization and characterization of cDNA from a novel gene, SH3BP4, expressed by human corneal fibroblasts. Genomics 62: 519-524, 1999.

47. Lin YL, Xie PG, Wang L, and Ma JG: Aberrant methylation of protocadherin 17 and its clinical significance in patients with prostate cancer after radical prostatectomy. Med Sci Monit 20: 1376-1382, 2014.

48. Tang X, Tang X, Gal J, Kyprianou N, Zhu H and Tang G: Detection of microRNAs in prostate cancer cells by microRNA array. Methods Mol Biol 722: 69-88, 2011.

49. Ma S, Chan YP, Kwan PS, Lee TK, Yan M, Tang HK, Ling MT, Vielkind JR, Guan XY and Chan KW: MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res 71: 583-592, 2011.

50. He HC, Han ZD, Dai QS, Ling XH, Fu X, Lin ZY, Deng YH, Qin GQ, Cai C, Chen JH, et al: Global analysis of the differentially expressed miRNAs of prostate cancer in Chinese patients. BMC Genomics 14: 757, 2013.