Intraguild Interactions between Egg Parasitoids: Window of Opportunity and Fitness Costs for a Facultative Hyperparasitoid

Antonino Cusumano¹, Ezio Peri¹*, Valentina Amodeo¹, Jeremy N. McNeil², Stefano Colazza¹

¹ Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy, ² Department of Biology, The University of Western Ontario, London, Ontario, Canada

Abstract

We investigated intraguild interactions between two egg parasitoids of Nezara viridula (L.) (Heteroptera: Pentatomidae), Ooencyrtus telenomicida (Vassiliev) (Hymenoptera: Encyrtidae) and Trissolcus basalis (Wollaston) (Hymenoptera: Platygastriidae), as the former has the potential to be a facultative hyperparasitoid of the latter. We assessed the suitability of *N. viridula* eggs for the development of *O. telenomicida* as a function of egg age when they were unparasitized, or had been attacked by *T. basalis* at different times prior to exposure to *O. telenomicida* females. *Ooencyrtus telenomicida* can exploit healthy *N. viridula* host eggs up to 5 days of age, just prior to the emergence of *N. viridula*. This window of opportunity can be extended for an additional 6–7 days through interspecific competition or facultative hyperparasitism. While there are minor fitness costs for *O. telenomicida* as the result of interspecific larval competition, those costs are greater with facultative hyperparasitism. In choice assays *O. telenomicida* females discriminated between different quality *N. viridula* eggs, avoiding those where their progeny would have to develop as facultative hyperparasitoids of *T. basalis*. Results are discussed with respect to the possible effects that the costs of intraguild parasitism might have on biological control programmes.

Introduction

Intraguild interactions occur among organisms sharing a common resource [1] and “intraguild predation” (IGP), which is common in natural populations [2], occurs when two species that share a common host, under certain circumstances, prey upon each other [3]. Most IGP studies have focused on prey-predator interactions but recently it has been recognized that similar ecological interactions occur between host-parasitoid and host-pathogen interactions [4].

In parasitoid guilds there can be interspecific competitive interactions, either between adult parasitoids searching/exploiting hosts (extrinsic competition) or between parasitoid larvae developing within the same host (intrinsic competition) [5–7]. However, Rosenheim et al. [8] noted that intraguild parasitism can occur when one guild member is a facultative hyperparasitoid. Such species can act either as a primary parasitoid utilising some life stage of an herbivorous insect as a host, or as a hyperparasitoid where it uses a primary parasitoid as a host. Thus a facultative hyperparasitoid can exploit a healthy host but if it oviposits in a common host that has been already attacked by another species there are two possible outcomes: interspecific larval competition will occur if the competitor’s offspring has not yet consumed all of the host resources, but if it has then hyperparasitism will occur [8,9].

The evolution of facultative hyperparasitism is poorly understood [10] but may be key to the trophic shift from primary parasitism to obligatory hyperparasitism [11].

There are several documented cases of facultative hyperparasitism but this phenomenon is probably underestimated [10] and a real understanding of parasitoid trophic structure will only be achieved by very careful examination and dissection of host remains [12] and through the use of molecular techniques [13]. For example, *Trissolcus* spp. and *Ooencyrtus* spp. are parasitoids that exploit the eggs of the same stink bug species and the latter group can develop as facultative hyperparasitoids of the former [14,15]. Given that egg parasitoid guilds composed of *Ooencyrtus* and *Trissolcus* spp. have been reported in North America [16–19], South America [20,21], Europe [22] and Japan [23], it is possible that both interspecific competition and facultative hyperparasitism occur and deserve to be investigated further.

This is not only important from a purely theoretical perspective, but also with respect to using parasitoids as biological control agents of important pests. There are benefits for a parasitoid that has the ability to be a facultative hyperparasitoid, such as an extended window of opportunity when it can successfully attack its host [24,25], as well as gaining additional food resources [26]. However, there could also be associated fitness costs. It has been well documented that interspecific competition may result in longer development times, as well as smaller adults with reduced
longevity and fecundity [27]: It is also possible that similar fitness costs may be associated with facultative hyperparasitism, due to the greater conversion costs when developing on entomophagous hosts [26,28,29].

While several studies have investigated intraguild predation [30–36], few have experimentally looked at intraguild parasitism [0,37–40]. We, therefore, undertook a study to investigate interspecific interactions between Trissolcus basalis (Wollaston) (Hymenoptera: Platygasteridae) and Ooencyrtus telenomicida (Vassiliev) (Hymenoptera: Encyrtidae), two ichneumon egg parasitoids of the Southern Green Stink Bug, Nezara viridula (L.) (Heteroptera: Pentatomidae) that co-occur in cultivated crops grown in Sicily. These parasitoid species differ in their host location and larval competitive abilities, with T. basalis being more efficient in host location [22,41–43] while O. telenomicida largely dominates interspecific larval competition regardless of the order/time interval between oviposition events. Furthermore, O. telenomicida has the ability to develop as a facultative hyperparasitoid [15,44].

We conducted experiments to determine: 1) the suitability of N. viridula eggs as a host for O. telenomicida as a function of time since they had been parasitized by T. basalis females; 2) the potential fitness costs, by comparing life history parameters of O. telenomicida when it developed in unparasitized N. viridula eggs, under interspecific competitive conditions (eggs containing a 1st instar T. basalis larva) or as a facultative hyperparasitoid (where all host T. basalis females when allowed to oviposit in host egg masses that were: (I) 1 day old and unparasitized (II) 2 or (III) 4 days old that had been parasitized by T. basalis 24 h earlier, or (IV) 10 days old that had been parasitized by T. basalis 7 days earlier. When O. telenomicida oviposited 24 h after T. basalis, the latter is at the stage of young 1st instar larva but when O. telenomicida oviposited 7 days after T. basalis, the mature 3rd instar larva of T. basalis has consumed all ooplasm and is ready to pupate. Thus treatments (II) and (III) represent natural situations of interspecific larval competition, while (IV) would be facultative hyperparasitism. Egg masses were held at 24 ± 1 °C, 70 ± 5% RH, 16L:8D and checked daily. Adults were frozen upon emergence (−18°C) then preserved in ethanol (70%) until the different measurements were taken.

Using the same experimental setup described above a choice bioassay was conducted to determine if O. telenomicida would exhibit an oviposition preference when simultaneously presented with different quality hosts. An O. telenomicida female was introduced in the arena containing a mass of 4 N. viridula eggs, one each of the following treatments: (I) a 1 day old unparasitized egg; (II) a 2 day old; and (III) a 4 day old egg that had been parasitized 24 h previously by T. basalis; and (IV) a 10 day old egg that had been parasitized 7 days previously by T. basalis. The oviposition preference was assessed in terms of “first oviposition”, i.e. the first host egg that has been parasitized by O. telenomicida under multiple choice conditions. There were 50 replicates and each was terminated after the O. telenomicida female had oviposited once.

Statistical analysis

Data were tested for normality (Kolmogorov-Smirnov test) and if significantly different from a normal distribution were analyzed with non parametric tests. The effect of host age or time interval between oviposition by the two parasitoid species on the number of O. telenomicida adults that emerged, as well as the developmental time, size (estimated from the length of the hind tibia as done by Wajnberg et al. [45]) of both sexes when females were allowed to oviposit in host egg masses that were: (I) 1 day old and unparasitized (II) 2 or (III) 4 days old that had been parasitized by T. basalis 24 h earlier, or (IV) 10 days old that had been parasitized by T. basalis 7 days earlier. When O. telenomicida oviposited 24 h after T. basalis, the latter is at the stage of young 1st instar larva but when O. telenomicida oviposited 7 days after T. basalis, the mature 3rd instar larva of T. basalis has consumed all ooplasm and is ready to pupate. Thus treatments (II) and (III) represent natural situations of interspecific larval competition, while (IV) would be facultative hyperparasitism. Egg masses were held at 24 ± 1 °C, 70 ± 5% RH, 16L:8D and checked daily. Adults were frozen upon emergence (−18°C) then preserved in ethanol (70%) until the different measurements were taken.

Using the same experimental setup described above a choice bioassay was conducted to determine if O. telenomicida would exhibit an oviposition preference when simultaneously presented with different quality hosts. An O. telenomicida female was introduced in the arena containing a mass of 4 N. viridula eggs, one each of the following treatments: (I) a 1 day old unparasitized egg; (II) a 2 day old; and (III) a 4 day old egg that had been parasitized 24 h previously by T. basalis; and (IV) a 10 day old egg that had been parasitized 7 days previously by T. basalis. The oviposition preference was assessed in terms of “first oviposition”, i.e. the first host egg that has been parasitized by O. telenomicida under multiple choice conditions. There were 50 replicates and each was terminated after the O. telenomicida female had oviposited once.

Statistical analysis

Data were tested for normality (Kolmogorov-Smirnov test) and if significantly different from a normal distribution were analyzed with non parametric tests. The effect of host age or time interval between oviposition by the two parasitoid species on the number of O. telenomicida adults that emerged, as well as the effect of different host quality on developmental time and hind tibia length were compared using a one-way ANOVA followed by Tukey test. The effect of host types on sex ratio was compared with the Kruskal-Wallis ANOVA and the Dunn test for multiple comparisons. The ability of O. telenomicida females to discriminate among hosts of different quality was tested with a χ² test with Bonferroni correction. All statistical analyses were processed using STATISTICA® software [46].
Results

There was a significant effect of host age on the number of adult *O. telenomicida* emerging from unparasitized *N. viridula* eggs (Fig. 1A; $F = 3.21, df = 4, 45, P < 0.05$), being significantly lower from 5 than from 1 day old hosts. Similar temporal effects were observed when *O. telenomicida* oviposited in *N. viridula* eggs that had been attacked by *Trissolcus basalis* when the eggs were 1 day old (Fig. 1B; $F = 20.26, df = 7, 72, P < 0.001$) or 3 days old (Fig. 1C; $F = 23.41, df = 7, 72$, $P < 0.001$).
Figure 2. Life history parameters of Ooencyrtus telenomicida when developing in different host types. The number emerging (A), sex ratio (B), developmental time and size of female (C, E) and male (D, F) Ooencyrtus telenomicida adults developing in (I) 1 day old, unparasitized Nezara viridula eggs (Ot), (II) 2 day old N. viridula eggs that had been parasitized by Trissolcus basalis when they were 1 day old (Tb1 - Ot2), (III) 4 day old N. viridula eggs that had been parasitized by T. basalis when they were 3 days old (Tb3 - Ot4), or (IV) 10 day old N. viridula eggs that had been parasitized by T. basalis 7 days earlier (Tb3 - Ot10).

doi:10.1371/journal.pone.0064768.g002

P<0.001. In both cases there was a decrease in the number of O. telenomicida emerging from the oldest hosts. The average number of O. telenomicida adults produced was affected by the type of host exploited, (Fig. 2A; $F = 13.04$, df = 3, 36, $P<0.001$), generally being higher in previously unparasitized eggs than when in larval competition with, or as a facultative hyperparasitoid of T. basalis, although the proportion of males produced was similar in all treatments [Fig. 2B; $H(3, N = 37) = 4.31$, $P = 0.229$]. When O. telenomicida was a facultative hyperparasitoid of T. basalis the developmental time of both females (Fig. 2C; $F = 20.67$, df = 3, 36, $P<0.001$) and males (Fig. 2D; $F = 5.51$, df = 3, 33, $P<0.001$) was longer. Being a facultative hyperparasitoid also resulted in smaller females [Fig. 2E; $F = 23.69$, df = 3, 36, $P<0.01$], although male size was not affected (Fig. 2F; $F = 2.53$, df = 3, 33, $P = 0.074$).

Ooencyrtus telenomicida females clearly discriminated between the different host egg types, avoiding host eggs that contained well developed T. basalis larvae where they would have to develop as a facultative hyperparasitoid (Table 1; $x^2 = 17.68$, df = 3 $P<0.001$). Interestingly, there was a marginal preference for eggs that had been attacked by T. basalis when they were 1 day old over unparasitized eggs ($x^2 = 3.46$, df = 1, $P = 0.06$), or those attacked by T. basalis when they were 3 days old ($x^2 = 2.78$, df = 1, $P = 0.09$).

Discussion

In Sicily, more T. basalis adults emerge from parasitized field-collected N. viridula eggs than O. telenomicida, (Casumano personal observations), which is not particularly surprising given the superior abilities of the former to locate suitable hosts [22]. Females of both T. basalis and O. telenomicida exploit volatile cues emitted by N. viridula virgin males and pre-ovipositing females [22,41]. In addition, T. basalis females use contact kairomones in host footprints and volatile oviposition-induced synomones [22,41,42,47–49], so foraging females not only utilize more cues than O. telenomicida, but also those more reliable indicators of the presence of host eggs. Furthermore, T. basalis females also have a higher total lifetime fecundity than O. telenomicida so the chances that O. telenomicida females find unparasitized egg masses may be quite low under field conditions.

However, as seen from the results of this study, O. telenomicida has evolved several strategies that increase the window of opportunity to exploit host eggs. For example, N. viridula eggs hatch after 5 days under our laboratory conditions and while T. basalis can only successfully develop on unparasitized N. viridula eggs that are <4 days old [50], O. telenomicida successfully exploits unparasitized N. viridula eggs up to the time of host emergence (Fig. 1A), similar to the congeneric, O. nezarae Ishii, an egg parasitoid of the bean bug Riptortus clavatus Thunberg (Heteroptera: Alydidae) [51]. Furthermore, O. telenomicida is clearly superior under the conditions of interspecific larval competition, whether the eggs that have been attacked by T. basalis were 1 or 3 days old (Fig. 1), as in all of our experiments, <15% of all parasitoid adults were T. basalis. In addition, when acting as facultative hyperparasitoid (Fig. 1c), O. telenomicida can effectively exploit eggs for at least 10 days after they are laid by N. viridula females.

There are fitness costs for O. telenomicida, associated with both interspecific competition and facultative hyperparasitism (Fig. 2). In the case of competition the only significant effect observed was a lower number of O. telenomicida adults emerging when there was early-stage interspecific larval competition (Fig. 2A). Interestingly, in the choice bioassays, O. telenomicida showed a marginally significant preference for 2 day old eggs recently parasitized by T. basalis, over unparasitized ones and 4 day old eggs that T. basalis had attacked 1 day earlier, even though fewer adults emerged (Table 1, Fig. 2A). At oviposition, T. basalis injects substances that arrest embryonic development of the host and when the parasitoid’s egg hatches teratocytes are released that alter the ooplasm [52]. To what extent these two events associated with the development of T. basalis affects the suitability of the eggs for O. telenomicida, when interspecific competition occurs, remains to be clarified.

In the case of facultative hyperparasitism the development time of both sexes was longer and females were significantly smaller (Fig. 2). This could be important as adult body size has been correlated with survival and reproductive success in many parasitoid species [11,53,54] although, as seen in the choice bioassays, O. telenomicida females will avoid hosts that result in facultative hyperparasitism if a choice is available (Table 1). If certain conditions resulted in high levels of facultative hyperparasitism this could impact on subsequent population dynamics at all trophic levels, and affect the efficacy of biological control programmes. As pointed out by Boivin and Brodeur [29], assessing the impact of a species that act simultaneously as

| Table 1. The proportion of Ooencyrtus telenomicida females selecting a (I) 1 day old, unparasitized Nezara viridula eggs (Ot), (II) 2 day old N. viridula eggs that had been parasitized by Trissolcus basalis when they were 1 day old (Tb1 - Ot2), (III) 4 day old N. viridula eggs that had been parasitized by T. basalis when they were 3 days old (Tb3 - Ot4), or (IV) 10 day old N. viridula eggs that had been parasitized by T. basalis 7 days earlier (Tb3 - Ot10) as their first oviposition site in a choice bioassay. |
|---|---|---|---|---|
| Egg types | Ot | Tb1-Ot2 | Tb3-Ot4 | Tb3-Ot10 |
| Egg age | 1 | 2 | 4 | 10 |
| Egg age when parasitized by Tb | - | 1 | 3 | 3 |
| Choice (% ± SE) | 24.0±6.0 a | 46.0±7.1 a | 26.0±6.2 a | 4.0±2.8 b |

Figure 1. Asexual reproduction of Ooencyrtus telenomicida. (A) Ooencyrtus telenomicida female dispersing from a N. viridula egg mass after oviposition; (B) Ooencyrtus telenomicida female with an unparasitized N. viridula egg; (C) Ooencyrtus telenomicida female with an egg attacked by T. basalis (arrow).
primary parasitoid, interspecific competitor and facultative hyperparasitoid is a huge challenge, both theoretically and experimentally. However, the few studies examining the potential fitness costs of facultative hyperparasitism have come up with quite varied findings, some showing there are fitness costs [26,53], while others have no effect [56,57]. Therefore, it is clear that in order to understand the potential tradeoffs between the benefits accrued by a species that has the potential to be a facultative hyperparasitoid and the potential negative effects on all parasitoid species in the guild, both from basic and applied perspectives, considerably more information must be gathered from systems where interguild parasitism exists.

References

1. Hawkins CP, MacMahon JA (1989) Guilds: the multiple meanings of a concept. Ann Rev Ecol Syst 20: 527–545.
2. Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7: 557–564.
3. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Am Rev Ecol Syst 20: 297–330.
4. Roer ET, Briggs CJ, Holt RD (2007) Predators, parasitoids, and pathogens: a cross-cutting examination of intraguild predation theory. Ecology 88: 2681–2695.
5. Zoller H (1971) The structure and effect of parasite complexes attacking phytophagous host insects. In: den Boer PJ, Gradwell GR, editors. Dynamics of populations: proceedings of the advanced study institute on dynamics and numbers in populations. Wageningen: Centre for Agricultural Publishing and Documentation. pp. 405–418.
6. De Moraes CM, Cortesero AM, Stoffel JP, Lewis WJ (1999) Intrinsic and extrinsic competitive interactions between two larval parasitoids of Heliothis zea. Ecol Entomol 24: 402–418.
7. Harvey JA, Poelman E, Tanaka T (2013) Annu Rev Entomol 58: 333–351.
8. Cusumano A, Peri E, Vinson SB, Colazza S (2012a) Interspecific extrinsic and intrinsic competitive interactions in egg parasitoids. BioControl 57: 719–734.
9. Brodeur J (2000) Host specificity and trophic relationships of hyperparasitoids. In: Hawkins BA, AV Ar, editors. Parasitoid Population Biology. Princeton University Press. pp. 163–183.
10. Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton: Princeton University Press. 488 p.
11. Shaw M (1994) Parasitoid host ranges. In: Hawkins BA, Sheehan W, editors. Parasitoid Community Ecology. Oxford University Press. pp. 111–144.
12. Garipzy TD, Messing RH (2012) Development and use of molecular diagnostic tools to determine trophic links and interspecific interactions in aphid-parasitoid communities in Hawaii. Biological Control 60: 26–38.
13. Amaraeakare P (2000) Spatial dynamics in a host-multiparasitoid community. J Anim Ecol 69: 201–213.
14. Cusumano A, Peri E, Vinson SB, Colazza S (2011) Intraguild interactions between two egg parasitoids exploiting host patches. BioControl 56: 173–184.
15. Buschmann LH, Whitcomb WH (1988) Parasites of Nezara viridula (Hemiptera: Pentatomidae) and other Hemiptera in Florida. Fla Entomol 63: 154–162.
16. Hoffmann MP, Davidson NA, Wilson LT, Ehler LE, Jones WA, et al. (1991) Imported wap helps control southern green stink bug, Caln Agric 45: 20–22.
17. Jagrangi EN (1982) Host specificity in biological control of tsetse fly (Glossina morsitans Westw.). J Agric Entomol 11: 375–381.
18. Ehler LE (2002) An evaluation of some natural enemies of Nezara viridula in northern California. BioControl 47: 309–325.
19. Correa-Ferreira SB (1986) Natural occurrence of the egg parasitoid complex of stink bugs on soybean in Parana, Brazil. An Soc Entomol Bras 5: 189–199.
20. Correa-Ferreira SB, Moscardi F (1995) Seasonal occurrence and host spectrum of egg parasitoids associated with soybean stink bugs. Biol Control 5: 196–202.
21. Peri E, Cusumano A, Agro A, Colazza S (2011) Behavioral response of the egg parasitoid Ooencyrtus telenomicida to related chemical cues in a triophid perspective. BioControl 56: 163–171.
22. Hoxey N (1995) Interspecific relations among egg parasitoids of Nezara viridula L. with special reference to Asolcus mitsukurii (Braconidae: Asilinae) and Ooencyrtus telenomicida (Hymenoptera: Eulophidae) in Florida. Fla Entomol 63: 402–405.
23. Craig TP, Inoue JK, Price PW (1996) The window of vulnerability for a shoot gall-feeding sawfly to attack by a parasitoid. Ecology 71: 1471–1482.
24. Hayward A, Stone GN (2005) Oak gall wasp communities: Evolution and ecology. Basic Appl Ecol 6: 435–443.
25. Grandgirard J, Poinsett D, Krespa L, Nenon JP, Cortesero AM (2002) Costs of the secondary parasitoid in the facultative hyperparasitoids Pachyprosopis dubius: does host size matter? Entomol Exp Appl 103: 239–248.
26. Harvey JA, Gols R, Strand MR (2009a) Intrinsic competition and its effects on the survival and development of three species of endoparasitoid wasps. Entomol Exp Appl 130: 238–248.
27. van Alphen JM, Thummersen I (1983) Host selection and sex allocation by Pachyprosopis dubius females (Hymenoptera: Eulophidae). J Insect Physiol 29: 497–514.
28. Boivin G, Brodeur J (2006) Intra- and interspecific interactions among parasitoids: mechanisms, outcomes and biological control. In: Brodeur J, Boivin G, editors. Trophic and guild interactions in biological control. Springer. pp. 123–144.
29. Rosenheim JA, Willhoit LR, Armer CA (1995) Influence of intraguild predation on generalist insect predators on the suppression of an herbivore population. Oecologia 96: 439–449.
30. Lucas E, Godder D, Brodeur J (1998) Intraguild predation among aphid predators: Characterization and influence of extraguild prey density. Ecology 79: 1094–1092.
31. Nakashima Y, Birckett MA, Pye BJ, Powell W (2006) Chemically mediated intraguild predator avoidance by aphid parasitoids: interspecific variability in sensitivity to semiochemical trails of ladybird predators. J Chem Ecol 32: 1989–1998.
32. Kaupvan den Berg CI, De Lange HJ, Van Lenteren JC (2012) Intraguild Predation Behaviour of Ladybirds in Semi-Field Experiments Explains Invasion Success of Harmonia axyridis. Plos ONE 7(7): e40681. doi:10.1371/journal. -pont.040681
33. Burigo G, Santi F, Maini S (2002) On intra-guild predation and cannibalism in Harmonia axyridis (Pallas) and Adalia bipunctata L. (Coleoptera: Coccinellidae). Biol Control 24: 110–116.
34. Linke RL, Pennington RD (2000) Intraguild predation diminished in complex-structured vegetation: implications for prey suppression. Ecology 83: 643–652.
35. Linke RL, Mitter NS, Langellotto GA, Grutter C, Finke DL (2004) Interspecific interactions between a hunting spider and a web-builder: consequences of intraguild predation and cannibalism for prey suppression. Ecol Entomol 29: 566–577.
36. Rosenheim JA, Harmon JP (2006) The influence of intraguild predation on the suppression of a shared prey population: an empirical reassessment. In: Brodeur J, Boivin G, editors. Trophic and guild interactions in biological control. Springer. pp. 1–20.
37. Harvey JA, Pashalidou F, Soler R, Bezemier TM (2011) Intrinsic competition between two secondary hyperparasitoids results in temporal trophic switch. Oikos 120:226–233.
38. Wang XG, Messing RH (2004a) Potential interactions between pupal and larval-pupal parasitoids of rephrill fruit flies. Environ Entomol 33: 1313–1320.
39. Wang XG, Messing RH (2004b). The ectoparasitic pupal parasitoid, Pachyprosopis dubius (Hymenoptera: Eulophidae), attacks other primary terrestrial fruit fly parasitoids: host expansion and potential non-target impact. Biol Control 21:277–286.
40. Colazza S, Salerno G, Wajnberg E (1999) Volatile and contact chemicals released by Nezara viridula (Heteroptera: Pentatomidae) have a kairomonal effect on the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). Biol Control 16: 310–317.
41. Colazza S, Fucarino A, Peri E, Salerno G, Conti E, et al. (2004) Insect oviposition induces volatiles emission in herbaceous plant that attracts egg parasitoids. J Exp Biol 207: 47–53.
42. Conti E, Colazza S (2012) Chemical Ecology of Egg Parasitoids Associated with True Bugs. Psyche doi:10.1155/2012/651015.
43. Cusumano A, Peri E, Vinson SB, Colazza S (2012b) The ovipositing female of Oomyrus telenomicida relies on physiological mechanisms to mediate intraspecific competition with Trissolcus basalis. Entomol Exp Appl 143: 155–163.
44. Wajnberg E, Curty C, Colazza S (2004) Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: consequences in terms of patch-time allocation. J Anim Ecol 73:1179–1189.
45. StatSoft (2001) Statistica per Windows, User’s Manual. StatSoft Italia, Padova, Italy.
47. Colazza S, Lo Bue M, Lo Giudice D, Peri E (2009) The response of *Trissolcus basalis* to footprint contact kairomones from *Nezara viridula* females is mediated by leaf epicuticular waxes. Naturwissenschaften 96: 975–981.

48. Peri E, Sole MA, Wajnberg E, Colazza S (2006) Effect of host kairomones and oviposition experience on the arrestment behavior of an egg parasitoid. J Exp Biol 209: 3629–3635.

49. Lo Giudice D, Riedel M, Resta M, Peri E, Colazza S (2011) Host sex discrimination by an egg parasitoid on brassica leaves. J Chem Ecol 37: 622–626.

50. Bin F, Vinson SB, Strand MR, Colazza S, Jones WA (1993) Source of an egg kairomone for *Trissolcus basalis*, a parasitoid of *Nezara viridula*. Physiol Entomol 18: 7–15.

51. Takasu K, Hirose Y (1993) Host acceptance behavior by the host-feeding egg parasitoid, *Ooencyrtus nezarae* (Hymenoptera: Encyrtidae): host age effects. Ann Entomol Soc Am 86:117–121.

52. Volkoff N, Colazza S (1992) Growth patterns of teratocytes in the immature stages of *Trissolcus basalis* (Woll.) (Hymenoptera: Scelionidae), an egg parasitoid of *Nezara viridula* (L.) (Heteroptera: Pentatomidae). Int J Insect Morphol Embryol 21: 323–336.

53. Nicol CMY, Mackauer M (1999) The scaling of body size and mass in a parasitoid association: influence of host species and stage. Entomol Exp Appl 90: 83–92.

54. Ueno T (1999) Host-size-dependent sex ratio in a parasitoid wasp. Res Popul Ecol 41: 47–57.

55. Kfir R, Rosen D (1981) Biology of the hyperparasite *Pachyneuron concolor* (Forster) (Hymenoptera: Pteromalidae) reared on *Microterys flavus* (Howard) in brown soft scale. J Entomol Soc South Afr 44: 151–163.

56. Pérez-Lachaud G, Bachelor TP, Hardy ICW (2004) Wasp eat wasp: facultative hyperparasitism and intra-guild predation by bethylid wasps. Biol Control 30: 149–155.

57. Harvey JA, Wagenaar R, Bezemer TM (2009b) Interactions to the fifth trophic level: secondary and tertiary parasitoid wasps show extraordinary efficiency in utilizing host resources. J Anim Ecol 78: 686–692.