Effects of short-term particulate air pollution and nitrogen dioxide on blood pressure in older women: Longitudinal data from the Women’s Health Initiative

Tong Wen  
The Pennsylvania State University College of Medicine: Penn State College of Medicine

Duanping Liao  
The Pennsylvania State University College of Medicine: Penn State College of Medicine

Gregory A. Wellenius  
Boston University School of Public Health

Eric A. Whitsel  
University of North Carolina at Chapel Hill Gillings School of Global Public Health

Helene G. Margolis  
University of California Davis

Leslie F. Tinker  
Fred Hutchinson Cancer Research Center

James D. Stewart  
University of North Carolina at Chapel Hill Gillings School of Global Public Health

Jeff D. Yanosky  
Pennsylvania State University  https://orcid.org/0000-0002-6196-655X

Research

Keywords: Air Pollution, Blood Pressure, Women's Health Initiative

Posted Date: October 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-952531/v1

License: ©  This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License
Effects of short-term particulate air pollution and nitrogen dioxide on blood pressure in older women: Longitudinal data from the Women’s Health Initiative

Tong Wen¹, Duanping Liao¹, Gregory A. Wellenius², Eric A. Whitsel³, ⁴ Helene G. Margolis⁵, Leslie F. Tinker⁶, James D. Stewart³, Jeff D. Yanosky¹*

Affiliations:

¹ Penn State College of Medicine, Department of Public Health Sciences, Division of Epidemiology, Hershey, PA, USA
² Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
³ Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
⁴ Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
⁵ Department of Internal Medicine, University of California, Davis, Davis, CA, USA
⁶ Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington, USA

*Correspondence: jyanosky@phs.psu.edu

Abstract

Background: Short-term variations in particulate matter (PM) and traffic-related air pollutants (e.g., nitrogen dioxide, NO₂) have been associated with daily mortality and cardiovascular health outcomes in previous studies. We aimed to evaluate whether short-term changes in PM in three size fractions (PM₂.₅, PM₂.₅-₁₀, and PM₁₀) and NO₂ were associated with systolic and
We used linear mixed-effect models to estimate the association between short-term air pollution concentrations and repeated measures of arterial blood pressure.

Results: We found statistically significant positive associations between short-term measures (lag days 3-5) of PM$_{2.5}$ as well as NO$_2$ for both SBP and DBP in fully adjusted models when not controlling for calendar time. Also, in only the CT, PM$_{10}$ and PM$_{2.5-10}$ were associated with DBP but not SBP. In fully adjusted models controlling for calendar time, associations with PM$_{2.5-10}$ and NO$_2$ remained statistically significant for DBP (except for PM$_{2.5-10}$ in the OS). Specifically, in the CT group, each IQR increase in lag 3-5 NO$_2$ exposure (9.88 ppb) was associated with a 0.13 mm Hg increase in DBP. Also, each IQR increase in lag 3-5 PM$_{2.5-10}$ exposure (8.46 µg m$^{-3}$) was associated with a 0.05 mm Hg increase in DBP. Effect modification was found for body mass index (BMI), socioeconomic position (SEP), diabetes, dietary sodium intake, combined fruit and vegetable consumption, and long-term PM$_{2.5}$ for PM$_{2.5}$, PM$_{10}$, and NO$_2$. Shorter lag periods (lag 0 through lag 2) typically exhibited lesser and, especially for SBP, sometimes negative associations. In two-pollutant models of exposures lagged over 3-5 days, NO$_2$ associations with DBP were stronger (0.20 mm Hg per IQR), but those for PM$_{2.5-10}$ were attenuated to null, as compared to single-pollutant models.

Conclusions: Our findings are consistent with short-term (lag days 3-5) PM$_{2.5-10}$ and NO$_2$ levels as risk factors for acute cardiovascular outcomes and cardiovascular disease, though two-pollutant model results suggest NO$_2$ is more likely responsible for the observed effects.

Keywords: Air Pollution, Blood Pressure, Women’s Health Initiative

Introduction
Short-term variations (from days to weeks) in particulate matter (PM) and traffic-related air pollutants such as nitrogen dioxide (NO$_2$) have been associated with daily mortality and cardiovascular health outcomes in previous studies [1-3]. PM$_{2.5}$-mediated arterial blood pressure (BP) elevation may potentially be an important part of the causal mechanism leading to acute cardiovascular outcomes [4, 5]. One recent study from Women’s Health Initiative (WHI) suggests that long-term exposure to PM$_{2.5}$ and PM$_{10}$ may be essential modifiable risk factors for hypertension in post-menopausal women [6].

Findings from earlier studies of the effects of repeated short-term air pollutant exposures on BP have been varied, though generally suggestive of positive associations [7-10]. One of these studies conducted in California found that PM$_{2.5}$ (specifically the PM$_{2.5}$ component primary organic carbon) was more strongly associated with BP measures than were gaseous pollutants [7]. Additionally, traffic-related exposure measures have been identified as important modifiers of the effect of PM$_{2.5}$ on arterial BP in a diverse population from the MESA study [11]. One randomized controlled trial in humans showed that short-term exposure to traffic-related air pollution (i.e., diesel exhaust) was significantly associated with increased systolic BP (SBP) but not diastolic BP (DBP) [12]. Findings from many epidemiological studies of short-term air pollution effects on arterial BP have been analyzed using meta-analysis [13]; this meta-analysis showed overall significant positive though not robust short-term associations between several air pollutants (PM$_{2.5}$, PM$_{<10\ \mu m}$ (PM$_{10}$), NO$_2$, and SO$_2$) and increases in SBP and DBP, as well as hypertension, an established risk factor for cardiovascular diseases. Blood pressure and air pollutant levels (in many areas of the US) have both decreased over the past several decades [14, 15]. Adar et al. found significant associations for both SBP and DBP with PM$_{2.5}$ as well as NO$_2$ for exposure averaging periods of seven days and longer in adjusted models that did not control for calendar time. However, when calendar time was included, those associations were attenuated to null [16].
Few previous studies have evaluated short-term effects of PM (in multiple size fractions, including PM$_{2.5}$ (which originates from primary emissions from combustion sources and from secondary formation in the atmosphere) and 2.5<PM<10 µm (PM$_{2.5-10}$) (which is typically generated from mechanical grinding or crushing, as well as from windblown dust)) and NO$_2$ on BP over the same short-term exposure period and those that have produced varied results [13]. Additionally, whether BMI, socioeconomic position (SEP), diabetes, combined fruit and vegetable consumption, or long-term average PM$_{2.5}$ levels may modify these effects is poorly understood. In this study, we estimated the effects of short-term PM (PM$_{2.5}$, 2.5<PM<10 µm (PM$_{2.5-10}$), and PM$_{10}$) and NO$_2$ on SBP and DBP using linear mixed effect models using data from the Observational Study (OS) and Clinical Trials (CT) components of the Women’s Health Initiative (WHI) cohort. We evaluated effect modification by BMI, SEP, diabetes, dietary sodium intake, combined fruit and vegetable consumption, and long-term average PM$_{2.5}$ levels. Additionally, we used two-pollutant models examine confounding effects by co-pollutant on BP.

**Methods**

**Study population**

The Woman’s Health Initiative (WHI) is a nationwide prospective U.S. cohort across 40 clinical centers in 24 states [17]. Post-menopausal women aged 50 to 79 years were recruited between 1993 and 1998, and followed through 2005. The WHI consists of two components, the observational study component (OS: n=93,696 participants) and the clinical trials component (CT: n=68,132 participants). We stratify our results by WHI cohort because of differences between study designs, population attributes, missing-ness of data, and results in this study. In the CT, repeated measurements were available from the screening visit and annual clinic visits (Years 1-11); in the OS, repeated measurements were available from the screening visit and the Year 3 visit. Our analysis was restricted to only those not currently taking anti-hypertensive medication (OS: n=69,490; CT: n=66,518) and therefore the final dataset contained 119,147
(OS group) and 407,563 (CT group) observations. Because PM$_{2.5}$ monitoring data were only available after 1999, and thus daily exposure models were unavailable prior to that date, about 66.8% of observations in the OS and 36.3% of observations in the CT were missing data on PM$_{2.5}$ exposure over the study period.

**Blood pressure measurements**

Supine blood pressure was measured in the right arm after participants had been seated and at rest for at least three minutes. SBP and DBP were computed by averaging two measurements; if only one measurement was available, that single value was used.

**Air pollution exposure assessment**

Air pollution concentration estimates were available at geocoded residential locations of WHI participants from a daily lognormal kriging model [18] (Liao et al. 2006) for PM$_{2.5}$, PM$_{10}$, and NO$_2$. PM$_{2.5-10}$ was estimated by subtracting model-predicted PM$_{2.5}$ from model-predicted PM$_{10}$. This kriging model was validated using leave-one-out cross-validation and had a low average prediction error of 0.06 µg m$^{-3}$. Lagged exposure variables were calculated based on the index date of the BP measurement and the period one-week prior, from zero (day of the measurement; lag 0) to six days prior (lag 6) and were expressed as an interquartile range (IQR) change in the pollutant to afford comparisons among air pollutants. Moving averages were also calculated over corresponding lag periods (lag 0-1, lag 0-2, lag 0-3, etc.). Because the effect estimates for individual lag periods were similar and largest (*i.e.*, most positive) for lag days 3, 4 and 5, summary measures of the exposures were calculated by averaging lagged values from three to five days prior to the BP measurement (lag 3-5). Twelve-month moving-average PM$_{2.5}$ levels were estimated using spatio-temporal generalized additive mixed models (GAMMs) at geocoded residential locations of WHI participants [19]. This GAMM model was
validated using 10-set cross-validation and had high predictive accuracy with a cross-validation $R^2$ of 0.77.

Covariates

At baseline and during each annual follow-up visit, questionnaires were used to collect demographic data. Covariates included in this analysis were age at visit, self-reported race/ethnicity (White, Hispanic/Latino, Black/African-American, Asian/Pacific Islander, American Indian/Alaskan Native and other), region (Northeast, South, Midwest, and West), day of the week, season (spring, summer, fall, and winter), neighborhood SEP (continuous z-score (higher z-score corresponds to higher SEP) calculated using six census tract-level variables [20] and categorized by tertile), BMI (<25 kg/m$^2$; 25-30 kg/m$^2$; and $\geq$30 kg/m$^2$), dietary sodium intake (mg/day and categorized by tertile), combined fruit and vegetable consumption (medium servings/day and categorized by tertile), pack-years of smoking, diabetes, long-term average PM$_{2.5}$ concentrations (categorized by tertile), and calendar time expressed as the number of years since baseline exam. For participants in the CT, treatment arm was also included as a categorical variable.

Statistical analysis

Linear mixed-effects models:

We used linear mixed-effect (LME) models to estimate the association of air pollutant exposure and arterial blood pressure. A compound symmetric variance matrix was specified in the models to control for correlated errors between repeated measures. To estimate associations between SBP and DBP measures and air pollutant exposure metrics, the following linear mixed-effects regression model was fit to the data:

$$y_{ij} = \beta_0 + \sum_{p=1}^{P} \beta_p X_{ip} + \alpha_i + b_i \text{Age}_{ij} + e_{ij}$$
where \( y_{ij} \) represents either SBP or DBP measurements for subject \( i \) and visit \( j \), \( \beta_p \)'s are fixed-effect coefficients, \( X_p \)'s are explanatory variables (including air pollutant concentrations, confounders, and calendar time expressed as years since baseline exam). \( \alpha_i \) is a subject-specific random intercept included to account for the multiple observations available per subject, and \( b_i \) is a random slope for age. SAS v9.4 PROC MIXED was used for model fitting (except upon non-convergence, when PROC GLIMMIX was used). A significance level of 0.05 was used for all analyses.

Model selection:

First we evaluated unadjusted models between air pollutant concentrations (PM\(_{2.5}\), PM\(_{2.5-10}\), PM\(_{10}\), and NO\(_2\)) and arterial blood pressure (SBP, DBP) in both OS and CT. For each pollutant, the models included only a single lag period (lag days 0 to 6, in separate models) or a single moving average. Next we evaluated the effect of lag 3-5 exposures in the models, then added confounders, in sets, to form basic and adjusted models as described below. In basic models, confounders included age, race/ethnicity, arm group (only for CT), census region, day of the week, season, and a random slope for age. Next we added additional potential confounders to the basic model; if the percent change in the air pollutant effect estimate was >10%, then the variable was considered a confounder. If the percent change in the air pollutant effect estimate was <10%, we then evaluated whether the Akaike information criterion (AIC) was lowered upon inclusion of the variable and if so, the variable was considered a confounder. In adjusted models, we further controlled for BMI, SEP, pack-years of smoking, and diabetes. Next, to control for calendar time, we added the number of years since baseline exam to the fully adjusted models. We evaluated fully-adjusted models with and without adjustment for calendar time 1) to isolate the effect of controlling for calendar time and 2) to facilitate comparisons with previous analyses which may or may not have controlled for calendar time. To evaluate effect
modification, we fit fully adjusted models with interaction terms for the lag 3-5 air pollutant and each of BMI, SEP, diabetes, smoking, sodium intake, fruit and vegetable consumption, US Census Region ("Northeast", "Midwest", "South", "West"), and long-term PM$_{2.5}$ concentrations. When statistically significant effect modification was found (p-value for interaction term < 0.05), stratified analyses were conducted. For pollutants which were found to have statistically significant main effects in fully adjusted models controlling for calendar time, we further examined these pollutants in two-pollutant models.

**Results**

During the study period (1993-2005), a total of 136,008 participants (69,490 in OS and 66,518 in CT) were included in the analysis. Approximately 1 in 3 participants came from the western region of the US and most of participants were white (>80%). On average, participants were overweight (i.e., BMI $\geq$ 25 kg m$^{-2}$), with higher mean BMI among participants in CT than in the OS, but this difference was not statistically significant. Characteristics of the study participants and air pollutant concentrations are presented in Table 1.

**Unadjusted models:**

Regression coefficients (listed in the columns headed with "β" in the tables) represent the change in BP per unit change in air pollution concentration (after transformation of the air pollutant concentration to the IQR scale). Results from unadjusted models using lag 3-5 exposures were varied and not consistent in direction. For SBP, unadjusted models using lag 3-5 exposures showed that short-term exposure to PM$_{2.5-10}$ and PM$_{10}$ were significantly negatively associated in the OS and CT (except for PM$_{2.5-10}$ in OS), while NO$_2$ was significantly positively associated in both the OS and CT. For DBP, PM$_{2.5}$, PM$_{2.5-10}$, PM$_{10}$ and NO$_2$ were significantly positively associated in both the OS and CT (except for PM$_{10}$ in the OS group and a statistically significant negative association for PM$_{2.5-10}$ in the OS group) (Table 2).
Fully adjusted models:

Results from multivariable models with each potential confounder added showed that BMI, SEP, pack-years of smoking, and diabetes were important confounders (in addition to those in the basic models) among the three PM fractions as well as NO$_2$ and for both SBP and DBP, especially for PM$_{2.5}$ and NO$_2$ (Supplemental Material Table S1).

Results from basic and fully adjusted models without controlling for calendar time using single lag days (0-6) are presented in Supplemental Material Tables S2A and Table S2B. Shorter single lag periods (lag 0 through lag 2) showed significantly negative or null associations for PM (PM$_{2.5}$, PM$_{2.5-10}$ and PM$_{10}$) with both SBP and DBP (except for PM$_{2.5}$-DBP in OS group) as well as NO$_2$ with SBP. For longer lag periods, effects were consistent and largest (i.e., most positive) for single lag periods 3, 4, and 5.

Fully adjusted models not controlling for calendar time and using lag 3-5 exposures included the following confounders: age, race/ethnicity, treatment arm (only for the CT group), region, day of the week, season, BMI, SEP, pack-years of smoking, and diabetes. In these fully adjusted models not controlling for calendar time, PM$_{2.5}$ and NO$_2$ were significantly associated with both SBP as well as DBP (regression coefficients from the LME models without effect modification are presented in Table 2). Effect sizes for NO$_2$ were largest among the pollutants considered for SBP and DBP, except for PM$_{2.5}$-SBP in the OS group. In the CT group, each IQR increase in lag 3-5 PM$_{2.5}$ exposure (an increment of 7.66 µg m$^{-3}$) was associated with a 0.07 mm Hg increase in SBP and a 0.06 mm Hg increase in DBP. By comparison, each IQR increase in lag 3-5 NO$_2$ exposure (an increment of 9.88 ppb) was associated with a 0.45 mm Hg increase in SBP and a 0.38 mm Hg increase in DBP. PM$_{10}$ and PM$_{2.5-10}$ were significantly associated with DBP only in the CT group, again in fully adjusted models not controlling for calendar time.
In fully adjusted models controlling for calendar time, the association between NO\textsubscript{2} and DBP in both the OS and CT groups remained statistically significant, as did the association between PM\textsubscript{2.5-10} and DBP in only the CT group. Specifically, in the CT group, each IQR increase in lag 3-5 NO\textsubscript{2} exposure (9.88 ppb) was associated with a 0.13 mm Hg increase in DBP (Table 2). Also, each IQR increase in lag 3-5 PM\textsubscript{2.5-10} exposure (8.46 µg m\textsuperscript{-3}) was associated with a 0.05 mm Hg increase in DBP (Table 2). In the OS group, the effect size for lag 3-5 NO\textsubscript{2} exposure was larger and was 0.32 mm Hg.

Effect modification:

We evaluated effect modification in either 1) fully adjusted models not controlling for calendar time or 2) in fully adjusted models controlling for calendar time, depending on whether main effects were statistically significant in Table 2. In fully adjusted models not controlling for calendar time, we found effect modification by BMI, SEP, diabetes, and long-term PM\textsubscript{2.5} levels for PM\textsubscript{2.5}, PM\textsubscript{10}, and NO\textsubscript{2} (p-value for interaction terms <0.05; Table 3). Because PM\textsubscript{2.5-10}-DBP and NO\textsubscript{2}-DBP associations were statistically significant in the fully adjusted models controlling for calendar time, effect modification was evaluated in those models. For NO\textsubscript{2}-DBP, we found effect modification by BMI, SEP, diabetes, dietary sodium intake, and combined fruit and vegetable consumption (Table 4). No effect modification was found between PM\textsubscript{2.5-10} and DBP in the CT group.

Effect modification by BMI:

BMI modified the effects of lag 3-5 PM\textsubscript{2.5} exposure as well as lag 3-5 NO\textsubscript{2} exposure for SBP in only the CT group, in models not controlling for calendar time. Also, BMI modified the effects of lag 3-5 NO\textsubscript{2} exposure for DBP in the CT group, again in models controlling for calendar time. Stratified results showed both PM\textsubscript{2.5}-SBP associations and NO\textsubscript{2}-SBP associations were stronger
and more positive among participants with higher BMI; the PM$_{2.5}$-SBP association was statistically non-significant among those in the first (lowest) tertile of BMI (Table 3 & Table 4).

**Effect modification by SEP:**

SEP also significantly modified the effect of lag 3-5 PM$_{2.5}$ and NO$_2$ in both the CT and OS for both SBP and DBP, in models not controlling for calendar time (Table 3). For both PM$_{2.5}$-SBP and PM$_{2.5}$-DBP, stratified associations were lower among those with higher SEP. For NO$_2$-SBP, stratified associations were again lower among those with higher SEP.

For NO$_2$-DBP associations in models controlling for calendar time (Table 4), stratified associations also were lower among those with higher SEP in both the OS and CT groups.

**Effect modification by other factors:**

For PM$_{2.5}$, PM$_{10}$, and NO$_2$ lag 3-5 exposures, associations with SBP and DBP were stronger and more positive among participants with diabetes compared to those without, in models not controlling for calendar time (Table 3). Also, for lag 3-5 PM$_{2.5}$ exposures, stratified associations with DBP were stronger and more positive for the second and third tertiles of long-term PM$_{2.5}$ level in the CT group.

For NO$_2$-DBP associations in models controlling for calendar time, stratified associations were lower among those with higher fruit and vegetable consumption in the OS group. Also, stratified results by dietary sodium intake showed NO$_2$-DBP associations were stronger and more positive in the first and third tertile of sodium intake in the OS group, as compared to the second tertile (Table 4).

**Two-pollutant models controlling for calendar time:**

In Table 2, only PM$_{2.5-10}$ and NO$_2$ had statistically significant main effects in fully adjusted models controlling for calendar time and only for DBP, so only these two pollutants were used in two-
pollutant models. Though PM$_{2.5-10}$ and NO$_2$ were significantly correlated in our analysis, repeated measures correlation coefficients were low and ranged between 0.02 and 0.09 across the seven lag periods lag 0 to lag 6.

Regression coefficients from single-pollutant and two-pollutant fully adjusted models controlling for calendar time are presented in Table 5. For DBP, compared to single pollutant model results, NO$_2$ associations were stronger and more positive in two-pollutant models. However, those for PM$_{2.5-10}$ were attenuated to null. We also found effect modification by US Census Region in the fully adjusted two-pollutant model controlling for calendar time (Supplemental Material Table S3).

Discussion

Our findings indicate that short-term measures (lag days 3-5) of PM$_{2.5}$ as well as NO$_2$ are consistently associated with changes in SBP and DBP in models not controlling for calendar time. When evaluating PM$_{2.5}$ and NO$_2$ exposures averaged over lag days 3-5, patterns of association were consistent and robust with respect to the direction of association.

However, results for shorter exposure periods (lag days 0-2) were attenuated, null, or sometimes protective for PM in the three size fractions evaluated and for the NO$_2$-SBP association. These findings are similar to results from other studies in different populations showing protective or null short-term effects of PM [21-26] and NO$_2$ [21, 26] on blood pressure on the same day or the previous 1-3 days. Specifically, statistically significant negative associations were found between lag day 1, 2-, and 3 PM$_{10}$ and SBP as well as lag day 2 PM$_{10}$ and DBP, and between lag day 2 and 3 NO$_2$ and SBP. In contrast, statistically significant positive associations were found between lag day 1 and lag day 2 NO$_2$ and DBP among nonsmoking adults [21]. Statistically non-significant associations were also found between lag day 1 PM$_{2.5}$ with both SBP and DBP among elders with no anti-hypertensive medication use.
similar results were found for PM$_{2.5}$ exposures immediately and 24-h after a 2 hr walk in close proximity to traffic for both SBP an DBP among healthy adults [23]. In children, statistically non-significant associations were found between lag day 0 (i.e., same day) exposures to PM in three size fractions and SBP [24]; also statistically non-significant associations were found between lag day 1 exposures to PM$_{2.5}$ as well as NO$_2$ and both SBP and DBP in children [26]. Statistically significant negative associations were also found between lag day 1-3 exposures to PM$_{2.5}$ with SBP and DBP among young adults [25]. In our analysis, in models not controlling for calendar time, SEP, BMI, and diabetes were found to be statistically significant effect modifiers. Two prior studies also reported effect modification by BMI on the association between PM$_{2.5}$ and BP [7, 27]. We also found effect modification by long-term PM$_{2.5}$ level on short-term exposure to PM$_{2.5}$, a result consistent with earlier studies which showed that the association between short-term PM$_{2.5}$ and SBP was stronger in areas with higher long-term PM$_{2.5}$ levels [27, 28]. Our results for short-term (lag days 3-5) exposures, in models not controlling for calendar time, were broadly consistent with those from previous studies. One panel study of 62 cardiac rehabilitation patients showed a positive association between moving-average (over the previous 5-days) PM$_{2.5}$ exposure and SBP, as well as moving-averages of the previous 4-, and 5-day PM$_{2.5}$ exposure levels and DBP [29]. Another panel study of 64 elderly subjects with history of coronary heart diseases [7] found that multiday (3-day, 5-day, and 7-day) averaged air pollution exposures were positively associated with increased SBP and DBP. In our single-pollutant models, lag 3-5 NO$_2$ had stronger effects on both SBP and DBP than did lag 3-5 PM$_{2.5}$, compared on an IQR basis. Stronger effects of NO$_2$ on BP than those of PM$_{2.5}$ have also been shown in another study from Canada [30]. In models controlling for calendar time, our results are broadly consistent with those in Adar et al. [16]. However in that analysis associations attenuated to null after controlling for calendar
time (for exposure averaging periods of seven days, for example), whereas in the present study associations for lag 3-5 PM$_{2.5-10}$ and NO$_2$ remained statistically significant for DBP. Despite remaining statistically significant, the effect sizes are small. However, they may still be clinically relevant: Across the (somewhat skewed) distribution of exposure to NO$_2$, comparing the most highly-exposed individuals to the least, they may experience a change in exposure of approximately three IQRs, and therefore the corresponding effect size would, using the larger effect estimate from the OS, be $3 \times 0.32 = 0.96$ mm Hg in DBP. In these models, we found effect modification by SEP, BMI, and diabetes in the NO$_2$-DBP association, suggesting that participants with high BMI, low SEP, and diabetes may be particularly susceptible to the effects of short-term NO$_2$ on DBP. We also found that participants with more fruit and vegetable consumption were less susceptible to the effects of NO$_2$ on DBP, suggesting potential dietary intervention to mitigate air pollution-induced CVD risk [31]. We also noted effect modification by dietary sodium intake, but the non-monotonic pattern in these associations does not support meaningful causal interpretation.

Further, in two-pollutant models controlling for calendar time, associations of DBP with NO$_2$ became stronger than those in single-pollutant models, whereas PM$_{2.5-10}$ associations were attenuated to null. Zhao et al. [10] reported similar findings: In two-pollutant models including both 1-day averaged PM$_{2.5}$ and NO$_2$, the statistically significant positive association between PM$_{2.5}$ exposure and SBP attenuated to non-significant. We also note effect modification by US Census Region consistent with results in Adar et al. [16], with the effects of lag 3-5 NO$_2$ in the two-pollutant model stronger in the South and West US Census Regions as compared to the others.

However, some results from our analysis differ from earlier studies. Our study showed statistically significant negative or null associations between individual lag day 0-2 air pollutant exposures and both SBP and DBP. These negative associations persisted even when
controlling for calendar time. In contrast, a panel study of 74 patients undergoing cardiac rehabilitation [32] found a statistically significant positive association between 0-5 hour moving-average PM$_{2.5}$ exposure and SBP, with each IQR increase corresponding to an increase of 0.94 mm Hg (95% CI: 0.02-1.87). They also found statistically non-significant associations between PM$_{2.5}$ in individual lag periods (evaluating lag days 0, 1, 2, 3, and 4 separately) and DBP, which is inconsistent with our findings. In another study, Dvonch et al. [28] reported that short-term exposure (i.e., lag day 2) to PM$_{2.5}$ was positively associated with SBP among all subjects, suggesting a positive effect more acute than in our findings. These differences could be due to differences in study population or to different exposure estimation procedures. A recent meta-analysis of air pollution exposure and blood pressure reported substantial heterogeneity in effect estimates on blood pressure for PM$_{2.5}$, PM$_{10}$, and NO$_2$; also, NO$_2$ had a larger meta-estimated association with DBP than PM$_{2.5}$ [13]. Their analysis also provided evidence of publication bias for the association between NO$_2$ and DBP. Also, earlier studies have documented evidence of spatial and temporal variability of particulate pollution with regard to sources and chemical composition [33, 34], and as such differences in PM composition, as discussed in Giorgini et al. [5], could be another reason our findings differ from those in earlier studies.

This study has several strengths. One is the large sample size and recruitment from many areas of the US which allowed us to perform stratified analysis with sufficient statistical power; also the longitudinal study design using repeated measurements of blood pressure increased statistical power to detect associations between air pollution exposures and BP measures. Secondly, the estimates of air pollution exposure from daily lognormal kriging models contain greater temporal (i.e., daily) and spatial (including urban-scale gradients) resolution than in previous studies using conventional exposure assessment methods. Our study also has several limitations. The first concerns the lack of PM$_{2.5}$ monitoring before 1999. Second, we were unable to control for other potential confounders such as physical activity and occupational
exposure. The third is exposure error; a small amount of spatial error is unavoidable when performing spatial interpolation and kriging models did not include very local, micro- to neighborhood-scale information (or their proxies) on air pollutant levels. Of course, where monitoring was sparse, interpolation was based on distant measurements. The fourth is limited generalizability. The findings from this study may not be generalizable to males, nor to younger, pre-menopausal women in the U.S.

In conclusion, our findings are consistent with short-term (lag days 3-5) PM$_{2.5-10}$ and NO$_2$ levels as risk factors for acute cardiovascular outcomes and cardiovascular disease, though two-pollutant model results suggest NO$_2$ is more likely responsible for the observed effects among elderly women not taking anti-hypertensive medication.

**Supplementary information**

**Additional file 1: Table S1.** Effects of an IQR change in air pollutant concentration on systolic blood pressure (SBP) and diastolic blood pressure (DBP) in basic models with varying levels of adjustment in the WHI Observational Study (OS) and Clinical Trials (CT) components. Table S2A. Associations between an IQR change in air pollutant concentration and systolic blood pressure (SBP) and diastolic blood pressure (DBP) for single lag days (0-6) based on basic models. Table S2B. Associations between an IQR change in air pollutant concentration and systolic blood pressure (SBP) and diastolic blood pressure (DBP) for single lag days (0-6) based on fully adjusted models. Table S3. Single- and two-pollutant models of lag 3-5 day air pollutant exposures based on fully adjusted models + calendar time stratified by US Census Region.

**Abbreviations**

PM: Particulate matter; PM$_{2.5}$: Particulate matter <2.5µm; PM$_{2.5-10}$: Particulate matter >2.5µm and <10µm; PM$_{10}$: Particulate matter <10µm; NO$_2$: nitrogen dioxide; BP: Blood pressure; SBP:
Systolic blood pressure; DBP: diastolic blood pressure; WHI: Women’s Health Initiative; OS: Observational Study; CT: Clinical Trials; BMI: Body mass index; SEP: Socioeconomic position; IQR: Interquartile range; GAMM: Generalized additive mixed models; LME: Linear mixed effect models.

Funding

This study was supported by National Institutes of Health grant #1 R01 ES020871-01A1.

Acknowledgements

The authors would like to thank the contribution from all WHI investigators and participants.

Authors’ contributions

Gregory A. Wellenius, Eric A. Whitsel, Duanping Liao, Jeff D. Yanosky, Leslie F. Tinker, and James D. Stewart helped secure funding for the project. Jeff D. Yanosky and Tong Wen conducted data analysis and manuscript writing. Eric A. Whitsel and James D. Stewart contributed to data collection and data cleaning. Eric A. Whitsel, Helene G. Margolis, Duanping Liao, Leslie F. Tinker, and Gregory A. Wellenius provided suggestions to the data analysis, reviewed, and revised the manuscript. The authors read and approved the final manuscript.

Availability of data and materials

Supporting data is not available.

Ethics approval and consent to participate

Informed consent was provided from all study participants.

Consent for publication

The authors consent to publication.

Competing interests
The authors, with the exception of Gregory A. Wellenius, declare that they have no competing interests. Dr. Wellenius serves as a paid consultant for the Health Effects Institute (Boston, MA) and Google, LLC (Mountain View, CA).

Authors’ information

Tong Wen, Penn State College of Medicine, Department of Public Health Sciences, Division of Epidemiology, Hershey, PA, USA, twen@phs.psu.edu; Duanping Liao, Penn State College of Medicine, Department of Public Health Sciences, Division of Epidemiology, Hershey, PA, USA, dliao@phs.psu.edu; Gregory A. Wellenius, Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA, wellenius@bu.edu; Eric A. Whitsel, Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA, eric_whitsel@med.unc.edu; Helene G. Margolis, Department of Internal Medicine, University of California, Davis, Davis, CA, USA, hgmargolis@ucdavis.edu; Leslie F. Tinker, Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington, USA, ltinker@WHI.org; James D. Stewart, Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA, jstewart@unc.edu; Jeff D. Yanosky, Penn State College of Medicine, Department of Public Health Sciences, Division of Epidemiology, Hershey, PA, USA, jyanosky@phs.psu.edu.

References:

1. Orellano P, Reynoso J, Quaranta N, Bardach A, Ciapponi A. Short-term exposure to particulate matter (PM$_{10}$ and PM$_{2.5}$), nitrogen dioxide (NO$_2$), and ozone (O$_3$) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ Int. 2020;142:105876. doi:10.1016/j.envint.2020.105876
2. Mills IC, Atkinson RW, Kang S, Walton H, Anderson HR. Quantitative systematic review of the associations between short-term exposure to nitrogen dioxide and mortality and hospital admissions. BMJ Open. 2015;5(5):e006946. Published 2015 May 11. doi:10.1136/bmjopen-2014-006946.

3. Wu CF, Shen FH, Li YR, et al. Association of short-term exposure to fine particulate matter and nitrogen dioxide with acute cardiovascular effects. Sci Total Environ. 2016;569-570:300-305. doi:10.1016/j.scitotenv.2016.06.084.

4. Brook RD, Rajagopalan S. Particulate matter, air pollution, and blood pressure. Journal of the American Society of Hypertension 2009; 3(5):332–350.

5. Giorgini P, Di Giosia P, Grassi D, Rubenfire M, Brook RD, Ferri C. Air Pollution Exposure and Blood Pressure: An Updated Review of the Literature. Curr Pharm Des. 2016;22(1):28-51. doi:10.2174/1381612822666151109111712

6. Honda T, Eliot MN, Eaton CB, et al. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women. Environ Int. 2017;105:79-85. doi:10.1016/j.envint.2017.05.009

7. Delfino RJ, Tjoa T, Gillen DL, Staimer N, Polidori A, Arhami M, et al. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology. 2010;21(3):396–404.

8. Hampel R, Lepeule J, Schneider A, et al. Short-term impact of ambient air pollution and air temperature on blood pressure among pregnant women. Epidemiology. 2011;22(5):671-679. doi:10.1097/EDE.0b013e318226e8d6

9. Hoffmann B, Luttmann-Gibson H, Cohen A, et al. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure. Environ Health Perspect. 2012;120(2):241-246. doi:10.1289/ehp.1103647
10. Zhao A, Chen R, Wang C, et al. Associations between size-fractionated particulate air pollution and blood pressure in a panel of type II diabetes mellitus patients. Environ Int. 2015;80:19-25. doi:10.1016/j.envint.2015.03.003

11. Auchincloss AH, Diez Roux AV, Dvonch JT, Brown PL Barr RG, Daviglus ML, Goff Jr. DC, Kaufman JD, O’Neill MS. Associations between recent exposure to ambient fine particulate matter and blood pressure in the Multi-Ethnic Study of Atherosclerosis (MESA). Environmental Health Perspectives 2008; 116(4):486-491.

12. Cosselman KE, Krishnan RM, Oron AP, et al. Blood pressure response to controlled diesel exhaust exposure in human subjects. Hypertension. 2012;59(5):943-948. doi:10.1161/HYPERTENSIONAHA.111.186593

13. Yang BY, Qian Z, Howard SW, et al. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ Pollut. 2018;235:576-588. doi:10.1016/j.envpol.2018.01.001

14. Brauer M, Freedman G, Frostad J, et al. Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environ Sci Technol. 2016;50(1):79-88. doi:10.1021/acs.est.5b03709

15. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants [published correction appears in Lancet. 2020 Sep 26;396(10255):886]. Lancet. 2017;389(10064):37-55. doi:10.1016/S0140-6736(16)31919-5

16. Adar SD, Chen YH, D’Souza JC, et al. Longitudinal Analysis of Long-Term Air Pollution Levels and Blood Pressure: A Cautionary Tale from the Multi-Ethnic Study of Atherosclerosis. Environ Health Perspect. 2018;126(10):107003. doi:10.1289/EHP2966

17. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Control Clin Trials. 1998;19(1):61-109.
18. Liao D, Peuquet DJ, Duan Y, et al. GIS approaches for the estimation of residential-level ambient PM concentrations. Environ Health Perspect. 2006;114(9):1374-1380. doi:10.1289/ehp.9169

19. Yanosky, J.D., Paciorek, C.J., Laden, F. et al. Spatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors. Environ Health 13, 63 (2014). https://doi.org/10.1186/1476-069X-13-63

20. Diez Roux AV, Merkin SS, Arnett D, Chambless L, Massing M, Nieto FJ, Sorlie P, Szklo M, Tyroler HA, Watson RL. Neighborhood of residence and incidence of coronary heart disease. N Engl J Med 2001;345(2):99-106.

21. Chen SY, Su TC, Lin YL, Chan CC. Short-term effects of air pollution on pulse pressure among nonsmoking adults. Epidemiology. 2012;23(2):341-348. doi:10.1097/EDE.0b013e3182452f1d

22. Jacobs L, Buczynska A, Walgraeve C, et al. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons. Environ Res. 2012;117:60-67. doi:10.1016/j.envres.2012.05.003

23. Mirowsky JE, Peltier RE, Lippmann M, et al. Repeated measures of inflammation, blood pressure, and heart rate variability associated with traffic exposures in healthy adults. Environ Health. 2015;14:66. Published 2015 Aug 15. doi:10.1186/s12940-015-0049-0

24. Pieters N, Koppen G, Van Poppel M, et al. Blood Pressure and Same-Day Exposure to Air Pollution at School: Associations with Nano-Sized to Coarse PM in Children. Environ Health Perspect. 2015;123(7):737-742. doi:10.1289/ehp.1408121

25. Ren M, Zhang H, Benmarhnia T, et al. Short-term effects of real-time personal PM2.5 exposure on ambulatory blood pressure: A panel study in young adults. Sci Total Environ. 2019;697:134079. doi:10.1016/j.scitotenv.2019.134079
26. Mann JK, Lutzker L, Holm SM, et al. Traffic-related air pollution is associated with glucose
dysregulation, blood pressure, and oxidative stress in children. Environ Res. 2021;195:110870. doi:10.1016/j.envres.2021.110870

27. Kannan S, Dvonch JT, Schulz AJ, et al. Exposure to fine particulate matter and acute effects
on blood pressure: effect modification by measures of obesity and location. J Epidemiol
Community Health. 2010;64(1):68-74. doi:10.1136/jech.2008.081836

28. Dvonch JT, Kannan S, Schulz AJ, et al. Acute effects of ambient particulate matter on blood
pressure: differential effects across urban communities. Hypertension. 2009;53:853-859.

29. Zanobetti A, Canner MJ, Stone PH, et al. Ambient pollution and blood pressure in cardiac
rehabilitation patients. Circulation. 2004;110(15):2184-2189. doi:10.1161/01.CIR.0000143831.33243.D8

30. Cakmak S, Dales R, Leech J, Liu L. The influence of air pollution on cardiovascular and
pulmonary function and exercise capacity: Canadian Health Measures Survey (CHMS).
Environ Res. 2011;111(8):1309-1312. doi:10.1016/j.envres.2011.09.016

31. Péter S, Holguin F, Wood LG, et al. Nutritional Solutions to Reduce Risks of Negative Health
Impacts of Air Pollution. Nutrients. 2015;7(12):10398-10416. Published 2015 Dec 10.
doi:10.3390/nu7125539

32. Rich DQ, Zareba W, Beckett W, et al. Are ambient ultrafine, accumulation mode, and fine
particles associated with adverse cardiac responses in patients undergoing cardiac
rehabilitation? [published correction appears in Environ Health Perspect. 2012
Sep;120(9):A345]. Environ Health Perspect. 2012;120(8):1162-1169. doi:10.1289/ehp.1104262

33. Kim E, Hopke PK, Pinto JP, Wilson WE. Spatial variability of fine particle mass,
components, and source contributions during the regional air pollution study in St. Louis.
Environ Sci Technol. 2005;39(11):4172-4179. doi:10.1021/es049824x
34. Kim SB, Temiyasathit C, Chen VC, Park SK, Sattler M, Russell AG. Characterization of spatially homogeneous regions based on temporal patterns of fine particulate matter in the continental United States. J Air Waste Manag Assoc. 2008;58(7):965-975. doi:10.3155/1047-3289.58.7.965
Table 1. Demographic and physiologic characteristics of 136,008 participants in the WHI Observational Study (OS) and Clinical Trial (CT) components and air pollution exposure metrics throughout follow-up (1993-2005).

|                              | OS                   | CT                   |
|------------------------------|----------------------|----------------------|
| Participants, N             | 69,490               | 66,518               |
| Observations, n             | 119,147              | 407,563              |
| Age at visit, years, Mean ± SD | 64.24 ± 7.49        | 66.09 ± 7.31        |
| Region, %                   |                      |                      |
| Northeast                   | 21.85                | 23.23                |
| South                       | 26.07                | 24.32                |
| Midwest                     | 21.15                | 22.51                |
| West                        | 30.92                | 29.95                |
| Race/Ethnicity, %           |                      |                      |
| American Indian or Alaskan Native | 0.47               | 0.39                 |
| Asian or Pacific Islander    | 2.87                 | 2.25                 |
| Black or African-American   | 5.91                 | 8.59                 |
| Hispanic/Latino             | 4.09                 | 4.02                 |
| White (not of Hispanic origin) | 85.6               | 83.71                |
| Other                       | 1.07                 | 1.05                 |
| Neighborhood-level SEP, Mean ± SD | 0.35 ± 5.33        | 0.26 ± 5.28          |
| Tertile 1                   | 31.52                | 32.31                |
| Tertile 2                   | 32.81                | 33.52                |
| Tertile 3                   | 35.67                | 34.17                |
| Body mass index (BMI), kg/m², Mean ± SD, % |                    |                      |
| At baseline                 | 26.53 ± 5.49         | 28.19 ± 5.59         |
| BMI <25                     | 46.61                | 31.74                |
| BMI >=25 and <30            | 33.18                | 36.64                |
| BMI >=30                    | 20.21                | 31.62                |
| Across all visits           | 26.53 ± 5.44         | 28.60 ± 5.84         |
| BMI <25                     | 46.19                | 29.9                 |
| BMI >=25 and <30            | 33.47                | 35.71                |
| BMI >=30                    | 20.34                | 34.4                 |
| Dietary sodium intake (mg), Mean ± SD, % | 2546.92 ± 1183.68   | 2688.62 ± 1160.83    |
| Tertile 1                   | 1510.84 ± 388.86, 36.55 | 1552.67 ± 362.79, 30.55 |
| Tertile 2                   | 2461.08 ± 245.75, 32.89 | 2470.48 ± 246.37, 33.71 |
| Tertile 3                   | 3866.13 ± 1149.87, 30.56 | 3883.00 ± 1024.69, 35.74 |
| Combined fruit and vegetable consumption, medium servings per day, % | 4.34 ± 2.26         | 4.12 ± 2.17          |
| Tertile 1                   | 2.00 ± 0.66, 31.58   | 2.01 ± 0.64, 34.85   |
| Tertile 2                   | 3.90 ± 0.56, 33.08   | 3.88 ± 0.56, 33.57   |
| Tertile 3                   | 6.76 ± 1.66, 35.34   | 6.71 ± 1.59, 31.58   |
| Pack-years of smoking                      | 9.38 ± 17.78 | 9.61 ± 17.95 |
|-------------------------------------------|--------------|--------------|
| Diabetes present, %                       |              |              |
| Yes                                       | 3.73         | 7.19         |
| No                                        | 96.27        | 92.81        |
| Systolic blood pressure (SBP), mm Hg      |              |              |
| Across all visits                         | 123.45 ± 16.72 | 125.61 ± 16.91 |
| Baseline visit                            | 126.96 ± 17.96 | 127.97 ± 17.40 |
| Diastolic blood pressure (DBP), mm Hg     |              |              |
| Across all visits                         | 73.33 ± 9.00  | 72.72 ± 9.30  |
| Baseline visit                            | 74.73 ± 9.33  | 75.88 ± 9.12  |
| Air pollutants, lag days 0-6, Mean ± SD   |              |              |
| PM$_{2.5}$ (µg/m$^3$)                     | 13.92 ± 5.69  | 13.45 ± 5.64  |
| PM$_{2.5-10}$ (µg/m$^3$)                  | 14.14 ± 7.12  | 13.39 ± 6.61  |
| PM$_{10}$ (µg/m$^3$)                      | 27.99 ± 8.65  | 27.07 ± 8.04  |
| NO$_2$ (ppb)                              | 19.04 ± 7.36  | 17.84 ± 7.03  |
| Air pollutants, lag days 0-2, Mean ± SD   |              |              |
| PM$_{2.5}$ (µg/m$^3$)                     | 13.87 ± 6.70  | 13.39 ± 6.63  |
| PM$_{2.5-10}$ (µg/m$^3$)                  | 14.49 ± 8.35  | 13.67 ± 7.85  |
| PM$_{10}$ (µg/m$^3$)                      | 28.27 ± 10.33 | 27.28 ± 9.83  |
| NO$_2$ (ppb)                              | 19.28 ± 8.12  | 18.01 ± 7.74  |
| Air pollutants, lag days 3-5, Mean ± SD   |              |              |
| PM$_{2.5}$ (µg/m$^3$) IQR=7.66            | 13.88 ± 6.75  | 13.45 ± 6.75  |
| PM$_{2.5}$ in IQR units                   | 1.81 ± 0.88   | 1.76 ± 0.88   |
| PM$_{2.5-10}$ (µg/m$^3$) IQR=8.46         | 13.51 ± 8.18  | 12.82 ± 7.60  |
| PM$_{2.5-10}$ in IQR units                | 1.60 ± 0.97   | 1.52 ± 0.90   |
| PM$_{10}$ (µg/m$^3$) IQR=12.14            | 27.38 ± 10.06 | 26.55 ± 9.62  |
| PM$_{10}$ in IQR units                    | 2.26 ± 0.83   | 2.19 ± 0.79   |
| NO$_2$ (ppb) IQR=9.88                     | 18.45 ± 7.82  | 17.41 ± 7.60  |
| NO$_2$ in IQR units                       | 1.87 ± 0.79   | 1.76 ± 0.77   |
| Long-term PM$_{2.5}$, µg/m$^3$, Mean ± SD, % | 13.02 ± 3.74  | 13.84 ± 4.23  |
| Tertile 1                                 | 9.49 ± 1.62, 37.92 | 9.50 ±1.63, 32.43 |
| Tertile 2                                 | 13.32 ± 0.89, 35.63 | 13.38 ± 0.91, 32.02 |
| Tertile 3                                 | 17.67 ± 2.93, 26.45 | 18.22 ± 3.24, 35.55 |
Table 2. Main effects of an IQR change in lag 3-5 day air pollutant exposure metrics on systolic and diastolic blood pressure in the WHI Observational Study (OS) and Clinical Trials (CT) components for PM$_{2.5}$, PM$_{2.5-10}$, PM$_{10}$, and NO$_2$.

| Health Outcome | Models               | Air pollutants | OS | CT |
|---------------|----------------------|----------------|-----|----|
|               |                      |                | N  | β  | SE  | p-value | N  | β  | SE  | p-value |
| SBP           | Unadjusted           | PM$_{2.5}$     | 39,537 | 0.02 | 0.093 | 0.846 | 259,571 | -0.01 | 0.031 | 0.843     |
|               |                      | PM$_{2.5-10}$  | 39,537 | -0.12 | 0.085 | 0.151 | 259,571 | -0.08 | 0.031 | 0.008     |
|               |                      | PM$_{10}$      | 105,214 | -0.20 | 0.054 | 0.0003 | 385,740 | -0.09 | 0.027 | 0.001     |
|               |                      | NO$_2$         | 105,214 | 0.12 | 0.062 | 0.046 | 385,740 | 0.17 | 0.034 | <0.0001   |
|               | Basic                | PM$_{2.5}$     | 39,425 | 0.09 | 0.091 | 0.320 | 259,035 | 0.06 | 0.032 | 0.062     |
|               |                      | PM$_{2.5-10}$  | 39,425 | -0.04 | 0.088 | 0.680 | 259,035 | 0.01 | 0.032 | 0.685     |
|               |                      | PM$_{10}$      | 104,916 | -0.05 | 0.055 | 0.379 | 384,953 | 0.03 | 0.027 | 0.271     |
|               |                      | NO$_2$         | 104,916 | 0.01 | 0.066 | 0.859 | 384,953 | 0.37 | 0.037 | <0.0001   |
|               | Fully adjusted       | PM$_{2.5}$     | 37,646 | 0.18 | 0.092 | 0.045 | 248,334 | 0.07 | 0.032 | 0.026     |
|               |                      | PM$_{2.5-10}$  | 37,646 | -0.12 | 0.089 | 0.178 | 248,334 | 0.01 | 0.033 | 0.719     |
|               |                      | PM$_{10}$      | 100,041 | -0.07 | 0.056 | 0.205 | 369,230 | 0.04 | 0.028 | 0.117     |
|               |                      | NO$_2$         | 100,041 | 0.16 | 0.067 | 0.020 | 369,230 | 0.45 | 0.037 | <0.0001   |
|               | Fully adjusted + calendar time | PM$_{2.5}$ | 37,646 | 0.13 | 0.092 | 0.175 | 248,334 | -0.06 | 0.032 | 0.067     |
|               |                      | PM$_{2.5-10}$  | 37,646 | -0.06 | 0.089 | 0.514 | 248,334 | -0.04 | 0.033 | 0.284     |
|               |                      | PM$_{10}$      | 100,041 | -0.07 | 0.056 | 0.202 | 369,230 | -0.05 | 0.028 | 0.064     |
|               |                      | NO$_2$         | 100,041 | -0.13 | 0.067 | 0.061 | 369,230 | -0.02 | 0.038 | 0.608     |
| DBP           | Unadjusted           | PM$_{2.5}$     | 39,537 | 0.22 | 0.051 | <0.0001 | 259,571 | 0.15 | 0.018 | <0.0001   |
|               |                      | PM$_{2.5-10}$  | 39,537 | -0.13 | 0.047 | 0.004 | 259,571 | 0.04 | 0.018 | 0.032     |
|               |                      | PM$_{10}$      | 105,214 | -0.02 | 0.030 | 0.444 | 385,740 | 0.12 | 0.016 | <0.0001   |
|               |                      | NO$_2$         | 105,214 | 0.45 | 0.034 | <0.0001 | 385,740 | 0.77 | 0.020 | <0.0001   |
|               | Basic                | PM$_{2.5}$     | 39,425 | 0.14 | 0.052 | 0.006 | 259,035 | 0.06 | 0.018 | 0.001     |
|               |                      | PM$_{2.5-10}$  | 39,425 | 0.01 | 0.050 | 0.894 | 259,035 | 0.07 | 0.019 | 0.000     |
|               |                      | PM$_{10}$      | 104,916 | 0.00 | 0.032 | 0.878 | 384,953 | 0.06 | 0.016 | 0.000     |
|               | NO₂           | PM₂₅          | PM₂₅₋₁₀       | PM₁₀          | NO₂          |
|---------------|---------------|---------------|---------------|---------------|--------------|
| Fully adjusted| 104,916       | 0.36          | 0.038         | <0.0001       | 384,953      | 0.35         | 0.021        | <0.0001       |
|              | 37,646        | 0.16          | 0.052         | 0.002         | 248,334      | 0.06         | 0.019        | 0.001         |
|              | 37,646        | 0.00          | 0.051         | 1.000         | 248,334      | 0.08         | 0.019        | <0.0001       |
|              | 100,041       | 0.01          | 0.039         | 0.898         | 369,230      | 0.07         | 0.016        | <0.0001       |
|              | 100,041       | 0.41          | 0.038         | <0.0001       | 369,230      | 0.38         | 0.022        | <0.0001       |
| Fully adjusted + calendar time | 37,646 | 0.09          | 0.052         | 0.086         | 248,334      | -0.02        | 0.019        | 0.362         |
|              | 37,646        | 0.07          | 0.051         | 0.146         | 248,334      | 0.05         | 0.019        | 0.013         |
|              | 100,041       | 0.01          | 0.032         | 0.837         | 369,230      | 0.02         | 0.016        | 0.268         |
|              | 100,041       | 0.32          | 0.039         | <0.0001       | 369,230      | 0.13         | 0.022        | <0.0001       |

*: Basic model adjusted for age, race/ethnicity, arm group (for CT), region, day of the week, season and random slope for age; Fully adjusted model adjusted for age, race/ethnicity, arm group (for CT), region, day of the week, season, BMI, SEP, pack-year of smoking, diabetes and random slope for age.

**: PM is particulate matter; PM₂₅ is PM < 2.5 µm; PM₂₅₋₁₀ is 2.5 µm < PM < 10 µm; PM₁₀ is PM < 10 µm; NO₂ is nitrogen dioxide.
Table 3. Effect modification of lag 3-5 day air pollutant exposures assessed using stratification by BMI, SEP, diabetes, and long-term PM$_{2.5}$ level based on fully adjusted models not controlling for calendar time (when interaction terms were significant in Table 2).*

| Health Outcome | Air pollutant | Effect modifier and strata** | OS | CT |
|----------------|---------------|------------------------------|-----|----|
|                |               | N     | β    | SE  | p-value | p-value for interaction term | N     | β    | SE  | p-value | p-value for interaction term |
| SBP            | PM$_{2.5}$    | SEP Tertile 1 | 12,085 | 0.52 | 0.174 | 0.003 | 0.002 | 81,411 | 0.16 | 0.060 | 0.009 | 0.0002 |
|                |               | Tertile 2 | 12,312 | 0.19 | 0.161 | 0.230 | 83,977 | 0.12 | 0.056 | 0.034 |
|                |               | Tertile 3 | 13,249 | -0.10 | 0.148 | 0.501 | 82,946 | -0.04 | 0.051 | 0.456 |
| BMI            | Low           |                |       |     |       |       |       | 69,063 | -0.02 | 0.060 | 0.718 | 0.026 |
|                | Medium        |                |       |     |       |       |       | 89,311 | 0.13 | 0.054 | 0.013 |
|                | High          |                |       |     |       |       |       | 89,960 | 0.12 | 0.055 | 0.030 |
| Diabetes       | No            |                |       |     |       |       |       | 227,817 | 0.05 | 0.033 | 0.144 | 0.0029 |
|                | Yes           |                |       |     |       |       |       | 20,517 | 0.27 | 0.126 | 0.035 |
| NO$_{2}$       | SEP Tertile 1 | 31,923 | 0.63 | 0.126 | <0.0001 | <0.0001 | 120,928 | 0.61 | 0.070 | <0.0001 | 0.0006 |
|                | Tertile 2 | 32,813 | 0.21 | 0.118 | 0.070 | 124,057 | 0.53 | 0.066 | <0.0001 |
|                | Tertile 3 | 35,305 | -0.22 | 0.109 | 0.040 | 124,245 | 0.33 | 0.060 | <0.0001 |
| BMI            | Low           |                |       |     |       |       |       | 106,919 | 0.38 | 0.068 | <0.0001 | <0.0001 |
|                | Medium        |                |       |     |       |       |       | 133,384 | 0.43 | 0.062 | <0.0001 |
|                | High          |                |       |     |       |       |       | 128,927 | 0.62 | 0.065 | <0.0001 |
| Diabetes       | No            |                |       |     |       |       |       | 343,000 | 0.40 | 0.039 | <0.0001 | <0.0001 |
|                | Yes           |                |       |     |       |       |       | 26,230 | 0.92 | 0.155 | <0.0001 |
| DBP            | PM$_{2.5}$    | SEP Tertile 1 | 12,085 | 0.39 | 0.098 | <0.0001 | 0.0125 | 227,817 | 0.05 | 0.019 | 0.005 | 0.0049 |
|                | Tertile 2 | 12,312 | 0.08 | 0.092 | 0.402 | 20,517 | 0.18 | 0.072 | 0.010 |
|                | Tertile 3 | 13,249 | 0.07 | 0.084 | 0.416 | 63,559 | -0.01 | 0.046 | 0.811 | 0.0133 |
| Diabetes       | No            |                |       |     |       |       |       | 74,311 | 0.09 | 0.038 | 0.024 |
|                | Yes           |                |       |     |       |       |       | 110,464 | 0.05 | 0.026 | 0.039 |
| PM$_{10}$ | Diabetes | Yes/No | Count | p-value | adjusted p-value | adjusted p-value | adjusted p-value |
|----------|----------|--------|-------|---------|------------------|------------------|------------------|
|          |          | No     | 343,000 | 0.06 | 0.017 | 0.001 | 0.0012 |
|          |          | Yes    | 26,230  | 0.20 | 0.067 | 0.003 |

Note: Effect modification for NO$_2$ – DBP association was evaluated in fully-adjusted models + calendar time. These results are presented in Table 5.

*Models adjusted for age, race/ethnicity, arm group (for CT), region, day of the week, season, BMI, SEP, pack-years of smoking, diabetes, and random slope for age.

**Categorized by tertile of SEP score, BMI, and/or long-term PM$_{2.5}$ level score separately.
Table 4. Effect modification of lag 3-5 day air pollutant exposures assessed using stratification by BMI, SEP, diabetes, sodium intake, and fruit and vegetable consumption based on fully-adjusted + calendar time models*.

| Health Outcome | Air pollutant | Effect modifier and strata** | OS | CT |
|----------------|---------------|-------------------------------|-----|-----|
|                |               | N     | β    | SE   | p-value | p-value for interaction term | N     | β    | SE   | p-value | p-value for interaction term |
| DBP            | NO₂           | SEP Tertile 1                  | 31,923 | 0.58 | 0.071 | <0.0001 | <0.0001 | 120,928 | 0.22 | 0.041 | <0.0001 | <0.0001 |
|                |               | Tertile 2                      | 32,813 | 0.30 | 0.068 | <0.0001 |          | 124,057 | 0.14 | 0.039 | 0.001   |          |
|                |               | Tertile 3                      | 35,305 | 0.18 | 0.063 | 0.004   |          | 124,245 | 0.10 | 0.036 | 0.005   |          |
| BMI            |               | Low                            | 106,919 | 0.13 | 0.040 | 0.001   |          | <0.0001 |            |          |          |
|                |               | Medium                         | 133,384 | 0.13 | 0.036 | 0.000   |          |            |          |          |
|                |               | High                           | 128,927 | 0.24 | 0.039 | <0.0001 |          |            |          |          |
| Diabetes       |               | No                             | 343,000 | 0.12 | 0.023 | <0.0001 |          | <0.0001 |            |          |          |
|                |               | Yes                            | 26,230  | 0.38 | 0.090 | <0.0001 |          |            |          |          |
| Sodium intake  |               | Tertile 1                      | 34,448  | 0.42 | 0.065 | <0.0001 | 0.0311   |            |          |          |          |
|                |               | Tertile 2                      | 32,371  | 0.25 | 0.068 | 0.0002  |          |            |          |          |
|                |               | Tertile 3                      | 29,469  | 0.33 | 0.072 | <0.0001 |          |            |          |          |
| Fruit and      |               | Tertile 1                      | 29,434  | 0.47 | 0.072 | <0.0001 | 0.0426   |            |          |          |
| vegetable      |               | Tertile 2                      | 31,970  | 0.32 | 0.069 | <0.0001 |          |            |          |          |
| consumption    |               | Tertile 3                      | 34,884  | 0.24 | 0.065 | 0.0002  |          |            |          |          |

*Fully adjusted + calendar time models included the main effect for each effect modifier (even if not identified as a confounder).

**Categorized by tertile of SEP score, BMI, sodium intake, and fruit and vegetable consumption separately.
Table 5. Single- and two-pollutant models of lag 3-5 day air pollutant exposures based on fully-adjusted + calendar time models*.

| Model            | Health Outcome | Air pollutant | CT          |
|------------------|----------------|---------------|-------------|
|                  |                | PM$_{2.5-10}$ | 248,334     |
| Single-pollutant | DBP            | NO$_2$        | 369,230     |
|                  |                | N             | β    | SE | p-value    |
|                  |                | 248,334       | 0.05 | 0.019 | 0.013     |
|                  |                | 369,230       | 0.13 | 0.022 | <0.0001   |
| Two-pollutant**  | DBP            | PM$_{2.5-10}$ | 248,334     |
|                  |                | NO$_2$        | 248,334     |
|                  |                | N             | β    | SE | p-value    |
|                  |                | 248,334       | 0.03 | 0.019 | 0.083     |
|                  |                | 248,334       | 0.20 | 0.028 | <0.0001   |

*: Models adjusted for age, race/ethnicity, arm group (for CT), region, day of the week, season, BMI, SEP, pack-years of smoking, diabetes, random slope for age and calendar time.

**: The two-pollutant model includes PM$_{2.5-10}$ and NO$_2$ in the same model.
Figure 1. Main effects of an IQR change in exposure metrics averaged over lag days 3-5 on systolic blood pressure (SBP) and diastolic blood pressure (DBP) in the WHI Observational Study (OS) and Clinical Trial (CT) components for unadjusted, basic, fully adjusted, and fully adjusted + calendar time models using data from Table 2. Note: CI is confidence interval.
Figure 2. Fully adjusted and stratified effects of an IQR change in exposure metrics averaged over lag days 3-5 on systolic blood pressure (SBP) and diastolic blood pressure (DBP) in models not controlling for calendar time across WHI Observational Study (OS) and Clinical Trials (CT) groups showing effect modification by body mass index (BMI), socioeconomic position (SEP), diabetes, and long-term PM$_{2.5}$ level based on results in Table 3. Note: CI is confidence interval.
Figure 3. Fully adjusted + calendar time and stratified effects of an IQR change in exposure metrics averaged over lag days 3-5 on diastolic blood pressure (DBP) in the WHI Observational Study (OS) and Clinical Trials (CT) components showing effect modification by BMI, (socioeconomic position) SEP, diabetes, sodium intake, and fruit and vegetable consumption based on results in Table 5. Note: CI is confidence interval.
Figure 4. Fully adjusted + calendar time effects of an IQR change in exposure metrics averaged over lag days 3-5 on diastolic blood pressure (DBP) in the WHI Clinical Trial (CT) group from single-pollutant and two-pollutant models. Note: CI is confidence interval.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementalfilesforWHIBPEH20210930.pdf