Effect of community-based distribution of misoprostol on facility delivery: a scoping review

CURRENT STATUS: ACCEPTED

Gizachew Tadele Tiruneh
JSI Research and Training Institute Inc

gitz121@gmail.com
Corresponding Author
ORCiD: https://orcid.org/0000-0002-5842-9518

Bereket Yakob
Harvard University T H Chan School of Public Health

Wubegzier Mekonnen Ayele
Addis Ababa University School of Public Health

Muluneh Yigzaw
JHPIEGO

Meselech Assegid Roro
Addis Ababa University School of Public Health

Araya Abrha Medhanyie
Mekelle University College of Health Sciences

Etenesh Gebreyohannes Hailu
Ministry of Health

Yibeltal Tebekaw Bayou
JSI Research and Training Institute Inc

DOI:
10.21203/rs.2.13002/v3

SUBJECT AREAS
Maternal & Fetal Medicine

KEYWORDS
community-based distribution, diversion of facility birth, facility delivery, misoprostol
Abstract

Introduction: Community distribution of misoprostol to pregnant women in advance of labor is one of the compelling strategies for preventing postpartum hemorrhage. Concerns have been reported that misoprostol distribution could reduce facility delivery or lead to misuse of the medication. This scoping review was conducted to synthesize the evidence on the effect of community-based misoprostol distribution on rates of facility delivery, and to assess the frequency of mothers taking distributed misoprostol before delivery, and any harmful outcomes of such misuse. Methods: We included peer-reviewed articles on misoprostol implementation from PubMed, Cochrane Review Library, Popline, and Google Scholars. Narrative synthesis was used to analyze and interpret the findings, in which quantitative and qualitative syntheses are integrated. Results: Three qualitative studies, seven observational studies, and four experimental or quasi-experimental studies were included in this study. All before-after household surveys reported increased delivery coverage after the intervention: ranging from 4 to 46 percentage points at the end of the intervention when compared to the baseline. The pooled analysis of experimental and quasi-experimental studies involving 7,564 women from four studies revealed that there was no significant difference in rates of facility delivery among the misoprostol and control groups OR 1.011; 95% CI: 0.906-1.129. A qualitative study among health professionals also indicated that community distribution of misoprostol for the prevention of postpartum hemorrhage is acceptable to community members and stakeholders and it is a feasible interim solution until access to facility birth increases. In the community-based distribution of misoprostol programs, self-administration of misoprostol by pregnant women before delivery was reported in less than 2% of women, among seven studies involving 11,108 mothers. Evidence also shows that most women who used misoprostol pills, used them as instructed. No adverse outcomes from misuse in either of the studies reviewed. Conclusions: The claim that community-based distribution of misoprostol would divert women who would have otherwise had institutional deliveries to have home deliveries and promote misuse of the medication are not supported with evidence. Therefore, community-based distribution of misoprostol can be an appropriate strategy for reducing maternal deaths which occur due to postpartum hemorrhages,
especially in resource-limited settings.

Introduction

Maternal mortality ratios (MMR) remain high in low-and-middle-income countries (LMICs), and reduction of MMR continues to be a priority challenge in the Sustainable Development Goals (SDG) era [1]. Accordingly, to achieve the SDG of reducing the global MMR to 70 per 100,000 live births by 2030, LMICs needs to implement innovative and high impact interventions aimed at preventing and managing the main causes of maternal deaths and providing high-quality services in the continuum of maternity care [2, 3].

A wealth of evidence shows that hemorrhage is one of the major causes of maternal mortality [4-7]. More than two-thirds of maternal deaths due to hemorrhage occur during the postpartum period, which accounts for 20% of all maternal deaths in developing regions [5]. However, in Ethiopia, a systematic review of national evidence shows that PPH accounts for 30% of maternal deaths [8, 9]. Most maternal deaths occurring due to PPH are in poorly resourced facilities or outside of a health facility where there is no access to skilled obstetric care [10-12]. Women who deliver at home face the highest risk of PPH, as they do not benefit from the support of skilled birth attendants and are less likely to receive timely care and medications that prevent and manage PPH [12]. Evidence shows that most PPH-associated deaths could be avoided if active management of third stage of labor (AMTSL) is implemented [13], adverse outcomes and complications are prevented or managed using safe drugs in communities and facilities, and effective referral mechanisms are implemented during delivery and in the postpartum period [14]. Intravenous or intramuscular administration of uterotonics are the most essential component of AMTSL [15] and oxytocin remains the first choice uterotonics for the prevention of PPH [14].

Misoprostol distribution at community level to women during pregnancy is one of the interventions for preventing PPH to reach women who deliver at home without skilled attendant [16-18]. Misoprostol is a generic, inexpensive, heat-stable, and potent uterotonic that can be administered orally, sublingually, rectally, and vaginally [19] for the prevention of PPH. It has considerable advantages over other uterotonics in resource-poor settings to reach woman without access to institutional
delivery. Misoprostol has been studied in different setups and is endorsed by the World Health Organization (WHO) as a solution for women who give birth in facilities without oxytocin or where there is low coverage of skilled attendance [16]. Clinical trials have verified the effectiveness and safety of community distribution of misoprostol [20, 17, 21, 14] where access to skilled birth attendance and oxytocin is limited. A pooled estimate of randomized controlled trials (RCT) comparing 600μg of oral or sublingual misoprostol with placebo in primary care or home delivery settings show that misoprostol resulted in 24% and 41% reductions in the incidence of PPH and severe PPH compared with placebo, respectively [17].

Despite the existing evidence, community-based distribution of misoprostol is still the least prioritized intervention in the maternal survival strategies [22-24, 18, 25]. This is due to concerns of policymakers’ and practitioners’ [21, 17, 25, 12] that misoprostol distribution at community level might decrease facility deliveries, possibly lead to misuse of misoprostol (including taking the drug before delivery, and using the drug for the purpose of inducing abortion), and lack of technologies and expertise to diagnose multiple pregnancies before using it at community levels in resource-limited settings [20, 26]. A range of other barriers at the health system, community, and policy levels are also impeding access to misoprostol for prevention of PPH. These barriers include: 1) absence of registration of misoprostol for the management of PPH [27, 25], 2) fear and apprehensions of providers and policymakers regarding its use [27, 25], 3) lack of evidence-based guidelines and provider training [25], 4) inadequate staffing and lack of knowledge and skill of providers regarding causes of PPH, and 5) limited knowledge of the community regarding the appropriate dosage and timing of administration for PPH presentation and management [27, 20].

This scoping review was, therefore, conducted to synthesize the evidence on the effect of community-based misoprostol distribution in advance of delivery on rates of facility delivery, and to assess the frequency of mothers taking distributed misoprostol before delivery, and any harmful outcomes of such misuse.

Methods

Criteria for inclusion
In this study, researchers used a scoping review methodology to get a wide range of information from both qualitative and quantitative studies. All types of literature on community-distribution of misoprostol for the prevention of PPH reported in English language were included, with no specification on timing of publication.

Search strategy

We identified peer-reviewed articles on implementation of community distribution of misoprostol from PubMed, Cochrane Review Library, Popline, and Google Scholars which were made available from February 1-15, 2019. We also applied a snowball approach of searching from the references of papers of the initial search.

The following search strategy was used to search literature from PubMed and CENTRAL databases;

“(((((((((Africa OR Asia OR Caribbean OR West Indies OR South America OR Latin America OR Central America OR Middle East)) OR (developing countr* OR less developed country * OR under developed country * OR underdeveloped country * OR middle income country * OR low income countr*))))) AND ((((postpartum hemorrhage) OR post partum hemorrhage) OR postpartum haemorrhage) OR post partum haemorrhage)) AND misoprostol)) AND (((community distribution) OR community)) OR community based))) AND ((((adverse effects) OR adverse outcomes)) OR ((misuse) OR ("Drug Misuse"[Mesh] OR "Prescription Drug Misuse"[Mesh]))) OR ((((skilled delivery) OR institutional delivery) OR "Delivery, Obstetric"[Mesh]) OR delivery))”

Moreover, a combination of terms, including ‘misoprostol’; ‘misuse’; ‘adverse outcomes’; ‘fear of diversion of facility birth’; ‘misconceptions’; ‘misperceptions’; ‘post-partum hemorrhage’ (and variations i.e. ‘post-partum hemorrhage’, ‘postpartum hemorrhage’); ‘community-based maternal’; ‘maternal health interventions’; ‘maternal mortality’; and ‘low-income setting’, ‘developing country’, ‘resource-poor setting’ have been used to identify the required literature from Popline and Google Scholar.

First, any research output with the above-mentioned terms in either the title or abstract of the article was downloaded, and then a combination of these terms was also used to download more resources.

Critical appraisal
The methodological quality of each study was assessed using the Joanna Briggs Institute (JBI) critical appraisal checklists for different study designs as appropriate [28-30]—to assess the methodological quality of studies and to determine the extent to which included studies have addressed the possibility of bias in its design, conduct, and analysis. Two review authors (GT and MY) independently did appraising the quality of each study included and discrepancies between scores were resolved through discussions.

The quality of the studies was assessed based on the core items recommended for the assessment of methodological quality. To obtain an overall quality score, publications scored “1” point for each item fully met and “0” for none or very little information reported. Items were given equal weights and a percentage score was generated. Studies that scored 75% or more were categorized as high quality, scores in the range of 50-74% were ranked as medium, and scores less than 50% were rated as poor. Moreover, standard review protocol, Preferred Reporting Items for Systematic and Meta-Analysis for Scoping Reviews (PRISMA-ScR) checklist, was followed to establish minimum information that should be included when reviewing and reporting [31]. The protocol, however, was not registered in any databases.

Data extraction and analysis

The form for abstracting data from reviewed literature was designed and review team members agreed on the contents of the form. Two reviewers (GT and YT) read each identified literature and populated the sheet designed for the purpose. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram (Figure 1) was used for the selection of articles to be used in this scoping review.

Facility delivery rate, misuse, adverse effects from misuse of the drug, and misconceptions on the use of misoprostol and fear of diversion of facility delivery to home delivery because of misoprostol’s access to mothers were the main points considered in this scoping systematic review.

A narrative synthesis was used to analyze and interpret the findings in which quantitative and qualitative syntheses are integrated. Descriptive information about the eligible studies was summarized using text and tables. Findings from the quantitative resources were narrated
thematically followed by findings of qualitative resources. For intervention studies, a random-effects meta-analysis model [32, 33] was used to pool the estimates of prevalence of facility birth, accounting for the variability among studies using Stata v15 [34]. The results were presented as average treatment effects (odds ratio) with 95% confidence intervals.

Results

Description of studies

Table 1 presents the characteristics of the studies included in this review. Fourteen studies were included in the review. Seven of the studies were from Africa and the remaining seven were from Asia. Three qualitative studies [35, 26, 12], seven observational studies [36-42], and four experimental or quasi-experimental studies [43-46] were included in this review. All studies were published from 2006 to 2018.

Interventional activities in observational and experimental studies included training to health workers, antepartum and/or postpartum home visits, identification of pregnant women, provision of prenatal education, community sensitization, and distribution of 600μg misoprostol to women.

Methodological quality of included studies

According to the JBI quality appraisal tool, two of the RCTs scored high quality (88%) and a quasi-experimental study scored medium (61%). On the other hand, the cluster RCT study included scored low (46%) where it had baseline imbalances as well as lacked masking of study of participants, personnel, and assessors [43]. All experimental and quasi-experimental studies provided adequate information about random sequence generation as well as thorough description of the interventions. Overall, the seven cross-sectional studies scored medium quality (70%) in which most lacked strategies to deal with confounding as well as some lacked appropriate use of statistical methods of analysis. Likewise, all qualitative studies scored medium (65%) in which they are subjected to reporting bias in which philosophical perspectives as well as researchers’ experiences, beliefs, wishes, attitudes, culture, views, and personality not stated which might bias analysis and reporting.

Table 1: Characteristics of included studies

Study ID	Country	Study design	Objectives	Description of the intervention	
Geller 2014	Ghana	Facility-based study: before and community distribution of	Midwives provided misoprostol women who came for antenatal		
Study	Country	Design/Methodology	Objectives		
------------	------------------	--	---		
Haver 2016	Afghanistan	Pre- and post-intervention household surveys in 20 districts	To assess whether or not third-trimester distribution of misoprostol would result in adverse events related to child delivery		
Rajbhandari 2010	Nepal	Before- and after-intervention household survey	To assess whether advance distribution of misoprostol at community reduces (prevents) PPH occurrence and maternal mortality		
Sanghvi 2010	Afghanistan	Community-based: Non-randomized control trial	To assess whether community distribution of misoprostol was safe and acceptable To assess whether community distribution of misoprostol was effective and feasible to prevent postpartum hemorrhage		
Weeks 2015	Uganda, Mbale District	Community-based study: placebo-controlled randomized trial	To assess whether self-administration of misoprostol by pregnant women at home was safe and effective		
Study Year	Country/Region	Study Type	Study Design	Objective	Findings
------------	----------------	------------	--------------	-----------	----------
Smith 2014	Liberia	Longitudinal observational study	-	To evaluate whether antenatal distribution of misoprostol was feasible, safe and effective for PPH prevention	- Trained traditional midwives CHWs to educate and women on misoprostol use. CHWS distributed misoprostol at home. Misoprostol use was assessed delivery.
Ononge 2015	Uganda	Cluster RCT	-	To assess whether misoprostol distribution to pregnant women to administer at home (if she decided to deliver at home) during antenatal care reduces PPH	- Women were offered misoprostol of gestation during antenatal care. They were counseled on how if they delivered at home.
Durham 2018	Lao People’s Democratic Republic	Qualitative study	-	To explore contextual factors that were linked to acceptability misoprostol and whether there was a need to distribute misoprostol at community level for prevention of PPH	- No intervention was done. Interviews were conducted with stakeholders at different levels.
Spangler et al 2014	Ethiopia	Qualitative study	-	To assess decision-makers’ understanding of Ethiopia’s health policy with regard to community-based use of misoprostol for PPH prevention	NA
Wells et al 2016	Ethiopia, Ghana	Desk review and qualitative methods	-	To assess what models existed and implemented to ensure access to misoprostol at community level in Ethiopia, Ghana, and Nigeria	NA
Sibley 2014	Ethiopia	Household survey and record reviews	-	To assess misoprostol use over a period of time. To assess women’s awareness and use of misoprostol and factors associated with its use (before and after a project).	- Trained community health development agents to hold meetings with pregnant caregivers at home. Community health development agents and TBAs in Oromia intervention areas.
Rajbhandari	Nepal	Mixed methods	-	To assess whether	- No intervention
Year	Location	Study Type	Interventions	Findings	
------	----------	------------	---------------	----------	
2017		Program evaluation	Distribution of misoprostol during antenatal care during a project was effective or not	Household interviews with women who had given birth in the last 12 months in different geographic locations	

Parashar 2018
- Cross-sectional program evaluation
- To develop a framework to assist with designing and implementing community-based distribution of misoprostol
- Pregnant women were more likely to deliver at home (based on criteria) were provided with misoprostol in the 8th month of pregnancy
- Pregnant women were counseled about how to use misoprostol if they delivered at home

Derman 2006
- RCT
- To assess whether oral misoprostol could be an alternative drug to oxytocin for PPH prevention
- Auxiliary nurse midwives were trained for 5 days on implementation protocol; attended deliveries; and followed mothers and their newborns postpartum for 6 weeks
- Midwives attended deliveries and administered misoprostol in intervention group and placebo in control group and measured blood loss

The results of our review are presented under three sections: 1) diversion of facility birth, 2) misuse, for purposes of either abortion or labor induction/augmentation, and 3) adverse events from misuse.

Diversion of facility birth

Ten studies (five observational before-after studies, four experimental or quasi-experimental trials, and one qualitative study) reported on the impact on facility birth as the outcome [38, 39, 37, 36, 41, 35, 43-46]. All five before-after household surveys reported increased facility delivery coverage after the intervention: four percentage points increase in Nepal [39] and Liberia [38], 11% points in Afghanistan [37], 39% points in Ghana [36], and 46% points in India [41] at the end of the intervention when compared to the baseline (Figure 2).

A quasi-experimental study in Afghanistan demonstrated an increase of 3.3 percentage points in
facility birth rates comparing between the intervention and control areas (p< 0.001); while a RCT in India showed a decrease of 1.6 percentage points (p>0.05) and two cluster randomized trials in Uganda showed a decrease of 1.5 and 2.1 percentage points (p>0.05) in facility birth rates, comparing between the intervention and control areas [43, 44, 46]. The pooled analysis involving 7,564 women, from four of the studies, revealed that there is no significant difference in facility delivery among the advanced distribution of misoprostol and control groups [OR 1.011; 95% CI: 0.906-1.129] (Table 2).

Table 2: Comparison of facility delivery rates between the intervention and control areas

Study	Facility delivery rate (%)	OR	[95% CI]	% Weight		
	Intervention	Comparison				
Sanghvi 2010	21.4	18.1	1.229	1.023	1.477	35
Weeks 2015	56.5	58.0	0.940	0.697	1.269	13
Ononge 2015	85.4	87.5	0.834	0.647	1.075	18
Derman 2006	53.2	54.8	0.937	0.770	1.139	31
I-V pooled OR	1.011	0.906	1.129			10

A qualitative study among health professionals in Laos also indicated that community distribution of misoprostol, for the prevention of PPH, is acceptable to community members and stakeholders and it is a feasible interim solution until access to facility birth is improved. The study recognized misconceptions as barriers that might hinder community-based distribution of misoprostol [35]. Another study in Ethiopia reported regional differences in understanding the implementation strategy of misoprostol and concern among policymakers that distribution of misoprostol will be seen as encouraging home birth [26].

Misuse

A program evaluation report in Nepal showed that there was no evidence to suggest that misoprostol distributed for the purpose of the prevention of PPH is being misused for labor induction or pregnancy termination [42]. Moreover, as presented in Table 3, in the community-based distribution of misoprostol programs, administration of misoprostol before delivery was reported in less than 2% (n=17) among seven studies involving 11,108 mothers [36, 37, 40, 38, 43].
A cluster randomized controlled trial in Uganda [43] and an operations research in Ghana [36] reported that no woman took misoprostol before their babies’ birth. Another before-after study in Afghanistan reported that only 1 out of 7,399 women in the study took misoprostol before the birth of her newborn [37]. Similarly, according to a trial in Uganda, only 2 out of 700 women took tablets before delivery. In Liberia, only 3 of 265 women took misoprostol prior to giving birth [38, 46]; while in Ethiopia, less than 2% of women took the tablets before birth [40] (Table 3).

Table 3: Percent of women who took misoprostol before delivery

Study ID	Country	%	n	N
Geller 2014	Ghana	0.00	0	102
Ononge 2015	Uganda	0.00	0	2,057
Haver 2016	Afghanistan	0.01	1	7,399
Weeks 2015	Uganda	0.29	2	700
Smith 2014	Liberia	1.10	3	265
Sibley 2014	Ethiopia	1.80	11	585
Total			17	11,108

Evidence also shows that most women used the misoprostol pills as instructed [39, 36, 44]; unused doses were returned after birth to the point of distribution; and most others either threw it away or kept it [36, 42]. However, qualitative studies in Ethiopia identified, lack of trust in women’s capabilities to use misoprostol correctly [12] and fear of misuse [12, 26], as a problem limiting the expansion of the program.

Adverse effects of misuse

Three studies reported minor adverse effects following misoprostol administration [44, 46, 45]. However, no adverse outcomes of misuse were reported in either of the studies reviewed.

Discussion

This review shows that community-based distribution of misoprostol programs have demonstrated increase of facility delivery coverage after the intervention in observational studies and no significant difference of facility delivery coverage in experimental and quasi-experimental studies among the misoprostol and control groups. The studies reviewed also found very few instances of administration
of misoprostol before delivery, and no adverse outcomes because of misuse. While some studies have illustrated a concern held by policymakers and provider about misoprostol misuse, diversion of facility birth, and adverse effects of its misuse [12, 26, 22]; this scoping review showed that, so far, community-based distribution of misoprostol has not negatively impacted facility birth rates (in fact some studies show an increase in facility delivery) and has not resulted in misuse of the medication for uses other than PPH prevention. Accordingly, there is no evidence that substantiates the fear of misoprostol misuse, diversion of facility birth, and other adverse effects of its misuse. As is evident from a qualitative study in Ethiopia [26], these misconceptions arise from the health providers’ perceptions rather than the actual behavior of women using community-distributed misoprostol.

In addition, evidence shows that misoprostol is safe and effective for preventing and treating PPH in remote settings where both oxytocin and timely transfer to higher-level care are not available [47, 21, 25]. Previous studies also report that community health workers or other lower-level workers are able to safely administer misoprostol [35, 16]. Women were found to have no major problem of misusing the drug and it was found to be acceptable by them [16]. Another rapid review of the literature showed that distribution of misoprostol in advance of delivery by lay health workers for self-administration was feasible and acceptable at all levels—end-user, health system, community, and policy [20, 25]. Concerns by policymakers about misoprostol distribution at community level, often unsupported by available evidence [25], impedes the strategy being translated into effective policies, programs, and practice. Concerns primarily include fear of women using misoprostol for inducing abortion or labor, and diversion of facility birth to home deliveries [48, 25, 46]. In addition to policymaker resistance, there is a range of other barriers that impede access to a uterotonic for prevention of PPH for every woman. Barriers include service delivery challenges, supply and procurement, financial, national and global policy environments, and factors more closely connected to the end-user [49]. These implementation barriers represent important threats to any community-based misoprostol distribution program, and most of these barriers are common health system weaknesses in many LMICs [20]. Community-based distribution of misoprostol is a compelling strategy to be implemented parallel to
strengthening healthcare facilities to increase safe institutional deliveries [22, 25] and ensuring universal access to uterotonics for every woman. A review by Hobday et al. recommends simultaneously promoting facility delivery and strengthening health systems to avail misoprostol at the community level [16]. Community distribution of misoprostol is thus a complementary strategy for increasing the availability of misoprostol and actively promoting facility births through increasing contact with pregnant women. Increasing interaction with pregnant women also offers the opportunity to promote early care-seeking and referral during pregnancy [20]. As such, community-based distribution of misoprostol programs should include the promotion of facility-based birth [4, 36, 35] as a critical intervention. Successful implementation of misoprostol distribution can be facilitated by creating an enabling environment through supportive policies, designing a formal plan for supplies, task shifting strategies, and appropriate use of guidelines and protocols [27]. Moreover, strong leadership and political commitment, training, and community mobilization were identified as critical success factors [20].

This study provides critical documentation of evidence to support policymakers and program managers to develop national policies and strategies for the implementation of community-based distribution of misoprostol to prevent PPH and reduce maternal mortality. It also highlights that rates of administration of misoprostol before delivery and adverse outcomes of such misuse are very low, especially when compared to the grave risks women can encounter without access to uterotonics. As such, community-based distribution of misoprostol is an appropriate strategy to be implemented while working towards achieving facility delivery as the norm.

National guidance and evidence-based policies on misoprostol distribution initiated by higher levels of the health system can facilitate reassuring reluctant policymakers and providers who hold persistent, but unfounded, fears of misuse and negative consequences. Creating opportunities for reflective discussions or policy dialogue is thus important for virtuous public health practice.

This review has some limitations. First, there may be possibility of missing some relevant studies due to the inclusion of only published studies and exclusion of studies published in a language other than English. Second, we found a small number of articles meeting the inclusion criteria and few rigorous
studies directly investigated the negative effect of community availability of misoprostol on institutional delivery, misuse and adverse effects from misuse as a primary outcome. Accordingly, we could not be able to combine all the results in a meta-analysis and show pooled estimates.

Conclusions
Community-based distribution of misoprostol programs have been associated with an increase in coverage of facility-based births. This review found very few instances of administration of misoprostol before delivery, and no adverse outcomes of misuse in any of the studies reviewed. Fears of misuse of misoprostol and increased adverse pregnancy outcomes if distributed at community level are not supported by evidence. Therefore, community-based distribution of misoprostol can be an appropriate strategy for reducing maternal deaths caused by postpartum hemorrhages, especially in resource-limited settings where many deliveries take place outside of health facilities.

Abbreviations
AMTSL Active Management of the Third Stage of Labor
CHW Community Health Workers
JBI Joanna Briggs Institute
MoH Ministry of Health
PPH Postpartum Hemorrhage
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RAC Research Advisory Council
RCT Randomized Controlled Trial
RMNCAH-N Reproductive, Maternal, Newborn, Child, Adolescent Health, and Nutrition
WHO World Health Organization

Declarations

Ethics Approval and Consent to Participate
Not applicable

Consent for Publication
Not applicable

Availability of Data and Materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing Interests
The authors declare that they have no competing interests.

Funding
The authors declare that they did not receive funding for this research from any source.

Authors’ Contributions

GT, BT, WM, YT, and AM conceptualized the paper. GT, MY, EG, and YT performed article search, data extraction, and data analysis. GT, BY, AM, WM, YT did interpretation and critical review. All authors contributed to the interpretation, commented on multiple versions, and approved the final manuscript.

Acknowledgments

We conducted this study in response to the national Reproductive, Maternal, Newborn, Child, Adolescent Health, and Nutrition (RMNCAH-N) Research Advisory Council (RAC) of the Ministry of Health (MoH) of Ethiopia’s request to produce evidence to inform the maternal health program. We would like to acknowledge the MoH for giving us this opportunity. The authors are grateful to Harvard University/Fenot Project for sponsoring the Report Writing Workshop. Researchers would also like to acknowledge Adey Abebe, Communication Specialist at JSI Research and Training Institute Inc., and Sarah Hurlburt, Deputy Director of Implementation for the Fenot project, for editing this manuscript.

References

1. WHO. Trends in Maternal Mortality: 1990 to 2015 Estimates by WHO, UNICEF, UNFPA. World Bank Group and the United Nations Population Division. Geneva, Switzerland: World health Organization; 2015.

2. WHO. Strategies toward ending preventable maternal mortality (EPMM). Geneva, Switzerland: World Health Organization; 2015.

3. Chou D, Daelmans B, Jolivet R, Kinney M, Say L. Ending preventable maternal and newborn mortality and stillbirths. British Medical Journal. 2015;351. doi:10.1136/bmj.h4255.

4. Robinson N, Kapungu C, Carnahan L, Geller S. Recommendations for scale-up of community-based misoprostol distribution programs. International Journal of Gynecology & Obstetrics. 2014;125(3):285-8.
5. Say L, Chou D, Gemmill A, Tunçalp Ö, Moller A-B, Daniels J et al. Global causes of maternal death: a WHO systematic analysis. The Lancet Global Health. 2014;2(6):e323-e33. doi:https://doi.org/10.1016/S2214-109X(14)70227-X.

6. Haeri S, Dildy GA. Maternal Mortality From Hemorrhage. Seminars in Perinatology. 2012;36(1):48-55. doi:https://doi.org/10.1053/j.semperi.2011.09.010.

7. WHO. Trends in maternal mortality: 1990 to 2008. Estimates developed by WHO, UNICEF, UNFPA and The World Bank. Geneva, Switzerland: World Health Organization 2010.

8. Mekonnen W, Gebremariam A. Causes of maternal death in Ethiopia between 1990 and 2016: systematic review with meta-analysis. Ethiopian Journal of Health Development. 2018;32(4).

9. EPHI. National MDSR annual report: 2008 EFY. Addis Ababa, Ethiopia: Ethiopian Public Health Institute; 2017.

10. Lancet. WOMAN: reducing maternal deaths with tranexamic acid. Lancet. 2017;389(10084):2081. doi:10.1016/s0140-6736(17)31111-x.

11. Ronsmans C, Graham WJ. Maternal mortality: who, when, where, and why. Lancet. 2006;368(9542):1189-200. doi:10.1016/s0140-6736(06)69380-x.

12. Wells E, Coeytaux F, Azasi E, Danmusa S, Geressu T, McNally T et al. Evaluation of different models of access to misoprostol at the community level to improve maternal health outcomes in Ethiopia, Ghana, and Nigeria. International Journal of Gynaecology & Obstetetrics. 2016;133(3):261-5. doi:10.1016/j.ijgo.2016.04.002.

13. Begley CM, Gyte GML, Devane D, McGuire W, Weeks A. Active versus expectant management for women in the third stage of labour. Cochrane Database of Systematic Reviews. 2015(3). doi:10.1002/14651858.CD007412.pub4.

14. WHO. WHO recommendations for the prevention and treatment of postpartum
haemorrhage. Geneva, Switzerland: World Health Organization; 2012.

15. Gülmezoglu AM, Lumbiganon P, Landoulsi S, Widmer M, Abdel-Aleem H, Festin M et al. Active management of the third stage of labour with and without controlled cord traction: a randomised, controlled, non-inferiority trial. The Lancet. 2012;379(9827):1721-7. doi:10.1016/S0140-6736(12)60206-2.

16. Hobday K, Hulme J, Belton S, Homer CS, Prata N. Community-based misoprostol for the prevention of post-partum haemorrhage: A narrative review of the evidence base, challenges and scale-up. Glob Public Health. 2018;13(8):1081-97. doi:10.1080/17441692.2017.1303743.

17. Oladapo OT. Misoprostol for preventing and treating postpartum hemorrhage in the community: a closer look at the evidence. International Journal of Gynecology & Obstetrics. 2012;119(2):105-10. doi:10.1016/j.ijgo.2012.08.004.

18. Prata N, Passano P, Bell S, Rowen T, Potts M. New hope: community-based misoprostol use to prevent postpartum haemorrhage. Health Policy and Planning. 2012;28(4):339-46.

19. Wise A, Clark V. Strategies to manage major obstetric haemorrhage. Current Opinion in Anesthesiology. 2008;21(3):281-7.

20. Smith HJ, Colvin CJ, Richards E, Roberson J, Sharma G, Thapa K et al. Programmes for advance distribution of misoprostol to prevent post-partum haemorrhage: a rapid literature review of factors affecting implementation. Health policy and planning. 2015;31(1):102-13.

21. Hofmeyr GJ, Gulmezoglu AM, Novikova N, Lawrie TA. Postpartum misoprostol for preventing maternal mortality and morbidity. Cochrane Database of Systematic Reviews. 2013(7):CD008982. doi:10.1002/14651858.CD008982.pub2.

22. Smith JM, Gubin R, Holston MM, Fullerton J, Prata N. Misoprostol for postpartum
hemorrhage prevention at home birth: an integrative review of global implementation experience to date. BMC pregnancy and childbirth. 2013;13(1):44.

23. Chu CS, Brhlikova P, Pollock AM. Rethinking WHO guidance: review of evidence for misoprostol use in the prevention of postpartum haemorrhage. Journal of the Royal Society of Medicine. 2012;105(8):336-47.

24. Prata N, Mbaruku G, Grossman AA, Holston M, Hsieh K. Community-based availability of misoprostol: is it safe? African Journal of Reproductive Health. 2009;13(2).

25. Starrs A, Winikoff B. Misoprostol for postpartum hemorrhage: moving from evidence to practice. International Journal of Gynaecology & Obstetetrics. 2012;116(1):1-3. doi:10.1016/j.ijgo.2011.10.005.

26. Spangler SA, Gobezayehu AG, Hailemariam TG, Sibley LM. Interpretation of national policy regarding community-based use of misoprostol for postpartum hemorrhage prevention in Ethiopia: a tale of two regions. Journal of Midwifery & Women's Health. 2014;59 Suppl 1:S83-90. doi:10.1111/jmwh.12154.

27. Samnani AABA, Rizvi N, Ali TS, Abrejo F. Barriers or gaps in implementation of misoprostol use for post-abortion care and post-partum hemorrhage prevention in developing countries: a systematic review. Reproductive health. 2017;14(1):139.

28. Lockwood C, Munn Z, Porritt K. Qualitative research synthesis: methodological guidance for systematic reviewers utilizing meta-aggregation. International journal of evidence-based healthcare. 2015;13(3):179-87.

29. Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L. Chapter 3: Systematic reviews of effectiveness. Joanna Briggs Institute Reviewer's Manual. The Joanna Briggs Institute; 2017.

30. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R et al. Chapter 7: Systematic reviews of etiology and risk. Joanna Briggs Institute Reviewer's Manual.
31. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of internal medicine. 2018;169(7):467-73.

32. Sterne JA, Palmer TM. Meta-analysis in Stata: an updated collection from the Stata Journal. 2 ed. StataCorp LP; 2016.

33. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons; 2011.

34. StataCorp. Stata: Release 15. Statistical Software. College Station, Texas: Stata Press; 2017.

35. Durham J, Phengsavanh A, Sychareun V, Hose I, Vongxay V, Xaysomphou D et al. Misoprostol for the prevention of postpartum hemorrhage during home births in rural Lao PDR: establishing a pilot program for community distribution. International Journal of Womens Health. 2018;10:215-27. doi:10.2147/IJWH.S150695.

36. Geller S, Carnahan L, Akosah E, Asare G, Agyemang R, Dickson R et al. Community-based distribution of misoprostol to prevent postpartum haemorrhage at home births: results from operations research in rural Ghana. International Journal of Obstetrics & Gynaecology. 2014;121(3):319-26.

37. Haver J, Ansari N, Zainullah P, Kim YM, Tappis H. Misoprostol for prevention of postpartum hemorrhage at home birth in Afghanistan: program expansion experience. Journal of midwifery & women's health. 2016;61(2):196-202.

38. Smith JM, Baawo SD, Subah M, Sirtor-Gbassie V, Howe CJ, Ishola G et al. Advance distribution of misoprostol for prevention of postpartum hemorrhage (PPH) at home births in two districts of Liberia. BMC pregnancy and childbirth. 2014;14(1):189.

39. Rajbhandari S, Hodgins S, Sanghvi H, McPherson R, Pradhan YV, Baqui AH. Expanding
uterotonic protection following childbirth through community-based distribution of misoprostol: Operations research study in Nepal. International Journal of Gynecology & Obstetrics. 2010;108(3):282-8.

40. Sibley LM, Spangler SA, Barry D, Tesfaye S, Desta BF, Gobezyayehu AG. A Regional Comparison of Distribution Strategies and Women's Awareness, Receipt, and Use of Misoprostol to Prevent Postpartum Hemorrhage in Rural Amhara and Oromiya Regions of Ethiopia. Journal of Midwifery & Women's Health. 2014;59(s1):S73-S82. doi:doi:10.1111/jmwh.12136.

41. Parashar R, Gupt A, Bajpayee D, Gupta A, Thakur R, Sangwan A et al. Implementation of community based advance distribution of misoprostol in Himachal Pradesh (India): lessons and way forward. BMC Pregnancy Childbirth. 2018;18(1):428. doi:10.1186/s12884-018-2036-2.

42. Rajbhandari SP, Aryal K, Sheldon WR, Ban B, Upreti SR, Regmi K et al. Postpartum hemorrhage prevention in Nepal: a program assessment. BMC Pregnancy Childbirth. 2017;17(1):169. doi:10.1186/s12884-017-1347-z.

43. Ononge S, Campbell OM, Kaharuza F, Lewis JJ, Fielding K, Mirembe F. Effectiveness and safety of misoprostol distributed to antenatal women to prevent postpartum haemorrhage after child-births: a stepped-wedge cluster-randomized trial. BMC Pregnancy Childbirth. 2015;15:315. doi:10.1186/s12884-015-0750-6.

44. Sanghvi H, Ansari N, Prata NJ, Gibson H, Ehsan AT, Smith JM. Prevention of postpartum hemorrhage at home birth in Afghanistan. International Journal of Gynecology & Obstetrics. 2010;108(3):276-81. doi:10.1016/j.ijgo.2009.12.003.

45. Derman RJ, Kodkany BS, Goudar SS, Geller SE, Naik VA, Bellad MB et al. Oral misoprostol in preventing postpartum haemorrhage in resource-poor communities: a randomised controlled trial. The Lancet. 2006;368(9543):1248-53.
46. Weeks AD, Ditai J, Ononge S, Faragher B, Frye LJ, Durocher J et al. The MamaMiso study of self-administered misoprostol to prevent bleeding after childbirth in rural Uganda: a community-based, placebo-controlled randomised trial. BMC Pregnancy Childbirth. 2015;15:219. doi:10.1186/s12884-015-0650-9.

47. Oladapo OT, Fawole B, Blum J, Abalos E. Advance misoprostol distribution for preventing and treating postpartum haemorrhage. Cochrane Database of Systematic Reviews. 2012(2). doi:10.1002/14651858.CD009336.pub2.

48. Collins L, Mmari K, Mullany LC, Gruber CW, Favero R. An exploration of village-level uterotonic practices in Fenerive-Est, Madagascar. BMC Pregnancy and Childbirth. 2016;16(1):69. doi:10.1186/s12884-016-0858-3.

49. Smith HJ, Colvin CJ, Richards E, Roberson J, Sharma G, Thapa K et al. Programmes for advance distribution of misoprostol to prevent post-partum haemorrhage: a rapid literature review of factors affecting implementation. Health Policy Plan. 2016;31(1):102-13. doi:10.1093/heapol/czv012.

Figures
Figure 1

Study flow diagram
Figure 2

Changes in facility delivery rate before and after the intervention

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

PRISMA ScR.pdf