Effects of telbivudine and entecavir for HBeAg-positive chronic hepatitis B: A meta-analysis

Qi-Min Su, Xiao-Guang Ye

Qi-Min Su, Xiao-Guang Ye, Department of Infectious Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China

Author contributions: Su QM was responsible for data acquisition, analysis and interpretation and drafted the manuscript; Ye XG conceived and designed the study, and revised the article critically for important intellectual content, and both authors read and approved the final version to be published.

Supported by Drug Research Fund of Hepatitis, Guangdong Pharmaceutical Association, No. 2012G01

Correspondence to: Dr. Xiao-Guang Ye, Department of Infectious Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China. yexiaoguang@126.com

Telephone: +86-20-34152236 Fax: +86-20-34153982

Received: May 13, 2012 Revised: August 6, 2012 Accepted: August 14, 2012

Published online: November 21, 2012

Abstract

AIM: To compare the effects of telbivudine (LDT) and entecavir (ETV) in treatment of hepatitis B e antigen (HBeAg)-positive chronic hepatitis B by meta-analysis.

METHODS: We conducted a literature search using PubMed, MEDLINE, EMBASE, the China National Knowledge Infrastructure, the VIP database, the Wanfang database and the Cochrane Controlled Trial Register for all relevant articles published before April 1, 2012. Randomized controlled trials (RCTs) comparing LDT with ETV for treatment of HBeAg-positive chronic hepatitis B were included. The data was analyzed with Review Manager Software 5.0. We used relative risk (RR) as an effect measure, and reported its 95% CI. Meta-analysis was performed using either a fixed-effect or random-effect model, based on the absence or presence of significant heterogeneity. Two reviewers assessed the risk of bias and extracted data independently and in duplicate. The analysis was executed using the main outcome parameters including hepatitis B virus (HBV) DNA undetectability, alanine aminotransferase (ALT) normalization, HBeAg loss, HBeAg seroconversion, drug-resistance, and adverse reactions. Meta-analysis of the included trials and subgroup analyses were conducted to examine the association between pre-specified characteristics with the therapeutic effects of the two agents.

RESULTS: Thirteen eligible trials (3925 patients in total) were included and evaluated for methodological quality and heterogeneity. In various treatment durations of 4 wk, 8 wk, 12 wk, 24 wk, 36 wk, 48 wk, 52 wk, 60 wk and 72 wk, the rates of HBV DNA undetectability and ALT normalization in the two groups were similar, without statistical significance. At 4 wk and 8 wk of the treatment, no statistical differences were found in the rate of HBeAg loss between the two groups, while the rate in the LDT group was higher than in the ETV group at 12 wk, 24 wk, 48 wk and 52 wk, respectively (RR 2.28, 95% CI 1.16, 7.03, P = 0.02; RR 1.45, 95% CI 1.16, 1.82, P = 0.001; RR 1.45, 95% CI 1.11, 1.89, P = 0.006; and RR 1.86, 95% CI 1.04, 3.32, P = 0.04). At 4 wk, 8 wk, 60 wk and 72 wk of the treatment, there were no significant differences in the rate of HBeAg seroconversion between the two groups, while at 12 wk, 24 wk, 48 wk and 52 wk, the rate in the LDT group was higher than in the ETV group (RR 2.10, 95% CI 1.36, 3.24, P = 0.0008; RR 1.71, 95% CI 1.29, 2.28, P = 0.0002; RR 1.86, 95% CI 1.36, 2.54, P < 0.0001; and RR 1.87, 95% CI 1.21, 2.90, P = 0.005). The rate of drug-resistance was higher in the LDT group than in the ETV group (RR 3.76, 95% CI 1.28, 11.01, P = 0.02). In addition, no severe adverse drug reactions were observed in the two groups. And the rate of increased creatine kinase in the LDT group was higher than in the ETV group (RR 5.58, 95% CI 2.22, 13.98, P = 0.0002).

CONCLUSION: LDT and ETV have similar virological and biomedical responses, and both are safe and well tolerated. However, LDT has better serological response and higher drug-resistance.
We searched PubMed, MEDLINE, EMBASE, China MATERIALS AND METHODS

Key words: Telbivudine; Entecavir; Hepatitis B e antigen-positive chronic hepatitis B; Randomized controlled trials; Meta-analysis

Peer reviewers: Yukihito Shimizu, MD, PhD, Kyoto Katsura Hospital, 17 Yamada-Hiroa, Nishikyo, Kyoto 615-8256, Japan; Dr. Bernardo Frider, MD, Professor, Head of Department of Medicine and Hepatology, Department of Hepatology, Hospital General de Agudos Cosme Argerich, Alte Brown 240, 1155 Buenos Aires, Argentina; Dr. Eberhard Hildt, Professor, Molecular Virology-NG1, Robert Koch Institute Nordufer 20, D-13353 Berlin, Germany

Su QM, Ye XG. Effects of telbivudine and entecavir for HBeAg-positive chronic hepatitis B: A meta-analysis. World J Gastroenterol 2012; 18(43): 6290-6301 Available from: URL: http://www.wjgnet.com/1007-9327/full/v18/i43/6290.htm DOI: http://dx.doi.org/10.3748/wjg.v18.i43.6290

INTRODUCTION

Chronic hepatitis B (CHB) infection is a major health problem affecting over 350 million people worldwide.[1,2] CHB can lead to various life-threatening conditions, such as liver failure, liver cirrhosis (LC) and hepatocellular carcinoma (HCC).[3] Hepatitis B virus (HBV) covalent closed circular DNA (cccDNA) is the main cause of the sustainability of the hepatitis virus, and it is difficult to completely eliminate it.[4] So the primary therapeutic goal is to sustain viral suppression. Current anti-viral medication includes interferon [interferon-alpha (IFN-α), and pegylated (PEG) IFN-α] and nucleosides or nucleoside analogues [entecavir (ETV), adefovir dipivoxil, telbivudine (LDT), and lamivudine (L)].[5] Recent studies have shown that LDT and ETV are the strongest nucleoside analogues. LDT (β-L-2′-deoxynucleoside) is an orally bioavailable L-nucleoside. It can effectively suppress HBV DNA replication, and has a higher rate of hepatitis B e antigen (HBeAg) seroconversion than other current oral antiviral agents.[6] However, its drug-resistance remains high.[7] ETV is a new generation nucleoside analogues. It has the advantage of higher rate of HBV DNA suppression, low drug-resistance and high safety, especially in lamivudine-resistant CHB patients.[8] But the rates of HBeAg loss and seroconversion are very low in ETV group, which is difficult to meet the withdrawal standards. There are few systematic reviews about the comparison of LDT and ETV. Therefore, we conducted a meta-analysis of the randomized controlled trials (RCTs) using the Cochrane methodology to explore the efficacy of LDT and ETV for clinical treatment of HBeAg-positive chronic hepatitis B.

RESULTS

National Knowledge Infrastructure, the VIP database, the Wanfang database and the Cochrane Controlled Trial Register for articles published up to April 1, 2012, using the following keywords: “HBeAg-positive chronic hepatitis B”, “telbivudine”, “entecavir”, and “RCTs”. The reference lists of eligible studies were also searched.

Inclusion criteria

The following inclusion criteria were used: (1) RCTs; (2) Articles studying HBeAg-positive chronic hepatitis B patients, according to diagnostic standards in “China guidelines for HBV management (2010)”[9]; (3) Studies comparing LDT (600 mg/d) with ETV (0.5 mg/d); and (4) The main outcome parameters included virological, biochemical, and serological responses [HBV DNA undetectability, alanine aminotransferase (ALT) normalization, HBeAg loss, HBeAg seroconversion, drug-resistance, and adverse reactions]. Virological response was defined as attainment of undetectable levels of HBV DNA. Determined by quantitative polymerase chain reaction, the threshold of detection was 1000 copies/mL or less in each corresponding study (Table 1). Biochemical response was defined as normalization of ALT levels to below the upper limit of normal (< 40 IU/mL). HBeAg loss was defined as HBeAg levels < 1.0 S/CO, HBeAg seroconversion was defined as HBeAg loss and the presence of anti-HBeAg, determined by microparticle enzyme immunoassay or enzyme-linked immunosorbent assay.

Exclusion criteria

The following exclusion criteria were used: (1) Nonrandomized controlled trials (NRCTs); (2) Insufficient analytical information regarding treatment schedule, follow-up, and outcomes; (3) Patients receiving interferon, nucleosides or nucleotides for CHB within 6 mo; (4) Patients coinfected with hepatitis A, C, D and E virus, cytomegalovirus, or human immunodeficiency virus; (5) Patients with liver failure, HCC, and liver-related complications caused by alcoholism, autoimmune disease, and cholestasis; and (6) Pregnant and breastfeeding patients.

Data extraction

Data extraction was assessed independently by two reviewers (Song LY and Zhang SR). Discrepancies were solved through discussions between the reviewers or by a third person. Systematic Reviews of Interventions Version 5.0.2 (Cochrane Collaboration, Oxford, United Kingdom) was used to assess risk of bias (adequate sequence generation, allocation concealment, blinding, incomplete outcome data addressed, free of selective reporting and free of other bias).[10] Basic information obtained from each eligible trial included study design, patient characteristics, number of two groups, treatment duration and related study results. Data were reviewed to eliminate duplicate reports of the same trial.

Statistical analysis

We used Review Manager Software 5.0 (Cochrane Collab-
oration, Oxford, United Kingdom) for the data analysis. For dichotomous data, we used relative risk (RR) as an effect measure, and reported its 95% CI. Meta-analysis was performed using either a fixed-effect or random-effect model, based on the absence or presence of significant heterogeneity.

Statistical heterogeneity between trials was evaluated by χ^2 and I^2 analysis. The fixed-effect method was used in the absence of statistically significant heterogeneity ($P \geq 0.1$), and the random-effect method was used when the heterogeneity test was statistically significant ($P < 0.1$). $P < 0.05$ was regarded as statistically significant. Subgroup analysis was performed to examine the association between pre-specified characteristics (treatment duration) and the therapeutic effect, sensitivity analysis was made to estimate result stability, and funnel plots were used to assess publication bias if more than five trials were included[11].

RESULTS

Characteristics and quality of studies

We initially identified 1165 abstracts, and after evaluating the full texts, we included 13 trials (12 in Chinese and one in English)[12-24] based on the pre-specified criteria. A total of 3925 patients were included: 1987 treated with LDT and 1938 treated with ETV. Table 1 shows the characteristics of the 13 trials. All these studies showed baseline comparability, 9 of them reported the baseline of two groups in detail[13-15,17,19,20,22-24], the other 4 presented no significant differences in gender, age and duration of treatment between the two groups[12,16,18,21]. Three described the methods of randomization in detail[13,14,24], nine reported randomization, but did not describe the method of randomization in detail[12,15,17-23], one reported allocation concealment[24] and two presented blinding method[22,24]. None of the trials referred to incomplete outcome data addressed, free of selective reporting, and free of other bias. Various risks of bias in the 13 trials. In addition, none of the trials reported mortality, life quality and liver cancer incidence are shown in Figure 1.

HBV DNA undetectability

All the trials reported the rate of HBV DNA undetectability. χ^2 and I^2 analyses showed no heterogeneity ($\chi^2 = 35.37, P = 0.74, I^2 = 0\%$); therefore, we used the fixed-effect method to analyze the data. The results showed that in various treatment durations of 4 wk, 8 wk, 12 wk, 24 wk, 36 wk, 48 wk, 52 wk, 60 wk and 72 wk, there were no statistical differences in the rate of HBV DNA undetectability between the two groups (RR 1.04, 95% CI 0.72, 1.49, $P = 0.85$; RR 0.98, 95% CI 0.74, 1.28, $P = 0.86$; RR 1.01, 95% CI 0.89, 1.15, $P = 0.83$; RR 1.06, 95% CI 0.99, 1.14, $P = 0.12$; RR 1.03, 95% CI 0.86, 1.37, $P = 1.24$; RR 1.02, 95% CI 0.95, 1.09, $P = 0.63$; RR 0.95, 95% CI 0.86, 1.05, $P = 0.29$; RR 1.02, 95% CI 0.83, 1.24, $P = 0.88$; and RR 0.95, 95% CI 0.80, 1.12, $P = 0.54$) (Figure 2A).

ALT normalization

Eleven trials reported the rate of ALT normalization[12,15,17,20,22,24]. χ^2 and I^2 analyses showed no heterogeneity ($\chi^2 = 32.22, P = 0.51, I^2 = 0\%$). At various treatment durations of 4 wk, 8 wk, 12 wk, 24 wk, 36 wk, 48 wk, 52 wk, 60 wk and 72 wk, there were no statistical differences in the rate of ALT normalization between the two groups (RR 1.08, 95% CI 0.81, 1.43, $P = 0.59$; RR 1.05, 95% CI 0.77, 1.43, $P = 0.77$; 0.95, 95% CI 0.80, 1.12, $P = 0.54$).
RR 1.05, 95% CI 0.94, 1.16, P = 0.40; RR 1.00, 95% CI 0.93, 1.08, P = 0.91; RR 0.95, 95% CI 0.67, 1.34, P = 0.78; RR 1.01, 95% CI 0.92, 1.11, P = 1.08; RR 0.94, 95% CI 0.86, 1.02, P = 0.14; RR 0.96, 95% CI 0.77, 1.19, P = 0.69; and RR 0.98, 95% CI 0.84, 1.13, P = 0.76 (Figure 2B).

HBeAg loss

Ten trials reported the rate of HBeAg loss\(^{[13-16,18,20-24]}\) and \(I^2\) analyses found no heterogeneity (\(\chi^2 = 38.84, P = 0.04\), \(I^2 = 36\%\)). At 4 wk and 8 wk of the treatment, no statistical differences in the rate of HBeAg loss were observed between the two groups (RR 2.89, 95% CI 0.31, 27.23, \(P = 0.35\); and RR 1.50, 95% CI 0.50, 4.46, \(P = 0.47\)). At 12 wk, 24 wk, 48 wk and 52 wk, the rate of HBeAg loss was higher in the LDT group than in the ETV group, and the difference between two groups was statistically significant (RR 2.28, 95% CI 1.16, 7.03, \(P = 0.02\); RR 1.45, 95% CI 1.16, 1.82, \(P = 0.001\); RR 1.45, 95% CI 1.11, 1.89, \(P = 0.006\); RR 1.86, 95% CI 1.04, 3.32, \(P = 0.04\)) (Figure 2C).

HBeAg seroconversion

All the trials reported the rate of HBeAg seroconversion. \(\chi^2\) and \(I^2\) analyses showed no heterogeneity (\(\chi^2 = 22.15, P = 0.85, I^2 = 0\%\)). At 4 wk, 8 wk, 60 wk and 72 wk of the treatment, the rate of HBeAg seroconversion in the two groups was similar, and no statistically significant differences were observed (RR 2.34, 95% CI 0.55, 9.92, \(P = 0.25\); RR 1.55, 95% CI 0.77, 3.12, \(P = 0.22\); RR 1.56, 95% CI 0.91, 2.67, \(P = 0.1\)). However, at 12 wk, 24 wk, 48 wk and 52 wk, the rate of HBeAg loss was higher in the LDT group than in the ETV group, with statistically significant difference between two groups (RR 2.1, 95% CI 1.36, 3.24, \(P = 0.0008\); RR 1.71, 95% CI 1.29, 2.28, \(P = 0.0002\); RR 1.86, 95% CI 1.36, 2.54, \(P < 0.0001\); RR 1.87, 95% CI 1.21, 2.90, \(P = 0.005\)) (Figure 2D).

Drug-resistance

Six trials reported drug-resistance\(^{[12-13,16,17,22,23]}\). \(\chi^2\) and \(I^2\) analyses showed no heterogeneity (\(\chi^2 = 0.63, P = 0.96\), \(I^2 = 0\%\)). The rate of drug-resistance was higher in the LDT group than in the ETV group, and the difference between two groups was statistically significant (RR = 3.76, 95% CI 1.28, 11.01, \(P = 0.02\)) (Figure 2E).

Adverse reactions

Ten trials reported on the adverse reactions\(^{[12-18,20,23,24]}\). No severe adverse reactions were observed in both groups. Common adverse reactions in the two groups included influenza-like symptoms such as fever, headache, fatigue, muscular stiffness, gastrointestinal upset such as nausea and diarrhea, alopecia and rash. Five of the trials reported the rate of increased creatine kinase (CK)\(^{[10,17,18,23,24]}\). \(\chi^2\) and \(I^2\) analyses showed no heterogeneity (\(\chi^2 = 1.06, P = 0.94, I^2 = 0\%\)). The rate of increased CK was higher in the LDT group than in the ETV group, the difference being statistically significant (RR 5.58, 95% CI 2.22, 13.98, \(P = 0.0002\)). But the increased CK recovered without any intervention, and did not influence the anti-HBV treatment (Figure 2F).

Statistical analysis

Meta-analysis was performed based on the rate of HBeAg seroconversion, using the fixed-effect model, and the minimum sample size trials were excluded\(^{[18]}\). Odds ratio (OR) of all sensitivity analyses was higher than 1 and statistically significant (\(P < 0.05\)) (Table 2).

Funnel plots

Funnel plots were performed based on the rate of HBV DNA undetectability. The results showed that funnel plots were symmetric and suggested that there was no publication bias (Figure 3).

DISCUSSION

The RCTs comparing LDT with ETV for patients with HBeAg-positive chronic hepatitis B were included, and meta-analyses on virology, serology, biochemical respons-
Su QM et al. Telbivudine and entecavir for CHB treatment

A	Study of subgroup	LDT	ETV	Risk ratio	Risk ratio		
	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.1.1 4 wk							
Ding et al	9	30	8	30	0.6%	1.13 [0.50, 2.52]	
Yu et al	2	92	1	85	0.1%	1.85 [0.17, 20.01]	
Liu et al	15	20	16	20	1.3%	0.94 [0.67, 1.31]	
Subtotal (95% CI)	142	135	2.0%	1.04 [0.72, 1.49]			
Total events	26	25					
Heterogeneity: $\chi^2 = 0.61, df = 2 (P = 0.74); I^2 = 0\%$							
Test for overall effect: $Z = 0.19 (P = 0.85)$							
1.1.2 8 wk							
Zhang et al	16	75	20	65	1.7%	0.69 [0.39, 1.22]	
Ding et al	12	30	11	30	0.9%	1.09 [0.57, 2.07]	
Zhao et al	9	42	12	39	1.0%	0.70 [0.33, 1.47]	
Yu et al	35	92	25	85	2.0%	1.29 [0.85, 1.97]	
Subtotal (95% CI)	239	219	5.5%	0.98 [0.74, 1.28]			
Total events	72	68					
Heterogeneity: $\chi^2 = 4.02, df = 3 (P = 0.26); I^2 = 25\%$							
Test for overall effect: $Z = 0.18 (P = 0.86)$							
1.1.3 12 wk							
Zhu et al	11	30	23	30	1.8%	0.48 [0.29, 0.80]	
Xu et al	21	30	17	30	1.3%	1.24 [0.84, 1.83]	
Zhang et al	34	75	34	65	2.9%	0.87 [0.62, 1.22]	
Ding et al	15	30	15	30	1.2%	1.00 [0.60, 1.66]	
Shi et al	20	40	20	40	1.6%	1.00 [0.65, 1.55]	
Zhao et al	19	42	20	39	1.6%	0.98 [0.56, 1.39]	
Zheng et al	28	65	23	66	1.8%	1.24 [0.80, 1.90]	
Yu et al	45	92	40	85	3.3%	1.04 [0.76, 1.41]	
Ye et al	24	46	15	46	1.2%	1.60 [0.97, 2.64]	
Liu et al	17	20	17	20	1.3%	1.00 [0.77, 1.30]	
Zhou et al	23	52	25	63	1.8%	1.11 [0.72, 1.72]	
Subtotal (95% CI)	522	514	19.7%	1.01 [0.90, 1.15]			
Total events	257	249					
Heterogeneity: $\chi^2 = 14.74, df = 10 (P = 0.14); I^2 = 32\%$							
Test for overall effect: $Z = 0.21 (P = 0.83)$							
1.1.4 24 wk							
Zhu et al	18	30	21	30	1.6%	0.86 [0.59, 1.25]	
Xu et al	26	30	22	30	1.7%	1.18 [0.91, 1.53]	
Zhao et al	26	30	24	30	1.9%	1.08 [0.86, 1.36]	
Zhang et al	51	75	43	65	3.6%	1.03 [0.81, 1.30]	
Ding et al	17	30	21	30	1.6%	0.81 [0.55, 1.20]	
Shi et al	32	40	28	40	2.2%	1.14 [0.89, 1.48]	
Zhao et al	29	42	26	42	2.0%	1.12 [0.82, 1.52]	
Zheng et al	44	65	38	66	3.0%	1.18 [0.90, 1.53]	
Yu et al	72	92	57	85	4.6%	1.17 [0.97, 1.40]	
Ye et al	33	46	34	48	2.6%	1.01 [0.78, 1.31]	
Liu et al	17	20	17	20	1.3%	1.00 [0.77, 1.30]	
Zhou et al	42	52	52	63	3.7%	0.98 [0.82, 1.17]	
Subtotal (95% CI)	552	549	29.9%	1.06 [0.99, 1.14]			
Total events	407	383					
Heterogeneity: $\chi^2 = 7.04, df = 11 (P = 0.80); I^2 = 0\%$							
Test for overall effect: $Z = 1.57 (P = 0.12)$							
1.1.5 36 wk							
Ding et al	20	30	22	30	1.7%	0.91 [0.65, 1.27]	
Zhou et al	40	52	44	63	3.1%	1.10 [0.88, 1.37]	
Subtotal (95% CI)	82	93	4.8%	1.03 [0.86, 1.24]			
Total events	60	66					
Heterogeneity: $\chi^2 = 0.89, df = 1 (P = 0.34); I^2 = 0\%$							
Test for overall effect: $Z = 0.35 (P = 0.73)$							
1.1.6 48 wk							
Zhao et al	28	36	26	36	2.0%	1.08 [0.82, 1.41]	
Ding et al	21	30	23	30	1.8%	0.91 [0.67, 1.24]	
Zhao et al	34	42	31	39	2.5%	1.02 [0.82, 1.26]	
Yu et al	83	92	71	85	5.8%	1.08 [0.96, 1.21]	
Ye et al	40	46	41	46	3.2%	0.98 [0.84, 1.13]	
Liu et al	18	20	18	20	1.4%	1.00 [0.81, 1.23]	
Zhou et al	42	52	52	63	3.7%	0.98 [0.82, 1.17]	
Subtotal (95% CI) 318 319 20.4% 1.02 [0.95, 1.09]
Total events 266 262
Heterogeneity: $\chi^2 = 2.19$, df = 6 ($P = 0.90$); $I^2 = 0$
Test for overall effect: $Z = 0.48$ ($P = 0.63$)

1.1.7 52 wk
Huang et al 71 90 80 90 6.3% 0.89 [0.78, 1.01]
Zhang et al 62 75 52 65 4.4% 1.03 [0.88, 1.21]
Subtotal (95% CI) 165 155 10.6% 0.95 [0.86, 1.05]
Total events 133 132
Heterogeneity: $\chi^2 = 2.11$, df = 1 ($P = 0.15$); $I^2 = 53$
Test for overall effect: $Z = 1.05$ ($P = 0.29$)

1.1.8 60 wk
Zhao et al 35 42 32 39 2.6% 1.02 [0.83, 1.24]
Subtotal (95% CI) 42 39 2.6% 1.02 [0.83, 1.24]
Total events 35 32
Heterogeneity: Not applicable
Test for overall effect: $Z = 0.15$ ($P = 0.88$)

1.1.9 72 wk
Zhang et al 58 75 53 65 4.4% 0.95 [0.80, 1.12]
Subtotal (95% CI) 75 65 4.4% 0.95 [0.80, 1.12]
Total events 58 53
Heterogeneity: Not applicable
Test for overall effect: $Z = 0.62$ ($P = 0.54$)

Total (95% CI) 2137 2088 100.0% 1.02 [0.98, 1.06]
Total events 1314 1270
Heterogeneity: $\chi^2 = 35.78$, df = 42 ($P = 0.74$); $I^2 = 0$

1.2.1 4 wk
Ding et al 8 30 7 30 0.7% 1.14 [0.47, 2.75]
Liu et al 19 20 18 20 1.8% 1.06 [0.88, 1.26]
Subtotal (95% CI) 50 50 2.5% 1.08 [0.81, 1.43]
Total events 27 25
Heterogeneity: $\chi^2 = 0.08$, df = 1 ($P = 0.78$); $I^2 = 0$
Test for overall effect: $Z = 0.53$ ($P = 0.59$)

1.2.2 8 wk
Zhang et al 27 75 23 65 2.4% 1.02 [0.65, 1.59]
Ding et al 13 30 12 30 1.2% 1.08 [0.59, 1.97]
Zhao et al 15 42 13 39 1.3% 1.07 [0.59, 1.95]
Subtotal (95% CI) 147 134 4.9% 1.05 [0.77, 1.43]
Total events 55 48
Heterogeneity: $\chi^2 = 0.03$, df = 2 ($P = 0.98$); $I^2 = 0$
Test for overall effect: $Z = 0.30$ ($P = 0.77$)

1.2.3 12 wk
Zhao et al 16 30 22 30 2.0% 0.73 [0.49, 1.08]
Xu et al 15 30 18 30 1.8% 0.83 [0.53, 1.32]
Zhang et al 56 75 43 65 4.5% 1.13 [0.91, 1.40]
Ding et al 15 30 16 30 1.6% 0.94 [0.57, 1.53]
Shi et al 21 40 24 40 2.4% 0.88 [0.59, 1.29]
Zhao et al 30 42 27 39 2.7% 1.03 [0.78, 1.37]
Zheng et al 56 65 38 65 3.7% 1.47 [1.17, 1.85]
Ye et al 23 46 25 46 2.5% 0.92 [0.62, 1.36]
Liu et al 19 20 18 20 1.8% 1.06 [0.88, 1.26]
Subtotal (95% CI) 378 365 23.0% 1.05 [0.94, 1.16]
Total events 251 231
Heterogeneity: $\chi^2 = 14.80$, df = 8 ($P = 0.06$); $I^2 = 46$
Test for overall effect: $Z = 0.84$ ($P = 0.40$)

1.2.4 24 wk
Zhao et al 22 30 27 30 2.6% 0.81 [0.64, 1.04]
Xu et al 23 30 27 30 2.6% 0.85 [0.68, 1.07]
Zhao et al 28 36 26 36 2.5% 1.08 [0.82, 1.41]
Zhang et al 57 75 44 65 4.6% 1.12 [0.91, 1.39]
Ding et al 16 30 18 30 1.8% 0.89 [0.57, 1.39]
Su QM et al. Telbivudine and entecavir for CHB treatment

Shi et al 31 40 30 40 2.9% 1.03 [0.81, 1.32]
Zhao et al 32 42 29 39 2.9% 1.02 [0.80, 1.32]
Zheng et al 51 65 49 66 4.8% 1.06 [0.87, 1.28]
Ye et al 39 46 40 46 3.9% 0.97 [0.83, 1.15]
Liu et al 18 20 17 20 1.7% 1.06 [0.84, 1.34]
Subtotal (95% CI) 414 402 30.5% 1.00 [0.93, 1.08]

Total events 317 307
Heterogeneity: $\chi^2 = 7.01$, df = 9 ($P = 0.64$); $I^2 = 0$
Test for overall effect: $Z = 0.11$ ($P = 0.91$)

Zhao et al 32 42 29 39 2.9% 1.02 [0.80, 1.32]
Zheng et al 51 65 49 66 4.8% 1.06 [0.87, 1.28]
Ye et al 39 46 40 46 3.9% 0.97 [0.83, 1.15]
Liu et al 18 20 17 20 1.7% 1.06 [0.84, 1.34]
Subtotal (95% CI) 414 402 30.5% 1.00 [0.93, 1.08]

Total events 317 307
Heterogeneity: $\chi^2 = 7.01$, df = 9 ($P = 0.64$); $I^2 = 0$
Test for overall effect: $Z = 0.11$ ($P = 0.91$)

Zheng et al 51 65 49 66 4.8% 1.06 [0.87, 1.28]
Ye et al 39 46 40 46 3.9% 0.97 [0.83, 1.15]
Liu et al 18 20 17 20 1.7% 1.06 [0.84, 1.34]
Subtotal (95% CI) 414 402 30.5% 1.00 [0.93, 1.08]

Total events 317 307
Heterogeneity: $\chi^2 = 7.01$, df = 9 ($P = 0.64$); $I^2 = 0$
Test for overall effect: $Z = 0.11$ ($P = 0.91$)

1.2.5 36 wk

Ding et al 20 30 21 30 2.1% 0.95 [0.67, 1.34]
Subtotal (95% CI) 30 30 2.1% 0.95 [0.67, 1.34]

Total events 20 21
Heterogeneity: Not applicable
Test for overall effect: $Z = 0.28$ ($P = 0.78$)

1.2.6 48 wk

Zhao et al 30 36 28 36 2.7% 1.07 [0.85, 1.35]
Ding et al 23 30 24 30 2.4% 0.96 [0.73, 1.25]
Zhao et al 30 36 28 36 2.7% 1.07 [0.85, 1.35]
Ye et al 43 46 42 46 4.1% 1.02 [0.91, 1.15]
Liu et al 18 20 18 20 1.8% 1.00 [0.81, 1.23]
Subtotal (95% CI) 174 171 14.1% 1.01 [0.92, 1.11]

Total events 147 143
Heterogeneity: $\chi^2 = 0.50$, df = 4 ($P = 0.97$); $I^2 = 0$
Test for overall effect: $Z = 0.24$ ($P = 0.81$)

Huang et al 75 90 86 90 8.4% 0.87 [0.79, 0.97]
Zhang et al 62 75 52 65 5.5% 1.03 [0.88, 1.21]
Subtotal (95% CI) 137 138 13.9% 0.94 [0.86, 1.02]

Total events 137 138
Heterogeneity: $\chi^2 = 3.29$, df = 1 ($P = 0.07$); $I^2 = 70$
Test for overall effect: $Z = 1.46$ ($P = 0.14$)

1.2.8 60 wk

Zhao et al 33 42 32 39 3.3% 0.96 [0.77, 1.19]
Subtotal (95% CI) 42 39 3.3% 0.96 [0.77, 1.19]

Total events 33 32
Heterogeneity: Not applicable
Test for overall effect: $Z = 0.39$ ($P = 0.69$)

1.2.9 72 wk

Zhang et al 62 75 55 65 5.8% 0.98 [0.84, 1.13]
Subtotal (95% CI) 127 120 10.1% 0.98 [0.84, 1.13]

Total events 62 55
Heterogeneity: Not applicable
Test for overall effect: $Z = 0.31$ ($P = 0.76$)

Total (95% CI) 1475 1411 100.0% 1.01 [0.96, 1.05]

Total events 1049 1000
Heterogeneity: $\chi^2 = 32.22$, df = 33 ($P = 0.51$); $I^2 = 0$
Test for overall effect: $Z = 0.23$ ($P = 0.82$)

Test for subgroup differences: Not applicable.

Study of subgroup	LDT Events	LDT Total	ETV Events	ETV Total	Weight	Risk ratio M-H, Random, 95% CI	Risk ratio M-H, Random, 95% CI
1.3.1 4 wk							
Ding et al	1	30	0	30	0.5%	3.00 [0.13, 70.83]	
Yu et al	1	92	0	85	0.5%	2.77 [0.11, 67.19]	
Liu et al	0	20	0	20	Not estimable		
Subtotal (95% CI)	142	135	0.9%	2.89 [0.31, 27.23]			
Total events	2	0					
Heterogeneity:	Tau2 = 0.00; $\chi^2 = 0.00$, df = 1 ($P = 0.97$); $I^2 = 0$						
Test for overall effect: $Z = 0.93$ ($P = 0.35$)							

1.3.2 8 wk

Ding et al 2 30 1 30 0.8% 2.00 [0.19, 20.90]
Yu et al 6 92 4 85 2.6% 1.39 [0.40, 4.79]
Subtotal (95% CI) 122 115 3.4% 1.50 [0.50, 4.46]

Total events 8 5

Test for overall effect: $Z = 0.35$ ($P = 0.72$)

Test for subgroup differences: Not applicable.
Su QM et al. Telbivudine and entecavir for CHB treatment

Heterogeneity: \(\tau^2 = 0.00; \chi^2 = 0.07, df = 1 (P = 0.79); I^2 = 0\%

Test for overall effect: \(Z = 0.73 (P = 0.47) \)

1.3.3 12 wk

Study of subgroup	LDT	ETV	Total	Weight	Risk ratio M-H, Fixed, 95% CI
Zhu et al	6	30	14	30	4.7% 0.43 [0.19, 0.96]
Xu et al	11	30	5	30	4.0% 2.20 [0.87, 5.57]
Ding et al	5	30	3	30	2.2% 1.67 [0.44, 6.36]
Shi et al	12	40	2	40	2.0% 6.00 [1.43, 25.11]
Zheng et al	13	65	2	66	2.0% 6.60 [1.55, 28.10]
Yu et al	27	97	4	85	3.5% 5.91 [2.16, 16.22]
Ye et al	3	46	0	46	0.5% 7.00 [0.37, 131.81]
Liu et al	3	20	0	20	0.5% 7.00 [0.38, 127.32]
Subtotal (95% CI)	358	347			19.5% 2.86 [1.16, 7.03]

Total events 80

Heterogeneity: \(\tau^2 = 1.10; \chi^2 = 25.62, df = 7 (P = 0.0006); I^2 = 73\%

Test for overall effect: \(Z = 2.29 (P = 0.02) \)

1.3.4 24 wk

Study of subgroup	LDT	ETV	Total	Weight	Risk ratio M-H, Fixed, 95% CI
Zhu et al	8	30	10	30	5.0% 0.80 [0.37, 1.74]
Xu et al	14	30	6	30	4.7% 2.33 [1.04, 5.25]
Ding et al	7	30	5	30	3.4% 1.40 [0.50, 3.92]
Shi et al	18	40	13	40	7.2% 1.38 [0.79, 2.43]
Zheng et al	24	65	19	66	8.0% 1.28 [0.78, 2.10]
Yu et al	44	92	27	85	9.7% 1.51 [1.03, 2.20]
Ye et al	10	46	3	46	2.6% 3.33 [0.98, 11.33]
Liu et al	4	20	2	20	1.7% 2.00 [0.41, 9.71]
Subtotal (95% CI)	353	347			42.3% 1.45 [1.16, 1.82]

Total events 129

Heterogeneity: \(\tau^2 = 0.00; \chi^2 = 5.83, df = 7 (P = 0.56); I^2 = 0\%

Test for overall effect: \(Z = 3.22 (P = 0.001) \)

1.3.6 48 wk

Study of subgroup	LDT	ETV	Total	Weight	Risk ratio M-H, Fixed, 95% CI
Ding et al	10	30	6	30	4.3% 1.67 [0.69, 4.00]
Yu et al	47	92	35	85	10.5% 1.24 [0.90, 1.71]
Ye et al	20	46	10	46	6.3% 2.00 [1.05, 3.79]
Liu et al	8	20	2	20	2.0% 4.00 [0.97, 16.55]
Zhou et al	8	52	7	63	3.8% 1.38 [0.54, 3.56]
Subtotal (95% CI)	240	244			27.0% 1.45 [1.11, 1.89]

Total events 93

Heterogeneity: \(\tau^2 = 0.00; \chi^2 = 4.06, df = 4 (P = 0.40); I^2 = 2\%

Test for overall effect: \(Z = 2.75 (P = 0.006) \)

1.3.7 52 wk

Study of subgroup	LDT	ETV	Total	Weight	Risk ratio M-H, Fixed, 95% CI
Huang et al	26	90	14	90	7.0% 1.86 [1.04, 3.32]
Subtotal (95% CI)	90	90			7.0% 1.86 [1.04, 3.32]

Total events 26

Heterogeneity: Not applicable

Test for overall effect: \(Z = 2.09 (P = 0.04) \)

Total (95% CI) 1305 1278 100.0% 1.68 [1.35, 2.09]

Total events 338 194

Heterogeneity: \(\tau^2 = 38.84, df = 25 (P = 0.04); I^2 = 36\%

Test for overall effect: \(Z = 4.66 (P < 0.00001) \)

D

Study of subgroup	LDT	ETV	Total	Weight	Risk ratio M-H, Fixed, 95% CI
1.4 4 wk					
Yu et al	0	92	0	85	Not estimable
Liu et al	0	20	0	20	Not estimable
Subtotal (95% CI)	112	105			Not estimable

Total events 0

Heterogeneity: Not applicable

Test for overall effect: Not applicable

1.4 2 8 wk

Study of subgroup	LDT	ETV	Total	Weight	Risk ratio M-H, Fixed, 95% CI
Zhang et al	3	75	1	65	0.6% 2.60 [0.28, 24.39]
Zhao et al	2	42	1	39	0.5% 1.86 [0.18, 19.68]
Yu et al	1	92	0	85	0.3% 2.77 [0.11, 67.19]
Subtotal (95% CI)	209	189	1.4%	2.34 [0.55, 9.92]	

Total events 6

Heterogeneity: \(\tau^2 = 0.06, df = 2 (P = 0.97); I^2 = 0\%

Test for overall effect: \(Z = 1.16 (P = 0.25) \)
Su QM et al. Telbivudine and entecavir for CHB treatment

1.4.3 12 wk
Zhu et al 4 30 11 30 5.8% 0.36 [0.13, 1.01]
Xu et al 8 30 2 30 1.1% 4.00 [0.92, 17.30]
Zhang et al 6 75 3 65 1.7% 1.73 [0.45, 6.66]
Shi et al 8 40 2 40 1.1% 4.00 [0.90, 17.68]
Zhao et al 3 42 2 39 1.1% 1.39 [0.25, 7.90]
Zheng et al 9 65 2 66 1.0% 4.57 [1.03, 20.34]
Yu et al 21 92 5 85 2.7% 3.88 [1.53, 9.83]
Ye et al 0 46 0 46 Not estimable
Liu et al 0 20 0 20 Not estimable
Subtotal (95% CI) 440 421 14.5% 2.10 [1.36, 3.24]

Total events 59 27
Heterogeneity: $\chi^2 = 15.69$, df = 6 ($P = 0.02$); $I^2 = 62%$
Test for overall effect: $Z = 3.36$ ($P = 0.0008$)

1.4.4 24 wk
Zhu et al 8 30 6 30 3.2% 1.33 [0.53, 3.38]
Xu et al 12 30 6 30 3.2% 2.00 [0.86, 4.63]
Zhao et al 12 75 6 65 3.4% 1.73 [0.69, 4.36]
Shi et al 11 40 7 40 3.7% 1.57 [0.68, 3.64]
Zhao et al 6 42 4 39 2.2% 1.39 [0.42, 4.57]
Zheng et al 16 65 9 66 4.7% 1.81 [0.86, 3.79]
Yu et al 26 92 14 85 7.7% 1.72 [0.96, 3.06]
Ye et al 7 46 2 46 1.1% 3.50 [0.92, 12.60]
Liu et al 0 46 0 46 Not estimable
Subtotal (95% CI) 476 457 32.6% 1.71 [1.29, 2.26]

Total events 107 60
Heterogeneity: $\chi^2 = 2.52$, df = 9 ($P = 0.98$); $I^2 = 0$
Test for overall effect: $Z = 3.71$ ($P = 0.0002$)

1.4.5 48 wk
Zhao et al 10 36 7 36 3.7% 1.43 [0.61, 3.34]
Ding et al 8 30 5 30 2.6% 1.60 [0.59, 4.33]
Zhao et al 15 42 9 39 4.9% 1.55 [0.77, 3.12]
Yu et al 37 92 18 85 9.9% 1.90 [1.18, 3.07]
Ye et al 12 46 4 46 2.1% 3.00 [1.04, 8.62]
Liu et al 4 20 0 20 0.3% 9.00 [0.52, 156.91]
Zhou et al 3 52 3 63 1.4% 1.21 [0.26, 5.75]
Subtotal (95% CI) 318 319 25.0% 1.86 [1.36, 2.54]

Total events 89 46
Heterogeneity: $\chi^2 = 2.97$, df = 6 ($P = 0.81$); $I^2 = 0$
Test for overall effect: $Z = 3.89$ ($P < 0.0001$)

1.4.6 52 wk
Huang et al 25 90 13 90 6.9% 1.92 [1.05, 3.52]
Zhang et al 23 75 11 65 6.2% 1.81 [0.96, 3.43]
Subtotal (95% CI) 165 155 13.1% 1.87 [1.21, 2.90]

Total events 48 24
Heterogeneity: $\chi^2 = 0.02$, df = 1 ($P = 0.89$); $I^2 = 0$
Test for overall effect: $Z = 2.80$ ($P = 0.005$)

1.4.7 60 wk
Zhao et al 15 42 9 39 4.9% 1.55 [0.77, 3.12]
Subtotal (95% CI) 42 39 4.9% 1.55 [0.77, 3.12]

Total events 15
Heterogeneity: Not applicable
Test for overall effect: $Z = 1.22$ ($P = 0.22$)

1.4.8 72 wk
Zhang et al 27 75 15 65 8.5% 1.56 [0.91, 2.67]
Subtotal (95% CI) 75 65 8.5% 1.56 [0.91, 2.67]

Total events 27
Heterogeneity: Not applicable
Test for overall effect: $Z = 1.62$ ($P = 0.10$)

Total (95% CI) 1837 1750 100.0% 1.81 [1.55, 2.13]

Total events 351 183
Heterogeneity: $\chi^2 = 22.15$, df = 30 ($P = 0.85$); $I^2 = 0$
Test for overall effect: $Z = 7.29$ ($P < 0.00001$)
Test for subgroup differences: Not applicable.
Su QM et al. Telbivudine and entecavir for CHB treatment

Table 2 Sensitivity analysis

Index	Total HBeAg loss	OR (95% CI)	P value
Excluding the minimum sample size trials	1.64 [1.31, 2.05]	<0.0010	
Using random-effect model	1.68 [1.35, 2.09]	<0.0001	
Using fixed-effect model	1.69 [1.46, 1.97]	<0.0001	

OR: Odds ratio; HBeAg: Hepatitis B e antigen.

ability between the two groups. This suggested that both LDT and ETV have rapid and effective anti-viral activity and the result is similar with a large sample size study[29]. In addition, there was also no significant difference in the rate of ALT normalization between the two drugs.

HBeAg is a protein expressed by pre-C gene. HBeAg loss occurs with the rise of immunomodulatory effect which can suppress HBV DNA replication. HBeAg seroconversion has been established as a key marker of treatment response and is associated with improved clinical outcomes. It is one of the significant withdrawal standards for HBeAg-positive patients and suggests that patients can obtain sustained immune response[30]. The results of the meta-analysis showed that at 4 wk and 8 wk of the treatment, the rates of HBeAg loss and HBeAg seroconversion were similar, with no statistical difference between the two groups, while at 12 wk, 24 wk, 48 wk and 52 wk, the rate was higher in the LDT group than in the ETV group, the difference being statistically significant. At 60 wk and 72 wk, there was no significant difference in the rate of HBeAg seroconversion between the two groups. These results suggested that the rates of HBeAg loss and HBeAg seroconversion in the short-term and medium-
term treatment were higher in the LDT group than in the ETV group. So LDT can be used as a primary drug for HBeAg-positive patients. However, its long-term efficacy needs to be further explored.

The higher rate of HBeAg seroconversion during LDT treatment might be associated with the potential immunomodulatory effect of LDT. CHB is a viral as well as an immunological disease. Specific immune function is impaired in the patients with CHB. Many studies suggested that LDT promoted T-helper 1 cytokine and CD4+/CD8+ cell production, but only downregulated programmed death ligand 1, regulatory T cell and T-helper 2 cytokine production. These immunomodulatory effects increase the rate of HBeAg seroconversion.

ETV has a high generative to resistance. The meta-analysis (Figure 2E) showed that the rate of drug-resistance was higher in the LDT group (4.69%) than in the ETV group (0.75%), the difference being statistically significant between the two groups. ETV has a lower drug-resistance than LDT and it is preferred for long-term anti-HBV activity.

The meta-analysis (Figure 2F) showed no severe adverse reactions in the two groups. Although the rate of increased CK in the LDT group was higher than in the ETV group, CK can recover without any intervention, and does not influence the anti-HBV treatment. These results suggest that both LDT and ETV are safe and well tolerated.

COMMENTS

Background

Chronic hepatitis B (CHB) infection is a major health problem affecting over 350 million people worldwide. CHB can lead to a number of life-threatening conditions such as liver failure, liver cirrhosis and hepatocellular carcinoma. Recent studies have shown that telbivudine (LDT) and entecavir (ETV) are the strongest nucleoside analogues in the treatment of CHB. But there are few systematic reviews about the comparison of LDT and ETV.

Research frontiers

LDT is an orally bioavailable L-nucleoside. It can rapidly and effectively suppress HBV DNA replication, but it has a higher drug-resistance. ETV is a new generation nucleoside analogues. It has the advantage of a higher rate of HBV DNA suppression, low drug-resistance and high safety, especially in lamivudine-resistant CHB patients. But the rate of resistance to LDT is lower than that of ETV and HBeAg seroconversion was very low, which is difficult to meet the withdrawal standards.

Innovations and breakthroughs

There are few systematic reviews about the efficacy of LDT and ETV in the CHB treatment. The authors conducted a meta-analysis of the included randomized controlled trials using the Cochrane methodology and explored the efficacy of LDT and ETV for clinical treatment of HBeAg-positive chronic hepatitis B.

Applications

The results of this meta-analysis suggest that LDT and ETV have similar virological and biomedical response, and both are safe and well tolerated. However, LDT has better serological response and higher rate of drug-resistance.

Peer review

This study reviewed 13 trials comparing the effects of telbivudine and entecavir for patients with chronic HBeAg-positive chronic hepatitis B infection. Based on their analyses, the authors conclude that LDT and ETV exert an effective antiviral effect on HBV. Regarding the undetectability and ALT normalization, there was no big difference between the two drugs. The analysis was carefully performed, and the results were clearly presented and summarized, which provided valuable advice for clinical treatment of CHB.

REFERENCES

1. Cao GW. Clinical relevance and public health significance of hepatitis B virus genomic variations. World J Gastroenterol 2009; 15: 5761-5769
2. Wright TL. Introduction to chronic hepatitis B infection. Am J Gastroenterol 2006; 101 Suppl 1: S1-S6
3. Zoulim F, Locarnini S. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology 2009; 137: 1593-1608. e1-e2
4. Wursthorn K, Lutgehetmann M, Dandri M, Volz T, Buggisch P, Zollner B, Longerich T, Schirmacher P, Metzler F, Zankel M, Fischer C, Currie G, Broschart G, Petersen J. Peginterferon alpha-2b plus adefovir induce strong cccDNA decline and HBV reduction in patients with chronic hepatitis B. Hepatology 2006; 44: 675-684
5. Sheng YJ, Liu JY, Tong SW, Hu HD, Zhang DZ, Hu P, Ren H. Lamivudine plus adefovir combination therapy versus entecavir monotherapy for lamivudine-resistant chronic hepatitis B: a systematic review and meta-analysis. Viral J 2011; 8: 393
6. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009; 373: 382-392
7. Lai CL, Gane E, Liaw YF, Hsu CW, Thongsawat S, Wang Y, Chen Y, Heddleston EJ, Rasenack J, Bzowej N, Naoumov NV, Di Bisceglie AM, Zoulim S, Moon YM, Goodman Z, Chao G, Constance BF, Brown NA. Telbivudine versus lamivudine in patients with chronic hepatitis B. N Engl J Med 2007; 357: 2576-2588
8. Chang TT, Gish RG, Hadziyannis SJ, Cianciara J, Rizzetto M, Schiff ER, Pastore G, Bacon BR, Poynard T, Joshi S, Kleszewski KS, Thiry A, Rose RE, Colombo RJ, Hindes RG. A dose-ranging study of the efficacy and tolerability of entecavir in Lamivudine-refractory chronic hepatitis B patients. Gastroenterology 2005; 129: 1198-1209
9. Chinese Society of Hepatology, Society of Infectious Diseases. China guidelines for HBV management. Zhonghua Ganzangbing ZaZhi 2011; 19: 13-24
10. Higgins JPT, Green S, Altman DG, editors. Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Book Series. Chichester, West Sussex, UK: John Wiley and Sons Ltd., 2008. Chapter 8. Assessing risk of bias in included studies
11. Wang JI, Wang B. Clinical epidemiology: Clinical scientific research and design, measure and evaluation. Shanghai: Shanghai Scientific and Technical Publishers, 2009: 1-536
12. Zhao JZ. A comparison of telbivudine and entecavir for treatment of the patients with chronic hepatitis B. Zhongguo Biaoqian 2009; 17: 846-847
13. Zhu FY. Twenty-four week results of entecavir versus telbivudine treatment in patients with HBeAg-positive chronic hepatitis B. Linchuang Junti ZaZhi 2011; 39: 14-16
14. Zhou Y, Li JP, Guan YJ. Study on the efficacy between entecavir and telbivudine in treating chronic hepatitis B patients. Zhongguo Yique ZaZhi 2010; 30: 2004-2007
15. Xu HX, Yu YX, Zhang MX, Wu YP, Liu XX, Chen Y. Application of telbivudine and entecavir in the treatment of patients with HBeAg-positive chronic hepatitis B. Shangying Ganzangbing ZaZhi 2011; 14: 265-267
16. Ye WF, Chen ZT, Wu JC, Gan JH. Short-term efficacy of telbivudine in patients with HBeAg-positive chronic hepatitis B. Shichu Daxue Xuebao 2009; 29: 343-344
17. Zhang JZ, Yang BY, Chen K, Zhang CL, Yao XA, Zhao LZ, Tan YZ. Efficacy of telbivudine versus that of entecavir for HBeAg-positive chronic hepatitis B. Zhonghua Ganzangbing ZaZhi 2010; 26: 2609-2611
18. Liu W. Forty-eight wk results of entecavir and telbivudine treatment in patients with chronic hepatitis B. Zhongyi Jiehe Gaoxing ZaZhi 2010; 20: 366-367
19. Zhao LF, Jiang Y, Wang Y. Efficacy of telbivudine versus
that of entecavir for HBeAg-positive chronic hepatitis B. Shijiang Yixue ZaZhi 2011; 18: 71-72

20 Shi KQ, Zhang DZ, Guo SH, He H, Wang ZY, Shi XF, Zeng WQ, Ren H. Short-term results of telbivudine versus entecavir treatments in HBeAg-positive chronic hepatitis B patients in China. Yantu Yu Linchuang 2008; 16: 641-645

21 Yu P, Huang LH, Wang JH. Efficacy of telbivudine and entecavir in patients with primary treated chronic hepatitis B. Zhongguo Jiehe Ganqing ZaZhi 2010; 20: 117-118

22 Huang J, Chen XP, Chen WL, Chen R, Ma XJ, Luo XD. Study on the efficacy and HBeAg seroconversion related factors of telbivudine and entecavir therapy in HBeAg positive chronic hepatitis B patients. Zhonghua Ganzhangbing ZaZhi 2011; 19: 178-181

23 Ding K, Chen SJ. Study on the Comparison between LdT's and ETV'S Effect of Resisting HBV Virus and the Adverse Reaction. Available from: URL: http://www.cnki.com.cn/Article/CJFDTotal-YXLT20120007.htm

24 Zheng MH, Shi KQ, Dai ZJ, Ye C, Chen YP. A 24-week, parallel-group, open-label, randomized clinical trial comparing the early antiviral efficacy of telbivudine and entecavir in the treatment of hepatitis B e antigen-positive chronic hepatitis B virus infection in adult Chinese patients. Clin Ther 2010; 32: 649-658

25 Keeffe EB, Dieterich DT, Han SH, Jacobson IM, Martin P, Schiiff ER, Tobias H, Wright TL. A treatment algorithm for the management of chronic hepatitis B virus infection in the United States: an update. Clin Gastroenterol Hepatol 2006; 4: 936-962

26 Sherman M. Predicting survival in hepatitis B. Gut 2005; 54: 1521-1523

27 Chen CJ, Yang HI, Su J, Jen CL, You SL, Lu SN, Huang GT, Iloeje UH. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006; 295: 65-73

28 Keeffe EB, Zeuzem S, Koff RS, Dieterich DT, Esteban-Mur R, Gane EJ, Jacobson IM, Lim SC, Naoumov N, Marcellin P, Pichatsivuth T, Zoulim F. Report of an international workshop: Roadmap for management of patients receiving oral therapy for chronic hepatitis B. Clin Gastroenterol Hepatol 2007; 5: 890-897

29 Suh DJ, Um SH, Herrmann E, Kim JH, Lee YS, Lee HJ, Lee MS, Lee YJ, Bao W, Lopez P, Lee HC, Avila C, Zeuzem S. Early viral kinetics of telbivudine and entecavir: results of a 12-week randomized exploratory study with patients with HBeAg-positive chronic hepatitis B. Antimicrob Agents Chemother 2010; 54: 1242-1247

30 Tsai MC, Lee CM, Chiu KW, Hung CH, Tung WC, Chen CH, Tseng PL, Chang KC, Wang JH, Lu SN, Yen YH, Hu TH. A comparison of telbivudine and entecavir for chronic hepatitis B in real-world clinical practice. J Antimicrob Chemother 2012; 67: 696-699

31 Nan XP, Zhang Y, Yu HT, Sun RL, Peng MJ, Li Y, Su WJ, Lian JQ, Wang JP, Bai XF. Inhibition of viral replication downregulates CD4(+)/CD25(high) regulatory T cells and programmed death-ligand 1 in chronic hepatitis B. Viral Immunol 2012; 25: 21-28

32 Chen Y, Li X, Ye B, Yang X, Wu W, Chen B, Pan X, Cao H, Li L. Effect of telbivudine therapy on the cellular immune response in chronic hepatitis B. Antiviral Res 2011; 91: 23-31

33 Zheng Y, Huang Z, Chen X, Tian Y, Tang J, Zhang Y, Zhang X, Zhou J, Mao Q, Ni B, Wang Q, Wu Y. Effects of telbivudine treatment on the circulating CD4+ T-cell subpopulations in chronic hepatitis B patients. Mediators Inflamm 2012; 2012: 789859

34 Sherman M, Yurdadaycin D, Sollano J, Silva M, Liaw YF, Cianciara J, Boron-Kaczmarska A, Martin P, Goodman Z, Colombo R, Cross A, Denisky G, Kreter B, Hindes R. Entecavir for treatment of lamivudine-refractory, HBeAg-positive chronic hepatitis B. Gastroenterology 2006; 130: 2029-2049

35 Tenney DJ, Rose RE, Baldick CJ, Pokornowski KA, Eggers BJ, Fang J, Wichroski MJ, Xu D, Yang J, Wilber RB, Colombo RJ. Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naive patients is rare through 5 years of therapy. Hepatology 2009; 49: 1503-1514

36 Colombo RJ, Rose R, Baldick CJ, Levine S, Pokornowski K, Yu CF, Walsh A, Fang J, Hsu M, Mazuzzo C, Eggers B, Zhang S, Plym M, Kleszczewski K, Tenney DJ. Entecavir resistance is rare in nucleoside naïve patients with hepatitis B. Hepatology 2006; 44: 1656-1665

S-Editor Gou SX L-Editor Kerr C E-Editor Lu YJ