Abstract

We state some inequalities for m-divisible and infinite divisible characteristic functions. Basing on them we propose statistical test for a distribution to be infinite divisible.

Key words: infinite divisible distributions; statistical tests.

1 Inequalities for characteristic functions. Estimates from below

Let $f(t)$ be characteristic function of a distribution on real line. We say that $f(t)$ is m-divisible (m is positive integer) if $f^{1/m}(t)$ is a characteristic function as well. The function $f(t)$ is infinitely divisible if it is m-divisible for all positive integers m. Properties of infinitely divisible characteristic functions were well-studied (see, for example, [3]). In particular, any probability distribution with a compact support is not infinitely divisible. However, it is not true for m-divisible distributions. Really, let us take arbitrary distribution with a compact support. Denote its characteristic function by $g(t)$ and define $f(t) = g^m(t)$. Clearly, $f(t)$ is m-divisible characteristic function of a distribution with compact support.

Let us start with the case of arbitrary symmetric distribution having compact support.

aDepartment of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic

bYerevan State University, Yerevan, Armenia

cCzech Technical University in Prague, Czech Republic
Theorem 1.1. Let $g(t)$ be a characteristic function of an even non-degenerate distribution function having its support in interval $[-A, A]$, $A > 0$. Then the inequality

$$ \cos(\sigma \cdot t) \leq g(t) \quad (1.1) $$

holds for all $t \in (-4.49/A, 4.49/A)$. Here σ is standard deviation of the distribution with characteristic function $g(t)$.

Proof. Denote by $G(x)$ a distribution function corresponding to the characteristic function $g(t)$. We have

$$ g(t) = \int_{-A}^{A} \cos(tx)dG(x) = \int_{0}^{A} \cos(tx)d\tilde{G}(x) = \int_{0}^{A^2} \cos(t\sqrt{y})dH(y), \quad (1.2) $$

where $\tilde{G}(x) = 2(G(x) - 1/2)$ and $H(y) = \tilde{G}(\sqrt{y})$. In view of the fact that $\cos(t)$ is an even function we can consider positive values of t only.

It is not difficult to see that the function $\cos(t\sqrt{y})$ is convex in y for the case when $0 \leq t\sqrt{y} \leq z_0$, where z_0 is the first positive root of the equation $\sin z - z \cos z = 0$. Numerical calculations show that $z_0 > 4.49$. For the case of $|t| \leq 4.49/A$ let us apply Jensen inequality to (1.2). We obtain

$$ g(t) = \int_{0}^{A^2} \cos(t\sqrt{y})dH(y) \geq \cos \left(t\sqrt{\int_{0}^{A^2} ydH(y)} \right) = \cos(\sigma t). $$

The condition of support compactness may be changed by the restriction of absolute fifth moment existence. Namely, the following result holds.

Theorem 1.2. Let $G(x)$ be a symmetric probability distribution function. Denote by a_j its absolute moments and suppose that a_{10} is finite. Denote by $g(t)$ corresponding characteristic function and $\sigma^2 = a_2$. Then we have

$$ \cos(\sigma t) \leq g(t) \quad (1.3) $$

for all $|t| \leq 5(a_4 - \sigma^4)/(\sigma^{10} + 2\sigma^5a_5 + a_{10})^{1/2}$.

Proof. Suppose that $g(t)$ is not identical to $\cos(\sigma t)$. Define

$$ \varphi(t) = g(t) - \cos(\sigma t). $$
It is easy to verify that \(\varphi(t) \) and its derivatives at the point \(t = 0 \) satisfy
\[
\varphi^{(k)}(0) = 0, \quad \text{for } k = 0, 1, 2, 3,
\]
and \(\varphi^{(4)}(0) = a_4 - a_2^2 > 0 \). Therefore, \(\varphi^{(4)}(t) \) is positive in some neighborhood of the point \(t = 0 \) and, consequently, \(\varphi(t) \) is non-negative at least in some neighborhood obtained by means of forth times integration. Our aim now is to estimate the length of the interval for \(\varphi^{(4)}(t) \) positiveness. For this consider derivative of \(\varphi^{(4)}(t) \) that is \(\varphi^{(5)}(t) \). We have
\[
|\varphi^{(5)}(t)| = \left| \int_{-\infty}^{\infty} (\sigma^5 \sin(\sigma t) - \sin(t x) x^5) dG(x) \right| \leq \left(\int_{-\infty}^{\infty} (\sigma^5 \sin(\sigma t) - \sin(t x) x^5)^2 dG(x) \right)^{1/2} \leq \left(\sigma^{10} + 2\sigma^5 a_5 + a_{10} \right)^{1/2}.
\]
In view of the facts that \(\varphi^{(4)}(0) = a_4 - \sigma^4 > 0 \) we see that \(\varphi^{(4)}(t) \geq 0 \) on the interval \([0, (a_4 - \sigma^4)/(\sigma^{10} + 2\sigma^5 a_5 + a_{10})^{1/2}]\), and, because of symmetry, on interval \([- (a_4 - \sigma^4)/(\sigma^{10} + 2\sigma^5 a_5 + a_{10})^{1/2}, (a_4 - \sigma^4)/(\sigma^{10} + 2\sigma^5 a_5 + a_{10})^{1/2}]\). This guarantees that
\[
\varphi(t) \geq \frac{t^4}{24} \left((a_4 - \sigma^4) - (\sigma^{10} + 2\sigma^5 a_5 + a_{10})^{1/2} t/5 \right).
\]
From this and the symmetry of \(\varphi(t) \) follows the result. \(\square \)

Let us turn to the of \(m \)-divisible distribution with compact support.

Theorem 1.3. Let \(f(t) \) be a characteristic function of \(m \)-divisible symmetric distribution having compact support in \([-A, A]\), \(A > 0 \) and standard deviation \(\sigma \). Then
\[
\cos^m(\sigma t/\sqrt{m}) \leq f(t)
\]
for \(|t| \leq \min(4.49m/A, \pi \sqrt{m}/(2\sigma)) \).

Proof. Denote \(g(t) = f^{1/m}(t) \). It is clear that:

1. \(g(t) \) is a symmetric characteristic function;
2. \(m \sigma^2(g) = \sigma^2(f) = \sigma^2 \) (because variance of sum of independent random variables equals to the sum of their variances);
3. distribution with characteristic function \(g \) has compact support in
\([-A/m, A/m]\) (see, for example, [2], Theorem 3.2.1).

Applying Theorem 1.1 to the function \(g(t) \) we find
\[
\cos(\sigma t/\sqrt{m}) \leq g(t) = f^{1/m}(t)
\]
for \(|t| \leq 4.49m/A\). However, for \(|t| \leq \min(4.49m/A, \pi \sqrt{m}/(2\sigma))\) the left
hand side of previous inequality is non-negative and we come to the conclusions of Theorem 1.3.

Note that \(\cos(\sigma t/\sqrt{m}) \) is monotone increasing in \(m \) for \(|t| \leq \pi \sqrt{m}/(2\sigma)\)
and, therefore the estimator (1.5) is more precise than (1.1).

Let us give a little bit different result.

Theorem 1.4. Let \(f(t) \) be a characteristic function of \(m \)-divisible symmetric
distribution having finite tenth moment \(a_{10} \). Then
\[
\cos^{m}(\sigma t/\sqrt{m}) \leq f(t)
\]
for \(|t| \leq \min(C \sqrt{m}, \pi \sqrt{m}/(2\sigma))\), where positive \(C \) depends on absolute mo-
ments \(a_{k} \), \((k = 1, \ldots, 10) \) only.

Proof. Denote \(g(t) = f^{1/m}(t) \). It is clear that:

1. \(g(t) \) is a symmetric characteristic function;

2. \(m\sigma^{2}(g) = \sigma^{2}(f) = \sigma^{2} \) (because variance of sum of independent random
 variables equals to the sum of their variances);

3. distribution with characteristic function \(g \) has finite absolute moments
 up to tenth order (see, for example, [2]).

It is not difficult to verify that
\[
a_{k,m} \sim a_{k}/m \quad \text{as} \quad m \to \infty,
\]
where \(a_{k,m} \) is \(k \)th absolute moment of \(g \). To finish the proof it is enough to
apply Theorem 1.2 and the relation (1.6).

Consider now the case of infinitely divisible distribution.
Theorem 1.5. Let \(f(t) \) be a symmetric infinite divisible characteristic function with finite second moment \(\sigma^2 \). Then
\[
\exp\{-\sigma^2 t^2/2\} \leq f(t)
\] (1.7)
for all \(t \in \mathbb{R}^1 \).

Proof. If \(f(t) \) has finite tenth moment it is sufficient pass to limit in (1.5) as \(m \to \infty \). In general case one can approximate \(f \) by infinitely divisible characteristic functions with finite tenth moment. \(\square \)

Another proof. Kolmogorov representation formula (see, for example \[3\]) for \(f(t) \) allows us to rewrite (1.7) in the form
\[
\exp\{-\sigma^2 t^2/2\} \leq \exp\{-\int_{-\infty}^{\infty} (1 - \cos(tx))/x^2 dK(x)\}
\]
or, equivalently,
\[
\int_{-\infty}^{\infty} (1 - \cos(tx))/x^2 dK(x) \leq \sigma^2 t^2/2. \tag{1.8}
\]
However,
\[
2(1 - \cos(tx))/x^2 \leq 4 \sin^2(t x/2)/x^2 \leq t^2.
\]
This leads to (1.8) with
\[
\sigma^2 = \int_{-\infty}^{\infty} dK(x) = -f''(0).
\]
\(\square \)

From the last proof it follows that if the equality in (1.7) attends in a point \(t_o \neq 0 \) then it holds for all \(t \in \mathbb{R}^1 \).

Theorem 1.5 shows an extreme property of Gaussian distribution among the class of infinite divisible distributions with finite second moment. Another extreme property without any moment conditions was given in [1]. Let us give this result here.

Theorem 1.6. Let \(f(t) \) be a symmetric infinite divisible characteristic function. Then
\[
f(t) \geq f^4(t/2)
\] (1.9)
for all \(t \in \mathbb{R}^1 \). If the equality in (1.9) attends in a point \(t_o \neq 0 \) then it holds for all \(t \in \mathbb{R}^1 \).
Proof. From Lévy-Khinchin representation we have
\[f(t) = \exp \left\{ - \int_{-\infty}^{\infty} \left(1 - \cos(tx) \right) \frac{1 + x^2}{x^2} d\Theta(x) \right\}, \]
\[f^4(t/2) = \exp \left\{ -4 \int_{-\infty}^{\infty} \left(1 - \cos(tx/2) \right) \frac{1 + x^2}{x^2} d\Theta(x) \right\}. \]
However,
\[1 - \cos(tx) = 2 \sin^2(tx/2) = 8 \sin^2(tx/4) \cos^2(tx/4) \leq \]
\[\leq 8 \sin^2(tx/4) = 4 (1 - \cos(tx/2)) \]
\[\square \]
Let us note that Theorem 1.5 may be obtained from Theorem 1.6. Really, assuming the existence of finite second moment we have
\[f(t) \geq f^4(t/2) \geq f^{4^2}(t/2^2) \geq \ldots \geq f^{4^k}(t/2^k) \rightarrow \exp \{-\sigma^2 t^2/2\} \]
as \(k \rightarrow \infty \). This proves the inequality (1.7).

2 Inequalities for characteristic functions. Estimates from above

Our aim here is to proof the following result.

Theorem 2.1. Let \(g(t) \) be a characteristic function of an even non-degenerate function having its support in interval \([-A, A] \), \(A > 0 \). Then the inequality
\[g(t) \leq \cos(a_{1/\gamma} \cdot t) \] (2.10)
holds for all \(t \in (-\pi/(2A^\gamma), \pi/(2A^\gamma)) \). Here \(a_{1/\gamma} \) is absolute moment of the order \(1/\gamma \) of the distribution with characteristic function \(g(t) \), and \(\gamma > 1 \).

Proof. Denote by \(G(x) \) probability distribution function corresponding to characteristic function \(g(t) \). Set \(\tilde{G}(x) = 2(G(xk) - 1/2) \), \(H(y) = \tilde{G}(y^\gamma) \). We have
\[g(t) = \int_{-A}^{A} \cos(tx)dG(x) = \int_{0}^{A} \cos(tx)d\tilde{G}(x) = \]
\[= \int_{0}^{A} \cos(ty^\gamma)dH(y) \leq \cos(a_{1/\gamma} \cdot t) \]
for all \(|t| \leq \pi/(2A^\gamma) \). Here we used the fact that the function \(\cos(ty^\gamma) \) is concave in \(y \) if \(0 \leq y|t| \leq \pi/2 \) and applied Jensen inequality. \(\square \)
3 Inequalities for some moments of infinitely divisible distributions

Let us give some inequalities comparing the moments of infinitely divisible distributions with corresponding characteristics of Gaussian distribution.

Theorem 3.1. Let X be a random variable having symmetric infinitely divisible distribution with finite second moment. Suppose that $0 < r < 2$. Then

$$\mathbb{E}|X|^r \leq \mathbb{E}|Y|^r = \frac{2^{r/2}\sigma^r\Gamma\left((1 + r)/2\right)}{\sqrt{\pi}}$$

(3.1)

where random variable Y has symmetric Gaussian distribution with the same second moment σ^2 as X. The equality in (3.1) attends if and only if X has Gaussian distribution.

Proof. Recall that if Z is a random variable with characteristic function $h(t)$ then

$$\mathbb{E}|Z|^r = C_r \int_0^\infty \frac{1 - \text{Re}(h(t))}{t^{r+1}} dt,$$

where C_r depends on r only ($0 < r < 2$). From (1.7) it follows that

$$1 - \exp\{-\sigma^2 t^2/2\} \geq 1 - f(t)$$

and

$$C_r \int_0^\infty \frac{1 - \exp\{-\sigma^2 t^2/2\}}{t^{r+1}} dt \geq C_r \int_0^\infty \frac{1 - f(t)}{t^{r+1}} dt.$$

\[\Box\]

Acknowledgement

The study was partially supported by grant GAČR 19-04412S (Lev Klebanov) and by grant SGS18/065/OHK4/1T/13 Czech Technical University in Prague (Irina Volchenkova).
References

[1] A.V. Kakosyan, L.B. Klebanov, S.T. Rachev (1988) *Qualitative Criteria of Convergence of Probability Measures*, Ayastan, Yerevan (in Russian).

[2] Ju.V. Linnik, I.V. Ostrovskii (1972) *Decomposition of Random Variables and Vectors*, Nauka (in Russian). English Translation, American Mathematical Society, Providence, Rhode Island, 1977.

[3] E. Lukacs (1970) *Characteristic Functions*, Griffin, London.