Critical Care Retrieval in the Middle East: Descriptive Analysis of a Multidisciplinary Adult Critical Care Transfer and Retrieval Service in Qatar

Ian Howard (ianhoward@outlook.com)  Hamad Medical Corporation
Rohan Steyn  Hamad Medical Corporation
Steven George  Hamad Medical Corporation
Wayne Thomson  Hamad Medical Corporation
Wael Abduljawad  Hamad Medical Corporation
Ibrahim Fawzy Hassan  Hamad Medical Corporation
Nicholas Castle  Hamad Medical Corporation
Loua Al Shaikh  Hamad Medical Corporation
Robert Owen  Hamad Medical Corporation

Original Research

Keywords: Critical care, emergency, Hamad Medical Corporation (HMC),

Posted Date: October 12th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-944629/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Introduction The regionalisation of critical care resources has led to an increase in the need to transfer patients between facilities. The advent and implementation of critical care transfer and retrieval services have been the bridge to this divide, lying at the confluence of prehospital emergency care, in-hospital emergency medicine, and intensive care. Within the State of Qatar, the concept of critical care transfer and retrieval is a relatively new. Consequently, we conducted a retrospective cross-sectional study of all transfer and retrieval activity of a dedicated multidisciplinary transfer and retrieval service to better understand the use of these services in the region.

Methods Extracted patient care record data were analysed and described using univariate and multivariate descriptive statistics. A log-binomial regression model with robust variance estimator was used to calculate crude and adjusted prevalence ratios for intubation status and arterial/venous access; and intubation status and medication combination, adjusting for age and gender for each model.

Results Amongst the completed cases, the majority were male (60.39%), and within the 40-59 (27.7%) age group. Amongst the cases transferred, those with a primary respiratory pathology were the most common (19.59%), followed by cardiovascular patients (18.5%). Half of all patients had a self-maintained airway (51.6%), followed by a third who had an endotracheal tube in situ (36.74%). Midazolam was the most common hypnotic administered (51.27%), as was Fentanyl (88.02%) amongst the analgesic medications, and Noradrenaline amongst the inotropes (72.77%). Intubated patients had the highest proportion of severe and critical patients; patients transported with a Doctor; patients with multiple routes of arterial and/or venous access; and patients receiving any hypnotic, analgesic or inotrope, or a combination thereof.

Conclusion The transfer and retrieval of critical care patients across Qatar is a relatively common occurrence. Variations in patient type and severity and the expectations of the transfer team, are significant. Variation in airway type and ventilation modalities, types and combinations of hypnotic, analgesic and inotropes used, and the multitude of arterial/venous access points observed in this study directly contributed towards the complexity of moving these patients from one facility to another.

Introduction Critical care is a clinically complex and resource-intensive discipline the world over. Consequently, the delivery of these services is compounded by the need to sustain a specialised workforce while maintaining consistent and high standards. The regionalisation of critical care resources and the creation of referral networks has been one approach that has led to success in this area. However, as steps have been made towards regionalisation, so too has the need to transfer patients between facilities to access these services. An increase in the number of patients requiring the continuation of critical care in transit has led to a need to expand the borders of traditional intensive care beyond the confines of the hospital.

The advent and implementation of critical care transfer and retrieval services have been the bridge to this divide, lying at the confluence of prehospital emergency care, in-hospital emergency medicine, and intensive care. Undertaking the transfer of a patient requiring the initiation or continuation of critical care is no simple task. Variations in patient type and severity of their medical condition and the expectations of the transfer team, are significant. Reports regarding the transfer of patients ranging from critical neonates to the multi-comorbid geriatric; with complex underlying surgical and medical diagnoses; involving the concomitant administration of multiple vasoactive and sedative medications; with various oxygenation and ventilation requirements, are commonplace in the literature.

Despite the relatively small size of the State of Qatar, critical care transfer and retrieval has nonetheless become a necessity within the country’s healthcare system. Starting in 2014, a dedicated program was initiated to facilitate the transfer and retrieval of critical care patients across the country. The Specialized High Acuity Adult Retrieval Program (SHAARP) is a joint initiative between the Hamad Medical Corporation Ambulance Service (HMCAS) and the Hamad Medical Corporation (HMC) Critical Care Network (CCN). It consists of a single dedicated purpose-built ambulance, manned and run 24 hours a day, seven days a week by various staff from both HMCAS and the CCN and deployed primarily for the transfer and retrieval of critical care patients across Qatar. The program was further developed in 2016 and formalised under the Transfer and Retrieval division of the HMCAS, with dedicated HMCAS and CCN staff receiving bespoke training and continued education; the addition of specialised and dedicated communications staff for call taking, dispatch and monitoring; and focused governance and audit to maintain the highest quality of patient safety and quality of
care. Since then, the program has seen considerable uptake within the country’s health system. This study aimed to describe the activity of a dedicated high acuity adult retrieval program in the State of Qatar.

**Methods**

A retrospective cross-sectional study of all transfer and retrieval activity was conducted using patient care records of the Hamad Medical Corporation Ambulance Service's Specialised High Acuity Adult Retrieval Program.

**Setting**

The study was conducted within the Hamad Medical Corporation (HMC), the primary governmental provider of secondary and tertiary healthcare in Qatar, and the Hamad Medical Corporation Ambulance Service (HMCAS), the national ambulance service of Qatar. HMCAS is a two-tiered emergency medical service provider with Ambulance Paramedic (AP) staffed ambulances and advanced Critical Care Paramedic (CCP) staffed fast-response vehicles. Licensure and scope of practice within Qatar are governed by the Qatar Council for Healthcare Professionals (QCHP). Figure 1 highlights the locations of the tertiary health facilities across Qatar.

**Data Collection**

The study utilised routinely collected clinical data extracted from the HMCAS electronic patient care record (ePCR) database and the SHAARP case registry. The target population was identified by screening for all cases for which the SHAARP unit was dispatched. Patients for whom the SHAARP unit was dispatched, and arrived at patient side, were included in the analysis. Primary cases (i.e., community-based patients); patient's being transferred home; patients transferred to and from the airport, and cases that were cancelled prior to the crew reaching the patient side were excluded. All cases meeting criteria for the period of January 2017 to February 2020 were included in the analysis.

**Study Variables**

The data collected was a combination of continuous and categorical variables. A data extraction template was developed to retrieve and sort call-time intervals; patient demographics; departure, transport, and handover vital signs; interventions performed, and medications administered by the transferring crew. For descriptive purposes, each patient was categorised by broad category type and primary pathology, i.e. the primary diagnosis. Continuous data for age, call time intervals, Glasgow Coma Score (GCS) and Richmond Agitation-Sedation Scale (RASS) score were recategorized for analysis. Initial GCS was collected for non-ventilated patients and initial RASS score collected for all invasively ventilated patients. Methods of arterio-venous access were categorised as arterial, central venous and peripheral venous. Medications administered were categorised into primary hypnotic, primary analgesic and primary inotrope. Lastly, as part of the data extraction, the Risk Score for Transported Patients (RSTP) scale - a critical care inter-facility transfer risk score developed by Markakis et al. was retrospectively applied for all cases (Figure 2). Patient clinical data were collected starting from arrival at patient side by the transporting crew, throughout transport, until patient handover. All monitoring data was captured automatically and auto-populated into the unit’s electronic health record following handover. All interventions and medications captured represent those continued or initiated primarily for the patient transfer.

**Analysis**

Extracted data were analysed and described using univariate and multivariate descriptive statistics. Chi-square analysis was used as the primary measure of association for all categorical data. A log-binomial regression model with robust variance estimator was used to calculate crude and adjusted prevalence ratios for intubation status and arteriovenous access; and intubation status and medication combination, adjusting for age and gender for each model. 95% confidence intervals were calculated where necessary and a p-value of 0.05 used as a cut-off for statistical significance. Missing data was reported where found and largely determined to be missing at random. All data was collected and sorted using Microsoft Excel (Microsoft Excel 2010; Microsoft, Redmond, Washington, USA) and analysed using Stata v15 (StataCorp. 2017. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC).

**Institutional Review Board**

Ethical approval to conduct the study was granted by the Medical Research Centre of the Hamad Medical Corporation, Qatar (Ref no.: MRC-01-19-154).
Results

A total of 1224 cases that met criteria were included in the analysis. Of these, 40 (3.27%) were cancelled following the transfer team's arrival at the patient side and/or attempted preparation for transfer (Table 1). Amongst the completed cases, the majority were male [n=715 (60.39%)], and within the 40-59 [n=328 (27.7%)] and 20-39 [n=299 (25.25%)] age groups. Transfers were generally conducted on either a Monday [n=200 (17.26)] or Sunday [n=200 (16.92)] and between the hours of 07:00 – 15:00 [n=545 (46.03)]. Mean patient preparation time at the referring facility was approximately one hour [01:08 (IQR 00:38-01:18)] while the mean handover time at the referring facility was just under an hour [00:53 (IQR 00:29-00:57)]. The mean total mission time (dispatch to unit availability at receiving facility) was 02:46 (IQR 01:59-03:14), likely reflecting the relatively short distances of travel between facilities. In terms of crew composition, a Critical Care Paramedic was present on 99% (n=1166) of transfers and a doctor on 22.3% (n=264) of transfers.
## Table 1
Transfer and demographic data

| Characteristic                        | n   | (%)  |
|---------------------------------------|-----|------|
| **Total**                             | 1224|      |
| **Status**                            |     |      |
| Completed                             | 1184| (96.73) |
| Cancelled                             | 40  | (3.27)  |
| **Completed cases only**              |     |      |
| Mean time at referring facility (hh:mm)| 01:08 (IQR 00:38-01:18) |
| Mean handover time (hh:mm)            | 00:53 (IQR 00:29-00:57) |
| Mean total mission time (hh:mm)       | 02:46 (IQR 01:59-03:14) |
| **Hour of dispatch**                  |     |      |
| 07:00-15:00                           | 545 | (46.03) |
| 16:00-23:00                           | 466 | (39.36) |
| 00:00-06:00                           | 173 | (14.61) |
| **Day of dispatch**                   |     |      |
| Sunday                                | 200 | (16.92) |
| Monday                                | 204 | (17.26) |
| Tuesday                               | 182 | (15.40) |
| Wednesday                             | 156 | (13.20) |
| Thursday                              | 188 | (15.91) |
| Friday                                | 119 | (10.07) |
| Saturday                              | 133 | (11.25) |
| **Gender**                            |     |      |
| Male                                  | 715 | (60.39) |
| Female                                | 301 | (25.42) |
| Not documented                        | 168 | (14.19) |
| **Age Category**                      |     |      |
| 0 - 19                                | 98  | (8.28)  |
| 20 - 39                               | 299 | (25.25) |
| 40 - 59                               | 328 | (27.7)  |
| 60 - 79                               | 277 | (23.4)  |
| ≥ 80                                  | 65  | (5.49)  |
| Not documented                        | 117 | (9.88)  |
| **Case Category**                     |     |      |
| Environmental                         | 4   | (0.34)  |
| Medical                               | 1069| (90.29) |
| Surgical                              | 3   | (0.25)  |
Despite the clinical complexity of many patients transferred, a primary pathology was documented for recording purposes and represented the general focus for the patient's management. Amongst the cases transferred by the service, those with a primary respiratory/pulmonary pathology were the most common [n=232 (19.59)], followed by patients with an underlying cardiovascular [n=219 (18.5)] and those with a septic [n=177 (14.95)] focus (Table 2). Risk scores and per-patient activity echoed the complexity of the cases transferred, with the majority of patients scored to be moderate to severe in nature (5-12) (Table 2). The highest proportion of critical patients were those with a cardiovascular primary pathology [n=19 (21.35)], followed by respiratory pathologies [n=17 (19.10) and septic patients [n=14 (15.73)]. From an intervention and patient management perspective, just over half of the patients analysed had a self-maintained airway [n=611 (51.6%)], followed by approximately a third of patients who had an endotracheal tube in situ for the transfer (n=435 [36.74]) (Table 3). Of the ventilated patients, the majority who had an initial Richmond Agitation and Sedation Scale (RASS) recorded on arrival scored <0 [n=282 (49.21%)]. For the non-ventilated patients, the majority were scored a Glasgow Coma Scale (GCS) of >12 [n=435 (79.23%)].
| Characteristic                          | Total | 0 to 4 | 5 to 8 | 9 to 12 | 13 to 16 | N   |
|----------------------------------------|-------|--------|--------|---------|----------|-----|
|                                        | n     | (%)    | n      | (%)     | n        | (%) |
| Total                                  | 1184  | 329 (27.79) | 375 (31.67) | 391 (33.02) | 89 (7.51) |
| Burns                                  | 47    | (3.97) | 9 (2.74) | 9 (2.4) | 20 (5.12) | 9 (10.11) | <0.0001 |
| Cardiovascular                         | 219   | (18.5) | 97 (29.48) | 47 (12.53) | 56 (14.32) | 19 (21.35) |
| Chemical exp/Poisoning/Drug overdose   | 13    | (1.1)  | 4 (1.22) | 2 (2.25) | 2 (0.53) | 5 (1.28) |
| Endocrine                              | 28    | (2.36) | 16 (4.86) | 8 (2.13) | 3 (0.77) | 1 (1.12) |
| Gastrointestinal                       | 72    | (6.08) | 27 (8.21) | 25 (6.67) | 12 (3.07) | 8 (8.99) |
| Genitourinary                          | 19    | (1.6)  | 3 (0.91) | 6 (1.6) | 10 (2.56) | 0 |
| Infectious/Parasitic                   | 14    | (1.18) | 4 (1.22) | 2 (0.53) | 7 (1.79) | 1 (1.12) |
| Neurological                           | 152   | (12.84)| 26 (7.9) | 38 (10.13) | 79 (20.2) | 9 (10.11) |
| Not documented                         | 34    | (2.87) | 27 (8.21) | 1 (0.27) | 6 (1.53) | 0 |
| Oncological                            | 74    | (6.25) | 20 (6.08) | 26 (6.93) | 22 (5.63) | 6 (6.74) |
| Other                                  | 57    | (4.81) | 15 (4.56) | 24 (6.4) | 16 (4.09) | 2 (2.25) |
| Renal                                  | 14    | (1.18) | 5 (1.52) | 4 (1.07) | 5 (1.28) | 0 |
| Respiratory/Pulmonary                  | 232   | (19.59)| 39 (11.85) | 101 (26.93) | 75 (19.18) | 17 (19.10) |
| Sepsis/Infection                       | 177   | (14.95)| 22 (6.69) | 73 (19.47) | 68 (17.39) | 14 (15.73) |
| Trauma - Neurological                  | 5     | (0.42) | 0 |
| Trauma - Other                         | 22    | (1.86) | 11 (3.34) | 6 (1.6) | 4 (1.02) | 1 (1.12) |
| Characteristic                             | n   | (%)  |
|-------------------------------------------|-----|------|
| Total                                     | 1184|      |
| **Airway type**                           |     |      |
| ETT                                       | 435 | (36.74) |
| Self-maintained                           | 611 | (51.6)  |
| Tracheostomy tube                         | 138 | (11.66) |
| **Ventilation**                           |     |      |
| Invasive                                  | 573 | (48.4)  |
| Non-invasive                              | 62  | (5.24)   |
| Nil                                       | 549 | (46.37) |
| **Initial GCS in non-ventilated**         |     |      |
| <8                                        | 19  | (3.46)   |
| 8 to 12                                   | 51  | (9.29)   |
| >12                                       | 435 | (79.23)  |
| Not recorded                              | 44  | (8.01)   |
| **Initial RASS for invasive ventilated**  |     |      |
| 1 to 4                                    | 20  | (3.49)   |
| 0                                         | 112 | (19.55)  |
| -1 to -5                                  | 282 | (49.21)  |
| Not recorded                              | 159 | (27.75)  |
| **Venous/Arterial access**                |     |      |
| Arterial line                             | 309 | (26.1)   |
| Central Venous line                       | 388 | (32.77)  |
| Peripheral Venous line                    | 893 | (75.42)  |
| **Number of Venous/Arterial access points**|   |       |
| 0                                         | 194 | (16.39)  |
| 1                                         | 589 | (49.75)  |
| 2                                         | 202 | (17.06)  |
| 3                                         | 199 | (16.81)  |
| **Primary hypnotic agent used**           |     |      |
| Dexmedetomidine                           | 33  | (12)    |
| Etomidate                                 | 1   | (0.36)   |
| Ketamine                                  | 6   | (2.18)   |
| Midazolam                                 | 141 | (51.27)  |
| Propofol                                  | 100 | (36.36)  |
| **Primary analgesic used**                |     |      |

Table 3
Primary interventions and medications
| Characteristic       | n   | (%)       |
|---------------------|-----|-----------|
| Fentanyl            | 294 | (88.02)   |
| Morphine            | 4   | (1.2)     |
| IV Paracetamol      | 6   | (1.8)     |
| Remifentanly        | 30  | (8.98)    |

**Primary inotrope used**

| Characteristic       | n   | (%)       |
|---------------------|-----|-----------|
| Adrenaline          | 5   | (2.23)    |
| Dobutamine          | 2   | (0.89)    |
| Dopamine            | 33  | (14.73)   |
| Noradrenaline       | 163 | (72.77)   |
| Phenylephrine       | 21  | (9.38)    |

There was considerable variation regarding arterial/venous access among patients transferred, with peripheral access the most common route found, present among 75% of patients transferred. Combinations of access routes were equally varied, with the arterial/central venous/peripheral venous combination the most common reported [n=181 (15.29%)], followed by the central venous/peripheral venous combination [n=93 (7.85%)] (Table 4). Similarly, there was considerable variation regarding the medications administered for transfer and routes of administration/vitals monitoring. Midazolam was the most common hypnotic administered [n=141 (51.27)], as was Fentanyl [n=294 (88.02)] amongst the analgesic medications administered, and Noradrenaline amongst the inotropes used [n=163 (72.77)] (Table 3). The most common combination amongst the three medication types was a hypnotic/analgesic combination [n=139 (11.74%)], followed by hypnotic/analgesic/inotrope combination [n=110 (9.29%)] (Table 4).
Table 4
Association between key case characteristics and airway status

| Characteristic                  | Total      | Self-maintained | Self-maintained - NIV | Trach tube | Endotracheal tube | P value |
|---------------------------------|------------|-----------------|-----------------------|------------|-------------------|---------|
|                                 | N (% )     | N (%)           | N (%)                 | N (%)      | N (%)             |         |
| Total                           | 1184       | 549             | 62                    | 138        | 435               |         |
| Crew Type                       |            |                 |                       |            |                   |         |
| Ambulance Paramedic             | 1147       | (96.88)         | 524 (95.45)           | 61 (98.39) | 137 (99.28)       | 0.051   |
| Critical Care Paramedic         | 1166       | (98.48)         | 531 (96.72)           | 62 (100)   | 138 (100)         | <0.0001 |
| Doctor                          | 264        | (22.3)          | 65 (11.84)            | 5 (8.06)   | 32 (23.19)        | <0.0001 |
| Nurse/Respiratory Therapist     | 18         | (1.52)          | 1 (0.18)              | 0          | 2 (1.52)          | <0.0001 |
| Risk Score                      |            |                 |                       |            |                   |         |
| 0 to 4                          | 329        | (27.79)         | 308 (56.1)            | 14 (22.58) | 0 (1.61)          | <0.0001 |
| 5 to 8                          | 375        | (31.67)         | 225 (40.98)           | 41 (66.13) | 63 (45.65)        | 10.57   |
| 9 to 12                         | 391        | (33.02)         | 16 (2.91)             | 7 (11.29)  | 72 (52.17)        | 68.05   |
| 13 to 16                        | 89         | (7.52)          | 0 (0)                 | 0          | 3 (2.17)          | 19.77   |
| Access type                     |            |                 |                       |            |                   |         |
| No access                       | 194        | (16.39)         | 71 (12.93)            | 17 (27.42) | 66 (47.83)        | 9.20    |
| Single access point (any)       | 622        | (52.53)         | 364 (66.30)           | 36 (58.06) | 57 (41.30)        | 37.93   |
| Arterial + Central Venous       | 93         | (7.85)          | 44 (8.01)             | 3 (4.84)   | 7 (5.07)          | 8.97    |
| Arterial + Peripheral Venous    | 57         | (4.81)          | 25 (4.55)             | 2 (3.23)   | 2 (1.45)          | 6.44    |
| Central Venous + Peripheral Venous| 37      | (3.12)          | 9 (1.64)              | 1 (1.61)   | 2 (1.45)          | 5.75    |
| Arterial + Central Venous + Peripheral Venous | 181 | (15.29) | 36 (6.56) | 3 (4.84) | 4 (2.90) | 138 (31.72) |         |
| Medication combinations         |            |                 |                       |            |                   |         |
| No Hypnotic/Analgesic/Inotrope  | 740        | (62.50)         | 468 (85.25)           | 52 (83.87) | 125 (90.58)       | 21.84   |
| Single Hypnotic/Analgesic/Inotrope (any) | 162 | (13.68) | 79 (14.39) | 5 (8.06) | 8 (5.80) | 70 (16.09) |         |
| Analgesic + Inotrope            | 27         | (2.28)          | 2 (0.39)              | 0          | 2 (1.45)          | 5.29    |
| Hypnotic + Analgesic            | 6          | (0.51)          | 0 (0)                 | 1 (0.72)   | 1 (0.72)          | 1.15    |
| Hypnotic + Inotrope             | 139        | (11.74)         | 4 (6.45)              | 0          | 135 (31.03)       |         |
| Hypnotic + Analgesic + Inotrope | 110        | (9.29)          | 0 (0)                 | 1 (1.61)   | 2 (1.45)          | 24.60   |
Table 5
Crude and adjusted prevalence ratios for intubation status and arteriovenous access; and medication combination

| Access type                                     | N (%)      | ETT/Trach Crude PR; 95% CI (p-value) | ETT/Trach Adjusted PR; 95% CI (p-value)* |
|------------------------------------------------|------------|--------------------------------------|------------------------------------------|
| No access                                      | 194 (16.39)| 1                                    | 1                                        |
| Single access point (any)                      | 622 (52.53)| 0.65; 0.55 – 0.77 (< 0.0001)         | 0.65; 0.54 – 0.79 (< 0.0001)             |
| Arterial + Central Venous                      | 93 (7.85)  | 0.91; 0.71 – 1.15 (0.421)            | 1.02; 0.79 – 1.31 (0.897)                |
| Arterial + Peripheral Venous                   | 57 (4.81)  | 0.96; 0.73 – 1.27 (0.792)            | 1.08; 0.80 – 1.47 (0.697)                |
| Central Venous + Peripheral Venous             | 37 (3.12)  | 1.34; 1.01 – 1.69 (0.016)            | 1.44; 1.14 – 1.83 (0.003)                |
| Arterial + Central Venous + Peripheral Venous  | 181 (15.29)| 1.44; 1.24 – 1.67 (< 0.0001)        | 1.62; 1.36 – 1.93 (< 0.0001)             |

| Medication combinations                         |            |                                       |                                          |
|------------------------------------------------|------------|--------------------------------------|------------------------------------------|
| No Hypnotic/Analgesic/Inotrope                  | 740 (62.50)| 1                                    | 1                                        |
| Single Hypnotic/Analgesic/Inotrope              | 162 (13.68)| 1.62; 1.33 – 1.97 (< 0.0001)        | 1.71; 1.37 – 2.13 (< 0.0001)             |
| Analgesic + Inotrope                            | 27 (2.28)  | 3.11; 2.67 – 3.63 (< 0.0001)         | 3.54; 2.94 – 4.27 (< 0.0001)             |
| Hypnotic + Analgesic                            | 6 (0.51)   | 3.36; 3.01 – 3.76 (< 0.0001)         | 3.43; 2.43 – 4.83 (< 0.0001)             |
| Hypnotic + Inotrope                             | 139 (11.74)| 3.27; 2.91 – 3.66 (< 0.0001)        | 3.83; 3.32 – 4.41 (< 0.0001)             |
| Hypnotic + Analgesic + Inotrope                 | 110 (9.29) | 3.33; 2.98 – 3.73 (< 0.0001)         | 3.74; 3.26 – 4.29 (< 0.0001)             |

*Adjusted by age and gender

Airway/Ventilation status was found to be a relatively good proxy indicator of both severity and activity. Endotracheally intubated patients had the highest proportion of severe and critical patients; patients transported with a Doctor; patients with multiple routes of arterial and/or venous access; and patients receiving any hypnotic, analgesic or inotrope, or a combination thereof (Table 4). After adjusting for age and gender, the most prevalent access types and medication combinations among intubated patients was the arterial/central venous/peripheral venous access combination [PR 1.62; 1.36–1.93 (<0.0001)] and the hypnotic/Inotrope combination [PR 3.83; 3.32–4.41 (<0.0001)], followed closely by hypnotic/analgesic/inotrope combination [PR 3.74; 3.26–4.29 (<0.0001)].

Discussion

This study represents the first published data examining the activity of a dedicated multidisciplinary transfer and retrieval service, both in Qatar and the broader Middle East. Despite the relatively small size of the country, the frequency in which the service was utilised, and the nature and severity of the patients transferred by the unit has highlighted the potential niche of such a program in healthcare in Qatar.

Many of the patient and case demographics observed in this study align with that reported in the literature. Patients were generally found to be male, middle-aged and with a cardio-respiratory focus as the primary reason for their admission. Similarly, there was a relatively high proportion of “out-of-hours” activity, as reported in the literature, demonstrating the importance of a 24-hour service in this setting. While patient preparation and handover times were similar to those reported in the literature, actual transport times were shorter, likely a consequence of Qatar’s size and the location of its healthcare facilities. The transfer team composition observed in this study was more heavily weighted towards EMS staffing, which differs somewhat from conventional transfer team composition reported in the literature, where critical care transfer teams are primarily staffed by nurses and physicians.

Few studies have reported comprehensively on the interventions performed before and/or during transfer. Variation in airway type and ventilation modalities, types and combinations of hypnotic, analgesic and inotropes used, and the multitude of arteriovenous access points observed in this study directly contributed towards the complexity of moving these patients from one facility to another.
occurrence of these transfer characteristics similarly highlighted the importance of the patient preparation phase prior to transfer, the
time interval that contributed the most towards total mission time in this study. The development and implementation of transfer
guidelines to limit variation and standardise practice are central towards maintaining quality the patient preparation phase's quality
and safety and these services in general.

Conclusion

The transfer and retrieval of critical care patients across Qatar is a relatively common occurrence. Variations in patient type and
severity and the expectations of the transfer team, are significant. Understanding the clinical needs of a patient is an essential step
towards ensuring the safe and effective transfer of patients with complex needs across a challenging environment.

Declarations

- Funding: No funding was sought or awarded for this study
- Conflicts of interest/Competing interests: Nil
- Availability of data and material: Data can be made available upon reasonable request to the corresponding author
- Code availability: N/A
- Ethics approval: Ethical approval to conduct the study was granted by the Medical Research Centre of the Hamad Medical
  Corporation, Qatar (MRC-01-19-154). All study procedures and processes were conducted in accordance with that described in
  the ethics application and the guidelines and regulations outlined by the local medical research council.
- Consent to participate: Requirement for consent to participate was waived by the approving ethics committee based on the
  nature and content of the study.
- Consent for publication: Consent for publication was sought and approved as part of the ethics approval
- Author contributions: IH, WHA, IFH and LA conceptualised the study aim and objectives; IH, RS, SG and WT collected and
  analysed the data; all authors contributed equally towards the final draft of the manuscript

References

1. Suntharalingam G, Handy J, Walsh A. Regionalisation of critical care: can we sustain an intensive care unit in every hospital?
   Anaesthesia. 2014;69:1069–73.
2. Iwashyna TJ, Christie JD, Kahn JM, Asch DA. Uncharted Paths: Hospital Networks in Critical Care. Chest 2009;135(3):827–33.
3. Droogh JM, Smit M, Absalom AR, Ligtenberg JJM, Zijlstra JG. Transferring the critically ill patient: are we there yet? Crit Care
   2015;1:1–7.
4. An C, Rockmore DN, Stock CD. Analysis of the U.S. Patient Referral Network. Stat Med. 2019;37(5):847–66.
5. Halpern NA, Kettering S, Pastores SM, et al. Critical care medicine beds, use, occupancy and costs in the United States: a
   methodological review. Crit Care Med. 2017;43(11):2452–9.
6. Wagner J, Iwashyna T, Kahn J. Reasons underlying interhospital transfers to an academic medical intensive care unit. J Crit Care.
   2014;28(2):202–8.
7. Prin M, Wunsch H. International comparisons of intensive care: informing outcomes and improving standards. Curr Opin Crit
   Care. 2013;18(6):700–6.
8. Gray A, Gill S, Airey M, Williams R. Descriptive epidemiology of adult critical care transfers from the emergency department. EMJ.
   2003;20:242–6.
9. Wiegersma JS, Droogh JM, Zijlstra JG, Fokkema J, Ligtenberg JJM. Quality of interhospital transport of the critically ill: impact of
   a Mobile Intensive Care Unit with a specialized retrieval team. Crit Care; 2011;15(1).
10. Grier S, Brant G, Gould TH, Vopelius-feldt J, Von, Thompson J. Critical care transfer in an English critical care network: Analysis of
    1124 transfers delivered by an ad-hoc system. J Intensive Care Soc 2019;(March).
11. Abdel-Latif M, Berry A. Analysis of the retrieval times of a centralised transport service, New South Wales, Australia. Arch Dis
    Child. 2009;94:282–6.
12. Kreeftenberg H, Ligtenberg J, Gert Arnold L, van der Werf T, Tulleken J, Zijlstra J. Condition on arrival of transferred critically ill patients. Neth J Med. 2000;2977:180–4.
13. Waydhas C. Intrahospital transport of critically ill patients. Crit Care. 1999;3(5):83–9.
14. Ramnarayan P. Measuring the performance of an inter-hospital transport service. 414 Arch Dis Child. 2009;94(6):414–6.
15. Ligtenberg JJM, Arnold LG, Stienstra Y, et al. Quality of interhospital transport of critically ill patients: a prospective audit. Crit Care. 2005;9(4):446–51.
16. Alinier G, Campbell C, Meyer J, Al Shaikh L. Development of an interprofessional education training course for the Safe High Acuity Adult Retrieval Program (SHAARP). Innovations in Global Health Professions Education. 2016 Mar 9.
17. Campbell CB, Labib A. The development of a mobile ECMO program. Qatar Medical Journal. 2017;2017(1):11.
18. Markakis C, Dalezios M, Chatzicostas C, Chalkiadaki A, Politi K, Agouridakis PJ. Evaluation of a risk score for interhospital transport of critically ill patients. Emerg Med J. 2006;23:313–7.
19. Lee LLY, Lo WYL, Yeung KL, Kalinowski E, Tang SYH, Chan JTS. Risk stratification in providing inter-facility transport: Experience from a specialized transport team. World J Emerg Med. 2010;1(1):49–52.

Figures
Figure 1

Figure 1 highlights the locations of the tertiary health facilities across Qatar.

| Measurement Characteristic | Score |
|----------------------------|-------|
| 1. Hemodynamics | |
| Stable | 0 |
| Moderately stable (requires volume <5 ml/min in adults) | 1 |
| Unstable (requires volume >5 ml/min or inotropic or inotrope) | 2 |
| 2. Hypothermia | |
| Existing (existing or probable) | |
| No | 0 |
| Yes | 1 |
| No, not serious (and AMI after 48 hours) | 1 |
| Serious (and AMI in the first 48 hours) | 2 |
| 3. ECG monitoring | |
| No | 0 |
| Yes | 1 |
| Yes (adequate) | 1 |
| Yes (essential) | 2 |
| 4. Intravenous line | |
| No | 0 |
| Yes | 1 |
| Pulmonary artery catheter | 2 |
| 5. Provisional pacemaker | |
| No | 0 |
| Yes (not invasive). Always AMI in the first 48 hours | 1 |
| Yes (emergency) | 2 |
| 6. Respiratory | |
| Respiratory rate between 10 and 14 breaths/min in adults | 0 |
| Respiratory rate between 15-25 breaths/min in adults | 1 |
| Apnea or >30 or irregular breathing | 3 |
| 7. Airway | |
| No | 0 |
| Yes (endotracheal tube) | 1 |
| Yes (intubation or tracheostomy) | 2 |
| 8. Respiratory support | |
| No | 0 |
| Yes (oxygen therapy) | 1 |
| Yes (mechanical ventilation) | 2 |
| 9. Assessment | |
| GCS 15 | 0 |
| GCS 8-14 | 1 |
| GCS <8 and/or neurological disorder | 2 |
| 10. Pregnancy | |
| None | 0 |
| Newborn >2000 g | 0 |
| Newborn between 1200 and 2000 g | 1 |
| Newborn <1200 g | 2 |
| 11. Technical and/or medical support (actual or on route) | |
| None | 0 |

**Group I**
- Inotropes
- Vasodilators
- Antihypertensives
- Bronchodilators
- Analgesics
- Antidepressants
- Steroids
- Mineral 30%
- Anticoagulants
- Hemostatic
- Thoracic tube
- Suction

**Group II**
- Inotropes + vasodilators
- MAST
- Infant intubator
- General anaesthetics
- Intravenous fluids

Figure 2

Patient clinical data were collected starting from arrival at patient side by the transporting crew, throughout transport, until patient handover. All monitoring data was captured automatically and auto-populated into the unit's electronic health record following handover. All interventions and medications captured represent those continued or initiated primarily for the patient transfer.