1. Introduction.

Let \g be a complex finite dimensional simple Lie algebra with the root datum (Y, X, \ldots), see \cite{L2}. Let W_f denote the Weyl group, R denote the root system, R_+ denote the set of positive roots. Let X_+ denote the set of dominant integral weights. Let h denote the Coxeter number of \g.

Let us fix $l \in \mathbb{N}$, $l > h$. We assume that l is odd (and not divisible by 3, if \g is of type G_2). Let W denote the corresponding affine Weyl group.

Let $\rho \in X$ denote the halfsum of positive roots. We will denote by dot (for example $w \cdot \lambda$) the action of W (and $W_f \subset W$) centered in $(-\rho)$.

Let q be a primitive l–th root of unity and let U_q be the quantum group with divided powers as defined in \cite{L2}. Let C denote the category of finite dimensional U_q–modules of type 1 (see e.g. \cite{APW}).

In \cite{A} H.Andersen has studied a tensor subcategory $Q \subset C$ formed by tilting modules. He has introduced a tensor ideal $K \subset Q$ formed by negligible tilting modules. The quotient tensor category Q/K is semisimple. For certain values of l it is tensor-equivalent to a category of integrable modules over affine Lie algebra $\hat{\g}$ equipped with a fusion tensor structure (see e.g. \cite{F}).

Let us recall the definition of K. Indecomposable tilting modules are numbered by their highest weights $\lambda \in X_+$; we will denote them by $Q(\lambda)$. The set of dominant weights X_+ is covered by the closed alcoves numbered by $W_f \subset W$ — the set of shortest elements in the right cosets W/W_f. For $w \in W_f$ the corresponding closed alcove will be denoted by \overline{C}_w. For example, the alcove $\overline{C}_e = \overline{C}$ containing the zero weight is given by

$$\overline{C} = \{\lambda \in X | 0 \leq \langle \lambda + \rho, \alpha^\vee \rangle \leq l \text{ for all } \alpha \in R_+\}.$$

Now K is formed by the direct sums of tiltings $Q(\lambda)$, where λ is dominant and $\lambda \in \bigcup_{w \neq e} \overline{C}_w$.

\textbf{Date:} November 1996.

This material is based upon work supported by the U.S. Civilian Research and Development Foundation under Award No. RM1-265.
In this note we propose the following generalization of H.Andersen’s result. We recall that G.Lusztig and N.Xi have introduced a partition of W^f into canonical right cells along with the right order \leq_R on the set of cells, see [L1] and [LX]. In particular, $\{e\} \subset W^f$ forms a single right cell, maximal with respect to \leq_R. Thus $W^f - \{e\} = \bigsqcup_{A < R\{e\}} A$ — the union of right cells.

Main Theorem. Let $A \subset W^f$ be a right cell. The full subcategory $Q_{\leq A}$ formed by the direct sums of tiltings $Q(\lambda)$, $\lambda \in \bigcup_{w \in B_{\leq R}A} C_w$, is a tensor ideal in Q.

There is a well-known correspondence between the right cells in W and the right ideals in the affine Hecke algebra H (see [KL1]). Our result is completely parallel to this correspondence, and even the proof is. In fact, the proof is an application of a deep result by W.Soergel who has connected the characters of $Q(\lambda)$ with Kazhdan-Lusztig-type combinatorics of H.

In general, the right cells in W^f are infinite, but some are finite, e.g. $\{e\} \subset W^f$. The first nontrivial example is a ”subregular” cell D_1 for \mathfrak{g} of type G_2 (see the pictures and notations in [L1]) consisting of 8 alcoves. Then the subcategory $Q_{< D_1}$ formed by the direct sums of $Q(\lambda)$ such that $\lambda \in \bigcup_{w \in B_{< R}D_1} C_w$ is a tensor ideal, and we can consider the quotient subcategory $Q/Q_{< D_1}$ with finitely many isomorphism classes of indecomposable objects. This subcategory is non-semisimple, as opposed to Andersen’s fusion category Q/K. For example, when $l = 7$, Q/K is equivalent to \mathbb{C}–vector spaces, while $Q/Q_{< D_1}$ has 24 isomorphism classes of indecomposable objects. Its Grothendieck ring is a 24-dimensional algebra with nontrivial nilpotent radical, as opposed to the classical fusion rings which are always semisimple. To our knowledge, this is a first example of a nonsemisimple tensor category without fiber functor with finitely many indecomposable objects.

As we already mentioned, for certain values of l, Q/K is tensor equivalent to a category of integrable $\widehat{\mathfrak{g}}$–modules of positive central charge. It is a subcategory of a larger category \mathcal{O} of all $\widehat{\mathfrak{g}}$–integrable $\widehat{\mathfrak{g}}$–modules of positive central charge, but the Kazhdan-Lusztig construction of fusion tensor structure in this larger category encounters serious problems (see [KL2]). Still we believe that the quotient categories like $Q/Q_{< D_1}$ are closely related to the would-be fusion structure on \mathcal{O}.

The idea of this note is essentially due to J.Humphreys: it was he who suggested the important role played by the right cells in the study of tilting modules [H]. I learnt of his ideas from M.Finkelberg. I am grateful to Catharina Stroppel for her beautiful patterns of tilting characters for G_2 which provided a further insight into the connection between right cells and tilting modules. Thanks are also due to
D. Timashov who acquainted me with LIE package; it was very useful for me at the first stage of my work. I am indebted to H.H. Andersen and J. Humphreys for the valuable suggestions which improved the exposition. Finally, I would like to thank the referee for extremely useful comments which simplified the original proof drastically.

2. Preliminaries.

2.1. For any \(\lambda \in \mathbb{C} \) let \(\mathcal{C}(\lambda) \) denote a full subcategory of \(\mathcal{C} \) consisting of modules whose composition factors have highest weights in \(W \cdot \lambda \). The category \(\mathcal{C} \) is a direct sum of the subcategories \(\mathcal{C}(\lambda) \) (linkage principle; see e.g. [APW], §8)

\[
\mathcal{C} = \bigoplus_{\lambda \in \mathbb{C}} \mathcal{C}(\lambda).
\]

For any \(\lambda \in X_+ \) one defines Weyl module \(V(\lambda) \) and module \(H^0(\lambda) \) (see [A] §1). Then the irreducible module \(L(\lambda) \) is the socle of \(H^0(\lambda) \) as well as the head of \(V(\lambda) \).

2.2. Let \(\mathbb{Z}[X] \) be the group algebra of abelian group \(X \). It is generated by elements \(e^\lambda, \lambda \in X \), with relations \(e^{\lambda_1} \cdot e^{\lambda_2} = e^{\lambda_1+\lambda_2} \forall \lambda_1, \lambda_2 \in X \). There is a natural action of \(W_f \) on \(\mathbb{Z}[X] \) given by the formula \(we^\lambda = e^{w \cdot \lambda} \). Let \(\mathcal{A} := \mathbb{Z}[X]^{W_f} \) be the invariants of this action. It is a subalgebra of \(\mathbb{Z}[X] \).

Let \(ch : K(\mathcal{C}) \to \mathbb{Z}[X] \) be the map associating to a module \(M \in \mathcal{C} \) its character \(ch(M) \). It is known that its image is \(\mathcal{A} \). Moreover the elements \(ch([V(\lambda)]) \) where \(\lambda \) runs through \(X_+ \) form a basis of \(\mathcal{A} \). It is known that \(ch([V(\lambda)]) = ch([H^0(\lambda)]) \) is given by the Weyl character formula (see e.g. [APW] §8):

\[
ch([V(\lambda)]) = \frac{\sum_{w \in W_f} (-1)^{l(w)} e^{w \cdot \lambda}}{\sum_{w \in W_f} (-1)^{l(w)} e^{w \cdot 0}}.
\]

Now for any \(\lambda \in X \) let

\[
ch(\lambda) = \frac{\sum_{w \in W_f} (-1)^{l(w)} e^{w \cdot \lambda}}{\sum_{w \in W_f} (-1)^{l(w)} e^{w \cdot 0}}.
\]

Lemma. (i) If stabilizer (in \(W_f \)) of \(\lambda \) with respect to dot action is nontrivial then \(ch(\lambda) = 0 \).

(ii) Suppose the stabilizer of \(\lambda \) is trivial and let \(w \in W_f \) be such that \(w \cdot \lambda \in X_+ \). Then \(ch(\lambda) = (-1)^{l(w)} ch(w \cdot \lambda) \).

Proof. Clear. □
2.3. Let $W \rightarrow W_f, w \mapsto w$ be the standard homomorphism with the kernel consisting of translations.

Lemma. For any $\lambda, \mu \in X$ and $w \in W$ we have $w(\lambda + \mu) = w\lambda + w\mu$ and $w \cdot (\lambda + \mu) = w \cdot \lambda + w\mu$.

Proof. The first identity is obviously true for $w \in W_f \subset W$ and for translations. Since W is a semidirect product of W_f and the subgroup of translations we get our result. The second identity is a simple consequence of the first one. □

2.4. **Lemma.** (see e.g. [D] 2.2.3) Let P be a multiset (set with multiplicities) of weights invariant under W_f action. Then for any $\lambda \in X$ we have

$$(\sum_{\omega \in P} e^{\omega})ch(\lambda) = \sum_{\omega \in P} ch(\lambda + \omega)$$

Proof. Straightforward computation. □

2.5. A filtration of U_q–module is called Weyl filtration (respectively good filtration) if all the associated factors are Weyl modules (respectively modules $H^0(\lambda)$).

2.6. **Definition** (see [A], definition 2.4) A tilting module is a module $M \in \mathcal{C}$ which has both a Weyl filtration and a good filtration.

Let $\mathcal{Q} \subset \mathcal{C}$ be a full subcategory formed by all tilting modules. The main properties of this category are collected in the following (see [A] §2)

Theorem. (i) The category \mathcal{Q} is closed under tensor multiplication.

(ii) Any tilting module is a sum of indecomposable tilting modules.

(iii) For each $\lambda \in X^+$ there exists an indecomposable tilting module $Q(\lambda)$ with highest weight λ.

(iv) The modules $Q(\lambda), \lambda \in X^+$, form a complete set of nonisomorphic indecomposable tilting modules.

(v) A tilting module is determined up to isomorphism by its character.

Let $\mathcal{Q}(\lambda)$ be the full subcategory of \mathcal{Q} consisting of modules contained in $\mathcal{C}(\lambda)$. Then obviously

$$\mathcal{Q} = \bigoplus_{\lambda \in \overline{\mathcal{C}}} \mathcal{Q}(\lambda).$$

2.7. For any $\lambda, \mu \in \overline{\mathcal{C}}$ one defines the translation functor $T^\mu_\lambda : \mathcal{C}(\lambda) \rightarrow \mathcal{C}(\mu)$ (see e.g. [APW] §8). The following Proposition is proved as in [P],II,7.13.
2.7.1. **Proposition.** Suppose \(\lambda, \mu \in \mathcal{C} \) and \(w \in W \) is such that \(w \cdot \lambda \in X_+ \). Then \(T^0_\lambda V(w \cdot \lambda) \) has a filtration with the associated factors \(V(\nu) \) such that \(\nu \in X_+ \) and \(\nu = w w_1 \cdot \mu \) with \(w_1 \in Stab(\lambda) \). Each one of the above factors occurs exactly once.

In particular it follows that translation functors preserve the category \(\mathcal{C} \).

2.7.2. **Corollary.** For any \(w \in W \) such that \(w \cdot \lambda \in X_+ \) the module \(T^0_\lambda T^0_0 V(w \cdot 0) \) has a filtration with associated factors \(V(\nu) \) with \(\nu \in X_+ \) and \(\nu = w w_1 \cdot \mu \) with \(w_1 \in Stab(\lambda) \).

Proof. Evident. \(\square \)

3. **Construction of tensor ideals.**

3.1. Recall that \(W \) denotes the affine Weyl group and \(W_f \) denotes the ordinary Weyl group. Let \(W_f \) denote the set of minimal length representatives of right cosets. The multiplication defines a bijection \(W_f \times W_f \to W \). Let \(\mathcal{L} \) be the sign representation of \(W_f \). We will consider it as right \(W_f \)-module. Let us define a right \(W \)-module \(\mathcal{N}^1 := \mathcal{L} \otimes_{\mathbb{Z}[W_f]} \mathbb{Z}[W] \). As \(\mathbb{Z} \)-module it is isomorphic to a free abelian group with generators numbered by \(W_f \). Let \(N^1_x = 1 \otimes x \) for any \(x \in W_f \). These elements form a \(\mathbb{Z} \)-basis of \(\mathcal{N}^1 \). For any \(s \in S \) we have \(N^1_s s = N^1_{xs} \) if \(xs \in W_f \) and \(N^1_s \) otherwise.

3.2. Let \(K(C) \) denote the Grothendieck group of the category \(C \). For any \(\lambda \in \mathcal{C} \) define the map \(\alpha_\lambda : K(C) \to \mathcal{N}^1 \) by \(\alpha_\lambda([V(\mu)]) = 1 \otimes \left(\sum_{x \in W_f; x \cdot \lambda = \mu} x \right) \). In particular \(\alpha_\lambda \) annihilates every object outside of the block \(\mathcal{C}(\lambda) \) of \(C \).

3.2.1. Let us identify \(K(C) \) with the character ring \(\mathcal{A} \).

Lemma. For any \(w \in W \) we have

\[
\alpha_\lambda(ch(w \cdot \lambda)) = |Stab(\lambda)|^{-1} \otimes \left(\sum_{x \in Stab(\lambda)} wx \right)
\]

Proof. For \(w \in W \) such that \(w \cdot \lambda \in X_+ \) the Lemma is clear from definitions. For other \(w \) use 2.2. \(\square \)

3.2.2. **Lemma.** For any \(\lambda \in \mathcal{C} \) and \(V \in \mathcal{C}(\lambda) \) we have

\[
\alpha_\lambda(V) = \alpha_0(T^0_\lambda V)
\]

Proof. Obvious. \(\square \)
3.2.3. Lemma. For any $\lambda \in C$ and $V \in C(0)$ we have

$$\alpha_0(T_0^\lambda T_\lambda^{-1}V) = \alpha_0(V) \sum_{x \in \text{Stab}(\lambda)} x$$

Proof. It is enough to verify the Lemma for $V = V(w \cdot 0)$. Now if $w \cdot \lambda \in X_+$ the result follows from 2.7.2; if $w \cdot \lambda \not\in X_+$ then RHS and LHS both vanish. □

3.3. Proposition. For any $\lambda, \mu \in C$ and $M \in C$ there exists $c(M) = c_{\lambda\mu}(M) \in \mathbb{Z}[W]$ such that for all $V \in C(\lambda)$ we have

$$\alpha_\mu(V \otimes M) = \alpha_\lambda(V)c(M).$$

Proof. (see also [1], II, 7.5) It is enough to check the claim on the level of characters; moreover we can suppose that $\text{ch}(V) = \text{ch}(w \cdot \lambda)$.

Let $P(M)$ be a multiset of weights of module M. It is invariant under W_f–action. We have by 2.2 and 2.3

$$\text{ch}(V(w \cdot \lambda) \otimes M) = \sum_{\omega \in P(M)} \text{ch}(w \cdot \lambda + \omega) = \sum_{\omega \in P(M)} \text{ch}(w \cdot (\lambda + \omega))$$

Now let us define a multiset $W_{\lambda\mu}(M) := \{x \in W| \lambda + \omega = x \cdot \mu; \omega \in P(M)\}$. It is easy to see that $W_{\lambda\mu}(M)$ is invariant under left multiplication by elements of $\text{Stab}(\lambda)$ and right multiplication by elements of $\text{Stab}(\mu)$. So $W_{\lambda\mu}(M)$ is a union of left and right cosets; let $W_{\lambda\mu}(M)'$ be a set of representatives of right cosets. We claim that we can choose $c_{\lambda\mu}(M) = \sum_{z \in W_{\lambda\mu}(M)'} z$.

Indeed, let $P_{\lambda\mu}(M) := \{\omega \in P(M)| \lambda + \omega \in W \cdot \mu\}$. For any $\omega \in P_{\lambda\mu}(M)$ let $w(\omega)$ be any element of W such that $w(\omega)^{-1} \cdot (\lambda + \omega) = \mu$. It is evident that $\{w(\omega)\}$ is the set of representatives of left cosets in $W_{\lambda\mu}(M)$. We have

$$\alpha_\mu(V \otimes M) = \alpha_\mu(\text{ch}(w \cdot \lambda)\text{ch}(M)) = \alpha_\mu(\sum_{\omega \in P(M)} \text{ch}(w \cdot (\lambda + \omega))) = \alpha_\mu(\sum_{\omega \in P_{\lambda\mu}(M)} \text{ch}(w \cdot (\lambda + \omega))) = \alpha_\mu(\sum_{\omega \in P_{\lambda\mu}(M)} \sum_{x \in \text{Stab}(\mu)} 1 \otimes w\omega x) = \sum_{t \in W_{\lambda\mu}(M)} 1 \otimes wt = \sum_{y \in \text{Stab}(\lambda)} \sum_{z \in W_{\lambda\mu}(M)'} 1 \otimes wyz = \alpha_\lambda(\text{ch}(w \cdot \lambda)) \sum_{z \in W_{\lambda\mu}(M)'} z.$$

The Proposition is proved. □
3.4. **Definition.** A subcategory $C' \subset C$ is called a weak tensor ideal if for any $V \in C'$ and $M \in C$ we have $V \otimes M \in C'$.

We define weak tensor ideals in any subcategory of C closed under tensor multiplication in the same way.

Corollary. If $U \subset N^1$ is a $\mathbb{Z}[W]$-submodule, then $C_U := \{ V \in C | \alpha(V) \in U \ \forall \lambda \in C \}$ is a weak tensor ideal of C and $Q_U := Q \cap C_U$ is a weak tensor ideal of Q.

Proof. Clear. □

4. **Realization of $K(Q(0))$ as a module over Hecke algebra.**

In this section we follow [S1].

4.1. Let $l : W \rightarrow \mathbb{N}$ be the length function and let \leq be the standard Bruhat order on W. We will write $x < y$ if $x \leq y$ and $x \neq y$. Let $\mathcal{L} = \mathbb{Z}[v, v^{-1}]$ denote the ring of Laurent polynomials over \mathbb{Z} in variable v. Let \mathcal{H} be the Hecke algebra corresponding to (W, S)

$$\mathcal{H} = \bigoplus_{x \in W} \mathcal{L}T_x$$

with multiplication given by the rule: $T_xT_y = T_{xy}$ if $l(xy) = l(x) + l(y)$ and $T_s^2 = v^{-2}T_e + (v^{-2} - 1)T_s$ for all $s \in S$ (see [S1] §2).

Let $H_x = v^{l(x)}T_x$ be a new basis of Hecke algebra. There exists unique involutive automorphism of Hecke algebra $d : \mathcal{H} \rightarrow \mathcal{H}$, $H \mapsto \overline{H}$ such that $\overline{v} = v^{-1}$ and $\overline{H_x} = (H_{x^{-1}})^{-1}$. We will call $H \in \mathcal{H}$ selfdual if $\overline{H} = H$.

The following theorem was proved by Kazhdan and Lusztig in [KL1].

Theorem. For any $x \in W$ there exists unique selfdual $H_x \in \mathcal{H}$ such that $H_x \in H_x + \sum_{y < x} v\mathbb{Z}[v]H_y$.

The coefficients of H_x in the basis $\{ H_x \}$ are essentially Kazhdan-Lusztig polynomials.

4.2. Let \mathcal{H}_f be the Hecke algebra corresponding to the group W_f. We have an obvious embedding $\mathcal{H}_f \subset \mathcal{H}$. Let $\mathcal{L}(-v)$ be a free right \mathcal{L}-module of rank 1 with the right action of \mathcal{H}_f given by the following rule: for any $s \in S_f$ the element H_s acts as $(-v)$. We define a right \mathcal{H}-module $\mathcal{N} := \mathcal{L}(-v) \otimes_{\mathcal{H}_f} \mathcal{H}$. For any $x \in W^f$ let us define $\overline{N}_x := 1 \otimes H_x \in \mathcal{N}$. Let $\beta : \mathcal{N} \rightarrow N^1$ denote the specialization map: $v \mapsto 1$. We define $N_x^{1} := \beta(N_x) \in N^1$.

4.3. The following statement was conjectured in [S1] (Vermutung 7.2) and then proved in [S2].

Theorem. $\alpha(Q(x \cdot 0)) = N_x^{1}$. 7
4.4. We will say that an \(\mathbb{Z}[W] \)-submodule of \(\mathcal{N}^1 \) is a \(KL \)-submodule if it admits a base consisting of elements \(\mathcal{N}^1 \) for some subset of \(W^f \).

5. **Right cells in affine Weyl group.**

5.1. In [KL1] Kazhdan and Lusztig defined three partitions of any Coxeter group into subsets called right, left and two-sided cells respectively. We refer the reader to loc. cit. for the definitions of preorders \(\leq_R, \leq_L, \leq_{LR} \) on Coxeter groups. The right (left, two-sided) cells are the classes of equivalence generated by preorder \(\leq_R \) (respectively \(\leq_R \) and \(\leq_{LR} \)). Let \(w \in W \) and \(A \) be a right cell in \(W \). We will write that \(w \leq_R A \) if \(w \leq_R w' \) for any \(w' \in A \) (and similarly for left and two-sided cells).

5.2. There is a correspondence between cells and ideals in the Hecke algebra. Namely, for any right (left or two-sided) cell \(A \) the \(L \)-submodule \(I_{\leq A} \) of \(H \) generated by \(H_{w}, \ w \leq_R A \) (and similarly for left and two-sided cells) is a right (respectively left and two-sided) ideal of \(H \) (see [KL1]). Moreover any KL-ideal (i.e. ideal admitting a base consisting of some elements \(H_{w} \)) is a sum of such ideals.

5.3. Let \(A \) be a two-sided cell of \(W \). The main result of [LX] is the following

Theorem. The intersection \(A \cap W^f \) forms a right cell of \(W \).

5.4. **Definition.** A weak tensor ideal \(\tau \subset \mathcal{Q} \) is called a tensor ideal if for any \(Q_1, Q_2 \) such that \(Q_1 \oplus Q_2 \in \tau \) we have \(Q_1, Q_2 \in \tau \).

For any two-sided cell \(A \) of \(W \) we define the full subcategory \(\mathcal{Q}_{\leq A} \) of \(\mathcal{Q} \) as follows: \(\mathcal{Q}_{\leq A} \) is the additive subcategory of \(\mathcal{Q} \) and indecomposable objects of \(\mathcal{Q}_{\leq A} \) are all the modules \(Q(w \cdot \lambda) \) where \(\lambda \in \mathcal{C}, \ w \in W^f \) and \(w \leq_R A \).

5.5. **Main Theorem.** For any two-sided cell \(A \) of \(W \) the subcategory \(\mathcal{Q}_{\leq A} \) is a tensor ideal.

Proof. For any two-sided cell \(A \) we define a \(\mathbb{Z}[W] \)-submodule \(U_{\leq A} \) of \(\mathcal{N}^1 \) to be \(\mathcal{L} \otimes I_{\leq A \cap W^f} \).

We will show that for any \(\lambda \in \mathcal{C} \) \(\alpha_\lambda(Q(w \cdot \lambda)) \in U_{\leq A} \) if and only if \(\alpha_0(Q(w' \cdot 0)) \in U_{\leq A} \) where \(w' \) is the longest element of coset \(wStab(\lambda) \).

We have

\[
\alpha_\lambda(Q(w \cdot \lambda)) = |Stab(\lambda)|^{-1} \alpha_0(T^0_\lambda Q(w \cdot \lambda))
\]

Note that \(T^0_\lambda Q(w \cdot \lambda) \) contains a direct summand \(Q(w' \cdot 0) \). So we proved that \(\alpha_\lambda(Q(w \cdot \lambda)) \in U_{\leq A} \) implies that \(\alpha_0(Q(w' \cdot 0)) \in U_{\leq A} \).
Now note that $T_0^3Q(w' \cdot 0)$ contains a direct summand $Q(w \cdot \lambda) = Q(w \cdot 0)$. Further $\alpha_0(T_0^3T_0^3Q(w' \cdot 0)) = \alpha_0(Q(w' \cdot 0)) \sum_{x \in Stab(\lambda)} x \in U_{\leq A}$ by 3.2.3 and we proved our claim in another direction.

So the proof of theorem is finished. □

5.6. **Remark.** It is easy to see that theorem above establishes bijection between KL-submodules of N^1 and tensor ideals in Q. Further note that all KL-submodules of N^1 are the sums of submodules $U \leq A$. So we describe all tensor ideals in a category of tilting modules.

REFERENCES

[A] H.H. Andersen *Tensor products of quantized tilting modules*. Communications in Mathematical Physics 149 (1992), pp. 149-159.

[APW] H. Andersen, P. Polo, K. Wen *Representations of quantum algebras*. Invent. Math. 104 (1991), pp.1-59.

[D] S. Donkin *Rational representations of algebraic groups*. Lecture Notes in Math. vol 1140, Berlin Heidelberg, New York: Springer 1985.

[F] M. Finkelberg *An equivalence of fusion categories*, Geometrical and Functional Analysis, vol.6, 2 (1996), pp. 249-267.

[H] J.E. Humphreys, *Comparing modular representations of semisimple groups and their Lie algebras*, in volume dedicated to R.E. Block, Modular Interfaces: Modular Lie Algebras, Quantum Groups, and Lie Superalgebras, ed. V. Chari and I. Penkov, International Press, 1997.

[J] J.C. Jantzen *Representations of Algebraic Groups*, Pure and Applied Mathematics 131, Academic Press, 1987.

[KL1] D. Kazhdan, G. Lusztig *Representations of Coxeter groups and Hecke algebras*, Inventiones math. 53 (1979), pp. 165-184.

[KL2] D. Kazhdan, G. Lusztig *Tensor structures arising from affine Lie algebras I-IV*, J. Amer. Math. Soc. 6 (1993), pp. 905-1011 and J. Amer. Math. Soc. 7 (1994), pp. 335-453.

[L1] G. Lusztig *Cells in affine Weyl groups.*, Advanced Studies in Pure Mathematics 6, 1985; Algebraic Groups and Related Topics pp. 255-287.

[L2] G. Lusztig *Introduction to quantum groups.*, Boston, Birkhauser, 1993.

[LX] G. Lusztig, N. Xi *Canonical left cells in affine Weyl groups*, Advances in Mathematics 72 (1988), pp. 284-288.

[S1] W. Soergel *Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln.*, Representation Theory, 1 (1997).

[S2] W. Soergel *Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren.*, Preprint (1996), pp. 1-21.

Independent Moscow University, 11 Bolshoj Vlasjevskij per., Moscow 121002 Russia
E-mail address: ostrik@nw.math.msu.su