Unusual T_c variation with hole concentration in Bi$_2$Sr$_{2-\delta}$La$_x$CuO$_{6+\delta}$

Mu-Yong Choi and J. S. Kim
Department of Physics and Institute of Basic Sciences
Sungkyunkwan University, Suwon 440-746, Korea

We have investigated the T_c variation with the hole concentration p in the La-doped Bi 2201 system, Bi$_2$Sr$_{2-\delta}$La$_x$CuO$_{6+\delta}$. It is found that the Bi 2201 system does not follow the systematics in T_c and p observed in other high-T_c cuprate superconductors (HTSC’s). The T_c vs p characteristics are quite similar to what observed in Zn-doped HTSC’s. An exceptionally large residual resistivity component in the inplane resistivity indicates that strong potential scatterers of charge carriers reside in CuO$_2$ planes and are responsible for the unusual T_c variation with p, as in the Zn-doped systems. However, contrary to the Zn-doped HTSC’s, the strong scatter in the Bi 2201 system is possibly a vacancy in the Cu site.

PACS numbers: 74.72.Hs, 74.62.Dh, 74.62.Bf, 74.25.Dw

Many high-T_c cuprate superconductors (HTSC’s) display an approximately parabolic dependence of T_c upon the hole concentration p with the maximum T_c at $p \approx 0.16$. \cite{(p is defined as the hole concentration per Cu atom in CuO$_2$ planes.) This behavior was observed first in La$_{2-x}$Sr$_x$CuO$_4$. \cite{Then other HTSC’s such as YBa$_2$Cu$_3$O$_{7-\delta}$, Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$, and Tl$_2$CaCu$_2$O$_{7+\delta}$ were also found to show approximately the same relation between T_c and p which scales only with the maximum T_c, T_c max. Though not studied for the full range of p, several other HTSC’s are also known to have T_c max at $p \approx 0.14 \sim 0.15$. \cite{Therefore one might expect that there possibly exists a universal relation between T_c and p which all HTSC’s satisfy.}

Existence of a universal parabolic relation between T_c and p for all HTSC’s, despite the different combinations of constituent atoms, the presence of various charge-carrier reservoir layers, and a variety of inter-plane coupling strengths, cannot be common but is believed to be related to a noble nature of high-temperature superconductivity. It is therefore not strange that the recent observations in Zn-doped HTSC’s of departure from the universal relation have drawn particular interest. \cite{Much attention has focused on the function of Zn. Within a HTSC, Zn substitutes for Cu in the CuO$_2$ plane and behaves as a nonmagnetic impurity without altering the carrier concentration. In this report, we show that a similar non-universal T_c vs p relation holds also for the La-doped Bi 2201 system, Bi$_2$Sr$_{2-\delta}$La$_x$CuO$_{6+\delta}$, which contains strong disorders in CuO$_2$ planes differing from impurities.}

We have obtained the hole concentration p of the samples from the thermopower (S) measurements. The room-temperature thermopower S(290 K) of HTSC’s was found to be a universal function of p over the whole range of doping, \cite{which has since been used widely to determine the p of HTSC’s. The superconducting-transition temperature T_c was determined at half the normal-state resistivity. The conventional solid-state reaction of stoichiometric oxides and carbonates was adopted in preparing polycrystalline samples of Bi$_2$Sr$_{2-\delta}$La$_x$CuO$_{6+\delta}$. The x-ray diffraction (XRD) analysis shows all the samples to be single phase to the threshold of detection. The oxygen content in the sample of $x = 0.1$ could be varied by annealing the same sample in vacuum for 6 h at different temperatures (400°C, 500°C, and then 600°C). S was measured by employing the dc method described in Ref. 10. The resistivity ρ was measured through the conventional low-frequency ac four-probe method.}

Figure 1 shows the temperature dependences of S and ρ of Bi$_2$Sr$_{2-\delta}$La$_x$CuO$_{6+\delta}$ (BSLCO) with $0.1 \leq x \leq 0.8$. The temperature and doping dependences of S in Fig. \cite{(a) are typical of HTSC’s. S(290 K) increases with doping x from -15.5μV/K to 60 μV/K. Corresponding p determined from the relations between S(290 K) and p in Ref. 3 varies from 0.286 to 0.073 with doping. The ρ measurements in Fig. \cite{(b) displays that the T_c of BSLCO has its maximum at $x \sim 0.5$ or $p \sim 0.22$. The appearance of T_c max at $x \sim 0.5$ agrees with the previous measurements. T_c max is plotted in Figure 2. The T_c (= 21.5 K) of $x = 0.5$ is used as T_c max for solid circles. The dotted curve is of the universal relation, T_c/T_c max, against p is plotted in Figure 2. The T_c ($= 21.5$ K) is also unusually low, which is only $\frac{1}{4}$ the T_c of Tl$_2$Ba$_2$CuO$_{6+\delta}$, isostuctural of BSLCO. Taking the maximum T_c of Tl$_2$Ba$_2$CuO$_{6+\delta}$ as T_c max, BSLCO has much lower T_c/T_c max’s, as represented by open circles in Figure 2. Unusual T_c variation with p is exposed more dramatically in the vacuum-annealed sample of $x = 0.1$ which superconducts at $T \leq 10$ K without vacuum-annealed. Vacuum annealing reduces the content of oxygen atoms interstitial between Bi-O planes and consequently p in
CuO planes.\cite{9} Fig 3(a) shows that successive vacuum annealings at 400°C, 500°C, and then 600°C enhance S of Bi$_2$Sr$_1.9$La$_0.1$CuO$_{6+\delta}$ from -15.5 μV/K to -9.3 μV/K. The corresponding variation of p is from 0.286 to 0.240. We expect from the observed T_c-p relation of BSLCO in Figure 2 that T_c of the sample of $x = 0.1$ rises with annealing from 10 K to 20 K. The ρ measurements in Figure 3(b), however, show that the superconductivity observed in the as-grown sample disappears with annealing in vacuum. We observed similar behaviors also in Bi$_2$Sr$_2$CuO$_{6+\delta}$ which had been prepared from the nominal composition of Bi: Sr: Cu = 2:2:1.5. The semiconducting as-grown sample of Bi$_2$Sr$_2$CuO$_{6+\delta}$ having $p = 0.282$ exhibited a superconducting-transition onset at 11.5 K when vacuum-annealed at 400°C. And yet subsequent vacuum annealings at 500°C and 600°C put the sample back in the semiconducting states. The p's of the Bi$_2$Sr$_2$CuO$_{6+\delta}$ sample annealed at 400°C, 500°C, and 600°C were 0.256, 0.250 and 0.216 respectively, all of which are located in the superconducting region of Figure 3.

The T_c vs p characteristics of as-grown samples represented by the open circles in Figure 3 resemble those of Zn-doped HTSC’s in Ref. 6 and 7. It has been suggested that the primary effect of Zn impurities is to produce a large residual resistivity as a nonmagnetic potential scatterer in the unitary limit and that the more rapid depression of T_c in the underdoped region is related to the large residual resistivity reaching the universal two-dimensional resistance $h/4e^2 \approx 6.5 k\Omega/\square$ per CuO$_2$ plane at the edge of the underdoped superconducting region.\cite{9} Unlike most HTSC’s, the Bi 2201 superconductor is found to have an exceptionally large residual resistivity.\cite{10,11} The corresponding two-dimensional residual resistance per CuO$_2$ plane ranges from 0.3 kΩ/\square at an overdoped hole concentration to 10 kΩ/\square at an underdoped concentration with 50% uncertainties.\cite{10,11} The large residual resistivity indicates that BSLCO contains strong scatterers of charge carriers in the planes. The strong scatterer in BSLCO is, however, not an impurity but most likely a vacancy in the CuO$_2$ plane, since any of Bi, Sr, and La can hardly substitute for Cu and disorders in the noncopper sites have little effect on superconducting properties but changing the hole concentration. Nevertheless, a vacancy in the CuO$_2$ plane is expected to act as a nonmagnetic potential scatterer, just like the Zn impurity in the planes. Vacuum annealing may cause extra vacancies in CuO$_2$ planes as well as expelling interstitial oxygen atoms. Thus the same argument in terms of disorder in the CuO$_2$ plane can be adopted for an explanation of the deeper suppression of T_c in vacuum-annealed samples.

Although the above discussion does not provide a full account for the origin of the nonuniversal T_c vs p characteristics, it may be concluded that similarity between the Bi 2201 HTSC with disorders differing from impurities and other HTSC’s with Zn impurities seem to strengthen the argument that a strong potential scattering in the planes and a large residual resistivity at an underdoped hole concentration are closely related to the strong suppression of high-temperature superconductivity and the more rapid T_c depression in the underdoped region.

We wish to thank Y. Yun and I. Baek for their assistance with the XRD analysis.

\[1\] M. R. Presland et al., Physica C 176, 95 (1991).
\[2\] J. L. Tallon, C. Bernhard, H. Shaked, R. L. Hitterman, and J. D. Jorgensen, Phys. Rev. B 51, 12 911 (1995).
\[3\] S. D. Obertelli, J. R. Cooper, and J. L. Tallon, Phys. Rev. B 46, 14 928 (1992).
\[4\] M. A. G. Aranda, D. C. Sinclair, and J. P. Attfield, Physica C 221, 304 (1994).
\[5\] D. C. Sinclair et al., Physica C 176, 95 (1991).
\[6\] T. Kluge, Y. Koike, A. Fujimura, M. Kato, T. Noji, and Y. Saito, Phys. Rev. B 52, R727 (1995).
\[7\] J. L. Tallon, C. Bernhard, G. V. M. Williams, and J. W. Loram, Phys. Rev. Lett. 79, 5294 (1997).
\[8\] Y. Fukuzumi, K. Mizuhashi, K. Takenaka, and S. Uchida, Phys. Rev. Lett. 76, 684 (1996).
\[9\] C. Bernhard, J. L. Tallon, C.ucci, D. DeRenzi, G. Guidi, G. V. M. Williams, and Ch. Niedemayer, Phys. Rev. Lett. 77, 2304 (1996).
\[10\] W. N. Kang, K. C. Cho, Y. M. Kim, and Mu-Yong Choi, Phys. Rev. B 39, 2763 (1989).
\[11\] A. Maeda, M. Hase, I. Tsukada, K. Noda, S. Takebayashi, and K. Uchinokura, Phys. Rev. B 41, 6418 (1990).
\[12\] Y. Shimakawa, Y. Kubo, T. Manako, H. Igarashi, F. Izumi, and H. Asano, Phys. Rev. B 42, 10 165 (1990).
\[13\] M. Runde, J. L. Routbort, J. N. Mundy, S. J. Rothman, C. L. Wiley, and X. Xu, Phys. Rev. B 46, 3142 (1992).
\[14\] T. Yasuda, S. Takano, and L. Rinderer, Physica C 208, 385 (1993).
\[15\] Y. Shimakawa, Y. Kubo, T. Manako, and H. Igarashi, Phys. Rev. B 40, 11 400 (1989).
\[16\] Yoichi Ando, G. S. Boebinger, A. Passner, N. L. Wang, C. Geibel, and F. Steglich, Phys. Rev. Lett. 77, 2065 (1996).
\[17\] S. Martin, A. T. Fiory, R. M. Fleming, L. F. Shneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 846 (1990).
\[18\] Hole concentrations of the samples in Ref. 16 and 17 are estimated from the inplane resistivity at room temperature, $\rho_{ab}(300 K)$, and the temperature dependence of ρ_{ab}. A $\rho_{ab}(300 K) \approx 5$ mΩcm and a semiconductor-like temperature dependence at low temperatures of ρ_{ab} usually appear in a sample with an underdoped hole concentration.
FIG. 1. (a) The thermopower S and (b) the resistivity ρ of Bi$_{2}$Sr$_{2-x}$La$_{x}$CuO$_{6+\delta}$ as functions of temperature. The numbers next to the curves denote the La content x in the materials.

FIG. 2. T_c of Bi$_{2}$Sr$_{2-x}$La$_{x}$CuO$_{6+\delta}$, normalized to $T_{c,\ max}$, plotted as a function of the hole concentration p determined from the S data in Figure 1 and the S-p relations in Ref. 1. $T_{c,\ max} = 21.5$ K for closed circles and 85 K for open circles. The error bars show the upper limit of T_c for the sample of $x = 0.8$ with $p = 0.098$. The dotted curve is a plot of the "universal" relation in Ref. 1.

FIG. 3. (a) S and (b) ρ of vacuum-annealed Bi$_{2}$Sr$_{1.9}$La$_{0.1}$CuO$_{6+\delta}$ as functions of temperature. The numbers next to the curves denote the annealing temperatures.