Epidemiology of cardiac implantable electronic device infections: incidence and risk factors

Hui-Chen Han¹, Nathaniel M. Hawkins¹, Charles M. Pearman¹,², David H. Birnie³, and Andrew D. Krahn ¹

¹Heart Rhythm Services, Division of Cardiology, Department of Medicine, Center for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada; ²Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, Core Technology Facility, University of Manchester, Manchester M13 9XX, UK; and ³University of Ottawa Heart Institute, Ottawa, Ontario, Canada

Received 13 January 2021; editorial decision 13 February 2021

Abstract

Cardiac implantable electronic device (CIED) infection is a potentially devastating complication of CIED procedures, causing significant morbidity and mortality for patients. Of all CIED complications, infection has the greatest impact on mortality, requirement for re-intervention and additional hospital treatment days. Based on large prospective studies, the infection rate at 12-months after a CIED procedure is approximately 1%. The risk of CIED infection may be related to several factors which should be considered with regards to risk minimization. These include technical factors, patient factors, and periprocedural factors. Technical factors include the number of leads and size of generator, the absolute number of interventions which have been performed for the patient, and the operative approach. Patient factors include various non-modifiable underlying comorbidities and potentially modifiable transient conditions. Procedural factors include both peri-operative and post-operative factors. The contemporary PADIT score, derived from a large cohort of CIED patients, is useful for the prediction of infection risk. In this review, we summarize the key information regarding epidemiology, incidence and risk factors for CIED infection.

Graphical Abstract

CIED infection risk factors

Device-related	Patient	Procedural
Leads & Generator	Underlying	Peri-operative
More leads	Younger age	Absence of antibiotics
ICD	Male	(2.0-11.5)
CRT	Renal dysfunction	Operator inexperience
(1.8-8.5)	(1.5)	(2.5)
(2.7-28.5)	Heart disease	Procedure duration
	(1.5-13.4)	(1.03)
	COPD	
	(2.2-9.8)	
Additional interventions	AF	Hematoma
Generator replacement	(3.1)	(27.2)
(2.0-3.8)	Immunosuppressed	
System upgrade	(2.3-13.9)	
(3.1-39.6)		
Reintervention		
(3.1-8.0)		
Operative approach		
Epicardial		
Abdominal device		

*Corresponding author. Tel: +604 682 2344; fax: +604 806 8723. E-mail address:akrahn@mail.ubc.ca

© The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.
Introduction

Cardiac implantable electronic device (CIED) infection is a potentially devastating cause of morbidity and mortality for patients,1–3 resulting in significant strain on healthcare resources.4,5 Despite heightened awareness and measures to reduce risk of infection,6–8 the incidence remains high and the overall burden is increasing as the population receiving CIED continues to grow.9–11 Various technical, patient, and procedural factors can influence the infection risk associated with CIED procedures.12–14 In this review, we summarize the key information regarding epidemiology, incidence, and risk factors for CIED infection.

Definition

Various classifications exist for CIED infection. These can include conditions not necessarily requiring intervention, such as post-operative wound inflammation or simple stitch abscess. In contrast, conditions which require intervention, include isolated pocket/generator infection, device pocket pre-erosion, pocket erosion with generator or lead externalization, isolated bacteraemia, pocket infection with systemic involvement, and device-related infective endocarditis (Figure 1).15–18

Incidence

Multiple factors influence the overall incidence of CIED infection including the type of CIED procedure and follow-up duration (Table 1). Of note, these studies have focused on CIED infections which require intervention. Based on two recent prospective multicentre trials, the overall 12-month CIED infection rate is ∼1%.7,8 De novo CIED implants are associated with lower infection risk when compared with generator procedures or lead revisions and upgrades.5,14,24,28,29 Pacemaker (PM) procedures are associated with lower infection risk compared to implantable cardioverter-defibrillator (ICD) and cardiac resynchronization therapy (CRT) procedures.5,14,24,28,30 In a retrospective study of 78 267 French patients having a CIED procedure, the 36-month infection rate for de novo device implant was 0.5–1.6% [0.5% for PM, 1.6% for ICD, 1.0% for CRT-pacemaker (CRT-P) and 1.6% for CRT-defibrillator (CRT-D)] compared to an infection rate of 1.3–3.9% for generator change procedures (1.4% for PM, 2.9% for ICD, 1.3% for CRT-P, and 3.9% for CRT-D).

Figure 1 Examples of CIED infections. (A) Localized pocket infection; (B) device tethering consistent with pre-erosion; (C) device erosion without site inflammation; and (D) localized inflammation and erosion. CIED, cardiac implantable electronic device.
Similarly, in a prospective, multicentre study of 19 599 patients having a CIED procedure, the 12-month infection rate for de novo device implant was 0.3–1.1% (0.3% for PM, 0.9% for ICD, 0.6% for CRT-P, and 1.1% for CRT-D) compared to an infection rate of 0.5–2.5% for generator procedures (0.5% for PM, 1.0% for ICD, and 2.5% for CRT) and an infection rate of 2.1% for lead revision or upgrade procedures.14

The infection rate is greatest in the initial period after CIED procedure.21,27,31 In a retrospective study of 200 909 ICD procedures, the infection rates at 30, 60, and 90 days were 0.8%, 1.2%, and 1.4%, respectively.27 In another retrospective study of 56 657 PM procedures (46 299 patients) with 236 888 device-years of follow-up, the annual infection rate within the initial 12 months was 0.5% for de novo implants and 1.2% for generator change procedures. However, there remained a residual risk of late infections, with an annual infection rate of 0.1% for de novo implants and 0.3% for generator change procedures after the initial 12-month period.31 This late risk likely stems from the high prevalence of subclinical pocket colonization which may lie dormant for many years. In patients undergoing elective CIED generator replacement, ~25% have evidence of asymptomatic bacterial colonization of the pocket.32,33

Temporal trends up until 2012 indicated that the rate of CIED infections was increasing, with concurrent growth in device procedures performed.11,34,35 Using national registry data from the USA, CIED infection rates increased from 1.5% in 1993 to 2.4% in 2008 and 3.4% in 2012.11,35 This is explained, in part, by an increase in complex and thus higher risk device procedures, whereby ICDs accounted for 12% of total implants in 1993, but 35% of total implants in 2008.35 Global trends have also shown an increase in the number of CRT devices implanted as a proportion of total CIED procedures.9,10 While differences in CIED case mix may be partially responsible for this increase, infection rates for individual subsets of CIED procedures also appeared to be rising.11 This finding is likely due to an increased incidence of comorbidities including renal failure, diabetes mellitus, heart failure, and chronic respiratory disease in patients receiving CIED.35 The subsequent prospective PADIT and

Table 1 CIED infection rates

Study	Year	N a	Design	Follow-up	Infection rate (%; de novo implant unless specified)
Klug et al. 19	2007	6319	Prospective, cohort	12 months	1.2% overall
Poole et al. 20	2010	1744	Prospective, cohort	6 months	1.4% generator; 1.1% lead procedure
Romeyer-Bouchard et al. 21	2010	303	Retrospective	31 months (mean)	1.6% CRT-P; 8.6% CRT-D; 1.5% CRT upgrade
Johansen et al. 22	2011	56 657	Retrospective	12 months	0.5% PM; 1.2% PM generator within 12 months
				Device years b	1.0% PM; 0.3% PM generator after the first 12 months
Krahn et al. 22	2011	1081	Prospective, cohort	45 days	2.1% ICD generator
Lyman et al. 23	2011	38 992	Retrospective	90 days	1.2% ICD
Palmisano et al. 24	2013	2671	Retrospective	Debt years	0.9% overall; 0.2%, 0%, 2.1% for PM, ICD CRT respectively; 1.2% generator; 3.0% lead procedure
Schuchert et al. 25	2013	402	Retrospective	12 months	1.2% CRT-P; 1.3% CRT-D
Peterson et al. 26	2013	32 034	Retrospective	90 days	0.7% ICD
Prutkin et al. 27	2014	200 909	Retrospective	6 months	1.7% ICD procedures; 2.0% CRT-D; 1.9% ICD generator
Kirkfeldt et al. 28	2014	5918	Retrospective	6 months	0.8% overall; 0.6% implant; 1.5% generator; 1.9% lead procedure
Clémenty et al. 5	2018	78 267	Retrospective	36 months	0.5%, 1.6%, 1.0%, 1.6% for PM, ICD, CRT-P, CRT-D respectively; 1.4%, 2.9%, 1.3%, 3.9% for PM, ICD, CRT-P, CRT-D generators respectively
Yang et al. 29	2019	16 908	Retrospective	Device years	2.0% overall; 1.4%, 1.5%, 1.5% for PM, ICD, CRT, respectively; 3.5%, 6.5%, 6.8% for PM, ICD, CRT generators, respectively
Tarakji et al. 8	2019	6983	Prospective, randomized	12 months	1.0% overall CRT-D or repeat procedure
Birnie et al. 14	2019	19 599	Prospective, randomized	12 months	0.9% overall; 0.3%, 0.9%, 0.6%, 1.1% for PM, ICD, CRT-P, CRT-D, respectively; 0.5%, 1.0%, 2.5% for PM, ICD, CRT generators, respectively; 2.1% lead procedures

CIED, cardiac implantable electronic device; CRT, cardiac resynchronization therapy; CRT-D, CRT-defibrillation; CRT-P, CRT-pacemaker; ICD, implantable cardioverter-defibrillator; PM, permanent pacemaker.

aNumber of procedures (where available), otherwise number of patients.

bAfter 12 months.
Cardiac implantable electronic device infections are associated with significant consequences for the patient and the healthcare system. In-hospital mortality is estimated to be ~5–10%,35–37 while 1-year all-cause mortality ranges between 16% and 36%,36–39 although both appear to be reducing over time.11,39,40 Hospitalization for CIED infection typically lasts 1–3 weeks,11,29,35,36,40,41 with an associated reduction in quality of life.39

The resultant healthcare costs are therefore substantial (Table 2), although this varies according to geographic region, type of CIED, and associated management decision.41,43–46 Costs related to medical care include hospitalization, procedural (both extraction and reimplantation of replacement device), physician service, outpatient care, and associated investigations and medications.5,41,42,44 In addition, the provision of sick pay contributes to the societal burden of CIED infections.42 Of all CIED complications, infection has the greatest impact on mortality, requirement for re-intervention, and additional hospital treatment days.24

Organism	Infections ratea
Staphylococci	29–44%
S. aureus	29–44%
Methicillin sensitive	12–25%
Methicillin resistant	4–22%
Coagulase negative	26–42%
Methicillin sensitive	~19%
Methicillin resistant	~19%
Streptococci	0.6–2.5%
Enterococci	4–13%
Anaerobes	1.6–6.5%
Gram negative	5–9%
Fungi	1–2%
Mycobacteria	0.2%
Polymicrobial	2–14%
Culture negative	7–21%

The WRAP-IT trials conducted after 2012 reported a lower rate of infection in the order of 0.5–1.5% between risk groups in the control arm.7,8,14 Both studies involved a broad range of centre types and intentionally involved high-risk patients. While increasingly complex CIED procedures and patients should provide impetus for physicians to evaluate approaches for minimization of risk, a target infection rate of 1% is clearly achievable.

Healthcare consequences

Cardiac implantable electronic device infections are associated with significant consequences for the patient and the healthcare system. In-hospital mortality is estimated to be ~5–10%,35–37 while 1-year all-cause mortality ranges between 16% and 36%,36–39 although both appear to be reducing over time.11,39,40 Hospitalization for CIED infection typically lasts 1–3 weeks,11,29,35,36,40,41 with an associated reduction in quality of life.39

The resultant healthcare costs are therefore substantial (Table 2), although this varies according to geographic region, type of CIED, and associated management decision.41,43–46 Costs related to medical care include hospitalization, procedural (both extraction and reimplantation of replacement device), physician service, outpatient care, and associated investigations and medications.5,41,42,44 In addition, the provision of sick pay contributes to the societal burden of CIED infections.42 Of all CIED complications, infection has the greatest impact on mortality, requirement for re-intervention, and additional hospital treatment days.24

Microbiology

Staphylococcal species, both *Staphylococcus aureus* and coagulase negative staphylococci, account for ~60–70% of CIED infections (Table 3).37 Of note, a significant proportion of these organisms display methicillin resistance, varying by local risk of exposure to resistant organisms.48,49 Other organisms identified include enterococci, streptococci, gram-negative bacteria, anaerobes, fungi, mycobacteria, and polymicrobial.37,48–51 In addition, up to 21% of CIED infections may be culture negative.46 Those with CIED infection due to *Staphylococcus aureus* have consequently longer treatment duration requirements compared to those with coagulase negative staphylococci or those which are culture negative,47 along with having a higher 12-month mortality.37 The impact of antimicrobial-resistant organisms on the treatment and outcomes of CIED infections requires further clarification.

Temporally, infections occurring within 12 months are more likely to be caused by *Staphylococcus aureus* which is methicillin sensitive, while infections after 12 months are more likely to be caused by coagulase negative staphylococci or be microbial negative, using traditional culture methods.49 The implementation of sonification techniques may increase the microbiological diagnostic yield in these circumstances.31,52

Cardiac implantable electronic device infection risk factors

Cardiac implantable electronic device infection may be related to several factors, which should be considered with regards to risk minimization and appropriate pre-procedural planning. These include device-related factors, patient factors that may or may not be modifiable, and procedural factors.

Device-related factors

Leads and generator

Procedures involving ICD or CRT-D generators result in more infections than procedures involving PM or CRT-P generators, respectively [adjusted odds ratio (aOR) 1.8–8.5].14,52 Furthermore, CRT devices confer a higher infection risk than non-CRT devices (both PM and ICD) (aOR 2.7–28.5).14,21,24,54 The presence of additional leads (abandoned intravascular leads and not necessarily CRT) may also influence CIED infection risk. Procedures on patients with >2 CIED leads are independently associated with more infections compared to devices involving two implanted leads (aOR 5.4).55 It is
postulated that a greater burden of hardware—either more intravascular leads or larger generator battery—poses additional technical challenges and provides increased foreign body surface area for microbial adherence, thereby potentiating infection risk.

Additional interventions

Any intervention to an existing CIED system carries additional infection risk when compared with a de novo implant. This includes generator changes (aOR 2.0–3.8), device system upgrades (aOR 3.1–39.6), and other lead or pocket re-interventions (aOR 3.1–8.0). Alternatively, it can be considered that each additional CIED procedure after the initial implant carries incremental risk for device infection where 2, 3, 4, and 5 (or more) procedures are associated with an infection risk of 1.5–2.7, 3.4–3.8, 5.5, and 8.7, respectively (all aOR when compared with an initial implant). Factors that contribute to this include the presence of an existing relatively avascular pocket with impaired immunity and increasing procedural complexity associated with reinterventions.

Operative approach

Cardiac implantable electronic device infections are also more common using epicardial and extrathoracic approaches compared to a transvenous approach with infraclavicular device placement. This includes the placement of epicardial leads, placement of epicardial or extrapericardial defibrillator patch electrodes, or use of a tunnelling approach (aOR 5.0–9.7). While transvenous devices are now considered standard of care, alternate surgically implanted devices remain important in certain subsets of patients including young children or those with limiting transvenous anatomy.

Patient factors

Underlying factors

Contemporary studies indicate that younger age is associated with a greater risk of infection. In a retrospective Danish cohort of 46,299 patients and 56,637 device procedures, younger age was independently associated with CIED infection. Similarly, a prospective multi-centre study from Canada and Europe involving 19,603 patients found incremental CIED infection risk with

Table 4	Risk prediction scores for CIED infection				
Infections/Patients	Factors	Points	Score	Infection risk (%)	
--------------------	---------------------------------				
PADIT14 177/19,603	Device related	Procedure type	0	0.36	
ICD	2	1	0.32		
CRT	4	2	0.39		
Revision/upgrade	4	3	0.65		
Number of previous procedures	4	1	0.81		
1	1	5	1.06		
2	3	1	6	1.64	
Patient	Age	≥7	2.91		
<60	2				
60–69	1				
Renal dysfunction (eGFR<30)	1				
Immuno compromised	3				
Mittal et al.12 33/2891	Device related	Reintervention	11	0–7	1
Upgrade	2	8–14	3.4		
Patient	Male gender	6	15–25	11.1	
Diabetes	3				
Heart failure	1				
Hypertension	1				
Renal dysfunction (eGFR<60)	1				
Shariff et al.13 19/1111	Device related	Generator change/upgrade	1	<3	1
Epicardial lead	1	≥3	2.4		
>2 leads	1				
Patient	Diabetes	1			
Heart failure	1				
Oral anticoagulation	1				
Corticosteroid	1				
Renal dysfunction (Cr>1.5mg/dL)	1				
Prior CIED infection	1				
Temporary pacing	1				
younger age (aOR 1.4–1.6)\(^7,14\). While the reasons for this are unclear, it is postulated that younger individuals have firmer subcutaneous tissue resulting in more traumatic pocket creation.

While some studies have suggested that male gender (aOR 1.5) is associated with an increased risk of CIED infection\(^12,31\), this was not demonstrated in two recent multi-centre prospective studies\(^8,14\). The potential reasons for this are unclear, although the presence of firmer prepectoral subcutaneous tissue in males may provide a similar pathophysiological explanation.

Certain comorbid conditions independently predict CIED infections. Foremost, patients who have had a previous CIED infection are unsurprisingly at greater risk of subsequent infections\(^68\). Other comorbidities include chronic kidney disease with (aOR 13.4) or without (aOR 1.5–4.6) dialysis\(^12,42,57\), heart disease (including hypertrophic cardiomyopathy, valvular disease, or congestive cardiac failure, aOR 3.1)\(^12,69\), chronic obstructive pulmonary disease (aOR 2.2–9.8)\(^59,65\), atrial fibrillation (aOR 3.1)\(^10\), and immune suppression (aOR 2.3–13.9)\(^14,55\). In general, the presence of these conditions indicates an underlying vulnerability resulting from medical comorbidities.

Transient factors

Transient and potentially modifiable patient factors such as fever in the 24-h prior to device procedure (aOR 5.8)\(^19\), presence of temporary pacing wire (aOR 2.5)\(^19\), and anti-coagulation therapy (aOR 2.8)\(^57\) are also independent predictors of CIED infections. Judicious management of anti-coagulation is critical for minimization of infectious complications. In a multicentre randomized controlled trial, BRUISE CONTROL assigned 681 patients on warfarin at high risk for thromboembolic complications to warfarin continuation vs. warfarin cessation with bridging heparin\(^70\). The trial was stopped early due to significantly more pocket haematoma in the warfarin cessation group\(^71\), which in turn resulted in significantly more CIED infections at 12-month follow-up\(^72\). Additionally, careful consideration of procedural timing and necessity of temporary pacing may further minimize CIED infection rates.

Procedural factors

Peri-operative factors

Administration of peri-procedural antibiotics is now considered standard care in CIED procedures. The absence of antibiotics is consistently shown to be an independent predictor of CIED infections (aOR 2.0–11.5)\(^19,33,55,58\), while randomized trials demonstrate that intravenous antibiotics reduce infection risk\(^73,74\). In a single-centre, randomized, double-blind, placebo-controlled trial comparing peri-procedural administration of 1 g IV cefazolin vs. placebo, the trial was stopped early (649 out of an intended 1000 patients enrolled) due to significantly lower CIED infection rates in those receiving antibiotic therapy\(^74\). The infection rate in the antibiotic arm was 2 of 314 (0.6%) compared to 11 of 335 (3.3%) in the placebo arm.

Additional antibiotic therapies may offer risk modification in certain cases. The results of the PADIT and WRAP-IT trials are discussed in detail later in this Supplement, but consideration of incremental systemic antibiotics or use of the TYRX antibiotic eluting absorbable envelope may be considered in certain circumstances\(^7,8,14,75,76\). In addition, operator proficiency affects the CIED infection risk. Both lower volume implanter status (aOR 2.5)\(^77\), and increasing procedure time have been found to be independent predictors of CIED infections\(^21\). Thus, a robust training curriculum for device implanters is critical for infection minimization\(^78\).

Post-operative factors

Post-operative complications are associated with increased risk of CIED infections. Wound complications, predominantly haematoma, contribute to increased infection risk. Two additional risk scores have been proposed by Mittal et al. and Shariff et al.\(^12,13\), although these were developed from smaller cohorts of retrospectively studied patients.

Cardiac implantable electronic device infection risk prediction

Several risk scores have been developed for the pre-operative assessment of CIED infection risk, combining both device related and patient factors (Table 4)\(^12–14\). The PADIT score was developed from a contemporary prospective study involving 19 603 patients with infection outcomes defined at 12 months\(^7,14\). The PADIT score is calculated from individual variables of age (<60 or 60–69), procedure type (ICD, CRT or revision/upgrade), renal insufficiency (eGFR <30 mL/min), immunocompromise, and number of previous procedures (1 or ≥2). Based on this cohort, a total score of 0–4, 5–6, and ≥7 confers a CIED infection risk of <1%, 1–2%, and 2.9%, respectively. A convenient web-based calculator is available for point of care use when considering extent of prevention measures (https://padit-calculator.ca), including the administration of additional antibiotics and/or use of an antibiotic envelope in high-risk patients.

Conclusion

Cardiac implantable electronic device infections can have potentially devastating consequences, resulting in significant burdens to healthcare systems. Various device related, patient and procedural factors may potentiate risk of CIED infection. Strategies to minimize risk include identifying higher risk individuals using risk score systems, avoidance of haematoma including careful management of anticoagulants, and the use of additional antimicrobial measures in selected high-risk groups. With the advancement of risk recognition and mitigation strategies, an overall CIED infection rate of 1% is achievable.

Funding

A.D.K. receives support from the Sauder Family and Heart and Stroke Foundation Chair in Cardiology (Vancouver, BC), the Paul Bruuses Chair in Heart Rhythm Disorders (Vancouver, BC), and the Paul Albrechtson Foundation (Winnipeg, MB). This article was published as part of a supplement supported by an educational grant from Medtronic.
Conflict of interest: The authors had full access to the data and take full responsibility for its integrity. All authors have read and agreed to the manuscript as written. A.D.K. is a consultant to Medtronic. All remaining authors have declared no conflicts of interest.

Data availability
Source data for this review article have been cited and are available from web-based medical libraries.

References
1. Nof E, Epstein LM. Complications of cardiac implants: handling device infections. Eur Heart J 2013;34:229–36.
2. Nielsen JC, Gerdes JC, Varma N. Infected cardiac-implantable electronic devices: prevention, diagnosis, and treatment. Eur Heart J 2015;36:2484–90.
3. Blomstrom-Lundqvist C, Traykov V, Erba PA, Burri H, Nielsen JC, Borgioni MG et al.; ESC Scientific Document Group. European Heart Rhythm Association (EHRA) international consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device-infections endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), the Latin American Heart Rhythm Society (LAHRS), International Society for Cardiovascular Infectious Diseases (ISCVID) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) in collaboration with the European Society for Cardiac-Thoracic Surgery (EACTS). Europace 2020;22:515–49.
4. Ahsan SY, Saberwal B, Lambiase PD, Koo CY, Lee S. Gopalamanur AB et al. A simple infection-control protocol to reduce serious cardiac device infections. Europace 2014;16:1482–9.
5. Cléménty N, Carion PL, Léotoing L, Lamarsalle L, Wilquin-Bequet F, Brown B et al. Infections and associated costs following cardiovascular implantable electronic device implantations: a nationwide cohort study. Europace 2018;20:1974–80.
6. Polyzois KA, Konstantelias AA, Falagas ME. Risk factors for cardiac implantable electronic device infection: a systematic review and meta-analysis. Europace 2015;17:677–77.
7. Krahn AD, Longtin Y, Angaran P et al. Prevention of arrhythmia device infection trial: the PADIT Trial. J Am Coll Cardiol 2018;72:3098–109.
8. Tarakji KG, Mittal S, Maounis T, Frank R, Boulogne E, Polauck A et al.; the MASCOT study group. Lead complications, device infections, and clinical outcomes in the first year after implantation of cardiac resynchronization therapy-defibrillator and cardiac resynchronization therapy-pacemaker. Europace 2013;15:71–6.
9. Peterson PN, Varosy PD, Heidenreich PA, Wang Y, Dewland TA, Curtis JP et al. Association of single- vs. dual-chamber ICDs with mortality, readmissions, and complications among patients receiving an ICD for primary prevention. JAMA 2013;309:2025–34.
10. Prutkin JM, Reynolds MR, Bao H, Curtis JP, Al-Khatib SM, Aggarwal S et al.; Rates of and factors associated with infection in 200 909 Medicare implantable cardioverter-defibrillator implants: results from the National Cardiovascular Data Registry. Circulation 2014;130:1037–43.
11. Kerkfeltt RE, Johansen JB, Naehr EA, Jørgensen OD, Nielsen JC. Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur Heart J 2014;35:1186–94.
12. Yang PS, Jeong J, Yu SJ, Yu HT, Kim TH, Sung JH et al. The burden and risk factors for infection of transvenous cardiovascular implantable electronic devices: a Nationwide Cohort Study. Korean Circ J 2019;49:742–52.
13. Johansen JB, Jørgensen OD, Møller M, Arnsbo P, Mortensen PT, Nielsen JC. Infection after pacemaker implantation: infection rates and risk factors associated with infection in a population-based cohort study of 46299 consecutive patients. Eur Heart J 2011;32:991–8.
14. Uslan DZ, Sohal MR, St J, Friedman PA, Hayes DL, Stoner SM et al. Permanent pacemaker and implantable cardioverter-defibrillator infection: a population-based study. Arch Intern Med 2007;167:669–75.
15. Rohacek M, Weisser M, Kobza R, Schoenberger AW, Pfyffer GE, Frei R et al. Bacterial colonization and infection of electrophysiological cardiac devices detected with sonication and swab culture. Circulation 2010;121:1691–7.
16. Mason PK, Dimarco JP, Ferguson JD, Mahapatra S, Mangrum JM, Bilchick KC et al. Sonication of explanted cardiac rhythm management devices for the diagnosis of pocket infections and asymptomatic bacterial colonization. Pacing Clin Electrophysiol 2011;34:143–9.
17. Voigt A, Shalaby A, Sohal R. Rising rates of cardiac rhythm management device infections in the United States: 1996 through 2003. J Am Coll Cardiol 2006;48:590–1.
18. Greenspan AJ, Patel JD, Loeu L, Ochoa JA, Frich DR, Ho RT et al. 16-year trends in the infection burden for pacemakers and implantable cardioverter-defibrillators in the United States 1993 to 2008. J Am Coll Cardiol 2011;58:1001–6.
19. Sohal MR, Henriksson CA, Braidd-Forbes M, Forbes LF, Lerner DJ. Mortality and cost associated with cardiovascular implantable electronic devices. Arch Intern Med 2011;171:1821–2.
20. Lee DH, Gracely EJ, Ahmadian SY, Kutalek SP, Viemeyer O. Differences of mortality rates between pocket and nonpocket cardiovascular implantable electronic devices. Pacing Clin Electrophysiol 2015;38:1456–63.
21. Greenspan AJ, Eby EL, Pettila AA, Sohal MR. Treatment patterns, costs, and mortality among Medicare beneficiaries with CIED infection. Pacing Clin Electrophysiol 2018;41:495–503.
22. Wilkoff BL, Baroni G, Michael SD, Poole JE, Krennregen C, Corey GR et al. Impact of cardiac implantable electronic device infection: a clinical and economic analysis of the WRAP-IT Trial. Circ Arrhythm Electrophysiol 2020;13:e008280.
40. Sridhar AR, Lauv M, Yarlagadda V, Reddy M, Gunda S, Afzal R et al. Cardiac implantable electronic device-related infection and extraction trends in the U.S. Pacing Clin Electrophysiol 2017;40:286–93.

41. Ahmed FZ, Fullwood C, Zaman M, Qamruddin A, Cunnington C, Mamas MA et al. Cardiac implantable electronic device (CIED) infections are expensive and associated with prolonged hospitalisation: UK Retrospective Observational Study. PLoS One 2019;14:e0206611.

42. Ludwig S, Theis C, Brown B, Wthshohn A, Lux W, Goette A. Incidence and costs of cardiac device infections: retrospective analysis using German health claims data. J Comp Effic Res 2018:7:483–92.

43. Rennert-May E, Chew D, Lu S, Chau A, Kurianach V, Somayaji V. Epidemiology of cardiac implantable electronic device infections in the United States: a population-based cohort study. Heart Rhythm 2020;17:1125–31.

44. Gitenay E, Molin F, Blais S, Tremblay V, Gervais P, Plourde B et al. Cardiac implantable electronic device infection: detailed analysis of cost implications. Can J Cardiol 2018;34:1026–32.

45. Roder C, Gunjaca V, Otome O, Gwini SM, Athan E. Cost and outcomes of implantable electronic device infections in Victoria, Australia. Heart Long Circ 2020;29:e140–6.

46. Sohail MR, Eby EL, Ryan MP, Gunnarsson CW, Wright LA, Greenspon AJ et al. Antibiotics for prevention of percutaneous pacemaker and implantable cardiac defibrillator infections: a systematic review and meta-analysis. J Am Coll Cardiol 2009;4:752–62.

47. Hussein AA, Baghdy Y, Wazni OM, Brunnier MP, Kabbach G, Shao M et al. Microbiology of cardiac implantable electronic device infections. J Clin Electrophysiol 2016:2:498–505.

48. Sohail MR, Uslan DZ, Khan AH, Friedman PA, Hayes DL, Wilson WR et al. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J Am Coll Cardiol 2007;49:1851–9.

49. Al-Khatib SM, Lucas FL, Jollis JG, Malenka DJ, Wennberg DE. The relationship between patients' outcomes and the volume of cardioverter-defibrillator implantations: a risk factor analysis. Mayo Clin Proc 2009;84:129–37.

50. de Oliveira JC, Martinelli M, Nishioka SAD, Vareja LNG et al. Clinical presentation, management, and outcomes of cardiovascular implantable electronic device infections. J Am Coll Cardiol 2016;67:1851–9.

51. Al-Khatib SM, Lucas FL, Jollis JG, Malenka DJ, Wennberg DE. The relationship between patients' outcomes and the volume of cardioverter-defibrillator implantations: a risk factor analysis. Mayo Clin Proc 2009;84:129–37.

52. Spinler SA, Nawarskas JJ, Poole EF, Sabapathi D, Connors JE, Marchlinski FE et al. Infections of implantable cardioverter-defibrillators: frequency, predisposing factors and clinical significance. Clin Microbiol Infect 2006;12:533–7.

53. Landolina M, Petri M, Lorusso M, Iacopino S, Boriani G, Bonanno C et al. Infections of implantable cardioverter-defibrillators: seven years of diagnostic and therapeutic experience of a single center. Europace 2019;21:1413–20.

54. Sohail MR, Eby EL, Ryan MP, Gunnarsson CW, Wright LA, Greenspon AJ et al. Antibiotics for prevention of percutaneous pacemaker and implantable cardiac defibrillator infections: a systematic review and meta-analysis. J Am Coll Cardiol 2009;4:752–62.