HIGH STAR FORMATION RATES IN TURBULENT ATOMIC-DOMINATED GAS IN THE INTERACTING GALAXIES IC 2163 AND NGC 2207

Bruce G. Elmegreen1, Michele Kaufman2, Frédéric Bournaud3, Debra Meloy Elmegreen4, Curtis Struck5, Elias Brinks6, and Stéphanie Juneau3

1 IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA; bge@us.ibm.com
2 110 Westchester Rd, Newton, MA 02458, USA; kaufmanraulis@gmail.com
3 Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, IfrA/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91919 Gif sur Yvette, France; frederic.bournaud@gmail.com, stephanie.juneau@cea.fr
4 Department of Physics & Astronomy, Vassar College, Poughkeepsie, NY 12604, USA; elmegreen@vassar.edu
5 Department of Physics & Astronomy, Iowa State University, Ames, IA 50011, USA; struck@iastate.edu
6 University of Hertfordshire, Centre for Astrophysics Research, College Lane, Hatfield AL10 9AB, UK; e.brinks@herts.ac.uk

Received 2016 January 12; accepted 2016 March 9; published 2016 May 18

ABSTRACT

CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, Hα, and 24 μm observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 km s⁻¹. We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.

Key words: ISM: molecules – Galaxies: interactions – Galaxies: star formation

1. INTRODUCTION

The galaxies IC 2163 and NGC 2207 are undergoing a grazing collision with perigalacticon occurring ~240 Myr ago (Struck et al. 2005). The tidal force exerted on IC 2163 by NGC 2207 is prograde and nearly in-plane. It produces an intrinsically ocular structure (a cuspy oval) at mid-radius in IC 2163 and two tidal arms. A narrow ridge along the ocular appears to be a galactic-scale shock front with intense star formation, several super-star clusters including one measuring 2 × 10⁵ M⊙ (Elmegreen et al. 2001), and an IR-to-radio continuum ratio ([S8 μm]/S[6 cm]) that is a factor of 2 higher than elsewhere in the galaxies (Kaufman et al. 2012). HI observations (Elmegreen et al. 1995b) reveal photometric and kinematic major axes in IC 2163 that are nearly orthogonal, indicating high-speed streaming motions. The tidal force exerted on NGC 2207 by IC 2163 is mostly perpendicular to NGC 2207, causing a velocity perturbation in NGC 2207 that is ~200 km s⁻¹ in places, and suggesting a warp with 15 kpc vertical distortion (Elmegreen et al. 1995a).

Both galaxies have large HI velocity dispersions of ~30–50 km s⁻¹, and several large HI cloud complexes with masses of 10⁸ M⊙ or more (Elmegreen et al. 1993, 1995b). IC 2163 has an HI tidal bridge behind the eastern half of NGC 2207, and NGC 2207 has an HI spiral arm (visible also optically) in front of IC 2163 (see figures in Elmegreen et al. 2000 where the HI contours are overlaid on a Hubble Space Telescope image).

NGC 2207 contains a peculiar region, Feature i, which is called a mini-starburst by Kaufman et al. (2012). This is the brightest source for either galaxy in radio continuum, 8 μm, 24 μm, and Hα; it accounts for one-quarter of the total 24 μm flux for both galaxies combined. At λ6 cm, the radio continuum luminosity of Feature i is 13% of the radio continuum luminosity of the central starburst in M82. Soft X-ray emission was found by Mineo et al. (2014).

We observed NGC 2207/IC 2163 in CO(1-0) with the Atacama Large Millimeter Array (ALMA). The present paper is devoted to determining the spatially resolved Kennicutt–Schmidt (Kennicutt & Evans 2012) relation in this galaxy pair. We are interested in whether this relation on a scale of 2.4 kpc diameter differs from that in other galaxies, and whether it is the same in both of the galaxies considered here. We combine the ALMA CO observations with our previous HI, 24 μm, and Hα data to determine the star formation rate (SFR) surface density, Σ_{SFR}, as a function of the atomic, molecular, and total gas surface densities. Other properties of these CO observations will be discussed in M. Kaufman et al. (2016).

In what follows, Section 2 describes the observations, Section 3 gives the luminosities, SFRs, and surface densities of the selected regions, Section 4 shows the relations between Σ_{SFR} and the gas surface density, and Section 5 discusses the implications.

2. OBSERVATIONS

IC 2163 and NGC 2207 were observed in 34 pointings using ALMA at the 12CO(1-0) frequency of 115.27 GHz (λ 2.6 mm). We made naturally weighted maps of CO emission with a point-spread function of 2″00 × 1″52 (HPBW), beam position angle 68°5, and channel width 10 km s⁻¹. The rms noise per channel is 3.7 mJy beam⁻¹ and a CO surface brightness of 1 Jy beam⁻¹ corresponds to T_b = 30.7 K. To select areas of genuine CO emission, we made a blanking mask by convolving this cube to 6″ × 6″ HPBW, where the noise was 7.9 mJy beam⁻¹. Regions were left unblanked if they exceeded 2.5 times this rms noise for at least two adjacent channels. This means that regions with line-of-sight N(H₂) < 2.45 M⊙ pc⁻² were...
blanked out. After correcting for primary beam attenuation, we made the 551 × 301 pixel × 64 channel subcube used in this paper that contains all of the unblanked CO emission. In the subcube, the product of the rms noise and the channel width is equivalent to a line-of-sight N (H_2) = $3.27 \, M_\odot \, pc^{-2}$, which is a measure of our uncertainty. (The apertures A10, A16, A33, A38, and A39 discussed below have mean values of line-of-sight N (H_2) below this because of blanked pixels.) The total integrated CO line flux in the subcube is $S(CO) = 505 \, Jy \, km \, s^{-1}$. For more details on the observing procedure, see M. Kaufman et al. (2016).

To convert CO emission into molecular mass M (H_2), we use $X_{CO} = 1.8 \pm 0.3 \times 10^{20} \, H_2 \, cm^{-2} \, (K \, km \, s^{-1})^{-1}$ from Dame et al. (2001) and a distance of $D = 35 \pm 2.5 \, Mpc$ from the NASA/IPAC Extragalactic Database (NED) for a Hubble constant of $H = 73 \, km \, s^{-1} \, Mpc^{-1}$ corrected for infall toward Virgo. The scale is 170 pc per arcsec. To convert the surface density to face-on, we took inclinations of $i = 40^\circ$ for IC 2163 and 35° for NGC 2207 (Elmegreen et al. 1995a). We discuss the implications of different X_{CO} and i in Section 4.

The 24 μm flux density, $S_i(24 \, \mu m)$, of Feature i and the galaxies as a whole were measured from the MIPS 1 pBCD image obtained from the Spitzer archive in 2013; the resolution is 6$''$. Other star-forming regions were measured on the HiRes deconvolution image (\sim1.9 resolution) by Velusamy et al. (2008), who provided their HiRes 24 μm data to us as a FITS image.7 According to Velusamy et al., the HiRes deconvolution conserves fluxes of point sources to better than 5%. This uncertainty is in addition to the 5% uncertainty in the MIPS 1 photometric calibration. The HiRes deconvolution has about the same resolution as our CO data. This high resolution minimizes line-of-sight corrections for diffuse emission at 24 μm that is not coincident with the star-forming region (Leroy et al. 2012). The absolute calibration of the 24 μm term in the SFR leads to an uncertainty of about 25% in the absolute determination of the SFR (Leroy et al. 2012).

The HI is from VLA observations obtained in 1990 using a hybrid CnB array with an extended north arm to compensate for the low latitude of the source. The duration on source was six hours (for more details, see Elmegreen et al. 1995b). The map representing column density, $N(HI)$, comes from an HI cube with a channel width of 21 $km \, s^{-1}$, rms noise 0.73 mJy beam$^{-1}$, and FWHM of the point-spread function equal to 13.5$''$ × 12$''$. The product of the rms noise times the channel width is equivalent to a line-of-sight $N(HI) = 0.84 \, M_\odot \, pc^{-2}$. Before creating the HI column density map, the HI data cube was masked in a manner similar to the CO data described above; none of our apertures contain blanks in HI.

The Hα data stem from narrowband Hα images and broadband R images obtained by Deidre Hunter with the Lowell 1.1 m telescope in 1999 (Elmegreen et al. 2001). Four Hα images were combined for a total time of 3600 s, and three R-band images were combined for a total of 900 s. The narrow filter excludes the redshifted [N ii] line at 6583 Å, but includes

7 MIPS 1 BCD images from Spitzer prior to 2007 April suffer from two software bugs which cause the brightness of sources as bright as Feature i to be underestimated. We compared our Spitzer 24 μm MIPS 1 pBCD (level 2) image retrieved from the Spitzer archive in 2013 with the MIPS 1 image in Elmegreen et al. (2006). We found that Feature i was the only source in NGC 2207/IC 2163 affected by the software bug, and that its flux density is a factor of 1.9 times greater than in Elmegreen et al. (2006) and Kaufman et al. (2012). Thus, Feature i accounts for 23%, rather than 12%, of the 24 μm flux density from the galaxy pair. We use the corrected flux here.

Figure 1. (top) Integrated CO intensity (middle) HiRes 24 μm flux density, and (bottom) Hα (uncorrected for extinction) with regions of star formation considered here. The aperture size is 14$''$ = 2.4 kpc in diameter.
the spiral arm of NGC 2207 in front of IC 2163. The values listed under $M(\text{HI})$ total include the HI emission outside the field in Figure 1; the values listed under $M(\text{HI})$ CO field are only for the field in that figure. For IC 2163, the value of $S_{\nu}(24 \, \mu\text{m})$ measured on the HiRes image is 84% of that measured on the MIPS 1 pBCD image (the HiRes image is less sensitive to faint extended emission).

Table 1 indicates that IC 2163 has a total molecular mass of $M(H_2) = 2.1 \times 10^9 M_\odot$, which corresponds to an integrated CO line flux of 240 Jy km s$^{-1}$, and NGC 2207 has $M(H_2) = 2.3 \times 10^9 M_\odot$ for a CO line flux of 265 Jy km s$^{-1}$. If we restrict the HI to the field of Figure 1, then the global ratio of molecular to atomic gas is four times greater in IC 2163 than in NGC 2207. For most of the 15 apertures in IC 2163 (except those on the massive HI clouds), the column density $N(H_2)$ dominates $N(\text{HI})$, while for most of the 29 apertures in NGC 2207, $N(\text{HI}) > N(H_2)$. Thus, the eyelid shock in IC 2163 is currently more effective than the spiral arms of NGC 2207 in converting HI to H$_2$. Also, the global ratio of $M(H_2)$ to 24 μm flux density is \sim2 times greater in IC 2163 than in NGC 2207, and the global ratio of $M(H_2)$ to Hα flux is \sim3 times greater in IC 2163 than in NGC 2207. These molecular excesses compared to star formation in IC 2163 are not as large as the molecular excesses compared to atomic gas as traced by HI. This difference suggests that the encounter has converted a high fraction of HI into H$_2$ in IC 2163 but has not (yet) converted the additional molecules into stars.

Table 1

Galaxy	$M(H_2)$ (M_\odot)	$M(\text{HI})_{\text{total}}$ (M_\odot)	$M(\text{HI})_{\text{CO field}}$ (M_\odot)	$S_{\nu}(24 \, \mu\text{m})$ (mJy)	$S(\text{H}\alpha)$ (erg cm$^{-2}$ s$^{-1}$)
IC 2163	2.1×10^9	4.8×10^9	2.8×10^9	5.9×10^2	5.9×10^{-13}
NGC 2207	2.3×10^9	2.2×10^{10}	1.3×10^{10}	1.47×10^3	2.1×10^{-12}

The Astrophysical Journal, 823:26 (7pp), 2016 May 20

Figure 2. Top: HI column density contours superposed on CO for IC 2163. The contours are at line-of-sight $N(\text{HI}) = 5, 10, 15, 20, \text{ and } 25 \, M_\odot$ pc$^{-2}$. Bottom: HI on NGC 2207. The contours are at 10, 15, 20, 25, 30, 35 M_\odot pc$^{-2}$, with 5 M_\odot pc$^{-2}$ omitted for clarity. The HI contributions to each galaxy were determined on the basis of their kinematics.

3. STAR FORMATION RATES

A combination of the continuum-subtracted Hα image (Elmegreen et al. 2001) and the Spitzer MIPS 24 μm image was used to obtain the SFR, following Kennicutt et al. (2009),

$$\text{SFR}(M_\odot \, \text{yr}^{-1}) = 5.5 \times 10^{-42} (L(\text{H}\alpha) + 0.031 L(24 \, \mu\text{m})),$$

(1)

where $L(\text{H}\alpha)$ and $L(24 \, \mu\text{m})$ are in erg s$^{-1}$, and $L(24 \, \mu\text{m}) = \nu L_{\nu}$. We chose source apertures with a diameter of 14" = 2.4 kpc. This choice was governed by the HI resolution and by the need to have a sufficiently large aperture to avoid...
stochastic effects from including too few O stars when using Hα as a star-formation tracer.

For the 24 μm measurement of Feature i, we conducted local background subtraction and applied an aperture flux correction factor of 1.61 from the MIPS Instrument Handbook. It was not necessary to remove background for the CO or HI sources, or for the other HiRes 24 μm sources. For Hα, we performed a global background subtraction but not a local subtraction because there would be contamination from adjacent sources in many cases.

The foreground Galactic extinction $A_V = 0.238$ mag from NED (using Schlafly & Finkbeiner 2011) gives an extinction at Hα equal to 0.238 mag/1.28 = 0.186 mag. In addition, IC 2163 is affected by extinction from the foreground spiral arm of NGC 2207. Since the outer part of NGC 2207 is likely to be metal poor, we take $A_V(\text{Hα}) = (0.35 \pm 0.18) \times 10^{-2} N(\text{HI})$ for this region (Elmegreen et al. 2001). This additional extinction is applied to 8 of the 15 regions in IC 2163. These 8 regions have the highest foreground N(HI) and the largest corrections ($A_V(\text{Hα}) > 0.45$ mag), with an average $A_V(\text{Hα}) = 0.85 \pm 0.4$ mag from the foreground HI in NGC 2207. We assume that the Hα and 24 μm emission from the foreground part of NGC 2207 are negligible.

Table 2 compiles the locations, luminosities, SFRs, Σ_{SFR}, and surface densities for H$_2$ and HI in all of the chosen apertures. The regions associated with massive HI clouds are indicated by the footnote h. The SFR is lower than 0.001 in the massive HI cloud apertures A10 and A33. This is below the limit suggested by Leroy et al. (2012) where the SFR can be reliably determined using the above method; the actual values do not contribute to the conclusions of this paper.

4. STAR FORMATION–SURFACE DENSITY CORRELATION

The conventional way to consider star formation on galactic scales is in terms of the correlation between Σ_{SFR} and gas surface density (the “Kennicutt–Schmidt” relation), either for HI (Σ_{HI}), H$_2$ (Σ_{H_2}), or the sum of these (Kennicutt & Evans 2012).

Figure 3 shows these correlations. Figure 3(a) has the total-gas relation, Figure 3(b) has H$_2$ alone, 3(c) has HI alone, and 3(d) shows the Σ_{SFR} versus $\Sigma_{\text{H}_2}/\Sigma_{\text{HI}}$, i.e., the molecular ratio. Figure 3(d) is divided into three parts: where $\Sigma_{\text{SFR}} > 0.01$, the green points are for a molecular ratio less than 1 and the red points are for a molecular ratio greater than 1. Where $\Sigma_{\text{SFR}} < 0.01$, the blue points are plotted for all molecular ratios. These colors have the same meaning in the other panels.

First, consider the molecular relation in Figure 3(b). In the THINGS survey (Bigiel et al. 2008; Leroy et al. 2008), this was linear with a constant consumption time per CO molecule of 1–2 Gyr. This is the case here too, but only for the red and blue points, i.e., for the molecular-dominated gas at high SFR and all of the gas at low SFR. The HI-dominated gas at high SFR (green points) lies high off the linear molecular relation. The scatter in the molecular Kennicutt–Schmidt relation in Bigiel et al. (2008) is ±0.2 dex for Σ_{SFR}, which is three times smaller than the displacement of the green points from the red/blue point correlation in Figure 3(b). The H$_2$ consumption time for the HI-dominated gas is ~300 Myr, which is relatively fast compared to the time for the H$_2$-dominated gas. The red circles around the points are for locations in the ocular rim of IC 2163.

The total-gas relation in Figure 3(a) has a consumption time for the total gas of about 1 Gyr in regions with high SFRs (green and red points). This time is normal for molecular gas, but here it includes HI and also applies in HI-dominated regions (green points). The blue points (low SFR) have longer total-gas consumption times, between ~3 and 10 Gyr.

In Figure 3(c), the molecular-dominated regions (red points) have relatively low HI and the HI-dominated regions (green points) have relatively high HI. The values for the HI surface density in the HI-dominated, high-SFR regions are unusually high: Σ_{HI} is greater than 20 M_\odot pc$^{-2}$ in many cases, which is twice as large as the saturated value of HI in the THINGS survey (Bigiel et al. 2008; Leroy et al. 2008).

What is peculiar about these relationships is the HI. If we ignore the HI-rich, high-SFR regions (green points), then the molecular relation in Figure 3(b) is normal; the nearly constant Σ_{HI} up to ~10 M_\odot pc$^{-2}$ for the high-SFR regions (red points) in Figure 3(c) is normal, and the steady increase in Σ_{SFR} with molecular fraction in Figure 3(d) is normal. In these galaxies, however, there is a component of high HI column density gas where the SFR is also high. The HI is replacing some fraction of the molecules, producing a linear relation when the SFR is plotted against the total gas (Figure 3(a)). Similarly, the HI-dominated regions lie off the normal linear law when the SFR is plotted versus only the molecular part of the gas (Figure 3(b)). We also note that the molecular ratio $\Sigma_{\text{H}_2}/\Sigma_{\text{HI}}$ increases with decreasing $L(\text{H}_\alpha)/(0.031L(24 \mu m))$ (not shown), suggesting more optical extinction in the star-forming cores when the molecular content is high.

Figure 4 shows the locations of these three types of regions on the sky using the same color scheme as in Figure 3. The HI-rich regions of high Σ_{SFR} are on the periphery of the galaxy that underwent the retrograde, perpendicular encounter (NGC 2207) and are globally coincident with the areas of high HI velocity dispersion in that galaxy (see Elmegreen et al. 1995b). The HI-rich regions of high Σ_{SFR} are mainly in the ocular ridge of IC 2163 where in-plane tidal forces produced a compression. The low Σ_{SFR} regions are scattered across both galaxies.

Feature i in each panel (denoted by “i”) has Σ_{SFR} at least a factor of five higher than in any other region. The molecular mass of Feature i is $8 \times 10^8 M_\odot$, which is not unusual for these 2.4 kpc diameter apertures. In IC 2163, 11 of the 15 apertures have molecular masses greater than this (Table 2), and the mass in region A9 is 2.5 times greater. However, because of the high SFR, the molecular gas consumption time for Feature i, $\Sigma_{\text{H}_2}/\Sigma_{\text{SFR}} = 50$ Myr, is much shorter than for the other regions, and the total-gas consumption time, $(\Sigma_{\text{HI}} + \Sigma_{\text{H}_2})/\Sigma_{\text{SFR}} = 118$ Myr, is shorter too, as indicated by the positions of Feature i relative to the dashed red lines in Figures 3(b) and (a), respectively.

A lower X_{CO}, as suggested for some interacting galaxies and in Bournaud et al. (2015), would decrease the H$_2$ mass and strengthen the conclusion that there are HI-rich star-forming regions with peculiar cloud structure. A higher X_{CO} would bring the H$_2$ content of these regions in line with the CO-bright regions, but then X_{CO} would have to vary from cloud to cloud and be high primarily in the outer parts of NGC 2207, at the location of the peculiar HI gas. These outer parts are not so remote that low metallicities and an associated high X_{CO} are expected. Higher X_{CO} is also unlikely because the high velocity

8 http://irsa.ipac.caltech.edu/data/SPITTZER/docs/mips/mipsinstrumenthandbook/
Table 2

Locations, Luminosities, and Surface Densities

ID	R.A. (J2000)	decl. (J2000)	L(24 μm)b	L(Hα)c	SFRd	ΣSFRf	ΣH2g	ΣHIh
06h16′′	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
10b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
17b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
18b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
19b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
20b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
21b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
22b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
23b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
24b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
25b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
26b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
27b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
28b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
29b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
30b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
31b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
32b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
33b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
34b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
35b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
36b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
37b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	
38b	22 47.20	19.2	0.195	0.0435	0.00748	13.6	15.6	

Notes.

a The units are as follows: R.A. in seconds; decl. in arcminutes and arcseconds; L(24 μm) and L(Hα) in 10^40 erg s^{-1}; SFR in M_{⊙} yr^{-1}; ΣSFR in M_{⊙} pc^{-2} Myr^{-1}; ΣH2 and ΣHI in M_{⊙} pc^{-2}.

b L(24 μm) is in the 24 μm band.

c L(Hα) is corrected for Galactic foreground extinction using A_v/1.28 = 0.186 mag. L(Hα) for apertures A3, A4, A5, A6, A12, A13, A14, and A15 have also been corrected for foreground extinction by the outer arm of NGC 2207 in front of IC 2163. The latter correction (see text) amounts to an average of 0.85 ± 0.43 mag at Hα.

d SFR(M_{⊙} yr^{-1}) = 5.5 × 10^{-42} [L(Hα) + 0.031L(24 μm)] (erg s^{-1}).

e Surface densities have been corrected to face-on using i = 40° for IC 2163 and i = 35° for NGC 2207.

f Feature i.

g Apertures are 14″ in diameter.

h In IC 2163, apertures A1 and A2 are on parts of the massive HI cloud I3, A7 is on I2, and A10 and A11 are on parts of I5. In NGC 2207, apertures A17, A33, A36, and A38 are on massive HI clouds N6, N2, N3, and N4, respectively.
dispersion should lower the CO opacity by broadening the line, producing more CO emission per unit H$_2$ molecule (Bournaud et al. 2015). Inclination effects would not seem to be causing the peculiar HI either. The suspected warp in NGC 2207 occurs approximately where this HI is, but correcting for that by lengthening the line-of-sight for gas emission only strengthens the conclusions because it lowers the average density for the observed column of HI and makes star formation slower, when in fact it is faster than normal. Changing the inclination slides points parallel to the lines of constant gas consumption time in the Kennicutt–Schmidt relation because it affects the deprojected areas used for the ordinate and abscissa equally.

A second version of Figure 4 was made (not shown) with all of the images convolved to 14$''$ × 14$''$ resolution before the measurements were made inside the same apertures. This change had the effect of decreasing the fluxes used for the SFRs and Σ_{HI} by factors between 0.5 and 0.9, and that moved the points in the figure slightly down and to the left in a direction nearly parallel to the lines of constant consumption time. Considering the wings of the Gaussian, this is the expected reduction factor for a small source located somewhere in the aperture when the aperture diameter is the same as the FWHM of the point-spread function in the convolved image. None of the conclusions of this paper were affected by this change.
HI-dominated regions with high SFRs are unusual and could be related to the high turbulent speeds in this interacting pair. The mean HI velocity dispersion for the 16 green circles in N2207 (Figure 4) is 42 km s$^{-1}$, compared to \sim10 km s$^{-1}$ in normal galaxies (Tamburro et al. 2009). An interaction perturbs the smooth circular flow of gas and causes deflected streams to intersect each other at high speeds, producing shocks and a turbulent cascade. Numerical simulations show this effect (Wetzstein et al. 2007; Bournaud et al. 2011a; Powell et al. 2013). Some turbulent energy in NGC 2207 may also come from excited vertical motions. High velocity dispersions in interacting systems were also reported by Rich et al. (2015); Kaufman et al. (1999), and others. In comparison, the THINGS galaxies and most others used for the conventional SFR–gas correlations are not interacting.

Stronger shocks imply a greater compressive component to the turbulence, as opposed to a normally dominant rotational component (Federrath et al. 2008, 2010). Tidal forces can increase the compressive mode as well (Renaud et al. 2014). As a result, the probability distribution function for density flatters from an approximately log-normal (Nolan et al. 2015) to a broad distribution where a large amount of low-density atomic gas co-exists with a large amount of high-density, star-forming gas (Bournaud et al. 2011b; Renaud et al. 2012; Federrath 2013; Federrath & Klessen 2013). The SFR may scale with the mass of the high-density gas as usual (e.g., Clark & Glover 2014; Evans et al. 2014). Physically, this implies a change in the structure of clouds toward more extended HI envelopes around denser H$_2$ and CO cores.

The molecular envelop traced by CO in a self-gravitating cloud usually contributes to the gas surface density in the molecular star formation law. Here, the envelopes may be puffed up with high velocity dispersions, giving them low densities and a transparency that keeps them predominantly atomic. Then, the envelopes physically act like the CO envelopes of star-forming clouds in non-interacting galaxies, but produce a star formation law with a significant amount of HI and dark H$_2$ substituted for CO-bright gas.

Another possibility for the HI-rich regions of high SFR is that there is large-scale synchronization of star formation in NGC 2207, starting at perigalacticon \sim240 Myr ago, whereby many of the giant molecular clouds formed in the outer parts have just now dispersed into HI before their OB associations have significantly faded.

We are grateful to Dr. Kartik Sheth for his generous help at all stages of this project. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00357.S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement with Associated Universities, Inc. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. E.B. acknowledges support from the UK Science and Technology Facilities Council [grant number ST/M001008/1]. F.B. acknowledges funding from the EU through grant ERC-StG-257720.

REFERENCES

Bigiel, F., Leroy, A., Walter, F., et al. 2008, AJ, 136, 2846
Bournaud, F., Chapon, D., Teyssier, R., et al. 2011a, ApJ, 730, 4
Bournaud, F., Daddi, E., Weiss, A., et al. 2015, A&A, 575, A56
Bournaud, F., Powell, L. C., Chapon, D., & Teyssier, R. 2011b, in IAU Symp. 271, Star Formation in Galaxy Mergers: ISM Turbulence, Dense Gas Excess, and Scaling Relations for Disks and Starbursts, ed. N. H. Brummell et al. (Cambridge: Cambridge Univ. Press), 160
Clark, P. C., & Glover, S. C. O. 2014, MNRAS, 444, 2396
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792
Elmegreen, B. G., Kaufman, M., Struck, C., et al. 2000, AJ, 120, 630
Elmegreen, B. G., Kaufman, M., & Thomasson, M. 1993, ApJ, 412, 90
Elmegreen, B. G., Sundin, M., Kaufman, M., Brinks, E., & Elmegreen, D. M. 1995a, ApJ, 453, 139
Elmegreen, D. M., Elmegreen, B. G., Kaufman, M., et al. 2006, ApJ, 642, 158
Elmegreen, D. M., Kaufman, M., Brinks, E., Elmegreen, B. G., & Sundin, M. 1995b, ApJ, 453, 100
Elmegreen, D. M., Kaufman, M., Elmegreen, B. G., et al. 2001, AJ, 121, 182
Evans, N. J., II, Heiderman, A., & Vutisalchavakul, N. 2014, ApJ, 782, 114
Federrath, C. 2013, MNRAS, 436, 1245
Federrath, C., & Klessen, R. S. 2013, ApJ, 763, 51
Federrath, C., Klessen, R. S., & Schmidt, W. 2008, ApJL, 688, L79
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, M.-M. 2010, A&A, 512, A81
Kaufman, M., Brinks, E., Elmegreen, B. G., et al. 1999, AJ, 118, 1577
Kaufman, M., Elmegreen, B. G., Struck, C., et al. 2016, ApJ, submitted
Kaufman, M., Grupe, D., Elmegreen, B. G., et al. 1999, AJ, 118, 1577
Kennicutt, R. C., & Evans, N. J. 2012, ARA&A, 50, 531
Kennicutt, R. C., Jr., Hao, C.-N., Calzetti, D., et al. 2009, ApJ, 703, 1672
Leroy, A. K., Bigiel, F., de Blok, W. J. G., et al. 2012, ApJ, 748, 89
Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782
M. J. 2008, AJ, 136, 197
Mineo, S., Rappaport, S., Levine, A., et al. 2014, ApJ, 797, 91
Nolan, C. A., Federrath, C., & Sutherland, R. S. 2015, MNRAS, 451, 1380
Powell, L. C., Bournaud, F., Chapon, D., & Teyssier, R. 2013, MNRAS, 434, 1028
Rich, J. A., Kewley, L. J., & Dopita, M. A. 2015, ApJS, 221, 28
Schlafly, & Finkbeiner 2011, ApJ, 737, 103
Thompson, T. J. 2008, AJ, 136, 2782
Thompson, T. J. 2008, AJ, 136, 197
Tamburro, D., Rix, H.-W., Leroy, A. K., et al. 2009, AJ, 137, 4424
Velusamy, T., Marshall, K. A., Beichman, C. A., Backus, C. R., & Thompson, T. J. 2008, AJ, 136, 197
Wetzstein, M., Naab, T., & Burkert, A. 2007, MNRAS, 375, 805