Origin of scaling behavior of protein packing density: A sequential Monte Carlo study of compact long chain polymers

Jinfeng Zhang
Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607

Rong Chen
Departments of Information and Decision Science and Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607

Chao Tang
NEC Research Institute, Princeton, New Jersey 08540

Jie Liang
Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607

(Received 14 October 2002; accepted 31 December 2002)

Single domain proteins are thought to be tightly packed. The introduction of voids by mutations is often regarded as destabilizing. In this study we show that packing density for single domain proteins decreases with chain length. We find that the radius of gyration provides a poor description of protein packing but the alpha contact number we introduce here characterize proteins well. We further demonstrate that protein-like scaling relationship between packing density and chain length is observed in off-lattice self-avoiding walks. A key problem in studying compact chain polymers is the attrition problem: It is difficult to generate independent samples of compact long self-avoiding walks. We develop an algorithm based on the framework of sequential Monte Carlo and succeed in generating populations of compact long chain off-lattice polymers up to length \(N = 2000 \). Results based on analysis of these chain polymers suggest that maintaining high packing density is only characteristic of short chain proteins. We found that the scaling behavior of packing density with chain length of proteins is a generic feature of random polymers satisfying loose constraint in compactness. We conclude that proteins are not optimized by evolution to eliminate packing voids.

I. INTRODUCTION

Geometric considerations have lead to important insights about protein structures.\(^1\)\(^-\)\(^^5\) Voids are simple geometric features that represent packing defects inside protein structures. For multisubunit proteins such as GroEL and potassium channel, voids or tunnels of large size are formed by the spatial arrangement of multiple subunits, and are essential for the biological functions of these proteins.\(^6\)\(^,\)\(^7\) In this study, we focus on voids formed due to packing defects that are not directly involved in protein function. For this purpose, we choose to study only structures of single domain proteins. Although these proteins are well known to be compact,\(^8\) and their interior is frequently thought to be solid-like,\(^9\)\(^,\)\(^10\) recent calculations showed that there are also numerous voids buried in the protein interior.\(^11\) The importance of tight packing in single chain protein is widely appreciated; packing is thought to be important for protein stability,\(^12\)\(^-\)\(^14\) for kinetic nucleation of protein folding,\(^15\)\(^,\)\(^16\) and for successful design of novel proteins following a predefined backbone.\(^14\) The conservation of amino acid residues during evolution may also be correlated with tightly packed sites.\(^15\)-\(^17\) In contrast, the potential roles of voids in affecting protein stability and in influencing tolerance to mutations and designability of proteins\(^18\)\(^,\)\(^19\) are not well understood.

An important parameter describing packing is the packing density \(p_d \), which is a quantitative measure of the voids and was first introduced to study proteins by structural biologists. This concept has been widely used in protein chemistry.\(^8\)\(^,\)\(^13\) The scaling relationship of \(p_d \) and chain length \(N \) was first studied in Ref. 11. \(p_d \) can be thought of as the physical volume \(v_{\text{vdw}} \) occupied by the union of van der Waals atoms, divided by the volume of an envelope \(v_{\text{env}} \) that tightly wraps around the body of atoms. \(p_d = v_{\text{vdw}} / v_{\text{env}} \).\(^11\) Voids contained within the molecule will not be part of the van der Waals volume \(v_{\text{vdw}} \), but will be included in \(v_{\text{env}} \). Using geometric algorithms, \(v_{\text{vdw}}, v_{\text{env}}, \) and \(p_d \) can be readily computed for protein structures in the Protein Data Bank.\(^20\)\(^,\)\(^21\)

In this work, we further study the scaling behavior of packing density \(p_d \) with chain length of single domain proteins and explore the determinants of the observed scaling behavior. We seek to answer the following questions: Is the scaling behavior of \(p_d \) unique to proteins? Are proteins optimized during evolution to eliminate packing voids? We introduce two new packing parameters \(n_a \) (the alpha contact number) and \(z_\alpha \) (the alpha coordination number). We show that \(n_a \) characterizes protein packing very well with a linear

\(^{a}\)Author to whom correspondence should be addressed. Phone: (312)355-1789; Fax: (312)996-5921; Electronic mail: jliang@uic.edu

© 2003 American Institute of Physics. [DOI: 10.1063/1.1554395]
scaling relationship with the chain length, and that a widely used parameter, the radius of gyration \(R_g \), characterizes protein packing poorly. To overcome the attrition problem of low success rate in generating compact long chain polymers, we develop an algorithm based on sequential Monte Carlo importance sampling and succeed in obtaining thousands of very compact long chain off-lattice polymers up to \(N = 2000 \). We demonstrate that the scaling behavior of \(p_d \) for proteins can be qualitatively reproduced by randomly generated polymers with rudimentary constraints of \(n_a \). Our simulation studies lead us to conclude that proteins are not optimized to eliminate voids during evolution. Rather, voids in proteins are a generic feature of random polymers with a “reasonable” (as measure by \(z_a \)) compactness.

The paper is organized as follows: In the Methods, we first describe briefly how \(p_d \) and \(n_a \) are computed from the dual simplicial complex of protein structure, and introduce an off-lattice discrete model for generating random polymer conformations. We next describe the sequential Monte Carlo importance sampling and resampling techniques that allow us to generate adequate samples satisfying various criteria of \(n_a \). In the Results, we begin with the characterization of void properties of proteins by both \(p_d \) and \(R_g \). We then show the linear scaling behavior of \(n_a \) found in proteins. The scaling behavior of \(p_d \) of random polymers generated by sequential Monte Carlo with chain length is discussed later. We conclude with summary and discussion of our results.

II. METHODS

A. Protein data

To avoid complications of multichain and multidomain proteins, we examine the packing density of proteins of single domain proteins. We collect proteins from the PDBSELECT database\(^{22}\) that contains only one domain, as defined as single chains in the SCOP database with one numerical label.\(^{23}\)

B. Dual simplicial complex, alpha coordination number, and packing density

We use alpha shape to characterize the geometry of protein structure. Alpha shape has been successfully applied to study a number of problems in proteins, including void measurement, binding site characterization, protein packing, electrostatic calculations, and protein hydrations.\(^{11,20,21,24–28}\) Briefly, we first obtain a Delaunay simplicial complex of the molecule from weighted Delaunay triangulation, which decomposes the convex hull of atom centers into tetrahedra (3-simplices), triangles (2-simplices), edges (1-simplices), and vertices (0-simplices). We then obtain the dual simplicial complex of the protein molecule by removing any tetrahedra, triangles, and edges whose corresponding Voronoi vertices, edges, and planar facets are not at least partially contained within the protein molecule.\(^{29,30}\) The edges between atoms that are not connected by bonds corresponds to nonbonded alpha contacts. The total sum of the number of such edges for each atom is the total number of \textit{alpha contacts} \(n_a \). It reflects the total number of atoms that are in physical nearest neighbor contact with other atoms. These atoms have volume overlap and their corresponding weighted Voronoi cells intersect. The \textit{alpha coordination number} is \(z_a = n_a / n \), where \(n \) is the total number of atoms in the molecule (see Fig. 1). In our calculation, we only consider nonbonded alpha contacts. Details of the theory and computation of alpha shape and dual simplicial complex can be found elsewhere.\(^{20,21,31}\)

We follow previous work in Ref. 11 and define packing density \(p_d \) as

\[
p_d = \frac{v_{vdw}}{v_{env} - u_{ms} + v_{voids}},
\]

where \(v_{vdw} \), \(v_{env} \), and \(u_{ms} \) are van der Waals volume, molecular surface volume, and the void volume of the molecule, respectively.\(^{30}\) Packing density is computed with a solvent probe radius 1.4 Å, as described in Ref. 11.

C. Growth model for off-lattice random polymers

We use a modified off-lattice discrete \(m \)-state model first developed in Ref. 32 to generate self-avoiding walks (SAWs) in three-dimensional space. All monomers are treated as balls with a radius of 1.7 Å. For monomers \(i \) and \(j \) that are not sequence near neighbors (\(|i - j| > 2 \)), the Euclidean distance \(d(i,j) \) between them must be greater than \(2 \times 1.7 \) Å so they are self-avoiding. Sequence neighboring monomers are connected by a bond of length 1.5 Å (Fig. 2).

We use a chain growth model to obtain conformation of polymer of specified length.\(^{33}\) There are \(m = 32 \) possible states where the next monomer can be placed. They are evenly distributed spatially on a sphere of radius 1.5 Å centered at the current monomer. We forbid the placement of the new monomer anywhere on a cap of the sphere with an angle \(< 60^\circ \) from the entering bond. This ensures that there are no unnatural acute sharp bond angles. The remaining sphere is divided into four strips, each may have different width but is of equal surface area. For the 32 possible states, we place uniformly 8 points at the midline of each of the 4 strips. Following Park and Levitt,\(^{32}\) the coordinates of each state are parametrized by two angles \(\alpha \) and \(\tau \) for ease of computation. \(\alpha \) is the bond angle formed by the \(i-1 \), \(i \) and \(i+1 \)th monomers. \(\tau \) is the torsion angle formed by four consecutive monomers.

FIG. 1. The alpha contacts in a toy molecule. In this molecule, both atom 1 and atom 2 have 4 alpha contacts. The number of atoms \(n \sim 9 \), the number of alpha contacts is \(n_a = 22 \) (twice the number of edges), and the alpha coordination number \(z_a = n_a / n \sim 2.4 \).

FIG. 2. A modified off-lattice discrete \(m \)-state model first developed in Ref. 32 to generate self-avoiding walks (SAWs) in three-dimensional space. All monomers are treated as balls with a radius of 1.7 Å. For monomers \(i \) and \(j \) that are not sequence near neighbors (\(|i - j| > 2 \)), the Euclidean distance \(d(i,j) \) between them must be greater than \(2 \times 1.7 \) Å so they are self-avoiding. Sequence neighboring monomers are connected by a bond of length 1.5 Å.
D. Approximately maximum compact polymer

In addition, we generate polymers that are approximately maximum compact based on the face centered cubic (fcc) packing of balls of 1.7 Å radii. For hard spheres, fcc packing has recently been proved to have the tightest packing.34,35 Because the distance between two balls in canonical fcc packing is $2 \times 1.7 = 3.4$ Å, which is greater than the bond length 1.5 Å, we shorten the distance along bonds connecting contacting balls of radius 1.7 Å to 1.5 Å. This mimics the bond length of the model polymer. Unlike fcc packing of hard spheres, bonded monomers here are allowed to have volume overlaps. Additionally, there are some boundary effects because bonds connecting balls in different layer have a distance >1.5 Å. Although mathematically unproven, we conjecture that this artificially constructed polymer represents conformations of SAWs that have very close to maximum compactness.

The packing density of canonical fcc packing by our method is 0.7411 As described earlier, although fcc packing contains no voids, there are packing crevices or dead spaces that do contribute to the calculation of P_d by our definition.11 In approximately maximum compact polymer, because the distance between bonded balls is shorter than that in fcc packing, P_d can be as high as 0.80 for polymers with a range of chain length.

E. Importance sampling with sequential Monte Carlo

Since we are simulating compact conformations that resemble proteins, we need an efficient method to generate adequate number of conformations satisfying protein-like compactness criteria. Here we use a sequential Monte Carlo (SMC) chain growth strategy,36,37 which combines importance sampling and the growth method. The main steps are shown in Fig. 3.

Denote the conformation of a polymer of length t as (x_1, \ldots, x_t) where x_i is the three-dimensional location of the ith monomer. Starting with initial location (x_1, x_2), we grow polymers by sequentially adding one monomer x_{t+1} to occupy one of the 32-states connecting to the last monomer x_t of the current chain. The monomer x_{t+1} is randomly placed according to a sampling probability $g_{t+1}(x_{t+1}|x_1 \ldots x_t)$. In this study, the following function g_{t+1} is used. Let ω be one of the 32-states connected to x_t that satisfies the self-avoiding criterion. First we initialize the number of neighbors $n_c(\omega)$ to ω as 1, and the Euclidean distance from ω to the nearest neighbor monomer $d(\omega)$ to 6 Å. We then increment $n_c(\omega)$ by the number of existing monomers within a distance of 6.0 Å to ω. Among these monomers, we identify the monomer x_s that is the nearest neighbor with the shortest Euclidean distance $d(\omega)$ to ω. We require in addition that the sequence separation $|s-t|>3$ so x_s and x_t are not sequence near neighbors. The distance $d(\omega)$ is then replaced by the value of d. The sampling probability is set as

$$g_{t+1}(x_{t+1} = \omega|x_1 \ldots x_t) \propto e^{-E'(\omega)/T'},$$

where $E'(\omega) = \ln|n_c(\omega)|/n_c(\omega)$ is an artificial “packing energy” favoring more compact conformations, and T' is a pseudotemperature controlling the behavior of sampling. Using this energy function, growth to position ω with close nearest neighbor [small $d(\omega)$] and a large number of neighbors within a 6 Å distance [large $n_c(\omega)$] is favored. Here the adjustable parameter c is used to balance the effect of $d(\omega)$ and $n_c(\omega)$. T' controls the importance of compactness. At low T', conformations generated are compact, but at high T', the compactness criterion becomes less important.

According to the sequential Monte Carlo framework, the importance weight w_{t+1} for the sampled conformation (x_1, \ldots, x_{t+1}) is updated as
\[
\begin{align*}
\pi_{t+1}(x_1, \ldots, x_{t+1}) &= \pi_t(x_1, \ldots, x_t) \cdot g_{t+1}(x_{t+1} | x_1, \ldots, x_t), \\
\end{align*}
\]

where \(\pi_{t+1}(x_1, \ldots, x_{t+1})\) is the target distribution at time \(t+1\). With a set of weighted samples \(\{(x_1^{(j)}, \ldots, x_n^{(j)}), w_n^{(j)}\}_{j=1}^m\) from the generated conformations that does not satisfy the final target distribution, statistical inference on the target distribution \(\pi_n(x_1, \ldots, x_n)\) can be made using

\[
E_{\pi_n}[h(x_1, \ldots, x_n)] = \frac{\sum_{j=1}^m w_n^{(j)} \cdot h(x_1^{(j)}, \ldots, x_n^{(j)})}{\sum_{j=1}^m w_n^{(j)}} (1)
\]

for most of the proper function \(h\).

F. The target distribution

We wish to generate random samples of polymer with different compactness criterion. This is achieved by using a target distribution \(\pi_n\) which is uniform among all SAWs satisfying a compactness constraint. The constraint is set as follows. First, for each chosen pair values of \((T', c)\), we use the function \(e^{-E'(c)/T'}\) to generate 500 random conformations as a trial run. Ignoring the importance weights, we calculate the mean alpha coordination number \(z_\alpha^*(n, T', c)\) of all the generated conformations. Then we set the target distribution \(\pi_n^*\) as the uniform distribution of all SAWs satisfying \(z_\alpha \in (0.8 \cdot z_\alpha^*(n, T', c), 1.2 \cdot z_\alpha^*(n, T', c))\).

We then rerun a large simulation with the same \((T', c)\) parameters and harvest the conformations, using uniform distribution with no restriction on the intermediate target distribution \(\pi\), but take the truncated distribution \(\pi_n^*\) as the final target distribution. The truncation is achieved by discarding all generated conformations that does not satisfy the constraint. Typically, the truncation rate is very small (<0.1%). The bias in sampling is fully compensated by proper weighting.

G. Resampling

Because it is easy to have self-avoiding walks to grow into a dead-end, we use resampling to replace dead samples or samples with small weight to improve sampling efficiency.\(^{35}\) Intuitively, we check regularly during the chain growth process whether a particular chain is stuck in a dead-end, or is too extended, or has too little weight. If so, this chain is replaced by the replicate of another chain that has the desired compactness. Both duplicate chains will then continue to grow, and the final two surviving chains will be correlated up to the duplication event. Conformations of the monomers added after the duplication will be uncorrelated. This resampling technique targets our simulation to specified configuration space without introducing too much bias, where conformations all have desired compactness (see Fig. 4).

Although we found that the total contact number \(n_\alpha\) is an excellent parameter for characterizing protein, its calculation involves expensive computation of weighted Delaunay triangulation and alpha shape. We decide to use \(R_g\) as a surrogate parameter during resampling. For resampling, we use the empirical relationship \(R_g(n) = 2.2 \cdot n^{0.38}\), where \(n\) is the number of monomers in the polymer, as described in Ref. 38. This relationship has been used as a constraint in NMR protein structure determination.\(^{39}\) We have the following pseudocode for resampling:\(^{37}\)

Procedure RESAMPLING \((m, d_s, R_g)\)

i // \(m\): Monte Carlo sample size, \(d_s\): steps of looking-back.
// \(R_g\): targeting \(R_g\).

\(k\leftarrow\) number of dead conformations.

Divide \(m-k\) samples randomly into \(k\) groups.

for group \(i=1\) to \(k\)

Find conformations not picked in previous \(d_s\) steps.

// Pick the best conformation \(P_j\)

\(P_j\leftarrow\) polymer with \(\min[R_g - R_g^{'\prime}]\)

Replace one of \(k\) dead conformations with \(P_j\)

Assign both copies of \(P_j\) half its original weight.

endfor

Here \(d_s\) is used to maintain higher diversity for resampled conformations. That is, conformation that has been picked in the past \(d_s\) steps are not available for resampling.

After resampling, the samples with their adjusted weights remain to be properly weighted with respect to the original target distribution. We can then calculate the expected alpha coordination number \(z_\alpha^*\), expected packing density \(p_d\), or expected value of any other function \(h\) using Eq. (1). With these sampling and resampling strategies, we can
successfully grow thousands of self-avoiding walks of chain length up to 2000 using a Linux cluster of 40 CPUs.

III. RESULTS

A. Packing density

Figure 5(a) shows the correlation of packing density \(p_d \) with the number of residues \(N \) in real proteins. Similar relationship has been observed in Ref. 11. Here we further restrict the samples to be of single domain by SCOP annotation.\(^{23}\) We found that \(p_d \) decreases with chain length. That is, short chain proteins have high packing density \(p_d \), but \(p_d \) decreases from >0.85 to about 0.74–0.75 when the chain length reaches about 190 residues. After reaching this length, proteins seem to be indifferent about the existence of voids. This suggests that maintaining high packing density is only characteristic of short chain proteins.

B. Radius of gyration of proteins

To identify the factors that dictate the scaling behavior of \(p_d \) with residue number \(N \), we need to determine whether such scaling is due to physical constraints of statistical mechanics or the product of extensive optimization by evolution. We study this problem by examining the scaling behavior of \(p_d \) with \(N \) in random chain polymers generated by computer.

Because of the enormity of conformational space, we focus on random polymers that resemble proteins in some rudimentary sense. One possible criterion is the radius of gyration \(R_g \). This parameter has been widely used as a macroscopic description of protein packing. For single domain proteins, however, we found that there is substantial variance in \(R_g \) for proteins of the same chain length [Fig. 5(b)]. Therefore, \(R_g \) characterizes protein packing rather poorly, and is unsuitable as a criterion for generating protein-like polymers for our purpose.

C. Alpha contacts

An alternative global description of protein structure is the total number of nonbonded alpha contacts \(n_a \) defined by the dual simplicial complex of the protein. In Fig. 6(a) we plot \(n_a \) against the total number of atoms in the molecule \(n \). As discussed before, these contacts are identified by computing the dual simplicial complex of the molecule.\(^{11,20}\) The total number of contacts \(n_a \) scales linearly with \(n \). It also scales linearly with the protein chain length (or residue number \(N \), data not shown). Regression leads to a linear relationship of \(n_a = 4.28 \cdot n - 432 \), with \(R^2 = 0.995 \). The alpha contact number \(n_a \) therefore provides a more accurate global characteristic of protein than radius of gyration \(R_g \). This linear scaling relationship of packing related property is similar to other linear scaling relationships observed for protein, for example, of empirical solvation energy,\(^{40}\) protein surface area and protein volume\(^{11}\) with chain length. It is interesting to note that the value of x-axis intercept for \(n \) of the linear regression model suggests that the size of a minimum protein would be in the order of 100 atoms, or about 12–13 residues.

The details of the linear scaling relationship are further examined in Fig. 6(b). It is a replot of Fig. 6(a) after normalization by \(n \). It showed that for proteins with 1000 atoms or more (\(\geq 120 \) residues), the parameter alpha coordination number \(z_a = n_a / n \) is a constant of about 4.2. For smaller proteins \((n < 1000) \), \(z_a \) ranges from 2.5 to 4.0. A nonlinear curve fitting leads to the relationship \(z_a = a - b / n \), where \(a = 4.27 \pm 0.03 \), and \(b = 4.2 \times 10^2 \pm 26 \). We decide to use \(z_a \) as the criterion to select random polymers generated computationally for packing analysis.

D. Targeted sampling of random chain polymer

Figure 7 shows typical conformations generated with different \((T', c) \) parameters and the conformation of maximally compact polymer. Figure 8 shows the histogram of \(z_a \) of the conformations at length 2000 without weight adjustment generated using different \((T', c) \) parameters. It can be seen that the histograms for different values of \((T', c) \) do not overlap. This feature demonstrated that with properly chosen \((T', c) \) we can efficiently generate random polymers with \(z_a \) within a targeted range.
E. Packing density of random chain polymer

Figure 9(a) shows the relationship of \(n_\alpha \) associated with each pairs of \((T',c)\) as a function of chain length \(n \). It also shows the \(n_\alpha \) value for the maximally compact conformations. Figure 9(b) shows the relationship of \(z_\alpha \) and \(n \). Note that the targeted \(z_\alpha \) generated with different \((T',c)\) parameters give rise to different \(z_\alpha \sim n \) scaling behavior. Because the coarse grained random polymers generated here lack side chains, they are fundamentally different from real proteins. We therefore have experimented with several \((T',c)\) value. We find that protein-like scaling can be obtained for a wide range of \((T',c)\) values.

Figure 9(c) shows the average packing density \(p_d \) for all conformations satisfying the constraint specified by different \((T',c)\) values. Except maximally compact conformations, the scaling of \(p_d \sim n \) of all other sets of polymers is remarkably similar to that of protein [Fig. 5(a)].

Conformations from set 1 \((T'=(1.0,0.0))\) are more extended, and have lower average \(z_\alpha \) [e.g., Fig. 7(a)]. Because there are fewer voids, they also have high \(p_d \). Conformations in set 3 \((T'=(0.1,0.6))\) are more compact and make more nonbonded contacts and hence have high \(z_\alpha \) values [e.g., Fig. 7(e)]. They also form more voids, and therefore have lower \(p_d \) values. Set 2 \((T'=(0.6,0.0))\) are conformations whose properties are between those of set 1 and set 3 [e.g., Fig. 7(b)].

The relationship between \(z_\alpha \) and chain length \(n \) can be characterized by a nonlinear equation \(z_\alpha = a - b/n \), similar to that of real proteins. The sets of \(a \) and \(b \) obtained by curve fitting are listed in Table I. We emphasize that these randomly generated self-avoiding walks are fundamentally very different from proteins: all residues are of uniform size, there are no side chains, and there is no hydrophobic or any other type of physical interactions in these polymers. Because it is impossible to quantitatively define a similarity metric that measures how different these polymers are from proteins, we are not able to decide which specific values of \((T',c)\) are optimal for modeling protein packing. Nevertheless, the scaling of \(p_d \sim n \) for all \((T',c)\) values is qualitatively quite similar to that of real proteins.

The relationship between \(p_d \) and \(z_\alpha \) at chain length 1800 for self-avoiding walks generated with different parameters \((T',c)\) are shown in Fig. 10. The \(p_d \) of both extended and maximally compact conformations have high \(p_d \) values, but conformations with an intermediate value of \(z_\alpha \) contain voids and have smaller \(p_d \) values. This is similar to the relationship of \(p_d \) and a compactness parameter \(\rho \) (equivalent to \(z_\alpha \) used here) studied in two-dimensional lattice (see Fig. 8 in Ref. 37).

IV. SUMMARY AND DISCUSSION

It is well acknowledged that protein has high packing density \(p_d \), as high as that of crystalline solids. It was also found that about 1/3 of the residues in a protein deviates from the fcc close packing and have random positions. The simulation results presented here indicate that chain connectivity, excluded volume, and global compactness are the main determinants of the scaling behavior of voids and chain length in proteins. Unlike maxi-
mally compact polymers which maintains high packing density at all chain length, proteins and simple near compact polymers have large p_d values only for relatively short chains. When the chain length reaches 190 residues for protein and about 600–700 for chain polymers, proteins and polymers have lower packing density and are quite tolerant to the formation of voids.

The global compactness is a necessary condition for the observed protein-like scaling behavior. However, not all parameters related to voids and compactness are equally appropriate. The data shown in Fig. 6 suggests that the alpha coordination number z_a reflects basic intrinsic compactness properties of protein, which is absent in the widely used parameter R_g, the radius of gyration. The advantage of parameters such as z_a emphasizes the importance of accurate description of protein geometry and structure.

The parameters p_d is biased towards short chain proteins. By definition, a polymer formed by 2, 3 or a small number of monomers do not have long enough chains to form voids, therefore all will have $p_d=1.0$. When chain length becomes longer, voids appear. Similarly, z_a is also biased towards short chains. For very short chain polymers where the chain has few turns, few nonbonded contacts exist and no voids are formed. In this case, z_a is low and p_d is high. However, this small size effect therefore does not fully account for the scaling behavior of p_d and z_a in proteins and in simulated random polymers.

There are major differences between self-avoiding walks we generated and real protein structures. Our SAWs have no side chains, and belong to the coarse-grain model where one monomer is represented as a ball. In addition, the target distribution of SMC sampling is the truncated uniform distribution of all geometrically feasible conformations. The truncated uniform distribution of all geometrically feasible conformations. The truncated uniform distribution of all geometrically feasible conformations.

TABLE I

T'	c	a	b
1.0	0.0	1.88(0.02)	72(7)
0.67	0.0	2.24(0.02)	67(6)
0.1	0.6	3.68(0.02)	93(7)
Native proteins		4.27(0.04)	423(27)

FIG. 9. The relationship of alpha contact number n_a, alpha coordination number z_a, and the packing density p_d of random compact and maximally compact self-avoiding walks. The curves are sampled following the function $e^{-3'(x)\alpha T'}$, with different T' and c values. Each data point is an average of 10 runs of sample size 600.

FIG. 10. The relationship of p_d and $z_a=\frac{n_a}{n}$ for self-avoiding walks generated using different (T',c) parameters at chain length 1800.
tion required is that polymers must satisfy a prescribed $z_a \sim n$ relationship. No physical forces such as hydrophobic interactions is used in the target distribution.

In this paper, we describe a novel approach to overcome the attrition problem in generating long chain compact self-avoiding walk. With sequential importance sampling and resampling, we have developed an algorithm that effectively sample rare events, i.e., compact self-avoiding walks. Success in generating thousands of off-lattice self-avoiding walks satisfying various desired compactness requirement is essential for studying the scaling behavior of p_d in random off-lattice self-avoiding walks.

The main result of this paper is that with sequential Monte Carlo techniques it is not difficult to reproduce protein-like scaling behavior of packing density p_d and chain length n in generic chain polymers. With the guidance of rudimentary requirement of z_a, this can be achieved under a wide range of $z_a \sim n$ relationships. We therefore conclude that proteins retain the same packing property of generic compact chain polymers. We further conclude that proteins are unlikely to be optimized by evolution to eliminated packing voids. This is in support of the insightful comments of Richards who suggested that an appropriate level of underpacking would be important for evolution to occur through random mutations.10

Our study showed the importance of generic geometric packing related to z_a in reproducing protein-like $p_d \sim n$ scaling behavior. To test further the role of geometric packing, the next step would be to examine the $p_d \sim n$ scaling by generating more realistic compact random polymers with perhaps monomers of different sizes to model the side chain effects. Furthermore, with sequential Monte Carlo and other advanced sampling methods, various models of explicit side chains can be attached to main chain monomers. In addition, one could introduce various alphabet sets for the residues (such as the HP model) and corresponding potential energy function H. In this case, the target distribution can be the Boltzmann distribution $\pi \propto \exp(-H/T)$ instead of the uniform distribution of all SAWS. It would also be interesting to examine the $p_d \sim n$ scaling of polymers of random sequences and of protein-like sequences with low energy in compact states.

ACKNOWLEDGMENTS

The authors thank Professor Herbert Edelsbrunner and Professor Luhua Lai for valuable discussions. This work is supported by funding from the National Science Foundation CAREER DBI0133856, DBI0078270, DMS0073601, CCR9980599 and American Chemical Society/Petroleum Research Fund 35616-G7.

\begin{thebibliography}{99}
\bibitem{1} C. Chothia, M. Levitt, and D. Richardson, J. Mol. Biol. \textbf{145}, 214 (1981).
\bibitem{2} C. Chothia and A. V. Finkelstein, Annu. Rev. Biochem. \textbf{59}, 1007 (1990).
\bibitem{3} A. Maritan, C. Micheletti, A. Trovato, and J. R. Banavar, Nature (London) \textbf{406}, 287 (2000).
\bibitem{4} J. R. Banavar, A. Maritan, C. Micheletti, and A. Trovato, Proteins \textbf{47}, 315 (2002).
\bibitem{5} Z. Bagci, R. L. Jernigan, and I. Bahar, J. Chem. Phys. \textbf{116}, 2269 (2002).
\bibitem{6} P. B. Sigler, Z. Xu, H. S. Rye, S. G. Burston, W. A. Fenton, and A. L. Horwich, Annu. Rev. Biochem. \textbf{67}, 581 (1998).
\bibitem{7} D. A. Doyle, J. Morais Cabral, R. A. Pfuettner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon, Science \textbf{280}, 69 (1998).
\bibitem{8} F. M. Richards and W. A. Lim, Q. Rev. Biophys. \textbf{26}, 423 (1994).
\bibitem{9} J. Hermans and H. A. Scheraga, J. Am. Chem. Soc. \textbf{83}, 3283 (1961).
\bibitem{10} F. M. Richards, Cell. Mol. Life Sci. \textbf{53}, 790 (1997).
\bibitem{11} J. Liang and K. A. Dill, Biophys. J. \textbf{81}, 751 (2001).
\bibitem{12} A. E. Eriksson, W. A. Baise, X. J. Zhang, D. W. Heinz, M. Blaber, E. P. Baldwin, and B. W. Matthews, Science \textbf{255}, 178 (1992).
\bibitem{13} P. L. Privalov, J. Mol. Biol. \textbf{285}, 707 (1996).
\bibitem{14} B. I. Dalhiyat and S. L. Mayo, Science \textbf{221}, 709 (1997).
\bibitem{15} O. B. Pitsyn, J. Mol. Biol. \textbf{278}, 655 (1998).
\bibitem{16} O. B. Pitsyn and K. L. Ting, J. Mol. Biol. \textbf{291}, 671 (1999).
\bibitem{17} L. Mirny and E. Shakhnovich, Annu. Rev. Biophys. Biomol. Struct. \textbf{30}, 361 (2001).
\bibitem{18} H. Li, R. Helling, C. Tang, and N. Wingreen, Science \textbf{273}, 666 (1996).
\bibitem{19} R. Melin, H. Li, N. Wingreen, and C. Tang, J. Chem. Phys. \textbf{110}, 1252 (1999).
\bibitem{20} J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, and S. Subramaniam, Proteins \textbf{33}, 1 (1998).
\bibitem{21} J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, and S. Subramaniam, Proteins \textbf{33}, 18 (1998).
\bibitem{22} U. Hobohm and C. Sander, Protein Sci. \textbf{3}, 522 (1994).
\bibitem{23} A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, J. Mol. Biol. \textbf{247}, 536 (1995).
\bibitem{24} H. Edelsbrunner, M. Facello, P. Fu, and J. Liang, in Proceedings of the 28th Annual Hawaii International Conference System Sciences, Los Alamitos, California (IEEE Computer Society, California, 1995).
\bibitem{25} K. P. Peters, J. Fauck, and C. Frommel, J. Mol. Biol. \textbf{256}, 201 (1996).
\bibitem{26} J. Liang, H. Edelsbrunner, and C. Woodward, Protein Sci. \textbf{7}, 1884 (1998).
\bibitem{27} J. Liang and S. Subramaniam, Biophys. J. \textbf{73}, 1830 (1997).
\bibitem{28} J. Liang and M. P. McGee, Biophys. J. \textbf{75}, 573 (1998).
\bibitem{29} H. Edelsbrunner, Discrete Comput. Geom. \textbf{13}, 415 (1995).
\bibitem{30} H. Edelsbrunner, M. Facello, and J. Liang, Disc. Appl. Math. \textbf{88}, 18 (1998).
\bibitem{31} H. Edelsbrunner and E. Mücke, ACM Trans. Graphics \textbf{13}, 43 (1994).
\bibitem{32} B. H. Park and M. Levitt, J. Mol. Biol. \textbf{249}, 493 (1995).
\bibitem{33} M. N. Rosenbluth and A. W. Rosenbluth, J. Chem. Phys. \textbf{23}, 356 (1955).
\bibitem{34} T. C. Hale, The Kepler conjecture, http://www.math.pitt.edu/theses
\bibitem{35} N. J. A. Sloane, Nature (London) \textbf{395}, 435 (1998).
\bibitem{36} J. S. Liu and R. Chen, J. Am. Stat. Assoc. \textbf{93}, 1032 (1998).
\bibitem{37} J. Liang, J. Zhang, and R. Chen, J. Chem. Phys. \textbf{117}, 3511 (2002).
\bibitem{38} J. Skolnick, A. Kolinski, and A. R. Ortiz, J. Mol. Biol. \textbf{265}, 217 (1997).
\bibitem{39} X. Huang and R. Powers, J. Am. Chem. Soc. \textbf{123}, 3834 (2001).
\bibitem{40} L. Cličhe, L. M. Gregoret, F. E. Cohen, and P. A. Kollman, Proc. Natl. Acad. Sci. U.S.A. \textbf{87}, 3240 (1990).
\end{thebibliography}