The scalar $f_0(500)$ and $f_0(980)$ resonances and vector mesons in the single Cabibbo-suppressed decays $\Lambda_c \to pK^+K^-$ and $p\pi^+\pi^-$

Zhe Wang, Yan-Yan Wang, En Wang, De-Min Li, and Ju-Jun Xie

1School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
2School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Henan 450001, China
3Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4School of Nuclear Sciences and Technology, University of Chinese Academy of Sciences, Beijing 101408, China

In the chiral unitary approach, we have studied the single Cabibbo-suppressed decays $\Lambda_c \to pK^+K^-$ and $\Lambda_c \to p\pi^+\pi^-$ by taking into account the s-wave meson-meson interaction as well as the contributions of the intermediate vectors ϕ and ρ. Our theoretical results for the ratios of the branching fractions of $\Lambda_c \to pK^+K^-$ and $\Lambda_c \to p\pi^+\pi^-$ with respect to the one of $\Lambda_c \to p\phi$ are in agreement with the experimental data. Within the picture that the scalar resonances $f_0(500)$ and $f_0(980)$ are dynamically generated from the pseudoscalar-pseudoscalar interaction, we have calculated the K^+K^- and $\pi^+\pi^-$ mass distributions respectively for the decays $\Lambda_c \to pK^+K^-$ and $\Lambda_c \to p\pi^+\pi^-$. One can find a broad bump structure for the $f_0(500)$ and a narrow peak for the $f_0(980)$ in the $\pi^+\pi^-$ mass distribution of the decay $\Lambda_c \to p\pi^+\pi^-$, which is compatible with the BESIII measurement. For the K^+K^- mass distribution, in addition to the narrow peak for the resonance ϕ, one can see an enhancement structure near the K^+K^- threshold. We encourage our experimental colleagues to measure these two decays, which would be helpful to understand the nature of the $f_0(500)$ and $f_0(980)$.

PACS numbers:

I. INTRODUCTION

The non-leptonic decays of the lightest charmed baryon Λ_c play an important role in the study of strong and weak interactions [1–6]. In the last decades, lots of the information about the Λ_c decays has been accumulated [7–11], which provides a good platform to investigate the possible final state interference effects where some resonances can be dynamically generated [12–17].

Recently, the BESIII Collaboration has reported the branching fractions of the $\Lambda_c \to pK^+K^-$, $p\pi^+\pi^-$,

$$\frac{B(\Lambda_c \to p\phi)}{B(\Lambda_c \to pK^+K^-)} = (1.81 \pm 0.33 \pm 0.13)\%,$$

$$\frac{B(\Lambda_c \to pK^+K^-)_{\text{non-}\phi}}{B(\Lambda_c \to pK^+K^-)} = (9.36 \pm 2.22 \pm 0.71)\%,$$

$$\frac{B(\Lambda_c \to p\pi^+\pi^-)}{B(\Lambda_c \to pK^+K^-)} = (6.70 \pm 0.48 \pm 0.25)\%,$$

*Electronic address: wangen@zzu.edu.cn
†Electronic address: lidm@zzu.edu.cn
‡Electronic address: xiejujun@impcas.ac.cn
and also measured the $\pi^+\pi^-$ and K^+K^- mass distributions, respectively \cite{18}, where one can find a broad bump around 500 MeV for the scalar resonance $f_0(500)$ and a narrow sharp around 980 MeV for the scalar resonance $f_0(980)$ in the $\pi^+\pi^-$ mass distribution, in addition to the peak for the ρ meson. Later, the LHCb Collaboration has also reported these ratios using the proton-proton collision data \cite{11},

$$
\frac{B(\Lambda_c \to pK^+K^-)}{B(\Lambda_c \to pK^-\pi^+)} = (1.70 \pm 0.03 \pm 0.03)\%,
$$

$$
\frac{B(\Lambda_c \to p\pi^+\pi^-)}{B(\Lambda_c \to pK^-\pi^+)} = (7.44 \pm 0.08 \pm 0.18)\%.
$$

Before the BESIII and LHCb results, the above two decay modes have also been observed by the NA32 \cite{19}, E687 \cite{20}, CLEO \cite{21}, and the Belle Collaborations \cite{7}.

Within the chiral unitary approach, the scalar resonances $f_0(500)$, $f_0(980)$, $a_0(980)$, and $\kappa(800)$ appear as composite states of meson-meson, automatically dynamically generated by the interaction of pseudoscalar-pseudoscalar where the kernel for the Bethe-Salpter equation is taken from the chiral Lagrangians \cite{22,27}. The productions of $f_0(500)$ and $f_0(980)$ have been recently studied with the chiral unitary approach and the final state interactions in the decays of the \bar{B} and $\bar{B}_s \ \cite{28,31}, \chi_{c1} \ \cite{32,33}, \chi_{c2} \ \cite{32,33}, D^0 \ \cite{34}, \tau^- \ \cite{35}, \text{and } J/\psi \ \cite{36}.

In this work, we perform the calculations of the decays $\Lambda_c \to pK^+K^-$ and $\Lambda_c \to p\pi^+\pi^-$ using the chiral unitary approach and the final state interactions of the meson-meson interaction in coupled channels. The two pions in the final states of the decay $\Lambda_c \to p\pi^+\pi^-$ can propagate in s-wave, which will generate the $f_0(500)$ and $f_0(980)$ resonances, and for the decay $\Lambda_c \to pK^+K^-$, the $f_0(980)$ resonance dynamically generated from the s-wave K^+K^- final state interaction will result in an enhancement structure close to the K^+K^- threshold.

The paper is organized as follows. In Section II, we present the formalism and ingredients for the decay amplitudes of the $\Lambda_c \to pK^+K^-$ and $p\pi^+\pi^-$ decays. Numerical results for invariant mass distributions of the K^+K^- and $\pi^+\pi^-$ and discussions are given in Section III, followed by a short summary in the last section.

II. FORMALISM

In this section, we will present the formalism for the decays $\Lambda_c \to pK^+K^-$ and $\Lambda_c \to p\pi^+\pi^-$. The three-body decays of Λ_c can preform in s-wave, where the final state interactions of $\pi^+\pi^-$ or K^+K^- will dynamically generate the scalar resonances $f_0(500)$ and $f_0(980)$.

In addition, the three-body decays can happen via the intermediate vector mesons ρ^0 or ϕ. We first introduce the formalism for the mechanism of final state interactions of $\pi^+\pi^-$ or K^+K^- in s-wave in Subsect. II A, then we show the details for the mechanism of the Λ_c decay via the intermediate vector mesons ρ^0 and ϕ in Subsect. II B

A. s-wave final state interactions of K^+K^- and $\pi^+\pi^-$

Following Refs. \cite{37,40}, we take the decay mechanism of the internal W emission mechanism for the decays $\Lambda_c \to pK^+K^-$ and $\Lambda_c \to p\pi^+\pi^-$ as depicted in Figs. I(a) and (b). For the weak decays of Λ_c, the c quark decays into a W^+ boson and a s (or d) quark, then the W^+ boson decays into a $\bar{s}u$ (or $\bar{d}u$) pair. In order to give rise to the final states of pK^+K^- (or $p\pi^+\pi^-$), the ss (or dd) quark pair need to hadronize together with the $\bar{q}q$ ($= \bar{u}u + \bar{d}d + \bar{s}s$)
produced in the vacuum, $H^{(a)}$ or $H^{(b)}$, which are given by,

$$H^{(a)} = V^{(a)} s(\bar{u}u + \bar{d}d + \bar{s}s)\frac{1}{\sqrt{2}}(ud - du) = V^{(a)} (M^2)_{33} p,$$

$$H^{(b)} = V^{(b)} d(\bar{u}u + \bar{d}d + \bar{s}s)\frac{1}{\sqrt{2}}(ud - du) = V^{(b)} (M^2)_{22} p,$$

where $V^{(a)}$ and $V^{(b)}$ are the weak interaction strengths. We use $|p| = \frac{1}{\sqrt{2}} |u(ud - du)|$, and $|\Lambda_c| = \frac{1}{\sqrt{2}} |c(ud - du)|$. M is the $q\bar{q}$ matrix,

$$M = \begin{pmatrix} uu & ud & u\bar{s} \\ d\bar{u} & d\bar{d} & d\bar{s} \\ s\bar{u} & s\bar{d} & s\bar{s} \end{pmatrix}.$$

The matrix M in terms of pseudoscalar mesons can be written as,

$$M \Rightarrow P = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{6}} \\ \pi^- \\ K^- \end{pmatrix} - \frac{1}{\sqrt{2}} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{6}} \begin{pmatrix} K^+ \\ K^0 \\ -\eta \sqrt{3} + \frac{2\eta'}{\sqrt{6}} \end{pmatrix}.$$ \hspace{1cm} (8)

Then, we have,

$$H^{(a)} = V^{(a)} (M^2)_{33} p = V_p V_{cs} V_{us} \left(K^- K^+ + K^0 K^0 + \frac{1}{3} \eta \eta \right) p,$$

$$H^{(b)} = V^{(b)} (M^2)_{22} p = V_p V_{cd} V_{ud} \left(\pi^+ \pi^- + \frac{1}{2} \pi^0 \pi^0 + \frac{1}{3} \eta \eta - \frac{2}{\sqrt{6}} \pi^0 \eta + K^0 K^0 \right) p,$$ \hspace{1cm} (9) \hspace{1cm} (10)

where we neglect the η' because of its large mass. V_p is the meson-meson production vertex which contains all dynamical factors. In this work we take $V_{cs} = V_{ud} = -\sin\theta_c = 0.22534$, $V_{cd} = V_{us} = \cos\theta_c = 0.97427$ [41].

After the production of a meson-meson pair, the final state interaction in the s-wave between the mesons takes place, which can be parameterized by the re-scattering in the hadron level, as show in Figs. [2] and [3] where we will take into account both contributions from the diagrams of Fig. [1].

On the other hand, the decays $\Lambda_c \rightarrow pK^+K^-$ and $\Lambda_c \rightarrow p\pi^+\pi^-$ can also proceed with the following steps: i) the charmed quark turns into W^+ and the s or d quark, with the K^+ or π^+ emission from the W^+; ii) the remaining quarks s or d and ud in the Λ_c hadronize to the $K^- p$ or $\pi^- p$. Although this mechanism of the external W emission is color favored, we do not know any information about the relative weight and phase between the external W emission and internal W emission. Furthermore, the external W emission process provides the contributions for the pK^+K^-

FIG. 1: The diagrams of the internal W emission for the Λ_c decays, (a) $\Lambda_c \rightarrow pK^+K^-$, (b) $\Lambda_c \rightarrow p\pi^+\pi^-$.

![Diagram](image-url)
and $p\pi^+\pi^-$ as background, and do not affect much the invariant mass distributions of the final state K^+K^- and $\pi^+\pi^-$. Since the purpose of this work is to study the scalar mesons, dynamically generated from the s-wave meson-meson interactions, we will leave the contributions from the external W diagrams in future studies, when more accurate experimental data are available.

Finally, the amplitudes of the decays $\Lambda_c \rightarrow pK^+K^-$ and $\Lambda_c \rightarrow p\pi^+\pi^-$ in s-wave can be expressed as,

$$t_{s-wave}^{\Lambda_c \rightarrow pK^+K^-} = V_p V_c V_{us} \left[1 + G_{\pi^0K^0} t_{\pi^0K^0 \rightarrow K+K^-} + 2G_{K^0\bar{K}^0} t_{K^0\bar{K}^0 \rightarrow K+K^-} + G_{\pi^+\pi^-} t_{\pi^+\pi^- \rightarrow K+K^-} + \frac{1}{2} G_{\eta\eta} \hat{t}_{\eta\eta \rightarrow K+K^-} \right],$$

$$t_{s-wave}^{\Lambda_c \rightarrow p\pi^+\pi^-} = V_p V_c V_{us} \left[1 + G_{\pi^0K^0} t_{\pi^0K^0 \rightarrow \pi^+\pi^-} + 2G_{K^0\bar{K}^0} t_{K^0\bar{K}^0 \rightarrow \pi^+\pi^-} + G_{\pi^+\pi^-} t_{\pi^+\pi^- \rightarrow \pi^+\pi^-} + \frac{1}{2} G_{\eta\eta} \hat{t}_{\eta\eta \rightarrow \pi^+\pi^-} \right],$$

where we include the factor 1/2 in the intermediate loops involving a pair of identical mesons. The scattering matrix $t_{i \rightarrow j}$ has been calculated within the chiral unitary approach in Refs. 22, 29, 34, 42, 43, and we take $\hat{t}_{\eta\eta \rightarrow K+K^-} = \sqrt{2} t_{\eta\eta \rightarrow K+K^-}$ and $\hat{t}_{\eta\eta \rightarrow \pi^+\pi^-} = \sqrt{2} t_{\eta\eta \rightarrow \pi^+\pi^-}$ as Ref. 42. G_i is the loop function for the two mesons propagator in the ith channel, as given by,

$$G_i = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{(p-q)^2-m_i^2+i\epsilon} \frac{1}{q^2-m_i^2+i\epsilon} = i \int \frac{d^4q}{(2\pi)^4} \frac{\omega_1 + \omega_2}{2\omega_1\omega_2} \frac{1}{\sqrt{s} + \omega_1 + \omega_2}(\sqrt{s} - \omega_1 - \omega_2 + i\epsilon),$$

where \sqrt{s} is the invariant mass of the meson-meson pair, and the meson energies $\omega_i = \sqrt{(q^2)^2+m_i^2}$ ($i = 1, 2$). The integral on \vec{q} in Eq. (13) is performed with a cutoff $|\vec{q}_{\text{max}}| = 600$ MeV, as used in Refs. 29, 34, 42. The transition amplitude t_{ij} is obtained by solving the Bethe-Salpeter equation in coupled channels,

$$T = \frac{V}{1 - VG},$$

where five channels $\pi^+\pi^-$, $\pi^0\pi^0$, K^+K^-, $K^0\bar{K}^0$, and $\eta\eta$ are included. The elements of the diagonal matrix G are given by the loop function of Eq. (13), and V is the matrix of the interaction kernel corresponding to the tree level.
transition amplitudes obtained from phenomenological Lagrangians \[22\] and can be expressed as \[42\],

\[
\begin{align*}
V_{11} &= -\frac{1}{2f^2}s, \quad V_{12} = -\frac{1}{\sqrt{2}f^2}(s - m^2), \quad V_{13} = -\frac{1}{4f^2}s, \quad V_{14} = -\frac{1}{4f^2}s, \\
V_{15} &= -\frac{1}{3\sqrt{2}f^2}m^2, \quad V_{22} = -\frac{1}{2f^2}m^2, \quad V_{23} = -\frac{1}{4\sqrt{2}f^2}s, \quad V_{24} = -\frac{1}{4\sqrt{2}f^2}s, \\
V_{25} &= -\frac{1}{6f^2}m^2, \quad V_{33} = -\frac{1}{2f^2}s, \quad V_{34} = -\frac{1}{4f^2}s, \quad V_{35} = -\frac{1}{12\sqrt{2}f^2}(9s - 6m^2 - 2m^2), \\
V_{44} &= -\frac{1}{2f^2}s, \quad V_{45} = -\frac{1}{12\sqrt{2}f^2}(9s - 6m^2 - 2m^2), \quad V_{55} = -\frac{1}{18f^2}(16m^2_K - 7m^2),
\end{align*}
\]

(15)

where \(f\) is the pion decay constant, \(f = f_\pi = 93\) MeV, and \(m_\pi, m_K, \) and \(m_\eta\) are the averaged masses of the pion, kaon, and \(\eta\) mesons, respectively \[41\].

With the amplitudes of Eqs. (11) and (12), we can write the differential decay width for the decays \(\Lambda_c \rightarrow pK^+K^-\) and \(\Lambda_c \rightarrow p\pi^+\pi^-\) in s-wave,

\[
\frac{d\Gamma_{s-wave}}{dM_{inv}} = \frac{1}{(2\pi)^3} \frac{p_p \bar{k}}{4M_{\Lambda_c}} \left| t_{s-wave}^{\Lambda_c \rightarrow pK^+K^-} \right|^2,
\]

(16)

where \(M_{inv}\) is the invariant mass of the \(K^+K^-\) or \(\pi^+\pi^-\) system, \(p_p\) is the momentum of the proton in the \(\Lambda_c\) rest frame, and \(\bar{k}\) is the momentum of the \(K^+\) (or \(\pi^+\)) in the rest frame of the \(K^+K^-\) (or \(\pi^+\pi^-\)) system,

\[
p_p = \frac{\lambda^{1/2}}{2M_{\Lambda_c}} \left(M_{\Lambda_c}, M_{p}^2, M_{inv}^2 \right), \quad \bar{k} = \frac{\lambda^{1/2}}{2M_{inv}} \left(M_{inv}^2, m_{K^+}^2, m_{K^-}^2 \right),
\]

(17)

with the Källén function \(\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2yz - 2zx\). The masses of the baryons and mesons involved in our calculations are taken from PDG \[41\].

B. \(\Lambda_c\) decays via the intermediate vector mesons \(\phi\) and \(\rho^0\)

In this section, we will present the formalism for the decays \(\Lambda_c \rightarrow pK^+K^-\) and \(\Lambda_c \rightarrow p\pi^+\pi^-\) via the intermediate mesons \(\phi\) and \(\rho^0\). The quark level diagrams for the two-body decays of \(\Lambda_c\) into a proton and a vector meson are shown in Fig. \[3\].

At the quark level, the quark components of the vector mesons are,

\[
\rho^0 = \frac{1}{\sqrt{2}}(u\bar{d} - d\bar{u}), \quad \phi = s\bar{s}, \quad \omega = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d}), \quad \bar{K}^*\rho^0 = s\bar{d}.
\]

(18)

The amplitudes can be written as,

\[
\begin{align*}
t_{\Lambda_c \rightarrow pp\rho^0} &= -\frac{1}{\sqrt{2}}V_p^V V_{cd} V_{ud}, \quad t_{\Lambda_c \rightarrow p\phi} = V_p^V V_{cs} V_{us}, \\
t_{\Lambda_c \rightarrow pp\omega} &= \frac{1}{\sqrt{2}}V_p^V V_{cd} V_{ud}, \quad t_{\Lambda_c \rightarrow p\bar{K}^*\rho^0} = V_p^V V_{cs} V_{ud},
\end{align*}
\]

(19)

(20)

where \(V_p^V\) is a normalization factor for the \(\Lambda_c\) decay into proton and a vector meson. The factor of \(1/\sqrt{2}\) in the above amplitudes comes from the quark component of the \(\rho^0\) and \(\omega\). With those amplitudes, the decay width for the two-body decay of \(\Lambda_c\) into proton and a vector meson in s-wave is,

\[
\Gamma_{\Lambda_c \rightarrow pV} = \frac{\lambda^{1/2}}{16\pi M_{\Lambda_c}^3} \left| t_{\Lambda_c \rightarrow pV} \right|^2,
\]

(21)
where V stands for the vector mesons ρ^0, ϕ, ω, and \bar{K}^{*0}.

The K^+K^- and $\pi^+\pi^-$ mass distributions respectively for the ϕ and ρ^0 mesons can be obtain by converting the total rate for vector production into a mass distribution as Refs. [28, 44],

\[
\frac{d\Gamma_{\Lambda_c \to p\rho^0, \rho^0 \to \pi^+\pi^-}}{dM_{\text{inv}}} = \frac{2m_{\rho}^2}{\pi} \frac{\tilde{\Gamma}_\rho \tilde{\Gamma}_{\Lambda_c \to p\rho^0}}{(M_{\text{inv}}^2 - m_{\rho}^2)^2 + m_{\rho}^2 \tilde{\Gamma}_\rho^2},
\]
\[
\frac{d\Gamma_{\Lambda_c \to p\phi, \phi \to K^+K^-}}{dM_{\text{inv}}} = \frac{m_{\phi}^2}{\pi} \frac{\tilde{\Gamma}_{\phi} \tilde{\Gamma}_{\Lambda_c \to p\phi}}{(M_{\text{inv}}^2 - m_{\phi}^2)^2 + m_{\phi}^2 \tilde{\Gamma}_{\phi}^2},
\]

where we have considered that the K^+K^- decay accounts for 1/2 of the $K\bar{K}$ decay width of the ϕ meson. Since $\rho^0 \to \pi^+\pi^-$ and $\phi \to K^+K^-$ are in p-wave, we take

\[
\tilde{\Gamma}_\rho = \Gamma_{\rho^0} \left(\frac{\sqrt{M_{\text{inv}}^2 - 4m_{\rho}^2}}{m_{\rho}^2 - 4m_{\pi}^2}\right)^3, \quad \tilde{\Gamma}_{\phi} = \Gamma_{\phi} \left(\frac{\sqrt{M_{\text{inv}}^2 - 4m_{K}^2}}{m_{\phi}^2 - 4m_{K}^2}\right)^3,
\]

and

\[
\tilde{\Gamma}_{\Lambda_c \to pV} = \Gamma_{\Lambda_c \to pV} \frac{\lambda^{1/2} \left(M_{\Lambda_c}^2, M_{V}^2, M_{p}^2\right) m_{V}}{\lambda^{1/2} \left(M_{\Lambda_c}^2, m_{V}^2, M_{p}^2\right) M_{\text{inv}}}.
\]

III. RESULTS AND DISCUSSION

We first extract the factors V_p and V'_p from the branching fractions of the Λ_c decays. Our results for the ratios of the branching fractions of the decays $\Lambda_c \to p\bar{K}^{*0}$, $\Lambda_c \to p\omega$, $\Lambda_c \to p\rho^0$ with respect to the decay $\Lambda_c \to p\phi$ are,

\[
R_{1}^{\text{th}} = \frac{B(\Lambda_c \to p\bar{K}^{*0})}{B(\Lambda_c \to p\phi)} = 21.6,
\]
\[
R_{2}^{\text{th}} = \frac{B(\Lambda_c \to p\omega)}{B(\Lambda_c \to p\phi)} = 0.640,
\]
\[
R_{3}^{\text{th}} = \frac{B(\Lambda_c \to p\rho^0)}{B(\Lambda_c \to p\phi)} = 0.636,
\]
where R_1^{th} and R_2^{th} are consistent with the experimental results [41],

$$R_1^{\text{exp}} = \frac{B(\Lambda_c \to p\bar{K}^0)}{B(\Lambda_c \to p\phi)} = \frac{(1.94 \pm 0.27)\%}{(1.06 \pm 0.14) \times 10^{-3}} = 18.3 \pm 3.5, \quad (29)$$

$$R_2^{\text{exp}} = \frac{B(\Lambda_c \to p\omega)}{B(\Lambda_c \to p\phi)} = \frac{(9 \pm 4) \times 10^{-4}}{(1.06 \pm 0.14) \times 10^{-3}} = 0.85 \pm 0.39. \quad (30)$$

By fitting to the branching fractions of the decays $\Lambda_c \to p\bar{K}^0$, $\Lambda_c \to p\phi$, and $\Lambda_c \to p\omega$, we can obtain the $(V_p)^2/\Gamma_{\Lambda_c} = (4.5 \pm 0.4) \times 10^3$ MeV. With this value, the branching fraction of the decay $\Lambda_c \to p\rho^0$ is estimated to be $B(\Lambda_c \to p\rho^0) = (6.3 \pm 0.6) \times 10^{-4}$.

On the other hand, in order to extract the value of the V_p, we calculate the branching fraction for the decay $\Lambda_c \to pK^+K^-$ in s-wave with Eq. (16),

$$B(\Lambda_c \to pK^+K^-)_{\text{th}} = \frac{f^{M_{\Lambda_c}-M_p}}{m_{\Lambda_c}^2} \frac{d\Gamma_{\Lambda_c \to pK^+K^-}}{dM_{K^+K^-}} = \frac{(V_p)^2}{\Gamma_{\Lambda_c}} \times 5.41 \times 10^{-4}. \quad (31)$$

Based on the measured branching fraction of the $B(\Lambda_c \to pK^+K^-)_{\text{non-}\phi} = (5.3 \pm 1.2) \times 10^{-4}$ [41], we can obtain $(V_p)^2/\Gamma_{\Lambda_c} = 0.980 \pm 0.222$. Then the branching fraction of the decay $\Lambda_c \to p\pi^+\pi^-$ in s-wave can be given as,

$$B(\Lambda_c \to p(\pi^+\pi^-))_{\text{th}} = \frac{f^{M_{\Lambda_c}-M_p}}{m_{\Lambda_c}^2} \frac{d\Gamma_{\Lambda_c \to p\pi^+\pi^-}}{dM_{\pi^+\pi^-}} = \frac{(V_p)^2}{\Gamma_{\Lambda_c}} \times 2.066 \times 10^{-3} = (2.02 \pm 0.46) \times 10^{-3}. \quad (32)$$

With the obtained values of $(V_p)^2/\Gamma_{\Lambda_c}$ and $(V_p)^2/\Gamma_{\Lambda_c}$, we show the K^+K^- mass distribution for the decay $\Lambda_c \to pK^+K^-$ in Fig. 5 where we can see that the peak of the ϕ is clear. In addition, there is an enhancement structure close to the K^+K^- threshold, which is the reflection of the resonance $f_0(980)$. Although the BESIII Collaboration has reported the K^+K^- mass distribution, it is difficult to confirm this enhancement structure because of the large uncertainties of the experimental data [18]. It is worth to mention that, in the K^+K^- mass distribution of the decay $\chi_{c1} \to p\bar{p}K^+K^-$ measured by the BESIII Collaboration [45], one can find an enhancement structure close to the threshold, which can be associated to the resonance $f_0(980)$. The similar structure can also be found in the decay $D_s^+ \to K^+K^-\pi^+$ measured by the BABAR Collaboration [46].

![FIG. 5: The K^+K invariant mass distribution of the $\Lambda_c \to pK^+K^-$ decay. The green dotted curve stands for the contribution from the meson-meson interaction in s-wave, the blue dashed curve corresponds to the results for the intermediate vector ϕ, and the red solid line shows the total contributions.](image-url)

The theoretical results for the $\pi^+\pi^-$ invariant mass distributions of the decay $\Lambda_c \to p\pi^+\pi^-$ are shown in Fig. 6 from where one can see a clear peak around 770 MeV, corresponding to the vector meson ρ, and a broad peak.
around 500 MeV, which can be associated to the scalar meson $f_0(500)$, dynamically generated from the meson-meson interactions in s-wave. In addition, there is a narrow sharp around 980 MeV, which can be associated to the scalar state $f_0(980)$. For comparison, the experimental data [18] has been adjusted to the strength of our theoretical calculations at the peak of ρ^0. We can see that the broad peak for $f_0(500)$, the peak for ρ^0, and a narrow sharp for $f_0(980)$ of our results are compatible with the BESIII measurement. Note that the BESIII data include also the background in the sideband region [18].

![Graph](image)

FIG. 6: The $\pi^+\pi^-$ invariant mass distributions of the $\Lambda_c \rightarrow p\pi^+\pi^-$ decay compared with the experimental data from Ref. [18]. The green dotted curve stands for the contribution from the meson-meson interaction in s-wave, the blue dashed curve corresponds to the results for the intermediate vector ρ, and the red solid line shows the total contributions.

IV. CONCLUSIONS

In this work, we have studied the decays $\Lambda_c \rightarrow pK^+K^-$ and $\Lambda_c \rightarrow p\pi^+\pi^-$, by taking into account contributions of the intermediate vector mesons, and the s-wave meson-meson interactions within the chiral unitary approach, where the $f_0(500)$ and $f_0(980)$ resonances are dynamically generated.

The K^+K^- and $\pi^+\pi^-$ invariant mass distributions for these two decays are calculated. In the K^+K^- mass distribution, one can find a narrow peak for the ϕ, and an enhancement structure close to the K^+K^- threshold, which should be the reflection of the $f_0(980)$ resonance. Although there is a hint of the enhancement structure in the Belle measurement, the signal of the $f_0(980)$ is still needed to be confirmed with more accurate measurements in future. For the $\Lambda_c \rightarrow p\pi^+\pi^-$ mass distribution, in addition to the broad peak of the ρ^0, one can find a bump structure around 500 MeV for the $f_0(500)$, and a narrow sharp around 980 MeV for the $f_0(980)$, in agreement with the BESIII measurement. We encourage our experimental colleagues to measure these two decays, which can be used to test the molecular nature of the scalar resonances $f_0(500)$ and $f_0(980)$.

Acknowledgments

We warmly thank Hai-Ping Peng, Ya-Teng Zhang, and Yue Pan for sending us the BESIII experimental data files. This work is partly supported by the National Natural Science Foundation of China under Grants Nos. 11505158, 11947089, 11735003 and 1191101015. It is also supported by the Key Research Projects of Henan Higher Education
Institutions under No. 20A140027, the Academic Improvement Project of Zhengzhou University, and the Youth Innovation Promotion Association CAS (2016367).

[1] H. Y. Cheng, Charmed baryons circa 2015, Front. Phys. (Beijing) 10, 101406 (2015).
[2] D. Ebert and W. Kallies, Nonleptonic Decays of Charmed Baryons in the MIT Bag Model, Phys. Lett. 131B, 183 (1983). Erratum: [Phys. Lett. 148B, 502 (1984)].
[3] H. Y. Cheng and B. Tseng, Nonleptonic weak decays of charmed baryons, Phys. Rev. D 46, 1042 (1992). Erratum: [Phys. Rev. D 55, 1697 (1997)].
[4] H. Y. Cheng, X. W. Kang and F. Xu, Singly Cabibbo-suppressed hadronic decays of Λ_c^+, Phys. Rev. D 97, 074028 (2018).
[5] C. D. Lü, W. Wang and F. S. Yu, Test flavor SU(3) symmetry in exclusive Λ_c decays, Phys. Rev. D 93, 056008 (2016).
[6] C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Three-body charmed baryon Decays with SU(3) flavor symmetry, Phys. Rev. D 99, 073003 (2019).
[7] K. Abe et al. [Belle Collaboration], Observation of Cabibbo suppressed and W exchange Λ_c^+ baryon decays, Phys. Lett. B 524, 33 (2002).
[8] M. Ablikim et al. [BESIII Collaboration], Measurements of absolute hadronic branching fractions of Λ_c^+ baryon, Phys. Rev. Lett. 116, 052001 (2016).
[9] B. Pal et al. [Belle Collaboration], Search for Λ_c^+ → φπ^0 and branching fraction measurement of Λ_c^+ → K^- π^+ p\eta^0, Phys. Rev. D 96, 051102 (2017).
[10] A. Zupanc et al. [Belle Collaboration], Measurement of the Branching Fraction B(Λ_c^+ → pK^- π^+), Phys. Rev. Lett. 113, 042002 (2014).
[11] R. Aaij et al. [LHCb Collaboration], Measurements of the branching fractions of Λ_c^+ → pπ^- π^+, Λ_c^+ → pK^- K^+, and Λ_c^+ → p\pi^- K^+, JHEP 1803, 043 (2018).
[12] L. R. Dai, R. Pavao, S. Sakai and E. Oset, Anomalous enhancement of the isospin-violating Λ(1405) production by a triangle singularity in Λ_c → π^+ π^0 Σ^0, Phys. Rev. D 97, 116004 (2018).
[13] J. J. Xie and E. Oset, Search for the Σ^* state in Λ_c^+ → π^+ π^0 π^- Σ^+ decay by triangle singularity, Phys. Lett. B 792, 450 (2019).
[14] K. Miyahara, T. Hyodo and E. Oset, Weak decay of Λ_c^+ for the study of Λ(1405) and Λ(1670), Phys. Rev. C 92, 055204 (2015).
[15] J. J. Xie and L. S. Geng, Role of the N^*(1535) in the Λ_c^+ → K^0 ηp decay, Phys. Rev. D 96, 054009 (2017).
[16] J. J. Xie and L. S. Geng, Σ^{1/2-}_c (1380) in the Λ_c^+ → ηπ^- Λ decay, Phys. Rev. D 95, 074024 (2017).
[17] J. J. Xie and L. S. Geng, The a_0(980) and Λ(1670) in the Λ_c^+ → π^+ ηΛ decay, Eur. Phys. J. C 76, 496 (2016).
[18] M. Ablikim et al. [BESIII Collaboration], Measurement of Singly Cabibbo Suppressed Decays Λ_c^+ → p\pi^+ π^- and Λ_c^+ → pK^- K^+, Phys. Rev. Lett. 117, 232002 (2016). Addendum: [Phys. Rev. Lett. 120, 029903 (2018)].
[19] S. Barlag et al. [ACCMOR Collaboration], Measurement of Frequencies of Various Decay Modes of Charmed Particles D^0, D^- and Λ_c^+ Including the Observation of New Channels, Z. Phys. C 48, 29 (1990).
[20] P. L. Frabetti et al. [E687 Collaboration], Evidence of the Cabibbo suppressed decay Λ_c^+ → pK^- K^+, Phys. Lett. B 314, 477 (1993).
[21] J. P. Alexander et al. [CLEO Collaboration], Observation of the Cabibbo suppressed charmed baryon decay Λ_c^+ → pφ, Phys. Rev. D 53, 1013 (1996).
[22] J. A. Oller and E. Oset, Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the σ, f_0(980), a_0(980) scalar mesons, Nucl. Phys. A 620, 438 (1997). Erratum: [Nucl. Phys. A 652, 407 (1999)].
[23] J. A. Oller, E. Oset and J. R. Pelaez, Meson meson interaction in a nonperturbative chiral approach, Phys. Rev. D 59, 074001 (1999). Erratum: [Phys. Rev. D 60, 099906 (1999)]. Erratum: [Phys. Rev. D 75, 099903 (2007)].
[24] N. Kaiser, $\pi\pi$ S wave phase shifts and nonperturbative chiral approach, Eur. Phys. J. A 3, 307 (1998).
[25] M. P. Locher, V. E. Markushin and H. Q. Zheng, Structure of $f_0(980)$ from a coupled channel analysis of S wave $\pi\pi$ scattering, Eur. Phys. J. C 4, 317 (1998).
[26] J. Nieves and E. Ruiz Arriola, Bethe-Salpeter approach for unitarized chiral perturbation theory, Nucl. Phys. A 679, 57 (2000).
[27] J. R. Pelaez and G. Rios, Nature of the $f_0(600)$ from its N_c dependence at two loops in unitarized Chiral Perturbation Theory, Phys. Rev. Lett. 97, 242002 (2006).
[28] W. H. Liang, J. J. Xie and E. Oset, \bar{B}^0 decay into D^0 and $f_0(500)$, $f_0(980)$, $a_0(980)$, ρ and \bar{B}^0 decay into D^0 and $\kappa(800)$, K^{*0}, Phys. Rev. D 92, 034008 (2015).
[29] W. H. Liang and E. Oset, B^0 and B_s^0 decays into $J/\psi f_0(980)$ and $J/\psi f_0(500)$ and the nature of the scalar resonances, Phys. Lett. B 737, 70 (2014).
[30] W. H. Liang, J. J. Xie and E. Oset, \bar{B}^0, B^- and \bar{B}^0 decays into J/ψ and $K\bar{K}$ or $\pi\eta$, Eur. Phys. J. C 75, 609 (2015).
[31] J. J. Xie and G. Li, The decays of \bar{B}^0, \bar{B}^0, and B^- into η_c plus a scalar or vector meson, Eur. Phys. J. C 78, 861 (2018).
[32] W. H. Liang, J. J. Xie and E. Oset, $f_0(500)$, $f_0(980)$, and $a_0(980)$ production in the $\chi_{c1} \rightarrow \eta\pi^+\pi^-$ reaction, Eur. Phys. J. C 76, 700 (2016).
[33] M. Ablikim et al. [BESIII Collaboration], Amplitude analysis of the $\chi_{c1} \rightarrow \eta\pi^+\pi^-$ decays, Phys. Rev. D 95, 032002 (2017).
[34] J. J. Xie, L. R. Dai and E. Oset, The low lying scalar resonances in the D^0 decays into K_s^0 and $f_0(500)$, $f_0(980)$, $a_0(980)$, Phys. Lett. B 742, 363 (2015).
[35] L. R. Dai, Q. X. Yu and E. Oset, Triangle singularity in $\tau^- \rightarrow \nu_{\tau}\pi^+\pi^- f_0(980)$ ($a_0(980)$) decays, Phys. Rev. D 99, 016021 (2019).
[36] W. H. Liang, H. X. Chen, E. Oset and E. Wang, Triangle singularity in the $J/\psi \rightarrow K^+K^- f_0(980)(a_0(980))$ decays, Eur. Phys. J. C 79, 411 (2019).
[37] E. Oset et al. Weak decays of heavy hadrons into dynamically generated resonances, Int. J. Mod. Phys. E 25 (2016), 1630001.
[38] E. Wang, H. X. Chen, L. S. Geng, D. M. Li and E. Oset, Hidden-charm pentaquark state in $\Lambda_b^0 \rightarrow J/\psi p\pi^-$ decay, Phys. Rev. D 93, 094001 (2016).
[39] J. X. Lu, E. Wang, J. J. Xie, L. S. Geng and E. Oset, The $\Lambda_b \rightarrow J/\psi K^0\Lambda$ reaction and a hidden-charm pentaquark state with strangeness, Phys. Rev. D 93, 094009 (2016).
[40] L. R. Dai, G. Y. Wang, X. Chen, E. Wang, E. Oset and D. M. Li, The $B^+ \rightarrow J/\psi\omega K^+$ reaction and $D^*\bar{D}^*$ molecular states, Eur. Phys. J. A 55, 36 (2019).
[41] M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D 98, 030001 (2018).
[42] J. M. Dias, F. S. Navarra, M. Nielsen and E. Oset, $f_0(980)$ production in $D_s^+ \rightarrow \pi^+\pi^-\pi^-$ and $D_s^+ \rightarrow \pi^+K^+K^-$ decays, Phys. Rev. D 94, 096002 (2016).
[43] F. K. Guo, R. G. Ping, P. N. Shen, H. C. Chiang and B. S. Zou, S wave $K\pi$ scattering and effects of κ in $J/\psi \rightarrow K^{*0}(892)K^+\pi^-$, Nucl. Phys. A 773, 78 (2006).
[44] M. Bayar, W. H. Liang and E. Oset, B^0 and B_s^0 decays into J/ψ plus a scalar or vector meson, Phys. Rev. D 90, 114004 (2014).
[45] M. Ablikim [BESIII Collaboration], Observation of χ_{cJ} decaying into the $p\bar{p}K^+K^-$ final state, Phys. Rev. D 83, 112009 (2011).
[46] P. del Amo Sanchez et al. [BaBar Collaboration], Dalitz plot analysis of $D_s^+ \rightarrow K^+K^-\pi^+$, Phys. Rev. D 83, 052001 (2011).