Performance of Vehicle Arrival Traffic Data at Fuel Station using Queuing System

Pushpalatha Sarla¹ Mallikarjuna Reddy Doodipala² and Purushotham Endla ³

¹Assistant professor, Dept. of Mathematics, Sumathi Reddy Institute of Technology for Women, Warangal, India
²Assistant Professor, Department of Mathematics, GITAM University, Warangal, India.
³Department of Physics, SR Engineering College, Warangal, India

E-mail: pushpa.sarla@gmail.com

Abstract: Vehicle arrival is a main criterion in the delay assessment of different fuel stations. In this paper, pragmatic studies are carried out to investigate the congestion traffic flow at fuel stations. The complications at fueling points have been measured and also found the length of the queue, waiting time of the customers. The results confirmed that the vehicle arrival pattern of arterial road near the fuel station exhibit traffic congestion this finding is helpful to model the fuel station in terms of planning and designing.

1. Introduction

The Traffic congestion is a state of increased disturbance of the motion of traffic. India, escorted by growing many vehicles on the road, consequently traffic congestion may quickly increase. In such cases, traffic is still cannot thoroughly estimate under which condition Traffic Jam may shortly occur. Many techniques have been developed and written about the queuing theory and its applications. A.K Erlang [1] introduced Queuing theory in the basis of telephone services. It is broadly utilized in industrial, management sectors and falls under the view of engineering and decision sciences [2]. The most significant issue in waiting line difficulties is to adopt the finest level of service the organization should offer. Providing too much service would include extreme cost instead insufficient service capacity would affect in waiting lines which result in disappointment of customers or sometimes loss of customers. Therefore, the definitive goal is to reach an economic balance among the service cost and the cost associated with waiting for service [3]. The queuing theory provides a huge number of models for describing and solving mathematical problems. Its efforts to solve problems constructed on a scientific understanding of the difficulties and solving them in optimum manner so that the facilities are entirely utilized and waiting time is reduced to minimum possible [4]. Most of the real-world queuing problems are complex state and difficult to use queuing system technique, even then uncertainty will remain [5]. In the model M/M/S, M stands for the Markovian implying exponential distribution of inter-arrival or service time distributions. Thus, M stands for Poisson and negative exponential distributions. Kendall [6] published his notations for queuing theory, and these notations are still in use today. They are most widely used throughout the queuing literature. This research tries to have a balance of Mean Queue Length and waiting time distribution for M/M/S Queuing systems. The structure of the queuing system is defined as input or arrival distribution, service distribution,
service channels, maximum number of customers in the system, population size or calling source, service discipline. The basic concept and effects are involved to the understanding of queuing theory and is outlined in figure 1.

Figure 1. The basic queuing processes

2. **Experimental Study**

2.1. **Data Collection and Area of Study**

The present study focuses on measuring the self-similarity for which we have undertaken G.T Auto lines Filling Station Karimnagar, India. This is one of the biggest fuel stations in Karimnagar, India. It is the center of the city adjacent to the Alphores School of Gen. Next. Due to the only one fuel station in the town, long queues can easily be finding in the service zone. Fuel outlet deals in supply of diesel, petrol, Xtra Premium, lubricants and turbojet from Bharat petroleum. The station has eight refueling pumps, four for four wheelers and four for two wheelers and heavy vehicles of four wheelers. Twelve service executives are working at filling station, eight collection executives, one supervisor and 1 accountant employed under the possession of G.T Autolines. The difficulty of queues at various fueling points have been studied and identified the main reasons which effect in queues. We made several visits to the fueling station and interviewed the working staff about the nature of difficulties they were facing in queue handling. The key data regarding the arrival of vehicular and their service pattern was collected and format the data as follows in table 1.

Period	Day 1 Arrival Rate	Day 1 Service Rate	Day 2 Arrival Rate	Day 2 Service Rate	Day 3 Arrival Rate	Day 3 Service Rate	Day 4 Arrival Rate	Day 4 Service Rate	Day 5 Arrival Rate	Day 5 Service Rate	Arrival Rate
8am-9am	68	99	85	93	89	98	104				
9am-10am	89	92	92	100	99	107	98				
10am-11am	88	95	99	108	98	108	108				
11am-12pm	99	105	106	116	104	111	111				
12am-1pm	98	109	110	123	112	119	119	102			
1pm-2pm	87	93	96	102	94	98	99				
2pm-3pm	97	104	91	98	92	97	97				
3pm-4pm	95	103	87	94	89	94	97				
4pm-5pm	83	92	92	99	90	96	98				
5pm-6pm	90	98	104	109	103	109	100				
6pm-7pm	94	102	96	102	92	99	98				
7pm-8pm	92	97	90	96	91	97	91				

3. **Experimental Procedure**

3.1. **Queuing Analysis of Traffic Data- Queue Length Distribution**

This investigation was conducted by two stages. In stage-I investigations, the research works was
conducted to develop quaternary blended concrete with 25% fly ash and 10% GP, based on the preliminary investigation conducted for developing the ternary blended concrete, by varying Nano-silica from 0 to 2% of cementitious content. M35 grade of concrete was considered and designed as per the guidelines of IS 10262:2019 [26]. The mix proportioning of quaternary blended concrete is shown in table 2. The stage-II was conducted with coir fiber varying at 0.25, 0.5, 0.75, 1.0, and 1.25% by volume of concrete for developing the fiber reinforced quaternary blended concrete and mix proportioning is shown in table 3.

3.1.1. M/M/S Queuing System

Queues or waiting lines are the most extensive phenomenon in our everyday life. Queuing system is one of the main segments of an Operations Research. It is a scientific and systematic method to analyze and solve the complicated problems also for making better decisions [7]. The Researchers have given unique importance to the development and the use of techniques like queuing theory. [8] Queuing theory is used to solve problems concerned with traffic congestion in bank counters, ration shop, railway reservation counters, toll plazas, doctor’s clinic, and automobile service etc., its main reason is to predict the congestion situations of a precise urban transportation network and suggest improvements in the traffic Areas. The ultimate idea is to offer a better optimization of the traffic communications. Those optimizations are supposed to conclude into a decrease of pollution, travelling times and fuel consumption. In this paper we introduce markov processes that play a central role in the analysis of all the basic queuing systems. Queuing theory is a complicated and highly practical field of mathematical study it has huge applications in performance evaluation [9].

3.1.2. Description of M/M/S Queuing Model

Multi-channel queuing theory is applicable when there are several servers in the service facility to provide the service. The servers are arranged in parallel and each unit in the waiting line can be served by any one of the servers. [6, 11] The M/M/S model represents the queue length in a system having multiple servers where arrivals are determined by a Poisson process and service times have an exponential distribution. In this model the rate of arrival and the service depend on the length of the line. The arrivals are handled on FCFS (first come first service) basis and service is provided to the customers according to FCFS rules. Arrivals form a single queue, with multiple servers in the service facility. When arrivals do not get influenced by the length of the queue then leave the system only after receiving the service. The Poisson and the exponential distributions are related to each other, both of them are denoted by the same letter “M” is used due to markovian property of exponential process.

The multichannel queuing model is applicable when there are several servers in the service facility to provide the service. The servers are arranged in parallel and each customer in the waiting line can be served by any one of the servers and the service rate is same for each server. [10] The exponential distribution is used to describe the inter arrival time in the pure birth model means arrivals only allowed and the inter departure time in the pure death model means departures only can takes place is to show the close relationship between the exponential and the Poisson distributions. The mean service rate is higher than the mean arrival rate (i.e. \(\mu > \lambda \)). When \(\mu > \lambda \), no queue will be formed and the arriving customers will not have to wait. when \(\mu = \lambda \), in this case, if the initial queue length was zero then new arrival will not have to wait, and in case the initial queue length was not zero, then every person arriving in the system will have to join the queue i.e. the length of the queue would remain constant. When \(\mu < \lambda \), in this case, the length will increase indefinitely and this will not be a steady system. The average arrival rate is less than the combined average service rate of all servers i.e., \(\lambda < S \mu \), where s is the number of servers. The ratio \(\lambda / \mu \) is known as the utilization factor. Fig 2 shows the multiple channels and customers are served at more than one server.
3.2. Mean Performance Metrics

- The average number of customers in queue (i.e queue length)

\[L_q = \frac{(\lambda/\mu)(\lambda/\mu)^s}{(s-1)(\lambda/\mu)} + P_0 + \frac{\lambda}{\mu} \]

(1)

- The average number of customers in the system.
 This is the number of customers in the queue plus the number of Customers being served and is denoted by

\[L_s = \frac{(\lambda/\mu)(\lambda/\mu)^s}{(s-1)(\lambda/\mu)} + P_0 \]

(2)

- Average waiting time in the queue system.
 It is the time that a customer spends waiting in queue plus the time it takes for servicing the customer.

\[W_s = \frac{L_s}{\lambda} \]

(3)

- The average waiting time in the queue.

\[W_q = \frac{L_q}{\lambda} \]

(4)

- Traffic intensity \(\rho = (\text{mean arrival rate}) \lambda / (\text{mean service rate})S\mu \).
 ‘S’ is the number of servers

(5)

4. Results and Discussion

This study assumes the First Come First Served (FCFS) method, according to their time vehicles are made up queue and being served as per their turn. In the table 1. We presented the Poisson arrival rates and their service rates for 5 days from G.T Autolines filling station during the time interval. The calculated results for Traffic intensity for multiple servers available in the system, mean queue length and system length of the customers, mean waiting time of the customers in the queue and system are presented in table 2. It is also shown that there is a congestion traffic during the morning and evening session, also the forming of queues on weekends is always differ from the other weekdays.

S.No.	Traffic Intensity \(\rho \)	\(L_s \)	\(W_s \)	\(L_q \)	\(W_q \)	MAE
1	0.6868	6	0.6061	5	0.5692	64112.5062
2	0.5452	3	0.3638	2	0.2911	63991.8400
From the computed results figure 3 illustrates that as per the number of servers available in the system traffic intensity represents below curve graphically. Mean number of customers in the queue (Lq) in X-axis and average number of customers in the system (Ls) in Y-axis represents the graph for expected length of customers in the figure 4 Also, average waiting time of the customers in the Queue as per the multiple servers available to do service in the queue (Wq) in x-axis and mean waiting time in the system in y-axis represents the graph as shown in Figure 5. This shows that traffic is not represents the smooth flow but it is constant flow rate. Calculated vales of (Lq), (Ls), (Wq), (Ws) support the traffic situation at fuel station. Traffic intensity generally below the unity (ρ<1) in all sessions. This investigation focused on the managing the traffic flow based on queuing theory.

3	0.9634	6	0.6491	5	0.5853
4	0.9598	13	0.878	11	0.8219
5	0.7542	12	0.9897	11	0.9291
6	0.6912	8	0.8618	7	0.7998
7	0.5947	3	0.6512	2	0.6416
8	0.2214	8	0.2387	7	0.3098
9	0.6585	6	0.1986	5	0.0998
10	0.3019	4	0.6754	3	0.5971
11	0.4184	3	0.5982	2	0.6021
12	0.5021	6	0.1988	5	0.2017

Figure 3. Graphical representation of Traffic Intensity ρ

Figure 4. Graphical Representation of Expected Queue Length

Figure 5. Graphical Representation of Mean Waiting Time

5. **Conclusion**
Queuing models are more ubiquitous in our progressively congested traffic flow of urbanised society. The outcomes from this study reveals that traffic intensity for each day of the fuelling station is less than one (\(\rho < 1 \)), it was observed that servers are accordingly attends their customers. As per the utilization factor from the graphs we expect that the traffic flow is unstable and not smooth flow. It was recommended to the fuelling points to continuously endeavour to custom their service at peak times to avoid the queues at such fuelling stations.

6. References

[1]. Erlang A K 1909 The theory of probabilities and telephone conversations Tidsskrift Mathematica20 33-39
[2]. MehandirattaR2011 Applications of Queuing Theory in Health Care International Journal of Computing and Business Research2 36 – 48
[3]. Mahajan M1997 An Introduction to Operations Research Second Edition Dhanpath rai &co India
[4]. TahaH 1987 Operations Researchfourth EditionCollier mac william
[5]. Cheema D S 2004 Operations ResearchSecond Edition UniversityScience PressIndia
[6]. KendallD G 1953 Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded markov chain The Annals of Mathematical Statistics24 323- 38
[7]. Cooper RB 1980 Introduction to queuing theory 2nd edition NorthHolland
[8]. Newell G F 1965 Approximation methods for queues with application to the fixed-cycle traffic lightSIAM Review 7 223-40
[9]. BhatUN 2015 An Introduction to queuing theory2nd editionSpringerIndia
[10]. Ross Sheldon M 1973 Introduction to probability models NY Academic Press
[11]. Cohen J W 2008 Some aspects of queueing theory Journal of Probability and Mathematical Statistics28 55–67
[12]. Beran,J Taqqu MS and WillingerW 1995 Long- range dependence in variable bit rate traffic IEEE Trans. on Communications43 1566-79
[13]. Gunther N J 2000 The practical performance analyst Authors choice press karagianis
[14]. Mandelbrot BB and Ness JW 1968 Fractional Brownian motion Fractional noises applications10 422-37
[15]. Perati et al 2012 Self-Similar behavior of highway road traffic and performance analysis at toll plazas Journal of Transportation Engineering138 1233-38
[16]. Pushpalatha Sarla, Mallikarjuna Reddy D and Manohar Dingari 2016 Queue length-busy timedistribution of web user’sdata with self-similar behaviour International Journal of Research in Engineering and Technology0584-89
[17]. Pushpalatha Sarla, Mallikarjuna Reddy D2017 Linear regression model fitting and implication to self-similar behavior traffic arrival data pattern at web centresIOSR Journal of Computer Engineering19 01-05
[18]. Pushpalatha Sarla Mallikarjuna Reddy D Manohar Dingari2016 Self-similarity analysis of web user’sarrival pattern at selected web centers American Journal of Computational Mathematics617-22
[19]. Ani C I and Isimijola S O 2009 The Effect of Data Traffic Patterns on QoS Parameters Nigerian Journal of Technology 28 23 – 28
[20]. Gorunescu F Mclean S I and Millard P H A 2002 Queueing model for bed-occupancy management and planning of hospitals Journal of Operational Research Society53 19–24
[21]. QiangMeng and Hooi Ling Khoo 2009 Self-similar characteristics of vehicle arrival pattern on Highways Journal of Transportation Engineering135
[22]. Jerzy Wawszczak 2005 Methods for estimating the Hurst exponentthe analysis of its value for fracture surface Research materials science-Poland 23 2005
[23]. Mallikarjuna Reddy DGirijaM and Pushpalatha SarlaAn application of queuing system to patient satisfaction at a selected hospital-A field Study AIP conference Proceedings2246020111https://doi.org/10.1063/5.0014439

[24]. Roughness 2003 Length method for estimation hurst exponent and fractal dimension of traces help benoit 1.3 version Software TruSoft International Inc.

[25]. Hurst 2005 Parameter of self-similar network traffic International Conference on Computer Systems and Technologies