Entanglement and thermodynamics after a quantum quench in integrable systems

Vincenzo Alba and Pasquale Calabrese

*International School for Advanced Studies, Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, 34136 Trieste, Italy

Edited by Subir Sachdev, Harvard University, Cambridge, MA, and approved June 6, 2017 (received for review March 3, 2017)

Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space–time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain.

Ensemble theory and quantum quenches have been used to describe the out-of-equilibrium dynamics after a quasiparticle picture of a quantum system (50), the prequench initial state acts as a source of pairs of quasiparticle excitations. Let us first assume that there is only one type of quasiparticle identified by their quasimomentum λ and moving with velocity $v(\lambda)$. Although quasiparticles created far apart from each other are incoherent, those emitted at the same point in space are entangled. Because these propagate ballistically throughout the system, larger regions get entangled. At time t, $S(t)$ is proportional to the total number of quasiparticle pairs that, emitted at the same point in space, are shared between A and its complement (Fig. 1A). Specifically, one obtains

$$S(t) \propto 2t \int_{|v|<\ell} d\lambda v(\lambda)f(\lambda) + \int_{|v|>\ell} d\lambda f(\lambda),$$

where $f(\lambda)$ depends on the production rate of quasiparticles. Eq. 1 holds in the space–time scaling limit $t, \ell \to \infty$ at t/ℓ fixed. When a maximum quasiparticle velocity v_M exists [e.g., because of the Lieb–Robinson bound (51)], for $t \leq \ell/(2v_M)$, S grows linearly in time, because the second term in Eq. 1 vanishes. In contrast, for $t \gg \ell/(2v_M)$, the entanglement is extensive (i.e., $S \propto \ell$). This light-cone spreading of entanglement has been confirmed analytically only in free models (52–57), numerically in several studies (58–60), in the holographic framework (61–68), and in a recent experiment (19). The validity of the quasiparticle picture Eq. 1 for the entanglement dynamics has been proven for free models in ref. 52. In the presence of interactions, few results are known. For instance, the validity of Eq. 1 has been proven for rational CFTs (Conformal Field Theories) in ref. 69. In interacting integrable models à la Yang–Baxter, the quasiparticle picture has been used to describe the out-of-equilibrium dynamics after

Significance

Understanding how statistical ensembles arise from the out-of-equilibrium dynamics of isolated pure systems has been a fascinating question since the early days of quantum mechanics. Recently, it has been proposed that the thermodynamic entropy of the long-time statistical ensemble is the stationary entanglement of a large subsystem in an infinite system. Here, we combine this concept with the quasiparticle picture of the entanglement evolution and integrability-based knowledge of the steady state to obtain exact analytical predictions for the time evolution of the entanglement in arbitrary 1D integrable models. These results explicitly show the transformation between the entanglement and thermodynamic entropy during the time evolution. Thus, entanglement is the natural witness for the generalized microcanonical principle underlying relaxation in integrable models.

Author contributions: V.A. and P.C. designed research, performed research, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. Email: valba@sissa.it.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703516114/-/DCSupplemental.
an inhomogeneous quench, and it is at the foundation of the integrable hydrodynamics approach for transport in integrable models (70, 71).

Results

In a generic interacting integrable model, there are different species of stable quasiparticles corresponding to bound states of an arbitrary number of elementary excitations. Integrability implies that different types of quasiparticles must be treated independently. It is then natural to conjecture that

$$S(t) = \sum_n \left[2t \int_{|\nu_n| < \ell} d\lambda v_n(\lambda) s_n(\lambda) + \ell \int_{|\nu_n| > \ell} d\lambda s_n(\lambda) \right],$$

[2]

where the sum is over the types of particles n, $v_n(\lambda)$ is their velocity, and $s_n(\lambda)$ is their entropy. To give predictive power to Eq. 2, in the following, we show how to determine $v_n(\lambda)$ and $s_n(\lambda)$ in the Bethe ansatz framework for integrable models. Eq. 2 is straightforwardly generalized to the mutual information between two intervals (see SI Materials and Methods and Fig. S1).

The eigenstates of Bethe ansatz solvable models are in correspondence with a set of pseudomomenta (rapidities) λ. In the thermodynamic limit, these rapidities form a continuum. One then introduces the particle densities $\rho_{n,p}(\lambda)$, the hole (i.e., unoccupied rapidities) densities $\rho_{n,h}(\lambda)$, and the total densities $\rho_{n,t}(\lambda) = \rho_{n,p}(\lambda) + \rho_{n,h}(\lambda)$. Every set of densities identifies a thermodynamic “macrostate.” This macrostate corresponds to an exponentially large number of microscopic eigenstates, any of which can be used as a “representative” for the macrostate. The total number of representative microstates is $e^{\Delta S_{YY}}$, with S_{YY} as the thermodynamic Yang–Yang contribution to the entanglement dynamics

$$S_{YY} = S_{YY} = \sum_{n=1}^L \int d\lambda [\rho_{n,t}(\lambda) \ln \rho_{n,t}(\lambda) - \rho_{n,p}(\lambda) \ln \rho_{n,p}(\lambda) - \rho_{n,h}(\lambda) \ln \rho_{n,h}(\lambda)]$$

[3]

Physically, S_{YY} corresponds to the total number of ways of assigning the quasimomentum label to the particles, similar to free fermion models.

In the Bethe ansatz treatment of quantum quenches (72–74), local properties of the postquench stationary state are described by a set of densities $\rho_{n,p}(\lambda)$ and $\rho_{n,h}(\lambda)$. Calculating these densities is a challenging task that has been performed only in a few cases (75–87). From the densities, the thermodynamic entropy of the stationary ensemble Eq. 3 is $S_{YY}[\rho_{n,p}, \rho_{n,h}](\lambda)$. Physically, $e^{\Delta S_{YY}}$ is the number of microscopic eigenstates entering in a generalized microcanonical ensemble for quenches, in which all of the microstates corresponding to the macrostate have the same probability.

We now present our predictions for the entanglement dynamics (Fig. 1B gives a survey of our theoretical scheme). First, in the stationary state, the density of thermodynamic entropy coincides with that of the entanglement entropy in Eq. 2, as it has been shown analytically for free models (52, 88, 89). This identification implies that $s_n(\lambda) = s_{YY}[\rho_{n,p}, \rho_{n,h}](\lambda)$. Moreover, it is natural to identify the entangling quasiparticles in Eq. 2 with the low-lying excitations around the stationary state R^*. Their group
velocities \(v_{\ell} \) depend on the stationary state, because the interactions induce a state-dependent dressing of the excitations. These velocities \(v_{\ell} \) can be calculated by Bethe ansatz techniques (90) (SI Materials and Methods and Figs. S2 and S3).

To substantiate our idea, we focus on the spin-1/2 anisotropic Heisenberg (XXZ) chain, considering quenches from several low-entangled initial states, namely the tilted Néel state, the Majumdar–Ghosh (dimer) state, and the tilted ferromagnetic state (Materials and Methods). For these initial states, the densities \(\rho_{n(\ell), n} \) are known analytically (77–79).

Fig. 2 summarizes the expected entanglement dynamics in the space–time scaling limit, plotting \(S/\ell \) vs. \(v_{\ell} t/\ell \). Interestingly, \(S/\ell \) is always smaller than \(\ln 2 \) (i.e., the entropy of the maximally entangled state). For the Néel quench, because the Néel state becomes the ground state of Eq. 4 in the limit \(\Delta \to \infty \), \(S/\ell \approx \ln(\Delta)/\Delta^2 \) vanishes, whereas it saturates for all of the other quenches. For the Majumdar–Ghosh state, one obtains \(S/\ell = -1/2 + \ln 2 \) at \(\Delta \to \infty \). For the tilted ferromagnet with \(\theta \to 0 \) (Fig. 2E), \(S/\ell \) is small at any \(\Delta \), reflecting that the ferromagnet is an eigenstate of the XXZ chain. Surprisingly, the linear growth seems to extend for \(v_{\ell} t/\ell > 1 \). However, \(dS/dt \) (Fig. 2F) is flat only for \(v_{\ell} t/\ell \leq 1 \), which signals true linear regime only for \(v_{\ell} t/\ell \leq 1 \). This peculiar behavior is caused by the large entanglement contribution of the slow quasiparticles. In Fig. 3, we report the bound-state resolved contributions to the entanglement dynamics. Fig. 3A and C focuses on the steady-state entropy (second term in Eq. 2), whereas Fig. 3B and D shows the bound-state contributions to the slope of the linear growth (first term in Eq. 2). The contribution of the bound states, although never dominant, is crucial to ensure accurate predictions.

Fig. 4A shows TDMRG results for \(S(t) \) for the quench from the symmetrized Néel state \((|\uparrow\uparrow\ldots\rangle + |\downarrow\downarrow\ldots\rangle)/\sqrt{2} \). The data are for the open XXZ chain and subsystems starting from the chain boundary. The qualitative agreement with Eq. 2 is apparent. Fig. 4B reports the steady-state entanglement entropy as a function of the quench parameter \(\Delta \). The volume law \(S \propto \ell \) is visible. The dashed–dotted lines in Fig. 4B are fits to \(S \propto \sqrt{\ell} \), supporting the equivalence between entanglement and thermodynamic entropy. Fig. 4C focuses on the full-time dependence, plotting \(S/\ell \) vs. \(v_{\ell} t/\ell \). The dashed–dotted line in Fig. 4C is Eq. 2 with \(t \to t/2 \) because of the open boundary conditions (58). Deviations from Eq. 2 because of the finite \(\ell \) are visible. The diamonds in Fig. 4C are numerical extrapolations to the thermodynamic limit. The agreement with Eq. 2 is perfect. Finally, we provide a more stringent check of Eq. 2, focusing on the linear entanglement growth. Fig. 5 shows infinite time-evolving block decimation (tIEBD) results in the thermodynamic limit for \(S'(v_{\ell} t), \) with \(S'(x) \equiv dS(x)/dx \) taken from ref. 91. For all of the quenches, the agreement with Eq. 2 (horizontal lines in Fig. 5) is spectacular.

Conclusions

The main result of this work is the analytical prediction in Eq. 2 for the time-dependent entanglement entropy after a generic quantum quench in an integrable model. We tested our conjecture for several quantum quenches in the XXZ spin chain, although we expect Eq. 2 to be more general. Additional checks of Eq. 2 (e.g., for the Lieb–Liniger gas) are desirable. It would be also interesting to generalize Eq. 2 to quenches from inhomogeneous initial states, exploiting the recent analytical results (70, 71, 92). Although we are not able yet to provide an ab initio derivation of Eq. 2, we find it remarkable that it is possible to characterize analytically the dynamics of the entanglement entropy, whereas its equilibrium behavior is still an open challenge. Finally, we believe that Eq. 2 represents a deep conceptual breakthrough, because it shows in a single compact formula the relation between entanglement and thermodynamic entropy.
entropy for integrable models. An analogous description for nonintegrable systems, where quasiparticles have finite lifetime or do not exist at all, could lead to a deeper understanding of thermalization (19).

Materials and Methods

The anisotropic spin-1/2 Heisenberg chain is defined by the Hamiltonian

\[H = \sum_{i=1}^{L} \left[\frac{1}{2} S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta \left(S_i^z S_{i+1}^z - \frac{1}{4} \right) \right], \]

where \(S_i^a \) are spin-1/2 operators, and \(\Delta \) is the anisotropy parameter. Here, we considered as prequench initial states the tilted Néel state \(| \uparrow \cdots \uparrow \rangle \), the Majorum–Ghosh (dimer) state \(| MG \rangle \equiv \left(| \downarrow \uparrow \cdots \downarrow \uparrow \rangle - | \uparrow \downarrow \cdots \uparrow \downarrow \rangle \right)/\sqrt{2} \), and the tilted ferromagnetic state \(| \uparrow \cdots \uparrow \rangle \equiv e^{i \theta} | \uparrow \cdots \uparrow \rangle \). The Heisenberg spin chain is the prototype of all integrable models. Moreover, for all of the initial states considered in this work, the postquench steady state can be characterized analytically via the macrostate densities \(\rho_{\text{mg}} \). Specifically, a set of recursive relations for these densities can be obtained (SI Materials and Methods). The group velocities of the low-lying excitations, excitations around the steady state (i.e., the entangling quasiparticles) are obtained by solving numerically an infinite set of second-type Fredholm integral equations (details are in SI Materials and Methods).

The numerical data for the postquench dynamics of the entanglement entropy presented in Fig. 4 were obtained using the standard TDMRG (46–49) in the framework of matrix product states. For the implementation, we used the ITENSOR library (itensor.org). The data presented in Fig. 5 are obtained using the ITEDB method (93) and they are a courtesy of Mario Collura.

ACKNOWLEDGMENTS. We thank Lorenzo Piorelli and Eric Vernier for sharing their results before publication. The ITEDB data presented in Fig. 5 are a courtesy of Mario Collura. We acknowledge support from European Research Council Starting Grant 279391 EDEQS. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant 702612 OEMBS.
06. Kim H, Huse DA (2013) Ballistic spreading of entanglement in a diffusive nonintegrable system. Phys Rev Lett 111:117205.

07. Hubeny VE, Rangamani M, Takayanagi T (2007) Covariant holographic entanglement entropy proposal. J High Energ Phys 2007:062.

08. Aabjoj-Assrasti J, Aparicio J, Lopez E (2010) Holographic evolution of entanglement entropy. J High Energ Phys 1011:149.

09. Albash T, Johnson CV (2011) Evolution of holographic entanglement entropy after thermal and electromagnetic quenches. New J Phys 13:045017.

10. Allah A, Tonni E (2012) Holographic evolution of the mutual information. J High Energ Phys 1201:102.

11. Callan R, He J-Y, Headrick M (2012) Strong subadditivity and the covariant holographic entanglement entropy formula. J High Energ Phys 1206:081.

12. Liu H, Suh SJ (2014) Entanglement tsunami: Universal scaling in holographic thermalization. Phys Rev Lett 112:011601.

13. Balasubramanian V, Bernamonti A, Copland N, Craps B, Galli F (2011) Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories. Phys Rev D Part Fields 84:105017.

14. Liu H, Suh SJ (2014) Entanglement growth during thermalization in holographic systems. Phys Rev D Part Fields 89:066012.

15. Asplund CT, Bernamonti A, Galli F, Hartmann T (2015) Entanglement scrambling in 2D conformal field theory. J High Energ Phys 9:110.

16. Castro-Alvaredo OA, Doyon B, Yoshimura T (2016) Emergent hydrodynamics in integrable quantum systems out of equilibrium. Phys Rev X 6:041065.

17. Bertini B, Collura M, De Nardis J, Fogott M (2016) Transport in out-of-equilibrium XXZ chains: Exact profiles of charges and currents. Phys Rev Lett 117:207201.

18. Caux J-S, Essler FHL (2013) Time evolution of local observables after quenching to an integrable model. Phys Rev Lett 110:257203.

19. Caux J-S (2016) The quench action. J Stat Mech Theor Exp 2016:064006.

20. Ilievski E, Quinn E, De Nardis J, Brockmann M (2016) String-charge duality in integrable lattice models. J Stat Mech Theor Exp 2016:063101.

21. Bertini B, Schuricht D, Essler FHL (2014) Quantum quench in the sine-Gordon model. J Stat Mech Theor Exp 2014:01035.

22. De Nardis J, Wouters B, Brockmann M, Caux J-S (2014) Solution for an interaction quench in the Lieb-Liniger Bose gas. Phys Rev A 89:033601.

23. Wouters B, et al. (2014) Quenching anisotropic Heisenberg chain: Exact solution generalized Gibbs ensemble predictions. Phys Rev Lett 113:117202.

24. Pozsgay B, et al. (2014) Correlations after quan quenches XXZ spin chain: Fall generalized Gibbs ensemble. Phys Rev Lett 113:117203.

25. Pirollo L, Vernieri E, Calabrese P (2016) Exact steady states for quantum quenches in integrable Heisenberg spin chains. Phys Rev B 94:054313.

26. Brockmann M, et al. (2014) Quench action approach for releasing the neel state into the spin-1/2 XXZ chain. J Stat Mech Theor Exp 2014:P12009.

27. Mestyán M, Pozsgay B, Takács G, Werner MA (2015) Quenching the XXZ spin chain: Quench action approach versus generalized Gibbs ensemble. J Stat Mech Theor Exp 2015:P04001.

28. Bucciantini L (2016) Stationary state after a quench to the Lieb-Liniger from rotating BECs. J Stat Phys 164:621–644.

29. Bertini B, Pirollo L, Calabrese P (2016) Quantum quenches in the sinh-Gordon model: Steady state and one-point correlation functions. J Stat Mech Theor Exp 2016:063102.

30. Alba V, Calabrese P (2016) The quench action approach in finite integrable spin chains. J Stat Mech Theor Exp 2016:043105.

31. Pirollo L, Calabrese P, Essler FHL (2016) Multiparticle bound-state formation following a quantum quench to the one-dimensional Bose gas with attractive interactions. Phys Rev Lett 116:070408.

32. Pirollo L, Calabrese P, Essler FHL (2016) Quantum quenches to the attractive one-dimensional Bose gas: Exact results. SciPost Phys 1:001.

33. Pirollo L, Vernieri E, Calabrese P, Rigol M (2017) Correlations and diagonal entropy after quantum quenches in XXZ chains. Phys Rev B 95:054308.

34. Collura M, Kormos M, Calabrese P (2014) Stationary entanglement entropies following an interaction quench in 1D Bose gas. J Stat Mech Theor Exp 2014:P01009.

35. Kormos M, Bucciantini L, Calabrese P (2014) Stationary entropies after a quench from excited states in the Ising chain. Europhys Lett 107:40002.

36. Bonnes L, Essler FHL, Läuchli AM (2014) Light-cone dynamics after quantum quenches in spin chains. Phys Rev Lett 113:187203.

37. Fogott M, Collura M, Essler FHL, Calabrese P (2014) Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain. Phys Rev B 89:125101.

38. Dubail B, Stéphan J-M, Viti J, Calabrese P (2017) Conformal field theory for inhomogeneous one-dimensional quantum systems: The example of non-interacting Fermi gases. SciPost Phys 2:002.

39. Vidal G (2007) Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys Rev Lett 98:070201.

40. Takahashi M (1999) Thermodynamics of One-Dimensional Solvable Models (Cambridge Univ Press, Cambridge, UK).

41. Yang CN, Yang CP (1969) Thermodynamics of a one-dimensional system of bosons with repulsive delta function interaction. J Math Phys 10:1115–1122.

42. De Nardis J, Pirollo L, Caux J-S (2015) Relaxation dynamics of local observables in integrable systems. J Phys A 48:43FT01.

43. Calabrese P, Cardy J (2007) Quantum quenches in extended systems. J Stat Mech Theor Exp 2007:P06008.

44. Gambassi A, Calabrese P (2011) Quantum quenches as classical critical films. Europhys Lett 95:66007.

45. Delfino G (2014) Quantum quenches with integrable pre-quench dynamics. J Phys A 47:402001.

46. Collura M, Calabrese P, Essler FHL (2015) Quantum quench within the gapless phase of the spin-1/2 Heisenberg XXZ spin-chain. Phys Rev B 92:125131.

47. Calabrese P, Cardy J (2016) Quantum quenches in 1+1 dimensional conformal field theories. J Stat Mech Theor Exp 2016:064003.

48. Barbaro L, Dell’Anna L (2016) Spreading of correlations in quenched repulsive and attractive one dimensional lattice system. arXiv:1609.07387.

49. Kormos M, Collura M, Takács G, Calabrese P (2016) Real time confinement following a quantum quench to a non-integrable model. Nat Phys 13:246–249.

50. Bertini B, Essler FHL, Groha S, Robinson N (2016) Thermalization and light cones in a model with weak integrability breaking. Phys Rev B 94:245117.

51. Chiochetta A, Tavora M, Gambassi A, Mitra A (2016) Short-time universal scaling and light-cone dynamics after a quench in an isolated quantum system in d spatial dimensions. Phys Rev B 94:134311.

52. Asplund CT, Bernamonti A (2014) Mutual information after a local quench in conformal field theory. Phys Rev D Part Fields 89:066015.

53. Leichenauer S, Moosa M (2015) Entanglement tsunami in (1+1)-dimensions. Phys Rev D Part Fields 92:126004.

54. Fogott M, Calabrese P (2010) Entanglement entropy of two disjoint blocks in XY chains. J Stat Mech Theor Exp 2010:P04016.