Assessing sustainable biophysical human–nature connectedness at regional scales

Christian Dorninger1, David J Abson, Joern Fischer and Henrik von Wehrden
Faculty of Sustainability, Leuphana University Lüneburg, D-21335 Lüneburg, Germany
1 Author to whom any correspondence should be addressed.
E-mail: christian.dorninger@leuphana.de
Keywords: biosphere, embodied energy, HANPP, land use, sustainability, teleconnections

Abstract
Humans are biophysically connected to the biosphere through the flows of materials and energy appropriated from ecosystems. While this connection is fundamental for human well-being, many modern societies have—for better or worse—disconnected themselves from the natural productivity of their immediate regional environment. In this paper, we conceptualize the biophysical human–nature connectedness of land use systems at regional scales. We distinguish two mechanisms by which primordial connectedness of people to regional ecosystems has been circumvented via the use of external inputs. First, ‘biospheric disconnection’ refers to people drawing on non-renewable minerals from outside the biosphere (e.g. fossils, metals and other minerals). Second, ‘spatial disconnection’ arises from the imports and exports of biomass products and imported mineral resources used to extract and process ecological goods. Both mechanisms allow for greater regional resource use than would be possible otherwise, but both pose challenges for sustainability, for example, through waste generation, depletion of non-renewable resources and environmental burden shifting to distant regions. In contrast, biophysically reconnected land use systems may provide renewed opportunities for inhabitants to develop an awareness of their impacts and fundamental reliance on ecosystems. To better understand the causes, consequences, and possible remedies related to biophysical disconnectedness, new quantitative methods to assess the extent of regional biophysical human–nature connectedness are needed. To this end, we propose a new methodological framework that can be applied to assess biophysical human–nature connectedness in any region of the world.

1. Introduction
Human societies are inherently connected to and dependent on the biosphere and its functions (Boulding 1966, Daily 1997, Folke et al 2011) through the flow of materials and energy (Haberl et al 2014, Cooke et al 2016). However, modern societies have increasingly disconnected themselves from their immediate regional environment by accessing material and energy flows from distant places (Kastner et al 2014, Bergmann and Holmberg 2016) and from outside the biosphere (Wiedmann et al 2015). Industry, technology and long-distance trade have enabled a disconnect of human activities from the primary production of their regional environment (Yu et al 2013), and from the biosphere by relying on industrial mineral resources (i.e. fossils, metals, and other minerals extracted from the lithosphere (Cumming et al 2014)). Hence, despite growing calls for societal reconnection to the biosphere (Folke et al 2011, Andersson et al 2014, Folke et al 2016), what this means from a biophysical perspective remains poorly understood.

The notion of biophysical human–nature connectedness is in conflict with the notion of decoupling socio-economic activities from natural resource use. In parallel to growing calls to ‘reconnect’ to the biosphere, other scholars have noted a relative decoupling of material throughput and economic growth for some regions (e.g. Fischer-Kowalski and Swilling 2011). Nevertheless, the economy is embedded in the environment (Martínez-Alier and
Sustainability can be investigated, which goes beyond work provides a new lens through which land use trade flows, resource use, biophysical and embodied impacts are operationalized in order to generate quantitatively robust measures of regional-scale biophysical human–nature connectedness.

2. Conceptualizing regional biophysical human–nature connectedness

Regional land use systems are an appropriate unit to analyze biophysical human–nature connectedness because (1) energy and material flows across larger extents are typically too heterogeneous to be usefully aggregated; and (2) humans meaningfully experience life at regional scales (Kissinger and Rees 2010, Wu 2013). The spatial boundary of a ‘region’ will most often be defined by sub-national political-administrative units (e.g. from municipalities to federal states), as this is a vital scale for many political decisions (Dearing et al 2014) and usually the finest scale at which relevant material and energy flow data is available.

There are multiple ways in which humans’ connectedness to natural ecological productivity can be conceptualized. For example, Seppelt et al (2014) suggest a framework based on distinguishing between renewable and non-renewable resource use. However, for regional assessments clear system boundaries are required, therefore, our framework distinguishes between two realms of land use related disconnectedness from the regional biosphere. The first possible realm is ‘biospheric disconnectedness’, and stems from the use of materials external to the biosphere, such as artificial agrochemicals, fossils or machinery. The second possible realm is ‘spatial disconnectedness’, and relates to the appropriation of distal ecological goods to bolster local production via imports of biomass, including food, timber, or feed for livestock. Moreover, one could consider the import of mineral resources used to extract and process ecological goods in the region as an additional form of spatial disconnect.

Both biospheric and spatial disconnectedness have potentially far reaching consequences for sustainability. Biospheric disconnection is characterized by a strong dependence on industrial inputs which delay or displace ecological constraints (Norgaard 1988, Martinez-Alier et al 2014). This raises concerns about intergenerational justice, because it creates societal
structures that cannot be maintained indefinitely, and diminishes the biosphere's life-supporting conditions for future generations (e.g. through causing climate change). Similarly, spatial disconnection can result in the net appropriation of resources which create unsustainable lifestyle patterns (Brand and Wissen 2012, 2013) through teleconnections (Tukker et al 2014, Wiedmann et al 2015) that potentially disadvantage the ‘source’ regions. Spatial disconnection may thus compromise intragenerational justice, especially if the teleconnections are strong and unbalanced (Dorninger and Eisenmenger 2016, Teixidó-Figueras et al 2016).

2.1. Intraregional connectedness

Before considering the effects of biospheric and spatial disconnection in detail, it is necessary to develop a regional baseline for comparison. To this end, we first define intraregional connectedness as comprising the extent to which humans appropriate net primary production (NPP) for their own purposes, in combination with the labor used to appropriate this energy. A balance is required between regionally self-sufficient use of (ecologically derived) material and energy by humans and the availability of such flows to other species. The extent to which humans appropriate the NPP of the terrestrial ecosystems and the amount of trophic energy remaining in the ecosystems for other species indicates the level to which humans directly interact with, and source energy and materials from, ecosystems. In practice, intraregional connectedness may be measured via estimates of human appropriation of net primary production (HANPP) (Imhoff et al 2004, Haberl et al 2007b) and the labor inputs required to appropriate the NPP.

Direct human and animal labor in land use activities must be considered in the assessment of intraregional connectedness for several reasons. First, labor input is an important factor in the appropriation of net primary production: A system where net primary production is appropriated mainly by human and animal labor is likely to have very different sustainability outcomes than one where the appropriation is largely enabled by fossil fuel usage, even if the two systems have similar levels of HANPP. Second, direct labor is a form of internal input as long as working people and animals are ‘fueled’ by regional biomass products (Tello et al 2016). Third, from a human–nature connectedness perspective direct labor input in land use activities fosters rather than decreases biophysical and cognitive human–nature relationships (Cumming et al 2014, Webber et al 2015, Soga and Gaston 2016).

2.2. Biospheric disconnectedness

The relevant systems boundary for identifying biospheric disconnectedness is formed by the biosphere—the sphere of Earth where living organisms are found (Allaby 2008)—excluding, for example, the lithosphere, where minerals are sourced from. Thus, all mineral and non-renewable material and energy flows, no matter if they were sourced from inside or outside the spatial boundaries of the region, are considered as non-internal flows. However, considering the increase in global trade flows it is still useful to differentiate between regionally sourced and imported minerals that are used for land use related activities, i.e. the production, extraction and processing of ecological goods. In fact, minerals imported for land use related activities create both biospheric and spatial disconnection (see section 2.3 and figure 1).

The degree of biospheric disconnectedness is determined by (1) the direct and embodied flows of mineral inputs (in the form of agrochemicals, fossil fuels, or materials embodied in machinery) that are drawn from outside the biosphere; and (2) waste flows and emissions caused by the use of such inputs (e.g. greenhouse gas emissions). To grasp the full extent of material and energy requirements within the land use system, it is necessary to account not only for direct non-biospheric inflows, for example, the use of fossil fuel based artificial fertilizers, but also for indirect flows, for example, the energy, material, and labor inputs which were necessary to build an agricultural vehicle or the energy required for producing chemical fertilizers (see table 1).

Intensified agricultural practices from the 1950s onwards have led to increased yields (Pimentel et al 1973, Pimentel 2009, Martinez-Alier 2011). However, this short-term boost of regional net primary production (NPP) is typically driven by phosphorus, nitrogen and fossil fuels drawn from outside the biosphere (Erb et al 2012, Niedertscheider et al 2016). The exhaustion of non-renewable materials and the associated production of wastes and pollution during the use of such resources cause serious sustainability problems (Daly 1990). Addressing the ‘displaced’ impacts of those problems (Haberl et al 2002) both temporally (e.g. resource depletion, climate change) and spatially (trade related environmental burden shifting to distant regions), is particularly problematic without a detailed understanding of the non-biospheric energy and material flows that cause them.

2.3. Spatial disconnectedness

Regional land use systems are increasingly connected to distal regions via global markets (MacDonald 2013, Henders et al 2015, Chaudhary and Kastner 2016). It is, therefore, vital to include and identify interregional exchange relationships in any framework that describes biophysical connectedness. Trade flows of crops and other biomass commodities create biophysical connections to distant places, increasing the disconnect from the regional natural productivity (NPP) (Krausmann et al 2008, Mayer et al 2015). We define biological resources drawn from within the defined regional boundaries as internal flows, and consequently understand all other biological resources
flowing into the region as 'external inputs' (Table 1). Spatial disconnectedness can therefore be quantified via the amount of biomass based commodities imported to and exported from a region. Moreover, the import of minerals for land use related activities can be considered as an additional form of spatial disconnection. In order to reveal the full extent of disconnectedness, the embodied flows of material and energy associated with those biomass based imports and exports should also be accounted for.

Here it is important to note that trade-enabled material and energy exchanges between regions do not per se compromise sustainability. Some studies stress the economic and ecological efficiency gains that arise from free trade and long distance relationships (Bhagwati 2007, Martinez-Melendez and Bennett 2016). Other scholars observe asymmetric power relationships and systematic inequalities in 'ecologically unequal exchange' relationships (Hornborg and Jorgenson 2013, Dorninger and Hornborg 2015) which provide only the pretense of efficiency and decoupling gains (Weinzettel et al 2013, Wiedmann et al 2015, Bergmann and Holmberg 2016). Regardless of the contention regarding the benefits of such land use related trades, we can say that distal trade relations always cause spatial human–nature disconnections.
These distal relations, or ‘teleconnections’ (Adger et al 2009, Haberl et al 2009, Yu et al 2013), not only involve long distance transportation (Cristea et al 2013) and environmental load displacement (Peters et al 2011, Peng et al 2016), but crucially also the substitution of regionally available biospheric resources by distal ones. This increases the complexity of the environmental and societal impacts arising from a given land use and cognitive and psychological disconnectedness from the environment (Kissinger and Rees 2010).

Figure 1 shows the conceptual steps towards assessing the levels of biophysical human–nature connectedness and potential disconnections.

3. Archetypical examples

We illustrate our conceptual framework for different regional land use systems with four archetypal systems. For each of the four systems the height of each component indicates the relevant throughput of energy and materials related to intraregional connectedness, spatial and biospheric disconnections (figure 2).

A self-sufficient, non-industrialized, subsistence system which does not use any non-renewables in their land use practices, but relies solely on biomass goods and on relatively high labor input, has neither spatial nor biospheric disconnections (figure 2(a)). Such systems represent subsistence farming regions which were common especially before the 20th century in most parts of the world (Krausmann 2001, Erb et al 2008). Moderately industrialized systems exhibit moderate levels of external inputs which allow a comparatively higher NPP appropriation with significantly lower labor input (figure 2(b)). Such systems may include regions in transition from an agrarian to a more industrial society, for example, regions of Eastern Europe (Hanspach et al 2014, Loos et al 2014b). In contrast, a strongly exported oriented, highly industrialized system with high NPP availability is both spatially and biospherically more disconnected (figure 2(c)), for example, export-oriented soybean production regions in Brazil (Wittman et al 2016). Finally, an industrialized system with a high HANPP and high external inputs indicates strong regional disconnection and both temporal and spatial displacement of environmental burdens (figure 2(d)).

Similar systems are likely to be found in densely populated, largely urbanized and wealthy regions such as Western Europe (Niedertscheider et al 2014). Regions where direct labor input has largely been displaced by external inputs may exhibit a similar HANPP, but differ greatly with regard to the other two dimensions—biospheric and spatial disconnection (figures 2(b) and (d)), this has far reaching sustainability outcomes not only for the focal regions, but also for the distant regions they are connected to.

Identifying the nature and extent of such regional disconnections is a crucial first step in addressing the
cross-scale sustainability challenges related to such interconnected systems. Without genuine reconnection, humans are only at best peripherally aware of the full range of impacts their lifestyle has on other and future generations, and on other species. A more complete understanding of human–nature connectedness and opportunities to reconnect, might increase the leverage potential of actions set in land use systems towards transformational change (Meadows 1999, Abson et al 2016). It is to be hoped for that biophysically reconnected regional land use systems ultimately promote a more foresightful, responsible and conscious society, based on a living with rather than dominating nature.

In regionally connected land use systems, largely reliant on (transformed) solar energy and labor as major energy inputs, in- and outputs will then be reconected to the natural cycles—the regeneration and uptake rate—of the biosphere (Folke et al 2016). A reconnected land use system will strengthen self-sufficiency, circularity in production and consumption; involve less teleconnections, less specialization, more diverse land uses, and relations of trust (Tregear 2011, Weatherell et al 2003). Here the major balancing challenge is ensuring that sufficient biospheric resources are appropriated for human well-being while retaining resources available for the flourishing of other species.

In all cases the assessment of regional biophysical connectivity, particularly if linked to other regional indicators, can help identify regionally specific challenges in transitioning towards more sustainable land use systems. In addition, multi-scalar assessments may help identify ‘natural’ scales of biophysical connectedness and appropriate scales for managing material and energy flows.

4. From theory to practice: methodological guidelines

In this section we present methodological guidance to operationalize our concept of biophysical human–nature connectedness at regional scales. Building on well-established methods (table 2) this operationalization will allow assessment of the extent to which systems are built on and driven by intraregional connectedness and biospheric and spatial disconnectness respectively (figure 3).

As discussed above, we consider HANPP as an appropriate starting point to quantify intraregional connectedness. HANPP is based on not only appropriated biomass yields from farming, grazing, and forestry, but also harvest related losses, unused biomass extraction, conversion losses, and land use conversion—changes in the HANPP fraction due to indirect changes to NPP. A land use conversion effect can only be quantified in relation to the potential net primary production (NPPpot) that would occur at a certain area without any human interference. A range of different models exist that allow for a computation of site-specific photosynthesis performance (Haberl et al 2014). For example, the Miami model (Lieth 1975) calculates NPPpot from average precipitation and annual mean temperature of an area. Other models additionally include information on soil texture, latitude, and CO₂ availability (Sitch et al 2003). By subtracting the HANPP, i.e. all harvest and related flows plus the land use conversion, from the NPPpot, one arrives at the NPP that remained in the ecosystem after harvest and which is available for other species (NPPesc) (Krausmann et al 2013, Plutzar et al 2015). By going beyond simple harvest or yield assessments HANPP reveals the connectedness to the productivity, and the potentially renewable resources, of ecosystems.

From an ecological perspective, low HANPP may be a desirable goal because it leaves a large amount of energy to other species (Haberl et al 2007a). In contrast, if low HANPP values are achieved via the use of non-renewable resources or distant biomass the overall outcomes for sustainability may still be negative (with regards to future generations and distant regions). However, as the conventional HANPP method neither captures external inputs, such as the materials and substances that are used to

Table 2. Methods register and key references. The left column lists the methods to quantify regional biophysical human–nature connectedness. The relevant key references for each approach are provided in the right column. The ideal units of measurement are given in square brackets (where applicable), where [t] stands for metric tons, [J] for joules, and [h] for hours.

Methods and models of environmental accounting	Key references
Human appropriation of net primary production (HANPP) [t] [J]	• Vitousek et al 1986, Haberl et al 2007a
Material and energy flow analysis (MEFA) [t] [J]	• Haberl et al 2004, Fischer-Kowalski and Haberl 2007
Accounting of embodied flows	
• environmentally extended input output analysis (EEIOA)	• Leontief 1970, Kitzes 2013
• extension factors	• Pimentel et al 2008, Kastner et al 2015
Types of embodied flows	
• embodied HANPP (eHANPP) [t] [J]	• Erb et al 2009, Haberl et al 2009
• raw material equivalents [t] [J]	• Schaffartzik et al 2015b, Eisenmenger et al 2016
• embodied labor [J] [h]	• Alsamawi et al 2014, Simas et al 2015
• embodied energy [J]	• Agostinho and Siche 2014, Aguilera et al 2015
produce and harvest goods in the land use system (Haas and Krausmann 2015), nor trade related teleconnections (Haberl et al 2009, Kastner et al 2015), nor the labor inputs to those systems, further methodological steps are required to evaluate regional scale biophysical human–nature connectedness.

Biospheric disconnections can be assessed via a social–metabolic analysis of the regional land use system. Social metabolism quantifies, similar to the metabolism of organisms, the biophysical inputs and outputs of a social–ecological entity. It is operationalized by material and energy flow accounting analysis (MEFA) (Fischer-Kowalski and Haberl 2007). While analysis of socio-ecological energy and material flows is well established, particularly at the national level (Fischer-Kowalski et al 2011, Haberl et al 2004), the notion and consequences of changes to ‘regional biophysical human–nature disconnections’ is hardly explored in that literature. However, by conducting such a MEFA analysis one is able to calculate the throughput of materials and energy of the land use system and subsequently relate these flows to regional and cross-scalar sustainability challenges.

The system boundaries of the adopted MEFA analysis are defined by the spatial boundaries of the region (Sastre et al 2015) and the boundaries of the biosphere. In order to account for differing levels of teleconnectedness, it is important to differentiate between regionally sourced mineral inputs and imported ones. Doing so can help reveal related additional transport costs, patterns of ecologically unequal exchange and outsourcing of material and energy intensive processes. Industrial mineral inputs, such as machinery use, fuels, or agrochemicals, enter the system from outside the biosphere (left column of table 1) and potentially from outside the region. Outflows are those materials and substances that are not reused in the land use system but create pollution, wastes, and emissions.

Artificial fertilizer, seeds and machinery production processes are an energy and material intensive endeavor (Pimentel et al 2008). In order to reveal the full extent of energy, materials and labor required for the external industrial inputs into the land use system, the embodied flows of those inputs must be accounted for. We suggest using either product and region specific extension factors (Kastner et al 2015, Schaffartzik et al 2015a), or regionally adjusted environmentally-extended input-output analysis (EEIOA) (Miller and Blair 2009, Kitzes 2013, Schaffartzik et al 2014) where intersectoral linkages can be retraced, i.e. the flows between the land use sector and other socio-economic sectors of the region.

The third and last methodological measure of the framework is to collect data on the biomass based interregionally traded goods for quantifying the spatial disconnect. In short, all directly traded biomass commodities (table 1) such as crops, animal products, textiles, other fibers, bioenergy products, and wood products, and the indirect flows of NPP, materials, energy, and labor embodied in these goods need to be captured. The latter are usually not reported in trade.
statistics. Still, the methodological goal is to redistribute the flows embodied in the goods from the place of origin to the place of final consumption (Kastner et al 2015, Wiedmann 2016).

To comprehensively reveal the biophysical processes necessary to produce a specific commodity and to disclose how the consumption of traded goods affects connectedness an environmentally-extended input-output table or extension factors, which are adjusted for the specific region and year, would potentially provide the best systematic approach to assess the embodied flows of traded products. The results of embodied HANPP (Erb et al 2009), raw material equivalents (Schaffartzik et al 2013b, Eisenmenger et al 2016), embodied energy (Agostinho and Siche 2014, Perryman and Schramski 2015), or embodied labor (Alsamawi et al 2014, Simas et al 2015) are established indicators, increasingly used in the scientific literature to reveal international inequalities and related environmental pressures (Teixidó-Figuera et al 2016).

Different types of flows have different metrics: NPP and HANPP can be expressed in terms of dry matter [t], carbon [t] or energy units [J]; labor input in time units [h] or energy [J]; materials in units of mass [t] or enthalpy [J]; emissions in GHG potentials [t CO₂ equivalents] and nitrogen leaching [NO₃]. For achieving comparability between regions we suggest to evaluate connectedness on a per unit area, or per capita basis; comparability within regions may be achieved via an expression of flows in energy units (except emissions), i.e., flows of HANPP, material, and labor. The final result of the framework provides a measure of the degree to which a regional land use system is biophysically connected to the productivity of the regional ecosystems (NPP) and disconnected in terms of external inputs (figure 3).

The empirical application of this framework will likely involve challenges with regards to data availability and the computation of critical embodied flows. In particular, identification and assessment of interregional trade flows from material accounting data will involve region-specific difficulties. For example, physical trade relations between regions might not be reported by authorities. Therefore, we encourage consultation of relevant stakeholders to assure the validity of data where necessary. Likewise, the calculation of embodied flows is a sensitive methodological endeavor (Schaffartzik et al 2015a). It will therefore be important to provide detailed information on steps of the decisions that have been made regarding data sources and estimations to ensure transparency and traceability.

5. Outlook

We argue that the regional land use system is an appropriate unit of analysis for investigating biophysical connectedness as it provides a focal unit for understanding cross scale interactions between land use systems, revealing key environmental feedback loops in and between regions. We recognize that we take a relatively pragmatic definition of ‘region’. Yet, in principle it should be possible to use this approach to identify spatial extents within which there are high levels of connectedness or across which significant disconnections occur.

Biophysical human–nature connectedness is increasingly overlain and suppressed by modes of industrial land use, which entails teleconnections and external non-renewable inputs. In this paper we introduced a new approach to conceptualize biophysical human–nature connectedness at regional scales and related it to potential sustainability outcomes. Building on a priori state of biophysical connectedness, we identified two major realms of disconnectedness: (1) external non-renewable inputs that enter the land use system and (2) teleconnections with distant systems, both of which decrease regional connectedness.

While the conceptual framework itself represents a novel perspective on land use management, the combined methods for each part are well established. Together these methods allow for comparisons of different ‘types’ and degrees of the connectedness between different regions, which in turn can be related to other regional characteristics or sustainability outcomes (e.g. Wittman et al 2016). The framework is designed to be applicable to regions anywhere in the world and to encourage researchers and policymakers to develop a more holistic approach regarding cross-scale, sustainable land management issues not captured by other frameworks (e.g., sustainable intensification (Barnes and Thomson 2014, Loos et al 2014)), or land sparing (Fischer et al 2014)).

Instead of making human–nature connections evermore complex and opaque by increasing external inputs via industrial technology, a genuinely reconnected system will have a higher internal self-reliance, through a more self-sufficient land use system. Such regionally reconnected systems may facilitate more foresightful, responsible and conscious behaviors. We believe that there are various opportunities to strengthen connectedness of humans to nature. For example, by a re-regionalized economy, a higher degree of self-sufficiency, lower degrees of dependence on external (non-renewable or distant) inputs, by internal biomass reuse (Galán et al 2016, Tello et al 2016), permaculture, agroforestry, organic farming, small-scale farming, low external input technology farming (Tripp 2005), lower consumption patterns (especially of NPP intensive products, like animal products), less overproduction and consequently less food and biomass ‘wastes’. The operationalization of this model can be applied as a heuristic tool to reveal complex social-ecological interlinkages, raising awareness of the challenge in managing biophysical connections across scales. This in turn might help to shift the
focus from ‘on site’ efficiency thinking in land use management to a more comprehensible and holistic perspective on human–nature connectedness.

Acknowledgments

This research was supported by the Volkswagenstiftung and the Niedersächsisches Ministerium für Wissenschaft und Kultur funded project ‘Leverage Points for Sustainable Transformations: Institutions, People and Knowledge’ (Grant Number A112269). We would like to thank Fridolin Krausmann from the Institute of Social Ecology, IFF Vienna, Christopher Ives from the University of Nottingham, and Kathleen Klaniecki from the Leuphana Universität Lueneburg for their helpful comments on earlier drafts of this article. The authors declare no conflict of interest.

References

Abson D J et al 2016 Leverage points for sustainability transformation Ambio 45 1–10
Adger W N, Eakin Hallie and Winkels A 2009 Nested and teleconnected vulnerabilities to environmental change Front. Ecol. Environ. 7 130–7
Agostinho F and Siche R 2014 Hidden costs of a typical case study Biomass Bioenergy 71 69–83
Aguilera E, Guzmán G I, Infante-Amate I, Garcia-Ruiz R, Herrera A, Villa L, Torremocha E, Carranza G and Gonzalez de Molina M 2015 Incorporating a historical perspective Embodied Energy in Agricultural Inputs Report
Allaby M 2008 Dictionary of Earth Sciences (Oxford: Oxford Reference)
Alsamawi A, Murray J and Lenzen M 2014 The employment footprints of nations: Uncovering master-servant relationships J. Ind. Ecol. 18 59–70
Andersson E, Barthel S, Borgstrom S, Colding J, Elmqvist T, Folke C and Gren A 2014 Reconnecting cities to the biosphere: stewardship of green infrastructure and urban ecosystem services Ambio 43 445–53
Asafu-Adjaye J et al 2015 An Ecomodernist Manifesto
Barnes A P and Thomson S G 2014 Measuring progress towards sustainable intensification: how far can secondary data go? Ecol. Indic. 36 213–20
Bergmann I and Holmberg M 2016 Land in Motion Chiuscotti in Heterogeneous Land Use: Towards harmless Land Use, Eds. H. Holmberg, I. Chiuscotti, G. A. Freyrup and J. B. Van Huis (Cheltenham: Edward Elgar Publishing)
Bhagwati J 2007 In Defense of Globalization: With a New Afterword (Oxford: Oxford University Press)
Boulding K E 1966 The economics of the coming spaceship Earth Environmental Quality Issues in a Growing Economy ed H Jarrett (Baltimore: Johns Hopkins University Press) pp 3–14
Brand U and Wissen M 2013 Crisis and continuity of capitalist society–nature relationships: the imperial mode of living and the limits to environmental governance Rev. Int. Polit. Econ. 2290 1–25
Brand U and Wissen M 2012 Global environmental politics and the imperial mode of living: articulations of state–capital relations in the multiple crisis Globalizations 19 547–60
Chaudhary A and Kastner T 2016 Land use biodiversity impacts embodied in international food trade Glob. Environ. Change 38 195–204
Cooke B, West S and Boonstra W J 2016 Dwelling in the biosphere: exploring an embodied human–environment connection in resilience thinking Sustain. Sci. 11 1–13
Cristea A, Hummels D, Puzzolo I and Avelisyan M 2013 Trade and the greenhouse gas emissions from international freight transport J. Environ. Econ. Manage. 65 153–73
Cumming G S, Buerkert A, Hoffmann E M, Schlecht E, Von Cramon-Taubadel S and Tscharntke T 2014 Implications of agricultural transitions and urbanization for ecosystem services Nature 515 50–7
Daily G 1997 Nature’s Services: Societal Dependence on Natural Ecosystems (Washington, DC: Island Press)
Dal H E 1990 Toward some operational principles of sustainable development Ecol. Econ. 2 1–6
Deering J A et al 2014 Safe and just operating spaces for regional social–ecological systems Glob. Environ. Change 28 227–38
Dorninger C and Eisenmenger N 2016 South America’s biophysical involvement in international trade: the physical trade balances of Argentina, Bolivia, and Brazil in the light of ecologically unequal exchange J. Polit. Ecol. 23 394–409
Dorninger C and Hornborg A 2015 Can EEMRIO analyses establish the occurrence of ecologically unequal exchange? Ecol. Econ. 119 414–8
Eisenmenger N, Wiedenhofer D, Schaffartzik A, Giljum S, Bruckner M, Schandl H, Wiedmann T O, Lenzen M, Tukker A and Koning A 2016 Consumption-based material flow indicators—comparing six ways of calculating the Austrian raw material consumption providing six results Ecol. Econ. 128 177–86
Erb K-H, Gingrich S, Krausmann F and Haberl H 2008 Industrialization, fossil fuels, and the transformation of land use: an integrated analysis of carbon flows in Austria 1830–2000 J. Ind. Ecol. 12 686–703
Erb K-H, Haberl H, DeFries R, Ellis E C, Krausmann F and Verburg P H 2012 Pushing the planetary boundaries Science 338 1419–20
Erb K-H, Krausmann F, Lucht W and Haberl H 2009 Embodied HANPP: mapping the spatial disconnect between global biomass production and consumption Ecol. Econ. 69 328–34
Fischer-Kowalski M and Haberl H 2007 Socioecological Transformations and Global Change: Trajectories of Social Metabolism and Land Use (Cheltenham: Edward Elgar Publishing)
Fischer-Kowalski M, Krausmann F, Giljum S, Lutter S, Mayer A, Bringezu S, Moriguchi Y, Schütz H, Schandl H and Weisz H 2011 Methodology and indicators of economy-wide material flow accounting: State of the art and reliability across sources J. Ind. Ecol. 15 855–76
Fischer-Kowalski M and Swilling M 2011 Decoupling natural resources use and environmental impacts from economic growth
Fischer J, Abson D J, Butsic V, Chappell M J, Ekroos J, Hanspach J, Kiemmerle T, Smith H G and von Wehrden H 2014 Land sparing versus land sharing: moving forward Conserv. Lett. 7 149–57
Folke C, Biggo R, Norström A V, Rayers B and Rockström J 2016 Social–ecological resilience and biosphere-based sustainability science Ecol. Soc. 21 41
Folke C et al 2011 Reconnecting to the biosphere Ambio 40 719–38
Galán E S et al 2016 Widening the analysis of Energy Return On Investment (EROI) in agro-ecosystems: socio-ecological transitions to industrialized farm systems (the Valles County, Catalonia, c.1860 and 1999) Ecol. Model. 336 13–25
Haas W and Krausmann F 2013 Rural metabolism: material flows in an Austrian village in 1830 and 2001 Social Ecology Working Paper 155 (Vienna: Institute of Social Ecology)
Haberl H, Erb K-H and Krausmann F 2014 Human appropriation of net primary production: patterns, trends, and planetary boundaries Annu. Rev. Environ. Resour. 39 363–91
Haberl H, Erb K-H, Krausmann F, Berezcz S, Ludwiczek N, Martinez-Alber M, Musel A and Schaffartzik A 2009 Using embodied HANPP to analyze teleconnections in the global land system: conceptual considerations Geogr. Tidskr. 1 Geogr. 109 119–30
Seppelt R, Manceur A M, Liu J, Fenichel E P and Klotz S 2014 Synchronized peak-rate years of global resources use Ecol. Soc. 19 50
Simas M, Wood R and Hertwich E 2015 Labor embodied in trade J. Ind. Ecol. 19 343–56
Sitch S et al 2003 Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model Glob. Change Biol. 9 161–85
Soga M and Gaston K J 2016 Extinction of experience: the loss of human–nature interactions Front. Ecol. Environ. 14 94–101
Teixidó-Figueras J, Steinberger J K, Kraassmann F, Haberl H, Wiedmann T, Peters G P, Duro J A and Kastner T 2016 International inequality of environmental pressures: decomposition and comparative analysis Ecol. Indic. 62 163–73
Tello E et al 2016 Opening the black box of energy throughputs in farm systems: a decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed (the Valles County, Catalonia, c.1860 and 1999) Ecol. Econ. 121 160–74
Tregear A 2011 Progressing knowledge in alternative and local food networks: critical reflections and a research agenda J. Rural Stud. 27 419–30
Tripp R 2005 The performance of low external input technology in agricultural development: a summary of three case studies Int. J. Agric. Sustain. 3 143–53
Tukker A, Bulavskaya T, Giljum S and De Koning A 2014 The Global Resource Footprint of Nations. Carbon, water, land and materials embodied in trade and final consumption calculated with EXIOBASE
Vitousek P M, Ehrlich P R, Ehrlich A H and Matson P A 1986 Human appropriation of the products of photosynthesis Bioscience 36 368–73
Waggoner P E 1996 How much land can ten billion people spare for nature? Daedalus 125 73–93
Weatherell C, Tregear A and Allinson J 2003 In search of the concerned consumer: UK public perceptions of food, farming and buying local J. Rural Stud. 19 233–44
Webber J, Hinds J and Cairns P M 2015 The well-being of allotment gardeners: a mixed methodological study Ecopsychology 7 20–8
von Wehrden H, Abson D J, Beckmann M, Cord A F, Klotz S and Seppelt R 2014 Realigning the land-sharing/land-sparing debate to match conservation needs: considering diversity scales and land-use history Landsc. Ecol. 29 941–8
Weinzierl J, Hertwich E G, Peters G P, Steen-Olsen K and Galli A 2013 Affluence drives the global displacement of land use Glob. Environ. Change 23 433–8
Wiedmann T 2016 Impacts embodied in global trade flows Taking Stock of Industrial Ecology ed R Clift and A Druckman (Berlin: Springer) pp 159–80
Wiedmann T O, Schandl H, Lenzen M, Moran D, Suh S, West J and Kanemoto K 2015 The material footprint of nations Proc. Natl Acad. Sci. 112 6271–6
Witteman H, Chappell M, Abson D, Benzer Kerr R, Blesh J, Hanssaph J, Perfecto I and Fischer J 2016 A social–ecological perspective on harmonizing food security and biodiversity conservation Reg. Environ. Change (https://doi.org/10.1007/s10113-016-1045-9)
Wu J 2013 Landscape sustainability science: ecosystem services and human well-being in changing landscapes Landsc. Ecol. 28 999–1023
Yu Y, Feng K and Huubecx K 2013 Tele-connecting local consumption to global land use Glob. Environ. Change 23 1178–86