Controlled-phase gate by dynamic coupling of photons to a two-level emitter

Stefan Krastanov, Kurt Jacobs, Gerald Gilbert, Dirk R. Englund and Mikkel Heuck

We propose an architecture for achieving high-fidelity deterministic quantum logic gates on dual-rail encoded photonic qubits by letting photons interact with a two-level emitter (TLE) inside an optical cavity. The photon wave packets that define the qubit are preserved after the interaction due to a quantum control process that actively loads and unloads the photons from the cavity and dynamically alters their effective coupling to the TLE. The controls rely on nonlinear wave mixing between cavity modes enhanced by strong externally modulated electromagnetic fields or on AC Stark shifts of the TLE transition energy. We numerically investigate the effect of imperfections in terms of loss and dephasing of the TLE as well as control field miscalibration. Our results suggest that III-V quantum dots in GaAs membranes is a promising platform for photonic quantum information processing.

INTRODUCTION

In quantum networks, optical photons are the main carrier of quantum information. The absence of direct interaction between photons and their high excitation energy make them immune to the otherwise pervasive thermal noise. Conversely, the lack of direct interaction creates significant challenges to the use of photons as the substrate for quantum computation, where fast, high-fidelity logic gates between the (photonic) qubits are necessary. Effective interactions derived from measurements result in probabilistic gates. Instead, we focus on deterministic gate implementations based on cavity-based optical nonlinearities. Bulk optical nonlinearities are attractive due to their potential for room-temperature operation, but their strength remains too weak. At cryogenic temperatures, stronger nonlinearities arise by coupling photons to ancillary quantum systems. For instance, strong interactions between photons and two-level emitters (TLEs) have been realized in many physical systems including atoms, quantum dots, molecules, superconducting circuits and ions. It is widely accepted that passive TLE systems are insufficient to implement high-fidelity controlled-phase gates. Multi-stage approaches including active wave packet control provide added flexibility but at a significant cost in technological complexity. A dynamic cavity control scheme was employed in Refs. for bulk nonlinearities, but it remains an open question whether a similar approach works for TLEs. For the interactions of both one- and two-photon cavity states are straightforwardly coupled out once a π-phase difference between them is achieved. For TLEs, however, a state with n photons has a Rabi frequency proportional to \(\sqrt{n} \) so evacuating the cavity for both \(n = 1 \) and \(n = 2 \) is nontrivial.

Here, we introduce a single-stage dynamic control scheme for photonic qubits that exploits the strong interactions with a TLE in a multimode cavity. Figure 1 illustrates how photons traveling in wave packets are actively loaded into a resonator where they interact via the TLE and are subsequently released into the same wave packet with transformed photon-number contents. We assume to have control over the detuning between the TLE and cavity mode \(\delta \) such that \(\Omega(t) = \omega_c - \omega_p \). This provides control over the effective Rabi frequency \(\sqrt{g^2 + \Omega(t)^2}/4 \) (see the supplementary materials) to enable both one- and two-photon input states to be coupled out efficiently. We also assume to have control over the coupling between cavity modes \(a \) and \(b \) with a rate \(\Lambda(t) \). This can be achieved by three-wave-mixing between the aforementioned two modes and a strong controlled classical pump. Note that Ref. similarly used two cavity modes coupled by a time-independent rate to improve the trade-off between indistinguishability and efficiency of a quantum emitter.

Since the time-dependent cavity-TLE detuning effectively controls the strength of the nonlinearity, the gate duration can be shortened without reducing the fidelity, in contrast to passive nonlinearities. By numerical optimization of \(\Omega(t) \) and \(\Lambda(t) \), we show that high-fidelity controlled-phase gates are, in fact, possible and further that the gate duration need only exceed the Rabi period at zero-detuning by a factor of 2–3.

This manuscript is organized as follows: In the next section, we derive the general form of the equations of motion for one- and two-photon wave packets incident on the cavity-TLE system. This serves as the basis for our control conditioned on the photon number of the wave packets. These equations are used in the section “Results” to derive control fields that enable a high-fidelity controlled-phase gate as an example of the many logical operations enabled by this design. The section “Discussion” provides a detailed study of the performance of that gate with respect to various hardware parameters. Lastly, we provide an outlook on possible near-term hardware implementations and concluding remarks.

1Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. 2U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD 20783, USA. 3Department of Physics, University of Massachusetts at Boston, Boston, MA 02125, USA. 4The MITRE Corporation, 200 Forrestal Road, Princeton, NJ 08540, USA. 5Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. *email: stefankr@mit.edu; mheu@dtu.dk

Published in partnership with The University of New South Wales
METHODS

Equations of motion

Before demonstrating the implementation of a controlled-phase gate, we will describe the general form of the dynamics of capturing (and releasing) a wave packet into our two-mode cavities in the presence of a TLE. We describe this for the non-Gaussian quantum operations we want to perform. We use the discrete-time formalism developed in Ref. 3 to describe the system in Fig. 1. It involves discretizing the time axis into N bins of width Δt and introducing discrete-time waveguide mode operators

$$\hat{w}(t_k) = \hat{w}(k\Delta t) = \sqrt{\Delta t}\hat{w}_k$$

with $[\hat{w}_k, \hat{w}_{k'}] = \delta_{kk'}$.

(1)

where $\hat{w}(t_k)$ is the continuous-time annihilation operator of the waveguide mode that couples to cavity mode \hat{a}. The input state of a single photon is

$$\hat{\psi}_m^{(1)} = \int_{t_0}^{t_n} \hat{w}(t)\hat{a}(t)\hat{\psi}_0(t)dt$$

$$\hat{\psi}_m^{(1)} = \int_{t_0}^{t_n} \hat{w}(t)\hat{a}(t)\hat{\psi}_0(t)dt = \sum_{k=1}^{N} \sqrt{\Delta t}\hat{w}_k\hat{a}\hat{\psi}_0(t_0)$$

(2)

where $\int_{t_0}^{t_n} \hat{\xi}(t)\hat{a}(t)\hat{\psi}_0(t)dt = \sqrt{\Delta t}\hat{\xi}^n(t_n)$ describes the shape of the wave packet, and $|\hat{0}\rangle$ denotes the vacuum state of the waveguide. To each time bin, n, there is an associated Hamiltonian

$$\hat{H}_n = \Omega_n\hat{\sigma}_a + \frac{1}{\sqrt{\Delta t}}\sqrt{\kappa}\hat{w}^{\dagger}(t)\hat{a}\hat{w}(t) + \lambda_n\hat{a}\hat{b} + \lambda_n\hat{b}\hat{a} + g(\hat{b}\hat{\sigma}_- + \hat{\sigma}_+\hat{b})$$

(3)

which describes the interaction between the cavity and photons in the waveguide at time t_n as well as the internal dynamics of the cavity. The propagation of the wave packet is, thus, handled implicitly (instead of introducing an additional hopping Hamiltonian). The operators describing the TLE in Eq. (3) are $\hat{\sigma}_a = |e\rangle\langle e|$, $\hat{\sigma}_- = |g\rangle\langle e|$, and $\hat{\sigma}_+ = |e\rangle\langle g|$. The coupling rate between cavity mode \hat{a} and the waveguide is κ, the controllable coupling between modes \hat{a} and \hat{b} is λ_n, and the coupling rate between the emitter and photons in mode \hat{b} is g. Note that the Hamiltonian in Eq. (3) corresponds to a rotating frame as described in the supplementary materials. Photon interferences only interact with the cavity once and the bins are ordered such that photons in the first bin interact with the cavity first. At this time step, t_n, we therefore denote all photons in bins $t_n < t_k$, as input photons and write their state as $|\hat{1}\rangle$. Similarly, photons in all bins after the cavity-interaction $t_n > t_k$ are denoted output photons and their state is written in bold as $|\hat{2}\rangle$. The state of the cavity-TLE system is $|n_e, n_g\rangle$ for both cavity modes and a decay rate, γ, while the TLE is in the ground, $|\hat{0}\rangle$. The flow diagram in Fig. 2 maps out the various paths that two input photons may take while interacting with the system. Each arrow corresponds to the non-zero coupling in the system. We use the diagram as a visual tool to simplify the otherwise tedious job of writing down the dynamical equations. The Schrödinger coefficients corresponding to states with up to two photons remaining on the input side of the cavity at time t are denoted e.g. $\hat{\psi}_{nm}^{(2)}(t)$, where the superscript denotes the maximum number of input photons. As an example, consider the state if the first photon is absorbed into mode \hat{a} and subsequently coupled to mode \hat{b} before the second photon enters the cavity. The corresponding state is $\hat{\psi}_{n_e, n_g}^{(2)}(t)|\hat{1}\rangle$ for $t_n > t_k$. States with a maximum of one photon remaining in the input side along with an output photon in bin m have Schrödinger coefficients denoted e.g. $\hat{\psi}_{n_e, n_g}^{(1)}(t_m)$. States with no photons on the input side and an output photon in bin m have Schrödinger coefficients $\hat{\psi}_{n_e, n_g}^{(0)}(t_m)$. Finally, coefficients corresponding to states with both photons in the cavity-TLE system denoted e.g. $\hat{\psi}_{n_e, n_g}^{(2)}(t)$ without a superscript.

We refer to Ref. 4 for details of deriving equations of motion for the Schrödinger coefficients, input-output relations, and inclusion of loss channels. For the coefficients mentioned above, describing the state of the cavity in the aforementioned basis, the master equation results in

$$\hat{\psi}_{nm}^{(i)}(t_m, t) = -K\hat{\psi}_{nm}^{(i)}(t_m, t) - \lambda_n\hat{\psi}_{nm}^{(i)}(t_m, t) - i\gamma\hat{\psi}_{nm}^{(i)}(t_m, t)$$

(4a)

$$\hat{\psi}_{nm}^{(1)}(t_m, t) = -K\hat{\psi}_{nm}^{(1)}(t_m, t) - \lambda_n\hat{\psi}_{nm}^{(1)}(t_m, t) - i\gamma\hat{\psi}_{nm}^{(1)}(t_m, t)$$

(4b)

$$\hat{\psi}_{nm}^{(0)}(t_m, t) = -i\lambda_n\hat{\psi}_{nm}^{(0)}(t_m, t) - i\gamma\hat{\psi}_{nm}^{(0)}(t_m, t)$$

(4c)

The first equation describes the capture of an incoming photon in cavity mode \hat{a} and the interaction between \hat{a} and \hat{b}. The latter equations introduce the interaction between mode \hat{b} and the TLE. Note that we included a loss rate, κ, for both cavity modes and a decay rate, γ, from
the TLE to the electromagnetic environment. The total intensity decay rate from cavity mode α is $\kappa_c + \kappa$ in Eq. (4a) and $L = (0, 1, 2)$ is the maximum number of photons on the input side as described above. Note that solving Eq. (4) with $L = 1$ and $\tau_m = 0$ corresponds to a one-photon input state.

The Schrödinger coefficients corresponding to both photons being in the TLE-cavity system evolve according to

$$
\psi_{20}(t) = -i\kappa \psi_{20}(t) - i^{\gamma} \Lambda(t) \psi_{10}(t) + \sqrt{2\kappa \psi_{0}^{(2)}(t)} \xi(t)
$$

(5a)

$$
\psi_{11}(t) = \frac{\kappa_c + 2\kappa}{2} \psi_{10}(t) - i^{\gamma} \Lambda(t) \psi_{20}(t) + \Lambda(t)^{\ast} \psi_{02}(t)
$$

(5b)

$$
\psi_{02}(t) = -i\kappa \psi_{02}(t) - i^{\gamma} \Lambda(t) \psi_{10}(t) - i^{\gamma} \psi_{01}(t)
$$

(5c)

$$
\psi_{10}(t) = -i\{\Omega(t) + \frac{\kappa_c + \kappa}{2}\} \psi_{10}(t) - i\Lambda(t)^{\ast} \psi_{01}(t) - i\psi_{02}(t)
$$

(5d)

$$
\psi_{01}(t) = -i\{\Omega(t) + \frac{\kappa_c + \kappa}{2}\} \psi_{01}(t) - i\Lambda(t)^{\ast} \psi_{20}(t) - i^{\gamma} \psi_{02}(t).
$$

(5e)

The initial condition for Eq. (5) is that all coefficients are zero at $t = 0$. Note that all driving terms in Eqs. (4) and (5) correspond to black arrows in Fig. 2 while all terms proportional to Λ and Λ^{\ast} correspond to black and magenta arrows, respectively. As such, Fig. 2 provides a convenient tool for verifying that all interactions are included in the dynamical equations.

For $L = 1$ in Eq. (4), the only required initial condition is $\psi_{20}^{(0)}(0) = \psi_{11}^{(0)}(0) = \psi_{02}^{(0)}(0) = 0$. Those coefficients are therefore only functions of a single variable, t. For $L = 1$ and $L = 0$, the equations must be solved for N different initial conditions since τ_m corresponds to any bin and the coefficients are functions of both τ_m and $t \geq \tau_m$.

For $L = 1$, the dynamics is initiated by either an emission into the waveguide or simply a bypass (the traveling photon passing by the cavity)

$$
\psi_{20}^{(0)}(t, \tau_m) = 1, \quad \text{and} \quad \psi_{00}^{(0)}(t, \tau_m) = 0.
$$

(6a)

$$
\psi_{00}^{(0)}(t, \tau_m) = 0.
$$

(6b)

In either case, the initial conditions are:

$$
\psi_{10}^{(1)}(t, \tau_m) = \psi_{01}^{(1)}(t, \tau_m) = \psi_{02}^{(1)}(t, \tau_m) = 0.
$$

For $L = 0$, the dynamics is initiated by one of three different emission paths or three different bypass paths

$$
\psi_{02}^{(0)}(t, \tau_m) = \psi_{01}^{(0)}(t, \tau_m) = \psi_{00}^{(0)}(t, \tau_m) = \psi_{11}^{(0)}(t, \tau_m) = \psi_{10}^{(0)}(t, \tau_m) = 0.
$$

(7a)

$$
\psi_{10}^{(0)}(t, \tau_m) = \psi_{11}^{(0)}(t, \tau_m) = \psi_{01}^{(0)}(t, \tau_m) = \psi_{02}^{(0)}(t, \tau_m) = 0.
$$

(7b)

$$
\psi_{00}^{(0)}(t, \tau_m) = 0.
$$

(7c)

$$
\psi_{02}^{(0)}(t, \tau_m) = \psi_{00}^{(0)}(t, \tau_m) = \psi_{11}^{(0)}(t, \tau_m) = \psi_{10}^{(0)}(t, \tau_m) = 0.
$$

(7d)

The output state is found to consist of the following terms

$$
\psi_{out}^{(2)} = \int_{t_0}^{t} dt \psi_{out}^{(2)}(t, t_0) W(t) W^{\ast}(t_0) |00\rangle \langle 00|.
$$

(9a)

$$
\psi_{out}^{(1)} = \int_{t_0}^{t} dt \psi_{out}^{(1)}(t, t_0) \hat{W}(t) \hat{W}^{\ast}(t_0) |00\rangle \langle 00|.
$$

(9b)

$$
\psi_{out}^{(0)} = \int_{t_0}^{t} dt \psi_{out}^{(0)}(t, t_0) W(t) W^{\ast}(t_0) |00\rangle \langle 00|.
$$

(9c)

$$
\psi_{out}^{(0)}(t, \tau_m) = \psi_{11}^{(0)}(t, \tau_m) = 0.
$$

(10)

$$
\psi_{out}^{(1)}(t, \tau_m) = \psi_{01}^{(1)}(t, \tau_m) = 0.
$$

(11)

$$
\psi_{out}^{(2)}(t, \tau_m) = \psi_{02}^{(2)}(t, \tau_m) = 0.
$$

(12)

Controlled-phase gate

Having presented the equations governing the general time-evolution of an input state in product form, we turn to the specific example of implementing a controlled-phase gate on two dual-rail encoded photonic qubits. Other quantum logic operations are in principle possible as well, but the controlled-phase gate is a prototypical example of a low-level two-qubit operation. Together with the available continuous single-qubit gates it completes the requirements for universal quantum circuits. Figure 3 sketches the envisioned photonic integrated circuit implementation. The basic idea is that we arrange our TLE-cavity systems to act as an identity operation on incoming single-
photon wave packets (or the vacuum), while at the same time they impart a nontrivial phase to a two-photon wave packet. The dual read encoding and the beamsplitter ensure that the cavities encounter two-photon wave packets only for the logical \(|11\) state, leading to our controlled-phase operation.

The input state (two arbitrary dual-read encoded qubits) is

\[
|\psi_{in}\rangle = (a|00\rangle + \beta|11\rangle) \otimes (C_0|00\rangle + \beta|11\rangle) = a|00\rangle + a\beta|01\rangle + \beta|10\rangle + \beta^2|11\rangle, \tag{13}
\]

with \(|\alpha|^2 + |\beta|^2 = 1\) and \(|\alpha|^2 + |\beta|^2 = 1\). The ideal controlled-phase gate operation is defined by the transformation

\[
\hat{C}|\psi_{in}\rangle \equiv \hat{a}|00\rangle + a\hat{b}|01\rangle + \beta|10\rangle - \beta^2|11\rangle. \tag{14}
\]

We use the “worst-case” fidelity as defined in

\[
\mathcal{F}_{\text{gate}} = \min_{|\psi_{in}\rangle} \mathcal{F}_{\text{F}}(\psi_{in}), \tag{15}
\]

where the state fidelity, \(\mathcal{F}_{\text{F}}\), is defined as

\[
\mathcal{F}_{\text{F}} \equiv \left| \langle \psi_{\text{out}} | \psi_{\text{in}} \rangle \right|^2 = \left| \langle \psi_{\text{in}} | \psi_{\text{out}} \rangle \right|^2 - |\beta|^2 \left| \langle \psi_{\text{in}} | \psi_{\text{out}} \rangle \right|^2, \tag{16}
\]

where \(|\psi_{in}\rangle\) and \(|\psi_{out}\rangle\) denote, respectively, one or two photons in the waveguide and \(|\psi_{\text{in}}\rangle\) and \(|\psi_{\text{out}}\rangle\) denote the emitted state after the absorption of, respectively, one or two incident photons. We use the w subscript to avoid confusion with the dual-read logical states, like \(|0_w\rangle\) and \(|1_w\rangle\). The steps in the derivation of Eq. (16) are included in the supplementary materials. The minus sign in the second term, corresponding to the fact that the logical \(|11\rangle\) state has changed its phase, i.e., that when two photons are absorbed the state gains an additional \(\pi\) phase, unlike when one or zero photons are absorbed. The complex-valued overlap factors in Eq. (16) are given by

\[
\langle \psi_{\text{in}} | \psi_{\text{out}} \rangle = \int \hat{e}_{\text{out}}^2(t) \hat{e}_{\text{in}}^2(t - T) dt \tag{17a}
\]

\[
\langle \psi_{\text{out}} | \psi_{\text{in}} \rangle = \int \hat{e}_{\text{out}}^2(t, t_p) \hat{e}_{\text{in}}^2(t, t - T) dt dt_p, \tag{17b}
\]

where \(T\) is the gate duration. Note that the output wave packet of the ideal gate operation is a simple time translation of the input wave packet. This is a critical requirement for enabling quantum circuits with many identical gates, as any subsequent gate would work only if the wave packets carrying the encoded photons are not distorted by the previous gate. The output wave packets described by \(\hat{e}_{\text{out}}^2(t, t_p)\) and \(\hat{e}_{\text{out}}^2(t_p)\) are not normalized due to loss and \(\hat{e}_{\text{in}}^2(t, t_p)\) is not normalized due to gain.

RESULTS

Gate performance

To quantify the gate performance that is possible with the system in Figs. 1, 3, we consider Gaussian envelope wave packets

\[
\hat{e}_{\text{in}}(t) = \sqrt{\frac{2}{T_\text{FWHM}}} \frac{\ln(2)}{\pi} \exp \left(-2 \ln(2) \frac{(t - T_p)^2}{T_\text{FWHM}^2} \right). \tag{21}
\]

where \(\hat{e}_{\text{in}}(t)\) has a full temporal width at half maximum (FWHM) of \(T_{\text{FWHM}}\) and a spectral width of \(\Delta \nu = 4 \ln(2)/T_{\text{FWHM}}\). We numerically solved the equations in the section “Equations of motion” using Julia. The temporal shape of the control field \(\Omega(t)\) was determined by minimizing the gate error 1 – \(\mathcal{F}_{\text{gate}}\) using a standard gradient-free optimization method (Nelder-Mead).

Figure 4 shows an example of the gate dynamics for a duration of \(T = 7/g\), \(T_p = 4.3/g\), and \(g = 0.4 \Delta \nu\). It is expected that the TLE-cavity detuning becomes small during the interaction stage, \(t \in [T_{\text{FWHM}}, T_p + T]\), since it leads to a larger occupation probability of the TLE and thereby a larger effective nonlinearity. The blue curve in Fig. 4a confirms this expectation and Fig. 4b plots the probability of the TLE being in the excited state for both one- (blue) and two-photon (red) input states. Note that both populations decrease towards zero at the end of the gate sequence as is required for a large gate fidelity. While the TLE-cavity detuning is low, the one- and two-photon states acquire phase at different rates, which is discussed in more detail in the supplementary materials. Figure 4c plots the phase difference

\[
\Delta\phi(t) \equiv \arg[\psi_{a2g}(t)] - 2 \arg[\psi_{a1g}(0, t)], \tag{22}
\]

When the TLE and cavity g are completely decoupled, the optimum control function that loads a single photon into mode \(\hat{b}\) is

\[
|\Lambda(t)\rangle = \frac{|f|}{|\xi_{\text{in}}|} \exp \left(-\frac{\alpha t}{T_\text{FWHM}} \right) \sum_{j=1}^{\infty} \frac{f(t) e^{j t}}{2 \pi} \tag{18a}
\]

\[
\arg[\Lambda(t)] = -\delta_0 t - \arg[\xi_{\text{in}}], \tag{18b}
\]

\[
f(t) = \frac{k}{\Omega(t)} \xi_{\text{in}} e^{\delta_0 t}, \tag{18c}
\]

where \(\delta_0 = 0\) and we assumed \(\Lambda(t)\) arises due to three-wave mixing between modes \(\hat{a}, \hat{b}\), and a third mode [not shown in Fig. 1(a)] occupied by a strong clamped laser field. In the limit \(\Omega_0 \gg g\), we can adiabatically eliminate \(\psi_{\text{out}}^j\) from Eq. (4b) by setting \(\psi_{\text{out}}^j \approx 0\) in Eq. (4c), leading to

\[
\psi_{\text{out}}^j(t_m, t) \approx -\frac{g}{\Omega_0} \psi_{\text{out}}^j(t_m, t), \tag{19a}
\]

\[
\psi_{\text{out}}^j(t_m, t) \approx -\frac{g}{\Omega_0} \psi_{\text{out}}^j(t_m, t). \tag{19b}
\]

The term \(g^2/\Omega_0\) therefore corresponds to adding an effective detuning in Eq. (4b) so we add \(g^2/\Omega_0\) to the phase of \(\Lambda(t)\) when solving for the full dynamics described by Eq. (4). An alternative derivation of this additional phase term is found in the supplementary materials.

The control function that optimally releases a single photon into the wave packet \(\xi_{\text{out}}\) is

\[
|\Lambda_0(t)\rangle = \frac{|f_0| e^{-\alpha t}}{|\xi_{\text{out}}| \sqrt{k} \pi} \left(2 \int_0^{\infty} f_0(t) e^{i t} dt \right)^{1/2} \tag{20a}
\]

\[
\arg[\Lambda_0(t)] = -\delta_0 t - \arg[\xi_{\text{out}}] - \frac{\pi}{2}, \tag{20b}
\]

\[
f_0(t) = \frac{k}{\Omega_0} \xi_{\text{out}} + \hat{e}_{\text{out}}^2(t) \xi_{\text{out}} e^{\delta_0 t}. \tag{20c}
\]

Note there is some additional optimization involved when \(\psi_{\text{out}}^j(0, t)\) has not reached a steady-state value at the onset of the release process since it is not obvious how to chose \(\psi_{\text{out}}^j(0, t)\) in Eq. (20a). Since both \(\Lambda_0\) and \(\Lambda_0\) are approximately zero during the interaction stage, we have \(\Lambda = \Lambda_0 + \Lambda_0\).
which approximates the phase difference between the output wave packets, \(\arg[\xi^{(1)}_{\text{out}}] - 2\arg[\xi^{(2)}_{\text{out}}] \). The reason is that the populations \(|\psi_{01g}(0,t)|^2 \) and \(|\psi^{(1)}_{\text{out}}(0,t)|^2 \) approach one immediately before the emission stage as seen from Fig. 4c.

The limitation on gate fidelity imposed by a finite value of \(\Omega g / g_0 \) is observed in Fig. 4b as a finite absorption probability (black lines). In Fig. 5, we investigate this further by plotting the probability of not absorbing a one- or two-photon input state as a function of \(\Omega g / g_0 \).

Fig. 4 Example of gate dynamics.

a Control functions, \(\Lambda(t) \) and \(\Omega(t) \) as a function of time along with the input wave packet and ideal one-photon output wave packet, \(\xi^{(1)}_{\text{out}} \). **b** Probability amplitude of the TLE being excited for a one-photon input, \(|\psi^{(1)}_{\text{out}}(0,t)|^2 \), and the probability amplitude of a photon in mode \(\beta \) and an excited TLE for a two-photon input, \(|\psi_{01g}(0,t)|^2 \). The black curve plots the probability of having absorbed all the input photons (defined in Eq. (23)) for a one- (solid) and two-photon input state (dashed). **c** Probability that all input photons are in mode \(\beta \) for a one- (blue) and two-photon input state (red) along with the phase difference between the amplitudes of the corresponding Scrödinger coefficients [defined in Eq. (22)] (black).

Simulation parameters: \(\kappa_C = 6\Omega_0 \), \(\kappa_\Omega = \gamma_e = 0 \), \(g = 0.4\Omega_0 \), \(\Omega_0 = 15g \), \(T_m = 4.3/g \), and \(T = 7/g \).

Fig. 5 Probability of failing at photon absorption.

Probability not absorbing one- (solid lines) and two-photon (dashed lines) input states as a function of the TLE-cavity detuning for different values of \(g/\Omega_0 \). Simulation parameters: \(\kappa_C = 6\Omega_0 \), \(\kappa_\Omega = \gamma_e = 0 \), \(T_m = 4.3/g \), and \(T = 7/g \).

The solution for the phase of the control function, \(\Lambda(t) \), uses the term \(\gamma_e/\Omega_0 \) derived in Eq. (19) based on the approximation \(\Omega_0 \gg g \). Figure 5 shows how the error probability increases as this approximation becomes worse for decreasing \(\Omega_0 / g \). Remarkably, the error for both one- and two-photon input states decreases rapidly with increasing \(\Omega_0 / g \) and drops to about \(10^{-5} \) for \(\Omega_0 = 15g \).

Our model includes a finite lifetime of cavity modes \(a \) and \(b \) as well as a decay rate from the TLE into the electromagnetic environment. Figure 6(a) plots the gate error as a function of gate duration for different values of the loss rate, \(\kappa_l \). Note that we assumed \(\gamma_e = \kappa_l \) in Fig. 6(a). The control function, \(\Omega(t) \), was optimized for each parameter configuration. The black line in Fig. 6(a) sets a lower limit on the gate error due to a finite excitation probability of the TLE at \(t_N \) as well as a finite absorption error, \(1 - P_{\text{load}} \). Compared to Ref. 3, our analysis here studies all three stages of the gate sequence and the gate duration is more than three times shorter (when comparing Fig. 6a here to Fig. 9 in Ref. 9). The dashed lines in Fig. 6a correspond to the conditional fidelity \(1 - \gamma_e/\Omega_0 \), which is calculated using normalized output states

\[
|\psi_{\text{out}}^{(n)}\rangle \equiv \frac{|\psi_{\text{out}}^{(n)}\rangle}{\sqrt{\langle \psi_{\text{out}}^{(1)}|\psi_{\text{out}}^{(2)}\rangle}}, \quad n = \{1, 2\}.
\]

It therefore corresponds to a post-selected gate fidelity conditioned on both photons being detected by a perfect detector. As expected, the conditional fidelity coincides with the fidelity in the absence of loss as in the case of \(\chi^{(2)} \) and \(\chi^{(3)} \) nonlinearities.

Introducing control of the TLE-cavity detuning, \(\Omega(t) \), removes the requirement observed in Ref. 4 to increase the gate duration, \(T \), relative to the wave packet width, \(T_m \), in order to decrease the gate error due to wave packet distortions. Instead, \(\Omega(t) \) controls the effective nonlinear coupling and the gate error (in the absence of loss) is only limited by the off-state detuning, \(\Omega_0 / g \), and the efficiency of depopulating the TLE for both one- and two-photon inputs despite the difference in Rabi frequency.

Working with solid state quantum emitters introduces other types of error mechanisms in addition to loss. Energy-conserving interactions between the emitter and its environment may lead to dephasing, which means the coherence between the ground and excited state is lost. Superposition states, \(a|g\rangle + \beta|e\rangle \), turn into mixed states when the relative phase between \(a \) and \(\beta \) is not conserved. Here, we study this effect by introducing a dephasing rate, \(\gamma_{\text{dp}} \), and perform Monte-Carlo simulations to calculate the fidelity as described in the supplementary materials following 26,27.

Figure 6b plots the gate error as a function of gate duration for different values of \(\gamma_{\text{dp}} \) while keeping \(\kappa_l = \gamma_e = 0 \).

The result is very similar to that in Fig. 6a, except the dashed and solid lines coincide in Fig. 6(b). Dephasing errors can therefore be considered more severe than loss errors because the post-selected gate fidelity is also affected by dephasing.

Noise in the control fields

In this section, we consider a particular experimental approach to synthesizing the control fields and investigate the effect of noise in the settings of control parameters for \(\Omega(t) \). A detuning between the emitter and cavity mode \(\beta \) could be controlled via the emitter transition energy, \(\omega_e \), through AC-Stark shifts. An alternative scheme would be to modulate the cavity resonance,
determine the shape of the control implementation enables a direct quantification of the error. Modulators 30. To emulate this process, we write the control Fourier components of pulses using gratings and spatial light modulators 30. The noise is included by modifying the filter setting precision and gate error as a function of noise parameter, \(\sigma \). The optimization consists of determining \(\chi^2 \) NL of all the optimized variables. Using the maximum in (26) is motivated by a finite filter setting precision and represents an absolute error rather than a relative error. Adding noise degrades the gate fidelity and Fig. 8b plots the gate error as a function of \(\sigma \) using the same optimized parameters as in Fig. 7. It is observed that errors below \(10^{-4} \) are required to have a negligible influence on the gate error.

\[
\hat{\Omega}(\omega) = \Omega \delta(\omega) - e^{-i \omega t_\Omega} \sum_{m=-N}^{N} \hat{\Omega}^{(m)} e^{\left(-\frac{\omega^2 \Omega^2}{4}\right)},
\]

where \(\delta(\omega) \) is the Dirac-delta distribution, \(N = (N_{ch} - 1)/2 \), and \(t_\Omega \) shifts \(\Omega(t) \) on the time axis. The number of Fourier components is \(N_{ch} \) each having a bandwidth of \(\Omega_{ch} \). Since \(\Omega(t) \) is real-valued, the optimization consists of determining \(t_\Omega \) along with \(\hat{\Omega}^{(m)}_{ch} = \text{Re}(\hat{\Omega}^{(m)}) \) and \(\hat{\Omega}^{(m)}_{ch} = \text{Im}(\hat{\Omega}^{(m)}) \) under the constraints \(\hat{\Omega}^{(m)}_{ch} = \hat{\Omega}^{(-m)}_{ch} \). Figure 7 shows an example of an optimized control pulse that results in a gate performance similar to the control pulse in Fig. 4a. To see how the gate performance is affected by the number of Fourier components and the channel bandwidth, we plot the optimized gate error as a function of \(N_{ch} \) and \(\Omega_{ch} \) in Fig. 8a.

Experimentally, there is only a finite precision available to determine the shape of the control filters. The Fourier domain implementation enables a direct quantification of the error on the gate error from noise in the complex amplitudes, \(\Omega^{(m)} \), of a programmable filter. The noise is included by modifying the optimized real and imaginary control variables as

\[
\hat{\Omega}^{(m)}_{ch} \rightarrow \hat{\Omega}^{(m)}_{ch} + \chi_{\chi}^{(m)} = \sigma \times \max \left(\hat{\Omega}^{(m)}_{ch} \right).
\]

The size of the noise is represented by \(\sigma \), \(\chi_{\chi}^{(m)} \) is a random number between \(-1 \) and \(1 \), and the last factor in Eq. (26) is the maximum of all the optimized variables. Using the maximum in Eq. (26) is motivated by a finite filter setting precision and represents an absolute error rather than a relative error. Adding noise degrades the gate fidelity and Fig. 8b plots the gate error as a function of \(\sigma \) using the same optimized parameters as in Fig. 7. It is observed that errors below \(10^{-4} \) are required to have a negligible influence on the gate error.
the minimum required gate duration is \((n/2)\Gamma_{\text{NL}}^{-1}\) (this can be seen from equation 54c in Ref. 4 when accounting for the definition: \(\Gamma_{\text{NL}} = \chi/4\)). For TLEs, a bound is not as straightforwardly obtained due to the necessity of a control field to ensure the simultaneous achievement of a \(\pi\) phase difference and depopulating the TLE for both one- and two-photon inputs. However, Fig. 6a shows that a duration of \(\sim 5\Gamma_{\text{NL}}^{-1}\) is sufficient for an error below 1%. These bounds are consistent with the relative positions of the curves in Fig. 9 and shows that using TLEs as the optical nonlinearity comes with a relative small penalty in the required loss rate of a factor of 2–3 compared to \(\chi^{(2)}\) or \(\chi^{(3)}\) effects.

To evaluate the potential of practical implementations, one must calculate the value of \(\Gamma_{\text{NL}}/k_i\). Table 1 lists numbers from the literature including each type of nonlinearity (see the supplementary materials for details on how the relevant metrics were extracted). It shows that interaction volumes achieved for SHG in \(\chi^{(2)}\)-materials are orders of magnitude larger than those for both TLE in \(\chi^{(3)}\)-materials and dipole interaction volumes. The dielectric confinement mechanism employed in refs. 23–33 was applied to SHG in ref. 35, but more work is necessary to understand its potential for reducing the SHG interaction volume. Using \(\Gamma_{\text{NL}}/k_i\) as a figure of merit is not generally applicable for SHG since two optical cavity modes are involved (note that we assumed identical loss rates for all modes in ref. 4). In the SHG literature, the conversion efficiency \(\eta_{\text{SHG}} \propto Q_2/Q_1\) is often used as a figure of merit, but it appears that \(\min(Q_b, Q_c)\) is the limiting factor in the quantum regime studied here. This difference in scaling of the figure of merit should be considered when designing cavities for few-photon interactions.

High confinement cavities have been realized in Si\(^{32,33}\), but measurements of the SPM coupling rate are required to verify their potential. Table 1 clearly illustrates the advantage of two-level emitters compared to bulk nonlinearities in terms of the much larger nonlinear coupling rate.

DISCUSSION

In the introduction, we mentioned a few examples of two-level emitter implementations where strong coupling to an optical mode was already demonstrated. However, there has been a lot of work in recent years on other promising platforms like 1D\(^{38}\) and 2D materials\(^{48,49}\). Very strong coupling between excitons in 2D materials and plasmonic modes was also experimentally observed\(^{41–43}\) and theoretical work suggested how such systems may be described by an effective Jaynes–Cummings model\(^{44–46}\). Our focus on InAs quantum dots in GaAs membranes in the previous section and Table 1 is, however, based on our assessment that they represent state-of-the-art owing to their scalability potential and excellent properties resulting from a long history of developing them as single-photon sources. Moving beyond state-of-the-art and into a parameter regime corresponding to \(\sim 1\%\) gate error would require the nonlinear coupling rate in Ref. 28 and the linear loss rate in Ref. 47 to be achieved in the same device (illustrated with a green dot in Fig. 9). Surface passivation techniques are being used to address the challenge of achieving large Qs in GaAs cavities both with\(^{48}\) and without QDs\(^{47}\). Cavities with ultra-small dipole interaction volumes\(^{23–34}\) also represent an interesting approach to increase \(g\). We note, however, that with the parameters used in Fig. 6 and \(g = 40\) GHz and \(\omega_s = 2\pi c/940\) nm\(^{28}\), the coupling-Q of mode \(a\) is \(Q_a = \omega_s/k_a = 530\). At the same time, \(k_f /g \approx 10^3 \Rightarrow Q_f/Q_a = 1.5 \times 10^4\) meaning that cavity mode \(a\) must be extremely over-coupled to reach the \(\sim 1\%\) gate error regime. Further increases to \(g\) corresponds to an even smaller \(Q_a\) that could pose experimental challenges although nanobeam cavities are well-suited to reach very over-coupled regimes even at large Qs\(^{49}\).

The scheme for dynamic cavity coupling originating from nonlinear mode interactions used here and in recent work\(^{50–52}\) is compatible with a very small dipole interaction volume of the cavity mode interacting with the TLE. The control pump power may be increased to achieve the required strength of \(\Lambda(t)\) as long as the overlap between the participating modes is large enough to ensure a reasonable nonlinear interaction volume. However, interference-based dynamic cavity couplings\(^{53,54}\) requires the

![Fig. 9 Gate error as a function of the ratio between nonlinear coupling rate and linear loss rate.](image)

Table 1. Comparison of nonlinear coupling rates and linear loss rates.

Ref.	Mat.	Type	\(\Gamma_{\text{NL}}/k_i\)	\(V_{\text{int}}/\Lambda^2\)	\(Q_i\)	\(\Gamma_{\text{NL}}/k_i\)
Design proposal						
Lin2016\(^{30}\)	LiNbO\(_3\)	\(\chi^{(2)}\)	0.01	1.1 \times 10^3	2.4 \times 10^3	1.2 \times 10^{-4}
Minkov2019\(^{31}\)	GaN	\(\chi^{(2)}\)	0.00021	6.7 \times 10^4	1 \times 10^4	9.1 \times 10^{-6}
Choi2017\(^{32}\)	Si	\(\chi^{(3)}\)	0.002	0.17	2 \times 10^5	0.02
Experimental demonstration						
Lu2020\(^{35}\)	LiNbO\(_3\)	\(\chi^{(2)}\)	0.0012	7.4 \times 10^4	5.8 \times 10^5	0.0036
Ota2018\(^{36}\)	InAs	TLE	40	–	5.2 \times 10^4	6.5
Kuruma2020\(^{33}\)	InAs	TLE	4.8	–	1.6 \times 10^5	0.8
Guha2017\(^{29}\)	GaAs	–	–	–	6 \times 10^6	–

The comparison is made in terms of quality factors. For each material, we specify the type of the observed nonlinearity, the absolute value of the nonlinear interaction rate, the corresponding multimode interaction volume, resonator quality factor, and the ratio between the interaction rate and resonator decay rate. Definitions of interaction volume for \(\chi^{(2)}\) and \(\chi^{(3)}\) nonlinearity and their relation to other parameters listed in the literature\(^{56–61}\) are given in the supplementary materials.
mode to spread out across the interference paths and thereby limits how small the dipole interaction volume can be.

In conclusion, we have shown that a two-level emitter is sufficient to implement high-fidelity logical gates between photonic qubits when time-dependent control of the coupling between cavity modes and the emitter/cavity detuning is possible. Our approach represents a promising alternative to multi-level systems17–19 by shifting complexity from the atom-like emitter to the photonic system.

Based on the demonstrated performance and potential for improvement, we consider semiconductor quantum dots to be a very promising hardware platform to implement deterministic quantum logic on photonic quantum states.

DATA AVAILABILITY
All code used to solve and optimize the control master equations is available upon request, as well as the raw output of the simulation routines.

Received: 26 December 2021; Accepted: 20 July 2022; Published online: 07 September 2022

REFERENCES
1. Knill, E., Milburn, G. & Laflamme, R. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
2. Choi, H., Heuck, M. & Englund, D. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys. Rev. Lett. 118, 226605 (2017).
3. Heuck, M., Jacobs, K. & Englund, D. Photon-photon interactions in dynamically coupled cavities. Phys. Rev. A 101, 042322 (2020).
4. Heuck, M., Jacobs, K. & Englund, D. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 124, 160501 (2020).
5. Krastanov, S. et al. Room-temperature photonic quantum logic qubits via second-order nonlinearities. Nat. Commun. 12, 1–10 (2021).
6. Li, M. et al. Photon-photon quantum phase gate in a photonic molecule with $\chi^{(2)}$ nonlinearity. Phys. Rev. Appl. 13, 044013 (2020).
7. Rauschenbeutel, A. et al. Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999).
8. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).
9. Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).
10. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007).
11. Rattenbacher, D. et al. Coherent coupling of single molecules to on-chip ring resonators. N. J. Phys. 21, 062002 (2019).
12. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).
13. Takahashi, H., Kassa, E., Christoforou, C. & Keller, M. Strong coupling of a single ion to an optical cavity. Phys. Rev. Lett. 124, 013602 (2020).
14. Ralph, T. C., Süllner, I., Mahmoodian, S., White, A. G. & Lodahl, P. Photon sorting, efficient bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity. Phys. Rev. Lett. 114, 173603 (2015).
15. Nysteen, A., McCutcheon, D. P. S., Heuck, M., Mark, J. & Englund, D. R. Limitations of two-level emitters as nonlinearities in two-photon controlled-PHASE gates. Phys. Rev. A 95, 1–7 (2017).
16. Yang, F., Lund, M. M., Pohl, T., Lodahl, P. & Malm, K. Deterministic photon sorting in waveguide QED systems. Phys. Rev. Lett. 128, 213603 (2022).
17. Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).
18. Johnie, R. & Fiore, A. Proposal for a two-qubit quantum phase gate for quantum photonic integrated circuits. Phys. Rev. A—At. Mol. Opt. Phys. 86, 1–5 (2012).
19. Ikouroudou, I., Borregoard, J. & Sørensen, A. S. Controlled-phase gate for photons based on stationary light. Phys. Rev. Lett. 120, 010502 (2018).
20. McCutcheon, M. W. & Knoll, H. D. E. Zhong, Y., Lukin, M. D. & Loncar, M. Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity. Opt. Express 17, 22689–22703 (2009).
21. Choi, H., Zhu, D., Yoon, Y. & Englund, D. Cascaded cavities boost the indistinguishability of imperfect quantum emitters. Phys. Rev. Lett. 122, 183602 (2019).
22. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition 10th edn (Cambridge University Press, 2011).
ACKNOWLEDGEMENTS
This work was partly funded by the AFOSR program FA9550-16-1-0391, supervised by Gernot Pomrenke (D.E.), the MITRE Quantum Moonshot Program (S.K., M.H., G.G., and D.E.), the ARL DTRA EECI grant “Photonic Circuits for Compact (Room-temperature) Nodes for Quantum Networks” (K.J.), and the Villum Foundation program QNET-NODES grant no. 37417 (M.H.).

AUTHOR CONTRIBUTIONS
The control protocol was conceived by the authors through joint discussions. The detailed protocol simulation, optimization, and analysis were worked out by M.H. with help from S.K. The final manuscript was vetted by all authors.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41534-022-00604-5.

Correspondence and requests for materials should be addressed to Stefan Krastanov or Mikkel Heuck.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.