Извод: Дуглазија је једна од најчешће гајених врста четинара у плантажама и шумским културама у више замаља Европе. Модел провенијенчичног теста заснива се на анализам својстава дуглазије (раста и анатомских, физиолошких, хемијских, механичких, као и других особина) с циљем провере оправданости трансфера семена из Северне Америке у екосистеме Србије. Овакав програм се спроводи у Србији на више локација са дуглазијом различитих провенијенција. Како је анализа различитих физиолошких својстава стабала од значаја при интродукцији одређених провенијенција на станишта у Србији, у овом раду су истраживане варијабилности садржаја калијума у младим четинама дуглазије различитих провенијенција на експерименталном пољу у Србији. Значај калијума у физиолошким процесима биљака је веома велики. Калијум је есенцијални елемент који учествује у низу биохемијских и физиолошких процеса и има значајну улогу при адаптацији биљака у условима биотичког и абиотичког стреса. Највећи садржај калијума утврђен је код провенијенције „Орегон 205–14“, што је једина провенијенција код које садржај калијума статистички значајно одступа од просека, те се она може окarakterисати као супериорна код садржаја биогеног елемента. Констатовано је да, у овој фази, разлике у концентрацији калијума код стабала у провенијенчичном тесту немају значајног утицаја на параметре раста. Даља истраживања треба да укажу на то да ли садржај овог елемента има утицај на нека друга својства значајна за одабир провенијенција у процесу интродукције, као што је отпорност на стресне факторе.

Кључне речи: дуглазија, провенијенције, калијум, интродукција, Србија

УВОД

Дуглазија [Pseudotsuga menziesii (Mirb.) Franco] је врло висока, брзorастућа врста четинара, пореклом из Северне Америке. У оптималним условима, ова врста достиже висину преко 100 m, са пречником стабла 4 m, а старост више од 1300 година. У природи је она распрострањена у западном делу Северне Америке – од Британске Колумбије (Канада) на северу до Мексика на југу (слика 1). Почетком XIX века, дуглазија је интродукована у Европу, где је у садашњности заступљена у многим земљама. Дуглазија се убраја у економски најзначајније врсте дрвећа за производњу дрвних шумских производа (Hermann, Lavender,
1990). Због економског значаја, као и претпоставке да је ова врста способна да се одупре климатским променама, у многим земљама се сматра неизоставним делом газдовања шумама (Lavender, Hermann, 2014). Ово је једна од најважнијих врста четинара у плантажама и користи се за пошумљавање у Француској, Немачкој, Пољској, Великој Британији и Новом Зеланду (Birot, Burzynski, 1981; Curt et al., 2001; Goßner, Simon, 2002; Goßner, Ammer, 2006; Isaac-Renton, 2013; Bastien et al., 2013). Дуглазија је друга по заступљености алохтона врста у европским шумама – у којима покрива више од 800 хиљада хектара. Највеће површине под дуглазијом налазе се у Француској, а потом у Немачкој – где је она брзо постала најраспрострањенија алохтона врста дрвећа (Spiecker et al., 2019).

Дуглазија је веома прилагодљива врста, способна да расте у различитим климатским условима. Иако joj вишe oдгoвaрajу дубока, влажна и добро дренирана земљишта, она расте и на различитим подлогама. Брзо заузе ма подручја након шумских пожара или других поремећаја средине и толерише засену, те се добро развија и под крошњама дрвећа. На свој природном станишту, ова врста расте на широком распону надморских висина, од око 0 m на обали Пацифика до Стеновитих планина на надморској висини до 3200 m (2019).

Процес интродукције дуглазије у Србију за почет је на Институту за шумарство Београд, постављањем провенијеничних огледа и тестирањем ове врсте четинара, као и њених карактеристика (Lavadinović, 1995, 2009; Lavadinović, Koprivica, 1996; Lavadinović et al., 2018, 2018a). Интродукција врсте сматра се оправдана само уколико има квалитет боља од аутохтоних врста дрвећа. Адаптивност, продуктивност, као и подобност интродукованих врста, са широким природним ареалом, морају се испитати путем провенијеничког теста, што је и циљ проучава ња дуглазије у Србији.

Значај калијума у физиолошким процесима биљака је веома велики. Овај биогени макроелемент активира више од 50 ензима и као кофактор учествује у низу ензимских реакција које се одвијају у процесима фотосинтезе, дисања и другим процесима. Калијум има значајну улогу при утврдилазији вишак органских киселина у ћелији, хидратацији колоида протоплазме, осморегулацији, као и механизму отварања и затварања стома. Важан је у процесима синтезе, транспорта и накупљања угљених хидрата. Он повећава отпорност према суши и другим стресним чиноцима (ниске температуре, соли, болести, аерозагађење, итд.). Калијум има значајну улогу при регулацији активности низа ензима који учествују у детоксикацији од реактивних једињења кисеоника (ROS) (Wang et al., 2013). Садржај калијума у листовима и у растворима у опсегу 0,75% до 2,5% (Đunisijević-Bojović, 2019). Сматра се да су биљке изложене акутном недостатку ако се садржај калијума у листовима налази испод 0,6%. На његову врло важну улогу у метаболизму биљака показује и то да га биљке најинтензивније усвајају у најранијим фазама развића. Калијум се највише акумулира у мегалом калијумових зонама и вакуоли. Количина калијума у биљним ткивима зависи од врсте, органа и ста рости биљаке. Са повећањем садржаја калијума у биљама, повећава се усвајање СО₂, синтеза угљених хидрата и протеина, док се при његовом недостатку процес фотосинтезе успорава, а дисање постаје интензивније. Биљке које се одликују повећаном синтезом угљених хидрата – који утичу на синтезу целулозе и хемицелулозе, као и чија је улога битна за изградњу ћелијског зида и проводних судова – називају се “калијумове биљке”. Међу врстама дрвећа код којих је евидентирана ова појава су буква, црни орах и др. (Nešković et al., 2003; Oljača et al., 2006).

Биљкама приступачни калијум у земљишту се налази у облику воднорастворљивих соли и у адсорбованом облику на површини колоидних честица. Ови облици калијума настају распадањем калијумових примарних минера ла. Постоји динамичка равнотежа у земљишту између воднорастворљивог и адсорбованог калијума. Усвајањем калијума смањује се његова концентрација у раствору. Том приликом, адсорбовани калијум прелази из адсорптивног комплекса у земљишни раствор. Познато је да
је адсорбовани калијум теже приступачан од воднорастворљивог. То значи да је усвајање калијума теже из глиновитих земљишта него из песковитих.

Адсорбовано-везани калијум је веома застућен јон у адсорптивном комплексу и лако се замењује другим катјонима путем супституције. До сада је уочен антагонизам између K⁺ и Na⁺, NH₄⁺, Ca²⁺, Mg²⁺, па је са становишта минералне исхране од великог значаја њихов однос у хранљивој средини. Биљке га брзо усвајају и преко листа. Искрена неопходним макроелементима је најефикаснији метод за унапређење квалитета као и за продукцију биомасе садница и шумског дрећа, чиме се може значајно скратити период опходње (Ingstad, 1973). Добра снабдевеност основним биогеним елементима спречава поjavu хлорозе у периоду након пре-сађивања и утиче на боље преживљавање, физиолошку виталност, као и даљи раст и развој биљака (Đukić et al., 2004).

У овом раду је анализиран садржај калијума у четинама дуглазије 20 провенијенција, које потичу са већег броја локалитета Северне Америке, различитих географских ширина и дужина, као и различитих надморских висина.

МАТЕРИЈАЛ И МЕТОД РАДА

У табели 1 је дат приказ географских карактеристика провенијенција из којих потиче семе. Колекција семена покрива део природног ареала дуглазије од Новог Мексика на југу, те поред обале Пацифика и Стеновитих планина, све до Британске Колумбије на северу Америке. На планини Јухор, у централној Србији, постављен је провенијенични оглед са 20 провенијенција дуглазије, пореклом из Северне Америке.

Ради педолошких анализа на огледном пољу, отворени су два педолошка профила, дефинисани је тип земљишта и узети су узорци за лабораторијске анализе. Садржај биљака калијума лако приступачних облика одређен је Al-методом, према Egner-Rihm-y (Džamić et al., 1996). Текстурни састав одређен је методом седиментације уз примену Na-пирофосфата као пептизационог средства (Ratz, 1971), док су активна и супституциона киселост одређене по тенциометријски (Knežević, Košanin, 2008).

За потребе анализе садржаја калијума у четинама – сакупљене су свеже четине дуглазије са локалитета на којем је постављен провенијенични оглед (Lavadinović et al., 2018). Узроковане су четине светлости – са горње трећине крошње стабала. Анализиране су једнодишње четине. Четине су сушене до апсолутно сувог стања на 105°C, самлевене у прах и спаљене у платинским посудама. Садржај калијума одређен је аналиزمом пламена после превођења у хлориде, при чему је коришћена пламен-фотометријска техника одређивања.

Одступање садржаја калијума у четинама сваке појединачне провенијенције дуглазије одређено је Z-тестом, према следећој формулни:

\[Z = \frac{\bar{X} - x}{\sigma} \]

при чему је:
\(\bar{X} \) – средња вредност садржаја калијума у четинама за све провенијенције;
\(X \) – садржај калијума у свакој појединачној провенијенцији; и
\(\sigma \) – стандардна девијација садржаја калијума у четинама.

Слика 1. Природно географско распрострањење дуглазије (Канада и САД)
Применом корелационих анализа испитивана је зависност између садржаја калијума у четинама дуглазије и таксационих елемената стабала – средњег пречника, средње висине, темељнице, запремине и запреминског прираста. Анализом мултипле регресије констатована је зависност садржаја калијума у четинама дуглазије, где су као независно променљиве коришћене географске карактеристике анализираних провенијенција (географска ширина, географска дужина и надморска висина). Све статистичке анализе су изведене применом рачунарског програма Statistica (StatSoft Inc., Tulsa, OK, 1997).

Табела 1. Географске карактеристике провенијенција дуглазије пореклом из САД

Шифра	Ознака	Географска ширина (°N)	Географска дужина (°E)	Надморска висина (м)
Орегон 205–15	1	43,7	123,0	750
Орегон 205–14	2	43,8	122,5	1200
Орегон 202–27	3	45,0	122,4	450
Орегон 205–38	4	45,0	121,0	600
Вашингтон 204–07	9	49,0	119,0	1200
Орегон 205–13	10	43,8	122,5	1050
Орегон 205–18	11	44,2	122,2	600
Орегон 202–22	12	42,5	122,5	1200
Вашингтон 202–17	15	47,6	121,7	600
Орегон 201–10	16	44,5	119,0	1350
Вашингтон 201–06	17	49,0	120,0	750
Орегон 202–19	18	45,3	123,8	300
Орегон 205–11	20	45,0	123,0	150
Нови Мексико 202–04	22	32,9	105,7	2682
Нови Мексико 202–10	23	36,0	106,0	2667
Орегон 202–31	24	44,3	118,8	1500
Орегон 205–29	26	42,6	122,8	900
Орегон 205–08	27	42,7	122,5	1050
Орегон 204–04	30	45,0	121,5	900
Вашингтон 205–17	31	47,7	123,0	300

(Lavadinović, 1995)

РЕЗУЛТАТИ СА ДИСКУСИЈОМ

Земљиште на којем је постављен провенијенцијични оглед је по типу кисело смеђе земљиште (дистрични камбисол). По текстурном саставу, земљиште код првог анализираног профилака припада песковитим иловачама, а код другог – иловачама које су на прелазу према песковитим иловачама. Обезбеђеност хумусног и калијумског прираста забележена је средња до добра, док је камбични хоризонт слабо обезбеђен овим елеменатом код оба профила (табела 2). Лак текстурни састав земљишта омогућава добру

100
исхрану калијумом, чак и при нижим концен-
трацијама овог елемента у земљишту. Код пе-
sковитијих земљишта већи део приступачног
калијума биљкама је у облику лако растворљи-
vих соли, док је код глиновитих он адсорбован
на површини глинених минерала.
Количине калијума у четинама испитиваних
провенијенција дуглазије присутне су у дијапа-
зону од 0,83% (Орегон 205–38) до 1,40% (Орегон
205–14). Просечни садржај калијума у четинама
дуглазије анализираних провенијенција износи
1,03%. Највећа количина калијума констатована
је код провенијенције "Орегон 205–14", која је
и једина провенијенција код које садржај кали-
јума статистички значајно одступа од просека,
odносно код које је Z-вредност већа од 1,96
стандардних девијација (табела 3; графикон
1). Како разлике у концентрацијама појединих
хемијских елемената код провенијенција могу
указати на њихове специфичности у усвајању
елемената, наведена провенијенција се може
окарактерисати као супериорна за усвајање
и акумулацију овог елемента.

Иако калијум има врло важну улогу у ра-
зличитим физиолошким процесима у биљним
ћелијама и ткивима, резултати показују да не
постоји значајна корелација између његовог
садржаја у четинама и анализираних таксаци-
оних елемената стабала. С обзиром да су све
испитиване провенијенције на огледним пољи-
ма малих површина, са практично уједначеним
станишним условама, а и обезбеђеност земљи-
шта приступачним калијумовим једињењима
је добра, може се рећи да утврђена варијабил
ност у садржају калијума вероватно представља
последицу различитих генетских
специфичности појединих провенијенција ду-
глазије за усвајање овог елемента.

Табела 2. Својства земљишта на огледном пољу на планини Јухор у централној Србији

Профил	Дубина (см)	pH	H₂O	KCl	Хумус (%)	C (%)	N (%)	C/N	Лако приступачни K₂O (mg/100)	Песак (%)	Прах (%)	Глина (%)	Текстурна класа
1	0–24	5,18	3,80	4,76	2,76	0,28	9,8	17,7	60,8	27,8	10,5		Песковито иловача
	24–70	5,82	3,80	0,83	0,46	–	–	8,5	65,2	21,6	13,2		Песковито иловача
2	0–20	5,40	4,06	4,82	2,80	0,29	9,6	23,0	48,6	40,0	11,4		Иловача
	20–50	5,23	3,54	1,21	0,70	–	–	8,1	48,4	38,5	13,1		Иловача
	50–80	5,35	3,59	0,57	0,33	–	–	8,1	48,4	32,0	19,6		Иловача
На основу мултипле корелације – при чему је као зависнопроменљива узет садржај калијума у четинама дуглазије, док су независне променљиве географске карактеристике природних налазишта испитиваних провенијенција ове врсте – добијена је следећа једначина регресије:

\[K = -1,6639 - 0,0023 \text{ GŠ} + 0,0022 \text{ GD} + 0,0001 \text{ NV} \]

при чему је:
- \(K \) – проценат калијума у четинама испитиваних провенијенција;
- \(\text{GŠ} \) – географска ширина природних налазишта испитиваних провенијенција;
- \(\text{GD} \) – географска дужина природних налазишта испитиваних провенијенција; и
- \(\text{NV} \) – надморска висина природних налазишта испитиваних провенијенција.

Мултипло-корелационом анализом констатовано је да нема статистички значајне зависности усвајања калијума из земљишта од географских карактеристика различитих провенијенција дуглазије (табела 5; графикон 2).

Даља испитивања би требало да утврде да ли постоје позитивне корелације у односу на нека друга својства провенијенција, као што су физиолошка виталност, отпорност на болести, сушу, ниске температуре, аерозагађење и друге стресне чиниоце околне средине. Доступност хемијских елемената спада у чиниоце који утичу на отпорност дуглазије на хладноћу (Lavender, Hermann, 2014). Тако, Alden (1971) наводи да су стабла у културама у којима су калијум и азот били дефицитарни елементи била значајно мање отпорна на хладноћу током њиховог аклimatизационог периода него што је то био случај са стаблима у културама.

Узорак провенијенција	Ознака	Пречник \(d \) (cm)	Висина \(h \) (m)	Темељница \(g \) (m²)	Запремина \(v \) (м³)	Зап. прир. \(Iv \) (м³)	K (%)	Z-скор
Орегон 205–15	1	14,8	10,8	35,8	179,5	20,1	0,96	-0,469
Орегон 205–14	2	14,6	10,2	34,9	174,7	22,2	1,40	2,499
Орегон 202–27	3	15,5	10,6	39,3	201	35,1	0,88	-1,008
Орегон 205–38	4	15,0	10,3	38,8	187,8	26,3	0,83	-1,346
Вашингтон 204–07	9	6,8	4,8	8,7	30,9	3,3	0,91	-0,806
Орегон 205–13	10	14,5	10,3	34,4	170,4	26,4	0,86	-1,143
Орегон 205–18	11	14,6	9,9	34,9	173	23,1	1,18	1,015
Орегон 202–22	12	15,1	10,0	37,3	181,2	28,0	0,9	-0,873
Вашингтон 202–17	15	14,8	10,4	35,8	177,4	27,9	1,02	-0,064
Орегон 201–10	16	10,9	7,2	19,4	86,2	9,4	1,02	-0,064
Вашингтон 201–06	17	11,3	7,1	20,9	90,8	13,3	0,99	-0,266
Орегон 202–19	18	15,0	10,7	36,8	186,3	27,7	1,13	0,678
Орегон 205–11	20	15,2	10,0	37,8	179,8	22,8	1,00	-0,199
Нови Мексико 202–04	22	11,5	7,7	21,6	102,8	16,5	0,90	-0,873
Нови Мексико 202–10	23	11,3	7,8	20,9	94,4	11,9	0,98	-0,334
Орегон 202–31	24	8,3	5,6	11,3	47,4	5,7	1,13	0,678
Орегон 205–29	26	15,1	10,1	37,3	183,5	21,1	1,19	1,082
Орегон 205–08	27	14,7	10,6	35,3	175,9	23,6	1,01	-0,132
Орегон 204–04	30	14,0	9,7	32,1	157,3	26,8	1,28	1,689
Вашингтон 205–17	31	14,5	11,0	34,4	177,7	28,6	1,02	-0,064

Просек 1,030
Стандардна девијација 0,1483
Табела 4. Резултати корелационих анализа зависности појединих таксационих елемената од садржаја калијума у четинама различитих провенијенција дуглазије

Таксациони елемент	Бета	Стандардна грешка од бета	B	Стандардна грешка од B	T(18)	p	R	R^2
Пречник	0,100	0,2345	0,060	0,0140	0,4267	0,6746	0,1001	0,0100
Висина	0,0994	0,2345	0,080	0,0189	0,4240	0,6766	0,0994	0,0099
Темељница	0,0721	0,2351	0,011	0,0037	0,3066	0,7627	0,0721	0,0052
Запремина	0,0866	0,2348	0,002	0,0007	0,3687	0,7167	0,0866	0,0075
Запремински прираст	-0,0100	0,2357	-0,002	0,00417	-0,0425	0,9665	0,0100	0,0001

Графикон 1. Међупровенијенични варијабилитет садржаја калијума у четинама дуглазије

које нису биле дефицитарне у овим елементима. Међутим, Larsen (1978) претпоставља да боље преживљавање зимских услова код дуглазије са довољним количинама калијума у ткивима није последица њене веће отпорности на мраз, већ отпорности на сушу у мразном периоду. Larsen (1983) је истраживао утицај снадбевања азотом и калијумом на отпорност на сушу код двогодишњих садница дуглазије из Снокволмија (Вашингтон), које су биле гајене у огледним условима и третиране са 11 различитих нивоа снадбевања овим нутријентима. Утврдио је да калијум има веома позитивно дејство на отпорност на сушу код испитиваних биљака. Ипак, у огледу који је извео Timmis (1974), на једногодишњим садницама дуглазије са пацифичке обале, установљено је да саднице које нису биле снадбевене азотом, а добијале су
Фосфор и калијум, нису биле довољно отпорне на хладноћу да би преживеле зимске услове у свом природном ареалу. Резултати овог истраживања указују на то да је отпорност испитаних биљака на хладноћу у већој мери зависна од односа између нутријената него ли доступно сти појединачном нутритивном елементу.

ТАБЕЛА 5. Параметри мултиплег регресије – зависност усвајања калијума од географских карактеристика провенијенција

| Независно про-
менљиве	Бета	Стандардна грешка од бета	B	Стандардна грешка од B	T(18)	ρ
Слободни члан једначине	-1,66388	2,013141	-0,826509	0,420670		
Географска ширина	-0,059926	0,394203	-0,00233	0,015336	-0,152019	0,881073
Географска дужина	0,766299	0,545942	0,02227	0,015866	1,403627	0,179541
Надморска висина	0,544260	0,580073	0,00012	0,000127	0,938261	0,362059

R = 0,3445
R² = 0,1187
p<0,55560

ГРАФИКОН 2. Садржај калијума забележен у четинама анализираних провенијенција дуглазије и вредност калијума која је израчуната према једначини мултиплег регресионе анализе

ЗАКЉУЧИЦИ

Найвећа количина калијума констатована је код провенијенције „Орегон 205–14“. То је истовремено и једина провенијенција код које је садржај калијума статистички знатно већи од просека, те би се она могла окарактерисати као...
суperiорнија за усвајање и акумулацију овог елемената. Провенијенције из Орегона имају већу варијабилност садржаја калијума у четинама од осталих провенијенција, будући да је и најмањи садржај калијума констатован код једне провенијенције из Орегона (Орегон 205–38). Анализом мултипле регресије није констатована значајна корелација између географских карактеристика провенијенција.

Иако калијум има значајну улогу у различитим физиолошким процесима, добијени резултати показују да не постоји значајна корелација између садржаја калијума у четинама дуглазије и таксационих елемената (средњег пречника провенијенција, висине, темељнице, запремине, као и запреминског прираста). То је вероватно резултат повољних услова исхране овим елементом на станишту где је постављен провенијенички оглед.

Даља испитивања би требало да покажу да ли постоје позитивне корелације садржаја калијума у односу на нека друга својства провенијенција, као што су физиолошка виталност, опорнност на болести, сушу, нiske температуре, аерозагађење и друге стресне чиниоце околне средине. Постојање разлика у концентрацијама појединих хемијских елемената код провенијенција могу указати на присуство специфичности у усвајању тих елемената. Ово је важно пошто садржај калијума у ткивима дуглазије спада у чиниоце који утичу на њену опорност на стресне чиниоце (хладноћу и сушу), што даље опредељује селективну примену одговарајућих провенијенција на одређеним стаништима у шумарској пракси.

Напомена: Рад је реализован у оквиру пројеката „Развој технологских процеса у шумарству у циљу реализације оптималне шумовитости“ (31070) и „Истраживање климатских промена и њиховог утицаја на животну средину: праћење утицаја, адаптација и ублажавање (43007), које финансира Министарство просвете, науке и технологског развоја Републике Србије у оквиру интегрисаних и интердисциплинарних истраживања за период 2011–2019. год.
Douglas-fir is one of the most common conifer species in the forest plantations of Europe. The provenance test model is based on the analysis of the properties (growth, anatomical, physiological, chemical, mechanical and other properties) of Douglas-fir in order to justify the transfer of seeds from North America to the ecosystems of Serbia. This type of program has been implemented in Serbia on several locations using different Douglas-fir provenances. Given that the analysis of different physiological properties of trees is important for the introduction of specified provenances into habitats in Serbia, in this paper the variability of potassium concentration in young Douglas-fir needles of different provenances was examined in an experimental field in Serbia. Potassium is very important in the physiological processes of plants. It is an essential element involved in a number of biochemical and physiological processes and plays a significant role in the adaptation of plants to biotic and abiotic stress factors. The highest potassium concentration was found in the “Oregon 205–14” provenance – the only provenance in which the potassium concentration was significantly higher than the average value, so it can be characterized as a superior provenance for the uptake and accumulation of this element. It was found that, at this stage of development, the differences in the potassium concentration in trees in the provenance test have no significant effect on growth parameters. Further studies should show whether the concentration of this biogenic element in any way affects other properties important for the selection of provenances during the introduction process, such as resistance to stress factors.

Key words: Douglas-fir, provenances, potassium, introduction, Serbia

INTRODUCTION

Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] is a very tall, fast-growing conifer species native to North America. Under optimal conditions, this species reaches a height of over 100 m, a diameter of 4 m, and the age of 1300 years or more. In a natural environment, it is widespread in the western part of North America – from British Columbia (Canada) in the north to Mexico in the south (Fig. 1). Douglas-fir was introduced into Europe at the beginning of the 19th century and nowadays it is grown in many countries. This conifer is one of the most economically important tree species for the production of wood forest products (Hermann, Lavender, 1990). Douglas-fir is an integral part of forest management in many countries due to its economic importance and the assumption that this species is able to resist climate change (Lavender, Hermann, 2014). This is one of the most important conifer species in plantations which are used for afforestation in France, Germany, Poland, the United Kingdom and New Zealand (Birot, Burzynski, 1981; Curt et al., 2001; Goßner, Simon, 2002; Goßner, Ammer, 2006; Isaac-Renton, 2013; Bastien et al., 2013). Douglas-fir is the second most abundant species in European forests, covering more than

VARIABILITY OF POTASSIUM CONCENTRATION IN THE NEEDLES OF DOUGLAS-FIR PROVENANCES

Abstract: Douglas-fir is one of the most common conifer species in the forest plantations of Europe. The provenance test model is based on the analysis of the properties (growth, anatomical, physiological, chemical, mechanical and other properties) of Douglas-fir in order to justify the transfer of seeds from North America to the ecosystems of Serbia. This type of program has been implemented in Serbia on several locations using different Douglas-fir provenances. Given that the analysis of different physiological properties of trees is important for the introduction of specified provenances into habitats in Serbia, in this paper the variability of potassium concentration in young Douglas-fir needles of different provenances was examined in an experimental field in Serbia. Potassium is very important in the physiological processes of plants. It is an essential element involved in a number of biochemical and physiological processes and plays a significant role in the adaptation of plants to biotic and abiotic stress factors. The highest potassium concentration was found in the “Oregon 205–14” provenance – the only provenance in which the potassium concentration was significantly higher than the average value, so it can be characterized as a superior provenance for the uptake and accumulation of this element. It was found that, at this stage of development, the differences in the potassium concentration in trees in the provenance test have no significant effect on growth parameters. Further studies should show whether the concentration of this biogenic element in any way affects other properties important for the selection of provenances during the introduction process, such as resistance to stress factors.

Key words: Douglas-fir, provenances, potassium, introduction, Serbia

INTRODUCTION

Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] is a very tall, fast-growing conifer species native to North America. Under optimal conditions, this species reaches a height of over 100 m, a diameter of 4 m, and the age of 1300 years or more. In a natural environment, it is widespread in the western part of North America – from British Columbia (Canada) in the north to Mexico in the south (Fig. 1). Douglas-fir was introduced into Europe at the beginning of the 19th century and nowadays it is grown in many countries. This conifer is one of the most economically important tree species for the production of wood forest products (Hermann, Lavender, 1990). Douglas-fir is an integral part of forest management in many countries due to its economic importance and the assumption that this species is able to resist climate change (Lavender, Hermann, 2014). This is one of the most important conifer species in plantations which are used for afforestation in France, Germany, Poland, the United Kingdom and New Zealand (Birot, Burzynski, 1981; Curt et al., 2001; Goßner, Simon, 2002; Goßner, Ammer, 2006; Isaac-Renton, 2013; Bastien et al., 2013). Douglas-fir is the second most abundant species in European forests, covering more than
800,000 hectares. The largest areas under this conifer are found in France, followed by Germany where it has quickly become the most widespread allochthonous tree species (Speecker et al., 2019).

Douglas-fir is a highly adjustable species, able to grow in different climate conditions. Although deep, moist and well-drained soils suit it better, it also grows on different substrates. It quickly occupies areas devastated by forest fires or other environmental disturbances; it tolerates shade, so it grows well under tree canopies. In its natural habitat, Douglas-fir covers a wide range of altitudes, from about 0 m on the Pacific coast up to 3,200 m in the Rocky Mountains (2019).

The process of introduction of Douglas-fir in Serbia has begun at the Institute of Forestry in Belgrade by setting up the provenance tests and by studying this conifer species and its characteristics (Lavadinović, 1995, 2009; Lavadinović, Koprivica, 1996; Lavadinović et al., 2018, 2018a). The introduction of a species is justified only if the introduced species has a better quality than the native tree species. Adaptability, productivity, as well as the suitability of introduced species, with a wide natural range, must be tested by provenance tests, which is also the aim of the study of Douglas-fir in Serbia.

The importance of potassium in the physiological processes of plants is considerable. This biogenic macronutrient activates more than 50 enzymes and as a cofactor participates in a series of enzymatic reactions which take place in photosynthesis, respiration and other processes. Potassium plays a significant role in the neutralization of excess organic acids in the cell, hydration of colloids of protoplasm, osmoregulation, as well as in the mechanism of opening and closing stomatal pores. It is important in the processes of synthesis, transport and accumulation of carbohydrates. It increases resistance to drought and other stress factors (low temperatures, salts, diseases, air pollution, etc.). Potassium plays a significant role in the regulation of active transport across cell membrane and the uptake of other essential elements, as well as in protection against oxidative stress, because it regulates the activity of enzymes involved in the detoxification of reactive oxygen (ROS) (Wang et al., 2013). The potassium concentration in leaves is normally in the range from 0.75% to 2.5% (Đunisijević-Bojović, 2019). Plants are considered to be exposed to acute deficiency if the potassium concentration in leaves is below 0.6%. The importance of potassium in plant metabolism is also indicated by the fact that plants absorb it most intensively in the earliest stages of their development. Potassium is mostly accumulated in meristematic zones and vacuoles. The amount of potassium in plant tissue depends on the species, organ and age of the plant. With the increase of potassium concentration, the uptake of SO_2 and the synthesis of carbohydrates and proteins also increase in plants, while in its absence the process of photosynthesis slows down, and respiration becomes more intense. Plants that are characterized by increased carbohydrate synthesis, which affect the synthesis of cellulose and hemicellulose and whose role is important in the construction of the cell walls and vessels, are called “potassium plants”. Among the species of trees with this phenomena are beech, eastern black walnut, etc. (Nešković et al., 2003; Oljaća et al., 2006).

Plant-available potassium in the soil is present in the form of water-soluble salts and in adsorbed form on the surface of colloidal particles. The decomposition of potassium primary minerals leads to the creation of these forms of potassium. There is a dynamic balance in soil between the water-soluble and adsorbed potassium. The potassium concentration in solution reduces by its adsorption, and the adsorbed potassium transfers from the adsorptive complex to the soil solution. The water-soluble potassium is more readily available than the absorbed one. This means that the uptake of potassium is more difficult from clay soils than from sandy soils.

The adsorbed potassium is a very common ion in the adsorptive complex and can be easily replaced by other cations by substitution. The antagonism between K^+ and Na^+, NH_4^+, Ca^{2+}, Mg^{2+} has been observed so far, and therefore their relationship in the nutrient environment is very important from the point of view of mineral nutrition. Plants quickly absorb it through their leaves, as well. The inclusion of essential macronutrients in nutrition is the most effective method for improving the quality and producing biomass of seedlings and forest trees, which can significantly shorten the rotation

VARIABILITY OF POTASSIUM CONCENTRATION IN THE NEEDLES OF DOUGLAS-FIR PROVENANCES
period (Ingestad, 1973). A good supply of basic biogenic elements prevents the occurrence of chlorosis in the post-transplant period and affects better survival, physiological vitality, as well as further plant growth and development (Djukic et al., 2004).

In this paper, the analysis of the potassium concentrations was conducted in needles of 20 Douglas-fir provenances, originating from a number of North American sites of different geographical latitudes, longitudes and elevations.

MATERIAL AND METHODS

Table 1 shows geographical characteristics of the provenances from which the seeds originate. The seed collection covers a part of the Douglas-fir natural range from New Mexico in the south, along the Pacific coast and the Rocky Mountains, to British Columbia in the north of America.

The provenance test with 20 Douglas-fir provenances originating from North America was set on Mt. Juhor in central Serbia.

Two soil profiles were formed on the field plot for the purpose of soil analysis. The type of soil was determined, and the samples were taken for laboratory analyses. The plant-available potassium was determined by the Al method, according to Egner-Rihm (Džamić et al., 1996). The textural composition was determined by the sedimentation using Na-pyrophosphate as a peptizing agent (Ratz, 1971), while the active soil acidity and reserve soil acidity were determined using a potentiometer (Knežević, Košanin, 2008).

Fresh Douglas-fir needles were sampled for the analysis of the potassium concentration at the site where the provenance test was set (Lavadinović et al., 2018). The one-year-old needles from the upper part of the crown (the top third of the crown) were sampled and analyzed. The needles were dried to the absolutely dry state at 105°C, grounded to powder and burned in platinum vessels. The potassium concentration was determined by the ash analysis, after conversion to chlorides, using the flame photometric determination technique.

The deviation of potassium concentration in the needles of each Douglas-fir provenance was determined by the Z-test, according to the following formula:

\[Z = \frac{\bar{X} - X}{\sigma} \]

where:
- \(\bar{X}\) is the mean value of the potassium concentration in the needles of all Douglas-fir provenances;
- \(X\) is the potassium concentration in each Douglas-fir provenance;
- \(\sigma\) is the standard deviation of the potassium concentration in the needles.

The correlation analysis was used to examine the dependence of the potassium concentration in the Douglas-fir needles and the mensurational parameters – mean diameter, mean height, basal area, volume and volume increment. The multiple regression analysis revealed the dependence of potassium concentration in the Douglas-fir needles, and geographical characteristics of the analyzed provenances (latitude, longitude and altitude) were used as independent variables. All statistical analyses were performed using the statistical software Statistica (StatSoft Inc., Tulsa, OK, 1997).
RESULTS AND DISCUSSION

The soil on which the provenance test was established is acid brown soil (dystric cambisol). Based on the textural composition, the soil in the first analyzed profile was sandy loam, and in the second one – loam in transition to sandy loam. The plant-available potassium in the humus-accumulative horizon is medium to good, while the cambic horizon is poor with this element in both profiles (Table 2). The airy textural composition of the soil enables good nutrition with potassium, even if concentrations of this element are lower. In sandy soils plant-available potassium is in the form of easily soluble salts, while in clay soils it is adsorbed on the surface of clay minerals.

The potassium concentrations in the needles of the studied Douglas-fir provenances range from 0.83% (Oregon 205–38) to 1.40% (Oregon 205–14). The average potassium concentration in the needles of the studied Douglas-fir provenances is 1.03%. The highest amount of potassium was found in the provenance “Oregon 205–14”, which is the only provenance with the potassium concentration that significantly deviates from the average, i.e. where the Z-value is higher than the para1.96 standard deviations (Table 3; Graph 1). Since the differences in the concentrations of particular chemical elements in provenances may indicate their peculiarities in the adsorption of the elements, it can be concluded that provenance “Oregon 205–14” has a superior potassium

Code	Mark	Geographical latitude (°N)	Geographical longitude (°E)	Altitude (m)
Oregon 205–15	1	43.7	123.0	750
Oregon 205–14	2	43.8	122.5	1200
Oregon 202–27	3	45.0	122.4	450
Oregon 205–38	4	45.0	121.0	600
Washington 204–07	9	49.0	119.0	1200
Oregon 205–13	10	43.8	122.5	1050
Oregon 205–18	11	44.2	122.2	600
Oregon 202–22	12	42.5	122.5	1200
Washington 202–17	15	47.6	121.7	600
Oregon 201–10	16	44.5	119.0	1350
Washington 201–06	17	49.0	120.0	750
Oregon 202–19	18	45.3	123.8	300
Oregon 205–11	20	45.0	123.0	150
New Mexico 202–04	22	32.9	105.7	2682
New Mexico 202–10	23	36.0	106.0	2667
Oregon 202–31	24	44.3	118.8	1500
Oregon 205–29	26	42.6	122.8	900
Oregon 205–08	27	42.7	122.5	1050
Oregon 204–04	30	45.0	121.5	900
Washington 205–17	31	47.7	123.0	300

(Lavadinovic, 1995)
absorption and accumulation capacity. Slightly higher amounts of potassium than the average value were found only in Oregon provenances (Oregon 202–19, Oregon 202–31, Oregon 205–18, Oregon 205–29, Oregon 204–04 and Oregon 205–14). The lowest potassium concentration in the needles was also detected in Oregon provenances (Oregon 205–38, Oregon 205–13 and Oregon 202–27). In these provenances, the deviation of potassium concentration in the needles was not significantly different from the average value for the studied provenances, but it was larger than one standard deviation. All provenances originating from Washington and New Mexico had smaller potassium concentrations in the needles than the average value, while their deviation from the average concentration was less than one standard deviation. The measured concentrations in the needles were within the normal range, and therefore they do not indicate a deficiency or surplus of this nutrient.

According to the presented results of the analysis of the variability of Douglas-fir provenances in terms of potassium concentration in needles, there was no significant statistical dependence between the mensurational parameters (mean diameter, mean height, basal area, volume and volume increment) and the potassium concentration in the Douglas-fir needles (Table 4).

Although potassium plays a very important role in various physiological processes in plant cells and tissues, the results showed that there was no significant correlation between its concentration in the needles and the analyzed mensurational parameters of trees. Considering that all studied provenances are located in small experimental fields, with uniform habitat conditions, and that plant-available potassium compounds in the soil are very common, it can be concluded that potassium concentration in the needles varies due to different genetic properties of some Douglas-fir provenances in terms of their adsorption of this element.

Based on the multiple correlation analysis where potassium concentration in Douglas-fir needles was the dependent variable and the independent variables were geographical characteristics of the provenance natural habitats – the following regression equation was obtained:

\[K = -1.6639 - 0.0023 \text{GŠ} + 0.0022 \text{GD} + 0.0001 \text{NV} \]

where:
- \(K \) is the potassium percentage in the needles of the studied provenances;
- \(\text{GŠ} \) is the geographical altitude of the natural habitats of the studied provenances;
- \(\text{GD} \) is the geographical longitude of the natural habitats of the studied provenances; and
- \(\text{NV} \) is the altitude of natural habitats of the studied provenances.

Multiple correlation analysis has shown that there is no statistically significant dependence between potassium adsorption from soil and the geographical characteristics of different Douglas-fir provenances (Table 5; Graph 2).

Further studies should determine whether there are positive correlations between potassium adsorption and other provenance properties,

Table 2. Soil characteristics on experimental site at Mt. Juhor in central Serbia

Profile	Depth (cm)	pH	H₂O	KCl	Humus (%)	C (%)	N (%)	C/N	Easily accessible K₂O (mg/100)	Sand (%)	Silt (%)	Clay (%)	Textural class
1	0–24	5.18	3.80	4.76	2.76	0.28	9.8	17.7	60.8	27.8	10.5	Sandy loam	
	24–70	5.82	3.80	0.83	0.46	–	–	8.5	65.2	21.6	13.2	Sandy loam	
2	0–20	5.40	4.06	4.82	2.80	0.29	9.6	23.0	48.6	40.0	11.4	Loam	
	20–50	5.23	3.54	1.21	0.70	–	–	8.1	48.4	38.5	13.1	Loam	
	50–80	5.35	3.59	0.57	0.33	–	–	8.1	48.4	32.0	19.6	Loam	
Table 3. Mensurational parameters of different Douglas-fir provenances and potassium concentration in their needles

Provenance sample	Mark	Diameter d (cm)	Height h (m)	Basal area g (m²)	Volume v (m³)	Volume increment Iv (m³)	K (%)	Z-score
Oregon 205–15	1	14.8	10.8	35.8	179.5	20.1	0.96	-0.469
Oregon 205–14	2	14.6	10.2	34.9	174.7	22.2	1.40	2.499
Oregon 202–27	3	15.5	10.6	39.3	201	35.1	0.88	-1.008
Oregon 205–38	4	15.0	10.3	38.8	187.8	26.3	0.83	-1.346
Washington 204–07	9	6.8	4.8	8.7	30.9	3.3	0.91	-0.806
Oregon 205–13	10	14.5	10.3	34.4	170.4	26.4	0.86	-1.143
Oregon 205–18	11	14.6	9.9	34.9	173	23.1	1.18	1.015
Oregon 202–22	12	15.1	10.0	37.3	181.2	28.0	0.9	-0.873
Washington 202–17	15	14.8	10.4	35.8	177.4	27.9	1.02	-0.064
Oregon 201–10	16	10.9	7.2	19.4	86.2	9.4	1.02	-0.064
Washington 201–06	17	11.3	7.1	20.9	90.8	13.3	0.99	-0.266
Oregon 202–19	18	15.0	10.7	36.8	186.3	27.7	1.13	0.678
Oregon 205–11	20	15.2	10.0	37.8	179.8	22.8	1.00	-0.199
New Mexico 202–04	22	11.5	7.7	21.6	102.8	16.5	0.90	-0.873
New Mexico 202–10	23	11.3	7.8	20.9	94.4	11.9	0.98	-0.334
Oregon 202–31	24	8.3	5.6	11.3	47.4	5.7	1.13	0.678
Oregon 205–29	26	15.1	10.1	37.3	183.5	21.1	1.19	1.082
Oregon 205–08	27	14.7	10.6	35.3	175.9	23.6	1.01	-0.132
Oregon 204–04	30	14.0	9.7	32.1	157.3	26.8	1.28	1.689
Washington 205–17	31	14.5	11.0	34.4	177.7	28.6	1.02	-0.064

Average 1.030
Standard deviation 0.1483

Table 4. Results of the correlation analysis of dependence of some mensurational parameters on potassium concentration in the needles of different Douglas-fir provenances

Mensurational parameter	Beta	Standard deviation of beta	B	Standard deviation of B	T(18)	p	R	R²
Diameter	0.100	0.2345	0.0060	0.0140	0.4267	0.6746	0.1001	0.0100
Height	0.0994	0.2345	0.0080	0.0189	0.4240	0.6766	0.0994	0.0099
Basal area	0.0721	0.2351	0.0011	0.0037	0.3066	0.7627	0.0721	0.0052
Volume	0.0866	0.2348	0.0002	0.0007	0.3687	0.7167	0.0866	0.0075
Volume increment	-0.0100	0.2357	-0.0002	0.00417	-0.0425	0.9665	0.0100	0.0001
such as physiological vitality, resistance to diseases, drought, low temperatures, air pollution and other environmental stressors. The availability of chemical elements is one of the factors that affect the resistance of Douglas-fir to frost (Lavender, Hermann, 2014). For example, Alden (1971) stated that trees in populations in which potassium and nitrogen were deficient elements were significantly less resistant to cold during their acclimatization period than trees in populations that had a surplus of these elements. However, Larsen (1978) hypothesized that the better survival of winter conditions in Douglas-fir with sufficient amounts of potassium in tissues

Independent variables	Beta	Standard deviation of beta	B	Standard deviation of B	T(18)	p
Free member of the equation	-1.66388	2.013141	-0.826509	0.420670	R= 0.3445	
Geographical latitude	-0.059926	0.394203	-0.00233	0.015336	R²= 0.1187	
Geographical longitude	0.766299	0.545942	0.02227	0.015866	1.403627	p<0.55560
Altitude	0.544260	0.580073	0.00012	0.000127	0.938261	0.362059

Graph 1. Variability of Douglas-fir provenances in terms of potassium concentration in their needles

Table 5. Multiple regression parameters – dependence of potassium uptake on geographical characteristics of provenances
was not due to the higher resistance to frost, but to drought in the frost period. Larsen (1983) studied the effect of nitrogen and potassium supply on drought resistance in 2-year-old Douglas-fir seedlings from Snoqualmie (Washington), which were grown under experimental conditions and treated by 11 different supply levels of these nutrients. He found that potassium had a very positive effect on drought resistance in the tested plants.

On the other hand, the experiment performed by Timmis (1974) on one-year-old Douglas-fir seedlings from the Pacific coast showed that seedlings free of nitrogen, but rich in phosphorus and potassium, were not cold-resistant enough to survive winter conditions even in their natural habitats. The results of this study indicate that the resistance of the tested plants to frost is more dependent on the relationships between the nutrients than on the availability of an individual nutrient.

CONCLUSIONS

The highest potassium concentration was found in provenance “Oregon 205–14” – the only provenance in which potassium concentration was significantly higher than the average value, so it can be characterized as a superior provenance for the uptake and accumulation of this element. Oregon provenances have a greater variability of potassium concentrations in needles than other provenances, considering that the lowest potassium content was also found in an Oregon provenance (Oregon 205–38). The multiple regression analysis showed no significant correlation between the geographical characteristics of the provenances.

Although potassium plays a significant role in various physiological processes, the obtained results show that there is no significant correlation

Graph 2. Potassium content recorded in the needles of the analyzed Douglas-fir provenances and the potassium value calculated according to the multiple regression equation.
between the potassium concentration in Douglas-fir needles and mensurational parameters (i.e. mean diameter, height, basal area, volume, and volume increment). This is probably the result of favorable conditions of nutrition with this element in the habitat where the provenance experiment was set.

Further studies should show whether there are positive correlations between potassium concentrations and other provenance properties, such as physiological vitality, resistance to diseases, drought, low temperatures, air pollution and other environmental stressors. The existence of differences in the concentrations of particular chemical elements in provenances may indicate their peculiarity in the adsorption of these elements. This is important because potassium concentration in Douglas-fir tissues is one of the factors that affect its resistance to stress factors (such as cold and drought) and it could determine the future selective application of suitable provenances in certain habitats in forestry practice.

Note: The research is completed within the projects “The development of technological processes in forestry in order to realize the optimal forest cover” (No. 31070) and “Studying climate change and its influence on the environment: impacts, adaptation and mitigation” (No. 43007), financed by the Ministry of Science and Technological Development of the Republic of Serbia within integrated and interdisciplinary researches for the period 2011–2019.
Larsen J. B. (1978): Die Frostresistenz von 60 verschiedenen Douglasienherkünften sowie über den Einfluss der Nährstoffversorgung auf die Frostresistenz der Douglasie, Schriftenreihe aus der Forstlichen Fakultät der Universität Göttingen, Göttingen

Larsen J. B. (1983): Trockenresistenz, Wasserhaushalt und Wachstum junger Douglasien (Pseudotsuga menziesii) und Küstentanne (Abies grandis) in Abhängigkeit von der Nährstoffversorgung, Det forstlige Forsøgsvesen i Danmark 39 (1–82)

Lavadinović V. (1995): Promenljivost 29 provenijencija duglazije u test kulturama Srbije u cilju unapređenja introdukcije ove vrste, Magistarski rad, Šumarski fakultet, Beograd

Lavadinović V. (2009): Genetske i ekološke komponente varijabilnosti duglazije (Pseudotsuga menziesii Mirb. Franco) u provenijeničnim testovima na području Srbije, Doktorska disertacija, Univerzitet u Beogradu, Šumarski fakultet, Beograd

Lavadinović V., Koprivica M. (1996): Tracheid width of different Douglas-fir (Pseudotsuga taxifolia Britt.) provenances in test plantations in the region of Serbia, Proceedings of the Second International Conference on the Development of Wood Science Technology and Forestry, Sopron (287–296)

Lavadinović V., Obratov-Petković D., Rakonjac Lj., Miletić Z., Jovanović F. (2018): Uticaj lokaliteta i provenijencije na širinu transfuzionog parenhima četina duglazije, Glasnik Šumarskog fakulteta 118, Univerzitet u Beogradu – Šumarski fakultet, Beograd (63–76)

Lavadinović V. S., Miletić Z., Rakonjac Lj., Lavadinović V. M. (2018a): Magnesium concentration in the Canadian Douglas-fir needles of different provenances, Sustainable Forestry 77/78, Institute of Forestry, Belgrade (45–55)

Lavender D. P., Hermann R. K. (2014): Douglas-fir: The genus Pseudotsuga, Oregon Forest Research Laboratory, Oregon State University, Corvallis

Nešković M., Konjević R., Ćulafić L. (2003): Fiziologija biljaka, NNK-International, Beograd

Oljača R., Krstić B., Pajević S. (2006): Fiziologija biljaka, Šumarski fakultet Univerziteta u Banjoj Luci, Banja Luka

Pseudotsuga menziesii, Douglas fir, European Forest Genetic Resources Programme (EUFORGEN), http://www.euforgen.org/species/pseudotsuga-menziesii.html (pristupljeno: 22.04.2019. god.).

Racz Z. (1971): Određivanje mehaničkog (teksturnog, granulometrijskog) sastava tla, Priručnik za ispitivanje zemljišta, Knj. V, Jugoslovensko društvo za proučavanje zemljišta, Beograd

Spiecker H., Lindner M., Schuler J. (2019): Douglas-fir – an option for Europe, What Science Can Tell Us 9, European Forest Institute, Joensuu

Timmis R. (1974): Effect of nutrient stress on growth, bud set, and hardiness in Douglas-fir seedlings, Proceedings of the North American Containerized forest Tree Seedling Symposium, 26–29 Aug. 1974, Denver, CO., Publication 68, Great Plains Agricultural Council, Denver (187–193)

Wang M., Zheng Q., Shen Q., Guo S. (2013): The critical role of potassium in plant stress response, Int. J. Mol. Sci. 14(4) (7370–7390)

© 2019 Authors. Published by the University of Belgrade, Faculty of Forestry. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/)