PREDICTORS OF SELF REPORTED ADHERENCE TO ANTIHYPERTENSIVE MEDICATION IN A NIGERIAN POPULATION

Ekwunife Obinna Ikechuwku, Udeogaranya Patrick Obinna, Adibe Maxwell Ogochukwu*

Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.

ABSTRACT

Objectives: Poor adherence to anti-hypertensive medication severely compromises the effectiveness of treatment. The aim of this study was to determine the factors that are associated with poor adherence in a sample of hypertensive patients in Nsukka, Nigeria.

Methods: The study employed a cross sectional, household survey to identify cases of hypertension in Nsukka. Adherence to antihypertensive medications was assessed on participants that have been previously detected of hypertension using patient’s self report method. Study variables found to be correlated to adherence after adjusting for confounding variables were used in the multiple linear regression. Stepwise method was used to model the effect of predictor variables on adherence.

Results: A total of seven hundred and fifty-six (756) participants were screened for hypertension. Prevalence of hypertension in the study population was 21.1 %. Detection of high BP among the participants with raised blood pressure was 30 %. Mean self reported adherence to hypertension medication(s) was 70.7 % ± 37.9 %. Educational status, making medication(s) a habit and experience of side effects were independently correlated to adherence. Multiple linear regression showed that for every increase in educational status, adherence increased by 12.1 %. Also making medication a habit increased adherence by 35.1 %. However, experience of side-effect decreased adherence by 20.1 %.

Conclusion: Higher educational status and forming a habit of taking medication regularly increased adherence to hypertension medications while experience of a side-effect decreased adherence to medication. These factors identified as correlates of self reported adherence could be used to design interventions to improve adherence to hypertension medications in Nigeria.

KEYWORDS: Adherence, Antihypertensive drugs, Hypertension, Nigeria

INTRODUCTION

Hypertension is an overwhelming global challenge which ranks third as a cause of disability in adjusted life years1. Although burden of hypertension is currently centered in economically developed countries, developing countries will feel a great impact due to their population proportion. Indeed estimates indicate that up to three quarters of the world’s hypertensive population will be in economically developing countries by the year 20252.

High blood pressure increases the risk of ischaemic heart disease 3- to 4-fold3 and of overall cardiovascular risk by 2- to 3-fold4. The incidence of stroke increases approximately 3-fold in patients with borderline hypertension and approximately 8-fold in those with definite hypertension5. It has been estimated that 40% of cases of acute myocardial infarction or stroke are attributable to hypertension6-8. Despite the availability of effective treatments, studies have shown that in many countries less than 25% of
patients treated for hypertension achieve optimum blood pressure control.

Poor adherence to long-term therapies such as antihypertensives severely compromises the effectiveness of treatment making this a critical issue in health of population both from the perspective of quality of life and of health economics. Interventions aimed at improving adherence would provide a significant positive return on investment through primary prevention (of risk factors) and secondary prevention of adverse health outcomes. To design interventions to improve adherence to hypertension medications, there is need to identify predictors of non-adherence to therapy.

Few Nigerian studies have assessed correlates of adherence to antihypertensive medication(s). Specifically, use of daily medication reminder (taking drugs at meal time) and additional measurement of blood pressure in a neighbourhood private hospital or a pharmacy have been reported to improve adherence to antihypertensive drugs. Another study conducted in a Nigerian specialist hospital showed that patients with formal education, higher income, and those on single dose were more compliant to treatment. These studies have assessed level of adherence and factors affecting adherence from samples of hypertensive patients that receive care in a health facility. This group of patients may have greater professional care which would result in greater levels of adherence. No study has assessed level of adherence and predictors of adherence from a household survey in Nigeria. Therefore, the aim of this study was to determine the factors that are associated with adherence in a sample of hypertensive patients identified from a Nigerian population.

METHODS

This study employed a cross-sectional, household survey conducted to identify hypertension cases in Nsukka, a semi-urban city in South-Eastern Nigeria. All procedures were carried out according to a study protocol approved by the Local Ethics Committee of University of Nigeria Teaching Hospital Enugu.

A mixture of cluster and systematic random technique was employed. Nsukka was grouped into 16 clusters based on geographical locations as established by a map designed by Nsukka Graduates Association. Six sections or clusters were randomly selected from the sixteen clusters using a random sampling technique. In each section, the first house in each street was identified, followed by systematic sampling of the next three houses. Using "Statcalc" function of EPI INFO (Version 6, Centre for Disease Control, USA), it was determined that a sample size of 400 was adequate to detect prevalence of hypertension of 10% to 40% with 5% precision and 95% confidence. However, a total of 800 persons were met in the exercise after covering the selected clusters.

Participants who agreed to take part were explained the nature and the objectives of the study, and informed consent was formally obtained. The information about participant's identity was not included with the other data and only the principal investigator had access to this information. No reference to the participant's identity was made at any stage during data analysis.

The survey was carried out from April to August of 2009. Adherence to antihypertensive medication was assessed among the sub-set of participants that were previously detected of hypertension using patients' self report. Detection of hypertension was defined as any prior diagnosis of hypertension made by a health professional among the population defined as having hypertension. A questionnaire administered through interview was used for the study.

It was made up of 3 sections assessing patient's demographic data, self-reported adherence and hypothesized factors affecting adherence or non-adherence to antihypertensive medications. These hypothesized factors were derived from literature. The study instrument was face validated by some lecturers of the Department of Clinical Pharmacy and Pharmacy Management, and was pre-tested on 5 hypertensive patients in Faculty of Pharmacy to assess the validity of the instrument from the respondents' angle.

Patient's self reported adherence as used in this study involved asking patients non-judgmentally how often they missed their doses in the last 3, 5 and 7 days, respectively. Adoption of this shorter period was to avoid 'recall bias'. Adherence rates were therefore calculated as 'pills taken over a specific period of time, divided by pills prescribed for that specific period of time'. The average adherence score (expressed in percentage) for this 3 recall periods served as the dependent variable while hypothesized factors identified to encourage or discourage antihypertensive drug taking behaviour were the independent variable. These hypothesized factors were derived from literature.
Statistical analyses were performed using SPSS 13 for Windows (Chicago, IL). Mean ± standard deviation was computed for all continuous data. Frequencies were calculated for categorical data. Adherence was represented in percentage and was treated as continuous data. Study variables found to be correlated to adherence after adjusting for confounding variables were used in the multiple linear regression. Stepwise method was used to model the effect of predictor variables on adherence. All hypotheses tested were two tailed, with significant values taken at $p < 0.05$.

RESULTS
A total of 860 participants were encountered in their homes during the prevalence study. Out the 860 persons, 756 participants agreed to participate in the study (88% response rate). Prevalence of high blood pressure was 21.1% (159 participants) in the sample of study. Among the participants with high BP (159 participants), 29.6% (47 participants) were detected of BP, 20.8% (33 participants) were on treatment while only 6.9% (11 participants) had their BP controlled. The participants that were detected of high BP were only those used to assess adherence. In this group, their mean age was 56.5 ± 14.4 years. They were 47 persons in all - 30 were males while 17 were females. Majority had tertiary education and was in the middle income class. Participants were mostly diagnosed of hypertension through regular check-up. Hypertension related complications were absent in majority of the patients. Also, majority of the participants pay for their health care out of their pocket. Based on the blood pressure assessment, high blood pressure was poorly controlled in the study population. Only 31.9% of the hypertensive patients had controlled BP. Based on participants report, adherence to antihypertensive medications was 70.7% ± 37.9%. Other details of demographic and clinical characteristics are shown in Table 1.

In the bivariate analysis carried out, educational status, income level, making medications a habit and having medications readily available were all positively correlated to adherence. Experience of side-effects was negatively associated with adherence, (Table 2). After adjusting for confounding variables, only educational status, making medications a habit and experience of side effects were independently correlated to adherence. Multiple linear regression using the stepwise model was used to determine the effect of these independent factors on level of adherence. It was found that for every increase in educational status, adherence increased by 12.1%, other variables remaining constant. Also making medication a habit increased adherence by 35.09% with other variables remaining constant. However, experience of side-effect decreased adherence by 20.1% while other variables remained constant. The F-value (11.07, DF = 3) had an associated probability level of $p < 0.001$, showing that the results were unlikely to have arisen by sampling error. Details of the results are shown in Table 2.

Respondents’ Characteristics	Frequency (%), median [interquartile range] or Mean ± SD
Age	56.5 ± 14.4
Gender	
Male	30 (63.8)
Female	17 (36.2)
*Educational status	
Primary	6 (12.8)
Secondary	16 (34.0)
Tertiary	21 (44.7)
Marital status	
Single	2 (4.3)
Married	45 (95.7)
Method of diagnosis	
Regular Checkup	21 (44.7)
Checkup for hypertension related symptoms?	8 (17)
Hypertension is asymptomatic	
Checkup of other causes	12 (25.5)
Detected at Pharmacy/Drug store	2 (4.3)
Hypertension related complication	
Absent	31 (66.0)
Present	4 (8.5)
Time since last visit to hospital (days)	30 [30 – 90]
Who pays for health care	
Self	38 (80.9)
Family	9 (19.9)
Blood Pressure	
Average Systolic BP	147.1 ± 19.7
Average Diastolic BP	92.2 ± 11.4
Mean self reported adherence score	70.7% ± 37.9%

*Number of participants may not add up to 47 since some did not respond to the question
Table 2: Association of hypothesized factors with self reported adherence (n = 47)

Bivariate correlation with self reported adherence	r	p-value
Patient Factors		
Age	-0.05	0.755
Gender	0.282	0.074
Marital Status	0.214	0.180
Educational Status	0.622	< 0.001*
Income per month	0.641	< 0.001**
Family history of hypertension	0.274	0.092
Other Hypothesized Factors		
Understanding the need of medication	0.189	0.255
Availability of support	0.318	0.55
Making medications a habit	0.601	< 0.001**
Ready availability of medication	0.415	0.13*
Good relationship with the doctor	0.319	0.58
Lack of access to medication	-0.219	0.081
Fear of getting used to medication	-0.129	0.459
Cost of medication	-0.370	0.824
Forgetting to take medication	-0.083	0.631
Side effect	-0.370	0.026*
Dissatisfaction with treatment	-0.302	0.087
Predictors of self reported adherence (adjusted)	B (95% CI)	p-value
Educational status	12.05 (2.0 – 17.6)	0.049
Making medication a habit	35.91 (9.8 – 62.0)	0.009
Side effect	-20.09 (-39.3 – -1.1)	0.041

*Correlation is significant at 0.05 level (2-tailed)
**Correlation is significant at 0.01 level (2-tailed)

DISCUSSION

This study assessed the average level of self reported adherence in Nsukka, a semi-urban city in Nigeria. The results showed that mean self reported adherence to antihypertensive therapy was lesser than the adherence cut-off value of 80% which has been used by most studies for labeling patients as adherent or non adherent17-19. Also, factors that have been reported in the literature as predictors of adherence to antihypertensive therapy were explored in our study for possible correlation to adherence. Majority of these hypothesized factors were not correlated to adherence. However, higher educational status and forming a habit of taking medication regularly increased adherence to hypertension medications while experience of a side-effect decreased adherence to medication. Factors that affect adherence to hypertension therapy established in this study have been reported by other studies conducted in Nigeria. Specifically, forming a habit of taking medications has been reported to improve adherence to antihypertensive medications11. Patients with formal education have been reported to be more compliant to treatment22. Generally, poor socioeconomic status, illiteracy and unemployment have been identified as important risk factors for poor adherence20,21.

However, since this study is one of such few studies conducted in South-Eastern part of the country, these identified correlates of adherence could be used in designing health interventions for hypertensive patients living in this region. It is important that health care providers are aware of these problems. Such information should be used in practice to improve control of hypertension. Specifically, health care providers in the South-Eastern Nigeria should monitor their patients to ensure that they form the habit of medication taking. They should ensure that therapeutic regimen fits with patient’s life style. It is important that health providers also ensure that patients agree with indications received from them. Taking care of such details could help patients to form the habit of taking their hypertension medications.

Higher educational status was also identified as a predictor of adherence in this study. This highlights the importance of giving more attention to hypertensive patients of lower educational training when indications are being giving or during patient’s counseling. Health providers practicing in the South-Eastern part of the country should use different feedback techniques to assess how much their patients understand the suggestions they receive.

This study also highlighted the need of patient’s education and counseling. Patients that experienced a side-effect were less likely to adhere to medication. Hypertensive patients will adhere more to therapy if they have a pre-knowledge of the possible side-effects that could result from treatment. A possible intervention to take care of adverse effects is to involve patients on self management of adverse effects i.e. to teach them how to identify adverse events and what to do when they occur22-24.

The major limitation of this study was that self-reported adherence was assessed once and not
CONCLUSION

Higher educational status and forming a habit of taking medication regularly increased adherence to hypertension medications while experience of side-effect decreased self-reported adherence to medication. These factors identified as correlates of adherence to anti-hypertensive drugs in the study population could be used to design interventions to improve adherence to hypertension medications in Nigeria. However, there is need for a larger study targeted at identifying other factors that could affect adherence to long term hypertension therapy in Nigerians with high blood pressure.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance of the staff of department of Clinical Pharmacy and Pharmacy Management, University of Nigeria, Nsukka during the data collection and analysis.

REFERENCES

1. Chobanian AV, Bakris JL, Black HR, Cushman WC, Green LA, Izzo JL, et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report JAMA 2003;289:2560
2. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, et al. Global burden of hypertension: analysis of worldwide data Lancet 2005;365:217–23
3. Spector SL, Kinsman, H Mawhinney, SC et al. Compliance of patients with asthma with an experimental aerosolized medication: implications for controlled clinical trials. Journal of Allergy and Clinical Immunology. 1986;77:6-70.
4. Berenson GS, Srinivasan SR, Bao W et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. New England Journal of Medicine, 1998, 338:1650-1656.
5. Thompson DW, Furlan AJ. Clinical epidemiology of stroke. Neurologic Clinics, 1996, 14:309-315.
6. al Roomi KA, Heller RF, Wlodarczyk J. Hypertension control and the risk of myocardial infarction and stroke: a population-based study. Medical Journal of Australia, 1990, 153:595-599.
7. Borghi C, Bacchelli S, Degli Esposti D et al. Effects of the administration of an angiotensin-converting enzyme inhibitor during the acute phase of myocardial infarction in patients with arterial hypertension. SMILE Study Investigators. Survival of Myocardial Infarction Long-term Evaluation. American Journal of Hypertension, 1999, 12: 665-672.
8. Marron MG, Poulter NR. Primary prevention of stroke. Lancet, 1992;339:344-347.
9. Burt VL, Whelton P, Roccella EJ et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988-1991. Hypertension, 1995, 25:306-313.
10. Araoye MO. Research Methodology with Statistics for Health and Social Sciences. Nathadex Publishers, Ilorin, Nigeria, 2004, 115-120pp
11. Yusuff KB, Alabi A. Assessing patient adherence to anti-hypertensive drug therapy: can a structured pharmacist-conducted interview separate the wheat from the chaff? International Journal of Pharmacy Practice, 2007;15(4):295-300
12. Kabira M, Iiyasu Z, Abubakar S.I. and Jibril M. Compliance to medication among hypertensive patients in Murtala Mohammed Specialist Hospital, Kano, Nigeria. Journal of Community Medicine & Primary Health Care. 16 (1) 16-20
13. WHO. Adherence to long-term therapies. Evidence for action. Geneva, Switzerland, 2003. p xiii
14. Erhun WO, Olayiwola G, Agbani EO, Omotoso NS. Prevalence of Hypertension in a University Community in South West Nigeria. African Journal of Biomedical Research 2005;8:15-19
15. Ogah OS. Hypertension in Sub-Saharan African Populations: The burden of Hypertension in Nigeria. Ethnicity & Disease 2006;16:295-297
16. Onyemu VO, Okojie OH, Onyemu CE. Awareness of high blood pressure status, treatment and control in a rural community in Edo State. Niger J Clin Pract. 2007;10(3):208-212
17. Melenkier, Donnan PT, MacDonald TM, Sullivan FM, Fahey T. Adherence to antihypertensive medication and association with patient and practice factors. J Hum Hypertens 2006;20:295-297
18. Hassan NB, Hasanah CI, Foong K et al. Identification of psychosocial factors of noncompliance in hypertensive patients. J Hum Hypertens 2006;20:23-29
19. Garfield FB, Car JJ. Compliance and hypertension. Curr Hypertens Rep 1999;1:502-506
20. Saounatsou M, Patsi O, Fasoi G et al. The influence of the hypertensive patient's education in compliance with their medication. Public Health Nursing, 2001, 18:436-442.
21. Bone Lr, Hill MN, Stallings R et al. Community health survey in an urban African-American neighborhood: distribution and correlates of elevated blood pressure. Ethnicity & Disease, 2000, 10:87–95.
22. Prospective studies collaboration. Cholesterol, diastolic blood pressure, and stroke: 13,000 strokes in 450,000 people in 45 prospective cohorts. Lancet, 1995, 346:1647–1653.
23. White A, Nicolass G, Foster K. Health Survey for England, 1993.
24. Hypertension Detection and Follow-up Program Cooperative Group. Five-year findings of the hypertension detection and follow-up program. Reduction in mortality of persons with high blood pressure, including mild hypertension. Journal of the American Medical Association, 1979, 242:2562–2571.
APPENDIX – Questionnaire

**PARTICIPANT’S NO ____________________ LOCATION __________________________

SECTION B – Characteristics of participants (Please tick)

Age	Gender	Marital status	Education status	Income/month	Co-morbidities	1st Measurement	SBP	DBP	2nd Measurement	SBP	DBP
	M __ F__	Single___ Married___ Divorced___	None ________ Primary/below ________ Intermediary/Secondary ________ Graduate/above ________	Co-morbidities	1st Measurement	SBP____	DBP____	2nd Measurement	SBP____	DBP____	

SECTION B – Characteristics of hypertension and anti-hypertensive treatment (Please tick)

1. Method of Initial diagnosis
 - Regular checkup ______
 - Checkup for HTN related symptoms ______
 - Checkup of other Causes ______

2. Hypertension related complication
 - Please state ___

3. Time since the last hospital visit (months)
 - __________________________

4. Who pays for medication?
 - Self __
 - NHIS ___
 - Family ___
 - Welfare/Charity ___
 - Employer ___

SECTION C – Hypertension Medication

Drug (Generic Name)	Strength	Frequency	Duration

SECTION D – Adherence Measure

6. How many times did you take your medication in the last
 - 3 days or
 - 5 days or
 - 7 days

SECTION D – Factors that encourage/discourage drug taking behavior

7. Which of the following helps you to take your medications regularly
 - YES
 - NO
 - Understanding the need of medication
 - Understanding the effectiveness of medication
 - Availability of Support System
 - Making medications a habit
 - Ready Availability of medication
 - Good relationship with the doctor
 - Keeping medication in sight
 - Others, please record below

8. Which of the following discourages you from taking your medication
 - YES
 - NO
 - Lack of access to medication
 - Fear of getting used to medication
 - Cost of Medication
 - Forgetting
 - Side effects
 - Dissatisfaction with treatment
 - Others, please record below