High adherence to prophylaxis regimens in haemophilia B patients receiving rIX-FP: Evidence from clinical trials and real-world practice

Maria Elisa Mancuso¹ | Johannes Oldenburg² | Lisa Boggio³ | Gili Kenet⁴ | Anthony Chan⁵ | Carmen Altisent⁶ | Wilfried Seifert⁷ | Elena Santagostino¹

¹Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
²Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
³Rush Hemophilia & Thrombophilia Center, Rush University Medical Center, Chicago, IL, USA
⁴The Israeli National Hemophilia Center, Sheba Medical Center, Tel Hashomer, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
⁵Department of Pediatrics, McMaster University, Hamilton, ON, Canada
⁶Haemophilia Centre, Hospital Universitari Vall d’Hebron, Barcelona, Spain
⁷CSL Behring, Marburg, Germany

Abstract

Introduction: Adherence to prophylaxis regimens is essential for bleed prevention in haemophilia but remains a challenge due to the need for frequent infusions.

Aim: To evaluate patient adherence to prophylaxis regimens with a long-acting recombinant factor IX (rIX-FP; IDELVION®) in clinical studies and real-world practice.

Methods: In two phase 3 clinical studies, patients with haemophilia B (FIX ≤2%) recorded their dose, dosing frequency and rIX-FP consumption in an e-diary. Adherence to prescribed prophylaxis regimens was assessed in all patients and to prescribed dose in patients ≥12 years only. Additionally, adherence to rIX-FP prophylaxis regimens in real-world practice was captured.

Results: In clinical studies, 94.9% (n = 56/59) of patients ≥12 years and 100% (n = 27) of paediatric patients received ≥80% of the expected number of infusions for their assigned prophylaxis schedule. Overall, mean adherence rate was 95.5% across all prophylaxis regimens in patients ≥12 years and 97.9% with a 7-day regimen in paediatric patients. In patients ≥12 years, 85.7% (n = 54/63) were dose adherent, defined as receiving within 10% of their prescribed dose ≥80% of the time. In real-world practice, adherence was observed in 100% (n = 14 and n = 15, respectively) of patients in two haemophilia treatment centres and 57.1% (n = 4/7) of patients in a third centre; non-adherence (n = 3/7) was linked to insurance-related and parental issues.

Conclusion: In clinical studies, patients with haemophilia B had high adherence rates to rIX-FP prophylaxis regimens with a variety of dosing intervals, enabling them to achieve very low bleeding rates. High adherence may also be achievable in real-world practice.

Keywords
adherence, albutrepenonacog alfa, factor IX, haemophilia B, rIX-FP, treatment
1 | INTRODUCTION

Haemophilia is typically treated with coagulation factor replacement therapy either prophylactically or on-demand. For severe disease, prophylaxis is the standard treatment regimen as it has been shown to improve health outcomes compared with episodic treatment, including reductions in the frequency of total and joint bleeding events, prevention of life-threatening bleeds and preservation of joint function.1,2 These improved outcomes can only be achieved and maintained with adherence to prescribed prophylaxis regimens. However, rigorous prophylaxis regimens, and the need for frequent intravenous infusions, are a significant burden for patients and can result in reduced patient adherence. Furthermore, the leading reasons reported by patients for non-adherence to their prescribed regimen included lack of time for treatment and convenience.3 Infusion schedules should, therefore, be simple to implement and acceptable to the patient, taking into consideration their lifestyle and activities.4

The availability of extended half-life recombinant factor IX (rFIX) concentrates is beginning to change the treatment paradigm for prophylaxis in haemophilia B.5 Extended half-life products are improving and facilitating prophylactic therapy in patients with haemophilia B by permitting the maintenance of higher trough levels (FIX >5% or >10%) whilst reducing the frequency of infusions with injections once weekly or once every 2 weeks.6 Therefore, these products have the potential to decrease the burden of prophylaxis, which may lead to improved adherence and ultimately improved health outcomes.4

rIX-FP (IDELVION®) is a fusion protein genetically linking recombinant human coagulation factor IX (FIX) with recombinant human albumin.7,8 It was designed to have an improved pharmacokinetic profile compared with standard FIX; thus, allowing less frequent dosing.9 In the PROLONG-9FP clinical trial program, rIX-FP prophylaxis achieved median annualized spontaneous bleed rates of 0.00 with 7-, 10- or 14-day dosing intervals in adults (≥12 years) and 7-day dosing interval in children (<12 years).6 Therefore, the leading reasons reported by patients for non-adherence to their prescribed regimen included lack of time for treatment and convenience.3 Infusion schedules should, therefore, be simple to implement and acceptable to the patient, taking into consideration their lifestyle and activities.4

Here, we evaluated the adherence to different rIX-FP regimens in two phase 3 clinical trials in patients with haemophilia B. In addition, real-world practice data on patient-reported adherence to prescribed prophylaxis schedules collected in patients receiving rIX-FP prophylaxis at three expert haemophilia treatment centres are presented.

2 | MATERIALS AND METHODS

2.1 | Clinical studies

2.1.1 | Study population

The detailed study designs of the adolescent/adult (NCT0101496274) and paediatric (NCT01662531) rIX-FP phase 3 studies in previously treated patients with haemophilia B (FIX ≤2%) have been described previously.7,8 Briefly, patients aged 12-65 years received 7-day rIX-FP prophylaxis (35-50 IU/kg) for 6 months then either continued with 7-day prophylaxis or extended their dosing interval to 10 or 14 days at a dose of 75 IU/kg, if they met switching criteria (prophylaxis arm; n = 40). Alternatively, patients started with on-demand treatment with rIX-FP for 6 months followed by 35-50 IU/kg rIX-FP every 7 days (on-demand arm; n = 23).7 Paediatric patients (<12 years; n = 27) received 35-50 IU/kg rIX-FP prophylaxis every 7 days for a minimum of 12 months.8 During both studies, dosing could be adjusted based on bleeding phenotype, physical activity level and clinical symptoms.7,8

2.1.2 | Measuring treatment adherence

In both clinical studies, patients used an e-diary to record dose, dosing frequency and rIX-FP consumption for both prophylaxis and on-demand treatment. In the case of paediatric patients, the e-diary may have been completed by their caregiver. Patients returned their used vials at every study visit and unused vials at, or prior to, the end of the study. Treatment adherence was monitored by counting the number of used and unused vials and reconciling with that reported in the e-diary.

Prophylaxis adherence was determined in terms of schedule in all patients and defined as receiving ≥80% of the expected number of injections for the assigned prophylaxis schedule:

\[
\text{Prophylaxis adherence} = \frac{[\text{No. of prophylaxis infusions during the treatment period}] - [\text{Expected no. of prophylaxis infusions during the treatment period based on treatment regimen}]}{\times 100}
\]

Dose adherence was determined in terms of prescribed dose in patients ≥12 years only and defined as receiving within 10% of the prescribed dose ≥80% of the time:

\[
\text{Dose adherence} = \frac{[\text{No. of doses within 10% of the prescribed dose}] - [\text{No. of doses}]}{\times 100}
\]

2.2 | Real-world practice

Data on adherence to prescribed prophylaxis schedules were collected in patients receiving rIX-FP prophylaxis at three expert haemophilia treatment centres: Rush Hemophilia and Thrombophilia Center, Rush University Medical Center, Chicago, IL, USA; Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy; and Hemophilia Center University Clinic Bonn, Bonn, Germany. None of the patients included were receiving, or had previously received, rIX-FP as part of a clinical trial.

2.2.1 | Measuring patient-reported adherence

At the Rush Hemophilia and Thrombophilia Center, patient-reported adherence was measured by conducting a review with the patient. In addition, the patient infusion log was assessed and both written prescriptions (times and dates) and prescriptions filled from pharmacy records were evaluated. In the other two centres (Milan and Bonn),
patient-reported adherence was measured by matching the patient infusion log with the prescribed regimen. At variance with the clinical trials, there was no direct control of vial consumption at any of the centres. Although the Rush Hemophilia and Thrombophilia Center controlled for vial distribution, filled prescriptions from pharmacy records were reconciled with the patient infusion log.

3 | RESULTS

3.1 | Clinical studies

3.1.1 | Patients ≥12 years, prophylaxis arm

The proportion of patients who were adherent with their prescribed dose, those who received within 10% of the prescribed dose ≥80% of the time, was highest with the 7-day regimen (95.0%), and was 85.7% and 81.0% with the 10- and 14-day regimens, respectively. On the 14-day regimen, the mean (standard deviation [SD]) monthly rIX-FP prophylaxis dose was 157.4 (16.3) IU/kg, ranging from 111.8 to 179.1 IU/kg, indicating that the majority of doses administered were consistent with the assigned dose of 75 IU/kg. The monthly rIX-FP prophylaxis dose on the 7- and 10-day regimens was 202.7 (SD 47.9; range 139.9-321.5) IU/kg and 201.5 (SD 42.5; range 131.6-238.9) IU/kg, respectively.

Of the patients in the prophylaxis arm, 94.9% (56/59) met the definition of being adherent with their prophylaxis regimen, in that they received ≥80% of the expected number of infusions for their assigned prophylaxis schedule. The proportion of adherent patients was high with all regimens but particularly where infusions could be scheduled on the same day of the week; 97.5% (39/40) and 100% (n = 21) of patients were adherent with 7- and 14-day regimens, respectively. A relatively small number of patients (n = 7) received a 10-day regimen during the study with 85.7% of patients being adherent; however, this reflects the fact that only one of the seven patients did not meet the definition of adherence. Mean dose and prophylaxis adherence rates for each regimen are shown in Table 1.

3.1.2 | Patients ≥12 years, on-demand arm

During the first 6 months of the study, 23 patients received rIX-FP on-demand. During this period, the proportion of patients that were considered adherent with their prescribed doses was low (52.2%). After switching to 7-day prophylaxis (n = 19), the proportion of these patients who were dose adherent substantially increased to 84.2%. Of these patients, a high proportion (89.5%) was also adherent with their prophylaxis schedule once they had switched.

3.1.3 | Paediatric patients

All 27 (100%) paediatric patients were adherent with a 7-day rIX-FP regimen, with a mean (SD) adherence rate of 97.9% (3.78) and similar adherence rates between age groups; mean (SD) 97.3% (4.80) in patients 1-5 years and 98.3% (2.82) in those aged 6-11 years. High levels of adherence to a 7-day regimen resulted in low bleeding rates in paediatric patients, as previously reported.8

3.2 | Real-world data

A total of 36 patients (≥12 years, n = 26; <12 years, n = 10) from three centres were analysed, including seven patients treated at the Rush Hemophilia and Thrombophilia Center, 14 patients treated at the Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and 15 patients treated at the Hemophilia Center University Clinic Bonn. The proportion of patients adherent to their prescribed rIX-FP regimens at the three centres were 57.1% (n = 4/7) at the Rush Hemophilia and Thrombophilia Center and 100% (n = 14 and n = 15) at the other two centres, respectively. Due to the variation in data collection between the centres, which in contrast to a clinical study is non-standardized, only a description of the data is presented; refer to Table 2 for more patient and treatment details.

| TABLE 1 | Adherence to rIX-FP treatment regimens in patients ≥12 y in the PROLONG 9-FP clinical trial program |
Prophylaxis arm	On-demand arm	Total^a (n = 63)				
7-d regimen (n = 40)	10-d regimen (n = 7)	14-d regimen (n = 21)	On-demand regimen (n = 23)	Prophylaxis regimen (n = 19)		
Prophylaxis adherence (%)						
Mean (SD)	94.7 (5.16)	90.7 (12.08)	97.2 (3.21)	N/A	95.5 (7.49)	95.5 (5.44)
Range	75.0-100	66.7-100	91.2-102.4	N/A	75.8-100	75.0-100
Dose adherence (%)						
Mean (SD)	96.4 (7.60)	90.1 (11.23)	89.7 (16.14)	74.8 (27.69)	89.9 (21.73)	91.1 (13.52)^b
Range	66.7-100	68.8-100	31.4-100	12.5-100	13.5-100	36.5-100

Abbreviations: N/A, not applicable; SD, standard deviation.
^an = 59 subjects for prophylaxis adherence.
^bIncludes patients treated on-demand or with prophylaxis.
The reasons for non-adherence at the Rush Hemophilia and Thrombophilia Center were loss of insurance and insurance issues (n = 2), and parental challenges (n = 1). Insurance issues included a complete lack of insurance and insurance with a company that did not cover the factor concentrate. Parental challenges were related to lack of time and communication to motivate the child to adhere to their treatment regimen. In addition, only one parent was able to assist with the injection. The patient who was non-adherent due to loss of insurance has switched to an on-demand regimen.

Across the three centres, the overall treatment duration with rIX-FP ranged from 4 to 31 months. During this time, bleed rates or number of bleeds whilst receiving rIX-FP were low (Table 2).

TABLE 2 Adherence to prescribed rIX-FP regimens in patients with haemophilia B treated at three haemophilia treatment centres

Centre	Rush Hemophilia and Thrombophilia Center (N = 7)	Angelo Bianchi Bonomi Hemophilia and Thrombosis Center (N = 14)	Hemophilia Center University Clinic Bonn (N = 15)
Number of patients, n			
≥12 y	4	11	11
<12 y	3	3	4
Age range, y	6-44	5-76	1-64
Dosing frequency	7 d: 40 IU/kg (n = 5) or 50 IU/kg (n = 2)	7 d: 28-45 IU/kg (n = 8)	7 d: 24-50 IU/kg (n = 15)
	10 d: 35-41 IU/kg (n = 2)	14 d: 50-58 IU/kg (n = 4)	
Overall treatment duration range, mo	10-24	9-22	4-31
Adherent patients, n (%)	4 (57.1)	14 (100)	15 (100)
Reasons for non-adherence	• Insurance challenges (n = 2)	N/A	N/A
	• Parental (n = 1)		
Regimens in non-adherent patients	• On-demand through ED (n = 1)\(^a\)	N/A	N/A
Adherent patients (n = 4)			
Non-adherent patients (n = 3)			
Mean (SD) FIX trough level	8.4 (5.3)	7.4 (5.7)	14.2 (5.3)
Median (range) ABR	0.50 (0.0, 1.0)	0.00 (0.0, 3.0)	0.00 (0.0, 1.5)
Patients experiencing bleeds, n	2	2	6
Type of bleeds (patients, n)\(^d\)	Minor bleeds	Major bleed	Minor bleeds
	• Tooth loss (n = 1)	• Iliopsoas (n = 1)\(^a\)	• Traumatic joint bleed (n = 3)
	• Joint bleed (n = 1)	Target joint bleed (n = 1)	• Spontaneous joint bleed (n = 2)
		Joint bleed (n = 1)	Major bleed
			• Spontaneous joint bleed with synovitis (n = 1)
			Traumatic bleeds
			• 5 muscle bleeds (n = 3)
			• 3 joint bleeds (n = 3)
			• 1 eye bleed (operation) (n = 1)
			Spontaneous joint bleed (n = 3)
			Joint bleed (n = 1)
			Data missing (n = 2)

Note: Major bleeding episodes were defined as a bleeding episode for which a patient required treatment at the haemophilia centre; bleeding episodes requiring no more than 1-2 doses were defined as minor bleeding episodes.

Abbreviations: ABR, annualized bleeding rate; ED, emergency department; FIX, factor IX.
\(^a\)Patient discontinued rIX-FP prophylaxis due to loss of insurance, currently treated on-demand.
\(^b\)Data missing for four patients.
\(^c\)Data missing for two patients.
\(^d\)Some patients experienced more than one bleed.

DISCUSSION

Prophylaxis adherence is an important consideration for physicians in their decision-making; the choice of product and infusion schedule should be acceptable to the patient, and be simple and easy to implement. Here, we show that rIX-FP prophylaxis resulted in high rates of adherence with all regimens in clinical studies, with 95% of patients ≥12 years and 100% of paediatric patients complying with their assigned infusion schedule. Adherence rates were slightly lower for the 10-day regimen compared with the 7- and 14-day regimens, suggesting adherence to treatment may be easier for patients to implement if doses are taken on the same day of each
In patients with haemophilia, adherence to a prophylaxis schedule is essential for bleed prevention and improvement of outcomes in the long term. rIX-FP can extend dosing intervals and reduce the treatment burden in patients with haemophilia B. Data show that rIX-FP prophylaxis dosing regimens of 7-, 10- or 14-day intervals result in high rates of adherence and very low bleeding rates in both adult and paediatric patient populations. Although regimens based on weekly cycles tend towards better adherence, extended half-life FIX products are able to achieve higher trough levels (FIX >5% or >10%) with longer dosing intervals, which may increase the uptake of, and adherence to, prophylaxis regimens, ultimately improving health outcomes in patients with haemophilia. Initial data from haemophilia treatment centres confirm high adherence to rIX-FP prophylaxis regimens in real-world practice.

5 | CONCLUSION

In patients with haemophilia, adherence to a prophylaxis schedule is essential for bleed prevention and improvement of outcomes in the long term. rIX-FP can extend dosing intervals and reduce the treatment burden in patients with haemophilia B. Data show that rIX-FP prophylaxis dosing regimens of 7-, 10- or 14-day intervals result in high rates of adherence and very low bleeding rates in both adult and paediatric patient populations. Although regimens based on weekly cycles tend towards better adherence, extended half-life FIX products are able to achieve higher trough levels (FIX >5% or >10%) with longer dosing intervals, which may increase the uptake of, and adherence to, prophylaxis regimens, ultimately improving health outcomes in patients with haemophilia. Initial data from haemophilia treatment centres confirm high adherence to rIX-FP prophylaxis regimens in real-world practice.

ACKNOWLEDGEMENTS

The authors would like to thank the PROLONG-9FP clinical study investigators for their contribution. Editorial support for the writing of this manuscript was provided by Meridian HealthComms, funded by CSL Behring.
DISCLOSURES
This study was funded by CSL Behring. MEM has acted as paid consultant/advisor and/or speaker for Bayer Healthcare, CSL Behring, Novo Nordisk, Pfizer, Roche, SoBi, Octapharma, Kedrion, Grifols, Biotest and Catalyst. JO has received grants/personal fees from Bayer, Biotest, CSL Behring, Novo Nordisk, Octapharma and Shire, consultancy fees from Chugai, Grifols, Pfizer, Roche and Swedish Orphan Biovitrum, personal fees were received for travel support, participation in advisory boards and participating in symposia as chair or speaker. LB participates as an investigator in clinical trials for NovoNordisk and as a consultant for NovoNordisk. GK has received research support from Bayer AG, Opko Biologics, Pfizer, CSL, Alnylam and Shire. AC has received grants/research support from Bayer, CSL Behring, Novo Nordisk, Octapharma, Pfizer and Shire, honoraria from Bayer, Biomarin, CSL Behring, Novo Nordisk, Octapharma, Pfizer and Shire, participated in an advisory board for Bayer, Biomarin, CSL Behring, Novo Nordisk, Octapharma, Pfizer and Shire. CA has received research funding from Baxter and CSL Behring, honoraria for speaking and/or consulting from Baxter, Bayer, CSL Behring, Grifols, Novo Nordisk, Octapharma, Pfizer and SoBi. WS is an employee of CSL Behring. ES has served on advisory boards and/or speaker bureau member for Bayer, Shire/Takeda, CSL Behring, Pfizer, NovoNordisk, Roche, SoBi, Bioverativ, Spark, Unique, Grifols, Kedrion and Octapharma.

ORCID
Johannes Oldenburg https://orcid.org/0000-0002-1585-4100
Gili Kenet https://orcid.org/0000-0003-3494-9823
Elena Santagostino https://orcid.org/0000-0001-9639-6422

REFERENCES
1. Manco-Johnson MJ, Abshire TC, Shapiro AD, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2007;357:535-544.
2. Iorio A, Marchesini E, Marcucci M, Stobart K, Chan AK. Clotting factor concentrates given to prevent bleeding and bleeding-related complications in people with hemophilia A or B. Cochrane Database Syst Rev. 2011;CD003429.
3. De Moerloose P, Urbancik W, Van Den Berg HM, Richards M. A survey of adherence to haemophilia therapy in six European countries: results and recommendations. Haemophilia. 2008;14:931-938.
4. Thornburg CD, Duncan NA. Treatment adherence in hemophilia. Patient Prefer Adherence. 2017;11:1677-1686.
5. Carcao M. Changing paradigm of prophylaxis with longer acting factor concentrates. Haemophilia. 2014;20(Suppl 4):99-105.
6. Mancuso ME, Santagostino E. Outcome of clinical trials with new extended half-life FVIII/IX concentrates. J Clin Med. 2017;6:39.
7. Santagostino E, Martinowitz U, Lissitchkov T, et al. Long-acting recombining coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial. Blood. 2016;127:1761-1769.
8. Kenet G, Chambost H, Male C, et al. Long-acting recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in children. Results of a phase 3 trial. Thromb Haemost. 2016;116:659-668.
9. Metzner HJ, Pipe SW, Weimer T, Schulte S. Extending the pharmacokinetic half-life of coagulation factors by fusion to recombinant albumin. Thromb Haemost. 2013;110:931-939.
10. Castaman G. The benefits of prophylaxis in patients with hemophilia B. Expert Rev Hematol. 2018;11:673-683.
11. Nijdam A, Poppen W, van der Schouw YT, Mauser-Bunschoten EP, Schutgens RE, Fischer K. Long-term effects of joint bleeding before starting prophylaxis in severe hemophilia. Haemophilia. 2016;22:852-858.
12. Thornburg CD, Carpenter S, Zappa S, Munn J, Leissinger C. Current prescription of prophylactic factor infusions and perceived adherence for children and adolescents with haemophilia: a survey of haemophilia healthcare professionals in the United States. Haemophilia. 2012;18:568-574.
13. Duncan N, Shapiro A, Ye X, Epstein J, Luo MP. Treatment patterns, health-related quality of life and adherence to prophylaxis among haemophilia A patients in the United States. Haemophilia. 2012;18:760-765.
14. Ho S, Gue D, McIntosh K, Bucevsksa M, Yang M, Jackson S. An objective method for assessing adherence to prophylaxis in adults with severe haemophilia. Haemophilia. 2014;20:39-43.
15. Hacker MR, Geraghty S, Manco-Johnson M. Barriers to compliance with prophylaxis therapy in haemophilia. Haemophilia. 2001;7:392-396.
16. Furlan R, Krishnan S, Vietri J. Patient and parent preferences for characteristics of prophylactic treatment in hemophilia. Patient Prefer Adherence. 2015;9:1687-1694.
17. Keeapanasseril A, Stoffman J, Bouskill V, et al. Switching to extended half-life products in Canada - preliminary data. Haemophilia. 2017;23:e365-e367.

How to cite this article: Mancuso ME, Oldenburg J, Boggio L, et al. High adherence to prophylaxis regimens in haemophilia B patients receiving rIX-FP: Evidence from clinical trials and real-world practice. Haemophilia. 2020;26:637–642. https://doi.org/10.1111/hae.14018