Breakup of ^{11}Li in a three-cluster model

E. Pinilla1, P. Descouvemont1 and D. Baye2

1 Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels, Belgium
2 Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels, Belgium

Abstract. The ^{11}Li breakup on a ^{208}Pb target is studied in the Coulomb corrected eikonal approximation by using a $^{9}\text{Li}+n+n$ three-body description of the projectile. The ^{11}Li wave functions are defined in the hyperspherical formalism for bound and scattering states, and are obtained from effective $^{9}\text{Li}+n$ and $n+n$ interactions. The $^{9}\text{Li}+n+n$ three-body phase shifts suggest the existence of a narrow 1^- resonance near 0.5 MeV above threshold. This resonance shows up as a peak in the breakup cross section, and is supported by experimental data.

1. Introduction

Breakup reactions represent an efficient tool for the experimental investigation of exotic nuclei [1]. In particular, reactions involving a radioactive ^{11}Li beam on various targets have been carried out in recent years (see Ref. [2] and references therein). An accurate theoretical description of the breakup process requires a reaction theory complemented by a precise description of the projectile wave function.

The goal of the present work is to investigate recent breakup data of ^{11}Li on a ^{208}Pb target at 70 MeV/nucleon [2]. These cross section data present a maximum near 0.3 MeV above the $^{9}\text{Li}+n+n$ threshold, which could be associated with a dipole resonance in ^{11}Li [3]. We describe ^{11}Li in the three-body hyperspherical formalism [4, 5], which provides the ^{11}Li ground state, but also $^{9}\text{Li}+n+n$ three-body scattering states [6, 7]. This theoretical framework for the projectile can be implemented in the eikonal theory [8]. This approximation [9, 10] allows to derive elastic and breakup cross sections in a unified way. As the traditional eikonal method is known to diverge for the Coulomb potential, we use the Coulomb corrected version [11–13], which avoids the convergence problem in breakup cross sections. More detail can be found in Ref. [14].

2. Theoretical framework

The hamiltonian of the $^{11}\text{Li}+^{208}\text{Pb}$ system is defined as

$$H = H_0 - \frac{\hbar^2}{2\mu_{PT}}\Delta_R + V_{PT}(R, x, y),$$

(1)

where hamiltonian H_0 is associated with the ^{11}Li projectile, μ_{PT} is the reduced mass, and R the relative coordinate. In Eq. (1), x and y are scaled Jacobi coordinates defining the ^{11}Li nucleus as a three-body $^{9}\text{Li}+n+n$ structure. The projectile-target interaction is taken as $V_{PT} = \sum_{i=1}^{3} V_{iT}(R, x, y)$, where $i = 1$ labels the ^{9}Li core, and $i = 2, 3$ the external neutrons. Those interactions are simulated by complex optical potentials.
The first step is to determine the ^{11}Li wave functions in the hyperspherical formalism. The $^{9}\text{Li}+n$ potential is taken from Ref. [15]. This interaction generates a core+n s wave scattering length of -5.7 fm. It also reproduces a $p_{1/2}$ resonance near 540 keV in agreement with Ref. [16]. A scaling factor 1.0051 is applied in order to reproduce the experimental binding energy of ^{11}Li. The $n+n$ potential is the central part of the Minnesota interaction with the standard value $u = 1$ [17]. Three-body continuum wave functions and eigenphases are determined with the R-matrix theory [7].

In the second step, $^{11}\text{Li}+^{208}\text{Pb}$ scattering wave functions are determined at the eikonal approximation, i.e. the wave function is factorized as

$$\Phi(R, x, y) = e^{iKZ}\hat{\Phi}(R, x, y).$$

(2)

This factorization is introduced in the Schrödinger equation with Hamiltonian (1), with the adiabatic approximation that consists in replacing H_0 by the ^{11}Li ground-state energy E_0 [18]. The eikonal wave function, valid at high energies, is given by

$$\hat{\Phi}_{\text{eik}}(R, x, y) = \exp\left(-\frac{i}{\hbar v}\int_{-\infty}^{Z} dZ' V_{\text{PT}}(b, Z', x, y)\right)\Psi_{d_{0}M_{0}\pi_{0}}(x, y),$$

(3)

where v is the relative velocity between the target and the projectile, b the transverse component of R, and $\Psi_{d_{0}M_{0}\pi_{0}}$ is the ground-state wave function. From wave function (3), elastic and breakup cross sections can be determined [8,14]. The Coulomb potential leads to two divergence problems in the eikonal phase. They are solved by using the Coulomb-corrected eikonal approximation, which has been applied to describe breakup reactions involving halo nuclei in Refs. [8,13].

For the $n+^{208}\text{Pb}$ interaction, we consider the central part of the complex optical potential given in Ref. [19] at 70 MeV. For the $^{9}\text{Li}+^{208}\text{Pb}$ system, we use the $\alpha+^{208}\text{Pb}$ potential of Bonin et al. [20] at 699 MeV with scaled radii for the real and imaginary components ($R_t = 7.36$ fm and $R_i = 7.12$ fm).

3. Three-body phase shifts and breakup cross sections

Figure 1 displays the dominant 0^+, 1^- and 2^+ eigenphases [7] of $^{9}\text{Li}+n+n$. The 0^+ and 2^+ curves exhibit a wide rise in energy with a resonant-like behavior. The 1^- eigenphase shows a sharp resonant behavior around 0.5 MeV. This energy is consistent with the maximum observed in the breakup experimental data, and suggests the existence of a low-lying resonance in ^{11}Li.

Figure 2 displays the total and 1^- breakup cross sections, convoluted with the detector response and compared with the experimental data of Ref. [2]. We observe a fair agreement for energies above 1.5 MeV, but the peak energy is slightly too high in the model. Including the 0^+ and 2^+ contributions increases the total cross section beyond 1 MeV, in better agreement with the experimental data. In the literature, calculations of breakup cross sections of halo nuclei often use the equivalent photon method [21]. This approximation assumes a dipole breakup process, and ignores other contributions. In contrast, the present eikonal description of the breakup reaction is more accurate, since it allows a quantitative evaluation of other partial wave contributions.

4. Conclusion

The $^{9}\text{Li}+n+n$ phase shifts suggest the existence of a narrow 1^- resonance near $E = 0.5$ MeV, corresponding to $E_2 \approx 0.9$ MeV. Taking into account the $3/2^-$ spin of the ^{9}Li core nucleus, this resonance should correspond to $J = 1/2^+, 3/2^+$ or $5/2^+$ in ^{11}Li. Such a resonance is supported by a low-energy maximum in the experimental breakup cross section. The existence of a dipole resonance in the ^{11}Li nucleus seems now to be well established from experiment as well as from
theory. The situation is less clear in ^6He [8] where a 1^- resonance (broader than in ^{11}Li) is predicted by most theories, but not yet observed by experiment [22].

References

[1] Hansen P G, Jensen A S and Jonson B 1995 Annu. Rev. Nucl. Sci. 45 591
[2] Nakamura T et al 2006 Phys. Rev. Lett. 96 252502
[3] Hagino K and Sagawa H 2007 Phys. Rev. C 76 047302
[4] Zhukov M V et al 1993 Phys. Rep. 231 151
[5] Descouvemont P, Daniel C and Baye D 2003 Phys. Rev. C 67 044309
[6] Thompson I J et al 2000 Phys. Rev. C 61 024318
[7] Descouvemont P, Tursunov E M and Baye D 2006 Nucl. Phys. A 765 370
[8] Baye D, Capel P, Descouvemont P and Suzuki Y 2009 Phys. Rev. C 79 024607
[9] Glauber R J 1959 High energy collision theory, in Lectures in Theoretical Physics, Vol. 1 (New York: Interscience)
[10] Yahiro M, Ogata K and Minomo K 2011 Prog. Theor. Phys. 126 167
[11] Margueron J, Bonaccurso A and Brink D M 2003 Nucl. Phys. A 720 337
[12] Abu-Ibrahim B and Suzuki Y 2004 Prog. Theor. Phys. 112 1013
[13] Capel P, Baye D and Suzuki Y 2008 Phys. Rev. C 78 054602
[14] Pinilla E C, Descouvemont P and Baye D 2012 Phys. Rev. C 85 054610
[15] Esbensen H, Bertsch G F and Hencken K 1997 Phys. Rev. C 56 3054
[16] Young B M et al 1994 Phys. Rev. C 49 279
[17] Thompson D R, LeMere M and Tang Y C 1977 Nucl. Phys. A 286 53
[18] Suzuki Y, Lovas R G, Yabana K and Varga K 2003 Structure and Reactions of Light Exotic Nuclei (London: Taylor & Francis)
[19] Koning A J and Delaroche J P 2003 Nucl. Phys. A 713 231
[20] Bonin B, et al 1985 Nucl. Phys. A 445 381
[21] Bertulani C and Baur G 1988 Phys. Rep. 163 299
[22] Aumann T et al 1999 Phys. Rev. C 59 1252