OPTICAL AND NEAR-INFRARED OBSERVATIONS OF THE PECULIAR TYPE Ia SUPERNOVA 1999ac

Mark M. Phillips, Kevin Krisciunas, Nicholas B. Suntzeff, R. G. Abraham, M. G. Beckett, Marco Bonati, Pablo Candia, T. Michael Corwin, Darren L. Depoy, Juan Espinoza, Andrew E. Firth, Wendy L. Freedman, Gaspar Galaz, Lisa Germany, David Gonzalez, Mario Hamuy, N. C. Hartings, Aimée L. Hungerford, Valentin D. Ivanov, Erika Labbé, Ronald O. Marzke, Patrick J. McCarthy, Richard G. McMahon, Russet McMillan, Cesar Muena, S. E. Persson, Miguel Roth, María Teresa Ruiz, R. Chris Smith, Roger Smith, Louis-Gregory Strolger, and Christopher Stubbs

Received 2005 November 14; accepted 2006 January 28

ABSTRACT

We present 39 nights of optical photometry, 34 nights of IR photometry, and 4 nights of optical spectroscopy of the Type Ia supernova 1999ac. This supernova was discovered 2 weeks before maximum light, and observations were begun shortly thereafter. At early times its spectra resembled the unusual SN 1999aa and were characterized by very high velocities in the Ca ii H and K lines but very low velocities in the Si ii λ6355 line. The optical photometry showed a slow rise to peak brightness but, quite peculiarly, was followed by a more rapid decline from maximum. Thus, the B- and V-band light curves cannot be characterized by a single stretch factor. We argue that the best measure of the nature of this object is not the decline rate parameter $\Delta m_{15}(B)$. The $B - V$ colors were unusual from 30 to 90 days after maximum light in that they evolved to bluer values at a much slower rate than normal Type Ia supernovae. The spectra and bolometric light curve indicate that this event was similar to the spectroscopically peculiar slow decliner SN 1999aa.

Key words: supernovae: general — supernovae: individual (SN 1999ac)

Online material: color figures

1. INTRODUCTION

Due to their considerable potential as extragalactic standard candles, Type Ia supernovae (SNe Ia) have been the subject of intense study during the last 15 years. Although it has by now been amply demonstrated that SNe Ia cover a range in intrinsic brightness of a factor of 2 or more (see Leibundgut [2000] and references therein), the fortuitous existence of a correlation between the peak luminosity and the rate of decline from maximum of the B light curve, including prescriptions for color corrections (Phillips 1993; Hamuy et al. 1996b; Riess et al. 1996; Phillips et al. 1999; Nobili et al. 2003; Guy et al. 2005), has allowed distances to be measured to better than 10% to redshifts $z \leq 0.1$ (Hamuy et al. 1996a; Riess et al. 1996). Because they can be observed out to very large distances, SNe Ia have become the tool of choice for measuring the Hubble constant (e.g., Hamuy et al. 1996a; Riess et al. 1996, 2005; Sandage et al. 1996; Jha et al. 1999; Suntzeff et al. 1999; Phillips et al. 1999, 2003; Tripp & Branch 1999; Gibson et al. 2000; Parodi et al. 2000; Freedman et al. 2001) and, in combination with measurements of fluctuations in the microwave background radiation (Bennett et al. 2003), have provided compelling evidence for an accelerating universe (Garnavich et al. 1998; Riess et al. 1998, 2004; Perlmutter et al. 1999; Tonry et al. 2003; Knop et al. 2003; Barris et al. 2004; Krisciunas et al. 2005).

Although the majority of SNe Ia display very similar spectral evolution, roughly one-third of all events show spectroscopic peculiarities (Li et al. 2001a). Three well-observed examples—SN 1991T, SN 1991bg, and SN 1986G—have served as the prototype of spectroscopically peculiar SNe Ia (Branch et al. 1993).
The premaximum optical spectra of SN 1991T showed unusually weak lines of Si II, S II, and Ca II, while at the same time displaying prominent high-excitation features of Fe III (Filippenko et al. 1992a; Phillips et al. 1992). The Si II, S II, and Ca II lines grew quickly in strength following maximum until the spectrum appeared essentially normal a few weeks past maximum. SN 1991T dimmed slowly from maximum and was originally thought to be considerably more luminous than "normal" SNe Ia (Filippenko et al. 1992a; Phillips et al. 1992), although the Cepheid distance to the host galaxy, NGC 4527, obtained later with the Hubble Space Telescope, implies that this SN was only moderately over-luminous (Saha et al. 2001; Gibson & Stetson 2001).

The main spectroscopic peculiarity of SN 1991bg was the presence at maximum light of a broad absorption trough at 4100–4400 Å due mostly to Ti II lines (Filippenko et al. 1992b; Leibundgut et al. 1993; Turatto et al. 1996; Mazzali et al. 1997), reflecting a lower effective temperature. As a consequence, SN 1991bg was unusually red \((B - V \approx 0.75)\) at maximum light. SN 1986G was similar to SN 1991bg but less extreme (Phillips et al. 1987; Cristiani et al. 1992). Both events were substantially subluminous.

Nugent et al. (1995) have shown that the photometric sequence of SNe Ia (i.e., the luminosity vs. decline rate relation) also manifests itself as a spectroscopic sequence that can be modeled in terms of a range in the effective temperature at maximum. The luminous, slowly declining SN 1991T represents the high-temperature extreme of the sequence, while the fast-declining, subluminous SN 1986G and SN 1991bg correspond to the low-temperature limit. Under this scenario, none of these three SNe Ia should be considered "peculiar." However, not all luminous, slow-declining SNe Ia display SN 1991T–like premaximum spectra—e.g., SN 1992bc (Maza et al. 1994) and SN 1999ee (Hamuy et al. 2002)—so it is not clear whether this interpretation is fully correct. Moreover, the last few years have revealed the existence of several SNe Ia that are of an intermediate type between SN 1991T events and normal SNe Ia. The prototype of these objects, which may be more common than SN 1991T–like events, is SN 1999aa (Krisciunas et al. 2000; Li et al. 2001a; Garavini et al. 2004). SN 1999aa was similar to SN 1991T in displaying very weak Si II 6150 absorption and prominent Fe III lines in its premaximum spectra, but it showed strong Ca II H and K absorption at the same epoch in which this feature was weak or absent in SN 1991T (Filippenko et al. 1999). By maximum light the spectrum of SN 1999aa had evolved to that of a normal SN Ia. Hence, SN 1999aa–like events would be difficult, if not impossible, to distinguish spectroscopically unless a spectrum were obtained at least a week before maximum.

In order to more fully understand the range of spectroscopic and photometric characteristics of SNe Ia, we have organized a number of observing campaigns to obtain optical photometry, IR photometry, and optical spectroscopy of nearby events \((z \lesssim 0.05)\).

TABLE 1

Optical Photometric Sequence Near SN 1999ac

Star ID\(^a \)	\(V \)	\(B - V \)	\(V - R \)	\(V - I \)	\(N_V \)	\(N_{B-V} \)	\(N_{V-R} \)	\(N_{V-I} \)
1..............	15.839	0.004	0.119	0.009	0.615	0.005	1.185	0.005
2..............	17.359	0.007	1.485	0.035	2.001	0.008	2.102	0.009
3..............	16.193	0.004	0.747	0.010	0.412	0.007	0.789	0.007
4..............	16.889	0.007	0.662	0.012	0.415	0.010	0.801	0.009
5..............	13.776	0.002	0.739	0.003	0.403	0.003	0.759	0.003
6..............	17.814	0.008	0.992	0.027	0.571	0.013	1.104	0.011
7..............	14.767	0.002	0.680	0.006	0.388	0.004	0.757	0.004
8..............	17.222	0.007	0.672	0.016	0.426	0.009	0.839	0.011
9..............	17.414	0.009	0.627	0.014	0.362	0.015	0.745	0.011
10.............	18.056	0.016	0.709	0.039	0.426	0.023	0.821	0.022
11.............	18.730	0.020	0.951	0.077	0.552	0.029	1.117	0.032
12.............	17.920	0.021	1.451	0.034	0.892	0.025	1.821	0.025
13.............	17.896	0.016	0.625	0.025	0.369	0.037	0.741	0.022
14.............	17.259	0.020	0.794	0.027	0.455	0.022	0.906	0.025
15.............	17.990	0.010	0.771	0.018	0.444	0.016	0.890	0.014
16.............	18.565	0.025	1.629	0.092	1.168	0.029	2.671	0.027
17.............	17.165	0.006	0.830	0.024	0.452	0.009	0.909	0.010
18.............	17.925	0.018	0.559	0.027	0.344	0.022	0.706	0.023
19.............	17.989	0.016	0.798	0.104	0.504	0.035	0.984	0.031

Note.— The numbers in parentheses are the 1 σ uncertainties.

\(^a \) The identifications are the same as in Fig. 1.
In this paper, we present observations obtained of the SN 1999aa—like object SN 1999ac. SN 1999ac was discovered in the Sc galaxy NGC 6063 by Modjaz et al. (1999) from images obtained on 1999 February 26.5 and 27.5 UT. It was located at R.A. = 16°07'15".0, decl. = +07°58'20" (J2000.0), some 24" east and 30" south of the core of its host. SN 1999ac was confirmed to be a SN Ia by Phillips & Kunkel (1999) from a spectrum taken on February 28 UT; they also noted that the spectrum was similar to that of the slow decliner SN 1991T (Lira et al. 1998). Like SN 1991T, the Fe II lines at 4300 and 5000 Å in the spectrum of SN 1999ac were observed to be strong and the Si II λ6355 absorption weak; but unlike 1991T, the Ca II and K absorption in SN 1999ac was strong and well developed. Phillips & Kunkel speculated that SN 1999ac had been caught near, or a few days before, maximum; our observations show that B maximum did not actually occur until 13 days after this first spectrum was obtained.

In § 2 we present our optical and near-IR photometry of SN 1999ac. The resulting light curves, which are among the most complete ever obtained of a SN Ia for the first few months following explosion, are contrasted with the light curves of other well-observed SNe Ia. In § 3 we discuss the optical spectra obtained, likewise comparing these with similar observations of both spectroscopically "normal" and "peculiar" SNe Ia. In § 4 we derive the most likely host galaxy reddening for SN 1999ac and compare the peak luminosity and bolometric light curve with those of more typical SNe Ia. Finally, in § 5 the conclusions of this investigation are summarized.

2. OPTICAL AND INFRARED PHOTOMETRY

2.1. Observations and Data Reduction

Optical B(VRI)_{KC} imaging of SN 1999ac commenced at the Cerro Tololo Inter-American Observatory (CTIO) on 1999 March 1 UT, and observations were continued for nearly five months.°°'

Three different telescopes—the 0.9 m, the 1.5 m, and the Yale-AURA-Lisbon-Ohio (YALO) 1.0 m—were employed. In addition,
three nights of optical imaging were obtained with the Apache Point Observatory (APO) 3.5 m telescope.

In Figure 1 we show an optical finding chart of the field. A sequence of local standards in the SN field was established from observations made with the LCO1.0 m telescopes. A few images in \(H\) and \(K_s\) were also obtained with the Steward Observatory (SO) 2.3 and 1.5 m telescopes. In a manner similar to the optical photometry, a sequence of local standards was established from observations made with the LCO1.0 m telescope on photometric nights. In Table 3 we give the near-IR magnitudes for the seven field stars, which are tied to the IR standards of Persson et al. (1998). Two of these stars (IR3 and

\[
\begin{array}{cccc}
\text{Star ID} & J_s & H & K_s \\
\hline
1 & 13.804 (0.003) & 13.183 (0.005) & 13.087 (0.008) \\
2 & 14.126 (0.008) & 13.482 (0.016) & 13.256 (0.015) \\
3 & 15.869 (0.013) & 14.440 (0.013) & 15.403 (0.015) \\
4 & 16.303 (0.040) & 16.061 (0.039) & 16.010 (0.029) \\
5 & 15.966 (0.005) & 15.427 (0.013) & 15.192 (0.017) \\
6 & 16.093 (0.026) & 16.540 (0.028) & 16.299 (0.069) \\
\end{array}
\]

\[
\text{Note.} — \text{The numbers in parentheses are the } 1\sigma \text{ uncertainties.}
\]

The identifications are the same as those in Table 1 and Fig. 1.
IR7) were very red and were too faint in the optical bands to be useful as optical standards, but IR3 was the principal star used to reduce the IR photometry. From a comparison of the differential magnitudes of IR3 with respect to field stars 1 and 8, we established that IR3 was constant at the 0.03 mag level during the period of our observations.

The final $J_{s}HK_{s}$ magnitudes of SN 1999ac are given in Table 4. These were derived using the same PSF photometry software employed for the optical data. Since most of the IR imaging was obtained with the LCO 1.0 m telescope and IR camera, which is the very telescope and instrument used to establish the system of standards of Persson et al. (1998), no color corrections were applied to the IR photometry. We also note that the system of Persson et al. (1998) uses different filters than the standard J-band and K-band filters. The J_{s} and K_{s} filters (where s stands for “short”) have slightly different effective wavelengths and narrower bandwidths than the corresponding Johnson filters.

2.2. Optical Photometry

The $BVRI$ light curves of SN 1999ac are shown in Figure 2. The symbols identify the data taken with the different telescopes employed. Also included are the published observations of Jha (2002).

It may be seen that our optical photometry began \sim12 days before B maximum was reached, providing an uninterrupted record of the rise to peak brightness in each band and continuing without significant gaps to \sim4 months after B maximum. Except for the YALO 1.0 m observations, the data obtained with the various telescopes, including the published measurements of Jha (2002), are in generally good agreement. The YALO 1.0 m photometry shows significant discrepancies, most notably in the R band, but also clearly present in B, V, and I, particularly near maximum light. These differences are accentuated in Figure 3.
which shows the evolution of the $B - V$, $V - R$, and $V - I$ colors. Note that the early $B - V$ points from the YALO 1.0 m are nearly 0.2 mag redder than the trend defined by the 0.9 m and Jha (2002) photometry, but that this difference has essentially disappeared by JD 2,451,295. In $V - R$ the differences are even larger and persist during the entire period that the YALO 1.0 m was used. In $V - I$ the agreement is the best, but this is fortuitous, since the YALO 1.0 m V and I points are both clearly “too bright” at early epochs (see Fig. 2). Similar problems with data obtained for other SNe Ia with the YALO 1.0 m R filter have been documented (see Sunzett 2000; Stritzinger et al. 2002); indeed, this filter was replaced in 2001 by a filter that provides a much better match to the Kron–Cousins system. Problems with SN Ia photometry taken with the YALO B and V filters have also been observed by Krisciunas et al. (2003) and Candia et al. (2003).

In principle, with precise knowledge of the effective bandpasses of the different telescope-filter-CCD combinations and optical spectrophotometry with sufficient temporal coverage, it should be possible to correct all of the photometry, including the YALO observations, to the standard $BVRI$ system as defined by Bessell (1990). To date, however, attempts to do this have been only partially successful (Stritzinger et al. 2002; Krisciunas et al. 2003, 2004c). Since the YALO data are not needed to plug any critical gaps in the light curves, we can limit ourselves to a consideration of the optical photometry based on the CTIO 0.9 and 1.5 m telescopes.

The maximum light magnitudes in $BVRI$ and the Julian Dates on which these were attained are listed in Table 5. Direct measurement of the B-band light curve of SN 1999ac yields a value of 1.32 ± 0.08 for the decline rate parameter $\Delta m_{15}(B)$, which is defined as the amount in magnitudes that the B light curve declines during the first 15 days following maximum (Phillips 1993). Correcting for a total (Galactic + host galaxy) reddening of $E(B-V) = 0.14$ (see § 4.1), this value becomes $\Delta m_{15}(B) = 1.33$ (see Phillips et al. 1999); but as we shall see, this value of the decline rate does not tell the whole truth about the light curves.

As shown in Figure 4, the shapes of the $BVRI$ light curves are complicated and not really a good match to the light curves of other well-observed SNe Ia. Here the various light-curve templates have all been adjusted to coincide at maximum light. Note, in particular, the poor correspondence with the light curves of SN 1994D, whose $\Delta m_{15}(B)$ value (1.32) matches that of SN 1999ac. Only over the first 15 days after maximum do the B-band light curves of these two SNe evolve in a similar fashion; at both earlier and later epochs the light curve of SN 1994D falls below that of SN 1999ac as if SN 1999ac were a slower riser and slower decliner than SN 1994D. The same is true in the V, R, and I bands.

In spite of these indications that SN 1999ac is a slower-declining event than the $\Delta m_{15}(B)$ measurement suggests, the comparisons with the slower-declining SNe Ia in Figure 4 are not without problems as well. Before maximum, SN 1999ac rose only slightly more quickly than SN 1991T. The V-band light curve of SN 1992al [$\Delta m_{15}(B) = 1.11$] is a reasonable match to the observations of 1999ac. However, data of SN 1992al in other passbands (specifically, B, R, and I) poorly match SN 1999ac in the same passbands.

Note that in I the secondary maximum occurs significantly earlier in SN 1994D than in SN 1999ac, which again indicates that SN 1999ac was effectively a slower decliner than SN 1994D (Hamuy et al. 1996b). However, the strength of the secondary maximum is more consistent with a faster-declining SN Ia. Following the recipe given by Krisciunas et al. (2001), we calculate a flux (with respect to maximum) of the secondary maximum between 20 and 40 days after B maximum of $(I)_{20-40} = 0.475$, which is good agreement with the expected value for a SN with $\Delta m_{15}(B) = 1.33$.

The optical color evolution of SN 1999ac was similarly unique, as shown in Figure 5. Here the data for SN 1999ac have been corrected for a Galactic reddening of $E(B-V) = 0.046$ (Schlegel et al. 1998). The template curves with which the observations are compared have been corrected for both Galactic and host components of reddening per Table 2 of Phillips et al. (1999). Also included for comparison is the photometry of SN 1999aa from Krisciunas et al. (2000) corrected for Galactic reddening only. Prior to the epoch of B maximum, the $B - V$ color of SN 1999ac did not differ significantly from those of the other SNe Ia plotted. However, ~5 days after maximum, SN

TABLE 5

Filter	Epoch (JD – 2,450,000)	Magnitude
B	1251.0 (0.5)	14.27 (0.02)
V	1259.9 (0.5)	14.20 (0.20)
R	1252.0 (0.5)	14.17 (0.02)
I	1249.1 (0.5)	14.29 (0.02)
I_{c}	1249.2 (0.5)	14.51 (0.04)
H_s	1248.0 (0.5)	14.67 (0.04)
K_s	1248.5 (1.0)	14.54 (0.04)

Note.—The numbers in parentheses are the 1 σ uncertainties.
1999ac began to rapidly grow redder than all of the other SNe, reaching a maximum difference in $B - V$ of several tenths of a magnitude by 10–15 days past maximum. By \sim30 days after maximum, however, the $B - V$ color of SN 1999ac once again resembled that of several of the comparison SNe and continued to evolve in a similar fashion until around day 50, when the $B - V$ color of SN 1999ac once again began to slowly grow steadily redder than that of the other SNe. The peculiarities in the evolution of the $V - R$ photometry of SN 1999ac are nominally similar to those observed for $B - V$, with 1999ac starting off reasonably similar to the other events, growing significantly redder between 5 and 25 days after maximum, and then evolving back to a very similar color evolution by day 30. Except for the very first measurements obtained, the $V - R$ evolution of SN 1999ac was redder than that of the reference SNe during nearly the entire period covered by our observations. We call special attention to the fact that the optical color evolution of SN 1999ac was not at all like that of SN 1999aa. In spite of its spectroscopic peculiarities, the evolution of the latter SN was much more consistent with that of the template curves shown, particularly those corresponding to the slower decline rates.

2.3. Near-IR Photometry

The J_r, H, and K_s light curves of SN 1999ac are displayed in Figure 6. As in the case of the optical light curves, the data obtained with the various telescopes have been plotted with different symbols. These observations provide excellent coverage of the rise to maximum light in the near-IR. In the J_r band, this rise is followed by a nearly symmetric decline that levels off at \sim15 days after maximum is reached. Unfortunately, a 14 day gap in the observations then occurs, after which the light curve is observed to decline again. The impression is that, much like the I-band light curve, the secondary maximum in J_r was actually more of a “plateau” than a clearly defined peak.

The maximum light magnitudes in J_rHK_s and the corresponding Julian Dates are listed in Table 5. As with other well-observed SNe Ia, the J_rHK_s maxima all occurred \sim2–3 days before B-band maximum. In H and K_s, the initial rise to maximum is similar to that observed in J_r. This is followed in both bands by only a slight decrease in magnitude, to a plateau \sim10–15 days after maximum. Then there is a 20 day gap during which only a single H-band observation was obtained. By 35–40 days past the initial maximum, both the H- and K_s-band light curves begin a decline phase that is probably initially somewhat more rapid than at later times (see particularly the K_s-band observations).

Figure 6 also includes near-IR photometric loci for three spectroscopically normal objects: SN 1998bu (Jha et al. 1999; Hernandez et al. 2000), SN 1999ee (Krisciunas et al. 2004b), and SN 2001el (Krisciunas et al. 2003). The decline rates of these three SNe are $\Delta m_{15}(B) = 1.01 \pm 0.05$, 0.94 ± 0.06, and 1.13 ± 0.04, respectively. SN 1999ee was a slow decliner but did not exhibit the doubly ionized lines characteristic of SN 1991T–like objects (Hamuy et al. 2002). SNe 1998bu and 2001el were normal midrange decliners. Figure 6 shows that the near-IR light curves of SNe 1999ac and 2001el match reasonably well in the first
20 days after the IR maxima. SN 1999ac was fainter at 10 days before and 40 days after $T_{\text{B max}}$, consistent with its larger value of $\Delta m_{15}(B)$. While there are still very few SNe Ia that have well-sampled near-IR light curves, certain trends are suggested by the currently available data. Objects with small values of $\Delta m_{15}(B)$ are also slower risers/decliners in the IR. Objects with larger values of $\Delta m_{15}(B)$ are faster risers/decliners in the IR. In the I band the slow decliners have later secondary peaks (Hamuy et al. 1996b; Riess et al. 1996; Nobili et al. 2005). This trend seems to hold for the near-IR as well.

In Figure 7 we show the $BVIJsHKs$ data of SN 1999ac within 20 days of B maximum along with various single-band templates. The time since maximum light has been scaled according to stretch factors derived using $\Delta m_{15}(B) = 1.33$ (Jha 2002) and also taking into account time dilation. If the stretched data and a template match, then the stretch factor correctly characterizes the light curve. For the B- and V-band data the stretch factors are 1.175 and 1.128, respectively. For the other filters we used the average of these values, 1.151. The B-band template is from Goldhaber et al. (2001), using a parabolic turn-on at -20 days. The V-band template is from Knop et al. (2003). The other maximum-time templates are from Krisciunas et al. (2004b). In the BVI plots the circles represent CTIO 0.9 m data, while the triangles represent data from Jha (2002). In the $JHKs$ plots the circles represent LCO 1 m data, while the triangles represent data from the LCO 2.5 m using ClassicCam. If error bars are not shown, they are smaller than or equal to the size of the points. Since the stretched data do not conform well to the $BVIJ$ templates, the light curves must be characterized by different stretch factors before and after maximum light. [See the electronic edition of the Journal for a color version of this figure.]

20 days after the IR maxima, SN 1999ac was fainter at 10 days before and 40 days after $T(B_{\text{max}})$, consistent with its larger value of $\Delta m_{15}(B)$.

While there are still very few SNe Ia that have well-sampled near-IR light curves, certain trends are suggested by the currently available data. Objects with small values of $\Delta m_{15}(B)$ are also slower risers/decliners in the IR. Objects with larger values of $\Delta m_{15}(B)$ are faster risers/decliners in the IR. In the I band the slow decliners have later secondary peaks (Hamuy et al. 1996b; Riess et al. 1996; Nobili et al. 2005). This trend seems to hold for the near-IR as well.

In Figure 7 we show the $BVIJHKs$ data of SN 1999ac within ±20 days of B maximum along with various single-band templates. The time since maximum light has been scaled according to stretch factors derived from $\Delta m_{15}(B)$ (Jha 2002, Fig. 3.8). Time dilation is also taken into account. If $\Delta m_{15}(B)$ is a representative measure of the light-curve characteristics, the stretched data should lie on top of the templates. This is clearly not the case. At early times the BVI data are several tenths of a magnitude “too bright.” The J_s data conform to the template at early times, but the I and J_s data are too bright after $T(B_{\text{max}})$. Only in the K_s band do the data conform closely to the template before and after maximum light.

The $V - J_s$, $V - H$, and $V - K_s$ color evolution of SN 1999ac is shown in Figure 8. We have also added the V minus near-IR color loci from Krisciunas et al. (2000) offset by various amounts (see § 4.1). Because the early-time V-band data are brighter than we would expect on the basis of $\Delta m_{15}(B)$ alone, the V minus

![Fig. 7.—Comparison of $BVIJHKs$ data of SN 1999ac and generic (stretch = 1.00) light-curve templates. The data have been scaled in the time axis by stretch factors derived using $\Delta m_{15}(B) = 1.33$ (Jha 2002) and also taking into account time dilation. If the stretched data and a template match, then the stretch factor correctly characterizes the light curve. For the B- and V-band data the stretch factors are 1.175 and 1.128, respectively. For the other filters we used the average of these values, 1.151. The B-band template is from Goldhaber et al. (2001), using a parabolic turn-on at -20 days. The V-band template is from Knop et al. (2003). The other maximum-time templates are from Krisciunas et al. (2004b). In the BVI plots the circles represent CTIO 0.9 m data, while the triangles represent data from Jha (2002). In the $JHKs$ plots the circles represent LCO 1 m data, while the triangles represent data from the LCO 2.5 m using ClassicCam. If error bars are not shown, they are smaller than or equal to the size of the points. Since the stretched data do not conform well to the $BVIJ$, templates, the light curves must be characterized by different stretch factors before and after maximum light. [See the electronic edition of the Journal for a color version of this figure.]

![Fig. 8.—$V - J_s$, $V - H$, and $V - K_s$ color evolution of SN 1999ac. The solid lines represent the zero-reddening loci derived by Krisciunas et al. (2000), based on data for eight SNe Ia that are midrange decliners, and offset by $E(V - J) = 0.44$, $E(V - H) = 0.47$, and $E(V - K) = 0.37$ mag, respectively. [See the electronic edition of the Journal for a color version of this figure.]
near-IR colors are much too blue at early times. Since the V and K_s data conform to the templates from 0 to 20 days after $T(B_{\text{max}})$, the most reliable color index for the purposes of determining a color excess and extinction may well be $V - K_s$ at this epoch.

3. OPTICAL SPECTROSCOPY

Four optical spectra of SN 1999ac covering phases from 13 days before to 41 days after B maximum were obtained with the LCO 2.5 m du Pont telescope and WFCCD spectrograph. The specific dates and phases, as well as the wavelength coverage and resolution of these spectra, are given in Table 6. The spectra are plotted in Figure 9. Note that the last spectrum of 23 April (UT) was acquired under poor transparency conditions and consequently suffers from low signal-to-noise ratio. The version of this spectrum shown in Figure 9 has therefore been smoothed to an effective resolution of 90 Å.

The strongest features in the spectrum of SN 1999ac obtained at -13 days are identified with Ca ii, Fe iii, and Si ii. This spectrum is compared in Figure 10 with comparable-phase spectra of SN 1991T, SN 1999aa, and SN 1990N. The overall impression is that these four SNe form an orderly sequence, with the peculiar SN 1991T at the one extreme and the normal SN 1990N at the other. Note, in particular, how the strengths of the Ca ii H and K and Si ii λ6355 lines vary continuously from SN 1991T, where they are completely absent, to SN 1990N, where they are the strongest features in the spectrum. This situation lends credence to the idea that SNe Ia like SN 1999aa and SN 1999ac are transition events (Li et al. 2001a; Branch 2001; Garavini et al.

TABLE 6

JD − 2,450,000	UT Datea	Phaseb	Coverage (Å)	Resolution (Å)	Expansion Velocity (km s$^{-1}$)
1237.89............	Feb 28.39	−13	3700–9200	7	18856 (500) 12831 (200)
1248.89............	Mar 11.39	−2	3580–9270	7	14626 (100) 10747 (100)
1258.88............	Mar 21.38	+8	3600–9270	7	14189 (100) 9219 (100)
1291.85............	Apr 23.35	+41	3670–9230	7	11126 (500) ...

Note.—The numbers in parentheses are the 1 σ uncertainties.

a Year is 1999.

b Number of days with respect to epoch of B-band maximum.

d Rest-frame wavelength = 3945.1 Å.

d Rest-frame wavelength = 6355.2 Å.

Fig. 9.—Spectra of SN 1999ac obtained at LCO from 13 days before to 41 days after the epoch of B maximum. Identifications of the major contributors to the strongest absorption features in the -2 days spectrum are also indicated. The abscissa corresponds to observer frame wavelengths.

Fig. 10.—Spectrum of SN 1999ac obtained at -13 days compared with spectra from a similar epoch of SNe 1991T, 1999aa, and 1990N. Identifications of the major contributors to the strongest absorption features are indicated. The abscissa here and in Figs. 11 and 12 corresponds to rest-frame wavelengths.
the major contributors to the strongest absorption features are indicated. Spectra obtained around $T(B_{\text{max}})$ of these same four SNe strengthen this impression, as illustrated in Figure 11. Once again, the strengths of the Ca II H and K and Si II λ6355 lines form a smooth sequence, with SN 1999ac lying intermediate between SN 1999aa and SN 1990N. By this phase, the S II λ5545, 5460 lines have appeared in both SN 1999aa and SN 1999ac, making the peculiar nature of these events far less obvious than at earlier epochs. Indeed, Li et al. (2001a) have emphasized the difficulty of identifying SN 1999aa-like events in the absence of spectral observations well before maximum light. Figure 12 shows that by a week after B-band maximum, it is virtually impossible to discriminate spectroscopically between SN 1999ac and the normal SN 1990N.

Garavini et al. (2005) have recently presented a detailed analysis of the optical spectral evolution of SN 1999ac. Their data cover essentially the same time period (−15 to +42 days with respect to B maximum) as ours but with more frequent temporal sampling. Their main conclusions are similar to those presented in the previous paragraph, i.e., that prior to maximum light, the spectra of SN 1999ac resembled those of SN 1999aa but with stronger Ca II and Si II absorption, whereas after maximum the spectra appeared essentially normal. The Ca II H and K lines were found to exhibit larger than average expansion velocities from maximum light onward, whereas the iron lines appeared to be characterized by somewhat lower than average velocities. The Si II λ6355 expansion velocities decreased monotonically from −14 to +32 days and are among the slowest ever observed. Expansion velocities measured from the minima of the Ca II H and K and Si II λ6355 lines in our spectra are given in the last two columns of Table 6. These are in good agreement with the measurements of Garavini et al. (2005). Our expansion velocity for Ca II H and K obtained at −13 days suggests that at epochs before maximum the calcium velocities were not unusually high, although very few SNe Ia have been observed at such early epochs.

Garavini et al. (2005) measured values for SN 1999ac of the R(Si ii), v_{10}(Si ii), and i parameters that, in combination with $\Delta m_{15}(B)$, Benetti et al. (2005) recently used to identify three subgroups of SNe Ia. In all three of the diagrams considered by Benetti et al.—$\Delta m_{15}(B)$ versus R(Si ii), $\Delta m_{15}(B)$ versus v_{10}(Si ii), and $\Delta m_{15}(B)$ versus i—SN 1999ac appears to be either an outlier or an extreme example of normal SNe Ia. Garavini et al. (2005) pointed out that the low value of R(Si ii) = 0.098 ± 0.030 measured for SN 1999ac is consistent with high temperature (as manifested by the presence of strong Fe II absorption lines at early epochs) but inconsistent with the value of $\Delta m_{15}(B) = 1.33$, suggesting that for this object $\Delta m_{15}(B)$ might not be a good indicator of luminosity. We return to this point in § 4.2.

4. DISCUSSION

4.1. Host Galaxy Reddening

The location of SN 1999ac in the outer regions of its host galaxy and the lack of strong Na I D lines in the spectra (which would imply the existence of dust along the line of sight) lead us to believe that the host galaxy reddening of this SN should be small. Estimating the host galaxy reddening of SN 1999ac is not so straightforward due to the peculiarities in the evolution of the various observed colors. If we follow the procedures detailed in Phillips et al. (1999) using the measured value of the decline rate $\Delta m_{15}(B) = 1.32 ± 0.08$, the BVI data imply a host galaxy reddening of $E(B − V) = 0.12 ± 0.03$ mag. If the dust along the line of sight can be characterized as having a ratio of total-to-selective absorption $R_V ≡ A_V/E(B − V) = 3.1$ (Sneden et al. 1978), then A_V(host) = 0.37 ± 0.09 mag and A_V(tot) = 0.51 ± 0.09 mag. However, it should be noted that one of the pillars of the Phillips et al. method is the assumption that all SNe Ia follow essentially the same $B − V$ evolution at late times (30–90 days

20 The parameter R(Si ii) is the ratio of the depth of Si II λ5800 to Si II λ6100 absorption. It is theorized to be driven by temperature, hence the 56Ni mass synthesized in the explosion. The parameter v_{10}(Si ii) is the blueshift measured in the Si II λ6355 line 10 days after maximum light, and i is an estimate of the expansion velocity time derivative computed after maximum light.
after V-band maximum). Figure 5 shows that this is not the case for SN 1999ac in that the data from 30 to 90 days after V maximum are best fitted by a slope of -0.0073 ± 0.0004 mag day$^{-1}$, which is clearly shallower than the value of -0.0118 mag day$^{-1}$ given by Lira (1995).\(^{21}\)

If we maximize the wavelength difference of two "well-behaved" photometric bands, it is possible to get a better handle on the extinction toward a star or SN. Krisciunas et al. (2000) found that SNe Ia with midrange decline rates exhibited uniform V minus near-IR colors in the range -9 days $\leq t - T(B_{\text{max}}) \leq +27$ days, allowing a determination of the V minus near-IR color excesses and a more robust estimate of A_V. Krisciunas et al. (2004b) showed that slowly declining SNe Ia have V minus near-IR colors roughly 0.24 mag bluer than those of midrange decliners.

Figure 8 shows that no simple vertical shifting of our V minus near-IR templates matches the SN 1999ac data in the range -9 days $\leq t - T(B_{\text{max}}) \leq +27$ days. If, however, we restrict the fits to the first 20 days after $T(B_{\text{max}})$, we obtain color excesses of $E(V - J_s) = 0.44 \pm 0.08$, $E(V - H) = 0.47 \pm 0.06$, and $E(V - K_s) = 0.37 \pm 0.06$. As discussed in § 2.3, the best-behaved photometric band before and after the time of maximum light was K_s. Since the V-band data in the first weeks after maximum are also well behaved, we would suggest that the most reliable color index from which to derive a color excess and extinction is $V - K_s$. With $A_V = 1.129 \pm 0.029 E(V - K_s)$ based on the reddening model of Cardelli et al. (1989), we obtain $A_V(\text{tot}) = 0.42 \pm 0.07$ mag. This implies $E(B - V)_{\text{host}} = 0.09$, slightly less than we obtained from optical photometry only. We adopt this smaller value as the best estimate of the host galaxy color excess.

According to Theureau et al. (1998) the heliocentric radial velocity of the host of SN 1999ac is 2847 km s$^{-1}$. Corrected to the frame of the cosmic microwave background radiation, this velocity is 2942 km s$^{-1}$. With a Hubble constant of 72 km s$^{-1}$ Mpc$^{-1}$ (Freedman et al. 2001) we get a distance modulus of $m - M = 33.06 \pm 0.22$ mag, where the uncertainty corresponds to a random velocity of ± 300 km s$^{-1}$. If $V_{\text{max}} = 14.20 \pm 0.02$ and $A_V = 0.42 \pm 0.07$ mag, the absolute magnitude of SN 1999ac is -19.28 ± 0.24. This is 0.24 mag brighter than the value given by Li et al. (2003), who assumed zero host galaxy reddening on the basis of the position of the SN in its host and the lack of Na I D absorption in the spectra (W. D. Li 2005, private communication). The absolute magnitude at maximum can be compared to $M_V = -19.13$ for a typical SN Ia with $\Delta m_{15}(B) = 1.33$ and $H_0 = 72$ (Phillips et al. 1999, eq. [18]).

The absolute magnitudes of SN 1999ac depend critically on the adopted host galaxy extinction. While this problem is potentially unsolvable in the case of optical absolute magnitudes, serious systematic errors in the extinction corrections are less problematic in the near-IR. Table 1 and Figure 3 of Krisciunas et al. (2004a) adopt total $VJHK$ extinctions of 0.51, 0.14, 0.10, and 0.06 mag, respectively, and show that the near-IR absolute magnitudes of SN 1999ac are statistically equal to the mean of SNe Ia with slower decline rates.

4.2. Luminosity and Bolometric Light Curve

In Figure 13 we show the bolometric light curves of SNe 1994D, 1999aa, and 1999ac, calculated using the $UBVRI$ photometry of Jha (2002) and our $BVRI$ photometry. For details on the method, see Suntzeff (2003). As stated above, we assumed a distance modulus $m - M = 33.06$ mag and $E(B - V)_{\text{host}} = 0.09$ mag for SN 1999ac. The three objects represented in Figure 13 have essentially the same peak bolometric luminosity. While SNe 1994D and 1999ac have the same observed B-band decline rates, their bolometric decline rates are clearly different.

Candia et al. (2003) considered the difference of log L at maximum compared to log L at 90 days after maximum. Calling

\(^{21}\) Two other SNe Ia whose color evolution did not allow the unambiguous determination of color excesses were the highly peculiar SN 2000cx (Li et al. 2001b; Candia et al. 2003) and SN 2002bo (Benetti et al. 2004; Krisciunas et al. 2004c).
this parameter $\Delta \log_{10} L_0$. Candia et al. (2003) found that it correlates with $\Delta m_{15}(B)$, which allowed them to gain insight into the nature of the effective decline rate of the peculiar SN 2000cx. Both SNe 1999aa and 1999ac have $\Delta \log_{10} L_0 \approx 1.40$. Taken all together, the evidence suggests that SN 1999ac was energetically much more similar to the spectroscopically peculiar slow decliner SN 1999aa than to the faster-declining SN 1994D.

Finally, in Figure 14 we show the equivalent of the luminosity versus decline rate relation for SNe Ia but using bolometric light curves. The ordinate is the logarithm of the peak luminosity, while the abscissa represents the decline in log L over the first 15 days after the bolometric maximum. SN 1999ac had a peak bolometric luminosity and bolometric decline rate near the midrange of most of the objects represented. Except for the record-setting slow decliner SN 2001ay (P. Nugent et al. 2006, in preparation) and the faster-declining SNe 1992A (Hamuy et al. 1996b) and 1999by (Garnavich et al. 2004), SNe Ia appear to occupy a rather small parameter space in the bolometric decline rate graph. This argues in favor of a uniform explosion mechanism for the majority of SNe Ia.

5. CONCLUSIONS

The Type Ia supernova (SN Ia) 1999ac was peculiar in several respects. As shown by Garavini et al. (2005) and by our data, the spectra of SN 1999ac resembled the unusual SN 1999aa at early times. From maximum light onward, however, the spectra were essentially normal. This underscores a thorny issue of SN classification: if early-time spectra are not obtained, there may be no way to determine whether a particular SN Ia is unusual (see also Li et al. 2001a).

The optical photometry of SN 1999ac was unusual in that it had a slow rise rate (like SN 1991T) but a much more rapid B-band decline rate (like SN 1994D). In this sense it was the opposite of SN 2000cx, which was a rapid riser but slow decliner. This is in striking contrast to the B- and V-band light curves of most SNe Ia, which can be characterized by a single stretch factor (Goldhaber et al. 2001). In the case of SN 1999ac, our best estimate of the extinction is obtained from the $V - K_s$ colors during the first 20 days after $T(B_{\text{max}})$. We find $A_V(tot) = 0.42$ mag, implying a nonzero host galaxy reddening of $E(B-V)_{\text{host}} = 0.09$ mag.

In spite of the peculiar photometric properties of SN 1999ac, because near-IR extinction corrections are 1 order of magnitude smaller than at optical wavelengths, the IR absolute magnitudes of SN 1999ac cannot be systematically in error by more than a few hundredths of a magnitude. The derived IR absolute magnitudes (Krisiunas et al. 2004a) are statistically equal to the mean of all other SNe Ia with slower decline rates. As a result, the unusual SN 1999ac can be still be regarded as an IR standard candle. Its J, HK_s light curves were very similar to those of the normal SN 2001el.

The bolometric light curve of SN 1999ac closely resembled that of the spectroscopically peculiar slow decliner SN 1999aa. The differences of their bolometric luminosities at maximum compared to 90 days after maximum are almost identical. As measured by this parameter, SN 1999ac behaved as if it were a slow decliner. Hence, in terms of its energetics and premaximum spectral characteristics, there is little doubt that SN 1999ac was closely related to other peculiar, slow-declining events, such as SNe 1999aa and 1991T.

Finally, we have also examined the luminosity versus decline rate relation for SNe Ia considered according to their bolometric light curves. Most events occupy a rather small parameter space, suggesting a uniform explosion mechanism for these SNe.

M. H. and G. G. acknowledge the support of Fondate Center for Astrophysics grant 15010003. Some of the observations were obtained with the Yale 1 m telescope at CTIO, operated by the Yale-AURA-Lisbon-OSU consortium, now the Small and Moderate Aperture Research Telescope System Consortium. We acknowledge funding from STScI from grants GO-8243.02-A and GO-8648.10-A. We made use of data in the NASA/IPAC Extragalactic Database. We thank Max Stritzinger for discussions relating to bolometric light curves and Weidong Li for facilitating his published spectra of SN 1999aa.

REFERENCES

Barris, B. J., et al. 2004, ApJ, 602, 571
Benetti, S., et al. 2004, MNRAS, 348, 261
———. 2005, ApJ, 623, 1011
Bennett, C. L., et al. 2003, ApJS, 148, 1
Bessell, M. S. 1979, PASP, 91, 589
———. 1990, PASP, 102, 1181
Branch, D. 2001, PASP, 113, 169
Branch, D., Fisher, A., & Nugent, P. 1993, AJ, 106, 2383
Candia, P., et al. 2003, PASP, 115, 277
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Cristiani, S., et al. 1992, A&A, 259, 63
Filippenko, A. V., Li, W. D., & Leonard, D. C. 1999, IAU Circ., 7108
Filippenko, A. V., et al. 1992a, ApJ, 384, L15
———. 1992b, AJ, 104, 1543
Freedman, W. L., et al. 2001, ApJ, 553, 47
Garavini, G., et al. 2004, AJ, 128, 387
———. 2005, AJ, 130, 2278
Garnavich, P. M., et al. 1998, ApJ, 493, L53
———. 2004, ApJ, 613, 1120
Gibson, B. K., & Stetson, P. B. 2001, ApJ, 547, L103
Gibson, B. K., et al. 2000, ApJ, 529, 723
Goldhaber, G., et al. 2001, ApJ, 558, 359
Guy, J., Astier, P., Nobili, S., Regnault, N., & Pain, R. 2005, A&A, 443, 781
Hamuy, M., Phillips, M. M., Suntzeff, N. B., Schommer, R. A., Maza, J., & Avilés, R. 1996a, AJ, 112, 2398
Hamuy, M., Phillips, M. M., Suntzeff, N. B., Schommer, R. A., Maza, J., Smith, R. C., Lira, P., & Avilés, R. 1996b, AJ, 112, 2438
Hamuy, M., et al. 2002, AJ, 124, 417
Hernandez, M., et al. 2000, MNRAS, 319, 223
Jha, S. 2002, Ph.D. thesis, Harvard Univ.
Jha, S., et al. 1999, ApJS, 125, 73
Knop, R. A., et al. 2003, ApJ, 598, 102
Krisiunas, K., Hastings, N. C., Loomis, K., McMillan, R., Rest, A., Riess, A. G., & Stubbs, C. 2000, ApJ, 539, 658
Krisiunas, K., Phillips, M. M., & Suntzeff, N. B. 2004a, ApJ, 602, L81
Krisiunas, K., et al. 2001, AJ, 122, 1616
———. 2003, AJ, 125, 166
———. 2004b, AJ, 127, 1664
———. 2004c, AJ, 128, 3034
———. 2005, AJ, 130, 2453
Landolt, A. U. 1992, AJ, 104, 340
Leibundgut, B., et al. 2000, A&A Rev., 10, 179
Leibundgut, B., et al. 1993, AJ, 105, 301
Li, W. D., Filippenko, A. V., Treffers, R. R., Riess, A. G., Hu, J., & Qiu, Y. 2001a, ApJ, 546, 734
Li, W. D., et al. 2001b, PASP, 113, 1178
———. 2003, PASP, 115, 453
Lira, P. 1995, M.S. thesis, Univ. Chile
Lira, P., et al. 1998, AJ, 115, 234
Maza, J., Hamuy, M., Phillips, M. M., Suntzeff, N. B., & Avilés, R. 1994, ApJ, 424, L107
Mazzali, P. A., Chugai, N., Turatto, M., Lucy, L. B., Danziger, I. I., Cappellaro, E., della Valle, M., & Benetti, S. 1997, MNRAS, 284, 151
Modjaz, M., King, J. Y., Papenkova, M., Friedman, A., Johnson, R. A., Li, W. D., Treffers, R. R., & Filippenko, A. V. 1999, IAU Circ., 7114
Nobili, S., Goobar, A., Knop, R., & Nugent, P. 2003, A&A, 404, 901
