Evaluation of functional recovery after upper limb replantation

Dr. Heider H. Tayah
M B Ch B, F I C M S, F.E.B.O.P.R.A.S. Al-Wasity Hospital, Baghdad/Iraq.

ABSTRACT

Background: Although it is not possible always, reconstruction of defects with tissue such as defect in the original tissue usually results in best functions and esthetic outcomes. Therefore, replantation of an amputated part is superior to any other method of reconstruction mainly when the condition of the amputated part is good. The goal of replantation after amputation is function. Returning of circulation to an amputated part does not, by itself, mean success. Therefore, replantation that will not lead to a useful activity should be avoided. This is usually the case with severely crushed and extensively avulsed limbs.

Objectives: evaluation of functions’ outcome after replantation.

Patients and Methods: This study deals with 18 patients (14 males, 4 females) with different injuries. Severely crushed and extensively avulsed limbs have been excluded from repair. The level of injury involved an arm in two patients, an elbow in one, a forearm in two, a palm in two, a thumb in two, and fingers in nine. The patients’ age ranged between 2 and 55 years, during the period between January 2012 and February 2016.

Results: In all the cases, replantation of the amputated part was successful; however, there were variations in functional recovery among the cases: in three cases, the functional recovery was very good, in five, it was good, in eight, it was fair, and in two, it was poor.

Conclusions: Replantation should be tried for most amputation cases, as it has a superior aesthetic and functional result and serves a major psychological benefit for the patients. High success in a rat can be achieved when one chooses to replant an amputated part in good condition, all the structures are repaired at the time of the primary operation, and there exist excellent post-surgery physiotherapy and good patient compliance.

Keywords: Replantation; amputation; vascular repair, limb trauma, revascularization, microsurgery.

Corresponding author: Heider H. Tayah, Email: Doctor.heider@yahoo.com

Disclaimer: The author has no conflict of interest.

Copyright © 2020 The Authors. Published by Iraqi Association for Medical Research and Studies. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 4.0 (CCBY-NC), where it is permissible to download and share the work provided it is properly cited.

DOI: https://doi.org/10.37319/iqnjm.2.2.2

Date received 28/may/2020 Accepted 15/June/2020 Published 1/July/2020
INTRODUCTION

Only a center can provide the necessary team, which includes a qualified micro-surgical team, experienced operating-room personnel, dedicated operating-room time, appropriate operative microscopes and instrumentation, adept perioperative nursing care, and an experienced hand therapy unit. Parts without muscle tend to survive with warm ischemia time of about 10 to 12 hours, although successful replantation has been reported after 24 hours of warm ischemia. Much longer periods of cold ischemia are consistent with survival. More proximal injuries with more muscle mass in the amputated part can tolerate 6 to 8 hours of cold ischemia. Indications for replantation must now reflect functional considerations. Major indications for replantation include the amputations of a thumb, multiple digits, and in children. Major contraindications include life-threatening injuries and severe underlying diseases that preclude the safe undertaking of such lengthy operations. (1)

The site of amputation is the second most important factor in determining the survival rate and the functional outcome. The literature suggests that the more proximal the amputation, the greater the incidence of complications and the worse the functional results. In the case of more proximal amputation, early return of circulation will prevent muscles ischemia, and concomitant nerve repair will decrease muscles atrophy. (4)

When a nerve does not repair, this leads to an insensate part with poor cold intolerance, subject to substantial neuropathic pain and poor function. Therefore, a basic understanding of the technical aspects of nerve repair including the type of repair required (e.g., epineurium vs. fascicular), the appropriate selection of a conduit when necessary, and a thorough knowledge of the methodologies for assessing functional recovery are essential. (5)

Types of Nerve Repair

1. Direct nerve repair

Epineural Repair
Used for clean-cut injury and end-to-end epineurial repair (Fig. 1) and has a goal of coaptations of nerves without tension.

Fascicular Repair
Using fascicular or grouped fascicular repair (Fig. 2). In this repair, the perineurium sutured, or, in groups of fascicles, the internal epineurium is situated for coaptation.

2. Nerve Conduits
Bone shortening helps nerve repair, but there are several situations where tensionless repair is not possible, even with bone shortening, such
as the absence of part of the nerve, crushed nerve, and avulsed nerve. Further, when the primary repair cannot be achieved, significant nerve contraction occurs making direct end-to-end tensionless repair impossible. All these conditions require nerve conduits for nerve repair (Fig. 3). (6)

3. Nerve Autografts
When it is impossible to repair a nerve directly, a nerve graft or even a nerve transfer needs to be considered. The best way to deal with a nerve gap is through nerve autograft. (7)

Level of injury

Arm replantation
In replantation of the arm, a long time is required for nerve regeneration, and functional recovery tends to be poor due to joint stiffness, muscular degeneration, and poor nerve regeneration, especially in a crushed arm or in an elderly patient. Therefore, the decision for replantation should be taken more cautiously compared to distal amputations. The requirements for the selection of a patient for replantation of the arm are as follows: a healthy person under the age of 60, no other serious or life-threatening injuries, good condition of the amputated part, and a person who can follow a long period of physical therapy and multiple reconstructive procedures. (8)

Forearm replantation
Regarding the functional outcome, a clear-cut amputation in the distal forearm can generally achieve good results. On the other hand, replantation of a crushed amputation in the proximal forearm gives less favorable results. Generally, any kind of forearm amputation is a
A candidate for replantation; however, patients with severely crushed muscles, diabetes, concomitant organ trauma, or peripheral vascular disease should be excluded. (9)

Hand Replantation and Digits

According to Tamai’s definitions of the zones of the hand and digits, the hand is the zone from the distal palmar crease to the wrist joint. Replantation of the hand is usually associated with a good outcome when the condition of the amputated hand is favorable. Management should be individualized according to the patient’s occupation, and overall health. skeletal stability, power, degree of joint mobility, and sensibility can help determine functional success. (10) Multiple digits should be replanted in the order of the importance of the involved digits. The ring and the long finger are usually cited as the fingers of greatest importance as they perform both grasp and pinch. (11)

The thumb should be replanted at any level. Although the thumb functions as a post for pinch as well as grasp, the length is important. Even if the nerves or the tendons are avulsed from the distal part, subsequent reconstructive procedures are available for functioning. Relative contraindications to digit replantation include single digits, distal tip amputations, excessive warm ischemia time, and an age greater than 75 years. (12)

Method of evaluation

There are different methods to evaluate the functional outcome of the replanted limb. Chen’s criteria is a simple method that can be used for this purpose (Table 1). It measures the level of sensory recovery, the range of joint motion, and muscle power.

Table 1: Chen’s criteria for the evaluation of function after extremity replantation.

Function	Grade
Ability to resume original work with a critical contribution from the reattached parts; a range of motion (ROM) exceeds 60% of normal, including the joint immediately proximal to the reattached part; recovery of sensibility to a high grade without excessive intolerance of cold; muscular power of 4 to 5 on a scale of 1 to 5.	I
Ability to resume some gainful work but not original employment; ROM exceeds 40% of normal; recovery near-normal sensibility in the median and ulnar distribution without severe intolerance of cold; muscular power of grade 3 to 4.	II
Independence in activities of daily living; ROM of joints exceeds 30% of normal; poor but useful recovery of sensibility (for example, only median or ulnar recovery is good or quality is only protective in both median and ulnar areas); muscle power of grade 3.	III
Tissue survival with no recovery of useful function.	V

PATIENTS AND METHODS

Eighteen patients with amputations underwent replantation procedures at the Al-Wasity Teaching Hospital in Baghdad from 2012 to 2016. Fourteen patients were male and four were female. Their ages ranged from 2 to 55 years. The total ischemic time ranged from 4 to 12 hours before replantation, and the average ischemia time was 8.6 hours (Table 2). The operation time ranged from 5 to 10 hours with an average time of 7 hours. The level of injury involved an arm in two patients, an elbow in one, a forearm in two, a hand in two, a thumb in two, and fingers in nine. The mechanism of injury in eight patients was clear cut, in seven
was crush with or without torsion or avulsion, and in three was torsion/avulsion. We regarded the crush, torsion, or avulsion injuries as a mild one when bone shortening precludes the nerves or the vessel grafts and the neurovascular bundles are sutured without any tension. The injury with moderate severity required, in addition to bone shortening, grafts to achieve the tensionless repair. The severely injured limb suspected to show no or poor functional recovery in the future was excluded from the repair.

The exploration and the structure identification of the amputated part should be carried out in the operating room as early as possible after the patient’s arrival to the hospital to shorten the operation time.

Local anesthesia was used in two patients and general anesthesia in sixteen patients. A tourniquet was used during the dissection in the proximal stump, which is performed under 2.5 magnifications with a binocular loupe or under the microscope in the case of amputation distal to the wrist. After the routine of brushing and washing with copious amounts of physiological saline solution containing antibiotics, radical debridement was performed with a knife and scissors to remove all the contaminated and crushed tissues. An additional skin incision was made to obtain a wider operative field.

One or two arteries, two veins or more, and all the nerves and tendons were identified. Once these structures were located, stay and marking sutures were applied. Physiological saline containing heparin (1000 IU) was injected from the arteries to wash out the toxic metabolites from the amputated part and any residual blood to prevent thrombus formation, which should continue until the clear fluid has come out from the vein.

Bone Fixation

Shortening of the bone is very important to facilitate the repair of arteries, veins, nerves, and tendons, and to facilitate skin closure. More bone shortening is required when there are more soft tissue gaps. Stable fixation of the bone is necessary, and the method must be rapid.

The Kirschner-wire fixation will provide adequate stability from the level of wrist distally. For more proximal level replantation, the unilateral external fixator is used. Plate and screw fixation are preferable, but too much stripping of the muscle may cause muscle ischemia.

Vascular Anastomosis

In distal amputation, vein anastomoses were carried out prior to performing arterial anastomoses to avoid excessive blood loss. However, when the ischemic time of the amputated part exceeded 4h, the artery was anastomosed first to avoid prolonged ischemia. In proximal forearm amputation, where the amputated part includes much muscle tissue, arterial repair was performed before venous repair because the rapid return of blood with toxic substances, including lactic and pyruvic acid, can be detrimental to the patient. In such a situation, the returning blood from the replant bleeds freely for a while until the color of the blood becomes pink. Before the anastomosis of the vessels, intravenous perfusion with heparin was used to prevent thrombosis. A superficial network of the vein was used for anastomosis because these veins are of good sizes mainly when the amputation is at the wrist or, more distally, when the comitantes are small (Fig. 6). Since muscle ischemia leads to increased
permeability and compartmental swelling occurs following revascularization, fasciotomies are performed in major limb replantation. Before the wound is closed, the drainage was used to prevent hematoma, which compresses the sutured vessels. The drainage tube or sheet is placed far away from the site of vessel anastomoses to ensure there is no mechanical interference at the anastomoses’ site.

Repair of the Muscles, Tendons, and Nerves
The deeper structure is repaired first. Nerve suture is performed with epineural sutures using 8-0 nylon. The tendons and the muscle belly are repaired with 3-0 nylon modified Kessler and 3-0 nylon figure of eight, respectively.

Skin Closure
Finally, the skin is closed, with or without skin grafting. In particular, any exposed vessels or nerves need to be covered by local skin as much as possible, and additional split-thickness skin should be grafted as needed.

Postoperative Management
A bulky dressing must be used and carefully applied, and a bandage should be applied loosely to avoid any compression of the vessels. Postoperatively, the limb is elevated continuously, and the fingertips are inspected at regular intervals. Vital signs and the skin temperature of the digits are monitored. To prevent vascular thrombosis, the intravenous perfusion of heparin is routinely used for one week after the operation. Physiotherapy starts ten to fourteen days post-surgery and continues for more than two years in major replantation.

Figure 4: Superficial dorsal veins used for vein repair mainly when the level of amputations is distal to the wrist as these vessels have a larger diameter than venae comitantes in this level.

Table 2: Eighteen patients were chosen in this study with different mechanisms of trauma and different levels of injury.
Evaluation of functional recovery after upper limb replantation

cases	Age/Sex	Cause of amputation	Level of amputation	Soft tissue condition	Ischemia time in hours (Cold or hot)
1	44/M	Straw compression machine	Distal forearm	Mild crush	10 cold
2	20/M	Road traffic accident	Proximal arm	Mild crush/avulsion	6 cold
3	32/M	Sword	Proximal hand	Clean cut	4 hot
4	22/M	Cutter for paper	Mid-palm	Clean cut	8 cold
5	31/F	Washing machine	Proximal phalanx of the index	Mild torsion/avulsion	4 hot
6	4/F	Agriculture machine	Distal-arm	Moderate crush/avulsion	6 hot
7	27/M	Heavy object	Middle phalanx of the index	Clean cut	5 cold
8	3/M	Woodcutter	PIP of middle finger	Clean cut	4 cold
9	2/M	Road traffic accident	Elbow	Mild crush	12 cold
10	25/M	Road traffic accident	Proximal forearm	Mild crush	5 cold
11	18/M	Cutter for iron	Proximal phalanx of thumb	Clean cut	5 hot
12	4/M	Closure of a door	Proximal phalanx of middle finger	Moderate crush	8 hot
13	55/M	Woodcutting saw	Middle phalanx of four fingers	Clean cut	7 cold
14	19/M	Closure of a door	Proximal phalanx of thumb	Mild crush	9 cold
15	16/F	Washing machine	Proximal phalanx of middle finger	Moderate torsion/avulsion	6 hot
16	3/M	Fitness bicycle	Distal phalanx of little	Clean cut	4 hot
17	48/F	Washing machine	Proximal phalanx of the index	Mild torsion/avulsion	5 cold
18	14/M	Heavy object	Middle phalanx of the index	Clean cut	7 hot
Figure 5: Amputation at the level of PIP of the right middle finger. A. proximal stump. B. distal part. C and D. 14 months post replantation with very good recovery of the function. The patient experienced a new trauma that involved their index finger several months after replantation of the middle finger.
Evaluation of functional recovery after upper limb replantation

Figure 6: Guillotine type amputation by a sword at the proximal hand. A, B, clean cut at distal part. C, proximal stump. D, E, external fixation and minimal proximal and distal dissection to minimize soft tissue damage. F and G, good flexion of the fingers and good apposition of the thumb against the digits.
Figure 7: Amputation at mid-palm and proximal phalanx of the thumb caused by the cartoon cutting machine. A and B, volar and dorsal aspect of amputated part. C and D, volar and dorsal aspect of a stump. E and F, two months after replantation. H, two years after replantation. The patient was able to perform good flexion at the fingers except for limited movement in the MP joint of the index.
Evaluation of functional recovery after upper limb replantation

Figure 8: Amputation at distal forearm caused by the straw compression machine with a mild crush. A and B, volar and dorsal aspect of the amputated part after disinfection with povidone-iodine. C, intraoperative wound closure. D, five days postop. E, F, G, and H, three months after replantation with good pronation of the forearm and good flexion of the digits.
RESULTS
Of the 18 patients analyzed, most (83%) of the cases were male. The right side was affected in 77.7% of the cases. The ischemic time ranged from 4 hours to 12 hours (average 8.6 hours).

All of the replanted parts survived. The follow-up periods of the patients ranged from 1 to 5 years, averaging 32 months. These patients required multiple secondary reconstructive procedures for the nerve, tendon, skin, and bone. The recovery of functions was evaluated by Chen’s criteria. According to these criteria, the results were very good in three patients, good in five, fair in eight, and poor in two (Table 3).

Table 3: The final evaluation of functional recovery according to Chen’s criteria.

Case no.	age year	sex	Level of amputation	Chen's criteria	Final evaluation
1	44	M	Distal forearm	II	Good
2	20	M	Proximal arm	IV	Poor
3	32	M	Proximal hand	II	Good
4	22	M	Mid-palm	II	Good
5	31	F	Proximal phalanx of the index	III	Fair
6	4	F	Distal-arm	II	Good
7	27	M	Middle phalanx of the index	III	Fair
8	3	M	PIP joint of middle finger	I	Very Good
9	2	M	Elbow	III	Fair
10	25	M	Proximal forearm	III	Fair
11	18	M	Proximal phalanx of thumb	I	Very good
12	4	M	Proximal phalanx of middle finger	III	Fair
13	55	M	Middle phalanx of four fingers	III	Fair
14	19	M	Proximal phalanx of thumb	II	Good
15	16	F	Proximal phalanx of middle finger	III	Fair
16	3	M	Distal phalanx of little	I	Very good
17	48	F	Proximal phalanx of the index	IV	Poor
18	14	M	Middle phalanx of the index	III	Fair
DISCUSSION

As any injury anywhere in the body, the healing process results in the laydown of the fibrous tissue in all the layers of the wound. After replantation, all the structures will adhere together making any subsequent procedure more difficult.

The goal in all the operations for all the patients was to restore as much of the function as possible, which indicates that all the structures and mainly nerves should be repaired primarily as the time factor in muscles’ re-enervation is crucial and secondary procedure has less favorable conditions as a result of adhesion and retraction of the nerves and other structures.

Although avulsed nerves present damage exceeding the skin level of the amputation, they are best reconstructed at the same time of replantation. (13) A simple surgical technique, which is often used in most of the 18 patients, is bone shortening. Bone shortening allows the neurovascular bundle to be approximated, which helps in the primary repair of vessels and nerves. (14)

In all the 18 cases, all the structures were repaired at the time of the first surgery. This helps in uninterrupted physiotherapy, decreases the fibrosis and adhesion from secondary procedures, and shortens the time interval between nerve repair and muscles reinnervation. With each additional procedure, the swelling and post-surgery pain will decrease the level of patient compliance for physiotherapy, which will increase the chance of joint stiffness and tendon adhesion.

All the above indicate that the key to achieving the maximum functional recover is to typically repair all the elements together in one surgery and the continuous uninterrupted physiotherapy.

In this study, the result generally indicates that the regaining of useful control of the amputated part improves with more distal amputations. Functional recovery is best when the amputation involves the wrist or the wrist more distally. The same conclusion was found in A. Neil Salyapongse et al.’s study, which stated wrist replantation can achieve high functional results and excellent patient satisfaction, and the replantation of digits tends to be one of the most difficult but rewarding procedures in hand replantation surgery. (15) With more distal amputation, there are smaller quantities of soft parts that are affected by longer acceptable ischemic time. (16)

Functional outcomes in children after replantation are better than those performed in adults. (17) In three of the eighteen patients included in this study, the functional recovery was very good according to Chen’s criteria; two of them were children. The other children also showed better scores than the adults with a comparable level of injury, which indicates that replantation in children results in better restoration of function.

Most of the finger injuries in this study occurred in zone II, and the functional result was usually fair except in one case with very good and one case with poor outcome, which may reflect the type of trauma, the patient compliance to physiotherapy, and adhesions. Adhesions of flexor tendons is a common cause of functional impairment in this zone. (18) Injuries to zone II have less functional results than injuries involving zones proximal and distal to zone II. (19)

All the patients who followed up for a long period are grateful for their limb retrieval and are either pain-free or have a mild but tolerable
pain during the full range of movement. Even the two patients with poor function have benefitted from the psychological aspect of the replantation. As validly stated by Sterling Bunnell, a “bad hand” is functionally better than a “good amputation.”

CONCLUSION

Replantation should be tried for a vast majority of amputation cases, as it has a superior aesthetic and functional result and major psychological benefits for patients, mainly children. Replantation of most levels of amputation can be achieved with a good or fair functional success when the surgeon chooses to replant an amputated part with a good soft tissue condition, when good preservation of the amputated part is there, all the structures have been repaired at the time of replantation, and there is a suitable time interval between the injury and the surgery. After replantation, continuous systematic physiotherapy and a good patient compliance is vital in regaining as much of the limb function as possible.

REFERENCES

1. Georgiade GS, Riefkohl R, Levin LS, Wolfort FG. Plastic, maxillofacial and reconstructive surgery. Plastic and Reconstructive Surgery-Baltimore. 1997; 100(5):1355.

2. Dec W. A meta-analysis of success rates for digit replantation. Techniques in Hand & Upper Extremity Surgery. 2006 Sep 1; 10(3):124–9.

3. Urbaniak JR, Evans JP, Bright DS. Microvascular management of ring avulsion injuries. The Journal of Hand Surgery. 1981 Jan 1; 6(1):25–30.

4. Wood MB, Cooney III WP. Above elbow limb replantation: functional results. The Journal of Hand Surgery. 1986 Sep 1; 11(5):682–7.

5. Kapur S, Poore SO. Principles of nerve repair and neural recovery in extremity replantation surgery. In extremity replantation 2015 (pp. 25-38). Springer, Boston, MA.

6. Trumble TE, Shon FG. The physiology of nerve transplantation. Hand Clinics. 2000 Feb; 16(1):105–22.

7. Kapur S, Poore SO. Principles of Nerve Repair and Neural Recovery in Extremity Replantation Surgery. In Extremity Replantation 2015 (pp. 25-38). Springer, Boston, MA.

8. Ipsen T, Lundkvist L, Barfred T, Pless J. Principles of evaluation and results in microsurgical treatment of major limb amputations: a follow-up study of 26 consecutive cases 1978–1987. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery. 1990 Jan 1; 24(1):75–80.

9. Urbaniak JR, Evans JP, Bright DS. Microvascular management of ring avulsion injuries. The Journal of Hand Surgery. 1981 Jan 1; 6(1):25–30.

10. Georgiade GS, Riefkohl R, Levin LS, Wolfort FG. Plastic, maxillofacial and reconstructive surgery. Plastic and Reconstructive Surgery-Baltimore. 1997; 100(5):1355.

11. Fufa D, Calfee R, Wall L, Zeng W, Goldfarb C. Digit replantation: experience of two US academic level-I trauma centers. JBJS. 2013 Dec 4; 95(23):2127–34.

12. Dec W. A meta-analysis of success rates for digit replantation. Techniques in hand & upper extremity surgery. 2006 Sep 1; 10(3):124-9.

13. Burkhalter WE. Ring avulsion injuries, care of amputated parts, replants, and revascularization. Emergency Medicine Clinics of North America. 1985 May; 3(2):365–71.

14. Soucacos PN, Beris AE, Touliatos AS, Vekris M, Pakos S, Varitimidis S. Current indications for single digit replantation. Acta Orthopaedica Scandinavica. 1995 Jan 1; 66(sup264):12–5.

15. Kapur S, Poore SO. Principles of Nerve Repair and Neural Recovery in Extremity Replantation Surgery. In Extremity Replantation 2015 (pp. 25-38). Springer, Boston, MA.

16. Wood MB, Cooney III WP. Above elbow limb replantation: functional results. The Journal of Hand Surgery. 1986 Sep 1; 11(5):682–7.

17. Rayidi VK, Velde VB, Rao N, Babu NR, Sambari L. Assessment of hand function after successful
replantation of upper limb at arm. Indian Journal of Plastic Surgery: Official Publication of the Association of Plastic Surgeons of India. 2016 Sep; 49(3):415

18. Urbaniak JR, Roth JH, Nunley JA, Goldner RD, Koman LA. The results of replantation after amputation of a single finger. The Journal of Bone and Joint Surgery. American Volume. 1985 Apr; 67(4):611–9.

19. Ross DC, Manktelow RT, Wells MT, Boyd JB. Tendon function after replantation: prognostic factors and strategies to enhance total active motion. Annals of Plastic Surgery. 2003 Aug 1; 51(2):141–6.

20. Tintle LS, Baechler LM, Nanos III CG, Forsberg LJ, Potter MB. Traumatic and trauma-related amputations: part ii upper extremity and future directions. JBJS. 2010 Dec 15; 92(18):2934–45.