Mental burden and its risk and protective factors during the early phase of the SARS-CoV-2 pandemic: systematic review and meta-analyses

Angela M. Kunzler 1,2*, Nikolaus Röthke 1†, Lukas Günthner 2, Jutta Stoffers-Winterling 1,2, Oliver Tüscher 1,2, Michaela Coenen 3,4, Eva Rehfuess 3,4, Guido Schwarzer 5, Harald Binder 5, Christine Schmucker 6, Joerg J. Meerpohl 6,7 and Klaus Lieb 1,2*

Abstract

Background: Mental burden due to the SARS-CoV-2 pandemic has been widely reported for the general public and specific risk groups like healthcare workers and different patient populations. We aimed to assess its impact on mental health during the early phase by comparing pandemic with prepandemic data and to identify potential risk and protective factors.

Methods: For this systematic review and meta-analyses, we systematically searched PubMed, PsycINFO, and Web of Science from January 1, 2019 to May 29, 2020, and screened reference lists of included studies. In addition, we searched PubMed and PsycINFO for prepandemic comparative data. Survey studies assessing mental burden by the SARS-CoV-2 pandemic in the general population, healthcare workers, or any patients (e.g., COVID-19 patients), with a broad range of eligible mental health outcomes, and matching studies evaluating prepandemic comparative data in the same population (if available) were included. We used multilevel meta-analyses for main, subgroup, and sensitivity analyses, focusing on (perceived) stress, symptoms of anxiety and depression, and sleep-related symptoms as primary outcomes.

(Continued on next page)
Introduction
The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was described for the first time in Wuhan, China [1, 2] and declared a public health emergency of international concern on 30 January 2020 [3]. The virus spread rapidly and, as of January 14, 2021, led to 90,759,370 confirmed infections and 1,963,169 deaths worldwide [4].

During the early phase of the pandemic, many countries adopted drastic measures, including testing, tracing, self-isolation, and quarantine measures as well as broader population measures ranging from travel bans, school closures, assembly restrictions, curfews, to full lockdowns [5–7]. Besides substantial stressors for individuals and the general public (eg, social isolation, reduced income, re-structuring of school, university, and work life) and healthcare systems (eg, disruption of essential health services) [8, 9], the SARS-CoV-2 pandemic has had major socio-economic consequences for the affected countries (eg, global supply chain disruptions) [10, 11]. By drastically changing our way of social interaction (eg, social distancing), it continues to affect many areas of daily life and in line with this social life and participation.

The disease-related threats, containment measures, and associated stressors may have a negative psychological impact on the community at large and potentially even more so on specific risk groups [12–17]. Given the work-related stressors in the context of disease outbreaks (eg, high workload, risk of infection, triage decisions), healthcare workers may suffer from a particularly high burden [18]1,2 [20–22]. Patients with pre-existing physical or mental conditions (eg, chronically ill individuals, psychiatric patients, geriatric patients), people with confirmed COVID-19 diagnosis, those recovering from the infection, or suffering from long COVID-19, and subgroups with special risk exposure (eg, caregivers) may also be at risk of developing stress-related mental symptoms [15, 22–28].

Various systematic reviews have synthesized the evidence on psychiatric symptoms associated with previous highly contagious infectious disease outbreaks (eg, Ebola, SARS-CoV) and the SARS-CoV-2 pandemic [20, 24, 29–35], some of them also narratively summarizing risk and protective factors for mental health [20, 30, 31, 33, 34]. Several meta-analyses have been conducted, either calculating the pooled prevalence of mental symptoms or odds ratios for the risk of mental burden attributable to the SARS-CoV-2 pandemic [20, 24, 29, 32, 33, 36]. Potential moderators of the negative mental health impact were also partly investigated [32]. International evidence indicates an elevated level of mental symptoms in the general public, including symptoms of anxiety, depression, and stress [30–33, 36]. Confirming the risk status of healthcare workers, several reviews also found an increased prevalence of mental symptoms in this group [18]1,2 [20, 29, 31, 32]. Finally, a few studies in patient populations (eg, COVID-19 patients, patients with pre-existing mental or physical conditions) show increased mental burden [24, 31–33].

There are several shortcomings of reviews published to date. Most either focus on the general population, healthcare workers, or patients, with only few publications examining the level of mental burden across all three specified, most relevant population groups [31–33]. Further limitations included a limited search strategy [31], language restrictions [24, 30, 31, 33], or a missing

1 included pandemic studies.
2 studies already considered in previous systematic review (Gilan, Röthke and colleagues) [19].
preregistration [20, 24, 29–31, 33, 36]. Most importantly, all but one systematic review failed to compare the mental burden during an ongoing pandemic with the burden before the pandemic [31]. Such comparisons, however, are necessary to quantify the mental burden specifically attributable to the current pandemic. We therefore aimed to assess the mental health impact of the SARS-CoV-2 pandemic by comparing data from the early phase of the current pandemic with prepandemic data in the general population, healthcare workers, and patients. We aimed to identify population-specific risk and protective factors for mental health.

Methods

Review registration

This systematic review [37] was preregistered with PROSPERO (registration no. CRD42020193249) with the title ‘Psychological distress, protective factors and resilience during the SARS-CoV-2 pandemic: a systematic review and meta-analysis with comparison to standard data’. Details of the methods are presented in the Additional file 1. The MOOSE Checklist for Meta-analyses of Observational Studies and differences between the protocol and the final review are presented in eTables 1 and 2.

Search strategy and selection criteria

We searched three bibliographic databases from January 1, 2019 to May 29, 2020 (PubMed, PsycINFO, and Web of Science) and inspected the reference lists of included studies. The search strategy comprised terms associated with mental health, pandemics, and the populations of interest (see eMethods 1 in Additional file 1). There were no restrictions concerning language, publication date, or publication format. We did not consider preprint articles. If not reported within a study, we systematically searched for prepandemic comparative data in the same or a similar population (PubMed, PsycINFO; see eMethods 2).

The populations of interest comprised the general population, healthcare workers, and any patients (eg, COVID-19 patients, those with pre-existing physical or mental conditions; eTable 3). Participants were included irrespective of age, health, or employment status. We did not consider infectious disease outbreaks other than due to SARS-CoV-2. To be eligible for the review, studies had to assess at least one mental health outcome, with a broad range of eligible outcomes (ie, anxiety and worrying, depression, posttraumatic stress, sleep, stress, general psychological distress). These outcomes were also considered for a descriptive synthesis of the prevalence (see data analysis). We included original research articles reporting on cross-sectional and longitudinal surveys.

All pandemic studies meeting these criteria were included but were only taken forward to pairwise meta-analyses if using a validated outcome measure and if prepandemic comparative data were available (eTables 4, 5). These were defined as data collected before the exposure to the current pandemic, and in the absence of other disease outbreaks or macro-stressors (eg, disasters), in the same country and population group (if available) and using the same outcome measure. In contrast to the review, we only focused on the four most frequently reported mental health outcomes (primary outcomes), including symptoms related to stress, anxiety, depression, or sleep. Posttraumatic stress, although reported more often than sleep, was not considered for pairwise meta-analyses. As this outcome is usually measured in the aftermath of macro-stressors, we were not able to identify adequate comparative data as mentioned above. Comparative data were selected stepwise using four levels to ensure best available comparability between SARS-CoV-2 exposure (‘pandemic’) studies and prepandemic (‘comparative’) studies. If representative studies in the same country and population (level 1) were not available, we used prepandemic studies in the same (level 2) or an alternative population (level 3; eg, healthcare workers compared with the general population), before resorting to the best available data in a similar country (level 4).

Study selection, data extraction, and quality assessment

The study selection process for the pandemic studies at the level of titles/abstracts and full-texts was performed in duplicate by two reviewers independently (NR, LG). Any disagreements were resolved by discussion or by consulting a third reviewer (KL). At both title/abstract (κ = 0.90) and full-text level (κ = 0.97), excellent interrater reliability was achieved.

Relevant information for each included study was extracted in duplicate by two reviewers (NR, LG), working independently, using a customized spreadsheet (eTable 6), which was shortened for the extraction of comparative data. Discrepancies were resolved through discussion or by a third reviewer (KL).

Three independent reviewers (NR, JSW, LG) assessed the quality of included studies using the modified National Institutes of Health (NIH) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies [38] (eTable 7), with disagreements being resolved by discussion or a third reviewer (KL). The level of comparability between pandemic and comparative data was assessed using a self-developed tool with four levels based on the previously mentioned levels for the stepwise selection of comparative data (eTable 8).
Data analysis
The included studies were synthesized in narrative and tabular form, with a descriptive analysis of prevalence rates for mental health symptoms (i.e., proportion of participants beyond a cut-off score reported in the included study) and of risk and protective factors. If adequate comparative data for any of the primary outcomes were available, pairwise meta-analyses were performed for the general population, healthcare workers, and patients, respectively (eMethods 3). Given the multiple uses of comparative studies, we used multilevel meta-analyses [39] for the general population and healthcare workers, with pandemic studies being clustered according to pre-pandemic comparators. For patients, the multilevel model reduces to the classic random-effects model as different comparative studies were available. Prediction intervals were calculated in meta-analyses with at least four studies to take the large between-study heterogeneity into account [40].

Two sensitivity analyses referred to the quality of pandemic studies and the level of comparability (see Search strategy and selection criteria), by limiting the analyses to very comparable pandemic and pre-pandemic studies (i.e., level 1 and 2 mentioned above).

Subgroup analyses for each of the three groups were performed for the surveyed populations (e.g., age), characteristics of the pandemic studies (e.g., survey start) and of comparative data (e.g., publication year), and the relationship of sample sizes in pandemic versus comparative studies, in order to identify potential sources of heterogeneity of the psychological impact of the SARS-CoV-2 pandemic.

Results
Details of the results are presented in the Additional file 2. The systematic search for studies performed during the SARS-CoV-2 pandemic identified 2429 records from database searches and 17 additional records from reference lists, of which 104 studies were included in the review and 43 studies in the meta-analyses (Fig. 1). Of the 104 eligible studies, most studies were performed in the general population (50 studies), followed by 30 studies in healthcare workers, and seven studies in various patient populations. Seventeen studies included mixed samples. Across the three population groups, a total of 208,261 participants ranging from 51 to 52,730 participants [41, 42]1 from the pandemic studies were included in the review, the number of participants considered in the meta-analyses, in total 71,613, ranged from 127 to 60,213 participants (eTable 9).

The study characteristics of the 104 included pandemic studies (early phase) are presented in Table 1. Although we imposed no restrictions on the age limits, we identified no studies conducted in children but did find some studies in the general population that included participants below the age of 18 years [47, 58].
Thus, the mean age of participants in the pandemic studies ranged from 20 (SD not reported) to 56.9 (SD 7.6) years [49, 99]1. The studies covered Asia (67 studies [26, 41–43, 49, 50, 54, 57, 58, 60, 62, 64, 71, 74, 76, 80, 81, 85, 86, 88–91, 93, 98, 101, 102, 104, 109, 111–116, 118–123, 126, 124, 128, 131–133, 136, 137, 140, 141, 143, 145]1 [18, 48, 59, 73, 84, 87, 92, 100, 105, 106, 108, 117, 134, 138, 139, 142, 144]1,2 [127]1,3 thereof from China [42, 49, 50, 57, 58, 60, 62, 64, 71, 80, 81, 85, 86, 88–91, 93, 101, 104, 109, 115, 116, 118–120, 122–124, 126, 128, 131–133, 136, 140, 141, 143, 145]1 [18, 48, 59, 84, 87, 92, 100, 105, 106, 108, 117, 134, 138, 139, 142, 144]1,2 [127]1,3, Europe (24 studies) [47, 99, 44, 93, 99, 44, 103, 135, 101, 102, 104, 105, 106, 108, 117, 134, 138, 142, 144]1,2, [127]1,3 and North America (six studies) [56, 67, 79, 81, 126, 128, 131–133, 136, 140, 141, 143, 145]1 [134, 138, 139, 144]1,2. The same was found for patients (Table 3); however, prepandemic data in patients were only available for four samples. Forest plots are presented in Figs. 2, 3, and eResults 2 in the Additional file 2.

In pairwise meta-analyses comparing pandemic (early phase) with prepandemic data for the four primary outcomes, however, we found only evidence for a small increase of anxiety (standardized mean difference [SMD] 0.40; 95% CI 0.15–0.65; \(p = .002 \)) and a moderate increase of depressive symptoms (SMD 0.67; 95% CI 0.07–1.27; \(p = .03 \)) in the general population. No evidence for a change in stress or sleep-related symptoms was identified (Table 3). For healthcare workers compared with healthcare staff before the pandemic, the meta-analyses showed no evidence of any effect on the primary outcomes (Table 3). The same was found for patients (Table 3); however, prepandemic data in patients were only available for four samples. Forest plots are presented in Figs. 2, 3, and eResults 1 in the Additional file 2.

Of the 104 studies, 38 studies were judged to be of fair quality and 57 studies of poor quality, with main concerns regarding selection bias, the validity of outcome measures, and the description of the sample and the survey period (eTable 12). From nine high-quality studies, four were representative surveys [44, 47, 77, 88]1. From the 85 pairwise comparisons relevant for meta-analyses, 52 comparisons were of level-1 and 33 of level-2 quality (eTable 13). When excluding low-quality pandemic studies (Table 3), the effects on anxiety and depressive symptoms in the general population increased. The effect on anxiety in the general population was stable in the sensitivity analysis when only best comparable data sets (ie, level-1 and level-2 comparability) were included, while there was no longer evidence for an effect on depressive symptoms (Table 3 and eResults 2 in Additional file 2).

Heterogeneity was considerable in main and sensitivity analyses, with \(I^2 \) scores mostly ranging from 90 to 100% and wide prediction intervals (Table 3). We therefore performed subgroup analyses with at least \(k = 5 \) studies in the main analyses in attempts to explain this heterogeneity (Table 4; eResults 3 in Additional file 2).

Regarding population characteristics (pandemic studies), age was no consistent risk or protective factor. Within the general population, we identified no evidence for a subgroup difference according to stressor exposure except for elevated sleep symptoms in isolated individuals [62]1. In healthcare workers, there was no evidence for a moderating effect of COVID-19 patient contact on mental health. In different groups of patients, we identified no evidence of differences in anxiety or depression. Compared with COVID-19 patients [131]1, psychiatric patients reported more stress, with the caveat of few studies [42, 132, 135]1.

Among general characteristics of the pandemic studies, we found no (consistent) evidence of differences depending on when the surveys started, whether they were conducted in China, or the sample size. We found evidence of an elevated level of depressive symptoms in the general population and patients depending on the specific outcome measure employed (eg, Patient Health Questionnaire [PHQ], Zung Self-Rating Depression Scale [SDS]).

In subgroup analyses for comparative study characteristics, there was no evidence of a consistent moderation of comparison sample sizes.

Across the three populations, we identified a higher level of anxiety and depressive symptoms if included studies were compared to prepandemic data published five or more years before versus a smaller burden in comparison to prepandemic data of less than 2 years ago.

The relationship of sample sizes explained the heterogeneity of the psychological impact of the SARS-CoV-2 pandemic in the general population and patients, with evidence for elevated symptoms of anxiety if similar sample sizes were compared.
Study	Study design	Country	Sample size; female: No. (%)	Country (mode)	Subgroups	Survey period	Assessed Outcomes	Instruments or scales	
Ahmad et al. (2020) [43]\(^1\)	CS, OBS	Iraq (Kurdistan)	516; 222 (43%); NA (mode: 18–35 years [65.1%])	NA	NA	NA	Anxiety and fear	Binary single item\(^2\)	
Bacon et al. (2020) [44]\(^1\)	CS, OBS	United Kingdom	202; 127 (62.9%), 1 diverse; 33.79 (12.48)	NA	NA	March 18–19, 2020	Anxiety and fear	GAD-7	
Bäuerle et al. (2020) [45]\(^1\), Teufel et al. (2020) [46]\(^1\)	CS, OBS	Germany	15,037; 10,633 (70.7%), NA (mode: 25–34 years [24.8%])	NA	NA	March 10–May 5, 2020	Anxiety and fear	GAD-7, single item 7-P LS\(^a\), Depressive symptoms	STAI-Y, PSS
Buzzi et al. (2020) [47]\(^1\)	CS, OBS	Italy	2064; NA; NA	NA	100% adolescents	March 2020	Anxiety and fear	4-P LS\(^a\)	
Cao et al. (2020) [48]\(^1\)	CS, OBS	China	7143; 4975 (69.7%); NA	NA	NA	NA	Anxiety and fear	GAD-7	
Chang et al. (2020) [49]\(^1\)	CS, OBS	China	3881; 2447 (63.1%); 20.00 (NA); P_{25} = 19.00, P_{75} = 22.00	100% students; medical students (n = 3359)	January 31, 2019–February 3, 2020	Anxiety and fear	GAD-7	PHQ-9	
Gao J et al. (2020) [50]\(^1\)	CS, OBS	China	4872; 3267 (67.7%); 32.3 (10.0)	NA	NA	January 31–February 02, 2020	Anxiety and fear	GAD-7	WHO-5\(^c\)
Germani et al. (2020) [51]\(^1\)	CS, OBS	Italy	1011; 720 (71.2%); 24.2 (3.6)	100% age between 18 and 29 years	March 17–24, 2020	Anxiety and fear	STAI-Y		
González-Sanguino et al. (2020) [52]\(^1\)	CS, OBS	Spain	3480; 2610 (75%); 37–92 (NA)	NA	NA	March 21–28, 2020	Anxiety and fear	GAD-2	PHQ-2, PCL-C-2
Harper et al. (2020) [53]\(^1\)	CS, OBS	UK	324; 162 (50%); 34–32 (11.71)	NA	NA	March 27–28, 2020	Anxiety and fear	FCV-195, PROMIS-SF Anxiety, Promis-SF Depression	
Jahanshahi et al. (2020) [54]\(^1\)	CS, OBS	Iran	1058; 569 (53–8%); NA (mode: 26–35 years)	NA	NA	March 25–28, 2020	Anxiety and fear	CPDI	
Lauri Korajlija et al. (2020) [55]\(^1\)	CS (repeated), OBS	Croatia	sample 1: 888; 738\(^d\) (83–1%); 31.3 (10.45) sample 2: 966; 732\(^d\) (75.8%); 40 (11.94)	NA	NA	1st period: February 24–NA 2nd period: March 19–	Anxiety and fear	11-items 5-P LS based on Swine Flu Anxiety Items, Wheaton et al.	

\(^1\) CS = cross-sectional study, OBS = observation study

\(^a\) 7-P LS = 7-Item Life Stress Scale

\(^b\) P_{25}, P_{75} = 25th and 75th percentiles

\(^c\) WHO-5 = World Health Organization Well-Being Index

\(^d\) 5-P LS = 5-Item Life Stress Scale

\(^e\) Binary single item = binary single item for each outcome

\(^f\) Other outcomes include psychological distress, other outcomes, PROMIS-SF Anxiety, and PROMIS-SF Depression.
Study	Study design	Country	Sample size; female: No. (%); age: mean (SD) or alternative information on age (eg, mode)	Subgroups	Survey period	Assessed Outcomes	Instruments or scales
Lee SA et al. (2020) [56]	CS, OBS	USA	398; 191 (49%); 35.91 (11.73)	NA	March 23–24, 2020	Anxiety and fear	2 single items P-P LS
Lei et al. (2020) [57]	CS, OBS	China	1593; 976 (61.3%); 32.3 (9.8)	‘affected group’: quarantined / relatives quarantined (n = 420)	February 04–10, 2020	Anxiety and fear, Depressive symptoms	SAS, SDS
Li Y et al. (2020) [58]	CS (part of longitudinal cohort study), OBS	China	1442; 891 (61.8%); NA (K-6 < 5: 20.0 [1.5]; K-6 ≥ 5: 20.0 [1.6])	medical students (n = 764), nursing students (n = 211), medical technology students (n = 467)	February 7–13, 2020	PTSS, Psychological distress	IES-R, K-6
Liu N et al. (2020) [59]	CS, OBS	China	285; 155 (54.4%); NA (47.7% < 35)	NA	January 30–February 08, 2020	Anxiety and fear, Other outcomes	PTSS, PCL-5
Liu S et al. (2020) [60]	CS, OBS	China	primary school: 209; 116 (56%); NA college: 198; 130 (62%); NA	primary school students, college students	February–March, 2020	Anxiety and fear, Other outcomes	3 items, 4-P LS
Lopez et al. (2020) [61]	CS, OBS	Spain	878; 544d (62%) or 636 (72%)	100% community-dwelling older adults; age 60–70 years (71%)	NA	Anxiety and fear, Other outcomes	BRCS, Ryff's PWB (subscales for personal growth and purpose in life)
Ma et al. (2020) [62]	CS, OBS	China	123; 71d (57.7%); 37.4 (10.6)	100% isolated people	January 2020	Anxiety and fear, Depressive symptoms, Stress, Sleep-related symptoms, Other outcomes	DASS-21, DASS-21, DASS-21, DASS-21, SF-36
Mazza et al. (2020) [63]	CS, OBS	Italy	2766; 1982 (71.7%); 32.94 (13.2)	NA	March 18–22, 2020	Anxiety and fear, Depressive symptoms, Stress, Sleep-related symptoms, Other outcomes	DASS-21, DASS-21, DASS-21, DASS-21, DASS-21
McKay et al. (2020) [64]	CS, OBS	China	908; 752 (82.8%); 40.37 (9.27)	NA	February 24–March 15, 2020	Anxiety and fear, Depressive symptoms, Stress, Other outcomes	Co/GVAD-7, DASS-21, DASS-21, DASS-21
Moccia et al. (2020) [65]	CS, OBS	Italy	500; 298 (59.6%); NA (mode: 28–37 years, n = 129)	NA	April 10–13, 2020	Psychological distress, Other outcomes	TEMPS-A
Table 1 Study characteristics of included main studies (Continued)

Study design	Country	Sample size; female: No. (%)	Subgroups	Survey period	Assessed Outcomes	Instruments or scales		
CS, OBS Spain	2530; 1672 (66.1%); 27.9 (12.4) students (n = 1944); administrative staff (n = 247); faculty members and academic staff (n = 339)	Anxiety and fear, Depressive symptoms, Stress, PTSS, IES	March 28–April 3, 2020	DASS-21 Anxiety, DASS-21 Depression, DASS-21 Stress, IES				
CS, OBS USA	501; 277 (55.29%); 32.44 (11.94)	NA	March 25, 2020–NA	Depressive symptoms	PHQ-2			
CS, OBS Spain	976; 792 (81.1%); NA (mode: 18–25 years [56.5%])	NA	March 11–15, 2020	Anxiety and fear, Depressive symptoms, Stress	DASS-21 Anxiety, DASS-21 Depression, DASS-21 Stress			
CS, OBS Turkey	343; 169 (49.2%); 37.2 (10.3)	NA	April 14–16, 2020	Anxiety and fear	HAI			
CS, OBS Spain	1014; 681 (67.2%); 40.87 (12.42)	NA	March 18–23, 2020	Depressive symptoms	BIP-QS			
CS, OBS China, Hong Kong, Macao, Taiwan	52,730; 34,131 (64.7%)	NA	January 31–February 2, 2020	Psychological distress	CPDIX			
CS, OBS China	1172; NA; NA	NA	February 14–March 29, 2020	Anxiety and fear, Depressive symptoms, Stress, Sleep-related symptoms, PTSS, Other outcomes	GAD-7, PHQ-9, PSS-10, ISI, PCL-5, MINI suicidality module			
CS, OBS Russia & Belarus	850; 622 (73.2%); 34.8 (13.0)	NA	after March 27, 2020	Anxiety and fear	FCV-19S			
CS, OBS India	662; 339 (51.2%); 29.09 (8.83)	NA	March 22–24, 2020	Anxiety and fear	18 items S-P LS^a			
CS, OBS Bangladesh	8550; 3760 (44%); 26.5 (9.1)	NA	April 1–10, 2020	Anxiety and fear	FCV-19S			
CS, OBS Turkey	1304; 917 (70.3%); 29.5 (10.5)	NA	NA	Anxiety and fear	PHQ-9			
CS, OBS Bangladesh	1066; 405 (38.5%); 27.80	NA	March 28–	Psychological	COVID-19			
Study	Study design	Country	Sample size; female: No. (%); age: mean (SD) or alternative information on age (eg, mode)	Subgroups	Survey period	Assessed Outcomes	Instruments or scales	
-----------------------------	--------------	-------------	---	-----------	---------------	--------------------	--------------------------------	
(2020) [76]			(10.05)					
Shevlin et al. (2020) [77]	CS, OBS	UK	2025; 1047 (51.9%); 45.4 (15.9)	NA	March 23–28, 2020	Anxiety and fear	GAD-7, VAS on COVID-19 anxiety	
Soraci et al. (2020) [78]	CS, OBS	Italy	249; 229 (92%); 34.50 (12.21)	NA	March 18–21, 2020	Anxiety and fear	FCV-19S, HADS	
Sutin et al. (2020) [147]	CS, OBS	USA	2094; 1024 (48.9%); 51.03 (16.58)	NA	mid-March, 2020	Anxiety and fear	DASS-21 Anxiety, DASS-21 Depression, DASS-21 Stress, ISI	
Tan W et al. (2020) [80]	CS, OBS	China	673; 172 (25.6%); 30.8 (7.4)	NA	February 24–252,020	Anxiety and fear	FCV-19S, GAD-7	
Tian et al. (2020) [81]	CS, OBS	China	1060; 511 (48.2%); 35.01 (12.8)	HCW (n = 42), students (n = 330)	January 31–February 02, 2020	Anxiety and fear	SCL-90 Anxiety, SCL-90 Depression, SCL-90 GSI	
Tsipropoulou et al. (2020)	CS, OBS	Greece	2970; 2153 (72.5%); NA (mode: 18–30 years [52%])	NA	NA	Anxiety and fear	FCV-19S, GAD-7, PHQ-9	
Tull et al. (2020) [79]	CS, OBS	USA	500; 235 (47%); 40 (11.6)	NA	March 27–April 5, 2020	Anxiety and fear	DASS-21 Anxiety, SHAI DASS-21 Depression, DASS-21 Stress	
Voitsidis et al. (2020)	CS, OBS	Greece	2363; 1800 (76.2%); NA (mode: 18–30 years [55%])	NA	April 10–13, 2020	Anxiety and fear	PHQ-2, AIC IUS-12, JGLS	
Wang C et al. (2020a) [84]	2 CS (repeated), OBS	China	1738 not counting participants in both surveys; 333 in both 1st survey: 1210; 814 (67.3%); NA (mode: 21.4–30.8 years [53.1%])	NA	January 31–February 2, 2020 and February 28–March 1, 2020	Anxiety and fear	DASS-21 Anxiety, DASS-21 Depression, DASS-21 Stress	
(2020b) [85]			2nd survey: 861; 646 (75%);					
Study	Study design	Country	Sample size; female: No. (%)	age: mean (SD) or alternative information on age (eg, mode)	Subgroups	Survey period	Assessed Outcomes	Instruments or scales
-----------------------	--------------	---------------	-----------------------------	--	------------	--------------------------------	---------------------------	----------------------
Wang H et al. (2020)	CS, OBS	China	NA (mode: 21.4–30.8 years [46.5%])	NA	NA	February 1–4, 2020	Psychological distress	K-6
Wang Y et al. (2020)	CS, OBS	China	1599; 1068 (66.8%); 33.9 (12.3)	NA	NA	February 6–9, 2020	Anxiety	SAS
Yang H et al. (2020)	CS (repeated), OBS	China	during COVID-19: 3000; 1500\(^{A}\) (50%); 34.7 (NA)	NA	NA	end of December 2019 and mid-February, 2020	Other outcomes	Emotional well-being (Kahneman and Deaton, 2010)
Yuan R et al. (2020)	CS, OBS	China	parents of children hospitalised during the epidemic (EH): 50; 31 (62%\(^{A}\)); 36.80 (5.20)	EH (n = 50\(^{B}\)); NEH (n = 50\(^{B}\))	NA	NA	Anxiety	HADS Anxiety, VDAS, HADS Depression, SF-36
Zhang SX et al. (2020)	CS, OBS	China	369; 165 (44.7%); 36.6 (10.5)	NA	NA	February 20–21, 2020	Psychological Distress	K6
Zhang Y et al. (2020)	CS, OBS	China	263; 157 (60%); 37.7 (14.0)	NA	NA	January 28–February 05, 2020	PTSS	IES
Zhou SJ et al. (2020)	CS, OBS	China	8079; 4326 (53.5%); NA (median: 16, minimum 12, maximum 18 years)	100% senior high school students\(^{B}\)	NA	March 8–15, 2020	Anxiety	GAD-7, PHQ-9
Healthcare workers								
Abdessater et al. (2020)	CS, OBS	France	275; 91\(^{A}\) (33%) or 83\(^{A}\) (30%); ambigious data; 29.5 (0.47)	100% urologists	March 27–30, 2020	Stress	a	
Ahmed et al. (2020)	CS, OBS	multinational (Pakistan > Saudi Arabia > others)	650; 490 (75%); NA (mode: 20–30 years [54%])	100% dentists	March 10–17, 2020	Anxiety	8 binary items\(^{a}\)	
Alhaj et al. (2020)	CS, OBS	multinational (Canada, USA, others)	52; 14 (27%); NA (mode: < 30 years [69%])	100% surgeons	April 14–28, 2020	Psychological distress	Affection of mental health (binary single item)	
Amerio et al. (2020)	CS, OBS	Italy	131; 63 (48.1%); 52.3 (12.2)	100% physicians (general practitioners)	March 15–April 15, 2020	Anxiety	GAD-7, PHQ-9	
Badahdah et al. (2020)	CS, OBS	Oman	194; 116\(^{A}\) (60%); 40.72 (8.53)	100% physicians	early April 2020	Anxiety	Stress	GAD-7, PSS-10, WHO-5\(^{c}\)
Table 1 Study characteristics of included main studies (Continued)

Study	Study design	Country	Sample size; female: No. (%)	Subgroups	Survey period	Assessed Outcomes	Instruments or scales
Bohlken et al. (2020)	CS, OBS	Germany	396; NA; 165 (42%); 56.9 (7.6)	100% physicians	April 1-6, 2020	Anxiety and fear	Single items 5-P LS³
						Sleep disorders	Single item 5-P LS³
Cai H et al. (2020)	CS, OBS	China	534; 367 (69%); 36.4 (16.18)	physicians (n = 233), nurses (n = 248)	January-March, 2020	Anxiety and fear	Single items 4-P LS³
						Anxiety and fear	SCL-90 anxiety
Cai W et al. (2020)	CS, OBS	China	whole sample: 1521; 1149 (75.5%); NA (mode: 18–30 years, [43.5%])	physicians (n = 511), nurses (n = 546)	NA	Anxiety and fear	SCL-90 depression
						Depressive symptoms	SCL-90 positive items
						Psychological distress	SCL-90 subscales
						Other outcomes	CD-RISC, SRRS
Chew et al. (2020)	CS, OBS	multinational (Singapore, India)	906; 583 (64.3%); NA (median IQR: 29 [25–35] years)	physicians (n = 268), nurses (n = 355), allied healthcare professionals (n = 96), non-HCW (n = 187)	February 19–April 17, 2020	Anxiety and fear	DASS-21 anxiety
						Depressive symptoms	DASS-21 depression
						Stress	DASS-21 stress
						Sleep-related symptoms	Single item 4-P LS³
						Other outcomes	IES-R
Consolo et al. (2020)	CS, OBS	Italy	356; 141 (39.6%); NA (mode: 35–55 years [48.6%])	100% dentists	April 2–21, 2020	Anxiety and fear	GAD-7
Gan et al. (2020)	CS, OBS	China	11,183; 10,811 (96.7%); NA (mode: 20–29 years)	100% nurses	February 4–10, 2020	Anxiety and fear	VAS on anxiety
Huang JZ et al. (2020)	CS, OBS	China	230; 187 (81.3%); NA (mode: 30–39 years [53%])	physicians (n = 70), nurses (n = 160)	February 7–14, 2014	Anxiety and fear	SAS
						Stress	VAS on stress
						Anxiety and fear	PTSS
						PTSS	PTSD-5S
Kang et al. (2020)	CS, OBS	China	994; 850 (85.5%); NA (mode: 30–40 years [63.4%])	physicians (n = 183), nurses (n = 811)	January 20–February 4, 2020	Anxiety and fear	PHQ-9
						Depressive symptoms	ISI
						Sleep-related symptoms	ISI
						Other outcomes	IES-R
						Defferential symptoms	CD-RISC, SRRS
Khusid et al. (2020)	CS, OBS	USA	332; 117 (35%); 30.5 (2.6)	100% urologists	April 7–11, 2020	Anxiety and fear	GAD-7
						Sleep-related symptoms	2 items 5-P LS³
Lai et al. (2020)	CS, OBS	China	1257; 964 (76.7%); NA (mode: 26–40 years [64.7%])	physicians (n = 493), nurses (n = 764)	January 29–February 3, 2020	Anxiety and fear	PHQ-9
						Depressive symptoms	ISI
						Sleep-related symptoms	IES
Table 1 Study characteristics of included main studies (Continued)

Study	Study design	Country	Sample size; female: No. (%)	age: mean (SD) or alternative information on age (eg, mode)	Subgroups	Survey period	Assessed Outcomes	Instruments or scales
Mo et al. (2020) [108]	CS, OBS	China	180; 162 (90%); 32.71 (6.52)	NA	end of February 2020	Anxiety and fear	SAS	
Pu et al. (2020) [109]	CS, OBS	China	867: 829 (95.6%); 30.8 (7.1)	100% nurses	NA	Anxiety and fear	SAS	TAF
Rossi et al. (2020) [110]	CS, OBS	Italy	1379; 1064 (77.2%); 39.0 (6.0)	physicians (n = 433), general practitioners (n = 86), nurses (n = 472)	March 27–31, 2020	Anxiety and fear	GAD-7, PHQ-9, PSS, ISI, GPS–PTSD	
Sahu et al. (2020) [111]	CS, OBS	India	611; NA; NA (mode: 30–40 years, n = 192 [31.4%])	100% orthopedic surgeons	March 31–April 4, 2020	Psychological distress	K-6	Single-item^a
Shacham et al. (2020) [112]	CS, OBS	Israel	338; 198 (58.6%); 46.39 (11.2)	dentists (n = 198), dental hygienists (n = 140^a)	March 30–April 10, 2020	Anxiety and fear	SCL-90 anxiety, SCL-90 depression, SDS	
Suleiman et al. (2020) [113]	CS, OBS	Jordan	308; 113 (36.7%); 30.3 (5.8)	100% physicians	March 23–27, 2020	Anxiety and fear	SCL-90 total score, SCL-90 subscales	
Tan B et al. (2020) [114]	CS, OBS	Singapore	470; 321 (68.3%); NA (median: 31, IQR: 28–36 years)	physicians (n = 135), nurses (n = 161), allied hospital personnel (n = 174)	February 19–March 13, 2020	Anxiety and fear	DASS-21 anxiety, DASS-21 depression, IES-R	
Wang S et al. (2020) [115]	CS, OBS	China	123; 111 (90%); 33.75 (8.41)	100% pediatricians; physicians (n = 48), nurses (n = 75)	January 30–February 07, 2020	Anxiety and fear	SAS	
Wu K et al. (2020) [116]	CS, OBS,	China	experimental group: 60; 44 (73%); 33.5 (12.4) comparison group: 60; 45 (75%); 33.8 (11.9)	COVID-19 hospital (n = 60), non-designated hospital = comparison group (n = 60)	NA	Anxiety and fear	SAS, SCL-90 anxiety, SCL-90 depression, SDS	
Xiao et al. (2020a) [117]	CS, OBS	China	180; 129 (71.7%); 32.31 (4.88)	physicians (n = 82), nurses (n = 98)	January–February, 2020	Anxiety and fear	SAS	PSQI
Study	Study design	Country	Sample size; female: No. (%)	Age: mean (SD) or alternative information on age (eg, mode)	Subgroups	Survey period	Assessed Outcomes	Instruments or scales
-------	-------------	---------	-----------------------------	---	-----------	----------------	-----------------	---------------------
Xu J et al. (2020) [118]	CS, OBS, controlled	China	outbreak period: 60; 38 (63.3%); 36.68 (9.67) ‘post-epidemic’: 60; 32 (53.3%); 35.77 (7.06)	100% surgeons	January 28–February 29, 2020 and March 2–21, 2020	Anxiety and fear	GSES, SASR, SSRS	
Yin et al. (2020) [119]	CS, OBS	China	371; 228 (61.5%); 35.3 (9.5) physicians: NA nurses: NA	34 (9.5%)	February 01–05, 2020	Sleep-related symptoms	PSQI	
Zhang C et al. (2020) [120]	CS, OBS	China	1563; 1293 (83%); NA (mode: 26–40 years, \(n = 495 \) [31.7%]) physicians: NA nurses: NA	67, 264 (50.4%)	January 29–February 03, 2020	Anxiety and fear	GAD-7, PHQ-9	
Zhang SX et al. (2020c) [121]	CS, OBS	Iran	304; 178 (58.6%); 35.1 (9.1)	NA	April 5–20, 2020	Anxiety and fear	GAD-2d, PHQ-2d, K6	
Zhu J et al. (2020) [122]	CS, OBS	China	156; 137 (83%); 34.16 (8.06) physicians: 79; 51 (65%) nurses: NA	100% cured COVID-19 patients	February 1–29, 2020	Anxiety and fear	SAS	
Patients								
Cai X et al. (2020) [123]; Yuan B et al. (2020) [124]	CS, OBS	China	126; 66 (52.4%); 45.7 (14.0)	100% cured COVID-19 patients	March 2–12, 2020	Anxiety and fear	SAS	
Durankus et al. (2020) [125]	CS, OBS	Turkey	260; 260 (100%); 29.6 (3.8)	100 pregnant women	NA	Anxiety and fear	BAI	
Li X et al. (2020) [126]	CS, OBS	China	76; 35 (46%); 36 (15)	suspected COVID-19 patients	January 31–February 22, 2020	Anxiety and fear	HAMA	
Liu X et al. (2020a) [42]	CS, OBS	China	COVID-19 suspected patients: 21; 12 (57.1%); 43.1 (2.6); not COVID-19 suspected	100% schizophrenia patients; COVID-19 suspected patients	January 30–February 21, 2020	Anxiety and fear	HAMA	
Table 1 Study characteristics of included main studies (Continued)

Study	Study design	Country	Sample size; female: No. (%) or alternative information on age (eg, mode)	Subgroups	Survey period	Assessed Outcomes	Instruments or scales	
Wu Y et al. (2020) [127]	CS, OBS	China	4124; 4124 (100%6), NA (median: 30, range = 17–32 years)	100% pregnant women; before (group 1: n = 2839) after (group 2: n = 1284) January 20, 2020	January 1–February 9, 2020	Depressive symptoms	HAMD	
							PSS	Sleep-related symptoms
						PSQI	Other outcomes	
						PANSS		
Xu H et al. (2020) [128]	CS, OBS	China	350; 199 (54.1%); NA (mode: 40–60 years [51%])	100% lung cancer patients	March 4–6, 2020	Depressive symptoms	EPDS-3A	
						Sleep-related symptoms	Single itema	
						Other outcomes	Single itema	
Yassa et al. (2020) [129]	CS, OBS	Turkey	172; 172 (100%); 27.5 (5.3)	100% pregnant women ten days after first confirmed COVID-19 death in Turkey		Psychological distress	K-6	
Büntzel et al. (2020) [130]	CS, OBS	Germany	193; NA; NA (mode: > 60 years)	physicians (n = 47), cancer patients (n = 146)	April 16–19, 2020	Anxiety and fear	Single itema	
						Stress	Single itema	
Guo et al. (2020) [131]	CS, OBS, controlled	China	P: 103; 44 (42.7%); 42.5 (12.5); control (GP): 103; 49 (47.6%); 41.5 (13.1)	COVID-19 patients (n = 103), not infected control group (n = 103)	February 10–28, 2020	Anxiety and fear	GAD-7	
						Stress	PHQ-9	
						Sleep-related symptoms	PSS-10	
						Other outcomes	ISI	
Hao F et al. (2020) [132]	CS, OBS, controlled	China	P: 76; 51 (37.1%); 32.8 (11.8); control (GP): 109; 68 (62.4%); 33.1 (11.2)	psychiatric patients (n = 76), control group (n = 109)	February 19–22, 2020	Anxiety and fear	DASS-21 anxiety	
						Depressive symptoms	DASS-21 depression	
						Stress	DASS-21 stress	
Hao X et al. (2020) [133]	CS, OBS, controlled	China	P: 252; 132 (52.4%); 29.3 (11.6); control (GP): 252; 132 (52.4%); 29.4 (11.5)	epilepsy patients (n = 252), control group (n = 252)	February 1–29, 2020	Psychological distress	IES-R	
Huang Y et al. (2020) [134]	CS, OBS	China	GP (n = 4986), HCW (n = 2250)		February 3–17, 2020	Anxiety and fear	GAD-7	
						Depressive symptoms	CES-D	
						Sleep-related symptoms	PSQI	
Iasevoli et al.	CS, OBS	Italy	461; NA; NA	psychiatric patients	April 13–17, 2021	Anxiety and fear	GAD-7	
Study	Design	Country	Sample size; female: No. (%)	Age: mean (SD) or alternative information on age (eg, mode)	Subgroups	Survey period	Assessed outcomes	Instruments or scales
-------	--------	---------	-----------------------------	--	-----------	---------------	------------------	---------------------
(2020) [135]	controlled	P: 205; NA; NA caregivers: 51; NA; NA control (GP): 205; NA; NA	(n = 205), caregivers (n = 51), non-psychiatric persons (n = 205)	2020	fear	Depressive symptoms	PHQ-9	
Jin YH et al. (2020) [136]	CS, OBS	China	103; 64 (62.1%); NA (median [IQR]: 35 [14.0])	100% infected with SARS-CoV-2; physicians, nurses	February 15–29, 2020	Anxiety and fear	Single item multiple choice a	
Ko et al. (2020) [137]	CS, OBS	Taiwan	1904; 1282 (67.3%); 38.0 (10.8)	100% infected with SARS-CoV-2; other outcomes	April 10–20, 2020	Anxiety and fear	HAMA, NRS on fear	
Li Z et al. (2020) [138]	CS, OBS	China	740; 128 (59.8%); 25 (IQR: 22–38.3 years)	GP (n = 214), HCW (n = 526)	February 17–21, 2020	Anxiety and fear	HAMD	
Lu W et al. (2020) [139]	CS, OBS	China	2299; 1785 (77.6%); NA (78% < 40 years)	HCW (n = 2042), GP (n = 257)	February 25–26, 2020	Anxiety and fear	HAMA, NRS on fear	
Ni et al. (2020) [140]	CS, OBS	China	total: 1791; NA; NA GP: 1577; 1218 (60.8%); NA (mode: 18–34 years 38.6%); HCW: 214; 147 (68.8%); NA (mode: 18–34 years 58.9%)	GP (n = 1577), HCW (n = 214)	February 18–24, 2020	Anxiety and fear	GAD-2	
Sanchez et al. (2020) [67]	CS, OBS	USA	1051; 0 (0%); 35 (15.83)	100% men who have sex with men; HIV-patients (n = 122)	April 2–13, 2020	Anxiety and fear	Single item a	
Wu W et al. (2020) [141]	CS, OBS	China	4268; 2930 (68.7%); NA HCW: 2110; 1598 (76%); NA Students: 2158; 1332 (62%); NA	students (n = 2158), HCW (n = 2110)	February 10–21, 2020	Anxiety and fear	Single item a	
Yuan S et al. (2020) [142]	L, OBS	China	939; 582 (61.98%); NA (mode: 18–39 years 71.5%)	HCW (n = 249), students (n = 312)	February 2 survey periods in February, 2020	Sleep-related symptoms	PSQI, SRQ	
Zhang J et al. (2020) [143]	CS, OBS	China	205; 115 (56.1%); NA (for infected: 46.9 [154]; for quarantined: 36.2 [109]; for general public: 29.6 [127])	P, infected (n = 57), GP, quarantined (n = 50), GP, general public (n = 98)	February 15–29, 2020	Anxiety and fear	GAD-7	
Zhang WR et al. (2020) [144]	CS, OBS	China	2182; 1401 (64.2%); NA (mode: 18–60 years 96.3%)	HCW (n = 927), GP (n = 1255)	February 19–March 6, 2020	Anxiety and fear	GAD-2	
Zhu S et al. (2020) [145]	CS, OBS	China	2279; 1361 (6), NA	HCW (n = 858), GP (n = 1421)	Feb 12–Mar 17, 2020	Anxiety and fear	PHQ-9	
The risk and protective factors narratively identified for each population are presented in Table 5 and eTables 14 and 15, with most of them being investigated in the general population, and few studies investigating protective factors at all. Most frequently named risk factors across the populations were pre-existing mental disorders, female sex, and concerns about COVID-19 infection, whereas most frequently reported protective factors were older age, good economic situation, and higher education.

Discussion

To our knowledge, this is the first systematic review and meta-analysis to assess the mental health impact of the SARS-CoV-2 pandemic in the general population, but not of stress or sleeping problems.

Although healthcare workers were found to be a group at risk for mental health problems during the SARS-CoV-2 pandemic [18]^[20, 29, 31, 32], we identified no evidence for an increased mental burden during the early phase when comparing them with healthcare staff prior to the pandemic. Because of a (chronic) work-related risk exposure in daily life [194], as a kind of ‘stress inoculation’, healthcare professionals might have learned effective strategies (eg, self-efficacy) helping them to cope more professionally with crises than other groups. In contrast to previous findings [20, 195], the level of COVID-19 patient contact did not affect the mental health impact.

Overall, the results of this review paint a more nuanced picture of the mental health consequences of the SARS-CoV-2 pandemic than previous reviews – an observation in line with stress resilience research that identified different trajectories of psychological adaptation after potentially traumatic events, ranging from no mental burden to severe mental illness [196, 197]. Indeed, a recent analysis of 523 healthy subjects from the German LORA study showed a decrease of perceived stress and stressor load while mental health improved during the eight-week measurement after lockdown, indicating that the pandemic and pandemic response may also have

Table 1 Study characteristics of included main studies (Continued)

Study design	Country	Sample size; female: No. (%)	Subgroups	Survey period	Assessed Outcomes	Instruments or scales

Abbreviations: AIS Athens Insomnia Scale, BAI Beck Anxiety Inventory, BDI Beck Depression Inventory, BDI-2 Beck Depression Inventory, BIP-OS Brief Illness Perception Questionnaire 5, BRCB Brief Resilience Coping Scale, CD-RISC Connor-Davidson Resilience Scale, CES-D Center for Epidemiologic Studies Depression Scale, CoVGAD-7 Generalized Anxiety Disorder Scale-7 for COVID-19 Anxiety, CPDI CoV-ID-19 Peritraumatic Distress Index, CS cross-sectional, DASS-21 Depression Anxiety Stress Scale-21, DT Distress Thermometer, EPDS Edinburgh Postnatal Depression Scale, EPDS-3A Edinburgh Postnatal Depression Scale Anxiety subscale, FACIT-Sp12 Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being Scale, FCV-19S Fear of COVID-19 scale, GAD-2 Generalized Anxiety Disorder Scale-2, GP general population, GPS-PTSD Global Psychotrauma Scale-posttraumatic stress disorder subscale, GSES General Self-Efficacy Scale, GSI Global Severity Index, HADS Hospital Anxiety and Depression Scale, HAI Health Anxiety Inventory, HAMA Hamilton Anxiety Rating Scale, HAMD Hamilton Depression Rating Scale, HCW healthcare workers, IES Impact of Event Scale, IES-R Impact of Event Scale-Revised, IQR interquartile range, ISI Insomnia Severity Index, IUS-12 Intolerance of Uncertainty Scale-Short Form, JGLS De Jong Gierveld Loneliness Scale, K-6(−10) Kessler Psychological Distress Scale-6(−10), L longitudinal, MINI Mini International Neuropsychiatric Interview, MSPPS Multidimensional Scale of Perceived Social Support, NA not available, NRS Numerical Rating Scale, OBS observational, P patients, PANSS Positive and Negative Syndrome Scale, PCL-5(−C) Post-traumatic Stress Disorder Checklist-5(−Civilian Version), PHQ-2(−4/9−15) Patient Health Questionnaire-2(−4/9−15), PROMIS-5SF Patient Reported Outcomes Measurement Information System short forms, PSQI Pittsburgh Sleep Quality Index, PSS(−10) Perceived Stress Scale(−10), PTSD-SS Post-traumatic Stress Disorder Self-rating Scale, PTSS post-traumatic stress symptoms, Ryff’s PWB Ryff’s Psychological Wellbeing Scales, SASR Self-Rating Anxiety Scale, SASSR Stanford Acute Stress Reaction, SCL-90 Symptom Checklist-90, SCS Self-Compassion Scale, SD standard deviation, SDQ Strengths and Difficulties Questionnaire, SDS Self-Rating Depression Scale, SF-12(−36) Short Form 12 Health Survey, SHAI Short Health Anxiety Inventory, SSD Stress Overload Scale, SPEQ Specific Psychotic Experience Questionnaire, SRQ Stress Response Questionnaire, SRQ-20 20-item Self Report Questionnaire, SSRS Social Support Rating Scale, SSS Somatic Symptom Scale, STAY State Trait Anxiety Inventory-Y, SWLS Satisfaction With Life Scale, TAF Triage Assessment Form, TEMPS-A Temperament Evaluation of Memphis, Pisa, Paris and San Diego-Anxious, VAS Visual Analogue Scale, VDAS Van Dream Anxiety Scale, WHO-5 World Health Organization- Five Well-Being Index, WHOQOL-BREF abbreviated World Health Organization Quality of Life, 4−/5−/6−/11−point Likert-scale

a developed by study authors
b included in main analyses for general population but considered separately in subgroup-analyses
c in Gao J et al WHO-5 is used to assess depressive symptoms, in Badahah et al it is used to assess psychological distress
d not directly reported

e k-means-clustering method for the 4 tools summarized to ‘mental health’
positive effects [198]. The number of studies reporting on protective factors in this review was rather limited, especially in healthcare workers and patients. However, these factors might also partly explain the heterogeneity of findings regarding mental health consequences. This is in line with positive aspects (eg, improved social relationships with close social contacts such as families) that were likewise reported for previous infectious disease outbreaks. The importance of taking a ‘resilience perspective’ in SARS-CoV-2 mental health research and investigating resilience factors has been pointed out previously [19, 22, 197, 199].

Several aspects must be considered when interpreting the results. First, the absence of evidence of effects in healthcare workers and patients in this review does not necessarily mean that there is evidence for the absence of effects of the SARS-CoV-2 pandemic on mental health in these groups. Second, for healthcare workers, the mental burden on individuals probably depends on the location of survey (eg, country, region) and how heavily the respective healthcare systems were burdened in the pandemic timeline (eg, number of hospitalized COVID-19 patients). Among the 13 included studies in meta-analyses for healthcare staff, we could only include

Table 2 Narrative synthesis of prevalence based on scores above cut-off values for different mental health outcomes

General population	Number of studies	Lowest reported prevalence (%)	Highest reported prevalence (%)
Anxiety, worries, fear	24 [18 GP, 45, 47, 49, 50, 52, 57, 63, 66, 68, 69, 71, 77, 93] [73, 84, 87]	0.67 (63)	64.0 (46)
Depressive symptoms	18 [13 GP, 45, 49, 50, 52, 57, 63, 66, 68, 69, 71, 93] [84, 87]	0.9 (89)	48.3 (48)
PTSS	7 [6 GP, 52, 66, 71] [59, 84, 92]	7.0 (51)	53.8 (55)
Sleep-related symptoms	6 [3 GP, 71, 83] [84]	0.9 (89)	37.6 (131)
Stress	5 [4 GP, 66, 68, 71, 83]	0.9 (89)	67.9 (55)
Psychological distress	7 [5 GP, 41, 45, 58, 81]	1.6 (90)	65.2 (112)

Healthcare workers	Number of studies	Lowest reported prevalence (%)	Highest reported prevalence (%)
Anxiety, worries, fear	22 [14 HCW, 99, 95, 113, 102, 103, 110, 115, 120, 122, 121]	7.0 (108)	92.0 (144)
Depressive symptoms	14 [9 HCW, 97, 102, 110, 115, 120, 121, 122] [18, 106]	0.6 (110)	50.4 (18)
PTSS	7 [HCW, 102, 110, 119, 120] [18, 105, 106]	3.8 (82)	73.0 (83)
Sleep-related symptoms	9 [7 HCW, 99, 102, 110, 115, 120] [18, 106]	8.27 (127)	38.0 (108)
Stress	6 [5 HCW, 94, 102, 110, 111]	5.2 (102)	56.5 (114)
Psychological distress	5 [4 HCW, 96, 101, 112, 121]	11.1 (101)	90.4 (145)

Patients	Number of studies	Lowest reported prevalence (%)	Highest reported prevalence (%)
Anxiety, worries, fear	6 [5 P, 123, 126, 129, 131, 143]	19.5 (99)	80.2 (143)
Depressive symptoms	8 [7 P, 123, 125, 126, 128, 131, 143] [127]	27.8 (99)	55.3 (88)
PTSS	2 [1 P, 123]	31.0 (84)	43.4 (89)
Sleep-related symptoms	2 [1 P, 128]	27.6 (89)	66.3 (97)
Stress	1 [M]	17.0 (89)	
Psychological distress	1 [M]	13.1 (90)	

Abbreviations: GP general population, HCW healthcare workers, M mixed samples, P patients, PTSS posttraumatic stress symptoms

* reporting prevalence rates for the respective mental health outcome
| Outcome | Main analyses | Sensitivity analysis – Quality of included pandemic studies (ie, exclusion of poor-quality studies) | Sensitivity analysis – Level of comparability between included pandemic studies and comparative studies (ie, exclusion of level-3 and level-4 studies) | | | |
|---|---|---|---|---|---|---|
| | | | |
| | **Studies** | **N (pandemic)** | **N (comp.)** | **Standardized mean difference (95% CI)** | **I²** | **95% prediction interval** |
| **Main analyses** | | | |
| **General population** | | | |
| Anxiety | 23 (26) | 49,746 | 132,145 | 0.40 (0.15–0.65) | 99% | −0.87–1.67 |
| Depression | 25 (28) | 60,213 | 183,747 | 0.67 (0.07–1.27) | 100% | −2.02–3.36 |
| Stress | 11 (13) | 11,600 | 67,386 | 0.10 (−0.30–0.50) | 100% | −1.39–1.60 |
| Sleep-related symptoms | 4 (4) | 3332 | 7635 | 0.74 (−1.47–2.96) | 100% | −3.68–5.17 |
| **Healthcare workers** | | | |
| Anxiety | 13 (14) | 5508 | 22,204 | −0.08 (−0.66–0.49) | 99% | −1.75–1.58 |
| Depression | 7 (8) | 2226 | 4605 | −0.16 (−0.59–0.26) | 97% | −1.41–1.09 |
| Stress | 3 (3) | 1570 | 2454 | 0.49 (−0.60–1.57) | 99% | / |
| Sleep-related symptoms | 4 (5) | 554 | 20,024 | 0.83 (−0.14–1.81) | 99% | −1.54–3.21 |
| **Patients** | | | |
| Anxiety | 6 (6) | 1845 | 12,458 | 0.31 (−0.07, 0.69) | 93% | −1.08–1.69 |
| Depression | 7 (7) | 2138 | 24,444 | 0.48 (−0.08–1.04) | 98% | −1.58–2.53 |
| Stress | 4 (4) | 435 | 10,061 | −0.10 (−0.81–0.61) | 98% | −3.54–3.34 |
| Sleep-related symptoms | 2 (2) | 127 | 298 | −0.61 (−1.75–0.54) | 96% | / |
| **Sensitivity analysis – Quality of included pandemic studies (ie, exclusion of poor-quality studies)** | | | |
| **General population** | | | |
| Anxiety | 16 (17) | 38,323 | 81,350 | 0.53 (0.19–0.86) | 100% | −0.90–1.95 |
| Depression | 18 (19) | 48,790 | 136,884 | 0.83 (0.09–1.57) | 100% | −2.17–3.82 |
| Stress | 7 (8) | 9110 | 43,747 | 0.33 (−0.19–0.84) | 100% | −1.20–1.85 |
| Sleep-related symptoms | 3 (3) | 2659 | 6622 | 0.80 (−1.34–2.94) | 100% | / |
| **Healthcare workers** | | | |
| Anxiety | 4 (4) | 1655 | 4124 | −0.18 (−0.78–0.41) | 97% | −1.30–0.94 |
| Depression | 4 (4) | 1655 | 2356 | 0.03 (−0.42–0.47) | 90% | −0.73–0.79 |
| Stress | 2 (2) | 1376 | 1872 | −0.05 (−0.37–0.26) | 95% | / |
| Sleep-related symptoms | 1 (1) | 123 | 4951 | −0.03 (−0.21–0.15) | / | / |
| **Patients** | | | |
| Anxiety | 3 (3) | 1461 | 11,116 | 0.45 (−0.10–1.01) | 92% | / |
| Depression | 3 (3) | 1461 | 21,934 | 0.21 (−1.08–1.49) | 99% | / |
| Stress | 1 (1) | 51 | 51 | 0.18 (−0.21–0.57) | / | / |
| Sleep-related symptoms | 1 (1) | 51 | 207 | −0.03 (−0.33–0.28) | / | / |
| **Sensitivity analysis – Level of comparability between included pandemic studies and comparative studies (ie, exclusion of level-3 and level-4 studies)** | | | |
| **General population** | | | |
| Anxiety | 12 (13) | 38,461 | 32,698 | 0.40 (0.06–0.74) | 99% | −0.77–1.57 |
| Depression | 14 (15) | 38,259 | 78,619 | 0.77 (−0.23–1.77) | 100% | −2.72–4.25 |
| Stress | 7 (8) | 8624 | 12,739 | −0.15 (−0.76–0.46) | 99% | −1.84–1.53 |
| Sleep-related symptoms | 2 (2) | 2550 | 5609 | 1.54 (−1.18–4.27) | 100% | / |

Table 3 Results of main and sensitivity analyses in three populations.
a few studies from heavily burdened countries (e.g., Italy: \(k = 2 \); Spain: \(k = 0 \); USA: \(k = 0 \)). However, nine studies in these meta-analyses had been conducted in China, which, compared internationally, was less affected by the SARS-CoV-2 pandemic [4]. In the subgroup analysis regarding the level of COVID-19 patient contact, we assigned studies to the subgroup ‘high level of contact’ if at least 50% of the sample had close contact to COVID-

Table 3 Results of main and sensitivity analyses in three populations (Continued)

Outcome	Studies (samples)	N (pandemic)	N (comp.)	Standardized mean difference (95% CI)	\(I^2 \)	95% prediction intervala
Healthcare workers						
Anxiety	7 (8)	3147	9511	−0.54 (−1.23–0.15)	99%	−2.11–1.03
Depression	4 (5)	546	2576	−0.38 (−1.56–0.79)	98%	−2.60–1.84
Stress	/	/	/	/	/	/
Sleep-related symptoms	3 (4)	423	19,804	1.01 (−0.17–2.18)	99%	−1.61–3.63
Patients						
Anxiety	4 (4)	1616	3184	0.23 (−0.03–0.79)	92%	−2.47–2.93
Depression	4 (4)	1704	3205	0 (−0.56–0.56)	93%	−2.69–2.70
Stress	2 (2)	127	217	0.15 (−0.08–0.37)	0%	/
Sleep-related symptoms	2 (2)	127	298	−0.61 (−1.75–0.54)	96%	/

Abbreviations: CI confidence interval, comp. comparative studies, \(I^2 \) heterogeneity, \(N \) sample size, pandemic included pandemic studies

a 95% prediction interval only calculated for meta-analyses with at least \(k = 4 \) studies

Study Table

Study	Total Mean	SD	Total Mean	SD	Std. Mean Difference	IV Random, 95% CI	Std. Mean Difference	IV Random, 95% CI																															
COVID-19	15006	5.26	4.76	1011	14.60	12.7000	3881	3.033	3.1250	1092	15.00	2.7000	3480	1.79	1.6300	110	1.21	1.3900	0.36	0.17	0.3500	1590	36.47	9.1500	1156	20.78	4.6000	0.96	0.80	0.9400	2500	3.34	3.8700	1055	4.84	5.7500	0.33	-0.41	-0.20
pre-COVID-19	50300	2.95	3.4700	2983	37.38	11.5100	1092	15.00	2.7000	3480	1.79	1.6300	110	1.21	1.3900	0.36	0.17	0.3500	1590	36.47	9.1500	1156	20.78	4.6000	0.96	0.80	0.9400	2500	3.34	3.8700	1055	4.84	5.7500	0.33	-0.41	-0.20			
Std. Mean Difference IV Random	95% CI	0.50	0.47	0.54	0.95	0.87	1.02	0.36	0.17	0.35	0.96	0.80	0.94	0.33	-0.41	-0.20																							
Std. Mean Difference IV Random	95% CI	-0.24	0.50	0.47	0.54	0.95	0.87	1.02	0.36	0.17	0.35	0.96	0.80	0.94	0.33	-0.41	-0.20																						
Std. Mean Difference IV Random	95% CI	-0.24	0.50	0.47	0.54	0.95	0.87	1.02	0.36	0.17	0.35	0.96	0.80	0.94	0.33	-0.41	-0.20																						
Std. Mean Difference IV Random	95% CI	-0.24	0.50	0.47	0.54	0.95	0.87	1.02	0.36	0.17	0.35	0.96	0.80	0.94	0.33	-0.41	-0.20																						
Std. Mean Difference IV Random	95% CI	-0.24	0.50	0.47	0.54	0.95	0.87	1.02	0.36	0.17	0.35	0.96	0.80	0.94	0.33	-0.41	-0.20																						

Abbreviations: CI confidence interval, dfs degrees of freedom, F indicator of statistical heterogeneity, P p value, SD standard deviation, Std. standardized, Tau2 indicator of statistical heterogeneity, Total the number of participants, Z z value, Chi2 Chi2 test for heterogeneity.

* Horizontal lines indicate the 95% CI of each study; diamond, the pooled estimate with 95% CI; multilevel meta-analysis.

Fig. 2 Forest plot main analysis, general population, anxiety
19 patients (ie, ‘frontline healthcare workers’). However, the nature of contact was insufficiently described in the included studies.

Strengths of this review compared with previous publications include the systematic search for comparative prepandemic data for inclusion in pairwise meta-analyses, the stepwise selection of prepandemic studies to ensure best available comparability, and the population-specific analysis of risk and protective factors. One limitation refers to the search methods for pandemic studies (eg, no preprints; no reference lists of reviews) and comparative data (eg, subgroups in general population only partially searched). We had no restrictions regarding the publication format except for the exclusion of preprints which might be viewed as limitation. This restriction might have affected the evidence found in this review compared to others (eg, Cochrane reviews) where preprint articles are included.

The large between-study heterogeneity, a problem shared by previous meta-analyses [20, 24, 32, 33], could not be fully explained by subgroup analyses. This heterogeneity probably resulted from differences between the pandemic studies (eg, countries, sociocultural differences in the perception of mental burden, pandemic outbreak severity, subpopulations, outcome measures) and variability between the comparative studies (eg, study design, outcome measures), respectively. Among the pandemic studies, especially the specific outcome measures used were an important source of heterogeneity. Furthermore, the pandemic and comparative data were heterogeneous (eg, country, population), which could be partially captured by our self-developed tool for the level of comparability and was controlled for by the corresponding sensitivity analysis. We cannot preclude that moderators of effects are present that we, though our best efforts, did not identify and therefore could not control for. Besides, comparative studies with larger sample sizes were preferred, leading to small 95% CIs and a lack of CI overlap with pandemic study findings. Despite the comprehensiveness of this review compared to previous publications, the small number of studies in certain subgroups potentially limited the statistical power (eg, surveys including students).

Apart from specific outcome measures, less recent comparative data, and homogenous sample sizes, the subgroup analyses indicated no consistent determinants of heterogeneity. An elevated level of depression based on the assessment with the PHQ and SDS might – at least for the PHQ-9 – be explained by the high

Study	Total Mean	SD								
Bauerle 2020 (PHQ-2)	15037	1.14	1.5000	15010	0.94	1.2000	0.14	0.011	0.17	
Chang 2020 (PHQ-9)	3881	2.45	3.5200	1045	3.30	4.0000	2.03	-0.23	-0.30	-0.17
González–Sangaino 2020 (PHQ-2)	3480	1.60	1.5000	5010	0.94	1.2000	0.50	0.45	0.54	
Guo 2020 (non-infected controls; PHQ-9)	1183	4.36	4.5410	1045	3.30	4.0000	0.04	0.16	0.24	
Hao F 2020 (controls; DASS-21 depression)	109	2.20	3.5000	13028	2.17	3.2600	0.01	-0.18	0.20	
Iasevoli 2020 (caregivers; PHQ-9)	51	4.20	3.2000	339	4.73	5.2600	-0.10	-0.40	0.19	
Iasevoli 2020 (controls; PHQ-9)	205	6.20	4.5000	1200	3.90	3.8000	0.59	0.44	0.74	
Leu 2020 (SDS)	1500	37.14	11.5700	18924	36.67	4.7900	0.006	0.01	0.11	
Ma 2020 (DASS-21 depression)	123	4.20	3.2000	1815	2.30	3.1000	0.62	0.44	0.81	
Mazza 2020 (DASS-21 depression)	2706	5.34	4.8100	417	3.59	3.2000	0.40	0.29	0.50	
McKay 2020 (DASS-21 depression)	909	2.77	3.2100	13038	2.17	3.2600	0.18	0.12	0.25	
Odrezoła–González 2020 (DASS-21 depression)	2500	5.52	4.9200	1055	5.45	1.7200	-0.01	-0.06	0.08	
Ologoke 2020 (PHQ-2)	501	1.92	0.9300	11109	0.78	0.2000	0.58	0.76	0.99	
Ozdin 2020 (HADS depression)	343	6.70	4.2000	2102	6.43	3.4100	0.08	-0.04	0.19	
Sakhi 2020 (PHQ-9)	6550	7.43	5.0600	897	9.40	6.2470	-0.38	-0.45	-0.31	
Satoli 2020 (DASS-21 depression)	1304	3.86	4.1900	250	3.23	3.0400	0.16	0.02	0.29	
Soraci 2020 (HADS depression)	249	8.90	3.6000	21644	5.90	4.4000	0.68	0.56	0.81	
Tan W 2020 (DASS-21 depression)	673	21.40	4.5000	13038	2.17	3.2600	-0.02	-0.10	0.06	
Tian 2020 (SCL-90 depression)	1060	1.96	0.7000	1388	1.50	0.5900	0.72	0.64	0.80	
Taipropoulou (Greece, GAD-7)	2970	14.70	4.5100	2271	7.25	4.8500	1.60	1.53	1.66	
Tull (USA, DASS-21)	500	7.51	9.0000	499	7.50	8.2000	0.21	0.09	0.33	
Volti 2020 (PHQ-2)	2427	4.17	1.4200	5010	0.94	1.2000	2.53	2.47	2.59	
Wagner C 2020 (1st survey; DASS-21 depression)	1210	6.30	7.2000	13038	2.17	3.2600	1.10	1.04	1.16	
Wagner C 2020 (2nd survey; DASS-21 depression)	861	6.40	7.4000	13038	2.17	3.2600	1.16	1.09	1.23	
Wagner Y 2020 (SDS)	600	40.50	11.3100	18924	36.67	4.7900	0.50	0.42	0.58	
Yuan R 2020 (child hosp. ped.; HADS depression)	50	7.72	2.8100	8284	5.80	4.2600	0.46	0.16	0.74	
Yuan R 2020 (child not hosp. ped.; HADS depression)	50	4.54	2.5600	8284	5.80	4.2600	-0.08	-0.58	0.42	
Zhou SJ 2020 (PHQ-2)	8079	5.15	5.6000	1045	3.50	4.0000	0.34	0.27	0.40	

Abbreviations: CI, confidence interval; df, degrees of freedom; F, indicator of statistical heterogeneity; P, p value; SD, standard deviation; Std., standardized; Tau², indicator of statistical heterogeneity; Total, the number of participants; Z, z value; Chi², Chi² test for heterogeneity.

* Horizontal lines indicate the 95% CI of each study; diamond, the pooled estimate with 95% CI; multilevel meta-analysis.

Fig. 3 Forest plot main analysis, general population, depression
Subgroup analysis (subgroups)	Outcome	Test for subgroup differencesa	Population	Subgroup difference: elevated effectb	Subgroup difference: reduced effectb
Population characteristics (main studies)					
Age	Anxiety	Chi² = 9.5, df = 5 (p = .09)	GP	/	/
· 30 years	Depression	Chi² = 29.3, df = 5 (p < .001)	GP	≤ 30 years; > 40 ≤ 45 years	/
· > 30 ≤ 35 years	Stress	Chi² = 1043.3, df = 4 (p < .001)	GP	/	> 40 ≤ 45 years
· > 35 ≤ 40 years	Anxiety	Chi² = 8.7, df = 4 (p = .07)	HCW	/	/
· > 40 ≤ 45 years	Depression	Chi² = 2.2, df = 1 (p = .14)	HCW	/	/
· multiple age groups	Sleep	Chi² = 0.3, df = 1 (p = .57)	HCW	/	/
· age not specified	Anxiety	Chi² = 17.14, df = 4 (p = .002)	P	> 40 ≤ 45 years	/
	Depression	Chi² = 3.74, df = 4 (p = .44)	P	/	/
Stressor exposure	Anxiety	Chi² = 2.8, df = 3 (p = .42)	GP	/	/
· General population	Depression	Chi² = 1.9, df = 3 (p = .60)	GP	/	/
· Students	Stress	Chi² = 0.12, df = 3 (p = .99)	GP	/	/
· Others	Anxiety	Chi² = 0.3, df = 2 (p = .88)	P	/	/
· Special exposure	Depression	Chi² = 1.3, df = 2 (p = .51)	P	/	/
Covid-19 patient contact	Anxiety	Chi² = 0, df = 1 (p = .95)	HCW	/	/
· Low contact risk	Depression	Chi² = 1.0, df = 1 (p = .31)	HCW	/	/
· High contact risk	Sleep	Chi² = 0.2, df = 1 (p = .69)	HCW	/	/
Subgroup of patients	Anxiety	Chi² = 0.3, df = 2 (p = .88)	P	/	/
· COVID-19 patients	Depression	Chi² = 1.3, df = 2 (p = .51)	P	/	/
· Pregnant women					
· Psychiatric patients					
Pandemic study characteristics					
Survey startc	Anxiety	Chi² = 3.55, df = 4 (p = .47)	GP	/	/
· ≤ 4 weeks	Depression	Chi² = 10.15, df = 4 (p = .04)	GP	> 8 weeks	/
· > 4 ≤ 6 weeks	Stress	Chi² = 0.31, df = 4 (p = .99)	GP	/	/
· > 6 ≤ 8 weeks	Anxiety	Chi² = 7.91, df = 4 (p = .10)	HCW	/	/
· > 8 weeks	Depression	Chi² = 0.95, df = 2 (p = .62)	HCW	/	/
· not specified	Sleep	Chi² = 4.21, df = 2 (p = .12)	HCW	/	/
· Anxiety	Chi² = 4.58, df = 2 (p = .10)	P	/	/	
· Depression	Chi² = 3.08, df = 3 (p = .38)	P	/	/	
· Stress	Chi² = 0.10, df = 1 (p = .75)	GP	/	/	
Study conduction China	Depression	Chi² = 0.60, df = 1 (p = .44)	GP	/	/
· China	Stress	Chi² = 0.10, df = 1 (p = .76)	GP	/	/
· Non-China	Anxiety	Chi² = 2.84, df = 1 (p = .09)	HCW	/	/
	Depression	Chi² = 0.08, df = 1 (p = .78)	HCW	/	/
	Sleep	Chi² = 0.32, df = 1 (p = .57)	HCW	/	/
	Anxiety	Chi² = 3.35, df = 1 (p = .07)	P	/	/
	Depression	Chi² = 0.62, df = 1 (p = .43)	P	/	/
Outcome measure	Anxiety	Chi² = 10.7, df = 6 (p = .10)	GP	/	/
· AIS	Depression	Chi² = 11.46, df = 5 (p = .04)	PHQ-2	/	/
· BDI	Stress	Chi² = 0.16, df = 1 (p = .69)	GP	/	/
· DASS-21	Anxiety	Chi² = 2.80, df = 4 (p = .59)	HCW	/	/
· EPDS	Depression	Chi² = 2.91, df = 3 (p = .41)	HCW	/	/
· EPDS-3A					
· GAD-2; GAD-7					
· HADS					

a Chi² tests for subgroup differences are presented for outcomes with at least 4 studies in the main analysis.

b Elevated and reduced effect sizes are indicated by subgroups.

c Survey start categories are categorized as follows: ≤ 4 weeks, > 4 ≤ 6 weeks, > 6 ≤ 8 weeks, > 8 weeks, not specified.
Table 4 Results of subgroup analyses for those populations and outcomes with at least k = 4 studies in main analysis (Continued)

Subgroup analysis (subgroups)	Outcome	Test for subgroup differencesa	Population	Subgroup difference: elevated effectb	Subgroup difference: reduced effectb
• HAMA	Sleep	Chi² = 0.32, df = 1 (p = .57)	HCW	/	/
• HAMD	Anxiety	Chi² = 1.18, df = 4 (p = .88)	P	/	/
• ISI	Depression	Chi² = 16.95, df = 5 (p = .005)	P	SDS; PHQ-9	/
• PHQ-2; PHQ-9					
• PSQI					
• PSS					
• SAS					
• SCL-90					
• STAI-Y					

Sample size
- • < 1000
- • ≥1000

Outcome	Test for subgroup differencesa	Population	Subgroup difference: elevated effectb	Subgroup difference: reduced effectb
Anxiety	Chi² = 1.86, df = 1 (p = .17)	GP		
Depression	Chi² = 0.03, df = 1 (p = .86)	GP		
Stress	Chi² = 2.31, df = 1 (p = .13)	GP		

Comparative study characteristics

Sample size
- • ≤500
- • > 1000 ≤ 5000
- • > 5000 ≤ 10,000
- • > 10,000

Outcome	Test for subgroup differencesa	Population	Subgroup difference: elevated effectb	Subgroup difference: reduced effectb
Anxiety	Chi² = 3.5, df = 4 (p = .48)	GP		
Depression	Chi² = 8.6, df = 3 (p = .03)	GP		

Publication year
- • ≤1 year ago
- • > 1 year ago
- • > 5 years ago
- • > 10 years ago

Outcome	Test for subgroup differencesa	Population	Subgroup difference: elevated effectb	Subgroup difference: reduced effectb
Anxiety	Chi² = 8.0, df = 5 (p = .16)	GP		
Depression	Chi² = 12.4, df = 5 (p = .03)	GP	< 10 years ago	/

Outcome	Test for subgroup differencesa	Population	Subgroup difference: elevated effectb	Subgroup difference: reduced effectb
Stress	Chi² = 11.6, df = 4 (p = .02)	GP	≤ 1 year ago	2 years ago

Outcome	Test for subgroup differencesa	Population	Subgroup difference: elevated effectb	Subgroup difference: reduced effectb
Anxiety	Chi² = 0.1, df = 2 (p = .97)	P		
Depression	Chi² = 3.9, df = 2 (p = .14)	P		

Pandemic and comparative study characteristics

Relationship samples sizesd	Outcome	Test for subgroup differencesa	Population	Subgroup difference: elevated effectb	Subgroup difference: reduced effectb
• Ratio ≥ 2	Anxiety	Chi² = 10.0, df = 3 (p = .02)	GP	Ratio ≥ 0.5 < 2	/
	Depression	Chi² = 4.8, df = 3 (p = .19)	GP		/
• Ratio ≥ 0.5 < 2	Stress	Chi² = 0.4, df = 2 (p = .84)	GP		/
• Ratio ≥ 0.1 < 0.5	Anxiety	Chi² = 4.2, df = 2 (p = .12)	HCW		/
• Ratio < 0.1	Depression	Chi² = 3.8, df = 2 (p = .15)	HCW		/
Table 4 Results of subgroup analyses for those populations and outcomes with at least k = 4 studies in main analysis (Continued)

Subgroup analysis (subgroups)	Outcome	Test for subgroup differencesa	Population	Subgroup difference: elevated effectb	Subgroup difference: reduced effectb
Sleep	Chi² = 0.32, df = 1 (p = .57)	HCW	/	/	/
Anxiety	Chi² = 17.7, df = 3 (p < .001)	P	Ratio ≥ 0.5 < 2; Ratio < 0.1	/	/
Depression	Chi² = 3.0, df = 3 (p = .39)	P	/	/	/

Abbreviations: AIS Athens Insomnia Scale, BDI Beck Depression Inventory, DASS-21 Depression Anxiety Stress Scale-21, df degrees of freedom, EPDS Edinburgh Postnatal Depression Scale, EPDS-3A Edinburgh Postnatal Depression Scale-Anxiety subscale, GAD Generalized Anxiety Disorder Scale, GP general population, HADS Hospital Anxiety and Depression Scale, HAMA Hamilton Anxiety Rating Scale, HAMD Hamilton Depression Rating Scale, HCW healthcare workers, p p value, P patients, PHQ Patient Health Questionnaire, PPS Perceived Stress Scale, SAS Self-Rating Anxiety Scale, SCL-90 Symptom Checklist-90, SDS Zung Self-Rating Depression Scale, STAI-Y State Trait Anxiety Inventory-Y

a Chi² = test for subgroup differences
b ordered by size of effect estimate (SMD)

Table 5 Risk and protective factors in three populations (mostly frequently reported factors)

Risk factorsa	Protective factorsb
General population	
Mental disorder/or symptoms [44, 49, 51, 52, 58, 64, 69, 74, 78, 82, 83, 116, 132, 135]¹	Older age [49, 52, 63, 65, 66, 79, 91, 140, 147]¹
Worries about relatives or oneself [51, 57, 64, 66, 74, 75, 80, 89, 82, 83]¹ [48]¹²	Good economic situation [52, 79, 88, 140, 146]¹
Being female [49, 52, 63, 66, 69, 72, 74, 79, 82, 83, 93]¹ [vs 1x being male]	Satisfaction with/level of information on COVID-19 [45, 49, 52, 85, 88, 93]³
Previous (chronic) medical disease [52, 55, 63, 64, 69, 85, 135]¹	Not being single [66, 80, 88, 86]¹
Being a student [52, 57, 60, 72, 146]¹	Higher education [50, 52, 66, 146]¹
Personal/social worries about COVID-19 [51, 85, 86, 145]¹ [48]¹²	Social support [52, 140]¹ [48]¹²
Physical symptoms [52, 66, 80, 85, 132]¹	Being male [54, 65, 85]³
Reduced perceived health [50, 57, 80, 85, 132]¹	
No current relationship [57, 80, 81, 146]¹	
Current local outbreak severity [57, 88, 93, 141]¹	
History of stressful situations [52, 58, 63, 147]¹	
Vulnerability to COVID-19 [53, 85, 146]¹	
Health profession [66, 81, 141]¹	
Own or close person’s quarantine [57, 62, 85]³	
Healthcare workers	
Mental disorder/or symptoms [97, 115, 116, 119, 122]¹	Older age [98, 110]³
Being female [98, 110, 119, 121]¹	
Concern about infection with COVID-19 [103, 109, 120, 121]¹	
Exposure to COVID-19 patients [94, 110, 115, 119]¹	
Current local COVID-19 severity [94, 118, 141, 107]¹	
Patients	
(Suspected) COVID-19 [42, 131, 143]¹	Higher education [127]¹²³
Inflammatory markers in blood [42, 131]¹	Good economic situation [127]¹²³
Physical symptoms [132]¹	Higher lymphocyte ratio in blood [42]¹
Concomitant medical diseases [133]¹	Concomitant medical diseases [133]¹
a most frequently reported risk factors: general population: factor was reported as statistically significant risk factor in at least k = 4 studies; healthcare workers: factor reported in at least k = 4 studies; patients: factor reported in at least k = 2 studies
b most frequently reported protective factors: general population: factor was reported as statistically significant protective factor in at least k = 3 studies; healthcare workers: factor reported in at least k = 2 studies (limited number of studies reporting protective factors in this group); patients: factor reported in k = 1 study (limited number of studies reporting protective factors in this group)
on Chinese studies thus potentially limiting the transferability of findings to other contexts.

Further research in other countries (eg, USA), that started later on during the pandemic, could change the findings. The latter is also supported by the wide prediction intervals identified in this review, which indicate uncertainty in our conclusions about whether the pandemic and related stressors do affect mental health [203].

The review has several implications for research and practice. There is an urgent need for representative surveys, in order to allow fair comparisons between the mental burden caused by SARS-CoV-2 in different countries and to examine other risk and protective factors (eg, cultural context). Representative surveys in the general population might also serve to identify specific subgroups at risk for which further studies would be needed. From a public mental health perspective, a stronger focus on (psychosocial) protective factors for mental health would be desirable to derive appropriate contents for preventive measures (eg, pandemic preparedness plans) or health-promoting interventions (eg, resilience training) prior to, during, and after a pandemic [199]. By further investigating the mental health impact of specific stressors – in line with Brooks and colleagues [13] – researchers and practitioners might gain further knowledge about when (eg, in pandemic timeline) and for whom (eg, after exposure to which stressors) interventions should be implemented to buffer negative mental health effects of SARS-CoV-2.

Conclusions
In conclusion, compared with prepandemic data, this review shows different adverse mental health consequences of the early phase of the SARS-CoV-2 pandemic in the examined population groups in contrast to previous research, with healthcare workers being more resilient than expected. The quality of studies varies. High-quality, representative surveys in the general population and specific subpopulations, longitudinal studies, and further research efforts on protective factors are needed to better understand the psychological impacts of the SARS-CoV-2 pandemic and to help design effective preventive measures and interventions that are tailored to the needs of specific population groups.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12992-021-00670-y.

Additional file 1: Methods of the systematic review with meta-analyses. eTable 1. MOOSE Checklist. eTable 2. Differences between protocol.

Abbreviations
COVID-19: Coronavirus disease 2019; LORA: Longitudinal Resilience Assessment; MOOSE: Meta-analyses Of Observational Studies in Epidemiology; NIH: National Institutes of Health; PHQ: Patient Health Questionnaire; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PROSPERO: International Prospective Register of Systematic Reviews; SARS-CoV(−2): Severe Acute Respiratory Syndrome Coronavirus (−2); SD: Standard deviation; SDS: Zung Self-Rating Depression Scale; SMD: Standardized mean difference

Acknowledgements
We appreciate the contributions of Prof Raffael Kalisch PhD to the discussion of the findings of our review.

Authors’ contributions
AMK, NR, JSW, and KL designed the study. NR and LG, respectively, assessed study eligibility; KL was consulted in case of any disagreements. NR and LG extracted and analyzed data for Table 1, with KL being consulted in case of any disagreements. AMK, NR, and GS designed the statistical analyses. AMK and NR analyzed data for Tables 2, 3, 4 and 5 based on pairwise meta-analyses (including subgroup and sensitivity analyses) and the narrative synthesis of risk/protective factors. GS and HB reviewed the statistical analyses. KL monitored the review process. All authors contributed to the interpretation of the results, with special expertise provided in the field of resilience research (AMK, OT, KL), public health (MC, ER), and evidence-based medicine (CS, JMJ). AMK wrote the first draft of the manuscript with input and subsequent edits by all authors. KL is the guarantor. All authors read and approved the final manuscript.

Funding
The CEOsys and the egePan project are funded under a scheme issued by the Network of University Medicine (Nationales Forschungsnetzwerk der Universitätsmedizin (NUM)) by the Federal Ministry of Education and Research of Germany (Bundesministerium für Bildung und Forschung (BMBF)); Grant number 01KO2021). The Project RESPOND is funded by the EU RIA-call H2020-SC1-PHE-CORONAVIRUS-2020-2-RTD (Grant number 101016127). The funding body had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
All data generated or analyzed during this study are included in this published article and its supplementary information files. Additional data (eg, detailed extracted data) are available from the corresponding author on request.

Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.

Competing interests
LG, JSW, and GS have no conflicts of interest to disclose. AMK, NR, OT, MC, ER, HB, CS, JIM, and KL report grants from the Federal Ministry of Education and Research (BMBF), Germany, during the conduct of the study. JIM reports grants from the Federal Ministry of Health (BMG), Germany, outside of the submitted work.

Author details
1Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany. 2Leibniz Institute for Resilience Research (LIR), Mainz, Germany. 3Institute for Medical Information Processing, Biometry and Epidemiology, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany. 4Pettenkofer School of Public Health Munich, Munich, Germany. 5Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany. 6Institute for Evidence in Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 7Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany.

Received: 2 December 2020 Accepted: 4 February 2021
Published online: 29 March 2021

References
1. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10244):565–74.
2. World Health Organization. Disease outbreak news. Novel coronavirus – China. 2020. https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/. Accessed 30 June 2020.
3. Siah stay, Alia, zf, O’Neill, N, et al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;26:71–6.
4. World Health Organization. Coronavirus (COVID-19) Dashboard. 2020. https://who.sprinklr.com/. Accessed 28 Sept 2020.
5. BBC. Coronavirus: the world in lockdown in maps and charts. 2020. https://www.bbc.com/news/world-52103747. Accessed 30 June 2020.
6. The Guardian. China’s coronavirus lockdown strategy: brutal but effective. 2020. https://www.theguardian.com/world/2020/mar/19/chinas-coronavirus-lockdown-strategy-brutal-but-effective. Accessed 7 May 2020.
7. White House. The President’s coronavirus guidelines for America. 2020. Accessed 30 June 2020.
8. World Health Organization. Pulse survey on continuity of essential health services during the COVID-19 pandemic. interim report. 2020. https://www.who.int/publications/i/item/WHO-2019-nCoV-EHS_continuity-survey-2020.1. Accessed 4 Nov 2020.
9. Phua J, Weng L, Ling L, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med. 2020;8(5):506–17.
10. Pak A, Adegbuyi OA, Adekunle AL, Rahman KM, McBryde ES, Eisen DP. Economic consequences of the COVID-19 outbreak: the need for epidemic preparedness. Front Public Health. 2020;8:241.
11. Nicola M, Alia S, Siah stay, zf, c, et al. The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg. 2020;78:185–93.
12. Pierce M, Hope H, Ford T, et al. Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. Lancet Psychiatry. 2020;7(10):883–92.
13. Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912–20.
14. Pfeifferbaum B, North CS. Mental health and the Covid-19 pandemic. N Engl J Med. 2020;383(6):510–2.
15. Holmes EA, O’Connor RC, Perry VH, et al. Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. Lancet Psychiatry. 2020;7(6):547–60.
16. Dubey S, Biswas P, Ghosh R, et al. Psychosocial impact of COVID-19. Diabetes Metab Syndr. 2020;14(5):779–88.
17. Inter-Agency Standing Committee (IASC). Interim briefing note addressing mental health and psychosocial aspects of COVID-19 outbreak (developed by the IASC’s Reference Group on Mental Health and Psychosocial Support). 2020. https://interagencystandingcommittee.org/iasc-reference-group-mental-health-and-psychosocial-support-emergency-settings-interim-briefing. Accessed 2 Oct 2020.
18. Lai J, Ma S, Wang Y, et al. Factors associated with mental health outcomes among health care workers exposed to Coronavirus Disease. JAMA Netw Open. 2020;3:e203976.
19. Gilan D, Röthke N, Blessin M, et al. Psychomobidity, resilience, and exacerbating and protective factors during the SARS-CoV-2 pandemic: a systematic literature review and results from the German COSMO-PANEL. Dtsch Arztebl Int. 2020;117(38):625–32.
20. Kelsey S, Warren N, McMahon L, Dalal C, Henry I, Salind O. Occurrence, prevention, and management of the psychological effects of emerging virus outbreaks on healthcare workers: rapid review and meta-analysis. BMJ. 2020;369:m1642.
21. Robertson E, Hershfield K, Grace SL, Stewart DE. The psychosocial effects of being quarantined following exposure to SARS: a qualitative study of Toronto health care workers. Can J Psychiatr. 2004;49(6):403–7.
22. Vinkers CH, van Amelsvoort T, Bisson JJ, et al. Stress resilience during the coronavirus pandemic. Eur Neuropsychopharmacol. 2020;35(12):6–7.
23. Yao H, Chen J-H, Xu Y-F. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry. 2020;7(4):E21.
24. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611–27.
25. Chan E, Gobat N, Kim JH, et al. Informal home care providers: the forgotten health-care workers during the COVID-19 pandemic. Lancet. 2020;395(10242):1957–9.
26. Wang H, Li T, Barbarino P, et al. Dementia care during COVID-19. Lancet. 2020;395(10231):1190–1.
27. National Health Service. After-care needs of inpatients recovering from COVID-19. 2020. https://search3.openobjects.com/mediamanager/nottinghamshire/fsd/files/c0388-after-care-needs-of-inpatients-recovering-from-covid-19-9-5-2020.pdf. Accessed 2 Oct 2020.
28. Eckardt JP. Caregivers of people with severe mental illness in the COVID-19 pandemic. Lancet Psychiatry. 2020;7(8):e53.
29. da Silva FCT, Neto MUR. Psychological effects caused by the COVID-19 pandemic in health professionals: a systematic review with meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2020;110:6062.
30. Xiong J, Lipitz O, Nasi F, et al. Impact of COVID-19 pandemic on mental health in the general population: a systematic review. J Affect Disord. 2020;277:53–64.
31. Vindegaard N, Berens MO. COVID-19 pandemic and mental health consequences: systematic review of the current evidence. Brain Behav Immun. 2020;2020;50889–1591(20):30954–5.
32. Krishnamoorthy Y, Nagarajan R, Saya GK, Menon V. Prevalence of psychosocial morbidities among general population, healthcare workers and COVID-19 patients amidst the COVID-19 pandemic: a systematic review and meta-analysis. Psychiatry Res. 2020;293:113382.
33. Luo M, Guo L, Yu M, Jiang W, Wang H. The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public - a systematic review and meta-analysis. Psychiatry Res. 2020;293:113190.
34. Preti E, Di Mattei V, Perego G, et al. The psychological impact of epidemic and pandemic outbreaks on healthcare workers: rapid review of the evidence. Curr Psychiatriy Reports. 2020;22(8):43.
35. Céna JM, Felli N, Blais-Rochette C, et al. Prevalence of mental health problems in populations affected by the Ebola virus disease: a systematic review and meta-analysis. Psychiatry Res. 2020;288(1):113033.
36. Salari N, Hosseinian-Far A, Jalali R, et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Global Health. 2020;16(1):57.
37. Mohdr D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.
38. National Heart, Lung, and Blood Institute. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. 2014. https://www/nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed 2 Oct 2020.
39. Van den Noortgate W, López-López JA, Marin-Martínez F, Sánchez-Meca J. Three-level meta-analysis of dependent effect sizes. Behav Res. 2013;45(2):576–94.
40. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A (Statistics in Society). 2009;172(1):137–59.

41. Qiu J, Shen B, Zhao M, Wang Z, Xie B, Xu Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: implications and policy recommendations. Gen Psychiatr. 2020;83(3):e100213.

42. Liu X, Lin H, Jiang H, et al. Clinical characteristics of hospitalised patients with schizophrenia who were suspected to have coronavirus disease (COVID-19) in Hubei Province, China. Gen Psychiatr. 2020;83(2):e100222.

43. Ahmad AR, Murad HR. The impact of social media on panic during the COVID-19 pandemic in Iraqi Kurdistan: online questionnaire study. J Med Internet Res. 2020;22(5):e19556.

44. Bacon AM, Corr PJ. Coronavirus (COVID-19) in the United Kingdom: a personality-based perspective on concerns and intention to self-isolate. Br J Health Psychol. 2020;25(4):839–48.

45. Bäuerle A, Teufel M, Musche V, et al. Increased generalized anxiety, depression and distress during the COVID-19 pandemic: a cross-sectional study in Germany. J Public Health (Oxf). 2020;42(3):672–78.

46. Teufel M, Schweda A, Dörre N, et al. Not all world leaders use twitter in response to the COVID-19 pandemic: impact of the way of Angela Merkel on psychological distress, behaviour and risk perception. J Public Health. 2020;42(3):644–6.

47. Buzzi C, Tucci M, Ciprandi R, et al. The psycho-social effects of COVID-19 on Italian adolescents’ attitudes and behaviors. Ital J Pediatr. 2020;46(1):69.

48. Gao W, Fang Z, Hou G, et al. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Res. 2020;287:113294.

49. Chang J, Yuan Y, Wang D. Mental health status and its influencing factors among college students during the epidemic of COVID-19. Nan Fang Yi Ke Da Xue Xue Bao. 2020;40(2):171–6.

50. Gao J, Zheng P, Jia Y, et al. Mental health problems and social media exposure during COVID-19 outbreak. Procés One. 2020;15(6):e0231924.

51. Germani A, Buratta L, Delvecchio E, Mazzeschi C. Emerging adults and COVID-19: the role of individualism-collectivism on perceived risks and psychological maladjustment. Int J Environ Res Public Health. 2020;17(10):3497.

52. González-Sanguino C, Ausín B, Castellanos MA, et al. Mental health consequences during the initial stage of the 2020 coronavirus pandemic (COVID-19) in Spain. Brain Behav Immun. 2020;87:172–6.

53. Harper CA, Satchell LP, Fido D, Latzman RD. Functional fear predicts public health communication in the COVID-19 pandemic [published online ahead of print, 2020 Apr 27]. Int J Ment Heal Addict. 2020:1–4. doi: 10.1111/bjhp.12425.

54. Qiu J, Shen B, Zhao M, Wang Z, Xie B, Xu Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: implications and policy recommendations. Gen Psychiatr. 2020;83(3):e100213.

55. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A (Statistics in Society). 2009;172(1):137–59.

56. McKay D, Yang H, Elahi J, Asmundson GJG. Anxiety regarding contracting COVID-19 related to interoceptive anxiety sensations: the moderating role of disgust propensity and sensitivity. J Anxiety Disorders. 2020;73:102233.

57. Mocci L, Janini D, Pepe M, et al. Affective temperament, attachment style, and the psychological impact of the COVID-19 outbreak: an early report on the Italian general population. Brain Behav Immun. 2020;87:75–9.

58. Odriozola-González P, Plancheu-Gómez Á, Irurita MJ, de Luis-García R. Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a Spanish university. Psychiatry Res. 2020;290:113108.

59. Sanchez TH, Zlotorynska M, Rai M, Baral SD. Characterizing the impact of COVID-19 on men who have sex with men across the United States in April, 2020. AIDS Behav. 2020;24(7):2024–32.

60. Ozamiz-Enebaria N, Doshi-Santamaria M, Picaza-Gorrochategui M, Idiagao-Mondragon N. Niveles de estrés, ansiedad y depresión en la primera fase del brote del COVID-19 en una muestra recogida en el norte de España [stress, anxiety, and depression levels in the initial stage of the COVID-19 outbreak in a population sample in the northern Spain]. Cad Sauda Publica. 2020;36(4):e00054020.

61. Özdin S, Bayrak Ö. Levels and predictors of anxiety, depression and health anxiety during COVID-19 pandemic in Turkish society: the importance of gender. Psychiatry Res. 2020;287:113044.

62. Pérez-Fuente MDC, Molero Jurado MDM, Oropesa Ruiz NF, et al. Questionnaire on perception of threat from COVID-19. J Clin Med. 2020;9(6):11196.

63. Maiza C, Ricci E, Biondi S, et al. A nationwide survey of psychological distress among Italian People during the COVID-19 pandemic: immediate psychological responses and associated factors. Int J Environ Res Public Health. 2020;17(9):3165.

64. Tull MT, Edmonds KA, Scamardo RM, et al. Psychological responses and associated factors of anxiety and depression among people affected by versus people unaffected by quarantine during the COVID-19 epidemic in southwestern China. Med Sci Monit. 2020;26:e924609.

65. Cutolo A, Costa A, Del Vecchio E, Mazzeschi C. Emerging adults and COVID-19: the role of individualism-collectivism on perceived risks and psychological maladjustment. Int J Environ Res Public Health. 2020;17(10):3497.

66. Lee SA, Mathis AA, Jobe MC, Pappalardo EA. Clinically significant fear and anxiety of COVID-19: a psychometric examination of the coronavirus anxiety scale. Psychiatry Res. 2020;290:113112.

67. Lei L, Huang X, Jiang H, et al. The psychological impact of the COVID-19 outbreak: an early report on the mental health of college students and workers of a Spanish university. Psychiatry Res. 2020;290:113108.

68. Tian F, Li H, Tian S, Yang J, Shao J, Tian C. Psychological symptoms of COVID-19 among Chinese college and primary school students: a cross-sectional survey. Psychiatr Res. 2020;289:113083.

69. Shevlin M, Nolan E, Owczarek M, et al. COVID-19 related anxiety predicts somatic symptoms in the UK population. Br J Health Psychol. 2020;25(4):875–82.

70. Soraci P, Ferrari A, Abbiati FA, et al. Validation and psychometric evaluation of the Italian version of the fear of COVID-19 scale [published online ahead of print, 2020 May 4]. J Int Ment Health Addict. 2020:1–12. doi: 10.1111/bjhp.12425.

71. Satci B, Gocet-Telin E, Deniz ME, Satci SA. Adaptation of the fear of COVID-19 scale: its association with psychological distress and life satisfaction in Turkey [published online ahead of print, 2020 May 8]. J Int Ment Health Addict. 2020:1–12. doi: 10.1111/bjhp.12425.

72. Trujillo A, Antúnez S, Ríos S, et al. Affective temperament, attachment style, and the psychological impact of the COVID-19 outbreak: an early report on the Spanish population during COVID-19 pandemic. Psychiatry Res. 2020;289:113063.

73. Sakib N, Bhuiyan AMK, Hossain S, et al. Psychometric validation of the Bangla fear of COVID-19 scale: confirmatory factor analysis and Rasch analysis [published online ahead of print, 2020 May 11]. Int J Ment Health Addict. 2020:1–6. doi: 10.1111/bjhp.12425.

74. Soraci P, Ferrari A, Abbiati FA, et al. Validation and psychometric evaluation of the Italian version of the fear of COVID-19 scale [published online ahead of print, 2020 May 4]. J Int Ment Health Addict. 2020:1–12. doi: 10.1111/bjhp.12425.

75. Roy D, Tripathy S, Kar SK, Sharma N, Venma SK, Kaushal V. Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic. Asian J Psychiatr. 2020;51:102083.

76. Reznik A, Gritsenko V, Konstantinov C, Vradis TU, Grigorovich I. The role of individualism-collectivism on perceived risks and psychological maladjustment. Int J Environ Res Public Health. 2020;17(10):3497.

77. Majid A, Mitiku Y, El-Hajj F, et al. Psychological responses and associated factors of anxiety and depression among people affected by versus people unaffected by quarantine during the COVID-19 epidemic in southwestern China. Med Sci Monit. 2020;26:e924609.

78. Ren Y, Zhou Y, Qian W, et al. Letter to the editor “a longitudinal study on the mental health of general population during the COVID-19 epidemic in China”. Brain Behav Immun. 2020;87:132–3.

79. Sanchez TH, Zlotorynska M, Rai M, Baral SD. Characterizing the impact of COVID-19 on men who have sex with men across the United States in April, 2020. AIDS Behav. 2020;24(7):2024–32.
84. Wang C, Pan R, Wan X, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 Coronavirus disease (COVID-19) epidemic among the general population in China. Int J Environ Res Public Health. 2020;17(5):1729.

85. Wang C, Pan R, Wan X, et al. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav Immun. 2020;88:40–8.

86. Wang H, Xia Q, Xiong Z, et al. The psychological distress and coping styles in the early stages of the 2019 coronavirus (COVID-19) epidemic in the general mainland Chinese population: a web-based survey. PLoS One. 2020;15(5):e0233410.

87. Wang Y, Du Y, Ye J, Wei W. Study on the public psychological states and its related factors during the outbreak of coronavirus disease 2019 (COVID-19) in some regions of China. Psychol Health Med. 2021;26(1):13–22.

88. Yang H, Ma J. How an epidemic outbreak impacts happiness: factors that worsen (vs. protect) emotional well-being during the coronavirus pandemic. Psychiatry Res. 2020;289:113045.

89. Yuan R, Xu Q-H, Xue C-C, et al. Psychological status of parents of hospitalized children during the COVID-19 epidemic in China. Psychiatry Res. 2020;288:112953.

90. Zhang SX, Huang H, Wei F. Geographical distance to the epicenter of Covid-19 predicts the burnout of the working population: ripple effect or typhoon eye effect? Psychiatry Res. 2020;288:112998.

91. Zhang SX, Wang Y, Rauch A, Wei F. Unprecedented disruption of lives and work; health, distress and life satisfaction of working adults in China one month into the COVID-19 outbreak. Psychiatry Res. 2020;288:112993.

92. Zhang Y, Ma ZF. Impact of the COVID-19 pandemic on mental health and psychological outcomes and associated physical symptoms amongst healthcare workers in the northern Italy districts of Modena and Reggio Emilia. Int J Environ Res Public Health. 2020;17(10):3459.

93. Zhou SJ, Zhang LG, Wang LL, et al. Prevalence and socio-demographic aspects and psychological reactions to COVID-19 of dental practitioners in some regions of China. Psychological Impact of the COVID-19 pandemic on health care workers in Singapore. Ann Intern Med. 2020;173(4):317–20.

94. Zhu J, Sun L, Zhang L, et al. Prevalence and influencing factors of anxiety among dentists to combat novel coronavirus disease (COVID-19) outbreak. Front Psychiatry. 2020;11:386.

95. Ahlaj AK, Al-Saadi T, Mohammad F, Alabri S. Neuropsychiatric symptoms of COVID-19 cases in Saudi Arabia: a web-based survey. Int J Environ Res Public Health. 2020;17(7):2381.

96. Ahmadi A, Souriandani M, Pourreza M, Missal V, et al. COVID-19 pandemic impacts on anxiety of French urologist in training: outcomes from a national survey. Prog Urol. 2020;30(8–9):448–55.

97. Ahmadi A, Souriandani M, Pourreza M, et al. Fear and practice modifications among dentists to combat novel coronavirus disease (COVID-19) outbreak. Int J Environ Res Public Health. 2020;17(8):2821.

98. Ahmadi M, Khamis F, Mahjyari NA. The psychological well-being of physicians during COVID-19 outbreak in Oman. Psychiatr Res. 2020;289:113053.

99. Ahmadi M, Khamis F, Mahjyari NA. The psychological well-being of physicians during COVID-19 outbreak in Oman. Psychiatr Res. 2020;289:113053.

100. Ahmad MA, Jouhar R, Ahmed N, et al. Fear and practice modifications among dentists to combat novel coronavirus disease (COVID-19) outbreak. Int J Environ Res Public Health. 2020;17(8):2821.

101. Al-Mana AM, Al-Ghamdi M, Al-Moheb A. Prevalence of anxiety among nurses working in the intensive care units during the COVID-19 pandemic. J Adv Nurs. 2020;77(4):1065–75.

102. Alman A, Al-Ghamdi M, Al-Moheb A. Prevalence of anxiety among nurses working in the intensive care units during the COVID-19 pandemic. J Adv Nurs. 2020;77(4):1065–75.

103. Ambrogi A, Bianchi D, Santi F, et al. Covid-19 pandemic impact on mental health: a web-based cross-sectional survey on a sample of Italian general practitioners. Acta Biomed. 2020;91(2):83–95.

104. Ambrogi A, Bianchi D, Santi F, et al. Covid-19 pandemic impact on mental health: a web-based cross-sectional survey on a sample of Italian general practitioners. Acta Biomed. 2020;91(2):83–95.

105. Ambrogi A, Bianchi D, Santi F, et al. Covid-19 pandemic impact on mental health: a web-based cross-sectional survey on a sample of Italian general practitioners. Acta Biomed. 2020;91(2):83–95.

106. Ambrogi A, Bianchi D, Santi F, et al. Covid-19 pandemic impact on mental health: a web-based cross-sectional survey on a sample of Italian general practitioners. Acta Biomed. 2020;91(2):83–95.

107. Ambrogi A, Bianchi D, Santi F, et al. Covid-19 pandemic impact on mental health: a web-based cross-sectional survey on a sample of Italian general practitioners. Acta Biomed. 2020;91(2):83–95.
174. Liu X, Wang Q, Zhang WN, Bo QY, Zhu SY. Study on the relationship between quality of nursing professional life and depression tendency of nursing staff. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2020;38(5):365–8.

175. Löwe B, Decker O, Müller S, et al. Validation and standardization of the generalized anxiety disorder screener (GAD-7) in the general population. Med Care. 2008;46(3):266–74.

176. Löwe B, Wahl I, Rose M, et al. A 4-item measure of depression and anxiety: validation and standardization of the patient health Questionnaire-4 (PHQ-4) in the general population. J Affect Disord. 2010;122(1–2):86–95.

177. Lu S, Hu S, Guan Y, et al. Measurement invariance of the Depression Anxiety Stress Scales-21 across gender in a sample of Chinese university students. Front Psychol. 2018;9:2064.

178. Lu W, Bian Q, Wang W, Wu X, Wang Z, Zhao M. Chinese version of the Perceived Stress Scale-10: a psychometric study in Chinese university students. PLoS One. 2017;12(12):e0189543.

179. Paparrigopoulos T, Tzavara C, Theletis C, Psarros C, Soldatos C, Tountas Y. Insomnia and its correlates in a representative sample of the Greek population. BMC Public Health. 2010;10:531.

180. Pereira-Lima K, Loureiro SR. Burnout, anxiety, depression, and social skills in medical residents. Psychol Health Med. 2014;20(3):353–62.

181. Ramón-Arbués E, Martínez Abadía B, Granada López JM, et al. Conducta alimentaria y su relación con el estrés, la ansiedad, la depresión y el insomnio en estudiantes universitarios [Eating behavior and relationships with stress, anxiety, depression and insomnia in university students]. Nutr Hosp. 2019;36(6):1339–45.

182. Sakati N, Imamura K, Thuy TTT, et al. Validation of the Job Content Questionnaire among hospital nurses in Vietnam. J Occup Health. 2019;62(1):12086.

183. Schmidt RE, Cullati S, Mostofsky E, et al. Healthcare-related regret among nurses and physicians is associated with self-rated insomnia severity: a cross-sectional study. PLoS One. 2015;10(10):e019770.

184. Sinclair SJ, Siefert CJ, Slavin-Mulford JM, Stein MB, Renna M, Blais MA. Psychometric evaluation and normative data for the depression, anxiety, and stress scales-21 (DASS-21) in a nonclinical sample of U.S. adults. Eval Health Prof. 2012;35(3):259–79.

185. Wang K, Shi HS, Geng FL, et al. Cross-cultural validation of the depression anxiety stress Scale-21 in China. Psychol Assess. 2016;28(5):e88–100.

186. Wang W, Bian Q, Zhao Y, et al. Reliability and validity of the Chinese version of the patient health questionnaire (PHQ-9) in the general population. Gen Hosp Psychiatry. 2019;62(1):e12086.

187. Watz K, Shi HS, Geng FL, et al. Cross-cultural validation of the depression anxiety stress Scale-21 in China. Psychol Assess. 2016;28(5):e88–100.

188. Wang W, Bian Q, Zhao Y, et al. Reliability and validity of the Chinese version of the patient health questionnaire (PHQ-9) in the general population. Gen Hosp Psychiatry. 2019;62(1):e12086.

189. Yu B, Gu Y, Bao X, et al. Distinct associations of computer/mobile devices use and TV watching with depressive symptoms in adults: a large population study in China. Depress Anxiety. 2019;36(9):879–86.

190. Zhou J, Yang Y, Qiu X, et al. Relationship between anxiety and burnout among Chinese physicians: a moderated mediation model. PLoS One. 2016;11(8):e0157013.

191. Kunzler AM, Helmreich I, Chmitorz A, et al. Psychological interventions to foster resilience in healthcare professionals. Cochrane Database Syst Rev. 2020;7:CD012527.

192. Salazar de Pablo G, Vaquero-Serrano J, Catalan A, et al. Impact of coronavirus syndromes on physical and mental health of health care workers: systematic review and meta-analysis. J Affect Disord. 2020;275:48–57.

193. Bonanno GA, Mancini AD. Beyond resilience and PTSD: mapping the heterogeneity of responses to potential trauma. Psychol Trauma Theory Res Pract Policy. 2012;4:74–83.