Role of endoscopic retrograde cholangiopancreatography in the management of benign biliary strictures: What’s new?

Rosa Ferreira, Rui Loureiro, Nuno Nunes, António Alberto Santos, Rui Maio, Marília Cravo, Maria Antónia Duarte

Abstract
Benign biliary strictures comprise a heterogeneous group of diseases. The most common strictures amenable to endoscopic treatment are post-cholecystectomy, post-liver transplantation, related to primary sclerosing cholangitis and to chronic pancreatitis. Endoscopic treatment of benign biliary strictures is widely used as first line therapy, since it is effective, safe, noninvasive and repeatable. Endoscopic techniques currently used are dilation, multiple plastic stents insertion and fully covered self-expandable metal stents. The main indication for dilation alone is primary sclerosing cholangitis related strictures. In the vast majority of the remaining cases, temporary placement of multiple plastic stents with/without dilation is considered the treatment of choice. Although this approach is effective, it requires multiple endoscopic sessions due to the short duration of stent patency. Fully covered self-expandable metal stents appear as a good alternative to plastic stents, since they have an increased radial diameter, longer stent patency, easier insertion technique and similar efficacy. Recent advances in endoscopic technique and various devices have allowed successful treatment in most cases. The development of novel endoscopic techniques and devices is still ongoing.

Key words: Benign biliary strictures; Bile duct stricture; Endoscopic retrograde cholangiopancreatography; Stents; Cholecystectomy; Liver transplantation; Primary sclerosing cholangitis; Chronic pancreatitis

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Endoscopic treatment of benign biliary strictures has been evolved in the last decades and is widely considered as first line therapy. Among endoscopic techniques, multiple plastic stents placement is an...
effective method but requires multiple endoscopic sessions. Fully covered self-expandable metal stents appear as a reasonable alternative due to their larger lumen and longer patency. Emergent data proved their efficacy, their low complications rate and cost-effectiveness. We herein discuss the endoscopic management of benign biliary strictures and focus on the outcomes, advantages and disadvantages of each endoscopic technique.

Ferreira R, Loureiro R, Nunes N, Santos AA, Maio R, Cravo M, Duarte MA. Role of endoscopic retrograde cholangiopancreatography in the management of benign biliary strictures: What’s new? World J Gastrointest Endosc 2016; 8(4): 220-231 Available from: URL: http://www.wjgnet.com/1948-5190/full/v8/i4/220.htm DOI: http://dx.doi.org/10.4253/wjge.v8.i4.220

INTRODUCTION

Endoscopic treatment for benign biliary strictures (BBS) has been evolving in the last decade. The vast majority of BBS are caused by postoperative biliary injuries [mainly post-cholecystectomy and orthotopic liver transplantation (OLT)] or chronic inflammatory disorders [such as chronic pancreatitis and primary sclerosing cholangitis (PSC)]. Less frequent causes of BBS include ischemia, trauma, autoimmune pancreatitis, radiation therapy, as listed in Table 1[1-3,5,6].

Although BBS comprise a heterogeneous group of disorders with variable natural history, its etiology plays an important role in predicting endoscopic treatment success. Post-cholecystectomy BBS, whose incidence has increased 2-3 fold since the increment of laparoscopic cholecystectomy, are very responsive to endoscopic therapy[8,9]. Bile duct strictures related to OLT can occur in 3% to 6% of patients. Among these, anastomotic strictures are more amenable to endoscopic treatment as compared to nonanastomotic strictures caused by ischemic injury[9]. Approximately 10%-30% of patients with chronic pancreatitis will develop a symptomatic biliary stricture. However, these BBS are more resistant to endoscopic treatment with an overall lower success rate. On the other hand, BBS related to PSC showed a higher remission rate. On the other hand, BBS related to PSC showed a higher remission rate. However, its accuracy for detecting the underlying cause is low and the results are operator dependent[10].

Cross-sectional imaging modalities obtained both by computerized tomography and particularly magnetic resonance cholangiopancreatography (MRCP) can accurately delineate the biliary anatomy, location and length of the stricture. MRCP is therefore very useful before endoscopic retrograde cholangiopancreatography (ERCP) for treatment planning[11,12]. Furthermore these imaging methods play a key role in differentiating benign from malignant biliary strictures and, in malignant disease, staging can be performed. Malignancy exclusion is indeed of utmost importance during the diagnostic evaluation of BBS and can be challenging. In a meta-analysis, including 4711 patients with suspected biliary obstruction, MRCP showed a sensitivity and specificity of 98% in determining the level of obstruction and 88% and 95%, respectively, in the detection of malignancy[13]. Recent advances in magnetic resonance imaging (MRI), such as diffusion weighted MRI, have shown an improvement in the differentiation between benign and malignant lesions[14].

The diagnostic role of ERCP in biliary obstruction evaluation has decreased with the wider availability of MRCP. However, unlike MRCP, ERCP enables tissue sampling, using biliary brushings or biopsies. A review of 16 studies including 1556 patients with biliary brushings and biopsies obtained during ERCP found an overall...
sensitivity of 41.6% and a negative predictive value of 58%[17]. One of the reasons for this low sensitivity is the low cellularity of samples obtained; a recent study demonstrated that the identification of drunken honeycomb cells, loosely cohesive clusters of round cells and large atypical cells with foamy cytoplasm may significantly increase sensitivity[18].

Endoscopic ultrasound (EUS) and intraductal ultrasonography (IDUS) have good accuracy in discriminating benign from malignant strictures in the extra-hepatic bile duct, but some strictures in the common duct and hilar region are difficult to identify. With the introduction of EUS guided fine needle aspiration (FNA) histological diagnosis is also possible. However, the sensitivity of EUS-FNA in distinguishing benign from malignant strictures is widely variable ranging from 43% to 86%[19-22]. The possibility of peritoneal seeding during EUS-FNA is a limiting factor of this technique[23].

Itraductal ultrasonography provides high-resolution images of the ductal wall and periductal structures. A review of 397 patients with indeterminate biliary strictures who performed ERCP with IDUS showed a sensitivity, specificity and accuracy of 97.6%, 98% and 92% respectively[24].

Emerging technologies such as fluorescence in-situ hybridization (FISH), confocal laser endomicroscopy and direct cholangioscopy have yielded promising results in the differential diagnosis of biliary strictures. Furthermore measurement of volatile organic compounds in the bile duct fluid can help in the differentiation of benign vs malignant strictures[25].

Fluorescence in situ hybridization uses fluorescently labeled DNA probes to detect chromosomal abnormalities that can be indicative of tumor. One prospective study compared sensitivity and specificity of cytology with FISH in patients with cholangiocarcinoma and found that sensitivity of cytology was 15% compared to 34% for FISH and specificity was 91% and 98% respectively[26]. The use of cholangioscopy-directed intraductal biopsies and FISH of brush cytology samples was shown to increase the diagnostic yield[27,28].

Digital image analysis (DIA) uses Feulgen dye and spectrophotometric principles to quantify abnormalities in nuclear DNA that allow measuring ploidy within the cell. When FISH and DIA are used in combination a malignant diagnosis can be predicted in 67% of the cases compared with 62% and 14% for FISH and DIA when used separately[29]

Cholangioscopy enables direct visualization and targeted biopsies. However, the sensitivity of its histologic biopsies was only 49% in the diagnosis of malignancy[30]

Confocal laser endomicroscopy is a new diagnostic tool that uses an intravenous injected contrast agent like fluoresceine. It showed promising results in the diagnosis of biliary stenosis by using a catheter probe, which can be inserted through the working channel of an endoscope, or through a FNA needle. Several studies have shown that this new technique is rather useful in the differentiation between benign and malignant strictures of the bile duct with a high sensitivity of 73%-83%, but a low specificity of 33%-50[31-36]

Despite the development of these new diagnostic tools, the majority is still under evaluation in clinical trials.

Table 1 Etiology of benign biliary strictures

Post-operative injuries	Cholecystectomy	Liver transplantation	Hepatic resection	Biliary anastomosis	Biliary reconstruction	Biliary enteric anastomosis	
Inflammatory	Chronic pancreatitis	Primary sclerosing cholangitis	Autoimmune pancreatitis	Cholelithiasis	Immunoglobulin G4 cholangiopathy	Infections (recurrent bacterial cholangitis, tuberculosis, histoplasmosis, schistosomiasis, HIV, parasites)	Postradiation therapy
Others	Ischemic (hypotension, hepatic artery thrombosis, portal biliopathy)	Trauma	Mirizzi syndrome	Postbiliary sphincterotomy	Endoscopic sclerotherapy for duodenal ulcer bleeding		

HIV: Human immunodeficiency virus.

Table 2 Classification for benign biliary strictures

Bismuth classification	I	II	III	IV	V
CHD stricture, > 2 cm distal to hilum	Proximal CHD stricture, < 2 cm distal to hilum	Hilar involvement up to proximal extent of CHD, but confluence preserved	Confluence involved, no communication between left and right ducts	Type I, II or III plus stricture of an isolated (aberrant) right duct	

Strasberg classification	A	B	C	D	E1	E2	E3	E4	E5
Small duct injury in continuity with biliary system, with cystic duct leak	Injury to sectoral duct with consequent obstruction	Injury to sectoral duct with consequent bile leak from a duct not in continuity with biliary system	Injury lateral to extrahepatic ducts	Stricture located > 2 cm from bile duct confluence	Stricture located < 2 cm from bile duct confluence	Stricture located at bile duct confluence	Stricture involving right and left bile ducts	Complete occlusion of all bile ducts	

CHD: Common hepatic duct.
ENDOSCOPIC THERAPY OF BBS

The objectives of BBS endoscopic treatment include biliary decompression with maintenance of the bile duct patency and prevention of recurrent stricture formation. This can be achieved by using expandable or graduating dilators; inserting single or multiple biliary plastic stents; inserting SEMS or, in some circumstances, by the combination of two modalities. Multiple endoscopic sessions are usually necessary before complete and sustained resolution is achieved. For those patients who may need surgery, endoscopic treatment can be considered as bridging therapy[7].

During ERCP, there are three main technical decisions that should be made, namely the guide wire choice, the need for dilation and the stent choice. After endoscopic sphincterotomy, the crucial step is to overcome the stricture with a guide wire. The stricture can be negotiated only if there is no common bile duct complete transection. In postoperative stricture this step can be particularly difficult because the stenotic tract, even if short, can be asymmetric, angulated and rich in fibrous tissue. The choice for the adequate guide wire according to the morphology of the stricture is critical. Several types of ERCP guide wires are commercially available with different characteristics and wire tips (straight, tapered, J shaped or looped). Although there is a paucity of comparative studies, hydrophilic guide wires with a straight or J shaped tip are the preferred ones in this clinical setting[38]. In a recent randomized trial evolving 197 patients, a novel stiff-shaft flexible guide wire showed higher success rate in stricture cannulation (94% vs 79%, P = 0.00041) and lower procedure time (8.1 vs 11.2 min, P < 0.0001) when compared to a standard angle-tip hydrophilic wire in combination with a nitinol wire[39]. Manipulation of guide wires demands patience, skill and optimal fluoroscopic imaging. The direction of the catheter and the wire should also be in the same axis as the stricture. Sometimes straightening the common bile duct by pulling an inflated stone extraction balloon just below the stricture or using the bending capabilities of the papilotome can be helpful. Other devices that can be used to overcome the stricture include tapered tip steerable catheters (3.9-4.9 Fr), a screw drill (7-8.5 Fr Soehendra stent extractor)[39], angioplasty balloons mounted on 3 Fr catheters[40], or a 6 Fr wire guided diathermic dilator[41,42].

After overcoming the stricture with a guide wire, BBS dilation can be considered using either a balloon or bougie system. Although there is no head-to-head comparison between these two techniques, an elevated restenosis rate (up to 47%) has been consistently observed[43-45]. Balloon dilation alone is therefore considered inappropriate in vast majority of cases. It should be performed only if necessary and during the first endoscopic procedure, because of the forceful disruption of the scar may add further traumatic damage to the tissue with subsequently development of a new fibrotic reaction. Even so, the underlying cause of BBS should be taken into account in the final decision. According to retrospective studies, balloon dilation alone in BBS in the context of PSC can achieve a clinical and biochemical response in approximately 80% of non-cirrhotic patients[46-49].

The next step, the choice of the stent, is currently the most contentious decision. Insertion of one plastic stent is easy to perform and cheap, but has short patency and a low rate of long-term success. A widely used alternative is a multiple plastic stent insertion method, where multiple large bore plastic stents (10 to 11.5 Fr) are inserted in the biliary tract at regular time intervals (every 3 to 6 mo) throughout one year[50-52]. The rationale is that the gradual and continuous dilation of the stricture area may induce tissue remodeling and consolidation. Although it is a very effective technique, it requires multiple endoscopic procedures. SEMS due to its larger lumen and longer patency appear as a reasonable alternative. Bare SEMS, commonly used in malignant biliary obstruction, are not suitable for BBS since stent itself can create irreversible tissue hyperplasia and stent embedment, precluding its removal. With the evolution of stent design, partially covered and fully covered stents have been developed. These stents allow temporary placement and can therefore be used in BBS[53].

These endoscopic techniques will be individually discussed, focusing on outcomes, advantages, disadvantages and complications.

Dilation

Dilation of BBS is mostly used as a complementary technique before stent placement and rarely as a single method. Actually, PSC is the main indication for dilation alone, when a dominant stricture (defined as a stenosis with < 1.5 mm in the main biliary duct ou < 1 mm in the intra-hepatic duct) is present. Even so, the best endoscopic management is not yet defined.

In retrospective studies, dilation alone showed clinical and biochemical response in approximately 80% of non-cirrhotic PSC patients[46-49]. There is no consensus on the method of dilation to be used, either rigid dilators or balloon dilators. If the stenosis is too tight some authors recommend rigid dilation from 5 Fr to 7 Fr followed by balloon dilators to obtain dilation up to 18 Fr to 24 Fr[54]. In one prospective uncontrolled study involving 96 patients in which a total of 500 hundred dilations were performed over a 20-year period, the survival free of liver transplantation was 81% at 5 years and 52% after 10 years of follow-up[55]. The use of stents in BBS related to PSC is still controversial since it was shown to be associated with increased complication rates when compared to balloon dilation. Previous studies with plastic stents showed a high risk of ascending cholangitis (up to 50%)[56,57]. Although there are no prospective randomized controlled trials comparing dilation with dilation and stenting, a retrospective, single-center study compared endoscopic
balloon dilation with either percutaneous or endoscopic dilation with stent placement. Stent placement did not achieve any additional benefit and was associated with more infectious complications[58].

Based on these studies most of authors prefer dilation to stenting in patients with PSC. Stent placement should be reserved for patients with cholangitis and in patients not responding to balloon dilation. Optimal endoscopic intervention is still unclear and results from randomized trials are necessary to answer these questions.

Plastic stents

By keeping the stricture open for a prolonged period of time, plastic stents placement may allow a continuous calibration of the stenosis diameter, with tissue remodeling around the stent and a more sustained stricture resolution.

Various stenting protocols (single stent, two or multiple stents) have been described with different short and long-term results[5,52].

Single plastic stent placement usually does not achieve good results in terms of BBS resolution or long-term follow-up. Due to their limited stent diameter, single plastic stents have only short-term patency rates, and so multiple endoscopic sessions are required. Furthermore, most of the previous studies are retrospective and heterogeneous with different patient selection criteria, dilation methods, stent diameters, follow-up periods and success definitions. For these reasons, this technique has limited clinical applications[59].

An aggressive multiple stent strategy described by Costamagna et al[50,51] for the treatment of post-operative biliary strictures is associated with better results than the Amsterdam protocol described by Bergman et al[40] and, thus, is the preferred approach. After the placement of one or two plastic 10 Fr stents at the initial ERCP the maximum number of 10 Fr plastic stents (up to six) are placed at the each subsequent ERCP with stent exchange being performed every 3-4 mo until complete stricture disappearance occurs usually 12-18 mo later[50,51]. This maximal multiple stenting was also adapted for the treatment of chronic pancreatitis and post-cholecystectomy strictures.

The placement of multiple large bore plastic stents in BBS is achieved in over 90% of patients. However, the long-term patency varies according to BBS etiology. Table 3 summarizes clinical trials reported the treatment of BBS with multiple plastic stents.

In post-cholecystectomy BBS, endoscopic treatment can be performed in patients in whom the bile duct has not been transected or ligated. The maximal stent insertion strategy (1 to 6, 10 Fr stents) with 3 monthly exchanges during one year or until complete morphologic disappearance of the stricture has consistently shown good long-term results with success rates over 90% in some series even after prolonged follow-up[61]. A recurrence rate of 20%-30% within 2 years of stent removal has been reported[5], but these patients can be successfully retreated endoscopically. The maximal multiple stent strategy is therefore often considered the first line treatment in most cases[5,52,61,62].

Treatment of peri-hilar strictures are, in turn, more challenging, technically difficult, and with worse success rates than distal strictures (Bismuth Ⅲ 25% vs 80% in Bismuth Ⅰ / Ⅱ)[5,44,63].

Similarly, in post-OLT strictures multistenting technique is considered the first line treatment. Better results are seen in early anastomotic strictures with resolution achieved within 3 mo whereas those presenting later, usually associated with fibrosis, required longer stenting periods, up to 12 to 24 mo[64]. Balloon dilation and maximal stent placement every 3 mo seems the most effective strategy with an 80% to 90% success rate. A recently published prospective study by Kaffes et al[65] which compared plastic stents with fully covered self-expandable metal stents (FCSEMS) in anastomotic strictures showed similar stricture resolution between groups after a median follow-up of 23 mo (100% in

Table 3: Studies reporting on the treatment of benign biliary strictures with multiple plastic stent

Ref.	Etiology	Total number (completed treatment)	ERCP number	Balloon dilation	Maximal number of stents	Stenting duration (mo)	Follow-up after stent removal (mo)	Success after end of follow-up (%)
Bourke et al[50]	Sphincterotomy	6 (6)	5.2	-	2.2	13	27	100
Costamagna et al[51]	Various surgical procedures	45 (42)	4.1	40% of patients	3.2	12	164	89
Draganov et al[40]	Surgery (n = 19)	29 (27)	4	-	2.7	14	48	Surgery 68 Chronnic pancreatitis 44
Pozsár et al[59]	Chronic pancreatitis (n = 9)	29 (24)	4.2	-	2.4	21	12	62
Catalano et al[49]	Chronic pancreatitis	12 (12)	4.7	-	4.3	14	47	92
Kuzela et al[50]	Cholecystectomy	43 (43)	6	In some	3.4	12	16	100
Morelli et al[44]	OLT	38 (38)	3.5	+	2.5	3.6	12	87
Tabibian et al[50]	OLT	83 (69)	4.1	+	NA	15	11	91

ERCP: Endoscopic retrograde cholangio pancreatograph; NA: Not available; OLT: Orthotopic liver transplantation.
Among endoscopic treatments of BBS, stent placement has emerged as a less invasive therapeutic option, with lower morbidity and mortality compared to surgery[72].

In order to overcome major limitations of plastic stents, such as suboptimal stricture resolution and need for frequent ERCPs, SEMS appeared as a good alternative. Besides the initial enthusiasm with the use of partially covered SEMS (PCSEMS), further studies revealed high rates of stent migration (up to 23%), mucosal hyperplasia (up to 36%) and stent occlusion (up to 67%)[73-80]. Like uncovered SEMS, the clinical use of PCSEMS has been therefore abandoned[81].

The relative ease removal of FCSEMS triggered the attention of many investigators, leading to an increased use in benign biliary conditions. FCSEMS have, in fact, a covering membrane to prevent ingrowth and hyperplastic reaction, and to improve removability. FCSEMS do not embed into the mucosa, provided that the covering membrane remains intact[62,63]. Other advantages include an increased radial diameter, longer stent patency, and easy insertion technique[64-66]. Therefore, FCSEMS have emerged as a promising therapeutic option in the treatment of BBS, and have largely replaced their uncovered, partially covered counterparts, as well as plastic stents. Even so, before its use can be widely recommended the following questions need to be answered. Are FCSEMS complications serious enough to preclude their use? Several studies have been published trying to address all these issues.

FCSEMS efficiency in stricture resolution has been demonstrated in several studies that range from relatively small size with less than 10 patients[83] to more recent and larger ones with over 100 patients[72,79,87].

In a multicenter, prospective study of 133 patients, Kaahle et al[72] found a high response rate of stricture resolution, ranging from 61% for anastomotic strictures to 91% for post-surgical strictures, and 81% for chronic pancreatitis related strictures. FCSEMS were removed after a mean time of 95.5 ± 48.7 d. Two predictors for stricture resolution were found, namely longer indwell time (OR = 4.3, 95%CI: 1.24-15.09) and absence of migration (OR = 5.4, 95%CI: 1.001-29.29).

Most recently, Devière et al[87] evaluated the ability to remove FCSEMS after extended indwell and the frequency and durability of stricture resolution. In this prospective, nonrandomized, multinational study of 187 patients stent removal was scheduled at 10-12 mo for patients with chronic pancreatitis or cholecystectomy related strictures, and at 4-6 mo for patients who received liver transplant. Stricture resolution occurred in 76.3% of patients (95%CI: 69.3%-82.3%). Removal success was accomplished in 74.6% (95%CI: 67.5%-80.8%) and it was more frequent in the chronic pancreatitis group (80.5%) than in the liver transplantation (63.4%) or cholecystectomy (61.1%) groups.
Endoscopic removal of FCSEMS was accomplished in all patients in whom this procedure was attempted. As such, in some types of BBS, FCSEMS can be left in situ for 1-year without compromising removability.

Although FCSEMS feasibility has been well established, comparative studies on the efficacy of multiple plastic stent are still lacking. To the best of our knowledge, only two prospective randomized trials comparing FCSEMS to plastic stents have been published. Kaffes et al. in a study of 32 patients with anastomotic post-liver transplant, showed that FCSEMS reduced the number of ERCPs needed to achieve stricture resolution (median 2 vs 4, \(P = 0.0001 \)) with similar recurrence rates. There was no significant statistical difference between groups neither in stricture resolution (100% in FCSEMS group vs 80% in plastic group, \(P = n.s. \)), nor in complication rate (10% in FCSEMS group vs 50% in plastic group, \(P = 0.051 \)). No cases of migration were observed in FCSEMS group. Cost analyses showed that FCSEMS was more cost effective. In the other multicenter, randomized trial, 60 patients with BBS caused by chronic pancreatitis were included. At 6 mo after randomization, all stents were removed and the patients were followed at 6 mo and 2 years after stent removal. The stricture-free success rate after 2 years was 90% (95%CI: 72%-97%) in the plastic group and 92% (95%CI: 70%-98%) in the FCSEMS group (\(P = 0.405 \)). Stent migration was similar in both groups (10% in plastic group vs 7% in FCSEMS group, \(P = 1 \)). Recently a systematic review showed a tendency to successful use of FCSEMS in BBS related to chronic pancreatitis (77% (95%CI: 61%-94%) vs 33% (95%CI: 4%-63%), \(P = 0.06 \)) with fewer endoscopic sessions (1.5 vs 3.9, \(P = 0.0002 \)) and subsequently fewer complications. However, these results were not observed in other BBS etiologies other than chronic pancreatitis.

Interestingly, in BBS related to chronic pancreatitis (particularly in calcified pancreatitis) the previous studies with multiple plastic stents showed inferior response to endoscopic therapy. On the contrary, as stated before, there is increasing evidence of a better success rate and lower recurrence rate with FCSEMS. It is thought that both the diameter of the FCSEMS and the duration of indwelling may contribute to these findings.

Among the available literature, stent duration is not homogeneous or standardized. Even so, it seems that a short stenting period might not be enough to allow for adequate tissue repair. Longer stenting duration should be therefore considered, as it has been independently associated with stricture resolution.

The drawbacks of FCSEMS include stent migration, duodenal reflux and tissue hyperplasia. These issues should be addressed in the development of new stents in order to reinforce stent quality. Stent migration is, in fact, the major obstacle of FCSEMS. To minimize stent migration, the concept of flared ends (FE) and anchoring flaps has been introduced. Park do et al. compared 2 stents, both with FE at the distal portion and with either 4 anchoring-fins (AF) or FE at the proximal end, in 43 BBS patients. Stents remained in situ for a median of 6 mo (interquartile range, 4 to 6) and no migrations were seen in the AF group, whereas a 33% migration was seen in the FE group (\(P = 0.004 \)). Immediate stricture resolution was noted in 91% of patients with AF and 88% of those with FE. Recurrence during the median 4 mo follow-up period after stent removal occurred in 7 patients in total (16%) with no significant difference between the 2 groups. All nonmigrated stents were successfully removed without complications. The authors concluded that the AF design might be superior to the FE regarding antimigration effect for BBS. More recently, Walter et al. conducted a prospective, multicenter cohort study with a novel Niti-S biliary bumpy stent with bilateral FE and a high conformity at the middle part of the stent. In this study, involving 38 patients, the stent was removed after 3 mo. Despite the initial clinical success rate of 80%, the long-term clinical success rate was only 63% and stent migration occurred in 31% of patients. Regarding duodenal reflux issue, some studies using SEMS with antireflux valve have been conducted. However, only cases of malignant biliary obstruction were included.

Besides stent migration, acute cholangitis, cholecystitis and pancreatitis have also been reported with FCSEMS placement. Even so, complications did not preclude its use in the treatment of BBS.

After FCSEMS placement, clinical, laboratory and radiological follow-up has not yet been defined. Some authors advocate clinical follow-up for symptom recurrence and liver function tests every 3-6 mo for a minimum of 2 years after stent removal, then yearly with a baseline transabdominal ultrasound or MRCP.

Based on these more recent data, FCSEMS might be recommended as the first line option for BBS, particularly in certain groups of patients, like chronic pancreatitis. Table 4 outlines the main prospective trials regarding FCSEMS use in BBS endoscopic treatment.

New Areas of Research

Bioabsorbable self-expandable stent is a growing area of interest in BBS treatment. This type of stent has a larger lumen than plastic stents, which allows better patency rate and reduced biofilm formation. Unlike FCSEMS, it does not require removal of stent and can reduce biliary mucosal hyperplasia. It is a braided structure of filaments made of absorbent polydioxanone or polylactide. After sent insertion, balloon dilation may be required to promote additional expansion of lumen, because of its radial force is weaker than FCSEMS. In animal models, biostents showed endoscopically deployment with success, expansion to full diameter, and maintenance of patency up to 9 mo. To the best of our knowledge, biodegradable stent have been currently experimented only in animal models.

Recently, it has been published some early and
Exciting work looking at intraductal radiofrequency ablation (RFA) in the treatment of BBS. In a pilot study, Hu et al. performed intraductal bipolar radiofrequency at power 10W for 90 s/stricture, followed by balloon dilation with/without stent placement, in 9 BBS patients. Seven of them were refractory at endoscopic or percutaneous interventions. The treatment concept is aimed to using ablation power rather than using boogie effect to treat the structure. After RFA, stricture of all patients showed immediate improvement and five patients (55%) achieved stricture resolution during a follow-up of 12.6 mo. Three of the nine patients required no further stenting. Thus, RFA therapy is a new method that appears promising particularly in refractory cases.

CONCLUSION

Over the past 20 years, the progress and development of endoscopic devices and therapeutic options in the management of BBS have been really remarkable. Several prospective randomized trials have been recently published; including the most waited which compare FCSEMS with plastic stents.

Although multiple plastic stent insertion remains a very effective method in the vast majority of patients, there are emergent data suggesting that FCSEMS may be a reasonable alternative treatment option. The most recent studies support its efficacy, its relative low migration rate and low complications rate, and cost-effectiveness. However, data that clearly demonstrate the superiority of FCSEMS over plastic multistenting procedures are lacking. Thus, randomized, controlled trials assessing stent efficacy, complications, and cost-effectiveness are needed before a routine use of FCSEMS can be recommended. Also new functional SEMS are awaited; the ideal stent characteristics have not been yet defined. In the near future, not only new techniques, like RFA, but also other therapies involving new devices will be available in clinical practice.

REFERENCES

1. Costamagna G, Boskoski I. Current treatment of benign biliary strictures. *Ann Gastroenterol* 2013; 26: 37-40 [PMID: 24714594]
2. Pausawasadi N, Soontornmanokul T, Rerknimitr R. Role of fully covered self-expandable metal stent for treatment of benign biliary stenosis and bile leaks. *Korean J Radiol* 2012; 13 Suppl 1: S67-S73 [PMID: 22562920 DOI: 10.3334/kjr.2012.13.S1.S67]
3. Kwon CI, Ko KH, Hahn KB, Kang DH. Functional self-expandable metal stents in biliary obstruction. *Clin Endosc* 2013; 46: 515-521 [PMID: 24143314 DOI: 10.5946/ce.2013.46.5.515]
4. Singh A, Gerdul A, Agarwal B. Biliary strictures: diagnostic considerations and approach. *Gastroenterol Rep* (Oxf) 2015; 3: 22-31 [PMID: 25355800 DOI: 10.1093/gastro/gou072]
5. Chathadi KV, Chandraashekhara V, Acosta RD, Decker GA, Early DS, Eloubeidi MA, Evans JA, Faulx AL, Fanelli RD, Fisher DA, Foley K, Fonkalsrud L, Hwang JH, Jue TL, Khashab MA, Lightdale JR, Muthusamy VR, Pasha SF, Saltzman JR, Sharaf R, Shaukat A, Shergill AK, Wang A, Cash BD, DeWitt JM. The role of ERCP in benign diseases of the biliary tract. *Gastrointest Endosc* 2015; 81: 795-803 [PMID: 25665931 DOI: 10.1016/j.gie.2014.11.019]
6. Pflau PR, Pleskow DK, Banerjee S, Barth BA, Bhat YM, Desilets DJ, Gottlieb KT, Maple JT, Siddiqui UD, Tokar JL, Wang A, Song LM, Rodriguez SA. Pancreatic and biliary stents. *Gastrointest Endosc* 2013; 77: 319-327 [PMID: 23410693 DOI: 10.1016/j.gie.2012.09.026]
7. Chan CH, Telford JJ. Endoscopic management of benign biliary strictures. *Gastrointest Endosc Clin N Am* 2012; 22: 511-537 [PMID: 22748246 DOI: 10.1016/j.gice.2012.05.005]
8.archer sb, brady de, carey zm, dorfman h, haapamäki e, hahm kb, kaffes g, kahaleh m, kalia p, kantamneni s, khashab ma, lightdale jr, muthusamy vr, nguyen d, nuzzo g, orenstein a, puiggros y, quach d, sharaf r, shahinsky j, wagh et al [PMID: 12849682 DOI: 10.1016/j.gie.2006.07.041]
9. Nuzzo G, Giulante F, Giovannini I, Ardito F, D’Acapito F, Vellone M, Murazio M, Capelli G. Bile duct injury during laparoscopic cholecystectomy: results of a national survey. *Ann Surg* 2001; 234: 549-558; discussion 558-559 [PMID: 11573048 DOI: 10.1097/00000658-200106000-00014]
10. Warshaw AL, Schapiro RH, Ferrucci JT, Galdabini J. Persistent obstructive jaundice, cholangitis, and biliary cirrhosis due to common bile duct stenosis in chronic pancreatitis. *Gastroenterology* 1976; 70: 562-567 [PMID: 943356]
11. Bismuth H. Postoperative strictures of the biliary tract. In: Blumgart L, editor. The biliary tract clinical surgery international. Edingburgh: Churchill Livingstone, 1982: 209-218
Long-term outcome in patients with benign biliary strictures treated endoscopically with multiple stents. *Gastroint Endosc* 2002; 55: 680-686 [PMID: 11979250 DOI: 10.1067/mge.2002.122955]

Foutch PG, Sivak MV. Therapeutic endoscopic balloon dilatation of the extrabiliary biliary ducts. *Am J Gastroenterol* 1985; 80: 575-580 [PMID: 401411]

van Millingen de Wit AW, van Bracht J, Rauws EA, Jones EA, Tytgat GN, Huibregtse K. Endoscopic stent therapy for dominant extrabiliary bile duct strictures in primary sclerosing cholangitis. *Gastroint Endosc* 1996; 44: 293-299 [PMID: 8885349 DOI: 10.1016/S0004-2803(96)70107-0]

May GR, Bender CE, LaRusso NF, Wiesner RH. Nonoperative dilatation of dominant strictures in primary sclerosing cholangitis. *AJR Am J Roentgenol* 1985; 145: 1061-1064 [PMID: 3878737 DOI: 10.2214/ajr.145.5.1061]

Dickson ER, Murtagh PA, Wiesner RH, Grumbsch PM, Fleming TR, Ludwig J, LaRusso NF, Malinchoc M, Chapman RW, Kaplan MM. Primary sclerosing cholangitis: refinement and validation of survival models. *Gastroenterology* 1992; 103: 1893-1901 [PMID: 1451982]

Baluyut AR, Sherman S, Lehman GA, Hoen H, Chalasani N. Impact of endoscopic therapy on the survival of patients with primary sclerosing cholangitis. *Gastroint Endosc* 2001; 53: 308-312 [PMID: 11233388]

Costamagna G, Pandolfi M, Mutignani M, Spada C, Perri V. Long-term results of endoscopic management of postoperative bile duct strictures with increasing numbers of stents. *Gastroint Endosc* 2001; 54: 162-168 [PMID: 11474384 DOI: 10.1067/mge.2001.118676]

Costamagna G, Tringali A, Mutignani M, Perri V, Spada C, Pandolfi M, Galasso D. Endotherapy of postoperative biliary strictures with multiple stents: results after more than 10 years of follow-up. *Gastroint Endosc* 2010; 72: 551-557 [PMID: 20630514 DOI: 10.1016/j.gie.2010.04.052]

Perri V, Familiari P, Tringali A, Boskoski I, Costamagna G. Plastic biliary stents for benign biliary diseases. *Gastroint Endosc Clin N Am* 2010; 20: 2445-33, viii [PMID: 21684412 DOI: 10.1016/j.gece.2011.04.012]

Baron TH. Covered self-expandable metal stents for benign biliary tract diseases. *Curr Opin Gastroenterol* 2011; 27: 262-267 [PMID: 21248636 DOI: 10.1097/MOG.0b013e3283438a26]

Gotthardt D, Stielh A. Endoscopic retrograde cholangio-pancreatography in diagnosis and treatment of primary sclerosing cholangitis. *Clin Liver Dis* 2010; 14: 349-358 [PMID: 20682240 DOI: 10.1016/j.cld.2010.03.010]

Gotthardt DN, Rudolph G, Kötters-Platchky P, Kulaksiz H, Stielh A. Endoscopic dilation of dominant stenoses in primary sclerosing cholangitis: outcome after long-term treatment. *Gastroint Endosc* 2010; 71: 527-534 [PMID: 20189511 DOI: 10.1016/j.gie.2009.10.041]

Stielh A, Rudolph G, Kötters-Platchky P, Sauer P, Walker S. Development of dominant bile duct stenoses in patients with primary sclerosing cholangitis treated with ursodeoxycholic acid: outcome after endoscopic treatment. J Hepatol 2002; 36: 151-156 [PMID: 11830325 DOI: 10.1016/S0168-8278(01)00251-3]

Berstad AE, Aabakken L, Smith HJ, Aasen S, Boberg KM, Schrumpf E. Diagnostic accuracy of magnetic resonance and endoscopic retrograde cholangiography in primary sclerosing cholangitis. *Clin Gastroenterol Hepatol* 2006; 4: 514-520 [PMID: 16616358 DOI: 10.1016/j.cgh.2005.10.007]

Kaya M, Petersen BT, Angulo P, Baron TH, Andrews JC, Gotstout CJ, Lindor KD. Balloon dilation compared to stenting of dominant strictures in primary sclerosing cholangitis. *Am J Gastroenterol* 2001; 96: 1059-1066 [PMID: 11316147 DOI: 10.1111/j.1570-0241.2001.0360.x]

Katahama A, Minami S, Takahashi K, Osanai M, Yane K, Kin T, Matsumoto K, Matsumori T, Takaki R, Gon K, Tomonari A. Endoscopic management of benign biliary stenosis: should we treat more aggressively? *Dig Endoscopy* 2014; 26: 536-537 [PMID: 25040210 DOI: 10.1111/den.12287]

Bergman JJ, Burgemeister L, Bruno MJ, Rauws EA, Gouma DJ, Tytgat GN, Huibregtse K. Long-term follow-up after biliary stent placement for postoperative bile duct stenosis. *Gastroint Endosc* 2001; 54: 154-161 [PMID: 11474383 DOI: 10.1067/mge.2001.116455]

Dumonceau JM, Tringali A, Blero D, Devière J, Laergers R, Heresbach D, Costamagna G. Biliary stenting: indications, choice of stents and results: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline. *Endoscopy* 2012; 44: 277-298 [PMID: 22297801 DOI: 10.1055/s-0034-1391633]

Rudolph G, Klöters-Plachky P, Sauer P, Walker S. Impact of endoscopic therapy on the survival of patients with chronic pancreatitis. *Clin Gastroenterol Hepatol* 2005; 3: 695-699 [PMID: 16206503 DOI: 10.1016/S1542-3565(05)00364-2]

Baron TH, Davee T. Endoscopic management of bile duct strictures. *Gastroint Endosc Clin N Am* 2013; 23: 295-311 [PMID: 23540962 DOI: 10.1016/j.gece.2013.01.001]

Kaffes A, Griffin S, Vaughan R, James M, Chua T, Tee H, Dinesen L, Corte C, Gill R. A randomized trial of a fully covered self-expandable metallic stent versus plastic stents in anastomotic bile duct strictures after liver transplantation. *Therap Adv Gastroenterol* 2014; 7: 64-71 [PMID: 24587819 DOI: 10.1177/1758889714532869]

Kahl S, Zimmermann S, Genz I, Glasbrenner B, Pross M, Schulz HU, Me Namara D, Schmidt U, Malfertheiner P. Risk factors for failure of endoscopic stenting of biliary strictures in chronic pancreatitis: a prospective follow-up study. *Am J Gastroenterol* 2003; 98: 2448-2453 [PMID: 14638347 DOI: 10.1111/j.1572-0241.2003.00867.x]

Catalano MF, Linder JD, George S, Alcocer E, Geenen JE. Treatment of symptomatic distal common bile duct stenosis secondary to chronic pancreatitis: comparison of single vs. multiple simultaneous stents. *Gastroint Endosc* 2004; 60: 945-952 [PMID: 15605010 DOI: 10.1016/s0016-5107(04)02275-8]

Pozsár J, Sahin P, László F, Forró G, Topa L. Medium-term results of endoscopic treatment of common bile duct strictures in chronic calcifying pancreatitis with increasing numbers of stents. *J Clin Gastroenterol* 2004; 38: 118-123 [PMID: 14745285 DOI: 10.1097/00004836-200402000-00007]

Haapamäki C, Kylänläpiä L, Udd M, Lindström O, Grönroos J, Saarela A, Mustonen H, Halttunen J. Randomized multicenter study of multiple vs. covered self-expandable metallic stent in the treatment of biliary stricture in chronic pancreatitis. *Endoscopy* 2015; 47: 605-610 [PMID: 25590182 DOI: 10.1055/s-0034-1391331]

Lawrence C, Romagnuolo J, Payne KM, Hawes RH, Cotton PB. Low symptomatic premature stent occlusion of multiple plastic stents for benign biliary strictures: comparing standard and prolonged stent change intervals. *Gastroint Endosc* 2010; 72: 558-563 [PMID: 20630860 DOI: 10.1016/j.gie.2010.05.029]
The treatment of patients with symptomatic common bile duct stenosis secondary to chronic pancreatitis using partially covered metal stents: a pilot study. Endoscopy 2005; 37: 735-739 [PMID: 16032492 DOI: 10.1055/s-2005-870130]

The randomized multicenter trial with DoubleLayer and polyethylene stents for malignant distal common bile duct strictures. Endoscopy 2003; 35: 992-997 [PMID: 14648409 DOI: 10.1055/s-2003-44601]

Temporary placement of a fully covered self-expandable metal stent in the pancreatic duct for management of symptomatic refractory chronic pancreatitis: preliminary data (with videos). Gastrointest Endosc 2008; 67: 446-454 [PMID: 18294506 DOI: 10.1016/j.gie.2007.06.057]

Temporary placement of a fully covered self-expandable metal stent for anastomotic bile duct strictures after liver transplantation: a prospective, multicenter study. Gastrointest Endosc 2010; 72: 1167-1174 [PMID: 20902226 DOI: 10.1016/j.gie.2008.06.011]

Chaput U, Sackton O, Bichard P, Ponchon T, Chrysostalis A, Gaudric M, Mangialavori L, Duchmann JC, Massault PP, Conti F, Calmus Y, Chaussee S, Soubrane O, Prat F. Temporary placement of partially covered self-expandable metal stents in benign biliary strictures. Gastrointest Endosc 2010; 72: 1167-1174 [PMID: 20902226 DOI: 10.1016/j.gie.2008.06.011]

Waldthaler A, Schütte K, Weigt J, Kropf S, Malferttheiner P, Kahl S. Long-term outcome of selfexpandable metal stents for biliary obstruction in chronic cholestasis. JOP 2013; 14: 57-62 [PMID: 23306336 DOI: 10.6092/1590-8577/870]

Iranis B, Baron TH, Akbar A, Lim OS, Gluck M, Gan I, Ross AS, Petersen BT, Topazian M, Kozarek RA. Effectiveness of fully covered self-expandable metal stents to prevent migration in patients with benign biliary strictures: a multicenter, prospective, randomized cohort study. Gastrointest Endosc 2015; 81: 1197-1203 [PMID: 25669082 DOI: 10.1016/j.gie.2014.10.026]

Hu B, Wang TT, Shi ZM, Wang SZ, Lu R, Pan YM, Huang H, Wang SP. A novel antireflux metal stent for the palliation of biliary malignancies: a pilot feasibility study (with video). Gastrointest Endosc 2011; 73: 64-70 [PMID: 21184871 DOI: 10.1016/j.gie.2010.09.039]

Kaffes AJ, Liu K. Fully covered self-expandable metal stents for treatment of benign biliary strictures. Gastrointest Endosc 2013; 78: 13-21 [PMID: 23589862 DOI: 10.1016/j.gie.2013.02.019]

Park do H, Lee SS, Lee TH, Ryu CH, Kim HJ, Seo DW, Park SH, Lee SK, Kim MH, Kim SJ. Anchoring flap versus flared end, fully covered self-expandable metal stents to prevent migration in patients with benign biliary strictures: a multicenter, prospective, comparative pilot study (with videos). Gastrointest Endosc 2011; 73: 64-70 [PMID: 21184871 DOI: 10.1016/j.gie.2010.09.039]

Walter D, Laleman W, Jansen JM van Milligen de Wit AW, Weusten BL, van Boeckel PG, Hirdes MM, Vleggaar FP, Siersema PD. A fully covered self-expandable metal stent with antimigration features for benign biliary strictures: a prospective, multicenter cohort study. Gastrointest Endosc 2015; 81: 1197-1203 [PMID: 25669082 DOI: 10.1016/j.gie.2014.10.026]

Kwon CI, Kang DH, Ko KH, Hong SP. A novel antireflux metal stent for the palliation of biliary malignancies: a pilot feasibility study (with video). Gastrointest Endosc 2011; 73: 143-148 [PMID: 20970788 DOI: 10.1016/j.gie.2010.08.048]

Kim DU, Kwon CI, Kang DH, Ko KH, Hong SP. A novel antireflux self-expandable metal stent for malignant lower biliary obstruction: in vitro and in vivo preliminary study. Dig Endosc 2013; 25: 60-66 [PMID: 23286258 DOI: 10.1111/j.1443-1661.2012.01324.x]

Hwang JC, Kim JH, Yoo BM, Lim SG, Kim JH, Kim WH, Kim MW. Temporary placement of a newly designed, fully covered, self-expandable metal stent for refractory bile leaks. Gut Liver 2011; 5: 96-99 [PMID: 21461081 DOI: 10.1007/gnl.2011.5.196]

Meng B, Wang J, Zhu N, Meng QY, Cui FZ, Xu YX. Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J Mater Sci Mater Med 2006; 17: 611-617 [PMID: 16770545 DOI: 10.1007/s10856-006-9223-9]

Itoi T, Kasuya K, Abe Y, Isayama H. Endoscopic placement of a new short-term biodegradable pancreatic and biliary stent in an animal model: a preliminary feasibility study (with videos). J Hepatobiliary Pancreat Sci 2011; 18: 463-467 [PMID: 21170555 DOI: 10.1007/s00534-010-0364-3]

Yamamoto K, Yoshio K, Tsuruki C, Sakaguchi H, Anai H, Tanaka T, Morimoto K, Uchida H, Kichioka K. Experimental study of poly-L-lactic acid biodegradable stents in normal canine bile ducts. Cardiovasc Intervent Radiol 2011; 34: 601-608 [PMID: 21153415 DOI: 10.1007/s00270-010-0045-2]

Hu B, Gao DJ, Wu J, Wang TT, Yang XM, Ye X. Intraductal radiofrequency ablation for refractory benign biliary strictures: pilot feasibility study. Dig Endosc 2014; 26: 581-585 [PMID: 24405166 DOI: 10.1111/den.12225]
Ferreira R et al. Update on benign biliary strictures

99 Bourke MJ, Elfant AB, Alhalel R, Scheider D, Kortan P, Haber GB. Sphincterotomy-associated biliary strictures: features and endoscopic management. Gastrointest Endosc 2000; 52: 494-499 [PMID: 11023566]

100 Kuzela L, Oltman M, Sutka J, Hrcka R, Novotna T, Vavrecka A. Prospective follow-up of patients with bile duct strictures secondary to laparoscopic cholecystectomy, treated endoscopically with multiple stents. Hepatogastroenterology 2005; 52: 1357-1361 [PMID: 16201073]

101 Morelli G, Fazel A, Judah J, Pan JJ, Forsmark C, Draganov P. Rapid-sequence endoscopic management of posttransplant anastomotic biliary strictures. Gastrointest Endosc 2008; 67: 879-885 [PMID: 18178206 DOI: 10.1016/j.gie.2007.08.046]

102 Tabibian JH, Asham EH, Han S, Saab S, Tong MJ, Goldstein L, Busuttil RW, Durazo FA. Endoscopic treatment of postorthotopic liver transplantation anastomotic biliary strictures with maximal stent therapy (with video). Gastrointest Endosc 2010; 71: 505-512 [PMID: 20189508 DOI: 10.1016/j.gie.2009.10.023]

P- Reviewer: Lee KT S- Editor: Qiu S L- Editor: A E- Editor: Li D
