The value of glucocorticoid co-therapy in different rheumatic diseases – positive and adverse effects

Marlies C. van der Goes*, Johannes W Jacobs and Johannes W Bijlsma

Abstract
Glucocorticoids play a pivotal role in the management of many inflammatory rheumatic diseases. The therapeutic effects range from pain relief in arthritides, to disease-modifying effects in early rheumatoid arthritis, and to strong immunosuppressive actions in vasculitides and systemic lupus erythematosus. There are multiple indications that adverse effects are more frequent with the longer use of glucocorticoids and use of higher dosages, but high-quality data on the occurrence of adverse effects are scarce especially for dosages above 10 mg prednisone daily. The underlying rheumatic disease, disease activity, risk factors and individual responsiveness of the patient should guide treatment decisions. Monitoring for adverse effects should also be tailored to the patient. Continuously balancing the benefits and risks of glucocorticoid therapy is recommended. There is an ongoing quest for new drugs with glucocorticoid actions without the potential to cause harmful effects, such as selective glucocorticoid receptor agonists, but the application of a new compound in clinical practice will probably not occur within the next few years. In the meantime, basic research on glucocorticoid effects and detailed reports on therapeutic efficacy and occurrence of adverse effects will be valuable in weighing benefits and risks in clinical practice.

Introduction
The value of glucocorticoid therapy was discovered 65 years ago. In 1949, Philip Hench reported the dramatic effect of compound E on rheumatoid arthritis (RA) [1]. Nowadays, glucocorticoids play a pivotal role in the management of many inflammatory rheumatic diseases [2-7]. Glucocorticoids represent the most frequently employed class of anti-inflammatory drugs, with a rise in use in recent years [8-11], despite the development of new treatment modalities such as biological drugs applicable for many rheumatic diseases. Community survey data indicate use of glucocorticoids among 0.5% of the general population, and 1.4% of women aged older than 55 years [12,13]. Between 14.6 and 90% of patients with RA worldwide are undergoing treatment with glucocorticoids [10]. Almost all patients with polymyalgia rheumatic, giant cell arteritis and systemic vasculitis use systemic glucocorticoids.

Glucocorticoids are very effective anti-inflammatory and immunosuppressive drugs, but their use is restrained by fear for and occurrence of adverse effects (Figure 1).

Mechanisms of action
The effects of glucocorticoids are thought to be mediated by different mechanisms [14-19]. Classic genomic mechanisms leading to changes in gene expression are most important in low-dose therapy (see Figure 2) [20]. These actions occur after passage of glucocorticoid molecules through the cell membrane, binding to the inactive cytosolic glucocorticoid receptor, formation of an activated glucocorticoid–cytosolic glucocorticoid receptor complex, and translocation of this complex into the nucleus. Transactivation and transrepression can be initiated in the nucleus. Transactivation is caused by binding of two activated glucocorticoid–cytosolic glucocorticoid receptor complexes as a dimer to the promotor of glucocorticoid-regulated genes, which leads to up-regulation of the synthesis of certain regulatory proteins by transcriptional activation. In transrepression, glucocorticoid–cytosolic glucocorticoid receptor monomer complexes interfere with the activity of (proinflammatory) transcription factors such as activator protein 1 and nuclear factor-κB, leading to downregulation of (proinflammatory) protein synthesis. Genomic processes require at least 30 minutes before changes can be observed in regulatory protein synthesis, but usually it will take hours to days for changes to occur at the cell, tissue or organ level [18,21].

The repressive, anti-inflammatory effects of glucocorticoids were believed until recently to be based mainly on
transrepression [19], whereas the negative effects – with
the exception of infection risk – and metabolic actions of
glucocorticoid therapy were based on transactivation.
This view has been somewhat revised, with the sugges-
tion that some key anti-inflammatory actions of
glucocorticoids are caused by gene activation [19,22].
Moreover, research in a mouse strain with a defi ciency in
forming dimer glucocorticoid–glucocorticoid receptor
complexes, and thus with a transactivation defi ciency,
showed – along with a failure of glucocorticoids to exert
a full anti-inflammatory response – classic side effects
such as osteoporosis in these mice [23].

In very high-dose therapy, nongenomic mechanisms
also occur, effects of which are evident within minutes
[20]. These nongenomic mechanisms are mediated via
the cytosolic glucocorticoid receptor, via the membrane-
bound glucocorticoid receptor, and via nonspecific inter-
actions with membranes of cells and organelles, including
those of mitochondriae.

The size of genomic effects of glucocorticoid prepara-
tions defi nes their dose equivalence. Dexamethasone and
betamethasone are the most potent preparations,
followed by methylprednisolone, prednis(lo)ne, cortisol
and cortisone [20]. Dosages of specifi c glucocorticoid
preparations often are expressed in relation to the
potency of the most frequently used preparation; that is,
prednisone. The defi nitions of low-dose therapy through
to pulse therapy are presented in Table 1.

Patterns of glucocorticoid use
Glucocorticoid use (dose, duration, administration)
depends on the diagnosis, indications for glucocorticoid
therapy, and the goal of treatment (see Table 2). The
therapeutic effects range from pain relief in arthritides, to
disease-modifying effects in early RA, and to strong
immunosuppressive actions in vasculitides and systemic
lupus erythematosus (SLE). Not all effects have been
studied in detail.
Primary immunosuppressive treatment with glucocorticoids

Glucocorticoids are anchor drugs for therapeutic strategies in myositis, polymyalgia rheumatica and systemic vasculitis. For other rheumatic diseases, glucocorticoids are adjunctive therapy, or are not used at all. Monotherapy with glucocorticoids is applied in polymyalgia rheumatica; remission can often be achieved with treatment starting at 15 mg prednisone or equivalent daily [24].

Glucocorticoids also represent the most important class of drugs in giant cell arteritis. For this disease, higher initial dosages are often used (mostly 40 to 60 mg prednisone or equivalent daily). Furthermore, in the case of (transient) acute visual loss, pulse therapy is applied.

In the treatment of polymyalgia rheumatica and giant cell arteritis, other immunomodulatory drugs are sometimes added to glucocorticoids as glucocorticoid-sparing agents to decrease the dose or duration of glucocorticoid therapy. However, the results of research into the glucocorticoid-sparing properties of other immunosuppressive medication – that is, use of other agents to decrease the cumulative glucocorticoid dose – are not convincing. Outcomes of randomized controlled trials in polymyalgia rheumatica on the glucocorticoid-sparing effects of methotrexate [25-27], azathioprine [28] and infliximab [29] were conflicting. The same holds true for adjunctive treatment with methotrexate [30-32], cyclosporine [33], etanercept [34] and infliximab [35] in giant cell arteritis. A recent retrospective study in 23 patients indicated that leflunomide is effective as a glucocorticoid-sparing agent in patients with difficult-to-treat giant cell arteritis and polymyalgia rheumatic, but this still needs to be confirmed in randomized controlled trials [36].

Combination therapy including glucocorticoids

Pulse therapy

Acute episodes or particularly severe forms of rheumatic diseases and specific complications are indications for pulse therapy. In collagen disorders, pulse therapy is...
applied for disease induction or treatment of flares. In RA, pulse therapy is used to treat serious complications of the disease and to induce remission in active disease. In the latter, it makes sense to simultaneously start a new second-line antirheumatic treatment aiming at stabilizing the remission induced by pulse therapy, since the beneficial effects generally last about 6 weeks [37]. There are several different schemes of pulse therapy. Pulse therapy with schemes of 1,000 mg methylprednisolone intravenously has proven effective in many studies.

High and medium doses
In systemic vasculitis, high-dose glucocorticoids are the cornerstone of induction therapy and the therapy of flares. Usually, other immunosuppressive drugs are applied simultaneously. In this chronic treatment, the dosages (often starting with 1 mg/kg body weight prednisone equivalent) are gradually reduced in weeks to months to a maintenance therapy of low to medium dose.

Another application of high-dose glucocorticoids is intermittent treatment; for example, in gout to treat attacks. In a gout attack, treatment with 35 mg prednisone during 5 days improved pain scores, as did treatment with naproxen [38]. Glucocorticoids are stopped in the periods between these attacks, although there are a few exceptions. For example, glucocorticoids can be used in patients with gout as a bridge for adequate suppression of uric acid in cases where nonsteroidal anti-inflammatory drugs (NSAIDs) and colchicine are contraindicated.

Low dose
Chronic glucocorticoid therapy in RA is often started and maintained at a low dose, mostly in addition to other disease-modifying antirheumatic drugs. Glucocorticoid therapy is highly effective for relieving symptoms in patients with active RA in the short and medium term [39,40]. Improvement has been documented for all clinical parameters, including pain scales, joint scores, morning stiffness and fatigue, but also in parameters of the acute phase reaction (that is, erythrocyte sedimentation rate and C-reactive protein). Use of a modified-release preparation at bedtime (that is, releasing the administered glucocorticoid in the early morning, similar to the circadian rhythms of endogenous cortisol) leads to even more improvement in morning stiffness than use of a conventional tablet of equal dosage taken after awakening [41]. After 6 months of therapy, the beneficial effects of glucocorticoids in general seem to diminish. However, clinical experience suggests that if this therapy

Table 2. General use of glucocorticoids in rheumatology

Arthritides	Initial oral dose	Intravenous, very high dose or pulse therapy	Intra-articular injection
	Low	Medium	High
Gouty arthritis, acute	–	2	2
Juvenile idiopathic arthritis	–	1	1
Osteoarthritis	–	–	–
Acute calcium pyrophosphate crystal arthritis	–	–	–
Psoriatic arthritis	–	1	–
Reactive arthritis	–	–	1
Rheumatic fever	–	1	1
Rheumatoid arthritis	2	2	1
Collagen disorders			
Dermatomyositis, polymyositis	–	–	3
Mixed connective tissue disease	–	1	–
Polymyalgia rheumatica	–	3	–
Sjögren’s syndrome, primary	–	–	1
Systemic lupus erythematosus	–	2	1
Systemic sclerosis	–	1	–
Systemic vasculitides			
In general	–	–	3

Initial dose, the dose at the start of therapy, will often be decreased in time depending on disease activity: low, ≤7.5 mg prednisone equivalent/day; medium, >7.5 but ≤30 mg prednisone equivalent/day; high, >30 but ≤100 mg prednisone equivalent/day; very high, >100 mg prednisone equivalent/day. –, rare use; 1, infrequent use, for therapy-resistant disease, complications, severe flare, major exacerbation, and for bridging the lag-time of recently started therapy; 2, frequently added to/used as the basic therapeutic strategy; 3, basic part of the therapeutic strategy. With permission from BMJ publishing group [128].

van der Goes et al. Arthritis Research & Therapy 2014, 16(Suppl 2):S2
http://arthritis-research.com/content/16/S2/S2
Page 4 of 13
is then tapered off and stopped, some patients experience
clear aggravation of symptoms and signs, indicating that
the beneficial effect was still present before tapering. In
reports, very low doses of glucocorticoids (that is, <5 mg
prednisone equivalent/day) can be sufficient for patients
to remain in remission without causing severe adverse
events [42]. However, the risk–benefit ratio of this
therapy with very low doses has not been studied in a
prospective randomized way.

Recent studies have (re)established the disease-modifying
potential of low-dose glucocorticoids in early RA and have
renewed the debate on benefits and risks of this
treatment [43-52]. Beneficial effects of initial glucocorticoid
treatment during the first 2 years of the disease on
retardation of joint damage are still present after 4 to
5 years [53-55], which has not been shown for any other
disease-modifying antirheumatic drug. As such, gluco-
corticoids can be used for helping to achieve remission
and prevent joint damage in the long term; they are part
of the management for early RA according to European
guidelines [56]. Surprisingly, evidence for the efficacy of
glucocorticoids was not incorporated in the 2012 update
of the American College of Rheumatology treatment
recommendations for RA [57], which is highly debatable
[58].

Local application of glucocorticoids

Another type of use is local application of glucocorticoids.
In persisting nonbacterial arthritis of a joint, intra-
articular glucocorticoid injection can be considered. The
effect depends on several factors, such as the treated joint
(size, weight bearing, or non-weight bearing), the activity
of arthritis and the volume of synovial fluid in the treated
joint, the application of arthrocentesis (synovial fluid
aspiration) before injection, the choice and dose of the
glucocorticoid preparation, the injection technique, and
application of rest to the injected joint [59].

Among the injectable glucocorticoids, triamcinolone
hexacetonide is the least soluble preparation and showed
the longest effect [60]. In a randomized controlled study,
bed rest for 24 hours following injection of a knee joint in
patients with inflammatory arthritis resulted in pro-
longed duration of clinical response and reduced the
need for additional injections, compared with a control
group that received no particular advice about activity
with the injected joint [61]. Favorable effects of resting
the injected joints (for example, by splinting in a cast or
plaster) for 3 weeks in the case of a non-weight bearing
(upper extremity) joint and 6 weeks for a weight bearing
(lower extremity) joint have been described [62]. Based
on the literature, no definite evidence-based recommend-
dation can be made, but it seems prudent to rest and
certainly not to overuse the injected joint for several
days, even if pain is relieved [63].

An alternative to glucocorticoid therapy for intra-
articular use has not yet been recognized.

Adverse effects

There is no doubt that glucocorticoids have a high
potential for frequent and serious adverse events. Com-
pared with other antirheumatic agents, glucocorticoids
have a low incidence of short-term symptomatic toxicity
and patients uncommonly discontinue therapy for this
reason. There are multiple indications that adverse effects
are more frequent with longer use of glucocorticoids and
use of higher dosages [64,65], but high-quality data on
the occurrence of adverse effects are scarce especially for
dosages above 10 mg prednisone daily. Most published
studies on glucocorticoid toxicity are retrospective and
observational [66]. Systematic reviews and randomized
controlled trials are considered the highest quality
evidence, but these studies are often focused on
treatment efficacy. They have not been powered or
designed to assess toxicity. The inability to differentiate
unfavorable outcomes attributable to glucocorticoids
from those occurring as a complication of the disease
treated or as co-morbidities also confounds the picture.
Furthermore, there is strong selection bias for gluco-
corticoid use because physicians are inclined to treat
patients with more severe disease with (higher dosages of)
glucocorticoids (confounding by indication).

Therefore, despite over 60 years of use, robust data on
toxicities of long-term glucocorticoid therapy are sorely
lacking [67-70]. Fortunately, many of the adverse events
can be avoided or dealt with if glucocorticoids are used
prudently. An overview of positive as well as negative
effects of glucocorticoid therapy is given in Figure 1.

In the following paragraphs, several notorious adverse
effects of glucocorticoid therapy are discussed. These
paragraphs will give an overview of frequently reported
adverse effects in literature. Additionally, we will discuss
the influence of disease and treatment scheme on the
occurrence of adverse effects.

Effects on bone

Osteoporosis

Chronic oral treatment with more than 5 mg prednisone
daily can lead to a reduction in bone mineral density and
an increase in the risk of fracture [71]. However, in many
studies concerning glucocorticoid-induced osteoporosis,
no attention is paid to the fact that glucocorticoids are
usually prescribed for inflammatory diseases, which
themselves have negative impact on bone mineral
density.

Bone mineral density changes may develop in RA in
the absence of glucocorticoid therapy. Previous findings
suggest that bone loss in RA patients not on gluco-
corticoid therapy mainly occurs during the first months.
of disease [72,73]. Correlations with parameters of inflammation have been found in some studies [74-77]. Development of osteoporosis can thus also be caused by active early RA. In early RA, glucocorticoids have positive effects on bone [43,44,46-51]. The joint-sparing effect is probably based on the inhibition of proinflammatory cytokines such as interleukin-1 and tumor necrosis factor [78,79], which have direct positive effects on osteoclast formation and stimulate osteoblasts and T lymphocytes to produce receptor activator of nuclear factor-κB ligand [78,80]. Binding of receptor activator of nuclear factor-κB ligand to its receptor (receptor activator of nuclear factor-κB) on osteoclast precursor cells leads to differentiation and activation of osteoclasts, and subsequently to bone resorption, periarticular osteopenia, and formation of bone erosions in patients with RA (see Figure 3) [78]. A recent study showed that the bone mineral density scores in the first years of treatment with low-dose glucocorticoids are similar to these scores in patients without glucocorticoid therapy, when preventive medication for osteoporosis has been used [77]. Preventive measures will be discussed in the section ‘Recommendations for clinical practice’.

Osteonecrosis

For adverse effects on bone other than osteoporosis, a major limitation is that trials have not been powered or designed to assess toxicity or long-term effects, and therefore uncertainty of the true incidence and relevance of these adverse effects still remains. In general, osteonecrosis does not occur frequently. The frequency of occurrence clearly depends on the dose of glucocorticoid therapy and the underlying disease. Regarding pulse therapy, osteonecrosis seems to be a more frequent side effect in patients with SLE compared with patients with RA [81]. Both the disease and glucocorticoids therefore seem to play a role in osteonecrosis (especially) in SLE.

Endocrine effects

Weight gain and moon face

In the case of long-term endogenous or exogenous glucocorticoid excess, patients can experience increased appetite. As a consequence, this may contribute to increased body and trunk fat, finally leading to a cushingoid appearance with centripetal fat accumulation and thin extremities with atrophic skin and contusions. A recent trial in RA with 10 mg prednisone daily showed a small but significant gain in weight over 2 years, with a mean of 2.9 kg in the methotrexate-based strategy group treated with prednisone compared with 1.3 kg in the methotrexate-based strategy group treated with placebo-prednisone [52]. Additional analyses showed that this body weight gain after treatment of active RA was, at least partly, regaining patients’ previous weight by the reduction of the weight loss-inducing disease activity, which was more reduced in the prednisone strategy group [82].

The incidence of iatrogenic Cushing’s syndrome is dependent on dose and duration of therapy. Development of a moon face is uncommon in therapy with sub-physiologic dosages.

Diabetes and cardiovascular disease

Many doctors and patients are afraid of the development of diabetes during glucocorticoid therapy [83], and of the thereby increasing risk of cardiovascular events [84]. Cardiovascular disease is more prevalent in rheumatic patients than in the general population [85]. This increased prevalence is probably based on elevated levels of proinflammatory cytokines such as tumor necrosis factor alpha and interleukin-6 in the systemic circulation, with multiple effects on organs, including adipose tissue, and endothelium [86]. These cytokines are also over-produced in dysfunctional adipose tissue of obese individuals [87]. The resulting cascade of changes throughout the body driven by systemic inflammation leads to a pro-atherogenic profile: atherogenic lipid abnormalities, oxidative stress, depletion of endothelial progenitor cells associated with impairment of vascular injury repair, increased arterial stiffness, insulin resistance, endothelial dysfunction, a hypercoagulable state, elevated homocysteine levels, and upregulation of atherogenic T cells [86].

In RA and SLE, markers of inflammation correlate with impaired insulin sensitivity and impaired beta-cell function [88-90]. Deterioration of glucose tolerance has not been observed for short-term glucocorticoid therapy at medium to high doses [91], which might be explained by the effectiveness of glucocorticoids in dampening the inflammation. The influence of glucocorticoid therapy at low to medium doses for multiple years on glucose metabolism seemed to be minor [92]. Based on these studies, one could conclude that glucocorticoids, if used to effectively treat an inflammatory condition, are not an important risk factor for the development of cardiovascular disease. However, in cases of overt diabetes before treatment, patients should be instructed to carefully monitor their blood glucose level shortly after starting glucocorticoid therapy [69].

Suppression of the hypothalamic–pituitary–adrenal axis

Administration of glucocorticoids leads to negative feedback on the hypothalamus and pituitary glands, resulting in less secretion of corticotropin-releasing hormone and adrenocorticotropic hormone, respectively. As a result, the cortisol secretory capacity of the fasciculate–reticularis zone of the adrenal cortex may decrease, since...
this inner cortical zone of cortisol production is dependent on adrenocorticotropic hormone for structure and function.

Prediction of the suppression of the hypothalamic–pituitary–adrenal axis and tertiary adrenal insufficiency is not reliable, but their prevalence appears to depend on both the dose and duration of glucocorticoid treatment. In the case of long-term glucocorticoid therapy of up to 10 mg prednisone or equivalent daily, the risk of symptomatic adrenal failure is not high, but also not negligible. In clinical practice, it seems appropriate to anticipate potential adrenal insufficiency in patients who received 7.5 mg prednisone or equivalent for at least 3 weeks. Acute cessation of therapy could lead to problems. Gradual tapering of the glucocorticoid dose is therefore usually applied. In the case of suspected adrenal insufficiency, adrenocorticotropic hormone stimulation testing can help in evaluating the adrenal response [93].

Further, in the case of acute injury or stress (for example, with surgery), adequate adaptation of the glucocorticoid dose is important. Often a temporary increase of the dose to 15 mg prednisone equivalent/day is sufficient for minor surgery.

Infections

Randomized clinical trials with glucocorticoids often report a not increased risk of infection [44,46,52,94,95]. However, cohort studies and case–control studies showed an increased occurrence of infections in patients with RA [96-99]. Moreover, the dose of glucocorticoid therapy and combination treatment with other immunosuppressive drugs further elevate the risk [96]. Data suggest that awareness of the risk of infections before and during glucocorticoid treatment is needed.

Both typical and atypical microorganisms can cause infections. Clinicians should realize that glucocorticoids
may blunt classical clinical features of infection, and thereby delay the recognition of the infection and the start of treatment. Opportunistic infections with *Pneumocystis jiroveci* have been reported for dosages from 16 mg prednisone equivalent daily during 8 weeks [100].

The performance of screening tests for infections, such as the tuberculin skin test and interferon gamma release assays, are suppressed by glucocorticoid therapy [101]. Furthermore, specific recommendations for vaccination in patients with inflammatory rheumatic diseases have been developed [102].

Gastrointestinal problems

Bleeds
The risk of upper gastrointestinal tract bleeding or perforation increases about twofold with use of oral glucocorticoids or low-dose aspirin, and increases around fourfold with use of other NSAIDs [103]. This relatively high risk indicates that combined use of NSAIDs and glucocorticoids should be avoided, if possible [104]. If this combined treatment cannot be avoided, appropriate gastrophic protective medication, such as proton pump inhibitors, helps to decrease the risk of bleeding and should be prescribed. In patients with low cardiovascular risk, cyclooxygenase-2 inhibitors may be an alternative for NSAIDs and proton pump inhibitors, since they induce a lower risk of gastrointestinal complications in RA compared with NSAIDs [105-107].

Other
Cases of bowel perforation and pancreatitis have been reported in the context of glucocorticoid use. However, causality between the glucocorticoid therapy and these events is unsure; other factors such as the inflammatory disease might also play a role.

Neuropsychiatric events
Slight increases in sense of well-being are frequently reported by patients starting glucocorticoid therapy. Symptoms of acathisia, insomnia and depression have also been recorded. Similar to the risk of osteonecrosis, the risk of psychosis seems to be a more frequent side effect of pulse therapy in SLE patients compared with patients with RA [81]. Whether this increased incidence reflects an increased risk of this adverse effect of glucocorticoids in SLE or whether – and to what extent – this increased incidence also reflects psychosis as a complication of the disease is uncertain.

Dermatologic problems
Easy bruising, ecchymoses, skin atrophy, striae, disturbed wound healing, acne and increased hair growth (excluding scalp hair) are undesirable dermatologic effects that occur with glucocorticoid therapy [108]. The physician often considers these changes to be of minor clinical importance, but they may be disturbing to the patient. No reliable data on the occurrence of these adverse effects are available.

Ophthalmologic effects
Posterior subcapsular cataract is a well-described complication of prolonged glucocorticoid use [109]. This type of cataract is also related to diabetes, but it is not typically age related. Cortical cataracts also have also been associated with glucocorticoid use.

Glucocorticoid-treated patients may develop mild increased intra-ocular pressure, which can lead to minor visual disturbances. The development of frank glaucoma, threatening eye sight, is rare for low-dose therapy, and tends to appear in patients who are otherwise predisposed to the condition. A higher risk for glaucoma with glucocorticoids tends to occur more frequently if other risk factors are present, such as a family history of glaucoma, high myopia and diabetes [69]. In these patients, even when initiating low-dose therapy, an ophthalmologist should be consulted before the start of therapy [69].

Recommendations for clinical practice
Safe glucocorticoid therapy is glucocorticoid treatment with optimal therapeutic effects and with minimal adverse effects. To facilitate safe use, recommendations for the management of glucocorticoid therapy in rheumatic diseases have been developed and have been published in recent years [68-70]. Adverse effects of glucocorticoids are partially avoidable. To avoid adverse events as much as possible, several measures can be taken.

Education
First, patients should be informed of what to expect from this therapy. Nowadays, patients are more articulate and stand up for themselves. They should be actively informed about the expectations on both positive and negative effects of treatment with glucocorticoids. This information should be given over time, in small steps. Ideally, this should be supported by written information. Hopefully, this will lead to neutralizing of unfounded fears, earlier recognition of true adverse effects, and patient compliance.

Preventive measures
Patients with or at risk of glucocorticoid-induced osteoporosis should receive appropriate preventive and/ or therapeutic interventions. In general, all patients starting glucocorticoid therapy at medium to high dose are at risk of developing osteoporosis. Calcium, (active)
vitamin D and bisphosphonates have been proven effective in preventing and treating glucocorticoid-induced osteoporosis [110-115]. Preventive therapy with calcium and vitamin D should be started, because glucocorticoids impair bone mechanism – amongst other mechanisms – via inhibition of intestinal calcium absorption and renal tubular calcium reabsorption. Additionally, in general, bisphosphonates are indicated. Guidelines on indications and choices for specific drugs differ somewhat between countries.

Several algorithms have been developed to refine the estimate of the risk of fractures for individual patients, such as the Fracture Risk in Glucocorticoid-induced Osteoporosis score, which includes the glucocorticoid dosage taken, and FRAX® fracture risk assessment. Osteoporosis score, which includes the glucocorticoid dosage, was also suggested for glucocorticoid dosages >7.5 mg prednisone equivalent daily [120,121]. The decision of whether a patient should be treated depends on fracture risks and on the cost, effectiveness and safety of the treatment.

Optimizing therapy
The initial dose, dose reduction and long-term dosing depend on the underlying rheumatic disease, disease activity, risk factors and individual responsiveness of the patient [68]. Except for treatment with glucocorticoids in early RA as a disease-modifying antirheumatic drug, in which dosages of 5 to 10 mg prednisone equivalent during 1 to 2 years are used, for prolonged treatment the glucocorticoid dosage should be kept to a minimum, and a glucocorticoid taper should be attempted in the case of remission or low disease activity; the reasons to continue glucocorticoid therapy should be regularly checked. The need for continuing glucocorticoid treatment should be under constant review, and the dose should be titrated against therapeutic response, risk of undertreatment, and development of adverse effects [70].

Optimal choices regarding the use of glucocorticoids in rheumatic diseases are patient specific. The underlying disease, the presence of co-morbidity, the response to initial treatment, and the development of adverse effects should influence treatment decisions. Monitoring for adverse effects should also be tailored to the patient: specific aspects of individual patients may warrant a higher frequency of monitoring or a more comprehensive set of adverse effects to be monitored. Continuously balancing the benefits and risks of glucocorticoid therapy is recommended.

Use in pregnancy
The fetus is protected from maternal glucocorticoids since glucocorticoids bind to proteins cannot pass the placenta, and the enzyme 11β-hydroxysteroid dehydrogenase in the placenta converts cortisol and prednisolone into the inactive 11-dehydro-prohormones. The prednisolone maternal-to-fetal blood concentration ratio is therefore about 10:1. The risk of adverse effects of antenatal exposure to glucocorticoids such as reduced intrauterine growth and birth weight, neurocognitive adverse effects and oral cleft seems dependent on the dose, preparation, duration of therapy and stage of pregnancy [122]. Avoiding high doses (such as 1 to 2 mg/kg prednisone equivalent) is advised in the first trimester of pregnancy, whereas low to moderate doses of prednisone seem to be safe [122,123].

Future
New biological therapies have not replaced glucocorticoids, and probably will not replace them in the near future, as anchor drugs in therapeutic strategies for rheumatic diseases. Future research should therefore stay focused on the mechanisms causing beneficial and harmful effects and on predictive factors for the effects of glucocorticoids. Ultimately, response to glucocorticoids should preferably be predictable for the individual patient; studies on genomics and proteomics are being performed currently to this aim.

Apart from prediction of the treatment effects, there is an ongoing quest for new glucocorticoids without potential to cause harmful effects. Optimized glucocorticoids, such as selective glucocorticoid receptor agonists, are being developed to minimize the adverse effects many patients experience, especially if glucocorticoids are given at higher dosages over longer periods of time [124]. The most important approach to optimize the risk–benefit ratio of glucocorticoids is to understand in more detail how the molecular mechanisms of genomic and nongenomic glucocorticoid actions – and their dose dependency – mediate the clinically wanted benefits but also the known adverse effects [125]. During past years, it has become evident that separation of the beneficial effects from the harmful effects is a more complicated process than anticipated [19,23]. Further research on this topic is ongoing [126], but a breakthrough for clinical practice will probably not occur within the next few years.

In some decades to come, we will hopefully be able to prescribe new drugs with glucocorticoid actions with an improved risk–benefit ratio. Moreover, it might be possible to adjust the use of glucocorticoids and other medication to specific individual patients’ needs, characteristics and prognostic factors: personalized medicine. This would lead to a more effective inhibition of the inflammatory diseases with less adverse effects. While this has not been achieved, basic research on glucocorticoid effects and detailed reports on therapeutic efficacy and occurrence of adverse effects will be valuable in weighing benefits and risks in clinical practice.
Conclusion

Glucocorticoids are very effective anti-inflammatory and immunosuppressive drugs, but their use is restrained by fear for and occurrence of adverse effects. Many of the adverse effects can be avoided or dealt with when glucocorticoids are used prudently. Optimal choices regarding the use of glucocorticoids in rheumatic diseases are patient specific, as is monitoring for adverse effects. There is an ongoing quest for new glucocorticoids without the potential to cause harmful effects, such as selective glucocorticoid receptor agonists, but the application of a new compound in clinical practice will probably not occur within the next few years.

Abbreviations

NSAID, nonsteroidal anti-inflammatory drug; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Declaration

This article has been published as part of *Arthritis Research & Therapy* Volume 16 Suppl 2, 2014: At the interface between immunology and endocrinology in rheumatic diseases. The full contents of the supplement are available at http://arthritis-research.com/supplements/16/S2.

This supplement was proposed, developed and commissioned by *Arthritis Research & Therapy* and was funded by an educational grant from Horizon Pharma Inc. All published articles were independently prepared by the authors and have undergone peer review in accordance with the journal’s standard policies and processes. Horizon Pharma Inc had no input into the topics covered or the articles themselves. The Supplement Editor was appointed by the journal and declares that they have no competing interests.

Published: 13 November 2014

References

1. Hench PS, Kendall EC, Slocumb Ch, Polley HF: The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotrophic hormone on rheumatoid arthritis. *Moya Clin Phc* 1949, 24:181–197.

2. Bertass I, Ioannidis J, Boletis J, Bombardieri S, Cervera R, Dostal C, Font J, Gilboe IM, Houssiau F, Huizinga T, Isenberg D, Kallenberg CG, Khamashta M, Piette JC, Schneider M, Smolen J, Sturfelt G, Tincani A, van Vollenhoven R, Gordon C, Boupas DT: Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics: EULAR recommendations for the management of systemic lupus erythematosus. *Arthritis Rheum* 2008, 59:2046–2057.

3. Hatemi G, Silman A, Bang D, Bologna F, Chamberlain AM, Gu A, Houman MH, Kotter I, Olivieri I, Salvadari C, Sfikakis PP, Sra A, Stanford MR, Stubbings N, Yurdakul S, Yazici H: EULAR Expert Committee: EULAR recommendations for the management of Behcet disease. *Arthritis Rheum* 2008, 62:1656–1662.

4. Mukhtyar C, Gullein L, Cid MC, Daiguota B, de Groot K, Gross W, Hauser T, Hellmich B, Jayne D, Kallenberg CG, Merkel PA, Raspe H, Salvadari C, Scott DG, Stegeman C, Watts R, Westman K, Witter J, Yazici H, Luqmari R, European Vasculitis Study Group: EULAR recommendations for the management of large vessel vasculitis. *Ann Rheum Dis* 2009, 68:310–317.

5. Mukhtyar C, Gullein L, Cid MC, Daiguota B, de Groot K, Gross W, Hauser T, Hellmich B, Jayne D, Kallenberg CG, Merkel PA, Raspe H, Salvadari C, Scott DG, Stegeman C, Watts R, Westman K, Witter J, Yazici H, Luqmari R, European Vasculitis Study Group: EULAR recommendations for the management of primary small and medium vessel vasculitis. *Ann Rheum Dis* 2009, 68:310–317.

6. Gorter SL, Bijlsma JW, Cotojo M, Gomez-Reino J, Kouloumas M, Smolen JS, Landewe R: Current evidence for the management of rheumatoid arthritis with glucocorticoids: a systematic literature review informing the EULAR recommendations for the management of rheumatoid arthritis. *Ann Rheum Dis* 2010, 69:1010–1014.

7. Luften R, Fritsch-Stork RD, Bjilima JW, Dersken RH: The use of glucocorticoids in systemic lupus erythematosus. After 60 years still more an art than science. *Autoimmun Rev* 2013, 12:617–628.

8. Thiele K, Buttgereit F, Huscher D, Zink A: Current use of glucocorticoids in patients with rheumatoid arthritis in Germany. *Arthritis Rheum* 2005, 53:740–747.

9. Buttgereit F, Seibell MJ, Bijlsma JW: Glucocorticoids. In Clinical Immunology: Principles and Practice. 3rd edition, Chapter 87. Amsterdam: Elsevier Health Sciences, 2008.

10. Sokka T, Tolosa S, Cotojo M, Kauttainen H, Makinen H, Gogus F, Skakic V, Badsha H, Peets T, Bananuakaste A, Gerber P, Ulfalaus J, Skopouri FN, Monravommat M, Alten R, Poh C, Sikilia J, Stancati A, Salaffi F, Romanovski W, Zarowyn-Wierzbinska D, Henringo D, Bresnihan B, Mimmock P, Knudsen LS, Jacobs JW, Calvo-Alen J, Lazovski J, Pinheiro G, Karateev V, et al: Women, men, and rheumatoid arthritis: analyses of disease activity, disease characteristics, and treatments in the QUEST-RA study. *Arthritis Res Ther* 2009, 11:R7.

11. Fadelt L, Petersen I, Nazareth I: Prevalence of long-term oral glucocorticoid prescriptions in UK over the past 20 years. *Rheumatology (Oxford)* 2011, 50:1982–1990.

12. Walsh LJ, Wong CA, Pringle M, Tattersfield AE: Use of oral corticosteroids in the community and the prevention of secondary osteoporosis: a cross sectional study. *BMJ* 1996, 313:344–346.

13. Ramsey-Goldman R: Missed opportunities in physician management of glucocorticoid-induced osteoporosis? *Arthritis Rheum* 2002, 46:3115–3120.

14. Buttgereit F, Wehling M, Burmester GR: A new hypothesis of modular glucocorticoid actions: steroid treatment of rheumatic diseases revisited. *Arthritis Rheum* 1998, 41:761–767.

15. Buttgereit F, Straub RH, Wehling M, Burmester GR: Glucocorticoids in the treatment of rheumatic diseases: an update on the mechanisms of action. *Arthritis Rheum* 2004, 50:3406–3417.

16. Croxall JD, Choudhury Q, Flower RJ: Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism. *Br J Pharmacol* 2000, 130:289–298.

17. Rhen T, Cidlowski JA: Antinflammatory action of glucocorticoids – new mechanisms for old drugs. *N Engl J Med* 2005, 353:1711–1723.

18. Stahn C, Buttgereit F: Genomic and nongenomic effects of glucocorticoids. *Nat Clin Pract Rheumatol* 2008, 4:525–533.

19. Coutinho AE, Chapman KE: Anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. *Mol Cell Endocrinol* 2011, 352:5–13.

20. Buttgereit F, da Silva JA, Boers M, Burmester GR, Cotojo M, Jacobs J, Kirwan J, Kohler L, Van Reel P, Vischer T, Bijlsma JW: Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: current questions and tentative answers in rheumatology. *Ann Rheum Dis* 2002a, 61:718–722.

21. Buttgereit F, Burmester GR, Straub RH, Seibell MJ, Zhou H: Exogenous and endogenous glucocorticoids in rheumatic diseases. *Arthritis Rheum* 2011, 63:1–9.

22. Clark RR: Anti-inflammatory functions of glucocorticoid-induced genes. *Mol Cell Endocrinol* 2007, 275:79–97.

23. Kleiman A, Tuckermann JP: Glucocorticoid receptor action in beneficial and side effects of steroid therapy: lessons from conditional knockout mice. *Mol Cell Endocrinol* 2007, 275:98–108.

24. Hernandez-Rodriguez J, Cid MC, Lopez-Soto A, Espagol-Frigole G, Bosch X: Treatment of polymyalgia rheumatica: a systematic review. *Arch Intern Med* 2009, 169:1839–1850.

25. Ferraccioli G, Salaffi F, De Vita S, Casatta L, Baroli E: Methotrexate in polymyalgia rheumatica: preliminary results of an open, randomized study. *J Rheumatol* 1996, 23:624–629.

26. Caporali R, Cimmino MA, Ferraccioli G, Gerli R, Kleny C, Salvadari C, Montecucco C: Prednisone plus methotrexate for polymyalgia rheumatica: a randomized, double-blind, placebo-controlled trial. *Ann Intern Med* 2004,
27. van der Veen MJ, Dinant HJ, van Booms-Frankfort C, van Alabda-Kupiers GA, Bijlsma JW: Can methotrexate be used as a steroid sparing agent in the treatment of polymyalgia rheumatica and giant cell arteritis? Ann Rheum Dis 1996, 55:218–223.

28. De Silva M, Hazleman BL, Azathioprine in giant cell arteritis/polymyalgia rheumatica: a double-blind study. Ann Rheum Dis 1986, 45:136–138.

29. Salvatorini C, Macchioni P, Manzini C, Paoluzzi G, Trota A, Manganelli P, Cimmino M, Gerli R, Catanoso MG, Boardi L, Cantini F, Klersy C, Hunder GG: Inflinoximab plus prednisone or placebo plus prednisone for the initial treatment of polymyalgia rheumatica: a randomized trial. Ann Intern Med 2007, 146:631–639.

30. Hoffman GS, Cid MC, Hellmann DB, Gullemin L, Stone JH, Schousboe J, Cohen P, Calabrese LH, Dickler H, Merkel PA, Fortin P, Flynn JA, Locker GA, Easley KA, Schned H, Hunder GG, Snelller MC, Tuggle D, Swanson H, Hunder GG, Hernandez-Rodriguez J, Lopez-Soto A, Bork D, Hoffman DB, Kalunian K, Klashman D, Wilke WS, Scheetz RJ, Mandell BF, Fessler BJ, Korsmoy G, et al: A multicenter, randomized, double-blind, placebo-controlled trial of adjuvant methotrexate treatment for giant cell arteritis. Arthritis Rheum 2002, 46:1309–1318.

31. Spiera RF, Mitnick HJ, Kupersmith M, Richmond M, Spiera H, Peterson MG, Paget SA: A prospective, double-blind, randomized, placebo controlled trial of methotrexate in the treatment of giant cell arteritis (GCA). Clin Exp Rheumatol 2001, 19:495–501.

32. Jover JA, Hernández-García C, Morado IC, Vargas E, Banares A, Fernandez-Gutierrez B: Combined treatment of giant-cell arteritis with methotrexate and prednisone. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 2001, 134:106–114.

33. Schaufelberger C, Mollby R, Uddhammar A, Bratt J, Nordborg E: No additional steroid-sparing effect of cyclosporine A in giant cell arteritis. Scand J Rheumatol 2006, 35:227–239.

34. Martinez-Taborda VM, Rodriguez-Velarde V, Carreno I, Lopez-Longo J, Figueras M, Bebuengue J, Molla EM, Bonilla G: A double-blind placebo controlled trial of etanercept in patients with giant cell arteritis and corticosteroid side effects. Ann Rheum Dis 2008, 67:625–630.

35. Hoffman GS, Cid MC, Rend-Rozza KE, Merkel PA, Weyand CM, Stone JH, Salvarani C, Xu W, Visvanathan S, Rahman MJ: Inflinoximab for maintenance of glucocorticoid-induced remission of giant cell arteritis: a randomized trial. Ann Intern Med 2007, 146:621–630.

36. Diamantopoulos AP, Hetland H, Myklebust G: Leflunomide as a corticosteroid-sparing agent in giant cell arteritis and polymyalgia rheumatica: a case series. BioMed Res Int 2013, 2013:120638.

37. Weusten BL, Jacobs JW, Bijlsma JW: Corticosteroid pulse therapy in active rheumatoid arthritis. Semin Arthritis Rheum 1993, 23:183–192.

38. Janssen HJ, Janssen M, van de Lisdonk EH, van Riel PL, van Weel C: Combined treatment of polymyalgia rheumatica with cyclosporine A: a randomized, double-blind, placebo-controlled trial. Ann Rheum Dis 2008, 67:625–630.

39. Goekoop-Rudert YP, de Vries-Bouwstra JK, Allaart CF, van Zeven BL, Bijlsma JW: Corticosteroid side effects. Arthritis Care Res (Hoboken) 2012, 64:542–552.

40. Choy EH, Smith CM, Farewell V, Walker D, Hassell A, Chau L, Scott DL: Factorial randomised controlled trial of corticosteroids and combination disease modifying drugs in early rheumatoid arthritis. Ann Rheum Dis 2008, 67:563–568.

41. Bakker HF, Jacobs JW, Welsing PM, Versstappen SM, Tekstra J, Ton E, Geurts MA, van der Wijf JH, van Alabda-Kupiers GA, Van der Bom JC, Versstappen SM, Bijlsma JW: Folic acid in the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken) 2012, 64:625–639.

42. Boers M, Van der Goes F, Van Der Linden S, Bijlsma JW: American College of Rheumatology treatment guidelines continue to omit guidance on glucocorticoids: comment on the article by Singh et al. Arthritis Care Res (Hoboken) 2012, 64:1622.
59. Gaffney K, Ledingham J, Perry JD: Intra-articular triamcinolone hexacetinate in knee osteoarthritis: factors influencing the clinical response. *Ann Rheum Dis* 1995, 54:379–381.

60. Byth T, Hunter JA, Stirling A: Pain relief in the rheumatoid knee after steroid injection. A single-blind comparison of hydrocortisone succinate, and triamcinolone acetonide or hexacetinate. *Br J Rheumatol* 1994, 33:461–463.

61. Chakravarty K, Pharaoh PD, Scott DG: A randomized controlled study of post-injection rest following intra-articular steroid therapy for knee synovitis. *Br J Rheumatol* 1994, 33:464–468.

62. McCarty DJ, Harman JG, Grassanovich JL, Qian C: Treatment of rheumatoid joint inflammation with intrasynovial triamcinolone hexacetinate. *J Rheumatol* 1995, 22:1631–1635.

63. Bijlsma JW, Buttgereit F, Jacobs JW: Systemic and intra-articular glucocorticoids in rheumatoid arthritis. In *Rheumatoid Arthritis*. 2nd edition. Oxford: Oxford University Press, 2007:337–353.

64. Saag KG, Koehnke R, Caldwell JR, Brasington R, Burmeister LF, Zimmerman B, Mccarty DJ, Harman JG, Grassanovich JL, Qian C: Increase of body mass index in a tight controlled methotrexate-based strategy with prednisone in early rheumatoid arthritis: side effect of the prednisone or better control of disease activity? *Arthritis Care Res* (Hoboken) 2013, 65:88–93.

65. van der Goes MC, Jacobs JW, Boers M, Andrews T, Bijlsma JW, Buttgereit F, Caeyers N, Cauwenberghe SV, Geenen R, Herings R, Overbeek MA, Rijsenbrij L, van der Veen MJ, van der Werf JH, Welsing PM, Bijlsma JW: Monitoring adverse events of low-dose glucocorticoid therapy: EULAR evidence-based recommendations on the management of systemic glucocorticoid therapy in rheumatic diseases. *Ann Rheum Dis* 2007, 66:1560–1567.

66. van der Goes MC, Jacobs JW, Boers M, Andrews T, Blom-Bakkens MA, Buttgereit F, Caeyers N, Cauwenberghe SV, Geenen R, Herings R, Overbeek MA, Rijsenbrij L, van der Veen MJ, van der Werf JH, Welsing PM, Bijlsma JW: A COMPARISON of prednisolone with aspirin on other analgesics in the long-term treatment of cortisone acetate and acetyl salicylic acid in the long-term treatment of untreated rheumatoid arthritis. *Br J Rheumatol* 1994, 33:541–545.

67. Boek C, Karlsson A, Akesson K, Jacobsson L: Disease activity and disability but probably not glucocorticoid treatment predicts loss in bone mineral density in women with early rheumatoid arthritis. *Scand J Rheumatol* 2008, 37:248–254.

68. Forlind L, Keller C, Svensson B, Hafstrom I: Reduced bone mineral density in early rheumatoid arthritis is associated with radiological joint damage at baseline and after 2 years in women. *J Rheumatol* 2003, 30:2590–2596.

69. Gough AK, Lilley J, Eye S, Holder RL, Emery P: Generalised bone loss in patients with early rheumatoid arthritis. *Lancet* 1994, 344:23–27.

70. van der Goes MC, Jacobs JW, Jurgens MS, Bakker MF, van der Meer MJ, van der Veen MI, van der Werf JH, Welsing PM, Bijlsma JW: Are changes in bone mineral density different between groups of early rheumatoid arthritis patients treated according to a tight control strategy with or without prednisone if osteoporosis prophylaxis is applied? *Osteoporos Int* 2013, 24:1429–1436.

71. Bezerra MC, Carvalho JP, Prokopowitsch AS, Pereira RM: TNF-alpha/IL-1 or LIGHT. *Cytokine* 2012, 57:294–299.

72. Jacobs JW, Geenen R, Evans AW, van Jaarsveld CH, Kraaimaat FW, Bijlsma JW: Short term effects of corticosteroid pulse treatment on disease activity and the wellbeing of patients with active rheumatoid arthritis. *Ann Rheum Dis* 2001, 60:61–64.

73. Jurgens MS, Jacobs JW, Geenen R, Bossemia ER, Bakker MF, Bijlsma JW, van Alabda-Kupers IA, Ehrlich JC, Lafeber FP, Welsing PM: Increase of body mass index in a tight controlled methotrexate-based strategy with prednisone in early rheumatoid arthritis: side effect of the prednisone or better control of disease activity? *Arthritis Care Res* (Hoboken) 2013, 65:88–93.

74. van der Goes MC, Jacobs JW, Boers M, Andrews T, Blom-Bakkens MA, Buttgereit F, Caeyers N, Cauwenberghe SV, Geenen R, Herings R, Overbeek MA, Rijsenbrij L, van der Veen MJ, van der Werf JH, Welsing PM, Bijlsma JW: Monitoring adverse events of low-dose glucocorticoid therapy: EULAR evidence-based recommendations on the management of systemic glucocorticoid therapy in rheumatic diseases. *Ann Rheum Dis* 2010, 69:1015–1021.

75. Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. *Nature* 2001, 414:799–806.

76. Peters MJ, Symmons DP, McCay DJ, Dijkmans BA, Nicola P, Kien TK, McNees B, Hawkes T, Kirby R, van der Goes MC, van der Werf JH, Welsing PM, Bijlsma JW: Monitoring adverse events of low-dose glucocorticoid therapy: EULAR evidence-based recommendations on the management of systemic glucocorticoid therapy in rheumatic diseases. *Ann Rheum Dis* 2007, 66:285–293.

77. Hoes JN, Jacobs JW, Boers M, Boumpas D, Buttgereit F, Caevers N, Choy EH, Cutolo M, Da Silva JA, Esselens G, Guillemin L, Hafstrom I, Kirwan JR, Rovensky J, Russell A, Saag KG, Svensson B, Westhovens R, Zédeir H, Bijlsma JW: EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. *Ann Rheum Dis* 2010, 69:325–331.

78. Ku JA, Imboden JB, Husey P, Ganz P: Rheumatoid arthritis: model of systemic inflammation driving atherosclerosis. *Circ* 2009, 120:977–985.

79. Hajeer AR, van Haelst TW, Visseren FLJ: Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. *Eur Heart J* 2008, 29:2592–2597.

80. Dessein PH, Joffe BJ: Insulin resistance and impaired beta cell function in rheumatoid arthritis. *Arthritis Rheum* 2006, 54:2765–2775.

81. Chung CP, Deser A, Solus JF, Gebretsadik T, Shintani A, Avallos L, Sokka T, Raggi P, Pincus T, Stein C: Inflammation-associated insulin resistance: differential effects in rheumatoid arthritis and systemic lupus erythematosus define potential mechanisms. *Arthritis Rheum* 2008, 58:2105–2112.

82. Shahin D, Etoraby E, Mesbad A, Housen M: Insulin resistance in early untreated rheumatoid arthritis patients. *Clin Biochem* 2010, 43:661–665.

83. den Uyl D, van Raalte DH, Nurmohamed MT, Lems WF, Bijlsma JW, Hoes JN, Dijkmans BA, Diamant M: Metabolic effects of high-dose prednisolone treatment in early rheumatoid arthritis: balance between diabetogenic effects and inflammation reduction. *Rheumatol Arthritis* 2012, 64:639–646.

84. Hoes JN, van der Goes MC, van Raalte DH, van der Zijl NJ, den Uyl D, Lems WF, Lafeber FP, Jacobs JW, Welsing PM, Diamant M, Bijlsma JW: Glucose tolerance, insulin sensitivity and beta-cell function in patients with rheumatoid arthritis treated with or without low-to-medium dose glucocorticoids. *Ann Rheum Dis* 2011, 70:1887–1894.

85. Charmandidi E, Nicolades NC, Chrousos GP: Adrenal insufficiency. *Lancet* 2014, 383:2152–2167.

86. EMPIRE Rheumatism Council: multi-centre controlled trial comparing corticosterone and acetyl salicylic acid in the long-term treatment of rheumatoid arthritis; results of three years’ treatment. *Ann Rheum Dis* 1957, 16:277–289.

87. A COMPARISON of prednisolone with aspirin on other analgesics in the treatment of rheumatoid arthritis. *Ann Rheum Dis* 1959, 18:73–188.

88. Dixon WG, Kezouh A, Bernatsky S, Sussa S: The influence of systemic glucocorticoid therapy upon the risk of non-serious infection in older patients with rheumatoid arthritis: a nested case–control study. *Ann Rheum Dis* 2011, 70:956–960.

89. Dixon WG, Abrahamowicz M, Beauchamp ME, Ray DW, Bernatsky S, Sussa S, Sylvestre MP: Immediate and delayed impact of oral glucocorticoid therapy on risk of serious infection in older patients with rheumatoid arthritis: a nested case–control analysis. *Ann Rheum Dis* 2012, 71:1128–1133.

90. Widdifield J, Bernatsky S, Petsonen JM, Gunnar N, Thorne JC, Pope J, Cividino A, Bombardier C: Serious infections in a population-based cohort of 86,039 seniors with rheumatoid arthritis. *Arthritis Care Res* (Hoboken) 2013, 2013.
99. Crowson CS, Hoganson DD, Fitz-Gibbon PD, Matteson EL. Development and validation of a risk score for serious infection in patients with rheumatoid arthritis. Arthritis Rheum 2012; 64:2847–2855.
100. Yale SH, Limper AH. Pneumocystis carinii pneumonia in patients without acquired immunodeficiency syndrome: associated illness and prior corticosteroid therapy. Mayo Clin Proc 1996; 71:5–13.
101. Belard E, Semb S, Ruhwald M, Werlinud AM, Sborg B, Jensen FK, Thomsen H, Brylov A, Hetland ML, Nordgaard-Lassen I, Ravin P. Prednisolone treatment affects the performance of the QuantiFERON gold in-tube test and the tuberculin skin test in patients with autoimmune disorders screened for latent tuberculosis infection. Inflamm Bowel Dis 2011; 17:2340–2349.
102. van Assen S, Agmon-Levin N, Elkayam O, Cervera R, Doran MF, Dougados M, Yale SH, Limper AH. van der Goes et al. Arthritis Research & Therapy 2014, 16(Suppl 2):S2
103. Garcia Rodriguez LA, Hernandez-Diaz S. The risk of upper gastrointestinal complications associated with nonsteroidal anti-inflammatory drugs, glucocorticoids, acetaminophen, and combinations of these agents. Arthritis Res 2001; 3:98–101.
104. Piper JM, Ray WA, Daugherty JR, Griffin MR. Corticosteroid use and peptic ulcer disease: role of nonsteroidal anti-inflammatory drugs. Ann Intern Med 1991; 114:735–740.
105. Deeks JJ, Smith LA, Bradley MD. Efficacy, tolerability, and upper gastrointestinal safety of celecoxib for treatment of osteoarthritis and rheumatoid arthritis: systematic review of randomised controlled trials. BMJ 2002; 325:619.
106. Silverstein FE, Fichg U, Goldstein JL, Simon LS, Pincus T, Whitton A, Makuch R, Eisen G, Agrawal NM, Stenson WF, Burt AM, Zhao WW, Kent JD, Lefkowith JB, Veiberg KM, Geis GS. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs: a prospective cohort study and meta-analysis of epidemiological studies. JAMA 2000, 284:1247–1255.
107. Bombardier C, Laine L, Recine A, Shapiro D, Burgos-Vargas R, Davis B, Day R, Ferraz MB, Hawkey CJ, Hochberg MC, Kven TK, Schnitzer TJ. VIGOR Study Group: Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 2000; 343:1520–1528; 2 pp following 1528.
108. Cooper C, Kirwan JR. The risks of local and systemic corticosteroid administration. Baillieres Clin Rheumatol 1990; 4:305–332.
109. Carman MC, Goldstein DA. Ocular complications of topical, periocular, and systemic corticosteroids. Curr Opin Ophthalmol 2000; 11:478–483.
110. Homik J, Suarez-Almazor ME, Shea B, Cranney A, Wells G, Tugwell P. Calcium and vitamin D for corticosteroid-induced osteoporosis. Cochrane Database Syst Rev 2000, 2:CD000952.
111. Homik J, Cranney A, Shea B, Tugwell P, Wells G, Adachi R, Suarez-Almazor M. Bisphosphonates for steroid induced osteoporosis. Cochrane Database Syst Rev 2000, 2:CD001347.
112. Amin S, Lavalley MP, Simms RW, Felson DT. The comparative efficacy of drug therapies used for the management of corticosteroid-induced osteoporosis: a meta-regression. J Bone Miner Res 2002; 17:1512–1526.
113. de Nijs RN, Jacobs JW, Lems WF, Laan RF, Algra A, Huisman AM, Buskens E, de Laet CE, Ostveen AC, Geusens PP, Bryun GA, Dijkmans BA, Bijlsma JW. STOP Investigators: Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N Engl J Med 2006, 355:675–684.
114. de Nijs RN, Jacobs JW, Algra A, Lems WF, Bijlsma JW. Prevention and treatment of glucocorticoid-induced osteoporosis with active vitamin D analogues: a review with meta-analysis of randomized controlled trials including organ transplantation studies. Osteoporos Int 2004, 15:589–602.
115. Richy F, Schachat E, Bruyere O, Ehrig O, Gourlay M, Regnier JY. Vitamin D analogs versus native vitamin D in preventing bone loss and osteoporosis-related fractures: a comparative meta-analysis. Calcif Tissue Int 2005, 76:776–86.
116. FRAX®. [https://www.shef.ac.uk/FRAX/]
117. Grossman JM, Gordon R, Ranganath WK, Deal C, Caplan L, Chen W, Curtis JR, Furst DE, McMahon M, Patkar NM, Volkmann E, Saag KG. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken) 2010, 62:1515–1526.
118. van Staa TP, Geusens P, Pols HA, de Laet C, Leufkens HG, Cooper C. A simple score for estimating the long-term risk of fracture in patients using oral glucocorticoids. QJM 2005, 98:191–198.
119. Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A. Case finding for the management of osteoporosis with FRAX – assessment and intervention thresholds for the UK. Osteoporos Int 2008, 19:1395–1408.
120. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 2008, 19:385–397.
121. McCloskey E, Kanis JA. FRAX updates 2012. Curr Opin Rheumatol 2012, 24:554–560.
122. Park-Wyllie L, Mazzotta P, Pustaszcz P, Anninette, L, Hunissart L, Friesen MH, Jacobson S, Kasapovic S, Chang D, Ihav-Citron O, Chitayat D, Nulman I, Ennason TR, Koren G. Birth defects after maternal exposure to corticosteroids: prospective cohort study and meta-analysis of epidemiological studies. Teratology 2000, 62:385–392.
123. Temprano KK, Bandlamudi R, Moore TL. Antirheumatic drugs in pregnancy and lactation. Semin Arthritis Rheum 2005, 35:112–121.
124. Schacke H, Berger M, Rehwiket H, Asadullah H. Selective glucocorticoid receptor agonists (SEGRAs): novel ligands with an improved therapeutic index. Mol Cell Endocrinol 2007, 275;91–97.
125. Streih C, Spies CM, Buttgeret F. Pharmacodynamics of glucocorticoids. Clin Exp Rheumatol 2011, 29:513–518.
126. Reuter KC, Grunwitz CR, Ramsinki BM, Steinbeler D, Radeke HH, Stein J. Selective glucocorticoid receptor agonists for the treatment of inflammatory bowel disease: studies in mice with acute trinitrobenzene sulfonic acid colitis. J Pharmacol Exp Ther 2012, 341:68–80.
127. Hoes JN, Jacobs JW, Buttgeret F, Bijlsma JW. Current view of glucocorticoid co-therapy with DMARDS in rheumatoid arthritis. Nat Rev Rheumatol 2010, 6:593–702.
128. Huisman AM, Jacobs JW, Buttgeret F, Bijlsma JW. (New developments in glucocorticoid therapy: selective glucocorticoid receptor agonists, nitrosteroids and liposomal glucocorticoids). Ned Tijdscrit Geneesk 2006, 150:476–480.
129. Jacobs JW, van der Goes MC, Buttgeret F: Glucocorticoids in rheumatic diseases. In EULAR Textbook on Rheumatic Diseases. Edited by Bijlsma JW. London: BMJ Group 2012;1218–1233.
130. Kuchuk NO, Hoes JN, Bijlsma JW, Jacobs JW. Glucocorticoid-induced osteoporosis: an overview. Int J Clin Rheumatol 2014, 9:311–326.

Cite this article as: van der Goes MC, et al. The value of glucocorticoid co-therapy in different rheumatic diseases – positive and adverse effects. Arthritis Research & Therapy 2014, 16(Suppl 2):S2.