Infectious Disease in Contact Sports

Andrew R. Peterson, MD, MSPH,*†‡§|| Emma Nash, MD,†¶ and B.J. Anderson, MD#**

Context: Infections are common in contact sports. This review aims to describe the epidemiology, presenting signs and symptoms, treatment guidelines, and regulations for several common infections seen in contact sport athletes. The conditions discussed include bacterial skin infections, herpes simplex virus, molluscum contagiosum, common warts, tinea, scabies, head lice, conjunctivitis, human immunodeficiency virus, hepatitis C virus, and vaccine-preventable illnesses.

Evidence Acquisition: Searches were performed across PubMed and MEDLINE research databases. In addition, general internet search engine results and reviews of reference lists of relevant papers were used to identify additional sources of evidence.

Study Design: Clinical review.

Level of Evidence: Level 4.

Results: The most common infections seen in contact sport athletes include bacterial skin infections, herpes simplex virus, molluscum contagiosum, common warts, tinea, scabies, head lice, conjunctivitis, and vaccine-preventable illnesses. Other infections, including human immunodeficiency virus and hepatitis C, are uncommon but potentially life threatening.

Conclusion: Infections are common in contact sport athletes. The provider who cares for these athletes should be aware of the most common infections and their appropriate management. Early diagnosis and appropriate clinical management are important for treating the infected athlete, minimizing risk of transmission, minimizing time lost from competition, and preventing large outbreaks.

Keywords: infectious disease; skin infection; contact sports; wrestling

This review aims to summarize the clinical presentation, management, and guidelines/regulations related to common infectious diseases seen in contact sport athletes. It focuses primarily on infections in wrestlers because skin and soft tissue infections are common in wrestlers and because the infectious issues encountered in wrestling are generalizable to other contact sports and can serve as a model for thinking about these problems in other types of athletes. Also, the burden of disease is much higher in wrestling than in other sports, with 20% of wrestlers losing practice or competition time due to cutaneous infections each year.1,2,3

The National Collegiate Athletic Association (NCAA) and National Federation of High School Associations (NFHS) have guidelines for the treatment of many common skin infections before an athlete is allowed to return to wrestling (Table 1).4,5

Bacterial Skin Infections

Staphylococcus and Streptococcus species infections are among the most common skin and soft tissue infections in humans.
Clinical syndromes caused by these bacterial skin infections include impetigo, erysipelas, cellulitis, folliculitis, furuncles, carbuncles, and abscesses. Impetigo, a superficial bacterial infection of the skin that results in blisters, open lesions, and/or honey-colored crusting, is by far the most common. While most of these infections are easily treated with oral and/or topical antibiotics, the rise of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) has made empiric treatment of bacterial skin infections more complicated in recent decades. No specific signs or symptoms can be used to distinguish CA-MRSA from methicillin-sensitive Staphylococcus aureus.

In 2016, it was reported that 0.6% of high school football players and 0.9% of high school wrestlers contract a CA-MRSA infection each season. As many as 76% of college wrestlers are carriers of CA-MRSA, which is much higher than seen in other...
Table 2. Preferred treatment regimens for common infections in contact sport athletes
Skin and soft tissue infection[^1,45,61,65,83,87,92,104,106]
Impetigo
Nonpurulent MSSA infections (erysipelas, cellulitis, folliculitis, etc)
Purulent MSSA infections (furuncle, carbuncle, abscess, etc)
Nonpurulent MRSA infections
Purulent MRSA infections
Herpes gladiatorum[^6,8-10,34,40,55,67,104,106]
Primary infection
Recurrent infection
Prophylaxis
Varicella zoster[^23,49]
Treatment
Prophylaxis
Tinea[^2,11,18,28,48,50,62-64,67,86,104-106]
Condition	Treatment
Tinea capitis, barbae, or diffuse/severe tinea corporis	Terbinafine 250 mg PO daily for 2-4 weeks or Itraconazole 200 mg PO daily for 3-4 weeks or Ketoconazole 200 mg PO daily for 2-4 weeks plus Ketoconazole 2% shampoo daily (for tinea capitis only) **Children:** Griseofulvin 20 mg/kg daily for 8 weeks or Terbinafine for 6 weeks (dosing varies by weight) • <25 kg: 125 mg PO daily • 25-35 kg: 187.5 mg PO daily • >35 kg: 250 mg PO daily
Tinea corporis (including adjuvant treatment of severe tinea corporis)	Any of the following creams applied to the lesion and at least 2 cm surrounding the lesion 2x daily: • Terbinafine cream • Clotrimazole cream • Miconazole cream • Ketoconazole cream
Prophylaxis	Fluconazole 100 mg PO 1× weekly or Fluconazole 100 mg daily for 3 days at start of season and then again in 6 weeks or Itraconazole 400 mg 1x every other week or Terbinafine 250 mg PO 1× weekly (anecdotal)
Molluscum contagiosum	Curettage
Verrucae	Curettage
Pediculosis	Permethrin 1% shampoo once Repeat 3-7 days later if lice persist
Scabies	Permetherin 5% cream once
Conjunctivitis	Polymyxin B/trimethoprim ophthalmic 1 drop both eyes 6× daily for 7-10 days
Influenza	Oseltamivir 75 mg 2× daily for 5 days
Treatment	Seasonal influenza vaccine Oseltamivir 75 mg daily for 10 days after close contact with influenza-infected person
Prophylaxis	Ensure adequate vaccination Consider third dose of MMR vaccine in the setting of mumps outbreak
Mumps prophylaxis	Strongly encourage compliance with the recommended CDC vaccination schedule
Other vaccine-preventable illnesses	CDC, Centers for Disease Control and Prevention; DS, double strength; MMR, measles, mumps, rubella; MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-susceptible Staphylococcus aureus; PO, per os (by mouth); VZV, varicella zoster virus.
sports. 20 Athletes colonized with CA-MRSA are 7 times more likely to suffer a bacterial skin infection than those who are not colonized. 50 Recurrent CA-MRSA infections are also common. Although this has not been studied rigorously in athletes, 51% of nonathletes who suffer a CA-MRSA skin infection had a second CA-MRSA infection within 6 months of their initial presentation. 77 The major source of these infections in athletes seems to be direct contact with colonized or infected athletes. 57,80

It is common for high schools, colleges, and clubs to use antistaphylococcal cleaning supplies and devices to limit CA-MRSA exposure, but there is little evidence that these procedures affect rates of CA-MRSA skin infections. However, there is some evidence that having a written policy outlining procedures for equipment cleaning and identification and early treatment of skin infections might limit CA-MRSA skin infections. 43,90

Decolonization of individuals with multiple CA-MRSA infections, or in the setting of a CA-MRSA outbreak, remains controversial. When decolonization is undertaken, the combination of chlorhexidine washes plus 2% mupirocin ointment is preferred. There is limited evidence that mupirocin-based decolonization, without body washes or systemic antibiotics, may decrease the prevalence of skin infections in other populations. 78 However, the practice has not been rigorously studied in athletes, and the overall evidence for the utility of this practice is limited. 1,17,90,80,70,102 However, it may be reasonable to attempt decolonization in the setting of a CA-MRSA outbreak. 14,90

Empiric treatment of bacterial skin infections in athletes should include both topical and systemic treatment tailored to local resistance patterns. For most contact sport athletes, trimethoprim-sulfamethoxazole or clindamycin combined with topical mupirocin is an effective initial treatment regimen. 17 Whenever possible, skin infections should be cultured so that antibiotic sensitivity-directed treatment regimens can be used. 17,95 Purulent bacterial skin infections should be treated with incision and drainage. 44,74 For localized purulent skin infections, antibiotic therapy may not be necessary after adequate incision and drainage. 17,44,74 Severe infections with diffuse skin involvement or systemic symptoms should be treated with intravenous antibiotics, typically in the hospital setting. 17,44,104 A summary of treatment recommendations for bacterial skin infections is provided in Table 2.

HERPES GLADIATORUM

Herpes simplex virus (HSV) types 1 and 2 are common infectious agents in humans. Originally termed *herpes gladiatorum* (HG) by Selling and Kibrick in 1964, the term HG became widely used after a report in 1989 when a 28-day wrestling camp had 60 wrestlers out of 175 who contracted the virus, forcing the Public Health Department to close the camp. 14 Similar outbreaks in 1999 and 2001 also caused the camp to shut down. In 2007, the Minnesota State High School League mandated an 8-day hiatus in wrestling activities when 24 wrestlers, across multiple teams, developed HG. By the end of the quarantine, 56 wrestlers had been diagnosed. Several other outbreaks have been documented in recent years, most notably 2014 in Arizona and 2016 in California. It has been suggested that 20% to 40% of collegiate wrestlers will suffer an outbreak of HG each year. 15,104

In wrestling, 94% to 97% of HSV infections are caused by type 1 infection. 7,14,35,55,83,86,99,104 Transmission is almost exclusively from direct skin-to-skin contact. Multiple studies have indicated that training mats and other fomites do not significantly contribute to the spread of infection. 7,10,55,83 A total of 29% to 30% of high school wrestlers are infected or colonized with HSV, but only 3% are aware they carry the virus. 8 This discrepancy is the primary reason that large outbreaks seem to occur for unknown reasons and leads to the lack of proper suspicion when such outbreaks do develop. When health care providers encounter a wrestler with HG, the diagnosis is often missed. One study determined that the correct diagnosis was made at initial presentation in less than 10% of cases. 35 When outbreaks occur, the popular media tend to focus on issues of hygiene or sanitation rather than the ubiquity and ease of transmission of the virus. There is extensive education from the NCAA, NFHS, and USA Wrestling about prevention, recognition, and treatment of herpes. 79,90 Furthermore, within the same community, nonwrestlers and wrestlers have the same rates of HSV seropositivity. In fact, females from the same school and age group are more likely to be seropositive for HSV than male wrestlers. 91

The face is involved in more than 70% of herpes outbreaks in wrestling. 7 Infection of the fingers or thumb (herpetic whitlow) and of other commonly abraded areas of the body account for most of the remaining 30%. 7 Underlying skin conditions, such as eczema, can increase the risk of HSV skin infection. Occasionally, ocular involvement can occur. Herpes keratitis (corneal involvement) can lead to scarring and, with repeated outbreaks, may result in permanent clouding of the cornea, requiring corneal transplantation to preserve proper vision. Rarely, but more seriously, retinal necrosis can occur and lead to blindness. 52,99 Herpes-induced retinal necrosis is the most common source of blindness from an infectious source in the United States. 5,99

In wrestling, the conspiring problems of misdiagnosis and inconvenient timing can lead to postseason confusion and controversy. Infections contracted during regional or sectional competition typically become symptomatic 8 to 10 days later, just prior to the start of state championship competitions. This can result in athletes being withheld from the most important competition of their season. The Centers for Disease Control and Prevention’s report on the 2014 Arizona outbreak concluded that “lack of proper suspicion and culturing” probably accounted for overdiagnosis of bacterial infections and underdiagnosis of HG. 103 Primary HG outbreaks typically present with systemic symptoms, including malaise, low-grade fever, sore throat, and
swollen/tender anterior and posterior cervical adenopathy.83,106
One to 2 days later, 1- to 2-mm-diameter diffuse patches of 3 to
10 vesicles will coalesce with a minimally reddened base (Figure
1). The majority (90%-93%) of infections will occur within 8 days
of exposure. The virus is transmitted via viral replication in
ganglia and spread along sensory nerve tissue. Multiple
dermatomes and both sides of the face, head, and neck may be
involved. Occasionally this may extend to the upper extremities
as well.7,55,83,106 Distribution of lesions commonly reflects the
wrestler’s dominant hand, and lesions are more likely to occur on
the side of the head of the wrestler’s preferred tie position.7,55,106
Recurrent HG typically involves fewer vesicles, and outbreaks
are shorter in duration. Reactivation of dormant virus in ganglia
leads to new outbreaks that occur, and will reoccur, in the same
dermatomal or peripheral nerve pattern (Figure 2).7,55,67,83,99,104
Symptoms are much less common in recurrent HG,
and symptoms typically last only 7 to 10 days. Treatment
with oral antiviral medications can shorten the duration of illness by
2 to 5 days, allowing the athlete to return to play sooner.9,99
Microbiological testing for HSV-1 and -2 is strongly
recommended because HG is commonly confused with other
skin infections in wrestlers.6,67,99 Up to 90% of HG infections are
misdiagnosed by physicians at first presentation.35 In addition,
microbiological testing can help distinguish herpes
gingivostomatitis and sycosis from other causes of pharyngitis
and folliculitis.9,104 Because of the high rates of seropositivity and
low rates of active disease in seropositive individuals,
serologic testing for HSV has limited clinical value. HSV
seropositivity commonly lags behind clinical infection. A
negative test does not rule out active HSV infection, and a
positive test has a high likelihood of false-positivity when
attempting to differentiate active disease. For these reasons,
direct microbiologic testing of active lesions is preferred over
serologic testing. Rarely, varicella zoster virus infection can be
confused with primary HG, but it presents with a more
pronounced prodrome of pruritus and hypersensitivity and
forms along dermatomal patterns.49,71
Viral culture and HSV polymerase chain reaction both have
good sensitivity and near perfect specificity. Depending on the
clinical context, either is a reasonable diagnostic test. Culture is
much less expensive, but polymerase chain reaction generally
provides more rapid results.47,93 A Tzanck smear is no longer
 favored due to poor sensitivity and specificity.47,99 Fluid obtained
from rupturing 5 to 7 vesicles is the best source for maximum
viral content.7 This fluid should be collected using a swab/
media that does not contain alginate (which inhibits HSV
growth) and has a plastic or metal shaft (wood may be toxic to
HSV in culture).22,34
Oral antiviral treatment should be initiated based on clinical
suspicion, and all infected athletes should be withheld from
contact with other athletes and equipment until the infection is
cleared. Medication expedites the clearance of an outbreak but
may take as long as 10 to 14 days. Treatment not only speeds
resolution of symptoms in the infected athlete but also prevents
transmission to an exposed opponent.9,55,104
As with all HSV infections, prevention of HG transmission is
difficult. Up to 87.4% of HSV outbreaks are subclinical and go
unnoticed.44 A large number of potentially infected but
asymptomatic athletes can lead to large outbreaks at
inopportune times, including during camps and postseason
competition. Oral valacyclovir has been shown to decrease risk
of HSV acquisition and prevent recurrence of previous HG.10 A
recent 10-year study of wrestlers at a 28-day wrestling camp
demonstrated that daily oral valacyclovir decreased recurrent
HG outbreaks by 89.5% and prevented contraction of the virus
in HSV-naive wrestlers.10 Overall, there is strong evidence that
the use of oral valacyclovir dramatically decreases risk of both
acquiring HSV and having an HG outbreak in both HSV-
seropositive wrestlers and those that are HSV-naive.6,10,79,80 For
those considering anti-viral prophylaxis of HG, it is generally
best to start the medication at least 5 days before the season,
camp, or tournament begins to ensure adequate drug levels in
the ganglia. Complete recommendations for treatment and prophylaxis of HG are presented in Table 2.

Tinea Corporis Gladiatorum

The dermatophyte *Trichophyton tonsurans* causes most of the fungal infections seen in cutaneous tissues and is responsible for 90% of tinea capitis. Considered a nuisance infection, tinea corporis gladiatorum (TCG) or “ringworm” affects 60% of collegiate and 52% of high school wrestlers each season. Multiple epidemics have been reported. Ringworm spreads primarily via direct skin-to-skin contact with an infected individual. Colonized fomites (inanimate surfaces and equipment) may serve as a source of infection, but this is relatively rare. Open sores and abrasions increase the risk of transmission. Symptoms typically appear 3 to 5 days after exposure and start as a small red spot that grows and progresses to an annular lesion up to 5 to 8 cm in diameter (Figure 3). The peripheral border is usually slightly reddened and flaky. The central area may be clear but have a slight red to brown coloration. The scalp, face, upper thorax, and upper extremities are most commonly affected.

It is likely that asymptomatic wrestlers act as a reservoir for the pathogen. Notably, asymptomatic transmission has been documented in sumo wrestlers, where the scalp served as the reservoir. This is likely common in other types of wrestling as well but has not been rigorously studied. Tinea is common on the scalp due to the predilection of the dermatophyte to its lipid-rich tissue. Deeper seeded scalp infections can occur and are usually associated with granulomatous formation, alopecia, and kerion formation (Figure 4). Pustular drainage is common and, if left untreated, can lead to permanent hair loss.

Diagnosis of TCG is usually clinical but sometimes can be difficult. Experience, suspicion, and knowing the athlete’s history are all important factors that the clinician or certified athletic trainer must use to help accurately diagnose TCG. Application of potassium hydroxide (KOH) 10% solution to a scraping of the lesion will dissolve human cells, allow hyphae to be visible under low-power microscopy, and confirm the diagnosis. KOH-prepared skin scrapings are highly sensitive and specific when performed correctly. However, many experienced wrestlers will start using topical antifungal creams prior to the lesion’s being scraped for analysis, which may lead to false-negative KOH testing. In these situations, fungal culture can be useful. For skin lesions, a scraping of the skin generally provides sufficient sample for culture. For scalp lesions, several hair follicles should be removed for KOH testing on their roots. If negative for hyphae, additional fungal culture on the hair follicle roots may improve diagnostic yield. Fungal culture can take up to 3 weeks before results are available, so presumptive treatment with empiric topical (skin) or oral (hair) antifungal agents is advisable.

Treatment focuses on a balance of infection control, risk of transmission, and the interests of the athletes. Previous studies have demonstrated that it takes as many as 21 days of oral antifungal medication to eradicate a superficial tinea outbreak, and kerion could take much longer. However, keeping a wrestler out for much of the competitive season to treat a nuisance infection seems unreasonable. NCAA and NHFS treatment guidelines (see Table 1) focus on a balance for the athlete to return to competition versus the need to treat long enough to eradicate the fungus. It should be noted that all systemic antifungal medications carry a risk for substantial side effects. It is prudent to monitor for hepatotoxicity and/or bone marrow failure during treatment.

Preventative measures focus on proper hygiene and daily skin checks to keep fungal infections under control. However,
recurrent TCG sometimes may develop when no visible source is found. For individuals with recurrent outbreaks, preventative treatment with oral antifungal medications has been shown to help reduce recurrent infections. Ketoconazole 2% shampoo may help decrease transmission, but this has not been rigorously studied. Topical skin barriers have been purported to decrease TCG infections in wrestlers. However, there are no data on their effectiveness, and 1 study found that daily skin checks were as effective as topical skin barriers. It is common for TCG infections to become a bigger issue toward the end of the competitive season during postseason tournament competition. Some wrestlers may seek prophylactic treatment with oral antifungal medications despite the known hepatotoxicity issues.

MOLLUSCUM CONTAGIOSUM

Considered a nuisance viral infection from the *Poxviridae* family, molluscum contagiosum appears as a small papule 2 to 10 mm in diameter, usually with no surrounding erythema and no regional adenopathy. A small dimple appears on the top of its domed surface early in the course of the infection (Figure 5). Rupturing the papule produces a caseous material with high viral content. This material is the vector for spread of the rash or transmission to other susceptible individuals. Molluscum contagiosum tends to appear in clusters of individuals with frequent close physical contact. Athletes in contact sports tend to contract lesions on areas of exposed skin, and sexually active individuals tend to contract them in the genital regions. The infection can spread rapidly and often presents as several dozen lesions at initial diagnosis.

Treatment focuses on removal of the lesion and prevention of further spread to susceptible competitors. The infection can be definitively treated by either curetting the lesions or by expressing the material and lightly burning the base of each papule with a hyfrecator. After removal of the lesions, athletes can immediately return to play with the treated sites covered by a bio-occlusive dressing. Cryotherapy can be considered as an alternative treatment, although it takes much longer and is just as painful.

VERRUCA VULGARIS

Verruca vulgaris, the common wart, is a cutaneous infection by one of the human papillomaviruses. Warts present as scaly nodules and can appear anywhere on the body, although the hands and feet are most commonly affected. Warts are typically painless but can become painful if there is sufficient local trauma or abrasion to the region. Many treatments are effective, including topical acid preparations, cantharidin, podophyllin, tretinoin, duct tape, cryotherapy, and curettage. For most athletes, curettage and covering of the lesion is the preferred treatment because of the speed and simplicity of the method.

SCABIES AND HEAD LICE

Pediculosis (head, body, and pubic hair lice) and scabies are caused by ectoparasites. These infestations are easy to treat but sometimes difficult to diagnose. They are easily transmitted by direct skin-to-skin contact, but symptoms may not arise for 3 to 4 weeks, making early detection and treatment challenging.
The most common presenting symptom of lice is pruritus in hair-covered parts of the body. Diagnosis requires visualization of living lice or viable nits (unhatched eggs). The presence of nit shells alone indicates a recent history of infestation but does not confirm active disease. Medicated shampoo with permethrin, phenothrin, or carbaryl is an effective treatment measure.

Scabies presents with a pruritic, papular rash that may include vesicles, pustules, or nodules. These lesions are often found in the interdigital webspaces of the fingers and toes, but the most reliable dermatologic sign of scabies infestation is the presence of burrowing tracks in the skin. However, this finding is often absent. Definitive diagnosis can be made by viewing larvae in skin scrapings under low-power microscopy. The treatment of choice is topical permethrin cream.

In addition to eradication of the infestation on the athlete, cleaning of bedding, towels, and other infested fomites is also important. These materials should be washed in hot water with regular laundry detergent to decrease the risk of reinfection. The Centers for Disease Control and Prevention recommends using a water temperature over 122°F. This temperature is sometimes unattainable in home washing machines, so commercial laundromats can be necessary to eradicate the infestation from certain fomites.

CONJUNCTIVITIS

Viral and bacterial infections of the conjunctiva are common in athletes and nonathletes alike. Fortunately, most of these infections are benign and self-limited; however, they can be very easily transmitted between contact sport athletes. In a single large outbreak of Streptococcus pneumoniae conjunctivitis on a college campus, athletes were at higher risk of contracting the infection than nonathletes. However, methods of controlling such outbreaks are controversial and poorly studied. The NCAA does not require treatment or demonstration of resolution prior to practice or competition. Topical ophthalmic antibiotics shorten duration of illness for bacterial conjunctivitis and may reduce transmission.

HUMAN IMMUNODEFICIENCY VIRUS

Human immunodeficiency virus (HIV) is a rare blood-borne viral pathogen that causes a life-threatening syndrome called acquired immunodeficiency syndrome or AIDS. There has been 1 reported case of HIV transmission in contact sports. The risk of HIV transmission in American football has been estimated at less than 1 in 85 million game contacts; however, this model was completed before the wide availability of effective antiretroviral agents and has not been replicated in other sports.

The risk of HIV exposure in contact sports is very low, but use of universal blood-borne pathogen precautions is still important. Bleeding wounds should be covered. Blood on uniforms, mats, or other fomites should be cleaned with soap and water, bleach, hydrogen peroxide, or other agents with antiviral properties. Health care workers should wear gloves whenever making contact with bodily fluids. The NCAA does not restrict sport participation for athletes with HIV.

HEPATITIS B AND C VIRUSES

Hepatitis C virus (HCV) is a viral pathogen that can cause life-threatening liver disease. There have been no documented cases of HCV transmission from athletic contact. Estimated risk of transmission in wrestling is very low, but it has been reported that athletes in contact sports may be at increased risk of acquiring the infection. Interestingly, 1 survey suggested that athletes who use injectable drugs are at very high risk of acquiring the infection.

Similarly, hepatitis B virus (HBV) is a blood-borne viral pathogen that can cause life-threatening liver disease. However, it is much more transmissible than HIV or HCV. Because of the higher concentration of this virus in the blood and better stability on environmental surfaces, risk of transmission of HBV has been estimated to be 50 to 100 times greater than transmission of HIV. In health care workers, the risk of transmission after percutaneous exposure is 0.2% to 0.5% for HIV, 1.8% to 10% for HCV, and 2% to 40% for HBV. Unlike HIV and HCV, there have been several reports of HBV transmission in sport.

Much like HIV, prevention of HBV infection is best achieved through use of universal blood-borne pathogen precautions, and athletes with HCV are not restricted from sport participation by any major governing body or association. HBV is a vaccine-preventable illness. Universal precautions are important to prevent the spread of the virus to susceptible individuals, but high rates of vaccination and resultant herd immunity have made HBV infection increasingly uncommon.

VACCINE-PREVENTABLE ILLNESSES

The close physical contact experienced by athletes may increase their risk of acquiring vaccine-preventable illnesses. While no studies have evaluated vaccination status and risk of outbreaks of measles or mumps in athletes, there is some evidence to suggest that improved yearly influenza vaccine uptake decreases the number of influenza cases in a football team. There have also been several outbreaks of measles and mumps associated with contact sport participation or attendance at sporting events.

In general, high rates of vaccination and the resultant herd immunity are very effective for preventing these serious infections, and encouraging vaccination among people who have close contact with others is an effective public health measure.

BODY GROOMING AND INFECTION

Shaving, clipping, and waxing pubic hair has been associated with increased risk of sexually transmitted infections. Anecdotally, such practices are common among young athletes. However, no studies have evaluated the effects of body grooming on infection risk in athletes.
Distinguishing Common Benign Skin Lesions from Infections

It is sometimes difficult to distinguish between skin infections and other dermatologic conditions. Eczema, psoriasis, and abrasions are common in athletes and should not be confused with skin infections. Other, less common skin conditions, such as hidradenitis suppurativa, may also mimic skin infections. Athletes with such noninfectious skin lesions may be at increased risk for secondary infections. When there is uncertainty regarding the cause of a skin lesion, culture or biopsy can help differentiate infection from these benign conditions. It is often prudent to treat for suspected infections while awaiting results of confirmatory testing. Open skin wounds should be covered during practice and competition but do not preclude sport participation.

Conclusion

Infectious diseases, especially infections of the skin, are common in contact sport athletes. Close monitoring and high levels of suspicion are important for early diagnosis. Infection control is achieved primarily through early and aggressive treatment and by removal of infected athletes from play until they are no longer contagious. Most infections are transmitted through direct human-to-human contact. Mats and other fomites serve as only minor vectors.

Clinical Recommendations

SORT: Strength of Recommendation Taxonomy Grade

A: consistent, good-quality patient-oriented evidence
B: inconsistent or limited-quality patient-oriented evidence
C: consensus, disease-oriented evidence, usual practice, expert opinion, or case series

Clinical Recommendation	SORT Evidence Rating
Consider antiviral prophylaxis for in-season wrestlers with a history of herpes gladiatorum.	B
Microbiologic testing of skin lesions can help determine the responsible pathogen and guide appropriate treatment.	A
Consider antifungal prophylaxis for in-season wrestlers with a history of tinea corporis gladiatorum.	B

References

1. Adams BB. Skin infections in athletes. Dermatol Nurs. 2008;20:39-44.
2. Adams BB. Tinea corporis gladiatorum. J Am Acad Dermatol. 2002;47:286-290.
3. Adams BB. Tinea corporis gladiatorum: a cross-sectional study. J Am Acad Dermatol. 2000;45:1059-1064.
4. Agel J, Ramsone J, Dick R, Oppelier R, Marshall SW. Descriptive epidemiology of collegiate men’s wrestling injuries: National Collegiate Athletic Association Injury Surveillance System, 1988-1989 through 2003-2004. J Athl Train. 2007;42:303-310.

Peterson et al. Jan • Feb 2019
26. Champion AE, Goodwin TA, Belinson PG, Were SB, Prater MR, Intzana TJ. Prevalence and characterization of methicillin-resistant Staphylococcus aureus isolates from healthy university student athletes. *Ann Clin Microbiol Antimicrob* 2014;13:53.

27. Chen TH, Kutt P, Lowe LE, et al. Measles outbreak associated with an international youth sporting event in the United States, 2007. *Pediatr Infect Dis J.* 2010;29:794-800.

28. Chen X, Jiang X, Yang M, et al. Systemic antifungal therapy for tinea capitis in children: an abridged Cochrane Review. *J Am Acad Dermatol.* 2017;76:568-574.

29. Cohen BA, Schmidt G. Tinea gladiatorum. *N Engl J Med.* 1992;327:820.

30. DeMaria AL, Flores M, Hirth JM, Berenson AB. Complications related to pubic hair removal. *Am J Obstet Gynecol.* 2014;210:528-e1-5.

31. Desruelles F, Cannoningham SA, Dabois D. Pubic hair removal: a risk factor for 'minor' STI such as molluscum contagiosum? *Sex Transm Infect.* 2013;89:216.

32. Dodd CS. Interventions for treating head lice. *Cochrane Database Syst Rev.* 2001(2):CD001165.

33. Drake LA, Ceilley RI, Cornelison RL, et al. Guidelines of care for warts: human papillomavirus. Committee on Guidelines of Care. *J Am Acad Dermatol.* 1995;32:98-103.

34. Drugge JM, Allen PJ. A nurse practitioner’s guide to the management of herpes simplex virus 1 in children. *Pediatr Nurs.* 2008;34:310-318.

35. Dworkin MS, Shoemaker PC, Spitters C, et al. Endemic spread of herpes simplex virus type 1 among adolescent wrestlers and their coaches. *Pediatr Infect Dis J.* 1999;18:1108-1109.

36. Ehlerssen KR, Hedberg CW, Grimm MB, Norton CA, MacDonald KL, Osterholm MT. An outbreak of measles at an international sporting event with airborne transmission in a domed stadium. *J Infect Dis.* 1995;171:679-685.

37. el Fari M, Graser Y, Presber W, Tietz HJ. An epidemic of tinea corporis caused by *Trichophyton tonsurans* among young wrestlers and dermatophyte contamination of wrestling mats from Sari, Iran. *J Athl Train.* 2007;42:532-534.

38. Ellis MW, Griffith ME, Dooley DP, et al. Targeted intranasal mupirocin to prevent colonization and infection by community-associated methicillin-resistant *Staphylococcus aureus* strains in soldiers: a cluster randomized controlled trial. *Antimicrob Agents Chemother.* 2007;51:5591-5598.

39. Ergin S, Ergin C, Endogan BS, Kalseli I, Elyiayouglu D. An experience from an outbreak of tinea capitis gladiatorum due to *Trichophyton tonsurans*. *Clin Exp Dermatol.* 2006;31:212-214.

40. Fife KH, Warren TJ, Justus SE, Heitman CK. An international, randomized, double-blind, placebo-controlled, study of valacyclovir for the suppression of herpes simplex virus type 2 genital herpes in newly diagnosed patients. *Sex Transm Dis.* 2008;35:668-675.

41. Flinders DC, De Schweinitz P. Pediculosis and scabies. *Am Fam Physician.* 2004;69:531-548.

42. Frisk A, Heilborn H, Melen B. Epidemic occurrence of trichophytosis among young wrestlers and contamination of wrestling mats from Sari, Iran. *Br J Sports Med.* 2007;41:532-534.

43. George A, Rubin G. A systematic review and meta-analysis of treatments for genital warts. *Sex Transm Infect.* 2003;79:105-113.

44. Gemmell CG, Edwards DI, Fraise AP, et al. Guidelines for the prophylaxis and prevention of hepatitis B in members of a high school soccer wrestling club. *JAMA.* 1992;268:2008-2012.

45. George AJ, Higginbottom SC, Trottier P, et al. The effect of mupirocin and chlorhexidine Sage on persistent colonization with methicillin-resistant *Staphylococcus aureus* among high school wrestlers. *Clin J Sport Med.* 2007;17:226-230.

46. Gilbert M, Aggarwal S, Carter J, et al. Risk factors for Staphylococcus aureus colonization among school athletes. *Ann Intern Med.* 2012;156:789-796.

47. Gilbert M, Aggarwal S, Carter J, et al. Risk factors for Staphylococcus aureus colonization among school athletes. *Ann Intern Med.* 2012;156:789-796.

48. Gillett RD, Littlewood A, Mardon SJ, et al. Staphylococcal and *Streptococcus pneumoniae* infections among competitive sports participants—Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000-2003. *MMWR Morb Mortal Wkly Rep.* 2003;52:795-799.

49. Gillett RD, Littlewood A, Mardon SJ, et al. Staphylococcal and *Streptococcus pneumoniae* infections among competitive sports participants—Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000-2003. *MMWR Morb Mortal Wkly Rep.* 2003;52:795-799.

50. Gillett RD, Littlewood A, Mardon SJ, et al. Staphylococcal and *Streptococcus pneumoniae* infections among competitive sports participants—Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000-2003. *MMWR Morb Mortal Wkly Rep.* 2003;52:795-799.

51. Gillett RD, Littlewood A, Mardon SJ, et al. Staphylococcal and *Streptococcus pneumoniae* infections among competitive sports participants—Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000-2003. *MMWR Morb Mortal Wkly Rep.* 2003;52:795-799.

52. Gillett RD, Littlewood A, Mardon SJ, et al. Staphylococcal and *Streptococcus pneumoniae* infections among competitive sports participants—Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000-2003. *MMWR Morb Mortal Wkly Rep.* 2003;52:795-799.
81. Osterberg EC, Gaither TW, Awad MA, et al. Correlation between pubic hair grooming and STIs: results from a nationally representative probability sample. *Sex Transm Infect*. 2017;93:162-166.

82. Passos AD, Figueiredo JF, Martinelli Ade L, Villanova M, Nascimento MM, Secaf M. Hepatitis C among former athletes: association with the use of injectable stimulants in the past. *Mem Inst Oswaldo Cruz*. 2008;103:809-812.

83. Pecci M, Comeau D, Chawla V. Skin conditions in the athlete. *Am J Sports Med*. 2009;37:406-418.

84. Peterson AR, Rajasekaran, Thomsen T. Influenza vaccine uptake in Division 1 football athletes: a quality improvement project. American Academy of Pediatrics National Conference and Exhibition 2017; Chicago, IL. *Pediatrics*. 2018;142(1):Meeting Abstracts.

85. Pique E, Copado R, Cabrera A, et al. An outbreak of tinea gladiatorum in Lanzarote. *Clin Exp Dermatol*. 1999;24:7-9.

86. Pleacher MD, Dexter WW. Cutaneous fungal and viral infections in athletes. *Clin Sports Med*. 2007;26:397-411.

87. Rajendran PM, Young D, Maurer T, et al. Randomized, double-blind, placebo-controlled trial of cephalaxin for treatment of uncomplicated skin abscesses in a population at risk for community-acquired methicillin-resistant *Staphylococcus aureus* infection. *Antimicrob Agents Chemother*. 2007;51:4044-4048.

88. Ringerz O, Zetterberg B. Serum hepatitis among Swedish track finds. An epidemiologic study. *N Engl J Med*. 1967;276:540-546.

89. Ryan KA, Ifantides C, Bucciarelli C, et al. Are gymnasium equipment surfaces a source of staphylococcal infections in the community? *Am J Infect Control*. 2011;39:148-150.

90. Sanders JC. Reducing MRSA infections in college student athletes: implementation of a prevention program. *J Community Health Nurs*. 2009;26:161-172.

91. Schillinger JA, Xu F, Sienberg MR, et al. National seroprevalence and trends in herpes simplex virus type 1 in the United States, 1976-1994. *Sex Transm Dis*. 2004;31:753-760.

92. Schmutzhard J, Merete Riedel H, Zweegberg Wingart B, Grillner L. Detection of herpes simplex virus type 1, herpes simplex virus type 2 and varicella-zoster virus in skin lesions. Comparison of real-time PCR, nested PCR and virus isolation. *J Clin Virol*. 2004;29:120-126.

93. Sheikh A, Hurwitz B, van Schayck CP, McLean S, Nurmatoev U. Antibiotics versus placebo for acute bacterial conjunctivitis. *Cochrane Database Syst Rev*. 2012;(9):CD01211.

94. Schmitz GR, Bruner D, Pitotti R, et al. Randomized controlled trial of trimethoprim-sulfamethoxazole for uncomplicated skin abscesses in patients at risk for community-associated methicillin-resistant *Staphylococcus aureus* infection. *Ann Emerg Med*. 2010;56:283-287.

95. Steinke-Fallat J. Cutaneous viral infections in athletes. *J Athl Train*. 2010;45:411-428.

96. Strong M, Johnstone P. Interventions for treating scabies. *Cochrane Database Syst Rev*. 2007;(3):CD000520.

97. Toke K, Matsura K, Ogura T, et al. Horizontal transmission of hepatitis B virus among players of an American football team. *Arch Intern Med*. 2000;160:2541-2545.

98. Torre D, Sampieiro C, Ferraro G, Zeroli C, Speranza F. Transmission of HIV-1 infection via sports injury. *Lancet*. 1990;335:1105.

99. Usatine RP, Tinitigan R. Nongenital herpes simplex virus. *Am Fam Physician*. 2010;82:1075-1082.

100. Van Damme P, Van Herck K. A review of the long-term protection after hepatitis A and B vaccination. *Travel Med Infect Dis*. 2007;5:79-84.

101. van der Wouden JC, van der Sande R, van Suijlekom-Smit LW, Berger M, Butler CC, Koning S. Interventions for cutaneous molluscum contagiosum. *Cochrane Database Syst Rev*. 2009;(4):CD004767.

102. Weber K. Community-associated methicillin-resistant *Staphylococcus aureus* infections in the athlete. *Sports Health*. 2009;1:405-410.

103. Williams C, Wells J, Klein R, Sylvester T, Szenzbone R. Centers for Disease Control and Prevention. Notes from the field: outbreak of skin lesions among high school wrestlers—Arizona, 2014. *MMWR Morb Mortal Wkly Rep*. 2015;64:559-560.

104. Wilson EK, Deweber K, Berry JW, Wilckens JH. Cutaneous infections in wrestlers. *Sports Health*. 2013;5:425-437.

105. Winokur RC, Dexter WW. Fungal infections and parasitic infestations in sports: expediency identification and treatment. *Phys Sportsmed*. 2004;32:20-29-33.

106. Zinder SM, Basler RS, Feoney J, Scardella C, Vasily DB. National Athletic Trainers’ Association position statement: skin diseases. *J Athl Train*. 2010;45:411-428.