Nonnegative Whitney Extension Problem for $\mathbb{C}^1(\mathbb{R}^n)$

Black Jiang

December 16, 2019

Abstract

Let f be a real-valued function on a compact subset in \mathbb{R}^n. We show how to decide if f extends to a nonnegative and \mathbb{C}^1 function on \mathbb{R}^n. There has been no known result for nonnegative \mathbb{C}^m extension from a general compact set E when $m > 0$. The nonnegative extension problem for $m \geq 2$ remains open.

1 Introduction

For $m,n \geq 1$, we write $\mathbb{C}^m(\mathbb{R}^n)$ to denote the vector space of continuously differentiable functions on \mathbb{R}^n whose derivatives up to m-th order are bounded and continuous. Let $\mathbb{C}^m_+(\mathbb{R}^n)$ be the convex collection of elements in $\mathbb{C}^m(\mathbb{R}^n)$ that are also nonnegative on \mathbb{R}^n.

In this paper, we consider the following problem.

Problem 1 (Nonnegative Whitney Extension Problem). Let $E \subseteq \mathbb{R}^n$ be compact. Let $f : E \to [0, \infty)$. How can we decide if there exists $F \in \mathbb{C}^m_+(\mathbb{R}^n)$ with $F = f$ on E?

When E is finite, $[8,10]$ provide solutions to Problem 1 with further control on the size of the derivatives of the extension (an extension without derivative control always exists in this case). It is related to the \mathbb{C}^m selection problem. However, when E is infinite, the strategies employed in $[8,10]$ collapse, because they rely on a Calderón-Zygmund decomposition procedure which may not terminate when E is infinite. There has been no known answer to Problem 1 when $E \subseteq \mathbb{R}^n$ is infinite.

Problem 1 is a variant the following classical problem posed by H. Whitney $[13–15]$.

Problem 2 (Whitney Extension Problem). Let $E \subseteq \mathbb{R}^n$ be compact. Let $f : E \to \mathbb{R}$. How can we decide if there exists $F \in \mathbb{C}^m(\mathbb{R}^n)$ with $F = f$ on E?

In a series of papers $[4–6]$, Ch. Fefferman answered Problem 2. A key ingredient in Fefferman’s solution is the notion of Glaeser refinement, inspired by $[1,9]$. We briefly discuss the main idea of $[6]$ here.

To each $x \in E$ we assign an affine subspace $H_f(x) \subseteq \mathcal{P}^m$, where \mathcal{P}^m denotes the polynomial of n variables of degree no greater than m. The subspace $H_f(x)$ satisfies the following crucial property:

\begin{equation}
\text{(1.1) If } F \in \mathbb{C}^m(\mathbb{R}^n) \text{ satisfies } F = f \text{ on } E, \text{ then } \partial^m_x F \in H_f(x).
\end{equation}

Here, $\partial^m_x F$ denotes the degree m Taylor polynomial of F about the point x. For instance, we may take $H_f(x) = \{ P \in \mathcal{P}^m : P(x) = f(x) \}$. Then solving Problem 2 then amounts to the following problem.
(1.2) Decide if there exists \(F \in C^m(\mathbb{R}^n) \) such that \(\partial^m F \in H_\ell(x) \) for all \(x \in E \).

To achieve this goal, the author uses the procedure called “Glaeser refinement” (See Definition 2.1) on each of the subspace \(H_\ell(x) \), which produce another subspace \(H_\ell(x) \subseteq H_\ell(x) \subseteq P^m_n \) that possibly excludes some jets at \(x \) that cannot arise as the jets of a \(C^m \) function that agrees with \(f \) on \(E \). The author first shows that the Glaeser refinement stabilizes (i.e. the procedure does not produce new proper subspace) after a controlled number (depending only on \(m \) and \(n \)) of times. The author then shows that if the stabilized subspace is nonempty for each \(x \in E \), then there exists \(F \in C^m(\mathbb{R}^n) \) with \(\partial^m F \in H_\ell(x) \) for all \(x \in E \), hence solving Problem 2.

In this paper, we adapt the technology described above to solve Problem 1 for \(m = 1 \) (see Theorem 2 in Section 2). To account for nonnegativity, we associate to each \(x \in E \) a subset

\[
\Gamma_\ell(x) = \left\{ P \in P^1 : \text{there exists } F \in C^1_+(\mathbb{R}^n) \text{ such that } f(x) = f(x) \text{ and } \partial^1_x F = P \right\}.
\]

Solving Problem 1 then amounts to deciding whether there exists \(F \in C^1_+(\mathbb{R}^n) \) such that \(\partial^1_x F \in \Gamma_\ell(x) \) for each \(x \in E \).

To this end, we will apply Glaeser refinement to each of the subset \(\Gamma_\ell(x) \). Following [6], we will first prove that each subset \(\Gamma_\ell(x) \) will eventually stabilize after a finite number of refinement. Next, we show that if, for each \(x \in E \), we start with \(\Gamma_\ell(x) \) and arrive at some \(\Gamma_\ell(x) \neq \emptyset \) after a certain number of refinement, and that \(\Gamma_\ell(x) \) is its own Glaeser refinement; then there exists \(F \in C^1_+(\mathbb{R}^n) \) such that \(\partial^1_x F \in \Gamma_\ell(x, \infty) \) for each \(x \in E \), hence solving Problem 1 for \(m = 1 \).

This paper is part of a literature on extension and interpolation, going back to the seminal works of H. Whitney [13–15]. We refer to the interested readers to [4–8] and references therein for the history and related problems. For further discussion on Glaeser refinement, we direct the readers to [2,3,11].

Acknowledgment. I am indebted to Kevin Luli for introducing me to this fascinating subject, and for his constant guidance and valuable suggestion. I thank Kevin O’Neill for his useful suggestion. I would also like to thank the participants of NSF-CBMS Conference: Fitting Smooth Functions to Data for valuable discussions.

We will start from scratch and redefine all the notions.

2 Preliminaries and Main Results

Fix integers \(m, n \geq 0 \).

- We will use Euclidean distance \(|.| \) on \(\mathbb{R}^n \). We use \(B(x, r) \) to denote the open ball of radius \(r \) centered at \(x \).
- We use \(C^m_{\text{loc}}(\mathbb{R}^n) \) to denote the vector space of \(m \)-times continuously differentiable functions on \(\mathbb{R}^n \). We use \(C^m(\mathbb{R}^n) \) to denote the subspace of \(C^m_{\text{loc}}(\mathbb{R}^n) \) consisting of elements whose derivatives up to \(m \)-th order are bounded on \(\mathbb{R}^n \). We use \(C^m(\mathbb{R}^n) \) to denote the convex subcollection of elements in \(C^m(\mathbb{R}^n) \) that are also nonnegative on \(\mathbb{R}^n \).
We use \mathcal{P}^m to denote the space of polynomials of n variables and degree less or equal to m. For $x \in \mathbb{R}^n$ and $F \in C^m_{\text{loc}}(\mathbb{R}^n)$, we use $\partial^m_x F$ to denote the m-jet of F at x, which we identify with the degree m Taylor polynomial of F at x

$$\partial^m_x F(y) := \sum_{|\alpha| \leq m} \frac{\partial^\alpha F(x)}{\alpha!} (y - x)^\alpha.$$

We use \mathcal{R}_x^m to denote the ring of m-jets at x. It is clear that \mathcal{R}_x^m is isomorphic to \mathcal{P}^m as vector spaces, but we will distinguish them. Let $P, P' \in \mathcal{R}_x^m$, we define the jet product of P and P' in \mathcal{R}_x^m to be

$$P \circ_x^m P' := \partial^m_x (PP').$$

We assume that $k^\#$ is a sufficiently large integer depending only on m and n. See [6] for an estimate of the size of $k^\#$.

We first define the notion of Glaeser refinement.

Definition 2.1. Let $E \subseteq \mathbb{R}^n$ be compact. For each $x \in E$, supposed we are given a subset (not necessarily affine and possibly empty) $\Phi_0(x) \subseteq \mathcal{R}_x^m$. We define each $\Phi_\ell(x)$ inductively:

Let $x_0 \in E$, $P_0 \in \mathcal{R}_{x_0}^m$, and $\ell \geq 0$, we say that $P_0 \in \Phi_{\ell+1}(x_0)$ if the following holds.

(1) Given $\epsilon > 0$, there exists a $\delta > 0$ such that for any $x_1, \cdots, x_{k^\#} \in B(x_0, \delta)$, there exist $P_1, \cdots, P_{k^\#} \in \mathcal{P}$, with $P_j \in \Phi_\ell(x_j)$ for $j = 0, \cdots, k^\#$, such that

$$|\partial^\alpha (P_i - P_j)(x_i)| \leq \epsilon |x_i - x_j|^{m - |\alpha|} \text{ for } |\alpha| \leq m \text{ and } 0 \leq i, j \leq k^\#.$$

We define the Glaeser refinement of $\Phi_\ell(x_0)$ to be $\Phi_{\ell+1}(x_0)$.

Remark 2.1. Without further assumption on $\Phi_0(x)$, we do not know if $\Phi_0(x)$ will stabilize after finite number of Glaeser refinement, i.e., if $\Phi_{\ell^*+1}(x) = \Phi_{\ell^*}(x)$ for some $\ell^* < \infty$.

We make a definition for a class of subsets of \mathcal{P}^m that will be known to stabilize.

Definition 2.2. Let $E \subseteq \mathbb{R}^n$ be compact. For $x \in E$, let $\Phi(x) \subseteq \mathcal{R}_x^m$. We call $\Phi(x)$ a **Glaeser fiber** if $\Phi(x) = \emptyset$ or $\Phi(x)$ has the form

$$\Phi(x) = P^x + I(x)$$

where $P^x \in \mathcal{R}_x^m$ and $I(x) \subseteq \mathcal{R}_x^m$ is an ideal.

The main theorem in [6] that provides an answer to Problem 2 is the following.

Theorem 1 ([6]). Let $E \subseteq \mathbb{R}^n$ be compact. Suppose that for each $x \in E$, we are given a nonempty Glaeser fiber $\Phi_\ast(x) \subseteq \mathcal{R}_x^m$. Assume that $\Phi_\ast(x)$ is its own Glaeser refinement. Then there exists $F \in C^m(\mathbb{R}^n)$ with $\partial^m_x F \in \Phi_\ast(x)$ for all $x \in E$.

We explain how we go from Theorem 1 to answer Problem 2. We begin with

(2.2) $$\Phi_0(x) := H_x := \{ P \in \mathcal{P}_n^m : P(x) = f(x) \}. $$

Then $\Phi_0(x)$ has the form $f(x) + m_0(x)$, where $f(x)$ is the constant polynomial and

(2.3) $$m_0(x) := \{ \phi^x \in \mathcal{P}_n^m : \text{ There exists } F \in C^m(\mathbb{R}^n) \text{ such that } F(x) = 0 \text{ and } \partial^m_x F = \phi^x \}$$
is clearly an ideal in $\mathcal{R}_{x_0}^{m}$. Lemma 2.1 in [6] shows that $\Phi_\ell(x)$ is still a Glaeser fiber under Glaeser refinement if we start with (2.2). Lemma 2.2 in [6] then shows that with this choice of Φ_0, we have $\Phi_\ell(x) = \Phi_\ell^*(x)$ for all $\ell \geq \ell^*$, where $\ell^* = 2\dim \mathcal{P}^m + 1$. Therefore, deciding whether $f : E \to \mathbb{R}$ extends to a C^m function amounts to computing the ℓ^*-th Glaeser refinement of H_f.

Now we describe the key objects in this paper that are analogous to those above but also take into consideration of nonnegativity.

Definition 2.3. Let $E \subseteq \mathbb{R}^n$ be a compact subset. Let $f : E \to [0, \infty)$. For $x \in E$ and $M > 0$, we define

$$\Gamma^{[m]}_\ell(x) := \{ P \in \mathcal{P}^m : \text{There exists } F \in C^m_+(\mathbb{R}^n) \text{ and } \partial_x F = P \}.$$

Remark 2.2. $\Gamma^{[m]}_\ell(x)$ is in general not a Glaeser fiber if $m \geq 2$. However, for $m = 1$, we will see in Lemma 3.3 that it is. We will also see in Lemma 3.4 that it remains Glaeser after refinement.

Our main result of the paper is the following.

Theorem 2. Let $m = 1$. Let $E \subseteq \mathbb{R}^n$ be compact, and let $f : E \to [0, \infty)$ be given. For each $x \in E$, let $\Phi_0(x) := \Gamma^{(1)}_\ell(x)$, and for $\ell \geq 0$, let $\Phi_{\ell+1}(x)$ be the Glaeser refinement of $\Phi_{\ell}(x)$ defined by (2.1).

If $\Phi_{2n+3}(x) \neq \emptyset$ for each $x \in E$, then there exists $F \in C^1_+(\mathbb{R}^n)$ such that $\partial_x^1 F \in \Gamma^{(1)}_\ell(x)$ for each $x \in E$. In particular, there exists $F \in C^1_+(\mathbb{R}^n)$ such that $F = f$ on E.

To prove Theorem 2, we will show that under its hypotheses, the hypotheses of Theorem 1 (with $m = 1$) are satisfied. Theorem 1 then produces a C^1 function, which is not necessarily nonnegative, and whose jet at each $x \in E$ belongs to $\Gamma^{(1)}_\ell(x, \infty)$. We will then use these jets to reconstruct a nonnegative counterpart that takes the same jet at each $x \in E$, hence solving Problem 1. The reconstruction uses a variant of the classical Whitney Extension Theorem.

3 Main ingredients

In this section, we prove the main ingredients.

3.1 Preservation of Glaeser fiber

The main result we prove in this subsection is the following lemma, which states Glaeser fiber remains Glaeser after refinement.

Lemma 3.1. Suppose $\Phi_\ell(x)$ is a Glaeser fiber for each $x \in E$, then $\Phi_{\ell+1}(x)$ is a Glaeser fiber for each $x \in E$.

Proof. We expand the argument given by Lemma 2.1 in [6].

Fix $x_0 \in E$. If $\Phi_{\ell+1}(x_0) = \emptyset$, there is nothing to prove.

Suppose $\Phi_{\ell+1}(x_0) \neq \emptyset$. Pick arbitrary $P_{\ell+1}^{x_0} \in \Phi_{\ell+1}(x_0)$. Let

$$I_{\ell+1}(x_0) := \Phi_{\ell+1}(x_0) - P_{\ell+1}^{x_0}. \tag{3.1}$$

To show that $\Phi_{\ell+1}(x_0)$ is a Glaeser fiber, it suffices to show that $I_{\ell+1}(x_0)$ is an ideal in $\mathcal{R}_{x_0}^{m}$.

By assumption, for each \(x \in E \),

\[
\Phi_{\ell}(x) = P_{\ell}^x + I_{\ell}(x),
\]

where \(P_{\ell}^x \in R_\ell^m \), and \(I_{\ell}(x) \subseteq R_\ell^m \) is an ideal.

Claim 3.1. \(I_{\ell+1}(x_0) \) are defined by the following procedure:

\((3.3) \) \(\phi_0 \in I_{\ell+1}(x_0) \) if and only if the following holds: given \(\epsilon > 0 \), there exists \(\delta > 0 \) such that for any \(x, \ldots, x_k \in E \cap B(x_0, \delta) \), there exists \(\phi_1, \ldots, \phi_k \), with \(\phi_j \in I_\ell(x_j) \) for \(j = 0, \ldots, k^\# \), such that

\((3.4) \) \[|\partial^\alpha (\phi_i - \phi_j)(x_i)| \leq \epsilon |x_i - x_j|^{m-|\alpha|} \text{ for } |\alpha| \leq m, 0 \leq i, j \leq k^\#. \]

Proof of Claim 3.1. First we show sufficiency. Suppose \(\phi_0 \in I_{\ell+1}(x_0) \). Fix \(\epsilon > 0 \). Write \(P_0 = P_{\ell+1}^{x_0} \).

Define

\(\hat{\phi}_0 := P_0 + \phi_0 \).

By (3.1),

\(\hat{\phi}_0 \in I_{\ell+1}(x_0) \).

Applying Definition 2.1 to \(P_0 \) and \(\hat{\phi}_0 \) with \(\frac{1}{2} \epsilon \) in place of \(\epsilon \), we find a \(\delta > 0 \) such that for any \(x, \ldots, x_k \in E \cap B(x_0, \delta) \), there exist \(P_j, \hat{\phi}_j \in \Phi_\ell(x_i) \) for \(j = 1, \ldots, k^\# \), such that

\((3.5) \) \[|\partial^\alpha (P_i - P_j)(x_i)| \leq \frac{1}{2} \epsilon_0 |x_i - x_j|^{m-|\alpha|}, \]

\[|\partial^\alpha (\hat{\phi}_i - \hat{\phi}_j)(x_i)| \leq \frac{1}{2} \epsilon_0 |x_i - x_j|^{m-|\alpha|}. \]

Now, let

\(\phi_j := \hat{\phi}_j - P_j \) for \(j = 1, \ldots, k^\# \).

Thanks to (3.5), the \(\phi_j \)'s satisfy (3.4).

Now we need to check that \(\phi_j \in I_\ell(x_j) \) for \(j = 1, \ldots, k^\# \). Indeed, by induction hypothesis, the \(\Phi_\ell(x_i)'s \) are Glaeser fiber, so

\(\phi_j \in I_\ell(x_j) \) for \(j = 1, \ldots, k^\# \).

This proves sufficiency.

Now we show necessity. Let \(\epsilon_0 > 0 \) be given. Apply Definition 2.1 to \(P_0 \) and apply the latter condition in (3.3) to \(\phi_0 \), with \(\frac{1}{2} \epsilon_0 \) in place of \(\epsilon \), we see that there exists \(\delta > 0 \) such that for any \(x, \ldots, x_k \in E \cap B(x_0, \delta) \), there exist \(P_j \in \Phi_\ell(x_j) \) and \(\phi_j \in I_\ell(x_j) \), \(j = 1, \ldots, k^\# \), satisfying

\((3.6) \) \[|\partial^\alpha (P_i - P_j)(x_i)| \leq \frac{1}{2} \epsilon_0 |x_i - x_j|^{m-|\alpha|}, \]

\[|\partial^\alpha (\phi_i - \phi_j)(x_i)| \leq \frac{1}{2} \epsilon_0 |x_i - x_j|^{m-|\alpha|}. \]

Now, let

\(\hat{\phi}_j := P_j + \phi_j \) for \(j = 1, \ldots, k^\# \).
By induction hypothesis, the $\Phi_t(x_j)$’s are Glaeser, so

$$\hat{\phi}_j \in \Phi_t(x_j) \text{ for all } j = 1, \ldots, k^\#.$$

Thanks to (3.6), we have

$$|\partial^\alpha (\hat{\phi}_i - \hat{\phi}_j)(x_i)| \leq \epsilon_0 |x_i - x_j|^{m-|\alpha|} \text{ for } 0 \leq i, j \leq k^\#.$$

Therefore,

(3.8) \hspace{1cm} \hat{\phi}_0 \in \Phi_{t+1}(x_0).

Now, (3.1), (3.7), and (3.8) together imply $\phi_0 \in I_{t+1}(x_0)$. This proves necessity, and concludes the proof of the claim. \hfill \Box

To finish the proof of the lemma, we fix $\phi_0 \in I_{t+1}(x_0)$ and $\tau \in R^m_{x_0}$. It suffices to show that

(3.9) \hspace{1cm} \hat{\phi}_0 := \phi_0 \circ_{x_0} \tau \in I_{t+1}(x_0).

Let $\epsilon_0 > 0$. Let $\delta, x_1, \ldots, x_{k^\#}, \phi_1, \ldots, \phi_{k^\#}$ be as in (3.3) with $A^{-1}\epsilon_0$ in place of ϵ, for some $A > 0$ to be determined. Define

$$\hat{\phi}_j := \phi_j \circ_{x_j} \tau \text{ for } j = 1, \ldots, k^\#.$$

Since $I_t(x_j) \subseteq R^m_{x_j}$ is an ideal by assumption, we have $\hat{\phi}_j \in I_t(x_j)$ for all $j = 1, \ldots, k^\#$. Moreover, by the classical Whitney Extension Theorem for finite set (see e.g. [12]) and (3.4), for each distinct pair x_i, x_j, we may find $F^{ij} \in C^m(\mathbb{R}^n)$ such that

(3.10) \hspace{1cm} |\partial^\alpha F| \leq M \text{ for } |\alpha| \leq m \text{ on } \mathbb{R}^n

where M is a number depending only on m, n, and ϵ_0, and that

(3.11) \hspace{1cm} \partial^m_{x_{i}^{\nu}} F^{ij} = \phi_\nu \text{ for } \nu = i, j.

Therefore, $\hat{\phi}_\nu = \partial^m_{x_{i}^{\nu}} (F^{ij} \cdot \tau)$ for $\nu = i, j$. Taylor’s theorem, combined with (3.10) and (3.11), implies

$$|\partial^\alpha (\hat{\phi}_i - \hat{\phi}_j)(x_i)| = \left| \partial^\alpha (F^{ij} \cdot \tau - \partial^m_{x_j^{\nu}} (F^{ij} \cdot \tau))(x_j) \right| \leq B_\tau \cdot A^{-1} \epsilon_0 |x_i - x_j|^{m-|\alpha|} \text{ for } |\alpha| \leq m.

Here, we may take B_τ to be a number that depends only on M and τ. Taking $A > B_\tau$, we can conclude that

$$|\partial^\alpha (\hat{\phi}_i - \hat{\phi}_j)(x_i)| \leq \epsilon_0 |x_i - x_j|^{m-|\alpha|} \text{ for all } |\alpha| \leq m, 0 \leq i, j \leq k^\#.$$

Hence, we have shown (3.9). The lemma is proved. \hfill \Box

Lemma 3.2. Suppose $\Phi_t(x) \subseteq R^m_x$ is a Glaeser fiber for each $x \in E$ and $t \geq 0$. If $\ell^* = 2 \dim \mathcal{P}^m + 1$, then for each $x \in E$, $\Phi_t(x) = \Phi_{t^*}(x)$ for all $t \geq \ell^*$.

The argument is the same as the proof of Lemma 2.2 in [6], which is inspired by [1] and [9]. We direct the interested readers to those cited above as well as [11] for a discussion on stabilization of Glaeser refinement.
3.2 Nonnegative Whitney Extension Theorem

In this subsection, we sketch the proof of the nonnegative version of the classical Whitney Extension Theorem [13].

Theorem 3. Let $E \subseteq \mathbb{R}^n$ be compact. Let $f : E \to [0, \infty)$. Let $\{P^x : x \in E\}$ be a collection of polynomials such that $P^x \in \Gamma_f^{(m)}(x)$ for all $x \in E$. Suppose

\[|\partial^\alpha (P^x - P^y)(x)| = o(|x - y|^{m-|\alpha|}) \quad \text{as} \quad |x - y| \to 0, \quad \text{for all} \quad x, y \in E \quad \text{and} \quad |\alpha| \leq m. \]

Then there exists $F \in C_m(\mathbb{R}^n)$ with $\partial^m_x F = P^x$ for all $x \in E$.

Sketch of Proof. Let \mathcal{W}_E be a Whitney cover of $\mathbb{R}^n \setminus E$, namely, $\mathcal{W}_E = \{Q\}_{Q \in \mathcal{W}_E}$ such that the following hold.

- Each $Q \in \mathcal{W}_E$ is a closed cube in \mathbb{R}^n.
- If $Q, Q' \in \mathcal{W}_E$ and $Q \neq Q'$, then interior$(Q) \cap$ interior$(Q') = \emptyset$.
- For every $Q \in \mathcal{W}_E$,
 \[\frac{1}{4} \text{diam}(Q) \leq \text{dist}(Q, E) \leq 4 \text{diam}(Q). \]

Let $\{\varphi_Q : Q \in \mathcal{W}_E\}$ be a C^m partition of unity satisfying

- $\sum_{Q \in \mathcal{W}_E} \varphi_Q(x) = 1$ for all $x \in \mathbb{R}^n \setminus E$.
- $\text{supp}(\varphi_Q) \subseteq \frac{1}{2}Q$.
- $|\partial^\alpha \varphi_Q| \leq C(\text{diam}(Q))^{-|\alpha|}$ for all $|\alpha| \leq m$.

For the existence of such covering and partition of unity, see e.g. [12, 13].

For each $x \in E$, since $P^x \in \Gamma_f(x)$, there exists $F^x \in C^m(\mathbb{R}^n)$ such that $\partial^m_x F^x = P^x$.

For each $Q \in \mathcal{W}_E$, we pick a representative point $r_Q \in E$ (not necessarily unique) such that

\[\text{dist}(r_Q, Q) = \text{dist}(E, Q). \]

We also let $F_Q := F^{r_Q}$.

Define

\[F(x) := \left\{ \begin{array}{ll}
\sum_{Q \in \mathcal{W}_E} \varphi_Q(x) F_Q(x) & x \in \mathbb{R}^n \setminus E \\
0 & x \in E
\end{array} \right. . \]

We want to show that $F \in C^m(\mathbb{R}^n)$ with $F \geq 0$ on \mathbb{R}^n, and $\partial^m_x F = P^x$ for all $x \in E$.

It is clear that $F \geq 0$ on \mathbb{R}^n, since all of the φ_Q’s and the F_Q’s are.

It is also clear that F is C^m away from E since each of the F_Q’s are and the supports of the φ_Q’s have bounded overlap. Therefore, it suffices to examine the differentiability property of F near the set E and the jet of F on E.

By Taylor’s theorem,
\[\partial^\alpha F_Q(x) = \partial^\alpha P \tau_Q(x) + o(|x - \tau_Q|^{m-|\alpha|}) \text{ as } x \to \tau_Q \text{ for all } |\alpha| \leq m. \]

The compatibility condition (3.12) then implies that
\[\partial^\alpha F_Q(\hat{x}) \to \partial^\alpha P(\hat{x}) \]

uniformly along any sequence of cubes \(Q \in \mathcal{W}_E \) converging to \(\hat{x} \in \mathbb{E}^1 \). Therefore, \(F \in C^m_{\text{loc}} \) near \(E \) and \(\partial^m F = P^x \) for each \(x \in E \). Since \(E \) is compact, we can conclude that \(F \in C^m(\mathbb{R}^n) \).

This completes the sketch of the proof.

\[\square \]

3.3 Properties of \(\Gamma_t \)

Recall Definition 2.3 and (2.2). For the rest of this section, we fix \(m = 1 \). We write \(\mathcal{P} \) for \(\mathcal{P}^1 \), \(\partial_x \) for \(\partial^1 \), and \(\Gamma_t(x) \) for \(\Gamma_t^{(1)}(x) \).

Lemma 3.3. If \(f(x) > 0 \), then \(\Gamma_t(x) = H_t(x) \). If \(f(x) = 0 \), then \(\Gamma_t(x) = \{0\} \). In particular, for each \(x \in E \), \(\Gamma_t(x) \) is a Glaeser fiber (see Definition 2.2).

Proof. Suppose \(f(x) > 0 \). It is clear that \(\Gamma_t(x) \subseteq H_t(x) \). It suffices to show that reverse inclusion. Let \(P \in H_t(x) \). Then \(P(x) = f(x) > 0 \). Since \(P \) is continuous, there exists \(\delta > 0 \) such that \(P \geq 0 \) on \(B(x, \delta) \). Let \(\chi \) be a \(C^1 \)-cutoff function such that \(\chi \equiv 1 \) near \(x \) and \(\text{supp}(\chi) \subseteq B(x, \delta) \). Then \(F := \chi \cdot P \in C^1_{\text{loc}}(\mathbb{R}^n) \) with \(\partial_x F = P \). Therefore, \(H_t(x) \subseteq \Gamma_t(x) \).

Suppose \(f(x) = 0 \). It is clear that the zero polynomial \(0 \in \Gamma_t(x) \). Suppose \(P \in \Gamma_t(x) \), then there exists \(F \in C^1_{\text{loc}}(\mathbb{R}^n) \) such that \(\partial_x F = P \). Since \(F \geq 0 \) on \(\mathbb{R}^n \), \(F \) has a local minimum at \(x \), so \(\nabla F(x) = 0 \). Hence, \(P \equiv 0 \).

\[\square \]

Lemma 3.4. Let \(\ell \geq 0 \). For each \(x \in E \), \(\Gamma_t(x) \) is a Glaeser fiber.

Proof. We have shown in Lemma 3.3 that \(\Gamma_t(x) \) is a Glaeser fiber for each \(x \in E \). Therefore, the Lemma follows from Lemma 3.1.

\[\square \]

Remark 3.1. A subtle difference between Lemma 3.4 and Lemma 2.1 in [6] is that \(\Gamma_t(x) \) is a translate of an ideal that possibly depends on the function \(f \).

Lemma 3.5. For each \(x \in E \), \(\Gamma_{t^*}(x) = \Gamma_{2n+3}(x) \) for all \(\ell^* \geq 2n + 3 \).

Proof. By Lemma 3.4, \(\Gamma_t(x) \) is a Glaeser fiber for each \(x \in E \) and \(\ell \geq 0 \). Therefore, by Lemma 3.2, \(\Gamma_t(x) \) is a stabilized Glaeser fiber if \(\ell^* \geq 2 \dim \mathcal{P} + 1 = 2n + 3 \).

\[^{1} \text{Here we define dist}(x, F) = \inf \{|x - y| : y \in F\} \text{ for } x \in \mathbb{R}^n \text{ and } F \subseteq \mathbb{R}^n \text{ closed.} \]
4 Proof of the main theorem

In this section, we fix $m = 1$. We write P for \mathcal{P}^1, ∂_ϕ for ∂_ϕ^1, and $\Gamma_\ell(x)$ for $\Gamma_\ell^{(1)}(x)$.

Proof of Theorem 2. First, we want to show that under the hypotheses of Theorem 2, the hypotheses of Theorem 1 are satisfied.

Let $\ell^* \geq 2n + 3$. Then, $\Gamma_\ell^*(x)$ is a Glaeser fiber, thanks to Lemma 3.4. By Lemma 3.5, $\Gamma_\ell^*(x)$ is its own Glaeser refinement. Hence, the hypotheses of Theorem 1 are satisfied.

By Theorem 1, there exists $F_0 \in \mathcal{C}^1(\mathbb{R}^n)$, not necessarily nonnegative, such that

$$\partial_\phi F_0 \in \Gamma_\ell^*(x) \subseteq \Gamma_0(x) = \Gamma_\ell(x).$$

Consider the family of polynomials

$$F := \{P^x = \partial_\phi F_0 : x \in E\}.$$

By Taylor’s theorem, F satisfies (3.12). Thanks to (4.1), F satisfies the hypothesis of Theorem 3 (with $m = 1$). Therefore, there exists $F \in \mathcal{C}_+^1(\mathbb{R}^n)$, such that $\partial_\phi F = \partial_\phi F_0$ for each $x \in E$. In particular, $F(x) = f(x)$. This concludes the proof.

Remark 4.1. In [11], the authors showed that for $\mathcal{C}^1(\mathbb{R}^n)$ without the nonnegative constraint, it suffices to take $k^# = 2$ in the first refinement and $k^# = 1$ in the subsequent refinements, and the number of refinement ℓ^* till stabilization can be reduced to $n \leq \ell^* \leq n + 1$. It will be interesting to see if these bounds still hold for $\mathcal{C}_+^1(\mathbb{R}^n)$.

References

[1] Edward Bierstone, Pierre D. Milman, and Wieslaw Pawlucki. Differentiable functions defined in closed sets. A problem of Whitney. Invent. Math., 151(2):329–352, 2003.

[2] Edward Bierstone, Pierre D. Milman, and Wieslaw Pawlucki. Higher-order tangents and Fefferman’s paper on Whitney’s extension problem. Ann. of Math. (2), 164(1):361–370, 2006.

[3] Edward Bierstone and Pierre D. Milman. \mathcal{C}^m-norms on finite sets and \mathcal{C}^m extension criteria. Duke Math. J., 137(1):1–18, 2007.

[4] Charles Fefferman. A sharp form of Whitney’s extension theorem. Ann. of Math. (2), 161(1):509–577, 2005.

[5] Charles Fefferman, A Generalized Sharp Whitney Theorem for Jets. Rev. Mat. Iberoamericana, 21(2):577–688, 2005.

[6] Charles Fefferman, Whitney’s extension problem for \mathcal{C}^m. Ann. of Math. (2), 164(1):313–359, 2006.

[7] Charles Fefferman, Arie Israel, and Garving K. Luli, Finiteness principles for smooth selections. Geom. Funct. Anal., 26(2): 422–477, 2016.

[8] Charles Fefferman, Arie Israel, and Garving K. Luli, Interpolation of data by smooth nonnegative functions. Rev. Mat. Iberoamericana, 33(1): 305–324, 2016.
[9] Georges Glaeser. Étude de quelques algèbres tayloriennes. *J. Analyse Math.*, 6:1–124; erratum, insert to 6 (1958), no. 2, 1958.

[10] Fushuai Jiang and Garving K. Luli, Nonnegative $C^2(\mathbb{R}^2)$ interpolation. In preparation.

[11] Boažaz Klartag and Nahum Zobin, C^1 extension of functions and stabilization of Glaeser refinements. *Rev. Mat. Iberoamericana*, 23(2):635–669, 2007.

[12] Elias M. Stein, *Singular Integrals and Differentiability Properties of Functions*. Monographs in Harmonic Analysis. Princeton University Press, Princeton, NJ, 1970.

[13] Hassler Whitney. Analytic extensions of differentiable functions defined in closed sets. *Trans. Amer. Math. Soc.*, 36(1):63–89, 1934.

[14] Hassler Whitney. Differentiable Functions Defined in Closed Sets. I. *Trans. Amer. Math. Soc.*, 36(2): 369–387, 1934.

[15] Hassler Whitney. Functions differentiable on the boundaries of regions *Ann. of Math. (2)* 35(3): 482–485, 1934.