ERRATUM TO “A QUOTIENT CRITERION FOR SYzyGIES IN EQUIVARIANT COHOMOLOGY”

MATTHIAS FRANZ*

Department of Mathematics
University of Western Ontario
London, ON N6A 5B7, Canada
mfranz@uwo.ca

Abstract. We correct a mistake in Proposition 3.3 of the paper. All other results remain unchanged.

The proof of Proposition 3.3(ii) in [1] is incorrect. To address this, we modify the statement and proof of this part. We also take the opportunity to point out two minor inaccuracies in [1]: In line 2 after equation (1.3), rank Q denotes the common dimension of the orbits in X lying over the interior of Q. In line 2 before Section 2.2, we call K an isotropy subtorus occurring in X if it is the identity component of the isotropy group T_x of some $x \in X$.

The corrected proposition reads as follows:

Proposition 3.3.

(i) For any subtorus $K \subset T$,

$$\text{depth}_R H^*_T(X^K) \geq \text{depth}_R H^*_T(X).$$

(ii) $H^*_T(X)$ is a j-th syzygy if and only if

$$\text{depth}_{R_L} H^*_L(X^K) \geq \min(j, \dim L)$$

for any subtorus $K \subset T$ with quotient $L = T/K$. If X is a T-manifold, then it suffices to look at the isotropy subtori K occurring in X.

(iii) If $H^*_T(X)$ is a j-th syzygy over R, then so is $H^*_L(X^K)$ over R_L for any subtorus $K \subset T$ with quotient $L = T/K$.

Since Proposition 3.3(ii) is only applied to T-manifolds in [1], this change does not affect the rest of the paper.

DOI: 10.1007/s00031-019-09520-z

*Supported by an NSERC Discovery Grant.

Received September 25, 2018. Accepted November 8, 2018.

The online version of the original article can be found at https://doi.org/10.1007/s00031-016-9408-3.

Corresponding Author: Matthias Franz, e-mail: mfranz@uwo.ca
Proof. Part (i) and the equivalence in part (ii) are established by the same arguments as in [1].

Consider now a T-manifold X satisfying the depth condition for all isotropy subtori occurring in it, and let $K \subset T$ be a subtorus that does not occur. Each connected component Y of X^K is a T-manifold. Let T/\bar{K} be the principal orbit type of Y. Then the identity component K' of \bar{K} occurs in X and properly contains K, and Y is a connected component of $X^{K'}$. Write $\dim K' = \dim K + s$ and $L' = T/K'$. By assumption and Lemma 3.1 (ii), we have

\[
\text{depth}_{R_L} H^*_L(Y) \geq \text{depth}_{R_L} H^*_L(X^{K'}) = \text{depth}_{R_{L'} H^*_{L'}}(X^{K'}) + s \\
\geq \min(j, \dim L') + s \geq \min(j, \dim L).
\]

Because this holds for any connected component Y of X^K, the depth condition is satisfied for K, too.

The proof of part (iii) remains unchanged, except that one takes all subtori of $L = T/K$ into account and not just the ones appearing in X. \hfill \square

The mistake made in [1] is that for an arbitrary T-space X and a subtorus $K \subset T$ the fixed point set X^K is in general not the disjoint union of fixed point sets of subtori K' occurring in X.

Acknowledgements. I am grateful to Sergio Chaves for discussions that have led to the discovery of the error.

References

[1] M. Franz, A quotient criterion for syzygies in equivariant cohomology, Transform. Groups 22 (2017), no. 4, 933–965.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.