Structural dynamics of potassium-channel gating revealed by single-molecule FRET

Shizhen Wang1,5, Reza Vafabakhsh2,5, William F Borschel1, Taekjip Ha2–4 & Colin G Nichols1

Crystallography has provided invaluable insights regarding ion-channel selectivity and gating, but to advance understanding to a new level, dynamic views of channel structures within membranes are essential. We labeled tetrameric KirBac1.1 potassium channels with single donor and acceptor fluorophores at different sites and then examined structural dynamics within lipid membranes by single-molecule fluorescence resonance energy transfer (FRET). We found that the extracellular region is structurally rigid in both closed and open states, whereas the N-terminal slide helix undergoes marked conformational fluctuations. The cytoplasmic C-terminal domain fluctuates between two major structural states, both of which become less dynamic and move away from the pore axis and away from the membrane in closed channels. Our results reveal mobile and rigid conformations of functionally relevant KirBac1.1 channel motifs, implying similar dynamics for similar motifs in eukaryotic Kir channels and in cation channels in general.

Because gated currents through single-ion-channel pores were first observed over 40 years ago, the gating behaviors of many ion channels have been recorded and analyzed at the single-molecule level, and numerous kinetic schemes have been developed to predict the physical states underlying gating transitions. In addition, membrane-protein crystallography has provided high-resolution structures of ion channels in various configurations and has suggested conformational changes that must occur for currents to turn on and off3–7. Crystal structures have led to ideas regarding structural mobility and rigidity, such as: (i) the K-channel selectivity filter is a rigid structural feature8–10; (ii) the slide helix of inward rectifier potassium (Kir) channels11–14, or the short α-helix that links the voltage sensor and the channel pore in voltage-gated channels, has a role in controlling the helix-bundle crossing (HBC) gate15,16; and (iii) the Kir-channel cytoplasmic domain itself moves relative to the transmembrane domain during gating4,17,18. However, crystallographic analyses cannot test these ideas because such methodologies typically access only a few stable states of channel proteins and do so in environments that are very different from the lipid bilayer. Hence, the relevance of crystallographic ‘snapshots’ to the dynamic gating events of ion channels in cell membranes may not always be apparent.

Kir channels have critical roles in shaping the action potentials of cardiomyocytes, potassium homeostasis of the kidney, hormone secretion of pancreatic β-cells, membrane potentials of nerve and glial cells, and the electrical activity of endothelial and smooth muscle cells19. Multiple Kir-channel structures have been resolved, but conformational trajectories of gating transitions remain speculative, although they are critical for a full understanding of gating mechanisms. KirBac1.1 is a prokaryotic Kir homolog that has the same core structural elements as eukaryotic Kir channels17,20,21 and provides a model system to study Kir-channel gating; both crystallographic and molecular simulation analyses have indicated similar structures of open and closed channels in bacterial and eukaryotic Kir homologs4,17,18,22. Phosphatidylinositol 4,5-bisphosphate (PIP2) is a gating ligand for many ion channels and is a universal activatory ligand for eukaryotic Kir channels23–25, stabilizing the open conformation4,17,19,25. In prokaryotic KirBac1.1, the PIP2-binding site is not identical to that in eukaryotic channels, thus resulting in a switched coupling whereby PIP2 acts to stabilize the closed state26.

Single-molecule FRET (smFRET) can report on unsynchronized conformational changes that are masked by ensemble averaging of macroscopic measurements27,28, and it may bridge the gap between crystal structures and single-ion-channel current analyses. Very few membrane proteins have been studied by smFRET29–33, owing to the technical challenges of position-specific fluorophore labeling, particularly in multimeric proteins. In the present study, we set out to analyze the dynamics of structural motions in KirBac1.1 in closed (PIP2 bound) and open (ligand-free) states through smFRET. The results reveal both flexible and rigid motifs of the channel, confirming and refuting various previous ideas about structural mobility, and generating new ideas regarding the structural dynamics of the gating transition itself in potassium channels.

RESULTS

Labeled tetrameric KirBac1.1 for single-molecule imaging

In liposomes of defined composition (3:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) (POPE)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)) without PIP2, KirBac1.1 channels

1Center for Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA. 2Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. 3Howard Hughes Medical Institute, Baltimore, Maryland, USA. 4Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA. 5These authors contributed equally to this work. Correspondence should be addressed to T.H. (tjha@jhu.edu) or C.G.N. (cnichols@wustl.edu).

Received 11 August; accepted 6 November; published online 7 December 2015; doi:10.1038/nsmb.3138
exhibited spontaneous bursts of openings, but the channels were essentially completely closed after incorporation of PIP_2 (Fig. 1a,b and Supplementary Table 1). In the absence of PIP_2, three distinct closed times were resolvable (Fig. 1c), and when open, the channels occupied two resolvable conductance levels (Fig. 1b) with similar durations. The mean probability of a channel being in any open state (P_o) was ~0.12 under control conditions but was reduced to ~0.004 in the presence of 5 µM PIP_2 (Fig. 1d).

We successfully applied smFRET to KirBac1.1 channels by engineering, expressing, labeling and reconstituting concatemeric proteins containing only two cysteines within the tetrameric channel (Fig. 2a–c). We collected tetramer fractions of Alexa Fluor 555– and Alexa Fluor 647 c2 maleimide–labeled KirBac1.1 mutants by size-exclusion chromatography (Supplementary Fig. 1a) and reconstituted them into liposomes (3:1 POPE/POPG). Functional assays confirmed that all labeled mutants retained channel activity and sensitivity to PIP_2 inhibition similar to those of wild type (WT) (Supplementary Fig. 1b). We performed single-molecule imaging with a prism-based total internal reflection fluorescence (TIRF) microscope with time resolutions of 30 ms and 100 ms (Fig. 2d). We found that the mutant proteins were labeled very specifically, and over 95% of fluorescent spots arose from labeled KirBac1.1 cysteine mutants (Fig. 2e and Supplementary Fig. 1c).

Structural rigidity of the extracellular region

The backbone structure of the selectivity-filter region is remarkably consistent in all available K-channel crystal structures, but whether this simply reflects a stable crystallographic configuration rather than a functionally relevant rigidity is unknown. Computational and experimental analyses have suggested conformational coupling of the selectivity filter to the loop that extends outward. To provide direct visualization of structural dynamics in the extracellular selectivity-filter region (Fig. 3a), we labeled the residue T120C at the top of this loop in KirBac1.1. Individual smFRET trajectories revealed a remarkably stable FRET efficiency of ~0.8, without marked fluctuations or shifts when the channel was closed by saturating PIP_2 (Fig. 3a, Supplementary Fig. 2a and Supplementary Table 2). smFRET histograms and population contour plots obtained from 76 individual channel records in the absence of PIP_2 (and 91 in the presence of PIP_2) (Fig. 3b) and data acquired at 30-ms time resolution in Supplementary Fig. 3a confirmed that FRET efficiencies at this position had a very narrow distribution that did not differ between closed and open states. These experiments provide a time-resolved demonstration of the rigidity of the extracellular selectivity-filter region, independent of the channel gating state, in functional channels embedded within a lipid-membrane environment.

Figure 1 PIP2-dependent gating of KirBac1.1-channel activity. (a) Excised single-channel current traces of purified KirBac1.1 reconstituted into giant liposomes, before and after application of PIP2. Two open (O1, O2) and closed (C) levels are indicated. (b) Amplitude histogram of the corresponding traces in a before (black) and after (gray) application of PIP_2. N, number of counts. (c) Closed and open interval distributions from the recording depicted in a, before application of PIP_2. Histograms are overlaid with the probability density function (thick lines) and individual exponential components (dotted lines). Mean closed time (MCT) and mean open time (MOT), time constants (τ, ms) and corresponding areas (a, %) were calculated from fits to a model consisting of three closed states and one open state for each conductance class. (d) Open probability (P_o), mean ± s.e.m. in the absence (0.12 ± 0.02, n = 5 patches) and presence (0.004 ± 0.002, n = 3) of PIP_2. *P < 0.05 by two-tailed Student’s t test.
structural transitions in the C-terminal domain

Kir channels have a large C-terminal domain (CTD) with which many intracellular regulatory ligands interact. We have previously reported reduced ensemble FRET efficiency at the A273C position in the presence of PIP2 (ref. 22). In the present study, we again labeled two cytoplasmic-domain cysteines, F167C and A273C, as well as the external residue T120C with 5-(2-aminoethyl)amino)naptha lene-1-sulfonic acid (EDANS) and DABCYL Plus or Alexa Fluor 488 and QSY-7 FRET pairs in dimeric or tetrameric constructs, and we then measured the PIP2-induced changes with ensemble FRET. Both 167C and 273C exhibited reduced FRET efficiencies with PIP2, whereas we again observed no significant change in FRET efficiency at 120C (Supplementary Fig. 4a).

To visualize conformational dynamics of the CTD in closed and open states, we labeled diagonally opposed cysteines in the dimeric A273C–WT or F167C–WT constructs with Alexa Fluor 555 and Alexa Fluor 647 (Fig. 2a,b). As indicated by individual smFRET trajectories (Fig. 3e and Supplementary Fig. 2c), more than 60% of A273–WT traces exhibited fluctuations between two major conformations with mean FRET efficiencies of 0.74 and 0.41 in the absence of PIP2. In the presence of saturating PIP2, the number of traces showing detectable dynamic changes decreased to ~30% (Fig. 3e and Table 2), and both FRET peaks shifted toward lower FRET values of 0.68 and 0.32, respectively (Fig. 3f). These results are consistent with the ensemble FRET measurements but further suggest that the β-sheet containing residue 273 actually fluctuates between two major conformations, whether the channel is closed or open, and that both conformations are widened when the channel is closed. At the F167 site, the smFRET distributions also exhibited two clear peaks in both the absence and presence of PIP2, and again induced only a slight shift toward lower FRET efficiency (Supplementary Fig. 3b). These data suggest that in addition to overall dilation in the closed channel, the major β-sheet in the CTD may undergo gating-independent ‘breathing’ conformational transitions that are not revealed in crystal structures.

C-terminal displacement from the membrane in closed channels

Crystal structures of both potassium and sodium channels indicate that bending and rotation motions of the pore-forming transmembrane helices (TM2 or S6) are required to remove HBC gates. For Kir channels, a rigidly coupled tilting or twisting of the CTD has also been proposed. To test this idea directly, we constructed three concatemeric tetramers in which the channels were labeled across the membrane, at one cysteine in the selectivity-filter region of the extracellular side (T120C) and at A270C in the CTD of the same, the neighboring or the diagonally opposed subunit (Figs. 2c and 4a,c).
smFRET trajectories, as well as FRET contour plots and histograms from these three constructs, all indicated a shift to decreased FRET efficiencies when the channels were closed by PIP2 (Fig. 4 and Supplementary Fig. 5). Ensemble FRET data from the same constructs were again consistent with those calculated from smFRET measurements (Supplementary Fig. 4b). These data thus indicate that the CTD indeed moves away from the transmembrane domain (TM) when the channel closes; the FRET efficiencies were consistent with the channel being ~80 Å long in the closed state, a length similar to the channel length observed in the 1P7B KirBac1.1 crystal structure\(^1\), and becoming ~10 Å shorter in the open state. This conclusion is consistent with those of other crystallographic and simulation studies\(^{17,40}\), but the data do not support gating being associated with a major twisting motion of the CTD relative to the TM\(^41\), because such a motion would differentially affect the FRET signals in the three intra- or intersubunit arrangements.

Relating structural dynamics to ion-current gating

At location T120C in the extracellular portion of the channel near the selectivity filter, there was little detectable dynamics; over 90% of traces showed no change in FRET efficiency before donor or acceptor photobleaching (Table 2), and we detected no cross-correlation between donor and acceptor signal (Fig. 5a). In contrast, A45C in the slide-helix region exhibited a strong donor-acceptor cross-correlation with a decay time constant that was not dramatically altered by PIP2 (Fig. 5b). We propose that the structural dynamics at A45C is dominated by transitions among the multiple conformations of the closed state and that channel opening may occur at the lowest FRET conformations (Fig. 3c,d). At the nearby residue W48C, the FRET signals were less dynamic (Supplementary Fig. 3b), a result that may be a consequence of each residue being located in different secondary structures or different local environments (i.e., A45 is located just before the slide helix

![Image](https://example.com/image1.png)

Figure 3 Conformational fluctuations of KirBac1.1 in liposomes. (a–f) Labeling locations and representative smFRET traces for residues T120C (a), A45C (c) and A273F (e), as well as FRET contour plots and histograms (b, d and f; mean ± s.e.m. (n = 76 and 91 T120 traces, 121 and 139 A45C traces, and 175 and 204 A273C traces in the absence or presence of PIP2, respectively)) of KirBac1.1 in liposomes with (red bars) or without (blue bars) PIP2. F, fluorescence; a.u., arbitrary units.

Construct	Control	PIP2
T120C-WT	69.7	75.5
PIP2	78.1	120
A45C-WT	73.7	146
PIP2	75.5	1176
A273C-WT	78.1	1017
PIP2	75.5	1595
Control	69.7	75.5

Table 2 Effect of PIP2 on the structural dynamics of KirBac1.1 evaluated by cross-correlation analysis

\begin{array}{cccccc}
 & \alpha_1 & \tau_1 & \alpha_2 & \tau_2 & \text{Dynamic traces} \cr
T120C-WT & Control & 0.09 & & & \\
 & PIP2 & & & & 0.03 \\
A45C-WT & Control & 0.55 & & & \\
 & PIP2 & 0.64 & & & \\
A273C-WT & Control & 0.60 & & & \\
 & PIP2 & 0.33 & & & \\
\end{array}

\(a\)The cross-correlation analysis was performed with the algorithm \(C_{\text{cross}}(t) = \langle \Delta F_{\text{on}}^t \Delta F_{\text{on}} \rangle / \langle \Delta F_{\text{on}}^n \rangle \), where \(\Delta F_{\text{on}}^t\) and \(\Delta F_{\text{on}}\) are the variances of donor fluorescence at times \(t\) and \(0\), respectively. The cross-correlation analysis was performed with the algorithm \(C_{\text{cross}}(t) = \langle \Delta F_{\text{on}}^t \Delta F_{\text{off}} \rangle / \langle \Delta F_{\text{on}}^n \rangle \), where \(\Delta F_{\text{on}}\), \(\Delta F_{\text{off}}\), and \(\Delta F_{\text{off}}\) are variances of donor and acceptor fluorescence at times \(0\) and \(t\), respectively. All lag times (\(\tau\)) versus coefficients from cross covariance analyses were fitted with either single- or two-component exponential functions,

\[
\frac{\alpha_1}{\tau_1} + \frac{\alpha_2}{\tau_2}
\]

\(b\)The FRET efficiency histogram of any trace exhibiting more than one population was arbitrarily defined as dynamic, in order to provide a semiquantitative assessment of the dynamic behaviors of the labeled structural motifs.
in a loop interacting with the CTD and is relatively more exposed to the cytoplasm, whereas W48 constitutes part of the slide helix itself and sits at the cytoplasm-membrane interfacial region. We observed striking differences in FRET dynamics between active and closed channels at residue A273 of the CTD (Figs. 3e and 5c). The donor-acceptor cross-correlation of the A273C–WT sample was well fitted with a double exponential function, with both time constants substantially increasing in PIP₂ while the amplitude of both components decreases (Fig. 5c). These changes suggest that the frequency of the conformational fluctuations in this region is suppressed when the channel is closed, consistently with a model in which ion-current gating at the HBC is directly coupled to conformational changes in the CTD.22

Figure 4 Motion of the TM with respect to CTD upon PIP₂ gating. (a–f) Labeling locations and representative smFRET traces for T120C-A270C residue pairs, with A270C located in the same subunit (a), the clockwise preceding residue (c) or the diagonally opposite subunit (e) relative to T120C, as well as FRET contour plots and histograms (b, d and f) of KirBac1.1 in liposomes with (orange bars) or without PIP₂ (blue bars) (mean ± s.e.m. (n = 267 (b), 222 (d) and 182 (f) traces in control, and 160 (b), 211 (d) and 149 (f) traces in PIP₂)).

Figure 5 Conformational dynamics of KirBac1.1- and PIP₂-dependent gating. (a–c) Cross-correlation (C) of donor (F₀₀) and acceptor (Fₐₐ) fluorescence traces of KirBac1.1 mutants with fluorophore labeling at T120C near the selectivity filter versus time (df). (a), A45C in the slide helix (b) or A273C in the CTD (c), in the absence and presence of PIP₂ (mean ± s.e.m., n = 79 (a), 121 (b) and 175 (c) traces in control, and 90 (a), 139 (b) and 204 (c) traces in PIP₂). Fitted time constant (τ) and amplitude (A) are indicated in each case. (d) Proposed motions underlying gating of the KirBac1.1 channel. PIP₂ binds at the TM-CTD interface and tightens the slide-helix belt and confines the channel-pore opening. Tilting or twisting motions of the CTD couple to the HBC-gate closure, slowing down structural fluctuations of the CTD.
DISCUSSION

Crystal structures provide images of channels in distinct states but cannot reveal the connectivity between states or provide time trajectories of structural changes. Our detection of unsynchronized structural dynamics with smFRET provides a view of the intramolecular motions that underlie Kir-channel function within lipid membranes.

Certain findings are quite striking and may have substantial implications for other channels. Perhaps most notably, the external selectivity-filter region exhibits no detectable structural fluctuations, thus demonstrating a rigidity that may be necessary to maintain ion selectivity of the pore. In contrast, both the slide helix and the CTD show marked structural dynamics and structural flexibility. Our results suggest that the tightness of the slide-helix belt controls channel gating (Fig. 5d). In KirBac1.1 the belt is tightened by PIP3 binding, a structural consequence that may be reversed for eukaryotic Kir channels in which a structurally distinct slide helix is involved in PIP2-dependent activation17. The motions that we detected in the KirBac1.1 slide helix and CTD reflect a marked intrinsic flexibility of the channel structure. As more ion channels become amenable to approaches similar to those described here, the conformational changes induced by gating processes in eukaryotic Kir and other ion channels may be revealed to be more dramatic and more complex than currently perceived.

METHODS

Methods and any associated references are available in the online version of the paper.

ACKNOWLEDGMENTS

Financial support was provided by US National Institutes of Health (NIH) grant HL54171 (C.G.N.) and US National Science Foundation grant PHY1430124 (T.H.). T.H. is supported as an investigator of the Howard Hughes Medical Institute. W.E.B. was supported by NIH grants T32 HL007275 and T32 HL125241.

AUTHOR CONTRIBUTIONS

S.W., R.V., T.H. and C.G.N. conceived and designed the experiments; S.W. and W.E.B. performed the electrophysiological studies; S.W. designed, constructed, purified and labeled the protein samples with fluorophores; W.E.B. analyzed the single-channel recordings; and S.W. and R.V. collected and analyzed the smFRET data. The paper was written by S.W. and C.G.N. and edited by R.V., W.E.B. and T.H.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).
2. Colquhoun, D. & Sigworth, F. in Single-channel Recording 483–587 (Springer, 1995).
3. Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013).
4. Whorton, M.R. & MacKinnon, R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147, 199–208 (2011).
5. Cuello, L.G., Jorgin, V., Cortes, D.M. & Perozo, E. Structural mechanism of C-type inactivation in K+ channels. Nature 466, 203–208 (2010).
6. Cuello, L.G. et al. Structural basis for the coupling between activation and inactivation gates in K+ channels. Nature 466, 272–275 (2010).
7. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).
8. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001).
ONLINE METHODS

DNA manipulation. KirBac1.1 WT cDNA was inserted between the NcoI and HindIII sites of the pQE60 vector43. For tandem dimer constructs, two copies of KirBac1.1 cDNA were inserted between the NcoI and BamHI, and the BamHI and HindIII sites, respectively. A short GGGSGGGS linker was introduced between the two copies of KirBac1.1 coding DNA. To make tandem tetramer constructs, two copies of tandem dimer–encoding DNA were inserted between the NcoI and SacI, and the SacI and HindIII sites of the PET28a (+) vector with a GGGSGGGS linker between them. In tandem constructs, all mutations were introduced into the KirBac1.1 monomer plasmid by a site-directed mutagenesis kit (Agilent) and were then subcloned into the tandem dimer or tetramer constructs. A His6 tag was introduced in the C termini of all the proteins for metal affinity purification.

Protein expression and purification. KirBac1.1 WT protein was expressed in the BL21-Gold(DE3)-pLysS host strain, after induction by 1.0 mM IPTG for 3 h at 37 °C, when the OD600 had reached ~0.8–1.0. KirBac1.1 tandem dimer or tetramer constructs were expressed in the BL21-Gold(DE3) host strain, and cultures were induced by 0.1 mM IPTG overnight at 20 °C when the OD600 reached about ~0.6–0.8. Metal affinity purification was performed as previously described33,34. Affinity–purified proteins were loaded onto a gel-filtration column (Superdex-200, GE Healthcare), and tetramer fractions were collected for the following functional or structural studies.

Protein labeling. Tetracmer fractions of KirBac1.1 proteins were concentrated to 1 mg/ml in labeling buffer containing 20 mM HEPES, 150 mM KCl, and 5 mM DM, pH 7.0. A 1:1 mixture of Alexa Fluor 555 and 647 c2 maleimide were added into the protein solution at protein/fluorophore ratio of 1:4. Labeling reactions were conducted at room temperature for 2 h, terminated by 10 mM β-mercaptoethanol and then incubated at room temperature for an additional 30 min. Labeled proteins were diluted 10× in labeling buffer and then mixed with cobalt affinity resin (Clontech). Free fluorophores were completely removed by extensive washing (>10 bed volumes), and protein was eluted by elution buffer (20 mM HEPES, 150 mM KCl, 5 mM DM, and 400 mM imidazole, pH 7.5). Eluted proteins were loaded on a gel-filtration column (Superdex-200 10/30, GE Healthcare), and tetramer fractions were collected and concentrated for rubidium flux assay or single-molecule imaging experiments.

Rubidium flux assay. Purified KirBac1.1 proteins were reconstituted into POPE/POPG (3:1) liposomes with or without 1% (w/w) POP3, at a protein/lipid ratio of 1:100. The protein and lipid mixtures were incubated for 20 min at room temperature, and proteoliposomes were formed by removing the detergent with Sephadex G-50 spin columns. Rubidium flux assays were performed on proteoliposome samples as previously described27,34. Rubidium uptake was stimulated by PIP2 imaging buffer, and then single-molecule images were collected according to the same procedure as that for control conditions.

Data analysis. Single-channel recordings. Preprocessing and analyses of single-channel current recordings were performed offline with QuB software (http://www.qub.buffalo.edu/). Brief (fewer than nine samples) current spikes during prolonged closures were adjusted to the adjacent nonconducting current amplitude to eliminate infrequent electrical noise, and instances of baseline drift were corrected by setting the baseline to an initial zero-current level through the use of baseline nodes. Current amplitudes were estimated from preprocessed data with the ‘AMP’ function, which uses the Baum-Welch reestimation algorithm and were typically well described by three Gaussian components corresponding to one nonconducting and two resolvable conducting amplitudes. Whole file recordings were digitally low pass-filtered at 400 Hz and idealized with a 50% threshold method using the corresponding single-channel amplitudes with no imposed dead time. The resulting idealization was inspected by visual comparison to that of the digitally filtered current signal. Interval distributions were typically well fit with three closed components and one open component for each open conductance class.

Single-molecule FRET data analysis. The movies acquired in single-molecule imaging were processed with an IDL script (available on request) to identify and extract donor and acceptor fluorescence intensity profiles of individual molecules44. Traces extracted from the movies were interactively selected, with the following acceptance criteria: (i) no more than one bleaching step for both donor and acceptor fluorophores; (ii) donor and acceptor fluorescence intensities showing a clear anticorrelated pattern; (iii) constant total fluorescence intensity from donor and acceptor before photobleaching; (iv) lifetimes of both donor and acceptor fluorophore longer than 5 s. All analyzed smFRET traces were selected independently by two analysts (S.W. and R.V.) then were analyzed with the same algorithm. No significant difference were found between the traces selected by S.W. and R.V.

The bin size of all histograms was set as 0.02. FRET histograms of each single trace, regardless of length, were normalized to total counts (i.e., every trace contributed equally to the final histograms, to avoid dominant effects of long traces). The final histograms were obtained by combining the FRET histograms of each trace and then renormalizing against total counts. To generate FRET contour plots, the first 5 s of data from each trace were extracted, and the histogram at each time point was obtained and normalized to total counts. The normalized coefficients of cross-correlation were calculated with the ‘xcov’ function (Signal Processing Toolbox) in Matlab. The maximum lag was 20 s, and traces shorter than 20 s were excluded from the analysis. The cross-correlation data were fitted with a two-component exponential function with the curve-fitting tool box in Matlab. Calculated time constants and areas for individual exponential components were tabulated and reported as means ± s.e.m.

33. Mandel, J. M. et al. Functional characterization of a prokaryotic Kir channel. J. Biol. Chem. 279, 47076–47080 (2004).
34. Wang, S., Alimi, Y., Tong, A., Nichols, C.G. & Enketchakul, D. Differential roles of blocking ions in KirBac1.1 tetramer stability. J. Biol. Chem. 284, 2854–2860 (2009).
35. Joo, C. & Ha, T. Preparing sample chambers for single-molecule FRET. Cold Spring Harb. Protoc. 2012, 1104–1108 (2012).