Charge Generation and Electron-Trapping Dynamics in Hybrid Nanocrystal-Polymer Solar Cells

Frederik S. F. Morgenstern, ‡ Marcus L. Böhm, ‡ René J. P. Kist, Aditya Sadhanala, Simon Gélinas, Akshay Rao, and Neil C. Greenham*

Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

Supporting Information

ABSTRACT: We investigate the charge-trapping dynamics in hybrid nanocrystal-polymer systems and their effect on performance in photovoltaic devices. Employing various steady-state spectroscopy techniques and ultrafast, three-pulse transient absorption methods, we identify the depth of electron trap states in the nanocrystal band gap and measure their population dynamics. Our findings show that photogenerated electrons are trapped at midgap states on the nanocrystal within hundreds of picoseconds. The trapping of the majority of charge carriers before charge extraction results in a lowering of the quasi-Fermi level of the electrons which limits the device open-circuit voltage, thereby underlining the significance of these processes in conjugated polymer/nanocrystal hybrid photovoltaics.

INTRODUCTION

Because of the prospect of cheap large-area production, organic photovoltaics have attracted great interest in the past decade. While an extensive library of high-performing donor polymers exists, the variety of electron acceptor materials is mainly restricted to fullerene derivatives. Alternative hybrid systems using inorganic semiconductor nanoparticles as the electron acceptor offer the advantages of additional absorption in the acceptor component, tunable energy levels through the quantum confinement effect, and improved electron–hole separation efficiency because of increased screening of Coulombic interactions, and the potential to exploit carrier multiplication effects in the nanoparticles. However, the efficiency of hybrid bulk heterojunction photovoltaics still lags that of purely organic photovoltaics. This is largely due to the complexity of processes occurring at the nanoparticle surfaces and their interfaces with the organic component. Dynamical studies of electron trapping in various nanoparticle systems have been reported using transient absorption and time-resolved photoluminescence measurements, with trapping times ranging from picoseconds to nanoseconds.

Surface states have been shown to be highly sensitive to the details of ligand coverage and local environment; hence, to improve device performance, it is important to understand the electron-trapping process directly in hybrid films. Here, we study the energetics and dynamics of electron trapping in hybrid nanocrystal-polymer films and solar cells using a combination of steady-state and transient spectroscopic techniques including three-pulse pump–push–probe measurements.

RESULTS AND DISCUSSION

Charge Dynamics in the Nano- and Microsecond Regime. In Figure 1a and b, we show the device architecture and solar cell characteristics of the model hybrid solar cell system used, consisting of the polymer donor poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMOPPV) and n-butylamine ligated CdSe nanocrystals (diameter 6.5 nm) as the electron acceptor. All the CdSe particles studied were synthesized in a single batch to avoid batch-to-batch variations. Detailed synthesis and device fabrication methods are provided in the Supporting Information S1. The open-circuit voltage of 0.7 V is significantly less than that seen in devices using the same polymer with PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) as the electron acceptor, despite both acceptors having similar electron affinities (as estimated

Received: July 28, 2016
Published: August 1, 2016

DOI: 10.1021/acs.jpcc.6b07591

J. Phys. Chem. C 2016, 120, 19064–19069
from photoelectron spectroscopy and optical absorption measurements, see Supporting Information S2). This finding is consistent with a tail of trap states playing an important role in the nanoparticle-based devices.

To study the recombination and trapping processes in these hybrid solar cells, transient absorption (TA) experiments were performed on devices under short-circuit conditions. Figure 1c shows the TA spectrum following excitation at 2.3 eV and measured in the nanosecond-to-microsecond time regime. The corresponding kinetic traces are displayed in Figure 1d which shows the combined bleach of NCs and polymer (2.25 eV; green), the 1S3/2-1Se transition (or ground-state bleach (GSB)) of CdSe NCs (1.90 eV; red), and the hole polaron of the polymer (1.38 eV; black). The NC GSB decays to ca. 20% of its original strength within the first 2 ns and decays fully within 1 μs. The polymer hole polaron, on the other hand, shows an initial decay to about 70% within 300 ps after which it reaches a long-lived plateau.

Transient photocurrent measurements conducted on the same hybrid cells showed charge extraction to occur on the microsecond time scale (see Supporting Information S4). We thus attribute the decay of the TA signals after 1 μs to the extraction of charge carriers. The initial TA decay kinetics at 2.25 eV (which will initially be dominated by polymer GSB) are in good agreement with the quenching rates of polymer excitons observed in our previous studies.18 Furthermore, we ascribe the rise in bleach at 1.90 eV between 0.4 and 2.2 ps to exciton transfer from the MDMO-PPV to the NCs. The bleach of the GSB of the CdSe NCs has been shown to arise from electrons occupying the lowest accessible 1S state with only insignificant contributions of holes on the NCs.20–22 The rapid decay of this GSB could, in principle, be caused by rapid recombination of excitons or electrons on the NCs or by rapid charge extraction. However, the measured time scales for electron extraction (see Supporting Information S4) are much longer than the GSB decay time scales, and the devices display reasonably high quantum efficiencies when the NC component is excited (see inset of Figure 1b). We therefore rule out recombination and charge extraction as likely causes of the rapid GSB decay. Instead, we consider that the GSB decay is caused by photoexcited electrons making a transition from their initial bleaching states into states that are much less strongly coupled to the 1S3/2-1Se transition of the NCs. Deep trapping at surface states is a likely candidate for such a transition, and previous TA measurements on various nanoparticle systems have identified electron trapping as being responsible for GSB decay.11,12,19 However, most studies analyzing the electron-trapping dynamics have been performed on systems where luminescence measurements are possible.23–26

Trap Analysis via Steady-State Spectroscopy. To identify trap states residing within the band gap of the NC component, we monitor the intragap absorption profile of oleic acid ligated CdSe NCs using photothermal deflection spectroscopy (PDS). It is generally accepted that CdSe NCs passivated with their native ligands (i.e., oleic acid) exhibit fewer intragap states compared to particles which have been ligand-exchanged to n-butylamine, since the ligand-exchange process is likely to create additional surface trap states.5 Indeed, comparing the absorbance profile of n-butylamine- and oleic acid ligated CdSe NCs, we find a sharper absorbance onset in the latter NC system (see Supporting Information S5).
Furthermore, because of the higher achievable solution concentration of OA-ligated NCs (ca. 200 mg/mL), we could produce thicker films, which enhances the measurement accuracy of PDS at low trap state densities. We therefore consider the abundance of trap states in oleic acid ligated NCs as a lower limit for the analogous n-butylamine passivated NCs. The absorption profile shown in Figure 2a reveals a long tail of shallow trap states extending from 1.95 eV down to 1.50 eV. Interestingly, we observe a rise in signal intensity at ca. 1 eV which we assign to a direct absorption process into midgap states. This picture is in agreement with steady-state photoluminescence measurements where we assign to a direct absorption process into midgap states measured by PDS and photoluminescence (PL) spectroscopy (see Figure 2).

Figure 2. (a) Photothermal deflection spectroscopy of oleic acid ligated CdSe NCs in film. A comparison between the spectra of oleic acid and n-butylamine-ligated particles is provided in the Supporting Information S5. (b) Photoluminescence of the same NC films.

Trap Analysis via Transient Spectroscopy. Using transient pump–push–probe experiments allows us to directly monitor the kinetics of electron trapping in the CdSe NC devices. In conventional TA, the sample is pumped at time \(t = 0 \) and is probed at time \(t \). Here, we add an additional push at time \(t_{\text{push}} \) between pump and probe pulses. Performing control experiments without the initial pump pulse allows us to account for parasitic signals such as two-photon absorption (see Supporting Information S6 for more details) and thus to monitor changes in transmission caused by interaction of the push signal with photoexcited charge carriers.

A tunable push pulse of excitation energy ranging between 0.89 and 1.03 eV was applied at \(t_{\text{push}} = 1.3 \) ns. Figure 3 shows the kinetics of the push-induced change in transmission \(\Delta(\Delta T/T) \) probed at the \(1S_{3/2}-1S_{1/2} \) transition (1.90 eV) for a series of push energies. To account for variations in flux at the different push energies, the push-induced \(\Delta(\Delta T/T) \) signals were scaled to the photon density of the 1.03 eV push pulse (see Supporting Information S6).
As a consequence, the large quantity of populated deep traps lowers the quasi-Fermi level of the electrons in the CdSe NCs toward the middle of the NC band gap energetically located at about -4.7 eV (see Figure 5).32 A quasi-Fermi level of 0.9 eV below the conduction band of the CdSe NC can also explain the relatively low V_{OC} of ca. 0.7 V (see Figure 1b), indicating that deep traps in the NCs are a limiting factor in the device performance. To rule out that this low V_{OC} is caused by Fermi level pinning at the electron-extracting electrode, we prepared a range of MDMO-PPV:CdSe NC devices where we move the electron collection electrode energetically closer to the vacuum level by using lower-workfunction materials (see Supporting Information S7). As we do not observe an improved higher V_{OC}, we argue that Fermi level pinning at the aluminum contact does not play a major role in these devices. This presents further evidence that low V_{OC}'s in these NC-containing hybrid devices are a consequence of electron trap states located in the middle of the band gap (see Figure S).

CONCLUSIONS

We have used a range of steady-state and transient spectroscopy techniques to monitor the population of trap states in CdSe NCs in operational hybrid photovoltaic devices. We find that the $1S_{3/2}-1S_{5/2}$ transition bleach of CdSe NCs decays fully before charge extraction occurs, and we assign electron trapping as responsible for this quench in GSB. These electron traps were found to be located ca. 0.9 eV below the NC conduction band and to be populated on time scales of hundreds of picoseconds. Trapping of the majority of electrons before charge extraction in the CdSe NCs leads to a lowering of the quasi-Fermi level to ca. 0.9 eV, which is consistent with the low V_{OC} observed in these devices. This suggests that future improvements in NC trap passivation could lead to significant enhancements in device V_{OC} and, therefore, in solar cell performance, enabling hybrid polymer:NC solar cells to surpass their polymer—fullerene counterparts.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b07591.

Experimental methods, ultraviolet photoelectron spectroscopy (UPS), supplemental current voltage characteristics, and transient photocurrent measurements (TPC) as well as detailed description and raw spectra of the pump—push—probe transient absorption experiments (PDF)
Density of Trap States and Auger-Mediated Electron Trapping in CdTe Quantum-Dot Solids. *Nano Lett.* 2015, 15, 3056–3066.
(12) Boehme, S. C.; Walvis, T. A.; Infante, I.; Grozema, F. C.; Vanmaekelbergh, D.; Siebbeles, L. D. A.; Houtepen, A. J. Electrochemical Control over Photoinduced Electron Transfer and Trapping in CdSe-CdTe Quantum-Dot Solids. *ACS Nano* 2014, 8, 7067–7077.
(13) Couderc, E.; Greaney, M. J.; Brutchey, R. L.; Bradforth, S. E. Direct Spectroscopic Evidence of Ultrafast Electron Transfer from a Low Band Gap Polymer to CdSe Quantum Dots. *J. Am. Chem. Soc.* 2013, 135, 18418.
(14) Greaney, M. J.; Brutchey, R. L. Ligand Engineering in Hybrid Polymer/nanocrystal Solar Cells. *Mater. Today* 2015, 18, 31–38.
(15) Dowland, S. A.; Reynolds, L. X.; MacLachlan, A.; Cappel, U. B.; Haque, S. A. Photoinduced Electron and Hole Transfer in CdS:InP3HT Nanocomposite Films: Effect of Nanomorphology on Charge Separation Yield and Solar Cell Performance. *J. Mater. Chem. A* 2013, 1, 13896.
(16) Strein, E.; Colbert, A.; Subramaniam, S.; Nagaoka, H.; Schlenker, C. W.; Jelke, E.; Jeneke, S. A.; Ginger, D. S. Charge Generation and Energy Transfer in Hybrid Polymer/infrared Quantum Dot Solar Cells. *Energy Environ. Sci.* 2013, 6, 769.
(17) Strein, E.; DeQuilettes, D.; Hsieh, S. T.; Colbert, A. E.; Ginger, D. S. Hot Hole Transfer Increases Polaron Yields in Hybrid Conjugated-Polymer/PbS Blends. *J. Phys. Chem. Lett.* 2014, 5, 208–211.
(18) Morgenstern, F. S. F.; Rao, A.; Bölhm, M. L.; Kist, J. P.; Vaynzhov, Y.; Greenham, N. C. Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends. *ACS Nano* 2014, 8, 1647–1654.
(19) Bakulin, A. A.; Neutzen, S.; Bakker, H. J.; Ottaviani, L.; Barakel, D.; Chen, Z. Charge Trapping Dynamics in PbS Colloidal Quantum Dot Photoinductive Devices. *ACS Nano* 2013, 7, 8771–8779.
(20) Burda, C.; Link, S.; Mohamed, M.; El-Sayed, M. The Relaxation Pathways of CdSe Nanoparticles Monitored with Femtosecond Time-Resolution from the Visible to the IR: Assignment of the Transient Features by Carrier Quenching. *J. Phys. Chem. B* 2001, 105, 12286–12292.
(21) Klimov, V.; McBranch, D. Electron and Hole Relaxation Pathways in Semiconductor Quantum Dots. *Phys. Rev. B: Condens. Matter Matter Phys.* 1999, 60, 13740–13749.
(22) Klimov, V. I. Spectral and Dynamical Properties of Multi-excitons in Semiconductor Nanocrystals. *Annu. Rev. Phys. Chem.* 2007, 58, 633–673.
(23) Underwood, D. F.; Kippeny, T.; Rosenthal, S. J. Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy. *J. Phys. Chem. B* 2001, 105, 436–443.
(24) Saaari, J. I.; Dias, E. A.; Reifsnnyder, D.; Krause, M. M.; Walsh, B. R.; Murray, C. B.; Kambhampati, P. Ultrafast Electron Trapping at the Surface of Semiconductor Nanocrystals: Exciton and Biexcitonic Processes. *J. Phys. Chem. B* 2013, 117, 4412–4421.
(25) Mooney, J.; Krause, M.; Saaari, J.; Kambhampati, P. Challenge to the Deep-Trap Model of the Surface in Semiconductor Nanocrystals. *Phys. Rev. B: Condens. Matter Matter Phys.* 2013, 87, 081201.
(26) Jones, M.; Lo, S. S.; Scholes, G. D. Quantitative Modeling of the Role of Surface Traps in CdSe/CdS/ZnS Nanocrystal Photo-luminescence Decay Dynamics. *Proc. Natl. Acad. Sci. U. S. A.* 2009, 106, 3011–3016.
(27) Gellins, S.; Rao, A.; Kumar, A.; Smith, S.; Chin, A. Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes. *Science 2014, 343, 512–517.
(28) Price, M. B.; Butkus, J.; Jellicoe, T. C.; Sadhana, A.; Brian, A.; Halpert, J. E.; Broch, K.; Hodgkins, J. M.; Friend, R. H.; Deschler, F. Hot Carrier Cooling and Photoinduced Refractive Index Changes in Organic-Inorganic Lead Halide Perovskites. *Nat. Commun.* 2015, 6, 8420.
(29) Ebenstein, Y.; Mokari, T.; Banin, U. Fluorescence Quantum Yield of CdSe/ZnS Nanocrystals Investigated by Correlated Atomic-
(30) Pons, T.; Medintz, I. L.; Farrell, D.; Wang, X.; Grimes, A. F.; English, D. S.; Berti, L.; Mattoussi, H. Single-Molecule Colocalization Studies Shed Light on the Idea of Fully Emitting versus Dark Single Quantum Dots. Small 2011, 7, 2101−2108.

(31) Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; et al. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941−2944.

(32) Li, Z.; Wang, W.; Greenham, N. C.; McNeill, C. R. Influence of Nanoparticle Shape on Charge Transport and Recombination in Polymer/nanocrystal Solar Cells. Phys. Chem. Chem. Phys. 2014, 16, 25684−25693.