Constructing word similarities in Meroitic as an aid to decipherment

March 30, 2009

Reginald D. Smith
Bouchet-Franklin Institute
P.O. Box 10051
Rochester, NY 14610, USA
rsmith@bouchet-franklin.org

Abstract
Meroitic is the still undeciphered language of the ancient civilization of Kush. Over the years, various techniques for decipherment such as finding a bilingual text or cognates from modern or other ancient languages in the Sudan and surrounding areas has not been successful. Using techniques borrowed from information theory and natural language statistics, similar words are paired and attempts are made to use currently defined words to extract at least partial meaning from unknown words.

This paper addresses a technique using a combination of known words and techniques from information theory to try to decipher the meanings of additional words in the extinct and undeciphered language, Meroitic. First, I will give a short history of the language and the problems translating it and next describe the statistical techniques and their results and implications.

1 A Short History of Meroitic (Török, 1997; Lobban, 2004)

Meroitic was the written language of the ancient civilization of Kush, located for centuries in what is now the Northern Sudan. The word 'Meroitic' derives from the name of the city Mero, which was located on the East bank of the Nile south of where the Atbara River flows off to the east. It is the second oldest written language in Africa after Egyptian hieroglyphs. It is a phonetic language with both a hieroglyph form using some adopted Egyptian hieroglyphs and a cursive form similar to Egyptian Demotic writing. The language had one innovation uncommon in ancient written languages such as Egyptian hieroglyphics or Greek in that there was a word separator, similar in function to spaces in modern
scripts, that looks similar to a colon (see Figure 1). Meroitic was employed starting the 2nd century BC and was continuously used until the fall of Mero in the mid 4th century AD.

The script was rediscovered in the 19th and 20th centuries as Western archaeologists began investigating the ancient ruins in the Sudan. The first substantial progress in deciphering Meroitic came around 1909 when British archaeologist Francis Llewellyn Griffith was able to use a bark stand which had the names of Meroitic rulers in Meroitic and Egyptian hieroglyphs. The Meroitic hieroglyphs were then corresponded to the Meroitic cursive script and it was then possible to transliterate Meroitic (see Figure 1). Some vocabulary was later deciphered by scholars including loan words from Egyptian, gods, names, honorifics, and common items. However, the language remains largely undeciphered. The greatest hope for decipherment, a Rosetta stone type of tablet containing writing in Meroitic and a known language such as Egyptian, Greek, Latin, or Axumite, has yet to be found. Further confounding research is the confusion regarding which language family Meroitic belongs to. Cognate analysis has proceeded extremely slowly since it is disputed to which language family Meroitic properly belongs. Recent work by Rilly (2004) has suggested that Meroitic belongs to the North Eastern Sudanic family, however, full decipherment is still elusive.

2 Past Statistical and Mathematical Work on Meroitic

Meroitic was one of the earliest ancient languages to be investigated using computers (Leclant, 1978; Heyler, 1970, 1974; Ouellette, 1999). Much of this work was dedicated to creating an alphabetical index of Meroitic and also comparing Meroitic words to possible cognates in Nubian or other known ancient and modern languages from the region.

In Smith (2007), many of the longest texts were analyzed by ranking words according to frequencies to verify whether the current texts we have follow the mathematical relation Zipf’s Law where the word frequencies f vary with the rank z according to the relation

$$f_z = \frac{C}{z^\alpha}, z = 1, 2, 3, n$$

where $\alpha \approx 1$. In analyzing the Meroitic texts, though many did not fit the strict criterion of $\alpha \approx 1$, the frequency-rank distribution followed the behavior of a truncated power law distribution whose exact parameters varied by text. Some texts such as the long stela REM 1003 (REM is a text designation that stands for Répertoire d’épigraphie méroïtique, the most comprehensive catalogue of Meroitic texts) more closely fit Zipf’s Law though. From these results, without knowing the meaning of the text it is clear that the statistical variations and occurrences of words in the Meroitic texts in our possession are not surprising and mirror those of other human languages. Though this may seem a trivial property at first glance, it gives us the hope of using more advanced statistical
Figure 1: Meroitic Cursive and Hieroglyphic words and their transliterations. Taken from the latest font set for Meroitic Hieroglyphic and Cursive characters developed by the Meroitic scholars Claude Carrier, Claude Rilly, Aminata Sackho-Antissier, and Olivier Cabon. Web Address: http://www.egypt.edu/etaussi/informatique/meroitique/meroitique01.htm3
techniques to help tease some of the meaning from the unknown portions of the language.

3 Introduction to Statistical Techniques

At the outset, I acknowledge that no language has ever been fully deciphered using purely statistical or mathematical techniques and I am not proposing that Meroitic will be completely understood using these tools. In particular, many of the subtleties of human semantics and syntax are irregular or do not follow a consistent pattern that statistics is usually excellent at analyzing. What this paper will attempt to do is not claim to derive the meaning, a loaded concept in the study of linguistics, of a word but rather find words which are used very similarly in the text. When two words are used very similarly with one of the words being known, we can hope to possibly infer what the other word in the pair means. In linguistics, the hypothesis that words that appear in similar contexts have similar semantics is known as the Distributional Hypothesis (Harris, 1968, 1985).

Similarity, which will be explained in more technical detail below, will be defined by looking at whether two different words share similar word neighbors for a distance of one or two words away. The steps in analyzing the similarity are five-fold. First, I combined several long Meroitic texts into one giant corpus. I separated out some common bound morphemes to help better identify particular words. Second, I used a computer program in Python to create three matrices: one showing the relative frequency of each word, one showing the frequency of a given word pair, \textsc{WORD1:WORD2} for any combination of the distinct words in the text for a word distance of one, and a final array with word pair frequencies for a word distance of two. Third, for all possible pairs of different words in the texts, I used the frequency arrays to find the mutual information between every distinct word pair. I created separate arrays of the mutual information metric for the mutual information based on word distance one and mutual information based on word distance two and then calculated a blended mutual information based on weightings of the one and two word distance mutual information. Fourth, using the blended mutual information array, I used a similarity metric to find similarity between words based on if they had similar mutual information for the other words in the texts. Finally, I compared the results for high similarity word pairs to what is known about Meroitic words. A spanning tree graphically showing the relationship between words was also aided to clarify the similarity relationships.

3.1 Step 1

The long stelae texts REM 1001, REM 1003, and REM 1044A-D were combined into one corpus separated by a character XXXX between the beginning and end of each text. The XXXX made sure that the last word of one text and the first word of another are not accidentally matched for either a distance one or
two word pair. In addition, as in (Smith, 2007) several common and recognized bound morphemes were separated from the words by the word separator character so they would be treated as separate words. Many Meroitic verbs, as well, as some nouns, have suffixes which contain grammatical meaning. For example, it is known that the suffix telowi or teli is appended to the name of a place, such as a city, to indicate that the subject of the sentence was affiliated with this place. There is also an extremely common suffix lowi (“he/she/it is”) or li (“the”) that is appended to nouns that may denote the noun as an indirect object in the sentence. Their definitions are still tenuous, however, these bound morphemes are very common and were separated into independent words for the second Zipf plot. The six bound morphemes separated out were “qo”, “lo”, “li”, “te”, “lebkwi”, “mhe”. They were separated in the manner:

3.2 Step 2

The word frequency arrays were created as follows. First, a normalized frequency of each different word in the text was calculated ranging between 0 and 1 where the total frequency of a word divided by the total number of words in a text defines the word frequency. Next to understand word pair frequency, imagine a string of words separated by the colon-like word separator character, A:B:C. B/C and A/B are distance one neighbors and A/C are distance two neighbors. This is repeated for all words throughout the text. The frequency of a word pair is the number of occurrences of that pair divided by the total number of word pairs in the text.

3.3 Step 3

Here the procedure becomes more complicated and theoretical so the appropriate background is necessary. Many statistical natural language methods for analyzing corpuses such as hidden Markov models (HMM) or neural networks require “training” with a tagged corpus that emphasizes parts of speech, grammar, etc. Since these are mostly unknown for Meroitic, we are forced to rely on techniques that make no a priori assumptions about the language syntax or word relationships.

Two relatively similar approaches relying on the Distributional Hypothesis were used in (Lankhorst, 1994) and (Lin et. al, 2003) in combination with genetic
algorithms and similarity measures respectively to find relationships between words based on their distributions within a text. In (Lankhorst, 1994), a fixed number of categories is created and each word is randomly assigned a category. The mutual information among words in each category is measured and the categories are altered using a genetic algorithm with mutual information as the fitness. A maximum mutual information is asymptotically approached after a certain number of generations and the word/categories at this point typically reflect known grammatical categories. In (Lin et. al, 2003; Pantel & Lin, 2002) word synonyms are discovered in a text by taking the similarity among words based on the mutual information between the two words and other words in the text. Those words which have the highest similarity are often semantically similar.

The approach in this paper most closely follows that of Lin et. al. in finding the mutual information amongst words in the corpus and then computing a similarity between the words based off of this. The mutual information between two words in the text, \(x \) and \(y \), is termed \(I_{xy} \) and is defined as

\[
I_{xy} = \sum_x \sum_y p_{xy} \log \frac{p_{xy}}{p_x p_y}
\]

where \(p_{xy} \) is the frequency of word pair \((x, y) \) and \(p_x \) and \(p_y \) are the frequencies of words \(x \) and \(y \) in the texts. Two different arrays of mutual information were calculated for the word distance one and two pair frequencies. Finally, a blended mutual information is calculated using different weightings of the one and two distance mutual information.

The blended mutual information, \(I_B \), is

\[
I_B = \sqrt{I_1^2 + (WI_2)^2}
\]

where \(I_1 \) and \(I_2 \) are the mutual information for distance one and two word pairs respectively and the weight, \(W \), takes a value between 0 and 1. It is difficult to find an objective value for \(W \). The method used in the paper which will be explained more in the next section is that different values of \(W \) were tested until many known words with similar meanings had high measures of similarity. Though this could be accused of affirming the consequent, it can be considered a method of calibration based on our small current knowledge.

3.4 Step 4

For the blended mutual information a similarity measure, \(S \), was calculated where \(S \) is defined as

\[
S_{xy} = \sum_z \frac{2I_B(x, z)I_B(y, z)}{I_B(x, z)^2 + I_B(y, z)^2}
\]

where \(z \) is all words in the corpus where \(z \neq x, y \).
3.5 Step 5

The word pairs are ranked by descending similarity and the results analyzed. Since relatively infrequent words will likely give spurious or insignificant results, only word pairs where both words appeared at least three times were used in the final analysis for comparison.

In Table 2, the top word pairs by descending similarity are shown. A similarity cutoff of 0.95 was used given the clustering of words above 0.95 and the poor matching of known words and wider spread of similarity scores for word pairs with a score under 0.95. The value of \(W \) used is 0.75. This value was chosen because of the excellent and high similarity match of the first two word pairs which consist entirely of known words with similar meanings. The following words in the ranking also show promise. The word \(\text{kek} \) is still undeciphered but may likely have a religious meaning. Perhaps ‘soul’ like the Egyptian \(\text{ka} \) or a Meroitic deity, however, this is pure speculative. The word \(\text{seb} \) is well-known among Meroitic scholars to have a religious meaning, possibly the name of a deity, but the exact meaning is still unknown. The word \(\text{abrsel} \) means “every man” while though \(\text{wwikewi} \) isn’t specifically understood, the \(\text{wwi} \)-morpheme indicates directional movement.

In order to more clearly see how the words relate to each other, I graphically visualized the similarity relationships using the distance metric derived in \cite{Gower1966}. This distance metric is used to convert comparison metrics such as correlation or similarity among variables to metric distances.

\[
d = \sqrt{2(1 - s_{ij})} \quad (5)
\]

where \(s_{ij} \) is the similarity between words \(i \) and \(j \). These distances can then be plotted onto a minimum spanning tree such as that in Figure 2.

4 Problems & Issues

As stated before, I cannot claim to solve the issues related to Meroitic solely through statistical analysis. In particular, though the information such an analysis can provide is directional it is sensitive to interpretation. The choice of the
weight, W, though not completely arbitrary uses a priori knowledge to set its value. While the results it returns are consistent with closely related known words, this may introduce bias. The cutoff for the similarity measurement, at a value of 0.95, is also arbitrary and based on a subjective analysis of the data. Therefore, despite the equations, much of this technique requires knowledge of the language and subjective interpretation to extract useful knowledge. In the end, however, I believe this technique will help shed a light on many previously intractable problems in Meroitic and could become a valuable tool in the eventual decipherment of the language.

Acknowledgements

The author would like to thank Dr. Claude Rilly and Dr. Laurance Doyle for helpful comments and critiques of the ideas in the paper.

References

Gower, JC, Some distance properties of latent root and vector methods used in multivariate analysis, *Biometrika*, 53, 325-341.

Harris, Zelig (1968) *Mathematical Structures of Language*. New York: Wiley.

Harris, Zelig. (1985). Distributional Structure. In: Katz, J. J. (Editor) *The Philosophy of Linguistics*. 25-47 New York: Oxford University Press.

Heyler, Andre (1970). Essai de Transcription Analytique des Textes Meroitiques Isolees. *Meroitic Newsletter*, 5, 4-8.

Heyler, Andre (1974). Meroitic Language and Computers: Problems and Perspectives. In: Abdalla, A.M. (Editor) *Studies in Ancient Languages of the Sudan*: 31-39 Khartoum: Khartoum University Press.

Lankhorst, Marc (1994). “Automatic Word Categorization with Genetic Algorithms”, University of Groningen, Department of Computer Science, Computing Science Report CS-R 9405.

Leclant, Jean (1978). The present position in the deciphering of Meroitic script. In: *The peopling of ancient Egypt and the deciphering of Meroitic script : proceedings of the symposium held in Cairo from 28 January to 3 February 1974*, 107-119. Paris: UNESCO.

Lin, Dekang, Zhao Shaojun, Qin, Lijuan, & Zhou, Ming (2003). “Identifying Synonyms among Distributionally Similar Words” In: *Proceedings of IJCAI-03*, 1492-1493, Acapulco.

Lobban, Richard (2004). *Historical Dictionary of Ancient and Medieval Nubia*. Lanham: Scarecrow.
Ouellette, Monica (1999). “Investigation of the ancient Meroitic writing system”, Masters Thesis, Rhode Island College.

Pantel, Patrick & Lin, Dekang (2002). “Discovering Word Senses from Text” In Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining 613-619. Edmonton.

Rilly, Claude (2004). The Linguistic Position of Meroitic. ARKAMANI Sudan Journal of Archaeology and Anthropology [http://www.arkamani.org/arkamani-library/meroitic/rilly.htm].

Smith, Reginald (2007). Investigation of the Zipf-plot of the extinct Meroitic language. Glottometrics, 15 53-61.

Török, László (1997). The Kingdom of Kush: Handbook of the Napatan-Meroitic Civilization. London: Brill.
Figure 2: Graphic representation of the minimum spanning tree of the data represented in table 2.