Gallai–Ramsey Numbers Involving a Rainbow 4-Path

Jinyu Zou1 · Zhao Wang2 · Hong-Jian Lai3 · Yaping Mao4

Received: 27 November 2021 / Revised: 14 March 2023 / Accepted: 24 March 2023 / Published online: 24 April 2023
© The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2023

Abstract
Given two non-empty graphs G, H and a positive integer k, the Gallai–Ramsey number $gr_k(G : H)$ is defined as the minimum integer N such that for all $n \geq N$, every k-edge-coloring of K_n contains either a rainbow colored copy of G or a monochromatic copy of H. In this paper, we got some exact values or bounds for $gr_k(P_5 : H)$ ($k \geq 3$) if H is a general graph or a star with extra independent edges or a pineapple.

Keywords Ramsey theory · Gallai–Ramsey number · Pineapple · Star with extra independent edges

Mathematics Subject Classification 05D10 · 05C15

Supported by the National Science Foundation of China (Nos. 12061059, 11601254, 11551001) and the Qinghai Key Laboratory of Internet of Things Project (2017-ZJ-Y21).

✉ Yaping Mao
maoyaping@ymail.com
Jinyu Zou
jinyuzou@126.com
Zhao Wang
wangzhao@mail.bnu.edu.cn
Hong-Jian Lai
hjlai@math.wvu.edu

1 School of Mathematics and Physics, Qinghai University, Xining 810016, China
2 College of Science, China Jiliang University, Hangzhou 310018, China
3 Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA
4 Academy of Plateau Science and Sustainability, and School of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China
1 Introduction

All graphs considered are finite, simple and undirected. We follow the notation and terminology of Bondy [1]. Let $V(G)$, $E(G)$, $e(G)$, $\delta(G)$ be the vertex set, edge set, size, minimum degree of graph G, respectively. We use $G - X$ to denote the subgraph of G obtained by removing all the vertices of X together with the edges incident with them from G; similarly, we use $G \setminus M$ to denote the subgraph of G obtained by removing all the edges of M from G. The union $G \cup H$ of two graphs G and H is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. We call the path P_{t+1}, of order $t + 1$ and having t edges, a t-path. A complete graph is a graph in which every pair of vertices are adjacent, and a complete graph on n vertices is denoted by K_n. Let $[a, b]$ be the interval from a to b.

An k-edge-coloring is exact if all colors are used at least once. In this work, we only consider exact edge-colorings of graphs. An edge colored graph is called rainbow if all edges have different colors and monochromatic if all edges have a single color.

1.1 Classical Ramsey Number

Ramsey theory were introduced in 1930; see [23]. The main subject of the theory are complete graphs whose subgraphs can have some regular properties.

Definition 1 Given k graphs H_1, H_2, ..., H_k, the Ramsey number $R(H_1, H_2, \ldots, H_k)$ is defined as the minimum number of vertices n needed so that every k-edge-coloring of K_n contains a monochromatic H_i, where $1 \leq i \leq n$.

If $H_1 = H_2 = \cdots = H_k$, then we write the Ramsey number as $R_k(H)$. If $H_i = K_{k_i}$ ($1 \leq i \leq k$), then we use the abbreviation $R(k_1, \ldots, k_k)$.

Ramsey number has its applications on the fields of communications, information retrieval in computer science, and decision-making; see [24, 25] for examples. We refer the interested reader to [22] for a dynamic survey of small Ramsey numbers.

1.2 Gallai–Ramsey Number

Edge colorings of complete graphs that contain no rainbow triangle have very interesting and somewhat surprising structure. In 1967, Gallai [8] first examined this structure under the guise of transitive orientations of graphs and it can also be traced back to [2]. For this reason, colored complete graphs containing no rainbow triangle are called Gallai colorings. Gallai’s result was restated in [11] in the terminology of graphs. For the following statement, a trivial partition is a partition into only one part.

Theorem 1.1 [2, 8, 11] In any coloring of a complete graph containing no rainbow triangle, there exists a nontrivial partition of the vertices (called a Gallai partition), say H_1, H_2, \ldots, H_t, satisfying the following two conditions.

(a) The number of colors on the edges among H_1, H_2, \ldots, H_t are at most two.

(b) For each pair of parts H_i, H_j ($1 \leq i \neq j \leq t$), all the edges between H_i and H_j receive the same color.
The induced subgraph of a Gallai colored complete graph constructed by selecting a single vertex from each part of a Gallai partition is called the reduced graph. By Theorem 1.1, the reduced graph is a 2-colored complete graph. This kind of restriction on the distribution of colors has led to a variety of interesting works like [9, 13].

Definition 2 Given two graphs G and H, the general k-colored Gallai–Ramsey number $gr_k(G : H)$ is defined to be the minimum integer m such that every k-coloring of the complete graph on m vertices contains either a rainbow copy of G or a monochromatic copy of H.

With the additional restriction of forbidding the rainbow copy of G, it is clear that $gr_k(G : H) \leq R_k(H)$ for any G. Till now, most work focuses on the case $G = K_3$; see [3, 4, 7, 11–13, 18–21, 28, 31]. For more details on the Gallai-Ramsey theory, we refer to the book [16] and papers [6, 17].

1.3 Structural Theorems and Main Results

Thomason and Wagner [27] obtained the structural theorems for P_4 and P_5.

Theorem 1.2 [27] Let $K_{n,n} \geq 4$, be edge colored so that it contains no rainbow 3-path P_4. Then one of the following holds:

(a) at most two colors are used;

(b) $n = 4$ and three colors are used, each color forming a 1-factor.

In an edge-colored graph, define $V^{(j)}$ as the set of vertices with at least one incident edge in color j and denote $E^{(j)}$ to be the set of edges of color j for a given color j.

Theorem 1.3 [27] Let $K_{n,n} \geq 5$, be edge colored so that it contains no rainbow 4-path P_5. Then, after renumbering the colors, one of the following must hold:

(a) at most three colors are used;

(b) color 1 is dominant, meaning that the sets $V^{(j)}$, $j \geq 2$, are disjoint;

(c) $K_n - a$ is monochromatic for some vertex a;

(d) there are three vertices a, b, c such that $E^{(2)} = \{ab\}, E^{(3)} = \{ac\}, E^{(4)}$ contains bc plus perhaps some edges incident with a, and every other edge is in $E^{(1)}$;

(e) there are four vertices a, b, c, d such that $\{ab\} \subseteq E^{(2)} \subseteq \{ab, cd\}, E^{(3)} = \{ac, bd\}, E^{(4)} = \{ad, bc\}$ and every other edge is in $E^{(1)}$;

(f) $n = 5$, $V(K_n) = \{a, b, c, d, e\}$, $E^{(1)} = \{ad, ae, bc\}$, $E^{(2)} = \{bd, be, ac\}$, $E^{(3)} = \{cd, ce, ab\}$ and $E^{(4)} = \{de\}$.

Li et al. [15] got some exact values and bounds of $gr_k(P_5 : K_t)$, and investigated the edge-colorings of complete graphs and complete bipartite graphs without rainbow 4-path and 5-path. Fujita and Magnant [5] got the structural theorem for $G = S_t^+$ like Theorem 1.1. Li and Wang [14] studied the monochromatic stars in rainbow K_3-free and S_t^+-free colorings.

We now give the definitions of two graph classes.

The graph S_t' is obtained from a star of order t by adding an extra r independent edges between the leaves of the so that there are r triangles and $t - 2r - 1$ pendent...
edges in S'_r. For $r = 0$ we obtain $S'_r = K_{1,t-1}$, which are called stars. For $r = \frac{t-1}{2}$, if t is odd we obtain $S'_r = F_{\frac{t-1}{2}}$, which are called fans.

A pineapple $PA_{t,\omega}$ is a graph obtained from the complete graph K_ω by attaching $t - \omega$ pendent vertices to the same vertices of K_ω, we suppose that $t \geq \omega + 1$.

In Sect. 2, we get some exact values or bounds for $gr_k(P_5 : H)$, where H is a general graph. In Sect. 3, we obtain some results when $H = S'_r$, where $t \geq 2r + 2$ and $r \geq 1$. We also get some results in Sect. 4 when H is a pineapple.

2 General Results

In this section, we assume that H is a graph of order t.

Theorem 2.1 For two integers k, t with $k \geq 7$ and $k \geq t + 1$, we have

$$gr_k(P_5 : H) = \left\lceil \frac{1 + \sqrt{1 + 8k}}{2} \right\rceil.$$

Proof Let N_k be an integer with $N_k = \left\lceil \frac{1 + \sqrt{1 + 8k}}{2} \right\rceil$. For the lower bound, if there is a k-edge-coloring χ of a complete graph $K_{N_k - 1}$, then $k \leq \left\lceil \frac{N_k - 1}{2} \right\rceil$, contradicting with $N_k = \left\lceil \frac{1 + \sqrt{1 + 8k}}{2} \right\rceil$. It follows that $gr_k(P_5 : H) \geq N_k$.

It suffices to show that $gr_k(P_5 : H) \leq N_k$. Let χ be any k-edge-coloring of K_n ($n \geq N_k$) containing no rainbow copy of P_5. From Theorem 1.3, (b) or (c) is true. If (b) is true, let $V^{(2)}$, $V^{(3)}$, ..., $V^{(k)}$ be a partition of $V(K_n)$ such that there are only edges of color 1 or i within $V^{(i)}$ for $2 \leq i \leq k$, and hence there are only edges of color 1 among the parts. Choose one vertex of $V^{(i)}$, say v_i. Then the subgraph induced by $\{v_2, v_3, \ldots, v_k\}$ is a complete graph K_{k-1}. For $k \geq t + 1$, there exists a monochromatic copy of K_t colored by 1, and hence there is a monochromatic copy of H colored by 1. If (c) is true, then there is a vertex v such that $K_{n - v}$ is monochromatic and $n \geq k$. For $k \geq t + 1$ and $n \geq t + 1$, there is a monochromatic copy of K_t, and so we can find a monochromatic copy of H. □

Theorem 2.2 Let k, t be two integers with $k = 5, 6$, $k \geq t + 1$ and $t \geq 3$. Then $gr_k(P_5 : H) = 5$.

Proof For the lower bound, we first suppose $k = 5$. Let G_1 denote a colored complete graph K_4 with $V(K_4) = \{v_i \mid 1 \leq i \leq 4\}$ under the 5-edge-coloring χ such that $\chi(v_1v_2) = \chi(v_3v_4) = 1$, $\chi(v_1v_3) = 2$, $\chi(v_1v_4) = 3$, $\chi(v_2v_3) = 4$ and $\chi(v_2v_4) = 5$. Next, we suppose $k = 6$. Let G_2 denote a colored complete graph K_4 with $V(K_4) = \{v_i \mid 1 \leq i \leq 4\}$ under the 6-edge-coloring χ such that $\chi(v_1v_2) = 1$, $\chi(v_3v_4) = 2$, $\chi(v_1v_3) = 3$, $\chi(v_1v_4) = 4$, $\chi(v_2v_3) = 5$ and $\chi(v_2v_4) = 6$. Since both G_1 and G_2 contain neither a rainbow copy of P_5 nor a monochromatic copy of H, it follows that $gr_k(P_5 : H) \geq 5$ for $k = 5, 6$.

It suffices to show that $gr_k(P_5 : H) \leq 5$. Suppose G is any k ($k = 5, 6$)-edge-coloring of K_n ($n \geq 5$) which contains no rainbow copy of P_5. From Theorem 1.3, (b) or (c) is true, and the proof is similar to Theorem 2.1. □
For $k = t$, we first show that H is not a complete graph.

Theorem 2.3 Let k, t be two integers with $k \geq 5$ and $k = t$. Then
\[
\text{gr}_k (P_5 : H) = t + 1.
\]

Proof For the lower bound, from Theorem 2.1, let G_3 be a complete graph obtained from a K_{t-1} with vertex set $\{u_1, u_2, \ldots, u_{t-1}\}$ colored with 1 by adding a new vertex u and edges $u_iu (1 \leq i \leq t-1)$ colored by $i+1$. Note that there is neither a rainbow copy of P_5 nor a monochromatic copy of H. Thus $\text{gr}_k (P_5 : H) \geq t + 1$.

It suffices to show that $\text{gr}_k (P_5 : H) \leq t + 1$. Let χ be any k-edge-coloring of K_n ($n \geq t + 1$) containing no rainbow copy of P_5. From Theorem 1.3, (b) or (c) is true. If (b) is true, choose one vertex of $V(i) (2 \leq i \leq k)$, say v_i. Then $\{v_2, v_3, \ldots, v_k\}$ induces a complete graph K_{k-1}. For $k \geq t$, there exists a monochromatic copy of K_{t-1} with color 1. As $|V(i)| \geq 2$, we can choose another vertex of $V(2)$, say u. Note that $\{u, v_2, v_3, \ldots, v_k\}$ induces a monochromatic $K_{t-e}, e = uv_2$. Then there is a copy of H with color 1. If (c) is true, there is a vertex v such that $K_n - v$ is monochromatic. For $n \geq t + 1$, there is a monochromatic copy of K_t, we can find a monochromatic copy of H. \(\square\)

Next we obtain the result on H is not a complete graph by the following lemma.

Lemma 2.1 For $4 \leq k \leq a$, if H_t is a graph of order t and K_a ($a \geq 3$) is the maximal clique of H_t, then $\text{gr}_k (P_5 : H_t) \geq (a-1)(t-1) + 1$.

Proof Let G_4 be a complete graph with $V(G_4) = U_2 \cup U_3 \cup \cdots \cup U_a$ such that the graph induced by U_i ($2 \leq i \leq a$) is a complete graph K_{t-1}, the set $\{U_2, U_3, \ldots, U_a\} = X_2 \cup \cdots \cup X_k$ with each K_{t-1} of X_j ($2 \leq j \leq k$) colored by j and $|X_j| = \lceil \frac{a-1}{k-1} \rceil$ or $\lfloor \frac{a-1}{k-1} \rfloor + 1$ ($2 \leq j \leq k$), $|X_2| + |X_3| + \cdots + |X_k| = a-1$, all edges between U_i and U_s ($i \neq s$) are colored by 1. Thus $|V(G_4)| = (a-1)(t-1)$. It is clear that G_4 contains neither a rainbow copy of P_5 nor a monochromatic copy of H_t, and so $\text{gr}_k (P_5 : H_t) \geq (a-1)(t-1) + 1$. \(\square\)

Next, we suppose that H is a complete graph K_t.

Theorem 2.4 For two integers k, t with $k \geq 5$ and $k = t$, $\text{gr}_k (P_5 : K_t) = (t-1)^2 + 1$.

Proof From Lemma 2.1, we have $\text{gr}_k (P_5 : H) \geq (t-1)^2 + 1$. It suffices to show that $\text{gr}_k (P_5 : H) \leq (t-1)^2 + 1$. Suppose that χ is any k-edge-coloring of K_n ($n \geq (t-1)^2 + 1$) containing no rainbow copy of P_5. From Theorem 1.3, (b) or (c) is true. If (b) is true, we can choose one vertex of $V(i) (2 \leq i \leq k)$, say v_i, then $\{v_2, v_3, \ldots, v_k\}$ induces a monochromatic copy of K_{t-1}. If there is a vertex of $V(i)$ ($2 \leq i \leq k$), say $V(2)$ and $u_2 \in V(2)$, such that $\chi(u_2u_2) = 1$, then the graph induced by $\{u_2, v_3, \ldots, v_k\}$ is a monochromatic copy of K_t colored by 1. If the graph induced by $V(i) (2 \leq i \leq k)$ contains no edges colored by 1, as $n \geq (t-1)^2 + 1$, there is $V(i) \geq t (2 \leq i \leq k)$, say $|V(2)| \geq t$. Thus the graph induced by $V(2)$ is a monochromatic copy of K_t colored by 2. \(\square\)
Remark 2.1 For two integers k, t with $k \geq 5$ and $k = t$, if H is not a complete graph and $|V(H)| = t$, then $\text{gr}_k(P_5 : K_t) - \text{gr}_k(P_5 : H) = (t-1)^2 + 1 - (t+1) = (t-1)(t-2) - 1$ can be arbitrarily large.

From Theorems 2.1, 2.2, 2.3 and 2.4, we obtain the following corollary.

Corollary 2.5 For integers $k \geq 5$ and $k \geq t$,

$$
\text{gr}_k(P_5 : H) = \begin{cases}
\max \left\{ \left\lceil \frac{1+\sqrt{1+8k}}{2} \right\rceil, 5 \right\}, & k \geq t + 1; \\
t + 1, & k = t \text{ and } H \text{ is not a complete graph}; \\
(t-1)^2 + 1, & k = t \text{ and } H \text{ is a complete graph}.
\end{cases}
$$

The following theorem shows the result on the graph H obtained from a complete graph K_t by deleting a maximally matching M.

Theorem 2.6 For two integers k, t with $\left\lceil \frac{t+1}{2} \right\rceil \leq k \leq t - 1$ and $k \geq 5$, if H is a graph obtained from a complete graph K_t by deleting a maximally matching M, then

$$
\text{gr}_k(P_5 : H) = \max \left\{ \left\lceil \frac{1+\sqrt{1+8k}}{2} \right\rceil, t + 1 \right\}.
$$

Proof From Theorem 2.3, we have $\text{gr}_k(P_5 : H) \geq \left\lceil \frac{1+\sqrt{1+8k}}{2} \right\rceil$. Let G_5 be a complete graph obtained from a K_{t-1} with vertex set $\{w_1, w_2, \ldots, w_{t-1}\}$ colored by 1 by adding a new vertex w and edge set $\{w_i w | 1 \leq i \leq t - 1\} = W_1 \cup W_2 \cup \cdots \cup W_k$ with $|W_i| = \lfloor \frac{t-1}{k-1} \rfloor + 1$, $|W_1| + \cdots + |W_k| = t - 1$. Clearly, G_5 contains neither a rainbow copy of P_5 nor a monochromatic copy of H, and hence $\text{gr}_k(P_5 : H) \geq t + 1$. So $\text{gr}_k(P_5 : H) \geq \max \left\{ \left\lceil \frac{1+\sqrt{1+8k}}{2} \right\rceil, t + 1 \right\}$.

It suffices to show that $\text{gr}_k(P_5 : H) \leq \max \left\{ \left\lceil \frac{1+\sqrt{1+8k}}{2} \right\rceil, t + 1 \right\}$. Let N be an integer with $N = \max \left\{ \left\lceil \frac{1+\sqrt{1+8k}}{2} \right\rceil, t + 1 \right\}$. Suppose that χ is any k-edge-coloring of K_n ($n \geq N$) containing no rainbow copy of P_5. From Theorem 1.3, (b) or (c) is true. If (b) is true, then for $|V(i)| \geq 2$ ($2 \leq i \leq k$), we choose two vertices from $V(i)$ ($2 \leq i \leq k$), say u_i, v_i. Then $\{u_2, v_2, u_3, v_3, \ldots, u_k, v_k\}$ induced a monochromatic copy of graph $K_{2k-2} \setminus M$ with color 1, where M is a maximally matching of K_{2k-2}. Since $2k - 2 \geq t$, it follows that there is a copy of graph H with color 1. If (c) is true, then there is a vertex v such that $K_n - v$ is monochromatic. For $n \geq t + 1$, there is a monochromatic K_t, we can find a monochromatic copy of H. □

The lower and upper bounds of $\text{gr}_k(P_5 : H)$ on $\Delta(H)$ is shown in the following theorem.

Theorem 2.7 Let k, t, p, q be four positive integers with $5 \leq k \leq t - 1$. If $\Delta(H) - 1 = p(k - 2) + q, q \in \{0, 1, \ldots, k - 3\}$ and $R_2(H) \geq t + 1$, then

$$
\max \{\Delta(H) + p, t + 1\} \leq \text{gr}_k(P_5 : H) \leq R_2(H).
$$
Proof We first show that $\text{gr}_k(P_5 : H) \geq \max \{\Delta(H) + p, t + 1\}$. Let G_6 be a complete graph with $V(G_6) = U_2 \cup U_3 \cup \cdots \cup U_k$ such that the graph induced by $U_i (2 \leq i \leq k)$ is a monochromatic graph with color i, and all edges between U_i and $U_j (i \neq j)$ are colored by 1, $|U_i| = p + 1 (2 \leq i \leq q + 1), |U_i| = p (q + 2 \leq i \leq k)$. Thus $|V(G_6)| = (k - 1)p + q$. Choose any $k - 2$ elements from $\{U_2, U_3, \ldots, U_k\}$, say U_2, \ldots, U_{k-1}. Then $|U_2| + \cdots + |U_{k-1}| \leq \Delta(H) - 1$. For any vertex of U_i, say u_i ($2 \leq i \leq k$), the degree of u_i in G_6 is at most $\Delta(H) - 1$. Note that both G_5 and G_6 have neither a rainbow copy of P_5 nor a monochromatic copy of H. So $\text{gr}_k(P_5 : H) \geq \max \{(k - 1)p + q + 1, t + 1\}$.

It suffices to show that $\text{gr}_k(P_5 : H) \leq R_2(H)$. Let χ be any k-edge-coloring of K_n ($n \geq R(H)$) containing no rainbow copy of P_5. From Theorem 1.3, (b) or (c) is true. We first consider (b) is true. Let $V^{(2)}, V^{(3)}, \ldots, V^{(k)}$ be a partition of $V(K_n)$ such that there are only edges of color 1 or i within $V^{(i)}$ for $2 \leq i \leq k$, and there are only edges of color 1 between the parts. Now we recolor the edges of K_n to make a 2-edge coloring of K_n such that all edges with color i ($3 \leq i \leq k$) of $V^{(i)}$ ($3 \leq i \leq k$) are changed to color 2. Let F denote the resulting graph. Since $|V(F)| = n \geq R_2(H)$, it follows that K_n must contain a monochromatic copy of H. If (c) is true, as $R_2(H) \geq t + 1$, there is a vertex v such that $K_{R_2(H)} - v$ is monochromatic, say color 1, and so there is a monochromatic copy of H. \Box

3 Results for the Rainbow 4-Path and Monochromatic S'_r

From the result on general results in Sect. 2, we investigate the case $3 \leq k \leq t - 1$ for the graph S'_r. First we consider $5 \leq k \leq t - 1$.

Theorem 3.1 Let k, r, t be three integers with $5 \leq k \leq t - 1$ and $1 \leq r \leq k - 2$. Then

$$\text{gr}_k(P_5 : S'_r) = \max \{t + p - 1, t + 1\},$$

where $t - 2 = p(k - 2) + q, q \in \{0, 1, \ldots, k - 3\}$.

Proof From Theorem 2.7, we have $\text{gr}_k(P_5 : S'_r) \geq \max \{t + p - 1, t + 1\}$. It suffices to show that $\text{gr}_k(P_5 : S'_r) \leq \max \{t + p - 1, t + 1\}$. Let $N = \max \{t + p - 1, t + 1\}$. Suppose G is any k-edge-coloring of K_n ($n \geq N$) which contains no rainbow copy of P_5. From Theorem 1.3, (b) or (c) is true. We first consider (b) is true. As $N \geq t + p - 1$, there must be $k - 2$ elements in $\{V^{(2)}, V^{(3)}, \ldots, V^{(k)}\}$, say $V^{(2)}, V^{(3)}, \ldots, V^{(k-1)}$, such that $|V^{(2)}| + \cdots + |V^{(k-1)}| \geq t - 1$. Choose one vertex u of $V^{(k)}$, and ℓ_i ($\ell_i \geq 2, \sum_{2 \leq i \leq k-1} \ell_i = t - 1$) vertices of $V^{(i)}$ ($2 \leq i \leq t - 1$), and $|V^{(i)}| \geq 2$ ($2 \leq i \leq k$), $\Delta(S'_r) = t - 1$, the graph induced by these vertices contains a monochromatic copy of S'_r. If (c) is true, as $n \geq t + 1$, there is a vertex v such that $K_n - v$ is monochromatic, say color 1, and hence there is a monochromatic copy of S'_r. \Box

Next, we show the result on the case $k = 4$ for S'_r. ☒ Springer
Theorem 3.2 Let k, t, r be three integers with $k = 4$, $t \geq 6$ and $r = 1, 2$. Then

$$\text{gr}_4(P_5 : S_r^t) = t + p - 1,$$

where $t - 2 = 2p + q$ and $q \in \{0, 1\}$.

Proof For the lower bound, let F_1 be a 4-edge-coloring complete graph with $V(F_1) = U_2 \cup U_3 \cup U_4$, and the graph induced by U_2, U_3, U_4 are K_{p+1} if $q = 1$ or K_p if $q = 0$ colored by 2, K_p colored by 3, K_p colored by 4 respectively, and there are only edges of color 1 between the parts. Then $|V(F_1)| = 3p + q$. Let F_2 be a complete graph obtained from a K_{t-1} with vertex set $\{w_1, w_2, \ldots, w_{t-1}\}$ colored by 1 by adding a new vertex w and edge set $\{w_iw, 1 \leq i \leq t - 1\} = W_1 \cup W_2 \cup W_3 \cup W_4$ with $|W_i| = \lceil \frac{t-1}{2} \rceil$ or $\lfloor \frac{t-1}{2} \rfloor + 1$, $|W_1| + |W_2| + |W_3| + |W_4| = t - 1$. Note that both F_1 and F_2 contain neither a rainbow copy of P_5 nor a monochromatic copy of S_r^t. So $\text{gr}_k(P_5 : S_r^t) \geq t + p - 1$.

It suffices to show that $\text{gr}_k(P_5 : S_r^t) \leq t + p - 1$. Suppose G is any 4-edge-coloring of K_n where $n \geq t + p - 1$ which contains no rainbow copy of P_5. From Theorem 1.3, (b) or (c) or (d) or (e) is true. Suppose that (b) is true. Let $V^{(2)}$, $V^{(3)}$, $V^{(4)}$ be a partition of $V(G)$ such that there are only edges of color 1 or i within $V^{(i)}$ for $2 \leq i \leq 4$. Then there are only edges with color 1 among the parts. Since $n \geq t + p - 1$, it follows that there exist two elements in $\{V^{(2)}, V^{(3)}, V^{(4)}\}$, say $V^{(2)}$, $V^{(3)}$, such that $|V^{(2)}| + |V^{(3)}| \geq t - 1$, otherwise $n < t$, a contradiction. Choose one vertex of $V^{(4)}$, say v, ℓ_1 ($\ell_1 \geq 2$) vertices of $V^{(2)}$, say $\{u_1, \ldots, u_{\ell_1}\}$ and ℓ_2 ($\ell_2 \geq 2$) vertices of $V^{(3)}$, say $\{w_1, \ldots, w_{\ell_2}\}$, $\ell_1 + \ell_2 = t - 1$. Then the subgraph induced by $\{v, u_1, \ldots, u_{\ell_1}, w_1, \ldots, w_{\ell_2}\}$ contains a monochromatic copy of S_r^t. Suppose that (e) is true. Since $n \geq t + p - 1$, $t - 2 = 2p + q$ and $q \in \{0, 1\}$, it follows that $n \geq t + 1$, and hence there is a vertex v such that $K_n - v$ is monochromatic, say color 1, and hence there is a monochromatic copy of S_r^t. Suppose that (d) or (e) is true. Since $t \geq 6$ and $n \geq 7$, it follows that there is a monochromatic copy of S_r^t. \hfill \Box

Lemma 3.1 $\text{gr}_4(P_5 : S_4^1) = 6$.

Proof Let F_3 be a colored complete graph K_5 with $V(K_5) = \{v_i | 1 \leq i \leq 5\}$ under the 4-edge-coloring χ such that $\chi(v_1v_4) = \chi(v_1v_5) = \chi(v_2v_3) = 1$, $\chi(v_1v_3) = \chi(v_2v_4) = \chi(v_2v_5) = 2$, $\chi(v_1v_2) = \chi(v_3v_4) = \chi(v_3v_5) = 3$, and $\chi(v_4v_5) = 4$. Since there is neither a rainbow copy of P_5 nor a monochromatic copy of S_4^1 under the coloring χ, it follows that $\text{gr}_4(P_5 : S_4^1) \geq 6$. It suffices to show $\text{gr}_4(P_5 : S_4^1) \leq 6$. Suppose G is any 4-edge-coloring of K_n where $n \geq 6$ containing no rainbow copy of P_5. From Theorem 1.3, (b) or (c) or (d) or (e) is true. If (b) is true, then there is a monochromatic copy of S_4^1 with color 1. If (c) is true, then $K_n - v$ is monochromatic, and hence there is a monochromatic copy of S_4^1. If (d) or (e) is true, there is a monochromatic copy of S_4^1 with color 1. \hfill \Box

Lemma 3.2 $\text{gr}_4(P_5 : S_5^1) = 6$.

Proof Since F_3 contains neither a rainbow copy of P_5 nor a monochromatic copy of S_5^1 under the coloring χ, it follows that $\text{gr}_4(P_5 : S_5^1) \geq 6$. It suffices to show
\(\text{gr}_4(P_5 : S_i^1) \leq 6 \). Suppose that \(G \) is any 4-edge-coloring of \(K_n \) where \(n \geq 6 \) containing no rainbow copy of \(P_5 \). From Theorem 1.3, (b) or (c) or (d) or (e) is true. If (b) is true, then there is a monochromatic copy of \(S_i^1 \) with color 1. If (c) is true, then \(K_n - v \) is monochromatic, and hence there is a monochromatic copy of \(S_i^1 \). If (d) or (e) is true, we can find a monochromatic copy of \(S_i^1 \) with color 1. \(\square \)

The following corollary follows from Theorem 3.2, Lemmas 3.1 and 3.2.

Corollary 3.3 Let \(k, \ t, \ r \) be three integers with \(k = 4 \), \(t \geq 6 \) and \(r = 1, 2 \). Then

\[
\text{gr}_4(P_5 : S_i^t) = \begin{cases}
6, & t = 4, 5; \\
t + p - 1, & t \geq 6.
\end{cases}
\]

Theorem 3.4 If \(r \geq 3 \) and \(t \) is odd, then

\[
\text{gr}_4(P_5 : S_i^t) = \begin{cases}
\frac{3r-5}{2}, & 3 \leq r \leq \left\lceil \frac{t-1}{4} \right\rceil; \\
t + 2r - 2, & \left\lceil \frac{t-1}{4} \right\rceil \leq r \leq \left\lfloor \frac{t-3}{2} \right\rfloor.
\end{cases}
\]

Proof Suppose \(3 \leq r \leq \left\lceil \frac{t-1}{4} \right\rceil \). For the lower bound, let \(F_4 \) be a 4-edge-coloring complete graph with \(V(F_4) = U_2 \cup U_3 \cup U_4 \) and the graph induced by \(U_2 \) is a complete graph \(K_{\frac{t-1}{4}} \) colored by 2, and the graph induced by \(U_i \) \((i = 3, 4)\) is a complete graph \(K_{\frac{t-3}{2}} \) colored by \(i \), and there are only edges of color 1 between the parts, and so \(|V(G_1)| = \frac{3r-7}{2} \). Since \(F_4 \) contains neither a rainbow copy of \(P_5 \) nor a monochromatic copy of \(S_i^t \), it follows that \(\text{gr}_4(P_5 : S_i^t) \geq \frac{3r-5}{2} \).

It suffices to show that \(\text{gr}_4(P_5 : S_i^t) \leq \frac{3r-5}{2} \). Suppose that \(G \) is any 4-edge-coloring of \(K_n \) where \(n \geq \frac{3r-5}{2} \) containing no rainbow copy of \(P_5 \). From Theorem 1.3, (b) or (c) or (d) or (e) is true. If (b) is true, let \(V^{(2)}, V^{(3)}, V^{(4)} \) be a partition of \(V(G) \) such that there are only edges of color 1 or 2 within \(V^{(i)} \) for \(2 \leq i \leq 4 \), and there are only edges of color 1 between the parts. Without loss of generality, suppose \(|V^{(2)}| \geq |V^{(3)}| \geq |V^{(4)}| \). If \(|V^{(3)}| \leq r - 1 \), then \(|V^{(4)}| \leq r - 1 \) and \(|V^{(2)}| \geq \frac{3r-5}{2} - 2(r - 1) = \frac{3r-4r-1}{2} \).

Claim 1 The subgraph induced by edges with color 1 of \(V^{(2)} \) contains a maximally matching with at most \(r - 3 \) edges.

Proof Let \(M \) be the maximally matching of the subgraph induced by edges colored by 1 of \(V^{(2)} \). Suppose \(|M| \geq r - 2 \), and \(|V^{(3)}| \geq 2 \), \(|V^{(4)}| \geq 2 \). We can find a monochromatic copy of \(S_i^t \) colored by 1, a contradiction. \(\square \)

From Claim 1, there exists no edges colored by 1 within \(V^{(2)} \) by deleting at most \(2r - 6 \) vertices, and so \(|V^{(2)}| - 2(r - 3) \geq \left\lceil \frac{3r-4r-1}{2} \right\rceil - (2r - 6) = \left\lceil \frac{3r-8r+11}{2} \right\rceil \). Since \(r \leq \left\lceil \frac{t-1}{4} \right\rceil \) and \(\left\lceil \frac{3r-8r+11}{2} \right\rceil \geq 2r + 7 \), it follows that there is a monochromatic copy of \(K_{2r+7} \) colored by 2. For \(|V^{(2)}| \geq \frac{3r-4r-1}{2} \geq t \) and \(r \leq \left\lceil \frac{t-1}{4} \right\rceil \), we can find a monochromatic copy of \(S_i^t \) colored by 2 within \(V^{(2)} \). Thus we can assume that \(|V^{(3)}| \geq r \), and \(|V^{(2)}| \geq |V^{(3)}| \geq r \).
Claim 2 \(|V(2)| + |V(3)| \geq t - 1\).

Proof Suppose that \(|V(2)| + |V(3)| \leq t - 2\), then \(|V(2)| + |V(4)| \leq t - 2\) and \(|V(3)| + |V(4)| \leq t - 2\), \(|V(2)| + |V(3)| + |V(4)| \leq \frac{3t-6}{2} < n\), a contradiction.

From Claim 2, choose one vertex of \(V(4)\), say \(v, \ell_1 (\ell_1 \geq r)\) vertices of \(V(2)\), say \(u_1, \ldots, u_{\ell_1}\) and \(\ell_2 (\ell_2 \geq r)\) vertices of \(V(3)\), say \(w_1, \ldots, w_{\ell_2}\), where \(\ell_1 + \ell_2 = t - 1\). Then the graph induced by \(\{v, u_1, \ldots, u_{\ell_1}, w_1, \ldots, w_{\ell_2}\}\) contains a monochromatic copy of \(S'_r\) colored by 1.

Since \(r \geq 3\), \(t\) is odd, and \(3 \leq r \leq \frac{t-1}{4}\), it follows that \(t \geq 13\), and hence \(n \geq \frac{3t-5}{2} \geq t + 4\). For \((b), (c), (d), (e)\), there is a monochromatic copy of \(S'_r\).

Suppose \(\frac{t-1}{4} < r \leq \frac{t-3}{2}\). For the lower bound, let \(F_5\) be a 4-edge-coloring complete graph with \(V(F_6) = U_2 \cup U_3 \cup U_4\) and the graph induced by \(U_2\) is a complete graph \(K_{r-1}\) colored by 2, and the graph induced by \(U_i (i = 3, 4)\) is a complete graph \(K_{r-1}\) colored by \(i\), and there are only edges of color 1 between the parts, so \(|V(F_5)| = t + 2r - 3\). Since \(F_5\) contains no rainbow copy of \(P_5\) and no monochromatic copy of \(S'_r\), it follows that \(gr_4(P_5 : S'_r) \geq t + 2r - 2\).

It suffices to show that \(gr_4(P_5 : S'_r) \leq t + 2r - 2\). Suppose \(G\) is any 4-edge-coloring of \(K_n\) where \(n \geq t + 2r - 2\) which contains no rainbow copy of \(P_5\). From Theorem 1.3, \((b)\) or \((c)\) or \((d)\) or \((e)\) is true. If \((b)\) is true, let \(V(2), V(3), V(4)\) be a partition of \(V(G)\) such that there are only edges of color 1 or 2 within \(V(i)\) for \(2 \leq i \leq 4\), and there are only edges of color 1 between the parts. Without loss of generality, suppose \(|V(2)| \geq |V(3)| \geq |V(4)|\). If \(2 \leq |V(3)| \leq \frac{t-2}{2}\), then \(|V(4)| \leq \frac{t-3}{4}\) and \(|V(2)| \geq t + 2r - 2 - 2 \left\lfloor \frac{t-4}{2} \right\rfloor \geq t + r + 2\). From Claim 1, the subgraph induced by edges colored by 1 of \(V_2\) has a maximally matching containing at most \(r - 3\) edges. Therefore there exists no edge colored by 1 within \(V(2)\) by deleting at most \(2r - 6\) vertices. Since \(|V(2)| - (2r - 6) \geq t + r + 2 - (2r - 6) = t + r + 8 \geq r + 11\) for \(\frac{t-1}{4} \leq r \leq \frac{t-3}{2}\), it follows that there is a monochromatic copy of \(K_r\). Since \(|V(2)| \geq t + 5\), it follows that there is a monochromatic copy of \(S'_r\) colored by 2.

If \(|V(2)| \leq |V(3)| \leq r - 1\), then \(|V(2)| \geq t + 2r - 2 - 2(r - 1) = t\). From Claim 1, the subgraph induced by edges colored by 1 of \(V(2)\) has a maximally matching containing at most \(r - |V(3)| - 1\) edges. Therefore, there exists no edge colored by 1 within \(V(2)\) by deleting at most \(2(r - |V(3)| - 1)\) vertices. Then \(|V(3)| - 2r - |V(3)| - 1 \geq t - 2r + 2|V(3)| + 2 \geq r + 1\) for \(|t - 4| \leq |V(3)| \leq r - 1\), and so there is a monochromatic copy of \(K_r\). As \(|V(2)| \geq t\), there is a monochromatic copy of \(S'_r\) colored by 2.

Thus we can assume that \(|V(3)| \leq r\), and \(|V(2)| \geq |V(3)| \geq r\). From Claim 2, \(|V(2)| \geq |V(3)| \geq t - 1\), choose one vertex of \(V(4)\), say \(v, \ell_1 (\ell_1 \geq r)\) vertices of \(V(2)\), say \(u_1, \ldots, u_{\ell_1}\) and \(\ell_2 (\ell_2 \geq r)\) vertices of \(V(3)\), say \(w_1, \ldots, w_{\ell_2}\). Then the graph induced by \(\{v, u_1, \ldots, u_{\ell_1}, w_1, \ldots, w_{\ell_2}\}\) contains a monochromatic copy of \(S'_r\) with color 1.

Suppose that \((c)\) is true. Since \(r \geq 3\) and \(n \geq t + 2r - 2 \geq t + 4\), it follows that there is a vertex \(v\) such that \(K_n - v\) is a complete graph colored by 1, and hence there is a monochromatic copy of \(S'_r\) colored by 1.

Suppose that \((d)\) is true. Since \(n \geq t + 2r - 2 \geq t + 4\), it follows that \(K_n - \{v_1, v_2, v_3\}\) is a complete graph with color 1, and hence there is a monochromatic copy of \(S'_r\) with color 1.
Suppose that \((e)\) is true. Since \(n \geq t + 2r - 2 \geq t + 4\), it follows that \(K_n - \{v_1, v_2, v_3, v_4\}\) is a complete graph colored by 1, and so there is a monochromatic copy of \(S'_t\) colored by 1. \(\Box\)

Theorem 3.5 Let \(k, r, t\) be three integers with \(k = 4\) and \(r \geq 3\). If \(t\) is even, then

\[
gr_4(P_5 : S'_t) = \begin{cases} \left\lfloor \frac{3t-4}{2} \right\rfloor, & 3 \leq r \leq \left\lfloor \frac{t}{4} \right\rfloor; \\ t + 2r - 2, & \left\lfloor \frac{t}{4} \right\rfloor \leq r \leq \frac{t-2}{2}. \end{cases}
\]

Proof Suppose \(3 \leq r \leq \left\lfloor \frac{t}{4} \right\rfloor\). For the lower bound, let \(F_6\) be any 4-edge-coloring complete graph with \(V(F_6) = U_2 \cup U_3 \cup U_4\) and the graph induced by \(U_i\) \((2 \leq i \leq 4)\) is a complete graph \(K_{\frac{t-2}{2}}\) colored by \(i\), and there are only edges of color 1 between the parts, thus \(|V(F_6)| = \frac{3r-6}{2}\). Note that \(F_6\) contains no rainbow copy of \(P_5\) and no monochromatic copy of \(S'_t\). Thus \(gr_4(P_5 : S'_t) \geq \frac{3t-4}{2}\). For the upper bound, the proof is similar to Theorem 3.4.

Suppose \(\left\lfloor \frac{t}{4} \right\rfloor \leq r \leq \frac{t-2}{2}\). The proof is similar to Theorem 3.4. \(\Box\)

We obtain the result on the case \(k = 3\) for \(S'_t\) in the following lemmas.

Lemma 3.3 \([22, 29, 30]\) \(R_2(K_3, K_5) = 14; R_3(S'_4) = 17; R_3(S'_5) = 21; R_3(S'_6) = 26.\)

Lemma 3.4 \(\max\{5t - 4, 2R_2(S'_t) - 1\} \leq R_3(S'_t) \leq 3R_2(S'_t) + 6r - 6.\)

Proof For the lower bound, let \(F_7\) denote a 3-edge-coloring complete graph by making five copies of \(K_{t-1}\) colored by 1 and inserting edges of colors 2 and 3 between the copies to form a unique 2-edge-coloring \(K_5\) which contains no monochromatic triangle, \(|V(F_7)| = 5(t-1)\). Let \(F'\) be a 2-edge-coloring complete graph colored by 1 and 2 on \(R_2(S'_t) - 1\) vertices containing no monochromatic copy of \(S'_t\). We construct \(F_8\) by making two copies of \(F'\) and inserting all edges between the copies in color 3, \(|V(F_8)| = 2(R_2(S'_t) - 1)\). Note that both \(F_7\) and \(F_8\) contain no monochromatic copy of \(S'_t\), it follows that \(R_3(S'_t) \geq \max\{5t - 4, 2R_2(S'_t) - 1\}\).

It suffices to show that \(R_3(S'_t) \leq 3R_2(S'_t) + 6r - 6\). Suppose that \(G\) is any 3-edge-coloring of \(K_n\) \((n \geq 3R_2(S'_t) + 6r - 6)\) which is colored by 1, 2, 3. For any vertex \(v \in V(G)\), and \(n \geq 3R_2(S'_t) + 6r - 6\), there are at least \(R_2(S'_t) + 2r - 2\) edges incident with \(v\) colored by \(i\) \((i = 1, 2, 3)\), say 1. Without loss of generality, the end vertices of these edges except \(v\) are denoted by \(u_1, u_2, \ldots, u_{R_2(S'_t)+2r-2}\). Let \(G'\) be the subgraph induced by \(\{u_1, u_2, \ldots, u_{R_2(S'_t)+2r-2}\}\), and from Claim 1 of Theorem 3.4, the subgraph induced by edges colored by 1 of \(G'\) contains a maximal matching which has at most \(r - 1\) edges, otherwise there is a monochromatic copy of \(S'_t\) colored by 1. Thus \(G'\) contains no edge colored by 1 by deleting at most \(2(r - 1)\) vertices, and the resulting graph is denoted by \(R\). Since \(|V(R)| \geq |V(G')| - 2(r - 1) \geq R(S'_t)\), it follows that there must be a monochromatic copy of \(S'_t\) colored by 2 or 3, completing the proof. \(\Box\)

Finally, we show the result on \(S'_4, S'_5, S'_6\).
Theorem 3.6 For integers \(k \geq 3 \), we have

\[
\text{gr}_k(P_5 : S^1_4) = \begin{cases}
17, & k = 3; \\
6, & k = 4; \\
5, & k = 5, 6; \\
\ell, & (\ell-1)/2 + 1 \leq k \leq \ell/2 \text{ and } \ell \geq 5.
\end{cases}
\]

Proof If \(k = 3 \), then it follows from Lemma 3.3 that \(\text{gr}_3(P_5 : S^1_4) = R_3(S^1_4) = 17 \). If \(k = 4 \), then it follows from Lemma 3.1 that \(\text{gr}_4(P_5 : S^1_4) = 6 \).

Suppose that \(k = 5 \). Let \(F_5 \) be a colored complete graph \(K_4 \) with \(V(K_4) = \{ u_i \mid 1 \leq i \leq 4 \} \) under the 5-edge-coloring \(\chi \) such that \(\chi(v_2v_3) = \chi(v_2v_4) = 1, \chi(v_1v_2) = 2, \chi(v_1v_3) = 3, \chi(v_1v_4) = 4 \) and \(\chi(v_3v_4) = 5 \). Since there is neither a rainbow copy of \(P_5 \) nor a monochromatic copy of \(S^1_4 \) under the coloring \(\chi \), it follows that \(\text{gr}_5(P_5 : S^1_4) \geq 5 \). It suffices to show \(\text{gr}_5(P_5 : S^1_4) \leq 5 \). Let \(\chi \) be any 5-edge-coloring of \(K_n \) (\(n \geq 5 \)) containing no rainbow copy of \(P_5 \). From Theorem 1.3, (b) or (c) is true. If (b) is true, then \(\chi \) contains at most 3 colors, a contradiction. If (c) is true, then there exists a vertex \(v \) such that \(K_n - v \) is monochromatic, and hence there is a monochromatic copy of \(S^1_4 \).

Suppose \(k = 6 \). Let \(F_{10} \) be a colored complete graph \(K_4 \) with \(V(K_4) = \{ u_i \mid 1 \leq i \leq 4 \} \) under the 5-edge-coloring \(\chi \) such that \(\chi(v_2v_3) = 1, \chi(v_1v_2) = 2, \chi(v_1v_3) = 3, \chi(v_1v_4) = 4, \chi(v_3v_4) = 5 \) and \(\chi(v_2v_4) = 6 \). Since there is neither a rainbow copy of \(P_5 \) nor a monochromatic copy of \(S^1_4 \) under the coloring \(\chi \), it follows that \(\text{gr}_6(P_5 : S^1_4) \geq 5 \). It suffices to show \(\text{gr}_6(P_5 : S^1_4) \leq 5 \). Let \(\chi \) be a 6-edge-coloring of \(K_n \)(\(n \geq 5 \)) containing no rainbow copy of \(P_5 \). From Theorem 1.3, (b) or (c) is true. If (b) is true, then \(\chi \) contains at most 3 colors, a contradiction. If (c) is true, then there exists a vertex \(v \) such that \(K_n - v \) is monochromatic, and hence there is a monochromatic copy of \(S^1_4 \).

Suppose \(\ell \geq 5 \). If \(k \geq (\ell - 1)/2 + 1 \), there is no \(k \)-edge-coloring \(\chi \) of \(K_{\ell-1} \), and so \(\text{gr}_k(P_5 : S^1_4) \geq \ell \). It suffices to show \(\text{gr}_k(P_5 : S^1_4) \leq \ell \). Suppose that there is a coloring \(\chi \) of \(K_n \)(\(n \geq \ell \)) containing no rainbow copy of \(P_5 \). From Theorem 1.3, (b) or (c) is true. If (b) is true, then \(\ell \geq 2(k-1) > 2((\ell-1)/2) - 1 \), and hence \(\ell \leq 4 \), a contradiction. If (c) is true, then there is a vertex \(v \) such that \(K_n - v \) is monochromatic, and hence there is a monochromatic copy of \(S^1_4 \).

Theorem 3.7 For integers \(k \geq 3 \), we have

\[
\text{gr}_k(P_5 : S^1_5) = \begin{cases}
21, & k = 3; \\
6, & k = 4, 5; \\
5, & k = 6; \\
\left\lceil \frac{1+\sqrt{1+8k}}{2} \right\rceil, & k \geq 7.
\end{cases}
\]

Proof If \(k = 3 \), then it follows from Lemma 3.3 that \(\text{gr}_3(P_5 : S^1_5) = R_3(S^1_5) = 21 \). If \(k = 4 \), then it follows from Lemma 3.1 that \(\text{gr}_4(P_5 : S^1_5) = 6 \).
Suppose \(k = 5 \). Let \(F_{11} \) be a colored complete graph obtained from a \(K_4 \) with vertex set \(\{u_1, u_2, u_3, u_4\} \) colored by 1 by adding a new vertex \(v \) and edges \(u_i \) \(v \) (\(1 \leq i \leq 4 \)) colored by \(i + 1 \). Since there is neither a rainbow copy of \(P_5 \) nor a monochromatic copy of \(P_5 \) under the coloring, it follows that \(gr_5(P_5 : S^1_6) \geq 6 \). It suffices to show \(gr_5(P_5 : S^1_6) \leq 6 \). Let \(\chi \) be any 5-edge-coloring of \(K_n \) (\(n \geq 6 \)) containing no rainbow copy of \(P_5 \). From Theorem 1.3, \((b) \) or \((c) \) is true. If \((b) \) is true, then \(\chi \) contains at most 4 colors, a contradiction. If \((c) \) is true, then there exists a vertex \(v \) such that \(K_n - v \) is monochromatic, and hence there is a monochromatic copy of \(S^1_6 \).

For \(k = 6 \), the result follows from Theorem 2.2. For \(k \geq 7 \), the result follows from Theorem 2.1.

Theorem 3.8 For integer \(k \geq 3 \), we have

\[
gr_k(P_5 : S^1_6) = \begin{cases}
26, & k = 3; \\
7, & 4 \leq k \leq 6; \\
\left\lceil \frac{1 + \sqrt{1 + 8k}}{2} \right\rceil, & k \geq 7.
\end{cases}
\]

Proof If \(k = 3 \), then it follows from Lemma 3.3 that \(gr_3(P_5 : S^1_6) = R_3(S^1_6) = 26 \). If \(k = 4 \), then it follows from Theorem 3.2 that \(gr_4(P_5 : S^1_6) = 7 \). If \(k = 5 \), then it follows from Theorem 3.1 that \(gr_5(P_5 : S^1_6) = 7 \). If \(k = 6 \), then it follows from Theorem 2.3 that \(gr_6(P_5 : S^1_6) = 7 \). If \(k \geq 7 \), then it follows from Theorem 2.1 that \(gr_k(P_5 : S^1_6) = \left\lceil \frac{1 + \sqrt{1 + 8k}}{2} \right\rceil \), completing the proof.

From Theorems 2.1, 2.3, 3.1, 3.2 and Lemma 3.4, we can obtain the following result.

Theorem 3.9 For integer \(k \geq 3 \), \(t \geq 6 \), \(r = 1, 2 \), we have

\[
gr_k(P_5 : S^t_r) = \begin{cases}
\left\lceil \max \left\{ 5t - 4, 2R(S^t_r) - 1 \right\} \right\rceil, & k = 3; \\
t + p - 1, & 4 \leq k \leq t - 1; \\
t + 1, & k = t; \\
\left\lceil \frac{1 + \sqrt{1 + 8k}}{2} \right\rceil, & k \geq t + 1.
\end{cases}
\]

4 Results for the Rainbow 4-Path and Monochromatic Pineapples

In this section, we will get some exact values or bounds for \(gr_k(P_5 : H) \) when \(H \) is a pineapple.

Theorem 4.1 Let \(k, t, \omega \) be three integers with \(k = \omega \) and \(k \geq 4 \). Then

\[
gr_k(P_5 : PA_{t, \omega}) = (\omega - 1)(t - 1) + 1.
\]

Proof From Lemma 2.1, we have \(gr_k(P_5 : PA_{t, \omega}) \geq (\omega - 1)(t - 1) + 1 \). It suffices to show that \(gr_k(P_5 : PA_{t, \omega}) \leq (\omega - 1)(t - 1) + 1 \). Let \(G \) be any \(k \)-edge-coloring
of \(K_n \) where \(n \geq (\omega - 1)(t - 1) + 1 \) which contains no rainbow copy of \(P_5 \). From Theorem 1.3, (b) or (c) or (d) or (e) is true if \(k = 4 \), and (b) or (c) is true if \(k \geq 5 \).

For \(k \geq 4 \), suppose that (b) is true. Let \(V(2), V(3), \ldots, V(k) \) be a partition of \(V(G) \) such that there are only edges of color 1 or \(i \) within each \(V(i) \) for \(2 \leq i \leq k \), and there are only edges with color 1 among the parts. Then there exists some \(V(i) (2 \leq i \leq k) \) with \(|V(i)| \geq t \), otherwise \(|V(2)| + |V(3)| + \cdots + |V(k)| \leq (\omega - 1)(t - 1) + 1 < n \), a contradiction. Without loss of generality, let \(|V(2)| \geq t \). Suppose that \(V(2) \) contains one edge with color 1, say \(v_2u_2 \). Choose one vertex of \(V(i) (2 \leq i \leq k) \), say \(v_i \). Then the subgraph induced by \(\{u_2, v_2, v_3, \ldots, v_k\} \) is a copy of \(K_n \) with color 1. Since \(|V(2)| \geq t \), it follows that there is a copy of \(PA_{t,4} \) with color 1. Therefore, \(V(2) \) contains no edges with color 1, and hence the subgraph induced by \(V(2) \) is a monochromatic copy of \(K_t \) with color 2, and so there is a monochromatic copy of \(PA_{t,\omega} \) with color 2.

Suppose that (c) is true. Since \(n \geq (\omega - 1)(t - 1) + 1 \geq t + 1 \) for \(\omega \geq 4 \) and \(t \geq 5 \), it follows that there is a vertex \(v \) such that \(K_n - v \) is a complete graph colored by 1, and hence there is a monochromatic copy of \(PA_{t,\omega} \) colored by 1.

For \(k = 4 \), then (d) or (e) is true. Suppose that (d) is true. Since \(n \geq 3t - 2 \geq t + 8 \), it follows that \(K_n - \{v_1, v_2, v_3\} \) is a complete graph colored by 1, and so there is a monochromatic copy of \(PA_{t,4} \) colored by 1. Suppose that (e) is true. Since \(n \geq 3t - 2 \geq t + 8 \), it follows that \(K_n - \{v_1, v_2, v_3, v_4\} \) is a complete graph colored by 1, and hence there is a monochromatic copy of \(PA_{t,4} \) colored by 1.

\[\square \]

Theorem 4.2 Let \(k, t, \omega \) be three integers with \(k = 4, \omega = 5 \) and \(t \geq 8 \). Then

\[gr_4(P_5 : PA_{t,\omega}) = 4t - 3. \]

Proof From Lemma 2.1, we know that \(gr_4(P_5 : PA_{t,\omega}) \geq 4t - 3 \). It suffices to show that \(gr_4(P_5 : PA_{t,\omega}) \leq 4t - 3 \). Let \(G \) be any 4-edge-coloring of \(K_n \), where \(n \geq 4t - 3 \), which contains no rainbow copy of \(P_5 \). From Theorem 1.3, (b) or (c) or (d) or (e) is true. Suppose that (b) is true and \(|V(2)| \geq |V(3)| \geq |V(4)| \). To avoid a monochromatic copy of \(K_5 \) colored by 1, \(|V(G)| \geq \sum_{i=2}^{4} |V(i)| \leq 1 \). If \(|V(G)| \geq \sum_{i=2}^{4} |V(i)| = 0 \), then \(\sum_{i=2}^{4} |V(i)| \geq 4t - 3 \), and hence \(|V(2)| \geq |2t - 3| \), otherwise \(|V(2)| + |V(3)| + |V(4)| < 4t - 3 \), a contradiction.

Claim 3 Both \(V(3) \) and \(V(4) \) contain no edges with color 1.

Proof Assume, to the contrary, that both \(V(3) \) and \(V(4) \) contain one edge with color 1, say \(v_3u_3 \) and \(v_4u_4 \). Choose one vertex of \(V(2) \), say \(v_2 \). Then the subgraph induced by \(\{v_2, v_3, u_3, v_4, u_4\} \) contains a copy of \(K_5 \) with color 1. Since \(|V(2)| \geq |2t - 3| \geq t + 1 \) for \(\omega = 5 \) and \(t \geq 8 \), it follows that there is a copy of \(PA_{t,5} \) with color 1. If either \(V(3) \) or \(V(4) \) contains one edge with color 1, say \(V(3) \) and \(v_3u_3 \) with color 1, then \(V(2) \) contains no edges with color 1, otherwise there is a copy of \(PA_{t,5} \) with color 1 by the above proof. Thus the subgraph induced by \(V(2) \) is monochromatic copy of complete graph with color 2, and hence \(|V(2)| \geq |2t - 3| \geq t + 1 \), and so there is a monochromatic copy of \(PA_{t,5} \) with color 2.

From Claim 3, both \(V(3) \) and \(V(4) \) contain no edges with color 1. Then \(|V(3)| \leq t - 1 \), \(|V(4)| \leq t - 1 \), otherwise there is a monochromatic copy of \(K_t \) colored by 3 or

\[\odot \] Springer
4. If $V^{(2)}$ contains three vertices which induce a monochromatic copy of K_3 with color 1, say u_2, w_2, x_2, choose one vertex w_i of $V^{(i)}$ ($i = 3, 4$), then the subgraph induced by $\{u_2, w_2, x_2, w_3, w_4\}$ is a monochromatic copy of K_5 with color 1. Choose $t - 5$ vertices of $V^{(2)}$, say y_1, \ldots, y_{t-5}, then the subgraph induced by $\{u_2, w_2, x_2, w_3, y_1, \ldots, y_{t-5}\}$ contains a monochromatic copy of PA_{t-5} colored by 1. It follows that the subgraph induced by color 1 within V_2 must not be K_3. Since $n \geq 4t - 3$, it follows that $|V^{(2)}| \geq 2t - 1 \geq t + 7 \geq 15$ for $t \geq 8$. From Lemma 3.3, $R_2(K_3, K_5) = 14$, and hence there is a monochromatic copy of K_5 with color 2 in $V^{(2)}$.

For any vertex $v \in V^{(2)}$, let Q_i ($i = 1, 2$) be the set of vertices such that the edges from any vertex of Q_i to v are with color i.

Claim 4 $|Q_1| \leq t - 1$.

Proof Assume, to the contrary, that $|Q_1| \geq t$. If the subgraph induced by Q_1 contains one edge with color 1, say w_1w_2, then $\{w_1, w_2, v\}$ induces a monochromatic copy of K_3 colored by 1, a contradiction. That means that Q_1 contains no edges colored by 1 and there is a monochromatic copy of K_t colored by 2. So there is a monochromatic copy of PA_{t-5} colored by 2.

From Claim 4, we have $|Q_2| \geq t - 1$, and hence $V^{(2)}$ contains a monochromatic copy of PA_{t-5} colored by 2. If $|V(G)| - \sum_{i=2}^{4} |V^{(i)}| = 1$, then $V^{(2)}$ contains no edge colored by 1, otherwise there is a monochromatic copy of K_5. Since $\sum_{i=2}^{4} |V^{(i)}| \geq 4t - 4$, it follows that $|V^{(2)}| \geq \left\lceil \frac{4t - 4}{3} \right\rceil \geq t + 1$ for $t \geq 8$. Hence, $V^{(2)}$ contains a monochromatic copy of PA_{t-5} colored by 2.

Suppose that (c) or (d) or (e) is true. Since $n \geq 4t - 3 \geq t + 21$ for $t \geq 8$, it follows that there is a monochromatic copy of K_{t+17}.

Theorem 4.3 Let k, t, ω be three integers with $k = 4$, $\omega = 5$ and $t = 6$. Then

$$\text{gr}_4(P_5 : PA_{6,5}) = 24.$$

Proof For the lower bound, let F_{12} be a complete graph with $V(F_{12}) = U_2 \cup U_3 \cup U_4$ such that the subgraph induced by U_2 is K_{13} colored by 1 and 2 which contains neither a monochromatic copy of K_3 nor a monochromatic copy of K_5, and the subgraph induced by U_i ($i = 3, 4$) is K_5 colored by i, and all edges between U_i and U_j ($i, j \in \{2, 3, 4\}, i \neq j$) are colored by 1. It is clear that F_{12} contains neither a rainbow copy of P_5 nor a monochromatic copy of $PA_{6,5}$, and $\text{gr}_4(P_5 : PA_{6,5}) \geq 24$.

It suffices to show that $\text{gr}_k(P_5 : PA_{6,5}) \leq 24$. Let G be any 4-edge-coloring of K_n, where $n \geq 24$, which contains no rainbow copy of P_5. From Theorem 1.3, (b) or (c) or (d) or (e) is true. By the proof of Theorem 4.2, we know that the upper bound holds.

Theorem 4.4 Let k, t, ω be three integers with $k = 4$, $\omega = 5$ and $t = 7$. Then

$$\text{gr}_4(P_5 : PA_{7,5}) = 26.$$

\(\text{Springer}\)
Proof For the lower bound, let F_{13} be a complete graph with $V(F_{12}) = U_2 \cup U_3 \cup U_4$. Then the subgraph induced by U_2 is K_{13} colored by 1 and 2 which contains neither a monochromatic copy of K_3 nor a monochromatic copy of K_5, and the subgraph induced by U_i ($i=3,4$) is K_6 colored by i, and all edges from U_i to U_j ($i,j \in \{2,3,4\}, i \neq j$) are colored by 1. It is clear that F_{13} contains neither a rainbow copy of P_5 nor a monochromatic copy of $PA_{7,5}$, and hence $gr_d(P_5 : PA_{7,5}) \geq 26$.

It suffices to show that $gr_k(P_5 : PA_{7,5}) \leq 26$. Let G be any 4-edge-coloring of K_n, where $n \geq 26$, which contains no rainbow copy of P_5. From Theorem 4.4, (b) or (c) or (d) or (e) is true. By the proof of Theorem 4.2, we know that the upper bound holds.

Theorem 4.5 Let k, t, ω be three integers with $k = 4$ and $\omega \geq 6$. Then

$$(\omega - 1)(t - 1) + 1 \leq gr_4(P_5 : PA_{t,\omega}) \leq 3R_2(PA_{t,\omega}) - 2.$$

Proof From Lemma 2.1, we can obtain the lower bound. For the upper bound, let G be any 4-edge-coloring of K_n, where $n \geq 3R_2(PA_{t,\omega}) - 2$, containing no rainbow copy of P_5. From Theorem 1.3, (b) or (c) or (d) or (e) is true. Suppose that (b) is true. Let $V(2), V(3), V(4)$ be a partition of $V(G)$ such that there are only edges of color 1 or i within $V(i)$ for $2 \leq i \leq 4$, and there are only edges of color 1 between the parts. There exists some $V(i)$ ($2 \leq i \leq 4$) with $|V(i)| \geq \lceil \frac{3R_2(PA_{t,\omega}) - 2}{3} \rceil$, otherwise $|V(2)| + |V(3)| + |V(4)| < 3R_2(PA_{t,\omega}) - 2 \leq n$, a contradiction. Without loss of generality, let $|V(2)| \geq \lceil \frac{3R_2(PA_{t,\omega}) - 2}{3} \rceil \geq R_2(PA_{t,\omega})$. Then there is a monochromatic copy of $PA_{t,\omega}$ colored by 1 or 2. Since $R_2(PA_{t,\omega}) \geq t$, it follows that $3R_2(PA_{t,\omega}) - 2 > t + 4$ for $\omega \geq 6$ and $t \geq 7$. If (b) or (c) or (e) is true, then there is a monochromatic copy of $PA_{t,\omega}$. \square

Sah [26] obtained the following result.

Theorem 4.6 [26] There is an absolute constant $c > 0$ such that for $k \geq 3$,

$$R_2(k + 1) \leq \left(\frac{2k}{k}\right) e^{-c(log k)^2}.$$

By the upper bound in Theorem 4.5, we can derive the following result.

Theorem 4.7 There is an absolute constant $c > 0$ such that for $\omega \geq 4$,

$$R_2(PA_{t,\omega}) \leq \left(\frac{2\omega - 2}{\omega - 1} \right) e^{-c \log^2(\omega - 1)} + (t - 2)(\omega - 1).$$

Proof Let $n = \left(\frac{2\omega - 2}{\omega - 1} \right) e^{-c \log^2(\omega - 1)} + (t - 2)(\omega - 1)$. For any red/blue-edge-coloring of K_n, from Theorem 4.4, there is a monochromatic copy of K_ω, say K^1_ω. Without loss of generality, assume that K^1_ω is red. Choose one vertex in K^1_ω, say v_1. Let X_1 be the set of vertices with red edges from v_1 to $K_n - K^1_\omega$. Then $|X_1| \leq t - \omega - 1$. By deleting the vertices of $K^1_\omega \cup X_1$, $K_n - K^1_\omega - X_1$ contains a red clique of order ω, say K^2_ω. Choose one vertex in K^2_ω, say v_2. Let X_2 be the set of vertices with red edges from v_2 to $K_n - (K^1_\omega \cup K^2_\omega \cup X_1)$. Then $|X_2| \leq t - \omega - 1$. By deleting the vertices of
\[K^2_\omega \cup X_2, \] one can see that \(K_n - (K^1_\omega \cup K^2_\omega \cup X_1 \cup X_2) \) contains a red clique of order \(\omega \), say \(K^3_\omega \).

Continue this process, \(K_n - (\bigcup_{i=1}^{\omega-2} K^i_\omega) - \bigcup_{i=1}^{\omega-2} X_i \) contains a red clique of order \(\omega \), say \(K^{\omega-1}_\omega \). Choose one vertex in \(K^{\omega-1}_\omega \), say \(v_{\omega-1} \). Let \(X_{\omega-1} \) be the set of vertices with red edges from \(v_{\omega-1} \) to \(K_n - (\bigcup_{i=1}^{\omega-1} K^i_\omega) - \bigcup_{i=1}^{\omega-2} X_i \). Then \(|X_{\omega-1}| \leq t - \omega - 1 \).

Choose one vertex in \(K_n - (\bigcup_{i=1}^{\omega-1} K^i_\omega) - \bigcup_{i=1}^{\omega-2} X_i \), say \(v_{\omega} \). Since the number of red edges from \(v_1 \) to \(K_n - K^1_\omega \) is at most \(t - \omega - 1 \), it follows that the number of blue edges from \(v_1 \) to \(K_n - K^1_\omega \) is at least \(n - t \), and hence there is a blue copy of \(PA_t,\omega \).

\(\Box \)

The following corollary is immediate.

Corollary 4.8 Let \(k, t, \omega \) be three integers with \(k = 4 \) and \(\omega \geq 6 \). Then
\[
(\omega - 1)(t - 1) + 1 \leq \text{gr}_4(P_5 : PA_t,\omega) \leq 3 \left(\frac{2\omega - 2}{\omega - 1} \right) e^{-c \log^2(\omega - 1)} + (t - 2)(\omega - 1) - 2,
\]
where \(c > 0 \) is an absolute constant.

From Lemma 2.1, Theorems 2.7 and 4.7, the following corollary is true.

Corollary 4.9 Let \(k, t, \omega \) be three integers with \(5 \leq k \leq \omega - 1 \) and \(\omega \geq 6 \). Then
\[
(\omega - 1)(t - 1) + 1 \leq \text{gr}_k(P_5 : PA_t,\omega) \leq \left(\frac{2\omega - 2}{\omega - 1} \right) e^{-c \log^2(\omega - 1)} + (t - 2)(\omega - 1).
\]

Acknowledgements We would like to thank the anonymous referees for a number of helpful comments and suggestions.

Funding The authors have not disclosed any funding. This paper is supported by the National Science Foundation of China (Nos. 12061059, 11601254, 11551001) and the Qinghai Key Laboratory of Internet of Things Project (2017-ZJ-Y21).

Data Availability Not applicable.

Code Availability Not applicable.

Declarations

Conflict of Interest The authors declare that they have no conflict of interest.

References

1. Bondy, J.A., Erdős, P.: Ramsey numbers for cycles in graphs. J. Combin. Theory Ser. B 14, 46–54 (1973)
2. Cameron, K., Edmonds, J.: Lambda composition. J. Graph Theory 26(1), 9–16 (1997)
3. Chen, M., Li, Y., Pei, C.: Gallai-Ramsey numbers of odd cycles and complete bipartite graphs. Graphs Combin. 34, 1185–1196 (2018)
4. Fox, J., Sudakov, B.: Ramsey-type problem for an almost monochromatic K_4. SIAM J. Discrete Math. 23(1), 155–162 (2008)
5. Fujita, S., Magnant, C.: Extensions of Gallai-Ramsey results. J. Graph Theory 70(4), 404–426 (2012)
6. Fujita, S., Magnant, C.: Gallai-Ramsey numbers for cycles. Discrete Math. 311, 1247–1254 (2011)
7. Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalizations of Ramsey theory—a dynamic survey. Theoret. Appl. Graphs. Vol. 0: Iss. 1, Article 1 (2014)
8. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hung. 18, 25–66 (1967)
9. Gyárfás, A., Pálvölgyi, D., Patkós, B.: Distribution of colors in Gallai colorings. Eur. J. Combin. 86, 103087 (2020)
10. Gyárfás, A., Sárközy, G., Sebő, A., Selkow, S.: Ramsey-type results for Gallai colorings. J. Graph Theory 64(3), 233–243 (2010)
11. Gyárfás, A., Simonyi, G.: Edge colorings of complete graphs without tricolored triangles. J. Graph Theory 46(3), 211–216 (2004)
12. Li, X., Besse, P., Magnant, C., Wang, L., Watts, N.: Gallai-Ramsey numbers for rainbow paths. Graphs Comb. 36, 1603–1618 (2020)
13. Li, X., Wang, L.: Gallai-Ramsey numbers for a class of graphs with five vertices. Graphs Comb. 36, 1603–1618 (2020)
14. Li, X., Wang, L.: Monochromatic stars in rainbow K_3-free and $S_3^+\times S_3^+$-free colorings. Discrete Math. 343, 112131 (2020)
15. Li, X., Wang, L., Liu, X.: Complete graphs and complete bipartite graphs without rainbow path. Discrete Math. 342, 2116–2126 (2019)
16. Magnant, C., Nowbandegani, P.S.: Topics in Gallai-Ramsey Theory. Springer (2020)
17. Mao, Y., Ozeki, K., Roberson, A., Wang, Z.: Arithmetic progressions, quasi progressions, and Gallai-Ramsey colorings. J. Combin. Theory Ser. A 193, 105672 (2023)
18. Mao, Y., Wang, Z., Magnant, C., Schiermeyer, I.: Gallai-Ramsey number for stars with extra independent edges. Discrete Appl. Math. 285, 153–172 (2020)
19. Mao, Y., Wang, Z., Magnant, C., Schiermeyer, I.: Gallai-Ramsey number for the union of stars. Acta Math. Sin. Eng. Ser. 38, 1317–1332 (2022)
20. Mao, Y., Wang, Z., Magnant, C., Schiermeyer, I.: Gallai-Ramsey number for fans. Discrete Math. 346, 113338 (2023)
21. Mao, Y., Wang, Z., Magnant, C., Schiermeyer, I.: Ramsey and Gallai-Ramsey number for wheels. Graphs Comb. 38, 42 (2022)
22. Radziszowski, S.P.: Small Ramsey numbers. Electron. J. Combin. Dyn. Surv. I, 30 (1994). (electronic)
23. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. (2) 30, 264–286 (1930)
24. Roberts, F.S.: Applications of Ramsey theory. Discrete Appl. Math. 9(3), 251–261 (1984)
25. Rosta, V.: Ramsey theory applications. Electron. J. Combin. 11(1), 89 (2004)
26. Sah, A.: Diagonal Ramsey via effective quasirandomness, preprint, arXiv:2005.09251 [math.CO] (2020)
27. Thomason, A., Wagner, P.: Complete graphs with no rainbow path. J. Graph Theory 54(3), 261–266 (2007)
28. Wang, Z., Mao, Y., Zou, J., Magnant, C.: Ramsey and Gallai-Ramsey numbers for two classes of unicyclic graphs. Graphs Comb. 37(1), 337–354 (2021)
29. Yang, Y., Peter, R.: On the third Ramsey numbers of graphs with five edges. J. Combin. Math. Combin. Comput. 11, 213–222 (1992)
30. Yang, Y.: On the third Ramsey numbers of graphs with six edges. J. Combin. Math. Combin. Comput. 17, 199–208 (1995)
31. Zhang, Q., Wei, B.: Gallai-Ramsey numbers for graphs with chromatic number three. Discrete Appl. Math. 304, 110–118 (2021)