CMB and LSS constraints on a single-field model of inflation

J. S. Alcaniz1,2(a), F. C. Carvalho1,3(b), R. Silva4,5(c) and J. A. S. Lima6(d)

1 Observatório Nacional - 20921-400 Rio de Janeiro, RJ, Brasil
2 Instituto Nacional de Pesquisas Espaciais/CRN - 59076-740, Natal, RN, Brasil
3 Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica - 12227-010, São José dos Campos, SP, Brasil
4 Universidade do Estado do Rio Grande do Norte, Departamento de Física - PPGF - 59610-210, Mossoró, RN, Brasil
5 Universidade Federal do Rio Grande do Norte, Departamento de Física - PPGF - 59072-970 Natal, RN, Brasil
6 Universidade de São Paulo - 05508-900 São Paulo, SP, Brasil

received 30 January 2008; accepted in final form 2 June 2008
published online 2 July 2008

PACS 98.80.-k – Cosmology

Abstract – A new inflationary scenario whose exponential potential $V(\Phi)$ has a quadratic dependence on the field Φ in addition to the standard linear term is confronted with the five-year observations of the Wilkinson-Microwave Anisotropy Probe and the Sloan Digital Sky Survey data. The number of e-folds (N), the ratio of tensor-to-scalar perturbations (r), the spectral scalar index of the primordial power spectrum (n_s) and its running ($dn_s/d\ln k$) depend on the dimensionless parameter α multiplying the quadratic term in the potential. In the limit $\alpha \to 0$ all the results of the exponential potential are fully recovered. For values of $\alpha \neq 0$, we find that the model predictions are in good agreement with the current observations of the Cosmic Microwave Background (CMB) anisotropies and Large-Scale Structure (LSS) in the Universe.

Copyright © EPLA, 2008

Introduction. – Since the detection of the Cosmic Microwave Background (CMB) anisotropies by the COBE satellite in 1992 [1], great improvements in the quality of the CMB data has been achieved, mainly from very recent balloon and satellite experiments, such as the BOOMERANG [2] and the Wilkinson Microwave Anisotropy Probe (WMAP) [3–5]. In what concerns the possible implications on the inflationary epoch, for instance, the current five-year WMAP (WMAP5) [5], as well as the three-year WMAP (WMAP3) data [4], have precision enough to discriminate between some single-field inflationary models [6–10]. Very recently, Kinney et al. [6] presented an update of the inflation constraints using the WMAP5 and confirmed the results previously obtained by themselves with the WMAP3 data [10]. In fact, after the WMAP5 data release, it seems clear that the quartic chaotic inflationary scenarios of the form $V(\Phi) \sim \lambda \Phi^4$ were ruled out, while quadratic chaotic inflationary models with potential, $V(\Phi) \sim m^2 \Phi^2$, agreed with the observational data. The original WMAP5 parameter-estimation analysis also pointed to a spectral index smaller ($n_s \simeq 0.96$) than the Zel’dovich spectrum of density perturbations, for which adiabatic perturbations have a scale-invariant spectral index ($n_s = 1$). Although compatible with some theoretical predictions [11], the latter conclusion was rediscussed by a recent analysis of the WMAP5 data from a more sophisticated statistical approach of model selection and systematic effects, leading to values of n_s still compatible with the Zel’dovich prediction [6,10].

The WMAP5 data alone also place an upper limit on the tensor-to-scalar ratio, i.e., $r < 0.43$ (at 95.4\% c.l.), whereas a joint analysis involving the WMAP5 data plus Baryonic Acoustic Oscillation (BAO), type Ia Supernovae (SNe Ia) and Ly\alpha forest data from the Sloan Digital Sky Survey (SDSS) provides $r < 0.28$ (also at 95.4\% c.l.) [5,12,13]. In light of all these observational results, a number of authors have tested the viability of different types of inflationary models (see, e.g., [6–10,12,14–16]). As an example, the authors of ref. [16] revived a interesting phenomenological model with a simple slowly rolling scalar field that, in the light of the WMAP3 data, does not present a pure de Sitter inflationary expansion, but produce a Zel’dovich spectrum, i.e., $n_s = 1$.

Given the current availability of high-precision cosmological data and, as consequence, the real possibility of truly ruling out some theoretical scenarios, it is timely...
to revive old inflationary models (as done in ref. [16]), as well as to investigate new ones. In this paper, motivated by a transient dark-energy scenario recently proposed in ref. [17], we study a single, minimally-coupled scalar field model of inflation whose evolution is described by an exponential potential $V(\Phi)$ that has a quadratic dependence on the field Φ in addition to the standard linear term. Such a potential is obtained through a simple ansatz and fully reproduces the Ratra-Peebles scenario studied in ref. [18] (see also [19,20]) in the limit of the dimensionless parameter $\alpha \to 0$. For all values of $\alpha \neq 0$, however, the potential is dominated by the quadratic contribution exponential function and admits a wider range of solutions than do conventional exponential potentials.

In this context, our aim here is to test the viability of this new class of inflationary scenario in light of the current CMB and LSS data. In the second section we deduce the inflaton potential $V(\Phi)$ and discuss the basic features of the model. The slow-roll inflation driven by this potential along with some important observational quantities, such as the spectral index, its running, and the ratio of tensor-to-scalar perturbations, are discussed in the third section. We also confront our theoretical results with the most recent CMB and LSS observations, as analyzed in refs. [5–7,10,12]. Finally, the main results of this paper are discussed and summarized in the last section.

Single-field model. – In what follows we assume that the Universe is nearly flat, as evidenced by the combination of the position of the first acoustic peak of the CMB power spectrum and the current value of the Hubble parameter [5]. To begin with, let us consider a single scalar field model whose action is given by

$$S = \frac{m_{pl}^2}{16\pi} \int d^4x \sqrt{-g} \left[R - \frac{1}{2} \partial^\mu \Phi \partial_\mu \Phi - V(\Phi) \right].$$

(1)

In the above expression, $m_{pl} \equiv G^{-1/2} \approx 10^{19}$ GeV is the Planck mass and we have set the speed of light $c = 1$.

For an inflaton-dominated universe, the Friedmann equation is written as

$$H^2 = \left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi}{3m_{pl}^2} \left[\frac{1}{2} \dot{\Phi}^2 + V(\Phi) \right],$$

(2)

where $a(t)$ is the cosmological scalar field and dots denote derivatives with respect to time. By combining eq. (2) with the conservation equation for the Φ component, i.e., $\dot{\rho}_\Phi + 3H(\rho_\Phi + p_\Phi) = 0$, we obtain

$$\frac{\partial \Phi}{\partial a} = \sqrt{-\frac{m_{pl}^2}{8\pi a} \frac{1}{\rho_\Phi} \frac{\partial \rho_\Phi}{\partial a}},$$

(3)

where $\rho_\Phi = \frac{1}{2} \dot{\Phi}^2 + V(\Phi)$ and $p_\Phi = \frac{1}{2} \dot{\Phi}^2 - V(\Phi)$ are, respectively, the inflaton energy density and pressure.

Following ref. [17], we adopt an ansatz on the scale factor derivative of the energy density, i.e.,

$$\frac{1}{\rho_\Phi} \frac{\partial \rho_\Phi}{\partial a} = - \frac{\lambda}{a^{1-2\alpha}},$$

(4)

where α and λ are positive parameters, and the factor 2 was introduced for mathematical convenience. From a direct combination of eqs. (3) and (4), the following expression for the scalar field is obtained:

$$\Phi(a) = \frac{1}{\sqrt{\alpha}} \ln_{1-\alpha} (a),$$

(5)

where eq. (5) can be more directly obtained if one defines the generalized exponential function as $\exp_{1-\xi}(x) \equiv [1 + \xi x]^{1/\xi}$, which not only reduces to an ordinary exponential in the limit $\xi \to 0$ but also is the inverse function of the generalized logarithm (i.e., $\ln_{1-\xi} \exp_{1-\xi}(x) = x$). Thus, the scale factor in terms of the field can be written as $a(\Phi) = \exp_{1-\alpha}(\sqrt{\sigma} \Phi)$ [17].

![Fig. 1: The potential $V(\Phi)$ as a function of the field (eq. (6))]
Slow-roll inflation.

Slow-roll parameters. In this background, the energy conservation law for the field can be expressed as \(\dot{\Phi} + 3H\dot{\Phi} + V'(\Phi) = 0 \), where primes denote derivative with respect to the field \(\Phi \). In the so-called slow-roll approximation, the evolution of the field is dominated by the drag from the cosmological expansion, so that \(\dot{\Phi} \approx 0 \) or, equivalently, \(3H\dot{\Phi} + V' \approx 0 \). Also, the inflationary potential owes to have a sufficiently small slope, so that \(V' \ll V \). Thus, the slow-roll is a consistent approximation for \(\epsilon, \eta \ll 1 \). With these simplifications, the slow-roll regime can be expressed in terms of the slow-roll parameters \(\epsilon \) and \(\eta \), i.e., [23,24]

\[
\epsilon = \frac{m_{pl}^2}{16\pi} \left(\frac{V'}{V} \right)^2 = \frac{\lambda [\lambda y^2 - 2(\alpha + 3)y^2]}{6 - \lambda y^2},
\]

and

\[
\eta = \frac{m_{pl}^2}{8\pi} \frac{V''}{V} = \frac{(5\alpha + 6)\lambda y^2 - 2\alpha(3\alpha + 3)}{6 - \lambda y^2},
\]

where, for the sake of simplicity, we have introduced the variable \(y = 1 + \alpha \sqrt{\lambda} \Phi \). Note that, in the limit \(\alpha \to 0 \), the above expressions reduce, respectively, to \(\epsilon_{\alpha \to 0} = \frac{\lambda}{2} \) and \(\eta_{\alpha \to 0} = \lambda \), as expected from conventional exponential potentials.

For the above scenario, we can also compute the predicted number of e-folds by using eq. (5), i.e., \(N = \int H dt = \ln \left[1 + \alpha \sqrt{\lambda} \Phi_N \right]^{1/\alpha} \), which reduces, in the limit \(\alpha \to 0 \), to \(N_{\alpha \to 0} \propto \Phi_N \). Here, \(\Phi_N \) indicate that the allowed values of the scalar field are tied by number of allowed e-folds by observations. The result of this calculation is shown in fig. 2 as the \((N, \Phi)\)-plane for some selected values of the index \(\alpha \). The horizontal lines in the figure correspond to the 1σ bound on the number of e-folds discussed in ref. [9], i.e., \(N = 54 \pm 7 \). To test the viability of the inflationary scenario here discussed, in all the subsequent analyses we follow ref. [9] and adopt the interval \(N = 54 \pm 7 \). Without loss of generality, we also fix the value of the constant \(\lambda \) at \(\approx 10^{-6} \).

Spectral index. In order to confront our model with current observational results we first consider the spectral index, \(n_s \), and the ratio of tensor to scalar perturbations, \(r \). In terms of the slow-roll parameters to first order, these quantities, defined as \(n_s = 1 + 2\eta - 6\epsilon \) and \(r = 16\epsilon \), are now expressed as

\[
n_s - 1 = -\frac{[\lambda y^2 - 2(\alpha + 3)y^2]}{(6 - \lambda y^2)^2} [3\lambda y^2 + 2(6 - \lambda y^2)] + \frac{2\lambda y^2(\alpha - 6) + 4(\alpha + 3)(\alpha + 6)}{6 - \lambda y^2},
\]

and

\[
r = 8\lambda \frac{[\lambda y^2 - 2(\alpha + 3)y^2]}{(6 - \lambda y^2)^2}.
\]

As can be easily verified, in the limit \(\alpha \to 0 \), the above expressions reduce, respectively, to \(n_s - 1 \to -\lambda \) and \(r_{\alpha \to 0} = 8\lambda \). For \(r < 0.43 \) (95.4% c.l.), as given by current CMB data [4], one obtains from eq. (10) \(\epsilon < 0.026 \), which is in agreement with the slow-roll approximation discussed earlier and adopted in our analysis.

Figure 3 shows the \(n_s - r \) plane, given by

\[
r = \frac{8}{\gamma - 3} (n_s - 1),
\]
where
\[\gamma = \frac{2(\lambda y^2 - 6)}{\lambda y^2} \left[1 - \frac{\lambda y^2(\alpha - 6) + 2(\alpha + 3)(\alpha + 6)}{(\lambda y^2 - 2\alpha - 6)^2} \right], \]
for some selected values of \(\alpha \). Note that, in the limit \(\alpha \to 0 \) or, equivalently, \(\gamma \to 2 \), eq. (11) reduces to \(r_{\alpha=0} = 8(1-n_s) \), as predicted by exponential models [10]. Also, and very important, we note from this figure that, for these selected values of the parameter \(\alpha \), the inflationary scenario discussed in this paper seems to be in agreement with current observational data from CMB and LSS measurements. As a first example, let us take the tensor fraction \(r \) to be negligible. In this case, the analyses involving WMAP3 plus SDSS and WMAP3 plus 2dFGRS data provide, respectively, \(n_s = 0.980 \pm 0.020 \) and \(n_s = 0.956 \pm 0.020 \) (68.3% c.l.), which are clearly in agreement with the model predictions (at 2σ level) shown in fig. 3, i.e., \(n_s \simeq 1.03 \) \((N = 47) \), \(n_s \simeq 1.01 \) \((N = 54) \), and \(n_s \simeq 0.97 \) \((N = 61) \). Similar conclusions can also be obtained by considering \(r \neq 0 \). In this case, the current data from WMAP3 plus SDSS provides a tensor fraction \(r < 0.33 \) and \(n = 0.980 \pm 0.020 \), while the model discussed in this paper predicts for this interval of \(r \), \(n_s \geq 0.95 \) \((N = 47) \), \(n_s \geq 0.92 \) \((N = 54) \), and \(n_s \geq 0.88 \) \((N = 61) \). From this figure, it is also possible to obtain a scale-invariant spectrum \((n_s = 1) \) for values of \(r \neq 0 \), as discussed in the context of the intermediate inflationary model of ref. [16]. It is worth emphasizing that the CMB data recently updated by the WMAP team [5] do not change considerably the constraints on inflationary models [6,7]. This amounts to saying that the results of our analysis above remain valid.

Running of the spectral index. The running of the spectral index in the inflationary regime, to lowest order in the slow-roll approximation, is given by [25]

\[\frac{dn_s}{d\ln k} = -2\xi^2 + 16\epsilon\eta - 24\epsilon^2, \]

where \(\epsilon \) and \(\eta \) are, respectively, the first and the second slow-roll parameters, defined in eqs. (7) and (8). Here, \(\xi^2 \) is the third slow-roll parameter, which is related with the third derivative of the potential by

\[\xi^2 = \frac{m_{\text{pl}}^2}{64\pi^2} \frac{V'''V'-V''^2}{V^2} = \lambda^3 \frac{[6\alpha(2\alpha+3)-3(3\alpha+2)\lambda y^2 + \lambda^2 y^4][\lambda y^2 - 2(\alpha + 3)y^2]}{(6 - \lambda y^2)^2} \]

Note that in the limit \(\alpha \to 0 \), the \(\xi \) parameter reduces to \(\xi_{\lambda=0} = \lambda^2 \), and, as expected for usual exponential potentials, the running, expressed by eq. (13), vanishes.

This and other features of the inflationary scenario discussed in this paper are shown in fig. 4, left and fig. 4, right. In fig. 4, left, the \((\alpha, dn_s/d\ln k) \)-plane is displayed for values of the number of e-folds lying in the interval \(N = 54 \pm 7 \). Note that, differently from other models discussed in the literature (see, e.g. [15]), this scenario predicts only negatives values for the running of the spectral index, which seems to be in full agreement with the WMAP3 data \((-0.17 \leq dn_s/d\ln k \leq -0.02 \) at 95.4% c.l.) but only partially compatible with the joint analysis involving WMAP3 and SDSS data \((-0.13 \leq dn_s/d\ln k \leq -0.007 \) at 95.4%) of ref. [10] and confirmed in refs. [6,7]. In fig. 4, right, we show the \((dn_s/d\ln k, r) \)-plane for \(\alpha = 0.1, 0.09 \) and 0.08. Here, the shadowed region corresponds to the 95.4% limit on the ratio of tensor-to-scalar perturbations, i.e., \(r < 0.28 \) [5]. As can be seen from
this panel, the three combinations of the pair α-N, the model predictions agree reasonably well with the current bounds from CMB and LSS data.

Final remarks. – Primordial inflation [26] constitutes one of the best and most successful examples of physics at the interface between particle physics and cosmology, with tremendous consequences for our view and understanding of the observable Universe (see, e.g., [23,24,27] for review). Besides being the current favorite paradigm for explaining both the causal origin of structure formation and the Cosmic Microwave Background (CMB) anisotropies, an inflationary epoch in the very early Universe also provides a natural explanation of why the Universe is nearly flat ($\Omega_k \simeq 0$), as evidenced by the combination of the position of the first acoustic peak of the CMB power spectrum and the current value of the Hubble parameter [4].

In this work, we have discussed cosmological implications of the single, minimally coupled scalar field model recently proposed in ref. [17], whose evolution is described by an exponential potential $V(\Phi)$ that has a quadratic dependence on the field Φ in addition to the standard linear term. As discussed in the second section, this potential fully reproduces the Ratra-Peebles inflation studied in ref. [18] in the limit of the dimensionless parameter $\alpha \to 0$. We have calculated the main observable quantities in the slow-roll regime and shown that, even for values of the number of e-folds in the restrictive interval $N = 54 \pm 7$ [9], the predictions of the model for values of $0 < \alpha \leq 0.1$ seem to be in good agreement with current bounds on these parameters from CMB and LSS observations, as given in refs. [10,12]. Similarly to the intermediate inflationary scenario discussed in ref. [16], it is also possible to obtain a scale-invariant spectrum ($n_s = 1$) for vanishing values of the tensor-to-scalar ratio r. For values of $r \simeq 0$ or, equivalently, $n_s \simeq 1$, we have found that the theoretical prediction for the running of the spectral index approaches zero from negative values, which is compatible with current observations from CMB data, i.e., $-0.17 \leq d n_s / d \ln k \leq -0.2$ (at 95.4% c.l.) [4]. Note that the WMAP 5-year estimate for running of espectral index, $-0.065 \leq d n_s / d \ln k \leq -0.019$ (at 95.4% c.l.) [5], presents a slight upward of the WMAP 3-year result. As can be seen in fig. 3 and 4, the model discussed here remains compatible with the new data.

This work is partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Brazil), JSA is also supported by FAPERJ No. E-26/171.251/2004 and JASL by FAPESP No. 04/13668-0.

REFERENCES

[1] Smoot G. F. et al., *Astrophys. J.* 396 (1992) L1.
[2] de Bernardis P. et al., *Nature*, 404 (2000) 955; MacTavish C. J. et al., *Astrophys. J.*, 647 (2006) 799.
[3] Spergel D. N. et al., *Astrophys. J. Suppl.*, 148 (2003) 175.
[4] WMAP Collaboration (Spergel D. N. et al.), *Astrophys. J. Suppl.*, 170 (2007) 777.
[5] WMAP Collaboration (Komatsu E. et al.), arXiv:0803.0547 [astro-ph].
[6] Kinney W. H., Kolb E. W., Melchiorri A. and Riotto A., arXiv:0805.2966 [astro-ph].
[7] Peiris H. V. and Easther R., arXiv:0805.2154 [astro-ph].
[8] Easther R. and Peiris H., *JCAP*, 0609 (2006) 010; Peiris H. and Easther R., *JCAP*, 0610 (2006) 017.
[9] Alabidi L. and Lyth D. H., *JCAP*, 0605 (2006) 016; 0608 (2006) 013.
[10] Kinney W. H., Kolb E. W., Melchiorri A. and Riotto A., *Phys. Rev. D*, 74 (2006) 023502.
[11] Mukhanov V. F. and Chibisov G. V., *JETP Lett.*, 33 (1981) 532; *Pis'ma Zh. Eksp. Teor. Fiz.*, 33 (1981) 549.
[12] Tegmark M. et al., *Phys. Rev. D*, 74 (2006) 123507.
[13] Seljak U., Slosar A. and McDonald P., *JCAP*, 0610 (2006) 014.
[14] Opher R. and Pelinson A., *Braz. J. Phys.*, 36 (2006) 566; Rosenfeld R. and Frieman J. A., *Phys. Rev. D*, 75 (2007) 043513; Cardoso A., *Phys. Rev. D*, 75 (2007) 027302.
[15] Alcaniz J. S. and Carvalho F. C., *Eurphys. Lett.*, 79 (2007) 39001.
[16] Barrow J. D., Lidde A. R. and Pahud C., *Phys. Rev. D*, 74 (2006) 123505.
[17] Carvalho F. C., Alcaniz J. S., Lima J. A. S. and Silva R., *Phys. Rev. Lett.*, 97 (2006) 081301.
[18] Peebles P. J. E. and Ratra B., *Astrophys. J. Lett.*, 325 (1988) L17; Ratra B. and Peebles P. J. E., *Phys. Rev. D*, 37 (1988) 3406.
[19] Wetterich C., *Astron. Astrophys.*, 301 (1995) 321.
[20] Ferreira P. G. and Joyce M., *Phys. Rev. D*, 58 (1998) 023503.
[21] Abramowicz M. and Stegun I., *Handbook of Mathematical Functions* (Dover, New York) 1965; See also: Lima J. A. S., Silva R. and Plastino A. R., *Phys. Rev. Lett.*, 86 (2001) 2938.
[22] Dodelson S. and Hui L., *Phys. Rev. Lett.*, 91 (2003) 131301; Lidde A. R. and Leach S. M., *Phys. Rev. D*, 68 (2003) 103503.
[23] Lidde A. R. and Lyth D. H., *Cosmological Inflation and Large-Scale Structure* (Cambridge University Press, Cambridge) 2000.
[24] Lyth D. H. and Riotto A., *Phys. Rep.*, 314 (1999) 1.
[25] Bassett B. A., Tsukikawa S. and Wands D., *Rev. Mod. Phys.*, 78 (2006) 537; Ballesteros G., Casas J. A. and Espinosa J. R., *JCAP*, 0603 (2006) 001.
[26] Starobinsky A. A., *Phys. Lett. B*, 91 (1980) 99; Guth A. H., *Phys. Rev. D*, 23 (1981) 347; Linde A. D., *Phys. Lett. B*, 116 (1982) 335; Albrecht A. and Steinhardt P. J., *Phys. Rev. Lett.*, 48 (1982) 1220.
[27] Brandenberger R. H., *Braz. J. Phys.*, 31 (2001) 131; Lidsey J. E. et al., *Rev. Mod. Phys.*, 69 (1997) 373; Linde A., *New Astron. Rev.*, 49 (2005) 35; Ringeval, *JCAP*, 0608 (2006) 009.