Research on the structure type of emergency rescue station in super-long railway tunnel

Qi Li1, Xiaoling Xiong1, Mingnian Wang2, Xiongzhi Cao1, Xinyu Luo3 and Chang Yang1*

1 College of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Dujiangyan, Sichuan, 611803, China
2 School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
3 Changjiang Institude of Survey, Planning, Design and Research, Wuhan, 430014, P.R.China
*Corresponding author’e-mail: 1360152742@qq.com

Abstract. In order to ensure the safety of rescue and evacuation of super-long railway tunnel (longer than 20km), an emergency rescue station is generally set up. Through the research on the structure types of the railway tunnel and the railway tunnel group emergency rescue stations at home and abroad, the paper finds out the types of the emergency rescue stations and the advantages and disadvantages of different structural types. Conclusion are as follows, 1) Super-long railway tunnels in European countries, Japan and China generally adopt the form of double holes. Super-long railway tunnels generally use a single hole in China. 2) There are six types of structure of railway tunnel emergency rescue station: general encryption transverse channel type, horizontal guide type on both sides, single side flat guide type, refuge space type, encrypted horizontal channel type at the entrance and auxiliary tunnel type at the entrance.

1. Introduction

In recent years, the number of long railway tunnels has increased greatly, and disaster prevention and rescue evacuation of long railway tunnels has become the focus of scholars. Studies have shown that the construction of emergency rescue stations in super-long railway tunnels can greatly reduce the risk of train fires in super-long railway tunnels and ensure the safety of personnel evacuation. China stipulates[1] that tunnels or tunnel groups with a length of 20 km or more should be equipped with emergency rescue stations, and the distance between emergency rescue stations should not be greater than 20 km. European stipulates[2] that after the fire is determined, the passenger train meeting the long-term underground operation standard of passenger train shall be able to run normally for 20km. When the tunnel length exceeds 20 km, an emergency rescue station is required. Japan stipulates[3] that a double-hole subdivision scheme shall be adopted for tunnels over 30km, and emergency rescue stations shall not be provided for land railway tunnels under 30km. According to German regulations[4], it is required to carry out independent evaluation of its fire safety measures for long tunnel (L > 15km).

At present, there are various types of emergency rescue stations at home and abroad, and it is rare to have a unified expression and detailed analysis of their functional characteristics. Therefore, this paper analyzes the advantages and disadvantages of different types of emergency rescue stations and
their applicability by investigating the structural types of emergency rescue stations at home and abroad, and provides references for the selection of emergency rescue of long railway tunnels.

2. Structural types of emergency rescue stations at home and abroad

In order to have a better understanding of the structure of the railway tunnel rescue station, this article conducted a survey on its structure, the structure of the emergency rescue station is shown in Table 1[4]-[20].

No.	Tunnel name	Country	Length(km)	Tunnel form	Structure type
1	Seikan Tonneru	Japan	53.9	Single hole double line	Two side flat guide type
2	Larch Mountain Tunnel	Switzerland	34	Single-double hole	Encrypted passage-way
3	Young Dong Tunnel	Korea	16.24	Single hole double line	Encrypted passage-way
4	Anglo-French Channel	Britain and France	49.2	Double hole single line	Encrypted passage-way
5	San Diego Tunnel	Switzerland	57	Double hole single line	Encrypted passage-way
6	Korlan Tunnel	Austria	32.8	Double hole single line	With evacuation space
7	Guadarrama Tunnel	Spain	28.2	Double hole single line	Encrypted passage-way
8	Pajares Tunnel	Spain	24.6	Double hole single line	Encrypted passage-way
9	Wushaoling Tunnel	China	20.05	Double hole single line	With evacuation space
10	Guanjiao Tunnel	China	32.645	Double hole single line	Encrypted passage-way
11	Qingyunshan Tunnel	China	22.175	Double hole single line	Encrypted passage-way
12	Xiangshan Super-long	China	23.92	Double hole single line	Encrypted passage-way
13	Xiaoshan Tunnel	China	22.759	Double hole single line	Encrypted passage-way
14	Qingtian Temple Tunnel	China	23.075	Double hole single line	Single side flat guide
15	Dangjinshan Tunnel	China	20.100	Single hole single line	Encrypted passage-way
16	Gaoligong Tunnel	China	34.53	Single hole double line	Encrypted passage-way
17	Liuyanghe Tunnel	China	9.935	Single hole double line	Two side flat guide type
18	Yuntunbao Tunnel	China	22.923	Single hole double line	Two side flat guide type
19	Dayaoshan Tunnel Group	China	24.7	Single hole double line	Auxiliary tunnel at the entrance
20	Daqinling Tunnel Group	China	44.223	Single hole double line	Auxiliary tunnel at the entrance
21	Tianhuashan Tunnel Group	China	42.365	Single hole double line	Encrypted passage-way at the entrance
22	Furenshan Tunnel Group	China	24.686	Single hole double line	Auxiliary tunnel at the entrance
23	Hejialiang Tunnel Group	China	37.656	Single hole double line	Auxiliary tunnel at the entrance
24	Jinwen Railway Tunnel Group	China	23.213	Single hole double line	Auxiliary tunnel at the entrance
25	Chenggui Line Tunnel Group	China	13.299	Single hole double line	Auxiliary tunnel at the entrance
26	Zheng Wangao Three Gorges-Zhujiayan Tunnel Group	China	25.98	Single hole double line	Encrypted passage-way at the entrance
27	Qiling-Tianpingshan Tunnel Group	China	21.057	Single hole double line	Auxiliary tunnel at the entrance
28	Mountain-Nanliang Tunnel Group	China	39.549	Single-double hole	Auxiliary tunnel at the entrance

It can be seen from Table 1 that there are two types of tunnel: single hole and double hole. The super-long railway tunnels in European countries, Japan generally adopt the double-hole form, while the super-long railway tunnel groups in China generally adopt the single-hole form.
It can be seen from Table 1 that the types of emergency rescue stations are divided into two types according to the different positions. The emergency rescue station in the tunnel includes four types of encrypted passage-way type, two side flat guide type, single side flat guide type and with evacuation space type. The emergency rescue station at the entrance of the tunnel includes an encrypted horizontal channel at the entrance and an auxiliary tunnel at the entrance.

3. Applicability, advantages and disadvantages of different types of emergency rescue stations

3.1. Emergency rescue station in the tunnel

3.1.1. Encrypted passage-way type emergency rescue station

The structure of the encrypted passage-way type emergency rescue station is shown in Figure 1. It is suitable for double-hole single-line railway tunnels. The advantage is that the existing structure is used for mutual rescue, and it is convenient for people to quickly escape to a safe tunnel after the accident; the disadvantage is that the amount of civil engineering is large and the cost is relatively high.

Figure 1. Encrypted passage-way emergency rescue station

3.1.2. Two side flat guide type emergency rescue station

The structure of the two side flat guide type emergency rescue station on both sides is shown in Figure 2. It is suitable for single-hole double-line railway tunnel. The advantage is that it is convenient for personnel to quickly evacuate and evacuate the accident tunnel, and avoid cross-line evacuation and improve safety. The disadvantage is that the amount of additional works is large.

Figure 2. Two side flat guide type emergency rescue station.

3.1.3. Single side flat guide type emergency rescue station

The structure of the single-side flat guide emergency rescue station is shown in Figure 3. It is suitable for single-hole single-line tunnels. The advantage is that it is easy for people to evacuate the accident tunnel. The disadvantage is that it needs to increase the amount of horizontal guide construction works, the cost is higher, and it is not conducive to external vehicles entering the rescue.

Figure 3. Single side flat guide type emergency rescue station.

3.1.4. With evacuation space type emergency rescue station

The structure of the emergency rescue station with refuge space is shown in Figure 4. It is suitable for double-hole single-line tunnels that cannot communicate with the outside world. A parallel guide pit can be set between the double-hole tunnels as a refuge space, or the transverse channel can be widened.
as a refuge space. The advantage is that it is convenient for personnel to wait for rescue. The disadvantage is the high cost and complicated construction.

Figure 4. With evacuation space type emergency rescue station.

3.2. Emergency rescue station between continuous tunnel portals

3.2.1. Encrypted passage-way at the entrance type emergency rescue station
The structure of the encrypted passage-way emergency rescue station at the entrance is shown in Figure 5. It is suitable for the double-hole railway tunnel group. The advantage is that the two parallel tunnels make full use of each other for rescue, and there is generally no external evacuation channel. The disadvantage is that multiple horizontal channels are encrypted, the engineering volume is large, and the cost is high.

Figure 5. Encrypted passage-way emergency rescue station.

3.2.2. Auxiliary tunnel at the entrance type emergency rescue station
The structure of the auxiliary tunnel at the entrance emergency rescue station is shown in Figure 6. It is suitable for single and double tunnels. The advantage is that the terrain conditions can be fully utilized, a small number of auxiliary tunnels or open evacuation channels are added, the cost is low, and personnel can be evacuated directly to a safe area outside the cave. The disadvantage is that the number of evacuation channels is small and the evacuation efficiency is low.

Figure 6. Auxiliary tunnel at the entrance type emergency rescue station.

4. Conclusion
The following main conclusions are obtained through research:
(1) The super-long railway tunnels in European countries, Japan generally adopt the double-hole form, while the super-long railway tunnel groups in China generally adopt the single-hole form;
(2) The emergency rescue station in the tunnel includes four types of encrypted passage-way type, two side flat guide type, single side flat guide type and with evacuation space type. The emergency rescue station at the entrance of the tunnel includes an encrypted horizontal channel at the entrance and an auxiliary tunnel at the entrance.

Fund Projects: National Natural Science Foundation of China(51908387)

Brief introduction of the first author: Li Qi(1988-),female, born in Hulunbuir, Inner Mongolia, lecturer, master tutor, research direction: energy-saving technology for tunnels and underground engineering;

Brief introduction of the first author: Yang Chang(1986-),female, born in Heze, Shandong Province, lecturer, master tutor, research direction: engineering structure safety technology.
References

[1] Code for Design on Rescue Engineering for Disaster Prevention and Evacuation of Railway Tunnel (TB10020-2017) [S]. Beijing: National Railway Administration.

[2] Safety in Railway tunnel (EU) NO 1303/2014.

[3] Guohui L. German tunnel fire protection technology [J]. Fire Science and Technology, 2018, (37): 2.

[4] Haidong Z. (2009) A study on Wushaoling tunnel’s auxiliary gallery influence on operation ventilation and long tunnel rescue station disaster prevention research. [D]. Southwest Jiaotong University.

[5] Zhangbo, L. (2011) Design on operation ventilation and design prevention and relief of the Blue Sky Temple Tunnel at Baotou-Lanzhou Railway. J. Chinese Journal of Underground Space and Engineering, 7: 185–193.

[6] Zhiqiang, W., Kui, L. (2017) Research on evacuation plan for disaster prevention and rescue of Guiyang-Guangzhou High-speed Railway Tunnel. J. Railway standard design, 61: 105–110.

[7] Zhibin, Z. (2014) Discussion on fire protection design for long railway tunnel. J. Railway standard design, 58: 117–120.

[8] Yongtao X., Xiang D. (2010) Design study on operation ventilation and disaster prevention and rescue scheme of Xiangshan Extra-long Tunnel. J. Tunnel and Underground Engineering, 4: 81–84.

[9] Yanfeng, G. (2014) Research on design of the emergency rescue station of Qingyunshan Tunnel in Xiangtang-Putian Railway. J. Journal of Railway Engineering Society, 02: 83–87.

[10] Jiliang, L., Yong, Z. (2015) Study on design scheme of disaster prevention, rescue and evacuation engineering in yuntunbao tunnel. J. Shaxi Architecture, 41: 181–183.

[11] Qi, L., Li, Y., Mingnian, W., Xinyu, L. (2017) Discussion on rescue facilities planning in long railway tunnels and tunnel groups. J. Chinese Journal of Underground Space and Engineering, 13: 567–572.

[12] Shiyang, L. (2014) Case study on design of Dangjinshan Super-long Tunnel on Dunhuang-Golmud Railway. J. Tunnel Construction, 34: 452–459.

[13] Guoliang, L., Shaohua, C. (2015) Research on disaster prevention and rescue techniques for the Extra-long Guanjiao Tunnel. J. Modern Tunnelling Technology, 06: 14–19.

[14] Haifu, S. (2009) Research on Disaster Prevention and Rescue Design of Taihang Mountain and Nanliang Changda Tunnel on Shitai Railway Passenger Dedicated Line. J. Tunnel and Underground Engineering, 11: 93–96.

[15] Dongping, Z., Yao, J., Laosan, L., Baihong, Y. (2019) Fire ventilation scheme and parameter sensitivity of emergency rescue station in Zhengzhou-Wanzhou High-speed Railway Tunnel Portal. J. Tunnel Construction, 39: 1097–1103.

[16] Weiping, L., Dexing, W., Jian, Y. (2008) Research on fire evacuation and rescue route parameters of Xihuling Tunnel. J. Modern Tunnelling Technology, 02: 22–27.

[17] Zhiwei, Y. (2011) Study on design of disaster prevention and rescue evacuation system for Dayaoshan Tunnel Group of Wuhan-Guangzhou passenger dedicated line. J. Journal of Railway Engineering Society, 08: 7–12.

[18] Qi, L. (2017) Research on reliability of personnel safe evacuation under high-speed railway super-long tunnel in fire. D. Southwest Jiaotong University.

[19] Linuan, Zhifu, M. (2007) Study on Disaster prevention and rescue technology for railway tunnels. J. Railway Standard Design, S: 50–55.

[20] Qipu, Z. (1989) Brief introduction of design and construction of the Channel Tunnel Engineering. J. Journal of Railway Engineering Society, 1: 82–84.