Magnetic susceptibility of \(\eta \)-carbide-type molybdenum and tungsten carbides and nitrides

T Waki, S Terazawa, Y Umemoto, Y Tabata, Y Murase\(^1\), M Kato\(^1\), K Hirota\(^1\), H Nakamura

Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, JAPAN
\(^1\) Department of Molecular Science and Technology, Doshisha University, Kyotanabe, Kyoto 610-0394 JAPAN
E-mail: waki.takeshi.5c@kyoto-u.ac.jp

Abstract. We synthesized a series of molybdenum and tungsten \(\eta \)-carbide-type compounds and measured their magnetic susceptibility. Although the enhancement of was observed in several compounds, apparent magnetic order was found only in Fe\(_3\)W\(_3\)N (ferromagnetic at 110 K). The broad peak in Fe\(_6\)W\(_6\)C is possibly due to antiferromagnetic order. Itinerant electron metamagnetic transitions were observed in Fe\(_3\)W\(_3\)C, Fe\(_6\)W\(_6\)C, Fe\(_6\)W\(_6\)N and Co\(_6\)W\(_6\)C. The magnetic enhancement depends on the 3\(d\) element in the order Fe > Co > Ni corresponding to DOS at the Fermi energy in \(\eta \)-12 systems, whereas no clear trend has been observed in \(\eta \)-6 systems.

1. Introduction
The \(\eta \)-carbide-type compounds with the cubic Fe\(_3\)W\(_3\)C-type crystal structure (space group \(\text{Fd} \bar{3}m \)), are known as refractory and hard materials, and recently as potential catalysts. The general formula is \(M_6^fT_6^dX^cX^a_mX^m_n \), where \(M = \text{Nb, Mo, W, Ta, } \cdots \), \(T = \text{Cr, Mn, Fe, Co, Ni, } \cdots \), \(X = \text{C, N, O, } m = 0, 2, n = 0, 1 \) and the superscripts of the metal sites represent Wyckoff positions. In the case of \(m = 2 \) and \(n = 0 \), namely \(T_3M_3X \), the structure is referred to as \(\eta \)-6 (the number denotes the ratio of metal atoms against the \(X \) atom). Similarly \(m = 0 \) and \(n = 1 \), \(T_6M_6X \) is called \(\eta \)-12. In both structures, the three dimensional \(T \) metal network consists of the 16\(d\) pyrochlore lattice nested by 32\(e\) tetrahedrons called a stella quadrangula [1], which is of interest in the viewpoint of geometrical frustration. As the \(T-T \) distance in \(\eta \)-carbide-type compounds is short of 2.5 ~ 2.6 Å, the itinerant electron magnetism is expected. Although many studies were devoted on these materials, few quantum properties have been reported so far. Recently we have found a ferromagnetic quantum critical behavior in Fe\(_3\)Mo\(_3\)N [2] and also field and impurity induced ferromagnetic orders in the compound [3]. As the ferromagnetic orders are triggered by slight perturbations, the absence of magnetic long-range order in pure Fe\(_3\)Mo\(_3\)N could be due to the geometrical frustration in the stella quadrangula lattice of the Fe sublattice [3]. We also found an itinerant electron metamagnetism (IEM) in Co\(_3\)Mo\(_3\)C [4]. Therefore, a rich variety of magnetism is expected in other \(\eta \)-carbide-type compounds. In this report we show temperature dependences of \(\chi \) measured for several molybdenum and tungsten \(\eta \)-6 and \(\eta \)-12 compounds.
2. Experiments
We synthesized polycrystalline samples of Mn₃Mo₃C, Fe₃W₃N, Fe₃W₃C, Fe₆Mo₆C, Fe₆W₆C, Fe₆W₆N, Co₆W₆C, Co₆Mo₆N, Ni₆Mo₆C, and Ni₆W₆C. Except Fe₆W₆N, the synthesis has been reported in the literature together with the crystallographic information [5, 6, 7, 8, 9, 10, 11, 12, 13]. Most carbides were obtained using a standard solid state reaction from powdered elements in evacuated silica tubes. Fe₃Mo₃C was obtained by two methods; one is the solid state reaction (#1) and the other is a topotactic method from the nitride (#2) [12]. On the other hand, the nitrides were obtained using specific methods; Co₆Mo₆N was obtained via a topotactic route from Co₃Mo₃N described in the reference [5], Fe₃W₃N was successfully synthesized using a hot isostatic pressing method starting from metal elements in N₂ high-pressure gas. Fe₆W₆N was also obtained by the same method under different pressures and temperatures. The synthesized samples were checked by the powder XRD method. Except Mn₃Mo₃C and Fe₆W₆N, we obtained single phases. As impurities, MoC and Fe₃W₃N were detected in Mn₃Mo₃C and Fe₆W₆N, respectively. The temperature dependence of magnetic susceptibility χ was measured in the temperature range from 1.8 to 300 K using a SQUID magnetometer, MPMS equipped in the LTM center, Kyoto University. High field magnetization measurements were performed using a pulse magnet equipped in ISSP, the University of Tokyo, up to 50 T at 4.2 K.

3. Results and Discussion

![Figure 1. χ for η-6.](image1)

![Figure 2. χ for η-12.](image2)

Temperature dependences of χ for η-6 and η-12 compounds are summarized in Figs. 1 and 2, respectively. The data of Fe₃Mo₃N, Co₃Mo₃C and Co₃Mo₃N are taken from our previous reports [2, 4]. Most of the systems show Curie-Weiss (CW) like temperature dependences at high temperatures, suggesting magnetic enhancement in these compounds. The CW susceptibilities were fitted to a modified CW function χ = C/(T − θ) + χ₀, where C = Npₜ effμB/3kB is the Curie constant, N the number of magnetic atoms, pₜ eff the effective moment, μB the Bohr magneton, kB the Boltzmann constant, θ the Weiss temperature, and χ₀ a temperature independent term of the susceptibility. The estimated pₜ eff and θ are summarized in Table 1.

Positive θ values often correspond the Curie temperature of the system, although negative θ values in the itinerant electron system do not necessarily mean antiferromagnetic interaction. As expected from the θ value, Fe₃W₃N undergoes ferromagnetic order at 110 K. The ratio of pₜ eff/ps = 4.8, estimated by using the saturation moment at 5 K ps = 0.76μB/Fe, is larger...
than unity, which is one of characteristics for the weak itinerant electron ferromagnet. A positive θ value was also obtained for Fe$_6$W$_6$C. However, a pronounced peak in $\chi(T)$ instead of ferromagnetic order has been observed. The magnetization at 2 K shows a sudden increase at 0.55 T suggesting a metamagnetic transition (MT). This transition is possibly of spin flip in the antiferromagnet because the critical field $H_C(T)$ decreases with increasing temperature, contrary to the increase in $H_C(T)$ generally observed for IEM of exchange-enhanced nearly ferromagnetic metals. Interestingly, Fe$_3$Mo$_3$N, with almost zero θ, shows a ferromagnetic non-Fermi liquid behavior at low temperature [2]. In that sense, Fe$_3$W$_3$C deserves a study for the quantum critical magnetism because it shows almost zero θ as well.

We observed $\chi(T)$ maximum behaviors in several systems; Fe$_3$Mo$_3$N, Fe$_3$W$_3$C, Co$_3$Mo$_3$C, Fe$_3$Mo$_3$C(#1), Co$_6$W$_6$C and Fe$_6$W$_6$N. Because the $\chi(T)$ maximum has been commonly observed in exchange-enhanced itinerant electron metals showing IEM, we performed high field magnetization measurements on these materials. We have already reported the IEMs observed in exchange-enhanced itinerant electron metals showing IEM, we performed high field magnetization measurements on these materials. We have already reported the IEMs in Fe$_3$Mo$_3$N [3] and Co$_3$Mo$_3$C [4]. By pulse magnetization measurements, we observed IEM at 27.8, 27 and 26.2 T in Fe$_3$W$_3$C, Fe$_6$W$_6$N and Co$_6$W$_6$C, respectively [14, 15]. Note that the result of Fe$_6$W$_6$N is only preliminary because our Fe$_6$W$_6$N sample contains extra phases. Unfortunately we have not established synthetic conditions to get a single phase of Fe$_6$W$_6$N.

No apparent anomalies were observed in $\chi(T)$ of Mn$_3$Mo$_3$C and Co$_6$Mo$_6$C, although CW-type temperature dependences were seen. Weak temperature dependences of χ were observed for Fe$_3$Mo$_3$C(#2), Co$_3$Mo$_3$N and Co$_6$Mo$_6$N. As the magnitudes are relatively large, there should be exchange enhancements. $\chi(T)$ of Ni$_6$Mo$_6$C and Ni$_6$W$_6$C remain small suggesting simple Pauli paramagnetism in these materials.

In Fe$_3$Mo$_3$C, the difference in magnetism was observed depending on synthetic routes. $\chi(T)$ of (#1) shows Pauli paramagnetism at high temperature and a gradual increase below 250 K being different from a CW behavior. On the contrary, $\chi(T)$ of (#2) is almost temperature independent. The difference may be due to the presence of excess Fe or Mo atoms occupying the counter metallic site which depends the manufacturing method [6, 12]. We note that no metamagnetic transition was observed in Fe$_3$Mo$_3$C(#1) up to 45 T, although a $\chi(T)$ maximum was observed at 35 K. The origin of the maximum might be different from those for other materials.

Among η-12 systems, a clear correlation between the enhancement of χ and the T element can be seen; with increasing the number of electrons as changing T from Fe to Ni, the magnetic enhancement деceases. For η-12 systems, only few results of band calculations are available [16]. The bands of Fe$_6$W$_6$C and Co$_6$W$_6$C consist of pronounced 3d bands and widely spread 5d W bands whose centers of gravity locate lower and higher than the Fermi energy, respectively. When we assume the rigid band model, the contribution of 5d bands at the Fermi energy increases with increasing the number of electrons, resulting in a magnetically less enhanced state. On the other hand, we have not observed an appreciable trend in the magnetism among η-6 systems, although the magnetism depends sensitively on the elements at the M and T sites. Band structures of Fe$_3$W$_3$C and Co$_3$W$_3$C (this compound is metastable at room temperature [7]), reported in the literature, do not show marked difference from those of η-12.

4. Conclusion
We measured temperature dependences of the susceptibility for several molybdenum and tungsten η-carbide-type compounds and found some magnetically enhanced materials. An apparent magnetic long-range order was observed only in Fe$_3$W$_3$C (ferromagnetic long range order at 110 K). Fe$_3$W$_6$C is possibly antiferromagnetic. $\chi(T)$ maximum behaviors, which remind us IEM, were observed in several systems. We have found IEM in Fe$_3$W$_3$C, Fe$_6$W$_6$N and Co$_6$W$_6$C.
Table 1. Magnetic properties of η-carbide-type compounds

materials	p_{eff} ($\mu_\text{B}/3\text{d-atom}$)	θ (K)	memo
Mn$_3$Mo$_3$C	0.98	-65	CW
Fe$_3$Mo$_3$C (#1)	-	-	$\chi(T)$ max @ 35 K
Fe$_3$Mo$_3$C (#2)	-	-	Pauli paramagnetic
Fe$_3$Mo$_3$N	2.14	2	$\chi(T)$ max @ 78 K, IEM @ 13.9 T
Fe$_3$W$_3$C	0.85	-1	$\chi(T)$ max @ 75 K, IEM @ 27.8 T
Fe$_3$W$_3$N	3.39	110	F @ 110 K
Co$_3$Mo$_3$C	2.50	-124	$\chi(T)$ max @ 90 K, IEM @ 37 T
Co$_3$Mo$_3$N	-	-	Pauli paramagnetic
Fe$_6$W$_6$C	1.50	28	$\chi(T)$ max @ 20 K, MT @ 0.55 T
Fe$_6$W$_6$N	2.74	-21	$\chi(T)$ max @ 80 K, IEM @ 27 T
Co$_6$W$_6$C	1.13	-93	$\chi(T)$ max @ 46 K, IEM @ 26.2 T
Co$_6$Mo$_6$C	0.99	-73	CW
Co$_6$Mo$_6$N	-	-	Pauli paramagnetic
Ni$_6$Mo$_6$C	-	-	Pauli paramagnetic
Ni$_6$W$_6$C	-	-	Pauli paramagnetic

Acknowledgments

The authors thank A. Kondo, K. Sato and K. Kindo at ISSP, the University of Tokyo for the collaboration in high-field magnetization measurements, and S. Alconchel at Universidad Nacional del Litoral and F. Sapiña at Universitat de València for providing Fe$_3$Mo$_3$C (#2) sample. The authors also thank the Yukawa Institute for Theoretical Physics at Kyoto University, where this work was initiated during the YITP-W-10-12 on "International and Interdisciplinary Workshop on Novel Phenomena in Integrated Complex Sciences: from Non-living to Living Systems". This study was supported by a Grant-in-Aid for Scientific Research on Priority Areas “Novel States of Matter Induced by Frustration” (19052003), a Grant-in-Aid for the Global COE Program, “International Centre for Integrated Research and Advanced Education in Materials Science,” a Grant-in-Aid for Young Scientists (B) 21760531 from MEXT of Japan, and a grant from Kinki Regional Invention Center (Foundation).

References

[1] Nyman H, Andersson S and O’Keeffe M 1978 J. Solid State Chem. 26 123
[2] Waki T et al. 2010 J. Phys. Soc. Jpn. 79 043701
[3] Waki T et al. 2011 EPL 94 37004
[4] Waki T et al. 2010 J. Phys. Soc. Jpn. 79 093703
[5] Hunter S M, McKay D, Smith R I, Hargreaves J S J and Gregory D H, 2010 Chem. Mater. 22 2898
[6] Fraker A C and Stadelmaier H H 1969 Trans. Metal. AIME 245 847
[7] Pollock C B and Stadelmaier H H 1970 Metal. Trans. 1 767
[8] Telegus V S, Kuz’ma Y B and Marko M A 1971 Poroshkovaya Met. 11 56
[9] Ettmayer P and Suchentrunk R 1970 Monatsh. Chem. 101 1098
[10] Weil K S and Kumta P N 1997 Acta. Cryst. C 53 1745
[11] Newsam J M, Jacobson A J, McCandlish L E and Polizzotti R S 1988 J. Solid State Chem. 75 296
[12] Alconchel S, Sapiña F and Martínez E 2004 Dalton Trans. 2463
[13] Prior T J and Battle P D 2004 J. Solid State Chem. 14 3001
[14] Waki T et al. 2011 J. Phys.: Conf. Ser. 320 012069
[15] Waki T et al. 2011 J. Alloys Compd. 509 9451
[16] Suëtin D V, Shein I R and Ivanovskii A L 2009 Physica B 404 3544