Naturally Small x_s?

Yosef Nir

Department of Particle Physics
Weizmann Institute of Science, Rehovot 76100, Israel

Abstract:

Within the Standard Model, x_s (the mixing parameter in the $B_s - \bar{B}_s$ system) is constrained to the range $7 \leq x_s \leq 40$. We point out that if New Physics contributes significantly to x_d (the mixing parameter in the $B_d - \bar{B}_d$ system), then $2 \leq x_s \leq 7$ is possible without any fine-tuned cancellations between the Standard Model and the New Physics contributions.

February 1994
1. x_s in the Standard Model

A measurement of x_s, the mixing parameter in the $B_s - \bar{B}_s$ system, would be of much interest \[1\]. Within the Standard Model it will determine the ratio $|V_{td}/V_{ts}|$ with relatively small hadronic uncertainties. Furthermore, it will constrain or may even discover New Physics.

Within the Standard Model, mixing in the $B_s - \bar{B}_s$ system is dominated by box diagrams with intermediate top quarks. This gives

$$x_s^{SM} = \frac{G_F^2 m_W^2}{6\pi^2} \eta_{QCD} (y_t f_2(y_t)) (\tau_{B_s} m_{B_s}) (B_{B_s} f_{B_s}^2) |V_{ts} V_{tb}|^2$$

(1.1)

where $y_t = m_t^2 / m_W^2$ and

$$f_2(y) = 1 - \frac{3y(1+y)}{4(1-y)^2} \left[1 + \frac{2y}{1-y} \ln(y) \right].$$

(1.2)

One way to calculate the Standard Model constraints on x_s is to directly use (1.1). The significant sources of uncertainty are m_t, f_{B_s}, and $\tau_{B_s}|V_{ts}|^2 \approx \tau_b |V_{cb}|^2$:

$m_t = 165 \pm 35 \text{ GeV},$

$$\sqrt{B_{B_s} f_{B_s}} = 0.22 \pm 0.06 \text{ GeV},$$

$$\frac{\tau_b}{1.49 \text{ ps}} |V_{cb}| = 0.037 \pm 0.007.$$ (1.3)

(We use $B_B = 1.16 \pm 0.07$. Note that this corresponds to the renormalization group invariant definition of B_B. Accordingly, we use for η_{QCD} the value of $\eta_{QCD}(m_t = 150 \text{ GeV}) = 0.5 \ [8]$.) Allowing these parameters to vary independently within their 1σ ranges, we get

$$3 \leq x_s \leq 40.$$ (1.4)

Another option is to use the theoretical expression for the ratio $R \equiv x_s/x_d$,

$$R^{SM} = \left(\frac{m_{B_s}}{m_{B_d}} \frac{\tau_{B_s}}{\tau_{B_d}} \right) \left(\frac{B_{B_s} f_{B_s}^2}{B_{B_d} f_{B_d}^2} \right) \left| \frac{V_{ts}}{V_{td}} \right|^2,$$

(1.5)

together with the experimental value of x_d to find x_s. The significant sources of uncertainty here are x_d, f_{B_s}/f_{B_d}, and $|V_{ts}/V_{td}|$:

$$x_d = 0.69 \pm 0.07,$$

$$\frac{B_{B_s} f_{B_s}^2}{B_{B_d} f_{B_d}^2} = 1.35 \pm 0.15,$$

$$|V_{ts}/V_{td}| = 5 \pm 2.$$ (1.6)
The upper bound on $|V_{td}|$ arises from CKM unitarity (we used the recent CLEO range $|V_{ub}/V_{cb}| = 0.08 \pm 0.03$), and the lower bound from the x_d constraint. This leads to $11 \leq R_{SM} \leq 75$ and consequently

$$7 \leq x_s \leq 60.$$ \hspace{1cm} (1.7)

Combining the two methods (1.4) and (1.7), we finally get the Standard Model prediction

$$7 \leq x_s \leq 40.$$ \hspace{1cm} (1.8)

Experiments will soon be able to explore the region near the lower bound in eq. (1.8). The question addressed in this work is whether a violation of this bound is likely in the presence of New Physics.

2. x_s beyond the Standard Model

There are several possible ways in which New Physics could lead to violation of the bounds in (1.8):

(a) The ratio $|V_{ts}/V_{td}|$ is outside the bounds (1.3).

(b) There are significant new contributions to x_s.

(c) There are significant new contributions to x_d.

1. We would first like to argue that the first effect (a) is not really of much significance. The lower bound in (1.8) corresponds to the upper bound on $|V_{td}|$. This, as mentioned above, is a result of CKM unitarity; therefore it can only be violated in models where the quark sector is extended beyond the three sequential generations of the Standard Model. It was shown, however, in ref. [12] that if CKM unitarity were even moderately violated, then New Physics contributions – t'-mediated box-diagrams in models of a fourth quark generation and Z-mediated tree-diagrams in models of non-sequential quarks – would dominate the mixing of neutral B-mesons. Consequently, either or both of effects (b) and (c) are guaranteed to be much more significant.

The upper bound on $|V_{td}|$ comes from the assumption that the Standard Model contribution saturates x_d. Therefore, its violation means that effect (c) is important. We
conclude that even if $|V_{ts}/V_{td}|$ is outside of its Standard Model range, it would not be the dominant source of violation for either bound in (1.8).

2. In many extensions of the Standard Model, $R = R^{SM}$ independently of whether there are significant new contributions to neutral B mixing. The most obvious example is the Minimal Supersymmetric Standard Model (MSSM) [13]: $R^{MSSM} = R^{SM}$ is a result of the fact that the mixing matrix for the gluino couplings to down quarks and squarks is equal to the CKM matrix. A second example is multi-scalar doublet models with Natural Flavor Conservation (NFC): $R^{NFC} = R^{SM}$ is a result of the fact that the relevant charged scalar couplings are proportional, in most of the parameter space, to $m_t V_{ij}$ where V_{ij} is the appropriate CKM element.

As all the considerations that lead to (1.7) remain valid in this class of models, the lower bound in (1.8) remains valid, independent of whether the new contributions to x_s are significant.

On the other hand, the upper bound in (1.8) does not necessarily hold. If there are significant new contributions (in this case to both x_d and x_s), the upper bound is relaxed to at least that of eq. (1.7). Actually, with significant new contributions to x_d, the lower bound on $|V_{td}|$ is relaxed to the CKM unitarity bound: $|V_{ts}/V_{td}| \leq 9$, leading to $x_s \leq 90$.

In some models, $R \geq R^{SM}$. An example is a multi-scalar doublet model with NFC where $|X| \geq \mathcal{O}(m_{H^\pm}/\sqrt{m_b m_s})$ [14]. X is a parameter that arises from mixing of charged scalars and determines the size of the lightest charged scalar Yukawa couplings that are proportional to down-type masses. ($|X|$ can be large enough only in models with more than two scalar doublets.) In such models, again, the lower bound in (1.8) holds, but the upper bound could be significantly violated [14].

In various other models, $R \approx R^{SM}$ is a good order of magnitude estimate. For example, in multi-scalar models with no NFC but with horizontal symmetries [15] one typically estimates $R^{Hor} \sim \frac{m_s}{m_d}$ which is well within the range of R^{SM}. Another example is that of Extended Technicolor (ETC) interactions that generate the top quark mass [16]. In these models we do not expect a strong violation of the lower bound in (1.8), though it is not rigorously excluded.

Finally, there are models where the New Physics contribution is much smaller than
the Standard Model one. For example, in Left-Right Symmetric models, W_R-mediated box-diagrams are constrained to contribute less than about 15% of the Standard Model diagrams. Moreover, the new contribution obeys $R^{\text{LRS}} = R^{\text{SM}}$: this is a result of the fact that the mixing matrix for W_R couplings is similar to the CKM matrix. (The situation could be different in models of $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ gauge symmetry without the discrete LRS and with fine-tuned mixing angles [17].) In supersymmetric models with quark–squark alignment (QSA) [18] the Supersymmetric diagrams contribute negligibly to x_s and modify x_d by no more than 15%. In this type of models, the Standard Model constraints on x_s (1.8) remain essentially unchanged.

3. A third observation is that if x_d is dominated by the Standard Model contribution, then a violation of the lower bound in (1.8) is unlikely. The reason for that is simple: if x_d is accounted for by the t-mediated box diagrams, then (1.7) gives the correct bounds on the Standard Model contribution to x_s. Therefore, in order that the lower bound in (1.8) is violated, the New Physics has to interfere destructively with the Standard Model. This requires that the two contributions are of the same order of magnitude and of opposite signs. In the large parameter space of New Physics models, such a possibility usually requires fine-tuning.

4. The most interesting models, as far as near-future measurements of x_s are concerned, are those where large contributions from New Physics to x_d are possible and where $R \neq R^{\text{SM}}$. Is this case, the scaling from the experimental value x_d^{exp} is misleading: the Standard Model contributes $x_s^{\text{SM}} = R^{\text{SM}} x_d^{\text{SM}}$ which could be smaller than the lower bound in (1.7) (though not significantly smaller than the lower bound in (1.4)). This makes the search for x_s in the range $2 \leq x_s \leq 7$ very interesting: if x_s is found to lie in this range it will most likely imply that there are significant new contributions to x_d! We next describe two examples of such models.

3. Models that Allow Small x_s

1. Our first example is a model with extra mirror down quarks, $D(3, 1)_{-1/3}$ and $\bar{D}(3, 1)_{+1/3}$. Such particles are predicted by E_6 GUTs and in “string inspired” frameworks.
If the masses of these vector quarks are not much larger than the electroweak breaking scale, the Z-boson is likely to have non-negligible flavor changing couplings to quarks U_{ij}. Z-mediated tree diagrams will contribute to x_s:

$$x_s^Z = \frac{\sqrt{2} G_F}{6} \eta_{QCD}(\tau_B, m_B)(B_{B_s} f^2_{B_s}) |U_{sb}|^2.$$ \hspace{1cm} (3.1)

The ratio between the new contributions to x_s and to x_d,

$$R^Z = \left(\frac{m_{B_s}}{m_{B_d}} \right) \left(\frac{B_{B_d} f^2_{B_d}}{B_{B_s} f^2_{B_s}} \right) \left| \frac{U_{sb}}{U_{db}} \right|^2,$$ \hspace{1cm} (3.2)

could be very different from R^{SM}. Moreover, for $0.01 \leq |U_{db}/V_{cb}| \leq 0.04$, the Z-contribution to x_d is significant [19]. On the other hand, the experimental bound on $BR(B \to X_s \mu^+ \mu^-)$ gives $|U_{sb}/V_{cb}| \leq 0.04$, implying that the Z contribution to x_s is, at most, 25% of the Standard Model contribution [20]. We conclude that in models with Z-mediated FCNCs, x_s is dominated by the Standard Model contribution and the constraints replacing (1.8) are

$$2 \leq x_s \leq 50$$ \hspace{1cm} (3.3)

(where we have taken into account a possible 25% effect due to the Z contribution).

2. The second example is a model with a fourth quark generation. (Of course, four quark generation models are not a very likely possibility in view of the LEP and SLC bounds on the number of light left-handed neutrinos.) Diagrams with one or two t' propagators replacing the the Standard Model t propagators contribute

$$x_s^{4G} = \frac{G_F^2 m_W^2}{6 \pi^2} \eta_{QCD}(\tau_B, m_B)(B_{B_s} f^2_{B_s}) \times \left| 2 y_t y_{t'} g_3(y_t, y_{t'})(V^*_{ts} V_{tb} V^*_{t's} V_{t'b}) + y_{t'} f_2(y_{t'}) (V^*_{t's} V_{t'b})^2 \right|,$$ \hspace{1cm} (3.4)

where

$$g_3(y_i, y_j) = \left[\frac{1}{4} - \frac{3}{2(y_j - 1)} - \frac{3}{4(y_j - 1)^2} \right] \ln \frac{y_j}{y_i} + (y_i \leftrightarrow y_j) - \frac{3}{4(y_i - 1)(y_j - 1)}.$$ \hspace{1cm} (3.5)

The bounds from $BR(B \to X_s \mu^+ \mu^-)$ (see [21] for the experimental bound and [22] for the theoretical expression) and from $BR(B \to X_s \gamma)$ (see [23] for the experimental bound and [24] for the theoretical expression) are rather mild and allow the new contributions to
dominate x_s. As $R^{4G} \neq R^{SM}$ and as x_d may be dominated by t' contributions, the lower bound on x_s is relaxed.

To be more precise, we distinguish three cases:

(a) $\left| \frac{V^*_{ts} V'_{tb}}{V_{ts} V_{tb}} \right|^2 \ll \frac{y_t}{y_{t'}}$: the top contribution dominates and the fourth generation induces small corrections only. We have $3 \leq x_s \leq 40$.

(b) $\left| \frac{V^*_{ts} V'_{tb}}{V_{ts} V_{tb}} \right|^2 \gg \frac{y_t}{y_{t'}}$: the t' contribution dominates and x_s could be significantly enhanced over its Standard Model value. We have $3 \leq x_s$ while the upper bound could be $\mathcal{O}(10)$ weaker than in the Standard Model.

(c) $\left| \frac{V^*_{ts} V'_{tb}}{V_{ts} V_{tb}} \right|^2 \sim \frac{y_t}{y_{t'}}$: the t and t' contributions are of the same order of magnitude. If the relative phase between the two CKM combinations is real, x_s is enhanced. Only if $\arg \left(\frac{V^*_{ts} V'_{tb}}{V_{ts} V_{tb}} \right) \sim \pi/2$ a significant destructive interference becomes possible. Thus, to suppress x_s below, say, 1 would require fine-tuning of both the magnitude and the phase of the mixing matrix. This confirms the results of ref. [25] that finds that a small x_s arises in only a tiny region of the four generation model parameter space. (For previous studies of x_s in four generation models, see [26].)

We conclude that in four generation models, if no fine-tuned cancellations take place,

$$2 \leq x_s^{4G}$$

(3.6)

(where we allowed a reasonable destructive interference) while the upper bound is high above the Standard Model bound.

4. Conclusions

Values of $x_s \leq 7$ do not require fine-tuned cancellations between Standard Model and New Physics contributions. Instead, $2 \leq x_s \leq 7$ is possible under two conditions: (a) There are significant new contributions to x_d; and (b) The ratio of these contributions to x_s and to x_d is not proportional to $(V_{ts}/V_{td})^2$. The types of New Physics most likely to fulfill these conditions are extensions of the quark sector by either sequential or non-sequential quarks.

The “window” that we find for naturally small x_s depends on the lower bounds on m_t and f_{B_s}. For example, if experiments find $m_t \geq 160 \text{ GeV}$, the lower bound on x_s in eq.
will change from 3 to 4; if lattice calculations imply \(f_{B_s} \geq 0.19 \, \text{GeV} \), the bound will change to 5. (The window will be closed if \(f_{B_s} \geq 0.22 \, \text{GeV} \) is established.)

We present the \(x_s \) bounds in various extensions of the Standard Model in Table 1. The numbers presented in this Table are often a result of a more detailed calculation than presented above. For example, in the MSSM, we take into account that supersymmetric diagrams may enhance the Standard Model result by about 20%, while in quark–squark alignment models \([18]\) supersymmetric diagrams may modify \(x_d \) in either direction by about 15% and do not affect \(x_s \).

Table 1

Bounds on \(x_s \)

Model	SM	MSSM	QSA \([13]\)	NFC	Hor \([13]\)	ETC \([16]\)	LRS	Z-FCNC	4 Gen
\(x_s \geq \)	7	7	6	7	\~ 7	\~ 7	7	2	2
\(x_s \leq \)	40	50	40	Large	\~ 90	\~ 90	45	50	Large

If experiments find \(x_s < 7 \), it would have interesting implications for CP asymmetries in neutral \(B \) decays. As the likely explanation of small \(x_s \) is a large New Physics component in \(x_d \), then CP asymmetries in \(B_d \) decays may differ significantly from the Standard Model predictions. The combination of \(x_s \) and CP asymmetry measurements would be useful in closing in on the source of deviations from the Standard Model.

Acknowledgements

I thank Lance Dixon, Ehud Duchovni, Yuval Grossman, Miriam Leurer, Zoltan Ligeti and Jon Rosner for useful discussions. I am grateful to the Rutgers Theory Group for their hospitality. YN is an incumbent of the Ruth E. Recu Career Development chair, and is supported in part by the Israel Commission for Basic Research, by the United States–Israel Binational Science Foundation (BSF), and by the Minerva Foundation.
References

[1] For recent reviews, see A. Ali and D. London, J. Phys. G19 (1993) 1069; DESY-93-022 (1993).
[2] S. Abachi et al., the D0 collaboration, Fermilab Pub-94/004-E (1994).
[3] P. Langacker, in Review of Particle Properties, Phys. Rev D45 (1992) III.59.
[4] For a review of recent lattice results, see R. Sommers, DESY 94-011 (1993).
[5] For a review of recent QCD sum-rule results, see M. Neubert, SLAC-PUB-6263 (1993).
[6] G. Crawford et al., CLEO collaboration, CLEO-CONF-93-30 (1993).
[7] A. Abada et al., Nucl. Phys. B376 (1992) 172.
[8] A. Buras, M. Jamin and P.H. Weisz, Nucl. Phys. B347 (1990) 491.
[9] For a review of recent CLEO, ARGUS and LEP results, see H.-G. Moser, CERN-PPE/93-164 (1993).
[10] B. Grinstein et al., Nucl. Phys. B380 (1992) 369; A.F. Falk, Phys. Lett. B305 (1993) 268; B. Grinstein, SSCL-Preprint-492 (1993).
[11] J. Bartelt et al., Phys. Rev. Lett. 71 (1993) 4111.
[12] Y. Nir and D. Silverman, Nucl. Phys. B345 (1990) 301.
[13] S. Bertolini, F. Borzumati and A. Masiero, Phys. Lett. B194 (1987) 545; S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Nucl. Phys. B353 (1991) 591; I.I. Bigi and F. Gabbiani, Nucl. Phys. B352 (1991) 309.
[14] Y. Grossman, WIS-94/3/Jan-PH (1994).
[15] L.J. Hall and S. Weinberg, Phys. Rev. D48 (1993) R979; T.P. Cheng and M. Sher, Phys. Rev. D35 (1987) 3484; A. Antaramian, L.J. Hall and A. Rasin, Phys. Rev. Lett. 69 (1992) 1871; M. Leurer, Y. Nir and N. Seiberg, Nucl. Phys. B319 (1993) 342.
[16] L. Randall, Phys. Lett. B297 (1992) 309.
[17] P. Langacker and S.U. Sankar, Phys. Rev. D40 (1989) 1569; D. London and D. Wyler, Phys. Lett. B297 (1992) 503.
[18] Y. Nir and N. Seiberg, Phys. Lett. B309 (1993) 337; M. Leurer, Y. Nir and N. Seiberg, WIS-93/3/Oct-PH (1993).
[19] Y. Nir and D. Silverman, Phys. Rev. D42 (1990) 1477.
[20] D. Silverman, Phys. Rev. D45 (1992) 1800; Y. Nir, Lectures given in SSI-20, SLAC-PUB-5874 (1992); G.C. Branco et al., Phys. Rev. D48 (1993) 1167.
[21] C. Albajar et al., UA1 collaboration, Phys. Lett. B262 (1991) 163.
[22] W.-S. Hou, R.S. Willey and A. Soni, Phys. Rev. Lett. 58 (1987) 1608.
[23] R. Ammar et al., CLEO collaboration, Phys. Rev. Lett. 71 (1993) 674.
[24] W.-S. Hou, A. Soni and H. Steger, Phys. Lett. B192 (1987) 441.
[25] D. London, Phys. Lett. B234 (1990) 354.
[26] W.-S. Hou and A. Soni, Phys. Lett. B196 (1987) 9; J.L. Hewett and T.G. Rizzo, Mod. Phys. Lett. A3 (1988) 975.