7-5-2022

Using an Affinity Analysis to Identify Phytoplankton Associations

Weiju Zhu
Qiongtai Normal University, Haikou

Zhaojian Ding
Qiongtai Normal University, Haikou

Yangdong Pan
Portland State University

Quanxi Wang
Shanghai Normal University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/esm_fac

Part of the Environmental Sciences Commons

Let us know how access to this document benefits you.

Citation Details

Zhu, W., Ding, Z., Pan, Y., & Wang, Q. (2022). Using an affinity analysis to identify phytoplankton associations. Ecology and Evolution, 12(7), e9047.

This Article is brought to you for free and open access. It has been accepted for inclusion in Environmental Science and Management Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
INTRODUCTION

Ecologists are facing challenges to decipher a rich amount of biological and environmental information embedded in an ecological community. The classification of a set of taxonomic units into functional groups based on morphology and species traits has been widely used in ecological research (Litchman & Klausmeier, 2008; Usseglio-Polatera et al., 2000). If species are pooled into the same group based on similar morphological or physiological characteristics and developing ecological groups, that can help ecologists to better understand the interactions between biological communities and their environment. For example, stream macroinvertebrates have been categorized into functional feeding groups, such as scrapers, shredders, collector-gatherers, collector-filterers, and predators. Logez et al. (2013) suggested that similar fish assemblage functional structures will be found in similar environmental conditions.

Phytoplankton is one of the primary producers in aquatic ecosystems, their community structure can be a rapid and sensitive response to varying environmental conditions in aquatic systems.
and are therefore commonly used as excellent bio-indicators (Reynolds, 2006). However, phytoplankton has a wide variety which brings some challenges for accurate identification to the beginner. Categorizing phytoplankton by their traits and functions was attempted a few decades ago. Reynolds et al. (2002) set a precedent in the classification of phytoplankton functional groups. Salmaso and Padisák (2007) developed the Morpho-Functional Groups based on the phytoplankton's morphological and functional characteristics, such as body size, mobility, nutrient requirements, and other features. Kruk et al. (2010) applied morphology-based functional groups (MBFG) approach to cluster phytoplankton organisms, and seven groups were defined according to the main morphological traits of phytoplankton such as cell volume, presence of flagella, and the ratio of surface area and volume. However, there are still some challenges for phytoplankton ecologists to apply functional concepts in phytoplankton research. For example, phytoplankton communities can be extremely rich (Reynolds, 2006) but may differ from region to region due to ecological factors. Classifying species into different functional groups requires an extensive amount of knowledge of the autecology of each species, and such information may not be readily available in the literature. Physiological data are not available for all phytoplankton species (Weithoff, 2003), which limits our abilities for developing a priori functional classification. On the other hand, environmental assessment of lakes using phytoplankton is urgently needed by water quality managers, especially in some rapidly developing regions such as China because of serious water pollution. A great deal of phytoplankton ecological studies have been conducted in Europe (EC Parliament and Council, 2000), North America (Arhonditsis et al., 2004), and China (Deng et al., 2014). The implementation of water programs has generated an enormous amount of phytoplankton data with large spatial scales using standardized field protocols. How to effectively use these "data sets" to enhance our current understanding of phytoplankton assemblages in relation to their environments and water resource management still remains challenging.

In order to provide a better understanding of the ecological information of phytoplankton associations, we introduce an affinity analysis called association rule for identifying phytoplankton associations. Association rule is a machine-learning method for discovering co-occurrence relationships among activities performed by specific individuals or groups in a large database using simple statistical performance measures. There have been many successful business applications for applying the method in finance, telecommunication, marketing, retailing, and web analysis (Chen et al., 2005). In ecological studies, we assume that each sampling site or sampling date is a "transaction" in a business setting and each species is an item and then develop the associations. Many researches focus on phytoplankton spatial and temporal variations in lakes and rivers, and therefore this study identified phytoplankton associations from spatially and temporally data sets, respectively. The main objective of this study was to use affinity analysis to aid identification of the candidate associations of phytoplankton and then assess the relationships between the candidate phytoplankton associations and environmental factors using the redundancy analysis (RDA).

2 | METHODS

2.1 | Data preparation

2.1.1 | River phytoplankton: A spatial data set

River phytoplankton data were collected as a part of the Water Pollution Control Program in the Huaihe River Basin (30°55′–36°36′N, 111°55′–121°25′E) (HRB). The basin, with a drainage area of 270,000 km², is located between the Yangtze River and the Yellow River in China (Wang & Xia, 2010). It forms a geographical separation between northern and southern China. Phytoplankton samples were collected from 217 randomly selected sites during the low-water period from May 1 to May 31 in 2013 (Figure 1). Detailed field and lab methods can be found in Zhu et al. (2015). At each site, three cross-section transects were established. We measured in situ environmental variables including water temperature (WT), pH, conductivity (Cond), turbidity, and total suspended solids (TSS) using a portable HACH CDC40105. We also measured Secchi depth (SD), water depth, stream width, water velocity, and elevation. Spectrophotometer (DR5000) was used to measure total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (COD₅₅₅) according to standard methods (NEPAC, 2002).

For phytoplankton, a 1 L sample from the 0.5 m depth below surface was collected from three cross-section transects, respectively. After complete mixing, a 1 L sample was preserved with 1% Lugol’s iodine solution immediately in the field and concentrated to 50 ml after sedimentation for 48 h. After complete mixing, 0.1 ml of the concentrated sample was counted directly in a 0.1 ml counting chamber under a microscope at 400× magnification. Phytoplankton was identified according to the reference book by Hu and Wei (2006). At least 400 algal units were counted in each sample. Phytoplankton biomass was expressed as wet biomass and was estimated for individual species by assigning a geometric shape similar to the shape of each phytoplankton species (Hillebrand, 1999).

2.1.2 | Lake phytoplankton: A temporal data set

Monthly phytoplankton samples were collected during 2006–2011 to assess the temporal variability of phytoplankton assemblages in a man-made pond. Dishui Lake (30°53′N, 121°55′E) is located in Pudong New Area District, southeastern Shanghai, China (Figure 2a). Detailed field and lab methods can be found in Zhu et al. (2013). Eight sampling stations were selected in the lake (Figure 2b). We measured
in situ environmental variables including water temperature (WT), pH, conductivity (Cond), turbidity, total suspended solids (TSS), and Secchi depth (SD). Total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (CODMn) were measured according to standard methods.

2.2 | Data analysis

We selected 38 species in HRB and 23 species in Dishui Lake, respectively, after excluding "rare" taxa from analyses. The rare taxa were defined as those with average relative biomass (RB) <0.5% and occurred at <10 sites/samples (Zhu et al., 2015).

2.3 | Data format

The data set was formatted as an $M \times N$ matrix, where the row represents different sampling sites S1, S2, S3,..., Sn and the column represents phytoplankton species G1, G2, G3...Gn. Each element $[i,j]$ represents the occurrence of the species j in the sample i (Table 1).

2.4 | Association rule

The matrix usually contains large amounts of data; therefore, data mining techniques are used to extract useful knowledge. We followed the association rule proposed by Agrawal et al. (1993).
Association rule is intended to capture a certain type of dependence among species represented in the database. The rule is defined as an implication of the form \(G_1 \rightarrow G_2 \), for example, an association rule between species in the form of \(G_1 \rightarrow G_2 \) which means species 1 is also very likely to be observed with species 2 to form an association \([G_1, G_2]\).

The significance of the association rule is measured via support and confidence. The support of rule \(G_1 \rightarrow G_2 \) is the percentage of \(G_1 \) and \(G_2 \) occurring together. Confidence of rule \(G_1 \rightarrow G_2 \) is merely an estimate of the conditional probability of \(G_2 \) given \(G_1 \). If the confidence of rule \(G_1 \rightarrow G_2 \) is 1 that means \(G_1 \) occurs in a particular site then \(G_2 \) should occur in that site, too.

First, the binary phytoplankton data for identifying phytoplankton associations were constructed (Table 1). "S" represents the sampling site or time series, and “G” represents algae species. Secondly, the support of phytoplankton association was calculated. For instance, the association \([G_1, G_3]\) has 18% support because the species \(G_1 \) and \(G_3 \) occur together in 2 of the 11 sites (Table 2). Finally, we calculated the confidence of each phytoplankton association (Table 3). For example, the confidence of the association \([G_1, G_3]\) is 0.5 because species 3 occurs at half of times that also contains species 1.

We identified the phytoplankton associations based on both support >= 50% and confidence >= 0.8 (Wang et al., 2022).

All analyses were performed using R software (R Development Core Team, 2013). Specifically, we used the R package "arules" for the affinity analysis, "vegan" for detrended correspondence analysis (DCA), and redundancy analysis (RDA) and "packfor" for forward selection analysis (Dray et al., 2013; Hahsler et al., 2014; Oksanen et al., 2013).

The environmental factors except pH value are transformed to the form of \(\log(x+1) \), and the data of phytoplankton species are transformed by the Hellinger method. The environmental factors are selected by forward selection in RDA, in which the \(p \) value is less than .05 by the Monte Carlo permutation test.

RESULTS

Almost one-third of taxa (28.95%) occurred at 50% of all sites or more in the HRB (Table 4). Five species (Cryptomonas erosa, Chroomonas acuta, Cyclotella meneghiniana, Scenedesmus quadricauda, Navicula cryptocephala) occurred at more than 70% of the sites. Two Euglenophytes, two Chrysophytes and Pandorina morum occurred at less than 10% sites. Eighteen of 23 taxa were present in Dishui Lake during more than half of the sample dates (Table 4). Only five taxa had less than 50% occurrence (e.g., Carteria sp., Amiphiprora sp., Cryptomonas ovata, Cyclotella sp., Melosira varians).

The phytoplankton associations in HRB and Dishui Lake

Twelve phytoplankton associations in HRB were identified by combinations of two to three taxa (Table 5) based on support >= 50%, and confidence values of >=0.8. All associations can be divided into three types: (1) The flagellate algae association (R01-1, R01-2, R01-9): pollution-tolerant species (e.g., Cryptomonas ovata and Cryptomonas erosa) co-existed; mixotrophic chrysophytes (e.g., Chrumulina sp.)

Phytoplankton associations (X and Y)	Number of sites (X)	Number of sites (both X and Y)	Confidence (both X and Y/X)
[G1] and [G3]	4	2	0.5
[G1] and [G2]	4	1	0.25
[G3] and [G5]	6	3	0.5
[G1,G2] and [G3]	1	1	1
[G2] and [G3,G5]	5	2	0.4
[G1,G4] and [G5,G6]	3	1	0.33

TABLE 1 The data format for identifying phytoplankton associations

Sites/species	G1	G2	G3	G4	G5	G6
S1	1	0	1	1	0	0	
S2	0	1	0	0	1	0	
S3	1	1	1	0	0	0	
S4	0	0	1	0	1	1	
S5	0	0	0	1	0	1	
S6	0	1	1	0	1	0	
S7	1	0	0	1	1	1	
S8	1	0	0	1	0	1	
S9	0	1	0	0	1	1	
S10	0	1	1	0	1	0	
S11	0	0	1	0	0	1	

TABLE 2 Calculate the frequency of associations

Phytoplankton associations	Site	Number of sites	Support (%)
[G1,G3]	S1,S3	2	18
[G1,G2]	S3	1	9
[G3,G5]	S4,S6,S10	3	27
[G1,G2,G3]	S3	1	9
[G2,G3,G5]	S6,S10	2	18
[G1,G4,G5,G6]	S7	1	9
TABLE 4 The summary of phytoplankton taxa frequency in HRB and Dishui Lake

Taxa	Frequency (%)
Huaihe River Basin (n = 217)	
Cryptomonas erosa (C. erosa)	88
Cyclotella meneghiniana (C. meneghiniana)	82
Scenedesmus quadricauda (S. quadricauda)	78
Chroomonas acuta (C. acuta)	74
Navicula cryptocephala (N. cryptocephala)	71
Oscillatoria agardhii (O. agardhii)	63
Nitzschia palea (N. palea)	59
Chromulina sp.	58
Chlamydomonas globosa (C. globosa)	57
Synedra sp.	53
Cryptomonas ovata (C. ovata)	52
Gomphonema sp.	45
Nitzschia amphibia (N. amphibia)	45
Cocconeis placentula (C. placentula)	39
Oocystis lacustris (O. lacustris)	38
Navicula sp.	35
Pseudanabaena sp.	34
Euglena oxyuris (E. oxyuris)	34
Achnanthes sp.	32
Carteria sp.	32
Synedra ulna (S. ulna)	32
Synedra sp.	31
Nitzschia sp.	30
Cymbella tropica (C. tropica)	28
Aulacoseira granulata (A. granulata)	28
Phormidium sp.	27
Synedra acus (S. acus)	26
Melosira varians (M. varians)	26
Fragilaria sp.	25
Nitzschia reversa (N. reversa)	22
Ceratium hirundinella (C. hirundinella)	20
Closterium sp.	17
Euglena sp.	15
Mallomonas sp.	9
Euglena clavata (E. clavata)	9
Pandorina morum (P. morum)	9
Euglena sp.	7
Dinobryon sp.	6
Dishui Lake (n = 70)	
Chlamydomonas globosa (C. globosa)	99
Chromulina pygmaea (C. pygmaea)	93
Scenedesmus quadricauda (S. quadricauda)	91
Navicula sp.	91

was observed to occur with Cryptomonas erosa, Chroomonas acuta, Chlamydomonas globosa from different taxon groups. (2) The diatoms with the flagellate algae association (R03-2, R05-2, R06-2, R07-2, R08-2, R10-2, R11-2, and R12-2): benthic diatoms with motility (e.g., Nitzschia palea, Navicula cryptocephala) frequently co-occurred with the cryptophytes. It should be noted that a small centric planktonic diatom (Cyclotella meneghiniana) also occurred with the flagellate algae. (3) The diatoms association (R04-3: Nitzschia palea and Cyclotella meneghiniana).

Fifteen phytoplankton associations in Dishui Lake were identified by combinations of two to three taxa (Table 5). These associations can be divided into three types: (1) The flagellate algae association (L11-1): mixotrophic chrysophyte Chrumulina pygmaea was observed to occur with Chlamydomonas globosa. (2) The mixed association: diatoms or colonial green algae (L01-2, L02-2, L03-2, L07-2, L09-2, and L12-2): this association can be further divided into three smaller associations including mixotrophic chrysophyte Chrumulina pygmaea with diatoms or green algae (L03-2, L07-2, L09-2, and L12-2). (3) The diatoms association (R04-3: Chlamydomonas globosa with diatoms or green algae (L01-2, L02-2, L04-2, L05-2, L08-2, L10-2, and L13-2), and Chrumulina pygmaea and Chlamydomonas globosa with diatoms or green algae (L14-2 and L15-2). (3) The diatoms association (L06-3).

3.2 Relationships between phytoplankton associations and environmental variables

We analyzed the phytoplankton assemblages characterized by 12 phytoplankton associations in HRB using detrended

(Continues)

Taxa	Frequency (%)
Ankistrodesmus angustus (A. angustus)	84
Chaetoceros muelleri (C. muelleri)	83
Synedra acus (S. acus)	83
Oocystis lacustris (O. lacustris)	81
Chroomonas acuta (C. acuta)	80
Cocconeis placentula (C. placentula)	76
Euglena sp.	69
Oscillatoria agardhii (O. agardhii)	67
Gymnodinium sp.	66
Cryptomonas erosa (C. erosa)	63
Ochromonas sp.	59
Cyclotella meneghiniana (C. meneghiniana)	59
Aulacoseira granulata (A. granulata)	56
Nitzschia sp.	54
Carteria sp.	41
Amphiprora sp.	39
Cryptomonas ovata (C. ovata)	33
Cyclotella sp.	29
Melosira varians (M. varians)	29
TABLE 5 The phytoplankton associations composition in HRB and Dishui Lake (R:River;L:Lake)

Number + group	Taxa 1	Taxa 2	Taxa 3	Habitat template
R01-1	C. ovata	C. erosa		Pollution, poor light, lentic
R02-1	Chromulina sp.	C. erosa		Oligotrophic-mesotrophic + pollution
R03-2	Chromulina sp.	C. meneghiniana		Oligotrophic-mesotrophic + silica-rich, low P
R04-3	N. palea	C. meneghiniana		Shallow turbid + silica-rich, low P
R05-2	N. palea	C. erosa		Shallow turbid + pollution
R06-2	N. cryptcephala	C. acuta	C. erosa	Shallow turbid + pollution
R07-2	C. meneghiniana	N. cryptcephala	C. erosa	Silica-rich + shallow turbid + pollution
R08-2	C. acuta	C. globosa	C. meneghiniana	Meso-eutrophic + organic and inorganic nutrients
R09-1	C. acuta	C. globosa	C. erosa	Meso-eutrophic + pollution
R10-2	C. meneghiniana	C. acuta	C. erosa	Silica-rich, low P+ meso-eutrophic
R11-2	C. meneghiniana	C. globosa	C. erosa	Silica-rich, low P+ meso-eutrophic
R12-2	C. meneghiniana	O. agarthii	C. erosa	Silica-rich, low P+ meso-eutrophic
L01-2	O. lacustris	C. globosa		p-limit + meso-eutrophic
L02-2	S. acus	C. globosa		Shallow turbid + meso-eutrophic
L03-2	A. angustus	C. pygmaea		Clear, mixed + shallow oligotrophic brackish
L04-2	A. angustus	C. globosa		Clear, mixed + meso-eutrophic
L05-2	C. muelleri	C. globosa		Brackish, high NP+ meso-eutrophic
L06-3	S. quadricauda	Navicula sp.		Shallow, mixed + turbid shallow
L07-2	S. quadricauda	C. pygmaea		Shallow mixed + shallow oligotrophic brackish
L08-2	S. quadricauda	C. globosa		Shallow mixed + meso-eutrophic
L09-2	Navicula sp.	C. pygmaea		Turbid shallow + shallow oligotrophic brackish
L10-2	Navicula sp.	C. globosa		Turbid shallow + meso-eutrophic
L11-1	C. pygmaea	C. globosa		Shallow oligotrophic brackish + meso-eutrophic
L12-2	Navicula sp.	S. quadricauda	C. pygmaea	Turbid + shallow mixed + shallow oligotrophic brackish
L13-2	Navicula sp.	S. quadricauda	C. globosa	Turbid shallow + shallow mixed + meso-eutrophic
L14-2	S. quadricauda	C. pygmaea	C. globosa	Shallow + oligotrophic brackish + meso-eutrophic
L15-2	Navicula sp.	C. pygmaea	C. globosa	Turbid + shallow + oligotrophic brackish + meso-eutrophic

correspondence analysis (DCA). DCA results showed that the maximum gradient length of the four axes was 2.63. Subsequently, we selected a redundancy analysis (RDA) to detect the relationship between phytoplankton associations and environmental factors (Figure 2). Approximately, 12% of the variance in phytoplankton associations can be explained by environmental factors (axis 1: 8%, axis 2: 3%). Forward selection in RDA identified six significant environmental factors (Figure 2). Turbidity was positively correlated with axis 1, TN/TP ratio was negatively correlated with axis 1; Conductivity and TN positively correlated with axis 2, and stream order negatively correlated with axis 2. Most of the mixed associations had a positive relationship with TN and turbidity except that association 3 displayed a positive relationship with conductivity and a negative correlation with turbidity (Figure 2). The flagellate algae association had a positive relationship with turbidity, DO and stream size while the diatom association was positively associated with TN (Figure 2).

We used the 15 phytoplankton associations in Dishui Lake for detrended correspondence analysis (DCA) with the maximum gradient length of the four axes as 1.55. RDA showed that 32% variance in phytoplankton associations can be explained by environmental factors: axis 1: 27%, axis 2: 4.8%. Forward selection in RDA identified three significant environmental factors (Figure 3). Salinity and transparency were negatively correlated with axis 1; pH was negatively correlated with axis 2. The mixed associations including Chromulina had a positive relationship with pH and transparency.
while the mixed associations including *Chlamydomonas* had a negative relationship with pH (Figure 3). The flagellate associations positively correlated with salinity (Figure 3).

4 | DISCUSSION

Compared to the traditional phytoplankton functional group development (Reynolds et al., 2002), affinity analysis encompasses a broad set of analytics techniques aimed at uncovering the connections of phytoplankton associations. Affinity analysis is a method for rapidly finding phytoplankton associations from a large data set. It has the advantage of time-saving and easy use, especially for new algae researchers in a region with limited ecological studies on local phytoplankton assemblages. So affinity analysis can be used as a first step to identify candidate phytoplankton associations.

The identified phytoplankton associations reflect the ecological preferences of phytoplankton including the resource acquisition (e.g., light and nutrients) and competitive abilities (e.g., r/K selection or C-S-R model) (Salmaso et al., 2015). *Cryptomonas erosa* and *Cryptomonas ovata* or *Chroomonas acuta* from the same family were often concurrent in HRB (Table 2). These species can benefit from both mixotrophy and phagotrophy, and also can tolerate high dissolved nutrients and limiting light conditions (Graham & Wilcox, 2000; Kruk & Segura, 2012), and can avoid grazing by zooplankton. Some taxa from different divisions can form the associations such as diatom-cryptophytes. Diatom-cryptophytes associations are consistent with what Sommer et al. (1986) suggested that Cryptophyceae and small centric diatoms developed together when nutrients were available and light increased in spring because of their small volume and high growth rate. Some of the identified phytoplankton associations can reflect the grazing pressure. The observed associations are consistent with the notion that both *Scenedesmus* and *Selenastrum* are more resistant to grazing than either *Chlamydomonas* or *Ankistrodesmus*, while the latter two taxa are better competitors in the absence of grazing (Drake et al., 1993).

Motile benthic diatoms such as *Nitzschia palea* are concurrent with some planktonic algae. Benthic diatom motility offers not only a selective advantage on silty substrata but also it is correlated with some ecological traits (Passy, 2007). Kawamura et al. (2004) demonstrated that the grazing pressure of gastropods had an influence on the *Nitzschia* species.

We performed an RDA for assessing the applicability of the identified phytoplankton associations in environmental assessment. In HRB, light and TN were the best predictors of phytoplankton associations (Figure 3). Our results are consistent with (Mackay et al., 2012) that the diatom-association was strong with the TN nutrient. In Dishui Lake, the light and salinity were the best predictors for phytoplankton associations (Figure 4). Chrysophytes are restricted to cold, oligotrophic conditions. Small *Chromulina* groups showed a different response to pH and water clarity, compared to the medium size *Chlamydomonas* groups (Figure 4). The importance of pH as a primary factor affecting chrysophytes has been reported in studies from widely separated geographic regions. *Chromulina* and *Chlamydomonas* are both r-selected taxa, their small-medium body size and motility conferred by flagella are advantages and allow them to reduce sinking rate (Kruk et al., 2010). Compared to the *Chlamydomonas*, the *Chromulina* prefer the oligotrophic environments with an abundance of macrophytes. Compared to the river, more variance (33%) in phytoplankton associations can be explained by different combinations of environmental factors in the man-made shallow lake. A lake is perceived to be relatively stable, that of a river, and is characteristically graded from the origin to the river-mouth (Reynolds et al., 1994). Therefore, candidate phytoplankton associations are reasonable proxies for explaining environmental variables.

![Figure 3](Image)

FIGURE 3 The RDA plot of 12 phytoplankton associations and environmental variables in HRB (DO: Dissolved oxygen; TN: Total nitrogen; NP:TN/TP ratio; Cond: Conductivity; phytoplankton association codes are in Table 5)
Binary data were used to construct the phytoplankton associations in this work, which ignores the abundance of phytoplankton species. Although binary data are commonly observed and analyzed in many application fields (Yamamoto & Hayashi, 2015), some species which were not abundant potentially contributed much more to the analysis than those common taxa but we minimized the effects. The phytoplankton associations identified by affinity analysis should be viewed as candidate associations and each association should be carefully evaluated using ecological theories and concepts.

In essence, affinity analysis can be a useful method for finding the phytoplankton associations from the complex and informative data set. It can explain some fraction of the variance from both spatial and temporal algal assemblages distribution patterns, although their effectiveness varies differently in rivers and lakes, depending on the gradients of environmental factors. Our results do not mean that the proposed method should replace the conventional ecological classifications of phytoplankton. The proposed method provides an alternative, especially for the regions where research on phytoplankton assemblages are still limited. Affinity analysis remains to be tested in future research on whether it is predicted better for phytoplankton associations than other classification systems.

AUTHOR CONTRIBUTIONS
Weiju Zhu: Writing –Performed the data analyses and lead the writing. Zhaojian Ding: Writing – review and editing (supporting). Yangdong Pan: Conceived the idea. Quanxi Wang: Performed the data collection.

ACKNOWLEDGMENTS
The authors would like to thank the staff of Nanjing University for the sampling program in Huaihe River Basin and Nanhui Environmental Monitoring Central Station for the sampling program in Dishui Lake. The authors gratefully acknowledge anonymous reviewers. This project was supported by the National Key Special Project of Sci-tech for Water Pollution Control and Management (No. 2012ZX07501002-003), the Education Department of Hainan Province (Hnky2020-60) and Hainan Provincial Natural Science Foundation of China (No. 322RC79).

CONFLICT OF INTEREST
The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available online: 4TU Research Data. https://doi.org/10.4121/18487790.

ORCID
Weiju Zhu https://orcid.org/0000-0003-2047-5911

REFERENCES
Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of Data (pp. 207–216). ACM Press.

Arhonditsis, G. B., Winder, M., Brett, M. T., & Schindler, D. E. (2004). Patterns and mechanisms of phytoplankton variability in Lake Washington (USA). Water Research, 38, 4013–4027. https://doi.org/10.1016/j.watres.2004.06.030

Chen, Y. L., Tang, K., Shen, R. J., & Hu, Y. H. (2005). Market basket analysis in a multiple store environment. Decision Support Systems, 40, 339–354. https://doi.org/10.1016/j.dss.2004.04.009

Deng, J., Qin, B., Paerl, H. W., Zhang, Y., Ma, J., & Chen, Y. (2014). Earlier and warmer springs increase cyanobacterial (Microcystis, spp.)
bloom in subtropical Lake Taihu, China. *Freshwater Biology*, 59, 1076–1085. https://doi.org/10.1111/fwb.12330

Drake, J. A., Flum, T. E., Witterman, G. J., Voskuil, T., Hoyland, A. M., Creson, C., Kenny, D. A., Huxel, G. R., Larue, C. S., & Duncan, J. R. (1993). The construction and assembly of an ecological landscape. *The Journal of Animal Ecology*, 62, 117–130. https://doi.org/10.2307/5487

Dray, S., Legendre, P., & Blanchet, G. (2013). *Packs* for forward selection with permutation (Canoco R). http://R-Forge.R-project.org/proj ects/sedar/

EC Parliament and Coincil. (2000). Directive of the European Parliament and of the council 2000/60/EC establishing a framework for community action in the field of water policy. European Commission.

Graham, L. E., & Wilcox, L. W. (2000). *Algae*. Prentice-Hall.

Hahsler, M., Buchta, C., Grün, B., & Hornik, K. (2014). *arules*: Mining association rules and frequent itemsets. http://CRAN.R-project.org/package=arules

Hillebrand, H. (1999). Biovolume calculations for pelagic and benthic microalgae. *Journal of Phycology*, 35, 403–424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x

Hu, H., & Wei, Y. (2006). The freshwater algae of China systematics, taxonomy and ecology. Sciences Press.

Kawamura, T., Takami, H., & Yamashita, Y. (2004). Effect of grazing by a herbivorous gastropod Homalopoma amusitatum, a competitor for food with post-larval abalone, on a community of benthic diatoms. *Journal of Shellfish Research*, 23, 899–993.

Kruk, C., Huszar, V. L. M., Peeters, E. T. H. M., Bonilla, S., Costa, L., Lürling, M., Reynolds, C. S., & Scheffer, M. (2010). A morphological classification capturing functional variation in phytoplankton. *Freshwater Biology*, 55, 614–627. https://doi.org/10.1111/j.1365-2427.2009.02298.x

Kruk, C., & Segura, A. M. (2012). The habitat template of phytoplankton morphology-based functional groups. *Hydrobiologia*, 698, 191–202. https://doi.org/10.1007/s10750-012-1072-6

Litchman, E., & Klausmeier, C. A. (2008). Trait-based community ecology of phytoplankton. *Annual Review of Ecology, Evolution, and Systematics*, 39, 615–639.

Logez, M., Bady, P., Melcher, A., & Pont, D. (2013). A continental-scale analysis of fish assemblage functional structure in European rivers. *Ecography*, 36, 80–91.

Mackay, A. W., Davidson, T., Wolski, P., Woodward, S., Mazebedi, R., Masamba, W. R. L., & Todd, M. (2012). Diatom sensitivity to hydrological and nutrient variability in a subtropical, flood-pulse wetland[J]. *Ecohydrology*, 5, 491–502.

NEPAC (The National Environmental Protection Agency of China). (2002). *Standard methods for the examination of water and wastewater* (4th ed.). Chinese Environmental Science Press.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H., & Wagner, H. (2013). *Vegan*: Community ecology package. http://vegan.r-forge.r-project.org/

Passy, S. I. (2007). Diatom ecological guilds display distinct and predictable behaviour along nutrient and disturbance gradients in running waters. *Aquatic Botany*, 86, 171–178.

R Core Team. (2013). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing.

Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. *Journal of Plankton Research*, 24, 417–428. https://doi.org/10.1093/plankt/24.5.417

Reynolds, C. S., Descy, D. P., & Padišák, J. (1994). Are phytoplankton dynamics in rivers so different from those in shallow lakes? *Hydrobiologia*, 289, 1–7. https://doi.org/10.1007/BF0000740

Reynolds, C. S. (2006). *Ecology of phytoplankton*. Cambridge University Press.

Salmaso, N., & Padišák, J. (2007). Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). *Hydrobiologia*, 578, 97–112. https://doi.org/10.1007/s10750-006-0437-0

Salmaso, N., Naselli-Flores, L., & Padišák, J. (2015). Functional classifications and their application in phytoplankton ecology. *Freshwater Biology*, 60, 603–619. https://doi.org/10.1111/fwb.12520

Sommer, U., Giwicz, Z. M., Lampert, W., & Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. *Arctic & Antarctic Biology*, 106, 433–471.

Usseglio-Polatera, P., Bournaud, M., Richoux, P., & Tachet, H. (2000). Biological and ecological traits of benthic freshwater macroinvertebrates: Relationships and definition of groups with similar traits. *Freshwater Biology*, 43, 175–205. https://doi.org/10.1046/j.1365-2427.2000.00535.x

Wang, B., Huang, D., & Li, W. (2022). Correlation Mining of Hidden Dangers in drilling based on support matrix Apriori algorithm. *Journal of Southwest Petroleum University (Science & Technology Edition)*. https://doi.org/10.11885/j.issn.16745086.2020.04.20.02

Wang, G., & Xia, J. (2010). Improvement of SWAT2000 modelling to assess the impact of dams and sluices on streamflow in the Huai River basin of China. *Hydrological Processes*, 24, 1455–1471. https://doi.org/10.1002/hyp.7606

Weithoff, G. (2003). The concepts of "plant functional types" and "functional diversity" in lake phytoplankton–a new understanding of phytoplankton ecology? *Freshwater Biology*, 48, 1669–1675. https://doi.org/10.1046/j.1365-2427.2003.01116.x

Yamamoto, M., & Hayashi, K. (2015). Clustering of multivariate binary data with dimension reduction via L1-regularized likelihood maximization. *Pattern Recognition*, 48, 3959–3968. https://doi.org/10.1016/j.patcog.2015.05.026

Zhu, W., Pan, Y., Yao, T., Li, X., Xu, X., Wang, Y., & Wang, Q. (2013). Phytoplankton community and succession in a newly man-made shallow lake, China. *Aquatic Ecology*, 47, 137–147. https://doi.org/10.1007/s10452-013-9430-7

Zhu, W., You, Q., Pang, W., Pan, Y., Wang, Y., & Wang, Q. (2015). Phytoplankton community distribution pattern in a large river basin, China. *Ecological Science*, 37, 136–147.

How to cite this article: Zhu, W., Ding, Z., Pan, Y., & Wang, Q. (2022). Using an affinity analysis to identify phytoplankton associations. *Ecology and Evolution*, 12, e9047. https://doi.org/10.1002/ece3.9047