Tobacco retail availability and cigarette and e-cigarette use among youth and adults: a scoping review

Nargiz Travis 1, David T Levy 1, Patricia A McDaniel 2, Lisa Henriksen 3

ABSTRACT

Objective States and localities are formulating strategies to reduce the widespread retail availability of tobacco products. Evidence of associations between retailer density/proximity and tobacco use outcomes can help inform those strategies. We conducted a scoping review on tobacco retail availability and cigarette/e-cigarette use in adults and youth, and considered variations in spatial units, measures of retailer exposure and outcomes across studies.

Methods A systematic search for studies examining the association between retailer density/proximity and youth and adult cigarette/e-cigarette use was conducted across MEDLINE (PubMed), Web of Science and Google Scholar through 27 August 2020 with no restrictions.

Results Thirty-five studies were included in our qualitative synthesis. While there were differences in neighbourhood definitions (eg, egocentric vs administrative), there is evidence for a positive association between higher retailer density in egocentric neighbourhoods around homes and current smoking in adults and adolescents. Administrative unit measures in some studies showed associations with adult current smoking, and adolescent lifetime and current smoking. Studies on tobacco outlet proximity to homes obtained mixed results. Density/proximity of tobacco outlets around schools showed no or inverse association with adolescent smoking, but suggests higher susceptibility to smoking. Evidence of an association between e-cigarette retail availability and e-cigarette use is limited due to a small number of studies.

Conclusion The current literature provides limited empirical evidence of the association between tobacco retailer availability and smoking or e-cigarette use. More research with uniform measures of environmental exposure to tobacco retailers is needed to allow for greater comparability between studies.

INTRODUCTION

Smoking is the leading preventable cause of premature deaths in the USA. Nevertheless, tobacco products are still widely available, with the vast majority sold through retail outlets. Tobacco retailer density has been linked to smoking among youth and adults. There are several mechanisms through which retailer density may affect smoking. Higher density may reduce the search costs of finding and purchasing goods, increase opportunities to purchase tobacco products, and encourage retailers to reduce cigarette prices and increase illegal sales to minors due to increased competition. Higher density may further support the ubiquity of smoking and increase environmental cues to smoke, whether through point-of-sale displays and advertising, or the mere presence of an outlet. Widespread availability also increases exposure to retail tobacco marketing and promotions, known to be risk factors for smoking initiation and impulse purchases.

The high concentration of tobacco retailers around schools or in areas with a large proportion of residents younger than 18 years raises further concerns, as it exposes youth to high-risk environments during the ages in which the risks of initiation of tobacco use and transitions to daily use are greatest. Given the limited mobility and price sensitivity of youth, reducing retail density may be a particularly effective strategy to reduce youth smoking.

While there is a growing body of research examining the relationship between tobacco retailer availability and smoking behaviour, there has been inconsistency in the measures used, making comparisons difficult. For example, some studies have focused on tobacco retailer density, others on proximity to retailers. Similarly, some studies have focused on daily smoking, while others have examined smoking within the past 30 days. To date, five reviews have attempted to summarise the evidence on this topic. Notably, four reviews focused solely on youth and young adults and one did not differentiate between youth and adult studies. A meta-analysis examined the relationship between retailer density near adolescents’ homes and schools and past 30-day smoking, and did not consider proximity to outlets. A narrative review included studies of retailer density and proximity with diverse smoking outcomes, but did not distinguish between exposure near schools versus homes. Systematic and methodological reviews examined studies on retailer density and proximity near schools and homes and diverse youth smoking outcomes. The conclusions emphasised fundamental challenges in study designs and measures of retailer exposure across studies. A recent methodological review examined studies on retailer density and proximity, focusing on the heterogeneity of exposure measures. However, it did not distinguish between youth and adult smoking outcomes, or consider results relative to spatial units or study location (eg, home, school, activity spaces) and did not report effect sizes. None of the prior reviews included studies on e-cigarette use, which has been increasing among US youth since 2011.

The aim of this scoping review is to summarise empirical evidence regarding the association
between tobacco retailer density and proximity and the use of cigarettes and e-cigarettes by adults as well as youth. We aim to distinguish findings by population (adult vs youth), various cigarette/e-cigarette use outcomes, spatial units (egocentric buffers vs administrative units) and study locations. In addition, we highlight variations in density/proximity measures, differences in definitions of smoking/e-cigarette use outcomes and control variables used, which may help account for inconsistent findings across studies.

METHODS

Literature search strategy

A systematic literature search was conducted on 26 February 2020 across MEDLINE (PubMed), Web of Science and Google Scholar databases, with no restrictions on year of publication, language or article types. The search was updated on 27 August 2020. The first 100 hits on Google Scholar were screened as they were considered to be most relevant to the search topic. Search strings were created via the advanced search builder using text word combinations in the title or abstract relating to retail availability (ie, “retail”, “sale”, “density”, “proximity”, “distance”, “availability”) and product use (ie, “smoking”, “tobacco use”, “cigarette”, “e-cigarette”). A three-step selection process was applied. First, two authors (NT and DTL) independently screened titles and abstracts for eligibility. Second, full-text articles of selected abstracts were retrieved from databases and screened for exclusion criteria. Finally, references of full-text articles were examined for additional relevant literature. Disagreements were discussed and resolved by consensus. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist for scoping reviews is available in the online supplemental table S1.

Inclusion criteria

Empirical studies were included if they examined tobacco retail availability as an exposure variable, and individual-level cigarette or e-cigarette use as an outcome variable (ie, current smoking, ever smoking, initiation, cessation, quit attempts, relapse, as well as intentions to quit and smoking susceptibility (as they are closely related to product initiation and cessation)), with full-text articles in English accessible online. Studies that investigated tobacco product categories that included e-cigarettes (eg, alternative tobacco products) were also included. Tobacco retail availability measures included, inter alia, those described in the PhenX Tobacco Regulatory Project Toolkit, such as density (number of retailers divided by land area or by total population) in person-centred buffers around study participants’ homes, schools or daily activity spaces (ie, egocentric neighbourhoods); density in administrative units (eg, county, city, census tract); and proximity to the nearest tobacco retailer from homes, schools, daily activity spaces, or census area centroids.

Exclusion criteria

Studies were excluded if they investigated outcomes not related to cigarette or e-cigarette use (eg, normative perception of smoking), used aggregated data to measure use prevalence, or examined associations in subpopulations rather than in the general population (eg, treatment-seeking smokers) to allow for comparability and meaningful interpretation of results. Descriptive geospatial studies that did not aim to provide effect sizes were also excluded.

Data extraction

The following information was synthesised from each study: first author, country, study design, data collection period, sample size, population, tobacco product type, measures of exposure, definitions of spatial units, covariates, tobacco use outcomes and effect sizes.

Qualitative analysis

Given the heterogeneity and limited empirical comparability of studies, a scoping review was selected as the most suitable approach to provide a broad overview of research on the relationship between retailer density/proximity and cigarette/e-cigarette use in both youth and adult populations and map the differences in measures of exposure and outcomes. In contrast to a systematic review, we included all relevant studies, without a priori attempting to synthesise them based on methodological quality.

RESULTS

We identified 553 records through the database searches and additional 11 records through manual checks of bibliographies. After removing duplicates, 379 abstracts were screened for eligibility and 296 were excluded. Full-text articles for the remaining 83 records were retrieved and thoroughly assessed for exclusion criteria. An updated literature search following the same methods was performed through 27 August 2020, and identified 34 unique publications, of which 2 were included (figure 1).

Overall, 35 studies, published between 2003 and 2019, were included in the qualitative synthesis (table 1). Most studies (19) were conducted in the USA, while others came from Canada,9–19 New Zealand,25–31 Finland,32–35 Australia36–37 and Scotland.38–39 The majority (29) examined cigarette use; few focused on e-cigarettes1 40–42 or on alternative/non-combustible tobacco products that included e-cigarettes.34 44 Nearly half of the studies considered outcomes in adults (15), commonly aged 18+ years, except in three international studies,3 32 38 where adults were defined as 15+ or 16+ years.

Studies of youth (20) included school-age participants in school-based studies and youth and young adults (ranging from 7 to 23 years old) in home-based and administrative unit-based studies (table 2).

Overall, person-centred density measures were employed in 8 adult23 26 28 29 35 36 45 46 and 10 youth studies.8 30 31 33 37 41 47–50 Administrative density measures per land area appeared in five adult37 38 43 46 51 and four youth studies,4 39 42 44 and density per population count appeared in one adult3 9 and five youth studies.9 32–34 Proximity was measured as the shortest distance from home,25 26 28 29 34 35 44–46 49 52 school,8 42 49 50 or activity space28 29 to the nearest tobacco retailer in 15 studies, as a presence of at least one retailer per land area in four studies.8 25 31 40 and as travel time by car to the nearest retailer in one study.82

Since most studies employed multiple outcomes and measures of exposure (table 3), we grouped results for youth and adult populations by tobacco use outcomes based on the type of retailer exposure (density/proximity) and spatial units (person-centred buffers vs administrative units). Additionally, we specified the types of buffers (circular vs street network) and distances (straight-line vs roadway) used in the analyses.

Retailer density and smoking outcomes in adults

Current smoking

Five cross-sectional studies investigated the relationship between tobacco retailer density and adult current smoking, defined as daily or occasional,3 29 36 ‘smoking at all nowadays’38 and past 30-day smoking47; one cross-sectional study focused on the number of cigarettes smoked per day.46 Using person-centred...
measures to capture density within 0.5 km street network buffers around participants' home address or in their daily activity spaces, higher retailer density in residential neighbourhoods was associated with current smoking in two studies from Australia36 and Canada29 with ORs ranging from 1.01 (95% CI: 1.00 to 1.01)36 to 1.53 (95% CI: 1.23 to 1.91; p<0.05),29 and with a prevalence ratio (PR)=1.46 (95% CI: 1.26 to 1.70; p<0.05) for density in daily activity spaces.29 Higher density derived from administrative units, such as a count per 1000 people within census tracts in Australia3 or per square kilometre within residential ZIP codes in Scotland38 was associated with current smoking, with effect sizes ranging from dy/dx (predicted probability)=0.07 (95% CI: 0.05 to 0.10; p<0.01)38 to OR=1.11 (95% CI: 1.02 to 1.21; p=0.018).3 Density per square kilometre within census tracts in a Canadian study was not associated with current smoking.25 In a US study, density within 1-mile circular buffers around homes or per square mile in corresponding census tracts was not related to the number of cigarettes smoked per day.46

Smoking initiation
In a cross-sectional US study, higher retailer density per 10 km of roadway within census tracts was associated with smoking initiation in young adults aged 25–34 years (vs aged 18–24 years) (OR=3.75, 95% CI: 1.18 to 11.90, p<0.05).43

Smoking cessation, quit attempts and relapse
Five studies applied person-centred density measures using circular buffers25 or street network buffers26 28 35 45 around participants' homes and investigated associations with their cessation outcomes. In two longitudinal studies, density within 500 m buffers was associated with reduced 30-day smoking abstinence, but only in high-poverty neighbourhoods in the USA (OR=0.94; 95% CI: 0.90 to 0.98; p<0.01)45 and with lower quit attempts in high-income (vs lower income) neighbourhoods (OR=0.54; 95% CI: 0.35 to 0.85; p<0.05) and increased relapse (OR=1.11; 95% CI: 1.00 to 1.23; p>0.05) in Canada.25 Smoking cessation was associated with low and intermediate levels of density within 500 m from homes (PR=1.28; 95% CI: 1.10 to 1.50; p<0.05) and daily activity spaces (PR=1.28; 95% CI: 1.08 to 1.51; p<0.05) in a Canadian cross-sectional study,28 and inversely related to higher availability within 500 m only for moderate/heavy male smokers (PR=0.63; 95% CI: 0.49 to 0.81; p<0.05) in a longitudinal Finnish study.35 Density within 1 km from home showed no associations with either 30-day abstinence or relapse in a longitudinal Canadian study.26

In two further cross-sectional studies, higher density per square kilometre or square mile within residential ZIP codes was associated with being a former (vs current) smoker in a Scottish study (dy/dx=−0.05; 95% CI: −0.09 to −0.02; p<0.01)38 and with lower intentions to quit in the next 6 months in a US study,
Table 1: Main characteristics of studies on the associations between tobacco retailer density/proximity and adult smoking outcomes

First author	Country and data collection period	Design	Sample size (n)	Participants	Tobacco product	Spatial units	Density measure	Proximity measure	Main outcome variables	Control variables	Main associations
Barnes et al²⁶	Australia (Western Australia): 2003–2009	CS	12,270 (smokers and non-smokers)	Adults 18+ (mean age 30)	Cigarettes	Epocentric buffers	Number of tobacco outlets within 160 m (0.5 mile) street network buffers from home	N/A	Current smoking, individual level: age, sex, highest level of education, household income, socioeconomic index for areas	Increase in density positively associated with being a current smoker versus past smoker: OR 1.01; 95% CI: 1.00 to 1.01	
Cantrell et al²⁷	USA: 2013	CS	4,898 (smokers and non-smokers)	Young adults aged 18–24, 25–34	Cigarettes and non-combustible tobacco products (incl. e-cigarettes)	Census tracts	Number of tobacco outlets per 10 km of roadway	N/A	Product initiation, individual level: age, sex, race, education, depression	Increase in density positively associated with initiation of cigarette use in ages 25–34: OR 3.75; 95% CI: 1.18 to 11.90; p<0.05	
Cantrell et al²⁸	USA: 2008–2010	L	2,377 smokers	Adults aged 18–49	Cigarettes	Epocentric buffers	Number of tobacco outlets within 160 m (0.5 mile) street network buffers around homes	N/A	Smoking abstinence >30 days	Increased density negatively associated with quit attempts only in high-income neighborhoods: OR 0.4, 95% CI: 0.2 to 0.8; p<0.05	
Chaiton et al²⁹	Canada: Ontario 2005–2008	L	2,414 past month daily smokers	Adults 18+ (mean age not reported)	Cigarettes	Epocentric buffers	Number of outlets within 500 m circular buffer within a straight-line radius from participants’ homes	N/A	Quit attempts, relapse	Increased density negatively associated with quitting attempts only in high-income neighborhoods: OR 0.4, 95% CI: 0.3 to 0.5; p<0.05	
Chuang et al³⁰	USA: California 1979–1990	CS	8,129 (smokers and non-smokers)	Adults aged 25–34	Cigarettes	1. Census tracts, census block groups, combination of birth (n=82) 2. Egocentric buffers	Number of convenience stores per square mile divided into tertiles (density) 1. Number of convenience stores per square mile divided into tertiles (density)	Straight-line distance from home to the nearest convenience store in miles	Number of cigarettes a day	Individual level: age, sex, marital status, presence of children under 18 in household, education, region, perceived addiction, use of quit aids, heaviness of smoking index	High census-level density positively associated with smoking (OR=1.74, 95% CI: 1.07–2.80; p<0.05)
Fleischer et al³¹	Canada (10 provinces): 2005–2011	CS	4,388 smokers (absence outcome); 866 smokers (workplace outcome)	Adults (mean age 47 and 50, depending on the wave and sample)	Cigarettes	Epocentric buffers	Number of outlets within 1 km street network buffers around home addresses or postal code centroids	Straight-line distance from home to the nearest outlet in kilometers	30-day abstinence, relapse	Individual level: age, sex, education, income, province level: province, cigarette price, point-of-sale bans	No associations
Halonen et al³²	Finland 1997–2005	L	8,751 smokers	Adults (mean age 50)	Cigarettes	Epocentric buffers, area-level neighbourhoods as coordinates on the 250 m map squares	Number of outlets within 0.5 km straight-line and street network buffers around homes	Straight-line and walking distances from home to the nearest outlet in kilometers	Cessation	Individual level: age, sex, occupational status, proxy for SES, marital status, alcohol use, smoking intensity, registry level: housing tenure (proxy for SES), baseline diseases	Having one versus no outlets within 0.5 km negatively associated with cessation only in moderate alcohol users smokers (PR: 0.63, 95% CI: 0.49 to 0.81; p<0.05). Proximity of <0.50 km (vs ≥0.50 km) negatively associated with cessation only in moderate alcohol users smokers (PR: 0.73, 95% CI: 0.60 to 0.88; p<0.05).
Kierész et al³³	USA: Minnesota 2011	CS	1,203 non-daily smokers (NDS)	Adults aged 25+ (mean age 41.38)	Cigarettes	Residential ZIP codes	Number of outlets per square mile categorised in quartiles	N/A	6-month quit intentions	Individual level: age, sex, socio-economic status, household income, number of cigarettes per day, number of days smoked, time to first cigarette	Price-sensitive NDS residing in areas with higher (vs lower) outlet density less likely to hold quit intentions (likelihood ratio test statistic χ²=62–86.1, p<0.001)
Kierisz et al³⁴	Canada: Toronto 2009–2011	CS	2,412 (smokers and non-smokers)	Adults aged 25–54	Cigarettes	Census tract (n=87)	Number of outlets per km²	N/A	Past 30-days smoking	Individual level: income, sex, age, marital status, immigrant status, education level, household income	No association
Marashi Pour et al³⁵	Australia NSW 2008–2011	CS	31,860 (smokers and non-smokers)	Adults 16+ (mean age 35)	Cigarettes	Census collection districts (n=11811)	Mean number of outlets per 1000 persons within each census collection district or postal area	N/A	Current smoking (daily or occasional)	Individual level: age, sex, country of birth, Aboriginal status, Gender level: neighbourhood SES, % males, % born in Australia, % minors	High density positively associated with smoking (OR=3.1, 95% CI: 1.02 to 1.25; p=0.018).
First author	Country and data collection period	Design	Sample size (n)	Participants	Tobacco product	Spatial units	Density measure	Proximity measure	Main outcome variable	Control variables	Observed associations
--------------	-----------------------------------	--------	----------------	--------------	-----------------	--------------	----------------	-------------------	---------------------	-----------------	---------------------
Pearce et al	Scotland 2008–2011	CS	23,751 (smokers and non-smokers)	Adults aged 16+ (mean age not provided)	Cigarettes	Postal codes (n=152,400)	Proximity-weighted estimate of the outlet density per km² for each postal code	N/A	Current smoker, ex-smoker	Individual level: age, sex, ethnicity, education, household income Area level: rurality	Highest (vs lowest) density positively associated with being a current smoker (dy/dx=0.07; 95% CI: 0.05 to 0.10; p<0.01) and negatively associated with being an ex-smoker (dy/dx=−0.09; 95% CI: −0.09 to −0.02; p<0.01)
Pearce et al	New Zealand 2002–2003	CS	12,529 (smokers and non-smokers)	Adults aged 15+ (mean age not provided)	Cigarettes	Census mesh blocks (n=11,760)	Travel time by car (min) to the nearest outlet along the road network, categorised in quartiles (best/better/worse/worst access)	N/A	Everyday smoking	Individual level: age, sex, ethnicity, social class Census block level: neighbourhood deprivation, rurality	Best access to supermarkets (OR=1.23, 95% CI: 1.06 to 1.42) and convenience stores (OR=1.19, 95% CI: 1.03 to 1.38) positively associated with smoking. No associations in a model adjusted for neighbourhood deprivation and rurality.
Pulaski et al	Finland	L	20,729 (smokers and non-smokers)	Adults aged 18–75	Cigarettes	N/A	Change in walking distance from home to the nearest outlet address (difference between baseline and follow-up distance)	N/A	Smoking cessation and relapse	Individual level: age, sex, education (proxy for SES), marital status, recent financial hardship, recent death or illness in family, employment status, chronic diseases	Increase in distance (proximity) positively associated with smoking cessation (pooled OR: 1.16; 95% CI: 1.05 to 1.28; p=0.004) and not associated with smoking relapse.
Shareck et al	Canada: Montreal 2011–2012	CS	921 (individuals who smoked at least one cigarette in their lifetime)	Young adults aged 18–25	Cigarettes	Epocentric buffers	Number of outlets in 500 m street network buffers from home/activities spaces (AS), categorised in tertiles (low/medium/high)	Walking distance to the nearest outlet from home/AS location, categorised in tertiles (closest/intermediate/furthest)	Smoking cessation	Individual level: age, sex, education, time since smoking onset, number of years smoked, occupation Area level: neighbourhood deprivation	Positive for low (vs high) residential density (PR=1.29; 95% CI: 1.10 to 1.50; p<0.05) and density in AS (PR=1.46; 95% CI: 1.08 to 1.91; p<0.05). Positive for the furthest (vs closest) proximity to AS (PR=1.21; 95% CI: 1.02 to 1.43; p=0.04). No association with proximity to homes.
Shareck et al	Canada: Montreal 2011–2012	CS	1,994 (smokers and non-smokers)	Young adults aged 18–25	Cigarettes	Epocentric buffers	Number of outlets in 500 m street network buffers from home / across AS, categorised in tertiles (low/medium/high)	Shortest walking distance to the nearest outlet from home/AS location, categorised in tertiles (closest/intermediate/furthest)	Current smoking (defined as smoking daily or occasional)	Individual level: age, sex, education status and attainment Area level: neighbourhood deprivation	Positive for high (vs low) residential density (PR=1.44; 95% CI: 1.26 to 1.70; p<0.05) and density in AS (PR=1.44; 95% CI: 1.26 to 1.70; p<0.05). Positive for closest (vs furthest) proximity to AS (PR=1.42; 95% CI: 1.09 to 1.86; p<0.05). No association with proximity to homes.

CS, cross-sectional; L, longitudinal; N/A, not applicable; NSW, New South Wales; PR, prevalence ratio; SES, socioeconomic status.
Table 2 Main characteristics of studies on the associations between tobacco retailer density/proximity and youth smoking outcomes

First author	Country and data collection period	Design	Sample size (n)	Participants	Tobacco product	Spatial unit	Density measure	Proximity measure	Main-outcome variables	Covariates	Direction of hypothesised association	
Abdel Magid et al	USA: California 2015–2016	L	728 students from 10 high schools	Students aged 13–19	Alternative tobacco products (ATPs) incl. e-cigarettes	Census tracts (n=198)	Number of tobacco outlets per square mile, categorised into tertiles	Roadway distance from home address to the nearest tobacco retailer in miles	Tobacco product initiation	Individual level: age, sex, race, mother’s education, ever cigarette use, ever alcohol use	Cessus; tract level: % non-Hispanic white, median household income, population. School level: school demographics, socioeconomic demographics. Higher density positively associated with ATP initiation. OR: 1.12; 95% CI: 1.07 to 1.17. No association with proximity.	
Adosh Mejia et al	USA 2007	CS	3446 adolescents	13–18 years old	Cigarettes	Census tracts (n=346)	Number of tobacco outlets per 1 000 persons	Roadway distance from home address to the nearest tobacco retailer in miles	Lifetime smoking	Individual level: age, sex, race, SES, friend smoking, sibling smoking, exposure to smoking in movies, team sports participation, sensation seeking	Cessus; tract level: % of black, % of Hispanic, % of poverty. No associations	
Adams et al	USA: Illinois 2000		9 704 students from 21 middle schools and 13 high schools	7th–10th graders	Cigarettes	Episentric neighbourhoods	Number of outlets within 0.5 mile straight-line buffer from school address	N/A	Lifetime smoking, past 30-day smoking	Individual level: grade, race, sex, current smoking	School level: Illegal tobacco sales rates. Cessus: tract level: median income, mean population density. Density positively associated with lifetime smoking prevalence. OR: 1.10; 95% CI: 0.99 to 1.20; p=0.51. No associations with past 30-day smoking.	
Bostean et al	USA: California 2013–2014	CS	67 731 students from 130 schools	Middle schoolers and high schoolers	E-cigarettes	N/A	N/A	Presence of at least one e-cigarette specialty store within 0.25 straight-line radius (500m walk) from school	N/A	Lifetime smoking, current (past 30-day) smoker	Individual level: sex, race, parental education, tobacco, marijuana and alcohol ever use. School level: freedom of price pinch programme eligibility (proxy for school level SES). Presence of at least one e-cigarette retailer (no none) positively associated with lifetime smoking in middle schoolers only. OR: 1.70; 95% CI: 1.02 to 2.83. No association with current smoking.	
Chan and Leathardale	Canada: Ontario 2008–2009	CS	25 893 students from 76 secondary schools	9th–12th graders	Cigarettes	Episentric buffers	Number of outlets within 1 km circular buffers around schools	N/A	Smoking susceptibility, occasional smoking, daily smoking	Grade, sex, peer smoking, parent’s smoking, friends smoking, older sibling who smokes. Cessus: level: % of families receiving government payments (proxy for neighborhood disadvantage). Density positively associated with smoking susceptibility. OR: 1.03; 95% CI: 1.01 to 1.05; p<0.05. No associations with occasional or daily smoking.		
Cole et al	Canada, Ontario, Alberta, BC Columbia, Quebec 2017–2018	CS	63 400 students from 122 schools	7th–12th graders	Cigarettes	Episentric buffers	Mean number of e-cigarette retailers within (a) 500m (b) 1 km and (c) 1.5 km circular buffers around school	Percentage of schools with at least one retailer within (a) 500m (b) 1 km and (c) 1.5 km from school	Lifetime and current (past 30-day) cigarette use	Individual level: grade, sex, ethnicity, spending money, friends smoking. School level: province, urbanity. No associations		
Girocche et al	USA: New Jersey 2014	CS	3905 students from 41 schools	High school students	E-cigarettes	Episentric buffers	Number of tobacco retailers that will e-cigarettes within a 0.5 mile circular buffer around schools	N/A	Lifetime use, past 30-day use	Individual level: grade, sex, race, tobacco use history, peer tobacco use, tobacco use in home, ad exposure School level: % students receiving free/reduced price lunch (proxy for economic disadvantage). Density positively associated with lifetime use (OR: 1.03; 95% CI: 1.00 to 1.05; p=0.05) and past 30-day use (OR: 1.04; 95% CI: 1.01 to 1.08; p=0.05). No association with occasional or daily smoking.		
Lipperman Kreda et al	USA: California 2017–2018	CS	100 smokers and non-smokers from 8 cities	16–20 years old	Cigarettes	Episentric buffers	Number of outlets within 100 m of activity space polygons	N/A	Smoking on a given day, number of cigarettes smoked on a given day	Individual level: age, sex, race/ethnicity, perceived SES, past month tobacco use	Density positively associated with the number of cigarettes smoked on a given day. IRR: 1.04; 95% CI: 1.01 to 1.05. No association with smoking (in not smoking) on a given day.	
Lipperman Kreda et al	USA: California 2010–2012	L	1 063 youths from 50 cities	13–16 years old	Cigarettes	Cities (n=50)	Number of outlets per 1 000 persons in each city	N/A	Lifetime smoking	Individual level: age, sex, ethnicity, perceived availability of cigarettes, perceived enforcement of underage tobacco law. City level population density, % youth, ethnicity race, SES. Density was positively associated with lifetime smoking. OR: 1.12; 95% CI: 1.04 to 1.22; p<0.01.		
Lipperman Kreda et al	USA: California 2017–2018	CS	832 youths from 45 cities	13–18 years old	Cigarettes	Episentric buffers	Number of tobacco outlets within 0.25 and 1.01 miles radius of home and school location	Straight-line distance in miles to the closest outlet from home and school	Past 30-day smoking frequency	Individual level: age, sex, ethnicity City level and buffer level: population density, % youth, household income, % American-Asian, % Hispanic, % college education, % unemployment. Positive for higher density within 0.25 mile (β=0.29; SE=0.069; p≤0.05) and 1.0 mile (β=0.34; SE=0.082; p≤0.05) radius around home. No association with density around school. No association with proximity from home or school.		
Lipperman Kreda et al	USA: California 2017–2018	CS	1 488 youths from 50 cities	13–16 years old	Cigarettes	City	Number of outlets per 10 000 persons	N/A	Lifetime smoking, past 30-day smoking, past 12-month smoking	Individual level: age, sex, race, frequency of smoking City level population density, % white, % single mom, % unemployment, education, local tobacco policies. Density positively associated with lifetime smoking (OR: 1.01; 95% CI: 1.01 to 1.05; p=0.05) and past 12-month smoking (OR: 1.01; SE=0.003; p=0.05). None for past 30-day smoking.		
Loomis et al	USA: New York 2000–2008		74 027 students	9–17 years old	Cigarettes	County	Number of outlets per 1000 youth aged 17 and younger in each county	N/A	Smoking susceptibility, current smoking (past 30 days), cigarettes per day	Individual level: age, sex, race, weekly personal income, living with a smoking parent. School level: smoking prevalence. No association		

Continued
First author	Country and data collection period	Design	Sample size (n)	Participants	Tobacco product	Spatial unit	Density measure	Proximity measure	Main-outcome variables	Covariates	Direction of hypothesised association
Marsh et al.	New Zealand 2012	CS	27238 students (from 298 schools)	14–15 years old	Cigarettes	Polygons around schools	Median number of outlets within 6km of school	N/A	Individual level: sex, age, ethnicity, smoking status of family members and peers; School level: SES and rurality	Higher density positively associated with susceptibility to smoking within 500m (OR: 1.01; 95% CI: 1.00 to 1.02) and 1km (OR: 1.02; 95% CI: 1.00 to 1.04) of schools. Higher density negatively associated with current smoking within 500m (OR: 0.75; 95% CI: 0.68 to 0.84) and 1km (OR: 0.80; 95% CI: 0.70 to 0.90). No association with experimental smoking.	
McCarthy et al.	USA: California 2003–2004	CS	19305 students (from 245 schools)	Youth (middle and high school students)	Cigarettes	Egocentric buffers around schools (n=245)	Number of tobacco outlets within 1 mile radius around schools	N/A	Established smoking (past 30-day smoking and >100 cigarettes in lifetime), experimental smoking (past 30-day smoking and <100 cigarettes in lifetime)	Individual level: age, gender, race, school grades, peer tobacco use, perception of tobacco use prevalence, depressive symptoms; School level: school rurality, parental education	Density positively associated with experimental smoking only in high school (vs middle school) students in urban areas (vs rural). OR: 1.11; 95% CI: 1.02 to 1.21. No association with density and established smoking. No association with proximity.
Novak et al.	USA: Illinois 1995–1999	CS	2116 (smokers and non-smokers)	11–23 years old	Cigarettes	Census tract (80 neighborhood clusters and 178 census tracts)	Number of census block faces with at least 1 outlet per total number of block faces per census tract (divided into quartiles)	N/A	Past 30-day smoking	Individual level: age, race, sex, parental education; Census tract level: % race, % pop % foreign born, % 25 years in household, % unemployed, % aged >25 with at least associate's degree	High (vs low) density positively associated with past 30-day smoking. OR: 1.20; 95% CI: 1.01 to 1.44. p<0.001.
Pidgory et al.	USA: Illinois 1999	CS	6335 students (from 23 schools)	6th-8th graders	Cigarettes	Community level (n=1)	Number of outlets per 1000 youth population within each community	N/A	Smoking initiation, past 30-day smoking	Individual level: age, sex, race, family and peer tobacco use, perceived access to tobacco, ability to purchase tobacco; Community-level: youth population, median income (as a proxy for SES)	No association
Schlicker et al.	USA 2011–2012	CS	2771 students	13–16 years old	Cigarettes	Egocentric buffers	Number of tobacco outlets per 0.5 street network buffers around home and school	N/A	Ever smoking	Individual level: age, sex, race, school grades, peer smokers, household income, Neighbourhood level: race, ethnicity, poverty	Higher residential density was positively associated with ever smoking. OR: 1.01, 95% CI: 1.00 to 1.02; p<0.05. No association with density around schools. No association with school proximity.
Sculli et al.	Australia: Victoria 2008	CS	2044 students (from 35 schools)	12–17 years old	Cigarettes	Egocentric buffers around schools (n=35)	Number of outlets in 500m radius around school	N/A	Past 30-day smoking	Individual level: age, sex, pocket money, smoking status of parents, perceived ease of purchasing cigarettes; Areal level: neighborhood SES, outlet cigarette prices	No association
Shortt et al.	Scotland 2010–2011	CS	20446 adolescents	13–15 years old	Cigarettes	Postcodes (n=5046)	Number of proximity weighted tobacco outlets per square kilometre for every postcode (categorised into quintiles)	N/A	Ever smoking, smoking 'still nowadays' (current smoking)	Individual level: age, sex, ethnicity, parental smoking, free school meals, self-perceived family wealth, family structure; Area level: deprivation, rurality	Highest residential density (in no outlet) positively associated with ever smoking (OR: 1.53, 95% CI: 1.27 to 1.85; p<0.001) and current smoking (OR: 1.47, 95% CI: 1.13 to 1.91; p<0.01). Highest density around schools negatively associated with ever smoking (OR: 0.68, 95% CI: 0.50 to 0.86; p<0.05) and current smoking (OR: 0.76, 95% CI: 0.59 to 0.95; p<0.05).
Traït et al.	USA: Ohio 2016	CS	3778 students (from 63 schools)	7th/8th graders	Cigarettes	Kernel density for each school (n=63)	Number of outlets per square mile	N/A	Current (past 30-day) use	Individual level: sex, grade, race/ethnicity, Family Affluence Scale (proxy for SES), walking to or from school, self-reported retail exposure, age of first tobacco use	No associations
Table 3 Measures of tobacco retailer density/proximity across included studies

Study	Density in egocentric neighbourhoods around homes	Proximity from home to outlet	Density in administrative units	Proximity from census area centroid to tobacco outlet	Density in egocentric neighbourhoods around schools	Proximity from school to tobacco outlet	Density in egocentric neighbourhoods of activity spaces	Proximity from active spaces to tobacco outlet
Adults								
Current smoking								
Barnes et al[20]	x							
Shareck et al[21]	x x							
Pearce et al[22]	x x							
Pearse et al[23]	x x							
Marashi-Pour et al[3]	x x							
Kirst et al[24]	x x							
Chuang et al[35]	x x x							
Smoking initiation								
Cantrell et al[25]	x x x							
Thirty-day abstinence								
Cantrell et al[25]	x x x							
Fleischer et al[26]	x x x							
Six-month quit intentions/quit attempts	x x x							
Kirdner et al[27]	x x x							
Chaiton et al[28]	x x x							
Smoking cessation								
Shareck et al[21]	x x x							
Halonen et al[25]	x x x							
Pulakka et al[34]	x x x							
Former smoker status								
Pearce et al[29]	x							
Relapse								
Pulakka et al[34]	x x x							
Chaiton et al[28]	x x x							
Fleischer et al[26]	x x x							
Youth								
Current smoking								
Lipperman-Kreda et al[30]	x x x							
Lipperman-Kreda et al[31]	x x x							
Shortt et al[32]	x x x							
Pokorny et al[33]	x x x							
Novak et al[34]	x x x							
Loomis et al[35]	x x x							
Chan and Leatherdale[36]	x x x							
Adams et al[37]	x x x							
Scully et al[38]	x x x							

Continued
Table 3 Continued

Study	Density in egocentric neighbourhoods around homes	Proximity from home to outlet	Density in administrative units	Proximity from census area centroid to tobacco outlet	Density in egocentric neighbourhoods around schools	Proximity from school to tobacco outlet	Density in egocentric neighbourhoods of activity spaces	Proximity from active spaces to tobacco outlet
McCarthy et al\(^{69}\)	x			x	x			
Marsh et al\(^{70}\)	x			x				
Lipperman-Kreda et al\(^{71}\)	x							
Trapl et al\(^{42}\)	x							
Lifetime smoking								
Schleicher et al\(^{72}\)	x							
Shortt et al\(^{73}\)	x							
Adachi-Mejia et al\(^{74}\)	x							
Lipperman-Kreda et al\(^{75}\)	x							
Lipperman-Kreda et al\(^{76}\)	x							
Adams et al\(^{77}\)	x							
Experimental smoking								
McCarthy et al\(^{69}\)	x							
Marsh et al\(^{70}\)	x							
Smoking initiation								
Pokorny et al\(^{78}\)	x							
Susceptibility to smoking								
Loomis et al\(^{79}\)	x							
Chan and Leatherdale\(^{80}\)	x							
Marsh et al\(^{70}\)	x							
Current and lifetime e-cigarette use	x							
Giovenco et al\(^{41}\)	x							
Bostean et al\(^{48}\)	x							
Cole et al\(^{47}\)	x							
Initiation of alternative/non-combustible tobacco products (including e-cigarettes)	x							
Cantrell et al\(^{83}\)	x							
Abdel Magid et al\(^{44}\)	x							

*Level of smoking (number of cigarettes smoked per day) used as an outcome.
but only among price-sensitive, non-daily smokers (likelihood ratio G2=66.1).31

Proximity to tobacco retailers and smoking outcomes in adults

Current smoking

Three cross-sectional studies investigated adult current smoking, variously defined as daily smoking,22 smoking daily or occasionally,29 and the average number of cigarettes smoked per day.46 Proximity from participants’ homes to the nearest retailer, defined as the shortest walking distance (metres) in a Canadian study22 or shortest straight-line distance (miles) in a US study,46 was not associated with current smoking or the number of cigarettes smoked per day. However, shortest walking distance to a tobacco retailer (metres) in daily activity spaces was related to current smoking in a Canadian study (PR=1.42; 95% CI: 1.09 to 1.86; p<0.05).29 In New Zealand, travel time by car from census area centroids to the nearest tobacco retailer was not associated with current smoking, when adjusted for neighbourhood deprivation and rurality.32

Smoking cessation, quit attempts and relapse

Of six studies that assessed proximity from home to the nearest tobacco outlet, three measured walking distance (metres),25 28 45 and one compared both.35 All studies but one were longitudinal. A greater walking distance was associated with higher odds of 30-day smoking abstinence in a US study, but only in high-poverty areas (OR=2.80; 95% CI: 1.51 to 5.19; p<0.001).29 and was otherwise unrelated to quit attempts and relapse in one Canadian study,23 and to smoking cessation in another cross-sectional Canadian study.28 However, the same measure in daily activity spaces was associated with smoking cessation (PR=1.21; 95% CI: 1.02 to 1.43; p<0.05).28 In studies from Finland34 and Canada,26 greater straight-line distance from home to the nearest tobacco retailer was positively associated with smoking cessation (OR=1.16; 95% CI: 1.05 to 1.28; p=0.004),34 but not with 30-day smoking abstinence26 or relapse.24 34 In another Finnish study, smoking cessation was inversely associated with closer proximity using both measures, but only in moderate/heavy male smokers (PR=0.73, 95% CI: 0.60 to 0.88; p<0.05).35

Retailer density and adolescents’ smoking outcomes

Current smoking

Adolescent current smoking was defined in seven cross-sectional studies as ever smoking a cigarette,32 33 35 47 49 53 54 ever trying a cigarette (even one puff)8 and ever smoking a whole cigarette (more than just a few puffs).53 34 Most studies were cross-sectional and conducted in the USA, except for one longitudinal study54 and one conducted in Scotland.39 Higher retailer density within 0.5 mile of egocentric road network buffers around homes was associated with higher odds of lifetime smoking (OR=1.01; 95% CI: 1.00 to 1.02; p<0.05).8 Administrative measures, such as density per square kilometre in residential ZIP codes (OR=1.53; 95% CI: 1.27 to 1.85; p<0.001)39 and density per 10,000 population in cities (OR=1.12; 95% CI: 1.04 to 1.22; p<0.01 and OR=1.31; 95% CI: 1.041 to 1.655; p=0.05)39 also correlated with lifetime smoking, while nationwide density per 1000 persons showed no associations.52

Smoking initiation and susceptibility

In two cross-sectional US studies, adolescents’ smoking initiation55 and susceptibility to smoking56 were not associated with retailer density per 1000 people (aged 17 years and younger) within a county or community.

School-level retailer density and adolescents’ smoking outcomes

Current smoking

Eight cross-sectional studies considered adolescent current smoking, defined as past 30-day smoking,37 42 47 49 past 30-day smoking and more than 100 cigarettes in a lifetime,33 35 40 occasional or daily smoking, or ‘smoking at all nowadays’.59 Smoking was not associated with higher retailer density in egocentric buffers around schools in three US, one Canadian (Ontario) and one Australian (Victoria) studies,30 37 39 47 51 and inversely associated with higher density within 500 m road network buffers in one New Zealand study (OR=0.75; 95% CI: 0.65 to 0.87; p<0.05).33 An administrative measure of density per square mile around schools in the USA showed no association,42 while density per square kilometre within school ZIP codes in a Scottish study (OR=0.75; 95% CI: 0.59 to 0.95; p<0.05)39 showed an inverse relationship.

Lifetime and experimental smoking

Five cross-sectional studies considered adolescent lifetime smoking, defined as ever smoking a cigarette,9 47 or ever trying a cigarette (even one puff),8 or experimental smoking, defined as past 30-day smoking and having smoked less than 100 cigarettes in a lifetime.33 35 In two US studies, higher densities within 0.5-mile and 1-mile circular buffers around schools were associated with adolescent lifetime smoking (OR=1.10; 95% CI: 0.99 to 1.20; p=0.51)47 and with experimental smoking (OR=1.11; 95% CI: 1.02 to 1.21) only for high school students in urban areas.50 Density within 0.5-mile, 500-metre and 1-kilometre road network buffers around schools showed no association with lifetime smoking in the USA8 or experimental smoking in New Zealand.33 In one Scottish study, higher density per square kilometre within schools’ ZIP codes was inversely associated with lifetime smoking (OR=0.66; 95% CI: 0.50 to 0.86; p<0.01).39

Susceptibility to smoking

Susceptibility to smoking (intention to try a cigarette soon or in the next year or if offered to try by a best friend) was associated with higher density within 1 km circular buffers in a cross-sectional Ontario study (OR=1.03; 95% CI: 1.01 to 1.05;
p<0.05).33 In two cross-sectional US studies, past 30-day and lifetime smoking was not associated with proximity to the closest retailer from home, measured either as a straight-line distance or distance in roadway miles.52

Retailer proximity to homes and adolescents’ smoking outcomes

Current smoking

In two cross-sectional US studies, past 30-day and lifetime smoking was not associated with proximity to the closest retailer from home, measured either as a straight-line distance or distance in roadway miles.52

Lifetime and experimental smoking

Two cross-sectional US studies explored the relationship between retailer proximity to adolescents’ schools, defined both as a distance in roadway miles, and the presence of at least one outlet within 1000 feet or as a straight-line distance, and lifetime smoking or experimental smoking. Neither found significant associations.

E-cigarette retailer density/proximity and e-cigarette use

Four cross-sectional studies investigated the density of e-cigarette retailers near schools and adolescent lifetime and/or current (past 30-day) use. In a US study, a count of tobacco retailers that sold e-cigarettes within a 0.5-mile circular buffers around schools was associated with current use (adjusted PR (aPR)=1.04; 95% CI: 1.01 to 1.08; p<0.05) and retailer proximity to schools, measured as a straight-line distance in feet or in miles and street network distance.42 None found significant associations.

DISCUSSION

Our scoping review summarises evidence on the association between tobacco retailer availability and the use of cigarettes and e-cigarettes in adults and adolescents, while considering variations in tobacco use outcomes and measures of density/proximity.

For adults, evidence from cross-sectional research showed a positive association between current smoking and both person-centred measures around homes (two of two studies) or in daily activity spaces (one of one) and administrative units (two of three) of retailer density. Evidence on the relationship between current smoking and retailer proximity to homes, daily activity spaces or administrative unit centroids was more limited (one of three).33 There was also evidence, mainly from longitudinal studies, of associations between higher person-centred density near homes and lower smoking cessation (two of two), quit attempts (one of one), 30-day abstinence (one of two) and higher relapse (one of two). However, these associations were usually limited to specific populations, such as price-sensitive non-daily smokers, moderate/heavy male smokers, or residents of high-poverty or high-income neighbourhoods. Further retailer proximity from homes showed associations with higher cessation (two of three), but was not related to smoking relapse (none of three).

For adolescents, evidence gathered from predominantly cross-sectional research indicated a positive association of person-centred measures of retailer density near homes and daily activity spaces with current smoking and the number of cigarettes smoked (two of two), as well as lifetime smoking (one of one). For administrative units, there was some evidence of a positive association with density and current smoking (two of five), but evidence for lifetime smoking was more consistent (three of four). Higher density near schools showed no or inverse association with adolescent current smoking, but was related to greater susceptibility to smoke (two of two). There was no evidence that retailer proximity to homes or schools was related to adolescent smoking.

Given e-cigarettes’ popularity among youth, research on association of use with retail density/proximity of e-cigarettes is surprisingly scarce. Existing studies focused on e-cigarette retailer availability near schools and suggest that adolescent current e-cigarette may be related to retailer density (one of three), but not proximity (none of three). Inadequate data about which tobacco retailers sell e-cigarettes are an obstacle to research on this topic. Studies of vape shops (that sell e-cigarettes exclusively) may underestimate retail availability of e-cigarettes, while studies of all tobacco retailers surely overestimate it.

Our findings are consistent with a meta-analysis that found a small but significant positive relationship between tobacco retailer density around adolescents’ homes (but not schools) and past month smoking. While results of a narrative review were inconclusive due to heterogeneity and small number of included studies, systematic and methodological reviews also found some support for a positive association of youth smoking with higher retailer density around homes, but not with proximity to homes or schools. A recent methodological review concluded that there was an overall positive relationship between tobacco retailer density and smoking prevalence and initiation, with retailer proximity inversely related to smoking cessation. However, these findings did not distinguish between adult and youth smoking outcomes or the location of retailer exposure, thus limiting comparability of included studies and meaningful interpretation of results. In contrast, our review provides
a more comprehensive analysis, highlighting that while tobacco retailer density/proximity around homes and in activity spaces is related to both adolescent and adult smoking, retailer availability around schools is not (or inversely) related to adolescent smoking prevalence, but rather to susceptibility to smoking and cigarette experimentation.

Variation in measurements of retailer density/proximity across studies may partially explain the inconsistent evidence, since inaccurate definition of neighbourhoods contributes to spatial misclassification of exposure. Administrative definitions of neighbourhoods are more common and convenient, but assuming the same exposure for all individuals may mask true associations. Egocentric definitions of neighbourhoods or activity spaces are optimal to estimate individual-level retailer exposures, but the data are more difficult to obtain. Although circular buffers are more commonly used to define egocentric neighbourhoods, street network buffers better reflect real-life settings since they account for physical barriers.36 Similarly, roadway distance or travel time is a more appropriate measure of proximity as opposed to straight-line distance,35 but they require data about participant locations (home, work, school) that can be difficult to obtain.

In this review, most studies with adult participants focused on retailer density in egocentric neighbourhoods, using street network buffers around home or constructed activity spaces, while several opted for administrative measures per land area, particularly in census tract and residential ZIP codes. In adolescent studies, density measures within egocentric circular buffers near schools and in administrative units relative to population count were more commonly employed. These measures were generally consistent with recommendations of the PhenX Toolkit for tobacco regulatory research,24 and similar to the findings of the recent methodological review,53 none provided a clear advantage in revealing associations. Retailer proximity for both populations was commonly measured as the shortest road network distance or straight-line distance to the nearest retailer. Less common measures that were not included in the PhenX Toolkit, such as travel time by car, or presence of at least one retailer within a certain distance, were used, but did not show a significant advantage in revealing associations.

Differences between local or national tobacco policies across study settings may further limit comparability and partially explain null findings. Compliance with youth access laws, for example, may mitigate/moderate the relationship between retail density and adolescent smoking.33,39 Smoke-free air policies have also been shown to moderate this association.53 However, with the exception of a few studies,43,47,53 the effects of such policies have not been accounted for. Another moderating influence may be point-of-sale advertising and display bans, which are effective in reducing smoking in adolescents37,38 and adults33 and therefore are likely to be another moderating influence. Notably, studies from Quebec, Canada and Finland, where point-of-sale advertising restrictions have long been in place, still found retailer density/proximity associated with lower adult cessation rates,28,34,35 suggesting that retail availability affects smoking behaviour independent of advertising exposure. Finally, given that racially diverse and socioeconomically disadvantaged neighbourhoods have significantly higher density of tobacco retailers,3,4,34,60,63 the relationship between retailer density and individual smoking behaviour is likely modified by neighbourhood socioeconomic status (SES),64 which many studies did not address. Inconsistent findings may also be attributed to the different operational definitions of this concept across studies. Future research should also include spatial measures that better capture racial residential disparities, such as historical redlining.62

Increasingly, jurisdictions are implementing policies to reduce the spatial availability of tobacco products.63,64 Evidence is beginning to emerge regarding their impact on tobacco use,65–66 although it may take years before changes may be seen at the population level.64 Simulation models examining the impact of various retail restrictions estimate reduced smoking prevalence and health benefits.5,68–70 However, evidence suggests that there is no standard approach to retailer reduction policies, and their effects may vary across different settings.6

Overall, this review supports the view that reducing tobacco retailer density may help reduce adult and youth smoking prevalence. To our knowledge, this is the first review to consider the relationship between tobacco retail availability/accessibility in different geographical settings and cigarette and e-cigarette use by adolescents and adults. An important strength of this review is that it considered multiple tobacco use outcomes and compared various measures of density and proximity. However, the review has several limitations. Since the emphasis of this scoping review was to provide a comprehensive overview of the current literature regardless of the standard of evidence, the critical assessment of the quality of included studies was not performed. This limits our ability to provide concrete guidance to inform policymaking. Further, most studies were cross-sectional, making it difficult to distinguish whether increased retail density/proximity increases the odds of smoking, or whether tobacco retailers are locating their businesses in response to high market demand. Nevertheless, evidence from longitudinal studies suggests a causal effect of living in areas with densely distributed tobacco retailers or in their close proximity and decreased adult cessation.43,35 Finally, while some studies had a fixed neighbourhood buffer zone to measure retailer density, others chose increasing intervals of buffers. In such studies, we reported a buffer size closest to the one across the included studies for the purpose of comparability, which may have biased the results. Future research should consider sensitivity analysis regarding buffer sizes used across studies, perhaps separately for urban and rural areas. A uniform grid unit method for geospatial distribution of tobacco retailers, with larger grid units in rural versus urban areas, is recommended.71 Tobacco retail accessibility may play an important role in individual smoking behaviour, particularly in rural areas,28,35 but remains largely unexplored. Specific measures of retail accessibility, such as travel time by car, should be considered in the PhenX Toolkit of recommended measures for tobacco regulatory research.

CONCLUSION
This scoping review finds some evidence of an association between tobacco retailer availability and smoking outcomes in youth and adults. More research is needed, particularly of longitudinal design, with representative samples, uniform measures of exposure and outcome variables, and consistent inclusion of major individual and area-level characteristics, such as racial diversity and neighbourhood SES. Quasi-experimental before-after studies are also needed to fill the gap in evidence regarding causality between retailer density/proximity and outcomes in youth and adults. Studies on the risk of cigarette initiation and tobacco retailer availability are particularly scarce and should be the focus of future research. Finally, studies examining associations between retailer availability and e-cigarette use are scarce and further research is warranted.
This review suggests that tobacco retailer density, but not proximity, may be a contributing factor in promoting smoking among youth and adults. In particular, future tobacco control policies limiting retailer exposure in residential areas may be successful in reducing smoking, while reducing tobacco retailer availability around schools may not be as effective.

Research on e-cigarette use and density/proximity of e-cigarette retailers is surprisingly scarce, given their popularity among youth. There is a need for more research with representative samples, uniform measures of exposure and outcome variables, and consistent control for major area-level characteristics, such as racial diversity and neighbourhood disparity.

Contributors

DTL and NTM came up with the idea for the article. NTM performed the literature search, wrote the article, has access to all data and is the guarantor for the finished article. PAM, DTL and LH made substantial contributions to the conception of the work and the interpretation of findings. All authors participated in the review and final approval of the manuscript.

Funding

This research was funded by a grant from the National Cancer Institute (1R01-CA229238, PI: Ruth E Malone).

Disclaimer

The opinions expressed in this article are the authors’ own and do not reflect the views of the National Institutes of Health, the Department of Health and Human Services, or the US government.

Competing interests

None declared.

Patient consent for publication

Not required.

Provenance and peer review

Not commissioned; externally peer reviewed.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Nargiz Travis http://orcid.org/0000-0001-6305-8259
David T Levy http://orcid.org/0000-0001-5280-3612
Patricia A McDaniel http://orcid.org/0000-0002-2750-4124
Lisa Henriksen http://orcid.org/0000-0002-9288-3562

REFERENCES

1. U.S. Department of Health and Human Services, The Health Consequences of Smoking: 50Years of Progress. A report of the Surgeon General Atlanta, GA US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2014 [Accessed Feb 2020].

2. Corey CG, Holder-Hayes E, Nguyen AB, et al. Us adult cigar smoking patterns, purchasing behaviors, and reasons for use according to cigar type: findings from the population assessment of tobacco and health (PATH) study, 2013-2014. Nicotine Tob Res 2018;20:1457–66.

3. Marashii-Pour S, Cretikos M, Lyons C, et al. The association between the density of retail tobacco outlets, individual smoking status, neighbourhood socioeconomic status and school locations in New South Wales, Australia. Spat Spatiotemporal Epidemiol 2015;12:1–7.

4. Novak SP, Reardon SF, Raudenbush SW, et al. Retail tobacco outlet density and youth cigarette smoking: a propensity-modeling approach. Am J Public Health 2006;96:670–6.

5. Pearson AL, Cleghorn CL, van der Deen FS, et al. Tobacco retail outlet restrictions: health and cost impacts from multistate life-table modelling in a national population. Tob Control 2016;25:02846.

6. Luke DA, Hammond RA, Combs T, et al. Tobacco town: computational modeling of policy options to reduce tobacco Retailer density. Am J Public Health 2017;107:740–6.

7. Leatherdale ST, Strath JRM. Tobacco retailer density surrounding schools and cigarette access behaviors among underage smoking students. Ann Behav Med 2007;33:105–11.

8. Schieber NC, Johnson TD, Fortmann SP, et al. Tobacco outlet density near home and school: associations with smoking and norms among US teens. Prev Med 2016;91:287–93.

9. Loomis BR, Kim AE, Busey AH, et al. The density of tobacco retailers and its association with attitudes toward smoking, exposure to point-of-sale tobacco advertising, cigarette purchasing, and smoking among New York youth. Prev Med 2012;55:468–74.

10. Wood L, Gazey A, Murray K, et al. Unplanned purchasing of tobacco products: beyond point of sale display. Health Promot J Austral 2020;31:140–4.

11. Johns M, Sacks R, Rane M, et al. Exposure to tobacco retail outlets and smoking initiation among New York City adolescents. J Urban Health 2013;90:1091–10.

12. Robertson L, McGee R, Marsh L, et al. A systematic review on the impact of point-of-sale tobacco promotion on smoking. Nicotine Tob Res 2015;17:2–17.

13. Siatchou P, Shaihik RA, Cummings KM, et al. The association of point-of-sale cigarette marketing with cravings to smoke: results from a cross-sectional population-based study. Tob Control 2016;25:402–5.

14. Chaiton MO, Mecredy G, Cohen JE, et al. Tobacco retail outlets and vulnerable populations in Ontario, Canada. Int J Environ Res Public Health 2013;10:299–309.

15. Hawkins SS, Bach N, Baum CF. Impact of tobacco control policies on adolescent smoking. J Adolesc Health 2016;58:679–85.

16. Lovato C, Watts A, Brown KS, et al. School and community predictors of smoking: a longitudinal study of Canadian high schools. Am J Public Health 2013;103:362–8.

17. Finan LJ, Lipperman-Kreda S, Abadi M, et al. Tobacco outlet density and adolescents’ cigarette smoking: a meta-analysis. Tob Control 2019;28:27–33.

18. Bowen SH, DeGuzman PB, Kubok PA, et al. Density and proximity of licensed tobacco Retailers and adolescent smoking. J Sch Nurs 2017;33:18–29.

19. Marsh L, Vanedovka P, Robertson L, et al. Association between density and proximity of tobacco retail outlets with smoking: a systematic review of youth studies. Health Place 2021;67:102275.

20. Nyuts PWA, Davies LEM, Kunst AE. The association between tobacco outlet density and smoking among young people: a systematic methodological review. Nicotine Tob Res 2019;21:153.

21. Valiente R, Escobar F, Urtasun M, et al. Tobacco retail environment and smoking: a systematic review of geographic exposure measures and implications for future studies. Nicotine Tob Res 2020. doi:10.1093/ntr/ntaa223. [Epub ahead of print: 06 Nov 2020].

22. Cullen KA, Gentzkow AS, Sawdey MD, et al. E-Cigarette use among youth in the United States, 2019. JAMA 2019;322:20095.

23. Gentzkow AS, Creamer M, Cullen KA, et al. Vital Signs: Tobacco Product Use Among Middle and High School Students - United States, 2011-2018. MMWR Morb Mortal Wkly Rep 2019;68:157–64.

24. Ribisl KM, Chaloupka FJ, Kidorner TR, et al. PhenX: vector measures for tobacco regulatory research. Tob Control 2020;29:27–34.

25. Chaiton MO, Mecredy G, Cohen J. Tobacco retail availability and risk of relapse among smokers who make a quit attempt: a population-based cohort study. Tob Control 2018;27:163–9.

26. Fleischer NL, Lozano P, Wu Y-H. Disentangling the roles of point-of-sale ban, tobacco retailer density and proximity on cessation and relapse among a cohort of smokers: findings from ITC Canada survey. Tob Control 2019;28:81–7.

27. Kist M, Chaiton M, D’Campo P. Tobacco outlet density, neighbourhood stressors and smoking prevalence in Toronto, Canada. Health Place 2019;58:102171.

28. Shareck M, Datta GD, Vallée J. Is smoking cessation in young adults associated with tobacco retailer availability in their activity space? Nicotine Tob Res 2018.

29. Shareck M, Kestens Y, Vallée J, et al. The added value of accounting for activity space when examining the association between tobacco retailer availability and smoking among young adults. Tob Control 2016;25:406–12.

30. Chan WC, Leatherdale ST. Tobacco retailer density surrounding schools and youth smoking behaviour: a multi-level analysis. Tob Induc Dis 2011;9:9.

31. Cole AG, Aleyan S, Leatherdale ST. Exploring the association between e-cigarette retailer proximity and density to schools and youth e-cigarette use. Prev Med Rep 2019;15:100912.

32. Pearce I, Hiscork R, Moon G, et al. The neighbourhood effects of geographical access to tobacco retailers on individual smoking behaviour. J Epidemiol Community Health 2009;63:69–77.

33. Marsh L, Ajmal A, McGee R, et al. Tobacco retail outlet density and risk of youth smoking in New Zealand. Tob Control 2016;25:e17–4.
Review

34 Pulakka A, Halonen JJ, Kawachi I, et al. Association between distance from home to tobacco outlet and smoking cessation and relapse. *JAMA Intern Med* 2016;176:1512–9.

35 Halonen JJ, Kivimäki M, Kouvonen A, et al. Proximity to a tobacco store and smoking cessation: a cohort study. *Tob Control* 2014;23:146–51.

36 Barnes R, Foster SA, Pereira G, et al. Is neighbourhood access to tobacco outlets related to smoking behaviour and tobacco-related health outcomes and hospital admissions? *Prev Med* 2016;88:218–23.

37 Sully M, McCarthy M, Zacher M, et al. Density of tobacco outlet retail outlets near schools and smoking behaviour among secondary school students. *Aust N Z J Public Health* 2013;37:574–8.

38 Pearce L, Rind E, Shortt N, et al. Tobacco retail environments and social inequalities in individual-level smoking and cessation among Scottish adults. *Nicotine Tob Res* 2016;18:138–46.

39 Shortt NK, Tisch C, Pearce J, et al. The density of tobacco retailers in home and school environments and relationship with adolescent smoking behaviours in Scotland. *Tob Control* 2015;25:75–82.

40 Bostean G, Crespi CM, Vorapharuek P, et al. E-Cigarette use among students and e-cigarette specialty retailer presence near schools. *Health Place* 2016;42:129–36.

41 Giovenco DR, Casseus M, Duncan DT, et al. Association between electronic cigarette marketing near schools and e-cigarette use among youth. *J Adolesc Health* 2016;59:627–34.

42 Trapl E, Anesetti-Rothermel A, Pike Moore S, et al. Association between school-based tobacco retailer exposures and young adolescent cigarette, cigar and e-cigarette use. *Tob Control* 2021;30:e104–10.

43 Cantrell J, Pearson JL, Anesetti-Rothermel A, et al. Tobacco retail outlet density and young adult tobacco initiation. *Nicotine Tob Res* 2016;18:130–7.

44 Abdel Magid HS, Halpern-Felsher B, Ling PM, et al. Tobacco retail density and initiation of alternative tobacco product use among teens. *J Adolesc Health* 2020;66:30447–30441.

45 Cantrell J, Anesetti-Rothermel A, Pearson JL, et al. The impact of the tobacco outlet environment on adult cessation and differences by neighborhood poverty. *Addiction* 2015;110:152–61.

46 Chuang Y-C, Cubbin C, Ahn D, et al. Effects of neighbourhood socio-economic status and convenience store concentration on individual level smoking. *J Epidemiol Community Health* 2005;59:568–73.

47 Adams ML, Jason LA, Pokorny S, et al. Exploration of the link between tobacco retailers in school neighborhoods and student smoking. *J Sch Health* 2013;83:112–8.

48 Lipperman-Kreda S, Grube JW, Friend KB, et.al. Local tobacco policy and tobacco outlet density: associations with youth smoking. *J Adolesc Health* 2012;50:547–52.

49 Lipperman-Kreda S, Grube JW, Friend KB, et al. Tobacco outlet density, retailer cigarette sales without ID checks and enforcement of underage tobacco laws: associations with youths' cigarette smoking and beliefs. *Addiction* 2016;111:525–32.

50 Pokorny SB, Jason LA, Scherber ME. The relation of retail tobacco availability to initiation and continued smoking. *J Clin Child Adolesc Psychol* 2003;32:193–204.

51 Duncan DT, Kawachi I, Subramanian SV, et al. Examination of how neighborhood definition influences measurements of youths’ access to tobacco retailers: a methodological note on spatial misclassification. *Am J Epidemiol* 2014;179:737–81.

52 Haw S, Currie D, Eade D, et al. The impact of the point-of-sale tobacco display ban on young people in Scotland: before-and-after study. *Public Health Res* 2020;8:1–118.

53 Edwards R, Ajmal A, Healey B, et al. Impact of removing point-of-sale tobacco displays: data from a new Zealand youth survey. *Tob Control* 2017;26:392–8.

54 He Y, Shang C, Huang J, et al. Global evidence on the effect of point-of-sale display bans on smoking prevalence. *Tob Control* 2018;27:e98–104.

55 Lee JG, Sun DL, Schleicher NM, et al. Inequalities in tobacco outlet density by race, ethnicity and socioeconomic status, 2012, USA: results from the ASPIRE study. *J Epidemiol Community Health* 2017;71:487–92.

56 Siegel SD, Brooks MM, Gladebo BM, et al. Using Geospatial analyses of linked electronic health records and tobacco outlet data to address the social determinants of smoking. *Prev Chronic Dis* 2019;16:E152.

57 Schwartz E, Onnen N, Craigmile PF, et al. The legacy of redlining: associations between historical neighborhood mapping and contemporary tobacco retailer density in Ohio. *Health Place* 2021;68:102529.

58 Vyasarysty Pr, Sturrock L, Ling PM. Examining the role of a retail density ordinance in reducing concentration of tobacco retailers. *Spat Spatiotemporal Epidemiol* 2020;32:100307.

59 Lawman HG, Henry KA, Scheeres A, et al. Tobacco retail licensing and density 3 years after license regulations in Philadelphia, Pennsylvania (2012-2019). *Am J Public Health* 2020;110:547–53.

60 Ali FRM, Neff L, Wang X, et al. Tobacco-Free pharmacies and U.S. adult smoking behavior: evidence from CVS health’s removal of tobacco sales. *Am J Prev Med* 2020;58:41–9.

61 Polinski JM, Howell B, Gagnon MA, et al. Impact of CVS pharmacy’s discontinuance of tobacco sales on cigarette purchasing (2012-2014). *Am J Public Health* 2017;107:556–62.

62 Glasser AM, Roberts ME. Retailer density reduction approaches to tobacco control: a review. *Health Place* 2021;67:102342.

63 Robertson L, Marsh L. Estimating the effect of a potential policy to restrict tobacco retail availability in New Zealand. *Tob Control* 2019;28:466–8.

64 Pearson AL, van der Deen FS, Wilson N, et al. Theoretical impacts of a range of major tobacco retail outlet reduction interventions: modelling results in a country with a smoke-free nation goal. *Tob Control* 2015;24:e32–8.

65 Marsh L, Doscher C, Cameron C, et al. How would the tobacco retail landscape change if tobacco was only sold through liquor stores, petrol stations or pharmacies? *Aust N Z J Public Health* 2020;44:34–9.

66 Lipton R, Banerjee A. The geography of chronic obstructive pulmonary disease across time: California in 1993 and 1999. *Int J Med Sci* 2007;4:179–89.

67 Doogan NJ, Cooper S, Quinsey AS, et al. The role of travel distance and price promotions in tobacco product purchase quantity. *Health Place* 2018;51:151–7.