Some new bounds for the Hadamard product and the Fan product of matrices

Qian-Ping Guo, Hou-Biao Li, Jin-Song Leng

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China

Abstract

If A and B are nonnegative matrices, a sharp upper bound on the spectral radius $\rho(A \circ B)$ for the Hadamard product of two nonnegative matrices is given, and the minimum eigenvalue $\tau(A \ast B)$ of the Fan product of two M-matrices A and B is discussed. In addition, we also give a sharp lower bound on $\tau(A \circ B^{-1})$ for the Hadamard product of A and B^{-1}. Several examples, illustrating that the given bound is stronger than the existing bounds, are also given.

Key words: Hadamard product; Nonnegative matrices; Spectral radius; Fan product; M-matrix; Inverse M-matrix; Minimum eigenvalue

AMS classification: 65F10, 65F15, 65F50

1 Introduction

In this paper, for a positive integer n, N denotes the set $\{1, 2, \ldots, n\}$. $\mathbb{R}^{n \times n}$ denotes the set of all $n \times n$ real matrices and the set of all $n \times n$ complex matrices is denoted by $\mathbb{C}^{n \times n}$. Let $A = (a_{ij})$ and $B = (b_{ij})$ be two real $n \times n$ matrices. We write $A \geq B (> B)$ if $a_{ij} \geq b_{ij} (> b_{ij})$ for all $i, j \in N$. If $A \geq 0 (> 0)$, we say that A is a nonnegative (positive) matrix. The spectral radius of A is denoted by $\rho(A)$. If A is a nonnegative matrix, the Perron-Frobenius theorem guarantees that $\rho(A) \in \sigma(A)$, where $\sigma(A)$ is the set of all eigenvalues of A. In addition, define $\tau(A) \triangleq \min\{\lambda | \lambda \in \sigma(A)\}$, and denote by \mathcal{M}_n the set of nonsingular M-matrices (see [1]).

For $n \geq 2$, an $n \times n$ matrix A is said to be reducible if there exists a permutation matrix P such that

$$P^TAP = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}.$$
where B and D are square matrices of order at least one. If no such permutation matrix exists, then A is called irreducible. If A is a 1×1 complex matrix, then A is irreducible if and only if its single entry is nonzero (see [2]).

According to Ref. [2], a matrix A is called an M-matrix, if there exists an $n \times n$ nonnegative real matrix P and a nonnegative real number α such that $A = \alpha I - P$, and $\alpha \geq \rho(P)$, where $\rho(P)$ denotes the spectral radius of P and I is the identity matrix. Moreover, if $\alpha > \rho(P)$, A is called a nonsingular M-matrix; if $\alpha = \rho(P)$, we call A a singular M-matrix.

In addition, a matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is called Z-matrix if all of whose off-diagonal entries are negative, and denoted by $A \in \mathbb{Z}_n$. For convenience, the following simple facts are needed (see Problems 16, 19 and 28 in Section 2.5 of [3]):

(1) $\tau(A) \in \sigma(A)$;
(2) If $A, B \in \mathcal{M}_n$, and $A \geq B$, then $\tau(A) \geq \tau(B)$;
(3) If $A \in \mathcal{M}_n$, then $\rho(A^{-1})$ is the Perron eigenvalue of the nonnegative matrix A^{-1}, and $\tau(A) = \frac{1}{\rho(A^{-1})}$ is a positive real eigenvalue of A.

Let A be an irreducible nonsingular M-matrix. It is well known that there exist positive vectors u and v such that $Au = \tau(A)u$ and $v^T A = \tau(A)v^T$, where u and v are right and left Perron eigenvectors of A, respectively.

The Hadamard product of $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ and $B = (b_{ij}) \in \mathbb{C}^{n \times n}$ is defined by $A \circ B = (a_{ij}b_{ij}) \in \mathbb{C}^{n \times n}$.

For two real matrices $A, B \in \mathcal{M}_n$, the Fan product of A and B is denoted by $A \star B = C = [c_{ij}] \in \mathcal{M}_n$ and is defined by

$$c_{ij} = \begin{cases} -a_{ij}b_{ij}, & \text{if } i \neq j, \\ a_{ii}b_{ii}, & \text{if } i = j. \end{cases}$$

We define: for any $i, j, l \in N$,

$$r_i = \frac{|a_{ii}|}{|a_{il}| - \sum_{k \neq l, i} |a_{ik}|}, \quad l \neq i; \quad r_i = \max_{i \neq i} \{r_{ii}\}, \quad i \in N;$$

$$s_{ji} = \frac{|a_{ji}| + \sum_{k \neq j, i} |a_{jk}|r_k}{|a_{jj}|}, \quad j \neq i; \quad s_i = \max_{j \neq i} \{s_{ji}\}, \quad i \in N;$$

throughout the paper.

For two nonnegative matrices A, B, we will exhibit a new upper bound for $\rho(A \circ B)$, a new lower bound on the eigenvalue $\tau(A \star B)$ for the Fan product and a new lower bound on the eigenvalue $\tau(A \circ B^{-1})$ for the hadamard product in this paper.
2 An upper bound for the spectral radius of the Hadamard product of two nonnegative matrices

In ([3], p. 358), there is a simple estimate for $\rho(A \circ B)$: if $A, B \in \mathbb{R}^{n \times n}$, $A \geq 0$, and $B \geq 0$, then

$$\rho(A \circ B) \leq \rho(A)\rho(B). \quad (2.1)$$

Fang [9] gave an upper bound for $\rho(A \circ B)$, that is,

$$\rho(A \circ B) \leq \max_{1 \leq i \leq n} \left\{ 2a_{ii}b_{ii} + \rho(A)\rho(B) - b_{ii}\rho(A) - a_{ii}\rho(B) \right\}, \quad (2.2)$$

which is sharper than the bound $\rho(A)\rho(B)$ in ([3], p. 358).

Recently, Liu [1] improved the above results, have

$$\rho(A \circ B) \leq \max_{i \neq j} \frac{1}{2} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} + [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 \right. \right.$$

$$\left. + 4(\rho(A) - a_{ii})(\rho(B) - b_{ii})(\rho(A) - a_{jj})(\rho(B) - b_{jj})]^{\frac{1}{2}} \right\}. \quad (2.3)$$

Firstly, we give some lemmas in this section.

Lemma 2.1 (Perron-Frobenius theorem)([3]). If A is an irreducible nonnegative matrix, there exist positive vectors u, such that $Au = \rho(A)u$.

Lemma 2.2 ([3]). If $A, B \in \mathbb{C}^{n \times n}$, D and E are positive diagonal matrices, then

$$D(A \circ B)E = (DAE) \circ B = (DA) \circ (BE) = (AE) \circ (DB) = A \circ (DBE).$$

Lemma 2.3 (Brauer’s theorem). Let $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ ($n \geq 2$), then all the eigenvalues of A lie inside the union of $\frac{n(n-1)}{2}$ ovals of Cassini, i.e.,

$$B(A) = \bigcup_{i,j=1; i \neq j}^n \left\{ z \in \mathbb{C} : |z - a_{ii}||z - a_{jj}| \leq \left(\sum_{k \neq i} |a_{ki}| \right) \left(\sum_{k \neq j} |a_{kj}| \right) \right\}. \quad (2.4)$$

Obviously, if we denote $C = D^{-1}AD$, $D = diag(d_1, d_2, \cdots, d_n)$, $d_i > 0$, then C and A have the same eigenvalues, we obtain that all the eigenvalues of A lie in the region:

$$\bigcup_{i,j=1; i \neq j}^n \left\{ z \in \mathbb{C} : |z - a_{ii}||z - a_{jj}| \leq \left(\sum_{k \neq i} \frac{d_k}{d_i} |a_{ik}| \right) \left(\sum_{k \neq j} \frac{d_i}{d_j} |a_{ji}| \right) \right\}. \quad (2.5)$$

Next, we present a new estimating formula on the upper bound of $\rho(A \circ B)$.

Theorem 2.1 If $A = (a_{ij})$ and $B = (b_{ij})$ are nonnegative matrices, $s_i = \max_{j \neq i} \{ a_{ij} \}$,
\[t_i = \max_{j \neq i} \{b_{ij}\}, \text{ then} \]

\[\rho(A \circ B) \leq \max_{i \neq j} \frac{1}{2} \left\{ a_{ii} b_{ii} + a_{jj} b_{jj} + [(a_{ii} b_{ii} - a_{jj} b_{jj})^2 + 4t_i s_j (\rho(A) - a_{ii})(\rho(B) - b_{jj})]^{1/2} \right\}. \] \hfill (2.6)

Proof. It is evident that the inequality (2.6) holds with the equality for \(n = 1 \). Therefore, we assume that \(n \geq 2 \) and divide two cases to prove this problem.

Case 1. Suppose that \(A \circ B \) is irreducible. Obviously \(A \) and \(B \) are also irreducible. By Lemma 2.1, there exists positive vectors \(u = (u_1, u_2, \cdots, u_n) \) and have

\[(D^{-1}AD)u = \rho(D^{-1}AD)u = \rho(A)u, \]

where \(D = \text{diag}(d_1, d_2, \cdots, d_n), d_i > 0, \) then

\[\sum_{j \neq i} a_{ij} d_j u_j d_i u_i = \rho(A) - a_{ii}. \]

Define \(U = \text{diag}(u_1, u_2, \cdots, u_n), C = (DU)^{-1}A(DU), \) then we have that

\[C = \begin{pmatrix} a_{11} & d_{12} u_1 a_{12} & \cdots & d_{1n} u_1 a_{1n} \\ \frac{d_{12} u_1}{d_1 u_2} a_{12} & a_{22} & \cdots & d_{1n} u_2 a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{d_{1n} u_1}{d_n u_2} a_{1n} & d_{2n} u_2 a_{2n} & \cdots & a_{nn} \end{pmatrix} \]

is an irreducible nonnegative matrix and

\[C \circ B = (m_{ij}) = \begin{pmatrix} a_{11} b_{11} & d_{12} u_1 a_{12} b_{12} & \cdots & d_{1n} u_1 a_{1n} b_{1n} \\ \frac{d_{12} u_1}{d_1 u_2} a_{21} b_{21} & a_{22} b_{22} & \cdots & d_{1n} u_2 a_{2n} b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{d_{1n} u_1}{d_n u_2} a_{1n} b_{1n} & d_{2n} u_2 a_{2n} b_{2n} & \cdots & a_{nn} b_{nn} \end{pmatrix}. \]

By Lemma 2.2,

\[(DU)^{-1}(A \circ B)(DU) = (DU)^{-1}A(DU) \circ B = C \circ B, \]

i.e., \(\rho(A \circ B) = \rho(C \circ B). \)

By the inequality (2.4) and \(\rho(A \circ B) \geq a_{ii} b_{ii} \) (see [5]), for any \(j \neq i \in N, \)
we have
\[
(\rho(A \circ B) - a_{ii}b_{ii})(\rho(A \circ B)) - a_{jj}b_{jj}) \leq \sum_{k \neq i} |m_{ik}| \sum_{l \neq j} |m_{jl}|
\]
\[
= \sum_{k \neq i} \frac{d_{ik}a_{kk}b_{kk}}{d_{ii}} \sum_{l \neq j} \frac{d_{lj}a_{jj}b_{jj}}{d_{jj}}
\]
\[
\leq \left(\max_{k \neq i} \{b_{ik}\} \sum_{k \neq i} \frac{d_{ik}a_{kk}}{d_{ii}} \right) \left(\max_{l \neq j} \{a_{jl}\} \sum_{l \neq j} \frac{d_{lj}b_{jj}}{d_{jj}} \right)
\]
\[
\leq \max_{k \neq i} \{b_{ik}\}(\rho(A) - a_{ii}) \max_{l \neq j} \{a_{jl}\}(\rho(B) - b_{jj})
\]
\[
= t_i s_j (\rho(A) - a_{ii}) (\rho(B) - b_{jj})
\]
Thus, by solving the quadratic inequality (2.7), we have that
\[
\rho(A \circ B) \leq \frac{1}{2} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} + [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4t_i s_j (\rho(A) - a_{ii})(\rho(B) - b_{jj})]^{\frac{3}{2}} \right\}
\]
\[
\leq \max_{i \neq j} \frac{1}{2} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} + [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4t_i s_j (\rho(A) - a_{ii})(\rho(B) - b_{jj})]^{\frac{3}{2}} \right\}
\]
i.e., the conclusion (2.6) holds.

Case 2. If \(A \circ B \) is reducible. We may denote by \(P = (p_{ij}) \) the \(n \times n \) permutation matrix \((p_{ij}) \) with
\[
p_{12} = p_{23} = \cdots = p_{n-1,n} = p_{n,1} = 1,
\]
the remaining \(p_{ij} \) zero, then both \(A + \varepsilon P \) and \(B + \varepsilon P \) are nonnegative irreducible matrices for any sufficiently small positive real number \(\varepsilon \). Now we substitute \(A + \varepsilon P \) and \(B + \varepsilon P \) for \(A \) and \(B \), respectively in the previous Case 1, and then letting \(\varepsilon \to 0 \), the result (2.6) follows by continuity. \(\square \)

Remark 2.1. Next, we give a comparison between the upper bound in the inequality (2.3) and the upper bound in the inequality (2.6). Without loss of generality, if \(t_i + b_{ii} \geq \rho(B) \), \(s_j + a_{jj} \geq \rho(A) \), \(i, j = 1, \cdots, n \), then we have \(t_is_j \geq (\rho(B) - b_{ii})(\rho(A) - a_{jj}) \).

Thus, the upper bound in the inequality (2.6) is better than the upper bound in the inequality (2.3).

Example 2.1. Let \(A \) and \(B \) be the same as in Example 1 from [1]:
\[
A = (a_{ij}) = \begin{pmatrix}
4 & 1 & 0 & 2 \\
1 & 0.05 & 1 & 1 \\
0 & 1 & 4 & 0.5 \\
1 & 0.5 & 0 & 4
\end{pmatrix}, \quad B = (b_{ij}) = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{pmatrix}.
\]

By direct calculation, \(\rho(A \circ B) = 5.7339 \).

According to (2.1), we have
\[
\rho(A \circ B) \leq \rho(A)\rho(B) = 22.9336.
\]

If we apply (2.2) and (2.3), we get
\[
\rho(A \circ B) \leq \max_{1 \leq i \leq 4} \left\{ 2a_{ii}b_{ii} + \rho(A)\rho(B) - a_{ii}\rho(B) - b_{ii}\rho(A) \right\} = 17.1017,
\]
and

\[
\rho(A \circ B) \leq \max_{i \neq j} \frac{1}{2} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} + [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 \\
+ 4(\rho(A) - a_{ii})(\rho(B) - b_{jj})(\rho(A) - a_{jj})(\rho(B) - b_{jj})]^{\frac{1}{2}} \right\} = 11.6478.
\]

If we apply Theorem 2.1, we obtain that

\[
\rho(A \circ B) \leq \max_{i \neq j} \frac{1}{2} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} + [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 \\
+ 4t_i s_j (\rho(A) - a_{ii})(\rho(B) - b_{jj})]^{\frac{1}{2}} \right\} = 8.1897.
\]

The example shows that the bound in Theorem 2.1 is better than the existing bounds. In addition, by the Theorem 2.1 and [1], we also have the following corollary:

Corollary 2.1 Let \(A \) and \(B \) be nonnegative matrices, then

\[
|\det(A \circ B)| \leq \left(\rho(A \circ B) \right)^n \leq \max_{i \neq j} \frac{1}{2^n} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} + [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 \\
+ 4t_i s_j (\rho(A) - a_{ii})(\rho(B) - b_{jj})]^{\frac{1}{2}} \right\}^n \leq \max_{i \neq j} \frac{1}{2^n} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} + [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 \\
+ 4(\rho(A) - a_{ii})(\rho(B) - b_{ii})(\rho(A) - a_{jj})(\rho(B) - b_{jj})]^{\frac{1}{2}} \right\}^n.
\]

3 **Inequalities for the Fan product of two \(M \)-matrices**

It is known (p.359, [3]) that the following classical result is given: if \(A, B \in \mathbb{R}^{n \times n} \) are \(M \)-matrices, then

\[
\tau(A \star B) \geq \tau(A)\tau(B). \tag{3.1}
\]

In 2007, Fang improved (3.1) in the Remark 3 of Ref. [9] and gave a new lower bound for \(\tau(A \star B) \), that is

\[
\tau(A \star B) \geq \min_{1 \leq i \leq n} \left\{ b_{ii}\tau(A) + a_{ii}\tau(B) - \tau(A)\tau(B) \right\}. \tag{3.2}
\]

Subsequently, Liu et al.[1] gave a sharper bound than (3.2), i.e.,

\[
\tau(A \star B) \geq \frac{1}{2} \min_{i \neq j} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} - [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 \\
+ 4(b_{ii} - \tau(B))(a_{ii} - \tau(A))(b_{jj} - \tau(B))(a_{jj} - \tau(A))]^{\frac{1}{2}} \right\}. \tag{3.3}
\]

In addition, by the definition of Fan product, the following lemma holds:
Lemma 3.1 ([1]). If \(A, B \in \mathbb{C}^{n \times n} \) be nonsingular M-matrices, \(D \) and \(E \) are positive diagonal matrices, then
\[
D(A \ast B)E = (DAE) \ast B = (DA) \ast (BE) = (AE) \ast (DB) = A \ast (DBE).
\]

Next, we give a new lower bound on the minimum eigenvalue \(\tau(A \ast B) \) of the Fan product of nonsingular M-matrices.

Theorem 3.1 If \(A = (a_{ij}) \) and \(B = (b_{ij}) \) are nonsingular M-matrices, \(s_i = \max_{j \neq i} |a_{ij}| \), \(t_i = \max_{j \neq i} |b_{ij}| \), then
\[
\tau(A \ast B) \geq \min_{i \neq j} \frac{1}{2} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} - [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4t_i s_j (a_{ii} - \tau(A))(b_{jj} - \tau(B))]^{\frac{1}{2}} \right\}. \tag{3.4}
\]

Proof. It is clear that the (3.4) holds with the equality for \(n = 1 \).

We next assume \(n \geq 2 \) and divide two cases to prove this problem.

Case 1. Suppose that \(A \ast B \) is irreducible. Obviously \(A \) and \(B \) are also irreducible. By [5], there exists positive vectors \(u = (u_1, u_2, \cdots, u_n) \) such that
\[
(D^{-1}AD)u = \tau(D^{-1}AD)u = \tau(A)u,
\]
where \(D = \text{diag}(d_1, d_2, \cdots, d_n), d_i > 0 \), and then
\[
a_{ii} - \sum_{j \neq i} \frac{|a_{ij}|d_j u_j}{d_i u_i} = \tau(A).
\]

Define \(U = \text{diag}(u_1, u_2, \cdots, u_n), C = (DU)^{-1}A(DU), \) we have that
\[
C = \begin{pmatrix}
 a_{11} & \frac{d_2 u_2}{d_1 u_1} a_{12} & \cdots & \frac{d_n u_n}{d_1 u_1} a_{1n} \\
 \frac{d_1 u_1}{d_2 u_2} a_{21} & a_{22} & \cdots & \frac{d_n u_n}{d_2 u_2} a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \frac{d_1 u_1}{d_n u_n} a_{n1} & \frac{d_2 u_2}{d_n u_n} a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\]
is an irreducible nonsingular \(M \)-matrix, then
\[
C \ast B = (m_{ij}) = \begin{pmatrix}
 a_{11}b_{11} & \frac{d_2 u_2}{d_1 u_1} a_{12} b_{12} & \cdots & \frac{d_n u_n}{d_1 u_1} a_{1n} b_{1n} \\
 \frac{d_1 u_1}{d_2 u_2} a_{21} b_{21} & a_{22} b_{22} & \cdots & \frac{d_n u_n}{d_2 u_2} a_{2n} b_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \frac{d_1 u_1}{d_n u_n} a_{n1} b_{n1} & \frac{d_2 u_2}{d_n u_n} a_{n2} b_{n2} & \cdots & a_{nn} b_{nn}
\end{pmatrix}.
\]

By the Lemma 3.1,
\[
(DU)^{-1}(A \ast B)(DU) = (DU)^{-1}A(DU) \ast B = C \ast B,
\]
i.e., $\tau(A \star B) = \tau(C \star B)$.

In addition, by the inequality (2.4) and $0 \leq \tau(A \star B) \leq a_{ii}b_{ii}$ (see [5]), for any $j \neq i \in N$, we have

$$|\tau(A \star B) - a_{ii}b_{ii}||\tau(A \star B) - a_{jj}b_{jj}| \leq \sum_{k \neq i} |m_{ik}| \sum_{l \neq j} |m_{jl}|$$

$$= \sum_{k \neq i} \left| \frac{d_{ik}u_k}{d_{ii}} \right| \sum_{l \neq j} \left| \frac{d_{lj}u_l}{d_{jj}} \right|$$

$$\leq \left(\max_{k \neq i} \left| b_{ik} \right| \sum_{k \neq i} \left| \frac{d_{ik}u_k}{d_{ii}} \right| \right) \left(\max_{l \neq j} \left| a_{jl} \right| \sum_{l \neq j} \left| \frac{d_{lj}u_l}{d_{jj}} \right| \right)$$

$$\leq \max_{k \neq i} \left| b_{ik} \right| (a_{ii} - \tau(A)) \max_{l \neq j} \left| a_{jl} \right| (b_{jj} - \tau(B))$$

Thus, by solving the quadratic inequality (3.5), we have that

$$\tau(A \star B) \geq \frac{1}{2} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} - [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4t_i s_j (a_{ii} - \tau(A))(b_{jj} - \tau(B))]^{\frac{1}{2}} \right\}$$

$$\geq \min_{i \neq j} \frac{1}{2} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} - [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4t_i s_j (a_{ii} - \tau(A))(b_{jj} - \tau(B))]^{\frac{1}{2}} \right\}.$$

i.e., the conclusion (3.4) holds.

Case 2. If $A \star B$ is reducible. It is well known that a matrix in Z_n is a nonsingular M-matrix if and only if all its leading principal minors are positive (see condition (E17) of Theorem 6.2.3 of [5]). We denote by $P = (p_{ij})$ the $n \times n$ permutation matrix with $p_{12} = p_{23} = \cdots = p_{n-1,n} = p_{n,1} = 1$, the remaining p_{ij} zero, then both $A - \varepsilon P$ and $B - \varepsilon P$ are irreducible nonsingular M-matrices for any sufficiently small positive real number ε. Now we substitute $A - \varepsilon P$ and $B - \varepsilon P$ for A and B, respectively in the previous Case 1, and then letting $\varepsilon \to 0$, the result (3.4) follows by continuity. \square

Remark 3.1. Similarly, we give a comparison between the lower bound in the inequality (3.3) and the lower bound in the inequality (3.4). If $a_{jj} \geq \tau(A) + s_j$, $b_{ii} \geq \tau(B) + t_i$, $i, j = 1, \cdots, n$, then $(a_{jj} - \tau(A))(b_{ii} - \tau(B)) \geq s_j t_i$ for all $i \neq j$. Thus, the lower bound in the inequality (3.4) is better than the lower bound in the inequality (3.3).

In addition, from Theorem 3.1 and [5], we may get the following corollary.

Corollary 3.1. If A, B are nonsingular M-matrices, then

$$|\det(A \star B)| \geq \left(\tau(A \star B) \right)^n$$

$$\geq \min_{i \neq j} \frac{1}{2^n} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} - [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4t_i s_j (a_{ii} - \tau(A))(b_{jj} - \tau(B))]^{\frac{1}{2}} \right\}^n$$

$$\geq \min_{i \neq j} \frac{1}{2^n} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} - [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4(a_{ii} - \tau(A))(b_{jj} - \tau(B))(a_{jj} - \tau(A))(b_{jj} - \tau(B))]^{\frac{1}{2}} \right\}^n.$$

Example 3.1 ([1]). Let A and B be the nonsingular M-matrices:
\[A = (a_{ij}) = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & -0.5 \\ -0.5 & -1 & 2 \end{pmatrix}, \quad B = (b_{ij}) = \begin{pmatrix} 1 & -0.25 & -0.25 \\ -0.5 & 1 & -0.25 \\ -0.25 & -0.5 & 1 \end{pmatrix}. \]

By (3.1), we have
\[\tau(A \ast B) \geq \tau(A)\tau(B) = 0.1854. \]

If we use the inequalities (3.2) and (3.3), then we get
\[\tau(A \ast B) \geq \min_{1 \leq i \leq 3} \left\{ a_{ii} \tau(B) + b_{ii} \tau(A) - \tau(A)\tau(B) \right\} = 0.6980, \]
and
\[\tau(A \ast B) \geq \min_{i \neq j} \left\{ \frac{1}{2} \left(a_{ii}b_{ii} + a_{jj}b_{jj} - [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4(a_{ii} - \tau(A))(b_{ii} - \tau(B))(a_{jj} - \tau(A))(b_{jj} - \tau(B)) \right)^{\frac{1}{2}} \right\} = 0.7655. \]

If we apply Theorem 3.1, we obtain that
\[\tau(A \ast B) \geq \min_{i \neq j} \left\{ \frac{1}{2} \left(a_{ii}b_{ii} + a_{jj}b_{jj} - [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4t_is_j(a_{ii} - \tau(A))(b_{jj} - \tau(B)) \right)^{\frac{1}{2}} \right\} = 0.8002. \]

In fact, \(\tau(A \ast B) = 0.8819. \) The example shows that the bound in Theorem 3.1 is better than the existing bounds.

4 A bound for the Hadamard product of M-matrix and an inverse M-matrix

Now, we consider the lower bound of \(\tau(A \circ B^{-1}) \), for \(A = (a_{ij}), B = (b_{ij}) \in \mathcal{M}_n \) and \(B^{-1} = (\beta_{ij}) \).

Firstly, in [3], Horn and Johnson gave the classical results
\[\tau(A \circ B^{-1}) \geq \tau(A) \min_{1 \leq i \leq n} \beta_{ii}. \quad (4.1) \]

Subsequently, Huang [8] gave new bound for \(\tau(A \circ B^{-1}) \), that is,
\[\tau(A \circ B^{-1}) \geq \frac{1 - \rho(J_A)\rho(J_B)}{1 + \rho^2(J_B)} \min_{1 \leq i \leq n} \frac{a_{ii}}{b_{ii}}, \quad (4.2) \]

where \(\rho(J_A) \) and \(\rho(J_B) \) are the spectral radius of the Jacobi iterative matrices \(J_A \) and \(J_B \), respectively.
In 2008, Li [10] improved the above results as follows.

\[\tau(A \circ B^{-1}) \geq \min_i \frac{b_{ii} - s_i \sum_{j \neq i} |b_{ji}|}{a_{ii}}. \]

(4.3)

Recently, Chen [11] improved the result and gave a new lower bound for \(\tau(A \circ B^{-1}) \):

\[\tau(A \circ B^{-1}) \geq \min_{i \neq j} \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4a_{ii} a_{jj} \beta_{ii} \beta_{jj} \rho^2 (J_A \rho^2 (J_B))^\frac{1}{2} \right] \right\}. \]

(4.4)

In this section, we give a lower bound of \(\tau(A \circ B^{-1}) \) for \(M \)-matrix and inverse \(M \)-matrix, which improves the above bounds.

Lemma 4.1 ([12]). If \(A = (a_{ij}) \in M_n \), there exists a positive diagonal matrix \(D \) such that \(D^{-1}AD \) is a strictly row diagonally dominant \(M \)-matrix.

Lemma 4.2 ([12]). If \(A = (a_{ij}) \in M_n \), and \(D = \text{diag}(d_1, d_2, \ldots, d_n) \), \(d_i > 0 \ (i \in N) \), then \(D^{-1}AD \) is also an \(M \)-matrix.

Lemma 4.3 ([12]). If \(A, B \in M_n \), then \(B \circ A^{-1} \) is also an \(M \)-matrix.

Lemma 4.4 ([10]). If \(A = (a_{ij}) \) be a strictly diagonally dominant \(M \)-matrix by rows, then for \(A^{-1} = (\alpha_{ij}) \), we have

\[\alpha_{ji} \leq \frac{|a_{ji}| + \sum_{k \neq j,i} |a_{kj}| r_k}{a_{jj}} \alpha_{ii}, \quad \text{for all } j \neq i. \]

Theorem 4.1 If \(A = (a_{ij}) \) and \(B = (b_{ij}) \) are two nonsingular \(M \)-matrices and \(B^{-1} = (\beta_{ij}) \), \(s_i = \max_{j \neq i} |a_{ij}| \), then

\[\tau(A \circ B^{-1}) \geq \min_{i \neq j} \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4s_i s_j \beta_{ii} \beta_{jj} (a_{ii} - \tau(A)) (b_{jj} - \tau(B)) \right] \right\}. \]

(4.5)

Proof. If \(A \) is an \(M \)-matrix, by Lemmas (4.1-4.2), there exists a positive diagonal matrix \(D \) such that \(D^{-1}AD \) is a strictly diagonally dominant \(M \)-matrix by rows.

Case 1. Suppose that \(A \circ B^{-1} \) is irreducible. Obviously \(A \) and \(B \) are also irreducible. Since \(A - \tau(A)I \) is an irreducible nonsingular \(M \)-matrix, then \(a_{ii} - \tau(A) > 0, \forall i \in N \), and there exists a positive vector \(u = (u_1, u_2, \ldots, u_n) \) such that

\[Au = \tau(A)u, \]

where \(u = \text{diag}(u_1, u_2, \ldots, u_n) \), \(u_i > 0 \), and then

\[a_{ii} + \sum_{j \neq i} \frac{a_{ji} u_j}{u_i} = \tau(A). \]
Define $U = \text{diag}(u_1, u_2, \cdots, u_n)$, $C = U^{-1}AU$, then we have that

$$
C = (\bar{a}_{ij}) = U^{-1}AU =
\begin{pmatrix}
\frac{a_{11}}{u_1} & \frac{a_{12}u_2}{u_1} & \cdots & \frac{a_{1n}u_n}{u_1} \\
\frac{a_{21}u_2}{u_1} & \frac{a_{22}}{u_1} & \cdots & \frac{a_{2n}u_n}{u_1} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{a_{n1}u_n}{u_1} & \frac{a_{n2}u_2}{u_1} & \cdots & \frac{a_{nn}}{u_1}
\end{pmatrix}
$$

is an irreducible nonsingular M-matrix.

By Lemma 2.2,

$$
U^{-1}(A \circ B^{-1})U = (U^{-1}AU) \circ B^{-1} = C \circ B^{-1},
$$
i.e., $\tau(A \circ B^{-1}) = \tau(C \circ B^{-1})$.

By the inequality (2.4) and $0 \leq \tau(A \ast B) \leq a_{ii}b_{ii}$ (see [5]), for any $j \neq i \in N$, we have

$$
|\tau(A \circ B^{-1}) - a_{ii}b_{ii}| = \sum_{k \neq i} |\bar{a}_{ki}| \sum_{l \neq j} |\bar{a}_{lj}| |\beta_{kj} - \tau(A)|
\leq \sum_{k \neq i} |\bar{a}_{ki}| |\beta_{ki}| \sum_{l \neq j} |\bar{a}_{lj}| |\beta_{lj}|
\leq \sum_{k \neq i} |\bar{a}_{ki}||s_{ki}| |\beta_{jj}| \sum_{l \neq j} |\bar{a}_{lj}|s_{lj}|\beta_{jj}|
\leq \sum_{k \neq i} |\bar{a}_{ki}||s_{ki}| |\beta_{jj}| \sum_{l \neq j} |\bar{a}_{lj}|s_{lj}|\beta_{jj}|
= s_is_j\beta_{ii}\beta_{jj}(a_{ii} - \tau(A))(a_{jj} - \tau(A)).
$$

Thus, by solving the quadratic inequality (4.6), we obtain that

$$
\tau(A \circ B^{-1}) \geq \min_{i \neq j} \left\{ \frac{1}{2} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} - [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4s_is_j\beta_{ii}\beta_{jj}(a_{ii} - \tau(A))(a_{jj} - \tau(A))]^{\frac{1}{2}} \right\} \right\}
\geq \min_{i \neq j} \left\{ \frac{1}{2} \left\{ a_{ii}b_{ii} + a_{jj}b_{jj} - [(a_{ii}b_{ii} - a_{jj}b_{jj})^2 + 4s_is_j\beta_{ii}\beta_{jj}(a_{ii} - \tau(A))(a_{jj} - \tau(A))]^{\frac{1}{2}} \right\} \right\}.
$$
i.e., the conclusion (4.5) holds.

Case 2. If $A \circ B^{-1}$ is reducible, then one denotes by $P = (p_{ij})$ the $n \times n$ permutation matrix with

$$
p_{12} = p_{23} = \cdots = p_{n-1,n} = p_{n,1} = 1,
$$
the remaining p_{ij} zero, then both $A - \varepsilon P$ and $B - \varepsilon P$ are irreducible nonsingular M-matrices for any sufficiently small positive real number ε. Now we substitute $A - \varepsilon P$ and $B - \varepsilon P$ for A and B, respectively from the previous Case, and then letting $\varepsilon \to 0$, the result (2.6) follows by continuity. □

Example 4.1 ([11]). Let A and B be nonsingular M-matrices:
\[A = (a_{ij}) = \begin{pmatrix} 1 & -0.5 & 0 & 0 \\ -0.5 & 1 & -0.5 & 0 \\ 0 & -0.5 & 1 & -0.5 \\ 0 & 0 & -0.5 & 1 \end{pmatrix}, \quad B = (b_{ij}) = \begin{pmatrix} 4 & -1 & -1 & -1 \\ -2 & 5 & -1 & -1 \\ 0 & -2 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{pmatrix}. \]

By direct calculation, \(\tau(A \circ B^{-1}) = 0.2148. \)

According to (4.1), we have

\[\tau(A \circ B^{-1}) \geq \tau(A) \min_{1 \leq i \leq n} \beta_{ii} = 0.07. \]

If we apply (4.2) and (4.3), we get

\[\tau(A \circ B^{-1}) \geq \frac{1 - \rho(J_A \rho(J_B))}{1 + \rho^2(J_B)} \min_i \frac{b_{ii}}{a_{ii}} = 0.0707, \]

and

\[\tau(A \circ B^{-1}) \geq \min_i \frac{b_{ii} - s_i \sum_{j \not= i} |b_{ji}|}{a_{ii}} = 0.08. \]

According to (4.4)

\[\tau(A \circ B^{-1}) \geq \min_{i \not= j} \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - [(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4a_{ii}a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A)\rho^2(J_B)]^{1/2} \right\} = 0.1524. \]

If we apply Theorem 4.1, we obtain that

\[\tau(A \circ B^{-1}) \geq \min_{i \not= j} \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} + [(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4s_i s_j \beta_{ii} \beta_{jj} (a_{ii} - \tau(A))(a_{jj} - \tau(A))]^{1/2} \right\} = 0.1929. \]

The example shows that the bound in Theorem 4.1 is better than the existing bounds.

5 **Inequalities for the Fan product of several \(M \)-matrices**

Firstly, let us recall the following lemmas.

Lemma 5.1 ([7]). Let \(A \) be an irreducible nonsingular \(M \)-matrix, if \(AZ \geq kZ \) for a nonegative nonzero vector \(Z \), then \(k \leq \tau(A) \).
Lemma 5.2 ([6]). Let $x_j = (x_j(1), \ldots, x_j(n))^T \geq 0$, $j \in \{1, 2, \ldots, m\}$, if $P_j > 0$ and $
abla \frac{1}{P_k} \geq 1$, then we have

$$\sum_{i=1}^{n} \prod_{j=1}^{m} x_j(i) \leq \prod_{i=1}^{n} \left\{ \sum_{j=1}^{m} [x_j(i)]^{P_j} \right\}^{\frac{1}{P_j}}.$$ \hspace{1cm} (5.1)

Next, according to these results, we expand the inequality (3.2) of the Fan product of two matrices to the Fan product of several matrices. One can obtain the following result:

Theorem 5.1 For any matrices $A_k \in M_n$, and positive integers P_k with $\sum_{k=1}^{m} \frac{1}{P_k} \geq 1$, $k \in \{1, 2, \ldots, m\}$, we have that

$$\tau(A_1 \ast A_2 \cdots \ast A_m) \geq \min_{1 \leq i \leq n} \left\{ \prod_{k=1}^{m} A_k(i, i) - \prod_{k=1}^{m} [A_k(i, i)^{P_k} - \tau(A_k^{(P_k)})]^{\frac{1}{P_k}} \right\}. \hspace{1cm} (5.2)$$

Proof. It is quite evident that the (5.2) holds with the equality for $n = 1$. Below we assume that $n \geq 2$.

Case 1. Let $A_1 \ast A_2 \cdots \ast A_m$ be an irreducible nonsingular M-matrix, thus A_k is irreducible, $k \in \{1, 2, \ldots, m\}$, we can obtain that $A_k^{(P_k)}$ is also irreducible. Let $u_k^{(P_k)} = (u_k(1)^{P_k}, \ldots, u_k(n)^{P_k})^T > 0$ be a right Perron eigenvector of $A_k^{(P_k)}$, and $u_k = (u_k(1), \ldots, u_k(n))^T > 0$, thus for any $i \in N$, we have that

$$A_k^{(P_k)} u_k^{(P_k)} = \tau(A_k^{(P_k)}) u_k^{(P_k)},$$

$$A_k(i, i)^{P_k} u_k^{(P_k)} = \sum_{j \neq i} [A_k(i, j)^{P_k} u_k^{(P_k)}] = \tau(A_k^{(P_k)}) u_k^{(P_k)},$$

and

$$\sum_{j \neq i} [A_k(i, j)^{P_k} u_k^{(P_k)}] = (A_k(i, i)^{P_k} - \tau(A_k^{(P_k)})) u_k^{(P_k)}. \hspace{1cm} (5.3)$$

Denote $C = A_1 \ast A_2 \cdots \ast A_m$, $Z = u_1^T u_2 \cdots u_m = (Z(1), \ldots, Z(n))^T > 0$, thus $Z(i) = \prod_{k=1}^{m} u_k(i)$. By the Lemma 5.2 and (5.3), we get that

$$(CZ)_i = \left(\prod_{k=1}^{m} A_k(i, i) \right) Z(i) - \left(\sum_{j \neq i} \prod_{k=1}^{m} [A_k(i, j)] \right) Z(j)$$

$$= \left(\prod_{k=1}^{m} A_k(i, i) \right) Z(i) - \sum_{j \neq i} \prod_{k=1}^{m} [A_k(i, j)] Z(j)$$

$$\geq \left(\prod_{k=1}^{m} A_k(i, i) \right) Z(i) - \prod_{k=1}^{m} \left\{ \sum_{j \neq i} [A_k(i, j)] Z(j) \right\}^{\frac{1}{P_k}} \quad \text{(by the equality (5.3))}$$

$$= \left(\prod_{k=1}^{m} A_k(i, i) \right) Z(i) - \prod_{k=1}^{m} \left\{ [A_k(i, i)^{P_k} - \tau(A_k^{(P_k)})] u_k^{(P_k)} \right\}^{\frac{1}{P_k}}$$

$$= \left(\prod_{k=1}^{m} A_k(i, i) - \prod_{k=1}^{m} [A_k(i, i)^{P_k} - \tau(A_k^{(P_k)})] \right)^{\frac{1}{P_k}} Z(i).$$

According to the Lemma 5.1, we obtain that

$$\tau(A_1 \ast A_2 \cdots \ast A_m) \geq \min_{1 \leq i \leq n} \left\{ \prod_{k=1}^{m} A_k(i, i) - \prod_{k=1}^{m} [A_k(i, i)^{P_k} - \tau(A_k^{(P_k)})]^{\frac{1}{P_k}} \right\}. \hspace{1cm} \Box$$
Case 2. If $A_1 \star A_2 \cdots \star A_m$ is reducible, where A_i ($i = 1, 2, \cdots, m$) are nonsingular M-matrices. Similarly, let $P = (p_{ij})$ be the $n \times n$ permutation matrix with $p_{12} = p_{21} = \cdots = p_{n-1,n} = p_{n,1} = 1$, the remaining p_{ij} zero, then $A_k - \varepsilon P$ is an irreducible nonsingular M-matrix for any chosen positive real number ε. Note that $A_k - \varepsilon P$ is a continuous function on ε. Now we substitute $A_k - \varepsilon P$ for A_k, in the previous Case 1, and then letting $\varepsilon \to 0$, the result (5.2) follows by continuity. □

Remark 4.1. If we take $m = 2$ in Theorem 4.1, one can obtain the following results:

- If $p_1 = p_2 = 1$, $A_1 = A = (a_{ij})$, $A_2 = B = (b_{ij})$, we have that
 \[\tau(A \star B) \geq \min_{1 \leq i \leq n} \left\{ a_{ii}b_{ii} - (a_{ii} - \tau(A))(b_{ii} - \tau(B)) \right\}, \]
 which is just the inequality (3.2).

- If $p_1 = p_2 = 2$, $A_1 = A = (a_{ij})$, $A_2 = B = (b_{ij})$, then
 \[\tau(A \star B) \geq \min_{1 \leq i \leq n} \left\{ a_{ii}b_{ii} - [a_{ii}^2 - \tau(A \star A)]\frac{1}{2}[b_{ii}^2 - \tau(B \star B)]\frac{3}{2} \right\}. \tag{5.4} \]

In addition, by using the inequalities of arithmetic and geometric means, we may obtain that
\[a_{ii}^2\tau(B \star B) + b_{ii}^2\tau(A \star A) \geq 2a_{ii}b_{ii}[\tau(A \star A)\tau(B \star B)]\frac{1}{2}, \]
so
\[(a_{ii}^2 - \tau(A \star A))(b_{ii}^2 - \tau(B \star B)) \leq \left\{ a_{ii}b_{ii} - [\tau(A \star A)\tau(B \star B)]\frac{1}{2} \right\}^2. \tag{5.5} \]

Since for any $A, B \in M_n$, $\tau(A \star B) \geq \tau(A)\tau(B)$ (see [1] or (3.1)), then, by (5.5), we have that
\[a_{ii}b_{ii} - [(a_{ii}^2 - \tau(A \star A))(b_{ii}^2 - \tau(B \star B))]^{\frac{3}{2}} \geq [\tau(A \star A)\tau(B \star B)]^{\frac{3}{2}} \geq \tau(A)\tau(B). \]

That is, the bound in (5.2) is better than the bound in (3.1).

- If $p_1 = 1, p_2 = 2$, $A_1 = A = (a_{ij})$, $A_2 = B = (b_{ij})$, then we get
 \[\tau(A \star B) \geq \min_{1 \leq i \leq n} \left\{ a_{ii}b_{ii} - [a_{ii} - \tau(A)][b_{ii}^2 - \tau(B \star B)]\frac{1}{2} \right\}. \]

Acknowledgements. The authors sincerely thank Prof. Julio Moro and the reviewers and editor for their valuable and detailed comments and suggestions on the manuscript of this paper, which led to a substantial improvement on the presentation and contents of this paper.

References

[1] Q.B. Liu, G.L. Chen, On two inequalities for the Hadamard product and the Fan product of matrices, Lin. Alg. Appl. 431 (2009) 974–984.

[2] Q.P. Guo, H.B. Li, M.Y. Song, New inequalities on eigenvalues of the Hadamard product and the Fan product of matrices, Journal of Inequalities and Applications. 2013 (2013):433.

[3] R.A. Horn, C.R. Johnson, Topics in matrix Analysis, Cambridge University Press, 1985.
[4] M.Z. Fang, Bounds on the eigenvalues of the Hadamard product and the Fan product of matrices, Lin. Alg. Appl. 425 (2007) 7–15.

[5] A. Berman, R.J. Plemmons, Nonnegative matrices in the Mathematical Sciences, Academic Press, London, 1978.

[6] Hardy G H, Littlewood J E, Polya G. Inequality, Cambridge University Press, 1934.

[7] H.B. Li, T.Z. Huang, S.Q. Shen, H. Li, Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse, Lin. Alg. Appl. 420 (2007) 235–247.

[8] R. Huang, Some inequalities for the Hadamard product and the Fan product of matrices, Lin. Alg. Appl. 428 (2008) 1551–1559.

[9] M.Z. Fang, Bounds on the eigenvalues of the Hadamard product and the Fan product of matrices, Lin. Alg. Appl. 425 (2007) 7–15.

[10] Y.T. Li, Y.Y. Li, R.W. W, Y.Q. W, Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Lin. Alg. Appl. 432 (2010) 536–545.

[11] F.B. Chen, Y.T. Li, D.F. Wang, A new eigenvalue bound for the Hadamard product of an M-matrix and inverse M-matrix, Journal of Inequalities and Applications. 581 (2013) 581.

[12] J.L. Chen, Special Matrix, Qing Hua University Press, Beijing, 2000.