Identificação de calcificação coronariana utilizando tomografia computadorizada do tórax não sincronizada ao eletrocardiograma

Detection of coronary artery calcification with nontriggered computed tomography of the chest

Gustavo Lemos Pelandré¹, Nathália Martins Pereira Sanches², Marcelo Souto Nacif³, Edson Marchiori⁴

Pelandré GL, Sanches NMP, Nacif MS, Marchiori E. Identificação de calcificação coronariana utilizando tomografia computadorizada do tórax não sincronizada ao eletrocardiograma. Radiol Bras. 2018 Jan/Fev;51(1):8–12.

Resumo Objetivo: Avaliar a acurácia da análise visual e do escore de cálcio (EC) por tomografia computadorizada de tórax não sincronizada ao eletrocardiograma (TCNS) na identificação de cálcio coronariano, quando comparada ao EC por tomografia computadorizada sincronizada ao eletrocardiograma (TCSE).

Materiais e Métodos: Cento e setenta e quatro pacientes com indicação de realização de TC para avaliação de EC foram submetidos a TCNS e a TCSE em aparelho com 64 fileiras de detectores em sessão única, sem alteração de posicionamento. As imagens foram interpretadas por radiologista com sete anos de experiência em radiologia torácica e cardiovascular. A mensuração do cálcio coronariano foi realizada por três métodos: EC por meio de software dedicado na TCSE e na TCNS, análise visual sem uso de software dedicado na TCNS.

Resultados: A TCNS apresentou acurácia de 95,98% (IC 95%: 91,93 – 98,04) e a análise visual apresentou acurácia de 97,13% (IC 95%: 93,45 – 98,77).

Conclusão: A TCNS apresentou excelente acurácia na identificação e exclusão do cálcio coronariano quando comparada à TCSE, seja pela aferição do EC por software dedicado ou pela análise visual.

Uintermos: Tomografia computadorizada; Doenças cardiovasculares; Doença das coronárias.

Abstract Objective: To evaluate the accuracy of visual analysis and of the coronary artery calcium (CAC) score in nontriggered computed tomography (CT), in comparison with that of the CAC score in electrocardiogram-triggered CT, in identifying coronary calcification.

Materials and Methods: A total of 174 patients for whom CT was indicated for CAC scoring underwent nontriggered and triggered CT in a 64-channel multislice scanner, in a single session without a change in position. The images were interpreted by a radiologist with seven years of experience in thoracic and cardiovascular radiology. The measurement of coronary calcium was carried out by three methods: CAC score with dedicated software in nontriggered CT, CAC score with dedicated software in triggered CT, and visual analysis without dedicated software in nontriggered CT.

Results: In nontriggered CT, the CAC score presented an accuracy of 95.98% (95% CI: 91.93 – 98.04). The visual analysis showed an accuracy of 97.13% (95% CI: 93.45 – 98.77).

Conclusion: Nontriggered CT showed excellent accuracy in the identification and exclusion of coronary calcification, either the CAC score was determined with dedicated software or through visual analysis.

Keywords: Tomography, X-ray computed; Cardiovascular diseases; Coronary disease.

INTRODUÇÃO

As doenças cardiovasculares são atualmente as principais causas de óbito no Brasil e no mundo. De acordo com a Organização Mundial da Saúde, esse grupo de doenças foi responsável por 25% das mortes precoces no mundo em 2012, sendo a doença isquêmica cardíaca responsável por 13% do total de mortes, seguindo-se o acidente vascular encefálico, responsável por 12%¹. No Brasil, essas doenças representaram 31% das causas de morte no ano de 2012².

Estudos sobre o impacto econômico relacionado a doenças cardiovasculares no Brasil são escassos, porém, estimativas realizadas no ano de 2004 demonstraram que os custos atribuídos no país naquele ano ultrapassaram...
11 bilhões de reais, correspondendo a 1,74% do produto interno bruto nacional(3).

A redução desses números e a consequente diminuição da morbidade e mortalidade relacionadas a doenças cardiovasculares tem sido objetivo de políticas de saúde pública no Brasil e no mundo. Há um crescente interesse na prevenção primária e, para isso, é primordial a identificação de indivíduos com risco elevado de desenvolver doença cardiovascular, a fim de se estabelecer a correta definição de metas terapêuticas individuais(4).

A estimativa do risco de doença cardiovascular resulta do somatório do risco de cada um dos fatores de risco mais a potenciação causada por sinergismos entre alguns destes fatores. Diante da complexidade destas interações, diversos algoritmos têm sido criados com base em análises de regressão de estudos populacionais. A V Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose recomenda o uso do escore de risco global para avaliação do risco em 10 anos e do escore de risco pelo tempo de vida como opção para os indivíduos acima de 45 anos considerados de baixo risco ou risco intermediário em 10 anos. Estes escores se baseiam em pontuações atribuídas às seguintes variáveis: sexo, idade, níveis de colesterol, pressão arterial, história de tabagismo e presença ou não de diabetes. Com base na pontuação obtida, pode-se estimar o risco individual de apresentar os principais eventos cardiovasculares: doença arterial coronariana, acidente vascular encefálico, doença arterial obstrutiva periférica ou insuficiência cardíaca em 10 anos para homens e mulheres(4).

Embora muito úteis, os escores clínicos isoladamente apresentam capacidade limitada de estratificação de risco cardiovascular. Alguns testes clínicos e de imagem podem desempenhar papel importante como ferramentas complementares aos escores clínicos na estratificação de risco em pacientes assintomáticos. Nos indivíduos de risco intermediário pelos escores clínicos, devem-se considerar fatores agravantes que reclassificam o indivíduo para a condição de alto risco(4).

Com o desenvolvimento da tomografia computadorizada com múltiplos detectores (TCMD), atualmente é possível detectar calcificação coronariana de maneira não invasiva e com excelente acurácia. A técnica preconizada é denominada escore de cálcio (EC), que utiliza TC sincronizada ao eletrocardiograma (TCSE) e softwares dedicados baseados no escore de Agatston(5). O EC permite a estratificação, discriminação e reclassificação do risco cardiovascular estabelecido pelos critérios clínicos(6).

Embora seja um exame não invasivo e de alta acurácia para avaliação do cálcio coronariano, a necessidade de tomógrafos com acoplamento cardíaco, elevado número de detectores e uso de softwares específicos faz com que o EC seja um procedimento pouco disponível em nosso país. Estudos com TC não sincronizada ao eletrocardiograma (TCNS) mostram que a identificação visual (não quantitativa) do cálcio coronariano fornece informações clínicas relevantes(7,8) e apresenta correlação estatística positiva com o aumento da mortalidade cardiovascular(9,10).

O objetivo deste estudo foi avaliar a acurácia da análise visual e do EC por TCNS na identificação ou exclusão de cálcio coronariano, em comparação ao EC por TCSE.

MATERIAIS E MÉTODOS

Trata-se de um estudo observacional, prospectivo, analítico e descritivo, aprovado pelo Comitê de Ética da Universidade Federal de Santa Catarina/Centro de Pesquisas Oncológicas. Foram incluídos pacientes com indicação de realização de TC para avaliação de EC, no período de 1/10/2014 a 31/7/2015, que concordaram em participar do estudo assinando termo de consentimento livre e esclarecido. Foram excluídos do estudo os pacientes com história de manipulação cirúrgica prévia em artérias coronárias (angioplastia ou revascularização miocárdica). Todos os pacientes foram submetidos a dois exames de TC em aparelho com multidetectores (64 fileiras de detectores) em sessão única, sem alteração de posicionamento, com as menores doses de radiação possíveis. Inicialmente, foi realizada aquisição volumétrica do tórax não sincronizada ao eletrocardiograma (TCNS), sem utilização de contraste intravenoso, com cobertura do ápice à base pulmonar em apneia única, com cortes de 1,25 mm de espessura. Em seguida, foi realizada aquisição cardíaca com sincronização prospectiva ao eletrocardiograma (TCSE), com série de cortes axiais com 3 mm de espessura cobrindo toda a extensão do coração.

As imagens foram interpretadas por radiologista com sete anos de experiência em radiologia torácica e cardiovascular. A mensuração da calcificação das artérias coronarianas foi realizada por três diferentes métodos: escore de Agatston na TCSE e na TCNS, bem como análise visual na TCNS. A interpretação das imagens de cada método foi realizada em momentos distintos. Para a quantificação do EC nas imagens obtidas pela TCSE e pela TCNS foi utilizado um software dedicado, baseando-se no escore de Agatston. Neste método, a calcificação é definida com uma lesão hiperatenuante com densidade acima de 130 unidades Hounsfield (UH) e área superior a 3 pixels adjacentes (pelo menos 1 mm²). O software identifica as lesões calcificadas e realiza o cálculo do EC por meio da multiplicação da área em pixels pelo escore de densidade máxima (1 para 130–199 UH; 2 para 200–299 UH; 3 para 300–399 UH; 4 para mais de 400 UH) e posterior somatório dos escores de todas as lesões. Para a classificação dos valores de EC, foram considerados os seguintes intervalos: 0 (ausência de calcificação); 1–10 (calcificação mínima); 11–100 (calcificação leve); 101–400 (calcificação moderada); 401–1000 (calcificação severa); acima de 1000 (calcificação muito severa)(11).

A análise visual foi realizada com as imagens obtidas com a TCNS, utilizando-se monitor de alta resolução para interpretação de exames (3000 dpi) e janela de mediastino
Foram calculados valor preditivo positivo (VPP), valor preditivo negativo (VPN), sensibilidade, especificidade e acurácia e seus respectivos intervalos de confiança de 95% (IC 95%), utilizando o programa OpenEpi. Os valores de EC foram expressos em valores numéricos e categóricos.

RESULTADOS

Foram avaliados 174 indivíduos, sendo 103 do sexo masculino (59,2%) e 71 do sexo feminino (40,8%), com idade entre 24 e 90 anos (média de 58,4 anos). A ausência de cálcio coronário na TCSE foi observada em 69 dos 174 indivíduos (39,6%). Na TCNS e na análise visual, 72 indivíduos apresentaram cálcio zero (41,37%).

Os pacientes apresentaram valores de EC de Agatston semelhantes, na comparação das técnicas de TCSE e TCNS (Tabela 1).

Categorias	TCSE	TCNS
0	69	72
< 10	26	20
< 100	37	34
< 400	24	28
< 1000	11	12
≥ 1000	7	8

Figura 1. TCSE (A) e TCNS (B) mostrando ausência de calcificação no tronco da coronária esquerda (setas).

Figura 2. TCSE (A) e TCNS (B) mostrando extensa calcificação na artéria descendente anterior proximal (setas).
A técnica de EC por TCNS apresentou acurácia de 95,98% (IC 95%: 91,93–98,04) para a detecção ou exclusão de cálcio coronariano quando comparada à técnica padrão TCSE, com especificidade de 97,1% (IC 95%: 90,03–99,2), sensibilidade de 95,24% (IC 95%: 89,33–97,95), VPN de 93,06% (IC 95%: 84,75–97,00) e VPP de 98,04% (IC 95%: 93,13–99,46).

A análise visual associada à TCNS para a detecção ou exclusão de cálcio coronariano, quando comparada à técnica padrão TCSE, apresentou acurácia de 97,13% (IC 95%: 93,45–98,77), especificidade de 98,55% (IC 95%: 92,24–99,74), sensibilidade de 96,19% (IC 95%: 90,61–98,51), VPN de 94,44% (IC 95%: 86,57–97,82) e VPP de 99,02% (IC 95%: 94,65–99,83).

Para valores falso-negativos de EC por TCNS e análise visual, foram encontrados valores de EC por TCSE próximos a zero (Tabela 2). Na TCNS, apenas 5 (6,94%) pacientes foram falso-negativos para presença de cálcio coronariano (EC médio de 1,6 e máximo de 2,9). Apenas 2 (1,96%) pacientes foram falsos-positivos (EC médio de 0,75 e máximo de 1,1). Na análise visual, apenas 4 (5,56%) pacientes foram falso-negativos para presença de cálcio coronariano (EC médio de 1,92 e máximo de 2,9). Apenas 1 (0,98%) paciente foi falso-positivo.

Tabela 2—Distribuição de valores de EC por TCSE, para os valores de EC zero por TCNS e EC zero por análise visual.

EC (TCSE) Categorias	EC zero (TCNS)	EC zero (análise visual)
	N %	N %
0	67 93,06	68 94,44
< 10	5 6,94	4 5,56
< 100		
< 400		
< 1000		
≥ 1000		

DISCUSSÃO

Os estudos por imagem do sistema cardiovascular têm sido motivo de recentes publicações na literatura radiológica brasileira(11–16). Alguns estudos propõem que a tomografia cardíaca dedicada para pesquisa de cálcio coronariano não é necessária em pacientes com tomografia de tórax negativa(17). No nosso estudo, quando comparados com a TCSE, o EC por TCNS e a análise visual por TCNS apresentaram alta acurácia na detecção ou exclusão de cálcio coronariano (95,98% e 97,13%, respectivamente).

Comparando o EC por TCSE e TCNS, Wu et al. (18) analisaram 483 pacientes e demonstraram que a TCNS apresentou VPP de 97–98% e VPN de 98–99%. Para esses autores, 12 pacientes tiveram categorias de calcificação trocadas, geralmente associadas a menor grupo de risco pela TCSE. Foram encontrados 5 falsos-positivos e 5 falsos-negativos. Para os valores falso-negativos na TCNS, a média do EC foi 6,2 na TCSE. Para os valores falso-positivos, a média foi 4,5 na TCNS, o que equivale a grau de calcificação relacionado a baixo risco cardiovascular. Resultados semelhantes foram encontrados por Budoff et al.(19) em um estudo com 55 pacientes com diagnóstico de doença pulmonar obstrutiva crônica, que comparou o EC na TCSE e na TCNS. Ausência de cálcio pela TCSE foi encontrada em 17 (34%) pacientes, resultado idêntico ao encontrado na TCNS.

Em um estudo de metaanálise, Xie et al.(20) analisaram a correlação entre EC por TCSE e por TCNS. Foram incluídos cinco estudos na revisão sistemática, totalizando 1316 participantes assintomáticos. O EC pela TCNS foi calculado em quatro estudos totalizando 1153 participantes e, dentre 625 que apresentaram EC maior que zero na TCSE, 55 (8,8%) apresentaram ausência de cálcio à TCNS, sendo 52 (8,3%) com valor de EC entre 1 e 100 à TCSE e 3 (0,5%) com valor de EC entre 100 e 400.

Vários autores têm utilizado técnicas semiquantitativas para avaliação de cálcio coronariano em TCNS. Einstein et al.(21) encontraram alto grau de associação entre EC por escala visual e EC de Agatston, com elevados índices de concordância entre as seis categorias analisadas. Shemesh et al.(22) classificaram cada segmento arterial em calcificação ausente, leve, moderada ou severa (escores de 0 a 3), identificando boa correlação entre mortalidade cardiovascular e escore total superior a 4. Jacobs et al.(23) avaliaram, retrospectivamente, a incidência de eventos cardiovasculares em pacientes submetidos a TCNS. Para avaliação de calcificação coronariano, cada segmento coronariano foi avaliado em escores de 0 a 3. O risco de evento cardiovascular aumentou com o aumento da categoria de calcificação coronariano após ajuste para idade, sexo, indicação clínica, qualidade de imagem e instituição.

Comparando diferentes métodos para aferição do cálcio coronariano em TCNS, Chiles et al.(10) encontraram boa correlação entre a avaliação visual subjetiva (ausência de calcificação, calcificação leve, calcificação moderada e calcificação grave) e o aumento do risco de infarto agudo do miocárdio e morte. Entre os pacientes estudados, 26,8% apresentaram ausência de cálcio coronariano pela análise subjetiva e 27,7% por EC de Agatston modificado.

Utilizando a TCNS com análise visual, Huang et al.(24) analisaram 369 pacientes comparando com o EC por TCSE e encontraram 24 casos falso-negativos, com o EC desses variando de 1,1 a 21,1 (grau leve de calcificação). Kirsch et al.(25) avaliaram a correlação entre o EC na TCSE e análise visual por TCNS em 163 pacientes assintomáticos. A ausência de cálcio coronariano na análise visual foi associada a um EC na TCSE variando de 0 a 19 (ausência ou grau leve de calcificação). Esses valores refletem a importância da TCNS para identificação da presença ou não de calcificação coronariana, especialmente em contextos em que a TCSE não pode ser disponibilizada, representando alternativa mais acessível para avaliação deste território arterial.
Este estudo possui algumas limitações. Os exames foram realizados em um único centro, em único aparelho com tecnologia de 64 fileiras de detectores. As imagens foram interpretadas por um único médico radiologista com experiência em tomografia cardiovascular, não sendo possível estimar o efeito de variações interobservadores ou de acurácia na identificação visual de cálcio coronariano entre profissionais com menor experiência. Entretanto, estudos que compararam observadores com diferentes níveis de experiência não identificaram diferenças significativas na análise visual do cálcio coronariano[10,18,21].

CONCLUSÃO

A TCNS apresentou excelente acurácia na identificação e exclusão do cálcio coronariano quando comparada à TCSE, seja pela aferição do escore de Agatston com software dedicado ou pela análise visual. Não houve diferenças significativas de acurácia entre as duas medidas por TCNS.

REFERÊNCIAS

1. World Health Organization. Causes of death. Global Health Observatory (GHO) data [Internet]. [cited 2016 Jul 1]. Available from: http://www.who.int/gho/mortality_burden_disease/causes_death/en/. Geneva: WHO Headquarters; 2016.
2. World Health Organization. Noncommunicable diseases country profiles 2014. Noncommunicable diseases and mental health [Internet]. [cited 2016 Jul 1]. Available from: http://www.who.int/nmh/publications/ncd-profiles-2014/en/. Geneva: WHO Headquarters; 2016.
3. Azambuja MIR, Foppa M, Maranhão MFC, et al. Impacto econômico dos casos de doença cardiovascular grave no Brasil: uma estimativa baseada em dados secundários. Arq Bras Cardiol. 2008;91:163–71.
4. Xavier HT, Izar MC, Faria Neto JR, et al. V Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose. Arq Bras Cardiol. 2013;101(4 Supl 1):1–20.
5. Yeooh J, McClelland RL, Polonsky TS, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308:788–95.
6. Kalra DK, Heo R, Valenti V, et al. Role of computed tomography for diagnosis and risk stratification of patients with suspected or known coronary artery disease. Arterioscler Thromb Vasc Biol. 2014;34:1144–54.
7. Itani Y, Sone S, Nakayama T, et al. Coronary artery calcification detected by a mobile helical computed tomography unit and future cardiovascular death: 4-year follow-up of 6120 asymptomatic Japanese. Heart Vessels. 2004;19:161–3.
8. Shemesh J, Henschke CI, Farooqi A, et al. Frequency of coronary artery calcification on low-dose computed tomography screening for lung cancer. Clin Imaging. 2006;30:181–5.
9. Shemesh J, Henschke CI, Shaham D, et al. Ordinal scoring of coronary artery calcifications on low-dose CT scans of the chest is predictive of death from cardiovascular disease. Radiology. 2010;257:541–8.
10. Chiles C, Duan F, Gladish GW, et al. Association of coronary artery calcification and mortality in the national lung screening trial: a comparison of three scoring methods. Radiology. 2015;276:82–90.
11. Neves PO, Andrade J, Monção H. Coronary artery calcium score: current status. Radiol Bras. 2017;50:182–9.
12. Silva AF, Santos JA. Aortic arch anomaly in an adult patient: a case of right aortic arch with aberrant left subclavian artery and Kommerell’s diverticulum. Radiol Bras. 2016;49:274–5.
13. Assunção FB, Oliveira DCL, Souza VF, et al. Cardiac magnetic resonance imaging and computed tomography in ischemic myocardopathy: an update. Radiol Bras. 2016;49:26–34.
14. Rochitte CE. Cardiac MRI and CT: the eyes to visualize coronary arterial disease and their effect on the prognosis explained by the Schrödinger’s cat paradox. Radiol Bras. 2016;49(1):vii–viii.
15. Assunção FB, Oliveira DCL, Santos AASMD, et al. Caseous calcification of the mitral annulus: computed tomography features. Radiol Bras. 2016;49:273–4.
16. Faustauer A, Torres FS, Faccin CS. Right aortic arch with aberrant left innominate artery arising from Kommerell’s diverticulum. Radiol Bras. 2016;49:264–6.
17. Azevedo CF, Rochitte CE, Lima JAC. Escor de cálcio e angiografia coronariana na estratificação do risco cardiovascular. Arq Bras Cardiol. 2012;98:559–68.
18. Wu MT, Yang P, Huang YL, et al. Coronary arterial calcification on low-dose ungated MDCT for lung cancer screening: concordance study with dedicated cardiac CT. AJR Am J Roentgenol. 2008;190:923–8.
19. Budoff MJ, Nasir K, Kinney GL, et al. Coronary artery and thoracic calcium on non-contrast thoracic CT scans: comparison of un gated and gated examinations in patients from the COPD gene cohort. J Cardiovasc Comput Tomogr. 2011;5:113–8.
20. Xie X, Zhao Y, de Bock GH, et al. Validation and prognosis of coronary artery calcium scoring in nontriggered thoracic computed tomography: systematic review and meta-analysis. Circ Cardiovasc Imaging. 2013;6:514–21.
21. Einstein A, Johnson LL, Bokharis S, et al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol. 2010;56:1914–21.
22. Jacobs PC, Gondrie MJ, van der Graaf Y, et al. Coronary artery calcium during standard chest computed tomography: systematic review and meta-analysis. Circ Cardiovasc Imaging. 2013;6:514–21.
23. Huang YL, Wu FZ, Wang YC, et al. Reliable categorisation of visual scoring of coronary artery calcification on low-dose CT for lung cancer screening: validation with the standard Agatston score. Eur Radiol. 2013;23:1226–33.
24. Kirsch J, Buitrago I, Mohammed TL, et al. Detection of coronary calcium during standard chest computed tomography correlates with multi-detector computed tomography coronary artery calcium score. Int J Cardiovasc Imaging. 2012;28:1249–56.