Advances in research on effects of biochar on soil nitrogen and phosphorus

L Q Huang1, C Fu1, T Z Li1, B Yan1, Y Wu1, L Zhang1, W Ping1, B R Yang1 and L Chen1

1 Chongqing Three Gorges University, Chongqing, China
E-mail: casual2005@163.com

Abstract. In the context of global research, soil non-point source pollution is becoming more and more severe. Biochar is used as a soil amendment to repair soil. Therefore, research on biochar has received extensive attention. According to relevant literature reports, biochar has strong adsorption performance, and according to its nature, it can improve the availability of nitrogen and phosphorus in crops and fix nitrogen and phosphorus in soil. Also, biochar can also improve soil structure and reduce the migration of N and P with soil media. The research mechanism of biochar is distinct. The article cites the results of the majority of researchers and explains the effects of different biochars. Biochar has a certain promoting effect on nitrogen, phosphorus adsorption, conversion and leaching. In the future, we should strengthen the prospect of biochar in the treatment of soil environment and sustainable development of the environment.

1. Introduction
With the increase of population and the increase in food demand, the problem of agricultural non-point source pollution has become more and more serious[1][2]. Chinese scholars have defined agricultural non-point source pollution as the excessive application of chemical fertilizers, pesticides and other factors in the planting industry, as well as the disorderly discharge of livestock and poultry manure in the aquaculture industry, exceeding the nutrient load of the farmland, and the emergence of nutrients such as nitrogen, phosphorus and potassium. Mentioned above nitrogen, phosphorus and potassium lefe in the soil caused soil pollution[3][5]. Most agricultural systems have limited ability to supply nitrogen and phosphorus to crops[6][7]. Many farmers in China have increased the growth of crops, using a large amount of nitrogen and phosphate, causing non-point source pollution in some areas and bringing indisputable soil environment. Researchers at home and abroad have found that biochar has a good adsorption effect[8]. Biochar is a carbon-rich, stable, solid substance[9], such as wood[10], manure[11], sugar cane[12], straw[13] and other plants, usually under low oxygen or anoxic conditions, at relatively low temperatures (400~700 °C), thermal decomposition of organic compounds[14][16]. It has high stability, large specific surface area, rich pore structure and strong adsorption capacity[17][18]. Biochar has been widely applied, because of its simple preparation and low cost[19][21]. Therefore, combined with the current serious problem of agricultural non-point source pollution, according to the performance of biochar, as a soil improver, improve crop yield, and have the potential to improve nitrogen and phosphorus cycles in soil-plant systems[22][25]. This paper mainly studies the absorption of nitrogen and phosphorus in soil by different biochar and the transformation mechanism of nitrogen and phosphorus.
2. Effect of biochar on soil nitrogen and phosphorus adsorption

2.1 Effect of biochar on soil nitrogen adsorption

Biochar is prepared by pyrolysis of the material, and the pore structure of the prepared biochar will be different due to the pyrolysis temperature in the pyrolysis process. The researchers characterized biochar by SEM and FTIR techniques, the higher the temperature, the larger the pore structure of biochar. Different biochars will have different results for nitrogen adsorption.

Suoguifang et al. research shows that under the same initial conditions, the amounts of rice husk charcoal, pecan shell charcoal and bamboo charcoal were 23.79 mg•g⁻¹, 13.00 mg•g⁻¹ and 17.60 mg•g⁻¹, respectively. It indicates that rice husk charcoal has the best adsorption effect on nitrogen. The three kinds of biochar are alkaline, which is because biochar contains more base ions (such as calcium, sodium, magnesium, potassium, etc.) and basic groups, pH values of different biochars may be different because the mineral components in them will contribute differently to alkalinity.

Yan-Hong Jiang et al. used magnesium chloride (MgCl₂) as a modifier to produce biochar from different raw materials. By comparing the specific surface areas of 6 biochar samples, the surface area of cassava straw biochar was the largest, while Chinese fir straw Biochar has the smallest surface area. Related analysis shows that the adsorption capacity of NH₄⁺-N is related to the specific surface area; Therefore, the larger the specific surface area, the stronger the surface energy adsorption, resulting in a significant adsorption effect. Kizito S et al. showed that the fixed carbon content, conductivity and pH of wood biochar are higher than that of rice husk biochar, wood contains more cellulose and hemicellulose, and pyrolysis at high temperature (>500°C), the constituents are reduced to carbon, so the fixed carbon content in wood biochar is higher. Wang B et al. used biochar to adsorb nitrate nitrogen (NO₃⁻-N). The results showed that the NO₃⁻-N adsorption of corn stover biochar was the highest, 0.929 mg•g⁻¹, while larch biochar NO₃⁻-N has the lowest adsorption capacity of only 0.578 mg•g⁻¹. Li-Jun Wu and others found that corn stover and corn cob biochar showed good adsorption to nitrate nitrogen.

MP Sika et al. found that the adsorption process of NO₃⁻-N by biochar can be well fitted by the Freundlich equation. The FTIR and XPS spectra indicate that the oxygen-containing functional groups on the surface of biochar (-OH, -C=O, -O-) participate in the adsorption process. Combined with the distribution of surface elements of biochar, hydrogen bond formation and metal bridge bonding are the major mechanisms of biochar adsorption to NO₃⁻-N. The adsorption kinetics of NO₃⁻-N by biochar is mainly affected by the preparation materials and conditions, and most of them conform to pseudo-first-order kinetics or pseudo-second-order kinetic models.

Therefore, these antonymous observations of nitrogen adsorption may be caused by different physiochemical characteristics (e.g. chemical composition, molecular structure, surface area) of biochar, and at the same time, adsorption of different forms of nitrogen by biochar. The amount is different, and biochar promotes the adsorption of nitrogen.

2.2 Effect of biochar on soil phosphorus adsorption

Hale et al. found that biochar has no adsorption capacity for phosphorus, while the results of Chintala et al. are the opposite. Related studies have shown that the adsorption capacity of biochar for soil phosphorus is affected by many factors such as raw material properties, pyrolysis time and temperature. Ngatia et al. using a mixture of 10% biochar and 90% sand, the results showed that with the increase of pyrolysis temperature of biochar, the amount of P adsorption increased (P<0.0001), and the P effectiveness decreased (P<0.0001). However, the optimum phosphorus adsorption is a unique material for switchgrass, indicating phosphorus desorption between 200 and 550 °C. The order of phosphorus adsorption is Pueraria> switchgrass> Chinese tallow. With the increase of corn stover biochar addition, the adsorption rate constant of nitrogen and phosphorus in dark brown soil increased, the saturated adsorption capacity of nitrogen and phosphorus increased, and the fixation ability of nitrogen and phosphorus increased.

Therefore, the adsorption of phosphorus by biochar on soil is affected by many factors. The mechanism of adsorption of nitrogen and phosphorus by biochar is affected by many factors such as soil physical and chemical properties, organic matter content and biochar.
3. Effect of biochar on nitrogen and phosphorus conversion

3.1 Effect of biochar on nitrogen conversion
Biochar utilizes its pore structure to change the basic physical and chemical properties of the soil and affect the conversion of nitrogen in the soil. Nitrogen (N) is one of the most important elements of plant growth and productivity [50]. In particular, soil inorganic nitrogen (SIN) is an important nitrogen source for plants because plants absorb inorganic nitrogen directly through the rooting system [50]. Nitrogen conversion mainly includes nitrogen fixation, nitrogen mineralization, ammonia volatilization, nitrification and denitrification [51].

Adding biochar material to alkaline sandy soil can significantly reduce the volatilization of NH₃ by nitrification. This process can be enhanced by increasing the rate of application of biochar produced at higher pyrolysis temperatures. The largest of the switchgrass biochar produced at 800 °C (10.47 mg • g⁻¹), 400 °C leeches biochar (3.82 mg • g⁻¹) and bio-biosolids (43.29 mg • g⁻¹) NH₄⁺ retention capacity. At the same time, biochar was found to be limited (switchgrass and leeches) and negative (biosolids) to retain NO₃⁻ and NO₂⁻. It has been found that cation exchange capacity (CEC) and morphological characteristics (such as porosity) are the main factors affecting the adsorption of biochar NH₄⁺ [52]. Some studies have shown that NH₄⁺ and NO₃⁻ are quite adsorbed with biochar. For example, it has been reported that biochar produced at 600 °C in Brazilian pepper and peanut shells can significantly reduce NH₄⁺ (34.0-34.7%) and NO₃⁻ (14.0-34.0%) [53].

Considerable adsorption of NH₄⁺ was observed, while limited adsorption or even release of NO₃⁻ and NO₂⁻ [53] was found in all tested raw materials and biochar. The effect on soil nitrogen transformation was consistent. The soil ammonium nitrogen content decreased gradually, while the nitrate nitrogen content increased gradually. The NH₄⁺-N content of treated soil with 1%, 2% and 5% biochar decreased compared with the control. 13.3%–16.0%, 18.6%–28.5%, 51.1%–68.8%, NO₃⁻-N content increased by 6.4%–13.3%, 12.9%–19.7%, 18.4%–22.7% compared with the control, which may be related to the increase in ammonia volatilization caused by the increase in soil pH after the addition of biochar [54-55].

Feifei et al. [56] found that compared with no nitrogen fertilizer and nitrogen fertilizer treatment, the accumulation of NO₃⁻-N in biochar treated soil is higher, the main reason is the soil pH, the number of ammonia-oxidizing bacteria, NO₃⁻-N, microorganisms. Biomass carbon/nitrogen is significantly correlated.

3.2 Effect of biochar on phosphorus conversion
Phosphorus is one of the many elements necessary for plant growth and development [57-58], and it is also a major element in causing eutrophication of water bodies [59-60]. Phosphorus in soil is mainly composed of inorganic phosphorus and organic phosphorus [61-62]. The conversion of phosphorus by biochar is mainly through chemical action, and it is affected by many factors in this research process [63]. Studies have shown that the woody structure of biomass releases phosphate during carbonization and becomes a direct source of phosphorus in the soil as biochar is added to the soil [64]. The effect of biochar on the conversion of phosphorus in soil depends on the type of raw material and the preparation conditions of the biochar. The phosphorus content of biochar prepared from different materials is significantly different. For example, biochar made from rape straw and pea straw at the same temperature (350 °C), the phosphorus content after carbonization are 2.2, 16.6 g•kg⁻¹ [65]; biomass of the same material, total phosphorus and phosphorus content of biochar, inversely proportional to the carbonization temperature [66]. The addition of biochar can increase the solubility of phosphorus and promote the solubility of PO₄³⁻ in the soil. The application of biochar increases the available phosphorus content of the soil and increases the fertility of the soil [67-68].
with the control without biochar, TN the leaching loss was significantly reduced by 17.6%, 24.7%, 30.6% and 37.7%, respectively (P<0.05), and the leaching loss of TP was significantly reduced by 26.0%, 12.0%, 15.7% and 19.7%, respectively (P<0.05); The optimum amount of biochar added to soil TN and TP leaching was 8% and 2%, respectively. The application of biochar could effectively reduce the risk of leaching of TN and TP in the soil, and control nitrogen and phosphorus in vegetable soil.

Jihui et al. [70] have shown that the addition of the best-modified carbon in the soil can delay and reduce the leaching of nitrate nitrogen and available phosphorus. The addition amount is 2.5%, 5% and 10% with no added matter. Compared with the control [70], the leaching loss of nitrate nitrogen was significantly reduced by 20%, 43% and 59%, respectively (P < 0.05), and the leaching loss of available phosphorus was significantly reduced by 45%, 59% and 75%, respectively (P < 0.05), indicating that the addition of modified biochar in the soil can effectively reduce the risk of leaching of soil nitrate-nitrogen and available phosphorus. Yi et al. [71] have shown that the application of charcoal can significantly inhibit nitrogen leaching by 4%, 8% of biochar application decreased soil nitrogen leaching by 20.7% and 30%, respectively. When the ratio is 2%, the leaching of nitrogen has the opposite effect, and the soil nitrogen leaching amount is increased by 5.9%. Since biochar itself contains a large amount of nitrogen, it significantly increases the total nitrogen content in the soil, but has no effect on the content change of each soil layer, and reduces the content of alkali nitrogen in the soil.

Related literature reports that the effect of adding biochar on the phosphorus leaching loss of soil may depend on two aspects: on one hand, biochar itself has a strong adsorption and fixation effect on phosphate and soluble organic phosphorus, which is beneficial to the control of phosphorus. Leaching [72]; on the other hand, the application of biochar increases the pH of the soil significantly, which may increase the availability of phosphorus, which is beneficial to promote phosphorus leaching [73].

5. Conclusions and recommendations
In recent years, relevant scholars at home and abroad have made significant research on the biophysical properties of biochar to improve soil physical and chemical properties and promote the adsorption and transformation of nitrogen and phosphorus in soil. However, there are certain deficiencies in the risk research of agricultural non-point source pollution. Future research on biochar can strengthen the following points:

1) The current research on agricultural non-point source pollution is not comprehensive enough, the adsorption and transformation of nitrogen and phosphorus in soil Research can improve crop growth. For better research, the establishment of a bio-carbon model for nitrogen and phosphorus in the soil boundary needs further exploration.

2) The effect of biochar on nitrogen and phosphorus is mainly in the soil field at this stage, but it should also be strengthened in water applications. Authors must convince both peer reviewers and the editors of the scientific and technical merit of a paper; the standards of proof are higher when extraordinary or unexpected results are reported.

3) The use of biochar in agricultural research and water eutrophication research and treatment process, the current research is in the short term, focusing on the future, should have greater research and development potential.

References
[1] Ongley E D, Xiaolan Z and Tao Y Current status of agricultural and rural non-point source Pollution assessment in China 2010 J. Environmental Pollution 158 1159
[2] Lu H, Xie H Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China 2018 J. Journal of Environmental Management 207 134
[3] Shen Z, Liao Q, Hong Q and Yong W An overview of research on agricultural non-point source pollution modelling in China 2012 J. Separation & Purification Technology 84 104
[4] Xiong, Hanfeng The effect of agricultural non-point Source Pollution of nitrogen and phosphorus on Lake Eutrophication 2017 J. IOP Conference Series: Earth and Environmental Science 424 012061

[5] Sun B, Zhang L, Yang L, Zhang F, Norse D, Zhu Z Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures 2012 J. AMBIO 41 370

[6] Galloway J N, Townsend A R, Erisman J W, Bekunda M, Caiz, Freney J R, Martinelli L A, Martinelli S P and Sutton M A Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions 2008 J. Science 320 889

[7] Howarth V R W Nitrogen Limitation on Land and in the Sea: How Can It Occur? 1991 J. Biogeochemistry 13 87

[8] Guilhen S N, Mašek O, Ortiz N, Izidoro J C and Fungaro D A Pyrolytic temperature evaluation of macauba biochar for uranium adsorption from aqueous solutions 2019 J Biomass and Bioenergy 122 381

[9] Kateřina Břendová, Pavel Tlustoš, Jiřina Száková Habit J Biochar properties from different materials of plant origin 2012 J. European Chemical Bulletin

[10] Kizito S, Wu S, Kipkemoi Kirui W, Lei M, Lu Q, Bah H and Dong R Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry 2015 J. Science of The Total Environment 505 102

[11] Godlew ska, Schmidt H P, Yong S O and Oleszczuk P J B T Biochar for composting improvement and contaminants reduction. A review 2017 J. Bioresour Technol 246.

[12] Kameyama K, Miyamoto T, Shiono T and Shinogi Y Influence of Sugarcane Bagasse Biochar Application on Nitrate Leaching in Calcaric Dark Red Soil 2012 J. Journal of Environment Quality 41 1131

[13] Xincai Chena, d, Guangcun Chena, Linggui Chena, Yingxu Chena, Johannes Lehmannb, Murray B. McBridebar Absorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution 2011 J. Bioresource Technology 102 8877

[14] Lehmann J, Gaunt J, Rondon M Bio-char Sequestration in Terrestrial Ecosystems – A Review 2006 J. Mitigation and Adaptation Strategies for Global Change 11 395

[15] Peanut biochar as a stable adsorbent for removing NH4-N from wastewater

[16] Son E B, Poo K M, Mohamed H O, Choi Y J, Cho W C and Chae K J A novel approach to developing a reusable marine macro-algae adsorbent with chitosan and ferric oxide for simultaneous efficient heavy metal removal and easy magnetic separation 2018 J. Bioresource Technology 213730.

[17] Yu P, Xue Y, Gao F, Liu Z, Cheng X, Yang K Phosphorus Removal from Aqueous Solution by Pre- or Post-Modified Biochars Derived from Agricultural Residues 2016 J. Water Air & Soil Pollution 227 370.

[18] Tang J, Zhu W, Kookana R, Katayama A Characteristics of biochar and its application in remediation of contaminated soil 2013 J. Journal of Bioscience and Bioengineering 116 653

[19] Inyang M I, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullemannapallil P, Yong S O and Cao X Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal 2016 J. Critical Reviews in Environmental Science & Technology 46 00

[20] Gwienzi W, Chaukura N, Noubactep C and Muke F N D Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision 2017 J. Journal of Environmental Management 197 732

[21] Shimin Z, Rongzhan L, Xuesong G, and Xiao B Researches progress and application development of sewage sludge biochar2016 J. Chemical Industry & Engineering Progress

[22] Howarth V R W Nitrogen Limitation on Land and in the Sea: How Can It Occur? 1991 J. Biogeochemistry 13 87

[23] Prendergast-Miller M, Duvall M, Sohi S Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability 2013 J. European Journal of Soil Science 65 173

[24] Sika M P, Hardie A G Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil 2014 J. European Journal of Soil Science 65 113
[25] Gül S, Whalen J K Biochemical cycling of nitrogen and phosphorus in biochar-amended soils 2016 J. Soil Biology & Biochemistry 103 1
[26] Li F, Xie Y, Shi L and Wang J Adsorption of ammonia nitrogen in wastewater using rice husk derived biochar 2015 J. Chinese Journal of Environmental Engineering 9 1221
[27] Li H, Mahyoub S A A, Liao W, Xia S, Zhao H, Guo M and Ma P Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue 2017 J. Bioresource Technology 223 20
[28] Kim K H, Kim J Y, Cho T S and Choi J W Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida) 2012 J. Bioresource Technology 118
[29] Gui-Fang S, Hao-Hao L, Yu-Ying W, Yu-Xue L, Li-Li H E and Sheng-Mao Y Study on the adsorption properties of nitrogen by different biochars 2018 J. Journal of Agro-Environment Science
[30] Cao X, Harris W Properties of dairy-manure-derived biochar pertinent to its potential use in remediation 2010 J. Bioresource Technology 101 5222
[31] Yali W U, Hai X U and Yang G J Progress in nitrogen pollution research in Lake Taihu 2014 J. Journal of Lake Sciences 26 19
[32] Jiang Y H, Li A Y and Deng H Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks 2019 J Bioresource Technology 276 183
[33] Chu G, Zhao J, Huang Y, Zhou D, Liu Y, Wu M, Peng H, Zhao Q, Pan B and Steinberg C E W Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores 2018 J. Environmental Pollution 240 1
[34] Kizito S, Wu S, Kipkemoi Kirui W, Lei M, Lu Q, Bah H and Dong R Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry 2015 J. Science of The Total Environment 505 102
[35] Ahmedna M, Marshall W E, Rao R M Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties 2000 J. Bioresource Technology 71 113
[36] Al-Wabel M I, Al-Omran A, El-Naggar A H, Nadeem M and Usman A R A Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes 2013 J. Bioresource Technology 131 374
[37] Keiluweit M, Nico P S, Johnson M G and Markus K Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar) 2010 J. Environmental Science & Technology 44 1247
[38] Bing W, Shan-Shan Z, Zhi-Jia Q, Qiang G, Yu-jie L and Shu-xia L Effect of biochar on adsorption-desorption characteristics of nitrate nitrogen in black soil 2016 J. Journal of Agro-Environment Science
[39] Li-Jun W U, Wang C X, Zhang F and Cui J G The adsorption characters of inorganic nitrogen in aqueous solution by maize straw-and corn cob-derived biochars 2016 J. China Environmental Science
[40] Sika M P, Hardie A G Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil 2014 J. European Journal of Soil Science 65 113
[41] Demiral H, Gül G L Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse 2010 J. Bioresource Technology 101 1675
[42] Mizuta K, Matsumoto T, Hatate Y, Nishihara K and Nakanishi T Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal 2004 J. Bioresource Technology 95 255
[43] Joseph S D, Camps-Ardestain M, Lin Y An investigation into the reactions of biochar in soil 2010 J. Soil Research 48
[44] Jaafar N M, Clode P L and Abbott L K J P Soil Microbial Responses to Biochars Varying in Particle Size, Surface and Pore Properties 2015 J. Pedosphere 25 770
[45] Jindo K, Mizumoto H and Sawada Y Physical and chemical characterization of biochars derived from different agricultural residues 2014 J. Biogeoosciences 11 6613
[46] Hale S E, Alling V, Martinsen V, Mulder J, Breedveld G D and Cornelissen G The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars 2013 J. Chemosphere 91 1612

[47] Chintala R, Schumacher T E, Mcdonald L M, Clay D E, Malo D D, Papiernik S K, Clay S A and Julson J L Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures 2014 J. CLEAN - Soil, Air, Water 42 626

[48] Ngatia L W, Hsieh Y P, Nemours D, Fu R and Taylor R W Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption 2017 J. Chemosphere 180 201

[49] Lu Z, Li J, Wenlong L U, Conglong X U, Zhang W and Xie Z Structural Properties of Corn Straw Biochar and Characteristics of Its Adsorption for Nitrogen and Phosphate at Different Carbonization Temperature 2015 J. Journal of Jilin University(Science Edition) Geoderma 288 79

[50] Nguyen T T N, Xu C Y, Tahmasbian I, Che R, Xu Z, Zhou X, Wallace H M and Bai S H J G Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis 2017 J. Geoderma 288 79

[51] DeLuca T H, Gundale M J and MacKenzie M D Biochar effects on soil nutrient transformations 2015 J. Biochar for environmental management: science, technology and implementation 2 421

[52] Li S, Barreto V, Li R, Gang C and Hsieh Y P Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures 2018 J. Journal of Analytical and Applied Pyrolysis S0165237018300214

[53] Yao Y, Gao B, Zhang M, Inyang M and Zimmerman A R Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil 2012 J. Chemosphere 89 1467

[54] Cao X, Harris W Properties of dairy-manure-derived biochar pertinent to its potential use in remediation 2010 J. Bioresource Technology 101 5222

[55] Yu W, Gang X, Yingchu L and Shao H J A I E S Shao Effects of Biochar Amendment on Soil Physical and Chemical Properties: Current Status and Knowledge Gaps 2014 J. Advances in Earth Science 29 68

[56] He F F, Liang Y Q and Wu A P Effects of Different Biochar Contents on Nitrification of Acidic Vegetable Soils 2014 J Advances in Earth Science 34 2376 (in Chinese)

[57] Fan-Zhu Q U, Jun-Bao Y U, Chen X B A Review on Soil Phosphorus Fractionation Scheme on Wetlands 2012 J. Chinese Journal of Soil Science

[58] Wdowiak-Wróbel, Sylwia, Ma?Ek W Properties ofAstragalussp. microsymbionts and their putative role in plant growth promotion 2016 J. Archives of Microbiology 198 793

[59] Meinikmann K, Hupfer M, Lewandowski J Phosphorus in groundwater discharge – A potential source for lake eutrophication 2015 J. Journal of Hydrology 524 214

[60] Oliveira M, Machado A V, Nogueira R Phosphorus Removal from Eutrophic Waters with an Aluminium Hybrid Nanocomposite 2012 J. Water Air and Soil Pollution 223 4831

[61] Zamuner E C, Picone L I, Echeverria H E Organic and inorganic phosphorus in Mollisol soil under different tillage practices 2008 J. Soil & Tillage Research 99 131

[62] Linhua X, LÜ Jialong, Yipping Z, and Liu L Influence of long-term fertilization on phosphorus fertility of calcareous soil II.Inorganic and organic phosphorus 2004 J. Chinese Journal of Applied Ecology 15 790

[63] Yadav R S, Meena S C, Patel S I, K.I. Patel, M.S. Akhtar, B.K. Yadav and J. Panwar Bioavailability of Soil P for Plant Nutrition 2012. M Farming for Food and Water Security. Springer Netherlands

[64] Gundale M J, Deluca T H Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal 2006 J. Forest Ecology and Management 231 0

[65] Yuan J H, Xu R K, Qian W and Wang R H Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars 2011 J. Journal of Soils and Sediments 11 741
[66] Gundale M J, DeLuca T H Temperature and substrate influence the chemical properties of charcoal in the ponderosa pine/Douglas- fir ecosystem 2006 J Forest Ecology and management 231 86

[67] Yu L, Xiaorong Z, Guitong L, Lixin Z, Haibo M and Qimei L Effect of biochar on mineral nitrogen content in soils with different pH values 2014 J. Transactions of the Chinese Society of Agricultural Engineering

[68] Gui-Yu Z, Sen D, Shi-Jie L The Structural Characteristics of Biochar and Its Effects on Soil Available Nutrients and Humus Composition 2011 J. Journal of Agro-Environment Science

[69] Li Z, Wei G L Effects of different biochar additions on nitrogen and phosphorus leaching losses in soil 2016 J Journal of Eco-Environment 02 333

[70] Ji-Hui L, Guo-Hua L V, Wen-Bo B, Guo J Y, Song J Q and . Zhang Q Z J C J o A Effect of Modified Biochar on Soil Nitrate Nitrogen and Available Phosphorus Leaching 2012 J. Chinese Journal of Agrometeorology

[71] Zhang Y Effects of different exogenous substances on soil nitrogen and phosphorus leaching characteristics 2017 J Northwest A&F University (in chinese)

[72] Laird D, Fleming P, Wang B, Horton R and Karlen D J G Biochar impact on nutrient leaching from a Midwestern agricultural soil 2010 J. Geoderma 158 0

[73] Jiangzhou L, Qingzhong Z, Yilai L , Lou Y L, Zhang L M, Zhang-Liu D U, Liu X R and wang Y D Effects of biochar addition on nutrient leaching loss of typical tobacco-planting soils in Yunnan Province, China 2015 J. Journal of Agricultural Resources & Environment

Acknowledgments
This work was supported by the National Natural Science Foundation of China (31670467), the Science and Technology Research Program of Chongqing Municipal Education Commission (grant No.KJZD-K201801202), and the Chongqing Municipal Key Laboratory of Institutions of Higher Education (WEPKL2016LL-07).