Resveratrol alleviates the KCl salinity stress of *Malus hupenensis* Rhed. seedlings by regulating K⁺/Na⁺ homeostasis, osmotic adjustment, and Reactive Oxygen Species scavenging.

Authors: Tingting Li^{a,b,1}, Yuqi Li^{a,b,1}, Zhijuan Sun^c, Xiangli Xi^{a,b}, Guangli Sha^d, Changqing Ma^{a,b}, Yike Tian^{a,b}, Caihong Wang^{a,b}, Xiaodong Zheng^{a,b,*}

^aCollege of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
^bQingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
^cCollege of Life Science, Qingdao Agricultural University, Qingdao 266109, China
^dQingdao Academy of Agricultural Science, Qingdao 266109, China

¹ These authors contributed equally to this work.

Corresponding author

Name: Xiaodong Zheng

Address: No. 700 Changcheng Road, Qingdao Agricultural University, Qingdao 266109, China

Email: zheng.xiao.d@163.com

Tel/Fax: +86 0532 58950740 Mobile: +86-13305429068
Abstract

Background: Applying large amounts of potash fertilizer in apple orchards for high apple quality and yield aggravates KCl stress. As a phytoalexin, resveratrol (Res) participates in plant resistance to biotic stress. However, its role in relation to KCl stress have never been reported.

Results: *Malus hupenensis* is a widely used apple rootstock in China and is sensitive to KCl stress. In this study, 100 µmol Res was exogenously applied to alleviate KCl stress in *M. hupenensis* seedlings. The seedlings treated with Res had higher chlorophyll content and photosynthetic index than those without Res treatment. Moreover, the molecular and physiological mechanisms of Res in ion toxicity, osmotic stress, and oxidative damage induced by KCl stress were also investigated. First, exogenous Res affects K⁺/Na⁺ homeostasis in cytoplasm by enhancing K⁺ efflux outside the cells, inhibiting Na⁺ efflux and K⁺ absorption, and compartmentalizing K⁺ into vacuoles. Second, this compound could respond to osmotic stress by regulating the accumulation of proline. Lastly, this polyphenol functions as an antioxidant that strengthens the activities of POD and CAT thus eliminates the reactive oxygen species production induced by KCl stress.

Conclusions: Taken together, these results reveal that resveratrol alleviates the KCl salinity stress of *M. hupenensis* seedlings by regulating K⁺/Na⁺ homeostasis, osmotic adjustment, and reactive oxygen species scavenging.

Keywords: resveratrol, KCl stress, *Malus hupenensis*, ion homeostasis, oxidative stress
Soil salinity is one of the most harmful adverse factors restricting sustainable agricultural development [1]. Current research shows that approximately 19.5% of irrigated land is affected by salt stress [2], and this percentage is still increasing [3]. NaCl and KCl are soluble salts that seriously damage the growth of plants. Among the different plant responses to NaCl stress, the core process is to reject sodium (Na) and absorb potassium (K) to maintain Na+/K+ balance in the cytoplasm [4]. As an essential nutrient element in plants, K maintains the activities of various metabolic enzymes in cells [5]. However, recent research found that high K concentration could also induce salt stress and inhibit the growth of plants [6]. Apple (*Malus domestica* Borkh.) is one of the most productive and economically valuable horticultural crops worldwide. Proper soil conditions and nutrient balance are the key factors to guarantee yield and quality [7]. However, applying large amounts of potash fertilizer for high apple yield and quality has resulted in serious KCl stress. This phenomenon damages the soil structure and limits the sustainable development of apple orchards [8]. Most studies on salt stress mainly focused on the damage of NaCl stress; however, the molecular mechanism underlying the apple’s response to KCl stress remains unclear.

Salt stress includes osmotic stress and ion toxicity, the two primary reactions inducing the accumulation of reactive oxygen species (ROS) and indirectly leading to oxidative damage in plants. The presence of various stresses inhibits plant growth and energy metabolism, which results in premature aging and even death [9,10]. When plants experience KCl stress, excessive K+ is absorbed into the cytoplasm through electrochemical potential gradient due to the large amount of K+ in the external environment; this phenomenon breaks the original balance of cytoplasm Na+/K+ and generates ion toxicity [11]. For K+ balance in the cytoplasm, ion transporters regulate the ion balance [12]. The Stellar K+-Outward Rectifier (SKOR) is located in plasma membrane to transport K+ from the cytoplasm to outside the cell [13]. For K+ absorption, inward channels KAT1 and KAT2 mediate the K+ uptake into the cell. KAT1 and HAK5 are high-affinity transporters that regulate sufficient K+ uptake for
plant growth [14]. Except for K⁺ absorption and efflux, voltage-dependent K⁺ channel (TPKs) and vacuolar K⁺/H⁺ antiporters such as NHX1 and NHX2 are present in the tonoplast to facilitate K⁺ influx and efflux in the vacuoles [15]. Furthermore, the Na⁺, Ca²⁺, and Fe²⁺ transporters are involved in the balance of K⁺/Na⁺, Ca²⁺, and Fe²⁺ in the cytoplasm [16,17,18]. Excessive K⁺ concentration in the soil environment reduces the water potential of the soil, impedes the water uptake of the plants, and leads to osmotic stress [19]. Osmotic stress reduces the stomatal openings through the guard cells of plant leaves, decreases plant photosynthesis, and affects plant growth and development [20,21]. Plants regulate the osmotic potential by increasing the concentrations of osmolytes such as proline, glycine betaine, soluble sugar, and soluble protein [19]. Osmotic stress and ion toxicity destroy the selective permeability of the membrane, leading to large electrolyte extravasation and excessive ROS accumulation [22]. Excessive ROS concentrations cause lipid peroxidation, protein oxidation, nucleic acid damage, and enzyme inactivation and result in programmed cell death [23,24]. To cope with this oxidative damage, plants develop enzyme and non-enzyme systems to eliminate ROS [25]. Plant antioxidant enzymes mainly include superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the non-enzyme system mainly involves ascorbic acid, alkaloids, carotenoids, and flavonoids [25,26]. Plants can improve the activities of their antioxidant enzymes, accumulate non-enzyme scavengers to alleviate the oxidative damage [27], and induce the expression of ROS-related genes to eliminate ROS. Rice transcription factor OsMADS25 could ameliorate salt tolerance by directly binding to the promoter of glutathione transferase gene OsGST4 to improve its expression [28].

Applying exogenous substances effectively alleviates salt stress [29]. These substances are commonly divided into the following three categories: The first category is the plant growth regulators, such as jasmonate (JA), cytokinin (CTK), and abscisic acid (ABA) [4,30,31]. JA has a positive regulatory role in plant resistance to salt stress, and its exogenous application can improve the salt tolerance of Arabidopsis, tomatoes, and rice [32,33,34]. The second category is osmotic adjustment substances, such as proline, glycine betaine and sugars [35,36]. Exogenous
glycine betaine application can alleviate NaCl stress by regulating osmotic stress [36]. The third category contains substances that increase the antioxidant capacity of plants, such as NO, silicon, and melatonin [37,38,39]. Exogenous melatonin can eliminate ROS and enhance the NaCl stress resistance in horticultural crops such as grapes, apple, and cucumber [40,41]. However, most studies focused on NaCl stress; reports on substances that are effective against KCl stress are rare. As a member of the stilbene family of phenolic compounds, resveratrol (Res) has been identified in grapevines, red wine, sorghum bicolor, berries, and peanuts [42]. This antimicrobial phytoalexin contributes to plant resistance to biotic stress [43]. Grapevines could metabolize additional Res to protect themselves from Botrytis cinerea and Plasmopara viticola [44,45]. Gonzales et al. [46] reported that exogenously applying trans-resveratrol could improve postharvest resistance in fruits. Res can also help improve the resistance to Venturia inaequalis in apples [47]. In addition to acting as a phytoalexin, Res is involved in plant resistance to abiotic stress and plant response to ozone, wounding, or UV light [48]. In citrus seedlings, the external application of Res and α-Toc mediates salt adaptation [42]. However, the effect of Res on KCl stress and its molecular mechanism are still unclear, especially in woody plants such as apples.

In this study, the effects of different concentrations of exogenous Res on Malus hupehensis seedlings under KCl stress were investigated. The potential physiological and molecular mechanisms of Res on KCl stress through ion homeostasis, osmotic stress, and oxidative damage were also explored. In addition, the expression of K⁺ and Na⁺ transporter genes and key KCl-responsive genes under Res and KCl treatments was determined. The findings can enhance the application and examination of the physiological role of Res in apples under KCl stress.

Methods

Plant materials and growth conditions

Seeds of M. hupehensis after low temperature vernalization were planted in nutrient soil and sand with the ratio of 1:1. When the seedlings developed to four leaves, they were transplanted into a plastic pot, watered with Hoagland’s nutrient
solution every 3 days, and cultivated under a greenhouse environment with the temperature controlled at 25 ± 2 °C, humidity of 62 ± 2%, light intensity of 100 µmol·m²·s⁻¹ and photoperiod of 16/8 hours light/dark. After 10 days, the seedlings with similar growth status were selected for subsequent KCl and exogenous Res treatment.

KCl stress and exogenous Res treatment

A total of 180 *M. hupehensis* seedlings were randomly divided into five groups. Group I was treated with Hoagland’s nutrient solution as control, and groups II-V were treated with 50 mM KCl stress. In addition, groups III-V were sprayed with exogenous Res with the concentrations of 10, 100, and 200 μM, respectively; Res (Solarbio, Beijing, China) was dissolved in ethanol at a concentration of 10 mM and stored at -20 °C and sprayed every 2 days. After 15 days’ treatment, the wilting rate, plant height, fresh weight, and dry weight of the apple seedlings were measured. Each experiment was independently repeated three times.

Determination of chlorophyll content and photosynthetic parameters

Twenty apple seedlings from each group were randomly selected to determine the chlorophyll content and basic photosynthetic parameters after KCl stress and exogenous Res treatment for 15 days. Chlorophyll content was measured by SPAD-502 Plus (Konica Minolta, Tokyo, Japan). Photosynthesis rate, transpiration rate, and stomatal conductance were measured by CIRAS-3 portable photosynthetic apparatus (PP Systems, Amesbury, USA). Light intensity was set at 800 µmol·m⁻²·s⁻¹, humidity was 50%, and temperature was controlled at 23 °C.

Determination of ROS level and MDA content

Twenty apple seedlings were randomly selected from each group to detect the ROS levels including O₂⁻ and H₂O₂. O₂⁻ and H₂O₂ staining was conducted as described by Zheng et al. [40].

For MDA detection, 0.5 g of leaves from each group were ground in a pre-cooled
mortal with 5 ml of extract buffer and then centrifuged at 12000 rpm for 10 minutes.
MDA content was determined using a plant MDA extraction kit (Grace, Suzhou, China). Each experiment was independently repeated three times.

Determination of antioxidant enzyme activity
In brief, 0.5 g of fresh leaves were ground in 5 ml of extract buffer to determine the activity of antioxidant enzymes including SOD, POD and CAT in apple leaves. After centrifugation at 12000 rpm for 10 minutes, the activities were determined using SOD, POD, and CAT kits (Grace, Suzhou, China). Each experiment was independently repeated three times.

Determination of osmolyte content
After KCl stress and exogenous Res treatment for 15 days, 0.5 g of leaves from apple seedlings were used for the detection of osmolytes including proline, soluble sugar, and soluble protein. Osmolyte detection was conducted as described by Su et al. [29]. Each experiment was independently repeated three times.

Quantification of mineral elements
Apple seedlings were collected after 15 days of KCl stress and Res treatment and then cleaned with deionized water. The plants were dehydrated at 105 °C for 30 minutes and then baked at 80 °C for 72 h. Afterward, 0.5 g of dried seedlings were ground into powder and added with 12 ml of HNO₃ and HClO₄ (ratio of 5:1). After digestion, the solution was diluted with deionized water to 25 mL for the detection of mineral elements. The contents of macronutrients (K, Ca, Na, Mg, and P) and micronutrients (Fe, Mn, Zn, and Cu) were determined by inductively coupled plasma-optical emission spectrometry (PerkinElmer, Waltham, USA). Each experiment was independently repeated three times.

RNA extraction and quantitative real-time PCR (qPCR) analysis
After 15 days of KCl and Res treatments, the total RNA of different groups was
extracted using the RNAprep pure Plant Plus Kit (Tiangen, Beijing, China). Inverse
transcription and qPCR assay was conducted as described by Zheng et al. [49].
KCl-responsive genes in apple were screened from RNA-seq results (NCBI number is
PRJNA588566), and apple actin (accession number: MDP0000774288) was used as
the internal reference. The primers used for qPCR were designed by Primer 5
software and are shown in Table S1. Each experiment was independently repeated
three times.

Results
Effects of exogenous Res on the growth of apple seedlings under KCl stress
As shown in Figure S1, the seedlings were wilted and seriously damaged by 50
mM KCl stress. When different Res concentrations were applied to the KCl-stressed
apple seedlings, the growth condition improved (Fig. S1a). However, different
degrees of protection were observed when spraying varying Res concentrations under
KCl stress. When low (10 μM) and high concentrations (200 μM) were used, the
wilting rates of the apple seedlings were significantly decreased from 68.9% to 38.9%
and 41.1%, respectively (Fig. S1b), and the fresh weights were significantly increased
104% and 39.5%, respectively (Fig. S1c). However, the apple seedlings still exhibited
flaccid growth condition compared with those in group I. When 100 μM exogenous
Res applied, the wilting phenotype returned to normal growth condition even under
KCl stress (Fig. S1a). The wilting rate was significantly decreased to as low as 15.0%
compared with that of group II (Fig. 1b). In addition, the plant height, fresh weight,
and dry weight were all remarkable increased in the seedling sprayed with 100 μM
Res compared with that without exogenous Res under KCl stress for 15 days (Fig. 1).
The plant height decreased from 6.7 cm to 3.2 cm under KCl stress but recovered to
5.2 cm after 100 μM Res application (Fig. 1c). The fresh and dry weights also
increased 148% and 107%, respectively, compared with those of group II under KCl
stress for 15 days (Figs. 1d, e). These results indicated that exogenous Res could
protect the apple seedlings from KCl stress. The treatment of 100 μM exogenous Res
exhibited the best phenotype and therefore selected for further research.
Effects of exogenous Res on chlorophyll content and photosynthetic parameters under KCl stress

In consideration of the wilting phenotype on the leaves of apple seedlings under KCl stress, the chlorophyll content and photosynthetic parameters were measured. The chlorophyll content was significantly reduced in the plants after 15 days of KCl stress (2.75 SPAD) and was only one-fifth that of the control group (15.85 SPAD). When exogenous Res was sprayed, the chlorophyll content of apple seedlings under KCl stress significantly recovered to as high as 14.4 SPAD with no significant difference from that of the control group (Fig. 2a). A similar variation tendency was observed for the photosynthetic parameters including photosynthesis rate, transpiration rate, and stomatic conductance under KCl stress and exogenous Res treatment. All values were significantly inhibited under KCl stress but increased by exogenous Res application (Figs. 2b, c, and d), especially the photosynthesis rate. Under KCl stress, the photosynthesis rate decreased significantly from 19 µmol·m⁻²·s⁻¹ to 2.85 µmol·m⁻²·s⁻¹ but recovered to 14.35 µmol·m⁻²·s⁻¹ when exogenous Res was applied (Fig. 2b). These results indicated that exogenous Res could protect the chlorophyll level and photosynthetic system against KCl stress.

Effects of exogenous Res on the oxidative damage and antioxidant enzyme activity of apple seedlings under KCl stress

\(\cdot \)

\(\cdot \)

\(\cdot \)

O₂⁻ and H₂O₂ staining results revealed the leaves of apple seedlings were seriously damaged by KCl stress for 15 days. When exogenous Res was applied, the O₂⁻ and H₂O₂ levels were significantly decreased (Fig. 3a). The variation tendency of MDA content was similar to that of O₂⁻ and H₂O₂ under KCl and Res treatment. The MDA content under KCl stress (2.17 nmol/g) was more than twice than that of the control group (0.83 nmol/g) but was decreased as low as 1.28 nmol/g after exogenous Res was applied (Fig. 3b).

SOD, POD, and CAT activities were also detected. As shown in Figure 3c, SOD activity was not significantly changed under KCl stress and exogenous Res treatment.
Different from that of SOD, the POD and CAT activities under KCl stress were significantly decreased from 13.2 and 2813 Unit/g to 5.09 and 905 Unit/g, respectively. However, when exogenous Res was applied, the POD activity recovered to 16.3 Unit/g, which was as high as that under normal condition (Fig. 3d), and the CAT activity significantly increased to 2177 Unit/g (Fig. 3e).

Effects of exogenous Res on the electrolyte leakage and osmolytes of apple seedlings under KCl stress

Electrolyte leakage was detected after KCl stress and exogenous Res treatment for 15 days. After KCl stress, the electrolyte leakage increased significantly from 16.07% to 59.6% but decreased to as low as 28.9% when exogenous Res was applied (Fig. 4a).

Osmolyte content under KCl stress and exogenous Res treatment was also detected. As shown in Figure 4, the contents of proline, soluble sugar, and soluble protein were all significantly increased by KCl stress. However, when exogenous Res was applied, the content of proline was decreased from 25.2 μg/g to 17.3 μg/g, and those of soluble sugar and soluble protein content had no significant changes.

Effects of exogenous Res on the mineral elements of apple seedlings under KCl stress

The mineral elements of apple seedlings were measured after KCl stress and exogenous Res treatment for 15 days. For the macronutrients (Fig. 5a), K level was significantly increased from 9.06 mg/g to 27.25 mg/g under KCl stress but decreased to 16.34 mg/g when exogenous Res was applied. The variation tendency of Ca was similar to that of K. Different from those of K and Ca, the contents of Na had no significant changes under KCl stress. However, when exogenous Res was applied, Na increased by 56.9%. For the micronutrients (Fig. 5b), Mn were reduced by KCl stress but increased from 21.27 to 28.96 mg/kg, when exogenous Res was applied. The content of Fe had no significant changes under KCl stress but increased by 100.5% when exogenous Res was applied. As an important indicator of plant tolerance to salt
stress, K:Na ratio was detected before and after KCl stress and exogenous Res
treatment for 15 days. The K:Na ratio of the apple seedlings from the three groups had
no significant difference before the treatment. However, after KCl stress and
exogenous Res treatment for 15 days, the K:Na ratio was significantly increased 489%
under KCl stress but decreased from 5.3 to 2.4 after exogenous Res treatment (Fig.
5c).

Effects of exogenous Res on the expression levels of KCl-related genes in apple
seedlings under KCl stress

As shown in Figure 6, the expression levels of 18 candidate genes, which were
screened out from RNA-Seq data under KCl stress, were detected under KCl and
exogenous Res treatment. These genes were categorized into five groups. First, the six
K⁺ transporter genes including *MhSKOR, MhHAK1, MhKAT1, MhTPK1, MhNHX1,*
and *MhNHX2* had significantly increased expression under KCl stress. However,
those of *MhHAK1, MhKAT1, MhTPK1, MhNHX1,* and *MhNHX2* were
down-regulated, whereas that of *MhSKOR* was further up-regulated by exogenous Res
treatment (Fig. 6a). Second, three Na⁺ transporter genes including *MhCAX5,*
MhCHX15, and *MhSOS1* showed similar decreasing tendency under KCl stress and
exogenous Res treatment (Fig. 6b). Third, the expression of antioxidant enzyme genes
MhGPX6, MhPER65, and *MhpoxN1* was significantly induced by KCl stress, and
only that of *MhGPX6* was affected by exogenous Res treatment (Fig. 6c). Finally, the
expression of three selected transcription factors, namely, *MhERF017, MhMYB39,*
and *MhWRKY28* and three kinases, namely, *MhMAPK3, MhANP2,* and *MhGK* was
also changed under KCl and exogenous Res treatment. This finding indicated their
potential important functions under plant response to KCl stress and Res signaling
transduction pathway.

Discussion

K is an essential nutrient for plant growth and physiology [50] and has a
regulatory function in several biochemical and physiological processes, such as
enzyme activation, carbohydrate metabolism, and photosynthesis [5]. However, K⁺ at concentrations higher than 50 mM can induce salt stress and disrupt normal plant growth and metabolism [6]. *M. hupehensis* is one of the most popular rootstocks for apple production and cultivation [51], but unfortunately suffers from serious KCl stress due to the huge amount of potassium fertilizer applied to orchards. Introducing exogenous substances such as plant growth regulator, osmotic adjustment substances, and antioxidants effectively alleviates salt stress [52,53,54]. As an antimicrobial phytoalexin, Res alleviates NaCl stress in citrus seedlings [42]. However, the roles and molecular mechanism underlying Res activity on KCl stress have never been reported. In this study, the role of different Res concentrations was examined in *M. hupehensis* seedlings under KCl stress. The treatment of 100 µmol Res for KCl stress produced the lowest wilting rate and the highest fresh weight and therefore had better effect than 10 µmol (low concentration) and 200 µmol (high concentration) (Figs. 1, S1). Exogenous plant regulators usually affect plant growth and development in a dose-dependent manner. In *Malus baccata* seedlings, 600 µmol for irrigation or 200 µmol for spraying are selected as the best concentrations of melatonin to maximize its role under waterlogging stress [40]. The present result indicated that 100 µmol Res would be an appropriate concentration to alleviate KCl stress in *M. hupehensis* seedlings.

Under KCl stress, the direct injury to plants is called ion toxicity [55]. Large amounts of K⁺ flow into the cytoplasm and cause an imbalance between the cations. When the apple seedlings were under KCl stress, the K content was sharply induced, and that of Ca was also substantially increased (Fig. 5). Ca is an important secondary messenger, and maintaining its concentration in cytoplasm help regulates plant signal transduction pathways under salt stress [56]. Increasing the Ca content must be the stress response of the apple seedlings to balance K⁺/Ca²⁺ in the cytoplasm. When exogenous Res was applied, the K content was significantly decreased, whereas those of Na, Fe, and Mn increased (Fig. 5). These results indicated that Res could affect the ion transport under KCl stress. Fe and Mn play a key role in plant resistance to oxidative stress [17,57], and the increase in their contents after Res treatment appears
to be the response to oxidative damage caused by KCl stress. In plant responses to salt stress, the core process is the balance of K^+/Na^+ in the cytoplasm [58,59]. K^+/Na^+ ratio was significantly induced under KCl stress but decreased to the control when exogenous Res was applied (Fig. 5). The expression of K^+ transporter genes responding to KCl stress was analyzed from previous RNA-seq data (NCBI number: PRJNA588566) to explore the changes of K^+ content under KCl and Res treatment.

First, SKOR family, which is located in the plasma membrane, is mainly responsible for K^+ efflux from the cytoplasm to outside of the cell [13]. The results indicated that $MhSKOR$ expression was sharply induced by KCl stress and was even enhanced by exogenous Res application (Fig. 6). For K^+ absorption, the expression levels of $MhHAK1$ and $MhKAT1$ were induced by KCl stress due to the high K^+ concentration outside the cell. However, these values were inhibited by exogenous Res application under KCl stress (Fig. 6). These results indicated that exogenous Res could enhance K^+ efflux and inhibit K^+ influx under KCl stress. Second, for the compartmentalization of K^+ in cells, the two-pore channel TPK1 gene encodes the vacuolar K^+ conductance and plays a role in K^+ homeostasis [60]. Vacuolar K^+/H^+ antiporters NHX1 and NHX2 are present in the tonoplast to facilitate K^+ influx and efflux in the vacuoles [15]. In this study, the expression levels of $MhTPK1$, $MhNHX1$, and $MhNHX2$ were induced by KCl stress and inhibited by exogenous Res treatment but remained higher than the control level (Fig. 6). $MhTPK1$, $MhNHX1$, and $MhNHX2$ could function to compartmentalized K^+ into the vacuoles to balance K^+ homeostasis in the cytoplasm under KCl stress. When exogenous Res was applied, the expression of these genes was reduced to regulate K^+ influx and efflux in the vacuoles and ensure K^+ homeostasis in the cytoplasm and vacuoles. Therefore, exogenous Res could affect K^+ homeostasis in the cytoplasm by enhancing K^+ efflux outside the cells, inhibiting K^+ absorption, and compartmentalizing K^+ into vacuoles under KCl stress. For Na$^+$ transport under KCl stress, Na$^+$ balance is mainly the result of passive influx and active efflux [61]. Therefore, the expression of Na$^+$/H$^+$ and cation/H$^+$ antiporter genes was detected. The expression of $MhCHX15$ and $MhCAX5$, which expel Na$^+$ from cells, was significantly inhibited under KCl and Res treatment (Fig. 6). These results
indicated that exogenous Res could decrease the expel of Na⁺ out of the cells to ensure K⁺/Na⁺ homeostasis in the cytoplasm under KCl stress. In summary, exogenous Res could alleviate KCl stress-induced ion toxicity by regulating the transcription of K⁺, Na⁺, and Ca²⁺ transporters and maintaining the homeostasis of K⁺/Na⁺, K⁺/Ca²⁺, K⁺/Fe²⁺, and K⁺/Mn²⁺ in the cytoplasm.

Osmotic stress is another direct injury to plants caused by KCl stress [9]. The results indicated that electrolyte leakage was significantly induced by KCl stress but inhibited by exogenous Res treatment. This result was in agreement with a previous study, which stated that Res could protect plants from osmotic stress [62]. Accumulation of osmotic substances, such as proline, soluble sugar, and soluble protein, is a common defense mechanism of plants subjected to salinity [63]. In this work, the contents of proline, soluble sugar, and soluble protein were significantly induced by KCl stress (Fig. 4). Similar results of increased carbohydrates and proline concentration were observed in citrus leaves after NaCl treatment [42]. However, when exogenous Res was applied under KCl stress, the content of proline was significantly lower than that under KCl treatment only. Meanwhile, the contents of soluble sugar and soluble protein had no significant changes. Accordingly, these damages in KCl-treated seedlings were alleviated after Res treatment (Figs. 1 and 2), which might explain the low proline content (Fig. 4).

Oxidative damage is the subsequent injury caused by osmotic stress and ion toxicity [9]. In this study, the O₂⁻ and H₂O₂ contents were significantly higher under KCl stress than those in the control (Fig. 3). MDA content, which represents membrane lipid peroxidation damage, was also induced by KCl stress. Res can scavenge ROS and alleviate oxidative damage in cell systems [42]. The data showed that exogenous Res could eliminate O₂⁻ and H₂O₂ and decrease the MDA content under KCl stress in apple seedlings (Fig. 3). SOD, POD, and CAT are the three main antioxidant enzymes in enzymatic antioxidant systems [64,65]. The POD and CAT activities were inhibited by KCl stress, and the SOD activity had no change (Fig. 3). This finding was consistent with that under NaCl stress [42]. Although these enzymes are antioxidant, their activities could be inhibited by serious salt stress. When
exogenous Res was applied, the POD and CAT activities were significantly increased, and the SOD activity remained unchanged (Fig. 3). SOD is the major element in ROS scavenging [66]. Under NaCl stress and Res treatment, the SOD activity was only slightly induced, leading to low H$_2$O$_2$ production [59]. However, the SOD activity had no change under KCl and Res treatment. This finding explains the difference of SOD function under KCl and NaCl stresses. POD and CAT activities showed similar variation tendency under KCl and Res treatment, indicating their important role in ROS scavenging by Res under KCl stress. Furthermore, the expression levels of three ROS-related genes (MhGPX6, MhPER65, and MhpxoxN1) screened out from RNA-seq data under KCl stress were also detected under KCl and Res treatment. The results showed that the expression levels of peroxidase gene MdPER65 and peroxidase N1 gene MhpxoxN1 were significantly induced by KCl stress but showed no change under Res treatment. However, MhGPX6, the glutathione peroxidase gene, was significantly induced by KCl stress but inhibited by exogenous Res treatment (Fig. 6). Thus, exogenous Res could alleviate oxidative damage by regulating the expression of the glutathione peroxidase gene MhGPX6 and enhancing the enzyme activities of POD and CAT under KCl stress.

In addition to the ion transporters and antioxidant enzyme genes, the expression levels of kinases (MhMAPK3, MhANP2, and MhGK) and transcription factors (MhERF017, MhMYB39, MhWRKY28), screened out from RNA-Seq data under KCl stress were also detected. MAPK3 participates in the signaling pathway of salt stress in Arabidopsis, soybean, cucumber, and other plants [67,68]. ANP2 is a gene of the MAPKKK family associated with NPK1 and is an important kinase in abiotic stress in rice [69,70]. G-protein kinase plays an active role in plant response to salt stress [71]. In this study, the expression of MhMAPK3, MhANP2, and MhGK was induced by KCl stress but inhibited by Res treatment (Fig. 6). ERF, MYB, and WRKY transcription factors serve as connecting links between the upstream signal and the expression of functional genes under salt stress [72]. MYB46 remarkably improves the salt tolerance of Betula platyphylla [73], and MdWRKY28 is an important regulator in apple salt adaptation [74]. The data showed that the expression
levels of \textit{MhMYB39} and \textit{MhWRKY28} were induced by KCl stress and exogenous Res

treatment, indicating their important role in KCl and Res signaling transduction

pathway. Furthermore, the variation tendency of \textit{MhERF017} was similar to that of the

three kinase genes (\textit{MhMAPK3}, \textit{MhANP2}, and \textit{MhGK}) and Na+/K+ transporter genes

(\textit{MhHA5K}, \textit{MhKAT1}, \textit{MhTPK1}, \textit{MhNHX1}, and \textit{MhNHX2}), and the glutathione

peroxidase gene \textit{MhGPX6}, indicating their potential relationship. These kinases,

transcription factors, ion transporters, and Res-signaling genes might have

complicated regulation and interaction mechanisms. Future research will focus on this

relationship and the Res-signaling transduction pathway under abiotic stress.

Abbreviations

\textbf{ROS}: Reactive oxygen species \textbf{Res}: Resveratrol \textbf{MDA}: Malondialdehyde \textbf{SOD}:

Superoxide dismutase \textbf{POD}: Peroxidase \textbf{CAT}: Catalase \textbf{ABA}: Abscisic acid \textbf{JA}:

Jasmonate \textbf{CTK}: Cytokinin

Declarations

\textbf{Ethics approval and consent to participate}

Not applicable.

\textbf{Consent for publication}

Not applicable.

\textbf{Availability of data and material}

All data generated or analysed during this study are included in this published article

[and its supplementary information files].

\textbf{Competing interests}

The authors declare that the research was conducted in the absence of any commercial

or financial relationships that could be construed as a potential conflict of interest.

\textbf{Funding}

This study was supported by the National Natural Science Foundation of China

(31901992), China Agriculture Research System Foundation (Grant no. CARS-27),
Funds for Modern Agricultural Industry Technology System in Shandong Province, China (SDAIT-06-06), Shandong Provincial Natural Science Foundation, China (ZR2019BC038) and Breeding Plan of Shandong Provincial Qingchuang Research Team (2019).

Authors’ contributions
X. Z. and C. W. planned and designed the research. T. L., Y. L., X. X., Z. S., C. M., G. S., and Y. T performed experiments, conducted fieldwork and analyzed data etc. X. Z. and T. L. wrote the manuscript.

Acknowledgements
We thank the colleague who provided the seeds of *Malus hupenensis*, named Guangli Sha (Qingdao Academy of Agricultrual Science).

References
[1] D.G. Hu, Q.J. Ma, C.H. Sun, M.H. Sun, C.X. You, Y.J. Hao. Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salttolerance in apple and tomato. Physiol. Plantarum, 156 (2015), 201-214.
[2] M. Qadir, E. Quillé rou, V. Nangia, G. Murtaza, M. Singh, R.J. Thomas, P. Drechsel, A.D. Noble. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum., 38 (2014), 282-295.
[3] P. Shrivastava, R. Kumar. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi. J. Biol. Sci., 22 (2015), 123-131.
[4] J.K. Zhu. Abiotic stress signaling and responses in plants. Cell, 167 (2016), 313-324.
[5] J.K. Zhu, L.L. Xiong. Genetic analysis of salt tolerance in arabidopsis: Evidence for a critical role of potassium nutrition. Plant Cell, 10 (1998), 1181-1192.
[6] I. Hassini, N. Baenas, D.A. Moreno, M. Carvajal, Boughanmi, N. M.D.C.M. Ballesta. Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of *Brassica oleracea var. capitata* (white and red varieties) sprouts. J. Sci. Food Agric., 97 (2017), 2291-2299.
Salt stress triggers phosphorylation of the Arabidopsis vacuolar K⁺ channel TPK1 by

[7] J.P. An, J.F. Yao, R.R. Xu, C.X. You, X.F. Wang, Y.J. Hao. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. Physiol. Plantarum, 164 (2018), 279-289.

[8] X.M. Jia, Y.F. Zhu, R. Zhang, Z.L. Zhu, T. Zhao, L. Cheng, L.Y. Gao, B. Liu, X.Y. Zhang, Y.X. Wang. Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings. Plant Physiol. Bioch., 147 (2020), 77-90.

[9] R. Guo, L.X. Shi, Y.F. Yang. Germination, growth, osmotic adjustment and ionic balance of wheat in response to saline and alkaline stresses. Soil Sci. Plant Nutr., 55 (2009), 667-679.

[10] R. Guo, L.X. Shi, C.G. Yan, X.L. Zhong, F.X. Gu, Q. Liu, X. Xia, H.R. Li. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol., 17 (2017), 41.

[11] H.J. Park, W.Y. Kim, D.J. Yun. A new insight of salt stress signaling in plant. Mol. Cell, 39 (2016), 447-459.

[12] L. Li, B.G. Kim, Y.H. Cheong, G.K. Pandey, S. Luan. A Ca²⁺ signaling pathway regulates a K⁺ channel for low-K response in Arabidopsis. P. Natl. A. Sci., 103 (2006), 12625-12630.

[13] T.J. Sun, L. Fan, J. Yang, R.Z. Cao, C.Y. Yang, J. Zhang, D.M. Wang. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na⁺ efflux rate and K⁺/Na⁺ ratio in Arabidopsis. BMC Plant Biol., 19 (2019), 469.

[14] S. Zhao, M.L. Zhang, T.L. Ma, Y. Wang. Phosphorylation of ARF2 relieves its repression of transcription of the K⁺ transporter gene HAK5 in response to low potassium stress. Plant Cell, 28 (2016), 3005-3019.

[15] X. Zhu, T. Pan, X. Zhang, L. Fan, F.J. Quintero, H. Zhao, X. Su, X. Li, I. Villalta, I. Mendoza, J. Shen, L. Jiang, J.M. Pardo, Q.S. Qiu. K⁺ efflux antiporters 4, 5, and 6 mediate pH and K⁺ homeostasis in endomembrane compartments. Plant Physiol., 178 (2018), 1657-1678.

[16] A. Latz, N. Mehlmer, S. Zapf, T.D. Mueller, B. Wurzinger, B. Pfister, D. Becker. Salt stress triggers phosphorylation of the Arabidopsis vacuolar K⁺ channel TPK1 by
calcium-dependent protein kinases (CDPKs). Mol. Plant, 6 (2013), 1274-1289.

[17] F. Yuan, B.Y. Leng, B.S. Wang. Progress in studying salt secretion from the salt glands in recomshalophytes: How do plants secrete salt? Front. Plant Sci., 7 (2016), 977.

[18] L. Li, F.W. Wang, P.W. Yan, W. Jing, C.X. Zhang, J. Kudla, W.H. Zhang. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca^{2+} signals and confers salt tolerance to rice. New Phytol., 214 (2017), 1172-1187.

[19] Y. Yang, Y. Guo. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol., 217 (2018), 523-539.

[20] D.A. Meloni, M.A. Oliva, C.A. Martinez, J. Cambraia. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot., 49 (2003), 69-76.

[21] M.L.O. Campos, B.S. Hsie, J.A.A. Granja, R.M. Correia, J.S. Almeida-Cortez, M.F. Pompelli. Photosynthesis and antioxidant activity in Jatropha curcas L. under salt stress. Braz. J. Plant Physiol., 24 (2012), 55-67.

[22] V. Demidchik, D. Straltsova, S.S. Medvedev, G.A. Pozhvanov, A. Sokolik, V. Yurin. Stress-induced electrolyte leakage: the role of K^{+}-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot., 65 (2014), 1259-1270.

[23] M.J. Affenzeller, A. Dareshouri, A. Andosch, C. Lütt, U. Lütt-Meindl. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J. Exp. Bot., 60 (2009), PP. 939-954.

[24] G. Miller, N. Suzuki, S. Ciftci-Yilmaz, R. Mittler. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ., 33 (2010), 453-467.

[25] P. Ahmad, A.C. Jaleel, M.A. Salem, G. Nabi, S. Sharma. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol., 30 (2010), 161-175.

[26] D.X. Tan, L.C. Manchester, M.P. Terron, L.J. Flores, R.J. Reiter. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and
nitrogen species? J. Pineal. Res., 42 (2006), 28-42.

[27] H.S. Zhan, X.J. Nie, T. Zhang, S. Li, X.Y. Wang, X.H. Du, W. Tong, W.N. Song. Melatonin: A small molecule but important for salt stress tolerance in plants. Int. J. Mol. Sci., 20 (2019), 709.

[28] N. Xu, Y.L. Chu, H.L. Chen, X.X. Li, Q. Wu, L. Jin, G.X. Wang, J.L. Huang. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging. PLoS Genet., 14 (2018), e1007662.

[29] Q.F. Su, X.D. Zheng, Y.K. Tian, C.H. Wang. Exogenous brassinolide alleviates salt stress in *Malus hupehensis* Rehd. by regulating the transcription of NHX-Type Na⁺(K⁺)/H⁺ antiporters. Front. Plant Sci., 11 (2020), 38.

[30] A. Moons, E. Prinsen, G. Bauw, M.V. Monyagu. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell, 6 (1997), 2243-2259.

[31] J.X. Wu, J.Y. Cao, M. Su, G.Z. Feng, Y.H. Xu, H.L. Yi. Genome-wide comprehensive analysis of transcriptomes and small RNAs offers insights into the molecular mechanism of alkaline stress tolerance in a citrus rootstock. Hortic. Res., 6 (2019), 33-51.

[32] J.O. Garcia-Abellan, N. Fernandez-Garcia, C. Lopez-Berenguer, I. Egea, F.B. Flores, T. Angosto, J. Capel, R. Lozano, B. Pineda, V. Moreno, E. Olmos, M.C. Bolarin. The tomato *res* mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity. Physiol. Plantarum, 155 (2015), 296-314.

[33] K. Ken-Ichi, H. Kenji, H. Saki, T. Yosuke, O. Daisuke, I. Hiroaki, I. Yasuhiro, T. Ryo, S. Takeshi, U. Minoru, H. Tsukah, T. Shin. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice. Plant Cell Physiol., 56 (2015), 779-789.

[34] C.E. Valenzuela, O. Acevedo-Acevedo, G.S. Miranda, P. Vergara-Barrors, L. Holuigue, C.R. Figueroa, P.M. Figueroa. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in arabidopsis
primary root. J. Exp. Bot., 14 (2016), 4209-4220.

[35] R.R. Finkelstein, T.J. Lynch. Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol., 122 (2000), 1179-1186.

[36] X. Yang, C. Lu. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol. Plantarum, 124 (2005), 343-352.

[37] J.L. Hu, H.J. Yang, J.Y. Mu, T.C. Lu, J.L. Peng, X. Deng, Z.S. Kong, S.L. Bao, X.F. Cao, J.R. Zuo. Nitric oxide regulates protein methylation during stress responses in plants. Mol. Cell, 67 (2017), 702-710.

[38] L. Zeng, J.S. Cai, J.J. Li, Q.Y. Lu, C.S. Li, G.P. Fu, X.K. Zhang, H.Q. Ma, Q.Y. Liu, X.L. Zou, Y. Cheng. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. J. Integ., 17 (2018), 328-335.

[39] Y.X. Zhu, H.J. Gong, J.L. Yin. Role of silicon in mediating salt tolerance in plants: A review. Plants, 8 (2019), 147.

[40] X.D. Zheng, J.Z. Zhou, D.X. Tan, N. Wang, L. Wang, D.Q. Shan, J. Kong. Melatonin improves waterlogging tolerance of Malus baccata (Linn.) Borkh. seedlings by maintaining aerobic respiration, photosynthesis and ROS migration. Front. Plant Sci., 8 (2017), 483.

[41] L.L. Xu, G.Q. Xiang, Q.H. Sun, Y. Ni, Y.X. Yao. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hortic. Res., 6 (2019), 114.

[42] Z. Kostopoulou, I. Therios, A. Molassiotis. Resveratrol and its combination with α-tocopherol mediate salt adaptation in citrus seedlings. Plant Physiol. Bioch., 78 (2014), 1-9.

[43] K.V. Kiselev, O.A. Aleynova, V.P. Grigorchuk, A.S. Dubrovina. Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta, 245 (2017), 151-159.

[44] P. Langcake, C.A. Cornford, R.J. Pryce. Identification of pterostilbene as a phytoalexin from Vitis vinifera leaves. Phytochemistry, 18 (1979), 1025-1027.

[45] K.V. Kiselev, A.S. Dubrovina, V.P. Bulgakov. Phenylalanine ammonia-lyase and
stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. Appl. Microbiol. Bio., 82 (2009), 647-655.

[46] A. Gonzalez Ureña, J.M. Orea, C. Montero, J.B. Jiménez, J.L. González, A. Sánchez, M. Dorado. Improving postharvest resistance in fruits by external application of trans-resveratrol. J. Agr. Food Chem., 51 (2003), 82-89.

[47] B. Heuer. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci., 165 (2003), 693-699.

[48] B. Grimmig, M.N. Gonzalez-Perez, G. Leubner-Metzger, R. Vögeli-Lange, F.J.R. Meins, R. Hain, J. Penuelas, B. Heidenreich, C. Langebartels, D. Ernst, H.J.R. Sandermann. Ozone-induced gene expression occurs via ethylene-dependent and -independent signaling. Plant Mol. Biol., 51 (2003), 599-607.

[49] X.D. Zheng, Y.X. Xiao, Y.K. Tian, S.L. Yang, C.H. Wang. PcDWF1, a pear brassinosteroid biosynthetic gene homologous to AtDWARF1, affected the vegetative and reproductive growth of plants. BMC Plant Biol., 20 (2020), 109.

[50] M. Hasanuzzaman, M.H.M.B. Bhuyan, N. Kamrun, M.S. Hossain, J.A. Mahmud, M.S. Hossen, A.C. Abdul, Mounita, M. Fujita. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8 (2018), 31.

[51] H.Q. Yang, K.X. Duan, W.W. Zhang. Biology and physiology of Malus hupehensis for the apogamic plant resource. Acta. Hortic., 769 (2008), 441-447.

[52] C. Li, P. Wang, Z.W. Wei, D. Liang, C.H. Liu, L.H. Yin, D.F. Jia, M.Y. Fu, F.W. Ma. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal. Res., 53 (2012), 298-306.

[53] Z. Chen, P.X. Zhao, Z.Q. Miao, G.F. Qi, Z. Wang, Y. Yuan, N. Ahmad, M.J. Cao, R. Hell, M. Wirtz, C.B. Xiang. SULTR3s function in chloroplast sulfate uptake and affect ABA biosynthesis and the stress response. Plant Physiol., 180 (2019), 593-604.

[54] A.K.M. Hamani, G.S. Wang, M.K. Soothar, X.J. Shen, Y. Gao, R.J. Qiu, F. Mehmood. Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biol., 20 (2020), 434.

[55] A.E. El-Zawily, M. Meleha, M. El-Sawy, E. El-Attar, Y. Bayoumi, T. Alshaal.
Application of magnetic field improves growth, yield and fruit quality of tomato irrigated alternatively by fresh and agricultural drainage water. Ecotoxicol. Environ. Saf., 181 (2019), 248-254.

[56] F. Ding, M. Chen, N. Sui, B.S. Wang. Ca^{2+} significantly enhanced development and salt-secretion rate of salt glands of *Limonium bicolor* under NaCl treatment. S. Afr. J. Bot., 76 (2010), 95-101.

[57] S.K. Kohli, K. Khanna, R. Bhardwaj, E.F.A. Allah, P. Ahmad, F.J. Corpsa. Assessment of subcellular ROS and NO metabolism in higher plants: Multifunctional Signaling Molecules. Antioxidants-Basel, 8 (2019), 641.

[58] M. Ashraf, P.J.C. Harris. Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166 (2004), 3-16.

[59] M. Hasanuzzaman, M.M. Alam, A. Rahman, M. Hasanuzzaman, K. Nahar, M. Fujita. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (*Oryza sativa* L.) varieties. Biomed. Res. Int., 2014 (2014), 757219.

[60] S.F. Wang, M.Y. Song, J.X. Guo, Y. Huang, F.F. Zhang, C. Xu, Y.H. Xiao, L.S. Zhang. The potassium channel *FaTPK1* plays a critical role in fruit quality formation in strawberry (*Fragaria × ananassa*). Plant Biotechnol. J., 16 (2018), 737-748.

[61] J.K. Zhu. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol., 6 (2003), 441-445.

[62] M.I. Fernández-Mar, R. Mateos, M.C. García-Parrilla, B. Puertas, E. Cantos-Villar. Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: A review. Food Chem., 130 (2012), 797-813.

[63] R. Munns, M. Tester. Mechanisms of salinity tolerance. Annu Rev Plant Biol., 59 (2008), 651-681.

[64] D.X. Tan, R. Hardeband, L.C. Manchester, A. Korkmaz, S. Ma, S. Rosales-Corral, R.J. Reiter. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot., 63 (2012), 577-597.

[65] K.A.A. Abdelaal, Y.M. Hafez, M.M. El-Afy, D.S. Tantawy, T. Alshaal. Effect of
some osmoregulators on photosynthesis, lipid peroxidation, antioxidative capacity and productivity of barley (*Hordeum vulgare* L.) under water deficit stress. Environ. Sci. Pollut. Res. Int., 25 (2018), 30199-30211.

[66] S. Gupta, Y. Dong, P.P. Dijkwel, B. Mueller-Roeber, T.S. Gechev. Genome-wide analysis of ROS antioxidant genes in resurrection species suggest an involvement of distinct ROS detoxification systems during desiccation. Int. J. Mol. Sci., 20 (2019), 3101.

[67] J.H. Im, H. Lee, J. Kim, H.B. Kim, C.S. An. Soybean MAPK, GMK1 is dually regulated by phosphatidic acid and hydrogen peroxide and translocated to nucleus during salt stress. Mol. Cell, 34 (2012), 271-278.

[68] J. Liu, X.M. Wang, L. Yang, W.B. Nan, M.J. Ruan, Y.R. Bi. Involvement of active MKK9-MAPK3/MAPK6 in increasing respiration in salt-treated Arabidopsis callus. Protoplasma, 257 (2020), 965-977.

[69] J. Ning, S.Y. Liu, H.H. Hu, L.Z. Xiong. Systematic analysis of *NPK1*-like genes in rice reveals a stress-inducible gene cluster co-localized with a quantitative trait locus of drought resistance. Mol. Genet. Genomics, 280 (2008), 535-546.

[70] K.H. Lian, F. Gao, T.J. Sun, R. van Wersch, K. Ao, Q. Kong, Y. Nitta, D. Wu, P. Krysan, Y.L. Zhang. MKK6 functions in two parallel MAP kinase cascades in immune signaling. Plant Physiol., 178 (2018), 1284-1295.

[71] Q.W. Shen, X.Q. Zhan, P. Yang, J. Li, J. Chen, B. Tang, X.M. Wang, Y.Y. Hong. Dual activities of plant cGMP-dependent protein kinase and its roles in gibberellin signaling and salt stress. Plant Cell, 31 (2019), 3073-3091.

[72] M. Wang, W.S. Dai, J. Du, R.H. Ming, B. Dahro, J.H. Liu. ERF109 of trifoliate orange (*Poncirus trifoliata* (L.) Raf.) contributes to cold tolerance by directly regulating expression of *Prx1* involved in antioxidative process. Plant Biotechnol. J., 17 (2019), 1316-1332.

[73] H.Y. Guo, Y.C. Wang, L.Q. Wang, P. Hu, Y.M. Wang, Y.Y. Jia, C.R. Zhang, Y. Zhang, Y.M. Zhang, C. Wang, C.P. Yang. Expression of the MYB transcription factor gene *BplMYB46* affects abiotic stress tolerance and secondary cell wall deposition in *Betula platyphylla*. Plant Biotechnol. J., 15 (2017), 107-121.
[74] Q.L. Dong, W.Q. Zheng, D.Y. Duan, D. Huang, Q. Wang, C.H. Liu, C. Li, X.Q. Gong, C.Y. Li, K. Mao, F.W. Ma. *MdWRKY30*, a group Ila WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and *Arabidopsis* seedlings. Plant Sci, 299 (2020), 110611.

Figure legends

Figure 1 Phenotypes of *Malus hupehensis* seedlings treated with 50 mM KCl stress and exogenous 100 μmol Res on day 0 and day 15 (a). Effect of Res on wilting rate (b), plant height (c), fresh weight (d) and dry weight (e) of apple seedlings after KCl stress for 15 days. Bar (a) represents 4.0 cm. The data represent the mean ± SD of biological replicates. Different lowercase letters indicate significant differences, according to Fisher’s LSD (*P* <0.05).

Figure 2 Effects of Res treatment on chlorophyll content (a), photosynthesis rate (b), transpiration rate (c) and stomatic conductance (d) of apple seedlings under KCl stress. The data represent the mean ± SD of biological replicates. Different lowercase letters indicate significant differences, according to Fisher’s LSD (*P*<0.05).

Figure 3 Effects of Res treatment on *H₂O₂*, *O₂*⁻ (a) and malondialdehyde (MDA) content (b), superoxide dismutase (SOD) activity (c), peroxidase (POD) activity (d) and catalase (CAT) activity (e) under KCl stress. Bar (a) represents 1.0 cm. The data represent the mean ± SD of biological replicates. Different lowercase letters indicate significant differences, according to Fisher’s LSD (*P*<0.05).

Figure 4 Effects of Res treatment on electrolyte leakage (a), proline content (b), soluble protein content (c) and soluble sugar content (d) under KCl stress. The data represent the mean ± SD of biological replicates. Different lowercase letters indicate significant differences, according to Fisher’s LSD (*P*<0.05).
Figure 5 Effects of exogenous Res treatment on macronutrients content (a), micronutrients content (b) and K:Na ratio (c) under KCl stress. The data represent the mean ± SD of biological replicates. Different lowercase letters indicate significant differences, according to Fisher’s LSD ($P<0.05$).

Figure 6 Eighteen candidate genes are divided into K$^+$ transporters ($MhSKOR$, $MhHAK5$, $MhAKT1$, $MhTPK1$, $MhNHX1$, and $MhNHX2$), Na$^+$ transporters ($MhCAX5$, $MhCHX15$, and $MhSOS1$), antioxidant enzymes ($MhGPX6$, $MhPER65$, and $MhpoxN1$), transcription factors ($MhERF017$, $MhMYB39$, and $MhWRKY28$), and kinase ($MhMAPK3$, $MhANP2$, and $MhGK$). The expression of the 18 candidate genes under KCl stress and exogenous Res treatment for 15 days. The data represent the mean ± SD of biological replicates. Different lowercase letters indicate significant differences, according to Fisher’s LSD ($P<0.05$).