Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The screening value of RT-LAMP and RT-PCR in the diagnosis of COVID-19: systematic review and meta-analysis

Ruiyang Pu a, Sha Liu a, Xiaoyu Ren a, Dian Shi a, Yupei Ba b, Yanbei Huo b, Wenling Zhang b, Lingling Ma a, Yanyan Liu b, Yan Yang a, Ning Cheng a,∗

a School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
b Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, PR China

ABSTRACT

The purpose of this systematic review is to evaluate the test accuracy of reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and reverse transcription-PCR (RT-PCR) for the diagnosis of coronavirus disease 2019 (COVID-19). We comprehensively searched PUBMED, Web of Science, the Cochrane Library, the Chinese National Knowledge Infrastructure, and the Chinese Biomedical Literature Service System until September 1, 2021. We included clinical studies assessing the sensitivity and specificity of RT-PCR and RT-LAMP using respiratory samples. Thirty-three studies were included with 9360 suspected cases of SARS-CoV-2 infection. The RT-PCR or other comprehensive diagnostic method was defined as the reference method. The results showed that the overall pooled sensitivity of RT-PCR and RT-LAMP was 0.96 (95% CI, 0.93–0.98) and 0.92 (95% CI, 0.85–0.96), respectively. RT-PCR and RT-LAMP had a 0.06 (95% CI, 0.04–0.08) and 0.12 (95% CI, 0.06–0.16) false-negative rates (FNR), respectively. Moreover, subgroup analysis showed mixed sampling and multiple target gene diagnosis methods had better diagnostic value than single-site sampling and a single target gene. The sensitivity and FNR were also significantly affected by the reference method. Comparing RT-LAMP with established suboptimal RT-PCR may exaggerate the performance of RT-LAMP. RT-PCR and RT-LAMP showed high values in the diagnosis of COVID-19, but there was still a FNR of about 6%–12%.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (CoVID19) pandemic. The control and management of this pandemic have faced unprecedented challenges (Wiersinga et al., 2020). Isolating infected individuals, contact tracing, extensive diagnostic testing, and vaccinations are crucial to limit this infection (Rossetti et al., 2021). Accurate diagnosis is the basis to ensure the effective implementation of the above strategies.

Reverse transcription-PCR (RT-PCR) and reverse-transcription loop-mediated isothermal amplification (RT-LAMP) are two widespread testing methods, and each has distinct advantages. Evidence to date indicates that RT-PCR is considered the most sensitive method for the detection and quantification of SARS–COV-2 nucleic acid (Walsh et al., 2020). RT-LAMP is a reliable and rapid screening test, which can be used in the field or under non-laboratory conditions (Ganguli, 2020). However, there are analytical and interpretation issues with the molecular detection results of SARS–COV-2 infection. The false negative results of molecular tests would need detailed analysis (Bohn et al., 2020; Xiao et al., 2020).

Most clinical studies assessed agreement between different nucleic-acid amplification tests (NAATs) to evaluate the diagnostic accuracy. Generally, the existing PCR is the reference standard, and the new method is the index test. Although PCR is the current widely accepted reference test for detecting SARS–COV-2, it does not have excellent sensitivity and specificity (Ducray et al., 2020; Ridgway et al., 2020; Zhifeng et al., 2020). Therefore, a meta-analysis based on clinical research should consider the influence of references on the analysis and interpretation of results.

At present, some systematic analyses have evaluated the diagnostic accuracy of nucleic acid detection methods in COVID-19 diagnosis, but the sensitivity observed in various studies is inconsistent. A recent meta-analysis showed that the sensitivity of RT-PCR for detection of

* Corresponding author.
E-mail addresses: chengn@lzu.edu.cn, ninch126@126.com (N. Cheng).

https://doi.org/10.1016/j.jviromet.2021.114392
Received 28 May 2021; Received in revised form 28 November 2021; Accepted 28 November 2021
Available online 29 November 2021
0166-0934/© 2021 Elsevier B.V. All rights reserved.
SARS–COV-2 in nasopharyngeal swabs (NPS) and sputum samples was 73.3 % and 97.2 %, respectively (Boger et al., 2021). Mustafa et al. found that the pooled sensitivity of NAATs evaluating SARS–COV-2 was 90.4 %. Furthermore, they argue that since there is no gold standard for diagnosing coronavirus infection, any existing NAATs can be used as a reference standard (Mustafa Hellow et al., 2021). A systematic review showed that the sensitivity of RT-LAMP was 94 % in purified RNA from COVID-19 patient samples and 78 % in crude samples. And RT-LAMP was prone to false-negative results in low viral load samples (Subsoontorn et al., 2020). Although these studies reported the performance of molecular detection in SARS–COV-2 infection, few of them consider the impact of inconsistent reference standards on the results. The reference method is essential for evaluating the performance of the detection method. Comparing the new suboptimal analysis with the established but suboptimal analysis may lead to untrue conclusions about the performance of the new way (Bohn et al., 2020).

Moreover, in these meta-analyses mentioned above, few studies have explored the significance of false-negative rate (FNR) in diagnosing SARS–COV-2 infection in detail. False-positive can result in unnecessary case isolation and further testing. However, FNR may present delays with prompt isolation and treatment, leading to the spread of infection (Xiao et al., 2020). The FNR might be related to the current outbreaks growing and epidemic rebound of SARS–COV-2. Taking the epidemic situation in Shijiazhuang, China, as an example, as of January 23, 2021, three rounds of mass testing have been carried out, with a total of more than 30 million tests in 17 days. Patients with a positive result in the three tests were 354, 247, and 30, respectively. Eighty percent of them are from quarantine sites (Li, 2021). Besides the low viral load and extended incubation period, the FNR has become another important factor of concern (Kucirka et al., 2020; Walsh et al., 2020). Therefore, to put nucleic acid testing in perspective, clearly understanding the diagnostic accuracy of different detection methods is essential for diagnosis, prevention, and control of this pandemic.

This study evaluated the diagnostic accuracy of RT-PCR and RT-LAMP and the potential effects of reference methods on diagnostic accuracy. Detailed subgroup analyses, FNR, and false positive rates (FPR) were included in this meta-analysis.

2. Method

2.1. Search strategy

We searched PubMed, the Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), and the Chinese Bio-Medical Literature Service System (Sino Med) without limits of language (the literature time limit is updated September 1, 2021). The search strategy included the following search string: “(COVID-19 OR novel coronavirus disease OR SARS–COV-2) AND (laboratory molecular test OR nucleic acid amplification tests OR RT-PCR OR RT-LAMP) AND (diagnostic)”. We performed manual searches in the references lists.

2.2. Inclusion and exclusion criteria

We included clinical studies assessing the diagnostic accuracy of RT-PCR and RT-LAMP using respiratory samples. Sensitivity (Se) and specificity (Sp) were quantitatively reported. We included both case-control and prospective cohort studies published until September 1, 2021. Animal or in-vitro studies and case reports were excluded.

Included: (i) Diseases: COVID-19 infection or suspected cases; (ii) Type of study: Diagnostic accuracy test or comparison between different nucleic acid assay; prospective study or retrospective study; (iii) Index test methods: RT-LAMP and RT-PCR; (iv) Reference standard: RT-PCR (currently recognized as the gold standard for detection) or the other methods (such as clinical diagnosis, sequencing, a combined result of different RT-PCR assays).

Excluded: (i) Diagnostic tests for other diseases; (ii) The accuracy study of chest computed tomography (CT), serum antibody detection, and other non-nucleic acid detection methods in COVID-19 diagnosis; (iii) Case reports, in vitro cell experiments, and animal experiments; (iv) Incomplete data or the inability to extract relevant data; (v) The studies that are missing in patient selection and reference method reporting were excluded.

2.3. Data collection and quality assessment

The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the quality, the potential for bias, and the applicability of each selected study. Two review authors (DS and YB) independently screened studies and resolved disagreements with a third review author (YH). The QUADAS-2 tool evaluates four domains of bias: patient selection, index test, reference test, and flow and timing of testing. Studies considered to have a high risk of bias were not included in the meta-analysis. Two review authors (RP and YY) independently extracted study characteristics and 2×2 diagnostic-accuracy table data, which were checked by two authors (LM and SL).

2.4. Statistical analyses

Spearman correlation coefficient between the logarithm of sensitivity (Se) and the logarithm of (1-Sp) was calculated to detect the threshold effect. Generally, a strong positive correlation indicates the existence of a threshold effect (Leeflang, 2014). Deek’s Funnel graph method was used to detect publication bias, and the result was determined by funnel plot and P value of the slope coefficient.

We performed an analysis of diagnostic trials based on the extracted data of true positive (TP), false positive (FP), false negative (FN), true negative (TN). The bivariate random-effects model of Midas command of Stata 12.0 software was used. The diagnostic performance of RT-PCR and RT-LAMP was shown in terms of summary sensitivity (Se), specificity (Sp), likelihood ratio (LR), and summary receiver operating curve (SROC), with a 95 % confidence interval (CI). The results were visually represented using forest plots.

The FNR and FPR were calculated according to the formula:

$$FNR = \frac{FN}{FN + TP}; \quad FPR = \frac{FP}{FP + TN}$$

We obtained summary estimates of FNR and FPR by using random-effects meta-analysis. SROC curves were built to describe the relationship between test sensitivity and specificity. An area under the SROC close to 1 indicated an excellent diagnostic performance of the test. All analyses were performed using STATA 12.0.

This meta-analysis evaluated diagnostic test accuracy indexes, including authenticity evaluation indexes (Se, Sp, FNR, FPR) and comprehensive evaluation indexes (LR and SROC curves). Results were presented as summary values (95 % CI). The heterogeneity of the studies was established by I2, with I$^2 > 50$ % considered moderate heterogeneity and I$^2 > 75$ % defined as high heterogeneity. Our study conducted subgroup analyses to explore the possible sources of heterogeneity. Meanwhile, we assumed the prevalence of 10 %, 20 %, and 30 % of the population, respectively, to calculate the positive predictive value (PPV) and negative predictive value (NPV) under different prevalence rates.

We hypothesized that the population prevalence (P) of COVID-19 was 10 %, 20 %, and 30 %, respectively. The PPV and the NPV were calculated as follow:

$$PPV = \frac{Se \times P}{Se \times P + (1-P) \times Sp}; \quad NPV = \frac{Sp \times (1-P)}{Sp \times (1-P) + (1-Se) \times P}$$

3. Result

3.1. Search result

A total of 2584 non-duplicated studies were obtained, and 2274
studies were excluded at the title and abstract level. Finally, 145 full-text articles were evaluated. Through further screening and evaluation of bias risk and applicability of research, 112 full texts have been excluded. Reasons for exclusion: the included study population was unqualified (P). The intervention measures were other detection methods (I). RT-PCR was a reference test, but the index test was another non-nucleic acid detection method (C). Outcome indicators are unavailable, or data cannot be extracted (O). Risk assessment shows a high risk, such as not mentioning whether or not to use the blind method. Other reasons: The number of studies updated in the later stage was insufficient for analysis, so they were excluded. When more similar files are updated later, further analysis can be carried out. Thirty-three studies were included, with 13 related studies on the diagnostic accuracy of RT-LAMP and 16 on RT-PCR (Fig. 1).

3.2. Risk of bias and applicability concerns

We assessed the risk of bias according to the QUADAS-2 tool. Implementation of coded or blinded studies was described in 11 studies (Bisoffi et al., 2020; Bordi et al., 2020; Boutin et al., 2020; Chow et al., 2020; Dao Thi, 2020; Gibani et al., 2020; Harrington et al., 2020; Hu et al., 2020; Smith et al., 2020; Yan et al., 2020; Zhen et al., 2020b). Patient inclusion was not continuous and randomized in 9 case-control studies (Baek et al., 2020; Chow et al., 2020; Fukumoto et al., 2020; Li et al., 2020; Matzkies et al., 2020; Mitchell and George, 2020; Shen et al., 2020; Smithgall et al., 2020; Williams et al., 2020). That may overestimate the test’s diagnostic accuracy and bring some risks for the interpretation of the results (Fig. 2). The results of the publication bias test showed that the Deek’s funnel plot was symmetric, and P value of slope coefficient is equal to 0.076 (P > 0.05), indicating no publication bias (Fig. S1).

3.3. Characteristics of included studies

Characteristics of included studies are shown in detail in Table 1. Four studies assessed more than one index test to compare consistency between different tests. In order to fully present the data of these studies, we included these duplicates in our meta-analysis (Bultery
Table 1
Characteristics of included studies in the meta-analysis.

author	country	index test	index test gene target	reference test	reference test gene target	sample type	TP	FP	FN	TN
(Baek et al., 2020)	Korea	RT-LAMP	N	RT-qPCR	real time RT-PCR	NPS	14	2	0	138
(Busi et al., 2020)	USA	RT-LAMP	RdRp			NPS	17	1	14	69
(Bisoffi et al., 2020)	Italy	RT-PCR real-time RT-PCR	S, RdRp, N	Other *		NPS	78	0	7	261
(Bordi et al., 2020)	Italy	RT-PCR real-time RT-PCR	E, RdRp	Other *		NPS	64	1	20	260
(Boutin et al., 2020)	Canada	real-time RT-PCR NPS	E	RT-PCR	ORF1, E	NPS/OPS	279	2	22	74
(Busley et al., 2020)	USA	iAMP	ORF1ab, N	real time RT-PCR		NPS	24	0	5	50
(Boutin et al., 2020)	USA	real-time RT-PCR NPS	E, S, N	real time RT-PCR		NPS	26	0	4	50
(Chen et al., 2020)	Hong Kong, China	RT-PCR	ORF1ab, N, E	RT-PCR	RdRp,E	NPS	89	0	2	123
(Chow et al., 2020)	China	RT-LAMP	orf3a, E	RT-qPCR	N1	total respiratory samples	219	0	4	143
(Gradic et al., 2020)	US	RT-LAMP	RdRp	real time RT-PCR	ORF1ab, S	NPS	30	0	3	151
(Dao et al., 2020)	Germany	RT-LAMP	ORF1ab, N	RT-qPCR	E	total	79	6	2	681
(Fukumoto et al., 2020)	Japan	RT-PCR ORF1ab, N	RT-qPCR	N		NPS	52	3	1	15
(Gibani et al., 2020)	UK	real-time RT-PCR NPS	E, N, RdRp	RT-PCR	ORF2ab, S, N	NPS	67	0	4	315
(Harrington et al., 2020)	USA	RT-LAMP	RdRp	real time RT-PCR	RdRp, N	NPS	139	2	47	336
(Hogan, 2020)	USA	RT-PCR + lateral flow N		real time RT-PCR	E	NPS	34	0	16	50
(Hu et al., 2020)	China	RT-LAMP ORF1ab, N	RT-qPCR	ORF1ab, N, N		NPS	72	4	9	396
(Jiang et al., 2020)	China	RT-qPCR ORF2ab, N	RT-qPCR	ORF1ab, N		NPS	66	0	15	400
(Kitagawa et al., 2020)	Japan	RT-LAMP	–	RT-qPCR	N	NPS	32	0	3	133
(Li et al., 2020)	China	RT-PCR ORF1ab, N	RT-qPCR	ORF1ab, E		NPS	32	0	2	44
(Michael J. Loeffelholz et al., 2020)	USA	real-time RT-PCR N	E, N2	real time RT-PCR	ORF1ab, E, N, S, RdRp	NPS	219	11	1	250
(Lu et al., 2020)	China	RT-LAMP	N	RT-qPCR	ORF1ab,N,E	NPS	34	2	2	20
(Mizikovsky et al., 2020)	Austria	RT-PCR ORF1ab, N	RT-qPCR	ORF1ab, E		NPS	47	0	21	27
(Mitchell and George, 2020)	US	RT-PCR RdRp	real time RT-PCR	N		NPS	33	0	13	15
(Rödel et al., 2020)	Germany	RT-LAMP	M	RT-qPCR	E	NPS	72	0	24	41
(Shen et al., 2020)	China	RT-qPCR ORF1ab, N	Other *	–	throat swab	NPS	38	2	2	14
(Smith et al., 2020)	USA	RT-PCR ORF1ab, N	Other *	–	throat swab	NPS	36	2	4	14
(Smithgall et al., 2020)	USA	RT-LAMP	RdRp	RT-PCR	ORF1ab, E	NPS	74	0	1	74
(Saleem et al., 2020)	USA	RT-PCR ORF1ab, N	E, N	real time RT-PCR	ORF1ab, E	NPS	65	0	23	25
(Wang et al., 2020)	China	RT-qPCR ORF1ab, N	RT-qPCR	ORF1ab, N		NPS	87	2	1	23
(Williams et al., 2020)	Australia	real-time RT-PCR N	ORF1ab, N	RT-qPCR	E,RdRp	NPS	53	0	1	50
(Wolters et al., 2020)	Netherlands	real-time RT-PCR N	N2, E	RT-PCR	RdRp	NPS	25	14	0	142
(Yan et al., 2020)	China	RT-LAMP	ORF1ab, S	RT-qPCR	ORF1ab, S	total respiratory samples	30	0	0	30
(Zhen et al., 2020a)	USA	real-time RT-PCR N	N1, N2	Other *		NPS	58	0	0	72
(Zhen et al., 2020b)	USA	RT-PCR ORF1ab, N	Other *	–		NPS	51	1	0	52
(Zhen et al., 2020c)	USA	RT-PCR ORF1ab, N	Other *	–		NPS	51	0	0	53
(Zhen et al., 2020d)	USA	RT-PCR ORF1ab, N	Other *	–		NPS	49	0	2	53
(Zhen et al., 2020e)	USA	RT-LAMP RdRp	RT-PCR	ORF1ab		NPS	51	0	2	51
(Zhen et al., 2020f)	USA	real-time RT-PCR N	ORF1ab, N	RT-PCR	N, S, ORF1ab	NPS	50	0	7	50

NPS, nasopharyngeal swab; NGS, next-generation sequencing; OPS, oropharyngeal swab; RT-LAMP, reverse-transcription loop-mediated isothermal amplification; RT-PCR, reverse transcription-PCR; RT-qPCR, reverse transcription quantitative real time PCR; LAMP, the Atila isothermal amplification assay; RT-MCDA, transcription multiple cross displacement amplification, which is a new rapid isothermal amplification technique. a Other reference: clinical diagnosis, sequencing, combination of the results of multiple detection methods.
Hu et al., 2020; Smithgall et al., 2020; Zhen et al., 2020b). RT-PCR was defined as a reference method in most of the included studies. Mixed respiratory tract samples or deep sputum samples from the trachea or throat were reported in 7/33 studies. Clinical diagnosis, sequencing, and multiple RT-PCR combinations were used as the reference criteria in four studies (Bisoffi et al., 2020; Fukumoto et al., 2020; Shen et al., 2020; Zhen et al., 2020a).

3.4. Analysis of diagnostic threshold effect

Threshold effect is one of the main causes of heterogeneity in diagnostic tests. The threshold effect between studies can be determined by calculating the Spearman correlation coefficient between the Se and Sp of included studies. When Se is positively correlated with 1-Sp, it indicates a threshold effect.

The Spearman correlation coefficient of RT-LAMP is equal to -0.218 ($P = 0.435$). The Spearman correlation coefficient of RT-PCR is equal to -0.365 ($P > 0.5$). The above results indicate no threshold effect.

3.5. The meta-analysis of diagnostic accuracy of RT-LAMP and RT-PCR

Meta-analysis results showed that the pooled sensitivity and specificity of RT-LAMP in the diagnosis of COVID-19 were 0.92 (95% CI, 0.85–0.96) and 0.99 (95% CI, 0.99–0.99), respectively. The pooled sensitivity and specificity of RT-PCR for the diagnosis of COVID-19 were 0.96 (95% CI, 0.93–0.98) and 1.00 (95% CI, 0.98–1.00), respectively (Fig. 3). However, results of both RT-PCR and RT-LAMP showed high heterogeneity ($I^2 > 50$%), especially RT-PCR.

Besides, the meta-analysis showed that the FNR and FPR of RT-LAMP were 0.12 (95% CI, 0.06–0.16) and 0.01 (95% CI, 0.00–0.01), respectively. The FNR and FPR of RT-PCR were 0.06 (95% CI, 0.04–0.08) and 0.01 (95% CI, 0.00–0.01), respectively (Fig. 4).

The positive likelihood ratio (PLR) and negative likelihood ratio (NLR) of RT-LAMP were 112.28 (70.51–178.78) and 0.08 (0.04–0.15), respectively (Fig. S2). The areas under the SROC of RT-LAMP and RT-PCR were 0.99 (0.98–1.00) and 1.00 (0.99–1.00), respectively (Fig. S3).

The positive predictive values (PPV) and negative predictive values (NPV) of RT-LAMP and RT-PCR are shown in Table 2.

3.6. Subgroup analysis

Subgroup analyses of RT-LAMP diagnostic values are shown in Fig. 5. Compared with nasopharyngeal swabs (NPS) or oropharyngeal swabs (OPS), the mixed sample of the respiratory tract showed better sensitivity (0.98) and lower FNR (0.02). Compared with a single target gene, multiple target genes has higher sensitivity (0.95) and a lower FNR (0.03). Interestingly, when the reference method was RT-PCR with multiple target genes, the sensitivity and FNR of RT-LAMP were 0.84 and 0.15, respectively; when the reference method was RT-PCR with a single target gene, the sensitivity and FNR of RT-LAMP were 0.90 and 0.11, respectively.

Subgroup analyses of RT-PCR diagnostic values are shown in Fig. 6. When the samples were NPS or OPS, the FNR of RT-PCR was 0.06, but the heterogeneity of the results was high ($I^2 > 75$%). The RT-PCR with multiple target genes had higher sensitivity (0.95) and a lower FNR (0.05) compared with a single target gene. Of note, the sensitivity of RT-PCR was 0.96 (95% CI, 0.90–0.98) when multi-target gene RT-PCR was used as the reference method. However, when other methods (clinical diagnosis, sequencing, combination of the results of multiple detection methods) were used as the reference, the sensitivity of RT-PCR was only 0.84, and the FNR was as high as 0.15.
4. Discussion

A recent systematic review showed that nucleic acid testing has a high sensitivity (86%) and specificity (96%) in the diagnosis of acute respiratory syndrome due to coronavirus (Floriano et al., 2020). However, data on COVID-19 were not mentioned in the study of Floriano et al. In other COVID-19 related meta-analysis and systematic analyses, there is no further detailed classification of reference standards, and the heterogeneity of research results is high (Bøger et al., 2021; Castro et al., 2020).

In this systematic review, the pooled sensitivity of RT-LAMP and RT-PCR was 92% and 96%, respectively. The pooled specificity of RT-LAMP and RT-PCR was 99% and 100%, respectively. The positive

Table 2
The predictive value of RT-LAMP and RT-PCR for different prevalence estimates.

Prevalence (P)	RT-LAMP	RT-PCR		
	PPV	NPV	PPV	NPV
P = 10 %	91 %	99 %	100 %	100 %
P = 20 %	96 %	98 %	100 %	99 %
P = 30 %	98 %	97 %	100 %	98 %

NPV, negative predictive value; PPV, positive predictive value; RT-LAMP, reverse-transcription loop-mediated isothermal amplification; RT-PCR, reverse transcription-PCR.

* Prevalence is the estimated prevalence.

Fig. 5. Subgroup analysis of RT-LAMP in COVID-19 diagnosis. Key: CI, confidence interval; FNR, false negative rate; FPR, false positive rate; I², I square; LR, likelihood ratio; NPS, nasopharyngeal swab; OPS, oropharyngeal swab. * Number of study, one subgroup contains at least 3 studies.
The advantage of this study is to analyze the diagnostic accuracy of RT-PCR and RT-LAMP more deeply based on previous evidence. Our systematic review and meta-analysis has several limitations. Firstly, some results showed high heterogeneity. Although, the heterogeneity of analysis results can be reduced through subgroup analysis, some may still have high heterogeneity ($I^2 > 50\%$). This may be related to the inevitable clinical heterogeneity among studies. Secondly, without a definitive reference standard, it may produce uncertain factors in the design and analysis of such consistent research (Petitti, 2001). These may explain the considerable heterogeneity of most meta-analyses on the same subject.

5. Conclusion

RT-PCR and RT-LAMP have high diagnostic values in the diagnosis of COVID-19. However, meta-analysis results of the sensitivity and FNR showed high heterogeneity. The accuracy of diagnostic tests is closely related to the sample type and reference criteria. RT-PCR has high sensitivity and a low FNR (pooled FNR of about 6\%). The overall pooled specificity of RT-LAMP and RT-PCR was as high as 99\%. However, the sensitivity of RT-LAMP was poor, and about 12\% of true positive patients were considered negative. RT-PCR is the most commonly used reference method at present. The premise is that PCR has excellent sensitivity and specificity, but this is not the case. Therefore, choosing accurate and reliable reference methods is essential when evaluating the diagnostic accuracy of nucleic acid detection methods.

Author contribution statement

Conceptualization: NC; RP; methodology: DS; XR; YL; software: WZ; YY; validation: YH; SL; LM; formal analysis: RP; YB; WZ; investigation and data curation: RP; DS; YB; YY; writing-original draft: RP; SL; writing-review and editing: RP; XR; YH; LM; supervision: NC; SL.

Funding statement

This work is supported by the Belt and Road Special Project of Lanzhou University (grant numbers 2018ldbrzd008).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
R. Pu et al.

Journal of Virological Methods 300 (2022) 114392

for detection of SARS-CoV-2 RNA. J. Biomol. Struct. Dyn. https://doi.org/10.1093/jbmd/jfaa135.

Shen, L., Huang, P., Chen, X., Xiong, Z., Yang, X., Li, H., Cheng, F., Guo, J., Gong, G., 2020. Diagnostic efficacy of three test kits for SARS-CoV-2 nucleic acid detection.

Zhejiang Da Xue Xue Bao Yi Xue Ban 49, 185–190. https://doi.org/10.3785/j.issn.1008-9252.2020.03.09.

Smith, E., Zhen, W., Manji, R., Schron, D., Duong, S., Berry, G.J., 2020. Analytical and clinical comparison of three nucleic acid amplification tests for SARS-CoV-2 detection. J. Clin. Microbiol. 58 https://doi.org/10.1128/jcm.01134-20.

Subsoontorn, P., Lohitnavy, M., Kongkaew, C., 2020. The diagnostic accuracy of isothermal nucleic acid point-of-care tests for human coronaviruses: a systematic review and meta-analysis. Sci. Rep. 10, 22349. https://doi.org/10.1038/s41598-020-79237-7.

Touma, M., 2020. COVID-19: molecular diagnostics overview. J. Mol. Med. 98, 947–954. https://doi.org/10.1007/s00109-020-01931-w.

Wang, J., Cai, K., Zhang, R., He, X., Shen, X., Liu, J., Xu, J., Qiu, F., Lei, W., Wang, J., Li, X., Gao, Y., Jiang, Y., Xu, W., Ma, X., 2020. Novel One-Step Single-Tube Nested Quantitative Real-Time PCR Assay for Highly Sensitive Detection of SARS-CoV-2, 92, pp. 9399-9404. https://doi.org/10.1021/acs.analchem.0c01884.

Wiersinga, W.J., Rhodes, A., Cheng, A.C., Peacock, S.J., Prescott, H.C., 2020. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. Jama 324, 782–793. https://doi.org/10.1016/j.jama.2020.12837.

Williams, E., Bond, K., Chong, B., Giltrap, D., Eaton, M., Kyriakou, P., Calvert, P., Zhang, B., Siwan, M., Howden, B., Duce, J., Catton, M., Williamson, D.A., 2020. Implementation and evaluation of a novel real-time multiplex assay for SARS-CoV-2: in-field learnings from a clinical microbiology laboratory. Pathology 52, 754–759. https://doi.org/10.1111/path.14004.

Wolters, F., van de Bovenkamp, J., van den Bosch, B., van den Brink, S., Broeders, M., Chung, N.H., Favié, B., Godeski, G., Kuijpers, J., Overdevest, I., Rahamat-Langedoen, J., Wijmken, L., Melchers, W.J., Meijer, A., 2020. Multi-center evaluation of cepheid xpert® xpress SARS-CoV-2 point-of-care test during the SARS-CoV-2 pandemic. J. Clin. Virol. 128.

Xiao, A.T., Tong, Y.X., Zhang, S., 2020. False negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: rather than recurrence. J. Med. Virol. 92, 1755–1756. https://doi.org/10.1002/jmv.25855.

Yan, C., Cui, J., Huang, L., Du, B., Chen, L., Xue, G., Li, S., Zhang, W., Zhao, L., Sun, Y., Yao, H., Li, N., Zhao, H., Feng, Y., Liu, S., Zhang, Q., Liu, D., Yuan, J., 2020. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin. Microbiol. Infect. 26, 773–779. https://doi.org/10.1016/j.cmi.2020.04.001.

Zhen, W., Smith, E., Manji, R., Berry, G.J., 2020a. Comparison of four molecular in vitro diagnostic assays for the detection of SARS-CoV-2 in nasopharyngeal specimens. J. Clin. Microbiol. 58 https://doi.org/10.1128/jcm.00743-20.

Zhen, W., Smith, E., Manji, R., Schron, D., Berry, G.J., 2020b. Clinical evaluation of three sample-to-Answer platforms for detection of SARS-CoV-2. Int. Breastfeed. J. 58 https://doi.org/10.1186/s13006-020-00373-0.

Zhifeng, J., Feng, A., Li, T., 2020. Consistency analysis of COVID-19 nucleic acid tests and the changes of lung CT. J. Clin. Virol. 127, 104359 https://doi.org/10.1016/j.jcv.2020.104359.