Electroweak Supersymmetry around the Electroweak Scale

Taoli Cheng,¹ Jinmian Li,¹ Tianjun Li,¹,² Dimitri V. Nanopoulos,²,³,⁴ and Chunli Tong¹

¹State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
²George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
³Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA
⁴Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece

Abstract

Inspired by the phenomenological constraints, LHC supersymmetry and Higgs searches, dark matter search as well as string model building, we propose the electroweak supersymmetry around the electroweak scale: the squarks and/or gluinos are around a few TeV while the sleptons, sneutrinos, bino and winos are within one TeV. The Higgsinos can be either heavy or light. We consider bino as the dominant component of dark matter candidate, and the observed dark matter relic density is achieved via the neutralino-stau coannihilations. Considering the Generalized Minimal Supergravity (GmSUGRA), we show explicitly that the electroweak supersymmetry can be realized, and the gauge coupling unification can be preserved. With two Scenarios, we study the viable parameter spaces that satisfy all the current phenomenological constraints, and we present the concrete benchmark points. Furthermore, we comment on the fine-tuning problem and LHC searches.

PACS numbers: 11.10.Kk, 11.25.Mj, 11.25.-w, 12.60.Jv
I. INTRODUCTION

Supersymmetry (SUSY) provides the most natural solution to the gauge hierarchy problem in the Standard Model (SM). In supersymmetric SMs (SSMs) with R parity, the gauge couplings for $SU(3)_C$, $SU(2)_L$ and $U(1)_Y$ gauge symmetries are unified at about 2×10^{16} GeV [1], the lightest supersymmetric particle (LSP) like neutralino can be cold dark matter candidate [2, 3], and the electroweak precision constraints can be evaded, etc. Especially, gauge coupling unification [1] strongly suggests Grand Unified Theories (GUTs), which can explain the quantum numbers of the SM fermions and charge quantization elegantly. Thus, the SSMs are the most promising new physics beyond the SM. However, the recent LHC searches for supersymmetry [4–6] and Higgs boson [7, 8] have considerably shrunk the viable parameter spaces. Thus, to explore the phenomenologically inspired SSMs, we briefly review the phenomenological constraints in the following:

- The colored supersymmetric particles (sparticles) such as squarks and gluinos (at least the first two generation squarks) must have masses around the 1 TeV or larger from the ATLAS [4, 5] and CMS [6] Collaborations at the LHC.

- The ATLAS and CMS Collaborations have reported an excess of events for the SM-like Higgs boson with mass around 126 GeV and 124 GeV, respectively [7, 8]. The corresponding global significances are respectively 2.2σ and 1.5σ, and the corresponding local significances without taking into account the look-elsewhere-effect (LEE) are 3.5σ and 3.1σ, respectively. The viable light Higgs boson mass range at the 95% CL is from 115.5 GeV to 127 GeV [7, 8]. Moreover, the Higgs boson mass around 125 GeV gives very strong constraints on the viable supersymmetry parameter space, which have been studied extensively recently [9–26]. Especially, the squark and/or gluino masses will be about a few TeV in general in the Minimal Supersymmetric Standard Model (MSSM) and the Next to the MSSM (NMSSM) with simple supersymmetry mediation mechanisms.

- The cold dark matter relic density is 0.112 ± 0.0056 from the seven-year WMAP measurements [27].

- The spin-independent elastic dark matter-nucleon scattering cross-sections are smaller than about 7×10^{-45} cm2 for the dark matter mass around 50 GeV [28].
• The experimental limit on the Flavor Changing Neutral Current (FCNC) process, $b \rightarrow s\gamma$. The results from the Heavy Flavor Averaging Group (HFAG) [29], in addition to the BABAR, Belle, and CLEO results, are: \(\text{BR}(b \rightarrow s\gamma) = (355 \pm 24^{+9}_{-10} \pm 3) \times 10^{-6}\).

There is also a theoretical estimate in the SM [30] of \(\text{BR}(b \rightarrow s\gamma) = (3.15 \pm 0.23) \times 10^{-4}\).

The limits, where the experimental and theoretical errors are added in quadrature, are \(2.86 \times 10^{-4} \leq \text{BR}(b \rightarrow s\gamma) \leq 4.18 \times 10^{-4}\).

• The anomalous magnetic moment of the muon \((g_\mu - 2)/2\). The experimental value of the muon \((g_\mu - 2)/2\) deviates from the SM prediction by about 3.3\(\sigma\), i.e., \(\Delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = (26.1 \pm 8.0) \times 10^{-10}\) [31].

• The experimental limit on the process $B_s \rightarrow \mu^+\mu^-$. The upper bound on \(\text{BR}(B_s \rightarrow \mu^+\mu^-)\) is 1.1×10^{-8} from the CMS and LHCb collaborations [32].

• The experimental limit on the process $B_u \rightarrow \tau\bar{\nu}_\tau$ is $0.85 \leq \text{BR}(B_u \rightarrow \tau\bar{\nu}_\tau)/\text{SM} \leq 1.65$ [33].

In addition, from the theoretical point of view, we usually have the family universal squark and slepton soft masses in the string model building, for example, the heterotic $E_8 \times E_8$ string theory with Calabi-Yau compactifications [34,35], the intersecting D-brane model building [36–44], and the F-theory model building [45–52], etc. Therefore, based on the above phenomenological constraints and theoretical considerations, we propose the electroweak supersymmetry around the electroweak scale: the squarks and/or gluinos are around a few TeV while the sleptons, sneutrinos, bino and winos are within one TeV. The Higgsinos (or say the Higgs bilinear μ term) can be either heavy or light. We emphasize that gluinos can be within one TeV because squarks are heavy. Therefore, the constraints from the current ATLAS and CMS supersymmetry and Higgs searches and the $b \rightarrow s\gamma$, $B_s \rightarrow \mu^+\mu^-$, and $B_u \rightarrow \tau\bar{\nu}_\tau$ processes can be satisfied automatically due to the heavy squarks. Also, the dimension-five proton decays in supersymmetric GUTs can be relaxed as well. Moreover, the $(g_\mu - 2)/2$ experimental result can be explained due to the light sleptons. Also, we will assume that the dominant component of the LSP neutralino is bino. Interestingly, the observed dark matter relic density can be realized via the LSP neutralino and light stau coannihilations, and the XENON experiment [28] will not give any constraint on such viable parameter spaces due to the heavy squarks. For simplicity, we will call the
electroweak supersymmetry around the electroweak scale as the electroweak supersymmetry.

In this paper, we consider the simple Generalized Minimal Supergravity (GmSUGRA) \[53\ 54\] (For previous studies on non-universal gaugino masses in the supersymmetric GUTs, see Refs. \[55–66\].). We show explicitly that the electroweak supersymmetry can be realized naturally, and gauge coupling unification can be preserved. To be concrete, we consider two Scenarios for the gaugino mass ratios: Scenario I has \(M_1 : M_2 : M_3 = 1 : (-1) : 4 \) and Scenario II has \(M_1 : M_2 : M_3 = \frac{5}{3} : 1 : \frac{8}{3} \), where \(M_1, M_2 \) and \(M_3 \) are bino mass, wino mass, and gluino mass, respectively. We discuss two cases for the supersymmetry breaking scalar masses and trilinear soft \(A \) terms: (A) The universal scalar mass \(m_0 \), and universal/non-universal trilinear \(A \) terms. This case is similar to the mSUGRA/CMSSM; (B) The universal squark and slepton mass \(m_0 \), universal/non-universal trilinear \(A \) terms, and especially non-universal Higgs scalar masses. This case is similar to the NUHM2. Choosing a moderate \(\tan \beta = 13 \) where \(\tan \beta \) is the ratio of the Higgs vacuum expectation values (VEVs) in the SSMs, we scan the viable parameter spaces which satisfy all the current phenomenological constraints. Also, we present the concrete benchmark points where the squarks, gluinos and Higgsinos are about a few TeV while the sleptons, bino and winos are several hundreds of GeV. For the universal trilinear soft \(A \) term, we can fit all the experimental constraints very well except the \((g_\mu - 2)/2\). And the deviations of \((g_\mu - 2)/2\) from the central value is about 2.6\(\sigma \). Interestingly, with non-universal trilinear soft \(A \) terms, we can fit all the experimental constraints very well, especially, the deviations of \((g_\mu - 2)/2\) from the central value is within 1 or 2\(\sigma \). Moreover, we comment on the fine-tuning problem as well as the LHC searches.

II. ELECTROWEAK SUPERSYMMETRY FROM THE GMSUGRA

First, we explain our conventions. In SSMs, we denote the left-handed quark doublets, right-handed up-type quarks, right-handed down-type quarks, left-handed lepton doublets, right-handed neutrinos and right-handed charged leptons as \(Q_i, U^c_i, D^c_i, L_i, N^c_i, \) and \(E^c_i \), respectively. Also, we denote one pair of Higgs doublets as \(H_u \) and \(H_d \), which give masses to the up-type quarks/neutrinos and the down-type quarks/charged leptons, respectively.

We consider the simple GmSUGRA where the GUT group is \(SU(5) \) and the Higgs field is in the \(SU(5) \) adjoint representation \[53\ 54\]. The gauge coupling relation and gaugino
mass relation at the GUT scale are the following \[53, 55, 64\]

\[
\frac{1}{\alpha_2} - \frac{1}{\alpha_3} = k \left(\frac{1}{\alpha_1} - \frac{1}{\alpha_3} \right),
\]

(1)

\[
\frac{M_2}{\alpha_2} - \frac{M_3}{\alpha_3} = k \left(\frac{M_1}{\alpha_1} - \frac{M_3}{\alpha_3} \right),
\]

(2)

where \(k\) is the index of these relations and is equal to \(5/3\). Such gauge coupling relation and gaugino mass relation at the GUT scale can be realized in the F-theory \(SU(5)\) models where the gauge symmetry is broken down to the SM gauge symmetry by turning on the \(U(1)_Y\) flux, and the F-theory \(SO(10)\) models where the gauge symmetry is broken down to the \(SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}\) gauge symmetry by turning on the \(U(1)_{B-L}\) flux \[64\].

At the GUT scale, we assume \(\alpha_1 \simeq \alpha_2 \simeq \alpha_3\) for simplicity, and then the gaugino mass relation becomes

\[
M_2 - M_3 = \frac{5}{3} (M_1 - M_3).
\]

(3)

So there are two free parameters in gaugino masses. To realize the electroweak supersymmetry, we require that \(M_3\) be larger than \(M_1\) and \(M_2\). In the next Section, we shall consider the following two simple Scenarios for gaugino masses at the GUT scale

Scenario I: \(M_1 = M_{1/2}, \ M_2 = -M_{1/2}, \ M_3 = 4M_{1/2},\)

(4)

Scenario II: \(M_1 = \frac{5}{3} M_{1/2}, \ M_2 = M_{1/2}, \ M_3 = \frac{8}{3} M_{1/2},\)

(5)

where \(M_{1/2}\) is the normalized gaugino mass scale. Thus, the gluino mass will be much larger than the bino and wino masses at low energy.
In addition, the supersymmetry breaking scalar masses at the GUT scale are \[54\]

\[
m_{\tilde{Q}_i}^2 = (m_U^0)^2 + \sqrt{3} \frac{3}{5} \beta'_{10} \frac{1}{6} (m_N^0)^2,
\]

\[
m_{\tilde{U}^c_i}^2 = (m_U^0)^2 - \sqrt{3} \frac{3}{5} \beta'_{10} \frac{2}{3} (m_N^0)^2,
\]

\[
m_{\tilde{E}^c_i}^2 = (m_U^0)^2 + \sqrt{3} \frac{3}{5} \beta'_{10} (m_N^0)^2,
\]

\[
m_{\tilde{D}^c_i}^2 = (m_U^0)^2 + \sqrt{3} \frac{3}{5} \beta'_{5} \frac{1}{3} (m_N^0)^2,
\]

\[
m_{\tilde{L}_i}^2 = (m_U^0)^2 - \sqrt{3} \frac{3}{5} \beta'_{5} \frac{1}{2} (m_N^0)^2,
\]

\[
m_{\tilde{H}_u}^2 = (m_U^0)^2 + \sqrt{3} \frac{3}{5} \beta'_{H_u} \frac{1}{2} (m_N^0)^2,
\]

\[
m_{\tilde{H}_d}^2 = (m_U^0)^2 - \sqrt{3} \frac{3}{5} \beta'_{H_d} \frac{1}{2} (m_N^0)^2,
\]

where \(i\) is generation index, \(\beta'_{10}, \beta'_{5}, \beta'_{H_u}\) and \(\beta'_{H_d}\) are coupling constants, and \(m_U^0\) and \(m_N^0\) are the scalar masses related to the universal and non-universal parts, respectively. Especially, the squark masses can be much larger than the slepton masses since the cancellations between the two terms in the slepton masses \(m_{\tilde{E}^c_i}^2\) and \(m_{\tilde{L}_i}^2\) can be realized by fine-tuning respectively \(\beta'_{10}\) and \(\beta'_{5}\) a little bit. Also, the supersymmetry breaking soft masses \(m_{\tilde{H}_u}^2\) and \(m_{\tilde{H}_d}^2\) can be free parameters as well.

Interestingly, we can derive the scalar mass relations at the GUT scale

\[3m_{\tilde{D}^c_i}^2 + 2m_{\tilde{L}_i}^2 = 4m_{\tilde{Q}_i}^2 + m_{\tilde{U}^c_i}^2 = 6m_{\tilde{Q}_i}^2 - m_{\tilde{E}^c_i}^2 = 2m_{\tilde{E}^c_i}^2 + 3m_{\tilde{U}^c_i}^2.\]

Choosing slepton masses as input parameters, we can parametrize the squark masses as follows

\[
m_{\tilde{Q}_i}^2 = \frac{5}{6} (m_U^0)^2 + \frac{1}{6} m_{\tilde{E}^c_i}^2,
\]

\[
m_{\tilde{U}^c_i}^2 = \frac{5}{3} (m_U^0)^2 - \frac{2}{3} m_{\tilde{E}^c_i}^2,
\]

\[
m_{\tilde{D}^c_i}^2 = \frac{5}{3} (m_U^0)^2 - \frac{2}{3} m_{\tilde{L}_i}^2.
\]

In short, the squark masses can be parametrized by the slepton masses and the universal scalar mass. If the slepton masses are much smaller than the universal scalar mass, we obtain \(2m_{\tilde{Q}_i}^2 \sim m_{\tilde{U}^c_i}^2 \sim m_{\tilde{D}^c_i}^2\).
Moreover, we can calculate the supersymmetry breaking trilinear soft A terms A_U, A_D, and A_E respectively for the SM fermion Yukawa superpotential terms of the up-type quarks, down-type quarks, and charged leptons.\[54\]

\[
A_U = A_U^0 + (2\gamma_U + \gamma_U')A_N^0, \tag{17}
\]

\[
A_D = A_U^0 + \frac{1}{6}\gamma_D A_N^0, \tag{18}
\]

\[
A_E = A_U^0 + \gamma_D A_N^0, \tag{19}
\]

where γ_U, γ_U' and γ_D are coupling constants, and A_U^0 and A_N^0 are the corresponding trilinear soft A terms related to the universal and non-universal parts, respectively. Therefore, A_U, A_D and A_E can be free parameters in general in the GmSUGRA.

In short, we can parametrize the generic supersymmetry breaking soft mass terms in our simple GmSUGRA as following: two parameters in the gaugino masses, three parameters for the squark and slepton soft masses, three parameters in the trilinear soft A terms, and two parameters for the Higgs soft masses.

We propose the electroweak supersymmetry: the squarks and/or gluinos are heavy around a few TeV while the sleptons, bino and winos are light and within one TeV. The Higgsinos (or μ term) can be either heavy or light. Thus, both the gaugino masses M_1 and M_2 and the slepton/sneutrino soft masses are smaller than one TeV. Also, there are three cases for the gaugino mass M_3 and squark soft masses: (1) M_3 is about a few TeV while the squark soft masses are small; (2) M_3 is small while the squark soft masses are about a few TeV; (3) Both M_3 and squark soft masses are heavy. In this paper, for simplicity, we only consider the first case. The comprehensive study will be presented elsewhere.

Interestingly, we can show that the gauge coupling unification can be preserved in the electroweak supersymmetry even if the squarks and/or gluinos are about one or two orders heavier than the sleptons, bino and winos. The point is that the gauge coupling relation at the GUT scale is given by Eq. (1). The worst case is that the Higgsinos are light while the gluinos are heavy. So we discuss it as an example. For simplicity, we assume that the masses for the sleptons, bino, winos and Higgsinos are universal, and the masses for the squarks and gluinos are universal. To prove the gauge coupling unification, we only need to calculate the one-loop beta functions for the renormalization scale from the slepton mass to the squark mass. The one-loop beta functions b_1, b_2, and b_3 respectively for $U(1)_Y$, $SU(2)_L$ and $SU(3)_C$ are $b_1 = 27/5$, $b_2 = -4/3$, $b_3 = -7$. Because $b_1 - b_2 = 101/15$ is larger than
$b_2 - b_3 = 17/3$, the gauge coupling relation at the GUT scale in Eq. (1) can be realized properly. Especially, the discrepancies among the SM gauge couplings at the GUT scale are less than a few percents [67].

Let us briefly comment on the fine-tuning problem on electroweak gauge symmetry breaking in the SSMs. The radiative electroweak gauge symmetry breaking gives the minimization condition at tree level

$$\frac{1}{2} M_Z^2 = -\mu^2 + \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1}, \tag{20}$$

where M_Z is the Z boson mass. For the moderate and large values of $\tan \beta$, this condition can be simplified to

$$\frac{1}{2} M_Z^2 \simeq -\mu^2 - m_{H_u}^2. \tag{21}$$

The electroweak-scale $m_{H_u}^2$ depends on the GUT-scale supersymmetry breaking soft terms such as gaugino masses, scalar masses, and trilinear soft A terms, etc, via the renormalization group equation (RGE) running. Thus, if the squarks/gluinos are heavy and A terms are large, the low energy $m_{H_u}^2$ will be large as well. And then we need to fine-tune the large μ term to realize the correct electroweak gauge symmetry breaking. Such fine-tuning problem does exist in electroweak supersymmetry, and one of the solution is to employ the idea of focus point/hyperbolic branch supersymmetry [68–70], which will be studied elsewhere.

III. LOW ENERGY SUPERSYMMETRY PHENOMENOLOGY

We study two Scenarios for gaugino masses, as given in Eqs. (4) and (5). For simplicity, we will consider two cases for the scalar masses and trilinear soft A terms: (A) The universal scalar mass m_0 and universal/non-universal trilinear soft A terms. This case is similar to the mSUGRA. (B) The universal squark and slepton soft mass m_0 and universal/non-universal trilinear soft A terms while the non-universal Higgs soft masses. This case is similar to the NUHM2. Therefore, we will study four kinds of Scenarios: Scenario IA, Scenario IB, Scenario IIA, and Scenario IIB.

In our numerical study, we will use the SuSpect program [71] to calculate the supersymmetric particle spectra, and use the MicrOMEGAs program [72, 73] to calculate the phenomenological constraints, the LSP neutralino relic density, and the direct detection cross-sections. We will focus on the lightest CP-even Higgs boson mass from
123 GeV to 127 GeV in the numerical results, and choose the benchmark points with Higgs boson mass only from 125.0 GeV to 126.0 GeV. The current top quark mass m_t is 173.2 ± 0.9 GeV [74]. Because the lightest CP-even Higgs boson mass is sensitive to the top quark mass, we take the upper bound $m_t = 174.1$ GeV in our numerical study. We emphasize that the viable parameter spaces with Higgs boson mass larger than 127 GeV in the following discussions are still fine since we can choose a smaller value for top quark mass within its uncertainty. We employ the following experimental constraints: (1) The cold dark matter relic density is $0.05 \leq \Omega_{\chi}h^2 \leq 0.135$; (2) The $b \rightarrow s\gamma$ branch ratio is $2.77 \times 10^{-4} \leq Br(b \rightarrow s\gamma) \leq 4.27 \times 10^{-4}$; (3) The $3\sigma (g_\mu - 2)/2$ constraint is $2.1 \times 10^{-10} < \Delta a_\mu < 40.1 \times 10^{-10}$; (4) The upper bound on $\text{BR}(B_s \rightarrow \mu^+\mu^-)$ is 1.1×10^{-8}; (5) The experimental limit on the process $Br(B_u \rightarrow \tau\bar{\nu}_\tau)$ is $0.85 \leq Br(B_u \rightarrow \tau\bar{\nu}_\tau)/\text{SM} \leq 1.65$; (6) The LEP low bound on the lightest CP-even Higgs boson mass is 114.4 GeV [75], which is close to the current low bound 115.5 GeV from ATLAS Collaboration [7]. In our electroweak supersymmetry, the dominant component of the LSP neutralino will be bino, thus, the constraints from the XENON100 experiment [28] can be evaded automatically due to the heavy squarks.

First, let us discuss the Scenario I. To scan the viable parameter spaces in the $M_{1/2} - m_0$ plane, we consider the universal trilinear soft A term A_0, and we choose $\tan \beta = 13$ and $A_0 = -4000$ GeV. We present the viable parameter space in Scenarios IA and IB respectively in Fig. 1 and Fig. 2. We emphasize again that the viable parameter spaces with Higgs boson mass larger than 127 GeV in all the figures are still fine because we can choose the smaller value for top quark mass within its uncertainty. It is easy to understand that Scenario IB has larger viable parameter spaces since the Higgs scalar masses are hidden variables in Fig. 2. Interestingly, in Scenario IA, we find the narrow viable range for m_0, which is about from 410 GeV to 440 GeV. This narrow m_0 range is obtained in the electroweak supersymmetry since the observed dark matter relic density is realized from the LSP neutralino-stau coannihilations. Moreover, we present the benchmark points in Tables I and II for Scenarios IA and IB, respectively. In these benchmark points, the squarks, gluinos, and Higgsinos are heavy while the sleptons, bino and winos are light. Thus, the electroweak supersymmetry is realized. Similar results are held for all the following benchmark points in this paper. In particular, the LSP neutralino has 99.99% bino component due to the heavy Higgsinos. However, the deviations of $(g_\mu - 2)/2$ from the central value are about 2.88σ and 2.63σ for
the benchmark points respectively in Tables I and II.

$\tilde{\chi}_1^0$	$\tilde{\chi}_1^\pm$	$\tilde{c}_R/\tilde{\mu}_R$	\tilde{t}_1	\tilde{u}_R/\tilde{c}_R	2150	h^0	125.0	
114	262	262	426	1116	2150			
$\tilde{\chi}_2^0$	$\tilde{\chi}_2^\pm$	$\tilde{e}_L/\tilde{\mu}_L$	\tilde{t}_2	\tilde{u}_L/\tilde{c}_L	2150	A^0/H^0	2132	
262	2166	447	1755	1210	2150			
$\tilde{\chi}_3^0$	$\tilde{\nu}_e/\mu$	440	$\tilde{\tau}_1$	1329	\tilde{d}_R/\tilde{s}_R	2152	H^\pm	2134
2165			1730	395				
$\tilde{\chi}_4^0$	$\tilde{\nu}_\tau$	353	$\tilde{\tau}_2$	2097	\tilde{d}_L/\tilde{s}_L	2152		
2165			397	2899				

TABLE I: Supersymmetric particle and Higgs boson mass spectrum (in GeV) for a benchmark point in Scenario IA with $\tan \beta = 13$, $M_{1/2} = 280$ GeV, $m_0 = 411$ GeV and $A_0 = -4000$ GeV. In this benchmark point, we have $\Omega_{\tilde{\chi}_1^0}h^2 = 0.0942$, $\text{BR}(b \to s\gamma) = 3.22 \times 10^{-4}$, $\Delta a_\mu = 3.07 \times 10^{-10}$, $\text{BR}(B_s^0 \to \mu^+\mu^-) = 3.15 \times 10^{-9}$, and $\text{BR}(B_u \to \tau\bar{\nu})/\text{SM} = 0.998$. Moreover, the LSP neutralino is 99.99% bino. The LSP neutralino-proton spin independent and dependent cross sections are respectively 5.1×10^{-12} pb and 3.9×10^{-12} pb, and the LSP neutralino-neutron spin independent and dependent cross sections are respectively 5.2×10^{-12} pb and 2.4×10^{-9} pb.

$\tilde{\chi}_1^0$	$\tilde{\chi}_1^\pm$	$\tilde{c}_R/\tilde{\mu}_R$	\tilde{t}_1	\tilde{u}_R/\tilde{c}_R	2937	h^0	125.2	
164	375	375	2043	2937				
$\tilde{\chi}_2^0$	$\tilde{\chi}_2^\pm$	$\tilde{e}_L/\tilde{\mu}_L$	\tilde{t}_2	\tilde{u}_L/\tilde{c}_L	2949	A^0/H^0	2792	
375	2598	411	2558	2949				
$\tilde{\chi}_3^0$	$\tilde{\nu}_e/\mu$	403	$\tilde{\tau}_1$	182	\tilde{d}_R/\tilde{s}_R	2952	H^\pm	2794
2597			2543	397				
$\tilde{\chi}_4^0$	$\tilde{\nu}_\tau$	302	$\tilde{\tau}_2$	2899	\tilde{d}_L/\tilde{s}_L	2950	g	3394
2597			397	2899				

TABLE II: Supersymmetric particle and Higgs boson mass spectrum (in GeV) for a benchmark point in Scenario IB with $\tan \beta = 13$, $M_{1/2} = 400$ GeV, $m_0 = 380$ GeV, $A_0 = -4000$ GeV, $m_{H_u} = 1200$ GeV, and $m_{H_d} = 0.0$ GeV. In this benchmark point, we have $\Omega_{\tilde{\chi}_1^0}h^2 = 0.111$, $\text{BR}(b \to s\gamma) = 3.26 \times 10^{-4}$, $\Delta a_\mu = 5.06 \times 10^{-10}$, $\text{BR}(B_s^0 \to \mu^+\mu^-) = 3.13 \times 10^{-9}$, and $\text{BR}(B_u \to \tau\bar{\nu})/\text{SM} = 0.999$. Moreover, the LSP neutralino is 99.99% bino. The LSP neutralino-proton spin independent and dependent cross sections are respectively 3.4×10^{-12} pb and 2.2×10^{-10} pb, and the LSP neutralino-neutron spin independent and dependent cross sections are respectively 3.5×10^{-12} pb and 1.5×10^{-9} pb.
$\tilde{\chi}_1^0$	160	$\tilde{\chi}_1^\pm$	365	$\tilde{e}_R/\tilde{\mu}_R$	268	\tilde{t}_1	1967	\tilde{u}_R/\tilde{c}_R	2862	h^0	125.4
$\tilde{\chi}_2^0$	365	$\tilde{\chi}_2^\pm$	2548	$\tilde{e}_L/\tilde{\mu}_L$	332	\tilde{t}_2	2475	\tilde{u}_L/\tilde{c}_L	2863	A^0/H^0	2507
$\tilde{\chi}_3^0$	2547	$\tilde{\nu}_{e/\mu}$	322	$\tilde{\tau}_1$	176	\tilde{b}_1	2459	\tilde{d}_R/\tilde{s}_R	2864	H^\pm	2508
$\tilde{\chi}_4^0$	2547	$\tilde{\nu}_\tau$	321	$\tilde{\tau}_2$	385	\tilde{b}_2	2813	\tilde{d}_L/\tilde{s}_L	2864	\tilde{g}	3311

TABLE III: Supersymmetric particle and Higgs boson mass spectrum (in GeV) for a benchmark point in Scenario IA with $\tan \beta = 13$, $M_{1/2} = 390$ GeV, $m_0 = 225$ GeV, $A_Q = -4000$ GeV and $A_E = -400$ GeV. In this benchmark point, we have $\Omega_{\chi_1^0} h^2 = 0.1105$, $\text{BR}(b \to s\gamma) = 3.227 \times 10^{-4}$, $\Delta a_\mu = 19.3 \times 10^{-10}$, $\text{BR}(B^0_s \to \mu^+\mu^-) = 3.13 \times 10^{-9}$, and $\text{BR}(B_u \to \tau\tilde{\nu})/\text{SM} = 0.999$. Moreover, the LSP neutralino is 99.98% bino. The LSP neutralino-proton spin independent and dependent cross sections are respectively 3.6×10^{-12} pb and 2.2×10^{-10} pb, and the LSP neutralino-neutron spin independent and dependent cross sections are respectively 3.7×10^{-12} pb and 1.6×10^{-9} pb.

$\tilde{\chi}_1^0$	121.7	$\tilde{\chi}_1^\pm$	279.4	$\tilde{e}_R/\tilde{\mu}_R$	269.2	\tilde{t}_1	1279.2	\tilde{u}_R/\tilde{c}_R	2256.4	h^0	125.2
$\tilde{\chi}_2^0$	279.4	$\tilde{\chi}_2^\pm$	2188.0	$\tilde{e}_L/\tilde{\mu}_L$	270.0	\tilde{t}_2	1862.4	\tilde{u}_L/\tilde{c}_L	2259.5	A^0/H^0	2272
$\tilde{\chi}_3^0$	2186.9	$\tilde{\nu}_{e/\mu}$	258.6	$\tilde{\tau}_1$	140.6	\tilde{b}_1	1839.0	\tilde{d}_R/\tilde{s}_R	2261.3	H^\pm	2274
$\tilde{\chi}_4^0$	2187.2	$\tilde{\nu}_\tau$	252.1	$\tilde{\tau}_2$	340.0	\tilde{b}_2	2207	\tilde{d}_L/\tilde{s}_L	2260.9	\tilde{g}	2593.7

TABLE IV: Supersymmetric particle and Higgs boson mass spectrum (in GeV) for a benchmark point in Scenario IB with $\tan \beta = 13$, $M_{1/2} = 300$ GeV, $m_0 = 210$ GeV, $A_Q = -4000$ GeV, $A_E = -400$ GeV, $m_{H_u} = 600$ GeV and $m_{H_d} = 800$ GeV. In this benchmark point, we have $\Omega_{\chi_1^0} h^2 = 0.114$, $\text{BR}(b \to s\gamma) = 3.32 \times 10^{-4}$, $\Delta a_\mu = 26.4 \times 10^{-10}$, $\text{BR}(B^0_s \to \mu^+\mu^-) = 3.14 \times 10^{-9}$, and $\text{BR}(B_u \to \tau\tilde{\nu})/\text{SM} = 0.998$. Moreover, the LSP neutralino is 99.99% bino. The LSP neutralino-proton spin independent and dependent cross sections are respectively 5.2×10^{-12} pb and 6.28×10^{-11} pb, and the LSP neutralino-neutron spin independent and dependent cross sections are respectively 5.3×10^{-12} pb and 2.46×10^{-9} pb.

In order to have the viable parameter spaces with better values for $(g_{\mu} - 2)/2$, we need to decrease the smuon masses. Thus, we consider the non-universal trilinear soft A terms. We assume that $A_U = A_D \equiv A_Q$ is much larger than A_E. To scan the viable parameter spaces
$\tilde{\chi}_1^0$	299	$\tilde{\chi}_1^\pm$	341	$\tilde{c}_R/\tilde{\mu}_R$	537	t_1	1076	\tilde{u}_R/\tilde{c}_R	2180	h^0	125.2
$\tilde{\chi}_2^0$	341	$\tilde{\chi}_2^\pm$	2245	$\tilde{c}_L/\tilde{\mu}_L$	549	t_2	1747	\tilde{u}_L/\tilde{c}_L	2181	A^0/H^0	2223
$\tilde{\chi}_3^0$	2244	$\tilde{\nu}_e/\mu$	543	$\tilde{\tau}_1$	308	\tilde{b}_1	1724	\tilde{d}_R/\tilde{s}_R	2178	H^\pm	2225
$\tilde{\chi}_4^0$	2245	$\tilde{\nu}_\tau$	461	$\tilde{\tau}_2$	495	\tilde{b}_2	2118	\tilde{d}_L/\tilde{s}_L	2182	\tilde{g}	2453

TABLE V: Supersymmetric particle and Higgs boson mass spectrum (in GeV) for a benchmark point in Scenario IIA with $\tan \beta = 13$, $M_{1/2} = 424$ GeV, $m_0 = 468$ GeV and $A_0 = -4000$ GeV. In this benchmark point, we have $\Omega_{\chi_1^0}h^2 = 0.1110$, $\text{BR}(b \to s\gamma) = 3.16 \times 10^{-4}$, $\Delta a_\mu = 5.67 \times 10^{-10}$, $\text{BR}(B^0_s \to \mu^+\mu^-) = 3.15 \times 10^{-9}$, and $\text{BR}(B_u \to \tau\bar{\nu})/\text{SM} = 0.998$. Moreover, the LSP neutralino is 99.97% bino. The LSP neutralino-proton spin independent and dependent cross sections are respectively 9.7×10^{-12} pb and 7.9×10^{-12} pb, and the LSP neutralino-neutron spin independent and dependent cross sections are respectively 9.9×10^{-12} pb and 2.4×10^{-9} pb.

$\tilde{\chi}_1^0$	310.0	$\tilde{\chi}_1^\pm$	353.0	$\tilde{e}_R/\tilde{\mu}_R$	657.0	t_1	1120.1	\tilde{u}_R/\tilde{c}_R	2229.5	h^0	125.5
$\tilde{\chi}_2^0$	353.0	$\tilde{\chi}_2^\pm$	2251.9	$\tilde{c}_L/\tilde{\mu}_L$	473.8	t_2	1818.7	\tilde{u}_L/\tilde{c}_L	2257.3	A^0/H^0	2798
$\tilde{\chi}_3^0$	2250.4	$\tilde{\nu}_e/\mu$	467.4	$\tilde{\tau}_1$	320.1	\tilde{b}_1	1795.6	\tilde{d}_R/\tilde{s}_R	2260.1	H^\pm	2798
$\tilde{\chi}_4^0$	2251.5	$\tilde{\nu}_\tau$	348.4	$\tilde{\tau}_2$	511.0	\tilde{b}_2	2195	\tilde{d}_L/\tilde{s}_L	2258.6	\tilde{g}	2539.0

TABLE VI: Supersymmetric particle and Higgs boson mass spectrum (in GeV) for a benchmark point in Scenario IIB with $\tan \beta = 13$, $M_{1/2} = 440$ GeV, $m_0 = 460$ GeV, $A_0 = -4000$ GeV, $m_{H_u} = 600$ GeV and $m_{H_d} = 1800$ GeV. In this benchmark point, we have $\Omega_{\chi_1^0}h^2 = 0.12$, $\text{BR}(b \to s\gamma) = 3.16 \times 10^{-4}$, $\Delta a_\mu = 5.58 \times 10^{-10}$, $\text{BR}(B^0_s \to \mu^+\mu^-) = 3.14 \times 10^{-9}$, and $\text{BR}(B_u \to \tau\bar{\nu})/\text{SM} = 0.999$. Moreover, the LSP neutralino is 99.99% bino. The LSP neutralino-proton spin independent and dependent cross sections are respectively 9.23×10^{-12} pb and 2.92×10^{-11} pb, and the LSP neutralino-neutron spin independent and dependent cross sections are respectively 9.40×10^{-12} pb and 2.41×10^{-9} pb.

in the $M_{1/2} - m_0$ plane, we choose $\tan \beta = 13$, $A_Q = -4000$ GeV, and $A_E = -400$ GeV. We present the viable parameter space in Scenarios IA and IB respectively in Fig. 3 and Fig. 4. Moreover, we present the benchmark points in Tables III and IV for Scenarios IA and IB, respectively. Similar to the above, the LSP neutralinos have 99.98% and 99.99% bino components respectively in Tables III and IV. Especially, the deviations of $(g_\mu - 2)/2$...
\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\tilde{\chi}_1^0 & 318 & \tilde{\chi}_1^\pm & 362 & \tilde{e}_R/\tilde{\mu}_R & 396 & \tilde{t}_1 & 1210 & h^0 \\hline
\tilde{\chi}_2^0 & 362 & \tilde{\chi}_2^\pm & 2312 & \tilde{e}_L/\tilde{\mu}_L & 416 & \tilde{t}_2 & 1849 & \tilde{A}^0/\tilde{H}^0 \\hline
\tilde{\chi}_3^0 & 2311 & \tilde{\nu}_{e/\mu} & 408 & \tilde{\tau}_1 & 327 & \tilde{b}_1 & 1827 & \tilde{A}^0/\tilde{H}^0 \\hline
\tilde{\chi}_4^0 & 2312 & \tilde{\nu}_\tau & 405 & \tilde{\tau}_2 & 463 & \tilde{b}_2 & 2213 & \tilde{g} \\hline
\end{array}
\]

TABLE VII: Supersymmetric particle and Higgs boson mass spectrum (in GeV) for a benchmark point in Scenario IIA with \(\tan \beta = 13 \), \(M_{1/2} = 452 \text{ GeV}, m_0 = 280 \text{ GeV}, A_Q = -4000 \text{ GeV} \) and \(A_E = -400 \text{ GeV} \). In this benchmark point, we have \(\Omega_{\tilde{\chi}_1^0} h^2 = 0.1125 \), \(\text{BR}(b \to s\gamma) = 3.18 \times 10^{-4}, \Delta a_\mu = 10.6 \times 10^{-10}, \text{BR}(B_s^0 \to \mu^+\mu^-) = 3.15 \times 10^{-9} \), and \(\text{BR}(B_u \to \tau\bar{\nu})/\text{SM} = 0.998 \). Moreover, the LSP neutralino is 99.97% bino. The LSP neutralino-proton spin independent and dependent cross sections are respectively \(9.2 \times 10^{-12} \text{ pb} \) and \(2.0 \times 10^{-11} \text{ pb} \), and the LSP neutralino-neutron spin independent and dependent cross sections are respectively \(9.39 \times 10^{-10} \text{ pb} \) and \(2.2 \times 10^{-9} \text{ pb} \).

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\tilde{\chi}_1^0 & 309.1 & \tilde{\chi}_1^\mp & 351.8 & \tilde{c}_R/\tilde{\mu}_R & 549.7 & \tilde{t}_1 & 1045.5 & h^0 \\hline
\tilde{\chi}_2^0 & 351.8 & \tilde{\chi}_2^\mp & 2144.9 & \tilde{e}_L/\tilde{\mu}_L & 376.2 & \tilde{t}_2 & 1765.9 & \tilde{A}^0/\tilde{H}^0 \\hline
\tilde{\chi}_3^0 & 2143.3 & \tilde{\nu}_{e/\mu} & 368.2 & \tilde{\tau}_1 & 315.8 & \tilde{b}_1 & 1742.6 & \tilde{A}^0/\tilde{H}^0 \\hline
\tilde{\chi}_4^0 & 2144.5 & \tilde{\nu}_\tau & 352.2 & \tilde{\tau}_2 & 457.6 & \tilde{b}_2 & 2159.4 & \tilde{g} \\hline
\end{array}
\]

TABLE VIII: Supersymmetric particle and Higgs boson mass spectrum (in GeV) for a benchmark point in Scenario IIB with \(\tan \beta = 13 \), \(M_{1/2} = 440 \text{ GeV}, m_0 = 280 \text{ GeV}, A_Q = -4000 \text{ GeV}, A_E = -400 \text{ GeV}, m_{H_u} = 1000 \text{ GeV}, \) and \(m_{H_d} = 1400 \text{ GeV} \). In this benchmark point, we have \(\Omega_{\tilde{\chi}_1^0} h^2 = 0.09, \text{BR}(b \to s\gamma) = 3.14 \times 10^{-4}, \Delta a_\mu = 10.3 \times 10^{-10}, \text{BR}(B_s^0 \to \mu^+\mu^-) = 3.15 \times 10^{-9} \), and \(\text{BR}(B_u \to \tau\bar{\nu})/\text{SM} = 0.999 \). Moreover, the LSP neutralino is 99.99% bino. The LSP neutralino-proton spin independent and dependent cross sections are respectively \(1.11 \times 10^{-11} \text{ pb} \) and \(1.82 \times 10^{-10} \text{ pb} \), and the LSP neutralino-neutron spin independent and dependent cross sections are respectively \(1.14 \times 10^{-11} \text{ pb} \) and \(3.25 \times 10^{-9} \text{ pb} \).

from the central value are within 1\(\sigma \) in both benchmark points.

Second, we discuss the Scenario II. To scan the viable parameter spaces in the \(M_{1/2} - m_0 \) plane, we consider the universal trilinear soft \(A \) term \(A_0 \), and we choose \(\tan \beta = 13 \) and \(A_0 = -4000 \text{ GeV} \). We present the viable parameter spaces in Scenarios IIA and IIB respectively in Fig. 5 and Fig. 6. Moreover, we present the benchmark points in Tables VII and VIII.
for Scenarios IIA and IIB, respectively. In particular, the LSP neutralinos have 99.97% and 99.99% bino components due to the heavy Higgsinos respectively in Tables V and VI. However, the deviations of \((g_\mu - 2)/2\) from the central value are about 2.6\(\sigma\) for both benchmark points.

Moreover, we consider the non-universal trilinear soft \(A\) terms. To scan the viable parameter spaces in the \(M_{1/2} - m_0\) plane, we choose \(\tan \beta = 13\), \(A_Q = -4000\) GeV, and \(A_E = -400\) GeV. We present the viable parameter spaces in Scenarios IIA and IIB respectively in Fig. 7 and Fig. 8. Moreover, we present the benchmark points in Tables VII and VIII for Scenarios IIA and IIB, respectively. Similar to the above, the LSP neutralinos respectively have 99.97% and 99.99% bino components respectively in Tables VII and VIII. Especially, the deviations of \((g_\mu - 2)/2\) from the central value are within 2\(\sigma\) in both benchmark points.

The LHC searches for electroweak supersymmetry are to look for the trilepton plus missing transverse energy signals, which arise from the first chargino \(\chi_1^+\) and second neutralino \(\chi_2^0\) pair productions and decays [76]. In quite a few benchmark points of our electroweak supersymmetry, only the light stau is lighter than \(\chi_1^+\) and \(\chi_2^0\). Thus, it is different from the previous work [76], and definitely deserved further detail study.

IV. CONCLUSION

We proposed the electroweak supersymmetry around the electroweak scale: the squarks and/or gluinos are around a few TeV while the sleptons, sneutrinos, bino and winos are within one TeV. The Higgsinos can be either heavy or light. Thus, the constraints from the ATLAS and CMS supersymmetry and Higgs searches and the \(b \rightarrow s \gamma\), \(B_s \rightarrow \mu^+ \mu^-\), and \(B_u \rightarrow \tau \bar{\nu}_\tau\) processes can be satisfied automatically due to the heavy squarks. Also, the dimension-five proton decays in the supersymmetric GUTs can be relaxed as well. In addition, the \((g_\mu - 2)/2\) experimental result can be explained due to the light sleptons. With bino as the dominant component of the LSP neutralino, we obtained the observed dark matter relic density via the neutralino-stau coannihilations, and the XENON experimental constraint can be evaded due to the heavy squarks as well. Considering the GmSUGRA, we showed explicitly that the electroweak supersymmetry can be realized, and the gauge coupling unification can be preserved. With two Scenarios, we presented the viable pa-
parameter spaces that satisfy all the current phenomenological constraints. Furthermore, we commented on the fine-tuning problem and LHC searches.

Acknowledgments

This research was supported in part by the Natural Science Foundation of China under grant numbers 10821504 and 11075194 (TC, JL, TL and CT), and by the DOE grant DE-FG03-95-Er-40917 (TL and DVN).

[1] J. R. Ellis, S. Kelley and D. V. Nanopoulos, Phys. Lett. B 249, 441 (1990); Phys. Lett. B 260, 131 (1991); U. Amaldi, W. de Boer and H. Furstenau, Phys. Lett. B 260, 447 (1991); P. Langacker and M. X. Luo, Phys. Rev. D 44, 817 (1991); F. Anselmo, L. Cifarelli, A. Peterman and A. Zichichi, Nuovo Cim. A 104, 1817 (1991); Nuovo Cim. A 105, 1025 (1992).

[2] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos and M. Srednicki, Phys. Lett. B 127, 233 (1983); J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos, K. A. Olive and M. Srednicki, Nucl. Phys. B 238, 453 (1984).

[3] H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983) [Erratum-ibid. 103, 099905 (2009)].

[4] G. Aad et al. [ATLAS Collaboration], arXiv:1109.6572 [hep-ex].

[5] G. Aad et al. [ATLAS Collaboration], JHEP 1111, 099 (2011) arXiv:1110.2299 [hep-ex].

[6] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett. 107, 221804 (2011) arXiv:1109.2352 [hep-ex].

[7] The ATLAS Collaboration, arXiv:1202.1408 [hep-ex].

[8] S. Chatrchyan et al. [CMS Collaboration], arXiv:1202.1488 [hep-ex].

[9] L. J. Hall, D. Pinner and J. T. Ruderman, arXiv:1112.2703 [hep-ph].

[10] H. Baer, V. Barger and A. Mustafayev, arXiv:1112.3017 [hep-ph].

[11] T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1112.3024 [hep-ph].

[12] S. Heinemeyer, O. Stal and G. Weiglein, arXiv:1112.3026 [hep-ph].

[13] A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Phys. Lett. B 708, 162 (2012) arXiv:1112.3028 [hep-ph].

[14] A. Arbey, M. Battaglia and F. Mahmoudi, arXiv:1112.3032 [hep-ph].
[15] M. Carena, S. Gori, N. R. Shah and C. E. M. Wagner, arXiv:1112.3336 [hep-ph].
[16] S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, arXiv:1112.3645 [hep-ph].
[17] M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, arXiv:1112.3647 [hep-ph].
[18] U. Ellwanger, arXiv:1112.3548 [hep-ph].
[19] O. Buchmueller, R. Cavanaugh, A. De Roeck, M. J. Dolan, J. R. Ellis, H. Flacher, S. Heinemeyer and G. Isidori et al., arXiv:1112.3564 [hep-ph].
[20] J. Cao, Z. Heng, D. Li and J. M. Yang, arXiv:1112.4391 [hep-ph].
[21] J. F. Gunion, Y. Jiang and S. Kraml, arXiv:1201.0982 [hep-ph].
[22] S. F. King, M. Muhlleitner and R. Nevzorov, arXiv:1201.2671 [hep-ph].
[23] Z. Kang, J. Li and T. Li, arXiv:1201.5305 [hep-ph].
[24] C.-F. Chang, K. Cheung, Y. -C. Lin and T. -C. Yuan, arXiv:1202.0054 [hep-ph].
[25] L. Aparicio, D. G. Cerdeno and L. E. Ibanez, arXiv:1202.0822 [hep-ph].
[26] H. Baer, V. Barger and A. Mustafayev, arXiv:1202.4038 [hep-ph].
[27] D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M. R. Nolta, C. L. Bennett, B. Gold and M. Halpern et al., Astrophys. J. Suppl. 192, 16 (2011) [arXiv:1001.4635 [astro-ph.CO]].
[28] E. Aprile et al. [XENON100 Collaboration], Phys. Rev. Lett. 107, 131302 (2011) [arXiv:1104.2549 [astro-ph.CO]].
[29] E. Barberio et al. [Heavy Flavor Averaging Group (HFAG) Collaboration], arXiv:0704.3575 [hep-ex].
[30] M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007).
[31] K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T. Teubner, J. Phys. G G 38, 085003 (2011) [arXiv:1105.3149 [hep-ph]].
[32] The CMS and LHCb collaborations, CMS-PAS-BPH-11-019, LHCb-CONF-2011-047, and CERN-LHCb-CONF-2011-047, 2011.
[33] O. Buchmueller, R. Cavanaugh, A. De Roeck, J. R. Ellis, H. Flacher, S. Heinemeyer, G. Isidori and K. A. Olive et al., Eur. Phys. J. C 64, 391 (2009) [arXiv:0907.5568 [hep-ph]].
[34] V. Braun, Y. H. He, B. A. Ovrut and T. Pantev, Phys. Lett. B 618, 252 (2005); JHEP 0605, 043 (2006), and references therein.
[35] V. Bouchard and R. Donagi, Phys. Lett. B 633, 783 (2006), and references therein.
[36] M. Berkooz, M. R. Douglas and R. G. Leigh, Nucl. Phys. B 480, 265 (1996).
[37] L. E. Ibanez, F. Marchesano and R. Rabada, JHEP 0111, 002 (2001).
[38] R. Blumenhagen, B. Kors, D. Lust and T. Ott, Nucl. Phys. B 616, 3 (2001).
[39] M. Cvetič, G. Shiu and A. M. Uranga, Phys. Rev. Lett. 87, 201801 (2001); M. Cvetić, G. Shiu and A. M. Uranga, Nucl. Phys. B 615, 3 (2001).
[40] M. Cvetić, I. Papadimitriou and G. Shiu, Nucl. Phys. B 659, 193 (2003) [Erratum-ibid. B 696, 298 (2004)].
[41] M. Cvetić, T. Li and T. Liu, Nucl. Phys. B 698, 163 (2004). M. Cvetić, P. Langacker, T. Li and T. Liu, Nucl. Phys. B 709, 241 (2005).
[42] C.-M. Chen, G. V. Kraniotis, V. E. Mayes, D. V. Nanopoulos and J. W. Walker, Phys. Lett. B 611, 156 (2005); Phys. Lett. B 625, 96 (2005).
[43] C. M. Chen, T. Li and D. V. Nanopoulos, Nucl. Phys. B 732, 224 (2006).
[44] R. Blumenhagen, M. Cvetic, P. Langacker and G. Shiu, Ann. Rev. Nucl. Part. Sci. 55, 71 (2005), and references therein.
[45] R. Donagi and M. Wijnholt, arXiv:0802.2969 [hep-th].
[46] C. Beasley, J. J. Heckman and C. Vafa, JHEP 0901, 058 (2009).
[47] C. Beasley, J. J. Heckman and C. Vafa, JHEP 0901, 059 (2009).
[48] R. Donagi and M. Wijnholt, arXiv:0808.2223 [hep-th].
[49] A. Font and L. E. Ibanez, JHEP 0902, 016 (2009).
[50] J. Jiang, T. Li, D. V. Nanopoulos and D. Xie, Phys. Lett. B 677, 322 (2009); Nucl. Phys. B 830, 195 (2010) [arXiv:0905.3394 [hep-th]].
[51] R. Blumenhagen, Phys. Rev. Lett. 102, 071601 (2009).
[52] T. Li, Phys. Rev. D 81, 065018 (2010) [arXiv:0905.4563 [hep-th]].
[53] T. Li and D. V. Nanopoulos, Phys. Lett. B 692, 121 (2010) [arXiv:1002.4183 [hep-ph]].
[54] C. Balazs, T. Li, D. V. Nanopoulos and F. Wang, JHEP 1009, 003 (2010) [arXiv:1006.5559 [hep-ph]].
[55] J. R. Ellis, K. Enqvist, D. V. Nanopoulos and K. Tamvakis, Phys. Lett. B 155, 381 (1985).
[56] M. Drees, Phys. Lett. B 158, 409 (1985).
[57] G. Anderson, H. Baer, C. h. Chen and X. Tata, Phys. Rev. D 61, 095005 (2000).
[58] N. Chamoun, C. S. Huang, C. Liu and X. H. Wu, Nucl. Phys. B 624, 81 (2002).
[59] J. Chakrabortty and A. Raychaudhuri, Phys. Lett. B 673, 57 (2009).
[60] S. P. Martin, Phys. Rev. D 79, 095019 (2009).
[61] S. Bhattacharya and J. Chakrabortty, Phys. Rev. D 81, 015007 (2010).
[62] D. Feldman, Z. Liu and P. Nath, Phys. Rev. D 80, 015007 (2009).

[63] N. Chamoun, C. -S. Huang, C. Liu and X. -H. Wu, J. Phys. G G 37, 105016 (2010) [arXiv:0909.2374 [hep-ph]].

[64] T. Li, J. A. Maxin and D. V. Nanopoulos, Phys. Lett. B 701, 321 (2011) [arXiv:1002.1031 [hep-ph]].

[65] I. Gogoladze, Q. Shafi and C. S. Un, arXiv:1112.2206 [hep-ph].

[66] J. E. Younkin and S. P. Martin, arXiv:1201.2989 [hep-ph].

[67] Y. -J. Huo, T. Li and D. V. Nanopoulos, JHEP 1109, 003 (2011) [arXiv:1011.0964 [hep-ph]].

[68] J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. Lett. 84, 2322 (2000) [hep-ph/9908309].

[69] J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. D 61, 075005 (2000) [hep-ph/9909334].

[70] K. L. Chan, U. Chattopadhyay and P. Nath, Phys. Rev. D 58, 096004 (1998) [hep-ph/9710473].

[71] A. Djouadi, J. L. Kneur and G. Moultaka, Comput. Phys. Commun. 176, 426 (2007).

[72] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 176, 367 (2007) [hep-ph/0607059].

[73] G. Belanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati and A. Semenov, Comput. Phys. Commun. 182, 842 (2011) [arXiv:1004.1092 [hep-ph]].

[74] M. Lancaster [Tevatron Electroweak Working Group and for the CDF and D0 Collaborations], arXiv:1107.5255 [hep-ex].

[75] R. Barate et al. [LEP Working Group for Higgs boson searches and ALEPH Collaboration], Phys. Lett. B 565, 61 (2003); W. M. Yao et al (Particle Data Group), J. Phys. G 33, 1 (2006).

[76] J. Eckel, W. Shepherd and S. Su, arXiv:1111.2615 [hep-ph], and references therein.
Scenario IA, \(\tan \beta = 13, A_0 = -4000 \) GeV

FIG. 1: The viable parameter spaces in Scenario IA are the red region with Higgs boson mass from 124 GeV to 126 GeV, the green region with Higgs boson mass from 126 GeV to 127 GeV, the blue region with Higgs boson mass larger than 127 GeV. The white region is excluded because there is no RGE solution or \(\chi^0_1 \) is not a LSP. The dark khaki region, khaki region and light grey region are excluded by the \((g - \frac{2}{4}) \) constraint, the cold dark matter relic density, and the LEP constraints, respectively.
Scenario IB, $\tan \beta = 13$, $A_0 = -4000 \text{ GeV}$

![Graph showing the viable parameter spaces in Scenario IB](image)

- Red region: Higgs boson mass from 124 GeV to 126 GeV
- Green region: Higgs boson mass from 126 GeV to 127 GeV
- Dark blue region: Higgs boson mass from 123 GeV to 124 GeV
- Up blue region: Higgs boson mass larger than 127 GeV
- Down blue region: Higgs boson mass from 114.4 GeV to 123 GeV

The white region is excluded because there is no RGE solution or χ_0^1 is not a LSP. The yellow region, grey region, and light grey region are excluded by the $(g-\mu)/2$ constraint, the cold dark matter relic density, and the LEP constraints, respectively.
Scenario IA, $\tan \beta = 13, A_Q = 10 A_E = -4000$ GeV

FIG. 3: The viable parameter spaces in Scenario IA are the red region with Higgs boson mass from 124 GeV to 126 GeV, the green region with Higgs boson mass from 126 GeV to 127 GeV, the dark blue region with Higgs boson mass from 123 GeV to 124 GeV, and the up blue region with Higgs boson mass larger than 127 GeV while the down blue region with Higgs boson mass from 114.4 GeV to 123 GeV. The white region is excluded because there is no RGE solution or χ_0^1 is not a LSP. The dark khaki region, khaki region, and light grey region are excluded by the $(g - \mu)/2$ constraint, the cold dark matter relic density, and the LEP constraints, respectively.
Scenario IB, $\tan \beta = 13$, $A Q = 10 A E = -4000$ GeV

FIG. 4: The viable parameter spaces in Scenario IB are the red region with Higgs boson mass from 124 GeV to 126 GeV, the green region with Higgs boson mass from 126 GeV to 127 GeV, the dark blue region with Higgs boson mass from 123 GeV to 124 GeV, and the blue region with Higgs boson mass from 114.4 GeV to 123 GeV. The white region is excluded because there is no RGE solution or χ^0_1 is not a LSP. The yellow region, grey region and light grey region are excluded by the $(g\mu_2/2)$ constraint, the cold dark matter relic density, and the LEP constraints, respectively.
Scenario IIA, \(\tan \beta = 13 \), \(A_0 = -4000 \) GeV

Figure 5: The viable parameter spaces in Scenario IIA are the red region with Higgs boson mass from 124 GeV to 126 GeV, the green region with Higgs boson mass from 126 GeV to 127 GeV, the dark blue region with Higgs boson mass from 123 GeV to 124 GeV, and the blue region with Higgs boson mass from 114.4 GeV to 123 GeV. The white region is excluded because there is no RGE solution or \(\chi_0^1 \) is not a LSP. The dark khaki region, khaki region and light grey region are excluded by the \((g-2)/2 \) constraint, the cold dark matter relic density, and the LEP constraints, respectively.
Scenario IIB, \(\tan \beta = 13, A_0 = -4000 \) GeV

FIG. 6: The viable parameter spaces in Scenario IIB are the red region with Higgs boson mass from 124 GeV to 126 GeV, the green region with Higgs boson mass from 126 GeV to 127 GeV, the dark blue region with Higgs boson mass from 123 GeV to 124 GeV, and the up blue region with Higgs boson mass larger than 127 GeV while the down blue region with Higgs boson mass from 114.4 GeV to 123 GeV. The white region is excluded because there is no RGE solution or \(\chi_0^1 \) is not a LSP. The yellow region, grey region and light grey region are excluded by the \((g\mu - 2)^2 \) constraint, the cold dark matter relic density, and the LEP constraints, respectively.
Scenario IIA, tan $\beta = 13$, $A_Q = 10$, $A_E = -4000$ GeV

FIG. 7: The viable parameter spaces in Scenario IIA are the red region with Higgs boson mass from 124 GeV to 126 GeV, the green region with Higgs boson mass from 126 GeV to 127 GeV, the dark blue region with Higgs boson mass from 123 GeV to 124 GeV, and the blue region with Higgs boson mass from 114.4 GeV to 123 GeV. The white region is excluded because there is no RGE solution or χ_0 is not a LSP. The dark khaki region, khaki region and light grey region are excluded by the $(g-2)/2$ constraint, the cold dark matter relic density, and the LEP constraints, respectively.
Scenario IIB, $\tan \beta = 13$, $A_Q = 10A_E = -4000$ GeV

FIG. 8: The viable parameter spaces in Scenario IIB are the red region with Higgs boson mass from 124 GeV to 126 GeV, the green region with Higgs boson mass from 126 GeV to 127 GeV, the dark blue region with Higgs boson mass from 123 GeV to 124 GeV, and the up blue region with Higgs boson mass larger than 127 GeV while the down blue region with Higgs boson mass from 114.4 GeV to 123 GeV. The white region is excluded because there is no RGE solution or χ_0^1 is not a LSP. The yellow region, grey region and light grey region are excluded by the $\left(\frac{g \mu}{2}\right)$ constraint, the cold dark matter relic density, and the LEP constraints, respectively.