Analyse Fonctionnelle

Espaces L_p non commutatifs à valeurs vectorielles
et applications complètement p-sommantes.

Note de Gilles Pisier

Présentée par

Résumé français. Soit E un espace d’opérateurs au sens de la théorie développée récemment par Blecher-Paulsen et Effros-Ruan. On introduit une notion d’espace L^p non commutatif à valeurs dans E pour $1 \leq p < \infty$ et on démontre qu’elle possède les propriétés naturelles que l’on attend, pour la dualité et l’interpolation par exemple. Cela permet de définir une notion d’application complètement p-sommante adaptée à la catégorie des espaces d’opérateurs. Cette notion généralise celle introduite précédemment par Effros-Ruan pour $p = 1$.

English title. Noncommutative vector valued L_p-spaces and completely p-summing maps.

English Abstract. Let E be an operator space in the sense of the theory recently developed by Blecher-Paulsen and Effros-Ruan. We introduce a notion of E-valued non commutative L_p-space for $1 \leq p < \infty$ and we prove that the resulting operator space satisfies the natural properties to be expected with respect to e.g. duality and interpolation. This notion leads to the definition of a “completely p-summing” map which is the operator space analogue of the p-absolutely summing maps in the sense of Pietsch-Kwapień. These notions extend the particular case $p = 1$ which was previously studied by Effros-Ruan.
English Abridged version

We will work in the category of operator spaces as developed in the papers [1,2] and [4]. By an operator space we mean a closed subspace of the space $B(H)$ of all bounded operators on H for some Hilbert space H. In this category the morphisms (resp. isomorphisms) are the completely bounded maps (resp. completely isomorphisms). We refer to [1,2,4] for more informations and in particular for the notions of completely bounded map (in short c.b.), of dual space and quotient space in this category. We refer to our recent work [9,10] for the definition and basic properties of the complex interpolation method and ultraproducts in the category of operator spaces, as well as for the definition and basic properties of the operator Hilbert space $\text{OH}(I)$ associated to any index set I.

Let H, K be Hilbert spaces. We will denote by $H \otimes_2 K$ the Hilbertian tensor product.

Let $E \subset B(H)$, $F \subset B(K)$ be two operator spaces. We will denote by $E \otimes_m F$ the minimal (or spatial) tensor product, i.e. the completion of the linear product $E \otimes F$ for the norm induced by $B(H \otimes_2 K)$.

We will denote by $S_p(K)$ the Schatten class formed of all the compact operators $T : K \to K$ such that $\text{tr}|T|^p < \infty$, equipped with the norm $\|T\|_p = (\text{tr}|T|^p)^{1/p}$. We denote by $S_\infty(K)$ the class of all compact operators on K equipped with the norm induced by $B(K)$.

We will define the space $S_p[K; E]$ when $E \subset B(H)$ is an operator space. First we define $S_\infty[K; E] = S_\infty(K) \otimes_m E$ and $S_1[K; E] = S_1(K) \otimes_\Lambda E$ where \otimes_Λ is the operator space version of the projective tensor norm as introduced in [1,4] and developed by Effros-Ruan in [6, 7, 8]. By these known results, we have a contractive inclusion $S_1[K; E] \to S_\infty[K; E]$ which allows to consider this pair as a compatible couple in the sense of interpolation theory. Then for $1 < p < \infty$ and $\theta = 1/p$ we define the operator space $S_p[K; E]$ as $S_p[K; E] = (S_\infty[K, E], S_1[K; E])_\theta$, where the operator space structure is defined as in [9].

To simplify our notation, let us restrict ourselves to the case $K = \ell_2$. In that case we will write S_p and $S_p[E]$ instead of $S_p(K)$ and $S_p[K; E]$. Assume $1 \leq p_0, p_1 \leq \infty$ and $p^{-1} = (1 - \theta)p_0^{-1} + \theta p_1^{-1}$. Then $S_p[E] = (S_{p_0}[E], S_{p_1}[E])_\theta$ completely isometrically. Moreover, let $p' = p(p-1)^{-1}$, then $S_p[E]^* = S_{p'}[E^*]$ completely isometrically. The space S_2 is completely isometric to the space $\text{OH}(\mathbb{N} \times \mathbb{N})$ in the sense of our previous work [9]. Moreover $S_2[\text{OH}(I)]$ is completely isometric to $\text{OH}(\mathbb{N} \times \mathbb{N} \times I)$.

Let K, L be Hilbert spaces, then we have the following analogue of Fubini’s theorem:
\[S_p[K;S_p[L;E]] = S_p[K \otimes_2 L;E] = S_p[L;S_p[K;E]] \] completely isometrically.

Let \(E, F \) be operator spaces. We denote by \(cb(E, F) \) the space of all c.b. maps from \(E \) into \(F \) equipped with the c.b. norm. Let \(u : E \to F \) be a linear map. We say that \(u \) is completely \(p \)-summing if the operator \(I_{S_p} \otimes u \) extends to a bounded map \(\tilde{u} \) from \(S_p \otimes_m E \) to \(S_p[F] \). We denote \(\pi^0_p(u) = \| \tilde{u} \| \). Actually, it can be shown that \(\tilde{u} \) is then completely bounded with c.b. norm \(\| \tilde{u} \|_{cb} \). In particular \(\| u \|_{cb} \leq \pi^0_p(u) \).

We prove the analogue of the Pietsch factorization theorem for these maps. Moreover we show that if \(E \subseteq B(H) \) is \(n \) dimensional then \(\pi^0_2(I_E) = n^{1/2} \). This implies that there is an isomorphism \(u : E \to OH_n \) such that \(\| u \|_{cb} \| u^{-1} \|_{cb} \leq n^{1/2} \) and a projection \(P : B(H) \to E \) such that \(\| P \|_{cb} \leq n^{1/2} \).

For every operator \(u : E \to OH(J) \) \((J \) an arbitrary set) we have \(\pi^0_2(u) = \pi_{2,oh}(u) \) where \(\pi_{2,oh}(u) \) is the \((2, oh)\)-summing norm introduced in our preceding note [10]. Moreover, for every \(u : OH(I) \to OH(J) \) \((I, J \) arbitrary sets) the Hilbert Schmidt norm \(\| u \|_{HS} \) of \(u \) coincides with \(\pi^0_2(u) \) and \(\pi_{2,oh}(u) \). One can then reformulate a result of [10] as follows : A linear map \(u : E \to F \) is in \(\Gamma_{oh}(E, F) \) iff there exists a constant \(C \) such that for all \(n \) and all \(v : F \to OH_n \) we have \(\pi^0_2((vu)^*) \leq C \pi^0_2(\nu) \). Equivalently, this means that for all \(n \) and all \(T : S_n^2 \to S_n^2 \) the norm of \(T \otimes u \) in \(cb(S_n^2[E], S_n^2[F]) \) is majorized by \(C \| T \| \). Moreover, \(\gamma_{oh}(u) \) is equal to the smallest constant \(C \) in either of these properties. In particular this result yields a natural operator space structure on the space \(\Gamma_{oh}(E, F) \), obtained by embedding it in a suitable direct sum (in the sense of \(\ell^\infty \)) of copies of \(cb(S_n^2[E], S_n^2[F]) \).
Soit $1 \leq p < \infty$. On notera $S_p(K)$ l’espace des opérateurs compacts $T : K \to K$ tels que $\text{tr}|T|^p < \infty$ muni de la norme $\|T\|_p = (\text{tr}|T|^p)^{1/p}$. Pour $p = \infty$, on notera $S_\infty(K)$ l’ensemble des opérateurs compacts muni de la norme induite par $B(K)$. Si $K = \ell_2$, on note $S_p = S_p(\ell_2)$ et si $K = \ell^n_2$ on note $S^n_p = S_p(\ell^n_2)$.

Il est bien connu que les espaces $S_p(K)$ (appelées souvent classes de Schatten) sont un analogue non commutatif des espaces $L_p(\Omega, \mu)$, tout au moins pour un espace mesuré discret (i.e. atomique). Dans le cas commutatif, pour tout espace de Banach E, on sait construire (suivant une idée attribuée à Bochner) l’espace $L_p(\Omega, \mu; E)$ des fonctions L_p à valeurs dans E. Nous allons définir un analogue non commutatif $S_p[K; E]$ dans le cas où E est un espace d’opérateurs. L’espace $S_p[K; E]$ sera lui aussi un espace d’opérateurs.

Pour simplifier nous ne considérons dans cette note que le cas discret. Néanmoins, les idées peuvent être facilement adaptées au cas d’une algèbre de von Neumann M munie d’une trace semi-finie, fidèle et normale, à condition que l’algèbre de von Neumann M soit injective. Bien que les définitions aient un sens, des propriétés essentielles sont en défaut si M n’est pas supposée injective. Nous donnerons plus de détails et les démonstrations des résultats annoncés ci-dessous dans une prochaine publication.

Soient H, K deux espaces de Hilbert. On note $B(H)$ l’espace des opérateurs bornés sur H muni de sa norme usuelle. On appelle “espace d’opérateurs” un sous-espace fermé de $B(H)$. Dans la catégorie des espaces d’opérateurs telle qu’elle est développée par Blecher-Paulsen [1,2] et Effros-Ruan [4], les morphismes (resp. isomorphismes, resp. isométries) sont les applications complètement bornées (resp. les isomorphismes complets, resp. les isométries complètes). On abrégera complètement borné en $c.b.$ On notera $cb(E, F)$ l’espace des applications linéaires de E dans F muni de la norme $\|\|_{cb}$. Nous renvoyons aux articles [1,2,4] pour les notions de dual E^* d’un espace d’opérateur E et aussi pour la notion de quotient dans cette catégorie. Nous renvoyons à nos travaux précédents [9,10] pour la définition de la méthode d’interpolation complexe et des ultraproducts dans la catégorie des espaces d’opérateurs, ainsi que pour la définition et les principales propriétés de l’espace d’opérateurs $OH(I)$ qui est l’analogue dans cette catégorie de l’espace $\ell_2(I)$ associé à un ensemble arbitraire I.

Soit $E \subset B(H)$, $F \subset B(K)$ deux espaces d’opérateurs, nous noterons $E \otimes_m F$ leur produit tensoriel minimal (= spatial), i.e. le complété du produit tensoriel algébrique $E \otimes F$ pour la norme induite par $B(H \otimes_2 K)$, où on a noté $H \otimes_2 K$ le produit tensoriel hilbertien
de H et K. Nous renvoyons à [1, 2, 3, 5] pour la définition et les principales propriétés du produit tensoriel de Haagerup $E \otimes_h F$ de deux espaces d’opérateurs. Pour tout espace de Hilbert K, nous noterons K_c et K_r les espaces d’opérateurs (isométriques à K) définis par $K_c = B(C, K), K_r = B(K^*, C)$.

Nous allons définir l’espace d’opérateurs $S_p[K; E]$. Commençons par les cas $p = \infty$ et $p = 1$. Pour $p = \infty$, on pose $S_\infty[K; E] = S_\infty(K) \otimes_mE$. Pour $p = 1$, on définit $S_1[K; E] = S_1(K) \otimes_\wedge E$ où \otimes_\wedge désigne l’analogue du produit tensoriel projectif dans la catégorie des espaces d’opérateurs tel qu’il est défini dans [1, 4]. Dans une série d’articles Effros et Ruan [6, 7, 8] ont développé les principales propriétés de ce produit tensoriel. En particulier, d’après leurs travaux il y a une inclusion contractive $S_1[K; E] \rightarrow S_\infty[K; E]$. Cette inclusion nous permet de considérer le couple $(S_1[K; E], S_\infty[K; E])$ comme un couple compatible pour l’interpolation. On définit alors pour $1 < p < \infty$ l’espace $S_p[K; E]$ par la méthode d’interpolation complexe

$$S_p[K; E] = (S_\infty[K; E], S_1[K; E])_\theta$$

où $\theta = 1/p$. La structure d’espace d’opérateurs sur $S_p[K; E]$ est définie (voir [9]) par l’identité

$$M_n(S_p[K; E]) = (M_n(S_\infty[K; E]), M_n(S_1[K; E]))_\theta.$$

Rappelons que l’on peut considérer (K_r, K_c) comme un couple compatible pour l’interpolation grec à l’isométrie linéaire $i : K_c \rightarrow K_r$ qui associe à tout $T : C \rightarrow K$ l’opérateur adjoint $i(T) : K^* \rightarrow C$. On peut donc définir (voir [9]) l’espace d’opérateurs $K_r(\theta) = (K_r, K_c)_\theta$ pour $0 < \theta < 1$. Nous poserons par convention $K_r(0) = K_r$ et $K_r(1) = K_c$. Rappelons que l’on a les isomorphismes complètement isométriques suivants (cf. [1, 5]).

$$K_c \otimes_h E \otimes_h K_r = S_\infty(K) \otimes_mE - \quad \text{et} \quad \quad - K_r \otimes_h E \otimes_h K_c = S_1(K) \otimes_\wedge E.$$

D’après [9] on peut en déduire

Théorème 1. Pour $1 < p < \infty$ et $\theta = 1/p$. On a un isomorphisme complètement isométrique

$$S_p[K; E] = K_r(1 - \theta) \otimes_h E \otimes_h K_r(\theta).$$

En particulier, pour $\theta = 1/2$ et (pour alléger la notation) si $K = \ell_2$, on a $S_2[E] = OH \otimes_h E \otimes_h OH$, complètement isométriquement.
Voici quelques propriétés de l’espace $S_p[K; E]$:
Soit E, F des espaces d’opérateurs et soit $u : E \to F$ une application $c.b.$ Alors $I_{S_p(K)} \otimes u$ s’étend en une application $U : S_p[K; E] \to S_p[K; F]$ telle que $\|U\|_{cb} = \|u\|_{cb}$. Si u est une isométrie complète, il en est de même de U. Le produit tensoriel algébrique $S_p(K) \otimes E$ est dense dans $S_p[K; E]$. On a une formule de dualité

$$S_p[K; E]^* = S_{p'}[K; E^*], \quad (\text{où } p' = p(p - 1)^{-1})$$

complètement isométriquement. Quant à l’interpolation, soit (E_0, E_1) un couple compatible d’espaces d’opérateurs, soit $E_\theta = (E_0, E_1)_\theta$ l’espace d’opérateurs décrit dans [9], soit $1 \leq p_0, p_1, p \leq \infty$ tels que $p^{-1} = (1 - \theta)p_0^{-1} + \theta p_1^{-1}$. On a alors

$$S_p[K, E_\theta] = (S_{p_0}[K; E_0], S_{p_1}[K; E_1])_\theta$$

complètement isométriquement.

On peut donner aussi l’analogue suivant du théorème de Fubini. Soit $1 \leq p \leq \infty$. Soit K, L deux espaces de Hilbert. On a complètement isométriquement

$$S_p[K; S_p[L; E]] = S_p[K \otimes_2 L; E] = S_p[L; S_p[K; E]].$$

Plus généralement, si $p \leq q \leq \infty$ on a une inclusion complètement contractive $S_p[K; S_q[L; E]]$ dans $S_q[L; S_p[K; E]]$. Soit I le cardinal d’une base orthonormale de K. Alors $S_2(K)$ en tant qu’espace d’opérateurs est complètement isométriquement identifiable à l’espace $OH(I \times I)$ introduit dans [9]. De plus pour tout ensemble J on peut vérifier que $S_2[K; OH(J)]$ s’identifie complètement isométriquement à $S_2(K) \otimes_h OH(J)$ ou encore à $OH(I \times I \times J)$.

Le théorème suivant permet de “calculer” la norme dans $S_p[K; E]$ et $M_n(S_p[K; E])$.

THEOREME 2. Soit $1 \leq p < \infty$. Soit $u \in S_p[K; E]$. On a

$$\|u\|_{S_p[K; E]} = \inf \{\|a\|_{S_{2p}(K)} \|v\|_{S_\infty[K; E]} \|b\|_{S_{2p}(K)}\}$$

(où l’infimum porte sur toutes les représentations de u de la forme $u = (a \otimes I_E)v(b \otimes I_E)$, avec $a, b \in S_2p(K)$ et $v \in S_\infty[K; E]$).

D’autre part, soit $F \subset B(L)$ un autre espace d’opérateurs. Soit a, b dans $S_{2p}[L]$. Notons $M(a, b)$ l’application de $B(L)$ dans $S_p(L)$ définie par $M(a, b)y = ayb$. On notera $\tilde{M}(a, b)$
l’application de $S_p[K; E] - \otimes_m B(L)$ dans $S_p[K; E] - \otimes_m S_p(L)$ associée à $I \otimes M(a, b)$. Alors, pour tout x dans $S_p[K, E] \otimes_m F$, sa norme $\|x\|_m$ est donnée par

\begin{equation}
\|x\|_m = \sup \{ \| \tilde{M}(a, b)x \|_{S_p[K \otimes 2L; E]} \}
\end{equation}

où le supremum porte sur tous les a, b dans la boule unité de $S_{2p}(L)$.

La formule (1) décrit $S_p[K; E]$ comme espace de Banach et (2) décrit sa structure comme espace d’opérateurs.

A l’aide des résultats précédents, on peut développer une théorie des applications p-sommantes entre espaces d’opérateurs tout-à-fait analogue à celle de Pietsch et Kwapień (cf. e.g. [11]) pour les espaces de Banach.

Soit E, F deux espaces d’opérateurs. Soit $u : E \to F$ une application linéaire. Nous dirons que u est complètement p-sommante si l’application $\tilde{u} = I_{S_p} \otimes u$ est bornée de $S_p \otimes_m E$ dans $S_p[F]$. On pose $\pi^0_p(u) = \| \tilde{u}\|_{S_p \otimes_m E \to S_p(F)}$. On note $\Pi^0_p(E, F)$ l’espace des applications complètement p-sommantes et on le munit de la norme π^0_p pour laquelle c’est un espace de Banach. Soit $v : E_1 \to E$ et $w : F \to F_1$ des applications c.b. entre espaces d’opérateurs, on a alors

$$
\pi^0_p(wuv) \leq \|w\|_{cb} \pi^0_p(u) \|v\|_{cb}
$$

De plus on peut noter que si \tilde{u} est borné (i.e. si u est complètement p-sommante) alors nécessairement \tilde{u} est c.b. et $\|\tilde{u}\|_{cb} = \|\tilde{u}\| = \pi^0_p(u)$. En particulier on a

\begin{equation}
\|u\|_{cb} \leq \pi^0_p(u).
\end{equation}

Cette remarque permet de munir $\Pi^0_p(E, F)$ de la structure d’espace d’opérateurs naturellement induite par l’espace $cb(S_p \otimes_m E, S_p[F])$.

On peut montrer par exemple que l’opérateur $M : B(\ell_2) \to S_p$ défini par $M(x) = axb$ avec $a, b \in S_{2p}$ est un opérateur complètement p-sommant. De plus, soit $E \subset B(\ell_2)$ et soit E_p la fermeture de $M(E)$ dans S_p. Alors l’application $M_1 : E \to E_p$ qui est la restriction de M est complètement p-sommante. Le théorème qui suit est l’analogue du théorème de factorisation de Pietsch. Il montre que l’exemple précédent est fondamental.

THEOREME 3. Soit $E \subset B(H)$. Soit $\tilde{H} = H \oplus H \oplus ...$ la somme hilbertienne d’une famille dénombrable de copies de H et soit $\pi : B(H) \to B(\tilde{H})$ la représentation somme
directe d’une famille dénombrable de copies de la représentation identique de $B(H)$. Soit $u : E \to F$ une application complètement p-sommante et soit $C = \pi_p^0(u)$. Il existe alors un ensemble I muni d’un ultrafiltre \mathcal{U} et des familles $(a_\alpha)_{\alpha \in I}, (b_\alpha)_{\alpha \in I}$ dans la boule unité de $S_{2p}(\tilde{H})$ telles que l’on ait pour tout n et tout (x_{ij}) dans $M_n(E)$

$$(4) \quad \| (u(x_{ij})) \|_{M_n(F)} \leq C \lim_{\mathcal{U}} \| (a_\alpha \pi(x_{ij})b_\alpha) \|_{M_n(S_p(\tilde{H}))}.$$

Réciproquement, toute application vérifiant (4) pour tout n est nécessairement complètement p-sommante et telle que $\pi_p^0(u) \leq C$.

Remarques : (i) Si H est fini dimensionnel et si $p = 2$, on peut démontrer le résultat précédent avec pour \tilde{H} une somme hilbertienne d’un nombre fini m ($m \leq n^4 + 1$) de copies de H. Dans ce cas la boule unité de $S_4(\tilde{H})$ étant compacte, on trouve (4) avec $a_\alpha = a \quad b_\alpha = b \quad \forall \quad \alpha \in I$ et avec a, b dans la boule unité de $S_4(\tilde{H})$.

(ii) Dans le cas $p = 2$, on trouve ainsi que si u est complètement 2-sommant, alors $u \in \Gamma_{oh}(E, F)$ au sens de [10] et $\gamma_{oh}(u) \leq \pi_2^0(u)$. De plus si $E \subset B(H)$ alors $u : E \to F$ admet une extension $\hat{u} : B(H) \to F$ telle que $\pi_2^0(\hat{u}) = \pi_2^0(u)$. On peut montrer que pour tout sous espace $E \subset B(H)$ avec $\dim E = n$ on a $\pi_2^0(I_E) = n^{1/2}$. Il existe donc un isomorphisme $u : E \to OH_n$ tel que $\| u \|_{cb} \| u^{-1} \|_{cb} \leq \sqrt{n}$ et une projection $P : B(H) \to E$ telle que $\| P \|_{cb} \leq \sqrt{n}$.

(iii) Pour tout opérateur $u : E \to OH(J)$ $-(J$ un ensemble arbitraire) on a $\pi_2^0(u) = \pi_{2,oh}(u)$ où $\pi_{2,oh}(u)$ est la norme définie dans notre note précédente [10].

(iv) Pour tout $u : OH(I) \to OH(J)$ $-(I, J$ des ensembles arbitraires) la norme de Hilbert Schmidt $\| u \|_{HS}$ de u coïncide avec $\pi_2^0(u)$ et $\pi_{2,oh}(u)$.

(v) On peut alors reformuler un résultat de [10] de la manière suivante : Une application $u : E \to F$ dans $\Gamma_{oh}(E, F)$ ssi il existe une constante C telle que pour tout n et tout $v : F \to OH_n$ on a $\pi_2^0((vu)^*) \leq C \pi_2^0(v)$. Cela revient à dire que pour tout n et tout $T : S_{2}^n \to S_{2}^n$ la norme de $T \otimes u$ dans $cb(S_{2}^n[E], S_{2}^n[F])$ est majorée par $C \| T \|$. De plus $\gamma_{oh}(u)$ est égal à la plus petite constante C dans l’une ou l’autre de ces propriétés. En particulier ce résultat permet de munir l’espace $\Gamma_{oh}(E, F)$ d’une structure naturelle d’espace d’opérateurs en le plongeant dans une somme directe convenable (au sens ℓ^∞) de copies de $cb(S_{2}[E], S_{2}[F])$.

8
Références bibliographiques :

[1] D. Blecher and V. Paulsen. Tensor products of operator spaces. J. Funct. Anal. 99 (1991) 262-292.

[2] D. Blecher. Tensor products of operator spaces II. (Preprint) 1990. Canadian J. Math. A paraître.

[3] D. Blecher and R. Smith. The dual of the Haagerup tensor product. Journal London Math. Soc. 45 (1992) 126-144.

[4] E. Effros and Z.J. Ruan. A new approach to operators spaces. Canadian Math. Bull. 34 (1991) 329-337.

[5] E. Effros and Z.J. Ruan. Self duality for the Haagerup tensor product and Hilbert space factorization. J. Funct. Anal. 100 (1991) 257-284.

[6] E. Effros and Z.J. Ruan. Mapping spaces and liftings for operator spaces. (Preprint) Proc. London Math. Soc. A paraître.

[7] E. Effros and Z.J. Ruan. The Grothendieck-Pietsch and Dvoretzky-Rogers Theorems for operator spaces. (Preprint 1991) J. Funct. Anal. A paraître.

[8] E. Effros and Z.J. Ruan. On approximation properties for operator spaces, International J. Math. 1 (1990) 163-187.

[9] G. Pisier. Espace de Hilbert d’opérateurs et interpolation complexe. Comptes Rendus Acad. Sci. Paris Série I, 316 (1993) 47-52.

[10] G. Pisier. Sur les opérateurs factorisables par OH. Comptes Rendus Acad. Sci. Paris Série I, 316 (1993) 165-170.

[11] G. Pisier. Factorization of linear operators and the Geometry of Banach spaces. CBMS (Regional conferences of the A.M.S.) 60, (1986), Reprinted with corrections 1987.

Université Paris 6
Equipe d'Analyse, Boîte 186,
75252 Paris Cedex 05, France