Review

Current Status and Future Perspective on the Management of Lymph Node-Positive Prostate Cancer after Radical Prostatectomy

Masaki Shiota ●, Leandro Blas and Masatoshi Eto

Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; leandro.blas85@hotmail.com.ar (L.B.); eto.masatoshi.717@m.kyushu-u.ac.jp (M.E.)
* Correspondence: shiota.masaki.101@m.kyushu-u.ac.jp; Tel.: +81-92-642-5603; Fax: +81-92-642-5618

Simple Summary: pN1 after RP with PLND represents one of the most unfavorable prognostic factors for disease recurrence and cancer-specific mortality in prostate cancer. Treatment intensification may reduce risks of recurrence and cancer-specific mortality, but it may increase adverse events and impair quality of life. However, optimal management for pN1 patients remains unclear. Nevertheless, few randomized control trials for pN1 are under investigation, and then more research is needed to establish an optimal therapeutic strategy for patients with pN1. This review summarizes current evidence on the treatments available for men with pN1, summarizes RCTs that included pN1 prostate cancer, and also discusses future perspectives.

Abstract: Pathological lymph node involvement (pN1) after a pelvic lymph node dissection represents one of the most unfavorable prognostic factors for disease recurrence and cancer-specific mortality in prostate cancer. However, optimal management for pN1 patients remains unclear. Thus, the guideline from the European Association of Urology recommends discussing three following management options with pN1 patients after an extended pelvic lymph node dissection, based on nodal involvement characteristics: (i) offer adjuvant androgen-deprivation therapy, (ii) offer adjuvant androgen-deprivation therapy with additional radiotherapy and (iii) offer observation (expectant management) to a patient with \(\leq 2 \) nodes and a prostate-specific antigen <0.1 ng/mL. Treatment intensification may reduce risks of recurrence and cancer-specific mortality, but it may increase adverse events and impair quality of life. Few randomized control trials for pN1 are under investigation. In addition, there are limited reports on the quality of life and patient-reported outcomes in patients with pN1. Therefore, more research is needed to establish an optimal therapeutic strategy for patients with pN1. This review summarizes current evidence on the treatments available for men with pN1, summarizes randomized control trials that included pN1 prostate cancer, and discusses future perspectives.

Keywords: androgen deprivation therapy; lymph node involvement; pelvic lymph node dissection; radiotherapy; radical prostatectomy

1. Introduction

Pelvic lymph node dissection (PLND) is recommended during radical prostatectomy (RP) for prostate cancer in clinical practice, depending on risk classification [1]. PLND is the gold standard procedure for the diagnosis of lymph node involvement (LNI), although so far, its therapeutic value has not been proven [2,3]. Pathological LNI (pN1) rates after RP with PLND vary between 0% and 37% depending on risk classification and the areas removed in PLND [4]. LNI represents one of the most unfavorable prognostic factors for recurrence and cancer-specific mortality [5].

So far, the only randomized clinical trial (RCT) performed for patients solely with pN1 prostate cancer showed that immediate androgen deprivation therapy (ADT) was...
associated with better overall survival (OS) than deferred ADT in patients with distant metastases or symptomatic recurrences [6]. However, this finding cannot be generalized to all patients with pN1. First, this study started in the pre-prostate specific antigen (PSA) era, and limited PLND was performed, which is no longer a standard practice [1]. Nevertheless, the median number of positive lymph nodes removed was higher than in recent studies [6]. Second, the initiation of deferred ADT may be delayed too long, as early ADT should be reserved for those men at the highest risk of disease progression and a long-life expectancy [1]. Therefore, it remains an open question whether the prognosis of early salvage ADT can be equivalent to immediate ADT. It has been shown that the survival between observation and adjuvant ADT was comparable using the Surveillance, Epidemiology, and End Results database [7]. In addition, several retrospective studies have suggested that the long-term prognosis in pN1 patients is heterogeneous and varies according to disease characteristics, such as the number of positive nodes, disease extension, margin status in RP, and PSA kinetics [8,9]. Meanwhile, favorable disease control and better survival by the addition of radiation therapy (RT) to immediate ADT have been reported by retrospective studies. Thus, RT plus ADT appeared to be a promising approach to improve the prognosis among men with pN1 prostate cancer. However, given the lack of level-1 evidence applicable to contemporary patients, the European Association of Urology (EAU) has recommended practitioners to discuss with pN1 patients three management options after an extended PLND, based on nodal involvement characteristics: (i) offer adjuvant ADT, (ii) offer adjuvant ADT with additional RT and (iii) offer observation (expectant management) to a patient with ≤2 nodes and a PSA < 0.1 ng/mL after extended PLND [1].

Clinical evidence on optimal treatment for pN1 prostate cancer is limited, requiring the establishment of a treatment strategy since treatment outcomes for pN1 vary from satisfactory, with observation in patients with favorable characteristics, to unsatisfactory, even with intensive treatment in patients with unfavorable characteristics. This review summaries current evidence on the treatments available for men with pN1, RCTs that included pN1 prostate cancer, and discussed future perspectives.

2. The Prognosis in pN1 Prostate Cancer by Treatments

Several retrospective studies reported the prognosis in pN1 prostate cancer (Table 1). Since the standard treatment for pN1 has not been established, management strategies differed among studies. Biochemical recurrence (BCR)-free survival rate is affected by adjuvant therapy and varies from 28% to 61% at five years. Recurrence-free survival (RFS), determined basically by radiological recurrence, and metastasis-free survival (MFS) was 55–84% and 65–80% at 10 years, respectively. Cancer-specific survival (CSS) and OS were ~80% and ~70% at 10 years, respectively. Although survival in patients with pathological negative LNI (pN0) or unknown LNI (pNx) after RP is generally excellent, the prognosis in pN1 prostate cancer is inferior, making the improvement of treatment outcomes an unmet need, where treatment intensification is an attractive approach.

Authors	n	Groups	Median Follow-Up	Time (year)	BCR-Free Survival (%)	Reference
Tilki et al.	773	All	33.8 (month)	4	43.3	[10]
		Matched pair cohorts				
	192	Observation	–	4	43	
	192	aRT	–	4	57	
Fleischmann et al.	102	Observation	7.7 (year)	5	28	[11,12]
Touijer et al.	369	Observation	4 (year)	10	28	[8]
Dorin et al.	150	All	10.4 (year)	10	57	[13]
	49	Observation	11.4 (year)	10	59	
Hofer et al.	201	aADT	41 (month)	5	61	[14]
Abdollah et al.	1107	aADT/aRT	7.1 (year)	10	56	[15,16]
Interestingly, Moschini et al. have reported the natural history of clinical recurrence patterns of pN1 prostate cancer using a database from the Mayo Clinic, where almost all patients received adjuvant or salvage ADT, and 22% received adjuvant or salvage RT [9]. In that study, 17% and 28% of patients presented clinical recurrence in soft local tissues and pelvic lymph nodes, respectively [9]. Similarly, prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/computed tomography (CT) detected positive lesions only in the pelvic area in 65%, only outside the pelvic area in 10%, and both in 25% of patients [22]. Those findings on the locations of recurrent disease in pN1 prostate cancer suggest that loco-regional disease control after RP is feasible in a subset of patients.

Table 2 shows retrospective studies and database studies on the prognostic differences with the addition of RT. Tilki et al. and Da Pozzo et al. have reported favorable BCR-free survival and MFS with adjuvant RT than those men without adjuvant RT, using large case series from a European institution [10,23]. Similarly, it has recently been reported that RT for persistent PSA after RP was associated with improved RFS and MFS in large case series.
series from Japanese multiple institutions [19]. Consistently, several retrospective studies from high-volume centers in the United States (US) and Europe have reported that RT plus adjuvant ADT was associated with better CSS and OS [15,16,23,24]. Similarly, other studies using a national database in the US have demonstrated that patients treated with adjuvant RT were associated with better CSS and OS than those without adjuvant RT [25–28]. Thus, the addition of RT to immediate ADT may result in favorable disease control and better survival. However, careful interpretation is necessary because retrospective studies suffer from potential biases, such as treatment selection. Thus, it is necessary to examine the value of RT for pN1 prostate cancer in RCTs.

Table 2. Hazard ratio for prognosis by multivariate analysis or propensity score matched analysis in pN1 cases.

Authors	Accrual Years	Cohort	Treatment	n	BCR-Free Survival	p-Value	Reference	
Tilki et al.	2005–2013	Martini-Klinik	aRT	213	Ref	2.14 (1.33–3.45)	0.002	[10]
			aADT	55		2.22 (1.61–3.13)	<0.001	
			Observation	505				
Da Pozzo et al.	1988–2002	Villa-Salute San Raffaele University	aADT	121	Ref	0.49	0.002	[23]
			aADT + aRT	129				
Bravi et al.	1991–2017	Vita-Salute San Raffaele University	aRT	100	Ref			[18]
			aADT + aRT	272	2.41 (1.09–5.31)	0.029		
			aADT	188				
Shiota et al.	2006–2019	Multicenter in Japan	aADT	24	4.42 (2.42–8.07)	<0.0001		
			aRT	58	0.42 (0.21–0.82)	0.011		
			aADT + aRT					
Tilki et al.	2005–2013	Martini-Klinik	aRT	213	Ref	2.81 (1.60–4.92)	0.014	[10]
			aADT	55		2.78 (1.61–5.00)	<0.001	
			Observation	505				
Shiota et al.	2006–2019	Multicenter in Japan	aADT	24	1.67 (0.67–4.16)	0.27		
			aRT	58	0.37 (0.15–0.93)	0.034		
			aADT + aRT					
Wong YN et al.	1991–1999	SEER	Observation	522	Ref	0.97 (0.56–1.68)	NA	[7]
			aADT	209		0.63 (0.44–0.88)	NA	
			Observation	905	Ref			
Da Pozzo et al.	1988–2002	Villa-Salute San Raffaele University	aADT	121	Ref	0.38	0.009	[23]
			aADT + aRT	129				
Abdollah et al.	1988–2010	Mayo ClinicVita-Salute San Raffaele University	aADT	386	Ref	2.72 (1.62–4.55)	<0.001	[15]
			aADT	721				
Briganti et al.	1988–2003	Mayo ClinicVita-Salute San Raffaele University	aADT	117	Ref	2.5	0.004	[29]
			aADT + aRT	247				
Bravi et al.	1991–2017	Vita-Salute San Raffaele University	aRT	100	Ref	5.39	0.11	[18]
			aADT + aRT	272		0.70–41.39		
Touijer et al.	1988–2010	Memorial Sloan Kettering Cancer CenterMayo ClinicVita-Salute San Raffaele University	aADT	676	0.64 (0.43–0.95)	0.027		[24]
			aADT + aRT	325	0.26 (0.15–0.44)	<0.0001		
Tilki et al.	1995–2017	Martini-Klinik	aRT	851	0.92 (0.85–0.99)	0.03		[30]
Table 2. Cont.

Authors	Accrual years	Cohort	Treatment	n	OS	p-value	p-value
Zareba et al.	2004–2010	NCDB Observatio	aADT	4889	1.06 (0.87–1.29)	0.56	Ref
		nent	aRT	1571	0.75 (0.50–1.10)	0.14	
		nent	aADT + aRT	355	0.69 (0.52–0.92)	0.010	
		nent	aADT + aRT	976	1.50 (1.18–1.90)	<0.001	
		nent	aADT + aRT	1663	0.75 (0.50–1.10)	0.14	
		nent	aADT + aRT	3636	0.99 (0.85–1.15)	0.90	
		nent	aADT + aRT	2041	1.02 (0.74–1.40)	0.92	
		nent	aADT + aRT	350	0.67 (0.55–0.83)	<0.001	
		nent	aADT + aRT	1198	0.95 (0.71–1.27)	NA	
		nent	aADT + aRT	247	2.08 (1.41–3.05)	<0.001	
		nent	aADT + aRT	272	0.91 (0.45–1.84)	0.8	
		nent	aADT + aRT	1520	0.77 (0.64–0.94)	0.008	
		nent	aADT + aRT	1520	0.77 (0.64–0.94)	0.008	
		nent	aADT + aRT	1520	0.77 (0.64–0.94)	0.008	
		nent	aADT + aRT	209	1.01 (0.87–1.18)	0.88	
		nent	aADT + aRT	209	0.95 (0.71–1.27)	NA	
		nent	aADT + aRT	117	2.3	<0.001	
		nent	aADT + aRT	247	2.3	<0.001	
		nent	aADT + aRT	272	0.91 (0.45–1.84)	0.8	
		nent	aADT + aRT	387	0.90 (0.65–1.25)	0.5	
		nent	aADT + aRT	676	0.90 (0.65–1.25)	0.5	
		nent	aADT + aRT	325	0.41 (0.27–0.64)	<0.001	

aADT, adjuvant androgen deprivation therapy; aRT, adjuvant radiotherapy; BCR, biochemical recurrence; CSS, cancer-specific survival; OS, overall survival; MFS, metastasis-free survival; NA, not available; NCDB, National Cancer Database; RFS, recurrence-free survival; SEER, Surveillance, Epidemiology, and End Results; sRT, salvage radiotherapy.

Treatment de-intensification is another approach for pN1 patients with a favorable prognosis. Tilki et al. had demonstrated that BCR-free survival and MFS were better in men who received adjuvant RT compared with no treatment or salvage RT using large case series data from Martini-Klinik [10]. Moreover, they have recently reported a higher CSS with adjuvant RT than with salvage RT [30]. Consistently, expectant management for pN1 was associated with inferior survival than adjuvant treatment including RT in retrospective case series and database studies [24,27,28,31]. In contrast, the RADICALS-RT trial that enrolled mainly pN0 or pNx in addition to pN1 patients has recently reported a comparable BCR rate between adjuvant RT and salvage RT [32]. However, this RCT included only 5% of patients with pN1, limiting the applicability of the findings [32]. Based on these studies, the EAU guideline recommends observation in limited patients with favorable prognosis features [1]. Thus, stratification by patient’s and tumor’s characteristics may be a promising approach.

3. Treatment Burden in pN1 Patients

RP with PLND could cause various postoperative complications such as urinary incontinence, erectile dysfunction, bladder neck contracture, and inguinal hernia, reducing the quality of life (QoL). The Prostate Testing for Cancer and Treatment (ProtecT) trial, which randomized patients to receive monitoring, RP or RT, found the most significant negative effect on urinary continence and sexual function in those patients undergoing RP [33]. Similarly, a prospective trial showed that patients who underwent RP had worse urinary incontinence and a worse sexual domain score compared with patients with RT or active surveillance [34]. Thus, additional treatment after RP may lead to further deterioration in QoL.
Additionally, ADT can cause several adverse effects (AEs) including sexual dysfunction, hot flushes, bone fractures, metabolic effects, cardiovascular morbidity, fatigue, and neurological disorders [35]. A prospective observational study that included patients with locally advanced prostate cancer or PSA relapse after local therapy found that immediate ADT was associated with a lower overall QoL than in those with deferred treatment [36]. Consistently, in another prospective observational study, patients undergoing ADT, after RP or RT, showed higher levels of depression, worse self-body image perception, worse sleep quality, and worse QoL than controls [37].

Similarly, salvage RT is also associated with toxicity. A prospective study evaluating salvage RT plus ADT after RP showed increased bowel dysfunction and urinary dysfunction by the end of RT. These rates improved after RT completion, but not completely. Meanwhile, erectile function presented no change during RT but showed an abrupt decline after RP [38]. Similarly, in an observational study from the Martini-Klinik Prostate Cancer Center, patients who received RT after RP had a higher incontinence rate and lower potency rate than matched RP-only patients. Both rates increased further with the addition of ADT [39]. Thus, currently available data on toxicity demonstrate an increased incidence of acute and long-term grade 2 AEs and transient decline in QoL outcomes, but no significant increase in long-term grade 3–4 AEs with the use of RT after RP [40].

Based on this evidence, treatment addition after RP may lead to increased toxicity and reduced QoL. Meanwhile, treatment addition may reduce or delay recurrence, which may lead to a recovery of QoL by avoiding continuous ADT. However, there is little data on QoL and outcomes reported by patients with pN1. Thus, a prospective study on treatment strategies would be necessary.

4. RCTs That Include pN1 Prostate Cancer

So far, various RCTs have been conducted to develop adjuvant therapy for high risk of recurrence and salvage therapy for BCR after RP. Due to the unfavorable prognosis among men with pN1 prostate cancer, the development of novel treatment to suppress recurrence and improve survival is necessary. However, the frequency of pN1 prostate cancer is low, and so far, only the RCT by Messing et al. enrolled patients with pN1 only [6]. Moreover, a few RCTs included pN1 patients in addition to pN0 or pNx (Table 3). Among them, TAX3501 (NCT00283062) and TAX3503 (NCT00514917) trials examined the efficacy of docetaxel plus ADT after RP regardless of LNI in adjuvant or salvage setting. However, these RCTs showed no significant improvement in biochemical or radiographic progression-free survival [41,42]. Similarly, the SWOG S9921 (NCT00004124) trial demonstrated no benefit in CSS and OS with the addition of mitoxantrone [17]. Meanwhile, the GETUG-AFU 12 trial included patients with high-risk nonmetastatic prostate cancer (stage T3-T4 disease, Gleason score of ≥8, PSA >20 ng/mL, or pN1) who underwent staging PLND without RP showed longer relapse-free survival with ADT plus docetaxel and estramustine than with ADT alone [43]. However, as patients included in this trial never underwent RP, it is not appropriate to apply this finding to patients with pN1 after RP and PLND.

To date (31 March 2022), several RCTs recruiting patients with pN1 are being performed (Table 4). Among them, two RCTs are recruiting patients solely with pN1. The INNOVATE NRG-GU008 (NCT04134260) trial is recruiting 586 patients with pN1 prostate cancer after RP, to evaluate the effect of apalutamide for two years on MFS and ADT plus RT to pelvis and prostate bed in an adjuvant setting. This RCT may expand the indication of a novel androgen receptor pathway inhibitor, apalutamide, to pN1 disease in case of a positive result. The PROPER (NCT02745587) trial is also recruiting solely pN1 patients. This trial compares the presence of clinical relapse (loco-regional recurrence or distant metastases) between RT to the prostate bed alone or in combination with the pelvic lymph node regions, plus two years of ADT in an adjuvant setting. The result of this RCT will be important to determine the appropriate field of RT for pN1 patients.

Moreover, six RCTs recruiting pN1 in addition to pN0 or pNx are under investigation (Table 3). However, these RCTs do not aim to develop the treatment specific for pN1.
Actually, the reported standard treatments for pN1 patients are different across trials, making the generalization of results difficult.

In the future, ongoing RCTs may change the current therapeutic landscape in pN1 prostate cancer. As examined in the PATRON (NCT04557501) trial, PSMA PET/CT is a promising modality that has the potential to change the landscape of treatment strategies for prostate cancer. Recently, proPSMA Study Group Collaborators have reported that PSMA PET/CT showed higher accuracy for pelvic nodal metastases and distant metastases than traditional imaging modalities [44]. Despite excellent specificity, PSMA PET/CT presents a lower sensitivity (of ~40%) for detection of positive pelvic lymph nodes than extended PLND [45–47]. This suggests that PSMA PET/CT alone cannot yet replace the diagnostic role of extended PLND, although combination with nomograms was suggested to improve predictive ability [48]. Meanwhile, PSMA PET/CT has shown good potential in patients with BCR after RP, where detection rates increase according to PSA level: 33% (95% confidence interval (CI), 16–51%) in PSA < 0.2 ng/mL, 45% (95% CI, 39–52%) in PSA 0.2–0.49 ng/mL, 59% (95% CI, 50–68%) in PSA 0.5–0.99 ng/mL, 75% (CI: 66–84%) in PSA 1.0–1.99 ng/mL, and 95% (95% CI, 92–97%) in PSA ≥2.0 ng/mL [49]. Thus, PSMA PET/CT may be useful for patients with BCR. However, the residual tumor is not detectable in most patients without BCR after RP, and a conventional therapeutic approach is necessary for those patients with no visible lesion. In addition, it is unknown whether a more sensitive diagnosis by PSMA PET/CT leads to improved outcomes, which will be addressed by the PATRON trial.
Table 3. Phase 3 randomized clinical trials for pN1 prostate cancer after RP.

Clinical Trial ID	Trial Name	Investigator	pN Status	Curative Treatment	Patients Number	PSA Criteria for Inclusion	Intervention Timing	Standard of Care (Trial Treatment)	Trial Treatment 1	Primary Endpoint	Follow-Up Period	Result	Reference
-	EST 3886	Eastern Cooperative Oncology Group study	pN1	RP	98	Not defined	Adjuvant/ salvage treatment	Immediate goserelin or castration	Salvage goserelin or castration when clinical recurrence	Clinical recurrence-free survival	Median, 11.9 years	Positive	[6]
NCT00541047	RADICALS-RT	Medical Research Council	pN0/Nx/N1	RP	1396	Undetectable PSA (≤0.2 ng/mL)	Adjuvant/ salvage treatment	Immediate RT (prostate bed + pelvic LN) ± hormone therapy	Salvage RT with or without hormone therapy	Metastasis-free survival	Median, 4.9 years	Negative	[32]
NCT00283062	TAX3501	Sanofi	pN0/N1	RP	228	Undetectable PSA (≤0.2 ng/mL)	Adjuvant treatment	Adjuvant or salvage leuprolide (18 months)	SOC plus docetaxel for 6 cycles	Progression-free survival (PSA progression, radiological, or histological progression)	Median, 3.4 years	Negative	[41]
NCT00514917	TAX3503	Sanofi	pN0/Nx/N1	RP	413	Elevated PSA (≥1 ng/mL)	Salvage treatment	Leuprolide (up to 18 months) plus 4-week bicalutamide	SOC plus docetaxel for up to 10 cycles	Progression-free survival (PSA progression, or radiological progression)	Median, 2.8 years	Negative	[42]
NCT0004124	SWOG S9921	Southwest Oncology Group	pN0/Nx/N1	RP	983	Undetectable PSA (≤0.2 ng/mL)	Adjuvant treatment	Goserelin plus bicalutamide	SOC plus mitoxantrone and prednisone	Overall Survival and disease-specific survival	Median, 11.2 years	Negative	[17]
NCT00765479	CDR00000615902	University of Illinois at Chicago	pN0/Nx/N1	RP	284	Undetectable PSA (<0.07 ng/mL)	Adjuvant treatment	Casein placebo beverage	Soy protein isolate beverage	Two-year PSA failure rate and Time to PSA failure	2 years	Negative	[50]

LN, lymph node; PSA, prostate-specific antigen; RP, radical prostatectomy; RT, radiotherapy; SOC, standard of care.
Table 4. Phase 3 randomized clinical trials under investigation for node-positive prostate cancer after RP.

Clinical Trial ID	Trial Name	Investigator	pN Status	Curative Treatment	Patients Number	PSA Criteria for Inclusion	Intervention Timing	Standard of Care	Trial Treatment 1	Trial Treatment 2	Primary Endpoint	Follow-Up Period	Study Start Date	Estimated Completion Date
NCT04134260	INNOVATE	NRG Oncology	pN1	RP	586	PSA (>5 ng/mL)	Adjunctive treatment	Hormone therapy (24 months) plus RT (prostate bed and pelvis)	SOC plus apalutamide (720 days)	Metastasis-free survival	90 months	Mar-20	Nov-26	
NCT02740957	PROPER	University Hospital, Ghent	pN1	RP	330	Not defined	Adjunctive treatment	RT (prostate bed and pelvis) plus ADT (2 years)	RT plus hormone therapy (2 years)	Clinical recurrence presence of loco-regional relapse or distant metastases	96 months	Apr-16	Apr-21	
NCT01442246	GETUG-AFU-20	UNICANCER	pN0/Nx/N1	RP	700	PSA (<1 ng/mL)	Adjunctive treatment	Observation	Luteinizing hormone (24 months)	SOC plus apalutamide (720 days)	Metastasis-free survival	120 months	Jul-11	Sep-27
NCT00541047	RADICALS-HD	Medical Research Council	pN0/Nx/N1	RP	426	PSA ≤5 ng/mL	Adjunctive/salvage treatment	RT alone	RT plus hormone therapy (6 months)	RT plus hormone therapy (2 years)	Disease-specific survival (i.e., death due to prostate cancer)	84 months	Nov-07	Sep-21
NCT03119057	SPG-14	Scandinavian Prostate Cancer Group	pN0/Nx/N1	RP/RT	349	Elevated PSA †	Salvage treatment	Antiandrogen (bicalutamide)	SOC plus docetaxel (up to 8–10 cycles)	Progression-free survival (PSA progression or radiographic progression)	60 months	Feb-09	Apr-23	
NCT02210887	EMBARK	Pfizer	pN0/Nx/N1	RP/RT	1068	Elevated PSA †	Salvage treatment	Placebo plus leuprolide Degarelix monotherapy or leuprolide plus bicalutamide	Enzalutamide monotherapy	Metastasis-free survival	Approximately 90 months	Dec-14	Aug-22	
NCT0009901	AFF-19	Alliance Foundation Trials, LLC	pN0/Nx/N1	RP	504	PSA (≤0.5 ng/mL)	Salvage treatment	Placebo plus leuprolide Degarelix monotherapy or leuprolide plus bicalutamide	Enzalutamide plus leuprolide	PSA progression-free survival	30 months	Mar-17	Jan-23	
NCT04557501	PATRON	CHUM	pN0/Nx/N1	RP	776	PSA (≤0.1 ng/mL)	Salvage treatment	Treatment without PSMA PET/CT	PSMA PET/CT guided intensification of therapy	Failure-free survival (PSA or radiographic recurrence)	60 months	Jan-21	Oct-28	

PSA, prostate-specific antigen; RP, radical prostatectomy; RT, radiotherapy; SOC, standard of care. † >10 ng/mL or PSA-doubling time <12 months and PSA > 0.5 ng/mL after RP, and PSA > +2.0 ng/mL above nadir and PSA > 10 ng/mL or PSA-doubling time <12 months and PSA > 0.5 ng/mL after RT. ‡ >1.0 ng/mL after RP and >2.0 ng/mL above nadir after RT.
5. Conclusions

In conclusion, pN1 represents an unfavorable characteristic in patients who underwent RP with PLND. Currently, a gold standard strategy for pN1 has not been established, and survival of patients with pN1 is not satisfactory. Thus, the development of novel treatments with more efficacy and less toxicity is an unmet need. Treatment intensification by adding novel antiandrogen as well as treatment guided by next-generation imaging are currently under investigation, and may become a standard of care in the future. However, a few RCTs are underway. In addition, as studies on QoL and patient-reported outcomes in patients with pN1 are scarce, more research on QoL and patient-reported outcomes is needed to develop a better therapeutic strategy for pN1 patients.

Author Contributions: Conceptualization, M.S.; writing—original draft preparation, M.S.; writing—review and editing, L.B.; supervision, M.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: Masaki Shiota received honoraria from Janssen Pharmaceutical, AstraZeneca, Astellas Pharma, Sanofi, and Bayer Yakuhin and research funding support from Daiichi Sankyo. Masatoshi Eto received honoraria from Ono Pharmaceutical, Takeda Pharmaceutical, Novartis Pharma, Pfizer, Bristol-Myers Squibb, Janssen Pharmaceutical, MSD, and Merck Biopharma and research funding support from Sanofi, Bayer Yakuhin, Astellas Pharma, Ono Pharmaceutical, and Takeda Pharmaceutical.

References

1. EAU Guidelines—Prostate Cancer—Uroweb. Available online: https://uroweb.org/guidelines/prostate-cancer (accessed on 20 April 2022).
2. Lestingi, J.F.P.; Guglielmetti, G.B.; Trinh, Q.D.; Coelho, R.F.; Pontes, J., Jr.; Bastos, D.A.; Cordeiro, M.D.; Sarkis, A.S.; Faraj, S.F.; Mitre, A.I.; et al. Extended versus limited pelvic lymph node dissection during radical prostatectomy for intermediate- and high-risk prostate cancer: Early oncological outcomes from a randomized phase 3 trial. Eur. Urol. 2021, 79, 595–604. [CrossRef]
3. Touijer, K.A.; Sjoberg, D.D.; Benfante, N.; Laudone, V.P.; Ehdieie, B.; Eastham, J.A.; Scardino, P.T.; Vickers, A. Limited versus extended pelvic lymph node dissection for prostate cancer: A randomized clinical trial. Eur. Urol. Oncol. 2021, 4, 532–539. [CrossRef]
4. Fujimoto, N.; Shiota, M.; Tomisaki, I.; Minato, A.; Yahara, K. Reconsideration on clinical benefit of pelvic lymph node dissection during radical prostatectomy for clinically localized prostate cancer. Urol. Int. 2019, 103, 125–136. [CrossRef]
5. Bernstein, A.N.; Shoag, J.E.; Golan, R.; Halpern, J.A.; Schaeffer, E.M.; Hsu, W.C.; Nguyen, P.L.; Sedrakyan, A.; Chen, R.C.; Eegener, S.E.; et al. Contemporary incidence and outcomes of prostate cancer lymph node metastases. J. Urol. 2018, 199, 1510–1517. [CrossRef]
6. Messing, E.M.; Manola, J.; Yao, J.; Kiernan, M.; Crawford, D.; Wilding, G.; di‘SantAgnese, P.A.; Trump, D.; Eastern Cooperative Oncology Group Study EST 3886. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol. 2006, 7, 472–479. [CrossRef]
7. Wong, Y.N.; Freedland, S.; Egleston, B.; Hudes, G.; Schwartz, J.S.; Armstrong, K. Role of androgen deprivation therapy for nodal-negative prostate cancer. J. Clin. Oncol. 2009, 27, 100–105. [CrossRef]
8. Touijer, K.A.; Mazzola, C.R.; Sjoberg, D.D.; Scardino, P.T.; Eastham, J.A. Long-term outcomes of patients with lymph node metastasis treated with radical prostatectomy without adjuvant androgen-deprivation therapy. Eur. Urol. 2014, 65, 20–25.
9. Moschini, M.; Sharma, V.; Zattoni, F.; Quevedo, J.F.; Davis, B.J.; Kwon, E.; Karnes, R.J. Natural history of clinical recurrence patterns of lymph node-positive prostate cancer after radical prostatectomy. Eur. Urol. 2016, 69, 135–142. [CrossRef]
10. Tilki, D.; Preisser, F.; Tennstedt, P.; Tober, P.; Mandel, P.; Schlomm, T.; Steuber, T.; Huland, H.; Schwarz, R.; Petersen, C.; et al. Adjuvant radiation therapy is associated with better oncological outcome compared with salvage radiation therapy in patients with pN1 prostate cancer treated with radical prostatectomy. BJU Int. 2017, 119, 717–723. [CrossRef]
11. Fleischmann, A.; Schobinger, S.; Schumacher, M.; Thalmann, G.N.; Studer, U.E. Survival in surgically treated, nodal positive prostate cancer patients is predicted by histopathological characteristics of the primary tumor and its lymph node metastases. Prostate 2009, 69, 352–362. [CrossRef]
12. Fleischmann, A.; Schobinger, S.; Markwalder, R.; Schumacher, M.; Burkhard, F.; Thalmann, G.N.; Studer, U.E. Prognostic factors in lymph node metastases of prostatic cancer patients: The size of the metastases but not extranodal extension independently predicts survival. Histopathology 2008, 53, 468–475. [CrossRef]
13. Dorin, R.P.; Lieskovsky, G.; Fairey, A.S.; Cai, J.; Daneshmand, S. Outcomes after radical prostatectomy for patients with clinical stages T1–T2 prostate cancer with pathologically positive lymph nodes in the prostate-specific antigen era. Urol. Oncol. 2013, 31, 1441–1447. [CrossRef]

14. Hofer, M.D.; Kuefer, R.; Huang, W.; Li, H.; Bismar, T.A.; Perner, S.; Hautmann, R.E.; Sanda, M.G.; Gschwend, J.E.; Rubin, M.A. Prognostic factors in lymph node-positive prostate cancer. Urology 2006, 67, 1016–1021. [CrossRef]

15. Abdollah, F.; Karnes, R.J.; Suardi, N.; Cozzarini, C.; Gandaglia, G.; Fossati, N.; Bianchi, M.; Boorjian, S.A.; Sun, M.; Karakiewicz, P.I.; et al. Predicting survival of patients with node-positive prostate cancer following multimodal treatment. Eur. Urol. 2014, 65, 554–562. [CrossRef]

16. Abdollah, F.; Gandaglia, G.; Suardi, N.; Capitano, U.; Salonia, A.; Nini, A.; Moschini, M.; Sun, M.; Karakiewicz, P.I.; Shariat, S.F.; et al. More extensive pelvic lymph node dissection improves survival in patients with node-positive prostate cancer. Eur. Urol. 2015, 67, 210–219. [CrossRef]

17. Hussain, M.; Tangen, C.M.; Thompson, I.M., Jr.; Swanson, G.P.; Wood, D.P.; Sakr, W.; Dawson, N.A.; Haas, N.B.; Flaig, T.W.; Dorff, T.B.; et al. Phase III intergroup trial of adjuvant androgen deprivation with or without mitoxantrone plus prednisone in patients with high-risk prostate cancer after radical prostatectomy: SWOG S9921. J. Clin. Oncol. 2018, 36, 1498–1504. [CrossRef]

18. Bravi, C.A.; Tin, A.; Vertosick, E.; Mazzone, E.; Bandini, M.; Dell’Oglio, P.; Stabile, A.; Gandaglia, G.; Fossati, N.; Sjoberg, D.; et al. Androgen deprivation therapy in men with node-positive prostate cancer treated with postoperative radiotherapy. Urol. Oncol. 2020, 38, 204–209. [CrossRef]

19. Shiota, M.; Takamatsu, D.; Kimura, T.; Tashiro, K.; Matsui, Y.; Tomida, R.; Saito, R.; Tsutsumi, M.; Yokomizo, A.; Yamamoto, T.B.; et al. Phase IIA trial of adjuvant androgen deprivation therapy for PSA persistence in lymph node-positive prostate cancer. Cancer Sci. 2022, Epub ahead of print. [CrossRef]

20. Mandel, P.; Rosenbaum, C.; Pompe, R.S.; Steuber, T.; Salomon, G.; Chun, F.K.; Graefen, M.; Huland, H.; Tilki, D. Long-term oncological outcomes in patients with limited nodal disease undergoing radical prostatectomy and pelvic lymph node dissection without adjuvant treatment. World J. Urol. 2017, 35, 1833–1839. [CrossRef]

21. Bianchi, L.; Schiavina, R.; Borghesi, M.; Bianchi, F.M.; Briganti, A.; Carini, M.; Terrone, C.; Mottrie, A.; Gacci, M.; Gontero, P.; et al. Evaluating the predictive accuracy and the clinical benefit of a nomogram aimed to predict survival in node-positive prostate cancer patients: External validation on a multi-institutional database. Int. J. Urol. 2018, 25, 574–581. [CrossRef]

22. Huits, T.H.; Luiting, H.B.; van der Poel, H.G.; Nandurkar, R.; Donswijk, M.; Schaque, E.; Vogel, W.; Roobol, M.J.; Wit, E.; Stricker, P.; et al. Distribution of prostate cancer recurrences on gallium-68 prostate-specific membrane antigen (68Ga-PSMA) positron-emission/computed tomography after radical prostatectomy with pathological node-positive extended lymph node dissection. BJU Int. 2020, 125, 876–883. [CrossRef]

23. Da Pozzo, L.F.; Cozzarini, C.; Briganti, A.; Suardi, N.; Salonia, A.; Bertini, R.; Gallina, A.; Bianchi, M.; Fantini, G.V.; Bolognesi, N.; et al. Long-term follow-up of patients with prostate cancer and nodal metastases treated by pelvic lymphadenectomy and radical prostatectomy: The positive impact of adjuvant radiotherapy. Eur. Urol. 2009, 55, 1003–1011. [CrossRef]

24. Touijer, K.A.; Karnes, R.J.; Sjoberg, D.D.; Assel, M.; Fossati, N.; Gandaglia, G.; Eastham, J.A.; Scardino, P.T.; Vickers, S.A.; et al. Survival outcomes of men with lymph node-positive prostate cancer after radical prostatectomy: A comparative analysis of different postoperative management strategies. Eur. Urol. 2018, 73, 890–896. [CrossRef]

25. Kim, Y.J.; Song, C.; Eom, K.Y.; Kim, I.A.; Kim, J.S. Lymph node ratio determines the benefit of adjuvant radiotherapy in pathologically 3 or less lymph node-positive prostate cancer after radical prostatectomy: A population-based analysis with propensity-score matching. Oncotarget 2017, 8, 110625–110634. [CrossRef]

26. Jegadeesh, N.; Liu, Y.; Zhang, C.; Zhong, J.; Cassidy, R.J.; Gillespie, T.; Kucuk, O.; Rossi, P.; Master, V.A.; Alemozaffar, M.; et al. The role of adjuvant radiotherapy in pathologically lymph node-positive prostate cancer. Cancer 2017, 123, 512–520. [CrossRef]

27. Wong, A.T.; Schwartz, D.; Osborn, V.; Safdieh, J.; Weiner, J.; Schreiber, D. Adjuvant radiation with hormonal therapy is associated with improved survival in men with pathologically involved lymph nodes after radical surgery for prostate cancer. Urol. Oncol. 2020, 34, 529.e15–529.e20. [CrossRef]

28. Gupta, M.; Patel, H.D.; Schwen, Z.R.; Tran, P.T.; Partin, A.W. Adjuvant radiation with androgen-deprivation therapy for men with lymph node metastases after radical prostatectomy: Identifying men who benefit. BJU Int. 2019, 123, 252–260. [CrossRef]

29. Briganti, A.; Karnes, R.J.; Da Pozzo, L.F.; Cozzarini, C.; Capitano, U.; Gallina, A.; Suardi, N.; Bianchi, M.; Tutolo, M.; Salonia, A.; et al. Combination of adjuvant hormonal and radiation therapy significantly prolongs survival of patients with pT2-4 pN+ prostate cancer: Results of a matched analysis. Eur. Urol. 2011, 59, 832–840. [CrossRef]

30. Tilki, D.; Chen, M.H.; Wu, J.; Huland, H.; Graefen, M.; D’Amico, A.V. Adjuvant versus early salvage radiation therapy after radical prostatectomy for pN1 prostate cancer and the risk of death. J. Clin. Oncol. 2022, 21, 02800. [CrossRef]

31. Zareba, P.; Eastham, J.; Scardino, P.T.; Touijer, K. Contemporary patterns of care and outcomes of men found to have lymph node metastases at the time of radical prostatectomy. J. Urol. 2017, 198, 1077–1084. [CrossRef]

32. Parker, C.C.; Clarke, N.W.; Cook, A.D.; Kynaston, H.G.; Petersen, P.M.; Catton, C.; Cross, W.; Logue, J.; Parulekar, W.; Payne, H.; et al. Timing of radiotherapy after radical prostatectomy (RADICALS-RT): A randomised, controlled phase 3 trial. Lancet 2020, 396, 1413–1421. [CrossRef]

33. Donovan, J.L.; Hamdy, F.C.; Lane, J.A.; Mason, M.; Metcalfe, C.; Walsh, E.; Blazeby, J.M.; Peters, T.J.; Holding, P.; Bonnington, S.; et al. Patient-reported outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N. Engl. J. Med. 2016, 375, 1425–1437. [CrossRef]
34. Barocas, D.A.; Alvarez, J.; Resnick, M.J.; Koyama, T.; Hoffman, K.E.; Tyson, M.D.; Conwill, R.; McColllum, D.; Cooperberg, M.R.; Goodman, M.; et al. Association between radiation therapy, surgery, or observation for localized prostate cancer and patient-reported outcomes after 3 years. *JAMA 2017*, 317, 1126–1140. [CrossRef]

35. Magee, D.E.; Singal, R.K. Androgen deprivation therapy: Indications, methods of utilization, side effects and their management. *Can. J. Urol. 2020*, 27, 11–16.

36. Herr, H.W.; O’Sullivan, M. Quality of life of asymptomatic men with nonmetastatic prostate cancer on androgen deprivation therapy. *J. Urol. 2000*, 163, 1743–1746. [CrossRef]

37. Saini, A.; Berruti, A.; Cracco, C.; Sguazzotti, E.; Porpiglia, F.; Russo, L.; Bertaglia, V.; Picci, R.L.; Negro, M.; Tosco, A.; et al. Psychological distress in men with prostate cancer receiving adjuvant androgen-deprivation therapy. *Urol. Oncol. 2013*, 31, 352–358. [CrossRef]

38. Pearce, A.; Choo, R.; Danjoux, C.; Morton, G.; Loblaw, D.A.; Szumacher, E.; Cheung, P.; Deboer, G.; Chandler, S. Effect of combined treatment with salvage radiotherapy plus androgen suppression on quality of life in patients with recurrent prostate cancer after radical prostatectomy. *Int. J. Radiat. Oncol. Biol. Phys. 2006*, 65, 78–83. [CrossRef]

39. Adam, M.; Tennstedt, P.; Lanwehr, D.; Tilki, D.; Steuber, T.; Beyer, B.; Theheran, I.; Heinzer, H.; Haese, A.; Salomon, G.; et al. Functional outcomes and quality of life after radical prostatectomy only versus a combination of prostatectomy with radiation and hormonal therapy. *Eur. Urol. 2017*, 71, 330–336. [CrossRef]

40. Raziee, H.; Berlin, A. Gaps between evidence and practice in postoperative radiotherapy for prostate cancer: Focus on toxicities and the effects on health-related quality of life. *Front. Oncol. 2016*, 6, 70. [CrossRef]

41. Schweizer, M.T.; Huang, P.; Kattan, M.W.; Kibel, A.S.; de Wit, R.; Schmoll, J.H.; Epstein, J.I.; Eisenberger, M.A. Adjuvant leuprolide with or without docetaxel in patients with high-risk prostate cancer after radical prostatectomy (TAX-3501): Important lessons for future trials. *Cancer 2013*, 119, 3610–3618. [CrossRef]

42. Morris, M.J.; Mota, J.M.; Lacuna, K.; Hilden, P.; Gleave, M.; Carducci, M.A.; Saad, F.; Cohn, E.D.; Filipenko, J.; Heller, G.; et al. Phase 3 randomized controlled trial of androgen deprivation therapy with or without docetaxel in high-risk biochemically recurrent prostate cancer after surgery (TAX305). *Eur. Urol. Oncol. 2021*, 4, 543–552. [CrossRef]

43. Fizazi, K.; Faiivre, L.; Lesaurnier, F.; Delva, R.; Gravis, G.; Rolland, F.; Priou, F.; Ferrero, J.M.; Houede, N.; Mourey, L.; et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): A phase 3 randomised controlled trial. *Lancet Oncol. 2015*, 16, 787–794. [CrossRef]

44. Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. *Lancet 2020*, 395, 1208–1216. [CrossRef]

45. Jansen, B.H.E.; Bodar, Y.J.L.; Zwezerijnen, G.J.C.; Meijer, D.; van der Voorn, J.P.; Nieuwenhuijzen, J.A.; Wondergem, M.; Roeleveld, T.A.; Boellaard, R.; Hoekstra, O.S.; et al. Pelvic lymph-node staging with 18F-DCFPyL PET/CT prior to extended pelvic lymph-node dissection in primary prostate cancer—the SALT trial. *Eur. J. Nucl. Med. Mol. Imaging 2021*, 48, 509–520. [CrossRef]

46. Pienta, K.J.; Gorin, M.A.; Rowe, S.P.; Carnall, P.R.; Poulion, F.; Probst, S.; Saperstein, L.; Preston, M.A.; Alva, A.S.; Patnaik, A.; et al. A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with 18F-DCFPyL in prostate cancer patients (OSPREY). *J. Urol. 2021*, 206, 52–61. [CrossRef]

47. van Kalmthout, L.W.M.; van Melick, H.H.E.; Lavalaye, J.; Meijer, R.P.; van der Poel, H.G.; et al. External validation and addition of prostate-specific membrane antigen positron emission tomography/computed tomography for primary staging of prostate cancer. *J. Urol. 2020*, 203, 537–545. [CrossRef]

48. Meijer, D.; van Leeuwen, P.J.; Roberts, M.J.; Szeszensi, A.R.; Morton, A.; Yaxley, J.W.; Samaratunga, H.; Emmett, L.; van der Ven, P.M.; van der Poel, H.G.; et al. External validation and addition of prostate-specific membrane antigen positron emission tomography to the most frequently used nomograms for the prediction of pelvic lymph-node metastases: An international multicenter study. *Eur. Urol. 2021*, 80, 234–242. [CrossRef]

49. Perera, M.; Papa, N.; Christidis, D.; Wetherell, D.; Hofman, M.S.; Murphy, D.G.; Bolton, D.; Lawrentschuk, N. Sensitivity, specificity, and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: A systematic review and meta-analysis. *Eur. Urol. 2016*, 70, 926–937. [CrossRef]

50. Bosland, M.C.; Kato, I.; Zeleniuch-Jacquotte, A.; Schmoll, J.; Enk Rueter, E.; Melamed, J.; Kong, M.X.; Macias, V.; Kajdacsy-Balla, A.; Lumey, L.H.; et al. Effect of soy protein isolate supplementation on biochemical recurrence of prostate cancer after radical prostatectomy: A randomized trial. *JAMA 2013*, 310, 170–178. [CrossRef]