Signaling Pathways That Regulate the Crustacean Molting Gland

Donald L. Mykles

1 Department of Biology, Colorado State University, Fort Collins, CO, United States, 2 University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States

A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by external and internal signals. The YO transitions through four physiological states over the molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth Factor-β (TGFβ)/Activin (committed state), and ecdysteroid (repressed state) signaling pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca^2+ dependent triggering phase and a nitric oxide/cGMP-dependent summation phase, which maintains the YO in the basal state during intermolt. A reduction in MIH release triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by mTORC1-dependent gene expression. TGFβ/Activin signaling is required for YO commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to 23 KEGG signaling pathways, 478 of which are differentially expressed over the molt cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which bind a variety of neuropeptides and biogenic amines. Among these are putative receptors for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin, octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH), CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively regulated by insulin-like peptides and growth factors. Future research should focus on the interactions of signaling pathways that integrate physiological status with environmental cues for molt control.

INTRODUCTION

The progression of decapod crustaceans through the molt cycle depends on ecdysteroids synthesized by the Y-organ [YO; reviewed in (1)]. The molt cycle is unidirectional, progressing from the intermolt stage through premolt, ecdysis, and postmolt stages to the next intermolt stage [reviewed in (2, 3)]. Molting encompasses the preparatory processes during the premolt stage,
culminating with the actual shedding of the exoskeleton (ecdysis), followed by restorative processes during the postmolt stage. Rising titers of ecdysteroids in the hemolymph initiate and coordinate premolt processes, such as synthesis of the new exoskeleton, degradation and resorption of the old exoskeleton, claw muscle atrophy, and limb regenerate growth (2, 4, 5). A precipitous drop in hemolymph ecdysteroids at the end of premolt triggers ecdysis (1). The low ecdysteroid titer during postmolt allows claw muscle growth and completion of exoskeleton synthesis and its calcification. Intermolt can last from weeks to years in adult decapods.

Molt stage transitions are determined by phenotypic changes in the activity and properties of the YO. In the intermolt stage (stage C4), inhibitory neuropeptides produced in the X-organ/sinus gland complex, such as molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), maintain the YO in the basal state (Figure 1). A proposed model for MIH signaling couples a cAMP/Ca²⁺-dependent triggering phase with a NO/cGMP-dependent summation phase [reviewed in (2)]. The prolonged activation of a calmodulin-dependent NO synthase and NO-dependent guanylyl cyclase (GC-I) represses ecdysteroidogenesis between MIH pulses (2, 6–9). The decision to molt, or enter premolt, is determined by integration of environmental and physiological cues by the central nervous system that are not completely understood (10). A decrease in MIH release by the X-organ/sinus gland complex, which can be experimentally induced by eyestalk ablation (ESA), triggers YO activation and entry into early premolt (stage D0) (2, 3, 11). Multiple limb autotomy (MLA) also induces molting, as limb regenerates only become functional appendages when extended at ecdysis (4, 12, 13). It is hypothesized that MLA-induced molting is mediated by a stimulatory factor, designated limb autotomy factor – anecdysis (LAFan), produced by the developing limb buds (3). YO activation requires mechanistic Target of Rapamycin Complex 1 (mTORC1) activity, as rapamycin inhibits YO ecdysteroidogenesis in vitro and prevents YO activation in vivo (14, 15). mTORC1-dependent protein synthesis drives the initial increase in ecdysteroid synthesis by the YO. The activated YO remains sensitive to MIH, CHH, and other factors, giving the animal the flexibility to suspend or delay molting when conditions turn unfavorable (2).

A critical decision point occurs at the end of early premolt, when the animal becomes committed to molt. The transition of the YO from the activated to the committed state is mediated by transforming growth factor beta (TGFβ)/Activin signaling, as SB431542, an inhibitor of Activin receptor signal transduction, prevents progression of animals from early premolt to mid-premolt (stage D1; Figure 1) (15). mTORC1 activity affects the mRNA levels of thousands of genes, including those in the mTORC1 and TGFβ/Activin signaling pathways (Figure 1) (16). An invertebrate Myostatin (Mstn)-like factor, first described in scallop and crustacean muscles (17–19), appears to be the ligand for the Activin receptor. It is highly expressed in the YO and its mRNA levels are highest in the activated YO (15, 20, 21). The committed YO increases ecdysteroid synthesis, resulting in increasing ecdysteroid titers in the hemolymph during mid-premolt and reaching a peak in ecdysteroid titer at the end of late premolt (1). The committed YO also becomes

FIGURE 1 | Organization of the signaling pathways mediating YO phenotype transitions over the molt cycle. Cyclic nucleotide-mediated MIH signaling maintains the YO in the basal state by inhibiting mTOR signaling. Reduction in MIH, such as by eyestalk ablation (ESA), stimulates mTOR activity, which is inhibited by rapamycin. mTOR stimulates ecdysteroid synthesis and up-regulates mTOR and TGFβ/Activin signaling genes, and down-regulates MIH signaling genes. Activin/myostatin signaling, which is inhibited by SB431542, up-regulates mTOR signaling genes and controls expression of commitment genes that determine the committed phenotype. High ecdysteroid titers in late premolt may trigger the repressed phenotype in postmolt. From (2).
insensitive to MIH and CHH (2). Limb bud autotomy, which suspends molting processes in early premolt, is no longer effective in mid- and late premolt animals (2, 12, 13).

The signaling mechanisms controlling the transition of the committed YO to the repressed YO at the end of late premolt and the transition of the repressed YO to the basal YO at the end of postmolt are not well understood. It is hypothesized that the large peak in hemolymph ecdysteroid titer triggers the transition to the repressed phenotype (Figure 1), as the YO expresses the ecysteroid receptor (EcR/RXR) and ecysteroid-responsive genes (2). The repressed YO has low ecysteroid synthetic activity, which results in low hemolymph ecysteroid titers during postmolt (1). Most of the 478 differentially-expressed genes assigned to signal transduction pathways are down-regulated to their lowest levels during the postmolt stage (21). Among these are critical components of the MIH, mTORC1, and TGF\(\beta\)/Activin signaling pathways (21). These data suggest that the YO is not inhibited by MIH during postmolt and that repression of the YO involves transcriptional regulation that prevents premature reactivation of the YO until exoskeleton synthesis and calcification are completed (2). The model assumes that normal MIH control is not restored until the YO returns to the basal state in intermolt.

Transcriptomics and proteomics have revolutionized crustacean physiology (22, 23). These approaches have shown that the YO undergoes molt stage-specific changes in phenotype that differ quantitatively and qualitatively in mRNA and protein levels (2, 16, 21, 24). mTORC1 activity plays a critical role in controlling ecysteroid synthesis at the transcriptional and translational levels (2, 14, 16). Transcriptomics and proteomics can also be tools for discovery. Analysis of the MLA Gecarcinus lateralis YO transcriptome identified 878 unique contigs assigned to 23 KEGG signaling pathways, including those for MIH/CHH, mTOR, and TGF\(\beta\)/Activin [Table 1; (21)]. The YO also expresses MAP kinase, AMP kinase, ErbB, Hedgehog, HIF-1, Jak-STAT, Hippo, NF-kappa B, Notch, TNF, and Wnt signaling pathway genes among others, raising the possibility that ecysteroidogenesis is regulated by a great many factors (20, 21). Proteomic analysis has revealed that anti-radical oxygen species, cytoskeletal, vesicular secretion, immune response, protein homeostasis proteins contribute to G. lateralis YO function (24). This review presents the current knowledge of the signaling pathways that control ecysteroid synthesis by the YO and identifies areas for future research. It includes relevant research on signaling mechanisms that control the insect prothoracic gland.

G PROTEIN-COUPLED RECEPTOR-MEDIATED SIGNALING

Transcriptomic analysis has revealed that a large number of G protein-coupled receptors (GPCRs) are expressed in decapod crustacean tissues. GPCRs are characterized by seven transmembrane domains, an external N-terminal domain, and a C-terminal cytosolic domain (25). These are divided among three large classes: rhodopsin-like (Class A), which represents the largest number of GPCRs; secretin-like (Class B); and metabotropic glutamate (Class C) (25–44).

All three GPCR classes are expressed in the YO, but represent a subset of those cataloged in decapod tissues (25, 29). In green shore crab Carcina maenas, 62 contigs encoding GPCRs were identified in the central nervous system (29). The YO expresses 37 GPCRs annotated to 17 ligand clusters (Table 2). Thirty-two contigs are Class A and 5 contigs are in Class B; no Class C

Table 1: Number of total and differentially expressed annotated contigs in the G. lateralis YO transcriptome assigned to KEGG signal transduction pathways. From (21).

Signaling Pathway	Pathway ID	Number of annotated contigs	Number of DE contigs (percentage)
AMPK signaling pathway	k04152	86	53 (62%)
Calcium signaling pathway	k04020	92	49 (53%)
cAMP signaling pathway	k04024	104	65 (63%)
cGMP-PKG signaling pathway	k04022	94	51 (54%)
ErbB signaling pathway	k04012	48	24 (50%)
FoxO signaling pathway	k04068	79	46 (58%)
Hedgehog signaling pathway	k04340	36	21 (58%)
HIF-1 signaling pathway	k04066	50	26 (52%)
Hippo signaling pathway	k04390	95	52 (55%)
Jak-STAT signaling pathway	k04630	26	12 (46%)
MAPK signaling pathway	k04010	106	68 (62%)
mTOR signaling pathway	k04150	92	54 (59%)
NF-kappa B signaling pathway	k04064	33	16 (48%)
Notch signaling pathway	k04330	28	17 (61%)
Phosphatidylinositol signaling system	k04070	86	47 (55%)
Phospholipase D signaling pathway	k04072	83	50 (60%)
PI3K-Akt signaling pathway	k04151	128	69 (54%)
Rap1 signaling pathway	k04015	115	63 (55%)
Ras signaling pathway	k04014	105	57 (54%)
Sphingolipid signaling pathway	k04071	98	80 (61%)
TGF-beta signaling pathway	k04350	32	18 (56%)
TNF signaling pathway	k04868	40	23 (58%)
Wnt signaling pathway	k04310	79	51 (65%)
TABLE 2 | Classification and number of contigs encoding G protein-coupled receptors in the Gecarcinus lateralis and Carcinus maenas Y-organ transcriptomes.

Predicted receptor	G. lateralis	C. maenas
Class A (Rhodopsin-like)		
Adenosine	1	0
Atrial natriuretic peptide	3	4
CCAP	1	3
CHH/ITP	2	3
Corazonin	2	2
Dopamine	0	1
ETH	1	2
FMRFamide	2	1
HPR1	4	0
Leucine-rich repeats family		
Type A (GAP2/GPB5)	2	3
Type B (Bursicon)	1	3
Type C1 (LLG6; Dilp8)	1	3
Type C2 (GAPL101-like)	1	0
Moodys	1	2
Myosuppressin	0	1
Octopamine	1	0
Peropsin	1	2
Proctolin	1	0
Prostaglandin	4	0
Serotonin (5-HT)	2	0
sNPF	1	1
Tre-1 (formerly TIE)	1	0
TRH	1	0
Class B (Secretin-like)		
DH31	1	4
DH41	1	0
Latrophin	3	0
Lipoprotein	4	0
Methuselah	12	0
Parathyroid	1	0
PDF	3	1
Class C (Metabotropic glutamate)		
Boss	1	0
Mangetout	1	0
Metatrophic glutamate	1	0

Putative G Protein-Couple Receptors for CHH Family Neuropeptides

Peptides in the CHH family are divided into two types that differ in the amino acid sequences of the precursor proteins. Members of this family, which includes insect ion transport peptide (ITP), have a 66-amino acid "CHH family motif" in the mature peptide with six conserved cysteines that form three intramolecular disulfide bridges to stabilize the structure of the native protein (46–50). Type I peptides, which include CHH and ITP, are characterized by a signal peptide sequence followed by CHH/ITP precursor-related peptide (CPRP) and mature peptide sequences. Type II peptides, which include MIH, gonad-inhibiting hormone (GHI), and mandibular organ-inhibiting hormone (MOI), lack a precursor-related sequence and have a glycine inserted between residues #11 and #12 and an invariant valine at position #20 in the mature peptide (46). Recently, a comprehensive phylogenetic analysis of crustacean ITPs proposed that ITPs be assigned to a third group (Type III) distinct from Type I CHHs (48, 50). The solution structures of MIH and CHH are similar, except that a short alpha-1 helix at positions #10 through #13 in MIH is lacking in CHH (49, 51). It is thought that the Gly12 contributes to the formation of the alpha-1 helix in Type II peptides (51). The surface structures of the N- and C-terminal regions confer specificity of binding to distinct receptors in the YO membrane (47, 49, 51–54).

The identification and characterization of the MIH receptor has remained elusive for more than three decades (46, 55). It is hypothesized that the receptors for the CHH family are GPCRs, given the similar native structures of Type I and Type II peptides (49, 51) and signal transduction mediated by cyclic nucleotide second messengers (56). In insects, studies of silk moth GPCRs (Bombyx neuropeptide G-protein coupled receptors, or BNGRs) identified BNGR-A2 and -A34 as ITP receptors, and BNGR-A24 as an ITP-like receptor (57). Based on this discovery, two full-length contigs (Pc-GPCRA52 and A53) and one partial contig (Pc-GPCRA63) from the transcriptome of adult Procambarus clarkii were identified as putative CHH-like receptors (CHHRs) (58). Subsequently, CHHR orthologs from more than ten other decapod crustacean species have been identified (25, 27, 29).

Three putative CHHRs, designated Gl-GPCR-A9, -A10, and -A12, are expressed in the G. lateralis YO transcriptome (25). Two CHH/ITP-like receptors were identified in the C. maenas YO transcriptome (25, 27, 29). The surface structures of the N- and C-terminal regions confer specificity of binding to distinct receptors in the YO membrane (47, 49, 51–54).

contigs were identified in the C. maenas YO (Table 2) (29). Eleven GPCRs are enriched in the YO compared to the epidermis; these were identified as gonadotropin-releasing hormone receptor, tachykinin-like R86C, relaxin R1, two rhodopsin G0-coupled receptors, two methuselah-like R1, dopamine D2-like receptor, opsin UV-sensitive receptor, serotonin R4, and GPCR161 (29). In addition, seven GPCRs are differentially expressed over the molt cycle; these include short neuropeptide F, Bursicon R2, CHHa R1, relaxin R3, ITPR-like, Moody-like, and Ast-B/MIP-R1 (29). Deep high throughput RNA sequencing and de novo assembly of the intermolt G. lateralis YO identified 99 putative GPCRs, 65 of which were annotated to 32 ligand clusters (Table 2) (25). The ligands are mostly neuropeptides, but also include biogenic amines, such as dopamine, octopamine, and serotonin (Table 2). These data suggest that the YO can potentially respond to a wide variety of ligands. The possible roles of some of these GPCRs are discussed in the sections below.
YO transcriptome (29). Further phylogenetic analysis showed that the arthropod CHH/ITP GPCRs formed three clusters, designated CHHR1, CHHR2, and CHHR3/ITP-like R/tachykinin R (Figure 2). As Gl-GPCR-A9 and -A10 were grouped in the CHHR1 cluster, they are renamed Gl-CHHR-1A and -1B, respectively; Gl-GPCR-A12 is renamed Gl-CHHR-2 (Figure 2). Modeling the 3-dimensional structures of the *G. lateralis* CHHRs gave a highly conserved outcome of a predicted cleft at the N-terminus, suggesting a common role in binding CHH family hormones (Figure 2). End-point PCR showed that neither Gl-CHHR-1A or -2 are exclusively expressed in the YO, as would be expected for the MIH receptor; Gl-CHHR-1B was not examined (25). Interestingly, the YO is the only tissue to express both CHHRs. Eyestalk ganglia, thoracic ganglion, gill, heart, and midgut only express Gl-CHHR-1A; testis, hindgut, and hepatopancreas only express Gl-CHHR-2; and claw muscle does not express either CHHR (25). The three *G. lateralis* CHHRs are differentially expressed in the YO over the molt cycle, which suggests altered sensitivities to CHH neuropeptides associated with YO phenotypic changes. Gl-CHHR-1A has higher expression in intermolt and decreases during premolt stages; Gl-CHHR-1B is expressed during intermolt with higher expression during premolt stages; and Gl-CHHR-2 is expressed at high levels at late premolt (25). None of the Gl-CHHRs are expressed during postmolt (25). One of the CHH/ITP-like receptors in the *C. maenas* YO is differentially expressed over the molt cycle, with highest expression in late premolt (29).

Future research must use a functional assay to establish which, if any, of the GPCR candidates is the MIH receptor.

Corazonin Receptor

Corazonin (CRZ) is a conserved 11-amino acid neuropeptide with an amided C-terminus and pGlu at the N-terminus. The sequence (pQTFQYSRGWTNa) is highly conserved among insect and crustacean species, although variants with single amino acid substitutions occur in some insects (59, 60). In *Drosophila melanogaster*, CRZ neurons modulate prothoracicotropic hormone (PTTH) action on basal ecdysteroidogenesis by the prothoracic gland (PG), thus controlling larval growth without affecting metamorphosis (61). *C. maenas* corazonin receptor (*Cm-CRZR*) is primarily expressed in the YO, suggesting that CRZ plays a role in regulating ecdysteroidogenesis (45). However, CRZ peptide (50 nM), which is produced in the eyestalk ganglia and other areas of the central nervous system, has only a small stimulatory effect on YO ecdysteroidogenesis in postmolt (stages A-B) *C. maenas* (45).

Leucine-Rich Repeat Receptor and Insulin-Like Peptides

Tissue loss or injury delays molting, allowing time for regeneration or regrowth of tissues or organs prior to the next ecdysis. Molting delay by limb bud autotomy (LBA) in crustaceans and injury to imaginal discs in insects allows time for tissue regeneration, while growth of remaining or undamaged...
tissues slows or stops (12, 13, 62–66). In crustaceans, LBA during early premolt (stage D₀) suspends premolt two to three weeks by lowering hemolymph ecdysteroid titers, so that animals can regain a full set of functional claws and legs at ecdisis (13, 67). In G. lateralis, secondary LBs produce a factor, designated Limb Autotomy Factor – proedysis (LAF_pro), that lowers hemolymph ecdysteroid (3, 12, 13). In insects, regenerating imaginal discs produce a factor, identified as Drosophila insulin-like peptide 8 (Dilp8) in D. melanogaster, that delays metamorphosis by lowering ecdysosterone synthesis by the prothoracic gland (PG) (64, 68–70). Dilp8 also delays molting by activating Lgr3 neurons in the brain, which inhibit PTTH synthesis in PTTH neurons (71–74).

The LAF_pro signaling pathway has not been fully characterized, but parallels with the action of Dilp8 on the insect PG suggest a common mechanism. Dilp8 is one of eight insulin-like peptides (ILPs) in D. melanogaster (74–78). The ILP superfamily consists of insulin, insulin-like growth factors (IGFs), and relaxin-like peptides (38, 71). Dilp 1 to 6 are in the insulin/IGF clade and bind to receptor tyrosine kinase receptors; Dilp 7 and 8 are in the relaxin-like clade and bind to leucine-rich repeat GPCRs (71, 74, 75). LAF_pro is stable when boiled 15 min in deionized water, but is inactivated by boiling in 0.1 M acetic acid (pH 2.9) and by proteinase K digestion (13). Dilp8 action is mediated through relaxin receptor Lgr3 and activation of NO (73, 74, 79). NO donors inhibit ecdysteroidogenesis in both insect and crustacean molting glands (80–82). Dilp8 binding to Lgr3 stimulates production of cAMP in Drosophila cells (71). Up-regulation of Dilp8 delays expression of Halloween genes disembodied (Dib) and phantom (Phm) in the PG (68, 69). Moreover, targeted tissue damage or NOS overexpression in the PG lowers the expression of Halloween genes spookier (Spok) and Dib (79). These data suggest that Dilp8-induced NO inhibition of ecdysteroid synthesis is mediated by the down-regulation of cytochrome P450 enzymes, but it is unclear how NO represses gene transcription. A Lgr3-like GPCR is expressed in the G. lateralis and C. maenas YO transcriptomes (25, 29). An ILP2 is an ortholog of Dilp8 that is primarily expressed in nervous tissue, such as brain and eyestalk ganglia of Eastern spiny lobster (Sagmarius verrueuxi); brain and thoracic ganglion of red-claw crayfish (Cherax quadricarinatus); and in eyestalk ganglia, brain (males), thoracic ganglion (males), and sperm duct in ornate spiny lobster (Panulirus ornatus) (42, 83). It is not known if ILP2 is expressed in limb regenerates, and if there is higher expression in secondary than primary regenerates, as only regenerate have LAF_pro activity (13). Taken together, these data suggest that LAF_pro is an Dilp8-like peptide that binds to Lgr3, activating the MIH signaling pathway to inhibit YO ecdysteroidogenesis (Figure 3).

Ca²⁺/Diacylglycerol/Protein Kinase C Signaling

In the canonical pathway, ligand binding to a GPCR activates phospholipase C (PLC) via a G_q protein anchored in the cell membrane. PLC converts phosphatidylinositol to diacylglycerol (DAG) and inositol trisphosphate (IP3). DAG and IP3-initiated release of Ca²⁺ from smooth endoplasmic reticulum activate protein kinase C (PKC), which phosphorylates downstream targets to effect metabolic changes. All these components are represented in the KEGG calcium and phosphatidylinositol signaling pathways (Table 1) (21). Moreover, the YO has PKC activity (85).

Activation of PKC stimulates ecdysteroid synthesis and secretion by the YO. Studies using pharmacological reagents show that the pathway activating PKC is distinct from the MIH signaling pathway (Figure 3). A DAG analog or phorbol 12-myristate 13-acetate (PMA) stimulate PKC activity and ecdysteroid secretion by the Cancer antennarius YO in vitro (85). PKC activity inhibits ecdysteroid synthesis by the Cancer antennarius YO (90). PKA counteracts the inhibitory effects of reagents that stimulate MIH signaling, such as forskolin, dibutyryl cAMP, and cyclic nucleotide phosphodiesterase inhibitor IBMX, and has no effect on cAMP levels (85). By contrast, PMA has the opposite effect on crayfish YO by inhibiting ecdysteroid secretion (86).

The ligand and GPCR for the PKC pathway have not been identified. An intriguing possibility is that PKC is activated by serotonin (5-hydroxytryptamine) and other biogenic amines. The YO expresses serotonin, dopamine, and octopamine GPCRs (Table 2) (25, 29). Serotonin, dopamine, and octopamine function as neurotransmitters and neuromodulators in the crustacean central nervous system, but they may also act as neurohormones (46, 60, 88–91). Interestingly, there is evidence that the YO can synthesize serotonin (92). Much of the research of biogenic amines functioning as neurohormones has been focused on their roles in regulating decapod reproduction. For example, serotonin stimulates ovarian maturation, whereas octopamine delays gonadal development and inhibits ovarian maturation (93–95). Serotonin stimulates YO ecdysteroid production in vitro in mud crab (Scylla serrata) (96). In insects, serotonergic neurons directly innervate the PG and stimulate ecdysteroidogenesis (97–99). Octopamine acts as an autocrine factor that enhances PG ecdysteroidogenesis (100), but its effect on YO ecdysteroidogenesis is unknown. In C. maenas, dopamine D2-like and 5-hydroxytryptamine receptor 4 are up-regulated in the YO relative to their levels in the epidermis, although the receptors are not differentially expressed in the YO over the molt cycle (29). In G. lateralis YO, two serotonin receptors, designated GI-GPCR-A30 and -A32, and an octopamine receptor, designated GI-GPCR-A34, show different patterns of expression over the molt cycle (dopamine receptor was not identified in the G. lateralis YO transcriptome) (25). GI-GPCR-A30 shows higher expression in early premolt and no expression in postmolt animals, while GI-GPCR-32 is expressed in all five molt stages with higher expression in postmolt (25). GI-GPCR-A34 is expressed in all molt stages, with higher expression during premolt (25). These data suggest that serotonin and octopamine are
tropic factors in the YO. However, the signaling pathways activated by biogenic amines differ between insects and crustaceans. In the PG, serotonin and octopamine increase cAMP (97, 98), while in the YO, serotonin and octopamine action may be mediated by Ca\(^{2+}/\)DAG (Figure 3). Future research should be directed to establishing the mode of action of biogenic amines on the YO.

RECEPTOR TYROSINE KINASES

The receptor tyrosine kinase (RTK) superfamily regulates animal development and homeostasis (101). There are about 58 RTKs in 20 subfamilies in mammals, with fewer in arthropods. D. melanogaster, for example, has 20 RTKs distributed among 14 subfamilies (76). RTKs have an extracellular ligand-binding domain, a single-pass transmembrane domain, and an intracellular tyrosine kinase domain (TKD). Most RTKs are heterodimers with each subunit consisting of a single polypeptide. By contrast, the insulin receptor is a heterotetramer, consisting of heterodimers of alpha and beta chains linked by disulfide bonds; the alpha-chain is completely extracellular and, together with the extracellular domain of the beta-chain, binds ligand (101). Ligand binding activates RTK activity; autophosphorylation of the TKD activates MAPK, PI3K/Akt, PLC\(\gamma\)-PKC, JAK/STAT, or Rac-Rho signaling cascades (76, 101). The YO expresses both ILP receptors and growth factor receptors (Table 3).

Insulin-Like Peptide Receptor Signaling

In insects, ILPs are among the many factors that coordinate organismal growth and organ size and determine the timing of molting and metamorphosis (74, 78, 98, 102–105). A target of ILPs is the PG. Insulin-producing neurons in the brain secrete ILPs, in particular Dilp2, 3 and 5, that stimulate ecdysteroid production by the PG (74, 76, 102, 106). ILP/Insulin-like protein receptor (InsR) signaling in the PG is mediated by PI3K/Akt/mTOR (74, 97, 106, 107). The role of ILP/InsR signaling in development and growth of crustaceans is not well understood, but it is likely that it has similar actions. Much of the research on crustacean ILP/InsR signaling has focused on reproduction (108, 109).

Insulin/ILPs are synthesized as a single polypeptide with an N-terminal signal peptide sequence, followed by B, C, and A chains (75, 77, 109). Proteolytic processing removes the signal peptide and excises the C chain, producing a B chain/A chain heterodimer stabilized by inter- and intra-chain disulfide bonds between conserved cysteines (75, 77, 109). In some ILPs, the C chain is not completely removed, producing a polypeptide, in
The insulin-like androgenic gland hormone (IAG) and androgenic gland hormone (Agh) are relaxin-like ILPs that are expressed in brain, antennal gland, and muscle in adults (117). Mr-ILP expression is highest during the rapid growth stage in younger individuals and during the intermolting stage in older individuals (117). Sv-ILP1 and Cq-ILP1 are relaxin-like ILPs that are expressed in brain, antennal gland, gonads, and hepatopancreas (females only) (83, 113).

It is generally accepted that decapod crustaceans, like most invertebrates, express a single functional insulin receptor (InsR) (118). InsR has been biochemically characterized in gill, muscle, and hepatopancreas (119–121). InsR β-chain is expressed in many tissues, including the androgenic gland of male Macrobrachium rosenbergii (Mr-IR) (122), Fenneropenaeus chinensis (Fc-IAGR) (123), and S. verreauxi (Sv-TKIR) (124). Orthologs of Mr-IR have been identified in the neuroepithelium of six other decapod species (33).

Interestingly, silencing of Mr-IR led to androgenic gland hypertrophy and increased Mr-IAG production, but had no effect on somatic growth or sex determination, suggesting that molting and sexual differentiation are not solely dependent on the insulin receptor (122). S. verreauxi tyrosine kinase insulin receptor (Sv-TKIR), when expressed in a COS-7 cell reporting system, is activated by recombinant Sv-IAG and, to a lesser extent, recombinant human insulin, followed by recombinant Mr-IAG and Cq-IAG (124). In the YO, ESA results in a down-regulation of G. lateralis-InsR, which is blocked by rapamycin, suggesting that mTORC1 activity represses Gl-InsR expression (16).

Remarkably, there are no studies on the effects of insulin or ILPs on YO ecdyseroidogenesis. However, studies of other crustacean tissues indicate that insulin/ILP action is mediated through PI3K/Akt or MAPK/ERK signaling. Bombe insulin increases Sp-vitellogenin (Sp-Vtg) mRNA levels in hepatopancreas explants from Scylla paramamosain (125). Relatively high concentrations of bovine insulin were needed to elicit a response (>200 ng/ml). The insulin-induced increase in Sp-Vtg is blocked by PI3 kinase inhibitor (LY294002) and mTORC1 inhibitor rapamycin (125). Their respective recombinant IAGs increase MAPK/ERK phosphorylation in M. rosenbergii, S. verreauxi, and Cherax quadricarinatus testis explants in vitro (124). In insects, ILPs (e.g., Dilps1-6 in D. melanogaster and Bombyxin in Bombyx mori) stimulate PI3K/Akt signaling and mTORC1-dependent ecdyseroidogenesis in the insect PG (78, 97, 106, 107, 126–129).

Based on these data, a model for ILP signaling in the YO is proposed (Figure 4). Binding of ILPs, such as ILP2, to InsR activates PI3K/Akt signaling, leading to mTOR activation and increased ecdyseroid synthesis. Alternatively, or perhaps in conjunction with PI3K/Akt signaling, ILP activates MAPK/ERK signaling (Figure 4). Both pathways converge on mTOR in animal cells (130, 131).

Growth Factor Receptor Signaling

Growth factor signaling is mediated by the Ras/Raf/MAPK and PI3K/PDK1/Akt pathways (Figure 4) (132). In insects, growth factors, such as epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor, (PDGF) and vascular endothelial growth factor (VEGF), serve many functions critical for embryo genesis, molting, and metamorphosis (76). Activation of the Ras/Raf/MAPK pathway stimulates ecdyseroidogenesis in the insect PG (97, 106). Although not a growth factor, prothoracicotropic hormone (PTTH) activates this pathway by binding to an RTK encoded by Torso (97, 98, 102, 106, 133). PTTH is the primary factor that initiates larval molts in most insects. However, a recent study has shown that EGF receptor (EGFR) signaling supports PG ecdyseroidogenesis during the 3rd larva to pupa transition in D. melanogaster (134). The function of growth factors in YO ecdyseroidogenesis is unknown. Growth factor signaling pathways are well represented in the YO. These include the ErbB, MAPK, PI3K/Akt, and Ras KEGG signaling pathways (Table 1). Contigs can be assigned to two or more of the KEGG pathways (Figure 4) (21). The G. lateralis YO transcriptome has contigs encoding 106 MAPK signaling components, 66 of which are differentially expressed over the molt cycle (Table 1) (21). Forty-eight contigs assigned to the ErbB pathway, which includes EGFR signaling, have been identified (Table 1).

Knowledge of growth factors and their functions in crustaceans is limited. Unfortunately, there are no studies determining the effects of EGF, FGF, or VEGF on YO ecdyseroidogenesis. Immunohistochemical analysis indicated that eyestalk ganglia express a VEGF-like protein and VEGF receptor (135). The broad scale application of transcriptomics has aided the identification of growth factors and their receptors in decapod crustacean tissues. VEGFR is expressed in the...
embryos of *Macrobrachium olfersi* (136). The VEGF signaling pathway is enriched in hemocytes from pathogen-infected *Eriocheir sinensis*, suggesting that VEGF is involved in mounting an immune response (137).

Lv-EGF, Lv-EGFR, and Lv-VEGFR are expressed in embryos and larvae of *Litopenaeus vannamei* (138). In *M. rosenbergii*, *Mr-EGFR* is expressed in most tissues, with higher expression in thoracic ganglion, ovary, and testis (139). Knockdown of *Mr-EGFR* slows accumulation of mass in juvenile male *M. rosenbergii*, but has no effect on ecdysis frequency (139). Using transcriptomic data, a cDNA encoding the complete EGFR sequence was cloned from *S. parmamosain* ovary; *Sp-EGFR* is expressed in most tissues, with higher expression in YO, ovary, stomach, heart, and gill (140). Human EGF (1 nM and 10 nM) caused a transient increase in *Sp-Vtg* receptor and *Sp-Cyclin B* mRNA levels in ovary explants; the increases were blocked by pretreatment with EGFR tyrosine kinase inhibitors AG1478 and PD153035 (140). The *G. lateralis* YO expresses *Gl-EGF*, *Gl-FGF*, *Gl-EGFR*, and *Gl-FGFR* (*Table 3*) (16, 20). These data suggest that EGFR functions in a wide variety of tissues, including the YO (*Table 3*). The expression of *Gl-EGF* and *Gl-FGF* suggests that EGF, and perhaps FGF, act as autocrine factors in the YO as EGF does in the PG (134).

FIGURE 4 | Proposed receptor tyrosine kinase (RTK)-mediated signaling pathways stimulating ecdysteroidogenesis in the YO based on data from the insect prothoracic gland (97, 98). YOs express both types of RTKs (*Table 3*). Growth factors, such as epidermal growth factor (EGF) or fibroblast growth factor (FGF), bind to EGF or FGF receptors, respectively, to activate the Ras/Raf/MEK/ERK signaling pathway. Insulin/insulin-like peptide (ILP) binds to insulin receptor (INSR) to activate PI3K/PDK/Akt and/or Ras/Raf/MEK/ERK signaling. Both pathways converge on mTOR signaling by phosphorylation of tuberous sclerosis complex (TSC) by Akt or ERK, respectively. ERK, extracellular signal-regulated kinase; IRS, insulin receptor substrate; MEK, MAPK/ERK kinase; PDK, protein 3-phosphoinositide-dependent protein kinase; PI3K, phosphoinositide 3-kinase (PI3K).

TRANSFORMING FACTOR β/ACTIVIN SIGNALING

TGFβ signaling plays essential roles in animal cell differentiation and homeostasis, and dysregulation of TGFβ signaling contributes to many diseases including cancer (141–143). In the
canonical pathway, a ligand binds to TGF receptor 2 (R2) homodimer, which associates with TGFRI homodimer to form the active heterotetramer receptor complex by TGFRII autophosphorylation and phosphorylation of TGFRI and regulatory (R)-Smad (144, 145). Two phopho-R-Smads bind to one Co-Smad and the R-Smad/Co-Smad complex translocates to the nucleus to regulate gene transcription (141, 144, 145). Several proteins inhibit TGFβ signaling. Inhibitory (I)-Smads block TGFβ signaling by either preventing R-Smad phosphorylation by TGFRII or preventing binding of Co-Smad to phosphoryo-R-Smad. FK-506 binding protein 1A (FKBP12) binds to TGFRI and prevents phosphorylation of TGFRI by TGFRII (141, 146). BMP and activin membrane bound inhibitor (BAMBI) acts as a TGFRII pseudo receptor, as it binds ligand, but lacks the protein kinase domain for signal transduction. TGFβ signaling cross-talks with many other signaling pathways, such as MAPK, Akt, PKC, CAMKII, GSK3, JAK, JNK, Wnt, Notch, and Hedgehog (145).

TGFβ ligands include bone morphogenic proteins (BMPs), growth and differentiation factors (GDFs), Activin, anti-Müllerian hormone, nodal, and TGFβs (143, 147). They often function as autocrine factors, acting on the same tissue in which they are synthesized and secreted. TGFβ/Activin signaling, in particular, determines the competency of insect and crustacean molting glands to respond to neuropeptides (2, 97, 103). Insects express three Activins: Activin-β (Actβ), Myoglianin (Myo)/Myo-like, and Dawdle (Daw) (148, 149). In D. melanogaster, knocking out Activin signaling by targeting R-Smad dsSmad2, Type I receptor Baboon (Babo), Type II receptor Punt, or Co-Smad Medea in the PG leads to 3rd instar arrest and failure of larvae to metamorphose and down-regulation of signaling genes Torso and InR and Halloween genes Dib and Spok in the PG (150). In the German cockroach Blattella germanica, an increase in Bg-Myo mRNA levels in the PG is associated with increased ecdysteroid synthesis at the end of the 5th instar (151). These data indicate that Activin signaling is necessary for the stimulation of ecdysteroidogenesis by PTTH and ILP. Interestingly, knocking out any one of the three Activin ligands Actβ, Myo, or Daw has no effect on D. melanogaster molting and metamorphosis (148). All three ligands must be knocked out in the PG in order to manifest the developmental arrest phenotype, suggesting some degree of redundancy among the three ligands and their Babo receptors (148). Adult decaped crustaceans express a single myostatin (Mstn)-like/GDF11 that is related to mammalian Mstn/GDF8 and GDF11 (2, 18). TGFβ/Mstn signaling drives the transition of the YO to the committed state, resulting in the YO becoming less sensitive to MIH and CHH in mid-premolt and late premolt (2, 15, 152). Recently, a cDNA encoding a Dawdle-like factor was characterized in S. paramanosain. Sp-Daw is expressed primarily in embryos and larvae, suggesting that it plays a role in developmental processes (153). It may also be involved in the innate immune response in adults (153).

Mstn is expressed in most crustacean tissues, with generally higher levels in the YO, heart, and muscle (15, 18, 154–161). Most studies have focused on the role of Mstn as a negative regulator of muscle growth, which contributes to organismal growth (5). In Chinese shrimp F. chinensis, Fc-Mstn mRNA levels are inversely correlated with growth traits among individuals from different genetic lineages (162). It appears that Mstn slows muscle growth by inhibiting mTORC1-dependent protein synthesis. In G. lateralis claw muscle, increased protein synthesis during premolt is correlated with decreased expression of Gl-Mstn and increased expression of Gl-Rheb, the activator of mTORC1 (17, 163). Several studies have attempted to knock down Mstn expression as a means to promote growth in aquacultural species. Surprisingly, in several cases, Mstn ds-RNA injection has just the opposite effect: an increase in molt interval and/or decrease in growth rate in Penaes monodon, L. vannami, and Fenneropenaeus merguensis (155, 159, 164). These studies did not consider off-target effects. Reduced expression of Mstn in the YO could have blocked or delayed the progression from early premolt to mid-premolt, thus lengthening the interval between ecdyses. The effects on YO Mstn mRNA levels were not examined in these studies. However, injection of Es-Mstn-dsRNA or Es-Activin receptor IIB (Es-ActRIIB) dsRNA into juvenile F. sinensis and injection of Fc-Mstn-dsRNA into juvenile F. chinensis accelerated molting and growth when compared to a control group (154, 165, 166). However, control animals were injected with RNase-free water or phosphate-buffered saline, rather than an unrelated dsRNA construct (154, 164–166). Thus, one cannot rule out a nonspecific response to dsRNA injection. Only two of the studies used dsRNA products of unrelated sequences as controls, and both those showed molt inhibition (155, 159).

Molting alters TGFβ/Activin signaling gene expression in the G. lateralis YO. Analysis of RNAseq data of MLA-induced animals shows increases of Gl-Activin RI, Gl-Smad2/3 (Gl-R-Smad), and Gl-Smad4 (Gl-Co-Smad) in early premolt to mid-premolt, while TGFβ signaling inhibitors, Gl-Smad6 (Gl-I-Smad) and Gl-BAMBI, are down-regulated during premolt (21). By contrast, ESA decreases Gl-Activin RI, Gl-Smad2/3, Gl-Smad4, Gl-Smad6, and Gl-BAMBI expression (16). The differences between the MLA and ESA transcriptome results are attributed to the ESA study focusing on initial YO activation as the animals did not transition to mid-premolt (16). Neither MLA nor ESA had a significant effect on the relative expression of Gl-Mstn in the G. lateralis YO transcriptomes (16, 21), although qPCR showed that Gl-Mstn mRNA levels increase by three days post-ESA (15). Future research should use qPCR to establish the precise timing of the effects of ESA ± SB431542 on the expression of TGFβ/Mstn signaling genes.

mTOR SIGNALING

mTOR is a serine/threonine PI3-related protein kinase that allocates energy in response to nutrients, growth factors, and stress in eukaryotic cells at transcriptional and post-translational levels (167–169). mTOR associates with other proteins to form two complexes: mTOR Complex 1 (mTORC1) and Complex 2 (mTORC2) (169). mTORC1 contains Raptor and controls protein translation, lipid and nucleotide synthesis, and autophagy (169, 170). mTORC2 contains Rictor and controls cytoskeletal remodeling, ion transport, and cell survival and proliferation.
mTORC1 is inhibited by rapamycin, mediated by FKBP12, while mTORC2 is insensitive to rapamycin (167, 169). mTORC1 is activated by GTP/Ras homolog enriched in brain (Rheb). Rheb, in turn, is controlled by the tuberous sclerosis complex (TSC), a heterotrimeric protein composed of Hamartin (TSC1), Tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) (169). TSC is a GTPase activating protein (GAP) that inactivates GTP/Rheb by promoting the hydrolysis of GTP to GDP (170). Growth factor signaling pathways converge on the TSC to promote cellular growth (Figure 4) (170). Phosphorylation of TSC by Akt, ERK, p90 ribosomal S6 kinase 1 (RSK1), and other protein kinases inhibit the GAP activity to prevent inactivation of GTP/Rheb, which leads to mTORC1 activation (169). Phosphorylation of ribosome subunit 6 kinase (S6K) and eIF-4-binding protein (4E-BP) by mTORC1 increases translation of mRNA to protein.

mTORC1 is required for increased ecdysteroidogenesis in the arthropod molting gland. PTTH stimulates mTORC1-dependent protein synthesis, which increases ecdysteroid synthesis of the insect PG (126, 128, 171–178; see (179) for earlier references). In D. melanogaster, Rheb overexpression or TSC2 knockdown in the PG reduces the developmental delay in food-limited 3rd-stage larvae, resulting in lower adult weights (180). Additionally, Rheb overexpression under food-limiting conditions increases transcription of Halloween genes Plum and Dib (180). Comparable studies on decapod crustaceans, such as knockdown of Rheb and TSC2 with dsRNA constructs, have not been done. Incubation of hepatopancreas explants with Sp-Akt-dsRNA reduced the insulin-induced increase in Sp-Vtg mRNA level, but had no effect on Sp-Rheb mRNA level (125). Rapamycin inhibits YO ecdysteroid synthesis and secretion in vivo and in vitro and blocks entry of intermolt animals into premolt and delays the transition from early premolt to mid-premolt in eyestalk-ablated G. lateralis (14, 15).

Molting up-regulates many of the mTOR signaling components in the YO. In G. lateralis, Gl-mTOR and Gl-Akt mRNA levels increase in mid-premolt and late premolt stages in MLA animals and Gl-mTOR, Gl-Akt, and Gl-S6K mRNA levels increase by three days post-ESA in eyestalk-ablated animals (14, 15). Gl-elongation factor 2 (Gl-EF2) mRNA level is also increased by MLA and ESA, which is consistent with increased protein synthesis in the YO (14, 15). By contrast, molt stage (intermolt, early premolt, and late premolt) has no effect on Cm-EF2, Cm-mTOR, Cm-Rheb, Cm-Akt, and Cm-S6K mRNA levels in C. maenas (14). SB431542 injection blocks the ESA-induced increases in Gl-EF2, Gl-mTOR, and Gl-Akt mRNA levels and decreases Gl-Rheb mRNA level, which suggest that TGFβ/Activin signaling is required for sustained up-regulation of mTOR signaling during premolt (15). RNAseq data expands on the results from qPCR analysis. Gl-mTOR, Gl-Raptor, Gl-Rictor, Gl-S6K, and Gl-Akt are expressed at high levels during intermolt and early premolt and at their lowest levels during postmolt (21). Gl-Rheb expression increases during early premolt and mid-premolt stages (21). ESA increases expression of Gl-mTOR, Gl-Raptor, Gl-mLS8, Gl-Rheb, Gl-Akt, Gl-S6, Gl-S6K, Gl-EF4E, and Gl-EF2 (16). These increases are inhibited by rapamycin, suggesting a positive feedback mechanism in which mTORC1 activity up-regulates expression of mTOR signaling genes (Figure 1) (16).

Temperature affects metabolic processes in crustaceans, including molting, and it is likely that mTORC1 activity contributes to the response of the YO and other tissues to temperature. Within normal physiological ranges, increasing temperature stimulates molting and growth of decapod crustaceans (3, 181–183). However, when an animal reaches its upper thermal limit, molting is inhibited, either directly on the YO or indirectly by inhibitory neuropeptide, such as CHH, secreted by the X-organ/sinus gland (183–186). The effects of temperature on survival, molting, and mTOR signaling gene expression in YO, eyestalk ganglia, and heart were determined in juvenile Dungeness crab, Metacarcinus magister. Animals at three different molt stages (12, 19, or 26 days post-ecdysis; these intervals spanned stages C to D2–3) were transferred from ambient temperature (~15°C) to 5, 10, 15, 20, 25, or 30°C for 14 days (187). None of the animals transferred to 25 and 30°C survived (187). M. magister molt successfully at 21°C, but the growth increment is less than that at 14°C (188); see (187) for additional references). These results indicate that the upper temperature limit for M. magister molting success is between 21°C and 25°C. Low temperature (5°C) inhibits molting (187). Between 10°C and 20°C, molt stage progression increases with temperature (187). Gene expression in YO, eyestalk ganglia, and heart is affected by temperature and molt stage, but there is little or no interaction in gene expression between temperature and molt stage (187). In eyestalk ganglia, Mm-MIH, Mm-CHH, Mm-Rheb, Mm-AMP kinase α subunit (AMPkα), and Mm-Akt mRNA levels decrease with increasing temperature, particularly at 20°C; Mm-S6K mRNA level is not affected by temperature (187). In heart, mRNA levels of Mm-Rheb, Mm-S6K, Mm-AMPkα, Mm-Akt, and Mm-mTOR are higher at 10°C than at 15°C and 20°C. Of the six genes quantified in the YO, only Mm-Rheb expression is affected by both molt stage and temperature (Figure 5). Mm-Rheb mRNA level is higher in premolt stages (Figure 5) and is positively correlated with hemolymph ecdysteroid titers at all three temperatures (187), which suggests that Rheb stimulates mTORC1-dependent ecdysteroid synthesis. Mm-Rheb mRNA level decreases with increasing temperature at most molt stages (Figure 5). It is noteworthy that only the mRNA level of Mm-Rheb is negatively correlated with temperature in all three tissues (Figure 6). It appears that the down-regulation of mTOR signaling serves as a compensatory mechanism for higher metabolic rates at higher temperatures, so that energy allocation to protein synthesis is maintained at relatively constant levels (Figure 6). Taken together, the data suggest that Rheb expression can be used as a proxy to assess the effects of molting and temperature on mTORC1 activity in crustacean tissues.

CONCLUSIONS AND FUTURE RESEARCH

The control of molting involves the integration of a variety of signals that affects the ecdysteroidogenic capacity and activity of
the arthropod molting gland (2, 62, 78, 106). This is reflected by the diversity and actions of the factors involved. In the insect PG, tropic factors, such as PTTH, ILPs (e.g., dILP1-6, Bombyxin), growth factors (e.g., EGF and VEGF), biogenic amines (e.g., serotonin and octopamine), and FXPRLamide peptide, stimulate ecdysteroidogenesis (97, 98, 105). Static factors, such as dILP8, prothoracicostatic peptides, Bommo-myosuppressin, and FMRFamide-related peptide, inhibit ecdysteroidogenesis (97, 98, 105). By contrast, the neuropeptides MIH and CHH are the only known ligands identified for YOs in crustaceans (2, 50, 55, 189, 190). Transcriptomic analysis has revealed that the YO expresses receptors for ILPs, growth factors, biogenic amines, and neuropeptides (Tables 2, 3) (25, 29). The large number of GPCRs in particular indicates that the YO resembles the insect PG in being able to integrate a large number of signals to coordinate organ growth, development, and molting. MIH, CHH, LAFpro, and perhaps FMRFamide act as static factors on the YO. Drawing on comparisons with the insect PG, ILPs, EGF, VEGF, corazonin, and LAFan may act as tropic factors. The effects of these and other ligands (e.g., serotonin, octopamine, FGF, dopamine, pigment dispersing factor, allatostatins, ecdisis-triggering hormone, crustacean cardioactive peptide (CCAP), CCHamide, diuretic hormones DH31 and DH44, and Bursicon) on YO ecdysteroidogenesis remain to be determined.

FIGURE 5 | Effects of temperature and molt stage on gene expression in Y-organs of juvenile Dungeness crab, Metacarcinus magister. mRNA levels of Mm-Rheb (A), Mm-ribosome subunit 3 (RbS3) (B), Mm-AMPKα (C), Mm-S6K (D), Mm-AKT (E), and Mm-mTOR (F) after 14 days at 10°C, 15°C or 20°C of juveniles in intermolt (C, white), early premolt (D0, black), mid-premolt (D1, grey), or late premolt (D2-3, lines). Data are normalized to the mean absolute mRNA copy numbers in stage C at 15°C. Asterisks denote significant differences at \(P < 0.05 \). Sample size (n) given in brackets below columns in A also apply to the other genes. Data are presented as mean ± 1 S.E.M. Mm-Rheb expression is affected by temperature and molt stage. Mm-Rheb mRNA level increases during premolt stages and decrease with increasing temperature. From (187).
PTTH and MIH are the primary neuropeptides controlling molting in insects and crustaceans, respectively (2, 50, 105, 106). It is remarkable that the control of a process as critical as ecdysis is to organismal growth would have evolved diametrically opposite mechanisms in these two major arthropod groups. PTTH activates the PG, while MIH inhibits the YO. Thus, molting in insects is initiated by the release of PTTH from neurosecretory neurons in the brain, while molting in crustaceans is initiated by reduced MIH release from neurosecretory neurons in the eyestalk X-organ/sinus gland complex (2, 11, 105). In D. melanogaster, PTTH stimulates PG ecdysteroidogenesis by binding to the Torso RTK and activating the Ras/Raf/MAPK signaling pathway (106). In lepidopterans (Manduca sexta and Bombyx mori), a PTTH-induced Ca^{2+} influx activates both Ras/Raf/MAPK signaling and cAMP-dependent signaling and both contribute to a large increase in ecdysteroid synthesis (97, 105, 179). MIH inhibits YO ecdysteroidogenesis by binding to a putative GPCR and activating a cyclic nucleotide-dependent signaling pathway (2, 50). A cAMP/Ca^{2+}-dependent triggering phase is linked to a NO/cGMP-dependent summation phase to inhibit the YO between MIH pulses (2, 50, 55). RTKs in the YO most likely function to stimulate ecdysteroidogenesis, as they do in the PG (76, 97, 98).

The YO undergoes phenotypic changes over the molt cycle. The molt cycle is unidirectional, with YO transitions occurring at critical checkpoints that determine progression to the next molt stage. Figure 7 presents a working model for the signaling pathways that control YO basal (intermolt stage), activated (early premolt stage), and committed (mid- and late premolt stages) phenotypes. The most important decision is to initiate

FIGURE 6 | Summary of the effects of moderate thermal stress on molting and growth through the mTOR signaling pathway in juvenile Dungeness crabs. In intermolt, MIH keeps the YO in a basal state with low ecdysteroid secretion by inhibiting mTOR. Low levels of ecdysteroid may stimulate heart muscle growth via mTOR signaling. Moderate temperature change (10 to 20°C range) allows acclimation of the animals, at least with respect to some physiological functions. After 14 days, thermal compensation is observed in molt control, i.e. similar ecdysteroid titer across temperatures throughout the molt cycle (187). Mechanisms include up-regulation or down-regulation of Mm-MIH and mTOR signaling genes (Mm-Rheb, Mm-Akt, Mm-AMPK) during cold (10°C) or warm (20°C) exposure in the eyestalk ganglia and YO. In the heart, thermal compensation of metabolism is incomplete, as oxygen demand and heart activity increase with temperature. A sustained mRNA level of Mm-Rheb and Mm-mTOR indicates a greater allocation of energy to maintaining cardiac capacity during warm exposure. From (187).
molting, which is determined by the integration of external cues, most likely mediated by the brain and eyestalk ganglia, which control the release of MIH from the X-organ/sinus gland complex, and internal cues, such as nutritional status, organ size, and limb regeneration, that act directly on the YO (2, 3, 11). The signaling pathways converge on Rheb/mTORC1 to regulate ecdysteroidogenesis (Figure 7). Activation of GPCR signaling by static factors (e.g., MIH and CHH) inhibits Rheb/mTORC1, maintaining the YO in the basal state. Activation of RTK signaling by tropic factors (e.g., ILPs and growth factors) stimulates Rheb/mTORC1. Although RTK signaling can potentially activate the YO, MIH release prevents molt initiation until environmental conditions are met. YO activation is mediated post-translationally by mTORC1-dependent increased global translation of mRNA to protein, resulting in increased ecdysteroid synthesis and secretion (Figure 7, dashed lines). The rising ecdysteroid titers in the hemolymph mark the entry into early premolt (1). The activated YO remains sensitive to static factors, as ecdysteroidogenesis is inhibited by MIH, CHH, and LAF_pro (2).

During early premolt, the YO synthesizes and secretes Mstn-like factor, which binds to Activin receptors to activate Smad transcription factors, leading to down-regulation of MIH signaling genes and up-regulation of Rheb/mTORC1 and Halloween genes in the committed YO (Figure 7, solid lines).

Although much progress has been made over the last ten years, many questions remain and research efforts should be directed at answering them:

1. What is the identity of the MIH receptor? The evidence indicates that the MIH receptor is a GPCR and several potential candidates have been identified from in silico analysis of YO transcriptomes (Figure 2) (25). Moreover, there is evidence from studies of lobster muscle that the CHH receptor is a membrane receptor guanylyl cyclase (GC-II) (8, 56, 179, 191). A heterologous reporting system in COS-7 cells holds promise as a functional assay for quantifying the specificities of candidate GPCRs and GC-II to recombinant MIH and CHH (124).
2. How does MIH signaling inhibit mTORC1? The current thinking is that MIH inhibition of ecdysteroidogenesis is mediated by PKG (2, 56). The downstream substrates of PKG are unknown. A possible target is TSC (Figure 3), in which phosphorylation stimulates GAP activity, although it is not known if TSC is phosphorylated by PKG (192). Proteomic analysis using liquid chromatography-tandem mass spectrometry now provides the technology to identify and quantify phosphoproteins in the YO in response to rMIH and PKG inhibitors. A similar approach was used to show that NO synthase is phosphorylated in the activated YO (7).

3. What is the identity of LAFpro? LAFpro is a peptide factor produced by secondary limb buds to delay molting (13). As discussed in Section 2.3, the discovery of an Lgr3 GPCR in the YO transcriptome suggests that LAFpro is a Dilp8-like peptide that inhibits ecdysteroidogenesis via the MIH signaling pathway (Figure 3). Like the YO, inhibition of PG ecdysteroid synthesis by Dilp8 is through the activation of NO synthase (73, 79). This suggests that the inhibition of ecdysteroidogenesis by NO/cGMP/PKG is conserved in arthropod molting glands.

4. How does mTORC1 control gene expression? mTORC1 activity alters the mRNA levels of thousands of genes, including those for mTOR, TGFB, and MIH signaling and ecdysteroidogenesis (16), presumably by altering the activities of transcription factors and co-factors. In D. melanogaster, the transcription factors Krüppel homolog 1 (Kr-h1), seance, ouija board, molting defective, ventral veins lacking, and Knirps are linked to Halloween gene expression (193–195). Kr-h1 is a critical component of the juvenile hormone (JH)/methyl farnesoate (MF) signaling pathway in insects (196–198), and recent studies indicate that Kr-h1 plays a role in crustacean development and reproduction (199–203). The YO expresses Kr-h1 and other MF signaling components, suggesting that it also has a role in molt regulation (204). One potential function is in the downregulation of Halloween gene expression when the YO transitions to the repressed state in late premolt.

5. What are the gene targets of TGFB/Activin signaling? TGFB/Activin drives the transition of the YO from the activated to the committed state. It is hypothesized that Smad transcription factors, activated by Mstn-like factor, up-regulate the expression of commitment genes that determine the phenotypic properties of the committed YO (Figure 1), such as low sensitivity to MIH, CHH, and LAFpro and high ecdysteroid production. Possible targets are Rheb/mTORC1, MIH signaling genes, and Halloween genes (Figure 7). These and other gene targets can be identified by determining the effects of ESA ± SB431542 on the YO transcriptome and proteome.

6. What are the mechanisms mediating the transitions of the YO from the committed to repressed state and from the repressed to basal state? The repressed YO is transcriptionally inactive and has very low ecdysteroid synthesis, leading to low hemolymph ecdysteroid titers during the postmolt stage. It is hypothesized that the ecdysteroid peak at the end of premolt triggers the repressed state, mediated by ecdysteroid receptor (EcR/RXR) and ecdysone-response proteins. Even less is known about what causes the YO to return to basal state at the end of the postmolt stage. Perhaps a signal from the integument, upon completion of exoskeleton synthesis marked by the deposition of the membranous layer, is involved.

7. What is the role of RTKs in regulating ecdysteroidogenesis? Our understanding of RTKs and their ligands in the YO is largely based on inferences from research on the insect PG. It is hypothesized that ILPs and growth factors stimulate ecdysteroidogenesis (Figure 4), but their effects are dampened or nullified by MIH. The YO expresses EGF and FGF, suggesting that both have an autocrine function. In vitro assays can determine the effects of recombinant insulin, EGF, and FGF on YO ecdysteroid synthesis and secretion.

8. Is ecdysteroidogenesis regulated by biogenic amines and neuropeptides other than MIH and CHH? The YO expresses a large number and diversity of GPRCs. Of the 99 GPCRs in the G. lateralis YO, 65 are assigned to known receptors (25). Of particular interest are GPCRs for corazonin, serotonin, and octopamine, which stimulate ecdysteroidogenesis (Figure 3, Sections Corazonin Receptor and Ca2+/Diacylglycerol/Protein Kinase C Signaling). However, other ligands involved in molting, such as ec dysis triggering hormone and Bursicon, should also be investigated.

9. What are the roles of Wnt, Hedgehog, Notch, and Hippo signaling pathways in the YO? These pathways are implicated in controlling ecdysteroidogenesis in the insect PG (74, 97, 98, 205) and are well represented in the YO transcriptome (Table 1). Decapods express a large number of Wnt ligands (206). Wnt4 is implicated in having roles in limb regeneration and the immune response in decapods (207, 208). Gl-Wnt5 and Gl-Wnt7 are expressed at their highest levels in late premolt, suggesting that these ligands are involved with the ecdysteroid peak and transition of the YO to the repressed state (21). This constitutes an entirely new area of research in the coming years.

Transcriptomics and proteomics have revealed the complexities of the regulation of the arthropod molting gland. These approaches have been successfully applied to insect PG and complement functional genetic studies on D. melanogaster (176, 205, 209–215). Transcriptomic and proteomic analysis of the YO has revealed that the PG and YO are more similar than they are different. The PG and YO express the same KEGG signaling pathways. Many of these signaling pathways converge on mTORC1, which plays a central role in regulating ecdysteroid synthesis in both endocrine organs. A second shared property is that TGFB/Activin signaling alters the ligand sensitivity of the PG to PTTH in preparation for the large ecdysteroid peak prior to the metamorphic molt, whereas Mstn/Activin decreases the sensitivity of the YO to MIH and CHH in mid- and late premolt. The great diversity in GPCRs indicates that the YO, like the PG, can respond to a variety of ligands, some of which are inhibitory and others are stimulatory. As RTKs stimulate ecdysteroidogenesis in the PG, it seems reasonable to postulate that RTKs have the same
function in the YO. The study of insect molting and metamorphosis has informed research on crustaceans, but this does not mean that one can fully understand the control of molting in crustaceans by studying Drosophila. There are fundamental differences in evolutionary history and life history between insects and decapod crustaceans and even between insect orders. The lineages that gave rise to insects and crustaceans have been separated for more than 500 million years, allowing time for the evolution of divergent ligands and signaling pathways to become dominant (216, 217).

Unlike insects, most decapod species continue to molt as adults, enabling them to grow to larger sizes. The larger size is a distinct advantage, as one can obtain the amount of YO tissue needed for statistical analysis and potentially more experimental treatments and time points for the study of molting gland function. Thus, crustacean models complement insect models for achieving a broader understanding of how arthropods integrate growth control with external and internal cues.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

REFERENCES

1. Mykles DL. Ecdysteroid Metabolism in Crustaceans. J Steroid Biochem Mol Cell Biol (2011) 127:196–203. doi: 10.1016/j.jsbmb.2010.09.001
2. Mykles DL, Chang ES. Hormonal Control of the Crustacean Molting Gland: Insights From Transcriptomics and Proteomics. Gen Comp Endocrinol (2020) 294:113493. doi: 10.1016/j.yaceo.2020.113493
3. Skinner DM. Molting and Regeneration. In: Bliss DE, Mantel LH, editors. The Biology of Crustacea. New York: Academic Press (1985). p. 43–146.
4. Hopkins PM, Das S. Regeneration in Crustaceans. In: Chang ES, Thiel M, editors. The Natural History of the Crustacea: Physiology. Oxford, U.K.: Oxford University Press (2015). p. 168–98.
5. Mykles DL, Medler S. Skeletal Muscle Differentiation, Growth, and Plasticity. In: Chang ES, Thiel M, editors. The Natural History of the Crustacea: Physiology. Oxford, U.K.: Oxford University Press (2015). p. 134–67.
6. Kim HW, Batista LA, Hoppes JL, Lee KJ, Mykles DL. A Crustacean Nitric Oxide Synthase Expressed in Nerve Ganglia, Y-Organ, Gill and Gonad of the Tropical Land Crab, Gecarcinus lateralis. J Exp Biol (2004) 207:2845–57. doi: 10.1242/jeb.01117
7. Lee SG, Mykles DL. Proteomics and Signal Transduction in the Crustacean Molting Gland. Int Comp Biol (2006) 46:965–77. doi: 10.1093/icb/ic047
8. Lee SG, Kim HW, Mykles DL. Guanylyl Cyclases in the Tropical Land Crab, Gecarcinus lateralis: Cloning of Soluble (NO-Sensitive and -Insensitive) and Membrane Receptor Forms. Comp Biochem Physiol (2007) 2D:332–44. doi: 10.1016/j.cbph.2007.08.001
9. Lee SG, Bader BD, Chang ES, Mykles DL. Effects of Elevated Ecdysteroid on Tissue Expression of Three Guanylyl Cyclases in the Tropical Land Crab Gecarcinus lateralis: Possible Roles of Neuropeptide Signaling in the Molting Gland. J Exp Biol (2007) 210:3245–54. doi: 10.1242/jeb.007740
10. Pitts NE, Mykles DL. Localization and Expression of Molt-Inhibiting Hormone and Nitric Oxide Synthase in the Central Nervous System of the Green Shore Crab, Carcinus maenas, and the Blackback Land Crab, Gecarcinus lateralis. Comp Biochem Physiol (2017) 203A:328–40. doi: 10.1016/j.cbpa.2016.10.012
11. Hopkins PM. The Eyes Have it: A Brief History of Crustacean Neuroendocrinology. Gen Comp Endocrinol (2012) 175:357–66. doi: 10.1016/j.ygecn.2011.12.002

FUNDING

This research was supported by grants from the National Science Foundation (IOS-1257732 and IOS-1922701).

ACKNOWLEDGMENTS

The author acknowledges the collaborators, postdoctoral fellows, and students who contributed to the signaling mechanisms in the crustacean molting gland project. The collaborators are: Dr. Ernest S. Chang and Sharon A. Chang, UC Davis Bodega Marine Laboratory; Dr. David Durica, University of Oklahoma; Dr. Wen R. Zhou, Colorado State University; Dr. Lars Tomanek, California Polytechnic University, San Luis Obispo; and Dr. Tomer Ventura, University of the Sunshine Coast. The author thanks Dr. Ventura for comments on the manuscript and preparing Figure 2 and Vanessa Bentley and Sydney McAndrews, Colorado State University, for preparing Table 3. The author thanks Hector C. Horta and Rafael Polanco for collecting G. lateralis and the Ministry of Environment and Natural Resources of the Dominican Republic under Contract for Access to Genetic Resources for Research Purposes DJC-2019-01310 and Collection and Export Permit No. VAPS-07979.

Mykles Y-Organ Signaling
Mykles Y-Organ Signaling

29. Oliphant A, Alexander JL, Swain MT, Webster SG, Wilcockson DC.

31. Christie AE, Hull JJ, Dickinson PS. Assessment and Comparison of Putative

30. Nguyen TV, Rotllant GE, Cummins SF, Elizur A, Ventura T. Insights Into

26. Ventura T, Fitzgibbon QP, Battaglene SC, Elizur A. Rede

24. Head TB, Mykles DL, Tomanek L. Proteomic Analysis of the Crustacean

23. Das S, Mykles DL. A Comparison of Resources for the Annotation of a

36. Christie AE, Hull JJ. What Can Transcriptomics Reveal About the

33. Veenstra JA. Similarities Between Decapod and Insect Neuropeptidomes.

27. Hsu CC, Xu F, Yang VA, Lin Q, Ye HH. Identification of Peptides and Their GPCRs in the Peppermint Shrimp Lysmata wittardiana, a Prottand Simultaneous Hermaphroditic Species. Front Endocrinol (2020) 11:226. doi: 10.3389/fendo.2020.00226

30. Nguyen TV, Bollant GE, Cummins SF, Elizur A, Ventura T. Insights Into Sexual Maturation and Reproduction in the Norwegian Lobster (Nephrops norvegicus) Via In Silico Prediction and Characterization of Neuropeptides and G Protein-Coupled Receptors. Front Endocrinol (2018) 9:430. doi: 10.3389/fendo.2018.00430

Christie AE, Yuan A. Identification of Peptide Hormones and Their Cognate Receptors in Jassus edwardsii - A Potential Resource for the Development of New Aquaculture Management Strategies for Rock/Spiny Lobsters. Aquaculture (2019) 503:63–66. doi: 10.1016/j.aquaculture.2018.11.059

Oliphant A, Alexander JL, Swain MT, Webster SG, Wilcockson DC. Transcriptomic Analysis of Crustacean Neuropeptide Signaling During the Moulting Cycle in the Green Shore Crab, Carcinus maenas. BMC Genomics (2018) 19:711. doi: 10.1186/s12864-018-5057-3

Nguyen TV, Yoshida S, Nishiyama K, Yumoto F, Tanokura M, Elizur A, Ventura T. Transcriptome Changes Across Vitellogenesis in the Black Tiger Prawn (Penaeus monodon), Neuropeptides and G Protein-Coupled Receptors Repertoire Curation. Gen Comp Endocrinol (2020) 298:113585. doi: 10.1016/j.ygcen.2020.113585

Katayama H, Ohira T, Nakagawa H. Crustacean Peptide Hormones: Structure, Gene Expression and Function. Aqua-BioSci Monogr (2013) 6:49–90. doi: 10.5047/absm.2013.00602.0049

Toullec JY, Corre E, Mandon P, Gonzalez-Aravena M, Ollivaux C, Lee CY. Characterization of the Neuropeptide from a Southern Ocean Decapod, the Antarctic Shrimp Chorisomus antarcticus: Focusing on a New Decapod ITP-Like Peptide Belonging to the CHH Peptide Family. Gen Comp Endocrinol (2017) 232:68–76. doi: 10.1016/j.ygcen.2017.07.015

Katayama H, Structure-Activity Relationship of Crustacean Peptide Hormones. Biochim Biophys Acta Biochim (2016) 80:633–41. doi: 10.1080/09168451.2015.1169132

Chen HY, Toullec JY, Lee CY. The Crustacean Hypertonic Hormone Superfamily: Progress Made in the Past Decade. Front Endocrinol (2020) 11:578958. doi: 10.3389/fendo.2020.578958

Katayama H, Nagaoka H, Ohira T, Umoto F, Tanokura M, Nakagawa H. The Solution Structure of Molt-Inhibiting Hormone From the Kuruma Prawn Marsupenaeus japonicus. J Biol Chem (2003) 278:9620–3. doi: 10.1074/jbc.M212962200

Katayama H, Wright NA, Nakagawa H. Structure-Activity Relationship of Crustacean Molt-Inhibiting Hormone From the Kuruma Prawn Marsupenaeus japonicus. Biochemistry (2004) 43:9629–35. doi: 10.1021/bi049433v

Webster SG. High-Affinity Binding of Putative Molt-Inhibiting Hormone (MIH) and Crustacean Hyperglycemic Hormone (CHH) to Membrane-Bound Receptors on the Y-Organ of the Shore Crab Carcinus maenas. Proc R Soc Lond B (1993) 251:53–9. doi: 10.1098/rspb.1993.0008

Chung JS, Webster SG. Molt Cycle-Related Changes in Biological Activity of Molt-Inhibiting Hormone (MIH) and Crustacean Hyperglycemic Hormone (CHH) in the Crab, Carcinus maenas. From Target to Transcripts. Eur J Biochem (2003) 270:3280–8. doi: 10.1046/j.1432-1033.2003.03720.x

Webster SG. Endocrinology of Molting. In: ES Chang and M Thiel, editors. The Natural History of the Crustacea: Physiology. Oxford: Oxford Press (2015), p. 1–35.
56. Covi JA, Chang ES, Mykles DL. Conserved Role of Cyclic Nucleotides in the Regulation of Ecdysteroidogenesis by the Crustacean Melting Gland. Comp Biochem Physiol (2008) 152A:1470–7. doi: 10.1016/j.cbpc.2008.12.005

57. Nagai C, Mahashi-Azumuma H, Nagasawa H, Nagata S. Identification and Characterization of Receptors for Ion Transport Peptide (ITP) and ITP-like (ITPL) in the Silkworm Bombyx mori. J Biol Chem (2014) 289:32166–77. doi: 10.1074/jbc.M114.590466

58. Veenstra JA. The Power of Next-Generation Sequencing as Illustrated by the Neuropeptideome of the Crayfish Procambarus clarkii. Gen Comp Endocrinol (2015) 224:84–95. doi: 10.1016/j.ygcen.2015.06.013

59. Nasse DR, Zandawala M. Recent Advances in Neuropeptide Signaling in Drosophila. From Genes to Physiology and Behavior. Prog Neurobiol (2019) 179:101607. doi: 10.1016/j.pneurobio.2019.02.003

60. Christie AE. Crustacean Neuroendocrine Systems and Their Signaling Agents. Cell Tiss Res (2011) 345:41–67. doi: 10.1007/s00441-011-1183-9

61. Imura E, Shimada-Niwa Y, Nishimura T, Huckesfeld S, Schlegel P, Ohhara Mirth CK, Shingleton AW. Integrating Body and Organ Size in Drosophila. Trends Cell Biol (2013) 23:336–44. doi: 10.1016/j.tcb.2013.03.005

62. Hackney JF, Cherbas P. Injury Response Checkpoint and Developmental Timing in Insects. Fly (2014) 8:226–31. doi: 10.1080/19336934.2013.1054931

63. Rosero MA, Abdon B, Silva NJ, Larios BC, Zavala JA, Makunts T, et al. Divergent Mechanisms for Regulating Growth and Development After Imaginal Disc Damage in the Tobacco Hornworm, Manduca sexta. J Exp Biol (2019) 222:200352. doi: 10.1242/jeb.200352

64. Andersen DS, Colombani J, Leopold P. Coordination of Organ Growth: Principles and Outstanding Questions From the World of Insects. Trends Cell Biol (2013) 23:336–44. doi: 10.1016/j.tcb.2013.03.005

65. Chandler JC, Gandhi NS, Mancera RL, Smith G, Elizur A, Ventura T. Understanding Insulin Endocrinology in Decapod Crustacea: Molecular Modelling Characterization of an Insulin-Binding Protein and Insulin-Like Peptides in the Eastern Spiny Lobster, Sagmaria sagmaria. Int J Molec Sci (2017) 18:1832. doi: 10.3390/ijms18091832

66. Mattson MP, Wang WNL, McDougall HE. Signaling Pathways for Ecdysteroid Hormone Synthesis in Crustacean Y-Organ. Am Zool (1999) 39:496–512. doi: 10.1093/icb/39.3.496

67. Mattson MP, Spaziani E. Demonstration of Protein Kinase C Activity in Crustacean Y-Organs. Developmental Timing and Partial Definition of Its Role in Regulation of Ecdysteroidogenesis. Mol Cell Endocrinol (1987) 49:159–71. doi: 10.1016/0303-7207(87)90209-7

68. Spaziani E, Jegla TC, Wang WL, Booth JA, Connolly SM, Conrad CC, et al. Further Studies on Signaling Pathways for Ecdysteroidogenesis in Crustacean Y-Organ. Am Zool (2001) 41:418–29. doi: 10.1093/icb/41.3.418

69. Mattson MP. New Insights Into Neuroendocrine Regulation of the Crustacean Molt Cycle. Zool Sci (1986) 3:733–44.

70. Manfrin C, Pallavicini A, Battistella S, Lorenzon S, Giuliani PG. Crustacean Immune Modulation of Stress Responses. In: Ballarin L, Cammarata M, editors. Lessons in Immunity: From Single-Cell Organisms to Mammals. (2016). Elsevier. Amsterdam. doi: 10.1016/B978-0-12-803522-7.00008-4

71. Jung H, Lyons RE, Hurwood DA, Mather PB. Genes and Growth Performance in Crustacean Species: A Review of Relevant Genomic Studies in Crustaceans and Other Taxa. Rev Aquacul (2013) 5:775–110. doi: 10.1111/raq.12005

72. Huber R, Orzeszyna M, Pokorny N, Kravitz EA. Biogenic Amines and Aggression: Experimental Approaches in Crustaceans. Brain Behav Evol (1997) 49:133–55.

73. Nakem J, Jornthong N, Saetan J, Duangprom S, Sobhon P, Sretarugsa P. Presence of Serotonin and Its Receptor in the Central Nervous System and Ovary and Molecular Cloning of the Novel Crab Serotonin Receptor of the Blue Swimming Crab, Portunus pelagicus. Acta Histochem (2020) 122:151457. doi: 10.1016/j.acthis.2019.151457

74. Wang B, Yang JR, Gao CC, Hao T, Li JF, Sun JS. Reconstruction of Eriocheir sinensis Y-Organ Genome-Scale Metabolic Network and Differential Analysis After Eyestalk Ablation. Front Genet (2020) 11:532492. doi: 10.3389/fgene.2020.532492

75. Jayasankar V, Tomy S, Wilder MN. Insights on Molecular Mechanisms of Ovarian Development in Decapod Crustacea: Focus on Vitellogenesis-Stimulating Factors and Pathways. Front Endocrinol (2020) 11:577925. doi: 10.3389/fendo.2020.577925

76. Fingerman M. Crustacean Endocrinology: A Retrospective, Prospective, and Introspective Analysis. Physiol Zool (1997) 70:257–69. doi: 10.1086/639593

77. Harlioglu MM, Farhadi A, Harlioglu AG. Roles of Neurotransmitters in Decapod Reproduction. Thalassia (2020) 36:633–9. doi: 10.4120/tci2018-020-00262-2

78. Girish BP, Sreepanda C, Reddy PS. Serotonin Induces Ecdysteroidogenesis and Methyl Farnesoate Synthesis in the Mud Crab, Scylla serrata. Biochem Biophys Res Commun (2017) 490:1340–5. doi: 10.1016/j.bbrc.2017.07.025

79. Pan X, Connacher RP, O'Connor MB. Control of the Insect Metamorphic Transition by Ecdysoid Production and Secretion. Curr Opin Insect Sci (2021) 43:11–20. doi: 10.1016/j.cois.2020.09.004

80. Mykles Y-Organ Signaling
Chuang N-N, Wang P-C. Characterization of Insulin Receptor From the Prothoracic Gland is Essential for Drosophila Metamorphosis. *Proc Natl Acad Sci USA* (2015) 112:1452-7. doi: 10.1073/pnas.1419466112

De Meyts P. The Insulin Receptor and Its Signal Transduction Network. In: Feingold KR, Anawalt B, Boyce A, et al. editors. *Endotext [Internet]*. South Dartmouth, MA USA: MDText.com, Inc. (2016). p. 1–35.

Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and Growth Adaptation to Environmental Conditions in *Drosophila*. *Cell Mol Life Sci* (2020) 77:4523–51. doi: 10.1007/s00018-020-05347-2

Malita A, Rewitz K. Interorgan Communication in the Control of Metamorphosis. *Curr Opin Insect Sci* (2021) 43:54–62. doi: 10.1016/j.cois.2020.10.005

Cobham AE, Mirth CK. The Development of Body and Organ Shape. *BMC Zool* (2020) 5:14. doi: 10.1186/s40830-020-00063-5

Marchal E, Vandersmissen HP, Badisco L, Van de Velde S, Verlinden H, Iga A. A Key Controlling Element in Decapod Ecdysone Production by the Autophosphorylated Insulin Receptor From Three Decapod Species: *In Vitro Testicular Phosphorylation and Activation of a Newly Identified Tyrosine Kinase Receptor From the Eastern Spiny Lobster, Sagmariasus verreauxi*. *Gen Comp Endocrinol* (2016) 229:8–18. doi: 10.1016/j.ygcen.2016.02.013

Huang XS, Feng BY, Huang HY, Ye HH. *In Vitro Stimulation of Vitellogenin Expression by Insulin in the Mud Crab, Scylla paramamosain, Mediated Through a Putative Insulin-Like Receptor C Kinase*. *Gen Comp Endocrinol* (2017) 250:175–80. doi: 10.1016/j.ygcen.2017.06.013

Gu SH, Chen CH, Hsieh YC, Lin PL, Young SC. Modulatory Effects of Bombyx on Ecdysosteroneogenesis in *Bombax mori* Prothoracic Glands. *J Insect Physiol* (2015) 72:61–9. doi: 10.1016/j.jinsphys.2014.11.007

Gu SH, Young SC, Lin JL. Involvement of PISK/ATK Signaling in PTH-stimulated Ecdysteroidogenesis by Prothoracic Glands of the Silkworm, *Bombax mori*. *Insect Biochem Mol Biol* (2011) 41:197–202. doi: 10.1016/j.ibmb.2010.12.004

Gu SH, Teh WL, Young SC, Lin PL, Li S. OR Signaling Is Involved in PTH-stimulated Ecdysteroidogenesis by Prothoracic Glands in the Silkworm, *Bombax mori*. *Insect Biochem Mol Biol* (2012) 42:296–303. doi: 10.1016/j.ibmb.2011.12.010

Gu SH, Hsieh YC, Lin PL. Signaling Involved in PTH-stimulated 4e-BP Phosphorylation in Prothoracic Gland Cells of *Bombax mori*. *J Insect Physiol* (2017) 96:1–8. doi: 10.1016/j.jinsphys.2016.10.007

Torres AS, Holz MK. Unverifcatin the Multiaactected Role of the Nuclear Function of mTOR. *Biochim Biophys Acta Molec Cell Res* (2021) 1868:118907. doi: 10.1016/j.bbamcr.2021.118907

Liu GY, Sabatini DM. mTOR at the Nexus of Nutrition, Growth, Ageing and Disease. *Nat Rev Molec Cell Biol* (2019) 20:541–63. doi: 10.1038/s41580-019-0019-y

Wee P, Wang ZX. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. *Cancers* (2017) 9:52. doi: 10.3390/cancers9050052

Skelly J, Pushparajan C, Duncan EJ, Dearden PK. Evolution of the TORO Activating Cassette, a Pathway Required for Terminal Patterning and Moultling. *Insect Mol Biol* (2019) 28:392–408. doi: 10.1111/12560

Cruz J, Martin D, Franch-Marro X. EGRF Signaling Is A Major Regulator of Ecdysone Biosynthesis in the Drosophila Prothoracic Gland. *Curr Biol* (2020) 30:1547–154. doi: 10.1016/cub.2020.01.092

Busso MA, Wajsenzon IJR, de Carvalho SL, da Silva RT, Eicker-Lamas M, Cavalcante LA, et al. Vascular Endothelial Growth Factor-like and Its Receptor in a Crustacean Optic Ganglia: A Role in Neuronal Function. *Neuroendocrinology* (2014) 97:50–7. doi: 10.1159/000358062

Skelly J, Pushparajan C, Duncan EJ, Dearden PK. Evolution of the TORO Activating Cassette, a Pathway Required for Terminal Patterning and Moultling. *Insect Mol Biol* (2019) 28:392–408. doi: 10.1111/12560

Cruz J, Martin D, Franch-Marro X. EGRF Signaling Is A Major Regulator of Ecdysone Biosynthesis in the Drosophila Prothoracic Gland. *Curr Biol* (2020) 30:1547–154. doi: 10.1016/cub.2020.01.092

Busso MA, Wajsenzon IJR, de Carvalho SL, da Silva RT, Eicker-Lamas M, Cavalcante LA, et al. Vascular Endothelial Growth Factor-like and Its Receptor in a Crustacean Optic Ganglia: A Role in Neuronal Function? *Biochem Biophys Res Commun* (2014) 447:299–303. doi: 10.1016/j.bbrc.2014.03.137

Jaramillo ML, Guzman F, Paese CLB, Margis R, Nazari EM, Ammar D, et al. Exploring Developmental Gene Toolkit and Associated Pathways in a Potential New Model Crustacean Using Transcriptomic Analysis. *Dev Genes Evol* (2016) 226:325–37. doi: 10.1007/s00427-016-0551-6

Wang YH, Xu T, Bi KR, Ou JT, Gu W, Wang W, et al. Integrated Analysis of mRNA-seq in the Haemocytes of *Eriocheir sinensis* in Response to *Spratellopsis ericthei* Infection. *Fis Shelffish Immuno* (2017) 68:289–98. doi: 10.1016/j.fsi.2017.07.036

Wee JK, Zhang XI, Yu Y, Huang H, Li FH, Xiang JH. Comparative Transcriptomic Characterization of the Early Development in Pacific

Frontiers in Endocrinology | www.frontiersin.org June 2021 | Volume 12 | Article 67471119

Mykles Y-Organ Signaling
181. Hartnell RG. Growth in Crustacea - Twenty Years on. Hydrobiologia (2001) 449:111–22. doi: 10.1007/978-94-017-0645-2_11
182. Green BS, Gardner C, Hochmuth JD, Linnane A. Environmental Effects on Fished Lobsters and Crabs. Rev Fish Biol Fish (2014) 24:613–38. doi: 10.1007/s11160-014-9350-1
183. Azra MN, Aqailah-Amr MA, Ibwanuuddin M, Ma HY, Wahro K, Ostenrsky A, et al. Effects of Climate-Induced Water Temperature Changes on the Life History of Brachyuran Crabs. Rev Aquat Sci (2019), raq12380. doi: 10.1111/raq.12380
184. Aiken DE, Waddy SL. The Growth Process in Crayfish. Rev Aquat Sci (1992) 6:335–81.
185. Chang ES. Stress-Related Lobsters: Crustacean Hyperglycemic Hormone and Stress Proteins. Integr Comp Biol (2005) 45:43–50. doi: 10.1093/icb/45.1.43
186. Chang JS, Webster SG. Dynamics of In Vivo Release of Molt-Inhibiting Hormone and Crustacean Hyperglycemic Hormone in the Shore Crab, Carcinus maenus. Endocrinology (2005) 146:5655–51. doi: 10.1210/en.2005-0859
187. Wittmann AC, Benrabaa SA, Lopez-Ceron DA, Chang ES, Mykles DL. Effects of Temperature on Survival, Moultling, and Expression of Neuropeptide and mTOR Signalling Genes in Juvenile Dungeness Crab (Metacarcinus maagster). J Exp Biol (2018) 221:eb187492. doi: 10.1242/jeb.187492
188. Terwilliger NB, Dumler K. Ontogeny of Decapod Crustacean Hemocyanin: Effects of Temperature and Nutrition. J Exp Biol (2001) 204:1013–20. doi: 10.1242/jeb.204.5.1013
189. Webster SG. Endocrinology of Metabolism and Water Balance: Crustacean Hyperglycemic Hormone and Regulation. Phil Trans R Soc B Biol Sci (2010) 365:2545–55. doi: 10.1098/rstb.2010.06.002
190. Zhang TL, Song W, Li Z, Qian WL, Wei L, Yang Y, et al. Kruppel Homolog 1 (Kr-h1) in Methyl Farnesoate-Mediated Vitellogenesis in the Whiteleg Shrimp Litopenaeus vannamei Through Integrated Transcriptomic Analysis of Reproduction-Related Organs. Aquaculture (2021) 533:736160. doi: 10.1016/j.aquaculture.2020.736160
191. Bentley VL, Mykles DL. Investigating the Function of Kruppel Homolog 1 (Kr-h1) on Molt Regulation in Gecarcinus lateralis. Integr Comp Biol (2020) 60:E282.
192. Alexandratos A, Moulos P, Nellas I, Mavridis K, Dados SG. Reassessing Ecdysteroidogenic Cells From the Cell Membrane Receptors’ Perspective. Sci Rep (2016) 6:20229. doi: 10.1038/srep20229
193. Liu L, Fu YY, Zhu F, Mu CK, Li RH, Song WW, et al. Transcriptomic Analysis of Portunus trituberculatus Reveals a Critical Role for WNT4 and WNT Signalling in Limb Regeneration. Gene (2018) 658:113–22. doi: 10.1016/j.gene.2018.03.015
194. Wang QK, Dai XL, Zhang C, Cao XY, Zhang RD, Zhang Z, et al. Two Wnt Genes Regulate the Expression Levels of Antimicrobial Peptides During Vibrio Infection in Macrobrachium nipponense. Fish Shellfish Immun (2020) 101:225–33. doi: 10.1016/j.fsi.2020.06.036
195. Ou QX, Zeng J, Yamanaka N, Yaboksa T, Chen G, O’Connor MB, King-Jones K. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. Cell Rep (2016) 16:16–1. doi: 10.1016/j.celrep.2016.05.053
196. Moulos P, Alexandratos A, Nellas I, Dados SC. Stabilising a Steroidogenic Model: An Analysis of RNA-seq Datasets From Insect Prothoracic Glands. BMC Genomics (2018) 19:537. doi: 10.1186/s12864-018-4896-2
197. Christensen D, Yang YT, Somers J, Robin C, Sztal T, Batterham P, et al. Transcriptome Analysis of Drosophila melanogaster Third Instar Larval Ring Glands Points to Novel Functions andUncovers a Cytochrome P450 Required for Development. Genes Genomes Genet (2017) 7:467–79. doi: 10.1534/g3.117.037333
198. Nakaoa T, Iga M, Yamada T, Kousuma I, Takeshima M, Zhou XY, et al. Deep Sequencing of the Prothoracic Gland Transcriptome Reveals New Players in Insect Ecdysterodogenesis. Plos One (2017) 12:e0172951. doi: 10.1371/journal.pone.0172951
199. Li JY, Chen X, Fan W, Moghaddam SHH, Chen M, Zhou ZH, et al. Proteomic and Bioinformatic Analysis on Endocrine Organs of Domesticated Silkworm, Bombyx mori L. for a Comprehensive Understanding of Their Roles and Relations. J Proteome Res (2009) 8:6260–32. doi: 10.1021/pr8006123
200. Boerjan B, Vandingenen K, De Loof A, Schoofs L. Searching for non- Steroidogenic Functions of the Prothoracic Glands of the Desert Locust, Schistocerca Gregoria: A Peptidomic and Proteomic Approach. Peptides (2013) 34:57–64. doi: 10.1016/j.peptides.2013.01.022
201. RewitzKF, Larsen MR, Lobner-Olesen A, Rybczynski R, O’Connor MB, Gilbert LL. A Phosphoproteomics Approach to Elucidate Neuropeptide Signal Transduction Controlling Insect Metamorphosis. Insect Biochem Molec Biol (2009) 39:475–83. doi: 10.1016/j.ijbiomolbio.2009.04.005
202. Birget G, Edgecombe GD. The Phylogeny and Evolutionary History of Arthropods. Curr Biol (2019) 29:R592–602. doi: 10.1016/j.cub.2019.04.057
203. de Oliveira APL, Calcino A, Wanninger A. Ancient Origins of Arthropod Moultling Pathway Components. eLife (2019) 8:e46113. doi: 10.7554/eLife.46113
204. Hamer MS. The Proteomic Response of the Carcinus maenus Y-Organ Over the Course of the Molt Cycle. M.S. Thesis in Biology, San Luis Obispo, CA, USA California Polytechnic University (2015). p. 113. doi: 10.15368/theses.2015.6

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.