The ability of a plant to grow and survive in different ecological conditions depends on its phenotypic plasticity (Schlichting, 1986). Among environmental gradients, the effects of elevation have been largely studied in the last decades, being considered a powerful tool to investigate the relationships between climate and vegetation (Körner, 2007). Plant acclimation to altitude has been investigated in relation to both morphological (e.g., Jonas and Geber, 1999; Weppler and Stocklin, 2004; Vitasse et al., 2010; Milla and Reich, 2011; Frei et al., 2014) and physiological traits (e.g., Smith et al., 2003; Losso et al., 2016; Pšidová et al., 2018). However, comprehensive studies on the effects of elevation on plant traits and their potential interactions are still scarce. Furthermore, many experiments focused on the response of trees and herbs, while studies on shrubs are underrepresented. For these reasons, we investigated the effect of elevation on nonstructural carbohydrates (NSCs) in underground stems of *Vaccinium myrtillus* L. (Ericaceae).

With increasing elevation, the atmospheric pressure, CO₂ content, temperature, length of vegetation period, and nutrient availability decrease, whereas annual precipitation, frequency of frost, and solar radiation tend to increase (Körner, 2003; von Arx et al., 2006; Lütz, 2012). These conditions reduce performance and growth by generating stress in plants (Pyrke and Kirkpatrick, 1994; Körner,
2003). Exposure to low temperatures limits plant growth and reduces many physiological activities (Körner, 2003; Schulze et al., 2005; von Arx et al., 2006) producing changes on morphological (Fernández-Calvo and Obeso, 2004; Pellissier et al., 2010) and physiological traits (Ziska et al., 1992). This might reflect on changes in ecosystem properties such biodiversity (Lomolino, 2001) and productivity (Whittaker and Niering, 1975; Raich et al., 1997).

Among plant traits, carbohydrate transport and storage have been early associated with elevation-related stress (Mooney and Billings, 1965; Wallace and Harrison, 1978). Recently NSCs have been proposed as regulators of source-to-sink partitioning (Durand et al., 2018), affecting rooting of shoots and growth of roots (Schwikl and Ackerly, 2005; Palacio et al., 2007). Carbohydrate reserves enable plants to uncouple growth from C assimilation throughout the year, allowing survival under seasonal stressful conditions. Instead, soluble sugars serve as important regulators of both physiological adjustment of plants to drought and freezing stress (Larcher and Thomaser-Thin, 1988; Meletiou-Christiou et al., 1992; Lloret et al., 2018; Yamada and Osakabe, 2018) and pathogen or herbivore attack (Tauzin and Giardina, 2014; Piper et al., 2019). Nonstructural carbohydrates are involved in frost resistance (Palacio et al., 2015; Sperling et al., 2015) by protecting plants from intracellular desiccation (Sung et al., 2003). It has been shown that NSCs are accumulated in plant tissues at the end of the growing season and kept at high levels until spring dehardening (Hagidimitriou and Roper, 1994; Larcher, 2005).

In trees, overall NSC concentrations increase with elevation, showing that temperature mainly acts on plant growth without affecting carbohydrate storage, thus supporting the growth limitation hypothesis (GLH) (Körner, 1998; Hoch et al., 2002; Fajardo et al., 2012; Hoch and Körner, 2012; Fajardo and Piper, 2014). However, plants living under similar environmental conditions may show different dynamics of carbohydrate storage and use in relation to differences in vegetative or ecological strategies (Larcher and Thomaser-Thin, 1988; Mooney et al., 1992; Barbaroux and Brédà, 2002; Newell et al., 2002; Wang et al., 2018). The GLH has mainly been proposed for trees, whereas its validity for shrubs and perennial forbs is uncertain (Körner, 1998). Recently, in branch wood of the shrub Myricaria elegans a nonlinear relationship between NSCs and elevation was observed (Dolezal et al., 2019), but in smaller plants like dwarf shrubs no clear pattern of NSC in relation to elevation has been so far observed. Nevertheless, some studies have examined the effect of latitude, snow cover, and frost on resistance to drought stress, showing that NSCs are used by plants in response to environmental stress, especially in relation with snow cover (e.g., Palacio et al., 2015; Wheeler et al., 2016). For dwarf shrubs, most investigations focused on annual growth, ring widths, and shrub age, showing a solid relationship with climate variation (Rixen et al., 2004; Wipf et al., 2006; Bär et al., 2008; Myers-Smith et al., 2015; Anadon-Rosell et al., 2016).

Since alpine and arctic shrubs are highly sensitive to temperature and its variation (Sturm et al., 2001; Dial et al., 2007; Blok et al., 2011; Myers-Smith et al., 2015), and the recent expansion of their communities seems to be a prominent evidence of climate change (Archer et al., 1995; Sturm et al., 2001). Therefore, the anticipated climatic warming has been hypothesized to deeply interfere with alpine heaths, by extending plant life (Shi et al., 2014), modifying plant abundance, altering nutrient content (Kaarlejärvi et al., 2012), and leading to a widespread reduction of biodiversity (Ratajczak et al., 2012; Boscotti et al., 2018). Plant–plant interactions represent one of the major selective forces driving population and community dynamics (Callaway and Walker, 1997). This effect is particularly true in shrub and tree communities under extreme conditions, such as the treeline (Grau et al., 2012). Plant–plant interactions may also interfere with carbon dynamics by affecting competition for resources (e.g., nutrients availability) and, hence, regulating plant growth (Kobe et al., 2010).

Among the arctic–alpine dwarf shrubs, V. myrtillus is a key species in boreal dwarf-shrub communities and represents a good model to study climate- and environment-driven effects at the community (Tømmervik et al., 2004; Boscotti et al., 2018) and species levels (Woodward, 1986; Martz et al., 2010). Some important contributions on the effects of elevation on V. myrtillus physiology have been reported (e.g., Woodward, 1986; Martz et al., 2010), whereas NSC content was studied mainly in relation to variation of geographical and seasonal allocation (Stewart and Bannister, 1973; Pakonen et al., 1991). Other studies focused on plant growth (Fernández-Calvo and Obeso, 2004) and species interactions (e.g., Anadon-Rosell et al., 2016).

In this work, we tested the hypothesis that phenotypic trait plasticity and plant–plant interactions are pivotal variables determining the response of alpine V. myrtillus stands to climate variation, here expressed by changes in elevation. In particular, we investigated the relationships between NSCs in underground reserves, elevation, growth traits (i.e., stem age and tissue area), and shrub density (i.e., shrub cover). Among carbohydrates classically detected in woody plants (Quentin et al., 2015), we analyzed the content of (1) starch, which represents the main carbohydrate reserve; (2) sucrose, used for carbon reallocation; and (3) fructose and glucose, representing the sugar pool for energetic requirements. We expected to find climate as the main driver for NSC content; therefore, we hypothesized that at higher, compared with lower elevation (i.e., low temperature), V. myrtillus plants may have more soluble sugars (i.e., glucose, fructose, and sucrose) and similar starch content (i.e., main NSC storage), in response to environmental stress increase and/or a limitation of the overall carbon assimilation occurs. We also hypothesized that NSCs may be related to plant traits and density. In particular, we expected all NSCs to increase in stands with higher shrub cover, due to an increase in plant–plant interaction (i.e., more competition for nutrients) and a relative lower investment of carbon in plant growth, and in old individuals, especially when the percentage of storage tissues is higher due to a probable slower growth rate.

MATERIALS AND METHODS

Sites and plant communities

The study was carried out in the Flenos Valley, Carnic Alps (Friuli Venezia Giulia, Italy, 12°44′21″E, 46°38′01″N). The bedrock mainly comprises Paleozoic metamorphic siliceous sand and mudstone (Venturini, 2006). The area has a mean annual precipitation of 1170 mm, a mean annual air temperature of 3.0°C, and at 1980 m a.s.l., 197 ± 11 days have snow cover >10 cm (data provided by OSMER ARPA [Meteorological Observatory of the Regional Agency for Environmental Protection], accessed October 2019). The growing season for V. myrtillus stands lasts from April (lower altitude) or May (higher altitude) to September. At the study site, the most frequent species in the Acidophillus dwarf-shrub community is V. myrtillus, an evergreen dwarf shrub species in the Ericaceae family, commonly found in alpine–arctic regions. This species is a good model to study climate- and environment-driven effects at the community level.
sections for each plot was further considered to assess xylem, phloem, and medullary ray tissue percentages. For each section, a sector of 90° was analyzed using ImageJ to measure the overall area and the area of each tissue. The percentage of each tissue for a given sector was calculated as the ratio between the area occupied by the tissue and the overall area of the sector. In each plot, the percentage of dwarf shrubs cover was estimated for specific species as well as the total cover.

Nonstructural carbohydrates

Glucose, fructose, sucrose, and starch were considered as the most representative NSCs in woody plants (Quentin et al., 2015). Their contents were analyzed on three ramets randomly selected from the same underground samples used for growth trait analyses. Just after collection, samples 5 cm long were microwaved at 700 W for 3 min to denature oxidizing enzymes. Samples were oven-dried at 56°C for 24 h and ground to fine powder (particle size <0.15 mm), and 15 ± 1 mg of material was transferred into a 1.5 mL Eppendorf tube and handled as proposed by Quentin et al. (2015), modified for small samples. NSCs were evaluated as NADPH formation (Bergmeyer and Bernt, 1974) with a spectrophotometer (LS50B Luminescence Spectrometer, Perkin-Elmer, Waltham, MA, USA), using 330 nm excitation and 460 nm emission wavelengths. The mean values were calculated within each plot for each NSC. Bulk NSC was calculated as the sum of the analyzed carbohydrates (i.e., starch, sucrose, glucose, and fructose).

Data analysis

The effects of elevation, plant traits, and shrub cover on NSCs were tested using linear models (LMs). Due to the high correlation between glucose and fructose \(r = 0.91, p < 0.01 \), only the results of glucose are shown, similarly for starch and bulk NSC \(r = 0.98, p < 0.01 \) (Appendix S1). Ring width was also discarded due to its correlation to xylem percentage \(r = 0.8, p < 0.01 \). Each model encompassed NSCs (i.e., glucose, sucrose and starch) as dependent variables and elevation, plant growth traits (i.e., age, xylem, phloem and medullary rays), and dominant shrub cover (i.e., V. myrtillus, R. ferrugineum) as predictors. In all models, a quadratic term was also preliminarily included for each predictor to account for possible nonlinear relationships. For all models, we also preliminarily included environmental covariates, such as aspect (sine transformation, southness index) and slope. No significant effect emerged; thus, covariates were dropped from the final models. In addition, we assessed the correlation between dwarf shrub cover and the two most abundant shrub species (i.e., V. myrtillus: \(r = 0.5, p < 0.05 \), LM, \(p < 0.05 \); and R. ferrugineum: \(r = 0.4, p < 0.05 \), LM, \(p < 0.05 \)). No relationship between elevation and shrubs cover was found (Boscotti et al., 2018). Model assumptions were checked by diagnostic plots of residuals. Afterward, we used multi-model inference to evaluate the influence of variables on NSCs. We used Akaike’s information criterion (AIC) to choose all the plausible models (AAIC < 2) (Burnham and Anderson, 2002). We also derived Akaike’s model weight (wi), which represents the probability that the model is the best fitting model if the data were collected again under identical circumstances, and the relative importance of the variables (RVI), using Akaike’s model weight (Burnham and Anderson, 2002). All statistical analyses were performed using the R statistical software.
The results of multi-model inference showed that for the starch content in the underground ramets of *V. myrtillus*, only two models were supported (Table 1, ΔAIC < 2), which explained 76% of the total variation. The content of starch, which was by far the most abundant NSC, showed a hump-shaped pattern along elevation, increasing until ca. 2000 m a.s.l. (Fig. 1A).

Starch content increased in ramets with higher percentages of xylem, whereas it decreased in ramets with a high percentage of phloem and in older plants (Fig. 2A, C, E). Starch content was higher in stands with high shrub density, showing similar relationships for both *V. myrtillus* and *R. ferrugineum* (Fig. 3A–C).

TABLE 1.

NSC	Intercept	Elevation	Rhododendron ferrugineum cover	Vaccinium myrtillus cover	Age	Xylem	Phloem	Medullary ray	\(R^2 \)	df	AIC	ΔAIC	Weight
Sucrose	–4.1	+	+	4.75	10.1				0.76	8	15.7	0.00	0.16
	–0.2	+	+	8.3	1.01				0.72	7	16.4	0.07	0.11
	–5.2	+	0.003	6.07	9.4				0.77	9	16.7	0.08	0.10
	–3.9	+	–0.002	4.51	9.9				0.76	9	17.5	0.07	0.06
	–4.1	+	+	4.74	9.9				0.76	9	17.7	0.19	0.06
RVI		1.00**	0.33	0.34	0.87*				0.55	0.77	0.29		
Glucose	–7.9	0.004	–0.016	–0.014					0.57	5	40.6	0.00	0.11
	–7.7	0.004	–0.015	–0.012					0.57	6	41.2	0.07	0.08
	–7.7	0.004	–0.015	–0.012					0.57	6	41.2	0.07	0.08
	–9.1	0.004	–0.011	–12.8					0.55	5	41.6	1.08	0.06
	–9.0	0.004	–0.011	–12.8					0.55	5	41.6	1.08	0.06
	–11.1	0.004	–0.015	–0.013					0.58	6	42	1.46	0.05
	–11.1	0.004	–0.015	–0.013					0.58	6	42	1.46	0.05
	–8.5	0.004	–0.016	–0.014					0.47	4	42.2	1.67	0.05
	–7.5	0.004	–0.016	–0.014					0.47	4	42.2	1.67	0.05
	–8.3	0.004	–0.016	–0.014					0.57	6	42.5	1.98	0.04
RVI		0.95**	0.63	0.51	0.32				0.57	6	42.5	1.98	0.04
Starch	–33.2	+	0.12	0.13	133.70	–148.1			0.76	10	111.2	0.00	0.52
	–80.0	+	0.12	0.12	130.30	–141.5	–19.76		0.76	11	112.9	1.69	0.22
RVI		0.93***	0.79*	0.77	0.89*	0.86*	0.91*		0.40				

FIGURE 1. (A) Starch, (B) sucrose, and (C) glucose content in underground stems of *Vaccinium myrtillus* according to the outcomes of multi-model inference analysis. Nonstructural carbohydrates are expressed as percentage of dry mass (% dw); sucrose and glucose contents were logarithmically transformed. Shaded area is the 95% confidence interval.
ramets with higher percentages in both phloem and xylem area, whereas it decreased rapidly in ramets up to 12 years old and was undetectable in older ramets (Fig. 2B, D, F).

Finally, for glucose content, nine plausible models explained from 42 to 57% of the total variation. In the underground stems, glucose concentration (as well as fructose, due to their very high correlation; Appendix S1) was mainly affected by elevation and shrub cover. Glucose content showed a positive linear relationship with elevation (Fig. 1C), while it was negatively correlated with cover of both *V. myrtillus* and *R. ferrugineum* (Fig. 3B–D).

DISCUSSION

Our findings explore plant responses to environmental stress, pointing out some possible links between plant acclimation, plant–plant interactions, and phenotypic plasticity, here represented by growth trait variability. We found that studying the pattern of plant carbon reserves might help to define the response of plants to climate variation in light of the growth limitation hypothesis (GLH). Moreover, these results provide new perspectives in the understanding of the ongoing expansion of tundra shrubs due to climate change.

The content of all soluble carbohydrates measured (i.e., sucrose, glucose, and fructose) was affected by elevation. Plant–plant interaction, here represented by shrub species cover, was also an important driver for starch and glucose, but not for sucrose content. Ramet age (i.e., number of xylem rings) and stem tissue area were differently related to all nonstructural carbohydrates (NSCs), showing a strong influence of the *V. myrtillus* population structure on plant carbohydrate content. These findings suggest that elevation, most likely by means of temperature, may directly influence all considered NSCs. However, we showed that plant traits of *V. myrtillus* and plant–plant interaction were pivotal in shaping NSC response along elevation. This concept underlines that plant acclimation capacity, evaluated as NSC reserves, cannot be fully interpreted without considering the interaction of functional traits and plant community.

Relationship between elevation and NSCs

It is widely recognized that elevation affects plant growth and physiology by generating more severe environmental conditions, namely, increased exposure to low temperatures (Körner, 2003; Schulze et al., 2005; von Arx et al., 2006), and consequent reduction of the growing period also due to prolonged snow cover (Körner, 2003; Jonas et al., 2008). Nonstructural carbohydrates have been shown to respond to environmental stress associated with altitude (Fajardo et al., 2013; Dolezal et al., 2019).

We found a general increase in NSCs along elevation in *V. myrtillus* underground stems, mainly due to an increase in starch

![Diagram](image-url)

FIGURE 2. Effect plots of plant functional traits on (A, C, E) starch, and (B, D, F) sucrose content in underground stems of *Vaccinium myrtillus* according to the outcomes of multi-model inference analysis. The effects of significant relationships between nonstructural carbohydrates (NSCs) and mean values of ramet sections, number of xylem rings, percentage of phloem tissue, and percentage of xylem tissue are reported. NSCs are expressed as percentage of dry mass (% dw); sucrose content was logarithmically transformed. Shaded area is the 95% confidence interval.
and hexoses, whereas sucrose decreased. Our findings might be interpreted as a response of *V. myrtillus* populations to the main ecological changes occurring along elevational gradients such as temperature (e.g., plant hardening and frost resistance), snow cover, and light intensity. The interactions of these factors might be responsible for the nonlinear trends observed along the studied cline, such as unexpected accumulation of starch at mid-high elevation.

In trees, the increase in NSC content across elevations has been linked to a limitation of plant growth, as proposed by the GLH (Hoch et al., 2002; Hoch and Körner, 2012). In our study, bulk NSCs were mainly represented by starch, which was strongly affected by elevation. Starch greatly increased at mid-high elevations where, in the same sample areas, a strong reduction of *V. myrtillus* also occurred (Boscutti et al., 2018). The NSC pattern observed in *V. myrtillus* shows the same trend already observed in Himalayan populations of *Myricaria elegans* (Dolezal et al., 2019), although *V. myrtillus* population evidenced a stronger effect of altitude. Moreover, similar to what has been described for the vegetative organs of bilberry collected at different latitudes (Pakonen et al., 1991), our results revealed that when sucrose decreased, products of its hydrolysis (fructose and glucose) increased. This condition might be due to a lack of ATP and glucose-6-phosphate necessary to synthesize starch, as observed by Petrussa et al. (2018) in *Arum* tubers at the end of the growing season. Alternatively, the limited respiration that bilberry stands could face at high elevation (Bansal and Germino, 2010) might induce an imbalance between sucrose hydrolysis and starch synthesis. This evidence suggests that growth is uncoupled from carbon limitation across elevation also in dwarf shrubs, showing a possible link to what has been proposed for GLH in trees. Körner (1998, p. 454) stated that GLH “provides a simple explanation for the abundance of nonstructural carbohydrates and lipids as well as the high concentrations of leaf nitrogen in treeline trees and dwarf shrubs near treeline, because of a lack of “dilution by growth”. We hence propose that, similar to the treeline, the shrubline might also be “not caused by carbon shortage, but is created by sink inhibition as a result of low temperature” Körner (1998, p. 454).

Verticillium myrtillus may undergo tissue dehydration in the case of frost events (Tolvanen, 1997), and it was also shown that an anticipated dehardening can be the cause of winter dieback (Ogren, 1996). It is well documented that exposure of woody plants to frost, after an early start of the growing season, may induce a freeze–thaw xylem embolism (Charrier et al., 2014; Christensen-Dalsgaard and Tyree, 2014). In this case, the availability of osmotically active sugars can help recover from hydraulic failure by vessel refilling (Nardini et al., 2011), which has been suggested to be mainly driven by accumulation and transport of soluble sugars into the empty vessels (Secchi and Zwieniecki, 2012; Trifilò et al., 2017). This mechanism could also apply to *V. myrtillus*; Ganthaler and Mayr (2015) indicated that the species is highly prone to xylem embolism and refilling repair in response to drought. Our data are consistent with this evidence and would explain the rapid carbon allocation from leaves to rhizomes reported by Anadon-Rosell et al. (2016). Other studies have suggested that the duration of snow cover also influences plant traits in *V. myrtillus*. Anadon-Rosell et al. (2014, 2018) showed a positive relationship between soil warming (i.e. early snow melting) and plant growth and biomass, where Rixen et al. (2010) did not find any correlation with age.

Since elevation corresponds to a longer snow cover duration, we can assume that the snow cover interacts with temperature by determining xylem abundance, without modifying the age of the ramet (ring number). Concerning the influence of snow depth and duration on NSCs, a positive effect on starch concentration, and contrasting response in soluble sugars was previously found (Palacio et al., 2015; Wheeler et al., 2016; Domisch, 2017). In particular, Wheeler et al. (2016) did not find a significant interaction between elevation and snow cover. Since starch accumulation peaked around 100 m below the maximum elevation limit of growth in our study, we hypothesize the presence of an interplay between

FIGURE 3. Effect plots of plant–plant interactions (i.e., mean cover of *Rhododendron ferrugineum* and *Vaccinium myrtillus*) on (A, C) starch and (B, D) glucose content in the underground stems of *V. myrtillus* according to the outcomes of multi-model inference analysis. Nonstructural carbohydrates are expressed as percentage of dry mass (% dw); glucose content was logarithmically transformed. Confidence intervals (0.95) are also plotted.
temperature and snow cover. We also found an accumulation of sucrose (5- to 10-fold higher with respect to glucose) at low-elevation stands, where the lack of snow cover might imply a higher exposure to frost stress. Here, sucrose may represent a reserve of mobile carbohydrates ready to be transferred to plant shoots in case of frost events, a key mechanism that would help explain the success of this species in such an environment.

Effects of plant traits on NSCs

The NSC contents in the examined populations of *V. myrtillus* were differently affected by the considered plant traits, suggesting that the morphological responses of the whole population can shape the carbohydrate storage pattern along elevation. Among the traits, relative abundance of phloem and xylem was significantly correlated to sucrose content, indicating that this sugar could be used either to enhance tissue resilience to stress or to sustain the last phenological stage before the winter rest.

Glucose was not significantly correlated to phloem percentage in the stem, suggesting that sucrose might replace hexose sugars in plants that develop more phloem, and might be result from a major need to preserve active osmotic compounds in plants with low capacity for phloem transport or from interactions between vascular tissues and phloem. It has been proposed that phloem unloading could be a mechanism to contrast cavitation during the recovery of xylem conduits (Nardini et al., 2011). In general, translocation interactions may significantly affect plant drought tolerance (Sevanto, 2014), reproduction, carbon allocation, and plant relations with insects, pests, microbes, and symbionts (Plavcová et al., 2016; Savage et al., 2016). Our results confirm the pivotal role of phloem in the balance of soluble sugars.

Sucrose and starch were negatively related to the mean number of xylem rings (i.e., ramet age), with constant low values in populations older than 12–13 years. This scenario is consistent with the age limit for efficient translocation observed in *Pinus* (Zimmermann et al., 2000) and the age-related declining growth caused by insufficient carbon availability to meet carbon demands (Martínez-Vilalta et al., 2007; Zhang et al., 2009; Genet et al., 2010), although some findings were inconsistent (Piper and Fajardo, 2011). We found that young individuals may contain more sucrose in stem tissue, either to be ready to reallocate resources in case of sudden environmental stress or to allow a faster metabolic rate. The starch pattern was consistent with the decreasing amount of sucrose measured in older individuals, in agreement with a decreased translocating area (i.e., phloem percentage), a morphological trait strictly related to sucrose accumulation in parenchymatic tissues of underground ramets. These findings could also be explained considering that high phloem percentage can be found in plants with high reserve mobilization and high metabolic activity, i.e., due to stress responses, plant age (i.e., young individuals) or plant–plant interactions (Lintunen et al., 2016; Murcia et al., 2016; Savage et al., 2016).

Effects of plant–plant interactions on NSCs

We hypothesize that all NSCs that we considered might also be affected by shrub abundance, here representing a proxy of plant–plant interaction intensity and competition. Indeed, we found that shrub cover of the two dominant species of the community (i.e., *V. myrtillus* and *R. ferrugineum*) significantly affected glucose and starch content of *V. myrtillus* ramets, whereas the relationship with sucrose was not significant.

Plant–plant interaction has been shown to be a key factor for carbon storage in shrubs (García-Cervigón et al., 2013; Anadon-Rosell et al., 2016) and, in general, in woody plants (Olano et al., 2006). In dense stands, both intra- and interspecific interactions can reduce metabolic performance due to higher competition for basic resources, such as light and water. For instance, summer drought may be more severe in dense stands (Bottero et al., 2017), due to root competition (Robberecht et al., 1983; Deng et al., 2006) and, hence, the synthesis of osmotically active sugars takes place at the expense of reserves. On the other hand, in *V. myrtillus* stands, high shrub cover corresponds to aerial slender and taller individuals, mainly due to more elongated annual shoots (Boscutti et al., 2018), which compete for light. Under these circumstances, also nutrient availability may be scarce due to a higher competition. When nutrients are scarce, the overall plant growth is limited, implying a higher content of storage reserves (i.e., starch) (McDonald et al., 1986; Mooney et al., 1995; Kobe et al., 2010). In fact, we found a high starch content in the underground stems of dense stands.

This fact highlights the importance of intra- and interspecific effects on plant metabolism to evaluate the outcome of plant–plant interactions as a function of abiotic conditions (García-Cervigón et al., 2013). Our results shed new light on the stress gradient hypothesis (Bertness and Callaway, 1994). This hypothesis postulates that facilitative effects (or interactions) would be dominant in harsh environments, shifting to competitive ones as abiotic conditions ameliorate (Maestre et al., 2009; Soliveres et al., 2010). Considering the NSC patterns presented in our study, it is plausible to expect that the effects of shrub cover at high elevation might turn to facilitative response, but specific dedicated research is needed to validate such a hypothesis.

CONCLUSIONS

Our results demonstrate the importance of studying a wide range of variables to understand plant responses to changes of environmental conditions. Indeed, glucose, sucrose, and starch showed different patterns with respect to environmental variables. We thus suggest that the analysis of bulk NSCs is not sufficient to depict the complex role of these compounds in responses to abiotic stresses. Furthermore, the relationships between carbohydrates, plant traits, and altitude were not linear. This result is not surprising, considering that complex systems require a systemic approach in the study between the biota and the environment (Capra and Luisi, 2014). Our findings suggest that stress may result in plastic changes of plant traits, which may buffer the negative effects of stress. On the other hand, the studied relationships between plant traits and NSCs may be evidence for an integrated stress response syndrome.

As a synthesis of our findings, we propose a conceptual scheme interpreting the main effects of plant traits, plant–plant interactions and elevation on NSCs in the underground stems of *V. myrtillus* (Fig. 4). Starch was the most abundant NSC and showed significant interactions with all the predictors considered. Elevation was the main driver for all NSCs. In particular, both starch and hexoses tended to increase in stands at high elevation, consistently with what was proposed for trees in the GLH. Nonetheless, considering the general pattern of NSCs with plant–plant interactions and *V. myrtillus* population traits, some
interesting trends emerged. Analyzing the coupled trends of starch and hexoses (i.e., glucose and fructose), we showed how, in addition to elevation, plant–plant interactions are also important. When plant–plant interaction was higher (i.e., high cover of *V. myrtillus* and *R. ferrugineum*), starch reached its peak, and glucose content was lower. *Vaccinium myrtillus* seems to invest glucose mainly for storage of starch when the stand has a high shrub density, while glucose is accumulated when shrub density is lower. Sucrose and starch showed coupled trends when both elevation and plant traits act together. In fact, they showed a similar pattern, except when related to phloem percentage. In the stands with ramets having a high percentage of phloem, sucrose is abundant also in relation to a low starch content. Population traits are thus the key drivers, which modulate the reciprocal content of reserves (starch) and mobile carbohydrates. In light of our findings, sucrose could be particularly sensitive to population traits and easily translocated from source to sink in response to environmental stressors. The efficiency of this mechanism is perhaps due to local morphological acclimation of the individuals, expressed by plant trait variation.

When considered at the population level, these trait changes at the individual plant level suggest that altitude results in an uncoupling between plant growth and carbon reserves, similar to the prediction for trees according to GLH. On the other hand, this phenomenon could be interpreted as a form of adaptive response (phenotypic plasticity) of the shrub community to increasing altitude. In fact, we observed nonlinear relationships between sucrose (or starch) and altitude (humped-shape), shaped by plant traits and plant–plant interactions. Thus, NSC plasticity could be constrained by phenotypic integration, a phenomenon clearly demonstrated in plants (Valladores et al., 2007; Gianoli and Palacio-López, 2009), also in response to altitude (Milla and Reich, 2011). Such a hypothesis deserves to be investigated, especially considering that carbon reserves are the result of a complex interplay among phenology, growth, metabolism, source-to-sink flow and responses to the environment (Martínez-Vilalta et al., 2016).

This new input could be useful to understand the ongoing shrub expansion in alpine tundras, suggesting that shrub expansion due to enhanced plant growth would be pronounced in old, but sparse stands. Nonetheless, complex interactions between climate warming, ice melt and, hence, higher exposure of plants to frost stress might produce unexpected feedbacks on plant responses to climate changes. For these reasons, future studies on NSC content in alpine plants should focus on storage metabolism and on sugar allocation and transport mechanisms to shed new light on species responses to global changes.

FIGURE 4. Conceptual scheme interpreting the main effects of the analyzed plant traits, plant–plant interaction, and elevation on the studied between nonstructural carbohydrates (NSCs) (starch, sucrose, glucose, and fructose) in the underground stems of *Vaccinium myrtillus*. Arrows indicate increase (upward, positive relationship) or decrease (downward, negative relationship) in content of each NSC.

ACKNOWLEDGMENTS

We thank Elisa Buffon for support during lab analyses. We further thank Michele Fabro, Silvano Fior, and Andrea Marini of the Provincia di Udine and the staff of the Corpo Forestale della Regione Friuli Venezia Giulia for logistic support during field surveys. This research was funded by a grant from the Provincia di Udine, Italy. Finally, we thank the anonymous reviewers and Associate Editor for suggestions that greatly contributed to improving our manuscript.

AUTHOR CONTRIBUTIONS

V.C.: conceptualization; data curation; investigation; visualization; funding acquisition; writing original draft. E.B.: data curation; formal analysis; project administration; validation; writing original draft; review and editing. E.P.: investigation; writing original draft; review and editing. M.Z.: investigation; writing original draft; review and editing. A.V: project administration; supervision; review and editing. F.B.: conceptualization; data curation; formal analysis; investigation; methodology; visualization; writing original draft.
DATA AVAILABILITY

All data are accessible in Mendeley data repository: https://doi.org/10.17632/7md6sbmz5t1 (Casolo et al., 2020).

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

APPENDIX S1. Pearson’s r correlation matrix between the content values of all the studied nonstructural carbohydrates (NSCs) and the bulk NSCs (expressed as sum of all considered NSCs).

LITERATURE CITED

Anadon-Rosell, A., C. Rixen, P. Cherubini, S. Wipt, F. Hagedorn, and M. A. Dawes. 2014. Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline. PLOS One 9: e100577.

Anadon-Rosell, A., S. Palacio, S. Nogués, and J. M. Ninot. 2016. Vaccinium myrtillus stands show similar structure and functioning under different scenarios of coexistence at the Pyrenean treeline. Plant Ecology 217: 1115–1128.

Bär, A., R. Pape, A. Bräuning, and J. Löffler. 2008. Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences. Journal of Biogeography 35: 625–636.

Barbaroux, C., and N. Bréda. 2002. Contrasting distribution and dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology 22: 1201–1210.

Barton, K. 2017. MuMIn: Multi-model inference. R package version 1.40.0. Website: https://CRAN.R-project.org/package=MuMIn.

Bergmeyer, H., and E. Bernt. 1974. Methods of enzymatic analysis, 1205–1215.

Barton, K. 2017. MuMIn: Multi-model inference. R package version 1.40.0. Website: https://CRAN.R-project.org/package=MuMIn.

Bertness, M. D., and R. Callaway. 1994. Positive interactions in communities. Journal of Applied Ecology 31: 226–236.

Bertness, M. D., and R. Callaway. 1994. Positive interactions in communities. Journal of Applied Ecology 31: 226–236.

Bino, P., and S. M. Dent. 2008. Drought stress alters growth and morphology of Vaccinium myrtillus L. grown at different elevations. Annals of Botany 101: 441–455.

Böttger, A., A. W. D’Amato, B. J. Palik, J. B. Bradford, S. Fraver, M. A. Battaglia, and L. A. Asherin. 2017. Density-dependent vulnerability of forest ecosystems to drought. Journal of Applied Ecology 54: 1605–1614.

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer, New York, NY, USA.

Callaway, R. M., and L. R. Walker. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78: 1958–1965.

Capra, F., and P. L. Luisi. 2014. The systems view of life: a unifying vision. Cambridge University Press, Cambridge, UK.
Jonas, C. S., and M. A. Geber. 1999. Variation among populations of *Clarkia unguiculata* (Onagraceae) along altitudinal and latitudinal gradients. *American Journal of Botany* 86: 333–343.

Jonas, T., C. Rixen, M. Sturm, and V. Stoeckli. 2008. How alpine plant growth is linked to snow cover and climate variability. *Journal of Geophysical Research* 113: G03013.

Kaarlejärvi, E., R. Baxter, A. Hołgaard, H. Hytteborn, O. Khiutin, U. Molau, S. Sjögersten, et al. 2012. Effects of warming on shrub abundance and chemistry drive ecosystem-level changes in a forest–tundra ecotone. *Ecosystems* 15: 1219–1233.

Kobe, R. K., M. Iyer, and M. B. Walters. 2010. Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen. *Ecology* 91: 166–179.

Körner, C. 1998. A re-assessment of high elevation treeline positions and their explanation. *Oecologia* 115: 445–459.

Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables. Springer-Verlag, Berlin, Germany.

Körner, C. 2007. The use of ‘altitude’ in ecological research. *Trends in Ecology & Evolution* 22: 569–574.

Larcher, W. 2005. Climatic constraints drive the evolution of low temperature resistance in woody plants. *Journal of Agricultural Meteorology* 61: 189–202.

Larcher, W., and W. Thomaser-Thin. 1988. Seasonal changes in energy content and storage patterns of Mediterranean sclerophylls in a northernmost habitat. *Acta Oecologica, Oecologia Plantarum* 9: 271–283.

Lintunen, A., T. Päljäkka, T. Jyske, M. Peltoniemi, F. Sterck, G. von Arx, H. Lütz, et al. 2016. Osmolyte and non-structural carbohydrate composition in the secondary phloem of trees across a latitudinal gradient in Europe. *Frontiers in Plant Science* 7: 726.

Lloret, F., G. Sapes, T. Rosas, L. Galiano, S. Saura-Mas, A. Sala, and J. Martínez-Vilalta. 2018. Non-structural carbohydrate dynamics associated with drought-induced die-off in woody species of a shrubland community. *Annals of Botany* 121: 1383–1396.

Lomolino, Mark. V. 2001. Elevation gradients of species-density: historical and prospective views. *Global Ecology and Biogeography* 10: 3–13.

Losso, A., A. Nardini, M. Nolf, and S. Mayr. 2016. Elevational trends in hydraulic efficiency and safety of *Pinus cembra* roots. *Oecologia* 180: 1091–1102.

Lütz, C. ed. 2012. Plants in alpine regions. Springer, Vienna, Austria.

Maestre, F. T., R. M. Callaway, F. Valladares, and C. J. Lortie. 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. *Journal of Ecology* 97: 199–205.

Martínez-Vilalta, J., D. Vanderklein, and M. Mencuccini. 2007. Tree height and functional phrygana species. *American Journal of Botany* 94: 13–24.

Martínez-Vilalta, J., A. Sala, D. Asensio, L. Galiano, G. Hoch, S. Palacio, F. I. Piper, and L. Galiano. 2010. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. *Ecological Monographs* 86: 495–516.

Martz, F., L. Jaakola, R. Julkunen-Tiitto, T. Paljakka, T. Jyske, M. Peltoniemi, F. Sterck, G. von Arx, H. Lütz, et al. 2016. Plants in alpine regions. Springer, Vienna, Austria.

Meletiou-Christou, M. S., S. Rhizopoulou, and S. Diamantoglou. 1992. Seasonal changes in carbohydrates, lipids and fatty acids of two Mediterranean dimorphic phrygana species. *Biochemie und Physiologie der Pflanzen* 188: 247–259.

Milla, R., and P. B. Reich. 2011. Multi-trait interactions, not phylogeny, fine-tune height in young stems and roots of temperate trees. *Plant Biology* 20: 346–356.

Munich, L., H. Bültnann, K. Dierfen, J.-P. Theurillat, T. Raus, A. Čarni, K. Šumberová, et al. 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. *Applied Vegetation Science* 19: 3–264.

Murcia, G., M. Pontin, H. Reinoso, R. Baraldi, G. Bertazza, S. Gómez-Talquenca, R. Bottini, and P. N. Piccoli. 2016. ABA and GA, increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. *Physiologia Plantarum* 156: 323–337.

Myers-Smith, I. H., S. C. Elmandorf, P. S. A. Beck, M. Wilming, M. Hallinger, D. Blok, K. D. Tape, et al. 2015. Climate sensitivity of shrub growth across the tundra biome. *Nature Climate Change* 5: 887–891.

Nardini, A., M. A. Lo Gullo, and S. Salleo. 2011. Refilling embolized xylem conduits: Is it a matter of phloem unloading? *Plant Science* 180: 604–611.

Newell, E. A., S. S. Mulkey, and J. S. Wright. 2002. Seasonal patterns of carbohydrate storage in four tropical tree species. *Oecologia* 131: 333–342.

Ogren, E. 1996. Premature dehardening in *Vaccinium myrtillus* during a mild winter: a cause for winter dieback? *Functional Ecology* 10: 724–732.

Olo, J. M., E. S. Menges, and E. Martínez. 2006. Carbohydrate storage in five re-sprouting Florida scrub plants across a fire chronosequence. *New Phytologist* 170: 99–106.

Pakonen, T., E. Saari, K. Laine, P. Havas, and P. Lahdesmaki. 1991. How do seasonal changes in carbohydrate concentrations in tissues of the bilberry (*Vaccinium myrtillus* L.) reflect carbon resource allocation patterns? *Acta Oecologica* 12: 249–259.

Palacio, S., M. Maestro, and G. Montserrat-Martí. 2007. Relationship between shoot-rooting and root-sprouting abilities and the carbohydrate and nitrogen reserves of Mediterranean dwarf shrubs. *Annals of Botany* 100: 865–874.

Palacio, S., A. Lenz, S. Wipf, G. Hoch, and C. Rixen. 2015. Bud freezing resistance in alpine shrubs across snow depth gradients. *Environmental and Experimental Botany* 118: 95–101.

Pelissier, L., B. Fournier, A. Guisan, and P. Vittoz. 2010. Plant traits co-vary with altitude in grasslands and forests in the European Alps. *Plant Ecology* 211: 351–365.

Petruska, E., F. Boscutti, A. Vianello, and V. Casolo. 2018. ‘Last in–first out’: seasonal variations of non-structural carbohydrates, glucose–6-phosphate and ATP in tubers of two *Arum* species. *Plant Biology* 20: 346–356.

Piper, F. I., and A. Fajardo. 2011. No evidence of carbon limitation with tree age and height in *Nothofagus pumilio* under Mediterranean and temperate climate conditions. *Annals of Botany* 108: 907–917.

Piper, F. I., M. J. Gundale, T. Fuenzalida, and A. Fajardo. 2019. Herbivore resistance in congeneric and sympatric *Nothofagus* species is not related to leaf habit. *American Journal of Botany* 106: 788–797.

Plavcová, L., G. Hoch, S. Ghiasi, and S. Jansen. 2016. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. *American Journal of Botany* 103: 603–612.

Pisidíová, E., M. Žitvčák, S. Stojnić, S. Orlovic, D. Gőmöry, J. Kučerová, L. Díttmarová, et al. 2018. Altitude of origin influences the responses of PSII photochemistry to heat waves in European beech (*Fagus sylvatica* L.). *Environmental and Experimental Botany* 152: 97–106.

Pycke, A. F., and J. B. Kirkpatrick. 1994. Growth rate and basal area response curves of four Eucalyptus species on Mt. Wellington, Tasmania. *Journal of Vegetation Science* 5: 13–24.

Quentin, A. G., E. A. Pinkard, M. G. Ryan, D. T. Tissue, L. S. Baggett, H. D. Adams, P. Maillard, et al. 2015. Non-structural carbohydrates in woody plants compared among laboratories. *Tree Physiology* 35: 1146–1165.

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Raich, J. W., A. E. Russell, and P. M. Vitousek. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai‘i. *Ecology* 78: 707–721.

Ratajczak, Z., J. B. Nippert, and S. L. Collins. 2012. Woody encroachment decreases diversity across North American grasslands and savannas. *Ecology* 93: 697–703.
Rixen, C., A. Casteller, E. H. Schweingruber, and V. Stoeckli. 2004. Age analysis helps to estimate plant performance on ski pistes. *Botanica Helvetica* 114: 127–138.

Rixen, C., C. Schwoerer, and S. Wipf. 2010. Winter climate change at different temporal scales in *Vaccinium myrtillus*, an Arctic and alpine dwarf shrub. *Polar Research* 29: 85–94.

Robberecht, R., B. E. Mahall, and P. S. Nobel. 1983. Experimental removal of intraspecific competitors—effects on water relations and productivity of a desert bunchgrass, *Hilaria rigida*. *Oecologia* 60: 21–24.

Savage, J. A., M. J. Clearwater, D. F. Haines, T. Klein, M. Mencuccini, S. Sevanto, R. Robberecht, R., B. E. Mahall, and P. S. Nobel. 1983. Experimental removal of tree growth rate and drought tolerance in sprouting and nonsprouting *Populus nigra* (Rhamnaceae). *Oecologia* 92: 404–410.

Secchi, F., and M. A. Zwieniecki. 2012. Analysis of xylem sap from functional (nombemlized) and nonfunctional (embolized) vessels of *Populus nigra*: chemistry of refilling. *Plant Physiology* 160: 955–964.

Sevanto, S. 2014. Phloem transport and drought. *Journal of Experimiental Botany* 65: 1751–1759.

Shi, C., G. Sun, H. Zhang, B. Xiao, B. Ze, N. Zhang, and N. Wu. 2014. Effects of warming on chlorophyll degradation and carbohydrate accumulation of alpine herbaceous species during plant senescence on the Tibetan plateau. *PLOS One* 9: e107874.

Smith, W. K., M. J. Germino, T. E. Hancock, and D. M. Johnson. 2003. Another perspective on altitudinal limits of alpine timberlines. *Tree Physiology* 23: 1101–1112.

Soliveres, S., L. DeSoto, F. T. Maestre, and J. M. Olano. 2010. Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation. *Perspectives in Plant Ecology, Evolution and Systematics* 12: 227–234.

Sperling, O., J. M. Earles, F. Secchi, J. Godfrey, and M. A. Zwieniecki. 2015. Frost temperature extremes. *Trends in Plant Science* 8: 179–187.

Stewart, W. S., and P. Bannister. 1973. Seasonal changes in carbohydrate content of three *Vaccinium* spp with particular reference to *V. uliginosum* L. and its distribution in the British Isles. *Flora* 162: 134–155.

Sturm, M., C. Racine, and K. Tape. 2001. Climate change: increasing shrub abundance in the Arctic. *Nature* 411: 546–547.

Sung, D.-Y., F. Kaplan, K.-J. Lee, and C.-L. Gyu. 2003. Acquired tolerance to temperature extremes. *Trends in Plant Science* 8: 179–187.

Tolvanen, A. 1997. Recovery of the Bilberry (*Vaccinium myrtillus* L.) from artificial spring and summer frost. *Plant Ecology* 130: 35–39.

Tommervik, H., B. Johansen, I. Tombre, D. Thannheiser, K. A. Høgda, E. Gaare, and F. E. Wielgolaski. 2004. Vegetation changes in the nordic mountain birch forest: the influence of grazing and climate change. *Arctic, Antarctic, and Alpine Research* 36: 323–332.

Valladares, F., E. Gianoli, and J. M. Gómez. 2007. Ecological limits to plant phenotypic plasticity. *New Phytologist* 176: 749–763.

Venturini, C. 2006. Evoluzione geologica delle Alpi Carniche. Comune di Udine, Museo Friulano di Storia Naturale, Udine, Italy.

Vitasse, Y., C. C. Bresson, A. Kremer, R. Michalet, and S. Delzon. 2010. Quantifying phenological plasticity to temperature in two temperate tree species. *Functional Ecology* 24: 1211–1218.

Wang, Q.-W., L. Qi, W. Zhou, C.-G. Liu, D. Yu, and L. Dai. 2018. Carbon dynamics in the deciduous broadleaf tree Erman’s birch (*Betula ermanii*) at the subalpine treeline on Changbai Mountain, Northeast China. *American Journal of Botany* 105: 42–49.

Wipf, S., C. Rixen, and C. P. H. Mulder. 2006. Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. *Global Change Biology* 12: 1496–1506.

Woodward, F. I. 1986. Ecophysiological studies on the shrub *Vaccinium myrtillus* L. taken from a wide altitudinal range. *Oecologia* 70: 580–586.

Yamada, K., and Y. Osakabe. 2018. Sugar compartmentation as an environmental stress adaptation strategy in plants. *Seminars in Cell & Developmental Biology* 83: 106–114.

Zhang, Y.-J., F. C. Meinzer, G.-Y. Hao, F. G. Scholz, S. J. Bucci, F. S. C. Takahashi, R. Villalobos-Vega, et al. 2009. Size-dependent mortality in a Neotropical savanna tree: the role of height-related adjustments in hydraulic architecture and carbon allocation. *Plant, Cell & Environment* 32: 1456–1466.

Zimmermann, R., E.-D. Schulze, C. Wirth, E.-E. Schulze, K. M. McDonald, N. N. Vygodskaya, and W. Ziegler. 2000. Canopy transpiration in a chronosequence of Central Siberian pine forests. *Global Change Biology* 6: 25–37.

Ziska, L. H., A. H. Teramura, and J. H. Sullivan. 1992. Physiological sensitivity of plants along an elevational gradient to UV-B radiation. *American Journal of Botany* 79: 863–871.