Introduction

With the evolution of orthodontic techniques, the MBT philosophy has gained substantial popularity over a long period of time. It has proved in achieving excellent force levels and resulting in tooth movement with optimum control during space closure of extraction sites [1,2]. There are different methods of space closing used for MBT technique. One of the method advocated is the use of active tieback taking help of elastomeric modules. 0.010 ''stainless steel ligature wire is used along with elastomeric module for active tieback.

Ideally the elastomeric module is meant for the purpose of arch wire ligation, but this technique advocates its use for the purpose of space closure. The amount of force exerted by the module is one of the important factors in successful space closure which in turn depends on the elastic properties of the module. Hence it is necessary for us to know the force degradation of the elastic module from the time of initial loading through its continual use between appointments. Incorrect force level can cause difficulty in space closing. Forces above the recommended level can cause tipping and friction and thus prevent space closing. Inadequate force may cause slower or no space closure in adults. The force levels also need to be in balance with the arch wire stiffness, or may cause arch wire deflection. Modules available with different commercial brands may exert different amount of force.

Hence the aim of this study is to compare the force degradation of four commercially available elastomeric modules in clinical application when used as an active tieback, in an invitro condition.

Material and Method

The prospective study was completed to test the force decay of the elastomeric module in an artificial saliva medium using modules available from different commercial brands commercially available ligature modules were selected from four different brands (American orthodontics, ORMCO, 3M, Jaipur orthodontics by liberaltraders'pvt.Ltd.). Twenty samples from each company were selected. 4 jigs each with a series of pins placed 28 mm apart were used in order to hold the stretched elastomeric modules.

These modules were stretched in the form of an active tieback using 0.010 inch SS ligature wire. The module was engaged in one pin and stretched to double the distance (as advocated by the MBT philosophy) using the ligature wire and tied to the opposite pin. These jigs were placed in an artificial saliva solution throughout the test period in order to provide an artificial oral environment at room temperature.

*Corresponding author: Priyanka Thorat, Department of Orthodontics And Dentofacial Orthopedics, Rangoonwala dental college, M.A, India; E-mail: priyankkathorat@gmail.com

Sub Date: March 31, 2016, Acc Date: April 28, 2016, Pub Date: May 5, 2016.

Citation: Priyanka Thorat, Salil Nene, Ajit Kalia, Ashwith Hegde and Gaurav Gupta (2016) Force Decay of Elastomeric Ligature Used for Active Tieback a Product Comparison Study. BAOJ Dentistry 2: 010.

Copyright: © 2016 Priyanka Thorat, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Six test measurements of remaining force were made at the following time intervals: initial (0), 1, 7, 14, 21, and 28 days. Force measurements were obtained with a digital force tester by a single, blinded examiner. Prior to the initiation of the study, the force tester was calibrated by measuring the weight of known items, to ensure the reliability of the instrument. After each measurement the force tester was reset to a zero reading before taking the next measurement. During force measurement, the jigs were securely bound to a bench top using a vice clamp.

Measurements were made by leaving one end of the elastomeric chain secured on the pin and fixing the other to the force tester, allowing for the measurement of the tensile force (Figure 2). Measurement readings were taken with the elastomeric chain stretched to the same double the distance, that the jig pins had previously maintained them.

Results

Statistically significant effects of time on force decay were seen in all groups. The force decay is comparatively more in first 24 hours in relation to the initial loading force.

The initial loading force was observed highest in 3 M (515.50 grams) followed by ORMCO (472.15), liberal (463.98), American orthodontics (448.75).

But the standard deviation value is least with American orthodontics (21.9) as compared to ORMCO (35.6), 3M (45.3), liberal (78.3), which shows that the intergroup consistency of force exerted is more with American orthodontics. On the other hand it is very less with liberal with standard deviation of 78.3%.

The maximum force decay percentage within first 24 hrs. Was seen in ORMCO (46.1%).

Minimum force decay at the end of 28 days is seen in 3M (47.87%) followed by liberal (52.4%), then American orthodontics (54.94%) and then ORMCO (66.22%).

Discussion

The force decay of the elastomeric ligatures significantly altered the magnitude of the unloading forces.

The result of this study demonstrate that there is a significant force decay over a period of 28 days or till the time in between appointments. The results also confirm previous study [3, 4, 5-9] that the force decay is high initially and then reduce over time. For all the groups there is substantial amount of force decay in first 24 hours.

Amongst the four groups American orthodontics showed least force decay in first 24 hours (24.7%) followed by liberal traders (28.2%) , then 3M (31.9%) and then ORMCO (46.0%).

MBT philosophy advocates using elastomeric modules in the form of active tieback. They are stretched double the distance. Thus it becomes important that the module exert approximately equal amount of force when used

Bilaterally and also the amount of force decay plays an important role [2]. For effective tooth movement it is important that the module exert substantial amount of force throughout the appointment interval. In this relation, modules from 3M showed least force decay at the end of 28 days. Also the force exerted by modules with 3M showed highest force at the time of loading and also highest force at the end of 28 days. Although this study illustrates that time has statistical significant effect on the force decay of elastomeric module in vitro, but its effect in clinical situation is still inconclusive. The length to which the module is stretched, the interval between
Table 1: Comparison of force degradation using ANOVA test (American orthodontics)

(p < 0.05 - Significant*, p < 0.001 - Highly significant**)

Force degradation	Number	Mean (SD)	% decay
Loading	20	448.75 (21.9)	-
24 hours	20	337.50 (45.2)	24.7%
7 days	20	285.75 (71.4)	36.3%
14 days	20	248.50 (33.7)	45.2%
21 days	20	202.25 (58.3)	54.9%
F value	-	74.418	-
P value	-	<0.001**	-

Table 2: Comparison of force degradation using ANOVA test (3M)

(p < 0.05 - Significant*, p < 0.001 - Highly significant**)

Force degradation	Number	Mean (SD)	% decay
Loading	20	515.50 (45.3)	-
24 hours	20	351 (44.0)	31.9%
7 days	20	330.50 (66.1)	34.1%
14 days	20	296.50 (38.0)	42.4%
21 days	20	268.75 (47.8)	47.8%
F value	-	84.752	-
P value	-	<0.001**	-
Table 3: Comparison of force degradation using ANOVA test (ORMCO)

Force degradation	Number	Mean (SD)	% decay
Loading	20	472.15 (35.6)	-
24 hours	20	254.50 (43.0)	46.0%
7 days	20	218.25 (45.1)	53.7%
14 days	20	173.75 (28.2)	63.4%
21 days	20	159.50 (33.6)	66.2%

F value	227.304
P value	<0.001**

Table 4: Comparison of force degradation using ANOVA test (Libral traders)

Force degradation	Number	Mean (SD)	% decay
Loading	17	463.94 (78.3)	-
24 hours	17	332.94 (40.3)	28.2%
7 days	17	285.59 (23.3)	38.4%
14 days	17	239.12 (35.2)	48.4%
21 days	17	220.88 (29.9)	52.3%

F value	76.845
P value	<0.001**

Comparison of all the materials with amount of force exerted and time period.
appointments, and also the form and amount of tooth movement.

Conclusions

- Increase in force decay is seen with elastomeric module over time.
- Force decay in first 24 hours was seen minimum in American orthodontics.
- The range of force exertion at the time of loading was around 450 grams to 520 grams.
- 50 – 65% of force decay was seen in all the four groups.

References

1. Josell SD, Leiss JL, and Rekow ED (1997) Force Degradation in Elastomeric Chains. Semin Orthod 3: 189-197.
2. Bennett JC, McLaughlin RP (1990) Controlled space closure with a pre- adjusted appliance system. Journal of Clinical Orthodontics 24:251-260.
3. Ash JL, Nikolai RJ (1978) Relaxation of orthodontic elastomeric chains and modules in vitro and in vivo. J Dent Res 57: 685–690.
4. De Genova DC, McInnes-Ledoux P, Weinberg R, Shaye R (1985) Force degradation of orthodontic elastomeric chains—a product comparison study. Am J Orthod 87: 377–384.
5. Ferriter JP, Meyers CE Jr, Lorton L (1990) The effect of hydrogen ion concentration on the force-degradation rate of orthodonticpolyurethane chain elastics. Am J Orthod Dentofacial Orthop 98: 404-410.
6. Kuster R, Ingervall B, Burgn W (1986) Laboratory and intra-oral tests of the degradation of elastic chains. Eur J Orthod 8: 202–208.
7. Lu TC, Wang WN, Targn TH, Chen JW (1993) Force decay of elastomeric chain—a serial study. Part II. Am J Orthod Dent facial Orthop 104: 373-377.
8. Nattrass C, Ireland AJ, Sherriff M (1998) The effect of environmental factors on elastomeric chain and nickel titanium coil springs. Eur J Orthod 20:169-176.
9. Wong AK (1976) Orthodontic elastic materials. Angle Orthod 46: 196–205.