Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
generalizable to other hairdresser communities. Thus, future studies are needed to assess opinions of other hairdressers and to assess the safety and efficacy of training hairdressers in skin cancer surveillance.

We thank Bridget Bradley (Department of Dermatology, Emory University) for her help in coordinating the study and Chao Zhang (Bioinformatics and Biostatistics Shared Resource at Winship Cancer Institute, Emory University) for his help with the statistical analyses. We also thank Candy Shaw and Fred Codner of Jamison Shaw Hairdressers (Atlanta, GA) for their perspectives on the study and interest in the study and its findings in exit interviews. Last, we thank Elizabeth Bailey (Stanford University) for kindly providing us with their survey previously used to investigate skin cancer knowledge, attitudes, and behaviors among hair professionals.

David C. Gibbs, BS,a,b Spencer Ng, MD, PhD,c Marissa L. H. Baranowski, BS,a,b Sampreet Reddy, MD,d Annelise Bederman, BS, MSc,b Marta B. Bean, BA,b Rachel Eisenstadt, MD,b and Suephy C. Chen, MD, MSb,e,f

From the Department of Epidemiology, Rollins School of Public Health,a and Emory University School of Medicine,b Emory University, Atlanta, Georgia; Department of Dermatology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois;c Morehouse School of Medicine, Atlanta, Georgia;d Department of Dermatology, Emory University, Atlanta, Georgia;e and Division of Dermatology, Atlanta VA Medical Center, Atlanta, Georgia.f

Mr Gibbs and Dr Ng contributed equally to this work.

Funding sources: None.

Conflicts of interest: None disclosed.

Reprint requests: Suephy C. Chen, MD, MS, Department of Dermatology, Emory University School of Medicine, 1525 Clifton Rd NE, 1st Floor, Atlanta, GA 30322

E-mail: schen2@emory.edu

REFERENCES

1. Roosta N, Black DS, Wong MK, Woodley DT. Assessing hairdressers’ knowledge of scalp and neck melanoma and their willingness to detect lesions and make referrals to dermatologists. J Am Acad Dermatol. 2013;68(1):183-185.

2. Black NR, O’Reilly GA, Pun S, Black DS, Woodley DT. Improving hairdressers’ knowledge and self-efficacy to detect scalp and neck melanoma by use of an educational video. JAMA Dermatol. 2018;154(2):214-216.

3. Roosta N, Black DS, Wong MK, Woodley DT. Assessing hairdressers’ knowledge of scalp and neck melanoma and their willingness to detect lesions and make referrals to dermatologists. J Am Acad Dermatol. 2013;68(1):183-185.

4. Black NR, O’Reilly GA, Pun S, Black DS, Woodley DT. Improving hairdressers’ knowledge and self-efficacy to detect scalp and neck melanoma by use of an educational video. JAMA Dermatol. 2018;154(2):214-216.

Scalp verruca from barber clippers: An epidemiologic assessment of a common fomite

To the Editor: Scalp verrucae are relatively common in dermatology, and the causal human papilloma virus (HPV) is ubiquitous in the environment. We noted a significant number of patients who developed numerous scalp verrucae after recalled scalp trauma due to short haircuts received on a military base. Scalp verrucae are a particular risk to the military, where men receive frequent haircuts in succession that require firm pressure to ensure uniform length.

An epidemiologic investigation was conducted on 3 local barbershops evaluating their adherence to sanitary practices. The cleaned clippers and guards were sampled with next-generation DNA and RNA whole-genome amplification. Several published databases were referenced, including the National Center for Biotechnology Information (NCBI) reference sequences (RefSeq), the NCBI Taxonomy Database, and sequences from GenBank. The nonhuman sequences were searched using NCBI’s Basic Local Alignment Search Tool (BLAST) software.

The local public health department conducted random no-notice inspections every 6 months and found that the barbers properly performed disinfection using approved commercial solutions between every customer. Despite this, genetic material correlating with HPV types 5, 10, 49, and 92 was recovered. In addition, other nonenveloped pathogens such as Merkel cell polyomavirus and rhinovirus were also isolated (see Table I).

HPV is extremely stable in the environment because of its nonenveloped structure, resistance to heat, desiccation, and ability to viably persist for at least 7 days. It can survive on a variety of surfaces, from ultrasonography probes to clothing. It is resistant to common disinfectants, remaining infectious despite application of quaternary ammonium compounds (eg, wipes containing ammonium chlorides), ethylenediaminetetraacetic acid, 70% and 95% ethanol, 95% isopropanol, 3.4% glutaraldehyde, 0.55% ortho-phthalaldehyde, phenol, and 0.25%
peracetic acid—silver. Only 0.525% hypochlorite (1:10 bleach dilution) and 1.2% peracetic acid—silver—based disinfectants have been shown to reduce infectivity by more than 99.99%.4

The impact of this inadequacy of cleaning solutions transcends the development of mere cutaneous verrucae. HPV has been implicated as an oncovirus in the development of cutaneous squamous cell carcinoma, and at least 1 of the viruses (HPV 5) in this study has been shown to be associated with increased risk for squamous cell carcinoma.5 Merkel cell polyomavirus, an oncovirus implicated in Merkel cell carcinoma, was also isolated from the clippers in significant quantity. The isolation of the virus from barbershop equipment has not been documented previously.

It is imperative that future research be conducted to develop safe solutions that adequately disinfect multiple-use devices such as barbershop clippers to reduce this public health risk. Current alcohol or polyphenolic compounds are shown to be inadequate in our in vivo study, as well as in an in vitro analysis published elsewhere.4 As a result of this study and the cited literature, we examined the practice in our own office of using commercial disinfectant wipes between patient encounters that rely on quaternary ammonium compounds, and we decided to incorporate an approved commercially available 1:10 bleach wipe for surfaces and treatment devices (cryotherapy, cautery, laser distance gauges, etc).

The authors wish to thank Technical Sergeant Charlee A. Martin at the 711 Human Performance Wing for assistance with the preparation and analysis of the samples, as well as Staff Sergeant Benjamin L. Harris at the 96 Medical Group Public Health for assistance with inspections. The views expressed are those of the authors and do not reflect the official views or policy of the Department of Defense or its Components.

Table I. Matched genomic data after BLAST analysis*

Total reads	Virus name	Average identity, %	Average alignment length (bp)
472	Merkel cell polyomavirus	98.8	274.1
63	Human papillomavirus type 10	91.1	219.2
23	Human papillomavirus type 5	95.7	214.5
23	Rhinovirus B14	98.3	184
20	Human polyomavirus 6	98.4	284.8
20	Human papillomavirus type 49	91.1	208.7
6	Human papillomavirus type 92	98.8	238.3
4	Japanese encephalitis virus	98.8	145
2	Human coronavirus 229E	96.6	341
1	Equine infectious anemia virus	100	217

Bp, Base pairs; BLAST, Basic Local Alignment Search Tool.
*Columns show number of genetic reads attributable to a virus that were identified, the virus name, the average percentage of the genomic match, and the average length of the aligned fragments of DNA.

Jason R. Susong, MD, a,b Janelle Robertson, MD, c James C. Baldwin, PhD, d Kelly Riegleman, MD, e Andrew Daugherty, MD, f Hideaki L. Tanaka, MD, g Sarah Jelliffe, DO, h Sarah Kurszewski, b Caleb Sevcik, b and Taylor Pavoneb

From the Uniformed Services University, Bethesda, Maryland; Chief of Dermatology, 96th Medical Group, Eglin Air Force Base, Florida; Headquarters Air Education and Training Command, Joint Base San Antonio-Randolph, Texas; United States Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Ohio; 492nd Special Operations Support Squadron, Duke Field Air Force Base, Florida; Strike Fighter Squadron 101, Eglin Air Force Base, Florida; 24th Special Operations Wing, Hurlburt Field, Florida; 96th Medical Group, Eglin Air Force Base, Florida.

Funding sources: None.

Conflicts of interest: None disclosed.

IRB approval status: Not applicable.

Reprints not available from the authors.

Correspondence to: Jason Susong, MD, 96 MDOS/SGOMD, 307 Boatner Rd, Eglin AFB, FL 32542

E-mail: susongj@ccf.org

REFERENCES
1. Roden RB, Lowy DR, Schiller JT. Papillomavirus is resistant to desiccation. J Infect Dis. 1997;176:1076-1079.
2. Gallay C, Miranda E, Schaefer S, et al. Human papillomavirus (HPV) contamination of gynaecological equipment. Sex Transm Infect. 2016;92(1):19-23.
3. Casalegno JS, Le Bail Carval K, Eibach D, et al. High risk HPV contamination of endocavity vaginal ultrasound probes: an underestimated route of nosocomial infection? PLoS One. 2012;7(10):e48137.
Trunk involvement and peau d’orange aspect are poor prognostic factors in eosinophilic fasciitis (Shulman disease): A multicenter retrospective study of 119 patients

To the Editor: Eosinophilic fasciitis (EF) is a rare inflammatory disorder of unknown origin characterized by a diffuse fasciitis and blood eosinophilia.1

To define risk factors that may affect EF severity and prognosis, we conducted a retrospective study in 27 French centers of 119 patients with EF (1992 to 2018). EF severity criteria analyzed were relapse, use of a second line of treatment, and residual skin fibrosis. Wilcoxon test and Fisher’s exact test were used to compare quantitative and qualitative variables. Rates of event-free survival over time were plotted by the Kaplan-Meier method and compared using the log-rank test. Multivariable Cox models were used to determine potential associations.

The median time to diagnosis and initiation of treatment since the first symptoms was 5.6 months (interquartile range, 2.7 to 8.9; range, 1 to 87 months). Thirty-four patients (29.6%) presented localized morphea, 62 (53.9%) had groove sign, 29 (24.4%) had a peau d’orange aspect, and 37 (31%) had truncal involvement. The mean follow-up was 48 months. Eighty-three (71.6%) patients received corticosteroids alone, and 30 (25.8%) patients received corticosteroids and methotrexate at diagnosis. Thirty patients were treated with methylprednisolone pulses. A second line of therapy was required in 48 (40.3%) patients, and relapses were reported in 24 (20.2%) patients. Twelve patients (10%) presented a resistant EF (3 or more different lines of treatment). Treatments for resistant forms were mycophenolate mofetil (partially effective, 3/4), extracorporeal photochemotherapy (effective, 2/2), cyclophosphamide (partially effective, 2/2), azathioprine (ineffective, 1/1), intravenous immunoglobulins (effective, 1/1). At last follow-up, 49% of patients were in remission without residual skin fibrosis. Four patients died (2 deaths related to EF-associated blood disorders and 2 from unrelated causes). Univariate analysis showed an association between relapse and anemia (P = .004), the need for

Fig 1. Kaplan-Meier curve for the use of a second line of treatment for patients with (red) and without (black) trunk involvement at diagnosis.