Spin Dynamics in Patterned Magnetic Multilayers with Perpendicular Magnetic Anisotropy

Mateusz Zelent¹, Mathieu Moalic¹, Olav Hellwig²,³, Anjan Barman⁴, and Maciej Krawczyk¹

¹Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
²Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
³Institute of Physics, Chemnitz University of Technology, Reichenhainer Straße 70, 09126 Chemnitz, Germany
⁴Department of Condensed Matter and Materials Physics, S N Bose National Centre for Basic Sciences, Salt Lake, Block JD, Sector III, Kolkata 700106, India

October 3, 2022
Contents

1 Spin waves in thin films with PMA .. 1
2 Spin-wave dynamics in magnonic crystals 7
3 Spin dynamics in topologically protected spin textures 15
4 Concluding remarks and future challenges 25
5 Acknowledgments .. 27
Bibliography ... 28
To discuss spin dynamics in ferromagnetic materials with PMA we start with an introduction to SW dynamics in homogeneously magnetized ferromagnetic films in two configurations, magnetized out-of-plane and in-plane with PMA, by the external magnetic field oriented parallel, and perpendicular to the anisotropy axis, respectively.

0.1 Ferromagnetic film magnetized along out-of-plane direction

When the magnetization is parallel to the anisotropy axis, the out-of-plane direction in the case of PMA, the anisotropy field H_{ani} has the same effect on the SW waves as the external magnetic field H_0 collinear with that axis. The configuration, when SWs propagate in the film plane and the film is magnetized out-of-plane, is called a forward volume magnetostatic SW geometry [91] (see, Fig. 1.1 (a)). First, the analysis of SW was considered in the magnetostatic approximation, i.e., for long wavelength SWs, with the exchange interactions neglected [91, 92]. Later on, the perturbative approach with exchange interactions included has been developed, and the approximate, very useful and often used, formula for the dispersion relation for the lowest-order SW mode, i.e., the mode which has homogeneous amplitude across the film thickness, has been derived [93, 94]:

$$\omega^2 = \omega_0 \left[\omega_0 + |\gamma| \mu_0 M_s \left(1 - \frac{1 - e^{-kd}}{kd} \right) \right],$$ \hspace{1cm} (1.1)

where

$$\omega_0 = |\gamma| \mu_0 (H_0 + H_{\text{dem}} + H_{\text{ani}} + H_{\text{ex}}),$$ \hspace{1cm} (1.2)
and ω is the angular frequency of SWs, γ is the gyromagnetic ratio, μ_0 the permeability of vacuum, M_s is the saturation magnetization, k is the in-plane SW wavenumber, and d is the film thickness. Demagnetizing field, H_{dem}, in the case of infinite saturated ferromagnetic film, is homogeneous and equal to the saturation magnetization: $H_{\text{dem}} = -M_s$. $H_{\text{ex}} = \frac{2A}{\mu_0 M_s} k^2$ is the term describing exchange interactions, with A the exchange constant. The dispersion relation in the magnetostatic approximation is obtained by putting $H_{\text{ex}} = 0$. The dispersion relation of SWs in thin ferromagnetic films of different thicknesses, for both full Eq. (1.1) and in magnetostatic approximation, and three common ferromagnetic materials, Ni$_{80}$Fe$_{20}$ (Py), Ni, yttrium iron garnet (YIG), are shown in Fig. 1.1 (b-d).

Figure 1.1: (a) Geometry of the forward volume magnetostatic SW configuration: the SWs propagate in the film plane, which is magnetized out-of-plane. (b-d) Calculated analytically dispersion relation of SWs in a forward volume wave configuration for Py, Ni and YIG films based on Eq. 1.1 in external magnetic field $\mu_0 H_0 = 1.1$ T directed out-of-plane. Dispersions are presented for three film thicknesses 10, 20 and 30 nm and based on full Eq. 1.1 and in magnetostatic approximation. Magnetic parameters for Ni were taken from Ref. [95], Py and YIG from Ref. [91]. The anisotropy field was neglected in all cases.

The dispersion relation, Eq. (1.1), depends only on the in-plane wavevector magnitude k, not its orientation, thus the dispersion relation is isotropic. In the limit $kd \ll 1$, the group velocity $v_g(kd \to 0) \approx \frac{1}{4} \omega M d$, which is independent of frequency. It also points out that the v_g increases when the saturation magnetization [compare dispersion relation for Py (largest M_s), Ni and YIG (smallest M_s) in Fig. 1.1 (b-d)] or the film thickness [compare the dispersion of SWs for given material and different thicknesses in Fig. 1.1 (b-d)] increases [96] that is important for enhancing transmission rates in magnonic applications.

The SW transmission measurements in a thin Py film magnetized out-of-plane were used to demonstrate current-induced Doppler shift of SWs [97]. This study started the development of
all-electrical SW spectroscopy based on the broad-band vector-network analyzer ferromagnetic resonance (VNA-FMR) measurements, now widely used in magnonics, also, to realize some functional magnonic elements. Later, thin YIG film with three CPWs was used to demonstrate XNOR logic gate [98]. Although the magnetization of YIG is much lower than that of Py, the ultralow damping in the former material made it ideal for magnonic applications. However, relatively large external magnetic fields needed to saturate the samples in the out-of-plane direction, i.e., approximately 1 and 0.3 T, for Py and YIG-based systems, are not very desirable for applications, in particular for integrated circuits. This obstacle can be avoided if the materials with PMA are used. Here, YIG, which is an insulator having by far the lowest SW-damping, possesses a favorable property that doping can create sufficiently strong PMA to the extent of overcoming the demagnetizing field. The PMA in garnets doped with Mn, Ga, and Bi have already been demonstrated [99–101], while preserving low damping value [102]. Moreover, the lattice constant mismatch between very thin YIG and a properly selected substrate can give rise to an interfacial strain as well as PMA [103]. Other rare-earth iron garnets, those based on Dy, Tm, Tb, or Eu, were also investigated and the out-of-plane anisotropy originating from epitaxial lattice mismatch was identified [104–107]. So far, the velocity of 2.25 km/s, with the relaxation time of 50 ns and the decay length of 115 µm (at 0.03 T external field) have been attained in 1 µm thick Bi substituted YIG film [108]. Unfortunately, the PMA introduced by doping further reduced its pre-existing low saturation magnetization [109], and hence the group velocity. Thus, new materials and new ideas need to be developed to obtain thin layers with PMA, high saturation magnetization and low attenuation. Recently, a very interesting concept as an alternative solution for the above-defined problem has been presented. It proposes to use a heterostructure composed of an underlayer with high PMA having a thin soft ferromagnetic film deposited on the top [110]. Here, the exchange and dipolar coupling between subsystems force the out-of-plane orientation in the soft magnet, which is a media suitable for SW propagation.

Another interesting characteristic of the out-of-plane magnetized films, as already mentioned is an isotropic dispersion relation, which makes the SW forward geometry identical to the electromagnetic waves in dielectrics, and makes it possible to implement magnonic analogues of many wave phenomena known from optics and photonics. One example is the Talbot effect. It is a self-imaging process of formation of the wave-interference images of the grating at regular distances away from the grating. It was, for the first time observed for light, by H. F. Talbot in 1836 and thereon, such an interference pattern is called a Talbot carpet. The Talbot effect for SW was numerically demonstrated recently for the forward volume geometry, showing the clear formation of the Talbot carpet by SWs in thin ferromagnetic film, as shown in Fig. 1.2 [111]. As the period of the grating increases, the Talbot length, i.e., the distance between the bright focal points, also increases (Fig. 1.2(a-b)). It is predicted that even with the reasonably large damping
of Py, the secondary Talbot image can be observed (Fig. 1.2(c-d)). However, the realization of the SW Talbot carpets in the in-plane magnetized film is disturbed by the strongly anisotropic dispersion relation of SWs in this configuration.

![Figure 1.2](attachment:Figure1_2.png)

Figure 1.2: (a-b) Simulated Talbot carpet for SWs obtained for two different SW frequencies, aperture widths and diffraction grating constants in thin Py films with damping neglected. The grating is located at the left edge of each plot. (c) The SW Talbot carpet in the Py film with the damping included. The SW intensity along the red and green lines are shown in (d). Figure reproduced with permission from Mateusz Gołbiewski, Paweł Gruszecki, et al. “Spin-wave Talbot effect in a thin ferromagnetic film”. In: Physical Review B 102 (Oct. 2020), p. 134402. Copyright (2020) by the American Physical Society.

The wave beams are widely explored in photonics, while in magnonics the SW optics concept has just been introduced. Here, the forward geometry ensuring isotropic dispersion relation, is also exploited. The inductive method for SW beam generation was proposed by Gruszecki et al. in 2016 [112]. First, it was confirmed experimentally for the in-plane magnetized film [113], followed by the out-of-plane configuration [114], where additionally the Fresnel type of diffraction was observed for SWs. Just recently, also the SW birefringence has been experimentally demonstrated [115].

These findings demonstrate a strong analogy between the SWs and the basic concepts of optics and therefore pave the way for future studies of SW beam interference, which could find applications for magnonic logic devices. Indeed, the configuration with isotropic dispersion was used to demonstrate the magnonic spectrum analyzer based on the interference pattern.
formation [116] and programmable SW lookup tables [117].

0.2 Ferromagnetic thin films magnetized in the film plane

Ferromagnetic thin films with PMA can be in-plane saturated by applying an external magnetic field, which together with the demagnetizing field exceeds the out-of-plane anisotropy. The configuration, when the SW propagation is perpendicular to the magnetization direction (Damon-Eshbach (DE) configuration), is widely used for the determination of the DMI strength in Brillouin light scattering measurements [49, 118]. Here, the PMA in the dispersion relation is usually combined with the magnetization saturation as an effective magnetization. This approach is strictly valid under ferromagnetic resonance (FMR) conditions but not for \(k \neq 0 \), especially at large anisotropy values. Recent studies show that the PMA in DE configuration may result in an additional dispersion minimum at nonzero \(k \) that with mode softening becomes a global minimum [119]. This correlates with the phase transition to the stripe domain formation and appearing the Goldstone and Higgs SW modes [120].

0.3 Spin-wave modes in confined geometry with out-of-plane magnetization

The SW spectra in confined geometry, a planar dot, with the out-of-plane magnetization is a derivative of the dispersion relation of the forward volume waves (Eq. 1.1) with the discrete values of the in-plane wavenumber. Thus, the shape of the modes should preserve the symmetry of the dot shape, similarly to photonics, and hence it imposes the quantization rules on the in-plane wavevectors. However, for SWs in ferromagnetic systems, dipolar interactions additionally influence the selection rules of the wavevector [92, 121]. In this case, the demagnetizing field \(H_{\text{dem}} \) in Eq. (1.1) is inhomogeneous and mode dependent. For a dot of regular shape, the approximate formula for the demagnetizing field can be derived analytically [121], and in recent literature, we can find experimental validation of this approach, see, e.g., Fig. 1.3. The SW resonances obtained in the FMR measurements, i.e. under excitation with the homogeneous microwave field, in the out-of-plane magnetized Py dots of the circular [121], triangular shape [122], and rings [123] where explained with the use of dispersion relation of SWs in thin film.

Due to limiting sensitivity of the FMR measurements, most of the studies were performed with the array of dots separated by a distance at which the magnetostatic coupling between the dots can be neglected. Only recently, the SW resonances in the relatively thick CoFe nano-disc magnetized out-of-plane were determined from the single dot measurements [124]. This proves the possibility of obtaining very high sensitivity in FMR measurements, especially that as
Figure 1.3: (a), (b) The ferromagnetic resonance spectra at 11 GHz from the 100 nm thick Py film and Py circular ring (of the inner 1.1 and outer 1.5 µm radius), respectively, magnetized out-of-plane. (c) Resonance fields extracted as a function of the excitation frequency for the circular ring: triangles and squares are experimental results; solid lines are theoretical calculations based on the dispersion relation, Eq. (1.1) with an inhomogeneous H_{dem}. The indices m, and n indicate the quantization numbers of the modes along the azimuthal and radial direction, respectively. Figure reproduced with permission from X. Zhou, E. V. Tartakovskaya, et al. “Engineering spin wave spectra in thick Ni80Fe20 rings by using competition between exchange and dipolar fields”. In: Physical Review B 104 (Dec. 2021), p. 214402. Copyright (2021) by the American Physical Society.

many as 9 SW resonances were detected, which promises large usefulness of this measurement technique for magnonics in nanoscale elements.
As mentioned in the introduction, in recent years, magnonic crystals have received significant attention due to their potential applications in both fundamental research on linear and non-linear wave dynamics, and in signal processing in the microwave frequency range [59]. These structures, having both in-plane and out-of-plane magnetization configurations, exhibit useful features, such as band folding and band gaps, in which SWs are unable to propagate, making their spectra significantly different from those of uniform media. Magnonic crystals can take a variety of forms, such as periodic magnetic patterns (bi-component, array of dots or ADLs), periodically ordered magnetic domains, or time-dependent dynamic textures – magnonic time crystals [61, 125]. Furthermore, the magnetization dynamics can be efficiently modulated in bi-component magnonic crystals, where the periodicity may be attributed to the double sub-lattices of two different materials [126, 127], or the different orientation of magnetization [68].

So far, it has been shown that such structuring can be used to design magnonic sensors [128, 129], filters [130, 131], amplifiers [132], phase shifters [133–135], couplers [136, 137], multiplexers [138], transistors [139] and logic gates [79, 139, 140]. Most of the proposed magnonic structures consist of one- and two-dimensional structuring based on thin ferromagnetic films. The combination of the advantages of the out-of-plane magnetization induced by the presence of PMA and the aforementioned properties of magnonic crystals raises great interest for further study. In particular, the ADL type and the periodic magnetic textures have drawn intense research interest and it will be reviewed below.
CHAPTER 2. SPIN-WAVE DYNAMICS IN MAGNONIC CRYSTALS

Figure 2.1: (a) Dispersion relation of SWs along the [11] crystallographic direction in the ADL based on the square array of holes (lattice constant $a = 415$ nm) in the 40-nm-thick Py film. The static magnetic field is 1.5 T and is applied perpendicular to the film surface. (b-c) Calculated SW-mode profiles for the modes MF and M1 marked in (a). Figure reproduced with permission from R. Bali, M. Kostylev, et al. “High-symmetry magnonic modes in antidot lattices magnetized perpendicular to the lattice plane”. In: Physical Review B 85 (Mar. 2012), p. 104414. Copyright (2012) by the American Physical Society.

0.1 SW spectra in antidot lattices

The dynamics of SWs in PMA materials over the past few decades has been measured mainly in thin films [141, 142]. Then with the development of patterning methods and the manufacture of multilayer materials, theoretical and experimental research was carried out on various materials and different patterning [68, 77, 143–146].

For example, FMR spectrum for perpendicularly magnetized ADLs based on layers made of Py and square lattice of circular holes has been studied both experimentally and theoretically [143–145]. Bali et al. in Ref. [143] measured resonance frequencies using microstrip FMR in ADL of 415 nm period. A number of modes (see, Fig. 2.1 (a)) have been found, including the fundamental mode of ADL with the lowest frequency (yet greater than the FMR frequency of a uniform Py film), and higher-order modes with frequencies increasing with the quantization number (see Fig. Figure 2.1 (b-c)). Frequencies of all these modes linearly depend on the perpendicularly applied magnetic field value. Although those measurements didn’t allow to determine of the dispersion relation, they computed it numerically for the two directions of SW propagation, along the main axis of the square lattice and along the diagonal. They found the bands splitting but their frequency positions and widths depended on the propagation direction, which makes it difficult to open a full magnonic bandgap. This study also revealed that for the diagonal direction of propagation, as the hole diameter increases, the width of the first band...
decreases, whereas the band separation increases.

The subject of SWs in perpendicularly magnetized square-lattice ADLs made of Py was also considered by Schwarze et al. in Ref. [144]. It was shown using micromagnetic simulations that in the ADL based on a 22 nm thick film and circular holes of a diameter 120 nm, a full bandgap is present. An increase of both the SW band frequencies and the width of the bandgap with decreasing area of the ferromagnetic material were shown in both papers cited above. These show a possibility for optimization of the magnonic band structure by an appropriate design of the magnonic crystal geometry.

To saturate an ADL along the out-of-plane direction sufficiently strong magnetic field has to be used, which is not suitable for miniaturization and integration. Therefore, ADLs made of thin-film systems with PMA are particularly promising for magnonic crystal applications. Example systems with strong PMA are Co/Pd multilayers. Such systems, with focused ion beam (FIB) milled holes of diameter 100 nm obtained by Ga-ion irradiation, were studied by Pal et al. in Ref. [146]. All-optical measurements of SW dynamics with time-resolved magneto-optical Kerr effect microscopy revealed how the SW resonance frequencies depend on the lattice constant. Analogous to the case of out-of-plane magnetized ADLs in Py, the frequencies decrease with increasing separation between the holes. However, here, for some resonant modes, an opposite tendency was also observed. Interestingly, it was shown that these modes may have frequencies lower than the FMR frequency of the uniform Co/Pd multilayer (without holes). Theoretical analysis using the plane wave method (PWM) revealed that the low-frequency modes can be associated with magnetization oscillations in the vicinity of holes, and they were called shell modes (edge modes). It was proposed that these modes emerge due to locally, near the edges of the holes, induced modifications in the material parameters of the Co/Pd multilayer by the Ga bombardment. In the calculations, a reduction of the values of magnetocrystalline anisotropy, effective magnetization, and exchange constant was assumed. Although the local reduction of the PMA could also cause the in-plane rotation of magnetization in the holes’ shells at remanence, this effect was not taken into account until recently [68].

The recent study by Pan et al. in Ref. [68] continues the topic of SWs in the ADL lattice based on Co/Pd multilayer with PMA. Here, the research was focused on the influence of the magnetization orientation in the shells on the SW dynamics (Fig. 2.2 a-c) in unsaturated state. This study was focused on the square-lattice ADL with different shapes of the holes. It was also assumed that the shells around holes have significantly reduced PMA, due to the Ga+ ion irradiation during the patterning process. At remanence and small magnetic fields, in these areas the demagnetizing energy prevail, creating areas with complex (vortex or onion-like) magnetic textures around the holes (see the right panel in Fig. 2.2 a-c). In these regions of width down to 5 nm, the magnetization stabilizes in the film plane forming suitable conditions for
localization of low-frequency SWs (see the left panel in Fig. 2.2 a-c). Furthermore, it was shown that the antidots with triangular, square, and diamond antidots can have different magnetization configurations at remanence, resulting in different oscillation frequencies. Such edge-localized SWs, which are strongly influenced by geometry and magnetization configuration, are worthy candidates for re-configurable magnonic devices.

0.2 SW guiding in magnonic crystals

One of the flagship uses of periodic structures in photonics is guiding electromagnetic waves. Similar studies have also been performed in magnonics for perpendicularly magnetized ADLs. Schwarze et al. in Ref. [147] applied this concept to ADL made from CoFeB layer with PMA (see Fig. 2.3(a-b)) by removing one row of holes, the part which was used to create a channel and guide SWs. Indeed, the SWs at frequencies from the bandgap of the ADL spectrum were confined to the created channel, and they allow for signal transmission. The all-electrical SW spectroscopy
utilizing two coplanar waveguides was used to investigate the impact of the lattice constant on the group velocity of SWs. Interestingly, it revealed that it is possible to achieve higher group velocities in such magnonic crystal waveguide as opposed to an ordinary waveguide made of a single stripe of the same width as the SW channel in the ADL (see Fig. 2.3(c)).

The topic of magnonic crystal waveguides based on the out-of-plane magnetized ADLs was further conducted by Chi et al. [148], but it was based on YIG film saturated by the external magnetic field.

0.3 Topologically protected propagating edge SWs

The other interesting property of the out-of-plane magnetized ferromagnetic elements forming periodic patterns is that they can form favorable conditions for existence of the edge magnonic bands with topological protection. This is due to the unique, as compared to photonics and phononics, property of magnonic systems, which is the presence of chiral interactions: the ubiquitous magnetostatic [149] and DMI.

The existence of edge SW states were shown for bicomponent magnonic crystals with a complex unit cell composed of YIG film hosting Fe dots [150]. Due to magnetostatic interactions, the propagation of SWs from topologically protected bandgaps, along the edges of the system, is robust against irregularities in the periodicity of the lattice, boundary roughness, and it is free of any elastic backward scatterings with moderate strength. Also, due to chiral magnetostatic coupling in a lattice of ferromagnetic discs and pillars saturated out-of-plane, the formation of topological SW edge modes were predicted [150, 151]. In Ref. [151], besides of the time-
reversal symmetry breaking of the magnetostatic interactions, the inhomogeneity of the internal magnetic field at the lattice edges was also indicated as a possible mechanism for the SW edge states formations. Interestingly, not only magnetostatic interactions, but also DMI which have a chiral nature, may provide suitable conditions for formation of the topologically protected SW bands at the edges of the artificial crystals, including SkLs, which will be described later in this review [86, 152, 153].

0.4 SW bands in stripe domain structure

Magnetic texture-based magnonics is becoming an excitingly growing subfield of magnonics [5, 58, 155]. The main advantages of the utilization of magnetization textures as a medium for SW propagation are the magnetic field-driven reconfigurability, so a complex nanostructuring is not required and the impact of defects may be reduced, these systems do not require any static external magnetic field during their operation, and offer the ability to couple SWs with the magnetization texture dynamics. One of the basic classes of systems studied so far are stripe domain patterns. Such systems can occur in media with PMA in ultra-thin films with \(Q > 1 \). For mono and multi-layers with \(0 < Q < 1 \) stripe domain patterns may also emerge, however, above a certain critical thickness [156, 157]. The critical thickness above which weak stripe domain patterns with alternating out-of-plane component of magnetization appear depends on the value of \(Q \). The critical thickness can range from a few tens of nanometers to values even greater than a few hundred nanometers, for materials with \(Q \ll 1 \). Such textures in remanence are characterized by an effective non-zero in-plane component of magnetization resulting from the internal structure of the domain walls [158, 159]. These domain walls are complex, non-uniform across the thickness and resembles vortices with cores aligned in one direction, see Fig. 2.4 (c).

Resonance spectrum in stripe domain patterns is a subject of years-long investigation [156, 160–162]. It was shown, among others, that the response of the system strongly depends on the polarization of the microwave field [156]. This is due to the fact that a microwave field linearly polarized along the direction of equilibrium magnetization in a particular part of the texture does not excite modes in this region. Interestingly, although, the resonance spectrum in stripe domain patterns is well-known, the utilization of stripe domain patterns as magnonic crystal is a relatively new topic of research. The first theoretical papers investigating SW propagation in stripe domains obtained in ultra-thin films with PMA in the context of their use as magnonic crystals were published in 2015 and 2016 [163–165]. Wang et al. [163] demonstrated analytically the band gap opening in such magnetization texture. Borys et al. [165] studied the effect of DMI interaction, which among others, changes the type of domain walls, from Bloch at zero DMI to Néel for large values of DMI, on the opening of band gaps in periodic stripe domains.
The primary technique for measuring the dispersion relation of SWs is Brillouin light scattering (BLS) spectroscopy, but it can also be used to measure other properties of SW dynamics like zero wavevector modes [166], modes’ imaging [167], or to determine the strength of DMI [168], for example, in stripe domain patterns [119, 166]. Camara et al. [166] investigated how the frequency of the modes localized at the surface of the stripes domains changes with magnetic field strength. They used BLS and FMR measurements to investigate 78 nm α-Fe film. They observed two sets of modes with different dependencies on the magnetic field, where the first has been localized at the surface of the stripes domains, while the second at the inner region of these stripes where the local magnetization is perpendicular to the surface. Dhiman et al. [168] using BLS measurements on (Ir/Co/Pt)$_6$ multilayers and non-zero wavevector SWs, have quantitatively evaluated the interfacial DMI strength as the difference between Stokes anti-Stokes peak frequencies. The first experimentally measured dispersion relation of SWs propagating across a stripe domain pattern was reported by Banerjee, et al. in Ref. [119]. In this study, a Co/Pd multilayer of total thickness around 42 nm characterized by the moderate value of PMA ($Q < 1$) was considered. Fig. 2.4 shows a schematic of the system studied in Ref. [119], the equilibrium magnetic configuration, and a magnetic force microscope (MFM) image. Aligned stripe domains with a lattice constant of about 100 nm are visible. BLS measurements detected 4 bands for propagation across the domain walls. These results agree well with the micromagnetic simulations. Moreover, the simulations reveal the opening of bandgaps. This topic was further discussed in detail in Ref. [154]. Interestingly, the two lowest modes originate from the oscillations of magnetization texture and can be associated as originating in the Goldstone mode. Furthermore, it was recently reported that while the stripe domain pattern emerges (for field values just below the critical field), we can observe also the occurrence of the Higgs mode [120]. The bands of higher frequency can be identified as ordinary SWs. The influence of the polarity and chirality of domain walls on SW dynamics was also studied in Ref. [154].

Another intriguing topic is the propagation of SWs along domain walls, which are considered to be a promising type of ultra-narrow waveguides [13, 169]. Banerjee et al. in Ref. [119] showed the experimentally measured dispersion relations of a few SW bands propagating along the domain walls. Interestingly, the simulation results indicate that this propagation is unidirectional, i.e., the direction depends on the domain-wall chirality. This unidirectionality was explained by Henry et al. in Ref. [170].
Figure 2.4: (Color online) (a) MFM image revealing the parallel (left panel) and labyrinth (right panel) weak stripe domains in Co/Pd multilayers. (b) Magnetic hysteresis loops of Co/Pd multilayers with in-plane and out-of-plane applied magnetic fields. (c) The cross-sectional view through the thickness of the magnetization configuration obtained by means of micromagnetic simulations. Arrows indicate the magnetization vector. A schematic representation of this magnetization distribution with clockwise and anticlockwise domain walls is shown in the bottom panel. (d) Dispersion relation for the propagation of SWs across the domain walls (along the y-axis). The colormap in the background represents the results of micromagnetic simulations. In contrast, the white points indicate experimentally measured dispersion by BLS. Figure reproduced with permission from Pawel Gruszecki, Chandrima Banerjee, et al. “The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns”. In: Solid State Physics - Advances in Research and Applications 70 (Jan. 2019), pp. 79–132. Copyright (2022) by Elsevier Inc.
As mentioned in the introduction, DMI is another, along the PMA, important interaction that leads to the emergence of noncollinear magnetic states. As DMI favors the perpendicular alignment of neighboring spins [53, 171], the simultaneous presence of the symmetric exchange leads to the formation of chiral domain walls [172–174], and also skyrmions [70, 175–178]. Magnetic skyrmions were first experimentally observed in bulk non-centrosymmetric crystals [179, 180], and later on in single ultrathin films [181]. The origin of DMI is responsible for the formation of different skyrmion configurations: in bulk DMI, so-called Bloch-type skyrmions are mainly formed, and in multilayers with heavy metal/ferromagnet interfaces, the interfacial DMI results in Néel-type skyrmions formation [182–186]. Currently, with respect of potential applications, the research is focused on metallic heterostructures (multilayers) with thin ferromagnetic layers coupled to materials with strong spin-orbit couplings [187, 188].

Skyrmion dynamic has been and continues to be studied for many different configurations, systems and material compositions. This includes isolated and multiple skyrmions in nanodot [177, 189–192], as well as skyrmion chains in magnetic stripe or lattice of dots [84, 193, 194] and two-dimensional SkLs (skyrmion crystals) [133, 179, 180, 195–198]. The materials used in these investigations include ultra-thin ferromagnetic films and multilayered structures [27, 40, 199]. Such a wide interest in skyrmions is justified by their potential applications. The main perspective envisaged for Néel skyrmions are ultra-dense memories and computing systems, in particular racetrack memories and brain-inspired computing systems [39, 200–202]. However, the use of skyrmion still requires a few important challenges to be overcome. Selection of the compounds and manufacturing of high-quality multilayers suitable for skyrmion formation and
motion, controlled and reproducible nucleation of skyrmions, control of skyrmion motion on long distances as well as excitation and detection of the skyrmion dynamics, are among them.

There are a variety of mechanisms already identified for the nucleation of magnetic skyrmions. These include the use of magnetic [203, 204] or electric fields [205], electric currents [46, 206, 207], thermal gradients [208], besides skyrmion generation during a sample remagnetization process [70, 209], induced by magnetic force microscopy tip [210], geometrical constrictions from domain walls [211, 212] or laser heating [213–217]. The racetrack memories require high skyrmion velocities, so enhancing torque-induced motion of skyrmion, i.e., electric current. Here, the main obstacle is skyrmions’ collision with the boundaries of the medium due to the skyrmion Hall effect [218].

Much less attention is devoted to spin dynamics, in particular skyrmion dynamics and skyrmion interaction with SWs. In the following sections, we provide an overview of selected studies of SW dynamics in magnetic skyrmions related to mentioned challenges.

0.1 Nucleation and stabilization of magnetic skyrmions by SWs

Despite substantial success in terms of skyrmion nucleation using a number of different approaches, as mentioned above, the use of the SWs and spin dynamics for skyrmion formation has not been widely explored [219–221]. However, such an effect can be very interesting in magnonics. Recently, Yao et al. [221] showed the method of generating magnetic skyrmions in the effective Co layer with DMI and PMA by focusing SWs totally reflected by a curved film edge. This study numerically demonstrated that the accumulation of SW energy in the focal spot can be sufficient to form or destroy a skyrmion. In this method, the SW intensity at the focal point increases significantly, showing a strong magnetization oscillation, as seen in Fig. 3.1 (a, subplot A). As SWs are continuously excited, more energy can be accumulated, resulting in the switching of the magnetization locally and the formation of magnetic droplets, which can be easily driven by SWs, as shown in Fig. 3.1 (a, subplot B). A magnetic droplet is then transformed into a stable skyrmion under the continued influence of SWs as shown in Fig. 3.1 (a, subplots C-D).

Another process, which involves SWs in the formation of skyrmions has been proposed by Muller, et al. [222]. In a thin film, a magnetization canted at the film edge, appearing due to DMI, creates favourable condition for the existence of SWs, which are bounded to the film edge, i.e., edge SWs. DMI introduces also nonreciprocity to the SW dynamics and minima in the dispersion relation of edge SWs for positive (or negative) wavevectors is formed. The softening of the edge mode at nonzero wavenumber with decreasing magnetic field results in magnetization instability. That way, skyrmions can be created in a controlled manner, just by using the specific
CHAPTER 3. SPIN DYNAMICS IN TOPOLOGICALLY PROTECTED SPIN TEXTURES

Figure 3.1: (a) The process of creating the magnetic skyrmion by focusing the reflected SW beam. The exciting microwave magnetic field is applied in (A, B, C), and is turned off in (D). The z-component of the magnetization in the rectangular area from the left column is enlarged in the right column. Figure reproduced with permission from Xianglong Yao, Zhenyu Wang, et al. "Magnetic skyrmion generation by reflective spin wave focusing". In: Frontiers in Physics 9 (Sept. 2021), p. 511, under the terms of license CC BY 4.0. (b) Creation of a chain of skyrmions from the edge-localized SWs using a local instability of the magnetization at the film edge. The panels show snapshots at various times and various magnitudes of the external magnetic field, according to the schemes shown at the left-bottom corners. The colour denotes the z-component of the magnetization obtained by micromagnetic simulations. Figure reproduced with permission from Jan Müller, Achim Rosch, et al. "Edge instabilities and skyrmion creation in magnetic layers". In: New Journal of Physics 18 (June 2016), p. 065006 under the terms of license CC BY 4.0.
spatial and time protocol of the external magnetic field. As shown in Fig. 3.1(b), the edge SWs locally destabilize the magnetization after decreasing the magnetic field, thereby initiating the formation of the merons [223, 224] (i.e., half of the skyrmion), which grow, and move into the film area over time (see, Fig. 3.1(b), subplots b-d). An increase of the magnetic field eventually leads to the formation of the skyrmions from the merons detached from the film edge (see Fig. 3.1(b), subplots e-f). Although, the theory was developed for the 2D ferromagnetic system without magnetostatic interactions, it convincingly explains the experimental observation of the skyrmion chain formation in FeGe stripes [225], and the scenario should apply also to the multilayered films with the interfacial DMI.

0.2 Eigenoscillations of the magnetic skyrmion in constrained geometries

Skyrmion dynamic, in particular excited by the microwave magnetic fields, is promising for application in the field of magnonics. There are four characteristic types of the skyrmion modes [189, 226–229]: breathing, gyrotropic, radial and azimuthal, which are partially presented in Fig. 3.2. The modes can be classified according to the radial \((n)\) and azimuthal \((m)\) indices, which correspond to the number of radial, and azimuthal wave nodes, respectively. For the gyrotropic modes, the skyrmion center may rotate clockwise (CW) or counterclockwise (CCW) around the center position \((n = 0 \text{ and } m = \pm 1)\) depending on the core polarization. The frequency of the gyrotropic mode is generally between zero and 1 GHz. This mode represents a skyrmion center circular movement, and therefore it is more prominent for smaller skyrmions. The strong coupling of skyrmion gyrotropic motion with the low \(m\) azimuthal modes is expected for larger skyrmions. The azimuthal modes, are similar to a gyroscopic mode, but the center of the skyrmion remains in the same position, while only the SWs propagate along an azimuthal path \((n = 0 \text{ and } m \neq 0)\) (see, Fig. 3.2 (b)). For the breathing mode, the area of skyrmion extends and shrinks periodically \((n = 0 \text{ or } 1 \text{ and } m = 0)\). The experimental demonstrations of skyrmion dynamics are still limited due to the high damping of skyrmion hosting structures, difficulties of sample fabrication, and very selective sensitivity of the skyrmion modes on the microwave field.

Magnetic texture strongly depends on the material parameters and external factors such as a magnetic field or electric current. Under given conditions, the magnetic skyrmion can be nucleated, annihilated or transformed into another texture like a complex domain or vortices. Such a state change can be dynamically controlled by external factors. This ability to control the magnetic texture can be used to control SW bands. Mruczkiewicz, et al. in Ref. [189] studied azimuthal SW’s excitations in a circular ferromagnetic nanodot in different inhomogeneous, topologically nontrivial magnetization states. In particular, they studied SW dynamics
Figure 3.2: (a) Schematic snapshots in different moments in time of skyrmion eigenexcitation for three types of modes: breathing mode, CCW (counter-clockwise mode) and CW clockwise gyrotrropic mode. Figure reproduced from Martin Lonsky and Axel Hoffmann. “Dynamic excitations of chiral magnetic textures”. In: APL Materials 8 (Oct. 2020), p. 100903 under the terms of license CC BY 4.0. (b) Spatial distribution of the static magnetization (left column) and SW eigenmodes (right column) (the amplitude and phase of the z dynamic magnetization component) for three different frequencies with a different azimuthal number in the nanodisk with the Néel skyrmion. (c) Frequencies of SWs excited along the paths between four inhomogeneous magnetization configurations obtained by changing PMA constant and DMI in the ferromagnetic nanodisk: (starting from the left) vortex, Bloch and Néel like skyrmions, and again vortex. Below, the static properties of the respective solitons: (from the top) the skyrmion number (topological charge), the average skyrmion phase, the reduced skyrmion radius, and the average magnetization components. Figures (b) and (c) reproduced with permission from M. Mruczkiewicz, P. Gruszecki, et al. “Azimuthal spin-wave excitations in magnetic nanodots over the soliton background: Vortex, Bloch, and Néel-like skyrmions”. In: Physical Review B 97 (Feb. 2018), p. 064418. Copyright (2022) by the American Physical Society.
along the closed continuous path with transitions as: vortex→Bloch-type skyrmion→Néel-type
skyrmion→vortex state. These transitions were realized by gradually changing the out-of-plane
magnetic anisotropy and the DMI value. Interestingly, the CW and CCW modes of the same
azimuthal number \(m\) have the same frequency only in the vortex state. As soon as the mag-
etization rotates from the in-plane alignment of the vortex state, the CW and CCW modes
attain different frequencies, with the splitting reaching even a few GHz (see, e.g., the \(m = 3\)
and \(-3\) azimuthal SW eigenmodes in Fig. 3.2(b)). Interestingly, a similar effect was predicted
for the vortex state in the ferromagnetic ring with increasing magnitude of the out-of-plane
external magnetic field or anisotropy. Here, the origin of the splitting effect was attributed to
the topological phase acquired by SWs propagating around the ring, different for the opposite
directions of propagation [230].

The SW dispersion relation in one-dimensional chain of nanodots with skyrmions was
investigated theoretically by Mruczkiewicz et al. in Ref. [84]. The modes forming the collective
magnon bands were identified as breathing and clockwise (for assumed skyrmion polarization)
gyrotropic SW modes, which correspond to the high- and low-frequency modes, respectively.
Later, collective band of the breathing modes in one-dimensional skyrmion chain periodically
arranged in a Pt/Co/Ta multilayered thin-film nanostripe (see, Fig. 3.3 (a)) have been studied by
Kim et al. in Ref. [229]. They showed that, due to expansion and contraction of the skyrmion
cores, the anti-phase breathing oscillations of the neighbouring skyrmions show lower energy
than their in-phase oscillations. This means that the band incurs higher energy at the Brillouin
zone center (\(k = 0\)) when both cores expand in the same direction than at the Brillouin zone
boundary (see, Fig. 3.3 (a, subplots II-III)). Interestingly, the excited breathing mode propagates
with a negative group velocity of relatively high magnitude up to 340 m/s through the 1D lattice.
Therefore, collective breathing modes in the skyrmion lattices can serve as information carriers.
Importantly, the dispersion relation can be controlled by an external magnetic field that changes
the size of the skyrmions or by altering the inter-skyrmion distance. With optimization of these
parameters, the group velocity can reach values even up to 700 m/s.

The above discussion of collective excitations of skyrmions uncover the interesting nature
and possible utilization of skyrmion dynamics. Due to the fact that the SW band structures
and bandgaps of SkLs can be switched dynamically by changing the skyrmion states, the
modulation and transition of SW modes from nontrivial to trivial topologies became a new topic
of recent papers [231]. For example, very recently, Diaz, et al. in Ref. [86], studied controllable
switching of chiral and topologically protected magnonic edge states in a ferromagnetic 2D SkL.
They showed that a topological phase transition can occur in the SW spectrum of a Néel-type
skyrmion lattice just by changing an external magnetic field (see, Fig. 3.3 (b)). As shown in the
sequence of plots in Fig. 3.3 (b, subplots IV-V), the CCW and breathing modes approach each
CHAPTER 3. SPIN DYNAMICS IN TOPOLOGICALLY PROTECTED SPIN TEXTURES

Figure 3.3: (a) SWs in 1D skyrmion lattice. (I) The sketch of the 1D skyrmion lattice in a ferromagnetic stripe. Color indicates the out-of-plane component of the magnetization. (II) Dispersion of SWs in 1D skyrmion lattice. (III) Spatial profiles of the m_z (out-of-plane) component oscillations in the skyrmion lattice for the collective breathing mode in the Brillouin zone (BZ) center and BZ edge. Figure reproduced with permission from Junhoe Kim, Jaehak Yang, et al. “Coupled breathing modes in one-dimensional Skyrmion lattices”. In: Journal of Applied Physics 123 (Feb. 2018), p. 053903. Copyright (2022) by the American Institute of Physics. (b) Magnetic-field-driven topological phase transition in skyrmion lattices. (I)–(III) SW spectrum of the 2D SkL at and in the vicinity of the topological phase transition for different values of the magnetic field b around the critical field value b_c. The CCW (A) and breathing (B) modes are shown in blue and red, respectively. Time evolution of the CCW (IV) and breathing (V) modes’ out-of-plane magnetization. T represents the period of both SW modes. Figure reproduced with permission from Sebastián A. Diáz, Tomoki Hiroawa, et al. “Chiral magnonic edge states in ferromagnetic skyrmion crystals controlled by magnetic fields”. In: Physical Review Research 2 (Feb. 2020), p. 013231, under the terms of license CC BY 4.0.
other at the Brillouin zone center, when the magnetic field decreases. At some specific field value, i.e., at the critical field, the phase transition happens and a low-energy SW gap closes. By further decreasing the field, we observe a reopening of the gap, but importantly, below the critical field, the bottom band acquires a nonzero Chern number. For the finite system, the two topologically protected magnonic edge states can exist within this gap. The bottom panel of Fig. 3.3 (b) presents snapshots of the time evolution of the out-of-plane magnetization of the modes from the two considered bands, clearly showing their azimuthal and breathing character. Although the study was performed for 2D systems while neglecting magnetostatic interactions, it reveals interesting property that by applying a magnetic field, a topological phase transition and the corresponding low-energy chiral magnonic edge states can be controlled, promising utilization of robust directional magnon spin currents.

0.3 Skyrmions motion

Another appealing feature of the magnetic skyrmions is the possibility to move them along the track, which can be realized by electric current via spin transfer [232–234] or spin-orbit torques [192, 235–237]. This feature is particularly interesting from an application point of view because skyrmion’s motion is driven by a much lower current density relative to a domain wall’s motion [181, 238, 239]. Thus, skyrmions seem to be good candidates for the use of racetrack magnetic memories [6, 31, 40, 199, 200, 240]. However, when skyrmions are driven along the straight stripe, they experience a transverse deflection because of the Magnus force [241–243]. This phenomenon, called skyrmion-Hall effect, is regarded as a drawback in-memory applications because eventually, it might end up in destroying the skyrmion at the edge of the track. Intensive research is currently underway to minimize the skyrmion Hall effect, involving different approaches, such as braking skyrmion symmetry [177, 244–246], exploitation of the synthetic antiferromagnets or utilizing skyrmion transport in pattered structures [247, 248].

The above-mentioned skyrmion Hall effect, while undesirable in many cases, can be also practically exploited. Whenever a moving skyrmion meets a pinning site or a barrier (for example an antidot), the Magnus force [6, 251], strongly influences the skyrmion motion, causing acceleration effects and skyrmion deflection [252–256]. This is a result of the fact that the direction of the applied current and the corresponding Magnus force creates a perpendicular velocity component, while finite damping aligns the skyrmion velocity in the direction of the current [252].

Feilhauer et al. in Ref. [75] showed theoretically that the skyrmions can travel through the channels of ADL. While the electric current has a fixed direction of flow, due to the nontrivial interaction between the repulsive potential introduced by the antidots, the skyrmion Hall effect,
CHAPTER 3. SPIN DYNAMICS IN TOPOLOGICALLY PROTECTED SPIN TEXTURES

Figure 3.4: (a) Figure presents effective potential V_{eff} combining the effects of antidot potential V and driving current on the skyrmion motion in the undamped sample. (I)–(IV) Three types of skyrmion trajectories resulting from the applied current. Red curves show the corresponding skyrmion trajectories starting from the potential minimum (valley). Figure reproduced with permission from J. Feihauer, S. Saha, et al. “Controlled motion of skyrmions in a magnetic antidot lattice”. In: Physical Review B 102 (Nov. 2020), p. 184425. Copyright (2022) by the American Physical Society. (b) Skyrmion trajectories (lines) for Néel-type skyrmion (red circle) moving through a periodic array of pinning sites (black dots). Figure reproduced with permission from C. Reichhardt, D. Ray, et al. “Quantized transport for a skyrmion moving on a two-dimensional periodic substrate”. In: Physical Review B 91 (Mar. 2015), p. 104426. Copyright (2022) by the American Physical Society. (c) Skyrmion movement as a function of applied current density and pinning sites size (in the form of antidot with radius diameter 60 and 120 nm). A positive current density is applied at the right lead (left column) and a negative current is applied at the right lead (right column). Figure reproduced with permission from Dieter Suess, Christoph Vogler, et al. “Spin torque efficiency and analytic error rate estimates of skyrmion racetrack memory”. In: Scientific Reports 9 (Dec. 2019), p. 4827 under the terms of license CC BY 4.0.
and the non-uniform current distribution, a full control of the skyrmion motion can be achieved. The researchers demonstrated that a structured CoFeB layer as an ADL, when magnetized perpendicularly to the film plane can be used to control the skyrmion’s motion. In particular, using a rectangular electric current pulse of sufficient density and width, they showed that a skyrmion can be transported between individual valleys of the effective potential with a motion controlled in both the longitudinal and transverse directions. They recognize three types of skyrmion trajectories. Assuming the skyrmion starts from the bottom of the valley presented in Fig. 3.4 (a-I), the skyrmion oscillates inside the valley (a-II), the skyrmion escapes the starting valley, and passes around an antidot to the neighbouring valley (a-III), the skyrmion passes to the neighbouring valley directly through the saddle point between the valleys avoiding the skyrmion motion around the antidot (a-IV). Thus, the skyrmions can be steered to move into almost any position of the ADL by carefully directing the current pulse. The skyrmion can be moved to the desired location with the right sequence of electrical impulses, which is a very important property for applications.

Similar study on skyrmion movement around pinning sites was performed by Reichhardt et al. in Ref. [257] and Suess et al. in Ref. [250]. Reichhardt et al. discussed semi-analytically the dynamics of a skyrmion moving over a two-dimensional array of pinning sites, utilizing simulations of a particle-based skyrmion model. In particular, they examined the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In Fig. 3.4 (b) for given magnetic and current parameters, the skyrmion follows a sinusoidal trajectory, moving by one saddle point in the x-direction and one saddle point in the y-direction in a single current period, when the perpendicular (skyrmion Hall effect) and parallel forces (current) acting on the skyrmion are equal. The right hand subplot in Fig. 3.4 (b) illustrates the skyrmion trajectory when the strength of both of these forces are not equal, resulting in different trajectories of the skyrmion. Fig. 3.4 (c) presents the simulated results by Suess et al. on skyrmion trajectory for the two different geometries, with a different one-dimensional chain of the pinning sites in dependence on driving current density and current sign. Their study shows that the skyrmion trajectory in this system strongly depends on the pinning site size (like an antidot radius), and the current density. In addition, in all presented here papers, they have shown that the movement of a skyrmion can exhibit an acceleration effect, in which the interaction of the skyrmion with a pinning site can speed up the skyrmion in such a way that its velocity is higher than the value that would be induced by an external electric current alone [250, 257].
This chapter reviews selected studies on the magnetization dynamics of patterned ferromagnetic thin films with PMA, which have been a subject of intense research for the past several years. We foresee several possible practical applications of such systems, including the creation of a basis for reconfigurable magnonic circuits with isotropic SW propagation, and systems for exploiting skyrmions for, i.e., racetrack memories and logic operations [39, 187, 252, 258]. We recognize these two properties as key characteristics of patterned PMA thin films that are indicated in many studies, but have not yet been fully researched or put into practice.

Theoretical and numerical studies show that SW bands in magnonic and skyrmionic crystals exhibit interesting characteristics such as dynamic tunability or a possibility of existence of topologically nontrivial SW modes [197, 259–262]. Moreover, the thin layers and multilayers of PMA offer promising properties that enable the creation of a system with a programmable, non-uniform magnetization texture, including periodic magnetization patterns [89, 99, 117, 263, 264]. However, the experimental verification of the theoretical predictions has so far been very limited and, for example, includes the lack of experimental confirmation of full magnonic bandgaps in ADL structures, or the formation of band gaps in thin films with periodic stripe domains.

The other interesting area, in which PMA materials with patterned architecture have found interest, is related to magnetic skyrmions. This research area is still very active, and recent works show great progress [39, 258]. In particular, we discussed the dynamic modes in skyrmion, skyrmion lattices, the proposal for atypical skyrmion nucleation with the use SWs, and the mobility of skyrmions within patterned nanostructures [176, 181, 243, 265–267]. In these cases,
one of the key shortcomings of the experimental studies of dynamic effects is the lack of confirmation of the static magnetic configuration, which is often assumed solely on the basis of micromagnetic simulations.

The mobility of skyrmions is considered one of their advantages for application in racetrack memories, but their motion is strongly influenced by Magnus force, local defects, and pinning sites [252, 268, 269]. We review here the less known use of skyrmion, i.e., skyrmion transport in the periodically patterned films. It has been shown that a properly designed sequence of electric current pulses allows for full control over the skyrmion’s movement in a two-dimensional system of pinning centers or antidots. This indicates that these scenarios can be used to design logical operations [258, 270–272].

A common challenge in the further development indicated above is the development of experimental methods, for the detection of magnetization textures as well as their dynamics. As an alternative to conventional methods such as ferromagnetic resonance and Brillouin light scattering [119, 167, 273], magnetization textures and skyrmions can be studied using more sophisticated techniques, like time-resolved X-ray imaging [19, 235, 241, 274–278], which require large-scale facilities. In recent years, work has been carried out on 3D tomography of magnetic textures [279–282], which may also be used for time-resolved measurements in the future.

Thus, the milestone in the advancement of research on the properties of skyrmions is the further development of techniques for detecting magnetic textures and their dynamics, with high spatial and frequency resolution, as well as methods for fabricating structured ferromagnetic materials. The state-of-the-art methods, although capable of observing skyrmions with a high spatial resolution, is limited to low frequencies, thereby limiting the range of SWs possible for observation.

To summarize, there has been mostly theoretical research on spin dynamics in thin patterned films with PMA, while experiments are rare, mainly due to the inhomogeneities in samples, challenges in patterning while keeping the PMA, and other magnetic properties intact or the increase in magnetic damping in materials containing PMA. Although we have found a number of interesting effects of application perspectives for structured samples from PMA, there are still a number of challenges to be solved and questions to be answered. However, it is expected that this research field will see a significant boost in the next few years. The two key drawbacks of these systems are high damping and defects, which make material development and improvement of sample fabrication technology critical for their use in magnonics and spintronics.
The research has received funding from National Science Centre of Poland, Grant No. UMO-2018/30/Q/ST3/00416. AB gratefully acknowledges financial support from the Department of Science and Technology, Govt. of India under Grant No. DST/NM/TUE/QM-3/2019-1C-SNB. The simulations were partially performed at the Poznan Supercomputing and Networking Center (Grant No. 398).
[1] D.-X. Chen et al. “Nonuniform domain magnetization in CoFeSiB amorphous ribbons”. In: *Journal of Applied Physics* 81.8 (Apr. 1997), pp. 4072–4074.

[2] Gen Tatara et al. “Microscopic approach to current-driven domain wall dynamics”. In: *Physics Reports* 468.6 (Nov. 2008), pp. 213–301.

[3] A. P. Malozemoff and J. C. Slonczewski. *Magnetic domain walls in bubble materials*. Academic Press, 1979, p. 326.

[4] Albert Fert et al. “Skyrmions on the track”. In: *Nature Nanotechnology* 8.3 (Mar. 2013), pp. 152–156.

[5] Michal Mruczkiewicz and Pawel Gruszecki. “The 2021 roadmap for noncollinear magnonics”. In: *Solid State Physics*. Vol. 72. Elsevier, 2021, pp. 1–27.

[6] Albert Fert et al. “Magnetic skyrmions: Advances in physics and potential applications”. In: *Nature Reviews Materials* 2 (June 2017), p. 17031.

[7] F. Bloch. “Zur Theorie des Ferromagnetismus”. In: *Zeitschrift für Physik 1930 61:3 61.3* (Mar. 1930), pp. 206–219.

[8] Frederic Keffer. “Spin Waves”. In: Springer, Berlin, Heidelberg, 1966, pp. 1–273.

[9] Charles Kittel and Paul McEuen. “Introduction to solid state physics”. In: (). p. 692.

[10] Amrit Kumar Mondal et al. “Spin-texture driven reconfigurable magnonics in chains of connected Ni80 Fe20 submicron dots”. In: *Physical Review B* 101.22 (2020), p. 224426.

[11] Robert Streubel et al. “Magnetization dynamics of imprinted non-collinear spin textures”. In: *Applied Physics Letters* 107.11 (Sept. 2015), p. 112406.

[12] Edoardo Albisetti et al. “Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures”. In: *Communications Physics* 1.1 (2018), p. 56.

[13] K. Wagner et al. “Magnetic domain walls as reconfigurable spin-wave nanochannels”. In: *Nature Nanotechnology* 11.5 (May 2016), pp. 432–436.
[14] A. V. Chumak et al. “Advances in Magnetics Roadmap on Spin-Wave Computing”. In: *IEEE Transactions on Magnetics* 58.6 (June 2022), pp. 1–72.

[15] S A Nikitov et al. “Magnonics: a new research area in spintronics and spin wave electronics”. In: *Physics-Uspekhi* 58.10 (Oct. 2015), pp. 1002–1028.

[16] Philipp Pirro et al. “Advances in coherent magnonics”. In: *Nature Reviews Materials* 6.12 (July 2021), pp. 1114–1135.

[17] Anjan Barman et al. “The 2021 Magnonics Roadmap”. In: *Journal of Physics: Condensed Matter* 33.41 (Aug. 2021), p. 413001.

[18] Jaeyong Lee et al. “Perpendicular magnetic anisotropy of the epitaxial fcc Co/60-Å-Ni/Cu(001) system”. In: *Physical Review B - Condensed Matter and Materials Physics* 56.10 (1997), R5728–R5731.

[19] N. Nakajima et al. “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular x-ray dichroism study”. In: *Physical Review Letters* 81.23 (1998), pp. 5229–5232.

[20] L. N. Tong et al. “The magnetic properties of Co/Pb multilayers”. In: *Journal of Magnetism and Magnetic Materials* 177-181.PART 2 (1998), pp. 1211–1212.

[21] B. Lanchava and H. Hoffmann. “Magnetic domains and demagnetizing fields in FeTb thin films”. In: *Journal of Physics D: Applied Physics* 31.16 (Aug. 1998), pp. 1991–1997.

[22] Frances Hellman et al. “Interface-induced phenomena in magnetism”. In: *Reviews of Modern Physics* 89.2 (June 2017), p. 025006.

[23] K. C. Kuiper et al. “Nonlocal ultrafast magnetization dynamics in the high fluence limit”. In: *Journal of Applied Physics* 109.7 (Mar. 2011), p. 07D316.

[24] Santanu Pan et al. “Controlled coexcitation of direct and indirect ultrafast demagnetization in Co/Pd multilayers with large perpendicular magnetic anisotropy”. In: *Physical Review B* 98.21 (Dec. 2018), p. 214436.

[25] Santanu Pan et al. “Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers”. In: *Journal of Materials Science* 57.11 (Mar. 2022), pp. 6212–6222.

[26] D. Sander et al. “The 2017 Magnetism Roadmap”. In: *Journal of Physics D: Applied Physics* 50.36 (2017), p. 363001.

[27] Stuart S.P. Parkin et al. “Magnetic domain-wall racetrack memory”. In: *Science* 320.5873 (Apr. 2008), pp. 190–194.
[28] Michael C. Gaidis and Luc Thomas. “Magnetic Domain Wall "Racetrack" Memory”. In: Nanoscale Semiconductor Memories. CRC Press, July 2017, pp. 229–255.

[29] W. S. Zhao et al. “Magnetic domain-wall racetrack memory for high density and fast data storage”. In: ICSICT 2012 - 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, Proceedings (2012).

[30] Fanny Ummelen et al. “Racetrack memory based on in-plane-field controlled domain-wall pinning”. In: Scientific Reports 2017 7:1 7.1 (Apr. 2017), pp. 1–8.

[31] Wang Kang et al. “A Comparative Study on Racetrack Memories: Domain Wall vs. Skyrmion”. In: 2018 IEEE 7th Non-Volatile Memory Systems and Applications Symposium (NVMSA). IEEE, Aug. 2018, pp. 7–12.

[32] P Bruno. “Physical Origins and Theoretical Models of Magnetic Anisotropy”. In: (1993).

[33] Prabhanjan D. Kulkarni et al. "Perpendicular Magnetic Anisotropy in Magnetic Thin Films". In: Advances in Magnetic Materials (Feb. 2017), pp. 627–663.

[34] I. Dzyaloshinsky. “A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics”. In: Journal of Physics and Chemistry of Solids 4.4 (1958), pp. 241–255.

[35] Yoshinori Tokura and Shinichiro Seki. “Multiferroics with spiral spin orders”. In: Advanced Materials 22.14 (Apr. 2010), pp. 1554–1565.

[36] Anjan Soumyanarayanan et al. "Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces”. In: Nature 2016 539:7630 539.7630 (Nov. 2016), pp. 509–517.

[37] S. Mühlbauer et al. "Skyrmion lattice in a chiral magnet”. In: Science 323.5916 (Feb. 2009), pp. 915–919.

[38] Y. Zhou et al. “Dynamically stabilized magnetic skyrmions”. In: Nature Communications 6 (2015), p. 8193.

[39] Börge Göbel et al. “Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles”. In: Physics Reports 895 (Feb. 2021), pp. 1–28.

[40] R. Tomasello et al. “A strategy for the design of skyrmion racetrack memories”. In: Scientific Reports 4 (Oct. 2014), p. 6784.

[41] Flaviano José Dos Santos et al. “Nonreciprocity of spin waves in noncollinear magnets due to the Dzyaloshinskii-Moriya interaction”. In: Physical Review B 102.10 (Sept. 2020), p. 104401.

[42] Aurore Finco et al. "Imaging non-collinear antiferromagnetic textures via single spin relaxometry”. In: Nature Communications 2021 12:1 12.1 (Feb. 2021), pp. 1–6.
[43] Martin Lonsky and Axel Hoffmann. “Dynamic excitations of chiral magnetic textures”. In: *APL Materials* 8.10 (Oct. 2020), p. 100903.

[44] A. Magni et al. “Key points in the determination of the interfacial Dzyaloshinskii-Moriya interaction from asymmetric bubble domain expansion”. In: (Jan. 2022).

[45] S. Rohart and A. Thiaville. “Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction”. In: *Physical Review B* 88.18 (Nov. 2013), p. 184422.

[46] J. Sampaio et al. “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures”. In: *Nature Nanotechnology* 8.11 (2013), pp. 839–844.

[47] Avinash Kumar Chaurasiya et al. “Dependence of Interfacial Dzyaloshinskii-Moriya Interaction on Layer Thicknesses in Ta/Co-Fe- B/TaOx Heterostructures from Brillouin Light Scattering”. In: *Physical Review Applied* 9.1 (Jan. 2018), p. 014008.

[48] Avinash Kumar Chaurasiya et al. “Direct Observation of Interfacial Dzyaloshinskii-Moriya Interaction from Asymmetric Spin-wave Propagation in W/CoFeB/SiO2 Heterostructures Down to Sub-nanometer CoFeB Thickness”. In: *Scientific Reports* 2016 6:1 6.1 (Sept. 2016), pp. 1–8.

[49] S Tacchi et al. “Interfacial Dzyaloshinskii-Moriya Interaction in Pt/CoFeB Films: Effect of the Heavy-Metal Thickness”. In: *Physical Review Letters* 118.14 (Apr. 2017), p. 147201.

[50] Tomoe Nishimura et al. “Interfacial Dzyaloshinskii-Moriya interaction and dampinglike spin-orbit torque in [Co/Gd/Pt]N magnetic multilayers”. In: *Physical Review B* 103.10 (Mar. 2021), p. 104409.

[51] Shawn D. Pollard et al. “Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy”. In: *Nature Communications* 2017 8:1 8.1 (Mar. 2017), pp. 1–8.

[52] C. Moreau-Luchaire et al. “Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature”. In: *Nature Nanotechnology* 11.5 (May 2016), pp. 444–448.

[53] A. Hrabec et al. “Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films”. In: *Physical Review B - Condensed Matter and Materials Physics* 90.2 (2014), p. 020402.

[54] Young Chan Won et al. “Strong perpendicular magnetic anisotropy of Pt/Co/AlN structure”. In: *Journal of Alloys and Compounds* 918 (Oct. 2022), p. 165514.
[55] Tran Thi Be Lan et al. “Enhanced perpendicular magnetic anisotropy of sputtered Pr-Fe-B thin film by inter-layer diffusion Fe–Si layer”. In: *Journal of Physics and Chemistry of Solids* 144 (Sept. 2020), p. 109506.

[56] S. Bandiera et al. “Enhancement of perpendicular magnetic anisotropy thanks to Pt insertions in synthetic antiferromagnets”. In: *Applied Physics Letters* 101.7 (2012), p. 072410.

[57] Michał Matczak et al. “Tailoring magnetic anisotropy gradients by ion bombardment for domain wall positioning in magnetic multilayers with perpendicular anisotropy”. In: *Nanoscale Research Letters* 9.1 (Dec. 2014), pp. 1–7.

[58] Haiming Yu et al. “Magnetic texture based magnonics”. In: *Physics Reports* 905 (Apr. 2021), pp. 1–59.

[59] M. Krawczyk and D. Grundler. “Review and prospects of magnonic crystals and devices with reprogrammable band structure”. In: *Journal of Physics Condensed Matter* 26.12 (Mar. 2014), p. 123202.

[60] Anulekha De et al. “Magnonic crystals with complex geometry”. In: *Physical Review B* 103.6 (Feb. 2021), p. 064402.

[61] Anjan Barman et al. “Magnetization dynamics of nanoscale magnetic materials: A perspective”. In: *Journal of Applied Physics* 128.17 (Nov. 2020), p. 170901.

[62] Gianluca Gubbiotti. *Three-Dimensional Magnonics*. Ed. by Gianluca Gubbiotti. 1st Editio. New York: Jenny Stanford Publishing, July 2019, p. 416.

[63] N. Tahir et al. “Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices”. In: *Journal of Physics D: Applied Physics* 50.2 (Dec. 2017), p. 025004.

[64] M. Zelent et al. “Geometrical complexity of the antidots unit cell effect on the spin wave excitations spectra”. In: *Journal of Physics D: Applied Physics* 50.18 (Apr. 2017), p. 185003.

[65] Felix Groß et al. “Phase resolved observation of spin wave modes in antidot lattices”. In: *Applied Physics Letters* 118.23 (June 2021), p. 232403.

[66] G. Venkat et al. “Micromagnetic and plane wave analysis of an antidot magnonic crystal with a ring defect”. In: *IEEE Transactions on Magnetics* 50.11 (Nov. 2014).

[67] E. K. Semenova and D. V. Berkov. “Spin wave propagation through an antidot lattice and a concept of a tunable magnonic filter”. In: *Journal of Applied Physics* 114.1 (July 2013).

[68] S. Pan et al. “Edge localization of spin waves in antidot multilayers with perpendicular magnetic anisotropy”. In: *Physical Review B* 101.1 (2020), p. 14403.

[69] Sougata Mallick et al. “Relaxation dynamics in magnetic antidot lattice arrays of Co/Pt with perpendicular anisotropy”. In: *Scientific Reports* 2018 8:1 8.1 (Aug. 2018), pp. 1–8.
[70] S. Saha et al. “Formation of Neél-type skyrmions in an antidot lattice with perpendicular magnetic anisotropy”. In: Physical Review B 100.14 (Oct. 2019), p. 144435.

[71] Joachim Gräfe et al. “Perpendicular magnetisation from in-plane fields in nano-scaled antidot lattices”. In: Nanotechnology 26.22 (May 2015), p. 225203.

[72] M. Krawczyk et al. “Forbidden frequency gaps in magnonic spectra of ferromagnetic layered composites”. In: Physics Letters A 282.3 (Apr. 2001), pp. 186–194.

[73] Yu V. Gulyaev and S. A. Nikitov. “Magnonic crystals and spin waves in periodic structures”. In: Doklady Physics 46.10 (2001), pp. 687–689.

[74] N. Tahir et al. “Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices”. In: Journal of Physics D: Applied Physics 50.2 (Dec. 2016), p. 025004.

[75] J. Feilhauer et al. “Controlled motion of skyrmions in a magnetic antidot lattice”. In: Physical Review B 102.18 (Nov. 2020), p. 184425.

[76] O Busel et al. “The Resonant Dynamic Magnetization Distribution in Ferromagnetic Thin Film with the Antidot”. In: Acta Physica Polonica A 133.3 (Mar. 2018), pp. 492–494.

[77] Ruma Mandal et al. “Optically induced tunable magnetization dynamics in nanoscale Co antidot lattices”. In: ACS Nano 6.4 (Apr. 2012), pp. 3397–3403.

[78] Jianchen Lu et al. “Identifying and Visualizing the Edge Terminations of Single-Layer MoSe2 Island Epitaxially Grown on Au(111)”. In: ACS Nano 11.2 (Feb. 2017), pp. 1689–1695.

[79] Andrey A. Nikitin et al. “A spin-wave logic gate based on a width-modulated dynamic magnonic crystal”. In: Applied Physics Letters 106.10 (2015), p. 102405.

[80] J. Rychly et al. “Magnonic crystals-Prospective structures for shaping spin waves in nanoscale”. In: Low Temperature Physics 41.10 (2015), pp. 745–759.

[81] T. Adams et al. “Long-range crystalline nature of the Skyrmion lattice in MnSi”. In: Physical Review Letters 107.21 (2011), p. 217206.

[82] A. V. Chumak et al. “Scattering of surface and volume spin waves in a magnonic crystal”. In: Applied Physics Letters 94.17 (2009), p. 172511.

[83] Zhi Kui Wang et al. “Nanostructured magnonic crystals with size-tunable bandgaps”. In: ACS Nano 4.2 (Feb. 2010), pp. 643–648.

[84] M. Mruczkiewicz et al. “Collective dynamical skyrmion excitations in a magnonic crystal”. In: Physical Review B 93.17 (May 2016), p. 174429.
[85] A. V. Chumak et al. “Magnonic crystals for data processing”. In: *Journal of Physics D: Applied Physics* 50.24 (2017), p. 244001.

[86] Sebastián A. Diáz et al. “Chiral magnonic edge states in ferromagnetic skyrmion crystals controlled by magnetic fields”. In: *Physical Review Research* 2.1 (Feb. 2020), p. 013231.

[87] Henryk Puszkarski and Maciej Krawczyk. “Magnonic Crystals — the Magnetic Counterpart of Photonic Crystals”. In: *Solid State Phenomena* 94 (2003), pp. 125–134.

[88] John D. Joannopoulos et al. "Photonic crystals: Molding the flow of light". In: *Photonic Crystals: Molding the Flow of Light (Second Edition)* (Oct. 2011).

[89] Abdulqader Mahmoud et al. “Introduction to spin wave computing”. In: *Journal of Applied Physics* 128.16 (Oct. 2020), p. 161101.

[90] See Hun Yang et al. “Chiral spintronics”. In: *Nature Reviews Physics* 3.5 (Apr. 2021), pp. 328–343.

[91] Daniel D Stancil (auth.) Anil Prabhakar et al. *Spin Waves: Theory and Applications*. 1st ed. Springer US, 2009, p. 364.

[92] R. W. Damon and H. Van De Vaart. “Propagation of Magnetostatic Spin Waves at Microwave Frequencies in a Normally-Magnetized Disk”. In: *Journal of Applied Physics* 36.11 (July 1965), p. 3453.

[93] B.A. Kalinikos. “Excitation of propagating spin waves in ferromagnetic films”. In: *IEE Proceedings H Microwaves, Optics and Antennas* 127.1 (1980), p. 4.

[94] B. A. Kalinikos and A. N. Slavin. “Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions”. In: *Journal of Physics C: Solid State Physics* 19.35 (Dec. 1986), p. 7013.

[95] J M D Coey and J M D Coey. *Magnetism and Magnetic Materials*. Magnetism and Magnetic Materials. Cambridge University Press, 2010.

[96] Haiming Yu et al. “High propagating velocity of spin waves and temperature dependent damping in a CoFeB thin film”. In: *Applied Physics Letters* 100.26 (June 2012), p. 262412.

[97] V. Vlaminck and M. Bailleul. “Current-Induced Spin-Wave Doppler Shift”. In: *Science* 322.5900 (Oct. 2008), pp. 410–413.

[98] Taichi Goto et al. “Three port logic gate using forward volume spin wave interference in a thin yttrium iron garnet film”. In: *Scientific Reports* 9.1 (Dec. 2019), p. 16472.

[99] Jilei Chen et al. “Spin wave propagation in ultrathin magnetic insulators with perpendicular magnetic anisotropy”. In: *Applied Physics Letters* 114.21 (May 2019), p. 212401.
[100] Joris J Carmiggelt et al. “Electrical spectroscopy of the spin-wave dispersion and bistability in gallium-doped yttrium iron garnet”. In: Applied Physics Letters 119.20 (2021), p. 202403.

[101] Xiuting Liu et al. “Magnetic properties of bismuth substituted yttrium iron garnet film with perpendicular magnetic anisotropy”. In: AIP Advances 9.11 (2019), p. 115001.

[102] Lucile Soumah et al. “Ultra-low damping insulating magnetic thin films get perpendicular”. In: Nature Communications 2018 9:1 9.1 (2018), pp. 1–6.

[103] Jinjun Ding et al. “Nanometer-Thick Yttrium Iron Garnet Films with Perpendicular Anisotropy and Low Damping”. In: Physical Review Applied 14.1 (2020), p. 14017.

[104] Jackson J Bauer et al. “Dysprosium Iron Garnet Thin Films with Perpendicular Magnetic Anisotropy on Silicon”. In: Advanced Electronic Materials 6.1 (2020), p. 1900820.

[105] S. Crossley et al. “Ferromagnetic resonance of perpendicularly magnetized Tm3Fe5O12/Pt heterostructures”. In: Applied Physics Letters 115.17 (Oct. 2019), p. 172402.

[106] Ethan R Rosenberg et al. “Magnetism and spin transport in rare-earth-rich epitaxial terbium and europium iron garnet films”. In: Physical Review Materials 2.9 (2018), p. 94405.

[107] Victor H Ortiz et al. “Systematic control of strain-induced perpendicular magnetic anisotropy in epitaxial europium and terbium iron garnet thin films”. In: APL Materials 6.12 (2018), p. 121113.

[108] Yiheng Rao et al. “Ultrafast spin wave propagation in thick magnetic insulator films with perpendicular magnetic anisotropy”. In: Physical Review B 104.22 (2021), p. 224422.

[109] P Hansen et al. “Saturation magnetization of gallium-substituted yttrium iron garnet”. In: Journal of Applied Physics 45.6 (1974), p. 2728.

[110] Arabinda Haldar et al. “Isotropic transmission of magnon spin information without a magnetic field”. In: Science Advances 3.7 (July 2017), p. 1700638.

[111] Mateusz Gołbiewski et al. “Spin-wave Talbot effect in a thin ferromagnetic film”. In: Physical Review B 102.13 (Oct. 2020), p. 134402.

[112] P. Gruszecki et al. “Microwave excitation of spin wave beams in thin ferromagnetic films”. In: Scientific Reports 2016 6:1 6.1 (Mar. 2016), pp. 1–8.

[113] H S Körner et al. “Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas”. In: Physical Review B 96.10 (2017), p. 100401.

[114] N. Loayza et al. “Fresnel diffraction of spin waves”. In: Physical Review B 94.14 (Oct. 2018), p. 144430.
[115] Tomosato Hioki et al. “Bi-reflection of spin waves”. In: Communications Physics 2020 3:1 3.1 (Oct. 2020), pp. 1–6.

[116] Ádám Papp et al. “Nanoscale spectrum analyzer based on spin-wave interference”. In: Scientific Reports 7.1 (Dec. 2017), p. 9245.

[117] Mateusz Gol biewski et al. “Self-Imaging Based Programmable Spin-Wave Lookup Tables”. In: Advanced Electronic Materials (July 2022), p. 2200373.

[118] Kai Di et al. “Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film”. In: Physical Review Letters 114.4 (2015), p. 47201.

[119] Chandrima Banerjee et al. “Magnonic band structure in a Co/Pd stripe domain system investigated by Brillouin light scattering and micromagnetic simulations”. In: Physical Review B 96.2 (July 2017), p. 024421.

[120] Matias Grassi et al. “Higgs and Goldstone spin-wave modes in striped magnetic texture”. In: Physical Review B 105.9 (Mar. 2022), p. 094444.

[121] G N Kakazei et al. “Spin-wave spectra of perpendicularly magnetized circular submicron dot arrays”. In: Applied Physics Letters 85.3 (2004), p. 443.

[122] Julia Kharlan et al. “Standing spin waves in perpendicularly magnetized triangular dots”. In: Physical Review B 100.18 (Nov. 2019), p. 184416.

[123] X. Zhou et al. “Engineering spin wave spectra in thick Ni80Fe20 rings by using competition between exchange and dipolar fields”. In: Physical Review B 104.21 (Dec. 2021), p. 214402.

[124] Oleksandr V. Dobrovolskiy et al. “Spin-wave spectroscopy of individual ferromagnetic nanodisks”. In: Nanoscale 12.41 (Oct. 2020), pp. 21207–21217.

[125] Nick Träger et al. “Real-Space Observation of Magnon Interaction with Driven Space-Time Crystals”. In: Physical Review Letters 126.5 (Feb. 2021), p. 057201.

[126] Samiran Choudhury et al. “Anisotropic spin waves in two-dimensional triangular shaped bi-component magnonic crystal”. In: Journal of Magnetism and Magnetic Materials 490 (Nov. 2019), p. 165484.

[127] G. Gubbiotti et al. “Collective spin excitations in bicomponent magnonic crystals consisting of bilayer permalloy/Fe nanowires”. In: Physical Review B 93.18 (May 2016), p. 184411.

[128] Ph Talbot et al. “Electromagnetic sensors based on magnonic crystals for applications in the fields of biomedical and NDT”. In: Procedia Engineering 120 (2015), pp. 1241–1244.
[129] Hiroyuki Takagi et al. “Monolithic structure and multiaxis magnetic sensing with magnonic crystals”. In: Electronics and Communications in Japan 97.10 (Oct. 2014), pp. 11–16.

[130] A. V. Sadovnikov et al. “Spin-Wave Drop Filter Based on Asymmetric Side-Coupled Magnonic Crystals”. In: Physical Review Applied 9.5 (May 2018), p. 051002.

[131] Hugo Merbouche et al. “Frequency Filtering with a Magnonic Crystal Based on Nanometer-Thick Yttrium Iron Garnet Films”. In: ACS Applied Nano Materials 4.1 (Jan. 2021), pp. 121–128.

[132] N. Kumar and A. Prabhakar. “Resonant spin wave excitations in a magnonic crystal cavity”. In: Journal of Magnetism and Magnetic Materials 450 (Mar. 2018), pp. 46–50.

[133] Satoru Hayami et al. “Phase shift in skyrmion crystals”. In: Nature Communications 12.1 (Dec. 2021), p. 6927.

[134] Y. Zhu et al. “Magnonic crystals-based tunable microwave phase shifters”. In: Applied Physics Letters 105.2 (July 2014), p. 022411.

[135] Xiao Zhang et al. “Phase shifter based on voltage-controlled magnetic domain walls”. In: AIP Advances 11.7 (July 2021), p. 075225.

[136] Haiming Yu et al. “Omnidirectional spin-wave nanograting coupler”. In: Nature Communications 2013 4:1 4.1 (Nov. 2013), pp. 1–9.

[137] A. V. Sadovnikov et al. “Nonlinear spin wave coupling in adjacent magnonic crystals”. In: Applied Physics Letters 109.4 (July 2016), p. 042407.

[138] Pascal Frey et al. “Reflection-less width-modulated magnonic crystal”. In: Communications Physics 3.1 (2020), p. 17.

[139] Andrii V. Chumak et al. “Magnon transistor for all-magnon data processing”. In: Nature Communications 5 (Aug. 2014).

[140] Alexander Khitun et al. “Magnonic logic circuits”. In: Journal of Physics D: Applied Physics 43.26 (2010), p. 264005.

[141] S. Pal et al. “Tunable magnonic frequency and damping in [Co/Pd]8 multilayers with variable Co layer thickness”. In: Applied Physics Letters 98.8 (Feb. 2011), p. 082501.

[142] S. Pal et al. “Time-resolved measurement of spin-wave spectra in CoO capped Co(t)Pt(7Å) n-1 Co(t) multilayer systems”. In: Journal of Applied Physics 111.7 (Apr. 2012), p. 07CS07.

[143] R. Bali et al. “High-symmetry magnonic modes in antidot lattices magnetized perpendicular to the lattice plane”. In: Physical Review B 85.10 (Mar. 2012), p. 104414.
[144] T. Schwarze et al. “Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets”. In: Nature Materials 14.5 (May 2015), pp. 478–483.

[145] Joachim Gräfe et al. “Geometric control of the magnetization reversal in antidot lattices with perpendicular magnetic anisotropy”. In: Physical Review B 93.10 (Mar. 2016), p. 104421.

[146] S. Pal et al. “Optically induced spin wave dynamics in [Co/Pd]8 antidot lattices with perpendicular magnetic anisotropy”. In: Applied Physics Letters 105.16 (June 2013), p. 224412.

[147] T. Schwarze and D. Grundler. “Magnonic crystal wave guide with large spin-wave propagation velocity in CoFeB”. In: Applied Physics Letters 102.22 (June 2013), p. 224412.

[148] K. H. Chi et al. “Confinement of magnetostatic forward volume waves in two-dimensional magnonic crystals with line defects”. In: Journal of Applied Physics 115.17 (Jan. 2014), p. 17D125.

[149] V. V. Kruglyak. “Chiral magnonic resonators: Rediscovering the basic magnetic chirality in magnonics”. In: Applied Physics Letters 119.20 (Nov. 2021), p. 200502.

[150] Ryuichi Shindou et al. “Topological chiral magnonic edge mode in a magnonic crystal”. In: Physical Review B - Condensed Matter and Materials Physics 87.17 (2013), p. 174427.

[151] Ivan Lisenkov et al. “Spin-wave edge modes in finite arrays of dipolarly coupled magnetic nanopillars”. In: Physical Review B - Condensed Matter and Materials Physics 90.10 (Sept. 2014), p. 104417.

[152] A. Roldán-Molina et al. “Topological spin waves in the atomic-scale magnetic skyrmion crystal”. In: New Journal of Physics 18.4 (Apr. 2016), p. 045015.

[153] Lifa Zhang et al. “Topological magnon insulator in insulating ferromagnet”. In: Physical Review B - Condensed Matter and Materials Physics 87.14 (Apr. 2013), p. 144101.

[154] Pawel Gruszecki et al. “The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns”. In: Solid State Physics - Advances in Research and Applications 70 (Jan. 2019), pp. 79–132.

[155] Daniela Petti et al. “Review on magnonics with engineered spin textures”. In: Journal of Physics D: Applied Physics (2022).

[156] N Vukadinovic et al. “Magnetic excitations in a weak-stripe-domain structure: A 2D dynamic micromagnetic approach”. In: Physical Review Letters 85.13 (2000), p. 2817.
[157] Daniel Markó et al. “Tunable ferromagnetic resonance in coupled trilayers with crossed in-plane and perpendicular magnetic anisotropies”. In: *Appl. Phys. Lett.* 115.8 (2019), p. 82401.

[158] Alex Hubert and Rudolf Schäfer. *Magnetic Domains*. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

[159] Samuele Fin et al. “In-plane rotation of magnetic stripe domains in Fe 1- x Ga x thin films”. In: *Physical Review B* 92.22 (2015), p. 224411.

[160] J O Artman and S H Charap. “Ferromagnetic resonance in periodic domain structures”. In: *Journal of Applied Physics* 49.3 (1978), pp. 1587–1589.

[161] U Ebels et al. “Ferromagnetic resonance excitation of two-dimensional wall structures in magnetic stripe domains”. In: *Physical Review B* 63.17 (2001), p. 174437.

[162] L M Alvarez-Prado and M Alameda. “Micromagnetism of nanowires with low out-of-plane-anisotropy”. In: *Physica B: Condensed Matter* 343.1-4 (2004), pp. 241–246.

[163] Xi-guang Wang et al. “Spin-wave propagation in domain wall magnonic crystal”. In: *EPL (Europhysics Letters)* 109.3 (2015), p. 37008.

[164] D Wang et al. “Magnonic band structure of domain wall magnonic crystals”. In: *IEEE Transactions on Magnetics* 53.3 (2016), pp. 1–10.

[165] Pablo Borys et al. “Spin-Wave Eigenmodes of Dzyaloshinskii Domain Walls”. In: *Advanced Electronic Materials* 2.1 (2016), p. 1500202.

[166] Ibrahima Sock Camara et al. “Magnetization dynamics of weak stripe domains in Fe–N thin films: A multi-technique complementary approach”. In: *Journal of Physics: Condensed Matter* 29.46 (2017), p. 465803.

[167] Thomas Sebastian et al. “Micro-focused Brillouin light scattering: Imaging spin waves at the nanoscale”. In: *Frontiers in Physics* 3.JUN (June 2015), p. 35.

[168] A K Dhiman et al. “Magnetization statics and dynamics in (Ir/Co/Pt) 6 multilayers with Dzyaloshinskii–Moriya interaction”. In: *AIP Advances* 12.4 (2022), p. 45007.

[169] Felipe Garcia-Sanchez et al. “Narrow Magnonic Waveguides Based on Domain Walls”. In: *Physical Review Letters* 114.24 (June 2015).

[170] Y. Henry et al. “Unidirectional spin-wave channeling along magnetic domain walls of Bloch type”. In: *Physical Review B* 100.2 (July 2019), p. 024416.

[171] Gy J. Vida et al. “Domain-wall profiles in Co/Irn/Pt(111) ultrathin films: Influence of the Dzyaloshinskii-Moriya interaction”. In: *Physical Review B* 94.21 (Dec. 2016), p. 214422.
[172] William Legrand et al. “Hybrid chiral domain walls and skyrmions in magnetic multilayers”. In: Science Advances 4.7 (2018), eaat0415.

[173] C. K. Safeer et al. “Effect of Chiral Damping on the dynamics of chiral domain walls and skyrmions”. In: Nature Communications 13.1 (Dec. 2022).

[174] Satoru Emori et al. “Current-driven dynamics of chiral ferromagnetic domain walls”. In: Nature Materials 12.7 (2013), pp. 611–616.

[175] Börge Göbel et al. “Electrical writing, deleting, reading, and moving of magnetic skyrmions in a racetrack device”. In: Scientific Reports 9.1 (Dec. 2019).

[176] Marijan Beg et al. “Dynamics of skyrmionic states in confined helimagnetic nanostructures”. In: Physical Review B 95.1 (Jan. 2017), p. 014433.

[177] Mateusz Zelent et al. “Stabilization and application of asymmetric Néel skyrmions in hybrid nanostructures”. In: (Apr. 2022).

[178] M. Zelent et al. “Bi-Stability of Magnetic Skyrmions in Ultrathin Multilayer Nanodots Induced by Magnetostatic Interaction”. In: Physica Status Solidi - Rapid Research Letters 11.10 (Oct. 2017), p. 1700259.

[179] X. Z. Yu et al. “Real-space observation of a two-dimensional skyrmion crystal”. In: Nature 465.7300 (June 2010), pp. 901–904.

[180] S. Mühlbauer et al. “Skyrmion lattice in a chiral magnet”. In: Science 323.5916 (Feb. 2009), pp. 915–919.

[181] Naoto Nagaosa and Yoshinori Tokura. “Topological properties and dynamics of magnetic skyrmions”. In: Nature Nanotechnology 8.12 (Dec. 2013), pp. 899–911.

[182] Felix Büttner et al. “Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications”. In: Scientific Reports 8.1 (2018).

[183] Olivier Boulle et al. “Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures”. In: Nature Nanotechnology 11.5 (May 2016), pp. 449–454.

[184] Marijan Beg et al. “Ground state search, hysteretic behaviour and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures”. In: Scientific Reports 2015 5:1 5.1 (Nov. 2015), pp. 1–14.

[185] L. Desplat et al. “Thermal stability of metastable magnetic skyrmions: Entropic narrowing and significance of internal eigenmodes”. In: Physical Review B 98.13 (Oct. 2018), p. 134407.
A. Riveros et al. “Analytical and numerical Ku-B phase diagrams for cobalt nanostructures: Stability region for a Bloch skyrmion”. In: *Journal of Magnetism and Magnetic Materials* 460 (Aug. 2018), pp. 292–296.

C. Back et al. “The 2020 skyrmionics roadmap”. In: *Journal of Physics D: Applied Physics* 53.36 (June 2020), p. 363001.

Feliciano Giustino et al. “The 2021 quantum materials roadmap”. In: *Journal of Physics: Materials* 3.4 (Jan. 2021), p. 042006.

M. Mruczkiewicz et al. “Azimuthal spin-wave excitations in magnetic nanodots over the soliton background: Vortex, Bloch, and Néel-like skyrmions”. In: *Physical Review B* 97.6 (Feb. 2018), p. 064418.

Md Mahadi Rajib et al. “Robust skyrmion mediated reversal of ferromagnetic nanodots of 20 nm lateral dimension with high Ms and observable DMI”. In: *Scientific Reports* 11.1 (Dec. 2021), p. 20914.

Konstantin Y. Guslienko. “Skyrmion State Stability in Magnetic Nanodots With Perpendicular Anisotropy”. In: *IEEE Magnetics Letters* 6 (2015), p. 4000104.

Zhaozhuo Zeng et al. “Dynamics of skyrmion bags driven by the spin–orbit torque”. In: *Applied Physics Letters* 117.17 (Oct. 2020), p. 172404.

D. Suess et al. “A repulsive skyrmion chain as a guiding track for a racetrack memory”. In: *AIP Advances* 8.11 (Nov. 2018), p. 115301.

Haifeng Du et al. “Edge-mediated skyrmion chain and its collective dynamics in a confined geometry”. In: *Nature Communications* 6.1 (Dec. 2015), p. 8504.

Max Hirschberger et al. “Skyrmion phase and competing magnetic orders on a breathing kagomé lattice”. In: *Nature Communications* 10.1 (Dec. 2019), p. 5831.

Jung Hoon Han et al. “Skyrmion lattice in a two-dimensional chiral magnet”. In: *Physical Review B - Condensed Matter and Materials Physics* 82.9 (2010), p. 094429.

Haitao Wu et al. “Size and profile of skyrmions in skyrmion crystals”. In: *Communications Physics* 4.1 (Dec. 2021).

Zhentao Wang et al. “Skyrmion Crystal from RKKY Interaction Mediated by 2D Electron Gas”. In: *Physical Review Letters* 124.20 (May 2020), p. 207201.

Pavel F. Bessarab et al. “Lifetime of racetrack skyrmions”. In: *Scientific Reports* 8.1 (2018).

Yu Pan et al. “A skyrmion racetrack memory based computing in-memory architecture for binary neural convolutional network”. In: *Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI* (May 2019), pp. 271–274.
[201] Sai Li et al. “Magnetic skyrmion-based synaptic devices”. In: Nanotechnology 28.8 (Jan. 2017), 08LT02.

[202] Hamed Vakili et al. “Skyrmionics—Computing and memory technologies based on topological excitations in magnets”. In: Journal of Applied Physics 130.7 (Aug. 2021), p. 070908.

[203] Yan Liu et al. “Nucleation and stability of skyrmions in three-dimensional chiral nanostructures”. In: Scientific Reports 2020 10:1 10.1 (Dec. 2020), pp. 1–10.

[204] Iu V. Vetrova et al. “Investigation of self-nucleated skyrmion states in the ferromagnetic/nonmagnetic multilayer dot”. In: Applied Physics Letters 118.21 (May 2021), p. 212409.

[205] L. Desplat et al. “Mechanism for ultrafast electric-field driven skyrmion nucleation”. In: Physical Review B 104.6 (Aug. 2021), p. L060409.

[206] A. Hrabec et al. “Current-induced skyrmion generation and dynamics in symmetric bilayers”. In: Nature Communications 8.1 (Aug. 2017), p. 15765.

[207] Xuebing Zhao et al. “Deterministic generation of skyrmions and antiskyrmions by electric current”. In: ArXiv preprint 2110.04713 (Oct. 2021).

[208] Zidong Wang et al. “Thermal generation, manipulation and thermoelectric detection of skyrmions”. In: Nature Electronics 2020 3:11 3.11 (Oct. 2020), pp. 672–679.

[209] Binbin Wang et al. “Stimulated Nucleation of Skyrmions in a Centrosymmetric Magnet”. In: ACS Nano 15.8 (Aug. 2021), pp. 13495–13503.

[210] Mateusz Zelent et al. “Skyrmion Formation in Nanodisks Using Magnetic Force Microscopy Tip”. In: Nanomaterials 2021, Vol. 11, Page 2627 11.10 (Oct. 2021), p. 2627.

[211] Wanjun Jiang et al. “Blowing magnetic skyrmion bubbles”. In: Science 349.6245 (2015), pp. 283–286.

[212] Swapneel Amit Pathak and Riccardo Hertel. “Geometrically Constrained Skyrmions”. In: Magnetochemistry 7.2 (Feb. 2021), p. 26.

[213] Emil Viñas Boström et al. “Microscopic theory of light-induced ultrafast skyrmion excitation in transition metal films”. In: npj Computational Materials 2022 8:1 8.1 (Apr. 2022), pp. 1–7.

[214] G Berruto. “Laser-induced skyrmion writing and erasing in an ultrafast cryo-lorentz transmission electron microscope”. In: Phys. Rev. Lett. 120 (2018), p. 117201.

[215] S-G Je. “Creation of magnetic skyrmion bubble lattices by ultrafast laser in ultrathin films”. In: Nano Lett. 18 (2018), pp. 7362–7371.
[216] O. P. Polyakov et al. “Generation of magnetic skyrmions by focused vortex laser pulses”. In: Journal of Applied Physics 127.7 (Feb. 2020), p. 073904.
[217] Wataru Koshiba and Naoto Nagaosa. “Creation of skyrmions and antiskyrmions by local heating”. In: Nature Communications 2014 5:1 5.1 (Oct. 2014), pp. 1–11.
[218] Gong Chen. “Spin-orbitronics: Skyrmion Hall effect”. In: Nature Physics 13.2 (Jan. 2017), pp. 112–113.
[219] Yizhou Liu et al. “Skyrmion creation and annihilation by spin waves”. In: Applied Physics Letters 107.15 (Oct. 2015).
[220] Zhenyu Wang et al. “Spin-wave focusing induced skyrmion generation”. In: Applied Physics Letters 117.22 (Dec. 2020), p. 222406.
[221] Xianglong Yao et al. “Magnetic skyrmion generation by reflective spin wave focusing”. In: Frontiers in Physics 9 (Sept. 2021), p. 511.
[222] Jan Müller et al. “Edge instabilities and skyrmion creation in magnetic layers”. In: New Journal of Physics 18.6 (June 2016), p. 065006.
[223] Motohiko Ezawa. “Compact merons and skyrmions in thin chiral magnetic films”. In: Physical Review B 83.10 (Mar. 2011), p. 100408.
[224] N. Gao et al. “Creation and annihilation of topological meron pairs in in-plane magnetized films”. In: Nature Communications 2019 10:1 10.1 (Dec. 2019), pp. 1–9.
[225] Haifeng Du et al. “Edge-mediated skyrmion chain and its collective dynamics in a confined geometry”. In: Nature Communications 2015 6:1 6.1 (Oct. 2015), pp. 1–7.
[226] Zukhra V. Gareeva and Konstantin Y. Guslienko. “Collective magnetic skyrmion gyrotropic modes in a dot chain”. In: Journal of Physics Communications 2.3 (Mar. 2018), p. 035009.
[227] Bhartendu Satywali et al. “Gyrotropic resonance of individual N’eeel skyrmions in Ir/Fe/Co/Pt multilayers”. In: (Feb. 2018).
[228] Joo-Von Kim et al. “Breathing modes of confined skyrmions in ultrathin magnetic dots”. In: Physical Review B 90.6 (Aug. 2014), p. 064410.
[229] Junhoe Kim et al. “Coupled breathing modes in one-dimensional Skyrmion lattices”. In: Journal of Applied Physics 123.5 (Feb. 2018), p. 053903.
[230] V. K. Dugaev et al. “Berry phase of magnons in textured ferromagnets”. In: Physical Review B 72.2 (July 2005), p. 024456.
[231] Xi Guang Wang et al. “Dynamically reconfigurable magnonic crystal composed of artificial magnetic skyrmion lattice”. In: Journal of Applied Physics 128.6 (Aug. 2020), p. 063901.

[232] Javier Osca and Bart Sorée. “Torque field and skyrmion motion by spin transfer torque in a quasi-2D interface in presence of strong spin-orbit interaction”. In: Journal of Applied Physics 130.13 (Oct. 2021), p. 133903.

[233] Javier Osca and Bart Sorée. “Skyrmion spin transfer torque due to current confined in a nanowire”. In: Physical Review B 102.12 (Sept. 2020).

[234] J. Masell et al. “Spin-transfer torque driven motion, deformation, and instabilities of magnetic skyrmions at high currents”. In: Physical Review B 101.21 (June 2020), p. 214428.

[235] Seonghoon Woo et al. “Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy”. In: Nature Communications 8.1 (Aug. 2017), p. 15573.

[236] Sergio A. Montoya et al. “Spin-orbit torque induced dipole skyrmion motion at room temperature”. In: Physical Review B 98.10 (Sept. 2018), p. 104432.

[237] Yoshinobu Nakatani et al. “Discrimination of skyrmion chirality via spin–orbit and –transfer torques for logic operation”. In: Scientific Reports 11.1 (Apr. 2021), pp. 1–6.

[238] Junichi Iwasaki et al. “Universal current-velocity relation of skyrmion motion in chiral magnets”. In: Nature Communications 4.1 (Feb. 2013), pp. 1–8.

[239] X. Z. Yu et al. “Skyrmion flow near room temperature in an ultralow current density”. In: Nature Communications 3.1 (Aug. 2012), p. 988.

[240] Börge Göbel et al. “Overcoming the speed limit in skyrmion racetrack devices by suppressing the skyrmion Hall effect”. In: Physical Review B 99.2 (Jan. 2019).

[241] Kai Litzius et al. “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy”. In: Nature Physics 13.2 (2017), pp. 170–175.

[242] Xing Chen et al. “Skyrmion dynamics in width-varying nanotrails and implications for skyrmionic applications”. In: Applied Physics Letters 111.20 (Nov. 2017).

[243] Stavros Komineas and Nikos Papanicolaou. “Skyrmion dynamics in chiral ferromagnets”. In: Physical Review B 92.6 (Aug. 2015), p. 064412.

[244] Jing Xia et al. “Dynamics of an elliptical ferromagnetic skyrmion driven by the spin-orbit torque”. In: Applied Physics Letters 116.2 (Jan. 2020), p. 022407.

[245] M. N. Wilson et al. “Extended elliptic skyrmion gratings in epitaxial MnSi thin films”. In: Physical Review B - Condensed Matter and Materials Physics 86.14 (2012), p. 144420.
[246] Chen Cheng et al. "Elliptical skyrmion moving along a track without transverse speed". In: Physical Review B 104.17 (Nov. 2021), p. 174409.

[247] William Legrand et al. “Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets”. In: Nature Materials 19.1 (Jan. 2020), pp. 34–42.

[248] R. Tomasello et al. “Performance of synthetic antiferromagnetic racetrack memory: Domain wall versus skyrmion”. In: Journal of Physics D: Applied Physics 50.32 (July 2017), p. 325302.

[249] C. Reichhardt et al. “Quantized transport for a skyrmion moving on a two-dimensional periodic substrate”. In: Physical Review B 91.10 (Mar. 2015), p. 104426.

[250] Dieter Suess et al. “Spin torque efficiency and analytic error rate estimates of skyrmion racetrack memory”. In: Scientific Reports 9.1 (Dec. 2019), p. 4827.

[251] Michael Stone. “Magnus force on skyrmions in ferromagnets and quantum Hall systems”. In: Physical Review B - Condensed Matter and Materials Physics 53.24 (1996), pp. 16573–16578.

[252] C. Reichhardt et al. “Statics and Dynamics of Skyrmions Interacting with Pinning: A Review”. In: ArXiv preprint: 2102.10464 (Feb. 2021).

[253] N. P. Vizarim et al. “Guided skyrmion motion along pinning array interfaces”. In: Journal of Magnetism and Magnetic Materials 528 (June 2021), p. 167710.

[254] Xichao Zhang et al. “Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory”. In: Scientific Reports 5 (Jan. 2015), p. 7643.

[255] Leonardo González-Gómez et al. “Analytical modeling of the interaction between skyrmions and extended defects”. In: Physical Review B 100.5 (Aug. 2019), p. 054440.

[256] Josep Castell-Queralt et al. “Deterministic approach to skyrmionic dynamics at nonzero temperatures: Pinning sites and racetracks”. In: Physical Review B 101.14 (Apr. 2020), p. 140404.

[257] Cynthia J.O. Reichhardt and Charles Reichhardt. “Crystals break up with a twist”. In: Nature Physics 18.2 (Feb. 2022), pp. 134–135.

[258] Shijiang Luo and Long You. “Skyrmion devices for memory and logic applications”. In: APL Materials 9.5 (May 2021).

[259] M. Mochizuki. “Spin-wave modes and their intense excitation effects in skyrmion crystals”. In: Phys. Rev. Lett. 108 (2012), p. 017601.

[260] Jiadong Zang et al. “Dynamics of Skyrmion crystals in metallic thin films”. In: Physical Review Letters 107.13 (Sept. 2011), p. 136804.
[261] Zhendong Chen and Fusheng Ma. “Skyrmion based magnonic crystals”. In: Journal of Applied Physics 130.9 (Sept. 2021), p. 090901.

[262] X. R. Wang et al. “Stripe skyrmions and skyrmion crystals”. In: Communications Physics 4.1 (Dec. 2021).

[263] Abdulqader Mahmoud et al. “4-output Programmable Spin Wave Logic Gate”. In: Proceedings - IEEE International Conference on Computer Design: VLSI in Computers and Processors 2020-October (Oct. 2020), pp. 332–335.

[264] Sampo J. Hämäläinen et al. “Control of spin-wave transmission by a programmable domain wall”. In: Nature Communications 9.1 (2018).

[265] Zehan Chen et al. “Skyrmion Dynamics in the Presence of Deformation”. In: Physical Review Applied 17.1 (Jan. 2022), p. L011002.

[266] Junichi Iwasaki et al. “Current-induced skyrmion dynamics in constricted geometries”. In: Nature Nanotechnology 8.10 (2013), pp. 742–747.

[267] Seonghoon Woo et al. “Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films”. In: Nature Communications 9.1 (2018).

[268] Linjie Liu et al. “Current-Driven Skyrmion Motion beyond Linear Regime: Interplay between Skyrmion Transport and Deformation”. In: Physical Review Applied 14.2 (Aug. 2020), p. 024077.

[269] Yoshinori Tokura and Naoya Kanazawa. “Magnetic Skyrmion Materials”. In: Chemical Reviews 121.5 (Mar. 2021), pp. 2857–2897.

[270] Shilei Zhang et al. “Topological computation based on direct magnetic logic communication”. In: Scientific Reports 5 (Oct. 2015).

[271] Yan Zhou. “Magnetic skyrmions: intriguing physics and new spintronic device concepts”. In: National Science Review 6.2 (Mar. 2019), pp. 210–212.

[272] M Chauwin. “Skyrmion logic system for large-scale reversible computation”. In: Phys. Rev. Appl. 12 (2019), p. 064053.

[273] Marco Madami et al. “Application of Microfocused Brillouin Light Scattering to the Study of Spin Waves in Low-Dimensional Magnetic Systems”. In: Solid State Physics - Advances in Research and Applications 63 (2012), pp. 79–150.

[274] C. Cheng et al. “Phase-resolved imaging of edge-mode spin waves using scanning transmission x-ray microscopy”. In: Journal of Magnetism and Magnetic Materials 424 (Feb. 2017), pp. 12–15.
[275] Felix Groß et al. “Imaging magnonic frequency multiplication in nanostructured antidot lattices”. In: Physical Review B 106.1 (July 2022), p. 014426.

[276] D. Nolle et al. “Note: Unique characterization possibilities in the ultra high vacuum scanning transmission x-ray microscope (UHV-STXM) “mAXYMUS” using a rotatable permanent magnetic field up to 0.22 T”. In: Review of Scientific Instruments 83.4 (Apr. 2012).

[277] Seonghoon Woo et al. “Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy”. In: Nature Electronics 1.5 (2018), pp. 288–296.

[278] Joachim Gräfe et al. “Direct observation of spin-wave focusing by a Fresnel lens”. In: Physical Review B 102.2 (July 2020), p. 024420.

[279] Claire Donnelly et al. “Three-dimensional magnetization structures revealed with X-ray vector nanotomography”. In: Nature 2017 547:7663 547.7663 (July 2017), pp. 328–331.

[280] Daniel Wolf et al. “Unveiling the three-dimensional magnetic structure of skyrmion tubes”. In: Nature Nanotechnology 2021 17:3 17.3 (Dec. 2021), pp. 250–255.

[281] Peter Fischer. “X-rays used to watch spins in 3D”. In: Nature 2017 547:7663 547.7663 (July 2017), pp. 290–291.

[282] Claire Donnelly et al. “Time-resolved imaging of three-dimensional nanoscale magnetization dynamics”. In: Nature Nanotechnology 2020 15:5 15.5 (Feb. 2020), pp. 356–360.