Algebraic surfaces determine analyticity of functions

JACEK BOCHNAK AND WOJCIECH KUCHARZ

Abstract. Let $f : X \to \mathbb{R}$ be a function defined on a nonsingular real algebraic set X of dimension at least 3. We prove that f is an analytic (resp. a Nash) function whenever the restriction $f|_S$ is an analytic (resp. a Nash) function for every nonsingular algebraic surface $S \subset X$ whose each connected component is homeomorphic to the unit 2-sphere. Furthermore, the surfaces S can be replaced by compact nonsingular algebraic curves in X, provided that $\dim X \geq 2$ and f is of class C^∞.

Mathematics Subject Classification. 14P05, 14P20, 58A07, 32C05, 32C25.

Keywords. Real algebraic set, Analytic function, Nash function.

By [3, Theorem 1], a real-valued function on a real analytic manifold of dimension at least 3 is analytic whenever all its restrictions to analytic submanifolds homeomorphic to the unit 2-sphere are analytic. In the present note, we prove a variant of this result for functions defined on nonsingular real algebraic sets. Henceforth, we abbreviate real analytic to analytic. Besides analytic functions, we also consider Nash functions. We refer to [1] for the general theory of the latter class of functions.

Unless explicitly stated otherwise, all subsets of \mathbb{R}^n are endowed with the Euclidean topology, induced by the standard norm.

Recall that $M \subset \mathbb{R}^m$ is a Nash manifold if it is a semialgebraic subset and an analytic submanifold (in particular, M is a closed subset of some open subset of \mathbb{R}^m). A function $f : M \to \mathbb{R}$ is called a Nash function if it is analytic and its graph is semialgebraic. Equivalently, f is a Nash function if and only if it is analytic and there is a relation

$$\sum_{i=0}^{k} \varphi_i(x)f(x)^{k-i} = 0 \text{ for all } x \in M,$$
where \(k \geq 1 \) and the \(\varphi_i : \mathbb{R}^m \to \mathbb{R} \) are polynomial functions, with \(\varphi_0 \) not identically 0 on any connected component of \(M \). For this reason, Nash functions are called \textit{algebraic functions} in the older literature, see for example [5].

Let \(X \subset \mathbb{R}^m \) be an irreducible nonsingular algebraic set of dimension \(n \geq 0 \). We define \(d(X) \) to be the supremum of the number of points in the intersection \(X \cap L \), where \(L \) runs through the family of all affine \((m-n)\)-planes in \(\mathbb{R}^m \) that are transverse to \(X \). Clearly, \(d(X) \) is a positive integer, see [11, Theorem 11.5.3]. Given an integer \(k \) with \(1 \leq k \leq n-1 \), we denote by \(\mathcal{F}_k(X) \) the collection of all nonsingular algebraic subsets \(Z \subset X \) having at most \(d(X) \) connected components, each of which is homeomorphic to the unit \(k \)-sphere \(S^k \). In what follows, we only make use of \(\mathcal{F}_k(X) \) with \(k = 1 \) and \(k = 2 \).

Theorem 1. Let \(f : X \to \mathbb{R} \) be a function defined on an irreducible nonsingular algebraic set \(X \subset \mathbb{R}^m \) of dimension \(n \geq 3 \). Assume that the restriction \(f|_S \) is an analytic (resp. a Nash) function for every algebraic surface \(S \in \mathcal{F}_2(X) \). Then \(f \) is an analytic (resp. a Nash) function.

The proof of Theorem 1 requires some preparation. Along the way, we establish results which are of independent interest. We emphasize that the function \(f \) in Theorem 1 is not assumed to be continuous.

Let \(\mathbb{B}^n \) be the open unit ball in \(\mathbb{R}^n \). For any integer \(k \) with \(1 \leq k \leq n-1 \), we denote by \(\mathcal{E}_k(\mathbb{B}^n) \) the collection of all Euclidean \(k \)-spheres in \(\mathbb{B}^n \) passing through the origin, that is, all algebraic sets \(\Sigma^k \subset \mathbb{B}^n \) of the form

\[
\Sigma^k = \{ x \in \mathbb{B}^n : \|x - c\| = \|c\| \} \cap V,
\]

where \(c \in \mathbb{R}^n, 0 < \|c\| < \frac{1}{2} \), and \(V \subset \mathbb{R}^n \) is a vector subspace of dimension \(k+1 \). In our results only \(\mathcal{E}_k(\mathbb{B}^n) \) with \(k = 1 \) and \(k = 2 \) are relevant.

Theorem 2. Let \(f : \mathbb{B}^n \to \mathbb{R} \) be a function defined on the open unit ball \(\mathbb{B}^n \subset \mathbb{R}^n \). Assume that \(n \geq 3 \) and the restriction \(f|_{\Sigma^2} \) is an analytic (resp. a Nash) function for every Euclidean 2-sphere \(\Sigma^2 \in \mathcal{E}_2(\mathbb{B}^n) \). Then \(f \) is an analytic (resp. a Nash) function.

The analytic case in Theorem 2 is already settled in [3, Theorem 2]. It plays the key role in the proof of the Nash case.

The inversion

\[
\mu : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}, \quad \mu(x) = \frac{x}{\|x\|^2},
\]

is a biregular isomorphism. It maps \(\mathbb{B}^n \setminus \{0\} \) onto the complement \(\mathbb{R}^n \setminus \mathbb{B}^n \) of the closed unit ball \(\mathbb{B}^n \) and gives a one-to-one correspondence between the Euclidean \(k \)-spheres in \(\mathcal{E}_k(\mathbb{B}^n) \) and the affine \(k \)-planes contained in \(\mathbb{R}^n \setminus \mathbb{B}^n \).

Proof of Theorem 2. As indicated above, we may assume that \(f \) is an analytic function and the restriction \(f|_{\Sigma^2} \) is a Nash function for every Euclidean 2-sphere \(\Sigma^2 \in \mathcal{E}_2(\mathbb{B}^n) \). Hence the function

\[
g := f \circ (\mu|_{\mathbb{R}^n \setminus \mathbb{B}^n}) : \mathbb{R}^n \setminus \mathbb{B}^n \to \mathbb{R}
\]

is analytic and its restriction to any affine 2-plane contained in \(\mathbb{R}^n \setminus \mathbb{B}^n \) is a Nash function. Evidently, the restriction of \(g \) to any affine line contained in
\(\mathbb{R}^n \setminus \overline{B^n} \) is a Nash function. It follows from [2, Theorem 2.4] that \(g \) is a Nash function on \(\mathbb{R}^n \setminus \overline{B^n} \), and therefore so is \(f \) on \(\mathbb{B}^n \). \(\square \)

Proposition 3. Let \(X \subset \mathbb{R}^m \) be an irreducible nonsingular real algebraic set of dimension \(n \geq 1 \), and let \(p \) be a point in \(X \). Then there exists a linear map \(\lambda : \mathbb{R}^m \to \mathbb{R}^n \) for which the following hold:

(i) The restriction \(\lambda|_X : X \to \mathbb{R}^n \) is a proper map with finite fibers (some fibers may be empty).

(ii) The map \(\lambda|_X \) is transverse to \(\lambda(p) \).

Proof. Let \(Y := X - p \) be the translate of \(X \). For each linear map \(\alpha : \mathbb{R}^m \to \mathbb{R}^n \), the restriction \(\alpha|_Y : Y \to \mathbb{R}^n \) induces a homomorphism of the coordinate rings (=rings of polynomial functions)

\[
(\alpha|_Y)^* : A(\mathbb{R}^n) \to A(Y).
\]

Let \(L(m, n) \) be the space of all linear maps from \(\mathbb{R}^m \) to \(\mathbb{R}^n \), which we identify with the space \(M(n, m) \) of all \(n \)-by-\(m \) matrices with real entries. By a suitable version of the Noether normalization theorem, see [6, Theorem 13.3] and its proof, there is a nonempty Zariski open subset \(\Omega \subset L(m, n) \) such that for each \(\beta \in \Omega \), the homomorphism \((\beta|_Y)^* \) is injective and the ring \(A(Y) \) is integral over \(A(\mathbb{R}^n) \cong \text{Im}(\beta|_Y)^* \) (equivalently, \(A(Y) \) is a finitely generated \(A(\mathbb{R}^n) \)-module). It follows that \(\beta \) is surjective and the restriction \(\beta|_Y \) is a proper map with finite fibers. Now we choose a linear map \(\gamma \in \Omega \) such that the derivative of \(\varphi := \gamma|_Y : Y \to \mathbb{R}^n \) at the origin \(0 \in Y \) is an isomorphism. After a coordinate change, we may assume that \(\gamma \) is the canonical projection \(\mathbb{R}^m = \mathbb{R}^n \times \mathbb{R}^{m-n} \to \mathbb{R}^n \).

For any constant \(\varepsilon > 0 \), we set

\[
M_\varepsilon := \{ t = (t_{ij}) \in M(n, m) : |t_{ij}| < \varepsilon \text{ for } 1 \leq i \leq n, 1 \leq j \leq m \}
\]

and consider the map \(\Phi : Y \times M_\varepsilon \to \mathbb{R}^n \) defined by

\[
\Phi(x, t) = (x_1 + \sum_{j=1}^{m} t_{1j}x_j, \ldots, x_n + \sum_{j=1}^{m} t_{nj}x_j)
\]

where \(x = (x_1, \ldots, x_m) \in Y \) and \(t = (t_{ij}) \in M_\varepsilon \). If \(\varepsilon \) is sufficiently small, then \(\Phi \) is a submersion since for each point \(x \neq 0 \), the restriction of \(\Phi \) to \(\{ x \} \times M_\varepsilon \) is a submersion, and \(\varphi \) is a submersion at the origin \(0 \in Y \). Hence, according to the standard consequence of Sard’s theorem [7, p. 79, Theorem 2.7], the map \(\Phi_t : Y \to \mathbb{R}^n, \Phi_t(x) = \Phi(x, t) \), is transverse to the origin \(0 \in \mathbb{R}^n \) for some \(t \in M_\varepsilon \). There is a linear map \(\lambda \in L(m, n) \) with \(\lambda|_Y = \Phi_t \). If \(\varepsilon \) is small, then \(\lambda \) belongs to \(\Omega \) and has the required properties. \(\square \)

Proof of Theorem 1. Let \(p \) be a point in \(X \) and let \(\lambda : \mathbb{R}^m \to \mathbb{R}^n \) be a linear map as in Proposition 3. We can choose a constant \(r > 0 \) such that

\[
(\lambda|_X)^{-1}(B(\lambda(p), r)) = U_1 \cup \cdots \cup U_l,
\]

where \(B(\lambda(p), r) \subset \mathbb{R}^n \) is the open ball centered at \(\lambda(p) \) with radius \(r \), the \(U_i \) are pairwise disjoint open subsets of \(X \), \(\lambda|_{U_i} : U_i \to B(\lambda(p), r) \) are Nash
isomorphisms, and \(p \in U_1 \). Clearly, \(l \leq d(X) \). Define the map \(\pi : X \to \mathbb{R}^n \) by
\[
\pi(x) = \frac{1}{r}(\lambda(x) - \lambda(p)) \text{ for } x \in X.
\]
Then
\[
\pi^{-1}(\mathbb{B}^n) = U_1 \cup \cdots \cup U_l
\]
and the restriction \(\pi|_{U_i} : U_i \to \mathbb{B}^n \) is a Nash isomorphism for \(i = 1, \ldots, l \).

If \(\Sigma^2 \in \mathcal{E}_2(\mathbb{B}^n) \), then \(S(\Sigma^2) := \pi^{-1}(\Sigma^2) \in \mathcal{F}_2(X) \). Assume that for every \(\Sigma^2 \in \mathcal{E}_2(\mathbb{B}^n) \), the restriction \(f|_{S(\Sigma^2)} \) is an analytic (resp. a Nash) function. Then, by Theorem 2, the composite \(f \circ (\pi|_{U_i})^{-1} : \mathbb{B}^n \to \mathbb{R} \) is an analytic (resp. a Nash) function. It follows that \(f \) is an analytic (resp. a Nash) function, the point \(p \in X \) being arbitrary. \(\square \)

Making use of local coordinate charts and applying Theorem 2, we immediately obtain the following.

Theorem 4. Let \(f : M \to \mathbb{R} \) be a function defined on an analytic (resp. a Nash) manifold \(M \) of dimension \(n \geq 3 \). Assume that the restriction \(f|_{N} \) is an analytic (resp. a Nash) function for every analytic (resp. Nash) submanifold \(N \subset M \) homeomorphic to \(\mathbb{S}^2 \). Then \(f \) is an analytic (resp. a Nash) function.

The analytic case in Theorem 4 is contained in [3, Theorem 1].

Replacing in Theorem 1 (resp. Theorem 2) \(\mathcal{F}_2(X) \) by \(\mathcal{F}_1(X) \) (resp. \(\mathcal{E}_2(\mathbb{B}^n) \) by \(\mathcal{E}_1(\mathbb{B}^n) \)), one would get a false statement.

Counterexample 5. Let \(f : \mathbb{R}^3 \to \mathbb{R} \) be the function defined by
\[
f(x, y, z) = \begin{cases}
x^8 + y(x^2 - y^3)^2 + z^4 & \text{for } (x, y, z) \neq (0, 0, 0), \\
x^{10} + (x^2 - y^3)^2 + z^4 & \text{for } (x, y, z) = (0, 0, 0).
\end{cases}
\]
Then the restriction of \(f \) is an analytic (resp. a Nash) function on each nonsingular analytic (resp. Nash) curve in \(\mathbb{R}^3 \), but \(f \) is not even continuous at \((0, 0, 0) \).

To establish the first part of the assertion, it suffices to prove that for any nonsingular analytic curve \(C \subset \mathbb{R}^3 \) passing through \((0, 0, 0) \), the restriction \(f|_{C} \) is analytic at \((0, 0, 0) \). Since \(C \) is nonsingular, it has near \((0, 0, 0) \) a local analytic parametrization
\[
x = x(t), \ y = y(t), \ z = z(t) \text{ for } t \text{ near } 0 \in \mathbb{R},
\]
where \(x(0) = y(0) = z(0) = 0 \), and at least one of the analytic functions \(x(t), y(t), z(t) \) has a zero of order 1 at \(t = 0 \). It is not hard to check that the function \(f(x(t), y(t), z(t)) \) is analytic for \(t \) near \(0 \in \mathbb{R} \). Thus \(f|_{C} \) is analytic at \((0, 0, 0) \), as required.

Clearly, the function \(f \) is not continuous at \((0, 0, 0) \) since on the curve \(x^2 - y^3 = 0, z = 0 \), it is equal to \(\frac{1}{x^2} \) away from \((0, 0, 0) \).

However, for \(\mathcal{C}^\infty \) functions, we have the following version of Theorem 1.

Theorem 6. Let \(f : X \to \mathbb{R} \) be a \(\mathcal{C}^\infty \) function defined on an irreducible nonsingular algebraic set \(X \subset \mathbb{R}^m \) of dimension \(n \geq 2 \). Assume that the restriction \(f|_{C} \) is an analytic (resp. a Nash) function for every algebraic curve \(C \in \mathcal{F}_1(X) \). Then \(f \) is an analytic (resp. a Nash) function.
Proof. We argue as in the proof of Theorem 1, substituting Theorem 7 below for Theorem 2.

Theorem 7. Let \(f: \mathbb{B}^n \to \mathbb{R} \) be a \(C^\infty \) function defined on the unit open ball \(\mathbb{B}^n \subset \mathbb{R}^n \). Assume that \(n \geq 2 \) and the restriction \(f|_{\Sigma^1} \) is an analytic (resp. a Nash) function for every Euclidean 1-sphere \(\Sigma^1 \in \mathcal{E}_1(\mathbb{B}^n) \). Then \(f \) is an analytic (resp. a Nash) function.

Proof. To begin with, we consider the analytic case, assuming that the restriction \(f|_{\Sigma^1} \) is an analytic function for every Euclidean 1-sphere \(\Sigma^1 \in \mathcal{E}_1(\mathbb{B}^n) \).

First we prove analyticity of \(f \) on the punctured unit ball \(\mathbb{B}^n \setminus \{0\} \). This is equivalent to proving analyticity of the function

\[
g := f \circ \mu|_{\mathbb{R}^n \setminus \mathbb{B}^n} : \mathbb{R}^n \setminus \mathbb{B}^n \to \mathbb{R}.
\]

The problem is local, so fix a point \(b \in \mathbb{R}^n \setminus \mathbb{B}^n \). Our goal is to show that \(g \) is analytic at \(b \). Evidently, \(g \) is of class \(C^\infty \) and its restriction to any affine line contained in \(\mathbb{R}^n \setminus \mathbb{B}^n \) is analytic. Let

\[
\mathcal{L} := \text{the set of all affine lines contained in } \mathbb{R}^n \setminus \mathbb{B}^n \text{ and passing through } b.
\]

The union \(C \) of all lines in \(\mathcal{L} \) is a cone in \(\mathbb{R}^n \) and the set \(U := C \setminus \{b\} \) is open in \(\mathbb{R}^n \). Consider the series \(\Sigma_k P_k \) of homogeneous polynomials in \(n \) variables \(x = (x_1, \ldots, x_n) \), where

\[
P_k(x) = \frac{1}{k!} \sum_{|\alpha| = k} \frac{\partial^{|\alpha|} g}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}(b)x_1^{\alpha_1} \cdots x_n^{\alpha_n},
\]

\(\alpha = (\alpha_1, \ldots, \alpha_n), |\alpha| = \alpha_1 + \cdots + \alpha_n. \)

By construction, for each vector line \(\Lambda \subset \mathbb{R}^n \) with \(b + \Lambda \in \mathcal{L} \), the series \(\Sigma_k P_k(x) \) converges to \(g(b + x) \) for all \(x \in \Lambda \) in a neighborhood of \(0 \in \Lambda \). Hence, in view of Lemma 8 below, the series \(\Sigma_k P_k(x) \) converges to an analytic function \(\gamma: B \to \mathbb{R} \) defined on an open ball \(B \subset \mathbb{R}^n \) centered at the origin. Clearly, the function

\[
\gamma_b: B_b \to \mathbb{R}, \gamma_b(b + x) := \gamma(x) \text{ for } x \in B,
\]

is analytic on the ball \(B_b := b + B \) centered at \(b \). Since \(g = \gamma_b \) on \(B_b \cap L \) for all \(L \in \mathcal{L} \), it follows that

\[
g = \gamma_b \text{ on } B_b \cap C.
\]

We claim that \(g = \gamma_b \) in a neighborhood of \(b \) in \(\mathbb{R}^n \). Indeed, fix an affine line \(L_0 \in \mathcal{L} \) and let \(K \) be any affine line contained in \(\mathbb{R}^n \setminus \mathbb{B}^n \) that is parallel to \(L_0 \in \mathcal{L} \) and satisfies \(K \cap B_b \cap U \neq \emptyset \). The functions \(g \) and \(\gamma_b \) coincide on \(K \cap B_b \cap U \), hence the analytic functions \(g|_{K \cap B_b} \) and \(\gamma_b|_{K \cap B_b} \) are equal. The union of the sets \(K \cap B_b \), for all \(K \) as above, is a neighborhood of \(b \) in \(\mathbb{R}^n \). It follows that \(g \) and \(\gamma_b \) are equal in a neighborhood of \(b \) in \(\mathbb{R}^n \), as claimed. So \(f \) is an analytic function on \(\mathbb{B}^n \), except possibly at the origin.

To prove that \(f \) is analytic at the origin, we use the inversion

\[
\mu_a: \mathbb{R}^n \setminus \{a\} \to \mathbb{R}^n \setminus \{a\}, \mu_a(x) = \mu(x - a) + a,
\]
centered at a point \(a \in \mathbb{B}^n \setminus \{0\} \). Let \(U_a := \mu_a(\mathbb{B}^n \setminus \{a\}) \). The function
\[
h := f \circ (\mu_a|_{U_a})^{-1} : U_a \to \mathbb{R}
\]
is of class \(C^\infty \), analytic except possibly at \(\mu_a(0) \), and its restriction is analytic on every affine line passing through \(\mu_a(0) \) and contained in \(U_a \). Arguing as above, we show that the Taylor series of \(h \) at \(\mu_a(0) \) converges to \(h \) in a neighborhood of \(\mu_a(0) \) in \(\mathbb{R}^n \). Thus \(f \) is analytic at the origin, and therefore everywhere on \(\mathbb{B}^n \).

In the Nash case, we proceed as in the proof of Theorem 2. \(\square \)

We have used the following result, see [4, Lemma 3] for the proof.

Lemma 8. Let \(\sum_k P_k \) be a series of real homogenous polynomials in \(n \) variables, \(\deg P_k = k \). Assume that there exists a nonempty open subset \(\Omega \subset S^{n-1} \) such that for every point \(a \in \Omega \), one can find a constant \(\rho_a > 0 \) such that the series \(\sum_k P_k(x) \) converges at \(x = \rho_a a \). Then there exist constants \(c > 0, r > 0 \) such that
\[
|P_k(z)| \leq \frac{c}{2^k} \text{ for } z \in \mathbb{C}^n, \|z\| \leq r, \ k \geq 0.
\]
In particular, the function \(z \mapsto \sum_k P_k(z) \) is holomorphic in the ball \(\|z\| < r, z \in \mathbb{C}^n \).

Working on local coordinate charts, we derive from Theorem 7 the following.

Theorem 9. Let \(f : M \to \mathbb{R} \) be a \(C^\infty \) function defined on an analytic (resp. a Nash) manifold \(M \) of dimension \(n \geq 2 \). Assume that the restriction \(f|_C \) is an analytic (resp. a Nash) function for every analytic (resp. Nash) submanifold \(C \subset M \) homeomorphic to \(S^1 \). Then \(f \) is an analytic (resp. a Nash) function.

One can compare Theorems 6 and 9 with the following example.

Example 10. The function \(f : \mathbb{R}^2 \to \mathbb{R} \) defined by
\[
f(x, y) = \begin{cases} \xy \exp \left(-\frac{1}{x^2+y^2}\right) & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0), \end{cases}
\]
is of class \(C^\infty \) and analytic with respect to each variable separately. However, \(f \) is not analytic as a function of two variables.
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete Folge 3, vol. 36. Springer, Berlin (1998)
[2] Bochnak, J., Gwoździewicz, J., Kucharz, W.: Criteria for algebraicity of analytic functions. Int. Math. Res. Not. 5, 3314–3330 (2021)
[3] Bochnak, J., Kollár, J., Kucharz, W.: Checking real analyticity on surfaces. J. Math. Pures Appl. 133, 167–171 (2020)
[4] Bochnak, J., Siciak, J.: A characterization of analytic functions of several real variables. Ann. Polon. Math. 123, 9–13 (2019)
[5] Bochner, S., Martin, W.: Several Complex Variables. Princeton University Press, Princeton (1948)
[6] Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Math, vol. 150. Springer, New York (2013)
[7] Hirsch, M.: Differential Topology. Graduate Texts in Mathematics, vol. 33. Springer, New York (1976)

JACEK BOCHNAK
Le Pont l’Étang 8
1323 Romainmôtier
Switzerland
e-mail: jack3137@gmail.com

WOJciech Kucharz
Institute of Mathematics, Faculty of Mathematics and Computer Science
Jagiellonian University
Lojasiewicza 6
30-348 Kraków
Poland
e-mail: Wojciech.Kucharz@im.uj.edu.pl

Received: 7 July 2021
Accepted: 8 September 2021.