Tensor networks and the numerical renormalization group

Andreas Weichselbaum

Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience, Ludwig-Maximilians-Universität, 80333 Munich, Germany

(Dated: February 21, 2022)

The full-density-matrix numerical renormalization group has evolved as a systematic and transparent setting for the calculation of thermodynamical quantities at arbitrary temperatures within the NRG framework. It directly evaluates the relevant Lehmann representations based on the complete basis sets introduced by Anders and Schiller
(2005). In addition, specific attention is given to the possible feedback from low energy physics to high energies by the explicit and careful construction of the full thermal density matrix, naturally generated over a distribution of energy shells. Specific examples are given in terms of spectral functions \(f_{\text{DM}}(\text{NRG}) \), time-dependent NRG \((\text{tdm}\text{NRG}) \), Fermi-Golden rule calculations \((\text{fgr}\text{NRG}) \), as well as the calculation of plain thermodynamic expectation values. Furthermore, based on the very fact that, by its iterative nature, the NRG eigenstates are naturally described in terms of matrix product states, the language of tensor networks has proven enormously convenient in the description of the underlying algorithmic procedures. This paper therefore also provides a detailed introduction and discussion of the prototypical NRG calculations in terms of their corresponding tensor networks.

PACS numbers: 02.70.-c, 05.10.Cc, 75.20.Hr, 78.20.Bh

I. INTRODUCTION

The numerical renormalization group (NRG)\(^2\text{-}^4\) is the method of choice for quantum impurity models. These consist of an interacting local system coupled to noninteracting typically fermionic baths, which in their combination can give rise to strongly correlated quantum-many-body effects. Through its renormalization group (RG) ansatz, its collective finite size spectra provide a concise snapshot of the physics of a given model from large to smaller energies on a logarithmic scale. A rich set of NRG analysis is based on these finite size spectra, including statistical quantities that can be efficiently computed within a single shell approach at an essentially discrete set of temperatures tied to a certain energy shell.

Dynamical quantities such as spectral functions, however, necessarily require to combine data from all energy scales. Since all NRG iterations contribute to a single final curve, traditionally it had not been clear how to achieve this in a systematic clean way, specifically so for finite temperatures.

The calculation of spectral properties within the NRG started with Oliveira and Wilkins\(^5\text{-}^6\) (1981, 1985) in the context of X-ray absorption spectra. This was extended to spectral functions at zero temperature by Sakai et al.\(^7\) (1989). Finite temperature together with transport properties, finally, was introduced by Costi and Hewson\(^8\) (1992). An occasionally crucial feedback from small to large energy scales finally was taken care of by the explicit incorporation of the reduced density matrix for the remainder of the Wilson chain (DM-NRG) by Hofstetter\(^9\) (2000). While these methods necessarily combined data from all NRG iterations to cover the full spectral range, they did so through heuristic patching schemes. Moreover, in the case of finite temperature, these methods had been formulated in a single-shell setup that associates a well-chosen characteristic temperature that corresponds to the energy scale of this shell. For a more complete listing of references, see Bulla et al.\(^4\) (2008).

The possible importance of a true multi-shell framework for out-of-equilibrium situations had already been pointed out by Costi\(^10\) (1997). As it turns out, this can be implemented in a transparent systematic way using the complete basis sets, which where introduced by Anders and Schiller\(^1\) (2005) for the feat of real-time evolution within the NRG (TD-NRG). This milestone development allowed for the first time to use the quasi-exact method of NRG to perform real-time evolution to exponentially long time scales. It emerged together with other approaches to real-time evolution of quantum many-body systems such as the DMRG.\(^11\text{-}^12\) While more traditional single-shell formulations of the NRG still exist for the calculation of dynamical quantities using complete basis sets,\(^13\) the latter, however, turned out significantly more versatile.\(^14\text{-}^18\) In particular, a clean multi-shell formulation can be obtained using the full-density-matrix (FDM) approach to spectral functions \(f_{\text{DM}}\text{NRG} \). As it turns out, this essentially generalizes the DM-NRG\(^9\) to a clean black-box algorithm, with the additional benefit that it allows to treat arbitrary finite temperatures on a completely generic footing. Importantly, the FDM approach can be easily adapted to related dynamical calculations, such as the time dependent NRG \((\text{tdm}\text{NRG}) \), or Fermi-Golden-rule calculations \((\text{fgr}\text{NRG}) \),\(^19\text{-}^21\) as will be described in detail in this paper.

For the FDM approach, the underlying matrix product state (MPS) structure of the NRG\(^14\text{-}^22\) provides an extremely convenient framework. It allows for an efficient description of the necessary iterative contractions of larger tensor networks, \textit{i.e.} summation over shared index spaces.\(^23\) Moreover, since this quickly can lead in complex mathematical expressions if spelled out explic-
itly in detail, it has proven much more convenient to use a graphical representation for the resulting tensor networks. In this paper, this is dubbed MPS diagrammatic. It compactly describes the relevant procedures that need to be performed in the actual numerical simulation, and as such also represents a central part of this paper.

The paper then is organized as follows: the remainder of this section gives a brief introduction to the NRG, complete basis sets, its implication for the FDM approach, and the corresponding MPS description. As a corollary, this section also discusses the intrinsic relation of energy scale separation, efficiency of MPS, and area laws. Section II gives a brief introduction to MPS diagrammatics, and its implications for the NRG. Section III provides a detailed description of the FDM algorithms fdrmNRG, as well as fgrNRG in terms of their MPS diagrams. This also includes further additional corollaries, such as the generic quantum impurity model applicability of the (half-)bandwidth, which implies W ≳ 1, such that with W the half-bandwidth of a Fermi sea, this defines a set of intervals ±W[Λ−(m−z)/2], each of which is eventually described by a single fermionic degree of freedom only. Here m is a positive integer, with the additional constant z ∈ [0, 1] introducing an arbitrary shift, to be referred to as z-shift. (ii) For each individual flavor µ, the coarse grained bath can be mapped exactly onto a semi-infinite chain, with the first site described by ũ0µ and exponentially decaying hopping amplitudes t_n along the chain. This one-dimensional linear setup is called the Wilson chain, where \[\hat{H}_N \equiv \hat{H}_0 + \sum_{\mu} \sum_{n=1}^{N} (t_{n-1} \hat{f}_{n-1, \mu}^{\dagger} \hat{f}_{n, \mu} + \text{H.c.}), \] (2)

where \[\hat{H}_{\text{QIS}} \simeq \lim_{N \to \infty} \hat{H}_N. \] For larger n, it quickly holds

\[\omega_n \equiv \lim_{n \gg 1} t_{n-1} = \left[\frac{\Lambda^{z-1}(\Lambda-1)}{\log \Lambda} \right] W \Lambda^{-\frac{n}{2}}, \] (3)

\[\omega_n \] describes the smallest energy scale of a Wilson chain including all sites up to and including site n (described by \(\hat{f}_{n\mu} \)) for arbitrary \(\Lambda \) and z-shift. In practice, all energies at iteration n are rescaled by the energy scale \(\omega_n \) and shifted relative to the ground state energy of that iteration. This is referred to as rescaled energies.

From the point of view of the impurity, the effects of the bath are fully captured by the hybridization function \(\Gamma(\varepsilon) \equiv \pi \rho(\varepsilon)V^2(\varepsilon) \), which is assumed spin-independent. For simplicity, a flat hybridization function is assumed throughout, i.e. \(\Gamma(\varepsilon) = \Gamma \delta(W - |\varepsilon|) \), with the discretization following the prescription of Žitko and Pruschke. If not indicated otherwise, all energies are specified in units of the (half-)bandwidth, which implies \(W := 1 \).

1. Single impurity Anderson model

The prototypical quantum impurity model applicable to the NRG is the single impurity Anderson model (SIAM). It consists of a single interacting fermionic level (d-level), i.e. the impurity,

\[\hat{H}_\text{imp} = \sum_{\sigma} \varepsilon_{d\sigma} \hat{n}_{d\sigma} + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow}. \] (4a)

with level-position \(\varepsilon_{d\sigma} \) and onsite interaction \(U \). This impurity is coupled through the hybridization

\[\hat{H}_\text{cpl} = \sum_{\sigma} \left(\hat{d}_{d\sigma}^{\dagger} \sum_{k} V_{k\sigma} \hat{c}_{k\sigma} + \text{H.c.} \right) \] (4b)

\[\equiv \sqrt{\frac{2t}{\pi}} \hat{f}_{0\sigma} \]

\[\hat{d}_{d\sigma}^{\dagger} \] (\(\hat{c}_{k\sigma} \)) creates an electron with spin \(\sigma \in \{\uparrow, \downarrow\} \) at the d-level (in
the bath with energy index k), respectively. Moreover, $\hat{v}_{d\sigma} = \hat{d}_{\sigma}^\dagger \hat{d}_{\sigma}$, and $\hat{v}_{ks} = \hat{c}_{k}^\dagger \hat{c}_{s}$. At average occupation with a single electron, the model has three physical parameter regimes that can be accessed by tuning temperature: the free orbital regime (FO) at large energies allows all states at the impurity from empty to doubly occupied, the local moment regime (LM) at intermediate energies with a single electron at the impurity and the empty and double occupied state at high energy only accessible through virtual transitions, and the low-energy strong coupling (SC) fixed-point or Kondo regime, where the local moment is fully screened by the electrons in the bath into a quantum-many-body singlet.

B. Complete basis sets

Within the NRG, a complete many-body basis\(^1\) can be constructed from the state space of the iteratively computed NRG eigenstates $H_n |\psi_n\rangle = E_n |\psi_n\rangle$. With the NRG stopped at some final length N of the Wilson chain, the NRG eigenstates w.r.t. to site $n < N$ can be complemented by the complete state space of the rest of the chain, $|\psi_n\rangle$, describing sites $n+1, \ldots, N$. The latter space will be referred to as the environment, which due to energy scale separation will only weakly affect the states $|\psi_n\rangle$. The combined states,

$$|s e_n\rangle \equiv |s\rangle_n \otimes |e_n\rangle, \quad (5)$$

then span the full Wilson chain. Within the validity of energy scale separation, one obtains\(^1\)

$$H_N |s e_n\rangle \simeq E_n^s |s e_n\rangle, \quad (6a)$$

i.e. the NRG eigenstates at iteration $n < N$ are, to a good approximation, also eigenstates of the full Wilson chain. This holds for a reasonably large discretization parameter $\Lambda \gtrsim 1.7,2,4.30$

With focus on the iteratively discarded state space, this allows to build a complete many-body eigenbasis of the full Hamiltonian,\(^1\)

$$1 (d_0 d^N) = \sum_{s, e_n} |s e_n\rangle_{DD}^D |s e_n\rangle, \quad (6b)$$

where $d_0 d^N$ describes the full many-body Hilbert space dimension of the Hamiltonian H_N. Here d refers to the state space dimension of a single Wilson site, while d_0 refers to the state space dimension of the local Hamiltonian H_0, which in addition to f_0 also fully incorporates the impurity [cf. Eq. (1)]. It is further assumed, that the local Hamiltonian H_0 is never truncated, i.e. truncation sets in for some $n = n_0 > 0$. Therefore, by construction, the iterations $n' < n_0$ do not contribute to Eq. (6b). At the last iteration $n = N$, all states are considered discarded by definition.\(^1\) The truncation at intermediate iterations, finally, can be chosen either w.r.t. to some threshold number N_K of states to keep, while nevertheless respecting degenerate subspace, or, preferentially, w.r.t. to an energy threshold E_K in rescaled energies [cf. Eq. (3)]. The latter is a dynamical scheme which allows for a varying number of states depending on the underlying physics.

The completeness of the state space in Eq. (6b) can be easily motivated by realizing that at every NRG truncation step, by construction, the discarded space (eigenstates at iteration n with largest energies) is orthogonal to the kept space (eigenstates with lowest eigenenergies). The subsequent refinement of the kept space at later iterations will not change the fact, that the discarded states at iteration n remain orthogonal to the state space generated at later iterations. This systematic iterative truncation of Hilbert space while building up a complimentary complete orthogonal state space is a defining property of the NRG, and as such depicted schematically in Fig. 1.

C. Identities

This section deals with notation and identities related to the complete basis sets within the NRG. These are essential when directly dealing with Lehmann represent-
tations for the computation of thermodynamical quantities. While the combination of two basis sets discussed next simply follows Ref. 1, this section also introduces the required notation. The subsequent Sec. 1D then derives the straightforward generalization to multiple sums over Wilson shells.

Given the complete basis in Eq. (6), it holds

\[\sum_{s} |se\rangle_{i,n} \langle se| = \sum_{n'}^{N} \sum_{s} |se\rangle_{n,n'} \langle se|, \quad (7) \]

Here the state space projectors \(\hat{P}_{n}^{K} \) are defined to project into the kept (\(X = K \)) or discarded (\(X = D \)) space of Wilson shell \(n \). This then allows to rewrite Eq. (7) more compactly as

\[\hat{P}_{n}^{K} = \sum_{n' > n} \hat{P}_{n'}^{D}, \quad (8) \]

where the upper limit in the summation, \(n' \leq N \), is implied if not explicitly indicated. With this, two independent sums over Wilson shells can be reduced into a single sum over shells.\(^1\)

\[\sum_{n_1,n_2} \hat{P}_{n_1}^{D} \hat{P}_{n_2}^{D} = \sum_{(n_1,n_2)\equiv n} \hat{P}_{n_1}^{D} \hat{P}_{n_1}^{D} + \sum_{n_1 > n_2, (n_1,n_2)\equiv n} \hat{P}_{n_1}^{D} \hat{P}_{n_2}^{D} + \sum_{(n_1,n_2)\equiv n, n_1 < n_2} \hat{P}_{n_1}^{D} \hat{P}_{n_2}^{D} \]

\[= \sum_{n} \left(\hat{P}_{n}^{D} \hat{P}_{n}^{D} - \hat{P}_{n}^{K} \hat{P}_{n}^{K} + \hat{P}_{n}^{D} \hat{P}_{n}^{K} \right) \]

\[= \sum_{X' n} \hat{P}_{X'}^{K} \hat{P}_{n}^{X'}. \quad (9) \]

For simplified notation, the prime in the last single sum over Wilson shells (\(\sum_{n}^{n} \)) indicates that also the kept-sectors are included in the sum over Wilson shells, yet excluding the all-kept sector \(XX' \neq KK \), since this sector is refined still in later iterations.\(^1,14\)

While Eq. (9) holds for the entire Wilson chain, exactly the same line of arguments can be repeated starting from some arbitrary but fixed reference shell \(n \), leading to

\[\hat{P}_{n}^{K} \hat{P}_{n}^{K} = \sum_{n_1,n_2 \geq n} \hat{P}_{n_1}^{D} \hat{P}_{n_2}^{D} = \sum_{n > n} \hat{P}_{n}^{X} \hat{P}_{n}^{X}, \quad (10) \]

where Eq. (8) was used in the first equality.

D. Generalization to multiple sums over shells

Consider the evaluation of some physical correlator that requires \(m > 2 \) insertions of the identity in Eq. (6b) in order to obtain a simple Lehmann representation. Examples in that respect are tdmNRG or (higher-order) correlation functions, as discussed later in the paper. In all cases, the resulting independent sum over arbitrarily many identities as in Eq. (6b) can always be rewritten as a single sum over Wilson shells. The latter is desirable since energy differences, as such they occur in the Lehmann representation for correlation functions, should be computed within the same shell, where both contributing eigenstates are described with comparable energy resolution.

Claim: Given \(m \) full sums as in Eq. (6b), this can be rewritten in terms of a single sum over a Wilson shell \(n \), such that Eq. (9) generalizes to

\[\sum_{n_1,\ldots,n_m} \hat{P}_{n_1}^{D} \cdots \hat{P}_{n_m}^{D} = \sum_{n} \sum_{n_1,\ldots,n_m} \hat{P}_{n_1}^{X_1} \cdots \hat{P}_{n_m}^{X_m}, \quad (11) \]

where again the prime in the last single sum over Wilson shells (\(\sum_{n}^{n} \)) indicates that all states are to be included within a given iteration \(n \), while only excluding the all-kept sector \(X_{1},\ldots,X_{m} \neq K,\ldots,K \). Note that via Eq. (8), the l.h.s. of Eq. (11) can be rewritten as

\[\hat{P}_{n_0-1}^{K} \cdots \hat{P}_{n-m}^{K} = \sum_{n_1,\ldots,n_m>n} \hat{P}_{n_1}^{D} \cdots \hat{P}_{n_m}^{D} \]

where \(n_0 > 0 \) is the first iteration where truncation sets in. This way, \(\hat{P}_{n_0-1}^{K} \) refers to the full Hilbert space still.

Proving Eq. (11) hence is again equivalent to proving for general \(n \) that

\[\hat{P}_{n}^{K} \cdots \hat{P}_{n}^{K} = \sum_{n_1,\ldots,n_m>n} \hat{P}_{n_1}^{D} \cdots \hat{P}_{n_m}^{D} = \sum_{n > n_0} \hat{P}_{n}^{X_1} \cdots \hat{P}_{n}^{X_m}, \quad (12) \]

with the upper limit for each sum over shells, \(n_i \leq N \) and \(n \leq N \), implied, as usual. Therefore the sum in the center term, for example, denotes an independent sum \(\sum_{n_{m-n_0}}^{N} \) for all \(n_i \) with \(i = 1,\ldots,m \).

Proof: The case of two sums (\(m = 2 \)) was already shown in Eq. (10). Hence one may proceed via induction. Assume, Eq. (12) holds for \(m - 1 \). Then for the case \(m \), one has in complete analogy to Eq. (9),

\[\hat{P}_{n}^{K} \cdots \hat{P}_{n}^{K} = \left(\sum_{n \geq n_0}^{n_0} \hat{P}_{n}^{X_{m-1}} \right) \left(\sum_{n_{m-1} > n_0}^{n_{m-1}} \hat{P}_{n_{m-1}}^{D} \right) \]

\[= \sum_{n > n_0} \hat{P}_{n}^{X_1} \cdots \hat{P}_{n}^{X_{m-1}} \hat{P}_{n}^{D} \hat{P}_{n}^{K} + \hat{P}_{n}^{K} \cdots \hat{P}_{n}^{K} \hat{P}_{n}^{D} \]

\[= \sum_{n > n_0} \hat{P}_{n}^{X_1} \cdots \hat{P}_{n}^{X_{m}} \]

where from the second to the third line, it was used that,

\[\sum_{n' > n}^{n} + \sum_{n' > n}^{n} + \sum_{n' > n}^{n} = \sum_{n' > n}^{n} + \sum_{n' > n}^{n} + \sum_{n' > n}^{n}, \]

and the last term in the third line followed from the inductive hypothesis. This proves Eq. (12).
Alternatively, the \(m \) independent sums over \(\{n_1, \ldots, n_m\} \) in Eq. (12) can be rearranged such, that for a specific iteration \(\tilde{n} \), either one of the indices \(n_i \) may carry \(\tilde{n} \) as minimal value, while all other sums range from \(n_{i'} \geq \tilde{n} \). This way, by construction, the index \(n_i \) stays within the discarded state space, while all other sums \(n_{i'} \) are unconstrained up to \(n_i \geq \tilde{n} \), thus represent either discarded at iteration \(\tilde{n} \) or discarded at any later iteration which corresponds to the kept space at iteration \(\tilde{n} \). From this, Eq. (12) also immediately follows.

E. Energy scale separation and area laws

By construction, the iterative procedure of the NRG generates an MPS representation for its energy eigenbasis.22,31 This provides a direct link to the density matrix renormalization group (DMRG).22,32 and consequently also to its related concepts of quantum information.23 For example, it can be demonstrated that quite similar to the DMRG, the NRG truncation w.r.t. to a fixed energy threshold \(E_K \) is also quasi-variational w.r.t. to the ground state of the semi-infinite Wilson chain.15,30 Note furthermore that while DMRG typically targets a single global state, namely the ground state of the full system, at an intermediate step nevertheless it also must deal with large effective state spaces describing disconnected parts of the system. This again is very much similar to the NRG, which at every iteration needs to deal with many states.

Now the success of variational MPS, i.e. DMRG, to ground state calculations of quasi-one-dimensional systems is firmly rooted in the so-called area law for the entanglement or block entropy \(S_A \) or \(\rho_A \) with \(\log \rho_A \) (Ref. 34–36). In particular, the block entropy \(S_A \) represents the entanglement of some contiguous region \(A \) with the rest \(B \) of the entire system \(A \cup B \) considered. This allows to explain, why MPS, indeed, is ideally suited to efficiently capture ground state properties for quasi-one-dimensional systems.

In contrast to DMRG for real-space lattices, however, NRG references all energy scales through its iterative diagonalization scheme. It zooms in towards the low energy scales (“ground state properties”) of the full semi-infinite Wilson chain. Therefore given a Wilson chain of sufficient length \(N \), without restricting the case, one may consider the fully mixed density matrix built from the ground state space \(|0\rangle_N \) of the last iteration, for simplicity. This then allows to analyze the entanglement entropy \(S_n \) of the states \(|s\rangle_n \), i.e. the block of sites \(n' < n \), with respect to its environment \(|\epsilon\rangle_n \). The interesting consequence in terms of area law is that one expects the (close to) lowest entanglement entropy \(S_n \) for the stable low-energy fixed point, while one expects \(S_n \) to increase for higher energies, i.e. with decreasing Wilson shell index \(n \).

This is nicely confirmed in a sample calculation for the SIAM, as demonstrated in Fig. 2. Figure 2(a) shows the standard NRG energy flow diagram (collected finite size spectra, here for even iterations), which clearly outlines the physical regimes of free orbital (FO, \(n \lesssim 25 \)), local moment (LM, \(25 \lesssim n \lesssim 60 \)), and strong coupling (SC, \(n \gtrsim 60 \)) regime. Here in order to have a sufficiently wide FO regime, a very small onsite interaction \(U \) was chosen relative to the bandwidth of the Fermi sea. Panel (b) shows the entanglement entropy \(S_n \) between system \((n' \leq n) \) and environment \((n' > n) \). Up to the very beginning or the very end of the actual chain (the latter is not shown), this shows a smooth monotonously decaying behavior vs. energy scale. In particular, consistent with

![Figure 2: NRG and area law – analysis for the symmetric SIAM for the parameters as shown in panels (b) and (c) [cf. Eq. (4); all energies in units of bandwidth]. Panel (a) shows the standard energy flow diagram of the NRG for even iterations where the different colors indicate different symmetry sectors. Panel (b) shows the entanglement entropy \(S_n \) of the Wilson chain up to and including site \(n < N \) with the rest of the chain, given the overall ground state (\(N = 99 \)). Due to intrinsic even-odd alternations, even and odd iterations \(n \) are plotted separately. Panel (c) shows the actual number of multiplets kept from one iteration to the next, using a dynamical truncation criteria w.r.t. a predefined fixed energy threshold \(E_F \) as specified. The calculation used \(SU(2)_{\text{spin}} \otimes SU(2)_{\text{charge}} \) symmetry, hence the actual number of kept states is by about an order of magnitude larger e.g. as indicated with the maximum number of multiplets kept, \(N_K \) in panel (c): the value in brackets gives the corresponding number of states.](image-url)
the area law for lowest-energy states, the entanglement is smallest once the stable low-energy fixed point is reached. Having chosen a dynamical (quasi-variational)15 truncation scheme \(w.r.t\) to a threshold energy \(E_K\) in rescaled energies [cf. Eq. (3)], the qualitative behavior of the entanglement entropy is also reflected in the number of states that one has to keep for some fixed overall accuracy, as shown in Fig. 2(c). Clearly, up to the very few first shells prior to truncation, the largest number of states must be kept at early iterations. While this is a hand-waving argument, this nevertheless confirms the empirical fact, that the first few Wilson shells with truncation are usually the most important, \(i.e\). most expensive ones. Therefore for good overall accuracy all the way down to the low energy sector, one must allow for a sufficiently large number of states to be kept at early iterations.

The entanglement entropy as introduced above together with the area law thus is consistent with the energy scale separation along the Wilson chain in [\textit{cf.} Figure. 2(b)]. However, note that the specific value of the entanglement entropy is not a physical quantity, in that it depends on the discretization. While the entanglement entropy clearly converges to a specific value when including a sufficient number of states, it nevertheless sensitively depends on \(\Lambda\). The smaller \(\Lambda\), the larger the entanglement entropy \(S_n\) is going to be, since after all, the Wilson chain represents a gapless system. The overall qualitative behavior, however, is expected to remain the same, \(i.e\). independent of \(\Lambda\). Similar arguments hold for entanglement spectra and their corresponding entanglement flow diagram, which provide significantly more detailed information still about the reduced density matrices constructed by the bipartition into system and environment.15

\section{Full density matrix}

Given the complete NRG energy eigenbasis \(|se\rangle^D_n\), the full density matrix (FDM) at arbitrary temperature \(T \equiv 1/\beta\) is simply given by14

\[\hat{\rho}_{\text{FDM}}(T) = \sum_{se}\frac{e^{-\beta E^s_n}}{Z} |se\rangle^D_n \langle se|, \quad (13) \]

with \(Z(T) \equiv \sum_{ne,d} e^{-\beta E^d_n}\). By construction of a thermal density matrix, all energies \(E^s_n\) from all shells \(n\) appear on an equal footing relative to a single global energy reference. Hence any prior iterative rescaling or shifting of the energies \(E^s_n\), which is a common procedure within the NRG [\textit{cf.} Eq. (3)], clearly must be undone. From a numerical point of view, typically the ground state energy at the last iteration \(n = N\) for a given NRG run is taken as energy reference. In particular, this ensures numerical stability in that all Boltzmann weights are smaller or equal 1.

Note that the energies \(E^s_n\) are considered \textit{independent} of the environmental index \(e\). As a consequence, this leads to \textit{exponentially large} degeneracies in energy for the states \(|se\rangle_n\). The latter must be properly taken care of within FDM, as it contains information from all shells. By already tracing out the environment for each shell, this leads to14

\[\hat{\rho}_{\text{FDM}}(T) = \sum_n \frac{d^{N-n} Z_n}{Z} \sum_s e^{-\beta E^s_n} |s\rangle^D_{n,n} \langle s|, \quad (14) \]

with \(d\) the state-space dimension of a single Wilson site, and the proper normalization by the site-resolved partition function \(Z_n(T) \equiv \sum_{se} e^{-\beta E^s_n}\) of the density matrices \(\rho^D_n(T)\) built from the discarded space of a specific shell \(n\) only. Therefore, \(\text{tr}(\rho^D_n(T)) = 1\), and also \(Z(T) = \sum_n Z_n(T)\). Equation (14) then defines the weights \(w_n\), which themselves represent a normalized distribution, \(i.e.\) \(\sum_n w_n = 1\). Importantly, Eq. (14) demonstrates that FDM is constructed in a well-defined manner from a distribution of density matrices \(\rho^D_n(T)\) from a range of energy shells \(n\).

\subsection{Weight distribution \(w_n\)}

The qualitative behavior of the weights \(w_n\) can be understood straightforwardly. With the typical energy scale of shell \(n\) given by

\[\omega_n = a \Lambda^{-n/2}, \quad (15) \]

with \(a\) some constant of order 1. [\textit{cf.} Eq. (3)], this allows to estimate the weights \(w_n\) as follows,

\[\ln(w_n) \simeq \ln(d^{N-n}e^{-\beta \omega_n}/Z) = (N-n) \ln(d) - \beta \omega_n + \text{const}. \]

For a given temperature \(T\), the shell \(n\) with maximum weight is determined by,

\[\frac{d}{dn} \ln(w_n) \simeq - \ln(d) + \frac{\beta \ln(\Lambda)}{2} \Lambda^{-n/2} \overset{!}{=} 0, \]

with the solution

\[a \Lambda^{-n^*/2} \simeq \frac{\ln(d)}{\beta \ln(\Lambda)} \sim T, \quad (16) \]

since the second term is \(1/\beta\) times some constant of order 1. This shows that the weight distribution \(w_n\) is strongly peaked around the energy scale of given temperature \(T\). With \(T \equiv a \Lambda^{-n^*/2}\) and therefore \(n_T \simeq n^*\), the distribution decays super-exponentially fast towards larger energy scales \(n \ll n_T\) (dominated by \(e^{-\beta \omega_n}\) with \textit{exponentially increasing} \(\omega_n\) with decreasing \(n\)). Towards smaller energy scales \(n \gg n_T\), on the other hand, the distribution \(w_n\) decays in a plain exponential fashion (dominated by \(d^{-n}\), since with \(\beta \omega_n \ll 1\), \(e^{-\beta \omega_n} \to 1\)).

An actual NRG simulation based on the SIAM is shown in Fig. 3. It clearly supports all of the above qualitative analysis. It follows for a typical discretization parameter
A and local dimension d, that n_T is slightly smaller than n^*, i.e. towards larger energies to the left of the maximum in w_n, typically at the left onset of the distribution w_n, as is seen in the main panel in Fig. 3 (n_T is indicated by the vertical dashed line). Within the shell n^* of maximum contribution to the FDM, therefore the actual temperature is somewhat larger relative to the energy scale of that iteration [note that this is clearly related to the factor β, introduced by Krishna-murthy et al. (1980) on heuristic grounds for the optimal discrete temperature representative for a single energy shell].

An important practical consequence of the exponential decay of the weights w_n for $n \gg n_T$ is that by taking a long enough Wilson chain to start with, fdmNRG automatically truncates the length of the Wilson chain at several iterations past n_T. Therefore the actual length of the Wilson chain N included in a calculation should be such that the full distribution w_n is sampled, which implies that w_n has dropped again at least down to $w_N \lesssim 10^{-3}$.

The weights w_n are fully determined within an NRG calculation, and clearly depend on the specific physical as well as numerical parameters. Most obviously, this includes the state space dimension d of a given Wilson site, and the discretization parameter Λ. However, the weights w_n also sensitively depend on the specific number of states kept from one iteration to the next. For example, the weights are clearly zero for iterations where no truncation takes place, which is typically the case for the very first NRG iterations which include the impurity. However, the weights also adjust automatically to the specific truncation scheme adopted, such as the quasi-variational truncation based on an energy threshold E_K. In the case of fixed $N_K = 512$ as in Fig. 3, note that if $d = 4$ times the number of states had been kept, i.e. $N_K = 512 \to 2048$, this essentially would have shifted the entire weight distribution in Fig. 3 by one iteration to the right to lower energy scales, resulting in an improved spectral resolution for frequencies $\omega \lesssim T$. For the latter purpose, however, it is sufficient to use an increased N_K at late iterations only, where around the energy scale of temperature the weights w_n contribute mostly.

Furthermore, given a constant number N_K of kept states in Fig. 3, the weights w_n show a remarkably smooth behavior, irrespective of even or odd iteration n. This is somewhat surprising at first glance, considering that NRG typically does show pronounced even-odd behavior. For example, for the SIAM (see also Fig. 2), at even iterations an overall non-degenerate singlet can be formed to represent the ground state. Having no unpaired spin in the system, this typically lowers the energy more strongly as compared to odd iterations which do have an unpaired spin. Therefore while even iterations show a stronger energy reduction in its low energy states, its ground state space consists of a single state. In contrast, for odd iterations the energy reduction by adding the new site is weaker, yet the ground state space is degenerate, assuming no magnetic field (Kramers degeneracy). In terms of the corresponding weight distribution for the full density matrix then, both effects balance each other, such that distribution of the FDM weights w_n results in a smooth function of the iteration n, as seen in Fig. 3.

In summary, above analysis shows that the density matrix generated by FDM is dominated by several shells around the energy scale of temperature. The physical information encoded in these shells can critically affect physical observables at much larger energies. This construction therefore shall not be shortcut in terms of the density matrix in the kept space at much earlier iterations, i.e. by using $\hat{H} |s\rangle^K \approx E^K |s\rangle^K$ with the Boltzmann weights thus determined by the energies of the kept states. This can fail for exactly the reasons already discussed in detail with the DM-NRG construction by Hofstetter (2000): the low-energy physics can have important feedback to larger energy scales. To be specific, the physics at the low-energy scales on the order of temperature can play a decisive role on the decay channels of high-energy excitations. As a result, for example, the low-energy physics can lead to a significant redistribution of spectral weight in the local density of states at large energies.

2. FDM representation

The full thermal density matrix ρ_T^{FDM} in Eq. (14) represents a regular operator with an intrinsic internal sum over Wilson shells. When evaluating thermodynamical expressions then, as seen through the discussions Sec. IC
and ID, its matrix elements must be calculated both with respect to discarded as well as kept states. While the former are trivial, the latter require some more attention. All of this, however, can be written compactly in terms of the projections in Eq. (7).

The reduced density matrix $\tilde{\rho}_n^{\text{FDM}}$ is a scalar operator, from which it follows,

$$\tilde{P}_n^{X} \tilde{P}_n^{X'} = \delta_{XX'} \tilde{P}_n^{X}.$$

(17)

This defines the projections \tilde{R}_n^{X} of \tilde{P}_n^{X} onto the space $X \in \{K, D\}$ at iteration n, which are not necessarily normalized hence the altered notation. Like any scalar operator, thus also the projections \tilde{R}_n^{X} carry a single label X only. The projection into the discarded space,

$$\tilde{R}_n^{D} \equiv \tilde{P}_n^{D} \tilde{P}_n^{D} = w_n \tilde{P}_n^{D}(T),$$

(18)

by construction, is a fully diagonal operator as defined in Eq. (14). In kept space, however, the originally diagonal FDM acquires non-diagonal matrix elements, thus leading to a non-diagonal scalar operator,

$$\tilde{R}_n^{K} \equiv P_n^{K} \tilde{P}_n^{K} \tilde{P}_n^{K} = \sum_{n' \geq n} w_{n'} \tilde{P}_n^{K}(T) \tilde{P}_n^{K} \equiv \tilde{P}_n^{\text{FDM}}(T).$$

(19)

with the properly normalized reduced density matrices,

$$\tilde{\rho}_{n,n'}^{\text{FDM}}(T) \equiv \text{tr}_{\{\sigma_{n+1}, \ldots, \sigma_{n'}\}}(\tilde{\rho}_n^{D}(T)).$$

(20)

These are defined for $n' > n$ and, w.r.t. to the basis of iteration n, are fully described within its kept space. Note that in the definition of the $\tilde{\rho}_n^{D}(T)$ in Eq. (14) the environment consisting of all sites $\tilde{n} > n'$ had already been traced out, hence in Eq. (20) only the sites $\tilde{n} = n + 1, \ldots, n'$ remain to be considered. By definition, the reduced density matrices $\tilde{\rho}_{n,n'}(T)$ are built from the effective basis $|s_n^{D}\rangle$ at iteration n', where subsequently the local state spaces σ_n of sites $\tilde{n} = n', n'-1, \ldots, n+1$ are traced out in an iterative fashion.

The projected FDM operators \tilde{R}_n, like other operators, are understood as operators in the basis $|s_n\rangle$, i.e. $\tilde{R}_n^{X} = \sum_{s \in X} \tilde{R}_n^{X}(s,s')|s\rangle_n\langle s'|$, (note the hat on the operator), while the bare matrix elements $(\tilde{R}_n^{X})_{ss'} \equiv \langle s'|\tilde{R}_n^{X}|s\rangle_n$ are represented by R_n^{X} (by convention, written without hats). Overall then, the operator \tilde{R}_n can be written in terms of two contributions, (i) the contribution from iteration $n' = n$ itself (encoded in discarded space), and (ii) the contributions of all later iterations $n' > n$ (encoded in kept space at iteration n),

$$\tilde{R}_n = w_n \tilde{P}_n^{D}(T) + \sum_{n' > n} w_{n'} \tilde{P}_n^{\text{FDM}}(T) \equiv \tilde{R}_n^{D} + \tilde{R}_n^{K}.$$

(21a)

In the last equation, for simplicity, the definition of $\tilde{\rho}_{n,n'}$ for $n' > n$ in Eq. (20) has been extended to include the case $n' = n$, where $\tilde{\rho}_{n,n} \equiv \tilde{\rho}_n^{D}(T)$.

II. MPS DIAGRAMMATICS

Given the complete basis sets which, to a good approximation, are also eigenstates of the full Hamiltonian, this allows to evaluate correlation functions in a text-book like fashion based on their Lehmann representation. Despite the exponential growth of the many-body Hilbert space with system size, repeated sums over the entire Hilbert space nevertheless can be evaluated efficiently, in practice, due to the one-dimensional structure of the underlying MPS [the situation is completely analogous to the product, say, of N matrices $A^{(n)}$, $n \in \{1, \ldots, N\}$, of dimension D, $(A^{(1)} A^{(2)} \ldots A^{(N)})_{ij} \equiv \sum_{k_1=1}^{D} \sum_{k_2=1}^{D} \cdots \sum_{k_N=1}^{D} A^{(1)}_{i,k_1} A^{(2)}_{k_1,k_2} \cdots A^{(N)}_{k_N,j}$]. There the sum over intermediate index spaces k_1, \ldots, k_N in principle also grows exponentially with the number of matrices. By performing the matrix product sequentially, however, this is no problem whatsoever.

A. Basics and conventions

The NRG is based on an iterative scheme: given an (effective) many-body eigenbasis $|s\rangle_{n-1}$ up to and including site $n-1$ on the Wilson chain, a new site with a d-dimensional state space $|\sigma\rangle_n$ is added. Exact diagonalization of the combined system leads to the new eigenstates

$$|s_n\rangle = \sum_{s_{n-1}, \sigma_n} A^{[\sigma_n]}_{s_{n-1},s_n} |\sigma\rangle_n |s\rangle_{n-1}.$$

(22)

Here the coefficient space $A^{[\sigma_n]}_{s_{n-1},s_n}$ of the underlying unitary transformation is already written in standard MPS notation.23,33 It will be referred to as A-tensor A_n which, by construction, is of rank 3. Equation (22) is depicted graphically in Fig. 4(a): two input spaces (s_{n-1} and σ_n to the left and at the bottom, respectively), and one output space s_n, as indicated by the arrows. Since by convention in this paper, NRG always proceeds from left to right, A-tensors always have the same directed structure. Therefore, for simplicity, all arrows will be skipped later in the paper. Furthermore, the block A_n, which depicts the coefficients of the A-tensor at given iteration, will be shrunk to a ternary node, resulting in the simplified elementary building block for MPS diagrams as depicted in panel Fig. 4(b). Finally, note that the start of the Wilson chain does not represent any specific specialization. The effective state space from the previous iteration is simply the vacuum state, as denoted by the (terminating) thick dot at the left of Fig. 4(c). The vacuum state represents a perfectly well-defined and normalized state, such that
Figure 4: Basic MPS diagrammatics – Panel (a) Iteration step in terms of A-tensor. The coefficient space (A-tensor) for given iteration n is denoted by A_n, and incoming and outgoing state spaces are indicated by arrows. Panel (b) cleaned up simplified version of diagram in panel (a). Panel (c) indicates the first A-tensor, in case it has the vacuum state to its left, which is denoted by a (terminating) thick dot. Here, trivially $|\sigma_d\rangle \equiv |\sigma_d\rangle$ [with $|\sigma_d\rangle$ for $n = 0$ generated in the very next iteration with a Wilson chain in mind]. Panels (d) demonstrates the orthonormality condition of an A-tensor, $\sum_{\sigma_n}(A[\sigma_n])^\dagger A[\sigma_n] = 1$ [cf. Eq. (23)]. Panel (e) again is fully equivalent to panel (d). Panel (f) depicts a reduced density matrix. Panel (g) represents the evaluation of matrix elements of a local operator \hat{B} at site n in the effective state space s_n. Panel (h) again is a cleaned up version of panel (g). Panel (i) is similar to panels (g-h), except that the operator \hat{B} was assumed to act at earlier sites on the Wilson chain, such that here \hat{B} already describes the matrix elements in the effective basis s_{n-1}, and hence contracts from the left.

Figure 5: Basic MPS diagrammatics in the presence of non-abelian symmetries – Panel (a) Representation of an irreducible operator \hat{B} that acts within the local basis σ_n in the effective basis s_n. Being a reducible operator, a third open index emerges, both for the representation of the local operator \hat{B} (right incoming index to $B_{\sigma_n,\sigma_n',\mu} \equiv \langle \sigma_n|B^{\sigma_n}|\sigma_n'\rangle$), as well as for the overall contracted effective representation with the open index $B_{\sigma_n,\sigma_n',\mu}$, where μ identifies the spinor component in the irreducible operator \hat{B}. Panel (b) Simplified version of panel (a), but exactly the same otherwise. Panel (c) Contraction into a scalar representation of an operator \hat{B} in the effective representation s_{n-1} which acts at some site $n' < n$ with operator B^{\dagger} which acts at site n. With $\hat{B} \cdot B^{\dagger} \equiv \sum_{\mu} B_{\mu} \cdot B_{\mu}^{\dagger}$ a scalar operator, the result is a scalar operator of rank two in the indices (s_n, s_n').

all subsequent contractions in the remainder of the panels in Fig. 4 apply identically without any specific further modification.

Panel Fig. 4(d) depicts the elementary contraction that represents the orthonormality condition,

$$\delta_{s_n,s_n'} = n \langle s|s'\rangle_n = \sum_{s_{n-1},s_n} A[\sigma_n] \cdot A[\sigma_n']^{\dagger}$$

again, with panel (e) a cleaned up version, but otherwise exactly the same as panel (d). By graphical convention, contractions, i.e. summation over shared index or state spaces, are depicted by lines connecting two tensors. Note that in order to preserve the directedness of lines in Fig. 4(d), it is important w.r.t. bra-states, that all arrows on the A^*-tensor belonging to bra-states are fully reversed. For the remainder of the paper, however, this is of no further importance.

The contraction in panels Fig. 4(d+e) therefore results in an identity matrix, given that all input spaces of the A-tensor are contracted. For a mixed contraction, such as one input and one output state space, on the other hand, as indicated in Fig. 4(f), this results in a reduced density matrix. There the sum over the state space s_n is typically weighted by some normalized, e.g. thermal, weight distribution ρ_n, as indicated by the short dash across the line representing s_n together with the corresponding weights ρ_n.

Panel Fig. 4(g-i) describe matrix representations of an operator \hat{B} in the combined effective basis s_n for a local operator acting within σ_n (panels g-h), or for an operator that acted at some earlier site, such that it already exists in the matrix representation of the basis s_{n-1}. For the latter case, the contraction in panel (h) typically occurred at some earlier iteration, with subsequent iterative propagation of the matrix elements as in panel (i) for each later iteration. Contracting first the the operator \hat{B} as represented in the state space of σ_n' [see Fig. 5(a)] in Fig. 4(h[i]), respectively, followed by the simultaneous contraction of (s_{n-1},σ_n), the cost of the contraction in panels (g-i) scales like $O(D^3)$, where D represents the matrix dimension for the state spaces s_{n-1} and s_n (here considered to be the same, for simplicity).

For the NRG it is crucially important to use abelian and non-abelian symmetries for numerical efficiency.2,17,18,37–39 There the basis transformations in terms of the A-tensors A_n respect the underlying fusion rules for non-abelian symmetries.37 There the basis transformations in terms of the A-tensors A_n respect the underlying fusion rules for non-abelian symmetries. Moreover, elementary operators \hat{B} typically become irreducible operator sets \{ B_μ \} which are described in terms of a spinor with operator components labeled by the index μ [see Fig. 5(a)]. Using Wigner-Eckert theorem, the arrows, for example, with the operator \hat{B} in Fig. 5(a) imply the underlying Clebsch-Gordan coefficient $\langle \sigma_n | \mu, \sigma_n' \rangle$.37 In case of a scalar operator \hat{B}, the spinor reduces to a single operator, hence μ
reduces to a singleton dimension which can be stripped.
In that case, the third index to the center right of panels
Fig. 5(a-b) can be removed, resulting in the equivalent di-
agrams in Fig. 4(g-h). Panel Fig. 5(c), finally, shows the
contraction of two irreducible operator sets into a scalar
operator $\hat{B} \cdot \hat{B}^\dagger \equiv \sum_\mu \hat{B}_\mu \cdot \hat{B}_\mu^\dagger$, again represented in the
combined effective basis s_n. Here the operator \hat{B} is con-
sidered to have acted once at some earlier site, whereas
its daggered version acts on the current local site n. Note
that again the daggered (conjugated) version has all its
arrows reversed where, in addition, in the MPS diagram
the dagger indicates, that the operator \hat{B}^\dagger as compared
to \hat{B} has already been flipped upside down.

The only essential difference when using non-abelian
symmetries with MPS diagrammatics is the emergence of
extra indices (lines) w.r.t. to irreducible operators (in-
dex μ above). The underlying A-tensors, of course, need
to respect the fusion rules of the symmetries employed,
but on the level of an MPS diagram, this is implied. A
detailed introduction to non-abelian symmetries and its
application to the NRG has been presented in Ref. 37.
Therefore for the rest of this paper, for simplicity, no fur-
ther reference to non-abelian symmetries will be made,
with all tensor networks based on the elementary con-
tractions already presented in Fig. 4.

III. FDM APPLICATIONS

A. Spectral functions

Consider the retarded Green’s function

$$G_{BC}^R(t) \equiv -i\partial_t \langle \hat{B}(t) \hat{C}^\dagger \rangle_T \equiv \mathcal{G}_{BC}(t) \tag{24}$$

which may regarded as the first term in the standard
fermionic Green’s function $G(t) = -i\partial_t \langle \{ B(t) \hat{C}^\dagger \} \rangle_T$.
Here $\hat{B}(t) \equiv \exp[\hat{H} t] \hat{B} \exp[-\hat{H} t]$, where, as usual, the Hamil-
tonian \hat{H} of the system is considered time-independent. In
Eq. (24), an operator \hat{C}^\dagger acts at time $t = 0$ on a sys-
tem in thermal equilibrium at temperature T, described
by the thermal density matrix $\rho(T) = e^{-\beta \hat{H}} / Z(T)$ with
$\langle \cdot \rangle_T \equiv \text{tr} (\rho(T) \cdot)$. The system then evolves to some time
t > 0, where a possibly different operator \hat{B} is applied.
The overlap with the original time evolved wave function
then defines the retarded correlation function of the
two events. Fourier-transformed into frequency space,

$$G_{BC}^R(\omega) \equiv \int \frac{dt}{2\pi} e^{i\omega t} G_{BC}^R(t)$$

its spectral function is defined by

$$A_{BC}(\omega) = \frac{1}{\pi} \text{Im} G_{BC}^R(\omega) = \int \frac{dt}{2\pi} e^{i\omega t} G_{BC}^R(t)$$

When evaluated in the full many-body eigenbasis, in prin-
ciple, this requires the insertion of two identities, (i) to
evaluate the trace, and (ii) in between the operators
\hat{B} and \hat{C}^\dagger to deal with the exponentiated Hamiltonian.
For simplified, with the eigenbasis sets $1 = \sum_a |a\rangle \langle a| = \sum_b |b\rangle \langle b|$, the spectral function becomes,

$$A_{BC}(\omega) = \sum_{ab} \int \frac{dt}{2\pi} e^{i(\omega - E_{ab})t} \rho_a \langle a | \hat{B} | b \rangle \langle b | \hat{C}^\dagger | a \rangle$$

$$= \sum_{ab} \rho_a B_{ab} C_{ab}^* \cdot \delta (\omega - E_{ab}), \tag{26}$$

with $E_{ab} \equiv E_b - E_a$ and $\rho_a \equiv \frac{1}{2} e^{-\beta E_a}$. By convention, as
usual, operators carry hats, while matrix representations
in a given basis have no hats (\hat{B} vs. B_{ab}). Equation (26)
is referred to as the Lehmann representation of the corre-
lation function in Eq. (24). In the case of equal operators,
$\hat{B} = \hat{C}$, the spectral function is a strictly positive func-
tion, i.e. a spectral density. In either case, the integrated
spectral function results in the plain thermodynamic
expectation values,

$$\int d\omega A_{BC}(\omega) = \sum_{ab} \rho_a B_{ab} C_{ab}^* \cdot \delta (\omega - E_{ab}) \tag{28}.$$

Now using the complete NRG eigenbasis, $|a\rangle \to |se\rangle_n$
and $|b\rangle \to |s' e\rangle'_n$, one may have been tempted of
directly reducing the double sum in Eq. (26) to a sin-
gle sum over Wilson shells using Eq. (9). This im-
plies that the thermal weight would be constructed as
$\rho_a(T) \sim e^{-\beta E_a} \rightarrow e^{-\beta E'_n X}$ from both, the discarded
($X = K$) as well as the kept ($X = K$) space at iteration
n. This, however, ignores a possible feedback from
small to large energy scales which has been shown to be
crucial in the NRG context.\(^9\)

The solution is to take the FDM as it stands in
Eq. (13). This, however, introduces yet another inde-
dependent sum over Wilson shells, in addition to a and b
in Eq. (26) above,

$$A_{BC}(\omega) = \sum_{abc} \rho_{cx} B_{ab} C_{bc}^* \cdot \delta (\omega - E_{ab}). \tag{29}$$

The triple-sum over $\{a,b,c\}$ can be treated as in Eq. (11).
With $\{a,b,c\} \to \{s,s',s_\rho\} \in \{XX'X_\rho \neq KKK\}$, nev-
evertheless, $X = X_\rho$ are locked to each other since ρ it-
self represents a scalar operator, i.e. does not mix kept
with discarded states. Therefore only the contributions
$XX' \neq KK$ as known from a double sum remain. With

$$\text{tr}(\hat{\rho}_T^{FDM} \hat{B}(t) \cdot \hat{C}^\dagger)$$

$$= \sum_n \sum_{XX'X_\rho} \text{tr} (\hat{P}_n^{XX} \cdot \hat{\rho}_T^{FDM} \cdot \hat{P}_n^{XX'} \hat{B}(t) \hat{P}_n^{XX'} \cdot \hat{C}^\dagger)$$

it follows for spectral functions (fdmNRG),

$$A_{BC}(\omega) = \sum_{n,ss'} \{ C_{n}^* R_{n} \}_{ss'} (B_{n})_{ss'} \cdot \delta (\omega - E_{ss'}), \tag{29}$$
Collecting spectral data in a single sweep having \((s, s') \notin \{\mathbf{KK}\}\) at iteration \(n\) is shown in Fig. 6. Every leg of the “ladders” in Fig. 6 corresponds to an NRG forward sweep, which generates the NRG forward decomposition (horizontal lines; cf. Fig. 4). Correlation functions then require the evaluation of the matrix elements
\[
\text{tr}(\hat{C}_n \rho_{\mathbf{FDM}} \hat{d}^\dagger)\text{,}
\]
as indicated at the left of the figure. The energies of the indices (states) \(s\) and \(s'\) are “probed” such that their difference determines the energy \(E_{n,s'} - E_n^s\) of an individual contribution to the spectral function, as indicated by the \(x\delta(\omega - E_{n,s'})\) next to the indices \(s\) and \(s'\) in the upper right of the figure. The sum \(\sum_{n',n}^n\) in the discarded state space of \(\hat{\rho}_{\mathbf{FDM}}(T)\), indicated to the lower right, results in the object \(R_n\) [cf. Eq. (21b)]. The individual contributions \(\hat{R}_{n,n'}(T)\) are generated by the Boltzmann weights in the discarded space at iteration \(n'\), as indicated to the right. The contribution at \(n' = n\), i.e. \(\hat{R}_{n,n}(T)\), can simply be determined when needed. On the other hand, the cumulative contributions \(n' > n\) are obtained in a simple prior backward sweep, starting from the last Wilson shell \(N\) included, as indicated by the small arrow pointing to the left. Having \(n' > n\), this calculation always maps to the kept space, thus resulting in \(R_{nk}\). Finally, the spectral data is collected in a single forward sweep, as indicated at the bottom of the figure.

where the prime with the sum again indicates that only the combinations of states \(ss' \in \mathbb{X}^*\) are to be considered at iteration \(n\). To be specific, given the scalar nature of the projections \(\hat{R}_n\), the first term implies the matrix product \((C_n^t R_n)^{XX} \equiv (C_n^t)^{XX} R_n^X\).

The MPS diagram of the underlying tensor structure is shown in Fig. 6. Every leg of the “ladders” in Fig. 6 corresponds to an NRG eigenstate (MPS) \(|s\rangle_n\) for some intermediate iteration \(n\). The blocks for the MPS coefficient spaces (\(A\)-tensors) are no longer drawn, for simplicity [cf. Fig. 4]. The outer sum over the states \(s'\) in Eq. (29) corresponds to the overall trace. Hence the upper- and lower-most leg in Fig. 6 at iteration \(n\) carry the same state label \(s'\), as they are connected by a line (contraction). Furthermore, the inserted identity in the index \(s\) initially also would have been identified with two legs [similar to what is seen in Fig. 7 later]. At iteration \(n\), however, the state space \(s\) directly hits the FDM, leading to the overlap matrix \(X_n^{ss'} \equiv \delta_{ss'}\) [hence this eliminates the second block from the top in Fig. 7]. As a result, only the single index \(s\) from the second complete sum remains in Fig. 6. The same argument applies for the index \(s''\).

The two legs in the center of Fig. 6, finally, stem from the insertion of the FDM which can extend to all iterations \(n' \geq n\). Note that the case \(n' < n\) does not appear, since there the discarded state space used for the construction of the FDM is orthogonal to the state space \(s\) at iteration \(n\). Once the environment at iteration \(n\) leads to the reduced (partial) density matrices \(R_n\). Here the environmental states \(|e\rangle_n\) for the density matrices \(\rho_{nn}(T)\) for \(n' \geq n\) had already all been traced out, as pointed out with Eq. (14). The FDM thus reduces at iteration \(n\) to the scalar operator \(\hat{R}_n(X)\) as introduced in Eq. (21).

In summary, by insisting on using the FDM in Eq. (13) this only leads to the minor complication that \(R_{nk}\) needs to be constructed and included in the calculation. The construction of \(R_{nk}\), on the other hand, can be done in a simple prior backward sweep, which allows to generate \(R_{nk}\) iteratively and thus efficiently. All of the \(R_{nk}\) need to be stored for the later calculation of the correlation function. Living in kept space, however, the computational overhead is negligible. The actual spectral data, finally, is collected in a single forward sweep, as indicated in Fig. 6.

1. **Exactly conserved sum rules**

By construction, FDM allows to exactly obey sum rules for spectral functions as a direct consequence of Eq. (27) and fundamental quantum mechanical commutator relations. For example, after completing the Green’s function in Eq. (24) to a proper many-body correlation function for fermions, \(G_{\hat{d}}(t) \equiv -i\vartheta(t)\langle \{\hat{d}(t), \hat{d}^\dagger\}\rangle_T\), with \(\hat{d}^\dagger\) creating an electron in level \(d\) at the impurity and \(\{\cdot, \cdot\}\) the anticommutator, the integrated spectral function results in

\[
\int d\omega A(\omega) = \langle \{\hat{d}, \hat{d}^\dagger\}\rangle_T = 1,
\]

due to the fundamental fermionic anticommutator relation, \(\{\hat{d}, \hat{d}^\dagger\} = 1\). In practice, Eq. (30) is obeyed exactly within numerical double precision noise \((10^{-16})\), which underlines the fact that the full exponentially large quantum-many body state space can be dealt with in practice, indeed. Note, however, that Eq. (30) holds by construction, and therefore it is not measure for convergence of an NRG calculation. The latter must be checked independently.15

2. **Implications for complex Hamiltonians**

The Hamiltonians analyzed by NRG are usually time-reversal invariant, and therefore can be computed using
non-complex numbers. In case the Hamiltonian is not
time-reversal invariant, i.e. the calculation becomes
intrinsically complex, the A-tensors on the lower leg of
the ladders for the operators \hat{B} and \hat{C}^\dagger in Fig. 6 must be
complex conjugated (see also Fig. 4). Consequently, this
implies for the FDM projections R_n, that in Fig. 6 its
constituting A-tensors in the upper leg need to be com-
plex conjugated.

B. Thermal expectation values

Arbitrary thermodynamic expectation values can be
calculated within the fdmNRG framework, in priniciple,
through Eq. (27). Given the spectral data on the l.h.s.
of Eq. (27), for example, this can be integrated to obtain
the thermodynamic expectation value on the r.h.s. of
Eq. (27). In practice, this corresponds to a simple sum
of the non-broadened discrete spectral data as obtained
from fdmNRG. Using the plain discrete data has the ad-
vantag that it does not depend on any further details of
broadening procedures which typically would introduce
somewhat larger error bars otherwise.

For dynamical properties within the NRG, usually only
local operators are of interest. That is, for example, the
operators B or C in Eq. (27) act within the local Hamil-
tonian H_0 [Wilson shell $n = 0$; cf. Eq. (1)], or within
the very first Wilson sites $n < n_0$, where n_0 stands for
the first Wilson shell where truncation sets in. For this
early part of the Wilson chain, the weights w_n are
identically zero. Consequently, the reduced thermal density
matrix is fully described for iteration $n < n_0$ for arbitrary
quantum impurity occurs, with the effect
that for $t > 0$ the time-evolution is governed by a differ-
ent final (F) Hamiltonian \hat{H}^F. While initially introduced
within the single-shell framework for finite temperature,3
the same analysis can also be straightforwardly genera-
lized to the multi-shell approach of fdmNRG. Thus the
description here will focus on the FDM approach.

Given a quantum quench, the typical time-dependent
expectation value of interest is

$$\langle \hat{C}(t) \rangle_T \equiv \langle \hat{C}(t) \rangle_T \equiv \text{tr} \left[\hat{\rho}(t) \cdot e^{i\hat{H}^F t} \hat{C} e^{-i\hat{H}^F t} \right] ,$$ \hspace{1cm} (33)

with \hat{C} some observable. While the physically relevant
time domain concerns the dynamics after the quench, i.e. $t > 0$, one is nevertheless free to extend the definition of
Eq. (33) also to negative times. The advantage of doing
so is, that the Fourier transform into frequency space of
the $C(t)$ in Eq. (33) defined for arbitrary times becomes
purely real, as will be shown shortly. With this the ac-
tual time-dependent calculation can be performed in fre-
cquency space first in a simple and for the NRG natural
way,

$$C(\omega) = \int dt \frac{e^{-i\omega t}}{2\pi} \text{tr} \left[\hat{\rho}(t) \cdot e^{i\hat{H}^F t} \hat{C} e^{-i\hat{H}^F t} \right] ,$$ \hspace{1cm} (34)

A Fourier transform back into the time-domain at the end of the calculation, finally, provides the desired time-
dependent expectation value $C(t) = \int C(\omega) e^{-i\omega t} d\omega$ for
collecting spectral data in a single sweep having \((s,s',s_i) \in \{KKK\}\)

\begin{align}
C(t) &= \sum_{n \geq n_\text{iter}} \omega_n \delta(t - n_\text{iter})
\end{align}

\begin{align}
C(\omega) &= \sum_{s,s',s_i} \rho_{ss'}(T) C_{ff'}(\omega - E_{ff'})
\end{align}

Figure 7: (Color online) MPS diagram for the calculation of quantum quenches using tdmNRG [cf. Eq. (36)]. The calculation is performed in frequency space as depicted, which at the very end of the calculation is Fourier transformed back into the time domain to obtain the desired time-dependent expectation value \(C(t)\) [cf. Eq. (34)]. The calculation requires a complete eigenbasis for initial (black horizontal lines) and final Hamiltonian [orange (gray) horizontal lines], respectively, which are computed in two preceding NRG runs. Their respective shell-dependent overlap matrices \(R_n\) (two light gray boxes at lower left) are calculated in parallel to the calculation of the matrix elements \(C\) (dark gray box at the top). The projections \(R_n^\dagger\) of the FDM (box at the lower right) are evaluated with respect to the initial Hamiltonian, but have exactly the same structure otherwise as already discussed with Fig. 6 [see also Eq. (21)]. The spectral data, finally, is collected in a full forward sweep, as indicated by the arrow at the bottom. To be specific, the summation is over all Wilson shells \(n\) and for a given iteration \(n\), over all states \((s,s',s_i) \notin \{KKK\}\) with \(s_i \in \{s_1, s_2\}\). In order to obtain smooth data closer to the thermodynamic limit, a weak log-Gaussian broadening in frequency space quickly eliminates artificial oscillations in the time-domain which derive from the logarithmic discretization. Note that for the sole purpose of damping these artificial oscillations, typically a significantly smaller log-Gauss broadening parameter \(\alpha \lesssim 0.1\) suffices as compared to what is typically used to obtain fully smoothed correlation functions in the frequency domain, e.g. \(\alpha \gtrsim 0.5\) for \(\Lambda = 2\) (e.g. see EPAPS of Ref. 14).

1. Lehmann representation

For the Lehmann representation of Eq. (34), in principle, three complete basis sets are required: one completed basis set \(i\) derived from an NRG run in \(\hat{H}^I\) to construct \(\rho^I(T)\), and two complete basis sets \(f\) and \(f'\) from an NRG run in \(\hat{H}^F\) to be inserted right before and after the \(\hat{C}\) operator, respectively, to describe the dynamical behavior. Clearly, two NRG runs in \(\hat{H}^I\) and \(\hat{H}^F\) are required to describe the quantum quench.\(^5\) With this, the spectral data in Eq. (34) becomes

\begin{align}
C(\omega) &= \sum_{s,s',s_i} \rho_{ss'}(T) C_{ff'}(\omega - E_{ff'})
\end{align}

which generates the overlap matrix \(S\). Now using the complete NRG eigenbasis sets together with the FDM, again similar to the tdmNRG in Eq. (29), this introduces another sum over Wilson shells. Therefore the fourier-transformed time-dependent NRG (tdmNRG) becomes,

\begin{align}
C(\omega) &= \sum_{s,s'} \sum_{s_i} \delta(\omega - E_{ss'})
\end{align}

where \((s, s') \in \{X, X'\}\). In addition, \(X \in \{K, D\}\) describes the sector of the reduced density matrix \(R_n^I\) from the initial system. To be specific, the notation for the first term in Eq. (36) implies the matrix product,

\begin{align}
[S_n^I R_n^I S_n^I]^X &\equiv (S_n^X)^\dagger R_n^I S_n^X.
\end{align}

For example, the left daggered overlap matrix \(S_n\) selects the overlap of the sectors \(\{X, X'\}\) between initial and final eigenbasis, respectively. The prime in Eq. (36) indicates that the sum includes all combinations of sectors \(XX'X' \neq \{KKK\}\), i.e. a total of seven contributions. The latter derives from the reduction of the independent three-fold sum over Wilson shells [cf. Eq. (35)] into a single sum over Wilson shells \(n\) as discussed with Eq. (11). It is emphasized here, that the reduction of multiple sums in Wilson shells as in Eqs. (9) and (11) is not constrained to having the complete basis sets being identical to each other. It is easy to see that it equally applies to the current context of different basis sets from initial and final Hamiltonian.

The MPS diagram corresponding to Eq. (36) is shown in Fig. 7. It is similar to Fig. 6, yet with several essential differences: the block describing the matrix elements of the original operator \(B\) has now become the block containing \(C\). The original operator \(C^\dagger\) is absent, i.e. has become the identity. Yet since its “matrix elements” are calculated with respect to two different basis sets (initial and final Hamiltonian), an overlap matrix remains (lowest block in Fig. 7). In the context of the correlation functions in Fig. 6, the bra-ket states for the inserted complete basis set in the index \(s\) could be reduced to the single bra-index \(s\), such that it affected a single horizontal line only. Here, however, two different complete basis sets hit upon each other, which inserts another overlap matrix (second block from the top in Fig. 7, which corresponds to the Hermitian conjugate of the lowest block). The reduced density matrices \(R_n^I X\), finally, are built from the initial Hamiltonian, yet are completely identical in structure otherwise to the ones already introduced in Eq. (21).

The basis of the initial Hamiltonian enters through the two legs (horizontal black lines) in Fig. 7 which connect to the density matrix \(R_n\). All other legs refer to the
NRG basis generated by the final Hamiltonian [horizontal orange (gray) lines]. Finally, note that the plain contraction $S'RS$ of the lower three tensors w.r.t. the indices s_1 and s_2 can simply be evaluated through efficient matrix multiplication as in Eq. (37), while nevertheless respecting the selection rules on the state space sectors $\{X, X', X\} \neq \{K, K, K\}$.

D. Fermi-Golden-Rule calculations

The NRG is designed for quantum impurity models. As such, it is also perfectly suited to deal with local quantum events such as absorption or emission of a generalized local impurity in contact with non-interacting reservoirs. If the rate of absorption is weak, such that the system has sufficient time to equilibrate on average, then the resulting absorption spectra are described by Fermi’s-Golden rule (fgr). $\frac{d}{dt} = 2\pi \sum_{i,f} \rho_i(T) \cdot |\langle f|\tilde{C}^\dagger|i\rangle|^2 \cdot \delta(\omega - E_{if})$, (38)

where i and f describe complete basis sets for initial and final system, respectively. The system starts in the thermal equilibrium of the initial system. The operator \tilde{C}^\dagger describes the absorption event at the impurity system, i.e. corresponds to the term in the Hamiltonian that couples to the light field. The transition amplitudes between initial and final Hamiltonian are fully described by the matrix elements $C_{if} \equiv \langle i|\tilde{C}|f\rangle$. Given that the energy difference $E_{if} \equiv E^F_{if} - E^I_{if}$ in Eq. (38) needs to be calculated between states of initial and final system, absorption or emission spectra usually show threshold behavior in the frequency ω. The threshold frequency is given by the difference in the ground state energies of initial and final Hamiltonian, $\omega_{thr} \equiv \Delta E_g \equiv E^F_g - E^I_g$, which eventually is blurred by temperature.

The difference between absorption and emission spectra is the reversed role of initial and final system, while also having $\tilde{C}^\dagger \to \tilde{C}$. That is, from the perspective of the absorption process, the emission process starts in the thermal equilibrium of the final Hamiltonian, with subsequent transition matrix elements to the initial system. This also implies that emission spectra have their contributions at negative frequencies, i.e. frequencies smaller than the threshold frequency ω_{thr} indicating the emission of a photon. Other than that, the calculation of an emission spectrum is completely analogous to the calculation of an absorption spectrum. With this in mind, the following discussion will be therefore constrained to absorption spectra only.

While an absorption spectrum is already defined in frequency domain, it nevertheless can be translated into the time domain through Fourier transform,

$$A(t) = \int \frac{d\omega}{2\pi} e^{-i\omega t} A(\omega)$$

$$= \sum_{i,f} \rho_i(T) \cdot e^{iE_{if}t} \langle i|\tilde{C}|f\rangle e^{-iE_{if}t} \cdot \langle f|\tilde{C}^\dagger|i\rangle$$

$$= \langle e^{i\tilde{H}^I t}\tilde{C} e^{-i\tilde{H}^F t} \cdot \tilde{C}^\dagger \rangle_T$$

Thus absorption spectra can also be interpreted similar to correlation functions and quantum quenches: at time $t = 0$ an absorption event occurs (application of the operator \tilde{C}^\dagger, which for example raises an electron from a low lying level into some higher level that participates in the dynamics). This alters the Hamiltonian, such that the subsequent time evolution is governed by the final Hamiltonian. At some time $t > 0$ then, the absorption event relaxes back to the original configuration (application of \tilde{C}). Therefore $A(t)$ essentially describes the overlap amplitude of the resulting state with the original state with no absorption within the thermal equilibrium of the initial system. While the “mixed” time evolution of $\tilde{C}(t)$ in Eq. (39) may appear somewhat artificial at first glance, it can be easily rewritten in terms of a single time-independent Hamiltonian: by explicitly including a further static degree (e.g. a low lying hole from which the electron was lifted through the absorption event, or the photon itself), this switches \tilde{H}^I to \tilde{H}^F, i.e. between two dynamically disconnected sectors in Hilbert space of the same Hamiltonian (compare discussion of type-1 and type-2 quenches in Ref. 21).

Within the FDM formalism, the calculation of Fermi-Golden rule calculations as defined in Eq. (38) becomes...
collecting data in a single sweep having (XR = X1, X2, X3) \(\neq \{KKK\} \).

\[
A(\omega) = \sum_{n,s,s'} [C_n^s R_n^s(C_n)_{ss'} \delta(\omega - E_{ss'})], \quad (40)
\]

where \((s,s') \in \{X1, X2\} \neq \{KKK\} \). Therefore \((C_n)_{ss'} \equiv \lambda_n^s (C|s')_{n}^s\) represents mixed matrix elements between states from initial and final Hamiltonian, respectively, which nevertheless can also be easily calculated using the basic contractions discussed with Fig. 4.

The MPS diagram to be evaluated for Eq. (40) is shown in Fig. 8. Its structure is completely analogous to the calculation of generic correlation functions in Fig. 6, except that similar to the quantum quench situation, here again the basis sets from two different Hamiltonians come into play. In contrast to the quantum quench situation in Fig. 7, however, no explicit overlap matrices are required. Instead, all matrix elements of the local operator \(C^\dagger\) themselves are mixed matrix elements between initial and final system. The reduced density matrices \(R_n^s\) are constructed w.r.t. the initial Hamiltonian, but again exactly correspond to the ones already introduced in Eq. (21) otherwise.

1. **Technical remarks**

Absorption or emission spectra in the presence of Anderson orthogonality or strongly correlated low-energy physics typically exhibit sharply peaked features close to the threshold frequency with clear physical interpretation. While in principle, a single Hamiltonian with dynamically disconnected Hilbert space sectors may have been used, this is ill-suited for an NRG simulation. Using a single NRG run, this can only resolve the low-energy of the full Hamiltonian, i.e. of the initial system as it is assumed to lie lower in energy. Consequently, the sharp features at the threshold frequency will have to be smoothened by an energy window comparable to \(\omega_{\text{thr}} = \Delta E_g\) in order to suppress discretization artifacts. This problem is fully circumvented only by using two separate NRG runs, one for the initial and one for the final Hamiltonian. With the NRG spectra typically collected in logarithmically spaced bins, having two NRG runs then, it is important that the data is collected in terms of the frequencies \(\nu = \omega - \omega_{\text{thr}}\) taken relative to the threshold frequency \(\omega_{\text{thr}}\) as defined earlier.

E. **Higher-order correlation functions**

Consider the spectral function of a three-point correlation function, which in the time domain is given by

\[
A_{BCD}(t_1, t_2) \equiv \langle \hat{D}(t_2)\hat{C}(t_1)\hat{B}\rangle_T \\
\equiv \text{tr}\left(\hat{\rho}(T) \cdot e^{i\hat{H}t_2}\hat{D}e^{i\hat{H}(t_1-t_2)}\hat{C}e^{-i\hat{H}t_1}\hat{B}\right) \quad (41)
\]

Given a time-invariant Hamiltonian, the correlator of three operators \(\hat{B}, \hat{C}, \) and \(\hat{D}\) acting at three different times results in the dependence on effectively two times \(t_3\) and \(t_2\), since \(t_0\) as in \(\hat{B}(t_0)\) can simply be chosen arbitrary, i.e. \(t_0 = 0\) for simplicity.

Using the NRG eigenbasis sets together with the FDM, the Lehman representation of Eq. (41) requires four independent sums over complete eigenbasis sets, one from the FDM (\(X_\rho\)), and three by inserting an identity with every exponentiated Hamiltonian (\(X_1, X_2, X_3\) from left to right), respectively. Again, with the reduced density matrix \(\rho\) being a scalar operator, one has \(X_\rho = X_1\). Using Eq. (11) then, in frequency space Eq. (41) becomes

\[
A_{BCD}(\omega_1, \omega_2) = \sum_{n} \sum_{s_1,s_2,s_3} [B_n R_n]_{s_3,s_1} (D_n)_{s_2,s_2} (C_n)_{s_2,s_3} \times \delta(\omega_2 - E_n^{s_1,s_2}) \delta(\omega_1 - E_n^{s_2,s_3}) \quad (42)
\]

with \((s_1, s_2, s_3) \in \{X_1, X_2, X_3\} \neq \{KKK\}\), as indicated by the prime next to the sum, having \([B_n R_n]_{X_3,X_1} \equiv B_{X_3,X_1} R_{X_1}\). The MPS diagram corresponding to the spectral representation in Eq. (42) is shown in Fig. 9.

The more challenging part with Eq. (42) is the dependence on two frequencies. While the corresponding full collection of data into bins \((\omega_1, \omega_2)\) can become expensive, however, certain fixed frequency points together with different kernels corresponding to a different analytic structure of the higher-order correlation function [which then replace the \(\delta\)-functions in Eq. (42)], appear feasible with reasonable effort. Moreover, within the NRG context, by construction, one has comparable energy resolution for \(\omega_1\) and \(\omega_2\) at a given energy shell. Hence it remains to be seen in what respect vastly different energy scales of \(\omega_1\) as compared to \(\omega_2\), if required, are affected by the ansatz of energy scale separation within the NRG.
IV. SUMMARY AND CONCLUSIONS

The framework of tensor network has been applied to the NRG. This makes full use of the complete basis sets as introduced by Anders and Schiller\(^1\) (2005) which, within the approximation of energy scale separation, also represent many-body eigenstates of the full Hamiltonian. Together with the full density matrix (FDM) approach, complete basis sets allow for simple transparent algorithms, as demonstrated for correlation function (fdmNRG), time-dependent quenches (tdmNRG), as well as Fermi-Golden-rule (fgfNRG) calculations. The underlying principle is based on the plain Lehmann representation of the relevant dynamical expressions, which within the NRG, can be evaluated in a text-book like clean and transparent fashion.

The framework of complete basis sets clearly allows for straightforward further generalizations. For example, one can envisage multiple consecutive time-steps which thus generalizes tdmNRG with the possibility to implement periodic switching.\(^2\) While initially, the system starts in thermal equilibrium of a given Hamiltonian, after each quench the description of the system must be projected onto the complete basis set of the following Hamiltonian in terms of the reduced density matrix. For all these calculations, however, one must keep in mind that Wilson chains are not thermal reservoirs.\(^3\) Within the tdmNRG, for example, this can manifest itself as finite size effect, in that already for a single quench in the absence of an external magnetic field, an initial excess spin at the impurity cannot be fully dissipated into the bath even in the limit of time \(t \to \infty\), leading to (small) residual magnetization at the impurity. In cases where these discretization effects become a strong limiting factor, hybrid NRG approaches have been devised with the idea to extend the bath to a more refined or uniform spectrum. However, since this typically compromises energy scale separation along the full Wilson chain, other methods such as the DMRG need to be incorporated.\(^2\)\(^,\)\(^3\)

Acknowledgments

I would like to thank Theo Costi, Markus Hanl, and Jan von Delft for their critical reading of the manuscript. This work has received support from the German science foundation (TR-12, SFB631, NIM, and WE4819/1-1).

Appendix A: Fermionic signs

The NRG is typically applied to fermionic systems (for extensions to bosonic systems see, for example, Refs. \(^4\)\(^,\)\(^45\)\(^,\)\(^46\)). Through its iterative prescription, the resulting MPS has a specific natural fermionic order in Fock space,

\[
|s\rangle_n = \sum_{\sigma_d,\sigma_0,\ldots,\sigma_n} (A[\sigma_d] A[\sigma_0] \cdots A[\sigma_n]) |\sigma_n\rangle \cdots |\sigma_0\rangle |\sigma_d\rangle,
\]

where \(|\sigma_d\rangle\) stands for the local state space of the impurity. Site \(n' > n\) is added after site \(n\), hence the state space \(|\sigma_{n'}\rangle\) naturally appears to the left \(|\sigma_n\rangle\) with second quantization in mind. The environmental states \(|e\rangle_n\) w.r.t. to iteration \(n\) which refers to the sites \(n' > n\) is irrelevant for the following discussion, and hence will be skipped.

Let \(\hat{c}^\dagger\) be a fermionic operator that acts on the impurity. Here \(\hat{c}^\dagger\) is assumed an arbitrary operator that nevertheless creates or destroys an odd number of fermionic particles such that fermionic signs apply. A very frequent task then is to represent this operator in the effective many-body-basis at iteration \(n\), i.e. to calculate the matrix elements \((C^\dagger_i)_n s'\rangle \equiv n(s|\hat{c}^\dagger |s'\rangle_n [cf. Fig. 4]. This involves the basic matrix-element w.r.t. to local state spaces,

\[
\langle \sigma_n,\ldots,\sigma_0,\sigma_d |\hat{c}^\dagger |\sigma_n',\ldots,\sigma_0',\sigma_d'\rangle = \prod_{i=0\ldots n} (\delta_{\sigma_i,\sigma_i}(-1)^{n_{\sigma_i}}) \cdot \langle \sigma_d|\hat{c}^\dagger |\sigma_d'\rangle,
\]

with \(\hat{z} \equiv (-1)^{\hat{n}} = \exp(i \hat{n} \hat{\pi})\), akin to the Pauli \(z\)-matrix. That is, by pulling the operator \(\hat{c}^\dagger\), acting on the impurity, to the right past the second quantization operators that create the states \(\sigma_n\), fermionic signs apply, resulting in a Jordan-Wigner string

\[
\hat{Z} \equiv \bigotimes_{i=0\ldots n} \hat{z}_i,
\]

to be called \(z\)-string in short. Note that through the Jordan-Wigner transformation, which maps fermions onto spins and vice versa, exactly the same string operator as in Eq. (A3) emerges. For a one-dimensional system with nearest neighbor hopping, the Jordan-Wigner transformation to spins allows to eliminate on the operator level of the Hamiltonian further complications with fermionic signs. This is fully equivalent, of course, to the explicit treatment of the Jordan-Wigner string in a numerical setting that keeps a fermionic basis. The operators \(\hat{z}_i\) in Eq. (A2) take care of the book keeping of fermionic signs, by inserting \(-1\) (+1) for all states \(\sigma_i\) at site \(i\) with odd (even) number of particles \(n_{\sigma_i}\). The operators \(\hat{z}_i\) are diagonal and hence commute with each other.

In the case of additional explicit spin-degrees of freedom, such as the localized spin in the Kondo model, its \(z\)-operator is proportional to the identity matrix and hence can be safely ignored.

In the following, three alternative viewpoints are discussed for dealing with fermionic signs in the MPS setup of the NRG. To be specific, the following discussion assumes \(\hat{c}^\dagger = \hat{d}^\dagger\) which creates a particle at the impurity’s
Consider the matrix elements of a local operator \(\hat{d} \) which creates a particle at the impurity, i.e. the first local state space of the MPS in the effective MPS space \(|s\rangle_n \). A z-string (Jordan-Wigner string) \(\hat{Z} = \otimes \hat{z}_i \) arises [green (gray) horizontal line in the middle]. The endpoints (open circles) indicate the range of the z-string, i.e. starting from and including site 0 to site \(n \). For every crossing of the z-string with a black line, which represent state spaces, fermionic signs apply. Panel (a) shows that a z-string can be rerouted (light dashed lines, pushed in the direction of the red arrow). The resulting configuration in panel (b) shows that by rerouting the z-string significantly fewer crossings with black lines can be achieved. In particular, the z-strings which applied to all sites to the right of \(d^l \) (panel a), can be significantly reduced to local fermionic signs at the impurity and another fermionic sign with the state space \(s_n \).

d-level. As such, it generates a Jordan-Wigner string for all sites added subsequently to the MPS, i.e. sites \(i = 0, \ldots, n \) [cf. Eq. (A3)].

Viewpoint 1: rerouting of z-string in tensor network

Figure 10 depicts an MPS diagram for the typical evaluation of matrix elements with relevant fermionic signs. The \(A \)-tensors that derive from a preceding iterative state space generation of the NRG are depicted by the ternary nodes (cf. Fig. 4). By keeping track of the total number \(n \) of particles for all indices then, for some specific index \(a \) the fermionic sign is given by \((-1)^{n_a}\).

The z-string that is required for the evaluation of the matrix elements of \(d^l \), stretches across all local state spaces \(\sigma_i \) with \(0 \leq i \leq n \). This is depicted by the light green (gray) line in Fig. 10 (note that this is not the extra index that takes care of non-abelian symmetries as in Fig. 5, even though graphically its role is not that dissimilar). Here the interpretation is such, that a crossing of the z-string with a state space inserts fermionic signs for this state space.\(^{47–49}\) Consider then, for example, the upper right \(A \)-tensor, \(A_n \), in Fig. 10. For simplicity, its three legs are labeled \(l \equiv s_{n-1} \) (state space from previous iteration), \(\sigma(n) \) (new local state space), and \(r \equiv s_n \) (combined state space) for left, local, and right, respectively. By tracking the total particle number for all states, given the left-to-right orthonormalization (see arrows in Fig. 4), by construction it must hold \(\nu_l + \nu_r = \nu_n \). The index \(\sigma \) is crossed by the z-string, hence fermionic signs apply at the location of the crossing,

\[
z_\sigma \equiv (-1)^{\nu_\sigma} = (-1)^{\nu_r} (1)^{-\nu_l} = \frac{z_r}{z_l}.
\]

Therefore, instead of applying fermionic signs with index \(\sigma \), it is equally correct to apply fermionic signs with the indices \(l \) and \(r \). This allows to reroute the z-string\(^{47–49}\) as indicated in Fig. 10 (dashed line to the upper right, with the shift in the z-string indicated by short red arrow). Note that for this rerouting to work, the actual left-to-right orthonormalization is not strictly required, and could be relaxed, in general, to the more general condition \(n_l \pm n_r \pm n_\sigma = \text{even} \). In particular, this includes \(n_l \pm n_r \pm n_\sigma = \text{even} \), which suggests that any direction of orthonormalization is acceptable, together with a generic current site that combines all (effective) state spaces to an even number of particles, i.e. \(n_l + n_r + n_\sigma = n_{\text{tot}} = \text{even} \) (for \(n_{\text{tot}} \equiv \text{odd} \), a global minus sign would apply in the case of rerouting).

The basic rerouting step as indicated above can be repeated, such that the z-string can be pulled to the top outside the MPS diagram in Fig. 10(a), with the final configuration shown in Fig. 10(b). The state to the very left (black dot) is the vacuum states with no particles, hence the z-string can be fully pulled outside at the left. As a result, instead of the original \(n \) crossings with the state space \(\sigma_{n-1} \), only two crossings of the z-string with state spaces (black lines) remain: one crossing with the local state space at the impurity itself, leading to

\[
d^l \rightarrow d^l \hat{z}_d \equiv (\hat{z}d)^l,
\]

which fully acts within the state space of the impurity, and another crossing with the state space \(|s\rangle_n \) at iteration \(n \).

In typical applications which include thermal expectation values or correlation functions, however, an operator \(d^l \) never comes by itself, as its expectation value with respect to any state with well-defined particle number would be zero. Therefore creation and annihilation operators always appear in pairs. For the local spectral function, for example, \(d^l \) is paired with its daggered version \(\hat{\bar{d}} \). In their overall combination, the fermionic signs w.r.t. the index \(s \) appear twice and hence annihilate each other. This situation is sketched in Fig. 11. The matrix element discussed previously with Fig. 10 is shown in the upper half of the figure. Given the case of spectral functions (cf. Fig. 6), its counterpart is shown at the bottom. The reduced density matrix \(R \) is a scalar operator, such that the particle number of the states \(s \) and \(s' \) must match. Similarly, the outer two states are connected through the overall trace (solid line to the very right), hence refer to exactly the same state. Consequently, the same
fermionic sign factor applies twice with the rerouted z-strings, which thus cancels, i.e. \((-1)^n\)^2 = 1 (indicated by the two splashes with \(s'\) at the right). Consequently, the right end-point of the z-strings can be retracted along the rerouted z-string all the way to the left of the impurity (indicated by the red dashed arrow).

Therefore given the \(A\)-tensors for the basis transformations from a prior NRG run that only generates the basis, above line of argument allows to ignore fermionic signs for most of the subsequent calculation of thermodynamic quantities or spectral properties. Specifically, in given example which applies to \(fdmNRG\), \(tdmNRG\), as well as \(fgrNRG\), it is sufficient to calculate the spectral functions for the operator \(\hat{d} \rightarrow \hat{z}_d \hat{d}\) [cf. Eq. (A5)] and fully ignore fermionic signs for the rest of the chain. This is in contrast to the original setup where the full z-string needs to be included.

Viewpoint 2: Operator representation

An alternative way to demonstrate the effect of rerouting of the z-string can be given by looking at the equivalent (numerical) tensor-product representation of operators in the full many-body Hilbert space without making reference to MPS notation. Given the fermionic order of sites as in Eq. (A1), a fermionic operator \(\hat{c}_k\) that destroys a particle at site \(k\), has the tensor-product form

\[
\hat{C}_k \equiv \hat{1}_d \otimes \hat{1}_0 \otimes \ldots \hat{1}_{k-1} \otimes \hat{c}_k \otimes \hat{z}_{k+1} \otimes \ldots \otimes \hat{z}_n,
\]

where \(\hat{1}_i\) is the identity matrix at site \(i\), \(\hat{c}_k\) the desired operator acting within the state space of site \(k\), and \(\hat{z}_i \equiv (-1)^{n_i}\) as in Eq. (A2). Now, applying a z-operator to the states \(s'\) at the last site \(n\) is equivalent to applying a z-operator to each individual site,

\[
\hat{Z}\hat{C}_k \equiv \bigotimes_{i=d}^{n} (\hat{z}_i) \hat{c}_k
\]

since \((\hat{z}_i)^2 = \hat{1}_i\). In the application to thermodynamic quantities such as correlations functions, the operator \(\hat{C}_k\) would again appear together with its daggered version \(\hat{C}_k^\dagger\), hence insertion of \(\hat{Z}\) has no effect, yet can be split in equal parts, i.e. \(\hat{C}_k^\dagger\hat{C}_k = (\hat{Z}\hat{C}_k)^\dagger(\hat{Z}\hat{C}_k)\). Therefore, \(\hat{Z}\hat{C}_k\) can be equally well used instead of \(\hat{C}_k\). As a result, similar to Fig. 11, the z-strings have again been fully flipped from the sites to the right of site \(k\) to the left of site \(k\), with the additional transformation \(\hat{c}_k \rightarrow [\hat{z}_k^\dagger]\).

Note that, essentially, this equivalent to fully reverting the fermionic order.

Viewpoint 3: Auxiliary fermionic level

In the case of absorption spectra, the absorption of a photon creates an electron-hole pair, \(\hat{h}^\dagger \hat{d}\), where the hole \(\hat{h}\) can be simply treated as a spectator in the dynamics. Nevertheless, by explicitly including the hole in the correlation function, i.e. by using the operator \(\hat{d}^\dagger \rightarrow \hat{h}^\dagger \hat{d}\), this operator itself now already forms a pair of fermions that preserves particle number (assuming that \(\hat{h}\) creates a hole). Therefore, by construction, \(\hat{h}^\dagger \hat{d}\) simply commutes with all Wilson sites except for the impurity upon which it acts.

The same argument can be repeated for a standard spectral function, by introducing an auxiliary fermionic level \(\hat{h}\) that does not participate in the dynamics, i.e. does not appear in the Hamiltonian. In general, prepend the states in Eq. (A1) by the states \(|\sigma_h\rangle\) of the “hole”, i.e.

\[
|\sigma_n, \ldots, \sigma_0, \sigma_d\rangle \rightarrow |\sigma_n, \ldots, \sigma_0, \sigma_d\rangle |\sigma_h\rangle,
\]

immediately results in the same consistent picture as already encountered with Fig. 11 or Eq. (A7).
1 F. B. Anders and A. Schiller. Real-time dynamics in quantum impurity systems: A time-dependent numerical renormalization group approach. *Phys. Rev. Lett.*, 95:196801, 2005.

2 Kenneth G. Wilson. The renormalization group: Critical phenomena and the kondo problem. *Rev. Mod. Phys.*, 47 (4):773–840, Oct 1975.

3 H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson. Renormalization-group approach to the anderson model of dilute magnetic alloys. I. Static properties for the symmetric case. *Phys. Rev. B*, 21(3):1003–1043, Feb 1980.

4 Ralf Bulla, Theo Costi, and Thomas Pruschke. Numerical renormalization group method for quantum impurity systems. *Rev. Mod. Phys.*, 80:395, 2008.

5 Luiz N. Oliveira and John W. Wilkins. New approach to the x-ray-absorption problem. *Phys. Rev. B*, 24:4863–4866, Oct 1981.

6 Luiz N. Oliveira and John W. Wilkins. Fano antiresonances in x-ray-absorption spectroscopy. *Phys. Rev. B*, 32:696–707, Jul 1985.

7 Osamu Sakai, Yukihiro Shimizu, and Tadao Kasuya. Single-particle and magnetic excitation spectra of degenerate anderson model with finite f-f coulomb interaction. *J. Phys. Soc. Japan*, 58:3666, 1989.

8 T. A. Costi and A. C. Hewson. Resistivity cross-over for the non-degenerate anderson model. *Philosophical Magazine Part B*, 65(6):1165–1170, 1992.

9 Walter Hofstetter. Generalized numerical renormalization group for dynamical quantities. *Phys. Rev. Lett.*, 85(7):1508–1511, Aug 2000.

10 T. A. Costi. Renormalization-group approach to nonequilibrium green functions in correlated impurity systems. *Phys. Rev. B*, 55(5):3003–3009, Feb 1997.

11 Steven R. White and Adrian E. Feiguin. Real-time evolution using the density matrix renormalization group. *Phys. Rev. Lett.*, 93:076401, 2004.

12 A. J Daley, C. Kollath, U. Schollwöck, and G. Vidal. Time-dependent density-matrix renormalization-group using adaptive effective hilbert spaces. *Journal of Statistical Mechanics: Theory and Experiment*, 2004(04):P04005, 2004.

13 Robert Peters, Thomas Pruschke, and Frithjof B. Anders. Numerical renormalization group approach to green’s functions for quantum impurity models. *Phys. Rev. B*, 74(24):245114, 2006.

14 Andreas Weichselbaum and Jan van Delft. Sum-rule conserving spectral functions from the numerical renormalization group. *Phys. Rev. Lett.*, 99(7):076402, 2007.

15 Andreas Weichselbaum. Discarded weight and entanglement spectra in the numerical renormalization group. *Phys. Rev. B*, 84:125130, Sep 2011.

16 Andreas Weichselbaum, Wolfgang Münder, and Jan van Delft. Anderson orthogonality and the numerical renormalization group. *Phys. Rev. B*, 84(7):075137, Aug 2011.

17 A. I. Tóth, C. P. Moca, Ö. Legeza, and G. Zaránd. Density matrix numerical renormalization group for non-abelian symmetries. *Phys. Rev. B*, 78(24):245109, 2008.

18 Catalin Pascu Moca, Arne Alex, Jan von Delft, and Gergely Zaránd. Su(3) anderson impurity model: A numerical renormalization group approach exploiting non-abelian symmetries. *arXiv:1208.0678v1 [cond-mat.str-el]*, 2012.

19 Hakan E. Türeci, M. Hanl, M. Claassen, A. Weichselbaum, T. Hecht, B. Braunecker, A. Govorov, L. Glazman, A. Imamoglu, and J. von Delft. Many-body dynamics of exciton creation in a quantum dot by optical absorption: A quantum quench towards kondo correlations. *Phys. Rev. Lett.*, 106(10):107402, Mar 2011.

20 Christian Latta, Florian Haupt, Markus Hanl, Andreas Weichselbaum, Martin Claassen, Wolf Wuester, Parisa Fallahi, Stefan Faelt, Leonid Glazman, Jan van Delft, Hakan E. Türeci, and Atac Imamoglu. Quantum quench of kondo correlations in optical absorption. *Nature*, 474:627–630, 05 2011.

21 Wolfgang Münder, Andreas Weichselbaum, Moshe Goldstein, Yuval Gefen, and Jan von Delft. Anderson orthogonality in the dynamics after a local quantum quench. *Phys. Rev. B*, 85:235104, Jun 2012.

22 A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I. Cirac, and Jan van Delft. Variational matrix-product-state approach to quantum impurity models. *Phys. Rev. B*, 80(16):165117, 2009.

23 Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. *Ann. Phys.*, 326:96–192, 2011.

24 L. N. Oliveira. The numerical renormalization group and the problem of impurities in metals. *Braz. J. Phys.*, 22:155, 1992.

25 Rok Žitko and Thomas Pruschke. Energy resolution and discretization artifacts in the numerical renormalization group. *Phys. Rev. B*, 79(8):085106, 2009.

26 J. Friedel. Electronic structure of primary solid solutions in metals. *Advances in Physics*, 3(12):446–507, 1954.

27 J. Friedel. Metallic alloys. *Nuovo Cimento Suppl.*, 7(10):287, 1958.

28 P. W. Anderson. Localized magnetic states in metals. *Phys. Rev.*, 124(1):41–53, Oct 1961.

29 P. W. Anderson. Infrared catastrophe in fermi gases with local scattering potentials. *Phys. Rev. Lett.*, 18(24):1049–1051, Jun 1967.

30 Hamed Saberi, Andreas Weichselbaum, and Jan van Delft. Matrix-product-state comparison of the numerical renormalization group and the variational formulation of the density-matrix renormalization group. *Phys. Rev. B*, 78(3):035124, 2008.

31 F. Verstraete, A. Weichselbaum, U. Schollwöck, J. I. Cirac, and Jan van Delft. Variational matrix-product-state approach to quantum impurity models. *arXiv:0504305v2 [cond-mat]*, 2005.

32 Steven R. White. Density matrix formulation for quantum renormalization groups. *Phys. Rev. Lett.*, 69(19):2863–2866, Nov 1992.

33 U. Schollwöck. The density-matrix renormalization group. *Rev. Mod. Phys.*, 77(1):259–315, Apr 2005.

34 F. Verstraete, V. Murg, and J.I. Cirac. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. *Advances in Physics*, 57(2):143–224, 2008.

35 Michael M. Wolf, Frank Verstraete, Matthew B. Hastings, and J. Ignacio Cirac. Area laws in quantum systems: Mutual information and correlations. *Phys. Rev. Lett.*, 100(7):070502, Feb 2008.
Norbert Schuch, Michael M. Wolf, Frank Verstraete, and J. Ignacio Cirac. Entropy scaling and simulability by matrix product states. Phys. Rev. Lett., 100:030504, Jan 2008.

Andreas Weichselbaum. General framework for non-abelian symmetries in tensor networks. arXiv:1202.5664v1 [cond-mat.str-el], February 2012.

T. A. Costi, L. Bergqvist, A. Weichselbaum, J. von Delft, T. Micklitz, A. Rosch, P. Mavropoulos, P. H. Dederichs, F. Mallet, L. Saminadayar, and C. Bäuerle. Kondo decoherence: Finding the right spin model for iron impurities in gold and silver. Phys. Rev. Lett., 102(5):056802, 2009.

Arne Alex, Matthias Kalus, Alan Huckleberry, and Jan von Delft. A numerical algorithm for the explicit calculation of $su(n)$ and $sl(n,c)$ clebsch-gordan coefficients. J. Math. Phys., 52(2):023507, 2011. ISSN 00222488.

R. W. Helmes, M. Sindel, L. Borda, and J. von Delft. Absorption and emission in quantum dots: Fermi surface effects of anderson excitons. Phys. Rev. B, 72(12):125301, Sep 2005.

Jun John Sakurai. Modern Quantum Mechanics. Addison-Wesley Publishing Company, Reading, MA, Revised edition, 1994.

Eitan Eidelstein, Avraham Schiller, Fabian Güttge, and Frithjof B. Anders. Coherent control of correlated nanodevices: A hybrid time-dependent numerical renormalization-group approach to periodic switching. Phys. Rev. B, 85:075118, Feb 2012.

Achim Rosch. Wilson chains are not thermal reservoirs. Eur. Phys. J. B, 85:6, 2011.

F. Guettge, F. B. Anders, U. Schollwoeck, E. Eidelstein, and A. Schiller. Hybrid nrg-dmrg approach to real-time dynamics of quantum impurity systems. arXiv:1206.2186v1 [cond-mat.str-el], June 2012.

Ralf Bulla, Ning-Hua Tong, and Matthias Vojta. Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model. Phys. Rev. Lett., 91:170601, 2003.

Cheng Guo, Andreas Weichselbaum, Jan von Delft, and Matthias Vojta. Critical and strong-coupling phases in one- and two-bath spin-boson models. Phys. Rev. Lett., 108:160401, Apr 2012.

Philippe Corboz, Román Orús, Bela Bauer, and Guifrê Vidal. Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states. Phys. Rev. B, 81(16):165104, Apr 2010.

Christina V. Kraus, Norbert Schuch, Frank Verstraete, and J. Ignacio Cirac. Fermionic projected entangled pair states. Phys. Rev. A, 81(5):052338, May 2010.

Thomas Barthel, Carlos Pineda, and Jens Eisert. Contraction of fermionic operator circuits and the simulation of strongly correlated fermions. Phys. Rev. A, 80(4):042333, Oct 2009.