Rare case report of infective endocarditis due to *Kocuria kristinae* in a patient with ventricular septal defect

Arif Maqsood Ali1*, Gule Raana Waseem2 and Shazia Arif3

**Abstract**

**Background.** Infective endocarditis (IE) is an uncommon but life-threatening infection. It is commonly associated with diseased or damaged valves. Patients with congenital heart disease are more prone to getting IE than the general population. The typical organisms that cause IE include *Staphylococcus*, *Coagulase-negative Staphylococcus*, *Streptococcus viridans* and *Enterococci*. However, the importance of rare micro-organisms like *Kocuria kristinae* should not be underestimated especially when isolated from multiple blood cultures in patients suspected of IE.

**Case presentation.** We report a rare case of right-sided infective endocarditis due to *K. kristinae* in a young non-diabetic, non-addict female of low socioeconomic class who presented with undiagnosed fever for 1 year. She was investigated and treated for fever by several general practitioners without relief. Later on, she was diagnosed by a local cardiologist to have perimembranous ventricular septal defect with a small pulmonary valve vegetation. She was referred to a tertiary care cardiac hospital in Rawalpindi, Pakistan for further management. Transthoracic and transesophageal echocardiography confirmed IE secondary to preexisting congenital heart disease complicated with a small pulmonary vegetation. Her blood cultures yielded growth of *K. kristinae*, a rare micro-organism to cause IE. The patient responded to the antibiotic therapy.

**Conclusion.** Clinicians should have a high index of suspicion for *K. kristinae* IE as a possible cause of a prolonged fever especially in the presence of congenital heart disease. Antibiotic susceptibility is required for adequate therapy.

**INTRODUCTION**

Ventricular septal defect (VSD) being the commonest congenital heart disease (CHD) poses a high risk of infective endocarditis (IE) [1]. Being a part of oral and skin microbiota *Streptococcus viridans*, *Coagulase-negative Staphylococci* are the commonest and *Kocuria kristinae* is a rare cause of IE [2, 3]. *K. kristinae* was previously known as *Micrococcus kristinae* [4, 5]. It belongs to the family *Micrococcaceae*, suborder Micrococccinae, order Actinomycetales, class Actinobacteria [6]. Nineteen species of *Kocuria* species have been identified so far [7]. It includes Gram-positive, strictly aerobic, catalase-positive, coagulase-negative, non-haemolytic cocci. It frequently colonizes the skin, mucosa and oropharynx [6]. *K. kristinae* has recently gained attention because of its potential to cause disease in humans. It has been shown that *Kocuria rosae*, *K. kristinae* and *Leuconostic mesenteroides* are involved in the development of dental caries [8]. *K. kristinae* has been reported to cause infection in patients with central venous catheters, dialysis-associated peritonitis, acute cholecystitis and black tongue [9]. It is most commonly isolated from the blood cultures of infants, immunocompromised patients and patients with catheter-related bacteremia [4, 9].

The predisposing factors associated with infections related to *Kocuria* spp. include congenital deformities, long-term catheters, malignancies and patients with end-stage renal disease undergoing continuous ambulatory peritoneal dialysis [10]. Other underlying conditions associated with *Kocuria* infection include diabetes mellitus, tuberculosis, stem-cell transplant patients, patients suffering from gallstones, methylmalonic aciduria and pancreatic pseudocyst [7].

The prevalence of infection due to *Kocuria* spp. might be underestimated considering their close similarity to *Coagulase-negative Staphylococci* [7]. Rare case reports of *K. kristinae* have been cited in the literature [9–11]. There are only
five patients reported in the literature with IE caused by *K. kristinae*. Moreover, there are no antibiotic guidelines for the treatment of *K. kristinae* infection [12].

Here we report a rare case of a patient with a history of untreated perimembranous ventricular septal defect (PMVSD) with pulmonary valve vegetation who presented to us with a history of intermittent fever for the last year.

**CASE REPORT**

A young non-diabetic, non-addict female of low socioeconomic class, with poor dental hygiene and carious teeth from Nowshera district of Khyber Pakhtunkhwa province of Pakistan in her late twenties presented with a history of intermittent fever for 1 year. The fever was higher than 38°C and lasted for 2 to 3 h daily. There was an associated history of arthralgia. There were reddish petechial spots on her lower shin bones and non-tender macular lesions on her palms and soles of feet. There was no past history of any medical, surgical, gynecological or obstetric disease. She had two sons of 10 and 5 years of age. She did not have a family history of congenital heart disease, endocarditis, autoimmune disease, diabetes mellitus, hypertension, ischemic heart disease, tuberculosis or any other disease. She was investigated for fever. She had haemoglobin of 9.6 g dl⁻¹ and an erythrocyte sedimentation rate (ESR) 78 mm at the end of first hour. There was microscopic haematuria and mild proteinuria in urine routine examination. Rheumatoid factor (RA), anti-cyclic citrullinated peptide (Anti-CCP) and typhidot were negative. Liver and renal function tests were normal. Her white blood cell (WBC) count was 14.3×10⁹ l⁻¹ and complement reactive protein (CRP) 56 g dl⁻¹. She was managed by local general physicians with symptomatic treatment with analgesics, antipyretics, broad spectrum oral and parenteral antibiotics including ampicillin, tetracycline, azithromycin, ciprofloxacin, linezolid, vancomycin and antimalarials. However, the patient did not improve.

She consulted a local cardiologist who identified a moderate PMVSD and a small 7 mm vegetation attached to pulmonary valve on transthoracic echocardiography (Fig. 1). Blood culture was advised, which yielded Coagulase-negative *Staphylococcus*. She was referred to Rawalpindi Institute of Cardiology, Rawalpindi (RIC), which is a tertiary care hospital in the twin capital city of Rawalpindi/Islamabad, Pakistan for further management. Repeat transthoracic and transesophageal echocardiography at RIC confirmed PMVSD and a small pulmonary valve vegetation.

Three sets of blood cultures were taken by strict aseptic technique at 12 h interval. Then, 10 ml of venous blood drawn peripherally was inoculated into each blood culture bottle and incubated in Bact T/Alert 3-D bioMerieux, France. Intravenous (i.v) Ceftriaxone 1 g dl⁻¹, i.v vancomycin and i.v amikacin 500 mg twice daily were started empirically. All three blood cultures were flagged positive after 48 h. Gram stain of positive blood culture bottles showed Gram-positive cocci in pairs, tetrads and in small groups. Subcultures on Blood Agar and Chocolate Agar yielded small convex, smooth, creamy white, non-haemolytic colonies that were Gram-positive in pairs, tetrads, catalase-positive, coagulase-negative and DNAse-negative. These showed resistance to nitrofurantoin but sensitivity to bacitracin.

Species identification was performed using Vitek 2, bioMerieux, France automated blood identification system (GP Card REF 21 342). Since there are no recommended guidelines of antibiotic susceptibility for *Kocuria*, it was carried out in Vitek-2 using AST Card -P 580 bioMerieux, France as for *Coagulase-negative Staphylococcus* [13]. All three culture isolates were identified as *K. kristinae* (Fig. 2) to a probability level of 88 to 95%. These were susceptible to moxifloxacin, trimethoprim/sulphamethoxazole, intermediate susceptible to levofloxacin, gentamycin, and resistant to erythromycin, clindamycin, tobramycin, vancomycin, teicoplanin, tetracycline, rifampicin as per CLSI break points (Fig. 3). Since ceftazidim screen was positive by Vitek and Kirby–Bauer both penicillins and cephalosporins were reported as resistant. The same was also confirmed by the modified Kirby–Bauer disc-diffusion method [13]. As there are no current guidelines for the treatment, based upon the susceptibility results i.v vancomycin and i.v amikacin initially started empirically were stopped and replaced with i.v moxifloxacin 400 mg twice daily and i.v gentamycin 80 mg 8 hourly [14]. Daptomycin an alternate antibiotic to vancomycin for native valve endocarditis was not available as a treatment option. The organism was also tested to be resistant to clindamycin. Patient became afebrile after 24 h on new regimen of intravenous antibiotics. Her WBC counts and CRP gradually decreased and were within normal limits beside negative blood cultures before discharge from hospital after 2 weeks of inpatient therapy. She was advised to follow up 2 weeks after being discharged.

**DISCUSSION**

Right-sided endocarditis is relatively rare and commonly affects tricuspid valve. Endocarditis due to infection of pulmonary valve is even more rarely reported than tricuspid valve endocarditis and is responsible for about 2% of hospital localization. The patient was treated based on the culture and susceptibility reports with moxifloxacin and gentamycin. The patient responded well to the treatment and was discharged after two weeks of inpatient therapy. However, there are no current guidelines for the treatment of *K. kristinae* infection [12].

![Fig. 1. Transthoracic echocardiography showing a vegetation in the pulmonary valve and ventralseptal defect.](image-url)
admissions for endocarditis [15]. Right-sided endocarditis is less frequent than left-sided endocarditis probably due to different haemodynamic pressure gradients across the valves, frequencies of underlying valvular abnormalities and lower blood oxygen content in the right side of heart [16, 17]. It has better prognosis with lower mortality. Often, it is managed conservatively with antibiotics and surgery is required in the case of secondary heart failure, lung involvement and septic embolism [15].

All three sets of blood cultures of our patient taken 12 hourly apart as per guidelines yielded growth of *K. kristinae* [14]. It is a Gram-positive coccus, catalase-positive, coagulase-negative, DNAase-negative and is a facultative anaerobe. Major criteria for the conventional discrimination between *Micrococcus* and *Staphylococcus* are the sensitivity of *Kocuria* to bacitracin and lysozyme (while *Staphylococcus* are resistant to both) and the resistance of *Kocuria* to nitrofurantoin/furazolidone and lysostaphin (*Staphylococci* are susceptible to the latter, although they may express resistance to the former) [6]. Our isolates also showed resistance to nitrofurantoin but sensitivity to bacitracin.

Previously *Kocuria* was classified under the genus *Micrococcus* and regarded as a harmless normal skin microbiota. However, it has now been reclassified under the new genus *Kocuria* [18]. Species-level identification requires an automated identification system and other molecular methods [7]. Genomic methods, as 16S RNA gene sequence and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) are desirable for correct identification of *Coagulase-negative Staphylococcus*, which presents a large phenotypic variation [7]. This kind of approach is equally useful to confirm *Kocuria* species [19].

The majority of studies included in a review used biochemical methods, especially Vitek-2 system bioMerieux, France, for identification of *K. kristinae*. Although, misidentification of
Coagulase-negative Staphylococcus as Kocuria spp. with the Vitek system has been reported with an early version of this phenotype-based system, the enhanced versions in the form of Vitek-2 are not prone to error [5]. Boudewijns et al. have reported that the recently introduced Vitek-2 Gram-positive GP identification card and database by bioMerieux, France, allows identification of additional taxa including K. kristinae [20]. Many recent studies including ours, correctly identified K. kristinae allows identification of additional taxa including Kocuria spp. using the Vitek-2 Gram-positive identification card, due to the recently introduced larger database that allows the identification of additional taxa [4, 21]. Although, the genome analysis through molecular methods is desirable, due to economic and technical limitations, its use was not possible in our set up.

Kocuria are widely distributed in nature and are found frequently as a part of normal skin and oral microbiota in humans and other mammals [6]. The genus has more than 18 species. Among these, only five are known to be opportunistic pathogens [7]. There are only a few reports of K. kristinae infections often isolated in patients with malignancies or other immunosuppressed states [13]. K. kristinae along with Leuconostoc mesenteroides are among the micro-organisms associated with carious teeth [8]. In our patient with congenital heart disease from low socioeconomic class with poor dental hygiene and probably the use of over the counter antibiotics by GPs for prolonged and undiagnosed fever probably lead to K. kristinae endocarditis. Moreover, the possibility of healthcare-associated infection due to frequent injections/ cannulations could not be ruled out. Only five patients have been reported in the literature with IE caused by K. kristinae until 2016 [12]. Although the policy of individual diagnostic laboratory to report the the organism may vary, it is important that in practice, it may not be misidentified as Coagulase-negative Staphylococcus as was initially reported in our patient [22].

There are no internationally accepted guidelines for antibiotic treatment of IE caused by K. kristinae infection [6]. We report a vancomycin-resistant K. kristinae isolate, which is an unusual finding that needs to be followed in further studies. The majority of patients were treated with vancomycin as monotherapy or in combination with one or two other antibiotics [22, 23]. However, in our case it was sensitive to moxifloxacin and gentamycin but resistant to vancomycin and cephalosporins. CLSI has a recommended MIC of vancomycin less than 4 and >32 ug ml⁻¹ for susceptibility and resistance, respectively, for all Coagulase-negative Staphylococcus [13]. Our K. kristinae isolates had MIC>32 ug ml⁻¹, which was also confirmed by E strip and were therefore reported to be resistant to vancomycin. Vancomycin resistance in Kocuria observed in our study is unusual. Further studies are required to investigate vancomycin resistance in Kocuria. In the absence of specific MIC, inhibiting zone diameter and break points on agar media of K. kristinae, the sensitivity and resistance results cited in the literature are based on Coagulase-negative Staphylococcus interpretive values [6, 13].

Vancomycin and cephalosporin-resistant isolates have already been reported in a case study from Delhi, India [24]. Antibiotic resistance in the organism has also been reported from Egypt, where it was found to be sensitive to cefoxitin, gentamicin, amikacin, ciprofloxacín, levofloxacín and linezolid but resistant to vancomycin, teicoplanin, rifampicín, amoxicillin/ clavulanate and clindamycin [4]. The antibiogram observed in our study reflects the resistance of the organism to different antibiotics in healthcare facilities and possible risk of acquisition as a healthcare-associated infection. Antibiotic resistance to a large number of antibiotics is an emerging threat to treat such infections.

Pulmonary valve endocarditis even in the presence of structural heart disease is very rare. A careful history, clinical examination in a patient with suspected endocarditis must be confirmed by echocardiography and supported by positive blood cultures to confirm the etiology. Unusual microorganisms such as K. kristinae should be kept in mind as a cause of IE especially in patients with congenital heart disease.

Limitations of study
Lack of sequencing to confirm the identity of the isolate due to economic constraints and technical limitations.

Funding information
It is certified that no funding was granted or required for the research carried out.

Conflicts of interest
The authors declare that there are no conflicts of interest.

Ethical statement
Consent to publish has been obtained.

References
1. Li W, Somerville J. Infective endocarditis in the grown-up congenital heart (GUCH) population. Eur Heart J 1998;19:166–173.
2. McDonald JR. Acute infective endocarditis. Infect Dis Clin North Am 2009;23:643–664.
3. Tewari R, Dudeja M, Das AK, Nandy S. Kocuria kristinae in catheter associated urinary tract infection: a case report. J Clin Diagn Res 2013;7:1692.
4. Hassan RM, Bassiouny DM, Matar Y. Bacteremia caused by Kocuria kristinae from Egypt: are there more? a case report and review of the literature. Case Rep Infect Dis 2016:2016:1–.
5. Živković Zarić RS, Pejić AV, Janković SM, Kostić MJ, Milosavljević MN et al. Antimicrobial treatment of Kocuria kristinae invasive infections: Systematic review. J Chemother 2019;31:109–119.
6. Savini V, Catavitello C, Masiarelli G, Astolfi D, Balbinot A et al. Drug sensitivity and clinical impact of members of the genus Kocuria. J Med Microbiol 2010;59:1395–1402.
7. Kandi V, Palange P, Vaish R, Bhatti AB, Kale V et al. Emerging bacterial infection: identification and clinical significance of Kocuria species. Cureus 2016;8.
8. Ananieva MA, Maiia F, Maria M, Basarab ID, Loban' GA. Kocuria rosea, kocuria kristinae, leuconostoc mesenteroides as caries-causing representatives of oral microflora. Science.gov 2017:01–01.
9. Citro R, Prota C, Greco L, Mirra M, Masullo A et al. Kocuria kristinae endocarditis related to diabetic foot infection. J Med Microbiol 2013;62:932–934.
10. Carlini A, Mattei R, Lucarotti I, Bartelloni A, Rosati A. Kocuria kristinae: an unusual cause of acute peritoneal dialysis-related infection. Perit Dial Int 2011;31:105–107.

11. Dunn R, Bares S, David MZ. Central venous catheter-related bacteremia caused by Kocuria kristinae: case report and review of the literature. Ann Clin Microbiol Antimicrob 2011;10:31.

12. Aleksic D, Miletic-Drakulic S, Boskovic-Matic T, Simovic S, Toncev G. Unusual case of stroke related to Kocuria kristinae endocarditis treated with surgical procedure. Hippokratia 2016;20:231.

13. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 27th informational supplement, M100-S27. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.

14. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta J-P et al. 2015 ESC guidelines for the management of infective endocarditis: the task force for the management of infective endocarditis of the European Society of cardiology (ESC), endorsed by: European association for Cardio-Thoracic surgery (EACTS), the European association of nuclear medicine (EANM). Eur Heart J 2015;36:3075–3128.

15. Park HE, Cho G-Y, Kim H-K, Kim Y-J, Sohn D-W. Pulmonary valve endocarditis with septic pulmonary thromboembolism in a patient with ventricular septal defect. J Cardiovasc Ultrasound 2009;17:138–140.

16. Nishida K, Fukuyama O, Nakamura DS. Pulmonary valve endocarditis caused by right ventricular outflow obstruction in association with sinus of Valsalva aneurysm: a case report. J Cardiothorac Surg 2008;3:46.

17. Ali AA, Halstead JC, Hosseinpour A-R, Ali ZA, Kumar S et al. Replacement of a regurgitant pulmonary valve with a stentless bioprosthesis. Ann Thorac Surg 2004;78:1467–1468.

18. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytophous gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Evol Microbiol 1995;45:682–692.

19. Ben-Ami R, Navon-Venezia S, Schwartz D, Schlezinger Y, Mekuzas Y et al. Erroneous reporting of coagulase-negative staphylococci as Kocuria spp. by the Vitek 2 system. J Clin Microbiol 2005;43:1448–1450.

20. Funke G, Funke-Kissling P. Performance of the new Vitek 2 GP card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. J Clin Microbiol 2005;43:84–88.

21. Boudewijns M, Vandeven J, Verhaegen J, Ben-Ami R, Carmeli Y. Vitek 2 automated identification system and Kocuria kristinae. J Clin Microbiol 2005;43:5832.

22. Chen H-M, Chi H, Chiu N-C, Huang F-Y. Kocuria kristinae: a true pathogen in pediatric patients. J Microbiol Immunol Infect 2015;48:80–84.

23. Ahmed NH, Biswal I, Roy P, Grover RK. Kocuria kristinae, an unusual pathogen causing opportunistic infections in patients with malignancy. Indian J Med Microbiol 2014;32:456.

24. Lakshmikantha M, Devki V, Yogesh C. Is Kocuria kristinae an upcoming pathogen? JCM 2015;4:885–889.