Survival rates after lobectomy versus sublobar resection for early-stage right middle lobe non-small cell lung cancer

Xiayi Lv¹, Jinlin Cao¹, Xiaona Dai² & Aizemaiti Rusidanmu¹

¹ Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
² Quality Management Department, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China

Keywords
Lobectomy; non-small-cell lung cancer; right middle lobe; sublobar resection; survival rate.

Abstract

Background: Lung cancer in the right middle lobe has a poorer prognosis than tumors located in other lobes. The optimal surgical procedure for early-stage non-small cell lung cancer (NSCLC) in the right middle lobe has not yet been elucidated. The aim of this study was to compare survival rates after lobectomy and sublobar resection for early-stage right middle lobe NSCLC.

Methods: Patients who underwent lobectomy or sublobar resection for stage IA right middle lobe NSCLC tumors ≤ 2 cm between 2004 and 2014 were identified from the Surveillance, Epidemiology and End Results database of 18 registries. Cox regression model analysis was used to evaluate the prognostic factors. The lung cancer-specific survival (LCSS) and overall survival (OS) rates between the two groups were compared.

Results: A total of 861 patients met our criteria, including 662 (76.9%) patients who underwent lobectomy and 199 (23.1%) patients who underwent sublobar resection. No statistical differences in LCSS and OS rates were identified between the groups of patients with stage IA right middle lobe NSCLC ≤ 1 cm. For tumors > 1–2 cm, lobectomy was associated with more favorable LCSS and OS rates compared to sublobar resection.

Conclusion: Lobectomy and sublobar resection deliver a comparable prognosis for patients with stage IA right middle lobe NSCLC ≤ 1 cm. For tumors > 1–2 cm, lobectomy showed better survival rates than sublobar resection.

Introduction
Lung cancer occurring in the right middle lobe is less common than tumors located in other lobes, and accounts for approximately 5% of all primary lung cancers.¹⁻³ Lung cancer involving the right middle lobe has a poorer prognosis because abundant lymphatic drainage extends to the mediastinal lymph nodes.³⁻⁵ Previous studies have focused mainly on the choice of surgical procedure for all stage resectable tumors, thus the optimal surgical procedure for early-stage right middle lobe lung cancer remains unclear.

With advances in imaging techniques for lung cancer screening, the detection of early-stage non-small cell lung cancer (NSCLC) has increased,⁶ and the optimal treatment for these tumors has attracted increasing attention. Lobectomy has always been considered the standard surgical procedure for patients with NSCLC.⁷⁻⁸ However, several studies have reported that sublobar resection can achieve similar survival rates to lobectomy in patients with early-stage NSCLC, especially those with stage IA tumors ≤ 2 cm.⁹⁻¹³

In this study, we obtained cases from the population-based Surveillance, Epidemiology, and End Results (SEER) database of 18 registries to compare prognosis after lobectomy and sublobar resection in patients with stage IA right middle lobe NSCLC stratified on the basis of tumor size (≤ 1 cm, > 1–2 cm). Our analysis may provide the rationale for a clinical treatment recommendation for early-stage right middle lobe NSCLC.

Methods

Patient population
Patients were selected from the updated SEER 18 registries database (1973–2014) released in March 2018, using SEER*
The baseline characteristics of the patients are summarized in Table 1. Patients who underwent sublobar resection were more likely to have a smaller tumor (P = 0.001), to have a better grade (P = 0.004), and less likely to have nodes examined (P < 0.001) than those who underwent lobectomy.

Surgical procedures for tumors ≤ 1.0 cm

We identified 166 patients with stage IA right middle lobe NSCLC tumors ≤ 1.0 cm: 112 (67.5%) underwent lobectomy, and 54 (32.5%) underwent sublobar resection. Kaplan–Meier survival analysis and log-rank comparison revealed no statistical differences in the LCSS (HR 0.607, 95% CI 0.160–2.304; P = 0.517) or OS (HR 0.721, 95% CI 0.259–2.008; P = 0.559) rates between the groups (Fig 1). Multivariable Cox regression analysis of survival also showed no statistical differences in the LCSS (HR 0.994, 95% CI 0.187–5.289; P = 0.994) or OS (HR 0.923, 95% CI 0.280–3.038; P = 0.895) between the groups (Table 2).

Surgical procedures for tumors >1–2 cm

The analysis included 695 patients with stage IA right middle lobe NSCLC tumors > 1–2 cm: 550 (79.1%) underwent lobectomy and 199 (23.1%) sublobar resection. We narrowed our focus to patients who had undergone active follow-up after surgery. Patients were excluded from the study if they had received chemotherapy or radiotherapy before, during, or after surgery or if their radiation status was unknown. The SEER database query selection codes are shown in Supplementary File S1. Age at diagnosis, gender, race, year of procedure, histologic type, tumor size and grade, months of survival, cause-specific death classification, and other cause of death classification were used as variables. Tumor size was stratified into ≤ 1.0 cm and > 1–2 cm according to the proposed eighth edition of the International Association for the Study of Lung Cancer (IASLC) Tumor Node Metastasis (TNM) Classification. The lung cancer-specific survival (LCSS) rate was calculated from the date of surgery to the date of death from lung cancer. The overall survival (OS) rate was calculated from the date of surgery to the date of death from any cause. Follow-up was concluded on 31 December 2014.

Statistical analysis

To compare the baseline characteristics of patients between the lobectomy and sublobar resection groups, a Student’s t-test was used for continuous variables, and an χ² test for categorical variables. Kaplan–Meier curves were calculated to estimate LCSS and OS rates between lobectomy and sublobar resection for patients with tumors ≤ 1.0 cm and > 1–2 cm and statistical differences were obtained using the log-rank test. Survival functions were compared by univariable Cox regression analysis, adjusting for the confounders tumor histologic type and grade. A value of P < 0.05 was considered statistically significant in all analyses. Hazard ratios (HRs), 95% confidence intervals (CIs), and P values for each variable were calculated using SPSS version 24.0 (IBM Corp., Armonk, NY, USA), and survival curves were drawn using Prism 7.0 (GraphPad Software, San Diego, CA, USA).

Results

Patient characteristics

A total of 861 eligible patients with stage IA right middle lobe NSCLC ≤ 2 cm were identified, including 662 (76.9%) who had undergone lobectomy and 199 (23.1%) sublobar resection. The median follow-up was 39 months (range: 0–131) and the overall five-year survival rate of the entire cohort was 75%. The baseline characteristics of the patients are summarized in Table 1.

Statistical analysis

To compare the baseline characteristics of patients between the lobectomy and sublobar resection groups, a Student’s t-test was used for continuous variables, and an χ² test for categorical variables. Kaplan–Meier curves were calculated to estimate LCSS and OS rates between lobectomy and sublobar resection for patients with tumors ≤ 1.0 cm and > 1–2 cm and statistical differences were obtained using the log-rank test. Survival functions were compared by univariable Cox regression analysis, adjusting for the confounders tumor histologic type and grade. A value of P < 0.05 was considered statistically significant in all analyses. Hazard ratios (HRs), 95% confidence intervals (CIs), and P values for each variable were calculated using SPSS version 24.0 (IBM Corp., Armonk, NY, USA), and survival curves were drawn using Prism 7.0 (GraphPad Software, San Diego, CA, USA).

Results

Patient characteristics

A total of 861 eligible patients with stage IA right middle lobe NSCLC ≤ 2 cm were identified, including 662 (76.9%) who had undergone lobectomy and 199 (23.1%) sublobar resection. The median follow-up was 39 months (range: 0–131) and the overall five-year survival rate of the entire cohort was 75%. The baseline characteristics of the patients are summarized in Table 1. Patients who underwent sublobar resection were more likely to have a smaller tumor (P = 0.001), to have a better grade (P = 0.004), and less likely to have nodes examined (P < 0.001) than those who underwent lobectomy.
lobectomy and 145 (20.9%) underwent sublobar resection. Kaplan–Meier survival analysis and log-rank comparison revealed that compared to sublobar resection, lobectomy was significantly associated with better LCSS (HR 2.179, 95% CI 1.174–4.044; \(P = 0.002 \)) and OS (HR 1.611, 95% CI 1.030–2.519; \(P = 0.015 \)) rates in patients with stage IA right middle lobe NSCLC tumors > 1–2 cm (Fig 2). Multivariable Cox regression analysis also revealed independent associations of sublobar resection with a poorer LCSS (HR 2.070, 95% CI 1.245–3.443; \(P = 0.005 \)) and OS (HR 1.498, 95% CI 1.019–2.200; \(P = 0.040 \)) compared to lobectomy (Table 3).

Discussion

Despite high-quality evidence from multi-institutional randomized controlled trials evaluating the efficacy of lobectomy versus sublobar resection in NSCLC (Cancer and Leukemia Group B 140503 trial, Japan Clinical Oncology Group 0802, and West Japan Oncology Group 4607L trial),\(^{16,17}\) an increasing number of retrospective reviews have demonstrated that sublobar resection is an acceptable alternative to lobectomy in patients with early-stage NSCLC.\(^{9–13}\) Several recent studies have identified that sublobar resection is an effective equivalent to lobectomy for...
selected patients with stage IA NSCLC. Moreover, a recent study using SEER data demonstrated that sublobar resection is not inferior to lobectomy, even in patients aged ≤ 35 years with stage IA NSCLC. However, in clinical practice, sublobar resection is more acceptable for patients with tumors ≤ 2 cm. Sublobar resection has the advantages of preserving better lung function, with fewer postoperative complications and a lower mortality rate. However, few reports have focused on the therapeutic efficacy for early-stage NSCLC arising from the right middle lobe.

The right middle lobe is the smallest lobe of the lung, surrounded by two large lobes with abundant lymphatic drainage extending to the mediastinal lymph nodes. Lymphatic drainage from the middle lobe of the lung involves right paratracheal, right peribronchial, pretracheal, subcarinal, periesophageal, and left peribronchial lymph nodes. Several studies have demonstrated the differences in lymph node metastasis rates and prognosis depending on tumor location. Right middle lobe NSCLC is more likely to involve lymph node metastasis and has a significantly poorer prognosis than lung cancer in other lobes.

Table 3 Univariable and multivariable Cox regression analysis of patients with stage IA right middle lobe non-small cell lung cancer > 1–2 cm

Variables	Lung cancer-specific survival	Overall survival						
	Univariable analysis	Multivariable analysis	Univariable analysis	Multivariable analysis				
	HR (95% CI)	P	HR (95% CI)	P	HR (95% CI)	P		
Age	1.063 (1.035–1.092)	< 0.001	1.059 (1.030–1.088)	< 0.001	1.063 (1.043–1.083)	< 0.001	1.060 (1.040–1.082)	< 0.001
Gender								
Female	Reference		Reference		Reference			
Male	2.091 (1.304–3.353)	0.002	1.900 (1.166–3.096)	0.100	2.151 (1.537–3.012)	0.965	1.386–2.785	
Race								
White	Reference		Reference		Reference			
Black/other	0.944 (0.506–1.760)	0.655						
Year of procedure								
2004–2009	Reference		Reference		Reference			
2010–2014	0.625 (0.344–1.136)		Reference		Reference			
Histology								
Adenocarcinoma	Reference		Reference		Reference			
Squamous cell carcinoma	1.818 (1.009–3.276)	0.046	1.046 (0.569–1.922)	0.885	2.383 (1.597–3.554)	< 0.001	1.477 (0.972–2.244)	0.068
Other	1.626 (0.838–3.154)	0.151	1.061 (0.528–2.130)	0.868	1.868 (1.173–2.975)	0.009	1.419 (0.867–2.321)	0.164
Grade								
< 0.001			Reference		Reference			
Grade II	2.920 (1.212–7.036)	0.017	2.469 (1.003–6.078)	0.049	2.026 (1.196–3.432)	0.009	1.536 (0.888–2.657)	0.125
Grade III–IV	7.168 (2.959–17.363)	< 0.001	5.988 (2.406–14.904)	< 0.001	4.237 (2.461–7.296)	< 0.001	3.095 (1.750–5.472)	< 0.001
Not determined	3.125 (1.050–9.301)	0.041	3.358 (1.117–10.097)	0.031	1.649 (0.779–3.492)	0.191	1.688 (0.789–3.613)	0.177
Surgical procedure								
Lobectomy	Reference		Reference		Reference			
Sublobar resection	2.275 (1.378–3.755)	0.001	2.070 (1.2453–3.443)	0.005	1.707 (1.170–2.492)	1.498	1.019–2.200	

Bold value indicates P < 0.05 was considered statistically significant. CI, confidence interval; HR, hazard ratio.
et al. advised that prospective studies of right middle lobe resection associated with either extended lymph node dissection or wider resection margins are needed to evaluate efficacy in these patients.\(^2\)

In this study we compared survival rates after lobectomy and sublobar resection for stage IA right middle lobe NSCLC \(\leq 2\) cm. Tumor size was stratified based on the IASLC proposal to alter the existing \(T\) stage in the eighth TNM classification into: \(T1a (\leq 1\) cm) and \(T1b (> 1–2\) cm).\(^3\) We found that lobectomy and sublobar resection yield equivalent survival rates for tumors \(\leq 1\) cm. However, for tumors \(> 1–2\) cm lobectomy achieved better survival rates than sublobar resection. We also found that patients who underwent sublobar resection were more likely to have a smaller tumor and a better grade than those who underwent lobectomy. Based on these results, the choice of surgical procedure for stage IA right middle lobe NSCLC needs to be conservative compared to the other lobes. Sublobar resection for selected patients with stage IA right middle lobe NSCLC tumors \(\leq 1\) cm and lobectomy or more extensive resection for tumors \(> 1\) cm is recommended.

There are several inherent limitations in the SEER database. First, the database is retrospective, thus selection bias is inevitable. Although we used rigorous selection procedures and multivariate analyses to balance the apparent biases among the arms, potential biases such as information regarding patients’ performance status, visceral pleural invasion, and lymphovascular invasion remain unknown. Second, the SEER database does not provide specific information about ground glass opacity (GGO) components in pulmonary nodules. GGOs are frequently encountered in lung adenocarcinoma, and their presence has significant prognostic and predictive value in patients with early-stage NSCLC.\(^27\)–\(^29\) According to the eighth edition TNM classification, the invasive component of GGO dominant, rather than the whole tumor size, is thought to be a better measure for \(T\) staging and prognostic prediction.\(^29\)–\(^30\) Third, although our study focused on patients who were pathologically diagnosed with stage IA right middle lobe NSCLC \(\leq 2\) cm, the number of negative lymph nodes removed between the two groups may have influenced the outcomes.\(^31\)–\(^32\) Most patients treated via lobectomy may undergo systematic lymph node dissection, whereas patients undergoing sublobar resection may not undergo lymph node dissection or only receive lymph node sampling as a result of their earlier tumor stage or poorer physical status. However, a randomized study demonstrated that mediastinal lymph node dissection does not improve survival in early-stage NSCLC patients.\(^33\) Finally, recurrence-free survival rates and indications for sublobar resection in the SEER database are unclear; patients who undergo sublobar resection tend to have poorer general status or radiologically noninvasive cancer, thus our results may be conservative. Additional high-level continuous large-scale registry analyses or randomized controlled trials are needed to verify our results and may help to determine clinical treatment recommendations for early-stage right middle lobe NSCLC.

Acknowledgments

This work was financially supported by grants from the Zhejiang Province Research Project (2015C33123) and the National Key R&D Program of China (2017YFC0113500).

Disclosure

No authors report any conflict of interest.

References

1. Miura H, Kato H, Konaka C, Usuda J, Uchida O, Taira O. Primary lung cancer of the middle lobe. Is its prognosis poor? *Lung Cancer* 1996; 14: 273–9.
2. Mazza F, Ferrari E, Maineri P, Venturino M, Dozin B, Ratto GB. Pulmonary middle lobectomy for non-small-cell lung cancer: Effectiveness and prognostic implications. *Eur J Cardiothorac Surg* 2015; 48: e117–23.
3. Handa Y, Tsutani Y, Ikeda T et al. Reseassment of right middle lobe lung cancer: Comparison of segments 4 and 5 tumors. *Ann Thorac Surg* 2018; 105: 1543–50.
4. Peleg H, Antkowiak JG, Lane WW, Regal AM, Takita H. Prognosis after resection of non-small cell lung cancer of the right middle lobe. *J Surg Oncol* 1987; 35: 230–4.
5. Bedini AV, Cataldo I, Valente M, Alloisio M, Pastorino U, Ravasi G. Surgical prognosis in stage I bronchogenic carcinoma of the middle lobe. *Scand J Thorac Cardiovasc Surg* 1989; 23: 283–4.
6. Aberle DR, DeMello S, Berg CD et al. Results of the two incidence screenings in the National Lung Screening Trial. *N Engl J Med* 2013; 369: 920–31.
7. Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. *Lung Cancer Study Group. Ann Thorac Surg* 1995; 60: 615–22.
8. Strand TE, Rostad H, Møller B, Norstein J. Survival after resection for primary lung cancer: A population based study of 3211 resected patients. *Thorax* 2006; 61: 710–5.
9. Fan J, Wang L, Jiang GN, Gao W. Sublobectomy versus lobectomy for stage I non-small-cell lung cancer, a meta-analysis of published studies. *Ann Surg Oncol* 2012; 19: 661–8.
10. Bao F, Ye P, Yang Y et al. Segmentectomy or lobectomy for early stage lung cancer: A meta-analysis. *Eur J Cardiothorac Surg* 2014; 46: 1–7.
11 Altorki NK, Yip R, Hanaoka T et al. Sublobar resection is equivalent to lobectomy for clinical stage IA lung cancer in solid nodules. J Thorac Cardiovasc Surg 2014; 147: 754–62.
12 Qiu C, Wang G, Xu J et al. Sublobectomy versus lobectomy for stage I non-small cell lung cancer in the elderly. Int J Surg 2017; 37: 1–7.
13 Cao J, Yuan P, Wang Y et al. Survival rates after lobectomy, segmentectomy, and wedge resection for non-small cell lung cancer. Ann Thorac Surg 2018; 105: 1483–91.
14 National Cancer Institute. Surveillance, Epidemiology, and End Results (SEER) Program public-use data (1973–2014). [Cited 6 Mar 2018.] Available from URL: http://www.seer.cancer.gov.
15 Rami-Porta R, Bolejack V, Crowley J et al. The IASLC lung cancer staging project: Proposals for the revisions of the T descriptors in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol 2015; 10: 990–1003.
16 Kohman LJ, Gu L, Altorki N et al. Biopsy first: Lessons learned from Cancer and Leukemia Group B (CALGB) 140503. J Thorac Cardiovasc Surg 2017; 153: 1592–7.
17 Nakamura K, Saji H, Nakajima R et al. A phase III randomized trial of lobectomy versus limited resection for small-sized peripheral non-small cell lung cancer (JCOG0802/ WJOG4607L). Jpn J Clin Oncol 2010; 40: 271–4.
18 Landreneau RJ, Normolle DP, Christie NA et al. Recurrence and survival outcomes after anatomic segmentectomy versus lobectomy for clinical stage I non-small-cell lung cancer: A propensity-matched analysis. J Clin Oncol 2014; 32: 2449–55.
19 Fiorelli A, Caronia FP, Daddi N et al. Sublobar resection versus lobectomy for stage I non-small cell lung cancer: An appropriate choice in elderly patients? Surg Today 2016; 46: 1370–82.
20 Gu C, Wang R, Pan X et al. Sublobar resection versus lobectomy in patients aged ≤35 years with stage IA non-small cell lung cancer: A SEER database analysis. J Cancer Res Clin Oncol 2017; 143: 2375–82.
21 Sihoel AD, Van Schil P. Non-small-cell lung cancer: When to offer sublobar resection. Lung Cancer 2014; 86: 115–20.
22 Tsutani Y, Tsubokawa N, Ito M et al. Postoperative complications and prognosis after lobar resection versus sublobar resection in elderly patients with clinical stage I non-small-cell lung cancer. Eur J Cardiothorac Surg 2018; 53: 366–71.
23 Riquet M, Dupont P, Hidden G, Debesse B. Lymphatic drainage of the middle lobe of the adult lung. Surg Radiol Anat 1990; 12: 231–3.
24 Cerfolio RJ, Bryant AS. Distribution and likelihood of lymph node metastasis based on the lobar location of nonsmall-cell lung cancer. Ann Thorac Surg 2006; 81: 1969–73.
25 Yamanaka A, Hirai T, Takahashi A, Konishi F. Interlobar lymph node metastases according to primary tumor location in lung cancer. Lung Cancer 2002; 35: 257–61.
26 Kuroda H, Sakao Y, Mun M et al. Therapeutic value of lymph node dissection for right middle lobe non-small-cell lung cancer. J Thorac Dis 2016; 8: 795–802.
27 Hattori A, Matsunaga T, Takamochi K, Oh S, Suzuki K. Importance of ground glass opacity component in clinical stage IA radiologic invasive lung cancer. Ann Thorac Surg 2017; 104: 313–20.
28 Jin C, Cao J, Cai Y et al. A nomogram for predicting the risk of invasive pulmonary adenocarcinoma for patients with solitary peripheral subsolid nodules. J Thorac Cardiovasc Surg 2017; 153: 462–9.e1.
29 Hattori A, Matsunaga T, Takamochi K, Oh S, Suzuki K. Prognostic impact of a ground glass opacity component in the clinical T classification of non-small cell lung cancer. J Thorac Cardiovasc Surg 2017; 154: 2102–10.e1.
30 Rami-Porta R, Asamura H, Travis WD, Rusch VW. Lung cancer - major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 2017; 67: 138–55.
31 Cao J, Xu J, He Z et al. Prognostic impact of lymphadenectomy on outcomes of sublobar resection for stage IA non-small cell lung cancer ≤ 2 cm. J Thorac Cardiovasc Surg 2018. https://doi.org/10.1016/j.jtcvs.2018.03.122.
32 Liang W, He J, Shen Y et al. Impact of examined lymph node count on precise staging and long-term survival of resected non-small cell lung cancer: A population study of the US SEER database and a Chinese multi-institutional registry. J Clin Oncol 2017; 35: 1162–70.
33 Darling GE, Allen MS, Decker PA et al. Randomized trial of mediastinal lymph node sampling versus complete lymphadenectomy during pulmonary resection in the patient with N0 or N1 (less than hilar) non-small cell carcinoma: Results of the American College of Surgery Oncology Group Z0030 trial. J Thorac Cardiovasc Surg 2011; 141: 662–70.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

File S1. Program selection codes for SEER database queries.