The prevalence of bovine mastitis-associated *Staphylococcus aureus* in China and its antimicrobial resistance rate: A meta-analysis

Kuan Wang 1, Jinlong Cha 2, Kai Liu 1, Jianming Deng 1, Bowen Yang 1, Hui Xu 1, Juyu Wang 1, Limei Zhang 1, Xiaolong Gu 1*, Cuiqin Huang 1, Hui Xu 1, Limei Zhang 1, Xiaolong Gu 1*, Cuiqin Huang 1,2 and Weijie Qu 1*

1 College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China, 2 Yunnan Vocational and Technical College of Agriculture, Kunming, China, 3 Department of Animal Science and Veterinary, College of Life, Longyan University, Longyan, China, 4 Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China

In this study, to optimize the *Staphylococcus aureus* control program, a meta-analysis was conducted to investigate the epidemiology and antimicrobial resistance (AMR) profile of *S. aureus*-associated bovine mastitis in China from 2000 to 2020. A total of 33 publications from PubMed, Google Scholar, and China National Knowledge Infrastructure (CNKI) database were included in our research, among which nine publications included the AMR test. The pooled prevalence of *S. aureus* was 36.23%, and subgroup analysis revealed that the prevalence dropped from 2000–2010 to 2011–2020, which shows that China is on the right track. The pooled AMR rate indicate isolates were most resistant to β-lactams (50.68%), followed by quinolones (36.23%), macrolides (34.08%), sulfonamides (32.25%), tetracyclines (27.83%), aminoglycosides (26.44%), lincomides (23.39%), and amphenicol (10.33%). Both the pooled prevalence and AMR of *S. aureus* in China are higher than those in Western countries, such as Germany, Belgium, Ireland, and the United States—countries with a long animal husbandry history and good management. Thus, there is still room to improve the treatment of *S. aureus*-associated bovine mastitis in China.

KEYWORDS

bovine mastitis, *Staphylococcus aureus*, prevalence, antimicrobial resistance, meta-analysis

Introduction

Bovine mastitis, as one of the most devastating diseases in dairy herds worldwide (1–3), is caused by several pathogenic bacteria, including *Staphylococcus aureus*. *Staphylococcus aureus* is one of the most prevalent pathogens worldwide and causes subclinical infections, resulting in an increased somatic cell count and intramammary...
infections in dairy cows (4). *S. aureus* mastitis impacts dairy farms economically because of decreased productivity, premature culling, and prolonged costly antibiotic treatments (5–7).

The resistance of *S. aureus* to antimicrobials is a growing concern, along with its wide use against the disease, although the overall resistance rates vary widely by region (8). The standard treatment regimen against bovine mastitis with antibiotics is still under debate (9). China has greatly engaged in the global action plan on antimicrobial resistance (AMR) control (10). The National Action Plan to Combat Animal Origin Antimicrobial Resistance (2017–2020) (Beijing: China Ministry of Agriculture and Rural Affairs, 2017) is one of the national protocols to standardize veterinary medications in combination with strict biosecurity measures and prudent use of antimicrobials to alleviate the pressure of resistant pathogen transmission. Significant progress has been made against the AMR by prohibiting certain antibiotics (Announcement No. 194 of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China), for instance, officially prohibition of the use of three veterinary drugs, namely, olaquindox (“Chinese Veterinary Pharmacopeia” (2005 Edition)), clenbuterol (Notice of the General Office of the Ministry of Agriculture and Rural Affairs on Launching the Special Rectification Action for “Clenbuterol”), and salbutamol (State Pharmacopeia Commission. 2010 Pharmacopeia of the People’s Republic of China (Part 2)) in food animals to ensure the quality and safety of animal products and maintain public health and ecological safety.

The prevalence and AMR rate of *S. aureus*-related bovine mastitis in different regions of China during 2000–2020 were estimated using meta-analysis (11), an innovative tool, by analyzing the findings of published studies. Pooled prevalence and AMR rate, as well as subgroup analysis, from different aspects were conducted.

The purpose of this study was to understand the epidemiology and AMR profiles of *Streptococcus* spp. using meta-analysis to optimize *Streptococcus* spp. control programs.

Materials and methods

Literature search

Literature retrieval steps and results are illustrated in Figure 1. A comprehensive and systematic literature search was conducted to identify studies on *S. aureus*-related bovine mastitis, utilizing PubMed (www.pubmed.gov), Google Scholar (https://scholar.google.com), and China National Knowledge Infrastructure (CNKI) database (https://www.cnki.net/). “Bovine mastitis AND bacteria” were used as key words for the search of publications in English and Chinese between 2000 and 2020.

Selection of published studies

The PRISMA reporting standard was adopted in this study, as previously reported (12–14). Articles were excluded if (a) they were duplicate records; (b) they went off-topic and had small sample size (<3); (c) the study did not involve bacterial identification; (d) the study samples contained non-mastitis diseases; (e) the study involved ambiguous sample size or bacterial isolate quantity, and (f) the study was conducted out of the defined period (before 2000 and after 2020). Microsoft Excel was used to manage the references (Table 1).

Data extraction and statistical analysis

Designed forms were used to extract data from the selected publications, and the data included author, year of publication, province, sample size, number of *S. aureus* isolates, degree of mastitis (as per the Laboratory Handbook on Bovine Mastitis, National Mastitis Council), identification method, number of resistant isolates, and laboratory procedure. The methodological quality of each study was independently reviewed by two reviewers based on pre-specified study quality indicators adapted from the Downs and Black checklist.

The number of *S. aureus*, antimicrobial-resistant isolates, and mastitis milk samples of the extracted data were calculated for their proportion in articles. Resistance was considered a dichotomous outcome. The prevalence and AMR rate were separately meta-analyzed by using the “meta” and “metafor” packages in R (version 4.0.5).

The prevalence of *S. aureus* was pooled using the random effects model. Subgroup meta-analyses were conducted on isolation time and region, and mastitis grade to illustrate the heterogeneity between the studies.

The AMR profile was analyzed by groups: β-lactams, quinolones, aminoglycosides, tetracyclines, lincomamides, sulphonamides, macrotrides, and amphenicol. The publication bias test was performed by using the Egger test, and a funnel plot was created.

Results

Inclusion of publications

A total of 34, 86, and 136 articles were obtained from PubMed, Google Scholar, and CNKI, respectively, among which the following were excluded: 24 publications were duplicates,
11 were published out of the defined period, 121 did not involving S. aureus, three were reviews, three did not provide information of sample size or the number of bacterial isolates, 20 did not provide data on the sampling region, and 41 did not provide grade of mastitis. As a result, 33 publications including 4,215 samples and 1,305 isolates were selected for subsequent analysis, of which nine were included for the AMR test (Figure 1, Table 1).
TABLE 1 Information of studies included in our study.

Author	Year	Sample	Identification assay	Isolates	Gradea	Regionb	AMR methodc
Meng Dan	2019	186	16S	98	C	N	
Weijie Jin	2020	544	16S	168	C	S	K–B
Lili Zhang	2016	200	Other	58	C	S	K–B
Quang Ren	2019	84	16S	65	S	N	K–B
Feng Li Yang	2014	67	Other	12	C	S	
Chenchen Shen	2017	28	Other	18	C	S	K–B
Mingxu Zhou	2019	50	16S	5	S	S	K–B
Huyun Zhao	2020	110	16S	15	C	N	K–B
Wei Ge	2020	812	16S	216	S	N	K–B
Haiyan Wu	2019	50	Other	18	C	N	K–B
Lijun Wu	2019	165	16S	43	S	S	
Wei Liu	2006	60	Other	43	C	N	
Lei Liu	2009	92	Other	58	S	N	
Yu Li	2011	16	Other	12	C	N	
Jin Li	2014	58	Other	53	C	N	
Lin Wang	2015	100	Other	15	C	N	
Hongwei He	2015	14	Other	12	C	N	
Xiujuan Ye	2004	44	Other	30	C	S	
Jianbiao Lu	2006	63	Other	23	C	N	
Ying Liu	2008	90	Other	23	C	N	
Guying Wang	2008	115	Other	12	C	N	
Yongxin Yang	2009	86	Other	42	S	S	
Lulu Qin	2009	30	Other	4	C	S	
Guixian Zhang	2010	34	Other	6	C	N	
Fu Cong	2007	304	Other	91	S	N	
Long Ma	2009	44	Other	29	C	N	
Zhuming Zhang	2009	9	Other	5	C	N	
Xiaodong Kang	2014	94	Other	7	C	N	
Xiaodong Kang	2014	164	Other	11	C	N	
Je Lin	2015	15	16S	10	C	N	
Xinpu Li	2015	302	16S	18	C	N	
Quyun Zhao	2016	48	Other	10	C	N	K–B
Liming Chen	2004	23	Other	12	C	S	
Yan Liu	2012	114	Other	63	C	S	
Total		4,215	–	–	–	1,305	–

aC, clinical bovine mastitis; bS, subclinical bovine mastitis. $^cK–B$, disk diffusion test. –, publication did not include the AMR test.

Prevalence of *S. aureus*

The pooled prevalence of *S. aureus* is 36.23% [95% confidence interval (CI): 29.31–43.76%]. An evident heterogeneity was observed ($I^2 = 94\%$, $t^2 = 0.7583$, $P < 0.01$). Therefore, subgroup analysis was conducted to explore the sources of heterogeneity (Figure 2).

Subgroup analysis

The research articles were divided into subgroups based on research period (2000–2010 vs. 2011–2020), sampling sites (North vs. South China), and mastitis grade (clinical vs. subclinical mastitis). The pooled subgroup prevalence of *S. aureus* was 36.56% and 35.75% in North and South China,
Overall prevalence of *Staphylococcus aureus*. respectively (Figure 3); 43.22 and 32.62% for the 2000–2010 period and the 2011–2020 period, respectively (Figure 4); and 35.62% and 38.79% in clinical and subclinical mastitis, respectively (Figure 5).

According to the aforementioned meta-analysis results, we speculate that the difference in prevalence between South China and North China and the difference between periods 2000–2010 and 2011–2020 may be related to the difference in climate between North and South China and the increased emphasis on *Streptococcus agalactiae*, which is related to factors such as the improvement of biological prevention and control.

Antimicrobial resistance rate of *S. aureus*

The pooled antimicrobial resistant rate revealed that *S. aureus* was most resistant to β-lactams, 50.68% (95% CI: 42.55–58.77%); followed by quinolones, 36.23% (95% CI: 28.45–44.79%); macrolides, 34.08% (95% CI: 26.89–42.08%);
![Image of Figure 3: Prevalence subgroup by region.]

FIGURE 3
Prevalence subgroup by region.
FIGURE 4
Overall prevalence subgroup by year.
Overall prevalence subgroup by grade.
sulfonamides, 32.25% (95% CI: 20.81–46.30%); tetracyclines, 27.83% (95% CI: 21.29–35.46%); aminoglycosides, 26.44% (95% CI: 19.33–35.02%); lincosamides, 23.39% (95% CI: 16.70–31.74%); and amphenicol, 10.33% (95% CI: 6.07–17.18%) (Figure 6).

Publication bias of the prevalence and AMR rate of Staphylococcus aureus

As shown by the funnel plot (Figures 7, 8), the studies exhibited an even distribution around the mean effect size, which suggested the publication bias is negligible.

Discussion

Bovine mastitis is a disease of dairy cows worldwide (2, 15). Staphylococcus aureus is one of the main pathogens causing the disease (16, 17) and is also the third largest foodborne pathogen in the world, posing a huge threat to animal husbandry and human public health (4), causing economic losses up to €300 per cow per year (18, 19), and thus fueling the increase of clinical, subclinical, and recurrent cow mastitis (6, 20). It is essential to understand the prevalence and AMR rate of bovine mastitis-related S. aureus to improve therapeutic interventions and prevention strategies.

The pooled prevalence of S. aureus in China (36.23%) is lower than that in the United States (46.6–62.4%, 118 of 189 herds) (21), Hungary (70%) (22), Northern Greece (40%) (23), and northern Ethiopia (41.7%) (24), but is higher than that in Denmark (34%) (25), Germany (7.3–11.5%) (26), Belgium (7.6%) (26), Iran (25%) (27), Japan (28.2%) (28), Nepal (15.2%) (29), and Korea (5.6%) (30). The difference in prevalence between China and the United States may be due to the fact that the scale of the United States is generally larger than that in China, and the farms covered in our study are only partial farms, and there may also be some high prevalence undetected. Apart from that, Patel et al. (21) suggested that caution should
Funnel plot of prevalence bias of *Staphylococcus aureus*. be exercised when generalizing the findings of smaller herds, so prevalence will still vary considerably between China and other developed countries. The fact that China is the third largest milk producer in the world may be the reason for the higher prevalence. It could be concluded that further measures need to be taken against bacterial resistance and to improve related managements in farms (2, 31, 32).

Song et al. (32) and Gao et al. (31) suggested that the higher prevalence in North China may due to colder winters and lack of heat, reluctance to keep up with the rapid development of farming technology and so forth. Another important reason may lie in the fact that the dairy industry is much more developed in North China, where the main dairy zone and the large-scale farms are located. However, in the study by Gao et al. (31), some samples were stored at 4°C, instead of a freezer; repeated freeze–thaw of the sample reduces the culture sensitivity of the bacteria. In addition, as mentioned in the study of Gao et al. we were unable to interpret the findings because of the lack of management details of the studied herds (31).

In our analysis, the prevalence of subclinical mastitis caused by *S. aureus* is higher than that of clinical mastitis, which is inconsistent with the fact that clinical mastitis is more common than subclinical mastitis (32) but is consistent with the fact that a higher incidence of subclinical mastitis is predominant (33). Meanwhile, the incidence of the clinical type of bacteriologic bovine mastitis was roughly 20 ~ 22% in Canada (34), and that of subclinical mastitis was about 20.8 ~ 23.3% in the United States (35). Moreover, considering the different research angles and the limitations of the sample size used in the analysis, the difference is not surprising (34, 35). The specific prevalence of clinical and subclinical mastitis in China requires further meticulous studies to draw more accurate conclusions.

The lower prevalence in the recent decade of 2011–2020 than the decade of 2000–2010 (32.62 vs. 43.22%) might imply the decline in the prevalence due to the rapid technology development against *S. aureus* and biosecurity measures undertaken by the farms. This may be a good sign that *S. aureus* could be more effectively controlled in future along with the development of more advanced technology and increased attention paid to the industry (36). Mammary gland health is further complicated by differences in farm management systems, farm sizes, cow cleanliness, and housing styles across countries and regions (37).

In our study, *S. aureus* is the most resistant bacterium to β-lactams (50.68%). It was shown in the study by Perovic that *S. aureus* may have an acquired gene that makes it resistant to methicillin and to all other β-lactam antibiotics (28, 38). In addition, penicillin belongs to the β-lactam class of drugs, the drug has been used for long-term and repeated administration in cattle, for example, for the treatment of diarrhea and other diseases, which may result in increased resistance to its use in the treatment of clinical mastitis (39); hence, β-lactams might...
Publication bias of antimicrobial resistant rate of Staphylococcus aureus.

be the most resistant antibiotic against S. aureus. This result is supported by studies conducted in Iran (27) and Brazil (40), both showing that S. aureus is highly resistant to β-lactam antibiotics compared with other antibiotics. In India, resistance to oxacillin (a penicillin drug) can reach 20.5% (41). In Japan, the resistance to ampicillin can reach 76.1%~89.7% (28). In Nepal, S. aureus isolates were totally (100%) resistant to ampicillin, 75.9% to cefazolin, and 48.3% to tetracycline (29).

China and other countries follow different practices regarding the use of antibiotics (42–44). However, rational evaluation, drug screening, and cautious and responsible use are meaningful to all countries to gradually reduce the use of antibiotics in veterinary practice in future.

Conclusion

The pooled prevalence of S. aureus was 36.23%, and subgroup analysis revealed that the prevalence was higher in North China in 2000–2010 and in subclinical bovine mastitis cases. Pooled AMR rates revealed S. aureus is highly resistant to β-lactams and quinolones; therefore, caution should be taken against treatments involving these two types of antibiotics for bovine mastitis.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

KW, JC, and KL contributed to conception and design of the study. KL organized the database. KW performed the statistical analysis and wrote the first draft of the manuscript. KL, JD, BY, HX, and JW wrote sections of the manuscript. LZ, CH, and XG performed the literatures research and review. WQ critically reviewed and revised the manuscript. All authors read and approved the final version.

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 31660730), Open Fund Project of Longyan University and Fujian
Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Krömker V, Leimbach S. Mastitis treatment-reduction in antibiotic usage in dairy cows. Reprod Dom Anim. (2017) 52 (Suppl. 3): 21–9. doi: 10.1111/rda.13032

2. Ruegg PL. A 100-year review: mastitis detection, management, and prevention. J Dairy Sci. (2017) 100:10381–97. doi: 10.3168/jds.2017-13023

3. Zaoutout N, Ayachi A, Kecha M. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. J Appl Microbiol. (2020) 129:1162–19. doi: 10.1111/jam.14706

4. Monistero V, Graber HU, Pollera C, Cremonesi P, Castiglioni B, Bottini E, et al. Staphylococcus aureus isolates from bovine mastitis in eight countries: genotypes, detection of genes encoding different toxins and other virulence genes. Toxins. (2016) 8:247. doi: 10.3390/toxins8060247

5. Liu H, Li S, Meng L, Dong L, Zhao S, Lan X, et al. Prevalence, antimicrobial susceptibility, and molecular characterization of Staphylococcus aureus isolated from dairy herds in northern China. J Dairy Sci. (2017) 100:8796–803. doi: 10.3168/jds.2017-13750

6. Käppeli N, Morach M, Corti S, Eicher C, Stephan R, Johler S. Staphylococcus aureus related to bovine mastitis in Switzerland: clonal diversity, virulence gene profiles, and antimicrobial resistance of isolates collected throughout 2017. J Dairy Sci. (2019) 102:3274–81. doi: 10.3168/jds.2018-15317

7. Zaoutout N, Herzl D. A meta-analysis of the global prevalence of methicillin-resistant Staphylococcus aureus (MRSA) isolated from clinical and subclinical bovine mastitis. J Appl Microbiol. (2022) 133:140–54. doi: 10.1111/jam.15192

8. Mekonnen SA, Lam TJ, Hoekstra J, Rutten VP, Tessema TS, Broens EM, et al. Characterization of Staphylococcus aureus isolated from milk samples of dairy cows in small holder farms of Northern-Western Ethiopia. BMC Vet Res. (2018) 14:246. doi: 10.1186/s12917-018-1558-1

9. de Prez JH. Bovine mastitis therapy and why it fails. J Afr Vet Pract. (2000) 71:201–8. doi: 10.4102/javap.v71i3.714

10. Yin J, Wang Y, Xu X, Liu Y, Yao L, Sun Q. The progress of global antimicrobial resistance governance and its implication to China: a review. Antibiotics. (2021) 10:1356. doi: 10.3390/antibiotics10111356

11. Tonin FS, Wieck E, Torres-Robles A, Benrimoj SC, Fernandez-Cancho E, et al. An innovative and comprehensive technique to evaluate different measures of medication adherence: the network meta-analysis. Res Social Adm Pharm. (2019) 15:356–65. doi: 10.1016/j.sapharm.2018.05.010

12. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. (2009) 151:264–9, W64. doi: 10.7326/0003-4819-151-4-200909180-00135

13. Shamsaeer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. (2015) 350:g7647. doi: 10.1136/bmj.g7647

14. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol. (2021) 134:103–12. doi: 10.1016/j.cej.2021.02.003

15. Deonuiter E, Dubé-Duquette A, Brouillette E, Larose A, Ster C, Lucier JF, et al. Relative virulence of Staphylococcus aureus bovine mastitis strains representing the main Canadian spa types and clonal complexes as determined using in vitro and in vivo mastitis models. J Dairy Sci. (2021) 104:11904–21. doi: 10.3168/jds.2020-19904

16. Cote-Gravel J, Malouin F. Symposium review: features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J Dairy Sci. (2019) 102:4727–40. doi: 10.3168/jds.2018-15272

17. Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments – a review. Asian Austral J Anim Sci. (2020) 33:1699–713. doi: 10.5713/ajas.20.0156

18. Deb R, Kumar A, Chakrabarty S, Verma AK, Tiwari R, Dhama K, et al. Trends in diagnosis and control of bovine mastitis: a review. Pak J Biol Sci. (2013) 16:1653–61. doi: 10.3922/pjbs.2013.1653.1663

19. Gomes F, Henriques M. Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol. (2016) 72:377–82. doi: 10.1007/s00284-015-0958-8

20. Zhou K, Li C, Chen D, Pan Y, Tao Y, Qu W, et al. A review on nanosystems as an effective approach against infections of Staphylococcus aureus. Int J Nanomedicine. (2018) 13:733–47. doi: 10.2174/ijnanomed.2017.1169935

21. Patel K, Godden SM, Royster EE, Crooker BA, Johnson TJ, Smith EA, et al. Prevalence, antibiotic resistance, virulence and genetic diversity of Staphylococcus aureus isolated from bulk tank milk samples of U.S. dairy herds. BMC Genomics. (2021) 22:367. doi: 10.1186/s12864-021-07603-4

22. Peles F, Wagner M, Varga L, Heim I, Rieck F, Gutser K, et al. Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. Int J Food Microbiol. (2007) 118:86–91. doi: 10.1016/j.ijfoodmicro.2007.07.010

23. Kotzamanidis C, Vafeas G, Giavani T, Anastasiadou S, Mygdalas S, Malouisi A, et al. Staphylococcus aureus isolated from ruminants with mastitis in northern Greece dairy herds: genetic relatedness and phenotypic and genotypic characterization. Toxins. (2021) 13:176. doi: 10.3390/toxins13030176

24. Haftu R, Taddele H, Gugsa G, Kaleyev S. Prevalence, bacterial causes, and antimicrobial susceptibility profile of mastitis isolates from cows in large-scale dairy farms of Northern Ethiopia. Trop Anim Health Prod. (2012) 44:1765–71. doi: 10.1017/S0140525X11005177

25. Kirkey C, Zervos L, Toft N, Schwarz D, Farre M, Hechinger S, et al. Transmission dynamics of Staphylococcus aureus within two Danish dairy cattle herds. J Dairy Sci. (2019) 102:1428–42. doi: 10.3168/jds.2018-15106

26. Tenhagen BA, Hansen I, Reinecke A, Huewieser W. Prevalence of pathogens in milk samples of dairy cows with clinical mastitis and in heifers at first parturition. J Dairy Sci. (2009) 92:179–87. doi: 10.3168/jds.2009-2998900378

27. Hassan S, Moawwad MH, Gharaajal S, Hadiabi SA, Hajibemani A, Barabadi Z. High prevalence of antibiotic resistance in pathogenic foodborne bacteria isolated from bovine milk. Sci Rep. (2022) 12:3878. doi: 10.1038/s41598-022-08745-6

28. Thongratsuk S, Usai M, Higuchi H, Takahashi T, Sato T, Poolkhet C, et al. Prevalence and characterization of Staphylococcus aureus isolated in raw milk from cows in Hokkaido, Japan. Trop Anim Health Prod. (2020) 52:1631–7. doi: 10.1007/s11250-019-02169-6
29. Shrestha A, Bhattarai RK, Luitel H, Kariki S, Basnet HB. Prevalence of methicillin-resistant Staphylococcus aureus and pattern of antimicrobial resistance in mastitis milk of cattle in Chitwan, Nepal. BMC Vet Res. (2021) 17:239. doi: 10.1186/s12917-021-02942-6

30. Moon JS, Lee AR, Kang HM, Lee ES, Kim MN, Paik YH, et al. Phenotypic and genetic antibiogram of methicillin-resistant staphylococci isolated from bovine mastitis in Korea. J Dairy Sci. (2007) 90:1176–85. doi: 10.3168/jds.S0022-0302(07)71604-1

31. Gao J, Barkema HW, Zhang L, Liu G, Deng Z, Cai L, et al. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. J Dairy Sci. (2017) 100:4797–806. doi: 10.3168/jds.2016-12334

32. Song X, Huang X, Xu H, Zhang C, Chen S, Liu F, et al. The prevalence of pathogens causing bovine mastitis and their associated risk factors in 15 large dairy farms in China: an observational study. Vet Microbiol. (2020) 247:108757. doi: 10.1016/j.vetmic.2020.108757

33. Rocha LS, Silva DM, Silva MP, Vidigal PM, Silva JC, Guerra ST, et al. Comparative genomics of Staphylococcus aureus associated with subclinical and clinical bovine mastitis. PLoS ONE. (2019) 14:e0220804. doi: 10.1371/journal.pone.0220804

34. Levison LJ, Miller-Cushon EK, Tucker AL, Bergeron R, Leslie KE, Barkema HW, et al. Incidence rate of pathogen-specific clinical mastitis on conventional and organic Canadian dairy farms. J Dairy Sci. (2016) 99:1341–50. doi: 10.3168/jds.2015-9809

35. Mullen KA, Sparks LG, Lyman RL, Washburn SP, Anderson KL. Comparisons of milk quality on North Carolina organic and conventional dairies. J Dairy Sci. (2013) 96:6753–62. doi: 10.3168/jds.2012-6519

36. Ren Q, Liao G, Wu Z, Ly J, Chen W. Prevalence and characterization of Staphylococcus aureus isolates from subclinical bovine mastitis in southern Xinjiang, China. J Dairy Sci. (2020) 103:3368–80. doi: 10.3168/jds.2019-17420

37. Hill AE, Green AL, Wagner BA, Dargatz DA. Relationship between herd size and annual prevalence of and primary antimicrobial treatments for common diseases on dairy operations in the United States. Prev Vet Med. (2009) 88:264–77. doi: 10.1016/j.prevetmed.2008.12.001

38. Perovic O, Koornhof H, Black V, Moodley I, Duse A, Galpin J. Staphylococcus aureus bacteremia at two academic hospitals in Johannesburg. Trop Anim Health Prod. (2019) 96:3466–5. doi: 10.7196/SAMJ.1201

39. Gao J, Ferreri M, Yu F, Liu X, Chen L, Su J, Han B. Molecular types and antibiotic resistance of Staphylococcus aureus isolates from bovine mastitis in a single herd in China. Vet J. (2012) 192:550–2. doi: 10.1016/j.tvjl.2011.08.030

40. Freu G, Tomani T, Filho AF, Heinemann MB, Dos Santos MV. Antimicrobial resistance and molecular characterization of Staphylococcus aureus recovered from cows with clinical mastitis in dairy herds from southeastern Brazil. Antibiotics. (2022) 11:424. doi: 10.3390/antibiotics11040424

41. Annanamedi M, Sheela P, Sundareshan S, Illoor S, Gupta P, Jasmene P, et al. Molecular fingerprinting of bovine mastitis-associated Staphylococcus aureus isolates from India. Sci Rep. (2021) 11:15228. doi: 10.1038/s41598-021-94760-x

42. Garcia-Migura L, Hendriksen RS, Fraile L, Aarestrup FM. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet Microbiol. (2014) 170:1–9. doi: 10.1016/j.vetmic.2014.01.013

43. Roth N, Kasherorher A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: a global overview. Poult Sci. (2019) 98:1791–804. doi: 10.3382/ps/psz539

44. Patel SL, Wellington M, Shah RM, Ferreira MJ. Antibiotic stewardship in food-producing animals: challenges, progress, and opportunities. Clin Ther. (2020) 42:1649–58. doi: 10.1016/j.clinthera.2020.07.004