TOP
DOWNLOAD PAPERS

International Journal of Artificial Intelligence & Applications (IJAIA)

ISSN: 0975-900X (Online); 0976-2191 (Print)

http://www.airccse.org/journal/jiaia/jiaia.html
CANCER PROGNOSIS PREDICTION USING BALANCED STRATIFIED SAMPLING

J.S. Saleema¹, N. Bhagawathi², S. Monica², P. Deepa Shenoy², K. R. Venugopal² and L. M. Patnaik³,
¹Christ University, India, ²University Visvesvaraya College of Engineering, India and ³Indian Institute of Science, India

ABSTRACT

High accuracy in cancer prediction is important to improve the quality of the treatment and to improve the rate of survivability of patients. As the data volume is increasing rapidly in the healthcare research, the analytical challenge exists in double. The use of effective sampling technique in classification algorithms always yields good prediction accuracy. The SEER public use cancer database provides various prominent class labels for prognosis prediction. The main objective of this paper is to find the effect of sampling techniques in classifying the prognosis variable and propose an ideal sampling method based on the outcome of the experimentation. In the first phase of this work the traditional random sampling and stratified sampling techniques have been used. At the next level the balanced stratified sampling with variations as per the choice of the prognosis class labels have been tested. Much of the initial time has been focused on performing the pre-processing of the SEER data set. The classification model for experimentation has been built using the breast cancer, respiratory cancer and mixed cancer data sets with three traditional classifiers namely Decision Tree, Naïve Bayes and K-Nearest Neighbour. The three prognosis factors survival, stage and metastasis have been used as class labels for experimental comparisons. The results shows a steady increase in the prediction accuracy of balanced stratified model as the sample size increases, but the traditional approach fluctuates before the optimum results.

KEYWORDS

Cancer, Classification, Pre-processing, Sampling

For More Details : http://airccse.org/journal/ijscai/papers/3114ijscai02.pdf

Volume Link : http://airccse.org/journal/ijscai/current2014.html
REFERENCES

[1] SEER Publication, Cancer Facts, Surveillance Research Program, Cancer Statistics Branch, limiteduse data (1973-2007). Available at: http://seer.cancer.gov/data/.

[2] A. Agrawal, S. Misra, R. Narayanan, L. Polepeddi, and Alok Choudhary, “A lung cancer outcome calculator using ensemble data mining on SEER data,” Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 2011.

[3] R. Al-Bahrani, A. Agrawal, and A. Choudhary, “Colon cancer survival prediction using ensemble data mining on SEER data,” in Proceedings of the IEEE Big Data Workshop on Bioinformatics and Health Informatics (BHI), 2013.

[4] S. Li, Z. Wang, G. Zhou, and S. Y. Mei Lee, “Semi-supervised learning for imbalanced sentiment classification,” in Proceedings of the Twenty-Second international joint conference on Artificial Intelligence. AAAI Press. vol. 3, pp. 1826-1831, 2011.

[5] J. Thongkam, G. Xu, Y. Zhang, and F. Huang, “Toward breast cancer survivability prediction models through improving training space,” Expert Systems with Applications. vol 36(10), pp. 12200-12209,2009.

[6] Lemmens, Aurélie and C. Croux, “Bagging and boosting classification trees to predict churn,” Journal of Marketing Research. pp. 276-286, 2006.

[7] X. Liu, J. Wu, and Z. Zhou, “Exploratory under-sampling for class-imbalance learning,” IEEE Transactions on Systems, Man, and Cybernetics. vol. 39(2), pp.539-550, 2009.

[8] M. Khalilia, S. Chakraborty, and M. Popescu, “Predicting disease risks from highly imbalanced data using random forest,” BMC Medical Informatics and Decision Making. 2011.

[9] J. S. Saleema, B. Sairam, S. D. Naveen, K. Yuvaraj and P Deepa Shenoy, “Prominent label identification and multi-label classification for cancer prognosis prediction,” TENCON 2012 - 2012 IEEE Region 10 Conference. Cebu. November 2012.

[10] J. Chen, J. N. K. Rao And R. R. Sitter, “Efficient random imputation for missing data in complex surveys,” Statistica Sinica, vol. 10, pp 1153-1169, 2000.

[11] A. Bellaachia, E. Guven, “Predicting breast cancer survivability using data mining techniques,” Age: Omaha, vol. 58, pp. 110-113, 2000.

[12] S. Kassem Fathy, “A prediction survival model for colorectal cancer,” Proceedings of the 2011 American conference on applied mathematics and the 5th WSEAS international conference on Computer engineering and applications, pp 36-42, 2011.

[13] F.E Ahmed, “Artificial neural network for diagnosis and survival prediction in colon cancer,” Molecular Cancer, vol. 4, no.29, 2005.

[14] Rapid Miner: Community Edition, Data Mining Software, Available at: http://rapidminer.com/
products/rapidminer-studio/.

[15] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81-106, 1986.

[16] J. Han and M. Kamber, Data Mining Concepts and Techniques. San Francisco, CA: Morgan Kaufmann, 2000.

[17] E. Alpaydin, Introduction to machine learning, 2nd ed. New Delhi: Prentice-Hall, 2010.
FUNCTIONAL REQUIREMENTS OF INTELLIGENT OBJECT FRAMEWORK
Sasa Savicand Hao Shi, Victoria University, Australia

ABSTRACT

Intelligent Object Framework (IOF) is a new communication standard over a wireless network supporting existing multiple sets of architectural solutions. The Framework consists of a framework design that enables devices of different platforms to communicate by a common data exchange model via a device management controller. This paper provides a descriptive analysis of functional requirements for the IOF. The purpose of the proposed system is to provide a platform independent device (Intelligent Object) management by utilization of set components. The functional requirements focus on deriving primary functionality of server and client applications by description of required inputs, behaviours and outputs.

KEYWORDS

Discovery, Functional Requirements, Intelligent Object Framework, IOF, Wireless Applications.

For More Details: http://airccse.org/journal/ijiscai/papers/2613ijiscai01.pdf

Volume Link: http://airccse.org/journal/ijiscai/current2013.html
REFERENCES

[1] Zigbee Alliance (2006) "Zigbee Vision for the Home: Zigbee Wireless Home Automation", Zigbee

[2] Zigbee Alliance (2007) "Zigbee Enables Smart Buildings of the Future Today", Zigbee Whitepaper

[3] Graham C. (2009) "Conformity", Engineer’s Reference Guide 2009; 14:178-181.

[4] Bieliková M. and Krajcovic T. (2001) "Ambient Intelligence within Home Environment.", http://www.ercim.eu/publication/Ercim_News/enw47/bielikova.html, ERCIM News No.47, October 2001.

[5] Vo N., Shi H. and Szajman J. (2008) WiiKey: An Innovative Smartphone Based Wi-Fi Application, Proceedings of International Multi-Symposiums on Computer and Computational Sciences, Shanghai.

[6] Parrot (2013) "AR. Drone Academy", http://ardrone2.parrot.com/, Viewed on 8 November 2013.

[7] Savic S. and Shi, H. (2011), "An Intelligent Object Framework for Smart Living", Procedia Computer Science 5 (2011) 386–393.

[8] Savic, S. (2010) " Intelligent Object Framework", thesis for Master of Science in Computer Science, School of Engineering and Science, Victoria University, June 2010, 138 pages.

[9] Savic S. and Shi, H. (2013), “Detailed Design of Intelligent Object Framework”, submitted to the International Journal of Computer Networks & Communications.

[10] Savic S. and Shi, H. (2013), “Testing and Deployment of Intelligent Object Framework", submitted To the International Journal of Next-Generation Network.
A STUDY ON GRAPH STORAGE DATABASE OF NOSQL

Smita Agrawal and Atul Patel

1CSE Department, Institute of Technology, Nirma University, Ahmedabad
2Dean of CMPICA, CHARUSAT University, Changa.

ABSTRACT

Big Data is used to store huge volume of both structured and unstructured data which is so large and is hard to process using current / traditional database tools and software technologies. The goal of Big Data Storage Management is to ensure a high level of data quality and availability for business intellect and big data analytics applications. Graph database which is not most popular NoSQL database compare to relational database yet but it is a most powerful NoSQL database which can handle large volume of data in very efficient way. It is very difficult to manage large volume of data using traditional technology. Data retrieval time may be more as per database size gets increase. As solution of that NoSQL databases are available. This paper describe what is big data storage management, dimensions of big data, types of data, what is structured and unstructured data, what is NoSQL database, types of NoSQL database, basic structure of graph database, advantages, disadvantages and application area and comparison of various graph database.

KEYWORDS

Big Data, Graph Database, NoSQL, Neo4j, graph

For More Details: http://aircconline.com/ijscai/V5N1/5116ijscai04.pdf

Volume Link: http://airecse.org/journal/ijscai/current2016.html
REFERENCES

[1] Smita Agrawal, Jai Prakash Verma, Brijesh Mahidhariya, Nimesh Patel and Atul Patel, 2015. “Survey On Mongoddb: An Open-Source Document Database.International” Journal of Advanced Research in Engineering and Technology (IJARET).Volume:6,Issue:12,Pages:1-11.

[2] Raj, Pethuru, et al. "High-Performance Big-Data Analytics."

[3] Castelltort, Arnaud, and Anne Laurent. "Representing history in graph-oriented nosql databases: A versioning system." Digital Information Management (ICDIM), 2013 Eighth International Conference on. IEEE, 2013.

[4] Bajpayee, Roshni, Sonali Priya Sinha, and Vinod Kumar. "Big Data: A Brief investigation on NoSQL Databases." (2015)

[5] http://neo4j.com/

[6] http://en.wikipedia.org/wiki/Graph_database

[7] E-Book of Graph Database by Ian Robinson, Jim Webber & Emil Eifrem

[8] http://en.wikipedia.org/wiki/NoSQL

[9] http://www.3pillarglobal.com/insights/exploring-the-different-types-of-nosql-databases

[10] http://www.looiconsulting.com/home/enterprise-big-data/

[11] Kanchi, Sravanthi, et al. "Challenges and Solutions in Big Data Management--An Overview." Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on. IEEE, 2015.

[12] Buerli, Mike, and C. P. S. L. Obispo. "The current state of graph databases."Department of Computer Science, Cal Poly San Luis Obispo, mbuerli@calpoly.edu (2012): 1-7.

[13] Angles, Renzo. "A comparison of current graph database models." Data Engineering Workshops (ICDEW), 2012 IEEE 28th International Conference on. IEEE, 2012.

[14] “AllegroGraph,” http://www.franz.com/agraph/allegrograph/.

[15] “G-Store,” http://g-store.sourceforge.net/.

[16] N. Martínez-Bazan, V. Muníez-Mulero, S. Gómez-Villamor, J. Nin, M.A. Sánchez-Martínez, and J.-L. Larriba-Pey, “DEX: High-Performance Exploration on Large Graphs for Information Retrieval,” in Proceedings of the 16th Conference on Information and Knowledge Management (CIKM). ACM, 2007, pp. 573–582.

[17] “vertexdb,” http://www.dekorte.com/projects/opensource/vertexdb/.
EVALUATION OF GRAPH DATABASES PERFORMANCE THROUGH INDEXING TECHNIQUES

Steve Ataky Tsham Mpinda, Lucas Cesar Ferreira, Marcela Xavier Ribeiro and Marilde Terezinha Prado Santos,
Federal University of São Carlos (UFSCar), Brazil

ABSTRACT

The aim of this paper is to evaluate, through indexing techniques, the performance of Neo4j and Orient DB, both graph databases technologies and to come up with strength and weaknesses os each technology as a candidate for a storage mechanism of a graph structure. An index is a data structure that makes the searching faster for a specific node in concern of graph databases. The referred data structure is habitually a B-tree, however, can be a hash table or some other logic structure as well. The pivotal point of having an index is to speed up search queries, primarily by reducing the number of nodes in a graph or table to be examined. Graphs and graph databases are more commonly associated with social networking or “graph search” style recommendations. Thus, these technologies remarkably are a core technology platform for some Internet giants like Hi5, Facebook, Google, Badoo, Twitter and LinkedIn.

The key to understanding graph database systems, in the social networking context, is they give equal prominence to storing both the data (users, favorites) and the relationships between them (who liked what, who ‘follows’ whom, which post was liked the most, what is the shortest path to ‘reach’ who). By a suitable application case study, in case a Twitter social networking of almost 5,000 nodes imported in local servers (Neo4j and Orient-DB), one queried to retrieval the node with the searched data, first without index (full scan), and second with index, aiming at comparing the response time (statement query time) of the aforementioned graph databases and find out which of them has a better performance (the speed of data or information retrieval) and in which case. Thereof, the main results are presented in the section 6.

KEYWORDS

Evaluation, Comparison, Graph Database, Index system, Neo4j, Orient-DB.

For More Details: http://aircconline.com/ijaia/V6N5/6515ijaia06.pdf

Volume Link: http://airccse.org/journal/ijaia/current2015.html
REFERENCES

[1] Angles, R. and Gutierrez, C. (2008). Survey of graph database models. ACM Computing Surveys, 40(1). cited By 166.

[2] Bogdan, G. T. and Bucur, C. (2011). A comparison between several nosql databases with comments and notes. In Roedunet international Conference, pages 1–5.

[3] Brewer, E. (2000). Towards robust distributed. In Proceedings of the 9th ACM Symposium on principles of distributed computing, New York, NY, USA. ACM.

[4] Bruggen, R. V. (2014). Learning Neo4j. PACKT, 1th edition.

[5] Han, W.-S., Lee, J., Pham, M.-D., and Yu, J. X. (2010). igraph: A framework for comparisons of disk-based graph indexing techniques. Proc. VLDB Endow., 3(1-2):449–459.

[6] Leonard, M. (2014). L’avenir du NoSQL. www.leonardmeyer.com/wpcontent/uploads/2014/06/avenirDuNoSQL.pdf, 1th edition.

[7] Macko, P., Margo, D., and Seltzer, M. (2013). Performance introspection of graph databases. In Proceedings of the 6th International Systems and Storage Conference, SYSTOR ’13, pages 18:1–18:10, New York, NY, USA. ACM.

[8] Marek, C., Alex, A., and Ladialav, H. (2012). Benchmarking traversal operations over graph databases. IEEE, 12:1–5.

[9] Neo4j (2015). The Neo4j Manual v2.2.3. Neo4j, version 2.2.3 edition.

[10] OrientDB (2014). OrientDB official Manual. OrientDB, version 2.0 edition.

[11] Robinson, I., Webber, J., and Eifrem, E. (2013). Graph Databases. O’REILLY, 1th edition.

[12] Steve, A., Luis, M., Marilde, S., and Marcela, R. (2015a). Graph database application using neo4j - railroad planner simulation. In ICEIS (1), pages 399–403.

[13] Steve, A., Patrick, B., and Luis, M. (2015b). From relational database to column-oriented nosql database: Migration process.
NETWORK LEARNING AND TRAINING OF A CASCADED LINK-BASED FEED FORWARD NEURAL NETWORK (CLBFFNN) IN AN INTELLIGENT TRIMODAL BIOMETRIC SYSTEM

Benson-Emenike Mercy E¹ and Ifeanyi-Reuben Nkechi J²,

¹Abia State Polytechnic Nigeria, ²Rhema University Nigeria

ABSTRACT

Presently, considering the technological advancement of our modern world, we are in dire need for a system that can learn new concepts and give decisions on its own. Hence the Artificial Neural Network is all that is required in the contemporary situation. In this paper, CLBFFNN is presented as a special and intelligent form of artificial neural networks that has the capability to adapt to training and learning of new ideas and be able to give decisions in a trimodal biometric system involving fingerprints, face and iris biometric data. It gives an overview of neural networks.

KEYWORDS

CLBFFNN, Learning, Training, Artificial Neural Network, Trimodal, Biometric System.

For More Details : http://aircconline.com/ijaia/V9N6/9618ijaia03.pdf

Volume Link : http://airccse.org/journal/ijaia/current2018.html
REFERENCES

[1] El-Zoghabi A. A., Yassin A. H., Hussien H. H. (2013). Survey Report on Cryptography Based on Neural Network. International Journal of Emerging Technology and Advanced Engineering. Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 12, December 2013), 456 - 462.

[2] Jogdand R. M. and Bisalapur S. S. (2011). Design of An Efficient Neural Key Generation. International Journal of Artificial Intelligence & Applications (IJAIA), Vol.2, No.1, 60-69, January 2011, DOI: 10.5121/ijaia.2011.2105 60 (PDF). Available from: https://www.researchgate.net/publication/49612116_Design_of_An_Efficient_Neural_Key

[3] Dilek S., Çakır H. and Aydın M. (2015). Applications of Artificial Intelligence techniques To Combating Cyber Crimes: A Review. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 6, No. 1, January 2015. 21-39

[4] Bagrow, J. P., Lehmann, S., & Ahn, Y.-Y. (2015). Robustness and modular structure in networks. Network Science, 3(04), 509-525. DOI: 10.1017/nws.2015.21

[5] Debashish D. and Mohammad S. U. (2013). Data Mining And Neural Network Techniques In Stock Market Prediction: A Methodological Review. International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.1, January 2013 DOI: 10.5121/ijaia.2013.4109, 117 – 127.

[6] Chiang Y., Chang L., Chang F. (2004). Comparison of static-feed-forward and dynamic-feedback neural networks for rainfall – runoff modelling. ELSEVIER, Journal of Hydrology 290 (2004) 297–311.

[7] Islam M. J., Ahmadi M. and Sid-Ahmed M. A. (2010). An Efficient Automatic Mass Classification Method In Digitized Mammograms Using Artificial Neural Network. International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.3, July 2010, 1-13. DOI: 10.5121/ijaia.2010.1301

[8] Khaze S. R., Masdari M. and Hojjatkhah S. (2013). Application of Artificial Neural Networks in Estimating Participation In Elections. International Journal of Information Technology, Modelling and Computing (IJITMC) Vol.1, No.3, August 2013.DOI: 10.5121/ijitmc.2013.1303, 23-31

[9] Li Y., Wang K., and Zhang D. (2002). Step acceleration based training algorithm for feed-forward neural networks. In IntConf Pattern Recognition (ICPR), pages 84–87.

[10] Levin E., Tishby N., and Solla S.A. (1990). A statistical approach to learning and generalization in layered neural networks. IEEE, 78(10):1568–1574.

[11] Juang B. and Katagiri S. (1992). Discriminative learning for minimum error classification. IEEE Trans Signal Processing, 40(12):3043–3054.

[12] Lee K. Y. and Sode-Yome A. and Park J. H. (1998). Adaptive Hopfield Neural Networks for Economic Load Dispatch. IEEE Transactions on Power Systems, Vol. 13, No. 2, May 1998 519-526

[13] Hopfield J. (1982). Neural networks and physical systems with emergent collective computational
abilities. National Academy of Science USA, 79(8):2554 –2558.

[14] Yao X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87:1423 – 1447.

[15] Ludmila I. Kuncheva (2004). Combining Pattern Classifiers - Methods and Algorithms. Wiley. International Journal of Artificial Intelligence and Applications (IJAIA), Vol.9, No.6, November 2018 46

[16] Tang E. K., Suganthan P. N., and Yao X.(2006). An analysis of diversity measures. Machine Learning, 65:247–271.

[17] Krenker A., Bester J. and Kos A. (2011). Introduction to the Artificial Neural Networks, Artificial Neural Networks - Methodological Advances and Biomedical Applications, Prof. Kenji Suzuki (Ed.), ISBN:978-953-307-243-2, InTech, Available from: http://www.intechopen.com/books/artificialneural-networks-methodological-advances-and-biomedical-applications/introduction-to-the-artificialneural-networks.

[18] Shubhangi S. A. and Madhuri A. C. (2012). Artificial Neural Network Controller for Performance Optimization of Single Phase Inverter. International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.1, January 2012. DOI: 10.5121/ijaia.2012.3105. 53-64.

[19] Vijaya, S. (2012). A study on the neural network model for finger print recognition. International Journal of Computational Engineering Research (ijceronline.com)2 (5).

[20] Le Cun, V., Bottou, L., Bengio, Y., and Haffner, P., (2012). Handwritten digit recognition with a back propagation network. Neural Information Processing Systems, 2: 396-404.

[21] Fausett, L. (1994). Fundamentals of neural networks. New York: Prentice Hall. ACM, New York, 89: 151–158.

[22] Schmidhuber J. (2015) Neural Networks. ELSEVIER 61(2015) 85-117

[23] Ritu, M. G. (2014). A review on fingerprint-based identification system. International Journal of Advanced Research in Computer and Communication Engineering 3(3). Copyright to IJARCCCE www.ijarccce.com

[24] Hazem, M. E. (2002). Face detection using neural networks and image decomposition. Lecture Notes in Computer Science 22: 205-215.

[25] Askarunisa, A., Sankaranarayanan, K., Sundaram, R., and Sathick, M. B. (2009). Fingerprint authentication using neural networks, MASAUM Journal of Computing, 15(2): 234.

[26] Ross, A. and Jain, A. K. (2003). Information fusion in biometrics. Pattern Recognition Letters, 24(13): 2115-2125.

[27] Benson-Emenike, M. E. &Sam-Ekeke Doris C. Trimodal Biometric Authentication System using Cascaded Link-based Feed forward Neural Network [CLBFFNN]. International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA 12 (5): 7-19 August 2017 – www.ijaais.org

[28] Salim L. (2011). A comparative study of back propagation algorithms in financial prediction. International Journal of Computer Science, Engineering and Applications (IJCSEA),1(4).
[29] Devika, C., Amita, S. and Manish, G. (2013). Recapitulation on Transformations in Neural Network Back Propagation Algorithm. International Journal of Information and Computation Technology 3(4): 323-328

[30] Nayak, P.K. and Narayan, D., (2013). Multimodal biometric face and fingerprint recognition using adaptive principal component analysis and multilayer perception. International Journal of Research in Computer and Communication Technology, 2(6).

[31] Long, B.T., and Thai, H. L., (2015). Person authentication using relevance vector machine (RVM) for face and fingerprint. I. J. Modern education and Computer Science, 5, 8-15.
ABSTRACT

This paper presents an outdoor mobile robot that can be controlled remotely using an android phone. With the help of the sensors, the robot was programmed to navigate within the bounded field, detect the motion in the surroundings and can also send an alarm. The robot was designed to be able to navigate to the flowerpots placed in the zone and dispense water to those pots. The robot has proved capable of watering a total of 600 ml to two different plants in a predefined area. The robot, if operating in a manual mode, can be used to remotely water plants in a radius of 9 meters. On top of this, it emits no carbon and produces no RoHS by-products and can thus be deemed 100% eco-friendly.

KEYWORDS

Arduino Uno, IR Sensor, PIR Sensor, Motor.

For More Details : http://aircconline.com/ijaia/V9N3/9318ijaia03.pdf

Volume Link : http://airccse.org/journal/ijaia/current2018.html
REFERENCES

[1] adafruit, "PIR motion sensor Tutorial," Instructables.com. [Online]. Available: http://www.instructables.com/id/PIR-Motion-Sensor-Tutorial/. Accessed: Sep. 20, 2016.

[2] "What is an IR sensor?". [Online]. Available: http://education.rec.ri.cmu.edu/content/electronics/boe/ir_sensor/1.html. Accessed: Sep. 20, 2016.

[3] "Introduction," 2016. [Online]. Available: https://www.arduino.cc/en/Guide/Introduction. Accessed: Sep. 18, 2016.

[4] "What is an Arduino?". [Online]. Available: https://learn.sparkfun.com/tutorials/what-is-an-arduino. Accessed: Sep. 21, 2016.

[5] "Autonomous robots," springer.com, 2016. [Online]. Available: http://www.springer.com/engineering/robotics/journal/10514. Accessed: Sep. 25, 2016.

[6] "Serial port Bluetooth module (master/slave): HC-05 - ITEAD Wiki,". [Online]. Available: https://www.itead.cc/wiki/Serial_Port_Bluetooth_Module_(Master/Slave)_:-_HC-05. Accessed: Sep. 22, 2016.

[7] M. Media, "Arduino," Maker Shed, 2004. [Online]. Available: http://www.makershed.com/collections/arduino. Accessed: Sep. 22, 2016.

[8] "Arduino articles on Engadget," Engadget. 2016. [Online]. Available: https://www.engadget.com/tag/arduino/. Accessed: Sep. 20, 2016.

[9] "Newest ‘arduino’ questions," 2016. [Online]. Available: http://stackoverflow.com/questions/tagged/arduino. Accessed: Sep. 22, 2016.

[10] "Mobile Open-Source," 2017. [Online]. Available: http://http://www.scirp.org/journal/PaperInformation.aspx?PaperID=80090. Accessed: Sep. 22, 2016.
ABSTRACT

Things like growing volumes and varieties of available data, cheaper and more powerful computational processing, data storage and large-value predictions that can guide better decisions and smart actions in real time without human intervention are playing critical role in this age. All of these require models that can automatically analyse large complex data and deliver quick accurate results – even on a very large scale. Machine learning plays a significant role in developing these models. The applications of machine learning range from speech and object recognition to analysis and prediction of finance markets. Artificial Neural Network is one of the important algorithms of machine learning that is inspired by the structure and functional aspects of the biological neural networks. In this paper, we discuss the purpose, representation and classification methods for developing hardware for machine learning with the main focus on neural networks. This paper also presents the requirements, design issues and optimization techniques for building hardware architecture of neural networks.

KEYWORDS

Artificial intelligence (AI), application specific integrated circuit (ASIC), artificial neural network (ANN), central processing unit (CPU), field programmable gate array (FPGA), graphics processing unit (GPU), machine learning (ML), neurochip

For More Details: http://aircconline.com/ijaia/V9N1/9118ijaia05.pdf

Volume Link: http://airccse.org/journal/ijaia/current2018.html
REFERENCES

[1] Jacques Bughin et. al., “How Artificial Intelligence Can Deliver Real Value to Companies”, McKinsey. [Online] Available: https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/how-artificial-intelligence-can-deliver-real-value-to-companies.

[2] Kevin Fogarty, (2017, Nov. 9), “The next Phase of Machine Learning”, Semiconductor Engineering. [Online] Available: https://semiengineering.com/the-next-phase-of-machine-learning/.

[3] Eduard Sackinger et. al., “Application of the ANNA Neural Network Chip to High-Speed Character Recognition”, IEEE Transactions on Neural Networks, Vol. 3, No. 3, May 1992.

[4] Patrick Bourke, Rob A. Rutenbar, “A High-Performance Hardware Speech Recognition System for Mobile Applications”, 2005.

[5] Sergiu Nedevschi, Rabin K. Patra, Eric A. Brewer, “Hardware Speech Recognition for User Interfaces in Low Cost, Low Power Devices”, Design Automation Conference, 2005.

[6] B.E. Boser et al, “Hardware requirements for neural network pattern classifiers”, IEEE Micro (Volume: 12, Issue: 1, Feb. 1992), pp. 32-40.

[7] Bernard Marr, (2017, August 8). Forbes [Online]. Available: https://www.forbes.com/sites/bernardmarr/2017/08/08/the-amazing-ways-how-google-uses-deeplearning-ai/#711a9ea43204.

[8] Ryan Whitwam (2017, October 16). ExtremeTech [Online]. Available: https://www.extremetech.com/extreme/257110-deepminds-wavenet-voice-synthesizer-live-googleassistant.

[9] Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman, Zhengdong Zhang, “Hardware for Machine Learning: Challenges and Opportunities”, CICC 2017.

[10] R. Rojas, “Neural Networks”, Springer-Verlag, Berlin, 1996.

[11] Liao, Yihua, “Neural networks in hardware: A survey”, Davis, CA, 2017.

[12] Jihan Zhu and Peter Sutton, “FPGA Implementations of Neural Networks – A Survey of a Decade of Progress”, Y. K. Cheung P., Constantinides G.A. (eds) Field Programmable Logic and Application, FPL 2003, Lecture Notes in Computer Science, vol. 2778. Springer, Berlin, Heidelberg.

[13] “Scikit-learn” [Online] Available: http://scikit-learn.org/stable/, Accessed on: Dec. 19, 2017.

[14] “Theano” [Online] Available: http://deeplearning.net/software/theano/, Accessed on: Dec. 19, 2017.

[15] “Apache Spark MLlib” [Online] Available: https://spark.apache.org/mllib/, Accessed on: Dec. 19, 2017.

[16] “H2O” [Online] Available: https://www.h2o.ai/, Accessed on: Dec. 19, 2017.

[17] “Tensorflow” [Online] Available: https://www.tensorflow.org/, Accessed on: Dec. 19, 2017.
[18] Arpan Chakraborty, (2016, April 7). Udacity[Online]. Available:
https://blog.udacity.com/2016/04/5-skills-you-need-to-become-a-machine-learning-engineer.html.

[19] McCarter, H., 1991, “A Highly Parallel Digital Architecture for Neural Network Emulation”, Delgado-Frias, J. G. and Moore, W. R. (eds.), VLSI for Artificial Intelligence and Neural Networks, pp. 357- 366, Plenum Press, New York, 1991.

[20] Lindsey, C. S., Lindblad, Th., Sekniaidze, G., Minerskjold, M., Szekely, S., and Eide, A., “Experience with the IBM ZISC Neural Network Chip”. Proceedings of 3rd Int. Workshop on Software Engineering, Artificial Intelligence, and Expert Systems, for High Energy and Nuclear Physics, Pisa, Italy, April 3-8, 1995.

[21] Nvidia, “Why GPUs?”. [Online] Available: http://www.fmslib.com/mkt/gpus.html, Accessed on: Dec. 20, 2017.

[22] Holt, J. and Hwang, J., “Finite Precision Error Analysis of the Neural Network Hardware Implementations”. IEEE Trans. on Computers, 42:281-290, 1993.

[23] Dany Bradbury, (2017, July 24), “What sort of silicon brain do you need for artificial intelligence?”, The Register. [Online]. Available: https://www.theregister.co.uk/2017/07/24/ai_hardware_development_plans/.

[24] Thiran, P., Peiris, V., Heim, P. and Hochet, B., “Quantization Effects in Digitally Behaving Circuit Implementations of Kohonen Networks”. IEEE Trans. on Neural Networks, 5(3):450-458, 1994.

[25] Strey, A. and Avellana, N., “A New Concept for Parallel Neurocomputer Architectures”. Proceedings of the Euro-Par'96 Conference, Lyon (France), Springer LNCS 1124, Berlin, 470-477, 1996.

[26] E. Won, “A hardware implementation of artificial neural networks using field programmable gate arrays”, Elsevier, Nuclear Instruments and Methods in Physics Research A 581 (2007) pp. 816–820, 2007.

[27] Marchesi, M., et al., “Fast neural networks without multipliers”. IEEE Transactions on Neural Networks, 1993. 4(1): p. 53-62.

[28] Linda Barney, (2017, March 21), “Can FPGAs beat GPUs in accelerating next-generation deep learning?”, The Next Platform. [Online]. Available: https://www.nextplatform.com/2017/03/21/canfpgas-beat-gpus-accelerating-next-generation-deep-learning/.

[29] Andre Xian Ming Chang, Eugenio Culurciello, “Hardware accelerators for Recurrent Neural Networks on FPGA”, Circuits and Systems (ISCAS), 2017 IEEE International Symposium, ISSN: 2379-447X, 2017.

[30] Chao Wang, Qi Yu, Lei Gong, Xi Li, Yuan Xie, Xuehai Zhou, “DLAU: A Scalable Deep Learning Accelerator Unit on FPGA”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (Volume: 36, Issue: 3, March 2017), pp. 513 – 517.

[31] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, William J. Dally, “SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks”, ISCA’17, Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 27-40.
[32] Yijin Guan, Zhihang Yuan, Guangyu Sun, Jason Cong, “FPGA-based Accelerator for Long ShortTerm Memory Recurrent Neural Networks”, Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific, ISSN: 2153-697X, 2017.

[33] Krste Asanovic, “Programmable Neurocomputing”, MIT Laboratory for Computer Science, Cambridge, MA 02139. [Online]. Available: https://people.eecs.berkeley.edu/~krste/papers/neurocomputing.pdf, Accessed on: Sept. 26, 2017.

[34] N. Morgan, J. Beck, P. Kohn, J. Bilmes, E. Allman, and J. Beer, “The Ring Array Processor (RAP): A multiprocessing peripheral for connectionist applications”, Journal of Parallel and Distributed Computing, 14:248–259, April 1992.

[35] U. A. Muller, B. Baumie, P. Kohler, A. Gunzinger, and W. Guggenbuhl, “Achieving supercomputer performance for neural net simulation with an array of digital signal processors”, IEEE Micro, 12(5):55–64, October 1992.

[36] R. Means and L. Lisenbee, “Extensible linear floating-point SIMD neurocomputer array processor”, Proceedings of the International Joint Conference on Neural Networks, pages I–587–592, New York,1991. IEEE Press.

[37] Ramacher, U., Raab, W., Anlauf, J., Hachmann, U., Beichter, J., Bruls, N., Webling, M. and Sicheneder, E., 1993, “Multiprocessor and Memory Architecture of the Neurocomputers SYNAPSE1”, Proceedings of the 3rd International Conference on Microelectronics for Neural Networks (MicroNeuro), pp. 227-231, 1993.

[38] J. Wawrzynek, K. Asanović, B. Kingsbury, J. Beck, D. Johnson, and N. Morgan, “Spert-II: A vector microprocessor syste”, IEEE Computer, 29(3):79–86, March 1996.

[39] M. Duranto, “Image processing by neural networks”, IEEE Micro, 16(5):12–19, October 1996.

[40] Fernando Morgado Dias, Ana Antunes, Alexandre Manuel Mota, “Commercial Hardware for Artificial Neural Networks: A Survey”, IFAC Proceedings Volumes, Vol. 36, Issue 12, pp.189-196, 2003.

[41] Jung-Wook Cho and Soo-Young Lee, “Active Noise Cancelling using Analog NeuroChip with OnChip Learning Capability”, NIPS Proceedings, 1998.

[42] Mark Holler, Simon Tam, Hernan Castro, Ronald Benson, “An Electrically Trainable Artificial Neural Network (ETANN) with 10240 "Floating Gate" Synapses”, Neural Networks, 1989, IJCNN., International Joint Conference, 1989.

[43] Takeshi Kamio, Haruyasu Adachi, Hiroshi Ninomiya, Hideki Asai, “A Design Method of DWT Analog Neuro Chip for VLSI Implementation”, Instrumentation and Measurement Technology Conference, 1997. IMTC/97. Proceedings. Sensing, Processing, Networking., IEEE, 1997.

[44] Daiki Masumoto, Hiroki Ichiki, Hideki Yoshizawa, Hideki Kato, Kazuo Asakawa, “An Analog Neurochip and Its Applications to Multilayered Artificial Neural Networks”, TOC, vol. 74, issue 9, pp. 92-103, 1991.

[45] Wikichip, “ETANN - Intel”. [Online] Available: https://en.wikichip.org/wiki/intel/etann, Accessed on: Oct. 19, 2017.

[46] Eduard Sackinger, Bernhard E. Boser, Lawrence D. Jackel, “A Neurocomputer Board Based on the ANNA Neural Network Chip”, Advances in Neural Information Processing Systems 4 (NIPS 1994),
[47] Alan F. Murray et. al., “Pulse Stream VLSI Neural Networks”, IEEE Macro, Vol. 14, Issue 3, June 1994, p. 29-39.

[48] Karl Freund, (2017, March 3), “A machine learning landscape: where AMD, Intel, Nvidia, Qualcomm and Xilinx AI engines live”, Forbes. [Online]. Available: https://www.forbes.com/sites/moorinsights/2017/03/03/a-machine-learning-landscape-where-amdintel-nvidia-qualcomm-and-xilinx-ai-engines-live/#4436108a742f.

[49] Gaurav Nakhare, (2017, July 31), “Hardware options for machine/deep learning”, MS&E 238 Blog. [Online]. Available: https://mse238blog.stanford.edu/2017/07/gnakhare/hardware-options-for-machinedeep-learning/.

[50] Cade Metz, (2016, October 26), “How AI is shaking up the chip market”. [Online]. Available: https://www.wired.com/2016/10/ai-changing-market-computer-chips/.

[51] “Intel Xeon Phi Processors”. [Online] Available: https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html Accessed on: Dec. 19, 2017.

[52] Nvidia, “Why GPUs?”. [Online] Available: http://www.fmslib.com/mkt/gpus.html, Accessed on: Dec. 20, 2017.

[53] Kevin Krewell, (2009, December 16), “What’s the difference between a CPU and a GPU?”. Nvivdia [Online]. Available: https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpuand-a-gpu/.

[54] William Dally, (2015, July 12), “High performance hardware for machine learning”, NIPS Tutorial. [Online]. Available: https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial2015.pdf.

[55] Nvidia, “Why GPUs?”. [Online] Available: http://www.fmslib.com/mkt/gpus.html, Accessed on: Dec. 20, 2017.

[56] Nvidia NVLink high-speed interconnect”, Nvidia. [Online]. Available: http://www.nvidia.com/object/nvlink.html. Accessed on: Sept. 29, 2017.

[57] Nvidia, “Tegra Processors”. [Online] Available: http://www.nvidia.com/object/tegra-x1-processor.html. Accessed on: Dec. 20, 2017.

[58] Nuno Edgar Nunes Fernandes, (2017, April 3), “FPGA chips will be the hardware future for deep learning and AI”, Wordress. [Online]. Available: https://theintelligenceofinformation.wordpress.com/2017/04/03/fpga-chips-will-be-the-hardwarefuture-for-deep-leaning-and-ai/.

[59] Nvidia, “Nvidia Introduces Nexus, The Industry’s First Integrated GPU/CPU Environment for Developers Working with Microsoft Visual Studio”. [Online] Available: http://www.nvidia.com/object/pr_nexus_093009.html.

[60] Kishore Kothapalli et. al., “CPU and/or GPU: Revisiting the GPU Vs. CPU Myth”. [Online]
Available: https://arxiv.org/pdf/1303.2171.pdf.

[61] William J., (2017, July 24), “Machine Learning on Intel FPGAs”, Intel. [Online]. Available: https://software.intel.com/en-us/articles/machine-learning-on-intel-fpgas.

[62] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, Gordon R. Chiu, “An OpenCL Deep Learning Accelerator on Arria 10”, 2017.

[63] Suhap Sahin, Yasar Becerikli, Suleyman Yazici, “Neural Network Implementation in Hardware Using FPGAs”, Neural Network Implementation in Hardware Using FPGAs. In: King I., Wang J., Chan LW., Wang D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol. 4234, Springer, Berlin, Heidelberg.

[64] Cox, C.E. and E. Blanz, “GangLion - a fast field-programmable gate array implementation of a connectionist classifier”, IEEE Journal of Solid-State Circuits, 1992. 28(3): pp. 288-299.

[65] Pedro Ferreira, Pedro Ribeiro, Ana Antunes, Fernando Morgado Dias, “Artificial Neural Networks Processor - a Hardware Implementation using a FPGA”, Becker J., Platzner M., Vernalde S. (eds) Field Programmable Logic and Application. FPL 2004. Lecture Notes in Computer Science, vol. 3203, Springer, Berlin, Heidelberg.

[66] Andrei Dinu, Marcian N. Cirstea, and Silvia E. Cirstea, “Direct Neural-Network HardwareImplementation Algorithm”, IEEE Transactions on Industrial Electronics (vol. 57, Issue: 5, May 2010).

[67] Seul Jung, Sung su Kim, “Hardware Implementation of a Real-Time Neural Network Controller with a DSP and an FPGA for Nonlinear Systems”, IEEE Transactions on Industrial Electronics, vol. 54, No. 1, February 2007.

[68]Intel FPGA and SoC, “Arria 10”. [Online] Available: https://www.altera.com/products/fpga/arriaseries/arria-10/overview.html.

[69]Intel FPGA and SoC, “Stratix 10”. [Online] Available: https://www.altera.com/products/fpga/stratixseries/stratix-10/overview.html.

[70] Eriko Nurvitadhi et. al., “Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC”, IEEE International Conference on Field-Programmable Technology, 7-9 Dec., 2016.

[71] Nvidia, “Jetson Automotive Development Platform”. [Online] Available: http://www.nvidia.in/object/jetson-pro-automotive-development-platform-in.html.

[72] Nvidia, “Nvidia Drive PX”. [Online] Available: https://www.nvidia.com/en-us/self-driving-cars/drive-px/.

[73] Nicole Hemsoth (2017, April 5), “First In-depth Look at Google’s TPU Architecture”. [Online] Available: https://www.nextplatform.com/2017/04/05/first-depth-look-googles-tpu-architecture/.

[74] Intel Nervana, [Online] Available: https://www.intelnervana.com/.

[75] J . Zhang, Z. Wang, N. Verma, “A machine-learning classifier implemented in a standard 6T SRAM
array,”, Sym. on VLSI, 2016.

[76] Z. Wang, R. Schapire, N. Verma, “Error-adaptive classifier boosting (EACB): Exploiting data-driven training for highly fault-tolerant hardware,”, ICASSP, 2014.

[77] B. Murmann, D. Bankman, E. Chai, D. Miyashita, L. Yang, “Mixed-signal circuits for embedded machine-learning applications”, Signals, Systems and Computers, 49th Asilomar Conference, 2015.

[78] Pai-Yu Chen, Deepak Kadetotad, Zihan Xu, Abinash Mohanty, Binbin Lin, Jieping Ye, Sarma Vrudhula, Jae-sun Seo, Yu Cao, Shimeng Yu, “Technology-design co-optimization of resistive crosspoint array for accelerating learning algorithms on chip”, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015.

[79] Junjie Lu, Steven Young, Itamar Arel, Jeremy Holleman, “A 1 TOPS/W Analog Deep MachineLearning Engine with Floating-Gate Storage in 0.13 μm CMOS”, IEEE Journal of Solid-State Circuits (Volume: 50, Issue: 1, Jan. 2015).

[80] Y. Chen and et al., “DaDianNao: A Machine-Learning Supercomputer,”, MICRO, 2014.

[81] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, V. Srikumar, “ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars,”, ISCA, 2016.

[82] P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A Novel Processing-In-Memory Architecture for Neural Network Computation in ReRAM-based Main Memory,”, ISCA, 2016.

[83] Takashi Morie and Yoshihito Amemiya, “An All-Analog Expandable Neural Network LSI with On-Chip Backpropagation Learning”, IEEE Journal of Solid-State Circuits, Vol. 29, No. 9, September, 1994.

[84] Arindam Basu, SunShuo, Hongming Zhou, MengHiot Lim, Guang-Bin Huang, “Silicon spiking neurons for hardware implementation of extreme learning machines”, Neurocomputing, 102, pp.125–134, 2013.

[85] Jae-sun Seo et al, “A 45nm CMOS Neuromorphic Chip with a Scalable Architecture for Learning in Networks of Spiking Neurons”, Custom Integrated Circuits Conference (CICC), 2011 IEEE.

[86] Yu-Hsin Chen, Joel Emer, Vivienne Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks”, Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium, 2016, ISSN: 1063-6897.

[87] Joe Osborne, (2016, Aug. 22), “Google’s Tensor Processing Unit Explained: This is What the Future of Computing Looks Like”. Techradar [Online] Available: http://www.techradar.com/news/computing-components/processors/google-s-tensor-processing-unitexplained-this-is-what-the-future-of-computing-looks-like-1326915.

[88] Kaz Sato, (2017, May 12), “An In-depth Look at Google’s First Tensor Processing Unit (TPU)”, Google Cloud Platform. [Online] Available: https://cloud.google.com/blog/big-data/2017/05/an-indepth-look-at-googles-first-tensor-processing-unit-tpu.

[89] Google AI, “Cloud TPUs”. [Online] Available: https://ai.google/tools/cloud-tpus/.
PREDICTING STUDENT ACADEMIC PERFORMANCE IN BLENDED LEARNING USING ARTIFICIAL NEURAL NETWORKS

Nick Z. Zacharis,
Technological Educational Institute of Piraeus, Greece

ABSTRACT

Along with the spreading of online education, the importance of active support of students involved in online learning processes has grown. The application of artificial intelligence in education allows instructors to analyze data extracted from university servers, identify patterns of student behavior and develop interventions for struggling students. This study used student data stored in a Moodle server and predicted student success in course, based on four learning activities - communication via emails, collaborative content creation with wiki, content interaction measured by files viewed and self-evaluation through online quizzes. Next, a model based on the Multi-Layer Perceptron Neural Network was trained to predict student performance on a blended learning course environment. The model predicted the performance of students with correct classification rate, CCR, of 98.3%.

KEYWORDS

Artificial Neural Networks, Blended Learning, Student Achievement, Learning Analytics, Moodle Data,

For More Details: http://aircconline.com/ijaia/V7N5/7516ijaia02.pdf

Volume Link: http://airccse.org/journal/ijaia/current2016.html
REFERENCES

[1] Macfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers & Education, 54(2), 588–599.

[2] Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learning courses. Internet and Higher Education, 27, 44–53.

[3] Strang, D. K. (2016). Can online student performance be forecasted by learning analytics? International Journal of Technology Enhanced Learning, 8(1), 26-47.

[4] Sabourin, J., Rowe, J., Mott, B., Lester, J. (2011). When Off-Task in On-Task: The Affective Role of Off-Task Behavior in Narrative-Centered Learning Environments. Proceedings of the 15th International Conference on Artificial Intelligence in Education, 534-536.

[5] Baker, R.S.J.d., Yacef, K. (2009). The State of Educational Data Mining in 2009: A Review and Future Visions. Journal of Educational Data Mining, 1(1), 3-17.

[6] Lykourentzou, I., Giannoukos, I., Mpardis, G., Nikolopoulos, V. and Loumos, V. (2009). Early and dynamic student achievement prediction in e-learning courses using neural networks. J. Am. Soc. Inf. Sci., 60: 372–380. doi: 10.1002/asi.20970

[7] Paliwal, M., & Kumar, U. A. (2009). A study of academic performance of business school graduates using neural network and statistical techniques. Expert Systems with Applications, 36(4), 7865–7872.

[8] Jayne C, Lanitis A, Christodoulou C (2011). Neural network methods for one-to-many multi-valued mapping problems. Neural Comput Appl 20(6):775–785

[9] Kanakana, G.M., Olanrewaju, A.O. (2011). Predicting student performance in engineering education using an artificial neural network at Tshwane university of technology. Proceedings of the International Conference on Industrial Engineering, Systems Engineering and Engineering Management for Sustainable Global Development, Stellenbosch, South Africa, pp. 1–7.

[10] Shahiri, A.M., Husain, W., Rashid, A.N. (2015). A review on predicting student's performance using data mining techniques. Procedia Computer Science, 72, 414-422.

[11] McClelland, J.L., Rumelhart, D.E., and Hinton, G.E. (1986). The appeal of parallel distributed processing, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition - Foundations, Vol.1, MIT Press, Cambridge, pp.3-44.

[12] Leverington, D. (2009). A Basic Introduction to Feedforward Backpropagation Neural Networks. http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html

[13] Rojas Raúl (1996). Neural Networks: A Systematic Introduction, Springer-Verlag, Berlin, New-York.

[14] Marwala, T. (2010). Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics, Springer Publishing Company, Inc.

[15] IBM (2016). Knowledge Center. http://goo.gl/SuuMHu
[16] Møller, M.F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6 (4), 525–533.
INTELLIGENT DECISION SUPPORT SYSTEMS FOR ADMISSION MANAGEMENT IN HIGHER EDUCATION INSTITUTES

Rajan Vohra¹ and Nripendra Narayan Das²,
¹Bahra University, India and ²ITM University, India

ABSTRACT

On the basis of their use, the DSS has received positive feedback from the University's decision makers. Making use of Intelligent Decision Support Systems (IDSS) technologies suited to provide decision support in the higher education environments, by generating and presenting relevant information and knowledge which are helpful in taking the decision regarding admission management in higher education colleges or universities. The university decision makers' needs and the DSS components are identified with the help of survey done. In this paper the components of a decision support system (DSS) for developing student admission policies in higher education institute or in the university and the architecture about DSS based on ERP are proposed followed by how intelligent DSS in conjunction with ERP helps to overcome the drawbacks, if ERP is used alone in higher education institutes.

KEYWORDS

Intelligent systems, Decision support, Decision Support Systems (DSS), ERP, Higher education institutions, knowledge base.

For More Details: http://aircconline.com/ijaia/V2N4/1011ijaia06.pdf

Volume Link: http://airccse.org/journal/ijaia/current2011.html
REFERENCES

[1] D. J. Power, “Supporting Decision-Makers: An Expanded Framework”, In Harriger, A.(Editor), eProceedings Informing Science Conference, Krakow, Poland, June 19-22, 2001, 431-436.

[2] Vasile Paul Bresfelean et. al ,”Towards the development of decision support in academic environments,” proceedings of the ITI 2009 , 31st international conference on information technology interface , june 22-25, 2009, Cavtat, Croatia

[3] G. DeSanctis and R. B.Gallupe, “A Foundation for the Study of Group Decision Support Systems”, Management Science, 33(5), 1987, 589-609.

[4]. Marco Semini, Håkon Fauske and Erik Gran “Use of model-driven decision support methods for supply chain design” SINTEF Technology and Society.

[5]. Muneer Alsurori, Juhana Salim,” Information and Communication Technology for Decision-Making in the Higher Education in Yemen: A Review” 2009 International Conference on Electrical Engineering and Informatics ,5-7 August 2009, Selangor, Malaysia.

[6] Wang Aihua, Guo Wenge, Xu Guoxiong, Jia Jiyou, Wen Dongmao,” GIS-Based Educational DecisionMaking System” Proceedings of 2009 IEEE International Conference on Grey Systemss and Intelligent Services, November 10-12, 2009, Nanjing, China., 2009 IEEE, pp 1198-1202.

[7]. Qiusheng Liu, Guofang Liu,” Research on the Framework of Decision Support System Based on ERP Systems”, 2010 Second International Workshop on Education Technology and Computer Science, 2010 IEEE.

[8]. S. F. Mohd Dahlan and N. A. Yahaya,”A System Dynamics Model for Determining Educational Capacity of Higher Education Institutions” Second International Conference on Computational Intelligence, Modelling and Simulation, 2010 IEEE.

[9] P. G. W. Keen and M. S. Scott Morton, “Decision Support Systems: An Organizational Perspective”,Reading, MA, Addison-Wesley, 1978.
USING AUTOMATED LEXICAL RESOURCES IN ARABIC SENTENCE SUBJECTIVITY

Hanaa Mobardz, Mohsen Rashown and Ibrahim Farag,
Cairo University, Egypt

ABSTRACT

A common point in almost any work on Sentiment analysis is the need to identify which elements of language (words) contribute to express the subjectivity in text. Collecting of these elements (sentiment words) regardless the context with their polarities (positive/negative) is called sentiment lexical resources or subjective lexicon. In this paper, we investigate the method for generating Sentiment Arabic lexical Semantic Database by using lexicon based approach. Also, we study the prior polarity effects of each word using our Sentiment Arabic Lexical Semantic Database on the sentence-level subjectivity and multiple machine learning algorithms. The experiments were conducted on MPQA corpus containing subjective and objective sentences of Arabic language, and we were able to achieve 76.1 % classification accuracy.

KEYWORDS

Sentiment analysis, Lexical recourses, Opinion mining, Subjectivity Lexicon, Arabic opinion mining.

For More Details: http://aircconline.com/ijaia/V5N6/5614ijaia01.pdf

Volume Link: http://airccse.org/journal/ijaia/current2014.html
REFERENCES

[1] Minqing Hu and Bing Liu 2004. "Mining opinion features in customer reviews," Proceedings of the National Conference on Artificial Intelligence, 755–760.

[2] Kavita Ganesan, ChengXiang Zhai and Jiawei Han, 2010. "Opinosis: a graph-based approach to abstractive summarization of highly redundant opinions," Proceedings of the 23rd International Conference on Computational Linguistics, 340–348.

[3] Alexandra Balahur Ester Boldrini, Andrés Montoyo and Patricio Martínez-Barco, 2009. "Opinion and Generic Question Answering systems: a performance analysis," Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, 157–160.

[4] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, "Lexicon-based methods for sentiment analysis," Computational linguistics 37, no. 2, pp. 267-307, 2011.

[5] S. R. Das and M. Y. Chen, "Yahoo! for Amazon: Sentiment extraction from small talk on the Web," Management Science, vol. 53, pp. 1375–1388, 2007.

[6] S. Morinaga, K. Yamanishi, K. Tateishi, and T. Fukushima, "Mining product reputations on the Web," Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 341–349, 2002.

[7] R. M. Tong, "An operational system for detecting and tracking opinions in on-line discussion." Proceedings of the Workshop on Operational Text Classification (OTC), 2001.

[8] YI, J., NASUKAWA, T., BUNESCU, R. AND NIBLACK, W. 2003. Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques, In Proceedings of the 3rd IEEE International Conference on Data Mining, 427-434.

[9] C. Fellbaum, ed., Wordnet: An Electronic Lexical Database. MIT Press, 1998.

[10] B. Liu, "Sentiment Analysis and Subjectivity", Handbook of Natural Language Processing. Second Edition, (editors: N. Indurkhya and F. J. Damerau), 2010.

[11] Pang Bo, Lee Lillian, and Vaithyanathan Shivakumar, 2002. "Thumbs up? Sentiment classification using machine learning techniques" In Proceedings of EMNLP, pages 79–86.

[12] Janyce Wiebe and Rada Mihalcea, 2006. "Word sense and subjectivity," In Proceedings of COLING/ACL-06. Pages 1065–1072.

[13] Esuli Andrea and Sebastiani Fabrizio, 2006. SentiWordNet:" A publicly available lexical resource for opinion mining," In Proceedings iLREC.

[14] Wilson Theresa, Wiebe Janyce and Hoffmann Paul, 2005. "Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis," In Proceedings of HLT/EMNLP 2005, Vancouver, Canada.

[15] Carlo Strapparava and Alessandro Valitutti, 2004. "WordNet-Affect: an affective extension of WordNet," In Proceedings of LREC 2004, pages 1083 – 1086, Lisbon, May.

[16] Kimberly Voll and Maite Taboada., 2007". Not All Words are Created Equal: Extracting
Semantic Orientation as a Function of Adjective elevanc,” In Proceedings of the 20th Australian Joint Conference on Artificial Intelligence. pages. 337-346.

[17] Amitava Das and Sivaji Bandyopadhyay, 2010. "Towards The Global SentiWordNet," In the Workshop on Model and Measurement of Meaning (M3), PACLIC 24, November 4, Sendai, Japan.

[18] Elhawary, M., and Elfeky, M. (2010). “Mining Arabic Business Reviews.” IEEE International Conference on Data Mining Workshops

[19] M. Elarnaoty, S. AbdelRahman, and A. Fahmy. A Machine Learning Approach For Opinion Holder Extraction Arabic Language. CoRR, abs/1206.1011, 2012.

[20] Muhammad Abdul-Mageed, Mona Diab, 2012. Toward building a large-scale Arabic sentiment lexicon, Proceedings of the 6th International Global WordNet Conference.

[21] M. Abdul-Mageed, M. Korayem, and A. Youssef Agha. “Yes we can?”: Subjectivity annotation and tagging for the health domain. In Proceedings of the International Confrence Recent Advances in Natural Language Processing RANLP, Hissar, Bulgaria, 2011.

[22] Samhaa R. El-Beltagym, Ahmed Ali, 2013. Open issues in the sentiment analysis of Arabic social media: a case study, Proceedings of 9th International Conference on Innovations in Information Technology (IIT), pp. 215–220.

[23] Mahyoub, F. H., Siddiqui, M. A., & Dahab, M. Y. (2014). Building an Arabic Sentiment Lexicon Using Semi-Supervised Learning. Journal of King Saud University-Computer and Information Sciences.

[24] Vasileios Hatzivassiloglou and Janyce M. Wiebe, 2000. ”Effects of adjective orientation and gradability on sentence subjectivity," in Proceedings of the International Conference on Computational Linguistics (COLING).

[25] Janyce Wiebe and Theresa Wilson, 2002. "Learning to disambiguate potentially subjective expressions," in Proceedings of the Conference on Natural Language Learning (CoNLL), pp. 112–118.

[26] Hong Yu and Vasileios Hatzivassiloglou, 2003. "Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences,” in Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

[27] Ellen Riloff and Janyce Wiebe, 2003. "Learning extraction patterns for subjective expressions," in Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

[28] Pang, B., and Lee, L., 2004. "A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts," in Proceedings of the Association for Computational Linguistics (ACL), pp. 271–278.

[29] Kim, S.M., and Hovy, E., 2005. "Automatic detection of opinion bearing words and sentences, "in Companion Volume to the Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP).

[30] Kaji N., and Kitsuregawa, M., 2006. "Automatic construction of polari-tagged corpus from HTML documents," in Proceedings of the COLING/ACL Main Conference Poster Sessions.
[31] Wilson, T., Wiebe, J., and Hwa, R., 2006. "Just how mad are you? Finding strong and weak opinion clauses," in Proceedings of AAAI, pp. 761–769, 2004. (Extended version in Computational Intelligence, vol. 22, no. 2, pp. 73–99.

[32] Breck, E., Choi, Y., and Cardie, C., 2007. "Identifying expressions of opinion in context," in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India.

[33] Janey Wiebe and Ellen Riloff, 2005. "Creating Subjective and Objective Sentence Classifiers from Unannotated Texts," In Proceeding of CICLing-05, International Conference on Intelligent Text Processing and Computational Linguistics, pages 486–497, Mexico City, Mexico.

[34] Riloff, E., and Wiebe, J., and Wilson, T., 2003. "Learning subjective nouns using extraction pattern bootstrapping," in Proceedings of the Conference on Natural Language Learning (CoNLL), pp. 25–32.

[35] Wiebe, J., Wilson, T., Bruce, R., Bell, M., and Martin, M., 2004. "Learning subjective language," Computational Linguistics, vol. 30, pp. 277–308.

[36] M. Abdul-Mageed and M. T. Diab. Subjectivity and sentiment annotation of modern standard arabic newswire. In Proceedings of the 5th Linguistic Annotation Workshop, LAW V ’11, pages 110–118, 2011.

[37] M.Attia, and M.Rashwan (2004). “A Large Scale Arabic POS Tagger Based on a Compact Arabic POS Tag Set and Application on the Statistical Inference of Syntactic Diacritics of Arabic Text Words”, NEMLAR.

[38] M.Attia, M.Rashwan, A.Ragheb, M.A.Al-Basoumy, and S.Abdou, 2008."A Compact Arabic Lexical Semantics Language Resource Based on the Theory of Semantic Fields ," Proceedings of the 6th international conference on Advances in Natural Language Processing.

[39] Peter D. Turney, Michael L. Littman, 2002. Unsupervised learning of semantic orientation from a hundred-billion-word corpus, Technical Report EGB-1094, National Research Council Canada.

[40] Hanaa B. Mobarz, , Mohsen Rashwan, and Samir AbdelRahman, 2011, "Generating lexical Resources for Opinion Mining in Arabic language automatically," The Eleventh Conference on Language Engineering ESOLEC', Cairo-Egypt, http://esole-eg.org/index.php/en/conferences, Sept.

[41] Cerini, S., Compagnoni, V., Demontis, A., Formentelli, M., and Gandini, G., 2007. Language resources and linguistic theory: Typology, second language acquisition, English linguistics (Forthcoming), chapter Micro-WNOp: "A gold standard for the evaluation of automatically compiled lexical resources for opinion mining," Franco Angeli Editore, Milano, IT.

[42] J. Wiebe and E. Riloff, 2005. "Creating Subjective and Objective Sentence Classifiers from Unannotated Texts," In Proceeding of CICLing-05, International Conference on Intelligent Text Processing and Computational Linguistics, pages 486–497, Mexico City, Mexico.

[43] Samir AbdelRahman, Mohamed Elarnaoty, Marwa Magdy and Aly Fahmy, 2010. "Integrated Machine Learning Techniques for Arabic Named Entity Recognition, "IJCSI International Journal of Computer Science, pp. 1694-0784.
[44] Samir AbdelRahman, Hanaa B. Mobarz, Mohsen Rashwan, and Ibrahim Farg, 2014, "Arabic Phrase-Level Contextual Polarity Recognition to Enhance Sentiment Arabic Lexical Semantic Database Generation," IJACSC International Journal of Advanced Research in Artificial Intelligence, Vol 5, No.10.