Biological control of white grubs (*Lepidiota stigma* L; Coleoptera; Scarabaeidae) with entomopathogenic nematodes and fungus *Metharizium anisopliae* (Metsch)

Wagiyana*, B Habriantono and F K Alfarisy

Department of Plant Protection, Faculty of Agriculture, University of Jember
*E-mail: wagiyana.faperta@unej.ac.id

Abstract. Biological Control Agents (BCA) Entomopathogenic nematodes (*EPn*) *Heterorhabditis* spp. and fungi *Metharizium anisopliae* have been known to control the major pests of sugarcane and cassava, namely the white grub larvae *Lepidiota stigma* L. This study was conducted to test the effectiveness of biological control agents for controlling three species of pests: *L. stigma*, *Galleria melonella*, and *Tenebrio molitor*. We tracked larval mortality for 24, 48, and 72 hours after the initial inoculation. Similarly, organic fertilizer mixed with the fungus *M. anisopliae* (in a 25-L pot) was tested on the larvae. The results showed that entomopathogenic nematodes were effective in killing 100% of *L. stigma* larvae pests, whereas *M. anisopliae* was only 10% effective. When organic fertilizer was mixed with both biological control agents types (nematode and fungi), mortality of the three larvae species reached 100% at a nematode concentration of 10 IJ-1000 mlL. In contrast, *M. anisopliae* only caused 70% mortality at a concentration of 107 spores-L after 72 hours of inoculation. It was difficult to collect white grub larvae of *L. stigma* from the field. From May to June, the larvae were present in the ground at a depth of more than one meter in the soil and therefore it was hard to dig them out.

1. **Introduction**

The demand for cassava in Indonesia has increased every year in response to the demand for its industrially-produced food products, such as tapioca, modified cassava flour, artificial rice, and vegetable oil [1-3]. The main obstacle to the cultivation of sugarcane and cassava is soil fertility i.e., both crops are often cultivated on marginal land where the nutrient very low and so growth is suboptimal [4]. In both cases, most farmers attempt to improve soil fertility using animal manure, which tends to decompose in adequately.

White grubs larvae (Scarabaeidae: Coleoptera), such as *Lepidiota stigma*, *Anomala viridis*, and *Hollotrichia halleri*, are crop pests that commonly attack the plants [5, 6]. These three pest species are so prolific that cassava plants require control measures to prevent crop failure [7]. Presently, the fungus *Metharizium anisopliae* is used as a biological control agent (BCA). This fungus is applied to the soil at the beginning of the rainy season where sugarcane is cultivated [8, 6]. In the present study, we examine the relative effectiveness of alternative, biological control methods that use either entomopathogenic nematodes (*EPn*) in the genus *Heterorhabditis* spp. or the fungus *M. anisopliae*, both of which we mix with organic fertilizer before application to our experimental plants.
2. Material and Methods

EPn used as BCAs were bred en masse and in vitro using the Bedding method described by Chaerani [9], whereas the fungus pathogen of *M. anisopliae* was used as a replacement feed. The BCAs were also formulated with organic fertilizer so that the resulting treatment could be applied to cassava as a combined biopesticide and biofertilizer. The first experiment was a pathogenicity test using EPn (*Heterorhabditis* spp.) and pathogenic fungus on the larvae of *L. stigma*, *Galleria melonella*, and *Tenebrio molitor* (n= 20 insects). The EPn larvae were placed in a petridish under which filter paper was applied. Then, each larva was dropped in a BCA solution with micropipette according to the tested treatment.

We used a completely randomized design (CRD) approach with six treatments (and three replicates) of varying BCA concentration. EPn treatment concentrations were 10^3, 10^4, 10^5, 10^6, and 100 Infective Juveniles (IJ)/100 ml; the fungus pathogen treatment concentrations were 107, 106, 10^5, 10^4, and 10^3 spores/L. For all treatments, we recorded larval mortality after 24 h, 48 h, and 72 h of inoculation. Our results were analyzed using variant analysis. Then, we applied the Duncan test at 5% level of significance. If a control died, we corrected for that using the formula of Abbot [10].

The second experiment was conducted in a 25-L pot filled with organic fertilizer, Pen, or fungi of *M. anisopliae* and then inoculated with 20 *L. stigma* third instar larvae. Data were collected on *L. stigma* mortality after 4 and 20 d of inoculation. Larvae mortality observations on cassava plants were recorded for five BCA treatments: (A) 10^6 IJ/L applied via spray, (B) 10^7 IJ/L applied via watering, (C) 10^8I/g applied with organic fertilizer, (D) *M. anisopliae* fungus added at 10^9 spores/L applied via spray, and (E) *M. anisopliae* fungus applied at 10^3 spores/200 g applied with organic fertilizer. Observations were recorded to determine the intensity of *L. stigma* damage on cassava within extensive $8 	imes 10^2$ m plots of each treatment. All plant samples were acquired diagonally across each plot, from at least 10 samples/plot. For each sample, we recorded symptoms of plant infection, including leaf wilt, leaf yellowing, drying, and mortality.

3. Results and Discussion

The Entomopathogenic nematodes *Heterorhabditis* spp. showed that 100% mortality occurred after 48 h when a concentration of 10^7 IJ/100 ml was applied. In contrast, when using *M. anisopliae* fungi as a BCA, mortality was very low (10%) after 48 h. This was because it took a long time (at least 7 d) for the larvae to die after symptoms occurred (Table 1). Overall, the higher the concentration of Biological control agents (entomopathogenic nematodes or fungus) applied, higher was the larval mortality. Statistically, the 10^6 IJ/200 ml and 10^7IJ/100 ml treatments differed significantly from the other treatments. This could have been because our application regime of Entomopathogenic nematodes followed technical advice that recommended a dosage of 10^7I/10 ml over a 500 m² area.

Concentration	% Mortality of	% Mortality of				
IJ/100 ml	larval pests	of larval pests				
	1 to EPn	to *M. anisopliae*				
	Gm	Tm	Ls	Gm	Tm	Ls
10^3	10	10	0	0	0	0
10^4	30	40	60	0	0	0
10^5	70	70	80	0	0	0
10^6	90	100	100	10	10	10
10^7	100	100	100	10	10	10
10^8 (control)	0	0	0	0	0	0

1Larval pests: Gm (*Galleria melonella*), Tm (*Tenebrio molitor*), and Ls (*Lepidiota stigma*)
For the EPn (Heterorhabditis spp.), the lethal concentration for 50% mortality (LC\textsubscript{50}) for T. molitor occurred at 8.7 \times 10^4 IJ/100 ml (Y=0.325x+3.393), while the G. melonella Lethal Time for 50% mortality (LT\textsubscript{50}) was 35 h.

Our pot experiments showed that the pathogenicity of EPn (applied at 10^6 IJ/L and watered with organic fertilizer) showed the highest result that could cause >80% mortality (Table 2).

Table 2. Effectiveness of entomopathogenic nematodes in organic fertilizer on mortality of the larval pests Galleria melonella (Gm), Tenebrio molitor (Tm), and Lepidiota stigma (Ls) after 72 h of inoculation

Concentration	Larval mortality1 (%) by species2		
	Gm	Tm	Ls
10^3	70 b	80 ab	71 bc
10^4	75 b	75 b	70 bc
10^5	90 a	80 ab	86 b
10^6	80 ab	90 a	100 a
10^7	100 a	100 a	100 a
10^0 (control)	0	0	0

1 % Mortality with the same letters (in the same column) did not significantly differ from one another, according to the DMRT test at 5% level of significance.

Our application of biological control agents as on cassava showed that the intensity of L. stigma damage to plants (30–90 d after planting) was lower when IJ were applied to plants by watering than when they were applied by spraying (Table 4). This probably occurred because biological control agents more effectively controls larval pests of L. stigma in the field. In addition, the application of biological control agents as via watering probably is more viable and higher in biological control agents [10]. The application of entomopathogenic nematodes with soil organic fertilizer probably permitted Entomopathogenic nematodes to persist and remain infective in the soil [11]. We expect that M. anisopliae fungus can be used effectively in rainy seasons because wet, humid conditions can allow fungus to proliferate [6, 8]. However, our insect mortality experiment was conducted in a laboratory by wetting our experimental media.

Table 3. Effectiveness of Metarhizium anisopliae (Ma) fungus (mixed into organic fertilizer) on mortality of the larval pests Galleria melonella (Gm), Tenebrio molitor (Tm), and Lepidiota stigma (Ls) after 72 h of inoculation

Concentration of Ma (spores/L)	Larval mortality1 (%) by species		
	Gm	Tm	Ls
10^3	40 cb	50 ab	60 ab
10^4	50 b	55 b	65 ab
10^5	60 ab	60 ab	70 a
10^6	70 a	60 ab	75 a
10^7	70 a	70 a	70 a
10^0 (control)	0	0	0
Table 4. Damage intensity of *Lepidiota stigma* on cassava plants after 30–90 d

Treatment	Intensity of plant damage (%) by age of plant after planting	Mean (%)²					
	30	45	60	75	85	90	
A	20	20	10	10	5	0	10.8 d
B	10	10	10	10	5	0	7.5 e
C	20	30	20	20	5	0	15.8 b
D	30	30	20	20	10	10	20.0 a
E	10	30	10	10	10	0	12.5 c
F	20	30	10	10	10	10	15.0 b

¹Treatments: (A) EPn application of 10⁶ IJ/l by spraying, (B) EPn application of 10⁶ IJ/l by watering, (C) EPn application with organic fertilizer at 100 IJ/g, (D) *M. anisopliae* application at 10⁹ spores/L by spraying, (E) *M. anisopliae* application at 10⁹ spores/L by watering, and (F) *M. anisopliae* application with organic fertilizer at 10⁹ spores/200 g.

²% Mean intensity of damage with the same letters (in the same column) did not significantly differ, according to the Duncan Multiple Range Test at 5% level of significance.

4. Conclusion

We found that entomopathogenic nematodes causes 100% mortality to larval pests of cassava when applied at a concentration of 10⁷ spores/100 ml of IJ, whereas the biological control agents fungus *M. anisopliae* causes only 10% mortality when applied at a 10⁷ spores/ml concentration. Both types of biological control agents in organic fertilizer killed the three species of pest larvae, eliciting 100% mortality at a 10⁷ IJ/100 ml concentration, whereas 10⁷ spores/L of *M. anisopliae* only elicited 70% mortality after 72 h of inoculation. Mortality caused by *M. anisopliae* fungus was mainly due to epizootic conditions occurring in the population after more than 7 days of inoculation. The intensity of cassava damage caused by the white grub larvae pest *L. stigma* following application of either biological control agents (Entomopathogenic nematodes or *M. anisopliae*) was 0% to 5% at 90 d after planting. Thus, both provide protection to cassava.

5. References

[1] Anonymous 2014 *Roadmap Research Enhancement of Competitiveness of Industry Based on Cassava* P2IS University of Jember Research Institute

[2] Subagio A 2014 *Strategic research opportunity based on cassava to achieve university of Jember as cassava research center in Indonesia* Workshop of P2IS Research Institute of Jember University

[3] Ristono 2008 *Prospect of development of elephant cassava in order of community empowerment in border area of RI - Malaysia Lokaraya Paper BPH Migas - Oodam VI Mulawarman - Pempro Kaltim*

[4] Kusumastuti CT 2007 *Cassava as one of the sources of biofuels. Agronomy* Special Paper Department of Agricultural Science UGM Yogyakarta

[5] Wagiyana, Sulistianto D and Waluyo J 2013 Mass production and formulation bioinsektisida entomopathogenic nematodes *Heterorhabditis* local isolates sppo biological pest control agents as coffee fruit powders *Hypothenemus hampeii* (Ferr.) at the coffee plant people Superior Research Reports of Universities University of Jember Research Institute. 44p.

[6] Triharjaka 2014 *Biology Lepidiota stigma and control them* *Metarhizium anisopliae* Dissertation of Doctoral Program (S3) Postgraduate Program of Gadjah Mada University Yogyakarta

[7] Kalshoven LGE 1981 *Pest of crops in Indonesia* PT. Ichtiar Baru- van Hoove Jakarta translated by van der Laan
[8] Suharto, Wagiyana and Haryanto S 2009 Utilization *Metarhizium anisopliae* fungus as pest control *Thrips parvispinus* in effort subtraction use synthetic insecticides. Competitive Grant Research Report, UNEJ Research Institute. 39 p

[9] Chaerani M, Vinnegan MF, Downes MJ and Griffin CT 1995 Mass breeding of nematode insect pathogenic inseminations of steinernema and in-vitro heterorhabitis isolates in Indonesia for biological control of banana pests. Scientific Poster In The Week Of Science And Technology. 1993. Puspitek serpong. 28 -29 Nopbr. 11p.

[10] Ebyanto A 2008 *Viability entomopathogenic Nematodes Styeinernema carpocapsae on organic fertilizer sharing* Thesis Faculty of Agriculture University of Jember

[11] Abbot WS 1925 Method of computing the effectiveness of an insecticide *J. Econ. Entomol.* 18 265

[12] Wiratmoko H 2008 *The persistence of entomopathogenic nematodes Steinernema carpocapsae Weiser On Humic Compounds* Faculty Thesis Agriculture University of Jember

Acknowledgements

The authors would like to thank the Ministry of Research Technology and Higher Education, particularly the Director of Research and Human Resource Empowerment in the scheme of research procurement Research Applied Superior University of 2017. In addition, we also thank the Institute of Research and Community Service, University of Jember, and the laboratory technicians who have assisted with this research.