Fourier series with the continuous primitive integral

Erik Talvila

University of the Fraser Valley
Chilliwack, British Columbia, Canada

November 19, 2010
24th Auburn Mini-conference in Harmonic Analysis
Outline

1. The Alexiewicz norm
2. Distributions
3. The continuous primitive integral
4. Fourier coefficients
5. Convolution
6. Convergence
7. References
Alexiewicz norm

\[f : [a, b] \rightarrow \mathbb{R} \]

Lebesgue integral

\[f \in L^1 \iff \text{there is } F \in AC \text{ such that } F'(x) = f(x) \text{ a.e.} \]

Henstock–Kurzweil integral

\[f \in HK \iff \text{there is } F \in ACG^* \text{ such that } F'(x) = f(x) \text{ a.e.} \]

\[C^1 \subsetneq AC \subsetneq ACG^* \subsetneq C \]

Alexiewicz norm

\[\| f \| = \sup_{\alpha < \beta} \left| \int_\alpha^\beta f \right| = \sup_{\alpha < \beta} |F(\alpha) - F(\beta)| \]

- \(L^1, HK \) are incomplete normed linear spaces with the Alexiewicz norm
- for completion use \(C([a, b]) \) as primitives
Test functions and distributions

Test functions
\(\mathcal{D}(\mathbb{R}) = C_c^\infty(\mathbb{R}) \) = smooth functions with compact support

Convergence \(\phi_n \to 0 \)
There is compact \(K \) such that \(\text{supp}(\phi_n) \subset K \) for all \(n \geq 1 \).
For each \(m \geq 0 \), \(\phi_n^{(m)} \to 0 \) uniformly on \(K \) as \(n \to \infty \).

Distributions
\(\mathcal{D}'(\mathbb{R}) = \) dual space of \(\mathcal{D}(\mathbb{R}) \)
If \(T \in \mathcal{D}'(\mathbb{R}) \) then \(T : \mathcal{D}(\mathbb{R}) \to \mathbb{R} \). \(\langle T, \phi \rangle \in \mathbb{R} \) for \(\phi \in \mathcal{D}(\mathbb{R}) \)

Continuous linear functionals on \(\mathcal{D}(\mathbb{R}) \)
\((\forall \phi, \psi \in \mathcal{D}(\mathbb{R})) (\forall a, b \in \mathbb{R}) \langle T, a\phi + b\psi \rangle = a\langle T, \phi \rangle + b\langle T, \psi \rangle \)
\(\phi_n \to 0 \) in \(\mathcal{D}(\mathbb{R}) \) \(\Rightarrow \langle T, \phi_n \rangle \to 0 \) in \(\mathbb{R} \)
Distributions

\[f \in L^p_{loc}(1 \leq p \leq \infty) \Rightarrow \langle T_f, \phi \rangle = \int_{-\infty}^{\infty} f \phi \text{ is a distribution} \]

Dirac distribution \[\langle \delta, \phi \rangle = \phi(0) \]

Derivative \[\langle T', \phi \rangle = -\langle T, \phi' \rangle; \quad T \in D'(\mathbb{R}), \ \phi \in D(\mathbb{R}) \]

Composition with smooth bijection \[\psi : \mathbb{R} \to \mathbb{R} \]
\[\langle T \circ \psi, \phi \rangle = \left\langle T, \frac{\phi \circ \psi^{-1}}{\psi' \circ \psi^{-1}} \right\rangle \]

Translations \[\langle \tau_x T, \phi \rangle = \langle T, \tau_{-x} \phi \rangle \text{ for } \phi \in D(\mathbb{R}) \text{ where } \tau_x \phi(y) = \phi(y - x). \]

Periodic distributions \[\langle \tau_p T, \phi \rangle = \langle T, \phi \rangle \text{ for some } p > 0 \text{ and all } \phi \in D(\mathbb{R}). \]
Continuous primitive integral

Primitives

\[\mathcal{B}_c(\mathbb{T}) = \{ F \in C(\mathbb{R}) \mid F(-\pi) = 0, \text{ if } y \in [-\pi, \pi) \text{ then } F(x) = F(y) + nF(\pi) \text{ when } x = y + 2n\pi \text{ for } n \in \mathbb{Z} \} \]

If \(x \in \mathbb{R} \) and \(n \in \mathbb{Z} \) then \(F(x + 2n\pi) = F(x) + nF(\pi) \) and \(F(x) = (x - x \mod 2\pi)F(\pi)/(2\pi) + F(x \mod 2\pi) \).

\(\mathcal{B}_c(\mathbb{T}) \) is a Banach space under the uniform norm

\[\|F\|_{\mathbb{T},\infty} = \sup_{|\alpha - \beta| \leq 2\pi} |F(\alpha) - F(\beta)| \]
Continuous primitive integral

\[\mathcal{A}_c(\mathbb{T}) = \{ f \in \mathcal{D}'(\mathbb{R}) \mid f = F' \text{ for some } F \in \mathcal{B}_c(\mathbb{T}) \} \]

\[\int_a^b f = F(b) - F(a); \quad F \in \mathcal{B}_c(\mathbb{T}), \; F' = f \in \mathcal{A}_c(\mathbb{T}) \]

Action of \(f \in \mathcal{A}_c(\mathbb{T}) \) on \(\phi \in \mathcal{D}(\mathbb{R}) \) is given by
\[\langle f, \phi \rangle = \langle F', \phi \rangle = -\langle F, \phi' \rangle = -\int_{-\infty}^{\infty} F(x)\phi'(x) \, dx. \]

Alexiewicz norm of \(f \in \mathcal{A}_c(\mathbb{T}) \)
\[\| f \|_T = \sup_{|I| \leq 2\pi} \left| \int_I f \right| = \max_{|\beta - \alpha| \leq 2\pi} |F(\beta) - F(\alpha)| = \| F \|_{T,\infty} \]

linear isometry
\[\mathcal{A}_c(\mathbb{T}) \leftrightarrow \mathcal{B}_c(\mathbb{T}) \quad f \leftrightarrow F \]
Integration by parts

Bounded variation
If \(g : \mathbb{R} \rightarrow \mathbb{R} \) is periodic then its variation over \(\mathbb{T} \) is
\[
Vg = \sup \sum |g(s_i) - g(t_i)| \quad \text{where the supremum is taken over all disjoint intervals } \{(s_i, t_i)\} \subset (-\pi, \pi).
\]

Write \(\mathcal{BV}(\mathbb{T}) \) for the periodic functions with finite variation. This is a Banach space under the norm \(\|g\|_{\mathcal{BV}} = \|g\|_{\infty} + Vg \).

Let \(f \in \mathcal{A}_c(\mathbb{T}) \) and \(g \in \mathcal{BV}(\mathbb{T}) \) then
\[
\int_{-\pi}^{\pi} fg = F(\pi)g(\pi) - \int_{-\pi}^{\pi} F(t) \, dg(t)
\]

Hölder inequality
\[
\left| \int_{-\pi}^{\pi} fg \right| \leq \|f\|_{\mathbb{T}} \|g\|_{\mathcal{BV}}
\]
Fourier coefficients

\[\hat{f}(n) = \int_{-\pi}^{\pi} f(t)e^{-int} dt = (-1)^n F(\pi) + in \int_{-\pi}^{\pi} F(t)e^{-int} dt \]

\[|\hat{f}(n)| \leq |F(\pi)| + |n| \int_{-\pi}^{\pi} |F| \leq 4\sqrt{2} |n| \|f\|_T \]

Riemann–Lebesgue lemma

\(\hat{f}(n) = o(n) \) as |n| \(\to \infty \)

Theorem

For \(j \in \mathbb{N} \), let \(f, f_j \in A_c(\mathbb{T}) \) such that \(\|f_j - f\|_T \to 0 \) as \(j \to \infty \). Then for each \(n \in \mathbb{Z} \) we have \(\hat{f}_j(n) \to \hat{f}(n) \) as \(j \to \infty \). The convergence need not be uniform in \(n \in \mathbb{Z} \).
Convolution

\[f \ast g(x) = \int_{-\pi}^{\pi} f(x - t)g(t) \, dt; \quad f \in \mathcal{A}_c(\mathbb{T}) \text{ and } g \in \mathcal{BV}(\mathbb{T}) \]

Theorem

Let \(f \in \mathcal{A}_c(\mathbb{T}) \) and let \(g \in \mathcal{BV}(\mathbb{T}) \).

(a) \(f \ast g \in C(\mathbb{T}) \)
(b) \(f \ast g = g \ast f \)
(c) \(\|f \ast g\|_\infty \leq \|f\|_T \|g\|_{\mathcal{BV}} \)
(d) For \(y \in \mathbb{R} \) we have \(\tau_y(f \ast g) = (\tau_y f) \ast g = f \ast (\tau_y g) \).
(e) If \(h \in L^1(\mathbb{T}) \) then \(f \ast (g \ast h) = (f \ast g) \ast h \in C(\mathbb{T}) \).
(f) \(\hat{f} \ast \hat{g}(n) = \hat{f}(n)\hat{g}(n) \) for all \(n \in \mathbb{Z} \).
Summability kernels

Theorem

Let $f \in A_c(\mathbb{T})$. For each $n \in \mathbb{N}$, let $k_n \in BV(\mathbb{T})$ such that $\int_{-\pi}^{\pi} k_n = 1$ and $\lim_{n \to \infty} \int_{|s|>\delta} |k_n(s)| \, ds = 0$ for each $0 < \delta \leq \pi$. Suppose there is $M \in \mathbb{R}$ so that $\|k_n\|_1 \leq M$ for all $n \in \mathbb{N}$. Then $\|f \ast k_n - f\|_{\mathbb{T}} \to 0$ as $n \to \infty$.

Fejér kernel

$$k_n(t) = \frac{1}{2\pi} \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n + 1}\right) e^{ikt} = \frac{1}{2\pi(n+1)} \left\{ \frac{\sin[(n+1)t/2]}{\sin(t/2)} \right\}^2$$
Convergence

Lemma

Let $f \in \mathcal{A}_c(\mathbb{T})$. Let $e_n(x) = e^{-inx}$. Then $f \ast e_n(x) = \hat{f}(n)e^{inx}$.

Let $g(t) = \sum_{-n}^{n} a_k e_k(t)$ for a sequence $\{a_k\} \subset \mathbb{R}$.

Then $f \ast g(x) = \sum_{-n}^{n} a_k \hat{f}(k)e^{ikx}$.

Theorem

The trigonometric polynomials are dense in $\mathcal{A}_c(\mathbb{T})$.

For $f \in \mathcal{A}_c(\mathbb{T})$

$$f \ast k_n(t) = \frac{1}{2\pi} \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1}\right) \hat{f}(k)e^{ikt}.$$

And $\lim_{n \to \infty} \|f \ast k_n - f\|_\mathbb{T} = 0$.

If $\hat{f}(n) = 0$ for all $n \in \mathbb{Z}$ then $f = 0$.

Dirichlet kernel

\[D_n(t) = \sum_{k=-n}^{n} e^{ikt} = \frac{\sin[(n + 1/2)t]}{\sin(t/2)} \]

This is not a summability kernel
\[\|D_n\|_1 \sim \left(\frac{4}{\pi^2}\right) \log(n) \quad \text{as } n \to \infty. \]

Theorem

Let \(f \in L^1(\mathbb{T}) \). Then \(\|f \ast D_n - f\|_\mathbb{T} \to 0 \) as \(n \to \infty \).

It is known that \(\|f \ast D_n - f\|_1 \) need not converge to 0.
E.T., *Fourier series with the continuous primitive integral* (preprint)

E.T., *Convolutions with the continuous primitive integral*, Abstract and Applied Analysis (2009) Art. ID 307404, 18 pp.

E.T., *The distributional Denjoy integral*, Real Analysis Exchange **33** (2008), no. 1, 51–82.