Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute Listeria Monocytogenes

Li-Hong Chen
University of Wyoming

Volkan K. Köseoğlu
University of Wyoming

Zehra T. Güvener
University of Wyoming

Tanya Myers-Morales
University of Kentucky, tmyer0@uky.edu

Joseph M. Reed
University of Wyoming

Follow this and additional works at: https://uknowledge.uky.edu/microbio_facpub

Part of the Medical Immunology Commons, Medical Microbiology Commons, and the Molecular Genetics Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
Chen, Li-Hong; Köseoğlu, Volkan K.; Güvener, Zehra T.; Myers-Morales, Tanya; Reed, Joseph M.; D'Orazio, Sarah E. F.; Miller, Kurt W.; and Gomelsky, Mark, "Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute Listeria Monocytogenes" (2014). Microbiology, Immunology, and Molecular Genetics Faculty Publications. 22.
https://uknowledge.uky.edu/microbio_facpub/22

This Article is brought to you for free and open access by the Microbiology, Immunology, and Molecular Genetics at UKnowledge. It has been accepted for inclusion in Microbiology, Immunology, and Molecular Genetics Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute Listeria Monocytogenes

Digital Object Identifier (DOI)
http://dx.doi.org/10.1371/journal.ppat.1004301

Notes/Citation Information
Published in PLOS Pathogens, v. 10, issue. 8, e1004301.

© 2014 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Authors
Li-Hong Chen, Volkan K. Köseoğlu, Zehra T. Güvener, Tanya Myers-Morales, Joseph M. Reed, Sarah E. F. D’Orazio, Kurt W. Miller, and Mark Gomelsky

This article is available at UKnowledge: https://uknowledge.uky.edu/microbio_facpub/22
Cyclic di-GMP-Dependent Signaling Pathways in the Pathogenic Firmicute Listeria monocytogenes

Li-Hong Chen1a, Volkan K. Köseoğlu1, Zehra T. Güvener1b, Tanya Myers-Morales2, Joseph M. Reed1nc, Sarah E. F. D’Orazio2, Kurt W. Miller1, Mark Gomelsky1a

1 Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America, 2 Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America

Abstract
We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (Lmo527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence.

Introduction
Cyclic dimeric GMP (c-di-GMP) [1] is one of the most common bacterial second messengers. Over the last ten years our understanding of c-di-GMP-mediated signal transduction pathways has rapidly expanded (reviewed in [2–6]). However, this expansion has been dominated by studies of Proteobacteria, and to a lesser extent Actinobacteria and Spirochetes, while studies of c-di-GMP signaling in Firmicutes have lagged behind. In the Proteobacteria, elevated levels of intracellular c-di-GMP are associated with inhibition of motility and increased synthesis of biofilm components, e.g. exopolysaccharides (EPS), pili and/or surface adhesins. In pathogens that propagate extracellularly, elevated c-di-GMP levels have been found generally detrimental for acute infections (reviewed in [2,5–7]), although individual components of c-di-GMP signaling networks may play different roles during various stages of infection [8,9]. In contrast, during chronic infections, c-di-GMP-induced biofilms greatly increase pathogen survival in vivo [10–12]. In intracellular proteobacterial pathogens, c-di-GMP signaling pathways are required for full-scale virulence in those species that form biofilm-like intracellular structures [13–15], but appear to be detrimental, at least in some species, that do not form such structures [16].

In this study, we used the foodborne pathogen Listeria monocytogenes [17] as a model to gain insight into c-di-GMP-based regulation in Firmicutes in general. L. monocytogenes is widespread in the environment. It has been isolated from soil, silage, groundwater, sewage and vegetation and actively grows at a broad range of temperatures (from 0 to 44°C), oxygen levels, pH (from 4.4 to 9.6), and salt concentrations (up to 10% w/v NaCl),
Author Summary

Listeria monocytogenes is ubiquitously present in the environment, highly adaptable and tolerant to various stresses. *L. monocytogenes* is also a foodborne pathogen associated with the largest foodborne outbreaks in recent US history. Signaling pathways involving the second messenger c-di-GMP play important roles in increased stress survival of proteobacteria and mycobacteria, yet roles of c-di-GMP signaling pathways in *L. monocytogenes* have remained unexplored. Here, we identified and systematically characterized functions of the proteins involved in c-di-GMP synthesis, degradation and sensing. We show that elevated c-di-GMP levels in *L. monocytogenes* result in synthesis of a previously unknown exopolysaccharide that promotes cell aggregation, inhibits motility in semi-solid media, and importantly, enhances bacterial tolerance to commonly used disinfectants as well as desiccation. These properties of the exopolysaccharide may increase listerial survival in food processing plants as well as on produce during transportation and storage. Elevated c-di-GMP levels also grossly diminish listerial invasiveness in enterocytes in vitro, and impair bacterial accumulation in selected mouse organs during oral infection.

and is capable of utilizing a variety of carbohydrates as well as other organic molecules as carbon sources. Listeriosis is a relatively infrequent disease but it has the highest mortality rate, ~20%, among foodborne diseases in the developed world. The complications of listeriosis, common in immunocompromised patients, include encephalitis, meningitis, and stillbirths or infection of the central nervous system in newborns [17–20].

Common sources of listerial contamination include unpasteurized milk and milk products, raw meat, and packaged cooked meat products. In plants processing meat and milk products listerial biofilms can persist for years and even decades and cause repetitive contamination of processed foods [21,22]. In recent years, listeriosis caused by contaminated fresh produce has become a significant concern. According to The Centers for Disease Control and Prevention, the 2011 outbreak caused by *Listeria*-contaminated cantaloupes resulted in 33 deaths and was the largest foodborne disease outbreak in US history in almost 90 years [23,24]. Our understanding of how listeria attach and grow on the surfaces of produce is surprisingly poor, and so is our knowledge of the mechanisms ensuring long-term listerial survival. EPS is one of the common components that facilitate bacterial attachment to plant surfaces and increases their tolerance to desiccation and disinfection [25,26], both of which are critical parameters for food safety. However, the ability of *L. monocytogenes* to synthesize EPS has remained controversial [27,28].

In Proteobacteria, EPS synthesis is commonly induced via c-di-GMP signaling pathways, yet studies of such pathways in Firmicutes are just beginning to emerge [29–32]. It is peculiar that distribution of c-di-GMP signaling pathways in Firmicutes is very uneven. Several major genera of pathogenic firmicutes, *Staphylococcus*, *Streptococcus* and *Enterococcus*, lack these altogether. However, staphylococci retain remnants of c-di-GMP signaling enzymes, which are involved in biofilm regulation but are no longer associated with c-di-GMP [33]. On the other extreme of the spectrum are certain clostridial species, e.g. *Clostridium difficile*, that have numerous enzymes involved in c-di-GMP synthesis and hydrolysis [29]. A recent study by Tamayo and colleagues [30] showed that elevated levels of c-di-GMP inhibited motility and induced cell aggregation in *C. difficile*. The c-di-GMP-dependent riboswitches from *C. difficile* expressed in a heterologous host were shown to affect gene expression in a c-di-GMP-dependent manner. One riboswitch is located upstream of the *C. difficile* flagellar biosynthesis operon [34]; the other one is part of the riboswitch-ribozyme system predicted to control adhesion gene expression [35]. Other recent studies [31,32] characterized enzymes involved in c-di-GMP synthesis and degradation in *Bacillus subtilis* and uncovered the role of c-di-GMP in regulating motility and biofilm formation in this species.

Here, we present a genome-wide view of c-di-GMP signaling in *L. monocytogenes*. We used bioinformatics analysis to identify genes involved in c-di-GMP synthesis, degradation and signal transduction, and subsequently applied genetic and biochemical approaches to characterize functions of these genes in EPS synthesis, motility inhibition, tolerance to disinfection and desiccation, invasiveness in mammalian cells, and virulence in a mouse model of listeriosis.

Results

Bioinformatic analysis of the c-di-GMP signaling system in Listeria

C-di-GMP is synthesized by diguanylate cyclases (DGCs), which contain GGDEF domains [36,37], and degraded by c-di-GMP-specific phosphodiesterases (PDEs), which contain either EAL [38–40] or HD-GYP [41] catalytic domains. The currently sequenced strains of *L. monocytogenes*, and the majority of related listerial species encode four GGDEF domain proteins, three EAL domain proteins and no HD-GYP domain proteins [Pfam database [42]] (Fig. 1).

Our sequence analysis predicted that three of the four GGDEF proteins from *L. monocytogenes* EGD-e, Lmo1911 (DgcA), Lmo1912 (DgcB) and Lmo2174 (DgcC), contain conserved residues associated with DGC activity, and therefore they likely possess DGC activities [4,43]. The three predicted DGCs have similar domain architectures with a GGDEF domain preceded by either six or eight transmembrane helices (Fig. 1). This domain architecture suggests that c-di-GMP synthesis is regulated by external signals or signals derived from the cell wall or cytoplasmic membrane. The three proteins share approximately 30% identity to each other over their entire lengths, and may have resulted from ancient gene duplications. The EAL domain proteins in strain EGD-e, Lmo0131 (PdeB), Lmo1914 (PdeC) and Lmo0111 (PdeD), have conserved residues required for c-di-GMP binding and hydrolysis [4,44], and therefore were expected to possess PDE activities (Fig. 1). These putative PDEs contain only single EAL domains suggesting their cytoplasmic localization.

The *dgcA* and *dgcB* genes are codirectional and separated from each other by 20 bp, which indicates that they likely form an operon. The *pdeC* gene appears to belong to the same *dgcA-dgcB-lmo1913-pdeC* (*lmo1911-1914*) operon. Tiling microarray expression data support an operon-like structure of this gene cluster [45]. The intervening gene, *lmo1913*, encodes a protein of unknown function. Based on structural predictions, *L. monocytogenes* belongs to the six-hairpin glycosidase superfamily [46] (Fig. 1). Therefore, DgcA, DgcB and PdeC may represent a signaling module involved in c-di-GMP synthesis and degradation, and this module may be involved in controlling synthesis of an unknown EPS.

The GGDEF domain of the fourth GGDEF protein, Lmo0531, is clearly degenerate. The signature GG/D/E/EF motif in Lmo0531 is **DKDDA**, which should make this protein incapable of c-di-GMP synthesis (Fig. 1). Five amino acids upstream of the signature...
motif is an RxxD motif that represents a part of a c-di-GMP-binding sequence known as an I-site [43,47]. Therefore, we hypothesize that Lmo0531 acts as a c-di-GMP receptor/effector protein similar to the I-site containing degenerate GGDEF domain proteins described earlier [48,49]. It is peculiar that Lmo0531 is the only c-di-GMP receptor that can be predicted based on genome sequence analysis [2].

To test functions of the predicted L. monocytogenes DGC and PDE proteins and a single identifiable c-di-GMP receptor, we cloned and expressed these genes in E. coli indicator strains that respond to changes in intracellular c-di-GMP concentrations in a predictable fashion, and, where necessary, purified proteins to test their activities in vitro.

L. monocytogenes PdeB-D proteins possess c-di-GMP PDE activities

We expressed L. monocytogenes pdeB, pdeC and pdeD in E. coli MG1655 ΔyjH. This mutant lacks a major c-di-GMP PDE, YjH [50,51], and as a result, is impaired in motility in semi-solid agar [52]. We found that expression of any one of the pde genes was sufficient to partially restore swim zones of MG1655 ΔyjH in semi-solid agar (Fig. 2A). These results are consistent with the possibility that all three proteins, PdeB, PdeC, and PdeD, function as c-di-GMP PDEs. However, overexpressed but enzymatically inactive EAL domain proteins that retain the ability to bind (but not to hydrolyze) c-di-GMP also can lower intracellular c-di-GMP concentration thus mimicking the phenotypes of overexpressed PDEs [53].

To resolve the ambiguity regarding the enzymatic activity of the PdeB-D proteins, we purified each protein and tested its ability to hydrolyze c-di-GMP in vitro. The PdeB and PdeD proteins were overexpressed and purified as N-terminal His6-tagged fusions. Since the His6-tagged PdeC fusion proved to be insoluble, PdeC was purified as a fusion to maltose-binding protein (MBP) (Fig. 2B). The ability of purified PdeB, PdeC, or PdeD to hydrolyze c-di-GMP was assessed by measuring the substrate and products of reactions over time using HPLC, as described previously [38]. Fig. 2C shows that all three recombinant proteins possess c-di-GMP PDE activities in vitro.

L. monocytogenes DgcA-C proteins possess DGC activities

The functionality of putative L. monocytogenes DGC proteins was assessed by monitoring swim zone sizes in semi-solid agar. The three dgc genes were cloned into the pBAD/Myc-His vector under the control of an arabinose-inducible promoter. Each of the three dgc genes decreased, to various degrees, the sizes of the swim zones.
PdeD (PdeD::His6), PdeB (PdeB::His6) and PdeC (MBP::PdeC) proteins expressed from a fortuitous promoter at sufficiently high levels to downstream of the T7 promoter from vector pET23a. Although MG1655 does not encode a T7 RNA polymerase gene, the enzymes characterized by us previously, i.e., DGC (Slr1143 from Synechocystis sp. [37]) and PDE (YhjH from E. coli [51]), and assessed their role in swimming motility and EPS production. The construction and characterization of the L. monocytogenes dgcA-C proteins DgcA-C were expressed as C-terminal His6-fusions downstream of the T7 promoter from vector pET23a. Although MG1655 does not encode a T7 RNA polymerase gene, the enzymes characterized by us previously, i.e., DGC (Slr1143 from Synechocystis sp. [37]) and PDE (YhjH from E. coli [51]), and assessed their role in swimming motility and EPS production. The use of heterologous proteins allowed us assess the effects of changing intracellular c-di-GMP levels without undesired changes in protein-protein interactions that may have been occurred if we were to overexpress listerial DGC and PDE enzymes.

L. monocytogenes uses flagella for motility [54]. Expression of Slr1143 blocked swimming of strain EGD-e in semi-solid agar, whereas expression of YhjH had no effect (Fig. 4A top). Expression of Slr1143 also resulted in more pigmented L. monocytogenes colonies on Congo red agar, whereas expression of YhjH had no observable phenotype (Fig. 4B, sectors 10 versus 1 and 9). Later in this work we show that YhjH is expressed and functional as a PDE in L. monocytogenes. Therefore, we interpreted the lack of a phenotype associated with YhjH overexpression as an indication that intracellular c-di-GMP levels in strain EGD-e are already low, and that c-di-GMP does not play a significant role under the conditions used in these assays. Since L. monocytogenes is not known to synthesize pili, and the genome of strain EGD-e has no candidate pili genes, we hypothesized that Congo red staining was indicative of EPS production. An EPS has been suspected in some naturally occurring L. monocytogenes isolates [28]. Further, Tiensuu and colleagues have recently observed Congo red staining rings within L. monocytogenes colonies exposed to dark-light cycles [55], however the nature of the Congo red-binding extracellular polymer was not investigated.

Construction and characterization of the L. monocytogenes dgc and pde mutants

Having identified two phenotypes associated with elevated c-di-GMP levels, we proceeded to inactivate, individually and in combination, the L. monocytogenes pdeB-D genes. Based on the inhibition of swim zones in semi-solid agar by the heterologous DGC, Slr1143, we expected pdeB-D mutations to result in smaller swim zones. However, inactivation of individual pde genes did not significantly affect swim zone sizes (Fig. 4C). Inactivation of pairs of pde genes produced relatively minor decreases in swim zone sizes, while simultaneous deletion of all three pde genes, ApdeB/C/D, produced a mutant severely impaired in swimming in semi-solid agar (Fig. 4C). This phenotype is similar to the phenotype of the wild type EGD-e expressing the heterologous DGC, Slr1143 (Fig. 4A top). These results suggest that the PDEs have at least
partially overlapping functions in degrading intracellular c-di-GMP.

As expected, expression of Slr1143 in the triple ApdeB/C/D mutant did not affect the already inhibited motility any further (Fig. 4A bottom). However, expression of YhjH in this mutant fully restored the swim zone to the size of the wild-type strain, thus showing that YhjH is expressed and functional in L. monocytogenes (Fig. 4A bottom), and that motility inhibition in semi-solid agar was due to elevated c-di-GMP levels in the triple ApdeB/C/D mutant.

We proceeded to test the effects of L. monocytogenes pde mutations on Congo red binding. The triple ApdeB/C/D mutant showed significant accumulation of Congo red (Fig. 4B, sector 2 versus 1), similar to the wild type strain expressing Slr1143 (Fig. 4B, sector 10). Expression of YhjH, but not Slr1143, in the triple ApdeB/C/D mutant, inhibited Congo red accumulation (Fig. 4B, sector 6 versus 5 or 7). Individual pde mutants did not affect Congo red staining, while among double mutants, the pdeB/C mutant showed some staining (Figure S1).

In addition to Congo red binding, the colonies of the ApdeB/C/D mutant were found to have rough edges, compared to smooth-edged colonies of the wild-type strain (Fig. 4D). The observed changes in colony morphology in the ApdeB/C/D mutant were not as pronounced as the wrinkled or rough colony morphologies reported in the proteobacterial species overexpressing EPS [56–59], however, when combined with enhanced Congo red binding, these changes are indicative of EPS production.

Inactivation of the dgc genes, individually or in combination, resulted in no observable phenotypes, just like the expression of YhjH in the wild type strain produced no phenotype. We therefore conclude that c-di-GMP plays little, if any role, in strain EGD-e grown under these laboratory conditions.

Bioinformatics-based identification of the putative EPS biosynthesis pssA-E operon in L. monocytogenes

We searched the L. monocytogenes genome for EPS biosynthesis genes potentially responsible for c-di-GMP-induced Congo red binding. The lmo0527-0531 operon, designated here pssA-E (polysaccharide synthesis) [Fig. 1], emerged as the prime candidate for this role based on the following reasoning. The last gene of the operon, pssE (lmo0531), encodes a degenerate GGDEF domain protein, hypothesized to function as a c-di-GMP receptor (Fig. 1).

If this assumption is correct, PssE may be involved in a c-di-GMP-dependent activation of EPS synthesis, similar to activation of cellulose [1,51], alginate [60] and Pel EPS synthesis [48] in Proteobacteria. An additional reason to implicate the pssA-E cluster in EPS biosynthesis was based on the presence of the putative glycosidase gene, lmo1913, in the dgcA-dgcB-lmo1913-pdeC operon that encodes enzymes for synthesis and hydrolysis of c-di-GMP (Fig. 1). Glycosidases counterbalance glycosyltransferases and are integral components of EPS synthesis and degradation apparatus.

The pssA-E operon appears to encode enzymes associated with biosynthesis of poly-3,1,6-6-acetyl-D-glucosamine (PNAG) or poly-3,1,4-D-glucopyranose (cellulose), either of which is capable of binding Congo red, or yet another EPS. The key player in this operon is PssC (Lmo0529), which is predicted to function as type 2 glycosyltransferase responsible for the polymerization reaction. PssC shows the highest (≈30%) identity (over an ≈300 amino acid region) to the N-acetylglycosyltransferases involved in PNAG synthesis from S. aureus (IcaA) and Yersinia pestis (HmsR) [61,62]. However, no other genes found in the staphylococcal ica or yersinial hms gene clusters are present in the pssA-E operon. Instead, the gene downstream of pssC, pssD (lmo0530), encodes an ortholog of the BcsB subunit of bacterial cellulose synthases [63]. The BcsB proteins have thus far been associated exclusively with cellulose synthases, yet they are involved in the membrane passage of the polysaccharide polymer not its synthesis [64], therefore BcsB can possibly accommodate polymers of different composition than cellulose. It is noteworthy that the glycosyltransferases catalyzing cellulose synthesis also belong to type 2 glycosyltransferases, like the PNAG synthases [63]. Further, PssC shares a ≈23% identity with the type 2 glycosyltransferase BcsA of the cellulose synthase complex of Rhodobacter sphaeroides [64]. The almost equal similarity of the listerial glycosyl transferase to PNAG- and cellulose synthases makes predictions of the composition of the listerial EPS unreliable.

The pssA-E gene cluster is indeed responsible for listerial EPS synthesis

To test the involvement of the pssA-E gene cluster in EPS biosynthesis, we deleted the predicted glycosyltransferase gene, pssG, in the ApdeB/C/D background. We found that the constructed ApdeB/C/D ΔpssC mutant no longer bound Congo
mutants with individually cloned phenotypes. The \textit{pdeB/C/D} mutant background reversed the rough colony phenotype back to a smooth appearance (Fig. 4D and data not shown).

Biochemical evidence that the PssE protein is a c-di-GMP receptor
To test the prediction that the PssE protein acts as a c-di-GMP receptor, we overexpressed its GGDEF domain containing the I-site as an MBP fusion (MBP-GGDEF\textsubscript{pssE}), purified this protein (Fig. 5A) and analyzed its ability to bind c-di-GMP in vitro using equilibrium dialysis. MBP-GGDEF\textsubscript{pssE} was found to bind c-di-GMP with an apparent K_D of 0.79±0.17 µM (Fig. 5B). This value falls within the range of physiologically relevant intracellular c-di-GMP concentrations measured in other bacteria that are believed to be in the submicromolar to low micromolar range [5]. The binding capacity of the MBP-GGDEF\textsubscript{pssE} protein, B_{max}, was calculated to be 2.03±0.12 µM c-di-GMP (µM protein)$^{-1}$ indicating that each PssE molecule can bind two c-di-GMP molecules at saturation. This result is consistent with the observation of an intercalated c-di-GMP dimer bound to the I-sites of crystallized GGDEF domain proteins [2,3]. Therefore, PssE is a \textit{bona fide} c-di-GMP receptor that is predicted to transfer the c-di-GMP signal to activate synthesis of the listerial Pss EPS.

C-di-GMP-induced listerial EPS promotes cell aggregation but plays limited role in biofilm formation on abiotic surfaces
PNAG and cellulose increase biofilm formation by the proteobacterial species on abiotic surfaces. To test the effect of c-di-GMP-induced EPS in \textit{L. monocytogenes}, we performed a conventional Crystal violet dye-binding assay that measures the biomass of cells attached to the wells of microtiter plates following removal of liquid cultures [65]. Surprisingly, we did not observe an increase in biofilm levels in the \textit{ΔpdeB/C/D} mutant, compared to the wild type, when these strains were grown in LB medium (where biofilm formation of strain EGD-e is low). We observed only a marginal increase in surface-attached biofilm levels in LB supplemented with glycerol (where biofilms are greatly stimulated) (Fig. 6A). Interestingly, this increase in biofilm levels was observed in all \textit{ΔpdeB/C/D} strains grown in LB plus glycerol, whether or not they produced EPS (Fig. 6A). These results suggest that, instead of the anticipated stimulation of biofilms, listerial EPS may actually inhibit biofilm formation, at least under certain conditions. They also implicate a c-di-GMP-activated non-EPS component in biofilm stimulation. Similar to the results on polystyrene surfaces, the \textit{ΔpdeB/C/D} mutant produced no more biofilm in LB medium on glass or metal (aluminum foil or steel coupons) surfaces than did the wild type (data not shown).

We noticed that incubation of the \textit{ΔpdeB/C/D} mutant (but not the wild type, \textit{ΔpdeB/C/D ΔpssC or ΔpdeB/C/D ΔpssE} mutants) in liquid glucose-rich minimal HTM medium resulted in cell clumping (Fig. 6B). This suggests that listerial EPS strengthens intercellular interactions but not bacterial interactions with abiotic surfaces. The \textit{pssC} and \textit{pssE} gene deletions in the \textit{ΔpdeB/C/D} background completely abolished clumping, just like they decreased Congo red binding in BH plates. This result confirms that listerial EPS is responsible for clumping.

C-di-GMP-dependent EPS impairs \textit{L. monocytogenes} motility in semi-solid agar
Since the EPS producing \textit{ΔpdeB/C/D} mutant was impaired in swimming in semi-solid agar (Fig. 4C), we set out to explore the effect of EPS on motility. Surprisingly, inactivation of EPS synthesis by the \textit{pssC} or \textit{pssE} mutations, restored swimming of the \textit{ΔpdeB/C/D} mutant in semi-solid agar to the wild-type levels (Fig. 4E). It therefore appears that swimming in semi-solid agar was impaired exclusively due to listerial EPS.

To gain additional insight into this issue, we analyzed the motility of the wild type, the \textit{ΔpdeB/C/D} mutant and the \textit{ΔpdeB/C/D ΔpssC} mutant in liquid medium where clumping is minimal and not detectable by the naked eye. Phase contrast microscopic observations revealed that single cells of the \textit{ΔpdeB/C/D} and \textit{ΔpdeB/C/D ΔpssC} mutants were as motile as the wild-type cells. These results favor the scenario whereby EPS accumulated on cell surfaces results in cell aggregation, which inhibits spreading of the cells in semi-solid agar.

C-di-GMP-induced EPS significantly enhances \textit{L. monocytogenes} tolerance to disinfectants and desiccation
EPS is known to protect bacteria from environmental insults (27). Here we evaluated the role of \textit{L. monocytogenes} EPS in providing tolerance to disinfection and desiccation. The wild-type strain EGD-e as well as its \textit{ΔpdeB/C/D} mutant synthesizing EPS and grown under clump-forming conditions were subjected to selected disinfectants commonly used in the food-processing industry and produce storage facilities: sodium hypochlorite

Figure 5. In vitro assay of c-di-GMP binding by the PssE receptor. A: The MBP-PssE protein purified via affinity (amylose resin) chromatography. The GGDEF domain of PssE (residues 107-285) containing the putative I-site was fused downstream of MBP, MBP::GGDEF\textsubscript{pssE}, and used in c-di-GMP binding assays. B: Saturation plot of equilibrium binding of c-di-GMP to the PssE receptor (MBP::GGDEF\textsubscript{pssE}). Shown is the dependence of the ratio of bound c-di-GMP per protein in the dialysis chamber, where protein alone was loaded, versus concentration of free c-di-GMP at equilibrium. doi:10.1371/journal.ppat.1004301.g005
To distinguish between the contribution of EPS versus EPS-independent c-di-GMP-responsive agents, we included in the tests the \(\Delta pdeB/C/D \Delta pssC \) mutant characterized by elevated intracellular c-di-GMP levels but defective in EPS production. The sodium hypochlorite treatment applied here was highly effective in killing the wild-type strain, but not the EPS producing \(\Delta pdeB/C/D \Delta pssC \) mutant, whose survival was approximately 10^6-fold higher than the survival of the wild type (Fig. 6C). Tolerance of the \(\Delta pdeB/C/D \Delta pssC \) mutant to hydrogen peroxide and benzalkonium chloride treatments was also highly, approximately 10^2-fold, higher, compared to the wild type or the EPS-deficient \(\Delta pdeB/C/D \Delta pssC \) mutant (Fig. 6C). These observations suggest that the c-di-GMP-induced EPS is a critical factor responsible for increased tolerance to these agents.

EPS also enhanced survival of \(L. \text{monocytogenes} \) to long-term desiccation. In this experiment, the liquid-grown cultures were centrifuged, and the pellets were kept in a desiccator for 7 or 21 days. We found that the desiccation survival rates of the EPS producing \(\Delta pdeB/C/D \Delta pssC \) strain were significantly higher, compared to those of the wild type or the \(\Delta pdeB/C/D \Delta pssC \) mutant (Fig. 6D). These results suggest that EPS provides superior protection not only against various commonly used disinfectants in food processing plants but also to desiccation, which may enhance listerial survival during food transportation and storage.
Elevated c-di-GMP levels inhibit \textit{L. monocytogenes} invasion into mammalian cells

As a foodborne pathogen, \textit{L. monocytogenes} is expected to use gut epithelial cells for primary invasion [17–20]. We examined the consequences of elevated c-di-GMP levels on bacterial invasion into HT-29 human colon adenocarcinoma cells. As shown in Fig. 7A, the strains with elevated c-di-GMP levels were significantly impaired in invasion, whether elevated c-di-GMP was caused by expression of the heterologous DGC, Slr1143, or by the \textit{ΔpdeB/C/D} mutations. Consistent with the inhibitory role of c-di-GMP, invasion was increased, by approximately 2-fold, in the \textit{L. monocytogenes} strain expressing a c-di-GMP PDE, YhjH.

Next, we tested what role the c-di-GMP-induced EPS may have played in invasion inhibition. We observed that the \textit{ΔpdeB/C/D ΔpssC} and \textit{ΔpdeB/C/D ΔpssE} mutants showed approximately 2–2.5-fold greater invasiveness compared to the \textit{ΔpdeB/C/D} mutant (Fig. 7B), but remained approximately 10-fold less invasive than the wild type strain. These results suggest that while EPS moderately inhibits invasion, the major reason for the defective invasion is a c-di-GMP-induced component(s) different from EPS. The nature of this component(s) and the mechanisms through which it inhibits listerial invasion remain to be investigated.

Elevated c-di-GMP levels reduce systemic spread of \textit{L. monocytogenes} in mice infected via an oral route

To assess the role of c-di-GMP signaling in vivo, we used a newly developed mouse model of foodborne listeriosis [67]. Groups of BALB/c\textbackslash{}By/J mice were fed either wild-type EGD-e or the \textit{ΔpdeB/C/D} mutant, and the bacterial load in various tissues was assessed 60 h post infection. There was no significant difference in colonization of the ileum, colon or spleen at this time point (Fig. 8). However, the \textit{ΔpdeB/C/D} triple mutant was significantly impaired in colonizing both the liver and the gallbladder. The decreased bacterial load in the liver appears to be linked to EPS, since the Δ\textit{pssC} mutation in the \textit{ΔpdeB/C/D} background restored the bacterial load to the wild-type level (Fig. 8). In fact, no significant differences in bacterial loads in the liver were observed when the same \textit{L. monocytogenes} strains were injected intravenously (Fig. S2), suggesting that increased levels of c-di-GMP may alter the ability of the bacteria to disseminate from the gut.

Discussion

We predicted that the \textit{L. monocytogenes} EGD-e genome encodes three GGDEF domain DGCs, one inactive GGDEF domain protein and three EAL domain PDEs, and verified this prediction by a combination of genetic and biochemical tests. Interestingly, all of the enzymes involved in c-di-GMP metabolism are highly conserved not only in the genomes of \textit{L. monocytogenes} isolates but also in other \textit{Listeria} species, e.g. \textit{L. innocua}, \textit{L. ivanovii}, \textit{L. seeligeri}, and \textit{L. welshimeri}. The high conservation of these proteins implies that c-di-GMP signaling pathways play important roles in the evolutionary success of \textit{Listeria}. Such conservation is striking in light of the flexibility in the organization of c-di-GMP signaling pathways observed in other Firmicutes. For example, in the genus \textit{Bacillus}, the number of enzymes involved in c-di-GMP synthesis and hydrolysis varies from three to eleven; it varies from eight to forty in the genus \textit{Clostridium} [http://www.ncbi.nlm.nih.gov/Complete_Genomes/SignalCensus.html].

We discovered that c-di-GMP regulation affects at least two targets in \textit{L. monocytogenes}. One of these targets is a novel EPS \textit{psA-E} operon. The composition of the listerial EPS is difficult to predict because, while some Pss proteins share similarity to the components of cellulose synthases and PNAG syntheses, other components are unique. Interestingly, in contrast to cellulose or PNAG, both of which promote biofilm formation on

![Image](https://www.plospathogens.org/10/08/1004301/Figure7.png)

Figure 7. Impaired invasion of \textit{L. monocytogenes} in HT-29 human colon adenocarcinoma cells by elevated c-di-GMP levels. A: Expression of the heterologous DGC, Slr1143 (WT::slr; blue bar), or deletion of the native PDEs (\textit{ΔpdeB/C/D}; black), strongly inhibit listerial invasion, compared to EGD-e containing an empty vector (WT::pIMK; white), while overexpression of the heterologous PDE, YhjH (WT::yhjH; yellow), improves invasion. B: High intracellular c-di-GMP levels inhibit invasion more significantly than the presence of EPS. Strains shown are WT (white bar); \textit{ΔpdeB/C/D} mutant (black); \textit{ΔpdeB/C/D ΔpssC} (dark-grey) and \textit{ΔpdeB/C/D ΔpssE} (light-grey). Plotted are values of relative invasion, compared to those of WT::pIMK (panel A) or WT (panel B). Average results from three independent tests, each performed in three replicates are shown. *, significantly different (p<0.001). Prism 5 for Mac (GraphPad) was used to perform unpaired Student’s t-tests.

doi:10.1371/journal.ppat.1004301.g007
abiotic surfaces [61,62,64,68], listerial EPS either does not affect or inhibits biofilm formation on abiotic surfaces. Instead, it promotes cell aggregation, in minimal media (Fig. 6B). These observations favor the hypothesis that the composition of listerial EPS is different from cellulose or PNAG.

In this study, we identified the mechanism through which c-di-GMP activates EPS synthesis in *L. monocytogenes*. C-di-GMP binds to the I-site receptor PssE, whose gene is located in the *pss* operon, and whose function is essential for EPS biosynthesis. Bacterial cellulose synthases studied thus far are activated via c-di-GMP-binding PilZ domains linked to the C-termini of BcsA subunits [1,51,64]. The PNAG synthase of *E. coli* is activated by c-di-GMP binding to two subunits, PgaD and PgaC, one of which, PgaD, is proteolytically degraded in the absence of c-di-GMP [69]. Perhaps the most similar c-di-GMP-dependent mechanism to that operating in *L. monocytogenes* Pss synthase involves the *Pseudomonas aeruginosa* Pel EPS synthase, which is activated via an I-site c-di-GMP receptor protein [48,70].

We showed that the *L. monocytogenes* Pss EPS is responsible for multiple phenotypes, i.e., cell aggregation, decreased motility in semi-solid media, moderate inhibition of invasiveness in mammalian cells, and drastically elevated tolerance to disinfectants and desiccation. The latter effects of c-di-GMP-induced listerial EPS are particularly noteworthy in light of the increasing frequency of listerial outbreaks associated with produce. EPS may contribute to enhanced survival of listeria on produce surfaces during washing with disinfectants as well as during transportation and storage of listeria-contaminated produce. It is also possible that listerial EPS contributes to bacterial survival in food-processing facilities. It will be interesting to investigate whether listerial strains from the recent outbreaks synthesize EPS, and what role, if any, it may have played in their survival and disease causing abilities.

C-di-GMP-induced motility inhibition is common in Proteobacteria. One of the best-understood mechanisms of c-di-GMP-induced motility inhibition involves YcgR, the PilZ-domain c-di-GMP backstop brake that operates in *E. coli* and related enteric bacteria. YcgR binds to the flagellar switch complex and, at elevated c-di-GMP concentrations, introduces a rotational bias that decreases the frequency of flagella reversals and therefore, the frequency of changes in swimming direction [52,71,72]. The smooth, almost unidirectional, swimming results in bacteria being trapped in blind alleys of semi-solid agar [73]. YcgR may also slow down rotating flagella [74]. A similar mechanism has been proposed for a PilZ domain protein in *B. subtilis*, however important details have yet to be elucidated [31]. A different mechanism of c-di-GMP-induced motility inhibition was described in *Caulobacter crescentus*, where a PilZ domain receptor affects the abundance of a flagellum assembly regulatory subunit [75]. *B. subtilis* has yet another mechanism of motility inhibition that involves a bifunctional protein EpsE that acts as a glycosyl transferase involved in EPS synthesis and as a molecular clutch that disengages the flagellum rotor from the membrane-localized energy-supplying stator [76,77]. Whether an EpsE-like clutch operates in *L. monocytogenes* remains unknown, however it is clear that no clutch or break is induced by c-di-GMP because liquid-grown cells show no obvious motility defects. The most striking observation is that inactivation of Pss synthesis is sufficient to restore motility in semi-solid agar. Therefore, listerial spreading in semi-solid agar appears to be inhibited due to cell aggregation and possibly flagella trapping in the EPS. Recently, a similar mechanism has been described in *S. enterica*, which at high c-di-GMP levels, secretes cellulose [78].

Listerial EPS inhibits bacterial invasiveness in mammalian cells, however, only modestly, 2–2.5-fold, whereas an as yet unidentified c-di-GMP pathway is responsible for a much larger component of

![Figure 8. Impaired spreading of the *L. monocytogenes ΔpdeB/C/D* mutant to the liver and gallbladder in a foodborne model of infection.](image-url)
invasiveness inhibition. The composition of this new c-di-GMP signaling pathway remains unknown. In this regard, it is noteworthy that PssE is the only c-di-GMP receptor that can be predicted based on the genome sequence analysis. Listeria lack other identifiable c-di-GMP receptor proteins or c-di-GMP-sensing riboswitches (reviewed in [2,3,6]).

In addition to uncovering the role of c-di-GMP in vitro, we tested its role in virulence using a recently developed food borne mouse disease model that closely mimics human infection [67]. We found that elevated c-di-GMP levels decreased listerial infection in the liver, and that this defect could be restored by abolishing EPS biosynthesis. Thus, it is possible that c-di-GMP induced EPS impairs the ability of *L. monocytogenes* to either efficiently disseminate from the intestine or to replicate and spread from cell-to-cell in hepatocytes. While we observed a significant defect in the ability of the ΔpdeB/C/D mutant to invade HT-29 colon carcinoma cells in vitro, there was no difference in the ability of the ΔpdeB/C/D mutant to colonize the murine intestines, compared to the wild type strain. Thus, increased c-di-GMP levels may impair the direct invasion of intestinal epithelial cells mediated by InlA/E-cadherin interactions, but does not significantly impede the ability of *L. monocytogenes* to translocate across the gut mucosa barrier, presumably because the bacteria use alternate mechanisms of invasion. *L. monocytogenes* can transcytose across M cells, specialized epithelial cells that are found both overlying Peyer's patches and scattered elsewhere throughout the epithelium [79–81]. It is also possible that specialized subsets of dendritic cells in the intestinal lamina propria can engulf *L. monocytogenes* by extending dendrites into the gut lumen, a process that has been demonstrated during oral *S. enterica* infection [82,83].

Another issue pertaining to this study concerns the role of cyclic dinucleotides as bacterial biomarkers recognized by the innate immune system and in the stimulation of the host intracytoplasmic surveillance response. Recently, the listerial second messenger c-di-AMP, which is structurally related to c-di-GMP, has been shown to be secreted into the cytosol of infected mammalian cells where it triggers interferon (IFN) production via the STING-signaling cascade [84–86]. A robust IFNβ response promotes the growth of *L. monocytogenes* administered intravenously [87]. We showed here that the ΔpdeB/C/D mutant, which likely has the highest c-di-GMP production achievable during *L. monocytogenes* intracellular growth, was overall less infective following oral infection. This suggests that elevated c-di-GMP levels play a negative role in *L. monocytogenes* virulence, in an apparent contrast with the role of c-di-AMP [87]. However, it is premature to draw definitive conclusions because (i) while c-di-AMP secretion enhances intracellular growth and spread of *L. monocytogenes*, overproduction of c-di-AMP suppresses listerial virulence [88], and (ii) individual c-di-GMP signaling pathways often play different, even opposite, roles in host-pathogen interactions [reviewed in ref. 2]. Therefore, more detailed analysis of c-di-GMP synthesis and secretion during listerial intracellular growth will be required to figure out the roles of c-di-GMP signaling pathways in *L. monocytogenes* virulence.

In addition to questions regarding intracellular growth and spread of listeria in different organs, our study raises numerous other questions pertaining to c-di-GMP signaling in listeria. How does c-di-GMP signaling inhibit cell invasion? What signals control c-di-GMP synthesis? Can c-di-GMP signaling pathways be manipulated to inhibit listerial cell invasion? What is the composition of the Pss EPS? Does this EPS contribute to listerial colonization of produce surfaces? Is it made by the *L. monocytogenes* strains from recent produce-associated outbreaks? Does it affect survival of such strains during disinfection in food processing facilities and desiccation during transportation and storage? These questions will have to be addressed in the future.

Materials and Methods

Ethics statement

This work was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health. All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Kentucky (permit number A-3336-01).

Bacterial strains, plasmids and growth conditions

The bacterial strains and plasmids used in this study are listed in Table 1. The primers used in this study are listed in Table S1. *E. coli* was routinely grown in LB medium supplemented with appropriate antibiotics at 25, 30 or 37°C, as indicated. *L. monocytogenes* was grown in Brain Heart Infusion (BHI) medium (Difco), HTM (minimal medium containing 3% glucose) [89] or LB, supplemented with appropriate antibiotics at 25, 30, 37 or 42°C, as indicated.

Plasmid and mutant construction

Genomic DNA of *L. monocytogenes* EGD-e was purified from bacterial cells using a Bactozol kit (Molecular Research Center, OH). *L. monocytogenes* genes were PCR amplified using genomic DNA, Vent DNA polymerase (New England Biolabs), and gene-specific primers (Table S1). PCR fragments were gel purified with the Gel Purification kit (Qiagen), digested with the appropriate restriction enzymes, and cloned into vector pMAL-c2x (New England Biolabs) in strain DH5α C for 48–72 h. In-frame deletions in the pdeB/C/D, dgcA/B/C, pscC and pssE genes were generated by site-directed mutagenesis by splice-by-overlap extension PCR. The PCR products containing genes with in-frame deletions were cloned into the temperature-sensitive shuttle vector pKSV7 [90]. The recombinant sequences were used to replace the corresponding wild type sequences in the chromosome of the *L. monocytogenes* EGD-e strain by allelic exchange, as previously described [90]. *L. monocytogenes* was electroporated as described earlier [91].

Motility and Congo red dye binding assays

The analysis of swimming in semi-solid agar was performed essentially as described [51]. Briefly, 2 μl of overnight cultures was inoculated onto soft agar plates containing 0.25% agar, 1% tryptone and 0.5% NaCl. Diameters of the swimming zones were assessed after 6-h incubation at 37°C for *E. coli* and 12–18-h incubation at 30°C for *L. monocytogenes*.

For Congo red binding assays, LB (E. coli) or BHI (*L. monocytogenes*) agar plates containing 40–80 μg ml⁻¹ Congo red were incubated at 30°C for 48–72 h.

Biofilm assays

Surface-adhered biofilm formation was assayed in a 96-well format using a modified version of a previously published protocol [92]. Briefly, overnight cultures grown in BHI at 30°C (A₆₀₀, 2.5–3.5) were diluted into freshly made BHI, LB or LB supplemented with 3% glycerol to an initial A₆₀₀ of 0.05–0.1,
Table 1. Strains and plasmids used in this study.

Strain and plasmid	Relevant genotype or description	Reference or source
Strains		
Escherichia coli	Strain used for plasmid maintenance and overexpression of MBP-fusions	Lab collection
DH5α	Strain used for overexpression of the His6-fusions	Invitrogen
BL21 (DE3) pLysS	Wild type	ATCC 700926a*
MG1655	MG1655 ΔyjhH	[72]
MG1655 ΔdgcAB	Deletion of the dgcAB genes	This study
MG1655 ΔdgcC	In-frame deletion in dgcC	This study
MG1655 ΔdgcA/B/C	Deletion of the dgcAB and dgcC genes	This study
MG1655 ΔpdeB	In-frame deletion in pdeB	This study
MG1655 ΔpdeC	In-frame deletion in pdeC	This study
MG1655 ΔpdeD	In-frame deletion in pdeD	This study
MG1655 ΔpdeB/C	Deletion of the pdeB and pdeC genes	This study
MG1655 ΔpdeB/D	Deletion of the pdeD and pdeB genes	This study
MG1655 ΔpdeC/D	Deletion of the pdeD and pdeC genes	This study
MG1655 ΔpdeB/C/D	Deletion of the pdeB, pdeC and pdeD genes	This study
Listeria monocytogenes	Wild type	ATCC BAA-679
EGD-e	In-frame deletion of the dgcAB genes	This study
ΔdgcAB	In-frame deletion in dgcC	This study
ΔdgcA/B/C	Deletion of the dgcAB and dgcC genes	This study
ΔpdeB	In-frame deletion in pdeB	This study
ΔpdeC	In-frame deletion in pdeC	This study
ΔpdeD	In-frame deletion in pdeD	This study
ΔpdeB/C	Deletion of the pdeB and pdeC genes	This study
ΔpdeB/D	Deletion of the pdeD and pdeB genes	This study
ΔpdeC/D	Deletion of the pdeD and pdeC genes	This study
ΔpdeB/C/D	Deletion of the pdeB, pdeC and pdeD genes	This study
ΔpdeB/C/D ΔpssC	Deletion of the pdeB, pdeC and pdeD genes	This study
ΔpdeB/C/D ΔpssE	Deletion of the pdeB, pdeC and pdeD genes	This study
ΔpdeB/C/D:plMK	Plasmid for in-frame deletion of the pdeB, pdeC and pdeD genes	This study
ΔpdeB/C/D:ΔyjhH	ΔpdeB/C/D::ΔyjhH	This study
ΔpdeB/C/D:ΔpssE	ΔpdeB/C/D::ΔpssE	This study
ΔpdeB/C/D::pIMK	ΔpdeB/C/D::pIMK2	This study
ΔpdeB/C/D::slr	ΔpdeB/C/D::Δslr1143	This study
ΔpdeB/C/D::pssC	ΔpdeB/C/D::ΔpssC	This study
ΔpdeB/C/D::pssE	ΔpdeB/C/D::ΔpssE	This study
WT::pIMK	EGD-e::pIMK2	This study
WT::ΔyjhH	EGD-e::ΔyjhH	This study
ΔyjhH	EGD-e::ΔyjhH	This study
Plasmids		
pAD1-cYFP	Plasmid for L. monocytogenes labeling	[96]
pBAD/Myc-His-C	Vector for arabinose-inducible expression	Invitrogen
pBAD-dgcA	pBAD::dgcA	This study
pBAD-dgcB	pBAD::dgcB	This study
pBAD-dgcC	pBAD::dgcC	This study
pET23a	Vector for T7-inducible His6-fusion protein overexpression	EMD Biosciences
pET-pdeD	pET23a::pdeD	This study
pET-pdeB	pET23a::pdeB	This study
pET-pdeC	pET23a::pdeC	This study
pIMK2	L. monocytogenes chromosome integrated expression vector	[97]
pIMK::ΔyjhH	pIMK2::ΔyjhH	This study
pIMK2::ΔpssC	pIMK2::ΔpssC	This study
pIMK2::ΔpssE	pIMK2::ΔpssE	This study
pKSV7	Vector for gene replacements in L. monocytogenes	[90]
pKSV7-ΔdgcAB	Plasmid for in-frame deletion of dgcAB	This study
pKSV7-ΔdgcC	Plasmid for in-frame deletion of dgcC	This study
pKSV7-ΔpdeB	Plasmid for in-frame deletion of pdeB	This study
pKSV7-ΔpdeC	Plasmid for in-frame deletion of pdeC	This study
pKSV7-ΔpdeD	Plasmid for in-frame deletion of pdeD	This study
pKSV7-ΔpssC	Plasmid for in-frame deletion of pssC	This study
pKSV7-ΔpssE	Plasmid for in-frame deletion of pssE	This study
pLysS	Lysozyme expressing plasmid for T7-expression systems	Invitrogen
pMAL-c2x	Vector for MBP-fusion protein overexpression	NEB
pMAL-pdeC	pMAL-c2x::pdeC	This study
and 150 μl aliquots of each culture were inoculated into each of six wells. Biofilms attached to wells were measured following growth for 1–6 days at 30°C. Biofilms were stained with a 0.1% aqueous solution of Crystal violet dye, which was subsequently dissolved in 33% acetic acid and quantified by measurement of A595 [65].

Protein overexpression and purification
For overexpression of PdeE::His6 and PdeD::His6, isopropyl-β-D-thiogalactopyranoside (IPTG) (final concentration, 0.2 mM) was added to exponentially (A600, 0.6–0.7) growing cultures of *E. coli* BL21 (DE3) pLysS containing appropriate overexpression plasmids. After 2 to 4 h of induction at 30°C, the cells were chilled to 4°C and collected by centrifugation. The cell pellets were resuspended in buffer (pH 8.0) containing 300 mM NaCl, 50 mM NaH2PO4, and 10 mM imidazole and protease inhibitors (phenylmethylsulfonyl fluoride and P8849 protease inhibitor cocktail) at the concentrations specified by the manufacturer (Sigma-Aldrich). The cell suspensions were passed through a French press mini-cell (Spectronic Instruments, NJ), followed by a brief sonication using a Sonifier 250 (Branson Ultrasonics, CT). The crude cell extracts were centrifuged at 15,000 × g for 45 min. Soluble protein fractions were collected and mixed with pre-equilibrated Ni2+ resin (Qiagen) for 1 h at 4°C, which was placed into a column and extensively washed with the resuspension buffer containing 20 mM imidazole. The proteins were subsequently eluted using 200 mM imidazole. The buffer was exchanged with PDE buffer [38] using desalting columns according to the instructions of the manufacturer (Pierce Biotechnology). Protein purity was assessed by SDS-PAGE and protein concentration determined using a BCA protein assay kit (Pierce Biotechnology).

For purification of MBP::PdeC and MBP::GGDEF_pssE fusions, IPTG (final concentration, 0.2 mM) was added to exponentially (A600, 0.6–0.8) growing *E. coli* DH5α containing appropriate plasmids. After 2-h induction, cells were collected by centrifugation. Cell pellets were resuspended in a buffer containing 200 mM NaCl, 0.5 mM EDTA, 5 mM MgCl2, 20 mM Tris-HCl (pH 7.6), and 5% glycerol that also contained protease inhibitors. Following cell disruption and clearing of the crude cell extracts, as described above, soluble protein fractions were mixed with pre-equilibrated amylose resin (New England Biolabs) for 1 h at 4°C, which was subsequently extensively washed with the resuspension buffer. MBP fusions were eluted with maltose and the buffer was exchanged for PDE or c-di-GMP binding assay [51] buffer using desalting columns.

PDE assays
Assays were performed essentially as described by Schmidt et al. [38]. Briefly, a PDE enzyme (1–5 μM) was added to PDE reaction buffer (final volume, 100 μl) containing 250 μM c-di-GMP, and the reaction was allowed to proceed at 37°C. Aliquots were withdrawn at various time points; the reaction was stopped by addition of CaCl2 [final concentration, 10 mM], and the sample was boiled for 3 min and centrifuged. The supernatant was then filtered through a 0.22-μm filter, and the reaction products were analyzed by reversed-phase HPLC (Summit HPLC system; Dionex) using a Supelcosil LC-18-T column (Sigma-Aldridge). The buffer system and gradient elution program were described previously [37].

Equilibrium dialysis
Equilibrium dialysis experiments were performed as described earlier [51]. Briefly, MBP-GGDEF_PssE (20 μM) was injected into one of the two chambers of a Dispo-Biodialyzer cassette (10 kD cutoff, The Nest Group, MA) filled with dialysis buffer. c-di-GMP (concentrations from 1 to 30 μM) was injected into the opposite cell of the cassette. The cassettes were maintained for 24 h at room temperature under agitation, after which samples from each chamber were withdrawn, boiled for 3 min, centrifuged, and supernatants were filtered through a 0.22-μm filter. The nucleotide concentrations were quantified by HPLC. Binding constants were calculated as described by the GraphPad Prism software, version 4.03 (GraphPad Software, San Diego, CA) using a nonlinear regression model.

Invasion assay
L. monocytogenes invasion properties were analyzed using a gentamicin-based assay with HT-29 human colon adenocarcinoma cell monolayers in 24-well plates, essentially as described [93,94]. Briefly, overnight cultures of *L. monocytogenes* grown in BHI at 37°C were centrifuged, washed and resuspended in DMEM medium. Monolayers of HT-29 cells were inoculated with 100 μl of the *L. monocytogenes* suspensions (5×10⁶ CFU ml⁻¹) at a multiplicity of infection of 100 and incubated for 1.5 h at 37°C in a 7% CO2 atmosphere. The monolayers were then washed and incubated in the presence of 100 μg gentamicin ml⁻¹ (final concentration) for 1.5 h. Following this incubation, the cells monolayers were washed again and lysed with 0.1% Triton X-100. Appropriate dilutions were plated on BHI plates for enumeration of intracellular bacteria. Each experiment was done in triplicate, and experiments were performed at least three times independently. Statistical analysis was performed by using Tukey’s test at p < 0.05.

Foodborne infection of mice
Female BALB/cByJ mice were purchased from The Jackson Laboratory (Bar Harbor, ME) at 5 weeks of age and used in experiments when they were 6–9 weeks old. Mice were maintained in a specific pathogen free facility at the University of Kentucky and all procedures were performed in accordance with IACUC guidelines. Aliquots of early stationary phase bacteria were prepared and stored at −80°C. To prepare the inoculum, aliquots were thawed on ice, cultured standing in BHI broth for 1.5 h at 30°C, washed once in PBS and then suspended in 5 μl of melted, salted butter (Kroger) and used to saturate a 2–3 mm piece of white bread (Kroger). Infection by the natural feeding route was carried out at night as described [67]. Briefly, mice were given unrestricted access to water but denied food for 22 h, then placed in an empty cage, and given 5–10 minutes to pick up the contaminated bread piece and eat all of it. Mice were then
Processing of tissue samples

Colon contents were removed by squeezing with sterile forceps and then flushing with 8 ml of PBS through a 25 g needle. Washed tissues were cut longitudinally and homogenized for 1 min in 2 ml of sterile water using a PowerGen 1000 homogenizer (Fisher) at 60% power. The total number of cell-associated (adherent plus intracellular) L. monocytogenes cells was determined by plating serial dilutions on BHI agar supplemented with 45 mg LI2E L−1 and 10 mg glycyl-l-1-arginine (BHI/L+G). Colonies were counted after 48 h incubation at 37°C. This selective agar inhibited the growth of most intestinal microbiota; suspect colonies were confirmed to be L. monocytogenes by plating on CHRO-Magar Listeria plates (Becton Dickinson). Splenics and livers were harvested aseptically and homogenized for 30 sec in 2 ml of sterile water. Gallbladders were ruptured with sterile scissors in a microtube containing 1 ml of sterile water and vortexed for 30 sec. Dilutions of each tissue were plated on BHI/L+G agar.

Disinfection and desiccation tolerance

Solutions of sodium hypochlorite, hydrogen peroxide and benzalkonium chloride (Sigma-Aldrich and Sigma Life Sciences) were prepared in sterile phosphate-buffered saline with disinfection concentrations of 1600 ppm, 200 mM, and 100 ppm, respectively. Cultures were grown in HTM with 3% glucose at 37°C for 24 h, at which point small uniform clumps are formed by the ΔpdeB/C/D strain. Aliquots (250 µl; 10⁸ cfu/ml) of these cultures were mixed with disinfectants at 1:1 vol ratios in small glass tubes that also contained 0.1 g of acid washed glass beads (Sigma Life Sciences). Following a 10-min exposure to disinfectants at room temperature, D/E neutralizing broth (500 µl; Difco) was added [95]. Samples were vigorously vortexed (for 5 min) and clumps of ΔpdeB/C/D strain were dispersed due to the action of the glass beads. Serial dilutions were plated on BHI agar and colonies were counted following a 48-h incubation at 37°C.

To assess desiccation tolerance, strains were grown as described above. One milliliter of cultures (5×10⁸ cfu/ml) was centrifuged in 1.5 ml eppendorf microtubes containing 0.1 g glass beads. After supernatant removal, the tubes were stored at room temperature in a desiccator jar containing anhydrous calcium sulfate. After 7 and 21 days, the pellets were resuspended in phosphate buffered saline, vigorously vortexed, and plated on BHI agar. Colonies were counted following 48-h incubation at 37°C.

Supporting Information

Figure S1 Congo red staining of EPS in the L. monocytogenes pde mutants. Congo red staining shows partially redundant functions of PDEs. Presence of at least one PDE is sufficient to prevent full-scale induction of the EPS synthesis. 1, WT; wild type; 2, ΔpdeB/C/D; 3, ΔpdeB/C; 4, ΔpdeC/D; 5, ΔpdeB/D; 6, ΔpdeD; 7, ΔpdeB; 8, ΔpdeC. (PDF)

Figure S2 Effects of c-di-GMP on intravenous L. monocytogenes infections. Cyclic di-GMP levels do not affect growth in the liver and spleen of L. monocytogenes delivered intravenously. A: Female BALB/cByJ mice (n = 4) were co-infected intravenously with a 1:1 mixture of wild type made chloramphenicol-resistant (CmR) by chromosomal insertion of pAD1-cYFP (Table 1) and ΔpdeB/C/D mutant (~600 CFU of each for a total inoculum of 1.2×10⁶ CFU). Three days post-infection, spleens and livers were harvested aseptically, homogenized, diluted and plated on BHI agar with or without the presence of 7 µg/ml of chloramphenicol. The number of chloramphenicol-sensitive (CmS) ΔpdeB/C/D CFU was determined by subtracting the number of (CmR) colonies from the total CFU found on plates without antibiotic. Competitive index (CI) ratios were determined by dividing the number of CmR ΔpdeB/C/D CFU by the number of CmS wild type CFU recovered from each tissue. B: A competition experiment performed with the CmR wild type and the strain expressing the E. coli PDE, YhjH. WT, chloramphenicol-resistant (CmR) derivative of strain EGD-e, pIMK-yhjH, EGD-e with integrated plasmid pIMK2 expressing E. coli PDE, YhjH (Table 1). (PDF)

Table S1 Primers used in this study.

(DOC)

Acknowledgments

We are grateful to Mei-Jun Zhu and Jia Hu for help with tissue culture experiments, Cormac G. Gahan for pIMK plasmids, and Xin (Cindy) Fang for help with motility assays, protein purification and PDE assays.

Author Contributions

Conceived and designed the experiments: SEFD KWM MG. Performed the experiments: LHC VZZT TMM JMR. Analyzed the data: LHC VZZT TMM JMR SEFD KWM MG. Wrote the paper: LHC VZZT SEFD KWM MG.

References

1. Ross P, Weinhouse H, Aloni Y, Michaeli D, Ohana P, et al. (1987) Regulation of cellulase synthesis in Aerobacter xylinum by cyclic diguanylic acid. Nature 325: 279–81.
2. Römmling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52.
3. Krasteva PV, Giglio KM, Sondermann H (2012) Sensing the messenger: The diverse ways that bacteria signal through c-di-GMP. Protein Sci 21: 929–48.
4. Sondermann H, Shikuma NJ, Yidu FF (2012) You’ve come a long way: c-di-GMP signaling. Curr Opin Microbiol 15: 140–6.
5. Boyd CD, O’Toole GA (2012) Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. Annu Rev Cell Dev Biol 28: 439–62.
6. Mills E, Pulz IS, Kalușkaera HD, Miller SI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13: 1122–9.
7. Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61: 131–48.
8. Ahmad I, Lamprokostopoulou A, Le Guen S, Streck E, Barthel M, et al. (2011) Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium. PLoS One 6: e20351.
9. Byrd MS, Pang B, Hong W, Waligora EA, Juneau RA, et al. (2011) Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect Immun 79: 3087–97.
10. Lai TH, Kumagai Y, Hayakawa Y, Rikihisa Y (2010) Cyclic di-GMP signaling pathways in Listeria monocytogenes. PLoS Pathog 6: e1000804.
11. Magar V, Magar C (2011) Cyclic di-GMP mediators of Listeria monocytogenes virulence. Curr Opin Microbiol 14: 320–7.
12. Kaumaq Y, Matsuo J, Hayakawa Y, Rikihisa Y (2010) Cyclic di-GMP signaling regulates invasion by Ehrlichia chaffensis of human monocytes. J Bacteriol 192: 4122–33.
15. Kumaaga Y, Matsu J, Cheung Z, Hayakawa Y, Rikihisa Y (2011) c-di-GMP signaling regulates intracellular aggregation, sessility, and growth of <i>Eubacterium chaffei</i>. Infect Immun 79: 3903–12.

16. Levi A, Fochler M, Jenal U, Shuman HA (2011) Cyclic diguanylate signaling proteins control intracellular growth of <i>Legionella pneumophila</i>. mbio 2: e00316–10.

17. Cossant P (2011) Illuminating the landscape of host-pathogen interactions with the bacterium <i>Listeria monocytogenes</i>. Proc Natl Acad Sci U S A 108: 19464–91.

18. Freitag NE, Port GC, Meininger CH (2009) Cyclic di-GMP functions in salmonella pathogenesis. Mol Microbiol 70: 16–32.

19. Orsi RH, Borowsky ML, Lauer P, Young SK, Nausbaum C, et al. (2008) Short-term genome evolution of <i>Listeria monocytogenes</i> in a non-controlled environment. BMC Genomics 9: 539.

20. Centers for Disease Control and Prevention. Multistate Outbreak of Listeriosis Linked to Whole Cantaloupes from Jensen Farms, Colorado. http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/082712/index.html

21. Moretto T, and Langsrud S. (2004) Biofilm formation and persistence in food-processing environments. Biofilms 1: 107–21.

22. Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in <i>Escherichia coli</i> is controlled by a plethora of diguanylate cyclases and phosphodiesterase. Nature 459: 1015–18.

23. Chen Y, Chai Y, Guo JH, Losick R (2012) Evidence for cyclic di-GMP-mediated control of amyloid fibril formation. Proc Natl Acad Sci USA 109: 1615–19.

24. Mcgillivary JT, Cronquist AB, Silk B, Jackson KA, O’Connor KA, et al. (2013) Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med 369: 944–53.

25. Remley K, Hrabau M, Desvaux M (2011) Molecular biology of surface colonization by <i>Listeria monocytogenes</i>: an additional facet of an opportunistic gastrointestinal pathogen. Environ Microbiol 13: 833–50.

26. Hoelzer K, Pouillot R, Dennis SL, Port GC, Miner MD (2009) Cyclic di-GMP inversely regulates motility and aggregation in <i>Listeria monocytogenes</i>. J Bacteriol 191: 6193–202.

27. Bordeleau E, Fortier LC, Malouin F, Burrus V (2011) C-di-GMP turn-over in <i>Bacillus subtilis</i>. Biochem J 435: 81–90.

28. Hoelzer K, Pouillot R, Dennis SL, Port GC, Miner MD (2009) Cyclic GMP is regulated by a bacterial response regulator with a novel self-splicing ribozyme triggered by a bacterial second messenger. Science 329: 845–48.

29. Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation and persistence in food-processing environments. Biofilms 1: 107–21.

30.托福 Yao, RL, Fochler M, Jenal U, Shuman HA (2011) Cyclic diguanylate signaling regulates intracellular aggregation, sessility, and growth of <i>Eubacterium chaffei</i>. Infect Immun 79: 3903–12.

31. Levi A, Folcher M, Jenal U, Shuman HA (2011) Cyclic diguanylate signaling regulates intracellular aggregation, sessility, and growth of <i>Eubacterium chaffei</i>.

32. Freitag NE, Port GC, Meininger CH (2009) Cyclic di-GMP functions in salmonella pathogenesis. Mol Microbiol 70: 16–32.

33. Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation and persistence in food-processing environments. Biofilms 1: 107–21.

34. Sudarsan N, Lee E.R., Weinberg Z., Moy R.H., Kim J.N., et al. (2008) An allosteric phosphodiesterase. Nature 459: 1015–18.

35. Lee ER, Baker JL, Weinberg Z, Sudarsan N, Breaker RR (2010) An allosteric phosphodiesterase. Nature 459: 1015–18.

36. Gough, J, Karpplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of Hidden Markov Models that represent all proteins of known structure. J Mol Biol 313: 903–19.

37. Christen B, Christen M, Paul R, Schmid F, Fochler M, et al. (2006) Allosteric control of cyclic di-GMP signaling. J Biol Chem 281: 32815–23.

38. Lee VT, Mateshwj JM, Keseler JL, Hyodo M, Hayakawa Y, Lori S (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 63: 1474–84.

39. Dworkin M, Abel S, Fochler M, Nicollier M, Schwede T, et al. (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Gen Dev 23: 93–104.

40. Tamayo R, Paul R, Atria R, Nairz M, Römling U, et al. (2007) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Gen Dev 23: 93–104.

41. Simm R, Mor M, Kader A, Nairz M, Römling U (2004) GDDD and EAL domain proteins inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53: 1323–34.

42. Ryjenkov DA, Simm R, Römling U, Gomelsky M (2006) The PiZ domain is a sensor for the second messenger c-di-GMP. The PiZ domain protein YegR controls mobility in enterobacteria. J Biol Chem 281: 30310–14.

43. Girgis HS, Liu Y, Ryu WS, Tavazoie S (2007) A comprehensive genetic characterization of bacterial motility. PLoS Genet 3: 1644–60.

44. Bobrov AG, Kirillina O, Perry RD (2007) Regulation of biofilm formation in <i>Xanthomonas campestris</i> as the second component of the extracellular matrix. Mol Microbiol 63: 1452–63.

45. O’Toole GA (2007) sea and beyond: biofilm mechanisms and regulation in <i>Staphylococcus epidermidis and Staphylococcus aureus</i>. FEMS Microbiol Lett 270: 179–88.

46. Bobrov AG, Kirillina O, Perry RD (2007) Regulation of biofilm formation in <i>Staphylococcus epidermidis and Staphylococcus aureus</i>. FEMS Microbiol Lett 270: 179–88.

47. Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-mediated bacterial attachment phenotypes. Environ Microbiol 6: 151–65.

48. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in <i>Escherichia coli</i>. Science 282: 218–21.

49. Pan Y, Jr. Bredit F, Kathariou S (2006) Resistance of <i>Pseudomonas aeruginosa</i> to sanitizing agents in a simulated food processing environment. Appl Environ Microbiol 72: 7711–7.

50. Bobrov AG, Kirillina O, Perry RD (2007) Regulation of biofilm formation in <i>Staphylococcus epidermidis and Staphylococcus aureus</i>. FEMS Microbiol Lett 270: 179–88.

51. Hobley L, Fang RK, Lambert C, Harris MA, Dabhi JM, et al. (2012) Discrete cyclic GMP-dependent control of bacterial proliferation versus axenic growth in <i>Rhodobacter sphaeroides</i>. PLoS Pathog 8: e1002493.

52. Girgis HS, Liu Y, Ryu WS, Tavazoie S (2007) A comprehensive genetic characterization of bacterial motility. PLoS Genet 3: 1644–60.

53. Hobley L, Fang RK, Lambert C, Harris MA, Dabhi JM, et al. (2012) Discrete cyclic GMP-dependent control of bacterial proliferation versus axenic growth in <i>Rhodobacter sphaeroides</i>. PLoS Pathog 8: e1002493.

54. O’Toole GA (2007) sea and beyond: biofilm mechanisms and regulation in <i>Staphylococcus epidermidis and Staphylococcus aureus</i>. FEMS Microbiol Lett 270: 179–88.

55. Simm R, Mor M, Kader A, Nairz M, Römling U (2004) GDDD and EAL domain proteins inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53: 1323–34.

56. Ryjenkov DA, Simm R, Römling U, Gomelsky M (2006) The PiZ domain is a sensor for the second messenger c-di-GMP. The PiZ domain protein YegR controls mobility in enterobacteria. J Biol Chem 281: 30310–14.

57. Girgis HS, Liu Y, Ryu WS, Tavazoie S (2007) A comprehensive genetic characterization of bacterial motility. PLoS Genet 3: 1644–60.

58. O’Toole GA (2007) sea and beyond: biofilm mechanisms and regulation in <i>Staphylococcus epidermidis and Staphylococcus aureus</i>. FEMS Microbiol Lett 270: 179–88.
75. Christen M, Christen B, Allan MG, Folcher M, Jeno P, et al. (2007) DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad Sci U S A 104: 4112–17.

76. Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB (2008) A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320: 1636–8.

77. Guttenplan SB, Blair KM, Kearns DB (2010) The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet 6: e1001243.

78. Zorraquino V, García B, Latasa C, Echeverz M, Toledo-Araña A, et al. (2013) Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. J Bacteriol 195: 417–28.

79. Corr S, Hill C, Gahan CG (2006) An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. Microb Pathog 41: 241–50.

80. Jensen VB, Harty JT, Jones BD (1998) Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer’s patches. Infect Immun 66: 3758–66.

81. Marco AJ, Atimura J, Prats N, López S, Domínguez L, et al. (1997) Penetration of Listeria monocytogenes in mice infected by the oral route. Microb Pathog 23: 255–63.

82. Niess JH, Brand S, Gu X, Landsman L, Jung S, et al. (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307: 254–8.

83. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, et al. (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2: 361–7.

84. Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328: 1703–05.

85. Sauer JD, Mostowy S, Danckaert A, Tham TN, Macho C, Guadagnini S, et al. (2009) Septin 11 restricts InlB-mediated invasion by Listeria. J Biol Chem 284: 11613–21.

86. Rayamajhi M, Humann J, Penbeier K, Andreassen K, Lenz LL (2010) Induction of IFN-α/β activates bactericidal activity by IFN-β-activated cells. J Exp Med 207: 327–37.

87. Schwartz KT, Carleton JD, Quillin SJ, Rollins SD, Portnoy DA, Leber JH. (2012) Hyperinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT. Infect Immun 80: 1537–45.

88. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, et al. (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2: 361–7.