BEYOND THE FAN–HOFFMAN INEQUALITY*

STEPHEN DRURY†

Abstract. We establish a singular value inequality inspired by the Fan–Hoffman inequality and resolve the \(j \)-conjecture of Yang and Zhang.

Key words. Singular value, Eigenvalue, \(j \)-conjecture.

AMS subject classification. 15A42.

1. Introduction. Majorization inequalities for the eigenvalues and singular values of matrices are commonplace. Inequalities that compare the \(j \)th eigenvalue or singular value of one matrix to that of another are more special. One such inequality is the Fan–Hoffman inequality \[2\] which asserts that

\[\lambda_j(\Re(A)) \leq \sigma_j(|A|) \text{ for } j = 1, \ldots, n, \]

for an \(n \times n \) complex matrix \(A \). The notation \(A^* \) denotes the adjoint matrix of \(A \), \(\Re(A) \) denotes the hermitian part \(\frac{1}{2}(A + A^*) \) of \(A \), and \(|A| = (A^*A)^{1/2} \) the absolute value of \(A \). For a hermitian matrix \(H \), \(\lambda_j(H) \) denotes the \(j \)th eigenvalue taken in decreasing order and \(\sigma_j(A) = \lambda_j(|A|) \), the \(j \)th singular value of \(A \). For more details on these concepts, the reader may consult Bhatia \[1\].

In a related paper \[3\], R.C. Thompson establishes the following result.

Theorem 1. For any pair \(A, B \) of \(n \times n \) complex matrices, there exist unitary \(n \times n \) matrices \(U \) and \(V \) such that \(|A + B| \leq U^*|A|U + V^*|B|V \) where \(\leq \) is understood in the positive semidefinite sense.

An immediate consequence is the following.

Corollary 2. For any \(n \times n \) complex matrix \(A \) and any \(n \times n \) contraction \(C \), we have

\[\sigma_j(C + A) \leq \lambda_j(I + |A|) \text{ for } j = 1, \ldots, n. \]

Here, we have denoted by \(I \) the \(n \times n \) identity matrix.

By a contraction \(C \), we mean a complex matrix with its spectral norm \(\|C\| \leq 1 \). It is this corollary that we intend to generalize by establishing the following.

Theorem 3. For any \(n \times n \) complex matrix \(A \), any \(n \times n \) contraction \(C \) and any positive nondecreasing function \(f : [0, \|A\|] \to (0, \infty) \), the inequality

\[\sigma_j((C + A)f(|A|)) \leq \lambda_j((I + |A|)f(|A|)) \text{ for } j = 1, \ldots, n, \]

holds.

*Received by the editors on October 2, 2020. Accepted for publication on March 18, 2021. Handling Editor: Ren-Cang Li.
†Department of Mathematics and Statistics, McGill University, Montreal, Canada H3A 0B9. (stephen.drury@mcgill.ca).
For a hermitian matrix H with spectral decomposition

$$H = \sum_{j=1}^{n} \lambda_j(H)e_j^*e_j,$$

with $\{e_j, j = 1, \ldots, n\}$ an orthonormal basis, we have denoted

$$f(H) = \sum_{j=1}^{n} f(\lambda_j(H))e_j^*e_j,$$

the standard symbolic calculus for hermitian matrices. Note that $(I + |A|)f(|A|)$ is hermitian since $I + |A|$ and $f(|A|)$ are commuting hermitian matrices.

As a consequence, we will establish the j-conjecture of Yang and Zhang [4].

Theorem 4. Let A be a strict contraction. Then

$$\lambda_j\left(\Re((I - A)^{-1})\right) \geq \lambda_j\left((I + |A|)^{-1}\right), \text{ for } j = 1, 2, \ldots, n.$$

2. Proofs of the results.

Proof. Proof of Theorem 3.

Since $|A|$ has only finitely many eigenvalues, we may always extend f to a continuous positive non-decreasing function defined on $(0, \infty)$ which we do without change of notation. The function g given by $g(t) = (1 + t)f(t)$ is continuous and strictly increasing tending to ∞ at ∞. The inverse function h of g is also a strictly increasing continuous function.

Equivalent to 1.1, we will show

$$\lambda_j(B(C^*C + C^*A + A^*C + A^*A)B) \leq \lambda_j((I + |A|)B)^2, \quad (2.1)$$

where $B = f(|A|)$. We will assume that (2.1) is false and find a contradiction. Then there exists a real number ν such that

$$\lambda_j(B(C^*C + C^*A + CA^* + A^*A)B) > \nu^2 \quad \text{and} \quad \nu > \lambda_j((I + |A|)B).$$

Also we have $B = f(|A|) \geq f(0)I$ so that $f(0) \leq \lambda_n(B) \leq \lambda_j(B) \leq \lambda_j((I + |A|)B)$. Hence by the intermediate value theorem, there exists μ such that $(1 + \mu)f(\mu) = g(\mu) = \nu$. Hence, there is a linear subspace E of dimension j such that

$$\xi^*B(C^*C + C^*A + CA^* + A^*A)B\xi > (1 + \mu)^2f(\mu)^2||\xi||^2,$$

for all nonzero $\xi \in E$.

Let

$$(I + |A|)B = \sum_{k=1}^{n} \lambda_k((I + |A|)B)\eta_k\eta_k^*,$$

be the spectral decomposition of $(I + |A|)B$ where the η_k are the mutually orthogonal unit eigenvectors. Let F be the linear subspace of dimension $n + 1 - j$ spanned by $\{\eta_k; j \leq k \leq n\}$. On F we have $(I + |A|)B \leq \nu I$.

Since \(h \) is increasing and \(f \) is nondecreasing
\[
|A| = h(|I + |A||B|) \leq h(\nu I) = \mu I \quad \text{and} \quad |B| = f(|A|) \leq f(\mu)I,
\]
on \(F \). Note also that \(F \) is invariant under both \(|A| \) and \(B \) since \(|A| = h(|I + |A||B|) \), \(B = f(|A|) \) and using the symbolic calculus of hermitian matrices.

By dimensionality, the intersection \(E \cap F \) is forced to be nonzero. We choose a unit vector \(\xi \in E \cap F \). Then
\[
(1 + \mu)^2 f(\mu)^2 < \xi^* B(C^* C + C^* A + CA^* + A^* A)B \xi
\]
\[
\leq \|CB\xi\|^2 + 2\Re * BC^* AB \xi + \xi^* B|A|^2 B \xi
\]
\[
\leq \|B\xi\|^2 + 2\|BC\xi\||AB\xi\| + \mu^2 f(\mu)^2
\]
\[
\leq \xi^* B^2 \xi + 2\|CB\xi\||AB\xi\| + \mu^2 f(\mu)^2
\]
\[
\leq f(\mu)^2 + 2\|B\xi\||AB\xi\| + \mu^2 f(\mu)^2
\]
\[
\leq (1 + \mu^2)f(\mu)^2 + 2\sqrt{\xi^* B^2 \xi} \sqrt{\xi^* B^2 \xi} \leq (1 + \mu^2)f(\mu)^2 + 2\sqrt{f(\mu)^2} \sqrt{\xi^* B^2 \xi} \leq (1 + \mu^2)f(\mu)^2 + 2\sqrt{\mu^2} f(\mu)^2 = (1 + \mu^2)f(\mu)^2.
\]

This contradiction establishes 2.1.

\textbf{Proof. Proof of Theorem 4}

We replace \(A \) by \(-A\) which is also a strict contraction, and we will therefore prove that
\[
\lambda_j \left(\Re((I + A)^{-1}) \right) \geq \lambda_j \left((I + |A|)^{-1} \right), \quad \text{for } j = 1, 2, \ldots, n.
\]
We have
\[
2\Re((I + A)^{-1}) = (I + A^*)^{-1} + (I + A)^{-1}
\]
\[
= (I + A^*)^{-1} (2I + A^* + A)(I + A)^{-1}
\]
\[
= (I + A^*)^{-1} ((I + A^* + A + A^* A) + (I - A^* A))(I + A)^{-1}
\]
\[
= I + (I + A^*)^{-1} (I - A^* A)(I + A)^{-1}.
\]
On the other hand, we have
\[
2(I + |A|)^{-1} = I + (I + |A|)^{-\frac{1}{2}} (I - |A|)(I + |A|)^{-\frac{1}{2}}.
\]
Therefore, it suffices to show that
\[
\lambda_j \left((I + A^*)^{-1} (I - A^* A)(I + A)^{-1} \right) \geq \lambda_j \left((I + |A|)^{-\frac{1}{2}} (I - |A|)(I + |A|)^{-\frac{1}{2}} \right),
\]
or equivalently
\[
\sigma_j \left((I - |A|)^{\frac{1}{2}} (I + A)^{-1} \right) \geq \sigma_j \left((I - |A|)^{\frac{1}{2}} (I + |A|)^{-\frac{1}{2}} \right),
\]
or since \(\sigma_j(X) = (\sigma_{n+1-j}(X^{-1}))^{-1} \) that
\[
\sigma_{n+1-j} \left((I + A)(I - |A|^2)^{-\frac{1}{2}} \right) \leq \sigma_{n+1-j} \left((I + |A|)^{\frac{1}{2}} (I - |A|)^{-\frac{1}{2}} \right),
\]
Beyond the Fan–Hoffman inequality

But

\[(I + |A|)^{\frac{1}{2}}(I - |A|)^{-\frac{1}{2}} = (I + |A|)(I - |A|)^{2^{-\frac{1}{2}}},\]

so finally, it remains to show that

\[\sigma_{n+1-j}\left((I + A)f(|A|)\right) \leq \sigma_{n+1-j}\left((I + |A|)f(|A|)\right),\]

where \(f(t) = (1 - t^2)^{-\frac{1}{2}}\). But \(f\) is a positive increasing function on \([0, \|A\|]\) and the result follows from Theorem 3 taking \(C = I\).

Acknowledgments. The author thanks Professor Minghua Lin for helpful discussions and the referee for helpful suggestions.

REFERENCES

[1] R. Bhatia, *Matrix Analysis*. Springer-Verlag, New York, 1997.
[2] K. Fan and A.J. Hoffman. Some metric inequalities in the space of matrices. *Proc. Amer. Math. Soc.*, 6:111–116, 1955.
[3] R.C. Thompson. Convex and concave functions of singular values of matrix sums. *Pacific J. Math.*, 66:285–290, 1976.
[4] C. Yang and F. Zhang. Harnack type inequalities for matrices in majorization. *Linear Algebra Appl.*, 588:196–209, 2020.