Gamma-ray burst neutrinos, Lorenz invariance violation and the influence of background cosmology

Marek Biesiada1 and Aleksandra Piórkowska2

1 Department of Astrophysics and Cosmology, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
2 Department of Particle Physics and Field Theory, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
E-mail: biesiada@us.edu.pl and apiorko@us.edu.pl

Received 13 March 2007
Accepted 23 April 2007
Published 15 May 2007

Online at stacks.iop.org/JCAP/2007/i=05/a=011
doi:10.1088/1475-7516/2007/05/011

Abstract. Modern ideas in quantum gravity predict the possibility of Lorenz invariance violation (LIV) manifested, for example, by energy-dependent modification of the standard relativistic dispersion relation. In a recent paper, Jacob and Piran proposed that time of flight delays in high-energy neutrinos emitted by gamma-ray bursts (GRBs) located at cosmological distances can become a valuable tool for setting limits on LIV theories. However, current advances in observational cosmology suggest that our Universe is dominated by dark energy with relatively little guidance on its nature, thus leading to several cosmological scenarios that are compatible with observations.

In this paper we raise the issue of how important, in the context of testing LIV theories, is our knowledge of the background cosmological model. Specifically we calculate expected time lags for high-energy (100 TeV) neutrinos in different cosmological models. Out of many particular models of dark energy we focus on five as representative for various competing approaches: ΛCDM, quintessence, quintessence with time-varying equation of state, brane-world and generalized Chaplygin gas.

The conclusion is that better understanding of a dark energy dominated Universe is crucial for testing LIV theories with cosmological sources like GRBs. Theoretically one may also invert this argument by saying that if an LIV dispersion relation was proven experimentally and its parameters were...
constrained then time delays from GRBs could become a new kind of cosmological test.

Keywords: gamma ray bursts, dark energy theory, ultra high energy photons and neutrinos, quantum gravity phenomenology

1. **Introduction**

Modern approaches to quantum gravity predict the Lorenz invariance violation (LIV hereafter) manifesting itself in particular as an energy-dependent modification of the relativistic dispersion relation. Essentially, additional terms in the dispersion relation follow a power-law expansion with respect to E/E_{QG}, where E denotes the particle’s (photon’s) energy and E_{QG} is the quantum gravity energy scale. The first guess concerning E_{QG} would be to assume it to be of order of the Planck energy $E_{Pl} = 1.2 \times 10^{19}$ GeV. Although there are suggestions that in some concrete models (e.g. with large extra dimensions) E_{QG} could be considerably lower than the Planck energy, it is clear that departures from the standard relativistic dispersion relation can be seen only in high-energy particles or photons.

Several years ago it was proposed to use astrophysical objects to look for energy-dependent time of arrival delays [1]. Specifically, gamma-ray bursts (GRBs), being energetic events visible from cosmological distances, are the most promising sources of constraining LIV theories. Indeed they have already been discussed in this context (quite recently in [2]) and have even been used to obtain some constraints [3]. One is facing here a problem that in the energy range typical for gamma-ray photons the LIV effects are very subtle. On the other hand, one could imagine looking for TeV photons which would be produced by GRBs in the synchrotron self-Compton mechanism [4, 5]. However, the Universe filled with 2.7 K cosmic microwave background radiation becomes opaque, via the pair production process, to photons with energies above 10 TeV. This is analogous to the GZK threshold for particles. Despite the fact that LIV theories are often invoked to resolve the GZK paradox [6] and that 20 TeV photons were reported to come from the Mk 501 BL Lac object [7] the use of very high-energy photons from GRBs can be tricky.

In a recent paper, Jacob and Piran proposed using high-energy neutrinos instead of photons [8]. Emission of 100–10^{4} TeV neutrinos is typically predicted in current models of GRBs [4] and, as noticed in [8], the forthcoming neutrino detectors like Ice Cube are extremely quiet in this energy range. Measurements of the time delay between prompt gamma-ray photons and the neutrino signal would open a new window on exploring LIV...
GRB neutrinos, Lorenz invariance violation and the influence of background cosmology

The discovery of accelerated expansion of the Universe [9] introduced the problem of ‘dark energy’ in the Universe which is now one of the most important issues in modern cosmology. A lot of specific scenarios have been put forward as an explanation of this puzzling phenomenon. They fall into two broad categories: searching for an explanation among hypothetical candidates for dark energy (cosmological constant Λ [9], quintessence and evolving scalar fields [10], Chaplygin gas [11]) or modification of gravity theory (e.g. brane-world scenarios [12]). We will examine the LIV-induced time delays between prompt photon and neutrino arrivals in the above-mentioned five classes of cosmological models.

In the next section we briefly recall the phenomenology of the distorted dispersion relation in LIV theories and its consequences for energy-dependent time of arrival delays. Section 2 also briefly outlines the cosmological models considered. Note that the brane-world scenario is not just a candidate for background cosmology, but also ‘represents’ the class of theories in which LIV occurs [13]. The final section contains results and conclusions.

2. LIV-induced time delays in different cosmological models

Following [8], and for better comparison of results, we assume the modified dispersion relation for neutrinos from GRB sources in the form

$$E_{\nu}^2 - p_{\nu}^2c^2 - m_{\nu}^2c^4 = \epsilon E_{\nu}^2 \left(\frac{E_{\nu}}{\xi_n E_{QG}} \right)^n,$$

where $\epsilon = \pm 1$ with $+1$ corresponding to superluminal and -1 to infraluminal motion; ξ_n is a dimensionless parameter. In order to get results that are comparable with [8], we assume E_{QG} equal to the Planck energy, $\xi_1 = 1$ and $\xi_2 = 10^{-7}$. The dispersion relation (1) essentially corresponds to the power-law expansion (see [3]), so for practical purposes (due to the smallness of the expansion parameter E/E_{QG}) only the lowest terms of the expansion are relevant. Because in some LIV theories the odd-power terms might be forbidden [14] we retain the cases of $n = 1$ and 2.

The relation (1) leads to a Hamiltonian of the following form:

$$H = \sqrt{\left(p_{\nu}^2c^2 + m_{\nu}^2c^4 \right) \left[1 + \epsilon \left(\frac{E_{\nu}}{\xi_n E_{QG}} \right)^n \right]}.$$ (2)

Because of the expansion of the Universe, the neutrino momentum $p_{\nu} = p_{\nu}(t)$ is related to the cosmic scale factor $a(t)$ through

$$p_{\nu}(t) = \frac{p_{\nu}(t_0)}{a(t)}.$$ (3)

Later on the scale factor will be re-expressed in terms of redshift z, which is an observable quantity. A similar relation holds of course for the neutrino energy $E_{\nu} = E_{\nu}(t)$. The time-dependent velocity is given by

$$v(t) = \frac{\partial H}{\partial p}.$$ (4)
From (4), using the Hamiltonian (2), dispersion relation (1) and scale factor dependence (3), one can easily obtain (to the lowest order in terms of the observed neutrino energy \(E_{\nu}(t_0) \equiv E_{\nu 0} \)) that

\[
v_{\nu}(t) \simeq \frac{c}{a(t)} \left[1 - \frac{1}{2} \frac{m_{\nu}^2 c^4}{E_{\nu 0}^2} a^2(t) + \frac{1}{2} (n + 1) \epsilon \left(\frac{E_{\nu 0}}{\xi_{\nu} E_{\text{QG}}} \right)^n \frac{1}{a^n(t)} \right].
\]

(5)

The comoving distance travelled by a neutrino from a GRB to the Earth is defined as

\[
r(t) = \int_{t_{\text{emission}}}^{t_0} v(t) \, dt.
\]

(6)

Taking into account that \(a(t) = 1/(1 + z) \) we can express the above relation (6) in terms of redshift \(z \):

\[
r(z) = \int_0^z \frac{dz}{v(z) H(z)(1 + z)}
\]

(7)

where for neutrinos we have

\[
v(z) \simeq c(1 + z) \left[1 - \frac{1}{2} \frac{m_{\nu}^2 c^4}{E_{\nu 0}^2} \frac{1}{(1 + z)^2} + \frac{1}{2} (n + 1) \epsilon \left(\frac{E_{\nu 0}}{\xi_{\nu} E_{\text{QG}}} \right)^n (1 + z)^n \right]
\]

(8)

and \(H(z) \), as usual, denotes the expansion rate. The time of flight for neutrinos (i.e. the comoving distance measured in light years) from the GRB source to the Earth is then

\[
t_{\nu} = \int_0^z \left[1 - \frac{m_{\nu}^2 c^4}{2 E_{\nu 0}^2} \frac{1}{(1 + z)^2} + \frac{n + 1}{2} \frac{E_{\nu 0}}{\xi_{\nu} E_{\text{QG}}} \right]^n (1 + z)^n \frac{dz}{H(z)}.
\]

(9)

In the first term one easily recognizes the well-known time of flight for prompt (lower energetic) photons so the time delay due to both neutrino masses and LIV effects, between a high-energy neutrino and a low-energy prompt photon, is equal to

\[
\Delta t = \int_0^z \left[\frac{m_{\nu}^2 c^4}{2 E_{\nu 0}^2} \frac{1}{(1 + z)^2} - \frac{n + 1}{2} \frac{E_{\nu 0}}{\xi_{\nu} E_{\text{QG}}} \right]^n (1 + z)^n \frac{dz}{H(z)}.
\]

(10)

In the calculations above we retained the neutrino mass—it is massive after all. For the purpose of further calculations we assume \(m_{\nu} = 1 \) eV. However, it is evident already from formula (10) that the effect of non-zero mass of the neutrino is for our purpose negligible—in perfect accordance with the formulae in [8].

Below, we briefly introduce five types of cosmological model in which LIV-induced time delays will be calculated. We will restrict our attention to flat models (\(k = 0 \)) because the flat Friedman–Robertson–Walker geometry is strongly supported by cosmic microwave background radiation (CMBR) data [16].

The Friedman–Robertson–Walker model with non-vanishing cosmological constant and pressureless matter, including the dark part of it responsible for flat rotation curves of galaxies (the so-called \(\Lambda \)CDM model), is a standard reference point in modern cosmology. Sometimes it is referred to as a concordance model since it fits rather well to independent data (such like CMBR data, LSS considerations, supernovae data). The cosmological constant suffers from the fine-tuning problem (being constant, why does it start dominating at the present epoch?) and from the enormous discrepancy between
GRB neutrinos, Lorenz invariance violation and the influence of background cosmology

facts and expectations (assuming that \(\Lambda \) represents the quantum-mechanical energy of the vacuum it should be 55 orders of magnitude larger than observed \([17]\)).

Hence another popular explanation of the accelerating Universe is to assume the existence of a negative pressure component called dark energy. One can heuristically assume that this component is described by a hydrodynamical energy–momentum tensor with (effective) cosmic equation of state: \(p = w \rho \), where \(-1 < w < -1/3\) \([18]\). In such a case this component is called ‘quintessence’. Confrontation with supernovae and CMBR data \([19]\) led to the constraint \(w \leq -0.8 \). This was further improved by a combined analysis of SNIa and large-scale structure considerations (see e.g. \([20]\)) and from WMAP data on CMBR \([21]\). The most recent one comes from the ongoing ESSENCE supernova survey \([22]\) and pins down the equation of state parameter \(w \) to the range \(-1.07 \pm 0.09(1\sigma) \pm 0.12\) (systematics). For illustrative purposes we chose \(w = -0.87 \) as representing a quintessence model which is different from the cosmological constant and still admissible by the data.

If we think that the quintessence has its origins in the evolving scalar field, it would be natural to expect that the \(w \) coefficient should vary in time, i.e. \(w = w(z) \). An arbitrary function \(w(z) \) can be Taylor expanded. Then, bearing in mind that both SNIa surveys or strong gravitational lensing systems are able to probe the range of small and moderate redshifts, it is sufficient to explore first the linear order of this expansion. Such a possibility, i.e. \(w(z) = w_0 + w_1 z \), has been considered in the literature (see e.g. \([23]\)). We call it Var quintessence below. Fits to supernovae data performed in the literature suggest \(w_0 = -1.5 \) and \(w_1 = 2.1 \) \([24]\) (which is consistent with fits given in \([25]\)). Therefore we adopted these values as representative for this parameterization of the equation of state.

In the class of generalized Chaplygin gas models, the matter content of the Universe consists of pressureless gas with energy density \(\rho_m \) representing the baryonic plus cold dark matter (CDM) and of the generalized Chaplygin gas with the equation of state \(p_{\text{Ch}} = -(A/\rho_{\text{Ch}}^\alpha) \) with \(0 \leq \alpha \leq 1 \), representing the dark energy responsible for acceleration of the Universe. Using the angular size statistics for extragalactic sources combined with SNIa data it was found in \([26]\) that in the \(\Omega_m = 0.3 \) and \(\Omega_{\text{Ch}} = 0.7 \) scenario the best-fitted values of the model parameters are \(A_0 = 0.83 \) and \(\alpha = 1 \), respectively. Generalized Chaplygin gas models have been intensively studied in the literature \([27]\), and in particular they have been tested against supernovae data (see e.g. \([28]\) and references therein). Conclusions from these fits are in agreement with the above-mentioned values of parameters so we used them as representative of Chaplygin gas models.

Brane-world scenarios assume that our four-dimensional space–time is embedded into five-dimensional space, and that gravity in five dimensions is governed by the usual five-dimensional Einstein–Hilbert action. The bulk metric induces a four-dimensional metric on the brane. The brane-induced gravity models \([12]\) have a four-dimensional Einstein–Hilbert action on the brane calculated with an induced metric. According to this picture, our four-dimensional Universe is a surface (a brane) embedded into a higher-dimensional bulk space–time in which gravity propagates. As a consequence there exists a certain crossover scale \(r_c \) above which an observer will detect higher-dimensional effects. Cosmological models in brane-world scenarios have been widely discussed in the literature \([29]\). It has been shown in \([29]\) that a flat brane-world Universe with \(\Omega_m = 0.3 \) and \(r_c = 1.4 H_0^{-1} \) is consistent with current SNIa and CMBR data. Note that in a flat
Table 1. Expansion rates $H(z)$ in four models tested. The quantities Ω_i represent fractions of critical density currently contained in energy densities of respective components (like clumped pressureless matter, Λ, quintessence, Chaplygin gas or brane effects).

Model	Cosmological expansion rate $H(z)$ (the Hubble function)
ΛCDM	$H^2(z) = H_0^2[\Omega_m (1 + z)^3 + \Omega_{\Lambda}]$
Quintessence	$H^2(z) = H_0^2[\Omega_m (1 + z)^3 + \Omega_Q (1 + z)^{3(1+w)}]$
Var quintessence	$H^2(z) = H_0^2[\Omega_m (1 + z)^3 + \Omega_Q (1 + z)^{3(1+w_0-w_1)} \exp(3w_1 z)]$
Chaplygin gas	$H(z)^2 = H_0^2[\Omega_m (1 + z)^3 + \Omega_{Ch}(A_0 + (1 - A_0)(1 + z)^{3(1+\alpha)})^{1/(1+\alpha)}]$
Brane-world	$H(z)^2 = H_0^2 \left[\sqrt{\Omega_m (1 + z)^3 + \Omega_{rc}} + \sqrt{\Omega_{rc}}\right]^2$

(i.e. $k = 0$) brane-world Universe the following relation is valid: $\Omega_{rc} = \frac{1}{4}(1 - \Omega_m)^2$. Further research performed in [30] based on SNLS combined with SDSS disfavoured flat brane-world models. More recent analysis by the same authors [31] also using the ESSENCE supernovae sample and CMB acoustic peaks led to the conclusion that a flat brane-world scenario is only slightly disfavored, although the inclusion of a baryon acoustic oscillation peak would rule it out. Despite this interesting debate we use a flat brane-world scenario with $\Omega_m = 0.3$ for illustration.

Expansion rates $H(z) = \dot{a}/a$ (equivalent to Friedman equation) for the models studied are shown in table 1.

3. Results and conclusions

We have calculated the time delays of 100 TeV neutrinos as a function of redshift (see equation (10)) in the different dark energy scenarios described above and for LIV theories with $n = 1$, $\xi_1 = 1$ and $n = 2$, $\xi_2 = 10^{-7}$ respectively. They are summarized in figure 1. A redshift range from $z = 0$ to 6 represents the depth of GRB surveys [4] and hence reflects the range of distances from which one might expect the high-energy neutrinos to come. For better resolution we have displayed the same information in figure 2, but in a restricted range of redshifts. The GRB sample with measured redshifts has a mode at about $z \sim 1.5$. Therefore a range from $z = 2$ to 3 in some sense also represents the most likely distance for a potential source of high-energy neutrinos. Figure 3, finally, displays the energy dependence of the time of flight delay for a source located at $z = 3$.

One can see noticeable differences between the time delays calculated for different background cosmologies. The ΛCDM model and quintessence model (with the w parameter best fitted to current SNIa and CMBR data) introduce negligible confusion to the time delays. The brane-world models (i.e. the class representative of theories in which LIV is expected) and the Chaplygin gas scenario predict time delays considerably lower than in ΛCDM cosmology. For example the differences in time delays of a 100 TeV neutrino from a source at $z = 3$ between ΛCDM and Chaplygin gas models is almost 3 h for $n = 2$ LIV theories and 43 min for $n = 1$ LIV theories. The respective differences between ΛCDM and brane-world models are almost 1 h for $n = 2$ and 16 min for $n = 1$. These systematic differences become higher with redshift. The most pronounced is the
Figure 1. Observed time delays for 100 TeV neutrinos as a function of redshift in different dark energy scenarios (ΛCDM: light-grey dashed line, quintessence: black dashed line, quintessence with varying equation of state: light-grey solid line, brane-world model: black solid line and Chaplygin gas scenario: dot–dashed line). The upper curves correspond to $n = 2$, $\xi_2 = 10^{-7}$, and the lower curves correspond to $n = 1$, $\xi_1 = 1$.

Figure 2. The same as figure 1, in a restricted redshift range corresponding to the mode of GRB distribution.

difference in time delays between ΛCDM and Var quintessence (i.e. the model with linear $w(z)$ functions with parameters best fitted to SNIa). The resulting mismatch between predicted time delays (from a source at $z = 3$) ranges from 1.25 h in $n = 1$ theories to 6 h in $n = 2$ LIV theories. The respective values for a more distant source (at $z = 6$) are almost 4 h ($n = 1$) and 27.5 h ($n = 2$).

Our results indicate that our ignorance concerning the true model of dark energy in the Universe is not able to spoil the utility of time delays in discriminating between $n = 1$ and 2 classes of LIV theories. However, in each class of LIV theories it introduces an
GRB neutrinos, Lorenz invariance violation and the influence of background cosmology

Figure 3. Time delays as a function of neutrino energy in different dark energy scenarios for a source located at \(z = 3\). The left (steeper) family of curves corresponds to \(n = 2\), \(\xi_2 = 10^{-7}\) LIV theories, and the right family corresponds to \(n = 1\), \(\xi_1 = 1\) LIV theories.

uncertainty at the level from 7% (\(\Lambda\)CDM, quintessence, Chaplygin, brane-world) up to 35% (Var quintessence) for sources at \(z = 3\) (i.e. the most likely located GRBs). This translates into ranges 7%–35% and 14%–70% for the uncertainty for inferred bounds on \(\xi_n E_{QG}\) in \(n = 1\) and \(n = 2\) cases correspondingly. For more distant sources this is respectively higher.

Therefore the conclusion is that a better understanding of the dark energy dominated Universe is crucial for testing LIV theories with cosmological sources like GRBs. Theoretically one may also invert this argument by saying that if LIV dispersion relation was proven experimentally and its parameters were constrained then time delays from GRBs could become a new kind of cosmological test.

References

[1] Amelino-Camelia G, Ellis J R, Mavromatos N E, Nanopoulos D V and Sarkar S, 1998 Nature 393 763
[2] Rodriguez Martinez M and Piran T, 2006 J. Cosmol. Astropart. Phys. JCAP04(2006)006 [SPIRES] [astro-ph/0601219]
[3] Ellis J R, Mavromatos N E, Nanopoulos D V and Sakharov A S, 2003 Astron. Astrophys. 402 409
[4] Piran T, 2004 Rev. Mod. Phys. 76 1143 [SPIRES]
[5] Meszaros P and Rees M J, 1994 Mon. Not. R. Astron. Soc. 269 L41
Meszaros P, Rees M J and Papatathanassiou H, 1994 Astrophys. J. 432 181 [SPIRES]
[6] Coleman S and Glashow S L, 1999 Phys. Rev. D 59 116008 [SPIRES]
Bertolami O and Carvalho C S, 2000 Phys. Rev. D 61 103002 [SPIRES]
[7] Amelino-Camelia G and Piran T, 2001 Phys. Rev. D 64 036005 [SPIRES]
Kifune T, 1999 Astrophys. J. 518 L21
[8] Uri J and Piran T, 2007 Nature Phys. 3 87
[9] Perlmutter S et al, 1999 Astrophys. J. 517 565 [SPIRES]
Riess A et al, 1998 Astron. J. 116 1009 [SPIRES]
[10] Ratra B and Peebles P J E, 1988 Phys. Rev. D 37 3406 [SPIRES]
Caldwell R R, Dave R and Steinhardt P J, 1995 Phys. Rev. Lett. 75 2077 [SPIRES]
GRB neutrinos, Lorenz invariance violation and the influence of background cosmology

Frieman J, Hill C, Stebbins A and Waga I, 1995 Phys. Rev. Lett. 75 2077 [SPIRES]
Caldwell R, Dave R and Steinhardt P J, 1998 Phys. Rev. Lett. 80 1582 [SPIRES]
Zlatev I, Wang L and Steinhardt P J, 1999 Phys. Rev. Lett. 82 896 [SPIRES]
[11] Kamenshchik A, Moschella V and Pasquier V, 2000 Phys. Lett. B 511 256 [SPIRES]
Fabris J C, Gonçalves S V B and de Souza P E, 2002 Gen. Rel. Grav. 34 53 [SPIRES]
[12] Dvali G, Gabadadze G and Porrati M, 2000 Phys. Lett. B 485 208 [SPIRES]
Dvali G and Gabadadze G, 2001 Phys. Rev. D 63 065007 [SPIRES]
[13] Csaki C, Erlich J and Grojean C, 2001 Gen. Rel. Grav. 33 1921 [SPIRES]
Bertolami O and Carvalho C, 2006 Phys. Rev. D 74 084020 [SPIRES]
[14] Burgess C P, Cline J M, Filotas E, Matias J and Moore G D, 2002 J. High Energy Phys. JHEP03(2002)043 [SPIRES]
[15] Riess A G et al (Supernova Search Team Collaboration), 2004 Astrophys. J. 607 665 [SPIRES]
[16] Benoit A et al, 2003 Astron. Astrophys. 399 L25 [SPIRES]
[17] Weinberg S, 1989 Rev. Mod. Phys. 61 1 [SPIRES]
[18] Chiba T, Sugiyama N and Nakamura T, 1998 Mon. Not. R. Astron. Soc. 301 72
Turner M S and White M, 1997 Phys. Rev. D 56 4439 [SPIRES]
[19] Bean R and Melchiorri A, 2002 Phys. Rev. D 65 041302 [SPIRES]
[20] Melchiorri A, Mersini L, Odman C J and Trodden M, 2003 Phys. Rev. D 68 43509 [SPIRES]
[21] Spergel D et al, 2003 Astrophys. J. Suppl. 148 175
[22] Wood-Vasey W M et al, 2007 Preprint astro-ph/0701041
[23] Weller J and Albrecht A, 2001 Phys. Rev. Lett. 86 1939 [SPIRES]
Moor I, Brustein R and Steinhardt P J, 2001 Phys. Rev. Lett. 86 6 [SPIRES]
[24] Jain D, Alcaniz J S and Dev A, 2006 Nucl. Phys. B 732 379 [SPIRES]
[25] Biesiada M, 2007 J. Cosmol. Astropart. Phys. JCAP02(2007)003 [SPIRES]
[26] Alcaniz J S and Lima J A S, 2005 Astrophys. J. 618 16 [SPIRES]
[27] Makler M, de Oliveira S Q and Waga I, 2003 Phys. Lett. B 555 1 [SPIRES]
Avelino P P, Beça I M G, de Carvalho J P M, Martins C J A P and Pinto P, 2003 Phys. Rev. D 67 023511 [SPIRES]
[28] Biesiada M, Godlowski W and Szylkowski M, 2005 Astrophys. J. 622 28 [SPIRES]
[29] Jain D, Dev A and Alcaniz J S, 2002 Phys. Rev. D 66 083511 [SPIRES]
Alcaniz J S, Jain D and Dev A, 2002 Phys. Rev. D 66 067301 [SPIRES]
[30] Fairbairn M and Goobar A, 2006 Phys. Lett. B 642 432 [SPIRES]
Fairbairn M and Goobar A, Testing the DGP model with ESSENCE, 2007 Preprint astro-ph/0701195 v1