High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish

Yan Xiao1, Adèle Faucherre2, Laura Pola-Morell2, John M. Heddleston3, Tsung-Li Liu3, Teng-Leong Chew3, Fuminori Sato4, Atsuko Sehara-Fujisawa4, Koichi Kawakami5,6 and Hernán López-Schier1,2,*

ABSTRACT
Neural damage is a devastating outcome of physical trauma. The glia are one of the main effectors of neuronal repair in the nervous system, but the dynamic interactions between peripheral neurons and Schwann cells during injury and regeneration remain incompletely characterized. Here, we combine laser microsurgery, genetic analysis, high-resolution intravital imaging and lattice light-sheet microscopy to study the interaction between Schwann cells and sensory neurons in a zebrafish model of neurotrauma. We found that chronic denervation by neuronal ablation leads to Schwann-cell death, whereas acute denervation by axonal severing does not affect the overall complexity and architecture of the glia. Neuronal-circuit regeneration begins when Schwann cells extend bridging processes to close the injury gap. Regenerating axons grow faster and directionally after the physiological clearing of distal debris by the Schwann cells. This might facilitate circuit repair by ensuring that axons are guided through unoccupied spaces within bands of Büngner towards their original peripheral target. Accordingly, in the absence of Schwann cells, regenerating axons are misrouted, impairing the re-innervation of sensory organs. Our results indicate that regenerating axons use haptotaxis as a directional cue during the reconstitution of a neural circuit. These findings have implications for therapies aimed at neurorepair, which will benefit from preserving the architecture of the peripheral glia during periods of denervation.

KEY WORDS: High-resolution imaging, Neurotrauma, Regeneration, Schwann cells, Haptotaxis

INTRODUCTION
Peripheral neuropathies in humans occur equally across ethnic, sex, age and socio-economic groups, but are more pernicious among the elderly, the diabetic and the overweight. The National Institutes of Health, for example, lists over 1500 clinical trials for neuropathies of the peripheral nervous system, demonstrating the immense interest in this global health problem (http://clinicaltrials.gov/ct2/results?term=peripheral+Neuropathy&Search=Search; accessed September 2014). Schwann cells are an important glial cell type in the vertebrate peripheral nervous system (Jessen and Mirsky, 2005; Kidd et al., 2013), and the interaction between Schwann cells and neurons is essential to maintain the integrity and function of neuronal circuits (Arthur-Farraj et al., 2012; Court et al., 2004; Nave, 2010; Rodrigues et al., 2011; Sharghi-Namini et al., 2006; Shy, 2009). Understanding neuron-glia interactions is therefore of utmost importance to devise effective treatments for peripheral neuropathies. However, a detailed characterization of the dynamic relationship between Schwann cells and neurons during injury and repair has been hampered by the size, complexity and inaccessibility of most parts of the mammalian nervous system (Erturk et al., 2012; Kang and Lichtman, 2013; Kang et al., 2014; Misgeld et al., 2007). By contrast, fish have a superficial and accessible sensory-neural system called the lateral line (Ghysen and Dambly-Chaudiere, 2007). The peripheral axons of the lateralis afferent neurons are associated with myelinating Schwann cells (Brosamle and Halpern, 2002; Lyons et al., 2005; Raphael and Talbot, 2011). Mutagenic and ultrastructural studies have revealed strong genetic and anatomical similarities between piscine and mammalian Schwann cells (Lyons et al., 2005; Pogoda et al., 2006; Czopka and Lyons, 2011; Goessling and North, 2014; Hall, 1999; Monk et al., 2009, 2013; Ruohoneden et al., 2005; Sulaiman and Gordon, 2009; Sulaiman et al., 2002; Weinberg and Spencer, 1978). Accordingly, we have established an experimental paradigm that combines traumatic neural injury and multiparametric intravital microscopy in zebrafish to study in detail the behavior and function of Schwann cells during the repair of a sensory circuit.

RESULTS
The Tg[gSAGFF202A] transgenic line is a specific Gal4 driver in Schwann cells
Transgenic zebrafish lines expressing fluorescent proteins have been valuable tools to study Schwann-cell behavior during embryogenesis (Jung et al., 2010; Lewis and Kucenas, 2013; Munzel et al., 2012; Perlin et al., 2011). However, additional resources are needed to visualize and manipulate Schwann cells in the intact animal. In the zebrafish and other species, cell-type-specific ‘driver’ transgenic lines that produce the transcription factor Gal4 can express ‘effector’ genes under the control of an ‘upstream activating sequence’ (UAS) (Asakawa and Kawakami, 2008; Faucherre and López-Schier, 2011; Halpern et al., 2008; Scheer and Campos-Ortega, 1999; Scott et al., 2007). To our knowledge, no Schwann-cell-specific driver line exists in zebrafish. To overcome this deficiency, we screened a large collection of transgenic strains that were generated by random integration of a gene-trapping construct bearing a Gal4FF driver (Kawakami et al., 2010). We obtained one line called Tg[gSAGFF202A] that activated the expression of UAS-controlled green-fluorescent protein (EGFP) in cells along the anterior and posterior lateral
线在稚鱼阶段（Fig. 1A）。它最初是不可逆的，因为SIIIch-EGFP标记的细胞是Schwann细胞再生的靶标，从而防止了胶质细胞的进一步分解。因此，未来的研究方向是治疗神经损伤的药物，因为它们能够维持胶质细胞的完整性，从而帮助进一步研究胶质细胞和神经元在正常和损伤条件下、物理损伤和修复过程中的相互作用。这些结果具有直接的临床意义，因为它们证明了胶质细胞在神经损伤过程中的主导作用。这些结果具有直接的临床意义，因为它们证明了胶质细胞在神经损伤过程中的主导作用。
characterize these cells, we labeled transgenic larvae with the monoclonal antibody 6D2, which recognizes a carbohydrate epitope of piscine P0-like myelin glycoprotein in peripheral glial cells (Bastmeyer et al., 1994; López-Schier and Hudspeth, 2005). This antibody marked the EGFP-expressing cells but not lateralis neuronal perykaria (Fig. 1G). To further determine their identity, we used an antibody to the Claudin-k junctional protein, which labels Schwann cells in peripheral neurons of zebrafish (Munzel et al., 2012). This antibody decorated all the Gal4(+) cells (Fig. 1H). These data demonstrate that the Tg[gSAGFF202A] transgenic line expresses Gal4 in Schwann cells.

The Tg[gSAGFF202A] insertion disrupts the ErbB2 gene

One quarter of the progeny from crossings of Tg[gSAGFF202A] transgenic males and females presented supernumerary neuromasts, suggesting that the insertion is mutagenic (Fig. 2A-F and supplementary material Fig. S1). Zebrafish lacking Schwann cells show this phenotype, in addition to nerve defasciculation due to loss of myelination. Using confocal and lattice light-sheet microscopy, we also observed fasciculation defects in Tg[gSAGFF202A] homozygous larvae (Fig. 2C,D,G). Therefore, we positionally mapped the Tg[gSAGFF202A] transgene and found that it is inserted in the first coding exon of the ErbB2 locus (Fig. 2H,I). The ErbB2 receptor tyrosine kinase has been shown to be essential for the migration of Schwann cells along growing lateralis afferent axons in zebrafish (Grant et al., 2005; Lush and Piotrowski, 2014; Lyons et al., 2005). Genetic crossings showed that the ErbB2st61 mutant allele did not complement Tg[gSAGFF202A] (data not shown) (Lyons et al., 2005). Thus, the Tg[gSAGFF202A] insertion represents a new recessive, fully penetrant and strongly expressive loss-of-function allele of ErbB2.

Differential responses of Schwann cells to acute and chronic denervation

The peripheral axons of zebrafish sensory neurons, including those of the lateral line, are able to quickly regenerate after injury (Graciarena et al., 2014; Villegas et al., 2012; Martin et al., 2010). Neuronal ablation, by contrast, abolishes lateral-line innervation for a longer period. Here, we designed a method to generate acute or chronic denervation of Schwann cells in whole animals, by axon severing (Fig. 3A,B) or neuronal ablation (Fig. 3C-F), respectively. The strategy consists of inducing plasma-mediated cell damage by directing a pulsed ultraviolet laser (355 nm, 400 ps/2.5 μJ pulse) onto the living specimen. The laser was coupled to a spinning-disc inverted microscope and focused to axons for severing (Fig. 3A) or neuronal soma for ablation (Fig. 3C,D) in Tg[SILL:mCherry] transgenics. Observation at 1 h after microsurgery confirmed complete severing (Fig. 3B) or neuronal ablation (Fig. 3E,F). Next, we used Tg[gSAGFF202A;UAS:H2A-mTurquoise;SILL:mCherry] triple transgenics starting at 5 dpf (days post-fertilization) to quantify Schwann cells after denervation (Fig. 4A-D). A follow-up period of
5 days showed a significant decrease in the number of Schwann cells marked with H2A-mTurquoise beginning at 24 h post-trauma (hpt) (Fig. 4B-D). Schwann-cell loss continued in the fish lacking afferent neurons but ceased in fish with transected axons at 48 hpt (Fig. 4A-D). We reasoned that the decrease of Schwann cells upon denervation might be due to the loss of fluorescent-protein expression in this particular transgenic line. However, we did not favor this possibility for two reasons. First, we used H2A-mTurquoise as a Schwann-cell marker. Although we have not directly measured the stability of the H2A-mTurquoise fusion protein, histones are known to be some of the most stable proteins in animal cells, with a half-life of a n i m a l s = 8 , suggesting that the reduction in the number of Schwann cells resulted from cell death (Fig. 4G,H). We also directly visualized Schwann-cell dynamics by live-microscopy imaging of in the quadrupl transgenics, Tg[gSAGFF202A;UAS:EGFP;UAS:H2A-mTurquoise;SILL:mCherry], which clearly showed the mitotic behavior and death by apoptosis of denervated Schwann cells (Fig. 4I and supplementary material Movie 2). We did not observe extrusion of Schwann cells from the glial stream (supplementary material Movie 2). Thus, these results indicate that denervation induces Schwann-cell death, and that the regrowth of axons prevents further glial depletion.

To assess architectural changes of denervated peripheral glia, we used the 6D2 and the anti-Claudin-k antibodies (Fig. 5A-L). In control animals, 6D2 decorated Schwann cells around the lateralis afferent ganglia and neuronal peripheral axons (Fig. 5A-C). Upon laser ablation of the posterior ganglion (Fig. 5D), the central axons and projections rapidly degraded. Schwann cells around the ganglion were also ablated with the laser (Fig. 5D,E). We chose samples that presented no newborn neurons within the period of analysis (Fig. 5D,G,J). At 24 hpt, Schwann cells devoid of axons began to lose expression of the P0-like myelin glycoprotein (Fig. 5G-I), and had lost virtually all 6D2 labeling at 48 hpt (Fig. 5J-L). A detailed visualization of the trunk of the treated specimens showed Claudin-k uniformly distributed along the lateralis nerve (Fig. 5M). After axonal severing, the Schwann cells around the proximal nerve stump maintained Claudin-k protein, whereas the Schwann cells in contact with the distal degenerating axons began to lose Claudin-k protein expression starting at 8 hpt (Fig. 5M). The levels of Claudin-k distal to the site of injury remained lower than on the proximal part, even after axonal regeneration at 26 hpt (Fig. 5M). However, Claudin-k protein levels in Schwann cells returned to normal and were equivalent on both sides of the axonal cuts around 72 hpt (Fig. 5M).

**Schwann cells facilitate but are dispensable for axonal regrowth**

To investigate the influence of Schwann cells on the rate and extent of axon regrowth after injury, we used the double-transgenic larvae Tg[gSAGFF202A;SILL:mCherry] at 5 dpf (Fig. 6A), when the posterior lateralis ganglion contains around 50 neuronal perikarya. The stereotypic position of this ganglion and the lateral branches of the afferent axons towards the neuromasts allowed us to precisely define a site of axonal cuts between samples (Fig. 6B). Additionally, we used the somites along the trunk to quantify the extent of axonal regeneration (Fig. 6B). All afferent axons were severed between the posterior ganglion and the first neuromast situated between somites 5 to 7. A time-course analysis of axonal regeneration in the double-transgenic Tg[gSAGFF202A+/--;SILL:mCherry] fish that we used as wild-type controls revealed that severed axons began to regrow within 24 hpt. On average, the fastest growth cones reached 12.7±0.9 somites at 24 hpt, and continued to grow at an average speed of 0.4±0.1 somites per hour until they reached the tip of the tail, which occurred within 72 hpt (Fig. 6A,B). By contrast, in...
Tg[gSAGFF202A−/−] mutants, axons showed a much slower rate of regrowth, advancing on average to somite 5 by 24 hpt, and stabilizing at around somite 9 by 72 hpt, with negligible further growth and often some retractions during the remainder of the follow-up period (Fig. 6A,B). The defective circuit recovery in the ErbB2 mutants might be due to neuronal death. Therefore, we quantified the neuronal population in wild-type and ErbB2 mutant fish under control and traumatic conditions. We counted perikarya using confocal stacks of the posterior ganglion in Tg[gSAGFF202A;SILL:mCherry]. Wild-type larvae at 5 dpf contained around 53 neurons, whereas the average number of neurons in ErbB2 mutants was 51 (Fig. 6C). Over the course of 5 days, ganglia grew to 65.2±3.1 and 63.2±1.7 neurons by 10 dpf in wild-type and ErbB2 mutants, respectively (P=0.097). Axon severing did not affect neuronal number or ganglion growth in wild-type animals (48 hpt: control 56.5±3.7 neurons, severed axons 51.3±2.5 neurons, P<0.05; 120 hpt: control 63.2±1.7 neurons, severed axons 42.3±3.6 neurons, P<0.0001) (Fig. 6C). Neural-circuit recovery in wild-type fish might result either from the efficient regrowth of damaged axons, from the growth of axons of newborn neurons (∼two new neurons per day) or from a combination of the two processes. Whole-fascicle severing experiments did not allow the discrimination between axonal regrowth and axonogenesis by newborn neurons. To directly test the growth capacity of severed axons in control and ErbB2 mutants, we severed the peripheral axon of a single identified afferent neuron. To this end, we marked individual neurons by stochastic expression of EGFP under the transcriptional control of the SILL enhancer by DNA injections. We used the transgenic line Tg[gSAGFF202A;UAS:EGFP;SILL:mCherry] to identify ErbB2 mutants and to ensure that EGFP expressors were lateral afferent neurons. Next, we severed these single EGFP-marked axons and found that they efficiently regrew in wild-type larvae, but not in ErbB2 mutants (Fig. 6D). Thus, fish lacking ErbB2 activity experienced elevated neuronal death and a failure to regrow axons effectively after
Schwann cells are necessary for the re-innervation of peripheral targets

We observed that one to four 'lateral' Schwann cells associated with axon terminal projections below the neuromasts (Fig. 1C,D). Therefore, we used these projections to investigate whether Schwann cells play a role in the re-innervation of sensory organs by regenerating axons. To this end, we severed axons before two adjacent neuromasts (control and experimental) and killed the lateral Schwann cells of the more rostral neuromast (experimental). The Tg[gSAGFF202A;UAS:EGFP;SILL:mCherry;Brn3c:mEGFP] specimens expressing green fluorescence in hair cells enabled the identification of the experimental and the control neuromasts before and after the damage (Fig. 7C) (Faucher et al., 2009; Xiao et al., 2005). A follow-up period of 72 h showed that Schwann cells at the main axonal bundle did not migrate to replace the ablated lateral Schwann cells, leaving the experimental neuromasts devoid of glia. Regenerating axons always re-innervated the control neuromasts but, in seven out of nine cases, failed to re-innervate the experimental neuromasts devoid of Schwann cells (Fig. 7C). This result indicates that Schwann cells serve as a cue and substratum for the growth cone of regenerating axons, and that the glia are essential for the regenerative innervation of peripheral sensory organs.

DISCUSSION

The experimental animal model of disease

Neuropathies arising from neuronal or glial damage due to cuts, burns and other traumatic events cause severe morbidity and increased mortality in humans (Beirowski, 2013; Scherer and Wrabetz, 2008). Understanding the cellular and molecular mechanisms involved in the onset and progression of neuropathies of glial origin is essential to develop novel therapeutic interventions (Gordon et al., 2003). Several studies have firmly demonstrated the strong conservation of neuron-glia interactions among vertebrates. However, most of the classical experimental animal models are not amenable to explore the fine details of the dynamic interaction between Schwann cells and neurons because of the inaccessibility of these cells to direct live imaging at high resolution. The zebrafish has emerged as a favorable system to

Fig. 5. Gradual loss of expression of myelin glycoprotein and Claudin-k junctional protein upon axon severing or ganglion ablation. (A-L) Maximal projection of Tg[gSAGFF202A;UAS:EGFP;SILL:mCherry] larvae immunolabeled with myelin 6D2 antibody (blue). (A,D,G,J) The cephalic region showing the anterior and posterior ganglion before ganglionostomy (A) and at 8-48 hpt in fish with ganglion ablation (D,G,J). (B,E,H,K) Higher magnification of the boxed regions in A,D,G,J, respectively. (C,F,I,L) Images of the animals' tail, corresponding to A,D,G,J. (D,G,J) At 8 hpt, 24 hpt, 48 hpt, immunostaining images reveals gradual loss of myelin protein. (F,I,L) Immunostaining of fish tails delineates the loss of myelin and clearance of axon debris in a gradual manner. (M) Time-course analysis of axonal regeneration and Claudin-k junctional protein expression (blue) in the Schwann cells around the site of damage. Claudin-k is present along the axonal regeneration and Claudin-k junctional protein expression (blue) in the Schwann cells around the site of damage. Claudin-k is present along the axonal regeneration and Claudin-k junctional protein expression (blue) in the Schwann cells around the site of damage.
study organ development, homeostasis and regeneration in the whole animal at high resolution (Goessling and North, 2014; Patton et al., 2014). Here, we use the peripheral nervous system of the zebrafish larva to establish an experimental paradigm of traumatic injury. We combine high-resolution live imaging with genetic and microsurgical manipulations to study the relationship between Schwann cells and their associated sensory neurons during injury and repair. We also implemented for the first time lattice light-sheet microscopy in zebrafish larvae. This novel imaging technology employs an ultra-thin laser sheet generated by two-dimensional optical lattices, which enabled us to perform three-dimensional intravital imaging at very high resolution (Chen et al., 2014). We predict that the combination of genetically encoded fluorescent biosensors and lattice light-sheet microscopy should further enable the visualization of subcellular physiological responses, and cytoskeletal and organellar dynamics, with unprecedented resolution. Additionally, although we have focused on axonal and circuit repair, our disease model can be easily adapted to visualize and probe other injury responses, such as inflammation, infection, immune reactions and scarring. We discuss below our results and their clinical implications.

How do Schwann cells respond to denervation?

We found that, during the initial loss of contact with the axolemma, Schwann cells downregulate the expression of the P0-like myelin glycoprotein and junctional Claudin-k, suggesting that they de-differentiate (Scherer, 1997). Thus, Schwann cells in zebrafish and in mammals behave similarly upon denervation (Harrisingh et al., 2004). We also found that chronic denervation is lethal for Schwann cells. Although glial depletion also occurred during acute denervation, axonal regrowth stabilized the peripheral glia by preventing further...
Schwann-cell death. Additionally, our results showed that an axon-
induced proximo-distal gradient of Schwann cell de-differentiation
might represent a directional cue for regenerating axons to grow
towards distal sites. This way, growth cones are induced to extend
directionally along de-differentiated Schwann cells that are located
exclusively distal to the site of damage (Allodi et al., 2012). It has
previously been shown in mammals that de-differentiated Schwann
cells promote axonal growth, and that Schwann cells re-differentiate
after entering into contact with re-growing axons (Arthur-Farraj et al.,
2012). We show here that Schwann cells in zebrafish re-differentiate
and re-myelinate upon entering into contact with re-growing axons.
Taken together, these results further support the strong conservation
of the cellular processes underlying axon-glia interactions across
vertebrates.
How do sensory neurons respond to injury?

Time-course analyses of axons showed that, after severing, the distal segments degenerate, and that Schwann cells quickly clear many or most distal-axonal fragments by phagocytosis. Neurons remained viable in animals with severed axons, in which the severed axons began to regrow within 24 h post-damage. However, we found that axonal severing induces neuronal death in ErbB2 mutant fish. The loss of ErbB2 blocked the migration and survival of most Schwann cells, suggesting that the peripheral glia might protect injured neurons from dying upon axonal damage. Notably, the survival of sensory spiral ganglion neurons requires ErbB signaling in the inner ear of mice (Stankovic et al., 2004). Because neuronal perikarya remain associated with Schwann cells in ErbB2 mutant animals, a Schwann-cell-independent role of ErbB2 in neuronal survival remains a possibility. One way to test this idea is to induce post-injury activation or inhibition of ErbB2 in neurons.

What is the identity of the directional cues for axonal regrowth?

We found that, after the physiological clearance of the degenerating distal axon fragments, the Schwann cells maintain endoneurial tubes, called bands of Büngner. It has been proposed that these tubes provide a permissive environment for axonal regeneration (Fawcett and Keynes, 1990; Feneley et al., 1991; Parrinello et al., 2010). However, they might also play an instructive role by inducing regrowing axons to extend growth cones in a directional manner. In rodents, nerve cuts trigger coordinated changes in behavior of fibroblasts and Schwann cells (Fawcett and Keynes, 1990; Feneley et al., 1991; Parrinello et al., 2010). This induces the collective migration of the Schwann cells towards the injury, guiding regrowing axons across the injury gap. Furthermore, if the collective migration of Schwann cells is impaired, axons take an abnormal path during regrowth (Fawcett and Keynes, 1990; Feneley et al., 1991; Parrinello et al., 2010). Using high-resolution intravital imaging, we complemented and extended this model of glia-dependent axonal guidance during regeneration by showing that Schwann cells on both sides of the injury extend processes that rapidly bridge the gap. We also show that the directionality of this process is independent of the axons, suggesting that it emerges from the collective behavior of the Schwann cells. Axonal regeneration is slow before glial processes close the gap, but accelerates upon growth-cone contact with distal Schwann cells (Alloidi et al., 2012; Bradke et al., 2012; Buettner et al., 1994). In addition, in the absence of Schwann cells, regenerating axons grow at slower rates and their growth cones stray and take random paths. These observations demonstrate similarities in multiple aspects of the role of the Schwann cells during axonal regeneration between mammals and fish. We do not know whether these similarities extend to fibroblasts, but live imaging in our zebrafish model of injury in combination with transgenic markers of fibroblasts might be able to address this question in the future. Importantly, our results strongly suggest that regenerating axons use haptotaxis with Schwann cells for directional growth. Therefore, Schwann cells have a powerful influence on the architecture of the repairing neural circuit by controlling the kinetics and directionality of axonal regrowth.

Different modes of axonal repair

A protracted degeneration of distal axonal fragments could affect neuronal repair in two opposite ways: it might block axonal regrowth until the distal portion of the damaged fibers are completely cleared, but might also facilitate fast neuronal repair by axolemmal resealing (David et al., 1997; Spira et al., 1993). Sensory neurons are known to be under mechanical tension (Chada et al., 1997; Lafont and Prochiantz, 1994; Smith, 1988). In addition to trophic support (Soares et al., 2014), Schwann cells might control the mechanical forces acting on axons, which could bias the frequency of either regenerative pathway. In the future it will be important to characterize the physical environment of sensory neurons and the influence of the Schwann cell on the behavior of injured axons under different regimes of mechanical tension. To this end, the highly reproducible in vivo model of axonal injury that we present here and the anatomical simplicity and superficial localization of the zebrafish lateral line can be combined with genetically encoded sensors to visualize the mechanical properties of axons upon injury and repair in their natural context.

Clinical implications

Peripheral neuropathies are sensory- and motor-neuron pathologies caused by genetic defects or stress (Nave, 2010; Cashman and Hoke, 2015). Comorbidity of traumatic and metabolic peripheral neuropathies is common in humans. Experimental and population-based studies have shown that lower-limb amputations due to neural dysfunction are prominent in individuals with diabetes (Lombardo et al., 2014). This invariably leads to a decrease in the quality of life of the affected individuals, and puts an enormous long-term burden on the healthcare systems. Notwithstanding recent progress, our knowledge about the influence of the glia on the degeneration and regeneration of the peripheral nervous system remains fragmentary (Faber and Merkies, 2015). Therefore, studies aimed at deepening our understanding of the dynamic interactions between neurons and Schwann cells in the natural context will be important to devise therapeutic strategies aimed at restoring sensory or motor function in humans suffering from traumatic injury. Collectively, our results show that denervation induces progressive destruction of the peripheral glia by increasing the apoptosis and inducing de-differentiation of Schwann cells. These negative effects of denervation are reversible, however, because re-innervation prevents further glial destruction. An important corollary of our results is the dominant influence of the Schwann cells on the onset and directionality of axonal regeneration. This has obvious clinical implications because strategies aimed at neural-circuit repair might benefit from preventing the death or disassembly of the peripheral glia during periods of denervation (Dedkov et al., 2002; Meier et al., 1999; Painter et al., 2014). We suggest that characterizing the axonal signals that control the differentiation status, entry into proliferation and survival of Schwann cells will provide multiple ‘druggable’ targets with therapeutic potential. One additional promising avenue is the screening of molecular libraries to identify drug leads. The genetic, anatomical and histopathological similarities of the peripheral glia among vertebrates suggest that the zebrafish model that we have developed is well suited for these approaches.

MATERIALS AND METHODS

Zebrafish strains and husbandry

Zebrafish were maintained under standardized conditions and experiments were conducted in embryos of unknown sex in accordance with protocols approved by the Ethical Committee of Animal Experimentation of the Parc de Recerca Biomèdica de Barcelona, and the Institutional Animal Care and Use Committee of the Janelia Research Campus. Naturally spawned eggs were collected, cleaned and maintained in system water at 28.5°C at a density of 50 per 85-mm Petri dish. The Tg[sagf202A] line was generated by random integration of a gene-trap construct (Asakawa et al., 2008). The Tg[Bra3c: mEGFP], Tg[SILL1] and Tg[UAS:EGFP] transgenic lines have been described previously (Faucheure and Lope-Schier, 2011, 2014; Faucheure...
et al., 2009; Xiao et al., 2005). The ErbB2<sup>med</sup> mutant allele was obtained from W. Talbot (Stanford University, CA).

**Selection of mutants**

Wild-type animals, and homozygous and trans-heterozygous mutants for ErbB2<sup>med</sup>, were incubated in DIASP. Homozygous mutants displayed extra neuromasts, whereas wild-type and heterozygous larvae displayed only seven to nine neuromasts on one side of their trunk. Heterozygous Tg [gSAGFF202A] was genotyped using the primers: Forward: 5′-GGTGTTCTGAGAAGCAAGATT-3′; Reverse: 5′-GGTTGGTGTAATGATGATGCAATGACTTG-3′. Heterozygous and homozygous Tg[gSAGFF202A;SILL:mCherry] were screened with a stereomicroscope under ultraviolet light. Lateral line neuromasts, whereas wild-type and heterozygous larvae displayed only one neuromast on each side of their trunk.

**DNA constructs**

The UAS:H2A-mTurquoise, hsp70:EGFP-SILL (SILL:EGFP) and UAS:EGFP-UtrCH constructs were generated using the Tol2 kit. Entry vectors were generated as described in the Invitrogen Multisite Gateway manual. PCRAs were performed using primers to add att sites onto the end of DNA fragments, using Platinum Pfx (Invitrogen). The pEntry vectors containing the UAS sequence, hsp70 minimal promoter, EGFP and polyA are from the Tol2 kit, and the pEntry vector containing the SILL enhancer has been previously generated by our laboratory. To generate the middle entry clone containing H2A-mTurquoise cDNA (using pDONR 221), the forward PCR primer contained an attB1 site and the reverse primer containing an attB2 site were used: Forward: 5′-GGGGACAGATGTTGTACAAAAAGCAGCTGCGCATTGATGGAAGGGCAGGA-3′; Reverse: 5′-GGGGACCCTTGTACAAAGAAGCTGGGTTTTATTTGCCTTTGGCCTTGTG-3′. To generate the middle entry clone containing EGFP-UtrCH, the forward primer was the same as that for H2A-mTurquoise, and combined with: Reverse: 5′-GGGGACCCTTGTACAAAGAAGCTGGGTTTTATTTGCCTTTGGCCTTGTG-3′. To generate transgenic zebrafish

To generate the Tg[UAS:H2A-mTurquoise] stable transgenic line, 20 pg of the Tol2-expression clone and 20 pg of the transposase synthetic RNA were simultaneously injected into one-cell-stage wild-type eggs. The resulting embryos were raised to adulthood and out-crossed to Tg[gSAGFF202A;SILL:mCherry] larvae at 3 dpf to obtain a heterozygous offspring. To quantify Schwann-cell proliferation by means of DNA synthesis, BrdU incorporation was measured. Tg[gSAGFF202A;UAS:EGFP;SILL:mCherry] larvae were incubated in BrdU (Sigma, 10 μM) for 24 h at 21°C. After fixation with 4% paraformaldehyde and permeabilization with 0.2% Triton X-100, BrdU-positive nuclei were counted using H2A-mTurquoise expression, EGFP and BrdU. To quantify Schwann cells, images of a 1-mm-long segment were taken at the distal part of the injury and followed for 5 days. Schwann-cell nuclei were counted using H2A-mTurquoise expression, EGFP and BrdU.

**Laser-mediated axon severing and cell ablation**

For axonal severing or cell ablation we used the iLasPulse laser system (Roper Scientific SAS) mounted on a Zeiss Axio Observer inverted microscope equipped with a 63× water objective lens. Zebrafish larvae were anesthetized, mounted on a glass-bottom dish and covered with methylcellulose. A train of laser pulses was repeatedly applied to the posterior lateral ganglion or lateral axons and Schwann cells until all red or green fluorescence disappeared. Samples were assessed again for the presence of mCherry or EGFP in the target region 1 h after axonal severing or cell ablation. Total ablation occurred in samples with no red-fluorescent or green-fluorescent signal in the target region. Laser microsurgery was conducted in over 100 animals, resulting in more than 90% survival.

**Acknowledgements**

We thank W. Talbot (Stanford University) for the ErbB2<sup>med</sup> mutant line, and T. Becker (University of Edinburgh) for the anti-Claudin-k antibody. We thank Juan Martín-
Cabaliero and Jim Cox, respectively from the Central Animal Facilities of the PRBB (Barcelona, Spain) and the Janelia Research Campus (VA, USA) for access to animals and their care.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Y.X., A.F. and H.L.-S. designed the project. Y.X., A.F., J.M.H., L.P.-M. and F.S. did most of the work. Y.X., J.M.H. and H.L.-S. performed live-imaging microscopy. Y.X., F.S., A.-S.F. and K.K. generated transgenic fish and analyzed the mutant phenotype. T.-L.L. and T.-C. designed, built and implemented the lattice light-sheet microscope. Y.X., J.M.H., F.S., A.-S.F., K.K. and H.L.-S. analyzed the data. Y.X. and H.L.-S. wrote the paper with input from all authors.

Funding
This work was funded by the H接地气 Diabetes Portfolio of the Helmholtz Gemeinschaft, and by a Program Grant of the Human Frontier Science Program (RG2003/2014) to H.L.-S.; and by the National BioResource Project (NBRP) and Grants-in-Aid for Scientific Research (23241063 to K.K. and 2212207 to A.F.-S.) from the Ministry of Education, Science, Sports and Technology (MEXT) of Japan. The AIC at Janelia is sponsored by the Gordon and Betty Moore Foundation and by the Howard Hughes Medical Institute.

Supplementary material
Supplementary material available online at http://dmm.biologicals.orglookup/suppl?doi=10.1242/dmm.018184/-/DC1

References
Allodi, I., Udina, E. and Navarro, X. (2012). Specificity of peripheral nerve regeneration: interactions at the axon level. Prog. Neurobiol. 98, 16–37.

Cytomechanics of neurite outgrowth from chick brain neurons. J. Cell Sci. 110, 1179-1186.

Chen, B.-C., Legant, W. R., Wang, K., Shao, L., Milkie, D. M., Davidson, M. W., Jung, S.-H., Kim, S., Chung, A.-Y., Kim, H.-T., So, J.-H., Ryu, J., Park, H.-C. and Jung, S.-H., Kim, S., Chung, A.-Y., Kim, H.-T., So, J.-H., Ryu, J., Park, H.-C. and Jung, S.-H. (2010). Visualization of myelination in GFP-transgenic zebrafish. Dev. Dyn. 239, 59-92.

Kang, H. and Lichtman, J. W. (2013). Motor axon regeneration and muscle reinnervation following nerve injury. J. Physiol. 591, 166-171.

López-Schier, H. and Hudspeth, A. J. (2005). Supernumerary neuromasts in the posterior lateral line of zebrafish lacking peripheral glia. Proc. Natl. Acad. Sci. USA 102, 1496-1501.

Lush, M. E. and Piotrowski, T. (2014). ErbB2 expressing Schwann cells control lateral line progenitor cells via non-cell-autonomous regulation of Wnt/beta-catenin. Elife 3, e10832.

Lyons, D. A., Pogoda, H.-M., Voas, M. G., Portera-Cailliau, C. and Sagasti, A. (2010). Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning. Development 137, 3985-3994.

Goedhart, J., van Weeren, L., Hink, M. A., Vischer, N. O. E., Jalink, K. and Grave, T. W. J.Jr (2010). Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat. Methods 7, 137-139.

Goessling, W. and North, T. E. (2014). Repairing cell swims: advances in regenerative medicine. Dev. Biol. 398, 1-13.

Harrissingh, M. C., Perez-Nadales, E., Parkinson, D. B., Malcolm, D. S., Mudge, A. W. and Lloyd, A. C. (2004). The Regulation of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc. Nat. Acad. Sci. USA 111, 1610-1615.

Grant, K. A., Rabile, D. W. and Piotrowski, T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuroreport 16, 1610-1615.

Hall, S. M. (1999). The biology of chronically denervated Schwann cells. Annu. N. Y. Acad. Sci. 883, 215-233.

Halpern, M. E., Rhein, K., Goll, M. G., Aikake, C. M., Parsons, M. and Leach, S. D. (2008). Gal4/UAS transgenic tools and their application to zebrafish. Zeikibes 5, 97-110.

Harrissingh, M. C., Perez-Nadales, E., Parkinson, D. B., Malcolm, D. S., Mudge, A. W. and Lloyd, A. C. (2004). The Regulation of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc. Nat. Acad. Sci. USA 111, 1610-1615.

Grant, K. A., Rabile, D. W. and Piotrowski, T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuroreport 16, 59-60.

Harrissingh, M. C., Perez-Nadales, E., Parkinson, D. B., Malcolm, D. S., Mudge, A. W. and Lloyd, A. C. (2004). The Regulation of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc. Nat. Acad. Sci. USA 111, 1610-1615.

Grant, K. A., Rabile, D. W. and Piotrowski, T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuroreport 16, 59-60.

Harrissingh, M. C., Perez-Nadales, E., Parkinson, D. B., Malcolm, D. S., Mudge, A. W. and Lloyd, A. C. (2004). The Regulation of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc. Nat. Acad. Sci. USA 111, 1610-1615.

Grant, K. A., Rabile, D. W. and Piotrowski, T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuroreport 16, 59-60.

Harrissingh, M. C., Perez-Nadales, E., Parkinson, D. B., Malcolm, D. S., Mudge, A. W. and Lloyd, A. C. (2004). The Regulation of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc. Nat. Acad. Sci. USA 111, 1610-1615.

Grant, K. A., Rabile, D. W. and Piotrowski, T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuroreport 16, 59-60.

Harrissingh, M. C., Perez-Nadales, E., Parkinson, D. B., Malcolm, D. S., Mudge, A. W. and Lloyd, A. C. (2004). The Regulation of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc. Nat. Acad. Sci. USA 111, 1610-1615.

Grant, K. A., Rabile, D. W. and Piotrowski, T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuroreport 16, 59-60.

Harrissingh, M. C., Perez-Nadales, E., Parkinson, D. B., Malcolm, D. S., Mudge, A. W. and Lloyd, A. C. (2004). The Regulation of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc. Nat. Acad. Sci. USA 111, 1610-1615.

Grant, K. A., Rabile, D. W. and Piotrowski, T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuroreport 16, 59-60.

Harrissingh, M. C., Perez-Nadales, E., Parkinson, D. B., Malcolm, D. S., Mudge, A. W. and Lloyd, A. C. (2004). The Regulation of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc. Nat. Acad. Sci. USA 111, 1610-1615.
Meier, C., Parmantier, E., Brennan, A., Mirsky, R. and Jessen, K. R. (1999).
Developing Schwann cells acquire the ability to survive without axons by
establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-
3, and platelet-derived growth factor-BB. J. Neurosci. 19, 3847-3859.

Misgeld, R., Niko, I. and Kirschsteiner, M. (2007). In vivo imaging of single
axons in the mouse spinal cord. Nat. Protoc. 2, 263-268.

Monk, K. R., Naylor, S. G., Glenn, T. D., Mercurio, S., Perlin, J. R., Dominguez, C.,
Moens, C. B. and Talbot, W. S. (2009). A G protein-coupled receptor is essential for
Schwann cells to initiate myelination. Science 325, 1402-1405.

Monk, K. R., Voas, M. G., Franzini-Armstrong, C., Hakkinen, I. S. and Talbot, W. S. (2013).
Mutation of sec63 in zebrafish causes defects in myelinated axons and liver pathology.
Dis. Model. Mech. 6, 135-145.

Münzei, E. J., Schaefer, K., Obirei, B., Kremmer, E., Burton, E. A., Kuscha, V.,
Becker, C. G., Brösamele, C., Williams, A. and Becker, T. (2012). Claudin k is
specifically expressed in cells that form myelin during development of the nervous
system and regeneration of the optic nerve in adult zebrafish. Glia 60, 253-270.

Nave, K.-A. (2010). Myelination and support of axonal integrity by glia. Nature 468,
244-252.

Painter, M. W., Brosius Lutz, A., Cheng, Y.-C., Latremoliere, A., Duong, K.,
Miller, C. M., Posada, S., Cobos, E. J., Zhang, A. X., Wagers, A. J. et al. (2014).
Diminished Schwann cell repair responses underlie age-associated impaired
axonal regeneration. Neuron 83, 331-343.

Parrinello, S., Napoli, I., Ribeiro, S., Wingfield Digby, P., Fedorova, M.,
Parkinson, D. B., Doddrell, R. D. S., Nakayama, M., Adams, R. H. and
Lloyd, A. C. (2010). EphB signaling directs peripheral nerve regeneration through
Sox2-dependent Schwann cell sorting. Cell 143, 145-155.

Patton, E. E., Dhillon, P., Amatruda, J. F. and Ramakrishnan, L. (2014). Spotlight
on zebrafish: translational impact. Dis. Model. Mech. 7, 731-733.

Perlin, J. R., Lush, M. E., Stephens, W. Z., Piotrowski, T. and Talbot, W. S. (2011).
Neuronal Neuregulin 1 type III directs Schwann cell migration.
Development 138, 4639-4648.

Planchon, T. A., Gao, L., Milkie, D. E., Davidson, M. W., Galbraith, J. A.,
Galbraith, C. G. and Betzig, E. (2011). Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8,
417-423.

Pogoda, H.-M., Sternheim, N., Lyons, D. A., Diamond, B., Hawkins, T. A.,
Woods, I. G., Bhatt, D. H., Franzini-Armstrong, C., Dominguez, C., Arana, N. et al. (2006). A genetic screen identifies genes essential for development of myelinated axons in zebrafish. Dev. Biol. 288, 118-131.

Pujol-Martí, J., Zecca, A., Baudoin, J.-P., Faucherre, A., Asakawa, K.,
Kawakami, K. and López-Schier, H. (2012). Neuronal birth order identifies a
dimorphic sensorineural map. J. Neurosci. 32, 2976-2987.

Raphael, A. R. and Talbot, W. S. (2011). New insights into signaling during
myelination in zebrafish. Curr. Top. Dev. Biol. 97, 1-19.

Rodrigues, F., Schmidt, I. and Klämbt, C. (2011). Comparing peripheral glial cell
differentiation in Drosophila and vertebrates. Cell. Mol. Life Sci. 68, 55-69.

Ruohonen, S., Khademi, M., Jagodic, M., Taskinen, H.-S., Olsson, T. and
Röyttä, M. (2005). Cytokine responses during chronic denervation.
J. Neuroinflammation 2, 26.

Scheer, N. and Campos-Ortega, J. A. (1999). Use of the Gal4-UAS technique for
targeted gene expression in the zebrafish. Mech. Dev. 80, 153-158.

Scherer, S. S. (1997). The biology and pathobiology of Schwann cells. Curr. Opin.
Neurotol. 10, 38-39.

Scherer, S. S. and Wrabetz, L. (2008). Molecular mechanisms of inherited
demyelinating neuropathies. Nat. Rev. 56, 1578-1589.

Scott, E. K., Mason, L., Arrenberg, A. B., Ziv, L., Goss, N. J., Xiao, T., Chi, N. C.,
Asakawa, K., Kawakami, K. and Baier, H. (2007). Targeting neuronal circuitry in
zebrafish using GAL4 enhancer trapping. Nat. Methods 4, 323-326.

Sharghi-Namini, S., Turmaine, M., Meier, C., Sahni, V., Umehara, F., Jessen,
K. R. and Mirsky, R. (2006). The structural and functional integrity of peripheral
nerves depends on the glial-derived signal desert hedgehog. J. Neurosci. 26,
6364-6376.

Sheppard, C. J. R. and Wilson, T. (1981). The theory of the direct-view confocal
microscope. J. Microsc. 124, 107-117.

Shy, M. E. (2009). Biology of peripheral inherited neuropathies: Schwann cell axonal
interactions. Adv. Exp. Med. Biol. 652, 171-181.

Smith, S. J. (1988). Neuronal cytomechanics: the actin-based motility of growth
cones. Science 242, 708-715.

Soares, L., Parisi, M. and Bonini, N. M. (2014). Axon injury and regeneration in the
adult Drosophila. Sci. Rep. 4, 6199.

Spira, M. E., Benbassat, D. and Dormann, A. (1993). Resealing of the proximal
and distal cut ends of transected axons: electrophysiological and ultrastructural
analysis. J. Neurobiol. 24, 300-316.

Stankovic, K., Rio, C., Xia, A., Sugawara, M., Adams, J. C., Liberman, M. C. and
Corfas, G. (2004). Survival of adult spiral ganglion neurons requires erbB signaling in the inner ear. J. Neurosci. 24, 8651-8661.

Sulaiman, O. A. R. and Gordon, T. (2009). Role of chronic Schwann cell
denervation in poor functional recovery after nerve injuries and experimental
strategies to combat it. Neurosurgery 65, A105-A114.

Sulaiman, O. A. R., Midha, R., Munro, C. A., Matsuyama, T., Al-Majed, A. and
Gordon, T. (2002). Chronic Schwann cell denervation and the presence of a
sensory nerve reduce motor axonal regeneration. Exp. Neurol. 176, 342-354.

Toyama, B. H., Savas, J. N., Park, S. K., Harris, M. S., Ingolia, N. T., Yates, J. R.,
3rd and Hetzer, M. W. (2013). Identification of long-lived proteins reveals
exceptional stability of essential cellular structures. Cell 154, 971-982.

Villegas, R., Martin, S. M., O’Donnell, K. C., Carrillo, S. A., Sagasti, A. and
Allende, M. L. (2012). Dynamics of degeneration and regeneration in developing
zebrafish peripheral axons reveals a requirement for extrinsic cell types. Neuron 7, 19.

Weinberg, H. J. and Spencer, P. S. (1978). The fate of Schwann cells isolated from
axonal contact. J. Neurocytol. 7, 555-589.

Wuhr, M., Obholzer, N. D., Megason, S. G., Detrich, H. W., III and Mitchison, T. J. (2011). Live imaging of the cytoskeleton in early cleavage-stage zebrafish embryos. Methods Cell Biol. 101, 1-18.

Xiao, T., Roesser, T., Staub, W. and Baier, H. (2005). A GFP-based genetic screen
reveals mutations that disrupt the architecture of the zebrafish retinotectal
projection. Development 132, 2955-2967.