A LOWER BOUND ON THE WIDTH OF SATELLITE KNOTS

ALEXANDER ZUPAN

ABSTRACT. Thin position for knots in S^3 was introduced by Gabai in [2] and has been used in a variety of contexts. We conjecture an analogue to a theorem of Schubert and Schultens concerning the bridge number of satellite knots. For a satellite knot K, we use the companion torus T to provide a lower bound for $w(K)$, proving the conjecture for K with a 2-bridge companion. As a corollary, we find thin position for any satellite knot with a braid pattern and 2-bridge companion.

1. INTRODUCTION

Thin position for knots in S^3 was introduced by Gabai in [2] and has since been studied extensively. Although thin position has been used in a variety of different proofs, there are relatively few methods for putting specific knots into thin position. Thin position of a knot always provides a useful surface; either a level sphere is a bridge sphere for the knot or the thinnest thin sphere is incompressible in the complement of the knot, as shown by Wu [8].

In some sense, width can be considered to be a refinement of bridge number, although recently it has been shown in [11] that one cannot recover the bridge number of a knot K from the thin position of K. On the other hand, if K is small, then $w(K) = 2 \cdot b(K)^2$ and any thin position of K is a bridge position. In his classic paper on the subject [6], Schubert proved that for any two knots K_1 and K_2, $b(K_1 \# K_2) = b(K_1) + b(K_2) - 1$. This was later reproved by Schultens in [7].

Unfortunately, we cannot hope for a similar statement to hold for width. In [5], Scharlemann and Schultens establish $\max\{w(K_1), w(K_2)\}$ as a lower bound for $w(K_1 \# K_2)$, and Blair and Tomova prove that this bound is tight in some cases [11], while Rieck and Sedwick [4] demonstrate that the bound is not tight for small knots. Both Schubert and Schultens also prove the following:
Theorem 1.1. Let \(K \) be a satellite knot with pattern \(\hat{K} \) and companion \(J \), where \(n \) is the winding number of \(\hat{K} \). Then
\[
b(K) \geq n \cdot b(J).
\]

We make an analogous conjecture:

Conjecture 1. Let \(K \) be a satellite knot with pattern \(\hat{K} \) and companion \(J \), where \(n \) is the winding number of \(\hat{K} \). Then
\[
w(K) \geq n^2 \cdot w(J).
\]

In this paper, we provide a weaker lower bound for \(w(K) \). Our main theorem is as follows:

Theorem 1.2. Let \(K \) be a satellite knot with pattern \(\hat{K} \), where \(n \) is the winding number of \(\hat{K} \). Then
\[
w(K) \geq 8n^2.
\]

This proves the conjecture in the case that the companion \(J \) is a 2-bridge knot, since the width of such \(J \) is 8. As a corollary, if \(K \) is a satellite with a 2-bridge companion and its pattern \(\hat{K} \) is a braid with index \(n \), then any thin position is a bridge position for \(K \).

2. Preliminaries

Let \(K \) be a knot in \(S^3 \), and let \(\mathcal{M}(K) \) denote the collection of Morse functions \(h : S^3 \to \mathbb{R} \) with exactly two critical points on \(S^3 \), denoted \(\pm \infty \), and such that \(h \mid_K \) is also Morse. (Equivalently, we could fix some Morse function \(h \) and look instead at the collection of embeddings of \(K \) into \(S^3 \).) For every \(h \in \mathcal{M}(K) \), let \(c_0 < c_1 < \cdots < c_n \) denote the critical values of \(h \mid_K \). Choose regular levels \(c_0 < r_1 < c_1 < \cdots < r_n < c_n \), and define
\[
w(h) = \sum_{i=1}^{n} |K \cap h^{-1}(r_i)|,
\]
\[
b(h) = \frac{n + 1}{2},
\]
\[
\text{trunk}(h) = \max |K \cap h^{-1}(r_i)|.
\]

Now, let
\[
w(K) = \min_{h \in \mathcal{M}(K)} w(h),
\]
\[
b(K) = \min_{h \in \mathcal{M}(K)} b(h),
\]
\[
\text{trunk}(K) = \min_{h \in \mathcal{M}(K)} \text{trunk}(h).
\]
These three knot invariants are called the width, bridge number, and the trunk of K, respectively. Width was defined by Gabai in [2], and trunk was defined by Ozawa in [3]. Observe that $b(K)$ is the least number of maxima of any embedding of K. If $h \in \mathcal{M}(K)$ satisfies $w(K) = w(h)$, we say that h is a thin position for K. If $h \in \mathcal{M}(K)$ satisfies $b(K) = b(h)$ and all maxima of $h|_K$ occur above all minima, then we say that h is a bridge position for K.

In [5], the authors give an alternative formula for computing width, which involves thin and thick levels. Let $h \in \mathcal{M}(K)$ with critical and regular values as defined above. Then we say $h^{-1}(r_i)$ is a thick level if $|K \cap h^{-1}(r_i)| > |K \cap h^{-1}(r_{i-1})|, |K \cap h^{-1}(r_{i+1})|$ and $h^{-1}(r_i)$ is a thin level if $|K \cap h^{-1}(r_i)| < |K \cap h^{-1}(r_{i-1})|, |K \cap h^{-1}(r_{i+1})|$, where $1 < i < n$. Note that if h is a bridge position for K, then h has exactly one thick level and no thin levels. Letting a_1, \ldots, a_m denote the number of intersections of the thick levels with K and b_1, \ldots, b_{m-1} denote the number of intersection of the thin levels with K, the width of h is given by

$$w(h) = \frac{1}{2} \left(\sum_{i=1}^{m} a_i^2 - \sum_{i=1}^{m-1} b_i^2 \right).$$

In particular, we see that for every $h \in \mathcal{M}(K)$, there exists $a_i \geq \text{trunk}(K)$, which implies that

$$w(K) \geq \frac{\text{trunk}(K)^2}{2}.$$

The knots we will be concerned with are satellite knots, defined below:

Definition 2.1. Let $\hat{K} \subset V$ be a knot contained in a solid torus V with core C and such that every meridian of V intersects \hat{K}, and let J be any nontrivial knot. Suppose that $\varphi : V \to S^3$ is an embedding such that $\varphi(C)$ is isotopic to J in S^3. Then $K = \varphi(\hat{K})$ is called a satellite knot with companion J and pattern \hat{K}.

Essentially, to construct a satellite knot K, we start with a pattern in a solid torus and then tie the solid torus in the shape of the companion J. We will need several more definitions to state the main result:

Definition 2.2. Let \hat{K} be a pattern contained in a solid torus V. The winding number of \hat{K}, $\#(\hat{K})$, is the absolute value of the algebraic intersection number of any meridian disk of V with \hat{K}.

Equivalently, if $\alpha : S^1 \to V$ is an embedding such that $\alpha(S^1) = \hat{K}$ and $r : V \to S^1$ is a strong deformation retract of V onto its core, then $\#(\hat{K})$ agrees with the degree of the map $r \circ \alpha$.

Definition 2.3. Let \hat{K} be a pattern contained in a solid torus V. We say that \hat{K} is a braid of index n if there is a foliation of V such that every leaf is a meridian disk intersecting \hat{K} exactly n times.

In the case that \hat{K} is a braid of index n, it is clear that $\#(\hat{K}) = n$. For an example, consider Figure 1. On the left, we see a braid pattern of index 3, \hat{K}, contained in a solid torus V. On the right, V is embedded in such a way that its core is a trefoil. Thus, the knot K on the right is a satellite knot with trefoil companion and pattern \hat{K}.

3. Reducing the Saddle Points on the Companion Torus

From this point on, we set the convention that K is a satellite knot with companion J and pattern \hat{K} contained in a solid torus \hat{V}, φ is an embedding of \hat{V} into S^3 that takes a core of \hat{V} to K', $V = \varphi(\hat{V})$, and $T = \partial V$. Further, we will let $h \in \mathcal{M}(K)$ and perturb V slightly so that $h |_T$ is Morse. We wish to restrict our investigation to tori T with only certain types of saddle points. In this vein, we follow [7], from which the next definition is taken.

Definition 3.1. Consider the singular foliation, F_T, of T induced by $h |_T$. Let σ be a leaf corresponding to a saddle point. Then one component of σ is the wedge of two circles s_1 and s_2. If either is inessential in T, we say that σ is an inessential saddle. Otherwise, σ is an essential saddle.

The next lemma is the Pop Over Lemma from [7]:

Lemma 3.2. If F_T contains inessential saddles, then after a small isotopy of T, there is an inessential saddle σ in T such that...
Figure 2. First, we cancel the inessential saddle, shown center. Then we isotope any part of K or T contained in B along an increasing arc α, increasing maxima of T is necessary, so that $h \mid_{K}$ is unchanged with respect to the end product of our isotopy, shown at right.

(1) s_1 bounds a disk $D_1 \subset T$ such that F_T restricted to D_1 contains only one maximum or minimum,

(2) for L the level surface of h containing σ, D_1 co-bounds a 3-ball B with a disk $\tilde{D}_1 \subset L$ such that B does not contain $\pm \infty$ and such that s_2 lies outside of \tilde{D}_1.

In the following lemma, we mimic Lemma 2 of [7] with a slight modification to preserve the height function h on K:

Lemma 3.3. There exists an isotopy $f_t : S^3 \to S^3$ such that $f_0 = id$, $h = h \circ f_1$ on K, and the foliation of T induced by $h \circ f_1$ contains no inessential saddles.

Proof. Suppose that T has an inessential saddle, σ, lying in the level 2-sphere L. By the previous lemma, we may suppose that σ is as described above, and suppose without loss of generality that D_1 contains only one maximum. By slightly pushing D_1 into $\text{int}(B)$, we can create a new closed ball B' such that $B' \cap D_1 = \emptyset$ and $(K \cup T) \cap \text{int}(B) \subset B'$. First, we isotope B' vertically until it lies below L, and then isotope D_1 down until the maximum of D_1 cancels out the saddle point σ. Now, there exists a monotone increasing arc beginning at the highest point of B', passing through the disk \tilde{D}_2 bounded by s_2, intersecting only maxima of T, and disjoint from K. Thus, we may isotope B' vertically through a regular neighborhood of α, increasing the heights of maxima of T if necessary, until the heights of maxima and minima of $K \cap \text{int}(B')$ are the same as before any of the above isotopies. We see that after isotopy T has one fewer inessential saddle and no new critical points have been created. See Figure 2. Repeating this process, we eliminate all inessential saddles via isotopy. \[\square\]
Thus, from this point forward, we may replace any \(h \in \mathcal{M}(K) \) with \(h \circ f_1 \) from the lemma without changing the information carried by \(h|_K \); thus we may suppose that the torus \(T = \partial V \) contains no inessential saddles. It follows that if \(\gamma \) is a loop contained in a level 2-sphere that bounds a disk \(D \subset T \), then \(D \) contains exactly one critical point, a minimum or a maximum. If not, \(D \) must contain a saddle point, which is necessarily inessential.

4. THE CONNECTIVITY GRAPH

For each regular value \(r \) of \(h|_{T,K} \), we have that \(h^{-1}(r) \) is a level 2-sphere \(S^2 \) and \(h^{-1}(r) \cap T \) is a collection of simple closed curves. Let \(\gamma_1, \ldots, \gamma_n \) denote these curves.

A bipartite graph is a graph together with a partition of its vertices into two sets \(\mathcal{A} \) and \(\mathcal{B} \) such that no two vertices from the same set share an edge. We will create a bipartite graph \(\Gamma_r \) from \(h^{-1}(r) \) as follows: Cut the 2-sphere \(h^{-1}(r) \) along \(\gamma_1, \ldots, \gamma_n \), splitting \(h^{-1}(r) \) into a collection of planar regions \(R_1, \ldots, R_m \). The vertex set \(\{v_1, \ldots, v_m\} \) of \(\Gamma_r \) corresponds to the regions \(R_1, \ldots, R_m \), and the edges correspond to the curves \(\gamma_1, \ldots, \gamma_n \) that do not bound disks in \(T \). For each such \(\gamma_i \), make an edge between \(v_j \) and \(v_k \) if \(\gamma_i = R_j \cap R_k \) in \(h^{-1}(r) \). To see that \(\Gamma_r \) is bipartite, we create two vertex sets \(\mathcal{A}_r \) and \(\mathcal{B}_r \), letting \(v_i \in \mathcal{A}_r \) if \(R_i \subset V \), and \(v_i \in \mathcal{B}_r \) otherwise. We call \(\Gamma_r \) the \textbf{essential connectivity graph} with respect to the regular value \(r \) of \(h \), where the word “essential” emphasizes the fact that edges correspond to only those \(\gamma_i \) that are essential in \(T \). Note that since each \(\gamma_i \) separates \(h^{-1}(r) \), the graph \(\Gamma_r \) must be a tree. An endpoint of \(\Gamma_r \) is a vertex that is incident to exactly one edge.
For instance, in Figure 3 we see a possible level 2-sphere and corresponding essential connectivity graph. Observe that since \(V \) is a knotted solid torus, \(T \) is only compressible on one side, and every compression disk for \(T \) is a meridian of \(V \). This leads to the third lemma:

Lemma 4.1. If \(v_i \in \Gamma_r \) is an endpoint, then \(v_i \in \mathcal{A}_r \).

Proof. Suppose \(R_i \) is the region in \(h^{-1}(r) \) corresponding to \(v_i \). Then \(\partial R_i \) contains exactly one essential curve in \(T \), call it \(\gamma_i \) and some (possibly empty) set of curves that bound disks in \(T \). Since each of these disks contains only one maximum or minimum by the discussion above, any two must be pairwise disjoint. Thus, we can glue each disk to \(R_i \) to create an embedded disk \(D \) such that \(\partial D = \gamma_i \). Now, push each glued disk into a collar of \(T \) in \(V \), so that \(T \cap \text{int}(D) = \emptyset \), and thus \(D \) is a compression disk for \(T \). We conclude \(D \subset V \) and \(R_i \cap D \neq \emptyset \), implying \(R_i \subset V \) and \(v_i \in \mathcal{A}_r \). \(\square \)

Using similar arguments, we prove the next lemma:

Lemma 4.2. Suppose that \(v_1, \ldots, v_n \subset \Gamma_r \) are endpoints corresponding to regions \(R_1, \ldots, R_n \subset h^{-1}(r) \), where each \(R_i \) contains exactly one curve \(\gamma_i \) that is essential in \(T \). Then \(\gamma_1, \ldots, \gamma_n \) bound meridian disks \(D_1, \ldots, D_n \subset V \) such that \(K \cap D_i \subset R_i \) for all \(i \).

Proof. The existence of the disks \(D_1, \ldots, D_n \) is given in the proof of Lemma 3. Thus, suppose that \(\Delta \) is a disk glued to \(R_i \) to construct \(D_i \). When we push \(\Delta \) into a collar of \(T \), we can choose this collar to be small enough so that it does not intersect \(K \). Thus, we may suppose that \(\Delta \cap K = \emptyset \) for every such \(\Delta \), which implies that all intersections of \(K \) with \(D_i \) must be contained in \(R_i \). \(\square \)

We note that the Lemmas 3 and 4 are inspired by the proof of Theorem 1.9 of [3]. Essentially, Lemma 4 demonstrates that even though the set of meridian disks \(D_1, \ldots, D_n \) may not be level, we may assume they are level for the purpose of counting intersections of \(K \) with \(h^{-1}(r) \), since any intersection of \(K \) with one of these disks occurs in one of the level regions \(R_i \). Hence, we define the trunk of a level 2-sphere.

Definition 4.3. Let \(r \) be a regular value of \(h \mid_{T,K} \). We define the trunk of the level 2-sphere \(h^{-1}(r) \), denoted \(\text{trunk}(r) \), to be the number of endpoints of \(\Gamma_r \).

For example, if \(r \) is the regular value whose essential connectivity graph is pictured in Figure 3, then \(\text{trunk}(r) = 6 \). We are now in a position to use the winding number of the pattern \(\hat{K} \).

Lemma 4.4. Let \(r \) be a regular value of \(h \mid_{T,K} \).
• If \(\text{trunk}(r) \) is even, then \(|K \cap h^{-1}(r)| \geq \#(\hat{K}) \cdot \text{trunk}(r) \);
• if \(\text{trunk}(r) \) is odd, then \(|K \cap h^{-1}(r)| \geq \#(\hat{K}) \cdot [\text{trunk}(r) + 1] \).

Proof. First, suppose that \(m = \text{trunk}(r) \) is even and let \(n = \#(\hat{K}) \). Since each meridian of \(V \) has algebraic intersection \(\pm n \) with \(K \), we know that each meridian must intersect \(V \) in at least \(n \) points. Let \(v_1, \ldots, v_m \) be endpoints of \(\Gamma_r \) corresponding to regions \(R_1, \ldots, R_m \). By Lemma 4, \(|K \cap R_i| = |K \cap D_i| \geq n \) for each \(i \). Further, since these regions are pairwise disjoint, it follows that \(|K \cap h^{-1}(r)| \geq n \cdot m \), completing the first part of the proof.

Now, suppose that \(m \) is odd. If \(N_1 \) is the algebraic intersection number of \(K \) with \(R = \cup R_i \), we have that
\[
N_1 = \sum_{i=1}^{m} \pm n.
\]
In particular, as \(m \) is odd it follows that \(|N_1| \geq n \). Let \(R' = \overline{h^{-1}(r) - R} \). Then \(R' \cap R \subset T \), so \(K \) does not intersect \(R' \cap R \). Let \(N_2 \) denote the algebraic intersection number of \(K \) with \(R' \). Since \(h^{-1}(r) \) is a 2-sphere which bounds a ball in \(S^3 \), \(h^{-1}(r) \) is homologically trivial, implying that the algebraic intersection of \(K \) with \(h^{-1}(r) \) is zero. This means \(N_1 + N_2 = 0 \), so \(|N_2| \geq n \) and thus \(|K \cap R'| \geq n \). Finally, putting everything together, we have
\[
|K \cap h^{-1}(r)| = |K \cap R| + |K \cap R'| = \sum_{i=1}^{m} |K \cap R_i| + |K \cap R'| \geq n \cdot (m + 1).
\]

\[\square\]

5. Bounding the width of satellite knots

We will use the trunk of the level surfaces to impose a lower bound on the trunk of a \(K \), which in turn forces a lower bound on the width of the \(K \). We need the following lemma, which is Claim 2.4 in [3]:

Lemma 5.1. Let \(S \) be a torus embedded in \(S^3 \), and let \(h : S^3 \to \mathbb{R} \) be a Morse function with two critical points on \(S^3 \) such that \(h \mid_S \) is also Morse. Suppose that for every regular value \(r \) of \(h \mid_S \), all curves in \(h^{-1}(r) \cap S \) that are essential in \(S \) are mutually parallel in \(h^{-1}(r) \). Then \(S \) bounds solid tori \(V_1 \) and \(V_2 \) in \(S^3 \) such that \(V_1 \cap V_2 = T \).

As a result of this lemma, we have

Corollary 5.2. There exists a regular value \(r \) of \(h \mid_{T,K} \) such that \(\text{trunk}(r) \geq 3 \).
Proof. Suppose not, and let \(r \) be any regular value of \(h |_{T,K} \) such that \(h^{-1}(r) \) contain essential curves in \(T \). Such a regular value must exist; otherwise \(T \) could not contain a saddle point. By assumption, \(\text{trunk}(r) \leq 2 \), so \(\Gamma_r \) has exactly two endpoints, \(v_1 \) and \(v_2 \). But this implies that \(\Gamma_r \) is a path, and thus all essential curves in \(h^{-1}(r) \) are mutually parallel. As this is true for every such regular value \(r \), we conclude by Lemma 6 that \(V \) is an unknotted solid torus, contradicting the fact that \(K \) is a satellite knot with nontrivial companion \(J \).

This brings us to our main theorem.

Theorem 5.3. Suppose \(K \) is a satellite knot with pattern \(\hat{K} \), where \(n = \#(\hat{K}) \). Then

\[
w(K) \geq 8n^2.
\]

Proof. Choose a height function \(h \in \mathcal{M}(K) \) such that \(\text{trunk}(h) = \text{trunk}(K) \). Since \(K \) is a satellite knot, \(K \) is contained in a knotted solid torus \(V \). Let \(T = \partial V \), and if necessary perturb \(T \) slightly so that \(h |_{T} \) is also Morse. By Corollary 1 above, there exists a regular value \(r \) of \(h \) such that \(\text{trunk}(r) \geq 3 \). From Lemma 5, it follows that \(\|K \cap h^{-1}(r)\| \geq 4n \). Since \(\text{trunk}(K) = \text{trunk}(h) \), and \(\text{trunk}(h) \) corresponds to the level of \(h \) with the greatest number of intersections with \(K \), we have \(\text{trunk}(h) \geq 4n \). Finally, using the lower bound for width based on trunk,

\[
w(K) \geq \frac{\text{trunk}(K)^2}{2} \geq 8n^2,
\]

as desired.

Corollary 5.4. Suppose \(K \) is a satellite knot, with pattern \(\hat{K} \) and companion \(J \). If \(\hat{K} \) is a braid of index \(n \) and \(J \) is a 2-bridge knot, then \(w(K) = 8n^2 \) and any thin position for \(K \) is a bridge position.

Proof. For such \(K \) we can exhibit a Morse function \(h \in \mathcal{M}(K) \) such that \(w(h) = 8n^2 \), \(b(h) = 2n \), and \(\text{trunk}(h) = 4n \). By [7], \(b(K) = b(h) \), so \(h \) is both a bridge and thin position for \(h \), and further every bridge position \(h' \) for \(K \) satisfies \(w(h') = 8n^2 \) and is also thin. It follows from the proof of the above theorem that \(\text{trunk}(K) = 4n \), so any \(h \in \mathcal{M}(K) \) that is not a bridge position satisfies \(w(h) > 8n^2 \).

\[
6. \text{Acknowledgements}
\]

I would like to thank Maggy Tomova and Charlie Frohman for their support and advice, including numerous helpful conversations.
REFERENCES

[1] R Blair, M Tomova, Width is not additive, preprint, available at http://arxiv.org/abs/1005.1359.
[2] D Gabai, Foliations and the topology of 3-manifolds III, J. Differential Geom. 26 (1987) 479-536.
[3] M Ozawa, Waist and trunk of knots, Geom. Ded. (2010) Online First.
[4] Y Rieck, E Sedwick, Thin position for a connected sum of small knots, Alg. Geom. Top. 2 (2002) 297-309.
[5] M Scharlemann, J Schultens, 3-manifolds with planar presentations and the width of satellite knots, Trans. Amer. Math. Soc. 358 (2006) 3781-3805.
[6] H Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954) 245-288.
[7] J Schultens, Additivity of bridge numbers of knots, Math. Proc. Cambridge Philos. Soc. 135 (2003) 539-544.
[8] Y-Q Wu, Thin position and essential planar surfaces, Proc. Amer. Math. Soc. 132 (2004), no. 11, 3417-3421 (electronic).