MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and are implicated in the etiology of several neuropsychiatric disorders, including substance use disorders (SUDs). Using in silico genome-wide sequence analyses, we identified miR-495 as a miRNA whose predicted targets are significantly enriched in the Knowledgebase for Addiction Related Genes (ARG) database (KARG; http://karg.cbi.pku.edu.cn). This small non-coding RNA is also highly expressed within the nucleus accumbens (NAc), a pivotal brain region underlying reward and motivation. Using luciferase reporter assays, we found that miR-495 directly targeted the 3′UTRs of Bdnf, Camk2a, and Arc. Furthermore, we measured miR-495 expression in response to acute cocaine in mice and found that it is downregulated rapidly and selectively in the NAc, along with concomitant increases in ARG expression. Lentiviral-mediated miR-495 overexpression in the NAc shell (NAcsh) not only reversed these cocaine-induced effects but also downregulated multiple ARG mRNAs in specific SUD-related biological pathways, including those that regulate synaptic plasticity. miR-495 expression was also downregulated in the NAcsh of rats following cocaine self-administration. Most importantly, we found that NACsh miR-495 overexpression suppressed the motivation to self-administer and seek cocaine across progressive ratio, extinction and reinstatement testing, but had no effect on food reinforcement, suggesting that miR-495 selectively affects addiction-related behaviors. Overall, our in silico search for post-transcriptional regulators identified miR-495 as a novel regulator of multiple ARGs that have a role in modulating motivation for cocaine.

Molecular Psychiatry (2018) 23, 434–443; doi:10.1038/mp.2016.238; published online 3 January 2017
MATERIALS AND METHODS

Animals

Male 2-month-old C57BL/6J mice (Jackson Labs, Bar Harbor, ME, USA) and adult 2-month-old Sprague-Dawley rats (Charles River, San Diego, CA, USA) were maintained on a 12-h and 14/10-h reverse light/dark cycle, respectively. Animal studies were performed in accordance with NIH Animal Welfare guidelines under protocols approved by the Institutional Animal Care and Use committees at the University of New Mexico and Arizona State University.

Bioinformatics analyses

The lists for mouse, human and rat ARGs were retrieved from the KARG database (http://karg.cbi.pku.edu.cn). Lists of KARG genes with evidence number scores ≥ 2 (ref. 23) were used to acquire the 3’UTRs sequences from ENSEMBL BioMart. The frequencies of predicted targets of miR-495 and two previously identified addiction-related miRNAs, let-7 and miR-212,20,21 in these KARG lists vs the respective genomes were calculated using TargetScan 6.2 (http://www.targetscan.org) conserved sites. miR-495-binding sites in the 3’UTR of the KARG/TargetScan data set were further validated using miRanda.24

NAc shell viral injections and cocaine self-administration, extinction and reinstatement

Rats were trained to self-administer cocaine, infused with lentiviruses (LV) containing either green fluorescent protein (GFP; LV-GFP) or GFP+miR-495 (LV-miR-495) into the NAcsh, and then tested on a fixed ratio (FR) 5 and progressive ratio (PR) schedule of cocaine reinforcement, as well as during extinction and cue and cocaine-primed reinstatement, as described in Supplementary Information.

Data analysis

Power analyses were performed to determine adequate sample sizes (PASS, NCSS software, Kaysville, UT, USA). Behavioral and biochemical measures were analyzed using Student t-tests or ANOVAs followed by tests for simple effects, where appropriate, using SPSS 24.0 (IBM, Armonk, NY, USA). Adjustments to degrees of freedom were made when unequal variances between groups existed (for example, Welch’s correction, Huynh–Feldt correction).

Full Materials and Methods for miRNA fluorescent in situ hybridization, dual luciferase assays, acute cocaine treatment, reverse transcription and qPCR, western blotting, intracranial virus injections, cocaine self-administration, food reinforcement and histology are provided in the Supplementary Information.

RESULTS

All statistical values are reported in Supplementary Table 1.

In silico analyses identify miR-495 as a putative post-transcriptional regulator of addiction-related genes in the nucleus accumbens

Initial bioinformatics analyses were aimed at identifying miRNAs that target addiction-associated mRNAs expressed in the NAc. The miR-495 targets several ARGs and is expressed in addiction-related brain regions. (a) Although the frequencies of miR-495, miR-212/132 and let-7 putative targets are all enriched in the KARG database compared with the entire genome, the frequency of miR-495 targets in KARG is significantly higher (approximately two-fold) than those of miR-212/132 and let-7. ****P < 0.0001 vs genome, ***P < 0.001 miR-495 vs miR-212/132 and ＊＊＊＊P < 0.0001 miR-495 vs let-7, two-tailed χ2 test. (b) Number of genes with putative miR-495 target sites (miR-495 TG) in the mouse KARG set. (c) Representative images of a coronal mouse brain section where miR-495 was visualized using fluorescent in situ hybridization at 4× (i), with insets at 10× focusing on the PFC (ii) and the NAc (iii). Scale bars 500 μm in panel i and 200 μm in panels ii and iii. (d) qRT-PCR analysis of miR-495 levels in different brain regions (n = 3). (e) Schematic representation of the short and long 3’UTR transcripts of brain-derived neurotrophic factor (BDNF) including the positions of conserved and partially conserved miR-495-binding sites (M = Mus musculus, R = Rattus norvegicus, H = Homo sapiens). For in vitro target validation, HeLa cells were transfected with a firefly luciferase reporter containing the 3’UTR of Bdnf and Camk2a. A Renilla vector was co-transfected with the firefly reporter. Pre-miR-495, anti-miR-495 and pre-miR miRNA precursor negative control #2 were transfected as described in Supplementary Information. The alternative 3’UTRs of BDNF (f), as well as the 3’UTRs of Camk2a and Arc, were assayed (g). n = 4–5. *P < 0.05, **P < 0.01. Error bars indicate s.e.m. ARG, addiction-related gene; ac, anterior commissure; AMY, amygdala; DH, dorsal hippocampus; D-STR, dorsal striatum; Ctx, neocortex; KARG, Knowledgebase of ARG; NAc, nucleus accumbens; PyC, pyriform cortex; OFC, orbitofrontal cortex; PFC, prefrontal cortex; VH, ventral hippocampus; VTA, ventral tegmental area.

3’UTR sequences of mouse, human and rat genes sets of the KARG database (http://karg.cbi.pku.edu.cn) with evidence scores ≥ 2 (ref. 23) were used to determine the prevalence of miRNA-binding sites predicted by TargetScan (http://www.targetscan.org). Among the ARG-targeting miRNAs, we found that miR-495, a microRNA expressed in the adult rat striatum (http://miRBase.org),25,26 is predicted to target several ARG mRNAs, such as Bdnf, Camk2a, Arc and others (Supplementary Table S2). The percentage of mouse KARG genes containing conserved 3’UTR miR-495-binding sites (7%, 70 genes) is significantly higher than in the entire genome (2.5%), and similar results were obtained using human or rat KARG gene sets (83 genes, 7.7% and 55 genes, 5.6%, respectively). To confirm this method, we assessed the proportion of KARG gene targets of two miRNAs previously associated with cocaine addiction, miR-212/13223 and let-7.14,20 As expected, both miRNAs targeted a higher % of KARG genes than in the genome (miR-212/132: 2.8%; let-7: 3%), confirming the utility of this approach to identify miRNAs associated with addiction. Given that the frequency of miR-495 targets in KARG was significantly higher (~2-fold) than those for miR-212/132 and let-7 (Figures 1a and b), it is likely that miR-495 targets may impact a wider variety of functions involved in addiction than those that were established for miR-212/132 and let-7. Furthermore, the average evidence scores for miR-495 KARG targets were significantly higher than those for the whole KARG set, suggesting that the association of predicted miR-495 KARG targets with addiction is heavily supported by previous research (Supplementary Figure S1). Using miRanda, we further validated the presence of high affinity 3’UTR miR-495-binding sites (ΔG ≤ −15 kcal mol−1) in the mouse data set, including Bdnf and Camk2a (Supplementary Table S2).24 Fluorescent in situ hybridization confirmed brain-wide miR-495 expression, including the NAc and medial prefrontal cortex (mPFC), as previously reported in human mPFC tissue (Figure 1c; scrambled locked nucleic acid control in Supplementary Figure S2).27 Using qRT-PCR, we confirmed miR-495 expression in these regions, with the highest expression within the NAc (Figure 1d). Thus, miR-495 is a candidate regulator of a set of ARGs conserved in mammals.

miR-495 directly targets the 3’UTRs of Bdnf, Camk2a and Arc

To validate direct miR-495 binding to predicted target ARG mRNAs, we utilized luciferase reporter constructs containing target mRNA 3’UTRs. Due to differential poly(A) site usage, the predicted miR-495 target, Bdnf, is present in vivo as two different transcripts with a short (Bdnf-S) or long 3’UTR (Bdnf-L) produced from the same promoter. The long form contains more miR-495-binding sites (Figure 1e; http://www.targetscan.org/mmu_50/), suggesting that miR-495 preferentially regulates Bdnf-L. The binding sites within the 3’UTR at nucleotide (nt) positions 233, 565, 587 and 598 are highly conserved between mouse, rat and human, whereas the last binding site at nt 2487 in mouse and rat
or nt 2488 in human is partially conserved. Indeed, dual luciferase assays showed that miR-495 significantly reduced the activity of the reporter containing the 3′UTR for Bdnf-L by ~50% and for Bdnf-S by ~20% (Figure 1f). Given that these isoforms have been hypothesized to have different functions and localization within the neuron, these results suggest that miR-495 may preferentially

Figure 1. For caption see page 435.
miR-495 targets genes linked to cocaine motivation

RM Bastle et al

miR-495 and target mRNA expression in response to acute cocaine administration

The anatomical localization and targets of miR-495 suggest that it may have a role in the post-transcriptional mechanisms underlying addiction-related plasticity. To examine this further, we determined the effect of an acute cocaine injection (15 mg kg⁻¹, i.p.) in mice on NAc miR-495 expression at different time points. NAc miR-495 was significantly downregulated between 2 and 4 h post injection (Figure 2a). This effect was brain region-specific, as miR-495 expression was not significantly altered by cocaine 2 h post acute cocaine in the mPFC or dorsal striatum (Figures 2b and c).

Next, we assessed the expression of two luciferase-validated miR-495 targets, Bdnf and Camk2a, at the middle of this timeframe —2 h post injection. We found that both NAc Bdnf-Pan mRNA, which is the sum of Bdnf-S and Bdnf-L isoforms, and Bdnf-L mRNA regulate Bdnf-L and its associated functions. In addition, miR-495 significantly reduced the activity of reporters containing the 3'UTRs of Camk2a and Arc by ~40% and 45%, respectively (Figure 1g). All effects were blocked by anti-miR-495, and miR-495 had no effect on empty vectors (Supplementary Figure S3). These in vitro studies demonstrate that the predicted miR-495-binding sites in these ARGs are indeed functional.

miR-495 and target mRNA expression in response to acute cocaine administration

The anatomical localization and targets of miR-495 suggest that it may have a role in the post-transcriptional mechanisms underlying addiction-related plasticity. To examine this further, we determined the effect of an acute cocaine injection (15 mg kg⁻¹, i.p.) in mice on NAc miR-495 expression at different time points. NAc miR-495 was significantly downregulated between 2 and 4 h post injection (Figure 2a). This effect was brain region-specific, as miR-495 expression was not significantly altered by cocaine 2 h post acute cocaine in the mPFC or dorsal striatum (Figures 2b and c).

Next, we assessed the expression of two luciferase-validated miR-495 targets, Bdnf and Camk2a, at the middle of this timeframe —2 h post injection. We found that both NAc Bdnf-Pan mRNA, which is the sum of Bdnf-S and Bdnf-L isoforms, and Bdnf-L mRNA regulate Bdnf-L and its associated functions. In addition, miR-495 significantly reduced the activity of reporters containing the 3'UTRs of Camk2a and Arc by ~40% and 45%, respectively (Figure 1g). All effects were blocked by anti-miR-495, and miR-495 had no effect on empty vectors (Supplementary Figure S3). These in vitro studies demonstrate that the predicted miR-495-binding sites in these ARGs are indeed functional.

miR-495 and target mRNA expression in response to acute cocaine administration

The anatomical localization and targets of miR-495 suggest that it may have a role in the post-transcriptional mechanisms underlying addiction-related plasticity. To examine this further, we determined the effect of an acute cocaine injection (15 mg kg⁻¹, i.p.) in mice on NAc miR-495 expression at different time points. NAc miR-495 was significantly downregulated between 2 and 4 h post injection (Figure 2a). This effect was brain region-specific, as miR-495 expression was not significantly altered by cocaine 2 h post acute cocaine in the mPFC or dorsal striatum (Figures 2b and c).

Next, we assessed the expression of two luciferase-validated miR-495 targets, Bdnf and Camk2a, at the middle of this timeframe —2 h post injection. We found that both NAc Bdnf-Pan mRNA, which is the sum of Bdnf-S and Bdnf-L isoforms, and Bdnf-L mRNA regulate Bdnf-L and its associated functions. In addition, miR-495 significantly reduced the activity of reporters containing the 3'UTRs of Camk2a and Arc by ~40% and 45%, respectively (Figure 1g). All effects were blocked by anti-miR-495, and miR-495 had no effect on empty vectors (Supplementary Figure S3). These in vitro studies demonstrate that the predicted miR-495-binding sites in these ARGs are indeed functional.

miR-495 and target mRNA expression in response to acute cocaine administration

The anatomical localization and targets of miR-495 suggest that it may have a role in the post-transcriptional mechanisms underlying addiction-related plasticity. To examine this further, we determined the effect of an acute cocaine injection (15 mg kg⁻¹, i.p.) in mice on NAc miR-495 expression at different time points. NAc miR-495 was significantly downregulated between 2 and 4 h post injection (Figure 2a). This effect was brain region-specific, as miR-495 expression was not significantly altered by cocaine 2 h post acute cocaine in the mPFC or dorsal striatum (Figures 2b and c).

Next, we assessed the expression of two luciferase-validated miR-495 targets, Bdnf and Camk2a, at the middle of this timeframe —2 h post injection. We found that both NAc Bdnf-Pan mRNA, which is the sum of Bdnf-S and Bdnf-L isoforms, and Bdnf-L mRNA regulate Bdnf-L and its associated functions. In addition, miR-495 significantly reduced the activity of reporters containing the 3'UTRs of Camk2a and Arc by ~40% and 45%, respectively (Figure 1g). All effects were blocked by anti-miR-495, and miR-495 had no effect on empty vectors (Supplementary Figure S3). These in vitro studies demonstrate that the predicted miR-495-binding sites in these ARGs are indeed functional.
were significantly increased 2 h post injection (Supplementary Figure S4). Although this demonstrates that Bdnf mRNA is upregulated by acute cocaine, it does not point to the mechanism involved in this cocaine-induced upregulation. Since both Bdnf transcripts originate from the same promoter, differences between the two isoforms would suggest regulation at the post-transcriptional level. To evaluate the possibility, we calculated the ratio between Bdnf-L and Bdnf-Pan and found that it was significantly increased by approximately two-fold (Figure 2d), indicating that acute cocaine preferentially upregulates the long 3′ UTR variant that contains a greater number of miR-495-binding sites than the short form (Figures 1e and f). In addition, we found that both pro-BDNF and mature BDNF protein were significantly increased within the NAc 2 h after cocaine treatment (Figures 2f and g). Another luciferase-validated miR-495 target, Camk2a, was found to be regulated 2 h post injection within the NAc as both mRNA (Figure 2e) and protein (Figure 2h) were increased. Thus, NAc miR-495 expression is rapidly decreased by exposure to cocaine concomitantly with increased expression of its ARG targets, Bdnf and Camk2a. This inverse relationship in cocaine-induced gene expression suggests a functional link between miR-495 and its target ARGs in vivo.

Overexpression of miR-495 within the NAc shell reverses cocaine-induced ARG expression

To further examine the regulatory relationship between cocaine-induced NAc miR-495 downregulation and upregulation of target ARG mRNAs, we next tested whether these changes could be reversed by restoring miR-495 levels in the NAc with viral-mediated overexpression. LV encoding pri-miR-495+GFP (LV-miR-495) or GFP (LV-GFP) was infused into the NAc shell (NAcsh; Figure 3a) of male Sprague-Dawley rats who were treated 2 weeks later with saline or cocaine (15 mg kg⁻¹, i.p.). Cocaine-treated LV-GFP rats were found to express significantly lower NAc miR-495 levels compared with saline-treated LV-GFP controls (Figure 3b), replicating the cocaine-induced downregulation of NAC miR-495 in mice without lentiviral infusion (Figure 2a). LV-miR-495 rats exhibited significantly greater NAC miR-495 expression compared with LV-GFP-infused animals in either treatment group, effectively reversing the cocaine-induced decrease in miR-495 (Figure 3b). Similarly, cocaine-treated LV-GFP rats were found to express significantly higher levels of both Bdnf variants compared with saline-treated LV-GFP controls and LV-miR-495 animals in either drug treatment group (Figures 3c and d). Thus, the ability of miR-495 overexpression to reduce the cocaine-induced upregulation of both Bdnf transcripts suggests a functional link between miR-495 and its targets in vivo.

Pathway analysis of mRNAs downregulated by miR-495 overexpression reveals multiple regulatory networks involved in SUDs

As multiple ARGs are predicted targets of miR-495 (Supplementary Table S2), we used microarray analysis to determine the global effects of NAcsh miR-495 overexpression on mRNA expression in vivo. We found that 1027 mRNAs were significantly decreased after LV-miR-495 treatment. Of the previously identified 691
miR-495 targets, 76 were significantly downregulated by miR-495 overexpression, 15 of which, including Bdnf, Camk2a, Arc, Gria3 and Stmn2, were also present in KARG (Supplementary Table S3). A complete list of miR-495 regulated transcripts on the arrays has been deposited in the Gene Expression Omnibus database (GSE85500).

Using Ingenuity Pathway Analysis, we searched for canonical pathways enriched with NAc mRNAs downregulated by miR-495 overexpression. We found multiple pathways that were previously characterized in addiction-related behavior, including GPCR signaling, cAMP-mediated signaling, synaptic long-term depression, and long-term potentiation, CREB and protein kinase A (PKA) signaling (Figure 4a). The top biological network of interacting molecules regulated by miR-495 contained 21 of the original 76 molecules (selections in Figure 4b, for complete list see Supplementary Table S4) with functions related to drug-evoked synaptic plasticity (for example, Gria3, Shank2, Arc, Ephb2 and Camk2a), transcription factors (for example, Satb2, Per2) and chromatin remodeling (for example, Satb2).4,30 Using qRT-PCR, we confirmed that miR-495 overexpression decreased selected target mRNAs (Figure 4c and Supplementary Table S3). Altogether, these results indicate that miR-495 regulates multiple target ARG mRNAs both in vitro (Figures 1f and g) and in vivo.

NAcsh miR-495 expression decreases following cocaine self-administration

Using qRT-PCR, NAc miR-495 expression was measured in rats that self-administered cocaine for either 1 or 22 days (SA1 vs SA22). The cocaine groups did not differ in total cocaine infusions during the test session (Supplementary Figure S5). Saline-yoked controls at each time point did not significantly differ in NAcsh miR-495 and were combined. NAcsh miR-495 was significantly decreased in the SA1 and SA22 group compared with the saline group (Figure 5a). Furthermore, a significant linear trend was found across time, where NAcsh miR-495 levels decreased as the number of cocaine self-administration sessions increased. Although baseline miR-495 expression in both NAc subregions are similar (Supplementary Figure S6), no effect on miR-495 expression was found in the adjacent NAc core after short or long-term self-administration (Supplementary Figure S7), demonstrating NAc subregion-specific effects.

miR-495 overexpression in the NAcsh reduces motivation to self-administer and seek cocaine

To test the role of NAC miR-495 in models of addiction-related behavior, we next examined the effect of NAcsh miR-495 overexpression on self-administration and seeking behavior. Two weeks following NAcsh infusions of LV-miR-495 or LV-GFP (Figure 5b), rats were given access to varying doses of cocaine delivered on a FR5 and PR schedule of reinforcement. NAcsh miR-495 overexpression was persistent to the end of our behavioral experiments (Figure 5c). As such, NAcsh miR-495 overexpression had no effect on responding or intake on the low-effort FR5 schedule of cocaine reinforcement (Supplementary Figure S8). However, NAcsh miR-495 overexpression significantly decreased responding and intake on the high-effort FR schedule compared with controls across all cocaine doses tested (Figures 5d and e), without effects on inactive lever pressing (Supplementary Figure S9A). The cumulative response records in Figure 5f show a lower break point in a representative LV-miR-495 rat compared with a LV-GFP rat, consistent with a decrease in motivation.

Next, we tested the effect of NAcsh miR-495 overexpression on other measures of motivation, including extinction and reinstatement. Before extinction testing, rats received >3 sessions on an FR5 schedule of cocaine reinforcement on the training dose. We found no group difference in active lever pressing during this baseline before extinction (Figure 5g). During extinction, NAcsh miR-495 overexpression decreased active lever pressing during the first 3 sessions compared with LV-GFP controls (Figure 5g), without effects on inactive lever pressing (Supplementary Figure S9B). We then tested rats for both cue and cocaine-primed reinstatement of cocaine seeking. Although the virus groups did not differ in the degree of cue reinstatement (Supplementary Figure S10), the LV-miR-495 group exhibited significantly reduced cocaine-primed reinstatement compared with the LV-GFP controls (Figure 5h), without differences in inactive lever pressing in either case (Supplementary Figure S9C and D). To confirm the effect of
miR-495 overexpression on target regulation during drug-seeking behavior, we measured the levels of Camk2a, Bdnf-L and Bdnf-Pan mRNAs in the NAcsh of rats 1 week after extinction and reinstatement experiments. As shown in Figures 5i-k the levels of these three target mRNAs were significantly decreased by miR-495 overexpression. Collectively, these results suggest that NAcsh miR-495 overexpression decreases motivation to both self-administer and seek cocaine. The additional decrease in target gene expression suggests that the behavioral effect of miR-495 overexpression is mediated through these ARGs.
To test the specificity for cocaine and evaluate any potential locomotor-suppressing effects of miR-495 overexpression, a separate group of rats were trained to lever press for food pellets whereas receiving either LV-GFP or LV-miR-495. LV-miR-495 had no effect on responding or intake on an FR5 schedule of food reinforcement (Supplementary Figure S11). To parallel differences in motivational value of low and high cocaine doses on a PR schedule, we subjected rats to varying levels of food restriction. Rats that had been food restricted (18 g per day) exhibited higher PR measures than those that had been unrestricted, but both virus groups exhibited similar levels of motivation for food under both feeding conditions (Figure S1 and Supplementary Figure S12). This suggests a selective effect of miR-495 overexpression on motivation for cocaine.

DISCUSSION

Here we established NAc miR-495 as a novel post-transcriptional regulator of both ARG expression and motivation for cocaine. Initial bioinformatics analyses identified miR-495 as a miRNA with predicted targets enriched in the KARG database and with preferential expression in the brain reward and motivation pathway. Among these, we validated that miR-495 targeted Bdnf and Camk2a both in vitro and in vivo. Next, we found that cocaine decreased miR-495 expression along with concomitant increases in ARG targets in the NAc. When the cocaine-mediated miR-495 downregulation was blocked by lentiviral-mediated overexpression, cocaine-induced upregulation of ARG target mRNAs in the NAc was also prevented. From the miR-495 overexpression microarray analysis, we found that several of the downregulated target genes formed networks involved in receptor signaling, gene regulation and synaptic plasticity. Importantly, we found that NAc miR-495 overexpression reduced motivation to self-administer and seek cocaine, without effects on food reinforcement, suggesting that NAc miR-495 selectively regulates genes involved in motivation for cocaine. Given that motivation for drug is a key factor involved in human drug relapse, miR-495 may have translational value as a novel therapeutic target.

In contrast to other addiction-related miRNAs whose expression levels were shown to increase in response to drugs of abuse, miR-495 expression in the NAc decreased shortly after exposure to cocaine. This rapid downregulation could be due to several factors. Although miRNAs are stable in non-neuronal cell types, some miRNAs decay at faster rates in neurons via activity-dependent processes, which could be triggered by cocaine administration. The decrease in miR-495 expression may also be due to transcriptional repression. miR-495 is located within miRNA cluster B of the Dlk1-Dio3 maternally imprinted region that is under the control of Methyl-CpG-binding protein 2 (MeCP2) and other transcription factors. Using Mecp2-null mice, Wu et al. demonstrated increased expression of many of the miRNAs within this imprinted region, including miR-495. However, given that not all of the miRNAs in this cluster are coordinately regulated, other regulatory mechanisms such as pre-miRNA processing and/or mature miRNA stability may have a role in controlling miRNA expression profiles. It is curious that we did not observe changes in miR-495 in any other addiction-related brain region, especially in those that are also innervated by ventral tegmental dopamine neurons (for example, dorsal striatum, mPFC). One possibility is that the relatively high basal expression levels of miR-495 in the NAc allowed us to detect a decrease following cocaine administration. Another possibility is that the NAc may have a more robust response to the acute and chronic effects of cocaine, resulting in decreases in miR-495 expression levels.

miRNAs have a role in fine-tuning gene expression involved in many cell signaling pathways. Here, we established that miR-495 directly targets and regulates the ARG Bdnf both in vitro and in vivo. Bdnf in the NAc has been linked to several drug abuse-related behaviors, where BDNF expression levels positively correlate with cocaine reward and motivation. Therefore, regulation of both of these genes by miR-495 may coordinate affect several domains of addiction-related processes. Indeed, addiction is hypothesized to be a dysfunction of neuroplasticity, and both Bdnf and Camk2a genes encode for plasticity-related proteins. We found that many other miR-495 targets that we validated also form networks involved in long-term potentiation and long-term depression, as well as other cell signaling cascades relevant to addiction, such as PKA signaling. Therefore, miR-495 may act as a mechanism to fine tune the molecular response of multiple, interwoven pathways involved in the development of addiction.

Similar to acute cocaine administration, NAcsh miR-495 levels were also decreased following both brief and prolonged cocaine self-administration. It is unknown why this occurred exclusively in the NAcsh and not the core, but this effect may be due to the differential afferent projections into these subregions or the involvement of the shell in the primary reinforcing and unconditioned effects of cocaine. Interestingly, these effects are consistent with previous findings that both BDNF and CaMKIIa involvement in cocaine abuse-related behavior is also specific to the NAcsh, and not the core. Furthermore, the downward trend of NAcsh miR-495 expression as cocaine self-administration experience increased may be related to the theory of incentive sensitization, where motivation to seek drug (that is, 'wanting') increases over the course of drug use. Thus, decreases in NAcsh miR-495 expression may be indicative of sensitized motivation.

To test this hypothesis, we examined the effect of NAcsh miR-495 overexpression on cocaine self-administration and seeking behavior. We observed that NAcsh miR-495...
overexpression decreased responding and intake when cocaine was available on the high-effort PR schedule, but did not alter intake in the low-effort FR5 schedule. PR schedules are believed to model an aspect of SUD related to an individual increasing time and energy toward drug-seeking and drug-taking behavior; thus, alterations in these behaviors closely model hallmark symptoms of human addiction. Furthermore, NAc miR-495 overexpression did not alter PR measures in a similar procedure with a natural food reinforcer. This suggests that miR-495 specifically influences motivation for cocaine likely without impacting the reinforcing value of cocaine or food reinforcement/motivation. In addition, we found that NAcsh miR-495 overexpression reduced cocaine-seeking behavior during extinction and reinstatement, further supporting a selective reduction in motivation. We also confirmed that under these conditions, miR-495 overexpression resulted in decreases in Bdnf and Camk2a expression. Closely mirroring our effects, previous work has shown that NAcsh knockdown of Camk2a and inhibition of NAcsh CAMKII reduce PR measures and reinstatement, respectively. Thus, CamKIIa is an important regulatory crux of many addiction-related molecular pathways. Although we did not detect a statistically significant effect during cue reinstatement (P = 0.06, one-tailed), the pattern is very similar. The lack of a more robust effect on cue reinstatement may highlight the more prominent role of the NAc core, rather than the shell, in regulating cue reinstatement. Overall, our results suggest that miR-495 preferentially regulates a network of ARG targets involved in the incentive motivational properties of cocaine which are more critical for sustaining behavior under the high-effort PR schedule of reinforcement than under the low-effort FR5 schedule of reinforcement.

In conclusion, we demonstrate a novel in silico method to identify potential miRNAs that may be involved in SUD. Our findings suggest that miR-495 decreases motivation for cocaine by targeting several ARGs and regulatory pathways in the NAc involved in synaptic plasticity, PKA signaling and other pathways associated with the disorder. These results highlight the importance of moving drug abuse research from a single gene focus to biological pathways in order to better understand the complexity of the molecular networks associated with addiction. This discovery also opens new avenues for future research on the specific factors controlling cocaine-induced decreases in miR-495 and the role of miR-495 in regulating different forms of synaptic plasticity in the NAc. Most importantly, we believe this study is the first to identify a miRNA that specifically regulates the incentive motivational properties for cocaine both during active drug taking and following a period of abstinence. The latter finding is particularly compelling, as preventing relapse is a primary objective for addiction translational research. The possibility of globally targeting drug-induced changes in gene expression via miRNAs, such as miR-495, may lead to new therapeutics that shift the balance of gene regulation toward alleviating, rather than promoting, SUD-related behavior.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
This work was supported by NIDA grants 1R01DA034097 (NPB & JLN), F31DA035609 (RMB), and T32AA014127, F31DA041214 (RJD). We are grateful to Dr. Yue Feng at Emory University for providing the luciferase-Bdnf 3’ UTR constructs. We also wish to thank Timothy Cheung, Nora Dado, Peter Kufahl, Sayuri Nixon, Karen Mooneyhan, Jason Newborn, Natalie Peartree, Erika Perez, Lara Pockros, Justine Saavedra, Gregory Powell and Jennifer Taylor for their technical assistance.

REFERENCES
1. Lesher AI. Addiction is a brain disease, and it matters. Science 1997; 278: 45–47.
2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Publishing: Arlington, VA, 2013.
3. Kalivas PW, O’Brien C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 2008; 33: 166–180.
4. McClung CA, Nestler EJ. Neuroplasticity mediated by altered gene expression. Neuropsychopharmacology 2008; 33: 3–17.
5. Feng J, Nestler EJ. Epigenetic mechanisms of drug addiction. Curr Opin Neurobiol 2013; 23: 521–528.
6. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 2011; 12: 623–637.
7. Rogge GA, Wood MA. The role of histone acetylation in cocaine-induced neural plasticity and behavior. Neuropsychopharmacology 2013; 38: 94–110.
8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.
9. Im H, Kenny PJ. MicroRNAs in neuronal function and dysfunction. Trends Neurosci 2012; 35: 325–334.
10. Ball P, Kenny PJ. MicroRNAs and drug addiction. Front Genet 2013; 4: 43.
11. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11: 441–450.
12. Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease. Brain Res 2010; 1338: 89–99.
13. Sartor GC, St Laurent G 3rd, Wahlestedt C. The emerging role of non-coding RNAs in drug addiction. Front Genet 2012; 3: 106.
14. Chandrasekhar V, Dreyer JL. MicroRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 2009; 42: 350–362.
15. Epper-Mains JE, Kiraly DD, Pakalodeti D, Mains RE, Eipper BA, Graveley BR. microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. RNA 2011; 17: 1529–1543.
16. Guo Y, Chen Y, Carreño S, Qi Yang. Chronic intermittent ethanol exposure and its removal induce a different miRNA expression pattern in primary cortical neuronal cultures. Alcohol Clin Exp Res 2012; 36: 1058–1066.
17. Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 2010; 20: 492–498.
18. Schaeffer A, Im H, Veno MT, Fowler CD, Min A, Intrator A et al. Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction. J Exp Med 2010; 207: 1843–1851.
19. Bai A, Boyer F, Chandrasekhar V, Dreyer JL. Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats. Psychopharmacology (Berl) 2008; 199: 169–182.
20. Chandrasekhar V, Dreyer JL. Regulation of MR-124, Let-7d, and MR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 2011; 36: 1149–1164.
21. Hollandar JA, Im H, Amelio AL, Kocerba J, Ball P, Lu Q et al. Striatal microRNA controls cocaine intake through CREB signalling. Nature 2010; 466: 197–202.
22. Tapock JD, Barbier E, Flanigan M, Solomon M, Pincus A, Pilling A et al. microRNA-206 in rat medial prefrontal cortex regulates BDNF expression and alcohol drinking. J Neurosci 2013; 33: 4581–4588.
23. Li CY, Mao X, Wei L. Genes and (common) pathways underlying drug addiction. PLoS Comput Biol 2008; 4: e2.
24. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol 2003; 4: R1.
25. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014; 42(Database issue): D68–D73.
26. Landgraf P, Rusu M, Sheridan R, Sever A, Lovino N, Aravin A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.
27. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S. A set of differentially expressed microRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 2008; 17: 3030–3042.
28. An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F et al. Distinct role of long 3’ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 2008; 134: 175–187.
29. Orefice LL, Waterhouse EG, Partridge JG, Lalchandani RR, Vicini S, Xu B. Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J Neurosci 2013; 33: 11618–11632.
30. Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci 2007; 8: 844–858.
31. Krol J, Busskamp V, Markiewicz J, Stadler MB, Ribi S, Richter J et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 2010; 141: 618–631.
miR-495 targets genes linked to cocaine motivation
RM Bastle et al

32 Benetatos L, Hatzimichael E, Londin E, Vartholomatos G, Loher P, Rigoutsos I et al. The microRNAs within the Dlk1-Dio3 genomic region: involvement in disease pathogenesis. Cell Mol Life Sci 2013; 70: 795–814.
33 Wu H, Tao J, Chen PJ, Shahab A, Ge W, Hart RP et al. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci USA 2010; 107: 18161–18166.
34 Lempiainen H, Couttet P, Bolognani F, Muller A, Dubost V, Luizier R et al. Identification of Dlk1-Dio3 impaired gene cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion. Toxicol Sci 2013; 131: 375–386.
35 Jolink G, Guevermont D, Ryan B, Claudianos C, Cristino AS, Abraham WC et al. Rapid regulation of microRNA following induction of long-term potentiation in vivo. Front Mol Neurosci 2014; 7: 98.
36 Schratt G. Fine-tuning neural gene expression with microRNAs. Curr Opin Neurobiol 2009; 19: 213–219.
37 Horger BA, Iyasere CA, Berhow MT, Messer CJ, Nestler EJ, Taylor JR. Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci 1999; 19: 4110–4122.
38 Hall FS, Drgonova J, Goeb M, Uhl GR. Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 2003; 28: 1485–1490.
39 Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 2007; 10: 1029–1037.
40 Graham DL, Krishnan V, Larson EB, Graham A, Edwards S, Bachtell RK et al. Tropomysosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiatry 2009; 65: 696–701.
41 Kourrich S, Klug JR, Mayford M, Thomas MJ. AMPAR-independent effect of striatal alphaCaMKII promotes the sensitization of cocaine reward. J Neurosci 2012; 32: 6578–6586.
42 Loveth J, Singer B, Baker L, Wilke G, Inamine H, Bubula N et al. Transient over-expression of alpha-Ca2+/calmodulin-dependent protein kinase II in the nucleus accumbens shell enhances behavioral responding to amphetamine. J Neurosci 2010; 30: 939–949.
43 Wang L, Lv Z, Hu Z, Sheng J, Hui B, Sun J et al. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 2010; 35: 913–928.
44 Anderson SM, Famous KR, Sadri-Vakili G, Kumaresan V, Schmidt HD, Bass CE et al. CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci 2008; 11: 344–353.
45 Kasanetz F, Deroche-Gamonet V, Berson N, Balado E, Lafourcade M, Manzoni O et al. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 2010; 328: 1709–1712.
46 Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 2010; 33: 267–276.
47 Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ. Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 1998; 18: 1848–1859.
48 Bourdoue AC, Ferrario CR, Glucksman MJ, Wolf ME. Signaling pathway adaptations and novel protein kinase A substrates related to behavioral sensitization to cocaine. J Neurochem 2009; 110: 363–377.
49 Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: role in drug addiction. Neuroscience 2015; 301: 529–541.
50 Ito R, Robbins TW, Everitt BJ. Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 2004; 7: 389–397.
51 Robison AJ, Vialou V, Mazei-Robison M, Feng J, Kourrich S, Collins M et al. Behavioral and structural responses to chronic cocaine require a feedforward loop involving DeltaFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci 2013; 33: 4295–4307.
52 Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 1993; 18: 247–291.
53 Roberts DC, Morgan D, Liu Y. How to make a rat addicted to cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 1614–1624.
54 Wu X, McMurray CT. Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J Biol Chem 2001; 276: 1735–1741.
55 Fuchs RA, Evans KA, Parker MC, See RE. Differential involvement of the core and shell subregions of the nucleus accumbens in conditioned cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2004; 176: 459–465.

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)