Recovered Left Ventricular Ejection Fraction and Its Prognostic Impacts in Hospitalized Heart Failure Patients with Reduced Ejection Fraction

Satoshi Abe, MD, Akiomi Yoshihisa, MD, Yasuhiro Ichijo, MD, Yu Sato, MD, Yuki Kanno, MD, Mai Takiguchi, MD, Tetsuro Yokokawa, MD, Tomofumi Misaka, MD, Takamasa Sato, MD, Masayoshi Oikawa, MD, Atsushi Kobayashi, MD, Takayoshi Yamaki, MD, Hiroyuki Kunii, MD and Yasuchika Takeishi, MD

Summary
It has been recently recognized that recovery of left ventricular ejection fraction (EF), termed “recovered EF”, occurs in a proportion of heart failure patients with reduced EF (HFrEF), and is associated with better prognosis. However, the clinical characteristics of “recovered EF” have not been fully examined.

Consecutive 567 patients hospitalized due to HFrEF (EF < 40% at 1st assessment at hospital discharge) were enrolled, and EF was re-assessed within half a year in an outpatient setting (2nd assessment). Among these HFrEF patients, 235 remained EF < 40% (reduced, rEF group), 82 changed to EF 40-49% (midrange, mrEF group), and 250 recovered to EF > 50% (preserved, pEF group “recovered EF”) at the 2nd examination. Age was lower and body mass index and systolic blood pressure were higher in pEF than in rEF. The prevalence of atrial fibrillation (AF) and usage of an implantable cardiac defibrillator and cardiac resynchronization therapy were highest in pEF. Left ventricular end diastolic dimension (LVDd) was the smallest in the pEF group. Multivariable logistic regression analysis revealed that younger age, presence of AF, and lower levels of LVDd were predictors of “recovered EF”. Kaplan-Meier analysis found that pEF presented the lowest cardiac event rate ($P = 0.003$) and all-cause mortality ($P = 0.001$). In multivariable Cox proportional hazard analyses, pEF (versus rEF) was an independent predictor of both cardiac event rate (HR = 0.668, 95%CI 0.450-0.994, $P = 0.046$) and all-cause mortality (HR = 0.655, 95%CI 0.459-0.934, $P = 0.019$).

Hospitalized HFrEF patients with recovered EF are associated with younger age, higher presence of AF, and better prognosis.

Key words: Co-morbidity, Recover, Prognosis

Heart failure (HF) is a major cause of death among the elderly in many countries.1-4 The ‘left ventricular ejection fraction’ is among the most ingrained and commonly used to manage HF in clinical practice. Ejection fraction (EF) is used in the diagnosis, characterization, prognosis, patient triage, and treatment selection of HF.5-9 HF with reduced EF (HFrEF; EF < 40%) is well characterized and established with respect to evidence-based therapy [e.g. renin-angiotensin-aldosterone system inhibitors, beta blockers, and cardiac resynchronization therapy (CRT)].5-9 whereas HF with preserved EF (HFrEF; EF ≥ 50%) is a common and complex syndrome without evidence-based therapy.10,11 On the other hand, changes in EF and its prognostic impact on stable HFrEF patients have recently been reported,12 and it has been suggested that the recovery of EF, known as “recovered EF”, occurs in a proportion of stable HFrEF patients, and is associated with better prognosis.13-18 However, changes in EF in patients with decompensated and hospitalized HFrEF, their clinical characteristics, and prognosis are still not fully understood.

Therefore, the aim of the present study was to clarify changes in EF in patients with decompensated and hospitalized HFrEF, their clinical characteristics, and their prognosis.

Methods
This was a prospective observational study of 629 decompensated and hospitalized HFrEF patients who were discharged from Fukushima Medical University Hospital between 2010 and 2016, and who had an EF < 40% at...
the time of hospital discharge (1st EF assessment). The diagnosis of decompensated HF was made by several cardiologists based on the HF guidelines. Patients who had been admitted due to acute coronary syndrome and had previously undergone hemodialysis were excluded. EF was premeditatedly re-assessed in 567 patients in the outpatient setting within half a year (mean 4 months) post discharge (2nd EF assessment). Of the 629 patients, 53 failed to undergo a 2nd EF assessment for a reason attributable to the patient or the physician, and all-cause death or hospitalization due to decompensated HF occurred in 9 patients before the 2nd EF assessment. Thus, we divided the remaining 567 HFrEF patients, who had an EF < 40% at the 1st EF assessment, into 3 groups based on the 2nd EF assessment: "HFrEF at 1st EF assessment and persistently remained as reduced EF at 2nd EF assessment: rEF (EF < 40%, n = 235)", "HFrEF at 1st EF assessment and subsequently became midrange EF at 2nd EF assessment: mEF (EF 40-49%, n = 82)" and "HFrEF at 1st EF assessment and then recovery to preserved EF at 2nd EF assessment: pEF: recovered EF (EF ≥ 50%, n = 250)".

We compared the clinical features, laboratory data, and echocardiography and electrocardiogram parameters. The patients were followed up until 2018 for cardiac events and all-cause death. Cardiac events were defined as worsened HF and cardiac death. Cardiac death was classified by independent experienced cardiologists as death from worsened HF, ventricular fibrillation documented by electrocardiogram or implantable devices, or acute coronary syndrome. Worsened HF was defined as hospitalization due to decompensated HF. Status and dates of death were obtained from the patient medical records. If these data were unavailable, the status was ascertained by a telephone call to the physician at the referring hospital. We were able to follow-up on all patients. Those administering the survey were blind to the analyses, and written informed consent was obtained from all study subjects. The study protocol was approved by the ethical committee of Fukushima Medical University, the investigation conformed to the principles outlined in the Declaration of Helsinki, and reporting of the study conforms to STROBE along with references to STROBE and the broader EQUATOR guidelines.

We evaluated several comorbidities that often coexist and are associated with adverse prognost in HF patients. Coronary artery disease (CAD) was confirmed by either myocardial scintigraphy or coronary computed tomography angiography and/or coronary angiography. Atrial fibrillation (AF) was identified by electrocardiography performed during hospitalization and/or from medical records. AF included 1) paroxysmal or persistent AF or 2) chronic AF. Hypertension was defined as the recent use of antihypertensive drugs, systolic blood pressure ≥ 140 mmHg, and/or diastolic blood pressure ≥ 90 mmHg. Diabetes mellitus was defined as the recent use of antidiabetic drugs, a fasting glucose value of ≥ 126 mg/dL, a casual glucose value of ≥ 200 mg/dL, and/or HbA1c ≥ 6.5% (National Glycohemoglobin Standardization Program). Dyslipidemia was defined as the recent use of cholesterol-lowering drugs, a triglyceride value of ≥ 150 mg/dL, a low-density lipoprotein cholesterol value of ≥ 140 mg/dL, and/or a high-density lipoprotein cholesterol value of < 40 mg/dL. Chronic kidney disease (CKD) was defined as an estimated glomerular filtration rate of < 60 mL/minute/1.73 m² according to the Modification of Diet in Renal Disease formula. Anemia was defined as hemoglobin levels of < 12.0 g/dL in females and < 13.0 g/dL in males. Hyperuricemia was defined as the regular usage of antihyperuricemic agents or serum uric acid levels of over 7 mg/dL. Chronic obstructive pulmonary disease was defined as forced expiratory volume in one second/forced vital capacity < 70% by spirometry according to the Global Initiative for Chronic Obstructive Lung Disease, the American Thoracic Society/European Respiratory Society guidelines and/or from medical records.

Measurement of parameters of laboratory data, electrocardiograms, and echocardiography: Blood samples were obtained from all patients at Fukushima Medical University Hospital at hospital discharge. B-type natriuretic peptide (BNP) levels were measured using a specific immunoradiometric assay (Shionoria BNP kit, Shionogi, Osaka, Japan). High-sensitivity troponin I levels were measured using EDTA anticoagulated plasma using a refined assay (Abbott-Architect, Abbott Laboratories, Abbott Park, IL, USA).

The standard resting ECG was recorded in the supine position using a CardioStar FCP-7541 ECG (Fukuda Den-shi, Co., Ltd., Tokyo) and stored digitally at hospital discharge. This system allows automatic measuring of QT and QTc intervals. The QT interval was measured from the beginning of the QRS complex until the T wave returns to the isoelectric line. The median QT interval was then calculated and corrected for the heart rate.

Echocardiography was performed blindly by experienced echocardiographers using standard techniques at hospital discharge (1st EF assessment). The echocardiographic parameters investigated included left ventricular diastolic dimension (LVDd), left ventricular systolic dimension (LVDs), LVEF, the ratio of early transmirtal flow velocity to mitral annular velocity (mitral valve E/e’), inferior vena cava diameter (IVC), tricuspid regurgitation pressure gradient (TR-PG), and right ventricular fractional area change (RV-FAC). LVEF was calculated using Simpson’s method in a 4-chamber view. The RV-FAC, defined as (end diastolic area - end systolic area)/end diastolic area × 100, was used as a measure of right ventricular systolic function. All measurements were performed using ultrasound systems (ACUSON Sequoia, Siemens Medical Solutions USA, Inc., Mountain View, CA, USA).

Statistical analysis: Categorical variables are expressed as numbers and percentages. The chi-square test was used for comparisons of categorical variables and followed by Fisher’s exact test when appropriate. Normality was confirmed using the Shapiro-Wilk test in each group. Parametric variables are presented as the mean ± SD, and non-parametric variables (e.g. BNP, troponin I and C-reactive protein) are presented as the median and interquartile range. Parametric variables were compared using analysis of variance (ANOVA), and equality was tested by the Levene test. If data were equal, ANOVA was followed by Tukey’s honest significant difference. If data were not equal, the Games-Howell post hoc test was used.
parametric variables were compared using the Kruskal-Wallis test. We performed logistic regression analysis allowing for interaction between the onset of “recovered EF” and each possible confounding factor. Kaplan-Meier analysis was used for presenting the cardiac event rate and all-cause mortality, and the log-rank test was used for initial comparisons. Kaplan-Meier estimates of the survival curves were plotted against time to follow-up period. These curves helped in identifying non-proportionality patterns in hazard function such as convergence (difference in risk between the groups decreases with time), divergence, or crossing of the curves. In addition, a Schoenfeld test for the violation of proportional hazards, which can be used to assess the correlation between scaled residuals and time, was also conducted. The prognostic value was evaluated by Cox proportional hazard analysis, and was tested by univariate and multivariate Cox regression analysis. Univariable and multivariable Cox proportional hazard analyses were used to evaluate changes of EF as a predictor of cardiac event rate and all-cause mortality. Univariable parameters with P values of < 0.05 were included in the multivariable analysis. The propor-

Table 1. Clinical Features Based on EF Classification at 2nd EF Assessment ($n = 567$)

Etiology	rEF ($n = 235$)	mrEF ($n = 82$)	pEF ($n = 250$)	P-value
Age (years)	67.2 ± 14.0	65.8 ± 13.9	62.4 ± 15.0*	0.001
Male gender (n, %)	167 (71.1)	62 (75.6)	179 (71.6)	0.722
Body mass index (kg/m²)	22.6 ± 4.2	23.6 ± 3.9	23.9 ± 4.3*	0.004
Systolic blood pressure (mmHg)	122.0 ± 32.0	132.9 ± 32.6*	130.0 ± 35.5*	0.008
Diastolic blood pressure (mmHg)	72.6 ± 21.5	79.2 ± 21.8*	77.7 ± 24.8*	0.019
Heart rate (bpm)	83.6 ± 23.3	93.2 ± 29.3*	88.0 ± 28.8	0.014
NYHA functional class III/IV	13 (5.5)	5 (6.1)	5 (2.0)	0.086
Diagnosis				
Cardiomyopathy	109 (46.4)	33 (40.2)	92 (36.8)	0.099
Ischemic etiology	88 (37.4)	31 (37.8)	72 (28.8)	0.092
Valvular heart disease	19 (8.1)	9 (11.0)	48 (19.2)	0.001
Arrhythmic cause	5 (2.1)	3 (3.7)	14 (5.6)	0.140
Others	14 (6.0)	6 (7.3)	24 (9.6)	0.321
Co-morbidity				
Coronary artery disease (n, %)	93 (39.6)	35 (42.7)	85 (34.0)	0.262
AF (n, %)	67 (28.5)	32 (39.0)	105 (42.0)	0.007
Paroxysmal or persistent AF (n, %)	39 (16.6)	18 (22.0)	57 (22.8)	0.212
Chronic AF (n, %)	28 (11.9)	14 (17.1)	48 (19.2)	0.086
Hypertension (n, %)	164 (69.8)	52 (63.4)	185 (74.0)	0.173
Diabetes (n, %)	110 (46.8)	47 (57.3)	117 (46.8)	0.212
Dyslipidemia (n, %)	174 (74.0)	65 (79.3)	191 (76.4)	0.612
Chronic kidney disease (n, %)	143 (60.9)	56 (68.3)	141 (56.4)	0.152
Anemia (n, %)	120 (51.1)	41 (50.0)	114 (45.6)	0.464
Hyperuricemia (n, %)	168 (71.5)	61 (74.4)	177 (70.8)	0.821
COPD (n, %)	49 (20.9)	25 (30.5)	64 (25.6)	0.178
Smoking (n, %)	127 (54.5)	41 (51.9)	127 (51.6)	0.805
Alcohol (n, %)	19 (8.2)	9 (11.4)	25 (10.2)	0.623
Treatment				
RAS inhibitor (n, %)	187 (79.6)	67 (81.7)	216 (86.4)	0.130
Mineral receptor antagonist (n, %)	119 (50.6)	42 (51.2)	130 (52.0)	0.956
Calcium channel blocker (n, %)	53 (22.6)	23 (28.0)	80 (32.0)	0.066
Beta blocker (n, %)	211 (89.8)	75 (91.5)	230 (92.0)	0.688
Diuretic (n, %)	182 (77.4)	75 (91.5)	183 (73.2)	0.003
Inotropic (n, %)	51 (21.7)	21 (25.6)	41 (16.4)	0.131
Statin (n, %)	84 (35.7)	36 (43.9)	103 (41.2)	0.309
Digitals (n, %)	30 (12.8)	19 (23.2)	33 (13.2)	0.052
Amiodarone (n, %)	78 (33.2)	29 (35.4)	48 (19.2)	0.001
Antiplatelet agent (n, %)	102 (43.4)	36 (43.9)	117 (46.8)	0.738
Anticoagulant (n, %)	148 (63.0)	50 (61.0)	153 (61.2)	0.906
PCI (n, %)	65 (27.7)	25 (30.5)	67 (26.8)	0.811
Catheter ablation (n, %)	19 (8.1)	12 (14.6)	23 (9.2)	0.214
ICD (n, %)	17 (7.3)	14 (17.7)	46 (18.7)	0.001
CRT (n, %)	17 (7.2)	11 (13.4)	37 (14.8)	0.027

*EF indicates ejection fraction; HFrEF, heart failure with reduced EF; rEF, HFrEF at 1st EF assessment and persistently remained reduced EF at 2nd assessment; mrEF, HFrEF at 1st EF assessment and changed to midrange EF at 2nd assessment; pEF, HFrEF at 1st EF assessment and recovered to preserved EF at 2nd assessment; NYHA, New York Heart Association; AF, atrial fibrillation; COPD, chronic obstructive pulmonary disease; RAS, renin-angiotensin-aldosterone system; PCI, percutaneous coronary intervention; ICD, implantable cardiac defibrillator; and CRT, cardiac resynchronization therapy. *$P < 0.05$ and **$P < 0.01$ versus rEF.*
Table II. Laboratory and Echocardiographic Data Based on EF Classification at 2nd EF Assessment (n = 567)

Laboratory data	rEF (n = 235)	mrEF (n = 82)	pEF (n = 250)	P-value
White blood cells (*10^3/μL)	6.9 ± 2.7	8.4 ± 3.7*	7.6 ± 3.3†	0.002
Hemoglobin (g/dL)	12.9 ± 2.2	13.0 ± 2.5	13.0 ± 2.3	0.862
BNP (pg/mL) §	452.1 (155.7-954.9)	511.1 (155.9-786.3)	409.5 (180.9-812.3)	0.607
Troponin I (ng/mL) §	0.050 (0.027-0.196)	0.051 (0.029-0.661)	0.060 (0.040-0.228)	0.121
eGFR (mL/min/1.73 cm²)	51.8 ± 22.0	54.1 ± 19.7	57.5 ± 25.1	0.063
C-reactive protein (mg/dL) §	0.23 (0.08-0.88)	0.21 (0.07-0.86)	0.20 (0.07-0.84)	0.101
Total protein (g/dL)	7.0 ± 0.7	6.9 ± 0.8	6.9 ± 0.8	0.402
Albumin (g/dL)	3.7 ± 0.6	3.6 ± 0.8	3.6 ± 0.6	0.335
Total bilirubin (mg/dL)	1.0 ± 0.6	0.9 ± 0.5	1.0 ± 0.6	0.597
Direct bilirubin (mg/dL)	0.1 ± 0.1	0.2 ± 0.2	0.1 ± 0.3	0.677
Sodium (mEq/L)	138.5 ± 3.7	139.3 ± 3.9	139.0 ± 4.0	0.270
Echocardiographic data				
LV EF (%)	28.5 ± 7.3	32.1 ± 7.8	33.2 ± 7.3†	0.021
LVDD (mm)	58.4 ± 10.5	57.7 ± 9.8	54.5 ± 9.6**	< 0.001
LVDs (mm)	50.2 ± 10.9	47.9 ± 10.6	43.2 ± 11.8**††	< 0.001
Mitral valve E/E’	16.1 ± 8.5	15.3 ± 9.8	14.4 ± 6.8	0.128
IVC (mm)	15.2 ± 5.1	15.8 ± 5.0	15.3 ± 5.3	0.677
TR-PG (mmHg)	26.4 ± 12.3	31.4 ± 15.5	27.3 ± 12.6	0.062
RV-FAC (%)	37.1 ± 13.5	37.7 ± 19.6	39.2 ± 12.3	0.546
ECG				
Rhythm sinusal/atrial fibrillation/ pacing	155 (66.0)/28 (11.9) / 54 (65.9)/14 (17.1) / 163 (65.2)/52 (20.8) /	0.035		
CRBBB	17 (7.2)	7 (8.5)	21 (8.4)	0.873
CLBBB	52 (22.1)	14 (17.1)	35 (14.0)	
HR (excluding pacing, n = 465)	75.1 ± 16.1	75.1 ± 15.4	73.3 ± 16.3	0.425
PQ (msec)	175.8 ± 30.4	184.4 ± 35.3	175.4 ± 29.4	0.167
QRS (msec)	117.8 ± 23.3	115.2 ± 25.9	114.0 ± 26.2	0.320
QT (msec)	411.3 ± 48.7	408.2 ± 48.1	410.2 ± 47.9	0.321
QTc (msec)	456.6 ± 35.7	451.2 ± 34.8	448.8 ± 43.7	0.148

EF indicates ejection fraction; HFrEF, heart failure with reduced EF; rEF, HFrEF at 1st EF assessment and persistently remained reduced EF at 2nd assessment; mrEF, HFrEF at 1st EF assessment and changed to midrange EF at 2nd assessment; pEF, HFrEF at 1st EF assessment and recovered to preserved EF at 2nd assessment; BNP, B-type natriuretic peptide; GFR, glomerular filtration rate; LVDD, left ventricular end diastolic dimension; LVDs, left ventricular end systolic dimension; IVC, inferior vena cava diameter; TR-PG, tricuspid regurgitation pressure gradient; RV-FAC, right ventricular fractional area change; CRBBB, complete right bundle branch block; CLBBB, complete left bundle branch block.

*P < 0.05 and **P < 0.01 versus rEF; †P < 0.05 and ††P < 0.01 versus mrEF. § Data are presented as median (interquartile range).

Results

The clinical characteristics and treatments of patients at hospital discharge are presented in Table I. Age was lower and body mass index and blood pressure were higher in the pEF group than in the rEF group. In addition, the prevalence of AF and taking diuretics or amiodarone were the lowest, and usages of implantable cardiac defibrillator and CRT therapy were the highest in pEF among the groups. In contrast, the prevalence of other comorbidities and treatment did not significantly differ among the 3 groups. Laboratory data and electrocardiography and echocardiography findings are presented in Table II. The white blood cell level was the highest in the mrEF group, while LV EF was the highest and LVDd and LVDs were the smallest in the pEF group among the groups. In contrast, other parameters, including hemoglobin, BNP, troponin I, C-reactive protein, total protein, sodium, mitral valve E/E’, IVC, TR-PG, RV-FAC, PQ, QRS, QT, and QTc did not significantly differ among the groups. In the multivariable logistic regression analysis (Table III), younger age, presence of AF, lower levels of LVDD, and higher levels of LVEF at 1st EF assessment were predictors of “recovered EF”.

During the follow-up period after the 2nd EF assessment (mean 1,201 ± 808 days, range 20-2,954 days), 197 cardiac events, including 160 hospitalizations due to HF and 37 cardiac deaths, occurred, as well as 179 all-cause mortalities (106 cardiac deaths and 73 non-cardiac deaths). In the Kaplan-Meier analysis (Figure), the pEF group presented the lowest cardiac event rate (P = 0.003) and all-cause mortality (P = 0.001). In the multivariable Cox proportional hazard analyses (Table IV), pEF (versus rEF) was an independent predictor of both cardiac event rate (hazard ratio [HR] 0.668, 95% confidence interval [CI] 0.450-0.994, P = 0.046) and all-cause mortality (HR = 0.655, 95%CI 0.459-0.934, P = 0.019).
In the present study, we demonstrated that patients with “recovered EF”, which was 44.1% in the present study, was associated with younger age, higher presence of AF, and lower levels of LVDd, and better prognosis of cardiac event rate, as well as all-cause mortality in HFrEF patients.

In stable HFrEF patients, EF recovery was observed in 9.1 - 24.2%. 13-17,25) The relatively higher prevalence of “recovered EF” (44.1%) than those in previous studies 12-17,25) may be due to the greater number of patients with acute phase of decompensated HFrEF in the present study compared to the outpatient setting of other studies.

Several reported factors of EF recovery in stable HFrEF patients were as follows: younger age, lower NYHA class, lower prevalence of male gender, CAD, diabetes, CKD, chronic obstructive pulmonary disease and CLBBB, higher prevalence of AF and hypertension, higher levels of baseline EF, body mass index, blood pressure and sodium, and lower levels of LVDd and circulating levels of uric acid, troponin T, BNP and NT-pro BNP.12-15,17) Concordant with the previous studies based on stable HFrEF patients, 12-17,25) younger age, higher presence of AF, lower levels of LVDd, and higher levels of baseline EF were associated with “recovered EF” in the present study from decompensated and hospitalized HFrEF patients. In addition, although the etiology of HFrEF could be associated with “recovered EF”, associations between EF recovery and the etiology of cardiomyopathy or valvular heart disease have not been reported. On the contrary, ischemic etiology is reportedly less likely to present EF recovery in stable HFrEF patients 12-15,17) and the etiology of HF (e.g. higher prevalence of ischemic etiology in the

Table III. Logistic Regression Analysis: Associations between the Clinical Profiles and “Recovered EF”

Variable	Univariable	Multivariable				
	OR	95%CI	P-value	OR	95%CI	P-value
Age	0.979	0.968-0.991	< 0.001	0.963	0.947-0.979	< 0.001
Male gender	0.969	0.670-1.401	0.866			
Body mass index	1.058	1.016-1.101	0.006	1.042	0.986-1.103	0.146
Systolic blood pressure	1.004	1.000-1.009	0.073			
Heart rate	1.003	0.996-1.009	0.407			
NYHA class III or IV	0.339	0.124-0.926	0.035	0.266	0.066-1.074	0.063
Coronary artery disease	0.761	0.539-1.074	0.120			
Atrial fibrillation	1.595	1.129-2.253	0.008	2.026	1.290-3.182	0.002
Hypertension	1.331	0.921-1.924	0.128			
Diabetes	1.897	0.643-1.249	0.519			
Dyslipidemia	1.057	0.717-1.557	0.781			
Chronic kidney disease	0.767	0.547-1.076	0.124			
Anemia	0.812	0.583-1.132	0.220			
Hyperuricemia	0.932	0.645-1.345	0.706			
Chronic obstructive pulmonary disease	1.130	0.769-1.661	0.534			
Peripheral artery disease	0.869	0.545-1.388	0.869			
Smoking	0.915	0.655-1.278	0.602			
Alcohol	1.147	0.610-2.023	0.635			
Log BNP	0.830	0.599-1.151	0.265			
Log troponin I	1.148	0.942-1.398	0.172			
Left ventricular end diastolic dimension	0.963	0.945-0.981	< 0.001	0.962	0.940-0.986	0.002
LV EF	1.087	1.065-1.110	< 0.001	1.082	1.057-1.108	< 0.001
Complete left bundle branch block	0.791	0.376-1.662	0.536			
QRS	0.995	0.988-1.002	0.189			
QT	1.000	0.996-1.004	0.949			
QTc	0.996	0.991-1.000	0.090			
RAS inhibitors	1.576	1.000-2.483	0.050			
Mineral receptor antagonist	1.050	0.753-1.463	0.774			
Calcium channel blocker	1.492	1.030-2.161	0.034	1.472	0.884-2.452	0.137
Beta blocker	1.247	0.692-2.245	0.463			
Diuretic	0.638	0.429-0.948	0.026	0.922	0.535-1.588	0.769
Inotropic	0.608	0.340-1.022	0.063	1.126	0.644-1.968	0.677
Statin	1.150	0.820-1.615	0.418			
Digitalis	0.832	0.517-1.339	0.448			
Amiodarone	1.181	0.973-1.271	0.125			
PCI	0.999	0.696-1.433	0.995			
Catheter ablation	0.997	0.578-1.721	0.992			
Implantable cardiac defibrillator	2.085	1.277-3.403	0.003	2.019	0.849-4.558	0.091
Cardiac resynchronization therapy	2.193	1.064-3.021	0.028	1.402	0.555-3.541	0.475

EF indicates ejection fraction; OR, odds ratio; CI, confidence interval; NYHA, New York Heart Association; BNP, B-type natriuretic peptide; RAS, renin-angiotensin-aldosterone system; and PCI, percutaneous coronary intervention.

Discussion

In the present study, we demonstrated that patients with “recovered EF”, which was 44.1% in the present study, was associated with younger age, higher presence of AF, and lower levels of LVDd, and better prognosis of cardiac event rate, as well as all-cause mortality in HFrEF patients.

In stable HFrEF patients, EF recovery was observed in 9.1 - 24.2%. 13-17,25) The relatively higher prevalence of “recovered EF” (44.1%) than those in previous studies 12-17,25) may be due to the greater number of patients with acute phase of decompensated HFrEF in the present study compared to the outpatient setting of other studies.

Several reported factors of EF recovery in stable HFrEF patients were as follows: younger age, lower NYHA class, lower prevalence of male gender, CAD, diabetes, CKD, chronic obstructive pulmonary disease and CLBBB, higher prevalence of AF and hypertension, higher levels of baseline EF, body mass index, blood pressure and sodium, and lower levels of LVDd and circulating levels of uric acid, troponin T, BNP and NT-pro BNP.12-15,17) Concordant with the previous studies based on stable HFrEF patients, 12-15,25) younger age, higher presence of AF, lower levels of LVDd, and higher levels of baseline EF were associated with “recovered EF” in the present study from decompensated and hospitalized HFrEF patients. In addition, although the etiology of HFrEF could be associated with “recovered EF”, associations between EF recovery and the etiology of cardiomyopathy or valvular heart disease have not been reported. On the contrary, ischemic etiology is reportedly less likely to present EF recovery in stable HFrEF patients 12-15,17) and the etiology of HF (e.g. higher prevalence of ischemic etiology in the
Rates of cardiac events and all-cause mortality with changes in left ventricular ejection fraction (EF) in heart failure with reduced EF (HFrEF). Kaplan-Meier analysis, during the follow-up period after 2nd assessment of EF, for cardiac event rate and all-cause mortality based on changes in EF at 2nd assessment. rEF, HFrEF at 1st EF assessment and persistently remained reduced EF at 2nd assessment; mrEF, HFrEF at 1st EF assessment and transferred to midrange EF at 2nd assessment; pEF, HFrEF at 1st EF assessment and recovered to preserved EF at 2nd assessment.

Table IV. Cox Proportional Hazard Model of Cardiac Events and All-Cause Mortality

	HR	95% CI	P-value
Cardiac event (197 events/567 patients)			
rEF	Ref		
mrEF	0.897	0.597-1.349	0.602
pEF “recovered EF”	0.595	0.438-0.809	0.001
pEF “recovered EF” adjusted*	0.668	0.450-0.994	0.046
All-cause mortality (179 events/567 patients)			
rEF	Ref		
mrEF	0.773	0.503-1.188	0.241
pEF “recovered EF”	0.541	0.392-0.747	< 0.001
pEF “recovered EF” adjusted*	0.655	0.459-0.934	0.019

HFrEF indicates heart failure with reduced EF; rEF, HFrEF at 1st EF assessment and persistently remained reduced EF at 2nd assessment; mrEF, HFrEF at 1st EF assessment and changed to midrange EF at 2nd assessment; pEF “recovered EF”, HFrEF at 1st EF assessment and recovered to preserved EF at 2nd assessment. *Adjusted: adjusted for age, gender, body mass index, systolic blood pressure, heart rate, New York Heart Association class III or IV, presence of coronary artery disease, atrial fibrillation, hypertension, diabetes, dyslipidemia, chronic kidney disease, anemia, hyperuricemia, chronic obstructive pulmonary disease, smoking, alcohol, usage of renin-angiotensin-aldosterone system inhibitors, mineral receptor antagonist, calcium channel blocker, beta blockers, diuretics, inotropic agent, statin, digitalis, implantable cardiac defibrillator, cardiac resynchronization therapy, B-type natriuretic peptide and left ventricular ejection fraction at 1st assessment.

Thus, EF changes seem to be important for deciding treatment and predicting prognosis, as is the management of the associated factors with EF changes in HFrEF patients.

Study limitations: The present study has several limitations. First, as a prospective cohort study of a single center with a relatively small number of patients, the results may not be representative of the general population. Second, we could not fully examine EF at the 2nd assessment (90.1%) because of lost follow-up and/or occurrence of an event before the 2nd EF assessment, and selection bias
could not be fully denied. Although EF was re-assessed in the outpatient setting within half a year, the duration of the 1st and 2nd assessment of each patient differs. Third, the present study included only variables during hospitalization for decompensated HF, and we did not take into consideration changes in treatment or medical parameters other than EF. Fourth, since this was a prospective observational study, the causal relationships and mechanisms of “recovered EF” (e.g. clinical background, neurohumoral changes, impact of medications or catheter ablation, etc.) on better prognosis could not be fully explained. Therefore, the present results should be viewed as preliminary, and further studies with larger populations are needed.

Conclusions
EF changes are important for deciding treatment and predicting prognosis in decompensated and hospitalized HFrEF patients, as well as in stable HFrEF patients. In addition, several confounding factors are associated with EF changes in HFrEF patients.

Acknowledgments
The authors acknowledge the efforts of Ms. Kumiko Watanabe and Ms. Hitomi Kobayashi for their outstanding technical assistance.

Disclosure
Conflicts of interest: Akioi Yoshihisa and Tomofumi Misaka belong to the Department of Advanced Cardiac Therapeutics, which is supported by Fukuda-Denshi Co, Ltd. Tetsuro Yokokawa belongs to the Department of Pulmonary Hypertension which is supported by Acterion Pharmaceuticals Japan Co, Ltd. These companies are also not associated with the contents of this study.

References
1. Yamaguchi T, Miyamoto T, Sekigawa M, et al. Early transfer of patients with acute heart failure from a core hospital to collaborating hospitals and their prognoses. Int Heart J 2018; 59: 1026-33.
2. Ito M, Wada H, Sakakura K, et al. Clinical characteristics and mid-term outcomes of non-elderly obese patients with acute decompensated heart failure in Japan. Int Heart J 2018; 59: 766-71.
3. Yokokawa T, Sato T, Suzuki S, et al. Change of exhaled acetone concentration levels in patients with acute decompensated heart failure. Int Heart J 2018; 59: 766-71.
4. Yokokawa T, Ichijo Y, Houtsuki Y, et al. Change of exhaled acetone concentration in a diabetic patient with acute decompensated heart failure. Int Heart J 2017; 58: 828-30.
5. Lund LH, Vedin O, Savarese G. Is ejection fraction in heart failure a limitation or an opportunity? Eur J Heart Fail 2018; 20: 431-2.
6. Katsi V, Georgiopoulos G, Laina A, et al. Left ventricular ejection fraction as therapeutic target: is it the ideal marker? Heart Fail Rev 2017; 22: 641-55.
7. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129-200.
8. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017; 136: e137-61.
9. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 62: e147-239.
10. Redfield MM. Heart Failure with Preserved Ejection Fraction. N Engl J Med 2016; 375: 1868-77.
11. Sharma K, Kass DA. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res 2014; 115: 79-96.
12. Lupon J, Gavidia-Bovadilla G, Ferrer E, et al. Dynamic Trajectories of Left Ventricular Ejection Fraction in Heart Failure. J Am Coll Cardiol 2018; 72: 591-601.
13. Jorgensen ME, Andersson C, Vasan RS, Koher L, Abdullah J. Characteristics and prognosis of heart failure with improved compared with persistently reduced ejection fraction: A systematic review and meta-analyses. Eur J Prev Cardiol 2018; 25; 366-76.
14. Lupon J, Diez-Lopez C, de Antonio M, et al. Recovered heart failure with reduced ejection fraction and outcomes: a prospective study. Eur J Heart Fail 2017; 19: 1615-23.
15. Kalogeropoulos AP, Fonarow GC, Georgiopoulou V, et al. Characteristics and outcomes of adult outpatients with heart failure and improved or recovered ejection fraction. JAMA Cardiol 2016; 1: 510-8.
16. Florea VG, Rector TS, Anand IS, Cohn JN. Heart failure with improved ejection fraction: Clinical characteristics, correlates of recovery, and survival: Results from the valsartan heart failure trial. Circ Heart Fail 2016; 9: e003123.
17. Breathett K, Allen LA, Udelson J, Davis G, Bristow M. Changes in left ventricular ejection fraction predict survival and hospitalization in heart failure with reduced Ejection fraction. Circ Heart Fail 2016; 9: e002962.
18. Basuray A, French B, Ky B, et al. Heart failure with recovered ejection fraction: clinical description, biomarkers, and outcomes. Circulation 2014; 129: 2380-7.
19. von Ehn E, Altman DG, Egger M, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 2007; 335: 806-8.
20. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006; 145: 247-54.
21. Miura S, Yoshihisa A, Takiguchi M, et al. Association of hypocalcemia with mortality in hospitalized patients with heart failure and chronic kidney disease. J Card Fail 2015; 21: 621-7.
22. Shimizu T, Yoshihisa A, Kanno Y, et al. Relationship of hypercalcemia with mortality in heart failure patients with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2015; 309: H1123-9.
23. Yoshihisa A, Takiguchi M, Shimizu T, et al. Cardiovascular function and prognosis of patients with heart failure coexistent with chronic obstructive pulmonary disease. J Cardiol 2014; 64: 256-64.
24. Rudsinski LG, Lai WW, Afifalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Can-
25. Tsuji K, Sakata Y, Nochioka K, et al. Characterization of heart failure patients with mid-range left ventricular ejection fraction—a report from the CHART-2 Study. Eur J Heart Fail 2017; 19: 1258-69.