MASSEY PRODUCTS IN COHOMOLOGY OF MOMENT-ANGLE MANIFOLDS CORRESPONDING TO POGORELOV POLYTOPES

ELIZAVETA ZHURAVLEVA

Abstract. In this work we construct nontrivial Massey products in the cohomology of moment-angle manifolds corresponding to polytopes from the Pogorelov class. This class includes the dodecahedron and all fullerenes, i.e., simple 3-polytopes with only 5-gonal and 6-gonal facets. The existence of a nontrivial Massey product implies the nonformality of the space in the sense of rational homotopy theory.

Keywords: Massey products, moment-angle complexes, Pogorelov polytopes, fullerenes.

1. Introduction

In this paper we consider the problem of existence of nontrivial Massey products in the cohomology of moment-angle manifolds corresponding to 3-dimensional simple polytopes P. As shown in [1], these manifolds Z_P are 2-connected smooth manifolds of dimension $m + 3$, where m is the number of facets in P. First examples of moment-angle manifolds having nontrivial Massey products were found by Baskakov (see [2]). Limonchenko constructed in [3] a family of moment-angle manifolds having nontrivial Massey n-products for any n.

In dimension 3 the Pogorelov class of simple polytopes is particularly interesting. This class consists of combinatorial 3-dimensional simple polytopes which do not have 3-belts and 4-belts of facets. It is known that the Pogorelov class consists precisely of combinatorial 3-polytopes which admit a right-angled realization in Lobachevsky space L^3, and such a realization is unique up to isometry (see [4], [5], [6]). There is a family of hyperbolic 3-manifolds associated with Pogorelov polytopes, known as hyperbolic manifolds of Löbell type (see [7]). Moment-angle manifolds corresponding to Pogorelov polytopes are important for the topological study of hyperbolic manifolds of Löbell type, and also for cohomological rigidity of 6-dimensional (quasi)toric manifolds.

It is known that there are no triple Massey products of 3-dimensional classes in cohomology of moment-angle manifolds corresponding to Pogorelov polytopes (see [6]). For cohomology classes of higher dimension, the existence of Massey products was open. We prove that for any Pogorelov polytope P the corresponding moment-angle manifold Z_P has a nontrivial triple Massey product in the cohomology. This implies that all such manifolds Z_P are non-formal.

Our construction of nontrivial Massey products is based on the combinatorial description of the cohomology of moment-angle complexes and certain combinatorial properties of Pogorelov polytopes. The Pogorelov class contains all fullerenes (simple polytopes with only 5-gonal and 6-gonal facets), in particular, the dodecahedron. In this paper we also consider a particular case of dodecahedron.

The work was supported by the Russian Foundation for Basic Research (grant no. 18-51-50005).
The author is grateful to the advisor Taras Panov for the formulation of the problem and for his permanent attention to this work.

2. Preliminaries

Let $A = \bigoplus_{i \geq 0} A^i$ be a commutative differential graded algebra over \mathbb{Z}. Let $\alpha_i \in H^{k_i}(A), i = 1, 2, 3,$ be three cohomology classes such that $\alpha_1 \alpha_2 = 0, \alpha_2 \alpha_3 = 0 \in H(A)$. Choose their representing cocycles $a_i \in A^{k_i}, i = 1, 2, 3$. Since the pairwise cohomology products vanish, there are elements $a_{12} \in A^{k_1+k_2-1}$ and $a_{23} \in A^{k_2+k_3-1}$ such that $da_{12} = a_1 a_2$ and $da_{23} = a_2 a_3$. Then one easily checks that

$$b = (-1)^{k_1+1}a_1 a_{23} + a_{12} a_3$$

is a cocycle in $A^{k_1+k_2+k_3-1}$.

A triple Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ is the set in $H^{k_1+k_2+k_3-1}(A)$ consisting of all elements obtained by this procedure. Since elements a_{12} and a_{23} are defined up to addition of cocycles in $A^{k_1+k_2-1}$ and $A^{k_2+k_3-1}$ respectively, then, more precisely, we have

$$\langle \alpha_1, \alpha_2, \alpha_3 \rangle = \{ b \} + \alpha_1 H^{k_2+k_3-1} + \alpha_3 H^{k_1+k_2-1}.$$

The subset $\alpha_1 H^{k_2+k_3-1} + \alpha_3 H^{k_1+k_2-1}$ is called the indeterminacy of a Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$.

A Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ is called trivial if $0 \in \langle \alpha_1, \alpha_2, \alpha_3 \rangle$ and nontrivial otherwise.

Let K be a simplicial complex on the set $[m] = \{1, \ldots, m\}$. The moment-angle complex (see [1]) corresponding to a simplicial complex K is a topological space defined by

$$Z_K = \bigcup_{I \in K} (\prod_{i \notin I} D^2) \times (\prod_{i \in I} S^1) \subseteq (D^2)^m.$$

An important class of simplicial complexes K comes from simple polytopes. Recall that an n-dimensional polytope P is called simple if exactly n facets meet at each vertex. Denote by K_P the simplicial complex dual to the boundary of a simple polytope P. In more detail, if $\{F_1, \ldots, F_m\}$ is the set of faces of codimension 1 in P, then

$$K_P = \{ \{i_1, \ldots, i_k\} \subseteq [m] : F_{i_1} \cap \cdots \cap F_{i_k} \neq \emptyset \}.$$

Note that K_P is a triangulation of the $(n-1)$-dimensional sphere.

Theorem 2.1 ([1] Theorem 6.2.4, Corollary 6.2.5). Z_K is a CW-complex. If $K = K_P$ for a simple n-polytope P, then Z_{K_P} is a smooth manifold.

Let $I = \{i_1, \ldots, i_k\}$ be a simplex, $i_1 < i_2 < \cdots < i_k$. Denote by v_I the monomials $v_{i_1} \cdots v_{i_k}$ in the polynomial algebra $\mathbb{Z}[v_1, \ldots, v_m]$, and denote by u_I the exterior monomial $u_{i_1} \cdots u_{i_k}$ in the exterior algebra $\Lambda[u_1, \ldots, u_m]$. The face ring of the simplicial complex K on the set $[m]$ is defined as the quotient of the polynomial algebra by the monomial ideal corresponding to non-simplices of K:

$$Z[K] = \mathbb{Z}[v_1, \ldots, v_m]/I_K,$$

where $I_K = (v_I : I \notin K)$ is the Stanley-Reisner ideal.

We define the quotient algebra

$$R^*(K) = \Lambda[u_1, \ldots, u_m] \otimes Z[K]/(v_i^2 = u_i v_i = 0, 1 \leq i \leq m).$$
Then $R^* (K)$ is a bigraded differential algebra with an additive basis $\{ u_J v_I \}$, where $I \in K$, $J \subseteq [m]$, $I \cap J = \emptyset$;

\[
\text{bideg } u_i = (-1, 2), \text{ bideg } v_i = (0, 2), \text{ } du_i = v_i, \text{ } dv_i = 0.
\]

It is convenient to consider the $\mathbb{Z} \oplus \mathbb{Z}^m$-grading on $R^* (K)$:

\[
\text{mdeg } u_i = (-1; 2e_i), \text{ mdeg } v_i = (0; 2e_i),
\]

where e_i, $i = 1, \ldots, m$, are the elements of the standard basis in \mathbb{Z}^m.

The multigrading of the algebra of cellular cochains $C^* (Z_K)$ induced from the standard cell decomposition plays an important role in the proof of the existence of a nontrivial Massey product. Consequently, we have the multigrading of the algebra $H^* (Z_K)$.

Theorem 2.2 ([3] Lemma 4.5.3]). There is an isomorphism of dg-algebras:

\[
R^* (K) \cong C^* (Z_K),
\]

where $C^* (Z_K)$ is the algebra of cellular cochains with a natural multiplication inducing the standard product in cohomology.

Given $J \subseteq [m]$, define the corresponding full subcomplex K_J of a simplicial complex K as

\[
K_J = \{ I \in K \mid I \subseteq J \}.
\]

For each K_J we consider the simplicial cochain complex $(C^* (K_J), d)$ with the coaugmentation. The group $C^p (K_J)$ is a free abelian group with a basis of cochains χ_L, where χ_L is the characteristic function of a simplex $L \in K_J$, $|L| = p + 1$.

Theorem 2.3 ([3] Theorem 3.2.4]). There is an isomorphism of cochain complexes $(C^* (K_J), d)$ and $(R^* - |J| + 1, 2J (K), d)$:

\[
\begin{array}{cccccc}
0 & \to & \mathbb{Z} & \xrightarrow{d} & C^0 (K_J) & \xrightarrow{d} & \cdots & \xrightarrow{d} & C^{p-1} (K_J) & \xrightarrow{d} & \cdots \\
& \xrightarrow{f_0} & 0 & \xrightarrow{f_0} & 0 & \xrightarrow{f_0} & \cdots & \xrightarrow{f_0} & 0 & \xrightarrow{f_0} & \cdots \\
0 & \to & R^* - |J|, 2J & \xrightarrow{d} & R^* - |J| + 1, 2J & \xrightarrow{d} & \cdots & \xrightarrow{d} & R^* - |J| + p, 2J & \xrightarrow{d} & \cdots \\
& \xrightarrow{f_p (\chi_L)} & 0 & \xrightarrow{f_p (\chi_L)} & 0 & \xrightarrow{f_p (\chi_L)} & \cdots & \xrightarrow{f_p (\chi_L)} & 0 & \xrightarrow{f_p (\chi_L)} & \cdots \\
\end{array}
\]

where $f_p (\chi_L) = \varepsilon (L, J) u_{J \setminus L} v_L$, $\varepsilon (L, J) = \pm 1$ is a certain sign.

In this way we have an isomorphism of differential graded algebras

\[
C^* (Z_K) \cong R^* (K) \cong \bigoplus_{p \geq 0, J \subseteq [m]} C^{p-1} (K_J),
\]

(2.1)

and also

\[
H^* (Z_K) \cong H (R^* (K)) \cong \bigoplus_{p \geq 0, J \subseteq [m]} \tilde{H}^{p-1} (K_J).
\]

The product in the direct sum of simplicial cochains is induced from $R^* (K)$ by the isomorphism (2.7).

Since the algebras $H^* (Z_K)$ and $H (R^* (K))$ are multigraded we have:

\[
H^{-p, 2J} (Z_K) \cong H^{-p, 2J} (R^* (K)) \cong \tilde{H}^{-p+|J|-1} (K_J) \subset H^{-p+2|J|} (Z_K).
\]
Theorem 2.4 ([1] Proposition 3.2.10]). The product in \(\bigoplus_{p \geq 0, J \subseteq [m]} C^{p-1}(K_J) \), induced from \(R^*(K) \), coincides up to a sign with the product defined by the maps
\[
\mu: C^{p-1}(K_I) \times C^{q-1}(K_J) \to C^{p+q-1}(K_{I \cup J}),
\]
\[
(\chi_L, \chi_M) \mapsto \begin{cases}
\chi_{L \cup M}, & \text{if } I \cap J = \emptyset, L \cup M \in K_{I \cup J}, \\
0, & \text{otherwise},
\end{cases}
\] (2.2)
where \(\chi_L \) is the characteristic function of the simplex \(L \).

A simple \(n \)-dimensional polytope \(P \) is called a flag polytope if any set of pairwise intersecting facets \(F_{i_1}, \ldots, F_{i_k}, F_{i_s} \cap F_{i_t} \neq \emptyset, s, t = 1, \ldots, k \), has a nonempty intersection \(F_{i_1} \cap \cdots \cap F_{i_k} \neq \emptyset \).

Let \(P \) be a simple 3-polytope. Let \(F_{1}, \ldots, F_{m} \) be its facets. Define a \(k \)-belt as a cyclic sequence \((F_{i_1}, \ldots, F_{i_k}) \) of facets in which only consecutive facets have a nonempty intersection. More precisely: \(F_{i_1} \cap \cdots \cap F_{i_k} \neq \emptyset \) if and only if \(\{ j_1, \ldots, j_r \} \in \{ \{ 1, 2 \}, \{ 2, 3 \}, \ldots, \{ k-1, k \}, \{ k, 1 \} \} \). Note that a \(k \)-belt corresponds to a chordless cycle in the dual complex \(K_P \), which is a triangulation of 2-sphere.

Proposition 2.5 ([8] Proposition 2.3]). A simple 3-polytope \(P \) is a flag polytope if and only if \(P \neq \Delta^3 \) and \(P \) does not contain 3-belts.

Proposition 2.6 ([8] Proposition 2.5]). A simple 3-polytope \(P \) is a flag polytope if and only if any its facet is surrounded by a \(k \)-belt, where \(k \) is the number of edges of this facet.

We say that a polytope \(P \) belongs to the Pogorelov class \(\mathcal{P} \) (or \(P \) is a Pogorelov polytope) if \(P \) is a simple flag 3-dimensional polytope without 4-belts. In dimension 3 the class of combinatorial polytopes which admit a right-angled realization in Lobachevsky space \(L^3 \) coincides with the Pogorelov class. Proposition 2.5 implies that \(P \in \mathcal{P} \) if and only if \(P \neq \Delta^3 \) and \(P \) is a simple 3-polytope without 3-belts and 4-belts.

Corollary 2.7. A polytope \(P \) from the Pogorelov class does not have 3-gonal and 4-gonal facets.

We have the following characteristic property of Pogorelov polytopes.

Theorem 2.8 ([8] Proposition B.2 (b)). A simple 3-polytope \(P \) is a Pogorelov polytope if and only if each pair of its adjacent facets is surrounded by a \(k \)-belt; if the facets have \(k_1 \) and \(k_2 \) edges, then \(k = k_1 + k_2 - 4 \).

3. Massey products and Pogorelov polytopes

For moment-angle complex \(Z_K \), a triple Massey product of minimal dimension is given by:
\[
H^3(Z_K) \otimes H^3(Z_K) \otimes H^3(Z_K) \to H^8(Z_K).
\] (3.1)

These triple Massey products of 3-dimensional cohomology classes were completely described by Denham and Suciu in [9]:
Theorem 3.1 ([9, Theorem 6.1.1]). The following are equivalent:

(1) there exist cohomology classes $\alpha, \beta, \gamma \in H^3(Z_K)$ for which the Massey product $\langle \alpha, \beta, \gamma \rangle$ is defined and nontrivial;

(2) the graph K^1 (the 1-dimensional skeleton of K) contains an induced subgraph isomorphic to one of the five graphs in Figure 1.

Now we consider the problem of existence of nontrivial Massey products in $H^*(Z_P)$ for Pogorelov polytopes P. As noted in [6, Proposition 4.8], triple Massey products of 3-dimensional cohomology classes (3.1) are trivial for simple polytopes P without 4-belts, in particular, for Pogorelov polytopes. In this paper we prove the following:

Theorem 3.2. For any Pogorelov polytope P, there exists a nontrivial triple Massey product $\langle \alpha, \beta, \gamma \rangle \subset H^{n+4}(Z_P)$ for some $n \geq 5$, where $\alpha \in H^1(Z_P)$, $\beta \in H^{n-2}(Z_P)$, $\gamma \in H^3(Z_P)$. The number n is described in the following lemma. The indeterminacy of this Massey product is $\alpha \cdot H^n(Z_P) + \gamma \cdot H^{n+1}(Z_P)$.

Lemma 3.3. For any Pogorelov polytope P, there is a collection of pairwise different facets $\{F_1, \ldots, F_{l+n-1}\}$ for some natural $n \geq 5$ and $l \geq 5$ such that the full subcomplex $K_{\{1,\ldots,l+n-1\}}$ of the complex K_P has the form shown in Figure 2. In other words, there exist a triple of facets F_1, F_2, F_3 surrounded by a belt.

Proof. Let p_k be the number of k-gonal facets of a simple 3-polytope P. By the Euler theorem,

$$3p_3 + 2p_4 + p_5 = 12 + \sum_{k \geq 7} (k-6)p_k.$$
Since P is a Pogorelov polytope, $p_3 = 0$, $p_4 = 0$ and hence $p_5 \geq 12$. In particular, $p_5 \geq 1$.

Choose a 5-gonal facet F_1 of P. Consider an arbitrary vertex v of F_1. Since P is simple, there are exactly 3 facets F_1, F_2, F_3 meeting in v. Let F_2 and F_3 be an l-gonal facet and an n-gonal facet respectively, we denote this by $|F_2| = l, |F_3| = n$.

Also, any two facets of P either do not intersect, or intersect at an edge (they are adjacent facets). So $F_1 \cap F_2 = e_{12}, F_2 \cap F_3 = e_{23}, F_1 \cap F_3 = e_{13}, v \in e_{ij}$. There are two facets intersecting $e_{12} = F_1 \cap F_2$ at a single vertex. One of them is F_3, let F_4 be the other one. The edge $F_2 \cap F_3$ intersects F_1 and another facet F_5, and $F_1 \cap F_3$ intersects F_2 and F_6. Since P is flag, each facet $F \subset P$ is surrounded by a k-belt, where $k = |F|$. This implies that the facet F_1 is surrounded by a 5-belt and this belt contains F_2 and F_6. Therefore, the facets F_2 and F_6 do not intersect.

Similarly we obtain $F_3 \cap F_4 = \emptyset, F_1 \cap F_5 = \emptyset$. Consider the dual complex K_P, in which the vertex i corresponds to the facet F_i. It follows from the above that the full subcomplex $K_{\{1, \ldots, 6\}}$ of K_P has the form shown in Figure 3.

The pentagonal facet F_1 intersects each of the four facets F_6, F_3, F_2, F_4 at an edge. The remaining edge of F_1 is the intersection of F_1 and some other facet F_7. The facet F_1 is surrounded by a 5-belt and the simplicial complex $K_{\{1,2,3,4,6,7\}}$ is shown in Figure 4.

Define the set G_2 consisting of those facets which intersect F_2 and are different from F_1, \ldots, F_6:

$$G_2 = \{ F \subset P \mid F \cap F_2 \neq \emptyset, F \neq F_i, i = 1, \ldots, 6 \}.$$

It is easy to see that

$$G_2 = \{ F \subset P \mid F \cap F_2 \neq \emptyset, F \cap F_1 = \emptyset, F \cap F_3 = \emptyset \}.$$

Since $|F_2| = l$ we have $|G_2| = l - 4$. The facets from G_2 are contained in the l-belt around F_2. This belt corresponds to a chordless cycle in the dual complex K_P. So we can enumerate the facets from G_2 as follows:

$$G_2 = \{ F_8, \ldots, F_{l+3} \mid F_8 \cap F_4 \neq \emptyset, F_{l+3} \cap F_5 \neq \emptyset \}.$$

The full subcomplex $K_{\{1, \ldots, 5, 8, \ldots, l+3\}}$ is shown in Figure 5.
For the facet F_3 define the set G_3:

$$G_3 = \{ F \subset P \mid F \cap F_3 \neq \emptyset, F \neq F_i, i = 1, \ldots, 6 \}.$$

Since $|G_3| = n - 4$ we also have that

$$G_3 = \{ F \subset P \mid F \cap F_3 \neq \emptyset, F \cap F_1 = \emptyset, F \cap F_2 = \emptyset \}.$$

The full subcomplex $K_{\{1,2,3,5,6,l+4,\ldots,l+n-1\}}$ is shown in Figure 6.

Note that the complexes shown in Figures 3, 4, 5 and 6 appear as parts of the complex in Figure 2. It remains to show that they are patched together in the right way. That is, we need to show that if $F_i \in G_2$, $F_j \in G_3$ then $F_i \cap F_j = \emptyset, F_5 \cap F_7 = \emptyset, F_i \cap F_7 = \emptyset$; in particular, F_i, F_j, F_7 are different. Since P is a Pogorelov polytope, Theorem 2.8 implies that the pair of adjacent facets F_1 and F_2 is surrounded by an $(l + 1)$-belt ($F_4, F_8, \ldots, F_{l+3}, F_5, F_6, F_7$). That is, the facets from this sequence are pairwise different and only consecutive facets have a nonempty intersections. Then since $G_2 = \{ F_8, \ldots, F_{l+3} \}$, we have $F_i \cap F_7 = = \emptyset$ if $F_i \in G_2$. Similarly considering the pairs of adjacent facets F_2, F_3 and F_3, F_1 we obtain that $G_2 \cap G_3 = \emptyset, F_7 \cap F_3 = \emptyset$ if $F_j \in G_3$. In particular, $(F_4, F_8, \ldots, F_{l+3}, F_5, F_{l+4}, \ldots, F_{l+n-1}, F_6, F_7)$ is a $(l+n-4)$-belt around the triple of facets $\{F_1, F_2, F_3\}$.

\[\square\]

Proof of Theorem 3.2. In the notation of Figure 2, consider the following three sets of vertices of K_P (see Figure 7):

$$J_1 = \{5, 6, 7\}, \ J_2 = \{2, l + 4, \ldots, l + n - 1\}, \ J_3 = \{3, 4\}.$$
For any $I \in K_J$, denote by $\chi_{I,J}$ the basis $(|I| - 1)$-dimensional simplicial cochain of the complex K_J taking value 1 on the simplex I. Now define the following cohomology classes α, β, γ:

$$
\alpha = [\chi_{6,J_1} + \chi_{7,J_1}] \in \tilde{H}^0(K_{J_1}) \subset H^4(\mathbb{Z}_p),
$$

$$
\beta = [\chi_{2,J_2}] \in \tilde{H}^0(K_{J_2}) \subset H^{n-2}(\mathbb{Z}_p),
$$

$$
\gamma = [\chi_{4,J_3}] \in \tilde{H}^0(K_{J_3}) \subset H^3(\mathbb{Z}_p).
$$

We consider $\tilde{H}^i(K_J)$ as subgroups in $H^i(\mathbb{Z}_p)$ through the isomorphism (2.7). Since $\tilde{H}^p(K_J) \cdot \tilde{H}^q(K_I) \subset \tilde{H}^{p+q+1}(K_{J \cup I})$, we obtain that

$$
\alpha \beta \in \tilde{H}^1(K_{J_1 \cup J_2}), \quad \beta \gamma \in \tilde{H}^1(K_{J_2 \cup J_3}).
$$

We have $\tilde{H}^1(K_{J_1 \cup J_2}) = \tilde{H}^1(K_{J_2 \cup J_3}) = 0$ because $K_{J_1 \cup J_2}$ and $K_{J_2 \cup J_3}$ are contractible. Thus $\alpha \beta = \beta \gamma = 0$, and the Massey product $\langle \alpha, \beta, \gamma \rangle$ is defined. Next,

$$(\chi_{6,J_1} + \chi_{7,J_1}) \cdot \chi_{2,J_2} = 0, \quad \chi_{2,J_2} \cdot \chi_{4,J_3} = \pm \chi_{(2,4),J_2 \cup J_3} = \pm d(\chi_{4,J_2 \cup J_3}),$$

since the product (2.9) in the algebra $\bigoplus_{p \geq 0, J \subseteq [m]} C^p(\mathbb{Z}_p)$ coincides with the product in $C^\ast(\mathbb{Z}_p)$ up to a sign. Also, we have

$$
(\chi_{6,J_1} + \chi_{7,J_1}) \cdot (\pm \chi_{4,J_2 \cup J_3}) = \pm \chi_{(4,7),J_1 \cup J_2 \cup J_3},
$$

and $\pm [\chi_{(4,7),J_1 \cup J_2 \cup J_3}] \neq 0$ as it is a generator in $H^1(K_{J_1 \cup J_2 \cup J_3}) = \mathbb{Z}$. Then

$$
\langle \alpha, \beta, \gamma \rangle = \pm [\chi_{(4,7),J_1 \cup J_2 \cup J_3}] + \alpha \cdot H^n(\mathbb{Z}_p) + \gamma \cdot H^{n+1}(\mathbb{Z}_p) \subset H^{n+4}(\mathbb{Z}_p).
$$

We need to prove that the Massey product $\langle \alpha, \beta, \gamma \rangle$ is nontrivial. Assume the opposite, $0 \in \langle \alpha, \beta, \gamma \rangle$. Then there exist $\nu \in H^n(\mathbb{Z}_p)$ and $\mu \in H^{n+1}(\mathbb{Z}_p)$ such that

$$
0 = \pm [\chi_{(4,7),J_1 \cup J_2 \cup J_3}] + \alpha \cdot \nu + \gamma \cdot \mu.
$$

Since $\alpha \in \tilde{H}^0(K_{J_1}), \gamma \in \tilde{H}^0(K_{J_3}), [\chi_{(4,7),J_1 \cup J_2 \cup J_3}] \in \tilde{H}^1(K_{J_1 \cup J_2 \cup J_3})$, we can assume that $\nu \in \tilde{H}^0(K_{J_1 \cup J_3}), \mu \in \tilde{H}^0(K_{J_2 \cup J_3})$ using the multigrading. However, $K_{J_1 \cup J_2}$ and $K_{J_2 \cup J_3}$ are contractible, hence, $\mu = 0, \nu = 0$. So $0 = \pm [\chi_{(4,7),J_1 \cup J_2 \cup J_3}]$, a contradiction. \(\square\)
Example 3.4. Let P be a dodecahedron, so K_P is the boundary of an icosahedron.

In this case we have the following sets of vertices of K_P (see Figure 8):

\[J_1 = \{5, 6, 7\}, \quad J_2 = \{2, 9\}, \quad J_3 = \{3, 4\}. \]

The corresponding cohomology classes are

\[\alpha = \left[\chi_{6, J_1} + \chi_{7, J_1} \right] \in \tilde{H}^0(K_{J_1}) \subset H^4(Z_P), \]
\[\beta = \left[\chi_{2, J_2} \right] \in \tilde{H}^0(K_{J_2}) \subset H^3(Z_P), \]
\[\gamma = \left[\chi_{4, J_3} \right] \in \tilde{H}^0(K_{J_3}) \subset H^3(Z_P). \]

We obtain the following nontrivial Massey product:

\[\langle \alpha, \beta, \gamma \rangle = \pm \left[\chi_{\{4, 7\}, J_1 \cup J_2 \cup J_3} \right] \in H^9(Z_P). \]

Note that in the case of dodecahedron we obtain a nontrivial triple Massey product in the lowest possible degree.

References

[1] V. M. Buchstaber, T. E. Panov, *Toric Topology*, Math. Surv. and Monogr., 204, Amer. Math. Soc., Providence, RI, 2015.
[2] I. V. Baskakov, “Massey triple products in the cohomology of moment-angle complexes”, Russian Math. Surveys 58 (2003), no. 5, 1039–1041.
[3] I. Yu. Limonchenko, “Moment-angle manifolds, 2-truncated cubes and Massey operations”, Russian Math. Surveys 71 (2016), no. 2, 376–378.
[4] A. V. Pogorelov, “A regular partition of of Lobachevskian space”, Math. Notes, 1:1 (1967), 3–5.
[5] E. M. Andreev, “On convex polyhedra in Lobachevskii spaces”, Math. USSR Sbornik 10 (1970), 413–440.
[6] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park, “Cohomological rigidity of manifolds defined by right-angled 3-dimensional polytopes”, Russian Math. Surveys 72 (2017), no. 2.
[7] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of L"obell type”, Siberian Math. J. 28 (1987), no. 5, 731–734.
[8] V. M. Buchstaber, N. Yu. Erokhovets, *Fullerenes, Polytopes and Toric Topology*, Combinatorial and Toric Homotopy, Introductory Lectures, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore (LNIMSNUS), 35, World Scientific, 2017, 67–178.
[9] G. Denham, A. I. Suciu, “Moment-angle complexes, monomial ideals, and Massey products”, Pure Appl. Math. Q. 3 (2007), no. 1, 25–60.

Department of Mathematics and Mechanics, Moscow State University, Leninskie Gory, 119991 Moscow, Russia

E-mail address: ahertip@gmail.com