Dephasing in an Aharonov–Bohm interferometer containing a lateral double quantum dot induced by coupling with a quantum dot charge sensor

T Kubo1,2, Y Tokura1,2 and S Tarucha1,3

1 JST, ICORP, Quantum Spin Information Project, Atsugi-shi, Kanagawa 243-0198, Japan
2 NTT Basic Research Laboratories, NTT Corporation, Atsugi-shi, Kanagawa 243-0198, Japan
3 Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

E-mail: kubo@will.brl.ntt.co.jp

Received 1 February 2010, in final form 22 April 2010
Published 12 August 2010
Online at stacks.iop.org/JPhysA/43/354020

Abstract
We theoretically investigated the dephasing in an Aharonov–Bohm interferometer containing a lateral double quantum dot induced by coupling with a quantum dot charge sensor. We employed the interpolative second-order perturbation theory to include the charge sensing Coulomb interaction. It is shown that the visibility of the Aharonov–Bohm oscillation of the linear conductance decreases monotonically as the sensing Coulomb interaction increases. In particular, for a weak sensing interaction regime, the visibility decreases parabolically, and it behaves linearly for a strong sensing interaction regime.

PACS numbers: 73.21.La, 03.65.Yz, 03.65.Ta

1. Introduction

Particle-wave duality is one of the most important concepts in quantum mechanics and provides the most impressive illustration of Bohr’s complementarity principle [1, 2]. The wave characteristic arises only when the different possible paths that a particle can take are indistinguishable, even in principle (for example, see [3]). By introducing a which-path detector, it is well known that coupling with a charge sensor induces dephasing in an interferometer [4, 5].

Mesoscopic systems are often used to study the interplay between the interference and dephasing of electrons. Recent nano-fabrication and low-temperature measuring techniques using semiconductors have enabled us to observe the various coherent effects of electrons such as the Aharonov–Bohm (AB) [6–9], Fano [10] and Kondo effects [11–13]. The AB effect has been proven to be a convenient way of observing the interference fringe in mesoscopic
systems since it provides an experimentally straightforward way of controlling the phase. In interference experiments with an AB ring containing a quantum dot (QD), periodic modulation of the tunneling current as a function of the magnetic flux threading through the ring has been experimentally demonstrated [7, 14, 15]. This reflects the fact that the quantum phase coherence is maintained during the tunneling process through a QD. Moreover, controllable dephasing via a which-path detector has been demonstrated in a system with a QD embedded in an AB ring [4]. As regards the dephasing in a QD induced by coupling with a quantum point contact (QPC), theoretical studies have successfully explained the experimental results [16–18]. However, in this paper, we discuss the dephasing in an AB interferometer containing a lateral double quantum dot (DQD) induced by coupling with a QD charge sensor. We consider the DQD system and use the QD charge sensor for the following reasons. Recently, the AB oscillations of a tunneling current passing through a lateral double quantum dot (DQD) system were observed by Holleitner et al [8] and Hatano et al [9]. In such systems, we can detect the fresh AB effects through a quantum mechanical superposition state such as the tunnel-coupled symmetric and antisymmetric states in a DQD [19–21]. In lateral DQD systems, the notion of coherent indirect coupling between two QDs via a reservoir is important. Previous theoretical work on the dephasing in an AB interferometer induced by coupling with a QD charge sensor has only discussed maximum coherent indirect coupling. In this paper, however, we study the dephasing when the coherent indirect coupling between two QDs in an interferometer is finite rather than maximal. Actually various experimental conditions correspond to such conditions. Moreover, according to the theory of dephasing caused by an electron–electron Coulomb interaction [22–24], the dephasing rate is related to the charge fluctuation. In QD systems, the shot noise exhibits intriguing behavior because of the many-body correlation effect under a finite source–drain bias voltage [25]. Thus, we can expect to observe unconventional dephasing induced by coupling with a QD charge sensor. However, the many-body correlation in a QD charge sensor is not discussed in this paper since we deal with spinless electrons to focus on coherent charge transport.

This paper is organized as follows. In section 2, we employ the standard tunneling Hamiltonian formalism to describe an AB interferometer containing a DQD that couples to a QD charge sensor, and provide the formulation needed to calculate the transport properties. In particular, we introduce the notion of coherent indirect coupling between two QDs via a reservoir [20, 21]. In section 3, we calculate the nonequilibrium Green’s functions within the framework of the interpolative second-order nonequilibrium perturbation theory [26]. In section 4, we review the transport properties through an AB interferometer containing a lateral DQD. Section 5 is devoted to the numerical results of dephasing resulting from coupling with a QD charge sensor. And section 6 provides some concluding remarks.

2. Model and formulation

We consider an AB interferometer containing two QDs with a capacitively coupled QD charge sensor as shown in figure 1. In figure 1, two QDs (QD1 and QD2) couple to a common left source (LS) and left drain (LD) reservoirs, and the QD charge sensor (QD3) couples to the right source (RS) and right drain (RD) reservoirs. Moreover, we assume that the left and right reservoirs are completely separate. We neglect the spin degree of freedom, and only a single energy level in each QD is assumed to be relevant. We model this system with the Hamiltonian

\[H = H_R + H_{\text{DQD}} + H_S + H_I + H_T, \]

(1)
where
\[H_R = \sum_{\nu \in \{\text{LS, LD, RS, RD}\}} \sum_k \epsilon_{\nu k} c_{\nu k}^\dagger c_{\nu k} \] (2)
describes the Fermi seas of noninteracting electrons in the LS, LD, RS and RD reservoirs. Here \(\epsilon_{\nu k} \) is the electron energy with a wave number \(k \) in a reservoir \(\nu \), and the operator \(c_{\nu k}^\dagger \) (\(c_{\nu k} \)) annihilates (creates) an electron in the reservoir \(\nu \). The Hamiltonian \(H_{\text{DQD}} \) is
\[H_{\text{DQD}} = \sum_{j=1}^{2} \epsilon_j d_j^\dagger d_j, \] (3)
where \(\epsilon_j \) is the single-particle energy level, and \(d_j \) (\(d_j^\dagger \)) annihilates (creates) an electron in the \(j \)th QD \((j = 1, 2)\). \(H_S \) represents the QD charge sensor
\[H_S = \epsilon_3 d_3^\dagger d_3, \] (4)
where \(\epsilon_3 \) is the energy level of QD3 and \(d_3 \) (\(d_3^\dagger \)) is the annihilation (creation) operator of QD3. \(H_I \) is the interaction between QD2 and QD3:
\[H_I = V_{H23} \delta_{33}. \] (5)
Here \(V_S \) is the sensing interaction energy, namely the inter-dot Coulomb interaction energy between QD2 and QD3, and we introduce the following notation: \(n_{jj} \equiv d_j^\dagger d_j \). \(H_T \) is the tunneling Hamiltonian between the reservoirs and QDs:
\[H_T = \sum_{\nu \in \{\text{LS, LD}\}} \sum_{j=1}^{2} \left[t_{\nu j}^{(1)} c_{\nu k}^\dagger d_j + t_{\nu j}^{(2)} c_{\nu k} d_j + t_{\nu j}^{(3)} c_{\nu k}^\dagger d_j + h.c. \right] \]
\[\approx \sum_{\nu \in \{\text{LS, LD}\}} \sum_{j=1}^{2} \sum_k \left[t_{\nu k}^{(1)} (\phi) c_{\nu k}^\dagger d_j + h.c. \right] + \sum_{\nu \in \{\text{RS, RD}\}} \sum_k \left[t_{\nu k}^{(3)} c_{\nu k}^\dagger d_j + h.c. \right], \] (6)
where \(t_{\nu k}^{(j)} \) are the tunneling amplitudes and real number. The factors \(e^{\pm i\phi/2} \) indicate the effect of the magnetic flux \((\phi = 2\pi \frac{\Phi_0}{\Phi_1})\) is an AB phase in the AB interferometer, where \(\Phi_0 = \frac{\hbar e}{c} \) is the magnetic flux quantum.

The linewidth functions are defined by
\[\Gamma_{ij}(\epsilon, \phi) = 2\pi \sum_k t_{ik}^{(1)} (\phi) t_{jk}^{(1)} (\phi) \delta(\epsilon - \epsilon_{\nu k}). \] (7)
Moreover, in the wide-band limit, we neglect the energy dependence of the linewidth functions. In our model, the left and right reservoirs are separate. As a result, \(\Gamma_{11}^S = \Gamma_{22}^S = 0 \). Here we introduced the notation \(M_{ij} \), which denotes the \((i, j)\) matrix element of a \(3 \times 3 \) matrix \(M \). The boldface notation indicates a \(3 \times 3 \) matrix whose basis is a localized state in each QD. Then the flux-dependent linewidth functions are given by
\[\Gamma^S(\phi) = \begin{pmatrix} \Gamma_{LS} & \alpha_{LS} e^{-i\phi/2} \Gamma_{LS} & 0 \\ \alpha_{LS} e^{i\phi/2} \Gamma_{LS} & \Gamma_{LS} & 0 \\ 0 & 0 & \Gamma_{RS} \end{pmatrix} \equiv \Gamma^{LS} + \Gamma^{RS}, \] (8)
\[\Gamma^D(\phi) = \begin{pmatrix} \Gamma_{LD} & \alpha_{LD} e^{-i\phi/2} \Gamma_{LD} & 0 \\ \alpha_{LD} e^{i\phi/2} \Gamma_{LD} & \Gamma_{LD} & 0 \\ 0 & 0 & \Gamma_{RD} \end{pmatrix} \equiv \Gamma^{LD} + \Gamma^{RD}. \] (9)
Figure 1. Schematic diagram of an AB interferometer containing two quantum dots with a capacitively coupled quantum dot charge sensor. QD3 is capacitively coupled to QD2 and plays the role of charge sensor. We take account of the propagation of electrons in the reservoirs. s_{12} is the propagation length, where $\nu \in LS, LD$. V_3 is a sensing interaction. Φ is the magnetic flux threading through an AB interferometer, which causes the AB effect.

$$\Gamma^{LS}(\phi) = \begin{pmatrix} \Gamma_{LS} & \alpha_{LS} e^{-i\phi/2} \Gamma_{LS} & 0 \\ \alpha_{LS} e^{i\phi/2} \Gamma_{LS} & \Gamma_{LS} & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

(10)

$$\Gamma^{LD}(\phi) = \begin{pmatrix} \Gamma_{LD} & \alpha_{LD} e^{-i\phi/2} \Gamma_{LD} & 0 \\ \alpha_{LD} e^{i\phi/2} \Gamma_{LD} & \Gamma_{LD} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

(11)

Here we introduced the coherent indirect coupling parameter α_{ν}, which characterizes the strength of the indirect coupling between QD1 and QD2 via the reservoir ν [20]. In general, the coherent indirect coupling parameters α_{ν} are a function of the propagation length s_{12} as shown in figure 1. In DQD systems, in general, $|\alpha_{\nu}| \leq 1$.

The linear conductances through a DQD and QD charge sensor are [27]

$$G_{DQD} = \frac{e^2}{h} \int_{-\infty}^{\infty} d\epsilon \left[-\frac{\partial f(\epsilon)}{\partial \epsilon} \right] \text{Tr} \left\{ G^{\nu}(\epsilon) \Gamma^{LS} G^\nu(\epsilon) \Gamma^{LD} \right\},$$

(12)

$$G_S = \frac{e^2}{h} \int_{-\infty}^{\infty} d\epsilon \left[-\frac{\partial f(\epsilon)}{\partial \epsilon} \right] \text{Im} \left\{ \frac{\Gamma_{RS} \Gamma_{RD}}{\Gamma_{RS} + \Gamma_{RD}} G_{33}^{\nu}(\epsilon) \right\},$$

(13)

where the retarded Green’s function $G^{\nu}(\epsilon)$ is the Fourier transform of

$$G^{\nu}_r(t, t') = -i\theta(t - t') \langle [d_i(t), d_j(t')] \rangle,$$

(14)

and the advanced Green’s function $G^{\nu}(\epsilon) = [G^{\nu}(\epsilon)]^\dagger$. Moreover, the tunneling current through a QD charge sensor is

$$I_S = -\frac{2e}{h} \int_{-\infty}^{\infty} d\epsilon \left[f_{RS}(\epsilon) - f_{RD}(\epsilon) \right] \text{Im} \left\{ \frac{\Gamma_{RS} \Gamma_{RD}}{\Gamma_{RS} + \Gamma_{RD}} G_{33}^{\nu}(\epsilon) \right\},$$

(15)

and the population of the jth QD is given by

$$\langle n_j \rangle = \int \frac{d\epsilon}{2\pi\hbar} G_{jj}^{\rightarrow}(\epsilon).$$

(16)
Here the lesser Green’s function $G_{ij}^-(\epsilon)$ is the Fourier transform of

$$G_{ij}^- (t, t') = i \langle [d_j^\dagger (t') d_i (t)] \rangle,$$ \hspace{1cm} (17)

and $f_\nu (\epsilon)$ is the Fermi–Dirac distribution function of the reservoir ν defined as

$$f_\nu (\epsilon) = \frac{1}{1 + e^{(\epsilon - \mu_\nu)/k_B T}},$$ \hspace{1cm} (18)

where μ_ν is the electrochemical potential of the reservoir ν, and $f(\epsilon)$ is the equilibrium Fermi–Dirac distribution function, namely $\mu = 0$. In the following discussions, we consider the situation when the DQD is always contained in the linear response, and the source and drain reservoirs coupled with the QD charge sensor have electrochemical potentials $\mu_{\text{RS}} = \mu + e V_{\text{SD}}/2$ and $\mu_{\text{RD}} = \mu - e V_{\text{SD}}/2$ with the source–drain bias voltage V_{SD}, and $\mu = 0$.

3. Nonequilibrium perturbation theory

To calculate the observable quantities as discussed in the previous section, we need the nonequilibrium Green’s functions. The formal Schwinger–Keldysh perturbation theory [28–30] with respect to the Coulomb interaction V_S provides a good description only at the particle–hole symmetric point because of the failure of the Friedel–Langreth sum rule [31, 32] and the violation of the current conservation [26, 33]. Moreover, far from the particle–hole symmetric point, the second-order self-energy does not yield the atomic limit $\Gamma_1 / V_S \to 0$ [26].

However, we would like to discuss a wider regime such as the QD energy and sensing Coulomb interaction dependences of the linear conductance. Thus, we employ the interpolative second-order nonequilibrium perturbation theory, which satisfies the current conservation condition and fulfills the Friedel–Langreth sum rule [26].

In accordance with the interpolative second-order nonequilibrium perturbation theory [26], we consider the following effective one-electron Hamiltonian:

$$H_{\text{eff}} = \sum_{\nu \in \{\text{LS, LD, RS, RD}\}} (\epsilon_{\nu k} + \mu_{\nu, \text{eff}}) c_{\nu k}^\dagger c_{\nu k} + \frac{3}{2} \sum_{j=1} \epsilon_{j, \text{eff}} d_j^\dagger d_j$$

$$+ \sum_{\nu \in \{\text{LS, LD}\}} \sum_{k} \sum_{j=1}^2 \left[t_{\nu k}^{(j)} (\phi) c_{\nu k}^\dagger d_j + \text{h.c.} \right] + \sum_{\nu \in \{\text{RS, RD}\}} \sum_{k} \sum_{j=1}^2 \left[t_{\nu k}^{(j)} c_{\nu k}^\dagger d_j + \text{h.c.} \right],$$ \hspace{1cm} (19)

where $\mu_{\text{LS,eff}} = \mu_{\text{D,eff}} = 0$, $\epsilon_{1, \text{eff}} = \epsilon_1$ and $\mu_{\text{RS,eff}}$, $\mu_{\text{RD,eff}}$, $\epsilon_{2, \text{eff}}$, and $\epsilon_{3, \text{eff}}$ are determined by imposing self-consistency in the QD populations and the tunneling current. For the effective Hamiltonian (19), we can calculate the effective one-electron Green’s functions

$$g_{\text{eff}}^\rho (\epsilon) = \left(\begin{array}{ccc} \frac{\epsilon - \epsilon_1}{h} + \frac{i}{2} \Gamma_{11} & \frac{i}{2} \Gamma_{12} & 0 \\ \frac{i}{2} \Gamma_{21} & \frac{\epsilon - \epsilon_{2, \text{eff}}}{h} + \frac{i}{2} \Gamma_{22} & 0 \\ 0 & 0 & \frac{\epsilon - \epsilon_{3, \text{eff}}}{h} + \frac{i}{2} \Gamma_{33} \end{array} \right)^{-1},$$ \hspace{1cm} (20)

$$g_{\text{eff}}^\rho (\epsilon) = \left[g_{\text{eff}}^\rho (\epsilon) \right]^\dagger,$$ \hspace{1cm} (21)

$$g_{\text{eff}}^{\rho+} (\epsilon) = i \sum_{\nu \in \{\text{LS, LD, RS, RD}\}} f_{\nu, \text{eff}} (\epsilon) g_{\text{eff}}^\rho (\epsilon) \Gamma^\nu g_{\text{eff}}^\rho (\epsilon),$$ \hspace{1cm} (22)

$$g_{\text{eff}}^{\rho-} (\epsilon) = -i \sum_{\nu \in \{\text{LS, LD, RS, RD}\}} [1 - f_{\nu, \text{eff}} (\epsilon)] g_{\text{eff}}^\rho (\epsilon) \Gamma^\nu g_{\text{eff}}^\rho (\epsilon),$$ \hspace{1cm} (23)
where $f_{\mu,\text{eff}}(\epsilon)$ is the effective Fermi–Dirac distribution function defined as

\[
f_{\mu,\text{eff}}(\epsilon) = \frac{1}{1 + e^{(\epsilon - \mu_{\text{eff}})/k_B T}}.
\]

Using these Green's functions, the second-order retarded self-energies are

\[
\Sigma_{22}(\epsilon) = \left(\frac{V_S}{2\pi}\right)^2 \int \frac{dE_1}{\hbar} \int \frac{dE_2}{\hbar} \left[g_{22,\text{eff}}(E_1) g_{33,\text{eff}}(E_2) g_{33,\text{eff}}^+ (E_1 + E_2 - \epsilon) + g_{22,\text{eff}}(E_1) g_{33,\text{eff}}^+ (E_2) g_{33,\text{eff}}(E_1 + E_2 - \epsilon) + g_{22,\text{eff}}^+ (E_1) g_{33,\text{eff}}(E_2) g_{33,\text{eff}}^+ (E_1 + E_2 - \epsilon) \right],
\]

\[
\Sigma_{33}(\epsilon) = \left(\frac{V_S}{2\pi}\right)^2 \int \frac{dE_1}{\hbar} \int \frac{dE_2}{\hbar} \left[g_{33,\text{eff}}(E_1) g_{22,\text{eff}}(E_2) g_{22,\text{eff}}^+ (E_1 + E_2 - \epsilon) + g_{33,\text{eff}}^+ (E_1) g_{22,\text{eff}}^+ (E_2) g_{22,\text{eff}}(E_1 + E_2 - \epsilon) \right].
\]

To improve the solution so that the self-energy yields an appropriate atomic limit for $\Gamma/V_S \to 0$, we introduce the following interpolative self-energies [26]:

\[
\Sigma'_{22}(\epsilon) = \frac{\Sigma_{22}(\epsilon)}{1 - (1 - \epsilon_3)(1 - \epsilon_2) \Sigma_{22}(\epsilon)},
\]

\[
\Sigma'_{33}(\epsilon) = \frac{\Sigma_{33}(\epsilon)}{1 - (1 - \epsilon_3)(1 - \epsilon_2) \Sigma_{33}(\epsilon)}.
\]

Then the full retarded Green's function is given by

\[
G' (\epsilon) = \left((g' (\epsilon))^{-1} - \Sigma' (\epsilon) \right)^{-1},
\]

where

\[
g'(\epsilon) = \left(\begin{array}{ccc}
\frac{\epsilon - \epsilon_1}{\hbar} + \frac{1}{2} \Gamma_{11} & \frac{\epsilon - \epsilon_2 - V_S n_3}{\hbar} & \frac{\epsilon - \epsilon_3 - V_S n_1}{\hbar} + \frac{1}{2} \Gamma_{12} \\
\frac{1}{2} \Gamma_{21} & \frac{\epsilon - \epsilon_2 - V_S n_3}{\hbar} & \frac{\epsilon - \epsilon_3 - V_S n_1}{\hbar} + \frac{1}{2} \Gamma_{22} \\
0 & 0 & \frac{\epsilon - \epsilon_2 - V_S n_3}{\hbar} + \frac{1}{2} \Gamma_{33}
\end{array} \right)^{-1},
\]

\[
\Sigma'(\epsilon) = \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Sigma_{22}(\epsilon) & 0 \\
0 & 0 & \Sigma_{33}(\epsilon)
\end{array} \right),
\]

and $\epsilon_2 + V_S n_3$ and $\epsilon_3 + V_S n_2$ are the Hartree dressed QD energies. Similarly, we can calculate the lesser Green’s function $G^{-}(\epsilon)$. Finally, we impose self-consistency in the QD populations and the tunneling current. From the self-consistent equations below, we can determine the unknown parameters $\mu_{\text{RS},\text{eff}}$, $\mu_{\text{RD},\text{eff}}$, ϵ_2,eff and ϵ_3,eff:

\[
\langle n_j \rangle = \int \frac{d\epsilon}{2\pi \hbar} g_{jj,\text{err}}(\epsilon) = \int \frac{d\epsilon}{2\pi \hbar} G^{-}_{jj}(\epsilon),
\]

\[
I_t = \frac{ie}{2\pi} \int \frac{d\epsilon}{\hbar} \text{Tr} \left[\Gamma' \left[g_{\text{eff}}^+ (\epsilon) + f_{\text{eff}}^+ (\epsilon) (g_{\text{eff}}^+ (\epsilon) - g_{\text{err}}^+ (\epsilon)) \right] \right]
\]

\[
= \frac{ie}{2\pi} \int \frac{d\epsilon}{\hbar} \text{Tr} [\Gamma' [G^{-} (\epsilon) + f_t (\epsilon)(G' (\epsilon) - G_{\text{err}}(\epsilon))]],
\]
where I_v is the current from the reservoir v ($v \in \text{RS, RD}$) to the QD charge sensor, and equation (32) has to be employed for $j = 2, 3$ since there is finite sensing Coulomb interaction only between QD2 and QD3. When we focus on the linear response for the QD charge sensor, the self-consistency of the current is not required.

4. Transport properties of a DQD without coupling with a QD charge sensor

Before we discuss the dephasing in an AB interferometer, here we briefly review the transport properties of an AB interferometer containing a DQD without coupling with a QD charge sensor, namely $V_S = 0$. In the following discussions, for clarity, we consider a symmetric condition where $\alpha_{LS} = \alpha_{LD} \equiv \alpha$ and $\Gamma_v = \Gamma / 2$. The linear conductance through a DQD is shown in figure 2(a) as a function of ϵ_1 and ϵ_2 (charge stability diagram) when $\phi = 0$, $\alpha = 0.5$ and $k_B T / \hbar \Gamma = 0.1$. We observe two conductance peaks at $\epsilon_1 = 0$ and $\epsilon_2 = 0$ caused by the resonant tunneling through each QD. In figure 2(b), we plot the magnetic flux dependence of the linear conductance through a DQD, namely AB oscillations, for various α values at fixed QD energies of $\epsilon_1 = \epsilon_2 = 0$ (crossing point of two conductance peaks). The solid, broken and dotted lines indicate $|\alpha| = 0.2$, $|\alpha| = 0.5$ and $|\alpha| = 0.8$, respectively. In all cases, the AB oscillation period is 2π. We find that the visibility of the AB oscillations increases monotonically as $|\alpha|$ increases, where the visibility is defined by

$$ V = \frac{G_{\text{max}} - G_{\text{min}}}{G_{\text{max}} + G_{\text{min}}} \quad (34) $$

Here G_{max} and G_{min} correspond to the maximum value at $\phi = 2n\pi$ and the minimum value at $\phi = (2n + 1)\pi$, where n is an integer. In figure 2(c), we show the coherent indirect coupling parameter dependence of the visibility of the AB oscillations in the linear conductance through a DQD.
5. Dephasing induced by coupling with a QD charge sensor

In this section, we discuss the dephasing in an AB interferometer containing a DQD induced by coupling with a QD charge sensor. In our calculation, we find that the real part of the retarded self-energy provides the renormalization of the QD energy level from the expression of the retarded Green’s function. In contrast, the imaginary part of the retarded self-energy provides the relaxation except for the escape rate to the reservoirs, which is described by the bare linewidth function Γ. We are interested in the effects of the latter. Therefore, in our calculations, we always compensate for the effects of the level shift, and we focus on AB oscillations at the crossing point between two conductance peaks. In this section, we concentrate on the situation where $\alpha = 0.5$ and $k_B T/\hbar \Gamma = 0.1$.

5.1. Dephasing in a linear regime

Here we consider linear transport. In figure 3, for $\epsilon_3 = 0$, we plot the AB oscillations of the linear conductance through a DQD and the sensing Coulomb interaction dependence of their visibility V.

As shown in figure 3(a), the visibility V decreases as the sensing Coulomb interaction becomes stronger. According to figure 3(b), the visibility decreases monotonically as the sensing Coulomb interaction increases. However, the reduction behavior changes when the
strength of the sensing Coulomb interaction is $V_S \sim \hbar \Gamma$. For a weak interaction regime ($V_S < \hbar \Gamma$), the visibility decreases parabolically (fitted by the solid line in figure 3(b)). In a strong interaction regime ($V_S > \hbar \Gamma$), the visibility exhibits linear dependence (fitted by the dotted line in figure 3(b)). In figure 3(c), we plot the relaxation rate $-\text{Im}\left\{\Sigma^{(2)}(0)\right\}$ as a function of the sensing interaction. In the weak interaction regime, the relaxation rate increases parabolically as the sensing interaction increases and exhibits a linear increase in a strong interaction regime. Thus, it seems that the relaxation rate is related in some way to the visibility. However, why the visibility and the relaxation rate exhibit linear dependences remains an open problem.

Next we study the energy dependence of the QD charge sensor on the visibility of the AB oscillations in the linear conductance through a DQD. As shown in figure 4(a), we plot the energy dependence of the QD charge sensor on the visibility when $\alpha = 0.5$ and $V_S/\hbar \Gamma = 2.5$. We find that the visibility has a single dip structure. Away from the minimum point, the visibility gradually approaches the visibility value without a sensing Coulomb interaction. To understand this behavior, we investigate the transport property and the population of the QD charge sensor as shown in figure 4(b). According to figure 4, the position of the conductance peak through the QD charge sensor is shifted from $\epsilon_3 = 0$ as a result of the Coulomb interaction V_S between QD2 and QD3. This shift is dominantly due to the Hartree contribution $V_S\langle n_2 \rangle/\hbar \Gamma \sim 1.25$. We find that the visibility is minimal at the position of the conductance peak through the QD charge sensor. Moreover, we show the relaxation rate $-\text{Im}\left\{\Sigma^{(2)}(0)\right\}$ caused by the sensing Coulomb interaction in figure 4(c). When the relaxation rate is at its maximum value, the visibility becomes minimum. Therefore, similar to the dephasing induced
by coupling with the QPC charge sensor, the visibility is related to the relaxation rate in our problem.

5.2. Dephasing in a nonlinear regime

Here we discuss nonlinear transport, namely the case when the QD charge sensor is under a finite source–drain bias voltage. When $\epsilon_3 = 0$ and $V_S/\hbar = 2.5$, the visibility is approximately constant for a low source–drain bias voltage regime ($eV_{SD} \ll \hbar \Gamma$) as shown in figure 5. In an intermediate regime ($eV_{SD} \sim \hbar \Gamma$), the visibility exhibits the parabolic dependence, and finally it behaves linearly for a high source–drain bias voltage regime ($eV_{SD} \gg \hbar \Gamma$). In a nonlinear regime, it appears that our result is qualitatively similar to the result obtained for the QPC charge sensor [4]. However, in the QPC charge sensor, the visibility is almost constant when the QPC source–drain bias voltage is lower than the temperature, and the visibility behaves linearly when the QPC source–drain bias voltage is higher than the temperature. Our calculation shows that the visibility behavior changes in $eV_{SD} \sim \hbar \Gamma$ in the QD charge sensor. This suggests that the QPC and QD charge sensors may have essentially different dephasing mechanisms.

6. Conclusions

Here we summarize the main results of this study. We examined the dephasing in an AB interferometer containing a lateral DQD induced by coupling with a QD charge sensor using the interpolative second-order nonequilibrium perturbation theory. As regards the linear response, we found that the visibility decreases parabolically for a weak interaction regime and behaves linearly in a strong interaction regime. Moreover, we found that the visibility may relate to the relaxation rate from two kinds of calculations. In a nonlinear regime, the visibility is almost constant for a low source–drain bias voltage and behaves linearly in the intermediate region, and finally decreases linearly at a high source–drain bias voltage. In this paper, we assumed that the sensing interaction is relatively strong. The calculation in a weak interaction regime, for example $V_S < \hbar \Gamma$, and the relationship to the shot noise through a QD charge sensor will be reported elsewhere [34]. We have already fabricated lateral triple QD systems using vertical QDs [35]. We can realize such systems as discussed in this paper by using one of three QDs as the charge sensor.
Acknowledgments

We thank A Aharony, O Entin-Wohlman, M Eto, S Sasaki and T Hatano for valuable discussions and useful comments.

References

[1] Bohr N 1928 Nature 121 580
[2] Heisenberg W 1930 The Physical Principles of the Quantum Theory (Chicago, IL: University of Chicago Press)
[3] Feynman R P, Leighton R B and Sands M 1965 The Feynman Lectures on Physics vol 3 (Reading, MA: Addison-Wesley)
[4] Buks E, Schuster R, Heiblum M, Mahalu D and Umansky V 1998 Nature 391 871
[5] Dür S, Nonn T and Rempe G 1998 Nature 395 33
[6] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[7] Yacoby A, Heiblum M, Mahalu D and Shtrikman H 1995 Phys. Rev. Lett. 74 4047
[8] Holleitner A W, Decker C R, Qin H, Eberl K and Blick R H 2001 Phys. Rev. Lett. 87 256802
[9] Hatano T, Stopa M, Izumida W, Yamaguchi T, Ota T and Tarucha S 2004 Physica E (Amsterdam) 22 534
[10] Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2002 Phys. Rev. Lett. 88 256806
[11] Sasaki S 2000 Nature 405 764
[12] van der Wiel W G 2000 Science 289 2105
[13] Kubo T, Tokura Y and Tarucha S 2008 Phys. Rev. B 77 041305
[14] Schuster W, Buks E, Heiblum M, Mahalu D, Umansky V and Shtrikman H 1997 Nature (London) 385 417
[15] Ji Y, Heiblum M, Sprinzak D, Mahalu D and Shtrikman H 2000 Science 290 779
[16] Aleiner I L, Wingreen N S and Meir Y 1997 Phys. Rev. Lett. 79 3740
[17] Levinson Y 1997 Europhys. Lett. 39 299
[18] Hackenbroich G 2001 Phys. Rep. 343 463
[19] Kang K and Cho S Y 2004 J. Phys.: Condens. Matter 16 117
[20] Kubo T, Tokura Y, Hatano T and Shtrikman H 2006 Phys. Rev. B 74 205310
[21] Tokura Y, Nakano H and Kubo T 2007 New J. Phys. 9 113
[22] Stern A, Aharonov Y and Imry Y 1990 Phys. Rev. A 41 3436
[23] Stern A, Aharonov Y and Imry Y 1991 Quantum Coherence in Mesoscopic Systems (NATO ASI Series No 254) (New York: Plenum)
[24] Imry Y 1997 Introduction to Mesoscopic Physics (Oxford: Oxford University Press)
[25] Fujii T 2007 J. Phys. Soc. Japan 76 44709
[26] Levy Yeyati A, Martín-Rodero A and Flores F 1993 Phys. Rev. Lett. 71 2991
[27] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[28] Schwinger J 1961 J. Math. Phys. 2 407
[29] Keldysh L V 1964 Zh. Eksp. Teor. Fiz. 47 1515
 Keldysh L V 1965 Sov. Phys.—JETP 20 1018 (Engl. Tranl.)
[30] Lifshitz E M and Pitaevskii L P 1981 Physical Kinetics (Landau and Lifshitz Course of Theoretical Physics vol 10) (Oxford: Pergamon)
[31] Friedel J 1958 Nuovo Cimento Suppl. 7 287
[32] Langreth D C 1966 Phys. Rev. 150 516
[33] Hershfield S, Davies J H and Wilkins J W 1992 Phys. Rev. B 46 7046
[34] Kubo T, Tokura Y and Tarucha S (in preparation)
[35] Aihara S, Hatano T, Tamura H, Kubo T, Teraoka S, Tokura Y, Austing D G and Tarucha S 2010 Physica E 42 899