Multi-criteria as decisions

Mahyuddin K M Nasution

1Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara, Kampus USU, Padang Bulan 20155, Medan, Indonesia

E-mail: mahyuddin@usu.ac.id

Abstract. Multi-criteria derived from features have become character objects. When measurements are made of them by weighting methods, each criterion is a decision. Thus, criteria as object behavior may be static or dynamic. As a decision, multi-criteria require analysis and modeling to become an optimal decision. Various models and methods of finishing are available but require special attention. Therefore, this paper describes the relationships between them briefly. However, when each criterion is a decision, then modeling of multi-criteria is a decision, the use of the different methods and the results are also as a decision.

1. Introduction

Each object from the information point of view consists of features [1]. Features form criteria and then become variables with the relationship forms an equation based on measurement [2]. Some features do not change, but there are changes based on the importance of using the object. On the one hand, features shape the behavior of objects [3]. Otherwise, some other behaviors change features [4]. Therefore, the measurement of feature behavior is by gives weight, and based on that weight gives a decision, that is, a criterion [5]. When interests change, features will also change, and behave dynamically [6]. Static and dynamic problems, therefore, accompany criteria. Static and dynamic always deal with multi-criteria. On the other hand, the various features of an object will initiate problems in optimization [7], which affect the industrial world and the world of trade [8, 9].

The method for analyzing the features to become a decision variable is a necessity in expressing the criteria as a decision [10]. However, the method for resolving the relationship between the criteria is also important to have a decision outcome [11]. If there is a decision model, the method adapts to the model. This paper will review the relationships between criteria, models and methods. Criteria are a decision, the model is also a different decision, and the choice uses the method of a decision and produces a decision.

2. A Review about definitions

A decision is a suitable choice and optimally made to implement [12, 13]. Making the right decision is the first step towards success, and it considers the alternatives [14]. Therefore, every decision depends on the right amount of information [15]. Choice in this case is more appropriately identified in alternatives, that is, a thing that depends on different actions, hypothetically different in the character of a feature, or a different set of features, and other things [16]. Decisions are choices among those alternatives.
Alternatives formed from the characters of the object in which they become the target of industrial activity or production [17]. It is a criterion. The term “criteria” is the plural form of criterion. A criterion is a basic entry of a decision that can be measured and evaluated in the form of quantitative or qualitative [18, 19]. Thus, a correct decision naturally does not depend on emotion or is subjective [20]. There is a close relationship between criteria and decision [21], namely that a decision is related to evidence of the best balance between all selected criteria [22, 23]. Such criteria require a way of choosing, and it depends on the decision. Therefore, as a result, the criteria are of two types, namely factors and constraints: The factor is a criterion that is more in the position of various suitable alternatives based on consideration. The first consideration is the link flow at equilibrium. The second consideration refers to importance. The third consideration is the number of pairs of origin-destination relations as a place of service [24]. In short, factors are the main alternative. Alternatives that become a criterion become useful variables in expressing evaluation in decision-making [25]. Thus, in mathematical programming literature, factors as decision variables [26, 27], or in linear programming literature as structured variables [28]. Constraints are restrictions on alternatives that are being considered [29]. Constraints exist because of more than one criterion for an item requiring various objects [30]. Constraints like this are often stated as goal [31] or target [32]. The goal is to optimize one metric while respecting the constraints on other metrics [33, 34]. In the interim, the target is the way to forming a share of resources. That is by following the metric of the object in the decision [35]. However, both forms of constraint have the same final meaning.

In simple terms, objects such as chairs, for example, require boards and nails. Suppose chair type I requires \(a \) cm\(^2\) boards and chair type II requires \(b \) cm\(^2\) boards, while chair type I requires \(c \) nails and chair type II requires \(d \) nails. Available boards are \(n_1 \) cm\(^2\). Available nails are \(n_2 \) pieces. In simple terms, there are two criteria, namely chair type I represented as \(x_1 \), and chair type II expressed as \(x_2 \). Constraints formed on the availability of raw materials for boards and nails. In simple terms, the linear equation is

\[
\begin{align*}
ax_1 + bx_2 &= n_1 \\
cx_1 + dx_2 &= n_2
\end{align*}
\]

where \(a \leq n_1, b \leq n_1, c \leq n_2, \) or \(d \leq n_2 \). The solution to linear equations can be done through algebra when factors balance occurs, i.e., the number of variables expressed is equivalent to the number of rows. However, there are many features of the object which give rise to different criteria. For example, chairs like it are with the addition of different raw materials, such as Jepara furniture. Besides, the design or demand for an object with multiple features involving the information space \(\Omega \) may influence and augment that criterion. It is what is meant by multi-criteria. Multi-criteria is two or more sustainability assessment selection of the best alternatives based on different weights, by using a more effective and systematic way, and for solving uncertainty phenomena [36, 37]. However, these features need to be continuously consideration as additional alternatives that influence the decision.

3. A Review of Methods
Eq. (1) is a model for the distribution of resources based on criteria. Each formula has a procedure or procedure for a decision to exist. The procedure by which the criteria combined to arrive at the assessment. Then it carried out also an analysis. It is known as the decision rule. Decision rules will be more complicated when dealing with information spaces, where multi-criteria play an active role in determining decisions. The decision rules typically provide procedures for combining all weighted criteria. Therefore, with various models, Eq. (1) can change into a choice function or choice heuristic, as revealed in many kinds of literature. The role of the choice function offers a variety of multi-criteria compositions.
Namely linear programming [38]. In general mathematical, linear programming is for finding solution to a multi-criteria \(x = (x_1, x_2, \ldots, x_n) \) as maximization function of \(a_{r,1}x_1 + a_{r,2}x_2 + \cdots + a_{r,n}x_n \) for all \(r \) as maximization objectives, or as minimization function of \(a_{s,1}x_1 + a_{s,2}x_2 + \cdots + a_{s,n}x_n \) for all \(s \) as minimization objectives, and satisfy \(a_{r,1}x_1 + a_{r,2}x_2 + \cdots + a_{r,n}x_n (\leq, \geq, =) b_t \) for all \(t \) as goals, and where \(x_1, x_2, \ldots, x_n \geq 0 \). By revealing that the variables representing the criteria take only integers, linear programming has another approach. That is a model known as integer programming by insisting on carrying out the following [39].

Optimize

\[
\sum_{j=1}^{n} c_j x_j
\]

subject to

\[
\sum_{j=1}^{n} a_{ij} x_{ij} \leq b_i, i = 1, 2, \ldots, m
\]

where \(c_j \) are constants or values, \(x_j \geq 0 \) for \(j = 1, 2, \ldots, n \), and \(x_j \) integer-valued for \(j = 1, 2, \ldots, p \leq n \). When \(p = n \), for all variables, the model in Eq. (2) and Eq. (3) is a pure integer-programming. Otherwise, the model is a mixed programming problem [40]. Let \(r_k(d) \) be the reward for making decision \(d \) at stage \(k \), \(t_k(s,d) \) be the new state when the old state is \(p \), the stage is \(k \), and decision is \(d \), with choice \(r_k(d) = 0 \) if \(d \) is "do not grant" or \(r_k(d) = c_k \) if \(d \) is "grant", and \(t_k(s,d) = s \) if \(d \) is "do not grant" or \(t_k(s,d) = s - c_k \) if \(d \) is "grant" where \(s \) is state at stage \(k \). It is the key to dynamic programming [41], which is to a problem that has not a solution in linear programming. In other words, in state \(s \) at stage \(k \), all decisions arrive at state \(s \), where in mathematics it express as \(P(k, s) = \max \{ d \in D_k(s) | r_k(d) + P(k+1, t_k(s,d)) \} \) where \(D_k(s) \) be the set of possible decisions.

The development of a multi-criteria formulation in the form of a matrix depends on making the decisions. Apart from the above models, the goal programming model provides decisions in different ways [42].

Suppose that all variables in bold are a matrix representation. For vector-maximum problem with maximize \(Z = Cx \), where \(Z \) is a fixed matrix, subject to \(Ax \leq b \) and \(x \geq 0 \), there is the minimum lexicography of

\[
a = \{g_1(\eta, \rho), \ldots, g_K(\eta, \rho)\}
\]

where \(K \) is number of priority levels \((1+S) \), and \(S \) is number of original objectives. Subject to \(Ax + n^{(0)} - \rho^{(0)} = b \) where \(n^{(0)} \) and \(\rho^{(0)} \) are deviation variables associated with the original set of rigid constraints, \(Cx + n^{(S)} - \rho^{(S)} = z^{(0)} \) where \(n^{(S)} \) and \(\rho^{(S)} \) are deviation variables associated with the original set of objectives, and \(z^{(0)} \) is aspiration levels associated with the original set of objectives,

\[
x, \eta, \rho \geq 0.
\]

Eq. (4) to Eq. (5) to be the linear goal programming [43].

In the data age, the point of view on objects, including the interests of clients, or different partners, is continually evolving. Ordinary characters may change, namely, get distorted by information, or maybe replaced with other characters. These characters are revealed from the features of the object recorded with them in the information space, and furthermore, it is possible to raise them through measurements, for example, by involving AHP [44]. There are several methods for weighting, namely Entropy [45, 46], Pair-Wise Comparison [47, 48], Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [49, 50], Simple Multi-Attribute Rating Technique (SMART) [51, 52], Analysis Hierarchy Process (AHP) [53, 54], SIMOS [55, 56], Combination Weighting [57, 58], SWING [59, 60], or other [61, 62]. Meanwhile, to perform analysis involves, for example, the Weighted Sum Method (WSM) [63, 64], the Weighted Product Method (WPM) [65, 66], or other [67]. Several methods can have implementation as a weighting method, analysis method, or the synthesizing method [68], see Table 1.
Table 1. Category of ranking methods for multi-criteria.

Streams	Methods	Streams	Methods
Categories:		Categories:	
Subjective	SMART(ER)	Elementary	WSM
	SWING	WPM	
	SIMOS	Synthesizing	AHP
			TOPSYS
	Pair-wise		others
	comparison		
Objective	Entropy		
	TOPSYS		
Combination		Vertical and	
		Horizontal	

Figure 1. (A) Classification of the multi-criteria models. (B) Graphical approach to model of linear programming.

4. A discussion for searching the methods
Every model of mathematical programming and operations research is a logical analysis of all decision problems considering criteria [69, 70]. Based on the measurement of each criterion, the model formed the following two categories with the least abstract or the most abstract, see Fig. 1(A). The features which become physical characteristics according to the measurement are a bit abstract to give birth to a physical model, whereas in contrast, it involves an abstract model [71]. These two categories classified into two parts, namely static models and dynamic models. Essentially, a model that considers the impact of change
is dynamic otherwise is static [72, 73]. The model then develops into a linear and non-linear depending on
the objective so that based on the interests, there are stable models, others are also unstable.
Among the features of an object, when they are variable, their relationship is not
always linear [74]. However, all solutions ask for the convex nature of functions. Thus, in changing
the criteria which results in a nonlinear relationship the function \(f(x) = 1, 2, \ldots, m \) of the \(n \) variables \(x = (x_1, x_2, \ldots, x_n) \) [75]. Criteria are the results of decisions based on ranking methods, but in analysis and systems,
one criterion and another criterion may have a relationship [76]. Therefore, it is always convex. Convex
function \(F(x) \) as stated in \(f(x) \) [77], the convex program is to minimize \(F(x) \) with constraints \(f_i(x) \leq 0 \) and
\[
x \geq 0.
\] (6)
The last equation states that constraints have limits. When Eq. (6) is not present, \(x \) be unrestricted. If \(F(x) \) and \(f_j(x) \) is not convex, it means concave, the minimization problem will be the maximum \(F(x) \) with the
constraint \(f_j(x) \geq 0 \).
The relationship between several criteria may be non-linear and expressed in equations for the sake of
equations that form factors or constraints [78]. Suppose that \(C \) is the \((n \times n) \) symmetric coefficient matrix,
\(n \)-vector variables \(x \) and \(x' \) are scalar multiplication of row vectors, \(x'Cx \) is a quadratic [79]. Let \(F(x) \) be the
quadratic function \(Q(x) \) as follows
\[
Q(x) = q'x + x'Cx
\] (7)
where \(C \) is also a semidefinite, and \(q' \) is a coeffiencts matrix of \(x \). Suppose
\[
f_j(x) = a_j'x - b_j.
\] (8)
Where \(a_j' \) is the coefficient matrix. By involving linear constraints based on Eq. (8) namely \(a_j'x - b_j \leq 0 \)
where \(x \geq 0 \), then the basic model of a quadratic program is to minimize Eq. (7). Quadratic programming is
the basis of non-linear programming involving multi-criteria [80]. The solution, however, involves
increasingly complex approaches.
Linear programming consists of factors and constraints, which allow it to have a dual form. That is
converts maximization to minimization and vice versa. The dual form of linear programming also converts
rows into columns and vice versa in constraints. A home industry with limited workers makes two \(A \) and \(B \)
downstream products from raw paper towels over several hours of work and work procedures: cutting,
folding, and packaging. A product \(A \) takes 10 minutes to cut, 5 minutes to fold, and 1 minute to pack. A
product \(B \) takes 6 minutes to cut, 10 minutes to fold, and 2 minutes to pack. The time capacity available
each week is 2,500 minutes for cutting, 2,000 minutes for folding, and 500 minutes for packaging. The profit
for product \(A \) is 23 IDR, and the product \(B \) is 32 IDR. A decision model is a linear programming which
mathematically expressed as maximizing
\[
23x_1 + 32x_2
\] (9)
subject to
\[
10x_1 + 6x_2 \leq 2, 500
5x_1 + 10x_2 \leq 2, 000
x_1 + 2x_2 \leq 500
\] (10)
In two-dimensional graphs, a method to obtain optimal results, see Figure 1(B). However, the features of an
object change according to the wishes of its users or stakeholders. For example, the market requires a
product \(C \) with different criteria, that is, it takes 2 minutes to cut, 5 minutes for folding, and 2 minutes for
packaging but the time available is still the same according to the available labor. The profit earned is 18
IDR. The model is maximizing \(23x_1 + 32x_2 + 18x_3 \) subject to
\begin{align}
10x_1 + 6x_2 + 2x_3 &\leq 2, 500 \\
5x_1 + 10x_2 + 5x_3 &\leq 2, 000 \\
x_1 + 2x_2 + 2x_2 &\leq 500
\end{align}

(11)

It adds variables to linear programming [81]. When the variable increases, the graphical solution cannot be done anymore. On that basis, other methods emerged, such as the simplex method [82], Karmakar’s method [83], and others [84]. On the other hand, production problems always related to discretization, in this case, integer programming. The model of Eq. (9) and Eq. (10) yields $x_1 = 185.7$ units and $x_2 = 107.1$ units with a profit of 7,700 IDR. Changes to output in integer programming require the addition of constraints. First add $x_1 \leq 185$, which makes $x_1 = 185$ units and $x_2 = 107.5$ units with a profit of 7,695 IDR. Second, change the limit of x_1 to $x_1 \geq 186$, there is the result of $x_1 = 186$ units and $x_2 = 106.7$ units with a profit of 7,691.3 IDR. There is still a product number x_2 which is not an integer. Next, for the constraint $x_1 \leq 185$ and add the constraint $x_2 \leq 107$, which confirms $x_1 = 185$ units and $x_2 = 107$ units, but makes only profit 7,679 IDR. By changing the constraint x_2 to $x_2 \geq 108$, the profit will be bigger, which is 7,688 IDR. The next option is to specify that for the constraint $x_1 \geq 186$ by adding the constraint $x_2 \leq 106$, where $x_1 = 186$ units and $x_2 = 106$ units, the profit is less than 7,688 IDR, that is 7,670 IDR. Meanwhile, for $x_2 \geq 107$ represents no feasible solution. The decisions are $x_1 = 184$ units and $x_2 = 108$ units. This decision involves the branch-and-bound method [85].

Although the multi-criteria modeling pattern in non-linear programming has similarities with linear programming, there are dual, for example. However, settlement methods evolved differently from attempts to linearize them. Among them are (i) Beale’s method is a method of extending simplex in linear programming, which is particularly suitable in computing [86]; (ii) Wolfe’s method is a method for completing a quadratic program using the simplex algorithm with a trivial modification [87]; (iii) The Hildreth and D’Esopo method is an asymptotically related method of solving a quadratic program [88]; (iv) The Theil and Van de Panne method is a method that uses a system of equations that filled with constraints (strictly definite) [89]. Besides that, some methods developed from the principle of optimization, namely gradients [90].

5. Conclusion
An object has a fixed feature and a change feature. The features form the criteria by which one has a relationship. The relationship reflected in factors or constraints. Changes in features can take place dynamically. Therefore, the relationship model is either static or dynamic. All of this has to do with decisions. The features of an object can add depending on stakeholder interests. So too are the relationships between those features and then the decision models. Therefore, the model can be linear programming, integer programming, goal programming, or non-linear programming. Likewise, the method of solving it adapts the problem as the criterion adapts features to the variables, and all of that is a decision.

References
[1] C Seelammal, K Vimala Devi 2018 Multi-criteria decision support for feature selection in network anomaly detection system International Journal of Data Analysis Techniques and Strategies 10(3)
[2] Y Li, Z Han, Q He 2012 Multi-criteria sorting method based on AHP and variable precision rough set Proceedings - International Conference on Machine Learning and Cybernetics 1
[3] S Bandyopadhyay, A K Chandra 2016 A novel multi-criteria multi-agent-based routing strategy based on tarantula mating behavior Advances in Intelligent Systems and Computing 404
[4] G Mahmoudi, C Mu’ller-Schloer, J Hanner 2009 Marketplace-oriented behavior in semantic multi-criteria decision making autonomous systems Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5455 LNCS
[5] P K Ray, S Sahu 1990 Productivity measurement through multi-criteria decision making *Engineering Costs and Production Economics* 20(2)

[6] W Ugarte, P Boizumault, B Cre’emilleux, A Lepailleur, S Loudni, M Plantevit, C Raissi, A Soulet 2017 Skypattern mining: From pattern condensed representations to dynamic constraint satisfaction problems *Artificial Intelligence* 244(1)

[7] G Mahasri, A Saskia, P S Apandi, N N Dewi, Rozi, N M Usuman 2017 Development of an aquaculture system using nanobubble technology for the optimization of dissolved oxygen in culture media for nile tilapia (*Oreochromis niloticus*) *IOP Conf. Series: Earth and Environmental Science* 137

[8] A Ferjani, A Ammar, H Pierreval, A Trabelsi 2015 A heuristic approach taking operators’ fatigue into account for the dynamic assignment of workforce to reduce the mean flowtime *Proceedings - CIE 45: 2015 International Conference on Computers and Industrial Engineering*

[9] S Zaidi, M Azzakhmam, S Affes, C Despins, K Zarifi, P Zhu 2017 Progressive hybrid greyfield wireless access virtualization: Graph-optimized dynamic utility tradeoffs between cloud, fog, and legacy RANs 2017 *13th International Wireless Communications and Mobile Computing Conference*, IWCMC 2017

[10] G Haseli, R Sheikh, S S Sana 2020 Base-criterion on multi-criteria decision-making method and its applications *International Journal of Management Science and Engineering Management* 15(2)

[11] M C Abounaima, F Z E Mazouri, L Lasmara, N Nfissi, N E Makhfi, M Ouzarf 2020 The Pearson Correlation Coefficient Applied to Compare Multi-Criteria Methods: Case the Ranking Problematic 2020 *1st International Conference on Innovative Research in Applied Science, Engineering and Technology*, IRASET

[12] T Sultan, A E Khedr, M M R Ali 2012 Multi-criteria business intelligence approach *Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering* 62 LNICST

[13] A Azhar, M Amin, M Nauman, S U Shah 2012 Efficient selection of access control systems through multi criteria analytical hierarchy process *Proceedings - 2012 International Conference on Emerging Technologies*, ICET 2012

[14] D G G Camilo, R P de Souza, T D C Frazao, J F da Costa Junior *BMC medical informatics and decision making* 20(1)

[15] N Yildiz, F Tiysiz 2019 A hybrid multi-criteria decision making approach for strategic retail location investment: Application to Turkish food retailing *Socio-Economic Planning Sciences* 68

[16] D H Muhsen, M Nabil, H T Haider, T Khatib 2019 A novel method for sizing of standalone photovoltaic system using multi-objective differential evolution algorithm and hybrid multi-criteria decision making methods *Energy* 174

[17] Sushil 2020 Interpretive multi-criteria ranking of production systems with ordinal weights and transitive dominance relationships *Annals of Operations Research* 290(1-2)

[18] C-Y Liu, C R Emerson, K Srihari 1993 Multi-criteria decision support system for placement machine selection *American Society of Mechanical Engineers, EEP* 4-1

[19] F M F Hassan, M M Marzouk 2020 Multi-criteria decision making model for tower crane operations *Journal of Engineering and Applied Science* 67(1)

[20] M Muhammad, N R A Burhani, A A Mokhtar 2016 A novel multi-objective and multi-criteria decision support system for logistic management during flood disaster *Proceedings of the International Conference on Industrial Engineering and Operations Management* 8-10

[21] S U Mohandas, J M Keller 1990 Linguistic uncertainty calculations in multi-criteria decision making *Proceedings of SPIE - The International Society for Optical Engineering* 1192
[22] S Rehman, S A Khan 2019 Fuzzy logic based multi-criteria wind turbine selection strategy - A case study of Qassim, Saudi Arabia Energies 9(11)
[23] S Rehman, S A Khan 2019 Goal Programming-Based Two-Tier Multi-Criteria Decision-Making Approach for Wind Turbine Selection Applied Artificial Intelligence 33(1)
[24] A Kumar, K Haque, S Mishra, M M Goli 2019 Multi-criteria based approach to identify critical links in a transportation network Case Studies on Transport Policy 7(3)
[25] N L A Mohd Kamal, L Abdullah, I Abdullah 2019 Multi-valued neutrosophic linguistic soft set and its application in multi-criteria decision-making Journal of Advanced Research in Dynamical and Control Systems 11(12) Special Issue
[26] B Sawik 2012 Multi-criteria mathematical programming for assignment of services in a healthcare institution International Conference on Industrial Logistics, ICIL 2012 - Conference Proceedings
[27] T T Dimyati 2020 Integrated model for Multi-criteria Supplier Selection and Order Allocation Problem IOP Conference Series: Materials Science and Engineering 847(1)
[28] B Manganelli, P De Paola, V Giudice Del 2016 Linear programming in a multi-criteria model for real estate appraisal Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9786
[29] F Botticella, F de Rossi, A W Mauro, G P Vanoli, L Viscito 2018 Multi-criteria (thermodynamic, economic and environmental) analysis of possible design options for residential heating split systems working with low GWP refrigerants International Journal of Refrigeration 87
[30] X Li, S Chen, R Liu, H Zhang, W Deng 2020 An Extension Preprocessing Model for Multi-Criteria Decision Making Based on Basic-Elements Theory Communications in Computer and Information Science 1179 CCIS
[31] J R Baker, E R Clayton, B W Taylor III 1989 A non-linear multi-criteria programming approach for determining county emergency medical service ambulance allocations Journal of the Operational Research Society 40(5)
[32] T J Waddle, Z H Bowen, K D Bovee 1999 Including long-term biological index performance in a multi-criteria decision support system WRPMD 1999: Preparing for the 21st Century.
[33] R R Weitz, M T Jelassi 1992 Assigning Students to Groups: A Multi-Criteria Decision Support System Approach Decision Sciences 23(3)
[34] A Iguider, K Bousselam, O Elissati, M Chami, A En-Nouaary 2020 Heuristic algorithms for multi-criteria hardware/software partitioning in embedded systems codesign Computers and Electrical Engineering 84
[35] Y-H Liang, P Guo, Y-M Zhu, J Zhao 2012 Multi-period and multi-criteria decision making model of grey target based on interval number Kongzhi yu Juece/Control and Decision 27(10)
[36] A Arad, J Habibi, H Rostami 2007 A flexible multi-criteria trust model for P2P networks 3rd International Conference on Semantics, Knowledge, and Grid, SKG 2007
[37] R A M Bandeira, M A D’Agosto, S K Ribeiro, A P F Banderia, G V Goes 2018 A fuzzy multi-criteria model for evaluating sustainable urban freight transportation operations Journal of Cleaner Production 184
[38] O Ö Özener, H Sözer 2020 An effective formulation of the multi-criteria test suite minimization problem Journal of Systems and Software 168
[39] B Sawik, J Faulin, E P’erez-Bernabeu 2017 Multi-Criteria Optimization for Fleet Size with Environmental Aspects Transportation Research Procedia 27
[40] F Nikjoo, A Mirzaei, A Mohajer 2018 A Novel Approach to Efficient Resource Allocation in NOMA Heterogeneous Networks: Multi-Criteria Green Resource Management Applied Artificial Intelligence 32(7-8)
[41] E M Bednarezuk, J Miroforidis, P Pyzel 2018 A multi-criteria approach to approximate solution of multiple-choice knapsack problem *Computational Optimization and Applications* **70**(3)
[42] M Romero, M L Cuadrado, L Romero, C Romero 2020 Optimum acceptability of telecommunications networks: a multi-criteria approach *Operational Research* **20**(3)
[43] S-P Wan, J-Y Dong 201r Interval-valued intuitionistic fuzzy mathematical programming method for hybrid multi-criteria group decision making with interval-valued intuitionistic fuzzy truth degrees *Information Fusion* **26**
[44] S P Singh, S K Ghosh, V K Dwivedi 2020 An Analytic Hierarchy Process (AHP)-Based Multi-criteria Evaluation and Priority Analysis for Best FWH Substitution of Solar Aided Thermal Power Plant *Smart Innovation, Systems and Technologies* **174**
[45] A A Gukhman 1962 Application of the entropy method to investigation of transonic adiabatic flows *International Journal of Heat and Mass Transfer* **5**(10)
[46] Ethem Tolga, Cengiz Kahraman 1992 Multi-criteria investment analysis under uncertainty *Technology Management : the New International Language*
[47] K J Levy 1975 Large-sample pair-wise comparisons involving correlations, proportions, or variances *Psychological Bulletin* **82**(2)
[48] W E Gerbacia, H Al-Shammari 2001 Multi-Criteria Decision Making in Strategic Reservoir Planning Using the Analytic Hierarchy Process *Proceedings - SPE Annual Technical Conference and Exhibition*
[49] Cheng Jimin, Zhang Wenjun 1992 Grassland quality evaluation in hilly regions of the loess plateau using TOPSIS method *Chinese Journal of Ecology* **11**(3)
[50] D M Buede, D T Maxwell 1995 Rank disagreement: A comparison of multi-criteria methodologies *Journal of Multi-Criteria Decision Analysis* **4**(1)
[51] F A Lootsma 1993 Ratio and difference estimation in multi-criteria decision analysis *American Society of Mechanical Engineers, Design Engineering Division (Publication) DE* **65** pt 2
[52] F H Barron, B E Barrett 1996 The efficacy of SMARTER - Simple Multi-Attribute Rating Technique Extended to Ranking *Acta Psychologica* **93**(1-3)
[53] B Schoner, E U Choo, W C Wedley 1997 A comment on rank disagreement: A comparison of multi-criteria methodologies *Journal of Multi-Criteria Decision Analysis* **6**(4)
[54] J-Ren 2003 Application of analysis hierarchy process on the SMEs’ competitiveness evaluation *Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice* **23**(8)
[55] J Figueira, B Roy 2002 Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure *European Journal of Operational Research* **139**(2)
[56] A S Milani, A Shanian, R C Abeyaratne 2007 A group decision making approach in multi-criteria material selection *Proceedings of the IASTED International Conference on Modelling and Simulation*
[57] J-X Liu, Y-J Tan, H-P Cai 2005 Study of the methods of the linear combination weighting for multiple attribute decision-making *Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology* **27**(4)
[58] J-J Wang, Y-Y Jing, C-F Zhang 2009 Weighting methodologies in multi-criteria evaluations of combined heat and power systems *International Journal of Energy Research* **33**(12)
[59] J Niu, Z Wen, J-S Wang, J Wang, J Li, Y-Z Lu, Q-Q Zhao 2007 Grey multi-criteria decision of swing heating model for thick steel plate roller heat hearth treatment furnace *Calliao Rechuli Xuebao/Transactions of Materials and Heat Treatment* **28**(1)
[60] T J Lahtinen, R P Ham’al’aïnen, C Jenytin 2020 On preference elicitation processes which mitigate the accumulation of biases in multi-criteria decision analysis *European Journal of Operational Research* **282**(1)
[61] K Jozwiakowski, Z Mucha, A Generowicz, S Baran, J Bielin’ka, W Wojcik 2015, The use of multi-criteria analysis for selection of technology for a household WWTP compatible with sustainable development Archives of Environmental Protection 41(3)

[62] Z Yang, K Yang, Y Wang, L Su, H Hu 2019 The improved multi-criteria decision-making model for multi-objective operation in a complex reservoir system Journal of Hydroinformatics 21(5)

[63] M Van Der Veen, J Brouwer, K Helbig 1999 Weighted sum method for calculating ground force: an evaluation by using a portable vibrator system Geophysical Prospecting 47(3)

[64] M R Mansor, S M Sapuan, E S Zainudin, A A Nuraini, A Hambali 2014 Thermoplastic matrix material selection using multi criteria decision making method for hybrid polymer composites Applied Mechanics and Materials 564

[65] M Wang, S Liu, S Wang, K K Lai 2010 A weighted product method for bidding strategies in multi-attribute auctions Journal of Systems Science and Complexity 23(1)

[66] H Zamani-Habzi, J P King, C C Gard, S Abudu 2016 Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment Operations Research Perspectives 3

[67] Q Tu, H Li, X Wang, C Chen, Y Luo, F A Dwomoh 2014 Multi-Criteria Evaluation of Small- Scale Sprinkler Irrigation Systems Using Grey Relational Analysis Water Resources Management 28(13)

[68] J-J Wang, Y=Y Jing, C-F Zhang, J-H Zhao 2009 Review on multi-criteria decision analysis aid in sustainable energy decision-making Renewable and Sustainable Energy Reviews 13

[69] L G Proll, D Rios Insua, A Salhi 1993 Mathematical programming and the sensitivity of multi-criteria decisions Annals of Operations Research 43(2)

[70] J Rezaei 2010 A note on multi-criteria inventory classification using weighted linear optimization Yugoslav Journal of Operations Research 20(2)

[71] G K Hoepfner, F Mata 1993 A multi-criteria decision analysis methodology for selection of a preferred residence based on physical attributes Computers and Industrial Engineering 25(1-4)

[72] C Alexandru 2014 Multi-criteria dynamic optimization of a front wheels suspension system Applied Mechanics and Materials 656

[73] D Xiao 2020 A Hybrid Dynamic Multi-criteria Decision Making Model Based on Interval Bipolar 2-Tuple Linguistic Terms for Supplier Selection Advances in Intelligent Systems and Computing 1017

[74] S Sharma, S Balan 2013 An integrative supplier selection model using Taguchi loss function, TOPSIS and multi criteria goal programming Journal of Intelligent Manufacturing 24(6)

[75] P H Huang, T-T Moh 2017 A non-linear non-weight method for multi-criteria decision making Annals of Operations Research 248(1-2)

[76] H Garg, Nancy 2018 Non-linear programming method for multi-criteria decision making problems under interval neutrosophic set environment Applied Intelligence 48(8)

[77] Z Luo, N Zhang 2012 A multi-criteria topology optimization for systematic design of compliant mechanisms Computers, Materials and Continua 28(1)

[78] K Deep, S K Singh, M L Kansal 2011 Genetic algorithm based fuzzy weighted average for multi-criteria decision making problems OPSEARCH 48(2)

[79] X Chao, Y Peng 2018 A cost-sensitive multi-criteria quadratic programming model for imbalanced data Journal of the Operational Research Society 69(4)

[80] Z Zhang, G Gao, J Yue, Y Shi 2018 Sparse feature kernel multi-criteria linear programming classifier Neurocomputing 30

[81] H Suprajitno 2012 Solving Multiobjective Linear Programming Problem Using Interval Arithmetic Applied Mathematical Sciences 6(80)
[82] L Seiford, P L Yu 1979 Potential solutions of linear systems: The multi-criteria multiple constraint levels program *Journal of Mathematical Analysis and Applications* 69(2)

[83] J N Hooker Karmarkar’s linear programming algorithm *Interfaces* 16(4)

[84] J Li, Y Shi 2001 An Integer Linear Programming Problem with Multi-Criteria and Multi-Constraint Levels: A Branch-and-Partition Algorithm *International Transactions in Operational Research* 8(5)

[85] Sawik B 2016 Multi-criteria mathematical programming approaches for assignment of services in hospital *13th International Conference on Industrial Logistics, ICIL 2016 - Conference Proceedings*

[86] A dos Santos Goncalves 1971 A version of Beales method avoiding the free-variables *Proceedings of the 1971 26th Annual Conference*, ACM

[87] C A Holloway 1974 An extension of the frank and Wolfe method of feasible directions *Mathematical Programming* 6(1)

[88] G Cartina 1980 Using Hildreth-d’Esopo Algorithm to Optimize the Reactive Power Traffic in an Electric Network *Bulletin de l’Association suisse des electriciens* 71(7)

[89] D G Shankland 1980 A numerically efficient procedure for the Theil-Van de Panne quadratic programming method *Journal of Optimization Theory and Applications* 31(1)

[90] B Malakooti 1989 A gradient-based approach for solving hierarchical multi-criteria production planning problems *Computers and Industrial Engineering* 16(3)