Cloning and expression analysis of BmYki gene in silkworm, Bombyx mori

Wenhui Zeng1*, Riyuan Wang1☯, Tianyang Zhang1, Chunying Gong1, Weidong Zuo2, Rongpeng Liu2, Yao Ou2, Hanfu Xu1,2,3*

1 State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China, 2 College of Biotechnology, Southwest University, Chongqing, China, 3 Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China

☯ These authors contributed equally to this work.
* xuhf@swu.edu.cn

Abstract

The transcriptional coactivator Yorkie(Yki), is a critical downstream effector of the Hippo(Hpo) signaling pathway that controls organ size through the regulation of cell proliferation and apoptosis. During the past ten years the biological function of Yki has been studied extensively in Drosophila and a few other insects, however, little is known about it in the silkworm, Bombyx mori, a major research model of lepidopteran insect. Here, we describe the isolation, characterization and expression of the B. mori Yki ortholog, BmYki. The coding sequence of the BmYki was 1314 bp in length, encoding a protein of 437 amino acids containing two conserved WW domains. BmYki transcripts were ubiquitous but not abundant in all detected tissues and developmental stages. Comparatively, it was expressed at pretty high level in silk glands and at the stage of fifth-instar day-3 larvae. Overexpression of BmYki in cultured B. mori embryonic cells significantly promoted transcription of genes associated with cell proliferation and apoptosis, indicating that BmYki functions in the regulation of organ growth-related biological processes. Interestingly, transcription of silk protein-coding genes and transcription factors regulating the synthesis of silk proteins was downregulated remarkably, suggesting that BmYki was involved in the regulation of silk protein synthesis. This study provides new insights into the role of BmYki in Hpo pathway regulation in silkworm.

Introduction

Precise control of organ size is a key feature of metazoans and a crucial process during animal development and regeneration[1]. How the animal organs grow to be the right size is one of the central mysteries of biology. Developmental genetics over the past decade have revealed the size of functional organs is a consequence of regulation of cell number and/or cell size, which are generally achieved by coordinately regulating cell growth, proliferation, and apoptosis[1–2]. Several signaling pathways have been implicated in such regulation, including the Wnt, Hedgehog, Transforming growth factor β(TGFβ), Notch, Wingless, Myc, Target of rapamycin(TOR), Jun N-terminal kinase(JNK), and Hippo(Hpo) pathway[3–10]. Studies on these pathways will provide important entry points for clarifying mechanisms of organ size control.
The Hpo pathway firstly discovered in *Drosophila* and subsequently found in mammals and a few other insects[11–16], is now appreciated as a key regulator of organ growth in flies and mammals. It also plays crucial roles in other biological processes, such as tissue homeostasis and regeneration, cell fate determination, stem cell proliferation, and innate immunity[1,17–18]. It has been defined that core to the Hpo pathway is a kinase cascade composed of tumor suppressors Hpo, Salvador(Sav), Mob-as-tumor-suppressor(Mats), and Warts(Wts)[11–12,19–22], which ultimately phosphorylates and inactivates the transcriptional coactivator Yorkie(Yki), the most critical downstream effector of the Hpo pathway[23–24]. In *Drosophila*, loss of Hpo signaling activated Yki and led to accumulation of it in the nucleus and therefore induced expression of target genes that positively regulate cell growth, survival, and proliferation[25–26]. Overexpression of Yki resulted in organ overgrowth characterized by excessive cell proliferation and diminished apoptosis, and rescued the phenotype of Hpo signaling activation[23,27]. In *Helicoverpa armigera*, knockdown of Yki in the epidermal cell line(HaEpi) induced increased activation of cell apoptosis-related genes, whereas overexpressed Yki in HaEpi cells promoted cell proliferation-related genes[28–29]. Taken together, these evidences hint that Yki is a pivotal "switch" to uncover the role of Hpo pathway in organ size control.

We have previously identified the Yki ortholog (designated as BmYki) from the lepidopteran model insect, the silkworm *Bombyx mori*, yet whether it functions in regulating organ size has not been fully defined. In this study, we isolated the *BmYki* gene from three strains of *B. mori*, and further investigated the expression of *BmYki* and its function in the regulation of its downstream targets related to organ growth. Finally, we provided evidences that *BmYki* is involved in the synthesis of silk proteins in *B. mori*.

Materials and methods

Animals and cell lines

Three *B. mori* strains, *Dazao* (diapaused strain), *Nistari* (non-diapaused strain) and *LH* (non-diapaused strain), were obtained from Silkworm Gene Bank of Southwest University and reared with fresh mulberry leaves in the laboratory at 25–27˚C. The cultured *B. mori* embryo cells(BmE) and ovary-derived cells(BmN) were stored in our laboratory and grown in Grace’s insect medium containing 10% fetal bovine serum at 27˚C.

Gene cloning and sequence analysis

The nucleotide sequence of BmYki(BGIBMGA003638) previously identified from the database of SilkDB(http://www.silkdb.org/silkdb/), was used to design the specific primers(Table 1) and perform real-time polymerase chain reaction(RT-PCR) using the cDNA template of three *B. mori* strains, respectively. The PCR products were subcloned into the pEASY-T5 vector(TransGen) and verified by DNA sequencing. Alignment of the sequences was carried out using software ClustalX[30]. Searches of CDS domain and exon/intron were carried out through the use of GENSCAN(http://genes.mit.edu/GENSCAN.html) and SMART(http://smart.embl-heidelberg.de/). The *BmYki* gene isolated from *Dazao* strain was used for subsequent experiments.

Construction of expression vectors

pSL[BmA4-BmYki/EGFP-Ser1pA](abbreviated as BmYki-EGFP). The coding sequence of the BmYki with the stop codon deleted was PCR-amplified using specific primers(Table 1), digested with *BamH* I and *Not* I, and inserted into the pSL[BmA4-BN/EGFP-Ser1pA] vector, to generate the vector pSL[BmA4-BmYki/EGFP-Ser1pA]. Expression of the BmYki-EGFP fusion protein was controlled by the promoter of *B. mori* actin4 gene(BmA4).
The coding sequence of BmYki was digested with BamHI and NotI, and inserted into the pUC57S[10×UAS-B/N-Ser1pA] vector, then the fragment UAS-BmYki-Ser1pA was subcloned into the AscI site of the pB[3×P3EGFPafm] vector, to generate the vector pB[UAS-BmYki,3×P3EGFP].

The synthesized Gal4 sequence was digested with BamHI and NotI, and inserted into the pUC57S[BmA4-B/N-Ser1pA] vector, then the fragment BmA4-Gal4-Ser1pA was subcloned into the AscI site of the pB[3×P3DsRedafm] vector, to generate the vector pB[BmA4-Gal4,3×P3DsRed].

Subcellular localization analysis

A 100 μL mixture containing 3 μg of BmYki-EGFP plasmid DNA was mixed with 100 μL Grace’s insect medium(without antibiotics) and incubated for 20 min at room temperature, then mixed with BmN cells. After 72 h culture at 27°C, cells were harvested, washed three times with 1×PBS, fixed with 4% paraformaldehyde for 10 min, dyed with 0.1% DAPI for 20 min at room temperature, and then washed three times with 1×PBS. The fixed cells were mounted in slides and observed using an FV1000 confocal microscope(Olympus, Japan). Images were processed using Photoshop 5.0.
Quantitative RT-PCR (qRT-PCR) analysis

To analyze expression patterns of BmYki, total RNA from different tissues and developmental stages of Dazao strain were isolated and used to prepare cDNA templates using cDNA synthesis Kit Manual (Takara). qRT-PCR was carried out in 20 \(\mu \text{L} \) solution, which contains 5 ng of cDNA templates, 10 \(\mu \text{L} \) of 1xSYBR@ Green I taq (Takara) and 0.5 mM of each primer. The 7500FAST Real-Time PCR System (ABI, USA) was employed. The eukaryotic translation initiation factor 4A (silkworm microarray probe ID: sw22934) was used as an internal control [32].

To determine the mRNA level of target genes in BmE cells overexpressing BmYki, the cells transfected with 3 \(\mu \text{g} \) mixture of UASBmYki (400 ng/\(\mu \text{L} \)) and A4G4 plasmid DNA (400 ng/\(\mu \text{L} \)) were harvested after 72 h culture at 27˚C and used to prepare cDNA templates. mRNA levels of each target gene were measured by qRT-PCR as described above. All primers used in qRT-PCR were summarized in Table 1.

Results and discussion

Isolation and sequence analysis of BmYki

To isolate the coding sequence of BmYki, the ~1300 bp fragment containing the putative BmYki gene was obtained by RT-PCR from three B. mori strains, respectively. Further sequence analysis showed that the coding sequence of each BmYki is 1314 bp in length, composed of six exons and five introns, and encodes a protein of 437 amino acids containing two conserved WW domains (Figs 1 and 2) that is capable of interacting with PPXY motifs found in Wts [21]. The amino acid sequence identity of the three BmYki genes was as high as 98.4%.

It is worth noting that a ~1100 bp fragment was also amplified from each of the B. mori strain (S1 Fig), and nucleotide sequences of the fragment were almost identical to that of the BmYki gene, except for the lack of the third exon. We thus speculate that BmYki exists in multiple alternative splicing forms in B. mori, which is an interesting discovery that deserves further investigation.

Localization of BmYki-EGFP fusion proteins in BmN cells

It has been reported that Yki is mainly located in cytoplasm of Drosophila S2 cells [25]. To determine the subcellular localization of BmYki, the plasmid expressing BmYki-EGFP fusion proteins was transfected into BmN cells. The result showed that the BmYki-EGFP fusion protein was mainly cytoplasmic (Fig 3), which is similar to that observed in Drosophila S2 cells. The weak GFP fluorescence observed in the nucleus of BmN cells is thought to be the result of products working in the nucleus.

Expression patterns of BmYki during development

To investigate the expression profile of BmYki, mRNA levels of BmYki gene in different tissues and various developmental stages of B. mori were determined by qRT-PCR. The results showed that BmYki transcripts were ubiquitous but less abundant in B. mori (Fig 4). Comparatively, BmYki was expressed higher in head, trachea, testis, ovary, and was particularly high in
Fig 2. Alignment amino acid sequences of BmYki of three B. mori strains. Identical amino acid residues among Dazao, Nistari and LH strains are shaded in black. The WW domains are underlined in red.

https://doi.org/10.1371/journal.pone.0182690.g002

Fig 3. Localization of BmYki-EGFP fusion proteins in BmN cells. The coding sequence of the BmYki with the stop codon deleted was fused to EGFP and transiently transfected into the BmN cells. Subcellular localization of the expressed BmYki-EGFP fusion proteins was observed by fluorescence microscopy.

https://doi.org/10.1371/journal.pone.0182690.g003
Fig 4. Expression profiles of BmYki in B. mori. (A) mRNA levels of BmYki in different tissues of Dazao strain. HD (head); EP (epidermis); FB (fat body); TR (trachea); HA (hemocyte); MG (midgut); MT (malpighian tubule); TE (testis); OV (ovary); ASG (anterior silk gland); MSG (middle silk gland); PSG (posterior silk gland); SG (total silk gland). (B) mRNA levels of BmYki at different developmental stages of Dazao strain. 1L-1, 2L-1, 3L-1, and 4L-1 (day-1 of the first, second, third, and fourth larval instar); 5L-1, 5L-3, 5L-5, and 5L-7 (day-1, 3, 5, and 7 of the fifth instar); P-1 (day-1 of the pupal stage); MM-1 and FM-1 (day-1 of the male and female moth). Relative mRNA levels of BmYki against sw22934 are shown. Error bars represent mean ± SD of three samples.

https://doi.org/10.1371/journal.pone.0182690.g004

Fig 5. mRNA levels of Yki target genes in BmE cells overexpressing BmYki. Expression of B. mori genes homologous to known targets of Drosophila Yki. Relative mRNA levels are indicated as the ratios of mRNA levels between the target gene and sw22934. Error bars represent mean ± SD of three samples.

https://doi.org/10.1371/journal.pone.0182690.g005
both the middle and posterior silk glands, and at the fifth-instar day-3 larvae—a developmental stage considered to be the beginning of mass synthesis of silk proteins, which strongly suggesting the involvement of BmYki in the regulation of silk protein synthesis. Further study is required to elucidate the meaning of BmYki in silk glands.

Functional analysis of BmYki in BmE cells

To investigate whether the BmYki is involved in the regulation of organ growth-related biological processes, mRNA levels of *B. mori* genes homologous to known targets of *Drosophila* Yki, including cell growth-promoting genes Myc and Ras1, cell cycle progression genes E2F1 and cyclinE, cell apoptosis-related genes Diap1, Diap2, Caspase1 and Caspase9, and Hpo pathway components Expanded and Kibra, were determined by qRT-PCR. As shown in Fig 5 and S2 Fig, nine of these ten genes were upregulated in BmE cells overexpressing BmYki, among which six targets Myc, Ras1, Diap1, Diap2, Caspase1 and Kibra were remarkably upregulated, indicating that BmYki has the function of regulating downstream target genes associated with cell growth, proliferation, and apoptosis.

To further explore whether the BmYki is involved in silk protein synthesis, we examined the expression of genes responsible for synthesis of silk proteins, including fibroin protein-coding genes FibH, FibL and P25, sericin protein-coding genes Ser1, Ser2 and Ser3, and silk gland factors Sage, Dimm, SGF1, SGF2 and SGF3. The results showed that eight of eleven genes were significantly downregulated upon BmYki overexpression, while the other three genes were slightly upregulated (Fig 6), indicating that BmYki functions in the regulation of silk protein synthesis. We are now preparing to generate transgenic silkworms overexpressing BmYki.
specifically in the middle and posterior silk gland, to clarify the mechanism of BmYki in the regulation of silk protein synthesis.

Conclusions
In conclusion, we isolated the coding sequence of BmYki with a length of 1314 bp from B. mori. Expression of the BmYki gene was comparatively high in both the middle and posterior silk gland, and at the fifth-instar day-3 larval stage. Furthermore, we showed that BmYki-EGFP fusion proteins were localized mainly in the cytoplasm of BmN cells. Finally, we demonstrated that overexpression of BmYki in BmE cells remarkably promoted the expression of genes homologous to known targets of Drosophila Yki, and significantly downregulated the expression of silk protein synthesis-related genes. This study provides new insights into the expression and function of BmYki. It would be very interesting to further elucidate the mechanism of BmYki in the regulation of silk protein synthesis.

Supporting information
S1 Fig. Agarose gel electrophoresis of the RT-PCR amplified BmYki gene products. Lane M: DNA marker; Lanes 1~2: cDNA template of Dazao embryos; Lanes 3~4: cDNA template of LH embryos; Lanes 5~10: cDNA template of Nistari middle silk glands; Lanes 11~14: cDNA template of Nistari posterior silk glands. RT-PCR amplification was performed at least three replicates for each sample. The PCR products were detected on 1.2% agarose gel electrophoresis. Red arrows indicate the ~1300 and ~1100 bp fragments containing the putative BmYki gene. (TIF)

S2 Fig. Detection of overexpression of BmYki in BmE cells. BmE cells transfected with UASBmYki and A4G4 plasmids were harvested to prepare cDNA templates. mRNA levels of BmYki were measured by qRT-PCR. Relative mRNA levels are indicated as the ratios of mRNA levels between the BmYki and sw22934. Error bars represent mean ±SD of three samples. (TIF)

Acknowledgments
We thank Prof. Hongjuan Cui and Dr. Hai Hu for providing cultured cells and B. mori strains, respectively.

Author Contributions
Conceptualization: Hanfu Xu.
Data curation: Hanfu Xu.
Formal analysis: Wenhui Zeng, Riyuan Wang, Weidong Zuo, Hanfu Xu.
Funding acquisition: Hanfu Xu.
Investigation: Wenhui Zeng, Riyuan Wang, Tianyang Zhang, Yao Ou.
Project administration: Hanfu Xu.
Resources: Chunying Gong, Rongpeng Liu.
Supervision: Hanfu Xu.
Validation: Hanfu Xu.
Visualization: Wenhui Zeng, Riyuan Wang, Hanfu Xu.

Writing – original draft: Hanfu Xu.

Writing – review & editing: Hanfu Xu.

References

1. Tumaneng K, Russell RC, Guan KL. Organ size control by Hippo and TOR pathways. Curr Biol. 2012; 22(9):R368–379. https://doi.org/10.1016/j.cub.2012.03.003 PMID: 22575479

2. Pan D. Hippo signaling in organ size control. Genes Dev. 2007; 21(8):886–897. https://doi.org/10.1101/gad.1536007 PMID: 17437995

3. Forsthoefe DJ, Newmark PA. Emerging patterns in planarian regeneration. Curr Opin Genet Dev. 2009; 19(4):412–420. https://doi.org/10.1016/j.gde.2009.05.003 PMID: 19574035

4. Rink JC, Gurley KA, Elliott SA, Sánchez Alvarado A. Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science. 2009; 326(5958):1406–1410. https://doi.org/10.1126/science.1178712 PMID: 19933103

5. Yazawa S, Umesono Y, Hayashi T, Tarui H, Agata K. Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling. Proc Natl Acad Sci U S A. 2009; 106(52):22329–22334. https://doi.org/10.1073/pnas.0907464106 PMID: 20018728

6. Michelli CA, Blair SS. Dorsoventral lineage restriction in wing imaginal discs requires Notch. Nature. 1999; 401(6752):473–476. https://doi.org/10.1038/46779 PMID: 10519549

7. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000; 14(21):2712–2724. PMID: 11098888

8. Smith-Bolton RK, Worley MI, Kanda H, Hariharan IK. Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell. 2009; 16(6):797–809. https://doi.org/10.1016/j.devcel.2009.04.015 PMID: 19531351

9. Bosch M, Serras F, Martín-Blanco E, Baguñà J. JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs. Dev Biol. 2005; 280(1):73–86. https://doi.org/10.1016/j.ydbio.2005.01.002 PMID: 15766749

10. Grusche FA, Degoutin JL, Richardson HE, Harvey KF. The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol. 2011; 350(2):255–266. https://doi.org/10.1016/j.ydbio.2010.11.020 PMID: 21111277

11. Justice RW, Zitian O, Woods DF, Nell M, Bryant PJ. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995; 9(5):534–546. PMID: 7698644

12. Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development. 1995; 121(4):1053–1063. PMID: 7749261

13. Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev. 2013; 27(4):355–371. https://doi.org/10.1101/gad.210773.112 PMID: 23431053

14. Bando T, Mito T, Maeda Y, Nakamura T, Ito F, Watanabe T, Ohuchi H, Noji S. Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration. Development. 2009; 136(13):2235–2245. https://doi.org/10.1242/dev.035204 PMID: 19474149

15. Gotoh H, Hust JA, Miura T, Niimi T, Emlen DJ, Lavine LC. The Fat/Hippo signaling pathway links within-disc morphogen patterning to whole-animal signals during phenotypically plastic growth in insects. Dev Dyn. 2015; 244(9):1039–1045. https://doi.org/10.1002/dvdy.24296 PMID: 25997782

16. Elshaer N, Piaulachs MD. Crosstalk of EGFR signalling with Notch and Hippo pathways to regulate cell specification, migration and proliferation in cockroach panoptic ovaries. Biol Cell. 2015; 107(8):273–285. https://doi.org/10.1111/boc.20150003 PMID: 25907767

17. Hong AW, Meng Z, Guan KL. The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol. 2016; 13(6):324–337. https://doi.org/10.1038/nrgastro.2016.55 PMID: 27147489

18. Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila. Cell. 2016; 164(3):406–419. https://doi.org/10.1016/j.cell.2015.12.029 PMID: 26824654

19. Tapon N, Harvey KF, Bell DW, Wahner DC, Schiripo TA, Haber D, Hariharan IK. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell. 2002; 110(4):467–478. PMID: 12202036
20. Wu S, Huang J, Dong J, Pan D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 2003; 114(4):445–456. PMID: 12941273

21. Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell. 2003; 114(4):457–467. PMID: 12941274

22. Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbough M, Nikolaidis N, Ho LL, Li Y. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell. 2005; 120(5):675–685. https://doi.org/10.1016/j.cell.2004.12.036 PMID: 15766530

23. Staley BK, Irvine KD. Hippo signaling in Drosophila: recent advances and insights. Dev Dyn. 2012; 241(1):3–15. https://doi.org/10.1002/dvdy.22723 PMID: 22174083

24. Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell. 2005; 122(3):421–434. https://doi.org/10.1016/j.cell.2005.06.007 PMID: 16096061

25. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A. SCALLOPEd interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol. 2008; 18(6):435–441. https://doi.org/10.1016/j.cub.2008.02.034 PMID: 18313299

26. Oh H, Irvine KD. Cooperative regulation of growth by Yorkie and Mad through bantam. Dev Cell. 2011; 20(1):109–122. https://doi.org/10.1016/j.devcel.2010.12.002 PMID: 21238929

27. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007; 130(6):1120–1133. https://doi.org/10.1016/j.cell.2007.07.019 PMID: 17889654

28. Dong DJ, Jing YP, Liu W, Wang JX, Zhao XF. The Steroid Hormone 20-Hydroxyecdysone Up-regulates Ste-20 Family Serine/Threonine Kinase Hippo to Induce Programmed Cell Death. J Biol Chem. 2015; 290(41):24738–24746. https://doi.org/10.1074/jbc.M115.643783 PMID: 26272745

29. Wang D, Li XR, Dong DJ, Huang H, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone promotes the cytoplasmic localization of Yorkie to suppress cell proliferation and induce apoptosis. J Biol Chem. 2016; 291(41):21761–21770. https://doi.org/10.1074/jbc.M116.719856 PMID: 27551043

30. Thompson JD, Gibson TJ, Plewniaik F, Jeanmougin F, Higgins DG. The ClustalX windows interface: Xensible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997; 25(24):4876–4882. PMID: 9396791

31. Horn C, Wimmer EA. A versatile vector set for animal transgenesis. Dev Genes Evol. 2000; 210(12):630–637. PMID: 11151300

32. Wang GH, Xia QY, Cheng DJ, Duan J, Zhao P, Chen J, Zhu L. Reference genes identified in the silkworm Bombyx mori during metamorphosis based on oligonucleotide microarray and confirmed by qRT-PCR. Insect Sci. 2008; 15(5):405–413. https://doi.org/10.1111/j.1744-7917.2008.00227.x