Supporting Information

Boron-graphdiyne: superstretchable semiconductor with low thermal conductivity and ultrahigh capacity for Li, Na and Ca ions storage

Bohayra Mortazavi*1, Masoud Shahrokhi2, Xiaoying Zhuang3 and Timon Rabczuk4

1Institute of Structural Mechanics, Bauhaus-Universität Weimar, Marienstr. 15, D-99423 Weimar, Germany.
2Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, ES-43007 Tarragona, Spain.
3Institut für Kontinuumsmechanik, Gottfried Wilhelm Leibniz Universität Hannover, Appelstrasse 11, 30167 Hannover, Germany.
4College of Civil Engineering, Department of Geotechnical Engineering, Tongji University, Shanghai, China.

*E-mail: bohayra.mortazavi@gmail.com

1. Atomic structure of boron-graphdiyne unit-cell
2. Most stable adsorption sites for Li, Na, Mg and Ca atoms over B-graphdiyne.
1. Atomic structure of B-graphdiyne unit-cell

C12B2

	C	B
11.8467556014048103	0.0000000000000000	0.0000000000000000
5.9233778007024069	10.2595913032290600	0.0000000000000000
0.0000000000000000	20.0000000000000000	0.0000000000000000

	C	B
0.4070313359871207	0.1859316676351952	0.5000000000000000
0.4672120785149971	0.0655705418981327	0.5000000000000000
0.3333313296681197	0.6666641611622097	0.5000000000000000

Direct

0.4070313102567411	0.4070303586203110	0.5000000000000000	
0.4672113650511491	0.467211285712862	0.5000000000000000	
0.5327836106014843	0.5327839635983835	0.5000000000000000	
0.592963764429919	0.59296459585735	0.5000000000000000	
0.6666641611622097	0.6666642439564683	0.5000000000000000	
0.8140640368300751	0.8140642439564683	0.5000000000000000	
2. Most stable adsorption sites for Li, Na, Mg and Ca atoms over B-graphdiyne.

Table S1, Predicted most stable adsorption sites for the single Li, Na, Mg and Ca adatoms over the single-layer B-graphdiyne. Here, \(E_{ad} \), \(L_{x,y} \), Z and \(\Delta Q \) depict, respectively, the corresponding adsorption energy, distance between the closest \(x \) and \(y \) atoms, the out-of-plane movement of an adatom at the "S" adsorption site (shown in Fig. S1) and the charge transfer from a single adatom to the B-graphdiyne monolayer predicted by the Bader charge analysis.

Most stable adsorption sites	Li	Na	Mg	Ca
First	S site	S site	S site	S site
\(E_{ad} \)	-1.7 eV	-1.75 eV	0.65 eV	-1.22 eV
\(L_{B-Li} \)	2.453 Å, Z=0.0 Å	2.9 Å, Z=0.0 Å	2.5 Å, Z=1.38 Å	2.627 Å, Z=1 Å
\(\Delta Q \)	0.994	0.993	1.467	1.469
Second	1C top	B top	B top	C3-C3 bridge
\(E_{ad} \)	-1.22 eV	-1.34 eV	0.73 eV	-0.94 eV
\(L_{C3-C3} \)	2.054 Å	2.431 Å	2.388 Å	2.33 Å
\(\Delta Q \)	0.988	0.992	1.252	1.4
Third	B top	1C top	B top	
\(E_{ad} \)	-1.19 eV	-1.32 eV	-0.85 eV	
\(L_{B-Li} \)	2.106 Å	2.45 Å	2.343 Å	
\(\Delta Q \)	0.989	0.992	1.44	