Gas-Filled Intradural Cyst within the Cauda Equine

Hyung-Lea Cho, M.D., Sang-Ho Lee, M.D., Ph.D., Jin-Sung Kim, M.D.
Department of Neurosurgery, Wooridul Spine Hospital, Seoul, Korea

A case of radicular pain that resulted from a gas-filled intradural cyst in an 80-year-old male is described. Temporary improvement of radicular pain was observed after CT-guided aspiration. However, recurrent radicular pain led to surgical treatment. In this report, the authors document the radiologic and intraoperative features of a gas-filled intradural cyst that migrated into the nerve root, and propose an optimal treatment plan based on a review of the literature.

Key Words : Intradural ∙ Gas ∙ Cyst ∙ Treatment plan.

INTRODUCTION

There have been several reports of gas in the spinal canal, with or without disc material, causing nerve root compression. However, gas-filled intradural cysts are rare. Only 8 cases of gas-filled intradural cysts of the spine have been reported to date. Among these, two cases of gas-filled intradural and intraneural cysts have been reported. All of these cysts were due to intradural herniation of disc material and gas in the vacuum disc. In this report, we describe a case of severe radicular pain caused by a gas-filled intradural cyst within the cauda equine and illustrate the course of treatment.

CASE REPORT

History

An 80-year-old man presented with pain in both legs, which was dominant on the left side. The onset of symptoms had been gradual, starting one year earlier, and had no obvious cause. His symptoms had been aggravated for the 3 months prior to presentation. Although he had received various conservative treatments, the pain persisted.

Examination and procedure

Physical examination revealed radiating pain on the lateral aspect of the left leg and the anterolateral side of the right calf. In addition, the patient had motor weakness of the great toe and ankle dorsiflexion on the left side (respective grade 4). The straight-leg raising test was negative.

Radiographic examination of the lumbar spine showed diffuse degenerative changes and intervertebral disc space narrowing with vacuum phenomena at the L2-3 and L3-4 levels. A computed tomography (CT) scan revealed not only vacuum phenomena at the L2-3 and L3-4 levels but also intradural gas collection at the L2-3 level (Fig. 1A). Magnetic resonance (MR) image identified an intradural cystic lesion at the L2-3 level. There was very low signal intensity on both T1 and T2-weighted images, and an enhanced MR image showed a peripheral enhancement of the cyst (Fig. 1B).

In consideration of the patient’s age, a CT-guided aspiration of the gas-filled cyst was performed. The procedure was successful, and after the aspiration, only a scanty amount of air remained in

Fig. 1. A : Computed tomography scan reveals not only the vacuum phenomena at the L2-3 and L3-4 levels but also intradural gas collection at the L2-3 level. B : Enhanced magnetic resonance image shows a peripheral enhancement of the cyst (arrow).
the cyst (Fig. 2A, B). Approximately 90% of the patient's symptoms were relieved. Unfortunately, his symptoms recurred one month later, and the CT showed re-accumulation of gas in the intradural cyst (Fig. 2C).

Operation and postoperative course

After intraoperative discogram at the L2-3 disc space, the patient underwent open intradural surgery via the posterior approach at the L2-3 level. While performing the discography, the contrast medium flowed into the intradural cyst and partially filled the cyst (Fig. 3). Therefore, the authors could see the communication between the L2-3 disc space and the cyst. Following a hemilaminectomy from L2 to the cranial half of L3, the dura mater was incised dorsally, and within the dura, a gas-filled cyst that had migrated into the nerve root of the cauda equine was found. There was also communication with the L2-3 disc space via a fistula at the ventral dura mater and the nerve root of the cauda equine was bulging like a fully-inflated balloon (Fig. 4A, B). The authors incised the intraneural cyst of the cauda equine longitudinally and subtotally removed the cyst. Then, the fistula was filled with fibrin glue and sutured with non-absorbable thin nylon thread (Fig. 4C). Finally, the dorsal side of the dura was sutured and the wound was closed in the usual manner.

Pathological examination of the cyst showed degenerative cartilage with fibrosis and multifocal infiltration of chronic inflammatory cells with granulations (Fig. 5). Postoperatively, the patient's radicular pain resolved completely, although mild hypesthesia on the left lateral side of the thigh developed, this was tolerable and did not require medication. The patient has not experienced recurrent symptoms at the 14 month follow-up examination.

DISCUSSION

The causes of gas-filled intradural cysts include infection, tumor, and intradural puncture. However, as in this case, there is a possibility of gas-filled intradural cysts originating from the vacuum disc. Many cases of gas-filled intraspinal cysts due to disc herniation have already been reported and, to the best of our knowledge, 8 cases of gas-filled intradural cysts have been documented to date (Table 1). Among them, there has only been one report documenting two cases of gas-filled intradural and intraneural cysts.

In the present case, the patient was successfully treated with open intradural surgery, although the gas-filled cyst recurred after CT-guided aspiration. Moreover, we demonstrated a gas-filled intradural and intraneural cyst due to intradural herniation of the vacuum disc at the L2-3 level with discography, pathology, and intraoperative findings.

In the literature, some reports suggested that disc herniation...
could worsen the fistula between the cyst and vacuum disc, we did not initially perform the discography.

In the few reported cases of gas-containing cysts, some doctors performed intraoperative or percutaneous needle aspiration of the gas[14,16], but the majority recommended surgical removal of the gas-filled cyst[2,5,8,11]. We considered the patient’s advanced age and decided to perform CT-guided aspiration as the first line treatment. In this case, the patient improved after CT-guided aspiration. This phenomenon explained that the main etiology of the disease was not a herniated, resolving disc fragment but was gas accumulation. In terms of treatment of the disease, gas removal only would not be a sufficient method and it was apparent that cyst removal and obstruction of the fistula were also required.

CONCLUSION

To our knowledge, there have been no previous reports with direct proof of a fistula between the vacuum disc and the gas-filled intradural cyst migrating into the nerve root. In this report, we have identified that the main etiology of the gas-filled intradural cyst was a herniated, resolving disc fragment with gas accumulation. Surgical removal of the cyst and obstruction of the fistula provided a cure without the risk of recurrence.

Acknowledgements

This study was supported by a grant from the Wooridul Spine Hospital.

References

1. Anda S, Dale LG, Vassal J : Intradural disc herniation with vacuum phenomenon : CT diagnosis. Neuroradiology 29 : 407, 1987
2. Bossier V, Dietemann JL, Warter JM, Granel de Solignac M, Beaujeux R, Buchheit F : L5 radicular pain related to lumbar extradural gas-containing pseudocyst. Role of CT-guided aspiration. Neuroradiology 31 : 552-553, 1990
3. Demierre B, Ramadan A, Hauser H, Reverdin A, Rilliet B, Bernev J : Radicular compression due to lumbar intraspinal gas pseudocyst : case report. Neurosurgery 22 : 731-733, 1988
4. Dillon WP, Kasess LG, Knackstedt VE, Osborn AG : Computed tomography and differential diagnosis of the extruded lumbar disc. J Comput Assist Tomogr 7 : 969-975, 1983
5. Fandino J, Garcia J, Garcia-Abededo M : Radicular compression by gas in a spinal extra dural cyst. Report on two cases. Neurochirurgie 40 : 179-
11. Kudo Y, Nishijima Y, Mochida K, Sekido Y, Tachibana S: Gas-filled intradural cyst with migration into the nerve root of the cauda equine. J Neurosurg Spine 8: 482-486, 2008
12. Lee DY, Lee SH: L2 radicular compression caused by a foraminal extradural gas pseudocyst. J Korean Neurosurg Soc 47: 232-234, 2010
13. McCormick PC, Stein BM: Miscellaneous intradural pathology. Neurosurg Clin N Am 1: 687-699, 1990
14. Righini A, Lucchi S, Reganati P, Zavanone M, Bettinelli A: Percutaneous treatment of gas-containing lumbar disc herniation. Report of two cases. J Neurosurg 91: 133-136, 1999
15. Sei A, Minutamari M, Fujimoto T, Taniwaki T, Mizuta H: Gas-filled intradural cysts of the lumbar spine and the possible pathogenesis. Spine J 9: e6-e8, 2009
16. Yoshida H, Shinomiya K, Nakai O, Kurosawa Y, Yamaura I: Lumbar nerve root compression caused by lumbar intraspinal gas. Report of three cases. Spine 22: 348-351, 1997