BOHR RADIUS FOR CERTAIN SUBCLASSES OF CLOSE-TO-CONVEX ANALYTIC AND HARMONIC MAPPINGS

VASUDEVARAO ALLU AND HIMADRI HALDER

Abstract. We say that a class B of analytic functions f of the form $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in the unit disk $D := \{z \in \mathbb{C} : |z| < 1\}$ satisfies a Bohr phenomenon if for the largest radius $R_f < 1$, the following inequality
\[
\sum_{n=1}^{\infty} |a_n z^n| \leq d(f(0), \partial f(D))
\]
holds for $|z| = r \leq R_f$ and for all functions $f \in B$ in D. The largest radius R_f is called Bohr radius for the class B. In this article, we obtain Bohr radius for certain subclasses of close-to-convex analytic functions as well as close-to-convex harmonic mappings. We establish the Bohr inequality for certain analytic classes $S^*_\phi(\varphi), C_\phi(\varphi), C^*_\phi(\varphi), K_\phi(\varphi)$ and for harmonic class $M(\alpha, \beta)$. Using Bohr phenomenon for subordination classes [14, Lemma 1], we obtain some radius R_f such that Bohr phenomenon for these classes holds for $|z| = r \leq R_f$. Generally, in this case R_f need not be sharp, but we show that under some additional conditions on φ, the radius R_f becomes sharp bound. As a consequence of these results, we obtain some interesting corollaries on Bohr phenomenon for these classes.

1. Introduction and Preliminaries

The classical Bohr inequality says that if f is an analytic function in the unit disk $D := \{z \in \mathbb{C} : |z| < 1\}$ of the form
\[
f(z) = \sum_{n=0}^{\infty} a_n z^n
\]
and $|f(z)| < 1$ for all $z \in D$, then the majorant series
\[
M_f(r) := \sum_{n=0}^{\infty} |a_n| r^n \leq 1
\]
holds for $z \in D$ with $|z| = r \leq 1/3$ and the constant $1/3$, referred to as the Bohr radius, cannot be improved. The inequality (1.2) was introduced by Bohr [17] in 1914. Bohr proved that the inequality (1.2) holds for $|z| = r \leq 1/6$. Later, the value $1/6$ was sharpened to $1/3$ independently by Wiener, Riesz and Schur. Other proofs of this result can also be found in [28, 35, 36]. The idea of Bohr’s theorem has been extended to several complex variables and thus, a variety of results on

\[\text{File: Him-Vasu-P3-01-august-11-47-a-m.tex, printed: 2020-8-4, 1.02}\]

1991 Mathematics Subject Classification. Primary 30C45, 30C50, 30C80.

Key words and phrases. Starlike, convex, close-to-convex, quasi-convex functions, conjugate points, symmetric points; subordination, majorant series; Bohr radius.
Bohr’s inequality in higher dimension has been obtained. For Bohr radius and Bohr phenomenon, we suggest the reader to glance through the articles [5, 6, 12, 15, 16, 28] and the references therein.

The inequality (1.2) can also be written in the following form

\[(1.3)\]

\[\sum_{n=1}^{\infty} |a_n z^n| \leq 1 - |a_0| = d(f(0), \partial f(D))\]

for \(|z| = r \leq 1/3\), where \(d\) is the Euclidean distance. It is worth noting that the existence of the radius \(1/3\) in (1.3) is independent of the coefficients of the power series (1.1). Analytic functions of the form (1.1) with modulus less than 1 satisfying the inequality (1.3), are sometimes said to satisfy the classical Bohr phenomenon. Therefore we conclude that Bohr phenomenon occurs in the class of analytic self-maps of the unit disk \(D\). The notion of Bohr phenomenon has been extended to the class of analytic functions from \(D\) into a given domain \(D \subseteq \mathbb{C}\). Let \(G\) be the class of analytic functions of the form (1.1) which map \(D\) into a given domain \(D\) such that \(f(D) \subseteq D\). Suppose there exists the largest radius \(r_D > 0\) such that

\[(1.4)\]

\[\sum_{n=1}^{\infty} |a_n z^n| \leq d(f(0), \partial f(D)) \text{ in } |z| \leq r_D,\]

for all functions \(f \in G\). In this case, we say that \(G\) satisfies a Bohr phenomenon. In [7], it has been proved that the largest radius \(r_D\) for convex domain \(D\) coincides with the classical Bohr radius \(1/3\) while Abu-Muhanna [1] has obtained \(r_D = 3 - 2\sqrt{2}\) for any proper simply connected domain \(D\). For more intriguing aspects of Bohr phenomenon, we refer the reader to the articles (see [2, 3, 8, 9]) and references therein.

Let \(A\) denote the class of normalized analytic functions in \(D\) of the form

\[(1.5)\]

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n\]

and \(S\) be its standard subclass made up of normalized univalent (i.e. one-to-one) functions in \(D\). A domain \(\Omega \subseteq \mathbb{C}\) is said to be starlike with respect to a point \(z_0 \in \Omega\) if the linear segment joining \(z_0\) to every other point \(z \in \Omega\) lies entirely in \(\Omega\). A domain \(\Omega\) is said to be starlike domain if it is starlike with respect to \(z = 0\). The domain \(\Omega\) is said to be convex if it is starlike with respect to each of its points. A starlike (respectively convex) function is one which maps the unit disk \(D\) onto a starlike (respectively convex) domain. Let \(S^*\) (respectively \(C\)) be the subclass of \(S\) consisting of starlike (respectively convex) functions in \(D\). It is well-known that \(f \in S^*\) (\(C\) respectively) if, and only if, \(\text{Re} (zf'(z)/f(z)) > 0\) for \(z \in D\) \((\text{Re} (1 + zf''(z)/f'(z)) > 0\) for \(z \in D\) respectively). Let \(S^*(\alpha)\) and \(C(\alpha)\) be the subclasses of \(S\) consisting of functions starlike of order \(\alpha\) \((0 \leq \alpha < 1)\) and convex functions of order \(\alpha\) \((0 \leq \alpha < 1)\) respectively, with the characterizations: \(f \in S^*(\alpha)\) (respectively \(C(\alpha)\)) if, and only if, \(\text{Re} (zf'(z)/f(z)) > \alpha\) for \(z \in D\)
(Re \((1 + zf''(z)/f'(z)) > \alpha\) for \(z \in \mathbb{D}\) respectively). Clearly, \(f \in \mathcal{C}(\alpha)\) if, and only, if \(zf' \in \mathcal{S}_*^{*(\alpha)}\). Note that the classes \(\mathcal{S}_*^{*} := \mathcal{S}_0^{*}(0)\) and \(\mathcal{C} := \mathcal{C}(0)\) are the family of starlike and convex functions in \(\mathbb{D}\) respectively.

An analytic function \(f\) in \(\mathbb{D}\) is said to be subordinate to an analytic function \(g\) in \(\mathbb{D}\), denoted by \(f \prec g\) (sometimes written \(f(z) \prec g(z)\)), if \(f(z) = g(\omega(z))\) for \(z \in \mathbb{D}\), where \(\omega : \mathbb{D} \to \mathbb{D}\) is the analytic function such that \(\omega(0) = 0\) and \(|\omega(z)| < 1\) in \(\mathbb{D}\). In particular, when \(g\) is univalent in \(\mathbb{D}\), then \(f \prec g\) if, and only if, \(f(0) = g(0)\) and \(f(\mathbb{D}) \subseteq g(\mathbb{D})\). Let \(\phi : \mathbb{D} \to \mathbb{C}\), called Ma-Minda function which is analytic and univalent in \(\mathbb{D}\) such that \(\phi(\mathbb{D})\) has positive real part, symmetric with respect to the real axis, starlike with respect to \(\phi(0) = 1\) and \(\phi'(0) > 0\). Such Ma-Minda functions have the Taylor series expansion of the form \(\phi(z) = 1 + \sum_{n=1}^{\infty} B_n z^n\) \((B_1 > 0)\).

For such \(\phi\), Ma-Minda \cite{27} considered the more general classes \(\mathcal{S}_*^{*}(\phi)\) and \(\mathcal{C}(\phi)\), called Ma-Minda type starlike and Ma-Minda type convex classes associated with \(\phi\) respectively, where \(\mathcal{S}_*^{*}(\phi)\) and \(\mathcal{C}(\phi)\) are the subclasses of functions in \(\mathcal{S}\) with the following characterization:

\[
\frac{zf'(z)}{f(z)} \prec \phi(z) \quad \text{and} \quad 1 + \frac{zf''(z)}{f'(z)} \prec \phi(z)
\]

respectively. Clearly, \(f \in \mathcal{C}(\phi)\) if, and only if, \(zf' \in \mathcal{S}_*^{*}(\phi)\). It is important to note that for every such \(\phi\) described in above, \(\mathcal{S}_*^{*}(\phi)\) and \(\mathcal{C}(\phi)\) are always subclasses of the classes \(\mathcal{S}_*^{*}\) and \(\mathcal{C}\) respectively by taking \(\phi(z) = (1 + z)/(1 - z)\). For various \(\phi\), the classes \(\mathcal{S}_*^{*}(\phi)\) and \(\mathcal{C}(\phi)\) yield various important subclasses of starlike and convex functions, respectively. When \(\phi(z) = (1 + (1 - 2\alpha))/(1 - z)\), we obtain the classes \(\mathcal{S}_*^{*}(\alpha)\) and \(\mathcal{C}(\alpha)\). By taking \(\phi(z) = (1 + Az)/(1 + Bz)\), \(\mathcal{S}_*^{*}(\phi)\) and \(\mathcal{C}(\phi)\) reduce to the Janowski starlike class \(\mathcal{S}_*[A, B]\) and Janowski convex class \(\mathcal{C}[A, B]\) respectively. By taking \(\phi(z) = ((1 + z)/(1 - z))^{\alpha}\) for \(0 < \alpha \leq 1\), we obtain the classes of strongly convex and strongly starlike functions of order \(\alpha\). The extremal functions \(k\) and \(h\) respectively for the classes \(\mathcal{C}(\alpha)\) and \(\mathcal{S}_*^{*}(\alpha)\) as follows:

\[
1 + \frac{zk''(z)}{k'(z)} = \phi(z) \quad \text{and} \quad \frac{zh'(z)}{h(z)} = \phi(z)
\]

with the normalizations \(k(0) = k'(0) - 1 = 0\) and \(h(0) = h'(0) - 1 = 0\). Obviously the functions \(k\) and \(h\) belong to the classes \(\mathcal{C}(\alpha)\) and \(\mathcal{S}_*^{*}(\alpha)\) and play the role of Koebe functions in the respective classes. Ma and Minda \cite{27} have obtained the following subordination theorems and growth estimates for the classes \(\mathcal{S}_*^{*}(\phi)\) and \(\mathcal{C}(\phi)\).

Lemma 1.7. \cite{27} Let \(f \in \mathcal{S}_*^{*}(\phi)\). Then \(zf'(z)/f(z) \prec zh'(z)/h(z)\) and \(f(z)/z \prec h(z)/z\).

Lemma 1.8. \cite{27} Assume \(f \in \mathcal{S}_*^{*}(\phi)\) and \(|z| = r < 1\). Then

\[
-h(-r) \leq |f(z)| \leq h(r).
\]

Equality holds for some \(z \neq 0\) if, and only, if \(f\) is a rotation of \(h\).

Lemma 1.10. \cite{27} Let \(f \in \mathcal{C}(\phi)\). Then \(zf''(z)/f'(z) \prec zk''(z)/k'(z)\) and \(f'(z) \prec k'(z)\).
Lemma 1.11. [27] Assume \(f \in \mathcal{C}(\phi) \) and \(|z| = r < 1 \). Then
\[
- k(-r) \leq |f(z)| \leq k(r).
\]
Equality holds for some \(z \neq 0 \) if, and only, if \(f \) is a rotation of \(k \).

Ma-Minda functions \(\phi \) have been considered with the condition \(\phi'(0) > 0 \). Motivated by this, recently, Kumar and Banga [25] have introduced the function \(\Phi \), called non-Ma-Minda function, with the condition \(\Phi'(0) < 0 \) and the other conditions are same as that of \(\phi \). Note that \(\Phi \) is obtained from \(\phi \) by a rotation, namely, \(z \) by \(-z\). By going a similar manner as the definition of \(S^*(\phi) \) and \(C(\phi) \) [27], Kumar and Banga have considered the classes \(S^*(\Phi) \) and \(C(\Phi) \) and also studied the growth estimates and some other properties of these classes.

Let \(\mathcal{K} \) and \(\mathcal{C}^* \) respectively denote the classes of close-to-convex and quasi-convex functions in \(\mathbb{D} \) which are defined as:
\[
\mathcal{K} = \left\{ f : f \in \mathcal{A}, g \in \mathcal{S}^*, \quad \text{and} \quad \text{Re} \left(\frac{zf'(z)}{g(z)} \right) > 0, \quad z \in \mathbb{D} \right\}
\]
and
\[
\mathcal{C}^* = \left\{ f : f \in \mathcal{A}, g \in \mathcal{C}, \quad \text{and} \quad \text{Re} \left(\frac{(zf'(z))'}{g'(z)} \right) > 0, \quad z \in \mathbb{D} \right\}.
\]
In 1959, Sakaguchi [24] introduced the subclass \(S^*_s \) of functions starlike with respect to symmetric points, which consists of functions \(f \in \mathcal{S} \) satisfying the condition
\[
\text{Re} \left(\frac{zf'(z)}{f(z) - f(-z)} \right) > 0
\]
for \(z \in \mathbb{D} \). Motivated by \(S^*_s \), Wang et.al. [38] have considered \(\mathcal{C}_s \), i.e. a function \(f \in \mathcal{C}_s \) if \(f \) satisfies the following inequality
\[
\text{Re} \left(\frac{(zf'(z))'}{(f(z) - f(-z))'} \right) > 0, \quad \text{for} \quad z \in \mathbb{D}
\]
A function \(f \in \mathcal{A} \) is starlike with respect to conjugate points and convex with respect to conjugate points in \(\mathbb{D} \) if \(f \) satisfies the conditions
\[
\text{Re} \left(\frac{zf'(z)}{f(z) + f(\bar{z})} \right) > 0, \quad \text{and} \quad \text{Re} \left(\frac{(zf'(z))'}{(f(z) + f(\bar{z}))'} \right) > 0, \quad z \in \mathbb{D}
\]
respectively. A function \(f \in \mathcal{A} \) is starlike with respect to symmetric conjugate points in \(\mathbb{D} \) if it satisfies the inequality
\[
\text{Re} \left(\frac{zf'(z)}{f(z) - f(\bar{z})} \right) > 0, \quad z \in \mathbb{D}.
\]
In more general, Ravichandran [30] has defined the classes \(S^*_s(\phi) \) and \(\mathcal{C}_s(\phi) \).
Definition 1.1. [30] A function \(f \in \mathcal{A} \) is in the class \(\mathcal{S}_s^*(\phi) \) if
\[
\frac{2zf'(z)}{f(z) - f(-z)} < \phi(z), \quad z \in \mathbb{D}
\]
and is in the class \(\mathcal{C}_s(\phi) \) if
\[
\frac{2(zf'(z))'}{f'(z) + f'(-z)} < \phi(z), \quad z \in \mathbb{D}.
\]

Similarly, let \(\mathcal{S}_{sc}^*(\phi) \) and \(\mathcal{S}_{sc}^*(\phi) \) be the corresponding classes of starlike functions with respect to conjugate points and symmetric conjugate points respectively. Let \(\mathcal{C}_s(\phi) \) and \(\mathcal{C}_{sc}(\phi) \) be the corresponding classes of convex functions with respect to conjugate points and symmetric conjugate points respectively. The following lemmas are required to prove some of our results.

Lemma 1.13. [30] Let \(\min_{|z|=r} |\phi(z)| = \phi(-r), \max_{|z|=r} |\phi(z)| = \phi(r), |z| = r \). If \(f \in \mathcal{C}_s(\phi) \), then
\[
\frac{1}{r} \int_0^r \phi(-t)[k'(-t^2)]^{1/2} dt \leq |f'(z)| \leq \frac{1}{r} \int_0^r \phi(t)[k'(t^2)]^{1/2} dt.
\]

From [38], for \(f \in \mathcal{C}_s(\phi) \), we have
\[
\int_0^r \frac{1}{s} \int_0^s \phi(-t)[k'(-t^2)]^{1/2} dt ds \leq |f(z)| \leq \int_0^r \frac{1}{s} \int_0^s \phi(t)[k'(t^2)]^{1/2} dt ds
\]
and the results are sharp for the function
\[
f(z) = \int_0^z \frac{1}{\xi} \int_0^\xi \phi(-\eta)[k'(-\eta^2)]^{1/2} d\eta d\xi \in \mathcal{C}_s(\phi),
\]

since it has real coefficients and is in \(\mathcal{C}(\phi) \).

Lemma 1.16. [21] Let \(f(z) = z + a_{l+1}z^{l+1} + \cdots \in \mathcal{C}(\phi) \), then we have
\[
[k'(-r^2)]^{1/2} \leq |f'(z)| \leq [k'(r^2)]^{1/2}.
\]

In particular for \(l = 2 \) we can obtain the bounds of \(|f'(z)| \) for odd convex functions. From Lemma 1.16 the following can be easily obtained for \(l = 2 \)
\[
\int_0^r [k'(-t^2)]^{1/2} dt \leq |f(z)| \leq \int_0^r [k'(t^2)]^{1/2} dt.
\]
The result is sharp for the function \(K(z) := \int_0^z [k'(\xi^2)]^{1/2} d\xi \). It is easy to see that \(K \) is odd convex function belongs to \(\mathcal{C}(\phi) \). From [21], the function \(H(z) := [h(z^2)]^{1/2} \) is a Koebe type function for the odd starlike class \(\mathcal{S}_s^*(\phi) \), where the function \(K \) defined by
\[
zK'(z) = H(z),
\]
is a Koebe type function for odd convex class in \(\mathcal{C}(\phi) \).
Lemma 1.18. [20] Let \(\min_{|z|=r} |\phi(z)| = \phi(-r) \), \(\max_{|z|=r} |\phi(z)| = \phi(r) \), \(|z| = r \). If \(f \in S^*_c(\phi) \), then

(i) \(h'(-r) \leq |f'(z)| \leq h'(r) \)
(ii) \(-h(-r) \leq |f(z)| \leq h(r) \)
(iii) \(f(D) \supseteq \{ w : |w| \leq h(-1) \} \).

The results are sharp.

Lemma 1.19. [20] Let \(\min_{|z|=r} |\phi(z)| = \phi(-r) \), \(\max_{|z|=r} |\phi(z)| = \phi(r) \), \(|z| = r \). If \(f \in C_c(\phi) \), then

(i) \(k'(-r) \leq |f'(z)| \leq k'(r) \)
(ii) \(-k(-r) \leq |f(z)| \leq k(r) \)
(iii) \(f(D) \supseteq \{ w : |w| \leq k(-1) \} \).

The results are sharp.

Motivated by the class \(S^*_c \), Gao and Zhou [20] have studied the class \(K_s \) of close-to-convex univalent functions, where \(K_s \) is the class of all functions \(f \in S \) satisfying the condition

\[
\text{Re} \left(\frac{z^2f'(z)}{g(z)g(-z)} \right) < 0, \quad z \in \mathbb{D}.
\]

A more general class \(K_s(\phi) \) has been studied extensively by Cho et al. [19] and Wang et al. [37]. For the brevity, we write the definition.

Definition 1.2. [37] For a function \(\phi \) with positive real part, the class \(K_s(\phi) \) consists of functions \(f \in A \) satisfying

\[
-\frac{z^2f'(z)}{g(z)g(-z)} < \phi(z) \quad (z \in \mathbb{D})
\]

for some function \(g \in S^*(1/2) \).

In particular, for \(\phi(z) = (1 + (1 - 2\gamma)z)/(1 - z) \) with \(0 \leq \gamma < 1 \), the class \(K_s(\phi) \) reduces to \(K_s(\gamma) \) which was recently investigated by Kowalczyk and Les-Bomba [29]. When \(\gamma = 0 \), we can obtain \(K_s \), the subclass of close-to-convex functions which has been defined by Gao and Zhou [20]. When \(\phi(z) = (1 + \beta z)/(1 - \alpha \beta z) \), where \(0 \leq \alpha \leq 1 \) and \(0 < \beta \leq 1 \), the class \(K_s(\phi) \) reduces to \(K_s(\alpha, \beta) \) defined in [37]. Now let \(q(z) = \sum_{n=1}^{\infty} q_n z^n \) be analytic in \(\mathbb{D} \). Then for fixed \(f \in K_s(\phi) \), we define

\[
S^K_f(\phi) := \left\{ q(z) = \sum_{n=1}^{\infty} q_n z^n : q < f \right\}
\]

The distortion and growth theorems for the class \(K_s(\phi) \) have been obtained in [19]. Let \(\phi \) be a Ma-Minda function.

Lemma 1.21. [19] Let \(\min_{|z|=r} |\phi(z)| = \phi(-r) \), \(\max_{|z|=r} |\phi(z)| = \phi(r) \), \(|z| = r \). If \(f \in K_s(\phi) \), then the following sharp inequalities hold:

(i) \(\frac{\phi(-r)}{1 + r^2} \leq |f'(z)| \leq \frac{\phi(r)}{1 - r^2} \) \((|z| = r < 1) \)
(ii) \(\int_0^r \frac{\phi(t)}{1 + t^2} \, dt \leq |f(z)| \leq \int_0^r \frac{\phi(t)}{1 - t^2} \, dt \) \((|z| = r < 1) \).
Let \(\mathcal{H} \) be the class of all complex-valued harmonic functions \(f = h + \overline{g} \) defined on \(\mathbb{D} \) normalized by the conditions \(h(0) = h'(0) - 1 = 0 \) and \(g(0) = 0 \) of the form

\[
(1.22) \quad f(z) = h(z) + \overline{g(z)} = z + \sum_{n=2}^{\infty} a_n z^n + \sum_{n=2}^{\infty} b_n z^n
\]

and \(S_{\mathcal{H}} \) be the subclass of sense-preserving harmonic mappings of the form (1.22) in \(\mathbb{D} \). A harmonic mappings in \(\mathbb{D} \) is sense-preserving if, and only, if \(|h'(z)| > |g'(z)| \) for all \(z \in \mathbb{D} \). Set \(S^0_{\mathcal{H}} = S_{\mathcal{H}} \cap \mathcal{H} \). In 2016, Sun et al. defined the class \(\mathcal{M}(\alpha, \beta) \) of close-to-convex harmonic mappings.

Definition 1.3. For \(\alpha \in \mathbb{C} \) with \(|\alpha| \leq 1 \) and \(-1/2 \leq \beta < 1 \), let \(\mathcal{M}(\alpha, \beta) \) denote the class of harmonic mappings \(f \) of the form (1.22), with \(h'(0) \neq 0 \), which satisfies

\[
g'(z) = \alpha z h'(z) \quad \text{and} \quad \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \beta.
\]

For \(\alpha = 1 \) and \(\beta = -1/2 \), \(\mathcal{M}(\alpha, \beta) \) reduces to \(\mathcal{M}(1, -1/2) \), which has been studied extensively by Bshouty [18] and references therein. The class \(\mathcal{M}(1, -1/2) \) with \(|\alpha| = 1 \), has been extended to \(\mathcal{M}(\alpha, -1/2) \) in [13]. It is worth to point out that when the co-analytic part \(g \equiv 0 \), then \(\mathcal{M}(\alpha, \beta) \) coincides with the well-known analytic convex class \(\mathcal{C}(\beta) \). Coefficient bounds and growth theorem for the class \(\mathcal{M}(\alpha, \beta) \) have also been obtained in [26].

Lemma 1.23. [26] Let \(f \in \mathcal{M}(\alpha, \beta) \) be of the form (1.22). Then

(i) \(|a_n| \leq \frac{1}{n!} \prod_{j=0}^{n} (j - 2\beta) \quad (n=2, 3 \cdots) \),

(ii) \(|b_2| = \frac{\alpha}{2} \) and \(|b_n| \leq \frac{(n-1)|\alpha|}{n!} \prod_{j=0}^{n} (j - 2\beta) \quad (n=3, 4 \cdots) \)

Moreover these bounds are sharp with the extremal functions

\[
f_{\alpha, \beta}(z) = \int_{0}^{z} \frac{dt}{(1 - \gamma t)^{2-2\beta}} + \int_{0}^{z} \frac{\alpha dt}{(1 - \gamma t)^{2-2\beta}} \quad (|\gamma| = 1; \quad z \in \mathbb{D}).
\]

Lemma 1.25. [26] Let \(f \in \mathcal{M}(\alpha, \beta) \) with \(0 \leq \beta < 1 \). Then \(f \) satisfies the following inequalities

\[
L(r, \alpha, \beta) \leq |f(z)| \leq R(r, \alpha, \beta),
\]

where

\[
L(r, \alpha, \beta) = \begin{cases}
\frac{(1 + |\alpha|)r}{1 + r} - |\alpha| \log(1 + r), & \beta = 0 \\
-|\alpha| r + (1 + |\alpha|) \log(1 + r), & \beta = 1/2 \\
- (|\alpha| + 2\beta)(1 + r) + (1 + r)^{2\beta} (|\alpha| + 2\beta - (2\beta - 1)|\alpha|r), & \beta \neq 0, 1/2 \\
2\beta(2\beta - 1)(1 + r) & \end{cases}
\]

\[
R(r, \alpha, \beta) = \begin{cases}
\frac{|\alpha| r}{1 + r}, & \beta = 0 \\
|\alpha| r + (1 + |\alpha|) \log(1 + r), & \beta = 1/2 \\
(\frac{|\alpha| + 2\beta}{2\beta(2\beta - 1)}(1 + r)^{2\beta} (|\alpha| + 2\beta - (2\beta - 1)|\alpha|r), & \beta \neq 0, 1/2
\end{cases}
\]
and
\[R(r, \alpha, \beta) = \begin{cases}
\frac{(1 + |\alpha|)r}{1 - r} + |\alpha|\log(1 - r), & \beta = 0 \\
-|\alpha|r - (1 + |\alpha|)\log(1 - r), & \beta = 1/2 \\
(\alpha + 2\beta)(1 - r) - (1 - r)^{2\beta}(|\alpha| + 2\beta + (2\beta - 1)|\alpha|r) & \beta \neq 0, 1/2.
\end{cases} \]

All these bounds are sharp, the extremal function is \(f_{\alpha, \beta} \) or its rotations, where
\[
f_{\alpha, \beta}(z) = \begin{cases}
\frac{1}{1 - z} + \frac{\alpha(1 - z)}{1 - z} + \log(1 - z), & \beta = 0 \\
-\log(1 - z) - \frac{\alpha(z + \log(1 - z))}{1 - z}, & \beta = 1/2 \\
\frac{1 - (1 - z)^{2\beta - 1}}{2\beta - 1} + \frac{\alpha}{2\beta} [1 - (1 - z)^{2\beta - 1} (1 + (2\beta - 1)z)], & \beta \neq 0, 1/2.
\end{cases}
\]

In 2018, Bhowmik and Das [14] proved an interesting result for subordination classes. Let \(f \) and \(g \) be two analytic functions in \(\mathbb{D} \) such that \(g < f \). Let
\[
g(z) = \sum_{n=0}^{\infty} b_n z^n.
\]

Lemma 1.28. [14] Let \(f \) and \(g \) be analytic in \(\mathbb{D} \) with Taylor expansions (1.1) and (1.27) respectively and \(g < f \), then
\[
\sum_{n=0}^{\infty} |b_n| r^n \leq \sum_{n=0}^{\infty} |a_n| r^n
\]
for \(|z| = r \leq 1/3 \).

2. Main Results

Before going to state our main theorems we prove an elementary result which is required to prove some of our results.

Lemma 2.1. (i) Let \(f \) and \(g \) be analytic in \(\mathbb{D} \) with series representation \(f(z) = \sum_{n=1}^{\infty} a_n z^n \) and (1.27) respectively such that
\[
f(z) = \int_0^r g(z) \, dt \quad \text{for} \quad |z| = r < 1.
\]
Here \(M_f(r) \) and \(M_g(r) \) are respectively the majorant series associated with \(f \) and \(g \).

(ii) Let \(f \) and \(g \) be analytic in \(\mathbb{D} \) with Taylor expansions (1.1) and (1.27) respectively and \(g < f \), then \(M_G(r) \leq M_F(r) \) for \(|z| = r \leq 1/3 \), where
\[
G(z) = \int_0^r g(z) \, dz \quad \text{and} \quad F(z) = \int_0^r f(z) \, dz \quad \text{for} \quad z \in \mathbb{D}.
\]

Now let \(\min_{|z| = r} |\phi(z)| = \phi(-r), \max_{|z| = r} |\phi(z)| = \phi(r), \) \(|z| = r \), and we assume these through the articles. Here \(\phi \) is the Ma-Minda function.
Theorem 2.2. Let $f \in \mathcal{K}_s(\phi)$ be of the form (1.5). Then

\begin{equation}
|z| + \sum_{n=2}^{\infty} |a_n||z|^n \leq d(f(0), \partial f(D))
\end{equation}

for $|z| = r \leq R_f$, where $R_f = \min\{1/3, r_f\}$ and r_f is the smallest positive root of $R(r) = L(1)$ in $(0, 1)$. Here $R(r) := \int_0^r (M_\phi(t))/(1 - t^2) \, dt$, $L(r) := \int_0^r (\phi(-t))/(1 + t^2) \, dt$ and M_ϕ is the associated majorant series of ϕ.

Remark 2.1. (i) Assume that the coefficients of $\phi(z) = 1 + \sum_{n=1}^{\infty} B_n z^n$ in the above theorem are all positive i.e. $B_n > 0$ for $n \geq 1$. Then the majorant series $M_\phi(r) = \phi(r)$, $0 < r < 1$. Then $R(r) := \int_0^r (\phi(t))/(1 - t^2) \, dt$.

(ii) [Bohr phenomenon for corresponding class $\mathcal{K}_s(\Phi)$ associated with non-Ma-Minda functions]

Let Φ be the corresponding non-Ma-Minda function of ϕ, which is actually a rotation by mere replacing z by $-z$. Therefore the image of the unit disk D under the functions Φ and ϕ are identical. Thus we conclude that $\mathcal{K}_s(\Phi) = \mathcal{K}_s(\phi)$ and the above Bohr phenomenon (2.3) holds for the class $\mathcal{K}_s(\Phi)$ for same R_f.

Some applications:

Lemma 2.4. [Bohr phenomenon for the corresponding subordination class]

Let $q(z) = \sum_{n=1}^{\infty} q_n z^n \in S^f_*(\phi)$ as defined in (1.20). Then

\begin{equation}
\sum_{n=1}^{\infty} |q_n||z|^n \leq d(f(0), \partial f(D))
\end{equation}

for $|z| = r \leq R_f$, where R_f is defined as in the Theorem 2.2.

Corollary 2.5. (i) [Bohr phenomenon for the class $\mathcal{K}_s(\gamma)$]

When $\phi(z) = (1 + (1 - 2\gamma) z)/(1 - z)$, the class $\mathcal{K}_s(\phi)$ reduces to $\mathcal{K}_s(\gamma)$. Then any $f \in \mathcal{K}_s(\gamma)$ with $0 \leq \gamma < 0.259056404$ satisfies the inequality (2.3) for $|z| = r \leq r_f$, where r_f is the root of the equation

\begin{equation}
\frac{\gamma}{2} \ln \left(\frac{1 + r}{1 - r} \right) + (1 - \gamma) \frac{r}{1 - r} = \frac{1 - \gamma}{2} \ln 2 + \frac{\gamma \pi}{4} \quad \text{in} \quad (0, 1/3).
\end{equation}

(ii) In particular, for $\gamma = 0$, $\mathcal{K}_s(\phi)$ reduces to \mathcal{K}_s. Each function $f \in \mathcal{K}_s$ satisfies the Bohr inequality (2.3) for $|z| = r \leq r_f$, where $r_f = \frac{\ln 2}{2 + \ln 2} \approx 0.257374415$.

Corollary 2.7. (i) When $\phi(z) = (1 + \beta z)/(1 - \alpha \beta z)$, where $0 \leq \alpha < 1$ and $0 < \beta \leq 1$, the class $\mathcal{K}_s(\phi)$ reduces to $\mathcal{K}_s(\alpha, \beta)$. Then $\mathcal{K}_s(\alpha, \beta)$ satisfies the Bohr phenomenon (2.3) for $|z| = r \leq r_f = \min\{1/3, r_f\}$, where r_f is the smallest root of the equation

\begin{equation}
\int_0^r \frac{1 + \beta t}{(1 - \alpha \beta t)(1 - t^2)} \, dt = \int_0^1 \frac{1 - \beta t}{(1 + \alpha \beta t)(1 + t^2)} \, dt \quad \text{in} \quad (0, 1).
\end{equation}

In particular, for $\alpha = \beta = 1$, then $\mathcal{K}_s(\alpha, \beta)$ coincides with \mathcal{K}_s and we can easily obtain r_f from (2.8).
Theorem 2.9. Let \(f \in S_c^*(\phi) \) be of the form (1.5). Then

\[
|z| + \sum_{n=2}^{\infty} |a_n||z|^n \leq d(f(0), \partial f(\mathbb{D}))
\]

for \(|z| = r \leq \min\{1/3, r_f\}\) and \(r_f\) is the smallest positive root of \(P(r) + h(-1) = 0 \) in \((0, 1)\), where \(P(r) := \int_0^r ((M_h(t)M_\phi(t))/t) \, dt \). Here \(M_h(t) \) and \(M_\phi(t) \) are respectively the majorant series of \(h \) and \(\phi \).

Remark 2.2. (i) Bohr radius for \(S_c^*(\phi) \) when \(\phi \) has positive coefficients

Let \(\phi(z) = 1 + \sum_{n=1}^{\infty} B_n z^n \). It is worth to point out that if we impose one further condition on \(\phi \) that the coefficients \(B_n \)'s are positive, then the majorant series \(M_\phi(r) = \phi(r) \). From the definition of \(h \) in (1.6), we have

\[
h(z) = z \exp \left(\int_0^z \frac{\phi(t) - 1}{t} \, dt \right) = \exp \left(\sum_{n=1}^{\infty} \frac{B_n}{n} z^n \right).
\]

Thus from (2.11), it is easy to see that \(M_h(r) = h(r) \). Then \(P(r) = \int_0^r ((h(t)\phi(t))/t) \, dt = h(r) \). Then each \(f \in S_c^*(\phi) \) satisfies the inequality (2.10) for \(|z| \leq \min\{1/3, r_f\}\), where \(r_f \) is the root of the equation \(h(r) + h(-1) = 0 \). In particular, when \(r_f \leq 1/3 \), the radius \(r_f \) is the best possible for the function \(f(z) = h(z) \in S_c^*(\phi) \), since it has real coefficients and is in \(S^*(\phi) \). Indeed, for \(|z| = r_f \), \(M_h(r_f) = h_{r_f} = -h(-1) = d(h(0), \partial h(\mathbb{D})) \), which shows that \(r_f \) is best possible.

(ii) Bohr phenomenon for corresponding class \(S_c^*(\Phi) \) associated with non-Ma-Minda functions

Let \(\Phi \) be the corresponding non-Ma-Minda function of \(\phi \). Since \(\Phi \) is actually obtained from \(\phi \) by a rotation \(z \) by \(-z\), the image of the unit disk \(\mathbb{D} \) under the functions \(\Phi \) and \(\phi \) are identical. Thus we conclude that \(S_c^*(\Phi) = S_c^*(\phi) \) and the Bohr radius for the class \(S_c^*(\Phi) \) is same as that of \(S_c^*(\phi) \).

Let \(S_{cf}^*(\phi) \) denote the class of analytic functions \(g \) subordinate to a fixed function \(f \in S_c^*(\phi) \).

Lemma 2.12. [Bohr phenomenon for the corresponding subordination class \(S_{cf}^*(\phi) \)]

Let \(g \in S_{cf}^*(\phi) \) be of the form \(g(z) = \sum_{n=1}^{\infty} g_n z^n \). Then

\[
\sum_{n=1}^{\infty} |g_n||z|^n \leq d(f(0), \partial f(\mathbb{D}))
\]

for \(|z| = r \leq \min\{1/3, r_f\}\), where \(r_f \) is as in the Theorem 2.9.

Similar results on the Bohr phenomenon of the class \(S_c^*(\phi) \) holds also for the class \(S_{cf}^*(\phi) \). Now from the above Remark 2.2 and Lemma 2.12 in particular, we obtain the following interesting corollaries.

Corollary 2.14. Let \(\phi(z) = (1 + sz)^2 \) with \(0.444981 < s \leq 1/\sqrt{2} \), then \(S_c^*(\phi) \) reduces to the class \(S_c^*((1 + sz)^2) \). Then the class \(S_c^*((1 + sz)^2) \) (and \(S_{cf}^*((1 + sz)^2) \)) satisfies the Bohr inequality (2.10) for \(|z| = r \leq r_f \), where \(0 < r_f < 1/3 \) and \(r_f \) is the
root of the equation

\[(2.15) \quad r \exp \left(s \left(2r + \frac{sr^2}{2} \right) \right) = \exp \left(s \left(-2 + \frac{s}{2} \right) \right).\]

The radius \(r_f \) is the best possible.

Table 1

\(s \)	\(r_f \)	\(s \)	\(r_f \)
0.1	0.71184	0.45	0.330472
0.15	0.619461	0.5	0.3040402
0.2	0.546344	0.55	0.28091732
0.25	0.486934	0.6	0.2605657
0.3	0.437693	0.65	0.24256
0.35	0.39624	0.7	0.226558
0.4	0.360903	1/\sqrt{2}	0.22443096

From Table 1, it is easy to see that when \(s < 0.444981 \), \(r_f > 1/3 \), hence Bohr phenomenon holds for \(r \leq 1/3 \) and when \(0.444981 < s \leq 1/\sqrt{2} \), \(r_f < 1/3 \), hence the radius \(r_f \) is best possible.

Corollary 2.16. For \(\phi(z) = \alpha + (1 - \alpha)\exp z \) with \(0 \leq \alpha < 0.05284 \), the class \(\mathcal{S}_c^b(\phi) \) satisfies the Bohr phenomenon \((2.10)\) for \(|z| = r \leq r_f\), where \(0 < r_f < 1/3 \). The radius \(r_f \) is the best possible.

Table 2

Existence of sharp radius \(r_f \) in \((0, 1/3)\) for different \(\alpha \in [0, 0.05284) \)

\(\alpha \)	\(h(1/3) \)	\(h(-1) \)	Sign of \(D_2(0) \)	Sign of \(D_2(1/3) \)
0.0	0.47935	0.4508594	–	+
0.01	0.477619	0.454465	–	+
0.02	0.476887697	0.458100015	–	+
0.03	0.47416191	0.4617638	–	+
0.04	0.47244238	0.465456	–	+
0.05	0.470729	0.469179	–	+
0.06	0.469022	0.47293	–	–
0.07	0.46732112	0.4767143	–	–

From Table 2, it is clear that when \(0 \leq \alpha < 0.05284 \), \(r_f \) lies in \((0, 1/3)\) and hence \(r_f \) is best possible. On the other hand for \(\alpha > 0.05284 \), \(r_f > 1/3 \) and corresponding Bohr phenomenon holds for \(r \leq 1/3 \).

Corollary 2.17. Let \(\phi(z) = ((1 + z)/(1 - z))^\alpha \) with \(0 < \alpha \leq 1 \). Also assume \(h(1/3) > -h(-1) \), where

\[h(r) = r \exp \left(\int_0^r \frac{(1+t)\alpha}{t} - 1 \, dt \right) \]
and
\[-h(-1) = \exp \left(\int_0^{-1} \frac{(1+t)^\alpha - 1}{t} \, dt \right) \].

Then the class $S_c^* (\phi)$ satisfies the Bohr phenomenon (2.10) for $|z| = r \leq r_f$, where r_f is the smallest root of the equation $D_3(r) := h(r) + h(-1) = 0$.

α	$h(1/3)$	$-h(-1)$	Sign of $D_3(0)$	Sign of $D_3(1/3)$
0.2	0.38335	0.65515	-	-
0.4	0.4453711	0.475453	-	-
0.45	0.4631699	0.443795	-	+
0.5	0.482023	0.415759	-	+
0.6	0.523214	0.368431	-	+
0.7	0.569663	0.330139	-	+
0.8	0.62222	0.298621	-	+
0.9	0.681928	0.272286	-	+

From the above table it is easy to see that for different values of α, the constant r_f sometimes not lies in $(0, 1/3)$. But when r_f lies in $(0, 1/3)$, then corresponding r_f is the best possible and Bohr phenomenon for the class $S_c^* (\phi)$ holds for $r \leq r_f$.

Corollary 2.18. Let $\phi(z) = (1 + (1 - 2\gamma)z)/(1 - z)$ with $0 \leq \gamma < 1/2$. Then each $f \in S_c^* ((1 + (1 - 2\gamma)z)/(1 - z))$ satisfies the inequality (2.10) for $|z| = r \leq r_f$, where $0 < r < 1/3$ and r_f is the root of the equation
\[(2.19) \quad r + 2r^{1/(2(1-\gamma))} - 1 = 0.\]

The radius r_f is the best possible.

Corollary 2.20. If $\phi(z) = (1 + Az)/(1 + Bz)$ with $-1 \leq B < A \leq 1$, then

(i) When $B = 0$, every function $f \in S_c^* ((1 + Az)/(1 + Bz))$ satisfies the inequality (2.10) for $|z| = r \leq r_f$, where $0 < r_f < 1/3$ and r_f is the unique root of the equation
\[(2.21) \quad re^{Ar} = e^{-A},\]

provided $A \geq (3/4) \ln 3$. The radius r_f is the best possible.

(ii) When $B \neq 0$, every function $f \in S_c^* ((1 + Az)/(1 + Bz))$ satisfies the inequality (2.10) for $|z| = r \leq r_f$, where $0 < r_f < 1/3$ and r_f is the unique root of the equation
\[(2.22) \quad r (1 + Br)^{\frac{A-B}{B}} = (1 - B)^{\frac{A-B}{B}},\]

provided $\frac{1}{3} (1 + B/3)^{\frac{A-B}{B}} \geq (1 - B)^{\frac{A-B}{B}}$. The radius r_f is the best possible.
Table 4
The radius \(r_f \) for different \(B \) when \(A = 1 \) and \(A = 1/2 \)

\(B \)	\(r_f \)	\(B \)	\(r_f \)
-0.1	0.261789	-0.1	0.432852
-0.2	0.247088	-0.2	0.395824
-0.3	0.23402	-0.3	0.364714
-0.4	0.222323	-0.4	0.338205
(A = 1) -0.5	0.21179	(A = 1/2) -0.5	0.31534
-0.6	0.202239	-0.6	0.295418
-0.7	0.193548	-0.7	0.277899
-0.8	0.185599	-0.8	0.262372
-0.9	0.1783	-0.9	0.248514
-1.0	0.17157	-1.0	0.236068

From the Table 4, we see that for different values of \(A \) and \(B \), sometimes radius \(r_f < 1/3 = 0.33333 \) and in that case \(r_f \) is the best possible. When \(r_f > 1/3 \), Bohr phenomenon for class \(S_C^* \) holds for \(r \leq 1/3 \).

Theorem 2.23. Let \(f \in C_c(\phi) \) be of the form (1.5). Then

\[
|z| + \sum_{n=2}^{\infty} |a_n||z|^n \leq d(f(0), \partial f(\Omega))
\]

for \(|z| = r \leq \min\{1/3, r_f\} \) and \(r_f \) is the smallest positive root of \(T(r) = -k(-1) \) in \((0, 1)\) and \(T(r) := \int_0^r \frac{1}{s} \int_0^s M_K(t)M_\phi(t) \, dt \, ds \).

The other results for this class, for particular \(\phi \), may be obtained easily and hence omitted.

Theorem 2.25. Let \(f \in C_s(\phi) \) be of the form (1.5). Then

\[
|z| + \sum_{n=2}^{\infty} |a_n||z|^n \leq d(f(0), \partial f(\Omega))
\]

for \(|z| = r \leq \min\{1/3, r_f\} \) and \(r_f \) is the smallest positive root of \(R_s(r) = L_s(1) \) in \((0, 1)\), where

\[
R_s(r) := \int_0^r \frac{1}{s} \int_0^s M_K(t)M_\phi(t) \, dt \, ds \quad \text{and} \quad L_s(r) := \int_0^r \frac{1}{s} \int_0^s [k(-t^2)]^{1/2} \phi(-t) \, dt \, ds
\]

and \(K'(r) = [k'(t^2)]^{1/2} \).

Remark 2.3. (i) Let \(\Phi \) be corresponding non-Ma-Minda class of \(\phi \). Then Bohr radius for the class \(C_s(\Phi) \) is same as that of \(C_s(\phi) \).
(ii) Let $S^*_{sf}(\phi)$ be the class of analytic functions g of the form $g(z) = \sum_{n=1}^{\infty} g_n z^n$ in D subordinate to a fixed function $f \in C_s(\Phi)$, then

$$\sum_{n=1}^{\infty} |g_n||z|^n \leq d(f(0), \partial f(D))$$

for $|z| = r \leq \min\{1/3, r_f\}$ and r_f is explained in 2.25.

Theorem 2.27. Let $f \in \mathcal{M}(\alpha, \beta)$ be of the form (1.22) with $|\alpha| \leq 1, 0 \leq \beta < 1$. Then

$$|z| + \sum_{n=2}^{\infty} (|a_n| + |b_n|)|z|^n \leq d(f(0), \partial f(D))$$

for $|z| = r \leq r_f$, where r_f is the smallest root of $R(r, \alpha, \beta) = L(1, \alpha, \beta)$. The radius r_f is sharp.

From the above theorem we obtain the following interesting results. Ali et.al. [9] obtained the Bohr radius for the class of convex functions of order β for $-1/2 \leq \beta < 1$. Here we showed that this result can be obtained for $0 \leq \beta < 1$ as an application of the Theorem 2.27.

Corollary 2.28 (Bohr radius for convex functions of order β). Let $f = h + \overline{g} \in \mathcal{M}(\alpha, \beta)$. If the co-analytic part $g \equiv 0$, then $\mathcal{M}(\alpha, \beta)$ reduces to the analytic class $\mathcal{C}(\beta)$. If $0 \leq \beta < 1$, then $\mathcal{C}(\beta)$ satisfies the Bohr phenomenon

$$|z| + \sum_{n=2}^{\infty} |a_n||z|^n \leq d(f(0), \partial f(D))$$

for $|z| = r \leq r_f$, where r_f is the unique root of $h_{\beta}(r) + h_{\beta}(-1) = 0$ in $(0, 1)$, where

$$h_{\beta}(z) = \begin{cases} \frac{1-(1-z)2^{\beta-1}}{2^{\beta-1}}, & \beta \neq 1/2 \\ -\log(1-z), & \beta = 1/2. \end{cases}$$

The radius r_f is sharp.

3. **Proof of the main results**

Proof of Lemma 2.1.

(i) The relation $f(z) = \int_0^x g(z) \, dz$ gives

$$\sum_{n=1}^{\infty} a_n z^n = \sum_{n=1}^{\infty} \frac{b_n-1}{n} z^n.$$

Therefore

$$M_f(r) = \sum_{n=1}^{\infty} \frac{|b_n-1|}{n} r^n = \int_0^r \sum_{n=0}^{\infty} |b_n| t^n \, dt = \int_0^r M_g(t) \, dt, \quad r < 1.$$
(ii) From Lemma 1.28, we have \(M_g(r) \leq M_f(r) \) for \(r \leq 1/3 \). Integrating this we obtain
\[
\int_0^r M_g(t) \, dt \leq \int_0^r M_f(t) \, dt \quad \text{for} \quad r \leq 1/3.
\]

Hence the result follows from the first part of this Lemma.

\[\square\]

Proof of Theorem 2.2 Let \(f \in K_s(\phi) \), then from Lemma 1.21, the Euclidean distance between \(f(0) \) and the boundary of \(f(D) \) is
\[
d(f(0), \partial f(D)) = \liminf_{|z| \to 1} |f(z) - f(0)| \geq \int_0^1 \frac{\phi(-t)}{1 + t^2} \, dt.
\]

By subordination principle, there exists analytic function \(\omega : D \to D \) such that
\[
-\frac{z^2 f'(z)}{g(z)g(-z)} = \phi(\omega(z)).
\]

Let \(G(z) := -\frac{g(z)g(-z)}{z} \). Clearly, \(G \) is odd starlike function in \(D \). Let \(G(z) = z + \sum_{n=2}^{\infty} g_{2n-1} z^{2n-1} \). It is well-known that \(|g_{2n-1}| \leq 1 \) for \(n \geq 2 \). Therefore
\[
M_G(r) \leq r + \sum_{n=2}^{\infty} r^{2n-1} = \frac{r}{1 - r^2}, \quad 0 < r < 1.
\]

From (3.2), we have \(zf'(z) = G(z)\phi(\omega(z)) \), which immediately follows that
\[
f(z) = \int_0^z \frac{G(\xi)\phi(\omega(\xi))}{\xi} \, d\xi.
\]

It is known that for two analytic functions \(f \) and \(g \) in \(D \), \(M_{fg}(r) \leq M_f(r)M_g(r) \), where \(M_f(r) \), \(M_g(r) \) and \(M_{fg}(r) \) are associated majorant series with \(f \), \(g \) and the product \(fg \). Then \(M_{G(\phi \circ \omega)}(r) \leq M_G(r)M_{\phi \circ \omega}(r) \). Since \(\phi \circ \omega \prec \phi \) then by Lemma 1.28, we have
\[
M_{\phi \circ \omega}(r) \leq M_\phi(r) \quad \text{for} \quad |z| = r \leq 1/3.
\]

Using Lemma 2.1 from (3.3), (3.4) and (3.5), we obtain
\[
M_f(r) \leq \int_0^r \frac{M_G(t)M_{\phi \circ \omega}(t)}{t} \, dt \leq \int_0^r \frac{M_\phi(t)}{1 - t^2} \, dt = R(r)
\]

for \(|z| = r \leq 1/3 \). Note that \(R(r) \) is less than or equals to \(L(1) \) whenever \(r \leq r_f \), where \(r_f \) is the smallest positive root of the equation \(R(r) = L(1) \) in \((0, 1) \). Let
\[H_1(r) = R(r) - L(1) \] and see \(H_1 \) is continuous in \(r \). Note that
\[
H_1(0) = L(1) = -\int_0^1 \frac{\phi(-t)}{1 + t^2} \, dt < 0
\]
and
\[
H_1(1) = R(1) - L(1) = \int_0^1 \frac{M_\phi(t)}{1 - t^2} \, dt - \int_0^1 \frac{\phi(-t)}{1 + t^2} \, dt > 0,
\]
since \(R(1) > L(1) \) and \(M_\phi(t) \geq |\phi(t)| \). Thus \(H_1 \) has a root in \((0, 1)\). Let \(r_f \) be the smallest root of \(H_1 \) in \((0, 1)\). Thus \(R(r) \leq L(1) \) for \(r \leq r_f \). Therefore using (3.1) and (3.6), we conclude that
\[
M_f(r) \leq \int_0^1 \frac{\phi(-t)}{1 + t^2} \, dt \leq d(f(0), \partial f(\mathbb{D}))
\]
for \(|z| = r \leq \min\{1/3, r_f\} = R_f \) \(\square \)

Proof of Lemma 2.4 From the definition of \(S^K_f(\phi) \), we have \(q \prec f \). Then by Lemma 1.28 we obtain \(M_q(r) \leq M_f(r) \) for \(|z| = r \leq 1/3\). Hence the result follows from the inequality (2.3) \(\square \)

Proof of Corollary 2.5

(i) Let \(f \in \mathcal{K}_s(\gamma) \). Then a little computation shows that
\[
R(r) = \frac{\gamma}{2} \ln \left(\frac{1 + r}{1 - r} \right) + (1 - \gamma) \frac{r}{1 - r}
\]
and
\[
L(r) = (1 - \gamma) \ln \left(\frac{1 + r}{\sqrt{1 + r^2}} \right) + \gamma \arctan r.
\]
See \(L(1) = \left(\frac{1 - \gamma}{2} \right) \ln 2 + \frac{\pi \gamma}{4} \). Here \(H_1(r) := R(r) - L(1) \). Then \(H_1 \) is continuous in \(r \). Note that \(H_1(0) < 0 \) and \(H_1(1/3) > 0 \) if \(0 \leq \gamma < 0.259056404 \). Thus \(H \) has a root in \((0, 1/3)\) and choose smallest root to be \(r_f \) in \((0, 1/3)\). Thus the inequality (2.3) holds for \(|z| = r \leq r_f \).

(ii) Putting \(\gamma = 0 \) in (2.6), we obtain \(r_f = \ln 2/(2 + \ln 2) \). \(\square \)

Proof of Theorem 2.9 Let \(f \in \mathcal{S}^*_c(\phi) \), then using the Lemma (1.18) we obtain the Euclidean distance between \(f(0) \) and the boundary of \(f(\mathbb{D}) \) is
\[
d(f(0), \partial f(\mathbb{D})) = \lim inf_{|z| \to 1} |f(z) - f(0)| \geq -h(-1).
\]
Since \(f \in S^*_c(\phi) \) and \(\phi \) is starlike and symmetric with respect to real-axis, it follows that \(g(z) := (f(z) + f(\overline{z}))/2 \) is in \(S^*(\phi) \). Since \(g \in S^*(\phi) \), from Lemma 1.7 we have \(g(z)/z < h(z)/z \). Therefore from Lemma 1.28 we obtain

\[
(3.8) \quad M_g(r) \leq M_h(r) \quad \text{for} \quad |z| = r \leq 1/3.
\]

From the definition of \(S^*_c(\phi) \), we have

\[
(3.9) \quad zf'(z) = g(z)\phi(\omega(z)),
\]

where \(\omega \) is analytic in \(\mathbb{D} \) and \(\omega(0) = 0, |\omega(z)| < 1 \) in \(\mathbb{D} \). Since \(\phi \circ \omega \prec \omega \), from Lemma 1.28

\[
(3.10) \quad M_{\phi \circ \omega}(r) \leq M_\phi(r) \quad \text{for} \quad |z| = r \leq 1/3.
\]

Simplification of (3.9) gives

\[
(3.11) \quad f(z) = \int_0^z g(\xi)\phi(\omega(\xi)) \frac{d\xi}{\xi}.
\]

Now, by making use of the Lemma 2.1, (3.8) and (3.10), from (3.11) we obtain

\[
(3.12) \quad |z| + \sum_{n=2}^{\infty} |a_n||z|^n = M_f(r)
\]

\[
\leq \int_0^r \frac{M_g(t)M_{\phi \circ \omega}(t)}{t} dt
\]

\[
\leq \int_0^r \frac{M_h(t)M_\phi(t)}{t} dt
\]

\[
= P(r)
\]

for \(|z| = r \leq 1/3 \). Note that \(P(r) \leq -h(-1) \), whenever \(r \leq r_f \), where \(r_f \) is the smallest positive root of \(P(r) = -h(-1) \) in \((0,1) \). Going by the similar line of argument as in the proof of the Theorem 2.2, the existence of the root \(r_f \) is ensured by the inequalities \(M_h(t) \geq |h(t)|, M_h(1) \geq |h(1)| \geq -h(-1) \) and \(M_h(0) < -h(-1) \). Thus, combining the inequalities (3.12) and (3.7) with the fact \(P(r) \leq -h(-1) \) for \(r \leq r_f \), we conclude that

\[
|z| + \sum_{n=2}^{\infty} |a_n||z|^n \leq d(f(0), \partial f(\mathbb{D}))
\]

for \(|z| = r \leq \min\{1/3, r_f\} \).

Proof of Lemma 2.12. From the definition of \(S^*_c(\phi) \), we have \(g \prec f \). Then by Lemma 1.28 we obtain \(M_g(r) \leq M_f(r) \) for \(|z| = r \leq 1/3 \). Hence the result follows from the inequality (2.10). \(\square \)
Proof of Corollary 2.14. Here the coefficients of $\phi(z) = (1 + sz)^2$ with $0 < s \leq 1/\sqrt{2}$ are all positive. Thus from the Remark 2.2, we obtain

$$P(r) = h(r) = r \exp \left(s \left(2r + \frac{sr^2}{2} \right) \right).$$

Let $D_1(r) = h(r) + h(-1)$. Clearly D is continuous in r. Observe that $D(0) < 0$ and

$$D_1 \left(\frac{1}{3} \right) = \frac{1}{3} \exp \left(s \left(\frac{s + 12}{18} \right) \right) - \exp \left(s \left(-2 + \frac{s}{2} \right) \right) > 0,$$

whenever $0.444981 < s \leq 1/\sqrt{2}$. Thus, D_1 has a real root in $(0, 1/3)$ and choose it to be r_f. Therefore from the Remark 2.2, the radius r_f is the best possible. □

Proof of Corollary 2.16. Let $\phi(z) = \alpha + (1 - \alpha)e^z$ then the coefficients of $\phi(z)$ are positive for $0 \leq \alpha < 1$. Consider $D_2(r) = h(r) + h(-1)$ where

$$h(r) = r \exp \left((1 - \alpha) \int_0^r \left(\frac{1 + e^t}{t} \right) dt \right).$$

Note that

$$h \left(\frac{1}{3} \right) = \frac{1}{3} \exp \left((1 - \alpha) \int_0^{1/3} \left(\frac{1 + e^t}{t} \right) dt \right) \approx \frac{1}{3} (1.43807)^{1-\alpha}$$

and

$$h(-1) = - \exp \left((1 - \alpha) \int_0^{-1} \left(\frac{1 + e^t}{t} \right) dt \right) \approx -(0.450859463)^{1-\alpha}.$$

A little computation using Mathematica shows that $D_2(1/3) = h(1/3) + h(-1) > 0$ if, and only if, $0 \leq \alpha < 0.05284$. Clearly, $D_2(0) = h(-1) < 0$. Thus D_2 has a root in $(0, 1)$ and choose it to be r_f. By Remark 2.2, r_f is the best possible. □

Proof of Corollary 2.17. Let $\phi(z) = ((1 + z)/(1 - z))^\alpha$ with $0 < \alpha \leq 1$. From [4], it is guaranted that the coefficients of ϕ are positive. Here

$$h(r) = r \exp \left(\int_0^r \left(\frac{1+t}{1-t} \right)^\alpha - 1 \ dt \right).$$

Then $D_3(r) := h(r) + h(-1)$ is continuous in r and $D_3(0) < 0$ and $D_3(1/3) = h(1/3) + h(-1) > 0$. Thus D_3 has a root in $(0, 1)$ and choose it to be r_f. Hence from Remark 2.2, r_f is the best possible. □
(3.14)\begin{equation}
f(z) = \int_{0}^{1} \int_{0}^{\xi} g'(\eta)\phi(\omega(\eta))\,d\eta\,d\xi.
\end{equation}

Since $g \in C(\phi)$, from Lemma 1.10 we have $g' \prec k'$ and hence by Lemma 1.28 we obtain
\begin{equation}
M_g(r) \leq M_{k'}(r) \quad \text{for} \quad r \leq 1/3.
\end{equation}
Using Lemma 2.1 from (3.14) and (3.15), we obtain

\[(3.16) \quad M_f(r) \leq \int_0^r \frac{1}{s} \int_0^s M_k'(t) M_\phi(t) \, dt \, ds = T(r) \quad \text{for} \quad r \leq 1/3.\]

From Lemma 1.19, the Euclidean distance between \(f(0)\) and the boundary of \(f(D)\) is

\[(3.17) \quad d(f(0), \partial f(D)) = \liminf_{|z| \to 1} |f(z) - f(0)| \geq -k(-1).\]

Note that \(T(r) \leq -k(-1)\), whenever \(r \leq r_f\), where \(r_f\) is the smallest positive root of \(T(r) = -k(-1)\) in \((0, 1)\). Going by the similar line of argument as in the proof of the Theorem 2.9, the existence of the root \(r_f\) is ensured by the inequalities \(M_k(r) \geq |k(r)|, M_k(1) \geq |k(1)| \geq -k(-1)\) and \(M_k(0) < -k(-1)\). Therefore from \((3.16)\) and \((3.17)\), we obtain

\[|z| + \sum_{n=0}^{\infty} |a_n||z|^n = M_f(r) \leq d(f(0), \partial f(D))\]

for \(|z| = r \leq \min\{1/3, r_f\}\). □

Proof of Theorem 2.25. Let \(f \in C_s(\phi)\), then it is evident that the Euclidean distance between \(f(0)\) and the boundary of \(f(D)\) is

\[(3.18) \quad d(f(0), \partial f(D)) = \liminf_{|z| \to 1} |f(z) - f(0)| \geq L_s(1).\]

Since \(f \in C_s(\phi)\) and \(\phi\) is starlike and symmetric with respect to real axis, then it follows that

\[(3.19) \quad g(z) := \frac{f(z) - f(-z)}{2} = z + \sum_{n=1}^{\infty} a_{2n+1} z^{2n+1} \in C(\phi).\]

Here \(g\) is odd convex function. Note that the function \(K(z) = \int_0^r [k'(t^2)]^{1/2} \, dt\) defined in (1.17) is odd function in \(C(\phi)\). By Lemma 1.10 we have \(g' \prec K'\). Therefore from 1.28, we obtain

\[(3.20) \quad M_{g'}(r) \leq M_{K'}(r) \quad \text{for} \quad |z| = r \leq 1/3.\]

Now from the definition of \(C_s(\phi)\), we have

\[(3.21) \quad (z f'(z))' = g'(z)\phi(\omega(z)).\]

Simplication of (3.21) gives

\[(3.22) \quad f(z) = \int_0^r \frac{1}{\xi} \int_0^\xi g'(\eta)\phi(\omega(\eta)) \, d\eta \, d\xi.\]
Bohr radius for certain subclasses of close-to-convex analytic and harmonic mappings

By making use of Lemmas 1.18 and 2.1 from (3.20) and (3.22), we obtain

\[
|z| + \sum_{n=2}^{\infty} |a_n| |z|^n = M_f(r) \leq \int_0^r \frac{1}{s} \int_0^s M_f(t) M_\phi(t), dt \, ds
\]

\[
\leq \int_0^r \frac{1}{s} \int_0^s M_K(t) M_\phi(t), dt \, ds
\]

\[
= R_s(r),
\]

for \(|z| = r \leq 1/3 \). Now \(R_s(r) \leq L_s(1) \) for \(r \leq r_f \), where \(r_f \) is the smallest root of \(R_s(r) = L_s(1) \) in \((0, 1)\). The existence of the root is ensured by the relation \(M_K(t) \geq |K'(t)|, R_s(1) \geq L_s(1) \) and \(R_s(0) \leq L_s(1) \) from growth inequality (1.14).

Let \(r_f \) be the smallest root. Using (3.23) and (3.18), we obtain

\[
|z| + \sum_{n=2}^{\infty} |a_n| |z|^n \leq d(f(0), \partial f(\mathbb{D})) \quad \text{for} \quad |z| = r \leq r_f.
\]

This completes the proof. \(\square \)

Proof of Theorem 2.27. From the Lemma 1.23, it is evident that the Euclidean distance between \(f(0) \) and the boundary of \(f(\mathbb{D}) \) is

\[
d(f(0), \partial f(\mathbb{D})) = \liminf_{|z| \to 1} |f(z) - f(0)| \geq L(1, \alpha, \beta).
\]

Note that \(r_f \) is the root of the equation \(R(r, \alpha, \beta) = L(1, \alpha, \beta) \) in \((0, 1)\). The existence of the root is ensured by the relation \(R(1, \alpha, \beta) > L(1, \alpha, \beta) \) from the growth inequality (1.26). Then for \(0 < r \leq r_f \), it is easily seen that \(R(r, \alpha, \beta) \leq L(1, \alpha, \beta) \).

From the Lemma 1.23 and (3.24), for \(|z| = r \leq r_f \), we obtain

\[
|z| + \sum_{n=2}^{\infty} (|a_n| + |b_n|)|z|^n \leq r_f + (|a_2| + |b_2|)r_f^2 + \sum_{n=3}^{\infty} (|a_n| + |b_n|)r_f^n
\]

\[
= R(r_f, \alpha, \beta) \leq L(1, \alpha, \beta) \leq d(f(0), \partial f(\mathbb{D})).
\]

To show the sharpness of the radius \(r_f \), we consider the function \(f = f_{\alpha, \beta} \), which is defined in Lemma 1.23 and clearly belongs to \(M(\alpha, \beta) \). Since the left side growth inequality in Lemma 1.25 holds for \(f = f_{\alpha, \beta} \) or its rotations, then \(d(f(0), \partial f(\mathbb{D})) = L(1, \alpha, \beta) \). Therefore the function \(f = f_{\alpha, \beta} \) for \(|z| = r_f \) gives

\[
|z| + \sum_{n=2}^{\infty} (|a_n| + |b_n|)|z|^n = r_f + (|a_2| + |b_2|)r_f^2 + \sum_{n=3}^{\infty} (|a_n| + |b_n|)r_f^n
\]

\[
= R(r_f, \alpha, \beta) = L(1, \alpha, \beta) = d(f(0), \partial f(\mathbb{D})),
\]

which shows that the radius \(r_f \) is the best possible. This completes the proof. \(\square \)

Acknowledgement: The first author thanks SERB-MATRICS and the second author thanks CSIR for their support.
References

[1] Y. Abu-Muhanna, Bohr’s phenomenon in subordination and bounded harmonic classes, *Complex Var. Elliptic Equ.* 55 (2010), 1071–1078.

[2] Y. Abu-Muhanna and R. M. Ali, Bohr’s phenomenon for analytic functions into the exterior of a compact convex body, *J. Math. Anal. Appl.* 379 (2011), 512–517.

[3] Y. Abu Muhanna and R. M. Ali, Bohr’s phenomenon for analytic functions and the hyperbolic metric, *Math. Nachr.* 286 (2013), 1059–1065.

[4] Y. Abu Muhanna, R. M. Ali, Z. C. Ng and S. F. M Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, *J. Math. Anal. Appl.* 420 (2014), 124–136.

[5] L. Aizenberg, Multidimensional analogues of Bohr’s theorem on power series, *Proc. Amer. Math. Soc.* 128 (2000), 1147–1155.

[6] L. Aizenberg, A. Aytuna and P. Djakov, Generalization of theorem on Bohr for bases in spaces of holomorphic functions of several complex variables, *J. Math. Anal. Appl.* 258 (2001), 429–447.

[7] L. Aizenberg, Generalization of results about the Bohr radius for power series, *Stud. Math.* 180 (2007), 161–168.

[8] R. M. Ali, R.W. Barnard and A. Yu. Solynin, A note on Bohr’s phenomenon for power series, *J. Math. Anal. Appl.* 449 (2017), 154-167.

[9] R. M. Ali, N. K. Jain and V. Ravichandran, Bohr radius for classes of analytic functions, *Results Math.* 74 (2019).

[10] S. A. Alkhaleefah, I. R. Kayumov and S. Ponnusamy, On the Bohr inequality with a fixed zero coefficient, *Proc. Amer. Math. Soc.* 147 (2019), 5263–5274.

[11] Vasudevarao Allu and Himadri Halder, Bhor phenomenon for certain subclasses of Harmonic Mappings, [arXiv:2006.11622](#), 2020.

[12] Vasudevarao Allu and Himadri Halder, Bohr radius for certain classes of starlike and convex univalent functions, [arXiv:2006.15299](#), 2020.

[13] SV Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univalent mappings and hypergeometric mappings, *Rocky Mountain J. Math.* 44 (2014) 753–777.

[14] B. Bhowmik and N. Das, Bohr phenomenon for subordinating families of certain univalent functions, *J. Math. Anal. Appl.* 462 (2018), 1087–1098.

[15] H.P. Boas and D. Khavinson, Bohr’s power series theorem in several variables, *Proc. Amer. Math. Soc.* 125 (1997), 2975–2979.

[16] H.P. Boas, Majorant Series, *J. Korean Math. Soc.* 37 (2000), 321–337.

[17] H. Bohr, A theorem concerning power series, *Proc. Lond. Math. Soc.* s2-13 (1914), 1–5.

[18] D. Bshouty and A. Lyzzaik, Close-to-convexity criteria for planar harmonic mappings, *Complex Anal. Oper. Theory* 5 (2011) 767–774.

[19] N. E. Cho, O. S. Kwon and V. Ravichandran, Coefficient, distortion and growth inequalities for certain close-to-convex functions, *J. Inequal. Appl.* 2011:100 (2011) 7pp.

[20] C. Gao and S. Zhou, On a class of analytic functions related to the starlike functions, *Kyungpook Math. J.* 45 (2005) 123–130.

[21] I. Graham and D. Varolin, Bloch constants in one and several variables, *Pacific J. Math.* 174 (1996) 347–357.

[22] I.R. Kayumov and S. Ponnusamy, Bohr’s inequalities for the analytic functions with lacunary series and harmonic functions, *J. Math. Anal. Appl.* 465 (2018), 857–871. *Mathematics and Computing*, 245–256, Commun. Comput. Inf. Sci., 834, Springer, Singapore, 2018.

[23] J. Kowalczyk and E. Les-Bomba, On a subclass of close-to-convex functions, *Appl. Math. Lett.* 23 (2010) 1147–1151.

[24] K. Sakaguchi, On a certain univalent mapping, *J. Math. Soc. Japan* 11 (1959) 72-75.

[25] S. Sivaprasad Kumar and S. Banga, On a special type of Non-Ma-Minda function, [arXiv:2006.02111v1](#), 2020.
Bohr radius for certain subclasses of close-to-convex analytic and harmonic mappings

[26] Y. Sun, Y-P Jiayang and A. Rasila, On a certain subclass of close-to-convex harmonic mappings, *Complex Var. Elliptic Equ.* **61** (2016) 1627-1643.

[27] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in *Proceedings of the Conference on Complex Analysis* (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge.

[28] Vern I. Paulsen, Gelu Popescu and Dinesh Singh, On Bohr’s inequality, *Proc. Lond. Math. Soc.* s3-85 (2002), 493–512.

[29] R. K. Raina and J. Sokol, Some properties related to a certain class of starlike functions, *C. R. Math. Acad. Sci. Paris* **353** (2015), 973–978.

[30] V. Ravichandran, Starlike and convex functions with respect to conjugate points, *Acta Math. Acad. Paedagog. Nyhazi.* **20** (2004) 31-37.

[31] M. S. Robertson, Univalent functions with respect to a boundary point, *J. Math. Anal. Appl.* **81** (1981), 327–345.

[32] F. Ronning, On starlike functions associated with parabolic regions, *Anna. Univ. Mariae Curie-Sklodowska Sect. A.* **45** (1991), 117–122.

[33] F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, *Proc. Amer. Math. Soc.* **118** (1993), 189–196.

[34] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with cardioid, *Afr. Mat.* **27** (2016), 923–939.

[35] S. Sidon, Über einen satz von Herrn Bohr, *Math. Zeit.* **26** (1927), 731-732.

[36] M. Tomic, Sur un theorem de H. Bohr, *Math. Scand.* **11** (1962), 103–106.

[37] Z. Wang, C. Gao and S. Yuan, On certain subclass of close-to-convex functions, *Acta Math Acad Paedagog. Nyhazi (N. S.)* **22** (2006) 171-177. (electronic)

[38] Z-G Wang, C-Y Gao and S-M Yuan, On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, *J. Math. Anal. Appl.* **322** (2006) 97–106.

Vasudevarao Allu, School of Basic Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, Odisha, India.

E-mail address: avrao@iitbbs.ac.in

Himadri Halder, School of Basic Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, Odisha, India.

E-mail address: hh11@iitbbs.ac.in