Multiple roles of ghrelin in breast cancer

Yiding Chen¹,², Xuke Han¹,², Lan Wang¹,², Qing Wen¹,², Liufu Li³, Lisha Sun¹,² and Qiu Chen¹,²

Abstract
Breast cancer is one of the most threatening malignant tumors in women worldwide; hence, investigators are continually performing novel research in this field. However, an accurate prediction of its prognosis and postoperative recovery remains difficult. The severity of breast cancer is patient-specific and affected by several health factors; thus, unknown mechanisms may affect its progression. This article analyzes existing literature on breast cancer, ranging from the discovery of ghrelin to its present use, and aims to provide a reference for future research into breast cancer mechanisms and treatment-plan improvement. Various parts of ghrelin have been associated with breast cancer by direct or indirect evidence. The ghrelin system may encompass the direction of expanding breast cancer treatment methods and prognostic indicators. Therefore, we compiled almost all studies on the relationship between the ghrelin system and breast cancer, including unacylated ghrelin, its GHRL gene, ghrelin O-acyltransferase, the receptor growth hormone secretagogue receptor, and several splice variants of ghrelin to lay the foundation for future research.

Keywords
Ghrelin, breast cancer, growth hormone secretagogue receptor, GHRL, ghrelin splicing variants

Introduction
Breast cancer is one of the most threatening malignant tumors in women worldwide, and causes more than 2.1 million cases every year.¹ In 2019, there were an estimated 270,000 breast cancer cases and over 40,000 deaths in the United States.² The diagnosis and treatment of breast cancer remain a global dilemma. From 2011 to 2017 in the United States, the relative survival rates of patients with local, regional, distant, and unstaged breast cancer following diagnosis were approximately 99%, 85.8%, 29%, and 57.8%, respectively.³

Ghrelin is a natural ligand of the growth hormone secretagogue receptor type 1a (GHSR1a), which can regulate the secretion of growth hormone (GH).⁴⁻⁶ This 28-amino-acid peptide stored in the secretory vesicles of the endocrine cells is produced by processing 117 amino acids by the propeptide proghrelin.⁴⁻⁷ Ghrelin is predominantly secreted in the stomach, despite its occurrence in several tissues and organs, including the kidneys, heart, and lungs.⁸⁻¹¹ The ghrelin system is a complex that consists of several splice variants, receptors, genes, and functions in the proteolytic process of pre-propeptide to produce different hormones¹² or specific post-transcriptional modifications¹³ (Figure 1).

In recent years, numerous studies have focused on ghrelin and breast cancer. A study on the survival of patients with breast cancer through exercise and diet demonstrated increased ghrelin levels in survivors,¹⁴ thus illustrating the potential of ghrelin as a prognostic marker for breast cancer. Aromatase is expressed in adipose stromal cells, and is an important factor in inducing postmenopausal breast cancer.¹⁵ Ghrelin reduces intracellular cAMP levels, thereby acting on the alternative receptors of adipose stromal cells.¹⁶,¹⁷ In addition, ghrelin and

¹Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
²Chengdu University of Traditional Chinese Medicine, Chengdu, China
³Pengshan District People’s Hospital of Meishan City, Meishan, China

Corresponding author: Qiu Chen, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province 610072, China.
Email: chenqiu1005@cdutcm.edu.cn
unacylated-ghrelin (UAG) inhibit the expression of aromatase in adipose stromal cells,16,18–20 which may be useful for the treatment of estrogen-dependent breast cancer. A novel discovery with the potential of a prognostic marker and drug development is undoubtedly valuable for patients with breast cancer. However, some studies present contradictory results: one study demonstrated that ghrelin can inhibit cancer cell proliferation,21 whereas another mentioned that it can accelerate the process.12 In other words, the effect of ghrelin may be bidirectional and complex, considering the ghrelin system includes unacylated forms, receptors, splice variants, and genes with multiple functions, in addition to acylated ghrelin involved in daily digestive and feeding activities. Therefore, this review aimed to elucidate the differences in current research on the relationship between ghrelin and breast cancer. We intended to comprehensively present the existing results of ghrelin to determine the complex clues and to explore the research of breast cancer and ghrelin.

UAG

The physiological level of UAG, which is more abundant than ghrelin in circulation, ranges between 0.1 nM and 0.5 nM.22 The UAG has biological activity23 and does not bind to GHSR1a at physiological concentrations; nonetheless, it regulates the differentiation of adipocytes, reduces adipose tissue inflammation, inhibits skeletal muscle atrophy, promotes glucose uptake, and stimulates osteoblast proliferation and other biological effects.22 In addition, it prevents glucose metabolism disorders in obese mouse models.24 Notably, a study demonstrated that UAG inhibits aromatase expression,16 whereas others mentioned that it inhibits the levels of macrophage-derived factors, which can promote the increase of aromatase expression in patients with obesity, thus indirectly causing breast cancer.18 UAG may promote aromatase expression; however, its effect is approximately 1000 times weaker than that of ghrelin, unlike the effect of ghrelin on GHSR1a.4,25,26 It may act through an unknown alternative growth protein receptor.16,22,27 Moreover, a study using GHSR1a knockout mice indicated that the effects of UAG are independent of GHSR1a,28,29 thereby suggesting the involvement of other receptors. Recently, a study demonstrated that UAG is a potent suppressor of breast cancer cell growth, independent of the effects on the stroma, and provides a novel mechanism of action via the activation of Gai, the suppression of cAMP production, and the inhibition of MAPK and Akt signaling.30 In addition, UAG and its analogues are potential drugs for breast cancer treatment. Further research into the different ghrelin receptors may elucidate the mechanism underlying the impact of ghrelin and UAG on breast cancer.

The ghrelin receptor in breast cancer

GHSR

The GHSR was discovered by Howard et al. in 1996.27 It belongs to the G-protein coupling group, and acts as a binding growth hormone secretagogue found in the pituitary gland and hypothalamus receptor. The GHSR is complex, comprising GHSR1a and GHSR1b, and some of its functions, remains unknown. It is expressed in renal cell carcinoma and lung, colorectal, and ovarian cancers, particularly breast cancer.11,21,26,31–34 GHSR1a and GHSR1b appear to be insufficiently directly related to breast cancer in existing studies; however, based on the high expression of GHSR in tumors, we have listed relevant studies with the aim of inspiring readers and conducting follow-up studies. An improved understanding of GHSR1a and GHSR1b may possibly clarify the relationship between GHSR and breast cancer.

GHSR1a

GHSR1a is a G protein-coupled receptor with seven transmembrane domains, and leads to the release of intracellular Ca2+. It is a molecularly defined receptor with a high affinity for ghrelin.25,27,35 In addition, GHSR1a enables ghrelin to act on the hypothalamus.
GHSLR1a exists among endocrine and non-endocrine tumors. It has a wide functional range, including regulating GH expression in pituitary tumors and prostate cancer, breast hyperplasia, and follicular thyroid carcinoma.

Ghrelin mediates the effects of hypothalamus through GHSSLR1a. However, some studies have demonstrated that GHSSLR1a does not bind to UAG. Moreover, GHSSLR1a does not exist in cells, such as Michigan Cancer Foundation-7 (MCF-7) and MDA-MB-231 cells and other breast cancer cell lines, which respond to UAG in vitro. The efficacy of UAG binding to GHSSLR1a is approximately 1000 times weaker than that of ghrelin. Also, ghrelin and de-acylated ghrelin inhibit aromatase expression in the absence of GHSSLR1a, thereby indicating that ghrelin may act through an unknown alternative receptor in the breast. These studies suggest that GHSSLR1a does not have an obvious direct relationship with breast cancer; nonetheless, the presence of an indirect effect is unknown.

GHSLR1b

GHSLR1b is a GHSLR isoform previously considered to have no endocrine function in the early stage, and cannot bind to any secreted GH. Moreover, it has only five transmembrane domains. GHSLR1b is not activated by ghrelin; however, its expression has been recently identified in several tumors, including prostate, adrenal, and lung cancers. The expression level of GHSSLR1b is usually higher than that of GHSSLR1a. GHSLR1b plays a neuremodin U-receptor role in lung cancer by heterodimerizing with neurotensin receptor 1. These studies contrast previous conclusions that GHSSLR1b does not play a role in cancer. Studies on GHSSLR1a-knockout mice have demonstrated that ghrelin and de-acylated ghrelin exert GHSSLR1a-independent effects thus suggesting the involvement and role of other receptors in breast cancer. The potential pathophysiological role of GHSSLR1b overexpression is unknown. GHSSLR1b does not bind to ghrelin; thus, it may primarily act as a modulator of other G protein-coupled receptors through heterodimerization, besides increasing the internalization of GHSSLR1a. Furthermore, the upregulation of GHSSLR1b level is positively correlated with In1-ghrelin expression. In other words, GHSSLR1b may play a significant role in breast cancer, despite unknown direct mechanisms.

Ghrelin variants

In1-ghrelin

In1-ghrelin variants have always received special attention of all ghrelin gene splicing products. It is a splicing-derived variant produced by the retention of intron 1, and is highly correlated with ghrelin O-acyltransferase (GOAT) messenger RNA (mRNA) levels in human tissues. In1-ghrelin variants are overexpressed in the pathology of breast cancer, plus pituitary and neuroendocrine tumors, and appear to be related to the malignant degree of tumors. Notably, a study on male breast cancer mentioned that In1-ghrelin was overexpressed in the tissues and promoted the basic proliferation of breast cancer cells; that is, MDA-MB-231. In1-ghrelin mRNA expression levels are correlated with breast cancer, thus suggesting the association among Ki-67, cyclin D3, and other proliferation markers. The overexpression of In1-ghrelin induces increased cell viability and inhibits the apoptotic process besides increasing the hormones of the pituitary gland and neuroendocrine tumor secretion.

In1-ghrelin expression is associated with lymph node metastasis and lower disease-free survival in patients with breast cancer. Moreover, In1-ghrelin promotes cell proliferation and migration, whereas its down-regulation reduces cell proliferation and migration. Another study reported on no difference in the expression level of ghrelin between normal breast and breast cancer tissues; nevertheless, In1-ghrelin level in breast cancer tissues was eight times than that in normal breast tissues. In1-ghrelin promotes breast cancer by increasing mammosphere formation owing to increased mRNA levels of Jagged 1. The Jagged Canonical Notch Ligand 1 gene is one of the important genes that causes breast cancer. Simultaneously, In1-ghrelin activates β-catenin and is the primary activator of Notch signaling. It is expressed in MCF-7 cells and causes changes in mammospheres that induce breast cancer.

In2-ghrelin

Researchers have identified a novel splice variant of preproghrelin, termed In2-ghrelin (intron 2-implicit), which is a novel exon sequence from intron 2 of the ghrelin gene. This transcript is overexpressed in 22Rv1 and lymph node carcinoma (LNCap) prostate cancer cell lines, and plays a role in the progression of prostate cancer. Notably, the LNCap cell line derived from lymph node metastasis expresses high levels of In2-ghrelin.

The strong link between male breast cancer survival rate has been demonstrated. Despite weak evidence, it is plausible to suspect that In2-ghrelin plays a role in breast cancer; however, it requires further confirmation. Such evidence will expand an understanding of the relationship between the ghrelin family and breast cancer.

GOAT

GOAT is a membrane-bound enzyme that specifically attaches an n-octanoyl fatty acid side chain off the serine residue in the position 3 of ghrelin. Membrane Bound O-Acyltransferase Domain Containing 4 encodes the
GHRL gene (GHRL)

GHRL is a pleiotropic hormone predominantly produced in the stomach. It is an endogenous ligand of GHSR. Its primary function is to stimulate the production of GH and food intake. Human GH is encoded in the GHRL gene. Its transcription produces an immature propeptide of 117 residues, and can be acylated by GOAT. Moreover, it can be processed by prohormone-converting enzymes (PC1/3 and PC2) to produce acyl ghrelin or des-acylated ghrelin.

GHRL stimulates the production of GH and increases the appetite by activating GHSR-1a in the hypothalamus. Moreover, it plays a role in cell proliferation, which this combined function of stimulating GH secretion in the anterior pituitary makes GHRL a potential factor for tumorigenesis. Research on premenopausal women of low native descent in the United States confirmed that GHRL increases the risk of breast cancer. Moreover, it increases the intake of foods unrelated to GHSR. In addition to orexigenic functions, GHRL promotes cell proliferation, which triggers tumorigenesis, together with the effects of stimulating GH secretion in the anterior pituitary.

GHRL polymorphism is closely associated with the risk of breast cancer. Single nucleotide polymorphisms of the GHRL gene are associated with increased cancer risk. A study involving more than 1000 volunteers from Europe demonstrated that the rs2075356GHRL polymorphism can reduce the risk of breast cancer. Another study mentioned that the 4684677GHRL polymorphism may increase the risk of breast cancer in carriers. In addition, insulin levels increased and obesity contributed to the increased risk of breast cancer caused by GHRL polymorphisms.

Notably, GHRL is related to the incidence and poor prognosis of breast cancer. Patients with high GHRL expression display low survival rates. The mechanism by which GHRL promotes the occurrence of cancer and reduces the survival rate has been studied in other types of cancers. GHRL is highly expressed in prostate cancer and initiates a cross-talk with the MAPK signaling cascade. Subsequently, it activates the ERK1/2MAPK pathway. Moreover, it promotes cell proliferation through the p38 (MAPK14) pathway. The components of MAPK pathways are not directly expressed in breast cancer; however, they are related to the survival rate of some patient populations, thus indicating the effect of GHRL on the survival rate. However, there is a lack of reliable evidence for the association between GHRL polymorphism and the survival rate of patients with breast cancer; existing studies only have a small sample size. Furthermore, GHRL polymorphisms are associated with obesity, which contributes to the decreased survival rate of patients with breast cancer, despite these studies being controversial. Concurrently, a meta-analysis study demonstrated that GHRL may be an indicator of the risk of breast cancer, despite a weak association. However, researchers should increase the sample size and conduct prospective studies to confirm this relationship.

Discussion

Breast cancer has become one of the leading causes of death in women, and its incidence is gradually increasing. There is a lack of sufficient comprehensive scientific methods for physicians assessing patient prognosis to completely understand their condition and the involved molecular mechanisms. This has implications for the development of accurate and patient-specific treatment usually required in breast cancer cases. Researchers are gradually discovering the relationship between ghrelin and cancer. Recently, a study demonstrated that ghrelin promotes colon cancer by inducing HT-29 cell proliferation through the GHSR and Ras/PI3K/AKT/mTOR pathways. The study confirmed ghrelin as the etiopathogenic factor of cancer. The ghrelin system is complex and evidence for its role in cancer is contradictory—particularly its involvement in breast cancer (Table 1).

The research results in Table 1 separately summarize the exact evidence, the relevant possible clues, and the properties of each part of the ghrelin system. UAG exerts a positive effect on breast cancer. GHSR1a is expressed in numerous tumors and is related to breast hyperplasia, despite the lack of further evidence. GHSR1b acts as a possible receptor of UAG, whereas it up-regulates In1; therefore, ghrelin expression is neutral. In1-ghrelin is negative. In2-ghrelin is associated with male breast cancer, but this is understudied. GOAT is associated with negative prognostic factors in breast cancer, obesity, and insulin resistance; however, researchers have not demonstrated its direct relationship with breast cancer. The GHRL gene has multifaceted roles, and those of different genes may be opposite.

GHRL at the genetic level, ghrelin and UAG as hormone products, GHSR1a and GHSR1b in the ghrelin receptor, or In1-ghrelin and In2-ghrelin as ghrelin splice variants exert positive and negative effects on breast...
cancer. This necessitates future research to clarify the
mentioned association, thus providing a novel method for the
predictive diagnostic and prognostic assessment of breast
cancer. Moreover, it will suggest a novel way to investigate
the mechanism of breast cancer. We have tabulated the
research involving the ghrelin system to elucidate our
findings. This review will be a promising avenue for an accur-
ate and targeted treatment in patients with breast cancer
worldwide.

Breast cancer is a heterogeneous disease, and consists of
several specific subtypes. Unfortunately, existing research
has not investigated the use of ghrelin in patients with spe-
cific types of breast cancer. This may be attributed to three
reasons. First, the research on ghrelin and breast cancer is
in its infancy, and current research generally acknowledges
the relationship between hormones and breast cancer. The
prognosis of patients with cancer is related to a part of its
pathogenesis. Researchers have not sufficiently investi-
gated ghrelin. Second, affected by factors such as the
number of cases included in different regions and races,
existing studies have not yet reflected the classification
rules related to ghrelin. Third, investigating the relation-
ship between ghrelin and breast cancer subtypes will sub-
stantially promote the development of breast cancer
screening and prognostic detection methods. Moreover, it
will provide directions for precision medicine for patients
with different types of breast cancer.

Conclusion

The ghrelin system can regulate breast cancer cell prolifer-
ation and it plays a significant role in some key pathways of
breast cancer. However, the detailed mechanism is unclear
and warrants further investigation. This study had limita-
tions, such as the amount of research, the number of
study samples, and the level of insufficient evidence.
Researchers have investigated the exact influence of
ghrelin on breast cancer pathways only from the PI3K/
AKT/mTOR signaling pathways. Other pathological
mechanisms, such as oxidative stress and inflammatory
mechanism, were unclear. A sufficient number of studies
have demonstrated the close association between the

Table 1. List of evidences for the relationship between ghrelin and breast cancer.

Ghrelin system	Conclusive evidence	Reference clue	Positive or negative factor for breast cancer
UAG	Inhibit aromatase expression16		Positive
	Inhibit levels of macrophage-driven factor18		
	Activate Gai, inhibit cAMP, MAPK, and Akt30		
GHSR	GHSR1A	Exist in tumors and regulating the expression of growth hormone in breast hyperplasia37	Undefined
	GHSR1B	It may be the receptor of UAG29,37,42,43	Neutral
Ghrelin splicing variants	Promote breast cancer cell MDA-MB-23152	Increase the expression of In1-ghrelin45	Negative
	Correlated with breast cancer cell proliferation markers Ki-67 and cyclinD348		
	Over expression in breast cancer tissue and increased oncogene jag-145		
	In2-ghrelin	Related to male breast cancer47,55	Negative
		It is related to the negative prognostic factors of breast cancer, such as	
		insulin resistance and obesity4	
GOAT		Associated with low breast cancer risk49	Positive
GHRL	2075356GHRL		
Gene	4684677GHRL	Associated with high breast cancer risk48	Negative

GHSR1A: growth hormone secretagogue receptor type 1a; GHSR1B: growth hormone secretagogue receptor type 1b; GOAT: ghrelin O-acyltransferase; In2-ghrelin: intron 2-implicit; UAG: unacylated-ghrelin.
ghrelin system and breast cancer; nonetheless, the role of specific parts of ghrelin in breast cancer is controversial. Thus, follow-up studies necessitate larger sample sizes and multi-center clinical research to make observations. In addition, existing studies have limited understanding of the ghrelin system, and several mechanisms cannot be explained. In addition, the factors that ghrelin affects breast cancer may not stop there. There are presumably undiscovered ghrelin receptors or splice variants involved in the course of breast cancer.

Acknowledgements
We would like to thank Editage (www.editage.cn) for English language editing.

Author contributions
YDC, QC, and XKH designed the study. LW and QW contributed to the collection and the analysis of the literature. LFL and LSS check all statistical analyses and made some corrections. YDC and LW interpreted the data. YDC and XKH wrote the initial draft of the manuscript. QW and QC edited the manuscript. All authors reviewed the final manuscript. YDC, XKH, and LW contributed equally to the article.

Data availability
All data used in this review are fully available in the public domain.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Disclosure
The authors have no conflicts of interest to declare.

Funding
The study was partly supported by grants from the Chengdu Science and Technology Project (No 2019-YF09-00094-SN) and Medical Service and Guarantee Capacity Improvement Subsidy Funds (Major and difficult diseases-No CYW2019079).

ORCID iDs
Yiding Chen https://orcid.org/0000-0002-6954-6293
Liufu Li https://orcid.org/0000-0002-8352-9780

Supplemental material
Supplemental material for this article is available online.

References
1. WHO Classification of Tumours Editorial Board. World Health Organization. Breast Tumors. 2019; 5th Edition, Volume 2.
2. Siegel RL, Miller KD and Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69: 7–34.
3. (n.d.) CSFNCI. Surveillance EAER. Female breast cancer. https://seer.cancer.gov/statfacts/html/breast.html (accessed 07 March 2022).
4. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402: 656–660.
5. Gutierrez J, Solenberg P, Perkins DR, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. P Natl Acad Sci U S A 2008; 105: 6320–6325.
6. Yang J, Brown MS, Liang G, et al. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 2008; 132: 387–396.
7. Lim CT, Kola B, Grossman A, et al. The expression of ghrelin O-acyltransferase (GOAT) in human tissues. Endocr J 2011; 58: 707–710.
8. Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000; 141: 4255–4261.
9. Ghelardoni S, Carnicelli V, Frascarelli S, et al. Ghrelin tissue distribution: comparison between gene and protein expression. J Endocrinol Invest 2006; 29: 115–121.
10. Gnanapavan S, Kola B, Bastin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocr Metab 2002; 87: 2988–2991.
11. Korbonits M, Bastin SA, Kojima M, et al. The expression of the growth hormone secretagogue receptor ligand ghrelin in normal and abnormal human pituitary and other neuroendocrine tumors. J Clin Endocr Metab 2001; 86: 881–887.
12. Seim I, Herington AC and Chopin LK. New insights into the molecular complexity of the ghrelin gene locus. Cytokine Growth Factor Rev 2009; 20: 297–304.
13. Garg A. Commentary: the ongoing saga of obestatin: is it a hormone? J Clin Endocr Metab 2007; 92: 3396–3398.
14. Puklin L, Cartmel B, Harrigan M, et al. Randomized trial of weight loss on circulating ghrelin levels among breast cancer survivors. NPJ Breast Cancer 2021; 7: 49.
15. Kharb R, Haider K, Neha K, et al. Aromatase inhibitors: role in postmenopausal breast cancer. Arch Pharm (Weinheim) 2020; 353: c200008i.
16. Docanto MM, Yang FY, Callaghan B, et al. Ghrelin and des-acyl ghrelin inhibit aromatase expression and activity in human adipose stromal cells: suppression of cAMP as a possible mechanism. Breast Cancer Res Treat 2014; 147: 193–201.
17. Simpson ER. Sources of estrogen and their importance. J Steroid Biochem 2003; 86: 225–230.
18. Au CC, Docanto MM, Zahid H, et al. Des-acyl ghrelin inhibits the capacity of macrophages to stimulate the expression of aromatase in breast adipose stromal cells. J Steroid Biochem 2017; 170: 49–53.
19. Morris PG, Hudis CA, Giri D, et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res 2011; 4: 1021–1029.
20. Wang XY, Simpson ER and Brown KA. Aromatase overexpression in dysfunctional adipose tissue links obesity to postmenopausal breast cancer. J Steroid Biochem 2015; 153: 35–44.
21. Cassoni P, Papotti M, Ghe C, et al. Identification, characterization, and biological activity of specific receptors for natural (ghrelin) and synthetic growth hormone.
secretagogues and analogs in human breast carcinomas and cell lines. *J Clin Endocr Metab* 2001; 86: 1738–1745.

22. Callaghan B and Furness JB. Novel and conventional receptors for ghrelin, des-acyl-ghrelin, and pharmacologically related compounds. *Pharmacol Rev* 2014; 66: 984–1001.

23. Zhao TJ, Liang GS, Li RL, et al. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. *P Natl Acad Sci U S A* 2010; 107: 7467–7472.

24. Delhanty PJD, Huisman M, Baldeon-Rojas LY, et al. Des-acyl ghrelin analogs prevent high-fat-diet-induced dysregulation of glucose homeostasis. *FASEB J* 2013; 27: 1690–1700.

25. Kojima M and Kangawa K. Ghrelin: structure and function. *Physiol Rev* 2005; 85: 495–522.

26. Matsumoto M, Hosoda H, Kitajima Y, et al. Structure-activity relationship of ghrelin: pharmacological study of ghrelin peptides. *Biochem Bioph Res Commun* 2001; 287: 142–146.

27. Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. *Science* 1996; 273: 974–977.

28. Papotti M, Duregon E and Volante M. Ghrelin and tumors. *Endocr Dev* 2013; 25: 122–134.

29. Reano S, Graziani A and Filigheddu N. Acylated and unacylated ghrelin administration to blunt muscle wasting. *Curr Opin Clin Nutr* 2014; 17: 236–240.

30. Au CC, Furness JB, Britt K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. *Elife* 2020; 9: e56913.

31. Bai RX, Wang WP, Zhao PW, et al. Ghrelin attenuates the growth of HO-8910 ovarian cancer cells through the ERK pathway. *Braz J Med Biol Res* 2016; 49: 3.

32. Huang CR, Zheng HC, He WM, et al. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide. *Biochem Bioph Res Commun* 2016; 474: 83–90.

33. Lin TC, Liu YP, Chan YC, et al. Ghrelin promotes renal cell carcinoma metastasis via snail activation and is associated with poor prognosis. *J Pathol* 2015; 237: 50–61.

34. Pradhan G, Samson SL and Sun YX. Ghrelin: much more than a hunger hormone. *Curr Opin Clin Nutr* 2013; 16: 619–624.

35. Muccioli G, Baragli A, Granata R, et al. Heterogeneity of ghrelin/growth hormone secretagogue receptors. *Neuroendocrinology* 2007; 86: 147–164.

36. Jeffery PL, Herrington AC and Chopin LK. Expression and action of the growth hormone releasing peptide ghrelin and its receptor in prostate cancer cell lines. *J Endocrinol* 2002; 172: R7–R11.

37. Jeffery PL, Murray RE, Yeh AH, et al. Expression and function of the ghrelin axis, including a novel preproghrelin isoform, in human breast cancer tissues and cell lines. *Endocr Relat Cancer* 2005; 12: 839–850.

38. Jeffery PL, Herrington AC and Chopin LK. The potential autocrine/paracrine roles of ghrelin and its receptor in hormone-dependent cancer. *Cytokine Growth Factor Rev* 2003; 14: 113–122.

39. Barzon L, Pacenti M, Masi G, et al. Loss of growth hormone secretagogue receptor 1a and overexpression of type 1b receptor transcripts in human adrenocortical tumors. *Oncology-Basel* 2005; 68: 414–421.

40. Chan CB and Cheng CHK. Identification and functional characterization of two alternatively spliced growth hormone secretagogue receptor transcripts from the pituitary of black seabream acanthopagrus schlegeli. *Mol Cell Endocrinol* 2004; 214: 81–95.

41. Takahashi K, Furukawa C, Takano A, et al. The neurexinom U-growth hormone secretagogue receptor 1b/neurotensin receptor 1 oncogenic signaling pathway as a therapeutic target for lung cancer. *Cancer Res* 2006; 66: 9408–9419.

42. Chu KM, Chow KBS, Leung PK, et al. Over-expression of the truncated ghrelin receptor polypeptide attenuates the constitutive activation of phosphatidylinositol-specific phospholipase C by ghrelin receptors but has no effect on ghrelin-stimulated extracellular signal-regulated kinase 1/2 activity. *Int J Biochem Cell Biol* 2007; 39: 752–764.

43. Porporato PE, Filigheddu N, Reano S, et al. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. *J Clin Invest* 2013; 123: 611–622.

44. Leung PK, Chow KBS, Lau PN, et al. The truncated ghrelin receptor polypeptide (GHS-R1b) acts as a dominant-negative mutant of the ghrelin receptor. *Cell Signal* 2007; 19: 1011–1022.

45. Gahele MD, Cordoba-Chacon J, Hergueta-Redondo M, et al. A novel human ghrelin variant (In1-ghrelin) and ghrelin-O-acyltransferase are overexpressed in breast cancer: potential pathophysiological relevance. *PLOS One* 2011; 6: e23302.

46. Ibanez-Costa A, Gahele MD, Rivero-Cortes E, et al. In 1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features. *Sci Rep* 2015; 5: 8471.

47. Gronberg M, Nilsson C, Markholm I, et al. Ghrelin expression is associated with a favorable outcome in male breast cancer. *Sci Rep* 2018; 8: 13586.

48. Rincon-Fernandez D, Culler MD, Tsimai A, et al. In1-ghrelin splicing variant is associated with reduced disease-free survival of breast cancer patients and increases malignancy of breast cancer cells lines. *Carcinogenesis* 2018; 39: 447–457.

49. Luque RM, Sampedro-Nunez M, Gahele MD, et al. In1-ghrelin, a splice variant of ghrelin gene, is associated with the evolution and aggressiveness of human neuroendocrine tumors: evidence from clinical, cellular and molecular parameters. *Oncotarget* 2015; 6: 19619–19633.

50. Li D, Masiero M, Banham AH, et al. The notch ligand JAGGED1 as a target for anti-tumor therapy. *Front Oncol* 2014; 4: 254.

51. Zhu XR, Cao Y, Voodg K, et al. On the processing of proghrelin to ghrelin. *J Biol Chem* 2006; 281: 38867–38870.

52. Gahele MD, Rubio A, Cordoba-Chacón J, et al. Expression of the ghrelin and neurotensin systems is altered in the temporal lobe of Alzheimer’s disease patients. *J Alzheimers Dis* 2010; 22: 819–828.

53. Seim I, Lubik AA, Lehman ML, et al. Cloning of a novel insulin-regulated ghrelin transcript in prostate cancer. *J Mol Endocrinol* 2013; 50: 179–191.

54. Yu SQ, Lai KP, Xia SJ, et al. The diverse and contrasting effects of using human prostate cancer cell lines to study
androgen receptor roles in prostate cancer. Asian J Androl 2009; 11: 39–48.

55. Hemminki K, Scelo G, Boffetta P, et al. Second primary malignancies in patients with male breast cancer. Brit J Cancer 2005; 92: 1288–1292.

56. Kirchner H, Tong J, Tschop MH, et al. Ghrelin and PYY in the regulation of energy balance and metabolism: lessons from mouse mutants. Am J Physiol Endocrinol Metab 2010; 298: E909–E919.

57. Lim CT, Kola B and Korbonits M. The ghrelin/GOAT/GHS-R system and energy metabolism. Rev Endocr Metab Disord 2011; 12: 173–186.

58. Seim I, Jeffery PL, de Amorim L, et al. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin. Reprod Biol Endocrinol 2013; 11: 70.

59. Romero A, Kirchner H, Heppner K, et al. GOAT: the master switch for the ghrelin system? Eur J Endocrinol 2010; 163: 1–8.

60. Takahashi T, Ida T, Sato T, et al. Production of n-octanoyl-modified ghrelin in cultured cells requires prohormone processing protease and ghrelin O-acyltransferase, as well as n-octanoic acid. J Biochem 2009; 146: 675–682.

61. Mondello P, Lacquaniti A, Mondello S, et al. Emerging markers of cachexia predict survival in cancer patients. BMC Cancer 2014; 14: 828.

62. Wu JT and Kral JG. Ghrelin-integrative neuroendocrine peptide in health and disease. Ann Surg 2004; 239: 464–474.

63. Dutta D, Ghosh S, Pandit K, et al. Leptin and cancer: pathogenesis and modulation. Indian J Endocrinol Metab 2012; 16: S596–S600.

64. Slattery ML, Lundgreen A, Hines L, et al. Energy homeostasis genes and breast cancer risk: the influence of ancestry, body size, and menopausal status, the breast cancer health disparities study. Cancer Epidemiol 2015; 39: 1113–1122.

65. Pellatt AJ, Lundgreen A, Wolff RK, et al. Energy homeostasis genes and survival after breast cancer diagnosis: the breast cancer health disparities study. Cancer Causes Control 2016; 27: 47–57.

66. Stefanaki C, Rorris FP and Stamatakos M. The role of ghrelin signals in breast cancer-A systematic review. Curr Signal Transduct Ther 2012; 7: 247–253.

67. Dossus L, McKay JD, Canzian F, et al. Polymorphisms of genes coding for ghrelin and its receptor in relation to anthropometry, circulating levels of IGF-I and IGFBP-3, and breast cancer risk: a case-control study nested within the European prospective investigation into cancer and nutrition (EPIC). Carcinogenesis 2008; 29: 1360–1366.

68. Yeh AH, Jeffery PL, Duncan RP, et al. Ghrelin and a novel preproghrelin isoform are highly expressed in prostate cancer and ghrelin activates mitogen-activated protein kinase in prostate cancer. Clin Cancer Res 2005; 11: 8295–8303.

69. Pabalan NA, Seim I, Jarjanazi H, et al. Associations between ghrelin and ghrelin receptor polymorphisms and cancer in Caucasian populations: a meta-analysis. BMC Genet 2014; 15: 118.

70. Slattery ML, Hines LH, Lundgreen A, et al. Diet and lifestyle factors interact with MAPK genes to influence survival: the breast cancer health disparities study. Cancer Causes Control 2014; 25: 1211–1225.

71. Kwan ML, John EM, Caan BJ, et al. Obesity and mortality after breast cancer by race/ethnicity: the California breast cancer survivorship consortium. Am J Epidemiol 2014; 179: 95–111.

72. Scholz C, Andergassen U, Hepp P, et al. Obesity as an independent risk factor for decreased survival in node-positive high-risk breast cancer. Breast Cancer Res Treat 2015; 151: 569–576.

73. Taghizadeh N, Boezen HM, Schouten JP, et al. BMI And lifetime changes in BMI and cancer mortality risk. PLOS One 2015; 10: e0125261.

74. Herlevic VC, Mowad R, Miller JK, et al. Breast cancer outcomes in a population with high prevalence of obesity. J Surg Res 2015; 198: 371–376.

75. Zhu S, Shao B, Hao Y, et al. No association of single nucleotide polymorphisms involved in GHRL and GHSR with cancer risk: a meta-analysis. Cancer Biomark 2015; 15: 89–97.

76. Lien GS, Lin CH, Yang YL, et al. Ghrelin induces colon cancer cell proliferation through the GHS-R, Ras, PI3K, Akt, and mTOR signaling pathways. Eur J Pharmacol 2016; 776: 124–131.