Multimessenger constraints for ultra-dense matter

Tyler Gorda
IKP - TU Darmstadt,

NSs as multi-messenger laboratories for dense matter (online), 2021-06-16

Work in Collaboration with:
E. Annala, E. Katerini, A. Kurkela, J. Näättilä,
V. Paschalidis, A. Vuorinen

arXiv: 2105.05132
Approach and motivation

- Extend NS EOS beyond controlled nuclear regime; use knowledge that QCD EOS goes to pQCD at high densities.
Approach and motivation

- Extend NS EOS beyond controlled nuclear regime; use knowledge that QCD EOS goes to pQCD at high densities.
Approach and motivation

- Extend NS EOS beyond controlled nuclear regime; use knowledge that QCD EOS goes to pQCD at high densities.
- Use *parametrized-EOS ensemble approach* to determine all allowed behaviors of the EOS between low and high density constraints. Want to be as conservative as possible!
Approach and motivation

- Extend NS EOS beyond controlled nuclear regime; use knowledge that QCD EOS goes to pQCD at high densities.

- Use *parametrized-EOS ensemble approach* to determine all allowed behaviors of the EOS between low and high density constraints. Want to be as conservative as possible!

- Has provided evidence for *quark matter cores* in massive NSs, identifying transition with softening of the EOS. Generic for EOSs with $\max(c_s^2) \leq 0.5$.

 Annala et al. Nature Phys. 2020
Motivation

- So far, have only used *most robust* constraints:
 - $M_{\text{TOV}} \geq 2.0 M_\odot$
 - $\tilde{\Lambda} < 720$ for GW1701817
 $(q \in [0.73, 1], M_{\text{chirp}} = 1.186 M_\odot)$
Motivation

- So far, have only used *most robust* constraints:
 - $M_{\text{TOV}} \geq 2.0M_\odot$
 - $\tilde{\Lambda} < 720$ for GW1701817
 ($q \in [0.73, 1], M_{\text{chirp}} = 1.186M_\odot$
- *Other robust constraints that we can use?*
Motivation

• So far, have only used most robust constraints:

 − $M_{\text{TOV}} \geq 2.0M_\odot$

 − $\tilde{\Lambda} < 720$ for GW1701817
 $(q \in [0.73, 1], \mathcal{M}_{\text{chirp}} = 1.186M_\odot)$

• Other robust constraints that we can use?

 • In 2105.05132, add the following two results:

 − BH formed in GW170817 (BH-hyp)
 [possibly with HMNS first (HMNS-hyp)]

 − $R(2.0M_\odot) \geq 11$ km, from measurement of
 PSR J0740+6620 by NICER+XMM

Also look at:
• GW190814
• future measurements
Motivation

- So far, have only used **most robust** constraints:
 - $M_{\text{TOV}} \geq 2.0 M_{\odot}$
 - $\tilde{\Lambda} < 720$ for GW1701817
 $(q \in [0.73, 1], \mathcal{M}_{\text{chirp}} = 1.186 M_{\odot})$

- **Other robust constraints that we can use?**

- **In 2105.05132, add the following two results:**
 - BH formed in GW170817 (**BH-hyp**) [possibly with HMNS first (**HMNS-hyp**)]
 - $R(2.0 M_{\odot}) \geq 11$ km, from measurement of PSR J0740+6620 by NICER+XMM

Straightforward
Motivation

- So far, have only used **most robust** constraints:
 - \(M_{\text{TOV}} \geq 2.0 M_{\odot} \)
 - \(\tilde{\lambda} < 720 \) for GW1701817
 \((q \in [0.73, 1], \mathcal{M}_{\text{chirp}} = 1.186 M_{\odot})\)

- **Other robust constraints that we can use?**

- **In 2105.05132, add the following two results:**
 - BH formed in GW170817 \((BH\text{-hyp}) \)
 [possibly with HMNS first \((HMNS\text{-hyp}) \)]
 - \(R(2.0 M_{\odot}) \geq 11 \) km, from measurement of PSR J0740+6620 by NICER+XMM

Less straightforward (esp. HMNS-hyp)

Straightforward
Methodology

- How to enforce BH-hyp or HMNS-hyp, \textit{without using quasi-universal relations}?
 - Additional input with unknown uncertainties for general EOS
 - Are known to be violated for EOSs with, e.g. 1st-order PTs \cite{Lau2017, Bandyopadhyay2018, Han2019, Bozzola2019}

Sample quasi-universal relation, \cite{Lau2017}
Methodology

- How to enforce BH-hyp or HMNS-hyp, \textit{without using quasi-universal relations}?
- Possible evolutions of GW170817:
Methodology

- How to enforce BH-hyp or HMNS-hyp, \textit{without using quasi-universal relations}?

- Possible evolutions of GW170817:

\begin{itemize}
 \item Non-rotating NS stable \textit{(no BH!)}
 \item Prompt collapse to BH (tension with kilonova) \cite{Bauswein2017}
\end{itemize}
Methodology

- How to enforce BH-hyp or HMNS-hyp, *without using quasi-universal relations*?

- Possible evolutions of GW170817:

 \[
 M_{\text{TOV}} \quad M_{\text{supra}} \quad M_{\text{thresh}}
 \]

 - Non-rotating NS stable (*no BH!*)
 - Remnant supported by *uniform* rotation
 - Supported by *differential* rotation
 - Prompt collapse to BH (tension with kilonova)

 [Bauswein+ Astrophys. J. Lett. 850, (2017)]
Methodology

- How to enforce BH-hyp or HMNS-hyp, *without using quasi-universal relations?*

- Possible evolutions of GW170817:

 - Non-rotating NS stable (*no BH!*)
 - Remnant supported by *uniform* rotation
 - Supported by *differential* rotation
 - Prompt collapse to BH (tension with kilonova) [Bauswein+ Astrophys. J. Lett. 850, (2017)]

Depend on EOS; require *simple hydrostatic/stationary* GR codes

Depend on EOS; requires *expensive merger simulations*
Methodology

BH-hyp requires: $M_{\text{remn}} \geq M_{\text{TOV}}$

HMNS-hyp requires: $M_{\text{remn}} \geq M_{\text{supra}}$

Mass of binary

- M_{TOV}
- M_{supra}
- M_{thresh}

Non-rotating NS stable (no BH!)
Remnant supported by *uniform* rotation
Supported by *differential* rotation
Prompt collapse to BH (tension with kilonova)
BH-hyp requires: \(M_{\text{remn}} \geq M_{\text{TOV}} \)

HMNS-hyp requires: \(M_{\text{remn}} \geq M_{\text{supra}} \)

Non-rotating NS stable (no BH!)

Remnant supported by *uniform* rotation

Supported by *differential* rotation

Prompt collapse to BH (tension with kilonova)

*kilonova and GRB suggest BH formed near \(M_{\text{supra}} \)

Margalit and Metzger, Astrophys. J. Lett. 850, (2017);
Rezzolla+ Astrophys. J. Lett. 852, (2018);
Ruiz+ Phys. Rev. D 97, (2018)
Methodology

- Technical point: M not conserved, $M_B = \bar{m} \cdot N_B$ is!

$$M_{B,\text{remn}} = M_{B,1} + M_{B,2} - M_{B,\text{ejecta}}$$
Methodology

- Technical point: M not conserved, $M_B = \bar{m} \cdot N_B$ is!

$$M_{B,\text{remn}} = M_{B,1} + M_{B,2} - M_{B,\text{ejecta}}$$

Ignore; most conservative
Methodology

- Technical point: M not conserved, $M_B = \bar{m} \cdot N_B$ is!

\[M_{B,\text{remn}} = M_{B,1} + M_{B,2} - M_{B,\text{ejecta}} \]

*Ignore; most conservative

- Demand, for M_{chirp} fixed, there exists a $q \in [0.73, 1]$, such that both:
 1) $M_{B,\text{remn}}(q) \geq M_{B,\text{crit}}$, $M_{B,\text{crit}} \in \{M_{B,\text{TOV}}, M_{B,\text{supra}}\}$
 2) $\tilde{\lambda}(q) < 720$ (low-spin priors)
Methodology

• Technical point: M not conserved, $M_B = \bar{m} \cdot N_B$ is!

\[
M_{B,\text{remn}} = M_{B,1} + M_{B,2} - M_{B,\text{ejecta}}
\]

*Ignore; most conservative

• Demand, for M_{chirp} fixed, there exists a $q \in [0.73, 1]$, such that both:

1) $M_{B,\text{remn}}(q) \geq M_{B,\text{crit}}$, $M_{B,\text{crit}} \in \{M_{B,\text{TOV}}, M_{B,\text{supra}}\}$

2) $\tilde{\lambda}(q) < 720$ (low-spin priors) *also look at high-spin priors

*additionally, implement $R(2M_\odot)$ lower bounds
Results
Results: BH-hyp + PSR J0740+6620 – most conservative
Results: BH-hyp + PSR J0740+6620 – most conservative

BH-hyp effectively $M_{\text{TOV}} = 2.53M_{\odot}$ cut
Results: BH-hyp + PSR J0740+6620 – most conservative

Main result
Results: HMNS-hyp + PSR J0740+6620 – more consistent with kilonova, GRB
Results: HMNS-hyp + PSR J0740+6620 – more consistent with kilonova, GRB

HMNS-hyp effectively $M_{\text{TOV}} = 2.19M_\odot$ cut
Most robust result consistent with kilonovae, GRB
Results: HMNS-hyp + PSR J0740+6620 – more consistent with kilonova, GRB

Even most restrictive consistent with with large QM cores!

$\max(c_s^2) \lesssim 0.5 \implies$ large QM cores
Results: different implementations of GW170817

\[\text{Without } \tilde{\Lambda} \quad \text{With } \tilde{\Lambda} \]

* approximately cuts on \(M_{\text{Tov}} \), even in full analysis

Margalit and Metzger, Astrophys. J. Lett. 850, (2017); Rezzolla+ Astrophys. J. Lett. 852, (2018); Ruiz+ Phys. Rev. D 97, (2018)
Results: different implementations of GW170817

Without $\tilde{\Lambda}$

With $\tilde{\Lambda}$

* approximately cuts on M_{TOV}, even in full analysis

Margalit and Metzger, Astrophys. J. Lett. 850, (2017); Rezzolla+ Astrophys. J. Lett. 852, (2018); Ruiz+ Phys. Rev. D 97, (2018)
Conclusions

• New constraints on M_{TOV} within our ensemble framework:

 \[\text{BH-hyp} \implies M_{\text{TOV}} \leq 2.53 M_\odot \quad \text{HMNS-hyp} \implies M_{\text{TOV}} \leq 2.19 M_\odot \]

• BH-hyp, HMNS-hyp, and $R(2.0 M_\odot) \geq 11.0, 11.4, 12.2$ km all compatible with QM cores in massive NSs

• Discussion of GW190814, other future measurements in 2105.05132.

• Most robust regions $[R(2.0 M_\odot) \geq 11 \text{ km and BH-/HMNS-hyp}]:$
Conclusions

- New constraints on M_{TOV} within our ensemble framework:
 \[\text{BH-hyp} \implies M_{\text{TOV}} \leq 2.53M_\odot \quad \text{HMNS-hyp} \implies M_{\text{TOV}} \leq 2.19M_\odot \]

- BH-hyp, HMNS-hyp, and $R(2.0M_\odot) \geq 11.0, 11.4, 12.2$ km all compatible with QM cores in massive NSs

- Discussion of GW190814, other future measurements in 2105.05132.

- Most robust regions [$R(2.0M_\odot) \geq 11$ km and BH-/HMNS-hyp]:

Thank you for your attention!
Details, additional results....
Quick detail of EOS interpolation

- \(\{ \mu_i, (c_s^2)_i \}_{i=1}^N \) random
- Connected piecewise linearly
- Enforce subluminality, thermodynamic consistency:
 \[\forall i : 0 < (c_s^2)_i < 1 \]
- No explicit phase trans., but don’t restrict softness of EOS
 (tantamount to 1st order PT)
Quick detail of EOS interpolation

- Integrate twice to get other thermodynamic variables:
 1. $c_s^2(\mu) = \frac{n}{\mu} \left(\frac{dn}{d\mu}\right)^{-1}$
 2. $n = \frac{dp}{d\mu}$

\[(c_s^2)_{\text{CET}} \rightarrow \cdots \rightarrow (c_s^2)_{i} \rightarrow \cdots \rightarrow (c_s^2)_{N-1} \rightarrow (c_s^2)_{\text{PQCD}} \]

CEFT

nuclear: h/s

\[\mu_{\text{nucl}} \rightarrow \mu_1 \rightarrow \cdots \rightarrow \mu_i \rightarrow \cdots \rightarrow \mu_{N-1} \rightarrow \mu_{\text{PQCD}} \]

pQCD: $X \in [1, 4]$
GW190814 compatible with BH-hyp, but not HMNS-hyp...

- Would imply \(\max(c_s^2) \geq 0.51 \ldots \)
- ...but hard to reconcile with multimessenger picture of GW170817
- Compatible with \(R(2.0M_\odot) \geq 11 \text{ km} \)
Radii at different masses:

Weih+ Astrophys. J. 881, 73 (2019)
Radii at different masses:
Weih+ Astrophys. J. 881, 73 (2019)
Future measurements

Radii at different masses:
Weih+ Astrophys. J. 881, 73 (2019)
Numerical MR limits with various hypotheses

Assumptions	$R_{2.0, \text{min}}$ (km)	$R_{1.4}$ (km)	$R_{1.6}$ (km)	$R_{1.8}$ (km)	$R_{2.0}$ (km)	M_{TOV} (M_\odot)
–	–	9.6–13.4	9.8–13.3	9.7–13.5	9.3–13.7	2.98
TOV	–	9.6–13.4	9.8–13.2	9.7–13.4	9.3–13.6	2.53
Supra	–	9.7–13.4	9.8–13.2	9.7–13.3	9.3–13.3	2.19
TOV	10.9	10.6–13.2	10.7–13.2	10.9–13.4	10.9–13.6	2.53
TOV	11.1	10.7–13.2	10.9–13.2	11.0–13.4	11.1–13.6	2.53
TOV	11.4	10.9–13.2	11.1–13.2	11.2–13.4	11.4–13.6	2.53
TOV	12.2	11.5–13.1	11.7–13.2	12.0–13.4	12.2–13.6	2.53
Supra	10.9	10.8–13.2	10.9–13.2	10.9–13.3	10.9–13.3	2.19
Supra	11.1	10.8–13.2	11.0–13.2	11.1–13.3	11.1–13.3	2.19
Supra	11.4	11.2–13.2	11.3–13.2	11.4–13.3	11.4–13.3	2.19
Supra	12.2	11.9–13.1	12.0–13.2	12.1–13.3	12.2–13.3	2.19