A Density Functional Theory and Microkinetic Study of Acetylene Partial Oxidation on the Perfect and Defective Cu$_2$O (111) Surface Models

Ling-Nan Wu 1,2,*, Zhen-Yu Tian 1,2,* and Wu Qin 3

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Engineering Laboratory for Biomass Generation Equipment, North China Electric Power University, Beijing 102206, China

* Correspondence: wulingnan@iet.cn (L.-N.W.); tianzhenyu@iet.cn (Z.-Y.T.); Tel.: +86-10-82543305 (Z.-Y.T.)

Abstract: The catalytic removal of C$_2$H$_2$ by Cu$_2$O was studied by investigating the adsorption and partial oxidation mechanism of C$_2$H$_2$ on both perfect (stoichiometric) and Cu$_{\text{CUS}}$-defective Cu$_2$O (111) surface models using density functional theory calculations. The chemisorption of C$_2$H$_2$ on perfect and defective surface models needs to overcome the energy barrier of 0.70 and 0.81 eV at 0 K. The direct decomposition of C$_2$H$_2$ on both surface models is energy demanding with the energy barrier of 1.92 and 1.62 eV for the perfect and defective surface models, respectively. The H-abstractions of the chemisorbed C$_2$H$_2$ by a series of radicals including H, OH, HO$_2$, CH$_3$, O, and O$_2$ following the Langmuir–Hinshelwood mechanism have been compared. On the perfect Cu$_2$O (111) surface model, the activity order of the adsorbed radicals toward H-abstraction of C$_2$H$_2$ is: OH > O$_2$ > HO$_2$ > O > CH$_3$ > H, while on the defective Cu$_2$O (111) surface model, the activity follows the sequence: O > OH > O$_2$ > HO$_2$ > H > CH$_3$. The Cu$_{\text{CUS}}$ defect could remarkably facilitate the H-abstraction of C$_2$H$_2$ by O$_2$. The partial oxidation of C$_2$H$_2$ on the Cu$_2$O (111) surface model tends to proceed with the chemisorption process and the following H-abstraction process rather than the direct decomposition process. The reaction of C$_2$H$_2$ H-abstraction by O$_2$ dictates the C$_2$H$_2$ overall reaction rate on the perfect Cu$_2$O (111) surface model and the chemisorption of C$_2$H$_2$ is the rate-determining step on the defective Cu$_2$O (111) surface model. The results of this work could benefit the understanding of the C$_2$H$_2$ reaction on the Cu$_2$O (111) surface and future heterogeneous modeling.

Keywords: acetylene; partial oxidation; density functional theory calculations; Cu$_2$O (111) surface; defects

1. Introduction

Acetylene (C$_2$H$_2$) is a kind of important industrial raw materials used for various purposes, including oxyacetylene welding, cutting, illuminant, soldering metals, signaling, precipitating metals, particularly copper, manufacture of acetaldehyde, acetic acid, etc. [1]. C$_2$H$_2$ is a significant intermediate formed during the combustion of hydrocarbons, especially under fuel-rich conditions, which is responsible for the soot formation during combustion processes via the H-abstraction-C$_2$H$_2$-addition (HACA) mechanism [2,3]. The production of C$_2$H$_2$ during combustion could endanger the safety and efficiency of combustors, etc. C$_2$H$_2$ is also a component of volatile organic compounds (VOCs), and it gains increasing attention due to its toxicity to the environment and human health. Exposure to high concentrations of C$_2$H$_2$ may cause loss of consciousness or even death, and it is a serious fire and explosion hazard. C$_2$H$_2$ is an undesirable by-product of the petroleum cracking process, and it causes damage to the catalyst for the ethylene polymerization process [4]. To address the problems caused by C$_2$H$_2$ formation and emission, the efficient removal of C$_2$H$_2$ during combustion and industrial processes is of great interest. To the best of our knowledge, much attention has been paid to the study of C$_2$H$_2$/hydrocarbons...
homogeneous kinetics under pyrolysis [5,6], oxidation [3,7], and flame conditions [2], and kinetic models predicting the reaction characteristics under these conditions have been proposed [3,7], while relatively less attention has been paid to the heterogeneous processes of C2H2.

Catalytic removal is an important technique in exhaust gas purification, and the activity of catalysts plays a crucial role in the catalytic process. Previous studies have shown that Cu2O thin film catalysts prepared by the pulsed-spray evaporation chemical vapor deposition (PSE-CVD) method are effective for the catalytic removal of C2H2 [8], but the oxidation mechanism of C2H2 on the Cu2O surface remains unclear. Theoretical studies based on density functional theory (DFT) calculations have been widely used as an effective tool in revealing the gas-surface heterogeneous reaction mechanisms on Cu-based oxide surfaces [9–26]. DFT studies regarding the C2H2 hydrogenation process have been reported previously. Zhang et al. [27,28] have studied C2H2 hydrogenation to ethylene using DFT calculations, and it is found that the valence state of the surface Cu site has an important impact on the surface catalytic ability toward the C2H2 hydrogenation to ethylene. Good command of the surface oxidation mechanism could be beneficial for the development of high-performance catalysts. Experiments could provide useful information by studying the dependency of catalysts’ performance on the preparation methods and macroscopic parameters, such as temperature, pressure, PH, etc. Proper characterizing techniques, such as SEM, XPS, XRD, etc., could also throw light upon the surface morphology and surface properties, which could help better understand the nature of the catalytic process. In addition, theoretical studies based on DFT calculations could also reveal the intrinsic surface reaction mechanism, and the effect of surface sites and vacancies on the catalytic performance is still needed. The establishment of a proper surface model is of importance for the theoretical investigation of the C2H2 partial oxidation process on the Cu2O surface. The Cu2O (111) plane is the most widely used surface model to reveal the heterogeneous reaction mechanism on the Cu2O surface due to its thermodynamic stability, while many of them used the bulk-terminated models (the stoichiometric surface model or the perfect surface model) [13,16,29–31] but not the more stable Cu2O (111)–CuCUS surface model as proposed by Soon et al. [32], and the importance of the CuCUS vacancy has also been confirmed by Önsten et al. [33] experimentally. Our previous study also found that the defective Cu2O (111)–CuCUS surface model could improve the surface activity toward CO oxidation [34] than the perfect one. Therefore, it is of significance to consider the surface defects when studying Cu2O surface chemistry.

To provide a better understanding of the reaction mechanism of C2H2 on the Cu2O surface, the adsorption and reaction processes of C2H2 on the Cu2O surface models were studied based on DFT calculations in this study. The reaction processes of C2H2 on the Cu2O surface models, including the adsorption process, decomposition process, and H-abstraction reactions, by a variety of radicals and O2 have been studied. The effect of the surface defect on the C2H2 elementary reaction steps has been explored by studying the C2H2 conversion on both the stoichiometric perfect Cu2O (111) surface model and the Cu2O (111)–CuCUS defective surface model. The rate constants have been calculated and the parameters are provided in the Arrhenius form, which could be helpful for heterogeneous kinetic modeling studies.

2. Computational Details

DFT calculations were performed using the DMol3 code [35,36]. The generalized gradient approximation (GGA) functional of Perdew–Burke–Ernzerhof (PBE) [37] was used for exchange and correlation potential. The double numerical basis set plus the polarization (DNP) basis set was used for all the calculations. The DFT semi-core pseudopotentials (DSPP) core treatment was used for inner core pseudopotential treatment, which introduces relativistic correction into the cores. Transition state structures were preliminarily searched by the combination of linear synchronous transit (LST) and quadratic synchronous transit (QST) method and then optimized using the eigenvector following (EF) method to validate
only one imaginary vibrational mode, which corresponds to a first-order saddle point on the potential energy surface and correctly connects the reactant and the product of each elementary reaction.

A higher computational accuracy has been used in the current work compared with our previous works [29,34]. The orbital cut-off has increased from 4.0 to 4.4 Å, and the convergence threshold of the self-consistent field (SCF) has increased to 1.0×10^{-5} from 1.0×10^{-5}. The convergence criteria of energy, maximum force, and maximum displacement are 1.0×10^{-5} Ha, 0.002 Ha/Å, and 0.005 Å, respectively. For the crystal optimization, a $4 \times 4 \times 4$ Monkhorst–Pack k-point grid was used. The surface planes were built by cleaving the Cu$_2$O (111) surface from the optimized Cu$_2$O crystal. A sheet of 10 Å vacuum layer was placed over the surface slab to avoid interference from imaging surface planes due to the periodic boundary conditions. The defective surface model was established by removing the top and bottom layer unsaturated CuCUS sites. A $3 \times 3 \times 1$ Monkhorst–Pack k-point grid was used for the energy calculations of the succeeding surface reactions.

Adsorption energy (E_{ad}) is used to evaluate the interaction between the surface and the adsorbate, which is defined as:

$$E_{ad} = E_{sys} - E_{ads} - E_{sur}$$

where E_{sys} is the energy of the system after adsorption; E_{ads} is the energy of the adsorbate before adsorption; E_{sur} is the energy of the clean surface before adsorption.

The Gibbs free energy of activation was calculated by combining zero-point energy (ZPE), the electronic energies calculated at 0 K, and the thermal corrections at elevated temperatures. For surface species, the translations and rotations were converted into frustrated oscillation modes and were included in the vibration analysis [38]. Reaction rate constants of elementary reaction steps were calculated based on harmonic transition-state theory (HTST) [29,34,38,39], which is $k = \frac{k_B T}{h} \left(\frac{\Delta G_a}{RT} \right)$, where k is reaction rate constant, k_B is the Boltzmann constant, T is temperature, h is the Planck constant, R is the universal gas constant, and ΔG_a is the Gibbs free energy of activation. Detailed calculation processes can be found elsewhere [34,40].

3. Results and Discussion

3.1. Perfect and Defective Cu$_2$O (111) Surface Models and C$_2$H$_2$ Adsorption

The (111) surface plane of Cu$_2$O crystal has been used throughout this study as it is the most thermodynamically stable and, therefore, dominantly exposed low-index surface plane [29,34,41,42]. The perfect and the CuCUS-defective Cu$_2$O (111) surface models have been established, as shown in Figure 1. The lattice constant of the perfect Cu$_2$O (111) crystal after geometric optimization is 4.33 Å as a result of the improved convergence accuracy, which is close to the previously reported values (4.32 Å [43]) and experimental values (4.27 Å [23]). The perfect Cu$_2$O (111) surface model is stoichiometric with the Cu/O ratio to be exactly two, and it contains four kinds of surface top-sites on the top layer, including the saturated copper (CuCSS) site, the saturated oxygen (OCSS) site, the unsaturated copper (CuCUS), and the unsaturated oxygen (OCLUS) site, while the defective Cu$_2$O (111) surface model only comprises the CuCSS, OCCSS, and OCLUS sites, as the top and bottom CuCUS sites are missing. The CuCUS sites are active in absorbing the molecules, but the strong covalent bond between the adsorbate and the CuCUS sites may hinder the following surface reactions.

The stable adsorption structure of C$_2$H$_2$ on the Cu$_2$O (111) surface was explored by comparing the adsorption energies of C$_2$H$_2$ on different surface sites of the Cu$_2$O (111) surface models. One C$_2$H$_2$ molecule was placed on different surface sites, including the surface CuCUS site, the CuCSS site, the OCLUS site, and the OCLUS site, and the adsorption energies were obtained after the geometric optimization process. Only the most stable adsorption structure corresponding to the largest adsorption energy is presented.
The adsorption processes of C2H2 on the perfect and defective Cu2O (111) surface models are shown in Figure 2. For the adsorption on the perfect Cu2O (111) surface model, a C2H2 molecule will first adsorb over the surface unsaturated CuCUS site with the energy release of 1.13 eV, and the linear structure of C2H2 is slightly distorted with the O–C–C angles decreasing from both 180° to 162° and 169°. The C–C bond length of C2H2 increases to 1.242 from 1.211 Å in the gas phase and the C–H bond length also increases to 1.077 and 1.081 from 1.071 Å. The activated C2H2 molecule will then overcome the energy barrier of 0.70 eV and interacts with one surface lattice OCUS site and its neighboring CuCUS site and one CuCSS site, forming a chemisorbed structure depicted as FS in Figure 2a with the heat release of 1.78 eV in total. For the same process on the defective Cu2O (111) surface model. One C2H2 molecule will first undergo a physisorption process releasing 0.20 eV. The bond length of the C–H bond close to the surface increases to 1.076 Å, while the bond lengths of the other C–H bond and the C–C bond are almost unchanged after physisorption. The physisorbed C2H2 will then overcome the energy barrier of 0.81 eV and react with the surface OCUS site to form an adsorbed CHCHO* species, which is bonded to three surface CuCSS sites. The whole reaction process on the defective Cu2O (111) surface model releases 1.26 eV. By comparison, the perfect Cu2O (111) surface model is more favorable for the C2H2 adsorption at 0 K with a lower energy barrier and larger energy release, which is due to the existence of the active CuCUS site in activating the C2H2 bond.
3.2. Decomposition of C$_2$H$_2$ on the Perfect and the Defective Cu$_2$O (111) Surface Models

The direct decomposition processes of the chemisorbed C$_2$H$_2^*$ molecule undergoing the cleavage of the C-H bond on the Cu$_2$O (111) surface models are first investigated, which represents the surface activity toward C$_2$H$_2$ direct decomposition when there are no other adsorbates on the surface. Reaction energy profiles and the structures of the initial states, transition states, and final states are provided in Figure 3. The energy barrier of the reaction process on the perfect Cu$_2$O (111) surface model is 1.92 eV, and the reaction is an exothermic process releasing 0.21 eV. The adsorbed C$_2$H$_2$ molecule will undergo an H-abstraction process, and the H atom will shift to the surface CuCUS site after the H-abstraction process. The C$_2$H part will react with the lattice O$_{CUS}$ site and form an adsorbed HCCO* species on the surface after the reaction. The H-C-C part of the formed HCCO* species has a nearly linear structure with the H-C-C angle to be 177°. As for the direct decomposition of C$_2$H$_2$ on the defective Cu$_2$O (111) surface model, the energy barrier has increased to 2.46 eV, and the reaction is an endothermic process adsorbing 0.36 eV. Therefore, the decomposition of the chemisorbed C$_2$H$_2$ on both the perfect and the defective Cu$_2$O (111) surface models is hard to happen in terms of the reaction energy barrier, and the perfect Cu$_2$O (111) surface model is more favorable than the defective one comparatively, which is due to the existence of the neighboring active CuCUS site.

3.3. H-Abstraction Reactions of Chemisorbed C$_2$H$_2$ by O$_2$ on the Cu$_2$O (111) Surface Models

The H-abstraction reactions are important in the consumption of C$_2$H$_2$, hence the H-abstraction of the chemisorbed C$_2$H$_2$ by O$_2$ was studied in this section. The Langmuir–Hinshelwood reaction mechanism featuring the reaction between two adsorbed molecules on the perfect and defective Cu$_2$O (111) surface models is studied. The left part of Figure 4 shows the H-abstraction process on the perfect Cu$_2$O (111) surface model. The surface unsaturated CuCUS site is active for O$_2$ adsorption, and an O$_2$ molecule will adsorb on the CuCUS site close to the chemisorbed C$_2$H$_2$ molecule, releasing 1.09 eV. Then, one H atom of the chemisorbed C$_2$H$_2$ will transfer to the adsorbed O$_2$ forming an adsorbed HO$_2$ molecule by overcoming the energy barrier of 1.43 eV. The reaction releases 0.23 eV with the formation of an adsorbed HO$_2$ and an adsorbed HCCO species on the surface.
3.4. H-Abstraction and H-Addition of Chemisorbed C$_2$H$_2$ by Atomic H

The reaction between a chemisorbed C$_2$H$_2$ and an adsorbed atomic H via the LH mechanism is further studied in this section. The neighboring adsorbed atomic H, as shown in Figure 5, is bonded to the surface unsaturated Cu$_{CUS}$ site, and it could attack the chemisorbed C$_2$H$_2$ and form an adsorbed H$_2$ and an adsorbed HCCO species together with a lattice O$_{CUS}$. The reaction process is endothermic with energy adsorption of 0.78 eV, and the energy barrier is 2.75 eV. The chemisorbed C$_2$H$_2$ could also react with an adsorbed H together with the lattice O to form a CH$_2$CHO species, as shown in the right part of Figure 5, on the perfect Cu$_2$O (111) surface model. The energy barrier of the reaction process is 1.78 eV, which is lower than that of the H-abstraction reaction of the adsorbed C$_2$H$_2$ with an energy barrier of 2.75 eV. In terms of the reaction energy, the formation of CH$_2$CHO needs to adsorb 0.67 eV, while the H-abstraction process adsorbs 0.78 eV. Therefore, the adsorbed C$_2$H$_2$ is more likely to be converted to CH$_2$CHO when reacting with an adjacent adsorbed H together with a lattice O$_{CSS}$ site on the perfect Cu$_2$O (111) surface model.
3.4. H-Abstraction and H-Addition of Chemisorbed C2H2 by Atomic H

The pre-adsorbed oxygen molecule and radicals, including H, OH, O, HO2, and CH3, on the perfect Cu2O (111) surface model are compared in Figure 6. The IS state also incorporates the energy release of various radicals on the surface unsaturated CuCUS site after adsorption. The interaction between the O radical and the surface releases the largest amount of energy (−4.56 eV after adsorption), followed by HO2, OH, H, CH3 radicals, and O2 with the adsorption energy of −3.79, −3.61, −3.07, −2.21, and −1.09 eV, respectively. The energy barriers have been listed in the left corner of Figure 6. The H-abstraction of the chemisorbed C2H2 by OH and O2 have similar barriers, which are 1.39 and 1.43 eV, while the H-abstraction reactions by adsorbed HO2, H, CH3, and O radicals need to overcome higher energy barriers, which are 1.64, 2.75, 2.15, and 2.07 eV. The H-abstraction reactions by all the adsorbed radicals considered are exothermic except for H radical, indicating that the H-abstraction reactions on the perfect Cu2O (111) surface model is thermodynamically favorable.

3.5. A Comparison of H-Abstraction Reactions of Chemisorbed C2H2 by Different Radicals

The energy profile of the interaction between the chemisorbed C2H2 species and the pre-adsorbed oxygen molecule and radicals, including H, OH, O, HO2, and CH3, on the perfect Cu2O (111) surface model are compared in Figure 6. The IS state also incorporates the energy release of various radicals on the surface unsaturated CuCUS site after adsorption. The interaction between the O radical and the surface releases the largest amount of energy (−4.56 eV after adsorption), followed by HO2, OH, H, CH3 radicals, and O2 with the adsorption energy of −3.79, −3.61, −3.07, −2.21, and −1.09 eV, respectively. The energy barriers have been listed in the left corner of Figure 6. The H-abstraction of the chemisorbed C2H2 by OH and O2 have similar barriers, which are 1.39 and 1.43 eV, while the H-abstraction reactions by adsorbed HO2, H, CH3, and O radicals need to overcome higher energy barriers, which are 1.64, 2.75, 2.15, and 2.07 eV. The H-abstraction reactions by all the adsorbed radicals considered are exothermic except for H radical, indicating that the H-abstraction reactions on the perfect Cu2O (111) surface model is thermodynamically favorable.

Figure 5. Energy profile of chemisorbed C2H2 reaction with atomic H into CH2CHO and HCCO on the perfect Cu2O (111) surface model.

Figure 6. Energy profiles of C2H2 H-abstraction by various radicals on the perfect Cu2O (111) surface model.
Cu₂O (111) surface model are compared in Figure 7. In general, the energy release of the radicals on the defective surface is lower than those on the perfect Cu₂O (111) surface model, which is due to the absence of the unsaturated surface CuCUS site. The adsorption of an atomic O on the defective Cu₂O (111) surface model releases the highest amount of energy (−3.22 eV), which is located at the bridge site of two surface CuCSS sites. The H-abstraction of the chemisorbed C₂H₂ by the adsorbed O radical need to get over the 0.52 eV energy barrier, which is the lowest among all the considered radicals and O₂, and it is also lower than that on the perfect Cu₂O (111) surface model. The bridge site of two neighboring CuCSS sites is also the adsorption site for OH radicals, and the energy barrier of the H-abstraction process by OH is 0.91 eV. The energy barriers of the H-abstraction by other adsorbed radicals, including O₂, HO₂, and H radicals are 0.97, 0.98, and 1.17 eV, respectively, which are more active than the same processes on the perfect Cu₂O (111) surface model. Therefore, the CuCUS defect could improve the Cu₂O (111) surface activity toward the H-abstraction of C₂H₂ via the LH mechanism.

![Figure 7. Energy profiles of C₂H₂ H-abstraction by various radicals on the defective Cu₂O (111) surface model.](image)

3.6. Temperature Dependence of Elementary Reaction Rate Constants

The above-mentioned discussions are based on the DFT calculation results at 0 K, and the rate constants at elevated temperatures are more relevant to the real circumstances, and the temperate dependence of elementary reaction rates is discussed in this section. The Gibbs free energy of activation (ΔG) of the elementary reactions, including the C₂H₂ chemisorption, C₂H₂ direct decomposition, and H-abstraction of C₂H₂ by O₂, are shown in Figure 8. ΔG denotes the Gibbs energy difference between the transition state and the initial state, and a larger ΔG corresponds to a smaller reaction rate constant at a given temperature according to the transition state theory. Except for the reaction of H-abstraction by O₂ on the defective Cu₂O (111) surface model, the ΔG of all the considered reactions are positively correlated to the temperature. For the reactions of C₂H₂ chemisorption and the direct decomposition of the chemisorbed C₂H₂ into an adsorbed C₂H and an atomic H species, the perfect Cu₂O (111) surface model shows better performance over the defective Cu₂O (111) surface model, while the H-abstraction process is more favorable on the defective Cu₂O (111) surface model than the perfect one, so the defective surface could facilitate the H-abstraction process of C₂H₂ by O₂.
The reaction rate constants of elementary reaction steps are further calculated based on transition state theory, and the rate constants including C$_2$H$_2$ chemisorption, C$_2$H$_2$ direct decomposition, and the H-abstraction of C$_2$H$_2$ by O$_2$ are presented in Figure 9. The C$_2$H$_2$ chemisorption process is more active on the perfect Cu$_2$O (111) surface model than on the defective Cu$_2$O (111) surface model, and the reaction rate is about one order of magnitude higher. The C$_2$H$_2$ direct decomposition rate constants are the slowest regardless of the perfect or the defective Cu$_2$O (111) surface models compared with other elementary reaction steps considered in Figure 9, and the rate on the defective surface model is slower than on the perfect surface. The rate constant of H-abstraction by O$_2$ on the defective surface model is remarkably higher than on the perfect one, and the rate constant is faster by about 4.4 orders of magnitudes at 1000 K. Therefore, the perfect Cu$_2$O (111) surface model is more favorable for the C$_2$H$_2$ chemisorption process, while the defective surface model could be beneficial for the H-abstraction reaction of C$_2$H$_2$ by O$_2$ over the considered temperature range from room temperature to 1000 K. In terms of the reaction rate constants, the direct decomposition of C$_2$H$_2$ is less likely to proceed compared with the H-abstraction process. Therefore, the chemisorption and the succeeding H-abstraction process by O$_2$ could be the possible partial oxidation reaction pathway of C$_2$H$_2$ on the Cu$_2$O (111) surface model. The chemisorption of C$_2$H$_2$ is the rate-determining step on the defective Cu$_2$O (111) surface model, and the H-abstraction by the O$_2$ process is the rate-determining step on the perfect Cu$_2$O (111) surface model.
The calculated rate constants are then converted into the Arrhenius form with the A, n, and E parameters provided in Table 1 for future heterogeneous kinetic modeling works.

Table 1. Calculated rate constants of C$_2$H$_2$ elementary reactions on the perfect and defective Cu$_2$O (111) surface models, units are in K, kcal, mol, s, and cm.

No.	Elementary Reactions	A	n	E
R1	C$_2$H$_2$ chemisorption on the perfect Cu$_2$O (111) surface	5.11×10^{13}	-0.687	15.117
R2	C$_2$H$_2$ decomposition on the perfect Cu$_2$O (111) surface	1.15×10^{10}	0.906	40.193
R3	C$_2$H$_2$ H-abstraction on the perfect Cu$_2$O (111) surface by O$_2$	3.16×10^{10}	0.689	29.443
R4	C$_2$H$_2$ chemisorption on the defective Cu$_2$O (111) surface	1.98×10^{11}	-0.021	18.130
R5	C$_2$H$_2$ decomposition on the defective Cu$_2$O (111) surface	5.13×10^{7}	1.656	51.245
R6	C$_2$H$_2$ H-abstraction on the defective Cu$_2$O (111) surface by O$_2$	8.15×10^{12}	0.588	18.679

4. Conclusions

The adsorption and oxidation of C$_2$H$_2$ on the perfect stoichiometric and Cu$_{CUS}$-defective Cu$_2$O (111) surface models are studied using DFT calculations. The perfect Cu$_2$O (111) surface model is active in adsorbing the C$_2$H$_2$ molecule with 1.13 eV adsorption energy and an energy barrier of 0.70 eV to form the chemisorption, while the adsorption of C$_2$H$_2$ on the defective Cu$_2$O (111) surface model only releases 0.20 eV. The energy barrier of the C$_2$H$_2$ chemisorption on the defective surface model is 0.81 eV which is close to that of the perfect model. The reaction rate of H-abstraction of the chemisorbed C$_2$H$_2$ on the defective surface model is much faster than on the perfect surface model with the energy barrier decreasing from 1.43 to 0.97 eV at 0 K. The H-abstraction of C$_2$H$_2$ by O$_2$ is about 4.4 orders of magnitudes faster at 1000 K on the defective Cu$_2$O (111) surface model than on the defective Cu$_2$O (111) model. Therefore, the surface defect featuring the absence of surface unsaturated Cu$_{CUS}$ sites significantly facilitates the H-abstraction of C$_2$H$_2$ by O$_2$ process. The partial oxidation of C$_2$H$_2$ on the Cu$_2$O (111) surface model is likely to proceed by the chemisorption of C$_2$H$_2$ and a succeeding H-abstraction process by O$_2$. C$_2$H$_2$ chemisorption is the rate-determining step on the defective Cu$_2$O (111) surface model and the H-abstraction process is the rate-determining step on the perfect Cu$_2$O (111) surface model. The activity of H-abstractions of C$_2$H$_2$ via the LH mechanism by various radicals follows the order of OH > O$_2$ > HO$_2$ > O > CH$_3$ > H from high to low on the perfect Cu$_2$O (111) surface model. On the defective Cu$_2$O (111) surface model, the activity follows the order: O > OH > O$_2$ > HO$_2$ > H > CH$_3$.

Author Contributions: Conceptualization, L.-N.W. and Z.-Y.T.; Methodology, W.Q.; Writing—original draft preparation, L.-N.W.; Writing—review and editing, Z.-Y.T. and W.Q. All authors have read and agreed to the published version of the manuscript.

Funding: The authors are grateful for the financial support from the Natural Science Foundation of China (No. 52006220, 51976216/51888103/M-0139/52161145105), National Key R&D Program of China (2021YFA0716204), Beijing Municipal Natural Science Foundation (JQ20017), K.C. Wong Education Foundation (GJTD-2020-07), and the National Science and Technology Major Project (J2019-III-0005-0048).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. O’Neil, M.J. *The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals*; RSC Publishing: Cambridge, UK, 2013.
2. Frenklach, M.; Wang, H. Detailed modeling of soot particle nucleation and growth. *Symp. (Int.) Combust.* 1991, 23, 1559–1566. [CrossRef]
32. Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation. *Phys. Rev. B* 2007, 75, 125420. [CrossRef]

33. Önsten, A.; Weissenrieder, J.; Stoltz, D.; Yu, S.; Gothelid, M.; Karlsson, U.O. Role of Defects in Surface Chemistry on Cu$_2$O (111). *J. Phys. Chem. C* 2013, 117, 19357–19364. [CrossRef]

34. Wu, L.-N.; Tian, Z.-Y.; Qin, W. DFT Study on CO Catalytic Oxidation Mechanism on the Defective Cu$_2$O (111) Surface. *J. Phys. Chem. C* 2018, 122, 16733–16740. [CrossRef]

35. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. *J. Chem. Phys.* 1990, 92, 508–517. [CrossRef]

36. Delley, B. From molecules to solids with the DMol3 approach. *J. Chem. Phys.* 2000, 113, 7756–7764. [CrossRef]

37. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* 1996, 77, 3865–3868. [CrossRef] [PubMed]

38. Piskorz, W.; Zasada, F.; Stelmachowski, P.; Diwald, O.; Kotarba, A.; Sojka, Z. Computational and Experimental Investigations into N$_2$O Decomposition over MgO Nanocrystals from Thorough Molecular Mechanism to ab initio Microkinetics. *J. Phys. Chem. C* 2011, 115, 22451–22460. [CrossRef]

39. Vineyard, G.H. Frequency factors and isotope effects in solid state rate processes. *J. Phys. Chem. Solids* 1957, 3, 121–127. [CrossRef]

40. Farberow, C.A.; Dumesic, J.A.; Mavrikakis, M. Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111). *ACS Catal.* 2014, 4, 3307–3319. [CrossRef]

41. Islam, M.M.; Diawara, B.; Maurice, V.; Marcus, P. Bulk and surface properties of Cu$_2$O: A first-principles investigation. *J. Mol. Struct. THEOCHEM* 2009, 903, 41–48. [CrossRef]

42. Schulz, K.H.; Cox, D.F. Photoemission and low-energy-electron-diffraction study of clean and oxygen-dosed Cu$_2$O (111) and (100) surfaces. *Phys. Rev. B* 1991, 43, 1610–1621. [CrossRef]

43. Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation. *Phys. Rev. B* 2006, 73, 165424. [CrossRef]