The association between plasma furin and cardiovascular events after acute myocardial infarction

Zhi-wei Liu (✉ ciweichiwei@163.com)
Chinese PLA General Hospital https://orcid.org/0000-0003-0906-8485

Qiang Ma
Chinese PLA General Hospital

Jie Liu
Chinese PLA General Hospital

Jing-Wei Li
Chinese PLA General Hospital

Yun-Dai Chen
Chinese PLA General Hospital

Research article

Keywords: Furin, acute myocardial infarction, major adverse cardiac events.

DOI: https://doi.org/10.21203/rs.3.rs-41696/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Furin is the key enzyme to cleave pro-BNP and plays a critical role in the cardiovascular system through its involvement in the lipid metabolism, blood pressure and formation of atheromatous plaques. NT-proBNP and recently corin, which is also a key enzyme to cleave pro-BNP, have been approved as predictors of prognosis after acute myocardial infarction (AMI). We here conducted this cohort study to investigate the relationship between plasma furin and the prognosis outcome in patients after AMI.

Methods: We enrolled 1100 AMI patients and measured their plasma furin concentration. The primary endpoint was the major adverse cardiac events (MACE), a composite of cardiovascular (CV) death, non-fatal myocardial infarction or non-fatal stroke. The association of plasma furin concentration with AMI outcomes was explored by using Kaplan–Meier curve and multivariate Cox regression analysis.

Results: Our results showed that slight increase of mean cTNT in patients with higher furin concentration (P=0.016). Over a median follow-up of 31 months, multivariate Cox regression analysis suggested that plasma furin was not associated with MACE (HR: 1.01; 95% CI: 0.93-1.06; P=0.807) after adjustment for potential conventional risk factors. However, plasma furin was associated with non-fatal MI (HR: 1.09; 95% CI: 1.01-1.17; P=0.022) after fully adjustment. Subgroup analysis indicated no relationship between plasma furin and MACE in different subgroup populations.

Conclusions: Our study demonstrated that plasma furin was not associated with risk of MACE and may not be used as a predictor of poor prognosis after AMI. But higher levels of plasma furin may be associated with higher risk of non-fatal MI.

Introduction

Cardiovascular diseases (CVD) remain a major cause of premature death and chronic disability for all regions in the world[1]. Acute myocardial infarction is one of the severe CVD. To help select treatment strategy for AMI patients at an early stage, current tools available to clinicians involve scoring systems such as Global Registry of Acute Coronary Events (GRACE) scores and Thrombolysis In Myocardial Infarction (TIMI)[2, 3]. Troponin I and NT-proBNP also have been approved as predictors of prognosis after AMI[4, 5]. However new biomarkers are still needed to predict poor prognosis, or help us better understand pathological process in AMI patients.

A recent study has shown that corin can be used as an independent predictor of prognosis in patients with AMI[6]. Furin, as another core enzyme which cleaves proBNP into active BNP fragment together with corin[7], may be associated with poor prognosis after AMI.

Furin is a mammalian subtilisin/kex2p-like endoprotease, which involved in processing of various precursor proteins[8]. Many studies have shown that furin plays an important role in cardiovascular system through regulation of lipid and cholesterol metabolism, blood pressure and the formation of
atherosclerotic lesions[9]. Michael T et al. found that circulating furin cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9), of which the latter regulates LDL receptor and serum atheromatous plaque[10, 11]. Furin is also involved in BP regulation by shedding endogenous (pro)renin receptor[12], promoting migration and proliferation of vascular smooth muscle cells[13] and activation of Epithelial Na+ channel[14]. Moreover, Gopala K et al. observed that inhibition of furin in the atherosclerotic segment of mice decreased vascular remodeling and atherosclerosis[15]. Another study has found that furin is a better predictor compared with BNP and corin for CV outcomes in type 2 diabetes patients[16]. However, studies focus on the association of furin and cardiovascular events after AMI are lacking. We therefore carried out such analysis in our study to evaluate the prognostic utility of plasma furin in AMI patients.

Methods

Study population

A total of 1100 AMI patients were consecutively admitted to the People's Liberation Army General Hospital (PLAGH) between January 2013 and September 2017. All participants provided written informed consent. This study was completely approved by the institutional review board of the PLAGH and was in accordance with the Declaration of Helsinki. AMI was diagnosed if a patient had a cardiac troponin I level exceeding the 99th percentile of a normal reference population with at least one of the following: chest pain lasting>20 min, diagnostic serial electrocardiographic changes consisting of new pathologic Q waves, or ST-segment and T-wave changes[17].

Biochemical measurements

Researchers who were blinded to patients' characteristics and outcomes conducted biochemical measurements. Blood samples were collected from AMI patients on the first morning after admission. Plasma was obtained by centrifugation for 10 min at 3,000 rpm and then stored at -80°C until further analyses. Plasma furin concentration were determined in EDTA-treated plasma samples using commercial available kit (Catalog # EHFURIN, ThermoFisher, USA) according to manufactural instruction.

Outcome events and follow-up

Clinical, demographic and biochemical data of patients were recorded from hospital files and computer records. The primary endpoint for this study was major adverse cardiac events (MACE), a composite of cardiovascular (CV) death, non-fatal myocardial infarction or non-fatal stroke. Other endpoints of interest included hospitalization for heart failure (HF), non-CV death and all death. Hospitalization for HF was defined as a hospital readmission mainly due to heart failure. Recurrent MI was diagnosed in accordance with established criteria as described[17]. Endpoints were obtained by reviewing clinical records of re-admitted patients, or by contacting each patient individually.

Statistical analyses
Continuous variables were compared using the Kruskal-Wallis test. Categorical variables were expressed as counts (percentages) and compared using the Chi-square test. The correlation analysis was performed using Spearman method. The association of plasma furin concentration with AMI outcomes was explored by using Kaplan–Meier methods with stratifications by furin tertiles, and results were also evaluated with Cox proportional hazard regression models. Adjusted covariates included in the multivariate models have been previously proved to associate with MACE. Model 1 adjusted for age and sex. Model 2, the fully adjusted model, additional adjusted for: eGFR, BMI, smoking, history of diabetes, hypertension and myocardial infarction, STEMI/non-STEMI. Subgroup analysis was undertaken to determine whether furin was associated with MACE in different age, gender, BMI, smoking status, diabetes, hypertension and STEMI / NSTEMI subgroups. Multiple linear regression analysis was performed to identify variables that may independently associated with furin in all study population. All statistical tests were double-tailed and a P value less than 0.05 was considered significant. All analyses were performed with SAS version 9.4.

Results

Baseline data

The mean age of 1,100 study participants was 61 ± 13 years; 77% were male. The distribution of plasma furin is left-skewed (sFigure 1). The median plasma furin levels were 156.6 (interquartile range, 102.4-228.8) pg/ml. There was no significant difference between male and female patients (158.5 [103.4-226.9] pg/ml for the male versus 145.9 [103.4-226.9] pg/ml for the female; P= 0.360), between diabetic and non-diabetic patients (160.9 [104.2-231.0] pg/ml for the diabetic versus 155.1 [101.6-224.9] pg/ml for the non-diabetic; P= 0.535), between hypertensive and non-hypertensive patients (154.0 [101.7-222.6] pg/ml for the hypertensive versus 160.8 [103.0-232.1] pg/ml for the non-hypertensive; P= 0.233) and between STEMI and non-STEMI patients (160.7 [105.3-231.4] pg/ml for STEMI versus 147.2 [94.9-220.1]pg/ml for NSTEMI; P=0.079).

sFigure1. Distribution of Plasma furin in our population.

Association between plasma furin levels and clinical parameters

The baseline characteristics of the study population listed in Table 1. AMI patients were divided into 3 groups according to tertile of plasma furin (≤117.5pg/ml, 117.5-200pg/ml, ≥200pg/ml). Slightly increase of mean cTNT were in patients with higher furin levels (P = 0.016). There is no significant increase of NT-proBNP as furin increases (Table 1).

Table 1. Baseline variables according to tertile of plasma furin in AMI patients.
	Overall	≤117.5	117.5-200	≥200	P value
Patients, n	1100	356	374	370	
Anterior MI, n (%)	313 (29.6%)	100 (29.1%)	116 (32.4%)	97 (27.2%)	0.300
STEMI, n (%)	747 (69.6%)	231 (66.8%)	256 (70.7%)	260 (72.2%)	0.265
Age, year	61.0 (13.4)	60.8 (13.8)	61.6 (13.0)	60.7 (13.4)	0.489
Male, n (%)	817 (77.0%)	262 (75.9%)	275 (76.6%)	280 (78.4%)	0.718
Current smoker, n (%)	370 (41.9%)	127 (44.1%)	116 (38.5%)	127 (34.1%)	0.345
Medical history, n (%)					
Diabetes mellitus	394 (37.1%)	122 (35.7%)	140 (38.8%)	132 (36.9%)	0.690
Hypertension	456 (43.2%)	150 (44.0%)	159 (44.5%)	147 (41.2%)	0.624
MI	45 (4.1%)	14 (3.9%)	13 (3.5%)	18 (4.9%)	0.623
CKD	20 (1.9%)	8 (2.4%)	7 (2.0%)	5 (1.4%)	0.654
AF	10 (0.9%)	4 (1.1%)	4 (1.1%)	2 (0.5%)	0.648
LIPID	121 (11.0%)	40 (11.2%)	38 (10.2%)	43 (11.6%)	0.828
HF	5 (0.5%)	4 (1.1%)	0 (0.0%)	1 (0.3%)	0.090
Clinical assessment					
BMI, kg/m²	25.3 (3.6)	25.4 (3.8)	25.5 (3.7)	24.9 (3.3)	0.079
HBA1C, %	6.7 (1.6)	6.7 (1.6)	6.8 (1.6)	6.6 (1.6)	0.465
Glucose, mmol/ L	8.5 (3.9)	8.3 (3.5)	8.4 (4.0)	8.7 (4.3)	0.944
Cr, umol/ L	78.5 (68.0, 94.7)	79.1 (67.6, 95.6)	78.1 (67.6, 93.9)	78.0 (68.7, 93.8)	0.912
LVEF, %	50.5 (9.0)	51.0 (9.0)	50.1 (9.3)	50.5 (8.7)	0.509
cTNT, pg/mL	1.8 (0.5, 4.9)	1.4 (0.4, 3.9)	1.7 (0.5, 4.6)	2.1 (0.6, 6.2)	0.016
NT-proBNP, pg/mL	1566 (668, 3929)	1427 (610, 3490)	1587 (712, 4098)	1645 (709, 4049)	0.361
HR	77.6 (14.9)	76.5 (13.5)	77.3 (14.2)	78.8 (16.7)	0.591
CHOL, mmol/ L	4.3 (1.1)	4.2 (1.1)	4.4 (1.1)	4.2 (1.1)	0.601
TRIG, mmol/ L	1.3 (0.9, 1.8)	1.3 (0.9, 1.8)	1.3 (1.0, 1.9)	1.3 (0.9, 1.8)	0.453
LDL, mmol/ L	2.7 (0.9)	2.6 (0.9)	2.7 (1.0)	2.7 (0.9)	0.588
HDL, mmol/ L	1.1 (0.3)	1.1 (0.3)	1.1 (0.3)	1.1 (0.3)	0.771
AST, U/ L	45.6 (24.5, 108.3)	42.1 (24.3, 91.1)	43.9 (24.4, 100.3)	52.0 (26.6, 132.7)	0.112
ALT, U/ L	30.8 (19.6, 52.5)	31.6 (19.4, 51.7)	30.7 (19.7, 51.1)	31.1 (19.6, 55.1)	0.898
GGTV, U/ L	29.1 (19.3, 47.9)	28.4 (19.3, 48.5)	28.9 (19.3, 47.1)	29.7 (19.4, 51.0)	0.772
PT, s	14.1 (2.0)	14.0 (2.1)	14.0 (1.3)	14.3 (2.3)	0.114
APTT, s	39.4 (35.3, 46.8)	38.8 (35.3, 45.6)	39.3 (35.1, 45.9)	39.9 (35.4, 51.5)	0.304
DDIMER, ng/ L	0.4 (0.3, 0.8)	0.4 (0.3, 0.8)	0.4 (0.3, 0.8)	0.4 (0.3, 0.9)	0.653
Medications, n (%)					
Aspirin	1021 (96.3%)	334 (97.1%)	347 (96.7%)	340 (95.2%)	0.392
ACEI/ARB	434 (40.9%)	146 (42.4%)	158 (44.0%)	130 (36.4%)	0.093
Statin	1033 (97.5%)	338 (98.3%)	351 (97.8%)	344 (96.4%)	0.251
DIURETIC	572 (52.0%)	186 (52.2%)	193 (51.6%)	193 (52.2%)	0.996
CABBLOCKER	121 (11.0%)	45 (12.6%)	41 (11.0%)	35 (9.5%)	0.394
BETABLOCKER	528 (48.0%)	187 (52.5%)	178 (47.6%)	163 (44.1%)	0.070
GLP1	22 (2.0%)	6 (1.7%)	8 (2.1%)	8 (2.2%)	0.875
INSULIN	531 (48.3%)	158 (44.4%)	182 (48.7%)	191 (51.6%)	0.146
DPP4	49 (4.5%)	15 (4.2%)	16 (4.3%)	18 (4.9%)	0.895

Data are presented as mean (SD), median (interquartile range) or numbers (percentages). ACEI, angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blocker; BMI, body mass index; cTNT, cardiac troponin T; eGFR, estimated Glomerular Filtration Rate; LVEF, left ventricular ejection fraction; MI, myocardial infarction; STEMI, ST-elevation myocardial infarction.
In Spearman correlation analysis, the results showed that log furin did not correlate with age, blood glucose, HbA1c, left ventricular ejection fraction, log eGFR, log cTNT, log CKMB, log NT-proBNP (sTable 1).

Table 1. Spearman correlation analysis of log furin with covariates.

Age	Glucose	HbA1c	Log eGFR	LVEF	Log CKMB	Log cTNT	Log NT-proBNP	
Log Furin	0.007	0.022	-0.007	0.035	-0.003	0.051	0.065	0.018

Kaplan-Meier analysis

Over a median follow-up of 31 month, 133 cases of cardiovascular death, 37 cases of non-cardiovascular death, 26 cases of recurrent non-fatal MI, 22 cases of non-fatal stroke and 27 cases of hospitalization for heart failure occurred in this population. Kaplan-Meier survival analysis results suggested that furin was not associated with composite CV outcomes (Figure 1).

Figure 1. Kaplan–Meier analysis of MACE rates in AMI patients according to different furin category

COX regression analysis of end points

Cox regression analysis indicated that Increasing plasma furin levels was not associated with increasing risk of MACE (HR: 1.01; 95% CI: 0.93-1.06; P=0.807). In addition, for each endpoint of CV death, non-fatal MI, non-fatal stroke, non-CV death, all death or hospitalization for HF, our findings showed that plasma furin was not associated with all these end point except possible recurrent non-fatal MI (HR: 1.09; 95% CI: 1.01-1.17; P = 0.022). (Table 2)

Table 2. Every 50 unit increase of furin on cardiovascular outcomes
Event/No	Unadjusted	Model 1	Model 2				
	Event/No	HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value
MACE							
Low (≤117.5)	60/356	1.12 (0.80, 1.56)	0.519	1.18 (0.84, 1.66)	0.338	1.41 (0.91, 2.17)	0.125
Median (117.5-200)	57/374	Ref.	Ref.	Ref.			
High (≥200)	64/370	1.04 (0.74, 1.46)	0.824	1.08 (0.77, 1.53)	0.655	1.20 (0.76, 1.90)	0.433
50 pg/mL increase	181/1100	1.01 (1.00, 1.03)	0.084	1.02 (1.00, 1.03)	0.030	1.01 (0.96, 1.06)	0.807
CV death							
Low (≤117.5)	46/356	1.17 (0.77, 1.78)	0.465	1.21 (0.79, 1.86)	0.376	1.29 (0.75, 2.22)	0.350
Median (117.5-200)	42/374	Ref.	Ref.	Ref.			
High (≥200)	45/325	1.10 (0.72, 1.67)	0.661	1.20 (0.78, 1.84)	0.410	1.02 (0.57, 1.83)	0.939
50 pg/mL increase	133/1100	1.01 (1.00, 1.03)	0.078	1.02 (1.00, 1.04)	0.013	0.99 (0.92, 1.06)	0.709
Non-fatal MI							
Low (≤117.5)	7/356	1.16 (0.41-3.30)	0.786	1.20 (0.42, 3.45)	0.734	1.68 (0.36, 7.90)	0.509
Median (117.5-200)	7/374	Ref.	Ref.	Ref.			
High (≥200)	12/370	1.67 (0.66, 4.25)	0.280	1.73 (0.68, 4.45)	0.253	5.12 (1.24, 21.2)	0.024
50 pg/mL increase	26/1100	1.02 (0.98, 1.07)	0.394	1.02 (0.98, 1.07)	0.316	1.09 (1.01, 1.17)	0.022
Non-fatal Stroke							
Low (≤117.5)	7/356	1.04 (0.38, 2.86)	0.945	0.99 (0.35, 2.74)	0.976	1.34 (0.41, 4.40)	0.625
Median (117.5-200)	8/374	Ref.	Ref.	Ref.			
High (≥200)	7/370	0.88 (0.32, 2.43)	0.806	0.83 (0.29, 2.41)	0.731	0.62 (0.15, 2.65)	0.521
50 pg unit increase	22/1100	0.92 (0.76, 1.11)	0.389	0.91 (0.74, 1.12)	0.358	0.85 (0.64, 1.14)	0.277
Hospitalized HF							
Low (≤117.5)	10/356	1.05 (0.44, 2.53)	0.908	1.08 (0.45, 2.60)	0.860	1.85 (0.53, 6.39)	0.333
Median (117.5-200)	10/374	Ref.	Ref.	Ref.			
High (≥200)	7/370	0.71 (0.27, 1.85)	0.479	0.74 (0.28, 1.94)	0.540	1.71 (0.48,6.10)	0.405
50 pg/mL increase	27/1100	0.99 (0.91, 1.09)	0.862	0.99 (0.90, 1.09)	0.876	1.03 (0.94,1.14)	0.490
Non-CV death							
Low (≤117.5)	16/356	1.68 (0.76, 3.71)	0.197	1.88 (0.85, 4.15)	0.121	1.70 (0.60, 4.79)	0.316
Median (117.5-200)	10/374	Ref.	Ref.	Ref.			
High (≥200)	11/370	1.11 (0.47, 2.61)	0.817	1.15 (0.49, 2.71)	0.097	0.58 (0.14, 2.39)	0.449
50 pg/mL increase	37/1100	1.01 (0.99, 1.04)	0.305	1.02 (1.00, 1.05)	0.093	0.94 (0.75,1.17)	0.561
All death							
Low (≤117.5)	62/356	1.28 (0.89, 1.85)	0.191	1.36 (0.93, 1.98)	0.112	1.37 (0.85, 2.22)	0.195
Median (117.5-200)	52/374	Ref.	Ref.	Ref.			
High (≥200)	56/370	1.11 (0.76, 1.62)	0.600	1.21 (0.83, 1.78)	0.327	0.94 (0.55, 1.59)	0.804
Model 1 adjusted for age and sex;
Model 2 adjusted for model 1 plus eGFR, BMI, smoking, history of diabetes, hypertension or myocardial infarction, STEMI/non-STEMI.

Subgroup analysis

Subgroup analysis according to age, gender, BMI, history of smoking, diabetes, hypertension, types of MI (STEMI / NSTEMI), showed that the association between furin and MACE did not differ in these subgroups (figure 2).

Figure 2. Furin on cardiovascular outcomes subgroup patients.

Finally, we constructed univariable cox regression analysis to identify variables that may independently associated with MACE in our population (table 3). The results showed that NT-proBNP (P < 0.001), age (P < 0.001), creatinine (P < 0.001), cTnT (P = 0.001), blood glucose (P = 0.001), diabetes history (P = 0.010), CKD history (P=0.023) and STEMI (P = 0.039) were positively associated MACE. In contrast, LVEF (P < 0.001), usage of aspirin (P < 0.001), ACEI / ARB (P < 0.001) and women (P = 0.001) were negatively associated with MACE.

Table 3. Univariable predictors of MACE after MI in all study population

Predictors	Chi-Square	HR (95% CI)	P
NT-proBNP (1000 pg/ml greater)	240.4268	1.09 (1.08, 1.11)	<0.001
Age (year older)	120.0124	1.07 (1.05, 1.08)	<0.001
LVEF (1% greater)	94.6846	0.93 (0.91, 0.94)	<0.001
Creatinine (10 unit increase)	21.6745	1.02 (1.01-1.03)	<0.001
Aspirin (Yes/No)	14.0069	0.38 (0.23, 0.63)	<0.001
ACEI/ARB (Yes/No)	12.1239	0.57 (0.42, 0.78)	<0.001
cTnT (1 μg/L greater)	11.4552	1.03 (1.01, 1.04)	0.001
Glucose (1 mg/dL greater)	11.4426	1.05 (1.02, 1.07)	0.001
Male	10.3531	0.61 (0.45, 0.82)	0.001
Diabetes (Yes/No)	6.6461	1.45 (1.09, 1.93)	0.010
CKD (Yes/No)	5.1332	2.40 (1.13, 5.10)	0.023
STEMI	4.2433	1.36 (1.01, 1.82)	0.039
Hypertension (Yes/No)	2.6197	1.27 (0.95, 1.69)	0.106
Furin (50 pg/mL greater)	2.1521	1.01 (1.00, 1.03)	0.142
Hba1c (1 unit greater)	1.7690	1.07 (0.97, 1.19)	0.184
Statin (Yes/No)	0.0710	0.90 (0.40, 2.02)	0.790

Discussion
Our study including 1,100 consecutive AMI patients demonstrated that plasma furin was not associated with MACE events, but may be associated with higher risk of non-fatal MI.

Furin can convert many inactive protein precursors into their active forms. Of these proteins, some play protective roles, while others play harmful roles. In lipid metabolism, furin cleaved PCSK9, which increases the LDL receptor, leading to decrease of LDL-C[11, 18]. On the other hand, ANGPTL 3 and 4, which have a consensus FURIN-recognition site can mediated endothelial lipase (EL) and lipoprotein lipase (LPL) inactivation[9, 19]. Renin receptor (RR), which transformed to its activated form by furin, binds renin or prorenin and consequently increases blood pressure[20]. Epithelial Na+ channel (ENaC), which could be active by furin, associates with increased blood pressure[14, 21]. However, transforming growth factor (TGF-β) is also activated by furin but it contributes to lower blood pressure[22, 23]. BNP activated by furin associates with low blood pressure through its diuretic and vasodilatory actions. In a word, the underlying mechanisms of plasma furin in cardiovascular system may be complex and contradictory.

Studies investigated the role of furin in cardiovascular system also appears complex. Li et al. suggested that the furin gene may be a candidate gene involved in human hypertension as the G allele of 1970C > G is a modest risk factor for hypertension[24]. On the contrary, a genome-wide association human study found that the genotype AA of rs4702 in the furin gene, which marked decreased with furin expression, was associated with both elevated SBP and DBP[25]. In addition, a study including 4678 relative-healthy European adults found that a higher baseline plasma furin was significantly associated with higher BMI, blood glucose and blood pressure[26]. However, the other study including 2312 relative-healthy Chinese adults indicated that a lower level of furin at baseline was significantly associated with higher blood glucose and blood pressure[27]. Our study showed that there is no significant relationship between plasma furin and BMI, blood pressure or blood glucose. These findings suggest a complicated role of furin may exists in cardiovascular system. A recent paper has found that plasma furin is positively associated with MACE after MI, however a detailed method of blood sample collection is not available from the method that forbid a direct comparison with our study[28].

Thus furin involves in a variety of complex mechanisms that interact with each other, which may finally causes the neutral effect to cardiovascular system. Mechanistic studies of furin on cardiovascular diseases should further clarify its activity and regulatory factors.

NT-proBNP can provide prognostic value for MACE in patients with AMI[4]. Our study has also verified this. A recent study has demonstrated two major post-translational modifications including reduction in proBNP glycosylation and increase in furin activity[29]. These synergistically lead to increase in circulating BNP and NT-proBNP[29], but neither concentrations of corin/furin nor corin activity increases. It is possible that an increase in furin activity but no plasma furin concentration are pivotal to the increase in circulating BNP in circumstances of AMI.

Our study found that plasma furin concentration potentially associated with recurrent non-fatal MI after fully adjustment for conventional risk factors. Previous studies investigated the role of furin in
atherosclerosis could explain the association. Earlier studies in different stages identified that furin mRNA increased after myocardial infarction in rat model and the expression of furin was negatively correlated with left ventricular ejection fraction[30, 31]. In addition, Turpeinen et al. found furin overexpressed in human atherosclerotic plaque and inhibition of furin decreased vascular remodelling and atherosclerosis in mouse models, suggesting that furin may play an important role in plaque progression[32]. Several pathophysiologic mechanisms also demonstrate that furin processes and activates many pro-inflammatory cytokines, such as TNF-α, IFN-γ, which contributes to atherosclerosis[33, 34]. Furthermore, furin levels in vascular endothelial cells affect monocyte-endothelial adhesion and migration[35]. In our study, slightly increase of cTNT were found in patients with higher furin levels. Higher peak concentration of cTnT reflect larger infarct area[5]. Therefore, it is reasonable to suggest that higher levels of furin should indicate progression of atherosclerosis and more severe or vulnerable plaque lesions, resulting in higher risk of recurrent nonfatal MI.

To the best of our knowledge, our study is the first to examine the association of plasma furin with risk of MACE in AMI patients. The results showed that plasma furin concentration was not associated with risk of MACE but may be associated with non-fatal MI. Our results highlighted larger sample size studies are needed to verify and detailed mechanism studies are encouraged to explore this. Our study has some limitations. First, this cohort study was conducted in a Chinese population, the generalizability of our findings to other populations with different genetic backgrounds and health profiles should be cautiously. Second, blood samples were collected in first morning after admission. There was no samples available at other time point after MI. The dynamic changes of furin during MI and the relationship between the changes to prognosis are still unknown. Third, we did not evaluate its differences between patients with and without MI, whether MI is associated with higher or lower plasma furin levels could not be identified by this study. Forth, the plasma furin activity was not measured, which may be different from plasma furin concentration, the degradation rate of furin substrate is a potential way to detect this. Lastly, the sample size did not provide enough power to detect a difference in end-points other than composite MACE outcomes.

Conclusion

Our study demonstrated that plasma furin was not associated with risks of MACE, but higher levels of plasma furin may be associated with higher risk of recurrent MI in AMI patients.

Abbreviations

AMI: acute myocardial infarction; AST: aspartate aminotransferase; ALT: alanine transaminase; ANP: Atrial Natriuretic Peptide; BMI: body mass index; cTNT: troponin T; CK-MB: creatine kinase-MB; CKD: Chronic Kidney Disease; CV: Cardiovascular; DM: Diabetes mellitus; eGFR: estimated glomerular filtration rate; ENaC: Epithelial Sodium Channels; HBA1C: glycosylated hemoglobin A1C; HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; LVEF: left ventricular ejection fraction; MACE: major adverse cardiac events; NSTEMI: Non-ST-segment elevation myocardial infarction; NT-
proBNP: N terminal pro B type natriuretic peptide; PCSK: proprotein convertase subtilisin/kexin; STEMI: ST-segment elevation myocardial infarction.

Declarations

Ethics approval and consent to participate

The study was reviewed and approved by the ethics committee of the PLAGH and is in accordance with the Declaration of Helsinki. Written informed consent was obtained from individual or guardian participants.

Consent for publication

Not applicable.

Availability of data and materials

The datasets that support the findings of this study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by the China Postdoctoral Science Foundation (2016M603025).

Authors' contributions

ZWL conceived the concept of the study and drafted the manuscript. ZWL and JWL performed the statistical analyses and drafted the manuscript. ZWL and QM collected baseline and follow-up data. QM and JL performed laboratory tests. YDC guided the writing of the article and is the first correspondent author. All authors have read and approved the manuscript.

Acknowledgements

Not applicable.

Authors' information

1 Department of Cardiology, People’s Liberation Army General Hospital, Beijing, China.

2 School of Medicine, Nankai University, Tianjin, China
References

1. GA R, C J, A A, F A, SF A, G A, M A, B A, T A, K A et al: Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J AM COLL CARDIOL 2017, 70(1):1-25.

2. EM A, M C, PJ B, CH M, T H, G P, B M, R C, D R, E B: The TIMI risk score for unstable angina/non-ST elevation MI: A method for prognostication and therapeutic decision making. JAMA 2000, 284(7):835-842.

3. KA E, MJ L, OH D, KS P, RJ G, Van de Werf F, SG G, CB G, PG S, JM G et al: A validated prediction model for all forms of acute coronary syndrome: estimating the risk of 6-month postdischarge death in an international registry. JAMA 2004, 291(22):2727-2733.

4. Heeschen C, Hamm CW, Mitrovic V, Lantelme N, White HD: N-Terminal Pro-B-Type Natriuretic Peptide Levels for Dynamic Risk Stratification of Patients With Acute Coronary Syndromes. CIRCULATION 2004, 110(20):3206-3212.

5. Zhou X, Chen J, Zhang Q, Shao J, Du K, Xu X, Kong Y: Prognostic Value of Plasma Soluble Corin in Patients With Acute Myocardial Infarction. J AM COLL CARDIOL 2016, 67(17):2008-2014.

6. Semenov AG, Tamm NN, Seferian KR, Postnikov AB, Karpova NS, Serebryanaya DV, Koshkina EV, Krasnoselsky MI, Katrukha AG: Processing of Pro-B-Type Natriuretic Peptide: Furin and Corin as Candidate Convertases2. CLIN CHEM 2010, 56(7):1166-1176.

7. K N: Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. The Biochemical journal 1997:625-635.

8. Ren K, Jiang T, Zheng X, Zhao G: Proprotein convertase furin/PCSK3 and atherosclerosis: New insights and potential therapeutic targets. ATHEROSCLEROSIS 2017, 262:163-170.

9. Lipari MT, Li W, Moran P, Kong-Beltrán M, Sai T, Lai J, Lin SJ, Kolumam G, Zavala-Solorio J, Izrael-Tomasevic A et al: Furin-cleaved Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Is Active and Modulates Low Density Lipoprotein Receptor and Serum Cholesterol Levels. J BIOL CHEM 2012, 287(52):43482-43491.

10. Essalmani R, Susan-Resiga D, Chamberland A, Abifadel M, Creemers JW, Boileau C, Seidah NG, Prat A: In Vivo Evidence That Furin from Hepatocytes Inactivates PCSK9. J BIOL CHEM 2011, 286(6):4257-4263.

11. Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G: Soluble Form of the (Pro)Renin Receptor Generated by Intracellular Cleavage by Furin Is Secreted in Plasma. HYPERTENSION 2009, 53(6):1077-1082.
processing of pro-nerve growth factor. *J BIOCHEM* 2013, **153**(2):197-207.

14. Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, Kleyman TR: *Epithelial Sodium Channels Are Activated by Furin-dependent Proteolysis.* *J BIOL CHEM* 2004, **279**(18):18111-18114.

15. Yakala GK, Cabrera-Fuentes HA, Crespo-Avilan GE, Rattanasopa C, Burlacu A, George BL, Anand K, Mayan DC, Corliano M, Hernández-Reséndiz S et al: *FURIN Inhibition Reduces Vascular Remodeling and Atherosclerotic Lesion Progression in Mice.* *Arteriosclerosis, Thrombosis, and Vascular Biology* 2019, **39**(3):387-401.

16. Fathy SA, Abdel Hamid FF, Zabut BM, Jamee AF, Ali MAM, Abu Mustafa AM: *Diagnostic utility of BNP, corin and furin as biomarkers for cardiovascular complications in type 2 diabetes mellitus patients.* *Biomarkers* 2015, **20**(6-7):460-469.

17. Thygesen K, Alpert JS, White HD: *Universal Definition of Myocardial Infarction.* *J AM COLL CARDIOL* 2007, **50**(22):2173-2195.

18. GF W, DC C, J P, L M, Q Y, S A, SM M, PHR B: *PCSK9 Inhibition with alirocumab increases the catabolism of lipoprotein(a) particles in statin-treated patients with elevated lipoprotein(a).* *Metabolism: clinical and experimental* 2020, **107**:154221.

19. AJ H, E S, SB P, N M, N J, JOL J: Growth hormone upregulates ANGPTL4 mRNA and suppresses lipoprotein lipase via fatty acids: Randomized experiments in human individuals. Metabolism: clinical and experimental 2020, 105:154188.

20. Gonzalez AA, Prieto MC: *Renin and the (pro)renin receptor in the renal collecting duct: Role in the pathogenesis of hypertension.* *Clin Exp Pharmacol P* 2015, **42**(1):14-21.

21. R Z, MK M, K S, N M, R Z, BL J, P S: *The epithelial Na channel α- and γ-subunits are cleaved at predicted furin-cleavage sites, glycosylated and membrane associated in human kidney.* *Pflugers Archiv : European journal of physiology* 2019, **471**:1383-1396.

22. Li Y, Shen XZ, Li L, Zhao TV, Bernstein KE, Johnson AK, Lyden P, Fang J, Shi P: *Brain Transforming Growth Factor-β Resists Hypertension Via Regulating Microglial Activation.* *Stroke* 2017, **48**(9):2557-2564.

23. Baumann J, Huang SF, Gassmann M, Tsao CC, Ogunshola OO: *Furin inhibition prevents hypoxic and TGFbeta-mediated blood-brain barrier disruption.* *Exp Cell Res* 2019, **383**(2):111503.

24. Li N, Luo W, Juhong Z, Yang J, Wang H, Zhou L, Chang J: *Associations between genetic variations in the FURIN gene and hypertension.* *BMC Med Genet* 2010, **11**(1):124.

25. Turpeinen H, Seppala I, Lyytikainen LP, Raitoharju E, Hutri-Kahonen N, Levula M, Oksala N, Waldenberger M, Klopp N, Illig T et al: *A genome-wide expression quantitative trait loci analysis of proprotein convertase subtilisin/kexin enzymes identifies a novel regulatory gene variant for FURIN expression and blood pressure.* *Hum Genet* 2015, **134**(6):627-636.

26. Fernandez C, Rysä J, Almgren P, Nilsson J, Engström G, Orho-Melander M, Ruskoaho H, Melander O: *Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality.* *J Intern Med* 2018, **284**(4):377-387.
27. He Y, Ren L, Zhang Q, Zhang M, Shi J, Hu W, Peng H, Zhang Y: **Serum furin as a biomarker of high blood pressure: findings from a longitudinal study in Chinese adults.** *HYPERTENS RES* 2019, **42**(11):1808-1815.

28. Wang YK, Tang JN, Han L, Liu XD, Shen YL, Zhang CY, Liu XB: **Elevated FURIN levels in predicting mortality and cardiovascular events in patients with acute myocardial infarction.** *METABOLISM* 2020, **111**:154323.

29. Vodovar N, Séronde M, Laribi S, Gayat E, Lassus J, Boukef R, Nouira S, Manivet P, Samuel J, Logeart D et al: **Post-translational modifications enhance NT-proBNP and BNP production in acute decompensated heart failure.** *EUR HEART J* 2014, **35**(48):3434-3441.

30. Chen Z, Lu S, Xu M, Liu P, Ren R, Ma W: **Role of miR-24, Furin, and Transforming Growth Factor-β Signal Pathway in Fibrosis After Cardiac Infarction.** *MED SCI MONITOR* 2017, **23**:65-70.

31. Sawada Y, Inoue M, Kanda T, Sakamaki T, Tanaka S, Minamino N, Nagai R, Takeuchi T: **Co-elevation of brain natriuretic peptide and proprotein-processing endoprotease furin after myocardial infarction in rats.** *FEBS LETT* 1997, **400**(2):177-182.

32. Turpeinen H, Raitoharju E, Oksanen A, Oksala N, Levula M, Lyytikäinen L, Järvinen O, Creemers JWM, Kähönen M, Laaksonen R et al: **Proprotein convertases in human atherosclerotic plaques: The overexpression of FURIN and its substrate cytokines BAFF and APRIL.** *ATHEROSCLEROSIS* 2011, **219**(2):799-806.

33. Pesu M, Muul L, Kanno Y, O'Shea JJ: **Proprotein convertase furin is preferentially expressed in T helper 1 cells and regulates interferon gamma.** *BLOOD* 2006, **108**(3):983-985.

34. Hipp MM, Shepherd D, Gileadi U, Aichinger MC, Kessler BM, Edelmann MJ, Essalmani R, Seidah NG, Reis E Sousa C, Cerundolo V: **Processing of Human Toll-like Receptor 7 by Furin-like Proprotein Convertases Is Required for Its Accumulation and Activity in Endosomes.** *IMMUNITY* 2013, **39**(4):711-721.

35. X Y, W Y, DG M, G Z, J H, RN P, M R, K W, S C, J W et al: **FURIN Expression in Vascular Endothelial Cells Is Modulated by a Coronary Artery Disease-Associated Genetic Variant and Influences Monocyte Transendothelial Migration.** *J AM HEART ASSOC* 2020, **9**(4):e14333.[1]

36. A D, G L, J R: **In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates.** *BIOCONJUGATE CHEM* 2009, **20**(8):1660-1666.