What Can We Learn Privately?

Sofya Raskhodnikova
Penn State University

Joint work with
Shiva Kasiviswanathan
Homin Lee
Kobbi Nissim
Adam Smith

Los Alamos
UT Austin
Ben Gurion
Penn State

To appear in SICOMP special issue for FOCS ’08
Private Learning

• **Goal:** machine learning algorithms that protect the privacy of individual examples (people, organizations,...)

• **Desiderata**
 – **Privacy:** Worst-case guarantee (differential privacy)
 – **Learning:** Distributional guarantee (e.g., \(\text{PAC learning}\))

• **This work**
 – Characterize classification problems learnable privately
 – Understand power of popular models for private analysis
What Can We Compute Privately?

Prior work:

• Function evaluation
 [DiNi,DwNi,BDMN,EGS,DMNS,\ldots]
 – Statistical Query (SQ) Learning [Blum Dwork McSherry Nissim 05]
 – Learning Mixtures of Gaussians [Nissim Raskhodnikova Smith 08]

• Mechanism design [McSherry Talwar 07]

This work: PAC Learning (in general, not captured by function evaluation)

Some subsequent work:

• Learning [Chaudhuri Monteleoni 08, McSherry Williams 09, Beimel Kasiwisanathan Nissim 10, Sarwate Chaudhuri Monteleoni]

• Statistical inference [Smith 08, Dwork Lei 09, Wasserman Zhou 09]

• Synthetic data [Machanavajjhala Kifer Abowd Gehrke Vilhuber 08,Blum Ligget Roth 08, Dwork Naor Reingold Rothblum Vadhan 09, Roth Roughgarden 10]

• Combinatorial optimization [Gupta Ligett McSherry Roth Talwar 10]
Our Results 1: What is Learnable Privately

PAC* = PAC learnable with poly samples, not necessarily efficiently

PAC* = Private PAC*
Basic Privacy Models

Local Noninteractive

Local (Interactive)

Centralized

- Most work in data mining
- “randomized response”, “input perturbation”, “Post Randomization Method” (PRAM), “Framework for High-Accuracy Strict-Privacy Preserving Mining” (FRAPP) [W65, AS00, AA01, EGS03, HH02, MS06]

Advantages:
- private data never leaves person’s hands
- easy distribution of extracted information (e.g., CD, website)
Our Results 2: Power of Private Models

$\text{Centralized} = \text{PAC}^*$

$\text{Privately PAC-learnable}$

$\text{Local} = \text{SQ}$

$\text{Local Noninteractive} = \text{Nonadaptive SQ}$

Painted Parity

Masked Parity

Parity

PAC* = PAC learnable with poly samples, not necessarily efficiently
Definition: Differential Privacy [DMNS06]

Intuition: Users learn roughly the same thing about me whether or not my data is in the database.

A randomized algorithm \(A \) is \(\varepsilon \)-differentially private if

- for all databases \(x, x' \) that differ in one element
- for all sets of answers \(S \)

\[
\Pr[A(x) \in S] \leq e^\varepsilon \Pr[A(x') \in S]
\]
Properties of Differential Privacy

• Composition:
 If algorithms A_1 and A_2 are ε-differentially private then the algorithm that outputs $(A_1(x), A_2(x))$ is 2ε-differentially private.

• Meaningful in the presence of arbitrary external information.
Learning: An Example*

- Bank needs to decide which applicants are bad credit risks
- **Goal:** given sample of past customers (*labeled examples*), produce good prediction rule (*hypothesis*) for future loan applicants

% down	Recent delinquency?	High debt?	Mmp/inc	Good Risk?
10	No	No	0.32	Yes
10	No	Yes	0.25	Yes
5	Yes	No	0.30	No
20	No	No	0.31	Yes
5	No	No	0.32	No
10	Yes	Yes	0.38	No

Reasonable hypotheses given this data:
- Predict YES iff (!Recent Delinquency) AND (% down > 5)
- Predict YES iff $100 \times (\frac{\text{Mmp}}{\text{inc}}) - (%) \text{ down} < 25$

Example taken from Blum, FOCS03 tutorial
PAC Learning: The Setting

Algorithm draws independent examples from some distribution P, labeled by some target function c.
Algorithm outputs hypothesis h (a function from points to labels).
PAC Learning: The Setting

- Hypothesis h is good if it mostly agrees with target c:
 $$\Pr_{y \sim \mathcal{P}} [h(y) \neq c(y)] \leq \alpha.$$
- Require that h is good with probability at least $1 - \beta$.

new point drawn from \mathcal{P}
PAC* Learning Definition

A concept class C is a set of functions \{c : D→\{0,1\}\} together with their representation.

Definition. Algorithm A **PAC*** learns concept class C if, for all c in C, all distributions P and all α, β in $(0,1/2)$

- Given $\text{poly}(1/\alpha,1/\beta,\text{size}(c))$ examples drawn from P, labeled by some c in C
- A outputs a good hypothesis (of accuracy α) of poly length with probability $\geq 1- \beta$ in poly-time
Private Learning

Input: Database: \(x = (x_1, x_2, \ldots, x_n) \) where
\[x_i = (y_i, z_i), \] where \(y_i \sim P, \) \(z_i = c(y_i) \) (\(z_i \) is the label of example \(y_i \))

Output: a hypothesis

\[\text{e.g., Predict Yes if } 100 \times (\text{Mmp/inc}) - (\% \text{ down}) < 25 \]

% down	Recent delinquency?	High debt?	Mmp/inc	Good Risk?
10	No	No	0.32	Yes
10	No	Yes	0.25	Yes
25	No	No	0.30	Yes
20	No	No	0.31	Yes

- Algorithm A **privately PAC learns** concept class \(C \) if:
 - **Utility:** Algorithm A PAC learns concept class \(C \)
 - **Privacy:** Algorithm A is \(\varepsilon \)-differentially private
How Can We Design Private Learners?

• Previous privacy work focused on function approximation

• **First attempt:** View non-private learner as function to be approximated
 – Problem: “Close” hypothesis may mislabel many points
\[\text{PAC}* = \text{Private PAC}* \]

Theorem. Every PAC* learnable concept class can be learned privately, using a poly number of samples.

Proof: Adapt exponential mechanism [MT07]:

\[\text{score}(x,h) = \text{# of examples in } x \text{ correctly classified by hypothesis } h \]

Output hypothesis \(h \) from \(C \) with probability \(\sim e^{\varepsilon \cdot \text{score}(x,h)} \)

- may take exponential time

Privacy: for any hypothesis \(h \),

\[
\frac{\Pr[h \text{ is output on input } x]}{\Pr[h \text{ is output on input } x']} = \frac{e^{\varepsilon \cdot \text{score}(x,h)}}{e^{\varepsilon \cdot \text{score}(x',h)} \cdot \frac{\sum_h e^{\varepsilon \cdot \text{score}(x',h)}}{\sum_h e^{\varepsilon \cdot \text{score}(x,h)}}} \leq e^{2\varepsilon}
\]

\[\text{score}(x,h)=4 \]
\textbf{PAC* = Private PAC*}

Theorem. Every PAC* learnable concept class can be learned privately, using a poly number of samples.

Proof: $\text{score}(x,h) = \# \text{ of examples in } x \text{ correctly classified by } h$

Output hypothesis h from C with probability $\sim e^{\varepsilon \cdot \text{score}(x,h)}$

Utility (learning):

- Best hypothesis correctly labels all examples: $\Pr[h] \sim e^{\varepsilon \cdot n}$
- Bad hypotheses mislabel $> \alpha$ fraction of examples: $\Pr[h] \sim e^{\varepsilon (1-\alpha) n}$

$$\Pr[\text{output } h \text{ is bad}] \leq e^{\varepsilon (1-\alpha) n} \cdot \frac{\# \text{ bad hypothesis}}{e^{\varepsilon n}} \leq \frac{|C|}{e^{\varepsilon \alpha n}}$$

Sufficient to ensure $n \geq (\ln |C| + \ln(1/\beta)) / (\varepsilon \alpha)$. Then w/ probability $\geq 1-\beta$, output h labels $\geq 1-\alpha$ fraction of examples correctly.

- “Occam’s razor”: If $n \geq (\ln |C| + \ln(1/\beta)) / \alpha$ then h does well on examples \Rightarrow it does well on distribution P
Our Results: What is Learnable Privately

- Parity
- PAC
- PAC-learnable
- Privately PAC-learnable
- SQ [BDMN05]
 - Halfplanes
 - Conjunctions
 - ...
Efficient Learner for Parity

Parity Problems

Domain: $D = \{0,1\}^d$

Concepts: $c_r(x) = \langle r, x \rangle \mod 2$

Input: $x = ((y_1, c_r(y_1)), \ldots, (y_n, c_r(y_n)))$

- Each example $(y_i, c_r(y_i))$ is a linear constraint on r
 - $(1101, 1)$ translates to $r_1 + r_2 + r_4 \mod 2 = 1$

- **Non-private learning algorithm:**
 - Find r by solving the set of linear equations over $\text{GF}(2)$ imposed by input x
The Effect of a Single Example

• Let V_i be space of feasible solutions for the set of equations imposed by $(y_1, c_r(y_1)), \ldots, (y_i, c_r(y_i))$

• Add a fresh example $(y_{i+1}, c_r(y_{i+1}))$
 – Consider the new solution space V_{i+1}

• Then
 – $|V_{i+1}| \geq |V_i|/2$, or
 – $|V_{i+1}| = 0$ (system becomes inconsistent)

The solution space changes drastically only when the non-private learner fails

new constraint: shared coordinate is 0
Private Learner for Parity

Algorithm A

1. With probability $\frac{1}{2}$ output “fail”.

2. Construct x_s by picking each example from x with probability ε.

3. Solve the system of equations imposed by examples in x_s.
 - Let V be the set of feasible solutions.

4. If $V = \emptyset$, output “fail”.
 Otherwise, choose r from V uniformly at random; output c_r.

Lemma [utility]. Our algorithm PAC-learns parity with
\[n = O((\text{non-private-sample-size})/\varepsilon) \]

Proof idea: Conditioned on passing step 1, get the same utility as with εn examples. By repeating a few times, pass step 1 w.h.p.
Lemma. Algorithm A is 4ε-differentially private.

Proof: For inputs x and x' that differ in position i, show that for all outcomes probability ratio $\leq 1+4\varepsilon$.

- Changed input x_i enters the sample with probability ε.
- Probability of “fail” goes up or down by $\leq \varepsilon/2$.

$$\frac{\Pr[A(x) \text{ fails}]}{\Pr[A(x') \text{ fails}]} \leq \frac{\Pr[A(x') \text{ fails}]+\varepsilon/2}{\Pr[A(x') \text{ fails}]} \leq 1+\varepsilon \text{ as } \Pr[A(x') \text{ fails}] \geq 1/2.$$

- For hypothesis r:

$$\frac{\Pr[A(x) = r]}{\Pr[A(x') = r]} \leq \frac{\varepsilon \Pr[A(x) = r \mid i \in S] + (1-\varepsilon)\Pr[A(x) = r \mid i \notin S]}{0} + (1-\varepsilon)\Pr[A(x') = r \mid i \notin S]$$

$$\leq 2 \frac{\varepsilon}{(1-\varepsilon)} + 1 \leq 4\varepsilon+1 \quad \text{for } \varepsilon \leq \frac{1}{2}$$

- The 2nd \leq uses:

$$\frac{\Pr[A(x) = r \mid i \in S]}{\Pr[A(x') = r \mid i \notin S]} = \frac{\Pr[A(x) = r \mid i \in S]}{\Pr[A(x) = r \mid i \notin S]} \leq 2.$$

Intuitively, this follows from $|V_i| \geq |V_{i-1}|/2$.

Our Results: What is Learnable Privately

Note: Parity with noise is thought to be hard

Private PAC ≠ learnable with noise
Our Results 2: Power of Private Models

Local Noninteractive = Nonadaptive SQ

Local = SQ

Centralized = PAC* ✓

PAC* = PAC learnable ignoring computational efficiency
Reminder: Local Privacy Preserving Protocols

- Interactive
- Non-interactive
Statistical Query (SQ) Learning [Kearns 93]

- Same guarantees as PAC model, but algorithm no longer has access to individual examples

\[g : D \times \{0,1\} \rightarrow \{0,1\} \quad \text{Algorithm} \]

Probability that a random labeled example \((\sim P)\) satisfies \(g\)

Theorem [BDMN05]. Any SQ algorithm can be simulated by a private algorithm

Proof: [DMNS06] Perturb query answers using Laplace noise.
Theorem. Any (non-adaptive) SQ algorithm can be simulated by a (non-interactive) local algorithm

- **Local protocol for SQ:**
 - For each i, compute bit $R(x_i) = \begin{cases} g(x_i) & \text{w.p. } \frac{1}{2} + \epsilon \\ 1 - g(x_i) & \text{w.p. } \frac{1}{2} - \epsilon \end{cases}$
 - Sum of noisy bits allows approximation to answer
- Participants can compute noisy bits on their own
- R (applied by each participant) is differentially private
- If all SQ queries are known in advance (non-adaptive), the protocol is non-interactive
Theorem. Any (non-interactive) local algorithm can be simulated by a (non-adaptive) SQ algorithm.

Technique: Rejection sampling

Proof idea [non-interactive case]:

To simulate randomizer $R: D \rightarrow W$ on entry z_i, need to output w in W with probability $p(w)=\Pr_{z \sim p}[R(z)=w]$. Let $q(w)=\Pr[R(0)=w]$. (Approximates $p(w)$ up to factor e^{ϵ}).

1. Sample w from $q(w)$
2. With probability $p(w)/(q(w)e^{\epsilon})$, output w
3. With the remaining probability repeat from (1)

Use SQ queries to estimate $p(w)$.

Idea: $p(w) = \Pr_{z \sim p}[R(z)=w] = E_{z \sim p}[\Pr[R(z)=w]].$
Our Results 2: Power of Private Models

Local Noninteractive = Nonadaptive SQ

Local = SQ

Centralized = PAC*

PAC* = PAC learnable ignoring computational efficiency
Non-interactive Local $\not\equiv$ Interactive Local

Masked Parity Problems

Concepts: $c_{r,a} : \{0,1\}^{d+\log d+1} \rightarrow \{+1,-1\}$

indexed by $r \in \{0,1\}^d$ and $a \in \{0,1\}$

$$c_{r,a}(y,i,b) = \begin{cases}
(-1)^r \cdot y \pmod 2 + a & \text{if } b=0 \\
(-1)^r i & \text{if } b=1
\end{cases}$$

• (Adaptive) SQ learner: Two rounds of communication

• Non-adaptive SQ learner: Needs $\geq 2^d-1$ samples
 – Proof uses Fourier analytic argument
 similar to proof that parity is not in SQ
Summary

• PAC* is privately learnable
 – Non-efficient learners
• Known problems in PAC are efficiently privately learnable
 – Parity
 – SQ [BDMN05]
 – What else is in PAC?
• Equivalence of local model and SQ:
 – Local = SQ
 – Local non-interactive = non-adaptive SQ
• Interactivity helps in local model
 – Local non-interactive ⋙ Local
 – SQ non-adaptive ⋙ SQ

Open questions

• Separate efficient learning from efficient private learning
• Better private algorithms for SQ problems
• Other learning models