In the Lower and Middle Miocene, the area of the Polish Lowlands was dominated by a warm and humid climate, favourable for the development of extensive mires and the accumulation of large amounts of phytogenic matter. During that time, optimal conditions for the development of vast, low-lying mires were repeated five times. As a result, lignite seams of high economic value developed. Five main lignite seams, marked from the 4th to 0 (zero) in stratigraphic order, can be distinguished in the Polish Neogene. Therefore, the Miocene lignites in the Polish Lowlands may serve as precise correlation levels (e.g., Słodkowska, 1998; Kasiński and Słodkowska, 2016). Palynological studies of lignite and coaly sediments that make up individual seams allow determination of the floristic composition of plant communities from peat bogs and adjacent areas and provide their biostratigraphic dating.

The first Mid-Polish lignite seam (MPLS-1) is the most widespread lignite horizon in the Polish Lowlands (Piwocki, 1998; Piwocki et al., 2004). In the vicinity of Konin, it is fully developed, with a thickness of up to 20 m. Lignite of
the MPLS-1 was created in a continental regime on alluvial plains (e.g., Piwocki et al., 2004; Widera, 2007; Kasiński and Słodkowska, 2016).

During the entire sedimentation interval, temperature and humidity were favourable for the development of lush peat-bog vegetation, as evidenced by the relatively uniform nature of the seam. Despite relatively stable conditions favouring phytogenic sedimentation, clastic deposits occur in the lignite profile (e.g., Widera, 2016; Chomiak et al., 2019, 2020). Their sedimentation was influenced by geodynamic factors disturbing the balance between the rate of subsidence of the depositional surface and the rate of accumulation of phytogenic matter (Kasiński and Słodkowska, 2016). Increased inflow of terrigenous material is related to the lowering of the erosive base and/or the ephemeral activity of rivers, causing sedimentary changes in the fluvial environment. Water-level oscillations are recorded in the facies succession from swamps to lakes and finally to oxbow lakes (Widera, 2016; Chomiak et al., 2019, 2020).

The MPLS-1, widespread in central Poland, has a palynological definition at numerous localities. In the Konin region, palynological studies have been conducted since the 1950s (Kremp, 1949; Mamezar, 1960; Ciuk and Grabowska, 1991; Sadowska and Giża, 1991) as well as quite recently (Słodkowska and Paruch-Kulczycka, 2008; Kasiński et al., 2010; Worobiec et al., 2020). In the Wielkopolska and Kujawy areas (central Poland), Ziembińska-Tworzydło (1974) found the presence of pollen assemblages, characteristic for the MPLS-1, with a significant contribution of warm-temperate-climate plants at Oczkowice, Gierlachowo, Gołębink Stary, Slepuchowo, Nowa Wieś and Mosina. Furthermore, Kohlman-Adamska (1993) described rich pollen spectra with numerous swamp-forest plants in the Karolewo-Dąbki 3 and 4 wells. In the Pomeranian Lake District (N Poland), Słodkowska (2004) distinguished pollen communities in lignite and clastic sediments, developed during the formation of the MPLS-1. In the profiles from Komorza, Losiny and Gostycyn, communities of marsh, riparian or mesophilous forests dominated, depending on the soil moisture. The MPLS-1 was also defined at many localities in Lower Silesia (SW Poland): Legionica (Worobiec et al., 2008; Worobiec, 2009), Jaroszów (Sadowska, 1977), Ustronie (Ziembińska-Tworzydło, 1974) and in the Lubuskie region (W Poland): Mirostowice, Tuplice (Sadowska, 1977), Babina, Nowe Czaple (Kościesiak and Wanat, 1974). Much less often, the MPLS-1 was recorded in the Warmia and Mazury area (NE Poland): Sapłaty (Słodkowska, 2009) and Wysoka Wieś (Słodkowska and Gałązka, 2015).

GEOLOGICAL SETTING

The Jóźwin IIB lignite open-cast mine covers the eastern part of the Pątnów IV deposit, which is located ~20 km to the north of the city of Konin, in central Poland (Fig. 1). Both the open-cast mine and the lignite deposit fill the northernmost segment of the so-called Kleczew Graben (Widera, 2007). This is a fault-bounded depression in the Mesozoic bedrock, with a depth of up to several tens of metres. The top of the Mesozoic is made up of Upper Cretaceous calcareous sandstones and marls (e.g., Dadlez et al., 2000; Widera et al., 2017). The Cenozoic succession is incomplete and contains several stratigraphic gaps in the study area. For example, Palaeogene deposits have not been documented yet in the vicinity of the Pątnów IV deposit (Widera and Kita, 2007). Hence, the Neogene succession rests directly on the Mesozoic bedrock.

In the study area, the Neogene consists of two main lithostratigraphic units, i.e., the Koźmin and Poznań formations (Fig. 2). The lower Koźmin Formation is composed of fluvial sands and sandstones, with coaly intercalations of early- to mid-Miocene age (Widera, 2007). The upper Poznań Formation is traditionally subdivided into the Grey Clays Member and the Wielkopolska Member. The age of this formation (and both members) ranges from the late mid-Miocene to the earliest Pliocene (Piwocki and Ziembińska-Tworzydło, 1997; Widera, 2007).

The first Mid-Polish (first Lusatian) lignite seam (MPLS-1) studied corresponds entirely to the Grey Clays Member (Fig. 2). However, the so-called ‘grey clays’ with xylites, the name of which indicates that they belong to the same lithostratigraphic unit, were found locally in the roof of the MPLS-1 in other parts of the Pątnów IV lignite deposit. The lignite seam studied is currently being exploited by the Konin Lignite Mine. Its average thickness is below 10 m. The MPLS-1 was accumulated ~15 Ma ago, during the last peak of the Mid-Miocene Climatic Optimum (e.g., Zachos et al., 2001; Bruch et al., 2007; Bechtel et al., 2019, 2020). Therefore, the age of this lignite seam (MPLS-1) is defined as the middle part of the Mid-Miocene (Piwocki and Ziembińska-Tworzydło, 1997; Kasiński and Słodkowska, 2016; Słodkowska and Kasiński, 2016). The occurrence of siliciclastic intercalations in the MPLS-1 (Fig. 2), interpreted...
as typical of crevasse-splay deposits, may be evidence of at least temporary development of backswamps (low-lying mires) in the overbank zone of mid-Miocene rivers (Widera, 2016; Chomiak et al., 2019).

The Wielkopolska Member rests on the top of the Grey Clays Member with the MPLS-1 examined (Fig. 2). It is generally composed of muddy (>95 vol.%) and sandy-muddy deposits (<5 vol.%). The muds represent overbank deposits, while the sandy-muddy sediments represent the infilling of the river channel. In recent years, deposits of the Wielkopolska Member have been interpreted as typical of anastomosing rivers (Widera et al., 2017, 2019; Maciaszek et al., 2019, 2020) or anastomosing-to-meandering rivers of late Neogene age (Zieliński and Widera, 2020). A continuous layer of glaciogenic Quaternary deposits occurs on the top of the Wielkopolska Member.

The first Mid-Polish lignite seam (MPLS-1) examined represents a humic ortholignite of low-coal-rank lignite B. This is confirmed by its mean reflectance coefficient (R^FO) of euulminite B at $<0.3\%$ and a carbon content (C_{daf}) in the range

Fig. 2. Detailed sketch-map of the studied section showing the macropetrography, stratigraphy and location of samples in the first Mid-Polish (first Lusatian) lignite seam (MPLS-1) examined at the Jóźwin IIIB open-cast mine (Pańów IV lignite deposit, central Poland). For the location of the section studied, see Figure 1.
of 60–70% (Kwiecińska and Wagner, 2001). Moreover, the MPLS-1 is characterised by a low to high average ash yield, i.e. from <10 to >20 wt% (Kwiecińska and Wagner, 1997; Chomiak, 2020), as well as a low average sulphur content at <1.2 wt% (Kwiecińska and Wagner, 1997; Bechtel et al., 2019, 2020). Macropetrographically, the section studied in the Pańtow IV deposit (Jóźwin IIB open-cast mine) consists of only two lignite lithotypes, i.e. xylodetritic and detritic with a fractured structure (Fig. 2). These lithotypes may represent the initial types of mire development, such as bush moor and fen or open water, with periods of low and high groundwater levels (e.g., Teichmüller, 1989; Markić and Sachsenhofer, 1997; Widera, 2012).

MATERIALS AND METHODS

Twenty-three samples (1–23) from the wall of the Jóźwin IIB open-cast mine in the Konin Lignite Basin were subjected to palynological research. The analysed samples analysed came from an over 6-m-high wall in two lignite benches. Three samples (1–3) were collected from the lower lignite bench and the remaining twenty samples (4–23) – from the upper lignite bench (Fig. 2). The lower part of the section, i.e., the entire lower bench and the lower part of the upper bench, are developed in the form of lignite with a massive and fractured structure – eight samples come from there. In the upper part of the upper lignite bench, the material examined was taken from xylodetritic lignite.

Samples selected for studies were subjected to the standard laboratory procedures of palynologic maceration (Fegri and Iversen, 1978). HCl was used to eliminate carbonates, followed by KOH to remove humic compounds. The organic and mineral fractions were separated, using density separation by ZnCl₂ with a density of 2.21 g/cm³. Finally, cellulose was removed, using acetolysis according to Erdtman (1954). From the macerates obtained using this procedure, microscope preparations with dimensions of 20 x 20 mm were made, analysed under the ARISTOPLAN biological microscope at 400x and 640x magnifications. In the microscopic samples, the complete palynological matter assemblage, including palynomorphs (sporomorphs) and phytoclasts (wood fragments, cuticles), was analysed. In most samples, the state of preservation of the specimens was good. Spores and pollen grains were determined, using the standard laboratory procedures of palynologic maceration (Fegri and Iversen, 1978). HCl was used to eliminate carbonates, followed by KOH to remove humic compounds. The organic and mineral fractions were separated, using density separation by ZnCl₂ with a density of 2.21 g/cm³. Finally, cellulose was removed, using acetolysis according to Erdtman (1954). From the macerates obtained using this procedure, microscope preparations with dimensions of 20 x 20 mm were made, analysed under the ARISTOPLAN biological microscope at 400x and 640x magnifications. In the microscopic samples, the complete palynological matter assemblage, including palynomorphs (sporomorphs) and phytoclasts (wood fragments, cuticles), was analysed. In most samples, the state of preservation of the specimens was good. Spores and pollen grains were determined, using morphological systematics associated when possible by linking the botanical affinities of fossil taxa with the pollen of modern plants (Stuchlik et al., 2001, 2002, 2009, 2014). The Neogene pollen-spore zones were correlated with the palynologic scheme for Poland (Piwocki and Ziemińska-Tworzydło, 1997).

RESULTS

In the over 6-m-long profile at the Jóźwin IIB open-cast mine, all samples analysed represent the same palynostratigraphic interval. In the palynostratigraphic scheme of the spore-pollen zones for the Polish Lowlands Neogene, the first Mid-Polish lignite seam (MPLS-I) is correlated with the VIII Celtipollenites verus Zone (Piwocki and Ziemińska-Tworzydło, 1997; Słodkowska, 1998; Ziemińska-Tworzydło, 1998). The palynomorph frequency was very high.

The palynomorphs and palynoclasts identified are listed in Table 1. A total of 105 spore and pollen grains, and phytoplankton taxa, with 10 taxa of spores, 21 taxa of Gymnosperms and 74 taxa of Angiosperms have been determined (Tab. 1). They show the percentage contribution of sporomorphs in the spectrum; the occurrence of phytoclasts was recorded without percentage counts.

The fossil pollen taxa distinguished in the Jóźwin IIB open-cast lignite mine were compared to their respective contemporary, botanical taxa (Tab. 2). The following palaeofloristic elements were distinguished: palaeotropical (P), including tropical (P1) and subtropical (P2); ‘arctotertiary’ (A), including warm temperate (A1) and temperate (A2); as well as cosmopolitan (P/A) taxa (Planderova et al., 1993; Ziemińska-Tworzydło et al., 1994, Stuchlik et al., 2001, 2002, 2009, 2014). The quantitative contribution of individual palaeofloristic elements allows the reconstruction of the palaeoclimate and the fossil plant communities (Tab. 2).

In the entire profile of the Jóźwin IIB open-cast mine, the sporomorph communities of bryophytes and ferns were of minor importance (Tab. 1). Spores of peat mosses (Sphagnaceae) and ferns of the Dvaliaceae, Polypodiaceae and Osmundaceae families were few. Pollen grains of gymnosperms had a higher percentage contribution, with the most numerous representing: Pinuspollenites, Sciadopityspollenites, Sequoiapollenites, Cathayaapollis and less numerous representatives of the Taxodioidae family – Taxodium and Glyptostrobus (fossil taxa Inaperturapollenites concedipites, I. dubius). The pollen complex of angiosperms was characterised by a high percentage abundance and taxonomic diversity with abundant pollen of: Nyssa, Ericaceae, Fagaceae (Fagus and Quercus with the highly thermophilous fossil species Quercoidites henrici, Q. microhenrici, Ilex and Myrica. Highly thermophilous fossil species from the families Araliaceae, Cornaceae and Mastixiaecae (Edmundipollis edmundi, E. grossularius, E. mastixoides, E. vitiosus, Araliaceoipollenites euphorii) appeared in small percentage numbers, but occurred regularly. There also were other fossil species, considered to be thermophilous: Tricolporopollenites pseudocingulum, Cupuliferoipollenites brühlinensis, C. oviformis, Platanipollis ipelensis, Tricolporopollenites doliun, T. fallax, T. liblaren-sis, T. mangiferoides, T. stasesedloensis. Herbaceous pollen was extremely percentage rare (Tab. 1).

On the basis of the percentage contribution of pollen, individual stages of development of plant communities and the predominant hydrodynamic conditions can be traced in the profile succession analysed. A clear cyclicity was observed in this fairly uniform, microfloral complex (Fig. 3).

The oldest, rich and diverse sporomorph assemblage was described from detritic lignite with a massive, fractured structure (samples 1–8, cycle I). Of greatest percentage importance was pollen, representing mixed forest vegetation: Pinus, Sciadopitys, Sequoia, Cathaya, Tsuga, Fagus, Quercus and Ericaceae, Oleaceae shrubs. There was also a significant percentage presence of pollen from highly thermophilous plants: Cornaceae, Cyrillicaeae, Mastixiaecae, Symplocaceae and Anacardiaceae. The detritic lignite
vegated response to environmental changes

Vegetation response to environmental changes

Fig. 3. Palaeofloristic cycles determined on the basis of the components of plant assemblages and the dominant plant communities, as well as palaeoenvironmental reconstruction. Explanation as in Figure 2

Deposits between samples 3 and 4 studied are separated by inter-lignite sands with a thickness of approx. 1 m, subdividing the lignite seam into two benches, i.e., lower and upper. No samples were taken from this sandy sediment. In the higher part of the section (samples 4–8), elements of a riparian forest begin to gain percentage significance: *Ulmus, Liquidambar, Fraxinus*, and the abundance of *Nyssa* – a tree very common in swamp forests – also increases in percentage. All these observations indicate changes in the peat-forming plant communities, manifested also in community depletion, which was clearly recorded in sample 8 (Fig. 3; Tab. 1).
Table 1

Percentage distribution of the palynomorphs and phytoclasts from the Jóźwin IIB open-cast lignite mine

Taxa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23			
Spores																										
Baculatisporites sp.	0.3	0.2	0.1	0.2	0.3	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6			
Baculatisporites prima- rius (Wolff) Pflug & Thomson																										
Laevigatosporites haardti (Potonié & Venitz) Thomson & Pflug	0.7	1.6	1.7	1.8	1.1	0.8	3.2	1.4	0.2	1.3	2.7	0.3	0.8	1.7	0.9	0.3	0.8	1.7	0.9	0.3	0.8	1.7	0.9			
Retitriletes sp.	0.2	0.1			6.5																					
Stereisporites sp.	0.2																									
Stereisporites cyclus Krutzsch																										0.6
Stereisporites involutus (Doktorowicz-Hrebinc-ka) Krutzsch	0.6	0.4	1.3	+																						
Stereisporites minor (Raatz) Krutzsch	0.4	0.5	0.4	0.3	0.3	3.2	0.9	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3				
Stereisporites steroidalis (Potonié & Venitz) Thomson & Pflug	0.2	0.3																								
Verucatosporites sp.																										0.2
fungal spores	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
fungal hyphae	+	+																								
Gymnosperms																										
Abiespollenites sp.	0.4	1.4	0.6	0.6	1.3	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6			
Cathayapollis potoniei (Sivak) Ziembińska-Tworydlo	1.9	1.9	1.2	0.8	0.5																					
Cuninghamiapollenites janinae Stuchlik & Kenzarlová	7.4	1.7	+																							
Cuninghamiapollenites lignitus Nagy	1.4	1.9	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6			
Cupressacites boc- kwitzensis Krutzsch	1.1	1.6	1.7	2.3	1.9	5.2	+	1.2	2.2	0.9	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6				
Inaperturopollenites concedipites (Wodehouse) Krutzsch	1.1	0.6	0.5	1	1	2.3	0.8	3.9	0.7	1.6	0.9	0.7	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9				
Inaperturopollenites dubius (Potonié & Venitz) Thomson & Pflug	0.5	1.3	4.5	3.4	4.8	3	5.2	+	0.8	0.7	5.7	2.1	1.4	1.4	1.7	0.6	1.4	1.4	1.7	0.6	1.4	1.7	0.6			
Piceapollis sp.	0.1																									
Pinuspollenites sp.	21	20.6	19.3	16	13.2	13.8	16.8	28.6	+	+	+	15.9	15.4	17.1	13.7	+	+	12.2	15.6	15.3	20.5	4				
Sciadopityspollenites sp.	14.2	8.2	6.8	2.7	4.9	3.6	1.9	0.3	1.3	0.6	+	3.4	0.8	4												
Sequoiapollenites sp.	0.3	2.9																								
Sequoiapollenites major Krutzsch	0.3	2.9																								
Sequoiapollenites megaligulus Krutzsch	0.6																									
Sequoiapollenites polyformosus Thiergart	0.8	1.3	1.2	3.6																						
Sequoiapollenites rotundus Krutzsch	3.4	4.1	2.5	8.3	5.4	3.4																				
Sequoiapollenites rugulus Krutzsch	3.2	1.3	3.3	2.3																						
Taxa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23			
--	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------			
Sequoia pollenites undulatus	1.4																									
Zonalapollenites gracilis Kretzsch	1.1	0.8	1.2	1.3	0.4											0.3							1.7			
Zonalapollenites igniculus (Potonié) Thomson & Pflug	0.3	0.4	0.3	0.3	0.4																		0.3			
Zonalapollenites maximus Kretzsch	0.7	1.3	0.8	0.8	0.4	0.4	0.8															0.3				
Zonalapollenites spinosus (Doktorowicz-Hrebniaka) Ziemińska-Tworzydło	0.4	0.2	0.4	0.3																						

Angiosperms

Aceripollenites sp.	0.5																							0.6
Amapollenites verus (Potonié) Potonié	3.6	1.8	1.7	3.1	2.3	1.2	2.5	1.3								0.8	3.7	4.4					1	
Araliaceapollenites amplus Śląska	0.1																			0.2				0.3
Araliaceapollenites euphorii (Potonié) Potonié																						0.5	0.6	
Arecipites sp.		0.1																						
Carpipollites sp.																								
Carpipollites sp.	0.6	0.6	0.6	1.8	1.6	2	1.5									4.7	1.3						2.4	
Caryapollenites simplex (Potonié) Raatz	0.4	0.8	0.6	2.3	4.9	0.8	1.7								1.1	1			1		0.3			
Cellipollites bobrowskii Kretzsch & Ziemińska-Tworzydko	0.1	0.3	0.3	0.3	0.3	0.5									0.5									0.8
Cornaceaepollis ovalis Śląska & Ziemińska-Tworzydło	0.1		1	0.4																				
Cornaceaepollis saltvagensis (Pflug) Ziemińska-Tworzydło	0.3	0.3	0.3		1.6	0.9	0.9																5.1	
Corylusipollenites sp.	1.3				0.9																		0.6	
Cupuliferoipollenites oviformis (Potonié) Potonié	0.3	0.6	0.3	0.3	0.4	0.4										0.5	0.7	0.3	1.2					0.7
Cupuliferoipollenites pusilis (Potonié) Potonié		0.4																					1.7	
cf. Cypereaceapollis																								
Cyrillaceapollenites brühlensis (Thomson) Durska																								0.3
Cyrillaceapollenites exactus (Potonié) Potonié	0.4	0.3	0.3		0.8	0.7	1.5																1.7	
Cyrillaceapollenites megaexactus (Potonié) Potonié	1.1	1.2	0.3	1.3	1.3																			2.7
Edmundipollis edmundi (Potonié) Śląska & Ziemińska-Tworzydło	0.1		0.1	0.1	0.2																		0.6	
Edmundipollis grossularius (Potonié) Śląska & Ziemińska-Tworzydło																							0.6	
Edmundipollis mastixioides Śląska & Ziemińska-Tworzydło																							1.4	0.6
Taxa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Edmundipollis vitiosus (Mamczar) Słodkowska & Ziembińska-Tworzydło	0.1						1.1																	
Ericipites callidus (Potonié) Krutzsch	0.6	2.4	7.4	3.7	4.6	6.8	8.1	3.9	+	+	1.6	2.9	2.8	7.1	+	+	+	4.1	4.5	20.3	12.4			
Ericipites ericius (Potonié) Potonié	4.4	2.4	7.4	3.7	4.6	6.8	8.1	3.9	+	+	1.6	2.9	2.8	7.1	+	+	+	4.1	4.5	20.3	12.4			
Ericipites roboreus (Potonié) Krutzsch	0.1																							
Eucommiapollis sp.	0.3																							
Eucommiapollis eucommi (Planderova) Kohlmans-Adamska & Ziembińska-Tworzydło	0.3	0.6	0.3	0.1	+	+	+	+	+	0.2	0.6													
Faguspollenites sp.																				20.3				
Faguspollenites minor Nagy	1																							
Fraxinipollis oblatus Słodkowska	1.3	0.4	0.6	0.4	0.7	0.6																		
Fraxinipollis sinuosimuratus (Trevisan) Słodkowska																								
Graminidites sp.	0.8	0.2	0.3																					
Hexapollenites tiliacus (Potonié) Potonié	1.5	0.3	0.2	0.6																				
Hexapollenites margariatus (Potonié) Raatz	0.6	0.3	0.5	0.4	0.4	0.6	+	1.6	0.2	3														
Hexapollenites proinquus (Potonié) Potonié	0.4	0.1	0.3	0.2	1.4	2.4	2.5	1.2														0.3	0.8	2.3
Intratriporopollenites instructus (Potonié) Thomson & Pflug			0.2	0.1																				
Iteapollis angustiporatus (Schneider) Ziembińska-Tworzydło	0.1	1.2	0.3	0.5		0.2																		
Juglandipollis sp.																				0.3				
Lirioidendropollis verrucatus Krutzsch																				0.1				
Momipites punctatus (Potonié) Nagy	0.1	0.3	1	0.4	1.7	3.9	+		0.2	0.3	0.9	1.7												
Myricipites bititus (Potonié) Nagy	0.3	0.2	0.3	1	0.9	0.5	0.8	+	+	0.3	0.3		0.3	0.3	0.6									
Nyssapollenites sp.	1.9	2.2	2.3	8.2	6.7	7.1	4.2	3.9	+	+	10.2	9.3	13	15.8	+	+	+	26.5	22.9	22	27.7			
Nyssoidites roderevensis Thiergart																								
Oleoidearumpollenites sp.	0.3	0.6	0.3	0.3	1.7																			
Oleoidearumpollenites microreticulatus (Pflug & Thomson) Ziembińska-Tworzydło																								
Oleoidearumpollenites reticulatus Nagy	0.9	0.4	1.6																					
Oligopollis sp.																				0.3				
Parthenopollenites marcodurensis (Pflug & Thomson) Traverse	0.2	0.1	0.3																					
Periporopollenites stigonus (Potonié) Thomson & Pflug	0.1	0.8	0.8	1.2	4.3	2.3	1.3														0.3			
Platanipollis ipelensis (Pacltová) Grabowska	0.4	0.8	0.1	0.8	0.2																			
Polyatriopollenites sp.	0.7	1.3	0.5	1.4	1.1	0.8	4.7														0.3	0.6	1	
Vegetation Response to Environmental Changes

| Taxa | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|--|----|
| *Quercoidites henrici* (Potonié) Thomson & Thiergart | 1.4| 0.8| 0.6| 2.4| | | 3.3| 3.8| 2.1| | 7.5| 7.5| 3.4| 3.2| |
| *Quercoidites microhenrici* (Potonié) Thomson & Thiergart | 0.4| 0.5| | 2.7| 0.9| 2.4| | 2.4| 2.3| |
| *Quercopollenites* sp. | | | | | | | 1.5| 1.3| 7.5| |
| *Quercopollenites asper* (Thomson & Pfugg) Kohlman-Adamska & Ziembińska-Tworydlo | 11.8| 9.3| 7.2| 8.4| 3.7| 5 | 3 | |
| *Quercopollenites rubroides* Kohlman-Adamska & Ziembińska-Tworydlo | 2.5| 6.1| 6.3| 7 | 6 | 5.7| 6.5| |
| *Salixipollenites* sp. | 0.3| 0.4| 0.4| 0.4| 1.3| |
| *Sparganiaceapollenites* sp. | | | 0.2| 0.3| 7 | |
| *Spinulaepollis arceuthobiosides* Krutzsch | 0.1| 0.2| 0.1| 0.1| 0.8| 0.5| 0.3| 0.3|
| *Symplocoipollenites* vestibulum (Potonié) Potonié | 0.1| 0.2| | |
| *Triatriopollenites rurensis* Pfugg & Thomson | | | | |
| *Tricolporopollenites dalium* (Potonié) Thomson & Pfugg | 0.3| | 5.8| 13 | 2.8| 2.4| 1.4| 0.3|
| *Tricolporopollenites fallax* (Potonié) Krutzsch | 0.1| | | |
| *Tricolporopollenites filharensis* (Thomson & Pfugg) Hochuli | 0.3| 0.3| | |
| *Tricolporopollenites mangferoides* Shklovskaw | 0.1| | |
| *Tricolporopollenites pseudosingulum* (Potonié) Thomson & Pfugg | 2.2| 3 | 1.8| 4.3| 5.9| 5.8| 9.3| 7.8| |
| *Tricolporopollenites starestedloensis* Krutzsch & Paclova | 0.2| | | |
| *Tricolporopollenites villensis* (Thomson) Thomson | 2.2| 0.9| | |
| *Triporopollenites coryloides* Pfugg | | | | |
| *Triporopollenites betuloidei* Pfugg | 6.5| | 0.3| |
| *Ulmipollenites undulosus* Wolff | 3 | 1.4| 2.2| 3 | 1.3| 1.3| 1.4| 3.9| 2.5| 3.6| |
| *Vitipites* sp. | 0.1| | | |
| **Phytoclasts** | | | | |
| brown wood debris | ++ |
| black wood debris | ++ |
| cuticle | ++ |

Note: The table includes various pollen types and their relative abundances, indicating the response of vegetation to environmental changes.
Table 2

Fossil taxa and their botanical affinity, according to Stuchlik et al. (2001, 2002, 2009, 2014). The following palaeofloristic elements were distinguished: palaeotropical (P), including: tropical (P1) and subtropical (P2), ‘arctotertiary’ (A), including: warm-temperate (A1) and temperate (A2), as well as cosmopolitan (P/A), I-V palaeofloristic cycles.

Fossil taxa	Botanical affinity	Palaeofloristic element	I	II	III	IV	V
Spores							
Baculatisporites sp.	Osmundaceae: Osmunda	P/A	+	+			
Baculatisporites primarius	Osmundaceae: Osmunda	P/A	+				
Laevigatosporites haardti	Polypodiaceae, Davaliaceae	P/A	+	+	+		
Retitriletes sp.	Lycopodiaceae: Lycopodium	P/A	+				
Stereisporites sp.	Sphagnaceae: Sphagnum	P/A	+				
Stereisporites cyclus	Sphagnaceae: Sphagnum	P/A	+				
Stereisporites involutus	Sphagnaceae: Sphagnum	P/A	+	+	+	+	+
Stereisporites minor	Sphagnaceae: Sphagnum	P/A	+	+	+	+	+
Stereisporites stereoides	Sphagnaceae: Sphagnum	P/A	+				
Verucatosporites sp.	Davaliaceae, Polypodiaceae	P/A	+				
Gymnosperms							
Abiespollenites sp.	Pinaceae: Abies	A	+				
Cathaysapollis potoniei	Pinaceae: Cathaya	A1	+				
Cunninghamiaepollenites janinae	Cupressaceae: Cunninghamia	A1	+	+	+	+	+
Cunninghamiaepollenites lignitus	Cupressaceae: Cunninghamia	A1	+				
Cupressacites bockwitzensis	Cupressaceae: Cupressus arizonica	A1	+	+	+		
Inaperturopollenites concedipites	Cupressaceae: Taxodium, Glyptostrobus	P2/A1	+	+	+	+	+
Inaperturopollenites dubius	Cupressaceae: Taxodium, Glyptostrobus	P2/A1	+	+	+	+	+
Piceapollis sp.	Pinaceae: Picea	A	+				
Pinuspollenites sp.	Pinaceae: Pinus sylvestris type	A	+	+	+	+	+
Sciadopityspollenites	Sciadopityaceae: Sciadopitys	A1	+	+	+		
Sequoiapollenites sp.	Cupressaceae: Sequoia, Sequoiadendron, Metasequoia, Cryptomretia	A1	+	+	+	+	
Sequoiapollenites major	Cupressaceae: Sequoia, Sequoiadendron, Metasequoia, Cryptomretia	A1	+				
Sequoiapollenites megaligulus	Cupressaceae: Sequoiadendron	A1	+				
Sequoiapollenites polyformosus	Cupressaceae: Sequoia, Sequoiadendron, Metasequoia	A1	+				
Sequoiapollenites rotundus	Cuppressaceae: Sequoia, Sequoiadendron, Metasequoia	A1	+				
Sequoiapollenites rugalus	Cuppressaceae: Sequoia, Sequoiadendron, Metasequoia	A1	+				
Sequoiapollenites undulatus	Cuppressaceae: Sequoia, Sequoiadendron, Metasequoia	A1	+				
Zonalapollenites gracilis	Pinaceae: Tsuga canadensis	A	+	+	+	+	+
Zonalapollenites igniculus	Pinaceae: Tsuga	A	+				
Zonalapollenites maximus	Pinaceae: Tsuga	A	+	+	+	+	+
Zonalapollenites spinosus	Pinaceae: Tsuga forresti	A	+				
Angiosperms							
Aceripollenites sp.	Sapindaceae: Acer	A	+				
Fossil taxa	Botanical affinity	Paleofloristic element	I	II	III	IV	V
--------------------------	-------------------------------------	------------------------	---	----	-----	----	----
Alnispollenites verus	Betulaceae: *Alnus*	P2/A	+	+	+	+	+
Araliaceopollenites amplus	Araliaceae: *Dendropanax, Tetrapanax*	P/A1					
Araliaceopollenites euphorii	Araliaceae: *Acantopanax spinosus, Aralia cordata*	P/A1	+	+		+	
Arecipites sp.	Amaryllidaceae, Araceae, Araceae, Butomaceae	P/A	+				
Caprifoliipites sp.	Adoxaceae: *Sambucus, Viburnum*	P2/A1	+				
Carpinipites sp.	Betulaceae: *Carpinus*	P2/A1	+	+	+	+	
Caryapollenites simplex	Juglandaceae: *Carya*	P/A1	+	+		+	
Celtipollenites bobrowskiae	Ulmaceae: *Celtis*	P/A1	+	+		+	
Cornaceaepollis ovalis	Cornaceae: *Cornus mas*	A	+				
Cornaceaepollis satzveyensis	Mastixiaceae: *Mastixia*	P	+			+	
cf. Cyperaceaepollis	Cyperaceae	P/A	+				
Corylopsispollenites sp.	Hammamelidaceae: *Corylopsis*	A1	+			+	
Cupuliferopollenites oviformis	Fagaceae: *Castanea, Castanopsis, Lithocarpus*	P2/A1	+			+	
Cupuliferopollenites pusillus	Fagaceae: *Castanea, Castanopsis, Lithocarpus*	P2/A1	+			+	
Cyrrillaceaepollenites bruhiensis	Cyrrillaceae, Clethraceae	P	+				
Cyrrillaceaepollenites exactus	Cyrrillaceae, Clethraceae: *Cyrilla, Purdiaea, Cliftonia, Clethra*	P	+			+	
Cyrrillaceaepollenites megaexactus	Cyrrillaceae, Clethraceae: *Cyrilla, Purdiaea, Cliftonia, Clethra*	P	+			+	
Edmundipollis edmundii	Cornaceae, Mastixiaceae: *Diplopanax*	P1	+			+	
Edmundipollis grossulariis	Araliaceae: *Aralia, Panax*	P/A	+				
Edmundipollis mastixioides	Mastixiaceae: *Mastixia tetrandra*	P	+				
Edmundipollis vitiosus	Araliaceae: *Aralia, Panax*	P/A1	+			+	
Ericipites callidus	Ericaceae: *Calluna, Vaccinium*	A	+				
Ericipites ericius	Ericaceae: *Calluna, Daboecia, Vaccinium*	A	+			+	
Ericipites roboreus	Ericaceae: *Rhododendron, Andromeda*	A	+				
Eucommiaipollis sp.	Eucommiaceae: *Eucommia*	A1	+				
Eucommiaipollis eucommi	Eucommiaceae: *Eucommia*	A1	+			+	
Faguspollenites sp.	Fagaceae: *Fagus*	A	+			+	
Faguspollenites minor	Fagaceae: *Fagus japonica*	A	+				
Fraxinipollis oblatus	Oleaceae: *Fraxinus americana*	A	+				
Fraxinipollis sinusimuratus	Oleaceae: *Fraxinus*	A	+				
Graminidites sp.	Poaceae	P/A	+				
Ilexpollenites iliacus	Aquifoliaceae: *Ilex aquifolium, I. macrocarpa*	P/A1	+				
Ilexpollenites margaritatus	Aquifoliaceae: *Ilex aspelta*	P2	+			+	
Ilexpollenites propinquis	Aquifoliaceae: *Ilex*	P/A1	+			+	
Intratriporopollenites instructus	Malvaceae: *Tilioidae: Tilia, Burretia*	P/A	+			+	
Iteaipollis angustiporatus	Iteaceae: *Itea*	P	+				
Juglandipollis sp.	Juglandaceae: *Juglans*	A1	+				
Liriodendropollis verrucatus	Magnoliaceae: *Liriodendron*	P2/A1	+			+	
Momipites punctatus	Juglandaceae: *Engelhardia, Alfaroa, Oeromunnea*	P2	+			+	
Myricipites bititius	Myricaceae: *Myrica gale, M. javanica*	P2/A1	+			+	
Fossil taxa	Botanical affinity	Paleofloristic element	I	II	III	IV	V
--	--------------------------	------------------------	---	----	-----	----	----
Nyssapollenites	Nyssaceae: Nyssa	P/A1	+	+	+	+	+
Nyssoidites rodderensis	Nyssaceae: Nyssa	P/A1				+	
Oleoidearumpollenites	Oleaceae: Olea	P2/A1	+	+			
Oleoidearumpollenites microreticulatus	Oleaceae: Olea	P2/A1	+	+			
Oleoidearumpollenites reticulatus	Oleaceae: Olea	P2/A1	+				
Oligopollis sp.	unknown	unknown					
Parthenopollenites marcodensis	Vitaceae: Parthenocissus, Ampelopsis, Cayratia, Leea	P/A1	+				
Periporopollenites stigmaticus	Altangiaceae: Liquidambar	A1	+				
Platanipollis ipelensis	Platanaceae: Platanus	P/A1	+				
Polyatriopollenites	Juglandaceae: Pterocarya	A1	+	+			
Quercoidites henrici	Fagaceae: Quercus	P2/A1	+	+			
Quercoidites microhenrici	Fagaceae: Quercus	P2/A1	+	+			
Quercopollenites	Fagaceae: Quercus	P2/A1	+	+			
Quercopollenites asper	Fagaceae: Quercus	A1	+				
Quercopollenites rubroides	Fagaceae: Quercus	A1	+			+	
Salixipollenites sp.	Salicaceae: Salix	A	+				
Sparganiaceaeapollenites	Sparganiaceae, Typhaceae	P/A	+	+			
Spinulapollis arceuthobioides	Santalaceae: Areuthobium	P	+	+			
Symplocioipollenites sp.	Symplacaceae: Symplocos	P	+				
Symplocioipollenites vestibulum	Symplacaceae: Symplocos alata, S. crategioides	P	+				
Triatriopollenites rurensis	Myricaceae: Myrica	P2/A1	+				
Tricolporopollenites dolium	Fagaceae?	unknown	+	+			
Tricolporopollenites fallax	Fabaceae: Anagryis, Dalea, Taverniera	P/A	+				
Tricolporopollenites liblarensis	Fabaceae: Anagryis, Dalea, Taverniera	P/A	+				
Tricolporopollenites mangiferoides	Anacardiaceae: Mangifera indica	P1	+				
Tricolporopollenites pseudocingulum	Fagaceae, Styracaceae	P/A1	+	+		+	
Tricolporopollenites stasesedoensis	Hammamelidaceae: Parrotia, Distylium	P2	+				
Tricolporopollenites villensis	Fagaceae?	?	+				
Triroropollenites coryoides	Betulaceae: Corylus	A	+	+			
Trivestibulopollenites betuloides	Betulaceae: Betula	A	+	+		+	
Ulmiipollenites sp.	Ulmaceae: Ulmus	A2	+	+		+	
Vitispollenites sp.	Vitaceae: Vitis	P2/A1	+				

Between samples 8 and 9 there was a change in the lignite lithotype into a xylodetritic one with a massive and fractured structure. Changes in the composition and character of the subsequent sporomorph assemblage described from samples 9–11, cycle II also were recorded. This assemblage, unlike the one below, is strongly impoverished, both in sporomorph abundance and taxonomic diversity. Pollen grains occur singly, while phytoclasts appear abundantly in the form of brown and black wood fragments and cuticules, often with stomata. The sporomorphs are not destroyed.

The subsequent sporomorph complex, described in samples 12–15, cycle III from the same lignite lithotype, was likewise rich and diverse, qualitatively similar to the oldest complex, but less diverse taxonomically. The pollen of plants, representing a mixed mesophilous forest percentage predominated here also, with a clear contribution of gymnosperms from the Cupressaceae family: Sequioapollenites and Cupressacites bockwitzensis. Important elements were fossil thermophilous species: Tricolporopollenites pseudocingulum, T. dolium, Quercoidites henrici and Q. microhenrici. There were also representatives of the Taxodioidae subfamily – Taxodium and Glyptostrobus, as well as Nyssa. Pollen of Pinus, Fagus and Ilex appeared in great numbers. The contribution of Ericaceae and Cyrillaceae, Clethraceae, Oleaceae pollen increased in the upper part of the analysed profile analysed (Fig. 3; Tab. 1).
VEGETATION RESPONSE TO ENVIRONMENTAL CHANGES

Samples 16–19, cycle IV, characterised by trace quantities of pollen, record an episode related to the depletion of pollen material. Single grains were very poorly preserved, damaged, crumpled and incomplete, with traces of corrosion on the surface.

The last of the intervals of the section studied, in samples 20–23, cycle V, again records the development of a mixed mesophilous forest. Pollen of *Fagus* had a constant contribution and *Nyssa* is percentage abundant. In the initial phase, the assemblage contains a large number of thermophilous elements: *Tricolporopollenites pseudocingulum*, *T. dolium*, *Quercoidites henrici*, *Q. microhenrici* and the Cyrillaceae family. At the top of the section, riparian forest plants and Ericaceae, Cyrillaceae, Oleaceae, *Ilex*, *Myrica* shrub communities made a greater contribution (Fig. 3; Tab. 1). This part of the section is similar to that described for samples 12–15. However, it differs in the smaller variety of thermophilous components.

DISCUSSION

The entire pollen complex from the Jóźwin IIB open-cast mine, despite a very similar floristic composition, is a set of floristic elements, in which small fluctuations of external factors, mainly humidity, are recorded as changes in the dominant plant communities. On the basis of the reconstruction of these communities, it is possible to reveal the course of sedimentation of lignite-forming sediments, which took place in vast wet areas, periodically flooded by rivers. These changes in the dominant plant communities are manifested as oscillations of ground- and surface water levels. Typically, the environment of an anostomosing or meandering river is ephemeral and unstable, as documented in the MPLS-1 at the Jóźwin IIB open-cast mine (e.g., Chomiak *et al.*, 2019).

Differences in the composition of taxa visible in the samples indicated different stages of development of the sedimentary basin, related mainly to the changing water dynamics and other hydrological factors, and to a lesser extent to changes in ambient temperature. Very rich pollen communities allow following in detail the development of phytogenic sedimentation and community succession. The pollen preserved came from both the peat-forming habitats and the forests covering the area in the neighbourhood of the mire. Peat-forming communities of water plants, moss and rush vegetation, swamp forests and, to a lesser extent, shrub bogs, generally represent azonal vegetation, not sensitive to thermal changes. Owing to similar sedimentation conditions, the peat-forming communities recorded in the entire section studied had a similar floristic composition. On the other hand, the contribution of climate-related elements in the mixed mesophilous forests, growing in the neighbourhood of the mire, was variable.

In an area of peat accumulation, there are various plant communities that tolerate high soil moisture. Fluctuations in the groundwater level lead to the transformation of these communities. With a relatively low water level, a rich, mixed mesophilous forest develops in the areas outside the mire, with a high contribution of thermophilous species. With rising water level, riparian forests and shrubs gain greater importance on the river banks. With further deepening of the basin, a swamp forest starts to dominate. These communities are natural areas of peat accumulation and often interpenetrate, creating a mosaic characteristic of ephemeral fluvial settings.

At the Jóźwin IIB open-cast mine, the natural succession of plant communities was recorded three times. At the beginning of each cycle, in the deposition zone of the peat-forming basin, there was a high contribution of pollen of mixed mesophilous forests, growing in dry and moderately humid areas located far from the mire. The pollen of thermophilous plants came from dense forest communities of the mesophilous forest, in which the contribution of individual taxa in subsequent parts of the section was variable. When the water level rose, the contribution of pollen from riparian and swamp forests increased. Each peat-forming cycle ended with the encroachment of shrubs on the bog and inhibition of its growth. Lowering of the groundwater level and drying out of the mire disrupted the cycle of its development. This stage is registered twice in the section analysed. This indicates periodic drying up of the sediment or the mire surface and the interruption of a continuous phytogenic sedimentation cycle.

Analysis of the pollen composition allowed reconstruction of the succession and trends in the development of plant communities at the time of peat sedimentation, later transformed into the lignite seam studied. On this basis, five successive cycles (I–V) were distinguished (Tab. 2; Fig. 3).

The oldest, floristic complex (cycle I) is taxonomically the most diverse and includes: *Pinus*, *Sciadopitys*, *Sequoia*, *Cathaya*, Ericaceae, *Fagus*, *Quercus*, *Tricolporopollenites pseudocingulum*, and contains the largest number of thermophilous plant taxa (approx. 49% of taxa), representing the Araliaceae, Cornaceae, Mastixiaceae, and *Castanea*. A mixed mesophilous forest community is clearly recorded in the pollen spectrum. Towards the top of this part of the section, owing to humidity increase, plants of the mesophilous forest located at some distance from the peat bog are less common in the pollen spectrum. In turn, the pollen of riparian forests, including *Liquidambur* and *Ulmus*, and swamp forests with *Nyssa*, became more significant (Fig. 3). During the sedimentation of the peat-forming matter in cycle I, a short episode of supply of sandy material to the reservoir occurred, caused by a flood, resulting in the sudden deposition of the sand layer, approximately 1 m thick. This was probably a short-term episode, which did not disturb fen development. In the latest part of cycle I, bush plants with Ericaceae and Oleaceae entered the mire, owing to a decrease in humidity.

In the succeeding cycle (II), the number of pollen taxa dropped drastically, while the contribution of phytoclasts increased significantly (Fig. 3). This probably was caused by hydrological factors. Owing to the fact that such an episode is recorded in xylodetritic lignite, it may indicate that as a result of floods, large amounts of xylites and very small fragments of plant matter were delivered to the mire, or, alternatively, a change of the mire into a swamp forest took place.

The next cycle (III) records again undisturbed phytogenic sedimentation. It is characterised by a very rich sporomorph assemblage. Compared to the previous cycles, there were...
fewer thermophilous plant taxa (41%) in the entire complex. The mesophilous forest was characterised by the lower abundances of *Pinus*, *Fagus* and *Sciadopitys*, and higher abundances of *Quercoidites henrici*, *Q. microhenrici*, *Tricoloropollenites dolium* and *T. pseudocingulum*. Swamp forest plants with *Nyssa* are quite numerous. In the top of the section occur plants of scrub bogs: *Cyrillacea* and *Ilex* (Fig. 3). The floristic assemblage presented indicates that at first the mire became moist and wide and later, as a result of a lowering of water level, was gradually drained.

The following cycle (IV) records another episode of drying and strong aeration of the mire and its disappearance, which is indicated by very low sporomorph frequency and very damaged pollen material (Fig. 3).

The last cycle (V) as in cycle III is characterised by calm sedimentation of organic matter. Thermophilous taxa are less abundant (approx. 33%). The mesophilous forest was still the most numerously represented community, although with a lower abundance of the pollen of thermophilous plants: *Quercoidites henrici*, *Tricoloropollenites pseudocingulum*, etc. (Fig. 3). Trees of swamp and riparian forests, *Nyssa* and *Ulmus*, gained significance. In the upper part of the cycle, a stage of encroachment of *Ericaceae* and *Ilex* shrubs on the bog is recorded.

Analysis of the succession of plant communities in the section from the Jóźwin IIB open-cast mine shows a similar sequence of events. At the beginning of cycles I, III and V, the peat accumulation basin contained numerous thermophilous components of a mixed mesophilous forest. When the groundwater level rose, components of riparian and swamp forests became more important, and eventually, as a result of the drying out of the reservoir, it became transformed into a shrub bog.

In subsequent cycles, the number of highly thermophilous taxa was reduced; likewise, the taxonomic diversity of forest communities decreased (Tabs 3, 4). The plant succession, recording the development of rich multispecies forests, was twice separated by intervals, in which phytogenic sedimentation was reduced significantly and its record was fragmentary. The frequency and state of preservation of sporomorphs testify to the higher water dynamics of the sedimentary basin. This also may be related to the development of crevasse splays and the resulting selection and rapid accumulation of pollen material.

Development cycles III and V of the plant communities are full and complete. Only cycle I is bipartite, separated by a complex of sands, approx. 1 m thick, although without any influence on the cycle. At the boundary between cycles I and

Table 3

The contribution of fossil thermophilous taxa in individual palaeofloristic cycles in the lignite seam (MPLS-1) with the Mean Annual Temperature (MAT) of their corresponding modern taxa (MAT after Utescher and Mosbrugger, 2015).

Taxa	Near living relatives (NLR)	Palaeofloristic element	MAT [°C]	Presence of taxa into palaeofloristic cycles of the lignite seam (MPLS-1)
Edmundipollis group	*Diplopanax* sp.	P1	16.8–22.2	+ + +
	Schefflera sp.		14.7–27.0	+ + +
	Panax sp.		7.6–25.7	+ + +
	Fatsia japonica		12.1–20.5	+ + +
Tricoloropollenites mangiferoides	*Mangifera* sp.	P1	15.7–28.1	+ + +
Cornaceaepollis satzveyensis	*Mastixia* sp.	P	17.7–27.8	+ + +
Cyrillaceaepollenites group	*Cyrilla* sp.	P	13.6–23.9	+ + +
	Clethra sp.		7.4–27.7	+ + +
Iteapollis angustiporatus	*Itea* sp.	P	7.7–27.7	+ + +
Spinulaepollis arceuthobioides	*Arceuthobium* sp.	P	-5.5–27.7	+ + +
Symplocoipollenites group	*Symplocos* sp.	P	13.6–27.7	+ + +
	Ilexpollenites			
	Ilex sp.	P	-0.4–27.7	+ + +
Tricoloropollenites group	*Parrotia* sp.	P2	11.6–16.8	+ + +
	Distylium sp.		13.8–27.7	+ + +
Araliaceipollenites group	*Aralia* sp.	P/A1	-5.5–27.7	+ + +
	Aralia spinosa		12.5–20.8	+ + +
Platanipollis ipelensis	*Platanus* sp.	P/A1	6.6–27.4	+ + +
Cupuliferoipollenites oviformis,	*Castanea* sp.	P2/A1	7.6–24.2	+ + +
	Castanopsis sp.		6.9–27.9	+ + +
	Lithocarpus sp.		7.0–27.1	+ + +
Liriodendroipollis verrucatus	*Liriodendron* sp.	P2/A1	6.0–24.0	+ + +
II, detritic lignite, formed on a flooded peatland, changed into xylodetritic lignite that formed in a swamp forest (Kasiński et al., 2010). The next interval (cycle IV), separating full, lignite-forming cycles, is characterised by very poor pollen material. It was not marked by a change in lithology, just as cycles III and V occurred within xylodetritic lignite. Cycles with a limited pollen record (II and IV) were short-lived and probably represented quite abrupt episodes, encompassing from 0.5 to 1 m of the section.

When analysing previous reports from the Konin region, attention should be drawn to the palynological type section in Gosławice, in which Mamczar (1960) described Middle Miocene deposits on the basis of the pollen analysis of lignite. Ziembińska-Tworzydło (in Kasiński et al., 2010) described a 10-m lignite section at the Jóźwin I open-cast mine, in which, on the basis of a pollen facies for the MPLS-1 also were compiled profiles from the Wielkopolska and Kujawy regions (cen "arctotertiary" pollen facies (P2/A1, P/A1, A1) and with an admixture of evergreen plants (P1, P1, P2) mainly forming the undergrowth. Many taxa with cosmopolitan, climatic requirements (P/A) also occurred (Tabs 2, 4). The contribution of thermophilous elements decreased in each subsequent cycle of plant community development, from 49% of the entire sporomorph complex in the I cycle, 41% in the III cycle, and 33% in the V cycle. There was a clear decrease in the number of thermophilous taxa, belonging to P1, P, P2 / A1, P2 / A1 elements (Tab. 4). Reconstructing climate, especially temperature and humidity, requires relating these factors to contemporary, climatic conditions (Tabs 2, 4). The results of pollen analysis indicate that at the time of sedimentation, the climate was warm-temperate and humid, comparable to the Cfa climate type (warm temperate, fully humid with hot summers and mild winters) in the Köppen-Geiger climate classification (updated by Kottek et al., 2006).

Thermal requirements of the fossil thermophilous taxa (P1 - P2 / A1) in the individual palaeoecological cycles in the lignite at Jóźwin IIB, compared with their near living relatives (NLR), indicate a Mean Annual Temperature (MAT) of about 11.6–20.5 °C (Tab. 3).

The declining contribution of thermophilous flora is related to climatic changes following the Middle Miocene Climatic Optimum (MMCO, 15.97–13.65 Ma), in the form of an emerging cooling trend (Tab. 3). The Jóźwin IIB section records the onset of cooling, which is related to many global causes, primarily the expansion of ice caps in Antarctica (Frigola et al., 2018), as well as the closure of circulation around the equatorial ocean gateways, due to geotectonic reconstruction in the mean latitudes and the resulting major reorganization of atmospheric circulation (Krapp, et al., 2006).
Environmental and vegetation changes probably also were connected with orbital-scale climate dynamics (Jiménez-Moreno and Mandic, 2020). Warm-temperate, evergreen forests and deciduous, mixed forests predominated during the MMCO. At the end of this optimum, the Middle Miocene Climatic Transition (MMCT) took place, i.e., progressive cooling and aridisation of climate, recorded on a global scale as the Mi3b event. It took place at ~13.76 Ma, as evidenced by an oxygen isotope δ18O increase and a carbon isotope δ13C decrease in benthic foraminifera (Hernández-Ballarin and Peláez-Campomanes, 2017; Frigola et al., 2018). The transition from the warmest climatic phase (MMCO) to progressive cooling also is indicated by Utescher et al. (2021) in the analysis of plant functional types (PFT) and their changes associated with eccentricity cycles, observed in the palynoflora of the Lower Rhine Basin.

CONCLUSIONS

Plant ecosystems, related mainly to peat-forming communities, predominate in the pollen spectrum of the first Middle-Polish lignite seam (MPLS-1) in the Jóźwiń IIB section. The presence of vegetation from areas around the lignite-forming peat bogs is also clearly visible.

Swamp forests dominated by coniferous plants, i.e. *Glyptostrobus* and *Taxodium*, were a common element of the Middle Miocene landscape in central Poland during the development of the MPLS-1. They were accompanied by *Nyssa* and *Alnus* deciduous trees, *Sphagnum* peat mosses and Polypodiacaeae and *Osmanda* ferns, present in the undergrowth of the swamp forest. Other plants of the peat-forming communities include bulrush, with *Sparganium* and *Poaceae*. Important elements in the development of fens were shrubs, including the Clethraceae, Cyrillaceae, Myricaceae, Oleaceae, Ericaceae and Salicaceae.

In the neighbourhood of the wetlands, diverse, mixed mesophilous forests developed, with evergreen plants and deciduous trees. In these communities, families and genera with high climatic requirements made a significant contribution: Araliaceae, Mastixiaceae, Anacardiaceae, Hamamelidaceae, Cornaceae, Symplocaceae, *Ilex*, *Itea*, Engelhardia, lianas and ferns. Trees preferring a warm-temperate climate grew in mixed forests, mainly: Cupressaceae, Engelhardia, *Hammamelidaceae*, *Cornaceae*, *Symplocaceae*, *Araliaceae*, *Mastixiaceae*, *Anacardiaceae*, *Hamamelidaceae*, *Cornaceae*, *Symplocaceae*, *Ilex*, *Itea*, *Engelhardia*, lianas and ferns. Trees preferring a warm-temperate climate grew in mixed forests, mainly: Cupressaceae, Sequoia, *Sciadopitys*, *Cunninghamia*, Cryptomeria, Tsuga, *Acer*, Eucommia, Liriodendron, Liquidambar, *Quercus*, *Betula*, *Corylus*, Juglandaceae, and *Tiliae*. All these plants occupied areas adjacent to the peat bogs during the formation of the lignite-forming biomass.

Plants of these forests record climatic changes (mainly fluctuations in temperature and humidity). In the section analysed, the beginning of a cooling trend of the Middle Miocene Climatic Transition (MMCT) at approximately 13.7 Ma (late Langhian) was observed after the last MMCO peak, as indicated by the floric record of cycle V. This is also a declining stage in the development of mid-Miocene peat bogs.

Vegetation is a very sensitive indicator of environmental changes. Slight changes in groundwater level were recorded in the compact and macroscopically homogeneous lignite seam. These changes are more clearly visible in the peat-forming communities and were recorded in three cycles: I, III, V. Floods caused the development of crevasse splays, as documented by cycle II, with a poor pollen spectrum. The phase of mire disappearance is reflected in the lignite cycle (cycle IV). Temperature changes, shown as a decrease in the number of taxa with higher thermal requirements, are recorded in the mixed forest community, growing in areas located on high ground beyond the mire.

Acknowledgments

The authors kindly acknowledge Nela Dolaková and an anonymous reviewer for their valuable comments, suggestions and constructive remarks. The present study is a contribution to Research Project No. 2017/27/B/ST10/00001, funded by the National Science Centre, Poland.

REFERENCES

Bechtel, A., Widera, M., Lücke, A., Groß, D. & Woszczyk, M., 2020. Petrological and geochemical characteristics of xylites and associated lipids from the First Lusatian lignite seam (Konin Basin, Poland): implications for floral sources, decomposition and environmental conditions. *Organic Geochemistry*, 147: 104052.

Bechtel, A., Widera, M. & Woszczyk, M., 2019. Composition of lipids from the First Lusatian lignite seam of the Konin Basin (Poland): relations to vegetation, climate and carbon cycling during the mid-Miocene Climatic Optimum. *Organic Geochemistry*, 138: 103908.

Bruch, A. A., Uhl, D. & Mosbrugger, V., 2007. Miocene climate in Europe-Patterns and evolution. A first synthesis of NECLIME. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 253: 1–7.

Chomiak, L., 2020. Variation of lignite ash in vertical and horizontal sections of mining walls in the Konin Lignite Mine, central Poland. *Geology, Geophysics and Environment*, 46: 17–28.

Chomiak, L., Urbański, P. & Widera M., 2020. Architecture and origin of clays within the upper part of lignites of the Poznań Formation (Middle Miocene) – the Tomisławice lignite open-cast mine near Konin, central Poland. *Przegląd Geologiczny*, 68: 526–534. [In Polish, with English summary.]

Chomiak, L., Wachocki, R., Maciaszek, P., Widera, M. & Zieleński, T., 2019. Seismically-induced soft-sediment deformation in crevasse-splay microdelta deposits (Middle Miocene, central Poland). *Geological Quarterly*, 63: 162–177.

Ciuk, E. & Grabowska, I., 1991. Synthetic stratigraphic section of the Tertiary in the Lubstów brown coal deposit at Lubstów, Konin. *Biuletyn Państwowego Instytutu Geologicznego*, 365: 47–72. [In Polish, with English summary.]

Dadlez, R., Marek, S. & Pokorski, J. (eds), 2000. *Geological Map of Poland without Cenozoic Deposits*, Scale 1:100000. Polish Geological Institute, Warszawa. [In Polish.]

Erdtman, G., 1954. *An Introduction to Pollen Analysis*. Waltham, Chronica Botanica Company, Massachusetts, USA, 239 pp.

Doktorowicz-Hrebnicka, J., 1960. Correlation of brown coal seams from the provinces of Poznań and Bydgoszcz. *Prace Instytutu Geologicznego*, 157: 69–138.

Fegri, K. & Iversen J., 1978. *Podręcznik analizy pyłkowej*. Wydawnictwa Geologiczne. Warszawa, 250 pp. [In Polish.]
