Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador

Loughlin, N.J.D.; Gosling, W.D.; Coe, A.L.; Gulliver, P.; Mothes, P.; Montoya, E.

DOI
10.1016/j.palaeo.2017.10.011

Publication date
2018

Published in
Palaeogeography, Palaeoclimatology, Palaeoecology

License
CC BY

Citation for published version (APA): Loughlin, N. J. D., Gosling, W. D., Coe, A. L., Gulliver, P., Mothes, P., & Montoya, E. (2018). Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador. Palaeogeography, Palaeoclimatology, Palaeoecology, 489, 198-208. https://doi.org/10.1016/j.palaeo.2017.10.011

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador

Nicholas J.D. Loughlina,b,*, William D. Goslinga,b, Angela L. Coec, Pauline Gulliverc, Patricia Mothesd, Encarni Montoyaa,e

a School of Environment, Earth & Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
b Palaeoecology & Landscape Ecology, Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, Netherlands
c NERC Radiocarbon Facility (East Kilbride), Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, Scotland G75 0QF, United Kingdom
d Instituto Geofísico, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Apartado 2759, Quito, Ecuador
e Institute of Earth Sciences “Jaume Almera” (ICTJA-CSIC), c/Sole Sabaris s/n, 08028 Barcelona, Spain

\textbf{ARTICLE INFO}

Keywords: Cloud forest
Vegetation community
Landscape dynamics
Neotropics
Pleistocene

\textbf{ABSTRACT}

Understanding the impact of landscape-scale disturbance events during the last glacial period is vital in accurately reconstructing the ecosystem dynamics of montane environments. Here, a sedimentary succession from the tropical montane cloud forest of the eastern Andean flank of Ecuador provides evidence of the role of non-climate drivers of vegetation change (volcanic events, fire regime and herbivory) during the late-Pleistocene. Multiproxy analysis (pollen, non-pollen palynomorphs, charcoal, geochemistry and carbon content) of the sediments, radiocarbon dated to ca. 45–42 ka, provide a snapshot of the depositional environment, vegetation community and non-climate drivers of ecosystem dynamics. The geomorphology of the Vinillos study area, along with the organic-carbon content, and aquatic remains suggest deposition took place near a valley floor in a swamp or shallow water environment. The pollen assemblage initially composed primarily of herbaceous types (Poaceae-Asteraceae-Solanaceae) is replaced as some of the forest taxa (first Melastomataceae-Weinmannia-Ilex, and later, Alnus-Hedyosmum-Myrica). The pollen assemblages have no modern analogues in the tropical montane cloud forest of Ecuador. High macro-charcoal and rare macro-charcoal abundances co-occur with volcanic tephra deposits suggesting transportation from extra-local regions and that volcanic eruptions were an important source of ignition in the wider glacial landscape. The presence of the coprophilous fungi Sporormiella reveals the occurrence of herbivores in the glacial montane forest landscape. Pollen analysis indicates a stable regional vegetation community, with changes in vegetation population co-occurring with large volcanic tephra deposits suggesting that the structure of glacial vegetation at Vinillos was driven by volcanic activity.

* Corresponding author at: School of Environment, Earth & Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom. E-mail address: nicholas.loughlin@open.ac.uk (N.J.D. Loughlin).

http://dx.doi.org/10.1016/j.palaeo.2017.10.011
Received 5 April 2017; Received in revised form 30 September 2017; Accepted 9 October 2017
Available online 13 October 2017

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Modern natural (non-human) drivers of ecosystem change include abiotic processes such as volcanic eruptions, earthquakes, landslides and fire, while biotic processes such as plant-animal interactions, disease, forest die-back and a variety of edaphic factors, e.g. nutrient limitation, are all associated with landscape-scale modifications of the environment. The stochastic nature of these abiotic and biotic drivers, coupled with high landscape heterogeneity can alter vegetation at a local to regional scale, over geologically short periods of time. In order to better understand ecosystem function in montane environments the role of non-climate drivers of vegetation change during different climate regimes (e.g. glacial periods), and in the absence of modern anthropogenic impact, needs to be ascertained.

Long sedimentary records from large lakes indicate climate is the primary driver of vegetation change over millennial scale time frames within the Andes (Hanselman et al., 2011; van der Hammen and Hooghiemstra, 2003). The only lake records from within the TMCF habitat of the eastern Andean flank that extend from prior to the last glacial maximum occur at Lake Consuelo in southern Peru (Bush et al., 2004; Urrego et al., 2005, 2010) and at Funza and Fúquene in central Colombia (Bogotá-A et al., 2016; Hooghiemstra, 1984; van der Hammen and Hooghiemstra, 2003). Analysis of past vegetation change in the TMCF of the eastern Andean flank of Ecuador is limited due to the paucity of suitably preserved sediments. Palynological analysis of discontinuous sediments from cliff sections at the Mera, Erazo and San Juan de Bosco sites indicate changing forest assemblages through the Quaternary are driven by long-term changes in climate (Bush et al., 1990; Cárdenas et al., 2011, 2014; Colinvaux et al., 1997; Keen, 2015; Liu and Colinvaux, 1985). However, the role of short-term non-climate drivers of vegetation change has yet to be investigated in this setting.

Here we use a multi-proxy approach (pollen, non-pollen palynomorphs, wood macro-remains, charcoal, geochemistry and carbon content) to reconstruct a snapshot of a glacial montane forest vegetation community. We assess the role of volcanic activity (volcanic tephra layers), fire regime (charcoal) and herbivory (Sporormiella) as ecosystem drivers of vegetation change in a glacial montane forest and discuss the importance of incorporating non-climate drivers of vegetation change into palaeoecological reconstructions of TMCF.

2. Study site

A new section was located at Vinillos (0°36′2.8″S, 77°50′48.8″W), near the town of Cosanga in the Napo Province, Ecuador. The Vinillos site is situated at 2090 m asl between the Cordillera Real and Napo Uplift on the eastern Andean flank of northern Ecuador (Fig. 1). The exposure is located on the eastern side of the Cosanga Valley, and was uncovered during construction of the Troncal Amazonica (E45); the highway adjacent to the Río Cosanga.

Modern climate data from the study region is sparse, however, 15 years of data from the nearby town of Baeza (Fig. 1) indicates an average of 2320 mm of precipitation per annum (Valencia et al., 1999). High levels of orographic rainfall and semi-permanent ground level cloud lead to persistent moist conditions (Harling, 1979).
temperatures range from 16 to 20 °C throughout the year due to stable levels of solar radiation and low seasonality (Galeas and Guevara, 2012; Harling, 1979), however, diurnal changes in temperature of up to 20 °C can occur at higher elevations, acting as a much more significant control on vegetation distribution than seasonal changes in temperature (Neill and Jørgensen, 1999).

Today the Vinillos section is situated within tropical montane cloud forest vegetation (Fig. 1) (Neill, 1999; Sierra, 1999; Webster, 1995). The modern vegetation at Vinillos is composed primarily of Andean forest elements such as Arecaceae, Betulaceae (Alnus), Chloranthaceae (Hedyosmum), Cannoniaceae (Weinmannia), Ericaceae, Fabaceae, Lauraceae, Melastomataceae, Moraceae, Rubiaceae and Urticaceae (Cárdenas et al., 2014; Grubb et al., 1963; Valencia et al., 1998).

Anthropogenic disturbance and deforestation in the region means that the modern vegetation is a mosaic of arable land, pastures and secondary forest. Modern pollen-vegetation relationships have not been studied extensively in the region of Vinillos, however, a modern pollen altitudinal transect (1895 m–2220 m asl) from the nearby Erazo site (Fig. 1) does provide a representation of the human impacted pollen signal showing an over representation of the disturbance indicator Cecropia (Cárdenas et al., 2014). Studies of pollen-vegetation relationships from montane forests elsewhere in the Andes indicate that the modern pollen rain of tropical montane cloud forests is comprised of a combination of Andean and lowland forest taxa (Rull, 2006; Weng et al., 2004b).

3. Methods

3.1. Sediment sampling

The Vinillos section is composed of 325 cm of interbedded organic layers (identified with the prefix O) and volcanic tephra deposits (identified with the prefix T) (Fig. 2). Forty-four sediment samples were collected in 2012 through the six organic layers at approximately 5 cm intervals. A further four samples were collected, one from each of the four volcanic tephra layers. The exposure was cleared of surface sediment and vegetation prior to sampling, which commenced in the uppermost dark-brown organic layer below the weathered surface soils. A knife was used to extract 1 cm wedges of sediment from the section, which were placed in zip locked bags, labelled and kept cool prior to transport to The Open University (UK) where they were stored in a cold store (3–5 °C). Descriptions of the sediments were recorded during sampling.

3.2. Radiocarbon dating

Accelerator mass spectrometry (AMS) radiocarbon (14C) dating of two palynomorph residues from the top and base of the Vinillos section was undertaken to constrain the age of the sediments. Palynomorph residues were used as they have been shown to produce more reliable ages than bulk samples in regions of high rainfall (Newnham et al., 2007; Vandergoes and Prior, 2003). Guidelines, based on standard palynological protocols (Faegri and Iversen, 1989) were provided by the Natural Environment Research Council (NERC) Radiocarbon Facility-East Kilbride (NRCF). Preparation included the mechanical sieving of the sediment at 100 μm and the use of HCl, KOH and HF to concentrate palynomorphs from the bulk sediment.

3.3. Loss-on-ignition

Forty-eight 2 cm³ subsamples of sediment were extracted for loss-on-ignition (LOI) analysis. A standard LOI protocol was undertaken (Heiri et al., 2001). Samples were dried at 40 °C for up to 5 days to remove moisture, followed by with controlled burns at 550 °C for 4 h to remove organics, and 950 °C for 2 h to remove carbonates, with the remaining material classified as siliciclastics. Weighing of samples took place after each phase and the weight loss converted to a percentage of the dry weight.

3.4. X-ray fluorescence

Major element analysis using X-ray fluorescence (XRF) was undertaken on the four tephra layers and two internal standards using standard protocols (Enzweiler and Webb, 1996; Thomas and Haukka, 1978). Glass disks were produced and analysed using an ARL 8420+ dual goniometer wavelength dispersive XRF spectrometer at The Open University to determine the major element composition (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅) of the tephra material.

3.5. Charcoal analysis

Twenty-nine samples from the organic sediments were examined for microscopic charcoal (5–100 μm) in the slides mounted for palynomorphs analysis. Fifty random fields of view from each palynomorph
slide were recorded for microscopic charcoal remains and exotic Lycopodium at 200 × magnification (Clark and Patterson, 1997; Whitlock and Larsen, 2001). Micro-charcoal values were then converted to concentration per cm². Fifty 1 cm² subsamples of material were also processed and analysed for macroscopic charcoal particles (> 100 μm). Sediment was deflocculated in 15 ml of a 10% solution of KOH at 80 °C for 20 min and then washed through a sieve at 100 μm (Whitlock and Larsen, 2001). The remaining residue was then analysed under a low power (20 ×) microscope in a bogorov tray and all charcoal particles recorded. Particles were identified by their angular form, brittle nature and high reflectivity (Clark and Royall, 1995).

3.6. Palynomorph analysis

Twenty-six discrete sediment samples were chosen for the examination of palynomorphs at approximately 10 cm intervals through the organic layers and in all of the volcanic tephra layers. Organic samples of 1 cm³ were processed using standard laboratory procedures (Faegri and Iversen, 1989). Volcanic tephra samples of 6 cm³ were processed using density separation (Bromoform; 2 mol), due to the highly silicilastic nature of the sediments and low palynomorph concentration (Moore et al., 1991). Samples using these two methods of palynomorph recovery have been shown to be directly comparable (Campbell et al., 2016). The addition of an exotic marker; here Lycopodium batch #124961: averaging 12,542 ± 931 spores per tablet, was added in order to determine palynomorph concentrations (Stockmarr, 1971). Samples were mounted in glycerol on glass slides and counted at 400 × and 1000 × magnification using a Nikon Eclipse 50i microscope. Counting of all palynomorphs (pollen, algae, fungal and zoological remains) was undertaken until a minimum of 300 terrestrial pollen grains (305 – 474) were recorded per sample, corresponding to between 0–113 algal remains, 0–2620 fungal NPPs and 0–12 zoological remains. Reference material at The Open University, an open access online pollen database (Bush and Weng, 2007) and published pollen atlases (Colinvaux et al., 1999; Hooghiemstra, 1984; Roubiak and Moreno, 1991), were used to identify pollen grains. Non-pollen palynomorph (NPP) identification was undertaken using the available literature (Bakker and Van Smeerdijk, 1982; Cugny et al., 2010; Gelorini et al., 2011; Hooghiemstra, 1984; López-Vila et al., 2014; Montoya et al., 2010, 2012; Rull et al., 2008; Rull and Vegas-Vilarrúbia, 1998, 1999; van Geel, 1978; van Geel et al., 1981, 1983, 1989, 2003, 2011; van Geel and Aptroot, 2006; van Smeerdijk, 1989), New NPP morphotypes (assigned with the prefix OU) were recorded and are described in Loughlin et al. (2017).

3.7. Zonation of palynomorphs

Statistically significant zones were established for pollen assemblages in the program PSIMPOLL (Bennett, 2008). Data were filtered to include only terrestrial pollen taxa that occurred in > 1 sample and at an abundance of > 2% in at least a single sample. Aquatic elements, spores and NPPs were excluded. Zonation was performed by optimal splitting by information content, using the broken stick method to determine the significant number of zones (Bennett, 1996). The pollen assemblages were then applied to the palynomorph diagrams which were plotted in the program C2 (Juggins, 2007).

4. Results

4.1. Chronology

Radiocarbon dating from the upper and lower portion of the Vinillos section (20 cm and 309 cm) returned dates whose one standard deviation error overlap. Calibration of reported dates was undertaken in OxCal 4.2.4 (Bronk Ramsey et al., 2013) using the IntCal13 atmospheric curve (Reimer et al., 2013). Uncertainties in the dates indicate it is not possible to construct a robust chronology or establish the rate of sedimentation. However, the radiocarbon dates do indicate deposition of the Vinillos sediments took place during the late Pleistocene ca. 45–42 ka (Table 1).

4.2. Sediments

The Vinillos section is composed of dark-brown to black organic layers with occasional pale grey lenses of volcanic ash interbedded with pale grey to beige volcanic tephra deposits. The sedimentary succession is composed of two offset portions, starting from the base of the exposure, Section B (SB) occurs from 325 cm to 140 cm and Section A (SA) from 135 cm to 0 cm, separated by a 5 cm sand layer that was not sampled, giving an overall thickness of 325 cm in length (Fig. 2). LOI of the basal 20 cm of the Vinillos section (a black organic-rich clay) indicates an organic carbon content of 22–34 wt%. Organic carbon is reduced to 3–9 wt% for the remainder of SB following the first occurrences of lenses of volcanic ash occurring at ca. 300 cm. Units SAO2 and SAO1 which make up the organic units of SA show a gradual increase in organic carbon through the beds after each tephra layer from 9 to 16 wt% and 8–20 wt% respectively. Carbonate content is low throughout the Vinillos section ranging from 0.5–2.5 wt%, with a mean of 0.9 wt%. Two unidentified large (> 30 cm in length and > 10 cm in diameter) wood macro-fossils were recovered from the outcrop, one within organic bed SBO1 and the other in SBO2 where it meets tephra layer T4 (Fig. 4).

4.3. Volcanic tephra layers

Four discrete volcanic tephra layers of different thicknesses were identified at Vinillos, T1 (18 cm), T2 (25 cm), T3 (40 cm) and T4 (23 cm). Geochemical analysis of the volcanic tephra layers using XRF indicate chemical compositions that can be characterised as an andesite (T1), basaltic andesite (T2), trachy-andesite (T3) and dacite (T4) (Fig. 3). Combustion of samples using LOI prior to XRF indicate that volcanic tephra samples contain between 3 and 12% organic carbon and are therefore not purely inorganic volcanic deposits (Fig. 2). Pollen was detected and identified within each tephra layer. Fungal NPPs were identified within T3 and T4, but no discernible NPP remains were identified from T1 and T2.

Table 1

Publication code	Sample depth (cm)	δ¹³CVPDB (‰)	Radiocarbon age (yr B.P. ± 1σ)	Calibrated* radiocarbon age (yr B.P. ± 1σ)	Calibrated* radiocarbon age (median probability)
SUERC-S89552	20	−27.4	38,503 ± 968	41,885–43,325	42,670
SUERC-S89553	309	−27.1	40,524 ± 1,245	43,091–45,218	44,300

* δ¹³CVPDB (‰) values were determined from using an aliquot of sample CO₂ and were measured on a dual inlet stable isotope mass spectrometer (Thermo Scientific Delta V Plus) and are representative of δ¹³C in the pre-treated sample material.

* Conventional radiocarbon years B.P. (relative to 1950 CE), expressed at the ± 1σ level for overall analytical confidence. Calculated from 14/13 ratios analysed by AMS which were subsequently corrected to δ¹³CVPDB = −25% using the δ¹³C values listed in this table and corrected for background contamination using the NERC Quartz tube combustion background of +0.17 ± 0.1% modern carbon.
4.4. Macro- and micro-charcoal

Macro-charcoal was recovered from eleven of the forty-eight samples examined (Fig. 4). The charcoal occurred at a concentration of 1–26 fragments per cm³. Nine of the eleven samples which contained macro-charcoal occur in the volcanic tephra layers or directly adjacent to them, the two other samples were from near the base of SBO3, concomitant with the first organic sediments to contain volcanic ash lenses. Micro-charcoal is present in each of the 29 samples analysed. The abundance of micro-charcoal ranged from 2500 to 140,000 fragments per cm³, with a mean of 44,500 fragments per cm³. Maximum micro-charcoal concentrations correlate with the maximum macro-charcoal concentration, occurring directly below T1 and in the samples collected at a height of 35–25 cm (SAO1) where the youngest organic samples occur with volcanic ash lenses.

4.5. Palynomorphs

Zonation of pollen yielded three statistically significant stratigraphic zones, VIN 1 to VIN 3. (Figs. 5, 6 and 7).

4.5.1. Pollen zone VIN 1

VIN 1 (13 samples, 320–140 cm) corresponds to SB and is characterised by abundant Poaceae (4–30%) and fern spores (22–36%). Alnus has a low abundance (2–9%) at the base of the zone increasing after T4 to 7–21%, while Solanaceae occurs at 1–9% at the base of the zone and decreases after T4 to 0.3–1.4%. Asteraceae (3–17%), Melastomataceae (2–13%), Hedysorum (3–10%), Ericaceae (1–9%) and Clusiaceae (4–10%) are consistently present but in low abundance. Pollen concentrations occur at 60,000–270,000 grains per cm³ at the base of the zone decreasing to 17,000–84,000 grains per cm³ after T4. The most abundant fungal NPP morphotypes in VIN 1 include HdV.123 (1–24%), HdV.495 (1–19%) and IBB.259 (1–14%). The obligate co-prophilous fungal spore Sporormiella is present in two samples in low abundance (< 3%). Coniochaeta cf. ligniaria occurs in low abundances below T4 (0–6%) increasing to 7–17% in the beds containing wood macro-fossils. The semi-aquatic Cyperaceae fluctuate between 1 and 13%. The lower part of the zone aquatic remains include Isoetes (< 3%), Spirogyra (< 2%), Concentricystis (< 8%) and Mougeotia (< 5%) and along with the sole aquatic zoological remains of HdV.179 (< 4%). Above the lowest volcanic tephra layer aquatic remains are reduced with only Spirogyra (< 4%) occurring in a single sample (Fig. 7).

4.5.2. Pollen zone VIN 2

VIN 2 (6 samples, 140–75 cm) corresponds to SAO2, T1 and the lowermost sample in SAO1 and is characterised by an abrupt decrease in the percentage of Poaceae (2–5%), fern spores (12–17%), Alnus (3–7%) and Asteraceae (3–5%). Melastomateae (15–27%), Weinmannia (6–27%) and Ilex (1–8%) increase along with a sharp increase in pollen concentration to 300,000–950,000 grains per cm³, with Melastomateae and Weinmannia peaking at 251,000 and 282,000 grains per cm³ respectively in sample 115 cm, before dropping to < 110,000 per cm³ immediately at T1. Fungal NPP concentration is at its lowest point in VIN 2 (< 20,000 per cm³) and is effectively barren (< 10,000 per cm³) for 4 of the 6 samples within the zone. Semi-aquatic Cyperaceae are reduced occurring at 1–2%, with aquatic elements Isoetes (< 1%) and Spirogyra (< 2%) only present in single samples.

4.5.3. Pollen zone VIN 3

VIN 3 (7 samples, 75–0 cm) corresponds to SAO1 except for the lowermost sample and is characterised by an increase in Alnus (20–28%), Myricaceae (3–9%) and fern spores (18–41%) in conjunction with a moderate increase in Hedysorum (8–13%), Asteraceae (4–11%) and Poaceae (7–8%). Melastomateae (5–11%), Weinmannia (< 5%) and Ilex (< 1%) all decrease. The pollen concentration is reduced again to that of VIN 1 (30,000–210,000 grains per cm³). Fungal NPP remains OU-108 (9–75%), HdV.123 (9–690%), HdV.495 (6–16%) and IBB.259 (5–18%) are the primary morphotypes with OU-108 dominant and

![Fig. 3. TAS diagram of X-ray fluorescence data. T1-andesite; T2-basaltic andesite; T3-trachy-andesite; T4-dacite.](image1)

![Fig. 4. Micro- and macro-charcoal concentrations and wood macrofossils. Micro-charcoal (< 100 µm) and macro-charcoal (> 100 µm) are displayed as fragments per cm³. Asterisk (*) mark position of individual wood macro-fossil remains.](image2)
The Vinillos section contains pollen taxa which are present within the modern pollen spectra of the eastern Andean flank, however, the
fossil pollen assemblages are compositionally unlike any comparable modern pollen assemblage from the region (Cárdenas et al., 2014; Marchant et al., 2001; Rull, 2006; Weng et al., 2004b). This no-analogue pollen assemblage from the region (Cárdenas et al., 2014; Marchant et al., 2001; Rull, 2006; Weng et al., 2004b). This no-analogue pollen assemblage (sensu Williams and Jackson, 2007), indicates that a novel vegetation community existed at Vinillos during the late Pleistocene. The high abundance and association of typical Andean arboreal pollen taxa (e.g. *Alnus, Weinmannia, Hedyosmum*), presence of large wood macro-fossils and low levels of Poaceae throughout the section (mean 13.5%) are used to suggest a montane forest community was present during the deposition of the Vinillos sediments. Three pollen zones provide evidence for dynamic changes to the glacial forest pollen assemblage characterised by the dominance of Poaceae-Asteraceae-Solanaceae in VIN 1, Melastomataceae-Weinmannia-Alex in VIN 2, and *Alnus-Hedyosmum-Myrica* in VIN 3. These changes in pollen assemblage through the Vinillos section are due to shifts in the abundance of particular pollen taxa and not the wholesale replacement of particular species, indeed every year except Myrtaeaceae and *Cecropia* can be found in each of the three pollen zones (Fig. 5). This change in pollen abundance between assemblages within a closed canopy moist tropical forests can indicate distinct changes in vegetation structure (Gosling et al., 2005, 2009). Pollen analysis from glacial Neotropical sedimentary archives have previously been used to conclude that millennial scale changes in temperature and moisture balance have driven vegetation change through the Quaternary (Baker et al., 2001; Bogotá-A et al., 2011; Bush et al., 2004; Colinvaux et al., 2000; Gosling et al., 2008; Groot et al., 2011; Mourguiart and Ledru, 2003; Urrego et al., 2005, 2010, 2016). However, the cumulative effect of climate change on landscape-scale drivers such as increased precipitation leading to more frequent landslides is rarely discussed (Stern, 1995; Bussmann et al., 2008). Incorporating landscape-scale drivers into past and future projections of vegetation change is essential in understanding how montane forest respond to environmental change. The three pollen assemblage shifts at Vinillos occurring over approximately 2 ka (44.3–42.6 ka) and in conjunction with volcanic tephra deposits suggest that non-climate factors can be the primary driver of short-term change in glacial montane forest communities. This pattern of population change is analogous to modern montane forest communities, where landscape heterogeneity, environmental variability and stochastic disturbance events lead to local variation in vegetation population within an identifiable vegetation zone.

5.3. Landscape-scale drivers of vegetation change

5.3.1. Herbivory

Remains of Pleistocene megaherbivores such as giant ground sloths (*Megatheriidae*), armadillos (*Chlamyphoridae*) and Proboscideans (*Gomphotheriidae*) have been found in the inter-Andean plain and lowland Amazonian rainforest of Ecuador (Coltorti et al., 1998; Marshall et al., 1983), but little evidence exists of herbivory within the steep slopes of the intermediate montane forest region. The Vinillos record contains low abundances (< 3%) of the ascospore *Sporormiella* (Fig. 6), an obligate coprophilous fungi which requires ingestion by herbivorous before being deposited in dung to complete its life cycle (Krug et al., 2004). *Sporormiella* has been used to determine changes in herbivore population and collapse during the late-Quaternary extinction (Davis, 1987; Gill et al., 2009), when large Pleistocene herbivores were likely important drivers of ecosystem change within the tropics (Corlett, 2013). The presence of *Sporormiella* at Vinillos suggests the
local presence of herbivores along the valley within the glacial montane forest environment, but cannot provide further information on the type of herbivore or their abundance. The presence of small and large fauna may have contributed to seed dispersal, vegetation openness and hence fire reduction within the glacial montane forest environment.

5.3.2. Fire regime

Fire is an important driver of vegetation change in the Neotropics (Bond and Keeley, 2005; van der Werf et al., 2008). However, high levels of year-round precipitation and ground level cloud within modern TMCF mean that they rarely burn naturally (Crausbay and Martin, 2016). The global fire regime has been shown to be diminished during glacial periods (Daniau et al., 2010), with Neotropical charcoal records containing reduced concentrations during the last glacial period (Bond and Keeley, 2005; van der Werf et al., 2008). However, high levels of year-round precipitation and ground level cloud within modern TMCF mean that they rarely burn naturally (Crausbay and Martin, 2016). The global fire regime has been shown to be diminished during glacial periods (Daniau et al., 2010), with Neotropical charcoal records containing reduced concentrations during the last glacial period (Bond and Keeley, 2005; van der Werf et al., 2008).

The occurrence of these non-climatic landscape-scale drivers (volcanic events, fires and herbivores) in conjunction with disturbance events which occur in modern montane environments, e.g. landslides, forest die-back, tree fall events, and presumably occurred in the glacial landscape allowed for stochastic local disturbances in the vegetation assemblages to occur. Pollen zone VIN 2 occurs immediately after the largest volcanic tephra layer (T2, 40 cm) and contains a change in the palynomorph assemblage to one characterised by high concentrations of Weinnmannia, Melastomataceae and Ilex pollen, but an absence of fungal NPPs (Fig. 8). This shift in pollen assemblage and loss of fungal NPPs is interpreted to indicate that the amount of volcanic ash deposited by T1, T2 and T3 caused the population dynamics and edaphic factors of the local area to change. Deposition of the youngest tephra layer (T1) coincides with a return to an assemblage comparable to that of VIN 1 with an increase in Alnus, Hedysosmum and Myrica (Fig. 5). Changes in the pollen zones through the Vinillos section broadly correspond to changes in sediment associated with the introduction of volcanic tephra material, indicating that volcanic activity is likely to have been an important driver of landscape-scale ecosystem dynamics in glacial montane forest on the eastern Andean flank.

The occurrence of three tephra layers within one pollen zone (VIN 1) indicates that the vegetation assemblage changed little after the deposition of T3 and T4. An increase in the proportion of Alnus pollen, a typical pioneer species in the Andes (Grau and Veblen, 2000; Weng et al., 2004a) within and adjacent to T4 and T3 indicates some disturbance of the forest community took place, but that no overall change in vegetation composition occurred. Pollen zone VIN 2 occurs immediately after the largest volcanic tephra layer (T2, 40 cm) and contains a change in the palynomorph assemblage to one characterised by high concentrations of Weinnmannia, Melastomataceae and Ilex pollen, but an absence of fungal NPPs (Fig. 8). This shift in pollen assemblage and loss of fungal NPPs is interpreted to indicate that the amount of volcanic ash deposited by T1, T2 and T3 caused the population dynamics and edaphic factors of the local area to change. Deposition of the youngest tephra layer (T1) coincides with a return to an assemblage comparable to that of VIN 1 with an increase in Alnus, Hedysosmum and Myrica (Fig. 5). Changes in the pollen zones through the Vinillos section broadly correspond to changes in sediment associated with the introduction of volcanic tephra material, indicating that volcanic activity is likely to have been an important driver of landscape-scale ecosystem dynamics in glacial montane forest on the eastern Andean flank.

The composition of the palynological assemblages through the Vinillos section indicates a stable regional vegetation community occurred on the eastern Andean flank of northern Ecuador during the last glacial period ca. 45–42 ka, despite landscape-scale processes driving local changes in forest structure. Deposition of volcanic ash was found to be the primary non-climate driver of landscape-scale changes in vegetation populations. Local vegetation population dynamics were
driven primarily by these stochastic disturbance events, maintaining local vegetation heterogeneity during the last glacial period. No-analogue pollen assemblages from Vinillos indicate the presence of glacial forest communities that differ compositionally to the tropical montane cloud forest vegetation that occurs today, with higher abundances of characteristic montane taxa i.e. *Podocarpus, Alnus, Hedyosmum* and *Weinmannia* indicating cooler conditions. The presence of obligate coprophilous fungi e.g. *Sporormiella*, provides evidence for the existence of herbivores within the glacial forest, however, low concentrations suggest they would have had a negligible impact on vegetation dynamics. The association between volcanic sediments and charcoal suggests that volcanic eruptions were the principle source of ignition in prehistoric times. The association between volcanic sediments and charcoal suggests they would have had a negligible impact on vegetation dynamics. The association between volcanic sediments and charcoal suggests that volcanic eruptions were the principle source of ignition in prehistoric times. The association between volcanic sediments and charcoal suggests they would have had a negligible impact on vegetation dynamics. The association between volcanic sediments and charcoal suggests that volcanic eruptions were the principle source of ignition in prehistoric times. The association between volcanic sediments and charcoal suggests they would have had a negligible impact on vegetation dynamics. The association between volcanic sediments and charcoal suggests that volcanic eruptions were the principle source of ignition in prehistoric times. The association between volcanic sediments and charcoal suggests they would have had a negligible impact on vegetation dynamics. The association between volcanic sediments and charcoal suggests that volcanic eruptions were the principle source of ignition in prehistoric times. The association between volcanic sediments and charcoal suggests they would have had a negligible impact on vegetation dynamics. The association between volcanic sediments and charcoal suggests that volcanic eruptions were the principle source of ignition in prehistoric times. The association between volcanic sediments and charcoal suggests they would have had a negligible impact on vegetation dynamics. The association between volcanic sediments and charcoal suggests that volcanic eruptions were the principle source of ignition in prehistoric times. The association between volcanic sediments and charcoal suggests they would have had a negligible impact on vegetation dynamics. The association between volcanic sediments and charcoal suggests that volcanic eruptions were the principle source of ignition in prehistoric times. The association between volcanic sediments and charcoal suggests they would have had a negligible impact on vegetation dynamics.

Acknowledgements

This work was supported by the Natural Environment Research Council (NERC) and The Open University through a scholarship to NJDL (NE/L501888/1), and a NERC fellowship to EM (NE/J018562/1). Radiocarbon analysis was supported by the NERC Radiocarbon Facility NRCF010001 (allocation number 1810.0414) and undertaken by PG. XRF was undertaken by the late John Watson at the Open University, UK. The Vinillos samples were collected in 2012 as part of a NERC funded staff development (NE/J500288/1). We thank Annemarie Philip (University of Amsterdam, Netherlands) for assistance with palynomorph preparation and Hayley Keen, Frazer Matthews-Bird and James Malley (all The Open University, UK) for assisting with the collection of the samples.

References

Aalto, R., Dunne, T., Goyot, J.L., 2006. Geomorphic controls on Andean denudation rates. J. Geol. 114, 85–99.

Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640–643.

Bakker, M., Van Smeerdijk, D.G., 1962. A palaeoecological study of a late Holocene section from “Het Ilperveld”, western Netherlands. Rev. Palaeobot. Palynol. 36, 95–163.

Bennett, K., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132, 155–170.

Bennett, K., 2008. psimpoll and pscmb. available at: http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html.

Blunier, T., Brook, E.J., 2001. Timing of Millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112.

Borgida, A., Groot, M.H.M., Hooghiemstra, H., Lourens, L.J., Van der Linden, M., Berrijo, J.C., 2011. Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quat. Sci. Rev. 30, 3321–3337.

Bond, W.J., Keeley, J.E., 2005. Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394.

Brock Ramsey, C., Scott, M., van der Plicht, H., 2013. Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal BP. Radiocarbon 55, 2021–2027.

Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., 2011. Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press, Cambridge.

Bush, M.B., Weng, C., 2007. Introducing a new (freeware) tool for palynology. J. Biogeogr. 34, 337–380.

Bush, M.B., Colvinax, P.A., Wiemann, M.C., Piperno, D.R., Liu, K., 1990. Late Pleistocene temperature depression and vegetation change in Ecuadorean Amazonia. Quat. Res. 34, 330–345.
Bush, M., Siliman, M.R., Urrego, D.H., 2004. 48,000 years of forest and climate change in a biodiversity hotspot. Science 303, 827–829.

Busmann, R.W., Wilke, W., Richter, M., 2008. Landslides as important disturbance regimes: causes and regeneration. In: Beck, E., Berti, A., Kotke, I., Makeschin, F., Mosandl, R. (Eds.), Gradients in a Tropical Mountain Ecosystem of Ecuador. Springer-Verlag, Berlin Heidelberg, pp. 319–330.

Campbell, J.F.E., Fletcher, W.J., Hughes, P.D., Shuttleworth, E.L., 2016. A comparison of pollen extraction methods: a multimodal separation as a reliable method of pollen preparation. J. Quat. Sci. 31, 631–640.

Cárdenas, M.L., Gosling, W.D., Sherlock, S.C., Poole, I., Pennington, R.T., Mothes, P., 2011. The response of vegetation on the Andean flank in western Ecuador to climate change over the last 3.5 million years. Science 331, 1055–1058.

Cárdenas, M.L., Gosling, W.D., Pennington, R.T., Poole, I., Sherlock, S.C., Mothes, P., 2014. Forests of the tropical eastern Andean flank during the middle Pleistocene. Palaeoecology 139, 76–89.

Churchill, S.P., Balslev, H., Forero, E., Lateef, J.J., 1995. Biodiversity and Conservation of Neotropical Montane Forests: Proceedings of the Symposium, The New York Botanical Garden, 21–26 June 1993. The New York Botanical Garden, New York.

Clark, J.S., Parzinger, W.A., 1997. Background and Local Chemical in Sediments: Sources of Fire Evidence in the Paleorecord. In: Clark, J.S., Cachier, H., Goldammer, J.G., Stocks, B. (Eds.), Sediment Records of Biomass Burning and Global Change. Springer-Verlag, Berlin Heidelberg, Berlin, Heidelberg, pp. 23–48.

Clark, J.S., Royall, P.D., 1995. Particle-size evidence for source areas of charcoal accumulation in late Holocene sediments of eastern North American lakes. Quat. Res. 43, 80–89.

Coblentz, D., Keating, P.L., 2008. Topographic controls on the distribution of tree islands in the high Abet remplis forest, western Ecuador. J Biogeogr. 35, 2026–2038.

Colinvaux, P.A., Bush, M.B., Steinitz-Kannan, M., Miller, M.C., 1997. Glacial and post-glacial pollen records from the Ecuadorian Andes and Amazon. Quat. Res. 48, 69–78.

Colinvaux, P.A., de Oliveira, P.E., Patiño, J.E.M., 1999. Amazon Pollen Manual and Atlas. Harvard University Press, Cambridge, MA.

Colinvaux, P.A., De Oliveira, P.E., Bush, M.B., 2000. Amazonian and Neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat. Sci. Rev. 19, 141–169.

Coluitti, M., Piccarilli, G., Jahn, H., Moreno Espinosa, M., Roost, L., Torre, D., 1998. The last occurrence of Pleistocene megafauna in the Ecuadorian Andes. J. S. Am. Earth Sci. 11, 581–586.

Corlett, R.T., 2013. The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol. Conserv. 163, 13–20.

Crausbay, S.D., Martin, P.H., 2016. Natural disturbance, vegetation patterns and ecological dynamics in tropical montane forests. J. Trop. Ecol. 32, 384–396.

Correa-Metrio, E.M., Rull, V., 2012. Non-pollen palynomorph studies in the high tropical Andes. The Holocene 16, 105–112.

De Oliveira, P.E., Colinvaux, P.A., 1988. Landslide as important disturbance regimes - causes and regeneration. In: Beck, E., Bendix, J., Kottke, I., Makeschin, F., Mosandl, R. (Eds.), Gradients in a Tropical Mountain Ecosystem of Ecuador. Springer-Verlag, Berlin Heidelberg, pp. 319–330.

Dean, B., Church, S.P., Balslev, H., Forero, E., Lateef, J.J., 1995. Biodiversity and Conservation of Neotropical Montane Forests: Proceedings of the Symposium, The New York Botanical Garden, 21–26 June 1993. The New York Botanical Garden, New York.

Díaz deGrazia, P.J., 1990. Influence of climate change on the tropical forest of the western Cordillera de Mérida. Ph.D. dissertation, The New York Botanical Garden, New York.

Díaz deGrazia, P.J., 1990. Influence of climate change on the tropical forest of the western Cordillera de Mérida. Ph.D. dissertation, The New York Botanical Garden, New York.

Díaz deGrazia, P.J., 1990. Influence of climate change on the tropical forest of the western Cordillera de Mérida. Ph.D. dissertation, The New York Botanical Garden, New York.

Díaz deGrazia, P.J., 1990. Influence of climate change on the tropical forest of the western Cordillera de Mérida. Ph.D. dissertation, The New York Botanical Garden, New York.
paleomorphs to the paleolimnological study of a high-altitude Andean lake (Laguna Verde Alta, Venezuela). J. Paleolimnol. 24, 327–345.
Sanchez Gutiérrez, M.F., Harrison, S.P., 2010. Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology. Quat. Sci. Rev. 29, 2823–2827.
Sarmiento, G., 1986. High altitude tropical biogeography. In: Vuilleumier, M., Montero, M. (Eds.), Ecologically Crucial Features of Climate in High Tropical Mountains. Oxford University Press, Oxford, pp. 11–45.
Sarmiento, F.O., 1995. Human Impacts on the Cloud Forests of the Upper Guayllabamba River Basin, Ecuador, and Suggested Management Responses. In: Hamilton, L.S., Jovik, J.O., Scatena, F.N. (Eds.), Tropical Montane Cloud Forests. Springer US, New York, NY, pp. 284–295.
Sierra, R., 1999. Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental. Proyecto INEFAN/GEF-BIRF y EcoCiencia, Quito, Ecuador (Spanish).
Stern, M.J., 1995. Vegetation recovery on earthquake-triggered landside sites in the Ecuadorian Andes. In: Churchill, S.P., Balslev, H., Forero, E., Luteyn, J.L. (Eds.), Biodiversity and Conservation of Neotropical Montane Forests. The New York Botanical Garden, New York, pp. 207–222.
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen Spores 16, 615–621.
Thomas, I.L., Haukka, M.T., 1978. XRF determination of trace and major elements using a single-fused disc. Chem. Geol. 21, 39–50.
Urrego, D.H., Siliman, M.R., Bush, M.B., 2005. The Last Glacial Maximum: stability and change in a western Amazonian cloud forest. J. Quat. Sci. 20, 693–701.
Urrego, D.H., Bush, M.B., Siliman, M.R., 2010. A long history of cloud and forest migration from Lake Conzuelo, Peru. Quat. Res. 73, 364–373.
Urrego, D.H., Hooghhiemstra, H., Rama-Goñi-Corredor, O., Mattrat, B., Grimalt, J.O., Thompson, L., Bush, M.B., González-Carranza, Z., Hanselman, J., Valencia, B., Velásquez-Ruiz, C., 2016. Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods. Clim. Past 12, 697–711.
Valencia, R., Balslev, H., Palacios, W., Neill, D., Josse, C., Tirado, M., Skov, F., 1998. Diversity and family composition of trees in different regions of Ecuador: a sample of 18 one-hectare plots. In: Dallmeier, F., Comiskey, J.A. (Eds.), Forest Biodiversity in North, Central and South America, and the Caribbean. United Nations Educational, Scientific and Cultural Organization, Paris, France, pp. 569–584.
Valencia, R., Córner, C., Palacios, W.F., Sierra, R., 1999. Las formaciones naturales de la sierra del Ecuador. In: Sierra, R.M. (Ed.), Propuesta Preliminar de Un Sistema de Clasificación de Vegetación Para El Ecuador Continental. Proyecto INEFAN/GEF-GIRF y EcoCiencia, Quito, pp. 82–111 (Spanish).
van der Hammen, T., Hooghhiemstra, H., 2003. Interglacial–glacial Fuquene-3 pollen record from Colombia: an Eemian to Holocene climate record. Glob. Planet. Chang. 36, 181–199.
van der Werf, G.R., Randerson, J.T., Giglio, L., Gobron, N., Dolman, A.J., 2008. Climate controls on the variability of fires in the tropics and subtropics. Glob. Biogeoch. Cycles 22, GB3028.
van Geel, B., 1978. A palaeoecological study of holocene peat bog sections in Germany and The Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cryptophytes and animals. Rev. Palaeobot. Palynol. 25, 1–120.
van Geel, B., Aptroot, A., 2006. Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82, 313–329.
van Geel, B., Bohneke, S.J.P., Dees, H., 1981. A palaeoecological study of an upper late glacial and holocene sequence from “De Borchert”; The Netherlands. Rev. Palaeobot. Palynol. 6, 197–213.
van Geel, B., Halwes, D.P., Pals, J.P., 1983. A late Holocene deposit under the Westfriese Zeedijk near Enkhuizen (Prov. of Noord-Holland, The Netherlands): palaeoecological and archaeological aspects. Rev. Palaeobot. Palynol. 38, 269–335.
van Geel, B., Coope, G.R., Van Der Hammen, T., 1989. Palaeoecology and stratigraphy of the lateglacial type section at Useloo (The Netherlands). Rev. Palaeobot. Palynol. 60, 25–129.
van Geel, B., Buurman, J., Brinkkemper, O., Schelvis, J., Aptroot, A., Van Reenen, G., Hakbijl, T., 2003. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J. Archaeol. Sci. 30, 873–883.
van Geel, B., Gelortin, V., Lyaran, A., Aptroot, A., Rucina, S., Marchant, R., Damsté, J.S.S., Verschuren, D., 2011. Diversity and ecology of tropical African fungal spores from a 25,000 year palaeoenvironmental record in southeastern Kenya. Rev. Palaeobot. Palynol. 164, 174–190.
van Smeerdijk, D.G., 1989. A palaeoecological and chemical study of a peat profile from the assendelever polder (The Netherlands). Rev. Palaeobot. Palynol. 58, 231–288.
Vandergoes, M.J., Prior, C.A., 2003. AMS dating of pollen concentrates—a methodological study of late Quaternary sediments from South Westland, New Zealand. Radiocarbon 45, 479–491.
Webster, G.L., 1995. The panorama of Neotropical cloud forests. In: Churchill, S.P., Balslev, H., Forero, E., Luteyn, J.L. (Eds.), Biodiversity and Conservation of Neotropical Montane Forests. The New York Botanical Garden, New York, pp. 53–77.
Weng, C., Bush, M.B., Chestow-Lusty, A.J., 2004a. Holocene changes of Andean alder (Alnus acuminata) in highland Ecuador and Peru. J. Quat. Sci. 19, 685–691.
Weng, C., Bush, M.B., Siliman, M.R., 2004b. An analysis of modern pollen rain on an elevational gradient in southern Peru. J. Trop. Ecol. 20, 113–124.
Whitlock, C., Larsen, C., 2001. Charcoal as a fire proxy. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Change Using Lake Sediment. Terrestrial, Algal, and Siliceous Indicators, vol. 3. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 75–97.
Williams, S.T., Jackson, J.W., 2007. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482.