Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

Hyung Joon Joo, MD, Jong-Ho Kim, MD, and Soon Jun Hong, MD
Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea

Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration. (Korean Circ J 2017;47(2):151-159)

KEY WORDS: Adipose tissue; Stem cell; Myocardium; Regeneration.

Introduction

Cellular loss of cardiomyocytes in myocardium mostly through myocardial ischemia or infarction, so-called ischemic cardiomyopathy, causes functional limitation of the remaining heart and finally contributes to heart failure. Ischemic cardiomyopathy caused more than seven million annual deaths worldwide, and patients suffering from this condition lead a very deprived life. Although many therapeutic options including revascularization, medication, and even cardiac resynchronization have been adopted for the treatment of patients with ischemic cardiomyopathy, current treatment options are still far from the myocardial regeneration. Therefore, strategies including cell therapy and specific implantation of cells which have potential to induce myocardial regeneration, have been of particular interest. Recently, the international federation for adipose therapeutics and science stated that adipose-tissue derived stem cells (ADSCs) could be one of the ideal biological cellular resources for regenerative medicine applications.

During the last several decades, ADSCs have been studied as potential cellular resources for tissue regeneration. ADSCs mean 'stem cells' derived from adipose tissue. ADSCs have been known to have potential to differentiate in vitro into adipogenic, osteogenic, chondrogenic, and myogenic cells as well as endothelial cells. Many studies have identified ADSCs as heterogeneous mesenchymal cells (except adipocytes) derived from adipose tissue. ‘Stromal vascular fraction’ have also been used to indicate ADSC. Previous studies showed some discrepancies probably due to different isolation procedures and culturing methods as well as the absence of the standard purifying methods for homogenous cell population. Some cell surface markers were reported to vary at different passage numbers. Thus, each ADSC population might need to be assessed for their suitability before clinical applications are ensured. Many recent studies have suggested therapeutic potential of ADSC as cell therapy for many different diseases including myocardial infarction. In this review, we focused on clinical application of ADSC for myocardial regeneration.

What is Adipose Tissue Derived Stem Cell?

In the 1960s, Rodbell found the method to isolate cells
from rat adipose tissue. In the 2000s, Zuk et al.\(^4\) modified and developed ADSC isolation method from human adipose tissue and suggested that ADSC as a promising source for adult multipotent stem cells.\(^4\) Recently, Nicoletti et al.\(^5\) also developed a new ADSC isolation protocol using enzymatic digestion. D’Andrea et al.\(^6\) reported a successful long-term (4 months) and large-scaled ADSC culture. However, it is still necessary to establish a standardized ADSC isolation protocol, which can warrant homogenous ADSC population and reproducible results for clinical application. Although ADSCs have tendency to differentiate into adipocytes,\(^7\) they have potential to differentiate into other lineage cells including osteoblasts,\(^8\) chondrocytes,\(^9\) endothelial cells,\(^10\) and myogenic cells\(^11\) in vitro, which are comparable to bone marrow derived mesenchymal stem cells (BMSCs).\(^12\) Similar to BMSCs, ADSCs secrete many different kinds of growth factors and cytokines which could contribute in stimulating angiogenesis as well as myocardial regeneration.\(^13\)

In the perspectives of cell therapy, ADSCs have several advantages. ADSC can be easily isolated from the adipose tissues which are obtained in relatively large amounts by liposuction. Its efficiency was known to be up to 100 times as compared to BMSCs.\(^14\) Thus, immediate autologous implantation of ADSCs without further \textit{in vitro} cell culture could be feasible. Detailed comparisons of cellular characteristics between ADSC and BMSC are summarized in Table 1.\(^15\)–\(^18\)

Mechanisms for Myocardial Regeneration

The mechanisms underlying the effects of ADSCs for myocardial regeneration have not been fully elucidated (Fig. 1). Previously, ADSCs have been reported to have direct differentiation potential into cardiomyocytes \textit{in vitro}.\(^19\) Bai et al.\(^20\) demonstrated human ADSC-derived cardiomyocytes expressing connexin 43 and troponin I in mouse acute myocardial infarction (AMI) model, which suggested \textit{in vivo} cardiomyocyte differentiation of ADSC through fusion-independent mechanism. However, most of the previous \textit{in vivo} studies on ADSC implantation suggested that only a small fraction of implanted ADSCs contributed into the possible \textit{in vivo} cardiomyocyte differentiation.\(^21\)–\(^23\) Cell-fusion and mitochondria transfer might also contribute to ADSC-derived cardiomyocytes.\(^24\) On the other hand, Yang et al.\(^25\) failed to detect ADSC-derived cardiomyocytes although ADSC-derived vascular cells were measured up to 9% of the enhanced angiogenesis. Other study also reported no specific findings of transdifferentiation of ADSC.\(^26\) Predominant suggested mechanisms of ADSCs for myocardial

Table 1. Comparison of cellular characteristics between BMSC and ADSC

Source	BMSC	ADSC
Bone marrow	Liposuction	
Extraction	(iliac bone)	(subcutaneous fat)
Complication	Rare (infection, excessive bleeding)	Rare (infection)
Abundance	Rare (< 0.01% of BM resident cells)	Abundant (1% of resident fat cells)
Surface markers	CD73, CD90, CD105, STRO-1	CD13, CD29, CD44, CD71, CD73, CD90, CD105, CD166, STRO-1
Surface markers	CD14, CD34, CD45, HLA-DR	CD14, CD31, CD34 (late passage), CD45
Proliferation	+ + + + + + + + + +	+ + + + + + + + + +
Senescence rate	11.24 % until P6	6.13% until P6
Maximal passage	P7-P9	P7-P9
Differentiation	Multipotent (osteocyte, chondrocyte, adipocyte, hepatocyte, cardiomyocyte, pancreatic cell, neuronal cell)	Multipotent (osteocyte, chondrocyte, adipocyte, hepatocyte, cardiomyocyte, pancreatic cell, neuronal cell)
Secretome	SDF-1, HGF	bFGF, IGF-1, IFN-γ
Immune modulation	++	+ +
Tumorigenesis	None/ectopic bone formation	None
Transplantation	Autologous/allogenic	Autologous

BMSC: bone marrow-mesenchymal stem cell, ADSC: adipose tissue-derived stem cell, BM: bone marrow, STRO-1: stromal cell surface marker 1, HLA-DR: human leukocyte antigen-antigen D related, HGF: hepatocyte growth factor, bFGF: basic fibroblast growth factor, IGF-1: insulin-like growth factor 1, IFN-γ: interferon gamma

\(^{15}\)–\(^{18}\) Predominant suggested mechanisms of ADSCs for myocardial

https://doi.org/10.4070/kcj.2016.0207 www.e-kcj.org
regeneration were their paracrine effects. ADSCs have been known for secreting many different kinds of proangiogenic, anti-apoptotic and immunomodulatory cytokines and growth factors in the implanted myocardium after ischemic injury. Productions of various paracrine factors are thought to be enhanced even under hypoxic stress. These factors rescue the endangered cardiomyocytes, promote neoangiogenesis and prevent exaggeration of inflammatory response. Finally, ADSCs could reduce scar formation and prevent the adverse cardiac remodeling after ischemic injury.

In addition, ADSCs have been reported to promote recruitment of other progenitor and stem cells. Kondo et al. demonstrated SDF-1 expression in mouse ADSC, and reported that implantation of ADSC into the ischemic hindlimb increased recruitment of circulating endothelial progenitor cells through SDF-1 dependent mechanism. There have been several studies on comparative analysis between ADSC and other cellular resources. When compared with BMSCs, ADSCs showed similar proangiogenic and immunomodulatory potential. Hao et al. demonstrated similar recovery capacity of limb perfusion between ADSCs and BMSCs in a rabbit hindlimb ischemic model. Both cell types also similarly suppressed lymphocyte proliferation and activation elicited by mitogen.

Recently, several studies have reported that human ADSCs revealed higher capacity to reduce the infarct area in rat AMI models as compared to BMSCs. Rasmussen et al. reported that ADSC implantation showed a superior improvement in left ventricular (LV) systolic function as compared to BMSC implantation. Paul et al. also demonstrated superior improvement in cardiac function and less scar formation, which were driven by the immunomodulatory effect of implanted ADSCs. Thus, it is proposed that the unique immune tolerance property of ADSC in addition to its angiogenic property could be the important cellular mechanism for tissue regeneration in allogenic or transgenic transplantation models.

Implantation Cell Number

Because most of the ADSCs were rapidly washed out or phagocytosed after implantation, it has been hypothesized that larger number of ADSC implantation might induce more engraftment of the residual ADSCs, which could enhance their
therapeutic potential in vivo. However, there have been very few studies regarding neither an optimal implantation dose of ADSCs nor their possible dose-response relationship. Naaijkens et al. extensively reviewed previous studies regarding the implantation cell number and its functional capacity. In small animal models, 5/13 (38%) studies involving less than 1 million of implanted ADSCs showed a significant infarct size reduction as compared to 12/15 (80%) studies involving more than 1 million of implanted ADSCs. For LV systolic function, 10/17 (59%) studies involving less than 1 million of implanted ADSC showed a significant increase in left ventricular ejection fraction (LVEF) as compared to 12/15 (80%) studies with more than 1 million ADSC implantations. In contrast, studies on the immune-deficient animal model showed less pronounced dose dependencies with respect to increase in blood vessels; whereas in studies involving immune-deficient animal model, significant reduction in infarct size was found in 3 out of 4 (75%) studies using less than 1 million of implanted ADSC as compared with 5 out of 5 (100%) studies using more than 1 million ADSC. The researchers also compared the efficacy of less than 50 million or more ADSC implantation with studies conducted in large animal models by implanting more ADSCs. Similar to the small animal models, studies using larger number of ADSC implantation showed positive results more frequently. Thus, it has been suggested that larger number of ADSC implantation could be beneficial in reducing infarct size and in inducing myocardial recovery. Considering the rapid cellular wash-out in vivo, the optimal delivery method, which is as important as the delivered total ADSC number, to enhance the in vivo engraftment of the implanted ADSC should also be explored.

Delivery Methods

The delivery method of stem cell implantation is an important determinant for effective cell therapy. Until now, three main different delivery routes of intramyocardial, intravenous, and intracoronary injections have been widely used. Compared to intramyocardial and intravenous injections, intravenous injection has been contemplated to deliver smaller number of stem cells into the injured myocardium due to the pulmonary first pass effect. Nonetheless, intravenous injection of ADSC showed beneficial effects on reducing infarct size and even enhancing cardiac function and blood vessel formation in several animal studies. Therefore, several human clinical trials have adopted intravenous injection with respect to advantageous and less invasive procedure.

Intracoronary administration of ADSCs has also been considered for its selective delivery into the target myocardium. Firstly, intracoronary administration of ADSC showed similar improvement in myocardial perfusion and LV systolic function as compared to BMSC in porcine AMI model. In six large animal studies of ADSC implantation reviewed by Naaijkens et al., 3/4 (75%) studies involving intramuscular injection decreased myocardial infarct size significantly as compared to 1/3 (33%) studies involving intracoronary injection. For LV systolic function, 2/4 (50%) studies involving intramuscular injection increased LVEF significantly as compared to 2/3 (67%) studies relating intracoronary injection. For angiogenesis, 2/4 (50%) studies involving intramuscular injection increased blood vessels significantly as compared to 3/3 (100%) studies dealing with intracoronary injection. Although there are limited numbers of studies, previous studies suggested that intracoronary injection could be comparable to intramuscular injection for myocardial recovery. Notably, Hong et al. compared the cell retention rates of ADSCs between intracoronary and retrograde coronary venous delivery methods in porcine AMI model. Intracoronary injections showed the potential risk of coronary microcirculatory obstructions and early redistribution within 24 hours of injection of ADSCs into pulmonary circulation. Numerous studies employing small animals have adopted intramyocardial injections. However, intramyocardial injections still show the limitation of cellular engraftment in the infarcted myocardium. Many attempts have been proposed to overcome this obstacle like, a few novel hydrogels have been introduced as potential delivery methods for ADSCs. Wang et al. developed chitosan-based hydrogel and implantation of ADSCs mixed with chitosan hydrogel significantly improved LV systolic function as well as cellular engraftment. Notably, chitosan-induced cardiomyocyte differentiation of ADSC both in vitro and in vivo has been demonstrated in their study. Similarly, ADSCs embedded platelet-rich fibrin scaffold revealed further improvement in LV systolic function and LV remodeling as compared to direct implantation of ADSC in rat AMI model. Recently, cell sheet technology was introduced to improve cell engraftment after stem cell implantation. Ishii et al. developed multilayered ADSC sheet by magnetite tissue engineering technology and transplanted multilayered ADSC sheet epicardially in mouse AMI model. ADSC sheet significantly improved LV systolic function as well as neovascularization in infarct area. Yeh et al. developed vascular endothelial growth factor-overexpressing ADSC sheets and applied them in rabbit AMI model with demonstrable near normalized functional recovery of the infarcted myocardium by the epicardial implantation of such sheets. Moreover, application of ADSC sheet improved LV systolic function in a porcine chronic myocardial infarction model.
Table 2. Ongoing human clinical trials using ADSCs for the transplantation of cardiovascular diseases

Phase	Country	Conditions	Patient (n)	Intervention	Cell numbers	Follow up (months)	Follow up (method)	Decision	Ref.
I	Spain	Myocardial infarction, coronary artery disease, cardiovascular disease	13	Intracoronary	\(2 \times 10^6\) cells	6	SPECT	Improvement in global LVEF, reduction of left ventricle infarcted size, improvement of perfusion defect, reduction of myocardial scar formation	66
II	Poland	Acute myocardial infarction	375	Intracoronary	-	36	-	No study results posted	
II	Denmark, Spain	Ischemic heart disease, coronary artery disease	36	Intramyocardium	\(0.4 \times 10^6\), \(0.8 \times 10^6\), \(1.2 \times 10^6\) cells/kg	36	Echocardiography, SPECT, cardiac-MRI	No significant changes in LVEF, no significant differences in SPECT stress, significantly increased in visual summed wall motion score at 6 months	67
II	United States	Myocardial ischemia	31 (28+3)	Intramyocardium	-	12	Echocardiography, SPECT	No significant changes in LVEF, no significant differences in SPECT stress, Significant improvement in MLHFQ	68
II	Denmark	Chronic ischemic heart disease	25	Intramyocardium	-	6.5	PET-CT, cardiac-MRI	No study results posted	69.70
I, II	Mexico	Non-ischemic, congestive heart failure	10	Intramyocardium, intravenous	-	6	-	No study results posted	
I, II	Mexico	Ischemic, congestive heart failure	10	Intramyocardium, intravenous	-	6	-	No study results posted	
I, II	United States	Acute myocardial infarction	10	Intracoronary	-	6	-	Ongoing	
I, II	Japan	Ischemic heart failure	6	Intracoronary	-	6	-	No study results posted	

SPECT: single-photon emission computed tomography, LVEF: left ventricular ejection fraction, Cardiac-MRI: cardiac-magnetic resonance imaging, PET-CT: positron emission tomography-computed tomography, MLHFQ: Minnesota living with heart failure questionnaire
Human Trials

To date, there have been several human clinical trials of ADSCs for ischemic heart diseases (Table 2). Houtgraaf et al. firstly reported the safety and efficacy of ADSC in patients with AMI (APOLLO trial; randomized, double-blind placebo-controlled, phase I/IIa study). The study involved infusion of 20 million ADSCs, freshly isolated by liposuction, via infarct related coronary artery into the injured myocardium within 24 hours after primary percutaneous coronary intervention. At 6 months follow-up, cardiac magnetic resonance imaging (MRI) and MIBI-SPECT showed a trend towards the improved LVEF as compared to the placebo group, accompanied by a significant reduction in the perfusion defect and infarct size. Moreover, there were no adverse events during the procedure. The ADVANCE trial, another clinical trial regarding intracoronary injection of ADSCs for patients with AMI, was performed and final results are awaited.

Perin et al. reported the PRECISE trial which was the randomized, placebo-controlled, double-blind trial of transendocardial injection of ADSCs in patients with refractory ischemic cardiomyopathy. Transendocardial injection of ADSCs preserved LV mass and the regional wall motion determined by cardiac MRI and improved myocardial perfusion determined by single-photon emission CT as well as exercise capacity. Other ongoing human clinical trials of ADSCs for ischemic heart diseases include the ATHENA I and II trial (Cytori Therapeutics; intramyocardial injection), the MyStromalCell trial (Rigshospitalet, Denmark; allogenic ADSC; intramyocardial injection), the NCT01502501 trial (Ageless Regenerative Institute; intramyocardial/intravenous injection), the NCT01502514 trial (Ageless Regenerative Institute; intramyocardial/intravenous injection), the NCT01974128 trial (Ageless Regenerative Institute; intramyocardial/intravenous injection), and the NCT01709279 trial (Kanazawa University; intracoronary injection).

Conclusion

During the last several decades, cell therapy using adult stem cells has emerged as a future therapeutics especially for ischemic heart diseases. Among them, ADSCs are very attractive cellular resource for their relatively easy accessibility in large amount, potent differentiation properties, and powerful paracrine effects. Previous animal studies have demonstrated promising results of ADSC implantation for myocardial recovery in ischemic heart diseases, and recent studies focused on the improvement of its efficacy by enhancing their therapeutic potential through genetic modification and cellular priming, in addition to development of novel delivery methods using hydrogels and cell sheet technology. Human clinical trials also support the safety and therapeutic efficacy of ADSCs for myocardial regeneration. Many clinical trials are still ongoing to step forward in clinical research and application.

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare (Grant number: HI14C0209), and by a grant of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. NRF-2014R1A2A1A11051998), Republic of Korea.

References

1. Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. *Circulation* 2014;129:1483-92.
2. Bourin P, Bunnell BA, Castella L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). *Cytotherapy* 2013;15:641-8.
3. Hong SJ, Traktuev DO, March KL. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. *Curr Opin Organ Transplant* 2010;15:86-91.
4. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. *Tissue Eng* 2001;7:211-28.
5. Halvorsen YD, Franklin D, Bond AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. *Tissue Eng* 2001;7:729-41.
6. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. *Biochim Biophys Acta* 2002;290:763-9.
7. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. *Cytotherapy* 2003;5:362-9.
8. De Francesco F, Tirino V, Desiderio V, et al. Human CD34/CD90 ASCs

https://doi.org/10.4070/kcj.2016.0207

www.e-kcj.org
are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries. PLoS One 2009;4:e6537.
9. Kim JH, Lim IR, Joo HJ, et al. Sphere formation of adipose stem cell engineered by poly-2-hydroxyethyl methacrylate induces in vitro angiogenesis through fibroblast growth factor 2. Biochem Biophys Res Commun 2015;468:372–9.
10. Hong SJ, Rogers PJ, Kihlken J, et al. Intravenous xenogenic transplantation of human adipose-derived stem cells improves left ventricular function and microvascular integrity in swine myocardial infarction model. Catheter Cardiovasc Interv 2015;86:E38–48.
11. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315–7.
12. Maumus M, Peyrafitte JÁ, D’Angelo R, et al. Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond) 2011;35:1141–53.
13. Rodbell M. Localization of lipoprotein lipase in fat cells of rat adipose tissue. J Biol Chem 1964;239:753–5.
14. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279–95.
15. Nicoletti GF, De Francesco F, D’Andrea F, Ferraro GA. Methods and procedures in adipose stem cells: state of the art and perspective for translation medicine. J Cell Physiol 2015;230:489–95.
16. D’Andrea F, De Francesco F, Ferraro GA, et al. Large-scale production of human adipose tissue from stem cells: a new tool for regenerative medicine and tissue banking. Tissue Eng Part C Methods 2008;14:233–42.
17. Yu G, Floyd ZE, Wu X, et al. Adipogenic differentiation of adipose-derived stem cells. Methods Mol Biol 2011;702:193–200.
18. Kroeze RJ, Knippenberg M, Helder MN. Osteogenic differentiation strategies for adipose-derived mesenchymal stem cells. Methods Mol Biol 2011;702:233–48.
19. Cheng SL, Yang JW, Ritas L, Zhang SF, Avioli LV. Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 1994;134:277–86.
20. Huang JI, Zuk PA, Jones NF, et al. Chondrogenic potential of multipotent stem cells from human adipose tissue. Plast Reconstr Surg 2004;113:585–94.
21. Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 2004;109:656–63.
22. Janecek Portalska K, Leferink A, Groen N, et al. Endothelial differentiation of mesenchymal stromal cells. PLoS One 2012;7:e46842.
23. Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH. Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 2002;109:199–209; discussion 210–1.
24. Planat-Benard V, Menard C, Andre M, et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 2004;94:223–9.
25. Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004;109:1292–8.
26. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogil RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005;23:412–23.
27. Nakagami H, Morishita R, Maeda K, Kikuchi Y, Ogihara T, Kaneda Y. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 2006;13:77–81.
28. Varma MJ, Breuls RG, Schouten TE, et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev 2007;16:91–104.
29. Li CY, Wu XY, Tong JB, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 2015;6:55.
30. Jin HJ, Bae YK, Kim M, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 2013;14:17986–8001.
31. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294–301.
32. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells – current trends and future prospective. Biosci Rep 2015;35. pii: e00191.
33. Bai X, Yan Y, Song YH, et al. Both cultured and freshly isolated adipose stem cells secrete angiogenic and antiapoptotic factors by human adipose stromal cells. PLoS One 2016;11:e0154980.
34. Chang JC, Lee PC, Lin YC, Lee KW, Hsu SH. Myogenic differentiation by human processed lipoaspirate cells. PLoS One 2009;4:e6537.
Adipose Stem Cells for Myocardial Damage

38. Mazo M, Planat-Benard V, Abizanda G, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. *Eur J Heart Fail* 2008;10:454-62.

39. Madonna R, Geng YJ, De Caterina R. Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. *Arterioscler Thromb Vasc Biol* 2009;29:1723-9.

40. Meliga E, Strem BM, Duckers HJ, Serruys PW. Adipose-derived cells. *Cell Transplant* 2007;16:963-70.

41. Chen L, Qin F, Ge M, Shu Q, Xu J. Application of adipose-derived stem cells in heart disease. *J Cardiovasc Transl Res* 2014;7:651-63.

42. Gneccchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. *Circ Res* 2008;103:1204-19.

43. Kondo K, Shintani S, Shibata R, et al. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. *Arterioscler Thromb Vasc Biol* 2009;29:61-6.

44. Hao C, Shintani S, Shimizu Y, et al. Therapeutic angiogenesis by autologous adipose-derived regenerative cells: comparison with bone marrow mononuclear cells. *Am J Physiol Heart Circ Physiol* 2014;307:H869-79.

45. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. *Br J Haematol* 2005;129:118-29.

46. Rasmussen JG, Frøbert O, Holst-Hansen C, et al. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model. *Cell Transplant* 2014;23:195-206.

47. Paul A, Srivastava S, Chen G, Shum-Tim D, Prakash S. Functional assessment of adipose stem cells for xenotransplantation using myocardial infarction immunocompetent models: comparison with bone marrow stem cells. *Cell Biochem Biophys* 2013;67:263-73.

48. Hong SJ, Kihlken J, Choi SC, March KL, Lim DS. Intramyocardial transplantation of human adipose-derived stromal cell and endothelial progenitor cell mixture was not superior to individual cell type transplantation in improving left ventricular function in rats with myocardial infarction. *Int J Cardiol* 2013;164:205-11.

49. Naaijens BA, van Dijk A, Kamp O, Krijnen PA, Niessen HW, Juffermans LJ. Therapeutic application of adipose derived stem cells in acute myocardial infarction: lessons from animal models. *Stem Cell Rev* 2014;10:389-98.

50. Fischer UM, Harting MT, Jimenez F, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery; the pulmonary first-pass effect. *Stem Cells Dev* 2009;18:683-92.

51. Zhu XY, Zhang XZ, Xu L, Zhong XY, Ding Q, Chen YK. Transplantation of adipose-derived stem cells overexpressing HGF into cardiac tissue. *Biochem Biophys Res Commun* 2009;379:1084-90.

52. van Dijk A, Naaijens BA, Jurgens WJ, et al. Reduction of infarct size by intravenous injection of uncultured adipose derived stromal cells in a rat model is dependent on the time point of application. *Stem Cell Res* 2011;7:219-29.

53. Valina C, Pinkernelle K, Song YH, et al. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodeling after acute myocardial infarction. *Eur Heart J* 2007;28:2667-77.

54. Yang JJ, Yang X, Liu ZQ, et al. Transplantation of adipose tissue-derived stem cells overexpressing heme oxygenase-1 improves functions and remodeling of infarcted myocardium in rabbits. *Tohoku J Exp Med* 2012;226:231-41.

55. Alt E, Pinkernelle K, Scharlau M, et al. Effect of freshly isolated autologous tissue resident stromal cells on cardiac function and perfusion following acute myocardial infarction. *Int J Cardiol* 2010;144:26-35.

56. De Siena R, Balducci L, Blasi A, et al. Omentum-derived stem cells improve myocardial regeneration in pig post-infarcted heart through a potent paracrine mechanism. *Exp Cell Res* 2010;316:1804-15.

57. Rigoli M, Solanes N, Farre J, et al. Effects of adipose tissue-derived stem cell therapy after myocardial infarction: impact of the route of administration. *J Card Fail* 2010;16:357-66.

58. Mazo M, Hernández S, Gavira JJ, et al. Treatment of reperfused ischemia with adipose-derived stem cells in a preclinical Swine model of myocardial infarction. *Cell Transplant* 2012;21:2723-33.

59. Hong SJ, Hou D, Brinton TJ, et al. Intracoronary and retrograde coronary venous myocardial delivery of adipose-derived stem cells in swine infarction lead to transient myocardial trapping with predominant pulmonary redistribution. *Catheter Cardiovasc Interv* 2014;83:E17-25.

60. Wang H, Shi J, Wang Y, et al. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. *Biomaterials* 2014;35:3986-98.

61. Sun CK, Zhen YY, Leu S, et al. Direct implantation versus platelet-rich fibrin-embedded adipose-derived mesenchymal stem cells in treating rat acute myocardial infarction. *Int J Cardiol* 2014;173:410-23.

62. Ishii M, Shibata R, Shimizu Y, et al. Multilayered adipose-derived regenerative cell sheets created by a novel magnetite tissue engineering method for myocardial infarction. *Int J Cardiol* 2014;175:545-53.

63. Yeh TS, Fang YH, Lu CH, et al. Baculovirus-transduced, VEGF-expressing adipose-derived stem cell sheet for the treatment of myocardium infarction. *Biomaterials* 2014;35:174-84.

64. Ishida O, Hagino I, Nagaya N, et al. Adipose-derived stem cell sheet transplantation therapy in a porcine model of chronic heart failure. *Transl Res* 2015;165:631-9.

65. Pavo N, Charwat S, Nyolczas N, et al. Cell therapy for human ischemic heart diseases: critical review and summary of the clinical experiences. *J Mol Cell Cardiol* 2014;75:12-24.
66. Houtgraaf JH, den Dekker WK, van Dalen BM, et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. *J Am Coll Cardiol* 2012;59:539-40.

67. Perin EC, Sanz-Ruiz R, Sanchez P, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. *Am Heart J* 2014;168:88-95.e2.

68. Henry TD, Pepine C, Lambert C, et al. The Athena Trials: Autologous Adipose-Derived Regenerative Cells (ADRCs) for Refractory Chronic Myocardial Ischemia with Left Ventricular Dysfunction. *Catheter Cardiovasc Interv* 2017;1:89:169-77.

69. Qayyum AA, Haack-Sørensen M, Mathiasen AB, Jørgensen E, Ekblond A, Kastrup J. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. *Regen Med* 2012;7:421-8.

70. Follin B, Tratwal J, Haack-Sørensen M, Elberg JJ, Kastrup J, Ekblond A. Identical effects of VEGF and serum-deprivation on phenotype and function of adipose-derived stromal cells from healthy donors and patients with ischemic heart disease. *J Transl Med* 2013;11:219.