The heavy fermion system CeCoIn$_5$ displays several interesting properties in its superconducting state. These include the FFLO state in an in-plane magnetic field H, a large Nernst signal observed at temperatures $T < 30$ K, an in-plane resistivity that is T-linear below 20 K, and a Hall coefficient that is strongly temperature-dependent. Recently, Kasahara et al. measured the thermal conductivity κ_{xx} and Hall conductivity κ_{xy} and inferred a long quasiparticle mean-free-path ℓ below $T_c = 2.2$ K.

In CeCoIn$_5$, the thermal conductivity κ_{xx} and Hall conductivity κ_{xy} below T_c display large anomalies below T_c. The strong suppression of the anomalies in weak fields implies the existence of low-lying quasiparticles. We also discuss briefly the Wiedemann-Franz ratio and the existence of a strongly field-dependent spin-fluctuation heat current.

![Figure 1](image.png)

FIG. 1: (Panel a) The T dependence of the in-plane thermal conductivity κ in $H = 0$ in CeCoIn$_5$. The anomaly below T_c is 4–5 times larger than in earlier reports. (Panel b) The field dependence of κ at selected T below T_c. With decreasing T, the zero-field anomaly rises to a sharp, narrow peak. At H_{c2}, κ displays a kink or step.

We report measurements of κ_{ij} in crystals of CeCoIn$_5$ with exceptionally long ℓ. Figure 1 shows $\kappa(T,0)$ at $H = 0$. Below T_c, $\kappa(T,0)$ rises steeply to a prominent peak at 1 K, reminiscent of the peak in high-purity YBCO. As shown in Fig. 1, the peak anomaly $-4-5$ times larger than in Ref. is extremely sensitive to $H||c$. Above T_c, the curve of κ displays moderately strong field dependence. Below T_c, however, a sharp quasiparticle peak develops at $H = 0$ and rises rapidly. The narrow spike in κ which reflects the strong suppression of the qp heat current in weak fields. The narrow spike is absent in earlier experiments. In the normal state above the upper critical field H_{c2} (indicated by the step increase), κ remains strongly H dependent.

The thermal Hall conductivity κ_{xy} detects the qp heat current of alone. Above 20 K, κ_{xy} is nearly H-linear to 12 T, as expected of weak-field Hall response. As T falls towards T_c, strong curvature becomes evident below 1 T, while the initial Hall slope increases sharply. Between T_c and 0.5 K, a new anomaly appears in weak H which is the Hall analog of the narrow spike in κ. In weak H, κ_{xy} rises very steeply to a peak centered at 0.1–0.2 T before falling to a “plateau” value. Above H_{c2}, κ_{xy} increases steeply once more to large values.

The unusual behavior of κ and κ_{xy} reveal several interesting low-T features in both the vortex state and the state above H_{c2} at low T. Below T_c, the strong sensitivity of κ and κ_{xy} to weak H shows that the large thermal anomaly shown in Fig. 1 is entirely electronic in origin. It reflects the steep increase in ℓ below T_c. Moreover, the persistence of a large κ_{xy} far below T_c requires a sizeable qp population, which implies the existence of line nodes on the Fermi Surface. This was previously inferred from the 4-fold variation of κ and the heat capacity c_p with field angle in crystals with higher degree of disorder.

The curves of κ_{xy}/T below T_c (Fig. 2) show that the qp behavior is qualitatively distinct in the vortex-solid state below $H_{c2} \approx 5$ T, and in the normal state above. In the former, κ_{xy}/T assumes a profile that is T independent below 1 K. Interestingly, at the lowest temperatures (0.5–1 K) the value of κ_{xy}/T is independent of T to within...
FIG. 2: Curves of the thermal Hall conductivity divided by T, κ_{xy}/T vs. H. Below 1 K, κ_{xy}/T saturates to a T-independent profile with a prominent anomaly in weak H (inset). At low T, κ_{xy}/T sharply increases above H_{c2} (step feature).

Research at Princeton and the Brookhaven National Laboratory was supported, respectively, by U.S. NSF (DMR 0213706) and Department of Energy (DE-AC02-98CH10886).

[1] H. A. Radovan et al., Nature 425, 51 (2003). A. Bianchi, et al., Phys. Rev. Lett. 91, 187004 (2003). K. Kakuyanagi et al., Phys. Rev. Lett. 94, 047602 (2005).
[2] R. Bel et al., Phys. Rev. Lett. 92, 217002 (2004).
[3] Y. Nakajima et al., J. Phys. Soc. Jpn. 73, 5 (2004).
[4] Y. Kasahara et al., Phys. Rev. B 72, 214515 (2005).
[5] Y. Zhang et al., Phys. Rev. Lett. 86, 890 (2001).
[6] H. Aoki et al., J. Phys. Condensed Matter 16, L13 (2004).
[7] R. Movshovich et al., Phys. Rev. Lett. 86, 5152 (2001).
[8] Y. Zhang et al., Phys. Rev. Lett. 84, 2219 (2000).