Synthesis, characterization and pharmacokinetic studies of 4-(3-aryl-1, 6-dihydro-6-iminopyridazin-1-yl)butanoic acid hydrochlorides

Md. Din Islam, Samiron Kumar, Tahmina Akter Chowdhury, Mahe Zame Sarker, Hiroshi Nishino1, Md. Aminul Haque* and Mohammad Mostafizur Rahman*

Department of Chemistry, Jagannath University, Dhaka, Bangladesh

ARTICLE INFO

Article History
Received: 01 April 2021
Revised: 19 May 2021
Accepted: 31 May 2021

Keywords: Iminopyridazines, GABA, GABA receptor, Pharmacokinetic, Competitive antagonists.

ABSTRACT

A series of six title compounds have been prepared using 3-amino-6-chloropyridazine as starting material collected from commercial sources and were characterized by IR, 1H NMR, and high-resolution mass spectral (HRMS) data. The method involves three steps: Suzuki-Miyaura cross-coupling reaction, N(2)-alkylation, and acid hydrolysis, respectively, to obtain final products with good yields. According to Lipinski’s rule of five and Veber’s rule, pharmacokinetics studies of the synthesized compounds showed that all the parameters were in between the permissible limits. The toxicity parameters were low for the compounds to act as drugs.

Introduction

Heterocyclic compounds containing nitrogen are vital structural units of biologically active natural products and are important for medicinal compounds. The 3-aminopyridazine backbone has proved to have many synthetic and biological applications from a pharmaceutical perspective (Wermuth, 1998; Maes et al., 2000). γ-Aminobutyric acid (GABA) (Fig. 1) is the major inhibitory neurotransmitter in the central nervous system of animals (Bowery and Enna, 2000; Chebib and Johnston, 2000; Oslen and Sieghart, 2009). Compounds based on pyridazine moiety such as Gabazine (SR 95531) (Ueno et al., 1997) and Minaprine (Wermuth et al., 1987) (Fig. 1) act as competitive antagonists for mammalian GABA receptors (Zhu et al., 2018). The arylpyridazine moiety of the iminopyridazin analogs plays a vital role in exerting their GABA receptor antagonistic activity. Some synthesized aminopyridazine derivatives of GABA function as selective GABA\textsubscript{A} receptor antagonists for rat brain membrane (Wermuth et al., 1987). Arylaminopyridazine GABA derivatives exhibited antagonist properties in Ascaris suum GABA receptors (Duittoz and Martin, 1991; Martin et al., 1995). Gavande et al. (2010) reported a four-step synthetic procedure for gabazine in a condition of microwave irradiation starting with 3,6-dichloropyridazine. (Iqbal et al., 2011) reported several gabazine-based iminopyridazines as GABA\textsubscript{A} receptor antagonists. Rahman et al., recently reported iminopyridazine compounds, which block the function of the GABA receptor chloride channel and act as competitive antagonists for insect GABA receptors (Rahman et al., 2012; Rahman et al., 2014). A recent study showed that iminopyridazine butanoic acid derivatives act as competitive antagonists for housefly GABA receptors.
Recently, we reported the synthesis of several iminopyridazine butyronitrile hydrobromides (Rahman et al., 2020). As gabazine based 3- substituted iminopyridazine of GABA functions as competitive antagonists for insect and mammalian GABA receptors, efforts continue to synthesize iminopyridazine carboxylic acid type compounds. In this study, six iminopyridazine butanoic acid hydrochloride derivatives were synthesized, and their structures were determined using different spectroscopic methods. Pharmacokinetic studies were performed using admetSAR. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity properties of the synthesized compounds were determined to know the drug-likeness properties.

Experimental

An SMP10 apparatus was employed to determine the melting points of the synthesized compounds and remain uncorrected. Recording of the samples infrared (IR) spectra were done within the range of 4000-400 cm$^{-1}$ by the SHIMADZU IR Tracer-100 infrared spectrophotometer and ran as KBr pellets. 1H NMR spectra of the samples were recorded on a BRUKER 400 MHz NMR spectrometer. Deuterated chloroform (CDCl$_3$) and dimethyl sulfoxide (DMSO-d_6) were used as NMR solvents. Chemical shifts (δ values) are written in ppm relative to TMS (tetramethylsilane), and coupling constants (J values) are stated in Hz (Hertz). Expression of spin multiplicities were as follows: singlet (s), doublet (d), triplet (t), quartet (q), quintet (qn), and multiplet (m). The HRMS (high-resolution mass spectra) were recorded at Kumamoto University (analytical center), Kumamoto, Japan. Chemicals were obtained from TCI Chemical Industries, Ltd (India) and were used without any purification.

![Fig. 1. Structures of inhibitory neurotransmitter GABA and two GABA receptor antagonists Gabazine (SR95531) and Minaprine, having pyridazine moiety.](image-url)
General procedure for the synthesis of 3-amino-6-arylpyridazines (1a-1f)

A mixture of 3-amino-6-chloropyridazine (259 mg, 2.0 mmole), arylboronic acid (2.2 mmole), tetrakis(triphenylphosphine)palladium (0) (70 mg) and 2 M aq. sodium carbonate (Na₂CO₃) solution (2.2 mL) in toluene (20 mL) was stirred at room temperature in an inert (nitrogen) condition. The mixture was refluxed with stirring under the inert condition before completing the reaction (Checked by TLC). The reaction mixture was cooled to room temperature and was evaporated using a rotary vacuum evaporator. EtOAc (60 mL) was added to the suspension and was put in an ultrasonic bath for 5 min. The suspension was filtered, and the filter paper was washed properly with 150 mL of EtOAc. The filtrate was dried using a rotary vacuum evaporator. Silica gel column chromatography was applied for purification to yield corresponding 3-amino-6-arylpyridazines 1a-1f. We reported the synthesis of 1c, 1d, 1e, and 1f in a recent study (Rahman et al., 2020), and hence, data are not mentioned here.

3-Amino-6-(3-trifluoromethylphenyl)pyridazine (1a).

Yield (435.0 mg, 61%); Rₚ = 0.58 (EtOAc); mp 116-118 °C; IR (KBr): v cm⁻¹ 3440 (N-H stretch), 3120 (N-H stretch), 1600 (N-H bend); ¹H NMR (CDCl₃): δ 8.20 (1H, s, H-2'), 8.13 (1H, d, J = 7.6 Hz, H-4), 7.69 (1H, t, J = 5.2 Hz, H-5').
d, \(J = 8.8 \text{ Hz}, H-5 \), 7.47-7.43 (2H, m, H-4', H-6'), 6.87 (2H, s, NH₂). FAB HRMS (acetone/NBA) calcd. for C₁₁H₁₉N₃F₃ 240.0749 [M+H]⁺. Found 240.0759.

3-Amino-6-(2-flouro-4-biphenyl)pyridazin (1b). Yield (116.6 mg, 22%); \(R_f = 0.71 \) (EtOAc); mp 154-156 °C; IR (KBr): \(\nu \text{ cm}^{-1} \) 3440 (N-H stretch), 3120 (N-H stretch), 1600 (N-H bend); \(^1\)H NMR (DMSO-\(d_6 \)): \(\delta 7.92-7.88 \) (2H, m, H-3', H-5'), 7.64-7.60 (4H, m, H-2'', H-3'', H-4'', H-5), 7.52-7.49 (2H, m, H-4, H-6'), 7.42 (1H, t, \(J = 7.6 \) Hz, H-4''), 6.89 (1H, d, \(J = 8.0 \) Hz, H-5), 6.58 (2H, s, NH₂). FAB HRMS (acetone/NBA) calcd. for C₁₀H₁₃N₃F₂ 266.1094 [M+H]⁺. Found 266.1090.

General procedure for the synthesis of ethyl 4-(3-aryl-1,6-dihydro-6-iminopyridazin-1-yl)butanoate hydrobromide (2a-2f)

A mixture of 3-amino-6-arylpyridazine (1 mmole), ethyl 4-bromobutanoate (234 mg, 1.2 mmole), and \(\text{N,N-dimethylformamide} \) (1.0 mL) was heated at 80 °C for 30 h. After cooling, the collected precipitate was recrystallized from methanol (MeOH) and ethyl acetate (EtOAc) to yield 2a-2f.

Ethyl 4-[1,6-dihydro-6-imino-3-(3-trifluromethylphenyl)pyridazin-1-yl]butanoate hydrobromide (2a). Yield (394.9 mg, 91%); \(R_f = 0.65 \) (MeOH); mp 217-219 °C; IR (KBr): \(\nu \text{ cm}^{-1} \) 3440 (NH), 1760 (C=O), 1650 (C-N); \(^1\)H NMR (DMSO-\(d_6 \)): \(\delta 9.20 \) (2H, bs, imino H), 8.50 (1H, d, \(J = 9.2 \) Hz, H-4), 8.25 (2H, d, \(J = 7.6 \) Hz, H-4', H-6'), 7.90 (1H, d, \(J = 7.6 \) Hz, H-2'), 7.79 (1H, t, \(J = 7.8 \) Hz, H-5'), 7.70 (1H, d, \(J = 9.6 \) Hz, H-5), 4.37 (2H, t, \(J = 6.8 \) Hz, COCH₂CH₂CH₂), 3.90 (2H, q, \(J = 7.2 \) Hz, OCH₂CH₂), 2.48 (2H, t, \(J = 7.2 \) Hz, COCH₂CH₂CH₂), 2.06 (2H, qn, \(J = 6.8 \) Hz, COCH₂CH₂CH₂), 1.03 (3H, t, \(J = 7.0 \) Hz, OCH₂CH₃). FAB HRMS (acetone/NBA) calcd. for C₁₆H₁₆ClN₂O₂ 354.1429 [M-Br]⁺. Found 354.1441.

Ethyl 4-[3-(2-flouro-4-biphenyl)-1,6-dihydro-6-iminopyridazin-1-yl]butanoate hydrobromide (2b). Yield (101.2 mg, 22%); \(R_f = 0.45 \) (MeOH); mp 240-244 °C; IR (KBr): \(\nu \text{ cm}^{-1} \) 3440 (NH), 1720 (C=O), 1660 (C=N); \(^1\)H NMR (DMSO-\(d_6 \)): \(\delta 9.20 \) (2H, bs, imino H), 8.49 (1H, d, \(J = 9.6 \) Hz, H-4), 7.94 (2H, t, \(J = 8.4 \) Hz, H-2'', H-6''), 7.76 (1H, t, \(J = 8.0 \) Hz, H-4''), 7.68 (1H, d, \(J = 9.6 \) Hz, H-5), 7.62 (2H, d, \(J = 7.6 \) Hz, H-3'', H-5'), 7.53 (2H, t, \(J = 7.6 \) Hz, H-3', H-5'), 7.47 (1H, d, \(J = 7.6 \) Hz, H-6''), 4.39 (2H, t, \(J = 6.8 \) Hz, COCH₂CH₂CH₂), 3.97 (2H, q, \(J = 7.0 \) Hz, OCH₂CH₃), 2.51 (2H, t, \(J = 4.3 \) Hz, COCH₂CH₂CH₂), 2.12 (2H, qn, \(J = 6.8 \) Hz, COCH₂CH₂CH₂), 1.10 (3H, t, \(J = 7.2 \) Hz, OCH₂CH₂). FAB HRMS (acetone/NBA) calcd. for C₂₂H₂₄F₂N₄C₂O₂ 380.1774 [M-Br]⁺. Found 380.1784.

Ethyl 4-[3-(4-chlorophenyl)-1,6-dihydro-6-iminopyridazin-1-yl]butanoate hydrobromide (2c). Yield (240.3 mg, 60%); \(R_f = 0.60 \) (MeOH); mp 246-248 °C; IR (KBr): \(\nu \text{ cm}^{-1} \) 3440 (NH), 1720 (C=O), 1650 (C=N); \(^1\)H NMR (DMSO-\(d_6 \)): \(\delta 9.20 \) (2H, bs, imino H), 8.42 (1H, d, \(J = 9.6 \) Hz, H-4), 8.00 (2H, d, \(J = 7.6 \) Hz, H-3', H-5'), 7.67 (3H, t, \(J = 6.8 \) Hz, H-5, H-2', H-6'), 4.37 (2H, t, \(J = 6.8 \) Hz, COCH₂CH₂CH₂), 3.95 (2H, q, \(J = 6.8 \) Hz, OCH₂CH₃), 2.51 (2H, t, \(J = 6.8 \) Hz, COCH₂CH₂CH₂), 2.10 (2H, qn, \(J = 6.8 \) Hz, COCH₂CH₂CH₂), 1.08 (3H, t, \(J = 6.8 \) Hz, OCH₂CH₃). FAB HRMS (acetone/NBA) calcd. for C₁₆H₁₆ClN₂O₂ 320.1166 [M-Br]⁺. Found 320.1173.
Ethyl 4-[1,6-dihydro-3-(4-fluorophenyl)-6-iminopyridazin-1-yl]butanoate hydrobromide (2d). Yield (188.2 mg, 49%); Rf = 0.65 (MeOH); mp 117-119 °C; IR (KBr): v cm\(^{-1}\) 3440 (N-H), 1720 (C=O), 1630 (C=N); \(^1\)H NMR (DMSO-d\(_6\)): \(\delta\) 9.00 (2H, bs, imino H), 8.42 (1H, d, J = 9.6 Hz, H-4), 8.04 (2H, dd, J = 5.4, 3.6 Hz, H-3, H-5), 7.68 (1H, d, J = 9.6 Hz, H-5), 7.45-7.41 (2H, m, H-2', H-6'), 4.37 (2H, t, J = 6.8 Hz, COCH\(_2\)CH\(_2\)CH\(_2\)), 3.95 (2H, q, J = 7.1 Hz, OCH\(_2\)CH\(_3\)), 2.50 (2H, t, J = 2.0 Hz, COCH\(_2\)CH\(_2\)CH\(_2\)), 2.09 (2H, qn, J = 7.0 Hz, COCH\(_2\)CH\(_2\)CH\(_2\)), 1.08 (3H, t, J = 7.0 Hz, OCH\(_3\)). FAB HRMS (acetone/NBA) calcd. for C\(_{16}\)H\(_{16}\)F\(_3\)O\(_2\) 304.1461 [M-Br].

General procedure for the synthesis of 4-(3-aryl-1,6-dihydro-6-iminopyridazin-1-yl)butanoic acid hydrochlorides (3a-3f).

Ethyl 4-(3-aryl-1,6-dihydro-6-iminopyridazin-yl)butanoate hydrobromide (100 mg) was dissolved in aq. K\(_2\)CO\(_3\) to make the solution alkaline. The solution was then extracted with EtOAc. The organic layer was dried with anhydrous NaSO\(_4\) and was concentrated in a rotary vacuum evaporator to give free base esters, ethyl 4-(3-aryl-1,6-dihydro-6-iminopyridazin-1-yl)butanoates.

Concentrated hydrochloric acid (3 mL) in glacial acetic acid (10 mL) was added to the free base ester and heated at 100 °C for approximately 60 h. After cooling, the reaction mixture was evaporated in a rotary vacuum evaporator to dry. The residue was recrystallized with MeOH and EtOAc to yield 4-(3-aryl-1,6-dihydro-6-iminopyridazin-1-yl)butanoic acid hydrochlorides 3a-3f.
4-[1,6-Dihydro-3-(2-fluro-4-biphenylyl)-6-iminopyridazin-1-yl]butanoic acid hydrochloride (3b). Yield (53.0 mg, 53%); Rf = 0.62 (MeOH); mp 240-244 °C; IR (KBr): v cm⁻¹ 3400 (NH), 3080-2920 (OH), 1720 (C=O), 1660 (C=N); ¹H NMR (DMSO-d₆): δ 9.20 (2H, bs, imino H), 8.49 (1H, d, J = 9.6 Hz, H-4), 7.95 (2H, t, J = 7.2 Hz, H-2”’, H-6’’), 7.76 (2H, d, J = 9.2 Hz, H-5, H-3’), 7.62 (2H, d, J = 7.6 Hz, H-5’, H-6’), 7.53 (2H, dd, J = 7.6, 7.2 Hz, H-3’, H-5’), 7.47 (1H, d, J = 7.2 Hz, H-4’), 4.40 (2H, t, J = 6.8 Hz, COCH₂CH₂), 2.45 (2H, t, J = 6.8 Hz, COCH₂CH₂), 2.09 (2H, qn, J = 7.2 Hz, COCH₂CH₂). FAB HRMS (Acetone/NBA) calcd. for C₁₅H₁₃FN₂O₂ 352.1461 [M-Cl]⁺. Found 352.1462.

4-[1,6-Dihydro-6-imino-3-(3-methoxyphenyl)pyridazin-1-yl]butanoic acid hydrochloride (3e). Yield (52.0 mg, 52%); Rf = 0.67 (MeOH); mp 198-200 °C; IR (KBr): v cm⁻¹ 3190 (NH), 3070-2820 (OH), 1730 (C=O), 1650 (C=N); ¹H NMR (DMSO-d₆): δ 9.40 (2H, bs, imino H), 8.41 (1H, d, J = 9.6 Hz, H-4), 7.66 (1H, t, J = 9.2 Hz, H-2’), 7.55 (1H, d, J = 7.6 Hz, H-5), 7.48 (1H, t, J = 6.4 Hz, H-5’), 7.34 (1H, dd, J = 7.6, 6.4 Hz, H-6’), 6.96 (1H, d, J = 7.6 Hz, H-4’), 4.36 (2H, t, J = 7.2 Hz, COCH₂CH₂), 3.83 (3H, s, OCH₃), 2.43 (2H, t, J = 7.2 Hz, COCH₂CH₂), 2.07 (2H, qn, J = 7.2 Hz, COCH₂CH₂). FAB HRMS (acetone/NBA) calcd. for C₁₁H₁₃N₂O₃ 288.1348 [M-Cl]⁺. Found 288.1366.

4-[3-(3,5-Bistrifluromethylphenyl)-1,6-dihydro-6-iminopyridazin-1-yl]butanoic acid hydrochloride (3f). Yield (70.0 mg, 70%); Rf = 0.61 (MeOH); mp 203-205 °C; IR (KBr): v cm⁻¹ 3280 (NH), 3160-3040 (OH), 1700 (C=O), 1680 (C=N); ¹H NMR (DMSO-d₆): δ 9.30 (2H, bs, imino H), 8.60 (2H, d, J = 6.4 Hz, H-2’), 8.53 (1H, d, J = 9.6 Hz, H-4), 8.33 (1H, s, H-4’), 7.86 (1H, d, J = 9.6 Hz,
H-5), 4.46 (2H, t, J = 6.4 Hz, COCH₂CH₂CH₂), 2.45 (2H, t, J = 7.2 Hz, COCH₂CH₂CH₂), 2.07 (2H, qn, J = 6.8 Hz, COCH₂CH₂CH₂). FAB HRMS (acetone/NBA) calcd. for C₁₆H₁₄N₅O₂F₆ 394.0990 [M-Cl]⁺. Found 394.0979.

Pharmacokinetic, Toxicity, and Drug-likeness Properties

ADME (absorption, distribution, metabolism, and excretion) and solubility of synthesized compounds were assessed online using admetSAR, and the percentage of absorption (%ABS) was obtained from the following formula: %ABS = 109-(0.3459×TPSA) where TPSA is topological polar surface area. According to a previous report, Osiris Property Explorer was used to predict the overall toxicities (mutagenic, tumorigenic, irritant, and reproductive), drug-likeness, and drug-score of the compounds (Park et al., 2011).

Results and Discussion

A series of six 4-(3-aryl-1,6-dihydro-6-imino-pyridazin-1-yl)butanoic acid derivatives were synthesized by modifying the 3-position of pyridazine ring of gabazine with various aromatic substituents 3a-3f (Scheme 1). γ-Aminobutyric acid (GABA) (Fig. 1) functions as an agonist for GABA receptors. The Ariëns theory for accessory binding sites proposed that agonists are often converted to antagonists if the hydrophobic moieties are included in the polar agonists (Wermuth et al., 1987). Moreover, these iminopyridazine butanoic acids act as a competitive antagonist for mammalian and insect GABA receptors. That scientific evidence directed us to synthesize more iminopyridazine butanoic acids by changing the 3-position of pyridazine ring of gabazine by various aromatic groups.

Wermuth and co-workers reported the synthesis of 3c and 3d by a different process. In that procedure, hydrazine followed by the reduction with Raney nickel or NH₂OH-HCl was used to prepare 3-amino-6-arylpyridazine starting from 3-chloro-6-arylpyridazine (Wermuth et al., 1987). The process described in this study involves three steps taking 3-amino-6-chloropyridazine as starting material. Intermediates 1a-1f were synthesized in 22-65% yields using the Suzuki-Miyaura cross-coupling reaction in the presence of Pd (0) catalyst according to previous reports (Maes et al., 2000; Guery et al., 2001; Maes et al., 2002; Rahman et al., 2020) (Scheme 1). We recently reported the synthesis of 1c, 1d, 1e, and 1f (Rahman et al., 2020). The maximum yield (65%) was obtained for 3,5-bis(trifluoromethyl) phenyl analog 1f (data are not shown). The electron withdrawing nature of the substituent might favor the reaction. A relatively high yield (61%) was also obtained for compound 1a due to the electron-withdrawing capacity of the trifluoromethylphenyl group. The same cross-coupling reaction did not proceed using 2-trifluoromethylphenyl analog due to steric hindrance. In the IR spectrum of 1a, two absorption bands appeared at 3440 and 3120 cm⁻¹ for N-H stretching. The band at 1600 cm⁻¹ was observed for N-H bending. In the ¹H NMR spectrum of 1a, a one proton singlet at 8.20 ppm (1H, s, H-2'), a one proton doublet at 8.13 ppm (1H, d, J = 7.6 Hz, H-4), a one proton triplet at 7.69 ppm (1H, t, J = 5.2 Hz, H-5'), a one proton doublet at 7.65 ppm (1H, d, J = 8.8 Hz, H-5), and a two protons multiplet at 7.47-7.43 ppm (2H, m, H-4', H-6') appeared for aromatic protons. As H-4 was adjacent to the phenyl group, it was more
deshielded than H-5. The –NH₂ protons have appeared at 6.87 ppm as a singlet. The N(2)-alkylated compounds 2a-2f were obtained in 22-91% yields by the reaction of 1a-1f with ethyl 4-bromobutanoate. In the IR spectrum of 2a, the NH, C=O, and C=N functional groups showed absorption bands at 3440, 1760, and 1650 cm⁻¹, respectively. For compound 2a, a broad singlet at 9.20 ppm was found for imino protons (C=NH,H) in the ¹H NMR spectrum. Peaks at 8.50 ppm (1H, d, J = 9.2 Hz, H-4), 8.25 ppm (2H, d, J = 7.6 Hz, H-4', H-6'), 7.90 ppm (1H, d, J = 7.6 Hz, H-2'), 7.79 ppm (1H, t, J = 7.8 Hz, H-5') and 7.70 ppm (1H, d, J = 9.6 Hz, H-5) were found for aromatic protons. The signals for OCH₂CH₃ and OCH₂CH₃ protons were found at 3.90 ppm (2H, q, J = 7.2 Hz) and 1.03 ppm (3H, t, J = 7.0 Hz), respectively. The >CH₂ protons of the alkyl part were observed at 4.37 ppm (2H, t, J = 6.8 Hz, COCH₂CH₂CH₂), 2.48 ppm (2H, t, J = 7.2 Hz, COCH₂CH₂CH₂), and 2.06 ppm (2H, qn, J = 6.8 Hz, COCH₂CH₂CH₂). Free base esters of the alkylated compounds were prepared using an aqueous K₂CO₃ solution. The hydrolysis of free base esters was carried out in acetic acid containing concentrated HCl at 100 °C to give final compounds 4-(3-aryl-1,6-dihydro-6-iminopyridazin-1-yl)butanoic acid hydrochlorides 3a-3f in 40-70% yields. In the IR spectrum, the absorption bands for 3a that appeared at 3280, 2880, 1740, and 1680 cm⁻¹ were assigned to NH, OH, C=O, and C=N functional groups, respectively. The ¹H NMR spectrum for the analog 3a showed a broad singlet at 9.20 ppm for imino protons. The aromatic protons appeared at 8.46 ppm (1H, d, J = 9.6 Hz, H-4), 8.21 ppm (2H, s, H-2', H-6'), 7.86 ppm (1H, d, J = 7.6 Hz, H-5), and 7.80-7.73 ppm (2H, m, H-4', H-5'). Protons for >CH₂ were found at 4.37 ppm (2H, t, J = 7.0 Hz, COCH₂CH₂CH₂), 2.38 ppm (2H, t, J = 7.2 Hz, COCH₂CH₂CH₂), and 2.01 ppm (2H, qn, J = 7.0 Hz, COCH₂CH₂CH₂). The >CH₂ protons adjacent to the carboxylic group appeared downfield relative to other alkyl protons. High-resolution mass spectrometry (HRMS) is very selective in measuring the exact mass of a compound. The first step, intermediates 1, contains an odd number of nitrogen atoms, but they displayed an even mass number in HRMS due to the addition of one hydrogen with molecular ion peaks. Similarly, the compounds 2a-2f and 3a-3f showed even masses, although they contain an odd number of nitrogen atoms as the molecular ion peaks appeared after eliminating Br and Cl, respectively. The calculated exact mass values of the synthesized compounds were well agreed with the mass found in HRMS, which confirmed the structures of the synthesized analogs.

Pharmacokinetic and Drug-likeness Properties

Many new drugs fail due to unfavorable ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity properties in clinical trials. Therefore, it is crucial to know pharmacokinetics and toxicity parameters for designing and developing new drugs. Lipinski’s rule of five and Veber’s rule are generally used to determine the drug-likeness properties of a compound, which include the parameters like molecular weight (MW), number of hydrogen bond acceptors (HBA), number of hydrogen bond donors (HBD), number of rotatable bonds (NROTB), lipophilicity (clog P), topological polar surface area (TPSA), solubility parameter (log S), and percentage of absorption (%ABS). ADMEprediction of the synthesized compounds was calculated using
admetSAR, and the obtained results are summarized in Table 1. It was found that all the parameters were in a range of acceptable limits without any violations of Lipinski’s rule of five and Veber’s rule. Toxicity risks profile, drug-likeness, and drug-score obtained from the analysis are summarized in Table 2. *In silico* toxicity calculation of all the synthesized compounds showed low toxicity risk. Drug-likeness characteristics of a compound are partly based on topological descriptors, fingerprints of molecular drug-likeness with other properties such as clog P, and molecular weights (Tetko, 2005). Drug score is one of the significant parameters combined with drug-likeness, clog P, log S, molecular weight, and toxicity risks to evaluate a compound’s overall potential for qualifying as a drug. *In silico*, ADME, toxicity, drug-likeness, and drug-score (Table 2) of iminopyridazine butanoic acid analogs suggest that they would be pharmacologically active compounds for the future development of a safe and effective drug.

Table 1. ADME predictions using Lipinski’s rule of five, Veber’s rule, solubility, and absorption parameters of the iminopyridazine butanoic acid analogs (3a-3f). Acceptable limits are given in parentheses.

Comp.	Lipinski’s Violations	MW (≤ 500)	HBA (≤ 10)	HBD (≤ 5)	clogP (≤5)	NROTB (≤ 10)	TPSA (140 Å²)	logS	%ABS
3a	0	361.75	4	2	3.33	5	76.75	-3.99	82.52
3b	0	387.84	4	2	4.12	6	78.98	-4.81	81.75
3c	0	328.20	4	2	2.97	5	76.75	-3.74	82.52
3d	0	311.74	4	2	2.46	5	76.75	-3.31	82.52
3e	0	323.78	5	2	2.32	6	85.98	-3.22	79.33
3f	0	429.75	4	2	4.35	5	76.75	-4.85	82.52

MW = molecular weight; HBA = number of hydrogen bond acceptors; HBD = number of hydrogen bond donors; NROTB = number of rotatable bonds; clogP = lipophilicity; TPSA = topological polar surface area; logS = solubility parameter; %ABS = percentage of absorption.

Table 2. *In silico* toxicity risks, drug-likeness, and drug-score of iminopyridazine butanoic acid analogs.

Comp.	Toxicity effects	Drug-likeness	Drug-score			
	M	T	I	R		
3a	Low	Low	Low	Low	-4.4	0.45
3b	Low	Low	Low	Low	1.45	0.67
3c	Low	Low	Low	Low	4.19	0.90
3d	Low	Low	Low	Low	2.48	0.89
3e	Low	Low	Low	Low	2.55	0.90
3f	Low	Low	Low	Low	-19.5	0.38

M = mutagenic; T = tumorigenic; I = irritant; R = reproductive
Conclusion
The synthesis of 4-(3-aryl-1,6-dihydro-6-imino-pyridazin-1-yl)butanoic acid hydrochlorides were performed starting from 3-amino-6-chloropyridazine in three steps. As the γ-aminobutyric acid (GABA) derivatives types of compounds act as competitive antagonists for mammalian and insect GABA receptors, and pharmacokinetic data presented in this study would be proved helpful for discovering the future drug.

Acknowledgment
The authors are gratefully acknowledging the Ministry of Education (MoE), Bangladesh, for funding this project under Grant of Advance Research in Education (GARE) (Grant Number PS2016288). The authors are also indebted to the analytical center of Kumamoto University, Kumamoto, Japan, for the high-resolution mass spectral (HRMS) data analysis.

References
Bowery NG and Enna SJ. γ-Aminobutyric acidB receptors: first of the functional metabotropic heterodimers. J. Pharmacol. Exp. Ther. 2000; 292(1): 2-7.

Chebib M and Johnston GAR. GABA-activated ligand gated ion channels: Medicinal Chemistry and Molecular Biology. J. Med. Chem. 2000; 43(8): 1427-1447.

Duittoz AH and Martin RJ. Antagonist properties of arylpyridazine GABA derivatives at the Ascaris muscle GABA receptor. J. Exp. Biol. 1991; 159: 149-164.

Gavande N, Johnston GAR, Hanrahan JR and Chebib M. Microwave-enhanced synthesis of 2,3,6-trisubstituted pyridazines: application to four-step synthesis of gabazine (SR-95531). Org. Biomol. Chem. 2010; 8(18): 4131-4136.

Guery S, Parrot I, Rival Y and Wermuth G. Efficient one-step synthesis of 3-amino-6-arylpypridazines. Tetrahedron Lett. 2001; 42(11): 2115-2117.

Iqbal F, Ellwood R, Mortensen M, Smart TG and Baker JR. Synthesis and evaluation of highly potent GABA_A receptor antagonists based on gabazine (SR-95531). Bioorg. Med. Chem. Lett. 2011; 21(14): 4252-4254.

Maes BUW, Kosmrlj J and Lemiere GLF. Palladium-catalyzed reactions on chloropyridazines. J. Heterocycl. Chem. 2002; 39(3): 535-543.

Maes BUW, Lemie`re GLF, Domnisse R, Augustyns K and Haerners A. A new approach towards the synthesis of 3-amino-6-(hetero) arylpyridazines based on palladium catalyzed cross-coupling reactions. Tetrahedron; 2000; 56(12): 1777-1781.

Martin RJ, Sitamze JM, Duittoz AH and Wermuth CG. Novel arylaminopyridazine-GABA receptor antagonists examined electrophysiologically in Ascaris suum. Eur. J. Pharmcol. 1995; 276(1-2): 9-19.

Oslen RW and Sighart W. GABA_A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology; 2009: 56(1): 141-148.

Park J-H, El-Gamal MI, Lee YS and Oh C-H. New imidazo[2,1-b]thiazole derivatives: Synthesis, in vitro anticancer evaluation, and in silico studies. Eur. J. Chem. 2011; 46(12): 5769-5777.

Rahman MM, Akiyoshi Y, Furtanai S, Matsuda K, Furuta K, Ikeda I and Ozoe Y. Competitive antagonism of insect GABA receptors by the iminopyridazine derivatives of GABA. Bioorg. Med. Chem. 2012; 20(19): 5957-5964.
Rahman MM, Islam MD, Islam Z, Kumar S, Chowdhury TA, Nishino H and Haque MA. Synthesis and Characterization of New Iminopyridazine Butyronitrile Hydrobromides. *J. Bangladesh Acad. Sci.* 2020; 44(2): 131-138.

Rahman MM, Liu G, Furuta K, Ozoe F and Ozoe Y. Synthesis of 1,3-di- and 1,3,4-trisubstituted 1,6-dihydro-6-iminopyridazines as competitive antagonists of insect GABA receptors. *J. Pestic. Sci.* 2014; 39(3): 133-143.

Rahman MM, Ozoe F and Ozoe Y. Competitive antagonism of housefly \(\gamma \)-aminobutyric acid receptors by iminopyridazine butanoic acids. *Bangladesh J. Sci. Ind. Res.* 2021; 56(1): 9-16.

Tetko IV. Computing Chemistry on the web. *Drug Discov. Today*; 2005; 10(22): 1497-1500.

Ueno S, Bracamontes J, Zorumski C, Weiss DS and Steinbach JH. Bicuculline and Gabazine are allosteric inhibitors of channel opening of the GABA\(_A \) receptor. *J. Neurosci.* 1997; 17(2): 625-634.

Wermuth CG, Bourguignon JJ, Schlewer G, Gies JP, Schoenfelder A, Melikian A, Bouchet MJ, Chantreux D, Molimard JC, Heaulme M, Chambon JP and Biziere K. Synthesis and structure-activity relationships of a series of minopyridazine derivatives of \(\gamma \)-aminobutyric acid acting as selective GABA-A antagonists. *J. Med. Chem.* 1987; 30(2): 239-249.

Wermuth CG. Search for new lead compounds: the example of the chemical and pharmaceutical dissection of aminopyridazines. *J. Heterocycl. Chem.* 1998; 35: 1091-1100.

Zhu S, Noviello CM, Teng J, Walsh Jr RM, Kim JJ and Hibbs RE. Structure of a human synaptic GABA\(_A \) receptor. *Nature*; 2018; 559(7712): 67-72.