Empirical Research on Connectedness for International Trade and Investment between Guangzhou and Countries along B&R Based on PVAR Test

Xiaofei Luo¹, Yonghui Han²* and Yuxuan Chen³

¹ Faculty of Logistics, Guangdong Mechanical and Electrical Technical College, Guangzhou, Guangdong, 510515, China
² Guangdong Institute for International Strategies, Guangdong University of Foreign Studies, Guangzhou, Guangdong, 510420, China
³ School of English for International Business, Guangdong University of Foreign Studies, Guangzhou, Guangdong, 510420, China

* Corresponding Author: hanyonghui2006@foxmail.com

Abstract Guangzhou, an international trading hub, plays an important role in the development of Belt and Road Initiative (B&R Initiative). We select the Export Similarity Index and Trade Intensity Index (ESI and TII) for trade and investment, and analyse the interconnectedness between trade and investment in the aspect of capacity cooperation between Guangzhou and countries along B&R, basing on the PVAR model. The result shows that the increase of investment and trade of Guangzhou has remarkably positive influence on the future ones of the countries along the B&R. We suggest that Guangzhou insist on attracting foreign investment and opening to the outside world, and consider carefully about the complementary relationship between trade and investment for capacity when establishing the related policy.

1. Introduction

Guangzhou, where the first customs in China was set up, has long been one of the most important ports for international trade. Over the last 2000 years, Guangzhou, as an international trade hub, has obvious outward-oriented economic characteristics, with its urban development closely related to global development. As B&R Initiative become widely accepted, Guangzhou is in an increasingly pivotal status, and as a result, it is significant for Guangzhou to participate in B&R construction at a deeper level and enforce cooperation with other countries in the aspect of manufacture capacity, for manufacture transformation and upgrading. With the purpose of analysing the counterinfluence for trade and investment of Guangzhou with countries along B&R, we measure and calculate ESI and TII, then construct a PVAR model. After the research, we acquire a deeper understanding about the development of trade and investment between Guangzhou and countries along B&R, which is significant to discover the priorities for cooperation.

2. Connectedness Analysis for Trade Capacity and Investment

2.1 Model Construction
PVAR was first used by Holtz-Eakin in 1988 [1] and consecutively developed by Arellano and Bover (1995) [2], Blundell (1998) [3] and Love (2006) [4]. The first step consists of GMM estimation and regression fitting. PVAR has the advantage of Vector Autoregression and Panel Data Model. It helps not only to control the individual effect and time effect, but also to analyse the dynamic response to connectedness for capacity cooperation among countries along B&R. Every variable in the model is influential to the trade and investment capacity, and the process of dynamic effect outlines transmission mechanism for impulse response of every variable, in a relative better way. Here is the model:

$$K_{abt} = \beta_0 + \sum_{j=0}^{n} \beta_j K_{abt-j} + \sum_{j=1}^{n} \beta_j K_{abt-j}^F + \beta_j D_{abt} + \epsilon_{abt}$$

(1)

$$K_{abt}^F = \gamma_0 + \sum_{j=0}^{n} \gamma_j K_{abt-j}^F + \sum_{j=1}^{n} \gamma_j K_{abt-j}^F + \gamma_j D_{abt} + \epsilon_{abt}$$

(2)

K_{abt} is the ESI or TII for trade and investment between region a to region b in the t period. K_{abt-j} is the j level legged variable of K_{abt}. D is the distance between two places. $\beta, \beta', \gamma, \gamma'$ are intended for measurement of orientation for connectedness between Guangzhou and countries along B&R. ESI reflects on the similarity for trade and investment. It is the connectedness degree for capacity trade and investment between Guangzhou and countries along B&R. It reflects on the capacity competition degree between regions including capacity competition degree for trade (ESI_T) and capacity competition degree for investment (ESI_F). During a given period of stable external environment, ESI_T and ESI_F of the last period may impact the current ones. TII is the interdependence degree for capacity between Guangzhou and countries along B&R. By analyzing the capacity connectedness degree enables us to know about the capacity complementarity including trade connectedness degree (TII_T) and investment connectedness degree (TII_F). Generally, current capacity interdependence rate is influenced by trade interdependence degree and investment interdependence degree of the last period, and trade connectedness degree and investment connectedness degree may motivate current trade and investment.

2.2 Data Resource and Analysis

We calculate the ESI and TII for capacity cooperation between Guangzhou and countries along B&R, and clarify the connectedness of trade and investment, based on which we construct a PVAR model.

2.2.1 Export Similarity Index (ESI)

The change of ESI reflects on the characteristics of development of regional economy, the advancement of industrial structure, and the process of industrialization. In order to research on Guangzhou capacity status worldwide, we design the ESI for trade and investment between Guangzhou and countries in reference to Glick and Rose (1999) [5]. Our source comes from Guangzhou Statistical Yearbook, Guangdong Statistical Year book, Guangdong Customs Database and etc. Statistics of countries along B&R are from World Trade Database and United Nations Comrade Database. 65 countries and regions along The Silk Road Economic Belt are selected and divided into six groups as ASEAN, Western Asia (WA), Central Asia (CA), Southern Asia (SA), CIS and Central and Eastern Europe (CEE) according to the China Foreign Direct Investment Statistics.

The calculation result is shown in the Table 1.1 and 1.2.

Year	ESI_T Total	ESI_T ASEAN	ESI_T WA	ESI_T CA	ESI_T SA	ESI_T CIS	ESI_T CEE
1995	47.03	76.19	33.73	35.56	63.73	34.97	59.95
1996	48.11	77.22	34.54	34.45	64.54	43.19	63.81
1997	51.96	74.79	38.84	35.71	68.84	33.38	58.62
1998	51.31	77.97	36.34	43.66	66.34	43.19	63.81
1999	51.75	76.64	29.18	41.11	59.18	36.82	58.79

Table 1.1. ESI for Trade between Guangzhou and Other Countries along B&R
Table 1.2: ESI for Investment between Guangzhou and Other Countries along B&R

Year	ESI_F						
	Total	ASEAN	WA	CA	SA	CIS	CEE
1995	53.10	73.86	44.67	34.76	63.19	77.98	65.84
1996	52.25	74.41	43.48	30.80	63.40	77.33	65.57
1997	51.96	75.16	42.44	31.22	62.96	76.23	65.64
1998	52.09	75.53	42.63	31.86	62.88	76.06	65.68
1999	51.71	75.94	42.25	31.74	62.64	76.93	64.09
2000	51.37	70.70	41.93	34.34	62.63	70.70	63.80
2001	51.65	74.88	42.58	35.51	62.09	72.94	64.11
2002	51.39	76.70	42.35	34.26	62.70	72.71	63.30
2003	51.57	71.46	42.37	34.83	62.53	71.46	63.23
2004	51.60	77.09	42.13	35.20	62.66	74.06	63.33
2005	51.33	76.75	41.93	34.40	62.93	72.80	63.42
2006	51.14	76.64	41.72	33.56	62.97	72.34	63.45
2007	53.78	66.84	41.66	31.82	61.84	66.84	62.96
2008	53.35	65.20	45.20	29.43	60.20	65.20	62.24
2009	52.79	66.64	42.64	29.38	57.64	62.64	61.34
2010	52.81	61.91	41.91	30.13	56.91	61.91	61.91
2011	52.96	63.15	43.15	29.23	58.15	63.15	62.74
2012	52.73	68.91	41.91	27.87	56.91	61.91	61.91
2013	50.20	75.20	37.20	28.96	59.20	57.20	64.20
2014	51.04	71.34	38.04	28.83	61.31	54.04	64.08

Source: Calculated the data from the UN Comrade Database, the Foreign Economic Database, the World Trade Database, the Guangzhou Customs Database, the Guangzhou Statistical Yearbook and the relevant statistical bulletins from 1995-2014.

Table 2.1. TII for Trade between Guangzhou and Other Countries along B&R

Year	TII_T						
	Total	ASEAN	WA	CA	SA	CIS	CEE
1995	51.10	73.86	44.67	34.76	63.19	77.98	65.84
1996	52.25	74.41	43.48	30.80	63.40	77.33	65.57
1997	51.96	75.16	42.44	31.22	62.96	76.23	65.64
1998	52.09	75.53	42.63	31.86	62.88	76.06	65.68
1999	51.71	75.94	42.25	31.74	62.64	76.93	64.09
2000	51.37	70.70	41.93	34.34	62.63	70.70	63.80
2001	51.65	74.88	42.58	35.51	62.09	72.94	64.11
2002	51.39	76.70	42.35	34.26	62.70	72.71	63.30
2003	51.57	71.46	42.37	34.83	62.53	71.46	63.23
2004	51.60	77.09	42.13	35.20	62.66	74.06	63.33
2005	51.33	76.75	41.93	34.40	62.93	72.80	63.42
2006	51.14	76.64	41.72	33.56	62.97	72.34	63.45
2007	53.78	66.84	41.66	31.82	61.84	66.84	62.96
2008	53.35	65.20	45.20	29.43	60.20	65.20	62.24
2009	52.79	66.64	42.64	29.38	57.64	62.64	61.34
2010	52.81	61.91	41.91	30.13	56.91	61.91	61.91
2011	52.96	63.15	43.15	29.23	58.15	63.15	62.74
2012	52.73	68.91	41.91	27.87	56.91	61.91	61.91
2013	50.20	75.20	37.20	28.96	59.20	57.20	64.20
2014	51.04	71.34	38.04	28.83	61.31	54.04	64.08

Source: Calculated the data from the UN Comrade Database, the Foreign Economic Database, the World Trade Database, the Guangzhou Customs Database, the Guangzhou Statistical Yearbook and the relevant statistical bulletins from 1995-2014.

2.2.2 Trade Intensity Index (TII)

Trade Intensity Index (TII), first advanced by economist A.J.Brown in 1947[6], is an integrated index intended for measuring the connectedness of trade between two places. TII is positively correlated to the connectedness. Here is the TII for trade and investment between Guangzhou and other countries along B&R.
Year	TII_F						
	Total	ASEAN	WA	CA	SA	CIS	CEE
1995	0.486	0.485	0.383	0.458	0.482	0.594	0.516
1996	0.539	0.411	0.358	0.543	0.485	0.747	0.687
1997	0.511	0.410	0.531	0.499	0.384	0.740	0.499
1998	0.525	0.472	0.590	0.518	0.461	0.741	0.368
1999	0.578	0.559	0.509	0.656	0.620	0.756	0.368
2000	0.590	0.524	0.506	0.602	0.640	0.777	0.492
2001	0.598	0.659	0.642	0.659	0.488	0.669	0.468
2002	0.666	0.545	0.588	0.852	0.689	0.740	0.580
2003	0.666	0.423	0.656	0.915	0.574	0.795	0.632
2004	0.724	0.642	0.632	1.034	0.685	0.870	0.478
2005	0.789	0.693	0.660	1.243	0.727	0.789	0.623
2006	0.752	0.705	0.603	0.985	0.725	0.833	0.660
2007	0.854	0.693	0.868	1.133	0.827	0.850	0.750
2008	0.869	0.681	1.043	1.114	0.617	0.860	0.898
2009	0.959	0.816	1.136	1.114	0.905	0.874	0.910
2010	1.028	0.847	1.311	1.080	0.947	0.976	1.005
2011	1.021	0.949	1.165	1.035	0.984	1.096	0.899
2012	1.123	1.029	1.200	1.289	1.053	1.060	1.106
2013	1.134	0.915	1.293	1.269	1.136	1.049	1.142
2014	1.198	1.059	1.303	1.271	1.138	1.167	1.247

Source: Calculated the data from the UN Comrade Database, the Foreign Economic Database, the World Trade Database, the Guangzhou Customs Database, the Guangzhou Statistical Yearbook and the relevant statistical bulletins from 1995-2014.

2.3 Model Test for Connectedness for Trade and Investment
The statistics involved is in a relatively long span of time, and we found it necessary to apply Unit Root Test and Lag Intervals for Endogenous Test in order to avoid Spurious Regression.
2.3.1 Unit Root Test and Test for Lag Order

The most commonly used way for Unit Root Test can be divided into two groups. One is the test with different unit roots involved, such as IPS Test and Fisher-ADF Test. Another one is the test with the same unit root involved, such as LLC Test, Breitung Test and Hadri Test. Exceptionally, null hypothesis of Hadri Test is not involved with unit root. The result is shown in Table 3. Among the three kinds of test, InESI_T, InESI_F, InTII_T, InTII_F are have unstable average level. In IPS Test and Fisher-ADF Test, InESI_T, InESI_F, InTII_T, InTII_F reject to null hypothesis in the first difference but accept to null hypothesis in Hadri Test without unit root, which means that their first difference are stable. In conclusion, the result of unit root test shows that InESI_T, InESI_F, InTII_T, InTII_F are integrated of order 1.

Variables	IPS Test	Fisher-ADF Test	Hadri Test	IPS Test	Fisher-ADF Test	Hadri Test
InESI_T	-1.860	68.509	3.059***	-6.678***	-6.053***	0.004
	(0.971)	(1.000)	(0.000)	(0.000)	(0.000)	(0.498)
InESI_F	0.964	10.814	5.462***	-3.869***	-3.874***	-0.057
	(0.992)	(1.000)	(0.000)	(0.000)	(0.000)	(0.223)
InTII_T	2.465	4.335	6.382***	-4.723***	-4.645***	1.345
	(0.991)	(1.000)	(0.000)	(0.000)	(0.000)	(0.489)
InTII_F	2.547	2.645	6.915***	-7.587***	-6.646***	-0.555
	(0.993)	(0.996)	(0.000)	(0.000)	(0.000)	(0.711)

Note: *** shows that it is obvious in 0.01 level, ** shows that it is obvious in 0.05 level,* shows that it is obvious in 0.1 level, and the numbers in parentheses are the probabilities.

Suitable lag order is essential when it comes to PVAR model construction. Shorter lag order leads to unstable result, while longer one leads to loss of some samples. As a consequence, when choosing lag order we follow two rules. The first one is to choose according to AIC, SIC and HQIC this three principles. And the second one is to choose according to the time span of variables so that we can avoid the influence on sample quantity from a lag order which is too long. In addition, the lag order is usually under 3. The result of AIC, HQIC and SIC is shown in Table 4.

Variables	InESI_T and InESI_F	InTII_T and InTII_F	
Countries	Lag Order		
	Lag Order	-3.21984	-2.30532
	AIC	-3.21400	-2.30038
	HQIC	-3.12237	-2.20875
ASEAN	Lag Order		
	Lag Order	-2.67129	0.891552
	AIC	-2.66634	0.896497
	HQIC	-2.57472	0.988125
Southern	Lag Order		
Asia	Lag Order	-2.07155	-0.89552
	AIC	-2.06660	-0.89058
	HQIC	-1.97498	-0.79895

5
2.3.2 Panel co-integration Test

Kao Test, Fisher Test and Pedroni Test are of the most commonly used panel co-integration tests and Pedroni Test has the largest range of application (Pedroni 1, 1999) [7]. We chose Pedroni Test to test the co-integration relationship between variables. Then, on the basis of regression residual, we constructed Panel V, Panel rho, Panel PP and Panel ADF for tests within groups and Group rho, Group PP and Group for tests between groups. The result is shown in the Table 5. It shows that InESI_T and InESI_F, InTII_T and InTII_F are not obvious in Panel V. It also shows that InESI and InESI_F are obvious in Panel PP, while InTII_T and InTII_F are obvious in Group PP 0.05 level. All the other statistics are obvious in 0.01 level. We conclude that InESI_T with InESI_F and InTII_T with InTII_F have co-integration relationship with each other.

Statistics	Western Asia	Central and Eastern Europe	CIS
AIC	Lag 1	Order 1	Lag 1
HQIC	-2.34924	-2.78487	-3.73927
SBIC	-2.25762	-2.77992	-1.20084
AIC	-2.22538	-0.83492	-1.19589
HQIC	-2.08794	-0.82997	-1.10426
SBIC	-2.68829	-0.73835	-1.49777
AIC	-2.08794	-0.82997	
HQIC	-2.22538	-0.73835	
SBIC	-2.34924	-0.83492	

Table 5. Result for Panel Co-integration Test

Statistics	InESI_T and InESI_F	p	InTII_T and InTII_F	p
Panel V	-1.171	0.48	-1.563	0.351
Panel rho	-3.591***	0.000	-3.409***	0.000
Panel PP	-5.065**	0.003	-4.266**	0.001
Panel ADF	-2.933***	0.000	-3.574***	0.000
Group rho	-1.729***	0.000	-2.114**	0.002
Group PP	-3.522***	0.001	-2.213***	0.000
Croup ADF	-3.658***	0.000	-2.685***	0.000

Note: ***shows that it is obvious in 0.01 level,** shows that it is obvious in 0.05 level,* shows that it is obvious in 0.1 level.

3. Conclusion:

1 Pedroni indicates that when time span of panel data is longer than 100 (T>100), 7 statistics show bias error but high performance, however, when the time span is short, Panel V has relatively poor performance. The time span in our research is 20 years, so Panel V is not a major consideration. When the last 6 statistics are obvious, InESI_T and InESI_F, InTII_T and InTII_F are integrated of order 1 and have co-integration relationship, so we are able to construct a PVAR.
Form 6 is the estimation result for GMM based on PVAR model. It supports the following two results for the relationship between trade and investment for Guangzhou and the countries along the “One Belt One Road”. The first one is that delayed trade and investment significantly have positive effect on the current trade, which is consistent with the one from Zhang (2004) [8]. The second one is that delayed trade and investment has positive influence on the current investment, which is consistent with the one from Chen (2014) [9]. We can tell from the Table 9, that when the explained variable is ESI for trade capacity, coefficient on InESI_T and InESI_F are obviously positive in lag order 1 and 2, showing that current ESI_T for capacity changes in the same direction, with trade and investment for capacity cooperation between Guangzhou and countries along B&R. What’s more, trade and investment from lag order 1 and 2 increases the connectedness digress of current trade. When the explained variable is TII_F for capacity, coefficient on InTII_T and InTII_F are obviously positive in lag order 1 and 2, showing that trade and investment from lag order 1 and 2 increases the current trade connectedness degree. So, the first result is stable and we can conclude that trade and investment between Guangzhou and countries along B&R will promote the future ones. In the analytic equation for ESI for investment capacity, coefficients on InESI_T and InESI_F are obviously positive in lag order. In the analytic equation for TII for investment capacity, coefficients on InTII_T and InTII_F are obviously positive. So, the second result is stable and we can conclude that investment and trade between Guangzhou and countries along B&R increase connectedness degree of current investment. InDis is negative in the two quotations, which is an evidence for that trade and investment between Guangzhou and countries along B&R are negatively influenced by the distance.

As a result, two conclusions show co-relationship between trade and investment between Guangzhou and countries along B&R, and the current trade and investment significantly increase the future ones. One reason for the phenomena is that countries along B&R make progress in the aspect of policy, market structure and infrastructure and create a better environment, which becomes a motivation for investment. Another reason may be that companies in Guangzhou need trade and investment opportunities to integrate various resources and global strategy implementation. If Guangzhou increases investment along B&R, small companies will have a greater profit margin and they will be encouraged to trade and investment in the future. Additionally, the result of GMM shows connectedness between trade and investment for capacity cooperation between Guangzhou and countries along B&R. Trade and investment for capacity have positive impact on each other. It is evident that Guangzhou is striving for trade and investment integration with countries along B&R. In the new stage of B&R construction, Guangzhou is highly recommended that it should keep supporting policies on opening to the outside and encouraging foreign investment, and consider the complementary relationship between trade capacity and trade while putting them into a unified framework and system. In order to provide policy support on Guangzhou economy integration into B&R development, Guangzhou should attach importance to policy coordination.

Explained Variables	InESI	variables	coefficient	Explained Variables	InTII	variables	coefficient	
InESI_T		InESI_T (1)	0.449***	(3.64)		InTII_T (1)	0.606***	(5.61)
		InESI_T (2)	0.317**	(1.98)		InTII_T (2)	0.212**	(2.01)
		InESI_F (1)	0.332***	(3.80)		InTII_F (1)	0.389***	(3.69)
		InESI_F (2)	0.228**	(2.23)		InTII_F (2)	0.159**	(2.08)
		InDis	-0.281**			InDis	-0.313**	
Explained Variables	variables	coefficient	Explained Variables	variables	coefficient			
---------------------	-----------	-------------	---------------------	-----------	-------------			
InESI_F	InESI_T (-1)	0.538*** (4.54)	InTII_F	InTII_T (-1)	0.272* (1.79)			
	InESI_T (-2)	0.148 (0.67)		InTII_T (-2)	-0.002 (-0.01)			
	InESI_F (-1)	0.275* (1.73)		InTII_F (-1)	0.561*** (4.58)			
	InESI_F (-2)	0.091 (1.03)		InTII_F (-2)	0.099 (0.89)			
	InDis	-0.303*** (-3.81)		InDis	-0.185*** (-2.72)			

Note: *** shows that it is obvious in 0.01 level, ** shows that it is obvious in 0.05 level, * shows that it is obvious in 0.1 level, and the numbers in parentheses represent statistics Z.

Acknowledgment
This work was supported by National Natural Science Foundation of China (No.71873041; No.71603060), Ministry of education of Humanities and Social Science Project (No.16YJC790023), Natural Science Foundation of Guangdong, China (No. 2017A030313422), the Project of Guangdong Institute for International Strategies and Strategic Research Base of Education Ministry in 2017 (No.17ZDA05).

References
[1] Holtz-Eakin, D, et al. (1988) Estimating Vector Autoregressions with Panel Data., Econometrica, New York University, vol. 56, no. 6, pp. 1371–1395.
[2] Arellano, M. and Bover, O. (1995) Another Look at the Instrumental Variable Estimation of Error-Components Models. Journal of Econometrics, 68, 29-51.
[3] Blundell, R. and Bond, S. (1998) GMM Estimation with Persistent Panel Data: An Application to Production Functions. Journal of Econometrics, 87, 115-143.
[4] Love I, Zicchino L. Financial development and dynamic investment behavior: Evidence from panel VAR[J]. Quarterly Review of Economics & Finance, 2007, 46(2):190-210.
[5] Glick R, Rose A K. Contagion and trade: Why are currency crises regional? [J]. Journal of International Money & Finance, 1999, 18(4):603-617.
[6] Brown A J. Applied economics aspects of the world economy in war and peace[J]. 1947.
[7] Pedroni P. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors[C]/ Department of Economics, Williams College, 1999:653-670(18).
[8] Zhang,YH, Wang,SY. Empirical Analysis on Connectedness between International Trade and OFDI Based on Granger Non-causal Test on Data of China[J]. Journal of International Trade, 2004(1):71-75.
[9] Chen JC, Wang FH. OFDI and Trade Structure Optimization[J]. Journal of International Trade, 2014(3):113-122.