Effectiveness of a Multifaceted Intervention for Potentially Inappropriate Prescribing in Older Patients in Primary Care: A Cluster-Randomized Controlled Trial (OPTI-SCRIPT Study)

Clyne, B., Smith, S., Hughes, C. M., Boland, F., Bradley, M. C., Cooper, J. A., & Fahey, T. (2015). Effectiveness of a Multifaceted Intervention for Potentially Inappropriate Prescribing in Older Patients in Primary Care: A Cluster-Randomized Controlled Trial (OPTI-SCRIPT Study). Annals of Family Medicine, 13(6), 545-553. https://doi.org/10.1370/afm.1838

Published in:
Annals of Family Medicine

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright © 2016 by the Annals of Family Medicine, Inc

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. — Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Effectiveness of a multifaceted intervention on potentially inappropriate prescribing in older patients in primary care: a cluster randomised controlled trial (the OPTI-SCRIPT study)

Barbara Clyne, PhD, Susan M Smith, MD, Carmel M Hughes, PhD, Fiona Boland, PhD, Marie C Bradley, PhD, Janine A Cooper, PhD, Tom Fahey, MD, on behalf of the OPTI-SCRIPT study team

Author Affiliations

1 HRB Centre for Primary Care Research, Department of General Practice, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Republic of Ireland.

2 School of Pharmacy, Queen’s University Belfast (QUB), 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland.

3 National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850.

CORRESPONDING AUTHOR: Barbara Clyne, PhD, HRB Centre for Primary Care Research, Department of General Practice, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Republic of Ireland. barbaraclyne@rcsi.ie

Support: This study is independent research, funded by the Health Research Board (HRB) PhD Scholars Programme in Health Services Research under Grant No. PHD/2007/16 and the HRB Centre for Primary Care Research under Grant no HRC/2007/1.

Prior presentations:

Oral

Clyne B, Smith SM, Hughes CM, Boland F, Bradley MC, Cooper J, Fahey TP. Effectiveness of a multifaceted intervention on potentially inappropriate prescribing in older patients in primary care: a cluster randomised controlled trial (the OPTI-SCRIPT study). North American Primary Care Research Group (NAPCRG) annual conference, 21-24 Nov 2014, New York

*Winner of the NAPCRG/SAPC Travel Award 2014.
Clyne B, Smith SM, Hughes CM, Boland F, Bradley MC, Cooper J, Fahey TP. *Effectiveness of a multifaceted intervention on potentially inappropriate prescribing in older patients in primary care: a cluster randomised controlled trial the OPTI-SCRIPT study.* Society for Academic Primary Care (SAPC) annual conference July 9-11 2014 Edinburgh

Clyne B, Cooper J, Hughes CM, Fahey TP, Smith SM. 2014. *A process evaluation of a cluster randomised trial to reduce potentially inappropriate prescribing in older patients in Primary Care (OPTI-SCRIPT study).* Society for Academic Primary Care (SAPC) annual conference July 9-11 2014 Edinburgh

Poster

Clyne B, Smith SM, Hughes CM, Bradley MC, Boland F, Fahey TP. *Addressing potentially inappropriate prescribing in primary care: results from the OPTI-SCRIPT cluster randomised controlled trial.* Irish Gerontological Society (IGS) October 2014, Galway.

Clyne B, Smith SM, Hughes CM, Bradley MC, Boland F, Fahey TP. *Addressing potentially inappropriate prescribing in primary care: results from the OPTI-SCRIPT cluster randomised controlled trial.* Association of Departments of General Practice in Ireland (AUDGPI) Annual Scientific Meeting March 2014, Cork.

Clyne B, Bradley MC, Smith SM, Hughes CM, Fahey TP. *Feasibility of medicines review to reduce Potentially Inappropriate Medicines in the elderly: the OPTI-SCRIPT cluster randomised controlled trial.* International Society For Pharmacoeconomics and Outcomes Research (ISPOR) Annual European Congress, November 2013, Dublin

Word count: 2,686

Figures: 1

Tables: 6
Abstract

Purpose: Potentially inappropriate prescribing (PIP) is common in older people and can result in increased morbidity, adverse drug events and hospitalisations. This study tested the effectiveness of a multifaceted intervention in reducing PIP in primary care.

Methods: A cluster randomised controlled trial (RCT) was conducted with 21 GP practices and 196 patients with PIP. Intervention participants received a complex multi-faceted intervention incorporating academic detailing, medicines review with web-based pharmaceutical treatment algorithms that provide recommended alternative treatment options, and tailored patient information leaflets. Control practices delivered usual care and received simple, patient-level PIP feedback. Primary outcomes were the proportion of patients with PIP and the mean number of potentially inappropriate prescriptions. Intention-to-treat analysis using random effects regression was used.

Results: All practices and 190 patients were followed. Upon intervention completion, patients in the intervention group had significantly lower odds of having PIP than patients in the control group (adjusted odds ratio (OR) 0.32, 95% confidence interval (CI) 0.15 to 0.70, P=0.02). The mean number of PIP drugs in intervention was 0.70, compared to 1.18 in control (P=0.02). The intervention group was almost a third less likely than control to have PIP drugs at intervention completion, but this was not significant (incidence rate ratio 0.71, 95% CI 0.50 to 1.02, P=0.49). The intervention was effective in reducing proton pump inhibitor prescribing (adjusted OR 0.30, 95% CI 0.14 to 0.68, P=0.04).

Conclusions: The OPTI-SCRIPT intervention incorporating academic detailing with a pharmacist and medicines’ review with web-based pharmaceutical treatment algorithms,
was effective in reducing PIP, particularly in modifying prescribing of proton pump inhibitors, the most commonly occurring PIP nationally.

Trial Registration: Current controlled trials ISRCTN41694007

Key words: randomised controlled trial, potentially inappropriate prescribing, primary health care

Abbreviations: A&E (accident and emergency); ADEs (adverse drug events); BMQ (Beliefs about Medicine Questionnaire); CDSS (computerised decision support systems); CI (confidence interval); CME (continuing medical education); GP (general practitioner); HRB (Health Research Board); HRQOL (health related quality of life); ICC (intraclass correlation coefficient); ICGP (Irish College of General Practitioners); IRR (incidence rate ratio); NSAID (Nonsteroidal anti-inflammatory drug); OR (odds ratio); PCRS (Primary Care Reimbursement Services); PIP (potentially inappropriate prescribing); QUB (Queen’s University Belfast; RCSI (Royal College of Surgeons in Ireland); RCT (randomised controlled trial); Rx-PAD (Prescription Peer Academic Detailing); TCA (Tricyclic Anti-depressant); WBQ-12 (Well-being Questionnaire)
INTRODUCTION
Older people tend to have multimorbidity with consequent polypharmacy, making prescribing in this population challenging, with the potential for adverse outcomes including drug-drug interactions and adverse drug events (ADEs).1,2 Potentially inappropriate prescribing (PIP) describes a number of suboptimal prescribing practices particularly the use of medicines that introduce a greater risk of ADEs where a safer, as effective alternative is available to treat the same condition.3,4 PIP in older people is common across healthcare settings and can result in increased morbidity, ADEs and hospitalisations.2,5,6 In Ireland, 36% of those aged \geq70 years received at least one potentially inappropriate prescription in 2007, with an associated expenditure of over €45 million.7 PIP in community-dwelling older Irish people is associated with increased ADEs, accident and emergency (A&E) visits, and poorer health related quality of life (HRQOL).8

Interventions targeting PIP represent an important public health measure, particularly in primary care where the majority of prescribing takes place. There is no one interventional strategy that has proved to be most effective.9 A number of commentators have argued that a multifaceted intervention, which combines a number of techniques within a single intervention,10 may be more likely to improve prescribing than any one single intervention.11,12 To date, a limited number of multifaceted interventions have been evaluated in primary care to decrease PIP.13,14

The purpose of the OPTI-SCRIPT study (OPTImizing PreSCRibing for Older People in Primary Care, a clusTer randomised controlled trial) was to investigate the effectiveness of a multifaceted intervention in reducing PIP in older people in Irish primary care.
METHODS

A cluster randomised controlled trial (RCT) was conducted in Irish primary care to alter general practitioner (GP) PIP-related prescribing following the CONSORT guidelines. The study protocol and intervention development have been detailed previously. The Research Ethics Committee of the Irish College of General Practitioners (ICGP) approved the study.

Recruitment and randomisation

GP practices from the Health Research Board (HRB) Centre for Primary Care Research network were invited to participate by email with a follow-up phone call. Practices were eligible if they had at least 80 patients aged ≥ 70 years and were based in greater Dublin. Consenting practices were instructed to randomly select 50 patients aged ≥ 70 years with capacity to provide informed consent. Prescriptions of these patients were assigned a study ID and sent to the research team where the research pharmacist determined if they had PIP (Appendix 1). Eligible patients were sent study information packs by the GP practice and those wishing to participate returned signed consent forms to the research team.

Baseline data were collected prior to allocation. Practices were allocated to intervention and control by an independent researcher using minimisation (Minimpy), an allocation method commonly used in cluster RCTs to ensure balanced allocation of important cluster level attributes such as practice size when cluster numbers are small. It was not possible to blind patients or GPs to allocations, however, the outcome assessor was blinded.

Intervention and control groups

The multifaceted intervention involved academic detailing with a pharmacist on how to conduct GP-led medicines review with participating patients; medicines reviews were supported by web-based pharmaceutical treatment algorithms for GPs providing evidence-based alternative treatment options to PIP drugs; and tailored patient information leaflets, (Table 1 and Appendix 2) The intervention was delivered from October 2012 to
September 2013. Control practices delivered usual care and received one-off simple patient-level PIP feedback (Table 1).

Outcomes
Outcome data were collected upon intervention completion (i.e. point at which all reviews were completed in a practice) at approximately 4-6 months following baseline data collection.

Primary outcomes
Two primary outcomes were used, firstly, the proportion of patients with PIP drugs (a composite measure, i.e. any number of PIP drugs as included in the study to address multiple PIP in individual patients). Secondly, the mean number of PIP drugs per group was investigated. PIP was determined for intervention and control groups from a review of prescriptions by a research pharmacist (Appendix 1).

Secondary outcomes
Secondary outcomes included individual measures of the composite measure, i.e. drug-specific outcomes, including the absolute number of PIP drugs per group of the top five reported nationally: proton pump inhibitor at full therapeutic dosage for >8 weeks, long-term (>3 months) use of non-steroidal anti-inflammatories (NSAIDs), long-term (>1 month) use of long-acting benzodiazepines, therapeutic duplication and tricyclic antidepressants (TCAs) with an opiate or calcium channel blocker. Patient-reported outcomes included the Patients’ Beliefs about Medicines Questionnaire (BMQ), and the Well-being Questionnaire (WBQ-12) collected via self completed questionnaires.

Sample size calculation
A sample of at least 22 practices and 220 patients was required, incorporating the effects of cluster randomisation and a 10% loss to follow-up. The calculation was based on both
primary outcomes. The calculation for the proportion of participants with PIP was based on demonstrating a clinically relevant 10% absolute reduction (from 100% to 90%) in the proportion of PIP, with 80% power and a statistical significance of 5% (1-sided), between randomised groups. For the mean, the calculation was based on demonstrating a 30% relative reduction in the mean number of potentially inappropriate prescriptions in the intervention group compared to the control group (equivalent to a mean reduction of 1.02 inappropriate prescriptions), with 80% power and a statistical significance of 5% (2-sided).17

Analysis

Data analysis was by intention to treat.

Primary outcomes

Separate approaches were used to analyse the two primary outcomes. The proportion of patients with PIP is presented and was analysed using a random effects logistic regression with the individual as the unit of analysis and the practice included as the random effect, to control for the effects of clustering. Baseline covariates (age, gender, baseline number of PIP drugs, baseline number of repeat medications) and minimisation factors (number of GPs, practice location) were included in the model.

The mean number of PIP drugs was calculated per group, as specified in the study protocol, and a mean difference calculated using a cluster level t-test.17 However, preliminary analyses indicated that the data were skewed. The median number of PIP drugs was additionally investigated and skewness was addressed using a random effects Poisson regression, presenting incidence rate ratios (IRRs). Again, the individual was the unit of analysis and the practice was included as the random effect, and baseline covariates and minimisation factors were included. The Bonferroni correction was used to adjust for multiple comparisons.
Secondary outcomes
Random effects logistic regressions were used to test the differences in drug-specific secondary outcomes between intervention and control and random effects multiple regressions were conducted for the patient-reported outcomes.

National contemporaneous comparison group
The control group may have changed their prescribing behaviour due to the reactive effects of being studied (Hawthorne effect) and receiving simple feedback. In anticipation of this, anonymised data from the Primary Care Reimbursement Service (PCRS) pharmacy claims database of dispensed medications (national prescribing database of GP and pharmacy claims) were analysed, acting as a national contemporaneous comparison group. National PCRS prescribing data for those aged ≥ 70 years from September 2012 to August 2013, were analysed and the following data retrieved:

1. Number of people with PIP
2. Number of people with no PIP
3. Decreases in the number of PIP drugs
4. PIP that remained the same.

PIP was assessed using 28 criteria included in this study, (six of the PIP criteria could not be applied as the PCRS data lacked the detailed information needed). From these figures, crude odds ratios (ORs) were calculated, comparing the OPTI-SCRIPT intervention and control groups to the national PCRS comparator.
RESULTS
Figure 1 displays the flow of participants through the RCT. In total 21 GP practices and 196 patients were recruited. All GP practices and 190 (97%) patients were followed up on intervention completion. Practices and patients were similar at baseline but the control group were situated in more socioeconomically deprived areas (Table 2). Proton pump inhibitors at maximum therapeutic dosage > 8 weeks was the most frequently occurring PIP in both groups (Table 3).

Primary outcomes
Upon intervention completion, the proportion of patients with PIP drugs was 0.52 in intervention compared to 0.77 in control. Participants in the intervention group had significantly lower odds of having PIP than those in the control group (adjusted OR 0.32, 95% confidence interval (CI) 0.15 to 0.70, P=0.02) (Table 4).

The mean number of PIP drugs in the intervention group was 0.70, compared to 1.18 in the control group (P=0.02). The median was 1 in both intervention and control. Investigating the number of PIP drugs per person using Poisson regression, patients in the intervention group were estimated to have 29% less PIP drugs than patients in the control group, but this was not significant at the 5% level (IRR 0.71, 95% CI 0.50 to 1.02, P=0.49) (Table 4).

Secondary outcomes
Drug specific outcomes
At intervention completion, participants in the intervention group had significantly lower odds of having a potentially inappropriate proton pump inhibitor compared to those in the control group (adjusted OR 0.30, 95% CI 0.14 to 0.68, P=0.04). No statistically significant differences were found for other drug-specific outcomes (Table 5). In the intervention group, 50% of potentially inappropriate proton pump inhibitors were amended by dose
reduction to maintenance level, 20% were stopped completely, 11% were switched to an alternative (e.g. H₂ antagonist) and 20% were unaltered.

Patient reported outcomes

For the patient reported outcomes of well-being and beliefs about medication, no statistically significant differences were found after completion of the intervention (Table 5).

National contemporaneous comparison group

Participants in the OPTI-SCRIPT intervention group had lower odds of having PIP compared to those in the national comparator group (crude OR 0.4, 95% CI 0.3 to 0.6) and were more likely to have a decrease in the number of PIP drugs, than the national comparator group (crude OR 2.5, 95% CI 1.8 to 4.0) (Table 6).
DISCUSSION

The OPTI-SCRIPT intervention was effective in reducing PIP. However, this effect was mediated principally through reducing prescriptions of proton pump inhibitors at maximal dose, the most commonly encountered study PIP.

Previous studies aimed at reducing PIP have been focused in hospital and nursing home settings. A limited number of RCTs to reduce PIP specifically in primary care have been conducted. Of those interventions that have been evaluated, single interventions such as computerised decision support systems (CDSSs), educational interventions and multidisciplinary teams have produced inconsistent effects. Multifaceted interventions may be more likely to improve prescribing than single interventions.

Our results are consistent with two separate RCTs published since the start of the OPTI-SCRIPT study in finding a multifaceted intervention to be effective. Rognstad et al. found peer academic detailing, delivered at continuing medical education (CME) meetings, with mailed prescriber feedback, produced a 10% (95% CI 5.9 to 15.0) reduction in PIP in the Rx-PAD study. Bregnhoj et al. found interactive educational meetings and feedback resulted in a 5-point (95% CI -7.3 to -2.6) improvement in the medication appropriateness index (MAI) score. Differences in effect sizes reported between these studies and the OPTI-SCRIPT findings may arise from a number of factors including differences in the criteria used to assess PIP, the duration of follow-up and the included patients.

An important difference may also be the intensity of the intervention. OPTI-SCRIPT was more intensive, delivering academic detailing face-to-face, rather than a group setting. During the medication reviews, GPs were provided directly with patient-specific lists of PIP drugs and advice on medication changes via the web-based pharmaceutical treatment algorithms, feasibly, having a larger effect size as it encouraged an immediate action to be taken rather than providing educational support or information.

Changes in prescribing of particular drugs can be responsible for the overall effectiveness of interventions. The OPTI-SCRIPT intervention primarily impacted on proton pump inhibitors
prescribing which was highly prevalent at baseline (60%). No impact on therapeutic duplication or benzodiazepine use was found. This is likely due to the small numbers of patients exposed to these PIP drugs. However, this may also reflect the different challenges of modifying medicines as opposed to altering dosage regimes, particularly with benzodiazepines, whose tolerance levels result in interventions to improve prescribing having varying success.32 There is a concern that discontinuation of benzodiazepines in this population may produce more harm than benefit and patients may be reluctant to discontinue.33,34 OPTI-SCRIPT GPs, may have been more comfortable altering proton pump inhibitors than benzodiazepines. Based on the low number of benzodiazepines in this study, we cannot be certain that the OPTI-SCRIPT intervention would be effective in reducing prescribing of these medications.

The OPTI-SCRIPT intervention was not found to impact on patients’ sense of well-being and beliefs about medicine. The sample size may have been too small and the follow-up period too short to detect a difference in patient reported outcomes, a common criticism of prescribing interventions.28 It is possible that beliefs about medicines may have been more likely to change than patients’ well-being given the short follow-up period, however, evidence indicates that beliefs about medicines remain stable over time, irrespective of changes in health status.35 Overall, these results suggest that modifications in proton pump inhibitors dosage do not appear to affect patient’s sense of well-being or concerns.

Strengths and limitations
Strengths of this study include a rigorous design of a clinically relevant intervention,16 high retention rates (primarily due to the nature of the outcome data and the short follow-up period), completeness of the prescription data and being conducted in a primary care setting using existing resources. Selection bias was minimised by collecting baseline data prior to minimisation, which was carried out by an independent third party. Owing to the nature of the intervention, it was not possible to blind patients or GPs to allocations, however, the outcome assessor was blinded to allocation,
The intervention was effective at decreasing the most prevalent PIP (proton pump inhibitors) in this study. The more frequent an outcome is, the greater the potential the OR will over or under estimate the relative risk (RR). Using methods proposed by Zhang et al36, we explored this and found little difference between the OR (0.32) and the RR (0.38), increasing confidence in the study findings.

While the analysis of a non-randomised comparison group (PCRS data) provided a national context to the study, findings revealed no notable difference overall in prescribing behaviour by the control group compared to prescribing nationally, this is a non-randomised group and is therefore subject to confounding.

The external validity of this study may have limitations. GP recruitment was modest at 32%, comparing favourably to similar PIP related RCTs 13 but smaller than reported in other primary care studies.37 When compared to a national sample of practices,38 study practices had, on average, more GPs and public patients so may not be representative of practices nationally. However, the last available national data on GPs was from 2005 so may be somewhat out of date.38

Implications for practice and directions for future study

The reduction in PIP in the OPTI-SCRIPT study may have important clinical and economic implications. Almost half of the intervention group were no longer exposed to PIP at intervention completion. While it cannot be assumed that a change in PIP necessitates a change in health outcomes,39,40 reducing PIP potentially may decrease adverse outcomes such as ADEs and hospitalisations in older patients.5 As the OPTI-SCRIPT study effect size was largely driven by proton pump inhibitor prescribing, the intervention may attenuate the risks associated with these drugs such as hip fractures and community acquired pneumonia.41,42
Reducing PIP related to proton pump inhibitor prescribing may also contribute to significant savings as an estimated €22 million was spent on potentially inappropriate proton pump inhibitors in 2007.43

Based on the positive findings presented here, further modelling of the intervention components is planned to determine the effectiveness of the OPTI-SCRIPT intervention long term and the potential impact it may have on cases of PIP other than for proton pump inhibitor prescribing.

PIP is an important public health concern that can result in increased morbidity, adverse drug events, hospitalisation and expenditure.2,7 This study shows that the OPTI-SCRIPT intervention reduced PIP, primarily through a reduction in proton pump inhibitor prescribing, in a way that this is acceptable to both GPs and their patients. Tailoring of the intervention to impact more specifically on different cases of PIP is planned.
Acknowledgements: David Williams, MD, Ronan McDonnell, PhD and Daniel Clear, MB, contributed to the design of the intervention. Mary-Claire Kennedy, B.Sc. (Pharm), conducted the academic detailing with GPs. Nicola Motterlini (RIP) provided statistical support at the study inception. David Williams is Consultant Stroke Physician, Geriatric Medicine – Beaumont hospital, Royal College of Surgeons in Ireland. Ronan McDonnell, Daniel Clear and Mary-Claire Kennedy are all affiliated with the HRB Centre for Primary Care Research. We thank the HSE-PCRS for supplying the data for national comparison; in particular we would also like to thank Frank Moriarty, Caitriona Cahir and Kathleen Bennett. We thank all the GP practices and patients who participated in this study.

Conflict of interest: none reported
References
1. Milton JC, Hill-Smith I, Jackson SH. Prescribing for older people. BMJ. 2008;336(7644):606-609.
2. Spinewine A, Schmader K, Barber N, et al. Appropriate prescribing in elderly people: how well can it be measured and optimised? Lancet. 2007;370:173-184.
3. Kaufmann C, Tremp R, Hersberger K, Lampert M. Inappropriate prescribing: a systematic overview of published assessment tools. Eur J Clin Pharmacol. 2014;70(1):1-11.
4. O’Mahony D, Gallagher PF. Inappropriate prescribing in the older population: need for new criteria. Age Ageing. 2008;37(2):138-141.
5. Jano E, Aparasu RR. Healthcare Outcomes Associated with Beers’ Criteria: A Systematic Review. Ann Pharmacother. 2007;41(3):438-447.
6. Hamilton HJ, Gallagher PF, O’Mahony D. Inappropriate prescribing and adverse drug events in older people. BMC Geriatr. 2009;9:5.
7. Cahir C, Fahey T, Teeling M, Teljeur C, Feely J, Bennett K. Potentially inappropriate prescribing and cost outcomes for older people: A national population study. Br J Clin Pharmacol. 2010;69(5):543-552.
8. Cahir C, Bennett K, Teljeur C, Fahey T. Potentially inappropriate prescribing and adverse health outcomes in community dwelling older patients. Br J Clin Pharmacol. 2014;77(1):201-210.
9. Marcum ZA, Handler SM, Wright R, Hanlon JT. Interventions to improve suboptimal prescribing in nursing homes: A narrative review. Am J Geriatr Pharmacother. 2010;8(3):183-200.
10. Garcia RM. Five ways you can reduce inappropriate prescribing in the elderly: A systematic review. J Fam Pract. 2006;55(4):305-312.
11. Majumdar SR, Soumerai SB. Why most interventions to improve physician prescribing do not seem to work. CMAJ. 2003;169(1):30-31.
12. Grimshaw JM, Shirran L, Thomas R, et al. Changing Provider Behavior: An Overview of Systematic Reviews of Interventions. Med Care. 2001;39 (8 Suppl 2): II2-45.
13. Bregnhoj L, Thirstrup S, Kristensen M, Bjerrum L, Sonne J. Combined intervention programme reduces inappropriate prescribing in elderly patients exposed to polypharmacy in primary care. Eur J Clin Pharmacol. 2009;65(2):199-207.
14. Rognstad S, Brekke M, Ftevait A, Dalen I, Straand J, rund. Prescription peer academic detailing to reduce inappropriate prescribing for older patients: a cluster randomised controlled trial. Br J Gen Pract. 2013;63(613):e554-e562.
15. Campbell MK, Elbourne DR, Altman DG. CONSORT statement: extension to cluster randomised trials. BMJ. 2004;328(7441):702-708.
16. Clyne B, Bradely M, Hughes C, et al. Addressing potentially inappropriate prescribing in older patients: development and pilot study of an intervention in primary care (the OPTI-SCRIPT study). BMC Health Services Research. 2013;13(1):307.
17. Clyne B, Bradely MC, Smith SM, et al. Effectiveness of medicines review with web-based pharmaceutical treatment algorithms in reducing potentially inappropriate prescribing in older people in primary care: a cluster randomized trial (OPTI-SCRIPT study protocol). Trials. 2013;14(1):72.
18. Saghaei M. An overview of randomization and minimization programs for randomized clinical trials. J Med Signals Sens. 2011;1(1):55-61.
19. Horne R, Weinman J, Hankins M. The beliefs about medicines questionnaire: The development and evaluation of a new method for assessing the cognitive representation of medication. Psychology & Health. 1999;14(1):1-24.
20. Pouwer F, van der Ploeg HM, Adèr HJ, Heine RJ, Snoek FJ. The 12-item well-being questionnaire. An evaluation of its validity and reliability in Dutch people with diabetes. *Diabetes Care.* 1999;22(12):2004-2010.

21. Soumerai SB, McLaughlin TJ, Avorn J. Improving drug prescribing in primary care: a critical analysis of the experimental literature. *Milbank Q.* 1989;67(2):268-317.

22. Jamtvedt G, Young J, Kristofferson DT, O' Brien MA, Oxman AD. Audit and feedback: effects on professional practice and health care outcomes. *Cochrane Database Syst Rev.* 2006;Issue 2 Art. No.: CD000259.

23. Hysong SJ. Meta-analysis: audit and feedback features impact effectiveness on care quality. *Med Care.* 2009;47(3):356-363.

24. Health Service Executive. *Primary Care Reimbursement Service statistical analysis of claims and payments 2011.* Dublin: HSE;2011.

25. Alldred DP, Raynor DK, Hughes C, Barber N, Chen TF, Spoor P. Interventions to optimise prescribing for older people in care homes. *Cochrane Database Syst Rev.* 2013;Issue 2:Art. No.: CD009095.

26. Forsetlund L, Eike M, Gjerberg E, Vist G. Effect of interventions to reduce potentially inappropriate use of drugs in nursing homes: a systematic review of randomised controlled trials. *BMC Geriatr.* 2011;11(1):16.

27. Marcum ZA, Handler SM, Wright R, Hanlon JT. Interventions to improve suboptimal prescribing in nursing homes: A narrative review. *Am J Geriatr Pharmacother.* 2010;8(3):183-200.

28. Yourman L, Concato J, Agostini JV. Use of computer decision support interventions to improve medication prescribing in older adults: A systematic review. *Am J Geriatr Pharmacother.* 2008;6(2):119-129.

29. Kaur S, Mitchell G, Vitetta L, Roberts MS. Interventions that can reduce inappropriate prescribing in the elderly: a systematic review. *Drugs Aging.* 2009;26(12):1013-1028.

30. Straand J, Fetveit A, Rognstad S, Gjelstad S, Brekke M, Dalen I. A cluster-randomized educational intervention to reduce inappropriate prescription patterns for elderly patients in general practice - The Prescription Peer Academic Detailing (Rx-PAD) study *BMC Health Serv Res.* 2006;6(1):72.

31. Raebel MA, Charles J, Dugan J, et al. Randomized trial to improve prescribing safety in ambulatory elderly patients. *J Am Geriatr Soc.* 2007;55(7):977-985.

32. Smith A, Tett S. Interventions to improve benzodiazepine prescribing, lessons from the past 20 years to guide future interventions. *BMC Health Services Research.* 2010;10(1):321.

33. Cook JM, Marshall R, Masci C, Coyne JC. Physicians’ perspectives on prescribing benzodiazepines for older adults: A qualitative study. *J Gen Intern Med.* 2007;22(3):303-307.

34. Illiffe S, Curran HV, Collins R, Yuen Kee SC, Fletcher S, Woods B. Attitudes to long-term use of benzodiazepine hypnotics by older people in general practice: findings from interviews with service users and providers. *Aging Ment Health.* May 2004;8(3):242-248.

35. Porteous T, Francis J, Bond C, Hannaford P. Temporal stability of beliefs about medicines: Implications for optimising adherence. *Patient Education and Counseling.* 2010;79(2):225-230.

36. Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. *JAMA.* 1998;280(19):1690-1691.

37. Jones R, Jones R, McCowan C, Montgomery A, Fahey T. The external validity of published randomized controlled trials in primary care. *BMC Fam Pract.* 2009;10(1):5.

38. O’ Dowd T, O’ Kelly M, O’ Kelly F. *Structure of General Practice in Ireland 1982-2005.* Dublin: Trinity College Dublin;2006.
39. Patterson SM, Hughes C, Kerse N, Cardwell C, Bradley MC. Interventions to improve the appropriate use of polypharmacy for older people. *Cochrane Database Sys Rev*. 2012;Issue 5, Art. No.: CD008165.

40. Scott IA, Gray LC, Martin JH, Pillans PI, Mitchell CA. Deciding when to stop: towards evidence-based deprescribing of drugs in older populations. *Evidence Based Medicine*. August 1, 2013;2013;18(4):121-124.

41. Yang Y, Lewis JD, Epstein S, Metz DC. Long-term proton pump inhibitor therapy and risk of hip fracture. *JAMA*. 2006;296(24):2947-2953.

42. Laheij RF, Sturkenboom MM, Hassing R, Dieleman J, Stricker BC, Jansen JJ. Risk of community-acquired pneumonia and use of gastric acid–suppressive drugs. *JAMA*. 2004;292(16):1955-1960.

43. Cahir C, Fahey T, Tilson L, Teljeur C, Bennett K. Proton pump inhibitors: potential cost reductions by applying prescribing guidelines. *BMC Health Services Research*. 2012;12(1):408.
Table 1 Summary of OPTI-SCRIPT intervention and control groups

Intervention	The intervention consisted of:
	1) Academic detailing with a pharmacist
	One session (30 minutes) where a pharmacist visited the practice to discuss PIP, medicines review and the web-based pharmaceutical treatment algorithms
	2) Medicines review with web-based pharmaceutical treatment algorithms. GPs were asked to conduct one review per patient using the web-based platform to guide them through the process. The GP was presented with the specific PIP drug(s) for each patient, and for each PIP drug, there was a treatment algorithm with the following structure:
	a. The individual PIP with reason for concern
	b. Alternative pharmacological and non-pharmacological treatment options
	c. Background information (where relevant)
	3) Patient information leaflets to give to patients during the review. Each leaflet:
	a. Described the PIP and the reasons as to why it may be inappropriate
	b. Outlined the alternative pharmacological and non-pharmacological therapies GPs may offer.

Control	Control practices delivered usual care. Usual care for public general medical services (GMS) patients allows GPs to give a prescription on a monthly or three monthly basis.
	Control practices received simple patient-level PIP postal feedback in the form of a list summarizing the medication class to which the individual patient’s potentially inappropriate medication belonged.
	Control practices did not receive an academic detailing visit or were not prompted to carry out medicines review with the individual patients.

Abbreviations: GMS (general medical services); PIP (potentially inappropriate prescribing)
Table 2 Baseline characteristics of practices and patients in intervention and control groups

Characteristic	Intervention N	Control N
Practice factors		
Number of practices (%)	11 (52.4)	10 (47.6)
GMS list size (%)		
- 500 or less	1 (9.1)	2 (20.0)
- 501-1,500	3 (27.3)	2 (20.0)
- 1,501 and over	7 (63.6)	6 (60.0)
Practice with a manager	8 (72.8)	7 (70.0)
Location (%)		
- Urban^	8 (80.0)	8 (72.7)
- Mixed	3 (20.0)	2 (27.3)
Mean number of GPs per practice (SD)	4.1 (3.1)	4.1 (2.1)
Mean number of patients over 70 per practice (SD)	712.1 (525.3)	788.2 (987.2)
Median deprivation score † (IQR)	0.5 (-0.3 to 1.6)	1.4 (0.3 to 2.4)
Patient factors		
Male (%)	55 (55.6)	50 (51.5)
Marital status (%)		
- Married	56 (56.6)	51 (53.1)
- Widowed	26 (26.3)	32 (33.3)
- Single	14 (14.1)	10 (10.4)
GMS card holder (SD)	88 (88.9)	95 (97.9)
Mean age (SD)	77.1 (4.9)	76.4 (4.8)
Mean number of repeat medications (SD)	10.2 (4.5)	9.5 (4.1)
PIP*		
- Mean (SD)	1.31 (0.6)	1.39 (0.6)
- Median (IQR)	1 (1 to 2)	1 (1 to 2)
Most prevalent indicator: (%)		
- Proton Pump Inhibitors	53 (53.3)	65 (67.7)

Figures are numbers (percentages) unless stated otherwise

^ Urban area: relatively small centre of population, with 5,000 or more residents

† Population weighted deprivation score for each practice - large values mean practices are situated in more socio-economically deprived areas

* All patients had at least one potentially inappropriate prescription at baseline

Abbreviations: GMS (general medical services); IQR (Interquartile range); PIP (potentially inappropriate prescribing); SD (Standard Deviation)
Table 3 Potentially inappropriate prescriptions at baseline in intervention and control groups

Potentially inappropriate prescription	Intervention (N = 99)	Control (N=97)		
	N	%	N	%
Proton pump inhibitor at maximum therapeutic dosage for >8 weeks	53	53.3	65	67.7
NSAIDs	21	21.2	16	16.8
Long terms use; interactions with certain medications e.g. diuretic	19	19.2	13	13.5
Therapeutic duplication	14	14.4	8	8.3
Any regular duplicate drug class prescription, for example, two concurrent opiates, NSAIDs	9	9.1	4	4.2
Steroid without bisphosphonate	1	1.0	9	9.4
Bladder antimuscarinics	4	4.0	2	2.1
Contraindications and interactions with certain medications	3	3.0	1	1.0
Prolonged use (i.e. >1 week) of first-generation antihistamines	1	1.0	5	5.2
Tricyclic antidepressants (TCAs)	3	3.0	1	1.0
Contraindications and interactions with certain medications e.g. opiate, calcium channel blocker	1	1.0	3	3.1
Digoxin	1	1.0	3	3.1
Inappropriate dose				
Calcium channel blocker	0	0.0	3	3.1
Contraindications and interactions with certain medications				

ns: NSAIDs (Nonsteroidal anti-inflammatory drug); TCAs (Tricyclic antidepressants)
Characteristic	Intervention N (%)	Control N (%)	Adjusted* odds ratio (95% CI)	Adjusted* incident rate ratio (95% CI)	Mean difference *** (95% CI)	P value
Primary outcome: Proportion						
PIP at baseline	99 (100)	97 (100)		-	-	
PIP at intervention completion	52 (52.5)	75 (77.3)	0.32 (0.15 to 0.70)	-	-	0.02
No PIP at intervention completion	47 (47.5)	22 (22.7)		-	-	
Primary outcome: Mean						
Mean at baseline (SD)	1.31 (0.6)	1.39 (0.6)		-	-	0.02
Mean at intervention completion (SD)	0.70 (0.1)	1.18 (0.1)		-	-	
Additional outcome: Median						
Median at baseline (IQR)	1 (1 to 2)	1 (1 to 2)		-	-	
Median at intervention completion (IQR)	1 (0 to 1)	1 (1 to 2)		-	-	
Additional outcome: Poisson regression						
PIP at baseline	99 (100)	97 (100)				
PIP at intervention completion	52 (52.5)	75 (77.3)	0.71** (0.50 to 1.02)	-	-	0.49
No PIP at intervention completion	47 (47.5)	22 (22.7)		-	-	

Figures are numbers (percentages) unless stated otherwise. The Bonferroni method was used to account for multiple comparisons.

*Adjusted for age, gender, baseline number of PIP drugs, baseline number of repeat medications, number of GPs, practice location

** Results from modelling the number of PIPs per person with Poisson regression adjusted for age, gender, baseline number of PIP drugs, baseline number of repeat medications, number of GPs, practice location

*** Results from unadjusted cluster level t-test

Abbreviations: CI (confidence interval); IQR (Interquartile range); PIP (potentially inappropriate prescribing); SD (Standard Deviation)
Table 5 Intention to treat analysis of secondary outcomes at immediate intervention completion

Drug specific outcomes	Characteristic	Intervention N (%)	Control N (%)	Adjusted* odds ratio (95% CI)	P value
	Proton pump inhibitor at baseline	53 (53.5)	65 (67.7)	0.30 (0.14 to 0.68)	0.04
	Proton pump inhibitor at intervention completion	23 (23.2)	46 (47.4)		
	Duplicate at baseline	19 (19.2)	13 (13.5)	0.83 (0.32 to 2.13)	0.99
	Duplicate at intervention completion	11 (11.1)	11 (11.3)		
	Long-term benzodiazepines at baseline	14 (14.1)	8 (8.1)	1.31 (0.47 to 3.68)	0.99
	Long-term benzodiazepines at intervention completion	9 (9.1)	9 (9.1)		

Patient reported outcomes	Characteristic	Intervention	Control	Adjusted* mean difference (95% CI)	P value
	WBQ: Mean well-being^ at baseline	24.3	24.4	- 0.41 (-1.80 to 1.07)	0.99
	WBQ: Mean well-being^ at intervention completion	23.6	24.0		
	BMQ: Median necessity-concern differential^† at baseline	7.0	6.0	0.16 (-1.85 to 1.07)	0.99
	BMQ: Median necessity-concern differential^† at baseline	6.0	5.8		

Figures are numbers (percentages) unless stated otherwise. The Bonferroni method was used to account for multiple comparisons.

*Adjusted for age, gender, baseline number of PIP drugs, baseline number of repeat medications, number of GPs, practice location

^Well-being Score ranges from 0-36 (1-12 low, 13-24 medium, 25-36 high)

^†Scale from -20-20 where positive scores indicate benefits outweigh risks

Abbreviations: BMQ (Beliefs about Medicine Questionnaire); CI (confidence interval); WBQ-12 (Well-being Questionnaire)
Table 6 Comparison of potentially inappropriate prescribing in the OPTI-SCRIPT study population to the national (PCRS) comparator

Numbers (percentages) of participants are presented, unless otherwise stated

PIP status	OPTI-SCRIPT intervention group	OPTI-SCRIPT control group	PCRS national comparator
Proportion with PIP			
PIP at baseline	99 (100)	97 (100)	103,261 (100)
PIP at intervention completion	52 (52.5)	75 (77.3)	75,401 (73.1)
No PIP at intervention completion	47 (47.5)	22 (22.7)	27,860 (26.9)
Crude odds ratio †	0.4 (95% CI 0.3 to 0.6)		
Decrease in PIP			
PIP at baseline	99 (100)	97 (100)	103,261 (100)
PIP stayed same or increased at intervention completion	42 (42.4)	65 (67.0)	67,188 (65.1)
Decrease in PIP at intervention completion	57 (57.6)	32 (32.9)	36,073 (34.9)
Crude odds ratio †	2.5 (95% CI 1.8 to 4.0)		

† The odds of PIP in the OPTI-SCRIPT intervention group compared to the odds in national PCRS comparator data

Abbreviations: CI (confidence interval); PCRS (primary care reimbursement services); PIP (potentially inappropriate prescribing);
Appendices
Appendix 1: Selected Prescribing Criteria/Prescribing Indicator

Criteria	Concern	Prevalence in Ireland*
PPI for peptic ulcer disease at full therapeutic dosage for >8 weeks	Earlier discontinuation or dose reduction for maintenance/prophylactic treatment of peptic ulcer disease, oesophagitis or GORD is indicated	16.69%
NSAID (>3 months) for relief of mild joint pain in osteoarthritis	Simple analgesics are preferable and usually as effective for pain relief	8.76%
Long-term (i.e. >1 month), long-acting benzodiazepines, e.g. chlordiazepoxide, flurazepam, nitrazepam, chlorazepate and benzodiazepines with long-acting metabolites e.g. diazepam	Risk of prolonged sedation, confusion, impaired balance, falls	5.22%
Any regular duplicate drug class prescription, e.g. 2 concurrent opiates, NSAIDs, SSRIs, loop diuretics, ACE inhibitors. Excludes duplicate prescribing of drugs that may be required on a PRN basis, e.g. inhaled beta 2 agonists (long and short acting) for asthma or COPD, and opiates for management of breakthrough pain	Optimization of monotherapy within a single drug class should be observed prior to considering a new class of drug	4.78%
TCAs with an opiate or calcium channel blocker	Risk of severe constipation	2.05%
Aspirin at dosage >150 mg/day	Increased bleeding risk, no evidence for increased efficacy	1.69%
Theophylline as monotherapy for COPD/Asthma	Risk of adverse effects due to narrow therapeutic index	1.18%
Use of aspirin and warfarin in combination without histamine H2 receptor antagonist (except cimetidine because of interaction with warfarin) or PPI	High risk of GI bleeding	1.09%
Doses of short-acting benzodiazepines, doses greater than: lorazepam (Ativan®), 3 mg; oxazepam (Serax®), 60 mg; alprazolam (Xanax®), 2 mg; temazepam (Restoril®), 15 mg; and triazolam (Halcion®), 0.25 mg	Total daily doses should rarely exceed the suggested maximums	1.54%
Prolonged use (>1 week) of first generation antihistamines, i.e. diphenhydramine, chlorpheniramine, cyclizine, promethazine	Risk of sedation and anticholinergic side-effects	0.96%
Warfarin and NSAID together	Risk of GI bleeding	0.75%
Medicine Interaction	Side Effect	Risk Percentage
----------------------	-------------	-----------------
Calcium channel blockers with chronic constipation	May exacerbate constipation	0.68%
NSAID with history of peptic ulcer disease or GI bleeding, unless with concurrent histamine H₂ receptor antagonist, PPI or misoprostol	Risk of peptic ulcer relapse	0.67%
Bladder antimuscarinic drugs with dementia	Risk of increased confusion, agitation	0.46%
TCAs with constipation	May worsen constipation	0.45%
Digoxin at a long-term dosage >125 µg/day (with impaired renal function)	Increased risk of toxicity	0.36%
Thiazide diuretic with a history of gout	May exacerbate gout	0.36%
Glibenclamide (with type 2 diabetes mellitus)	Risk of prolonged hypoglycaemia	0.29%
Aspirin with a past history of peptic ulcer disease, without histamine H₂ receptor antagonist or PPI	Risk of bleeding	0.22%
Prochlorperazine (Stemetil®) or metoclopramide with Parkinsonism	Risk of exacerbating Parkinsonism	0.21%
TCAs with dementia	Risk of worsening cognitive impairment	0.18%
TCAs with glaucoma	Likely to exacerbate glaucoma	0.14%
TCAs with cardiac conductive abnormalities	Pro-arrhythmic effects	0.14%
Long-term corticosteroids (>3 months) as monotherapy for rheumatoid arthritis or osteoarthritis	Risk of major systemic corticosteroid side-effects	0.14%
Bladder antimuscarinic drugs with chronic prostatism	Risk of urinary retention	0.14%
NSAID with heart failure	Risk of exacerbation of heart failure	0.07%
TCAs with prostatism or prior history of urinary retention	Risk of urinary retention	0.07%
Systemic corticosteroids instead of inhaled corticosteroids for maintenance therapy in COPD/Asthma	Unnecessary exposure to long-term side-effects of systemic steroids	0.07%
Bladder antimuscarinic drugs with chronic glaucoma	Risk of acute exacerbation of glaucoma	<0.01%
NSAID with SSRI	Increased risk of GI bleeding	N/A
Bladder antimuscarinic drugs with chronic	Risk of exacerbation of constipation	N/A
Condition	Potential Impact	Prevalence
--	--	------------
Prednisolone (or equivalent) > 3 months or longer without bisphosphonate	Increased risk of fracture	N/A
NSAID with ACE-inhibitor	Risk of kidney failure, particularly with the presence of general arteriosclerosis, dehydration or concurrent use of diuretics	N/A
NSAID with diuretic	May reduce the effect of diuretics and worsen existing heart failure	N/A

Abbreviations – ACEI (angiotensin-converting-enzyme inhibitor); COPD (chronic obstructive pulmonary disease); GI (gastro-intestinal); NA (not available); GORD (gastro-oesophageal reflux disease); NSAID (Nonsteroidal anti-inflammatory drug); PPI (Proton Pump Inhibitor); PRN (Pro re nata, as needed); SSRI (Selective serotonin reuptake inhibitor); TCA (Tricyclic Anti-depressant)

*Prevalence – the proportion of the study population with 1 or more potentially inappropriate medications
Appendix 2 OPTI-SCRIPT Website materials

Table A2.1 OPTI-SCRIPT treatment algorithm example

Proton Pump Inhibitors (PPIs)
Section A Potentially Inappropriate Prescription:
Full therapeutic dose ≥65y: Not indicated
Long-term PPI use is associated with an increased risk of fractures and may be associated with an increased risk of Community Acquired Pneumonia and C. difficile diarrhoea

Section B Alternatives:
1. Discontinuation or dose reduction for maintenance therapy and gastroprotection
2. Pharmacological Alternatives

Pharmacological Alternative	Dose Recommendations	Co-Adm with Alternative Foe Recommended	Co-Adm Caution	Non-pharmacological Alternative
H2 antagonist	1. Ranitidine: 150mg BD, maintenance dose 150-300mg daily	2. Concurrent acid suppressive	3. Gastric Advance	5-2 tabs or 5-10ml after meals and bedtime

Patient Information Leaflets:

- PPIs for people with peptic ulcer disease, please click:
 http://thoxygenprimarycare/wa/OPTI SCRIPT/Leaflet_PPI_PUD.pdf

- PPIs for people with gastro-oesophageal reflux disease (GORD), please click:
 http://thoxygenprimarycare/wa/OPTI SCRIPT/Leaflet_PPI_GORD.pdf

Section C: Background Information

Managing gastro-oesophageal reflux disease (GORD)

- Offer a full-dose PPI (omeprazole 40mg/day) for 1 month to all people with endoscopically determined oesophagitis or endoscopy-negative reflux disease.
- Advise that symptoms may recur after stopping treatment, and to return for treatment if they experience persistent or recurrent symptoms.
- For those whose symptoms persist, offer a further month of full-dose PPI.
- For people with persistent, severe symptoms, consider a double-dose PPI (omeprazole 60mg bd) for a further month.
- For people with a particular problem with nocturnal symptoms that do not respond to PPI therapy, consider adding an H2-receptor antagonist at bedtime in the short term (e.g., intermittent 2-week courses of Ranitidine 150mg nocte).
- For people who do not respond to a second month of full-dose PPI or a month of double-dose PPI, consider a trial of treatment with an H2-receptor antagonist (ranitidine 150mg bd) or a prokinetic (domperidone 30mg tds) or referral for further management of reflux/GORD.

Managing peptic ulcer disease (PUD)

- Test for Helicobacter pylori if this has not already been done.
- If the result is negative, treat with full-dose PPI (omeprazole 40mg/day) for 1 or 2 months, depending on the reported severity of ulceration.
- If the result is positive, prescribe eradication therapy (omeprazole 20mg bd + clarithromycin 500mg bd + amoxicillin 1g bd, all for 1 week).
- After at least four weeks of completing eradication therapy, re-test for H. pylori.
- Prescribe an alternative eradication therapy if the repeat test result is positive.
- For gastric ulcers, arrange repeat endoscopy 6-8 weeks after completing treatment.

Reducing risk of NSAID-associated ulceration

If NSAID therapy is absolutely necessary and the individual is aware of the risk of continuing treatment:

- Consider topical agent or prescribe low-dose ibuprofen (400 mg bd) with a PPI (omeprazole 20mg/day). Judgment of risk should include consideration of the individual’s age and comorbidity, and the dose and frequency of NSAID used.
Table A2.1 OPTI-SCRIPT patient information leaflet

Information about your medicines: Proton Pump Inhibitors (PPI) for people with peptic ulcer disease

What are proton pump inhibitors (PPIs)?
Proton pump inhibitors (PPIs) are a group of medicines that work on the cells that line the stomach, reducing the production of acid. They are commonly used to:
- Reduce acid reflux which may cause heartburn or esophagitis (inflammation of the esophagus), these conditions are sometimes called gastro-oesophageal reflux disease or GORD
- Treat ulcers in the stomach and duodenum (part of the gut)
- Help prevent and treat ulcers associated with anti-inflammatory drugs called NSAIDs (non-steroidal anti-inflammatory drugs) which include aspirin.

PPIs usually work very well to reduce stomach acid and to treat the above conditions. In some cases, your doctor may prescribe a PPI that you only take ‘as required’ to relieve your symptoms, rather than every day. In some cases, a regular dose taken each day is advised; however, this should be at a dose known as ‘maintenance dose’. Higher doses of PPIs are no more effective than the maintenance dose in treating most of the conditions that these drugs are used for, however, they carry a higher risk of both long and short term side effects.

What are the side effects of PPIs?
Side effects occur in a small number of PPI users. Possible side effects vary between different medicines. The leaflet that comes in the medicine packet gives a full list of possible side effects.
- Constipation
- Diarrhoea
- Headache
- Nausea (feeling sick)
- Abdominal (stomach) pain
- Vomiting

Information about your medicines: Proton Pump Inhibitors (PPI) for people with peptic ulcer disease

Long-term use of PPIs may increase the risk of:
- Bone fractures
- Pneumonia
- Clostridium difficile infection.

What are the alternatives your doctor may offer?
Your GP may recommend a number of different treatments for peptic ulcer disease. Some may be medications and some may not involve medications.

Other medicines
Your GP may recommend a lower maintenance dose of a PPI. Alternatively, they may switch you to a H2 antagonist (a medicine which reduces the production of stomach acid) instead.

Alternatives to medicine
Your GP may refer you to be tested for a bacteria called Helicobacter pylori. If this has not already been done, if a positive result is found, a treatment for getting rid of the bacteria will be started.

This information has been provided by the HSE Centre for Primary Care Research, Royal College of Surgeons in Ireland (RCSI), Royal College of Surgeons in Ireland (RCSI), Dublin 2.

For further information on this study, please contact:

Dr. Anna O'Sullivan
HSE Centre for Primary Care Research, Royal College of Surgeons in Ireland (RCSI), Dublin 2.
Tel: +353 1 4542220
email: anna.osullivan@hse.ie