SUPPLEMENTARY DATA

Highly oxygenated ent-atisane and podocarpane diterpenoids from Excoecaria agallocha

Guangyan Liu, a,b Zhisen Zhang, e Yuanhao Wang, *,a,b and Xuewen Li, *,c,d

a Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin 541004, China
b College of Civil and Architecture Engineering, Guilin University of Technology, Guilin 541004, China
c Department of Cardiovascular Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
d State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
e School of Intelligent Manufacturing, Panzhihua University, Panzhihua, 617000, China

Corresponding author:
E-mail: gxwangyuanhao@gmail.com (Y. Wang); lixuewen@gzucm.edu.cn (X. Li);
Tel/Fax: +86-20-3931-8376

ABSTRACT

A new highly oxygenated ent-atisane diterpenoid, namely excagallonoid A (1), together with five known analogues (2–6) were isolated from the leaves and twigs of Excoecaria agallocha. Their structures were elucidated on the basis of extensive spectroscopic analyses (HRESIMS, UV, IR, 1D and 2D NMR), and the absolute
configurations of 1 and 5 were determined by single-crystal X-ray diffraction. Compound 1 represents the first example of an ent-atisane diterpenoid featuring a vicinal 2,3-diol moiety. Compounds 1 and 4 exhibited weak cytotoxicities in vitro against RKO colon cancer cells with IC$_{50}$ values of 28.7 ± 1.98 and 32.6 ± 2.81 µM, respectively.

Keywords: *Excoecaria agallocha*; ent-atisane diterpenoid; podocarpane diterpenoid; cytotoxicity

List of Content

Table S1. 1H (400 MHz) and 13C (100 MHz) NMR spectroscopic data of compounds 1 and 5 (δ in ppm) in CDCl$_3$.

Figure S1. Key 1H–1H COSY and HMBC correlations of compounds 1 and 5.

Figure S2. Key NOE correlations of compound 1.

Figure S3. X-ray crystallographic structure of compound 1.

Figure S4. X-ray crystallographic structure of compound 5.

Figure S5. 1H NMR (400 MHz) spectrum of compound 1 in CDCl$_3$.

Figure S6. 13C NMR (100 MHz) spectrum of compound 1 in CDCl$_3$.

Figure S7. DEPT 135 NMR (100 MHz) spectrum of compound 1 in CDCl$_3$.

Figure S8. HSQC spectrum of compound 1 in CDCl$_3$.

Figure S9. HMBC spectrum of compound 1 in CDCl$_3$.

Figure S10. 1H–1H COSY spectrum of compound 1 in CDCl$_3$.

Figure S11. NOESY spectrum of compound 1 in CDCl$_3$.

Figure S12. HRESIMS spectrum of compound 1.

Figure S13. 1H NMR (400 MHz) spectrum of compound 5 in CDCl$_3$.

Figure S14. 13C NMR (100 MHz) spectrum of compound 5 in CDCl$_3$.

Figure S15. DEPT 135 NMR (100 MHz) spectrum of 5 in CDCl$_3$.

Figure S16. HSQC spectrum of compound 5 in CDCl$_3$.

Figure S17. HMBC spectrum of compound 5 in CDCl$_3$.

Figure S18. 1H–1H COSY spectrum of compound 5 in CDCl$_3$.

Figure S19. HRESIMS spectrum of compound 5.
Table S1. 1H (400 MHz) and 13C (100 MHz) NMR spectroscopic data of compounds 1 and 5 (δ in ppm) in CDCl₃.

No.	δ_H (J in Hz)	δ_C	δ_H (J in Hz)	δ_C
1a	1.98, dd (14.7, 3.0)	42.1	a 2.40, m	32.6
1b	1.12, dd (14.7, 3.5)		b 2.07, m	
2	4.06, dddd (3.7, 3.5, 3.0)	70.7	a 2.81, m	33.0
			b 2.73, m	
3	3.18, d (3.7)	78.3		215.0
4		38.0		48.5
5	0.89, m	54.6		137.3
6a	1.59, m	18.6		142.3
6b	1.54, m			
7a	2.33, m	31.4		179.5
7b	0.87, m			
8		47.6		120.8
9	1.51, dd (10.9, 6.7)a	53.3		151.1
10		37.2		39.4
11a	1.84, m	27.8	6.92, s	111.7
11b	1.72, dddd (13.5, 6.7, 2.4)			
12	2.69, m	38.4		159.2
13	2.29, m	44.5		124.5
14		216.9	8.00, s	129.9
15a	2.21, m	42.9	2.31, s	15.4
15b	2.16, m			
16				147.4
17a	4.86, br s	106.8		
17b	4.64, br s			
18	0.96, s	17.1	1.58, s	20.9
19	0.99, s	29.9	1.54, s	24.4
20	0.96, s	14.5	1.27, s	26.2
6-OH		7.13, s		

a Overlapped signals in the same vertical column.
Figure S1. Key 1H–1H COSY and HMBC correlations of compounds 1 and 5.

Figure S2. Key NOE correlations of compound 1.

Figure S3. X-ray crystallographic structure of compound 1.
Figure S4. X-ray crystallographic structure of compound 5.

Figure S5. 1H NMR (400 MHz) spectrum of compound 1 in CDCl$_3$.
Figure S6. 13C NMR (100 MHz) spectrum of compound 1 in CDCl$_3$.

Figure S7. DEPT 135 NMR (100 MHz) spectrum of compound 1 in CDCl$_3$.
Figure S8. HSQC spectrum of compound 1 in CDCl$_3$.

Figure S9. HMBC spectrum of compound 1 in CDCl$_3$.

7
Figure S10. 1H–1H COSY spectrum of compound 1 in CDCl$_3$.

Figure S11. NOESY spectrum of compound 1 in CDCl$_3$.
Figure S12. HRESIMS spectrum of compound 1.

Figure S13. 1H NMR (400 MHz) spectrum of compound 5 in CDCl$_3$.

9
Figure S14. 1C NMR (100 MHz) spectrum of compound 5 in CDCl$_3$.

Figure S15. DEPT 135 NMR (100 MHz) spectrum of compound 5 in CDCl$_3$.
Figure S16. HSQC spectrum of compound 5 in CDCl₃.

Figure S17. HMBC spectrum of compound 5 in CDCl₃.
Figure S18. 1H–1H COSY spectrum of compound 5 in CDCl$_3$.

Figure S19. HRESIMS spectrum of compound 5.