Abstract. Thrombospondin (TSP)-1 and TSP-2 are matricellular proteins in the extracellular matrix (ECM), which serve a significant role in the pathological processes of various cardiovascular diseases (CVDs). The multiple effects of TSP-1 and TSP-2 are due to their ability to interact with various ligands, such as structural components of the ECM, cytokines, cellular receptors, growth factors, proteases and other stromal cell proteins. TSP-1 and TSP-2 regulate the structure and activity of the aforementioned ligands by interacting directly or indirectly with them, thereby regulating the activity of different types of cells in response to environmental stimuli. The pathological processes of numerous CVDs are associated with the degradation and remodeling of ECM components, and with cell migration, dysfunction and apoptosis, which may be regulated by TSP-1 and TSP-2 through different mechanisms. Therefore, investigating the role of TSP-1 and TSP-2 in different CVDs and the potential signaling pathways they are associated with may provide a new perspective on potential therapies for the treatment of CVDs. In the present review, the current understanding of the roles TSP-1 and TSP-2 serve in various CVDs were summarized. In addition, the interacting ligands and the potential pathways associated with these thrombospondins in CVDs are also discussed.

Contents
1. Introduction
2. The structure of TSP-1 and TSP-2
3. TSP-1 and TSP-2 in CVDs
4. Signal pathways associated with TSP-1 and TSP-2 in CVDs
5. Conclusions

1. Introduction
The extracellular matrix (ECM) serves a significant role in modulating tissue genesis and remodeling not only by connecting cells and providing support for them, but also by regulating connections between the cells, and between the cell and the matrix, inducing cell adhesion, motility and differentiation. In the cardiovascular system, the ECM participates in maintaining the structural continuity of the heart and vessels, providing physical support for cell adhesion, controlling cell growth and death, and regulating diastolic stiffness, as well as tissue repair or remodeling to the cardiovascular damage (1). A number of these functions are performed by a group of non-structural ECM proteins called matricellular proteins, which includes thrombospondins (TSPs), tenascins, peristin, osteopontin, CCN proteins and osteonectin (2).

As a family of matricellular proteins, TSPs may be secreted by various types of cells. A total of 5 members of the TSP family (TSP1-5) have been identified so far, and are divided into two subgroups, subgroup A and subgroup B, according to their structural differences. Subgroup A contains TSP-1 and TSP-2, which are trimeric and similar in structure, and subgroup B consists of TSP-3, TSP-4 and TSP-5, which are pentameric and smaller compared with those in subgroup A (3). TSP-1 and TSP-2 are the most studied thrombospondins. In the present review, the structure and the role of TSP-1 and TSP-2 in cardiovascular diseases (CVDs; Table I), and the potential pathways associated with these TSPs will be discussed.

2. The structure of TSP-1 and TSP-2
TSP-1 have a complex multidomain structure (Fig. 1), which can interact with various ligands, including ECM structural components, matricellular proteins, growth factors, receptors, proteases and cytokines (4). There is a total of 3 identical chains of TSP-1 or TSP-2 that may form a trimer with a disulfide-bond, which may be critical to some of their
functions (5). The monomer of TSP-1 and TSP-2 consists of an N-terminal domain, an interchain disulfide knot, a homologous procollagen region, 3 type III repeats, 3 type I repeats, 3 type II repeats of TSP-2 shares the same structure with TSP-1, however TSP-1 and TSP-2 in CVDs

3. TSP-1 and TSP-2 in CVDs

Due to their multidomain structure and the ability to interact with multiple ligands, TSP-1 and TSP-2 are active in various types of physiological and pathological processes. At present, there have been multiple studies concerning the role of TSP-1 and TSP-2 in various CVDs (Table I and Fig. 2), suggesting that they may become potential therapeutic targets. **Cardiac hypertrophy and heart failure.** Cardiac hypertrophy is primarily induced by chronic pressure overload, such as essential hypertension. Pathological features of cardiac hypertrophy include increased growth of the cardiomyocytes, proliferation of the cardiac fibroblasts and increased ECM deposition. There have been some reports on the role of TSP-1 and TSP-2 in cardiac hypertrophy. Compared with wild type mice, TSP-1-deficient mice exhibited enhanced early hypertrophy and late dilation when exposed to pressure overload (60). Despite this, TSP-1 (-/-) mice exhibited increased myocardial MMP-3 and -9 activation following pressure overload (60). In obese diabetic DB/DB mice, myocardial TSP-1 levels are significantly upregulated in the perivascular and interstitial space. In comparison with normal DB/DB mice, **DB/db TSP-1 (-/-) mice exhibited an enhanced LV dilation,**
Table I. Role of TSP-1 and TSP-2 in various CVDs.

CVD type	TSP-1 Effect	(Refs.)	TSP-2 Effect	(Refs.)
MI	TSP-1 polymorphism associated with MI	(56-58)	TSP-2 polymorphism promotes MI	(54)
	TSP-1 expression increases in patients with MI	(47)	Hypoxia induces TSP-2 expression in cardiomyocyte progenitor cells	(52)
	TSP-1 protects the myocardium from fibrotic remodeling in MI	(50)	-	-
	TSP-1 decreases following PCI associated with adverse cardiac events	(48)	-	-
	Ischemia/reperfusion accelerate the induction of TSP-1 in rat MI model	(49)	-	-
Cardiac hypertrophy	TSP-1 protects pressure-overloaded myocardium	(60)	TSP-2 absence leads to age-associated dilated cardiomyopathy	(62)
	TSP-1 overexpression in the diabetic heart inhibits chamber dilation	(61)	TSP-2 absence enhances cardiomyocyte damage and matrix disruption in cardiomyopathy	(63)
		-	TSP-2 prevents cardiac injury and dysfunction in viral myocarditis	(64)
Heart failure	TSP-1 expression decreases in failing hearts	(66,67)	Increased TSP-2 related to CHF-associated mortality and all-cause mortality among patients with CAD with CHF	(71)
	miRNA-18 and miRNA-19 modulate TSP-1 expression in age-associated HF	(69)	High serum TSP-2 levels correlate with poor prognosis in patients with HF	(72,73)
	Oral anticoagulation therapy causes the decrease of TSP-1 in patients with HF	(70)	-	-
Valvular disease	Not available		TSP-2 increases in human fibrosclerotic and stenotic aortic valves	(75)
Cerebral and carotid artery disorder	Fluavastatin inhibits intimal hyperplasia after carotid artery ligation in WT but not Thbs1-null mice	(77)	TSP-2 small interfering RNA inhibits vascular response to the injury in rat carotid balloon angioplasty model	(82)
	TSP-1 expression increases in platelets from patients with CAD	(76)	TSP-2 deficiency leads to an impaired recovery following a stroke	(78,83)
	TSP-1 increases following stroke, and TSP-1 deficiency leads to an impaired recovery following stroke	(78,83)	TSP-2 increases in ischemic brain and may lead to spontaneous angiogenesis	(79)
	TSP-1 is highly expressed in the ischemic brain	(79)	Altered TSP-2 expression following spontaneous intracerebral hemorrhage is associated with angiogenesis	(81)
	Altered TSP-1 expression following spontaneous intracerebral hemorrhage is related to angiogenesis	(81)	-	-
Atherosclerosis	TSP-1 increases in VSMC of human atherosclerotic lesions	(89)	TSP-2 was absent from the endothelium inside the atheromatous plaque	(97)
	TSP-1 increases in large arteries of diabetic animals and decreases in microvascular ECs	(89,93,94)	-	-
	Proatherogenic flow initiates EC apoptosis and arterial stiffening via TSP-1	(40,84)	-	-
CVD type	TSP-1	(Refs.)	TSP-2	(Refs.)
--------------	--	---------	--	---------
Angiogenesis	TSP-1 inhibits tumor angiogenesis	(22,100, 101)	TSP-2 inhibits the proliferation of microvascular ECs	(110, 111)
	TSP-1 overexpression in diabetes leads to an impaired angiogenesis	(102)	TSP-2 deficiency promotes angiogenesis	(112, 113)
	TSP-1 may inhibit angiogenic responses in the ischemic retina	(103)	TSP-2 limits angiogenesis by decreasing gelatinolytic activity *in situ*	(114)
	TSP-1 deficiency contributes to enhanced neovascularization in the eye	(104-108)	TSP-2 overexpression result in an inhibition of vascularization in rheumatoid arthritis	(115)
	TSP-1 downregulation in EC enhances angiogenesis	(98,99)	TSP-2 expression in the wounds of aged mice impairs the rate of wound healing	(116)
Arterial restenosis	TSP-1 expression by VSMCs is an early response to injury	(118)	Increased vessel density in TSP2-/- mice but not in TSP1-/- animals	(117)
	TSP-1 is not a major component of the ECM in human restenotic tissues	(121)	TSP-2 silencing of aortic SMCs improved cell attachment but did not affect cell migration or proliferation	(122)
	TSP-1 and β1 integrin interaction is related to platelet-stimulated SMC proliferation	(120)	-	-
	TSP-1 may reverse the inward remodeling of resistance arteries from hypertension rat	(119)	-	-
Other CVDs	TSP-1 promotes pulmonary hypertension associated with hypoxia	(123)	TSP-2 deficient mice exhibit a bleeding diathesis despite normal blood coagulation	(127)
	TSP-1 deficiency accelerates aortic aneurysm progression	(124)	TSP-2 deficient mice exhibit an altered foreign body reaction characterized by increased vascularity	(128)
which was associated with mild non-progressive systolic dysfunction, and TSP-1 could incorporate into the matrix and inhibit leptin-induced MMP-2 activation (61). These previous studies suggest that TSP-1 is upregulated in the diabetic heart and prevents chamber dilation by exerting matrix-preserving actions on the cardiac fibroblasts.

TSP-2 is also closely associated with cardiac hypertrophy. Data suggests that older TSP-2 (-/-) mice are associated with an enhanced dilated cardiomyopathy characteristic as impaired systolic function as well as increased cardiac dilatation and myocardial fibrosis, indicating that TSP-2 deficiency leads to an age-associated dilated cardiomyopathy (62). Compared to wild-type mice, TSP-2-knockout mice display increased mortality accompanied by decreasing cardiac function, increased cardiomyocyte apoptosis and ECM damage in a doxorubicin-induced cardiomyopathy mouse model (63). The absence of TSP-2 also results in decreased systolic function and enhanced cardiac dilatation in human Coxsackie virus B3 (CVB3)-induced myocarditis (64). Previous data also identified that TSP-2 expression is activated uniquely in hypertrophic hearts that may develop heart failure, which may be an early-stage molecular program of heart failure (65).

Abnormal myocardium remodeling leads to myocardial overload. If not treated promptly, long-term myocardial overload may progress into heart failure. From the perspective of pathology, heart failure is associated with abnormal inflammation, coagulation activation and endothelial dysfunction. TSP-1 and TSP-2 also participate in some of these changes. Previous studies have revealed that TSP-1 expression is decreased in failing hearts, which may be associated with ventricular dilatation (66,67). Treatment of cardiomyocytes with a TSP1-derived peptide that activates cd47 leads to increased cardiomyocyte hypertrophy in a cA2+ and calmodulin protein kinase II dependent manner, indicating that TSP-1 may contribute to LV hypertrophy and heart failure (68). Using aged mouse models with failure-resistant and failure-prone characteristics, a previous study identified that micro(mi)RNA-18 and miRNA-19 may modulate TSP-1 expression and cardiac ECM protein levels in age-associated heart failure; therefore, decreased miRNA-18/19 and increased TSP-1 levels may contribute to the identification of failure-prone hearts (69). TSP-1 levels in patients with heart failure may also be decreased due to oral anticoagulation therapy, which is used to prevent thromboembolic events (70).

Elevated TSP-2 is primarily associated with poor prognosis in patients with heart failure. Among patients with coronary heart disease with symptomatic congestive heart failure (CHF), circulating TSP-2 is increased, which is associated with increased 3-year CHF-associated death, all-cause mortality and recurrent hospitalization risk (71). In patients with preserved ejection fraction heart failure, high serum levels of TSP-2 are associated with poor prognosis (72,73). TSP-2 overexpression in wild-type mouse hearts led to decreased cardiac inflammation and improved cardiac function after CVB3 infection, suggesting that TSP-2 may mitigate against cardiac injury, inflammation, and dysfunction during acute viral myocarditis (64).

Table I. continued.

CVD type	TSP-1	TSP-2
Hypertrophic heart failure	Increases systolic function	Elevates in acute Kawasaki disease
Acute myocardial infarction	Regulates migration and adhesion of mononuclear cells	Elevates in acute Kawasaki disease
Acute aortic dissection	Increases in plasma of patients with acute aortic dissection	Elevates in plasma of patients with acute aortic dissection

Valvular disease. Calcific aortic valve disease (CAVD) is a progressive disorder manifesting as sclerotic stiffening and
valvular thickening, eventually leading to aortic stenosis. The pathological process of CAVD is accompanied by inflammatory cell infiltration, lipid accumulation, fibrosis, ECM disorder, angiogenesis and nodular calcification (74). In fibrotic and stenotic aortic valves, the mRNA levels of TSP-2 are increased 4.9-fold (P=0.037) and 4.8-fold (P=0.001), respectively (75). TSP-1 can also be detected in the fibrotic and stenotic valves, but the expression of TSP-1 is not significantly different, indicating that CAVD was associated with TSP-2 upregulation in aortic cusps (75). However, evidence suggesting an association between TSP-1 and valvular diseases is limited, and the specific role of TSP-2 in the pathological process of valvular disease requires further study.

Cerebral and carotid artery disorder. Cerebral and carotid artery disease are important subgroups of peripheral vascular diseases, which have high mortality rates worldwide. TSP-1 and TSP-2 may also serve a role in cerebral and carotid artery disease. In symptomatic patients with carotid artery diseases, TSP-1 expression on the surface of circulating platelets is significantly increased (76). Compared with wild-type mice, TSP-1 (-/-) mice exhibit a decreased response to fluvastatin in inhibiting intimal hyperplasia following carotid artery ligation, indicating that TSP-1 upregulation in aortic cusps (75). However, evidence suggesting an association between TSP-1 and valvular diseases is limited, and the specific role of TSP-2 in the pathological process of valvular disease requires further study.

Atherosclerosis. Atherosclerosis is characterized by thickening, hardening and decreased elasticity of the arterial wall. Lipid levels, endothelial cell injury, inflammation and the migration of vascular smooth muscle cells (VSMC) are considered as several fundamental pathological processes of atherosclerosis. Previous evidence suggested that TSP-1 can interact with some of the aforementioned factors and further regulate the pathological process of atherosclerosis through various mechanisms, while the association between TSP-2 and atherosclerosis requires further investigation. Following partial carotid ligation, disturbed blood flow induced arterial stiffening through collagen deposition. Compared with wild type carotid arteries, TSP-1 knockout animals have significantly decreased arterial stiffening, indicating that disturbed
flow may promote arterial stiffening through TSP-1 (84). Conversely, proatherogenic flow conditions may induce endothelial apoptosis via TSP-1 (40). The absence of TSP-1 accelerates the maturation of the atherosclerotic plaque in apolipoprotein E (ApoE−/−) mice, indicating that TSP-1 may function as an inhibitor of atherosclerosis (85,86). TSP-1 may also interact with lipoproteins. In hypercholesterolemic atherosclerotic rabbits, the overexpressed TSP-1 secreted by injured arteries may bind to very-low-density lipoprotein (VLDL), which may promote its incorporation into nascent atherosclerotic plaques, simultaneously delivering VLDL cholesterol into the lesions (87,88). These results indicate that TSP-1 may serve different roles in different pathological stages of atherosclerosis. Therefore, it is necessary to further investigate the specific role of TSP-1 in atherosclerosis.

An important pathological process of atherosclerosis is the migration of media smooth muscle cells (SMCs) into the intima and hyperplasia. The expression of TSP-1 has been demonstrated to increase in VSMC in human atherosclerotic lesions (89), which may contribute to inflammation and atherogenesis. Hypoxia induces the migration of the coronary artery SMCs, which is elicited by TSP-1 (90,91). An additional study identified that TSP modulates SMCs migration, which may accelerate atherosclerotic lesion development during vascular injury or inflammation (92). TSP-1 may also modulate the interaction between diabetes and atherosclerosis. Evidence reveals that TSP-1 expression is increased in large arteries of diabetic animals however, the protein levels of TSP-1 in microvascular endothelial cells are decreased when exposed to high glucose levels (89,93,94). In a hyperglycemic ApoE−/− mouse model, lack of TSP-1 prevented atherogenic lesion formation (95). The expression of TSP-1 is increased in hypoxic pulmonary hypertension rats, which may contribute to the pathogenesis of hypoxic pulmonary vascular remodeling (96).

Compared with TSP-1, there is limited research on the association between TSP-2 and atherosclerosis. In atherosclerotic specimens, TSP-2 mRNA was absent from intraplaque microvessels and endothelial cells lining the atheromatous plaque (97). Therefore, the specific mechanism of TSP-2 in
the pathological process of atherosclerosis requires further investigation.

Angiogenesis. Angiogenesis is a fundamental physiological process associated with tissue repair following injury, which also promotes tumor progression. This process is tightly modulated by various growth factors and the interaction between cells and the ECM. TSP-1 and TSP-2 have been revealed to regulate angiogenesis by interacting with specific growth factors, cells and ECM. Previous evidence indicates that downregulation of endothelial cell TSP-1 causes an enhancement of in vitro angiogenesis (98). In vitro and in vivo models indicated that factor XIII, a clotting factor, may also promote angiogenesis by downregulating TSP-1 and stimulate endothelial cell proliferation and migration (99). In TSP-1-deficient animals, tumor burden and vasculature increase markedly, and TSP-1 overexpression resulted in decreased tumor diameter and fewer tumor capillaries, indicating that TSP-1 may inhibit tumor angiogenesis (22,100). The inhibitory effect of TSP-1 on tumors may be accomplished via cross-talk with endothelial cells (101). The overexpression of TSP1-CD47 signaling in diabetes is associated with endothelial cell dysfunction, which leads to impaired angiogenesis (102). In the ischemic retina, glia-derived TSP-1 may inhibit angiogenic responses (103), and deficiency of TSP-1 contributes to enhanced neovascularization in the eye (104-108).

Similar to TSP-1, TSP-2 can also inhibit angiogenesis and tumor growth, even with greater potency compared with that of TSP-1 (109). In vitro experiments indicated that TSP-2 inhibits proliferation of microvascular endothelial cells (110,111), and the absence of TSP-2 is associated with enhanced angiogenesis, partly due to the altered endothelial cell and ECM interactions (112,113). Decreasing gelatinolytic activity in situ leads to TSP-2-limited angiogenesis (114). In rheumatoid arthritis, TSP-2 overexpression also inhibits vascularization (115).

In older mice, the delay of TSP-2 and MMP2 expression in wounds may promote the impaired rate of wound healing (116). TSP-2 gene knockout mice exhibited increased blood vessel density, but no such alteration was observed in TSP-1-deficient animals (117). This evidence indicates the role of TSP-2 in anti-angiogenesis.

Arterial restenosis. Restenosis of the arteries following cardiovascular surgery, such as PCI, is a major problem, which leads to a poor prognosis. The pathological process of arterial restenosis is similar to atherosclerosis to a certain extent, including endothelial injury, migration and proliferating of VSMCs into the intima. Similar to atherosclerosis, the precise role of TSP-1 in the pathological process of arterial restenosis is difficult to define. In the balloon catheter injury rat model, TSP was markedly increased in the thickening arterial wall, and the TSP antigen in thickening arterial wall is primary secreted by VSMCs (118). In rat resistance arteries, TSP-1 was able to reverse the pathological inward remodeling caused by spontaneous hypertension, indicating that TSP-1 may act as an inhibitor of arterial restenosis (119). A previous study identified that the interaction of TSP-1 and β1 integrin is associated with platelet-stimulated SMC proliferation (120). However, there is also evidence revealing that TSP-1 is not a major component of ECM in human restenotic tissues, even in the presence of hypercellularity or ongoing cellular proliferation (121).

In human aortic SMCs, TSP-2 silencing caused by siRNA improves cell attachment but does not affect cell proliferation and migration, suggesting that TSP-2 also participates in the pathological process of arterial restenosis (122), which represents a novel hypothesis.

Other CVDs. In addition to the aforementioned major CVDs, TSP-1 and TSP-2 also serve important roles in a number of other CVDs. Evidence indicated that TSP-1 may contribute to the pathogenesis of pulmonary hypertension associated with hypoxia (123). TSP-1 deficiency contributes markedly to maladaptive remodeling of the ECM, causing an acceleration of aortic aneurysm progression (124). During the abdominal aortic aneurysm development, TSP-1 regulates the adhesion and migration of mononuclear cells and promotes vascular inflammation (125). During autologous proangiogenic cell therapy, TSP-1-derived peptide RFYYVWMK may interact with priming CD34+ cells and enhance the vascular engraftment (126). TSP-2 (+) mice exhibit a blebbing diathesis even if they have normal blood coagulation and no thrombocytopenia (127), and an altered foreign body reaction characterized by an enhanced vascularity (128,129). The plasma TSP-2 level is elevated in acute Kawasaki disease, which may be a novel predictor for intravenous immunoglobulin resistance (130). In a TSP-2-knockout mouse model, significantly increased endothelial cell density and reduced fibrosis were observed in the peri-graft region during the cardiac cell transplantation (131). These studies suggest that TSP-1 and TSP-2 also function in other CVDs, such as pulmonary hypertension, aortic aneurysm progression and acute Kawasaki disease.

4. Signal pathways associated with TSP-1 and TSP-2 in CVDs

Due to their multidomain structure, TSP-1 and TSP-2 can specifically bind to numerous types of different ligands. Therefore, they are involved in various signal pathways regulating cellular activities and ECM components in CVDs (Tables II and III). A comprehensive description of these pathways may facilitate the understanding of the role TSP-1 and TSP-2 serve in the pathological processes of multiple CVDs at the molecular level, which may provide certain potential therapeutic strategies.

ECM-receptor interaction. Interactions between various cells and the ECM cause direct or indirect modulation of numerous cellular activities, such as proliferation, adhesion, migration, differentiation and apoptosis, which contributes markedly to numerous CVDs. TSP-1 binds to HSPG with high affinity, which promotes human melanoma cell migration (132). At the sites of inflammation, TSP1 binding to tumor-specific glycoprotein 6 may regulate hyaluronan metabolism, indicating a critical role of TSP-1 in mediating cellular interactions with hyaluronan (9). During the vascular smooth muscle inflammatory response, TSP-1 and TSP-2 may bind to versican and negatively modulate the ECM component (11). In certain circumstances, TSP-1 can bind to LIMPII and promote cell adhesion (27). Previous data indicated that TSP-1 may bind
Table II. Signal pathways associated with TSP-1 in CVDs.

Domains	Interacting molecules	Associated signal pathway	Effect	(Refs.)	Inhibitors (Refs.)	
N-terminal	Heparan sulfate	Phagosome	Endocytosis of TSP-1 by the vascular endothelial cells	(8)	Heparinase III (8)	
	HSPG	Phagosome	Mediates binding and degradation of TSP-1 in ECs	(159)	Heparin (159)	
	Sulfatides	ECM-receptor interaction	Promotes cell adhesion	(132)	Heparin and dextran sulfates (129)	
	TSG-6	ECM-receptor interaction	Mediates cellular interactions with hyaluronan	(9)	Heparin (9)	
	LRP	Phagosome	Internalization and degradation of TSP-1	(160,161)		
		ECM-receptor interaction	Participate in cell signaling with cell surface calreticulin	(10,13,14)		
	Versican	ECM-receptor interaction	Inhibits VSMC inflammatory response	(11)	Heparin (11)	
	Integrin α3β1	ECM-receptor interaction	Inhibits angiogenesis, Mediates cell motility, Stimulates cell adhesion and spreading	(17,15,16)		
	Integrin α4β1	ECM-receptor interaction	Mediates adhesion of T cells	(134)		
	Integrin α6β1	ECM-receptor interaction	Mediates adhesion of microvascular endothelial to immobilized TSP-1	(19)		
	Calreticulin	Focal adhesion	Induces focal adhesion disassembly and cell migration	(10,13,14)		
	PDGF	PI3K-AKT pathway	Mediates VSMC proliferation and migration	(138)	Protein disulphide isomerase and heparin (138)	
Type I repeats	MMP2	ECM homeostasis	Inhibits MMP2 activity and regulate collagen homeostasis	(20)		
domain	MMP9	ECM homeostasis	Regulates collagen homeostasis	(20)		
		PI3K-AKT pathway	Modulates EC invasion and morphogenesis	(139)		
	CD36	ECM-receptor interaction	Increases EC apoptosis and anti-angiogenic activity	(15,25)		
		PI3K-AKT pathway	Promotes cell adhesion of monocytes/macrophages	(147)		
		Phagosome	Inhibits the NO signal transduction	(143)		
	LIMPII	ECM-receptor interaction	Promotes cell adhesion in some circumstances	(27)	LIMPII antibody (27)	
	β1 integrin	ECM-receptor interaction	Promotes adhesion of cells that express β1 integrin	(28,135)	Alpha-subunit antagonists (28)	
	Latent TGF-β	TGF-β pathway	Stimulates endothelial cell tubulogenesis	(153)	Tsp-2 (45)	
			Recruits inflammatory cells, stimulate angiogenesis, and deposit new matrix	(45,154,155)		
			Increases myofibroblast differentiation	(156)		
Domains	Interacting molecules	Associated signal pathway	Effect	(Refs.)	Inhibitors	(Refs.)
---------	----------------------	---------------------------	--------	---------	-----------	---------
CD148	PI3K-AKT pathway	Negative regulation of growth factor signals, suppressing cell proliferation and transformation	(33,34)	-	-	-
Type II repeats domain	EGFR	PI3K-AKT pathway	Increases cell migration	(140)	-	-
β1 integrin	ECM-receptor interaction	Promotes adhesion of the cells that express β1 integrin	(28,135)	B1 blocking antibody, disintegrins	(28)	
Type III repeats domain	Integrin αIIβ3	ECM-receptor interaction	Promotes TSP-1 binding with platelet	(136)	-	-
Integrin αvβ3	PI3K-AKT pathway	Trigger caspase-independent cell death	(142)	-	-	-
Integrin αvβ3	ECM-receptor interaction	Promote TSP-1 binding with the platelets	(136)	-	-	-
FGF2	PI3K-AKT pathway	Inhibits apoptosis	(43)	Calcium and heparin	(6,36)	
Calcium	Calcium pathway	Promotes cell spreading and cell adhesion to immobilized TSP-1	(18,42)	Heparin	(42)	
C-terminal domain	CD47	ECM-receptor interaction	Inhibit cell adhesion of monocytes/macrophages	(147)	-	-
C-terminal domain	CD47	ECM-receptor interaction	Promote platelet adhesion on inflamed vascular endothelium	(144)	-	-
Collagen I	ECM homeostasis	PI3K-AKT pathway	Inhibit cGMP synthesis and NO signaling	(143,145)	-	-
Unknown	DBP	DBP-C5a pathway	Promote pulmonary arterial vasculopathy	(152)	-	-
Unknown	ADAMTS1	ADAMTS1-TSP1 pathway	Prevents vascular diseases	(38)	-	-
Unknown	ADAMTS1	ADAMTS1-TSP1 pathway	Maintains the balance between the vasodilation and the vasoconstriction	(163)	-	-
to calreticulin (CRT) on the cell surface and induce focal adhesion disassembly, as well as cell migration through the association of CRT with lipoprotein LRP (10,13,133).

Integrins are a family of glycosylated, heterodimeric transmembrane receptors that consist of α and β subunits, which provide a physical link between the ECM and the cytoskeleton. Previous studies identified that TSP-1 and TSP-2 may also interact with various types of integrins. Binding of integrin α3β1 to TSP-1 mediates efficient migration of ECs, indicating that the binding of TSP-1 and integrin α3β1 stimulates cell adhesion and migration (15,16). Despite this, integrin α3β1 binding to TSP-1 can also mediate cell motility and inhibit angiogenesis (15,17). Studies have demonstrated that αβ1 integrin mediates CD47-stimulated sickle red blood cells adhesion to immobilized TSP-1 and modulate T cell behavior (18,134). In addition, the N-terminal domain of TSP-1 is also a ligand for αβ1 integrin, which modulates the adhesion of human microvascular endothelial to immobilized TSP-1 and TSP-2 (19). TSP-1 and TSP-2 may also interact with β1 integrin, contributing to the adhesion of cells that express β1 integrin (28,135). The type III repeats of TSP-1 and TSP-2 may interact with integrin αIIβ3 and αvβ3, promoting their binding with platelets (136). A previous study has demonstrated that TSP-2 may also contribute to anti-angiogenesis in diabetes myocardium (137). These results indicate the important role of the interaction between integrins and TSPs in the ECM-receptor interaction.

PI3K-AKT pathway. The PI3K-Akt pathway can be activated by various cellular stimuli, such as growth factors, and regulates numerous fundamental cellular functions, such as cell proliferation, migration and apoptosis. These cellular activities are critical for the pathological process of CVDs. TSP-1 and TSP-2 also participate in a number of these activities through the PI3K-Akt pathway. The N-terminal domain of TSP-1 can interact with platelet-derived growth factor, leading to modulation of VSMC proliferation and migration (138). In addition to the ability to degrade collagen, studies suggest that MMP-9 may also release vascular endothelial growth factor to participate in modulating the invasion and the morphogenesis of endothelial cells, which can also be modulated by TSP-1 (139). The type II repeats of TSP-1 interacts with EGFR and increases cell migration (140). The type III repeat domain of TSP-1 and TSP-2 may interact with integrin αIIβ3 and αvβ3, promoting SMC migration (141). Binding of TSP-1 and TSP-2 to FGF2 inhibits apoptosis (43) and triggers caspase-independent cell death (142).

CD36 is a multi-ligand receptor that participates in various pathological processes of CVDs, such as the formation of atherosclerosis. CD47 is a glycoprotein on numerous types of cell surfaces, which serves an important regulatory role in immune response and inflammation. The binding of TSP-1 and CD36 inhibits angiogenesis through promoting endothelial cell apoptosis and inhibiting nitric oxide (NO) signal transduction (15,25,143). The C-terminal domain of TSP-1 and TSP-2 can interact with CD47, which may promote cell migration and adhesion (18,42,144), inhibit cyclic guanosine monophosphate synthesis, nitric oxide (NO) signaling (143,145) and cell cycle progression in ECs (146). Previous data revealed that the binding of TSP-1 and CD47 may also inhibit angiogenesis, blood
Domains	Interacting molecules	Associated signal pathways	Effect	(Refs.)	Inhibitors	(Refs.)
N-terminal domain	LRP	Phagosome	Internalization and degradation of TSP-2	(160,161)	Heparin	(157)
		Calreticulin Focal adhesion	Participates in cell signaling with cell surface calreticulin	(10,13,14)		
	Integrin α4β1	ECM-receptor interaction	Mediates adhesion of T cells	(134)		
	Integrin α6β1	ECM-receptor interaction	Mediates adhesion of microvascular endothelium to immobilized TSP-2	(19)		
	Versican	ECM-receptor interaction	Inhibits VSMC inflammatory response	(11)	Heparin	(11)
			(significantly weaker compared with TSP-1)			
Type I repeats	MMP2	ECM homeostasis	Inhibition of MMP2 activity	(20)		
	MMP9	ECM homeostasis	Mediation of collagen fibrillogenesis	(113)		
	CD36	ECM homeostasis	Regulate collagen homeostasis	(20)		
	β1 integrin	ECM-receptor interaction	Promotes adhesion of the cells that express β1 integrin	(28)	β1 blocking antibody, disintegrins	(28)
Type II repeats	EGFR	PI3K-AKT pathway	Increases cell migration	(140)		
Type III repeats	Calcium	Calcium pathway	Inhibits vascular diseases	(38)		
C-terminal domain	Integrin αIIβ3	ECM-receptor interaction	Promotes TSP-1 binding with platelets	(136)		
	Integrin αvβ3	ECM-receptor interaction	Promotes TSP-1 binding with platelets	(136)		
	FGF2	PI3K-AKT pathway	Antiangiogenic activity	(43)	Calcium and heparin	(36)
	Calcium	Calcium pathway	Inhibits vascular diseases	(38)		
	CD47	ECM-receptor interaction	Promotes the cell adhesion to immobilized TSP-2	(18)		
	Unknown	PI3K-AKT pathway	Promotes a pro-angiogenic phenotype via the regulation of the oxidative stress	(165)		
flow, and adhesion of monocytes and macrophages (147-150), which may promote foam cell formation (151), pulmonary arterial vasculopathy (152) and LV heart failure (68). Through these mechanisms, TSP-1 and TSP-2 serve a significant role in numerous CVDs.

TGF-β pathway. A wide range of different cellular functions, such as cell proliferation, differentiation, migration and apoptosis, can also be modulated by TGF-β, a member of the transforming growth factor superfamily, which is a group of secreted cytokines. Studies also revealed that TSP-1 regulates the above cellular activities through the TGF-β pathway. Previous data suggested that the type I repeats of TSP-1 may bind and activate latent TGF-β. The activated TGF-β can further stimulate new matrix deposition and angiogenesis (45,153-155), promote inflammatory response via recruitment of inflammatory cells and increase myofibroblast differentiation (156) through the TGF-β pathway.

TSP-2 may also bind to latent TGF-β. However, TSP-2 cannot activate latent TGF-β. In addition, due to this reason, TSP-1 and TSP-2 can regulate the activity of TGF-β and modulate the downstream pathways by competitively binding to it (45).

ECM homeostasis. Numerous pathological processes of CVDs are accompanied by the destruction of ECM homeostasis. For example, excessive accumulation of type I and type III collagen is a significant feature of cardiac hypertrophy, which is due to the higher collagen synthesis capacity compared with the degradation ability. MMP2 and MMP9 serve crucial roles in maintaining ECM homeostasis. Evidence revealed that TSP-1 and TSP-2 may interact with MMP2 and MMP9, which can inhibit their activity and regulate collagen homeostasis (20,157,158).

In addition, there is also evidence revealing that collagens can interact with TSP-1 directly. The C-terminal domain of TSP-1 may bind to collagen I, contributing to fibroblast homeostasis (156). These results suggest that TSP-1 and TSP-2 contribute markedly to ECM homeostasis.

Phagosome pathway. Phagocytosis of TSP-1 serves a critical role in tissue remodeling and inflammation in CVDs, which is mediated by various ligands. In vascular endothelial cells, the heparan sulfate proteoglycans expressed on the cell surface are associated with the process of binding and endocytosis of TSP-1, which leads to its lysosomal degradation (8). Evidence revealed that the HSPG on the endothelial cells may mediate the binding and degradation of TSP-1 (159). Studies suggest that LRP may also function in mediating phagocytosis of TSP-1 in certain types of cells (160,161), indicating that LRP may serve a significant role in the catabolism of TSP-1 in vivo. The binding of TSP-1 and CD36 has been demonstrated to promote the internalization of oxidized LDL, fatty acids and phospholipids, leading to inhibition of atherosclerosis (162). However, little is known on the specific role of TSP-2 in the phagosome pathway, and requires further study.

Calcium pathway. Calcium is an indispensable ion involved in numerous physiological processes in the human body. It participates in maintaining the biopotentials on both sides of the cell membrane, maintaining normal muscle expansion
and relaxation, nerve conduction and vasoconstriction. TSP-1 and TSP-2 can bind to calcium and affect the function of modulating physiological activities. Using a simulated model, previous studies have identified that the change between fully calcium-loaded and calcium-depleted TSP1-Sig1 may modulate its interactions, which may become a novel therapeutic target (38,163). Binding of TSP-2 and FGF2 can be inhibited by calcium, indicating that calcium can affect cell function via intervening in interactions between other molecules (36).

Other pathways. In addition to the aforementioned pathways, TSP-1 and TSP-2 also interact with numerous other ligands. During the coagulation reaction, TSP-1 can interact with the vitamin D-binding protein, contributing to the chemotaxis of coagulation factor C5a (164). TSP-2 can interact with cytochrome p450 1B1, promoting angiogenesis through the regulation of oxidative stress (165). In addition, as an important gas signal in the cardiovascular system, NO can negatively regulate TSP-2 transcription and induce angiogenesis (166).

A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) is a type of metalloproteinase which has been demonstrated to be associated with numerous CVDs. Studies have identified that ADAMTS1 contributes to wound closure and inhibits the angiogenesis via interaction with TSP-1 and TSP-2 (167). Evidence has revealed that there is a close association between ADAMTS7 and CVDs. TSP-1 and TSP-2 interaction with ADAMTS7 promotes the pathological processes of atherosclerosis, coronary artery disease (168-172), aortic aneurysm (173) and vascular remodeling (174-176) through interacting with TSP-1 and TSP-2. Conversely, there is also evidence revealing that ADAMTS7 may inhibit LV reverse remodeling following MI (177-179), suggesting ADAMTS7 may be a critical regulator in CVDs.

5. Conclusions

The present review suggests that TSP-1 and TSP-2 serve significant roles in the pathological process of numerous CVDs, and their multi-domain structural features and ability to bind to different ligands may also provide novel targets for the treatment of different CVDs at the molecular level.

However, there are two limitations of the present study. Firstly, although both TSP-1 and TSP-2 have a similar multi-domain structure, both bind to different ligands and serve different roles. There is limited research into the specific role of TSP-2 in the pathogenesis of numerous CVDs, indicating that more research is required. Secondly, numerous novel ligands remain to be identified. Fortunately, with the development of new large-scale techniques, including array-based surface plasmon resonance, new-generation yeast two-hybrid and numerous novel computational methods, novel TSP-1 and TSP-2 ligands may be identified (4). Identification of these ligands may contribute to determination of the interaction networks of TSP-1 and TSP-2, which may provide an improved understanding of their role in CVDs.

Acknowledgements

The authors would like to thank Dr Yu Han (Zhejiang University, Hangzhou, China) and Dr Xin Guo (School of Medicine, Zhejiang University, Hangzhou, China) for their valuable advice. In addition, the authors acknowledge Dr Yasaman Iran Manesh (Zhejiang University, Hangzhou, China) for her revising the article.

Funding

The present study was supported by the National Natural Science Foundation of China (grant. nos. 81300236, 81670433 and 81970398), the Project of Zhejiang Medical Young Talents 2017 (grant. no. 20190301), the Zhejiang Medical and Health Science and Technology Project (grant. no. 2020RC014) and the Natural Science Foundation of Zhejiang Province (grant. no. LQ20H020008).

Availability of data and materials

Not applicable.

Authors’ contributions

KZ, ML and LY carried out literature search and acquisition of references. KZ, ZL and GF were involved in the conception and design of the manuscript. ZL performed manuscript review and gave final approval of the version to be published. All authors have read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV and Orekhov AN: Thrombospondins: A role in cardiovascular disease. Int J Mol Sci 18: E1540, 2017.
2. Bornstein P: Thrombospondins as matricellular modulators of cell function. J Clin Invest 107: 929-934, 2001.
3. Bornstein P: Thrombospondins: Structure and regulation of expression. FASEB J 6: 3290-3299, 1992.
4. Resovi A, Pinessi D, Chiarrino G and Taraboletti G: Current understanding of the thrombospondin-1 interactome. Matrix Biol 37: 83-91, 2014.
5. Anilkumar N, Annis DS, Mosher DF and Adams JC: Trimeric assembly of the C-terminal region of thrombospondin-1 or thrombospondin-2 is necessary for cell spreading and fascin spike organisation. J Cell Sci 115: 2357-2366, 2002.
6. Yu H, Tyrrell D, Cashel J, Guo NH, Vogel T, Sipes JM, Lam L, Fillit HM, Hartman J, Mendelovitz S, et al: Specificities of heparin-binding sites from the amino-terminus and type I repeats of thrombospondin-1. Arch Biochem Biophys 374: 13-23, 2000.
7. Elzac CA and Murphy-Ullrich JE: The N-terminus of thrombospondin: The domain stands apart. Int J Biochem Cell Biol 36: 1090-1101, 2004.
8. Feitsma K, Hauser H, Robeneck H, Kresse H and Vischer P: Interaction of thrombospondin-1 and heparan sulfate from endothelial cells. Structural requirements of heparan sulfate. J Biol Chem 275: 9396-9402, 2000.

9. Kuznetsova SA, Day AJ, Mahoney DJ, Rugg MS, Mosher DF and Roberts DD: The N-terminal module of thrombospondin-1 interacts with the link domain of TSG-6 and enhances its covalent association with the heavy chains of inter-alpha-trypsin inhibitor. J Biol Chem 280: 30899-30908, 2005.

10. Yan Q, Murphy-Ullrich JE and Song Y: Structural insight into the role of thrombospondin-1 binding to calreticulin in calreticulin-induced focal adhesion disassembly. Biochemistry 49: 3685-3694, 2010.

11. Kuznetsova SA, Issa P, Perruccio EM, Zeng B, Sipes JM, Ward Y, Seyfried NT, Fielder HL, Day AJ, Wight TN and Roberts DD: Human thrombospondin-1 binds to microvilli in vitro and colocalization in microfibrils induced by inflammation on vascular smooth muscle cells. J Cell Sci 119: 4499-4509, 2006.

12. Sweetwyne MT, Pallero MA, Lu A, Van Duyun Graham L and Murphy-Ullrich JE: The calreticulin-binding sequence of thrombospondin-1 regulates collagen expression and organization during tissue remodeling. Am J Pathol 177: 1710-1724, 2010.

13. Wang L, Murphy-Ullrich JE and Song Y: Molecular insight into the effect of lipid bilayer environments on thrombospondin-1 and calreticulin interactions. Biochemistry 53: 6309-6322, 2014.

14. Orr AW, Pallero MA, Xiong WC and Murphy-Ullrich JE: Thrombospondin-1 functions as a ligand for rhoa inactivation through fak-dependent signaling to stimulate focal adhesion disassembly. J Biol Chem 279: 48983-48992, 2004.

15. Ndishabandi D, duquette C, Billah GE, Reyes M, duquette M, Bein K and Simons M: Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem 275: 32167-32173, 2000.

16. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Bouck NP: CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J cell Biol 138: 707-717, 1997.

17. Furrer J, Luy B, Basrur V, Roberts DD and Barchi JJ Jr: Conformational analysis of an alpha3beta1 integrin-binding peptide from thrombospondin-1: Implications for antiangiogenic drug design. J Med Chem 49: 6324-6333, 2006.

18. Brittain JE, Han J, Ataga KI, Orringer EP and Parise LV: Mechanism of CD47-induced alpha3beta1 integrin activation and adhesion in sickle reticulocytes. J Biol Chem 279: 42393-42402, 2004.

19. Calzada MJ, Sipes JM, Krutzsch HC, Yurchenco PD, Ansis DS, Mosher DF and Roberts DD: Recognition of the N-terminal module of thrombospondin-1 and thrombospondin-2 by alpha6beta1 integrin. J Biol Chem 278: 40679-40687, 2003.

20. Bein K and Simons M: Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem 275: 32167-32173, 2000.

21. Lee T, Esemuede N, Sumpio BE and Gahtan V: The N-terminal module of thrombospondin-1 interacts with integrin alpha3beta1 in rat smooth muscle cells. J Biol Chem 270: 30899-30908, 2005.

22. Goel HL, Moro L, Murphy-Ullrich JE, Hsieh CC, Wu CL, Jiang Z and Languino LR: Betal integrin cytoplasmic variants differentially regulate expression of the antiangiogenic extracellular matrix protein thrombospondin-1. Cancer Res 69: 5374-5382, 2009.

23. Ahamed J, Janczak CA, Wittkowski KM and Coller BS: In vitro and in vivo evidence that thrombospondin-1 (TSP-1) contributes to stirring- and shear-dependent activation of platelet-derived TGF-beta. PLoS One 4: e6609, 2009.

24. McNeilluddy FC, O'Toole D, Hickey JA, Gallagher WM, Dawson KA and Keenan AK: TGF-beta-induced thrombospondin-1 expression through the p38 MAPK pathway is abolished by flavuvatrin in human coronary artery smooth muscle cells. Vascul Pharmacol 44: 469-475, 2006.

25. Takahashi K, Murnaugh EL, Friedman DB, Weller R, Tsutob N, Yamashita H, Quaranta V and Takahashi T: Thrombospondin-1 acts as a ligand for CD48 tyrosine phosphatase. Proc Natl Acad Sci USA 109: 1985-1990, 2012.

26. Takahashi K, Sumarriva K, Kim R, Jiang R, Bramley-Sieders DM, Chen J, Murnaugh RL and Takahashi T: Determination of the CD48-interacting region in thrombospondin-1. PLoS One 11: e0152516, 2016.

27. Garg P, Yang S, Liu A, Pallero MA, Buchsbaum DJ, Mosher DF, Murphy-Ullrich JE and Goldblum SE: Thrombospondin-1 opens the paracellular pathway in pulmonary microvascular endothelia through EGF/Erbb2 activation. Am J Physiol Lung Cell Mol Physiol 307: L79-L90, 2011.

28. Rognoni M, Borsotti P, Boroni E, Foglieni C, Chiodelli P, Carminati L, Pinessi D, Ansis DS, Paiardi G, Bugatti A, et al: The calcium-binding type III repeats domain of thrombospondin-2 binds to fibroblast growth factor 2 (FGF2). Angiogenesis 22: 133-144, 2019.

29. Kvaale MK, Adams JC and Hohenester E: Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J 23: 1223-1233, 2004.

30. Gupta A, Agarwal R, Singh A and Bhatnagar S: Calcium-induced conformational changes of Thrombospondin-1 signature domain: Implications for vascular disease. J Recept Signal Transduct Res 37: 239-251, 2017.

31. Kumar R, Mickael C, Kassa B, Gebreab L, Robinson JC, Koyyuturk DE, Siders L, Barriball L, Meadows C, Fox D, et al: TGF-beta activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension. Nat Commun 8: 15494, 2017.

32. McGilllicuddy FC, O’Toole D, Hickey JA, Gallagher WM, Dawson KA and Keenan AK: TGF-beta-induced thrombospondin-1 expression through the p38 MAPK pathway is abolished by flavuvatrin in human coronary artery smooth muscle cells. Vascul Pharmacol 44: 469-475, 2006.

33. Takahashi K, Sumarriva K, Kim R, Jiang R, Bramley-Sieders DM, Chen J, Murnaugh RL and Takahashi T: Determination of the CD48-interacting region in thrombospondin-1. PLoS One 11: e0152516, 2016.

34. Freyberg MA, Kaiser D, Graf R, Buttenbender J and Friedl P: Proatherogenic flow conditions initiate endothelial apoptosis via thrombospondin-1 and the integrin-associated protein. Biochem Biophys Res Commun 386: 141-149, 2001.

35. Freyberg MA, Kaiser D, Graf R, Vischer P and Friedl P: Integrin-associated protein and thrombospondin-1 as endothelial mechanosensitive death mediators. Biochem Biophys Res Commun 286: 141-149, 2001.

36. Freyberg MA, Kaiser D, Graf R, Vischer P and Friedl P: Integrin-associated protein and thrombospondin-1 as endothelial mechanosensitive death mediators. Biochem Biophys Res Commun 271: 584-588, 2000.

37. McDonald JD, Dufour JM and Frazier WA: An amyloid-like C-terminal domain of thrombospondin-1 displays CD47 agonist activity requiring both VVM motifs. Biochemistry 42: 10001-10011, 2003.

38. Rath GM, Schneider C, Dedieu S, Rothbaur B, Soula-Rothbaur M, Ghoneim C, Sid B, Morjani H, El Btaouri H and Martiny L: The C-terminal CD47/1AP-binding domain of thrombospondin-1 prevents camptothecin- and doxorubicin-induced apoptosis in human thyroid carcinoma cells. Biochem Biophys Acta 1763: 1125-1134, 2006.

39. Pimanda JE, Ansis DS, Rafferty M, Mosher DF, Chesneter CN and Hogg PE: The von Willebrand factor-reducing activity of thrombospondin-1 is located in the calcium-binding C-terminal sequence and requires a free thiol at position 974. Blood 100: 2832-2838, 2002.

40. Schultz-Cheery S, Chen H, Mosher DF, Misenheimer TM, Krutzsch HC, Roberts DD and Murphy-Ullrich JE: Regulation of the transforming growth factor-β1 activation by discrete sequences of thrombospondin-1. J Biol Chem 270: 7304-7310, 1995.
46. Chen H, Sottile J, Strickland DK and Mosher DF: Binding and degradation of thrombospondin-1 mediated through heparan sulphate proteoglycans and low-density-lipoprotein receptor-related protein: Localization of the functional activity to the trimeric N-terminal heparin-binding region of thrombospondin-1. Biochem J 318: 959-963, 1996.

47. Befekadu R, Christiansen K, Larsson A and Grenegard M: Increased plasma cathepsin S and thrombospondin-1 in patients with acute ST segment elevation myocardial infarction. Cardiol J 26: 385-393, 2019.

48. Kaiser R, Grotzemeyer K, Kalsch T, Graber S, Wilkens H and Sezaki S, Hirohata S, Iwabu A, Nakamura K, Toeda K, Miyoshi T, Zhou X, Huang J, Chen J, Zhao J, Ged, Yang W and Guo: Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 111: 2935-2942, 2005.

49. Jugdutt BI: Ventricular remodeling after infarction and the extra-cellular collagen matrix: When is enough enough? Circulation 108: 1395-1403, 2003.

50. von Oorschot AA, Smits AM, Pardali E, doevendans PA and van Zandvoort MA, Heymans S and Schroen B: MicroRNA-19 regulates CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10: 769-779, 2011.

51. Lin TN, Kim GM, Chen JJ, cheung WM, He YY and Hsu Y: High serum levels of thrombospondin-2 correlate with poor prognosis of patients with heart failure with preserved ejection fraction. Heart Vessels 31: 52-59, 2016.

52. Hamm J, Peyvandi F, Palla R, Lombardi R, Canciani MT, Cairo A, Ardissson D, Bernardinelli L, Bauer KA, Lawler J and Amundsen P: The thrombospondin-1 N700S polymorphism is associated with early myocardial infarction without altering cellular collagen matrix: When is enough enough? Circulation 108: 1395-1403, 2003.

53. Zhou X, Huang J, Chen J, Zhao J, Ged, Yang W and Guo: Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 111: 2935-2942, 2005.

54. Jugdutt BI: Ventricular remodeling after infarction and the extra-cellular collagen matrix: When is enough enough? Circulation 108: 1395-1403, 2003.

55. van Oorschot AA, Smits AM, Pardali E, doevendans PA and van Zandvoort MA, Heymans S and Schroen B: MicroRNA-19 regulates CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10: 769-779, 2011.

56. Lin TN, Kim GM, Chen JJ, cheung WM, He YY and Hsu Y: High serum levels of thrombospondin-2 correlate with poor prognosis of patients with heart failure with preserved ejection fraction. Heart Vessels 31: 52-59, 2016.

57. Hamm J, Peyvandi F, Palla R, Lombardi R, Canciani MT, Cairo A, Ardissson D, Bernardinelli L, Bauer KA, Lawler J and Amundsen P: The thrombospondin-1 N700S polymorphism is associated with early myocardial infarction without altering cellular collagen matrix: When is enough enough? Circulation 108: 1395-1403, 2003.

58. Zhou X, Huang J, Chen J, Zhao J, Ged, Yang W and Guo: Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 111: 2935-2942, 2005.

59. Jugdutt BI: Ventricular remodeling after infarction and the extra-cellular collagen matrix: When is enough enough? Circulation 108: 1395-1403, 2003.
81. Zhou HJ, Zhang HN, Tang T, Zhong QH, Qi Y, Luo JK, Lin Y, Yang QD and Li QX: Alteration of thrombospondin-1 and -2 in rat brains following experimental intracerebral hemorrhage. Laboratory investigation. J Neurosurg 113: 820-825, 2010.

82. Borkowske TC, Johnson JM, Auster M, Huyhn C, Muradaliyan S, Contreras M, LoGerfo FW and Pradhan-Nabzydk L: Intraluminal delivery of thrombospondin-2 small interfering RNA inhibits the vascular response to injury in a rat carotid balloon angioplasty model. FASEB J 31: 109-119, 2017.

83. Wao MS, Yang J, Beltran C and Cho S: Cell surface CD36 protein in monocyte/macrophage contributes to phagocytosis during the resolution phase of ischemic stroke in mice. J Biol Chem 291: 23654-23661, 2016.

84. Kim CW, Pokutta-Paskaleva A, Kumar S, Timmins LH, Morris AD, Liu DW, Dalal S, Chadid T, Kuo KM, Raykin J, et al: Disturbed flow promotes arterial stiffening through thrombospondin-1. Circulation 136: 1217-1232, 2017.

85. Moura R, Tjwa M, Vandervoort P, Van Kerckhoven S, Holvpet P and Hoylaerts MF: Thrombospondin-1 deficiency accelerates atherosclerotic plaque maturation in Apoe−/− mice. Circ Res 103: 1181-1189, 2008.

86. Narizhneva NV, Razorenova OV, Podreza EA, Chen J, Chandrasekaran UM, DiCorleto PE, Plow EF, Topol EJ and Byzova TV: Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelial. FASEB J 19: 1158-1160, 2005.

87. Roth JJ, Gahtan V, Brown JL, Gerhard c, Swami VK, Barillari G, Iovane A, Bonuglia M, Albonici L, Garofano P, Yabkowitz R, Mansfield PJ, Ryan US and Suchard SJ: Diabetes impairs angiogenesis and induces endothelial cell senescence by up-regulating thrombospondin-CD47-dependent signaling. Int J Mol Sci 20: E673, 2019.

88. Yafai Y, Eichler W, Landiev I, Unterauf J, Jochmann C, Wiedemann P and Ringmann A: Thrombospondin-1 is produced by retinal glial cells and inhibits the growth of vascular endothelial cells. Ophthalmic Res 52: 81-88, 2014.

89. Wang S, Sorenson CM and Sheibani N: Lack of thrombospondin-1 and exacerbation of choroidal neovascularization. Arch Ophthalmol 139: 615-620, 2012.

90. Wu Z, Wang S, Sorenson CM and Sheibani N: Attenuation of retinal vascular development and neovascularization in transgenic mice over-expressing thrombospondin-1 in the lens. Dev Dyn 235: 1908-1920, 2006.

91. Wang S, Wang S and Sheibani N: Enhanced proangiogenic signaling in thrombospondin-1-deficient retinal endothelial cells. Microvasc Res 71: 143-151, 2006.

92. Wang S, Wu Z, Sorenson CM, Lawler J and Sheibani N: Thrombospondin-1-deficient mice exhibit increased vascular density during retinal vascular remodelling and are less sensitive to hyperoxia-mediated vessel obliteration. Dev Dyn 228: 630-642, 2003.

93. Sheibani N, Sorenson CM, Cornelius LA and Frazier WA: Thrombospondin-1, a natural inhibitor of angiogenesis, is present in vitreous and aqueous humor and is modulated by hyperglycemia. Biochem Biophys Res Commun 267: 257-261, 2000.

94. Koch M, Hussein F, Woeste A, Gründker C, Frontzek K, Emong S and Hawighorst T: CD36-mediated activation of endothelial cell apoptosis by an N-terminal recombinant fragment of thrombospondin-2 inhibits cancer growth and metastasis in vivo. Breast Cancer Res Treat 128: 337-346, 2011.

95. Tomii Y, Kamochi J, Yamazaki H, Sawa N, Tokunaga T, Ohnishi Y, Kijima H, Ueyama Y, Tamaoki N and Nakamura M: Human thrombospondin 2 inhibits proliferation of microvascular endothelial cells. Int J Oncol 20: 339-342, 2002.

96. Armstrong LC, Bjorkblom B, Hankenson KD, Siadak AW, Stiles CE and Bornstein P: Thrombospondin-2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 15: 1893-1899, 2004.

97. Kyriakides TR, Zhu YH, Yang Z, Huyhn G and Bornstein P: Altered extracellular matrix remodeling and angiogenesis in spongel granulomas of thrombospondin-2 null mice. Am J Pathol 159: 1255-1262, 2001.

98. Calabro NE, Kristotik NJ and Kyriakides TR: Thrombospondin-2 and extracellular matrix assembly. Biochim Biophys Acta 1840: 2396-2420, 2014.

99. Krady MM, Zeng Y, Ju Y, MacLaughlin S, Skokos EA, Tian W, Bornstein P, Sessa WC and Kyriakides TR: Thrombospondin-2 modulates extracellular matrix remodeling during physiological angiogenesis. Am J Pathol 166: 879-891, 2004.

100. Park YW, Kang YM, Butterfield J, Detmar M, Goronzy JJ and Weyand CM: Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. Am J Pathol 165: 2087-2098, 2004.

101. Agah A, Kyriakides TR, Letendon N, Bjorkblom B and Bornstein P: Thrombospondin-2 levels are increased in aged mice: Consequences for cutaneous wound healing and angiogenesis. Matrix Biol 22: 539-547, 2004.

102. Feige JJ: Thrombospondins: Multimodular proteins with angiogenic activity and potential as therapeutic agents indirectly alter tumor blood flow. Neoplasia 10: 886-897, 2008.

103. Tzeng HT, Tsai CH, Yen YT, Cheng HC, Chen YC, Pu SW, Wang YS, Shan YS, Tseng YL, Su WC, et al: Dysregulation of Rab37-mediated cross-talk between cancer cells and endothelial cells via thrombospondin-1 promotes tumor neovascularization and metastasis. Clin Cancer Res 23: 2335-2345, 2017.

104. Bitar MS: Diabetes impairs angiogenesis and induces endothelial cell senescence by up-regulating thrombospondin-CD47-dependent signaling. Int J Mol Sci 20: E673, 2019.
121. Riessen R, Kearney M, Lawler J and Isner JM: Immunolo-
genizing of thrombospondin-1 in human atherosclerotic and restenotic arteries. Am Heart J 135: 357-364, 1998.

122. Yoneda Y, Endo H, Izumiya K, Takeuchi K and Geroff FW: Thrombospondin-2 gene silencing in human aortic smooth muscle cells improves cell attachment. J Am Coll Surg 213: 668-676, 2011.

123. Ochoa CD, Yu L, Al-Ansari E, Hales CA and Quinn DA: Thrombospondin-1 null mice are resistant to hypoxia-induced pulmonary hypertension. J Cardiocirc Shock 3: 32, 2010.

124. Satoh M, Natsu T, Osaka T and Hitomi S: Thrombospondin-1 contributes to slower aortic aneurysm growth by inhibiting maladaptive remodeling of extracellular matrix. Clin Sci (Lond) 131: 1283-1285, 2017.

125. Liu Z, Meng X, Wang Q, Annis DS, Mosher DF, Zhang J, Sorenson CM, Sheibani N and Liu B: Thrombospondin (TSP1) contributes to the development of vascular inflammation by regulating monocytic cell motility in mouse models of abdominal aortic aneurysm. Circ Res 117: 129-141, 2015.

126. Cointe S, Rheumae C, Martel C, Blanc-Brude O, Dubé E, Sabatier F, Dignat-George F, Tardif JC and Bonnely F: Thrombospondin-1-derived peptide FFYVVMK improves the adhesive phenotype of CD34(+) cells from atherosclerotic patients with type 2 diabetes. Cell Transplant 26: 327-337, 2017.

127. Kyriakides TR, Rojnuckarin P, Reidy MA, Hankenson KD, Papayannopoulou T, Kausansky K and Bornstein P: Megakaryocytes require thrombospondin-2 for normal platelet formation and function. Blood 101: 3915-3923, 2003.

128. Kyriakides TR, Leach KJ, Hoffman AS, Ratner BD and Bornstein P: Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularization. Proc Natl Acad Sci USA 96: 4449-4454, 1999.

129. Roberts DD, Haverstick DM, Dixin VM, Frazier WA, Santoro SA and Ginsburg V: The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids. J Biol Chem 260: 9405-9411, 1985.

130. Yang S, Song R, Li X, Zhang T, Fu J and Cui X: Thrombospondin-2 predicts response to treatment with intravenous immunoglobulin in children with Kawasaki disease. BMJ Paediatric Open 2: e000190, 2018.

131. Reinecke H, Robey TE, Mignone JL, Muskheli V and Bornstein P: Megakaryocytes require thrombospondin-2 for normal platelet formation and function. Blood 101: 3915-3923, 2003.

132. Roberts DD: Interactions of thrombospondin with sulfated glycosaminoglycans. Ann Surg 221: 91-95, 1995.

133. Roberts DD: Interactions of thrombospondin with sulfated glycosaminoglycans. Ann Surg 221: 91-95, 1995.

134. Roberts DD: Interactions of thrombospondin with sulfated glycosaminoglycans. Ann Surg 221: 91-95, 1995.

135. Roberts DD: Interactions of thrombospondin with sulfated glycosaminoglycans. Ann Surg 221: 91-95, 1995.

136. Roberts DD: Interactions of thrombospondin with sulfated glycosaminoglycans. Ann Surg 221: 91-95, 1995.
161. Mikhailenko I, Kounnas MZ and Strickland K: Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates the cellular internalization and degradation of thrombospondin. A process facilitated by cell-surface proteoglycans. J Biol Chem 270: 9543-9549, 1995.

162. Daviet L and McGregor JL: Vascular biology of CD36: Roles of this new adhesion molecule family in different disease states. Thromb Haemost 78: 65-69, 1997.

163. Ramanathan S, Mazzalupo S, Boitano S and Montfort WR: Thrombospondin-1 and angiostatin II inhibit soluble guanylyl cyclase through an increase in intracellular calcium concentration. Biochemistry 50: 7787-7799, 2011.

164. Trujillo G and Kew RR: Platelet-derived thrombospondin-1 is necessary for the vitamin D-binding protein (Gc-globulin) to function as a chemotactic cofactor for C5a. J Immunol 173: 4130-4136, 2004.

165. Tang Y, Scheef EA, Wang S, Sorenson CM, Marcus CB, Jelcoate CR and Sheibani N: CYP1B1 expression promotes the proangiogenic phenotype of endothelium through decreased intracellular oxidative stress and thrombospondin-2 expression. Blood 113: 744-754, 2009.

166. MacLauchlan S, Yu J, Parrish M, Asoulin TA, Schleicher M, Krady MM, Zeng J, Huang PL, Sessa WC and Kryiakides TR: Endothelial nitric oxide synthase controls the expression of the angiogenesis inhibitor thrombospondin 2. Proc Natl Acad Sci USA 108: E1137-E1145, 2011.

167. Lee NV, Sato M, Annis DS, Loo JA, Wu L, Mosher DF and Iruela-Arispe ML: ADAMTS1 mediates the release of antianangiogenic polypeptides from TSP1 and 2. EMBO J 25: 5270-5283, 2006.

168. Mead TJ and Apte SS: ADAMTS proteins in human disorders. Matrix Biol 71-72: 225-239, 2018.

169. Bengtsson E, Hultman K, Lund P, Asciutto G, Almgren P, Orho-Melander M, Melander O, Nilsson J, Hultgardh-Nilsson A and Gonnalves I: ADAMTS-7 is associated with a high-risk plaque phenotype in human atherosclerosis. Sci Rep 7: 3753, 2017.

170. Pereira A, Palma Dos Reis R, Rodrigues R, Sousa AC, Gomes S, Borges S, Oremas I, Freitas AI, Guerra G, Henriques E, et al: Association of ADAMTS7 gene polymorphism with cardiovascular survival in coronary artery disease. Physiol Genomics 48: 810-815, 2016.

171. Bauer RC, Tohyma J, Cui J, Cheng L, Yang J, Zhang X, Ou K, Paschos GK, Zheng XL, Parmacek MS, et al: Knockout of Adams7, a novel coronary artery disease locus in mice, reduces atherosclerosis in mice. Circulation 131: 1202-1213, 2015.

172. Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, Burnett MS, Devaney JM, Knouff CW, Thompson JR, et al: Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: Two genome-wide association studies. Lancet 377: 383-392, 2011.

173. Qin W, Cao Y, Li L, Chen W and Chen X: Upregulation of ADAMTS7 and downregulation of COMP are associated with aortic aneurysm. Mol Med Rep 16: 5459-5463, 2017.

174. Kessler T, Zhang L, Liu Z, Yin X, Huang Y, Wang Y, Fu Y, Mayr M, Ge Q, Xu Q, et al: ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1. Circulation 131: 1191-1201, 2015.

175. Pu X, Xiao Q, Kiechl S, Chan K, Ng FL, Gor S, Poston RN, Fang C, Patel A, Senver EC, et al: ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet 92: 366-374, 2013.

176. Wang L, Zheng J, Bai X, Liu B, Liu CJ, Xu Q, Zhu Y, Wang N, Kong W and Wang X: ADAMTS-7 mediates vascular smooth muscle cell migration and neo-intima formation in balloon-injured rat arteries. Circ Res 104: 688-698, 2009.

177. Wu W, Li J, Yu C, Gao Y, Fan S, Ye X, Wang Y and Zheng J: Association of serum ADAMTS-7 levels with left ventricular reverse remodeling after ST-elevation myocardial infarction. Eur J Med Res 23: 15, 2018.

178. Chan K, Pu X, Sandesara P, Poston RN, Simpson IA, Quyyumi AA, Ye S and Patel RS: Genetic variation at the ADAMTS7 locus is associated with reduced severity of coronary artery disease. J Am Heart Assoc 6: e006928, 2017.

179. Wu W, Wang H, Yu C, Li J, Gao Y, Ke Y, Wang Y, Zhou Y and Zheng J: Association of ADAMTS-7 levels with cardiac function in a rat model of acute myocardial infarction. Cell Physiol Biochem 38: 950-958, 2016.