Does sumatriptan cross the blood–brain barrier in animals and man?

Peer Carsten Tfelt-Hansen

Abstract Sumatriptan, a relatively hydrophilic triptan, based on several animal studies has been regarded to be unable to cross the blood–brain barrier (BBB). In more recent animal studies there are strong indications that sumatriptan to some extent can cross the BBB. The CNS adverse events of sumatriptan in migraine patients and normal volunteers also indicate a more general effect of sumatriptan on CNS indicating that the drug can cross the BBB in man. It has been discussed whether a defect in the BBB during migraine attacks could be responsible for a possible central effect of sumatriptan in migraine. This review suggests that there is no need for a breakdown in the BBB to occur in order to explain a possible central CNS effect of sumatriptan.

Keywords Blood–brain barrier · Sumatriptan · Migraine · CNS · Animal studies · Human studies

Introduction

The triptans, 5-HT1B/1D receptor agonists, are effective drugs in the treatment of migraine attacks [1–4]. It has been debated for a long time whether the triptans act during migraine attacks on the peripheral nociceptive input or on the nociceptive system in the CNS [5, 6]. Triptans can theoretically decrease peripheral nociception either by a selective cranial vasoconstriction, the rationale for its development [6, 7] or an effect on trigeminovascular nerves [6]. A peripheral effect on trigeminal vascular nerves was indicated by the blocking effect of sumatriptan on neurogenically mediated plasma extravasation [8]. Inhibitors of neurogenic inflammation (NI) were, however, ineffective in the treatment of migraine [9] and it is thus difficult to ascribe a pivotal role for NI in migraine. In 1996 it was, based on the effect of zolmitriptan, suggested that inhibition of trigeminal neurons in the brain stem by lipophilic triptans may play a role in the anti-migraine effect of these drugs and that these results offered the prospect of a third pathophysiological target site for triptans [10].

The prototype of a triptan is sumatriptan, the first developed triptan [7]. Apparently this drug, which is relatively hydrophilic, did not in several animal studies [5, 11–14] cross the blood–brain barrier (BBB) in sufficient amount to cause a pharmacological effect in the trigeminal nucleus caudalis [5, 12, 13] or frontal cortex [11]. In contrast, other more lipophilic triptans, such as zolmitriptan [5, 15], naratriptan [16], rizatriptan [17], and eletriptan [18], caused an inhibition of nociception in the trigeminal nucleus caudalis in these animal models of migraine.

In contrast to earlier studies [7, 19] it was recently stated that “this central site of action is consistent with the evidence that sumatriptan can rapidly cross the blood–brain barrier into the central nervous system after systemic administration”. This was, however, based on a pharmacokinetic study using sumatriptan 3.2 mg/kg [20] far above the therapeutic dose of 100 μg/kg.

In recent studies from 2004 and 2009 a presynaptic inhibition of sumatriptan (300–600 μg/kg) in the trigeminal nucleus caudalis was found [21] and reversal of facial allodynia by sumatriptan [22] was observed.

In the following, animal studies on sumatriptan will be reviewed and possible explanation for the discrepancy...
among studies will be suggested. Next, CNS adverse events after triptans in migraine patients and normal subjects will be reviewed.

It is concluded that both the animal and the human studies suggest that sumatriptan to some minor extent can penetrate into the CNS across the BBB both in animals and in man. The minor penetration of sumatriptan into the CNS is, however, sufficient to cause pharmacological effects most likely because the drug is potent $5\text{-HT}_{1B/1D}$ receptor agonist [1, 3].

Review of studies in animals

The penetration of systemically administered $^{14}$C-labeled sumatriptan into the central nervous system was investigated in the mouse [7]. Only 0.006% of total radioactivity was found in the brain indicating poor brain penetration by sumatriptan [7]. In another study no sumatriptan was found in the brain with whole body assay in rats [19].

An overview of 21 animal studies investigating the possible effect of sumatriptan on the CNS is presented in the Table 1. For an overview of used animal models of migraine, see [23].

The clinically used dose of subcutaneous sumatriptan 6 mg corresponds to approximately 100 $\mu$g/kg, but the dose used in animal studies varied widely from 50 $\mu$g/kg to 100 mg/kg (Table 1). In nine studies [5, 11–14, 24–27], there was no effect of sumatriptan in the animal model. In one study an antinociceptive effect was found after 5–30 mg/kg, most likely mediated by the $5\text{-HT}_{1A}$ receptor [28]. In contrast, an effect of sumatriptan 100–1,000 $\mu$g/kg on the CNS was found in nine studies [21, 22, 29–35].

In one study sumatriptan 300 $\mu$g/kg blocked c-fos protein-like immunoreactivity within trigeminal nucleus caudalis following irritation of meningeal afferents induced by blood [36]. In another study from the same group of investigators sumatriptan 300 $\mu$g/kg reduced c-fos protein-like immunoreactivity in the trigeminal nucleus caudalis (TNC) after repeated cortical spreading depression [37]. In the authors opinion the effects of sumatriptan were most likely due to an effect on the peripheral part of the afferent fibres of the trigeminal nerve but they add: “of course, the studies reported herein do not exclude the unlikely possibility that this hydrophilic 5-HT analogue blocks c-fos protein-like immunoreactivity within the TNC directly” [37].

In a later study from 1997 with the same problem it was found that morphine 3 mg/kg, but not sumatriptan 300 $\mu$g/kg, decreased c-fos expression in TNC after multiple CSD [27]. These results have been disputed [38].

In one study sumatriptan acutely in a dose of 100 $\mu$g/kg and 1 mg/kg, as well as zolmitriptan 100 $\mu$g/kg, decreased 5-HT synthesis rate in many brain region in rats including the dorsal raphe nucleus [34]. Chronically, sumatriptan (300 $\mu$g/kg per day) induced significant increases in the 5-HT synthesis rate in many projection areas but had no effect in the dorsal raphe nucleus [33]. Overall, these findings indicate that not only zolmitriptan, but also sumatriptan affect brain serotonergic neurotransmission [34].

One study used very high doses of sumatriptan: in a pharmacokinetic–pharmacodynamic study in rats from 2001 [20] on the serotonergic effects and extracellular levels of eletriptan, zolmitriptan and sumatriptan, using a very high dose of 2.5 mg/kg i.v., it was shown that the three drugs with different lipophilicity had similar extracellular levels in the brain. On the other hand, sumatriptan did not exert a serotonergic effect, as did zolmitriptan and eletriptan, most likely because sumatriptan is less potent in this system than the two other triptans [20]. In addition, non-equipotent doses of the two triptans compared with sumatriptan were used, see later. The problem with this study is evident: the usual subcutaneous dose of sumatriptan in man is 6 mg, corresponding to 100 $\mu$g/kg, whereas the dose is 32 times higher in this rat study [20]. This could indicate that a saturable, expulsion process limiting the access of the three triptans to the CNS exists. In fact, eletriptan distribution in the CNS is limited by the P-glycoprotein-mediated efflux [39, 40] whereas sumatriptan and zolmitriptan are subjected to non-P-glycoprotein-mediated efflux [41].

What could be the explanation for this different effect of sumatriptan in these various animal models of migraine? In two of these studies in which sumatriptan had no effect [12, 13], an effect of sumatriptan was observed after disruption of the BBB with mannitol. The potential for a CNS effect of a triptan, including sumatriptan, is thus present in the animal models used [12, 13] as also demonstrated by the effect of zolmitriptan [5, 15], naratriptan [16], rizatriptan [17] and eletriptan [18] in these models with intact BBB.

The dictum was thus in the beginning, based on pharmacokinetic studies [7, 19] that sumatriptan had only minimal or no passage within the central nervous system. Most early animal studies apparently supported, with different methodology, the lack of penetration of sumatriptan across the BBB [11–13, 24]. Later animal studies have shown in some but not in all (Table 1) investigations that sumatriptan in these animal models, mostly of migraine, did exert an effect inside the BBB.

CNS effects in migraine patients and other subjects

In human postmortem brains [3H]sumatriptan binding sites have been found in among others, globus pallidus >
# Table 1  Studies on the central nervous system effect of sumatriptan in animals

| References                  | Dose of sumatriptan (µg/kg) | Parameter used                                                                 | Results                                                                                   | Indicates passage of sumatriptan across BBB |
|-----------------------------|-----------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|
| Sleight et al. (1990) [11]  | 50 and 500 (i.p.) (guinea pig) | Extracellular 5-HT levels in the frontal cortex as measured by microdialysis | No effect of systemic sumatriptan (sumatriptan 10⁻⁸–10⁻⁷ M in microlysate caused a decrease of 5-HT) | –                                         |
| Skingle et al. (1990) [24]  | Dose 1–100 (rodents)        | Antinociceptive effect by (various tests)                                      | No antinociceptive effect (in some tests 100 mg/kg had an effect)                          | –                                         |
| Nozaki et al. (1992) [36]   | 720 nmol/kg (300 µg/kg) (rat) | c-fos expression in the trigeminal nucleus caudalis after autologous blood in cisterna magna | Sumatriptan reduced c-fos positive cells in trigeminal nucleus caudalis by 31%             | (−/+?) see commentb                        |
| Moskowitz et al. (1993) [37]| 300 µg/kg (rats)            | c-fos expression in trigeminal nucleus caudalis after repeated CSD             | Sumatriptan reduced c-fos expression                                                     | (−/+?) see commenta                       |
| Kaube et al. (1993) [12]    | 100 µg/kg (cat)             | Single units activity and trigeminal somatosensory evoked potentials after SSS stimulation | No effect of sumatriptan (after blood–brain barrier disruption with mannitol sumatriptan decreased the peak-to-peak amplitude of evoked potentials) | –                                         |
| Shepheard et al. (1995) [13]| 1,000 µg/kg (rat)           | Expression of c-fos mRNA in trigeminal nucleus caudalis after stimulation of trigeminal ganglion | No effect of sumatriptan (after blood–brain barrier disruption with mannitol sumatriptan decreased expression of c-fos mRNA with 63%) | –                                         |
| Ghehardini et al. 1996 [28]| 5–30 mg/kg (mouse)         | Antinociceptive effect (hot-plate test)                                       | There was an antinociceptive effect, most likely mediated by the 5-HT₁A receptor         | ?                                         |
| Mitsikostas et al. (1996) [30]| 0.3–0.9 mg/kg (rat)       | Brain monoamines concentration                                                 | 0.6 mg/kg decreased hypothalamic serotonin concentration                                 | +                                         |
| Hoskin and Goadsby (1996) [29]| 85 µg/kg (cat)           | c-fos expression in trigeminal nucleus caudalis after dilatation of SSS        | Reduction of c-fos expression                                                             | (+/-?) see commentsb                       |
| Knyihar-Csillik et al. (1997) [14]| 120 µg/kg (rat) | c-fos in caudal trigeminal nucleus after stereo electrical stimulation of the trigeminal ganglion | No effect of sumatriptan on c-fos expression                                             | –                                         |
| Ingvarsd et al. (1997) [27] | 300 µg/kg (rat)            | c-fos in TNC after CSD                                                         | No effect of sumatriptan on c-fos expression                                             | –                                         |
| Hoskin and Goadsby (1998) [5] | 85 µg/kg (rat)            | c-fos expression in trigeminal nucleus caudalis after SSS stimulation          | No effect on c-fos expression                                                             | –                                         |
| Read et al. (1999) [31]     | 300 µg/kg (rat)            | Nitric oxide formation in the cerebral cortex after nitroglycerin             | Decrease of NO formation                                                                  | +                                         |
| Read and Parsons [32]       | 300 µg/kg (rat and cat)    | Nitric oxide formation in the cerebral after CSD                              | Decrease of NO formation and decrease of partial oxygen tension                           | +                                         |
| Read et al. (2001) [25]     | 300 µg/kg (rat)            | CGMP after CSD                                                                 | No effect on brain stem cGMP after 3 days                                               | –                                         |
| Johnson et al. (2001) [20]  | 3.2 mg/kg (rat)            | Measurements of sumatriptan concentrations in microdialysate. Central release of 5-HT | Concentrations of sumatriptan up to 8 nM was observed. No effect on central release of 5-HT | +                                         |
In the brain stem the highest $[^{3}H]$sumatriptan binding sites were seen in the substantia nigra, the trigeminal nucleus, nucleus of the tractus solitarius and periaqueductal gray [43]. If sumatriptan can cross the BBB in sufficient amounts, one would thus expect CNS adverse events after therapeutic use of the drug.

Some migraine patients complain of sleepiness/tiredness, difficulty in thinking and dizziness [44] after sumatriptan. In a meta-analysis of oral triptans, sumatriptan 100 mg caused 6% (95% CI 3–9%) more CNS adverse events than placebo [2]. This could indicate a CNS effect unlikely because no central effect of sumatriptan was observed in previous studies [9, 10].

Table 1 continued

| References          | Dose of sumatriptan | Parameter used                              | Results                                                                 | Indicates passage of sumatriptan across BBB |
|---------------------|---------------------|---------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------|
| Kayser et al. (2002) [33] | 100 µg/kg (rat)     | Mechanical allodynia-like behaviour after ligature of n. infraorbitalis | A significant reduction of mechanical allodynia-like behaviour on injured and contralateral side of the face$^c$ | +                                         |
| Dobson et al. (2004) [34] | 300–1,000 µg/kg (rat) | Serotonin synthesis in brain                | Given acutely a decrease in 5-HT synthesis in certain regions of the brain was observed | +                                         |
| Pardutz et al. (2004) [26] | 600 µg/kg (rat)     | Nitroglycerin-induced nNOS immunoreactive neurones in trigeminal nucleus caudalis | nNOS expression could not be prevented                                  | −                                         |
| Levy et al. (2004) [21]     | 300 µg/kg (rat)     | Changes in spontaneous activity of trigeminal peripheral and central neurones after inflammatory soup on dura | Sumatriptan blocked the induction of central sensitization most likely by a presynaptic inhibition | +                                         |
| Edelmayer et al. (2009) [22] | 600 µg/kg (rat)     | Prevention of facial allodynia after inflammatory mediators on the dura | Sumatriptan prevented or reversed facial allodynia                      | +                                         |
| Bates et al. (2009) [35]    | 600 µg/kg i.p. and 0.06 µg intrathecal (mouse) | Prevention of thermal and mechanical allodynia | Systemic sumatriptan inhibited thermal allodynia but not mechanical allodynia. Intrathecal sumatriptan inhibited both | +                                         |

$^a$ The authors considered that this was a peripheral effect on the trigeminal nerve [34], see text

$^b$ The authors concluded: “The simplest reasonable conclusion is that sumatriptan inhibited trigeminal afferent by a direct neuronal mechanism at the peripheral terminal.” [22]. They found a central effect unlikely because no central effect of sumatriptan was observed in previous studies [9, 10]

$^c$ Zolmitriptan 30 µg/kg caused a decrease in c-fos expression in trigeminal nucleus caudalis

$^d$ The site of action is not totally clear but is most likely a CNS effect because a reduction of contralateral allodynia [29].

...
therapeutic doses do exert a CNS effect in non-migrainous subjects.

In a recent positron emission tomographic (PET) study in six migraine patients, it was shown that subcutaneous sumatriptan 6 mg normalizes the migraine attack-related increase in brain serotonin synthesis [54], thus demonstrating convincingly that sumatriptan can exert an effect on the brain in migraineurs during an attack.

In a double-blind, placebo-controlled study in migraine patients, subcutaneous sumatriptan 6 mg caused an increase of the duration of the early exteroceptive suppression period of temporalis muscle activity both during the migraine attack and during the migraine interval [55], whereas there was no effect on contingent negative variation [56].

In another study on glyceryl trinitrate-induced migraine, during attacks there was an increase in slow rhythmic activity of the theta and delta range and a decrease of activity in the alpha and beta range [57]. The abnormalities disappeared after a sumatriptan injection [57]. One cannot exclude, however, that the effect of sumatriptan in this study is due to an effect on migraineur per se.

In one study on obsessive–compulsive disorder (OCD) the sumatriptan treated subjects’ OCD symptoms worsening, as measured by The Yale Brown scale, was significant compared to placebo (p < 0.02) [58]. In another study no such effect was observed [59].

Exercise capacity was decreased after subcutaneous sumatriptan 6 mg in one placebo-controlled study [60]. The authors’ conclusion was that it could be a peripheral effect of the drug because “sumatriptan is a selective 5-HT (1B/1D) receptor agonist that does not cross the blood–brain barrier” [60]. It was thus regarded as an established fact, based on [12, 13], that sumatriptan does not penetrate the BBB.

In one review it was concluded that the incidence of CNS adverse events is correlated (r = 0.68) to the lipophilic attributes of the triptans [61], whereas in two other reviews this was not the case [62, 63]. Re-analysing of the data from the first review [61] with the use of equipotent triptan doses sumatriptan 100 mg (instead of 50 mg) and eletriptan 40 mg (instead of 80 mg) shows, however, that there is no correlation (r = 0.324, p = 0.438, Spearman’s nonparametric test), as would be expected since the triptans are subjected to different efflux systems from the brain [41].

Overall, the triptans, apart from almotriptan 12.5 mg and the low dose of naratriptan, 2.5 mg [2], result in CNS adverse events with a relatively low incidence which indicates an effect on the CNS. These CNS adverse events of triptans, especially sleepiness/tiredness, can in some cases be a problem in the clinical use of the drugs, including sumatriptan [3].

Comments on the possible effects of sumatriptan inside the BBB

Are the doses of the different triptans used in these animal studies comparable? In one study investigating parenteral sumatriptan and zolmitriptan, it was stated that clinically comparable doses were used [5]. Thus sumatriptan 85 μg/kg and zolmitriptan 30 μg/kg were used. There are RCTs with subcutaneous sumatriptan [64, 65], but none with parenteral zolmitriptan. Equipoetry must therefore be judged from oral comparative RCTs. Based on one large comparative RCTs, zolmitriptan 5 mg is comparable with sumatriptan 100 mg [66]. This is also the case in the well-known meta-analysis [2]. Thus is seems reasonable to compare the systemic availability of these doses. Sumatriptan has an oral bioavailability of 14% [1, 3] and 100 mg thus results in sumatriptan 14 mg being available, whereas zolmitriptan 5 mg with an bioavailability of 39% [1, 3] results in zolmitriptan 1.95 mg being systemically available. The ratio between the systemically available doses is thus 7.2. In the animal study [5] of sumatriptan and zolmitriptan mentioned above, the dose ratio was 85/30 = 2.8. So either too little sumatriptan or too much zolmitriptan was used. The sumatriptan 85 μg/kg dose is near the subcutaneously used dose of 6 mg in man. So most likely a too high dose of zolmitriptan was used if the two drugs are equipotent.

The different results for sumatriptan in these animal models is most likely not a consequence of different doses of the drug used. Thus, in “negative” studies the dose range of sumatriptan was 85 μg/kg to 6 mg/kg, whereas in the “positive” studies the dose range was 100–1,000 μg/kg (Table 1). The results most likely depend on the animal model used. Whether an inhibitory CNS effect of sumatriptan is observed in an animal study is most likely the result of the ratio between stimulus used, electrical stimulation [5, 13] or inflammatory mediators [20, 21], and the inhibitory effect of sumatriptan. If the stimulus is very strong, such as superior sagittal stimulation (SSS), for 1 h in one study [5] and described in one study as a supra-maximal stimulation [12] or trigeminal ganglion stimulation [13, 14] even “normal” levels of sumatriptan in the CNS are most likely unable to inhibit the response. In contrast, “more” physiological stimuli such as inflammatory mediators [21, 22] can probably be inhibited by “normal” levels of sumatriptan. It should be noted, however, that the more lipophilic triptans such as zolmitriptan [5], naratriptan [16], rizatriptan [17] and eletriptan [18] were effective in the SSS model without a breakdown of the BBB. This higher efficacy of these triptans than sumatriptan in this SSS model does not, however, result in increased effect of these triptans in the acute treatment of migraine [1, 2].
The presence of triptan binding sites and triptan receptor mRNA within the CNS leaves little doubt as to the potential for CNS effects of the triptans [67–69]. It is recognized that the triptan class of compounds do generally have poor penetration characteristics with brain/plasma partition coefficient ($K_{p,\text{brain}}$) [41] well below 1, when compared with typical CNS marketed drugs (e.g. diphenhydramine with a $K_{p,\text{brain}}$ of 9) [42]. The $K_{p,\text{brain}}$ in P-glycoprotein-competent (mdrla+/-+) mice were 0.13 (sumatriptan), 0.42 (naratriptan), 0.20 (rizatriptan),0.038 (zolmitriptan), and 0.30 (eletriptan) [41].

The extent of brain penetration is, however, a poor guide to central activity, especially with potent agonists such as the triptans, since they, in contrast to most other CNS agents that are antagonists, will require only low fractional receptor occupancy to exert central effects [40].

The original hypothesis when sumatriptan was developed was that the drug was a specific cranial vasoconstrictor [6, 7] and that it did not or only to a very minor extent penetrate across the BBB into the CNS [7, 19]. The best way to substantiate a hypothesis is to try to falsify it ad modum Popper [70]. The intended falsifying experiment should have a suitable design and should be of high quality. In the present case the hypothesis was that sumatriptan cannot cross the BBB, and the falsifying experiment would be an investigation aimed at and demonstrating an effect in CNS of sumatriptan in an animal and if possible in man. Until 1996 the investigations failed to unequivocally falsify the hypothesis (Table 1). Thus in two studies [12, 13] the BBB had to be broken down by hyperosmolar mannitol before sumatriptan could exert an inhibitory effect in the trigeminal nucleus caudalis (TNC). There were two animal studies 1992 [36] and 1993 [37] which by the authors were interpreted as showing a peripheral inhibitory effect of sumatriptan on primary afferents of the trigeminovascular system but which, as mentioned above, could not exclude an inhibitory effect in the TNC [37]. From 1996 on several high-quality animal studies, see Table 1, demonstrated a CNS effect of sumatriptan. In addition, it was shown that sumatriptan induced more CNS adverse events than placebo when used in the acute treatment of migraine [2]. Among the studies, two investigations are the most convincing as falsifying experiments both in animals and man: in one study in rats sumatriptan blocked the induction of central sensitization after an inflammatory soup on dura most likely by presynaptic inhibition [21]. In a recent PET investigation in six migraine patients during an actual attack, subcutaneous sumatriptan 6 mg normalizes the attack-related increase in brain serotonin synthesis [54].

There is a debate as to whether the anti-migraine action of triptans is solely through peripheral effects, cranial vasoconstriction [6, 7] and inhibition of release of neuropeptide from the trigeminovascular nerve endings, or whether antinociceptive activity within the brain stem is partly responsible [61].

Sumatriptan can most likely, in addition to a possible peripheral trigeminovascular effect, exert an effect in the brain stem when used for migraine treatment. The BBB is most likely intact during migraine attacks [22, 71] and there is therefore no need to consider a leakage of the BBB [9] for sumatriptan to exert a CNS effect in migraine.

Finally, it is noteworthy, that the increased activity during migraine attacks in the brain stem, as measured with PET [72, 73], still persisted after successful treatment of migraine attacks with subcutaneous sumatriptan. The drug was thus unable to “extinguish” the “migraine generator” and this is most likely the cause of headache recurrence after sumatriptan. This is likely also the case for other brain penetrating triptans with which recurrence also occurs [1, 2].

Acknowledgments The study was supported by the Lundbeck Foundation via the Lundbeck Foundation Center for Neurovascular Signaling (LUCENS).

Conflict of interest None.

References

1. Tfelt-Hansen P, De Vries P, Saxena PR (2000) Triptans in migraine. A comparative review of pharmacology, pharmacokinetics and efficacy. Drugs 60:1259–1287
2. Ferrari MD, Goadsby PJ, Roon KI, Lipton RB (2002) Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia 22:633–658
3. Saxena PR, Tfelt-Hansen P (2006) Triptans, 5HT1B/1D agonists in the acute treatment of migraine. In: Olesen J, Goadsby PJ, Ramadan NM, Tfelt-Hansen P, Welch KMA (eds) The headaches, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, pp 469–503
4. Tfelt-Hansen P (2008) Maximum effect of triptans in migraine? A comment. Cephalalgia 28:767–768
5. Hoskin KL, Goadsby PJ (1998) Comparison of more and less lipophilic serotonin (5-HT 1B/1D) agonists in a model of trigeminovascular nociception in cat. Exp Neurol 150:45–51
6. Humphrey PP, Goadsby PJ (1994) The mode of action of sumatriptan is vascular? A debate. Cephalalgia 14:401–410
7. Humphrey PPA, Feniuk W, Ferren MJ, Beresford IJM, Skingle M, Whalley ET (1990) Serotonin and migraine. Ann N Y Acad Sci 600:587–598
8. Buzzi MG, Moskowitz MA (1990) The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99:202–206
9. Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR (2000) Neurobiology of migraine. Neuroscience 161:327–341
10. Goadsby PJ, Hoskin KL (1996) Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT1B/1D) receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? Pain 67:355–359
11. Sleight AJ, Cervenka A, Peroutka SJ (1990) In vivo effects of sumatriptan (GR 43175) on extracellular levels of 5-HT in the guinea pig. Neuropharmacology 29:511–513
12. Kaube H, Hoskin KL, Goadsby PJ (1993) Inhibition by sumatriptan of central trigeminal neurones only after blood–brain barrier disruption. Br J Pharmacol 109:788–792
13. Shepard SL, Williamson DJ, Williams J, Hill RG, Hargreaves RJ (1995) Comparison of the effects of sumatriptan and the NK1 antagonist CP-99, 994 on plasma extravasation in the dura mater and c-fos mRNA expression in the trigeminal nucleus caudalis of rats. Neuropharmacology 34:255–261
14. Knyihar-Csillik E, Taji T, Samsam M, Sáry G, Slezák S, Vécsei L (1997) Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model. J Neurosci Res 48:449–464
15. Goadsby PJ, Knight YE (1997) Direct evidence for central sites of action of zolmitriptan (311C90): an autoradiographic study in cat. Cephalalgia 17:153–158
16. Goadsby PJ, Knight Y (1997) Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxytryptamine (5-HT1B/1D) receptors. Br J Pharmacol 122:913–922
17. Cumberbatch MJ, Hill RG, Hargreaves RJ (1997) Rizatriptan has central antinociceptive effects against dural evoked responses. Eur J Pharmacol 328:37–40
18. Goadsby PJ, Hoskin KL (1999) Differential effects of low dose CP122, 288 and eletriptan on fos expression due to stimulation of the superior sagittal sinus in cat. Pain 82:15–22
19. Dixon CM, Saynor DA, Andrew J, Oxford J, Bradbury A, Talbot M (1995) Comparison of the effects of sumatriptan and the NK1 antagonist CP-99, 994 on plasma extravasation in the dura mater and c-fos mRNA expression in the trigeminal nucleus caudalis of rats. Neuropharmacology 34:255–261
20. Johnson DE, Rollema H, Schmidt AW, McHarg AD (2001) Serotonergic effects and extracellular brain levels of eletriptan, zolmitriptan and sumatriptan in rat brain. Eur J Pharmacol 425:203–210
21. Levy D, Jakubowski M, Burstein R (2004) Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5-HT1B/1D receptor agonists. Proc Natl Acad Sci USA 101:4274–4279
22. Edelmayer RM, Vanderah TW, Majuta L, Zhang ET, Fioravanti B, De Felice M et al (2009) Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann Neurol 65:184–193
23. De Vries P, Villalon CM, Saxena PR (1999) Pharmacological aspects of experimental headache models in relation to acute antimigraine therapy. Eur J Pharmacol 375:61–74
24. Skingle M, Birch PJ, Leighton GE, Humphrey PPA (1990) Lack of nociceptive activity of sumatriptan in rodents. Cephalalgia 10:207–212
25. Read SJ, Hirst WD, Upton N, Parssons AA (2001) Cortical spreading depression produces increased CGMP levels in cortex and brain stem that is inhibited by tonabersat (SB-220453) but not sumatriptan. Brain Res 891:69–77
26. Pardutz A, Szatmari E, Maier JS, Schoenen J (2004) Nitroglycerin-induced nNOS increase in rat trigeminal nucleus caudalis is inhibited by systemic administration of lysine acetylsalicylate but not of sumatriptan. Cephalalgia 24:439–445
27. Ingvarsdens BK, Laursen H, Olsen UB, Hansen AJ (1997) Possible mechanism of c-fos expression in trigeminal nucleus caudalis following cortical spreading depression. Pain 72:407–415
28. Ghehardini C, Galeotti N, Figini M, Imperato A, Nicolodi M, Sicuteri F et al (1996) The central cholinergic system has a role in the antinociception induced in rodents and guinea pigs by the antimigraine drug sumatriptan. J Pharmacol Exp Ther 279:884–890
29. Hoskin KL, Kaube H, Goadsby PJ (1996) Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism. Brain 119:1419–1428
30. Mitsikostas DD, Papadopoulou-Dafortis Z, Stikakis A, Varonos D (1996) The effect of sumatriptan on brain monoamines in rats. Headache 36:29–31
31. Read SJ, Manning P, McNeil CJ, Hunter AJ, Parsons AA (1999) Effect of sumatriptan on nitric oxide and superperoxide balance during glyceryl trinitrate infusion in the rat. Implications for antimigraine mechanisms. Brain Res 847:1–8
32. Read SJ, Parsons AA (2000) Sumatriptan modifies cortical free radical release during cortical spreading depression. A novel antimigraine action for sumatriptan? Brain Res 870:44–53
33. Kayser V, Aubel B, Haroun M, Bourgoin S (2002) The antimigraine 5-HT1B/1D receptor agonists, sumatriptan, zolmitriptan and dihydroergotamine, attenuate pain-related behaviour in a rat model of trigeminal neuropathic pain. Br J Pharmacol 137:1287–1297
34. Dobson CF, Tohyama Y, Diksic M, Hamel E (2004) Effects of acute and chronic administration of anti-migraine drugs sumatriptan and zolmitriptan on serotonin synthesis in the rat brain. Cephalalgia 24:2–11
35. Bates EA, Nikai T, Brennan KC, Fu Y-H, Charles AC, Basbaum AI et al (2009) Sumatriptan alleviates nitroglycerin induced mechanical and thermal allodynia in mice. Cephalalgia (in press)
36. Nozaki K, Moskowitz MA, Boccalini P (1992) CP-93, 129, sumatriptan, dihydroergotamine c-fos expression within rat trigeminal nucleus caudalis caused by chemical stimulation of the meninges. Br J Pharmacol 106:409–415
37. Moskowitz MA, Nozaki K, Kraig RP (1993) Neocortical spreading depression provokes the expression of C-for protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 13:1167–1177
38. Evans DC, O’Connor D, Lake BG, Evers R, Allen C, Hargreaves R (2003) Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein. Drug Metab Dispos 31:861–869
39. Kalvass JC, Maurer TS, Pollack GM (2007) Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo p-glycoprotein efflux ratios. Drug Metab Dispos 35:660–666
40. Pascual J, del Arco C, Romón T, del Olmo E, Castro E, Pazos A (1996) Autoradiographic distribution of [3H]sumatriptan-binding sites in post-mortem human brain. Cephalalgia 16:317–322
41. Castro ME, Pascual J, Romón T, del Olmo E, Castro E, Pazos A (1997) Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F) in the human brain: focus on brain stem and spinal cord. Neuropharmacology 36:535–542
42. Gallagher RM, Kunkel R (2003) Migraine patient concerns affecting compliance: results from the NHF survey. Headache 43:36–43
43. Goadsby PJ, Dodick D, Almas M, Diener H-C, Tfelt-Hansen P, Lipton RB, Parsson B (2007) Treatment emergent CNS symptoms following triptan therapy are part of the migraine attack. Cephalalgia 27:254–262
44. Tfelt-Hansen P, Teall J, Rodriguez F, Giacovazzo M, Paz J, Malbecq W, Block GA, Reines SA, Visser WH, on behalf of the Rizatriptan 030 study Group (1998) Oral rizatriptan versus oral sumatriptan: a direct comparative study in the acute treatment of migraine. Cephalalgia 18:361–367
45. Goadsby PJ, Dodick D, Almas M, Diener H-C, Tfelt-Hansen P, Lipton RB, Parsson B (2007) Treatment emergent CNS symptoms following triptan therapy are part of the migraine attack. Cephalalgia 27:254–262
46. Tfelt-Hansen P, Teall J, Rodriguez F, Giacovazzo M, Paz J, Malbecq W, Block GA, Reines SA, Visser WH, on behalf of the Rizatriptan 030 study Group (1998) Oral rizatriptan versus oral sumatriptan: a direct comparative study in the acute treatment of migraine. Cephalalgia 27:254–262
47. Silberstein SD, Diener H-C, McCarrolll KA, Lines CR (2004) CNS effects of sumatriptan and rizatriptan. Cephalalgia 24:78–79
48. Barbanti P, Fabbrini G, Berardelli A (2008) Acute pathological laughter induced by sumatriptan. Cephalalgia 28:92–93
49. Oterino A, Pascual J (1998) Sumatriptan-induced axial dystonia in a patient with cluster headache. Cephalalgia 18:360–361
50. López-Alemany M, Ferrer-Tuset C, Bernácer-Alpera B (1997) Akathisia and acute dystonia induced by sumatriptan. J Neurol 244:131–133
51. van der Post J, Schram MT, Schoemaker RC, Pieters MS, Fuseau E, Pereira A et al (2002) CNS effects of sumatriptan an rizatriptan in healthy female volunteers. Cephalalgia 22:271–281
52. Proielli-Cecchini P, Agra J, Schoenen J (1997) Intensity dependence of cortical auditory evoked potential as a surrogate marker of central nervous system serotonin transmission in man: demonstration of a central effect for the 5HT_{1B/D} agonist zolmitriptan (311C90, Zomig). Cephalalgia 17:849–854
53. Sullivan JT, Presten KL, Testa MP, Busch M, Jasinski DR (1992) Psychoactivity and abuse potential of sumatriptan. Clin Pharmacol Ther 52:635–642
54. Sakai Y, Dobson C, Diksic M, Aubé M, Hamel E (2008) Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis. Neurology 70:431–439
55. Göbel H, Krapat S, Dworschak M, Heuss D, Ensink FB, Soyka D (1994) Exteroceptive suppression of temporalis muscle activity during migraine attack and migraine interval before and after treatment with sumatriptan. Cephalalgia 14:143–148
56. Göbel H, Krapat S, Ensink FB, Soyka D (1993) Comparison of contingent negative variation between migraine interval and migraine attack before and after treatment with sumatriptan. Headache 33:570–572
57. Thomaides T, Tagaris S, Karageorgiou C (1996) EEG and topographic frequency analysis in migraine attack before and after sumatriptan infusion. Headache 36:111–114
58. Koran LM, Cahill H, Knipe S, Muir DF, MacIntyre PD, Hillis WS (2000) Sumatriptan reduces exercise capacity in healthy males: a peripheral effect of 5-hydroxytryptamine agonism? Clin Sci (Lond) 98:643–648
59. Dodick DW, Martin V (2004) Triptans and CNS-side effects: pharmacokinetic and metabolic mechanisms. Cephalalgia 24:417–424
60. Fox AW (2000) Comparative tolerability of oral 5-HT1B/1D agonists. Headache 40:521–527
61. Pascual J, Muñoz P (2005) Correlation between lipophilicity and triptan outcomes. Headache 45:3–6
62. Cady RK, Wendt JK, Kirchner JR, Sargent JD, Rothrock JF, Skaggs H (1991) Treatment of acute treatment with subcutaneous sumatriptan. JAMA 265:2831–2835
63. Subcutaneous Sumatriptan International Study Group (1991) Treatment of migraine attacks with sumatriptan. N Engl J Med 325:316–321
64. Geraud G, Olesen J, Pfaffenrath V, Tfelt-Hansen P, Zupping R, Diener H-C, Sweet R, on behalf of the Study Group (2000) Comparison of the efficacy of zolmitriptan and sumatriptan: issues in migraine trial design. Cephalalgia 20:30–38
65. Ahnn AH, Basbaum AI (2005) Where do triptans act in the treatment of migraine? Pain 115:1–4
66. Bonaventure P, Voon P, Luyten WH, Leyens JE (1998) 5HT1B and 5HT1D receptor mRNA differential colocalization with peptide mRNA in the guinea pig trigeminal ganglion. Neuroreport 9:641–645
67. Lin H, Oksenberg D, Ashkanazi A, Peroutka S, Duncan A, Roszmael R et al (1992) Characterization of the human 5-hydroxytryptamine1b receptor. J Biol Chem 267:5735–5738
68. Popper K (1959) The logic of scientific discovery. Basic Books, New York
69. Edvinsson L, Tfelt-Hansen P (2008) The blood–brain barrier in migraine treatment. Cephalalgia 28:1245–1258
70. Weiller C, May A, Limroth V, Jaeger M, Kauhe H, Schayck RV et al (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1:658–660
71. Afridi SK, Matharu MS, Lee L, Kauhe H, Friston KJ, Frackowick RS et al (2005) A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 128:932–939