The Acute Phase of Experimental Cardiogenic Shock Is Counteracted by Microcirculatory and Mitochondrial Adaptations

Thor Allan Stenberg1,3*, Anders Benjamin Kildal2,3,9, Espen Sanden1*, Ole-Jakob How2, Martin Hagve2, Kirsti Ytrehus2, Terje S. Larsen2, Truls Myrmel1,3*

1 Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway, 2 Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway, 3 Department of Cardiothoracic and Vascular Surgery, University Hospital of North Norway, Tromsø, Norway

Abstract

The mechanisms contributing to multiorgan dysfunction during cardiogenic shock are poorly understood. Our goal was to characterize the microcirculatory and mitochondrial responses following ≥10 hours of severe left ventricular failure and cardiogenic shock. We employed a closed-chest porcine model of cardiogenic shock induced by left coronary microembolization (n = 12) and a time-matched control group (n = 6). Hemodynamics and metabolism were measured hourly by intravascular pressure catheters, thermodilution, arterial and organ specific blood gases. Echocardiography and assessment of the sublingual microcirculation by sidestream darkfield imaging were performed at baseline, 2 ± 1 and 13 ± 3 (mean ± SD) hours after coronary microembolization. Upon hemodynamic decompensation, cardiac, renal and hepatic mitochondria were isolated and evaluated by high-resolution respirometry. Low cardiac output, hypotension, oliguria and severe reductions in mixed-venous and hepatic O2 saturations were evident in cardiogenic shock. The sublingual total and perfused vessel densities were fully preserved throughout the experiments. Cardiac mitochondrial respiration was unaltered, whereas state 2, 3 and 4 respiration of renal and hepatic mitochondria were increased in cardiogenic shock. Mitochondrial viability (RCR; state 3/state 4) and efficiency (ADP/O ratio) were unaffected. Our study demonstrates that the microcirculation is preserved in a porcine model of untreated cardiogenic shock despite vital organ hypoperfusion. Renal and hepatic mitochondrial respiration is upregulated, possibly through demand-related adaptations, and the endogenous shock response is thus compensatory and protective, even after several hours of global hypoperfusion.

Introduction

Cardiogenic shock (CS) is the result of a complex process with failure of O2 delivery, generalized ATP deficiency, and multiorgan dysfunction initiated by cardiac pump failure [1]. CS complicates 2–10% of acute coronary syndromes and is the leading cause of death among these patients, with a short-term mortality of 40–80% [2]. Several large trials have demonstrated that coronary revascularization is the most important strategy to improve patient survival [3–5]. However, patients who develop CS despite acute revascularization have a poor prognosis [6–8].

Interestingly, microcirculatory and mitochondrial dysfunction has been linked to the prognosis in septic shock [9], and several lines of research have led to the concept of a microcirculatory and mitochondrial dysfunction syndrome [10–12]. However, the support for such a syndrome in cardiogenic shock is more vague. Using venous plethysmography, Kirschenbaum et al. showed that forearm blood flow at rest and reactive hyperemia were diminished in a small subset of CS patients [13]. Reductions in the proportion of perfused small vessels and perfused capillary density have also been observed in patients with CS using orthogonal polarization spectral and sidestream darkfield imaging (SDF) imaging [14,15]. However, mortality has also been observed in CS patients with unaltered microcirculation [15]. Finally, although cardiac mitochondria are impaired in left ventricular failure [16–18], extracardiac mitochondrial function has not been studied in pure pump-failure CS.

In this study, an experimental model without drug treatment was established to assess microcirculatory and mitochondrial responses to CS. We examined microcirculatory function, organ metabolism and mitochondrial respiration in a porcine model of acute left ventricular dysfunction and CS induced by coronary microembolization (CME). We show that sublingual microcirculatory function was well preserved during the acute phase...
following induction of shock and that a compensatory upregulation of renal and hepatic mitochondrial respiration occurred despite severe systemic hypoperfusion.

Materials and Methods

The experimental protocol was approved by the local steering committee of the Norwegian Animal Research Authority and was conducted in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996). 18 castrated male domestic pigs (Norwegian Landrace and Yorkshire hybrids) weighing 49–63 kg were adapted to the animal facilities for 4–7 days and fasted overnight before the experiment with free access to water.

Anesthesia and instrumentation

The animals were premedicated with 20 mg/kg ketamine, 0.5 mg/kg midazolam and 0.03 mg/kg atropine administered intramuscularly. General anesthesia was induced with 0.01 mg/kg fentanyl and 10 mg/kg sodium pentobarbital through an ear vein and maintained with 0.02 mg/kg/h fentanyl, 4 mg/kg/h sodium pentobarbital and 0.3 mg/kg/h midazolam through a central venous catheter. The animals were intubated and mechanically ventilated using a volume-controlled ventilator adjusted according to capnography and arterial blood gases. The circulating volume was maintained by a 10 ml/kg/h saline infusion. 2500 IU heparin and 6 mg/kg amiodarone were administered to avoid catheter clotting and malignant arrhythmias. Arterial blood glucose was maintained at 4–6 mmol/l by infusion of 20% glucose as required. A normal core temperature was maintained at 38°C using a thermal mattress. A series of introducer sheaths were placed in the external jugular veins, femoral arteries and veins to facilitate vascular recordings and interventions as follows: I) A 7 Fr thermodilution catheter through the left external jugular vein to measure central venous pressure (CVP), mean pulmonary artery pressure (MPAP), pulmonary artery occlusion pressure (PAP), cardiac index (CI), mixed venous O2 saturation (SvO2), and core temperature; II) Measurement of mean arterial pressure (MAP) and arterial blood sampling. III) Coronary artery catheterization, fluoroscopy and microembolization. IV) Catheters inserted via both femoral veins and advanced with fluoroscopic guidance into the hepatic vein and the left renal vein to obtain blood samples. The main trunk of the left coronary artery was catheterized with a 4 Fr microcatheter to capnography and arterial blood gases. The circulating volume was maintained at 4–6 mmol/l by infusion of 20% glucose as required. A normal core temperature was maintained at 38°C using a thermal mattress. A series of introducer sheaths were placed in the external jugular veins, femoral arteries and veins to facilitate vascular recordings and interventions as follows: I) A 7 Fr thermodilution catheter through the left external jugular vein to measure central venous pressure (CVP), mean pulmonary artery pressure (MPAP), pulmonary artery occlusion pressure (PAP), cardiac index (CI), mixed venous O2 saturation (SvO2), and core temperature; II) Measurement of mean arterial pressure (MAP) and arterial blood sampling. III) Coronary artery catheterization, fluoroscopy and microembolization. IV) Catheters inserted via both femoral veins and advanced with fluoroscopic guidance into the hepatic vein and the left renal vein to obtain blood samples. A 10 Fr suprapubic catheter was used to drain the urinary bladder.

Experimental protocol

The experiments were performed in an alternating manner between shock (n = 12) and time-matched controls (n = 6). Echocardiographic and microcirculatory recordings were obtained at baseline, 2 hours after CME, and ≥10 hours after CME, closely preceding circulatory collapse. The main trunk of the left coronary artery was catheterized with a 4 Fr angiography catheter through the left external jugular vein to measure central venous pressure (CVP), mean pulmonary artery pressure (MPAP), pulmonary artery occlusion pressure (PAP), cardiac index (CI), mixed venous O2 saturation (SvO2), and core temperature; II) Measurement of mean arterial pressure (MAP) and arterial blood sampling. III) Coronary artery catheterization, fluoroscopy and microembolization. IV) Catheters inserted via both femoral veins and advanced with fluoroscopic guidance into the hepatic vein and the left renal vein to obtain blood samples. A 10 Fr suprapubic catheter was used to drain the urinary bladder.

Microcirculatory recordings and analysis

The sublingual microcirculation was evaluated using SDF imaging with a 5× objective lens (Microscan, Microvision Medical), and image analysis was conducted using a commercially available software package (Automated Vascular Analysis, Microvision Medical). At each measurement, steady images lasting ≥20 seconds were obtained from 5–10 sublingual areas, with care taken to avoid pressure artifacts by ensuring that venular flow was present throughout the recording [20]. SDF images were recorded electronically for offline analysis. All discernible vessels were manually demarcated in the microcirculatory video recordings according to current guidelines [20]. The total vessel density (TVD; mm/mm²) was calculated as the total length of vessels divided by the total surface area. Perfusion was qualitatively described as present (continuous flow for ≥20 seconds), absent (no flow for ≥20 seconds) or intermittent (no flow ≥50% of the time). Vessels with diameters less than 20 μm were defined as small vessels. Three equidistant horizontal and vertical lines were drawn on the recorded area, and the proportion of perfused small vessels (PPV) was calculated as the number of perfused small vessels (continuous flow ≥20 seconds) crossing the lines divided by the total number of small vessels crossing the lines. Perfused vessel density (PVD; mm/mm²), an estimate of functional capillary density, was calculated by multiplying the small vessel density by the proportion of perfused small vessels. The predominant type of small vessel flow (0 = absent, 1 = intermittent, 2 = sluggish, and 3 = normal) in each quadrant was assessed, and the microvascular flow index (MFI) was calculated as the averaged value from all four quadrants [21]. To obtain mean values at each measurement point, the data from 5 sublingual areas were averaged. The images used for these analyses were selected according to sharpness and the absence of movement artifacts to optimize image quality.

Mitochondrial high-resolution respirometry

Cardiac subsarcomemal (SSM) and interbibrillar mitochondria (IFM) were isolated from the left ventricle as previously described in the kidney and the left ventricle, and the animals were euthanized with an intravenous injection of 20 mg/kg sodium pentobarbital.
Renal and hepatic mitochondria were also isolated by the procedure used to isolate SSM mitochondria. Mitochondrial respiration was measured using a Clark-type electrode (Oxygraph-2k, Oroboros Instruments). Complex 1-dependent respiration was assessed using glutamate and malate as substrates. Complex 2-dependent respiration was assessed using succinate as a substrate, and rotenone was added to inhibit complex 1 activity. The initial O2 consumption after the addition of mitochondria and substrate was recorded as state 2. State 3 respiration was obtained after the addition of ADP to a final concentration of 300 μM, and state 4 resting respiration was measured after the added ADP was depleted. The respiratory control ratio (RCR; state 3/state 4) was calculated as described by Chance et al. [24]. The ADP to oxygen (ADP/O) ratio was calculated based on the addition of a known amount of ADP and the associated O2 consumption. Mitochondrial protein concentration was determined by the Bradford method using bovine serum albumin as a standard [25]. Citrate synthase specific activity was calculated spectrophotometrically [26].

Statistics

Hemodynamic and metabolic data are presented as mean±SD, whereas microcirculatory and mitochondrial data are presented as median±range. Hemodynamic, echocardiographic, metabolic and microcirculatory data were analyzed using a linear mixed-models approach with a restricted maximum likelihood method and the subject identifier as the random effect. Within-group trends that were not identified as significant using linear mixed-models were also assessed by one-way repeated measurements analysis of variance. P-values were adjusted for multiple comparisons using Tukey’s test. Mitochondrial respiratory data were assessed using the Mann-Whitney U-test. P-values <0.05 were regarded as statistically significant, and all analyses were conducted in JMP 9.0 (SAS Institute).

Results

A total of 18 animals were used in this study. CME was performed in 12 animals, while 6 animals served as time-matched controls. Of the animals subjected to CME, 3 animals died shortly after CME due to fatal cardiac arrhythmia and abrupt circulatory collapse, 2 animals failed to develop low cardiac output, and 1 animal did not show evidence of hypoperfusion. Thus, 6 animals did not fulfill the inclusion criteria and were excluded. Acute measurements after CME were performed when the animals exhibited a hemodynamic steady state (2±1 hours), and the final in vivo measurements were performed 13±3 hours after CME. This time point closely preceded decomposition and cardiovascular collapse, and most animals in the shock group died during the interval of interest due to circulatory instability, escalating and ultimately fatal arrhythmias.

Hemodynamics and metabolism

The groups were similar at baseline with respect to hemodynamic, metabolic and microcirculatory parameters. The microsphere dose used to induce left ventricular (LV) failure was 67±19 mg. As shown in Figure 1, the stroke volume index decreased to approximately 1/3 of the baseline value. LV failure was also evident by the increases in MPAP and PAOP. CVP increased in the shock group (7±1 vs. 12±2 mmHg, p<0.05). Despite compensatory tachycardia, an acute and sustained 40% reduction in CI was observed. Hypotension and oliguria/anuria developed gradually. The systemic vascular resistance (SVR) was similar between groups throughout the experiment. The systemic O2 delivery was reduced by approximately 50% in CS (6.5±1.7, ml/min/kg) compared with baseline and control group values (12.9±2.6 and 13.4±2.7, both p<0.05), whereas the systemic O2 consumption was unaltered. Figure 2 shows that both mixed and organ-specific venous O2 saturations declined substantially, with hepatic O2 saturation as low as 3%, indicating an extreme extraction across the liver, while no increase in arterial lactate concentration was observed. Similarly, there was no increase in renal and hepatic venous lactate levels (data not shown).

Speckle tracking echocardiography

Short-axis transthoracic 2D images were excluded from speckle tracking analysis in 1 shock and 2 control animals due to technical reasons. The average LV strain and strain rate in the shock group tended to decrease in the radial dimension and increase in the circumferential dimension, implying impaired contractility (Figure S1). The anteroseptal and lateral regions of interest were most severely affected by CME, and there was no evidence of compensatory hyperkinesia in regions supplied by the right coronary artery (Video S1).

Microcirculatory function

The sublingual total large vessel density, small vessel density, proportion of perfused small vessels and microvascular flow index did not change throughout the experiment in either group, and the shock group exhibited no detectable defects in microcirculatory function as assessed by SDF (Figure 3). Recordings from a pilot experiment are presented in Video S2, demonstrating no difference in microcirculatory parameters during shock. Furthermore, the effect of administering high-dose arginine-vasopressin on the microcirculation is demonstrated in the video to illustrate the sensitivity of SDF imaging in detecting potential alterations in microcirculatory function.

Mitochondrial respiration

LV, renal and hepatic mitochondria were isolated from all animals. Measurements of complex 2-dependent respiration in SSM from 1 control animal and 1 shock animal were excluded from analysis due to technical issues, thus n=5 for these measurements. The respiratory rates were normalized to citrate synthase activity in the samples to permit the comparison of measurements from different suspensions of isolated mitochondria. All measurements were also compared after adjustment for the total protein content, with similar results.

Complex 1-dependent respiration in the cardiac IFM and SSM fractions were unaffected by CME, whereas complex 1-dependent renal and hepatic state 2, 3 and 4 respiratory rates were significantly elevated following CME (Table 1). The complex 2-dependent respiratory rates in the cardiac IFM and SSM fractions were also similar between groups. Complex 2-dependent hepatic state 2 and renal state 3 and 4 respiratory rates were significantly elevated in the shock group. Mitochondrial coupling and viability, as assessed by the RCR, were similar between groups. The ADP/O ratio was also unaffected by CME, indicating a similar mitochondrial efficiency and thus no difference in non-metabolic O2 consumption between groups.

Biochemistry

The level of circulating leukocytes was similar in both groups across all time points, indicating the absence of any major systemic inflammatory response. Creatinine levels were increased in the shock group, corresponding to the development of oliguria and kidney failure. Aspartate and alanine transaminase levels both
increased in the shock group, with the latter indicating hepato-
cellular damage (Figure 4). Cardiac troponin T levels increased to
5.8±2.8 µg/l 13±3 hours after CME, whereas they remained
below the detection limit (0.01 µg/l) in the control group.

Discussion
In these healthy young animals, the reduced systemic O₂
delivery in the acute phase of experimental CS is counteracted by
microcirculatory and mitochondrial adaptations and this periph-

Figure 1. Hemodynamics. A–D: Mean arterial pressure (MAP), cardiac index (CI) and stroke volume index (SVI) decreased following coronary
microembolization (CME). Diuresis gradually declined, and all shock-treated animals developed oliguria/anuria. E–F: A profound increase in heart rate
(HR) developed after CME. Mean arterial pulmonary pressure (MPAP) and pulmonary artery occlusion pressure (PAOP) both increased after CME due
to severe left ventricular dysfunction. The systemic vascular resistance (SVR) was unaffected by CME. The data are presented as mean±SD. Open
circles, time-matched control group; filled circles, cardiogenic shock group. * p<0.05 within group compared to baseline, † p<0.05 within group
compared to 2±1 hours, ‡ p<0.05 between groups.
doi:10.1371/journal.pone.0105213.g001

Figure 2. Metabolism. A–C: Mixed venous, renal venous and hepatic venous O₂ saturations (SO₂) were reduced following coronary
microembolization. D: No increase in arterial lactate was observed despite profound shock. The data are presented as mean±SD. Open circles, time-
matched control group; filled circles, cardiogenic shock group. * p<0.05 within group compared to baseline, † p<0.05 within group compared to 2±1
hours, ‡ p<0.05 between groups.
doi:10.1371/journal.pone.0105213.g002
eral adaptability is sufficient to withstand anaerobic metabolism despite prolonged severe hypoperfusion. CME induced severe decreases in stroke volume index, low CI, hypotension and a gradual onset of oliguria/anuria. This untreated CS was ultimately fatal. Despite acute and prolonged hypotension, the SVR was unaltered in the shock group. This has been observed by others both experimentally and clinically and challenges the classical paradigm of CS [27–29]. We found no biochemical indication of

![Figure 3. Total and Perfused Small Vessel Densities.](image)

A–B: The total small vessel density (TVD) and perfused small vessel density (PVD) were fully preserved after coronary microembolization (CME). C: The proportion of perfused small vessels (PPV) was also identical across time points and between groups. D: The microvascular flow index (MFI) was not affected by CME. The data are presented as median±range. Open box plots, time-matched control group; filled box plots, cardiogenic shock group.

doi:10.1371/journal.pone.0105213.g003

Table 1. Mitochondrial Respiratory Parameters.

Substrate	Group	Organ	Cardiac IFM	Cardiac SSM	Renal	Hepatic
Glutamate						
State 2	Control	59 (39–65)	38 (22–44)	90 (78–104)	77 (53–86)	
	Shock	50 (14–80)	27 (15–36)	116 (105–132)	94 (79–142)	
State 3	Control	434 (241–473)	393 (246–700)	955 (678–1138)	947 (391–1193)	
	Shock	311 (73–702)	222 (101–517)	1371 (1103–1885)	1275 (1124–1987)	
State 4	Control	88 (62–104)	56 (39–84)	89 (76–108)	59 (53–104)	
	Shock	105 (68–180)	62 (55–62)	110 (105–149)	116 (102–160)	
RCR	Control	4.6 (3.9–7.6)	6.8 (4.9–9.7)	10.4 (8.4–11.5)	10.4 (7.5–12.5)	
	Shock	2.7 (1.1–6.3)	3.7 (1.6–8.8)	12.5 (10.1–13.1)	12.0 (9.4–12.5)	
ADP/O	Control	2.9 (2.7–3.1)	2.8 (2.7–3.0)	2.6 (2.4–2.9)	2.7 (2.5–3.1)	
	Shock	2.0 (1.5–3.0)	2.5 (2.1–3.0)	2.6 (2.4–2.9)	2.8 (2.5–2.9)	

Succinate						
State 2	Control	165 (103–221)	131 (92–283)	353 (304–416)	208 (161–228)	
	Shock	154 (50–269)	82 (39–128)	415 (379–474)	249 (198–352)	
State 3	Control	345 (210–406)	336 (190–541)	1752 (1560–1953)	1531 (1209–1862)	
	Shock	267 (91–550)	199 (99–338)	2440 (2018–2516)	1892 (1344–2614)	
State 4	Control	148 (114–254)	148 (98–329)	212 (137–224)	232 (156–255)	
	Shock	168 (85–297)	113 (83–128)	253 (189–335)	275 (225–394)	
RCR	Control	1.8 (1.6–2.3)	2.2 (1.6–3.0)	8.7 (7.5–12.5)	7.3 (6.0–8.0)	
	Shock	1.5 (1.1–2.1)	2.0 (1.2–2.7)	9.1 (7.3–11.0)	6.5 (5.8–7.9)	
ADP/O	Control	1.7 (1.6–2.1)	1.8 (1.4–2.1)	1.8 (1.7–2.0)	1.9 (1.6–2.0)	
	Shock	1.2 (0.1–1.8)	1.7 (0.4–1.9)	1.9 (1.8–2.0)	1.9 (1.8–2.0)	

Renal and hepatic complex 1-dependent state 2, 3 and 4 mitochondrial respiration using glutamate as substrate were increased in cardiogenic shock, whereas respiratory control ratio (RCR) and ADP/O values were unaffected indicating well-coupled and efficient respiration. Cardiac interfibrillar (IFM) and subsarcolemmal (SSM) mitochondrial respiration was unaffected. Complex 2-dependent mitochondrial respiration using succinate as substrate demonstrates a similar tendency. State 2, 3 and 4 respiratory rates are presented as pmol O₂/min/IU citrate synthase. The data are presented as median±range.

¹p<0.05 between groups.

doi:10.1371/journal.pone.0105213.t001
normobaric hyperoxia, indicating that O2 availability may control microvascular flow and perfused capillary density are observed in decreased microvascular flow. Similar alterations with reduced vasodilating metabolites and thus possibly contributing to by mitochondrial dysfunction [31], in turn reducing the levels of reperfusion all contributing to systemic cellular injury [33]. As stated, in the present study, however, we observed no indication of any major systemic inflammatory response. In contrast, assessment of the O2 saturation in the parenchymal venous drainage revealed organ hypoxia to such an extent that enzyme leaks were present. Thus, the effects of hypoxia could parallel organ pathology in CS. Notably, state 3 respiratory rate in cardiac mitochondria has been found to increase more than 100% during acute in vivo hypoxemia and to stabilize at more than 40% above baseline during chronic in vivo hypoxemia [34]. A similar observation has been made following hypoperfusion [35,36], and comparable effects were also observed when demand was increased by endurance training [37,38]. Hypoxia activates hypoxia-inducible factor 1 (HIF-1) through increased generation of reactive oxygen species (ROS). HIF-1 initiates a potentially adaptive response where increased glycolytic flux and pyruvate-lactate conversion, impaired tricarboxylic-acid-cycle activity and altered composition of cytochrome c oxidase (COX, complex 4) in the electron transport chain ensures an efficient ATP production without excessive ROS generation [39]. Noticeably, through subunit conversion from COX4-1 to COX4-2, O2 consumption and ATP production increases under hypoxic conditions, whereas H2O2 levels decrease [40]. These changes in mitochondrial oxidative phosphorylation capacity appear to be adaptive and imply that mitochondrial efficiency is increased under hypoxic conditions. Similar mechanisms may increase ATP production due to increased demand following acute exposure to inflammatory cytokines [41]. However, in vitro exposure of isolated mitochondria to hypoxic conditions produces variable effects on respiratory activity [42,43], and it is likely that these demand-related adaptations are caused, at least in part, by extramitochondrial interactions [44,45].

We observed an increase in renal and hepatic state 3 respiratory rates in CS using complex 1-dependent substrates, whereas this parameter was unaltered in both cardiac fractions. Renal and hepatic state 2 and 4 respiratory rates were slightly increased in the shock group, but the RCR values and ADP/O ratios were similar, indicating well-coupled and efficient respiration. A similar trend was observed when succinate was used as a complex 2-dependent substrate, but only renal state 3 respiratory rate was significantly elevated in the shock group. Cardiac respiratory data were highly variable, and this likely reflects the heterogeneous pattern of microinfarctions after CME [46]. Prior studies have demonstrated

Figure 4. Indicators of Organ Damage. A: Circulating leukocyte levels were similar between groups, indicating the absence of any major inflammatory response after coronary microembolization (CME). B: Creatinine levels increased following CME, in parallel with the kidney failure evidenced by oliguria/anuria. C–D: Hepatic aspartate (AST) and alanine (ALT) transaminase levels increased after CME, indicating hepatocellular damage. The data are presented as median ± range. Open box plots, time-matched control group; filled box plots, cardiogenic shock group. * p<0.05 within group compared to baseline, † p<0.05 within group compared to 2±1 hours, ‡ p<0.05 between groups.
decreased respiratory rates in both the ischemic and remote myocardium [17,10], and this has been linked to reduced levels of the supercomplex 1/3-dimer/4, together with increased phosphorylation of complex 4 subunits [18,47]. Cardiac mitochondrial dysfunction and energetic failure are thus potentially important mechanisms propagating contractile failure during cardiogenic shock [16,48,49].

This study has several limitations when exploring potential mechanisms of human cardiogenic shock. The porcine model used young animals without comorbid disease and with substantial compensatory reserves. The unsuscpticated observation period following the induction of shock is of limited duration, and it is possible that a longer observation phase, or an active treatment protocol, could have uncovered both microcirculatory and mitochondrial dysfunction. The methods used to isolate mitochondria from various tissues were designed to exclude damaged mitochondria and preserve the viable mitochondria. Thus, existing mitochondrial dysfunction in vivo may remain undetected. However, we observed no differences in total protein content or citrate synthase activity among groups, indicating that the amounts of mitochondria isolated from each group were similar. In cardiac biopsies, however, the loss of damaged mitochondria due to the isolation procedure likely contributed to the observed results. Furthermore, only two substrate combinations were used in the experiments. Glutamate and malate were used to observe complex 1-dependent respiration, and succinate was used as a substrate for complex 2-dependent respiration. Oligomycin was not used to inhibit ATP-synthase, but a stable state 4 was observed following ADP depletion. Thus, the use of other substrates may reveal differences between CS and controls that remained undetected in the present study.

In conclusion, we demonstrate that the microcirculation is preserved in a porcine model with untreated CS despite vital organ hypoperfusion. Renal and hepatic mitochondrial respiration is upregulated, possibly through demand-related adaptations, and the endogenous shock response appears to be compensatory and protective, even after several hours of global hypoperfusion.

Supporting Information

Figure S1 Strain and Strain Rate. A-B: The average radial strain across all regions of interest decreased after coronary microembolization (CME), whereas a similar left ventricular dysfunction was evident by the increase in the average circumferential strain. C-D: The average circumferential strain rate also increased after CME. Data are presented as median±range. Open box plots, time-matched control group; filled box plots, cardiogenic shock group, *p<0.05 within group compared to baseline by one-way repeated measurements analysis of variance.

(EPS)

Video S1 Example echocardiography recordings. Short-axis transthoracic 2D images from a cardiogenic shock animal at baseline, after coronary microembolization, and during cardiogenic shock.

(M4V)

Video S2 Example microcirculatory recordings. Side-stream darkfield images from a pilot experiment at baseline, during cardiogenic shock and after the administration of high-dose arginine-vasopressin.

(M4V)

Acknowledgments

The authors are indebted to the staff at the Surgical Research Laboratory for their excellent technical assistance.

Author Contributions

Conceived and designed the experiments: TAS ABK ES OJH TM. Performed the experiments: TAS ABK ES. Analyzed the data: TAS ABK ES MH KY TSL OJH TM. Contributed reagents/materials/analysis tools: TAS ABK ES MH KY TSL OJH TM. Contributed to the writing of the manuscript: TAS ABK ES OJH TM. Echocardiographic analysis: TAS. Contributed to the writing of the manuscript: TAS ABK ES OJH TM. Echocardiographic analysis: TAS. Microcirculatory analysis: ABK. Mitochondrial assays: ES MH.

References

1. Okuda M (2006) A multidisciplinary overview of cardiogenic shock. Shock 25: 557–570.

2. Westaby S, Kharranda R, Banning AP (2012) Cardiogenic shock in ACS. Part 1: prediction, presentation and medical therapy. Nature Rev Cardiol 9: 150–171.

3. Berger PB, Tuttle RH, Holmes DR, Topol EJ, Aylward PE, et al. (1999) One-year survival among patients with acute myocardial infarction complicated by cardiogenic shock, and its relation to early revascularization: results from the GUSTO-I trial. Circulation 99: 873–879.

4. Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, et al. (1999) Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emegrently Revascularize Ochedad Coronaries for Cardiogenic Shock. N Engl J Med 341: 625–634.

5. Krumholz HM, Anderson JL, Brooks NH, Fesmire FM, Lambrew CT, et al. (2004) ACC/AHA clinical performance measures for adults with ST-elevation myocardial infarction. J Am Coll Cardiol 44: 1644–1705.

6. Zeymer U, Vogt A, Zahn R, Weber MA, Tebbe U, et al. (2002) Bench-to-bedside review: Cytopathic hypoxia. Crit Care 6: 491–500.

7. Fink MP (2002) Bench-to-bedside review: Cytopathic hypoxia. Crit Care 6: 491–500.

8. Okuda M (2006) A multidisciplinary overview of cardiogenic shock. Shock 25: 557–570.

9. Spronk P, Kanoore-Ezhil V, Ince C (2005) Microcirculatory and mitochondrial distress syndrome (MMDS): a new look at sepsis. In: Pinsky MR, Payen D, editors. Update in Intensive Care Emergency Medicine 2004. Springer. 47–67.

10. Ince C, Ashraf JF, Avountur JA, Wierringa PA, Spaan JA, et al. (1993) Heterogeneity of the hypoxic state in rat heart is determined at capillary level. Am J Physiol 264: H294–H301.

11. Ince C (2005) The microcirculation is the motor of sepsis. Crit Care Suppl 4: S13–S19.

12. Kirschbaum LA, Astiz ME, Rackow EC, Saha DC, Lin R (2000) Microvascular response in patients with cardiogenic shock. Crit Care Med 28: 1290–1294.

13. de Backer D, Cretier J, Dubois MJ, Sake Y, Vincent JL (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147: 91–99.

14. de Backer D, Cretier J, Dubois MJ, Sake Y, Vincent JL (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147: 91–99.

15. Almsherqi ZA, McLachlan CS, Slocinska MB, Sluse FE, Navet R, et al. (2006) Reduced cardiac output is associated with decreased mitochondrial efficiency in the non-ischemic ventricular wall of the acute myocardial-infarcted dog. Cell Res 16: 297–305.

16. Rosca MG, Vazquez EJ, Kerber J, Parland W, Chandler MP, et al. (2008) Cardiac mitochondria in heart failure: decrease in respirosomes and oxidative phosphorylation. Cardiovasc Res 80: 30–39.
19. D’hooge J, Heindel A, Jamal F, Kukulski T, Bijuris B, et al. (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 1: 154–170.

20. De Backer D, Hollemburg S, Boerma C, Goedhart P, Büchele G, et al. (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11: R101.

21. Boerma EC, Mathura KR, van der Voort PHJ, Sproenke PE, Ince C (2005) Quantifying bed-side derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care 9: R601–R606.

22. Johansen D, Sanden E, Hayve M, Chua X, Sundset R, et al. (2011) Heptanol triggers cardioprotection via mitochondrial mechanisms and mitochondrial potassium channel opening in rat hearts. Acta Physiol (Oxf) 201: 435–444.

23. Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252: 8731–8739.

24. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217: 409–427.

25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.

26. Steere PA (1969) Citrate synthase. Methods Enzymol 13: 3–11.

27. Agress CM, Glassner HF, Binder MJ, Fields J (1957) Hemodynamic measurements in experimental coronary shock. J Appl Physiol 10: 469–475.

28. Lim N, Dubois MJ, De Backer D, Vincent JL (2003) Do all nonsurvivors of cardiogenic shock die with a low cardiac index? Chest 124: 1885–1891.

29. Hollemburg S, Kavinsky CJ, Parrillo JE (1999) Cardiogenic shock. Ann Intern Med 131: 47–59.

30. Munsterman LDH, Elbers PWG, Onderwijs A, van Dongen EPA, van Iterson M, et al. (2010) Withdrawing intra-aortic balloon pump support paradoxically improves microvascular flow. Crit Care 14: R161.

31. Singer M, De Santis V, Vitale D, Jeffcoate W (2004) Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 364: 545–548.

32. Tsai AG, Cabrera P, Wislow RM, Intaglietta M (2003) Microvascular oxygen distribution in awake hamster window chamber model during hypoxia. Am J Physiol Heart Circ Physiol 285: H1537–H1545.

33. Reynolds HR, Hochman JS (2008) Cardiogenic shock current concepts and improving outcomes. Circulation 117: 686–697.

34. Park CD, Mela L, Wharton R, Reilly J, Fishbein P, et al. (1973) Cardiac mitochondrial activity in acute and chronic cyanosis. J Surg Res 14: 139–146.

35. Pelikan PC, Niemann JT, Xia GZ, Jagels G, Criley JM (1987) Enhancement of mitochondrial oxidative phosphorylation capability by hyperperfusion in isolated perfused rat heart. Circ Res 61: 380–388.

36. Lemmi CA, Pelikan PC, Sikk SC, Hirschberg R, Gesesman B, et al. (1989) Cyclosporine augments renal mitochondrial function in vivo and reduces renal blood flow. Am J Physiol 257: F837–F841.

37. Daussin FN, Rasseneur L, Boudier J, Charles AL, Dufour SP, et al. (2012) Different timing of changes in mitochondrial functions following endurance training. Med Sci Sports Exerc 44: 217–224.

38. Halstadius AD, Boardman NT, Lund J, Hayve M, Khalid AM, et al. (2011) High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. J Appl Physiol 111: 1235–1241.

39. Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405: 1–9.

40. Fukuda R, Zhang H, Kim JW, Shioda L, Deng CV, et al. (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129: 111–122.

41. Jin MB, Shimahara Y, Yamaguchi T, Ichimiya M, Kinoshita K, et al. (1995) The effect of a bolus injection of TNF-alpha and IL-1 beta on hepatic energy metabolism in rats. J Surg Res 58: 509–515.

42. Duan JM, Karmazyn M (1989) Acute effects of hypoxia and phosphate on two populations of heart mitochondria. Mol Cell Biochem 90: 47–56.

43. Fuller EO, Goldberg DI, Starnes JW, Sacks LM, Delivoria-Papadopoulos M (1985) Mitochondrial respiration following acute hypoxia in the perfused rat heart. J Mol Cell Cardiol 17: 71–81.

44. Guzun R, Timohchina N, Tepp K, Monge C, Kaambré T, et al. (2009) Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties. Biochim Biophys Acta 1787: 1089–1105.

45. Timohchina N, Guzun R, Tepp K, Monge C, Varikmaa M, et al. (2009) Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for mitochondrial interactosome. J Bioenerg Biomembr 41: 259–275.

46. Heusch G, Kleinbongard P, Rose D, Leykauf E, Haude M, et al. (2009) Coronary microembolization: from bedside to bench and back to bedside. Circulation 120: 1822–1836.

47. Rosca M, Minkler P, Hoppel CL (2011) Cardiac mitochondria in heart failure: normal cardioglobin profile and increased thrombine phosphorylation of complex IV. Biochim Biophys Acta 1810: 1373–1382.

48. Tanami T, Matoba S, Kawahara A, Keira N, Shiraishi J, et al. (2000) Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. J Am Coll Cardiol 35: 1538–1546.

49. Kaasik A, Joubert F, Ventura-Clapier R, Vekler V (2004) A novel mechanism of regulation of cardiac contractility by mitochondrial functional state. FASEB J 18: 1219–1227.