The Relevance of Isotherm and Kinetic Models to Chlorophenols Adsorption: A Review

Zaharaddeen N. Garba*

1Department of Chemistry, Ahmadu Bello University Zaria, Nigeria

Abstract

The derivatives of phenols are among the most widely used chemicals in day-to-day life, which lead to water contamination by chlorophenols (CPs). These compounds belong to a class of those widely used chemicals that increase global concern about environmental protection due to their recalcitrant nature. Adsorption process has been employed for the removal of CPs from contaminated water out of many methods of wastewater treatment. This is due to its insensitivity to toxic substances, effectiveness, universal nature, fast kinetics, as well as the ease of operation and its simplicity in the design and applicability. Thus, this study compared the adsorption isotherm models such as linear and nonlinear and well discussed the fundamental characteristics, modelling, and mathematical derivations. Finally, the study highlighted and addressed the role of different isotherm models that were used in describing the adsorptive removal of CPs using various adsorbents.

Keywords: Chlorophenols, Adsorption, Isotherms, Linear, Nonlinear, Adsorbents

1. Introduction

The importance of water to life cannot be overemphasized since it serves many other purposes apart from drinking and agriculture (1). A larger fraction of the earth is covered with water. Despite its abundant on the surface of the earth, the World Health Organization (WHO) only recommended a small portion of the fraction to be appropriate for drinking purposes. Even by considering the WHO recommendation, the majority of the populace in developing countries are known for the inadequate supply of hygienic drinking water (2). Natural and artificial activities are among numerous factors that contribute to water pollution which is among the most troubling environmental challenges bedevilling several countries. Water pollution occurs when substances that negatively affect living species contaminate the oceans, rivers, lakes, bays, and streams (3).

Chlorophenols (CPs) that are covalently bonded to one, two, three, four and/or five chlorine atoms are named as monochlorophenols, dichlorophenols, trichlorophenols, tetrachlorophenols, and/or pentachlorophenols, respectively (4). They are also known as important pollutants, which are widely found in industrial wastewaters and characterized by low biodegradability, strong odour, persistency in the environment, along with carcinogenic and toxic features affecting human and its environment. Exposure to CPs affects human nervous and respiratory systems and makes them hazardous to health (5-8). Table 1 lists some properties of selected CPs.

The recalcitrant nature of CPs makes them discharge into water bodies as a significant source of pollution. Basically, the accurate data are yet to be known, showing the exact amount of CPs discharged into the environment from various processes. Some of the processes applied for treating wastewater contaminated with CPs include adsorption (9-17), catalytic wet oxidation (18), biodegradation (19), aerobic granular sludge technology (20), anaerobic processes (21), and electrochemical degradation (22). However, Das et al (24) believed that the effectiveness of these technologies in fixing water pollution is questionable with their major threats and drawbacks (Fig. 1).

A recently published review article by Garba et al (16) provided detailed information on CPs, their sources into the environment, classification, and toxicity, and various wastewater treatment methods for their removal. In addition, they described the characteristics of CP adsorption by various adsorbents while not including isotherm and kinetic models. Thus, the objective of this work was to show the relevance of isotherm and kinetic models in studying CP adsorption onto various adsorbents.

*Correspondence to
Zaharaddeen N. Garba,
Email: dinigetso2000@gmail.com

Received April 24, 2019; Revised June 2, 2019; Accepted June 10, 2019
Table 1. Selected Properties of Chlorophenolsa

Chlorophenols	Structure	MVb(cm3/mol)	C\textsubscript{s}(g/L)	LogK\textsubscript{ow}	pK\textsubscript{a}
2-chlorophenol	![2-chlorophenol structure](image)	99.8	2.40	2.220	8.50
4-chlorophenol	![4-chlorophenol structure](image)	99.8	2.10	2.418	9.47
2,4-dichlorophenol	![2,4-dichlorophenol structure](image)	111.7	0.47	3.095	8.05
2,6-dichlorophenol	![2,6-dichlorophenol structure](image)	111.7	0.52	2.896	7.02
2,4,5-trichlorophenol	![2,4,5-trichlorophenol structure](image)	123.7	0.085	3.835	7.10
2,4,6-trichlorophenol	![2,4,6-trichlorophenol structure](image)	123.7	0.091	3.768	6.59

Abbreviation: MV, molar volume.

aProperties of chlorophenols were culled from (23) and obtained from SciFinder https://scifinder.cas.org.

Fig. 1. Some Major Drawbacks Associated With Conventional Water Purification Systems.
A Review on Isotherm and Kinetic Modelling of Chlorophenols Adsorption

Table 2. Adsorption Isotherm Models (47)

Isotherm models	Linear form	Nonlinear form	Plot	Reference
Langmuir	\(\frac{1}{q_e} = \frac{1}{K_L Q^e} + \frac{1}{Q^e} \)	\(\frac{C_e}{q_e} = \frac{C_e}{Q^e} + \frac{1}{K_L Q^e} \)	\(C_e \) vs \(\frac{1}{C_e} \)	(42)
	\(q_e = - \frac{q_{eq}}{K_c C_e} + Q_e \)	\(q_e = \frac{K_L Q^e C_e}{1 + K_L C_e} \)	\(q_e \) vs \(\frac{q_e}{C_e} \)	
Freundlich	\(\log q_e = \log K_F + \frac{1}{n} \log C_e \)	\(q_e = \frac{K_f C_e}{C_e}^{1/n} \)	\(\log q_e \) vs \(\log C_e \)	(48)
Tempkin	\(q_e = \frac{RT}{b_T} \ln A_T + \frac{RT}{b_T} \ln C_e \)	\(q_e = \frac{RT}{b_T} \ln (A_T C_e) \)	\(q_e \) vs \(\ln C_e \)	(49)
Dubinin-Radushkevich	\(\ln (q_e) = \ln \theta \ln C_e - k_d \theta^2 \)	\(q_e = \frac{\theta \ln C_e - k_d \theta^2}{1 + k_d \theta^2} \)	\(\ln (q_e) \) vs \(\theta^2 \)	(50)
Flory-Huggins	\(\frac{1}{C_o} = K_{FH} \ln 1 - \frac{1}{C_o} + \frac{1}{n} \ln C_e \)	\(\log \frac{q}{C_o} \) vs \(\log 1 - \frac{1}{C_o} \)	\(\log \frac{q}{C_o} \) vs \(\log 1 - \frac{1}{C_o} \)	(51)
Hill	\(\log \left(\frac{q_e}{q_{HL}} \right) = n \log C_e - \log (K_D) \)	\(q_e = \frac{\frac{q_{HL}}{C_e} C_{HI}}{K_D + \frac{C_{HI}}{C_e}} \)	\(\log \left(\frac{q_e}{q_{HL}} \right) \) vs \(\log C_e \)	(52)
Redlich-Peterson	\(\ln \left(K_R \frac{C_e}{q_e} \right) = \ln (C_e) + \ln (B_R) \)	\(q_e = \frac{K_R C_e}{C_e + B_R C_e} \)	\(\ln \left(K_R \frac{C_e}{q_e} \right) \) vs \(\ln C_e \)	(53)
Sips	\(\ln \ln C_e = \ln \theta \ln q_{eq} - \ln a_s h \)	\(q_e = \frac{K_c C_{es}}{1 + a_s C_{es}} \)	\(\ln \ln C_e \) vs \(\ln q_{eq} \)	(54)
Toth	\(\ln \left(\frac{q_e}{K_T} \right) = \ln (C_e) - \frac{1}{1 + \ln (a_T + C_e)} \)	\(q_e = \frac{K_T C_e}{(a_T + C_e)^{1/1}} \)	\(\ln \left(\frac{q_e}{K_T} \right) \) vs \(\ln C_e \)	(55)
Koble-Corrigan	\(\frac{1}{q_e} = \frac{1}{AC_e} + \frac{B}{A} \)	\(q_e = \frac{AC_e^n}{1 + BC_e} \)		(56)
Polanyak-Manes	\(\log q_e = \log Q + a \left(\frac{f_{sw}}{V_s} \right)^{f_{sw}} \)	\(f_{sw} = RT \ln \frac{C_s}{C_e} \)		(57)
Khan	\(q_e = \frac{q_k b_k C_e}{(1 + b_k C_e)^{g_k}} \)	\(q_e = \frac{a_k b_k C_e^{g_k}}{a_{ksw} + b_k C_e^{g_k}} \)		(58)
Radke-Prausnitz	\(q_e = \frac{a_{ksw} b_{ksw} C_e^{g_k}}{a_{ksw} + b_{ksw} C_e^{g_k}} \)	\(q_e = \frac{a_k b_k C_e^{g_k}}{a_{ksw} + b_k C_e^{g_k}} \)		(59)
2. Adsorption Isotherm Models

Adsorption process is globally proven as the most efficient among various water treatment technologies (25,26) since it possesses very fast kinetics, can be easily handled, and is able to remove high amounts of pollutants (27-29). Establishing the most suitable adsorption system for equilibrium data is very crucial for exploring novel adsorbents for an adsorption process (30) which should be reliable in predicting the correlation between adsorption parameters and quantitatively comparing the behavior of adsorbents for systems (31,32). An equilibrium relationship, generally known as adsorption isotherms, is the most suitable system since it perfectly describes the interaction between pollutants and the adsorbent materials, thus becoming very vital in optimizing the mechanisms of adsorption processes, expressing the surface properties and the adsorbents capabilities, and designing the adsorption systems effectively (33,34).

Table 3. Lists of Error Functions (47)

Error Function	Definition	Abbreviation	Reference		
Nonlinear Chi-square test	$\sum_{i=1}^{n} \frac{(q_{e,calc} - q_{e,meas})^2}{q_{e,meas}}$	χ^2	(70)		
The coefficient of determination	$\frac{(q_{e,meas} - q_{e,calc})^2}{\sum(q_{e,meas} - q_{e,calc})^2 + (q_{e,meas} - q_{e,calc})^2}$	R^2	(70)		
Sum squares errors	$\sum_{i=1}^{n} (q_{e,calc} - q_{e,meas})^2$	ERRSQ/SSE	(71)		
The hybrid fractional error function	$\frac{100}{n-p} \sum_{i=1}^{n} \left(\frac{q_{e,meas} - q_{e,calc}}{q_{e,meas}} \right)$	HYBRID	(72)		
Average relative error	$\frac{100}{n-p} \sum_{i=1}^{n} \left(\frac{q_{e,meas} - q_{e,calc}}{q_{e,meas}} \right)$	ARE	(73)		
Sum of absolute error	$\sum_{i=1}^{n}	q_{e,meas} - q_{e,calc}	$	EABS	(74)
Marquardt’s percent standard deviation	$\frac{100}{n-p} \sum_{i=1}^{n} \left(\frac{q_{e,meas} - q_{e,calc}}{q_{e,meas}} \right)^2$	MPSD	(75)		
Spearman’s correlation coefficient	$1 - \frac{6 \sum_{i=1}^{n} (q_{e,meas} - q_{e,calc})^2}{n(n-1)^2}$	r_s	(70)		
Coefficient of non-determination	$-$	K_i	(71)		
Sum of normalized errors	$-$	SNE	(76)		

Note: q_e: The amount of adsorbate in the adsorbent at equilibrium (mg/g); Q_m: Maximum monolayer coverage capacity (mg/g); C_e: Equilibrium concentration (mg/L); b: Langmuir isotherm constant (dm/μg); n: Adsorption intensity; T: Temperature (K); K_L: Freundlich isotherm constant (mg/g/L); R: Universal gas constant (8.314 J/mol K); b_T: Temkin isotherm constant; K_T: Temkin isotherm equilibrium binding constant (L/g); K_D: D-A: Dubinin-Radushkevich isotherm constant; q_L: Theoretical isotherm saturation capacity (mg/g); b: D-A: Dubinin-Radushkevich isotherm constant (mol2/L2); C_{eq}: Adsorbate initial concentration (mg/L); n: The degree of surface coverage; nFH: Flory-Huggins isotherm model exponent; K_{FH}: Flory-Huggins isotherm equilibrium constant (L/g); K_H: Hill constant; nH: Hill maximum uptake saturation (mg/L); n_{FH}: Hill cooperativity coefficient of the binding interaction; K_M: Redlich-Peterson isotherm constant (L/g); g: Redlich-Peterson isotherm exponent; K_{R}: Slips isotherm model constant (L/g); \tilde{A}_{slips}: Slips isotherm model exponent; C_{th}: Toth isotherm constant (mg/L); t: Toth isotherm constant' A: Koble-Corrigan isotherm constant (L/mg-n); b: Koble-Corrigan isotherm constant (L/mg); b_{k}: Koble-Corrigan isotherm constant; b_{K}: Khan isotherm model exponent; b_{K}^*: Khan isotherm model constant; C_{RP}: Radke-Prausnitz isotherm model constant; r_{RP}: Radke-Prausnitz isotherm model exponent; s_{V}: Molar volume of adsorbates; a: Effective adsorption potential; s_{C}: Solubility of adsorbates; K_{a}: Khan isotherm model exponent; b_{K}: Khan isotherm model constant; α_{RP}: Radke-Prausnitz isotherm model constant; F_{RP}: Radke-Prausnitz isotherm model exponent.
Table 4. Adsorption Isotherm Models of Chlorophenols Onto Different Adsorbents

Adsorbate	Adsorbent	Isotherm model	Reference
2-Chloroguaiacol	Oil palm shell activated carbon	Langmuir	(78)
4-Chloroguaiacol	Prospis africana seed hull activated carbon	Langmuir	(68)
2,4,6-Trichlorophenol	Loosestrife activated carbon	Temkin	(79)
2,4,6-Trichlorophenol	Cattail fibre-based activated carbon	Freundlich	(80)
2,4,6-Trichlorophenol	Coconut husk-based activated carbon	Langmuir	(81)
2,4,6-Trichlorophenol	Copper (II)-halloysite nanotubes	Freundlich	(82)
2,4,6-Trichlorophenol	Activated carbon from coconut shell	Freundlich	(83)
2,4-Dichlorophenol	Cattail fibre-based activated carbon	Freundlich	(80)
2,4-Dichlorophenol	Organo clays	Langmuir	(84)
2,4-Dichlorophenol	Prospis africana seed hull activated carbon	Langmuir	(12)
2,4-Dichlorophenol	Single-walled carbon nanotubes	Langmuir	(23)
2,4-Dichlorophenol	Single-walled carbon nanotubes	Polanyi-Manes	(23)
2,6-Dichlorophenol	Modified plantain peel	Freundlich	(85)
4-Chlorophenol	Rattan sawdust based activated carbon	Langmuir	(86)
4-Chlorophenol	Chemically modified chitosan	Freundlich	(87)
4-Chlorophenol	Porous carbon from coconut spathe	Langmuir	(88)
4-Chlorophenol	Nanosized activated carbon	Freundlich	(9)
4-Chlorophenol	Carbon nanofibers	Langmuir	(13)
3-Chlorophenol	Purified multilwalled carbon nanotubes	Langmuir	(89)
3-Chlorophenol	Rice-straw-based carbon	Langmuir	(90)
2-Chlorophenol	Single-walled carbon nanotubes	Polanyi-Manes	(23)

invaluable curves that depict how the phenomenon of a substance is governed. Such phenomena occur at a fixed pH and temperature where the retention or mobility of such substances moves from aqueous porous media/environments to a solid-phase (35,36). Adsorption equilibrium is the ratio of the amount of substance adsorbed with that remaining in the solution. This is confirmed when the time, in which an adsorbate containing phase is in contact with the adsorbent, is sufficient for the adsorbate concentration in the bulk solution to be in a dynamic balance with the interface concentration (37,38). A graphical representation of the solid-phase against its residual concentration usually depicts the mathematical correlation, which plays a key role in the modeling analysis, the direction of operational design, and the applicable practices of adsorption systems (39). A better perception of the adsorption mechanism is provided by the adsorbent degree of affinity, along with the underlying thermodynamic and their surface properties (40). Over the years, several researchers have reported various equilibrium isotherm models from three different approaches (41). The first reported approach was the kinetic consideration where adsorption equilibrium was assumed to be a state in which both rates of adsorption and desorption are equal (42). Thermodynamic consideration, where a basis for the derivation of various isotherm models was provided in multiple forms, is the reported second approach (43,44). The third approach was called a potential theory which normally conveys the main idea in generating the characteristic curves (45). However, isotherm derivation from more than one approach is the most fascinating trend in the modeling process, thus leading to the disparity in the physical interpretation of model parameters (46). Table 2 presents various isotherm models based on distinctive assumptions. The assumption with respect to the Langmuir isotherm is monolayer adsorption having a homogeneous surface with a definite number of adsorption sites. On the contrary, the Freundlich model is the most suited model for heterogeneous surfaces and can be applied to multilayer adsorption. In depicting the performance of adsorbents, Langmuir and Freundlich are the most frequently used models for that purpose. Tempkin isotherm assumed that a decrease in adsorption heat is linear. Furthermore, Dubinin-Radushkevich isotherm is commonly engaged in determining whether the adsorption mechanism is chemical or physical with a heterogeneous surface hosting free energy. Similarly, the spontaneous and feasibility nature of the adsorption process is regarded as the major assumption associated with Flory-Huggins isotherm. Another important assumption related to Hill isotherm is how the binding sites of a ligand in a macromolecule can influence other binding sites within the same macromolecule. All the aforementioned isotherms are categorized as two-parameter isotherms. The most popular and frequently used three-parameter isotherms are those in the Redlich-Peterson isotherm model. It combines the Langmuir and Freundlich models that can be used over a vast range of concentrations and in both heterogeneous and homogeneous systems. Other three-parameter isotherms include Sips, Koble-Corrigan, Toth, Radke-Prausnitz, and Khan isotherm (47,60).
3. Error Functions

During the analysis of adsorption experimental data, linear and non-linear isotherm models were used to elaborate on the suitability or best fitting of a model(s) to the process (61). This was aimed toward comparing the experimental data and the predicted isotherm owning to obtain a good understanding of the equilibrium state relationship between adsorbent and adsorbate. Due to linear regression models of popularity and simplicity, many researchers prefer to describe the nature of the adsorption isotherm model and select the optimum model of the process having the minimal error between the experimental data and the predicted isotherm (62-64). However, in some studies, researchers emphasized that the use of nonlinear regression models in analyzing the adsorption equilibrium is more accurate in predicting the optimum isotherm for the process (31). Nonetheless, other researchers believed that both linear and nonlinear regression models are suitable for the selection of best-fitted adsorption equilibrium isotherm depending on the manner of application and magnitude of error (61). Moreover, many error functions are employed in model selection in order to determine the nature of error which still relies on the definition of the intended function. This helps in ascertaining those assertions (64-67).

Rahim and Garba compared the validity of five different linear Langmuir isotherm models by incorporating χ^2 since R^2 is no longer reliable when it comes to justifying the basis for selecting the most suitable model of adsorption because it only signifies the fit between the linear forms of isotherm equations and experimental data. Additionally, low χ^2 values signify the best fit and describe the suitability between the predicted and experimental values of the adsorption capacity (68).

In the present study, several mathematically rigorous error functions were applied in addition to the Chi-square, including hybrid fractional error function, the sum of squares errors, the sum of normalized errors, Spearman's correlation coefficient, average relative error, the coefficient of non-determination, and the sum of absolute error Marquardt's percent standard deviation (Table 3). This was done to drastically address and confront the inherent bias resulting from the transformation that leads toward a diverse form of parameter estimation errors and fits distortion (69).

Recently, linear regression has been the most feasible tool among the other instruments for defining the best-fitting relationships (71). In addition, it mathematically analyzes the adsorption systems, quantifies the adsorbates distribution (77), and verifies the consistency and theoretical assumptions of an isotherm model (70). During the development of computer technology in the 1980s, the progression of nonlinear isotherm modeling was broadly facilitated and motivated to be in line with the developing technology (70). In contrast to the model linearization, nonlinear regression usually involves the maximization or minimization of error distribution between the experimental data and the predicted isotherm based on its convergence criteria (69).

4. Reported Isotherm Models for Chlorophenol Adsorption

The reported adsorption isotherms of some CPs onto different adsorbents are summarized in Table 4.

The functionalization of single-walled carbon nanotubes (SWCNTs) was reported by Ding et al (23), which was applied for CP adsorption from aqueous solution. They indicated that three models well fit the isotherms with the presence of grooves, an external surface, and interstitial channel adsorption sites in the closed-ended bundles of the SWCNT (91). The researchers further revealed that the SWCNT interstitial channels are extremely tiny for the adsorbate molecules to fit into, thus proposing the major adsorption sites to rely on grooves and external surface area (92). As a result, surface adsorption dominates the adsorption process. Considering that the Langmuir model and Polanyi-Manes models were both derived from surface adsorption (57, 93) and the Freundlich model was a special form of Polanyi-Manes model (94), it was reasonable that the adsorption data were well fitted to those three models.

In another development, Ren et al (80) reported Freundlich as the most suitable isotherm model in describing the adsorption of 2,4-dichlorophenol and 2,4,6-trichlorophenol onto cattail fibre-based activated carbon. Their revelation hinted at the uptake of both 2,4-dichlorophenol and 2,4,6-trichlorophenos was multimolecular layer adsorption with interactions between the adsorbed molecules, and the surface of the cattail fibre-based activated carbon was relatively heterogeneous. Additionally, Garba and Rahim (12) studied the adsorpive removal of para-chlorophenol and 2,4-dichlorophenol by employing the activated carbon from Prosopis africana seed hulls as the adsorbent. They carried out their experiments at three different temperatures by fitting the experimental data into Langmuir, Freundlich, and Temkin models and reported that the R^2 of the three models was higher than 0.90 for all studied temperatures. However, the applicability of the Langmuir isotherm model became more pronounced compared to the other two isotherms when they applied the chi-square values. The fitness of the Langmuir model to the adsorption process connotes that the two CP molecules from bulk solution were adsorbed on specific monolayer which is homogeneous in nature.

As shown in Table 4, Langmuir and Freundlich were the most important isotherm models in fitting the CP adsorption data with the nature of the adsorbent, as well as the type of CPs playing a significant role in determining whether the process is monolayer or multilayer on a homogeneous or heterogeneous surface, respectively.
A Review on Isotherm and Kinetic Modelling of Chlorophenols Adsorption

5. Adsorption Kinetic Studies

Elovich equation and Largergren pseudo-first and second order (1 & 2) models are the most popular and widely used models for kinetic study. This facilitates the understanding of the dynamics of an adsorption process.

5.1. Pseudo-first Order Model

The adsorption rate constant is ascertained from the pseudo-first order equation given by (95) as:

\[
\log (q_e - q_t) = \log q_e - \frac{k_1}{2.303} t
\]

(1)

Where \(q_e \) and \(q_t \) are the amount of CPs adsorbed onto the adsorbents (mg g\(^{-1}\)) at equilibrium and at time \(t \), respectively, while \(k_1 \) is the pseudo-first order rate constant (h\(^{-1}\)).

5.2. Pseudo-second Order (1 & 2)

The pseudo-second order equation is expressed in two linear forms (95):

\[
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e}
\]

(2)

\[
\frac{1}{q_t} = \left(\frac{1}{k_2 q_e^2} \right) t + \frac{1}{q_e}
\]

(3)

where \(k_2 \) (g mg\(^{-1}\) h\(^{-1}\)) is the rate constant of the second-order adsorption.

5.3. Elovich Kinetic Model

The primary proposed Elovich equation was to describe the kinetics of gases and chemisorptions on the solids. The model shows a variation in the energy of chemisorptions, which is ascribed to a change in surface coverage or a continuous and specific range of site reactivity. Its linear equation is expressed as (79):

\[
q_t = \frac{1}{b} \ln(ab) + \frac{1}{b} \ln t
\]

(4)

The term \(\frac{1}{b} \) stands for the number of attainable adsorption sites whereas \(\frac{1}{b} \ln(ab) \) denotes the quantity of adsorption \(\ln t = 0 \). (79).

The examples of the adsorption kinetics of chlorophenols onto different adsorbents are summarized in Table 5.

6. Adsorption Thermodynamics

The adsorption thermodynamics of the CPs are studied to verify the adsorption process spontaneity. The most popular studied thermodynamic parameters are entropy change (\(\Delta S \)), Gibb's free energy change (\(\Delta G \)), and enthalpy change (\(\Delta H \)). The evaluation of the thermodynamic parameters is carried out using Van't Hoff equation which is expressed as:

\[
\ln K_D = \frac{\Delta S}{R} - \frac{\Delta H}{RT}
\]

(5)

where \(K_D \), \(T \), and \(R \) represent the distribution coefficient, the absolute temperature (K), and the universal gas constant (8.314 J mol\(^{-1}\) K\(^{-1}\)), respectively. A linear graphical representation is obtained when \(\ln K_D \) is plotted against \(1/T \) deriving \(\Delta H \) and \(\Delta S \) from the slope and intercept, respectively. In this study, \(\Delta G \) was evaluated from the Gibbs-Helmholtz relation (96-98):

\[
\Delta G = -RT \ln K_D
\]

(6)

Physisorption was revealed to describe the adsorption of phenolic compounds on a water-compatible hypercrosslinked polymeric resin (101), as well as from agro-based derived adsorbents (102). On the other hand, the adsorption of pure phenolics onto activated carbons and polymeric resins (103), modified macroalgae (104), as well as viable fungal biomass (105) was described as exothermic based on the obtained \(\Delta H \) values. Endothermic processes were also reported for the adsorption of pure phenols onto waste leached residue, from manganese production (106), and the vegetal cords (107). The same process was also reported for mixed standard phenols.

Adsorbate	Adsorbent	Kinetic model	Reference
4-Chloroguaiacol	Oil palm shell activated carbon	Pseudo-second order	(78)
4-Chloroguaiacol	Prosopis africana seed hull activated carbon	Pseudo-second order	(68)
4-Chloro-2-methoxyphenol	Oil palm shell activated carbon	Pseudo-second order	(2)
2,4,6-Trichlorophenol	Loosestrife activated carbon	Pseudo-second order	(79)
2,4,6-Trichlorophenol	Copper (II)-halloysite	Pseudo-second order	(82)
2,4,6-Trichlorophenol	Chemically modified chitosan	Pseudo-second order	(87)
2,4,6-Trichlorophenol	Cattail fibre-based activated carbon	Pseudo-second order	(80)
2,4-Dichlorophenol	Organo clays	Pseudo-second order	(84)
2,4-Dichlorophenol	Polyimide (PI)-based carbon nanofibers	Pseudo-second order	(99)
2,4-Dichlorophenol	Chemically modified chitosan	Pseudo-second order	(83)
2,6-Dichlorophenol	Modified plantain peel	Pseudo-second order	(85)
2,6-Dichlorophenol	Rattan sawdust based activated carbon	Pseudo-second order	(86)
2,6-Dichlorophenol	Chemically modified chitosan	Pseudo-second order	(87)
onto activated carbon from the olive husk (108).

7. Conclusion and Future Outlook

In this review, the adsorption process was reported for its attributes in effectiveness, simplicity in design and applicability, fast kinetics, and its universal nature for the removal of CPs from wastewater among the other wastewater treatment methods. A number of adsorbents such as agricultural wastes, active carbons, industrial by-products, biosorbents, and nanomaterials were used at various conditions for the decontamination of wastewater containing CPs. However, in the adsorption system designing, researchers have developed and revealed linear regression as the most preferable option in the last few decades despite indications from recent investigations signaling an increasing discrepancy and shortcoming of the model, which propagates toward a different outcome. Despite the above-mentioned explanations, linearization remains the most trusted option in the literature and statistics prove its application in over 95% of the liquid-phase adsorption systems. Hence, the next real challenge in the adsorption field is the identification and clarification of both isotherm models in various adsorption systems.

Conflict of Interest Disclosures

The authors declare that they have no conflict of interests.

References

1. Ma X, Liu Y, Li X, Xu J, Gu G, Xia C. Water: the most effective solvent for liquid-phase hydrodechlorination of chlorophenols over Raney Ni catalyst. Appl Catal B Environ. 2015;165:351-9. doi: 10.1016/j.apcatb.2014.10.035.
2. Hamad BK, Noor AM, Rahim AA. Removal of 4-chloro-2-methoxyphenol from aqueous solution by adsorption to oil palm shell activated carbon activated with K2CO3. J Phys Sci. 2011;22(1):39-55.
3. Galadima A, Garba ZN, Leke L, Almustapha MN, Adam IK. Domestic Water Pollution among Local Communities in Nigeria — Causes and Consequences. European Journal of Scientific Research. 2011;52(4):592-603.
4. Fan C, Li N, Cao X. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography. Food Chem. 2015;174:446-51. doi: 10.1016/j.foodchem.2014.11.050.
5. Sarmaik S, Kanekar P. Bioremediation of colour of methyl violet and phenol from a dye-industry waste effluent using Pseudomonas spp. isolated from factory soil. J Appl Microbiol. 1995;79(4):459-69. doi: 10.1111/j.1365-2672.1995.tb03162.x.
6. Armenante PM, Kafkewitz D, Lewandowski GA, Jou C-J. Anaerobic-aerobic treatment of halogenated phenolic compounds. Water Res. 1999;33(13):681-92. doi: 10.1016/S0043-1354(98)00255-3.
7. Tan IA, Ahmad AL, Hameed BH. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J Hazard Mater. 2009;164(2-3):473-82. doi: 10.1016/j.jhazmat.2008.08.025.
8. Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas. Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol. 2009;39(10):783-842. doi: 10.1080/10643380801977610.
9. Chen C, Geng X, Huang W. Adsorption of 4-chlorophenol and aniline by nanosized activated carbons. Chem Eng J. 2017;327:941-52. doi: 10.1016/j.cej.2017.06.183.
10. Garba ZN, Rahim AA. Adsorption of 4-chlorophenol onto optimum activated carbon from an agricultural waste. Int J Sci Res. 2015;4(5):1931-6.
11. Garba ZN, Rahim AA. Process optimization of K2CO3-activated carbon from Prosopis africana seed hulls using response surface methodology. J Anal Appl Pyrolysis. 2014;107:306-12. doi: 10.1016/j.jaap.2014.03.016.
12. Garba ZN, Rahim AA. Evaluation of optimal activated carbon from an agricultural waste for the removal of para-chlorophenol and 2,4-dichlorophenol. Process Saf Environ Prot. 2016;102:54-63. doi: 10.1016/j.psep.2016.02.006.
13. Madannnejad S, Rashidi A, Sadeghhasani S, Shamirani F, Ghasemy E. Removal of 4-chlorophenol from water using different carbon nanostructures: a comparison study. J Mol Liq. 2018;249:877-85. doi: 10.1016/j.molliq.2017.11.089.
14. Adetokun AA, Uba S, Garba ZN. Optimization of adsorption of metal ions from a ternary aqueous solution with activated carbon from Acacia senegal (L) Willd pods using Central Composite Design. J King Saud Univ Sci. 2018. doi: 10.1016/j.jksus.2018.12.007.
15. Garba ZN, Hussin MH, Galadima A, Lawan I. Potentials of Canarium schweinfurthii seed shell as a novel precursor for CH3COOK activated carbon: statistical optimization, equilibrium and kinetic studies. Appl Water Sci. 2019,9(2):31. doi: 10.1007/s13201-019-0907-y.
16. Garba ZN, Zhou W, Lawan I, Xiao W, Zhang M, Wang L, et al. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review. J Environ Manage. 2019;241:59-75. doi: 10.1016/j.jenvman.2019.04.004.
17. Garcia-Muñoz P, Lefevre C, Robert D, Keller N. Ti-substituted LaFeO3 pervoskite as photoassisted CWPO catalyst for water treatment. Appl Catal B Environ. 2019;248:120-8. doi: 10.1016/j.apcatb.2019.02.030.
18. Chalilah S, Bhattacharyya KG. Catalytic wet oxidation of 2-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol in water with Mn(II)-MCM41. Chem Eng J. 2008;139(3):575-88. doi: 10.1016/j.cej.2007.09.006.
19. Steinle P, Thalmann P, Höhener P, Hanselmann KW, Stucki G. Effect of environmental factors on the degradation of 2,6-dichlorophenol in soil, Environ Sci Technol. 2000;34(5):771-7. doi: 10.1021/es990587l.
20. Bengtsson S, de Blois M, Wilén B-M, Gustavsson D. Treatment of municipal wastewater with aerobic granular sludge. Crit Rev Environ Sci Technol. 2018;48(2):119-66. doi: 10.1080/10643389.2018.1439653.
21. Mai DT, Künacheva C, Stuckey DC. A review of posttreatment technologies for aerobic effluents for discharge and recycling of wastewater. Crit Rev Environ Sci Technol. 2018;48(2):167-209. doi: 10.1080/10643389.2018.1443667.
22. Lim JW, Lim PE, Seng CE, Adnan R. Simultaneous 6-dichlorophenol in soil. Environ Sci Technol. 2000;34(5):771-7. doi: 10.1021/es990587l.
23. Peng Z, Liu X, Wang J, Zhang X, Chen C. Adsorption of chlorophenols from aqueous solutions by pristine and surface modified Mn(II)-MCM41. Chem Eng J. 2008;139(3):575-88. doi: 10.1016/j.cej.2007.09.006.
24. Chen C, Geng X, Huang W. Adsorption of 4-chlorophenol and aniline by nanosized activated carbons. Chem Eng J. 2017;327:941-52. doi: 10.1016/j.cej.2017.06.183.
A Review on Isotherm and Kinetic Modelling of Chlorophenols Adsorption

Random, non-linear regression analysis is an essential tool for understanding the adsorption process. Various adsorption isotherm models have been developed over the years to describe the behavior of adsorbents. Among these, the Langmuir and Freundlich models are widely used for their simplicity and applicability. The Langmuir model assumes monolayer adsorption on a homogeneous surface, while the Freundlich model is based on heterogeneous surface properties.

The adsorption of chlorophenols by different adsorbents such as activated carbon, peat, and zeolites has been extensively studied. For example, Koble and Corrigan in 2003 investigated the adsorption of chlorophenols on activated carbon. They found that the adsorption capacity of activated carbon increased with increasing chlorophenol concentration.

Adsorption isotherms can also be used to design and optimize water treatment processes. For instance, Allen et al. in 2004 studied the adsorption of dyes by activated carbon. They found that the adsorption capacity of activated carbon increased with increasing adsorbate concentration, but decreased with increasing temperature.

In conclusion, adsorption isotherm and kinetic modelling are crucial tools for understanding and optimizing the adsorption process. Further research is needed to develop new and more efficient adsorbents and adsorption systems for the removal of chlorophenols from aqueous solutions.
the sorptive removal of fluoride from drinking water. J Hazard Mater. 2008;152(3):976-85. doi: 10.1016/j.jhazmat.2007.07.072.

63. He J, Hong S, Zhang L, Gan F, Ho YS. Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environ Bull. 2010;19(11):2651-6.

64. Ho YS. Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Pol J Environ Stud. 2006;15(1):81-6.

65. Alhosseini A, Taghikhani V, Safekordi AA, Bastani D. Equilibrium sorption of crude oil by expanded perlite using different adsorption isotherms at 298.15 k. Int J Environ Sci Technol. 2010;7(3):591-8. doi: 10.1007/s13762-016.8.

66. Brdar M, Takač A, Šeban M, Rakić D. Isotherms for the adsorption of Cu (II) onto lignin: comparison of linear and non-linear methods. Hemi. Ind. 2012;66(4):497-503.

67. Kumar KV, Pankodi K, Rocha F. Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon. J Hazard Mater. 2008;150(1):158-65. doi: 10.1016/j.jhazmat.2007.09.020.

68. Rahim AA, Garba ZN. Efficient adsorption of 4-chloroguaiacol from aqueous solution using optimal activated carbon: equilibrium isotherms and kinetics modeling. Journal of the Association of Arab Universities for Basic and Applied Sciences. 2016;21:17-23. doi: 10.1016/j.jaubas.2015.09.001.

69. Kumar KV, Pankodi K, Rocha F. Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions. J Hazard Mater. 2008;151(2-3):794-804. doi: 10.1016/j.jhazmat.2007.06.056.

70. Boulinguiez B, Le Cloirec P, Wolpert B. Revisiting the determination of Langmuir parameters—application to tetrahydrothiophene adsorption onto activated carbon. Langmuir. 2008;24(13):6420-4. doi: 10.1021/la800725s.

71. Kumar KV, Sivasanes S. Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and non-linear regression methods. J Hazard Mater. 2006;136(3):721-6. doi: 10.1016/j.jhazmat.2006.01.003.

72. Ng JC, Cheung WH, McKay G. Equilibrium studies of the sorption of Cu(II) ions onto chitosan. J Colloid Interface Sci. 2002;255(1):64-74. doi: 10.1016/s0021-9797(02)00864.

73. Kapoor A, Yang RT. Correlation of equilibrium adsorption data of condensable vapours on porous adsorbents. Gas Sep Purif. 1989;3:187-92.

74. Ng JC, Cheung WH, McKay G. Equilibrium studies for the sorption of lead from effluents using chitosan. Chemosphere. 2003;52(6):1021-30. doi: 10.1016/s0045-6535(03)00223-6.

75. Marquardt DW. An algorithm for least-squares estimation of error functions in predicting the optimum isotherm by linear and non-linear isotherm analysis. J Hazard Mater. 2006;138(1):116-24. doi: 10.1016/j.jhazmat.2006.05.045.

76. Huang L, Zhou Y, Guo X, Chen Z. Simultaneous removal of 2,4-dichlorophenol and Pb(II) from aqueous solution using organoclays: isotherms, kinetics and mechanism. J Ind Eng Chem. 2015;22:280-7. doi: 10.1016/j.jiec.2014.07.021.

77. Agarry SE, Owabor CN, Ajani AO. Modified plantain peel as cellulose-based low-cost adsorbent for the removal of 2, 6-dichlorophenol from aqueous solution: adsorption isotherms, kinetic modeling, and thermodynamic studies. Chem Eng Commun. 2013;200(8):1121-47. doi: 10.1080/00980141.2012.740534.

78. Hameed BH, Chin LH, Rengaraj S. Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. Desalination. 2008;225(1-3):185-98. doi: 10.1016/j.desal.2007.04.095.

79. Zhou LC, Meng XG, Fu JW, Yang YC, Yang P, Mi C. Highly efficient adsorption of chlorophenols onto chemically modified chitosan. Appl Surf Sci. 2014;292:735-41. doi: 10.1016/j.apsusc.2013.12.041.

80. Prashanthakumar TKM, Kumar SKA, Sahoo SK. A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut sã†ã†ã†ã† he exploration of new source for porous carbon materials. J Environ Chem Eng. 2018;6(1):1434-42. doi: 10.1016/j.jece.2018.01.051.

81. Tõõh A, Tõrcsik A, Tombácz E, Lïšzlõ K. Competitive adsorption of phenol and 3-chlorophenol on purified MWCNTs. J Colloid Interface Sci. 2012;387(1):244-9. doi: 10.1016/j.jcis.2012.07.064.

82. Wang SL, Tzou YM, Lu YH, Sheng G. Removal of 3-chlorophenol from water using rice-straw-based carbon. J Hazard Mater. 2007;147(1-2):313-8. doi: 10.1016/j.jhazmat.2007.01.031.

83. Ren X, Chen C, Nágáts M, Wang X. Carbon nanotubes as adsorbs in environmental pollution management: a review. Chem Eng J. 2011;170(2-3):395-410. doi: 10.1016/j.cej.2010.08.045.

84. Pan B, Lin DH, Mashayekhi H, Xing BS. Adsorption and hysteresis of bisphenol A and 17 alpha-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol. 2008;42(15):5480-5. doi: 10.1021/es8001184.

85. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361-403. doi: 10.1021/ja02242a004.

86. Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol. 2006;40(6):1855-61. doi: 10.1021/es052208w.

87. Kumar M, Tamarasran R. Modeling studies for the removal of methylene blue from aqueous solution using Acacia
A Review on Isotherm and Kinetic Modelling of Chlorophenols Adsorption

96. Gupta VK, Mittal A, Krishnan L, Gajbe V. Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash. Sep Purif Technol. 2004;40(1):87-96. doi: 10.1016/j.seppur.2004.01.008.

97. Huang L, Wang M, Shi C, Huang J, Zhang B. Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation. Desalin Water Treat. 2014;52(13-15):2678-87. doi: 10.1080/19443994.2013.833873.

98. Soto ML, Moure A, Domínguez H, Parajó JC. Recovery, concentration and purification of phenolic compounds by adsorption: a review. J Food Eng. 2011;105(1):1-27. doi: 10.1016/j.jfoodeng.2011.02.010.

99. Zhang Y, Ou H, Liu H, Ke Y, Zhang W, Liao G, et al. Polyimide-based carbon nanofibers: a versatile adsorbent for highly efficient removals of chlorophenols, dyes and antibiotics. Colloids Surf A Physicochem Eng Asp. 2018;537:92-101. doi: 10.1016/j.colsurfa.2017.10.014.

100. Li X, Chen S, Fan X, Quan X, Tan F, Zhang Y, et al. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon. J Colloid Interface Sci. 2015;447:120-7. doi: 10.1016/j.jcis.2015.01.042.

101. Li A, Zhang Q, Zhang G, Chen J, Fei Z, Liu F. Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent. Chemosphere. 2002;47(9):981-9. doi: 10.1016/S0045-6535(01)00222-3.

102. Srihari V, Das A. Comparative studies on adsorptive removal of phenol by three agro-based carbons: equilibrium and isotherm studies. Ecotoxicol Environ Saf. 2008;71(1):274-83. doi: 10.1016/j.ecoenv.2007.08.008.

103. Huang J, Huang K, Yan C. Application of an easily water-compatible hypercrosslinked polymeric adsorbent for efficient removal of catechol and resorcinol in aqueous solution. J Hazard Mater. 2009;167(1-3):69-74. doi: 10.1016/j.jhazmat.2008.12.120.

104. Aravindhan R, Rao JR, Nair BU. Application of a chemically modified green macro alga as a biosorbent for phenol removal. J Environ Manage. 2009;90(5):1877-83. doi: 10.1016/j.jenvman.2008.12.005.

105. Mathialagan T, Viraraghavan T. Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresour Technol. 2009;100(2):349-58. doi: 10.1016/j.biortech.2008.06.054.

106. Parida KM, Pradhan AC. Removal of phenolic compounds from aqueous solutions by adsorption onto manganese nodule leached residue. J Hazard Mater. 2010;173(1-3):758-64. doi: 10.1016/j.jhazmat.2009.09.003.

107. Cherifi H, Hanini S, Bentahar F. Adsorption of phenol from wastewater using vegetal cords as a new adsorbent. Desalination. 2009;244(1):177-87. doi: 10.1016/j.desal.2008.05.022.

108. Michailof C, Stavropoulos GG, Panayiotou C. Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons. Bioresour Technol. 2008;99(14):6400-8. doi: 10.1016/j.biortech.2007.11.057.