Relationships, sustainability and agri-food purchasing behaviour in farmer markets in Italy

Vera Teresa Foti and Giuseppe Timpanaro
Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy

Abstract

Purpose – The study aims to demonstrate that farmers’ markets can represent a model of environmental, social and governance reference for modern agri-food systems facing the challenge of post COVID-19 pandemic reconstruction, responding to consumer expectations in terms of health, safety and wholesomeness of agri-food products.

Design/methodology/approach – A sample of consumers was surveyed in farmers’ markets and social network analysis (SNA) was adopted as a methodological approach to reconstruct the links between the worlds of production and consumption and to derive the relative importance attributed to various factors that promote relational structures.

Findings – The work demonstrates the importance of sustainability – as a productive and behavioural model of firms – for the construction of efficient and durable relationship systems in two farmer markets in Sicily. In particular, four fundamental components emerge in the construction of networks represented by consumer sensitivity to sustainability processes, the individual behavioural model of purchasing and consumption, the expectation of political direction and the level and factors of knowledge of the firm. The clustering elements of the relationships were found to be the territory and local products, the environmentalist attitude and the protection of resources, as well as the adoption of a rational waste disposal policy, the fight against food waste, the encouragement of healthier and more sustainable consumption styles, clear and transparent communication and the activation of sustainable supply chain processes in line with the Sustainable Development Goals (SDGs).

Originality/value – The paper aims to demonstrate how alternative food systems can become a useful model for large enterprises, which are committed to rebuilding their business strategy to overcome the current crisis.

Keywords Alternative food networks, Social network analysis, Consumer, Health food, Green innovation in production and distribution

1. Introduction

The recovery of the global economy in the post COVID-19 pandemic era will see the role of the green economy emphasised, requiring increasingly widespread innovations in production/processing/distribution but also in consumption to facilitate resilience, transition and reconstruction of economies (Di Marco et al., 2020).

The societies of the future will thus be called upon to become increasingly inclusive and sustainable, thanks also to green innovations (Abu Hatab et al., 2021). This process does not...
exclude agriculture, a sector that at European level seems to be the recipient of the innovations envisaged by the “Green Deal EU” strategy and the related strategies “Biodiversity 2030”, “From farm to fork” and “Action plan for the circular economy”. These strategies will be more or less widely implemented within the CAP reform for the next programming period until 2027 (Cesaro et al., 2020; Peeters et al., 2020).

However, the political discussion on the future of the CAP is still in progress and although some preliminary documents hint at this green perspective, the final agreement will be the result of mediation between the EU Parliament and the EU Commission and, therefore, of the confrontation between the interests of governments, who want to regain lost positions in terms of the real economy, and citizens, who have rediscovered a great interest in environmental issues (ASviS, 2019; Pe’er et al., 2020).

As a result of the above, it is clear that the green transition is now strongly conditioned by the consequences of the pandemic crisis and the effects produced by concerns about food security, rising supply chain and logistics costs, and radical changes in consumer behaviour (Rejeb et al., 2020; Wang et al., 2020; Savary et al., 2020). As the world’s population fears for its vulnerability, awareness of the consequences of human behaviour on the environment, health and food consumption has increased (Farcas et al., 2021); awareness of food waste and the importance of home-grown food has also increased (Gupta et al., 2020; Rejeb et al., 2020).

In this context, consumers, particularly in advanced countries, are increasingly interested in products (and packs) that are hygienically safe and able to guarantee hygiene and prevention, in healthy and health products to achieve higher levels of personal and environmental well-being (Caron et al., 2018); finally, consumer interest in local products and localism is growing (Nomisma, 2020; Hobbs, 2020).

Therefore, in the face of this scenario, it is not excluded that consumers will increase their interest in the different alternatives to the industrial agri-food model, known in the literature as alternative food networks – AFNs or short chains or direct sales (Goodman et al., 2012). Within these, in fact, some salient elements are recognised such as social cooperation and partnerships between producers and consumers, the ability to reconnect production and consumption using sustainable models, the ability to enhance local markets with regional identity and reaggregate value to the circulation of quality and differentiated products, such as organic products (Darolt et al., 2016; Fraser et al., 2016; Kessari et al., 2020). The trust relationship was maintained during the COVID pandemic, partly due to social ICT technologies (Ahani and Nilashi, 2020).

AFNs in all their forms, therefore, represent the means through which it is possible to reconstruct the system of relationship and trust between production and consumption, which was interrupted in the traditional agri-food system as a consequence of lockdown, quarantine and pandemic distancing; in them, therefore, there is the natural concentration of a demand exercised by a consumer attentive to ethical aspects, sustainability and biodiversity (Butti Al Shamsi et al., 2018).

Network actors develop formal and informal relationships, which are a powerful mechanism for the localisation of food systems and their survival (Feenstra, 1993; Brinkley, 2018).

In this context, the present research aims to understand to what extent through social relations – direct and indirect – within AFNs it is possible to

(1) determine the increased sensitivity of the consumer towards the issue of sustainability;

(2) express the capacity of the local system to recover sustainability performance;

(3) manifest resilience to the pandemic economic crisis by supporting small producers, food security and adequate nutrition for families.
The research was carried out in Sicily, at farmer’s markets in Catania and Palermo, where a representative sample of consumers was surveyed to study the relational dimension and to help policy makers improve intervention strategies.

2. Analysis of agri-food consumer relations in recent literature

Relationships – direct and indirect – constitute a relevant foundation in the construction of food systems and in the interpretation of their dynamics; therefore, they have been the subject of specific attention according to different perspectives of analysis and study (Tang et al., 2018).

Some useful references can be traced back to “actor network theory” and “supply chain management theory” because they argue that relationships based on trust and cooperation are fundamental to the strength and vitality of networks. However, empirical investigations differ according to the upstream and downstream levels involved in production/processing, distribution and consumption for conventional and alternative food systems, such as AFNs, respectively (Lockie and Kitto, 2000).

In the upstream (push) perspective, i.e. starting from production and extending downstream along the distribution chain, a study of the relationships between suppliers, producers, workers, processors, brokers, wholesalers, retailers and consumers within the specific regional geographies of these networks has demonstrated the importance of promoting cooperation and trust (Jarosz, 2000).

In this process, a relevant role is played by seasonal markets, structures that eventually reconfigure social and material relationships and provide solutions for food security and a more sustainable food system (Audet et al., 2017).

An examination of the emerging relationships between producers and consumers in response to broader processes of social and political transformation in Austria (Schermer, 2015) brought to light the potential role of AFNs as a modern form of community supported agriculture (CSA).

Relational environments represent the contexts within which new and different sources of power are mobilised and new practices and institutions are co-constructed and legitimised in the transition of agri-food systems. Transformations of food systems thus depend on the variety of interactions (Rossi et al., 2019).

In the downstream (pull) perspective, i.e. in analyses that focus on consumption in order to obtain useful information to orient production/processing and distribution activities, there are several contributions related to the role that a certification system can play in the process of building relationships and the value recognised for products. An interesting paper analyses the role of certification in AFNs to explore the relationship and tensions between the horizontal and vertical dimensions of embedding processes and to understand the complexities of agri-environmental governance (Higgins et al., 2008). In this case, certification favours the configuration of AAFNs even if it is not sufficient to win the trust of consumers, which is why producers have to spend a lot of resources on the creation of the relevant market (Brinkley, 2018).

Social capital is recognised as a source of trust and collective commitment within a community for the regional qualification of food products through collective branding (Crespo et al., 2014). The activation of social networks through some elements of social capital (friendship, kinship, acquaintance, collaboration and cooperation) move specific clusters, studied through social network analysis (SNA) which has shown that relationships can be established formally and informally to foster the development of local agri-food systems (Enriquez-Sanchez et al., 2017).

Relationships also underpin inter-food chain relationships. To this end, an interesting study approach highlights how contrary to what we are used to observing conventional and alternative food chains do not represent separate paradigms in different European rural
contexts, but rather highly competitive contexts that are related to each other (Sonnino and Marsden, 2006).

Finally, formal networks have been used to study the sustainability performance of organic farms within local production systems and SNA is a useful tool in identifying the strengths and limitations of organic farms in terms of achieving holistic sustainability impacts. The role of institutions (local communities, research, certification stakeholders, consumer groups, etc.) in collaborative networks is also emphasised because they create space, experiment and legitimise new innovations towards sustainability (Butti Al Shamsi et al., 2019).

3. Materials and methods
The survey was conducted in the farmers’ markets of Catania and Palermo, two metropolitan areas located in eastern and western Sicily, which alone intercept the food demand of a potential pool of 2.1 million consumers. Since in both metropolitan areas there are several farmers’ markets operating on different days of the week, it was decided to choose only those markets operating on Saturdays and Sundays, which are the days with the highest number of customers. Therefore, on these two days the markets were preferred according to the number of producers (with selection of markets with a higher volume of products offered), turnover (turnover produced by the whole market) and the presence of typical regional products. The survey was carried out in two stages: the first between the end of June and mid-July; the second between mid-September and the first week of October, periods identified in accordance with the limitations imposed by the pandemic lockdown imposed by the national authorities.

A total of 1,000 consumers were surveyed, including regular visitors to farmers’ markets. A questionnaire was administered to the consumers in order to analyse, in a network and sharing perspective: (1) their degree of sensitivity towards sustainability behaviour; (2) their purchasing behaviour; (3) their degree of knowledge of the subjects on offer; (4) their perception of the sustainability actions adopted by companies able to win their trust. The answers, for privacy reasons, were coded with an ID code (S#); the subjects interviewed were informed of the purpose of the survey and anonymity was guaranteed.

The objective of the processing was – in addition to enhancing the information collected – also to characterise the network or network whose link between the nodes is represented by an affinity, choice, address or common characteristic in order to identify the strengths or weaknesses of the network itself.

The networks were analysed through SNA, using UCINET software.

SNA is a theoretical-methodological perspective that analyses social reality, starting from its reticular structure (graph theory), assuming that actors participate in social life by creating links with other actors and that these links influence reciprocal behaviour (Scott, 1988).

The process of analysis is purely analytical and starts from the construction of an affiliation matrix (case matrix × affiliations) creating a two-way correspondence between consumers and their preferences/needs, addresses and characteristics identified by the survey responses (affiliation network).

The affiliation matrix, the “place” where the survey data are collected, is a rectangular matrix also known as a two-mode network. It describes the participation of a defined group of actors (consumers) in a specific set of events (survey responses). It thus comprises two different types of nodes: actors and events. The relationships in the cells indicate, in the case of binary data, the participation (1) or absence (0) of actor i in event j (Borgatti et al., 2009).

From this, it was possible to construct two valued type co-membership matrices composed only of survey responses where each matrix element quantifies their sharing between actors (consumer network) or composed only of consumers where each matrix...
element quantifies survey response sharing (survey response network) (Knoke and Yang, 2019).

Networks have been described through a graphical representation based on the language and tools of graph theory. This is the so-called sociogram or graph and consists of a two-dimensional diagram formed by a population \(N \) of nodes (also called points or vertices) and a set of connecting lines between pairs of nodes indicating the presence of a relationship.

Then, the structure of the network was studied in its aspects of Cohesion and Centrality through the following measures (Wasserman and Faust, 1994):

Cohesion measures:

1. **Density:** this is one of the most important descriptive statistics and is used as an indicator of the general level of cohesion of the social network under consideration. It represents the proportion of ties actually established between the nodes of the social network out of all possible ties. It takes values between 0 and 1: values close to 0 indicate low density and thus low levels of cohesion, while values close to 1 indicate high levels of density and thus high levels of network cohesion. Density is equal to 1 in the case of complete networks, i.e. those where all nodes are connected to each other, while density equal to 0 highlights a social network with poorly aggregated nodes, in which participants have mostly non-reciprocal relationships. Often low density values identify isolated nodes (which have no relations with other nodes in the graph), or pending nodes (nodes connected to only one other node in the entire social network);

2. **Average degree:** number of average relationships between nodes in the social network;

3. **Average geodesic distance:** average distance between nodes in a social network. Geodetic distance means the shortest path existing between two adjacent nodes;

4. **Diameter:** maximum distance between two nodes (number of jumps from one node to another) within a social network.

Measures of centrality:

1. **Degree:** centrality based on the degree of popularity, given by how many outbound/inbound links a node has. It is equal to the absolute value of the sum of the “choices” received by a node, seen as incoming and outgoing links, by the other nodes inhabiting the social network;

2. **Betweenness:** centrality of a node, based on its being an intermediary between other nodes. It is based on the frequency with which each single node is in the shortest path connecting every other pair of nodes. If the value of the index is high, we are probably in the presence of a “junction”: an inhabitant of the network, important and of reference in communications, exchanges and connections between different areas of the network or even capable of connecting two different networks. It therefore indicates the hubs, i.e. the facilitators of relations;

3. **Closeness:** centrality of a node, based on its proximity to other nodes. It is fundamental in studies of social networks to understand the speed with which a node, within its network of belonging, can exchange information with other nodes. The value ranges from 0 to 1. If the value of this index is low, the node in question takes a few steps to reach any other node in the network, thus being able to exchange information quickly. We can say that this index is a measure of the nodes’ vitality in spreading information within the social network.
4. Results and discussion

4.1 Characteristics of the sample surveyed

The sample is predominantly male (56%) and aged between 35 and 60 years (61%), as shown in Table 1.

In line with other research on short production-consumption circuits (Wolf et al., 2005), they have a medium-high level of schooling and training (13 years in 31% and 16 years in 20%; 18 and more years in 44%) and come from the peri-urban area of the chosen metropolitan city (Catania and Palermo, in 56%), travelling an average distance of between 1 and 5 km to reach the market (48%). This again expresses the interest in products, values and relationships conveyed through farmers markets (Brown, 2002).

The level of employment is self-employed (freelance, in 47% of cases) or employed (clerical, in 23%), while cohabitation is with other family members (83%), of whom there are children in only 55% of cases.

Finally, the family income is mainly placed in the range between 40 and 60 thousand Euros (41%) and in the immediately preceding range (between 20 and 40 thousand Euros), for 38%, thus suggesting a wide diversity of socio-economic situations involved in this distribution formula.

The sample also shows a specific knowledge of environmental issues and of the tools with which companies communicate ethical and environmental values to customers (Dodds et al., 2014), such as specific brands (Table 2).

To this end, 24 sustainability labels adopted by companies in different areas of activity were shown and the highest levels of knowledge were recorded for the carbon footprint (99% of the sample), the EU organic label (around 87%), the “slow food” and “recycled” product

Indications	Value. %	Indications	Value. %
Gender		**Family unit**	
Male	56.3	With children	55.4
Female	43.7	Without children	44.6
Age		**Family composition**	
Less than 18 years	1.3	Single	16.7
Between 18 and 35	33.7	Family members and cohabitants	83.3
Between 35 and 60	61.4		
Over 60 years	3.6		
Years of education		**Distance to farmer’s market**	
5 years (primary school)	1.2	Less than 1 km	33.9
8 years (junior high school)	3.6	Between 1 and 5 km	48.3
13 years (high school)	31.0	Between 5 and 10 km	14.3
16 years (bachelor’s degree)	20.2	Over 10 km	3.5
18 years or more (master’s degree, PhD)	44.0		
Employment in the society		** Household income**	
Self-employed	47.0	Less than 20 thousand Euros	14.1
Employee	22.9	20 to 40 thousand Euros	38.5
Student	10.8	40 to 60 thousand Euros	41.0
Worker	6.0	From 60 to 80 thousand Euros	5.1
Manager	3.6	Over 80 thousand Euros	1.3
Unemployed	3.6		
Housewife	3.6		
Other	2.5		

Note(s): (*) Our elaboration. Farmers’ markets were selected according to the criteria indicated in the text under 3. Materials and methods

Table 1. Characteristics of the consumer sample at farmers’ markets (2020) (*)
labels, respectively with 76% of knowledge each and, finally, the “Agenda 2030” (47%), “ecolabel” (41%) and “ISO 14001” (32%).

This knowledge is important because several studies show the consumer’s interest in the environmental, social or economic challenges that humanity is facing and the value of the brand for differentiating the offer in a competitive market (Gupta et al., 2013; Suki, 2016).

4.2 Network of individual consumer awareness of sustainability

The first step of the evaluation concerned the determination of the level of consumer awareness of the issue of sustainability, in order to demonstrate whether and to what extent such an attention can favour the construction of relationship systems preparatory to agro-food purchases.

To guarantee the anonymity of the interviewees, the questions contained in the questionnaire were extrapolated and coded (Table 3).

The sample showed particular sensitivity towards the rationalisation of electricity and water consumption, participation in the separate collection of paper, glass, plastic and spent batteries, and the use of reusable shopping bags and energy-efficient household appliances in daily life.

All this is confirmed within the graph of the affiliation matrix (Figure 1), while a partly contradictory view of the behaviour results from the marginality within the network of “use of ecological detergent products (S_U3)”, “use of returnable packaging/packaging (S_U4)”, “rationalise other (S_R3)” and “choose fair trade products (S_S4)”.

The essential elements around which trust relationships are built within the market are represented by the sharing of some essential principles in the food choices, represented by the attention paid to the label as a tool of information about the origin and the provenance of the product (S_S1), the interest towards proximity distribution formulae (S_S6) and local products (S_S3) and the availability towards local raw materials constituting ingredients for home-made food preparations (S_S2) and organic (S_S7).

The strength and frequency of the links obtained by cross-referencing the data through the matrix “sensitivity x sensitivity factors”, show the attention paid to the protection of resources (water, S_R2) and finds expression in purchasing behaviour that tends to favour the territory (Figure 2).

In order to locate the position of the sensitivity factor in relation to that of the others in the network the centrality index was calculated; in this way it becomes immediately visible if the factor has a position of strategic importance in the overall structure of the network and if it is

Label	Value, %	Label	Value, %
🌿	86.7	🍃	75.9
🌾	41.0	🌾	75.9
🌾	98.8	🌾	32.5
🌾	46.8		

Table 2.
Different degrees of knowledge of sustainability labels (2020) (*)

Note(s): (*) Our elaboration
Question	Extrapolated variable	Assigned code
What consumption do you rationalise?	Rationalise electricity	S_R1
Rationalise water	S_R2	
Rationalise other	S_R3	
What do you separate in the collection?	Recycle paper	S_D1
Recycle glass	S_D2	
Recycle plastic	S_D3	
Recycle used batteries	S_D4	
Do you use...?	Use of reusable shopping bags	S_U1
Use of low energy appliances	S_U2	
Use of environmentally friendly cleaning products	S_U3	
Use of returnable packaging/packaging	S_U4	
1.2 And when making food choices? Do you look at the label to know where it was produced or grown? | Choice – look at the label | S_S1
1.2 And when do you make food choices? Does he/she make pizza, bread or cakes at home? | Food choice | S_S2
1.2 And when making food choices? Does he/she choose local products? | Choose local products | S_S3
1.2 And when do you make food choices? Do you buy fair trade products? | Choose fair trade products | S_S4
1.2 And when do you make food choices? Do you buy drinks in glass? | Choice glass beverages | S_S5
1.2 And when do you make food choices? Do you shop in small local shops? | Choice of local shops | S_S6
1.2 And when do you make food choices? Do you buy organic fruits and vegetables? | Choice organic vegetables | S_S7

Note(s): (*) Our elaboration

Table 3. Coding of questions on sustainability sensitivity asked to the sample of consumers surveyed at farmer markets (2020) (*)

Figure 1. Graph of the affiliation matrix on sustainability sensitivity factors
at the centre of a large number of connections with other points in its surrounding environment (Table 4).

The highest normalised degree value is related to the attention paid to the choice of local products (S_S3); in the behavioural scale important values result (between 0.6 and 0.7) for the attention paid to the observation of labels (S_S1) and the corresponding behaviour towards the separate collection of plastic, paper and glass (S_D1, S_D2 and S_D3) and the use of recyclable shopping bags (S_U1).

In addition, the behavioural factors between 0.5 and 0.6 that highlight the link between sensitivity to environmental issues (S_R2, S_D4 and S_U2) and purchasing behaviour that favours organic consumption (S_S7), preparing food at home (S_S2) and shopping in local shops (S_U2) are central.

![Graph of the "sensitivity factors × sensitivity factors" matrix](image)

Table 4.

Degree sensitivity	Factor normalised to 1
S_S3	0.716
S_D3	0.699
S_D2	0.696
S_S1	0.694
S_D1	0.682
S_U1	0.675
S_R1	0.670
S_S7	0.597
S_S2	0.581
S_S6	0.576
S_R2	0.552
S_D4	0.545
S_U2	0.520
S_S4	0.404
S_S5	0.321
S_U3	0.216
S_U4	0.191
S_R3	0.165

Note(s): (*) Our elaboration
4.3 Network on habitual purchasing behaviour

The aspects of purchasing behaviour covered by the survey concerned the recurrent distribution channel for purchases, the determinants of choice, the importance of organic products in the food shopping list, the weight given to information and, finally, some aspects related to trust (Table 5).

The graph of the affiliation matrix (Figure 3) shows the marginality in the network of the factors related to the recurrent channels for purchasing, with the exception of the farmer market (purchase from the producer (A_A8); purchase from the distributor (A_A9); purchase in discount stores (A_A2); purchase in a small nearby supermarket (A_A3); purchase in a delicatessen or grocery store (A_A5); purchase in supermarkets/specialised shops (A_A6); purchase in GAS (A_A7); purchase of fruit and vegetables (A_P2)).

The graph highlights the close behavioural interrelationship that characterises those who prefer to buy organic or sustainability certified products (fruit and vegetables, fresh meat and fish, beverages, frozen food and ice cream) and the influence of factors that condition their choices such as the brand/company (A_I4) or the packaging (A_I6) and the level of information provided on control (A_G9), production standards (A_G8), production methods (A_G6) and counterfeiting (A_G5). Thus, the role of reputation (brand/company) and packaging is important in determining a sustainability impact that is appreciable in the eyes of the consumer. These results are also partly driven by the increasing use of social media channels by farmers active in the farmer market to promote their products and to schedule home delivery of groceries throughout the week.

Correlating the behavioural factors with the relative matrix (Figure 4) shows the marginality of the factors of purchase from GAS (A_A7) and preferences for frozen/frozen products (A_P3), demonstrating the existence of an antagonism between farmer market and GAS distribution formulae, to the advantage of the first modality and the lesser availability of products in the third range or with a high degree of transformation and conservation. The farmer market appears in the eyes of the consumer as the privileged distribution structure for supplies of fresh produce (Basile et al., 2002; Timpanaro et al., 2016).

Figure 4 shows, moreover, the centrality in the consumer’s behavioural model of the choice factor “environmental impact of the product” (A_I3), as well as of the relevance of the information on sustainability present on the packaging and certifying the “delimited area of origin” (A_G3), the “production standard” (A_G8) and the greater “control” (A_G9).

The index of centrality on the strength of the links (Table 6) shows in the top positions the number of links related to the preference for quality products (A_I2, equal to 0.49), of the territory (A_F2, equal to 0.39), of the environmental impact (A_I3, equal to 0.35) and of organic products (A_F1, equal to 0.34), also as a contrast to counterfeits (A_G5).

These results attest, therefore, to the importance of relationships in the process of choosing and purchasing food products, the quality of which is linked to the recognition of the organic product and the territory; moreover, organic farming is the chosen tool for the construction of relationship systems and for quality assurance; the certification system has over time won the trust of the consumer in contrast to counterfeiting and, finally, the link lies in the environmental impact of the production and consumption process.

Thus, it is no coincidence that organic farming is emphasised because it represents a useful model for the creation of integrated, humane, ecological and economically sustainable agricultural systems, based in particular on local renewable resources and the management of ecological and organic processes, which are also recognised by consumers (Schader et al., 2015; Butti Al Shamsi et al., 2019).
Question	Extrapolated variable	Assigned code
2.1. In which channel do you shop? [Hypermarket/Supermarket]	Buying in hypermarkets	A_A1
2.1. In which channel do you shop? [Discount]	Purchase in discount stores	A_A2
2.1. In which channel do you shop? [Small neighbourhood supermarket]	Purchase in a small neighbourhood supermarket	A_A3
2.1. In which channel do you shop? [City market]	Purchase at a city market	A_A4
2.1. In which channel do you shop? [Grocery shop (delicatessen or drugstore)]	Purchase in a delicatessen or grocery store	A_A5
2.1. In which channel do you shop? [Supermarkets/specialised shops]	Purchase in supermarkets/specialised shops	A_A6
2.1. In which channel do you shop? [Solidarity purchasing groups]	GAS purchase	A_A7
2.1. In which channel do you shop? [E-commerce: Buying from the producer]	Purchase from producer	A_A8
2.1. In which channel do you shop? [E-commerce: purchase from distributor]	Purchase from distributor	A_A9
2.2. To what extent are the following ASPECTS important when purchasing food products? (1 low → 5 high)	Purchase influence – price	A_I1
2.2. To what extent are the following ASPECTS important when purchasing food products? (1 low → 5 high)	Purchase influence – quality	A_I2
2.2. To what extent are the following ASPECTS important when purchasing food products? (1 low → 5 high)	Purchase influence – environmental impact	A_I3
2.2. To what extent are the following ASPECTS important when purchasing food products? (1 low → 5 high)	Purchase influence – brand/company producing it	A_I4
2.2. To what extent are the following ASPECTS important when purchasing food products? (1 low → 5 high)	Purchase influence – advertising communication	A_I5
2.2. To what extent are the following ASPECTS important when purchasing food products? (1 low → 5 high)	Purchase influence – product packaging	A_I6
2.2. To what extent are the following ASPECTS important when purchasing food products? (1 low → 5 high)	Purchase influence – recommendation from friends and/or relatives	A_I7
2.2. To what extent are the following ASPECTS important when purchasing food products? (1 low → 5 high)	Purchase influence – expert advice	A_I8
2.2. To what extent are the following ASPECTS important when purchasing food products? (1 low → 5 high)	Purchase influence – packaging information	A_I9
2.2. To what extent are the following ASPECTS important when purchasing food products? (1 low → 5 high)	Purchase influence – confidence at the point of sale	A_I10
2.6. In what PERCENTAGE do you buy organic or sustainable food products in each of the following DEPARTMENTS? [Fruit and vegetables]	Buying fruit and vegetables	A_P1
2.6. In which PERCENTAGE do you purchase organic or sustainable food products in each of the following DEPARTMENTS? [Fixed weight fresh products]	Buying fruit and vegetables	A_P2
2.6. In which PERCENTAGE do you purchase organic or sustainable food products in each of the following DEPARTMENTS? [Frozen and ice-cream products]	Frozen food and ice cream	A_P3

(continued)
Question	Extrapolated variable	Assigned code
2.6. In which PERCENTAGE do you purchase organic or sustainable food products in each of the following departments? [Fresh meat and fish]	Fresh meat and fish	A_P4
2.6. In which PERCENTAGE do you purchase organic or sustainable food products in each of the following departments? [Beverages]	Beverages	A_P5
2.8. What do you think, in general, about the INFORMATION on the packaging of food products that certifies their environmental friendliness and sustainability characteristics? (1 = low → 5 = high) [product quality]	Judgement information – product quality	A_G1
2.8. What do you think, in general, of the INFORMATION on the packaging of food products that certifies their environmental friendliness and sustainability characteristics? (1 = low → 5 = high) [product authenticity]	Information judgement – product authenticity	A_G2
2.8. What do you think, in general, of the INFORMATION on the packaging of food products, which certifies their environmental friendliness and sustainability characteristics? (1 = low → 5 = high) [defined area of origin]	Information judgement – delimited area of origin	A_G3
2.8. What do you think, in general, of the INFORMATION on food packages certifying their environmental friendliness and sustainability characteristics? (1 = low → 5 = high) [favouring work in the production area]	Information judgement – favouring work in the production area	A_G4
2.8. What do you think, in general, of the INFORMATION on food packages, which certifies their environmental friendliness and sustainability characteristics? (1 = low → 5 = high) [avoid buying counterfeit products]	Information judgement – avoid buying counterfeit products	A_G5
2.8. What do you think, in general, of the INFORMATION on food products’ packaging certifying their environmental friendliness and sustainability characteristics? (1 = low → 5 = high) [regulated production methods]	Information judgement – regulatory production methods	A_G6
2.8. What do you think, in general, of the INFORMATION on food products’ packaging certifying their environmental friendliness and sustainability characteristics? (1 = low → 5 = high) [because it is a traditional product]	Information judgement – traditional product	A_G7
2.8. What do you think, in general, of the INFORMATION on food products’ packaging certifying their environmental friendliness and sustainability characteristics? (1 = low → 5 = high) [because it is a better product than the standard one]	Information judgement – above standard	A_G8
2.8. What do you think, in general, of the INFORMATION on the packaging of food products, which certifies their environmental friendliness and sustainability characteristics? (1 = low → 5 = high) [The organic label]	Information judgement – more control	A_G9
3.1. If you want to be sure that you are buying a quality food product (good and safe) what do you trust most? (1 = low → 5 = high) [The organic label]	Trust – organic label	A_F1
3.1. If you want to be sure to buy a quality food product (good and safe) what do you trust most? (1 = low → 5 = high) [The territory of origin]	Confidence – territory of origin	A_F2

Note(s): (*) Our elaboration
Another important aspect in the analysis of the relational system built within farmers’ markets is represented by that set of factors that direct the purchase because they are closely linked to the experience of individuals and to the expectations that the latter place in their unconscious on what can be achieved through sustainability in the post COVID reconstruction.

In this context, perceptions regarding quality logos and sustainability certification, the expectations placed in sustainability itself and the consequent actions to be carried out within the company are essential because they are considered useful for the promotion of sustainable innovations (Table 7).
The graph of the affiliation matrix does not highlight any element in a marginal position, confirming the value attitude characteristic of buyers in farmers’ markets (Figure 5). Thus it is evident that the corresponding affiliation pairs are linked through common actors in the case of quality logos and the function they play in purchasing choices, outcomes on food security, natural resource management, climate change mitigation and economic growth, as well as actions that need to be developed at the societal level to strengthen sustainable purchasing, reduce food waste and stimulate purchasing.

With reference to the individual evaluations (Table 8) it is possible to observe that on average there tends to prevail a vision of the brand as a tool to accompany the choice (I_L4), as well as a dimension of consumption sensitive to the management of natural resources (I_R2) and to the fight against climate change (I_R3). However, the consumer considers it important that there is a greater institutional commitment to encourage consumption (I_A2 and I_A5, for more incentives) and the world of research to increase levels of sustainability in the world of production (I_A3).

Factors determining purchasing behaviour	Degree normalised to 1
A_I2	0.486
A_F2	0.385
A_I3	0.349
A_F1	0.344
A_G5	0.343
A_G9	0.334
A_G6	0.324
A_G4	0.317
A_I9	0.316
A_G8	0.308
A_G2	0.292
A_I8	0.281
A_I1	0.275
A_G3	0.265
A_I4	0.261
A_G1	0.258
A_G7	0.240
A_I10	0.238
A_P1	0.232
A_I7	0.225
A_A1	0.177
A_P2	0.136
A_A3	0.111
A_I5	0.105
A_I6	0.104
A_P4	0.100
A_A5	0.082
A_A6	0.070
A_A2	0.068
A_A8	0.048
A_A4	0.046
A_A9	0.044
A_P5	0.035
A_A7	0.024
A_P3	0.014

Note(s): (*) Our elaboration
1.3 What do you think about the SUSTAINABILITY/ENVIRONMENTAL quality and certification logos on food packaging? (1 low → 5 high) [they are recognisable]

1.3 What do you think about the SUSTAINABILITY/ENVIRONMENTAL quality and certification LOGOS on food packaging? (1 low → 5 high) [they are clear]

1.3 What do you think about the SUSTAINABILITY/ENVIRONMENTAL quality and certification LOGOS on food packaging? (1 low → 5 high) [Are they reliable]

1.3 What do you think about the SUSTAINABILITY/ENVIRONMENTAL quality and certification LOGOS on food packaging? (1 low → 5 high) [they help me to choose the most environmentally friendly products]

1.3 What do you think about the SUSTAINABILITY/ENVIRONMENTAL quality and certification LOGOS on food packaging? (1 low → 5 high) [I do not have enough information to be able to evaluate them]

1.4 What do you think are the results that sustainability can help to achieve? (1 low → 5 high) [Ensuring food and social security]

1.4 Which outcomes do you think sustainability can help to achieve? (1 low → 5 high) [managing natural resources wisely]

1.4 What results do you think sustainability can help to achieve? (1 low → 5 high) [mitigating climate change]

1.4 Which outcomes do you think sustainability can help to achieve? (1 low → 5 high) [promoting economic growth]

1.4 What do you think the results that sustainability can help to achieve? (1 low → 5 high) [promoting economic growth]

1.5 What actions are needed to better involve society and promote social innovation in the field of sustainability? (1 low → 5 high) [improve the quality of information on organic products]

1.5 Which actions are needed to better engage society and promote social innovation in the field of sustainability? (1 low → 5 high) [provide incentives for buying sustainable organic products]

1.5 Which actions are needed to better engage society and promote social innovation in the field of sustainability? (1 low → 5 high) [funding research on consumer behaviour]

1.5 Which actions are necessary to better engage society and promote social innovation in the field of sustainability? (1 low → 5 high) [promoting social innovation in the food chain]

1.5 Which actions are necessary to better involve society and promote social innovation in the field of sustainability? (1 low → 5 high) [strengthen actions to encourage healthier and more sustainable consumption]

1.5 Which actions are needed to better involve society and promote social innovation in the field of sustainability? (1 low → 5 high) [strengthen actions to reduce food waste in households and food service industries]

Note(s): (*) Our elaboration
Among other things, the greatest concordance in the answers (less variability of views) was recorded for the reduction of waste in the home and in industrial and/or commercial environments (I_A6) and for sales promotion through incentives (I_A2), which according to the graph of the matrix of driving factors are placed on top positions and with a high number of links with them (Figure 6).

The centrality of the network demonstrates the role of agro-food in the construction of an alliance between citizens-consumers and all the subjects of the institutional world and production for the sharing of the common goods of the environment, solidarity and social inclusion (Table 9). Resource management, attention to waste reduction, the importance of innovation and information on organic products are central, with ratings of “over 0.6”; values between 0.5 and 0.6 are recorded for the importance of sustainability in supporting economic growth as a new challenge in the post-COVID era.

4.5 Network on knowledge of producers operating on the farmer’s market

A final element of analysis is represented by the importance for consumers of the knowledge of the companies, and their level, which operate on the farmer’s market. Several studies show, in fact, that the main advantages of buying agricultural products directly from producers lie not only in the freshness of the food, the certainty of its origin and the opportunity to consume seasonal products, but also in the opportunity to create a relationship of trust and knowledge, even in those who have no experience in this type of purchase (Svenfelt and Carlsson-Kanyama, 2010).

The trust and guarantee that characterise direct sales purchases generate a pleasant sensation of a return to the past, of being closer to nature, of contrasting the weakening of the relational system to the point that consumers who buy frequently and live closer to a farmer market tend to have more trust in local food systems than in conventional ones, characterised by a convenience-oriented lifestyle (Chen et al., 2019).

The resulting network on relational trust is constructed through a series of questions coded in Table 10.

The affiliation matrix returns a position of marginality in the knowledge network for a number of firms operating in the markets considered (C_A1, C_A2, C_A3, C_A4, C_A5, C_A6 and C_A10), but at the same time a centrality for others (C_A7, C_A8, C_A9, C_A11, C_A12,
Table 8: Consumers' ratings of factors influencing purchases at farmers' markets (2020)

Average value expressed (1 = low to 5 = high)	I_L1	I_L2	I_L3	I_L4	I_L5	I_R1	I_R2	I_R3	I_R4	I_A1	I_A2	I_A3	I_A4	I_A5	I_A6
Minimum value expressed (1 = low to 5 = high)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	2.0
Highest value expressed (1 = low to 5 = high)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Highest value expressed (1 = low to 5 = high)	3.0	2.0	2.0	3.0	1.0	1.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Coefficient of variation (standard deviation), %	39.3	45.5	42.0	34.6	51.3	63.3	25.5	28.8	31.8	26.6	24.1	29.6	32.3	28.7	21.7

Note(s): (*) Our elaboration
C_A13 and C_A14), demonstrating how important knowledge is for the construction of the trust relationship (Figure 7).

In the central area of the graph the factors expressing the level of knowledge tend to aggregate in progressively homogeneous groups, linked to the company's sensitivity to sustainability issues (clarity of objectives and targets for improvement, C_C4; waste differentiation, C_C5; and marketing communication on the sustainability values of products, C_C7), social welfare (management and monitoring of impacts, C_C3; involvement of the upstream and downstream supply chain, C_C8; and active labour policies, C_C9) and connection with the territory (communication and dissemination, C_C1; and voluntary actions and support of local initiatives, C_C2).

Crossing the knowledge factors reveals the depth of the relationships and the capacity of individual companies to coagulate the interest and relationship of consumers on specific aspects of sustainability (Figure 8).
Table 10.
Coding of questions on the degree of knowledge of producers asked to the sample of consumers surveyed at farmer markets (2020) (*)

Question	Extrapolated variable	Assigned code
4.1. Do you know one of the following companies [1]?	Knows 1	C_A1
4.1. Knows one of the following companies [2]	Knows 2	C_A2
4.1. Is familiar with one of the following enterprises [3] 4.1	Knows 3	C_A3
4.1. One of the following enterprises is known [4]	Knows 4	C_A4
4.1. One of the following enterprises is known [5]	Knows 5	C_A5
4.1. One of the following enterprises is known [6]	Knows 6	C_A6
4.1. One of the following enterprises is known [7]	Know 7	C_A7
4.1. One of the following enterprises is known [8]	Know 8	C_A8
4.1. One of the following enterprises is known [9]	Know 9	C_A9
4.1. One of the following enterprises is known [10]	Know 10	C_A10
4.1. One of the following enterprises is known [11]	Know 11	C_A11
4.1. One of the following enterprises is known [12]	Know 12	C_A12
4.1. One of the following enterprises is known [13]	Know 13	C_A13
4.1. One of the following enterprises is known [14]	Knows 14	C_A14
4.3. What do you know about the company(ies) with which you have most dealings? [Interacts and communicates in a clear, transparent and continuous way the commitment to sustainability]	Clear, transparent and continuous communication of sustainability commitment	C_C1
4.3. What do you know about the company or companies with which you have most dealings? Does/does it carry out voluntary actions or is it involved in financing initiatives/projects linked to local realities?	It carries out/has carried out voluntary actions or has committed itself to financing initiatives/projects linked to local realities	C_C2
4.3. What do you know about the enterprise(s) with which you have most dealings? Has it set up a system to manage and monitor its impact on the environment?	Has set up a system to manage and monitor its impact on the environment	C_C3
4.3. What do you know about the company or companies with which you have most dealings? Has it defined objectives and targets for the improvement of its environmental impact?	Has defined objectives and targets to improve its environmental impact	C_C4
4.3. What do you know about the company or companies with which you have most dealings? [It applies waste sorting policies]	It applies waste sorting policies	C_C5

(continued)
Thus it appears that the greatest number of connections are established for some companies (C_A13, C_A14; C_A12) that are particularly committed to sustainability issues and the related marketing communication, implementation, monitoring and control policies of the supply chain, as also shown in Table 11.

Question	Extrapolated variable	Assigned code
4.3. What do you know about the company or companies with which you have the most relationships? [Carries out analyses, studies and research on customers’ perception of the sustainability of the company or brand or product]	Carries out analyses, studies and research on customer perceptions regarding sustainability	C_C6
4.3. What do you know about the company or companies with which you have most dealings? [Does he/she adopt communication and marketing policies (e.g. product launches, events) in which the sustainable values of the product are highlighted?]	Adopts communication and marketing policies (e.g. product launches, events) in which the sustainable values of the product are highlighted	C_C7
4.3. What do you know about the company or companies with which you have most dealings? Has it activated a process of involvement/awareness-raising on sustainability issues in its downstream and upstream supply chains?	Has activated a process of involvement/awareness-raising on sustainability issues in its downstream and upstream supply chain	C_C8
4.3. What do you know about the company or companies with which you have most dealings? [It adopts a labour policy which respects workers’ rights]	Adopts a labour policy that respects workers’ rights	C_C9

Note(s): (*) Our elaboration

Table 10.
5. Conclusions
The topicality of the work is to be found in the transformations taking place across the planet in the post-pandemic era of COVID and in the ever-increasing role that green aspects will play in the behaviour of the various economic players.

In support of this political approach, reference should also be made to the constraints assumed by the various countries in achieving the Millennium Goals with Agenda 2030 and
the use of resources (e.g. within the Next Generation EU) earmarked for achieving a green revolution.

However, the COVID pandemic has also brought about changes in individual and collective behaviour and in the systems of relations between different individuals, with repercussions on food consumption (Ipsos, 2020). Thus, the importance of local food, memory, the basic ingredients of food preparations and the health aspects and green innovation in production and packaging have been rediscovered. Thus, knowledge, trust and assurance of quality and health become central elements in reassuring consumers about behavioural values within food systems.

These values represent elements of sharing and cementing a system of direct and indirect relationships within alternative food systems, such as farmers’ markets, which thus become a reference model for their potential favourable impact in achieving business value.

In particular, the research has demonstrated the existence of four catalysing elements for the construction of relational networks, represented by individual sensitivity towards sustainability, habitual purchasing behaviour, expectations about the agri-food system and agri-food policy and, finally, knowledge of the system of enterprises operating in farmers’ markets.

As found in the literature, consumers who turn to these markets show greater sensitivity to the various aspects of sustainability and its declinations and tend to build relationships around the trust placed in the territory and its products because they are considered to be of quality, on the environmental impact and the safeguarding of important natural resources, such as water, and the adoption of strategies for the separate collection of waste (above all, plastic and glass).

Other relevant aspects are the opportunity to promote healthier and more sustainable eating and consumption styles, to combat food waste and promote a sustainable use of resources, as well as the implementation of sustainability models extended upstream and downstream of the agri-food chain, which are considered indispensable in the transition towards a food system more in line with the expectations of the modern consumer.

Finally, some of the networks are based on relationships linked in common by the need to encourage clear and transparent communication systems on the comparative impacts generated by sustainable and conventional production models, not least because the fragility shown in the face of the rapid spread of the pandemic has made it clearly evident how interconnected the two hemispheres of the planet are and how devastating the effects of intensive use of resources can be.

This work completes the literature on the relational aspects of alternative food networks and, as such, can offer useful food for thought to various stakeholders and public and private decision-makers. This is also because in the post-COVID reconstruction, investment space can be dedicated to strengthening logistics and organisational services in order to guarantee stability to the various realities present in the area, or it can coagulate the interest of new producers interested in communicating their commitment to sustainability and/or the adoption of production strategies based on good practices or agroecology.

Not only that, but on the basis of the results of the research and the importance of the value elements collected, the farmers’ market can be a reference model from an environmental, social, ethical point of view, because it produces shared value, for large companies committed to seeking new business strategies to recover from the current crisis through natural, social and relational forms of value creation, as well as financial and manufacturing ones (Saarijärvi, 2012; Kuckertz et al., 2019).

Future research will focus on understanding how digital transformation can combine with sustainability to find new answers to consumer expectations.
References

Abu Hatab, A., Lagerkvist, C.J. and Esmat, A. (2021), “Risk perception and determinants in small-and medium-sized agri-food enterprises amidst the COVID-19 pandemic: evidence from Egypt”, Agribusiness, Vol. 37 No. 1, pp. 187-212.

Ahani, A. and Nilashi, M. (2020), “Coronavirus outbreak and its impacts on global economy: the role of social network sites”, Journal of Soft Computing and Decision Support Systems, Vol. 7 No. 2, pp. 19-22.

ASviS (2019), L’Italia e gli Obiettivi di sviluppo sostenibile, Sito Epicentro ISS, available at: https://www.epicentro.iss.it/globale/rapporto-asvis-2019 (accessed 01 March 2020).

Audet, R., Lefèvre, S., Brisebois, É. and El-Jed, M. (2017), “Structuring tensions and key relations of Montreal seasonal food markets in the sustainability transition of the agri-food sector”, Sustainability, Vol. 9 No. 3, p. 320.

Basile, F., Foti, V.T. and Timpanaro, G. (2002), “Comparative economic analyses between conventional and eco-compatible cactus pear cultivation in Italy”, Acta Hortic, Vol. 581, pp. 47-61.

Borgatti, S.P., Mehra, A., Brass, D.J. and Labianca, G. (2009), “Network analysis in the social sciences”, Science, Vol. 323 No. 5916, pp. 892-895.

Brinkley, C. (2018), “The small world of the alternative food network”, Sustainability, Vol. 10 No. 8, p. 2921.

Brown, A. (2002), “Farmers’ market research 1940–2000: an inventory and review”, American Journal of Alternative Agriculture, Vol. 17 No. 4, pp. 167-176.

Butti Al Shamsi, K., Compagnoni, A., Timpanaro, G., Cosentino, S.L. and Guarnaccia, P. (2018), “A sustainable organic production model for ‘food sovereignty’ in the United Arab Emirates and Sicily-Italy”, Sustainability, Vol. 10 No. 3, p. 620.

Butti Al Shamsi, K., Guarnaccia, P., Cosentino, S.L., Leonardi, C., Caruso, P., Stella, G. and Timpanaro, G. (2019), “Analysis of relationships and sustainability performance in organic agriculture in the United Arab Emirates and Sicily (Italy)”, Resources, Vol. 8 No. 1, p. 39.

Caron, P., y de Loma-Osorio, G.F., Nabarro, D., Hainzelin, E., Guillou, M., Andersen, I., Arnold, T., Astralaga, M., Beukeboom, M., Bickersteth, S., Bwalya, M., Caballero, P., Campbell, B.M., Divine, N., Fan, S., Frick, M., Friis, A., Gallagher, M., Halkin, J.P., Hanson, C., Lasbennes, F., Ribera, T., Rockstrom, J., Schuepbach, M., Steer, A., Tutwiler, A. and Verburg, G. (2018), “Food systems for sustainable development: proposals for a profound four-part transformation”, Agronomy for Sustainable Development, Vol. 38 No. 4, pp. 1-12.

Cesaro, L., Giampaolo, A., Giare, F., Monteleone, A., Pierangelii, F., Sardone, R., Scardera, A., Tarangioi, S. and Vignano, L. (2020), “COVID-19, impatti economici nelle Aziende Agricole”, Rete di Informazione Contabile Agricola (RICA) e del Programma Rete Rurale Nazionale 2014-20, Piano di azione biennale 2019-20. Scheda 4.1 Ente CREA-PB, Roma, ISBN: 9788833850702.

Chen, L.A., Miranda, B.V., Parcell, J.L. and Chen, C. (2019), “The foundations of institutional-based trust in farmers’ markets”, Agriculture and Human Values, Vol. 36 No. 3, pp. 395-410.

Crespo, J., Réquier-Desjardins, D. and Vicente, J. (2014), “Why can collective action fail in local agri-food systems? A social network analysis of cheese producers in Aculco, Mexico”, Food Policy, Vol. 46, pp. 165-177.

Darolt, M.R., Lamine, C., Brandenburg, A., Alencar, M.D.C.F. and Abreu, L.S. (2016), “Alternative food networks and new producer-consumer relations in France and in Brazil”, Ambiente e Sociedade, Vol. 19 No. 2, pp. 1-22.

Di Marco, M., Baker, M.L., Daszak, P., De Barro, P., Eskew, E.A., Godde, C.M., Harwood, T.D., Herrero, M., Hoskins, A.J., Johnson, E., Karesh, W.B., Machalaba, C., Navarro Garcia, J., Paini, D., Pirzl, R., Stafford Smith, M., Zambrana-Torrelio, C. and Ferrier, S. (2020), “Opinion: sustainable
development must account for pandemic risk”, *Proceedings of the National Academy of Sciences*, Vol. 117 No. 8, pp. 3888-3892.

Dodds, R., Holmes, M., Arunsopha, V., Chin, N., Le, T., Maung, S. and Shum, M. (2014), “Consumer choice and farmers’ markets”, *Journal of Agricultural and Environmental Ethics*, Vol. 27 No. 3, pp. 397-416.

Enriquez-Sanchez, J., Munoz-Rodriguez, M., Altamirano-Cardenas, J.R. and Villegas-De Gante, A. (2017), “Activation process analysis of the Localized Agri-food System using social networks”, *Agricultural Economics*, Vol. 63 No. 3, pp. 121-135.

Farcas, A.C., Galanakis, C.M., Socaciu, C., Pop, O.L., Tibulca, D., Paucean, A., Jimborean, M.A., Salanta, L.C., Tofana, M. and Socaci, S.A. (2021), “Food security during the pandemic and the importance of the bioeconomy in the new era”, *Sustainability*, Vol. 13, p. 150, doi: 10.3390/su13010150.

Feenstra, G. (1993), “Local food systems and sustainable communities”, *American Journal of Alternative Agriculture*, Vol. 12 No. 1, pp. 28-36.

Fraser, E., Legwegoh, A., Krishna, K.C., CoDyre, M., Dias, G., Hazen, S., Johnson, R., Martin, R., Ohberg, L., Sethuratnam, S., Sneyd, L., Smithers, J., Van Acker, R., Vansteenkiste, J., Wittman, H. and Yada, R. (2016), “Biotechnology or organic? Extensive or intensive? Global or local? A critical review of potential pathways to resolve the global food crisis”, *Trends in Food Science and Technology*, Vol. 48, pp. 78-87.

Goodman, D., Dupuis, M. and Goodman, M. (2012), *Alternative Food Networks: Knowledge, Practice, and Politics*, Routledge, New York, NY, p. 308.

Gupta, S., Czinkota, M. and Melewar, T.C. (2013), “Embedding knowledge and value of a brand into sustainability for differentiation”, *Journal of World Business*, Vol. 48 No. 3, pp. 287-296.

Gupta, A., Zhu, H., Doan, M.K., Michuda, A. and Majumder, B. (2020), “Economic impacts of the COVID—19 lockdown in a remittance-dependent region”, *American Journal of Agricultural Economics*, Vol. 103 No. 2, pp. 466-485, doi: 10.1111/ajae.12178.

Higgins, V., Dibden, J. and Cocklin, C. (2008), “Building alternative agri-food networks: certification, embeddedness and agri-environmental governance”, *Journal of Rural Studies*, Vol. 24 No. 1, pp. 15-27.

Hobbs, J.E. (2020), “Food supply chains during the COVID-19 pandemic”, *Canadian Journal of Agricultural Economics*, Vol. 68, pp. 171-176, doi: 10.1111/cjag.12237.

Ipsos (2020), *How Much Is the World Yearning for Change after the COVID-19 Crisis? Survey for the World Economic Forum Conducted on Global Advisor (August 21—September 4, 2020)*, K Street, NW, Suite 410 Washington DC 20006, available at: www.ipsos.com.

Jarosz, L. (2000), “Understanding agri-food networks as social relations”, *Agriculture and Human Values*, Vol. 17 No. 3, pp. 279-283.

Kessari, M., Joly, C., Jaouen, A. and Jaeck, M. (2020), “Alternative food networks: good practices for sustainable performance”, *Journal of Marketing Management*, Vol. 36 Nos 15-16, pp. 1417-1446, doi: 10.1080/0267257X.2020.1783348.

Knöke, D. and Yang, S. (2019), *Social Network Analysis*, Sage Publications, Washington, DC.

Kuckertz, A., Berger, E.S. and Gaudig, A. (2019), “Responding to the greatest challenges? Value creation in ecological startups”, *Journal of Cleaner Production*, Vol. 230, pp. 1138-1147.

Lockie, S. and Kitto, S. (2000), “Beyond the farm gate: production-consumption networks and agri-food research”, *Sociologia Ruralis*, Vol. 40 No. 1, pp. 3-19.

Nomisma (2020), “The world after lockdown”, available at: https://www.nomisma.it/servizi/osservatori/osservatori-realizzati-ad-hoc/osservatorio-lockdown/ (accessed 15 May 2020).

Pe’er, G., Bonn, A., Bruehlheide, H., Dieker, P., Eisenhauer, N., Feindt, P.H., Hagedorn, G., Hansjürgens, B., Herzon, I., Lomba, A., Marquard, E., Moreira, F., Nitsch, H., Oppermann, R., Perino, A., Röder, N., Schleyer, C., Schindler, S., Wolf, C., Zimmgrebe, Y. and Lakner, S. (2020), “Action
needed for the EU Common Agricultural Policy to address sustainability challenges”, People and Nature, Vol. 2 No. 2, pp. 305-316.

Peeters, A., Lefebvre, O., Balogh, L., Barberi, P., Batello, C., Bellon, S., Gaifami, T., Gkisakis, V., Lana, M., Migliorini, P., Ostermann, O. and Wezel, A. (2020), “A green deal for implementing agroecological systems: reforming the common agricultural policy of the European union”, J Sustainable Organic Agric Syst, Vol. 70 No. 2, pp. 83-93, doi: 10.3220/LBF16101232990000.

Rejeb, A., Rejeb, K. and Keogh, J.G. (2020), “COVID-19 and the food chain? Impacts and future research trends”, Log Forum, Vol. 16 No. 4, pp. 475-485.

Rossi, A., Bui, S. and Marsden, T. (2019), “Redefining power relations in agrifood systems”, Journal of Rural Studies, Vol. 68, pp. 147-158.

Saarijärvi, H. (2012), “The mechanisms of value co-creation”, Journal of Strategic Marketing, Vol. 20 No. 5, pp. 381-391.

Savary, S., Akter, S., Almekinders, C., Harris, J., Korsten, L., Rötter, R., Waddington, S. and Watson, D. (2020), “Mapping disruption and resilience mechanisms in food systems”, Food Security, Vol. 12 No. 4, pp. 695-717.

Schader, C., Stolze, M. and Niggli, U. (2015), “How the organic food system contributes to sustainability”, Proceedings of an International Workshop “Assessing Sustainable Diets within the Sustainability of Food Systems Mediterranean Diet. Organic Food: New Challenges”, FAO, Roma.

Schmer, M. (2015), “From ‘Food from Nowhere’ to ‘Food from Here’: changing producer–consumer relations in Austria”, Agriculture and Human Values, Vol. 32 No. 1, pp. 121-132.

Scott, J. (1988), “Social network analysis”, Sociology, Vol. 22 No. 1, pp. 109-127.

Sonnino, R. and Marsden, T. (2006), “Beyond the divide: rethinking relationships between alternative and conventional food networks in Europe”, Journal of Economic Geography, Vol. 6 No. 2, pp. 181-199.

Suki, N.M. (2016), “Green product purchase intention: impact of green brands, attitude, and knowledge”, British Food Journal, Vol. 118 No. 12, pp. 2893-2910, doi: 10.1108/BFJ-06-2016-0295.

Svenfelt, Å. and Carlsson-Kanyama, A. (2010), “Farmers’ markets—linking food consumption and the ecology of food production?”, Local Environment, Vol. 15 No. 5, pp. 453-465.

Tang, J.W., Chen, M.L. and Chiu, T.H. (2018), “An exploratory study on local brand value development for outlying island agriculture: local food system and actor–network theory perspectives”, Sustainability, Vol. 10 No. 11, p. 4186.

Timpanaro, G., Scuderi, A. and Foti, V.T. (2016), “A network for the conservation of agrobiodiversity of local ecotypes”, Acta Hortic, Vol. 1142, pp. 163-170.

Wang, E., An, N., Gao, Z., Kiprop, E. and Geng, X. (2020), “Consumer food stockpiling behavior and willingness to pay for food reserves in COVID-19”, Food Security, Vol. 12 No. 4, pp. 739-747.

Wasserman, S. and Faust, K. (1994), Social Network Analysis: Methods and Applications, Cambridge University Press, Cambridge.

Wolf, M.M., Spittler, A. and Ahern, J. (2005), “A profile of farmers’ market consumers and the perceived advantages of produce sold at farmers’ markets”, Journal of Food Distribution Research, Vol. 36 Nos 856-2016-57429, pp. 192-201.

Further reading

Cariappa, A.A., Acharya, K.K., Adhav, C.A., Sendhil, R. and Ramasundaram, P. (2021), “Impact of COVID-19 on the Indian agricultural system: a 10-point strategy for post-pandemic recovery”, Outlook on Agriculture, Vol. 50 No. 1, pp. 26-33, doi: 10.1177/0030727021989060.

Chiffoleau, Y. and Touzard, J.M. (2014), “Understanding local agri-food systems through advice network analysis”, Agriculture and Human Values, Vol. 31 No. 1, pp. 19-32, doi: 10.1007/s10460-013-9446-6.
About the authors
Vera Teresa Foti, PhD in “Agricultural Economics and Policy”, is Researcher at the University of Catania, where she teaches “Economics of Quality Products”. Her expertise covers qualitative and quantitative studies on the marketing of agri-food products, policies for the protection and enhancement of quality agri-food products, agri-biodiversity, social agriculture and EU rural development policies. She is currently working on the study of food consumption patterns and agri-food marketing (PIACERI_Unict 2020/2022). Vera Teresa Foti is the corresponding author and can be contacted at: v.foti@unict.it

Giuseppe Timpanaro, PhD in “Agricultural Economics and Policy”, is Associate Professor and Head of Master’s Degree Course in Agricultural Science and Technologies in the University of Catania. Her expertise covers qualitative and quantitative studies on EU agri-food policies, multi-level governance at regional and local level and rural development policies, quality production, food security and sustainability. He is currently working on the socio-economic study of the influence of crop rotation on production performance (BRESOV, H2020); on the efficient use of irrigation resources to mitigate the effects of climate change (WATER4AGRIFOOD-PON “Research and Innovation” 2014–2020); on food consumption patterns and marketing (PIACERI_Unict 2020/2022).