Construction and counting of the number operators of an $n$-degree-of-freedom normalized non-resonant vibrational Hamiltonian

G. Saget$^a$, C. Leroy$^{a,b,*}$, H.R. Jauslin$^a$

$^a$Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6503 CNRS-Université Bourgogne Franche-Comté 9 Av. A. Savary, BP 47 870, F-21078 DIJON Cedex, FRANCE.

$^b$Tomsk Polytechnic University, Institute of Physics and Technology, Department of General Physics, 30 Lenin Avenue, 634050 Tomsk, RUSSIA.

Abstract

The present paper is the first of two articles aimed at constructing $n$-degree-of-freedom Hamiltonian systems by an algebraic approach. In molecular spectroscopy, the construction of vibrational Hamiltonian for strongly excited molecular systems by using an algebraic formalism requires the introduction by hand the operators describing the change in energy by numerous quanta and it is tedious to predict in advance the total number of operators appearing in the development.

The goal of the two articles is not only to propose in the local limit a systematic method for constructing a normalized vibrational Hamiltonian for a strongly excited $n$-degree-of-freedom molecular system from the generators of the Lie algebra, the algebra of polynomial invariants, but also to enumerate the number of independent operators needed for the construction of the Hamiltonian developed in the base of these generators up to the given order $N$. The first article introduces the theoretical tools used in both papers (section 2), and presents the method of construction in case of absence of resonance (section 3). Finally, an application for a triatomic non-linear ClOH molecule is considered in case close to the dissociation limit. (section 4).

Keywords: Molecular structure; Vibrational Hamiltonian; Lie Algebra; Polynomial Invariants.

1. Introduction

Since years 1990, algebraic formalisms are developed in molecular spectroscopy (e.g. [1], [2]). For instance, the vibrational structure of local stretching modes for tetrahedral molecules $AB_4$ has been studied through algebraic chains by [3]). To model molecular vibrations the theory of local modes (e.g. [4], [5]) associates for each of $n$ degrees of freedom in vibration an oscillator to each bond and to each angular deformation. When molecular systems are strongly excited or they are highly anharmonic already at small quantum numbers, this description corresponds to a treatment that is more adequate for vibrational modes than for the normal ones.

In classical mechanics the study around a fixed point consists in writing the Hamiltonian $\mathcal{H}$ as a power series expansion of $\epsilon$ ($\epsilon$ is a non-dimensional parameter small compared to 1 and the different Hamiltonians appearing in the development are of the same order, and the development is up to the order $N$, with $N$ being non-zero integer):

$$\mathcal{H} \approx \mathcal{H}_0 + \sum_{k=1}^{\tilde{N}} \epsilon^k \mathcal{H}_k,$$

where $\mathcal{H}_0$ is the non-zero integer) is the Hamiltonian describing the system up to the lowest order and $\mathcal{H}_k$ ($k = 1, \ldots, \tilde{N}$) are the perturbation Hamiltonians. It follows from this equation that $\mathcal{H}_0$ is not rigorously the first integral for the studied system.

Birkhoff ([6]) then Gustavson ([7]) or Deprit ([8]) proposed a so-called procedure of normalisation to a new Hamiltonian $\mathcal{K}$ having a simpler form than $\mathcal{H}$, called nor-
malized Hamiltonian, and commuting with $H_0$ in the sense of Poisson irregardless of the order up to which it is developed. Just like $\mathcal{H}$, the normalized Hamiltonian can be written as a power series development of $e_\varepsilon$ for the development up to the order $\tilde{N}$, we have: $\mathcal{K} \approx H_0 + \sum_{k=1}^{\tilde{N}} e_\varepsilon^{k} \mathcal{K}_k$.

In this article, we consider the so-called standard normalisation (4) of $n$-degree-of-freedom harmonic oscillator, i.e. the Hamiltonian of the lowest order $H_0$ is a polynomial of the second order in dynamic variables and reads: $H_0 = \sum_{k=1}^{n} \frac{\omega_k(q_k^2 + p_k^2)}{2}$, with $\omega_k$ being the frequencies $(1 \leq i, j \leq n, \omega_i \neq \omega_j)$.

2. Normalisation

2.1. Hamiltonian of the lowest order: $H_0$

Let $\mathcal{H}(q_1, ..., q_n, p_1, ..., p_n)$ be the classical vibrational Hamiltonian of an $n$-degree-of-freedom Hamiltonian system with the quadratic part being that of an anisotropic harmonic oscillator $H_0 = \sum_{k=1}^{n} \frac{\omega_k(q_k^2 + p_k^2)}{2}$, where $\omega_k$ are frequencies $(1 \leq i, j \leq n, \omega_i \neq \omega_j)$ and $q_k$ and $p_k$ are the non-dimensional canonical variables describing the generalized coordinates and their conjugated momenta.

2.2. Equation of motion

We introduce here the complex variables $z_k$ and $z_k^*$ defined as functions of canonical variables $q_k$ and $p_k$ (for $k \in [1, ..., n]$) $z_k = \frac{1}{\sqrt{2}}(q_k + ip_k)$ and $z_k^* = \frac{1}{\sqrt{2}}(q_k - ip_k)$. These variables satisfy the relations: $1 \leq j, k \leq n, \{z_j, z_k^*\} = \sum_{i=1}^{n} \left( \frac{\partial z_j}{\partial q_i} \frac{\partial z_k^*}{\partial p_i} - \frac{\partial z_j}{\partial p_i} \frac{\partial z_k^*}{\partial q_i} \right) = -i \delta_{jk}$. The change of coordinates from $(q_k, p_k)$ to $(z_k, z_k^*)$ is a symplectic transformation of multiplier $-i$. The Hamiltonian $H_0$ reads: $H_0 = -i \sum_{k=1}^{n} \omega_k z_k z_k^*$. In complexes coordinates, for $1 \leq k \leq n$, the equations of motion are:

$$\frac{dz_k}{dt} = \frac{\partial H_0}{\partial z_k^*} = -i \omega_k z_k.$$  

2.3. Hamiltonian flow

For an initial condition $z_0 = (z_{1,0}, ..., z_{n,0})$, the solution to the equation of motion is written formally as $z(t) = \phi_t^{H_0}(z_0)$. The application $\phi_t^{H_0} : \Gamma \rightarrow \Gamma$ is the Hamiltonian flow generated (10, 11) by $H_0$.

We have: $z(t) = \phi_t^{H_0}(z_0) \mapsto \begin{pmatrix} z_1(t) \\ \vdots \\ z_n(t) \end{pmatrix} = \begin{pmatrix} e^{-i \omega_1 t} & 0 & \cdots & 0 \\ 0 & e^{-i \omega_2 t} & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & e^{-i \omega_n t} \end{pmatrix} \begin{pmatrix} z_{1,0} \\ \vdots \\ z_{n,0} \end{pmatrix}.$  

The solutions $z(t)$ still constitute the trajectories of the Hamiltonian flow or the orbits of the harmonic oscillator.

2.4. Normalisation tools

2.4.1. Mathematical condition of non-resonance

The Hamiltonian $H_0$ is called non-resonant (for example (12)) if the $n$ frequencies $\omega_k$ are independents, i.e. $(\lambda_k$ are all zero integers):

$$\sum_{k=1}^{n} \lambda_k \omega_k = 0. \quad (3)$$

2.4.2. Adjoint operator $ad_{H_0}$

The adjoint operator associated to Hamiltonian $H_0$ is the linear operator acting in the phase space $\Gamma$ (13) $ad_{H_0} : \forall G \in \Gamma, \mathcal{G} \rightarrow ad_{H_0}(G) = \{G, H_0\} = \sum_{k=1}^{n} \left( \frac{\partial G}{\partial q_k} \frac{\partial H_0}{\partial p_k} - \frac{\partial G}{\partial p_k} \frac{\partial H_0}{\partial q_k} \right)$. In complex coordinates, this operator reads:

$$ad_{H_0} = \sum_{k=1}^{n} \omega_k \left( \frac{z_k^* \partial}{\partial z_k} - z_k \frac{\partial}{\partial z_k^*} \right). \quad (4)$$

2.4.3. Sets $Ker ad_{H_0}$ and $Im ad_{H_0}$

The complex monomials $\sigma = z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n} z_1^{*\beta_1} \cdots z_n^{*\beta_n}$ (with $\sum_{k=1}^{n} (\alpha_k + \beta_k) = m$ being the monomial degree, and $\alpha_k$ and $\beta_k$ being integers) are the elements of the complex polynomials circle $\mathbb{C}(z, z^*)$ and are the eigenvectors of $ad_{H_0}$ as:

$$ad_{H_0}(\sigma) = \sum_{k=1}^{n} \omega_k \left( \beta_k - \alpha_k \right)(\sigma). \quad (5)$$

$Ker ad_{H_0}$ (kernel of $ad_{H_0}$) and $Im ad_{H_0}$ (image of $ad_{H_0}$) verify (resp.) $ad_{H_0}(\sigma) = 0$ and $ad_{H_0}(\sigma) \neq 0$. 

2
2.4.4. Circles of complex polynomials invariant with the time reversal

The application of the time reversal operator $\tau$ on the set $(z_k, z_k^*)$ $(1 \leq k \leq n)$ gives: $\tau(z_k) = z_k^*$, $\tau(z_k^*) = z_k$. We denote by $\mathbb{C}(z, z^*)^\tau$ the sub-circle of the monomials $\sigma$ invariant with respect to the time reversal $(14)$: $\mathbb{C}(z, z^*)^\tau = \{ \sigma \in \mathbb{C}(z, z^*)/\tau(\sigma) = \sigma \}$.

2.4.5. Hilbert base

Due to the condition of non-resonance $(3)$, the kernel of adjoint operator $ad_{\mathcal{H}_0}$ is produced (created) by the $n$ monomials $\sigma_1 = z_1 z_1^*$, ..., $\sigma_n = z_n z_n^*$ all belonging to $\mathbb{C}(z, z^*)^\tau$. $Ker ad_{\mathcal{H}_0}$ has a a Lie algebra structure called algebra of invariant polynomials. The generators $\sigma_k$ $(1 \leq k \leq n)$ form a base of $Ker ad_{\mathcal{H}_0}$ called Hilbert base $(15, 16, 17)$. This base is unique for a non-resonant Hamiltonian $(13)$.

The generators are invariants with respect to flow of the harmonic oscillator, i.e.: $\forall t, 1 \leq k \leq n, \forall z \in \Gamma, \sigma_k(\phi_{t\mathcal{H}_0}(z)) = \sigma_k(z)$.

$(3)$ means that $\phi_{t\mathcal{H}_0}$ is a symplectic symmetry for the generators of the algebra $(10, 11, 12)$; in other terms, according to the Noether theorem, $1 \leq k \leq n$, $\{ \sigma_k, \mathcal{H}_0 \} = 0$.

Reciprocally, we know that by construction the generators $\sigma_k$ belong to $Ker ad_{\mathcal{H}_0}$, so $1 \leq k \leq n$, $\{ \sigma_k, \mathcal{H}_0 \} = 0$.

If $\mathcal{H}_0$ is an invariant for the generators then, according to the "reciprocal" of the Noether theorem, $\phi_{t\mathcal{H}_0}$ is a symplectic symmetry for the generators. Thus we have:

$\forall t, 1 \leq k \leq n, \forall z \in \Gamma, \sigma_k(\phi_{t\mathcal{H}_0}(z)) = \sigma_k(z), \quad \iff \quad \{ \sigma_k, \mathcal{H}_0 \} = 0$.

In complex coordinates, the Poisson brackets between the generators read (pour $1 \leq i, j \leq n$):

$\{ \sigma_i, \sigma_j \} = i \sum_{k=1}^{n} \left( \frac{\partial \sigma_i}{\partial z_k} \frac{\partial \sigma_j}{\partial z_k^*} - \frac{\partial \sigma_i}{\partial z_k^*} \frac{\partial \sigma_j}{\partial z_k} \right) = 0$.

2.4.6. Normalized Hamiltonian $\mathcal{K}$

We look for constructing a Hamiltonian called normalized Hamiltonian $\mathcal{K}$ such that $\mathcal{H}_0$ commute with $\mathcal{K}$, i.e. $\{ \mathcal{H}_0, \mathcal{K} \} = -ad_{\mathcal{H}_0}(\mathcal{K}) = ad_{\mathcal{K}}(\mathcal{H}_0) = 0$. The normalized Hamiltonian has the following form $(13)$: $\mathcal{K} = \mathcal{H}_0 + f(\sigma_1, ..., \sigma_n)$. As the generators of the Hilbert base are invariant with respect to the time reversal, the Hamiltonian is invariant as well: $\tau(\mathcal{K}) = \mathcal{K}$.

2.4.7. Order of the development

In two articles, we write the normalized Hamiltonian as a power polynomial development of the generators. In what follows, we denote by $\lambda$-monomial of degree $d = \sum_{r=1}^{\lambda} \alpha r_1 r_2 $ each monomial formed by the product of the powers of $\lambda$ generators of the Hilbert base $(2 \leq \lambda \leq n)$: $\sigma_1^{r_1} \sigma_2^{r_2} ... \sigma_n^{r_n}$ (obviously $d \geq 2\lambda$). The order $N$ of the development is fixed by the $\lambda$-monomials of the highest degree $d = N$ of the Hamiltonian $\mathcal{K}$. In the first article as the generators of the Hilbert base are all of the order 2, the order $N$ is necessarily pair (with $N \geq 2$).

3. Construction of counting

3.1. Case $n = 2$

3.1.1. Construction of the normalized Hamiltonian

This case can model, for example, the two stretching modes of rigid triatomic linear molecules ABC, and also all molecular systems having at least two vibrational non-resonant modes.

The normalized non-resonant Hamiltonian $\mathcal{K}$, with the quadratic part $\mathcal{H}_0 = -i(\omega_1 \sigma_1 + \omega_2 \sigma_2)$, is only the function of $\sigma_1 \text{ et } \sigma_2$: $\mathcal{K} = \mathcal{H}_0 + f(\sigma_1, \sigma_2)$.

Let us write it down as a polynomial development of $\sigma_1$ and $\sigma_2$ up to the order $N$ ($N \geq 4$ is natural integer):

$\mathcal{K} = \mathcal{H}_0 + \sum_{q_0=2}^Q \left( \alpha_1^{q_0} \sigma_1^{q_0} + \alpha_2^{q_0} \sigma_2^{q_0} \right) + \sum_{r=1}^Q \sum_{2 \leq r_1 + r_2 \leq 2} \sum_{r_1 \geq 1, r_2 \geq 1} \alpha_{r_1, r_2}^{q_0} \sigma_1^{r_1} \sigma_2^{r_2}$.

In Eq. $(3)$, the monomials are all real. Moreover, the transformation of $(q_k, p_k)$ to $(z_k, z_k^*)$ is a symplectic transformation of multiplier $-i$, in the manner of the Hamiltonian $\mathcal{K}$, we deduce that all the coefficients $\alpha_{r_1, r_2}^{q_0}$, $\alpha_{r_1, r_2}^{q_1}$, $\alpha_{r_1, r_2}^{q_2}$
are pure imaginary; \( q_0, i_1, i_2, r_{i_1} \) and \( r_{i_2} \) are natural integers; in (9), the degree \( d \) of the monomials \( \sigma_1^{q_0} \), \( \sigma_2^{q_0} \) and \( \sigma_1^{r_{i_1}} \sigma_2^{r_{i_2}} \) is equal to \( 2q_0 + 2r \), respectively; \( q_0 \) and \( r \) take all the integer values from 2 to a maximal value \( Q_0 \) such that \( Q_0 = E(\frac{N}{2}) \) with \( E(x) \) being the integer (entire) part of \( x \). If \( N = 2 \), the coefficients \( \alpha_{r_{i_1}, r_{i_2}}^{q_0} \) and \( \alpha_{r_{i_1}}^{q_0} \) are zero. Moreover, \( K \) contains \( Q_0(\frac{Q_0+1}{2}) \) monomials.

3.1.2. Independence of the coefficients

Let us write down the Jacobi equality (1 \( \leq j \leq 2 \)): 
\[
\{K, \{\sigma_j, H_0\}\} + \{H_0, \{K, \sigma_j\}\} + \{\sigma_j, \{H_0, K\}\} = 0.
\]
Calculating the different Poisson brackets \( \{K, \sigma_j\} \) and knowing that \( \{K, \sigma_j\} \in Ker adH_0 \), we deduce that there is no relation between the coefficients of the development of Eq. (9): the different \( \lambda \)-monomials are independent between them. The Hamiltonian is described by as many monomials as the coefficients.

3.2. Case \( n = 3 \)

This mathematical study can be used as a model, for example, for rigid molecules to describe local modes (stretching or bending) of triatomic nonlinear molecules, ABC or AB2.

The normalized non-resonant Hamiltonian \( K \) with the quadratic part \( H_0 = -i(\omega_1\sigma_1 + \omega_2\sigma_2 + \omega_3\sigma_3) \) is only the function of \( \sigma_1, \sigma_2 \) and \( \sigma_3 \): \( K = H_0 + f(\sigma_1, \sigma_2, \sigma_3) \).

Let us write down it as a polynomial development of \( \sigma_1, \sigma_2 \) and \( \sigma_3 \) up to the order \( N \):

\[
K = H_0 + \sum_{q_0=2}^{3} \sum_{r_{i_1}+\cdots+r_{i_\ell}=r} \alpha_{r_{i_1},\ldots,r_{i_\ell}}^{q_0} \sigma_{i_1}^{r_{i_1}} \cdots \sigma_{i_\ell}^{r_{i_\ell}}.
\]

3.3. General case

3.3.1. Construction of the normalized Hamiltonian

The quadratic part of the normalized non-resonant Hamiltonian \( K \) reads: \( H_0 = -i \sum_{k=1}^{n} \omega_k \sigma_k \). The \( n \) quantities \( \omega_k \) are the characteristic frequencies of the oscillators.

Let us write \( K \) as a function of \( n \) generators of the Hilbert base: \( K = H_0 + f(\sigma_1, \ldots, \sigma_n) \).

In case of absence of resonance between two any oscillators, let us write down \( K \) as a polynomial development (development of Dunham) of \( \sigma_1, \sigma_2, \ldots, \sigma_n \) (with \( n \geq 3 \) being natural integer) up to the order \( N \):

\[
K = H_0 + \sum_{k=1}^{n} \sum_{q_0=2}^{3} \sum_{r_{i_1}+\cdots+r_{i_\ell}=r} \alpha_{r_{i_1},\ldots,r_{i_\ell}}^{q_0} \sigma_{i_1}^{r_{i_1}} \cdots \sigma_{i_\ell}^{r_{i_\ell}}.
\]

3.3.2. Counting

The counting of the number \( \Lambda \) of independent operators required to construct \( K \) for the case \( n = 3 \) can be presented in the form \( (N \geq 6) \):

\[
\Lambda = 3 + 3(Q_0 - 1) + \frac{3Q_0(Q_0 - 1)}{2} + \frac{Q_0(Q_0 - 1)(Q_0 - 2)}{6},
\]

\[
\Lambda = \sum_{\lambda=1}^{3} C_{\lambda}^{\lambda} C_{Q_0}^{\lambda}.
\]
Let us generalize the counting formula (12) for an \( n \)-degree-of-freedom system \( (n \geq 3) \).

For the order \( N \) and \( d \) data \( (2\lambda \leq d \leq N) \), there is \( C_n^\lambda \) ways of choosing the \( \lambda \) generators of a \( \lambda \)-monomial of degree \( d \) among the set \( (\sigma_1, \sigma_2, \sigma_3, \ldots, \sigma_n) \). Moreover, for a given choice of \( \lambda \) generators, let us denote by \( N_r \) the number of ways to realize a \( \lambda \)-monomial \( \sigma_i^{r_1} \ldots \sigma_i^{r_\lambda} \), with the set of powers \( (r_1, \ldots, r_\lambda) \) that should satisfy, in accordance to Eq. (11), the condition \( r_1 + \ldots + r_\lambda = r \). Note that \( C_Q^\lambda = \sum_{r=\lambda}^Q N_r \). We deduce from this that for the given \( N \) and \( \lambda \), there is \( C_n^\lambda C_Q^\lambda \) independent monomials entering the composition of \( K \). Finally, as the maximal value of \( \lambda \) is fixed either by the number of the degree of freedom of the Hamiltonian system if \( Q_0 \geq n \), or either by \( Q_0 \) if \( Q_0 \leq n \), the total number of independent monomials in \( K \) is obtained by adding the \( C_n^\lambda C_Q^\lambda \) of \( \lambda = 1 \) to the smallest value of \( n \) or \( Q_0 \): \( \min(n, Q_0) \). It follows that \( K \) contains:

\[
\Lambda = \sum_{\lambda=1}^{\min(n, Q_0)} C_n^\lambda C_Q^\lambda \text{ monomials}, \tag{13}
\]

As an example, Table [II] shows, for \( n = 3 \) and \( n = 4 \) the number of monomials \( \Lambda \) in \( K \) developed up to the order \( N = 8 \), as well as the list of monomials.

The case \( n = 4 \) can describe, for rigid molecules, two stretching non-resonant local modes and two non-resonant bending modes of tetrahedral molecules \( AB_3C \).

4. Application

4.1. Molecule \( ClOH \) \( (n = 3) \)

4.1.1. Conventions of notation

The molecule \( ClOH \) is a triatomic non-linear molecule of 3 vibrational degrees of freedom \( (n = 3) \). In the local limit, we attach a stretching oscillator to bond Cl-O (oscillator "1") and O-H (oscillator "3") and a bending oscillator to the angle between these bonds (oscillator "2").

| \( n \) | \( \Lambda \) | monomials |
|------|------|---------|
| 3    | 34   | \( \sigma_1, \sigma_2, \sigma_3 \) <br> \( \sigma_1^2, \sigma_2^2, \sigma_3^2 \) <br> \( \sigma_1 \sigma_2, \sigma_1 \sigma_3, \sigma_2 \sigma_3 \) <br> \( \sigma_1^2 \sigma_2, \sigma_1^2 \sigma_3, \sigma_2^2 \sigma_3 \) <br> \( \sigma_1 \sigma_2^2, \sigma_1 \sigma_3^2, \sigma_2 \sigma_3^2 \) |
| 4    | 69   | \( \sigma_1, \sigma_2, \sigma_3, \sigma_4 \) <br> \( \sigma_1^2, \sigma_2^2, \sigma_3^2, \sigma_4^2 \) <br> \( \sigma_1 \sigma_2, \sigma_1 \sigma_3, \sigma_2 \sigma_3 \) <br> \( \sigma_1^2 \sigma_2, \sigma_1^2 \sigma_3, \sigma_2^2 \sigma_3 \) <br> \( \sigma_1 \sigma_2^2, \sigma_1 \sigma_3^2, \sigma_2 \sigma_3^2 \) |

Table 1: Counting and list of monomials appearing in the normalized Hamiltonian \( K \) up to the order \( N = 8 \) for \( n = 3 \) et \( n = 4 \).

4.1.2. Quantum vibrational Hamiltonian

The classical relations between the non-dimensional variables \( \{ z_j, z_j^* \} = -i \delta_{jk} \), are now replaced by \( \frac{1}{2} [\hat{a}_j, \hat{a}_k^+] = -i \delta_{jk} \), \( i.e. \): \( 1 \leq j, k \leq n, [\hat{a}_j, \hat{a}_k^*] = \delta_{jk} \). These operators satisfy the commutation Bose relations and are the boson creation \( \hat{a}_k^* \) and annihilation \( \hat{a}_k \) operators.

The generators \( \sigma_k \) and the Hamiltonian function \( K \) are correspondingly replaced by the number operators \( \hat{N}_k = \hat{a}_k^* \hat{a}_k \) which represent from the physical point of view the number of excitation quanta per oscillator, and Hamiltonian operator \( K \). In the development of \( K \) all the operators are hermitic and the coefficients are real.
4.1.3. Eigenbase of the Hamiltonian \( \hat{H}_0 \)

The eigenstates of \( \hat{H}_0 \) are generated from the empty state by the relation \( (n_1, n_2, n_3) \) relative to the order \( N \) given by the relation

\[
| n_1, n_2, n_3 \rangle = (n_1!n_2!n_3!) \alpha_1^{n_1} \alpha_2^{n_2} \alpha_3^{n_3} | 0, 0, 0 \rangle.
\]

(14)

4.1.4. Numeric simulations

| \( N \) | \( \Lambda \) | coefficients in \( \text{cm}^{-1} \) |
|---|---|---|
| 2 | 3 | \( \omega_1 = +739.685, \omega_2 = +1245.09 \) |
| | | \( \omega_3 = +3748.47 \) |
| 4 | 9 | \( \alpha_1^2 = -3.517, \alpha_2^2 = +2.818, \alpha_3^2 = -84.540 \) |
| | | \( \alpha_1 \alpha_2 = -7.049, \alpha_1 \alpha_3 = -0.400, \alpha_2 \alpha_3 = -16.291 \) |
| 6 | 19 | \( \alpha_3^3 = -0.259, \alpha_2 \alpha_3 = -0.778, \alpha_3^3 = -0.173 \) |
| | | \( \alpha_1 \alpha_2 \alpha_3 = -0.131, \alpha_1 \alpha_3 = -0.122, \alpha_2 \alpha_3 = -3.965 \) |
| | | \( \alpha_2 \alpha_3 = -0.428, \alpha_3^2 = -0.508, \alpha_2 \alpha_3 = -0.154 \) |
| | | \( \alpha_1 \alpha_3 \alpha_2 = -0.767 \) |
| 8 | 34 | \( \alpha_1^4 = +0.0098, \alpha_2^4 = +0.0111, \alpha_3^4 = +0.0153 \) |
| | | \( \alpha_1 \alpha_3 = 0, \alpha_2 \alpha_3 = 0, \alpha_3^2 = +0.0793 \) |
| | | \( \alpha_1 \alpha_2 \alpha_3 = +0.0079, \alpha_2 \alpha_3 = -0.0174, \alpha_2 \alpha_3 = -0.0426 \) |
| | | \( \alpha_1 \alpha_2 \alpha_3 = +0.0021, \alpha_1 \alpha_3 = -0.0007 \) |
| | | \( \alpha_2 \alpha_3 = +0.2885 \) |
| | | \( \alpha_1 \alpha_2 \alpha_3 = +0.1553, \alpha_1 \alpha_2 \alpha_3 = +0.1003 \) |
| | | \( \alpha_1 \alpha_2 \alpha_3 = +0.0854 \) |

Table 2: Number of Dunham parameters given by [18]. For the given order \( N (4 \leq N \leq 8) \), a line contains the number of additional operators with respect to the order \( N - 2 \).

The vibrational structure of the molecule ClOH has been studied in [18] nearly up to the dissociation limit (the energies are given relative to the \( | 0, 0, 0 \rangle \) ground state located at 2 867.0 cm\(^{-1} \) above the bottom of the potential energy surface. The dissociation energy is 19 290 cm\(^{-1} \)). The authors realize a Dunham development of number operators up to the order \( N = 8 \); such the constructed Hamiltonian allows one to reproduce the vibrational structure of 314 energy levels up to 70 % of the dissociation energy (i.e. 13 500 cm\(^{-1} \)) requiring 34 coefficients which is in accordance with Eq. (11) with the coefficients (enumerated by Eq. (13)) given in Table 2.

5. Conclusion and perspectives

The counting of number operators of an \( n \)-degree-of-freedom vibrational non-resonant Hamiltonian, developed in the base of number operators \( N_k \) up to the given order \( N \), is in a good accordance with the numeric simulations for the ClOH molecule. However, with the vibrational levels more strongly excited, one should take into account possible resonances \( p : q \) between the different oscillators of the molecular system. In the second article, we complete the method of construction and counting of coupling operators induced by the resonance for the case of one single resonance \( p : q \).

Acknowledgments

Authors thank Prof. Oleg N. Ulenikov and Elena S. Bekhtereva from Tomsk Polytechnic University, for valuable discussions. Part of the work was supported by the project "Leading Russian Research Universities" (grant FTI-120 of the Tomsk Polytechnic University).

References

[1] F. Iachello, R.D. Levine, Algebraic Theory of Molecules, Oxford University Press, 1st edition, 1995.
[2] S. R. Karumuri1, G. Srinivas, Vijayasekhar Jaliparthi, K. Sunil Babu, V. Sundara Siva Kumar, A. Hanumaiah, A Study on Vibrational Spectra of PH\(_3\) and NF\(_3\): An Algebraic Approach Open Journal of Microphysics (2013), 3, 47-51.
[3] C. Leroy, PhD thesis, University of Dijon, France 1991.
[4] M.S. Child, L. Halonen, Overtone frequencies and intensities in the local mode picture. Adv. in Chem.Phys. vol. LVII, Wiley, New York, 1984.
[5] C. Leroy et F. Michelot, The Local Group \( K(4) \) in the Algebraic Approach to Vibrational Spectra of Tetrahedral Molecules: Application to Silane, J.Mol.Spectrosc. (1992), 151, 71.
[6] G. D. Birkhoff, Dynamical Systems. AMS, Providence, RI, 1927.
[7] F.G. Gustavson, On Constructing Formals Integrals of a Hamiltonian System Near an Equilibrium Point, The Astronomical Journal, volume 71 (1966), number 8.
[8] A. Deprit, Canonical transformations depending on a small parameter, Cel. Mech. (1969), 1, 12-30.
[9] R. H. Cushman and L. Bates, Global aspects of classical integrable systems, Birkhäuser, 1997.
[10] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978.
[11] K. Efstathiou, Metamorphoses of Hamiltonian Systems with Symmetries, LNM 1864, Springer-Verlag, 2005.
[12] K. Meyer, G. R. Hall, D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences, Volume 90, Springer-Verlag, 2nd edition, 2009.
[13] H. Broer, I. Hoveijn, G. Lunter, G. Vegtter, Bifurcations in hamiltonian systems, LNM 1806, Springer-Verlag, 2003.
[14] B. Sturmfels, Algorithms in invariant theory. Springer, 1993.
[15] D. Hilbert, Uber die vollen Invariantensysteme, Math. Ann. (1893) 42, 313-373.
[16] K. Gatermann, Computer Algebra Methods for Equivariant Dynamical Systems, volume LNM 1728. Springer-Verlag, 2000.
[17] D. Cox, J. Little, and D. O'Shea, Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics, Springer-Verlag, 1992.
[18] R. Jost, M. Joyeux, Sergei Skokov and Joel Bowman, Vibrational analysis of HOCl up to 98 % of the dissociation energy with a Fermi resonance Hamiltonian, Journal of Chemical Physics (1999), 111, 15.