p300 modulates ATF4 stability and transcriptional activity independently of its acetyltransferase domain

I. Lassot, E. Estrabaud, S. Emiliani, M. Benkirane, R. Benarous, F. Margottin-Goguet

To cite this version:

I. Lassot, E. Estrabaud, S. Emiliani, M. Benkirane, R. Benarous, et al.. p300 modulates ATF4 stability and transcriptional activity independently of its acetyltransferase domain. Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2005, 280, pp.41537-41545. 10.1074/jbc.M505294200. hal-00016619

HAL Id: hal-00016619
https://hal.archives-ouvertes.fr/hal-00016619

Submitted on 27 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
p300 Modulates ATF4 Stability and Transcriptional Activity Independently of Its Acetyltransferase Domain

Irina Lassot¹, Emilie Estrabaud², Stéphane Emiliani³, Monsef Benkirane⁵, Richard Benarous¹, and Florence Margottin-Goguet¹

From the ¹Institut Cochin, Department of Maladies Infectieuses, INSERM U567, CNRS UMR8104, University Rene Descartes Paris V, Bat G. Roussy, 27 Rue du Faubourg Saint Jacques, 75014 Paris and ²CNRS UPR 1142, Institut de Génétique Humaine, 34396 Montpellier, France

ATF4 plays a crucial role in the cellular response to stress and multiple stress responses pathways converge to the translational up-regulation of ATF4. ATF4 is a substrate of the SCFβTrCP ubiquitin ligase that binds to βTrCP through phosphorylation on a DSGXX(S) motif. We show here that ATF4 stability is also modulated by the histone acetyltransferase p300, which induces ATF4 stabilization by inhibiting its ubiquitination. Despite p300 acetylates ATF4, we found that p300-mediated ATF4 stabilization is independent of p300 catalytic activity, using either the inactive form of p300 or the acetyltransferase mutant ATF4-K311R. ATF4 deleted of its p300 binding domain is no more stabilized by p300 nor recruited into nuclear speckles. In consequence of ATF4 stabilization, both p300 and the catalytically inactive enzyme increase ATF4 transcriptional activity.

ATF4, a member of the ATF/CREB bZIP transcription factor family, plays a crucial role in response to stress, because multiple intracellular stress pathways (endoplasmic reticulum stress, amino acid deprivation, and exposure to oxidant or reactive metals) converge on a single event, phosphorylation of eIF2α, which leads both to a general inhibition of protein synthesis but also to the translational up-regulation of the mRNA encoding ATF4 (1–4). Thus the targets of ATF4 are of paramount importance in a generalized stress response. In fact, higher eukaryotes have conserved through activation of ATF4 the same fundamental mechanism used by yeast through up-regulation of GCN4 in response to amino acid starvation (5). In addition, ATF4 is important for cell proliferation and differentiation, because ATF4 knock-out mice display abnormal lens formation (6) and defects in cell proliferation in fetal liver, embryonic lens and hair follicles, as well as an overall reduction in size of the animals (7). ATF4 is a critical regulator of osteoblast differentiation and function (8) and bone resorption (9). ATF4 is also involved in long term memory induction (10). Hence ATF4 is a master transcription factor for which temporal expression and activity are under tight cellular control. ATF4 interacts with several general transcription factors such as TBP, TFIIIB, and RAP30 (11). The transcriptional selectivity of ATF4 is modulated by the formation of heterodimers with multiple C/EBP bZIP or AP-1 family members (12–14). CBP and p300 acetylate ATF4 in its bZIP domain (15) and enhance its transcriptional activity (11, 15).

Acetylation of histone and non-histone proteins is emerging as a central process in transcriptional activation. Nuclear histone acetyltransferases (HATs) act as transcriptional co-activators that have been shown to acetylate different transcription factors, including p53, β-catenin, MyoD, E2F-1, ATF4, and SREBP1 (15–19). The consequences of acetylation on protein function vary from one protein to another depending on where within the protein the acetylation takes place. Acetylation has also been reported to modulate protein-protein interactions, to inhibit nuclear export (20), and to alter protein stability.

We have shown that ATF4 degradation is mediated by the E3 ubiquitin ligase SCFβTrCP (21) that we first identified as the E3 ubiquitin ligase responsible for the degradation of CD4 induced by the human immunodeficiency virus type 1 protein Vpu (22). For most of the βTrCP substrates identified up to now, including ATF4, serine phosphorylation of a DSGXX(X)S motif is required for interaction with βTrCP and subsequent degradation by the proteasome. Although phosphorylation of βTrCP substrates is a crucial step for the regulation of their stability, it is probably not the unique event that regulates their destruction.

Here, we show that the HAT p300 is associated with ATF4 and interferes with its stability. p300 increased ATF4 stability, independently of its acetyltransferase activity and thus enhances ATF4 mediated transcription. Our results provide a new mechanism for the regulation of ATF4 stability and expression.

MATERIALS AND METHODS

Plasmid Construction and Mutagenesis—Vectors for FLAG-P/CAF, FLAG-p300, and FLAG-p300ΔHAT were kindly provided by Y. Nakatani (23). 1XAARE-TK-LUC plasmid-expressing luciferase (24) was kindly provided by P. Fournoux. In this construct, a 19-bp segment of the CHOP promoter from −313 to −295 (AACATTGCATCATC-CGCC) containing the positive element AARE was cloned 5′ of the minimal herpes simplex virus promoter for thymidine kinase (−40 to +50).

pAS1B vectors for HA-ATF4, HA-ATF4ΔbZIP, and HA-ATF4-S219N, and plasmid expressing Myc-βTrCP were described previously (21). HA-ATF4Δ1–85 was obtained by subcloning in pAS1B; GST proteins were obtained by subcloning in pGEX4T-3.1. ATF4 lysine mutants were obtained by PCR mutagenesis and FLAG-ATF4 by subcloning in pSG (Sigma).

* This work was supported in part by grants from Agence Nationale de Recherches sur le SIDA, Sidaction, Association pour la Recherche sur le Cancer la Ligue Nationale Contre le Cancer, and the post-genome program from the French Ministry of Research. The post-genome program from the French Ministry of Research. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by CNRS, INSERM, la Ligue Nationale Contre le Cancer, and by the French Ministry of Education.
2 Supported by the French Ministry of Education.
3 To whom correspondence may be addressed. Tel.: 33-1-40-51-65-71; Fax: 33-1-40-51-65-70; E-mail: benarous@cochin.insERM.fr.
4 To whom correspondence may be addressed. Tel.: 33-1-40-51-65-74; Fax: 33-1-40-51-65-70; E-mail: margottin-goguet@cochin.insERM.fr.
5 The abbreviations used are: HAT, histone acetyltransferase; E3, ubiquitin-protein isopeptide ligase; GST, glutathione S-transferase; siRNA, small interference RNA; HA, hemagglutinin; DMEM, Dulbecco’s modified Eagle’s medium; PML, promyelocytic leukemia; CBP, CReB-binding protein; SCF, Skp1-Cullin-F-box.
Lysis, Immunoprecipitation, and Western Blotting—24 h after transfection, cells were harvested and lysed in 1% Nonidet P-40, 150 mM NaCl, 50 mM Tris HCl (pH 7.5), 1 mM EDTA. When indicated, 50 μg/ml cycloheximide was added before lysis. For immunoprecipitations, cell lysates were pre-cleared with mouse, rabbit, or goat non-immune antibodies and protein A- or G-agarose for 90 min, and supernatants were incubated overnight with 5 μg/ml mouse monoclonal anti-FLAG (M2, Sigma), 5 μg/ml of mouse monoclonal anti-Myc (9E10, Roche Applied Science), or 5 μg/ml rabbit anti-ATF4 (C-20, Santa Cruz Biotechnology), and then incubated with proteins A/G-agarose beads (Sigma) for 1 h. Immune complexes were eluted with Laemmli buffer, separated by SDS-PAGE, and revealed by Western blotting. Antibodies used for Western blotting were rabbit anti-ATF4 (C-20) or goat polyclonal anti-ATF4 (C-19, Santa Cruz Biotechnology), rat anti-HA-Per (3F10, Roche ...
ATF4 Stability Modulated by p300

FIGURE 2. Silencing of p300 reduces ATF4 expression, and overexpression of p300 inhibits ATF4 ubiquitination and enhances its expression. A, silencing of p300 by siRNA. HeLa cells were transfected by p300 siRNA and p300 was detected by Western blotting using anti-p300 antibodies. B, silencing of p300 expression by siRNAs results in the disappearance of endogenous ATF4. HeLa cells were transfected (+) or not (−) by p300 or luciferase (LUC) siRNAs, and analyzed by Western blotting using anti-ATF4 or anti-α-tubulin antibodies. C, p300 interferes with ATF4 targeting to the proteasome. HeLa cells were transfected with p300 siRNA or Luc siRNA, as indicated, together with HA-ATF4. Cells were treated or not with the proteasome inhibitor MG132 and analyzed by Western blotting using anti-HA or anti-α-tubulin antibodies. D, overexpression of p300 decreased ATF4 ubiquitination. 293T cells were co-transfected with FLAG-ATF4, ubiquitin-HA, and FLAG-p300 (lane 2), or only with FLAG-ATF4 and ubiquitin-HA (lane 1) or FLAG-ATF4 (lane 3) or ubiquitin-HA (lane 4), immunoprecipitated with anti-FLAG antibodies, and probed with anti-HA (for detection of ubiquitinated ATF4, upper panel) or anti-FLAG antibodies (bottom panel). Because of its high molecular mass, FLAG-p300 is not visible in the part of the gel selected for detection of FLAG-ATF4 ubiquitinated species.

Immunostaining of Cells—The protocol for immunostaining the cells is described in Lassot et al. (21). Briefly, HeLa cells were fixed, permeabilized, and incubated with anti-FLAG (M2, Sigma), anti-RNApolIII (8WG16, BabCO), or anti-PML (PG-M3, Santa Cruz Biotechnology) antibodies, washed in phosphate-buffered saline, and incubated with anti-mouse Cy3 antibodies (Jackson Immunoresearch), or directly incubated with anti-HA-fluorescein isothiocyanate antibody (3F10, Roche Applied Science). For the second staining, cells were incubated with anti-HA-fluorescein isothiocyanate antibody. Confocal or direct microscopy was carried out under fluorescent light.

Luciferase Assays—293T or HeLa cells were plated in 12-well flat bottom plates on the day prior to transfection at a density of 2 × 10⁴ cells/well in DMEM. Transfections were performed using the calcium phosphate co-precipitation method with the Mammalian Transfection Kit (Stratagene) or with oligofectamine (Invitrogen). We used the luciferase reporter 1XAARE-LUC containing sequence placed 5’ to the gene for luciferase. Cells were co-transfected with 1 μg of 1XAARE-LUC, 30 ng of pRL-TK-Renilla (PRL-TK from Promega), and various amounts of plasmids expressing HA-ATF4 or HA-ATF4 mutants, FLAG-p300 and FLAG-p300ΔHAT, or siRNA against p300 as indicated. 24 h post-transfection, cells were lysed and luciferase and Renilla activities were measured with luciferase assay reagent (Dual-Luciferase Reporter Assay System, Promega) using a Lumat LB9507 luminometer (EG&G instruments). Graphs indicate the average of three independent experiments.

RESULTS

p300 Enhances ATF4 Stability Independently of Its Acetyltransferase Activity—Because Gachon et al. (15) reported recently that ATF4 was acetylated by p300, we investigated the potential role of p300 on ATF4 stability. We found that expression of increasing amounts of p300 leads to the accumulation of endogenous ATF4 (Fig. 1A) and transfected HA-ATF4 (Fig. 1B, compare lanes 1–3 to lane 4). This effect was specific for p300, because another acetylase, P/CAF, was unable to promote ATF4 accumulation (Fig. 1B, compare lanes 5–7 to lane 8). Surprisingly, p300ΔHAT, an inactive mutant of p300, was still able to accumulate...
ATF4 Stability Modulated by p300

ATF4 (Fig. 1B, compare lanes 9–11 to lane 8), however less efficiently than wild-type p300. We also found, by studying kinetics of ATF4 degradation after cycloheximide treatment, that ATF4 was stabilized by both p300 (Fig. 1C, compare lanes 5–8 to 1–4) and its inactive mutant p300ΔHAT (Fig. 1C, compare lanes 13–16 to 1–4) but not by P/CAF (Fig. 1C, compare lanes 9–12 to 1–4). Indeed, deduced from the scanning of the Western blot shown in Fig. 1C, we found that ~31% of ATF4 was present after 60 min of cycloheximide treatment, whereas ~90% of ATF4 was still present in the same conditions in the presence of p300, 85% in the presence of p300ΔHAT, and 36% in the presence of P/CAF.

To confirm that p300 regulates ATF4 stability independently of its enzymatic activity, we decided to test the stability of an ATF4-unacetylated mutant. Gachon et al. had shown that ATF4 is acetylated in the bZIP domain, but they did not map a particular residue (15). We performed an in vivo acetylation assay using several lysine mutants in the bZIP domain of ATF4 (see Fig. 1D for ATF4 structure), and we found that mutation of the lysine residue 311 (K311R) drastically reduced ATF4 acetylation (Fig. 1E, lane 4). The degradation kinetics of the ATF4K311R mutant was similar to that of wild-type ATF4 (Fig. 1F, compare lanes 4–6 to 1–3), and this mutant was still stabilized by p300 (Fig. 1F, compare lanes 7–9 to 4–6). Overall, these results show that the acetylase p300 is able to stabilize ATF4 independently of its enzymatic activity.

p300 Inhibits ATF4 Ubiquitination and Degradation—Because overexpression of p300 leads to ATF4 stabilization, we wanted to check whether inactivation of p300 would destabilize ATF4 and favor its targeting to the ubiquitin proteasome pathway by the SCF^{PTGCP} complex, the E3 ubiquitin ligase for ATF4. For that purpose, we used small interfering RNAs (siRNAs) to inactivate endogenous p300, as previously described (26). The efficiency of p300 gene silencing by siRNA treatment was assessed by Western blot using anti-p300 antibodies (Fig. 2A). Treatment of HeLa cells with siRNA-inactivating p300 caused a striking diminution in the expression of endogenous ATF4 (Fig. 2B, lanes 1 and 2) as well as transfected HA-ATF4 (Fig. 2C, lanes 1 and 2) up to an almost complete disappearance of both proteins. By contrast, treatment with a control siRNA duplex (siRNA LUC) had no effect (Fig. 2B, lanes 3 and 4). Indeed, deduced from the scanning of the Western blot shown in Fig. 2C, we found that ~81% of ATF4 was still present when p300 siRNA-treated cells were incubated with MG132, whereas AT...
p300 was indeed associated with endogenous ATF4 (Fig. 3A, lane 1). This interaction was specific, because neither p300 nor ATF4 were found co-immunoprecipitated using an unrelated anti-Raf antibody (Fig. 3A, lane 2). The association between ATF4 and p300 was confirmed in cells transfected with HA-ATF4 and FLAG-p300 by co-immunoprecipitation of HA-ATF4 using anti-FLAG antibodies (Fig. 3B, lane 1). Interestingly, we found that the p300 inactive mutant FLAG-p300/H9004 HAT, which has conserved the ability to stabilize ATF4 (see Fig. 1), still associated with HA-ATF4 (Fig. 3B, lane 2). In an attempt to further correlate the capacity of p300 to stabilize ATF4 with its ability to interact with ATF4, we decided to map the ATF4 domain required for interaction with p300 in GST pull-down experiments, and then to analyze the effect of p300 on the stability of ATF4 mutants deleted of this domain. We found that ATF4 deleted of residues 1–85 (ATF4/H9004 1–85) or other larger deletion mutants (ATF4-(152–351) and ATF4-(152–257)), like GST alone used as a control, did not interact with p300 (Fig. 3C, lanes 4–7). In correlation, by contrast with wild-type ATF4 (see Fig. 1B), the stability of the ATF4Δ1–85 mutant was not enhanced by p300 (Fig. 3D). On the contrary, the ATF4 mutant deleted of the bZIP domain, which still interacted with p300 like ATF4 wild-type (see Fig. 3C, lane 3), remained as sensitive as ATF4 wild type to the stabilization mediated by FLAG-p300 (Fig. 3D). These results suggest that p300 needs to interact with ATF4 to promote ATF4 stabilization.

p300 Recruits ATF4 into Nuclear Speckles and Protects It from Proteasome Degradation—When expressed separately, both FLAG-p300 and HA-ATF4 showed a uniform nuclear staining (Fig. 4A, top two left panels). However, when co-expressed simultaneously, FLAG-p300 and HA-ATF4 were co-localized in nuclear speckles (Fig. 4A, second row). Importantly, the simple stabilization and enhancement of HA-ATF4 expression obtained by addition of the proteasome inhibitor MG132 was not sufficient to promote the recruitment of HA-ATF4 into nuclear speckles (Fig. 4A, right top panel). HA-ATF4/H9004 1–85 that was unable to interact with p300 (see Fig. 3) was not recruited into nuclear speckles when overexpressed with FLAG-p300 (Fig. 4A, third row). By contrast, the mutant ATF4K311R, which could not be acetylated but still interacted with p300, could be recruited into nuclear speckles (Fig. 4A, fourth row). Hence, the recruitment of overexpressed HA-ATF4 into nuclear speckles when co-expressed with FLAG-p300 correlates with the ability of ATF4 to interact with p300 and not with its high level of expression. The recruitment of HA-ATF4 into nuclear speckles by p300 seemed also independent of p300 enzymatic activity, because an inactive mutant of p300, p300ΔHAT, was still able to delocalize ATF4 in nuclear speckles.
As expected, ATF4-S219N expression is enhanced relatively to ATF4 after 30 min of cycloheximide treatment (Fig. 4 but in the absence of FLAG-p300, HA-ATF4 became barely detectable. ATF4 could still be observed in nuclear speckles 60 min after treatment and absence of p300. Interestingly, in the presence of FLAG-p300, HA-ATF4-nofluorescence the degradation kinetics of HA-ATF4 in the presence of a direct competition between p300 and hypothesized that p300-mediated ATF4 stabilization could be the result of an enhanced instability of ATF4 (Fig. 6B). Importantly, the inactive mutant of p300, p300ΔHAT, still increased the transcriptional activity of ATF4 (Fig. 6C). These results suggest that stabilization of ATF4 by p300 leads to an increase of its transcriptional activity that is not dependant on the acetyltransferase activity of p300 as already described for the human T-cell lymphotrophic virus, type I promoter (15).

Effect of p300 on ATF4 Transcriptional Activity—We then asked whether ATF4 transcriptional activity was increased as a result of ATF4 stabilization by p300. We used a luciferase reporter gene system sensitive to amino acid starvation, through an ATF4 activation pathway, to study the effect of p300 on stress-mediated ATF4 transcriptional activity. In this system, expression of the luciferase gene is under the control of the AARE element of the CHOP promoter, a target of ATF4 (24), and expression of ATF4 enhanced the basal (+leucine) and stress-mediated (−leucine) transcriptional activities of the reporter gene (Fig. 6A, compare lanes 1 to 3 and lanes 5 to 7).

The overexpression of p300 enhanced the basal and stress-mediated transcriptional activities of the CHOP promoter resulting both from endogenous ATF4 (Fig. 6A, lanes 1 and 2 and lanes 5 and 6) and from overexpressed ATF4 (Fig. 6A, lanes 3 and 4 and lanes 7 and 8). In agreement, p300 inactivation using siRNA leads to a strong reduction of endogenous or transfected ATF4 transcriptional activities, probably due to an enhanced instability of ATF4 (Fig. 6B).

Role of βTrCP in p300-mediated ATF4 Stabilization—We have previously shown that ATF4 degradation is mediated by the SCFβTrCP ubiquitin ligase. We therefore wondered whether the presence of p300 would inhibit the recruitment of βTrCP to ATF4. We transfected increasing amounts of FLAG-p300 in cells together with Myc-βTrCP and HA-ATF4 and performed an immunoprecipitation of βTrCP using anti-Myc antibodies. ATF4 was co-immunoprecipitated with βTrCP (Fig. 5A, lane 2, second panel), and this interaction was inhibited in the presence of p300 (Fig. 5A, lanes 3 and 4, second panel). We subsequently hypothesized that p300-mediated ATF4 stabilization could be the result of a direct competition between p300 and βTrCP for ATF4 binding. If this was the case, p300 overexpression would not affect the stability of the ATF4-S219N mutant, which does not interact with βTrCP. On the contrary, we found that both wild-type ATF4 (Fig. 5B, lanes 1–4; Fig. 5C, top panel) and ATF4-S219N (Fig. 5B, lanes 5–8; Fig. 5C, middle panel) were stabilized by p300 overexpression. Furthermore, silencing of p300 by siRNA de-stabilized both wild-type ATF4 (Fig. 5D, compare lanes 5 to 2) and ATF4-S219N proteins (Fig. 5D, compare lanes 6 to 3). As expected, ATF4-S219N expression is enhanced relatively to ATF4 wild type due to its inability to interact with βTrCP (Fig. 5D, compare lanes 3 to 2 and 6 to 5). Altogether, these results suggest that the inhibition of the ATF4/βTrCP interaction in the presence of p300 is not the result of a competition between βTrCP and p300 for ATF4 binding.

Importantly, the inactive mutant of p300, p300ΔHAT, still increased the transcriptional activity of ATF4 (Fig. 6C). These results suggest that stabilization of ATF4 by p300 leads to an increase of its transcriptional activity that is not dependant on the acetyltransferase activity of p300 as already described for the human T-cell lymphotrophic virus, type I promoter (15).

Confirming this result, the transcriptional activity of the unacetylated ATF4ΔK311R mutant (see Fig. 1E), was comparable to the transcriptional activity of wild-type ATF4 (Fig. 6D). Controls were performed using ATF4Δ1–85, which has lost the transcriptional activator domain (11), and the binding to p300 and ATF4ΔhZIP, which has lost ATF4 DNA binding domain. These two mutants display reduced transcriptional activity (Fig. 6D). In addition, although the presence of p300 only inactivated the transcriptional activity of ATF4 and ATF4-K311R in a dose-dependent manner, p300 had no effect on ATF4Δ1–85 and...
ATF4 Stability Modulated by p300

ATF4ΔZIP (Fig. 6F). In the presence of MG132, wild-type ATF4 and ATF4K311R transcriptional activities were increased to a high level, which could not be further increased by p300 overexpression (Fig. 6F). Such a saturation effect was also obtained with the ATF4-S219N mutant, which was highly stabilized compared with wild-type ATF4 (see Fig. 5D), even in the absence of p300 and MG132 (Fig. 6E: without MG132, Fig. 6F: with MG132). In consequence, despite p300-induced ATF4-S219N stabilization (see Fig. 5), p300 addition had no effect on the transcriptional activity of this mutant. Altogether our data suggest that ATF4 transcriptional activity is regulated by p300-mediated stabilization but is independent of p300 enzymatic activity.
ATF4 Stability Modulated by p300

DISCUSSION

In this work we show that the expression of ATF4 can be regulated at the level of its stability by the acetylase p300. Multiple lines of evidence support this conclusion: (i) ATF4 is stabilized upon overexpression of p300, (ii) this effect is specific, because other HAT like P/CAF had no effect, (iii) silencing of p300 by RNA interference resulted in a marked increase in instability of ATF4, (iv) ATF4 ubiquitination was inhibited by p300 overexpression, (v) the effect of p300 on ATF4 stability correlated with its ability to interact with ATF4: a mutant of ATF4 deleted from the N-terminal region required for binding to p300 was insensitive to this protein.

Importantly, we could gain insights into the mechanism involved in this novel regulation of ATF4 stability by p300: (i) the acetylation of ATF4 is not involved in this regulation, because ATF4 mutated in the main acetylation site remained sensitive to the effect of p300, (ii) the enzymatic activity of p300 is not required for its effect on ATF4 stability, (iii) the presence of p300 inhibits the ATF4/βTrCP interaction, and (iv) the ATF4-S219N mutant, which has lost its ability to interact with βTrCP, is also stabilized by p300.

Altogether these results support the notion that ATF4 stability is in fact controlled by two domains. The first one is, as we previously described, the DSGXXXS motif, whose phosphorylation by an unknown kinase is required for subsequent recognition by the SCFPβTrCP and degradation by the proteasome (21); the second one is the N-terminal domain 1–85 that binds to p300.

In addition, based on our data we propose a molecular basis for the cell specificity of ATF4 accumulation in osteoblasts observed by Yang and Karsenty (27). Indeed, whereas the ATF4 gene was expressed ubiquitously, they observed ATF4 protein accumulation only in some tissues. Profile expression of βTrCP contrasts with ATF4 protein expression, and they concluded that it may be that ATF4 is protected from degradation in osteoblasts and a few other cell types, by an unknown mechanism (27).

p300-mediated Redistribution of ATF4 in Nuclear Speckles—Strikingly, we observed a redistribution of ATF4 in nuclear speckles as a consequence of p300 transfection. This redistribution was not simply due to the stabilization of ATF4, because it was not observed when accumulation of ATF4 was obtained in the absence of p300 transfection, by treatment of cells with proteasome inhibitors. Such recruitment of ATF4 in nuclear speckles correlated with the binding of p300 to the N-terminal domain of ATF4. A large number of nuclear proteins, including transcription factors, co-activators, and co-repressors, have been localized to various sub-nuclear particles. Formation of such structures has been reported with p300 and several other of its partners such as Mdm2, catenin and p300 are able to partially recruit PML and not CBP (data not shown), and they totally destabilized ATF4. Despite their high degree of homology, are not redundant and have unique roles in vivo. Our study suggests that ATF4 stabilization is the result of only p300, because the siRNA we used target specifically p300 and not CBP (data not shown), and they totally destabilized ATF4. Recent studies suggest that the functional differences between the two acetyltransferases could be due to association with different proteins or differences in substrate specificity (39).

Functional Redundancy between p300 and CBP?—We found that CBP, like p300, interacts with the N-terminal domain of ATF4 (data not shown), in agreement with a previous study showing that CBP is unable to interact in vivo with the C-terminal region of ATF4 (38); in addition, both CBP and p300 are able to enhance ATF4 transcriptional activity (herein and Gachon et al. (38) and Liang and Hai (11)). However, an increasing amount of data favors the hypothesis that the two proteins, despite their high degree of homology, are not redundant and have unique roles in vivo. Our study suggests that ATF4 stabilization is the result of only p300, because the siRNA we used target specifically p300 and not CBP (data not shown), and they totally destabilized ATF4. Recent studies suggest that the functional differences between the two acetyltransferases could be due to association with different proteins or differences in substrate specificity (39).

Acknowledgments—We thank P. Fafournoux for providing 1XAARE-LUC plasmid and R. Kienan for editing the manuscript.

REFERENCES

1. Harding, H. P., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Calon, M., Sadr, N., Yun, C., Popko, B., Paules, R., Stojdl, D. F., Bell, J. C., Hettmann, T., Leiden, J. M., and Ron, D. (2003) Mol. Cell 11, 619 – 633
2. Rutkowski, D. T., and Kaufman, R. J. (2003) Dev. Cell 4, 442 – 444

I. Lassot, E. Estrabaud, S. Emiliani, M. Benkirane, R. Benarous, and F. Margottin-Goguet, unpublished data.
