Low-carbon innovation induced by emissions trading in China

Junming Zhu1, Yichun Fan2, Xinghua Deng3 & Lan Xue1

Emissions trading scheme (ETS) has been adopted by an increasing number of countries and regions for carbon mitigation, but its actual effect depends on specific program design and institutional context. Before launching the world largest ETS, China experimented with seven independent regional pilots, whose effects are only indirectly explored. Here we provide firm-level evidence of the innovation effect directly from China’s pilot emissions trading, based on latest patenting information and a quasi-experimental design. China’s pilots increase low-carbon innovation of ETS firms by 5-10% without crowding out their other technology innovation. The increase from ETS firms accounts for about 1% increase of the regional low-carbon patents, while a similar increase from large non-ETS firms is also induced by the ETS. Most importantly, the effect is not associated with permit price, auction, or firm characteristics, but is driven by mass-based allowance allocation. A rate-based approach, however, is adopted by China’s national market.
Emissions trading scheme has been an increasingly popular policy for climate mitigation: ETS programs cover almost 15% of global carbon emissions at present; 20 programs are in operation, in the European Union (EU), New Zealand, China, South Korea, Kazakhstan, Switzerland, and 22 subnational regions, including California and other states in the Regional Greenhouse Gas Initiative in the United States; 15 more programs have been planned or under consideration. The popularity of ETS may also help to link national and regional climate policies for more efficient mitigation globally. The idea to minimize abatement cost via trading under an emission cap is theoretically appealing, but the actual effect of an ETS requires a closer look. Its performance and relative desirability to alternative policy instruments can be affected by existing policy, program coverage, endogenous innovation, and policy specification. Evaluation of the existing ETS programs is therefore important to the advancement in instrument choice and policy design for climate mitigation.

The use of emissions trading in China is of particular interest to researchers and practitioners. China is not only the largest CO₂ emitter, but also has the largest amount of emissions regulated under ETS. Following its tradition of policy experimentation, China initiated seven regional ETS pilots in two provinces and five cities during 2013–2014 before starting the national market in 2017. The seven ETS pilots represent the country’s first explicit use of a market-based instrument for climate mitigation. They have been independently designed and operated, featuring a variety of differences. They are part of the broader low-carbon pilot scheme for climate policy experimentation and potentially interact with other national endeavor for energy efficiency and climate mitigation. The policy design and interaction create rich opportunities for policy evaluation and learning (Supplementary Figs. 1 to 3, Supplementary Table 1, and Supplementary Note 1). Experience from the pilots can be used directly for the development of China’s national market with the world largest emission coverage, and potentially for ETS in other countries.

Here we present firm-level evidence of policy effects directly from emissions trading and differential program designs in China since 2013. We focus on the effect of ETS pilots on low-carbon innovation, based on a quasi-experimental design and disaggregated patent information. Low-carbon innovation helps to break out of path dependency from a carbon-intensive economy and existing energy infrastructure; it creates a stock of technologies to hedge against future uncertainties in climate mitigation, essential for achieving policy targets to stabilize global temperature. China has experienced more than ten years of rapid growth in low-carbon innovation. Two years before China’s State Intellectual Property Office (SIPO) became the world largest patent application receiver in 2011, it overtook the US Patent and Trademark Office (USPTO) in receiving more low-carbon patent applications (Fig. 1). Innovation quality has been improving at the same time. As a measure of high-value innovation, triadic low-carbon patents filed jointly at the SIPO, the USPTO and the European Patent Office (EPO) increased by 14 times, the same as that of total low-carbon patents (Supplementary Fig. 4).

The theoretical literature suggests that climate policies can direct innovative activities toward low-carbon technologies, therefore reducing compliance cost and promoting further mitigation in the long term. The empirical literature confirms that increased energy price, carbon tax, and the EU ETS can facilitate low-carbon innovation. But not much is known about the ETS effects conditional on the presence of other climate policies, the scope of effects among regulated and unregulated firms, and influences from different ETS program design.

Our findings show significant induced innovation effects of the ETS both directly on ETS firms and indirectly on large non-ETS firms on top of other climate policy influences. The identified effects help to sort out previously inconsistent research findings related to but not directly from emissions trading in China: policy announcement in 2011 of ETS pilots has a positive effect on innovation from a small set of publicly listed firms possibly but not necessarily subject to emissions trading; the aggregate effect at the regional level was arguably negative; energy price, as a proxy for carbon price, has a positive effect on clean innovation but a negative one on other innovation. By using the same estimation method, our results are directly comparable to the innovation effect of the EU ETS, showing a similar, significant effect on individual ETS firms but limited impacts at the regional level.

More importantly, our finding reveals the influences from ETS program design. The policy effect was not affected by permit price, auction, or industrial energy intensity, suggesting a weak role of carbon pricing, likely caused by the overall low price and limited trading in several ETS programs. The effect was driven by firms that were subject to mass-based allowance allocation where the number of allowances was pre-established before a compliance cycle; the effect was not significant among firms subject to rate-based allowance allocation, where the number of allowances was updated according to the actual output. Our findings suggest that China’s current national market, with a rate-based approach and inclusion of the power sector only, may deliver additional climate benefits with a broader coverage and a better allocation approach.

Results

Rate and direction of ETS-induced innovation. The rate and direction of innovation are essential for achieving climate mitigation targets by affecting the availability, cost, performance, and timing of low-carbon technological change. The main innovation effect of an ETS on low-carbon technologies was estimated in two steps. First, we matched for each ETS firm a similar non-ETS firm as its counterfactual, to control for factors other than the ETS that might have affected innovation (see Methods section). The matched ETS and non-ETS firms shared similar patterns in their historical patent filing (Fig. 2 and Supplementary Fig. 5) and other characteristics (Supplementary Fig. 6, Supplementary Tables 2–4, and Supplementary Note 2). But the two groups
the effect was significant and substantial—the EU ETS, in comparison, led to two additional low-carbon patents per firm in five years22. The effect was consistent across different matching specifications (Supplementary Note 3 and Supplementary Table 6); scopes of low-carbon patents (Supplementary Table 7); more restrictive matching only within ETS regions to eliminate other policy influences (Supplementary Table 8); different baselines and samples to eliminate unobservable selection bias (Supplementary Table 9); and an alternative estimation based on a common parametric DID (Supplementary Table 10). The estimated effect also passed placebo tests, being unlikely a result of chance, any other omitted variable (Supplementary Fig. 7), or regional and firm features (Supplementary Table 11).

Despite the promising policy effect on the matched sample, the overall contribution of emissions trading on low-carbon innovation was limited. To guarantee matching quality, 40% of the ETS firms, mostly being larger and more innovative, could not be matched with non-ETS firms (Supplementary Table 12). If we assume moderately that the same policy effect of 1.75 additional patents applied to these firms, the total effect on all the ETS firms would be 282 (90, 301) additional low-carbon patents considering data censoring at zero, or 10.1% (3.04%, 10.9%) increase (Supplementary Table 13 and Supplementary Note 4). If an alternative matching method based on propensity score is used to have most of the ETS firms matched, the estimated effect would be 0.75 (0, 1.9) additional low-carbon patents individually, 135 (0, 301) additional patents in total, or 4.6% (0, 10.9%) increase (Supplementary Figs. 8–9, Supplementary Table 14, and Supplementary Note 5). Even if we assume no effect on the 40% unmatched firms, an extreme case, the increase from the matched firms would still lead to 2.2% (0.73%, 2.38%) increase of all the ETS firms (Supplementary Table 13). Depending on the assumption, the direct effect of the ETS contributed to around 0.4–2% of the more than 16,000 low-carbon patents filed by firms in ETS regions during 2014–2015. The overall contribution of China’s pilot ETS to regional low-carbon innovation was similar to that of the EU ETS22.

A common concern for policy-induced innovation is that increased low-carbon innovation in a firm may crowd out other innovative activities25,26. The disproportionate policy impacts would be particularly troublesome if other innovation of high social value were delayed or suspended, creating adverse side-effects of climate mitigation. To examine this, the same estimation method was applied to non-low-carbon technologies. Further subcategorization of patents into detailed technology areas was not pursued, considering the reliability of statistical inference.

Instead of being crowded out, other technology patenting was increased by China’s pilot ETS too. The ETS caused a firm to file one (0, 2) additional patent of other technologies (Fig. 3a), the same as the crowding-in effect of the EU ETS. This was driven largely by increased filing of other green patents: the share of these patents increased from less than 1% to more than 5% among ETS firms, and from less than 1% to just above 1% among non-ETS firms. Either overlapping with or complementary to low-carbon technologies, the availability of these other green technologies supports the previous forecast of co-benefits from China’s carbon pricing27. Although 69% of the patents induced by the ETS was non-low-carbon (Fig. 3b), this already represented a shift in innovation direction—the share of low-carbon patents increased to 31% from only a few percent before the ETS.

Spillovers of policy effects to non-ETS firms. It is possible that the innovation effect of China’s ETS not only pertain to the regulated ETS firms, but also to other unregulated firms. An environmental policy may create a deterrence effect, causing firms that are likely to be regulated in the future to comply in advance. If such policy spillovers existed, the overall innovation effect of the ETS would be greater than a simple aggregation of the firm-level estimation above: the scope of the effect would be beyond ETS firms to unregulated ones; the individual effect on ETS firms...
might be greater than the estimation above. While the nature of innovation may also create knowledge flows and spillovers, especially to firms in the same technology space as the regulated firms, this process takes time, unlikely significant in the first two years.

We identified three sets of firms that were more likely subject to policy spillovers and estimated impacts on them separately. First, several ETS programs specified their respective lists of non-ETS firms that were required to report CO₂ emissions annually (Supplementary Table 1). The innovation effect of reporting alone is unclear, considering inconsistent evidence from voluntary programs28,29. But these large CO₂ emitters would have a higher chance to be included in the ETS later because of either their own emission increase or a lower inclusion criteria. Second, we selected in each industry sector of each ETS program the largest non-ETS firms by output. These large non-ETS firms within ETS sectors had a higher chance of being regulated later because of either their own emission increase or a lower inclusion criteria. Third, we focused on the non-ETS sectors not covered by six ETS programs but by the Shenzhen ETS (the most comprehensive in sectoral coverage), and selected the largest firms in these sectors. These firms would likely be regulated if the ETS programs were to expand in sectoral coverage following the Shenzhen ETS. In addition, we tested knowledge spillovers among non-ETS firms that filed patents jointly with ETS firms previously, following the analysis for the EU ETS22.

Large non-ETS firms in sectors covered by their regional ETS (second set above) or the Shenzhen ETS (third set above) were significantly induced by the ETS to innovate. We estimated one more patenting from each of the firms in response to the ETS, with 95% confidence intervals of (1, 1) and (1, 1.9), respectively, thanks to their large sample size (Table 1, Supplementary Table 15, and Supplementary Note 6). To confirm that the effect only pertained to these large firms more likely to be included in the ETS rather than sector-wide through knowledge spillovers, we also estimated the effect on small firms in these sectors, showing no significant effect. The spillover effect was not associated with industry competition, patent transfer or license out (Supplementary Note 6), suggesting the unregulated firms’ own demand in response to the policy. With a small sample size, the estimated effect on reporting firms was positive but nonsignificant. Neither could we find any evidence of knowledge spillover yet, as expected.

Because of the policy spillovers, the innovation impact of the ETS was broader than regulated firms. To avoid underestimation of the direct effect, the ETS firms were matched with firms in the non-ETS low-carbon pilot regions, showing a similar effect of 1.75 (1, 1.9) patents. Because of the nature of spillovers, however, the overall impact cannot be precisely estimated. It was not likely substantial, considering that the ETS firms only contributed to around 1% increase of regional low-carbon patenting and spillovers were limited to large unregulated firms in sectors already or likely covered by the ETS. Further increase of the policy impacts requires a broader program coverage.

Table 1 Indirect impact of the ETS on non-ETS firms

Estimate	95% confidence interval	Matched firm pair	
Reporting firms	1	(−1, 2.9)	128
Large firms in ETS sectors	1	(1, 1)	1430
Small firms in ETS sectors	0.75	(−0.9, 0.9)	2142
Large firms in Shenzhen sectors	1	(1, 1.9)	1074
Small firms in Shenzhen sectors	0.25	(−0.9, 0.9)	1411
Co-patenters of ETS firms	0.75	(−1, 3.9)	79

Potential mechanism of the ETS in facilitating innovation. Given significant effects of the ETS on firm-level innovation, it would be important to understand the mechanism through which the ETS facilitated innovative activities. A better understanding of the policy mechanism helps to further improve the effectiveness and efficiency of policy-making for climate mitigation.

The conventional wisdom is that environmental externalities of emissions contribute to underinvestment in innovation and adoption of pollution-control technologies; emissions trading increases the demand for pollution-control innovation by addressing the environmental externalities and creating appropriate price signals for mitigation30,31. If this were the case for China’s ETS, one would expect that a higher permit price led to more low-carbon innovation. But a price mechanism could be challenged by the presence of spillovers of policy-induced innovation to non-ETS firms not subject to carbon pricing. The mechanism could also be compromised by the overall low price and limited transaction.

Allowance allocation scheme is also an important feature of an ETS and may affect the degree of innovation32. In a typical cap-and-trade system, the amount of allowances is pre-established before a compliance cycle, i.e., mass-based. For political, competitiveness, or equity concerns, however, a rate-based system (also known as tradable performance standard) is often used by updating the number of allowances according to the actual output33. The former can achieve the social optimum, at least in theory, by setting an emission level to have the marginal abatement cost equal the marginal cost of the externality. Its efficiency also helps to link national and regional programs for global mitigation efficiency2. In comparison, rate-based allocation subsidizes output by allowing additional emissions and compromises cost-effectiveness34,35, which is exacerbated with heterogeneous benchmarks36. The innovation impact from the two methods, however, is likely ambiguous6,33. ETS pilots varied in their use of allocation methods, and usually applied different methods to different industries, which may lead to heterogeneous induced-innovation effects.

We evaluated whether the induced-innovation effect was dependent upon pricing, allowance allocation, and related features that varied across programs and industries. Program or firm-specific influences were tested both by a DID estimation with interaction terms between these program features and the treatment status of the ETS and by between-group comparisons based on Wilcoxon’s rank-sum test (Table 2; see Methods section).

When considering the interactions from program and firm features, the estimated ETS effect was no longer significant, with a much smaller coefficient than being estimated alone (Supplementary Table 10), suggesting its influences from these features. A higher permit price, however, was not associated with more ETS-induced innovation, shown by a small, nonsignificant coefficient. Neither was auction significantly correlated with induced innovation. Consistent with these was the fact that ETS firms in energy-intensive sectors, who should be more sensitive to carbon pricing, did not have significantly more innovation. All of
these suggest a weak role carbon pricing and trading played in the first two years, with overall low price and limited trading in several markets: the highest permit price was less than $20/ton (Supplementary Fig. 2) and the highest average price was lower than $10/ton (Supplementary Table 1); in four out of the seven markets, two-year total trading was less than 5% of the annual allowance (Supplementary Table 1).

While pricing and trading did not affect induced innovation, allowance allocation structure did. Firms under mass-based allocation outperformed those under rate-based allocation with significantly more induced low-carbon innovation. Results were consistent in cases both without and with control variables and in a subsample excluding power plants, which tend to file fewer patents and receive rate-based allowance allocation (Table 2). The mass-based approach actually drove the overall policy effect while the rate-based approach had no effect (Fig. 4).

We further ruled out the influence from other factors, including program commitment in cap reduction, industrial competition (measured by Herfindahl-Hirschman Index), firms’ previous patenting experience and ownership. Mass-based allocation was the only one that ensured an induced innovation effect from the ETS. It guarantees a binding cap for emissions control, at least similar to a stringent mandatory instrument for policy effectiveness when the market does not operate well for efficiency. Although patent quality has often been a concern, there is no evidence of the quality of ETS-induced innovation being compromised (Supplementary Table 16 and Supplementary Note 7).

Discussion

As the largest CO₂ emitter, China’s mitigation efforts contribute to the global climate agenda through direct emission reduction and indirect policy learning and technology diffusion. There has been a patenting surge in China for innovation in general, thanks to a series of reforms and policy incentives. We show in this context emissions trading schemes stood out from other climate policy experimentations to induce firm-level innovation, particularly for low-carbon technologies. The policy-induced innovation effect extended beyond the regulated firms to large unregulated ones in sectors already or likely covered by the ETS. The overall contribution of the ETS to regional low-carbon innovation, however, was still limited, suggesting the need for broader program coverage to increase policy impacts.

The significant policy effect was not affected by carbon pricing yet, with low permit price, limited auction, and limited market fluidity in several programs. Rather, the policy effect was driven by firms under mass-based allocation with the number of allowances established in advance of a compliance cycle. China’s

Table 2 Heterogeneous effects of the ETS across programs and firms

ETS region	Dependent variable (Δlow-carbon patent)	Wilcoxon’s rank-sum test alternative hypothesis
ETS	−0.007 (0.096)	High price > low price
ETS*average permit price	0.000 (0.002)	Auction > no auction
ETS*auction = 1	0.018 (0.078)	Mass-based > rate-based
ETS*mass-based = 1	0.069* (0.048)	Cap reduction > no cap
ETS*cap reduction = 1	−0.033 (0.045)	Rate-based
ETS*energy-intensive = 1	0.015 (0.050)	No patent before > patent
ETS*no patent before = 1	−0.011 (0.041)	High-price
ETS*Herfindahl-Hirschman Index	0.588 (1.406)	State-owned > other
ETS*state-owned = 1	0.003 (0.035)	Energy-intensive
ETS*foreign-owned = 1	−0.028 (0.036)	Foreign-owned
Firm characteristics	No	Energy-intensive
Matched firm pair dummies	Yes	High-price
Excluding power plants	No	High-price
Observations	1332	Energy-intensive
Adjusted R-squared	0.204	High-price

Note: Asterisks (*) and (**) indicate 10% and 5% significance levels, respectively. In parentheses are standard errors clustered at the ETS program and province levels for observations in and outside ETS regions, respectively.

Fig. 4 ETS-induced Innovation under alternative allowance allocation approaches. ETS effects on the number of low-carbon patenting and 95% confidence intervals among firms under mass-based allocation and that under rate-based allocation.
national carbon market has adopted a rate-based approach with the number of allowances being updated by firms’ actual output \(^2\), which had no effect on inducing innovation in the ETS pilots. A rate-based approach may have its advantage in adaptation and distributional considerations. But our results provide one more reason in favor of a mass-based approach for future development of the market, besides its efficiency advantage and ease of linkage across programs.

Methods

Data. Our main dataset of patent information has been made available by the State Intellectual Property Office (SIPO) for free and its associated publisher the Intellectual Property Publishing House Co. Ltd for purchase. It includes information of all the patent applications the SIPO received and published since the first Chinese patent law being enforced in 1985, from both domestic and foreign individuals, firms, and institutions. Information about each patent application includes application number, date, patent title, applicant name and location, inventor, agent, International Patent Classification (IPC) code, and patent type (invention, utility model, or design).

There is a time lag between patent application and SIPO publication of patent information, which influences the timing for collecting patent data in evaluating recent policies. The time lag is usually considered around 18 months \(^3\), but our investigation shows that to compile more representative patent data, a longer lag would be preferred. Supplementary Fig. 10 illustrates monthly cumulative distribution of published patents by the year of application. After 18 months, about half of all applications are published by the SIPO for the year they have been published, and the rate of publication are still increasing rapidly. The share increases to around 90% after 26 months, which is well beyond the turning point and at the flat part of the curves with only trivial increases in following years. As the curves predict, a few percent out of SIPO announced total applications will never be published in a reasonable time frame.

The cumulative distributions of publication months in Supplementary Fig. 10 are for annual cohorts where annual total application numbers are based on SIPO’s announcement. The publication lag for patenting in different months of a year—January and December in the extreme cases—are mixed. Alternatively, we took all patent entries during 2007–2016 in the SIPO dataset as the total population and drew the cumulative distribution of the time lag between application and publication for each patent in Supplementary Fig. 11. It provides a more accurate probability distribution of time lags between patenting and publication in recent years. Again, it shows that only 80% of all patents would be published and available after 18 months, although there is a surge in the 18th month because of required publication. After 26 months, more than 97% of patent information ever published by the SIPO would be available. Therefore, all our results were produced based on data acquired in March 2018, 26 months after the end of our study period in 2015.

Data about patent filing, instead of patent granted, have been used in the analysis, following the innovation research in Europe and China\(^2\,\!^{23}\,\!^{40}\,\!^{41}\). Besides the reason that filing measures firms’ innovative efforts, patent examination decisions also take much longer to be available\(^4\), making it impossible to evaluate policies in recent years based on data of patent granted. Patent filing is also of better quality and more consistent availability than alternative measurements of innovation such as R&D spending and development patents selected\(^3\)\,\!^{13}\,\!^{40}\,\!^{41}\. The second step applied a nonparametric Tobit-modified empirical-likelihood-based DID estimator that was used in estimating the effect of the EU ETS\(^2\).
The advantage of this estimator over a common DID is that it estimates precisely the number of patenting while accounting for the issue of a corner solution at zero firm—firm exclusion does not assign to the ETS firms' first differences most similar, where similarity was measured by Wilcoxon rank-sum test. A Tobit modification was applied to the subtraction process to calculate the DID of each firm pair to account for the corner solution at zero:

\[\delta_{j} = \max \left\{ \frac{Y_{j1} - Y_{j0}}{Y_{j1} - Y_{j0}}, \frac{Y_{j1} - Y_{j0}}{Y_{j1} - Y_{j0}} \right\} \quad \text{if } \tau = 0 \]

\[\max \left\{ \frac{Y_{j1} - Y_{j0}}{Y_{j1} - Y_{j0}}, \frac{Y_{j1} - Y_{j0}}{Y_{j1} - Y_{j0}} \right\} \quad \text{if } \tau < 0 \]

where \(Y \) is the number of patent filing; firm pairs are indexed by \(j \); \(\tau \) is the treatment effect being searched; \(\delta \) is the DID used for calculating Wilcoxon's statistic; \(T \) and \(C \) denote ETS and non-ETS firms in a pair; \(0 \) and \(1 \) denote posttreatment (2014–2015) and pretreatment (2011–2012) periods, respectively.

Matching-adjusted DID estimators assume conditional unconfoundedness, i.e., assignment of regulatory status is independent of the potential outcome distribution of firms had they not been assigned to the ETS, conditional on the observables. To assess this assumption (which is not directly testable in principal) and general robustness of our results, we tested a set of alternative strategies and specifications, including different calipers, number of non-ETS firms matched with each ETS firm, location restriction in matching, estimation strategy, scope of low-carbon technologies, samples, baseline periods, as well as placebo tests (Supplementary Tables 1 and Supplementary Fig. 7). Balance tests for output, which was unobserved in the matching process, also helped to confirm conditional unconfoundedness (Supplementary Tables 3–4 and Supplementary Figs. 5–6).

The same estimation strategy was used to test policy spillover effects. It matched non-ETS firms potentially subject to spillovers—reporting firms, large firms in ETS sectors or in Shenzhen ETS, co-patentees in ETS patents in other non-ETS firms not subject to these influences. Unlike clear-cut inclusion criteria, however, spillovers take networked channels and can be ambiguous. Therefore, the same identification strategy may not be as strong as in the main estimation.

Besides our preferred strategy that can estimate a constant treatment effect and account for the corner solution at zero patenting, we also adopted an alternative estimation strategy after the same matching process. This strategy followed common practices in research using patent data, and could be extended to investigate whether ETS program specification and composition of firms and industries led to heterogeneous induced innovation effects. For point estimation of the general effects, a common parametric DID was used:

\[\Delta \text{Patent}_{ij} = \alpha_i + \beta_i D_{i,t-1} + \epsilon_{ij} \]

where matched firm pairs are indexed by \(i \) and the treatment status in a firm pair is indicated by \(\tau \); \(\alpha_i \) is a set of firm pair dummy variables; \(D_{i,t-1} \) is a dummy variable with the value one for ETS firms; \(\epsilon \) is the error term; \(\Delta \text{Patent} \) is the first difference of the natural log of patent count plus one, often used to address in sample selection. \[\text{Patent}_{ij} = \frac{\text{Patent}_{ij} - \text{Patent}_{ij}}{\text{Patent}_{ij} + \text{Patent}_{ij}} \] where \(Y_{ij} \) is a set of design and operational features that vary across programs and sectors within programs; \(X_i \) is a set of firm and industry characteristics. To assist statistical inference, we also divided the ETS firms into two groups according to program specifications or firm characteristics to be investigated, and compared the DID values between groups based on Wilcoxon’s rank-sum test.

It has to be noted that, although the same matched sample from the main estimation is used, it does not represent the same identification strategy. The main estimation takes advantage of different program inclusion criteria to use matching to recover seemingly randomized assignment of ETS status for causal identification. But when making inference for the effect from different program features, assignment of these features is not likely made randomized through matching, because they may be correlated with program inclusion criteria.

Data availability
The original patent data has been made available by the State Intellectual Property Office via its website (http://www.sipo.gov.cn/zhfwpt/zljs/) and also published by the Intellectual Property Publishing House Co. Ltd, with bulk access granted. The Annual Survey of Industrial Firms is confidential and restricted from public access. For reproducing figures and results, processed data with confidential information removed is available from the authors on request.

Code availability
Computer code is available from the authors on request.

Received: 19 November 2018 Accepted: 28 August 2019
Published online: 09 September 2019

References
1. ICAP. Emissions Trading Worldwide: Status Report 2018. (ICAP, Berlin, 2018).
2. Mehlng, M. A., Metcalfe, G. E. & Stavins, R. N. Linking climate policies to advance global mitigation. Science 359, 997–999 (2018).
3. Goulder, L. H., Parry, I. W. H., Williams III, R. C. & Burtraw, D. The cost-effectiveness of alternative instruments for environmental protection in a second-best setting. J. Public Econ. 72, 329–360 (1999).
4. Parry, I. W. H., Williams, R. C. III & Goulder, L. H. When can carbon abatement policies increase welfare? The fundamental role of distorted factor markets. J. Environ. Econ. Manage. 37, 52–84 (1999).
5. Fowle, M. L. Incomplete environmental regulation, imperfect competition, and emissions leakage. Am. Econ. J. 1, 72–112 (2009).
6. Fischer, C., Parry, I. W. H. & Pizer, W. A. Instrument choice for environmental protection when technological innovation is endogenous. J. Environ. Econ. Manage. 45, 523–545 (2003).
7. Hellmann, S. From local experiments to national policy: the origins of China’s distinctive policy process. China J. 59, 1–30 (2008).
8. Zhang, D., Karplus, V. J., Cassisa, C. & Zhang, X. Emissions trading in China: progress and prospects. Energy Policy 75, 9–16 (2014).
9. Zhang, J., Wang, & D. Xu, Lessons learned from China’s regional carbon market pilots. Econ. Energy Environ. Policy 6, 19–38 (2017).
10. Stork, T., Dudek, D. J. & Yang, J. China’s national carbon emissions trading scheme: lessons from the pilot emission trading schemes, academic literature, and known policy details. Clif. Policy 19, 472–486 (2019).
11. Acemoglu, D., Aghion, P., Bursztyn, L. & Hemous, D. Directed technical change. Cambridge University Press (2014).
12. Bosetti, V. & Tavoni, M. Uncertain R&D, backstop technology and GHGs stabilization. Energy Econ. 31, S18–S26 (2009).
13. Baker, E. & Shittu, E. Uncertainty and endogenous technical change in climate policy models. Energy Econ. 30, 2817–2828 (2008).
14. Victor, D. G. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Edenhofer, O. et al.) (Cambridge University Press, 2014).
15. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Edenhofer, O. et al.) (Cambridge University Press, 2014).
16. Harhoff, D., Scherer, F. M. & Vopel, K. Citations, family size, opposition and the value of patent rights. Res. Policy 32, 1343–1363 (2003).
17. Acemoglu, D. Directed technical change. Rev. Econ. Stud. 69, 781–809 (2002).
18. Acemoglu, D., Aghion, P., Bursztyn, L. & Hemous, D. The environment and directed technical change. Am. Econ. Rev. 102, 131–166 (2012).
19. Popp, D. Induced innovation and energy prices. Am. Econ. Rev. 92, 160–180 (2002).
20. Aghion, P., Dechezlepretre, A., Hemous, D., Martin, R. & Reenen, J. V. Carbon taxes, path dependency, and directed technical change: evidence from the auto industry. J. Political Econ. 124, 1–51 (2016).
21. Cui, J., Zhang, J. & Zheng, Y. Carbon pricing induces innovation: evidence from China’s regional carbon market pilots. AEA Pap. Proc. 108, 453–457 (2018).
22. Feng, C., Shi, B. & Kang, R. Does environmental policy reduce enterprise innovation?—Evidence from China. Sustainability 9, https://doi.org/10.3390/ su9060872 (2017).
23. Lin, S., Wang, B., Wu, W. & Qi, S. The potential influence of the carbon market on clean technology innovation in China. Clim. Policy 18, 71–89 (2018).
24. Popp, D. & Newell, R. Where does energy R&D come from? Examining crowding out from energy R&D. Energy Econ. 34, 980–991 (2012).
25. Li, M. et al. Air quality co-bene
...
30. Newell, R. G. The role of markets and policies in delivering innovation for climate change mitigation. *Oxf. Rev. Econ. Policy* 26, 253–269 (2010).

31. Popa, D. Innovation and climate policy. *Annu. Rev. Resour. Econ.* 2, 275–298 (2010).

32. Fischer, C. & Newell, R. G. Environmental and technology policies for climate mitigation. *J. Environ. Econ. Manag.* 55, 142–162 (2008).

33. Fischer, C. Rebating environmental policy revenues: output-based allocations and tradable performance standards. *Resources for the Future Discussion Paper*, 01–22 (2001).

34. Boomsma, J.-T. & Dijkstra, B. R. Permit trading and credit trading: a comparison of cap-based and rate-based emissions trading under perfect and imperfect competition. *Environ. Resour. Econ.* 44, 107–136 (2009).

35. Pang, T., Zhou, S., Deng, Z. & Duan, M. The influence of different allowance allocation methods on China’s economic and sectoral development. *Clin. Policy* 18, 27–44 (2001).

36. Goulder, L. H. & Morgenstern, R. D. China’s rate-based approach to reducing CO2 emissions: attractions, limitations, and alternatives. *AEA Pap. Proc.* 108, 458–462 (2018).

37. Aghion, P., Bloom, N., Blundell, R., Griffith, R. & Howitt, P. Competition and innovation: an inverted-U relationship. *Q. J. Econ.* 120, 701–728 (2005).

38. Hashmi, A. R. Competition and innovation: the inverted-U relationship revisited. *Rev. Econ. Stat.* 95, 1653–1668 (2013).

39. Hu, A. G. Z., Zhang, P. & Zhao, L. China as number one? Evidence from China’s most recent patenting surge. *J. Dev. Econ.* 124, 107–119 (2017).

40. Hu, A. G. & Jefferson, G. H. A great wall of patents: what is behind China’s recent patent explosion? *J. Dev. Econ.* 90, 57–68 (2009).

41. Dang, J. & Motohashi, K. Patent statistics: a good indicator for innovation in China? Patent subsidy program impacts on patent quality. *China Econ. Rev.* 35, 137–155 (2015).

42. Pizer, W. A. & Zhang, X. China’s new national carbon market. *AEA Pap. Proc.* 108, 463–467 (2018).

43. Liu, Q. & Qi, L. D. Intermediate input imports and innovations: evidence from Chinese firms’ patent filings. *J. Int. Econ.* 103, 166–183 (2016).

44. Heckman, J., Ichimura, H., Smith, J. & Todd, P. Characterizing selection bias using experimental data. *Econometrica* 66, 1017–1098 (1999).

45. Heckman, J. J., Ichimura, H. & Todd, P. Matching as an econometric evaluation estimator. *Rev. Econ. Stud.* 65, 261–294 (1998).

46. Fowlie, M., Holland, S. P. & Mansur, E. T. What do emissions markets deliver and to whom? Evidence from Southern California’s NOx trading program. *Am. Econ. Rev.* 102, 965–993 (2012).

47. Abadie, A., Drukker, D., Herr, J. L. & Imbens, G. W. Implementing matching estimators for average treatment effects in Stata. *Stata J.* 4, 290–311 (2004).

48. Rosenbaum, P. R. in *Design of Observational Studies* 21–63 (Springer, New York, 2010).

49. Bradley, D., Kim, I. & Tian, X. Do unions affect innovation? *Manag. Sci.* 63, 2251–2271 (2017).

50. Fang, V. W., Tian, X. & Tice, S. Does stock liquidity enhance or impede firm innovation? *J. Financ.* 69, 2085–2125 (2014).

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China through its project 71704092, the National Social Science Fund of China through its key project 17ZDA077, and Tsinghua University’s Initiative Scientific Research Program 2017THZWYY08, Center for Industrial Development and Environmental Governance, Summer Institute for China’s Green Innovators, and Tang Scholar. We thank Beijing Development and Reform Commission for its response to our information disclosure request.

Author contributions

J.Z. and X.D. conceived the research. X.D. and Y.F. collected the data. Y.F. and X.D. analyzed the data. J.Z. drafted the paper. J.Z., X.D., Y.F., and L.X. contributed to interpretation of the results and final version of the paper.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-12213-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information: *Nature Communications* thanks Lei Zhu and the other anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.