Zooplankton as a potential vector for white band disease transmission in the endangered coral, *Acropora cervicornis*

Rebecca H Certner, Amanda M Dwyer, Mark R Patterson, Steven V Vollmer

1 Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, United States

Coral diseases are a leading factor contributing to the global decline of coral reefs, and yet mechanisms of disease transmission remain poorly understood. This study tested whether zooplankton can act as a vector for white band disease (WBD) in *Acropora cervicornis*. Natural zooplankton communities were collected from a coral reef in Bocas del Toro, Panama. Half of the zooplankton were treated with antibiotics for 24 hours after which the antibiotic-treated and non-antibiotic-treated zooplankton were incubated with either seawater or tissue homogenates from corals exhibiting WBD-like symptoms. 15 of the 30 asymptomatic *A. cervicornis* colonies exposed to zooplankton incubated in disease homogenate in tank-based experiments showed signs of WBD, regardless of prior antibiotic incubation. These results indicate that in our experimental conditions zooplankton were a vector for coral disease after exposure to disease-causing pathogens. Given the importance of heterotrophy on zooplankton to coral nutrition, this potential mode of disease transmission warrants further investigation.
Title: Zooplankton as a potential vector for white band disease transmission in the endangered coral, *Acropora cervicornis*

Rebecca H. Certner, Amanda M. Dwyer, Mark R. Patterson, Steven V. Vollmer

Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA

certner.r@husky.neu.edu
Abstract

Coral diseases are a leading factor contributing to the global decline of coral reefs, and yet mechanisms of disease transmission remain poorly understood. This study tested whether zooplankton can act as a vector for white band disease (WBD) in *Acropora cervicornis*. Natural zooplankton communities were collected from a coral reef in Bocas del Toro, Panama. Half of the zooplankton were treated with antibiotics for 24 hours after which the antibiotic-treated and non-antibiotic-treated zooplankton were incubated with either seawater or tissue homogenates from corals exhibiting WBD-like symptoms. 15 of the 30 asymptomatic *A. cervicornis* colonies exposed to zooplankton incubated in disease homogenate in tank-based experiments showed signs of WBD, regardless of prior antibiotic incubation. These results indicate that in our experimental conditions zooplankton were a vector for coral disease after exposure to disease-causing pathogens. Given the importance of heterotrophy on zooplankton to coral nutrition, this potential mode of disease transmission warrants further investigation.

Introduction

Coral diseases are on the rise across the world’s reefs and are likely to spread and worsen with the growing impact of climate change (Maynard et al. 2015). However, despite their increasing threat to global coral health, coral disease etiologies often remain elusive. White band disease (WBD) is one such enigmatic condition. Since its initial detection in 1979, WBD has devastated populations of the Caribbean acroporids, *Acropora palmata* and *Acropora cervicornis* (Aronson and Precht 2001; Gladfelter 1982; Bythell et al. 1993). As a direct result of WBD outbreaks, both corals are now classified as critically endangered by the IUCN Red List of Threatened Species.
Despite its profound effect on Caribbean reef ecosystems, key aspects of WBD causation and transmission remain unknown.

The WBD epizootic is highly infectious and has been shown to be transmissible through the water to injured corals, as well as through coral-coral contact (Kline and Vollmer 2011). WBD is generally thought to be bacterial since it can be impeded by antibiotics and stimulated by exposure to bacterial autoinducers (Kline and Vollmer 2011; Sweet et al. 2014; Certner and Vollmer 2015). Although the exact consortium of pathogens has not been identified, several bacterial families are thought to be involved in WBD infection including Vibrionaceae, Alteromonadaceae, and Flavobacteriaceae (Gil-Agudelo et al. 2006; Sweet et al. 2014; Gignoux-Wolfsohn and Vollmer 2015). Waterborne transmission of WBD has also been established in tank-based experiments (Gignoux-Wolfsohn et al. 2012, Certner and Vollmer 2015). Coral disease is also spread by corallivores such as fireworms, snails, and a variety of reef fish (Sussman et al. 2003, Gignoux-Wolfsohn et al. 2012, Rotjan and Lewis 2008).

Diverse marine bacterial communities play vital roles in ocean ecosystems including nutrient cycling, decomposition of organic matter, and acting as a basal food source level (Das et al. 2006). Marine bacteria are commonly found attached to various surfaces including zooplankton (Karner and Herndl 1992). For example, copepod exoskeletons and guts are rich in bacteria (Tang et al. 2011). The chitinous exoskeleton of zooplankton may provide stable microhabitats for bacterial colonization (Karner and Herndl 1992). Zooplankton have been demonstrated to be reservoirs for marine pathogens – specifically \textit{Vibrio cholerae} – implicated in human diseases (Tamplin et al. 1990). Gammaproteobacteria, the bacterial class containing the greatest number
of known pathogens, dominates copepod-associated bacterial communities, especially compared to the surrounding seawater (Shoemaker and Moisander 2015). Within the Gammaproteobacteria class, Vibrionaceae, Alteromonadaceae, and Pseudoalteromonadaceae were found to be particularly common families associated with zooplankton, all of which are also linked to WBD in corals (Gil-Agudelo et al. 2006, Gignoux-Wolfsohn and Vollmer 2015). In addition, zooplankton have been shown to be vectors impacting marine organisms including fish and shellfish as zooplankton are suspected reservoirs for the highly infectious birnaviruses (Kitamura et al. 2003).

In this study, we investigated whether zooplankton facilitate the spread of WBD when asymptomatic *A. cervicornis* are exposed to “WBD-infected zooplankton” and thus explore the potential connection between coral heterotrophy and waterborne disease transmission.

Materials and methods

Experimental design and field methods

Sixty asymptomatic *A. cervicornis* fragments were collected from Coral Cay (9° 15' 16" N, 82° 7' 40" W) in Bocas del Toro, Panama in February 2016. Each eight cm fragment was collected using clippers from a distinct coral colony showing no tissue loss. Corals were at least two meters apart to remove any effect of colony genotype. Collection permits were provided by Autoridad Nacional del Ambiente (ANAM) SE/A-9-16, Republic of Panama. Coral fragments were acclimated in 12 aquaria for 48 h in a flow-through system. During this time, all corals remained visually healthy. Zooplankton were collected in three separate 10 minute tows by a diver with a 50 µm plankton net directly over *A. cervicornis* patches at 7 m depth. From each
tow, three subsamples of zooplankton were counted to estimate total zooplankton collected; the communities were dominated by copepods and polychaetes. All zooplankton were then concentrated into 600 ml of 50 µm-filtered seawater (50 µm FSW) and inverted to ensure homogeneity before dividing evenly among 12 bottles (50 ml bottle\(^{-1}\)). 50 µm FSW was then added to each bottle up to 200 ml. We estimate that there were ~90 zooplankters bottle\(^{-1}\). An antibiotic cocktail containing tetracycline, ampicillin, and chloramphenicol was added to six of the aliquots at 100 µg ml\(^{-1}\) and all aliquots were incubated for 24 h in the dark. After 24 h, 75 µl from each aliquot was plated onto LB media (general culture media made with seawater) and TCBS media (Vibrio-selective media) in order to determine antibiotic efficacy. After 24 h zooplankton could be seen actively swimming in all bottles.

The following day, 18 WBD-infected A. cervicornis fragments were collected from the same reef and homogenized in 0.2 µm-filtered seawater (0.2 µm FSW). Six 30 ml WBD pools were created by combining 10 ml from three homogenates. WBD pools were spun at 500 rpm for five min to remove debris. Samples from each WBD pool were preserved for subsequent 16S rRNA gene sequencing in DNA buffer (Fukami et al. 2004). Each of the 12 aliquots of zooplankton was filtered at 0.2 µm. Zooplankton were rinsed from filter with 0.2 µm FSW into 12 new aliquots of 50 ml 0.2 µm FSW. Six aliquots (three plus-antibiotic and three minus-antibiotic) were dosed with a 30 ml WBD pool while the remaining six were supplemented with 30 ml 0.2 µm FSW, creating two levels of antibiotic exposure (plus antibiotic or minus antibiotic) that were fully crossed with two levels of disease exposure (plus WBD or minus WBD). This resulted in four treatments: (1) plus antibiotic, minus WBD, (2) plus antibiotic, plus WBD, (3) minus antibiotic,
minus WBD, and (4) minus antibiotic, plus WBD. Zooplankton samples were incubated for 24 h, after which zooplankton could be seen actively swimming in all bottles.

Acclimated coral fragments were given a \sim7.5 mm2 lesion using an airbrush with 0.2 µm FSW to mimic injury in the field known to increase susceptibility to WBD infection (Gignoux-Wolfsohn et al. 2012, Certner and Vollmer 2015). Five corals were placed in 12 closed-system aquaria containing 4 l seawater each. A circulating powerhead in each aquarium was covered with 50 µm mesh to prevent damage to the zooplankton. Each of the 12 zooplankton aliquots (three replicates per treatment) were filtered with 50 µm mesh. The zooplankton were then thoroughly rinsed with 0.2 µm FSW and then transferred to aquaria using 0.2 µm FSW (Fig. 1). Corals were checked every 3 h for 96 h for WBD-like signs. Upon detection, the diseased fragment was removed from the aquarium and transferred to a holding aquarium to prevent contamination of other replicates. After 96 h, corals were removed and aquaria water was filtered through 50 µm mesh to collect remaining zooplankton. The mesh was then rinsed with 0.2 µm FSW directly into labeled dishes. Each dish was examined under a dissecting microscope to determine the number of remaining zooplankton.

16S library preparation and bioinformatics

Total DNA was extracted from disease pool samples using the BioSprint 96 DNA Blood Kit with the addition of PEB buffer (Qiagen). Primers were created to target the V3-V4 hypervariable region of the 16S rRNA gene (Integrated DNA Technologies, Fadrosh et al. 2014). PCR products were normalized and the resulting multiplexed paired-end libraries were sequenced on the Illumina 2500 HiSeq platform at Tufts University (Fadrosh et al. 2014). Since
sequences did not sufficiently overlap, single-read sequences (comprising the V4 region) were
demultiplexed using a custom script. OTUs were clustered at 97% similarity using the open
reference picking script from QIIME and UCLUST against the SILVA database (Caporaso et al.
2010, Quast et al. 2013). OTU taxonomy was assigned using BLAST against the SILVA
database. OTU counts were normalized using the arithmetic mean modification as per Gignoux-
Wolfsohn and Vollmer (2015) and Anders and Huber (2010).

Statistical analyses

We used a generalized linear model (GLM) with a binomial error distribution that accounts for
overdispersion in order to determine whether the proportion of infected A. cervicornis fragments
varied across the antibiotic (plus or minus) and disease (WBD or FSW) treatments using the
MASS package (Venables and Ripley 2003) for R. Statistical significance was determined via
Likelihood Ratio Tests (LTR) using the R package car (Fox and Weisberg 2011). We verified
that the model residuals were normally distributed (Shapiro-Wilk test; p = 0.251) and
homoscedastic (Levene’s test; p = 0.596).

Results

Our post-antibiotic exposure plating results showed the antibiotic treatment was highly effective
at killing bacteria as plates from the plus-antibiotic treatment had zero colonies present and
plates from the minus-antibiotic treatment showed hundreds of colonies present. Zooplankton
exposed to antibiotic resulted in zero CFUs on both LB and TCBS media for each aliquot.
Conversely, non-antibiotic treated zooplankton resulted in plates containing hundreds of CFUs.
The six WBD pools were sequenced for 16S and 97% clustering yielded 1,919 OTUs. One of the six pools had an insufficient level of read depth and thus was excluded from the analyses. Disease pools were dominated by Proteobacteria, particularly Gammaproteobacteria (Oceanospirillales, Thiotrichales, Alteromonadales, Vibrionales, Methylcoccales) and Alphaproteobacteria (Rickettsiales, Rhodospirillales) (Fig. 2). A large portion of the community for each of the WBD pools was dominated by low-abundance species labeled as “Other” (Fig. 2).

Corals exposed to zooplankton incubated in the WBD pools showed a significant increase in WBD infection (15 out of 30 fragments) compared to corals exposed to zooplankton incubated in FSW where no transmission occurred (Fig. 3, Fig. 4). Our two-factor aquaria-based experiment showed a significant effect of disease exposure ($\chi^2(1) = 5.407$, $p = 0.02$), but not antibiotic exposure ($\chi^2(1) = 0.680$, $p = 0.41$) or an interaction on WBD infection in A. cervicornis ($\chi^2(1) = 0$, $p = 1$) (Fig. 4). Upon termination of the experiment, aquaria water was filtered at 50 µm to determine the state of remaining zooplankton. Fewer than 25% of the added zooplankton were recovered and the majority of the individuals from each aquarium were living.

Discussion

16S analyses were conducted in order to confirm that our WBD pools contained disease-causing bacteria. Our WBD pools contain many bacterial orders shown to be associated with coral disease in general and WBD specifically. Vibrionales has been linked to WBD on numerous occasions (Certner and Vollmer 2015, Gignoux-Wolfsohn et al. 2015, Gil-Agudelo et al. 2006, Ritchie 2006) as well as Rickettsiales (Casas et al. 2004), Oceanospirillales (Gignoux-Wolfsohn et al. 2015), Alteromonadales (Gignoux-Wolfsohn et al. 2015), and Campylobacterales.
These results suggest that the zooplankton were incubated with likely WBD pathogens. Interestingly, Gammaproteobacteria – the principal taxonomic class in the disease pools – are strongly linked to bacterial colonization of zooplankton (Heidelberg et al. 2002, Shoemaker and Moisander 2015). Multiple studies have found that zooplankton microbiomes are dominated by Gammaproteobacteria, especially *Vibrios*. These opportunistic species likely benefit from the nutrient-rich zooplankton microhabitat unavailable in seawater. As a result, it is probable that zooplankton are hospitable to WBD-associated microbes, generally thought to be within the Gammaproteobacteria class. In essence, the bacteria that zooplankton are most likely to harbor are the same bacteria most likely to cause disease in a variety of marine organisms including corals.

This study is the first to explore disease transmission via coral heterotrophy. Corals across all treatments were found to have consumed over 75% of the supplied zooplankton. This result indicates that asymptomatic corals feeding on zooplankton covered with disease-associated bacteria can become infected with WBD. Although incubating zooplankton with the WBD-associated microbiome is a contrived scenario, these results imply that, under certain conditions, zooplankton may act as a coral disease vector.

Zooplankton communities on coral reefs are extremely variable (Heidelberg et al. 2010). Therefore, it is difficult to assess the exposure of corals to zooplankton harboring disease-associated bacteria in the field. However, our results show that zooplankton act as reservoirs for WBD-associated bacteria thus facilitating the exposure of corals to concentrated infectious agents. We hypothesize that during WBD outbreaks, when infected coral tissue enters the
surrounding environment at higher concentrations, zooplankton could come into contact with
disease-causing bacteria at a local scale (Haas et al. 2013). Therefore, we suggest that
zooplankton act as a vector for WBD, explaining how isolated disease outbreaks can spread
quickly across reefs.

Further investigation is needed to better understand the mechanisms of zooplankton acting as a
vector for WBD and its prevalence under natural circumstances. Although lesioning corals is a
standard procedure used to ensure WBD transmission in aquaria, we hypothesize that
consumption of disease-associated bacteria via zooplankton heterotrophy may also infect
uninjured corals. To further investigate the prevalence of zooplankton as disease vectors in the
field, demersal plankton traps should be placed over WBD-infected *A. cervicornis* colonies.
Comparing the bacterial communities of these zooplankton and the WBD-infected corals may
reveal common OTUs, which would indicate that zooplankton spread WBD.

Zooplankton comprise the base of secondary production in most aquatic ecosystems and are a
crucial component of innumerable food webs. However, negative impacts of zooplankton are
understudied, especially in regards to disease transmission to other marine organisms. Here we
show that zooplankton can act as a vector for coral disease, specifically WBD in *A. cervicornis*,
under certain experimental circumstances where zooplankton are artificially exposed to high
densities of disease-causing bacteria.
Acknowledgements

We thank Sarah Gignoux-Wolfsohn, Erik Holum, and Tarik Gouhier for bioinformatics and statistical guidance, Francis Choi for valuable comments, and the gecko in the dryer. We also thank the Smithsonian Tropical Research Institute for field and lab support. Supported by National Science Foundation Awards #1458158 (SVV) and #1412462 (MRP), and Northeastern University. This is contribution number xxx from the Marine Science Center at Northeastern University.
References

Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11 [doi: 10.1186/gb-2010-11-10-r106]

Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25-38

Bythell J, Gladfelter E, Bythell M (1993) Chronic and catastrophic natural mortality of three common Caribbean reef corals. Coral Reefs 12: 143-152.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335-336

Casas V, Kline DI, Wegley L, Yu Y, Breitbart M, Rohwer F (2004) Widespread associated of a Rickettsiales-like bacterium with reef-building corals. Environmental Microbiology 6: 1137-1148.

Certner RH, Vollmer SV (2015) Evidence for autoinduction and quorum sensing in white band disease-causing microbes on Acropora cervicornis. Sci Rep 5 [doi: 10.1038/srep11134]

Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectives. Current Science 90:1325-1335.

Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2 [doi: 10.1186/2049-2618-2-6]

Fox J, Weisberg S (2011) An R companion to applied regression, second edition. Sage Publications, Thousand Oaks, CA

Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastrea annularis complex based on molecular and morphological markers. Evolution 58:324-337

Gignoux-Wolfsohn S, Marks CJ, Vollmer SV (2012) White Band Disease transmission in the threatened coral, Acropora cervicornis. Sci Rep 2 [doi: 10.1038/srep00804]

Gignoux-Wolfsohn SA, Vollmer SV (2015) Identification of candidate coral pathogens on White Band Disease-infected staghorn coral. PloS One 10(8) [doi:10.1371/journal.pone.0134416]

Gil-Aguadelo D, Smith G, Weil E (2006) The white band disease type II pathogen in Puerto Rico. Rev Biol Trop 54:59-67
Gladfelter WB (1982) White-band disease in *Acropora palmata*: implications for the structure and growth of shallow reefs. Bulletin of Marine Science 32:639-643.

Haas AF, Nelson CE, Rohwer F, Wegley-Kelly F, Quistad SD, Carlson CA, Leichter JJ, Hatay M, Smith JE (2013) Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 1 [doi:10.7717/peerj.108.]

Heidelberg J, Heidelberg K, Colwell R (2002) Bacteria of the γ-subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Appl Environ Microbiol 68:5498-5507

Heidelberg J, O’Neil KL, Bythell JC, Sebens KP (2010) Vertical distribution and diel patterns of zooplankton abundance and biomass at Conch Reef, Florida Keys (USA). Journal of Plankton Research 32:75-91.

Karner M, Herndl GJ (1992) Extracellular enzymatic activity and secondary production in free-living and marine-snow-associated bacteria. Mar Biol 113:341-347

Kitamura S-I, Kamata S-I, Nakano S-I, Suzuki S (2003) Detection of marine birnavirus genome in zooplankton collected from the Uwa Sea, Japan. Dis Aquat Organ 54:69-72

Kline DI, Vollmer SV (2011) White Band Disease (type I) of endangered Caribbean acroporid corals is caused by pathogenic bacteria. Sci Rep 1 [doi: 10.1038/srep00007]

Maynard J, Van Hooidonk R, Eakin MC, Puotinen M, Garren M, Williams G, Heron SF, Lamb J, Weil E, Willis B (2015) Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nature Climate Change 5: 688-694

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-D596

Ritchie, K (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series 322:1-14.

Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73-91

Shoemaker KM, Moisander PH (2015) Microbial diversity associated with copepods in the North Atlantic subtropical gyre. FEMS Microbiol Ecol 91 [doi: 10.1093/femsec/fiv064]

Sussman M, Loya Y, Fine M, Rosenberg E (2003) The marine fireworm *Hermodice carunculata* is a winter reservoir and spring-summer vector for the coral-bleaching pathogen *Vibrio shiloi*. Environ Microbiol 5:250-255
Sweet MJ, Croquer A, Bythell JC (2014) Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral *Acropora cervicornis*. Proc. R. Soc. B 281:20140094

Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR (1990) Attachment of *Vibrio cholerae* serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56:1977-1980

Tang KW, Glud RN, Glud A, Rysgaard S, Gissel Nielsen T (2011) Copepod guts as biogeochemical hotspots in the sea: Evidence from microelectrode profiling of *Calanus* spp. Limnol Oceanogr 56:666-672

Venables WN, Ripley BD (2003) Modern Applied Statistics with S. Springer
Figure legends

Figure 1: Experimental design. Antibiotic-treated and control zooplankton were incubated with WBD homogenates and seawater. Aquaria containing acclimated *A. cervicornis* were then dosed with one of these four treatments.

Figure 2: Relative abundance of 16S rRNA gene sequences for the WBD pools. The percent abundance of taxonomic orders whose incidence reached five percent of the total OTU count in at least one of the five samples is shown. Rare taxonomic orders are grouped as ‘Other’. WBD Pool C was not included in the figure due to a low number of sequences. WBD Pools A-C were added to minus antibiotic zooplankton aggregates and WBD Pools D-F were added to plus antibiotic zooplankton aggregates.

Figure 3: Examples of white band disease. (A) WBD-infected *A. cervicornis* colony from Bocas del Toro, Panama. (B) Experimentally transmitted WBD on an *A. cervicornis* fragment from the experiment.

Figure 4: Incidence of WBD infection in asymptomatic *A. cervicornis* exposed to zooplankton incubated with WBD-associated bacteria. *A. cervicornis* were dosed with one of the four zooplankton treatments: (1) minus antibiotic, minus WBD, (2) plus antibiotic, minus WBD, (3) minus antibiotic, plus WBD, and (4) plus antibiotic, plus WBD. WBD was equated with the appearance of a distinct band of necrotic tissue. Incidence of infection was analyzed using ANOVA for significance of GLM terms. Mean ± SE shown.
Figure 1

Experimental design

Experimental design. Antibiotic-treated and control zooplankton were incubated with WBD homogenates and seawater. Aquaria containing acclimated *A. cervicornis* were then dosed with one of these four treatments.
Figure 2

Relative abundance of 16S rRNA gene sequences for the WBD pools

Relative abundance of 16S rRNA gene sequences for the WBD pools. The percent abundance of taxonomic orders whose incidence reached five percent of the total OTU count in at least one of the five samples is shown. Rare taxonomic orders are grouped as ‘Other’. WBD Pool C was not included in the figure due to a low number of sequences. WBD Pools A-C were added to minus antibiotic zooplankton aggregates and WBD Pools D-F were added to plus antibiotic zooplankton aggregates.
Figure 3

Examples of white band disease

Examples of white band disease. (A) WBD-infected *A. cervicornis* colony from Bocas del Toro, Panama. (B) Experimentally transmitted WBD on an *A. cervicornis* fragment from the experiment.

Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.
Figure 4

Incidence of WBD infection in asymptomatic *A. cervicornis* exposed to zooplankton incubated with WBD-associated bacteria

Incidence of WBD infection in asymptomatic *A. cervicornis* exposed to zooplankton incubated with WBD-associated bacteria. *A. cervicornis* were dosed with one of the four zooplankton treatments: (1) minus antibiotic, minus WBD, (2) plus antibiotic, minus WBD (3) minus antibiotic, plus WBD, and (4) plus antibiotic, plus WBD. WBD was equated with the appearance of a distinct band of necrotic tissue. Incidence of infection was analyzed using ANOVA for significance of GLM terms. Mean ± SE shown.
