dsRNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis

Patrice Vitali and A.D.J Scadden
Supplementary Figure 1: (a) In vitro transcription gives rise to incompletely capped Fluc mRNA. Capped or uncapped Fluc mRNA were treated ±alkaline phosphatase, radiolabeled using γ³²P[ATP] (see Supplementary methods) and analyzed on a denaturing polyacrylamide gel. DNA markers (Lambda HindIII/ΦX174 HaeIII) were used. (b,c) IU-dsRNA suppresses induction of ISGs by both capped and uncapped Fluc mRNA. HeLa cells were mock transfected (M) or co-transfected with 250 ng capped (b) or uncapped (c) Fluc mRNA and C or C-IU dsRNAs. RT/qPCR was used to quantify expression of ISGs (RIG-I, OAS1, IFITM1) or β-actin after 12h (n=4). Fold-change in mRNA levels were calculated relative to mock-transfected cells, and normalized to GapDH. Error bars are mean ± s.d.
Supplementary Figure 2: ISGs are suppressed by ‘cleaved’ dsRNAs containing multiple inosines. (a) Full-length’ dsRNAs correspond to GP and IIUI. Base pairs that differ between the pair of dsRNAs are in bold. ‘Cleaved dsRNAs’ correspond to duplexes A–F. These duplexes correspond to potential products arising from cleavage of IIUI dsRNA14,15. (b) HeLa cells were co-transfected with poly(IC) and either full-length (control dsRNA (GP) or IU-dsRNA (IIUI)) or ‘cleaved’ dsRNAs (Duplexes A–F). RT/qPCR was used to quantify expression of β-actin or ISGs (IFITM1, OAS1, IP-10) after 12h (n=4). Fold-change in mRNA was calculated relative to that at 6h with GP, and normalized to GapDH. Error bars are mean ± s.d. (c) Following co-transfection of HeLa cells with poly(IC) and either full-length or ‘cleaved’ dsRNAs, immunoblotting was used to analyze activation of IRF3 (IRF3 S396-P). Apoptosis was detected by analyzing PARP cleavage (cPARP). Uncleaved PARP was also detected (PARP). Actin was a loading control.
Supplementary Figure 3: IRF3 is activated by transfected poly(IC). A simplified view of IRF3 activation following transfection of cells with poly(IC)14,15. Transfected poly(IC) interacts with the cytosolic receptors MDA-5 or RIG-I, which triggers a cascade resulting in phosphorylation, dimerization and nuclear translocation of IRF3. Activated IRF3 interacts with CBP to initiate transcription of genes containing specific IRF3 binding sites (ISREs). We propose that IU-dsRNA suppresses this pathway by preventing activation of MDA-5 or RIG-I, as indicated.
Supplementary Figure 4: poly(IC)-induced activation of IRF3 and apoptosis is inhibited by IU-dsRNA. (a) HeLa cells were mock transfected (M), or transfected with poly(IC) (pIC) or C or C-IU dsRNAs, and lysates prepared after 6–24h. Immunoblotting was used to detect activation of IRF3 (IRF3 S396-P), and apoptosis (cPARP). Uncleaved PARP was also seen (PARP). Actin was a loading control. (b) HeLa cells were co-transfected with poly(IC) (pIC) and GP or 6I dsRNAs. Immunoblotting was used to detect apoptosis after 12h by analyzing PARP cleavage. IRF3 S396-P was used to detect IRF3 activation. Actin was a loading control. (c) Human placental choriocarcinoma (JEG-3) cells were co-transfected with poly(IC) and C or C-IU dsRNAs. Immunoblotting was used to detect apoptosis after 12h by analyzing PARP cleavage. IRF3 S396-P detected IRF3 activation. Actin was a loading control.
Supplementary Figure 5: poly(IC) induces expression of the ISGs XAF1 and TRAIL. HeLa cells were co-transfected with poly(IC) and C or C-IU (I), and lysates prepared after 2–36h. RT/qPCR was used to quantify expression of XAF1 and TRAIL after 12–36h (n=4). Fold-change in mRNA was relative to that at 2h with C, and normalized to GapDH. Error bars are mean ± s.d.
Supplementary Figure 6: C-IU dsRNA inhibits IRF3 activation. (a) Immunoblotting was used to verify equal expression of IRF3 5A and 5D with C or C-IU dsRNAs (see Supplementary methods). (b) Cells were mock transfected, or co-transfected with IRF3 5A or IRF3 5D, along with C or C-IU. RT/qPCR was used to quantify expression of ISGs (IP10, XAF1, OAS1, IFITM1) or β-actin after 12h (n=4). Fold-change in mRNA was relative to the mock, and normalized to GapDH. Error bars are mean ± s.d.
Supplementary Table 1: Interferon Stimulated Genes

Abbreviation	Full Name		
IFITM1	Interferon-inducible trans-membrane protein 1 (9-27)\(^1\)		
IFIT1	Interferon-induced protein with tetratricopeptide repeats \(^1\)		
IP-10	Chemokine (C-X-C motif) ligand \(^3\)		
IRF7	Interferon regulatory factor \(^4\)		
IRF9	Interferon regulatory factor \(^5\)		
MDA-5	Melanoma-differentiation-associated gene \(^6\)		
MX1	Interferon-induced myxovirus (influenza virus) resistance protein \(^7\)		
OAS1	2',5'-oligoadenylate synthetase \(^8\)		
PKR	Interferon-induced serine/threonine protein kinase \(^9\)		
STAT1	Signal transducer and activator of transcription \(^1\) \(^{10}\)		
TRAIL	TNF-related apoptosis inducing ligand \(^11\)		
XAF1	X-linked inhibitor of apoptosis -associated factor \(^1\) \(^{12}\)		
Gene ID	Fold change	Description	Validated using RT/qPCR
--------	-------------	---	-------------------------
IP-10	3.34	Chemokine (C-X-C motif) ligand 10	x
IFIT2	3.05	Interferon-induced protein with tetratricopeptide repeats 2	x
IFIT3	2.92	Interferon-induced protein with tetratricopeptide repeats 3	x
OASL	2.43	2'-5'-oligoadenylate synthetase-like	
ISG15	2.27	ISG15 ubiquitin-like modifier	
CFB	2.15	Complement factor B	
IL6	2.05	Interleukin 6	x
IL8	2.04	Interleukin8	x
HERC5	2.02	Hect domain and RLD 5	
IFITM1	1.99	Interferon induced transmembrane protein 1	x
IFI27	1.98	Interferon, alpha-inducible protein 27	x
IFI6	1.94	Interferon, alpha-inducible protein 6	x
CCL20	1.93	Chemokine (C-C motif) ligand 20	x
ZC3HAV1	1.91	Zinc finger CCCH-type, antiviral 1	
IFIT1	1.90	Interferon-induced protein with tetratricopeptide repeats 1	x
CCL5	1.89	Chemokine (C-C motif) ligand 5	x
IRF1	1.89	Interferon regulatory factor	x
OAS2	1.88	2',5'-oligoadenylate synthetase 2	x
UBE2L6	1.87	Ubiquitin-conjugating enzyme E2L 6	x
OAS1	1.85	2',5'-oligoadenylate synthetase 1	x
CXCL11	1.83	Chemokine (C-C motif) ligand 11	x
PIRIC285	1.82	Peroxisomal proliferator-activated receptor A interacting complex 285	x
XAF1	1.80	XIAP associated factor 1	x
IL29	1.78	Interleukin 29 (interferon, lambda 1)	x
IFI44	1.73	Interferon-induced protein 44	x
GADD34	1.72	Growth arrest and DNA damage-inducible protein GADD34	x
RIG-I	1.71	Retinoic acid-inducible gene 1	
IRF7	1.71	Interferon regulatory factor 7	x
KLF6	1.70	Kruppel-like factor 6	x
NFKBIA	1.69	Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha	x
ZNFX1	1.69	Zinc finger, NFX1-type containing 1	x
GBP1	1.69	Guanylate binding protein 2, interferon-inducible	x
TNFAIP3	1.69	Tumor necrosis factor, alpha-induced protein 3	
DDX58	1.66	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	
PLAUR	1.65	Plasminogen activator, urokinase receptor	
ISG20	1.65	Interferon stimulated exonuclease gene 20kDa	x
EFNA1	1.63	Ephrin-A1	
SLC25A28	1.62	Solute carrier family 25, member 28	
MDA-5	1.61	Melanoma-differentiation-associated gene 5	x
NFKBIZ	1.60	Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta	x
OAS3	1.60	2',5'-oligoadenylate synthetase 3	
ATF3	1.60	Activating transcription factor 3	
CEBPD	1.59	CCAAT/enhancer binding protein (C/EBP), delta	
MX2	1.58	Myxovirus (influenza virus) resistance 2 (mouse)	
ZFP36	1.56	Zinc finger protein 36, C3H type, homolog (mouse)	
TRIM26	1.55	Tripartite motif-containing 26	
MT2A	1.55	Metallothionein 2A	
IFI35	1.55	Interferon-induced protein 35	
G1P3	1.54	Interferon inducible gene 6-16	
HeLa cells were co-transfected with poly(IC) and C or C-IU dsRNAs, and RNA harvested after 12h. Microarrays were subsequently used to analyze gene expression in the presence of C or C-IU dsRNAs, where fold-change in mRNA with C was calculated relative to that with C-IU (n=3). Expression of 59 genes was ≥1.5-fold greater with C dsRNA than with C-IU after 12h. Genes validated using RT/qPCR are indicated (x).

Gene	Fold Change	Description
RPPH1	1.54	Ribonuclease P RNA component H1
CCL2	1.54	Chemokine (C-C motif) ligand 2
CENTA1	1.53	ArfGAP with dual PH domains
SAMD9	1.53	Sterile alpha motif domain containing 9
PARP14	1.53	Poly (ADP-ribose) polymerase family, member 14
SLC15A3	1.52	Solute carrier family 15, member 3
TRIM21	1.52	Tripartite motif-containing 21
CITED4	1.52	CREB binding protein
WARS	1.52	Tryptophanyl-tRNA synthetase
TAP1	1.52	Transporter 1, ATP-binding cassette, sub-family B
STAT1	1.51	Signal transducer and activator of transcription 1
NUAK2	1.50	NUAK family, SNF1-like kinase, 2

x
Cells were co-transfected with poly(IC) and either C or C-IU dsRNAs (n=3). Fold-change in gene expression at 12h with C, relative to C-IU, was determined using microarrays. Genes enriched ≥1.5-fold in the presence of C relative to C-IU were subject to gene ontology analyses using PANTHER13. Genes were classified according to Pathway, Molecular Function and Biological Process (P ≤ 0.05).

Biological Process	NCBI: H. sapiens genes - REFLIST (25431)	C/C-IU array (59)	C/C-IU array (expected)	C/C-IU array (over/under)	C/C-IU array (P value)
Interferon-mediated immunity	63	13	0.15	+	6.99E–20
Immunity and defense	1318	27	3.06	+	5.72E–18
Biological process unclassified	11321	10	26.26	–	2.28E–04
Nucleoside, nucleotide and nucleic acid metabolism	3343	21	7.76	+	3.18E–04
Cytokine and chemokine mediated signaling pathway	252	7	0.58	+	4.04E–04
Cytokine/chemokine mediated immunity	125	5	0.29	+	1.67E–03
Apoptosis	531	7	1.23	+	7.07E–03
Ligand-mediated signalling	421	7	0.98	+	1.08E–02
Macrophage-mediated immunity	140	4	0.32	+	4.76E–02
Pathway					
Inflammation mediated by chemokine and cytokine signaling pathway	315	7	0.73	+	1.44E–03
Molecular Function					
Nucleic acid binding	2850	21	6.61	+	2.29E–05
Chemokine	54	5	0.13	+	3.16E–05
Synthetase	96	5	0.22	+	5.21E–04
Nucleotidyltransferase	70	4	0.16	+	3.73E–03
Synthase and synthetase	213	5	0.49	+	4.11E–03
Molecular function unclassified	10934	12	25.37	–	6.40E–03
Helicase	173	5	0.4	+	8.65E–03
Defense/Immunity protein	369	5	0.86	+	4.87E–02
Supplementary Table 4: Primer pairs used for qPCR

Primer	Forward	Reverse
β-actin	5'-GTTGCCTGTTACACCTTTTC	5'-GCCATGCCCAATCTGATTTT
eIF4G2	5'-CAGAGGCAGTCTATTGCAAGGAC	5'-ACCGCAACAACCATAAATGCAAG
G3BP2	5'-GCCCTGCCATCCATGAAA	5'-GCTGAATGCGCTTTTGCTCTACT
GapDH	5'-TGCAACCACCACCCTGTTAGC	5'-GGCATGACTGTGGCTCATGAG
MacF1	5'-ATGATCCCTGGGAGCAGCA	5'-GAAGATGTTGGGACCTTCG
RPS24	5'-TCCAATCTCCAGCTACTTTTT	5'-GCCCTGATGAGGAAGAAAGACC
MRFAP1L1	5'-TCAAGAGCGATGGGATGAAAAAT	5'-CTCAACCAAGTAGCGGCTAGTTGT
PPP2R2D	5'-GGGTCTCTTAAAACACTCTTCTCA	5'-ATCCCTCCGGGCTGCTCTCT
TBC1D22B	5'-CTCCCTCAACCGGACTTAAA	5'-AACCAACCACTTGGGACACAC
CCL20	5'-TCCTGGGCTTGGCTTTGATG	5'-GTTGCTTGGCTCTTGATT
CFB	5'-AGTCTCTGTTGGCATGTTTT	5'-TTGCTTGGTGGTAATGCGGTA
GADD34	5'-TCCTGACTACAGGTGTCTTT	5'-GTCCCTCCCTGGCTGATA
HERC-5	5'-TCCTGAAAGTTGGGAATGAAAGAG	5'-GGAGGAAGAGGACACTGAAA
IFI6	5'-TACCTGCTCTTCCTTCA	5'-TCCTTACCCGGATTCCTCA
IFI27	5'-CTGCATATTGCGAGGTTCTACT	5'-CCTGGCATGTTCTCTTCTCT
IFI44	5'-CAAGCTAGAGGAAGTCAAAG	5'-CCACGGAGATGTCAAGAAG
IFIT1	5'-CTCTCTTGGGTTTGCTCTTA	5'-ACTCCAGGCTTCTACCTCA
IFIT2	5'-CCTCGACTGTTCTACTATCA	5'-CGAAGGCTTGGAGTTCTTA
IFIT3	5'-AGGCCCAACATGATGCTGAT	5'-GGAATGGGTGGTTATATTGTAAGCT
Gene	5' Primer	3' Primer
--------	-----------	--------------------------------
IFITM1	5'-AACCTTCACTCAACACTTCTTC	5'-TCCTCCTTGTGACATCTTC
IL-6	5'-TGGCGATTCTCTTCTTCTG	5'-GTGTCCTAAACGCTCATAC
IL-8	5'-TGCCGGGAGAATATACAA	5'-CAAAACCATTTCAATTCTCTGA
IL-29	5'-CGATGGGAACCTGTGCTCTT	5'-GGGTCAGGCGGATAAATAAG
IP-10	5'-GCTCTACTGAGTGCTATTTCTT	5'-CCCTTGGGAAAGATGGGAAGG
IRF7	5'-AGGGCCACAGCCTCTTGA	5'-CAGCTTTCTGGAGATTTTGA
IRF9	5'-TCATCTGTAAGGGAAGGAA	5'-AGGTCAAGGAAAGGGGAA
ISG20	5'-AACAGCCTGCTGGGACAC	5'-CGGATTCTCTGGGAGATTGAT
KLF6	5'-ATGCCCTTGACACCTTA	5'-GCTATGCCCTTCTTACA
MDA-5	5'-CCACAGTGCGAAGAAAGA	5'-CGGAGCCATAACGGGAAACA
MX1	5'-TAGCTCGTCTCTCTTATCC	5'-ACTGCTCTCACAGCTTAC
NFKBIA	5'-CCTGCTGTCCTGCTGTCTT	5'-GTGAGCTGTTAGGGAGAATA
OAS1	5'-CTGACTCTGCCCTTCTATG	5'-GGGCTGTTAGAATGTTATCTATG
OAS2	5'-TTCCTTTGTCAGTCTTCTATC	5'-GGGTTTTGCACTTCTGGATT
PRIC285	5'-TCAGAACACAGGAGGAAAC	5'-CACAGACACACATCCAG
PKR	5'-TGCAAGAAGCTATGGGAAGG	5'-AGCAGTGTCAAATGAAAGG
STAT1	5'-GATGGGTTCGAGCGACTTCT	5'-TGATGATAATATAGTTGCTGTA
TRAIL	5'-TCACACCTGTAAATCCCAAAC	5'-GATTCGCTGATCTACCCA
UBE2L6	5'-TCCACGGATGATGTCACAAT	5'-CAGGAACTGGCAATCTAACA
XAF1	5'-GCACGCTATGACATTTCTGAGG	5'-AAGCTAAACCGCCATTTTCTC
ZC3HAV1	5'-TCAGACAAACATAGCTTCCAA	5'-TCTGCTGACATACACT
ZNFX1	5'-CTGCACTTTGGGATGGA	5'-GGATCACACTTTGGGATGGA
The sequences of all primer pairs (forward and reverse) used in this study. Primers were designed using RealTimeDesign Software (http://www.biosearchtech.com/).
Supplementary Methods

Transfections with IRF3 5A and 5D. HeLa cells \((2 \times 10^5)\) were initially transfected with 100 ng IRF3 5A and 5D plasmids\(^{14}\). After 24h, cells were co-transfected with 120 pmol dsRNA \((80\) pmol specific and 40 pmol C\) using Lipofectamine-2000 (Invitrogen). RNA was isolated using TRIzol\(^\circledR\) (Invitrogen), and lysates were prepared using RIPA buffer. Protein concentrations were determined by Bradford assays.

Radiolabeling Fluc mRNA. Capped or uncapped Fluc mRNA \((1–10\) pmol\) was treated with alkaline phosphatase (CIP; NEB) for 1h at 37 \(^\circ\)C \((\text{total volume } 20\, \mu\text{l})\). RNA was extracted with phenol/chloroform, and precipitated with ethanol. After resuspending in water, the RNA was 5’ end-labeled in a total volume of 20 \(\mu\text{l}\) using \(\gamma^{32}\text{P}[\text{ATP}]\) and T4 polynucleotide kinase (NEB) \((37\, \text{C for } 1\)h\). Labeled RNAs were purified using a G-50 column and subsequently analyzed using denaturing polyacrylamide gels \((6\% \text{ (w/v))}\). DNA markers (Lambda HindIII/ΦX174 HaeIII) were used to determine the size of the labeled mRNA.
Supplementary references

1. Deblandre, G.A. et al. Expression Cloning of an Interferon-inducible 17-kDa Membrane Protein Implicated in the Control of Cell Growth. *J. Biol. Chem.* **270**, 23860-23866 (1995).

2. Terenzi, F., Hui, D.J., Merrick, W.C. & Sen, G.C. Distinct Induction Patterns and Functions of Two Closely Related Interferon-inducible Human Genes, ISG54 and ISG56. *J. Biol. Chem.* **281**, 34064-34071 (2006).

3. Lewis, F.N., Guenther, M. & Omar, B. The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): A novel, pleiotropic member of the C-X-C chemokine superfamily. *Cytokeine & growth factor reviews* **8**, 207-219 (1997).

4. Zhang, L. & Pagano, J.S. Review: Structure and Function of IRF-7. *Journal of Interferon & Cytokine Research* **22**, 95 (2002).

5. Veals, S.A. et al. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. *Mol. Cell. Biol.* **12**, 3315-3324 (1992).

6. Kang, D.-c. et al. mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. *Proceedings of the National Academy of Sciences of the United States of America* **99**, 637-642 (2002).

7. Kochs, G., Haener, M., Aebi, U. & Haller, O. Self-assembly of Human MxA GTPase into Highly Ordered Dynamin-like Oligomers. *J. Biol. Chem.* **277**, 14172-14176 (2002).

8. Hovnanian, A. et al. The Human 2',5'-Oligoadenylate Synthetase Locus Is Composed of Three Distinct Genes Clustered on Chromosome 12q24.2 Encoding the 100-, 69-, and 40-kDa Forms. *Genomics* **52**, 267-277 (1998).

9. Williams, B.R.G. PKR; a sentinel kinase for cellular stress. *Oncogene* **18**, 6112-6120 (1999).

10. Levy, D.E. & Darnell, J.E. STATs: transcriptional control and biological impact. *Nat Rev Mol Cell Biol* **3**, 651-662 (2002).

11. Kirshner, J.R., Karpova, A.Y., Kops, M. & Howley, P.M. Identification of TRAIL as an Interferon Regulatory Factor 3 Transcriptional Target. *J. Virol.* **79**, 9320-9324 (2005).

12. Leaman, D.W. et al. Identification of X-linked Inhibitor of Apoptosis-associated Factor-1 as an Interferon-stimulated Gene That Augments TRAIL Apo2L-induced Apoptosis. *J. Biol. Chem.* **277**, 28504-28511 (2002).

13. Thomas, P.D. et al. PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. *Genome Research* **13**, 2129-2141 (2003).

14. Lin, R., Heylbroeck, C., Pitha, P.M. & Hiscott, J. Virus-Dependent Phosphorylation of the IRF-3 Transcription Factor Regulates Nuclear Translocation, Transactivation Potential, and Proteasome-Mediated Degradation. *Mol. Cell. Biol.* **18**, 2986-2996 (1998).