Taxonomy of fungal complex causing red-skin root of *Panax ginseng* in China

Xiao H. Lu1,2, Xi M. Zhang1, Xue L. Jiao1, Jianjun J. Hao3, Xue S. Zhang1, Yi Luo1, Wei W. Gao1,∗

1Biotechnology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
2Department of Biological Control, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
3Department of Plant Science, School of Food and Agriculture, The University of Maine, Maine, USA

ABSTRACT

Background: Red-skin root of Asian ginseng (*Panax ginseng*) significantly reduces the quality and limits the production of ginseng in China. The disease has long been thought to be a noninfectious physiological disease, except one report that proved it was an infectious disease. However, the causal agents have not been successfully determined. In the present study, we were to reveal the pathogens that cause red-skin disease.

Methods: Ginseng roots with red-skin root symptoms were collected from commercial fields in Northeast China. Fungi were isolated from the lesion and identified based on morphological characters along with multilocus sequence analyses on internal transcription spacer (*β*-tubulin (*tub2*), histone H3 (*his3*)), and translation elongation factor 1α (*tef-1α*). Pathogens were confirmed by inoculating the isolates in ginseng roots.

Results: A total of 230 isolates were obtained from 209 disease samples. These isolates were classified into 12 species, including *Hypomyces henrici*, *Dactylonectria* sp., *Fusarium* acuminatum, *Fusarium torulosum*, *Ilyonectria mors-panacis*, *I. robusta*, *Rhexocercosporidium panacis*, and three novel species *I. changbaiensis*, *I. communis*, and *I. qitaiheensis*. Among them, *I. communis*, *I. robusta*, and *F. solani* had the highest isolation frequencies, being 36.1%, 20.9%, and 23.9%, respectively. All these species isolated were pathogenic to ginseng roots and caused red-skin root disease under appropriate condition.

Conclusion: Fungal complex is the causal agent of red-skin root in *P. ginseng*. © 2019 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Asian ginseng (*Panax ginseng*) is a perennial herb, mainly cultivated for pharmaceutical purpose in China and Korea [1,2]. Dry roots of ginseng have been used for more than 4000 years to stimulate metabolism, hence maintaining and improving health of human beings [1,2]. The value of roots is determined by their size, shape, and overall appearance [3]. Ginseng cultivation requires multiple years, and generally four- to six-year-old roots are harvested for sale. In such a long time of cultivation in the field, roots are vulnerable to many soilborne diseases [4]. Red-skin root is the most common and serious problem in Northeast China, which is a major ginseng production area [5–7]. Red-skin root can occur in all ages of ginseng, but disease severity is more in later growing years, particularly after the fourth year [8]. Disease incidence can be up to 80% in heavily occurring fields. Red-skin root symptom greatly reduces root marketability by up to 40% [9].

Red-skin root is usually characterized by less fibrous roots and reddish-brown to orangish-brown discolored lesions with irregular shapes and margins at the crown of the tap root or areas forming lateral roots, sometimes even whole roots in the fields with heavy diseases. Typically, the superficial lesion can be easily scraped off, resulting in the exposure of inner white healthy tissue. Since red-skin root was first described in the 1960s in China [10], most researchers have treated it as a noninfectious physiological disease due to lack or excess of mineral nutrition and soil pH or moisture; they distinguished it from rusty root diseases [3,10–13]. However, Shang et al [7] reported that healthy ginseng roots can be infected...
by red-skin roots in the field. Meanwhile, the abiotic factors, including soil humidity and temperature, and fertilizers were not determinants but only accelerate the disease development [7]. Unfortunately, the causal agents have not been determined by the authors. The limited knowledge of red-skin root hinders the development of effective management strategies.

Rusty root of American ginseng has symptoms similar to red-skin root and has been well documented [14]. Rusty root is characterized by small or quite large reddish-brown areas at the crown of the tap root that can be easily scraped off that exposes the inner white healthy tissue [14]. Rusty root is caused by weak pathogens including Cylindrocarpon destructans/Ilyonectria radicicola species complex [14]. In China, pathogens of ginseng Cylindrocarpon root rot, rusty root rot, or rust rot diseases are divided into highly virulent species such as C. destructans and C. panacis and less virulent species such as C. panacici and C. obtusisporum [9,16–18]. Furthermore, the taxon of D. destructans species complex has been classified into 12 novel species by morphological and multigene analysis [19]. In addition to Cylindrocarpon species, Fusarium species and Rhexocercosporidium panacis have been reported to be the causal agents of American ginseng rusty root [20–23].

Our preliminary data led us to speculate that Asian ginseng red-skin root disease was an infectious disease caused by weak pathogens. To prove this hypothesis, we were to 1) isolate potential pathogenic microorganisms from ginseng grown in Northeast China, 2) identify the pathogen complex using multilocus analysis and morphological characteristics, and 3) confirm the pathogenesis of the isolates.

2. Materials and methods

2.1. Isolates

Two hundred and nine fresh ginseng roots with red-skin root symptoms (Fig. 1) were collected from 13 commercial fields in 9 counties of Northeast China between June 2012 and September 2013. Ginseng roots were washed in running tap water and blotted to dry. Small pieces of red-skin tissue were surface disinfested with 0.62% NaClO for 3 min, rinsed with sterile distilled water, air-dried, and cut into about 5-mm (in length) pieces. The tissue was placed on potato dextrose agar (PDA) amended with 100 μg/ml of chloramphenicol and 100 μg/ml of tetracycline [24]. Plates were incubated at 25°C for up to 2 weeks. Single spores or single hyphal tips were transferred to PDA plates for later use. All isolates were stored at ~80°C. Representative isolates were deposited in China General Microbiological Culture Collection Center (CGMCC, link: http://www.cgmcc.net/), Beijing, China.

2.2. Morphological observation

Fungal isolates were grown at 22°C on PDA and oatmeal agar in the dark for 2 weeks before observation. Culture characteristics, including texture, density, color, growth front, transparency, and zonation, were visually examined [25]. Colony colors observed from the surface and reverse, both top and back, were described using the color chart of Rayner [26].

Microscopic observation of morphology of fungal isolates was conducted using cultures grown on PDA and synthetic nutrient agar [27] under continuous n-UV light (400–315 nm). A Nikon Eclipse (D v4.50, Nikon, Tokyo) 80i light microscope equipped with a Digital Sight DS-L2 camera (Nikon, Tokyo) and NIS-Element software were used to capture digital images. For each isolate, at least 30 measurements were obtained for each structure. Measurements are given as minimum (lower limit of a 95% confidence interval), average, and maximum (upper limit of a 95% confidence interval). Based on morphology observation, Fusarium isolates were identified into genus level.

2.3. DNA extraction, polymerase chain reaction amplification, DNA sequencing, and multigene phylogenies

For each isolate, total genomic DNA was isolated from mycelium harvested from the 7-day-old colony grown on PDA at 25°C, using the FastDNA Plant Kit (Biomed Co. Ltd, Beijing, China) and the Precellys 24 Technology homogenizer (Bertin Technology, France) according to the manufacturer’s instructions.

Partial gene sequences were obtained by using the following protocols. Primers pair ITS1 and ITS4 were used for partial internal transcription spacer (ITS) [28], CYLH3F and CYLH3R for partial his3 [29], EF1 and EF2 for partial tef-1a [30], and BT3 (CCCCGATTCTACCCCGC) and BT4 (CTGACCGAAGACGATTGTGTC) for partial tub2 designed in this study. Sequences of polymerase chain reaction amplicons were assembled and edited with Chromas 1.5 (Technology Pty Ltd, Queensland, Australia) and DNAMAN 6.0 (Lynnon BioSoft, Quebec, Canada). Newly obtained sequences were deposited in GenBank (Table 1). Sequence alignments were generated using MAFFT, version 7 (Katoh & Standley 2013, Japan). For Fusarium isolates, only partial sequences of the tef-1a gene were amplified and blasted on the GenBank database for identification.

The most suitable substitution model was determined based on jModelTest [31]. Maximum likelihood (ML) analyses including 500 bootstrap replicates were run using RAxML BlackBox web server (Gamma model of rate heterogeneity) [32]. Bayesian analyses were performed using MrBayes, version 3.1.2 [33]. A Markov chain Monte Carlo algorithm of four chains was initiated in parallel from a
Species	Isolate no.	Substrate	Locality	Collector	GenBank accession no.
Campylocarpon fasciculare	CBS 112613	Vitis vinifera	South Africa	F. Halleen	AY677301 AY677221 JF735502 JF735691
C. pseudofasciculare	CBS 112679	Vitis vinifera	South Africa	F. Halleen	AY677306 AY677214 JF735503 JF735692
Cylindrocarpon -like isolates used in the phylogenetic analyses.					
C. album	CBS 110655	Soil	The Netherlands	F. X. Prenafeta-Boldú	JF735695 JF735696 JF735697 JF735698
C. alicantinum	CBS 139518	Eriobotrya japonica	Spain	J. Armengol	KP456014 KP456015 KP456016 KP456017
C. alicantinum	CY-8	Eriobotrya japonica	Spain	J. Armengol	KP456015 KP456016 KP456017 KP456018
C. huberensis	CBS 124071	Vitis vinifera	Portugal	C. Rego	JF735303 JF735431 JF735579 JF735686
C. huberensis	CBS 129.97	Soil	The Netherlands	J. T. Poll	AY677273 AY677266 JF735577 JF735578
Dactylonectria alicacerensis	CBS129087	Vitis vinifera	Portugal	C. Rego, H. Oliveira	AM419110 AM419111 AM419112 AM419113
D. alcacerensis	CBS 112615	Vitis vinifera	South Africa	F. Halleen	JF735647 JF735648 JF735649 JF735650
D. novozelandica	CBS 112608	Vitis vinifera	South Africa	F. Halleen	JF735633 JF735634 JF735635 JF735636
D. pinicola	CBS 129086	Vitis vinifera	Portugal	C. Rego	JF735432 JF735433 JF735434 JF735435
D. torresensis	CBS 124072	Vitis vinifera	Portugal	C. Rego	JF735640 JF735641 JF735642 JF735643
Dactylonectria sp.	CCMM 3.18786 – J711	Panax ginseng	China	X. H. Lu	MF350479 MF350480 MF350481 MF350482
Dactylonectria sp.	YJ12	Panax ginseng	China	X. H. Lu	MF350480 MF350481 MF350482 MF350483
I. communis	CBS 322816	Protea sp.	South Africa	C. M. Bezuidenhout	JF735456 JF735457 JF735458 JF735459
I. communis	CCMM 3.18789 – 4404	Panax ginseng	China	X. H. Lu	MF350464 MF350465 MF350466 MF350467
I. communis	7282	Panax ginseng	China	X. H. Lu	MF350465 MF350466 MF350467 MF350468
I. communis	1188	Panax ginseng	China	X. H. Lu	MF350466 MF350467 MF350468 MF350469
I. communis	1506	Panax ginseng	China	X. H. Lu	MF350467 MF350468 MF350469 MF350470
I. communis	1803	Panax ginseng	China	X. H. Lu	MF350468 MF350469 MF350470 MF350471
I. communis	306	Panax ginseng	China	X. H. Lu	MF350469 MF350470 MF350471 MF350472
I. communis	320	Panax ginseng	China	X. H. Lu	MF350470 MF350471 MF350472 MF350473
I. communis	3510	Panax ginseng	China	X. H. Lu	MF350471 MF350472 MF350473 MF350474
I. communis	CCMM 3.18788 – 1512	Panax ginseng	China	X. H. Lu	MF350472 MF350473 MF350474 MF350475
I. communis	J410	Panax ginseng	China	X. H. Lu	MF350473 MF350474 MF350475 MF350476
I. communis	J710	Panax ginseng	China	X. H. Lu	MF350474 MF350475 MF350476 MF350477
I. communis	J305	Panax ginseng	China	X. H. Lu	MF350475 MF350476 MF350477 MF350478
I. communis	H207	Panax ginseng	China	X. H. Lu	MF350476 MF350477 MF350478 MF350479
I. communis	J101	Panax ginseng	China	X. H. Lu	MF350477 MF350478 MF350479 MF350480
I. communis	J301	Panax ginseng	China	X. H. Lu	MF350478 MF350479 MF350480 MF350481
I. communis	J502	Panax ginseng	China	X. H. Lu	MF350479 MF350480 MF350481 MF350482
I. communis	J712	Panax ginseng	China	X. H. Lu	MF350480 MF350481 MF350482 MF350483
I. communis	J305	Panax ginseng	China	X. H. Lu	MF350481 MF350482 MF350483 MF350484
I. communis	J305	Panax ginseng	China	X. H. Lu	MF350482 MF350483 MF350484 MF350485
I. communis	J305	Panax ginseng	China	X. H. Lu	MF350483 MF350484 MF350485 MF350486
I. communis	J305	Panax ginseng	China	X. H. Lu	MF350484 MF350485 MF350486 MF350487
I. communis	J305	Panax ginseng	China	X. H. Lu	MF350485 MF350486 MF350487 MF350488
I. communis	J305	Panax ginseng	China	X. H. Lu	MF350486 MF350487 MF350488 MF350489
Species	CBS Number	Location/Origin	Accession Numbers		
--------------	------------	--------------------------------	-----------------------------------		
I. leucospermi CBS 132809	Leucospermum sp. South Africa	Zhuang, Y. Nong	JX231161, JX231113, JX231145, JX231129		
I. leucospermi CBS 132810	Protea sp. South Africa	C. M. Bezuidenhout	JX231162, JX231114, JX231146, JX231130		
I. liligena CBS 189.49	Lilium regale The Netherlands	M. A. A. Schippers	JF735297, JF735425, JF735573, JF735762		
I. liligena CBS 732.74	Lilium sp. The Netherlands	G. J. Bollen	JF735298, JF735426, JF735574, JF735763		
I. liriodendri CBS 110.81	Liriodendron tulipifera USA	J.D. MacDonald, E.E. Butler	DQ178163, DQ178170, JF735507, JF735696		
I. liriodendri CBS 117526	Vitis vinifera Portugal	C. Rego	JF735296, JF735423, JF735570, JF735759		
I. liliigena CBS 306.35	Panax quinquefolium Canada	A. A. Hildebrand	JF735288, JF735414, JF735557, JF735746		
I. panacis CBS 1189	Panax ginseng China	Y. Myazawa	JF735290, JF735416, JF735559, JF735748		
I. protearum CBS 132811	Protea sp. South Africa	C. M. Bezuidenhout	JX231157, JX231109, JX231141, JX231125		
I. protearum CBS 132812	Protea sp. South Africa	C. M. Bezuidenhout	JX231165, JX231117, JX231149, JX231133		
I. pseudodestructans CBS 129081	Vitis vinifera Portugal	C. Rego	AJ753330, AM419091, JF735563, JF735752		
I. pseudodestructans CBS 117824	Quercus sp. Austria	E. Halmschlager	JF735292, JF735419, JF735562, JF735751		
I. qitaiheensis CGMCC 3.18787 – H309	Panax ginseng China	X. H. Lu	MF350472, MF350418, MF350445, MF350499		
I. robusta CBS 308.35	Panax quinquefolium Canada	A. A. Hildebrand	JF735264, JF735377, JF735518, JF735707		
I. robusta CBS 129084	Vitis vinifera Portugal	N. Cruz	JF735273, JF735391, JF735532, JF735721		
I. robusta J906	Panax ginseng China	X. H. Lu	KM015300, KM015297, KM015299, KM015298		
I. rufa CBS 153.37	Sand dune France	F. Moreau	AY677271, AY677251, JF735540, JF735729		
I. rufa CBS 640.77	Abies alba France	F. Gourbière	JF735277, JF735399, JF735542, JF735731		
I. strelitziae CBS 142253	Strelitzia reginae Italy	D. Aiello	KY304649, KY304753, KY304621, KY304727		
I. strelitziae CBS 142254	S. reginae Italy	D. Aiello	KY304651, KY304757, KY304623, KY304729		
I. venezuelensis CBS 102032	Bark Venezuela	A. Y. Rossman	AM419095, AY677255, JF735571, JF735760		
I. vredenhoekensis CBS 132807	Protea sp. South Africa	C. M. Bezuidenhout	JX231155, JX231107, JX231139, JX231123		
I. vredenhoekensis CBS 132808	Protea sp. South Africa	C. M. Bezuidenhout	JX231159, JX231111, JX231143, JX231127		

Epi-type and ex-type isolates indicated in **bold**. Sequences generated in this study indicated in *italics*

1) CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CGMCC: China General Microbiological Culture Collection Center, Beijing, China.

2) ITS: the internal transcribed spacer region and intervening 5.8S nrRNA; tub2: β-tubulin; his3: histone H3; tef1-α: translation elongation factor 1-alpha.
random tree topology with a heating parameter set at 0.2. The Markov chain Monte Carlo analyses lasted until the average standard deviation of split frequencies were below 0.01. The sample frequency was set to 100, and the first 25% of trees were removed as burn-in. *Campyllocarpon fasciculare* and *C. pseudofasciculare* were designated as the outgroup for all analyses. The resulting trees were obtained using FigTree, version 1.4.2, (Andrew Rambaut, UK) and annotated using Adobe Illustrator CS5.

2.4. Pathogenicity

Pathogenicity test was carried out on detached ginseng roots *in vitro* and also roots growing in potting soil inoculated with randomly selected isolates from each species. For test *in vitro*, fresh 3-year-old roots were dug from fields and gently washed with tap water, and roots with blemishes were discarded. Healthy roots were surface sterilized as described previously and placed on moist filter paper in an enamel tray. Mycelial plugs (5 mm in a diameter) cut from the margin of actively growing colonies were placed on ginseng roots with the mycelial side facing down to roots that had either a premade hole or not, about 2 to 4 plugs per root, and four replicated roots were inoculated for each isolate with noncolonized agar plugs as control. The tray was sealed with plastic film to prevent desiccation and incubated in the dark at 20 ± 1 °C. After 10 days of inoculation, pathogens were isolated from every root with symptomatic lesions and mock-inoculated control roots as described previously to confirm the inoculated isolates. For test in greenhouse, healthy, fresh, 2-year-old roots were obtained as described previously and planted in pots (2.5 L) with sterilized soil. Three ginseng plants were kept in each pot. Conidia suspensions were made by flooding actively sporulating cultures on PDA plates with sterile distilled water and filtering with sterilized lens-wiping paper to remove mycelia. Conidia concentrations were measured and adjusted to 1 × 10⁵ conidia/mL using a hemocytometer. Then, 10 μL of the suspension was drenched to one pot, and four pots were inoculated for each isolate. Sterile distilled water was used to drench control plants. The pots were maintained in greenhouse under 75% shade cloth. After 85 days, all roots were dug out and gently washed with tap water. Then, disease symptoms were observed, and pathogens were reisolated from roots with symptomatic lesions and also mock-inoculated control roots to confirm pathogen isolates.

3. Results

3.1. Isolation and identification

In total, 230 fungal isolates were obtained from ginseng roots with typical red-skin root symptoms (Fig. 1 and Table 2). In most cases, one species was isolated per lesion, but there were 21 isolations from which more than one species were obtained from a single lesion. Based on colony morphology and conidial characteristics, 74 isolates were preliminarily identified as *Fusarium* species, 151 isolates were *Cylindrocarpon*-like species (Figs. 2–5). The other 5 isolates had been described as *Rhoxecercospordium panacis* previously [34]. For *Fusarium* isolates, 4 were classified as *F. acuminatum*, 7 were *F. avenaceum*, 55 were *F. solani*, and 8 were *F. torulosum*, based on partial DNA sequences of tef1-α. For Cylindrocarpon-like isolates, 7 species were identified, including *Dactylonectria hordeicola*, *Dactylonectria sp.*, *I. mors-panacis*, *I. robusta*, *I. changbaiensis*, *I. communis* and *I. qitaiheensis*.

3.2. Phylogenetic analysis of Cylindrocarpon-like isolates

Polymerase chain reaction amplicons of approximately 450 bases for *tub2* and *his3*, 500 bases for ITS, and 800 bases for tef1-α were DNA-sequenced and analyzed for phylogenetic clustering. From the 7 species, 250 bases for *tub2*, 500 bases for *his3*, 800 bases for ITS, and 800 bases for tef1-α were sequenced. Cylindrocarpon-like isolates will be published in a separate paper.

Table 2

Location (county, city, province)	Number of *Dactylonectria*	Number of *Fusarium*	Number of *Cylindrocarpon*-like species	Total
Tonghe, Harbin, Heilongjiang	1	7	24	32
Benxi, Tiehe, Huludongjiang	2	1	5	8
Qinghe, Dahei, Heilongjiang	1	10	10	21
Qinghe, Dahei, Heilongjiang	3	1	11	15
Jilin, Jilin, Jilin	1	1	3	5
Antu, Yanbian, Jilin	1	1	2	4
Hunchun, Yanbian, Jilin	2	1	2	5
Yanbian, Jilin, Jilin	1	1	4	6
Jiaohe, Jilin, Jilin	1	1	2	4
Chongjin, Jilin, Jilin	1	1	5	7
Total	209	1	48	250

3.3. Number of fungal isolates recovered from Panax ginseng with red-skin disease symptoms in Northeastern China.
Fig. 2. Phylogenetic tree of Cylindrocarpon-like isolates based on the analysis of combined 4 genes. Branches with BS ≥ 100% and PP ≥ 1.00 are thickened and in red. Branches with BS ≥ 80% and PP ≥ 0.95 are thickened and in green. The phylogram is rooted with Campylocarpon fasciculare (CBS 112613) and C. pseudofasciculare (CBS 112679).
were obtained for 22 isolates sequenced. The combined alignment of the ITS, tub2, his3 and tef1-α had a total length of 1894 characters including alignment gaps (520 for ITS, 454 for tub2, 449 for his3, and 471 for tef1-α). An analysis by jModelTest proposed the best model TIM2+I+G. ML analysis resulted in a single best ML tree with likelihood \(=-13331.071129\) by using RAxML. Bayesian analysis lasted 330000 generations, and the consensus tree was calculated from 4689 trees left after 250 trees were discarded as burn-in.

The phylogenetic tree based on the combined analysis of four loci (Fig. 2) classified the 82 taxa into 39 species, fulfilling the requirements of genealogical concordance phylogenetic species recognition [35]. All the Cylindrocarpon-like isolates obtained from P. ginseng were grouped into seven highly supported clades (with maximum likelihood bootstrap (ML-BS) of 100% and bayesian inference posterior probabilities (BI-PP) 1.0). Three of the clades, I. robusta, I. mors-panacis, and D. hordeicola, have been described previously. The other four clades represent three novel Ilyonectria species, including I. communis, I. changbaiensis, and I. qitaiheensis, and one novel Dactylonectria species.

Phylogenetic analyses were also conducted on the individual locus and yielded trees with similar topology, but with rearrangement in the order of some clades. Of all loci used, ITS is the least informative region. The trees of both his3 and tub2 could separate all the species, but some clades had lower supporting values than those of the combined tree. Tree of tef1-α could resolve all species except I. communis and I. robusta, which were divided into two separate groups. The alignments and phylogenetic trees were deposited in TreeBASE (S23012).

Fig. 3. Morphological characters of Ilyonectria changbaiensis (CGMCC 3.18789). (A–C) Macroconidia and microconidia. (D and E) Conidiophores. (F) Chlamydospores. Bar = 10 μm.

Fig. 4. Morphological characters of Ilyonectria communis (CGMCC 3.18788). (A–C) Microconidia and macroconidia. (D and E) Chlamydospores. (F and H) Conidiophores. Bar = 10 μm.
3.3. Taxonomy

The morphological characteristics well supported by phylogenetic analyses revealed that isolates 3S07, 11R9, and J906 were *D. hordeicola*, *I. mors-panacis*, and *I. robusta*, respectively. Based on the phylogenetic and morphological data, three novel taxa in the genera *Ilyonectria* are named in this study, and one new species in *Dactylonectria* will be treated separately.

Ilyonectria changbaiensis X. Lu & W. Gao, sp. nov. MycoBank MB823893.

Etymology: Named after the county of Changbai, Jilin Province, China, where the isolates were collected.

Diagnosis: *Ilyonectria changbaiensis* can be distinguished from the phylogenetically closely related *I. communis*, *I. crassa*, *I. panacis*, *I. pseudodestructans*, and *I. rufa* in shorter and thicker 3-septate macroconidia.

Type: China: Jilin Province, Baishan, Changbai, on roots of *Panax ginseng*, Oct 2012, X. Lu (CGMCC 3.18789 = 4404 - holotype).

Description: Conidiophores simple or complex. Simple conidiophores arising laterally or terminally from aerial mycelium, solitary, dichotomously branched or unbranched or commonly branched with up to three phialides, 0- to 3-septate, 46- to 72-μm long, phialides monophialidic, cylindrical, tapering toward the apex, 16- to 62-μm long, 2.5- to 3.5-μm wide at base, 5 μm at the widest point, 1.5–2.5 μm near the aperture. Complex conidiophores aggregated in small sporodochia, repeatedly and irregularly branched, phialides more or less cylindrical, tapering toward the apex, 16- to 33-μm long, 2 to 3-μm wide at the base, 1.5–2.5 μm wide at the apex. *Macroconidia* formed on both types of conidiophores, 1- to 3-septate, straight, cylindrical with both ends more or less broadly rounded, mostly without a visible hilum; 1-septate, (16.0–)22.8–23.4–23.9(-33.0) × (4.0–)6.2–6.3–6.5(-8.0) μm, with a length:width ratio of 2.4–5.2; 2-septate, (22.0–)27.7–28.3–28.9(-36.0) × (5.0–)6.6–6.8–6.9(-8.0) μm, with a length:width ratio of 3.1–5.0; 3-septate, (25.0–)30.7–31.5(-38.0) × (6.0–)6.7–6.9–7.0(-8.0) μm, with a length:width ratio of 3.3–5.4. *Microconidia* 0- to 1-septate, more or less straight, with a laterally displaced hilum; aseptate microconidia globose to subglobose, (4.0–)7.4–7.7–8.1(-12.0) × (3.0–)3.8–3.9–4.0(-5.0) μm, with a length:width ratio of 1.3–3.3; one-septate microconidia ellipsoidal to ovoid, (9.0–)11.7–12.0–12.4(-16.0) × (3.0–)4.1–4.2–4.3(-5.0) μm, with a length:width ratio of 2.0–4.0. *Chlamydospores* globose to subglobose to ellipsoidal, 7–16 × 7–14 μm, smooth but often appearing rough due to deposits, thick-walled, terminal or intercalary, in chains or in clumps, hyaline, becoming medium brown, and formed abundantly in mature colonies. Sexual state not observed.

Culture characteristics: Mycelium felty with strong density. Surface on PDA was golden red, zonation was absent, and reverse was dark brown to yellow brown. Colony diameter was 51–61 mm at 22°C after 7 days. Hardly grew at 4°C and 30°C (no more than 3 mm colony diameter after 7 days).

Additional culture examined: China, Jilin Province, Baishan, Changbai, on roots of *Panax ginseng*, Oct 2012, X. Lu (320 &72R2).
Ilyonectria communis X. Lu & W. Gao, sp. nov.

MycoBank MB823894.

(Fig. 4)

Etymology: “communis” = Latin for “common”. The name is given because this is the commonest *Ilyonectria* species causing *Panax ginseng* red-skinned root disease in Northeast China.

Diagnosis: *Ilyonectria communis* can be distinguished from the phylogenetically closely related *I. crassa*, *I. pseudodestructans*, *I. rufa*, and *I. panacis*, with the former having more phialides of a simple conidiophore and thicker 3-septate macroconidia[19]. Two or three phialides of a simple conidiophore arising laterally or terminally from aerial mycelium, solitary, unbranched or frequently branched with up to four phialides, 0- to 3-septate, phialides more or less cylindrical, tapering toward the apex, 18- to 32-μm long, 2.1- to 3.3-μm wide at base, 5 μm at the widest point, 1.4- to 2.3 μm near the aperture. Complex conidiophores aggregated in small sporodochia, repeatedly and irregularly branched, phialides more or less cylindrical, tapering toward the apex, 15- to 40-μm long, 1.8- to 3.0-μm wide at base, 4.0 μm at the widest point, 1.2- to 2.2 μm near the aperture. Complex conidiophores aggregated in small sporodochia, repeatedly and irregularly branched, phialides more or less cylindrical, tapering toward the apex. *Macroconidia* formed on both types of conidiophores, 1- to 3-septate, straight or mostly minutely curved with the tip end, cylindrical or sometime typically minutely widening toward the tip, mostly with a visible hilum; 1-septate, (21.0-)21.8-23.9-35.2-34.0 μm, with a length:width ratio of 3.6-4.9; 2-septate, (210-279-289-29.9-370) μm, with a length:width ratio of 4.3-5.7; 3-septate, (220-)293.3-30.7-32.0(-44.0) μm, with a length:width ratio of 4.4-5.8. *Microconidia* 0- to 1-septate, globose to ellipsoidal to subcylindrical, more or less straight, mostly with a visible hilum; 1-septate, (130-)233-23.9-24.3-34.0 μm, with a length:width ratio of 3.3-4.2; 2-septate, (20.0-)28.9-29.4-29.8-38.0 μm, with a length:width ratio of 4.0-5.0; 3-septate, (230.0-298.3-30.3-30.8-42.0) μm, with a length:width ratio of 4.0-5.0. *Microconidia* 0- to 1-septate, ellipsoidal to ovoid to subcylindrical, more or less straight, without a visible hilum; 1-septate microconidia, (5.0-)8.7-8.9-9.1(-13.0) μm, with a length:width ratio of 1.7-2.5; one-septate microconidia, (6.0-)12.3-12.6-12.8(-18.0) μm, with a length:width ratio of 2.3-3.2. *Chlamydospores* globose to subglobose to ellipsoidal, 6-25×6-15 μm, smooth but often appearing rough due to deposits, thick-walled, terminal or intercalary, in chains or in clumps, and also in the cells of the macroconidia, becoming medium brown, and formed abundantly in mature colonies. Sexual state not observed.

Culture characteristics: Mycelium felty with average density and sparse mycelium. Surface on PDA was gray yellow, and that on reverse was gray brown to dark golden. Colony diameter was 52-60 mm at 22°C after 7 days. Hardly grew at 4°C and 30°C (no more than 2 mm colony diameter after 7 days).

Additional culture examined: China, Jilin Province, Baishan, Changbai, on roots of *Panax ginseng*, Oct 2012, X. Lu (J1R2, H207, J101, 314-2 & J710).

Notes: *Ilyonectria communis* differs from the phylogenetically closely related *I. crassa*, *I. pseudodestructans*, *I. rufa*, and *I. panacis* with respect to the number of phialides of a simple conidiophore and the diameter of 3-septate macroconidia[19]. Two or three phialides of a simple conidiophore are common for *I. communis*, but conidiophores are unbranched or sparsely branched, up to two phialides for *I. crassa*, *I. pseudodestructans*, *I. rufa*, and *I. panacis* [19]. The average thickness of the 3-septate macroconidia of *I. communis* (av. = 30.3 × 6.9 μm) was more than the average thickness of those of *I. crassa* (av. = 35.1 × 5.7 μm), *I. pseudodestructans* (av. = 35.2 × 6.0 μm), *I. rufa* (av. = 29.9 × 5.7 μm), and *I. panacis* (av. = 33.1 × 5.6 μm) [36].

Ilyonectria qitaiheensis X. Lu & W. Gao, sp. nov.

MycoBank MB823895

(Fig. 5)

Etymology: Named after the city of Qitaihe, Heilongjiang Province, China, where it was collected.

Diagnosis: *Ilyonectria qitaiheensis* can be distinguished from the phylogenetically closely related *I. liliigena* and *I. gamsii* in macroconidia mostly minutely curved with the tip end.

Type: China: Heilongjiang Province, Qitaihe, Qiezihe, on roots of *Panax ginseng*, Oct 2013, X. Lu (CGMC 3.18787 = H309 - holotype).

Description: Conidiophores simple or complex. Simple conidiophores arising laterally or terminally from aerial mycelium, solitary, unbranched or sparsely branched with up to two phialides, 0- to 3-septate, 46- to 132-μm long, phialides monophialidic, cylindrical, tapering toward the apex, 15- to 40-μm long, 1.8- to 3.0-μm wide at base, 4.0 μm at the widest point, 1.2- to 2.2 μm near the aperture. Complex conidiophores aggregated in small sporodochia, repeatedly and irregularly branched, phialides more or less cylindrical, tapering toward the apex. Macroconidia formed on both types of conidiophores, 1- to 3-septate, straight or mostly minutely curved with the tip end, cylindrical or sometime typically minutely widening toward the tip, mostly with a visible hilum; 1-septate, (15.0-)21.8-22.8-23.9(-34.0) μm, with a length:width ratio of 2.3-4.0; 2-septate, (210.0-279.9-289.2-29.9(-370) μm, with a length:width ratio of 3.6-4.9; 2-septate, (210.0-279.9-289.2-29.9(-370) μm, with a length:width ratio of 4.3-5.7; 3-septate, (220.0-293.3-30.7-32.0(-44.0) μm, with a length:width ratio of 4.4-5.8. *Microconidia* 0- to 1-septate, globose to ellipsoidal to subcylindrical, more or less straight, mostly with a visible hilum; aseptate microconidia, (3.0-)79.8-8.8(-12.0) μm, with a length:width ratio of 1.0-3.7; one-septate microconidia, (9.0-)10.5-11.1-11.6(-14.0) μm, with a length:width ratio of 2.5-3.3. *Chlamydospores* globose to subglobose to ellipsoidal, 8-14×7-20 μm, smooth but often appearing rough due to deposits, thick-walled, terminal or intercalary, in chains or in clumps, becoming medium brown, and formed abundantly in mature colonies. Sexual state not observed.

Culture characteristics: Mycelium felty with average density and sparse mycelium. Surface on PDA was gray yellow, and that on reverse was gray brown to dark golden. Colony diameter was 52-60 mm at 22°C after 7 days. Hardly grew at 4°C and 30°C (no more than 2 mm colony diameter after 7 days).

Additional culture examined: China, Jilin Province, Baishan, Changbai, on roots of *Panax ginseng*, Oct 2012, X. Lu (J19). Notes: *Ilyonectria qitaiheensis* differs from the phylogenetically closely related *I. liliigena* and *I. gamsii* with respect to macroconidia mostly minutely curved with the tip end [19].

3.4. Pathogenicity

For test in vitro, all the isolates tested in *Ilyonectria*, *Dactylonectria*, and *Fusarium* were pathogenic to ginseng roots (Fig. 6). For most isolates inoculated on punctured roots, rot lesions were restricted around the point of inoculation without expansion, and around root lesions, red-skin root symptoms showed. For most isolates on nonpunctured roots, only red-skin root symptoms were observed and the disease lesions were superficial and solid. For the isolates in *F. avenaceum* (Fig. 6I) and *F. torulosum* (Fig. 6K), soft rot symptoms expanded clearly and deep into the cortex. For test in whole plant, all the isolates tested were pathogenic to cause red-skin roots (Fig. 7). Roots infected by *I. mors-panacis* showed larger disease lesions and less lateral roots than roots infected by other pathogens (Fig. 7E). Besides red-skin root symptoms, root infected
by *F. acuminatum* showed dry rot lesion on taproots (Fig. 7H). All isolates were recovered from symptomatic roots and confirmed by analyzing DNA sequence of histone H3 gene separately. The mock-inoculated control roots remained symptomless, and no *Dactylo-nectria*, *Ilyonectria*, or *Fusarium* isolates were isolated. The inoculation experiments were repeated, and both trials showed the same results. Besides *Cylindrocarpon*-like species and *Fusarium* species, we have found that *R. panacis* is also a causal agent of red-skin root of ginseng in our previous report [34]. Among these species, *I. communis* (Fig. 6D), *I. robusta* (Fig. 6G), and *F. solani* (Fig. 6J) were the commonest species with isolation frequency of 36.1%, 20.9%, and 23.9%, respectively.

4. Discussion

By analyzing 230 fungal isolates, we have determined that Asian ginseng red-skin root disease was caused by a complex of fungi, which consisted of 12 species. These fungi are all weak pathogens, which only resulted in red-skin root symptoms under greenhouse condition. Even though ginseng roots were acupunctured before inoculation in vitro, the disease lesions were around the inoculated site without further expanding.

Root diseases of ginseng are mainly attributed to *Cylindrocarpon destructans* [14,37], the teleomorph of which is *Ilyonectria* spp. Most of them are soil inhabitants [19,36,38–41]. However, the limited number of *C. destructans* isolates from *Panax* spp. was deduced into *I. crassa*, *I. robusta*, *I. panacis*, and *I. mors-panacis* [19]. We have found that *Cylindrocarpon*-like isolates were the most frequent organisms causing root disease in ginseng, and they belonged to 7 species in 2 genera: *D. hordeicola, Dactylonectria* sp., *I. mors-panacis, I. robusta, I. changbaiensis, I. communis*, and *I. qitaiheensis*. *Dactyonectria hordeicola* was described as *Cylindrocarpon obtusisporum* previously [42], which caused rusty root rot disease of Asian ginseng in China and showed weak virulence [16]. As red-skin disease and rusty root rot disease of Asian ginseng in China had causal pathogens in common, we suggest treating red-skin disease as rusty root rot at early stage of Asian ginseng.

Ilyonectria robusta was isolated from *P. ginseng* for the first time recently in China but was widely distributed at a high frequency [43]. It has a broad host range, including herbaceous plants *Loroglossum hircinum* and *P. quinquefolium* and woody plants *Vitis vinifera*, *Prunus cerasus*, *Thymus* sp., *Quercus* spp., and *Tilia petiolaris* [19]. *Ramularia* *mors-panacis*, *Cylindrocarpon panacis*, and *Cylindrocarpon destructans* f. sp. *panacis* were the basionyms of *Ilyonectria mors-panacis* [19], and that was reported to be the strong pathogenic species causing root rot disease on *P. quinquefolium* and *P. ginseng* [44–46]. Similarly, the only one isolate of *I. mors-panacis* we obtained did show a higher virulence compared with other *Cylindrocarpon*-like species under greenhouse conditions.

Ilyonectria crassa and *I. panacis* have been isolated from American ginseng in Canada [19]. We did not find *I. crassa* and *I. panacis*, but their sister species *I. communis* was new and named.
Ilyonectria communis is characterized by branched conidiophores with up to four phialides, faster mycelial growth on PDA at 22°C in the dark and chlamydospores formed in the cells of microconidia, which can be clearly distinguished from the group I. pseudodestructans, I. crassa, I. rufa, and I. panacis. Ilyonectria changbaensis and I. qitaiheensis were named by the only county where the isolates were collected from. Ilyonectria changbaensis can be distinctly distinguished on frequently branched conidiophores with up to three phialides or wider 3-septate macroconidia, from the cluster I. qitaiheensis, I. gamsii, and I. liliigena. Ilyonectria qitaiheensis was characterized by faster mycelial growth on PDA at 22°C in the dark, longer 3-septate macroconidia and chlamydospores formed in the cells of microconidia. So far, the sister species I. gamsii and I. liliigena have not been isolated from Panax species [19]. Besides these Ilyonectria species, I. leucospermi was obtained from Korean ginseng roots recently [46], but we did not isolate I. leucospermi in this study.

Following Ilyonectria, Fusarium was the second most frequently isolated genus causing red-skin root disease on Asian ginseng. Among them, F. solani took 74.3% of the isolates. The rest of Fusarium...
isolate were F. acuminatum, F.avenaeum, and F. torulosum. Contrary to the fact, F. ceralis, F. redolens, and F. acuminatum have been reported to cause Asian ginseng root rot [47–49]. In this study, F.avenaeum and F. torulosum caused typical root rot symptoms on detached roots but caused red-skin symptoms after a growth season after inoculation under greenhouse condition. And, F. acuminatum caused both red-skin and root rot disease symptoms under greenhouse conditions. Probably, F. acuminatum, F.avenaeum, and F. torulosum could cause either red-skin disease or root rot depending on the environmental conditions. Similar results have been reported in L. mors-panaxis, which could cause root softening and also discoloration on Korean ginseng [46]. We suspect this may apply to other Cylindrocarpon-like species on Asian ginseng.

Among the Fusarium spp. causing red-skin root disease on Asian ginseng, F.avenaeum is also a causal agent of rooty rust in American ginseng, but F. acuminatum F. solani and F. torulosum did not cause disease on American ginseng [20,21]. Besides F.avenaeum, F. equiseti, F. sporotrichioides, and F. culmorum could infect American ginseng, and F. equiseti was a predominant pathogen causing discolored American ginseng roots [20,21]. These results suggested that the predominant Fusarium species causing root disease of Asian ginseng in China were distinctive from those on American ginseng in North America. Whether the cause of differences is attributed to host or geography remained to be confirmed in our ongoing work.

Besides Cylindrocarpon-like and Fusarium species, several other species were isolated from symptomatic ginseng roots, such as Plectosphaerella cucumerina, Phoma exigua, Mortierella sp., and Rhoxercosporidium panacis. However, only R. panacis caused red-skin root symptoms [34], and it is not clear whether these isolates were pathogens and how they contributed to the symptom development. The clarification that the red-skin root of Asian ginseng is an infectious disease caused by several weak pathogenic fungal species will help develop disease management strategies.

Conflicts of interest

The authors have no conflicts of interest to report.

Acknowledgments

This work was supported by projects funded by China Post-doctoral Science Foundation (2013M540065 & 2014T70051) and Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2016-I2M-1-012).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jigr.2019.01.006.

References

[1] Baranov A. Recent advances in our knowledge of the morphology, cultivation, and uses of ginseng (Panax ginseng C.A. Meyer). Econ Bot 1966;20:403–6.
[2] Hu SY. A contribution to our knowledge of ginseng. Ann J Chin Med 1977;5:12–23.
[3] Zhou Y, Yang Z, Gao L, Liu W, Liu R, Zhao J, You J. Changes in element accumulation, phenolic metabolism, and antioxidant enzymes activities in the red-skin roots of Panax ginseng. J Ginseng Res 2017;41:307–15.
[4] Yu YH, Ohh SH. Research on ginseng diseases in Korea. Korean J Ginseng Sci 1993;19:61–8.
[5] Zhao Y, Liu X, Hou Y. Biochemical changes in ginseng red coating root disease and comprehensive evaluation on the quality of disease roots. ACTA Phytopathol Sin 1997;27:175–9.
[6] Liu J, Zhao Y, Liu B. A study on the anatomical and morphological characteristics of the ginseng roots infected by the red root disease. ACTA Phytopathol Sin 1998;28:72.
[7] Shang Y, Chen Z, Si Y, Teng B. Research on the causes of red-skin disease of Panax ginseng. J Chinese Med Mater 1996;19:163–5.
[8] Zhao Y. Recent progress on diagnosis and integrated management of ginseng rooty disease in Northeast China. Spec Wild Econ Anim Plant Res 1998:41–6.
[9] Wang Q, Jin R, Yun L, Wang J, Jiang X, Ma D, Bai Y. Occurrence investigation and pathogen study on ginseng rooty root rot. J Liaoning For Sci Technol 2014;15–7.
[10] Wang Y. A preliminary study on cause of ginseng red skin disease in the second ginseng farm of Jinyu county. Spec Wild Econ Anim Plant Res 1996:52–5.
[11] Li Z, Guo S, Tian S, Liu Z. Study on the causes for ginseng red skin sickness occurred in albic bed soil. ACTA Pedol Sin 1997;34:328–35.
[12] Sun S, Li Y, Lu J, Jiao B, Jiang X. Soil geochemical characteristics with ginseng red skin sickness in Jinan city, Jinlin province. J Jinlin U 2010:40–42.
[13] Wang Y, Li Z, Sun Y, Guo S, Tian S, Liu Z. Studies on the genesis of ginseng rust spots. Korean J Ginseng Sci 1997;21:69–77.
[14] Farh MEA, Kim YJ, Kim YJ, Yang DC. Cylindrocarpon destructans/Ilyonectria radicola—species complex: causative agent of ginseng root rot disease and rusty symptoms. J Ginseng Res 2018;42:9–15.
[15] Lee C, Kim KY, Lee JE, Kim S, Ryu D, Choi JE, An G. Enzymes hydrolyzing structural components and ferrous ion cause rust-like symptom on ginseng (Panax ginseng). J Microbiol Biotechnol 2011;21:192–6.
[16] Yan X. The comparative biology studies of Cylindrocarpon on ginseng and American ginseng. In: Plant pathology. Shenyang, China: Shenyang Agricultural University; 2012.
[17] Sun J. The chemical induced resistant mechanism of Cylindrocarpon destructans of ginseng and molecular detection of Cylindrocarpon destructans. In: Pest and environment safety. China: Shenyang Agricultural University; 2013.
[18] Wang S, Zhang A, Chen X, Lei F, Xu Y, Zhang L. Pesticides screening against ginseng root rot rust. Agrochemicals 2011;50:449–51.
[19] Cabral A, Groenewald JZ, Rigo C, Oliveira H, Crous PW. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicola species complex. Mycol Prog 2012;11:855–88.
[20] Punja ZK, Wan A, Goswami RS, Verma N, Rahman M, Barasubhie T, Keifert KA, Lévêque CA. Diversity of Fusarium species associated with discolored ginseng roots in British Columbia. Can J Plant Pathol 2007;29:340–53.
[21] Punja ZK, Wan A, Rahman M. Role of Fusarium spp. in rust-like development of ginseng in British Columbia. Can J Plant Pathol 2005;27:474.
[22] Reelerde RD. Cylindrocarpon panacis sp. nov., a new anamorphic species causing rusted root of ginseng (Panax quinquefolius). Mycologia 2007;99:9–14.
[23] Reelerde RD, Brammall RA. Pathogenicity of Pythium species, Cylindrocarpon destructans, and Rhizoctonia solani to ginseng seedling in Ontario. Can J Plant Pathol 1994;16:311–6.
[24] Lu XH, Jiao XL, Hao J, Chen AJ, Gao WW. Characterization of resistance to multiple fungicides in Botrytis cineria populations from Asian ginseng in northeastern China. Eur J Plant Pathol 2016;144:467–76.
[25] Crous PW, Verkleij GM, Groenewald JZ, Samson RA. Fungal biodiversity. CBS Laboratory Manual Series 1. Utrecht: Centraalbureau voor Schimmelcultures; 2009.
[26] Rayner RW. A mycological colour chart. Great Britain: Commonwealth Mycological Institute; 1970.
[27] Nirenberg H. Untersuchung über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitt Biol Bundesanst Land Forstwirtsch 1976;169:1–117.
[28] White TJ, Bruns T, Lee S, Taylor L. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p. 315-22. In: Innis MA, Gelfand D, Sninsky J, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990.
[29] Crous PW, Groenewald JZ, Roodse JM, Simonneau P, Hywel-Jones NL. Calonectria species and their Cylindrocladium anamorphs: species with spore-opencupulate vesicles. Stud Mycol 2004:415–30.
[30] O'Donnell N, Kistler HC, Cigelnik E, Ploetz RC. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene geneologies. P Natl Acad Sci USA 1998;95:2044–9.
[31] Santorum JM, Darriba D, Taboada GL, Posada D. jmodeltest.org: selection of nucleotide substitution models on the cloud. Bioinformatics 2014;30:1310–1.
[32] Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 2008;75:758–71.
[33] Ronquist F, Huelsenbeck JP, MrBayes version 3.2. Bayesian phylogenetic inference under mixed models. Bioinformatics 2012;19:3752–4.
[34] Lu XH, Chen AJ, Zhang XS, Jiao XL, Gao WW. First report of Rhoxercosporidium panacis causing rusty root of Panax ginseng in Northeastern China. Plant Dis 2014;98:1580.
[35] Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser D. Phylogenetic species associated with discolored ginseng roots in British Columbia. Can J Plant Pathol 1994;16:311–6.
Chaverri P, Salgado C, Hirooka Y, Rossman AY, Samuels GJ. Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology 2011;68:57–78.

Aiello D, Guarnaccia V, Vitale A, Cirvilleri G, Granata G, Epifani F, Perrone G, Polizzi G, Groenewald JZ, Crous PW. Ilyonectria palmarum sp. nov. causing dry basal stem rot of Arecaceae. Eur J Plant Pathol 2014;138:347–59.

Lombard L, Bezuidenhout CM, Crous PW. Ilyonectria black foot rot associated with Proteaceae. Australas Plant Path 2013;42:337–49.

Aiello D, Polizzi G, Crous PW. Pleiocarpon gen. nov and a new species of Ilyonectria causing basal rot of Strelitzia reginae in Italy. IMA Fungus 2017;8:65–76.

Lombard L, van Der Merwe NA, Groenewald JZ, Crous PW. Lineages in Nectriaceae: Re-evaluating the generic status of Ilyonectria and allied genera. Phytopathol Mediterranea 2014;53:515–32.

Lu XH, Jiao XL, Chen AJ, Luo Y, Gao WW. First report of Ilyonectria robusta causing rusty root of Asian ginseng in China. Plant Dis 2015;99:156.

Seifert KA, McMullen CR, Yee D, Reeleder RD, Dobinson KF. Molecular differentiation and detection of ginseng-adapted isolates of the root rot fungus Cylindrocarpon destructans. Phytopathology 2003;93:1533–42.

Farh MEA, Han JA, Kim YJ, Kim JC, Singh P, Yang DC. Discovery of a new primer set for detection and quantification of Ilyonectria mors-panacis in soils for ginseng cultivation. J Ginseng Res 2017.

Farh MEA, Kim YJ, Singh P, Yang DC. Cross interaction between Ilyonectriamors-panacis isolates infecting korean ginseng and ginseng saponins in correlation with their pathogenicity. Phytopathology 2017;107:561–9.

Gao J, Wang Y, Guan YM, Chen CQ, Fusarium cerealis, a new pathogen causing ginseng (Panax ginseng) root rot in China. Plant Dis 2014;98:1433.

Guan YM, Lu BH, Wang Y, Gao J, Wu LJ. First report of root rot caused by Fusarium redolens on ginseng (Panax ginseng) in Jilin province of China. Plant Dis 2013;98:844.

Wang Y, Guan YM, Lu BH, Gao J. First report of ginseng (Panax ginseng) root rot caused by Fusarium acuminatum in China. Plant Dis 2015;100:525.