Supplementary material for Optimal gap-affine alignment in $O(s)$ space

Santiago Marco-Sola, Jordan M. Eizenga, Andrea Guarracino, Benedict Paten, Erik Garrison, and Miquel Moreto

1 Proof of the correctness lemma

In order to reason about the properties of the WFA dynamic programming structures, it is helpful to invoke certain properties of the Needleman-Wunsch dynamic programming matrices. Accordingly, we will provide the recursions here to introduce the notation.

\[
\begin{align*}
D_{i,j} &= \min\{M_{i-1,j} + o + e, D_{i-1,j} + e\} \\
I_{i,j} &= \min\{M_{i,j-1} + o + e, I_{i,j-1} + e\} \\
M_{i,j} &= \min\{I_{i,j}, D_{i,j}, M_{i-1,j-1} + x \cdot \mathbb{I}(q[i-1] \neq t[j-1])\} \quad (1)
\end{align*}
\]

where \mathbb{I} is the indicator function that evaluates to 1 if its argument is true and 0 otherwise. The base case of the recursion is $M_{0,0} = 0$. We also adopt the convention that $D_{0,j} = I_{i,0} = \infty$ for all i and j. An optimal alignment can be identified with a traceback path through these matrices: a sequence of cells that indicate which of the options from the recursion achieved the minimum score.

Before proving the correctness lemma, we prove two useful properties of the Needleman-Wunsch matrices.

Lemma 1. M is monotonically non-decreasing along each diagonal.

Proof. Choose integers i and j such that $0 \leq i < m$ and $0 \leq j < n$, and we will show that $M_{i,j} \leq M_{i+1,j+1}$, which is sufficient to prove the claim. $M_{i+1,j+1}$ corresponds to the score of an optimal alignment of $q_{0:i}$ and $t_{0:j}$. Any traceback path of this alignment must include a coordinate (i, y) with $y \leq j$ or (x, j) with $x \leq i$. Without loss of generality, assume that there is an optimal alignment path that includes (i, y), and choose y to be the maximal such value within this path. We consider two cases:

1. $y = j$. Then (i, j) is on the traceback path from $M_{i+1,j+1}$ and hence $M_{i,j} \leq M_{i+1,j+1}$.
2. $y < j$. Then there must be at least $j - y$ horizontal transitions on the traceback path following (i, y) for it to end in diagonal $i - j$. Moreover, since y is chosen to be maximal, $(i, y + 1)$ is not on the traceback path, and there must therefore be at least one gap opened after (i, y). This implies $M_{i+1,j+1} \geq M_{i,y} + o + (j - y)e$. We also have $M_{i,j} \leq M_{i,y} + o + (j - y)e$, since it is possible to reach (i, j) by taking $j - y$ horizontal transitions starting from (i, y).

\[\square\]

Lemma 2. D and I are monotonically non-decreasing along each diagonal, excluding the boundaries $D_{0, \cdot}$ and $I_{\cdot, 0}$.
Proof. The proofs for I and D are essentially identical, so we will prove the claim only for I. The argument will be proved by induction on decreasing values for the diagonal k. The base case $k = m - 1$ is trivially true because there is only one cell in I in this diagonal (excluding the boundary). Consider i and j such that $0 \leq i < m$ and $0 < j < n$, and assume that the induction hypothesis holds for all diagonals $k > i - j$. We will show that $I_{i,j} \leq I_{i+1,j+1}$, which is sufficient to prove the induction claim for $k = i - j$. Consider two cases.

1. $I_{i+1,j+1} = M_{i+1,j} + o + e$. Then, by Lemma 1, we have
 \[I_{i,j} \leq M_{i,j-1} + o + e \leq M_{i+1,j} + o + e = I_{i+1,j+1}. \] (2)

2. $I_{i+1,j+1} = I_{i+1,j} + e$. Then, by the induction hypothesis, we have
 \[I_{i,j} \leq I_{i,j-1} + e \leq I_{i+1,j} + e = I_{i+1,j+1}. \] (3)

We are now equipped to prove the central lemma that demonstrates correctness.

Lemma 2.1 (from main text). The optimal alignment score $s_{\text{opt}} \leq s$ if and only if there exist s_f, s_r, and k such that $|s_f - s_r| \leq p$ and at least one of the following is true:

1. $s_f + s_r = s$ and $\overrightarrow{M}_{k,s_f} \geq \overrightarrow{M}_{k,s_r}$
2. $s_f + s_r = s + o$ and $\overrightarrow{I}_{k,s_f} \geq \overrightarrow{I}_{k,s_r}$
3. $s_f + s_r = s + o$ and $\overrightarrow{D}_{k,s_f} \geq \overrightarrow{D}_{k,s_r}$

and further, $\overrightarrow{M}_{k,s_r}$ (resp. $\overrightarrow{I}_{k,s_r}$, $\overrightarrow{D}_{k,s_r}$) is included in the traceback of an alignment with score at most s if the first (resp. second, third) condition is true.

Proof. (\Rightarrow) Let (i,j) be a coordinate along some optimal traceback path where the dynamic programming value has the minimum difference from $s_{\text{opt}}/2$. If there are ties, choose the first among the coordinates that achieve the minimum. We consider three exhaustive cases. In each of them, our goal will be to produce the values s_f, s_r, and k as required by the claim.

1. **The path is in M at (i,j)**. Then the path up to (i,j) and the path after (i,j) correspond to partial alignments in the forward and reverse direction respectively, and their scores are $s_f = M_{i,j}$ and $s_r = s_{\text{opt}} - M_{i,j}$. Taking $k = i - j$, we know that the f.r. points in the k-th diagonal must be at least as far as this coordinate in their respective directions: $\overrightarrow{M}_{k,s_f} \geq i \geq \overrightarrow{M}_{k,s_r}$.

Because adjacent positions in an optimal traceback path can differ by at most p, we have both $|s_f - s_{\text{opt}}/2| \leq p/2$ and $|s_r - s_{\text{opt}}/2| \leq p/2$. These imply $|s_f - s_r| \leq p$ by the triangle inequality.

2. **The path is in I at (i,j) and not also in M at (i,j)**. Then (i,j) is part of a gap that begins at (i,j') for some $j' < j$ and ends at $(i,j' + \ell)$ where $j' + \ell > j$, else the path is also in M at (i,j). Consider the quantity $x = (s_{\text{opt}} - 2M_{i,j'})/2e$ across three cases.

2.1. $x \leq 1/2$. Let $s_f = M_{i,j'}$ and $s_r = s_{\text{opt}} - M_{i,j'} + o$. These correspond to the scores of the partial alignments before and after (i,j'), respectively. Therefore we take $k = i - j'$, and, as previously, the f.r. points within this diagonal must obey the inequality $\overrightarrow{M}_{k,s_f} \geq i \geq \overrightarrow{M}_{k,s_r}$.

Note that $M_{i,j'} \leq s_{\text{opt}}/2$ else $I_{i,j'}$ would not achieve the minimum difference from $s_{\text{opt}}/2$. This implies $x \geq 0$, and in particular $|x| \leq 1/2$. Therefore,

\[|s_f - s_r| = |s_{\text{opt}} - 2M_{i,j'} + o| \leq |o + 2ex| \leq o + 2e|x| \leq o + e \leq p. \] (4)
2.2. $1/2 < x < \ell - 1/2$. Let x^* be the nearest integer to x, and let $s_f = I_{i,j'} + x^*$ and $s_r = s_{opt} - I_{i,j'} + x^* + o$. These correspond to the scores of the partial alignments before and after $(i,j' + x^*)$, respectively. Therefore we take $k = i - j' - x^*$, and, as previously, the f.r. points within this diagonal must obey the inequality $\overrightarrow{I}_{k,s_f} \geq i \geq \overleftarrow{I}_{k,s_r}$.

Noting that $|x - x^*| \leq 1/2$ by construction, we also have

$$|s_f - s_r| = |s_{opt} - 2M_{i,j'} - 2x^*e| \leq 2e|x - x^*| \leq e \leq p.$$ \hfill (5)

2.3. $x \geq \ell - 1/2$. Let $s_f = I_{i,j'} + \ell$ and $s_r = s_{opt} - I_{i,j'} + \ell + o$. These correspond to the scores of the partial alignments before and after $(i,j' + \ell)$, respectively. Therefore we take $k = i - j' - \ell$, and, as previously, the f.r. points within this diagonal must obey the inequality $\overrightarrow{I}_{k,s_f} \geq i \geq \overleftarrow{I}_{k,s_r}$.

Noting that $s_{opt}/2 \leq I_{i,j'}$ else $j \geq j' + \ell$, and also that $I_{i,j'} + \ell = M_{i,j'} + o + \ell e$, we can obtain

$$s_{opt} \leq 2M_{i,j'} + 2o + 2\ell e$$

$$s_{opt} - M_{i,j'} - \ell e \leq M_{i,j'} + 2o + \ell e$$

$$s_r \leq s_f + o.$$ \hfill (6)

Since $x \geq \ell - 1/2$, we also have

$$s_{opt} - 2M_{i,j'} \geq (2\ell - 1)e$$

$$s_{opt} - M_{i,j'} - \ell e \geq M_{i,j'} + (\ell - 1)e$$

$$s_r \geq s_f - o - e.$$ \hfill (7)

These together imply $|s_f - s_r| \leq o + e \leq p$.

3. The path is in D at (i,j) and not also in M at (i,j). Same as the previous case.

(\Leftarrow) We consider the three conditions separately.

1. Let (i_1,j_1) be the coordinates in M corresponding to $\overrightarrow{M}_{k,s_f}$ and likewise (i_2,j_2) for $\overrightarrow{M}_{k,s_r}$. The partial alignments corresponding M_{i_2,j_2} and $\overrightarrow{M}_{k,s_r}$ can be concatenated into a full alignment with score $M_{i_2,j_2} + s_r$. By Lemma 1, this score is at most $M_{i_1,j_1} + s_r = s_f + s_r = s$.

2. Let (i_1,j_1) be the coordinates in I corresponding to $\overrightarrow{I}_{k,s_f}$ and likewise (i_2,j_2) for $\overrightarrow{I}_{k,s_r}$. The partial alignments corresponding I_{i_2,j_2} and $\overrightarrow{I}_{k,s_r}$ can be concatenated into a full alignment with score $I_{i_2,j_2} + s_r - o$. By Lemma 2, this score is at most $I_{i_1,j_1} + s_r - o = s_f + s_r - o = s$.

3. Same as the previous condition. \hfill \square
Complementary evaluation on simulated data (short sequences)

	Time (ms)	Memory (MB)																
	100 bp	1 Kbp	10 Kbp															
	0.1%	1%	5%	10%	20%	40%	0.1%	1%	5%	10%	20%	40%	0.1%	1%	5%	10%	20%	40%
edlib							115	116	117	120	123	126	99	102	103	122	144	179
bitpal							25	24	24	24	24	25	128	128	130	130	130	132
ksw2-ext2	127	128	148	163	174	176	887	890	897	908	912	917	1993	9821	9830	9897	9897	9853
WFA-high	5	5	29	60	125	237	1	73	207	547	1311	1311	128	128	128	128	128	128
WFA-med	7	7	43	113	288	626	1	15	219	688	2026	4802	2	91	1893	6627	20205	47362
WFA-low	7	7	42	132	345	752	1	17	260	830	2429	5744	2	110	2294	7957	24080	56184
wfalm	9	9	34	79	195	449	2	12	162	587	1730	4282	3	81	1797	6447	19181	45360
wfalm-low	11	11	50	128	328	746	3	18	286	943	2828	6793	4	130	2789	10099	30354	76382
wfalm-rec	9	9	91	163	455	1118	3	23	476	1706	5458	13730	4	236	6112	22254	70693	187436
BiWFA	10	10	48	97	188	339	3	19	120	391	937	2145	3	53	774	2446	6911	15764
BiWFA-score	11	11	50	92	165	278	2	12	73	196	438	939	3	26	337	1094	3138	7464

Table S1: Execution time (ms) and memory (MB) required per 1M bases aligned, using simulated sequences (100bp to 10Kbp).
Table S2: Execution time (s) and memory (MB) required per 1M bases aligned, using simulated sequences (100Kbp to 2Mbp).
4 Complementary evaluation on real data (shorter sequences)

Figure S1: Experimental results from the execution of BiWFA and other state-of-the-art implementations aligning sequences up to 10Kbps. Figure shows (A) memory consumption and (B) execution time per sequence aligned. A vertical line on each panel separates algorithms that use simpler penalty models or can only compute the alignment score (i.e., edlib and bitpal) from those that compute the full gap-affine alignment.