A model for rapid stochastic distortions of small-scale turbulence

By B. DUBRULLE, J.-P. LAVAL, S. NAZARENKO AND O. ZABORONSKI

1CNRS, URA 2464, GIT/SPEC/DRECAM/DSM, CEA Saclay 91191 Gif sur Yvette Cedex, France
2CNRS, UMR 8107, Laboratoire de Mécanique de Lille, Blv. Paul Langevin, 59655 Villeneuve d’Ascq Cedex, France
3Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

(Received 07 March 2003)

We present a model describing evolution of the small-scale Navier-Stokes turbulence due to its stochastic distortions by much larger turbulent scales. This study is motivated by numerical findings (Laval et al. (2001)) that such interactions of separated scales play an important role in turbulence intermittency. We introduce a description of turbulence in terms of the moments of the k-space quantities using a method previously developed for the kinematic dynamo problem (Nazarenko et al. (2003)). Working with the k-space moments allows to introduce new useful measures of intermittency such as the mean polarization and the spectral flatness. Our study of the 2D turbulence shows that the energy cascade is scale invariant and Gaussian whereas the enstrophy cascade is intermittent. In 3D, we show that the statistics of turbulence wavepackets deviates from gaussianity toward dominance of the plane polarizations. Such turbulence is formed by ellipsoids in the k-space centered at its origin and having one large, one neutral and one small axes with the velocity field pointing parallel to the smallest axis.

1. Introduction

Finding a good turbulence model is a long standing problem. To be useful in applications, the model has to be sufficiently simple and yet capable of capturing the basic physical processes such as the energy cascade and the intermittent bursts. The cascades appear to be a more robust property reasonably well described by classical turbulence closures such as the direct interaction approximation (DIA) (Kraichnan (1961)) and its derivatives (e.g. EDQNM Orszag (1966)). The turbulence intermittency appears to be a more subtle process which depends on the detailed features of the dynamical fluid structures. Of particular importance is the question whether the intermittent bursts are caused by finite-time vorticity “blow-ups” (believed to become real singularities in the limit of zero viscosity) or a “slower” exponential vortex stretching by a large-scale strain collectively produced by the surrounding vortex tubes. Note that the first process is local in the scale space, - it is usually viewed as two or more vortex tubes of similar and implosively decreasing radius. On the other hand, the second process involves interaction of significantly separated scales, - a thin vortex tube and a large-scale strain. Recent numerical simulations (Laval et al. (2001)) indicate that it is the nonlocal scale interactions that are responsible for the deviations of the structure functions from their Kolmogorov
self-similar value whereas the net effect of the local interactions is to reduce these deviations. These conclusions lead to a model of turbulence in which a model closure (e.g. DIA) is used for the local interactions whereas the nonlocal interactions are described by a wavepacket (WKB) formalism which exploits the scale separation. The later describes a linear process of distortion of small-scale turbulence by a strain produced by large scales. Such a linear distortion is a familiar process in engineering applications, for example, when a turbulent fluid flows through a pipe with a sudden change in diameter. It is described by the rapid distortion theory (RDT) introduced by Batchelor & Proudman (1954). The model considered in this paper is different from the classical RDT in that the disturbing strain is stochastic and, therefore, we will call it the stochastic distortion theory (SDT). We will study a simplest version of SDT in which the large-scale strain is modeled by a Gaussian white (in time) noise in the spirit of the Kraichnan model used for turbulent passive scalars (Kraichnan (1974)) and of the Kazantsev-Kraichnan model from the turbulent dynamo theory (Kazantsev (1968); Kraichnan & Nagarajan (1967)).

Because most of studies so far have focused on the theories with local scale interactions, we will devote our attention mainly to the description of the nonlocal interactions. The local interactions are unimportant at small scales in 2D, but they should be taken into account when 3D turbulence is considered. Similarly to RDT, the SDT model deals with k-space quantities due to much greater simplicity of the pressure term in the k-space. We will study statistical moments of the k-space quantities of all orders and not only the second order correlators as it is customary for RDT. The higher k-space correlators carry an information about the turbulence statistics and intermittency which is not always available from the two-point coordinate space correlators, the structure functions, which are popular objects in the turbulence theory. Indeed, intermittency in some systems can be dominated by singular k-space structures which are not singular in the x-space (e.g. periodic fields). These structures leave their signature on the scalings of the k-space moments but not on the x-space structure functions. The system considered in the present paper is of this type, and another example of this kind is the magnetic turbulence in the kinematic dynamo problem (Nazarenko et al. (2003)). In fact, SDT bears a lot of similarities to the turbulent dynamo problem and in this paper we will use a method developed in Nazarenko et al. (2003) for its derivation. We will also see that, like in the dynamo problem, the fourth order k-space moments allow us to introduce the measures of the mean polarization and of the spectral flatness, - the quantities of special importance for characterization of the small-scale turbulence.

2. Stochastic distortion of turbulence

Let us consider a velocity field in three-dimensional space that consists of a component \mathbf{U} with large characteristic scale L and a component \mathbf{u} with small characteristic scale l, $L \gg l$. In this case, Navier-Stokes equation is

$$\partial_t \mathbf{U} + \partial_t \mathbf{u} + (\mathbf{U} \cdot \nabla)\mathbf{U} + (\mathbf{U} \cdot \nabla)\mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{U} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{U} + \nu \nabla^2 \mathbf{u}. \tag{2.1}$$

Let us define the Gabor transform (GT) (see Nazarenko & Laval (2000); Nazarenko (1999); Nazarenko et al. (2000))

$$\hat{u}(x, k, t) = \int f(\epsilon^* |x - x_0|) e^{i\mathbf{k} \cdot (x - x_0)} u(x_0, t) \, dx_0, \tag{2.2}$$

where $1 \gg \epsilon^* \gg \epsilon$ and $f(x)$ is a function which decreases rapidly at infinity, e.g. $\exp(-x^2)$. Averaging $\langle \cdot \rangle$ is performed over the statistics of a random force which will be introduced below.
A model for rapid stochastic distortions of small-scale turbulence

One can think of the GT as a local Fourier transform taken in a box centered at \(x \) and having a size which is intermediate between \(L \) and \(l \). The GT commutes with the time and space derivatives, \(\partial_t \) and \(\nabla \). Commutativity with \(\partial_t \) is obvious. Note that the GT commutes with \(\nabla \) only for distances from the boundaries which are larger than the support of function \(f \). The inverse GT is simply an integration over all wavenumbers, e.g.

\[
u(x, t) = \frac{1}{f(0)} \int \hat{u}(x, k, t) \frac{dk}{(2\pi)^3}.
\]

Here, we will study only the nonlocal interaction of small and large scales and therefore we neglect the nonlinear term \((u \cdot \nabla)u\) which corresponds to local interactions among the small scales. Let us apply the GT to the above equation with \(k \sim 2\pi/l \sim 1 \gg 2\pi/L \sim \epsilon \) and only retain terms up to first power in \(\epsilon \) and \(\epsilon^* \) (we chose \(\epsilon^* \) such that \(\epsilon^* \gg \epsilon \gg (\epsilon^*)^2 \)). All large-scale terms (the first and the third ones on the LHS and the third one on the RHS) give no contribution because their GT is exponentially small. Equation for the GT of \(u \) under such assumptions where obtained in Nazarenko et al. (2000); it is

\[
D_t\hat{u} + (\hat{u} \cdot \nabla)U = \frac{2k}{k^2}u \cdot \nabla(U \cdot k) - \nu k^2 \hat{u},
\]

where

\[
D_t = \partial_t + \dot{x} \cdot \nabla + \dot{k} \cdot \nabla_k,
\]

\[
\dot{x} = U,
\]

\[
\dot{k} = -\nabla(k \cdot U),
\]

Equation (2.4) provides an RDT description of turbulence generalized to the case when both the mean strain and the turbulence are inhomogeneous. This equation has the form of a WKB-type transport equation with characteristics given by (2.5) and (2.6). Consider this equation for a fluid path determined by \(\dot{x}(t) = U \), so that \(\hat{u}(k, x, t) \rightarrow \hat{u}(k, x(t), t) \)

\[
\partial_t u_m = \sigma_{ij} k_i \partial_j u_m - \sigma_{mi} u_i + \frac{2}{k^2} k_m (\sigma_{ij} k_i u_j) - \nu k^2 u_m,
\]

where \(\sigma_{ij} = \nabla_i U_j \) is the strain matrix and operators \(\nabla_i \) and \(\partial_i \) mean derivatives with respect to \(x_i \) and \(k_i \) correspondingly \((i = 1, \ldots, D)\). Note that strain \(\sigma_{ij} \) (taken along a fluid path) enters this equation as a given function of time. Equation (2.7) is applicable to arbitrarily slowly varying in space large-scale flow. We formulate the SDT model as equation (2.7) complemented by a prescribed statistics of the large-scale flow. One can use, for example, a numerically computed large-scale strain and use it as an input into the equation (2.4) should later be integrated numerically. In this paper, however, we would like to derive a reduced model via the statistical averaging which is possible by assuming a sufficiently simple statistics of the large-scale strain. Experiments and numerical data indicate that Navier-Stokes turbulence is Gaussian at large scales and we will use this property in our model. We will further assume that the strain is white in time with Nazarenko et al. (2003)

\[
\sigma_{ij} = \Omega(A_{ij} - \frac{A_{ij}}{d} \delta_{ij}),
\]

where \(A_{ij} \) is a matrix the elements of which are statistically independent and white in

\[†\] Hereafter, we drop hats on \(\hat{u} \) because only Gabor components will be considered. Also, we will not mention explicitly dependence on the fluid path and simply write \(u \equiv u(k, t) \).
This choice of strain ensures the incompressibility and statistical isotropy. In this case
\begin{equation}
\langle \sigma_{ij}(t) \sigma_{kl}(0) \rangle = \Omega((d+1)\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk} - \delta_{ij}\delta_{kl})\delta(t). \tag{2.11}
\end{equation}
However, any such choice will lead to (up to a time-scale constant) the same final equations. The Gaussian white in time strain has also been used in the MHD dynamo theory (Kazantsev-Kraichnan model: Kazantsev [1968], Kraichnan & Nagarajan [1967]) and in the theory of turbulent passive scalar (Kraichnan [1974]; see also review of Falkovich et al. [2001]). It is a natural starting point because of its simplicity.

Note that for realistic modeling of small-scale turbulence one has to describe a matching to the large-scale range via a low-k forcing or a boundary condition. As we will see later, some properties of the small-scale turbulence turn out to be independent of these effects, e.g. scalings in 2D case, whereas the 3D case is more sensitive to the boundary conditions. Detailed modeling of the low-k forcing/boundary conditions is beyond the scope of this paper. Below, we will simply consider forcing-free evolution of a finite-support initial condition (decaying turbulence). We will also consider finite-flux solutions in 2D corresponding to the turbulent cascades in forced turbulence.

3. Generating Function

Let us consider the following set of 1-point correlators of Gabor velocities,
\begin{equation}
\Psi^s_n = \langle |u(k)|^{2n-4s}|u(k)|^2 \rangle \tag{3.1}
\end{equation}
with $n = 1, 2, 3, \ldots$ and $s = 0, 1, 2, 3, \ldots$. Such correlators where shown in Nazarenko et al. [2003] to be a fundamental set in case of homogeneous isotropic turbulence from which one can express any of two-point correlators of the following kind
\begin{equation}
\langle u_{i_1}(k_1)u_{i_2}(k_1)\ldots u_{i_n}(k_1)u_{j_1}(k_2)u_{j_2}(k_2)\ldots u_{j_m}(k_2) \rangle, \tag{3.2}
\end{equation}
where i_1, i_2, \ldots, i_n and j_1, j_2, \ldots, j_m take values 1, 2 or 3 indexing the components in 3D space, and n and m are some arbitrary natural numbers. Note that homogeneity and isotropy in SDT follow from the coordinate independence and isotropy of the strain and it has to be understood only in a local sense, near the considered fluid particle of the large-scale flow.

Now we define a generating function,
\begin{equation}
Z(\lambda, \alpha, \beta, k) = \langle e^{\lambda|u(k)|^2 + \alpha u(k)^2 + \beta \overline{u(k)}^2} \rangle, \tag{3.3}
\end{equation}
where overline denotes the complex conjugation. This function allows one to obtain any of the fundamental 1-point correlators \((3.1)\) via differentiation with respect to λ, α and β,
\begin{equation}
\Psi^s_n = \left[\frac{\partial}{\partial \lambda} (2n-4s) \delta^s \delta^s Z \right]_{\lambda=\alpha=\beta=0}. \tag{3.4}
\end{equation}
To derive an evolution equation for Z we will follow the technique developed in
for the turbulent dynamo problem. Let us time differentiate the expression for Z and use the dynamical equation \((2.7) \); we have
\[
\dot{Z} = k_i \partial_j \langle \sigma_{ij} \rangle - \lambda \langle \sigma_{ml} (\overline{u}_m \overline{u}_l + \overline{u}_l \overline{u}_m) \rangle - 2\alpha \langle \sigma_{ml} \overline{u}_m \overline{u}_l \rangle - 2\beta \langle \sigma_{ml} \overline{u}_m \overline{u}_l \rangle - 2\nu k^2 \left(\langle \lambda | \overline{u}(k) | \rangle^2 + \alpha | \overline{u}(k) |^2 + \beta | \overline{u}(k) |^2 \right) \tag{3.5}
\]
where
\[
E = e^{\lambda | \overline{u}(k) |^2 + \alpha | \overline{u}(k) |^2 + \beta | \overline{u}(k) |^2}.
\tag{3.6}
\]
To find the correlators on the RHS of \((3.5) \), we use Gaussianity of σ_{ij} and perform a Gaussian integration by parts. Then, we use whiteness of the strain field to find the response function (functional derivative of Z) and use isotropy of the strain so that the final equation involves only $k = |k|$ and no angular coordinates of the wave vector. Leaving the derivation for the Appendix, we write here only the final result,
\[
\dot{Z} = \Omega \left[(1 - \frac{1}{d}) k^2 Z_{kk} + \frac{1}{d} (4D + d^2 - 1) k Z_k + 2(1 - \frac{2}{d} + d) D Z - 4 \frac{1}{d} D^2 Z \right. \\
\left. + 2(\lambda^2 + 4\alpha\beta) Z_{\lambda\lambda} + 2\lambda^2 Z_{\alpha\beta} + 8\lambda\alpha Z_{\alpha\lambda} + 8\lambda\beta Z_{\beta\lambda} + 4\alpha^2 Z_{\alpha\alpha} + 4\beta^2 Z_{\beta\beta} \right] - 2\nu k^2 DZ, \tag{3.7}
\]
where the k, α, β and λ subscripts in Z denote differentiation with respect k, α, β and λ correspondingly and
\[
D = \lambda \partial_\lambda + \alpha \partial_\alpha + \beta \partial_\beta. \tag{3.8}
\]
The number of independent variables in this equation can be reduced by one taking into account that due to turbulence homogeneity Z depends on α and β only via combination $\eta = \alpha \beta$ \cite{Nazarenko:2003:2000}. We have
\[
\dot{Z} = \Omega \left[(1 - \frac{1}{d}) k^2 Z_{kk} + \frac{1}{d} (4D + d^2 - 1) k Z_k + 2(1 - \frac{2}{d} + d) D Z - 4 \frac{1}{d} D^2 Z \right. \\
\left. + 2(\lambda^2 + 4\eta) Z_{\lambda\lambda} + 2\lambda^2 (Z_\eta + \eta Z_{\eta\eta}) + 16\lambda\eta Z_{\eta\lambda} + 8\eta^2 Z_{\eta\eta} \right] - 2\nu k^2 DZ, \tag{3.9}
\]
where
\[
D = \lambda \partial_\lambda + 2\eta \partial_\eta. \tag{3.10}
\]
Equation \((3.9) \) is the main equation of SDT. The RHS of this equation describes interactions of the separated scales only. In practical applications or numerical modeling one has to add to it a suitable model for the local scale interactions. We leave this task for future and concentrate below on studying the effect of the nonlocal interactions only.

4. 2D turbulence

Let us first of all consider the 2D case. The large time dynamics of the small-scale turbulence is known to be dominated in 2D by the nonlocal interactions due to generation of intense large-scale vortices and, therefore, the SDT model \((3.9) \) is relevant even without including a model for the local interactions. Note that equations for the 2D turbulence in which only nonlocal interactions are left are formally identical to the passive scalar equations. The energy spectra of the nonlocal 2D turbulence and the passive scalars in the Batchelor regime were studied in Nazarenko & Laval \cite{Nazarenko:2000:2000} without making any assumptions on the strain statistics. Here we will study the higher k-space correlators.

The 2D case is simpler than the 3D one in that all correlators Ψ_s with $s > 0$ are not
independent and can be expressed in terms of Ψ_0^n which we will call the energy series,

$$\Psi_0^n \equiv E_n(k, t) = \langle |\mathbf{u}(k)|^{2n} \rangle = [\partial^n_k Z]_{\lambda=\eta=0}. \quad (4.1)$$

The equations for correlators E_n are to be obtained by differentiating Ψ_0^n n times with respect to λ and taking it at $\eta = \lambda = 0$ which gives

$$\dot{E}_n = \frac{\Omega}{2} [k^2 (E_n)_k + (3 + 4n)k(E_n)_k + 4n(1 + n)E_n] - 2\nu k^2 E_n. \quad (4.2)$$

Of special interest are the cascade-type solutions realized when turbulence is forced. To obtain these solutions we first re-write as a continuity equation in k-space; this can be done in two different ways,

$$\partial_t(k^{2n-1}E_n) = \frac{\Omega}{2} [k^{-1}(k^{2n+2}E_n)_k] - 2\nu nk^{2n+1}E_n. \quad (4.3)$$

and

$$\partial_t(k^{2n+1}E_n) = \frac{\Omega}{2} [k^3(k^2E_n)_k] - 2\nu nk^{2n+3}E_n. \quad (4.4)$$

In the absence of dissipation, $\nu = 0$, equations (4.3) and (4.4) describe conservation of the quantities which have spectral densities $E_n = k^{2n-1}E_n$ and $F_n = k^{2n+1}E_n$ respectively. For $n = 1$ these quantities are just the energy and the enstrophy. We will call invariants E_n and F_n the energy and the enstrophy series correspondingly. The steady state solutions in the range where viscosity is negligible are

$$E_n = C_1^n k^{-2n} \quad (4.5)$$

and

$$E_n = C_2^n k^{-2n-2} \quad (4.6)$$

where C_1^n and C_2^n are arbitrary positive constants. For $n = 1$ these solutions where obtained in Nazarenko & Laval (2000); solution (4.5) corresponds to a constant energy flux (and equipartition of the enstrophy) whereas (4.6) corresponds to an enstrophy cascade (and equipartition of the energy). Because the equations for E_n are linear, any linear combination

$$E_n = C_1^n k^{-2n} + C_2^n k^{-2n-2} \quad (4.7)$$

is also a stationary solution (in fact the general one). Note that the flux of invariant E_n is given by $-\frac{\Omega}{2} k^{-1}(k^{2n+2}E_n)_k$ and it is always negative on solutions (4.7) whereas the flux of F_n, which is $-\frac{\Omega}{2} k^3(k^2E_n)_k$, is always positive in the steady state. Thus, in forced turbulence solutions (4.6) will form on the low-k side of the forcing scale and solutions (4.5) on the high-k side of it, which agrees with the general observation that the energy cascade is inverse and the enstrophy cascade is a direct one.

Let us introduce a spectral flatness,

$$F_n = E_n/E_1^n. \quad (4.8)$$

For Gaussian fields, F_n would be independent of k and, therefore, k-dependence of F_n bears an information about the scale invariance and presence of turbulence intermittency. In particular, for the solutions (4.5) we have $F_n = \text{const}$ indicating that the inverse

† Recall that we consider nonlocal turbulence and, although invariance of enstrophy is easily seen from the vorticity conservation along the fluid paths, the energy invariance is not obvious because there can be non-local energy exchanges between turbulence and the large-scale flow. The conservation of energy was proved for initially isotropic turbulence in Nazarenko & Laval (2000).
casuals are not intermittent: turbulence produced by a Gaussian forcing at some scale k_f will remain Gaussian at $k < k_f$. On solutions (4.6) we have $F_n \sim k^{2n-2}$ which indicates broken scale invariance and growing deviation from Gaussianity at small scales. Such a small-scale intermittency in the direct cascades is due to nearly singular k-structures having the shape of strongly elongated ellipses in 2D k-space which are centered at the origin. Each strain realization will produce just one of these (randomly oriented) ellipses out of an initial circular (isotropic) distribution.

5. Nonlocal 3D turbulence

3D Navier-Stokes turbulence is never likely to be nonlocal and for its realistic description one should add a model of the local interactions into the RHS of equation (3.9). However, it is still interesting to solve equation (3.9) as is in order to study the effect of pure nonlocal interactions. We will see below that such a study will reveal some interesting physics.

In the 3D case, equation (3.9) is

$$\dot{Z} = \frac{2\Omega}{3} \left[k^2 Z_{kk} + 4k Z_k + (8 + 2k \partial_k) D Z + (\lambda^2 Z_{\lambda\lambda} + 8\eta^2 Z_{\eta\eta}) \right. \\
+ (3\lambda^2 - 4\eta)(Z_\eta + \eta Z_{\eta\eta}) + 16 \lambda \eta Z_{\lambda\eta} + 12 \eta Z_{\lambda\lambda} \left. \right] - 2\nu k^2 D Z, \quad (5.1)$$

The standard procedure to obtain equations for the correlators Ψ_n is to differentiate (5.1) with respect to λ and η the required number of times and then to put $\lambda = \eta = 0$. In the 3D case, all the correlators Ψ_n are independent and at each order $2n$ we have a system of coupled equations rather than a single equation to solve as it was the case in 2D. However, a decoupling arises asymptotically at large times as we will see below. We will start by considering the second and the fourth order correlators ($n = 1$ and 2).

5.1. Energy spectrum

$$E(k, t) \equiv E_1(k, t) = \langle |u(k)|^2 \rangle = |\partial_\lambda Z|_{\lambda=\eta=0}. \quad (5.2)$$

Differentiating (5.1) with respect to λ and taking the result at $\lambda = \eta = 0$ we have

$$\dot{E} = \frac{2\Omega}{3} \left(k^2 E_{kk} + 6k E_k + 8E \right) - 2\nu k^2 E. \quad (5.3)$$

This equation is similar to the Kazantsev equation (Kazantsev (1968)) describing evolution of the magnetic energy spectrum in the kinematic dynamo theory. Similarly to the dynamo theory, the total energy grows exponentially and therefore, unlike the 2D case, no stationary cascade states are possible. To have a steady state, one has to add a model of local interactions to SDT which will be done in future publications. However, we will now study equation (5.3) to examine consequences of interactions of separated scales.

Recently, Schekochihin, Boldyrev and Kulsrud (Schekochihin et al. (2002a)) presented the solution of the Kazantsev equation obtained by the Kontorovich-Lebedev transform and we will use their results to solve (5.3). By substitution

$$E = e^{7\Omega t/6} k^{-5/2} \phi(k/k_d, t) \quad k_d = \sqrt{\Omega/3\nu}, \quad (5.4)$$

one can reduce (5.3) to

$$\frac{3}{2\Omega} \dot{\phi}(p, t) = p^2 \phi_{pp} + p\phi_p - p^2 \phi. \quad (5.5)$$

The RHS of this equation is just the modified Bessel operator and by using the Kontorovich-Lebedev transform one immediately gets for $t \gg 1/\Omega$: (Schekochihin et al. (2002a),
the amplitudes but also about the phases of the Fourier modes. In particular, W case for example for Gaussian fields when W polarization. If W corresponds to the case where all Fourier components of the magnetic field have plane

\begin{equation}
\phi(p, t) = \text{const} \int_0^\infty ds \sinh(\pi s) K_{is}(p) K_{is}(q) e^{-s^22\Omega t/3}, \tag{5.6}
\end{equation}

where K_{is} is the MacDonald function of an imaginary order and the constant is fixed by the initial condition. At scales much greater than the dissipative one, $p \ll 1$, viscosity is not important for $t \ll (\ln q)^2$ ($q \ll 1$ is the mean wavenumber of the initial condition) and the solution (5.6) becomes (Schekochihin et al. (2002a); Nazarenko et al. (2003))

\begin{equation}
\phi = \text{const} t^{-1/2} e^{-3(\ln k/q^2)\eta}, \tag{5.7}
\end{equation}

This solution describes a spectrum with an expanding $k^{-5/2}$ scaling range (which means $k^{-1/2}$ for the one dimensional energy spectrum). At $t \sim (\ln q)^2$ the front of this scaling range reaches the dissipative scales and for $t \gg (\ln q)^2$ and (5.6) gives

\begin{equation}
\phi = \text{const} t^{\nu/2} K_0(p). \tag{5.8}
\end{equation}

Function $K_0(p)$ decays exponentially at large p which corresponds to a viscous cut-off of the spectrum. For $p \ll 1$, $K_0(p) \sim -ln p$, which means that at large time the scales far larger than the dissipative one are affected by viscosity via a logarithmic correction,

\begin{equation}
E(k) = \text{const} t^{-5/2} e^{7\Omega t/6} k^{-5/2} \ln(k_d/k). \tag{5.9}
\end{equation}

6. 4th-order correlators, turbulence polarization and flatness

There are two independent 4th order correlators

\begin{equation}
S(k, t) = \Psi_{0}^{(2)} = \langle |\mathbf{u}(k)|^4 \rangle = [Z_{\lambda \lambda}]_{\lambda, \eta = 0} \quad \text{and} \quad T(k, t) = \Psi_{1}^{(2)} = \langle |\mathbf{u}^2(k)|^2 \rangle = [Z_{\eta}]_{\lambda, \eta = 0} \tag{6.1}
\end{equation}

Differentiating (5.4) twice with respect to λ and taking the result at $\lambda = \eta = 0$ we have

\begin{equation}
\dot{S} = \frac{2\Omega}{3}(k^2S_{kk} + 8kS_k + 18S + 6T) - 4\nu k^2 S. \tag{6.2}
\end{equation}

Now, differentiating (6.4) with respect to η and taking the result at $\lambda = \eta = 0$ we get

\begin{equation}
\dot{T} = \frac{2\Omega}{3}(k^2T_{kk} + 8kT_k + 12T + 12S) - 4\nu k^2 T. \tag{6.3}
\end{equation}

By subtracting (6.3) from (6.2) we get a closed equation for $W = S - T$,

\begin{equation}
\dot{W} = \frac{2\Omega}{3}(k^2W_{kk} + 8kW_k + 6W) - 4\nu k^2 W. \tag{6.4}
\end{equation}

The physical meaning of W becomes clear if we re-write it as (Nazarenko et al. (2003))

\begin{equation}
W = 4 \sum_{j \neq l} \langle |\Im(u_j \overline{u_l})|^2 \rangle = 4 \sum_{j \neq l} \langle |u_j|^2 |u_l|^2 \sin^2(\phi_j - \phi_l) \rangle \geq 0, \tag{6.5}
\end{equation}

where symbol \Im denotes the imaginary part and ϕ_j and ϕ_l are the phases of components u_j and u_l respectively. Thus, we see that W contains information not only about the amplitudes but also about the phases of the Fourier modes. In particular, $W \equiv 0$ corresponds to the case where all Fourier components of the magnetic field have plane polarization. If $W \neq 0$ then other polarizations (circular, ecliptic) are present. This is the case for example for Gaussian fields when $W = E^2/2 > 0$. On the other hand, smallness
A model for rapid stochastic distortions of small-scale turbulence

of the phase differences can be overpowered in \(W \) by large amplitudes. Therefore, a better measure of the mean polarization would be a normalized \(W \), e.g.,

\[
P = \frac{W}{S}.
\]

Defined this way the mean turbulence polarization is an example of an important physical quantity which can be obtained from the one-point Fourier correlators and is unavailable from the coordinate space (one-point or two-point) correlators.

Equation (6.4) can be solved similarly to the energy spectrum equation (5.3), namely by transforming it into equation (5.5) by a substitution similar to (5.4) and then using the solution (5.6). In the inviscid regime \(p \ll 1, t \ll (\ln q)^2 \) we have

\[
W = W_0 t^{-1/2} e^{-25\Omega t/6} k^{-7/2} e^{-3(\ln k/q)^2/2\Omega t},
\]

where \(W_0 \) is a constant which can be found from the initial conditions. We see that \(W \) develops a \(k^{-7/2} \) scaling range which is cut off at low and high \(k \) by exponentially propagating fronts. Within this scaling range, \(W \) decays exponentially in time.

Given \(W \), one can find \(S \) by using substitution \(S = V + W/3 \) which leads to a closed equation for \(V \) which can be solved similarly to \(E \) and \(W \). This gives for the inviscid regime

\[
S = t^{-1/2} k^{-7/2} e^{3(\ln k/q)^2/2\Omega t} \left(V_0 e^{47\Omega t/6} + \frac{1}{3} W_0 e^{-25\Omega t/6} \right),
\]

where \(V_0 \) is another constant which can be found from the initial conditions. For \(t \gg 1 \), the second term in the parenthesis should be neglected. Then, we have the following solution for the mean turbulence polarization,

\[
P = \frac{W}{S} = \frac{W_0}{V_0} e^{-12\Omega t}.
\]

As we see, in the inviscid regime the mean polarization tends to an independent of \(k \) value which exponentially decays in time. This means that all turbulence wavepackets eventually become plane polarized. Recall that such turbulence is very far from being Gaussian for which the mean polarization remains finite (elliptic and circular polarized modes are present).

In the diffusive regime, \(t \gg (\ln q)^2 \), we have

\[
W(k) = W_0 t^{-1/2} e^{-25\Omega t/6} k^{-7/2} \ln(k_d/\sqrt{2}k)
\]

and

\[
S(k) = V_0 t^{-1/2} e^{47\Omega t/6} k^{-7/2} \ln(k_d/\sqrt{2}k).
\]

Thus, \(P \) is still given by the same formula (6.9) indicating that the mean polarization continues to further decrease in time with the same exponential rate. Thus, by the time the diffusive regime is achieved \(W \) can be essentially put equal to zero.

The fact that the polarization becomes plane has quite simple physical explanation. Indeed, a vorticity wavepacket of arbitrary polarization will be strongly distorted by the stretching which mostly occurs along the dominant eigenvector of the lagrangian deformation matrix (corresponding to the greatest Lyapunov exponent). Such a stretching make any initial “spiral” flat for large time with the dominant field component lying in the plane passing through the stretching and the wavevector directions (and, of course, \(u(k) \) is perpendicular to \(k \)).

Another important measure of turbulence intermittency available from the \(k \)-space moments is the spectral flatness which can be defined as \(F = S/E^2 \). For large time in
the inviscid regime
\[F \sim t^{1/2} e^{-11\Omega t/2} k^{3/2}. \] (6.12)
We see that the flatness grows both in time and in k which indicates presence of the small-scale intermittency. Such an intermittency can be attributed to the presence of coherent structures in k-space.

One can also find solution for the fourth order correlator \(S \) in the dissipative regime. This will be done in the next section together with correlators of all higher orders.

7. Large-time behavior of higher correlators

The observation in the end of the previous section (that there is a dominant field component) allows us to predict that for large time \(|u|^4 \approx |u|^2 \) in each realization so that \(Z_{\lambda\lambda} \approx Z_{\alpha\beta} \). Therefore, property \(Z_{\lambda\lambda} = Z_{\alpha\beta} \), if valid initially, should be preserved by the equation for \(Z \). Indeed, by using the equation (6.1) combination \(w = Z_{\lambda\lambda} - Z_{\alpha\beta} = Z_{\lambda\lambda} - \eta Z_{\eta\eta} \) satisfies a closed homogeneous equation. This means that if \(w \equiv 0 \) at \(t = 0 \) then it will remain identically zero for any time. Thus, we can consider a class of solutions of (7.1) (corresponding to large-time asymptotics of the general solution) such that \(Z_{\lambda\lambda} = Z_{\alpha\beta} \). Assuming this equality in (7.1) and putting \(\eta = 0 \) we have,

\[\dot{Z} = \frac{2\Omega}{3} \left[k^2 Z_{kk} + 4kZ_k + (8 + 2k\partial_k)\lambda Z_\lambda + 4\lambda^2 Z_{\lambda\lambda} \right] - 2\nu k^2 \lambda Z_\lambda, \] (7.1)

This gives the following equations for the correlators \(E_n \equiv \langle |u(k)|^{2n} \rangle \) is the correlator of order \(2n \),

\[\dot{E}_n = \frac{2\Omega}{3} \left[k^2 (E_n)_{kk} + (2n + 4)k(E_n)_{k} + 4n(n + 1)E_n \right] - 2\nu k^2 nE_n. \] (7.2)

Note that for \(n = 1 \) this coincides with for the energy spectrum equation (5.3) which we have already solved. Moreover, by substitution

\[E_n = e^{(3n^2 + n - 9/4)2\Omega t/3} k^{(n - 3/2)} \phi(k\sqrt{n/\nu}, t) \] (7.3)

one can reduce (7.2) to an independent of \(n \) equation (5.6) for function \(\phi \) the solution of which we already know. For the inviscid regime \((1/\Omega \ll t \ll (\ln q)^2) \) we have

\[E_n = \text{const}(n) t^{-1/2} e^{(3n^2 + n - 9/4)2\Omega t/3 - \frac{3(nk/\nu)^2}{\ln \nu} k^{(n - 3/2)}}, \] (7.4)

and in the diffusive regime \((t \gg (\ln q)^2) \)

\[E_n = \frac{\text{const}(n)}{t^{3/2}} e^{(3n^2 + n - 9/4)2\Omega t/3} k^{(n - 3/2)} K_0(\sqrt{nk/\nu}). \] (7.5)

This expression agrees with the results obtained in the previous sections for \(n = 1 \) and \(n = 2 \). We see that the main effect of the dissipation is the prefactor change \(t^{-1/2} \to t^{-3/2} \) and the \(K_0(k/k_\nu) \) form-factor which corresponds to a log-correction at \(k \ll 1 \) and an exponential cut-off at \(k \sim k_\nu \). Similar results were obtained for the magnetic field moments in Nazarenko et al. (2003). In that case it is the exponential cut-off that causes the change of the exponential growth in the mean magnetic energy (Kazantsev (1968), Kulsrud and Anderson (1992)) and in the higher \(x \)-space moments of the magnetic field (Chertkov et al. (1999)).

The scalings in (7.2) and (7.4) with respect to the order \(n \) contain important information about the small-scale turbulence. In particular the exponential growth in time with exponent \(\sim n^2 \) indicates that the turbulence statistics is log-normal. An equivalent result
A model for rapid stochastic distortions of small-scale turbulence

for the magnetic fields in the kinematic dynamo problem was obtained in Chertkov et al. (1999) and Schekochihin et al. (2002). The log-normality arises because the strain is a multiplicative noise for the velocity field which becomes nearly one-dimensional and because the time integrated strain tends to become a Gaussian process. Formally, this result can be also obtained using the random matrix theory of Furstengerg (1963) (see also Falkovich et al. (2001)), and a more detailed physical explanation can be found in Nazarenko et al. (2003).

The k-dependence of the Fourier correlators is also very important because it gives an information about the dominant structures in the wavenumber space. Suppose that initially the turbulence is isotropic and concentrated in a ball centered at the origin in the wavenumber space. For each realization such a ball will stretch into an ellipsoid with one large, one short and one neutral dimensions. One can visualize this ellipsoid as an elongated flat cactus leaf with thorns showing the velocity field direction. Note that in this picture one component of the velocity field (transverse to the cactus leaf) is dominant which is captured by the fact that the polarization W introduced in this paper tends to zero at large time. Another consequence of this picture is that the wavenumber space will be covered by the ellipsoids more sparsely at large k which implies large intermittent fluctuations of the velocity field in the k-space. These fluctuations could be quantified by the flatness F which was shown in (6.12) to grow as $k^{3/2}$, a clear indication of the small-scale intermittency.

8. Sensitivity of SDT to the strain statistics

In the previous sections, the SDT model was formulated and studied assuming that the large-scale strain is a Gaussian white noise process. This assumption, similar to the Kazantsev-Kraichnan dynamo model, allowed us to obtain some important analytical solutions for the energy spectrum, the polarization, the flatness and higher-order correlators which capture the turbulence intermittency. In real experimental and in numerical turbulence the strain is generally far from being a Gaussian white noise. Thus, it is interesting to study sensitivity of our SDT model and its predictions to the strain statistics.

In this section, we will numerically simulate (2.7) for two different types of strain. First, we consider a synthetic Gaussian strain field with a finite correlation time τ which is algorithmically generated as

$$
\sigma_{ij}(t + dt) = (1 - dt/\tau) \sigma_{ij}(t) + \Omega \sqrt{2 dt/\tau} \left(A_{ij}(t) - \frac{1}{3} A_{ll} \delta_{ij} \right)
$$

where A_{ij} is the same matrix as in (2.9) and dt is the time step. The r.m.s. of the different strain components in this numerical experiment ranged from 2.9 to 3.6 and the correlation time was 0.02. Thus, the correlation time was about 16 times less than the characteristic strain distortion time. We considered 512 strain realizations of the synthetic field.

In the second numerical experiment, the strain matrix components were obtained from a 5123 spectral DNS of the Navier-Stokes equations at Reynolds number $R_\lambda \simeq 200$. The strain time series were recorded along 512 fluid paths. The r.m.s. of the different strain components in this case ranged from 6.6 to 9.3 and the correlation time was approximately 0.08. Thus, the correlation time in this case is of the same order as the inverse strain rate which is natural for the real Navier-Stokes turbulence where both values are of order of the eddy turnover time at the Kolmogorov scale.

Because of the fairly short correlation time and because of the Gaussianity, the first numerical experiment is closer to the Gaussian white-noise analytical model than the second experiment where the strain is not Gaussian and has long time correlations. In a
sense, comparison of results of the first experiment and the analytical solutions may be considered a performance test of the numerical method. On the other hand, comparison between the results of the first and the second experiments allows us to establish their sensitivity to the strain statistics.

To compute (2.7) we used a second order in time Runge-Kutta scheme with a time step of 20 times less than the correlation time for the synthetic case. For the simulation with strain from DNS, a time step identical to the DNS have been used (i.e. 200 times less than the correlation time of strain) In both numerical experiments, for each strain realization we consider a distribution of wavepackets (2048 in the synthetic case and 8192 for the DNS) with initial \(k \) chosen randomly in a sphere of radius \(|k| \approx 2 \). For each wavenumber \(k \), the two Fourier components of the velocity \(u_1 \) and \(u_2 \) are chosen randomly such that \(u_j = \beta_j \gamma e^{i 2 \pi \alpha_j} \) where \(\alpha_j, \beta_j \) are uniform random numbers in the interval \([0, 1]\) and \(\gamma = 2 e^{-0.04} \) is a constant (function of the total number of particles). The last component \(u_3 \) is deduced from \(k \cdot u = 0 \) to respect the incompressibility. However, the minimum value of \(|k_3| \) is limited by the condition that when calculated \(u_3 \) appears to be excessively large such wavepacket is discarded. The viscosity \(\nu \) was set to \(10^{-6} \) in both numerical experiments.

Figures 1 and 2 show the energy spectrum at several different moments of time in the first and the second numerical experiment correspondingly. In both cases one can see an excellent agreement with the theoretical -2.5 slope for time less than \(t_d \) which is about 4.5 and 0.7 for the first and the second experiments respectively. At \(t = t_d \), turbulence reaches the dissipative scale and the spectrum accepts a log-corrected shape.

Figures 3 and 4 show the time growth of the total energy and the energy spectrum at several fixed wavenumbers in the first and the second numerical experiment respectively. One can see that the growth is approximately exponential as predicted by the theory. It is interesting that the theory also predicts a change to a slower exponential growth.

\[\text{Energy} \]

\[k^{-5/2} \]

\[t=0.05 \quad t=1.00 \quad t=2.25 \quad t=6.00 \]

\[1 \quad 10 \quad 100 \quad 1000 \quad 10000 \]

\textbf{Figure 1.} Energy spectrum in the case of the synthetic Gaussian strain with a finite correlation time.
A model for rapid stochastic distortions of small-scale turbulence

Figure 2. Energy spectrum in the case of the strain obtained from 512^3 DNS

of the total energy when time crosses t_d. Similar effect is called the dissipative anomaly in the kinematic dynamo theory (Kazentsev (1968); Chertkov et al. (1999)). This effect is consistent with figure 3 which shows that at $t = t_d \approx 4.5$ the slope for the total energy gets smaller and becomes approximately equal to the slope of the individual k-components (as predicted by the theory). For the second experiment the growth is also approximately exponential and the change of slope occurs at $t = t_d \approx 0.7$.

Figures 5 and 6 show the spectrum of the polarization at several fixed wavenumbers in the first and the second numerical experiment respectively. Similarly to the white-noise strain, in both simulations the polarization sharply decreases in time and it tends to an independent of k spectrum in the inertial range (with a log-correction for $t > t_d$).

Figures 7 and 8 show the spectrum of the flatness at several fixed wavenumbers in the first and the second numerical experiment respectively. Similarly to the white-noise predictions, the flatness is growing with time. However, the theoretical $3/2$ slope is observed neither for the synthetic nor for the DNS strain case. The fact that these deviations are observed in the same way for both the DNS strain and the synthetic strain (which is short correlated and therefore quite close to the white noise process) might indicate a failure of the numerical method to reproduce some features of higher correlators rather than a true deviation due to the differences in the strain statistics. Further discrepancy arises for the DNS strain case at very large time when the flatness is observed to decrease.

9. Conclusion

In this paper we introduced a description of the small-scale Navier-Stokes turbulence with much larger scales, the SDT model. Such nonlocal interactions dominate in 2D turbulence at large time. In 3D, they were shown to be responsible for intermittency in numerical experiments (Laval et al. (2001)). The SDT model assumes that the large scales are Gaussian and short correlated in time and it describes turbulence in terms of
Figure 3. Time growth of the total small-scale energy (solid line) and of the energy spectrum at several fixed k (dashed lines) in the case of the synthetic Gaussian strain with a finite correlation time.

Figure 4. Time growth of the total small-scale energy (solid line) and of the energy spectrum at several fixed k (dashed lines) in the case of the strain obtained from 512^3 DNS the one-point k-space correlators using the method introduced in [Nazarenko et al. 2003] for the kinematic dynamo problem. We studied both 2D and 3D turbulence, the 2D case being equivalent to the problem of 2D passive scalars in the Batchelor regime. In 2D, we found steady state solutions for correlators of all orders. These solutions correspond to
forced turbulence and they describe cascades of the energy and enstrophy series of invariants (two invariants at each order). The energy cascades are non-intermittent: initially Gaussian turbulence at the forcing scale remains Gaussian and scale invariant throughout the inertial range. On the contrary, the scale invariance and gaussianity break down for the enstrophy cascades and a regime dominated by thin elliptical structures develops in the k-space. In 3D, we found that the steady state does not exist in SDT and the total
energy grows in a dynamo-like fashion. To have a realistic description of the steady state of the Navier-Stokes turbulence one have to compliment SDT with a model for the local scale interaction which will be done in future work. However, the study of the purely nonlocal interaction presented in this paper reveals several interesting effects which are likely to persist in some form when the local interactions are taken into account. In particular, the nonlocal interactions are shown to lead to an interesting turbulent state
A model for rapid stochastic distortions of small-scale turbulence

in which all modes have plane polarization in the k-space. Statistics of such turbulent fields is far from being Gaussian (in which all polarizations are present). Similar effect for the dynamo magnetic fields was found in Nazarenko et al. (2003). The k-space moments allow also to quantify the dominant coherent structures in the k-space which are responsible for intermittency in similar way as the x-space moments capture the k-space structures. Note that singular structures in the k-space are not necessarily singular in the x-space (e.g. a field periodic in some direction is a singular 1D line in the k-space). For the Navier-Stokes turbulence, the intermittent k-space structures are found to be very elongated ellipsoids centered at the origin. These structures leave their signatures on the spectral flatness and on the scalings of the higher k-space moments with respect to the order n. Further, similarly to the kinematic dynamo problem the scalings indicate presence of the log-normal statistics of the small-scale velocity fields. Naturally, putting back the local interactions into the model will weaken the tendency to form elongated ellipsoids and plane polarized wavepackets, but some deviation from the Gaussian statistics in the direction predicted by these tendencies should be expected in real Navier-Stokes turbulence.

We studied numerically the SDT model (2.7) for a synthetic Gaussian strain with a finite correlation time and for a strain field obtained from a 512^3 spectral DNS of the Navier-Stokes equation. The results show that most predictions of the white-noise theory, such as e.g. the energy spectrum shape, the polarization decrease and the increase of the spectral flatness, are also observed in these two cases of the strain. Thus, the SDT equations obtained for the Gaussian white noise strain are likely to be a good model for the nonlocal interactions in real Navier-Stokes turbulence.

10. Appendix

Our aim here is to derive a closed equation for the generating function Z starting with equation (3.5). The last term in this equation is the easiest one,

$$\begin{align*}
-2\nu k^2((\lambda |u(k)|^2 + \alpha u(k)^2 + \beta \overline{u(k)^2})E) = -2\nu k^2 DZ
\end{align*}$$

where D is a differential operator defined in (3.8). The correlators containing factor σ_{ij} can be found using the Gaussian integration by parts. In particular

$$\begin{align*}
\langle \sigma_{ij}E \rangle = \Omega(\frac{\delta E}{\delta \sigma_{ij}}) = \Omega \left[\lambda (\Gamma_{m,ij} \overline{u_m} + \Gamma_{m,ij} u_m E) + 2\alpha \langle \Gamma_{m,ij} u_m E \rangle + 2\beta \langle \Gamma_{m,ij} \overline{u_m} E \rangle \right],
\end{align*}$$

where we have used the definition (3.6). Here, $\Gamma_{m,ij}$ is a response function,

$$\begin{align*}
\Gamma_{m,ij} = \frac{\delta u_m}{\delta \sigma_{ij}}
\end{align*}$$

Differentiating (2.7) with respect to σ_{ij} and using whiteness of the strain tensor we get

$$\begin{align*}
\Gamma_{m,ij} = (k_i \partial_j + \frac{\delta_{ij}}{d}(1 - k_l \partial_l))u_m + \left(\frac{2k_m k_i}{k^2} - \delta_{mi}\right)u_j.
\end{align*}$$
In what follows we will use the turbulence isotropy, in particular, expressions of type

\[\langle (\mathbf{u}, u_j) E \rangle = \frac{2}{(d-1)} \langle u^2 E \rangle (\delta_{ij} - \frac{k_i k_j}{k^2}) \quad (10.5) \]

\[\langle u_j u_j E \rangle = \frac{1}{(d-1)} \langle u^2 E \rangle (\delta_{ij} - \frac{k_i k_j}{k^2}) \quad (10.6) \]

\[\langle (\mathbf{u}, \mathbf{u}) E \rangle = \frac{1}{(d-1)} \langle (\mathbf{u}^2) E \rangle (\delta_{ij} - \frac{k_i k_j}{k^2}) \quad (10.7) \]

Substituting (10.4) into (10.2) and using the above isotropy relations we have

\[\langle \sigma_{ij} E \rangle = \Omega(k_i \partial_j - \frac{\delta_{ij}}{d} k_i \partial_l)Z + \frac{2\Omega}{(d-1)} \frac{k_i k_j}{k^2} \delta_{ij} DZ \quad (10.8) \]

where \(D \) is a differential operator defined in (3.5). This allows us to find the first term on the RHS of (3.5),

\[k_i \partial_j \langle \sigma_{ij} E \rangle = \Omega \left[\frac{(d-1)}{d} k^2 Z_{kk} + \frac{1}{d} (2D + d^2 - 1) kZ_k + 2DZ \right] \quad (10.9) \]

Similarly, the other three terms on the RHS of (3.5) can be obtained by the Gaussian integration by parts and using the response function (10.4) and the isotropy. After a lengthy but straightforward algebra one gets

\[\lambda \langle \sigma_{ml}(\mathbf{u}, u_m) E \rangle = -2\Omega \left[\frac{2}{d} \right] Z_{\alpha} + 2(1 - \frac{1}{d}) DZ_{\alpha} + \lambda (Z_{\alpha, \beta} - Z_{\alpha}) + \frac{1}{d} k_i \partial_i Z_{\alpha} \]

and

\[2\alpha \langle \sigma_{ml} u_m u_i E \rangle = 2\alpha \Omega \left[\frac{2}{d} \right] Z_{\alpha} + 2 \frac{1}{d} k_i \partial_i Z_{\alpha} - 2\lambda Z_{\alpha} - 2\beta Z_{\lambda, \beta} - 2\alpha Z_{\alpha, \beta} \]

(10.10)

The 4th term can be obtained from (10.11) via interchanging \(\alpha \) with \(\beta \) and \(\mathbf{u} \) with \(\mathbf{u} \),

\[2\beta \langle \sigma_{ml} u_m u_i E \rangle = 2\beta \Omega \left[\frac{2}{d} \right] Z_{\beta} + \frac{1}{d} k_i \partial_i Z_{\beta} - 2\lambda Z_{\beta} - 2\alpha Z_{\beta, \alpha} - 2\beta Z_{\beta} \]

(10.12)

Putting expressions (10.9), (10.10), (10.11), (10.12) and (10.13) into (10.1), we have the following final equation,

\[\dot{Z} = \Omega \left[\frac{1}{2} \left(\frac{1}{d} \right) k^2 Z_{kk} + \frac{1}{d} (4D + d^2 - 1) kZ_k + 2(1 - \frac{2}{d} + d) DZ - \frac{4}{d} D^2 Z \right] + 2(\lambda^2 + 4\alpha \beta) Z_{\alpha, \beta} + 8\lambda\alpha Z_{\alpha, \lambda} + 8\beta Z_{\beta, \lambda} + 4\alpha^2 Z_{\alpha, \alpha} + 4\beta^2 Z_{\beta, \beta} \]

(10.13)

REFERENCES

Balkovsky, E. & Fouxon, A. 1999 Universal long-time properties of lagrangian statistics in the batchelor regime and their application to the passive scalar problem. Phys. Rev. E 60, 4164–4174.

Batchelor, G. K. & Proudman, I. 1954 The effect of rapid distortion of fluid in turbulent motion. Quart. Journ. Mech. and Applied Math. 7, 83–103.

Chekhtov, M., Falkovich, G., Kolokolov, I. & Vergassola, M. 1999 Small scale turbulent dynamo. Phys. Rev. Lett. 83, 4065–4068.
A model for rapid stochastic distortions of small-scale turbulence

Falkovich, G., Gawedzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975.

Furstengerg, H. 1963 Non-commuting random products. Trans. Am. Math. Soc. 108, 377–428.

Kazantsev, A. P. 1968 Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP 26.

Kraichnan, R. H. 1961 Dynamics of nonlinear stochastic systems. J. Math. Phys. 2, 124–148.

Kraichnan, R. H. 1974 Convection of a passive scalar by a quasi-uniform random straining field. J. Fluid Mech. 64, 737–762.

Kraichnan, R. H. & Nagarajan, S. 1967 Growth of turbulent magnetic fields. Phys. Fluids 10, 859–870.

Kulsrud, R. & Anderson, S. W. 1992 The spectrum of random magnetic fields in the mean field dynamo theory of the galactic magnetic field. Astrophysical Journal 396, 606.

Laval, J.-P., Dubrulle, B. & Nazarenko, S. 2001 Non-locality and intermittency in 3D turbulence. Phys Fluids 13, 1995–2012.

Nazarenko, S. 1999 Exact solutions for near-wall turbulence theory. Phys. Rev. A 264, 444–448.

Nazarenko, S., Kevlahan, N. K.-R. & Dubrulle, B. 2000 Nonlinear RDT theory of near-wall turbulence. Physica D 139, 301–321.

Nazarenko, S. & Laval, J.-P. 2000 Non-local 2D turbulence and Batchelor’s regime for passive scalars. J. Fluid Mech. 408, 301–321.

Nazarenko, S., West, R. J. & Zaboronski, O. 2003 Statistics of fourier modes in the kazantsev-kraichnan dynamo model. Submitted to Phys. Rev. E.

Orszag, S. A. 1966 Dynamics of fluid turbulence. Tech. Rep., PPPL report PPL-AF-13.

Schekochihin, A. A., Boldyrev, S. A. & Kulsrud, R. M. 2002a Spectra and growth rates of fluctuating magnetic fields in the kinematic dynamo theory with large magnetic prandtl numbers. Astrophysical Journal 567, 828, e-print astro-ph/0103333.

Schekochihin, A. A., Maron, J. L., Cowley, S. & McWilliams, J. C. 2002b The small-scale structure of magnetohydrodynamic turbulence with large magnetic prandtl numbers. Astrophysical Journal 576, 806–813, e-print astro-ph/0203219.