A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes

Jin-tian Li1,2*, Jing-li Lu1, Hong-yu Wang1, Zhou Fang1, Xiao-juan Wang1, Shi-wei Feng1, Zhang Wang1, Ting Yuan2, Sheng-chang Zhang2, Shu-ning Ou1, Xiao-dan Yang1, Zhuo-hui Wu1, Xiang-deng Du2, Ling-yun Tang2, Bin Liao2, Wen-sheng Shu1,3, Pu Jia1* and Jie-Liang Liang1*

1Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
2School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
3Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou, 510006, PR China

ABSTRACT

Phosphate-solubilizing microbes (PSMs) drive the biogeochemical cycling of phosphorus (P) and hold promise for sustainable agriculture. However, their global distribution, overall diversity and application potential remain unknown. Here, we present the first synthesis of their biogeography, diversity and utility, employing data from 399 papers published between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic analysis of 12986 genome-sequenced prokaryotic strains. We show that at continental to global scales, the population density of PSMs in environmental samples is correlated with total P rather than pH. Remarkably, positive relationships exist between the population density of soil PSMs and available P, nitrate-nitrogen and dissolved organic carbon in soil, reflecting functional couplings between PSMs and microbes driving biogeochemical cycles of nitrogen and carbon. More than 2704 strains affiliated with at least nine archaeal, 88 fungal and 336 bacterial species were reported as PSMs. Only 2.59% of these strains have been tested for their efficiencies in improving crop growth or yield under field conditions, providing evidence that PSMs are more likely to exert positive effects on wheat growing in alkaline P-deficient soils. Our systematic genetic analysis reveals five promising PSM genera deserving much more attention.

Key words: agricultural sustainability, biogeography, phosphate-solubilizing microorganism, plant yield, population size, phenotype, biofertilizer, genotype

CONTENTS

I. Introduction ... 2772
II. Methods .. 2772
(1) A global literature survey ... 2772
(2) A nationwide field survey ... 2774
(3) A systematic genetic analysis 2774
III. Results ... 2775
(1) Global patterns of the population density of PSMs in the environment ... 2775
(2) Continental patterns of the population density of soil PSMs ... 2775
(3) Overall diversity of PSMs isolated worldwide 2775
(4) Performance of PSMs in improving plant growth and yield .. 2775
(5) Promising PSMs revealed by genetic analysis 2775
IV. Discussion ... 2776

* Authors for correspondence (Tel.: +86 20 85211850; Fax: +86 20 85211850; E-mail: pjiag@mscnu.edu.cn); (Tel.: +86 20 85211861; Fax: +86 20 85211861; E-mail: liang-jieliang@126.com)
I. INTRODUCTION

Phosphorus (P) is one of the six elements that are essential for all organisms on Earth (Westheimer, 1987; Schlesinger, 1997; Elser, 2012). A huge amount of P is necessary to sustain Earth’s life (Cordell, Drangert & White, 2009). On a geological timescale, the primary supply of P to the biota is largely from the weathering of P-containing rock (Walker & Syers, 1976). However, microbes also play a crucial role in the P cycle in the biosphere (Rodríguez & Fraga, 1999; Falkowski, Fenchel & Delong, 2008), as a majority of P in soil is present in insoluble forms that cannot be taken up directly by plants without assistance from microbes (Rodríguez & Fraga, 1999; Vitousek et al., 2010; Richardson & Simpson, 2011).

The discovery of phosphate-solubilizing microbes (PSMs), which are able to solubilize insoluble phosphates into free orthophosphate (Rodríguez & Fraga, 1999; Falkowski et al., 2008), dates back to 1908 (Sackett, Patten & Brown, 1908; Gerrets, 1948). However, little attention was given to PSMs until the late 1980s (Goldstein, 1986; Rodríguez & Fraga, 1999). The past three decades have seen a dramatic rise in interest in PSMs for two reasons. One is the increasing depletion of extractable P rocks (Cordell et al., 2009). The other lies in the fact that an estimated 5.7 billion hectares of arable land worldwide contain too little free orthophosphate to achieve optimal crop production (Batjes, 1997; Hinsinger, 2001).

Several recent reviews have aimed to summarize major research achievements in the field of PSMs since the 1990s (Rodríguez et al., 2006; Sharma et al., 2013; Alori, Glick & Babalola, 2017; Pradhan et al., 2017a). For example, Rodríguez et al. (2006) integrated diverse information on a wide range of genes that encode enzymes responsible for microbial solubilization of either insoluble organic phosphates (e.g. oppA, encoding phytase) or insoluble inorganic phosphates (e.g. gcd, encoding glucose dehydrogenase). However, many other important aspects of our current knowledge of PSMs have not yet been synthesized. First, no reviews have focused on the population density of PSMs in different habitats and the factors that influence this, despite the importance of such information for a better understanding of the role of PSMs in the biogeochemical cycling of P (Wang, Houlton & Field, 2007b). Second, there is no summary available of the overall diversity of PSMs, although a large number of PSM strains have been reported separately (e.g. Oliveira et al., 2009). Third, no efforts have been made to provide the comprehensive data compilation and synthesis that is needed for quantitative evaluation of the application potential of PSMs as P biofertilizers in different experimental settings, despite the wide range of laboratory and field experiments conducted to date (e.g. Zabihi et al., 2011). Additionally, little attention has been given to systematic screening of potentially promising PSM taxa for improving crop growth or yield by identifying microbial genotypes with genes that encode microbial enzymes responsible for phosphate solubilization, although the exponentially increasing availability of data on genome-sequenced microbes now allows such screening (Zimmerman, Martiny & Allison, 2013; Dunivin, Yeh & Shade, 2019).

Here, we present the first synthesis of the biogeography, diversity and utility of PSMs. To this end, we synthesize data from 399 papers published between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic analysis of nearly 13000 genome-sequenced prokaryotic strains. Our findings provide a solid basis not only for further studies on basic aspects of PSMs but also for those addressing applied aspects of PSMs.

II. METHODS

(1) A global literature survey

To construct a comprehensive database of PSMs, we conducted a literature search on 31st December 2017 in the ISI Web of Science using the following combination of key words: phosphate-solubilizing microbe OR phosphate-solubilizing microorganism OR phosphate-solubilizing bacteria OR phosphate-solubilizing bacterium OR phosphate-solubilizing fungi OR phosphate-solubilizing fungus. We restricted our research to articles written in English and published between 1980 and 2017. We retrieved 761 hits. After an initial assessment based on careful reading of the abstracts, 646 full-text articles were downloaded for further analysis.

To be included in our database, articles were required to match at least one of the following three criteria: (i) presenting data on the population density of PSMs (phosphate-solubilizing bacteria, fungi or both) in environmental samples from a particular study site; (ii) reporting at least one new PSM strain and classifying it to genus or species; and (iii) determining the efficiency of a given PSM strain classified to genus or species in improving plant growth or yield in a...
laboratory or field experiment or both. A total of 399 papers matched our criteria.

For the papers matching the first criterion, we collected information on place name, geographic location (latitude and longitude), mean annual precipitation (MAP) and mean annual temperature (MAT) of the study sites, sample type (bulk soil, rhizosphere soil, sediment, etc.), and the population density of the PSMs (expressed as the number of colony-forming units per gram or per millilitre sample, i.e. CFU g$^{-1}$ or CFU ml$^{-1}$), pH, and total and available P of the samples. We focused on these geographic, climatic and environmental parameters, as they are potentially important factors influencing the population density of PSMs in the environment (Kucey, 1983; Crowther et al., 2019). Note, however, that full information on these parameters was generally presented in only a proportion of the targeted papers. Where this information was not provided, approximate values for the geographic and climatic factors were derived from Google Earth 7.0 (free version) and/or WorldClim by geocoding the place names of the study sites (Hijmans et al., 2005). In cases where a given sample type for a study site consisted of samples collected at different time points, we combined all the data on the microbial and environmental parameters for different time points and calculated their averages for that sample type and study site. For example, if the ‘bulk soil’ of a study site comprised samples collected at three different time points, we calculated an average population density of PSMs for the ‘bulk soil’ based on those averages of the corresponding samples collected at the three time points (because the raw data for individual samples collected at each time point were generally not available in the literature), and we recorded these as three data points ($n = 3$ in our database; see online Supporting Information, Table S1) for the population density of PSMs in the ‘bulk soil’ of that study site. However, for study sites where samples of a given sample type were collected at only one time point, data points for a sample type are equal to the sample size of that sample type (these values were always presented in the literature). In cases where the population densities of both phosphate-solubilizing bacteria and fungi were determined, we considered their sum as the population density of PSMs. We plotted the information on sample type and the number of data points on a world map using the R package ggplot2 (Wickham, 2016). A post-hoc multiple-comparison Tukey’s HSD test was carried out to explore significant differences between sample types in the population density of PSMs. Rock and municipal solid waste were not included in this multiple comparison, as there were data for only one study site for each of these two sample types. To investigate the effects of geographic, climatic and environmental parameters on the population density of PSMs in the environmental samples, we analysed the relationships between these parameters and the population density of PSMs by using univariate linear regressions. Data on water samples were excluded from the regression analysis, given that the physical nature of water differs greatly from that of solid samples. The normality of all data was evaluated using the shapiro.test function in R, and a log transformation was performed to increase normality when necessary.

For the papers matching the second criterion, we collected information on species name (for strains that were classified only to the genus level, the genus name plus ‘sp.’ was recorded), strain name, domain name (i.e. archaea, bacterium or fungus), habitat type, growth medium for isolation of the strain, and the presence of inorganic or organic phosphates in the growth medium. To provide an overview of the diversity of the PSM strains identified in the literature, we counted the total number of these strains and the number of species/genera they represented. In addition, we divided these strains into subgroups according to their domain (i.e. archaea, bacterium or fungus) or their ability to solubilize different types of phosphates (i.e. insoluble organic or inorganic phosphates or both) and counted the number of species/genera represented by the corresponding strains within individual subgroups. To show the genera represented by the identified prokaryotic strains of PSMs, the representative full-length 16S ribosomal RNA (rRNA) gene sequences of these genera (one sequence per genus) retrieved from the SILVA database (release 138.1; Quast et al., 2012) were used to construct a phylogenetic tree with RAxML (Stamatakis, 2006). Similarly, the representative full-length 18S rRNA gene sequences retrieved from the SILVA database were used to construct a phylogenetic tree for the fungal genera represented by the identified fungal strains of PSMs. The contributions of individual genera to the total number of identified PSM strains or to the total number of identified PSM strains that can solubilize both inorganic and organic phosphates (hereafter referred to as PSM$^{\text{andO}}$) were calculated and then visualized on the phylogenies using iTOL v4 (Letunic & Bork, 2019).

For the papers matching the third criterion, we collected information on the strain name, species name and domain name of each PSM strain under investigation, experiment type (field or laboratory), plant name (Latin and cultivar names were recorded when applicable), pH, total and available P of the plant growth substrate used in the experiment, and the effect of each PSM strain on plant growth or yield (compared to the non-inoculated control). To obtain information about the factors influencing the performance of the tested strains, we divided the reported experiments into subgroups in a stepwise manner according to experiment type, plant type (crop or non-crop) and measure of effect (edible part or non-edible part for crops and biomass for non-crop plants). In cases where more than one measure of effect was available, we used only the one that was most relevant to the shoot biomass of non-crop plants or the yield of crops (edible parts). For example, when shoot and root biomasses of wheat (Triticum aestivum) were determined as measures of the effect of a given PSM strain in an experiment, we used shoot biomass as the measure of the effect of that strain on wheat in that experiment. We calculated the proportions of different effect types (i.e. positive, negative, or no effect) of experiments for the finest-level subgroups under consideration. In cases where it was not clear whether a difference...
between an inoculated treatment and its non-inoculated control in plant growth or yield was statistically significant, we considered a decrease or increase no greater than 10% compared to the control as 'no effect'. Regarding 'positive effect' cases for each of the finest-level subgroups, we further calculated an average improvement (%) (i.e. the arithmetic mean of the increases observed in all relevant cases). The average improvement of all field experiments showing a positive effect was calculated and compared with that of all laboratory experiments showing a positive effect based on an independent sample t-test. To obtain a better understanding of the application potential of PSM strains, the results from field experiments were selected for further analysis. We compared soil P and available P between the experiments showing a positive effect and those showing a negative effect with a Student's t-test. In cases where data on available P were not present in mg kg$^{-1}$, they were transformed assuming that soil has a bulk density of 1.3 g cm$^{-3}$. This analysis was not done for total soil P, as only 11 experiments reported this parameter. We also calculated the percentages of positive effect cases for individual subgroups of experiments divided according to crop type (i.e. wheat, maize [Zea mays] and chickpea [Cicer arietinum]); other crops were not considered, as the number of experiments for each of these were <10 or PSM type (i.e. bacteria and fungi; data on archaea were not available).

(2) A nationwide field survey

To obtain more insights into the biogeography of PSMs, a nationwide field survey of the population density of PSMs in soil was conducted in China from July to August 2018. Forty sites distributed across 22 provinces (Table S2) were selected to be representative of the geographic, climatic and edaphic variations present across China. At each site, two to three representative habitats that were approximately five kilometres apart were chosen for the collection of soil samples. In sum, four desert (Gobi) regions, nine grasslands, 27 forests, 29 farmlands and 40 mined lands were sampled. We paid considerable attention to mined lands, as they are widespread in China and pose serious threats to soil quality and functioning (Chen et al., 2014a). For each habitat, four soil samples were collected at a depth of 0–20 cm. Each soil sample consisted of three subsamples, which were collected from three randomly distributed locations. To avoid the potential effects of plants, soils located approximately 1 m away from the plant rhizosphere were sampled. After sampling, we recorded the geographic parameters (coordinates and elevation) of each habitat and transported the samples to laboratories as soon as possible.

Phosphate-solubilizing bacterial and fungal populations in our soil samples were enumerated according to methods described previously (Leaungvutiviroj et al., 2010). As described in Section II.1, we considered the population density of PSMs to be the sum of those of the densities of phosphate-solubilizing bacteria and fungi. Note that 15% of our soil samples failed to form clear zones on the plates used for counting PSM colonies within an incubation period of 7 days, of which nearly 80% were soil samples from mined lands. This is in agreement with the well-known observation that the edaphic conditions of mined lands are generally unfavourable for soil microbes responsible for soil nutrient cycling (Sheoran, Sheoran & Poonia, 2010). As a result, a total of 367 soil samples whose PSM populations could be counted after 7 days of incubation were included for further analysis. Selected soil properties, including pH, electrical conductivity (EC), total and available (Olsen) P, nitrate-nitrogen (NO$_3^-$), ammonia-nitrogen (NH$_4^+$), dissolved organic carbon (DOC), and water-soluble organic carbon (WSOC), were determined using standard methods (Sparks & Sparks, 1996).

We compared the population density of soil PSMs among habitat types using a post-hoc multiple-comparison Tukey's HSD test. The climatic parameters (MAP and MAT) for each habitat were obtained from WorldClim by using its geographic coordinates. To explore the effects of geographic, climatic and edaphic parameters on the population density of soil PSMs, univariate linear regressions were used to analyse the relationships between these parameters and the population density of soil PSMs. The shapiro.test function in R was employed to evaluate the normality of the data. Where necessary, data were log-transformed to increase their normality.

(3) A systematic genetic analysis

To assess the genetic potential of cultured and whole genome-sequenced prokaryotic microbes for phosphate solubilization, we performed a phylogenomic analysis to retrieve genes encoding orthologous proteins of acid phosphatase (AP), alkaline phosphatase (ALP), phytase and glucose dehydrogenase (GCD) from all 12,986 complete bacterial and archaeal genomes from NCBI GenBank (updated on 3rd May 2019). These four enzymes were selected as they are considered the major enzymes responsible for organic and inorganic phosphate solubilization by microbes (especially prokaryotes; Rodriguez et al., 2006). One representative protein sequence for each gene family, AP (phaN, apfA and yfpA), ALP (phoD, phoX and phoA), phytase (appA and phy) and GCD (gcd), was retrieved from KEGG according to its corresponding KEGG Ontology (KO) number. The homologues of each gene family were obtained through an initial BLASTp search against 2764 manually curated representative genomes of prokaryotes with a broad range of phylogenetic diversity (e-value cut-off 1e-15; Wang & Wu, 2017). The sequences of each gene family were aligned using MAFFT v7.427 (Katoh et al., 2002) and trimmed using ZORRO (Wu, Chatterji & Eisen, 2012). A phylogenetic tree of each gene family was constructed using FastTree 2.1.10 (Price, Dehal & Arkin, 2010) and was manually inspected to resolve orthologues and potential paralogues into different subfamilies. A hidden Markov model was built for each subfamily using HMMer 3.2 (Eddy, 1998).

Selecting the proper HMM search threshold is key to obtaining orthologous proteins for each gene family at a large scale. Instead of using arbitrary thresholds as in previous studies (e.g. Dunivin et al., 2019), we calibrated the threshold from known orthologous sequences for each gene family. We
performed an HMM search using the orthologous HMM of each gene family against the known orthologous proteins in the 2764 representative genomes from manual tree inspection. The lowest bitscore of all hits was recorded as the threshold for all orthologous matches of the gene family. A full HMM search was performed for each gene family using all of its orthologous and paralogous HMMs against the protein sequences of all 12,896 genomes. Protein sequences that showed the best hit with the orthologous HMM with (i) a bitscore greater than the calibrated threshold for the gene family, and (ii) more than 90% sequence coverage, were retained as the orthologues for each gene family.

The numbers of orthologous proteins for each gene family among all 12,986 genomes were tabulated. For each of the four enzymes, the proportion of enzyme-positive genomes within a given genus to all genomes within that genus was calculated. Given the important role of pyrroloquinoline quinone (PQQ, a cofactor of GCD) in the microbial solubilization of inorganic phosphates (Rodriguez et al., 2006), only genomes with gad plus at least one gene encoding PQQ (pqq) were considered GCD-positive genotypes. Genes encoding orthologous proteins of PQQ were retrieved from the 12,986 genomes according to the method described above. For each of the four enzymes, we also assessed the contribution of each genus to the total enzyme-positive genotypes by dividing the number of enzyme-positive genomes within each genus by the total number of enzyme-positive genomes of all 12,986 genomes. The phylogenetic distribution of the two measurements mentioned above and the genera with enzyme-positive genomes were visualized in iTOL v4 (Letunic & Bork, 2019). The phylogenies were constructed as described above.

III. RESULTS

(1) Global patterns of the population density of PSMs in the environment

We found 63 studies quantifying the population density of PSMs in a total of 1053 environmental samples collected from 117 geographical locations distributed across 19 countries around the world (Fig. 1A, Table S1). On average, rhizosphere and bulk soils harboured more PSMs than sediments and water bodies ($P < 0.05$, Fig. S1A) but not more PSMs than composts and plant roots. The population density of PSMs in the environmental samples was positively related to the total P and MAT of the study site ($P < 0.05$, Fig. 1B, D) but was not correlated with pH, available P, latitude, longitude or MAP ($P > 0.05$, Fig. 1C, Fig. S1B–E).

(2) Continental patterns of the population density of soil PSMs

Our nationwide field survey including 367 soil samples (Fig. 2A, Table S2) showed that both farmland and forest soils exhibited a higher PSM population density than those from the other habitats ($P < 0.05$, Fig. S2A). Positive relationships were found between the population density of soil PSMs and total P, available P, NO$_3^-$-N, DOC, MAT, MAP and longitude of the study sites ($P < 0.05$, Fig. 2B, C, E–G, Fig. S2E, G). Negative relationships existed between the population density of soil PSMs and EC, latitude and elevation ($P < 0.05$, Fig. S2B, F, H). The population density of soil PSMs was not correlated with pH, NH$_4^+$-N or WSOC ($P > 0.05$, Fig. 2D, Fig. S2C, D).

(3) Overall diversity of PSMs isolated worldwide

More than 20 archaeal, 398 fungal and 2286 bacterial strains were identified as PSMs (Fig. 3A, Table S3). Five fungal and 25 bacterial genera were found to be rich in PSMs (i.e. > 10 strains; Fig. 3C, D, Table S3). Among these, Bacillus, Pseudomonas, Enterobacter, Burkholderia, Penicillium and Aspergillus individually had more than 100 identified PSM strains and thus could be considered significant PSM genera (Fig. 3C, D, Table S3).

At least 214 and 2580 strains were found to be able to solubilize organic and inorganic phosphates (hereafter referred to as PSMO and PSMI, respectively; Fig. 3B). Among these, only 90 strains were PSMI&O, the majority of which were affiliated with Paenibacillus, Bacillus, Pseudomonas, Lactococcus, Enterobacter and Alcaligenes (Fig. 3C). These six genera, of which three overlapped with those containing > 100 PSM strains, were also considered significant PSM genera. The resultant nine main PSM genera belonged to three bacterial phyla and one fungal phylum (Fig. 3C, D).

(4) Performance of PSMs in improving plant growth and yield

A total of 724 records on the performance of individual PSM strains in improving plant growth and yield were reported in 185 studies (Fig. 4A, Table S4). Regardless of plant type and measure of effect, the proportion of positive effect cases (records) in laboratory-based experiments was nearly 80%, which was much higher than that of field-based experiments. When only positive effect cases were taken into account, the average improvement observed in laboratory-based experiments was 91.7%, which was 2.37 times higher than that of field-based experiments ($P < 0.01$, Fig. 4A).

The average soil pH of field-based experiments showing a positive effect of PSMs was 7.23, which was higher than that showing no effect ($P < 0.05$, Fig. 4B). Lower available soil P was recorded in field-based experiments showing a positive effect of PSMs ($P < 0.001$, Fig. 4C). A total of 76.5% of field-based experiments conducted with wheat showed a positive effect of PSMs, which was much higher than for experiments with maize and chickpea (Fig. 4D). A total of 37.5% of experiments focusing on fungi reported a positive effect, which was almost equal to that of bacteria ($P > 0.05$, Fig. 4E).

(5) Promising PSMs revealed by genetic analysis

Among the 12,986 prokaryotic genomes, 4367, 6377, 2401 and 1524 were found to have AP-, ALP-, phytase- and GCD-positive genotypes, respectively (Tables S5–S8). We...
focused on the genera rich in enzyme-positive genotypes, each of which had no less than 30 sequenced genomes, and ≥50% of the sequenced genomes contained at least one gene encoding an enzyme of interest. In this context, 17, 29, nine and eight genera were found to be rich in AP-, ALP-, phytase- and GCD-positive genotypes, respectively (Fig. 5, Tables S5–S8). We identified six genera rich in both GCD-positive and AP-/ALP-/phytase-positive genotypes (i.e. with genetic potential for solubilization of both inorganic and organic phosphates) as promising PSM genera (Fig. 5). Remarkably, *Klebsiella* and *Xanthomonas* were the only two genera rich in genotypes for all four enzymes. For *Klebsiella*, 99.5, 99.0, 98.1 and 91.3% of genomes were AP-, ALP-, phytase- and GCD-positive, respectively.

IV. DISCUSSION

The roles of PSMs in driving the biogeochemical cycling of P and mediating plant uptake of P are comparable to those of nitrifying microbes in the N cycle (Rodríguez & Fraga, 1999; Crowther et al., 2019). However, research on PSMs has lagged far behind that on nitrifying microbes. This is especially the case for the past decade, when great advances have been made in the study of nitrifying microbes (Kuypers, Marchant & Kartal, 2018). In comparison, the number of studies currently available on PSMs is tiny (Alori, Glick & Babalola, 2017; Kuypers, Marchant & Kartal, 2018). More surprisingly, these studies have not yet been synthesized either at a global scale or in a quantitative way, representing a major constraint on the development of PSM research.

(1) Factors determining the geographic distribution of PSMs

The population density of PSMs in environmental samples and its determinants are critical to understanding not only their population ecology but also their roles in regulating the biogeochemical cycling of P and mediating the plant uptake of this element (Goldstein, 1986; Rodríguez &...
Indeed, due to its strong association with soil P solubilization potential (e.g. Hu et al., 2009), the population density of soil PSMs can be used as a proxy to represent the overall function of soil microbial communities responsible for P cycling. While a growing body of evidence suggests that exploring the functional biogeography of soil microbial communities involved in nutrient cycling, such as PSMs, can provide insights into ecosystem health and resilience.
communities can improve the predictions of global biogeochemical models for C and N (Crowther et al., 2019), little is known about the biogeography of the population density of soil PSMs. To our knowledge, there has been only one prior study that determined the population density of PSMs in environmental samples at a spatial scale larger than the

Fig 3. Overall diversity of phosphate-solubilizing microbes (PSMs) reported in the literature. (A, B) The number of taxa of PSM subgroups divided according to domain (A) and substrate preference for phosphate solubilization (B). PSMO and PSMI represent microbes that can solubilize organic and inorganic phosphates, respectively; PSMI&O represents those that can solubilize both organic and inorganic phosphates. (C, D) Phylogenies showing genera represented by all 2704 identified PSM strains. The genera with more than 10 PSM strains are highlighted with red branches in the phylogenies. The two rings outside the phylogenies indicate the contributions of individual genera to the total identified PSM (inner ring) and PSMI&O strains (outer ring). Seven bacterial and two fungal genera (each with >100 identified PSM strains or >5 identified PSMI&O strains) considered the main PSM genera are identified with numbers on the outermost ring. See Table S3 for source data.
plot level. In that study, the population density of phosphate-solubilizing fungi in 29 soils collected from 17 sites located in southern Alberta, Canada, was found to be positively correlated with total soil P but was not related to available soil P (Kucey, 1983). In agreement with this pattern, we showed that at a global scale, there was a positive relationship between the population density of PSMs in environmental samples and total P in the environment, but not with available P (Fig. 1B, Fig. S1B). We speculate that the lack of correlation between these two important functional microbial groups and potentially those driving C cycling: the population density of soil PSMs across China was positively correlated with not only soil NO$_3$-N but also soil DOC (Fig. 2E, F).

In addition to confirming the positive effect of MAT on the population density of PSMs (Figs 1D and 2G), our nationwide field survey showed further that the population density of soil PSMs across China was positively correlated with MAP and longitude but negatively correlated with latitude (Fig. S2E–G). It is thus clear that soil PSMs tended to reach larger population sizes and thereby likely a higher metabolic activity responsible for P cycling in warm and moist regions than in dry and cold regions. Similar patterns have been observed for microbes governing the biogeochemical cycling of N and C (Bahram et al., 2018; Crowther et al., 2019). Taken together, these findings provide further evidence for functional coupling between soil PSMs and microbes governing soil nitrification and organic matter degradation (Crowther et al., 2019).

Fig 4. Performance of phosphate-solubilizing microbes (PSMs) in improving plant growth or yield. (A) Overview of reported experiments addressing the performance of PSMs in improving plant growth or yield. The number of experiments for a given subgroup according to experiment type, plant type or measure of effect is given in parentheses. (B–E) Important factors influencing the performance of PSMs on crop growth or yield in field experiments. (B, C) There are significant differences between experiments showing positive effects of PSMs and those showing no effects for soil pH (B) and available P (C). (D, E) Potential effects of crop and PSM types on the performance of PSMs. In A–C the results of a Tukey’s HSD test and a Student’s t-test are shown: *, ** and *** represent $P < 0.05$, 0.01 and 0.001, respectively. Numbers above the bars in B–E indicate the numbers of experiments for the respective subgroups. See Table S4 for source data.
(2) Are we observing the whole picture of PSM diversity?

A traditional viewpoint has been that rhizosphere soil will have a higher population density of PSMs than bulk soil (Goldstein, 1986). However, the results from our global-scale literature review (Fig. S1A) do not support this viewpoint. This discrepancy may be attributed at least partly to the considerable variations in population density of PSMs among the studies synthesized herein. These variations could be
derived from complex sources. For example, plant identity was reported previously to have a considerable effect on the population density of PSMs in rhizosphere soil (Leaungvutiviroj et al., 2010). Additional studies focusing on pairwise comparisons of the population density of PSMs between the rhizosphere and bulk soil from the same plant species are needed to examine the generality of this finding, as such studies remain relatively rare.

Although a large proportion of early efforts to isolate PSMs were focused on rhizosphere soil (Goldstein, 1986), an increasing number of PSM strains have been isolated from a wide range of other habitats (including bulk soil, water, sediment, rock, compost, plant tissue and even animal tissue; Table S3). Here, for the first time, we provide a comprehensive list of all PSM strains reported in the literature. The total number of PSM strains (i.e., 2704) was somewhat smaller than expected, which could partly be due to exclusion of strains without genus-level taxonomic information available. The six main PSM genera (Bacillus, Pseudomonas, Enterobacter, Burkholderia, Penicillium and Aspergillus; each with >100 PSM strains) identified herein have also frequently been mentioned in previous reviews (e.g. Rodriguez & Fraga, 1999; Alori et al., 2017). However, we showed also that the number of bacterial genera rich in PSM strains and their contribution to the total number of PSM strains far exceeded the corresponding values for fungal genera (Fig. 3). These results clarify a popular misconception regarding the numerical predominance of fungal PSM genera (Alori et al., 2017). The great difficulty in culturing archaea is likely a major reason for the finding that only 20 archael strains belonging to 11 genera were able to solubilize inorganic phosphates. Nonetheless, it is interesting to explore whether archaea can solubilize organic phosphates, considering that their phylogenetic and functional diversities are much higher than previously thought (Schleper, Jurgens & Jonuscheit, 2005).

Remarkably, 90 strains were found to have the ability to solubilize both inorganic and organic phosphates (i.e. PSM sho strains; Fig. 3B), of which 93.3% were bacteria. Among the 19 bacterial genera containing PSM sho strains, Paenibacillus, Bacillus, Pseudomonas, Lactococcus, Enterobacter and Alcaligenes together contributed 70% of the total number of PSM sho strains. To date, they have received much less attention than they deserve, especially considering the widespread cooccurrence of inorganic and organic insoluble phosphates in the environment (Walker & Syers, 1976; Vitousek et al., 2010) and that many members of these genera (e.g. Bacillus) show a broad spectrum of antagonistic activity against phytopathogens (Fira et al., 2018). Despite the existence of these main PSM sho genera and those rich in PSM strains, it is often observed that different strains from the same species can have strong, weak or even no ability to solubilize phosphates (e.g. Baldan et al., 2015; Brigido, Glick & Oliveira, 2017). In agreement with this, a previous phylogenetic analysis revealed that the average level of phylogenetic conservation for genes encoding ALP was less than the species level (Zimmerman et al., 2013). These findings raise another key question about the relative importance of vertical inheritance and other factors for a given strain to acquire the ability to solubilize either inorganic or organic phosphates. Indeed, our recent study provided evidence that phage-related horizontal gene transfer can assist some soil microbes in acquiring new genes encoding GCD (Liang et al., 2020). Nonetheless, the polyphyletic nature of PSM strains makes it difficult to develop a universal molecular tool for analysing all PSMs in environmental samples.

(3) Determinants of PSM performance in improving plant growth and yield

The importance of field experiments in evaluating the application potential of PSM strains as P biofertilizers has long been recognized (Goldstein, 1986). To date, however, there are only 95 such experiments (Fig. 4A), among which 70 strains were tested. Nonetheless, these experiments have several critical implications for further estimation of PSM strain efficiencies in improving crop growth or yield under field conditions. First, regardless of the different experimental conditions used, laboratory experiments overestimated the actual efficiencies of PSM strains in field experiments by an average of 237%. Second, PSM strains were more likely to exhibit positive effects in alkaline P-deficient soils (average pH of 7.23 and an average available P of 6.16 mg kg⁻¹; Fig. 4B, C). This appears reasonable, given that acidification of their surrounding environment is a major mechanism for phosphate solubilization by PSMs (Rodriguez & Fraga, 1999) and that a soil available P level lower than 10 mg kg⁻¹ is considered insufficient to meet the growth demands of many crops (Syers, Johnston & Curtin, 2008).
Third, the benefits of using inoculation with PSM strains seem to be higher for wheat than for maize and chickpea (Fig. 4D). This phenomenon may be attributed partly to the higher P requirement of wheat compared to the other two crops (Rose, Hardiputra & Rengel, 2010; Singh et al., 2016), while other possible reasons remain to be explored. Another remarkable issue is that only five field-based observations of the positive effects of PSM strains on crop yield (edible part, Fig. 4A) have been reported, highlighting the urgent need for more such experiments. To that end, PSM_{PSM} strains deserve more attention, given the preliminary evidence that the probability of the occurrence of an increase in crop yield driven by PSM_{PSM} strains is higher than that of PSM^d and PSM^O strains (12.5% vs. 6.45%; Table S4).

(4) New hopes from previously unknown PSMs

In an attempt to identify promising microbial taxa for future research, we found that bacteria with the genetic potential for solubilization of organic phosphates outnumbered those of inorganic phosphates (Fig. 5, Tables S5–S8). This result is in contrast to the numerical inferiority of PSM^O strains identified in the literature (Fig. 3B), indicating that a large number of PSM^O strains exist that remain to be characterized. More importantly, six promising genera rich in genotypes of PSM^d and PSM^O strains were revealed by our systematic genetic analysis (Fig. 5). Among these, <i>Klebsiella</i> and <i>Xanthomonas</i> were the most remarkable, as they were rich in genotypes with genes encoding all four enzymes of interest (Fig. 5). While most <i>Xanthomonas</i> strains are plant pathogens (Ryan et al., 2011), <i>Klebsiella</i> should be a priority for future research. This is especially the case, given that many strains of this genus were reported to enhance plant growth by producing indole acetic acid (e.g. Sachdev et al., 2009). However, only five PSM^d and 56 PSM^O strains from this genus have been reported, with no PSM^d strains identified to date (Table S3), perhaps explaining why <i>Klebsiella</i> has received little attention in recent reviews (e.g. Alori et al., 2017). On the other hand, although the other four of our promising genera are well recognized in the literature (e.g. Alori et al., 2017), the potential of their members as PSM^d and PSM^O strains has been poorly explored (especially for <i>Acinetobacter</i> and <i>Serratia</i>).

V. CONCLUSIONS

(1) Taking advantage of a comprehensive quantitative synthesis approach, this study provides the most complete picture of the biogeography, diversity and utility of PSMs to date.

(2) We revealed that the population density of PSMs in environmental samples at continental to global scales is regulated by total P rather than pH, presenting novel evidence for pH-related niche partitioning between PSMs and nitrifying microbes.

(3) The significant positive relationships between the population density of soil PSMs and available P, NO₃−-N and DOC in soil suggest functional couplings between soil PSMs and microbes driving soil nitrification and organic matter degradation.

(4) PSMs tend to occur at a higher population density in warm and moist regions than in dry and cold regions.

(5) We compiled an inclusive list of PSMs, which included 2704 strains characterized by their polyphyletic nature.

(6) We showed that currently available field-based experiments conducted to estimate the application potential of the reported PSM strains are still limited but provide evidence for a tendency of PSMs to have positive effects on wheat growing in alkaline P-deficient soils.

(7) Six promising genera for future research were identified by our systematic genetic analysis (<i>Klebsiella</i>, <i>Xanthomonas</i>, <i>Enterobacter</i>, <i>Serratia</i>, <i>Acinetobacter</i>, and <i>Pseudomonas</i>.

VI. ACKNOWLEDGEMENTS, AUTHOR CONTRIBUTIONS AND DATA ACCESSIBILITY

We thank Professor A.J.M. Baker (Universities of Melbourne and Queensland, Australia, and Sheffield, UK) for his help in the improvement of this review. This work was supported financially by the National Natural Science Foundation of China (Nos. 41622106, 42077117, 31600082, 41561076 & 41603074), the Key-Area Research and Development Program of Guangdong Province (No. 2019B110207001), National Science Foundation of Guangdong Province of China (Nos. 2020A1515010937 & 2020A1515110972) and the China Postdoctoral Science Foundation (Nos. 2018M640798 & 2019M652939).

Author contributions: J.-T.L., J.-L. Liang, P.J. and W.-S.S. developed and framed the research questions; J.-L. Lu, H.-Y.W., Z.F., X.-J.W., S.-W.F., T.Y., S.-C.Z., S.-N.O., X.-D.Y., Z.-H.W., X.-D.D., L.-Y.T. and B.L. conducted the experiments and collected the data; P.J., J.-L. Liang and Z.W. performed the data analyses; J.-T.L., J.-L. Liang, P.J. and Z.W. wrote the first draft; all authors contributed to revisions.

Data accessibility: scripts used to produce figures and links to original are available in GitHub [https://github.com/scnupjia/jpsm].

VII. REFERENCES

*References with an asterisk are cited in the supporting information only.

*Abdel-Rahman, H. M., Salem, A. A., Mountafa, M. M. A. & El-Garhy, H. A. S. (2017). A novel Achromobacter sp. EMCC1936 strain acts as a plant-growth-promoting agent. Acta Physiologiae Plantarum 39(2), 61.

*Abou-el-Seoud, I. I. & Abdel-Megeed, A. (2012). Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions. Saudi Journal of Biological Sciences 19(3), 55–63.
A global review of phosphate solubilizing microbes

Açvedo, E., Galindo-Castanedo, T., Prada, F., Haghjou, T., Galindo-Castaneda, T., Navia, M., Banik, S. & D’Souza, S. F. (2017). Microbial phosphorus solubilization – a world dataset of derived soil properties by FAO-UNESCO. Zentralblatt für Mikrobiologie 138 (3), 209–216.

Batjes, N. H. (1997). A world dataset of derived soil properties by FAO-UNESCO soil unit for global modeling. Soil Use and Management 13, 9–16.

Becerra-Castro, C., Preto-Fernandez, A., Alvarez-Lopez, V., Mondragon, C., Cabello-Conejo, M. I., niece, A. F. & De la. (2011). Nickel solubilizing capacity and characterization of rhizobacteria isolated from hyperaccumulator and non-hyperaccumulating subspecies of Alyssum sempervirens. International Journal of Phytoremediation 13(sup1), 229–244.

Bello-Akinosho, M., Marahfane, R., Adeleke, R., Thantsha, M., Pillay, M. & Cheng, G. J. (2014). Potential of polyvalent ocyclic hydrocarbon-degrading bacterial isolates to contribute to soil fertility. BioMed Research International 2016, 5798357.

Berríos, G., Cabrera, G., Gidekel, M. & Gutierrez-Moraga, A. (2013). Characterization of a novelantarctic plant growth-promoting bacterial strain and its interaction with antarctic hair grass (Deschampsia antarctica Desv.). Polar Biology 36 (3), 349–362.

Bhattacharya, S. S., Barman, S., Gosh, R., Duwy, R. K., Gowami, L. & Mandal, N. C. (2013). Phosphate solubilizing ability of E. coli isolates from vermicompost. Indian Journal of Experimental Biology 51(10), 840–848.

Bianco, C. & Depe, R. (2010). Improvement of phosphate solubilization and Medicago plant yield by an isolate-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Applied and Environmental Microbiology 76 (14), 4602–4632.

Billah, M. & Bano, A. (2013). Role of plant growth promoting rhizobacteria in modulating the efficiency of poultry litter composting with rock phosphate and its effect on growth and yield of wheat. Waste Management & Research 31(1), 63–72.

Bouchair, Z., Bourkeft, A. M., Elghezal, B., Kerrou, K., Durgou, B., Abdelmoumen, H., et al. (2017). Diversity of nodular bacteria of Secovum maurusis in northern Algeria and their impact on plant growth. Canadian Journal of Microbiology 63(3), 450–463.

Braz, R. R. & Nahas, E. (2012). Synergistic action of both Agrophilus nigri and Burkholderia cepacia in co-culture increases phosphate solubilization in growth medium. FEMS Microbiology Letters 332(1), 84–90.

Brian, C., Glick, B. R. & Oliveira, S. (2017). Survey of plant growth-promoting rhizobacteria in natural Portuguese chickpea Microhizobium isolates. Microbial Ecology 73, 900–915.

Bridson, V. L., Zhuang, W. Q. & Alvarez-Cohen, L. (2016). Bioleaching of rare earth elements from monazite sand. Biotechnology and Bioengineering 113(2), 339–348.

Busato, J. S., Zandonadi, D. B., Mól, A. R., Souza, R. S., Aguiar, K. P., Junod, F. B. R. & Olovares, F. L. (2017). Compost biofortification with diazotrophic and Psolubilizing bacteria improves maturation process and P availability. Journal of the Science of Food and Agriculture 97(3), 949–958.

Caballero-Mellado, J. Onofre-Lemos, J. Estrella-De Los Santos, P. & Martinez-Aguilar, L. (2007). The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Applied and Environmental Microbiology 73(16), 5308–5319.

Cabello, M., Izara, B., Boschinsky, A. M., Saparell, M. & Señor, S. (2003). Effects of an arbuscular mycorrhizal fungus, Glomus mosseae, and a rock-phosphate-solubilizing fungus, Penicillium thomii, on Mungo pericarps growth in a soilless medium. Journal of Basic Microbiology 43(3), 182–189.

Cammarci, R., Donnez, M. F. & Erdogan, U. (2007). The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and water exchange. Turkish Journal of Agriculture and Forestry 31(2), 189–199.

Chase, R., Antoun, H. & Cecelia, M. P. (1996). Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. Phaseolus. Plant and Soil 184(2), 311–321.

Baldan, E., Negrin, S., Romualdi, C., D’Alessandro, S., Clocchetti, A., Zottini, M., Stevanato, P., Squarini, A. & Baldan, B. (2015). Beneficial bacteria isolated from grapevine inner tissues share Arabolloses thaliana. Plas. One 10, e0140922.

Baliotis, N. T., Pandiarajan, G. & Kumar, B. M. (2018). Isolation, identification and characterization of phosphate solubilizing bacteria from different crop soils of SriRoppurum Patuk, Virudhunagar District, Tamil Nadu. Tropical Ecology 57(3), 465–474.

Banik, S. & Dey, B. K. (1982). Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant and Soil 69(3), 353–364.

Banik, S. & Dey, B. K. (1985). Effect of inoculation with native phosphate solubilizing microorganisms on the available phosphate content in the rhizosphere and uptake of phosphate by rice plants, grown in an Indian alluvial soil. Zentralblatt für Mikrobiologie 100(4), 453–464.

Banik, S. & Dey, B. K. (1981). Phosphate-solubilizing microorganisms of a lateritic soil. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (136)(6), 467–492.

Banik, S. (1983). Variation in potentiality of phosphate-solubilizing soil microorganisms with phosphate and energy source. Zentralblatt für Mikrobiologie 130(3), 299–216.
Crowther, T. W.

da Costa, P. B., Benevides, A. de Souza, R. Schoenfeld, V. Vargas, L. K. & Passaglia, L. M. (2013). The effects of different fertilization conditions on bacterial plant growth promoting traits: guidelines for directed bacterial prospecting and testing. Plant and Soil 368(1–2), 267–280.

Das, A. C., Chaokhravy, A., Sen, G., Sekul, P. & Mukherjee, D. (2005). A comparative study on the dissipation and microbial metabolism of organophosphate and carbamate insecticides in orchardfall and ruffleau soils of West Bengal. Chemosphere 58(5), 579–584.

Das, A. C. & Mukherjee, D. (2006). Influence of insecticides on microbial transformation of nitrogen and phosphorus in Tropic Orchragallia soil. Journal of Agricultural and Food Chemistry 48(8), 3728–3732.

Das, A. C., Nayer, H. & Chaokhravy, A. (2012). Soil application of diuron and atrazine and pyrethrin pesticide herbicides influences the activities of phosphate-solubilizing microorganisms in soil. Environmental Monitoring and Assessment 180(4), 7453–7459.

Das, S., Jang, T. K. (2008). Microbial population dynamics, especially stress tolerant Bacillus thuringianus, in partially anarobic rice field soils during post-harvest period of the Himalayan, island, brackish water and coastal habitats of Bangladesh. World Journal of Microbiology and Biotechnology 24(8), 1403–1410.

Das, S., Jana, T. K. & De, T. K. (2014). Vertical profile of phosphate activity in the Sundarban mangrove forest, north east coast of Bay of Bengal, India. Geomicrobiology Journal 31(8), 716–725.

Das, S., Lyra, P. S. & Khan, S. A. (2007). Biogeochemical processes in the continental slope of Bay of Bengal: I. Bacterial solubilization of inorganic phosphorus. Journal of Biological Sciences 7(5), 1–9.

Das, S., Ram, S. S., Sahu, H. K., Rao, D. S., Chakraborty, A., Sudarshan, M. & Thayyil, H. N. (2013). A study on soil physico-chemical, microbial and metal content in Sukinda chromite mine of Odisha, India. Environmental Earth Sciences 69, 2487–2497.

Dastager, S. G. & Damare, S. (2013). Marine actinobacteria showing phosphate-solubilizing efficiency in Chorao Island, Goa, India. Current Microbiology 66(7), 421–427.

Dastager, S. G., Deepa, C. K. & Pandey, A. (2011). Plant growth promoting potential of Pseudomonas putida in cowpea (Vigna unguiculata (L.) Walp.). Applied Soil Ecology 45(3), 250–255.

de Bolle, S., Geremikael, M. T., Maervoet, V. & de Neve, S. (2013). Performance of phosphate-solubilizing bacteria in soil under high phosphorus conditions. Biology and Fertility of Soils 49(5), 705–714.

de Carvalho Costa, F. E. & de Melo, I. S. (2012). Endophytic and rhizospheric bacteria from Opuntia ficus-indica null and their ability to promote plant growth in cowpea, Vigna unguiculata (L.) Walp. African Journal of Microbiology Research 6(6), 1345–1351.

de Lacerda, J. R. M., da Silva, T. F., Volle, R. E., Marques, J. M. & Seldin, L. (2016). Generally recognized as safe (GRAS) Lactobacillus strains associated with Lippia sidoides Cham. are able to solubilize/mineralize phosphorus. SpringerPlus 5, 828.

de Oliveira Mendes, G., Galez, A., Vassileva, M. & Vassilev, N. (2017). Fermentation liquid containing microbially solubilized P significantly improved Chlorella growth and P uptake in both soil and water experiments. Applied Soil Ecology 117118, 208–211.

Deepa, C. K., Dastager, S. G. & Pandey, A. (2010). Plant growth-promoting activity in newly isolated Bacillus thuringiensis NII-0902 from Western ghat forest, India. World Journal of Microbiology and Biotechnology 26(12), 2277–2283.

Delvasto, P., Ballester, A., Muñoz, J. A., González, F., Blázquez, M. L., Iglesias, J. M. & García-Balboa, C. (2008). Diversification and activity of phosphate bioinoculating bacteria from a high-phosphorus iron ore. Hydrometallurgy 92(3), 124–129.

Dias, A. C. F., Costa, F. E. C., Andreote, F. D., Lacaya, P. T., Teixeira, M. A., Assumção, L. C., Araujo, W. L., Azvedo, J. L. & Melo, I. S. (2009). Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World Journal of Microbiology and Biotechnology 25(2), 189–195.

Dixit, S., Kuttan, K. K. & Sreeravatava, R. (2017). Isolation and characterization of phosphorus solubilizing bacteria from manganese mining area of Balaghat and Chambubarwara. Current Science 113(5), 500–504.

Don, N. T. & Diep, C. N. (2014). Isolation, characterization and identification of phosphate-and-potassium-solubilizing bacteria from weathered materials of granite rock mountain, That Son, an Giang province, Vietnam. American Journal of Life Sciences 2(3), 282–292.
Falkowski, P. G., & Elser, J. J. (2012). Phosphorus: a limiting nutrient for humanity? *Current Opinion in Biotechnology*, 23, 833-838.

Etoa, F. X., Fankem, H., Dimkine, G., Prez, L., Kaga, M., & Enjia, R. (2005). Coimmobilization of Azospirillum lipoferum and *Rhizobium* strain *Rhizobium* *spp.* for successful colonization and growth promotion of *Lycopersicum esculentum* in sandy soil. *Brazilian Journal of Microbiology* 42(1), 105-113.

Elsner, J. J. (2012). Phosphorus: a limiting nutrient for humanity? *Current Opinion in Biotechnology*, 23, 833-838.

Etoa, F. X., Fankem, H., Dimkine, G., Prez, L., Kaga, M., & Enjia, R. (2005). Coimmobilization of Azospirillum lipoferum and *Rhizobium* strain *Rhizobium* *spp.* for successful colonization and growth promotion of *Lycopersicum esculentum* in sandy soil. *Brazilian Journal of Microbiology* 42(1), 105-113.

Elsner, J. J. (2012). Phosphorus: a limiting nutrient for humanity? *Current Opinion in Biotechnology*, 23, 833-838.

Etoa, F. X., Fankem, H., Dimkine, G., Prez, L., Kaga, M., & Enjia, R. (2005). Coimmobilization of Azospirillum lipoferum and *Rhizobium* strain *Rhizobium* *spp.* for successful colonization and growth promotion of *Lycopersicum esculentum* in sandy soil. *Brazilian Journal of Microbiology* 42(1), 105-113.

Elsner, J. J. (2012). Phosphorus: a limiting nutrient for humanity? *Current Opinion in Biotechnology*, 23, 833-838.

Etoa, F. X., Fankem, H., Dimkine, G., Prez, L., Kaga, M., & Enjia, R. (2005). Coimmobilization of Azospirillum lipoferum and *Rhizobium* strain *Rhizobium* *spp.* for successful colonization and growth promotion of *Lycopersicum esculentum* in sandy soil. *Brazilian Journal of Microbiology* 42(1), 105-113.

Elsner, J. J. (2012). Phosphorus: a limiting nutrient for humanity? *Current Opinion in Biotechnology*, 23, 833-838.

Etoa, F. X., Fankem, H., Dimkine, G., Prez, L., Kaga, M., & Enjia, R. (2005). Coimmobilization of Azospirillum lipoferum and *Rhizobium* strain *Rhizobium* *spp.* for successful colonization and growth promotion of *Lycopersicum esculentum* in sandy soil. *Brazilian Journal of Microbiology* 42(1), 105-113.

Elsner, J. J. (2012). Phosphorus: a limiting nutrient for humanity? *Current Opinion in Biotechnology*, 23, 833-838.

Etoa, F. X., Fankem, H., Dimkine, G., Prez, L., Kaga, M., & Enjia, R. (2005). Coimmobilization of Azospirillum lipoferum and *Rhizobium* strain *Rhizobium* *spp.* for successful colonization and growth promotion of *Lycopersicum esculentum* in sandy soil. *Brazilian Journal of Microbiology* 42(1), 105-113.

Elsner, J. J. (2012). Phosphorus: a limiting nutrient for humanity? *Current Opinion in Biotechnology*, 23, 833-838.

Etoa, F. X., Fankem, H., Dimkine, G., Prez, L., Kaga, M., & Enjia, R. (2005). Coimmobilization of Azospirillum lipoferum and *Rhizobium* strain *Rhizobium* *spp.* for successful colonization and growth promotion of *Lycopersicum esculentum* in sandy soil. *Brazilian Journal of Microbiology* 42(1), 105-113.
Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.). Frontiers in Microbiology 6, 583.

Harris, N. P. & Niranjana, S. R. (2009). Isolation and characterization of phosphate-solubilizing rhizobacteria to improve plant health of tomato. Plant and Soil 316(1-2), 13-24.

Harries, J. N., New, P. B. & Martin, P. M. (2006). Laboratory tests can predict beneficial effects of phosphate-solubilising bacteria on plants. Soil Biology and Biochemistry 38(2), 1521-1536.

Hayat, R., Irshad, U., Hayat, R. & Ali, H. (2013a). Molecular characterization of soil bacteria for improving crop yield in Pakistan. Pakistan Journal of Botany 45(3), 1045-1053.

Hayat, R., Sheikh, R. A., Iftikhar-ul-Hassan, M. & Ahmad, I. (2013b). Characterization and identification of compost bacteria based on 16S rDNA gene sequencing and 16S rRNA gene-based polymerase chain reaction. International Journal of Agriculture and Biology 15(4), 231-239.

Hayat, W., Amam, H., Irshad, U., Azeem, M., Iqabal, A. & Nazir, R. (2017). Analysis of ecological attributes of bacterial phosphate solubilizers, native to pine forests of Lower Himalaya. Applied Soil Ecology 112, 51-59.

He, H., Ye, Z., Yang, B., Yan, J., Xiao, L., Zhong, T., Yuan, M., Cai, X., Fang, Z. & Jing, Y. (2013). Characterization of endophytic Rhodococcus sp. JN25 with troponin C-mediated goethite cation of a phosphate-solubilizing bacterium. Marine Biotechnology 15(1), 1-8.

He, H., Yang, B., Yuan, M., Xiao, L., Zhong, T., Yuan, M., Wang, W. & Jing, Y. (2012). Isolation and characterization of a β-propeller gene containing a phosphate-supersolubilizing rhizobacteria strain KPS-11 for growth promotion of potato (Solanum tuberosum L.). Frontiers in Microbiology 6, 583.

Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237, 173-195.

Hoeben, E., Marschner, P. & Liere, R. (2005). Organic acid exudation and PH changes by Gerudina sp. and Pseudomonas fluorescens grown with P adsorbed to goethite. Biology and Fertility of Soils 39(5), 405-412.

Hu, J., Lin, X., Wang, J., Hu, C., Yin, R. & Zhang, J. (2009). Population size and specific potential of P-mineralizing and-solubilizing bacteria under long-term P-deficiency fertilizer in a sandy loam soil. Pedosphere 19(1), 49-58.

Hu, X., Li, Z., Gao, Y., Zhang, J., Gou, X., Fan, Y. & Yang, Y. (2010). Isolation and identification of a phosphate-solubilizing bacterium Pantoea stewartii subsp. steutatoi M5, and effects of temperature, salinity, and pH on its growth under indoor culture conditions. Aquaculture International 18(6), 1079-1091.

Hu, X., Roberts, D. P., Nie, L., Luan, J. E., Yu, C., Li, Z., Zhang, S. & Liao, X. (2013). Development of a biologically based fertiliser, incorporating Bacillus subtilis var. natto, for improving phosphorus nutrition of cattle crops. Canadian Journal of Microbiology 59(4), 231-236.

Husain, K., Hameed, S., Shairdil, R. A., Iqbal, A., Iqbal, I. & Hameed, S. (2013). First report of Phoma cruciferarum on rapeseed (Brassica napus) in Pakistan. Phytopathology Research 15(1), 169-178.

Hussein, M., Haq, M. H., Ali, H., Iqbal, J. & Hahn, D. (2015). Isolation and characterization of rhizomicrobial isolates for phosphate solubilization and indole acetic acid production. Journal of the Korean Society for Applied Botany 38(8), 847-855.

Ibris, A., Labuchagne, N. & Kornlein, L. (2009). Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. Journal of Agricultural Science 147(1), 17-30.

Imen, H., Niel, A., Adnane, B., Manel, B., Marrouk, Y., Saidi, M. & Bouazza, S. (2015). Inoculation with phosphate-solubilizing Mesorhizobium strains improves the performance of chickpea (Cicer aritinum L.) under phosphorus deficiency. Journal of Agricultural Science 35(3), 1610-1621.

Islam, M. T., Deora, A., Hashidoko, Y., Rahman, A., Ito, T. & Tahara, S. (2007). Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh. Zeitschrift für Naturforschung C-Journal of Biological Sciences 62(1-2), 103-110.
Leungvutiviroj, C., Koch, S., Khalaf, E. M., Kurek, E., Liang, C., & Meng, L. M. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217–224.

López, L., Pozo, C., Rodolfo, B., Calvo, C. & González-López, J. (2006). Influence of pesticides and herbicides on phosphate activity and selected bacterial microbiota of a natural lake system. Environmental Microbiology, 8(5), 487–493.

Ludwicka, L. M., Anjescu, D., Ionescu, J. G., Barron, G., Luna, M. F., del Pilar Monte, M., Fabra, A. & Taurian, T. (2017). Role of bacterial pyrroloquinoline quinone in phosphate solubilizing ability and in plant growth promotion on strain Senavia sp. S119. Symbiosis, 72, 31–43.

Luczyk, P. M., Marcincin, J., Androte, F. D., Dini-Androte, F., Neves, A. C. & Cali, N. (2012). Taxonomic and functional diversity of cultured soil and associated bacteria from the Dubrovnik region. BMC Microbiology, 12, 212.

McGuigan, N. & Wang, D. (2015). Isolation, identification and evaluation of phosphate-solubilizing bacteria from soils of different pH. Journal of Plant Physiology, 187, 107–117.

Michelengo, G., Marchant, H. K., Nalin, S. C., Lovley, D. R. & Nevinne, M. A. (2011). Isolation, characterization and evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. Microbiological Research, 166(5), 353–360.

Mohammad, O. A., Pizzirani-Kleiner, A. A., Mahmoud, A., Shalaby, M. & El-Mahrouky, N. (2012). Role of Bacillus subtilis in the mobilization of phosphorus from industrial wastewater sludge in soil. Current Microbiology, 64(4), 587–593.

Mohamed, S., Bokari, N. & Al-Shneih, T. A. (2013). Isolation and characterization of isolated phosphate-solubilizing bacteria from oil shales of West Bengal, India. Geomicrobiology Journal, 30(2), 731–738.

Mitra, M., Mandia, S. K., Sarwar, K., Sharma, A. & Misra, C. K. (2015a). Isolation and identification of endophytic bacteria isolated from banana trees. Bioresource Technology, 177, 21–27.

Mitra, M., Mandal, S., Rana, S. C., Roy, S. & Singh, S. (2015b). Isolation and characterization of potent phosphate solubilizing bacteria from calcareous soils. Microbiological Research, 170(5), 581–584.

Mitra, S., Bandopadhyay, C., Samanta, S., Sarkar, K., Sharma, A. P. & Misra, C. K. (2015a). Isolation, identification and efficacy of inoculant phosphate-solubilizing bacteria from oilshale lakes of West Bengal, India. Geomicrobiology Journal, 32(8), 731–738.

Mishra, B. K., Pradhan, N., Mohanta, N. C., Sukla, L. B. & Mishra, B. K. (2011). Dephosphorization of LD slag by phosphorus solubilising bacteria. International Biodeterioration & Biodegradation, 65(5), 404–409.

Mörisch, G. A., Rubio, E. J., Consiglio, A. & Perticari, A. (2016). Plant-associated fluorescent actinobacteria from red latosol soil: beneficial characteristics and their impact on lettuce growth. Journal of General and Applied Microbiology, 62(5), 248–257.

Mitra, M., Leivinger-Lentz, S. M. D., Soares, C. R. S. P., Lima, J. M. D., Olives, F. L. & Moreira, F. M. S. (2011). Initial pH of medium affects organic acids production but do not affect phosphate solubilization. Brazilian Journal of Microbiology, 42(2), 367–375.

Mattia, S. R., Pagano, M. C., Cuzzocrea, C., Carnèo, A. A., Horita, S. N. & Scotti, M. R. (2009). Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an old iron ore area in Brazil. European Journal of Soil Biology, 45(3), 259–266.

Matos, A. D., Gomes, I. C., Nitsch, S., Xavier, A. A., Gomes, W. S., dos Santos Neto, J. A. & Perreira, M. C. T. (2017). Phosphate solubilization by endophytic bacteria isolated from banana trees. Anais da Academia Brasileira de Ciências, 90(2), 2945–2954.

Mehnaz, S. & Lazaro, A. (2012). Development of Pseudomonas putida, Gluconacetobacter diazotrophicus, and Azotobacter lipoficus on corn plant growth under greenhouse conditions. Microbiolc Ecology, 51(5), 326–335.

Mehnaz, S., Baiq, D. N. & Lazaro, V. (2013). Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. Journal of Microbiology and Microbial Technology, 20(12), 1614–1623.

Mehta, P., Chauhan, A., Mahajan, R., Mahajan, P. K. & Sherkot, C. K. (2010). Strain of Bacillus circulans isolated from apple rhizosphere showing plant growth promoting potential. Current Science, 99(5), 538–542.

Mota, P. S., Walla, A. & Sciot, C. (2015). Functional diversity of phosphate solubilizing plant growth promoting rhizobacteria isolated from apple trees in the trans Himalayan region of Himachal Pradesh, India. Biological Agriculture & Horticulture, 31(4), 265–288.

Biological Reviews 96 (2021) 2771–2793 © 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
phosphate-solubilizing bacteria in soils of differing chemical characteristics in Kenya. Annals of Microbiology 62(5), 897–904.

*Nico, M., Ribeudo, C. M., Gori, J. I., Cantore, M. L., & Curá, J. A. (2012). Uptake of phosphate and promotion of vegetative growth in glucose-exuding rice plants (Oryza sativa) inoculated with plant growth-promoting bacteria. Applied Soil Ecology 61, 190–195.

*Norandegani, M. B. J., Saud, H. M. & Yun, W. M. (2013). Phylogenetic relationship of phosphate solubilizing bacteria according to 16S rDNA genes. BioMed Research International 2013, 1527.

*Ogro, F. C. (2010). Conversion of cassava wastes for biofertilizer production using phosphate-solubilizing fungi. Bioresource Technology 101(11), 4120–4124.

*Geût, M., Er, F. & Randemir, N. (2010). Phosphate solubilization potentials of soil Actinobacteria strains. Biology and Fertility of Soils 46(7), 707–715.

*Geût, M., Er, F. & Doweling, G. N. (2010). Increased nitrogen extraction of wheat roots by inoculation with phosphate-solubilizing microorganisms. Plant and Soil 339(1–2), 283–297.

*Olivera, C. A., Alves, M. C. M., Marriell, I. E., Gomes, E. S., Scotti, M. R., Carneiro, N. P., Guimarães, C. T., Scheffer, R. E. & Sá, N. M. H. (2009). Phosphate solubilization and plant growth promoting potential by stress tolerant phosphate-solubilizing fungi. Bioresource Technology 100(18), 8400–8406.

*Patel, H. H., Patil, R. D., Kawanaka, S., Lee, H. J., Jean, D. Y., Lee, C. Y. & Son, H. J. (2010). Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from oilseed rape rhizosphere. Applied and Environmental Microbiology 76(7), 2451–2458.
A global review of phosphate solubilizing microbes

organic acids in plant growth promoting fluorescents pseudomonads. Bioresources 10(2), 3055–3061.

Patel, K. J., Singh, A. K., Nareshkumar, G. & Archana, G. (2010a). Organic acid-producing, phosphate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Applied Soil Ecology 44(3), 232–241.

Patel, K. J., Vig, S., Kumar, G. N. & Archana, G. (2010b). Effect of transgenic rhizobacteria overexpressing Citrobacter braakii α-ketoglutarate on phyto-P availability to mung bean plants. Journal of Microbiology and Biotechnology 20(11), 1491–1499.

Patel, P. K., Shrivastava, C. T., BhensDhariwal, C. G. & Gaidai, S. M. (2015). Antiphyytopathogenic and plant growth promoting attributes of Bacillus strains isolated from rhizospheric soil of chickpea. Journal of Agricultural and Food Chemistry 17(5), 1363–1377.

Pavíc, A., Štaničkov, S. & Marjanović, Ž. (2011). Biochemical characterization of a Sphingomonad isolate from the ascocarp of white truffle (Tuber Magnatum Pico). Archives of Biological Science 63(3), 697–704.

Peix, A., Rivas-Bovero, A. A., Matos, P. F., Rodríguez-Barrueco, C., Martínez-Molina, E. & Vélazquez, E. (2001). Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium nitrogenum isolated from agriculture soil.

Pe´rez, E., Alca´zar, M. & Pavia, I. A. (2014). Phosphate-solubilizing rhizobacteria enhance Zn uptake in grown in P-deficient soils. Ecological Engineering 73, 526–535.

Pereira, S. I. A. & Castro, P. M. L. (2014). Maximum-likelihood trees for large alignments. Molecular Biology and Evolution 31(5), 1590–1599.

Potter, S. A., Rosén, M., Cameron, T., Qureshi, H. M. & Devkota, R. (2013). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent pseudomonads. BMC Microbiology 13(1), 174.

Price, M. N., Dehal, P. S. & Arkin, A. P. (2010). FastTree 2—economically maximum-likelihood trees for large alignments. PLoS One 5, e9480.

Prathapkumar, P. & Muthukumar, T. (2017). The root endophytic fungus Caronella gigasulis from Parijatum hystrophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecology 27, 69–77.

Pratu, M. E., Basran, Y., Li, C. Y. & Lensky, V. K. (2004). Microbial populations and activities in the rhizosphere of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biology 6(5), 629–642.

Pratu, M. E., Li, C. Y. & Basran, Y. (2009). Rock-degrading endophytic bacteria in cacti. Environmental and Experimental Botany 66(2), 389–401.

Purnomo, E., Musyivi, A., Suryawati, M., Jumperi, A., Hashidoko, Y., Kusuma, S., S. & Onaisi, M. (2005). Phosphate-solubilizing microorganisms in the rhizosphere of local rice varieties grown without fertilizer on acid sulfate soils. Soil Science & Plant Nutrition 51(5), 679–681.

Quin, L., Jiang, H., Tian, J., Zhao, J. & Liao, H. (2011). Rhizobia enhance acquisition of phosphorus from different sources by soybean plants. Plant and Soil 340(1–2), 21–33.

Quat, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Zarza, P., Peplies, J. & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590–D596.

Qureshi, M. A., Shaker, M. A., Naveed, M. & Ahammad, M. J. (2009). Growth and yield response of chickpea to co-inoculation with Mesorhizobium ciceri and Bacillus megaterium. Journal of Animal and Plant Sciences 19(4), 205–211.

Rahi, P., Vivas, P., Sharma, S., Guliati, A. & Gurla, A. (2009). Plant growth promoting potential of the fungus Droszania sp. FIIB 571 from tea rhizosphere tested on chickpea, maize and pea. Indian Journal of Microbiology 49(2), 128–133.

Rahimzadeh, S. & Pirzad, A. (2017). Arbacular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.); a field study. Mycobiology 26(6), 537–542.

Rajaparkash, R. M. C. P., Herath, D., Senanayake, A. P. & Seneviratne, M. G. T. L. (2011). Mobilization of rock phosphate by bacteria through carrier inoculants to enhance growth and yield of wetland rice. Communications in Soil Science and Plant Analysis 42(3), 301–314.

Rajasekaran, R., Gayathry, G. M., Sithavali, A., Ramalingam, C. & Saravanan, V. S. (2013). Pesticide tolerant and phosphorus solubilizing Pseudomonas sp. strain SGRAF9 isolated from pesticides treated Achyranthes aspera rhizosphere soil. Ecotoxicology 22(4), 707–717.

Rajkumar, M. & Freitas, H. (2008). Influence of metal resistant-plant growth-promoting bacteria on the growth of Rhizopus oryzae and R. chinensis in soil contaminated with heavy metals. Chemosphere 71(5), 834–842.

Ram, H., Malik, S. S., Dhillon, S. S., Kumar, B. & Singh, Y. (2015). Growth and productivity of wheat affected by phosphorus-solubilizing fungi and phosphorus levels. Plant Cell and Environment 61(3), 122–126.

Ramakumar, V. S. & Kannaiah, E. (2011). Isolation of total heterothrophic bacteria and phosphate solubilizing bacteria and in vitro study of phosphate activity and production of phytohormones by P. S. Arch. of Applied Science Research 3(5), 581–586.

Rathore, I., Sen, M., Gharpur, A. D. & Tamrakar, J. C. (2013). An efficient Bacillus megaterium strain [CJT13 producing nano-phosphorus particles from pumice and solubilizing phosphates. International Journal of Current Engineering and Technology 6(5), 3872–3878.

Rawat, R. & Tewari, L. (2011). Effect of abiotic stress on phosphate solubilization by biocontrol fungus Trichoderma sp. Current Microbiology 62(6), 1521–1526.

Reyes, I., Bernal, L. & Antoun, H. (2002). Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Pseudomonas putida. Microbial Ecology 44(1), 39–48.

Reyes, I., Valery, A. & Vázquez, Z. (2006). Phosphate-solubilizing microorganisms isolated from rhizosphere of oat and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum sp. strain SGRAJ09 isolated from pesticides treated Achyra tena rhizosphere soil. Plant and Soil 287(1–2), 69–75.

Richardson, A. E. & Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology 156, 899–909.

Reni, K. & Pandey, A. (2011). Slow and steady phosphate solubilization by a psychrotolerant strain of Pseudomonas halotolerans (MTCC 9962). World Journal of Microbiology and Biotechnology 27(5), 1055–1062.

Rola, A., Pizarro-Toribio, P., Uendoano, Z., Fernández, M., Matilla, M. A., Molina-Henares, M. A., Molina, L., Segura, A., Deuce, E. & Ramos, J. L. (2013). Analysis of the plant growth-promoting properties exceeded by the genus of the rhizobium Pseudomonas putida BIRD-1. Environmental Microbiology 15(3), 788–804.

Rodríguez, H. & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17, 319–339.

Rodríguez, H., Fraga, R. & González, C. (2006). Genes of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology 41, 264–272.

Rohikhamshizin, F., Sachdev, D., Kazemipour, N., Engineer, A., Pandi, K. R., Zinjarde, S., Dhakephalakar, P. K. & Chopade, B. A. (2011). Characterization of plant growth-promoting traits of Azotobacter species isolated from rhizosphere of Pannisetum glaucum. Journal of Microbiology and Biotechnology 21(12), 556–566.

Romero, F. M., Maruna, M. & Piccinetstein, F. L. (2016). Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Research in Microbiology 167(3), 223–232.

Rose, T. J., Hardiputra, B. & Rangzel, Z. (2010). Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant and Soil 336, 159–170.

Ruangkanka, S. (2014a). Identification of phosphate-solubilizing bacteria from the bamboo rhizosphere. ScienceAsia 40(3), 204–211.

Ruangkanka, S. (2014b). Identification of phosphate-solubilizing fungi from the asparagus rhizosphere as antagonists of the root and crown rot pathogen Fusarium oxysporum. Scienceasia 40(1), 16–20.
phosphate-solubilizing bacteria upon the insoluble phosphates of raw bone meal and natural raw rock phosphate.

Saravanakumar, K. & Sarikhani, M. R. (2010). Growth promotion of wheat seedlings by a rhizosphere of Aspergillus niger strain of Xanthomonas campestris sources.

Sharan, A. & Ahmed, N. (2008). Effect of various parameters on the efficiency of zinc phosphate solubilization by indigenous bacterial isolates. African Journal of Biotechnology 7(10), 1543–1549.

Sharan, A. & Darmwal, N. S. & Gaar, R. (2008). Efficient phosphorus solubilization by mutant strain of Xanthomonas campestis using different carbon, nitrogen and phosphorus sources. World Journal of Microbiology and Biotechnology 24(12), 3087–3090.

Sharan, A., Darmwal, N. S. & Gaar, R. (2008). Xanthomonas campestis, a novel stress-tolerant, phosphate-solubilizing bacterial strain from saline-alkali soils. World Journal of Microbiology and Biotechnology 24(4), 753–759.

Sharma, R., Sharma, P., Chauhan, A., Walia, A. & Shirkot, C. K. (2017). Plant growth promoting activities of rhizobacteria isolated from Polysphondylium bahamense growing in North-West regions of the Himalaya. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 87(4), 1441–1457.

Sharma, R., Wallia, A., Chauhan, A. & Shirkot, C. K. (2015). Multi-trait plant growth promoting bacteria from tomato rhizosphere and evaluation of their potential as bioinoculants. Applied Biological Research 17(2), 113–124.

Sharma, S. B., Savay, R. Z., Sonawane, M., Trivedi, M. H. & Thiyagarajan, G. A. (2016). Nanospin vs SRR, a novel phosphate solubilizer from rhizosphere soil of Sorghum in Kachchh, Gujarat, India. Indian Journal of Experimental Biology 54, 644–649.

Sharma, S. B., Savay, R. Z., Trivedi, M. H. & Gori, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2, 587.

Sharma, V., Archana, G. & Kumar, G. N. (2011). Plasmid load adversely affects growth and gluconic acid secretion ability of mineral phosphate-solubilizing rhizobacterium Enterobacter asburiae PS13 under P limited conditions.

Sharon, J. A., Hathiwick, L. T., Glenn, G. M., Ish, S. H. & Lee, C. C. (2016). Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. Journal of Soil Science and Plant Nutrition 16(2), 525–536.

Sheoran, V., Sheoran, A. S. & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: a review. Indian Journal of Soil Science and Plant Nutrition 7(2), 167–173.

Shin, D., Kim, J., Kim, B. S., Jeong, J. & Lee, J. C. (2015). Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals 5(2), 189–202.

Sivivastava, M., Kale, S. P. & D’Souza, S. F. (2011). Rock phosphate enriched post-methanation bio-sludge from kitchen waste based biogas plant as P source for mugunbean and its effect on rhizosphere phosphatase activity. European Journal of Soil Biology 47(3), 203–212.

Singh, A. V., Chandra, R. & Gore, R. (2013). Phosphate solubilization by Chryseobacterium sp. and their combined effect with N and P fertilizers on plant growth promotion. Archives of Agronomy and Soil Science 59(5), 641–651.

Singh, J., Brar, B. S., Sekhon, B. S., Mayi, M. S., Singh, G. & Kaur, G. (2016). Impact of long-term phosphorus fertilization on Olsen-P and grain yields in maize-wheat cropping sequence. Nutrient Cycling in Agrosystems 106(1), 157–168.

Singh, M. & Prakash, N. T. (2012). Characterisation of phosphate solubilising bacteria in sandy loam soil under chickpea cropping systems. Indian Journal of Microbiology 52(2), 167–173.

Singh, B., Mazumder, P. B. & Pandey, P. (2017). Characterization of plant growth promoting rhizobia from root nodules of Mimosa pudica grown in Assam. Indian Journal of Environmental Biology 48(3), 441–447.

Singh, L. P. & Pandey, P. (2017). Glutathione and glutathione-S-transferase activity in Jatropha curcas in association with pyrene-degrading Pseudomonas aureginosa PDI1 in rhizosphere, for alleviation of stress induced by polycyclic hydrocarbons for effective rhizoremediation. Ecological Engineering 102, 422–432.

Son, H. J., Park, G. T., Cha, M. S. & Heo, M. S. (2006). Solubilization of insoluble inorganic phosphates by a novel salic- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology 97(2), 204–210.

Son, C., Cao, X., Liu, Y. & Zhou, Y. (2009). Seasonal variations in chlorophyll a concentrations in relation to potentials of sediment phosphate release by different mechanisms in a large Chinese shallow eutrophic lake (Lake Taihu). Geomicrobiology Journal 26(7), 508–515.

Son, O. R., Lee, S. J., Lee, Y. S., Lee, S. C., Kim, K. K. & Choi, Y. L. (2008). Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DAC23 isolated from cultivated soil. Brazilian Journal of Microbiology 39(1), 151–156.

Sophareth, M., Chan, S., Naung, K. W., Lee, Y. S., Hyun, H. N., Kim, Y. C. & Kim, K. Y. (2015). Bioremediation of late blight (Phytophthora capsici) disease and growth promotion of pepper by Burkholderia cepacia MTC-7. The Plant Pathologist 29(1), 67–76.

Souchi, E. L., Azcon, R., Barea, J. M., Silva, E. M. & Saggio-Junior, O. J. (2006a). Phosphate solubilization and synergism between P-solubilizing and arbuscular mycorrhizal fungi. Pesquisa Agropecuária Brasileira 41(9), 1405–1411.

Souchi, E. L., Saggio-Junior, O. J., Silva, E. M., Campello, E. F., Azcon, R. & Barea, J. M. (2006b). Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of Paraty, RJ Brazil. Anais da Academia Brasileira de Ciências 78(1), 183–193.

Spagnoletti, F. N., Torar, N. E., Fernández Di Parino, A., Chiocchio, V. M. & Lavado, R. S. (2017). Deep seapat endophytes present different potential to solubilize calcium, iron and aluminium phosphates. Applied Soil Ecology 111, 25–32.

Sparks, D. L. & Sparks, D. L. (1996). Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison.

Srinivasan, R., Alagawadi, A. R., Yadagiri, M. S., Meena, K. K. & Saxena, A. K. (2012a). Characterization of phosphate-solubilizing microorganisms from salt-affected soils of India and their effect on growth of sorghum plants [Sorghum bicolor (L.) Moench]. Annals of Microbiology 62(1), 93–105.
A global review of phosphate solubilizing microbes

Srinivasan, R., Yadhaving, M. S., Kashyap, S. R. & Alagawadi, A. R. (2012b). Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi Journal of Biological Sciences 19(4), 427–434.

Srivada, S., Soumya, S. & Pooja, K. (2009). Influence of environmental factors and salinity on phosphate solubilization by a newly isolated Aspergillus fischeri F7 from agricultural soil. African Journal of Biotechnology 8(9), 1864–1870.

Stamatakis, A. (2008). RaXM-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.

Stella, M. & Halmi, M. (2015). Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes. Journal of Tropical Agriculture and Food Science 43(1), 41–53.

Schandong, S. & Ujadi, I. B. (2014). Isolation and molecular identification of endophytic bacteria from the arils of durian (Durio zibethinus Marr.) var. Matahari. Microbiology Indonesia 8(4), 161–169.

Sun, W., Qian, X., Gu, J., Wang, X. J., Li, Y. & Duan, M. L. (2017). Effects of inoculation with organic-phosphate-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity. Canadian Journal of Microbiology 63(5), 392–401.

Sunar, D., Gey, P., Chakraborty, U. & Chakraborty, B. (2015). Biocontrol efficacy and plant growth promoting activity of Bacillus atidisolus isolated from Darjeeling hills, India. Journal of Basic Microbiology 55(1), 91–104.

Syers, J. K., Johnston, A. E. & Curtin, D. (2006). Efficiency of Soil and Fertilizer Phosphorus Use: AOAC Dotterer and Plant Nutrition Bulletin, FAO, Rome.

Tallapragada, P. & Gudimi, M. (2011). Phosphate solubility and biocontrol activity of Trichoderma harzianum. Turkish Journal of Biolog 35, 593–600.

Tallapragada, P. & Senchakula, U. (2012). Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper hirtum in Karnataka, India. Turkish Journal of Biolog 36(1), 25–35.

Tamás, E., Márka, G., Máthé, I., Laslo, É., Győrő, É. & Lányi, S. (2012). Isolation, characterization and identification of nitrogen and phosphorus mobilizing bacteria. Environmental Engineering and Management Journal 11(3), 673–680.

Tamayo-Velez, A. & Oromio, N. W. (2017). Co-inoculation with an arbuscular mycorrhizal fungus and a phosphate-solubilizing fungus promotes the plant growth and phosphate uptake of avocado plantlets in a nursery. Botany 95, 539–545.

Tao, G. C., Tian, S. J., Gai, M. Y. & Xie, G. H. (2008). Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Perspect Biotechnol 18(4), 513–523.

Taurian, T., Anzay, M. S., Angelini, G. J., Tonelli, M. L., Ludueña, L., Pena, D., Irañez, F. & Fabra, A. (2010). Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant and Soil 329(1–2), 421–431.

Taurian, T., Anzay, M. S., Ludueña, L. M., Angelini, G. J., Muñoz, V., Valleti, L., Valleti, L. & Fabra, A. (2015). Effects of single and co-inoculation with native phosphate solubilising strain Pseudomonas sp J19 and the symbiotic nitrogen fixing bacterium Bradyrhizobium diazoefficiens sp SEMIA 6144 on peanut (Arachis hypogaea L.) growth. Synthesis 59(2), 77–85.

Tong, Y., Lin, G., Ke, X., Liu, F., Zhe, G., Gao, G. & Shen, J. (2003). Comparison of phosphatase activity between two shallow freshwater lakes in middle Yangtze basin, east China. Chemosphere 60(5), 85–92.

Trivedi, P. & Sa, T. (2008). Pseudomonas corrugata (NRRL-B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Current Microbiology 56(2), 140–144.

Truran, M., AtaHol, N. & Sahn, F. (2006). Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. Journal of Sustainable Agriculture 28(3), 99–108.

Vasilev, N., Requena, A. R., Nieto, L. M., Nikolavse, I. & Vasileva, M. (2009). Production of manganese peroxidase by Bacillus thuringiensis B1 increases availability of phosphorus and growth of peanut in acidic soil. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science 63(4), 252–259.

Wang, Y. P., Houltong, B. Z. & Field, C. B. (2007b). A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphate production. Global Biogeochemical Cycles 21, GB0108.

Wang, Y., Shi, Y., Li, B., Shan, C., Ibrahim, M., Jareen, A., Xie, G. & Sun, G. (2012). Phosphate solubilization of Phanerochaete chrysosporium and Penicillium marneffei from mycorrhizal and non-mycorrhizal cucumber plants. African Journal of Biotechnology 11(22), 5603–5610.

Wang, H., Dong, Z., Zhou, J. & Xiao, X. (2015). Zinc phosphate dissolution by bacteria isolated from an oligotrophic karst cave in central China. Frontier of Earth Science 7(3), 375–383.

Wang, Z. & Wu, M. (2017). Comparative genomic analysis of Amanobolus endosymbionts highlights the role of amoeoba as a “melting pot” shaping the Richelotia evolution. Genome Biology and Evolution 9, 3214–3224.

Wani, P. A., Khan, M. S. & Zaidi, A. (2006). Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. Journal of Plant Nutrition and Soil Science 170(2), 283–287.

Wei, Y., Wei, Z., Cao, Z., Zhao, Y., Zhao, X., Lu, Q., Wang, X. & Zhang, X. (2016). A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting. Bioresource Technology 211, 610–617.

Weselowski, B., Nathoo, N., Eastman, A. W., MacDonald, J. & Yuan, Z. C. (2016). Isolation, identification and characterization of Penicillium polycarpum CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol 16(1), 244.

Westheimer, F. H. (1987). Why nature chose phosphates. Science 235, 1173–1178.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer Verlag, New York.

Wickramaarachchi, A. R. P., Munehiro, R., Nakaoika, T., Wasaki, J. & Kouno, K. (2011). Crop amendment enhances population and composition of phosphate solubilizing bacteria and improves phosphorus availability in granite regosols. Soil Science and Plant Nutrition 57(4), 529–540.

Wu, F. Y., Yang, J., Wu, S., Lin, X. & Wong, M. (2013). Inoculation of earthworms and plant growth-promoting rhizobacteria (PGPR) for the improvement of vegetable growth via enhanced N and P availability in soils. Communications in Soil Science and Plant Analysis 44(20), 2974–2986.

Wu, G. F. & Zhou, X. P. (2005). Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, eastern China. Water Research 39(19), 4623–4632.
Jia-tian Li et al.

VIII. Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. Effects of sample type (A), available P (B), mean annual precipitation (C), latitude (D) and longitude (E) of the study site on the population density of phosphate-solubilizing microbes (PSMs).

Fig. S2. Effects of habitat type (A), electrical conductivity (EC, B), ammonia-nitrogen (NH$_4^{+}$-N, C), water-soluble organic carbon (WSC, D), mean annual precipitation (E), latitude (F), longitude (G) and elevation (H) of the study site on the population density of soil phosphate-solubilizing microbes (PSMs).

Table S1. Characteristics of the study sites in which the population density of phosphate-solubilizing microbes (PSMs) was reported in the literature.

Table S2. Characteristics of study sites from which soil samples were collected during the nationwide field survey in China to determine the population density of soil phosphate-solubilizing microbes (PSMs).

Table S3. List of phosphate-solubilizing microbe (PSM) strains reported in the literature.

Table S4. List of experiments conducted to determine the effects of phosphate-solubilizing microbe (PSM) strains on plant growth or yield.
Table S5. Occurrence of the genetic potential to produce acid phosphatase among prokaryotic genera.
Table S6. Occurrence of the genetic potential to produce alkaline phosphatase among prokaryotic genera.
Table S7. Occurrence of the genetic potential to produce phytase among prokaryotic genera.
Table S8. Occurrence of the genetic potential to produce glucose dehydrogenase among prokaryotic genera.

(Received 2 November 2020; revised 30 June 2021; accepted 2 July 2021; published online 21 July 2021)