Alzheimer’s disease (AD) is the most frequent cause of dementia. Misfolded protein pathological hallmarks of AD are brain deposits of amyloid-β (Aβ) plaques and phosphorylated tau neurofibrillary tangles. However, doubts about the role of Aβ in AD pathology have been raised as Aβ is a common component of extracellular brain deposits found, also by in vivo imaging, in non-demented aged individuals. It has been suggested that some individuals are more prone to Aβ neurotoxicity and hence more likely to develop AD when aging brains start accumulating Aβ plaques. Here, we applied genome-wide transcriptomic profiling of lymphoblastoid cells lines (LCLs) from healthy individuals and AD patients for identifying genes that predict sensitivity to Aβ. Real-time PCR validation identified 3.78-fold lower expression of RGS2 (regulator of G-protein signaling 2; P = 0.0085) in LCLs from healthy individuals exhibiting high vs low Aβ sensitivity. Furthermore, RGS2 showed 3.3-fold lower expression (P = 0.0008) in AD LCLs compared with controls. Notably, RGS2 expression in AD LCLs correlated with the patients’ cognitive function. Lower RGS2 expression levels were also discovered in published expression data sets from postmortem AD brain tissues as well as in mild cognitive impairment and AD blood samples compared with controls. In conclusion, Aβ sensitivity phenotyping followed by transcriptomic profiling and published patient data mining identified reduced peripheral and brain expression levels of RGS2, a key regulator of G-protein-coupled receptor signaling and neuronal plasticity. RGS2 is suggested as a novel AD biomarker (alongside other genes) toward early AD detection and future disease modifying therapeutics.

INTRODUCTION

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is the most frequent cause of dementia. Old age is a major AD risk factor: the annual AD incidence increases from 1% between ages of 60 and 70 years to 6–8% at the age of 85 or older.1,2 AD is characterized by misfolded protein pathological brain hallmarks: extracellular deposits of amyloid-β (Aβ) plaques and accumulation of phosphorylated tau neurofibrillary tangles. The Aβ1-42 peptide aggregates are predominant in AD brain plaques and considered the most neurotoxic Aβ form.3–7 However, there are individuals who exhibit Aβ plaques in the absence of dementia symptoms.1,8–10 Mild cognitive impairment (MCI) is a state when there is mild loss of memory, considered normal for old age. Fifty percent of MCI patients will progress to AD over 4 years.1

Efforts have been made for identifying early AD biomarkers that may detect high-risk individuals so they are prioritized for disease-modifying drugs that are being developed.11,12 Imaging techniques based on in vivo measurements of brain Aβ have been disappointing,13 and indeed one of the biggest mysteries in AD pathophysiology is that some aged individuals show, upon brain imaging, large quantities of brain Aβ deposits without showing clinical AD signs and while maintaining good cognitive skills into their 80s.13 This has recently led to strong doubts about the validity of the ‘amyloid cascade hypothesis’ that assumes a central role for Aβ in AD pathology.14,15 It has been proposed that some individuals could be more prone to Aβ-mediated neurotoxicity, while Aβ brain deposition per se may represent part of the normal brain aging process.13,16

To further understand the pathophysiology of AD toward potential prevention and disease-modifying treatments, disease biomarkers may prove beneficial. One approach is the candidate gene approach, which we (IG) recently took, finding correlation between serum activity-dependent neuroprotective protein (ADNP) and intelligence test scores of elderly individuals, coupled with lower ADNP messenger RNA (mRNA) in blood cells correlated with increased Aβ deposits and significant deregulation of activity-dependent neuroprotective protein mRNA expression in AD lymphocytes.17 Another approach entails proteomic screening.18,19 In our present work, we applied a third approach, namely, genome-wide

1Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 2Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; 3Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy; 4Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; 5The Genomic Analysis Laboratory, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 6Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic; 7Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel; 8Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 9Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: igozes@post.tau.ac.il or gurwitz@post.tau.ac.il

Received 6 March 2016; revised 26 May 2016; accepted 15 June 2016
transcriptomics of human lymphoblastoid cell lines (LCLs) from unrelated healthy individuals and AD patients for searching gene expression levels that are correlated with in vitro Aβ sensitivity. We report several genes, most notably RGS2 (regulator of G-protein signaling 2) and DLGAP1 (disks, large (Drosophila) homolog-associated protein 1) with low expression correlated with higher Aβ sensitivity in LCLs from healthy individuals and lower expression in LCLs from AD patients, as well as in postmortem AD brain tissues and both AD and MCI peripheral blood.

MATERIALS AND METHODS

Human LCLs and materials

LCLs from adult donors were obtained from the National Laboratory for the Genetics of Israel Populations (NLGP; http://nlgp.tau.ac.il) at Tel Aviv University, Israel (23 LCLs of healthy controls) and from The University of Cagliari, Italy (28 AD patients and 16 healthy controls). Detailed demographic data and cognitive scores of the AD patients and controls are presented in Supplementary Table 1. The cell lines were generated from peripheral blood lymphocytes donated by consenting patients and healthy controls. The cells were maintained in optimal growth conditions as described. Tissue-culture reagents were purchased from Biological Industries (Beit-Haemek, Israel). Amyloid-β1–42 (Aβ1–42) peptide was purchased from Genemed Synthesis (San Antonio, TX, USA). Aβ1–42 peptide was dissolved in sterile tissue-culture grade water (1 mg ml−1) and stored (as 100 μl aliquots) at −20 °C. Before the experiments, an aliquot of Aβ1–42 in water was preincubated at 37 °C for 3 days for assuring the generation of Aβ fibrils.

Cell proliferation assay

Growth inhibition of LCLs was examined by exposure to 8 μM Aβ1–42 fibrils for 3 days (unless otherwise indicated). LCLs were first washed in phosphate-buffered saline and suspended with serum-free RPMI medium containing the commercial serum supplement 4% BIOGRO-2 (Biological Industries). This BIOGRO-2 concentration was optimal for long-term serum-containing conditions. The serum-free medium (see the Materials and methods’ section). This medium was serum-containing conditions. The serum-free medium (see the Materials and methods’ section). This medium was

RNA extraction

RNA extraction was performed from cells incubated in upright T-25 flasks under optimal growth conditions in serum-containing media at a cell density of 0.5 × 10^5 to 1 × 10^5 cells ml^-1 as previously described. RNA was quantified using a NanoDrop spectrophotometer (NanoDrop, Wilmington, DE, USA), with both 260/280 nm and 260/230 nm parameters > 2.0. RNA quality was confirmed using 1% agarose gels.

Gene expression microarrays

The RNA samples (N = 16) from optimally growing LCLs, exhibiting high or low sensitivities to Aβ (8 each) were chosen for genome-wide expression profiling. The RNA samples (250 ng) were prepared and hybridized to Affymetrix Human Gene 2.1 ST arrays as described in the Affymetrix Genomics Suite (Partek, Chesterfield, MO, USA). Genes of interest that were affecting gene expression by human LCLs. 30 Con

Real-time PCR

Real-time PCR was performed to validate the microarray expression patterns of selected genes using the same RNA samples used for the microarray experiment. The complementary DNA (cDNA) samples were prepared from 1 μg RNA samples using High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Waltham, MA, USA) containing 10× RT buffer, 10 × RT random primers, 25 × dNTP mix, RNase inhibitor and MultiScribe Reverse transcriptase. Reverse transcription was performed using a thermal cycler over three steps (25 °C for 10 min, followed by 37 °C for 120 min and 85 °C for 5 min). Real-time PCR experiments were done with 20 μl mixtures containing 20 ng of cDNA, Absolute Blue qPCR ROX mix (Thermo Scientific, Waltham, MA, USA) and Primers (TaqMan Gene Expression Assay; Applied Biosystems). GUSB (glucuronidase, beta) was used as reference gene as recommended for transcriptomic analysis of LCLs. TaqMan Gene Expression Assay IDs are listed below:

Gene symbol	Assay ID
BCHE	Hs00992319_m1
DLGAP1	Hs00191052_m1
DNASATL3	Hs00172840_m1
FARPA1	Hs00195010_m1
GUSB	Hs00936227_m1
INPP4B	Hs00182580_m1
PAG1	Hs00179693_m1
RGS2	Hs01009070_g1
SARM1	Hs00248344_m1
SIRT1	Hs01009006_m1

PCR reactions were performed using ABI Step One (Applied Biosystems) and the cycle protocol was as follows: 50 °C for 2 min, 95 °C for 15 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Comparative critical threshold (Ct) values were used for analyzing relative gene expression in selected sample groups according to 2^−ΔCt (ΔCt = Ct target Gene−Ct reference gene). For SNORD16-13 and for the reference gene GUSB, real-time PCR was done using the SYBR Green (Kapa SYBR, Wilmington, MA, USA) technique. Primers (shown below) were purchased from IDT (Corvalle, IA, USA).

Transcript Forward Reverse

Transcript	Forward	Reverse
GUSB	CTGCTGGCTACTACTGTGAAGATG	GAGTGTCCTCAACGAAGTTCAC
SNORD16-13	TGGACCAATGATGACTTCCATAC	CAACACTAAGTAGATCTAGCAC
		AGTCCCAAC

GEO data mining

The NCBI Gene Expression Omnibus (GEO) was searched for expression data sets of human AD and MCI blood and postmortem brain tissues. Data sets GSE52821 (ref. 28) from six postmortem brain regions (87 AD and 74 controls), and GSE63060 (ref. 29) from whole blood (145 AD, 80 MCI and 104 controls) were identified as the largest cohorts. GEO files were downloaded using the R package GEO2R. The five selected candidate genes were tested for differential expression between AD, MCI and controls using the R package Limma.

RESULTS

A flowchart outlining our study design is presented in Figure 1a. As a preparatory step for genome-wide transcriptomic search for genes implicated in Aβ1–42 sensitivity of cells from unrelated individuals, we initially screened human LCLs from healthy female donors for growth inhibition following incubation with several concentrations of Aβ1–42 (range 1 to 20 μM) for 24 or 72 h in serum-free medium (see the Materials and methods’ section). This first phase included exclusively female LCLs, as sex was shown to affect gene expression by human LCLs. Confirming previous reports, Aβ1–42 did not grossly affect cell growth or survival in serum-containing media (Figure 1b). Thus, the concentration of 8 μM Aβ1–42 and the incubation period of 72 h in serum-free medium were selected for phenotyping Aβ-mediated growth inhibition in a panel of LCLs from 23 unrelated healthy female donors using XTT cell proliferation assay (see the Materials and methods’ section). Three repeat experiments were performed (each in triplicate) for each cell line. Eight LCLs exhibiting the highest Aβ1–42 sensitivity (35 ± 3% growth inhibition) and eight
LCLs exhibiting the lowest Aβ₄₂ sensitivity (21.4%) growth inhibition; Figure 1c) were selected for comparative genome-wide expression profiling (see the ‘Materials and methods’ section; step #1, Figure 1a). Average donor ages were similar for the high and low Aβ₄₂ sensitivity groups (38 ± 8 and 58 ± 10 years, respectively; P = 0.142).

Genome-wide microarray expression and RT-PCR validation

The RNA samples were prepared from the 16 selected healthy female LCLs growing under optimal conditions in serum-containing medium (see the ‘Materials and methods’ section). Genome-wide expression profiles were compared in the healthy donor LCLs exhibiting high or low Aβ₄₂ sensitivity (n = 8 per group) using Affymetrix Human Gene 2.1 ST arrays (See the ‘Materials and methods’ section; step #2, Figure 1a). Table 1 shows 27 transcripts found to exhibit >1.5 fold difference (P < 0.05) in basal expression levels comparing healthy female LCLs exhibiting high vs low Aβ₄₂ sensitivity.

The same RNA samples from the LCLs exhibiting high or low Aβ₄₂ sensitivity (eight in each group) were converted to cDNA. Eight genes from the 27 found as differentially expressed were selected for validation by real-time PCR based on their high expression in human brain tissues as well as their relevance for neuronal function. The expression levels of BCHE, DLGAP1, INPP4B, DNASE1L3, RGS2 and PAG1 (Table 1) are presented as scatter plots (Figures 2a–f). The expression level differences between the two Aβ₄₂ sensitivity groups of control LCLs are clearly evident.

Expression levels of candidate genes in AD vs healthy control LCLs

Next, the expression levels of selected genes found to be differentially expressed in healthy control LCLs with high vs low Aβ₄₂ sensitivity were determined by real-time PCR in 28 AD and 32 healthy control LCLs growing under optimal conditions (see the ‘Materials and methods’ section). The expression levels of two additional genes, SIRT1 and SARM1, albeit not found in our genome-wide transcriptomic experiment, were also analyzed in the same AD and healthy control LCLs, as both have been implicated in AD and SIRT1 expression was reduced in postmortem AD parietal cortex. The RNA samples were extracted and converted to cDNA for determining the expression levels of selected genes by real-time PCR (Supplementary Table 2).

The expression level differences between the two Aβ₄₂ sensitivity groups of control LCLs are clearly evident.

Figure 1. (a) A flowchart presenting the study design. Aβ₄₂ sensitivity determined in lymphoblastoid cells lines (LCLs) of healthy female donors. (b) Lymphoblastoid cells from a healthy female donor were plated in 96-well plates (25 000 cells per well) and incubated with the indicated concentrations of Aβ₄₂ for 24 or 72 h followed by determination of viable cell numbers with the XTT color reagent (see the ‘Materials and methods’ section). Data are from a representative experiment, with similar observations obtained in a repeat experiment. (c) Aβ₁–42 sensitivity (8 μm, 72 h) is shown for two LCL groups (eight unrelated donors each) from healthy female donors selected for the high- and low-sensitivity groups, respectively (P = 0.142). See the ‘Materials and methods’ section for experimental protocol. AD, Alzheimer’s disease; ADAS, Alzheimer’s Disease Assessment Scale; MCI, mild cognitive impairment; MMSE, Mini Mental State Examination.
levels of RGS2, DLGAP1 or BCHE and between control or AD patient ages, or between ages and growth inhibition by 8 μM Aβ42 in individual LCLs (Supplementary Figure 1). However, a correlation was observed between the expression levels of RGS2 and growth inhibition by Aβ42 in 26 individual healthy control LCLs (R = −0.565; P = 0.003) but not in 32 AD LCLs (Supplementary Figure 2). In addition, a correlation (R = 0.688; P = 0.000000006) was found between the expression levels of DLGAP1 and BCHE in individual LCLs from pooled 55 control and AD LCLs (Supplementary Figure 3). Correlations were also found between the expression levels of SIRT1 and the expression of RGS2 or SARM1 in individual LCLs (Supplementary Figure 4).

RGS2 expression levels in LCLs correlate with dementia scores

The expression levels of RGS2 in LCLs from AD patients for whom cognitive scores were available (n = 23) were examined for correlations with these scores (see Supplementary Table 1). A significant correlation (R = −0.555; P = 0.006) was observed between the MMSE (Mini Mental State Examination) scores of AD patients and the RGS2 expression levels in their LCLs (Figure 4a). Moreover, a significant correlation (R = 0.560; P = 0.006) was observed between RGS2 expression levels and ADAS (Alzheimer’s Disease Assessment Scale) scores (Figure 4b).

GEO data mining indicates reduced RGS2 expression in AD brain and blood

Data mining was performed for GEO data sets GSE5281 (ref. 28) from six postmortem brain regions (87 AD and 74 controls) and GSE63060 (ref. 29) from whole blood (145 AD, 80 MCI and 104 controls)—two data sets identified as the largest AD cohorts deposited on the NCBI Gene Expression Omnibus (GEO; see the ‘Materials and methods’ section). Both RGS2 and DLGAP1 exhibited significantly lower expression in postmortem AD brain tissues compared with matched controls of data set GSE5281.28 Moreover, RGS2 also exhibited lower expression in whole blood data set GSE63060 (ref. 29) for both AD and MCI patients compared with healthy controls (FD = −1.2 and −1.3; P = 0.000072 and 0.0000012, respectively; Figure 4c), suggesting that its low blood expression may serve as a peripheral MCI and AD biomarker.

DISCUSSION

Research on risk genes for late-onset AD (LOAD), the most common cause of dementia in the elderly, has been largely focused on the role of the ApoE4 genotype, the most notable genetic variation contributing to AD risk, whereas relatively few other genetic clues for this disease have been established. Yet, only about half of LOAD patients are ApoE4 carriers,37 suggesting that further genomic or epigenomic variations contribute to this neurodegenerative disease. These may include DNA sequence variations, gene or ncRNA transcripts, or epigenomic modifications that affect the sensitivity of brain cells to Aβ and/or tau. Our present study was aimed at discovering transcriptomic correlates for Aβ sensitivity as first step toward identifying LOAD risk genes.

The failure of genome-wide association studies to find major LOAD risk alleles besides ApoE4 suggests that transcriptomic and proteomic studies should be performed as, unlike genome-wide...
Our genome-wide transcriptomic profiling detected 2.1-fold reduced RGS2 expression in a group of healthy donors LCLs exhibiting high Aβ sensitivity \(P = 0.035 \); Table 1). Next, we observed a 3.3-fold reduced RGS2 expression in AD LCLs compared with matched controls \(P = 0.0008 \); Figure 3a). To our knowledge, this is the first report on reduced RGS2 expression in AD cells. RGS proteins, comprising a family with 20 members, have key roles in synaptic signaling and neuronal plasticity: these proteins function as negative regulators of G-protein-coupled receptors (GPCR) signaling, acting as GTPase activating proteins for G subunits, thereby accelerating the turnoff of GPCR signaling. RGS2 has widespread brain expression, and its altered expression has been implicated in several neurodegenerative and psychiatric diseases.

Table 1. Genome-wide transcriptomic profiling comparing individual LCLs with high vs low Aβ\(_{1-42} \) sensitivities (eight LCLs in each group; Affymetrix GeneChip Human Gene 2.1 ST arrays)

Gene/transcript	Full name	Fold difference (high vs low)	P-value
DNASE1L3	Deoxyribonuclease I-like 3	-2.40	0.003
ABHD6	Abhydrolase domain containing 6	-1.62	0.006
MERTK	c-mer proto-oncogene tyrosine kinase	-1.64	0.008
PEXSL	Peroxisomal biogenesis factor 5-like	-1.54	0.010
FARP1	FERM, RhGEF (ARHGEF) and pleckstrin domain protein 1	1.69	0.010
LOC728419	Ubiquitin carboxyl-terminal hydrolase 17-like	-1.63	0.012
ORSK4	Olfactory receptor, family 5, subfamily K, member 4	-1.88	0.017
FAH	Fumarylacetoacetate hydrolase	1.51	0.021
ZNF804A	Zinc finger protein 804A	-1.77	0.023
TNFRSF9	Tumor necrosis factor receptor superfamily, member 9	-1.81	0.027
RNU6-SS	RNA, U6 small nuclear 5S	-1.64	0.029
ORSH14	Olfactory receptor, family 5, subfamily H, member 14	-2.40	0.031
RGS2	Regulator of G-protein signaling 2, 24 kDa	-2.14	0.035
KDM5B	Lysine (K)-specific demethylase 5B	-2.10	0.035
SNORD116-13	Small nucleolar RNA, C/D box 116-13	1.57	0.035
CCL28	Chemokine (C-C motif) ligand 28	-1.51	0.036
INPP4B	Inositol polyphosphate-4-phosphatase, type II, 105 kDa	-2.28	0.038
PTPN14	Protein tyrosine phosphatase, non-receptor type 14	-2.17	0.038
TRNAU2	Transfer RNA selencocysteine 2	1.64	0.038
SNORD45C	Small nucleolar RNA, C/D box 45C	1.58	0.041
PHYHIP1	Phytanoyl-CoA 2-hydroxylase interacting protein-like	-1.61	0.043
DLGAP1	Disks, large (Drosophila) homolog-associated protein 1	-2.10	0.044
ANKRD20A11P	Ankyrin repeat domain 20 family, member A11, pseudogene	-1.68	0.044
PAG1	Phosphoprotein associated with glycosphingolipid microdomain	-1.73	0.045
SNORD116-18	Small nucleolar RNA, C/D box 116-18	1.75	0.045
GLIPR2	GLI pathogenesis-related 2	-1.53	0.046
BCHE	Butyrylcholinesterase	-1.82	0.049

Abbreviations: Aβ, amyloid-b; LCL, lymphoblastoid cells line. The 27 listed transcripts differed by >1.5-fold with \(P < 0.05 \) in eight LCLs exhibiting high Aβ\(_{1-42} \) sensitivity compared with eight LCLs exhibiting low Aβ\(_{1-42} \) sensitivity (as shown in Figure 1c). Genes are arranged by increasing P-values. The expression differences for eight selected genes (in bold font) were tested in the same RNA samples by real-time PCR experiments (Figures 2a–f) and further tested in Alzheimer’s disease LCLs (Figures 3a–e; Supplementary Table 2).
prevails in AD blood samples. This may partly explain our observations that lower RGS2 expression levels were correlated with better MMSE and ADAS scores (Figures 4a and b). Whatever the explanation, our data suggest that RGS2 expression levels are implicated in AD pathology, either as causative or as disease-triggered protective mechanism, as has been suggested for its reduced expression in HD brains.44

Genes coding for GPCRs comprise the largest family in the human genome, with 791 different genes (~4% of the human exome), half coding for olfactory receptors.51 The activity of the olfactory receptors is tightly regulated by RGS family proteins, including RGS2.52,53 Reduced olfactory sensing is a common feature in AD, observed already in some MCI patients.54–56 It is accompanied by reduced neuronal stem cell renewal in the olfactory epithelium, a tissue of central origin,57 owing to impaired neuronal stem cell migration and proliferation, possibly secondary to amyloid-β accumulation.58 Thus, it is plausible that reduced RGS2 expression in MCI and AD patients represents a compensatory mechanism aimed at improving a deteriorating olfactory capacity.

Dysregulation of acetylcholine receptors, in particular the M1 muscarinic receptor, has received considerable interest in AD research, as this GPCR is implicated in memory consolidation59–61 and as acetylcholinesterase (AChE) inhibitors remain among first-line AD therapeutics. Decreased levels M1 muscarinic receptors have been demonstrated in several AD postmortem brain regions including CA1, temporal cortex and occipital cortex.62–64 Yet, M1 muscarinic signaling capacity was shown to be preserved in AD brain tissues.65 Notably, RGS2 has been shown to bind directly and selectively to the M1 muscarinic acetylcholine receptor (via the
receptor’s third intracellular loop) and modulate Gq/11alpha signaling resulting in suppression of M1 muscarinic receptor-mediated activation of KCNQ channels that in turn regulate neuronal excitability. It is therefore plausible that preserved M1 G-protein coupling capacity persists in AD brain tissues in spite of compromised acetylcholine levels in part owing to reduced RGS2 expression that allows enhanced M1 muscarinic receptor signaling. This tentative scenario agrees with the above suggestion for a compensatory neuroprotective role of reduced brain RGS2 expression, as also proposed for HD.

Melatonin treatment has been suggested to ameliorate AD pathology and cognitive decline in animal models. Notably, RGS2 expression predicts amyloid-β sensitivity.
melatonin production in the rat pineal gland was reduced following Rgs2 transfection.71 Lower RGS2 expression in AD LCLs, blood and brain (Figure 3a, Figures 4c–f) may indicate enhanced melatonin production. Moreover, melatonin treatment of multiple sclerosis patients upregulated SIRT1 expression in their blood cells72 and reduced sepsis-induced brain injury through upregulation of Sirt1 and Bcl-2 in mice.73 Thus, lower RGS2 expression in AD may allow higher pineal melatonin production and in turn improve neuroprotection.

Last, RGS2 has been reported as the only RGS family member that inhibits the mRNA translation into protein of elf2β (eukaryotic initiation factor 2B ε subunit),74 a protein crucial for correct protein folding, a process dysfunctional in neurodegenerative disorders including HD, AD and prion diseases, and mutations in which cause childhood ataxia.75 This novel role of RGS2 supports its postulated defensive mechanism in both HD and AD, whereby reduced RGS2 expression reflects an attempt to protect cells from misfolded protein accumulation by enhancing elf2β translation.76

GPCRs are the largest gene family in the human genome (~800 members) and ~40% of current therapeutics are GPCR ligands.77 Our findings of the GPCR regulator RGS2 as deregulated in AD LCLs (Figure 3a), and that its expression was correlated with AD patients’ MMSE and ADAS scores (Figures 4a and b), are intriguing. Moreover, RGS2 was found to be downregulated in published GEO data sets from postmortem AD brain tissues (Figures 4d–f), as well as in both AD and MCI peripheral blood (Figure 4c). A scheme summarizing tentative disease-protective and disease-promoting events associated with reduced RGS2 expression is shown in Figure 4j. These observations attest to the complexity of the disease, with fundamental pathways led astray. It further highlights the need for innovative approaches to AD therapeutics.

DLGAP1 expression

DLGAP1 expression was 2.1-fold lower in a group of healthy donors LCLs exhibiting high Aβ sensitivity (P = 0.044; Table 1). We subsequently observed 2.8-fold reduced DLGAP1 expression in AD LCLs compared with matched controls (P = 0.042; Figure 3b). The proteins encoded by DLGAP1 (also known as GAKP) along with DLC2 take part in neuronal N-methyl-d-aspartate (NMDA)-receptor-associated scaffolding complex. NMDA glutamate receptors are strongly implicated in neurodegenerative diseases,78 and comprise the drug targets of memantine, the first non-cholinesterase inhibitor FDA-approved AD drug.79 Interference of the DLGAP1–DLC2 interaction inhibits NMDA receptor activity in dendritic spines.80 In turn, synaptic activity-induced DLGAP1–DLC2 interaction in dendritic spines stabilizes the scaffolding complex and enhances the NMDA currents.81,82

Of note, the NMDA receptor GluN1 subunit was increased 6-fold in postmortem AD frontal cortex compared with controls,83 supporting a key role for elevated NMDA receptor activity in glutamate-mediated neurodegeneration.78 Moreover, Aβ was shown to induce degradation of GAKP, the protein encoded by DLGAP1.84 Further studies are needed for clarifying how the latter observation is related to the reduced DLGAP1 expression observed in our AD LCLs (Figure 3b).

The reduced DLGAP1 expression in AD LCLs may represent, similarly to our above suggestions for RGS2, a compensatory mechanism for protecting against NMDA-mediated neuronal cell death. This tentative explanation needs further exploration, as the function of NMDA receptors in immune cells, although apparent, remains little studied.85

BChE expression

The expression of BChE, coding for BCHE, was 1.82-fold lower in the group of high Aβ sensitivity LCLs (Table 1). We subsequently observed 6.1-fold lower BChE expression in AD LCLs compared with healthy controls (P = 0.04; Figure 3c). BChE, along with AChE, comprise the targets of the first-generation AD drug rivastigmine and the (discontinued) first AD drug Tacrine. BChE was shown to prevent Aβ fibril formation,86 an observation that may explain the increased AD risk in carriers of BChE K, a variant with reduced enzymatic activity87 and found by a recent meta-analysis to pose increased AD risk.88 In support of our observations, significantly lower plasma BChE activity levels were reported in AD plasma samples compared with controls, and were associated with faster disease progression.89 Thus, our findings on reduced BChE expression in control LCLs showing higher Aβ sensitivity (Figure 2c), as well as in AD LCLs (Figure 3c) seem to fit a putative protective role of BChE against Aβ toxicity, while questioning the benefit of mixed AChE/BChE inhibitors (such as rivastigmine) as AD therapeutics. Perhaps the benefit from inhibiting acetylcholine hydrolysis by AChE outweighs the disadvantage of BChE inhibition by such drugs. The impact of reduced BChE expression on AD risk and pathology as well as potential clinical implications for choosing selective AChE inhibitors vs mixed AChE/BChE inhibitors in AD treatment should be further explored.

SNORD116 transcripts

Two SNORD116 transcripts, SNORD116-13 and SNORD116-18, exhibited higher expression in the LCL group having higher Aβ sensitivity in the genome-wide expression profiling microarrays. The SNORD116-13 microarray data were validated by real-time PCR, albeit only with a trend for significance (P = 0.07), indicating 1.70-fold higher expression levels in LCLs exhibiting high Aβ sensitivity. The same SNORD116-13 transcript showed 1.48-fold lower expression in AD LCLs vs healthy controls (P = 0.0079; Figure 3d).

SNORD116 deletions cause Prader–Willi syndrome, a neurodevelopmental genetic disorder manifested in cognitive and behavioral deficits.90 SNORD transcripts are noncoding nuclear RNAs acting similarly to transcription factors. SNORD116 was shown to be developmentally regulated in maturing neurons and its overexpression affects the expression of over 200 genes.91 SNORD116 transfection increased the expression of MAP2 (microtubule-associated protein 2, an axonal marker) and TUBB4 (tubulin beta-4 A chain), both important for microtubule assembly. The expression of both MAP2 and TUBB4 were decreased in...
postmortem posterior hypothalamus from Prader–Willi syndrome.9,2
Our findings on decreased SNORD116-13 expression in AD LCLs compared with controls, and increased expression in LCLs exhibiting higher Aβ sensitivity, suggest that some genes regulated by SNORD116 may be implicated in neurodegeneration, possibly by modifying cellular responses to chronic Aβ exposure.

Strengths and constraints
Our observations suggest that the protein products of the genes discussed above may be implicated in the pathophysiology of sporadic AD. The correlations we have observed between their lower expression levels and higher Aβ sensitivity in healthy female donors LCLs suggest that their low expression may be among the causes rather than consequences for sporadic AD. Yet, considering reports of a compensatory neuroprotective role for reduced RGS2 levels in HD, it may well be that the reduced RGS2 expression levels that we observed in AD LCLs and postmortem brain reflect a similar compensatory mechanism in AD.

A key limitation of our study is that transcriptomic profiling assays were conducted in blood-derived cells, namely LCLs, rather than in neurons. Nonetheless, neuroimmune interactions have a key role in neurodegenerative diseases including AD,9,3–95 and the recent demonstration of a functional meningeal lymphatic system that drains cerebrospinal fluid to deep cervical lymph nodes96 emphasizes the relevance of neuroimmune interactions in neurodegenerative diseases. In favor of applying LCLs transcriptomic profiling for AD research are our observations on reduced SIRT1 and SARM1 expression in AD personal LCLs (Figures 3f–g), moreover, SIRT1 expression was reduced in AD brains.97

Our hypothesis-free findings on lower expression of RGS2 and DLGAP1 in AD LCLs are supported by analysis of published gene expression data sets of postmortem AD brain tissues. RGS2 expression levels were also lower in AD and MCI patients’ blood (Figures 4c–i). Personal LCLs may thus serve, in the absence of neuronal tissues, as surrogate for brain cells, and may point to altered transcriptomic profiles that could be implicated in AD pathology.

CONCLUSIONS
Our findings, based on a genome-wide transcriptomic search for genes implicated in Aβ sensitivity, show lower expression levels of several key regulatory genes. In particular, lower expression levels of RGS2, DLGAP1 and BCHE are implicated in the higher Aβ sensitivity of LCLs from some individuals. Furthermore, lower expression levels of RGS2 and DLGAP1 were also found in LCLs of AD patients compared with non-demented control donors, as well as in two published gene expression data sets (GSE52821 and GSE63060) of postmortem AD brain tissues and in MCI and AD patients’ blood. Taken together, we suggest the involvement of lower expression of RGS2 and DLGAP1 in AD pathophysiology. In particular, the potential diagnostic value of blood RGS2 expression levels should be explored, as this reduction is already noticeable in blood samples of MCI patients. Further studies are required for elaborating the roles of these genes and their protein products, till now not implicated in AD, in the disease pathophysiology, as well as the potential of their expression levels as early AD biomarkers, and tentative utility as AD drug targets.

CONFICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
This study was supported by the Israel Science Foundation to IG and DG (Grant #1424/14). IG is supported by the AMN Foundation, the Dr Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology and the Lily and Avraham Gildor Chair for the Investigation of Growth Factors at Tel Aviv University. DG is supported by the Yoran Institute for Human Genome Research at Tel Aviv University. EM was supported by a postdoctoral fellowship from the Shabbetai Donnolo Fellowships between Italy and Israel. PM is supported by grants from Charles University in Prague (P24/LF1/3, UNCE 204011/2012) and from MZ CR (IRVO-VFN 64165/2012). NS is supported by the I-CORE Program of the Planning and Budgeting Committee, Israel. We thank the anonymous donors of the NLGIP Biobank at Tel Aviv University School of Medicine, whose altruism in biomedical research have made this study possible. We thank Professor Nechama Kosower (Tel Aviv University) for helpful discussions. This study is in partial fulfillment for the graduate study requirements for AH at the Dr Miriam and Sheldon G. Adelson Graduate School of Medicine, Sackler Faculty of Medicine, Tel Aviv University.

REFERENCES
1. Ruiz-Ruiz FJ. Early Alzheimer’s disease. N Engl J Med 2004; 350: 80–82, author reply 80–82.
2. Alzheimer’s Association. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 2011; 7: 208–244.
3. Mann DM, Iwatsubo T, Ihara Y, Cairns NJ, Lantos PL, Bogdanovic N et al. Pre-dominant deposition of amyloid-beta 42(43) in plaques in cases of Alzheimer’s disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene. Am J Pathol 1996; 148: 1257–1266.
4. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukima N, Ihara Y. Visualization of A beta 42(43) and A beta in senile plaques with end-specific A beta mononucleotides: evidence that an initially deposited species is A beta 42(43). Neuron 1994; 13: 45–53.
5. Gozes I, Divinski I, Pilzter I, NAP and D-SAL: neuroprotection against the beta amyloid peptide (1-42). BMC Neurosci 2008; 9(Suppl 3): 53.
6. Pike CJ, Burdick D, Walenciwicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 1993; 13: 1676–1687.
7. Klein AM, Kowall NW, Ferrante RJ. Neurototoxicity and oxidative damage of beta amyloid 1-42 versus beta amyloid 1-40 in the mouse cerebral cortex. Ann N Y Acad Sci 1999; 893: 314–320.
8. Kawas CH, Kim RC, La Joie R, Villain N, Perrotin A, de La Sayette V, Eustache F. Early Alzheimer’s disease. J Neurosci 2011; 31: 1362–1372.
9. Vassar R, Rape´ AL, Retzius J, Brown WM, Devys D, Greenberg ME. Cell-autonomous and cell non-autonomous roles for a beta Amyloid in neurodegeneration. Nature 2006; 442: 308–315.
10. Isacson O, Trojanowski JQ. Amyloid as a trigger of neuronal apoptosis. J Neurosci Res 2003; 72: 311–318.
11. Migliorati GA, Vassar R. Amyloid toxicity and cell death: more than just a protein misfolding problem. J Neurosci 2008; 28: 6921–6927.
12. Perona P. Learning the shape of the world. MIT Press, Cambridge, MA, USA, 1995.
13. Immunoassays for A beta. Neurosci Biobehav Rev 2005; 29: 1005–1017.
14. Yilmaz B, Djkic V, Wohlgemuth M, Neumann M, Schachner M. The amyloid β protein is involved in cell-cell interactions. J Neurochem 2002; 82: 1359–1362.
15. Herrup K. The case for rejecting the amyloid cascade hypothesis. J Neurosci 2004; 24: 14004–14008.
16. Harrison JR, Owen MJ. Alzheimer’s disease: the amyloid hypothesis on trial. Br J Psychiatry 2016; 208: 1–3.
17. Malishkevich A, Marshall GA, Schultz AP, Sperling RA, Aharon-Peretz J, Gozes I. Blood-borne activity-dependent neuroprotective protein (ADNP) is correlated with premorbid intelligence, clinical stage, and Alzheimer’s disease biomarkers. J Alzheimers Dis 2015; 50: 249–260.
18. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Arai K, Boxer Al, Blennow K et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 2007; 13: 1359–1362.
19. Beardsley P, Yoon JS, Sestan N, Sestan N. Clinical Alzheimer’s disease. Lancet Neurol 2015; 14: 82, author reply 80–82.
20. Oued K, Morag A, Pasmank-Chor M, Rehavi M, Shomron N, Gurvitz D. Genome-wide expression profiling of human lymphoblastoid cell lines implicates integrin beta3 in the mode of action of antidepressants. Transl Psychiatry 2013; 3: e313.
21. Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R et al. Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 2001; 21: 7551–7560.
RG2S expression predicts amyloid-β sensitivity

A Hadar et al

22 Elkind E, Yasid T, Komspan JD, Barnoy S, Rottem S, Kosover NS. Neuroprotective effects of Mycoplasma hyorhinis against amyloid-beta-peptide toxicity in SH-SY5Y human neuroblastoma cells are mediated by calpastatin upregulation in the mycoplasma-infected cells. Neurochem Int 2011; 58: 497–503.

23 Soreghan B, Kosmisi J, Gisbert C. Surfactant properties of Alzheimer's A beta peptides and the mechanism of amyloid aggregation. J Biol Chem 1994; 269: 12336–12342.

24 Bernstein SL, Wytenbach T, Baumketner A, Shea JE, Bitan G, Teplow DB et al. Amyloid beta-protein: monomer structure and early aggregation states of Abeta42 and its Pro19 allolform. J Am Chem Soc 2005; 127: 2075–2084.

25 Milanesi E, Hadar A, Maffioletti E, Werner H, Shomron N, Gennarelli M et al. Insulin-like growth factor 1 differentially affects lithium sensitivity of lymphoblastoid cell lines from lithium responder and non-responder bipolar disorder patients. J Mol Neurosci 2015; 56: 681–687.

26 Morag A, Pasmask-Mar M, Oron-Karni V, Rehavi M, Stirling JC, Gurvitz D et al. Genome-wide expression profiling of human lymphoblastoid cell lines identifies CHL1 as a putative SSTR antidepressant response biomarker. Pharmacogenomics 2011; 12: 171–184.

27 de Brouwer AP, van Bokhoven H, Breij EJ, Sasaki Y, DiAntonio A, Milbrandt J. SARM1 activation triggers neuronal cell death in sickness neurons. J Neurosci 2014; 34: 9338–9350.

28 Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Walker DG. Comparison of 12 reference genes for transcript quantification by qPCR in rat brain. J Neurosci Methods 2008; 171: 90–97.

29 Seredenina T, Gokce O, Luthi-Carter R. Decreased striatal RGS2 expression is neuroprotective in Huntington's disease (HD) and exemplifies a compensatory aspect of HD-induced gene regulation. PLoS One 2011; 6: e22231.

30 Dusonchet J, Li H, Guliyli M, Liu M, Stafa K, Derada Troletti C et al. A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of URRK2 activity and neuronal toxicity. Hum Mol Genet 2014; 23: 4887–4905.

31 Fronzelle L, Galvan L, Brouillet E. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington's disease. Front Cell Neurosci 2014; 8: 295.

32 Gold SJ, Heftet BD, Pudiak CM, Potts BW, Nestler EJ. Regulation of regulators of G protein signaling mRNA expression in rat brain by acute and chronic electroconvulsive seizures. J Neurochem 2002; 82: 828–838.

33 Ingi T, Krumins AM, Chidicr P, Brothers GM, Chung S, Snow BE et al. Dynamic regulation of RG2S suggests a novel mechanism in G-protein signaling and neuronal plasticity. J Neurosci 1998; 18: 7178–7188.

34 Zmijewski JW, Song L, Harkins L, Cobbis CS, Jope RS. Oxidative stress and heat shock stimulate RG2S expression in 1231N1 astrocytoma cells. Arch Biochem Biophys 2001; 392: 192–204.

35 Salm S, Asghar M, Taneeja M, Hovatta I, Wu YL, Saha K et al. Novel role of RG2S in regulation of antioxidant homeostasis in neuronal cells. FEBS Lett 2011; 585: 1375–1381.

36 Spehr M, Munger SD. Olfactory receptors: G-protein-coupled receptors and beyond. J Neurochem 2009; 109: 1570–1583.

37 Suderman M, Pappas JJ, Borghol N, Buxton JL, McArdle WL, Ring SM et al. RG2S regulates signal transduction in olfactory neurons by attenuating activation of adenyl cyclase III. Nature 2001; 409: 1051–1055.

38 Norlin EM, Berghard A. Spatially restricted expression of regulators of G-protein signaling in primary olfactory neurons. Mol Cell Neurosci 2001; 17: 872–882.

39 Mesholam RI, Moberg PJ, Mahr RN, Doty RL. Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer's and Parkinson's disease. Arch Neurol 2000; 57: 184–90.

40 Masurak AV, Devanand DP. Olfactory dysfunction in the elderly: basic circuitry and alterations with normal aging and Alzheimer's disease. Curr Geriatr Rep 2014; 3: 91–100.

41 Franks KH, Chuaa MI, King AE, Vickers JC. Connectivity of pathology: the olfactory system as a model for network-driven mechanisms of Alzheimer's disease pathogenesis. Front Aging Neurosci 2015; 7: 234.

42 Talamo BR, Budel R, Kosik KS, Lee VM, Nett S, Adelman L et al. Pathological changes in olfactory neurons in patients with Alzheimer's disease. Nature 1989; 337: 736–739.

43 Ayala-Grosso CA, Pieruzzi R, Diaz-Solano D, Wittig O, Abrante L, Vargas L et al. Amyloid-β-Abeta Peptide in olfactory mucosa and mesenchymal stromal cells of mild cognitive impairment and Alzheimer's disease patients. Brain Pathol 2015; 25: 136–145.

44 Roldan G, Bolanos-Badillo E, Gonzalez-Sanchez H, Quirain GE, Prado-Alcala RA. Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats. Neurosci Lett 1997; 230: 93–96.

45 Ferreira AR, Furstenau L, Blanco C, Kornisik E, Sanchez G, Darot D et al. Role of hippocampal M1 and M4 muscarinic receptor subtypes in memory consolidation in the rat. Pharmacol Biochem Behav 2003; 74: 411–415.

46 Young MB, Thomas SA. M1-muscarinic receptors promote fear memory consolidation via phosphorylation of C and the M-current. J Neurosci 2014; 34: 1570–1578.

47 Katayama S, Kito S, Yamamura Y, Tahara E, Kanazawa I. Alteration of muscarinic receptor subtypes in CA1 field of hippocampus in senile dementia of Alzheimer type: an autodiagnostic study. Hiroshima J Med Sci 1990; 39: 119–124.

48 Nordberg A, Alafuzoff I, Winblad B. Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 1992; 31: 103–111.

49 Wang SZ, Zhu SZ, Mash DC, El-Fakahany EE. Comparison of the concentration of messenger RNA encoding four muscarinic receptor subtypes in control and Alzheimer brains. Brain Res Mol Brain Res 1992; 19: 64–70.

50 Pearce BD, Potter LT. Coupling of m1 muscarinic receptors to G protein in Alzheimer disease. Alzheimer Dis Assoc Disord 1991; 5: 163–172.

51 Bengtson JS, Rumineni S, Hague C, Gladman W, Chidicr P, Levey AI et al. RG2S binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq11alpha signaling. J Biol Chem 2004; 279: 21248–21256.

52 Suh BC, Horowitz LF, Hirdes W, Mackie H, Hille B. Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq. J Gen Physiol 2004; 123: 663–683.

53 He H, Dong W, Huang F, Zhang P, Qin F, Zhou W et al. Neuronal oxidative and anti-apoptotic role of melatonin in Alzheimer disease. Curr Neuropharmacol 2010; 8: 211–217.

54 Yang X, Yang Y, Fu Z, Li Y, Feng J, Luo J et al. Melatonin ameliorates Alzheimer-like pathological changes and spatial memory retention impairment induced by calycinil A. J Psychopharmacol 2011; 25: 1118–1125.

55 Olesen JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt ML et al. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 2009; 47: 82–96.

56 Matsuo M, Coon SL, Klein DC. RG2S is a feedback inhibitor of melatonin production in the pineal gland. FEBS Lett 2013; 587: 1392–1398.

Translational Psychiatry (2016), 1 – 11
GKAP orchestrates bril formation and activity. J Cell Biol 2012; 194(7): 3418–3432.

Gonzalez H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 2014; 274: 1–13.

Grant JL, Ghosn EE, Axtell RC, Herges K, Kuipers HF, Woodling NS et al. Reversal of paralysis and reduced inflammation from peripheral administration of beta-amyloid in TH1 and TH17 versions of experimental autoimmune encephalomyelitis. Sci Transl Med 2012; 4: 145ra105.

Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol 2015; 36: 569–577.

Lalla R, Donmez G. The role of sirtuins in Alzheimer’s disease. Front Aging Neurosci 2013; 5: 16.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)