Phylogenetic relationships in the *Sorghum* genus based on sequencing of the chloroplast and nuclear genes

Galaihalage Ananda¹ | Sally Norton² | Cecilia Blomstedt³ | Agnelo Furtado¹ | Birger Møller⁴ | Roslyn Gleadow¹,³ | Robert Henry¹

¹ Queensland Alliance for Agriculture and Food Innovation, The Univ. of Queensland, St Lucia, QLD, Australia
² Australian Grains Genebank, Agriculture Victoria, Horsham, VIC, Australia
³ School of Biological Sciences, Monash Univ., Clayton, VIC, Australia
⁴ Plant Biochemistry Laboratory, Dep. of Plant and Environmental Sciences, Univ. of Copenhagen, Copenhagen, Denmark

Correspondence
Robert J. Henry, Queensland Alliance for Agriculture and Food Innovation, The Univ. of Queensland, St Lucia, QLD, Australia. Email: robert.henry@uq.edu.au

Assigned to Associate Editor Lin Li.

Abstract

Sorghum [*Sorghum bicolor* (L.) Moench] is an important food crop with a diverse gene pool residing in its wild relatives. A total of 15 sorghum accessions from the unexploited wild gene pool of the *Sorghum* genus, representing the five subgenera, were sequenced, and the complete chloroplast genomes and 99 common single-copy concatenated nuclear genes were assembled. Annotation of the chloroplast genomes identified a total of 81 protein-coding genes, 38 tRNA, and four rRNA genes. The gene content and gene order among the species was identical. A total of 153 nonsynonymous amino acid changes in 40 genes were identified across the species. Phylogenetic analysis of both the whole chloroplast genome and nuclear genes revealed a similar topology with two distinct clades within the genus. The species within the subgenera *Eusorghum*, *Chaetosorghum*, and *Heterosorghum* clustered in one clade, whereas the species within the subgenera *Parasorghum* and *Stiposorghum* clustered in a second clade. However, the subgenera *Parasorghum* and *Stiposorghum* were not monophyletic, suggesting the need for further research to resolve the relationships within this group. The close relationship between the two monotypic subgenera *Chaetosorghum* and *Heterosorghum* suggests that species within these subgenera could be considered as one group. This analysis provides an improved understanding of the genetic relationships within the *Sorghum* genus and defines diversity in wild sorghum species that may be useful for crop improvement.

1 | INTRODUCTION

Sorghum [*Sorghum bicolor* (L.) Moench] is a versatile food crop globally and a staple food in many African and Asian countries, whereas elsewhere it is mainly grown for animal feed (Hariprasanna & Patil, 2015; Venkateswaran et al., 2019). *Sorghum* (Poaceae) is a highly diverse genus reported to consist of 24 species (Ananda et al., 2020), that, based on morphological characteristics are classified into five subgenera: *Eusorghum*, *Chaetosorghum*, *Heterosorghum*, *Parasorghum*, and *Stiposorghum* (de Wet, 1978; Garber & Snyder, 1950; Harlan & de Wet, 1972; Lazarides et al., 1991).

In the current Kew Botanic Gardens Angiosperm DNA C-values database, a total of 32 species of sorghum are listed

Abbreviations: CDS, coding DNA sequence; CLC-GWB, CLC Genomic Workbench; CpGAVAS, Chloroplast Genome Annotation, Visualization, Analysis, and GenBank Submission; IR, inverted repeats; ML, maximum likelihood; NCBI, National Center for Biotechnology Information; SNP, single nucleotide polymorphism.
The classification of sorghum based on diverse morphological characters has made sorghum taxonomy a complex area of study. In the present classification based on cytogenetics and morphology, *Eusorghum* contains domesticated sorghum, the cultivated species *S. bicolor*, along with its progenitors and weedy relatives *S. propinquum* (Kunth) Hitchc. and *S. halepense* (L.) Pers. (de Wet, 1978; Harlan & de Wet, 1972). *Sorghum × alnum* Parodi is a hybrid species in *Eusorghum* (Dillon et al., 2007a) and thought to be a hybrid between *S. bicolor* and *S. halepense* (Duvall & Doebley, 1990). *Sorghum bicolor* includes all the cultivated sorghum species, which is subdivided into three categories; subsp. *bicolor* (cultivated sorghums), subsp. *verticilliflorum* (wild progenitors of sorghum), and subsp. *drummondii* (Sted.) Millsp. & Chase (weedy sorghum hybrids and the species derived from hybridization between domesticated sorghums and wild relatives). Subspecies *verticilliflorum* consists of four races of wild progenitors named *aethiopicum, arundinaceum, verticilliflorum,* and *virgatum*. *Sorghum propinquum* is a wild species, whereas *S. halepense* is a weedy species. The subgenus *Parasorghum* consists of seven species: *S. grande* Lazarides, *S. nitidum* (Vahl) Pers., *S. matarankense* E. D. Garber & Snyder, *S. leiocladum* (Hack.) C. E. Hubb., *S. purpureosericum* (Hochst. ex A. Rich.), *S. timorense* (Kunth) Buse, and *S. versicolor* Andersson. *Sorghum amplum* Lazarides, *S. brachypodum* Lazarides, *S. angustum* S. T. Blake, *S. intrans* F. Muell. ex Benth., *S. ecarinatum* Lazarides, *S. bulbosum* Lazarides, *S. plumosum* (R. Br.) P. Beauv., *S. stipoides* (Ewart & Jean White) C. A. Gardner & C. E. Hubb., *S. interjectum* Lazarides, and *S. extans* Lazarides are classified under the subgenus *Stiposorghum*. *Sorghum laxiflorum* F. M. Bailey, and *S. macrospermum* E. D. Garber belong to monotypic subgenera *Heterosorghum* and *Chaetosorghum*, respectively (Ananda et al., 2020; Lazarides et al., 1991; USDA-ARS, National Plant Germplasm System, 2020). The majority of the species in the subgenera of *Chaetosorghum, Heterosorghum, Parasorghum,* and *Stiposorghum* are endemic to Australia.

Molecular phylogenetics provides new insights into the evolutionary relationships within species. There have been several studies aimed at determining the phylogenetic relationships in sorghum (Dillon et al., 2001, 2004; Liu et al., 2014; Sun et al., 1994, 2007a). However, understanding the precise relationships of these subgenera has been challenging. The main reasons for the uncertainty around the conclusions are the limited availability of sequencing data and the use of different sets of taxa and different sets of DNA markers in the studies (Kellogg, 2013). To date, there are some studies on the phylogeny of sorghum based on nuclear genomic data with some chloroplast genomic data (Dillon et al., 2001, 2004; Liu et al., 2014; Sun et al., 1994, 2007a). No information is available based on whole chloroplast genome sequencing or multiple nuclear genes. In an attempt to reconcile the different proposed phylogenies, Spangler (2003) revised the *Sorghum* genus, dividing it into three distinct genera, namely, *Sorghum, Vaccoarhis,* and *Sarga*. However, this revised classification has been questioned (Dillon et al., 2004, 2007a) and the precise relationships among these species remain unclear.

Resolving the complex relationships in the genus *Sorghum* requires accurate genetic evidence. Advances in DNA sequencing have enabled large volumes of reliable genomic data to be obtained (Bennetzen et al., 2012). The first whole genome sequence of sorghum was obtained from the grain sorghum, *S. bicolor* BTx623, using whole-genome shotgun sequencing (Paterson et al., 2009). The total size of the genome is 730 Mb, and this small size makes it a perfect candidate as a model genome for C4 grasses. The chloroplast genomes of plants have been successfully used in revealing phylogenetic relationships of plants because of their highly conserved nature (Dong et al., 2017; Jansen et al., 2005). The first physical map of a chloroplast genome was generated for maize (*Zea mays* L.) (Sugiura, 2003). Some portions of the chloroplast genomes are found present in the genomes of other organelles, such as the mitochondria and nucleus (Sugiura, 1992). The typical chloroplast genome is a single circular structure including a large single-copy region and a small single-copy region. Those two regions are separated by two inverted repeats (IRa and IRb) (Jansen et al., 2005). A chloroplast genome can contain about 120–135 genes, of which the majority (65%) are protein coding genes with the rest being RNA encoding genes (Lopez-Juez & Pyke, 2005). Plant cells may contain 10,000 copies of the chloroplast genome (Morley & Nielsen, 2016). However, the gene order and the coding sequences are highly conserved within species (Jansen et al., 2005; Palmer, 1991). The first successful attempt at sequencing the chloroplast genome of sorghum was by Saski et al. (2007). To date, the complete
Table 1 Sorghum genotypes used for sequencing, sourced from the Australian Grains Genebank (AGG)

AGG accession number	Accession name	Taxon	Subgenera	Ploidy level (2n)	Country of origin	NCBI BioSample number
302367	JC 2253	S. macrospermum	Chaetosorghum	40	Australia	SAMN17369313
326072	SSD line derived from AGG 302367 WSOR	S. macrospermum	Chaetosorghum	40	Australia	SAMN17369304
112151	Tx623 B	S. bicolor	Eusorghum	20	Africa	SAMN17369308
314746	Tx623 A	S. bicolor	Eusorghum	20	Africa	SAMN17369307
326060	SSD line derived from AGG 302525 WSOR	S. laxiflorum	Heterosorghum	40	Australia	SAMN17369311
326074	SSD line derived from AGG 302525 WSOR	S. laxiflorum	Heterosorghum	40	Australia	SAMN17369317
326061	SSD line derived from AGG 300148 WSOR	S. leiocladum	Parasorghum	10,20	Australia	SAMN17369303
326062	SSD line derived from AGG 300148 WSOR	S. leiocladum	Parasorghum	10,20	Australia	SAMN17369312
326065	SSD line derived from AGG 302521 WSOR	S. matarankense	Parasorghum	10	Australia	SAMN17369305
326066	SSD line derived from AGG 302521 WSOR	S. matarankense	Parasorghum	10	Australia	SAMN17369314
326068	SSD line derived from AGG 318068 WSOR	S. purpureosericeum	Parasorghum	10	Africa	SAMN17369306
326071	SSD line derived from AGG 318068 WSOR	S. purpureosericeum	Parasorghum	10	Africa	SAMN17369315
326075	SSD line derived from AGG 318068 WSOR	S. purpureosericeum	Parasorghum	10	Africa	SAMN17369316
302670	IDC 7561	S. brachypodum	Stiposorghum	10	Australia	SAMN17369310
326073	SSD line derived from AGG 302481 WSOR	S. brachypodum	Stiposorghum	10	Australia	SAMN17369309

Note. NCBI, National Center for Biotechnology Information; SSD = single seed descent.

chloroplast genomes of only seven sorghum species of just two subgenera, Eusorghum and Parasorghum, are available in databases, leaving the gene pool of the Australian wild sorghum species unexploited. In this study, we determine phylogenetic relationships in the genus Sorghum using whole genome sequencing to capture the entire chloroplast genome sequence and a large set of nuclear gene sequence data of Australian wild sorghum species.

2 | MATERIALS AND METHODS

2.1 | Plant material

A total of 15 sorghum accessions of seven sorghum species representing five subgenera were selected for sequencing (Table 1). Plants were grown at the Australian Grains Genebank, Horsham, VIC, Australia (36°43′21.93764″ S and 142°10′29.50331″ E). Seed was germinated according to the Australian Grains Genebank protocol, modified by the addition of a 16-h incubation in 3 mM gibberellic acid (Cowan et al., 2020). Seedlings were transferred to commercial seed raising mix and grown for 4 wk in a growth cabinet with alternating temperatures of 35 °C/25 °C for 16/8 h and a 14-h photoperiod. The plants were then transplanted into 25-cm pots containing commercial potting mix and grown for a further 4 wk in the growth cabinet and then moved into a greenhouse with a maximum temperature of approximately 30 °C and a minimum temperature of approximately 15 °C and a natural photoperiod of 14 h of light.

2.2 | DNA extraction and sequencing

Total genomic DNA was extracted from pulverized leaf tissue samples of the 15 sorghum accessions using the cetyltrimethyl ammonium bromide method optimized for sorghum (Furtado, 2014). DNA quality was assessed by spectrometry using A260/280 and A260/230 absorbance ratios (NanoDrop, Thermofisher Scientific) and by resolving the DNA on an agarose gel by electrophoresis. DNA quantity was measured by SYBR-safe fluorescence comparison to lambda DNA...
standards. A ratio of 1.8:2 in the absorbance at 260/280 nm in the Nano drop profiles and no shearing indicated high molecular weight DNA with sufficient purity and quality of DNA required for Illumina sequencing. DNA samples were sequenced on an Illumina HiSeq 2000 platform at the Ramaciotti Centre, University of New South Wales, NSW, Australia (Supplemental Table S1).

2.3 Chloroplast genome assembly

Chloroplast genomes of each species were assembled using an established analysis pipeline described in Moner et al. (2018) in CLC Genomic Workbench (CLC-GWB) software (CLC Genomics Workbench 11.0, http://www.clcbio.com). Raw reads were imported to CLC-GWB, and the sequence of *S. bicolor* chloroplast genome (accession NC008602) was imported from the National Center for Biotechnology Information (NCBI) to use as the reference (Saski et al., 2007). Paired reads were quality trimmed at 0.01 quality limits (Phred score equivalent to >20, 95% of the reads had a Phred score >35, averaged across all bases) at sequence length of 1,000 to assemble the chloroplast genome by two approaches, namely reference-guided mapping assembly and de novo assembly. A manual curation step was carried out by checking the mapping files to reconcile any discrepancies, thereby obtaining an accurate sequence, ensuring a high-quality whole chloroplast genome sequence for all the species.

2.4 Genome annotation and variant analysis

The chloroplast genomes were annotated using the GeSeq online tool (https://chlorobox.mpimp-golm.mpg.de/geseq.html) using *S. bicolor* as the reference genome. The variants compared with the reference were identified using Geneious 11.1.5 software (www.geneious.com). The annotated sequences were exported to Geneious 11.1.5 and each species was separately aligned against the annotated reference genome of *S. bicolor* to identify the variants.

2.5 Nuclear genes analysis

The nuclear gene sequences of the 15 sorghum accessions were constructed by an established analysis pipeline described in Badro et al. (2019) in CLC-GWB software. Raw reads were imported to CLC-GWB together with the annotated nuclear genome sequence of *S. bicolor* NCBIv3 (Paterson et al., 2009) and the *Zea mays* genomes to use as a reference and an outgroup, respectively. First, raw reads were subjected to quality control analysis, and trimming was performed at the quality limits of 0.01 (Phred score equivalent to >20) at sequence length of 1,000 and the reads were mapped against the *S. bicolor* reference genome. The consensus sequences were extracted for each species and converted into coding DNA sequence (CDS) and genome tracks. From the CDS and genome tracks, annotations were extracted, and a total of 99 common single-copy genes were selected (Li et al., 2017) (Supplemental Table S2). These genes (exons only) were concatenated to give a final annotated sequence per species.

2.6 Phylogenetic analysis

Phylogenetic analysis was undertaken separately using whole chloroplast genome sequence datasets and nuclear sequence datasets of the sorghum species. Geneious 11.1.5 software (www.geneious.com) was used to align the sequences. In the chloroplast genome alignment, the complete chloroplast sequences of an additional seven species were imported from NCBI (*S. arundinaceum* LS398103, *S. halepense* LS398105, *S. propinquum* NC042789, *S. × drummondii* LS398106, *S. sudanense* NC042790, *S. versicolor* LS398104, and *S. timorens* LS398107) and the multiple sequence alignment was done using the multiple alignment using fast Fourier transform (MAFFT) alignment in Geneious with default parameters. The substitution models for the phylogenetic analyses were determined by the jModelTest2 (Darriba et al., 2012) on the Extreme Science and Engineering Discovery Environment (XSEDE). The parameters for the best selected models are given in the Supplemental Tables S3 and S4. Phylogenetic reconstruction was performed using PAUP* v. 4.0 software (Swofford, 2003) with maximum likelihood (ML) and maximum parsimony methods. The ML tree was constructed using the best fit model under the Akaike information criterion (Supplemental Tables S3 and S4) in PAUP* with heuristic searching, tree bisection and reconnection branch swapping method, and 1,000 bootstrap replicates. The final trees obtained were cross-validated for the similar tree topology using MrBayes v. 3.2 (Ronquist et al., 2012) in Geneious with the parameters of Bayesian information criterion in jModelTest2 (Supplemental Tables S3 and S4). The nuclear and chloroplast phylogenies were compared to identify differences.

3 RESULTS

3.1 Chloroplast genome assembly and annotation

Illumina sequencing generated a total of 68,805,710–537,816,756 raw reads from each of the different species with a mean length of 150 bp. The paired end reads trimmed at
TABLE 2 Annotated complete chloroplast genomes of the sorghum species

Taxon	Size of the genome bp	Overall GC content	LSC bp	SSC bp	IR bp	Genes	CDSs	rRNA genes	tRNA genes
S. macrospermum 302367	140,997	38.4	82,842	12,565	22,795	123	81	4	38
S. macrospermum 326072	140,983	38.4	82,854	12,529	22,800	123	81	4	38
S. bicolor 112151	140,754	38.5	82,685	12,503	22,783	123	81	4	38
S. bicolor 314746	140,666	38.5	82,596	12,506	22,782	123	81	4	38
S. laxiflorum 326060	140,992	38.4	82,853	12,537	22,801	123	81	4	38
S. laxiflorum 326074	140,992	38.4	82,853	12,537	22,801	123	81	4	38
S. bicolor 112151	140,754	38.5	82,685	12,503	22,783	123	81	4	38
S. bicolor 314746	140,666	38.5	82,596	12,506	22,782	123	81	4	38
S. laxiflorum 326060	140,992	38.4	82,853	12,537	22,801	123	81	4	38
S. laxiflorum 326074	140,992	38.4	82,853	12,537	22,801	123	81	4	38
S. bicolor 112151	140,754	38.5	82,685	12,503	22,783	123	81	4	38
S. bicolor 314746	140,666	38.5	82,596	12,506	22,782	123	81	4	38
S. laxiflorum 326060	140,992	38.4	82,853	12,537	22,801	123	81	4	38
S. laxiflorum 326074	140,992	38.4	82,853	12,537	22,801	123	81	4	38

Note. CDSs, coding DNA sequences; GC, guanine or cytosine; IR, inverted repeats; LSC, large single copy; SSC, small single copy.

0.01 quality limit (Phred score >20), with reads ranging from 66,638,305 to 516,800,277 at an average coverage of 20× of the genome size of the corresponding species, were selected for assembling the chloroplast genome sequences (Supplemental Table S1). The chloroplast genomes were assembled separately for each species and ranged in size from 140,666 to 141,010 bp (Table 2). The S. bicolor chloroplast genome sequence NC008602 was used as a reference sequence for comparison to the assembled and annotated chloroplast genome sequences. This revealed that the structure of the chloroplast genome sequences of all the sorghum species were identical, with a quadripartite structure including a large single-copy (82,596–82,922 bp), small single-copy (12,486–12,565 bp), and two identical IRs (22,782–22,813 bp). The overall guanine or cytosine content of the seven species were almost the same (38.4–38.5%). A well-conserved genomic structure was observed among the seven species with identical content and order of genes (Table 2).

The chloroplast genome map of S. brachypodum 302670 is presented in Figure 1, which represents the structure of chloroplast genome of sorghum species.

A total of 123 genes were identified in the sorghum chloroplast genome, including 81 protein coding genes, 38 tRNA genes, and 4 rRNA genes. The annotated chloroplast genomes were imported to Geneious to identify variants compared with the reference genome, S. bicolor NC008602. The highest number of total variants was observed in S. brachypodum 326073 with no variants observed in S. bicolor 112151. Among these variants, 75% were single nucleotide polymorphisms (SNPs) and 21% of the variants were Indels across all the species. Similarly, in terms of variants inside coding sequences, the highest number of total variants was observed in the same S. brachypodum 326073 with no variants observed in S. bicolor 112151. Among these variants, 96% of them were SNPs followed by 2% of Indels across all the species. The highest number of nonsynonymous amino acid changes were observed in S. brachypodum 326073 with none observed in S. bicolor 112151 (Table 3, Figure 2).

A total of 153 nonsynonymous amino acid changes were identified in a total of 40 genes among all the 15 accessions while 83 genes showed no variation. The highest number of variants was observed in the gene rpoC2, followed by ndhF and matK (Figure 3). Most of them were present in the coding region of the rpoC2 gene, which is a DNA-directed RNA polymerase subunit beta-coding gene. Two common SNPs were observed in all the species except in S. bicolor 112151, a transition of A to G in the gene matK and transversion of C to G in gene ycf4, which resulted in the amino acid changes Leucine to Serine and Leucine to Valine, respectively. With regard to Indels causing nonsynonymous amino acid changes, in general, the Indels were shared by several species, but there were also some species-specific Indels. These included a...
deletion in rpoC2 in *S. bicolor* 314746, deletions in rps18 and rpl22 genes of *S. macrosporum*, and insertions in ndhD and rps3 genes in *S. purpureosericeum* (Table 4). Out of these Indels, 30% caused a frame shift in the final protein of the genes rpl22, rps11, and ycf2, whereas another 30% caused a truncation in the final protein of the genes matK, rps3, and ndhD (Table 4).

3.2 Chloroplast genome phylogeny

The multiple chloroplast genome alignment of sorghum species together with the outgroup *Zea mays* was 142,647 bp in length with 96% identical sites. The optimal trees obtained by all three phylogenetic methods were topologically equivalent, and the final tree is presented in Figure 4. In the ML
TABLE 3 Details of sequence polymorphisms identified in chloroplast genome sequences of sorghum species

Species Description	Total variants inside and outside CDS	Total variants inside CDS	Nonsynonymous amino acid changes						
	Number of variants	Indels	SNPs	MNPs	Number of variants	Indels	SNPs	MNPs	
S. macrospermum 302367	456	99	343	14	124	2	119	3	37
S. macrospermum 326072	464	99	348	17	123	2	116	5	36
S. bicolor 112151	0	0	0	0	0	0	0	0	0
S. bicolor 314746	78	25	52	1	22	1	20	1	9
S. laxiflorum 326060	402	91	298	13	108	1	104	3	31
S. laxiflorum 326074	402	91	298	13	108	1	104	3	31
S. leiocladum 326061	660	131	508	21	180	2	176	2	58
S. leiocladum 326062	662	133	508	21	180	2	176	2	58
S. matarankense 326065	736	133	574	29	203	3	197	2	67
S. matarankense 326066	736	133	574	29	203	3	197	2	67
S. purpureosericeum 326068	725	144	550	31	194	4	186	4	59
S. purpureosericeum 326071	723	142	550	31	194	4	186	4	59
S. purpureosericeum 326075	724	143	550	31	194	4	186	4	59
S. brachypodum 302670	740	135	579	26	206	4	200	2	67
S. brachypodum 326073	750	142	584	24	223	4	216	3	78

Note. CDS, coding DNA sequence; MNPs, multinucleotide polymorphisms; SNPs, single nucleotide polymorphisms.

FIGURE 3 Indels, single nucleotide polymorphism (SNPs), and multiple nucleotide polymorphisms (MNPs) inside and outside CDS per species. The total number of variants including the number of Indels, SNPs, and MNPs per species are given. Variants were determined compared with the reference chloroplast genome sequence of *Sorghum bicolor* NC008602.

Method, a strong bootstrap value (100%) was observed for the majority of nodes. The phylogenetic tree construction revealed two large distinct clades within these 23 sorghum accessions. Subgenera *Eusorghum*, *Chaetosorghum*, and *Heterosorghum* formed a single cluster, with *Stiposorghum* and *Parasorghum* positioned in a different cluster. All the *Eusorghum* species were resolved into one clade (*S. bicolor*, *S. propinquum*, *S. halepense*, *S. arundinaceum*, *S. sudanense*, and *S. × drummondii*). In this analysis, the *Eusorghum* clade becomes the sister group to the clades of *Heterosorghum*...
Species	No of indels	Polymorphism type	Size	Sequence change	Gene	Gene size	CDS position	Codon change	Amino acid change	Protein effect
			bp	bp						
S. macrospermum 802367	2	Deletion	21	TCAAACAACCTTTTCGTAAAT	rps18	471	95	TTC, AAA, CAA, CCT, TTT, CGT, AAA, TCC = TCC	FKQPFKRKS → S	Deletion
		Insertion	2	(T)3 → (T)5	rpl22	438	436	–	–	Frame shift
S. macrospermum 826072	2	Deletion	21	TCAAACAACCTTTTCGTAAAT	rps18	471	95	TTC, AAA, CAA, CCT, TTT, CGT, AAA, TCC = TCC	FKQPFKRKS → S	Deletion
S. bicolor 314746	1	Deletion	165	++	rpoC2	4398	2043	**	EDEYRTLEDYEYTLDEYRTLEKDSSEEYGSLENKYSRTREGGGEYBLE → E	Deletion
S. laxiflorum 826060	1	Insertion	1	(T)10 → (T)11	rps11	432	431	–	–	Frame shift
S. laxiflorum 826074	1	Insertion	1	(T)10 → (T)11	rps11	432	431	–	–	Frame shift
S. leiocladum 139661	2	Insertion	21	TTTGCTAATGATTAATTAAG	matK	1548	1540	–	–	Truncation
S. leiocladum 139662	2	Insertion	2	(T)10 → (T)11	rps11	432	431	–	–	Frame shift
S. laxiflorum 826065	3	Insertion	21	TTTGCTAATGATTAATTAAG	matK	1548	1540	–	–	Truncation
		Insertion	5	TOGTT	ycf2	1987	1711	–	–	Frame shift
		Insertion	6	CACCAT	ycf1	813	712	CAC, CAT	HH	Insertion

(Continues)
Species	No: of indels	Polymorphism type	Size	Sequence change	Gene	Gene size	CDS position	Codon change	Amino acid change	Protein effect
S. mattenkense 526066	3	Insertion	21	TTTGTCATGAA	matK	1548	1540	–	–	Truncation
				GATAAATAAAG						Insertion
S. purpureostricium	4	Insertion	21	TTTGTCATGAA	matK	1548	1540	–	–	Truncation
326069				GATAAATAAAG						Insertion
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
S. purpureostricium	4	Insertion	21	TTTGTCATGAA	matK	1548	1540	–	–	Truncation
326071				GATAAATAAAG						Insertion
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
S. purpureostricium	4	Insertion	21	TTTGTCATGAA	matK	1548	1540	–	–	Truncation
326075				GATAAATAAAG						Insertion
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
S. brachypodum 82670	4	Insertion	21	TTTGTCATGAA	matK	1548	1540	–	–	Truncation
				GATAAATAAAG						Insertion
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
S. brachypodum 326073	4	Insertion	21	TTTGTCATGAA	matK	1548	1540	–	–	Truncation
				GATAAATAAAG						Insertion
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift
				GATAAATAAAG						Frame shift

Note: Underlined text indicates the inserted or deleted sequence region.
++AGACGAATATAGGACTCTAGAGGACGAATATGAAACCCTAGAAGATGAGTATGGGATCCTAGAGGACGAATATAGGACTCTAGAGAAAGACTCAGAGGAAGAATATGGGAGCCTAGAGAACAAATAT

GAAGAACCTAGAAGATGAGTATGGGATCCTAGAGGACGAATATAGGACTCTAGAGAAAGACTCAGAGGAAGAATATGGGAGCCTAGAGAACAAATAT

++AGACGAATATAGGACTCTAGAGGACGAATATGAAACCCTAGAAGATGAGTATGGGATCCTAGAGGACGAATATAGGACTCTAGAGAAAGACTCAGAGGAAGAATATGGGAGCCTAGAGAACAAATAT

GAAGAACCTAGAAGATGAGTATGGGATCCTAGAGGACGAATATAGGACTCTAGAGAAAGACTCAGAGGAAGAATATGGGAGCCTAGAGAACAAATAT

++AGACGAATATAGGACTCTAGAGGACGAATATGAAACCCTAGAAGATGAGTATGGGATCCTAGAGGACGAATATAGGACTCTAGAGAAAGACTCAGAGGAAGAATATGGGAGCCTAGAGAACAAATAT

GAAGAACCTAGAAGATGAGTATGGGATCCTAGAGGACGAATATAGGACTCTAGAGAAAGACTCAGAGGAAGAATATGGGAGCCTAGAGAACAAATAT
The total number of nonsynonymous amino acid changes per gene were determined compared with the reference chloroplast genome sequence of *Sorghum bicolor* NC008602.

FIGURE 4 Chloroplast genome sequence-based phylogeny of sorghum species. The phylogenetic tree of whole chloroplast genome sequences of 23 sorghum accessions with *Zea mays* L. as the outgroup. Tree was generated using maximum likelihood (ML) method in PAUP with 1,000 bootstrap replicates. Marked on each node is the ML bootstrap value (1/100). Red: *Eusorghum*, Green: *Chaetosorghum*, Pink: *Heterosorghum*, Yellow: *Parasorghum*, Blue: *Stiposorghum*. *Sequences obtained from National Center for Biotechnology Information (S. macrospermum 326072 and 302367) and *Chaetosorghum* (S. laxiflorum 326060 and 326074). Within the *Eusorghum* clade, the accession *S. bicolor* 314746 was resolved as a sister clade to *S. propequium* NC042789 rather than the other two *S. bicolor* accessions (*S. bicolor* 112151 and *S. bicolor* NC008602). All the *Parasorghum* species (*S. leiocladum* 326061 and 326062; *S. matarankense* 326065 and 326066; *S. purpureosericicum* 326068, 326071, and 326075; and *S. versicolor* LS398104 and *S. timorense* LS398107) formed a single clade together with the *Stiposorghum* species *S. brachypodum* 326073 and 302670. However, the two accessions of *S. brachypodum* 326073 and 302670 were not closely related to each other, being in two separate subclusters (Figure 4).

3.3 Nuclear genes phylogeny

Generation of the nuclear genes phylogeny followed the same steps as used for the chloroplast phylogenetic analysis, with *Zea mays* as the outgroup. A total of 99 common single-copy
genes were selected based on the analysis of Li et al. (2017) and the multiple sequence alignment was 174,025 bp in length with 76.7% identical sites. The optimal trees obtained by all three phylogenetic methods were topologically equivalent and the final tree is presented in Figure 5. In the ML method, a strong bootstrap value of 100% was observed for the majority of the nodes. According to the phylogenetic tree generated in this analysis, two distinct clusters were identified among these 16 sorghum accessions, which mimics the chloroplast genome phylogeny. Subgenera Eusorghum, Chaetosorghum, and Heterosorghum localized in a separate cluster and Stiposorghum and Parasorghum in a separate cluster. All the Eusorghum species formed a single clade, which is a sister clade to the clades of Chaetosorghum and Heterosorghum. All the Parasorghum species were in one clade together with the Stiposorghum species S. brachypodum 326073 and 302670. However, unlike in the chloroplast phylogeny, the two S. brachypodum species were clustered together in a separate subclade.

4 DISCUSSION

Phylogenetic analysis based on organelle genomes play a vital role in determining relationships among closely related species (Carbonell-Caballero et al., 2015; Dong et al., 2017). At the species level, it can be challenging to resolve phylogenetic relationships based on a small number of loci (Hilu & Alice, 2001; Majure et al., 2012). Studies on phylogenetic relationships, especially among the angiosperms, have been improved with the use of complete chloroplast genome sequencing (Bausher et al., 2006; Cai et al., 2006; Chang & Lin, 2006).

With the recent advances of next generation sequencing technology, more efficient and cost-effective methods are available. In this study, next generation sequencing was used to sequence and assemble the complete chloroplast genomes of wild relatives of the important crop S. bicolor. The accuracy of the assembled chloroplast genomes is strongly influenced by the choice of assembly pipeline (Sims et al., 2014). Here we used two assembly approaches, reference-guided mapping assembly and de novo assembly, followed by comparison of the assemblies to identify and resolve discrepancies for improved accuracy of the final assembled chloroplast genome sequence. The typical structure of the chloroplast, with the same gene content and gene order, was observed for all the species.

Different methods are available to annotate the chloroplast genome such as GeSeq (Tillich et al., 2017), Dogma (Wyman et al., 2004), PLANN (Plastome Annotator) (Huang & Cronk, 2015), CGAP (Chloroplast Genome Analysis Platform) (Cheng et al., 2013), CpGAVAS (Chloroplast Genome Annotation, Visualization, Analysis, and GenBank Submission) (Liu et al., 2012). However, many of these tools are considered outdated due to drawbacks such as low accuracy. The efficiency of GeSeq compared with Dogma has been assessed in the study by Guyeux et al. (2019), indicating that GeSeq is the best available tool for chloroplast genome annotation. In the present study, GeSeq software was used to annotate the chloroplast genomes, allowing the annotation of more genes compared with the previous study of Song et al. (2019) (77 protein-coding genes, 29 tRNA genes, and 4 rRNA genes).

The mutations, which are clustered as hotspots, have created highly variable regions in the chloroplast genomes which are very informative in phylogenetic analysis (Dong et al., 2012). In the current study, three main sequence variant hotspots were identified (rpoC2, matK, and ndhF). Studies have identified the rpoC2 gene as a highly variable region, and this has been used successfully in phylogenetic studies in the family Poaceae (Cummings et al., 1994; Barker et al.,...
Higher frequencies of SNPs and Indels have also been identified in *matK* and *ndhF* in citrus (*Citrus* spp.) and were shown to be useful for phylogenetic analysis (Carbonell-Caballero et al., 2015). In addition, the *rps15-ndhF* region has been successfully used in phylogenetic studies in grasses (Zhang et al., 2016). The study of Song et al. (2019) identified mutational hotspot regions, including *rps15-ndhF* as well as *rps16-trnQ*, *trnG-trnM*, and *rbcL-psal*, in chloroplast genomes of sorghum by sliding window analysis. The differences in identification of regions of high variation within the sorghum chloroplast genome may be because in the current study we have analyzed the sequence from a greater number of species using more accurate sequencing technology and improved annotation. It has also been suggested that the regions of high variation in *matK* and *ndhF* are due to environmental pressures and may be linked to the adaptation of plants to hot and dry conditions (Daniell et al., 2016).

Indels in coding sequences were identified in genes *rpl22*, *rps11*, and *ycf2*, which caused frameshifts in the resulting protein. The accuracy of these variants was checked by examining the mapping files of these final sequences. Either there were no conflicts or if there were conflicts, the majority call for the base in the reads was used in the consensus sequences (Supplemental Table S5). Indels, not representing multiples of three bases, lead to a frameshift causing a change in amino acid sequence from the point of the variant insertion (Table 4). Proteins with these variants might have lost their function in the chloroplast. Some studies have reported that copies of some of these above genes have been translocated to other genomes within the cell. For instance, the gene *rpl22*, encodes the chloroplast ribosomal protein, and a functional copy of this gene has been reported to be located, not in the chloroplast, but in the nucleus in the *Pisum sativum* L. (Gantt et al., 1991), and putative losses of this gene has been reported in Fabaceae and Passifloraceae plants (Jansen et al., 2011). Horizontal gene transfer events have been reported for the gene *rps11* where mitochondrial genomes have acquired a copy of this gene in the families Betulaceae, Caprifoliaceae, and Sanguinaria (Richardson & Palmer, 2007). The gene *ycf2* is considered as a pseudogene, and loss of the *ycf2* gene in the plastid genome has been reported in the Poaceae family concomitant with the absence of a copy in the nucleus (Wicke et al., 2011; Downie & Palmer, 1992). In addition, truncation of the sequences of the three genes *matK*, *rps3*, and *ndhD* has been observed in *S. leiocladum*, *S. matarankense*, *S. purpureoserticeum*, and *S. brachypodum*. Studies by Xu et al. (2015) and Wicke et al. (2011) suggested that the genes *matK*, *ndhD*, *rpl22*, *rps11*, and *ycf2* were lost from chloroplast genomes of land plants in the process of evolution. Future studies are required to determine whether these proteins are still functional or not in *Sorghum*.

In the phylogenetic analysis, a similar tree topology was observed for both the chloroplast and nuclear gene phylogeny, with only minor differences in the subgenus *Stiposorghum*. Interestingly, in the chloroplast phylogeny, the two accessions of *S. brachypodum* 326073 and 320670 did not form a monophyletic group but were instead paraphyletic with two species *S. timorense* and *S. matarankense*. These two *S. brachypodum* accessions have originated from two different wild populations. *S. brachypodum* 320670 is a single seed descend line derived from 302481 and collected from a natural wild population west of Jabiru, Kakadu National Park, NT, Australia (geocoordinates: 12.7145 °S, 132.4167 °E). *S. brachypodum* 320670 is a single plant grown from a natural population collected from a population near the Oenpelli Road northeast of Jabiru, Kakadu NP (geocoordinates: 12.5667 °S, 132.88 °E). However, these two accessions showed similar nuclear genes confirming their identity as a single species. The polyphyletic origins of their chloroplast genomes indicate there has been some degree of gene flow between the species. Chloroplast transfer or capture is common in closely related plant species and represents a clear example of reticulate evolution. Whole chloroplast genome sequencing has revealed this process in many plant groups (Guyeux et al., 2019; Healey et al., 2018; Moner et al., 2020). This analysis shows that *Stiposorghum* and *Parasorghum* are not monophyletic groups.

A further example of discordant chloroplast phylogeny was found within the *Eusorghum* clade. The accession *S. bicolor* 314746 was a sister group to *S. propinquum* NC042789 rather than to the other two *S. bicolor* accessions, *S. bicolor* 112151 and *S. bicolor* NC008602. The close relationship between *S. propinquum* and *S. bicolor* could be a result of *S. propinquum* being a perennial rhizomatous form of *S. bicolor* (Chit-tenden et al., 1994; Sun et al., 1994). Furthermore, both the reference *S. bicolor* NC008602 and *S. bicolor* 112151 are different accessions from different seed sources of the same cultivar Tx623 B (maintainer) whereas *S. bicolor* 314746 is from the cultivar Tx623 A (male sterile) (Table 1), which are breeding lines of a single variety of Tx623. Recent studies revealed variations within chloroplast genome sequences (Moner et al., 2018, 2020) that could be associated with multiple domestication events in rice (*Oryza sativa* L.). Although the nuclear phylogeny places the *S. bicolor* accessions in one clade, this does not exclude the possibility that more than one chloroplast type from wild progenitors has been captured by domesticated sorghum as has been found in rice (Moner et al., 2020). Multiple domestications or chloroplast capture by reticulate evolution (Jackson et al., 1999) may be involved. Future studies targeting more species within the groups *Eusorghum* and *Stiposorghum* are required to resolve the poorly defined phylogeny within these subgenera. In both phylogenetic trees, two major clades were observed suggesting that the genus *Sorghum* can be reclassified into two major subgenera including *Eusorghum*, *Chaetosorghum*, and *Heterosorghum* in one.
group and Parasorghum and Stiposorghum in the other group. The classification into two clades confirms the findings of Dillon et al. (2007a).

Despite some contradicting data on sorghum classification, distinct trends have emerged and are being substantiated (Sun et al., 1994; Dillon et al., 2001; Dillon et al., 2004; Dillon et al., 2007a; Liu et al., 2014). Dillon et al. (2007a), for example, determined all the Eusorghum species to be in the Eusorghum clade with strong bootstrap values. This was based on combined sequencing data of Adh1, ITS1, and ndhF from all species within the genus (including S. extans, S. intrans, S. angustum, S. interjectum, S. ecarinatum, S. stipoides, S. amplus, S. bulbosum, S. plumosum, S. grande, and S. nitidum). The study of Liu et al. (2014) revealed the same trend in phylogenetic tree constructions. The nuclear genes Pepc4 and GBSSI, as well as ndhA, rpl32-trnL, and rps16 introns, in chloroplast genes resulted in three clusters, including Eusorghum lineage, Chaetosorghum and Heterosorghum lineage, and Parasorghum and Stiposorghum lineage. Studies by Dillon et al. (2007a) also supported an earlier proposal to combine the two monotypic subgenera: Chaetosorghum and Heterosorghum into one group (Spangler, 2003) within the group Eusorghum. These two species have some similarities in morphology, such as minute obtuse callus (Lazarides et al., 1991), and are also cytologically very similar to each other but distinct from other Australian sorghum species (Dillon et al., 2007a; Lazarides et al., 1991; Price et al., 2005).

Spangler (2003) combined Stiposorghum and Parasorghum into a new genus, Sarga, based on morphological and molecular data. Our chloroplast and nuclear sequence-based phylogeny analyses place the subgenera Stiposorghum and Parasorghum in one well-supported clade with very strong bootstrap values consistent with the phylogeny presented by Dillon et al. (2007a). A study by Lazarides et al. (1991) differentiated Parasorghum from Stiposorghum using the structural features of the callus and articulation joint of the sessile spikelet. This approach was questioned in the later study of Spangler (2003). The species in the clade Stiposorghum were not fully resolved by Dillon et al. (2007a). By contrast, we were able to fully resolve all species in both these two subgenera, again well supported with strong bootstrap values. Moreover, in the chloroplast phylogeny, the two species S. purpureosericeum and S. versicolor, which are of African origin, were determined to be closely related to each other supporting the findings of Dillon et al. (2007a). However, a comprehensive analysis including all the species in the genus is required to fully support our results.

Compared with other major cereal crops, the knowledge of plant growth and developmental diversity in the wild relatives of sorghum is scarce (Cowan et al., 2021; Dillon et al., 2007b; Kuhlman et al., 2010; Lazarides et al., 1991). Of special interest is the need to understand possible retained beneficial traits in the wild sorghum relatives offering improved resilience to environmental stresses (Cowan et al., 2020; Myrans et al., 2021). Drought stress is a key factor limiting crop yield at the global scale and its effect on yield loss is expected to be aggravated by climate change. In a recent study (Cowan et al., 2020), the growth, morphological, physiological, and biochemical characteristics of seven wild Sorghum species belonging to the subgenera Chaetosorghum, Parasorghum, and Stiposorghum were compared with that of S. bicolor. All seven wild sorghum species showed a significantly reduced level of the toxic cyanogenic glucoside dhurrin in the leaves (Gleadow & Møller, 2014; Pičmanová et al., 2015). Two close relatives of domesticated sorghum showed distinct traits. Sorghum brachypodium was the least affected by drought stress and its content of toxic dhurrin was low (1 μg g⁻¹ tissue) and not induced by drought stress. In the elite cultivar S. bicolor, the corresponding dhurrin levels were 500- and 1,000-fold higher (Cowan et al., 2020). Sorghum macropermum produced greater biomass compared with S. brachypodium but was more affected by drought. Given that that these two species are in the same clade as S. bicolor, and therefore closely related phylogenetically, there may be an advantage in breeding efforts to transfer the trait of acyanogenic leaves to elite S. bicolor cultivars. The phylogenetic analyses provided may guide the selection of other wild sorghum relatives with interesting growth features to be introduced into elite sorghum cultivars for the future.

5 | CONCLUSION

Complete chloroplast genome and concatenated nuclear gene analyses were carried out using a total of 15 accessions representing five subgenera of the genus Sorghum. The phylogenetic analyses based on complete chloroplast and nuclear gene sequences resulted in highly similar phylogenetic trees. The genus Sorghum can be divided into two main groups, including Eusorghum, Chaetosorghum, and Heterosorghum in one group and Parasorghum and Stiposorghum in the other group. However, a complete and comprehensive study including all the species in the genus is required to accurately define the relationships within the genus Sorghum.

DATA AVAILABILITY STATEMENT

All data and materials used and described in this study are made available for noncommercial research purposes. The data that support the findings of this study are openly available in Sequence Read Archive (SRA) under the BioProject number PRJNA692754.

ACKNOWLEDGMENTS

The authors acknowledge the University of Queensland Research Computing Centre (UQ-RCC) for providing all the
computing resources. This work was funded by an Australian Research Council Discovery Project grant to RMG and RJH (DP180101011).

AUTHOR CONTRIBUTIONS

Robert J. Henry: Conceptualization, Methodology, Supervision, Project administration, Funding acquisition, Resources and Writing - Review & Editing.

Roslyn Gleadow: Conceptualization, Supervision, Funding acquisition, Writing - Review & Editing.

Birger Lindberg Møller: Conceptualization, Funding acquisition, Review & Editing.

Agnelo Furtado: Methodology, Formal analysis, Supervision, Data Curation, Writing - Review & Editing.

Sally L. Norton: Methodology, Resources and Writing - Review & Editing.

Cecilia Blomstedt: Methodology, Data collection, Resources and Writing - Review & Editing.

Galaihalage K. S. Ananda: Formal analysis, Data Curation, Investigation, Writing - Original Draft.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Galaihalage Ananda https://orcid.org/0000-0002-3917-5786

Sally Norton https://orcid.org/0000-0002-2452-7275

Robert Henry https://orcid.org/0000-0002-4060-0292

REFERENCES

Ananda, G. K., Myrans, H., Norton, S. L., Gleadow, R., Furtado, A., & Henry, R. J. (2020). Wild sorghum as a promising resource for crop improvement. *Frontiers in Plant Science*, 11, 1108. https://doi.org/10.3389/fpls.2020.01108

Badro, H., Furtado, A., & Henry, R. J. (2019). Relationships between Iraqi rice varieties at the nuclear and plastid genome levels. *Plants*, 8(11), 481. https://doi.org/10.3390/plants8110481

Barker, N. H., Linder, P., & Harley, E. (1999). Sequences of the grass-specific insert in the chloroplast rpoC2 gene elucidate generic relationships of the Arundinoideae (Poaceae). *Systematic Botany*, 24(3), 327–350. https://doi.org/10.2307/2419509

Bausher, M. G., Singh, N. D., Lee, S., Jansen, R. K., & Daniell, H. (2006). The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: Organization and phylogenetic relationships to other angiosperms. *BMC Plant Biology*, 6, 21. https://doi.org/10.1186/1471-2229-6-21

Bennetzen, J. L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A. C., Estep, M., Feng, L., Vaughn, J. N., Grimwood, J., Jenkins, J., Barry, K., Lindquist, E., Hellsten, U., Deshpande, S., Wang, X., Wu, X., Mitros, T., Triplett, J.,… Devos, K. M. (2012). Reference genome sequence of the model plant *Setaria*. *Nature Biotechnology*, 30, 555–561. https://doi.org/10.1038/nbt.2196

Cai, Z., Pennafiori, C., Kuehl, J. V., Leebens-Mack, J., Carlson, J. E., dePamphilis, C. V., Boone, J. L., & Jansen, R. K. (2006). Complete plastid genome sequences of Drimys, Liriodendron, and Piper: Implications for the phylogenetic relationships of magnoliids. *BMC Evolution*, 6, 77. https://doi.org/10.1186/1471-2148-6-77

Carbonell-Caballero, J., Alonso, R., Ibañez, V., Terol, J., Talon, M., & Dopazo, J. (2015). A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus *Citrus*. *Molecular Biology and Evolution*, 32(8), 2015–2035. https://doi.org/10.1093/molbev/msv082

Chang, C., Lin, I., Chow, T., Chen, H., Chen, W., Cheng, C., Liu, S., Chang, C., & Chaw, S. (2006). The chloroplast genome of *Phalaenopsis aphrodite* (orchidaceae): Comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. *Molecular Biology and Evolution*, 23(2), 279–291. https://doi.org/10.1093/molbev/msj029

Cheng, J., Zeng, X., Ren, G., & Liu, Z. (2013). CGAP: A new comprehensive platform for the comparative analysis of chloroplast genomes. *BMC Bioinformatics*, 14, 95. https://doi.org/10.1186/1471-2105-14-95

Chittenden, L. M., Shertz, K. F., Lin, Y. R., Wing, R. A., & Paterson, A. H. (1994). A detailed RFLP map of Sorghum bicolor x S. propinquum suitable for high-density mapping suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. *Theoretical and Applied Genetics*, 87, 925–933. https://doi.org/10.1007/BF00225786

Cowan, M. F., Blomstedt, C. K., Norton, S. L., Henry, R. J., Moller, B. L., & Gleadow, R. (2020). Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum. *Environmental and Experimental Botany*, 169, 103884. https://doi.org/10.1016/j.envexpbot.2019.103884

Cowan, M., Blomstedt, C. K., Moller, B. L., Henry, R., & Gleadow, R. M. (2021). Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated Sorghum. *Phytochemistry*, 184, 112645. https://doi.org/10.1016/j.phytochem.2020.112645

Cummings, M. P., King, L. M., & Kellogg, E. A. (1994). Slipped-strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae). *Molecular Biology and Evolution*, 11(1), 1–8. https://doi.org/10.1093/oxfordjournals.molbev.a404084

Daniell, H., Lin, C.-S., Yu, M., & Chang, W.-J. (2016). Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. *Genome Biology*, 17(1), 134. https://doi.org/10.1186/s13059-016-1004-2

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. *Nature Methods*, 9(8), 772. https://doi.org/10.1038/nmeth.2109

de Wet, J. M. J. (1978). Special Paper: Systematics and Evolution of Sorghum Sect. *Sorghum* (Gramineae). *American Journal of Botany*, 65(4), 477–484. https://doi.org/10.1002/ajb.1537-2197.1978.tb06096.x

Dillon, S. L., Lawrence, P. K., & Henry, R. J. (2001). The use of ribosomal ITS to determine phylogenetic relationships within Sorghum. *Plant Systematics and Evolution*, 230, 97–110. https://doi.org/10.1007/s006060170007

Dillon, S. L., Lawrence, P. K., Henry, R. J., & Price, H. J. (2007a). Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. *Plant Systematics and Evolution*, 268, 29–43. https://doi.org/10.1007/s00606-007-0571-9

Dillon, S. L., Lawrence, P. K., Henry, R. J., Ross, L., Price, H. J., & Johnston, J. S. (2004). Sorghum laxiflorum and *S. macrosperrnum*, the Australian native species most closely related to the cultivated *S. bicolor* based on ITS1 and ndhF sequence analysis of 25 Sorghum
species. Plant Systematics and Evolution, 249, 233–246. https://doi.org/10.1007/s00606-004-0210-7
Dillon, S. L., Shapter, F. M., Henry, R. J., Cordeiro, G., Izquierdo, L., & Lee, L. S. (2007b). Domestication to crop improvement: Genetic resources for Sorghum and Saccharum (Andropogoneae). Annales of Botany, 100(5), 975–989. https://doi.org/10.1093/aob/mcm192
Dong, W., Liu, J., Yu, J., Wang, L., & Zhou, S. (2012). Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLOS ONE, 7, e35071. https://doi.org/10.1371/journal.pone.0035071
Dong, W., Xu, C., Li, W., Xie, X., Lu, Y., Liu, Y., Jin, X., & Suo, Z. (2017). Phylogenetic resolution in Juglans based on complete chloroplast genomes and nuclear DNA sequences. Frontiers in Plant Science, 8, 1148. https://doi.org/10.3389/fpls.2017.01148
Downie, S. R., & Palmer, J. D. (1992). Restriction site mapping of the chloroplast DNA inverted repeat: A molecular phylogeny of the Asteridae. Annals of the Missouri Botanical Garden, 79(2), 266–283. https://doi.org/10.2307/2399769
Duvall, M. R., & Doebley, J. F. (1990). Restriction site variation in the chloroplast genome of Sorghum (Poaceae). Systematic Botany, 15(3), 472–480. https://doi.org/10.2307/2419363
Duvall, M. R., Noll, J., & Minn, A. H. (2001). Phylogenetics of Paniceae (Poaceae). American Journal of Botany, 88(11), 1988–1992. https://doi.org/10.2307/3558426
Furtado, A. (2014). DNA extraction from vegetative tissue for next-generation sequencing. In R. J. Henry & A. Furtado (Eds.), Cereal genomics: Methods and protocols. (pp. 1–5) Springer.
Gantt, J. S., Baldauf, S. L., Calie, P. J., Weeden, N. F., & Palmer, J. D. (2014). Cyanogenic glycosides in sorghum. Methods in Enzymology, 567, 472–480. https://doi.org/10.1016/B978-0-12-802206-7.00021-3
Gleadow, R. M., & Møller, B. L. (2014). Chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLOS ONE, 7, e35071. https://doi.org/10.1371/journal.pone.0035071
Hariprasanna, K., & Patil, J. V. (2015). Sorghum: Origin, classification, biology and improvement. In R. Madhusudhana, P. Rajendrakumar, & Lee, L. S. (2007b). Domestication to crop improvement: Genetic resources for Sorghum and Saccharum (Andropogoneae). Annual Review of Plant Biology, 65, 155–185. https://doi.org/10.1146/annurev-arplant-050213-040027
Guyoux, C., Charr, J., Tran, H. T. M., Furtado, A., Henry, R. J., Crouzilat, D., Guyot, R., & Hamon, P. (2019). Evaluation of chloroplast genome annotation tools and application to analysis of the evolution of coffee species. PLOS ONE, 14, e0216347. https://doi.org/10.1371/journal.pone.0216347
Hariprasanna, K., & Patil, J. V. (2015). Sorghum: Origin, classification, biology and improvement. In R. Madhusudhana, P. Rajendrakumar, & J. V. Patil (Eds.), Sorghum molecular breeding. (pp. 3–20) Springer. https://doi.org/10.1007/978-81-322-2422-8
Harlan, J. R., & de Wet, J. M. J. (1972). Simplified classification of cultivated sorghum. Crop Science, 12(2), 172–176. https://doi.org/10.2135/cropsci1972.0011183X0001200020005x
Healey, A., Lee, D. J., Furtado, A., & Henry, R. J. (2018). Evidence of inter-sectional chloroplast capture in Corymbia among sections Torellianae and Maculatae. Australian Journal of Botany, 66(5), 369–378. https://doi.org/10.1017/BJT18028
Hilu, K. W., & Alice, L. A. (2001). A phylogeny of Chloridoideae (Poaceae) based on matK sequences. Systematic Botany, 26(2), 386–405. https://doi.org/10.1600/0363-6445-26.2.386
Huang, D. L., & Cronk, Q. C. B. (2015). Plann: A command-line application for annotating plastome sequences. Applications in Plant Sciences, 3(8), 1500026. https://doi.org/10.3732/apps.1500026
Jackson, H. D., Steane, D. A., Potts, B. M., & Vaillancourt, R. E. (1999). Chloroplast DNA evidence for reticulate evolution in Euca- lyptus (Myrtaceae). Molecular Ecology, 8(5), 739–751. https://doi.org/10.1046/j.1365-294X.1999.00614.x
Jansen, R. K., Raubeson, L. A., Boone, J. L., Depamphilis, C. W., Chumley, T. W., Haberle, R. C., Wyman, S. K., Alverson, A. J., Peery, R., Herman, S. J., Fourcade, M. H., Kuehl, J. V., McNeal, J. R., Leebens-Mack, J., & Cui, L. (2005). Methods for obtaining and analyzing whole chloroplast genome sequences. Methods in Enzymology, 395, 348–384. https://doi.org/10.1016/S0076-6879(05)95020-9
Jansen, R. K., Sasaki, C., Lee, S.-B., Hansen, A. K., & Daniell, H. (2011). Complete plastid genome sequences of three rosids (Cas-tanea, Prunus, Theobroma): Evidence for at least two independent transfers of rpl22 to the nucleus. Molecular Biology and Evolution, 28(1), 835–847. https://doi.org/10.1093/molbev/mrs057
Kellogg, E. A. (2013). Phylogenetic relationships of Saccharinae and Sorghinae. In A. Paterson (Eds.), Genomics of the Saccharinae (pp. 3–21). Springer New York.
Kuhlman, L. C., Burson, B. L., Stelly, D. M., Klein, P. E., Klein, R. R., Price, H. J., & Rooney, W. L. (2010). Early-generation germplasm introgression from Sorghum macrosporum into sorghum (S. bicolor). Genome, 53(6), 419–29. https://doi.org/10.1139/g10-027
Lazardies, M., Hacker, J. B., & Andrew, M. H. (1991). Taxonomy, cytology and ecology of indigenous Australian sorghums (Sorghum Moench: Andropogoneae: Poaceae). Australian Systematic Botany, 4(4), 591–635. https://doi.org/10.1071/SB9910591
Li, Z., De La Torre, A. R., Sterck, L., Cánovas, F. M., Avila, C., Merino, I., Cabezas, J. A., Cervera, M. T., Ingvarsson, P. K., & Van de Peer, Y. (2017). Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biology and Evolution, 9(5), 1130–1147. https://doi.org/10.1093/gbe/evox070
Liu, C., Shi, L., Zhiu, Y., Chen, H., Zhang, J., Lin, X., & Guan, X. (2012). CpgAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics, 13, 715https://doi.org/10.1186/1471-2164-13-715
Liu, Q., Liu, H., Wen, J., & Peterson, P. M. (2014). Infrageneric phylogeny and temporal divergence of Sorghum (Andropogoneae, Poaceae) based on low-copy nuclear and plastid sequences. PLOS ONE, 9(8), e104933. https://doi.org/10.1371/journal.pone.0104933
Lopez-Juez, E., & Pyke, K. A. (2005). Plastids unleashed: Their development and their integration in plant development. International Journal of Developmental Biology, 49, 557–577. https://doi.org/10.1387/ijdb.051999tel
Majure, L. C., Puente, R., Griffith, M. P., Judd, W. S., Soltis, P. S., & Soltis, D. E. (2012). Phylogeny of Opuntia s.s. (Cactaeae): Clade delineation, geographic origins, and reticulate evolution. American Journal of Botany, 99(5), 847–864. https://doi.org/10.3732/ajb.1100375
Moner, A. M., Furtado, A., & Henry, R. J. (2018). Chloroplast phylogeography of AA genome rice species. Molecular Phylogenetics and Evolution, 127, 475–487. https://doi.org/10.1016/j.ympev.2018.05.002
Moner, A. M., Furtado, A., & Henry, R. J. (2020). Two divergent chloroplast genome sequences clades captured in the domesticated rice gene
pool may have significance for rice production. *BMC Plant Biology*, 20, 472. https://doi.org/10.1186/s12870-020-02689-6

Moon, J. C., Kim, J. H., & Jang, C. S. (2016). Development of multiplex PCR for species-specific identification of the Poaceae family based on chloroplast gene, *rpoC2*. *Applied Biological Chemistry*, 59(2), 201–207. https://doi.org/10.1007/s13765-016-0155-x

Morley, S. A., & Nielsen, B. L. (2016). Chloroplast DNA copy number changes during plant development in organelle DNA polymerase mutants. *Frontiers in Plant Science*, 7, 57. https://doi.org/10.3389/fpls.2016.00057

Myrans, H., Diaz, M. V., Khoury, C. K., Carver, D., Henry, R. J., & Gleadow, R. (2020). Modelled distributions and conservation priorities of wild sorghums (*Sorghum Moench*). *Diversity and Distributions*, 26(12), 1727–1740. https://doi.org/10.1111/ddi.13166

Myrans, H., Vandegeer, R., Henry, R., & Gleadow, R. M. (2021). Nitrogen availability and allocation in sorghum and its wild relatives: Divergent roles for cyanogenic glucosides. *Journal of Plant Physiology*, 258–259, 153393. https://doi.org/10.1016/j.jplph.2021.153393

Palmer, J. D. (1991). Plastid chromosomes: Structure and evolution. In L. Bogorad & I. K. Vasil (Eds.), *The molecular biology of plastids* (Vol. 7, pp. 5–53). Academic Press.

Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimewood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., Spagnoli, M., Tang, H., Wang, X., Wicker, T., Bharti, A. K., Chapman, J., Feltus, F. A., Gowik, U., … Rokhsar, D. S. (2009). The *Sorghum bicolor* genome and the diversification of grasses. *Nature*, 457, 551–556. https://doi.org/10.1038/nature07723

Pičmanová, M., Neilson, E. H., Motawia, M. S., Olsen, C. E., Agerbirk, N., Gray, C. J., Flitsch, S., Meier, S., Silvestro, D., Jørgensen, K., Sánchez-Pérez, R., Möller, B. L., & Bjarnholt, N. (2015). A recycling pathway for cyanoecogenic glucosides evidenced by the comparative metabolic profiling in three cyanoecogenic plant species. *Biochemical Journal*, 469(3), 375–389. https://doi.org/10.1042/BJ20150390

Price, H. J., Dillon, S. L., Hodnett, G., Rooney, W. L., Ross, L., & Johnston, J. S. (2005). Genome evolution in the genus *Sorghum* (Poaceae). *Annals of Botany*, 95(1), 219–227. https://doi.org/10.1093/aob/mci015

Richardson, A. O., & Palmer, J. D. (2007). Horizontal gene transfer in plants. *Journal of Experimental Botany*, 58(1), 1–9. https://doi.org/10.1093/jxb/erl148

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, 61, 539–542. https://doi.org/10.1093/sysbio/sys029

Saksi, C., Lee, S. B., Fjellheim, S., Guda, C., Jansen, R. K., Luo, H., Tomkins, J., Rognli, O. A., Daniell, H., & Clarke, J. L. (2007). Complete chloroplast genome sequences of *Hordium vulgare*, *Sorghum bicolor* and *Agrostis stolonifera*, and comparative analyses with other grass genomes. *Theoretical and Applied Genetics*, 115(4), 591. https://doi.org/10.1007/s00122-007-0426-1

Sims, D., Ian, S., Nicholas, E. I., Andreas, H., & Chris, P. P. (2014). Sequencing depth and coverage: Key considerations in genomic analyses. *Nature Reviews Genetics*, 15, 121–132. https://doi.org/10.1038/nrg3642

Song, Y., Chen, Y., Lv, J., Xu, J., Zhu, S., & Li, M. (2019). Comparative chloroplast genomes of Sorghum species: Sequence divergence and phylogenetic relationships. *BioMed Research International*, 2019, 5046958. https://doi.org/10.1155/2019/5046958

Spangler, R. E. (2003). Taxonomy of Sarga, Sorghum and Vacoparistis (Poaceae: Andropogonae). *Australian Systematic Botany*, 16(3), 279–299. https://doi.org/10.1071/SB01006

Sugiura, M. (1992). The chloroplast genome. *Plant Molecular Biology*, 19(1), 149–168. https://doi.org/10.1007/BF00015612

Sugiura, M. (2003). History of chloroplast genomics. *Photosynthesis Research*, 76, 371–377. https://doi.org/10.1023/A:1024913304263

Sun, Y., Skinner, D., Liang, G., & Hulbert, S. (1994). Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. *Theoretical and Applied Genetics*, 89, 26–32. https://doi.org/10.1007/BF00226978

Swoford, D. L. (2003). PAUP*: Phylogenetic analysis using parsimony (and other methods) (Version 4 beta). Sinauer Associates. https://doi.org/10.1111/j.0014-3820.2002.tb00191.x

Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E. S., Fischer, A., Bock, R., & Greiner, S. (2017). GeSeq: Versatile and accurate annotation of organelle genomes. *Nucleic Acids Research*, 45(W1), W6–W11. https://doi.org/10.1093/nar/gkw391

USDA-ARS, National Plant Germplasm System. (2020). *Germplasm Resources Information Network (GRIN-Taxonomy)*. National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=489172

Venkateswaran, K., Elangovan, M., & Sivaraj, N. (2019). Origin, domestication and diffusion of *Sorghum bicolor*. In C. Aruna, K. B. R. S. Visarada, B. V. Bhat, & V. A. Tonapi (Eds.), *Breeding sorghum for diverse end uses* (pp. 15–31). Woodhead Publishing.

Wicke, S., Schneegeiss, G. M., dePamphilis, C. W., Müller, K. F., & Quandt, D. (2011). The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. *Plant Molecular Biology*, 76, 273–297. https://doi.org/10.1007/s11103-011-9762-4

Wyman, S. K., Jansen, R. K., & Boore, J. L. (2004). Automatic annotation of organellar genomes with DOGMA. *Bioinformatics*, 20(17), 3252–3255. https://doi.org/10.1093/bioinformatics/bth352

Xu, J.-H., Liu, Q., Hu, W., Wang, T., Xue, Q., & Messing, J. (2015). Dynamics of chloroplast genomes in crop plants. *Genomics*, 106(4), 221–231. https://doi.org/10.1016/j.ygeno.2015.07.004

Zhang, X.-Z., Zeng, C.-X., Ma, P. F., Haevermans, T., Zhang, Y.-X., Zhang, L.-N., Guo, Z.-H., & Li, D.-Z. (2016). Multi-locus plastid phylogenetic biogeography supports the Asian hypothesis of the temperate woody bamboos (Poaceae: Bambusoideae). *Molecular Phylogenetics and Evolution*, 96, 118–129. https://doi.org/10.1016/j.ympev.2015.11.025

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Ananda, G., Norton, S., Blomstedt, C., Furtado, A., Möller, B., Gleadow, R., & Henry, R. (2021). Phylogenetic relationships in the *Sorghum* genus based on sequencing of the chloroplast and nuclear genomes. *Plant Genome*, 2021;14:e20123. https://doi.org/10.1002/tpg2.20123