Identification of Active Chemical Compounds of Honey from Some Regions in Indonesia

La Ode Sumarlin¹*, Nur Ernita², Farhan Riza Afandi¹, Ahmad Fathoni¹

¹Chemistry Study Program, Syarif Hidayatullah State Islamic University, Indonesia
²Center for Integrated Laboratory of the Faculty of Science and Technology UIN Syarif Hidayatullah Jakarta Ciputat, 15412, Indonesia

*Corresponding author: sumarlin@uinjkt.ac.id

Abstract
Bees produce honey from plant nectar, plant secretions, and excretions of plant-sucking insects. Indonesian local honey contains active compounds that have the potential effect as antioxidant and anticancer. The composition and biological effects of honey vary depending on the flower sources; seasonal and environmental factors can also influence the composition and the physical products. This research was conducted to identify the chemical compounds found in several honey samples produced by beekeepers in Indonesia with LCMS/MS method and to determine the profiles of the honey from Indonesia with the Chemspider and MassBank Database. Honey samples were collected from several regions in Indonesia. The results of the analysis showed that the honey’s diastase number vary from region to region and showed that the HMF contents are relatively low. The compounds that were allegedly found through LCMS/MS analysis include and have been traced based on literature studies had bioactive activity and beneficial to health, include: millefin (potential for treating heart disease and cancer), mangiferin (anti-inflammatory, anti-diabetes, immunomodulators, anti-tumor, antioxidants), rhamnetin (anti-inflammatory), tricin (antioxidant-like), acacetin (inhibit tumor angiogenesis agents), aurantiamide acetate (antiviral or anti-inflammatory, therapeutic agent for the treatment of influenza), salvigenin (controlling inflammation, acute and chronic pain), brucine (modulates anti-inflammatory and analgesic properties), dehydrocostus lactone (anti-inflammatory), santonin (anthelmintic activity), dimethylesculetin (bilirubin clearance), imidazole 4-acetic acid (neuropharmacological properties), propafenone (antiarrhythmic), yohimbine (affected sexual performance), Velutin (anti-inflammatory), narigenin (linked to cardiovascular disease protection). Eventually, honey is is such a natural product with a number of salient therapeutic properties. However, there are still components that were found but their roles cannot be described in detail. Therefore, it is recommended that further meticulous studies should bring to light the other hidden properties of the honey compounds.

Keywords
Active compounds, Honey, Indonesian Fruit, Longan, Rambutans

1. INTRODUCTION
Honey is a natural product that is sweet and aromatic, has high nutritional value, and affects human health. Honey contains antioxidants, antibacterial, anti-inflammatory, and antimicrobial properties, and has the effect of healing wounds (Alvarez-Suarez et al., 2013). Sumarlin et al., 2019 reported that Longan honey has decreased HEp-2 cell inhibitory activity after fractionation. Indonesian local honey, namely trigona honey, kaliaandra honey, rambutan honey, and longan honey, can be used as a supplement for laryngeal cancer patients. Trigona sp, kaliaandra, rambutan, and longan honeys can be used as a supplement for lung cancer patients (Sumarlin, 2019b). Most of the health promoting properties of honey are only achieved by application of rather high doses of honey such as 50 to 80 g per intake. This information shows that honey has a wide range of positive effects on nutrition and health (Gündoğdu et al., 2019).

The Result of research Boussaid et al., 2018 to Tunisian honey concluded that the six Tunisian honeys were characterized by the prevalence of total polyphenols, total flavonoids and total carotenoids, so eventually, honey is such a natural product with a number of salient therapeutic properties. Besides the geographical origin of honey has previously been studied by many researchers around Europe, especially in Slovenia, Romania, Spain, Denmark and Portugal (Bertoncelj et al., 2011; Daud et al., 2020; Stolzenbach et al., 2011; Feás et al., 2010), in Africa mainly in Morocco, Burkina Fasan and Algeria (Terrab et al., 2002; Meda et al., 2005; Ouchemoukh et al., 2007), in South America mainly in Argentina, Cuba and Brazil (Alvarez-Suarez et al., 2010; Chirife et al., 2006; Moreira et al., 2010),
and in Australia and New Zealand (Ajlouni and Sujirapinyokul, 2010; Vanhanen et al., 2011). The authors have determined the physicochemical parameters including water content, pH, conductivity and sugar composition. They found that the geographical area influences and distinguishes the physicochemical properties of honey to a large extent (Boussaïd et al., 2018).

The identifying these compounds are of extreme importance in describing beneficial health properties and each sample of honey may exhibit different variations and different phenolic compounds because the composition of these phenolics in stingless bee honey depends on the geographical location, type of plant that the bee collected the nectar, storage, climate, temperature, species of bee (de Oliveira et al., 2018). Therefore, honey produced in Indonesia also has different characteristics from honey produced in other countries.

However, comprehensive data on the composition of honey have not been maximally obtained. The chemical composition of honey can be tested using various conventional methodologies and modern instruments, including LCMS/MS (Liquid Chromatography-Mass Spectrophotometry/Mass Spectrometry). In this study, active compounds’ identification was carried out by using LCMS/MS and the data analyzed by the Human Metabolite Database (HMDB) and MassBank Database.

2. EXPERIMENTAL SECTION

2.1 Materials

In this study, honey samples were collected from several Indonesian regions, including Lombok, Papua (Wamena), and West Java. The types of bee also vary, including trigona honey (Tetragonula biroi, Geniotrigona insica, Apis cerana, Apis dorsata). Types of plants that are used as nectar sources include longan, and rambutan. Chemicals: metanol p.a. 99.8% (FULLTIME), n-hexane p.a. 98.5% (FULLTIME), ethyl acetate p.a. 99.5% (Smart Lab), TLC silica gel 60 F254 (Merck), ethyl acetate p.a. 96% (Merck, Germany), Na2SO4 anhydrous p.a. (Merck), iodine p.a. (Sigma Aldrich), acetonitrile p.a. (Merck, Germany). Instruments: Rotary evaporator (Heidolph), LCMS/MS (Waters, USA), UV-Vis Spectrophotometer (Thermo Scientific).

2.2 Methods

2.2.1 Honey Extraction (Dananjaya et al., 2013)

Honey sample (100 gram) was dissolved in 300 mL methanol. The mixture was stirred using a magnetic stirrer for 30 minutes. After left to stand for 24 hours, the residue and the filtrate were separated using filter paper and then the filtrate was concentrated using a rotary evaporator at a temperature of 64°C. The resulting concentrate was called as crude extract.

2.2.2 Hydroxy Methyl Furfural (HMF) Level, According to Indonesian National Standard 3545:2013

Five grams of sample was precisely weighed (up to 1 mg precision) in a small beaker glass, and then transferred into a 50 mL volumetric flask, and added with distilled water up to 25 mL volume. Carez I solution (0.50 mL) was then added to the flask, shaken until it dissolved completely, and then 0.50 mL Carez II solution was added into the flask and shaken again until it was dissolved completely. The mixture was diluted with distilled water to the ring graduation mark. To remove the foam formed on the surface, the mixture was added with a drop of alcohol. The mixture was then filtered with a filter paper, and the first 10 mL of filtrate was discarded.

The filtrate was pipetted into two test tubes (5 mL each). One of the tubes was then added with 5 mL distilled water (as sample) and the other tube was added with 5 mL of 0.20% sodium bisulfite (as reference/comparator). The tubes were shaken until completely mixed and the absorbance of the sample to the reference in 1 cm cell was determined at 284 and 336 nm. If the absorbance was higher than 0.6, in order to get an accurate result, the sample was diluted with distilled water as appropriate. As for the reference, if the absorbance was higher than 0.6, it was diluted with 0.1% NH4SO3 solution. The HMF level can be calculated by multiplying the absorbance value by the dilution factor.

$$
\text{HMF level} = \frac{(\text{Absorbance at } 284 \text{ nm} - \text{Absorbance at } 336 \text{ nm}) \times 14.97 \times 5}{\text{sample (gram)}}
$$

2.2.3 Diastase Enzyme Activity, According to Indonesian National Standard 3545:2013

The amount of 5 g sample was put into a 20 mL beaker, followed by 10-15 mL distilled water and 2.5 mL acetate buffer that were added in a cold state. The solution was stirred until the sample was completely dissolved. Then, the solution was transferred into a 25 mL volumetric flask containing 1.5 mL of NaCl solution and diluted to the ring graduation mark with distilled water. To determine the absorbance of the sample, 5 mL starch solution was pipetted into the sides of a test tube containing 10 mL of the diluted sample solution at the bottom (try not to mix the two solutions). The tube was then incubated in a water bath (temperature 40°C ± 0.2°C) for 15 minutes, then the content was mixed by moving the test tube back and forth in an oblique position while running a stopwatch. In exactly 5 minutes, 1 mL of the sample mixture was added quickly into 10 mL of dilute iodine in 100 mL Erlenmeyer and mixed evenly. After that, the mixture was diluted until the volume was the same as the previous one, and the absorbance value was determined with a UV-Vis spectrophotometer.

Reading was recorded at 860 nm or 600 nm in a 1 cm cell. The reaction time was measured from the mixing of the starch with the diluted honey sample to the addition of iodine. The sample mixture was continued to be taken at 5 minute or 10 minute interval until the absorbance value was <0.253. The absorbance value was plotted against the time. The time needed to reach the absorbance value (A) = 0.253 can be determined using the graph. If this value is divided by 300, it will show the diastase enzyme’s activity or diastase number.

2.2.4 Liquid-Liquid Partition (Dananjaya et al., 2013)

Crude honey extract was diluted with 200 mL water-methanol (3:7) and then poured into a separating funnel and followed by the addition of 100 mL n-hexane. The funnel was then shaken for 5 minutes and left to stand. There would be separation of 2 phases. The n-hexane upper fraction was separated into another container. The water-methanol lower fraction was added again with n-hexane, and the process was repeated for several times until an exact color was obtained for the upper n-hexane fraction of honey. In another separation, water-methanol dilution of crude honey was added with 100
mL of ethyl acetate and partitioned using the same above method. The separated fractions (water-methanol, n-hexane, and ethyl acetate fractions) were added with 5 grams of Na2SO4 anhydrous. After removing the Na2SO4 through filtering, the fractions were concentrated using a rotary evaporator (n-hexane fraction at 48°C, ethyl acetate fraction at 54°C, water-methanol fraction at 64°C).

The fractions were further separated using Thin Layer Chromatography method (TLC 1) (TLC Silica gel plate 60 F254) and monitored under UV lamps at 254 nm and 365 nm. The separation was continued using Gravity Column Chromatography Fractionation. The fractionation results were separated again by TLC (TLC 2). The fractions with the same stain at TLC 2 were combined, and the solvent was evaporated. These were the final results of the separation process, which would next be identified using LCMS/MS Maharani et al., 2016 and the honey sample compounds were analyzed with the database on the MassBank website.

2.2.5 Analysis LCMS/MS (Maharani et al., 2016)
A total of 1 mg of active honey fraction was weighed and dissolved in methanol. Ten μL of the sample was taken and injected into LCMS/MS through C-18 column (2 x 150 mm) with a 0.2 mL/minute flow rate. The chromatogram and mass spectrophotometer results were then analyzed using the MassLynx software (Version 4.1). In order to identify the structure of the chemical compounds detected on the LCMS/MS, the sample base peak was compared with the database of MassBank. The column or stationary phase used in LCMS/MS was the ACQUITY UPLC®BEH C18 column. This column is a reverse-phase column because the stationary phase is non-polar while the mobile phase is polar. The mobile phase used was a mixture of methanol-water and acetonitrile-water; in this case, the best separation occurred when using acetonitrile-water as solvent.

3. RESULTS AND DISCUSSION
3.1 Diastase Number and HMF Testing
The determination of diastase enzyme activity is an essential parameter in determining the quality of honey purity. Some of them were even quite large because they were above the Indonesian National Standard (SNI) (Table 1). Honey that has DN can be categorized as honey that has good quality. Diastase enzyme is an enzyme released by the bees during honey’s ripening process so that the honey contains diastase enzyme. The low diastase enzyme activity in honey that was not even seen may presumably due to the long storage time and cooking process at a specific temperature after harvesting the honey. It is also possible for the honey to be added with liquid invert sugar to increase the honey quantity.

Table 1. ADiastase Number and HMF Data of the Collected Honey Samples

CODE	Diastase Number	HMF
AP.LMB	17.95±0.05	4.45±0.13
PP.WM	13.94±0.06	3.40±0.00
AP.LNG	11.82±0.14	1.33±0.02
AP.RBT	25.53±0.84	1.78±0.08

Notes: AP.LMB = Apis Honey from Lombok-Indonesia, PP.WM = Multiflora Honey from Wamena Papua-Indonesia, AP.LNG = Apis Honey nectar sources longan Rambutan, AP.RBT = Apis Honey nectar sources longan Rambutan.
effects. Therefore, HMF is a neo-forming contaminant that draws great attention from scientists (Shapla et al., 2018).

Previous studies have reported that honey stored at low temperatures and/or under fresh conditions has low or minimal HMF concentrations, while aged and/or honey stored at comparatively higher or medium temperature has high HMF concentrations. In addition to storage conditions, the use of metallic containers and honey floral sources are critical factors affecting HMF levels (Shapla et al., 2018). Hence, higher HMF concentration is indicative of poor storage conditions and/or excess heating of honey (Fallico et al., 2004; Khalil et al., 2010).

3.2 Extraction and Liquid-Liquid Partitioning in Honey

The extraction method aims to dissolve the compounds in the sample which have the same polarity using an organic solvent. Methanol is a universal solvent because in addition to being able to extract polar components, it can also extract non-polar components such as wax and fat (Houghton, 1998). In addition, if you use water as a honey solvent and then add organic solvents or direct addition of non polar and semi polar solvents to the honey, the honey will coagulate and it is will form a gel that difficult to separate. This is because the addition of organic solvents causes the protein in honey to denaturation, the natural structure of the protein will be damaged and then form a gel matrix by balancing the interactions between proteins and protein-solvents in honey.

The methanol extract of the sample honey was then separated by the liquid-liquid partition method. The principle of this method is the separation of compounds that have differ in solubility between two immiscible solvents and it is separate compounds based on their polarity. The liquid-liquid partitioning process is carried out in stages starting with the addition of n-hexane (non polar) and water which then forms two phases, the upper phase or the n-hexane phase separated. The second stage, the lower phase is followed by the addition of ethyl acetate (semi polar) and forms two phases again, namely the upper phase in the form of ethyl acetate and the lower phase in the form of a water phase or a polar phase. The next step, the ethyl acetate phase and water phase of honey were separated respectively so that the honey sample would be obtained respectively non polar extract, semipolar extract, and polar honey extract. The samples were continued for the LC/MS/MS test.

3.3 LCMS/MS Analysis of APLMB Honey

The ethyl acetate fraction of APLMB sample also showed seven peaks (Figure 2), which indicates the presence of certain compounds in the fraction. However, search analysis for the alleged compound through online databases of MassBank, HMDB, and MassBank of North America (MoNA) only found four suspected compounds (Table 2).

From the results of analysis, there were some potential compounds, and Tebufenozida was among them. Tebufenozide was in the group of potential compounds from the ethyl acetate extract of APLMB honey. Tebufenozide is a new caterpillar control agent that poses minimal hazards, chemically and mechanically, to non target organisms and the environment. Millelin was also found in the list of the potential compounds that belongs to the sesquiterpenoid group. It was reported that sesquiterpenoids can play a significant role in human health, both as part of a balanced diet and as a pharmaceutical agent, because of their potential for treating heart disease and cancer (Chadwick et al., 2013).

The methanol extracts of the APLMB sample showed more peaks, i.e. 24 peaks. Mangiferin was one in the list, where mangiferin-treated cells resulted in a significant increase in cell survival under H2O2 stress that gives mangiferin a useful perspective in preventing oxidative stress-related diseases (Lou et al., 2012). Mangiferin is also found to have various bioactivities, such as anti-inflammatory (Carvalho et al., 2009), anti-diabetes (Muruganandan et al., 2005), immunomodulators (Guha et al., 1996), anti-tumor (Noratto et al., 2010; Rajendran et al., 2008), and antioxidants (Dar et al., 2005; Barreto et al., 2008). It can promote endothelial cell migration during angiogenesis and may have promising preventive and therapeutic potential in vascular disease (Daud et al., 2020).

Rhamnetin was also in the list of the potential compounds from the methanol extract, which can be used as a candidate for natural compound in developing new anti-inflammatory drugs (Belchior et al., 2017). The study results by Zhang et al., 2015 suggested that rhamnetin can improve the recovery of cognitive deficits caused by TBI (Traumatic Brain Injury). The mechanism may be related to the inhibition of inflammation oxidative stress in the hippocampus.

Tricin is another compound from the methanol extract that exerts anti-inflammatory effect through a mechanism that involves the TLR4/NF-κB/STAT signaling cascade (Shalini et al., 2015). Tricin has long been recognized to have antioxidant-like health benefits (e.g., Watanabe, 1999; Kwon et al., 2002; Kwon and Kim, 2003; Lu et al., 2006; Duarte-Almeida et al., 2006; Hasegawa et al., 2008; Mu et al., 2008) because of its potent inhibition of lipoperoxidation and its sparing effect on vitamin E in erythrocyte membranes (Rice-Evans et al., 1997; Pietta, 2000); as an antiviral (Li et al., 2005; Sakai et al., 2008); antihistamines Kuwabara et al., 2003; as well as in immunomodulatory activities (Liang et al., 1997; Wang et al., 2004) and antitubercular (Gu et al., 2004).

Acacetin, one of the potential compounds from the methanol extract, inhibits tyrosine phosphorylation of Stat-1 and Stat-3, and VEGF expression in cancer cells. Overall, acacetin inhibits stat signaling and suppresses angiogenesis in vitro, ex vivo, and in vivo, and therefore, acacetin can inhibit tumor angiogenesis agents and their growth (Bhat et al., 2013). In other studies, acacetin was reported to...
Table 2. Potential Compounds from LCMS/MS Analysis of APLMB Honey Extract

APLMB Honey Extract	Potential Compounds
Methanol	Mangiferin [4.69]
	2’-Deoxyinosine-5’-monophosphate [5.43]
	Brucine [6.32]
	Rhamnetin [7.06]
	Tricin [8.47]
	Tebufenozone [9.41]
	Acacetin [10.87]
	3,7-Dihydroxy-3’,4’-dimethoxyflavone [10.66]
Ethyl Acetate	Aurantiamide acetate [11.34]
	Salvigenin [11.82]
	3’,7-Dimethoxy-3-hydroxyflavone [12.57]
	2,4-dimethylphenylformamid [3.12]
	Tebufenozone [4.75]
Water	Brucine [5.63]
	Millefin [7.95]

provide a synergistic effect when administered together with oxacillin or ampicillin, while the antibacterial activity and resistance regulation of acacetin against clinical isolates of MRSA (Methicillin-resistant Staphylococcus aureus) are thought to be able to control MRSA infections (Cha et al., 2014).

Aurantiamide acetate (compound E17), that was reported by Zhou et al., 2017 as an active compound found in the root extract of B. cusia, was also estimated to contained in the methanol extract of APLMB honey. Although research showed that aurantiamide acetate has antioxidant and anti-inflammatory properties, its effects and mechanisms function as antiviral or anti-inflammatory. However, Zhou et al., 2017. also showed that aurantiamide acetate isolated from B. cusia root has potent antiviral and anti-inflammatory effects on IAV-infected cells through inhibition of the NF-κB pathway. Therefore, aurantiamide acetate could be a potential therapeutic agent for the treatment of influenza.

Salvigenin is one of the active flavonoids in plants. Salvigenin could reduce inflammation. In a test, in the group receiving Salvigenin at 100 mg/kg, the inflammation was significantly lower than in the control group (P <0.05). Thus, Salvigenin has a dose-dependent analgesic effect that is useful in controlling inflammation, acute and chronic pain (Mansourabadi et al., 2016).

Further, salvigenin was reported to cause significant reduction in fasting serum glucose, triglycerides, total cholesterol, HbA1c, and increased plasma insulin and HDL levels in diabetic rats. Increasing the insulin secretion could be the mechanism for the antidiabetic effect of salvigenin. The antidiabetic and cardioprotective effects show that salvigenin, as a flavonoid compound, can be used to reduce diabetes and its cardiovascular complications (Sadeghi et al., 2016).

The results showed that brucine has the function as a receptor antagonist. Also, brucine induces a rapid and sustained increase in intracellular [Ca^{2+}], impairs the mitochondrial membrane’s potential, and triggers the apoptotic process of HepG2 cells, modulates anti-inflammatory and analgesic properties (Yin et al., 2003).

3.4 LCMS/MS Analysis of APLNG honey

In the APLNG sample, the water fraction showed 11 peaks (Figure 3), which indicates the presence of certain compounds in the fraction. However, searches on the online databases of MassBank, HMDB, and MassBank of North America (MoNA) only found five suspected compounds (Table 3).

In the APLNG sample, the ethyl acetate fraction showed nine peaks, indicating certain compounds in the fraction. However, searches on the online databases of MassBank, HMDB, and MassBank of North America (MoNA) only found five suspected compounds (Table 3).

Dehydrocostus lactone (DHE), a natural sesquiterpene lactone, has been used to treat various diseases with its anti-inflammatory activity. It has recently caused widespread interest in researchers because it has anticancer properties in several types of carcinoma. These findings provide pharmacological evidence for the development of DHE as a...
Table 3. Potential Compounds from LCMS/MS Analysis of APLNG Honey Extract

APLNG Honey Extract	Potential Compounds
Methanol	2-amino-3-(4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl)propanoic acid [1.13]
	N-Fructosyl phenylalanine [1.31]
	dehydrocostus lactone [2.05]
	4-hydroxyquinoline [3.16]
Ethyl Acetate	2-Hydroxyphenylacetic acid [4.15]
	m-Anisic-acid [4.26]
	Imidazole-4-acetate [4.71]
	Dimethylesculetin [5.02]
	Salsolinol [5.31]
	Indole-3-carboxyaldehyde [5.87]
	4-hydroxyquinoline [3.18]
	Dehydrocostus lactone [4.28]
	Dimethylesculetin [7.73]
	Santonin [6.39]
	Indole-3-carboxyaldehyde [5.87]
Water	2-amino-3-(4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl)propanoic acid [1.13]
	Indole-3-carboxyaldehyde [3.16]

Santonin is a compound responsible for plants’ anthelmintic activity and has been used for many years as a drug to treat parasitological diseases (Sakipova et al., 2017). Dimethylesculetin is a compound that has a role in the Yin Chin (Artemisia capillaris, a traditional herbal medicine) activities in accelerating in vivo bilirubin clearance (Huang et al., 2004). Masuyama et al., 2016 state that dimethylesculetin treatment during pregnancy could prevent maternal hypertension, glucose intolerance and hyperlipidemia, and fetal overgrowth in high-fat diet (HFD)-induced obese pregnant mice. Dimethylesculetin suppressed the mRNA expression of gluconeogenic genes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, and lipogenic genes, sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1, and enhanced CAR-mediated transcription.

In the APLNG sample, the methanol fraction showed 18 peaks, indicating certain compounds in the fraction. However, searches on the online databases of MassBank, HMDB, and MassBank of North America (MoNA) only found 10 suspected compounds (Table 3).

3.5 LCMS/MS Analysis of APRBT honey

In the APRBT sample, the water fraction showed ten peaks (Figure 4), which indicates the presence of certain compounds in the fraction. However, searches on the online databases of MassBank, HMDB, and MassBank of North America (MoNA) only found four suspected compounds (Table 4).

Propafenone is a class Ic antiarrhythmic drug (Schuff-Werner et al., 1981). It is a beta-adrenergic blocker that causes bradycardia and bronchospasm (Siddoway et al., 1984). The major metabolic process for propafenone occurs in the liver (Konz et al., 2008; Schlepper, 1987). The bioavailability and plasma concentration for propafenone...
Table 4. Potential Compounds from the LCMS/MS Analysis of APRBT Honey Extract

APRBT Honey Extract	Potential Compounds
Methanol	2-amino-3-(4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl)propanoic acid [1.17]
	2-Amino-N-(2,2,4,4-tetramethyl-3-thietanyl)propanamide [3.82]
	Cytidine [4.06]
	D-sphingo sine [4.84]
	D-beta-Homophenylalanine [5.33]
	Propafenone [5.59]
	Rauwolscine [5.91]
	Diethanolamine [6.79]
	Santonin [7.14]
	Dihydrochalcone [8.2]
	Feruloylpentresine [9.08]
Ethyl Acetate	N-(1-Deoxy-1-fructosyl)phenylalanine [1.33]
	L-threonine [1.91]
	N-Acetylphenylalanine [3.28]
Water	1,2,3,4-Tetrahydro-1-methyl-beta-carboline-3-carboxylic acid [4.06]
	Yohimbine [5.91]
	Velutin [6.94]
	13a-Hydroxylupanin [8.38]
	N-(1-Deoxy-1-fructosyl)phenylalanine [1.33]
	1,2,3,4-Tetrahydro-1-methyl-beta-carboline-3-carboxylic acid [4.17]
	Propafenone [5.63]
	2,3-Dihydroflavone [9.81]

Table 5. Potential Compounds from the LCMS/MS Analysis of PPWM Honey Extract

PPWM Honey Extract	Potential Compounds
Methanol	2-amino-3-(4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl)propanoic acid [1.17]
	2-Amino-N-(2,2,4,4-tetramethyl-3-thietanyl)propanamide [1.71]
	Imidazole-4-acetate [2.92]
	Naringenin [4.97]
	Brucine [5.32]
	Santonin [7.32]
	Feruloylpentresine [8.69]
Ethyl Acetate	2-amino-3-(4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl)propanoic acid [1.25]
	Kyunurenic acid [1.79]
	Imidazole-4-acetate [2.85]
	Indole-3-aldehyde [4.06]
	Tyramine [4.69]
	Naringenin [5.02]
	Propafenone [5.91]
	Santonin [7.29]
Water	2-amino-3-(4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl)propanoic acid [1.17]
	N-Fructosyl phenylalanine [2.27]
	Brucine [6.34]
	Rauwolscine [9.79]
differ among patients undergoing long-term therapy.

In the APRBT sample, the ethyl acetate fraction showed 12 peaks, indicating certain compounds in the fraction. However, searches on the online databases of MassBank, HMDB, and MassBank of North America (MoNA) only found four suspected compounds (Table 5).

Yohimbine, an alpha-2-adrenoceptor antagonist characterized pharmacologically by activity in the central and peripheral nervous systems, has been used for more than a century to treat erectile dysfunction. In-depth and systematic animal studies have shown that yohimbine profoundly affected sexual performance (Morales, 2000).

Velutin, a potent anti-inflammatory flavone, was also a compound from the ethyl acetate extract of APBRT honey. Velutine effectively inhibited the expression of proinflammatory cytokines TNF-α and IL-6 in low micromol levels by inhibiting NF-κB activation and phosphorylation of p38 and JNK (Xie et al., 2012).

3.6 LCMS/MS Analysis of PPWM honey

In the PPWM sample, the water fraction showed six peaks (Figure 5), which indicates the presence of certain compounds in the fraction. However, searches on the online databases of MassBank, HMDB, and MassBank of North America (MoNA) only found four suspected compounds (Table 5).

In the PPWM sample, the ethyl acetate fraction showed 15 peaks, indicating certain compounds in the fraction. However, searches on the online databases of MassBank, HMDB, and MassBank of North America (MoNA) only found eight suspected compounds (Table 5).

Naringenin is one of the essential natural flavonoids, primarily found in some edible fruits, such as Citrus and tomato species (Mbaheng et al., 2014; Jadeja and Devkar, 2014; Zobeiri et al., 2018), and fibers included in the Smyrna-type Ficus carica (Soltana et al., 2018).

Despite a large amount of data regarding naringenin in vitro biological effects, only a few studies available for its use as a therapeutic molecule. However, some specific products were formulated under the pure compound supplementation and some studies used naringenin-containing complex polyphenol blends. The most promising activities appear to be linked to cardiovascular disease protection, especially in compromised patients. However, some of these data should be expanded to understand better the mechanism of naringenin in pathological or physiological conditions. Several clinical studies have been conducted so far. Further clinical studies are needed to address better the safety, efficacy, delivery, and bioavailability of naringenin in human (Salehi et al., 2019).

4. CONCLUSIONS

In the present study, identification of several samples of honey in Indonesia from various regions are the honey samples have different Diastase Number and the HMF contents are relatively low. There is diversity in the composition of the honey, which may be due to the various regions of origin of the honey. The compounds that were allegedly found through LCMS/MS analysis include and have been traced based on literature studies had bioactive activity and beneficial to health, include: millelenin (potential for treating heart disease and cancer), mangiferin (anti-inflammatory, anti-diabetes, immunomodulators, anti-tumor, antioxidants), rhamnetin (anti-inflammatory), tricin (antioxidant-like), acacetin (inhibit tumor angiogenesis agents), aurantiamide acetate (antiviral or anti-inflammatory, therapeutic agent for the treatment of influenza), salvigenin (controlling inflammation, acute and chronic pain), brucine (modulates anti-inflammatory and analgesic properties), dehydrocostus lactone (anti-inflammatory), santonin (anthelminthic activity), dimethylesculetin (bilirubin clearance), imidazole 4-acetic acid (neuropharmacological properties), propafenone (antiarrhythmic), yohimbine (affected sexual performance), Velutin (anti-inflammatory), naringenin (link ed to cardiovascular disease protection). Eventually, honey is is such a natural product with a number of salient therapeutic properties. However, there are still components that were found but their roles cannot be described in detail. Therefore, it is recommended that further meticulous studies should bring to light the other hidden properties of the honey compounds.

5. ACKNOWLEDGEMENT

The author would like to thank the Institute for Research and Community Service through the Research and Publishing Center of UIN Syarif Hidayatullah Jakarta for funding this research for the 2019 Fiscal year No: Un.01/KPA/507/2019 date 11 July 2019.

REFERENCES

Ajlouni, S. and P. Sujirapinyokul (2010). Hydroxymethylfurfuraldehyde and amylase contents in Australian honey. Food Chemistry, 119(3); 1000–1005

Alimentarius, C. (1998). Codex Alimentarius standard for honey Ref. Technical report, CL 1998/12-S. FAO and WHO. Rome

Alvarez-Suarez, J., F. Giampieri, and M. Battino (2013). Honey as a Source of Dietary Antioxidants: Structures, Bioavailability and Evidence of Protective Effects Against Human Chronic Diseases. Current Medicinal Chemistry, 20(5); 621–638

Alvarez-Suarez, J. M., S. Tulipani, D. Díaz, Y. Estevez, S. Romandini, F. Giampieri, E. Damiani, P. Astolfi, S. Bompadre, and M. Battino (2010). Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food and Chemical Toxicology, 48(8–9); 2490–2499

Barreto, J. C., M. T. S. Trevisan, W. E. Hull, G. Erben, E. S. de Brito, B. Pfundstein, G. Wurtele, B. Spiegelhalder, and R. W. Owen (2008). Characterization and Quantitation of Polyphenolic Compounds in Bark, Kernel, Leaves, and Peel of Mango (Mangifera
Kwon, Y. S. and C. M. Kim (2003). Antioxidant constituents from the stem of Sorghum bicolor. *Archives of Pharmacal Research*, **26**(7); 533–539

Kwon, Y. S., E. Y. Kim, W. J. Kim, W. K. Kim, and C. M. Kim (2002). Antioxidant constituents from Setaria viridis. *Archives of Pharmacal Research*, **25**(3); 300–305

Li, H., C. Zhou, Y. Pan, X. Gao, X. Wu, H. Bai, L. Zhou, Z. Chen, S. Zhang, S. Shi, J. Luo, J. Xu, L. Chen, X. Zheng, and Y. Zhao (2005). Evaluation of Antiviral Activity of Compounds Isolated from Ranunculus sieboldianus and Ranunculus sceleratus. *Planta Medica*, **71**(12); 1128–1133

Li, H., C. Zhou, Y. Pan, X. Gao, X. Wu, H. Bai, L. Zhou, Z. Chen, S. Zhang, S. Shi, J. Luo, J. Xu, L. Chen, X. Zheng, and Y. Zhao (2005). Evaluation of Antiviral Activity of Compounds Isolated from Ranunculus sieboldianus and Ranunculus sceleratus. *Planta Medica*, **71**(12); 1128–1133

Lou, Z., H. Wang, S. Rao, J. Sun, C. Ma, and J. Li (2012). p-Coumaric acid kills bacteria through dual damage mechanisms. *Food Control*, **25**(2); 550–554

Lu, B., X. Wu, J. Shi, Y. Dong, and Y. Zhang (2006). Toxicology and safety of antioxidant of bamboo leaves. Part 2: Developmental toxicity test in rats with antioxidant of bamboo leaves. *Food and Chemical Toxicology*, **44**(10); 1739–1743

Mansourabadi, A. H., H. M. Sadeghi, N. Razavi, and E. Rezvani (2016). Anti-inflammatory and analgesic properties of salvigenin. *Pharmaceuticals*, **9**(1); 55–62

Mansourabadi, A. H., H. M. Sadeghi, N. Razavi, and E. Rezvani (2016). Anti-inflammatory and analgesic properties of salvigenin. *Pharmaceuticals*, **9**(1); 55–62

Masuyama, H., T. Mitsui, J. Maki, K. Nakamura, and Y. Hiramatsu (2016). Dimethylsulfoxide ameliorates maternal glucose intolerance and fetal overgrowth in high-fat diet-fed pregnant mice via constitutive androstane receptor. *Molecular and cellular biochemistry*, **419**(1); 185–192

Mhaveng, A. T., Q. Zhao, and V. Kuet (2014). Harmful and Protective Effects of Phenolic Compounds from African Medicinal Plants. *Toxicological Survey of African Medicinal Plants*, **577–609

Meda, A., C. E. Lamien, M. Romito, J. Millogo, and O. G. Nacoulma (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. *Food Chemistry*, **91**(3); 571–577

Morales, A. (2000). Yohimbine in erectile dysfunction: the facts. *International Journal of Impotence Research*, **12**(1); 70–74

Moreira, R. F., C. A. D. Maria, M. Pietroluongo, and L. C. Trugo (2010). Chemical changes in the volatile fractions of Brazilian honeys during storage under tropical conditions. *Food Chemistry*, **121**(3); 697–704

Mu, L., J. Kou, D. Zhu, and B. Yu (2008). Antioxidant activities of the chemical constituents isolated from the leaves of Ginkgo biloba. *Chinese Journal of Natural Medicines*, **6**; 26–29

Muruganandan, S., K. Srinivasan, S. Gupta, P. Gupta, and J. Lal (2005). Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. *Journal of Ethnopharmacology*, **97**(3); 497–501

Noratto, G. D., M. C. Bertoldi, K. Krenke, S. T. Talcott, P. C. Stringheta, and S. U. Mertens-Talcott (2010). Anticarcinogenic Effects of Polyphenolics from Mango (Mangifera indica) Varieties. *Journal of Agricultural and Food Chemistry*, **58**(7); 4104–4112

Ouchemoukh, S., H. Louailche, and P. Schweitzer (2007). Physicochemical characteristics and pollen spectrum of some Algerian honeys. *Food Control*, **18**(1); 52–58

Pietta, P.-G. (2000). Flavonoids as Antioxidants. *Journal of Natural Products*, **63**(7); 1035–1042

Rajendran, P., G. Ekambaram, and D. Sathithekarshan (2008). Protective Role of Mangiferin against Benzo(a)pyrene Induced Lung Carcinogenesis in Experimental Animals. *Biological & Pharmaceutical Bulletin*, **31**(6); 1053–1058

Rice-Evans, C., N. Miller, and G. Paganga (1997). Antioxidant properties of phenolic compounds. *Trends in Plant Science*, **2**(4); 152–159

Sadeghi, H., A. Mansourabadi, M. Rezvani, M. Ghofi, N. Razavi, and M. Bagheri (2016). Salvigenin has Potential to Ameliorate Streptozotocin-induced Diabetes Mellitus and Heart Complications in Rats. *British Journal of Medical and Research*, **15**(2); 1–12

Sakai, A., K. Watanabe, M. Koketsu, K. Akuwada, R. Yamada, Z. Li, H. Sadanari, K. Matsubara, and T. Murayama (2008). Anti-Human Cytomegalovirus Activity of Constituents from Sasa Albo-marginata (Kumazasa in Japan). *Antiviral Chemistry and Chemotherapy*, **19**(3); 125–132

Sakipova, Z., N. S. H. Wong, T. Kekelihanova, S. Dadykova, A. Shukirbekova, and F. Boylan (2017). Quantification of santin in eight species of Artemisia from Kazakhstan by means of HPLC-UV Method development and validation. *PLoS ONE*, **12**(3); e0173714

Salehi, B., P. Fokou, M. Sharifi-Rad, P. Zucca, R. Pezzani, N. Martins, and J. Sharifi-Rad (2019). The Therapeutic Potential of Narigenin: A Review of Clinical Trials. *Pharmaceuticals*, **12**(1); 11

Sanna, G., M. I. Pilo, P. C. Pin, A. Tapparo, and R. Seber (2000). Determination of heavy metals in honey by anodic stripping voltammetry at microelectrodes. *Analytica Chimica Acta*, **415**(1-2); 165–178

Schlepper, M. (1987). Propafenone, a review of its profile. *European heart journal*, **8**(suppl_A); 27–32

Schuff-Werner, P., D. Kaiser, C. Lueders, and P. Berg (1981). Propafenon-induced cholestatic liver injury—a further example for allergic drug hepatitis (author’s transl). *Zeitschrift für Gastroenterologie*, **19**(10); 673–679

Shalini, V., A. Jayalekshmi, and A. Helen (2015). Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats. *Molecular Immunology*, **66**(2); 229–239

Shapla, U. M., M. Solayman, N. Alam, M. I. Khalil, and S. H. Gan (2018). 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. *Chemistry Central Journal*, **12**(1); 1–18

Siddoway, L. A., D. M. Roden, and R. L. Woosley (1984). Clinical pharmacology of propafenone: Pharmacokinetics, metabolism and concentration-response relations. *The American Journal of Cardiology*, **54**(9); 9D–12D

Soltana, H., M. D. Rosso, H. Lazzreg, A. D. Vedova, M. Hamrami, and R. Flamini (2018). LC-QTOF characterization of non-anthocyanic flavonoids in four Tunisian fig varieties. *Journal of Mass Spectrometry*, **53**(9); 817–823

Stolzenbach, S., D. V. Byrne, and W. L. Brede (2011). Sensory local uniqueness of Danish honeys. *Food Research International*, **44**(9); 2766–2774

Sumarlin, H. B. I. A. F. A., L.O. (2019b). Anticancer Activity Of Honey Extract From Indonesia By A549 Cell Inhibition In Vitro. *Ecology, Environment and Conservation Journal*, **25**(3); 1196–1202

Sumarlin, L. O., A. Muawanah, F. R. Afandi, and A. Adawiah (2019).
Inhibitory Activity of HEp-2 Cells by Honey from Indonesia. Journal Kimia Sains dan Aplikasi, 22(6); 317–325
Terrab, A., M. J. Díez, and F. J. Heredia (2002). Characterisation of Moroccan unifloral honeys by their physicochemical characteristics. Food Chemistry, 79(3); 373–379
Tunnicliff, G. (1998). Pharmacology and Function of Imidazole 4-Acetic Acid in Brain. General Pharmacology: The Vascular System, 31(4); 503–509
Vanhanen, L. P., A. Emmertz, and G. P. Savage (2011). Mineral analysis of mono-floral New Zealand honey. Food Chemistry, 128(1); 236–240
Wang, H.-B., H. Yao, G.-H. Bao, H.-P. Zhang, and G.-W. Qin (2004). Flavone glucosides with immunomodulatory activity from the leaves of Pleioblastus amarus. Phytochemistry, 65(7); 969–974
Wang, Q., B. Hu, X. Hu, H. Kim, M. Squatrito, L. Scarpone, A. C. deCarvalho, S. Lyu, P. Li, Y. Li, F. Barthel, H. J. Cho, Y.-H. Lin, N. Satani, E. Martinez-Ledesma, S. Zheng, E. Chang, C.-E. G. Sauvé, A. Olar, Z. D. Lan, G. Finocchiaro, J. J. Phillips, M. S. Berger, K. R. Gabrusiewicz, G. Wang, E. Eskilson, J. Hu, T. Mikkelsen, R. A. DePinho, F. Muller, A. B. Heimberger, E. P. Sulman, D.-H. Nam, and R. G. Verhaak (2017). Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 32(1); 42–56
Watanabe, M. (1999). Antioxidative Phenolic Compounds from Japanese Barnyard Millet (Echinochloa utilis) Grains. Journal of Agricultural and Food Chemistry, 47(11); 4500–4505
Winarno, F. (1992). Kimia Pangan dan Gizi. PT. Gramedia Pustaka Utama, Jakarta. Journal Teknosains Pangan, 3(1); 2302–2303
Xie, C., J. Kang, Z. Li, A. G. Schauss, T. M. Badger, S. Nagarajan, T. Wu, and X. Wu (2012). The açai flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway. The Journal of Nutritional Biochemistry, 23(9); 1184–1191
Yin, W., T.-S. Wang, F.-Z. Yin, and B.-C. Cai (2003). Analgesic and anti-inflammatory properties of brucine and brucine N-oxide extracted from seeds of Strychnos nux-vomica. Journal of Ethnopharmacology, 88(2-3); 205–214
Zhang, W., B. Li, Y. Guo, Y. Bai, T. Wang, K. Fu, and G. Sun (2015). Experimental immunology Rhamnetin attenuates cognitive deficit and inhibits hippocampal inflammatory response and oxidative stress in rats with traumatic brain injury. Central European Journal of Immunology, 40(1); 35–41
Zhou, B., Z. Yang, Q. Feng, X. Liang, J. Li, M. Zanin, Z. Jiang, and N. Zhong (2017). Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus-infected cells. Journal of Ethnopharmacology, 199; 60–67
Zobeiri, M., T. Belwal, F. Parvizi, R. Naseri, M. H. Farzaei, S. F. Nabavi, A. Sureda, and S. M. Nabavi (2018). Naringenin and its Nano-formulations for Fatty Liver: Cellular Modes of Action and Clinical Perspective. Current Pharmaceutical Biotechnology, 19(3); 196–205