K3 SURFACES, LORENTZIAN KAC–MOODY ALGEBRAS AND MIRROR SYMMETRY

VALERI A. GRITSenko1 AND VIACHESLAV V. NIKULIN2

ABSTRACT. We consider the variant of Mirror Symmetry Conjecture for K3 surfaces which relates “geometry” of curves of a general member of a family of K3 with “algebraic functions” on the moduli of the mirror family. Lorentzian Kac–Moody algebras are involved in this construction. We give several examples when this conjecture is valid.

0. Introduction.

In this paper we want to interpret our results [GN] and [N10] from the viewpoint of the mirror symmetry for K3 surface. This interpretation was the subject of the talk given by the second author at the conference “Toric geometry” in Warwick University at September 18–23, 1995.

This paper was written during our stay at SFB 170 “Geometrie und Analysis” of Mathematical Institute of Georg-August-University in September – October 1995. We are grateful to the Institute for hospitality.

1. Mirror symmetry for K3 surfaces.

Let S be an even hyperbolic lattice, i.e. a free \mathbb{Z}-module of rank $n + 1$ with an integral even symmetric bilinear form of the signature $(1, n)$. This lattice S may appear in two ways in connection with algebraic K3 surfaces:

(A) $S = S_X$ is a Picard lattice of a K3 surface X. These K3 surfaces form a family

$$\mathcal{M}_S = \{ \text{K3 surface } X \mid S \subset S_X \}$$

of dimension $20 - \dim S$ (see [N1], [N6] for definition which is actually based on local [G.N. Tyurina, Š], and global Torelli Theorem [P-Š–Š] for K3 surfaces and epimorphicity of Torelli map [Ku] for K3 surfaces). A general member X of this family has the Picard lattice $S_X = S$.

(B) $S = ([c]_T)/[c]$, for the lattice of transcendental cycles $T = T_X$ (transcendental lattice) of a K3 surface X where $c \in T$ is a primitive element of T with $c^2 = 0$. (We consider K3 surfaces over \mathbb{C}; then $T_X = (S_X)_{\overline{H^2(X,\mathbb{Z})}}^\perp$.) These K3 surfaces X form a family

$$\mathcal{M}_{T,\perp} = \{ \text{K3 surface } X \mid T_X \subset T \}$$

of dimension $\dim S$. A general member X of this family has $T_X = T$.

1Supported by SFB 170 “Geometrie und Analysis”.
2Partially supported by Grant of Russian Fund of Fundamental Research; Grant of ISF MI6000; Grant of ISF and Russian Government MI6300; Grant of AMS; SFB 170 “Geometrie und Analysis”.
These two families \(\mathcal{M}_S \) and \(\mathcal{M}_{T^\perp} \) are called dual (or mirror symmetric, or mirror). This is how Mirror Symmetry for K3 surfaces (inspired by explanation of the strange Arnol’d duality [A]) had first appeared in [P], [DN] and [N2], [D1]. In particular, in [N2] there was developed some lattice theory for the exact calculation of these dual families. The new understanding of mirror symmetry for K3 (see for example [D2]) which is due to the modern Physics and the Mirror Symmetry for Calabi–Yau 3-folds (see [COGP] and [Mor1], [Mor2]) is related with the fact that one can calculate the lattice \(S \) for the situation (B) using Yukawa coupling at the point defined by \(c \) at infinity of \(\mathcal{M}_{T^\perp} \).

For the model (A), the lattice \(S \) is related with the geometry of curves and is the intersection form of all curves on a general K3 surface \(X \in \mathcal{M}_S \). For the model (B), the lattice \(S \) is related with the geometry of moduli \(\mathcal{M}_{T^\perp} \) at an appropriate point at infinity of the mirror (dual) family \(\mathcal{M}_{T^\perp} \subset \overline{\mathcal{M}_{T^\perp}} \). Thus, for any question related with the geometry of curves on a general member \(X \) of the family \(\mathcal{M}_S \), one can ask about its analog for the dual family \(\mathcal{M}_{T^\perp} \) from the point of view of the geometry of the moduli \(\mathcal{M}_{T^\perp} \).

An effect we want to discuss here is the following:

It turns out that in some cases “geometry” of irreducible and effective classes of divisors of general \(X \in \mathcal{M}_S \) is related with interesting “algebraic functions” on the dual family \(\mathcal{M}_{T^\perp} \). This relation involves Lorentzian Kac–Moody Lie algebras (and conjecturally some physics).

Here an element of \(S = S_X \) is called irreducible (respectively effective) if it contains an irreducible (respectively effective) curve. The moduli \(\mathcal{M}_{T^\perp} \) is a quotient of a symmetric domain of type IV by some arithmetic group \(G \), and “algebraic function” means here an automorphic form with respect to \(G \) on this domain.

2. Geometry of irreducible and effective classes of divisors on a K3 surface.

In this section, we consider a hyperbolic lattice \(S \) from the point of view of the model (A). Thus, now \(S = S_X \) is the Picard lattice of a K3 surface \(X \). Then elements of \(S \) reflect some geometry of curves. An element \(h \in S \) is called irreducible if it contains an irreducible curve on \(X \). An element \(h \in S \) is called effective if it is a finite sum of irreducible elements. For K3 surfaces, effective and irreducible classes may be described (up to automorphisms of \(S \)) purely arithmetically using only the intersection form of the lattice \(S \).

Now we give this description. It is sufficient to describe the set \(\Delta^{ir} \subset S \) of all irreducible elements. It is well-known (and very easy to see) that \(h^2 \geq -2 \) if \(h \in \Delta^{ir} \). An irreducible element \(\delta \in \Delta^{ir} \) with \(\delta^2 = -2 \) contains a non-singular irreducible rational curve (exceptional curve) on \(X \). In particular, \(\Delta^{ir} = \Delta^{ir}_{-2} \cup \Delta^{ir}_{\geq 0} \) where

\[
\Delta^{ir}_{-2} = \{ \delta \in \Delta^{ir} | \delta^2 = -2 \}, \quad \Delta^{ir}_{\geq 0} = \{ h \in \Delta^{ir} | h^2 \geq 0 \}.
\]

An element \(h \in S \) is called nef if \(h \cdot C \geq 0 \) for any irreducible curve \(C \) on \(X \). We denote by \(\text{NEF}(S) \) the set of all nef elements of \(S \). It is known that the sets \(\text{NEF}(S) \) and \(\Delta^{ir}_{\geq 0} \) almost coincide. Obviously, \(x^2 \geq 0 \) if \(x \in \text{NEF}(S) \) and \(\mathbb{N} \Delta^{ir}_{\geq 0} \subset \text{NEF}(X) \). If \(c \in \text{NEF}(S) \) and \(c^2 = 0 \), then \(c \in \Delta^{ir}_{\geq 0} \) if and only if \(c \) is primitive [P-Š-Š]. If \(h \in \text{NEF}(S) \) and \(h^2 > 0 \), then \(h \in \Delta^{ir}_{\geq 0} \) if and only if there does not exist primitive \(c \in \text{NEF}(S) \) with \(c^2 = 0 \) such that \(c \cdot h = 1 \) (in particular, \(2h \in \Delta^{ir}_{=0} \)). See [SD].
Thus, the set $\Delta_{\geq 0}$ is completely determined by the set $\text{NEF}(S)$. In what follows, we will use the set $\text{NEF}(S)$ instead of $\Delta_{\geq 0}$ since it is more convenient to work with.

Since S is hyperbolic, the cone

$$V(S \otimes \mathbb{R}) = \{ x \in S \otimes \mathbb{R} \mid x^2 > 0 \}$$

is the union of two half cones $\pm V^+(S \otimes \mathbb{R})$ where $V^+(S \otimes \mathbb{R})$ contains the class of a hyperplane section. It is easy to see that

$$\text{NEF}(S) = \{ h \in S \mid h \in \overline{V^+(S \otimes \mathbb{R})} \setminus \{0\} \text{ and } h \cdot \Delta_{\geq 2} \geq 0 \}. \quad (2)$$

Thus, $\text{NEF}(S)$ is completely defined by $\Delta_{\geq 2}$. Moreover, there exists a group-theoretical description of both sets. Let

$$\mathbb{R}_{++} M = \{ x \in \overline{V^+(S \otimes \mathbb{R})} \setminus \{0\} \mid x \cdot \Delta_{\geq 2} \geq 0 \}$$

be a cone and $M = \mathbb{R}_{++} M / \mathbb{R}_{++}$ its set of rays. Then $\text{NEF}(S) = S \cap \mathbb{R}_{++} M$. Let $W^2(S) \subset O(S)$ be the group generated by all reflections $s_\delta : x \mapsto x + (x \cdot \delta) \delta$, $x \in S$ of the lattice S in elements $\delta \in S$ with $\delta^2 = -2$. It is easy to see that the group $W^2(S)$ is discrete in the corresponding hyperbolic space $L^+(S) = V^+(S) / \mathbb{R}_{++}$ and M is the fundamental domain of $W^2(S)$ with the set $\Delta_{\geq 2}$ of vectors orthogonal to M. It means that $\delta \in \Delta_{\geq 2}$ if and only if $\delta \in S$, $\delta^2 = -2$ and the inequality $\delta \cdot x \geq 0$ defines a face of M (or of $\mathbb{R}_{++} M$) of codimension one. This gives the description of the both sets $\text{NEF}(S)$ and $\Delta_{\geq 2}$ of S in terms of the group $W^2(S)$: the real convex cone $\mathbb{R}_{++} \text{NEF}(S)$ is a fundamental domain for the group $W^2(S)$ acting in $V^+(S \otimes \mathbb{R})$ with the set of orthogonal vectors $\Delta_{\geq 2}$.

Let $\text{EF}(S)$ be the set of all effective elements of S and $\text{EF}(S)_{\geq -2}$, $\text{EF}(S)_{\leq -2}$ and $\text{EF}(S)_{= 0}$ are the sets of all elements $x \in \text{EF}(S)$ with $x^2 \geq -2$, $x^2 = -2$ and $x^2 \geq 0$ respectively. Using Riemann-Roch Theorem, one can see that

$$\text{EF}(S)_{\geq -2} = \{ \delta \in S \mid \delta^2 = -2, \ \delta \cdot \text{NEF}(S) \geq 0 \}, \ \text{EF}(S)_{\geq 0} = S \cap \overline{V^+(S \otimes \mathbb{R})} \setminus \{0\},$$

and $\text{EF}(S)_{= -2} = \text{EF}(S)_{\geq -2} \cup \text{EF}(S)_{\geq 0}$.

2. Kac–Moody algebras associated to a K3 surface.

In this section, we define Kac–Moody algebras associated with a K3 surface X with the Picard lattice $S = S_X$. (See [Ka1], [Ka2], [Ka3], [Bo1] and [GN] for the theory of Kac–Moody algebras.) An algebra will be a generalized Kac–Moody (Lie) superalgebra without odd real simple roots. It is defined by a set $s \Delta$ of simple roots which is divided in a set of simple real (even) roots $s \Delta^e$ and a set of simple imaginary roots $s \Delta^i$, the last set is divided in a set of even simple imaginary roots $s \Delta^i_0$ and a set of simple odd imaginary roots $s \Delta^i_1$.

We put $s \Delta^e = \Delta_{\geq -2}$ and the sets $s \Delta^i_0$, $s \Delta^i_1$ are some sequences of nef elements of S. Each imaginary root α defines an element of $\text{NEF}(S)$ but one can repeat each element of $\text{NEF}(S)$ finite number of times in each set $s \Delta^i_0$ and $s \Delta^i_1$.

The generalized Kac–Moody superalgebra without odd real simple roots $g = g''(S, s \Delta^i)$ is a Lie superalgebra generated by h_r, e_r, f_r where $r \in s \Delta$. All h_r are even, e_r, f_r are even (respectively odd) if r is even (respectively odd). The algebra has the following defining relations:
The map $r \mapsto h_r$ for $r \in s\Delta$ gives an embedding of $S \otimes \mathbb{R}$ into $\mathfrak{g}''(S, s\Delta)$ as an abelian subalgebra (it is even since all h_r are even). In particular, all elements h_r commute.

(2) $[h_r, e_{r'}] = -(r \cdot r')e_{r'}$, and $[h_r, f_{r'}] = (r \cdot r')f_{r'}$.

(3) $[e_r, f_r] = h_r$ if $r = r'$, and is 0 if $r \neq r'$.

(4) $(\text{ad } e_r)^{1+r} e_{r'} = (\text{ad } f_r)^{1+r} f_{r'} = 0$ if $r \neq r'$ and $r \in s\Delta^{re}$.

(5) If $r \cdot r' = 0$, then $[e_r, e_{r'}] = [f_r, f_{r'}] = 0$.

The superalgebra $\mathfrak{g} = \mathfrak{g}''(S, s\Delta^{im})$ is graded by S as follows. Let

$$\tilde{Q}_+ = \sum_{\alpha \in s\Delta} \mathbb{Z}_{\geq 0} \alpha \subset S$$

be the integral cone (semi-group) generated by all simple roots. We have

$$\mathfrak{g} = \left(\bigoplus_{\alpha \in \tilde{Q}_+} \mathfrak{g}_\alpha \right) \bigoplus (S \otimes \mathbb{R}) \bigoplus \left(\bigoplus_{\alpha \in -\tilde{Q}_+} \mathfrak{g}_\alpha \right)$$

where e_r and f_r have degree $r \in \tilde{Q}_+$ and $-r \in -\tilde{Q}_+$ respectively ($r \in s\Delta$); and $\mathfrak{g}_0 = S \otimes \mathbb{R}$. A non-zero $\alpha \in \pm \tilde{Q}_+$ is called a root if \mathfrak{g}_α is non-zero. Let Δ be the set of all roots and $\Delta_\pm = \Delta \cap \pm \tilde{Q}_+$. For a root $\alpha \in \Delta$ we set $\text{mult}_\alpha = \dim \mathfrak{g}_{\alpha, \tilde{Q}_+}$, $\text{mult}_\mathfrak{g} = -\dim \mathfrak{g}_{\alpha, \tilde{Q}_-}$ and

$$\text{mult } \alpha = \text{mult}_\mathfrak{g} + \text{mult}_\kappa = \dim \mathfrak{g}_{\alpha, \tilde{Q}_+} - \dim \mathfrak{g}_{\alpha, \tilde{Q}_-}.$$

The mult α is called the multiplicity of α. According to the general theory of Kac–Moody algebras, the set of roots is the union of real and imaginary roots: $\Delta = \Delta^{re} \cup \Delta^{im}$. The set of real roots is $\Delta^{re} = W^{(2)}(S)(s\Delta^{re})$ (in particular, $\alpha^2 = -2$ if $\alpha \in \Delta^{re}$). The set of imaginary roots is $\Delta^{im} = \{\alpha \in \Delta \mid \alpha^2 \geq 0\}$. It follows that $\Delta^{re}_+ := \Delta^{re} \cap \Delta_+ = \text{EF}_{-2}$ and $\Delta^{im}_+ := \Delta^{im} \cap \Delta_+ \subset \text{EF}_{\geq 0}$. If $\alpha \in \Delta^{re}$, then $\text{mult}_\mathfrak{g} = 1$, $\text{mult}_\kappa = 0$ and $\text{mult } \alpha = 1$. Thus, we can rewrite the decomposition above using “geometry” of K3 as follows:

$$\mathfrak{g} = \left(\bigoplus_{\alpha \in \text{EF}(S)_{\leq 2}} \mathfrak{g}_\alpha \right) \bigoplus (S \otimes \mathbb{R}) \bigoplus \left(\bigoplus_{\alpha \in -\text{EF}(S)_{\geq 2}} \mathfrak{g}_\alpha \right).$$

Here $\mathfrak{g}_\alpha = 0$ if $\alpha \notin \Delta$.

In what follows, we restrict ourselves considering S with a lattice Weyl vector.

Definition. An element $\rho \in S \otimes \mathbb{Q}$ is called a lattice Weyl vector if $\rho \cdot \delta = 1$ for any $\delta \in s\Delta^{re} = \Delta^{ir}_{-2}$.

There are three cases when a lattice Weyl vector does exist:

(i) $\Delta^{ir}_{-2} = \emptyset$, then we can take any $\rho \in S \otimes \mathbb{Q}$;

(ii) $\dim S = 2$ and $\Delta^{ir}_{-2} \neq \emptyset$, then the set Δ^{ir}_{-2} is linearly independent and does not contain more than 2 elements;
(iii) \(\dim S \geq 3 \) and \(\Delta_{\text{ir}}^\rho \neq \emptyset \) and the lattice Weyl vector \(\rho \) exists. It follows from general results [N4], [N5] and [N10], that the set of hyperbolic lattices \(S \) with this property is finite up to isomorphism. These lattices \(S \) are divided in two classes. Firstly, it is easy to see that \(\rho \) is a nef element of \(S \) and for large \(n \in \mathbb{N} \) the linear system \(|h| \) of \(h = n\rho \in S \) is free. If \(\rho^2 > 0 \) (this case is called elliptic), the linear system \(|h| \) gives an embedding of \(X \) into a projective space such that all non-singular rational curves on \(X \) have the same degree \(n \). All these cases are known (see [N3], [N7], [N8]). If \(\rho^2 = 0 \) (this case is called parabolic), then \(|h| \) gives an elliptic fibration of \(X \) over a projective line such that all non-singular rational curves of \(X \) have the same degree \(n \) over the projective line. The list of such \(S \) is not known yet.

We would like to mention that in the case (iii) the fundamental polyhedron \(\mathcal{M} = \mathbb{R}_{++} \text{NEF}(S)/\mathbb{R}_{++} \) for the action of \(W''(2)(S) \) in the hyperbolic space \(\mathcal{L}^+(S) \) is a very right and beautiful polyhedron: it is a fundamental polyhedron for a reflection group and it is touching of a sphere with the center \(\mathbb{R}_{++} \).

The case (iii) is especially interesting for us because it is very exceptional: there is only finite number of possibilities. Moreover, we want to get some relations between the sets \(\text{NEF}(S) \) and \(\text{EF}(S) \) which are different only for the cases (ii) and (iii). The case (iii) is also related with multi-dimensional (\(\dim \geq 3 \)) automorphic forms.

Later on we assume that \(S \) has a lattice Weyl vector \(\rho \). For \(a \in \text{NEF}(S) \), let \(m(a)_\mathcal{M} \), \(m(a)_T \) are equal to the numbers of times we repeat \(a \) in the sequences \(s\Delta^\text{im} \) and \(\Delta^\text{im} \) respectively. We set \(m(a) = m(a)_\mathcal{M} - m(a)_T \). Let \(a_0 \) be a primitive element of \(\text{NEF}(S) \) with \(a_0^2 = 0 \). In this case we define “corrected” invariants \(m(ta_0), t \in \mathbb{N} \), using the identity of power series:

\[
\prod_{n \in \mathbb{N}} (1 - q^n)^{m(ta_0)^i} = 1 - \sum_{t \in \mathbb{N}} m(ta_0)q^t.
\]

For \(a \in \text{NEF}(S) \) with \(a^2 > 0 \) we set \(m(a) = m(a)^i \).

We have the following Weyl–Kac–Borcherds denominator identity for Kac–Moody superalgebra \(g = g''(S, \Delta) \) (see [Ka1], [Bo1] and [GN]):

\[
\Phi(z) := \sum_{w \in W''(2)(S)} \det(w) \left(\exp(2\pi i (w(\rho) \cdot z)) - \sum_{a \in \text{NEF}(S)} m(a) \exp(2\pi i (w(\rho + a) \cdot z)) \right)
= \exp(2\pi i (\rho \cdot z)) \prod_{\alpha \in \text{EF}(S)_{\geq -2}} (1 - \exp(2\pi i (\alpha \cdot z)))^{\text{mult } \alpha}, \quad (*)
\]

where \(z \) belongs to the complexified cone \(\Omega(S) = S \otimes \mathbb{R} + iV^+(S \otimes \mathbb{R}) \) of \(V^+(S \otimes \mathbb{R}) \). The function \(\Phi(z) \) is called the denominator function of \(g(S, \Delta^\text{im}) \).

Considering different sequences \(\Delta^\text{im} \) of imaginary roots from \(\text{NEF}(S) \) we get different denominator identities which one can consider as multi-dimensional identities relating the sets of effective and nef (or irreducible) elements of \(S \). Actually these identities depend only on the integral function \(m(a), a \in \text{NEF}(S) \). If this function is given, one can calculate \(m(a)^i \) and find all possible non-negative integers \(m(a)^i, m(a)^{i''}, m(a)^{i'''} \), with \(m(a)^i = m(a)^{i''} = m(a)^{i'''} \), which define Kac–Moody superalgebras.
$g = g''(S, s\Delta)$ with the fixed denominator function. One also can consider the function (*) as some kind of integral

$$\Phi(z) = \int_{C \subset X} \xi(C, z)$$

along effective curves on the K3 surface X with $S_X = S$. This integral could be correctly defined because we only use effective classes in the formula (*).

3. A variant of Mirror Conjecture.

Now we consider the hyperbolic lattice S using the model (B). We consider only the simplest case when

$$T = S \oplus U(k), \ k \in \mathbb{N}, \ U(k) = \left(\begin{array}{c} 0 \\ k \\ 0 \end{array} \right).$$

Let c_1, c_2 be the bases of $U(k)$ with this intersection matrix. Then $z \mapsto \mathbb{C}(z \oplus (-z^2/2)c_1 \oplus (1/k)c_2)$ defines an embedding corresponding to the cusp defined by c_1 of the complexified cone $\Omega(S)$ to the connected component $\Omega(T)_0$ of the complex domain of type IV

$$\Omega(T) = \{ \mathbb{C}\omega \subset T \otimes \mathbb{C} \mid \omega^2 = 0, \ \omega \cdot \overline{\omega} > 0 \}.$$

The choice of $\omega_0 = z \oplus (-z^2/2)c_1 \oplus (1/k)c_2 \in \mathbb{C}\omega_0$ is determined by the normalization $\omega_0 \cdot c_1 = 1$. For this normalization, the local moduli of K3 are identified with $S \otimes \mathbb{C}$ and Yukawa coupling coincides with the intersection pairing of the lattice S. This normalization is prescribed by mirror symmetry for K3. The quotient $(M_T)_0 = O(T)_+ \backslash \Omega(T)_0$ is a connected component of the dual (mirror) family of K3 surfaces for an appropriate subgroup $O(T)_+$ of finite index of $O(T)$.

Mirror Conjecture. There exists a choice of $k \in \mathbb{N}$ and a sequence $s\Delta_{\text{im}} \subset \text{NEF}(S)$ of imaginary roots such that the denominator function $\Phi(z)$ of $g''(S, s\Delta_{\text{im}})$ is a holomorphic automorphic form with respect to $O(T)_+$ on the domain $\Omega(T)_0$, i.e. $\Phi(z)$ is an “algebraic function” on the dual moduli $\mathcal{M}_{T\perp}$ (model (B)). The form $\Phi(z)$ has the following sense from the point of view of the model (A): $\Phi(z)$ is written in the form (*) using “geometry of curves” (effective and irreducible or nef classes of divisors) of a general member X with $S_X = S$ of the family \mathcal{M}_S and it gives an identity (*) between effective and nef divisor classes on X.

Moreover, we suppose that for the automorphic form $\Phi(z)$ it is possible to give exact formulae for Fourier coefficients $m(a)$ of the left side and multiplicities $\text{mult}\alpha$ of the right side of (*). Besides, the generalized Kac–Moody superalgebra $g''(S, s\Delta_{\text{im}})$ should also be related with geometry of curves and moduli of K3 (and conjecturally with some physics).

It is very important that the zero divisor of $\Phi(z)$ in the domain where the product (*) converges has multiplicity one and is contained in the discriminant

$$\mathcal{D} = O(T)_+ \backslash \left(\bigcup_{\delta \in T, \delta^2 = -2} D_\delta \right)$$

of moduli $\mathcal{M}_{T\perp}$ where $D_\delta = \{ \mathbb{C}\omega \in \Omega(T) \mid \omega \cdot \delta = 0 \}$. Therefore, in some sense, $\Phi(z)$ shows how far we are from the discriminant.

In the rest part of the paper we give several examples when this conjecture is valid.
4. Example 1.

For the first example, \(\dim S = 3, S \cong 2U(4) \oplus \langle -2 \rangle \). (In what follows we denote by \(K(t) \) a lattice which one gets by multiplication on \(t \in \mathbb{Q} \) of the form of the lattice \(K \).) The set \(\Delta_{\text{ir}}(S) = \{\delta_1, \delta_2, \delta_3\} \) generates the lattice \(S \) and has the intersection matrix

\[
(\delta_i \cdot \delta_j) = \begin{pmatrix}
-2 & 2 & 2 \\
2 & -2 & 2 \\
2 & 2 & -2
\end{pmatrix}
\]

which defines the lattice \(S \). The fundamental polyhedron \(\mathcal{M} \) is the right triangle with the vertices at infinity. The lattice Weyl vector \(\rho \) is equal to \(\rho = (\delta_1 + \delta_2 + \delta_3)/2 \). The element \(h = 2\rho \) has the square \(h^2 = 6 \) and the linear system \(|h| \) gives an embedding of a K3 surface \(X \) with \(S_{X} = S \) as an intersection of a quadric and a cubic in \(\mathbb{P}^4 \). For this embedding, all non-singular rational curves on \(X \) are three conics corresponding to \(\delta_1, \delta_2, \delta_3 \). Their sum is a hyperplane section of \(X \). The lattice \(T \) is equal to \(T = U(4) \oplus S \cong 2U(4) \oplus \langle -2 \rangle \). The orthogonal complement \(T^\perp \) is isomorphic to a hyperbolic lattice \(S' \cong U(4) \oplus K \) where \(K \) is a negative definite lattice of rank 15 with the discriminant quadratic form \(q_{U(4)} \oplus q_{(2)} \). It follows from results of [N2] that the lattice \(S' \) is unique and the moduli space of K3 surfaces \(\mathcal{M}_{S'} \) is irreducible. (It would be very interesting to determine this family using equations and to give an algebraic description of the automorphic form \(F_1(Z) \) which we shall describe. We hope to do this later.)

Let us consider another bases \(f_2, f_3, f_{-2} \) of \(S \otimes \mathbb{Q} \) where

\[
\delta_1 = 2f_2 - f_3, \quad \delta_2 = 2f_{-2} - f_3, \quad \delta_3 = f_3.
\]

These elements have the intersection matrix

\[
(f_i \cdot f_j) = \begin{pmatrix}
0 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 0
\end{pmatrix}
\]

Thus the lattice \(S \) is a finite index sublattice of \(M_0 = \mathbb{Z}f_2 \oplus \mathbb{Z}f_3 \oplus \mathbb{Z}f_{-2} \). We have \(M_0 = U \oplus \langle -2 \rangle \) where \(U = \mathbb{Z}f_2 \oplus \mathbb{Z}f_{-2} \) and \(\mathbb{Z}f_3 = \langle -2 \rangle \). These lattices are related as follows: \(S = 2(M_0)^* \). We consider coordinates \((z_3, z_2, z_1)\) where \(z = z_3f_2 + z_2f_3 + z_1f_{-2} \in M_0 \otimes \mathbb{C} = S \otimes \mathbb{C} \). We introduce the lattice \(L = U \oplus M_0 \) where \(U = \mathbb{Z}f_1 \oplus \mathbb{Z}f_{-1} \) with \(f_1^2 = f_{-1}^2 = 0 \) and \(f_1 \cdot f_{-1} = 1 \). We use \(z \) as a coordinate for the point \(Z = \mathbb{C}((z^2/2)f_1 + z + f_{-1}) \in \Omega(L) \) of the domain \(\Omega(L) \) of the type IV corresponding to \(L \). We also identify \(z \) with the matrix

\[
Z = \begin{pmatrix}
z_1 \\
z_2 \\
z_3
\end{pmatrix} \in \mathbb{H}_2
\]

where \(\mathbb{H}_2 \) is the Siegel upper-half plane.

Let us consider the classical function \(\Delta_5(Z) \) (see [F]) which is the product of all even theta-constants

\[
\Delta_5(Z) = \prod \vartheta_{a,b}(Z), \quad (Z = \begin{pmatrix}
z_1 & z_2 \\
z_2 & z_3
\end{pmatrix} \in \mathbb{H}_2)
\]
with
\[\vartheta_{a,b}(Z) = \sum_{l \in \mathbb{Z}^2} \exp \left(\pi i (Z[l] + \frac{1}{2} a) + t bl \right) \] \((Z[l] = t l Z l) \).

The product is taken over all vectors \(a, b \in (\mathbb{Z}/2\mathbb{Z})^2 \) such that \(t a b \equiv 0 \mod 2 \).
(There are exactly ten different \((a, b)\).) This is the automorphic form of weight 5
with a character with respect to \(Sp_4(\mathbb{Z})/\{ \pm E_4 \} \approx O^+(L)/\{ \pm E_3 \} \) where \(O^+(L) \) is
the subgroup of \(O(L) \) which fixes two connected components of \(\Omega(L) \) (see [GN]).

The function \(F_1(Z) = \frac{1}{64} \Delta_5(Z) \) has integral coefficients.

Theorem 1. The function \(F_1(Z) \) gives the solution of Mirror Conjecture of Sect. 3
for the lattice \(S \) and \(U(4) = \mathbb{Z}_c \oplus \mathbb{Z}_e \) where \(c_1 = 2f_1, e_2 = 2f_{-1} \). Therefore \(F_1(Z) \)
is an “algebraic function” on the moduli \(\mathcal{M}_{T^\perp} \) where \(T = U(4) \oplus S \), and it defines
an identity (*) for \(S = S_X \) of the general member \(X \) of the mirror family \(\mathcal{M}_S \).
Moreover, it defines the corresponding Kac–Moody superalgebras \(g''(S) \).

Proof. The function \(F_1(Z) \) as a function on \(\Omega(L) \) is automorphic with respect to
\(O^+(L) \). We have the equality \(T = 2L^* \) because \(U(4) = 2U^* \) and \(S = 2(M_0)^* \).
It follows that \(F_1(Z) \) is automorphic with respect to \(O^+(T) = O^+(L) \) and defines
then an “algebraic function” on the moduli \(\mathcal{M}_{T^\perp} = O^+(T) \setminus \Omega(T) \).

It is proved in [GN] that for the coordinate \(z \) which we introduced above, the
function \(F_1(Z) \) can be written in the form

\[
F_1(Z) = \sum_{w \in W^{(4)}(S)} \det(w) \left(\exp(\pi i (w(\rho) \cdot z)) - \sum_{a \in \text{NEF}(S)} m(a) \exp(\pi i (w(\rho + a) \cdot z)) \right)
\]

\[= \exp(\pi i (\rho \cdot z)) \prod_{\alpha \in \text{EF}(S)_{\geq -2}} (1 - \exp(\pi i (\alpha \cdot z)))^{\text{mult } \alpha} \quad (4.1) \]

with integral coefficients \(m(a) \) and \(\text{mult } \alpha \). For \(c_1 = 2f_1 \) and \(k = 4 \), we should
consider the coordinate \(z' = z/2 \) (mirror symmetry coordinate) instead of the
coordinate \(z \). For this coordinate \(z' \), from (4.1) we get

\[
F_1(Z) = \sum_{w \in W^{(4)}(S)} \det(w) \left(\exp(2\pi i (w(\rho) \cdot z')) - \sum_{a \in \text{NEF}(S)} m(a) \exp(2\pi i (w(\rho + a) \cdot z')) \right)
\]

\[= \exp(2\pi i (\rho \cdot z')) \prod_{\alpha \in \text{EF}(S)_{\geq -2}} (1 - \exp(2\pi i (\alpha \cdot z')))^{\text{mult } \alpha}. \quad (4.2) \]

This proves Theorem 1.

To calculate the coefficients \(m(a) \) and \(\text{mult } \alpha \) in the product formula (4.1), we
need two types of Jacobi forms. The Jacobi form of the first type is the form of
weight 5 and index 1/2

\[
\vartheta_{\rho^c_1} (z_1, z_2) = \vartheta_{\rho^c_1} (z_1) \vartheta_{\rho^c_{+2}} (z_1, z_2).
\]
Here \(\eta(z_1) = q^{\frac{1}{24}} \prod_{n \geq 1} (1 - q^n) \) is Dedekind eta-function and
\[
\vartheta_{11}(z_1, z_2) = \sum_{n \in \mathbb{Z}} (-1)^n \exp \left(\frac{\pi i}{4} (2n + 1)^2 z_1 + \pi i (2n + 1) z_2 \right) \\
= -q^{1/8} r^{-1/2} \prod_{n \geq 1} (1 - q^{n-1}r)(1 - q^{n-1}r^{-1})(1 - q^n)
\]
is the classical Jacobi theta-function, where we put
\[z_1 \in \mathbb{H}_1 = \{ z_1 = x + iy \in \mathbb{C} \mid y > 0 \}, \quad z_2 \in \mathbb{C},
\]
\[q = \exp(2\pi iz_1), \quad r = \exp(2\pi iz_2), \quad p = \exp(2\pi iz_3).
\]
The holomorphic function \(\psi_{5, \frac{1}{2}}(z_1, z_2) \) is a Jacobi form of index one-half with a multiplier system. It means that the following identities are satisfied
\[
\psi_{5, \frac{1}{2}} \left(\begin{array}{cc} a z_1 + b \\ c z_1 + d \end{array} \right) = v_\eta \left(\frac{cz_1 + d}{cz_1 + d} \right) \psi_{5, \frac{1}{2}}(z_1, z_2), \\
\psi_{5, \frac{1}{2}}(z_1, z_2 + p z_1 + q) = (-1)^{p+q} \exp(-\pi i (p^2 z_1 + 2p z_2)) \psi_{5, \frac{1}{2}}(z_1, z_2),
\]
where \(p, q \in \mathbb{Z} \) and \(g = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(\mathbb{Z}) \) and
\[
\eta(a\tau + b) = v_\eta(g)(cr + d)^{1/2} \eta(\tau).
\]
Here \(v_\eta(g) \) is a 24th root of unity.

Let us consider the Fourier coefficients of \(\eta^d(\tau) \)
\[
q^{\frac{d}{24}} \prod_{n \geq 1} (1 - q^n)^d = \sum_m \tau_d(m) q^m.
\]

Then we have the following Fourier expansion of \(\psi_{5, \frac{1}{2}}(z_1, z_2) \):
\[
\psi_{5, \frac{1}{2}}(z_1, z_2) = \eta(z_1)^9 \vartheta_{11}(z_1, z_2) \\
= \sum_{n, l \equiv 1 \mod 2} (-1)^{l-1} \frac{n}{2} \tau_9(4n - l^2) \exp(\pi i (nz_1 + lz_2)).
\]

The second type of Jacobi forms which we need are special Jacobi forms of weight zero (weak forms in terms of \([EZ] \)). The ring of all weak Jacobi forms has two generators as an algebra over \(SL_2(\mathbb{Z}) \)-modular forms (see \([EZ, \S9] \)). One of these generators is the function
\[
\phi_{0,1}(z_1, z_2) = \frac{1}{144\Delta(z_1)} \left(E_4^2(z_1)E_{4,1}(z_1, z_2) - E_6(z_1)E_{6,1}(z_1, z_2) \right)
\]
where
\[
\Delta(z_1) = q \prod (1 - q^n)^{24}, \quad E_4(z_1) = 1 + 240 \sum \sigma_3(n)q^n, \quad E_6(z_1) = 1 - 504 \sum \sigma_5(n)q^n
\]
are the cusp form of weight 12, the Eisenstein series for \(SL_2(\mathbb{Z}) \) and \(E_{k,1}(z_1, z_2) \) is the Jacobi-Eisenstein series of weight \(k \) and index one. This series has the following integral Fourier coefficients (see [EZ, §2])

\[
E_{k,1}(z_1, z_2) = \zeta(3 - 2k)^{-1} \sum_{n,l \in \mathbb{Z}, 4n-l^2 \geq 0} H(k - 1, 4n - l^2) q^n r^l,
\]

where \(H(k,N) = L_N(1 - k) \) are H. Cohen’s numbers (see [C]). We recall that \(\zeta(-5) = -1/252 \) and \(\zeta(-9) = 1/132 \).

The form \(\phi_{0,1} \) has the Fourier expansion with integral coefficients

\[
\phi_{0,1}(z_1, z_2) = \sum_{n,l \in \mathbb{Z}, n \geq 0} f(n, l) \exp(2\pi i (nz_1 + lz_2)) = (r^{-1} + 10 + r) + q(10r^{-2} - 64r^{-1} + 108 - 64r + 10r^2) + \ldots
\]

which depend only on the “norm” \(4n - l^2 \) of \((n,l)\). We would like to note that the function \((11E_6(4z_1)H_5(z_1) - 21E_8(4z_1)H_3(z_1)) \) is the cusp form of weight \(11\frac{1}{2} \) for \(\Gamma_0(4) \).

Using the functions introduced above and Theorem 4.1 of [GN], we can write the identity (4.1) in the following form:

\[
F_1(Z) = \sum_{n,l,m \equiv 1 \bmod 2} \tau_9 \left(\frac{4nm - l^2}{d^2} \right) q^{n/2} r^{l/2} p^{m/2} qrp^{1/2} \prod_{n,l,m \geq 0} \left(1 - q^n r^l p^m \right)^{c_1(4nm-l^2)},
\]

where \((n,l,m) > 0\) means that \(n \geq 0, m \geq 0, l \) is an arbitrary integral if \(n > 0 \) or \(m > 0 \) and \(l < 0 \) if \(n = m = 0 \).
5. Example 2.

For this example, \(\dim S = 3, S \cong 2U(8) \oplus (-2) \). The set \(\Delta_{-2}^{ir}(S) = \{e_1, e_2, e_3, e_4\} \) generates the lattice \(S \) and has the intersection matrix

\[
\begin{pmatrix}
-2 & 2 & 6 & 2 \\
2 & -2 & 2 & 6 \\
6 & 2 & -2 & 2 \\
2 & 6 & 2 & -2 \\
\end{pmatrix}
\]

which defines the lattice \(S \). The fundamental polyhedron \(\mathcal{M} \) is the right quadrangle with the vertices at infinity. The lattice Weyl vector \(\rho \) is given by the equality \(\rho = (e_1 + e_3)/4 = (e_2 + e_4)/4 \). The element \(h = 4\rho \) has the square \(h^2 = 8 \) and the linear system \(|h| \) gives an embedding of a K3 surface \(X \) with \(S_X = S \) as an intersection of three quadrics in \(\mathbb{P}^5 \) (this follows easily from general results of \([SD] \)).

For this embedding, all four non-singular rational curves on \(X \) have degree 4. The curves \(e_1 + e_3 \) and \(e_2 + e_4 \) give two hyperplane sections of \(X \). The lattice \(T = U(8) \oplus S \cong 2U(8) \oplus (-2) \). The orthogonal complement \(T^\perp \) is isomorphic to a hyperbolic lattice \(S' \cong U(8) \oplus K \) where \(K \) is a negative definite lattice of the rank 15 with the discriminant quadratic form \(q_{U(8)} \oplus q_{(2)} \). It follows from results of \([N2] \), that the lattice \(S' \) is unique and the moduli space \(\mathcal{M}_{S'} \) is irreducible.

We describe below an automorphic form for this case which gives the solution of the mirror conjecture in Sect.3 for this case. We consider a hyperbolic lattice \(M_0 \) with the bases \(f_2, f_3, f_{-2} \) and the intersection matrix

\[
(f_i \cdot f_j) = \begin{pmatrix}
0 & 0 & 1 \\
0 & -4 & 0 \\
1 & 0 & 0 \\
\end{pmatrix}.
\]

Let us take the hyperbolic plane \(U \) with the standard bases \(f_1, f_{-1} \) where \(f_1^2 = f_{-1}^2 = 0, f_1 \cdot f_{-1} = 1 \), the lattice \(L = U \oplus M_0 \) and the domain \(\Omega(L) \). We use the coordinate \(z' = z_2^2 f_2 + z_3^2 f_3 + z_4^2 f_{-2} \) for a point \(Z' = \mathbb{C}((-z')^2/2)f_1 + z' + f_{-1} \) of this domain. We define

\[
\{\delta_1 = -f_3, \delta_2 = 4f_2 + f_3, \delta_3 = 4f_2 + 3f_3 + 4f_{-2}, \delta_4 = f_3 + 4f_{-2}\} \subset M_0.
\]

Then \(\delta_i \cdot \delta_j = 2e_i \cdot e_j \). Thus, the sublattice \(M_{11} \subset M_0 \) generated by \(\delta_1, ..., \delta_4 \) is isomorphic to \(S(2) \cong U(16) \oplus (-4) \). Equivalently, \(S = M_{11}(1/2) \). We identify this lattices replacing \(e_i \) by \(\delta_i \).

In \([GN, \S 5] \) there was constructed an automorphic cusp form \(F_2(Z') \) of weight 2 with a character with respect to \(O^+(L)/\{ \pm E_6 \} \). This function has the following representation with integral coefficients

\[
F_2(Z') = \sum_{w \in W(1,2)(S)} \det(w) \left(\exp\left(\frac{\pi i}{2}(w(\rho) \cdot z')\right) - \sum_{a \in \text{NEF}(S)} m(a) \exp\left(\frac{\pi i}{2}(w(\rho + a) \cdot z')\right) \right)
\]

\[
= \exp\left(\frac{\pi i}{2}(\rho \cdot z')\right) \prod_{\alpha \in \text{EF}(S)_{\geq -2}} \left(1 - \exp\left(\frac{\pi i}{2} (\alpha \cdot z')\right) \right)^{\text{mult } \alpha}.
\]

(5.1)
Theorem 2. The function $F_2(Z')$ gives the solution of Mirror Conjecture of Sect. 3 for the lattice $S = M_{II}(1/2) \cong 2U(8) \oplus \langle -2 \rangle$ and $U(8) = [Zc_1 \oplus Zc_2](1/2)$ where $c_1 = 4f_1, c_2 = 4f_{-1}$. Therefore, $F_2(Z)$ is an “algebraic function” on the moduli M_{T^\perp} (model (B)) where $T = U(8) \oplus S$, and it defines an identity (*) for $S = S_X$ of the general member X of the mirror family M_S (model (A)). Moreover, it defines the corresponding Kac–Moody superalgebras $g''(S, \Delta^{1m})$.

Proof. The function $F_2(Z')$ as a function on $\Omega(L)$ is automorphic with respect to $O^+(L)$. We have $T(2) = 4L^*$ because $U(16) = 4U^*$ and $M_{II} = 4(M_0)^*$. It follows that $F_2(Z')$ is automorphic with respect to $O^+(T) = O^+(T(2)) = O^+(L)$ and defines an “algebraic function” on the moduli $M_{T^\perp} = O^+(T) \setminus \Omega(T)$.

For $c_1 = 4f_1, c_2 = 4f_{-1}$ and $U(8)$ we should use the mirror symmetry coordinate $z'' = z'/2$. Also we should remember that $S = M_{II}(1/2)$. From (5.1), we get the identity

$$F_2(Z') = \sum_{w \in W^{(2)}(S)} \det(w) \left(\exp(2\pi i(w(\rho) \cdot z'')) - \sum_{a \in \text{NEF}(S)} m(a) \exp(2\pi i(w(\rho + a) \cdot z'')) \right)$$

$$= \exp(2\pi i(\rho \cdot z'')) \prod_{\alpha \in \text{EF}(S) \geq -2} \left(1 - \exp(2\pi i(\alpha \cdot z''))\right)^{\text{mult} \ \alpha}. \quad (5.1')$$

where we use the intersection pairing of the lattice S and $z'' \in S \otimes \mathbb{C}$. This proves Theorem 2.

The function $F_2(Z')$ (see [GN, §5]) is connected with the Jacobi functions

$$\phi_{0,2}(z_1, z_2) = \frac{1}{288\Delta_{12}(z_1)} (E_4(z_1)E_{4,1}^2(z_1, z_2) - E_{6,1}^2(z_1, z_2))$$

$$= \sum_{n,l} c_2(8n - l^2) \exp(2\pi i(nz_1 + lz_2))$$

and

$$\psi_{2,\frac{1}{2}}(z_1, z_2) = -\eta^3(\tau) \psi_{11}(z_1, z_2)$$

$$= \sum_{n \equiv 1 \mod 4, l \equiv 1 \mod 2} (-1)^{\frac{l+1}{2}} \tau_3(2n - l^2) \exp(\pi i(nz_1 + lz_2)).$$

The coefficients $\tau_3(n)$ are given by the Jacobi formula

$$\eta^3(z_1) = \sum_{m \geq 1} \left(\frac{-4}{m}\right) mq^{m^2/4},$$

where

$$\left(\frac{-4}{m}\right) = \begin{cases} 1 & \text{if } m \equiv 1 \mod 4 \\ -1 & \text{if } m \equiv -1 \mod 4. \end{cases}$$

The numbers $c_2(n)$, which define the Fourier coefficients of the Jacobi form $\psi_{2,\frac{1}{2}}$, are Fourier coefficients of an automorphic form of weight $-1/2$. One can express $c_2(n)$ through $\tau_3(n)$ using the Siegel–Weil formula.
questions.

\[F_2(Z') = \sum_{N \geq 1} \sum_{n,m \equiv 1 \pmod{4}} (-1)^{l+1} \left(\frac{N}{d} \right) \sum_{d | (n,l,m)} \left(\frac{-4}{d} \right) q^{n/4} r^{l/2} p^{m/4} = q^{1/4} r^{-1/2} p^{1/4} \prod_{n,l,m \in \mathbb{Z}} (1 - q^{n/4} p^{m}) c^{2(8nm-l^2)}, \]

where \((n,l,m) > 0 \) means that \(n \geq 0, m \geq 0, l \) is an arbitrary integral if \(n + m > 0 \), and \(l > 0 \) if \(n = m = 0 \); \(p = \exp(2\pi iz_1'), q = \exp(2\pi iz_2'), r = \exp(2\pi iz_3'). \)

Let us consider the coordinate \(Z = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \in \mathbb{H}_2 \) where \(z_1 = z_1', z_2 = z_2', z_3 = z_3'/2 \). The function \(F_2(Z) \) is the cusp form of weight 2 with a character (with values in the group of fourth roots of unity) for the double extension of the paramodular group

\[\Gamma_2 := \left\{ \begin{pmatrix} * & 2* & * & * \\ * & * & * & 2^{-1}* \\ * & 2* & * & * \\ 2* & 2* & 2* & * \end{pmatrix} \in Sp_4(\mathbb{Q}), \text{ all } * \in \mathbb{Z} \right\}. \]

This function is a lifting of Jacobi form \(\psi_{2, \frac{1}{2}} \) (see [G2], [G3], [G4]).

6. Example 3.

For this example, \(\dim S = 10, S \cong U \oplus E_8(2) \). Let \(U = \mathbb{Z}c \oplus \mathbb{Z}e \) where \(c^2 = 0, e^2 = -2 \) and \(c \cdot e = 1 \). Then

\[\Delta_{ir} = \{ \delta \in S \mid \delta^2 = -2, \delta \cdot c = 1 \}. \]

For example, \(e \in \Delta_{ir} \). This case is parabolic and \(\rho = c \). For a K3 surface \(X \) with \(S_X = S \), we have \(|\rho| : X \to \mathbb{P}^1 \) is elliptic fibration. All non-singular rational curves on \(X \) are sections of this fibration. Probably, this family of K3 surfaces had first appeared in [N3] (see also [N8]) where \(X \in M_S \) were described as follows. There exists an involution \(\sigma \) on \(X \) such that \(H^2(X, \mathbb{Z})^\sigma = S \). This involution is unique on \(X \) and \(\sigma^* \omega_X = -\omega_X \). The set of points of \(X \) fixed by this involution is union of two non-singular fibers (two elliptic curves) of the fibration \(|\rho| \) above. Let \(Y \) be a K3 surface with involution \(\sigma \) on \(Y \) such that the set of points of \(Y \) fixed by this involution is union of two elliptic curves. Then \(S \cong H^2(Y, \mathbb{Z})^\sigma \subset S_Y \) and \(Y \) belongs to \(M_S \).

We can interpret results of [Bo3] as construction of a function \(F_3(Z) \) which gives the solution of Mirror Conjecture in Sect.3 for \(U(2) \) (\(k = 2 \)). Thus, for this case, \(T = U(2) \oplus S \cong U(2) \oplus U(1) \oplus E_8(2) \). Then \(S' = T^\perp \cong U(2) \oplus E_8(2) \) and \(M_{S'} \) is the family of K3 surfaces which are universal coverings of Enriques surfaces (“Enriques family”). In other words, \(X \in M_{S'} \) has an involution \(\sigma \) without fixed points. Then \(X/\{1, \sigma\} \) is an Enriques surface.

7. Questions.

It would be interesting to formulate Mirror Conjecture of Sect.3 for hyperbolic lattices \(S \) which do not have a lattice Weyl vector for \(\Delta_{ir} \). It is certainly possible for some cases. Is this possible for arbitrary hyperbolic lattices \(S \)? What is an analog of Mirror Conjecture in Sect. 3 for Calabi-Yau 3-folds?
References

[A] V.I. Arnol’d, *Critical points of smooth functions and their normal forms*, Uspehi Mat. Nauk **30** (1975), no. 5, 3–65; English transl. in Russian Math. Surveys **30** (1975).

[Bo1] R. Borcherds, *Generalized Kac–Moody algebras*, J. of Algebra **115** (1988), 501–512.

[Bo2] Borcherds R. E., *Automorphic forms on $O_{s+2,2}(R)$ and infinite products*, Invent. Math. **120** (1995), 161–213.

[Bo3]______, *The moduli space of Enriques surfaces and the fake monster Lie superalgebra*, Preprint (1994).

[C] H. Cohen, *Sums involving the values at negative integers of L-functions of quadratic characters*, Math. Ann. **217** (1975), 271–285.

[COGP] P. Candelas, X.C. de la Ossa, P.S. Green, and L. Parkes, *A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory*, Nucl. Phys. **B359** (1991), 21–74.

[D1] I.V. Dolgachev, *Integral quadratic forms: applications to algebraic geometry (after V. Nikulin)*, Sem. Bourbaki, 1982/83, n. 611, Astérisque **105/106**, 251-275.

[D2]______, *Mirror symmetry for lattice polarized K3-surfaces*, Preprint Duke, [alg-geom](http://front.math.ucdavis.edu/9502005) (1995).

[DN] I.V. Dolgachev and V.V. Nikulin The exceptional singularities of V.I. Arnol’d and K3 surfaces, Seventh All-Union Topology Conf. (Minsk, 1977), Abstracts of Lectures and Communications, Inst. Mat. Akad. Nauk BSSR, Minsk (Russian) (1977).

[EZ] M. Eichler and D. Zagier, *The theory of Jacobi forms*, Progress in Math. 55, Birkhäuser, 1985.

[G1] V. A. Gritsenko, *Jacobi functions in n-variables*, Zap. Nauk. Sem. LOMI **168** (1988), 32–45 (Russian); English transl. in J. Soviet Math. **53** (1991), 243–252.

[G2]______, *Modular forms and moduli spaces of abelian and K3 surfaces*, Mathematische Gottingensis Schrift. des SFB “Geometrie und Analysis”, Heft 26, 1993, pp. 32; St.Petersburg Math. Jour. **6:6** (1994), 65-102.

[G3]______, *Irrationality of the moduli spaces of polarized abelian surfaces*, The International Mathematics Research Notices **6** (1994), 235–243, In full form in “Abelian varieties?”, Proc. of the Egloffstein conference, de Gruyter, Berlin, 1995, pp. 63–81.

[G4]______, *Modulformen zur Paramodulgruppe und Modulräume der Abelschen Varietäten*, Mathematische Gottingensis Schrift. des SFB “Geometrie und Analysis”, Heft 12 (1995), 1–89.

[GN] V.A. Gritsenko and V.V. Nikulin, *Siegel automorphic form correction of some Lorentzian Kac—Moody Lie algebras*, Mathematica Gottingensis Schrift. des SFB “Geometrie und Analysis” Heft 17 (1995), 1–26; or Duke e-prints [alg-geom/9504006](http://front.math.ucdavis.edu/alg-geom/9504006).

[F] E. Freitag, *Siegelsche Modulfunktionen*, Springer, 1983.

[Ka1] V. Kac, *Infinite dimensional Lie algebras*, Cambridge Univ. Press, 1990.

[Ka2]______, *Lie superalgebras*, Adv. Math. **26** (1977), 8–96.

[Ka3]______, *Infinite-dimensional algebras, Dedekind’s η-function, classical Möbius function and the very strange formula*, Adv. Math. **30** (1978), 85–136.

[Ku] Vic. S. Kulikov, *Degenerations of K3 surfaces and Enriques surfaces*, Izv. Akad. Nauk SSSR Ser. Mat. **41** (1977), 1008–1042; English transl. in Math. USSR Izv. **11** (1977).

[Mor1] D.R. Morrison, *Mirror symmetry and rational curves on quintic threefolds: A guide for mathematicians*, J. Amer. Math. Soc. **6** (1993), 223–247.

[Mor2]______, *Compactifications of moduli spaces inspired by mirror symmetry*, *Journées de Géométrie Algébrique d’Orsay (Juillet 1992) Astérisque (Société Mathématique de France) 218* (1993), 243–271.

[N1] V.V. Nikulin, *Finite automorphism groups of Kähler K3 surfaces*, Trudy Moskov. Mat. Obshch. **37** (1979), 73–137; English transl. in Trans. Moscow Math. Soc. **38** (1980), no. 2.

[N2]______, *Integral symmetric bilinear forms and some of their applications*, Izv. Akad. Nauk SSSR Ser. Mat. **43** (1979), 111–177; English transl. in Math. USSR Izv. **14** (1980).

[N3]______, *On the quotient groups of the automorphism groups of hyperbolic forms by the subgroups generated by 2-reflections, Algebraic-geometric applications*, Current Problems in Math. Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow (1981), 3–114; English transl. in J. Soviet Math. **22** (1982), 1491–1478.
[N4] On arithmetic groups generated by reflections in Lobachevsky spaces, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 637–669; English transl. in Math. USSR Izv. 16 (1981).

[N5] On the classification of arithmetic groups generated by reflections in Lobachevsky spaces, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 1, 113–142; English transl. in Math. USSR Izv. 18 (1982).

[N6] Involutions of integral quadratic forms and their applications to real algebraic geometry, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1; English transl. in Trudy Inst. Steklov 3 (1985).

[N7] Surfaces of type K3 with finite automorphism group and Picard group of rank three, Proc. Steklov. Math. Inst. 165 (1984), 113–142; English transl. in Trudy Inst. Steklov 3 (1985).

[N8] Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, Proc. Int. Congr. Math. Berkeley 1986, vol. 1, pp. 654–669.

[N9] A lecture on Kac–Moody Lie algebras of the arithmetic type, Preprint Queen’s University, Canada #1994-16, 1995; or Duke e-prints alg-geom/9412003

[N10] Reflection groups in hyperbolic spaces and the denominator formula for Lorentzian Kac–Moody Lie algebras, Mathematica Gottingensis Schriftenreihe des Sonderforschungsbereichs “Geometrie und Analysis”, Heft 13, 1995; or Duke e-prints alg-geom/9503003

[P] H.C. Pinkham, Singularités exceptionnelles, la dualité étrange d’Arnold et les surfaces K-3, C. R. Acad. Sci. Paris Sér. A–B 284 (1977), A615–A618.

[P-Š–Š] I.I. Pjatetckii-Shapiro and I.R. Šafarevich, A Torelli theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572; English transl. in Math. USSR Izv. 5 (1971).

[Š] I.R. Šafarevich (ed.), Algebraic surfaces, Trudy Mat. Inst. Steklov 75 (1965); English transl. in Proc. Steklov Inst. Math. 75 (1965).

[SD] B. Saint–Donat, Projective models of K-3 surfaces, Amer. J. Math. 96 (1974), 602–639.

St. Petersburg Department Steklov Mathematical Institute Fontanka 27, 191011 St. Petersburg, Russia
E-mail address: gritsenk@pdmi.ras.ru; gritsenk@cforgeuss.uni-math.gwdg.de

Steklov Mathematical Institute, ul. Vavilova 42, Moscow 117966, GSP-1, Russia.
E-mail address: slava@nikulin.mian.su