Supplementary Information

Repurposing a chemosensory macromolecular machine

Ortega D. R. et al.
Supplementary Discussion

Our results also shed light on the biological function of CheD. CheD is thought to interact with chemoreceptors in an adaptation mechanism together with CheC and CheY\(^1\), but more recent results showed that CheD from *Bacillus subtilis* is able to deamidate chemoreceptors *in vitro* without CheC\(^2\). Our results provide two further pieces of evidence supporting the idea that CheD is able to perform a biological role independently of CheC. First, the ancestral F7 system included cheD but not cheC. Second, cheD co-evolved with the ancestral F7 cheY (it was lost in the same evolutionary step), pointing to a functional link.

A recent study in *Comamonas testosteroni*, an organism with a stage 4 F7 system, shows that the kinase CheA is able to phosphorylate both the ancient CheY as well as the recently acquired CheY-F6-like\(^3\). Deletion of the CheY-F6-like protein completely abolished chemotaxis response, while the deletion of CheY-F7 only partially affected it. The study further shows that CheY-F7 has a much faster auto-dephosphorylation rate than CheY-F6-like. The authors interpreted these results such that the CheY-F6-like is the primary response regulator, and CheY-F7 may act as a phosphate sink. These conclusions are based on previous work in organisms with multiple CheY genes per chemosensory cluster.

However, because CheY-F7 in stages 1 and 2 is the sole response regulator of the system, we hypothesize that it plays a major role in the control of a yet-unknown cellular process, at least in stages 1 and 2. The rapid auto-dephosphorylation does not necessarily imply a phosphate sink as the main biological function of this CheY. Thus, in the intermediate stages of the extant \(\beta\)-Proteobacteria, including the system in *C. testosteroni*, the CheY-F7 may retain both the older unknown function as well as its new role in the control of the flagellar motor.

On the other hand, the immediate loss of McpA and adjacent genes from stage 1 to 3, might indicate the loss of the original F7 function. If this were true, why would the system keep a conserved response regulator (cheY) for a lost function? One hypothesis is that the original CheY and CheD might be serving in an auxiliary feedback loop in addition to the canonical CheB/CheR adaptation mechanism in stages 3 and 4. This could compensate response time of the flagellar control as the system acquired mutations to accommodate the new components and function,
providing flexibility. In the stage 5, the system evolved to perform optimum response without the need of CheY/CheD adaptation mechanism, resulting in loss of these components in that stage.

Imaging four γ-Proteobacteria with both F6 and F7 systems by cryo-ET, we observed that the arrays formed by different chemosensory systems were both separate and structurally distinct. This is consistent with previous studies showing physical separation of the arrays from different chemosensory gene clusters in *V. cholerae* (F6 and F9 systems 4) and *P. aeruginosa* (F6 and F7 systems5). It is also consistent with experiments in *E. coli* showing that engineered chemoreceptors with additional heptads cannot form arrays with shorter, native chemoreceptors, likely because of a large physical mismatch in the CheA/CheW layers6.

In all cases, we observed that the F7 arrays in non-enteric γ-Proteobacteria were membrane-associated, but it remains unclear how this is achieved. In other arrays, N-terminal hydrophobic alpha-helices of chemoreceptors mediate membrane insertion. Aer2-like receptors in *V. cholerae*, *P. aeruginosa* and *S. oneidensis*, however, lack any predicted transmembrane regions. The *M. alcaliphilum* Aer2-like receptor has two small fragments of transmembrane regions (10 and 14 residues), but these are likely too short to attach the receptor to the membrane. One possibility is that the receptors are post-translationally modified for membrane attachment. Another possibility is that another protein serves as a membrane anchor. Our work ruled out one such candidate – the McpA receptor in the same gene cluster; ΔmcpA F7 arrays were still attached to the membrane.

One of the most striking features of the F7 arrays in non-enteric γ-Proteobacteria was the presence of additional density layers between the CheA/CheW baseplate and the IM. Based on our homology models of the receptors, we propose that these layers correspond to domain features (Fig. 2B). The L2 layer matched the PAS domain present in Aer2-like receptors in all four species. The fainter (possibly less-ordered) L3 layer in *V. cholerae* and *S. oneidensis* matched the additional PAS domain in the Aer2-like receptors from these species. This suggests that PAS domains might mediate intra- and inter-trimer interactions, potentially contributing to cooperativity in the signaling array. The L1 layer matched the junction between the HAMP and signaling domains, which is puzzling because this chemoreceptor region is predicted to have low molecular density7. It is unlikely that this density is produced by another known chemotaxis protein. For example
CheR, that binds the chemoreceptor in that area, is not expected to have enough abundance to generate a visible density layer8,9. Furthermore, previous cryo-ET of \textit{in vitro} preparations containing only \textit{E. coli} CheA, CheW and Tsr showed a similar layer in that region, suggesting one or more of these proteins alone is responsible for the L1 layer10. Similarly, the L3 layer in \textit{P. aeruginosa} F7 array appears to be located between 2 HAMP domains. Interestingly, both \textit{P. aeruginosa} L3 and the L1 layer in all organisms coincide with a coupling double alpha-helix linker between two four-helical bundles. However, the composition of these layers remains unclear.

Another mystery is the function of the F7 chemosensory array in non-enteric \textgamma-Proteobacteria. Flagellar motility in these organisms is controlled by the F6 chemosensory system11–13, which is expressed under a variety of conditions. In contrast, the \textit{P. aeruginosa} and \textit{V. cholerae} F7 system is only expressed when cells are grown in stressful conditions such as into late stationary phase, induced by the stress-related sigma factor RpoS5,14,15. Expression of the F7 system in different conditions has not been studied in \textit{S. oneidensis} or \textit{M. alcaliphilum}, but both organisms live in unique and challenging environments which may be poorly mimicked by laboratory growth; \textit{S. oneidensis} is a facultative anaerobe adapted to changing environments16 and \textit{M. alcaliphilum} is a haloalkaliphilic methanotroph17. While we did not test different growth conditions for \textit{M. alcaliphilum}, we did observe that formation of F7 arrays in \textit{S. oneidensis} was dependent on culture conditions. Another clue is that both \textit{P. aeruginosa} and \textit{V. cholerae} are capable of sensing oxygen, which binds to the PAS-heme domains of Aer2 receptors to activate signaling18,19. We therefore favor the working model that the older F7 systems are part of an emergency response system activated by stress conditions, perhaps related to the availability of oxygen. The McpA receptor may also be an important mediator of this response. McpA has no sensory domain, but has been implicated in taxis toward trichloroethylene20. A previous study in \textit{P. aeruginosa} showed that McpA physically co-localizes with F6 system proteins5. Here we find that despite being part of the F6 system, McpA co-evolved with the F7 system, suggesting that McpA may bridge the two systems to provide additional inputs to the flagellar control system in response to stress.
Supplementary Figure 1: Phylogeny of CheA, CheB and CheR concatenated alignments of F7 and F8 systems and gene neighborhood of 15 genes up and downstream from CheA. The inlet shows a CheABR tree with additional sequences from F1 systems. The tree is rooted by the common ancestor between F1 systems and the F7/F8 systems.
Supplementary Figure 2: Phylogenetic profile of the F7 and F6 systems in g-Proteobacteria shows that only organisms with F7 stage 1 (red) or stage 2 (green) systems also has F6 systems. Organisms with F7 stage 5 (blue) does not have F6 systems. Note that the distribution of stage 1 and stage 2 are mixed in the non-enteric group. Genomes with empty circles were genomes included in this part of the research but not in the analysis of classifying the F7 systems.
Supplementary Figure 3: Protein domain architecture of chemoreceptors in the gene cluster of stage 3 and 4 of F7 systems shows the high incidence of receptors with transmembrane regions and periplasmic sensory domains (TarH, Cache superfamily, 4HB-MCP_1).
Supplementary Figure 4: Sequence logo of the C-terminal of McpA-like sequences.

Supplementary Figure 5: Phylogenetic tree of Aer2-like receptors and McpA-like receptors.

The tags in the tips are built using the name of the organism and the locus of the receptor. Tips with red dots belong to chemoreceptors from stage 1 and green to stage 2. The only exception to the monophyletic distribution of Aer2-like receptors were in *V. cholerae*, where an addition to the Aer2 homolog, a second, orphan 36H receptor (VC0098) was likely introduced by a recent lateral gene transfer from *Marinomonas*. Genomes with empty circles were genomes included in this part of the research but not in the analysis of classifying the F7 systems.
Supplementary Figure 6: The 1D electron density profile is a collapse of a 3D sub-volume. For each model point (red), the algorithm extends a profile perpendicular to the model points (blue). Then, it averages the intensity of the pixels perpendicular to the profile in the slices above and below (green). The final 1D profile is an average of the profiles calculated for each pixel of the model point.
Supplementary Tables

Supplementary Table 1: Presence and absence of the chemosensory arrays in imaged strains of *V. cholerae, P. aeruginosa, S. oneidensis*, and *M. alcaliphilum*.

	Imaged cell poles	Short array	Tall array
Vibrio cholerae			
Wild-type C6706	29	20	7
Δmcp (VCA1088)	20	19	5
ΔF7 cheW, cheW, cheA (VCA1093, VCA1094, VCA1095)	29	18	0
Δmcp (Aer2/VCA1092)	27	24	0
Pseudomonas aeruginosa			
Wild -type PAO1	16	7	5
ΔF6 cheW	15	8	6
Δmcp ‘mcpA’ (PAO180)	8	4	2
ΔF7 cheW (PAO177)	33	12	0
ΔF7 cheA (PAO 178)	34	24	0
Δmcp ‘aer2’, ‘mcpB’ (PAO176)	21	11	0
Shewanella oneidensis MR-1			
Chemostat growth	29	20	7
Batch culture growth	29	18	0
Methylomicrobium alcaliphilum 20Z			
Wild-type	8	5	2
Supplementary Table 2: Chemosensory gene clusters in the genomes of *V. cholerae*, *P. aeruginosa*, *S. oneidensis* and *M. alcaliphilum*.

	Classification	Alternative name in literature	Function	Gene cluster
Vibrio cholerae				
Cluster I	F9	-	Unknown	VC1394-VC1405
Cluster II	F6	-	Chemotaxis	VC2059-VC2064
Cluster III	F7	-	Unknown	VCA1090-VCA1095
Pseudomonas aeruginosa				
Cluster I/V	F6	Che I	Chemotaxis	PA1457-PA1464
Cluster II	F7	Che II	Unknown	PA0173-PA0180
Cluster III	ACF	Wsp	Biofilm formation	PA3703-PA3708
Cluster IV	TFP	Chp	Twitching motility	PA0410-PA0415
Shewanella oneidensis				
Cluster I	F7	CheA-1	Unknown	SO_2117-SO_2126
Cluster II	F6	CheA-3	Chemotaxis	SO_3200-SO_3209
Methylomicrobium alcaliphilum				
Cluster I	F7	-	Unknown	MEALZ_2869-MEALZ_2879
Cluster II	F8	-	Unknown	MEALZ_2939-MEALZ_2942
Cluster III	F6	-	Unknown	MEALZ_3148-MEALZ_3158
Supplementary Table 3: Number of cells and sub-tomograms used to generate averages shown in Figure 2.

	Cells (tomograms)	Sub-tomograms	Pixel size (nm)
P. aeruginosa	5	1113	0.64
V. cholerae	6	265	1.3
S. oneidensis	5	327	1
M. alcaliphilum	2	1448	1

Supplementary Table 4: Locations of electron density layers in arrays. Distances are measured from the CheA/CheW baseplate in nanometers. Uncertainties reported are the expanded standard uncertainty.

Layers (F7)	*V. cholerae*	*P. aeruginosa*	*S. oneidensis*	*M. alcaliphilum*
Inner membrane (IM)	38.4±1.9 nm	40.3±1.8 nm	35.5±2.7 nm	35.1±2.8 nm
Layer 3 (L3)	29.5±1.9 nm	30.7±1.8 nm	30.7±4.3 nm	-
Layer 2 (L2)	24.8±1.9 nm	24.0±1.8 nm	24.0±2.7 nm	25.3±4.4 nm
Layer 1 (L1)	17.5±1.9 nm	17.9±2.9 nm	17.3±2.7 nm	17.4±4.4 nm
Signaling Layer (SL)	-	7.0±1.8 nm	6.7±4.3 nm	7.5±2.8 nm

Supplementary Table 5: *P. aeruginosa* strains

Strain name	PA ORF	Gene
PW1307	PA0178	CheA F7 system
PW1305	PA0177	CheW F7 system
PW1312	PA0180	MCPA
PW3654	PA1464	CheW F6 system

Supplementary Table 6: Cryo-Electron Tomograms used in this study available on ETDB. Tomograms can be found on ETDB by the Open Index Protocol id (OIP id).

Jensen Lab id	OIP id	Organism
ab2015-06-02-1	6cefe7c25e66ce42e4e2440490a68845a5513037717bc9e096c48fd83b47ae9cd	*Vibrio cholerae*
ab2015-06-02-2	98d93b8c8e390eb6c200fc2d30c9626cb1a7c140cd30a60eddb3a179a8226b	*Vibrio cholerae*
Jensen Lab id	OIP id	Organism
----------------	---	-------------------
ab2015-06-02-3	39a5d8490ee3823eaf785268aba1593d3be05bf8b66cc0292d0c247bb7b0a6ba	Vibrio cholerae
ab2015-06-02-5	2620f1ee27c5e63853bb3f3d09796b19d7bd91fbd5781daa892d68fb31be735	Vibrio cholerae
ab2015-06-02-6	9ba344e00d31084d2aef8a799f3089e46ead3b2a02c0e73c5852337f67121fc	Vibrio cholerae
ab2015-06-02-7	1e00525c41a9faa849b9fd686b70757a6f25a9ceacb6e951b6eef99006f09	Vibrio cholerae
ab2015-06-02-8	3cb8dc276fb373a99af2ee54301fcb0989eb0037b9c3c2bd21f8e035f0f9b215	Vibrio cholerae
ab2015-06-02-9	5739b1525b6a0e906de41a8e024e0b502f964e19193feeeda1a62ced0e41b5d5d17	Vibrio cholerae
ab2015-06-02-10	7e869e97212b3df06a7f0dec5f77ef3836c1ec4787f1cbe677da60aca3bda727	Vibrio cholerae
ab2015-06-02-11	8329b3a0b5373c89d5280c42ca8aabb19a38a6ee03e5910275b82776f8745fa	Vibrio cholerae
ab2015-06-02-12	de04da0f550b2f37da40847e13b637877ed6994bb5d8d0c24c87ad9f3cf52924	Vibrio cholerae
ab2015-06-02-13	4caf0202a48c92372ca3a24101d9c5e2b446fadbf80109b5d071509811fa3aa	Vibrio cholerae
ab2015-06-02-14	b2f7be0de38a1eb8d0eab4d8493616c9122931ec0490e1bb5b45474a032098f	Vibrio cholerae
ab2015-06-02-15	bd8198a02bd6692981104ff1b15a243f4705433876cb56c784db8f91378e00	Vibrio cholerae
ab2015-06-02-16	87c29d70069315af599618c344d80bf2fc48f44c0057002798241842b5b5c9	Vibrio cholerae
ab2015-06-02-17	066cf7fae820b463b2e7405a9078e97b6de9910587458df904759d75f4ed2c	Vibrio cholerae
ab2015-06-02-18	82fdc6778793542fad9bfe7c18a6fa972dc3bf230b2e108aa53a5807811bdad7	Vibrio cholerae
ab2015-06-02-20	2524250ba11140c386c211aa14d164a166926ee9ca7af566aeeedbbaba29856c48	Vibrio cholerae
ab2015-06-02-21	95a8202f59bdcfc9814f417aa40b3c355fc6f12cb147784d1d1665d8ccce8221	Vibrio cholerae
ab2015-06-02-22	09443b1917375d027553f4c2029dc847c654efdb2e5a3df0c5938a9afaa1a9	Vibrio cholerae
Jensen Lab id	OIP id	Organism
--------------	---	-----------------
ab2015-06-02-23	453536f21d3074fd3f6fcae6d834c6e37335f46 6611e2f1842c6beb8e7e7681e	Vibrio cholerae
ab2015-06-02-24	03ab91b142bf62ed9c21e1da4b17e25d7c7b7 0cbd6a25481342d9736f2a2290	Vibrio cholerae
ab2015-06-02-25	8853ea7d7f6da168b62b9db8694ad82dfa23c 9b00eafb3f71b025f20cb3ab4d	Vibrio cholerae
ab2015-06-02-26	8770f212cedc32db61a0e0b8a40a5ea1ec42c 31bceda0c4919b86dcde7246b	Vibrio cholerae
ab2015-06-02-27	e1b34b3df7aa6367398901bfb96d5a003759a 2dd71a473e45a43d598e7792d9	Vibrio cholerae
ab2015-06-02-29	08324bf01302bd1bd972045548218ff3e317aea e74602363e66a187c52e234be	Vibrio cholerae
ab2015-06-02-30	2eda58ca01240b7486bda36c36e36217918c8 9fc1361dada13e9ad95af4271	Vibrio cholerae
ab2015-06-02-31	6b6bb8a7f2127c66174756b85d4bf0efde943c bfc305e40a3330181009bd893e	Vibrio cholerae
ab2015-06-02-32	61c8ec9a912eb1bceda440939a48d46e99128f feca99578b16e0e2031f4a22	Vibrio cholerae
ab2015-06-03-1	1979f4babc9f5fa49c4644f3f40df46cbf2b82399 e8137db7799b9e030bc8455	Vibrio cholerae
ab2015-06-03-2	544970e8e49ff409d461730c89757fdebee6fff3 64c1c604d355bc522c88df0f12	Vibrio cholerae
ab2015-06-03-3	e87e0b6e154e5dfe0c120ce92e6400764ae249 64aa592553e49de6187b7fbb57	Vibrio cholerae
ab2015-06-03-4	20d581e5578e3156dd96496119c1296494e0 62deecf45634c79f19f3313686b	Vibrio cholerae
ab2015-06-03-5	10c8a0be7b87bd95eb2d8573e782a856e493 b65735a0b290c0a772092d2efc	Vibrio cholerae
ab2015-06-03-6	0c1b01aa1ed45fcba7d17500c4829f9480924fa 210f9706d6a1a5da9d4dc1477	Vibrio cholerae
ab2015-06-03-7	21482339f240527367c699214ba438d2b9a7a c6376d611f2d69e6e8c10d41d039	Vibrio cholerae
ab2015-06-03-8	453a055bdf6eb8d65f2154f51a568cfc3f58c36 aa445f6be7a820cd3963e9	Vibrio cholerae
ab2015-06-03-9	faed3ad56cb4667d1986bb9a7869a4a9da0a9 e2d016dbb6d823e1f5f1cc149	Vibrio cholerae
Jensen Lab id	OIP id	Organism
--------------	--------	----------
ab2015-06-03-10	1c8abd7e25085ccce2ce38fb25ff51ac70ddfc88cad18322406467298bfaa3e	Vibrio cholerae
ab2015-06-03-11	920321536f97c55c300ad77d279265973442bd4ec0e7286a952d134ec384b42	Vibrio cholerae
ab2015-06-03-12	9262dbfb593f79bf0cf9ac6f9125326ed755dd3e4edc569b68b0fc279f84d8d	Vibrio cholerae
ab2015-06-03-13	72b627c7010d0ea37a8aa011925069437195c51f77e5adcf41f6a8330e75cc65	Vibrio cholerae
ab2015-06-03-14	223d692a658a507a7085c75f8c757b05c1cf1d2ee8e352a1db4371f2062e3ec4	Vibrio cholerae
ab2015-06-03-15	c55cf52f955579f23cda1c2244e2b64315f8fbb490f106899cf327a87a99512	Vibrio cholerae
ab2015-06-03-16	b59e667fadb1914c70ad191dad31a30a87ba416e8de4877000d1f6cb52869601	Vibrio cholerae
ab2015-06-03-17	067ac5b8ce49df5e254c958a0e6b6fd601de877847f17d8db6c76f2b30d882	Vibrio cholerae
ab2015-06-03-18	c9dd866db34f7ed34af143d2a879e5b28035fce2a4392aceb54f7824ceec0e37	Vibrio cholerae
ab2015-06-03-19	fabd724070997b695534be1bc4ad91faa2b2c82876f66da65aeeee18eb39ca29	Vibrio cholerae
ab2015-06-03-20	34ff16d0af7ba6cfbe49df20981049070d2b9b9f5a1919896a839eb62dc86a8	Vibrio cholerae
ab2015-06-03-21	4440060c9b511b30ec0b7c123b3891a3823a77a8393437862aa534392e0be26	Vibrio cholerae
ab2015-06-03-22	48c976b5ec236342fdd4aefe521086e3657da4a45c4afad6003edeb44a5e8275	Vibrio cholerae
ab2015-06-03-23	1c1669ab1c51ec5655f2fc7e1296de6494c1c68785e7f4a7ce0cc651d2125c9	Vibrio cholerae
ab2015-06-03-24	aa070936e1ae30b373bc2d2aed88f1576cd3ed6766dcb992f1200e46aeaebe	Vibrio cholerae
ab2015-06-03-25	d84b38c0f3c63be65666a28afa8900aeac8991b29dad0b539585fbc3b96c	Vibrio cholerae
ab2015-06-03-26	f38ac8c272b532e7dd3e3da38b1fff38f42385a2aa55872da24bf10720544ba	Vibrio cholerae
ab2015-06-03-27	9d8070fbab0e5bfdd555544219789104f5dcbda613d24385c416cccd3c3158	Vibrio cholerae
Jensen Lab id	OIP id	Organism
--------------	--	------------------------
ab2015-06-03-28	bd0aa53c9bb4904c623c2304b5ca71f3e7dbbb15fdbe2eb481dbdb01d561986	Vibrio cholerae
ab2015-06-03-29	81345eefbcb7600a9f57a2f556a10f3a20a6845df3ca51cc1d679664ee8e21f	Vibrio cholerae
ab2015-06-04-5	e95c286a1ca5b5b3b3b5bf0a318a30c627623d2b63b68c9991db337ae48e8c2	Vibrio cholerae
ab2015-06-04-6	79b0258243f18a1752dac35aa7e0bff1a711f791ddd0379c184e05d9d1c5dd86	Vibrio cholerae
ab2015-06-04-7	6b8f4ae3d17ab82176fe1bb2c79c55d5ce757c5355323bbadc84d17a5a6f75dd	Vibrio cholerae
ab2015-06-04-8	18fca4c49057b64129c9dbd0f9c8be7562fcee4d5ff21a449b1fd79a5e910f8	Vibrio cholerae
ab2015-06-04-9	a950ed3ce23097a99fda4d949f5353bca9f5ce3cd7a49d5f3d08d668a989	Vibrio cholerae
ab2015-06-04-10	275fd79f1fb013309e3dc4a22c607ab406b6b2a16489a508c3490ede71dac93	Vibrio cholerae
ab2015-06-04-11	eadc30e57abcbceba8e69544d43debdb4d71392ef20f168d9a5659a2dc877a9	Vibrio cholerae
ab2015-06-04-12	82b9550d3ebda9a078ece5cea3cfd02ceece6dd01115d8b2b558d5b5c073f9dd	Vibrio cholerae
ab2015-06-04-13	204dea6006208b691ae45b1aa8a62421894c0956a5d5bf6aa8a3e75253345d	Vibrio cholerae
ab2015-06-04-14	7504bd89df0bdf83ed926065c92df7b57db0072ebb740cfe9c957f1d5c4c81	Vibrio cholerae
ab2015-06-04-15	7b4aafbf390105748d85295198579497fd0d6712da0eb1900e6c2436cf6617349	Vibrio cholerae
ab2015-06-04-16	c9ff6e5934554670fe2166f28de7ad17f453696c914b4ca1e3f0e7e009f0a4	Vibrio cholerae
ab2015-06-04-17	095901997ad173f1a9cf5804cd7f92e2c95ee7b44be14b1a1f9e94ed74e6a85d	Vibrio cholerae
ab2015-06-04-18	2f236dac0a263b2e3278aef8ab2aad6c7ace83bde857c6916683146369424e93	Vibrio cholerae
ab2015-06-04-19	b4daca6e8f77b714d0f1faac2b7dc9933c4617d736b0a8ef29e9e1056c0214f8	Vibrio cholerae
ab2015-06-04-20	ed95dd31b7e3a97a2bedc0e8985ad471dad7c7447a7070d5d5b37b8f259da41a	Vibrio cholerae
Jensen Lab id	OIP id	Organism
----------------	--	------------------------
ab2015-06-04-21	a41257cc5f1d3c4a84cd9645921671bff4e5b58de593872740a35172f4d102a5	Vibrio cholerae
ab2015-06-04-22	863a029fcd72521b29fa7417a13b2df4420fccc9491a090eab79c7c7d727514	Vibrio cholerae
ab2015-06-04-23	c63ed39ab954f5d93ec80607005b54739f6940f8e317c3ea88d951b0e63ed82	Vibrio cholerae
ab2015-06-04-24	5f040233e108f1d0d81448d4b7c44476947e2075742fd79ad2f0d0ad9f686fa	Vibrio cholerae
ab2015-06-04-25	9a31271d398507a3e7cb0694927dbda47043f35bf8171cbdf56df5896c7e060	Vibrio cholerae
ab2015-06-04-26	687d83b774894a40bf9f35c54e0e50d2e11613d6260723ac83573e3fd6c55b309	Vibrio cholerae
ab2015-06-04-27	5cc452dfbe2e22d0d2102b010e926f7c97355c0c209148f049292cf3b910de	Vibrio cholerae
ab2015-06-04-28	49fb9f6a24a7d07799479b844a0ed91a204f95afa28a8d59561b858d9a4d19	Vibrio cholerae
ab2015-06-04-29	388ed8a6ca9fdab947246fd283023b21353f166c6e41949320a028cea2f1a	Vibrio cholerae
ab2015-06-04-30	92c05f4866a31ee526ba1cd95d513c9d0063e794554cd1246514abc1e8c9395	Vibrio cholerae
ab2015-06-04-31	60d87f38e11916f13cf6345b22f0b5fc567d6ecba651e7ed98c1ba23faca1a27	Vibrio cholerae
ab2015-06-04-32	2b200698dc60f223c28d33d12a2eeed4bfb6808399563791bf228fda34936e	Vibrio cholerae
ab2015-05-29-38	71b7016135114ee9988af24a00ae627349d8610625a8925152e418ce042cb8	Pseudomonas aeruginosa
ab2015-05-29-39	3bc9419d595c592ff177294ce8b038f5c4a40287cc1d2ff95ab43e42e22c5b5	Pseudomonas aeruginosa
ab2015-05-29-40	baf59323b4cd6b20e471b0587f4349bb437cc89fba137eb726c76d2b35996859	Pseudomonas aeruginosa
ab2015-05-29-41	375ec06c3542bc3d33e7ec94c751bd1669ffee998a44cc8b8948ddc246dbd02517	Pseudomonas aeruginosa
ab2015-05-29-42	dda73882e77f151644b4d9fc73810f58c0789cf5ebd5c464108940e978d3913	Pseudomonas aeruginosa
ab2015-05-29-43	e01db4daa89125bfae9539157ab0d459e9a10b53148d17af60eb3afadf667e37	Pseudomonas aeruginosa
Jensen Lab id	OIP id	Organism
---------------	--	---------------------
ab2015-05-29-38	71b7016135114ee9988af24a00aec627349d8610625a8925152e418ce042cb8	Pseudomonas aeruginosa
ab2015-05-29-39	9ff1533aa7d28d3d64439293ea263ca3ce6a6101f19c7367426d9a3bba3773e6	Pseudomonas aeruginosa
ab2015-05-29-40	c5f0fc46599f6ee48fe23a59fc1d752cd64ab4031c3846fb85d078a88bfa5c	Pseudomonas aeruginosa
ab2015-05-29-41	fe52314687302e52d76a76292a84a8e7730dac37451c7026621190f2185cd7df	Pseudomonas aeruginosa
ab2015-05-29-42	fc8e9658e5fe5d5e30364f389fc123f4754537bd6a5132fb71b2af99aa02e7a2	Pseudomonas aeruginosa
ab2015-05-29-43	433cf08b0ab2269a91f4e946b17c551e8a92a30c8c5214bc8384072c8915bb5	Pseudomonas aeruginosa
ab2015-05-29-44	9162280a2e505e7a74c03de6202f084eb4b83882453525539fd87da3905d77c	Pseudomonas aeruginosa
ab2015-05-29-45	9db03886a5482eb6fcdad84cd7abf0ddad7bdc4a3d741d971cc9dd3a2c378cda2	Pseudomonas aeruginosa
ab2015-05-29-46	31ee1b22c3f010a3a31df973be75ff1a126069e78fbb1db3d0cd3985330d	Pseudomonas aeruginosa
ab2015-05-29-47	799edd343b37e6df51118d39052ad7241e7c05238266bc7779c1ab9227f8a4c	Pseudomonas aeruginosa
ab2015-05-29-48	70225551790f3a513cffe5e1f0971b3844f1c985e4f3e3b57579dd349aecd1	Pseudomonas aeruginosa
ab2015-05-29-49	76bc18f739812662c22ae910f2e1a2bc7ac72f9c79ee19df0493c60be7f6711	Pseudomonas aeruginosa
ab2015-05-29-50	2f3db7b47e7d42594be348214e07578d7ea1f08a10f8cd937bec3abb8692c6aa	Pseudomonas aeruginosa
ab2015-05-29-51	dbe07cf9023a7c8d67cea0f6bc02eeaa93f5c2e60453ca2aa4685d8e3a535654	Pseudomonas aeruginosa
ab2015-05-29-52	8861e2f49e3b2155f99422428acb7ca764c5c22352dd6f5c411d89daaa99c8c	Pseudomonas aeruginosa
ab2015-05-29-53	8bbe069df1ecaef06813ea816ded484d908679412e938d42afbb30e0f47747	Pseudomonas aeruginosa
ab2015-05-29-54	87be5d5a167d3c23ad2126bc4d72844c0ed6af2848768fd1bb764ad0a05355b	Pseudomonas aeruginosa
ab2015-05-29-55	975a50a6ac4a0a1ce1913d3f339c433b73ba15a3a8eef22b3768a9327e1ca5a21	Pseudomonas aeruginosa
Jensen Lab id	OIP id	Organism
----------------	--	---------------------------------
ab2015-05-29-56	d0799bdb371912d4370d6226ae8263e1f9bf419e49c42c16514c657f11105f37	*Pseudomonas aeruginosa*
ab2015-05-29-57	dfd11ff2b7b5261968452f994235bece1d208b793fc7768b883163fa0cad72c	*Pseudomonas aeruginosa*
ab2015-05-29-58	06dc2aa14271a7d5c79c6e112a3aeacc8c643246c659fab33b3bbb01febe25356	*Pseudomonas aeruginosa*
ab2015-05-29-59	f92bcce7b8dac999467e57653d9e3ab40172618fc09fb5806e64040e8a3410f5	*Pseudomonas aeruginosa*
ab2015-05-29-60	bd0b6b93ba4f3528fe3f78a789dd847ee83a6d4b08c6652053e72ae6b897b	*Pseudomonas aeruginosa*
ab2015-05-29-61	37d4d1c6d5229a5db3700596859b305aea3a4606d7362ba176424c9217ebf28	*Pseudomonas aeruginosa*
ab2015-05-29-62	4e059367636fa821409e894b49151556c01d65ebe01eca3e44fdec6531adc7	*Pseudomonas aeruginosa*
ab2014-010-14-1	b9d6746d36ee7943e0eb19c929921460080c78b36755b8d6748820c842ae76	*Pseudomonas aeruginosa*
ab2014-010-14-10	c8c1989c09901dd7a257d86497a713e85a761edd2209efe0d8784d228e5b3585	*Pseudomonas aeruginosa*
ab2014-010-14-11	18ec447aac947d6ed610084fbb9e808bdb761bf68919b853ac4946632d6c6e50	*Pseudomonas aeruginosa*
ab2014-010-14-12	58c0a2aab1b8f0322fcc4b93838458a820fc8db74f716b53ba166aee26be92001	*Pseudomonas aeruginosa*
ab2014-010-14-13	9e8108ef3cf66406b628ec973b10079ef0ca5781a05ca1a875ed6decc2fe02	*Pseudomonas aeruginosa*
ab2014-010-14-14	7935084f249ec5bc222b38951cd369dab76cfa95a769d42d0eb1312cc5bb50c	*Pseudomonas aeruginosa*
ab2014-010-14-15	51b27c3cf74ce394c1d54773bd1a7d15d3379f5c8db4aa2f899dbdaa6d71251	*Pseudomonas aeruginosa*
ab2014-010-14-17	76f7220c7323438d65b7d4334916e9aadb0be04be1b662615be1ad312407c6	*Pseudomonas aeruginosa*
ab2014-010-14-22	797a818bb2e811f5ed0d6d22bd6db158fabbcd22e8bfc7f1010ad265af8897	*Pseudomonas aeruginosa*
ab2014-010-14-23	32a5ff8d6dda8584aaafec4883226c8463c2e9a08ce553c969ca698fedef9	*Pseudomonas aeruginosa*
ab2014-010-14-3	2c11ded42bcc0cd87dc67464247187c3c82d71742a8b50f346516a958361706a	*Pseudomonas aeruginosa*
Jensen Lab id	OIP id	Organism
---------------	--	-------------------------------
ab2014-010-14-4	20cd19c0fa4b3e32b33075348be5ab3102def5 083ce6fd7ac55b01ac0cb5835	*Pseudomonas aeruginosa*
ab2014-010-14-5	3e6133278fc31ba361c1cd7c95c081a822d972 3dc3b7f3549870510a422e2522	*Pseudomonas aeruginosa*
ab2014-010-14-6	3cbeac672c18cd66252b47d650ec124b17baf5 19849a6844fab4af70fbbea1	*Pseudomonas aeruginosa*
ab2014-010-14-8	cb237b8021a9e653613163394c11258bb3b72 fe0972a977765c18478e5d43c2	*Pseudomonas aeruginosa*
ab2014-010-14-9	8bf9ec4e43a3e6bd11c44bb6d341d138e14b41 c7766e6e21a81a17d399c1c69c2	*Pseudomonas aeruginosa*
sc2014-02-14-1	ecf996b6c698beb104f0c84bda7955a48c7ed b6049ce2b9256cb31e2b85b0	*Methylomicrobium alcaliphylum*
sc2014-02-12-1	37a38f6896b2fb3379eaa9776e69ccef45da a011b009f9cf498a04ab5b6e	*Methylomicrobium alcaliphylum*
sc2014-02-12-3	82c7e7111f000b9de9be253c966a0d87b3b5 85cf47a4e3ada52b7a90ae362f	*Methylomicrobium alcaliphylum*
sc2014-02-12-6	c807ab328c5bd06874ad4f9fb731f4d888f238 94d00cafed1089f98407ed99	*Methylomicrobium alcaliphylum*
sc2014-02-12-7	9a62dfe3b6bed92f6bd03916b1fe055c1abd7 d4d2f781348c01ae89c45d5	*Methylomicrobium alcaliphylum*
sc2014-02-12-8	6e0a323a040374567356e08c438fd42806aef 88c731f05e2d9e13684d940ae8	*Methylomicrobium alcaliphylum*
sc2014-02-12-9	9e82ba83f3538f16f9942ea4216cd7fe20ebcc 1c82ed3dbaa8f7e34bdc3a1e9	*Methylomicrobium alcaliphylum*
sc2014-02-12-12	262660a13b3cd4b6cc7e4ac73b739ddccbb23d9 3df8d54d138ae911af40f95480	*Methylomicrobium alcaliphylum*

Supplementary Table 7: Atomic models used to produce the homology models used in this work

Domain(s)	PDB code	Reference
HAMP(*A. fulgidus*) + MCP_Signal(*E. coli*)	3ZX6	21
PAS(*P. aeruginosa*)	4HI4	22
PAS + HAMP (*P. aeruginosa*)	3VOL	23
Domain(s)	PDB code	Reference
------------------------------	----------	-----------
3xHAMP (P. aeruginosa)	4I3M	24

Supplementary Table 8: Relevant files used to build the homology models produced in this work

File	Type	Description
3XZ6_4I3M.pir	Sequence alignment	Sequence alignment used to build the 2H+S homology model
3XZ6_4I3M_74.pdb	3D atomic model	Best homology model from 2H+S
4HI4_BD.pdb	3D atomic model	chains B and D of 4HI4 aligned with 2H+S model
3XZ6_4I3M_4HIH.pir	Sequence alignment	Sequence alignment used to build the P+2H+S homology model
3XZ6_4I3M_4HIH_99.pdb	3D atomic model	Best homology model from P+2H+S
4I3M.bio.pos.pdb	3D atomic model	Model of 4I3M positioned against 3XZ6_4I3M_4HIH_99.pdb to build the model for Aer2 (PA0176)
3XZ6_4I3M_4HI4_4I3M.pir	Sequence alignment	Sequence alignment used to build the model for Aer2 (PA0176)
Aer2Pa_3HAMP_PAS_2HAMP.B99990041.pdb	3D atomic model	Best Aer2 (PA0176) homology model
3XZ6_4I3M_4HI4_4HI4.pir	Sequence alignment	Sequence alignment used to build the model for Aer2-like (VCA1092)
VCA1092.B999900035.pdb	3D atomic model	Best Aer2-like (VCA1092) homology model
3XZ6_4I3M_4HI4_4HI4_SO.pir	Sequence alignment	
File	Type	Description
---	-----------------------------	---
SO_2123.B99990017.pdb	3D atomic model	used to build the model for Aer2-like (SO_2123)
hamp_sequence_for_MEALZ.linsi.fa	Sequence alignment	Best Aer2-like (SO_2123) homology model
RAxML_bipartitionns_50coll.hamp_sequence_for_MEALZ.linsi.rec.tree	Phylogenetic Tree	Sequence alignment of HAMP domains in the group of Pseudomonas group similar to the 3 HAMPs in 4I3M and the C-terminal HAMP of MEALZ_2872
4I3M.bio.HAMP2.withtail4alignment.pdb	3D atomic model	Model of the second HAMP of 4I3M with part of the helix connecting to the third HAMP.
4I3M.bio.HAMP2.alnMEALZ.pdb	3D atomic model	Model of the second HAMP of 4I3M without part of the helix connecting to the third HAMP.
3ZX6_4I3M_4HI4_HAMP2_MEALZ.pir	3D atomic model	Sequence alignment used to build the model for Aer2-like (MEALZ_2872)
MEALZ_2872_wHAMP.B99990020.pdb	3D atomic model	Best Aer2-like (MEALZ_2872) homology model

Supplementary Table 9: 310 randomly selected non-redundant γ-Proteobacteria genomes used in this work. The presence of an F7 system is indicated.
Genome	has F7
Acidithiobacillus caldus SM-1	no
Acidithiobacillus ferrivorans SS3	no
Acidithiobacillus sp. GGI-221	no
Acidithiobacillus thiooxidans ATCC 19377	no
Acinetobacter baumannii AB5075	no
Acinetobacter bereziniae LMG 1003	no
Acinetobacter calcoaceticus RUH2202	no
Acinetobacter haemolyticus ATCC 19194	no
Acinetobacter johnsonii SH046	no
Acinetobacter junii SH205	no
Acinetobacter lwofii SH145	no
Acinetobacter nosocomialis Ab22222	no
Acinetobacter oleivorans DR1	no
Acinetobacter parvus DSM 16617 = CIP 108168	no
Acinetobacter radioresistens DSM 6976 = NBRC 102413	no
Acinetobacter sp. NCTC 10304	no
Acinetobacter ursingii DSM 16037 = CIP 107286	no
Aeromonas aquariorum AAK1	no
Aeromonas caviae Ae398	no
Aeromonas hydrophila SSU	no
Aeromonas media WS	no
Aeromonas salmonicida subsp. salmonicida A449	no
Aeromonas veronii AER397	no
Alcanivorax borkumensis SK2	no
Alcanivorax dieselolei B5	yes
Alcanivorax hongdengensis A-11-3	no
Genome	has F7
--	--------
Alcanivorax pacificus W11-5	yes
Alcanivorax sp. DG881	no
Aliivibrio salmonicida LF11238	no
Alischewanella aestuarii B11	no
Alischewanella agri BL06	no
Alischewanella jeotgali KCTC 22429	no
Alkalilimnicola ehrlichii MLHE-1	no
Allochromatium vinosum DSM 180	yes
Alteromonadales bacterium TW-7	yes
Alteromonas mediterrana MED64	no
Alteromonas sp. SN2	yes
Azotobacter vinelandii DJ	yes
Beggiatoa alba B18LD	yes
Beggiatoa sp. SS	yes
Cardiobacterium hominis ATCC 15826	no
Cardiobacterium valvarum F0432	no
Cellvibrio japonicus Ueda107	no
Cellvibrio sp. BR	yes
Chromohalobacter salexigens DSM 3043	yes
Citrobacter freundii 4_7_47CFAA	yes
Citrobacter koseri ATCC BAA-895	yes
Citrobacter rodentium ICC168	yes
Citrobacter sp. 30_2	yes
Citrobacter youngae ATCC 29220	yes
Colwellia psychrerythraea 34H	no
Cronobacter sakazakii ES15	yes
Genome	has F7
---	--------
Cronobacter turicensis z3032	yes
Dichelobacter nodosus VCS1703A	no
Dickeya dadantii Ech703	yes
Dickeya zeae Ech1591	yes
Ectothiorhodospira sp. PHS-1	yes
Edwardsiella ictaluri 93-146	yes
Edwardsiella tarda ATCC 23685	yes
Endoriftia persephone 'Hot96_1+Hot96_2'	no
Enhydrobacter aerosaccus SK60	no
Enterobacter asburiae LF7a	yes
Enterobacter cancerogenus ATCC 35316	yes
Enterobacter cloacae subsp. cloacae GS1	yes
Enterobacter hormaechei ATCC 49162	yes
Enterobacter radicincitans DSM 16656	yes
Enterobacter sp. 638	yes
Enterobacteriaceae bacterium 9_2_54FAA	yes
Erwinia amylovora CFBP1430	yes
Erwinia billingiae Eb661	yes
Erwinia pyrifoliae Ep1/96	yes
Erwinia sp. Ejp617	yes
Erwinia tasmaniensis Et1/99	yes
Escherichia albertii TW11588	yes
Escherichia coli KTE229	yes
Escherichia fergusonii ECD227	yes
Escherichia hermannii NBRC 105704	yes
Escherichia sp. TW09276	yes
Genome	has F7
--	--------
Ferrimonas balearica DSM 9799	no
Floribacter dumoffii Tex-KL	no
Frateuria aurantia DSM 6220	yes
Gallaecimonas xiamenensis 3-C-1	yes
Glaciecola agarifytica NO2	yes
Glaciecola arctica BSs20135	no
Glaciecola chathamensis S18K6	yes
Glaciecola lipolytica E3	no
Glaciecola mesophila KMM 241	no
Glaciecola nitratireducens FR1064	yes
Glaciecola pallidula DSM 14239 = ACAM 615	yes
Glaciecola polaris LMG 21857	no
Glaciecola psychrophila 170	no
Glaciecola sp. 4H-3-7+YE-5	yes
Grimontia hollisae CIP 101886	yes
Grimontia sp. AK16	yes
Hafnia alvei ATCC 51873	yes
Hahella chejuensis KCTC 2396	yes
Halomonas boliviensis LC1	yes
Halomonas elongata DSM 2581	yes
Halomonas sp. GFAJ-1	yes
Halomonas titanicae BH1	yes
Halorhodospira halophila SL1	yes
Halothiobacillus neapolitanus c2	no
Hydrocarboniphaga effusa AP103	yes
Idiomarina loihiensis L2TR	no
Genome	has F7
---	-------
Idiomarina xiamenensis 10-D-4	no
Kangiella koreensis DSM 16069	no
Klebsiella aerogenes KCTC 2190	yes
Klebsiella pneumoniae subsp. pneumoniae HS11286	no
Legionella drancourtii LLAP12	yes
Legionella longbeachae NSW150	no
Legionella pneumophila subsp. pneumophila	no
Listonella anguillarum M3	yes
Marichromatium purpuratum 984	yes
Marinobacter adhaerens HP15	no
Marinobacter algicola DG893	no
Marinobacter hydrocarbonoclasticus ATCC 49840	no
Marinobacter hydrocarbonoclasticus VT8	no
Marinobacter manganoxydans MnI7-9	no
Marinobacter santoriniensis NKSG1	no
Marinobacter sp. ELB17	no
Marinobacterium stanieri S30	yes
Marinomonas mediterranea MMB-1	yes
Marinomonas posidonae IVIA-Po-181	no
Marinomonas sp. MWYL1	yes
Methylobacter tundripaludum SV96	yes
Methylomicrobium album BG8	yes
Methylomicrobium alcalophilum 20Z	yes
Methylomonas methanica MC09	yes
Methylophaga aminisulfidivorans MP	yes
Genome	has F7
---	--------
Methylophaga frappieri	no
Methylophaga lonarensis MPL	no
Methylophaga thiooxydans DMS010	no
Moraxella macaceae 0408225	no
Morganella morganii subsp. morganii KT	yes
Moritella sp. PE36	yes
Nitrosoccus halophilus Nc 4	no
Nitrosoccus oceani ATCC 19707	no
Nitrosoccus watsonii C-113	no
Oceanimonas sp. GK1	no
Pantoea agglomerans 299R	yes
Pantoea ananatis LMG 20103	yes
Pantoea sp. aB	yes
Pantoea stewartii subsp. stewartii DC283	yes
Pantoea vagans C9-1	yes
Pectobacterium atrosepticum SCRI1043	yes
Pectobacterium carotovorum subsp. brasiliensis PBR1692	yes
Pectobacterium sp. SCC3193	yes
Pectobacterium wasabiae CFBP 3304	yes
Photobacterium damselae subsp. damselae CIP 102761	no
Photobacterium leiognathi subsp. mandapamensis svers.1.1.	no
Photobacterium profundum SS9	no
Photobacterium sp. AK15	no
Photorhabdus asymbiotica	yes
Photorhabdus luminescens subsp. laumondii TTO1	yes
Proteus mirabilis WGLW6	yes
Genome	has F7
---	--------
Proteus penneri ATCC 35198	yes
Providencia alcalifaciens DSM 30120	yes
Providencia burhodogranatiae DSM 19968	yes
Providencia rettgeri Dmelm	no
Providencia rustigianii DSM 4541	yes
Providencia stuartii ATCC 25827	yes
Pseudoalteromonas arctica A 37-1-2	no
Pseudoalteromonas atlantica T6c	no
Pseudoalteromonas citrea NCIMB 1889	yes
Pseudoalteromonas haloplanktis ANT/505	yes
Pseudoalteromonas luteoviolacea B = ATCC 29581	yes
Pseudoalteromonas marina mano4	yes
Pseudoalteromonas piscicida JCM 20779	yes
Pseudoalteromonas rubra ATCC 29570	yes
Pseudoalteromonas sp. Bsw20308	yes
Pseudoalteromonas spongiae UST010723-006	yes
Pseudoalteromonas undina NCIMB 2128	yes
Pseudomonas aeruginosa LESB58	yes
Pseudomonas avellanae BPIC 631	no
Pseudomonas brassicacearum subsp. brassicacearum NFM421	no
Pseudomonas denitrificans ATCC 13867	yes
Pseudomonas entomophila L48	no
Pseudomonas extremaustralis 14-3 substr. 14-3b	no
Pseudomonas fluorescens F113	no
Pseudomonas fragi A22	no
Pseudomonas fulva 12-X	no
Genome	has F7
---	--------
Pseudomonas fuscovaginae UPB0736	no
Pseudomonas geniculata N1	yes
Pseudomonas mendocina ymp	no
Pseudomonas monteilii SB3078	no
*Pseudomonas poae RE*1-1-14*	no
Pseudomonas protegens CH40	no
Pseudomonas pseudoalcaligenes KF707	yes
Pseudomonas psychrotolerans L19	no
Pseudomonas putida GB-1	no
Pseudomonas resinovorans NBRC 106553	yes
Pseudomonas sp. TKP	no
Pseudomonas stutzeri KOS6	no
Pseudomonas syringae pv. phaseolicola 1448A	no
Pseudomonas viridiflava UASWS0038	no
Pseudoxanthomonas spadix BD-a59	no
Pseudoxanthomonas suwonensis 11-1	yes
Psychrobacter arcticus 273-4	no
Psychrobacter cryohalolentis K5	no
Psychrobacter sp. PRwf-1	no
Psychromonas sp. CNPT3	no
Rahnella aquatilis CIP 78.65 = ATCC 33071	yes
Rahnella sp. Y9602	yes
Rheinheimera nanhaiensis E407-8	no
Rheinheimera sp. A13L	no
Rhodanobacter fulvus Jip2	yes
Rhodanobacter sp. 116-2	no
Genome	has F7
--	--------
Rhodanobacter spathiphylli B39	no
Rhodanobacter thiooxydans LCS2	yes
Saccharophagus degradans 2-40	yes
Salinisphaera shabanensis E1L3A	yes
Salmonella bongori N268-08	yes
Salmonella enterica subsp. enterica serovar Gallinarum str. 9184	yes
Serratia liquefaciens ATCC 27592	yes
Serratia marcescens VGH107	yes
Serratia odorifera 4Rx13	yes
Serratia plymuthica S13	yes
Serratia proteamaculans 568	yes
Serratia sp. AS13	yes
Shewanella amazonensis SB2B	yes
Shewanella baltica OS155	yes
Shewanella benthica KT99	yes
Shewanella denitrificans OS217	no
Shewanella frigidimarina NCIMB 400	no
Shewanella halifaxensis HAW-EB4	no
Shewanella loihica PV-4	yes
Shewanella oneidensis MR-1	yes
Shewanella pealeana ATCC 700345	no
Shewanella piezotolerans WP3	no
Shewanella putrefaciens CN-32	no
Shewanella sediminis HAW-EB3	yes
Shewanella sp. MR-4	yes
Shewanella violacea DSS12	yes
Genome	has F7
---	--------
Shewanella woodyi ATCC 51908	yes
Shigella boydii CDC 3083-94	yes
Shigella dysenteriae 1617	no
Shigella flexneri 4343-70	yes
Shigella sonnei Ss046	yes
Shigella sp. D9	yes
Simiduia agarivorans SA1 = DSM 21679	yes
Stenotrophomonas maltophilia K279a	yes
Stenotrophomonas sp. SKA14	yes
Teredinibacter turnerae T7901	yes
Thalassolituus oleivorans MIL-1	yes
Thioalkalimicrobium aerophilum AL3	yes
Thioalkalivibrio sp. K90mix	no
Thioalkalivibrio sulfidophilus HL-EbGr7	no
Thiocapsa marina 5811	no
Thiocystis violascens DSM 198	yes
Thiomicrospira crunogena XCL-2	yes
Thiorhodococcus drewsii AZ1	yes
Thiorhodospira sibirica ATCC 700588	yes
Thiorhodovibrio sp. 970	no
Thiothrix nivea DSM 5205	no
Vibrio alginolyticus 40B	no
Vibrio anguillarum 775	yes
Vibrio brasiliensis LMG 20546	yes
Vibrio campbellii CAIM 519 = NBRC 15631	no
Vibrio caribbenthicus ATCC BAA-2122	no
Genome	has F7
---	--------
Vibrio cholerae HC-23A1	no
Vibrio coralliilyticus ATCC BAA-450	yes
Vibrio fischeri MJ11	no
Vibrio furnissii CIP 102972	yes
Vibrio harveyi 1DA3	no
Vibrio ichthyoenteri ATCC 700023	no
Vibrio metschnikovii CIP 69.14	no
Vibrio mimicus MB451	yes
Vibrio nigripulchritudo ATCC 27043	yes
Vibrio ordalii ATCC 33509	yes
Vibrio orientalis CIP 102891 = ATCC 33934	yes
Vibrio parahaemolyticus O1:Kuk str. FDA_R31	no
Vibrio rotiferianus DAT722	no
Vibrio scophthalmi LMG 19158	no
Vibrio shilonii AK1	no
Vibrio sinaloensis DSM 21326	yes
Vibrio sp. HENC-01	no
Vibrio splendidus ATCC 33789	no
Vibrio tubiashii NCIMB 1337 = ATCC 19106	yes
Vibrio vulnificus MO6-24/O	yes
Vibrionales bacterium SWAT-3	no
Wohlfahrthimonas chitiniclastica SH04	no
Xanthomonas albilineans GPE PC73	yes
Xanthomonas axonopodis pv. malvacearum str. GSPB2388	yes
Xanthomonas campestris pv. musacearum NCPPB 4381	yes
Xanthomonas citri subsp. citri Aw12879	yes
Genome	has F7
--	--------
Xanthomonas fuscans subsp. aurantifolii str. ICPB 10535	yes
Xanthomonas gardneri ATCC 19865	yes
Xanthomonas oryzae pv. oryzicola BLS256	yes
Xanthomonas perforans 91-118	yes
Xanthomonas sacchari NCPPB 4393	yes
Xanthomonas translucens DAR61454	yes
Xanthomonas vesicatoria ATCC 35937	yes
Xenorhabdus bovienii SS-2004	yes
Xenorhabdus nematophila ATCC 19061	yes
Xylella fastidiosa Temecula1	no
Yersinia aldovae ATCC 35236	yes
Yersinia bercovieri ATCC 43970	yes
Yersinia enterocolitica subsp. palearctica Y11	yes
Yersinia frederiksenii ATCC 33641	yes
Yersinia intermedia ATCC 29909	yes
Yersinia kristensenii ATCC 33638	yes
Yersinia mollaretii ATCC 43969	yes
Yersinia pestis PY-16	yes
Yersinia pseudotuberculosis PB1/+	yes
Yersinia rohdei ATCC 43380	yes
Yersinia ruckeri ATCC 29473	yes
Yokenella regensburgei ATCC 43003	yes
endosymbiont of Riftia pachyptila (vent Ph05)	yes
gamma proteobacterium HdN1	no

Supplementary Table 10: Genomes used in phylogenetic profiles.
Genomes imaged in this study

- *Methylmicrobium alcalophilum* 20Z
- *Pseudomonas aeruginosa PAO1*
- *Shewanella oneidensis* MR-1
- *Vibrio cholerae* O1 biovar El Tor str. N16961

Gamma-Proteobacteria

- *Acinetobacter baumannii* AB0057
- *Acinetobacter calcoaceticus* PHEA-2
- *Acinetobacter oleivorans* DR1
- *Aeromonas hydrophila* subsp. *hydrophila* ATCC 7966
- *Aeromonas salmonicida* subsp. *salmonicida* A449
- *Aeromonas veronii* B565
- *Alcanivorax borkumensis* SK2
- *Alcanivorax dieselolei* B5
- *Aliivibrio salmonicida* LFI1238
- *Alkalilimnicola ehrlichii* MLHE-1
- *Allochromatium vinosum* DSM 180
- *Alteromonas macleodii* str. *'Ionian Sea U7'*
- *Alteromonas sp.* SN2
- *Azotobacter vinelandii* CA6
- *Cellvibrio japonicus* Ueda107
- *Chromohalobacter salexigens* DSM 3043
- *Citrobacter koseri* ATCC BAA-895
- *Citrobacter rodentium* ICC168
- *Colwellia psychrerythraea* 34H
- *Cronobacter sakazakii* ATCC BAA-894
- *Cronobacter turicensis* z3032
| **Gamma-Proteobacteria** |
|--------------------------|
| *Dichelobacter nodosus* VCS1703A |
| *Dickeya dadantii* Ech703 |
| *Dickeya zeae* Ech1591 |
| *Edwardsiella ictaluri* 93-146 |
| *Edwardsiella tarda* C07-087 |
| *Enterobacter aerogenes* KCTC 2190 |
| *Enterobacter asburiae* LF7a |
| *Enterobacter cloacae subsp. cloacae* NCTC 9394 |
| *Enterobacter sp.* 638 |
| *Enterobacteriaceae bacterium* strain FGI 57 |
| *Erwinia amylovora* ATCC 49946 |
| *Erwinia billingiae* Eb661 |
| *Erwinia pyrifoliae* Ep1/96 |
| *Erwinia sp.* Ejp617 |
| *Erwinia tasmaniensis* Et1/99 |
| *Escherichia coli* O157:H7 str. EDL933 |
| *Escherichia fergusonii* ATCC 35469 |
| *Ferrimonas balearica* DSM 9799 |
| *Frateruria aurantia* DSM 6220 |
| *Gammaproteobacteria gamma proteobacterium* HdN |
| *Glaciecola nitratireducens* FR1064 |
| *Glaciecola psychrophila* 170 |
| *Glaciecola sp.* 4H-3-7+YE-5 |
| *Hahella chejuensis* KCTC 2396 |
| *Halomonas elongata* DSM 2581 |
| *Halorhodospira halophila* SL1 |
| **Gamma-Proteobacteria** |
|--------------------------|
| *Halothiobacillus neapolitanus c2* |
| *Herminiimonas arsenicoxydans* |
| *Idiomarina loihiensis GSL 199* |
| *Kangiella koreensis DSM 16069* |
| *Legionella longbeachae NSW150* |
| *Listonella anguillarum M3* |
| *Marinobacter adhaerens HP15* |
| *Marinobacter aquaeolei VT8* |
| *Marinobacter hydrocarbonoclasticus ATCC 49840* |
| *Marinobacter sp. BSs20148* |
| *Marinomonas mediterranea MMB-1* |
| *Marinomonas posidonica IVIA-Po-181* |
| *Marinomonas sp. MWYL1* |
| *Methylococcus capsulatus str. Bath* |
| *Methylomonas methanica MC09* |
| *Methylophaga sp. JAM1* |
| *Morganella morganii subsp. morganii KT* |
| *Nitrosococcus halophilus Nc4* |
| *Nitrosococcus oceani ATCC 19707* |
| *Nitrosococcus watsonii C-113* |
| *Oceanimonas sp. GK1* |
| *Pantoea ananatis LMG 20103* |
| *Pantoea sp. At-9b* |
| *Pantoea vagans C9-1* |
| *Pectobacterium atrosepticum SCRI1043* |
| *Pectobacterium carotovorum subsp. carotovorum PCC21* |
| **Gamma-Proteobacteria** |
|--------------------------|
| *Pectobacterium sp. SCC3193* |
| *Pectobacterium wasabiae WPP163* |
| *Photobacterium profundum SS9* |
| *Photorhabdus asymbiotica* |
| *Photorhabdus luminescens subsp. laumondii TTO1* |
| *Proteus mirabilis BB2000* |
| *Providencia stuartii MRSN 2154* |
| *Pseudoalteromonas atlantica T6c* |
| *Pseudoalteromonas haloplanktis TAC125* |
| *Pseudoalteromonas sp. SM9913* |
| *Pseudomonas aeruginosa PA1* |
| *Pseudomonas brassicacearum subsp. brassicacearum NFM421* |
| *Pseudomonas denitrificans ATCC 13867* |
| *Pseudomonas entomophila L48* |
| *Pseudomonas fluorescens A506* |
| *Pseudomonas fulva 12-X* |
| *Pseudomonas mendocina ymp* |
| *Pseudomonas monteilii SB3101* |
| *Pseudomonas poae RE*1-1-14* |
| *Pseudomonas protegens Pf-5* |
| *Pseudomonas putida BIRD-1* |
| *Pseudomonas resinovorans NBRC 106553* |
| *Pseudomonas sp. TKP* |
| *Pseudomonas stutzeri DSM 4166* |
| *Pseudomonas syringae pv. syringae B728a* |
| *Pseudoxanthomonas spadix BD-a59* |
Gamma-Proteobacteria

Species Name	Strain/Reference
Pseudoxanthomonas suwonensis 11-1	
Psychrobacter arcticus 273-4	
Psychrobacter cryohalolentis K5	
Psychrobacter sp. PRwf-1	
Psychromonas sp. CNPT3	
Rahnella aquatilis CIP 78.65 = ATCC 33071	
Rahnella sp. Y9602	
Rhodanobacter sp. 2APBS1	
Saccharophagus degradans 2-40	
Salmonella bongori NCTC 12419	
Salmonella enterica subsp. enterica serovar Typhi str. Ty21a	
Serratia liquefaciens ATCC 27592	
Serratia marcescens WW4	
Serratia plymuthica AS9	
Serratia proteamaculans 568	
Serratia sp. AS12	
Shewanella amazonensis SB2B	
Shewanella baltica BA175	
Shewanella denitrificans OS217	
Shewanella frigidimarina NCIMB 400	
Shewanella halifaxensis HAW-EB4	
Shewanella loihica PV-4	
Shewanella pealeana ATCC 700345	
Shewanella piezotolerans WP3	
Shewanella putrefaciens 200	
Shewanella sediminis HAW-EB3	
Gamma-Proteobacteria	

Shewanella sp. ANA-3	
Shewanella violacea DSS12	
Shewanella woodyi ATCC 51908	
Shigella boydii CDC 3083-94	
Shigella flexneri 2a str. 301	
Shigella sonnei Ss046	
Simiduia agarivorans SA1 = DSM 21679	
Stenotrophomonas maltophilia JV3	
Teredinibacter turnerae T7901	
Thalassolituus oleivorans MIL-1	
Thioalkalivibrio sp. K90mix	
Thioalkalivibrio sulfidophilus HL-EbGr7	
Thiocystis violascens DSM 198	
Thiomicrospira crunogena XCL-2	
Vibrio alginolyticus NBRC 15630 = ATCC 17749	
Vibrio anguillarum 775	
Vibrio campbellii ATCC BAA-1116	
Vibrio cholerae O395	
Vibrio fischeri ES114	
Vibrio furnissii NCTC 11218	
Vibrio harveyi ATCC BAA-1116	
Vibrio nigripulchritudo	
Vibrio parahaemolyticus RIMD 2210633	
Vibrio splendidus LGP32	
Vibrio vulnificus CMCP6	
Gamma-Proteobacteria

Organism Identifier	Locus	Accession	Pentapeptide
Xanthomonas albilineans GPE PC73			
Xanthomonas axonopodis pv. citrulmo F1			
Xanthomonas campestris pv. vesicatoria str. 85-10			
Xanthomonas citri subsp. citri Aw12879			
Xanthomonas oryzae pv. oryzae KACC 10331			
Xenorhabdus bovienii SS-2004			
Xenorhabdus nematophila ATCC 19061			
Xylella fastidiosa subsp. fastidiosa GB514			
Yersinia enterocolitica subsp. enterocolitica 8081			
Yersinia pestis Antiqua			
Yersinia pseudotuberculosis YPIII			

Beta-Proteobacteria

Organism Identifier	Locus	Accession	Pentapeptide
A chromobacter xylosoxidans NBRC 15126 = ATCC 27061			
Acidithiobacillus caldus SM-1			
Bordetella pertussis 18323			
Candidatus Accumulibacter phosphatis clade IIA str. UW-1			
Collimonas fungivorans Ter331			
Gallionella capsiferriformans ES-2			
Janthinobacterium sp. Marseille			
Ralstonia pickettii 12J			
Ralstonia solanacearum Po82			
Variovorax paradoxus S110			

Supplementary Table 11: Aer2-like pentapeptide tethers:

Organism Identifier	Locus	Accession	Pentapeptide
Al_mac_7736	I876_01970	YP_008194818.1	DWEAF
Al_mac_7736	I876_02010	YP_008194826.1	EWETF
Organism identifier	locus	accession	pentapeptide
---------------------	--------------	--------------------	--------------
Al_mac_7736	I876_02015	YP_008194827.1	EWESF
Al_sp._1413	ambt_16735	YP_004468654.1	EWEAF
Al_vin_90	Alvin_0183	YP_003442182.1	QWEEEF
Al_vin_90	Alvin_1872	YP_003443828.1	
Al_vin_90	Alvin_2222	YP_003444173.1	
Al_vin_90	Alvin_2230	YP_003444181.1	
Gl_nit_1515	GNIT_1657	YP_004871766.1	EWKEEF
Gl_sp._1395	Glaag_2576	YP_004434785.1	EWESF
Ha_che_746	HCH_00457	YP_431792.1	DWEVF
Ha_che_746	HCH_00458	YP_431793.1	DWEVF
Ha_hal_741	Hhal_2163	YP_001003729.1	EWEEF
Li_ang_7812	N175_16910	YP_008489689.1	EWEEF
Ma_med_1360	Marme_1102	YP_004312213.1	DWEEF
Ma_sp._859	Mmwy11_3301	YP_001342141.1	GWEEF
Me_alc_1536	MEALZ_2872	YP_004918123.1	EWEEF
Me_met_1418	Metme_2154	YP_004513058.1	EWQDF
Ps_aer_479	PA0176	NP_248866.1	GWEEF
Ps_aer_7891	PA1S_gp3690	REF_DMTMMU:PA1S_gp3690	GWEEF
Ps_den_2356	H681_00805	YP_007655583.1	DWEEF
Ps_res_7713	PCA10_13880	YP_008101725.1	EWEEF
Ps_sp._1241	PSM_A2954	YP_004070018.1	EWEEF
Ps_suw_1301	Psusu_0059	YP_004145153.1	DWQEF
Ps_suw_1301	Psusu_1463	YP_004146541.1	
Ps_suw_1301	Psusu_1465	YP_004146543.1	EWAKF
Ps_suw_1301	Psusu_1466	YP_004146544.1	DWAEF
Sa_deg_468	Sde_3105	YP_528574.1	DWEDF
Sh_ama_634	Sama_3497	YP_929369.1	EWHEF
Sh_bal_241	Sbal175_2162	YP_006020732.1	EWEEF
Sh_loi_680	Shew_0111	YP_001092242.1	EWNEF
Organism identifier	locus	accession	pentapeptide
---------------------	--------------	----------------	--------------
Sh_one_481	SO_2123	NP_717726.1	EWEEF
Sh_sed_917	Ssed_0184	YP_001471925.1	EWNEF
Sh_sp_679	Shewana3_2216	YP_869851.1	EWEDF
Sh_vio_130	SVI_0176	YP_003554925.1	EWNEF
Sh_woo_862	Swoo_0164	YP_001758560.1	EWNEF
Si_agu_2165	M5M_00415	YP_006915050.1	EWEEF
St_mal_1491	BurJV3_1158	YP_004791716.1	GWEEF
St_mal_1491	BurJV3_1903	YP_004792454.1	DWQEF
St_mal_1491	BurJV3_1904	YP_004792455.1	DWQEF
St_mal_1491	BurJV3_1908	YP_004792459.1	DWQEF
St_mal_1491	BurJV3_2459	YP_004793006.1	
St_mal_1491	BurJV3_3037	YP_004793581.1	
St_mal_1491	BurJV3_3580	YP_004794119.1	
St_mal_1491	BurJV3_3943	YP_004794481.1	
Te_tur_1125	TERTU_1341	YP_003072897.1	EWEDF
Te_tur_1125	TERTU_2935	YP_003074319.1	
Th_cru_598	Tcr_0553	YP_390823.1	DWSDF
Th_cru_598	Tcr_2004	YP_392268.1	
Th_ole_2361	TOL_2508	YP_007683144.1	EWEEF
Th_vio_1521	Thivi_0439	YP_006412631.1	QWEEF
Th_vio_1521	Thivi_1211	YP_006413359.1	DWEEF
Th_vio_1521	Thivi_1222	YP_006413370.1	EWSEF
Vi_ang_1433	VAA_01905	YP_004577835.1	EWEEF
Vi_cho_1795	VC395_0082	YP_002818346.1	EWESF
Vi_cho_1795	VC395_A1113	YP_002822179.1	EWEEF
Vi_cho_319	VC0098	NP_229757.1	EWESF
Vi_cho_319	VCA1092	NP_233472.1	EWEEF
Vi_fur_1564	vfu_B00980	YP_005049501.1	EWEEF
Vi_nig_7850	VIBNI_B0011	YP_008640924.1	EWEEF
Organism identifier	locus	accession	pentapeptide
---------------------	-----------	---------------	--------------
Vi_nig_7850	VIBNI_B0830	YP_008641677.1	
Vi_vul_1326	VV2_1165	NP_763073.1	EWEEF
Xa_alb_65	XALc_0649	YP_003375155.1	DWEEF
Xa_alb_65	XALc_1357	YP_003375852.1	
Xa_alb_65	XALc_1361	YP_003375856.1	QWRDF
Xa_alb_65	XALc_1362	YP_003375857.1	HWHEF
Xa_alb_65	XALc_1364	YP_003375859.1	QWQEF
Xa_alb_65	XALc_1365	YP_003375860.1	SWQEF
Xa_alb_65	XALc_1926	YP_003376405.1	
Xa_alb_65	XALc_2151	YP_003376626.1	NWQEF
Xa_alb_65	XALc_2152	YP_003376627.1	DWQEF
Xa_alb_65	XALc_2153	YP_003376628.1	DWQEF
Xa_alb_65	XALc_3131	YP_003377604.1	
Xa_axo_1502	XACM_0614	YP_004850217.1	
Xa_axo_1502	XACM_1288	YP_004850870.1	DWQDF
Xa_axo_1502	XACM_1685	YP_004851263.1	
Xa_axo_1502	XACM_1913	YP_004851485.1	NWQEF
Xa_axo_1502	XACM_1918	YP_004851490.1	
Xa_axo_1502	XACM_1920	YP_004851492.1	NWQEF
Xa_axo_1502	XACM_1921	YP_004851493.1	DWQEF
Xa_axo_1502	XACM_1922	YP_004851494.1	
Xa_axo_1502	XACM_1923	YP_004851495.1	SWQEF
Xa_axo_1502	XACM_1925	YP_004851496.1	NWAEF
Xa_axo_1502	XACM_1926	YP_004851497.1	DWSEF
Xa_axo_1502	XACM_1927	YP_004851498.1	QWQDF
Xa_axo_1502	XACM_1929	YP_004851500.1	QWQDF
Xa_axo_1502	XACM_1930	YP_004851501.1	
Xa_axo_1502	XACM_1932	YP_004851503.1	NWQEF
Xa_axo_1502	XACM_1933	YP_004851504.1	SWQEF
Organism identifier	locus	accession	pentapeptide
--------------------	-----------	----------------------	--------------
Xa_axo_1502	XACM_3051	YP_004852602.1	
Xa_cam_666	XCV0669	YP_362400.1	
Xa_cam_666	XCV1702	YP_363433.1	
Xa_cam_666	XCV1933	YP_363664.1	NWQEF
Xa_cam_666	XCV1938	YP_363669.1	
Xa_cam_666	XCV1939	YP_363670.1	NWQEF
Xa_cam_666	XCV1940	YP_363671.1	DWQEF
Xa_cam_666	XCV1941	YP_363672.1	
Xa_cam_666	XCV1942	YP_363673.1	SWQEF
Xa_cam_666	XCV1944	YP_363675.1	SWQEF
Xa_cam_666	XCV1945	YP_363676.1	NWAQE
Xa_cam_666	XCV1947	YP_363678.1	DWSEF
Xa_cam_666	XCV1948	YP_363679.1	QWQDF
Xa_cam_666	XCV1951	YP_363682.1	QWQDF
Xa_cam_666	XCV1952	YP_363683.1	
Xa_cam_666	XCV1954	YP_363685.1	NWQEF
Xa_cam_666	XCV1955	YP_363686.1	SWQEF
Xa_cam_666	XCV3261	YP_364992.1	
Xa_cit_2353	XCAW_02407	YP_007650389.1	
Xa_cit_2353	XCAW_02490	YP_007650471.1	DWQEF
Xa_cit_2353	XCAW_02492	YP_007650473.1	
Xa_cit_2353	XCAW_02493	YP_007650474.1	QWQDF
Xa_cit_2353	XCAW_02495	YP_007650476.1	QWQDF
Xa_cit_2353	XCAW_02496	YP_007650477.1	DWSEF
Xa_cit_2353	XCAW_02497	YP_007650478.1	NWAQE
Xa_cit_2353	XCAW_02498	YP_007650479.1	SWQEF
Xa_cit_2353	XCAW_02499	YP_007650480.1	SWQEF
Xa_cit_2353	XCAW_02500	YP_007650481.1	
Xa_cit_2353	XCAW_02501	YP_007650482.1	NWQEF
Organism identifier	locus	accession	pentapeptide
---------------------	---------	-----------------	--------------
Xa_cit_2353	XCAW_02502	YP_007650483.1	NWQEF
Xa_cit_2353	XCAW_02504	YP_007650485.1	
Xa_cit_2353	XCAW_02508	YP_007650489.1	NWQEF
Xa_cit_2353	XCAW_03417	YP_007651390.1	
Xa_cit_2353	XCAW_03970	YP_007651933.1	
Xa_cit_2353	XCAW_04466	YP_007652428.1	
Xa_ory_584	XOO2840	YP_201479.1	DWAEF
Xa_ory_584	XOO2842	YP_201481.6	NWAEF
Xa_ory_584	XOO2844	YP_201483.1	SWQEF
Xa_ory_584	XOO2845	YP_201484.1	
Xa_ory_584	XOO2847	YP_201486.1	NWQDF
Xa_ory_584	XOO2848	YP_201487.6	DWQDF

Supplementary Table 12: McpA-like C-terminal motif

Organism identifier	locus	accession	pentapeptide
Al_mac_7736	I876_01990	YP_008194822.1	DIELF-
Al_mac_7736	I876_01950	YP_008194814.1	EVELF-
Al_sp._1413	ambt_16755	YP_004468658.1	EVELF-
Gl_sp._1395	Glaag_2582	YP_004434791.1	DLELF-
Ma_med_1360	Marme_1096	YP_004312207.1	EIDLF-
Ma_sp._859	Mmwl1_3295	YP_001342135.1	DIDLF-
Sh_sp._679	Shewana3_2222	YP_869857.1	EIELF-
Sh_one_481	SO_2117	NP_717720.2	EIELF-
Sh_bal_241	Sbal175_2156	YP_006020726.1	EIELF-
Ps_den_2356	H681_00825	YP_007655587.1	EVELF-
Ps_res_7713	PCA10_13920	YP_008101729.1	EVELF-
Ps_aer_479	PA0180	NP_248870.1	EVELF-
Ps_aer_7891	PA1S_gp3694	REF_DMTMMU:PA1S_gp3694	EVELF-
Organism identifier	locus	accession	pentapeptide
---------------------	-----------	--------------------	--------------
Th_cru_598	Tcr_0759	YP_391029.1	EIDLF-
Ha_hal_741	Hhal_2159	YP_001003725.1	DVELF-
Gl Nit_1515	GNIT_1661	YP_004871770.1	DIELF-
Me_alc_1536	MEALZ_2878	YP_004918129.1	DIELF-
Me_met_1418	Metme_2161	YP_004513065.1	DVELF-
Fr_aur_1557	Fraau_2042	YP_005378108.1	DIDLF-
Rh_sp._1523	R2APBS1_2961	YP_007591271.1	EIELF-
Al_vin_90	Alvin_2234	YP_003444185.1	DIELF-
Th_vio_1521	Thivi_1219	YP_006413367.1	DIELF-
Ha_che_746	HCH_00449	YP_431784.1	DIELF-
Sa_deg_468	Sde_3111	YP_528580.1	EIVLY-
Te_tur_1125	TERTU_1204	YP_003072781.1	DIELYE
Ps_suw_1301	Psesu_1530	YP_004146608.1	TVELF-
Xa_alb_65	XALc_1440	YP_003375935.1	TVELF-
St_mal_1491	BurJV3_1974	YP_004792525.1	TVELF-
Xa_ory_584	XOO2558	YP_201197.1	TVELF-
Xa_cit_2353	XCAW_01830	YP_007649819.1	TVELF-
Xa_axo_1502	XACM_2022	YP_004851592.1	TVELF-
Xa_cam_666	XCV2044	YP_363775.1	TVELF-
Vi_vul_1326	VV2_1160	NP_763069.1	EVELF-
Vi_nig_7850	VIBNI_B0016	YP_008640928.1	EVELF-
Vi_fur_1564	vf_B00976	YP_005049497.1	EVELF-
Vi_cho_1795	VC395_A1109	YP_002822175.1	EVELF-
Vi_cho_319	VCA1088	NP_233469.1	EVELF-
Vi_ang_1433	VAA_01909	YP_004577831.1	EVELF-
Li_ang_7812	N175_16890	YP_008489685.1	EVELF-
Supplementary Note 1

Supplementary References

1. Rosario, M. M. L. & Ordal, G. W. CheC and CheD interact to regulate methylation of Bacillus subtilis methyl-accepting chemotaxis proteins. *Mol. Microbiol.* 21, 511–518 (1996).

2. Glekas, G. D. *et al.* Elucidation of the multiple roles of CheD in Bacillus subtilis chemotaxis. *Mol. Microbiol.* 86, 743–756 (2012).

3. Huang, Z. *et al.* Cross Talk between Chemosensory Pathways That Modulate Chemotaxis and Biofilm Formation. *mBio* 10, (2019).

4. Ortega, D. R. *et al.* Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa. *Proc. Natl. Acad. Sci. U. S. A.* (2017) doi:10.1073/pnas.1708842114.
5. Güvenler, Z. T., Tifrea, D. F. & Harwood, C. S. Two different Pseudomonas aeruginosa chemosensory signal transduction complexes localize to cell poles and form and remould in stationary phase. *Mol. Microbiol.* **61**, 106–118 (2006).

6. Herrera Seitz, M. K., Frank, V., Massazza, D. A., Vaknin, A. & Studdert, C. A. Bacterial chemoreceptors of different length classes signal independently. *Mol Microbiol* **93**, 814–22 (2014).

7. Kim, K. K., Yokota, H. & Kim, S. H. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. *Nature* **400**, 787–92 (1999).

8. Li, M. & Hazelbauer, G. L. Cellular Stoichiometry of the Components of the Chemotaxis Signaling Complex. *J Bacteriol* **186**, 3687–3694 (2004).

9. Cannistraro, V. J., Glekas, G. D., Rao, C. V. & Ordal, G. W. Cellular stoichiometry of the chemotaxis proteins in Bacillus subtilis. *J. Bacteriol.* **193**, 3220–3227 (2011).

10. Briegel, A. et al. New Insights into Bacterial Chemoreceptor Array Structure and Assembly from Electron Cryotomography. *Biochemistry* **53**, 1575–1585 (2014).

11. Masduki, A. et al. Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa. *J Bacteriol* **177**, 5 (1995).

12. Gosink, K. K., Kobayashi, R., Kawagishi, I. & Hase, C. C. Analyses of the roles of the three cheA homologs in chemotaxis of Vibrio cholerae. *J. Bacteriol.* **184**, 1767–71 (2002).

13. Li, J., Romine, M. F. & Ward, M. J. Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species. *FEMS Microbiol Lett* **273**, 180–6 (2007).

14. Ringgaard, S., Hubbard, T., Mandlik, A., Davis, B. M. & Waldor, M. K. RpoS and quorum sensing control expression and polar localization of Vibrio cholerae chemotaxis cluster III proteins in vitro and in vivo. *Mol. Microbiol.* **97**, 660–675 (2015).
15. Schuster, M., Hawkins, A. C., Harwood, C. S. & Greenberg, E. P. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. *Mol. Microbiol.* **51**, 973–985 (2004).

16. Harris, H. W., El-Naggar, M. Y. & Nealsen, K. H. Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors. *Biochem Soc Trans* **40**, 1167–77 (2012).

17. Khmelenina, V. N., Kalyuzhnaya, M. G., Starostina, N. G., Suzina, N. E. & Trotsenko, Y. A. Isolation and Characterization of Halotolerant Alkaliphilic Methanotrophic Bacteria from Tuva Soda Lakes. *Curr. Microbiol.* **35**, 257–261 (1997).

18. Greer-Phillips, S. E. *et al.* The Aer2 receptor from Vibrio cholerae is a dual PAS-heme oxygen sensor. *Mol. Microbiol.* **109**, 209–224 (2018).

19. Garcia, D., Orillard, E., Johnson, M. S. & Watts, K. J. Gas Sensing and Signaling in the PAS-Heme Domain of the Pseudomonas aeruginosa Aer2 Receptor. *J. Bacteriol.* **199**, e00003-17 (2017).

20. Kim, H. E. *et al.* Identification and characterization of the chemotactic transducer in Pseudomonas aeruginosa PAO1 for positive chemotaxis to trichloroethylene. *J Bacteriol* **188**, 6700–2 (2006).

21. Ferris, H. U., Zeth, K., Hulko, M., Dunin-Horkawicz, S. & Lupas, A. N. Axial helix rotation as a mechanism for signal regulation inferred from the crystallographic analysis of the E. coli serine chemoreceptor. *J. Struct. Biol.* **186**, 349–356 (2014).

22. Airola, M. V. *et al.* Architecture of the Soluble Receptor Aer2 Indicates an In-Line Mechanism for PAS and HAMP Domain Signaling. *J. Mol. Biol.* **425**, 886–901 (2013).
23. Sawai, H. et al. Structural basis for oxygen sensing and signal transduction of the heme-based sensor protein Aer2 from Pseudomonas aeruginosa. Chem. Commun. **48**, 6523–6525 (2012).

24. Airola, M. V. et al. HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. *PLoS Biol* **11**, e1001479 (2013).