Allocation Schemes in Analytic Evaluation: Applicant-Centric Holistic or Attribute-Centric Segmented?

Jingyan Wang, Carmel Baharav, Nihar B. Shah, Anita Williams Woolley, R. Ravi
Allocation schemes

Q1	Q2	Q3
Alice			
Bob			
Carol			
......			

Q1	Q2	Q3
Alice			
Bob			
Carol			
......			
Allocation schemes

Allocation schemes in more complicated applications?

- **Large-scale**: distribute task to many reviewers
- **Separable**: evaluate individual attributes

Admissions

Hiring
Scope: **analytic** evaluation

Analytic: evaluate a pre-defined set of attributes

Non-analytic: not require to evaluate individual attributes

- overly rely on people’s general impression
- inconsistency and inaccuracy compared to analytic

 [Jönsson, Balan, and Hartell 2021]

Score	Grades	Essays	Letters
App 1	App 1			
App 2	App 2			
App 3	App 3			
App 4	App 4			

Non-analytic Analytic
Scope: **analytic** evaluation with **exogenous** aggregation

Exogenous aggregation: predefined rules or algorithms

Human aggregation: evaluator combines and weights attributes
 - No more (or even less) accurate than simple rules [Kahneman, Sibony, and Sunstein 2021]
Scope: **analytic** evaluation with **exogenous** aggregation

“People trust that the complex characteristics of applicants can be best assessed by a sensitive, equally complex human being. This does not stand up to scientific scrutiny”
[Highhouse 2008]
Holistic vs segmented

- **Holistic**: assign a subset of applications to each reviewer
- **Segmented**: assign a subset of attributes to each reviewer
Comparison

- **Holistic**: assign a subset of applications to each reviewer
- **Segmented**: assign a subset of attributes to each reviewer

	1	2	3
Desiderata	Calibration	Efficiency	Fairness
Comparison

- **Holistic**: assign a subset of applications to each reviewer
- **Segmented**: assign a subset of attributes to each reviewer

Desiderata	Method	1	2	3
Calibration	Experiment	Efficiency	Simulation	Theory
1. Calibration

• Accuracy of estimating percentile of each applicant with respect to the entire pool of applicants

• 1 attribute

• Give workers a set of numbers between 0-300

• Ask workers to estimate percentile using 5 bins

Number: 244

Reminder: answering this question accurately will give you a bonus.

0-20% (worst)	20-40%	40-60%	60-80%	80-100% (best)
○	○	○	○	○

Group 1: Holistic
See 5 numbers

Group 2: Segmented
See 20 numbers
(5 numbers per page)
Experimental Results

Observation 1: 20Q-group workers have lower error for later pages (p<0.01).
- **Page 1:** 0.95 (± 0.06)
- **Page 4:** 0.74 (± 0.06)

Observation 2: 20Q-group has lower error than 5Q-group (p<0.01).
- **20Q-group:** 0.84 (± 0.05)
- **5Q-group:** 1.14 (± 0.06)

Conclusion: Reviewers in segmented evaluation have better calibration, due to seeing more applicants.
2. Efficiency

• Adaptively allocate efforts to evaluate attributes
• 2 attributes with correlation σ
• Holistic: Evaluate attribute 2 only if attribute 1 is in top τ-fraction

Observation 1: Tradeoff between efficiency and accuracy

Observation 2: When correlation σ is high, small values of τ give:
• significant saving in efficiency
• marginal decrease in accuracy

Conclusion: Holistic evaluation is more efficient, due to evaluators adaptively allocating efforts.
3. Fairness

- Biased evaluators against certain disadvantaged groups
- Multiplicative discount $\beta \leq 1$ if

biased reviewer + disadvantaged app. + protected attr.

attr 1	attr 2
App 1	
App 2	
App 3	
App 4	

protected attr.

disadvantaged app.

biased reviewer
Theoretical results

- 2 reviewers (1 biased, 1 unbiased)
- 2 attributes with identical values from PowerLaw(\(\delta\)) [Kleinberg & Raghavan 2018]
- 50% disadvantaged applicants.

Theorem (informal).

a) Both attributes are protected. Extreme discount \(\beta = 0\).

Segmented evaluation is better if and only if

\[
\delta < \frac{\log 3}{\log 2} - 1 \approx 0.58.
\]

b) One attribute is protected. Any discount \(\beta\).

Segmented evaluation is always better than holistic evaluation.

Conclusion: Which evaluation scheme is more fair depends on specific settings.
Take-aways:

Complexities in using segmented vs. holistic allocation for evaluation tasks.

Desiderata	Factor	Which better?
Calibration	Learning info about population	Segmented
Efficiency	Allocating effort adaptively	Holistic
Fairness	Distributing impact of biased evaluators	Depends
Take-aways:

Complexities in using segmented vs. holistic allocation for evaluation tasks.

Desiderata	Factor	Which better?	Other factors?
Calibration	Learning info about population	Segmented	Ordering effect
Efficiency	Allocating effort adaptively	Holistic	Switching costs
Fairness	Distributing impact of biased evaluators	Depends	Restricting biasing info from reviewers

Thanks! :)
jingyanw@gatech.edu