The two-dimensional analogue of the Lorentzian catenary and the Dirichlet problem

Rafael López
Departamento de Geometría y Topología
Instituto de Matemáticas (IEMath-GR)
Universidad de Granada
18071 Granada, Spain
rcamino@ugr.es

Abstract

We generalize in Lorentz-Minkowski space \(\mathbb{L}^3 \) the two-dimensional analogue of the catenary of Euclidean space. We solve the Dirichlet problem when the bounded domain is mean convex and the boundary data has a spacelike extension to the domain. We also classify all singular maximal surfaces of \(\mathbb{L}^3 \) invariant by a uniparametric group of translations and rotations.

Mathematics Subject Classification: 53A10, 53C42
Keywords: singular maximal surface, Dirichlet problem, invariant surface

1 Introduction and motivation

The purpose of this paper is to investigate the physical problem of characterizing the surfaces in Lorentz-Minkowski space with lowest gravity center and solve the corresponding Dirichlet problem. The existence of a variety of causal vectors in the Lorentzian setting makes that appear several issues that need to be fixed. Firstly, we recall this problem in the Euclidean space in order to

*Partially supported by the grant no. MTM2017-89677-P, MINECO/AEI/FEDER, UE.
motivate our definitions. Let \mathbb{R}^2 be the Euclidean plane with canonical coordinates (x, y) where the y-axis indicates the gravity direction. Consider the physical problem of finding the curve in the halfplane $y > 0$ with the lowest gravity center. If the curve is $y = u(x)$, then u satisfies the equation

$$\frac{u''}{1 + u'^2} = \frac{1}{u}. \tag{1}$$

The solution of this equation is known the catenary

$$u(x) = \frac{1}{a} \cosh(ax + b), \ a, b \in \mathbb{R}, a \neq 0.$$

Equation (1) can be expressed in terms of the curvature κ of the curve as

$$\kappa = \frac{\langle \mathbf{n}, \vec{a} \rangle}{y}, \tag{2}$$

where \mathbf{n} is the unit normal vector and $\vec{a} = (0, 1)$. In particular, equation (2) prescribes the angle that makes the vector \mathbf{n} with the vertical direction.

The generalization in Euclidean 3-space \mathbb{R}^3 of the property of the catenary is to find surfaces in the halfspace $z > 0$ with the lowest gravity center. If (x, y, z) denote the canonical coordinates of \mathbb{R}^3 and z indicates the direction of the gravity, these surfaces characterize by means of the equation

$$H = \frac{\langle \mathbf{N}, \vec{a} \rangle}{z}, \tag{3}$$

where H is the mean curvature of the surface and $\vec{a} = (0, 0, 1)$. The surface is called in the literature the two-dimensional analogue of the catenary ([4, 9]). Historically, this problem goes back to early works of Lagrange and Poisson on the equation that models a heavy surface in vertical gravitational field. If we embed \mathbb{R}^2 as the xz-plane by identifying the y-axis of \mathbb{R}^2 with the z-axis of \mathbb{R}^3, and we rotate the catenary with respect to the x-axis, we obtain the catenoid $a^2(y^2 + z^2) = \cosh^2(x)$, which is the only non-planar rotational minimal surface of \mathbb{R}^3.

More general, given a constant $\alpha \in \mathbb{R}$, a surface in the halfspace $z > 0$ is called a singular minimal surface if satisfies

$$H = \alpha \frac{\langle \mathbf{N}, \vec{a} \rangle}{z}. \tag{3}$$

The theory of singular minimal surfaces has been intensively studied from the works of Bemelmans, Dierkes and Huisken, among others. Without to be a complete list, we refer to [3, 4, 6, 8, 9, 16, 19, 18, 21].
Once presented the problem in the Euclidean space, we proceed to generalize it in the Lorentz-Minkowski space. As in the Euclidean case, we begin with the one-dimensional case. Let \(L^2 \) be the Lorentz-Minkowski plane defined as the affine \((x, y)\)-plane \(\mathbb{R}^2 \) endowed with the metric \(dx^2 - dy^2 \). Here we use the usual terminology of the Lorentz-Minkowski space: see [22] as a general reference and [14] for curves and surfaces in Lorentz-Minkowski space. In what follows, we will assume that for a given set, the causal character is the same in all its points, that is, we do not admit the existence of points with different causal character.

A first issue is that in \(L^2 \) it does not make sense the notion of gravity in \(L^2 \) because the \(y \)-coordinate represents the time in the Lorentzian context. Thus we need to view the initial problem as a problem of finding curves in \(L^2 \) with prescribed angle between the normal vector and a fixed direction, such as it was shown in equation (2). There appear two new issues. Firstly there are three types of curves in \(L^2 \) according its causal character, namely, spacelike, timelike and lightlike and the behavior of each of these curves is completely different. Because our interest is to keep the Riemannian sense, we will only consider spacelike curves.

A second issue is the choice of the axis with respect to what we measure the angle of the normal vector \(n \). Notice that in Euclidean plane both axes are indistinct but in \(L^2 \) the \(y \)-axis and the \(x \)-axis are not interchangeable by a rigid motion. Thus it arises the problem what axis to be fixed. Since for a spacelike curve, the vector \(n \) is timelike, we will measure the angle between \(n \) and the \(y \)-axis, which is also timelike. This is also justified because it makes sense to define the angle between two timelike vectors ([22, p.144]). After all these considerations, let us proceed.

Let \(\gamma = \gamma(s) \) be a spacelike curve parametrized by the arc-length \(s \in I \) and contained in the halfplane \(y > 0 \) of \(L^2 \). The curvature \(\kappa \) of \(\gamma \) is defined by \(\gamma''(s) = \kappa(s)n(s) \) where \(n \) is a unit normal vector of \(\gamma \). Here we are assuming \(\kappa \neq 0 \). Motivated by the equation (2), we ask for those spacelike curves of \(L^2 \) that satisfy the same equation (2) where \(a = (0, 1) \). If \(\gamma \) is a graph \(y = u(x) \), then \(\gamma(x) = (x, u(x)) \), which is not parametrized by the arc-length. Then \(n = (u', 1)/\sqrt{1-u'^2} \), \(\langle n, \tilde{a} \rangle = -1/\sqrt{1-u'^2} \) and

\[
\kappa(x) = -\frac{1}{1-u'^2} \langle \gamma''(x), n(x) \rangle = \frac{u''(x)}{(1-u'^2)^{3/2}}.
\]

Let us observe that \(u'^2 < 1 \) because \(\gamma \) is a spacelike curve. Equation (2) is now

\[
\frac{u''}{1-u'^2} = -\frac{1}{u'}.
\]
which will be the Lorentzian model of (1) that we are looking for. The spacelike condition \(u'^2 - 1 < 0 \) is an extra hypothesis comparing with the Euclidean case. For example, \(u(x) = \sinh(x) \), with \(u > 0 \), solves (4), but \(u'^2 > 1 \). So, the corresponding curve \(y = u(x) \) is a timelike curve. In contrast, because we are assuming that the curve is spacelike, the right solution of (4) is

\[
u(x) = \frac{1}{a} \sin(ax + b), \quad x \in \left(\frac{b}{a}, \pi - \frac{b}{a}\right),
\]

(5)

where \(a \neq 0, a, b \in \mathbb{R} \). This curve will be the analogue catenary in \(\mathbb{L}^2 \). As in the Euclidean case, we introduce a constant \(\alpha \in \mathbb{R} \) and we consider the analogous equation of (2), namely,

\[
\kappa = \alpha \frac{\langle n, \vec{a} \rangle}{\langle p, \vec{a} \rangle} = -\alpha \frac{\langle n, \vec{a} \rangle}{y},
\]

(6)

where \(p = (x, y) \in \mathbb{L}^2 \). For instance, the curve (5) is the solution for \(\alpha = -1 \).

Following the same steps done in the Euclidean setting, we embed \(\mathbb{L}^2 \) in the Lorentz-Minkowski 3-space \(\mathbb{L}^3 \). Here \(\mathbb{L}^3 \) is the affine Euclidean 3-space endowed with the metric \(dx^2 + dy^2 - dz^2 \). Then \(\mathbb{L}^2 \) is identified with the \(xz \)-plane, the \(y \)-axis of \(\mathbb{L}^2 \) with the \(z \)-axis of \(\mathbb{L}^3 \) and the vector \((0, 1) \in \mathbb{L}^2 \) with \(\vec{a} = (0, 0, 1) \). Definitively, the objects of our study in this paper are described in the following definition.

Definition 1.1. Let \(\alpha \) be a nonzero real number. A spacelike surface \(S \) in the halfspace \(z > 0 \) of \(\mathbb{L}^3 \) is called an \(\alpha \)-singular maximal surface if satisfies

\[
H(p) = \alpha \frac{\langle N(p), \vec{a} \rangle}{\langle p, \vec{a} \rangle} = -\alpha \frac{\langle N(p), \vec{a} \rangle}{z} \quad (p \in S),
\]

(7)

where \(N \) is a unit normal vector field on \(S \) and \(H \) is the mean curvature.

Here \(H \) the trace of the second fundamental form of \(S \), that is, the sum of the principal curvatures. We will omit the constant \(\alpha \) if it is understood in the context. Recently, these surfaces have been studied in [20] relating the Riemannian and the Lorentzian settings by means of a Calabi type correspondence.

In view of (2), and as a motivation of this paper, the case \(\alpha = -1 \) in equation (7) is the corresponding two-dimensional analogue of the Lorentzian catenary. Other known examples appear when \(\alpha = 2 \) because in such a case, the surface is a minimal surface in the steady state space ([15]). Another special example is the hyperbolic plane \(\mathbb{H}^2(r) = \{ p \in \mathbb{L}^3 : \langle p, p \rangle = -r^2, z > 0 \}, \ r > 0 \). This
surface has mean curvature $H = 2/r$ for $N(p) = p/r$. It is clear that $\mathbb{H}^2(r)$ satisfies (7) for $\alpha = 2$. Even more, $\mathbb{H}^2(r)$ satisfies (7) for any vector \vec{a}.

On the other hand, we extend a similar property that has the catenary in Euclidean space. Indeed, we take the catenary (5) and we rotate with respect to the x-axis. The rotations that leave pointwise fixed the x-axis are described by

$$
\left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cosh \theta & \sinh \theta \\ 0 & \sinh \theta & \cosh \theta \end{pmatrix} : \theta \in \mathbb{R} \right\}.
$$

For a curve $z = u(x)$, namely, $\gamma(x) = (x, 0, u(x))$, $x \in I \subset \mathbb{R}$, contained in the xz-plane, the corresponding rotational surface S is parametrized by

$$
X(x, \theta) = (x, u(x) \sinh \theta, u(x) \cosh \theta), \quad \theta \in \mathbb{R}.
$$

(8)

If $u(x) = \sin(ax+b)/a$, it is not difficult to see that the corresponding rotational surface (8) has zero mean curvature, that is, S is a maximal surface of \mathbb{L}^3. This surface is called in the literature the catenoid of second kind or the hyperbolic catenoid.

Remark 1.2. If we rotate the curve $u(x) = \sinh(ax + b)/a$, the timelike solution of (4), with respect to the x-axis, the rotational surface is a timelike surface with zero mean curvature ([13]). Similarly, any vertical straight line is a timelike curve that satisfies (2) and if we rotate with respect to the x-axis, we obtain a (timelike) plane parallel to the yz-plane, which has zero mean curvature everywhere.

As a conclusion, the generalization in \mathbb{L}^3 of the two-dimensional analogue of the catenary, or more generally, singular maximal surfaces in Lorentz-Minkowski space \mathbb{L}^3, is carried out for spacelike surfaces and the angle between N and \vec{a} is measured with respect to the (timelike) z-axis. We have also discussed that there are other possibilities to generalize the initial problem in \mathbb{L}^3, although all them less justified, as for example, changing the axis $\vec{a} = (0, 0, 1)$ by $(1, 0, 0)$ (spacelike) or $(1, 0, 1)$ (lightlike). Also, we may consider timelike surfaces and measuring the angle between N with respect to an axis of \mathbb{L}^3.

In this paper we will also be interested to solve the Dirichlet problem of the singular maximal surface equation. Since a spacelike surface is locally the graph of a function $z = u(x, y)$, the nonparametric form of equation (7) is

$$
div \frac{Du}{\sqrt{1 - |Du|^2}} = \alpha \frac{1}{u\sqrt{1 - |Du|^2}},
$$

(9)
together the spacelike condition $|Du| < 1$. The left-hand side of this equation is the mean curvature of the graph $z = u(x, y)$ computed with respect to the upwards orientation

$$N = \frac{1}{\sqrt{1 - |Du|^2}}(Du, 1).$$

Comparing (9) with the Riemannian case ([6, 7, 8, 17]), this equation is not uniformly elliptic and, as a consequence, this requires to ensure that $|Du|$ is bounded away from 1.

This paper is organized as follows. In Section 2 we classify all singular maximal surfaces that are invariant by a uniparametric group of translations and of rotations. In Section 3 we describe the solutions of (7) that are invariant by rotations about the z-axis and finally, in Section 4 we solve the Dirichlet problem associated to equation (9) for mean convex domains and arbitrary boundary data.

2 Invariant singular maximal surfaces

In this section we classify and describe all singular maximal surfaces that are invariant by a uniparametric group of translations or of rotations of \mathbb{L}^3. Firstly, we notice that some transformations of the affine Euclidean space \mathbb{R}^3 preserve the singular maximal surface equation. To fix the terminology, a vector $\vec{v} \in \mathbb{R}^3$ is called horizontal direction if it is parallel to the xy-plane and it is called vertical if it is parallel to the z-axis.

It is clear that a solution of (7) is invariant by a translation along a horizontal direction, that is, if S is an α-singular maximal surface, then $S + \vec{v}$ is also an α-singular maximal surface, where \vec{v} is a horizontal vector of \mathbb{R}^3. Similarly, the same property holds if we rotate S with respect to a vertical direction because the term $\langle N, \vec{a} \rangle$ and the denominator z in (7) are invariant by this type of rotations. Finally, if $\lambda > 0$ is a positive real number, and $T_\lambda(p) = p_0 + \lambda(p - p_0)$ is the dilation with center $p_0 \in \mathbb{R}^2 \times \{0\}$, then $T_\lambda(S)$ is an α-singular maximal surface.

Remark 2.1. We point out that a rigid motion of \mathbb{L}^3 does not preserve in general the equation (7) because the denominator z may change in general by the motion.

As we have announced, a natural source of examples of singular maximal surfaces of \mathbb{L}^3 finds in the class of invariant surfaces by a uniparametric group of rigid motions. The key point is that equation (7), which locally is the
partial differential equation (9), changes into an ordinary differential equation. In particular, by standard theory, there always is a solution for any initial conditions.

2.1 Surfaces invariant by translations

We begin the study of the surfaces invariant by a uniparametric group of translations. Since the rulings generated by this group are straight lines contained in the surface, and the surface is spacelike, then any ruling is a spacelike line. Thus the vector generating the group of translation must be spacelike. Let \(\vec{v} \) be a unit spacelike vector and consider a surface \(S \) invariant by the group of translations generated by \(\vec{v} \). Then \(S \) parametrizes as

\[
X(s, t) = \gamma(s) + t\vec{v},
\]

where \(\gamma \) is a planar spacelike curve of \(L^3 \) contained in a (timelike) orthogonal plane to \(\vec{v} \). Equation (7) is

\[
\kappa \det(\gamma', \vec{v}, \vec{n}) = \frac{\det(\gamma', \vec{v}, \vec{a})}{\gamma_3 + tv_3},
\]

where \(\gamma = (\gamma_1, \gamma_2, \gamma_3) \) and \(\vec{v} = (v_1, v_2, v_3) \). We consider the orientation in \(\gamma \) so \(\gamma' \times \vec{v} = \vec{n} \). Since \(\vec{n} \) is a unit timelike vector, the above equation is now

\[
\kappa(\gamma_3 + tv_3) + \alpha\langle \vec{n}, \vec{a} \rangle = 0.
\]

This is a polynomial equation on \(t \), hence

\[
\kappa v_3 = 0, \quad \kappa \gamma_3 + \alpha\langle \vec{n}, \vec{a} \rangle = 0.
\]

Since \(\kappa \neq 0 \), we deduce that \(v_3 = 0 \) and \(\kappa \gamma_3 + \alpha\langle \vec{n}, \vec{a} \rangle = 0 \). Then \(\vec{v} \) is a horizontal vector and \(\gamma \) is a planar curve contained in a vertical plane. After a horizontal translation and a rotation about the \(z \)-axis, we assume that this plane is the \(xz \)-plane which can be identified with \(L^2 \). Furthermore, the equation \(\gamma_3 + \alpha\langle \vec{n}, \vec{a} \rangle = 0 \) means that \(\gamma \) satisfies, as a planar curve of \(L^2 \), the one-dimensional singular maximal surface equation (6). The converse of this result is immediate.

Proposition 2.2. Let \(S \) be an \(\alpha \)-singular maximal surface of \(L^3 \) invariant by a uniparametric group of translations generated by \(\vec{v} \) and denote by \(\gamma \) its generatrix. Then \(\vec{v} \) is a horizontal vector, \(\gamma \) is contained in a plane orthogonal to \(\vec{v} \) and \(\gamma \), as a planar curve, satisfies (6). Conversely, if \(\gamma \) is a curve in \(L^2 \) that satisfies (6) and, if we embed this curve in the \(xz \)-plane as usually, then the surface \(X(s, t) = \gamma(s) + t(0, 1, 0) \) is an \(\alpha \)-singular maximal surface.

7
In view of this proposition, consider the one-dimensional case of equation (7). Let \(\gamma(s) = (x(s), y(s)) \) be a spacelike curve in \(L^2 \) that satisfies (6). Since \(\gamma \) is spacelike, then \(x'(s)^2 - y'(s)^2 > 0 \), in particular, \(x'(s) \neq 0 \) for every \(s \) and thus \(\gamma \) is globally the graph of a function \(u = u(x), x \in I \subset \mathbb{R} \). Equation (6) is now

\[
\frac{u''}{1 - u'^2} = \alpha \frac{1}{u}, \quad u > 0, u'^2 < 1. \tag{11}
\]

It is possible to find some explicit solutions of (11) by simple quadratures. In the Introduction we have seen that if \(\alpha = -1 \), the solution is \(u(x) = \sin(ax + b)/a \), where \(a \neq 0 \), \(a, b \in \mathbb{R} \) and where \(x \) is defined in some interval to ensure that \(u > 0 \). If \(\alpha = 1 \), it is easy to find that the solution of (11) is

\[
u(x) = \frac{1}{a} \sqrt{1 + a^2 x^2} + 2abx + b^2, \quad a, b \in \mathbb{R}, a > 0.\]

After a change of variable, this function \(u \) writes as \(u(x) = \sqrt{1 + a^2 x^2}/a \). The curve, viewed as a planar curve in \(L^2 \), has nonzero constant curvature \(\kappa = a \). The generated surface by Proposition 2.2 is the right-cylinder of equation \(a^2(x^2 - z^2) = -1 \).

Remark 2.3. Such as it was done for the catenary \(u(x) = \sin(ax + b)/a \), if we rotate the curve \(u(x) = \sqrt{1 + a^2 x^2}/a \) with respect to the \(x \)-axis, we obtain the hyperbolic plane \(\mathbb{H}^2(1/a) \).

Remark 2.4. Similarly as in the case \(\alpha = -1 \), there is a timelike solution of (11) by replacing the spacelike condition \(u'^2 < 1 \) by \(u'^2 > 1 \). The solution if now \(u(x) = \sqrt{a^2 x^2 - 1}/a \), where \(a > 0 \) and \(x > 1/a \). The function \(u \) is the positive part of the hyperbola \(a^2(x^2 - y^2) = 1 \), which is a timelike curve. If we rotate about the \(x \)-axis, the generated surface is \(x^2 + y^2 - z^2 = 1/a^2 \). This surface is the (upper part of) de Sitter space \(\mathbb{S}^1_1(1/a) = \{ p \in L^3 : \langle p, p \rangle = 1/a^2 \} \). This surface satisfies (7) when \(\alpha = 2 \) and plays the same role than the hyperbolic plane in the family of timelike surfaces of \(L^3 \).

We now describe the geometric properties of the solutions of (11). See figure 1.

Theorem 2.5. Let \(u = u(x) \) be a solution of (11), \(x \in I \), where \(I \subset \mathbb{R} \) is the maximal domain of \(u \). Then \(u \) is symmetric about a vertical line and \(I = \mathbb{R} \) if \(\alpha > 0 \) or \(I \) is a bounded interval if \(\alpha < 0 \). Furthermore:

1. Case \(\alpha > 0 \). The function \(u \) is convex with a unique global minimum, \(\lim_{r \to \infty} u(r) = \infty \) and \(\lim_{r \to \infty} u'(r) = 1 \).
2. Case $\alpha < 0$. The function u is concave with a unique global maximum. If $I = (-b, b)$, then $\lim_{r \to b} u(r) = 0$ and $\lim_{r \to -b} u'(r) = -1$.

Proof. If u has a critical point at $r = r_o$, then $u''(r_o) = \alpha / u(r_o)$ has the same sign than α. Hence, there is one critical point at most that will be a global minimum (resp. maximum) if $\alpha > 0$ (resp. $\alpha < 0$).

Claim: There exists a critical point of u.

Suppose now that the claim is proved and we finish the proof of theorem. After a change in the variable x, we suppose that $x = 0$ is the critical point, $u'(0) = 0$. Then u is the solution of (11) with initial conditions $u(0) = u_0 > 0$ and $u'(0) = 0$. It is clear that $u(-s)$ is also a solution of the same initial value problem, so $u(s) = u(-s)$ by uniqueness. This proves that u is symmetric about the y-axis.

Multiplying (11) by u', we obtain a first integral

$$\frac{1}{1 - u'^2} = \mu u^{2\alpha},$$

(12)

for some positive constant $\mu > 0$.

1. Case $\alpha > 0$. Since $u(x) \geq u_0$, we deduce from (11) that u' and u'' are bounded functions and this implies that the maximal domain is \mathbb{R}. Since u is a convex function, then $u(r) \to \infty$ as $r \to \infty$ and from (12), we conclude that $u'(r) \to 1$ as $r \to \infty$.

2. Case $\alpha < 0$. By symmetry, $I = (-b, b)$ for some $b \leq \infty$. Since u is a positive concave function, then $b < \infty$. Using the concavity of u again, and because $u'^2 < 1$, then the graph of u must meet the x-axis, that is, $\lim_{r \to b} u(r) = 0$. From (12), we deduce $\lim_{r \to b} u'(r)^2 = 1$, and by concavity, $\lim_{r \to b} u'(r) = -1$.

We now prove the claim. The proof is by contradiction. Assume that the sign of u' is constant and denote $I = (a, b)$ with $-\infty \leq a < b \leq \infty$.

1. Case $\alpha > 0$. We suppose that $u' > 0$ in I (similar argument if u' is negative). Since u is increasing and u' and u'' are bounded close $r = b$, we deduce that $b = \infty$ by standard theory. If $-\infty < a$, then $\lim_{r \to a} u(r) = 0$ because on the contrary, we could extend u beyond $r = a$ because u' and u'' would be bounded functions. Therefore $\lim_{r \to a} u'(r)^2 = 1$ by (12). Since $u' > 0$, this limit is just 1. This is a contradiction because u' is an
increasing function and we would have \(u' > 1 \) in \(I \), which is not possible by the spacelike condition.

Thus \(a = -\infty \). Since \(u \) is increasing and \(u > 0 \) in \(\mathbb{R} \), we find \(\lim_{r \to -\infty} u(r) = c \geq 0 \). Because \(u' > 0 \) and \(u'' > 0 \), then \(\lim_{r \to -\infty} u'(r) = \lim_{r \to -\infty} u''(r) = 0 \). However, by (11), and letting \(r \to -\infty \), we have \(u''(r) \) goes to \(\alpha/c \neq 0 \) if \(c > 0 \) or to \(\infty \) if \(c = 0 \), obtaining a contradiction.

2. Case \(\alpha < 0 \). We suppose that \(u' > 0 \) in \(I \) (similar argument if \(u' \) is negative). Since \(u' \) and \(u'' \) are bounded for \(r \) close to \(b \), then \(b = \infty \) and by concavity, we deduce that \(-\infty < a \). If \(u \) is bounded from above with \(\lim_{r \to \infty} u(r) = c > 0 \), then \(\lim_{r \to -\infty} u'(r) = 0 \) and since \(u'' < 0 \), then \(\lim_{r \to -\infty} u''(r) = 0 \). By (11), we find \(\lim_{r \to -\infty} u''(r) = \alpha/c < 0 \), a contradiction. Thus \(\lim_{r \to -\infty} u(r) = \infty \). By using (12), we conclude \(\lim_{r \to -\infty} u'(r)^2 = 1 \), so this limit is 1: a contradiction because \(u' \) is a decreasing function and we would have \(u' > 1 \) in the interval \(I \), which is not possible.

\[\square\]

Figure 1: Solutions of (11). Left: \(\alpha = 1 \). Right: \(\alpha = -2 \)

2.2 Surfaces of revolution with respect to a spacelike axis and a lightlike axis

The second source of examples of singular maximal surfaces are the surfaces invariant by a uniparametric group of rotations. A difference between the Euclidean and the Lorentzian settings is that in \(\mathbb{L}^3 \) there are three types of surfaces of revolution depending if the rotational axis is spacelike, timelike or lightlike. Section 3 is devoted to the surfaces of revolution whose rotation axis
is timelike because this type of surfaces will play a special role in the solvability of the Dirichlet problem in Section 4. In this section we investigate the cases that the rotation axis is spacelike and lightlike.

We point out that there is not an a priori relation between the rotation axis L and the vector $\vec{a} = (0, 0, 1)$ of equation (7). This implies that if we apply a rigid motion to prescribe the rotation axis, then the vector \vec{a} does change: see also Remark 2.1.

Firstly we consider the case that the axis is spacelike.

Proposition 2.6. Let S be a spacelike surface of \mathbb{L}^3 invariant by the uniparametric group of rotations about a spacelike axis L. Suppose that S satisfies equation (7) where \vec{a} is a timelike vector. Then either \vec{a} is orthogonal to L, or S is the hyperbolic plane $\mathbb{H}^2(r)$ being \vec{a} an arbitrary timelike vector.

Proof. After a rigid motion of \mathbb{L}^3 we assume that L is the x-axis. This rigid motion changes the vector \vec{a} in equation (7) and \vec{a} must be considered an arbitrary (timelike) vector. Let $\vec{a} = (a, b, c)$ denote the new vector \vec{a} in (7) after the rigid motion. Since \vec{a} is timelike, then $c \neq 0$.

Using the expression of a parametrization (8) of S and after some computations, equation (7) is a polynomial equation on $\{1, \sinh \theta, \cos \theta\}$. Since these functions are linearly independent, all three coefficients (which are functions on the variable s) must vanish, obtaining

\[-c(1 - u'^2 + uu'') + \alpha c(1 - u^2) = 0\]

\[-b(1 - u'^2 + uu'') + \alpha b(1 - u^2) = 0\]

\[as(1 - u'^2 + uu'') - \alpha auu'(1 - u^2) = 0.\]

Since $c \neq 0$, we find $a(uu' - s) = b(uu' - s) = 0$. If $uu' - s \neq 0$, then $a = b = 0$, proving that $\vec{a} = (0, 0, c)$, hence L is orthogonal to the x-axis and the result is proved. The other possibility is $uu' - s = 0$. Solving this equation, we find $u(s) = \sqrt{s^2 + r^2}$, $r > 0$. Then $X(s, \theta) = (s, \sqrt{s^2 + r^2} \sinh \theta, \sqrt{s^2 + r^2} \cos \theta)$ and it is immediate that this surface is the hyperbolic plane $\mathbb{H}^2(r)$.

As a consequence of Proposition 2.6, and besides the hyperbolic plane as a special case, we can assume that $\vec{a} = (0, 0, 1)$ in the singular maximal surface equation (7), and that the rotation axis is the x-axis. In such a case, the proof of Proposition 2.6 gives immediately that equation (7) is

\[\frac{u''}{1 - u^2} = (\alpha - 1) \frac{1}{u}.\]
This equation is just the equation (11). Identifying the Lorentzian plane \(\mathbb{L}^2 \) with the plane of equation \(y = 0 \), we have obtained the following result.

Proposition 2.7. Any rotational \(\alpha \)-singular maximal surface in \(\mathbb{L}^3 \) about the \(x \)-axis is generated by a planar curve in \(\mathbb{L}^2 \) that satisfies the one-dimensional \((\alpha - 1)\)-singular maximal surface equation. Conversely, any planar curve in \(\mathbb{L}^2 \) that satisfies equation (11) is the generating curve of an \((\alpha + 1)\)-singular maximal surface invariant by all rotations about the \(x \)-axis.

Example 2.8. We know that the solution of (11) for \(\alpha = 1 \) is the hyperbola
\[
 u(x) = \sqrt{1 + a^2 x^2} / a, \quad a > 0.
\]
As a consequence of Proposition 2.7, the only 2-singular maximal surface that is invariant by the rotations about the \(x \)-axis is the surface \(x^2 + y^2 - z^2 = -1/a^2, \ z > 0 \). This surface is the hyperbolic plane \(\mathbb{H}^2(1/a) \). Another solution of (11) appeared in the Introduction for \(\alpha = -1 \). Then the surface generated is the hyperbolic catenoid of \(\mathbb{L}^3 \).

We finish this section considering singular maximal surfaces of revolution about a lightlike axis. Again, we have in mind that if we fix the rotation axis, then the vector \(\vec{a} \) in equation (7) is arbitrary. If the rotation axis is determined by the vector \((1,0,1)\), the parametrization of the surface is

\[
 X(s,t) = \begin{pmatrix} 1 - \frac{t^2}{2} & t & \frac{t^2}{2} \\ -t & 1 & t \\ -\frac{t^2}{2} & t & 1 + \frac{t^2}{2} \end{pmatrix} \begin{pmatrix} u(s) + s \\ 0 \\ u(s) - s \end{pmatrix}, \quad t \in \mathbb{R}, \quad (13)
\]

for some function \(u = u(s), \ s \in I \subset \mathbb{R} \). The spacelike condition on the surface is equivalent to \(u' > 0 \).

Proposition 2.9. Let \(S \) be a spacelike surface of \(\mathbb{L}^3 \) invariant by the uniparametric group of rotations about a lightlike axis \(L \). Suppose \(S \) satisfies equation (7) where \(\vec{a} \) is a timelike vector. Then either \(\vec{a} \) is orthogonal to \(L \), or \(S \) is the hyperbolic plane \(\mathbb{H}^2(r) \) being \(\vec{a} \) is an arbitrary vector. More precisely, if \(L \) is generated by the vector \((1,0,1)\), \(S \) is parametrized by (13) and if \(\alpha \neq 2 \), then \(\vec{a} = (1,b,1), \ b \neq 0 \), and we have the following possibilities:

1. If \(\alpha = 3/2 \), then \(u(s) = m \log(s), \ m > 0 \).
2. If \(\alpha \neq 3/2 \), then \(u(s) = ms^{3-2\alpha} / (3 - 2\alpha), \ m > 0 \).

In particular, hyperbolic planes \(\mathbb{H}^2(r) \) are the only \(\alpha \)-singular maximal surfaces in \(\mathbb{L}^3 \) satisfying (7) with \(\vec{a} = (0,0,1) \) and invariant by the group of rotations about the lightlike axis generated by the vector \((1,0,1)\).
Proof. A straightforward computation of equation (7) for the surface (13) concludes that this equation is a polynomial equation on \(t \) of degree 2. Thus the coefficients corresponding for the variable \(t \) must vanish, obtaining

\[
2u' ((\alpha + 1)s(a + c) + (a - c)(u + asu')) - su''((a - c)u + s(a + c)) = 0
\]

\[
b (su'' - 2(1 - \alpha)u') = 0
\]

\[
(a - c) (su'' - 2(1 - \alpha)u') = 0.
\]

From the second and third equation, if \(su'' - 2(1 - \alpha)u' \neq 0 \), we have \(b = 0 \) and \(a = c \), obtaining that \(\vec{a} \) is a lightlike vector, which is not possible. Thus \(su'' - 2(1 - \alpha)u' = 0 \). The solution of this equation depends on the value of \(\alpha \).

1. Case \(\alpha = 3/2 \). Then \(u(s) = m \log(s) \) with \(m > 0 \). The first equation yields \((a - c)m^2(1 + \log(s)) = 0 \), that is, \(a = c \) and \(\vec{a} = (a, b, a) \), \(b \neq 0 \).

2. Case \(\alpha \neq 3/2 \). Then \(u(s) = ms^{3-2\alpha}/(3 - 2\alpha) \) with \(m > 0 \). Now the first equation simplifies into \((a - c)(2 - \alpha)s^{5-4\alpha} = 0 \). If \(\alpha = 2 \), then \(u(s) = -m/s \) and it is not difficult to see that this surface is the hyperbolic plane \(\mathbb{H}^2(2\sqrt{m}) \). If \(\alpha \neq 2 \), then \(a = c \), so \(\vec{a} = (a, b, a) \), \(b \neq 0 \).

\[\square\]

3 Surfaces of revolution about the \(z \)-axis

In this section we study the surfaces of revolution with timelike axis \(L \). Again, the same observations done in the previous section hold in the sense that there is not an \textit{a priori} relation between the vector \(\vec{a} \) and the axis \(L \). The first result that we will prove is that, indeed, \(L \) must parallel to the vector \(\vec{a} \).

Proposition 3.1. Let \(S \) be an \(\alpha \)-singular maximal surface in \(\mathbb{L}^3 \) that is invariant by the uniparametric group of rotations about a timelike axis \(L \). Suppose that \(S \) satisfies equation (7) where \(\vec{a} \) is now an arbitrary timelike vector. Then either \(L \) and \(\vec{a} \) are parallel, or \(S \) is the hyperbolic plane \(\mathbb{H}^2(m) \) being \(\vec{a} \) is an arbitrary timelike vector.

Proof. After a rigid motion, we suppose that the rotation axis is the \(z \)-axis. Let \(\vec{a} = (a, b, c) \) after this motion. The surface \(S \) parametrizes as \(X(r, \theta) = (r \cos \theta, r \sin \theta, u(r)) \), \(r \in I \subset \mathbb{R}^+ \), \(\theta \in \mathbb{R} \), \(u > 0 \) and \(u'^2 < 1 \). The computation
of equation (7) gives a polynomial equation on the trigonometric functions \{1, \sin \theta, \cos \theta\}. Thus all three coefficients must vanish, obtaining
\[
a \left(ru'' + (\alpha + 1)u'(1 - u^2) \right) = 0
\]
\[
b \left(ru'' + (\alpha + 1)u'(1 - u^2) \right) = 0
\]
\[
c \left(\alpha r (1 - u^2) + u (ru'' + u'(1 - u^2)) \right) = 0.
\]
If \(ru'' - (\alpha + 1)u'(1 - u^2) \neq 0 \), then \(a = b = 0 \), proving that \(\vec{a} = (0, 0, c) \), hence \(L \) and \(\vec{a} \) are parallel.

Suppose now that \(ru'' + (\alpha + 1)u'(1 - u^2) = 0 \). Recall that \(c \neq 0 \) because \(\vec{a} \) is a timelike vector. Combining with the third equation, we find \(uu' - r = 0 \). Solving this equation we obtain \(u(r) = \sqrt{r^2 + m^2}, m > 0 \), and the corresponding surface is the hyperbolic plane \(\mathbb{H}^2(m) \).

By Proposition 3.1, and after a horizontal translation, we will assume that the rotation axis is the \(z \)-axis and \(\vec{a} = (0, 0, 1) \) in (7). We know that \(X(r, \theta) = (r \cos \theta, r \sin \theta, u(r)) \), where \(r \in I \subset \mathbb{R}^+, \, \theta \in \mathbb{R} \) and \(u > 0 \). By the proof of Proposition 3.1, equation (7) writes as
\[
\frac{u''}{(1 - u^2)^{3/2}} + \frac{u'}{r \sqrt{1 - u^2}} = \frac{\alpha}{u \sqrt{1 - u^2}}, \tag{14}
\]
or equivalently,
\[
\frac{u''}{1 - u^2} + \frac{u'}{r} = \frac{\alpha}{u}. \tag{15}
\]
We are interested in those solutions that meet the \(z \)-axis, that is, when \(r = 0 \) is contained in the domain of the solution. Let us observe that equation (14) is singular at \(r = 0 \) and thus the existence of solutions is not a direct consequence of standard ODE theory.

Multiplying (14) by \(r \), and integration by parts, we wish to establish the existence of a classical solution of
\[
\left\{ \begin{array}{l}
\left(\frac{r u'}{\sqrt{1 - u^2}} \right)' = r \frac{\alpha}{u \sqrt{1 - u^2}} \quad r \in (0, \delta) \\
u(0) = u_0 > 0, \quad u'(0) = 0.
\end{array} \right. \tag{16}
\]
Define the functions \(\phi : (-1, 1) \to \mathbb{R} \) and \(f : \mathbb{R}^+ \times (-1, 1) \to \mathbb{R} \) by
\[
\phi(y) = \frac{y}{\sqrt{1 - y^2}} \quad f(x, y) = \frac{\alpha}{x \sqrt{1 - y^2}}.
\]
Let $\delta > 0$. It is clear that a function $u \in C^2([0, \delta])$ is a solution of (16) if and only if $(r\phi(u'))' = rf(u, u')$ and $u(0) = u_0, u'(0) = 0$. Let $\mathcal{B} = (C^1([0, \delta]), \| \cdot \|)$ be the Banach space of the continuously differentiable functions on $[0, \delta]$ endowed with the usual norm

$$\| u \| = \| u \|_\infty + \| u' \|_\infty.$$

Define the operator $T : \mathcal{B} \to \mathcal{B}$ by

$$(Tu)(r) = u_0 + \int_0^r \phi^{-1} \left(\int_0^s \frac{t}{s} f(u, u') dt \right) ds.$$

Notice that a fixed point of the operator T is a solution of the initial value problem (16). Indeed, $(Tu)' = \phi^{-1} \left(\frac{1}{r} \int_0^r tf(u, u') dt \right)$ and

$$r\phi(Tu)' \int_0^r tf(u, u') dt,$$

obtaining the result. Moreover, $Tu(0) = u_0$ and

$$\phi(Tu)'(0) = \lim_{r \to 0} \frac{1}{r} \int_0^r tf(u, u') dt = \lim_{r \to 0} rf(u, u') = 0,$$

where in the second identity we have used the L'Hôpital rule. Thus, $(Tu)'(0) = 0$.

The existence of solutions of (16) follows now standard techniques of radial solutions for some equations of mean curvature type ([2, 5]). In Figure 2 we show the solutions of (16) when α is positive and negative.

![Figure 2: Solutions of (16). Left: case $\alpha > 0$, here $\alpha = 2$. Right: case $\alpha < 0$, here $\alpha = -1$](image)

Theorem 3.2. The initial value problem (16) has a solution $u \in C^2([0, \delta])$ for some $\delta > 0$ that depends continuously on the initial data.
Proof. In order to find a fixed point of T, we prove that T is a contraction in B for some $\delta > 0$ to be chosen. The functions f and ϕ^{-1} are locally Lipschitz continuous of constant $L > 1$ in $[u_0 - \epsilon, u_0 + \epsilon] \times [-\epsilon, \epsilon]$ and $[-\epsilon, \epsilon]$ respectively, provided $\epsilon < \{u_0, 1\}$. Since $\phi^{-1}(y) = y/\sqrt{1 + y^2}$, then $L < 1$. Then for all $u, v \in B(0, \epsilon)$ and for all $r \in [0, \delta]$,

$$
\|(Tu)(r) - (Tv)(r)\| \leq L \int_0^r \int_0^s \frac{t}{s} (f(u, u') - f(v, v')) dt
$$

$$
\leq L^2 \int_0^r \int_0^s \frac{t}{s} \|u - v\| dt = \frac{L^2}{4} r^2 \|u - v\|.
$$

$$
\|(Tu)'(r) - (Tv)'(r)\| \leq \frac{L}{r} \int_0^r \int_0^s \frac{t}{s} (f(u, u') - f(v, v')) dt
$$

$$
\leq \frac{L^2}{2} \int_0^r \int_0^s \|u - v\| dt = \frac{L^2}{2} r \|u - v\|.
$$

By choosing $\delta > 0$ small enough, we deduce that T is a contraction in the closed ball $B(0, \delta) \subset B$. Thus the Schauder Point Fixed Theorem proves the existence of one fixed point of T, so the existence of a local solution of the initial value problem (16). This solution belongs to $C^1([0, \delta]) \cap C^2((0, \delta])$. The C^2-regularity up to 0 is verified directly by using the L'Hôpital rule because (14) leads to

$$
\lim_{r \to 0} u''(r) + \lim_{r \to 0} \frac{u'(r)}{r} = \frac{\alpha}{u_0},
$$

that is,

$$
\lim_{r \to 0} u''(r) = \frac{\alpha}{2u_0}.
$$

The continuous dependence of local solutions on the initial data is a consequence of the continuous dependence of the fixed points of T.

In the following result we describe the geometric properties of the rotational solutions of (15). See figures 2, 3 and 4.

Theorem 3.3. Let u be a solution of (14) with $u > 0$ and $u'^2 < 1$.

1. Case $\alpha > 0$. The maximal domain of u is $(0, \infty)$. Let $u'_0 = \lim_{r \to 0} u'(r)$.

 Then we have the following cases: $u'_0 = 0$ and the function u is increasing; $u'_0 = -1$ and u has a unique critical point which is a global minimum; $u_0 = 1$ and the function is increasing. In all cases,

$$
\lim_{r \to \infty} u(r) = \infty.
$$

Also, the function $u(r) = \sqrt{\alpha r}$ is a solution of (14).
2. Case $\alpha < 0$. The maximal domain of u is (a, b) with $0 \leq a < b < \infty$ and
\[
\lim_{r \to b} u(r) = 0, \quad \lim_{r \to b} u'(r) = -1.
\]
If $a > 0$, then u has a global maximum and
\[
\lim_{r \to a} u(r) = 0, \quad \lim_{r \to a} u'(r) = 1.
\]
If $a = 0$, let $u'_0 = \lim_{r \to 0} u'(r)$. Then we have the following cases: $u'_0 = 0$ and u is a decreasing function; $u'_0 = -1$ and u is a decreasing function; $u'_0 = 1$ and u has a global maximum.

Proof. We observe that if u has a critical point at $r_o \geq 0$, then (15) implies $u''(r_o) = \alpha / u(r_o) \neq 0$, hence all critical points are all maximum or are all minimum. Thus there is one critical point at most. In such a case, this point is a global minimum (resp. maximum) if $\alpha > 0$ (resp. $\alpha < 0$).

Claim A. If the graphic of u meets the x-axis at $r_* > 0$, then $\alpha < 0$ and $\lim_{r \to r_*} u'(r)^2 = 1$.

The proof follows by multiplying (15) by $2u'$ and integrating. Then
\[
\log(1 - u'(r)^2) + 2\alpha \log u(r) = 2\alpha \int_r^{r_*} \frac{u'(t)^2}{t} dt + \mu, \quad \mu \in \mathbb{R}.
\]
In a neighborhood of r_*, the right-hand side of the above equation is finite. Since $\log(u(r)) \to -\infty$ as $r \to r_*$, the same occurs with $\lim_{r \to r_*} \log(1 - u'(r)^2)$, proving that $u'(r)^2 \to 1$ as $r \to r_*$. Moreover, the case $\alpha > 0$ is not possible because the left-hand side would be $-\infty$.

Claim B. If the graphic of u meets the y-axis, then $\lim_{r \to 0} u'(r) = 0$ or $\lim_{r \to 0} u'(r)^2 = 1$.

Let denote $u'_0 = \lim_{r \to 0} u'(r)$. From Theorem 3.2, we know the existence of solutions when $u'_0 = 0$. Suppose now $u'_0 \neq 0$. By contradiction, we assume that $u'_0^2 \neq 1$. For $\delta > 0$ close to 0 and by (16),
\[
\frac{ru'(r)}{\sqrt{1 - u'(r)^2}} - \frac{\delta u'(r)}{\sqrt{1 - u'(\delta)^2}} = \int_\delta^r \frac{\alpha t}{u\sqrt{1 - u'^2}} dt.
\]
Since $u'_0^2 \neq 1$, letting $r \to 0$ we have
\[
\frac{u'(\delta)}{\sqrt{1 - u'(\delta)^2}} = \frac{1}{\delta} \int_0^\delta \frac{\alpha t}{u\sqrt{1 - u'^2}} dt.
\]
Letting $\delta \to 0$ and by the L’Hôpital rule, we deduce
\[
\lim_{\delta \to 0} \frac{u'(\delta)}{\sqrt{1 - u'(\delta)^2}} = \lim_{\delta \to 0} \frac{\alpha \delta}{u \sqrt{1 - u'^2}} = 0,
\]
hence $u'_0 = 0$, a contradiction.
In particular, the claim B implies that it is not possible to find solutions of the initial value problem (16) when $u'^2_0 \in (0, 1)$.

From now, we will denote by $u(a)$ and $u'(a)$ (similar for $r = b$), the limit of $u(r)$ and $u'(r)$ at $r = a$.

Claim C. If $a > 0$ (resp. $b < \infty$), then $u(a) = 0$ (resp. $u(b) = 0$).

Suppose that $a > 0$ (similarly for $b < \infty$). If $u(a) \neq 0$, then u'' is bounded around $r = a$ by (15). Since u' and u'' are bounded functions, we could extend the solution u beyond $r = a$, a contradiction.

We are in position to prove the theorem.

1. Case $\alpha > 0$. Suppose that $u' > 0$ in all its domain. Since u' and u'' are bounded functions by (15), then the value of b in I is $b = \infty$. If $a > 0$, this implies that $u(a) = 0$ by Claim C and this a contradiction by Claim A. This proves that $I = (0, \infty)$.

Suppose that the sign of u' is negative in all its domain. Then (15) implies that u is a concave function and thus $b < \infty$ because u is decreasing. Then $u(b) = 0$, which is not possible by Claim A.

After the above arguments, we have proved that if u' has a constant sign, then $u' > 0$, $a = 0$ and either $u'_0 = 0$ or $u'_0 = 1$. In case that u' changes of sign, then there is a unique critical point at some point $r = r_0 > 0$, which is a global minimum. In this case, $u' > 0$ for $r > r_0$. Since u' and u'' are bounded, then $b = \infty$. The case $a > 0$ is forbidden by Claim C. Thus $a = 0$. Since $u' < 0$ for $r < r_0$, Claim B asserts $u'_0 = -1$.

We prove (18). Since u is increasing close ∞, let $c = \lim_{r \to \infty} u(r)$. If $c < \infty$, then $u'(r) \to 0$ as $r \to \infty$ and using (15), $\lim_{r \to \infty} u''(r) = \alpha/c > 0$, a contradiction. Thus $c = \infty$.

Finally, by a direct computation, we observe that $u(r) = \sqrt{\alpha r}$ is a solution of (14).

2. Case $\alpha < 0$. Suppose that $u' < 0$ in all its domain. Let $c = \lim_{r \to b} u(r) > 0$. If $b = \infty$, then $u'(r) \to 0$ and (15) would imply that $\lim_{r \to \infty} u''(r)$ is either α/c if $c > 0$ or ∞ if $c = 0$, a contradiction. Thus $b < \infty$, hence
$u(b) = 0$. By Claim A, $u'(b) = -1$. If $a > 0$, then $u(a) > 0$ because u is decreasing: a contradiction by Claim C. Thus $a = 0$. By Claim B and because u is decreasing, we have two possibilities, namely, $u'_0 = 0$ and $u'_0 = -1$.

Suppose now that $u' > 0$ in all its domain. Then u is a concave function by (15). By Claim C, we have $b = \infty$. In the other end of the interval I, namely $r = a$, we have $a = 0$, $u'_0 = 1$ or $a > 0$, $u(a) = 0$ and $u'(a) = 1$.

In both cases, as $u'' < 0$, we find $\lim_{r \to \infty} u'(r) = \lim_{r \to \infty} u''(r) = 0$ and $\lim_{r \to \infty} u(r) = \infty$. By (19)

$$\frac{u'(r)}{\sqrt{1 - u'(r)^2}} = \frac{1}{r} \int_\delta^r \frac{\alpha t}{u\sqrt{1 - u'^2}} dt + \mu.$$

Letting $r \to \infty$, the left-hand side is 0. However, and applying twice the L’Hôpital rule, the limit of the right-hand side is

$$\lim_{r \to \infty} \frac{\alpha r}{u(r)} + \mu = \lim_{r \to \infty} \frac{\alpha}{u'(r)} + \mu = \infty,$$

obtaining a contradiction.

Thus, if $u' > 0$ at some point, there is a critical point r_0 of u, which will be the global maximum of u. Then $a \geq 0$ with $u'(a) = 1$ because u is increasing in (a, r_0).

\[\square\]

Remark 3.4. If $\alpha < 0$, there exist solutions that do not meet the rotation axis, see figure 4, right. This case appears if $0 < a < b < \infty$, where the function u has a global maximum and $u'(a) = 1 = -u'(b)$. This extends the same property of the solution of (4), where the part of the function $u = u(x)$ given in (5) that lies over the x-axis is formed by successive bounded intervals.

4 The Dirichlet problem

The Dirichlet problem of the singular maximal surface equation asks if given a positive function $\varphi : \partial \Omega \to \mathbb{R}$ defined in a bounded domain $\Omega \subset \mathbb{R}^2$, there exists a smooth positive function $u : \overline{\Omega} \to \mathbb{R}$ such that (9) holds in Ω, $u = \varphi$ on $\partial \Omega$ and $|Du| < 1$ on $\overline{\Omega}$. Since any curve in a spacelike surface must be spacelike, the graph Γ of φ is spacelike. The problem is to determine the type
of function φ and the boundary $\partial \Omega$ for the solvability of the Dirichlet problem. It is expectable that the sign α in (9) plays an important role because we have seen in Sections 2 and 3 the contrast of the behaviour of the invariant solutions of (7) depending if α is positive or negative.

Following similar ideas of Jenkins and Serrin in [11, 23], we will solve the Dirichlet problem if the domain Ω is mean convex. In fact, we will establish the Dirichlet problem in the n-dimensional case, or equivalently, we will find singular maximal hypersurfaces in the $(n+1)$-dimensional Lorentz-Minkowski space \mathbb{L}^{n+1} with prescribed boundary data.

Recall that a bounded domain $\Omega \subset \mathbb{R}^n$ is said to be mean convex if $\partial \Omega$ has nonnegative mean curvature $H_{\partial \Omega}$ with respect to the inward orientation. In case $n = 2$, the mean convexity property is equivalent to the convexity of Ω, but in arbitrary dimensions, the mean convexity is less restrictive than convexity.

The Dirichlet problem is now formulated as follows. Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain and $\alpha \neq 0$ a given constant. Let $\varphi : \partial \Omega \to \mathbb{R}$ be a positive spacelike smooth function. The problem is finding a classical solution $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$, $u > 0$ in $\overline{\Omega}$, of
\[
\begin{align*}
\div \left(\frac{Du}{\sqrt{1 - |Du|^2}} \right) &= \frac{\alpha}{u\sqrt{1 - |Du|^2}} \quad \text{in } \Omega \\
u &= \varphi \quad \text{on } \partial \Omega \\
|Du| < 1 & \quad \text{in } \overline{\Omega}.
\end{align*}
\]

(20)

We solve the Dirichlet problem when the boundary data \(\varphi \) has a spacelike extension in \(\overline{\Omega} \).

Theorem 4.1. Let \(\Omega \subset \mathbb{R}^n \) be a bounded mean convex domain with smooth boundary \(\partial \Omega \). Assume that \(\alpha < 0 \). If \(\varphi \in C^2(\overline{\Omega}) \) is a positive function with \(\max_{\overline{\Omega}} |D\varphi| < 1 \), then there is a unique positive solution \(u \) of (20).

The proof of Theorem 4.1 is accomplished by using the Schauder theory of \(a \) priori global estimates, the method of continuity and the Leray-Schauder fixed point theorem. Applying these techniques, we find all elements for proving Theorem 4.1. As usual, we will utilize the distance function \(d \) to \(\partial \Omega \) to construct a barrier function ([10, 11, 12]).

The \(C^0 \) estimates will be obtained by comparing the solution of (20) with the rotational examples studied in Section 3: here the hypothesis \(\alpha < 0 \) will be essential because if \(\alpha > 0 \) it is not possible to prevent that \(|u| \to 0 \) for a solution \(u \). For the \(C^1 \) estimates, we need to prove that \(|Du| \) is bounded away from 1 which will be deduced by using barrier functions. Finally, the hypothesis \(\alpha < 0 \) will be also used when we apply the Implicit Function Theorem for the existence of the linearized problem associated to (20).

The maximum principle for elliptic equations of divergence type implies the following result.

Proposition 4.2 (Touching principle). Let \(\Sigma_1 \) and \(\Sigma_2 \) be two \(\alpha \)-singular maximal surfaces. If \(\Sigma_1 \) and \(\Sigma_2 \) have a common tangent interior point and \(\Sigma_1 \) lies above \(\Sigma_2 \) around \(p \), then \(\Sigma_1 \) and \(\Sigma_2 \) coincide at an open set around \(p \).

We also need to formulate the comparison principle in the context of \(\alpha \)-singular maximal surfaces. We write the equation of (20) in classical notation. Define the operator

\[
Q[u] = (1 - |Du|^2)\Delta u + u_i u_j u_{ij} - \frac{\alpha(1 - |Du|^2)}{u}
\]

\[
= a_{ij}(Du)u_{ij} + b(u, Du),
\]

(21)

where

\[
a_{ij} = (1 - |Du|^2)\delta_{ij} + u_i u_j, \quad b = -\frac{\alpha(1 - |Du|^2)}{u}.
\]
Here $u_i = \partial u/\partial x_i$, $1 \leq i \leq n$, and we assume the summation convention of repeated indices. It is immediate that u is a solution of equation (20) if and only if $Q[u] = 0$. The ellipticity of the operator Q is clear because if $A = (a_{ij})$ and $\xi \in \mathbb{R}^n$, then

$$(1 - |p|^2)|\xi|^2 \leq \xi^t A\xi = (1 - |p|^2)|\xi|^2 + \langle p, \xi \rangle^2 \leq |\xi|^2. \quad (22)$$

Moreover, this shows that Q is not uniformly elliptic. We recall the comparison principle ([10, Th. 10.1]).

Proposition 4.3 (Comparison principle). Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. If $u, v \in C^2(\Omega) \cap C^0(\bar{\Omega})$ satisfy $Q[u] \geq Q[v]$ and $u \leq v$ on $\partial \Omega$, then $u \leq v$ in Ω.

Notice that if $\alpha < 0$, the classical theory implies the uniqueness of solutions of the Dirichlet problem.

Proposition 4.4. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and $\alpha < 0$. The solution of (20), if it exists, is unique.

In arbitrary dimension, it holds the property that any horizontal translation and any dilation from a point of $\mathbb{R}^n \times \{0\}$ preserves equation (20). Similarly, Theorem 3.3 holds where now (16) is

$$
\left(r \frac{u'}{\sqrt{1 - u^2}} \right)' = r^{n-1} \frac{\alpha}{u\sqrt{1 - u^2}}.
$$

We establish the solvability of (20) in the particular case that Ω is a ball of \mathbb{R}^n and φ is a positive constant.

Proposition 4.5. Let $\alpha < 0$ and $B_R \subset \mathbb{R}^n$ be a round ball of radius $R > 0$. If $c > 0$, then there is a unique radial solution u of (20) in B_R with $u = c$ on ∂B_R.

Proof. After a horizontal translation, we suppose that the origin $O \in \mathbb{R}^n$ is the center of B_R. By Proposition 3.2, let $v = v(r)$ be the solution of (16) with $v(0) = 1$. Recall that Theorem 3.3 asserts that the maximal domain of v is a ball B_b for some $b > 0$ with $v(b) = 0$. In the (r, v)-plane, consider the line $x_{n+1} = cr/R$. Since v is a decreasing function, the graph of v meets this line at one point $r = r_\alpha$, $u(r_\alpha) = cr_\alpha/R$. If $\lambda = R/r_\alpha$, then $u_\lambda(r) = \lambda u(r/\lambda)$ is a solution of (20) with $u_\lambda(R) = c$. \qed
Following a standard scheme, we start by finding C^0 estimates by using the rotational solutions of (7). In the following result, we do not require the mean convexity of Ω.

Proposition 4.6. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and $\alpha < 0$. If u is a positive solution of (20), there exists a constant $C_1 = C_1(\alpha, \Omega, \varphi) > 0$ such that
\begin{equation}
\min_{\partial \Omega} \varphi \leq u \leq C_1 \quad \text{in } \Omega. \tag{23}
\end{equation}

Proof. Since the right-hand side of (20) is negative, then $\inf_\Omega u = \min_{\partial \Omega} \varphi$ by the maximum principle. This proves the left inequality of (23).

For the upper estimate of (23), we consider the radial solution v of (16) with $v(0) = 1$ and let $\{v_\lambda : \lambda > 0\}$ where $v_\lambda(r) = \lambda v(r/\lambda)$. Denote B_R the maximal domain of v, with $v(R) = 0$ and let Σ_λ denote the graph of v_λ. Take $\lambda > 0$ sufficiently big so the graph S of u is included in the domain of the halfspace $x_{n+1} > 0$ bounded by $\Sigma_\lambda \cup B_\lambda R$. Let λ decrease to 0 until the first time λ_0 that Σ_λ meets Σ_u. By the maximum principle, the first contact must occur at some boundary point of S. Then this point is a point of $\partial \Omega$ or a point of ∂S. Since ∂S is the graph of φ, this value λ_0 depends on Ω and φ. Consequently, $u \leq v_{\lambda_0} \leq \sup_\Omega v_{\lambda_0}$. The proof finishes by letting $C_1 = \sup_\Omega v_{\lambda_0}$, which depends only on α, Ω and φ. \hfill \Box

The next step to prove Theorem 4.1 is the derivation of estimates for $|Du|$. This is done firstly proving the supremum of $|Du|$ is attained at some boundary point. In the next result, the assumption that α is negative is essential.

Proposition 4.7 (Interior gradient estimates). Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and $\alpha < 0$. If $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ is a positive solution of (20), then
\begin{equation}
\max_{\Omega} |Du| = \max_{\partial \Omega} |Du|. \tag{24}
\end{equation}

Proof. Let $v^k = u_k$, $1 \leq k \leq n$. By differentiating $Q[u] = 0$ with respect to x_k, we find for each k,
\begin{equation}
((1 - |Du|^2)\delta_{ij} + u_i u_j)v^k_{ij} + 2 \left(u_i \Delta u + u_j u_{ij} - \frac{\alpha u_i}{u} \right)v^k_i + \frac{\alpha(1 - |Du|^2)}{u^2}v^k = 0. \tag{24}
\end{equation}

Equation (24) is a linear elliptic equation in v^k. Because $\alpha < 0$, the coefficient for v^k is negative and the maximum principle ([10, Th. 3.7]) implies that $|v^k|$, and then $|Du|$ has not an interior maximum. In particular, the maximum of $|Du|$ on $\overline{\Omega}$ is attained at some boundary point, proving the result. \hfill \Box
As a consequence of Proposition 4.7, the problem of finding a priori estimates of $|Du|$ reduces to get these estimates along $\partial \Omega$. With this purpose, we prove that u admits barriers from above and from below along $\partial \Omega$. It is now when we use the assumption of the mean convexity of Ω.

Proposition 4.8 (Boundary gradient estimates). Let $\Omega \subset \mathbb{R}^n$ be a bounded mean convex domain and $\alpha < 0$. If $u \in C^2(\Omega) \cap C^1(\Omega)$ is a positive solution of (20), then there is a constant $C_2 = C_2(\alpha, \Omega, C_1, \|\varphi\|_{\|\cdot\|_1, \Omega}, \|\varphi\|_{\|\cdot\|_2, \Omega}) < 1$ such that

$$\max_{\partial \Omega} |Du| \leq C_2.$$

Proof. We consider the operator $Q[u]$ defined (21). For a lower barrier for u, we take the solution v^0 of the Dirichlet problem of the maximal surface equation in Ω with the same boundary φ. The function v^0 is the solution of (20) for $\alpha = 0$ whose existen is assured ([1, Th. 4.1]). Then

$$Q[v^0] = -\al(1 - |Dv^0|^2) \frac{v^0}{v^0} = 0 = Q[u].$$

Since $v^0 = u$ on $\partial \Omega$, we conclude $v^0 < u$ in Ω by the comparison principle.

We now construct an upper barrier for u by means of the distance function in a small tubular neighborhood of $\partial \Omega$ in Ω.

Consider the distance function $d(x) = \text{dist}(x, \partial \Omega)$ and let $\epsilon > 0$ sufficiently small so $\mathcal{N}_\epsilon = \{x \in \overline{\Omega} : d(x) < \epsilon\}$ is a tubular neighborhood of $\partial \Omega$. We parametrize \mathcal{N}_ϵ using normal coordinates $x \equiv (t, \pi(x)) \in \mathcal{N}_\epsilon$, where $x \equiv \pi(x) + t\nu(\pi(x))$ for some $t \in [0, \epsilon)$, $\pi : \mathcal{N}_\epsilon \to \partial \Omega$ is the orthogonal projection and ν is the unit normal vector to $\partial \Omega$ pointing to Ω. A straightforward computation leads to that d is C^2, $|Dd(x)| = 1$, and $\Delta d(x) \leq -(n - 1)H_{\partial \Omega}(\pi(x))$ for all $x \in \mathcal{N}_\epsilon$. Because Ω is mean convex, then $\Delta d(x) \leq 0$.

Define in \mathcal{N}_ϵ a function $w = h \circ d + \varphi$, where we use the same symbol φ for a spacelike extension of φ into Ω. The function h is defined as

$$h(t) = a \log(1 + kb^2t), \ b, k > 0, \ a = \frac{C_1}{\log(1 + b)}, \quad (25)$$

where C_1 is the constant that appears in (23) and b and k will be chosen later. Let us observe that $w > 0$ and that we require that $|Dw| < 1$. The computation of $Q[w]$ leads to

$$Q[w] = a_{ij}(h''d_id_j + h'd_{ij} + \varphi_{ij}) -\alpha \frac{(1 - |Dw|^2)}{w}.$$
From $|Dd| = 1$, it follows that $\langle D(Dd)x, Dd(x) \rangle = 0$ for all $x \in \mathbb{R}^n$. If $\{e_i\}$ is the canonical basis of \mathbb{R}^n and $x = e_i$, we find $d_i d_j = 0$. Thus

$$w_i w_j d_{ij} = (h'd_i + \varphi_i)(h'd_j + \varphi_j)d_{ij} = (h'^2 d_i + 2h' \varphi_i)d_j d_{ij} + \varphi_i \varphi_j d_{ij}$$

$$= \varphi_i \varphi_j d_{ij} \leq \varphi_i^2 \lambda_i^d \leq 0,$$

where λ_i^d are the eigenvalues of D^2d, which all are not positive because D^2d is negative semidefinite. Using this inequality, the definition of a_{ij} in (21) and (22), it follows that

$$a_{ij} d_{ij} = (1 - |Dw|^2) \Delta d + w_i w_j d_{ij} \leq (1 - |Dw|^2) \Delta d \leq 0.$$ Again (22) implies $a_{ij} d_i d_j \geq 1 - |Dw|^2$ and $a_{ij} \varphi_{ij} \leq |D^2 \varphi|$, where $|D^2 \varphi| = \sum_{ij} \sup_{\Omega} |\varphi_{ij}|$. Since $h' > 0$ and $\Delta d \leq 0$, we find

$$Q[w] \leq h''(1 - |Dw|^2) + h' \Delta d (1 - |Dw|^2) - \frac{\alpha}{w} (1 - |Dw|^2) + a_{ij} \varphi_{ij}$$

$$\leq \left(h'' - \frac{\alpha}{w}\right) (1 - |Dw|^2) + |D^2 \varphi|. \quad (26)$$

We now study the spacelike condition $|Dw| < 1$. The computation of $|Dw|$ and the Cauchy-Schwarz inequality gives

$$|Dw|^2 = h'^2 + |D\varphi|^2 + 2h' \langle Dd, D\varphi \rangle \leq (h' + |D\varphi|)^2.$$ Because $h' > 0$ and h' is decreasing on t, we deduce

$$|Dw| \leq h' + |D\varphi| \leq h'(0) + |D\varphi| \leq akb^2 + \mu \quad \text{in } \overline{\Omega}, \quad (27)$$

where $\mu = \|D\varphi\|_{0,\overline{\Pi}} < 1$. Fix a constant δ with the property $\mu < \delta < 1$. Then it is possible to choose k sufficiently small in (27) so $|Dw| \leq akb^2 + \mu < \delta$. Let $\beta = 1 - \delta^2$. If $h'' - \alpha/w < 0$, then (26) implies

$$Q[w] \leq \beta \left(h'' - \frac{\alpha}{w}\right) + \|D^2 \varphi\|_{0,\overline{\Pi}}. \quad (28)$$

The right-hand side in (28) is a function defined in $\partial \Omega \times [0, \epsilon]$. Let $\varphi_0 = \min_{\partial \Omega} \varphi > 0$ and we evaluate this function at $t = 0$, obtaining

$$\beta \left(-ak^2 b^4 - \frac{\alpha}{\varphi_0}\right) + \|D^2 \varphi\|_{0,\overline{\Pi}} \leq \beta \left(-\frac{(\delta - \mu)^2}{a} - \frac{\alpha}{\varphi_0}\right) + \|D^2 \varphi\|_{0,\overline{\Pi}}.$$ If b is sufficiently big, then $a \to 0$, hence the right-hand side in this inequality is negative. By compactness of $\partial \Omega \times [0, \epsilon]$ and by continuity, let us take b sufficiently large enough in (28) so $Q[w] < 0$. Even more, we require b so
large such that $1/(kb) < \epsilon$. We now change the tubular neighborhood N_ϵ by replacing ϵ by $\epsilon = 1/(kb)$ and we denote N_ϵ again.

In order to assure that w is a local upper barrier in N_ϵ for the Dirichlet problem (20), we need to have

$$u \leq w \quad \text{in} \quad \partial N_\epsilon. \quad (29)$$

In $\partial N_\epsilon \cap \partial \Omega$, the distance function is $d = 0$, so $w = \varphi = u$. On the other hand, in $\partial N_\epsilon \setminus \partial \Omega$, and because $\epsilon = 1/(kb)$, we find

$$w = h(\epsilon) + \varphi = \frac{C_1}{\log(1+b)} \log(1+kb^2\epsilon) + \varphi = C_1 + \varphi.$$

By Proposition 4.6, we have $u \leq C_1$ and we deduce $u < w$ in $N_\epsilon \setminus \partial \Omega$. Definitively, we find $Q[w] < 0 = Q[u]$ and $u \leq w$ in ∂N_ϵ, concluding that $u \leq w$ in N_ϵ by the comparison principle.

Consequently, we have proved the existence of lower and upper barriers for u in N_ϵ, namely, $v^0 \leq u \leq w$ in N_ϵ. Hence we deduce

$$\max_{\partial\Omega} |Du| \leq C_2 := \max\{\|Dw\|_{0,\Omega}, \|Dv^0\|_{0,\Omega}\}$$

and both values $\|Dw\|_{0,\Omega}, \|Dv^0\|_{0,\Omega}$ depend only on the initial data of the Dirichlet problem. This completes the proof of proposition.

With all above ingredients, we are in position to prove Theorem 4.1.

Proof of Theorem 4.1. We establish the solvability of the Dirichlet problem (20) by the method of continuity (see [10, Sec. 17.2]). Define the family of Dirichlet problems parametrized by $t \in [0,1]$

$$P_t : \begin{cases} Q_t[u] & = 0 \quad \text{in} \quad \Omega \\ u & = \varphi \quad \text{on} \quad \partial \Omega, \end{cases}$$

where

$$Q_t[u] = (1 - |Du|^2)\Delta u + u_t u_{ij} - \frac{\alpha t(1 - |Du|^2)}{u}. \quad (26)$$

The graph Σ_{u_t} of a solution of u_t is a $(t\alpha)$-singular maximal surface. Notice that if $t = 0$, $Q_0[u] = 0$ is the maximal surface equation and the solution of P_0 is the function v^0 that appeared in Proposition 4.8. As usual, let

$$\mathcal{A} = \{t \in [0,1] : \exists u_t \in C^{2,\gamma}(\Omega), u_t > 0, Q_t[u_t] = 0, u_t|_{\partial \Omega} = \varphi\}.$$

The proof consists to show that $1 \in \mathcal{A}$. For this, we prove that \mathcal{A} is a non-empty open and closed subset of $[0,1]$.

26
1. The set \mathcal{A} is not empty. This is because $0 \in \mathcal{A}$ since v^0 is the solution of \mathcal{P}_0.

2. The set \mathcal{A} is open in $[0, 1]$. Given $t_0 \in \mathcal{A}$, we need to prove that there is an $\epsilon > 0$ such that $(t_0 - \epsilon, t_0 + \epsilon) \cap [0, 1] \subset \mathcal{A}$. Define the map $T(t, u) = Q_t[u]$ for $t \in \mathbb{R}$ and $u \in C^{2, \gamma}(\overline{\Omega})$. Then $t_0 \in \mathcal{A}$ if and only if $T(t_0, u_{t_0}) = 0$. If we show that the derivative of Q_t with respect to u, say $(DQ_t)_u$, at the point u_{t_0} is an isomorphism, it follows from the Implicit Function Theorem the existence of an open set $\mathcal{V} \subset C^{2, \gamma}(\overline{\Omega})$, with $u_{t_0} \in \mathcal{V}$, and a C^1 function $\xi : (t_0 - \epsilon, t_0 + \epsilon) \to \mathcal{V}$ for some $\epsilon > 0$, such that $\xi(t_0) = u_{t_0} > 0$ and $T(t, \xi(t)) = 0$ for all $t \in (t_0 - \epsilon, t_0 + \epsilon)$: this guarantees that \mathcal{A} is an open set of $[0, 1]$.

The proof that $(DQ_t)_u$ is one-to-one is equivalent to prove that for any $f \in C^\gamma(\overline{\Omega})$, there is a unique solution $v \in C^{2, \gamma}(\overline{\Omega})$ of the linear equation $Lv := (DQ_t)_u(v) = f$ in Ω and $v = \varphi$ on $\partial\Omega$. The computation of L was done in Proposition 4.7, obtaining

$$Lv = (DQ_t)_u v = a_{ij}(Du)v_{ij} + b_i(u, Du, D^2u)v_i + c(u, Du)v,$$

where a_{ij} are defined in (21) and

$$b_i = 2\left(\Delta u - \frac{\alpha t}{u}\right)u_i + 2u_ju_{ij}, \quad c = \frac{\alpha t(1 - |Du|^2)}{u^2}. $$

Since $\alpha < 0$, $c \leq 0$ and the existence and uniqueness is assured by standard theory ([10, Th. 6.14]).

3. The set \mathcal{A} is closed in $[0, 1]$. Let $\{t_k\} \subset \mathcal{A}$ with $t_k \to t \in [0, 1]$. For each $k \in \mathbb{N}$, there exists $u_{t_k} \in C^{2, \gamma}(\overline{\Omega})$, $u_{t_k} > 0$, such that $Q_{t_k}[u_{t_k}] = 0$ in Ω and $u_{t_k} = \varphi$ in $\partial\Omega$. Define the set

$$\mathcal{S} = \{u \in C^{2, \gamma}(\overline{\Omega}) : \exists t \in [0, 1] \text{ such that } Q_t[u] = 0 \text{ in } \Omega, u_{|\partial\Omega} = \varphi\}.$$

Then $\{u_{t_k}\} \subset \mathcal{S}$. If we prove that the set \mathcal{S} is bounded in $C^{1, \beta}(\overline{\Omega})$ for some $\beta \in [0, \gamma]$, and since $a_{ij} = a_{ij}(Du)$ in (21), then Schauder theory proves that \mathcal{S} is bounded in $C^{2, \beta}(\overline{\Omega})$, in particular, \mathcal{S} is precompact in $C^{2}(\overline{\Omega})$ (see Th. 6.6 and Lem. 6.36 in [10]). Thus there exists a subsequence $\{u_{k_i}\} \subset \{u_{t_k}\}$ converging in $C^2(\overline{\Omega})$ to some $u \in C^2(\overline{\Omega})$. Since $T : [0, 1] \times C^2(\overline{\Omega}) \to C^0(\overline{\Omega})$ is continuous, it follows $Q_{t_i}[u] = T(t_i, u) = \lim_{t_i \to \infty} T(t_{k_i}, u_{k_i}) = 0$ in Ω. Moreover, $u_{|\partial\Omega} = \lim_{i \to \infty} u_{k_i|\partial\Omega} = \varphi$ on $\partial\Omega$, so $u \in C^{2, \gamma}(\overline{\Omega})$ and consequently, $t \in \mathcal{A}$.

27
The above reasoning asserts that A is closed in $[0, 1]$ provided we find a constant M independent of $t \in A$, such that

$$
\|u_t\|_{C^1(\Omega)} = \sup_{\Omega} |u_t| + \sup_{\Omega} |Du_t| \leq M.
$$

However the C^0 and C^1 estimates for the function u_1, that is, when the parameter t is $t = 1$, are enough as we now see.

The C^0 estimates for u_t follow with the comparison principle. Indeed, let $t_1 < t_2$, $t_i \in [0, 1]$, $i = 1, 2$. Then $Q_{t_1}[u_{t_1}] = 0$ and

$$
Q_{t_1}[u_{t_2}] = -(t_1 - t_2)\alpha(1 - |Du_{t_2}|^2) < 0 = Q_{t_1}[u_{t_1}]
$$

because $\alpha < 0$. Since $u_{t_1} = \varphi = u_{t_2}$ on $\partial\Omega$, the comparison principle yields $u_{t_1} < u_{t_2}$ in Ω. This proves that the solutions u_{t_i} are ordered in increasing sense according the parameter t. By (23), we find

$$
\sup_{\Omega} u_t \leq \sup_{\Omega} u_1 \leq C_1.
$$

In order to derive the gradient estimates for the solution u_t, the same computations obtained in Proposition 4.8 conclude that $\sup_{\partial\Omega} |Du_t|$ is bounded by a constant depending on α, Ω, φ and $\|u_t\|_{0,\Omega}$. Now (30) implies that the value $\|u_t\|_{0,\Omega}$ is bounded by C_1, which depends only on α, φ and Ω, but not on t.

The above three steps prove the existence part in Theorem 4.1. The uniqueness is consequence of Proposition 4.4 and this completes the proof of theorem.

A consequence of Theorem 4.1 is the solvability of the Plateau problem if $\alpha < 0$ in the following situation.

Corollary 4.9. Let Γ be a spacelike $(n - 1)$-submanifold of \mathbb{L}^{n+1} with an one-to-one orthogonal projection C on the hyperplane of equation $x_{n+1} = 0$ such that C is the boundary of a mean convex simply-connected domain Ω. Let $\alpha < 0$. If Γ has a spacelike extension to a graph on Ω, then there exists a unique α-singular maximal hypersurface S spanning Γ. Moreover, S is a graph on Ω.
Proof. Theorem 4.1 asserts the existence of an α-singular maximal hypersurface S whose boundary is Γ and S is a graph on Ω. Assume that M is another such a hypersurface. The property that M is spacelike implies that the orthogonal projection $p : \mathbb{R}^{n+1} \to \mathbb{R}^n = \mathbb{R}^n \times \{0\}$, $p(x) = (x_1, \ldots, x_n)$ is a local diffeomorphism between M and Ω. In particular, $p : M \to \Omega$ is a covering map and since Ω is simply connected, the map p is a diffeomorphism, in particular, M is a graph on Ω. Finally, the uniqueness of (7) when α is negative concludes that $M = S$. \hfill \Box

References

[1] R. Bartnik, L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature. Comm. Math. Phys. 87 (1982/83), 131–152.

[2] C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces. Proc. Amer. Math. Soc. 137 (2009), 161–169.

[3] J. Bemelmans, U. Dierkes, On a singular variational integral with linear growth, I: Existence and regularity of minimizers. Arch. Rat. Mech. Analysis, 100 (1987), 83–103.

[4] R. Böhme, S. Hildebrandt, E. Taush, The two-dimensional analogue of the catenary. Pacific J. Math. 88 (1980), 247–278.

[5] Corsato, C., De Coster, C., Omari, P.: Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Discrete Contin. Dyn. Syst. Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 297–303 (2015).

[6] U. Dierkes, A geometric maximum principle, Plateau’s problem for surfaces of prescribed mean curvature, and the two-dimensional analogue of the catenary. in: Partial Differential Equations and Calculus of Variations, pp. 116-141, Springer Lecture Notes in Mathematics 1357 (1988).

[7] U. Dierkes, Minimal hypercones and $C^{0,1/2}$ minimizers for a singular variational problem. Indiana Univ. Math. J. 37 (1988), 841–863.

[8] U. Dierkes, Singular minimal surfaces. Geometric analysis and nonlinear partial differential equations, 177–193, Springer, Berlin, 2003.
[9] U. Dierkes, G. Huisken, The n-dimensional analogue of the catenary: existence and nonexistence. Pacific J. Math. 141 (1990), 47–54.

[10] D. Gilbarg, N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*. Second edition. Springer-Verlag, Berlin, 1983.

[11] H. Jenkins, J. Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions. J. Reine Angew. Math. 229 (1968), 170–187.

[12] O. A. Ladyzhenskaya, N. N. Ural’tseva, Quasilinear elliptic equations and variational problems with several independent variables. Uspehi Mat. Nauk 16 (1961), 19–90.

[13] R. Lópe, Timelike surfaces with constant mean curvature in Lorentz three-space. Tohoku Math. J. (2) 52 (2000), 515–532.

[14] R. Lópe, Differential geometry of curves and surfaces in Lorentz-Minkowski space. Int. Electron. J. Geom. 7 (2014), 44–107.

[15] R. Lópe, Constant mean curvature hypersurfaces in the steady state space: a survey. Lorentzian geometry and related topics, 185–212, Springer Proc. Math. Stat., 211, Springer, Cham, 2017.

[16] R. Lópe, Invariant singular minimal surfaces. Ann. Global Anal. Geom. 53, (2018), 521–541.

[17] R. Lópe, The Dirichlet problem for the α-singular minimal surface equation. Arch. Math., 112 (2019), 213–222.

[18] R. Lópe, Uniqueness of critical points and maximum principles of the singular minimal surface equation. J. Diff. Eq. 266 (2019), 3927–3941.

[19] R. Lópe, Compact singular minimal surfaces with boundary. Amer. J. Math. to appear.

[20] A. Martínez, A. L. Martínez Triviño, A Calabi’s type correspondence. Nonlinear Anal. 191 (2020), 111637, 17 pp.

[21] J. C. C. Nitsche, A non-existence theorem for the two-dimensional analogue of the catenary. Analysis, 6 (1986), 143–156.

[22] B. O’Neill, *Semi-Riemannian Geometry with Applications to Relativity*, Academic Press, San Diego, CA, 1983.
[23] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Phil. Trans. Royal Soc. Lond. 264 (1969), 413–496.