Supersymmetric field equations from momentum space

Daniel Bennequin† and Michel Egeileh‡

†Institut de Mathématiques de Jussieu, Université Paris Diderot
Boîte Courrier 7012, 2, place Jussieu, 75251 Paris cedex 05, France
E-mail: bennequin@math.jussieu.fr

‡Department of Mathematics, American University of Beirut
P.O. Box 11-0236/Mathematics, Riad El-Solh/Beirut 1107 2020, Lebanon
E-mail: me58@aub.edu.lb

Abstract

It is known that every irreducible unitary representation of positive energy of the Poincaré group can be realized as a subspace of tensor fields on Minkowski spacetime subjected to suitable partial differential equations. We first describe geometrically the general mechanism that produces, via Fourier transform, the invariant differential operators corresponding to those representations. Then, using a super-version of the Fourier transform, we show explicitly how a massive irreducible unitary representation of the super Poincaré group in dimension (4|4) can be realized as a linear sub-supermanifold of suitably constrained superfunctions. In this way, we obtain supersymmetric equations in terms of ordinary (non-Grassmannian) fields. Finally, using the functor of points, we show how our equations can be related in a natural way to the Wess-Zumino equations for massive chiral superfields.

Contents

1 Introduction 2
2 Unitary dual of the Poincaré group 5
3 Realization in terms of spin-tensor fields 7
4 Examples in dimension 4: arbitrary spin 12
5 Unitary dual of the super-Poincaré group 15
6 Minkowski superspacetime in dimension (4|4) 21
7 Supersymmetric symbols 25
8 Super Fourier transform 33
9 Link with the superfield-theoretic approach 37
1 Introduction

From the point of view of relativistic quantum mechanics, 1-particle states of an elementary particle constitute a Hilbert space which, by the requirement of relativistic invariance, must carry an irreducible unitary representation of the Poincaré group $G := V \rtimes \text{Spin}(V)$, where V is a Lorentzian vector space.

Denote by \hat{G} the unitary dual of G, that is the set of all isomorphism classes of irreducible unitary representations of G. The various types of elementary particles are thus labeled by elements of \hat{G}; their classification is well-known and goes back to Wigner \cite{Wig}. For instance, one can apply the Mackey little group method for classifying the irreducible unitary representations of semidirect products. For the Poincaré group in signature $(1,3)$, the irreducible representations of physical interest are classified by a nonnegative real number m (the mass), and a half-integer $\sigma \in \{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\}$ (the spin).

On the other hand, if \hat{M} is Minkowski spacetime (the affine space directed by V), and if W is a representation of $H := \text{Spin}(V)$, one can construct the space of spin-tensor fields of type W on M as follows. Viewing M as a homogeneous space for G, we have a G-equivariant H-principal bundle $G \rightarrow \hat{M}$; let \mathbb{W} be the associated vector bundle by the action of H on W. This a G-equivariant vector bundle over \hat{M}, and the space of spin-tensor fields is defined as the space of smooth sections $\Gamma(\hat{M}, \mathbb{W})$. It carries a natural representation of the Poincaré group G.

We address in this paper the following question. Given an irreducible unitary representation $\mathcal{H}_{(m,\sigma)}$ of G, find a space of spin-tensor fields $\Gamma(\hat{M}, \mathbb{W})$ such that $\mathcal{H}_{(m,\sigma)}$ appears in the decomposition of (a suitable Hilbert space completion of a quotient of) $\Gamma(\hat{M}, \mathbb{W})$ under G. If we think of the elements of $\Gamma(\hat{M}, \mathbb{W})$ as the fields of some field theory on \hat{M}, this would mean that the particle corresponding to $\mathcal{H}_{(m,\sigma)}$ belongs to the spectrum of that field theory.

For a standard example, consider a massive spinless particle $\mathcal{H}_{(m,0)}$ (with $m > 0$). Then one can take $W = \mathbb{C}$ with the trivial representation of H. The corresponding space of spin-tensor fields can be identified with $C^\infty(\hat{M}, \mathbb{C})$, and one obtains a realization of $\mathcal{H}_{(m,0)}$ by considering a subspace of solutions of the Klein-Gordon equation $(\Box + m^2)\phi = 0$.

The next standard example is that of a massive spin $\frac{1}{2}$ particle $\mathcal{H}_{(m,\frac{1}{2})}$ (with $m > 0$). Then one can take $W = S_{\mathbb{C}}$, the complex four-dimensional spinor representation of $\text{Spin}(V)$. The corresponding space of spin-tensor fields can be identified with $C^\infty(\hat{M}, S_{\mathbb{C}})$, and one obtains a realization of $\mathcal{H}_{(m,\frac{1}{2})}$ by considering a subspace of solutions of the Dirac equation $(\not{D} - im)\psi = 0$.

The differential operators in these equations are of course G-equivariant. They can be obtained by constructing first an explicit realization of the irreducible representation $\mathcal{H}_{(m,\sigma)}$ in momentum space, and then taking Fourier transforms. While this procedure is well-known in the above two examples and in few others, the general case (with arbitrary spin) has not been described explicitly in the mathematics literature, up to our knowledge. It has been discussed in the physics literature (see for instance \cite{BK}), but the underlying geometric picture has not been made apparent.

The first goal of the paper is to fill this gap. The mechanism to generate equivariant
differential operators turns out to have a simple description in general terms. Given \(m \), let \(O_m \subset V^* \) be the orbit for \(H \) given by \(\|p\|^2 = m^2 \) and lying in the forward timelike cone. (When \(m = 0 \), we have to distinguish \(p = 0 \) from the two branches of the open cone.) Choose a preferred point in \(O_m \), and let \(K \) be the stabilizer of that point. The representation \(W \) of \(H \) that defines the spin-tensor fields can be restricted to \(K \), which allows the construction of an \(H \)-equivariant vector bundle over \(O_m \). We will show in section 3 that this bundle has a natural equivariant trivialization, which can be used to associate to every \(K \)-equivariant linear map from \(W \) to another \(H \)-module \(E \), an \(H \)-equivariant symbol \(\zeta : O_m \rightarrow W^* \otimes E \). These symbols, in turn, give rise to \(G \)-equivariant differential operators on spacetime.

From Mackey’s little group method, we know that if \(F_\sigma \) is the space of an irreducible unitary representation of \(K \), then \(\mathcal{H}(m,\sigma) := \text{ind}_K^H F_\sigma \) carries an irreducible unitary representation of \(G \). By a double application of Frobenius theorem, we show (Theorem 3.12) that in order to realize \(\mathcal{H}(m,\sigma) \) in the space of spin-tensor fields \(\Gamma(M,\mathcal{V}) \), one has to choose \(W \) in such a way that its decomposition under the stabilizer \(K \) contains \(F_\sigma \). Then, an equivariant symbol can be obtained by propagating along the orbit \(O_m \) a \(K \)-equivariant linear map on \(W \) whose kernel is \(F_\sigma \). Here, it is worth pointing out that in order to obtain a nontrivial differential operator (that is, a symbol which is not constant with respect to \(p \)), the chosen \(K \)-equivariant linear map should not be \(H \)-equivariant. This symmetry breaking appears as a necessary condition for dynamics.

The second goal of the paper is to introduce the supersymmetric generalization of the above mechanism. Now \(G \) is the super Poincaré group, corresponding to the super Lie algebra \(\mathfrak{g} = \mathfrak{spin}(V) \oplus V \oplus S^* \), where \(S^* \) is a real irreducible spinor representation of \(\text{Spin}(V) \). The classification of the irreducible unitary representations of the super Poincaré group can be achieved by a suitable adaptation of the Mackey little group method. This has been done fully at the group level in [CCTV]. In dimension 4 with signature \((1,3)\), these irreducible representations are classified by a nonnegative real number \(m \) (the mass), and a half-integer \(\sigma \in \{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\} \) (the superspin).

For simplicity, consider the massive superspin 0 case in dimension 4. The irreducible unitary representation \(\mathcal{H}(m,0) \) (with \(m > 0 \)) of \(G \) can be obtained by induction from an irreducible unitary representation of the stabilizer on \(F := \bigwedge^* S^*_+ \), where \(S^*_+ \) is the two-dimensional complex half-spinor representation \((S_C = S^*_+ \oplus S^*_-)\). At the infinitesimal level, the stabilizer is \(\mathfrak{k} \oplus \mathfrak{s}^* \), where \(\mathfrak{k} \) is the Lie algebra of the little group \(K \) that has appeared above in the non-super case. As a \(K \)-module, \(F \) is reducible: \(F = \mathbb{C} \oplus S^*_+ \oplus \bigwedge^2 S^*_+ \). In other words, the superparticle of mass \(m \) and superspin 0 is made of two particles of spin 0 (corresponding to \(\mathbb{C} \) and \(\bigwedge^2 S^*_+ \cong \mathbb{C} \)) and one particle of spin \(\frac{1}{2} \) (corresponding to \(S^*_+ \)), having all the same mass \(m \).

On the other hand, one can consider “superfields” on Minkowski superspacetime. The latter is defined as the linear cs supermanifold \(M_{cs} \) associated to the super vector space \(V_{\mathbb{C}} \oplus S_{\mathbb{C}} \). Thus, \(M_{cs} = (M, O_{M_{cs}}) \), where \(O_{M_{cs}}(U) = \mathcal{C}^\infty(U, \bigwedge^* S^*_{\mathbb{C}}) \) for every open set \(U \subset M \) (“cs” refers to this structure, as opposed to a complex analytic supermanifold structure, cf. [DM] for instance). Here, we consider a “superfield” as being a superfunction on \(M_{cs} \), possibly spin-tensor valued. (At first sight, this seems to be at odds with the notion of superfield that is found in the physics literature; however, as we explain in section 3 using the functor of points, it makes perfectly sense here to consider “superfields” as being just superfunctions.) Minkowski superspacetime \(M_{cs} \) carries of course a transitive action of the super Poincaré group \(G \), and we have a representation of \(G \) on the super
vector space $\mathcal{O}_{\text{Mcs}}(\hat{M}) = \mathcal{C}^\infty(\hat{M}, \bigwedge^\bullet S^*_\mathbb{C})$.

The question now is to realize the superparticle $\mathcal{H}(m, 0)$ as a G-invariant sub-superspace of (a suitable super-Hilbert space completion of a quotient of) $\mathcal{C}^\infty(\hat{M}, \bigwedge^\bullet S^*_\mathbb{C})$. This should certainly be possible: the obvious choice for W is $\bigwedge^\bullet S^*_\mathbb{C} \simeq \bigwedge^\bullet S^*_\mathbb{C} \otimes \bigwedge^\bullet S^*_\mathbb{C}$, whose decomposition under the stabilizer contains a subrepresentation isomorphic to $F = \bigwedge^2 S^*_\mathbb{C}$.

To single out the superparticle, it remains to find appropriate ($\epsilon \otimes S^*$)-equivariant linear maps on W, propagate them into ($\text{spin}(V) \oplus S^*$)-equivariant symbols, and then use some super version of the Fourier transform to obtain super Poincaré equivariant differential operators. We achieve this in sections 7 and 8. Inspired by [DeB], we use the standard supermetric on Mcs induced by the inner product on V and the natural Spin(V)-invariant symplectic structures ε_\pm on $S^*_\mathbb{C}$ to define the super Fourier transform of a (compactly supported) superfunction $f \in \mathcal{C}^\infty_{c}(\hat{M}, \bigwedge^\bullet S^*_\mathbb{C}) \simeq \mathcal{C}^\infty_c(\hat{M})$ as follows: it is the element $\hat{\hat{f}} \in \mathcal{C}^\infty(V^*)[\tau^a, \bar{\tau}^\dot{a}]$ defined by:

$$\hat{\hat{f}} := \int_{\text{Mcs}} e^{-i(p,x) + \varepsilon_+(\tau, \theta) + \varepsilon_-(\bar{\tau}, \bar{\theta})} f \, dx \, d\theta \, d\bar{\theta}$$

This super Fourier transform has desirable properties such as exchanging $\frac{\partial}{\partial \theta^a}$ with exterior multiplication by $\varepsilon_+(\tau^a, \cdot)$, and multiplication by θ^a with contraction by $(\varepsilon_+)^{-1}(\tau^a, \cdot)$. This already gives a hint of how the symbols of the fermionic differential operators should be constructed.

We also notice that restriction of a superfunction to the body (i.e. setting $\theta = \bar{\theta} = 0$) corresponds to taking the Berezin integral of its super Fourier transform.

In fact, if we define the bosonic Fourier transform of f to be:

$$\hat{f} := \int_{\hat{M}} e^{-i(p,x)} f \, dx$$

then

$$\hat{\hat{f}} := \int e^{-i(\varepsilon_+(\tau, \theta) + \varepsilon_-(\bar{\tau}, \bar{\theta}) - i(p,x))} \hat{f} \, d\theta \, d\bar{\theta}$$

We show (Theorem 8.2) that this purely odd super Fourier transform is nothing but the Hodge star with respect to the symplectic structure defined by ε_\pm, which explains our choice of notation.

Finally, using appropriate equivariant symbols on the orbit \mathcal{O}_m, we construct the super Poincaré equivariant differential operators whose kernel corresponds to the irreducible unitary representation of mass m and superspin 0, realized as a linear sub-supermanifold of superfunctions. In this way, we obtain in Theorem 8.7 supersymmetric differential equations in terms of ordinary (i.e. non-Grassmannian) fields. In particular, those equations reduce to a Klein-Gordon equation and a Dirac equation, the latter involving ordinary spinor fields with (commuting) complex-valued components. This seems to be at odds with the physics literature, where the spinor fields have typically anticommuting Grassmann-valued components. In fact, as we show via Theorem 9.5, the two points of view are naturally related via the functor of points, which establishes the link between our supersymmetric equations, and the Wess-Zumino supersymmetric field equations for massive chiral superfields in dimension $(4|4)$. It is clear that our results allow generalizations to arbitrary superspin, and then to other spacetime dimensions.
The article is organized as follows. In section 2, we recall briefly the main steps leading to the classification of the irreducible unitary representations of the Poincaré group, while introducing some of the notations and terminology that we will use later on. In section 3, we discuss the construction of equivariant differential operators whose kernels correspond to those irreducible representations. The content of section 3 is illustrated in section 4, where we present two examples that also serve as toy models for the analogous constructions that we perform later on in the super case. Section 5 is the super-analog of section 2: we recall briefly the main features from the classification of super Poincaré group’s irreducible unitary representations that will play a role in the remaining part of the paper. In section 6, we recall some of the structure of Minkowski superspacetime in dimension (4|4), and start discussing the relation to superparticles. In section 7, we construct the supersymmetric symbols that select the chiral representation and the irreducible massive representation of superspin 0. In section 8, we introduce the super Fourier transform on Minkowski superspacetime and use it to obtain the supersymmetric differential operators corresponding to our previously constructed symbols. Finally, we clarify in section 9 the link between superfunctions (in the sense of Berezin, Kostant, Leites...) and superfields (in the sense of the physicists).

2 Unitary dual of the Poincaré group

In all this paper, V denotes a real vector space of dimension d equipped with an inner product $⟨ , ⟩$ of signature $(1, d - 1)$, and M an affine space directed by V (Minkowski spacetime). We denote by C_+ one of the two connected components of the timelike cone $C = \{ v ∈ V | ⟨ v, v ⟩ > 0 \}$, and by Spin($V$) the spinorial double cover of the connected Lorentz group of V (preserving space and time orientation).

We denote by $Π(V)$ the Poincaré group of V, defined as the semidirect product $V ≀$ Spin(V). In sections 2 to 4 we will often abbreviate the notations by using the letter G for the Poincaré group $Π(V)$, and the letter H for the group Spin(V).

The unitary dual of G is the set \hat{G} of all isomorphism classes of irreducible unitary representations of G. We recall briefly in this section the main steps leading to the description of \hat{G}, that is, to the classification of irreducible unitary representations of G. For more details, see for example [vdB], [Var1] or [Var2].

Let $ρ : G → U(ℋ)$ be an irreducible unitary representation of G on a Hilbert space $ℋ$. We start by looking at the action of the translation subgroup $V ⊂ G$: to the restricted representation $ρ_V : V → U(ℋ)$, there corresponds a unique projection-valued measure P on the dual space V^* such that for every $f ∈ L^1(V)$,

$$\int_V f(v) ρ_V(-v) \, dv = \int_{V^*} \hat{f} \, dP$$

where \hat{f} is the Fourier transform of f (cf. [vdB]). This is the spectral measure associated with the family of commuting unitary operators $\{ρ_V(v) : v ∈ V\}$. The support O of this measure is by definition the spectrum of the representation $ρ$.

The map $ρ_V : V → U(ℋ)$ is H-equivariant: $ρ_V(hv) = ρ_H(h) ◦ ρ_V(v) ◦ ρ_H(h)^{-1}$ for all $h ∈ H$ and $v ∈ V$. As a result, the spectral measure P is H-equivariant, and its support (the spectrum O of $ρ$) is H-invariant. In fact, it is not difficult to show that
by irreducibility of \(\rho \), the action of \(H \) on \(\mathcal{O} \) is transitive. Thus, \(\mathcal{O} \) is an orbit for the action of \(H \) on \(V^* \). In summary, we have a map \(\text{spec} : \hat{G} \rightarrow V^*/H \) that associates to every (isomorphism class of) irreducible unitary representation of \(G \) its spectrum in \(V^*/H \).

Next, choose a preferred point \(q \in \mathcal{O} \) and let \(K \) be the stabilizer of \(q \) under the action of \(H \). Also, let \(F := \bigcap_{v \in V} \text{Ker}(\rho_V(v) - e^{i\langle v \rangle} \text{Id}_H) \). It is not difficult to check that \(F \) is invariant under \(K \), and that the representation \(\rho^F_K : K \rightarrow \text{U}(F) \) is irreducible (by irreducibility of \(\rho \)).

Thus, to every \([\rho] \in \hat{G} \), one can associate a pair \((\mathcal{O}, [\rho^F_K]) \) where \(\mathcal{O} \in V^*/H \) and \([\rho^F_K] \in \hat{K} \).

Conversely, given a pair \((\mathcal{O}, \lambda) \) where \(\mathcal{O} \in V^*/H \) and \(\lambda : K \rightarrow \text{U}(F) \) is an irreducible unitary representation, one can define an irreducible unitary representation \(\rho : G \rightarrow \text{U}(H) \) as follows. First, one induces a unitary representation \(\mathcal{H} \) of \(H \) from the unitary representation \(F \) of \(K \). Concretely, \(\mathcal{H} := \text{ind}^H_K F \) may be defined as follows: let \(\mathbb{H} \) be the \(H \)-equivariant Hermitian vector bundle over \(\mathcal{O} \) associated to the principal \(K \)-bundle \(H \rightarrow \mathcal{O} \) by the representation \(\lambda \) of \(K \) on \(F \). Then let \(\mathcal{H} \) be the space of \(L^2 \) sections of \(\mathbb{H} \):

\[
\mathcal{H} := \Gamma_{L^2}(\mathcal{O}, \mathbb{H})
\]

(remark that \(\mathcal{O} \) has an \(H \)-invariant measure, but otherwise one could have used half-densities). We have a unitary representation of \(H \) on \(\mathcal{H} \) defined by \((h \cdot \Psi)_p := h \cdot \Psi_{h^{-1}p} \), and if we make \(v \in V \) act by \((v \cdot \Psi)_p := e^{i\langle v \rangle} \Psi_p \), we obtain an irreducible unitary representation \(\rho \) of \(G \) on \(\mathcal{H} \).

In conclusion, irreducible unitary representations of \(G \) are classified by pairs \((\mathcal{O}, \lambda) \) where \(\mathcal{O} \in V^*/H \) and \(\lambda \) is an irreducible unitary representation of the little group \(K \).

Remark 2.1. Alternatively, given an orbit \(\mathcal{O} \in V^*/H \), the data of a unitary representation \(\rho \) of \(G \) with spectrum \(\mathcal{O} \) is equivalent to the data of a pair \((\gamma, P) \) where \(\gamma \) is a unitary representation of \(H \) and \(P \) is an \(H \)-equivariant projection-valued measure on \(\mathcal{O} \). Such a pair \((\gamma, P) \) (called “system of imprimitivity”) is in turn equivalent to a unitary representation of \(K \), by the imprimitivity theorem (cf. [vdB]). In particular, the following are equivalent: irreducible unitary representations of \(G \) with spectrum \(\mathcal{O} \), irreducible systems of imprimitivity on \(\mathcal{O} \), and irreducible unitary representations of \(K \).

In terms of the map \(\text{spec} : \hat{G} \rightarrow V^*/H \),

\[
\text{spec}^{-1}(\{\mathcal{O}\}) \simeq \hat{K}
\]

The above method can of course be used, without significant change, to classify irreducible unitary representations of arbitrary semidirect products \(G = A \rtimes H \) where \(A \) is abelian (cf. [vdB] or [Var] for instance). But here, we concentrate on the Poincaré group. The orbits of \(H = \text{Spin}(V) \) on \(V^* \) are well-known. They are of several types. We will focus on the case where the orbit is a sheet of hyperboloid \(\mathcal{O}^+_{m} := \{ p \in V^* \mid \langle p, p \rangle = m^2 \} \cap C^+_m \) for some \(m > 0 \), called the mass of the representation \(\rho \). Here, \(C^+_m = \{ p \in V^* \mid \langle p, p \rangle > 0 \} \) denotes the dual timelike cone, and \(C'_m = \{ p \in C^+_m \mid p_0 > 0 \} \), where we have written \(p = p_0 e^0 + p_1 e^1 + \cdots + p_{d-1} e^{d-1} \) in an orthonormal basis \((e^0, e^1, ..., e^{d-1}) \) of \(V^* \). Thinking of \(p_0 \) as the energy, the irreducible unitary representations of the Poincaré group corresponding to the orbit \(\mathcal{O}^+_{m} \) are said to be massive positive energy representations.
In this case, we choose me^0 as preferred point on the orbit \mathcal{O}^+_m, and we denote by K the stabilizer of me^0 under the action of H. It is not difficult to check that $K \simeq \text{Spin}(d-1)$. In particular, K is compact, and the elements of K are labeled by the highest weights.

In particular, when $d = 4$, we have $K = \text{Spin}(3) \simeq \text{SU}(2)$, and $\hat{K} \simeq \{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\}$. For $\sigma \in \{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\}$, we denote by F_σ the $((2\sigma + 1)$-dimensional) space of the irreducible unitary representation of K of spin σ, and by $\mathcal{H}_{(m,\sigma)}$ the corresponding irreducible unitary representation of G.

An important situation that we will not consider in the present paper is that of the massless irreducible unitary representations of the Poincaré group. These correspond to the case where the orbit is the one-sided cone $\mathcal{O}^+_0 := \{p \in V^* \mid \langle p, p \rangle = 0\} \cap C^+_\infty$. These are also positive energy representations. When $d = 4$, the stabilizer K is a semidirect product $\mathbb{C} \rtimes \text{U}(1)$. The irreducible unitary representations of K that are finite-dimensional correspond to a trivial action of \mathbb{C} and are classified by $\mathbb{U}(1) \simeq \mathbb{Z}$ (helicity). But there are also representations of K on which \mathbb{C} acts nontrivially, and these are infinite-dimensional (cf. [Var1] for more details).

Finally, let us note that the theory, at this level, allows perfectly for representations which are not of positive energy. For example, one has also the negative energy representations, corresponding to the sheet of hyperboloid $\mathcal{O}^-_m := \{p \in V^* \mid \langle p, p \rangle = m^2\} \cap C^-_\infty$ for some $m > 0$, where $C^-_\infty = \{p \in C^-_\infty \mid p_0 < 0\}$. There are also representations corresponding to orbits of the type $\{p \in V^* \mid \langle p, p \rangle = (i\mu)^2\}$ for some $\mu > 0$: these representations of imaginary mass $i\mu$ are not of positive energy (their energy is not even of definite sign).

3 Realization in terms of spin-tensor fields

We know that the Poincaré group $G := V \rtimes H$ (where $H := \text{Spin}(V)$) acts transitively on Minkowski spacetime \hat{M}, and if we choose an origin $o \in \hat{M}$, we obtain a splitting $i_o : H \rightarrow G$ of the short exact sequence

$$0 \rightarrow V \rightarrow G \rightarrow H \rightarrow 1$$

which allows for a right action of H on G, by setting $g \cdot h = g \cdot i_o(h)$ for every $g \in G$ and $h \in H$. Then, we can view G as a G-equivariant principal bundle over \hat{M} with structural group H. Denoting by $L : G \rightarrow H$ the group morphism in the above exact sequence, we see that any representation of H lifts trivially to a representation of G, by making any Poincaré transformation g act through its linear part $L(g)$.

Let W be an irreducible representation of H, and $\mathbb{W} := G \times_H W$, so that $\Gamma(\hat{M}, \mathbb{W})$ carries a representation of G. Recall that G acts on \mathbb{W} as follows: $a \cdot [g, w] := [ag, w]$ (so \mathbb{W} is a G-equivariant vector bundle). Next, if $\Phi \in \Gamma(\hat{M}, \mathbb{W})$, then $(g \cdot \Phi)_x := g \cdot \Phi_{g^{-1}x}$.

We start by the following lemma.

Lemma 3.1. The G-equivariant vector bundle \mathbb{W} has a natural, G-equivariant trivialization, inducing a G-isomorphism between $\Gamma(\hat{M}, \mathbb{W})$ and $\mathcal{C}^\infty(\hat{M}, W)$, the latter space carrying the action of G given by $(g \cdot \phi)(x) = L(g)(\phi(g^{-1}x))$ for every $g \in G$, $\phi \in \mathcal{C}^\infty(\hat{M}, W)$ and $x \in \hat{M}$.
Proof: Let $\Theta : \mathcal{W} \rightarrow \tilde{M} \times W$ be defined by $\Theta([g, w]) = (\pi(g), L(g)(w))$. Note that Θ is well-defined: $(\pi(g \cdot h), L(g \cdot h)(h^{-1} \cdot w)) = (\pi(g), L(g \cdot h)(h^{-1} \cdot w)) = (\pi(g), L(g)(L(h^{-1})(h^{-1} \cdot w))) = (\pi(g), L(g)(h^{-1} \cdot w))) = (\pi(g), L(g)(w)))$. Moreover, Θ is G-equivariant: $\Theta(a \cdot [g, w]) = \Theta([ag, w]) = (\pi(ag), L(ag)(w)) = (a\pi(g), L(a)(L(g)(w))) = a \cdot \Theta([g, w])$. The induced isomorphism $\Gamma(M, \mathcal{W}) \rightarrow \mathcal{C}^\infty(M, W)$ sends the section Φ of \mathcal{W} to the map $\phi : M \rightarrow W$ defined by $\phi(x) = \text{pr}_W(\Theta(\Phi_x))$. It is clearly equivariant since $\text{pr}_W(\Theta((g \cdot \Phi_x)_0)) = \text{pr}_W(\Theta((g \cdot \Phi_{g^{-1}x})_0)) = \text{pr}_W(g \cdot \Theta(\Phi_{g^{-1}x})) = \text{pr}_W(g \cdot \Theta(\Phi_x)) = L(g)(\phi(g^{-1}x)) = (g \cdot \phi)(x)$.

Remark 3.2. It is important to note here that the above lemma is more generally valid for any equivariant vector bundle over any homogeneous space, provided that the action of the little group on the typical fiber happens to extend into an action of the full group on that typical fiber. If this condition is satisfied, then the equivariant vector bundle admits an equivariant trivialization.

Let $\mathcal{H}_{(m, \sigma)}$ be the space of an irreducible unitary representation of G of mass $m > 0$ and spin σ. Let F_{σ} be the space of the irreducible unitary representation of the stabilizer K of the preferred point $m e^0 \in \mathcal{O}_m$.

Choose the spin σ such that F_{σ} appears in W_K. We are interested in determining a subspace of $(a$ suitable Hilbert space completion of a quotient of $\Gamma(M, \mathcal{W})$ isomorphic to $\mathcal{H}_{(m, \sigma)}$. Since we are working at mass m, it is natural to start by considering the vector bundle $\mathcal{W}_{(m)} := H \times_K W$, associated to the principal bundle $H \rightarrow \mathcal{O}_m$ by the representation of K on W obtained by restricting that of H. Note that $\mathcal{W}_{(m)}$ is an H-equivariant vector bundle over \mathcal{O}_m (the action is given by $b \cdot [h, w] := [bh, w]$), and therefore we have a representation of H on $\Gamma(\mathcal{O}_m, \mathcal{W}_{(m)})$ (given by $b \cdot \Psi_p := b \cdot \Psi_{b^{-1}p}$).

Proposition 3.3. Suppose there exists an H-module E, and a K-equivariant morphism $u : W \rightarrow E$ such that $\text{Ker } u = F_{\sigma}$. Suppose also that there exists a K-invariant sesquilinear form $\langle \cdot, \cdot \rangle$ on W whose restriction to F_{σ} is Hermitian positive definite. Then u determines an H-equivariant Hermitian subbundle $\mathcal{D}_{(m, \sigma)}$ of $\mathcal{W}_{(m)}$ isomorphic to $\mathbb{H}_{(m, \sigma)}$. Moreover, $\Gamma(L^2(\mathcal{O}_m, \mathcal{D}_{(m, \sigma)}))$ is unitarily equivalent to $\Gamma(L^2(\mathcal{O}_m, \mathbb{H}_{(m, \sigma)}))$ as representations of H (and then of G).

Proof: Let $E_{(m)} = H \times_K E$. Then $E_{(m)}$ is an H-equivariant vector bundle over \mathcal{O}_m. The K-morphism u determines a morphism of vector bundles $\tilde{u} : \mathcal{W}_{(m)} \rightarrow E_{(m)}$, defined by $\tilde{u}([h, w]) = [h, u(w)]$. This is well-defined by K-equivariance of u. Also, \tilde{u} is H-equivariant: $\tilde{u}(b \cdot [h, w]) = \tilde{u}([bh, w]) = [bh, u(w)] = b \cdot [h, u(w)] = b \cdot \tilde{u}([h, w])$. Let $\mathcal{D}_{(m, \sigma)} := \text{Ker } \tilde{u}$. Then $\mathcal{D}_{(m, \sigma)}$ is an H-equivariant vector subbundle of $\mathcal{W}_{(m)}$, with typical fiber $F_{\sigma} \subset W$. It is not difficult to see that $\mathcal{D}_{(m, \sigma)}$ is isomorphic to $\mathbb{H}_{(m, \sigma)}$ as H-equivariant bundles, and that $\Gamma(\mathcal{O}_m, \mathcal{D}_{(m, \sigma)})$ is isomorphic to $\Gamma(\mathcal{O}_m, \mathbb{H}_{(m, \sigma)})$ as representations of H (and then of G). Now we need to take care of the inner products. For $p \in \mathcal{O}_m$, define $h_p : (\mathcal{W}_{(m)})_p \times (\mathcal{W}_{(m)})_p \rightarrow \mathbb{C}$ by $g_p([h, w], [h', w']) = \langle w, w' \rangle_0$. This is well-defined by K-invariance of $\langle \cdot, \cdot \rangle_0$. Thus, we have a section $g \in \Gamma(\mathcal{O}_m, \mathcal{W}_{(m)}^* \otimes \overline{\mathcal{W}_{(m)}})$. This section is H-equivariant: $g_p(b \cdot [h, w], b \cdot [h', w']) = g_p([bh, w], [bh', w']) = \langle w, w' \rangle_0 = g_p([h, w], [h, w'])$. Suppose $[h, w] \in \mathcal{D}_{(m, \sigma)}$, so that $\tilde{u}([h, w]) = 0$. Then $[h, u(w)] = 0$, so $u(w) = 0$, and so $w \in F_{\sigma}$. Then, if $[h, w]$ is not on the zero section of $\mathcal{D}_{(m, \sigma)}$, we have $w \neq 0$ and $g_p([h, w], [h, w]) = \langle w, w \rangle_0 > 0$ since $w \in F_{\sigma} - \{0\}$ and the restriction of $\langle \cdot, \cdot \rangle_0$ to F_{σ} is Hermitian positive definite. Thus, $\mathcal{D}_{(m, \sigma)}$ is a Hermitian vector bundle.
$\Psi, \Psi' \in \Gamma_{L^2}(O_m, D_{(m,o)})$, set $\langle \Psi, \Psi' \rangle := \int_{O_m} g_p(\Psi_p, \Psi'_p) \, d\beta_m(p)$. It is not difficult to see that $D_{(m,o)}$ is isomorphic to $H_{(m,o)}$ as H-equivariant Hermitian bundles, and that the Hilbert space $\Gamma_{L^2}(O_m, D_{(m,o)})$ is equivalent to $\Gamma_{L^2}(O_m, H_{(m,o)})$ as unitary representations of H (and then of G).

Remark 3.4. In fact, the morphism of vector bundles \tilde{u} induces in turn an H-equivariant linear map $\tilde{u} : \Gamma_{L^2}(O_m, W_{(m)}) \to \Gamma_{L^2}(O_m, E_{(m)})$ given by $\tilde{u}(\Psi)_p = \tilde{u}(\Psi_p)$, and $\Gamma_{L^2}(O_m, D_{(m,o)}) = \text{Ker} \tilde{u}$, which gives another way to see that $\Gamma_{L^2}(O_m, D_{(m,o)})$ carries a representation of H.

Remark 3.5. We could have taken E to be just a K-module in the above proposition. The action of H on E (as well as on W) was not used anywhere. Now it is going to be used.

By Remark 3.2, we can apply Lemma 3.1 to each of the H-equivariant vector bundles $W_{(m)}$ and $E_{(m)}$. Thus, $W_{(m)}$ has a natural, H-equivariant trivialization $\Theta_{W_{(m)}} : W_{(m)} \to O_m \times W$, inducing an H-isomorphism between $\Gamma(O_m, W_{(m)})$ and $C^\infty(O_m, W)$, the latter space carrying the action of H given by $(h \cdot \psi)(p) = h \cdot \psi(h^{-1}p)$ for every $h \in H$, $\psi \in C^\infty(O_m, W)$ and $p \in O_m$. The same applies for $E_{(m)}$. We use these trivializations to associate a symbol to every K-equivariant linear map $u : W \to E$.

Given $u : W \to E$, define $\zeta_u : O_m \to W^* \otimes E$ as follows:

$$\zeta_u(p)(w) := \text{pr}_E(\Theta_{E_{(m)}}(\tilde{u}(\Theta_{W_{(m)}}^{-1}(p, w))))$$

In other words, ζ_u is the vector bundle morphism $\tilde{u} : W_{(m)} \to E_{(m)}$ “read in the trivializations”.

Proposition 3.6. The map $\zeta_u : O_m \to W^* \otimes E$ is H-equivariant.

Proof: If $T_u : C^\infty(O_m, W) \to C^\infty(O_m, E)$ is defined by $T_u(\psi)(p) := \text{pr}_E(\Theta_{E_{(m)}}(\tilde{u}(\Theta_{W_{(m)}}^{-1}(p, \psi(p))))$, where $\Psi_p := \Theta_{W_{(m)}}^{-1}(p, \psi(p))$, then $T_u(\psi)(p) = \text{pr}_E(\Theta_{E_{(m)}}(\tilde{u}(\Theta_{W_{(m)}}^{-1}(p, \psi(p))))$, and we clearly have

$$T_u(\psi)(p) = \zeta_u(p)(\psi(p))$$

The H-equivariance of \tilde{u} and that of the trivializations imply that $T_u(h \cdot \psi) = (\text{pr}_E \circ \Theta_{E_{(m)}} \circ \tilde{u})(h \cdot \psi) = h \cdot (\text{pr}_E \circ \Theta_{E_{(m)}} \circ \tilde{u})(\psi) = h \cdot T_u(\psi)$,

so T_u is H-equivariant. This, in turn, can be used in the above expression of T_u:

$$T_u(h \cdot \psi)(p) = \zeta_u(p)((h \cdot \psi)(p)) \implies (h \cdot T_u(\psi))(p) = \zeta_u(p)((h \cdot \psi)(p))$$

Thus, $\zeta_u(h^{-1}p)(\psi(h^{-1}p)) = h^{-1} \cdot \zeta_u(p)(h \cdot \psi(h^{-1}p))$, which implies that

$$\zeta_u(hp) = \rho(h) \circ \zeta_u(p) \circ \rho(h)^{-1}$$

for every $h \in H$ and $p \in O_m$. In other words, the map $\zeta_u : O_m \to W^* \otimes E$ is H-equivariant.

The above proof implies in particular that $\zeta_u(k \, me^0) = \rho(k) \circ \zeta_u(me^0) \circ \rho(k)^{-1}$ for every $k \in K$. Since $k \, me^0 = me^0$, we deduce that $\zeta_u(me^0) \in (W^* \otimes E)^K$, i.e. $\zeta_u(me^0) : W \to E$.
is K-equivariant. In fact, since H acts transitively on O_m, the map $\zeta_u: O_m \rightarrow W^* \otimes E$ is entirely determined by $\zeta_u(me^0)$. Indeed, any $p \in O_m$ can be written as $p = h_p(me^0)$ for some $h_p \in H$. Now set $\zeta_u(p) := \rho(h_p) \circ \zeta_u(me^0) \circ \rho(h_p)^{-1}$. By K-equivariance of $\zeta_u(me^0)$, this does not depend on the choice of h_p. Actually, from the definition of ζ_u, one can check that $\zeta_u(me^0) = u$, so that

$$\zeta_u(p) := \rho(h_p) \circ u \circ \rho(h_p)^{-1}$$

Note that $\Gamma(O_m, \mathbb{D}_{(m,\sigma)}) \simeq \{ \psi : O_m \rightarrow W \mid \zeta_u(p)(\psi(p)) = 0 \ \forall p \in O_m \}$.

The Hermitian bundle metric can also be trivialized equivariantly. To every $p \in O_m$, we can associate a sesquilinear form $\langle \cdot, \cdot \rangle_p$ on W in such a way that $\Theta_{\{W(m)\}_p} : (W(m))_p \rightarrow \{p\} \times W$ is an isometry. Since $\Theta_{\{W(m)\}_p}([h, w]) = (p, hw)$, we want to have $g_p([h, w], [h, w']) = \langle hw, hw' \rangle_p$, that is $\langle w, w' \rangle_0 = \langle hw, hw' \rangle_p$. Now any $p \in O_m$ can be written as $p = h_p(me^0)$ for some $h_p \in H$. Now set

$$\langle w, w' \rangle_p := \langle h_p^{-1} \cdot w, h_p^{-1} \cdot w' \rangle_0$$

By K-invariance of $\langle \cdot, \cdot \rangle_0$, this does not depend on the choice of h_p. Note that the map $O_m \rightarrow W^* \otimes \overline{W^*}$ which takes p to $\langle \cdot, \cdot \rangle_p$ is H-equivariant. Note that if $\psi, \psi' : O_m \rightarrow W$ are square-integrable maps such that for all $p \in O_m$, $\zeta_u(p)(\psi(p)) = 0 = \zeta_u(p)(\psi'(p))$, then

$$\langle \psi, \psi' \rangle = \int_{O_m} \langle \psi(p), \psi'(p) \rangle_p \, d\beta_m(p) = \int_{O_m} \langle h_p^{-1} \cdot \psi(p), h_p^{-1} \cdot \psi'(p) \rangle_0 \, d\beta_m(p)$$

It remains to define the equivariant differential operator corresponding to a map $\zeta_u : O_m \rightarrow W^* \otimes E$. Of course, the notions of symbols and differential operators that we discuss here are special cases of the corresponding standard notions, formulated in an equivariant setting. See for instance [CS].

Definition 3.7. We say that $\zeta_u : O_m \rightarrow W^* \otimes E$ is the symbol of a linear differential operator of order r at most if there exists a linear map $\Xi : \bigoplus_{k=0}^{r} \text{Sym}^k V_C^* \otimes W \rightarrow E$ such that for every $p \in O_m$ and $w \in W$,

$$\zeta_u(p)(w) = \Xi(w, p \otimes w, p \otimes p \otimes w, \ldots, p \otimes \ldots \otimes p \otimes w)$$

We write $\Xi = \bigoplus_{k=0}^{r} \Xi^{(k)}$, where for each k, $\Xi^{(k)} : \text{Sym}^k V_C^* \otimes W \rightarrow E$.

Then, the above expression becomes:

$$\zeta_u(p)(w) = \Xi^{(0)}(w) + \Xi^{(1)}(p \otimes w) + \Xi^{(2)}(p \otimes p \otimes w) + \cdots + \Xi^{(r)}(p \otimes \ldots \otimes p \otimes w)$$

Definition 3.8. If $\phi : \mathcal{M} \rightarrow W$ is a smooth map, and $x \in \mathcal{M}$, we define the rth-jet of ϕ at x (or the rth-order Taylor polynomial generated by ϕ at x) to be the element $j_x^{(r)}\phi \in \bigoplus_{k=0}^{r} \text{Sym}^k V_C^* \otimes W$ given by:

$$j_x^{(r)}\phi = (\phi(x), -id\phi(x), -d^2\phi(x), \ldots, (-i)^rd^{(r)}\phi(x))$$

Definition 3.9. Suppose $\zeta_u : O_m \rightarrow W^* \otimes E$ is the symbol of a linear differential operator of order r. The linear differential operator of order r at most associated to ζ_u is the linear map $D : C^\infty(M, W) \rightarrow C^\infty(M, E)$ defined as follows: for every $\phi \in C^\infty(M, W)$, and $x \in M$,

$$(D\phi)(x) := \Xi(j_x^{(r)}\phi) = \Xi^{(0)}(\phi(x)) + \Xi^{(1)}(-id\phi(x)) + \Xi^{(2)}(-d^2\phi(x)) + \cdots + \Xi^{(r)}((-i)^rd^{(r)}\phi(x))$$
Proposition 3.10. If
\[\phi(x) = \int_{\mathcal{O}_m} e^{ip(x)} \hat{\phi}(p) \, d\beta_m(p) \]
for some \(\hat{\phi} : \mathcal{O}_m \to W \), then
\[(D\phi)(x) = \int_{\mathcal{O}_m} e^{ip(x)} \zeta_u(p)(\hat{\phi}(p)) \, d\beta_m(p) \]

Proof:
\[d^{(k)}\phi(x) = \int_{\mathcal{O}_m} i^k e^{ip(x)} p \otimes \cdots \otimes p \otimes \hat{\phi}(p) \, d\beta_m(p) \]
and so
\[(-i)^k d^{(k)}\phi(x) = \int_{\mathcal{O}_m} e^{ip(x)} p \otimes \cdots \otimes p \otimes \hat{\phi}(p) \, d\beta_m(p) \]
This implies that
\[\Xi^{(k)}((-i)^k d^{(k)}\phi(x)) = \int_{\mathcal{O}_m} e^{ip(x)} \Xi^{(k)}(p \otimes \cdots \otimes p \otimes \hat{\phi}(p)) \, d\beta_m(p) \]
As a result,
\[(D\phi)(x) = \sum_{k=0}^r \Xi^{(k)}((-i)^k d^{(k)}\phi(x)) = \int_{\mathcal{O}_m} e^{ip(x)} \zeta_u(p)(\hat{\phi}(p)) \, d\beta_m(p) \]
\[\square \]

Thus, \(\zeta_u(p)(\hat{\phi}(p)) = 0 \) for all \(p \in \mathcal{O}_m \) is equivalent to partial differential equation
\[D\phi = 0 \]

Finally, we want to determine the multiplicity of a given irreducible unitary representation \(\mathcal{H}_{(m,\sigma)} \) of \(G \) in \(\Gamma(M,\mathbb{W}) \).

Lemma 3.11.
\[\text{Hom}_G(\mathcal{H}_{(m,\sigma)}, \Gamma(M,\mathbb{W})) \simeq \text{Hom}_K(F, \text{res}_H^G W) \]

Proof: By Frobenius reciprocity, we have \(\text{Hom}_G(\mathcal{H}_{(m,\sigma)}, \text{ind}_H^G W) \simeq \text{Hom}_H(\text{res}_H^G \mathcal{H}_{(m,\sigma)}, W) \).
Also by Frobenius reciprocity, we have \(\text{Hom}_H(W, \text{ind}_H^G F) \simeq \text{Hom}_K(\text{res}_H^G W, F) \).
But \(\text{res}_H^G \mathcal{H}_{(m,\sigma)} = \text{ind}_K^H F \) (and \(\Gamma(M,\mathbb{W}) = \text{ind}_H^G \mathbb{W} \)). \[\square \]

We are ready to state the following important consequence of the above lemma.

Theorem 3.12. Let \(\mathcal{H}_{(m,\sigma)} \) be the positive energy irreducible unitary representation of the Poincaré group of mass \(m > 0 \) and spin \(\sigma \) (obtained by induction from an irreducible unitary representation \(F \) of the little group \(K \)). Also, let \(\mathbb{W} \) be the vector bundle on Minkowski spacetime \(\mathcal{M} \) associated to a representation \(W \) of the group Spin(\(V \)). The multiplicity of \(\mathcal{H}_{(m,\sigma)} \) in \(\Gamma(M,\mathbb{W}) \) (as representations of the Poincaré group) is equal to the multiplicity of \(F \) in the decomposition of \(W \) under the subgroup \(K \) of Spin(\(V \)).

For example, in dimension 4 with signature (1, 3), the tensor field representations in which the particle \(\mathcal{H}_{m,\sigma} \) will appear are the \(\mathcal{C}^\infty(\mathcal{M}, \text{Sym}^{2\alpha} S_+^* \otimes \text{Sym}^{2\beta} S_+^*) \) where \(\alpha + \beta \geq \sigma \).
4 Examples in dimension 4: arbitrary spin

We illustrate the content of the preceding section with a couple of examples in four-dimensional Minkowski spacetime ($d = 4$).

Massive particle of spin $\frac{1}{2}$

The Clifford action is defined by the map $\gamma : V^* \rightarrow \text{End}(S_C)$, where $S_C \simeq \mathbb{C}^4$ is the space of Dirac spinors. We will also use the associated map $\tilde{\gamma} : V^* \otimes S_C \rightarrow S_C$. We know that $\mathcal{H}(m, \frac{1}{2})$ is obtained by induction from the irreducible unitary representation of $K \simeq \text{Spin}(3) \simeq \text{SU}(2)$ of spin $\frac{1}{2}$. The space of this representation is $F_{\frac{1}{2}} \simeq \mathbb{C}^2$.

We want to realize $\mathcal{H}(m, \frac{1}{2})$ in the space of Dirac spinor fields $\mathbb{C}^\infty(\hat{M}, S_C)$. Thus, in the notations of the preceding section, we have $W = S_C$, and we need an SU(2)-equivariant map u on the Spin(V)-module S_C whose kernel is $F_{\frac{1}{2}}$. We take $u = \gamma^0 - \text{Id}_{S_C}$ where $\gamma^0 := \gamma(e^0)$. Note that $e^0 : V \rightarrow \mathbb{R}$ is SU(2)-invariant, since the point me^0 is stabilized by SU(2). Therefore, $u : S_C \rightarrow S_C$ is SU(2)-equivariant, and since $\gamma^0 \circ \gamma^0 = \text{Id}_{S_C}$, the subspace $\text{Ker} \ u \subset S_C$ is two-dimensional (and SU(2)-invariant).

The corresponding symbol $\zeta_u : \mathcal{O}_m \rightarrow S_C^* \otimes S_C$ is given by:

$$\zeta_u(p) = \frac{1}{m} \gamma(p) - \text{Id}_{S_C}$$

(since if $h_p \in \text{Spin}(V)$ is such that $h_p \cdot (me^0) = p$, we have $\zeta_u(p) = h_p \cdot (\gamma^0 - \text{Id}_{S_C}) \cdot h_p^{-1} = h_p \cdot \gamma(e^0) \cdot h_p^{-1} - \text{Id}_{S_C} = \gamma(h_p \cdot e^0) - \text{Id}_{S_C} = \gamma(\frac{1}{m}p) - \text{Id}_{S_C} = \frac{1}{m} \gamma(p) - \text{Id}_{S_C}$).

Let $\Xi : S_C \oplus (V^* \otimes S_C) \rightarrow S_C$ be defined by

$$\Xi(s, p \otimes s) = -s + \frac{1}{m} \gamma(p)(s) = -s + \frac{1}{m} \tilde{\gamma}(p \otimes s)$$

Then $\zeta_u(p)(s) = \Xi(s, p \otimes s)$ for every $p \in \mathcal{O}_m$ and $s \in S_C$. Thus, ζ_u is the symbol of a first-order differential operator $D_u : \mathbb{C}^\infty(\hat{M}, S_C) \rightarrow \mathbb{C}^\infty(\hat{M}, S_C)$. For $\psi \in \mathbb{C}^\infty(\hat{M}, S_C)$,

$$D_u \psi(x) = \Xi(\psi(x), -id\psi(x)) = -\psi(x) + \frac{1}{m} \tilde{\gamma}(-id\psi(x)) = -\frac{i}{m}(-im\psi(x) + \tilde{\gamma}(d\psi(x)))$$

and so

$$D_u = -\frac{i}{m}(\hat{D} - im)$$

where $\hat{D} := \tilde{\gamma} \circ d\psi$ is the Dirac operator.

Thus, the irreducible unitary representation $\mathcal{H}(m, \frac{1}{2})$ of the Poincaré group is selected by $\gamma(p)\hat{\psi}(p) = m\hat{\psi}(p)$ in momentum space, and by the Dirac equation $\hat{D}\psi - im\psi = 0$ in spacetime. (In principle, one should also impose the Klein-Gordon equation as well, but here this is not necessary as the Klein-Gordon equation is already implied by the Dirac equation).

Massive particle of spin $\sigma \geq 1$
We know that $\mathcal{H}_{(m,\sigma)}$ is obtained by induction from the irreducible unitary representation of $K \simeq \text{Spin}(3) \simeq \text{SU}(2)$ of spin σ. The space of this representation is $F_{\sigma} \simeq \text{Sym}^{2\sigma} \mathbb{C}^2$.

We want to realize $\mathcal{H}_{(m,\sigma)}$ in a space of spin-tensor fields $C^\infty(M, W)$. From Theorem 3.12, we know that we can take $W = \text{Sym}^{2\alpha} S_+ \otimes \text{Sym}^{2\beta} S_-$ with $\alpha + \beta \geq \sigma$. We consider the minimal choice $\alpha + \beta = \sigma$. Of course, $\alpha, \beta \in \{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\}$, and we consider in what follows the interesting case $\alpha > 0$ and $\beta > 0$. We need an SU(2)-equivariant map u on the Spin(V)-module W whose kernel is F_{σ}. At this point, we need to know how to decompose $\text{Sym}^{2\alpha} S_+ \otimes \text{Sym}^{2\beta} S_-$ into irreducible representations of SU(2).

Recall that the irreducible complex representations of SU(2) are classified by $\{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\}$. More precisely, for each $\sigma \in \{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\}$, the vector space $\text{Sym}^{2\sigma} S_+^*$ carries the irreducible representation of SU(2) of highest weight σ. We say that $\text{Sym}^{2\sigma} S_+^*$ is the irreducible representation of spin σ of SU(2); its dimension is $2\sigma + 1$, and its internal structure can be described as follows.

A canonical choice of Cartan subalgebra of $\mathfrak{su}(2)$ is $\mathfrak{t} := \left\{ \begin{pmatrix} i\theta & 0 \\ 0 & -i\theta \end{pmatrix} : \theta \in \mathbb{R} \right\}$. Under \mathfrak{t}, the representation $\text{Sym}^{2\sigma} S_+^*$ decomposes into one-dimensional weight spaces:

$$\text{Sym}^{2\sigma} S_+^* = L_{-\sigma} \oplus L_{-\sigma + 1} \oplus L_{-\sigma + 2} \oplus \cdots \oplus L_{\sigma - 2} \oplus L_{\sigma - 1} \oplus L_\sigma$$

where $\begin{pmatrix} i\theta & 0 \\ 0 & -i\theta \end{pmatrix}$ acts on L_j by $s \mapsto 2j(i\theta)s$.

For instance, the spin 0 representation is the trivial representation on \mathbb{C}, the spin $\frac{1}{2}$ representation is $S_+^* = L_{-\frac{1}{2}} \oplus L_{\frac{1}{2}}$, and the spin 1 representation is $\text{Sym}^2 S_+^* = L_{-1} \oplus L_0 \oplus L_1$.

Lemma 4.1. Assume in addition that $\alpha \geq \beta$. Then, as representation of SU(2),

$$\text{Sym}^{2\alpha} S_+^* \otimes \text{Sym}^{2\beta} S_-^* \simeq \text{Sym}^{2(\alpha + \beta)} S_+^* \oplus \text{Sym}^{2(\alpha + \beta - 1)} S_+^* \oplus \cdots \oplus \text{Sym}^{2(\alpha - \beta)} S_+^*$$

Proof: As representations of SU(2), S_+^* and S_-^* become equivalent. Thus, we need to decompose $\text{Sym}^{2\alpha} S_+^* \otimes \text{Sym}^{2\beta} S_+^*$. We start by writing the weight-space decomposition of each factor: we have

$$\text{Sym}^{2\alpha} S_+^* = L_{-\alpha} \oplus L_{-\alpha + 1} \oplus L_{-\alpha + 2} \oplus \cdots \oplus L_{\alpha - 2} \oplus L_{\alpha - 1} \oplus L_\alpha$$

and

$$\text{Sym}^{2\beta} S_+^* = L_{-\beta} \oplus L_{-\beta + 1} \oplus L_{-\beta + 2} \oplus \cdots \oplus L_{\beta - 2} \oplus L_{\beta - 1} \oplus L_\beta$$

Taking the tensor product, and using the fact that $L_j \otimes L_k = L_{j+k}$, we obtain

$$\text{Sym}^{2\alpha} S_+^* \otimes \text{Sym}^{2\beta} S_+^* = L_{-\alpha - \beta} \oplus 2L_{-\alpha - \beta + 1} \oplus 3L_{-\alpha - \beta + 2} \oplus \cdots \oplus 3L_{\alpha + \beta - 2} \oplus 2L_{\alpha + \beta - 1} \oplus L_{\alpha + \beta}$$

which implies easily the result.

Notice that by the above lemma,

$$\text{Sym}^{2\alpha - 1} S_+^* \otimes \text{Sym}^{2\beta - 1} S_-^* \simeq \text{Sym}^{2(\alpha - 1)} S_+^* \oplus \text{Sym}^{2(\alpha - 2)} S_+^* \oplus \cdots \oplus \text{Sym}^{2(\beta - 1)} S_+^*$$

and therefore we have (also by the above lemma):

$$\text{Sym}^{2\alpha} S_+^* \otimes \text{Sym}^{2\beta} S_-^* \simeq \text{Sym}^{2\alpha} S_+^* \oplus (\text{Sym}^{2\alpha - 1} S_+^* \otimes \text{Sym}^{2\beta - 1} S_-^*)$$
Consequently, we define
\[u : \text{Sym}^{2a} S_+^* \otimes \text{Sym}^{2b} S_+^* \to \text{Sym}^{2a-1} S_+^* \otimes \text{Sym}^{2b-1} S_+^* \]
proceeding as follows. First, extend \(e^0 \in V^* \) by \(C \)-linearity to obtain an element \(e^0 \in V^*_C \).
Then compose with \(\Gamma_C : S_+^* \otimes S_+^* \to V_C \). This gives a map \(e^0 \circ \Gamma_C : S_+^* \otimes S_+^* \to C \).
Now let \(\iota : \text{Sym}^{2a} S_+^* \otimes \text{Sym}^{2b} S_+^* \to S_+^* \otimes S_+^* \otimes \text{Sym}^{2a-1} S_+^* \otimes \text{Sym}^{2b-1} S_+^* \) be the canonical inclusion. Finally, set \(u := ((e^0 \circ \Gamma_C) \otimes \text{Id}) \circ \iota \). Then \(u \) is SU(2)-equivariant (since \(e^0 \) is SU(2)-equivariant).

In fact, we have the following exact sequence of SU(2)-modules:
\[0 \to \text{Sym}^{2a} S_+^* \to \text{Sym}^{2a} S_+^* \otimes \text{Sym}^{2b} S_+^* \to \text{Sym}^{2a-1} S_+^* \otimes \text{Sym}^{2b-1} S_+^* \to 0 \]
the second nontrivial map being \(u \), and the first nontrivial map being \((\text{Id} \otimes \iota) \circ \iota_{a,b} \), where \(\iota_{a,b} : \text{Sym}^{2a} S_+^* \to \text{Sym}^{2a} S_+^* \otimes \text{Sym}^{2b} S_+^* \) is the canonical inclusion and \(\iota : S_+^* \to S_+^* \) is an SU(2)-equivariant isomorphism.

It is easy to check that the corresponding symbol \(\zeta_u : O_m \to W^* \otimes E \) (where \(E := \text{Sym}^{2a-1} S_+^* \otimes \text{Sym}^{2b-1} S_+^* \)) is given by
\[\zeta_u(p) = ((p \circ \Gamma_C) \otimes \text{Id}_E) \circ \iota \]
Let \(\Xi : W \oplus (V^* \otimes W) \to E \) be defined by \(\Xi(w, p \otimes w) = \Xi^{(1)}(p \otimes w) \), where \(\Xi^{(1)} : V^* \otimes W \to E \) is given by
\[\Xi^{(1)} = (\text{tr} \otimes \text{Id}_E) \circ (\text{Id}_{V^*_C} \otimes \Gamma_C \otimes \text{Id}_E) \circ (j \otimes \iota) \]
where \(j : V^* \to V^*_C \) is the canonical inclusion.

Then \(\Xi(w, p \otimes w) = \Xi^{(1)}(p \otimes w) = ((\text{tr} \otimes \text{Id}_E) \circ (\text{Id}_{V^*_C} \otimes \Gamma_C \otimes \text{Id}_E))(p \otimes \iota(w)) = (\text{tr} \otimes \text{Id}_E)(p \otimes (\Gamma_C \otimes \text{Id}_E)(\iota(w))) = ((p \circ \Gamma_C) \otimes \text{Id}_E)(\iota(w)) = \zeta_u(p)(w) \)
for every \(p \in O_m \) and \(w \in W \). Thus, \(\zeta_u \) is the symbol of a first-order differential operator \(D_u : C^\infty(M, W) \to C^\infty(M, E) \). For \(\phi \in C^\infty(M, W) \),
\[D_u \phi(x) = \Xi(\phi(x), -i\text{d}\phi(x)) = \Xi^{(1)}(-i\text{d}\phi(x)) \]
We denote this “divergence-type” differential operator \(D_u \) by \(\delta_{a,b} \).

In conclusion, we have the following theorem:

Theorem 4.2. Let \(\mathcal{H}_{(m,\sigma)} \) be the positive energy irreducible unitary representation of the Poincaré group of mass \(m > 0 \) and spin \(\sigma \) (obtained by induction from an irreducible unitary representation \(F \) of the little group \(K \)). Also, let \(\mathbb{W} \) be the vector bundle on Minkowski spacetime \(M \) associated to the representation \(W = \text{Sym}^{2a} S_+^* \otimes \text{Sym}^{2b} S_+^* \) of the group Spin\((V) \). Assume that \(F \) appears in the decomposition of \(W \) under \(K \) (which is equivalent to \(\alpha + \beta \geq \sigma \)). Then \(\mathcal{H}_{(m,\sigma)} \) is selected by the condition \(\zeta_u(p)(\hat{\phi}(p)) = 0 \) in momentum space, and by the following equations in spacetime:
\[
\begin{cases}
\Box + m^2 \phi = 0 \\
\delta_{a,b} \phi = 0
\end{cases}
\]
where \(\delta_{a,b} : C^\infty(M, \text{Sym}^{2a} S_+^* \otimes \text{Sym}^{2b} S_+^*) \to C^\infty(M, \text{Sym}^{2a-1} S_+^* \otimes \text{Sym}^{2b-1} S_+^*) \).
5 Unitary dual of the super-Poincaré group

In this section, we recall briefly some of the main aspects of the irreducible unitary representations of the super Poincaré group. We start by recalling quickly the notions of super-Hilbert space, super-adjoint, and the notion of unitary representation of super Lie groups (viewed as super Harish-Chandra pairs). Here we follow closely [CCTV], to which we refer the reader for more details. Then, we discuss the main ingredients of the classification of superparticles, restricting our attention to the massive case in even spacetime dimension, in particular in $d = 4$ (which is the case of interest for us in the coming sections).

Definition 5.1. A super Hilbert space is a \mathbb{Z}_2-graded complex vector space $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ equipped with a scalar product $\langle , \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ satisfying the following conditions:

1. \langle , \rangle is an even map (and so $\langle \mathcal{H}_0, \mathcal{H}_1 \rangle = \langle \mathcal{H}_1, \mathcal{H}_0 \rangle = 0$).

2. \langle , \rangle is sesquilinear (we adopt the convention where sesquilinear forms are linear in the first argument and conjugate-linear in the second).

3. \langle , \rangle has graded-Hermitian symmetry: $\langle \Psi', \Psi \rangle = (-1)^{|\Psi|+|\Psi'|} \langle \Psi, \Psi' \rangle$ for all homogeneous $\Psi, \Psi' \in \mathcal{H}$.

4. \langle , \rangle is positive-definite in the following sense: $\langle \Psi_0, \Psi_0 \rangle > 0$ for every $\Psi_0 \in \mathcal{H}_0 - \{0\}$ and $-i\langle \Psi_1, \Psi_1 \rangle > 0$ for every $\Psi_1 \in \mathcal{H}_1 - \{0\}$.

Remark 5.2. One can associate to \langle , \rangle another scalar product \langle , \rangle_0 defined by: $\langle \Psi, \Psi' \rangle_0 := \langle \Psi, \Psi' \rangle$ if $\Psi, \Psi' \in \mathcal{H}_0$, $\langle \Psi, \Psi' \rangle_0 := -i\langle \Psi, \Psi' \rangle$ if $\Psi, \Psi' \in \mathcal{H}_1$ and $\langle \Psi, \Psi' \rangle_0 := 0$ if Ψ and Ψ' are of different parity. Then $(\mathcal{H}, \langle , \rangle_0)$ is an ordinary Hilbert space, in which the subspaces \mathcal{H}_0 and \mathcal{H}_1 are orthogonal.

Recall that a densely defined operator $T : \mathcal{D} \to \mathcal{H}$ is said to be even (resp. odd) if $\mathcal{D} = (\mathcal{D} \cap \mathcal{H}_0) \oplus (\mathcal{D} \cap \mathcal{H}_1)$ and for every $\Psi \in \mathcal{D} \cap \mathcal{H}_k$ ($k \in \{0, 1\}$), $T(\Psi) \in \mathcal{H}_k$ (resp. $T(\Psi) \in \mathcal{H}_{1-k}$).

Definition 5.3. Let $T : \mathcal{D} \to \mathcal{H}$ be a densely defined operator. The super-adjoint of T is the linear operator $T^! : \mathcal{D}^* \to \mathcal{H}$ defined by $T^! = T^* \ if T \ is \ even \ and \ T^! = -iT^* \ if \ T \ is \ odd \ (here, \ T^* : \mathcal{D}^* \to \mathcal{H} \ is \ the \ adjoint \ of \ T \ in \ (\mathcal{H}, \langle , \rangle_0))$.

Remark 5.4. It is not difficult to check that for $\Psi \in \mathcal{D}$ and $\Psi' \in \mathcal{D}^*$, we have $\langle T(\Psi), \Psi' \rangle = (-1)^{|T||\Psi|} \langle \Psi, T^!(\Psi') \rangle$.

Definition 5.5. A super Harish-Chandra pair is a pair (G_0, g) where $g = g_0 \oplus g_1$ is a super Lie algebra, and G_0 is a Lie group with Lie algebra g_0, such that there is a linear action of G_0 on g restricting to the adjoint action on g_0 and whose differential is the adjoint action of g_0 on g.

Remark 5.6.

1. We shall always assume in the present paper that the group G_0 is connected.
2. It is well-known (cf. [DM] for instance) that the category of super Lie groups is equivalent to the category of super Harish-Chandra pairs. In what follows, we will refer to super Harish-Chandra pairs as super Lie groups.

A finite-dimensional unitary representation of a super Lie group \((G_0, g)\) is a pair \((\rho, \eta)\) where \(\rho : G_0 \rightarrow U(F)\) is an even unitary representation of \(G_0\) on a finite-dimensional super Hilbert space \(F\), and \(\eta : g \rightarrow gl(F)\) is a morphism of super Lie algebras such that:

- \(\eta|_{\mathfrak{g}_0} = \rho\)
- \(\eta(gX) = \rho(g) \circ \eta(X) \circ \rho(g)^{-1}\) for all \(g \in G_0\) and \(X \in \mathfrak{g}\)
- \(\eta(X)^\dagger = -\eta(X)\) for all \(X \in \mathfrak{g}\)

Define \(\alpha : \mathfrak{g}_1 \rightarrow gl(F)_1\) by \(\alpha(X) := e^{-i\frac{\eta}{2}} \eta(X)\). It is easy to check that for \(X \in \mathfrak{g}_1\), the condition \(\eta(X)^\dagger = -\eta(X)\) is equivalent to \(\alpha(X)^* = \alpha(X)\). Moreover, since \(\eta\) is a morphism of super Lie algebras, we have in particular \(\eta([X, Y]) = \eta(X) \circ \eta(Y) + \eta(Y) \circ \eta(X)\) for all \(X, Y \in \mathfrak{g}_1\). Taking into account the fact that \(\eta|_{\mathfrak{g}_0} = \rho_*\), this becomes \(-i\rho_([X, Y]) = \alpha(X) \circ \alpha(Y) + \alpha(Y) \circ \alpha(X)\) for all \(X, Y \in \mathfrak{g}_1\).

On the other hand, if \(\rho : G \rightarrow U(H)\) is a unitary representation of a Lie group \(G\) on a Hilbert space \(H\), an element \(\Psi \in H\) is called a smooth vector for the representation \(\rho\) if the map \(g \mapsto \rho(g)(\Psi)\) from \(G\) to \(H\) is smooth. We denote by \(H^\infty\) the subspace of smooth vectors of \(H\). It is clear that \(H^\infty\) is \(G\)-invariant, and one can define a representation of \(g\) on \(H^\infty\) by setting \(X\Psi := \frac{d}{dt}[\pi(e^{tX})(\Psi)]|_{t=0}\) for every \(X \in \mathfrak{g}\) and \(\Psi \in H^\infty\). In addition, \(H^\infty\) is dense in \(H\).

We are ready to define unitary representations of super Lie groups on general, possibly infinite-dimensional, super Hilbert spaces.

Definition 5.7. A unitary representation of a super Lie group \((G_0, g)\) is a pair \((\rho, \alpha)\) where \(\rho : G_0 \rightarrow U(H)\) is an even unitary representation of \(G_0\) on a super Hilbert space \(H\), and \(\alpha : \mathfrak{g}_1 \rightarrow gl(H^\infty)_1\) is a linear map such that:

- \(-i\rho_([X, Y]) = \alpha(X) \circ \alpha(Y) + \alpha(Y) \circ \alpha(X)\) for all \(X, Y \in \mathfrak{g}_1\)
- \(\alpha(gX) = \rho(g) \circ \alpha(X) \circ \rho(g)^{-1}\) for all \(g \in G_0\) and \(X \in \mathfrak{g}_1\)
- \(\alpha(X) : H^\infty \rightarrow H^\infty\) is a symmetric odd operator for all \(X \in \mathfrak{g}_1\)

Remark 5.8. If \((\rho, \alpha)\) is a unitary representation of \((G_0, g)\) on \(H\), then the linear map \(\eta : g \rightarrow gl(H^\infty)\) defined by \(\eta(X) := \rho_*(X_0) + e^{i\frac{\alpha}{2}}\alpha(X_1)\) for all \(X = X_0 + X_1 \in g\) is a morphism of super Lie algebras.

Let \(S\) be an irreducible real Clifford module for \(V\). The action of the Clifford algebra \(C\ell(V)\) on \(S\) induces the spin representation \(\text{Spin}(V) \rightarrow GL(S)\), and there is a \(\text{Spin}(V)\)-equivariant symmetric morphism \(\Gamma : S^* \otimes S^* \rightarrow V\) which is positive in the sense that \(\Gamma(s \otimes s) \in C_+\) for all \(s \in S^*\), and definite (\(\Gamma(s \otimes s) = 0 \iff s = 0\)).
The super-Poincaré algebra of V is the super Lie algebra $\mathfrak{sp}(V) := (\text{spin}(V) \oplus V) \oplus S^*$, the super-bracket being defined as follows:

$[\text{spin}(V), \text{spin}V] \subset \text{spin}V$ is given by the ordinary Lie bracket of the Lie algebra $\text{spin}(V)$,

$[\text{spin}(V), V] \subset V$ is given by the standard representation of $\text{spin}(V)$ on V,

$[\text{spin}(V), S^*] \subset S^*$ is given by the spin representation $\text{spin}(V) \rightarrow \mathfrak{gl}(S^*)$,

$[V, V] = [V, S^*] = 0$,

$[S^*, S^*] \subset V$ is given by Γ: for $s_1, s_2 \in S^*$, $[s_1, s_2] := -2\Gamma(s_1 \otimes s_2)$.

The super Poincaré group of V is the super Lie group $\text{SII}(V) = (\Pi(V), \mathfrak{sp}(V))$.

We recall now the main steps leading to the classification of irreducible unitary representations of the super Poincaré group $\text{SII}(V)$. In sections 5 and 6, we will often abbreviate the notations by using the letter G for the super Poincaré group $\text{SII}(V)$, and the letter H for the super Lie group $(\text{Spin}(V), \mathfrak{sp}(V) \oplus S^*)$.

Let (ρ, α) be an irreducible unitary representation of $\text{SII}(V)$ on a super Hilbert space \mathcal{H}, so that $\rho : \Pi(V) \rightarrow U(\mathcal{H})$ is an even unitary representation of $\Pi(V)$ on \mathcal{H}, and $\alpha : S^* \rightarrow \mathfrak{gl}(\mathcal{H}_1) \oplus \mathfrak{gl}(\mathcal{H}_2)$ is a linear map such that:

1. $-i\rho_s([s_1, s_2]) = \alpha(s_1) \circ \alpha(s_2) + \alpha(s_2) \circ \alpha(s_1)$ for all $s_1, s_2 \in S^*$
2. $\alpha(gs) = \rho(g) \circ \alpha(s) \circ \rho(g)^{-1}$ for all $g \in \Pi(V)$ and $s \in S^*$
3. $\alpha(s) : \mathcal{H}_1^\infty \rightarrow \mathcal{H}_1^\infty$ is a symmetric odd operator for all $s \in S^*$

Similarly to the case of the Poincaré group, we start by looking at the action of the translation subgroup $V \subset G$. The corresponding spectral measure P on V^* is H-equivariant (H acts on V^* through $\text{Spin}(V)$, the action of S^* being trivial), and its support O (the spectrum of (ρ, α)) is H-invariant. In fact, O is an orbit for the action of $\text{Spin}(V)$ on V^* (by irreducibility of (ρ, α)).

Next, choose a preferred point $q \in O$ and consider the super Lie group $\tilde{K} := (K, \mathfrak{t} \oplus S^*)$ of H, where K is the stabilizer of q under the action of $\text{Spin}(V)$. Then \tilde{K} is the stabilizer of q under the action of H. Also, let $F := \bigcap_{v \in V} \text{Ker}(\rho_v - e^{ip(\cdot)}\text{Id}_\mathcal{H})$. It is not difficult to check that F is invariant under K, and since $[V, S^*] = 0$, F is invariant under S^* as well. Thus, F is invariant under K, and the irreducibility of (ρ, α) implies that the unitary representation (ρ^K, α^K) of K on F is irreducible.

Thus, to every $[(\rho, \alpha)] \in \tilde{G}$, one can associate a pair $(O, [(\rho^K, \alpha^K)])$ where $O \in V^*/\text{Spin}(V)$ and $[(\rho^K, \alpha^K)] \in \tilde{K}$.

In fact, if $p \in O$, and $\mathcal{H}_p := \bigcap_{v \in V} \text{Ker}(\rho_v(v) - e^{ip(v)}\text{Id}_\mathcal{H}) = \bigcap_{v \in V} \text{Ker}(\rho_v(v) - ip(v)\text{Id}_\mathcal{H})$, then $\eta(s_1) \circ \eta(s_2) + \eta(s_2) \circ \eta(s_1) = \rho_v([s_1, s_2])$ implies $\eta(s) \circ \eta(s) = -\rho_v(\Gamma(s \otimes s))$. On \mathcal{H}_p, this becomes $\eta(s) \circ \eta(s) = -ip(\Gamma(s \otimes s)) \text{Id}_{\mathcal{H}_p}$. Now for each $s \in S^*$, the operator $\eta(s)$ is odd super antihermitian, and therefore has its spectrum on the second bisector $\mathbb{R}e^{-i\frac{\Gamma}{2}}$. It follows that $\eta(s) \circ \eta(s)$ is even super Hermitian, and therefore has its spectrum on the half-line $\mathbb{R}_+(-i)$. Consequently, $p(\Gamma(s \otimes s)) \geq 0$ for all $s \in S^*$, and therefore $p \in C^+_\Gamma$ (since Γ is positive). This forces the orbit O to be contained in the forward timelike cone C^+_Γ. Such an orbit will be called admissible. We see that contrary to the case of the Poincaré group, there is already a restriction on the type of orbit that can arise. In other words,
2. For all η From now on, we assume that the dimension d of $\text{Ker} q$ on F. Concretely, $H := \text{ind}_F^H \mathbb{H}$ may be defined as follows. Let \mathbb{H} be the H-equivariant Hermitian super vector bundle over \mathcal{O} associated to the principal \tilde{K}-bundle $H \rightarrow \mathcal{O}$ by the representation $\langle \lambda, \beta \rangle$ of \tilde{K} on F. Then let H be the space of L^2 sections of \mathbb{H}:

$$H := \Gamma_{L^2}(\mathcal{O}, \mathbb{H})$$

(remark that \mathcal{O} has an H-invariant measure, but otherwise one could have used half-densities). Then we get a unitary representation of H on \mathcal{H}, and if we make $v \in V$ act by $(v \cdot \Psi)_p := e^{ip(v)} \Psi_p$, we obtain an irreducible unitary representation (ρ, α) of G on H.

Remark 5.9. Alternatively, given an admissible orbit \mathcal{O}, the data of a unitary representation (ρ, α) of G with spectrum \mathcal{O} is equivalent to the data of a pair (γ, P) where γ is a unitary representation of H and P is an H-equivariant projection-valued measure on \mathcal{O}. Such a pair (γ, P) (“super system of imprimitivity”) is in turn equivalent to a unitary representation of \tilde{K}, by a super version of the imprimitivity theorem (cf. [CCTY]). In particular, the following are equivalent: irreducible unitary representations of G with spectrum \mathcal{O}, irreducible systems of imprimitivity on \mathcal{O}, and irreducible unitary representations of \tilde{K}.

Now we need to investigate the structure of $F = \mathcal{H}_q$. We will do this only in the massive case, that is when the orbit \mathcal{O} is a sheet of hyperboloid $\mathcal{O}_m := \{p \in \mathbb{V}^* \mid \langle p, p \rangle = m^2\} \cap C_+^\gamma$ for some $m > 0$. We will also restrict ourselves very soon to the case where d is even, and then to $d = 4$, since this the case where we will focus our study in sections 5 and 6.

Let $\langle \cdot, \cdot \rangle_q := -q(\Gamma(s \otimes s))$ (so that $\langle s_1, s_2 \rangle_q = -q(\Gamma(s_1 \otimes s_2))$ for all $s_1, s_2 \in S^*$).

Proposition 5.10.

1. The pairing $\langle \cdot, \cdot \rangle_q$ is a negative-definite inner product on S^*.

2. The subspace F is a Clifford module for $(S^*, \langle \cdot, \cdot \rangle_q)$.

Proof : 1. The symmetry of $\langle \cdot, \cdot \rangle_q$ is a consequence of that of Γ. For all $s \in S^*$, we have $\langle s, s \rangle_q = -q(\Gamma(s \otimes s)) \leq 0$ since $q \in C_+^{\gamma'}$ and $\Gamma(s \otimes s) \in \tilde{C}_+$ (positivity of Γ). On the other hand, if $\langle s, s \rangle_q = 0$, then $q(\Gamma(s \otimes s)) = 0$, and so $\Gamma(s \otimes s) \in \text{Ker} q \cap \tilde{C}_+$. But $\text{Ker} q \cap \tilde{C}_+ = \{0\}$ since $q \in C_+^{\gamma'}$. Thus, $\Gamma(s \otimes s) = 0$, and so $s = 0$ by definiteness of Γ.

2. For all $s_1, s_2 \in S^*$ and $\Psi \in F$, we have $(\eta(s_1) \circ \eta(s_2) + \eta(s_2) \circ \eta(s_1))(\Psi) = [\eta(s_1), \eta(s_2)](\Psi) = \eta([s_1, s_2])(\Psi) = \eta(-2\Gamma(s_1 \otimes s_2))(\Psi) = i\eta(-2\Gamma(s_1 \otimes s_2))(\Psi) = 2i\langle s_1, s_2 \rangle_q \Psi$. Thus,

$$\eta(s_1) \circ \eta(s_2) + \eta(s_2) \circ \eta(s_1) = 2i\langle s_1, s_2 \rangle_q \text{ Id}_F$$

□

From now on, we assume that the dimension d of V is even.
Since S^* is even dimensional, it has a unique irreducible Clifford module, constructed as follows. First, we complexify S^*: let $S^*_C := S^* \otimes \mathbb{C}$. Since d is even, then we know that S^*_C decomposes into two inequivalent irreducible representations of $\text{Spin}(V)$:

$$S^*_C = S^*_+ \oplus S^*_-$$

If $\Gamma_C : S^*_C \otimes S^*_C \rightarrow V_C$ is the complexification of $\Gamma : S^* \otimes S^* \rightarrow V$, then $(\Gamma_C)|_{S^*_C \otimes S^*_C} = 0$, so we are left with $\Gamma_C : S^*_+ \otimes S^*_+ \rightarrow V_C$. As a result, $(s_+, s'_+)_q = (s_-, s'_-)_q = 0$ for all $s_+, s'_+ \in S^*_+$ and $s_-, s'_- \in S^*_-$, and $(,)_q : S^*_+ \times S^*_+ \rightarrow \mathbb{C}$ is nondegenerate, since $(,)_q : S^*_C \times S^*_C \rightarrow \mathbb{C}$ is nondegenerate. This shows that $S^*_C = S^*_+ \oplus S^*_-$ is a decomposition of S^*_C into two maximal isotropic subspaces.

$\bigwedge^\bullet S^*_+$ is the irreducible Clifford module we were looking for. We could have chosen $\bigwedge^\bullet S^*_-$, which is equivalent. An element $s = s_+ + s_- \in S^*_C = S^*_+ \oplus S^*_-$ acts by sending $a \in \bigwedge^\bullet S^*_+$ to $s_+ \wedge a + i s_- a$. In particular, we see that the elements of S^*_+ act on $\bigwedge^\bullet S^*_+$ as creation operators (sending $\bigwedge^k S^*_+$ to $\bigwedge^{k+1} S^*_+$), whereas the elements of S^*_- act on $\bigwedge^\bullet S^*_+$ as annihilation operators (sending $\bigwedge^k S^*_+$ to $\bigwedge^{k-1} S^*_+$).

Going back to the Clifford module F, we deduce that it is necessarily a direct sum of copies of the unique irreducible Clifford module $\bigwedge^\bullet S^*_+$. Thus, we have

$$F \simeq \bigwedge^\bullet S^*_+ \otimes E$$

for some finite-dimensional vector space E on which S^* does not act, and whose dimension is the multiplicity of $\bigwedge^\bullet S^*_+$ in F.

Note that we have $F_0 \simeq \bigwedge^\text{even} S^*_+ \otimes E$ and $F_1 \simeq \bigwedge^\text{odd} S^*_+ \otimes E$. Moreover, we see immediately (from its explicit description given above) that the action of S^* exchanges F_0 and F_1.

Now we need to determine the possibilities for the vector space E. To this end, we notice that if K is the stabilizer of q under the action of $\text{Spin}(V)$ on O_m, we have a natural unitary representation of K on F (since $\rho(k)(\mathcal{H}_q) = \mathcal{H}_{kq} = \mathcal{H}_q$ for all $k \in K$). It is not difficult to check that since $m > 0$, we have $K \simeq \text{Spin}(d-1)$.

Proposition 5.11. The vector space E carries an irreducible representation of K.

Proof: Suppose K acted reducibly on E. Then $\mathfrak{k} \oplus S^*$ would act reducibly on F. But then (ρ, α) would itself be reducible, contrary to our assumption. \qed

Consequently, we have

$$F \simeq \bigwedge^\bullet S^*_+ \otimes E^{(\sigma)}$$

for some highest weight σ, called the *superspin* of the representation (ρ, α).

In conclusion, the irreducible unitary representations of the super-Poincaré group are classified by the mass and the superspin.
Of course, F is reducible under K:

$$F = \bigoplus_{\omega \in \Delta_K} E^{(\omega)}$$

for some spectrum Δ_K that has to be determined, where $E^{(\omega)}$ is the irreducible representation of K of highest weight ω. For each $\omega \in \Delta_K$, the irreducible unitary representation $E^{(\omega)}$ of K induces an irreducible unitary representation $\mathcal{H}^{(m,\omega)}$ of the Poincaré group $\Pi(V)$. It is the representation of mass m and spin ω, and it is a direct factor of \mathcal{H}. Namely,

$$\mathcal{H}^{(m,\sigma)} = \bigoplus_{\omega \in \Delta_K} \mathcal{H}^{(m,\omega)}$$

Let us illustrate the above in the case $d = 4$.

Then $\dim_{\mathbb{R}} S^* = 4$ and $\dim_{\mathbb{C}} S^*_+ = \dim_{\mathbb{C}} S^*_-$ = 2. Moreover, $K \simeq \text{Spin}(3) \simeq \text{SU}(2)$.

Consider an irreducible unitary representation (ρ, α) of $\Pi(V)$ of mass m and superspin σ. Then

$$F \simeq \bigwedge^* S^*_+ \otimes \text{Sym}^{2\sigma} S^*_+$$

For simplicity, let us consider first the special case of superspin 0, so that F is an irreducible Clifford module for S^*:

$$F \simeq \bigwedge^* S^*_+$$

We can describe explicitly the Clifford action on $\bigwedge^* S^*_+ = \mathbb{C} \oplus S^*_+ \oplus \bigwedge^2 S^*_+$. For instance, the element $s_+ \in S^*_+$ acts as a creation operator, sending the vacuum $1 \in \mathbb{C}$ to $s_+ \in S^*_+$, while the element $s'_+ \cdot s_+$ of the Clifford algebra sends 1 to $s'_+ \wedge s_+ \in \bigwedge^2 S^*_+$. On the other hand, the element $s_- \in S^*_-$ acts as an annihilation operator, sending the vacuum $1 \in \mathbb{C}$ to 0, the vector $s_+ \in S^*_+$ to $\langle s_+, s_- \rangle_p \in \mathbb{C}$, and the bivector $s_+ \wedge s'_+ \in \bigwedge^2 S^*_+$ to $\langle s'_+, s_- \rangle_p s_+ \in S^*_+$.

The decomposition of F under K is

$$F = (E^{(0)} \otimes \mathbb{C}^2) \oplus E^{(1/2)}$$

Indeed, this is just the decomposition $\bigwedge^* S^*_+ = \mathbb{C} \oplus S^*_+ \oplus \bigwedge^2 S^*_+$, where each of \mathbb{C} and $\bigwedge^2 S^*_+$ carries the trivial one-dimensional representation of $\text{SU}(2)$ (of spin 0), and S^*_+ carries the standard (two-dimensional) representation of $\text{SU}(2)$ (of spin $\frac{1}{2}$).

Thus, a superparticle of superspin 0 contains two particles of spin 0 and one particle of spin $\frac{1}{2}$. Note that $\dim F_0 = \dim(E^{(0)} \otimes \mathbb{C}^2) = 2$ and $\dim F_1 = \dim(E^{(1/2)}) = 2$, so we have indeed equality between the bosonic and fermionic degrees of freedom.

Now we turn to the case of a superspin $\sigma > 0$. Then

$$F \simeq \bigwedge^* S^*_+ \otimes \text{Sym}^{2\sigma} S^*_+ = (\mathbb{C} \otimes \text{Sym}^{2\sigma} S^*_+) \oplus (S^*_+ \otimes \text{Sym}^{2\sigma} S^*_+) \oplus (\bigwedge^2 S^*_+ \otimes \text{Sym}^{2\sigma} S^*_+)$$
The first and the third term are clearly equivalent to \(\text{Sym}^{2\sigma} S^*_+ \); we just need to decompose the second term into irreducible representations of \(SU(2) \). To this end, recall that
\[
S^*_+ = L_{-\frac{1}{2}} \oplus L_{\frac{1}{2}} \quad \text{and} \quad \text{Sym}^{2\sigma} S^*_+ = L_{-\sigma} \oplus L_{-\sigma+1} \oplus L_{-\sigma+2} \oplus \cdots \oplus L_{\sigma-2} \oplus L_{\sigma-1} \oplus L_{\sigma}.
\]

Taking the tensor product, and using the fact that \(L_j \otimes L_k = L_{j+k} \), we obtain that
\[
S^*_+ \otimes \text{Sym}^{2\sigma} S^*_+ = L_{-\sigma-\frac{1}{2}} \oplus 2L_{-\sigma+\frac{1}{2}} \oplus 2L_{-\sigma+\frac{3}{2}} \oplus \cdots \oplus 2L_{\sigma-\frac{1}{2}} \oplus 2L_{\sigma+\frac{1}{2}} \oplus L_{\sigma+\frac{3}{2}}
\]
This shows that
\[
S^*_+ \otimes \text{Sym}^{2\sigma} S^*_+ = (\text{Sym}^{2\sigma-1} S^*_+) \oplus (\text{Sym}^{2\sigma+1} S^*_+)
\]

The decomposition of \(F \) under \(K \) becomes
\[
F = (E^{(\sigma)} \otimes \mathbb{C}^2) \oplus E^{(\sigma-\frac{1}{2})} \oplus E^{(\sigma+\frac{1}{2})}
\]
Thus, a superparticle of superspin \(\sigma > 0 \) contains two particles of spin \(\sigma \), one particle of spin \(\sigma - \frac{1}{2} \) and one particle of spin \(\sigma + \frac{1}{2} \). Note that \(\dim(E^{(\sigma)} \otimes \mathbb{C}^2) = 2(2\sigma + 1) = 4\sigma + 2 \) and \(\dim(E^{(\sigma-\frac{1}{2})} \oplus E^{(\sigma+\frac{1}{2})}) = 2\sigma + 2(2\sigma + 2) = 4\sigma + 2 \), so we have indeed equality between the bosonic and fermionic degrees of freedom.

6 Minkowski superspacetime in dimension \((4|4)\)

In this section, we recall the definition and some properties of Minkowski superspacetime in dimension \((4|4)\), focusing on the construction of the fundamental (resp. invariant) vector fields associated to supertranslations. At the end of this section, we discuss \(W \)-valued superfunctions (playing the role of “spin-tensor superfields”), and make the link with the irreducible unitary representations of the super Poincaré group.

We think of \(S^*_+ \) as being isomorphic to \(\mathbb{C}^2 \) with the standard action of \(\text{SL}_2(\mathbb{C})_\mathbb{R} \) (call this representation \(\rho_+ \)), and of \(S^*_+ \) as being isomorphic to \(\mathbb{C}^2 \) on which \(A \in \text{SL}_2(\mathbb{C})_\mathbb{R} \) acts by left multiplication with \(-A^1 \) (call this representation \(\rho_- \)). The representation \(S^*_+ \) is conjugate to \(S^*_+ \): the map \(\zeta : (\mathbb{C}^2, \rho_+) \rightarrow (\mathbb{C}^2, \rho_-) \) defined by \(\zeta(z_1, z_2) = (-iz_2, iz_1) \) is a \(\mathbb{C} \)-linear, \(\text{SL}_2(\mathbb{C})_\mathbb{R} \)-equivariant isomorphism. Equivalently, we may view \(\zeta \) as a \(\mathbb{C} \)-antilinear, \(\text{SL}_2(\mathbb{C})_\mathbb{R} \)-equivariant isomorphism from \((\mathbb{C}^2, \rho_+) \) to \((\mathbb{C}^2, \rho_-) \). Note that we have \(\zeta^2 = \text{Id}_{\mathbb{C}^2} \).

Consider \(S^*_C = S^*_+ \oplus S^*_+ \) with the direct sum representation, and let \(c_1 : S^*_C \rightarrow S^*_C \) be defined as follows:
\[
c_1(z_1, z_2, z_3, z_4) = (\zeta(z_3, z_4), \zeta(z_1, z_2)).
\]

Then \(c_1 \) is a \(\mathbb{C} \)-antilinear, \(\text{SL}_2(\mathbb{C})_\mathbb{R} \)-equivariant automorphism of \(S^*_C \) which satisfies \((c_1)^2 = \text{Id}_{S^*_C} \). In other words, \(c_1 \) is a conjugation of the representation \(S^*_C \). We obtain a real irreducible representation of \(\text{SL}_2(\mathbb{C})_\mathbb{R} \) by taking \(S^* = \text{Ker}(c_1 - \text{Id}_{S^*_C}) \), so that \(S^* = \{ (z_1, z_2, \zeta(z_1, z_2)) : (z_1, z_2) \in \mathbb{C}^2 \} \).

Choose a basis \(\{ f^1, f^2 \} \) of \(S^*_+ \) (for e.g. \(f^1 := (1, 0, 0, 0) \) and \(f^2 := (0, 1, 0, 0) \)). Let \(\tilde{f}^1 = c_1(f^1) = (0, 0, i, 0) \) and \(\tilde{f}^2 = c_1(f^2) = (0, 0, -i, 0) \). Then \(\{ \tilde{f}^1, \tilde{f}^2 \} \) is a basis of \(S^*_+ \). Also, \(\{ f^1, f^2, \tilde{f}^1, \tilde{f}^2 \} \) is a basis of \(S^*_C \), while the elements \(f^1 + \tilde{f}^1 \) and \(f^2 + \tilde{f}^2 \) belong to \(S^* \).

We define complex superspacetime as being the complex supermanifold \(M_{cs} = (\hat{M}, O_{M_{cs}}) \), where \(O_{M_{cs}}(U) := \mathcal{C}^\infty(U, \mathbb{C}) \otimes \wedge S^*_C \) for every open set \(U \subset \hat{M} \). A superfunction on \(M_{cs} \) can be written:
\[
f = \varphi + \psi_\alpha \theta^\alpha + \eta_\alpha \bar{\theta}^\alpha + F\theta^1 \bar{\theta}^2 + G\bar{\theta}^1 \theta^2 + iA_\mu \Gamma^{\alpha}_\mu \theta^\alpha \bar{\theta}^\beta + \lambda_\alpha \theta^1 \bar{\theta}^2 \bar{\theta}^\alpha + \mu_\alpha \bar{\theta}^2 \theta^\alpha + H\theta^1 \theta^2 \bar{\theta}^\alpha
\]

21
where \(\varphi, \psi, \eta, F, G, A_\mu, \lambda, \mu_\alpha, H \in C^\infty(U, \mathbb{C}) \) (we have \(\dim \Lambda^* S^*_C = 16 \) complex-valued functions).

There is a canonical conjugation \(c = (\bar{c}, \bar{c}^\flat) \) on \(\mathcal{M}_{cs} \), where \(\bar{c} = \text{Id}_M \), and for every open set \(U \subset M, c^\flat_U : C^\infty(U, \mathbb{C}) \otimes \Lambda^* S^*_C \to C^\infty(U, \mathbb{C}) \otimes \Lambda^* S^*_C \) is defined by:

\[
c^\flat_U(f) = \bar{\varphi} + \bar{\psi}_a \theta^a + \bar{\eta}_a \theta^a + \bar{F} \bar{\theta}^2 + \bar{G} \bar{\theta}^2 - i \bar{A}_\mu \Gamma_{ab}^{\mu} \bar{\theta}^a \bar{\theta}^b + \bar{\lambda}_a \theta^2 \theta^a + \bar{\mu}_a \theta^a \bar{\theta}^a + \bar{H} \bar{\theta}^2 \bar{\theta}^2
\]

Now \(\Gamma_{ab}^{\mu} = \Gamma_{ba}^{\mu} \), \(\bar{\theta}^a \bar{\theta}^b = -\theta^b \theta^a \) and \(\bar{\theta}^2 \theta^2 \theta^2 = \theta^2 \theta^2 \bar{\theta}^2 \). Setting \(\bar{f} := c^\flat_U(f) \), we get:

\[
\bar{f} = \bar{\varphi} + \bar{\psi}_a \theta^a + \bar{\eta}_a \theta^a + \bar{F} \bar{\theta}^2 + \bar{G} \bar{\theta}^2 + i \bar{A}_\mu \Gamma_{ab}^{\mu} \theta^a \bar{\theta}^b + \bar{\lambda}_a \theta^2 \theta^a + \bar{\mu}_a \theta^a \bar{\theta}^a + \bar{H} \bar{\theta}^2 \bar{\theta}^2
\]

We obtain real superfunctions by imposing \(\bar{f} = f \), which gives:

\[
f = \varphi + \psi_a \theta^a + \bar{\psi}_a \bar{\theta}^a + F \theta^2 + \bar{F} \bar{\theta}^2 + i A_\mu \Gamma_{ab}^{\mu} \theta^a \theta^b + \lambda_a \theta^2 \theta^a + \mu_a \theta^a \theta^a + H \theta^2 \bar{\theta}^2
\]

where \(\psi_a, F, \lambda_a \in C^\infty(U, \mathbb{C}) \) and \(\varphi, A_\mu, H \in C^\infty(U, \mathbb{R}) \). We have 5 complex-valued functions and 6 real-valued functions; this corresponds to \(\dim \Lambda^* S^* = 16 \) real degrees of freedom.

Remark 6.1. Note that \(\mathcal{M}_{cs} \) is the linear complex supermanifold associated with the supervector space \(V_C \oplus S_C \). We write \(\mathcal{M}_{cs} = \text{L}((V_C \oplus S_C) \). It represents the functor \(\mathcal{L}(V_C \oplus S_C) : \text{sMan}_{fd}^C \rightarrow \text{Set} \) defined by \(\mathcal{L}(V_C \oplus S_C)(B) = (\mathcal{O}_B(\{B\}_0 \otimes V) \oplus (\mathcal{O}_B(\{B\}_1 \otimes S_C) = (\mathcal{O}_B(\{B\}_0 \otimes V) \oplus (\mathcal{O}_B(\{B\}_1 \oplus S^+ \oplus (\mathcal{O}_B(\{B\}_1 \otimes S^-) \) for every complex supermanifold \(B \).

Proposition 6.2. \(\mathcal{M}_{cs} \) has a natural structure of complex super Lie group, whose associated super Lie algebra is the complex super Lie algebra \(V_C \oplus S_C \).

Proof: We want to show that \(\mathcal{M}_{cs} \) is a group object in the category of complex supermanifolds. This is equivalent to showing that the image of the functor \(\mathcal{L}(V_C \oplus S_C) \) is contained in the category of groups. Let \(B \) be a complex supermanifold. The group structure on \(\mathcal{L}(V_C \oplus S_C)(B) \) comes from the super Lie algebra structure on \(V_C \oplus S_C \), via the Campbell-Baker-Hausdorff formula (the exponential map being the identity, and the triple brackets vanishing). Namely, if \(u = \varphi^\mu \otimes e_\mu + s^a \otimes f_a + t^b \otimes \bar{f}_b \) and \(u' = \psi^\mu \otimes e_\mu + s'^a \otimes f_a + t'^b \otimes \bar{f}_b \) are elements of \(\mathcal{L}(V_C \oplus S_C)(B) \), then

\[
u * u' = u + u' + \frac{1}{2} [u, u'] = (\varphi^\mu + \psi^\mu + i \Gamma_{ab}^{\mu} (s^a t^b - s'^a t'^b)) \otimes e_\mu + (s^a + s'^a) \otimes f_a + (t^b + t'^b) \otimes \bar{f}_b
\]

Consider the (free and transitive) action of \(\mathcal{M}_{cs} \) on itself from the left: we denote by \(P_\mu, Q_a \) and \(\bar{Q}_b \) the fundamental vector fields associated by this action to \(e_\mu, f_a \) and \(\bar{f}_b \) respectively. Thus, we have an infinitesimal action \(V_C \oplus S_C \rightarrow \mathcal{T}_{M_{cs}}(M) \), i.e. a morphism of super Lie algebras \(V_C \oplus S_C \rightarrow \mathcal{T}_{M_{cs}}(M)_0 \oplus \mathcal{T}_{M_{cs}}(M)_1 \). It sends \(e_\mu \in V \) to \(P_\mu \in \mathcal{T}_{M_{cs}}(M)_0 \), \(f_a \in S^+ \) to \(Q_a \in \mathcal{T}_{M_{cs}}(M)_1 \) and \(\bar{f}_b \in S^- \) to \(\bar{Q}_b \in \mathcal{T}_{M_{cs}}(M)_1 \).
In order to derive expressions for P_μ, Q_a and \overline{Q}_b, and for later use as well, we introduce the following convenient terminology.

Definition 6.3. Let N be a supermanifold. For any supermanifold B, we often write $N(B)$ for $\text{Hom}(B, N)$.

1. If $f \in \mathcal{O}_N(|N|)$ is a super function on N, then for every supermanifold B, the B-function associated to f is the map $f_B : N(B) \rightarrow \mathcal{O}_B(|B|)$ defined by $f_B(\beta) = \beta^*(f)$ for all $\beta \in N(B)$.

2. If $X \in \mathcal{T}_N(|N|)$ is a vector field on N, then for every supermanifold B, the B-vector field associated to X is the map $X_B : \text{Hom}(N(B), \mathcal{O}_B(|B|)) \rightarrow \text{Hom}(N(B), \mathcal{O}_B(|B|))$ defined by $X_B f_B = (X f)_B$ for all $f \in \mathcal{O}_N(|N|)$.

Denote by $\frac{\partial}{\partial y^\mu} \in \mathcal{T}_{M_{cs}}(\mathcal{M})_0$, $\frac{\partial}{\partial \theta^a} \in \mathcal{T}_{M_{cs}}(\mathcal{M})_1$ and $\frac{\partial}{\partial \bar{\theta}^a} \in \mathcal{T}_{M_{cs}}(\mathcal{M})_1$ the vector fields associated with the standard coordinates $x^\mu, \theta^a, \bar{\theta}^a$ on M_{cs}.

Let B be an auxiliary complex supermanifold, and $M_{cs}(B) := \text{Hom}(B, M_{cs})$ the set of B-points of M_{cs}. Given $\beta \in M_{cs}(B)$, we denote here by $y^\mu \in \mathcal{O}_B(|B|)_0$, $\xi^a \in \mathcal{O}_B(|B|)_1$ and $\xi^b \in \mathcal{O}_B(|B|)_1$ the images of the standard coordinates of M_{cs} by $\beta^*_B : \mathcal{C}^\infty(M) \otimes \Lambda^* S^\ast_C \rightarrow \mathcal{O}_B(|B|)$. Then we write $\beta = (y^\mu, \xi^a, \xi^b)$, thinking of y^μ, ξ^a, ξ^b as the “coordinates” of the B-point β. Finally, we denote by $\frac{\partial}{\partial y^\mu}$, $\frac{\partial}{\partial \xi^a}$ and $\frac{\partial}{\partial \xi^b}$ the corresponding B-vector fields:

$$
\frac{\partial}{\partial y^\mu} := \left(\frac{\partial}{\partial y^\mu} \right)_B : \text{Hom}(M_{cs}(B), \mathcal{O}_B(|B|)) \rightarrow \text{Hom}(M_{cs}(B), \mathcal{O}_B(|B|))
$$

$$
\frac{\partial}{\partial \xi^a} := \left(\frac{\partial}{\partial \xi^a} \right)_B : \text{Hom}(M_{cs}(B), \mathcal{O}_B(|B|)) \rightarrow \text{Hom}(M_{cs}(B), \mathcal{O}_B(|B|))
$$

$$
\frac{\partial}{\partial \bar{\theta}^a} := \left(\frac{\partial}{\partial \bar{\theta}^a} \right)_B : \text{Hom}(M_{cs}(B), \mathcal{O}_B(|B|)) \rightarrow \text{Hom}(M_{cs}(B), \mathcal{O}_B(|B|))
$$

Proposition 6.4. $P_\mu = \frac{\partial}{\partial x^\mu}$, $Q_a = \frac{\partial}{\partial \theta^a} + i \Gamma^a_{ab} \bar{\theta}^b \frac{\partial}{\partial x^\mu}$ and $\overline{Q}_b = \frac{\partial}{\partial \bar{\theta}^b} + i \Gamma^a_{ab} \theta^a \frac{\partial}{\partial x^\mu}$

Proof: Let $f \in \mathcal{O}_{M_{cs}}(\mathcal{M}) = \mathcal{C}^\infty(U, C) \otimes \Lambda^* S^\ast_C$. For any supermanifold B, let $f_B : M_{cs}(B) \rightarrow \mathcal{O}_B(|B|)$ be the B-function associated with f. If $\gamma = (v^\mu, \varepsilon^a, \bar{\varepsilon}^b) \in M_{cs}(B)$, we calculate $\gamma \cdot f_B : M_{cs}(B) \rightarrow \mathcal{O}_B(|B|)$:

$$(\gamma \cdot f_B)(\beta) = f_B(\gamma^{-1} \ast \beta) = f_B((-v^\mu, -\varepsilon^a, -\bar{\varepsilon}^b) \ast (y^\mu, \xi^a, \bar{\xi}^b))
$$

$$
= f_B(\bar{v}^\mu + v^\mu + i\Gamma^a_{ab}(\xi^b - \bar{\xi}^b + \bar{\varepsilon}^b - \varepsilon^b)) = f_B(y^\mu, \xi^a, \bar{\xi}^b) - (v^\mu + i\Gamma^a_{ab}(\xi^b - \bar{\xi}^b + \bar{\varepsilon}^b - \varepsilon^b))
$$

$$
= f_B(y^\mu, \xi^a, \bar{\xi}^b) - (v^\mu + i\Gamma^a_{ab}(\xi^b - \bar{\xi}^b + \bar{\varepsilon}^b - \varepsilon^b)) \frac{\partial f_B}{\partial y^\mu}(y^\mu, \xi^a, \bar{\xi}^b) - \varepsilon^a \frac{\partial f_B}{\partial \bar{\theta}^a}(y^\mu, \xi^a, \bar{\xi}^b) - \bar{\varepsilon}^b \frac{\partial f_B}{\partial \theta^b}(y^\mu, \xi^a, \bar{\xi}^b)
$$

$$
= f_B(\bar{v}^\mu - \bar{v}^\mu \frac{\partial f_B}{\partial y^\mu}(\beta) - \varepsilon^a \left(\frac{\partial f_B}{\partial \bar{\theta}^a}(\beta) + i\Gamma^a_{ab} \bar{\theta}^b \frac{\partial f_B}{\partial y^\mu}(\beta) \right) - \bar{\varepsilon}^b \left(\frac{\partial f_B}{\partial \theta^b}(\beta) + i\Gamma^a_{ab} \theta^a \frac{\partial f_B}{\partial y^\mu}(\beta) \right) + \ldots
$$

Note that the vector fields Q_a and \overline{Q}_b, being left-fundamental, are also right-invariant (whereas the P_μ are bi-invariant). Then we have: $[P_\mu, P_\nu] = 0$, $[P_\mu, Q_a] = [P_\mu, \overline{Q}_b] = 0$, \ldots
\[[Q_a, Q_b] = [\overline{Q_a}, \overline{Q_b}] = 0 \text{ and } [Q_a, \overline{Q_b}] = -2\Gamma^\mu_{ab} P_\mu. \]

We will also need the left-invariant vector fields \(D_a \) and \(\overline{D}_b \) on \(M_{cs} \) associated to \(f_a \) and \(\bar{f}_b \) respectively. A similar calculation shows that
\[
D_a = \frac{\partial}{\partial \theta^a} - i\Gamma^\mu_{ab} \frac{\partial}{\partial x^\mu} \quad \text{and} \quad \overline{D}_b = \frac{\partial}{\partial \theta^b} - i\Gamma^\mu_{ab} \frac{\partial}{\partial x^\mu}
\]
and we have: \([P_\mu, D_a] = [P_\mu, \overline{D}_b] = 0, [D_a, D_b] = [\overline{D}_a, \overline{D}_b] = 0 \text{ and } [D_a, \overline{D}_b] = 2\Gamma^\mu_{ab} P_\mu.\]

The left and right actions are different (since \(M_{cs} \) is not abelian), but of course they commute. This is expressed infinitesimally by: \([Q_a, D_b] = [\overline{Q}_a, \overline{D}_b] = [Q_a, \overline{D}_b] = [Q_a, D_b] = 0.\]

Since the super-Poincaré group \(\text{SII}(V) \) acts (transitively) on the supermanifold \(M_{cs} \), there is a natural representation of \(\text{SII}(V) \) on the super-vector space \(\mathcal{O}_{M_{cs}}(M) \). Viewing \(\text{SII}(V) \) as a Harish-Chandra pair \((\Pi(V), \pi(V))\), this representation is equivalent to a pair \((\rho, \eta)\) where \(\rho : \Pi(V) \to \text{Aut}(\mathcal{O}_{M_{cs}}(M)) \) is a morphism of Lie groups, and \(\eta : \pi(V) \to \text{gl}(\mathcal{O}_{M_{cs}}(M)) \) is a morphism of super Lie algebras, and we have seen that \(\eta(e_\mu) = P_\mu, \eta(f_a) = Q_a \) and \(\eta(\bar{f}_b) = \overline{Q}_b \).

Recall that \(\mathcal{O}_{M_{cs}}(M) = \mathcal{C}^\infty(\hat{M}, \mathbb{C}) \otimes \wedge^* S_0^c \simeq \mathcal{C}^\infty(\hat{M}, \mathbb{C}) \otimes \wedge^* S_+^* \otimes \wedge^* S_-^* \).

Let \(W \) be a representation of \(\text{Spin}(V) \). In the next two sections, we will be interested in realizing the irreducible unitary representations of \(\text{SII}(V) \) in the super-vector space of “spin-tensor superfields” \(\mathcal{O}_{M_{cs}}(M) \otimes W = \mathcal{C}^\infty(\hat{M}, \mathbb{C}) \otimes \wedge^* S_0^c \otimes W \simeq \mathcal{C}^\infty(\hat{M}, \mathbb{C}) \otimes \wedge^* S_+^* \otimes \wedge^* S_-^* \otimes W \) (which carries course a representation of \(\text{SII}(V) \)).

First, we have the following supersymmetric generalization of Theorem 3.12

Theorem 6.5. Let \(\mathcal{H}_{(m, \sigma)} \) be the irreducible unitary representation of the super-Poincaré group of mass \(m > 0 \) and superspin \(\sigma \) (obtained by induction from an irreducible unitary representation \(F \) of the little group \(\hat{K} \)). Also, let \(W \) be a representation of the super Lie group \(H = (\text{Spin}(V), \text{spin}(V) \oplus S^*) \). The multiplicity of \(\mathcal{H}_{(m, \sigma)} \) in \(\mathcal{O}_{M_{cs}}(M) \otimes W \) (as representations of the super-Poincaré group) is equal to the multiplicity of \(F \) in the decomposition of \(W \) under the sub-super Lie group \(\hat{K} \) of \(H \).

For example, the “spin-tensor superfield” representations in which the superparticle \(\mathcal{H}_{m, \sigma} \) will appear are \(\mathcal{O}_{M_{cs}}(M) \otimes \text{Sym}^{2\alpha} S_+^* \otimes \text{Sym}^{2\beta} S_-^* \) where \(\alpha + \beta \geq \sigma \).

Let \(\mathcal{H}_{(m, \sigma)} \) be an irreducible unitary representation of \(\text{SII}(V) \). One can take \(W := \text{Sym}^{2\alpha} S_+^* \otimes \text{Sym}^{2\beta} S_-^* \) with \(\alpha + \beta = \sigma \) (the minimal choice satisfying the above condition). *A priori*, we have \(\alpha, \beta \in \{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\} \), but we assume in what follows that \(\alpha > 0 \) and \(\beta > 0 \). Let \(f : M \to W \) be a \(W \)-valued superfunction. Imposing only the Klein-Gordon equation on \(f \) would imply that the Fourier transform of \(f \) is a \((\wedge^* S_0^c \otimes \wedge^* S_+^* \otimes W) \)-valued measure supported on \(\mathcal{O}_m \), of the form \(\Psi d\beta_m \) for some function \(\Psi : \mathcal{O}_m \to \wedge^* S_0^c \otimes \wedge^* S_+^* \otimes W \). This is clearly not enough. Roughly speaking, we should constraint \(f \) sufficiently so that \(\Psi \) “becomes valued in the \((\wedge^* S_0^c \otimes \wedge^* S_+^* \otimes \text{Sym}^{2\beta} S_-^*) \)-component of \(W \).” We know how to achieve this: by imposing the condition \(\delta_{\alpha, \beta} f = 0 \), where \(\delta_{\alpha, \beta} \) is the differential operator defined at the end of section 4.
This is still not enough however: we know that an irreducible unitary representation of the super-Poincaré group should be constructed out of a Hermitian bundle with typical fiber $\wedge^\bullet S^+_\sigma \otimes \wedge^\bullet S^-_\sigma$, whereas here, the typical fiber is $\wedge^\bullet S^+_\sigma \otimes \wedge^\bullet S^-_\sigma \otimes \text{Sym}^{2\sigma} S^+_\sigma$. This means that the unitary representation of $\text{SI}(V)$ that we obtain by imposing only $\delta_{\alpha,\beta} f = 0$ (in addition the the Klein-Gordon equation) is actually reducible. To determine its irreducible components, consider first the case of a scalar superfunction, so that the typical fiber is $\wedge^\bullet S^+_\sigma \otimes \wedge^\bullet S^-_\sigma$ (in this case, $\sigma = 0$, and therefore $W = \mathbb{C}$).

Observe that $\wedge^\bullet S^+_\sigma \otimes \wedge^\bullet S^-_\sigma$ is a Clifford module for S^σ. Since $\text{Cl}(S^\sigma)$ has a unique irreducible Clifford module, say $\wedge^\bullet S^+_\sigma$, we are sure that $\wedge^\bullet S^-_\sigma$ is just a multiplicity: it does not carry an action of S^σ. This allows us to decompose: $\wedge^\bullet S^+_\sigma \otimes \wedge^\bullet S^-_\sigma = \wedge^\bullet S^+_\sigma \otimes (\mathbb{C} \oplus S^\sigma \oplus \wedge^2 S^\sigma)$, and so

$$\wedge^\bullet S^+_\sigma \otimes \wedge^\bullet S^-_\sigma \simeq (\wedge^\bullet S^+_\sigma) \oplus (\wedge^\bullet S^+_\sigma \otimes S^\sigma) \oplus \wedge^\bullet S^+_\sigma$$

Thus, a scalar superfunction f subjected to $\delta_{\alpha,\beta} f = 0$ in addition to the Klein-Gordon equation will give rise to a reducible unitary representation of the super-Poincaré group, containing two superparticles of superspin 0, and one superparticle of superspin $\frac{1}{2}$.

The discussion is similar for a W-valued superfunction; we can decompose:

$$\wedge^\bullet S^+_\sigma \otimes \wedge^\bullet S^-_\sigma \otimes \text{Sym}^{2\sigma} S^+_\sigma = \wedge^\bullet S^+_\sigma \otimes (\mathbb{C} \oplus S^\sigma \oplus \wedge^2 S^\sigma) \otimes \text{Sym}^{2\sigma} S^+_\sigma$$

$$\simeq \wedge^\bullet S^+_\sigma \otimes (\text{Sym}^{2\sigma} S^+_\sigma \oplus (S^\sigma \otimes \text{Sym}^{2\sigma} S^+_\sigma) \oplus \text{Sym}^{2\sigma} S^+_\sigma)$$

$$\simeq \wedge^\bullet S^+_\sigma \otimes (\text{Sym}^{2\sigma} S^+_\sigma \oplus \text{Sym}^{2\sigma-1} S^+_\sigma \oplus \text{Sym}^{2\sigma+1} S^+_\sigma \oplus \text{Sym}^{2\sigma} S^+_\sigma)$$

and so

$$\wedge^\bullet S^+_\sigma \otimes \wedge^\bullet S^-_\sigma \otimes \text{Sym}^{2\sigma} S^+_\sigma \simeq (\wedge^\bullet S^+_\sigma \otimes \text{Sym}^{2\sigma} S^+_\sigma) \oplus (\wedge^\bullet S^+_\sigma \otimes \text{Sym}^{2\sigma-1} S^+_\sigma)$$

$$\oplus (\wedge^\bullet S^+_\sigma \otimes \text{Sym}^{2\sigma+1} S^+_\sigma) \oplus (\wedge^\bullet S^+_\sigma \otimes \text{Sym}^{2\sigma} S^+_\sigma)$$

Thus, a W-valued superfunction f of type (α, β) (with $\alpha + \beta = \sigma$) subjected to $\delta_{\alpha,\beta} f = 0$ in addition to the Klein-Gordon equation will give rise to a reducible unitary representation of the super Poincaré group, containing two superparticles of superspin σ, one superparticle of superspin $\sigma - \frac{1}{2}$, and one superparticle of superspin $\sigma + \frac{1}{2}$.

If we want to fall on one of these irreducible components, it is necessary to subject the superfield f to a further differential equation in superspacetime. This leads to chirality.

7 Supersymmetric symbols

Our notations from now on are as follows:
We first give an overview of the contents of this section, then we present the details.

In the spirit of section 3, we proceed first at the algebraic level, looking for \(\tilde{K} \)-equivariant linear maps on \(W \). On \(\wedge^* S^*_{\pm} \), the exterior multiplication by elements of \(S^* \) is defined. Using the \(K \)-invariant pairing \(\Gamma^0: S^*_+ \times S^*_+ \rightarrow \mathbb{C} \) (whose definition is recalled below), we obtain also an interior multiplication on \(\wedge^* S^*_{\pm} \). Using these two operations, we define the following endomorphisms of \(W \):

\[
\overline{d}_\tau := (\text{Id} \otimes e_\tau) + (i_\tau \otimes \text{Id}) \quad \text{and} \quad d_\tau := (e_\tau \otimes \text{Id}) + (\text{Id} \otimes i_\tau)
\]

Each of these endomorphisms is \(S^* \)-equivariant (but not \(\tilde{K} \)-equivariant, if taken individually). However, the chiral subspace

\[
W_{\text{chiral}} := \text{Ker } \overline{d}_\tau_1 \cap \text{Ker } \overline{d}_\tau_2
\]

is \(\tilde{K} \)-invariant, and we give a characterization of its elements. Then, we use the natural Spin\((V)\)-invariant symplectic structure \(\varepsilon_{\pm} \) on \(S^*_\pm \) to define the endomorphism

\[
d^2 := \varepsilon_{ab} d_\tau^a \circ d_\tau^b
\]

of \(W \), which turns out to be not only \(S^* \)-invariant, but also \(K \)-invariant (and thus, \(\tilde{K} \)-invariant). This is not surprising since \(d^2 \) is defined via the invariant symplectic structure.

Second, we leave the purely algebraic level and propagate our endomorphisms along the orbit \(O_m \), to obtain equivariant symbols \(\zeta_{d_\tau^a}, \zeta_{d^2} : O_m \rightarrow \text{End}(W) \). There is a characterization of the maps \(f : O_m \rightarrow W \) satisfying \(f(p) \in \text{Ker } \zeta_{d_\tau^1}(p) \cap \text{Ker } \zeta_{d_\tau^2}(p) \) for every \(p \in O_m \). These maps may be called chiral maps. Finally, the irreducible unitary representation of mass \(m \) and superspin 0 is selected by the subspace of chiral maps \(f : O_m \rightarrow W \) satisfying the condition:

\[
\zeta_{d^2}(p)(f(p)) = mf(p)
\]

for all \(p \in O_m \). Here are the details.

1. The algebraic level

There is a representation of \((\rho, \alpha)\) of \(H \) on \(W \), namely:

\[
\rho : \text{Spin}(V) \rightarrow \text{Aut}(\wedge^* S^*_{\pm} \otimes \wedge^* S^*) \quad \text{and} \quad \alpha : S^* \rightarrow \text{gl}(\wedge^* S^*_+ \otimes \wedge^* S^*_{-})
\]

Set \(\langle s_1, s_2 \rangle_{\varepsilon^0} := e^0(\Gamma(s_1, s_2)) \) for all \(s_1, s_2 \in S^* \).

Then \(\langle \cdot , \cdot \rangle_{\varepsilon^0} \) is a positive definite inner product on \(S^* \), which is in addition \(K \)-invariant.
Write Definition 7.4. The Proposition 7.3. and can be thought of as the odd counterpart of Heisenberg uncertainty relation. Define the following endomorphisms of \(q_i \):

\[
\Lambda^\bullet S_+^* \otimes \Lambda^\bullet S_-^* = (\Lambda^\bullet S_+^* \otimes \mathbb{C}) \oplus (\Lambda^\bullet S_+^* \otimes S_-^*) \oplus (\Lambda^\bullet S_+^* \otimes \Lambda^2 S_-^*)
\]

In fact, we always consider the action of the complexification of \(S^* \), that is, the action of \(S_C^* = S_+^* \oplus S_-^* \). Also, we will need the nondegenerate bilinear form \(\Gamma^0 : S_+^* \times S_-^* \to \mathbb{C} \) given by \(\Gamma^0 := \epsilon^0 \circ (\Gamma_C)|_{S_+^* \times S_-^*} \).

For \(s_+ \in S_+^* \), we denote by \(e_{s_+} : \Lambda^\bullet S_+^* \to \Lambda^\bullet S_+^* \) the exterior multiplication by \(s_+ \):

\[
e_{s_+}(a) = s_+ \wedge a,
\]

and we denote by \(i_{s_+} : \Lambda^\bullet S_+^* \to \Lambda^\bullet S_+^* \) the interior multiplication by \(s_+ \):

\[
i_{s_+}(\lambda + t \wedge r \wedge r') = \Gamma^0(s_+, t) + \Gamma^0(s_+, r)r' - \Gamma^0(s_+, r')r.
\]

For \(s_- \in S_-^* \), we denote by \(i_{s_-} : \Lambda^\bullet S_-^* \to \Lambda^\bullet S_-^* \) the interior multiplication by \(s_- \):

\[
i_{s_-}(\lambda + t \wedge r \wedge r') = \Gamma^0(t, s_-) + \Gamma^0(r, s_-)r' - \Gamma^0(r', s_-)r',
\]

and we denote by \(e_{s_-} : \Lambda^\bullet S_-^* \to \Lambda^\bullet S_-^* \) the exterior multiplication by \(s_- \):

\[
e_{s_-}(b) = s_- \wedge b.
\]

Proposition 7.1. We have the following (anti)commutation relations:

\[
i_{x^a} \circ e_{\bar{p}^b} + e_{\bar{p}^b} \circ i_{x^a} = \Gamma^0(x^a, \bar{p}^b) \text{ Id}
\]

\[
i_{x^a} \circ i_{x^b} + i_{x^b} \circ i_{x^a} = 0
\]

\[
e_{x^a} \circ e_{\bar{p}^b} + e_{\bar{p}^b} \circ e_{x^a} = 0
\]

Remark 7.2. The first commutation relation is equivalent to the four following equations:

\[
i_{x^1} \circ e_{x^2} + e_{x^2} \circ i_{x^1} = 0
\]

\[
i_{x^2} \circ e_{x^1} + e_{x^1} \circ i_{x^2} = 0
\]

\[
i_{x^1} \circ e_{x^1} + e_{x^1} \circ i_{x^1} = \text{ Id}
\]

\[
i_{x^2} \circ e_{x^2} + e_{x^2} \circ i_{x^2} = \text{ Id}
\]

and can be thought of as the odd counterpart of Heisenberg uncertainty relation.

Define the following endomorphisms of \(W \):

\[
\bar{d}_{\bar{p}^a} := (\text{Id} \otimes e_{\bar{p}^a}) + (i_{\bar{p}^a} \otimes \text{Id}) \quad \text{and} \quad d_{\tau^a} := (e_{\tau^a} \otimes \text{Id}) + (\text{Id} \otimes i_{\tau^a}),
\]

\[
\bar{q}_{\bar{p}^a} := (\text{Id} \otimes e_{\bar{p}^a}) - (i_{\bar{p}^a} \otimes \text{Id}) \quad \text{and} \quad q_{\tau^a} := (e_{\tau^a} \otimes \text{Id}) - (\text{Id} \otimes i_{\tau^a}).
\]

Proposition 7.3. We have: \([q_{\tau^a}, d_{\bar{p}^b}] = [\bar{q}_{\bar{p}^a}, d_{\tau^b}] = 0\) and \([q_{\tau^a}, \bar{d}_{\bar{p}^b}] = [\bar{q}_{\bar{p}^a}, \bar{d}_{\bar{p}^b}] = 0\).

Definition 7.4. The chiral subspace of \(W \) is

\[
W_{\text{chiral}} := \text{Ker} \bar{d}_{\bar{x}^1} \cap \text{Ker} \bar{d}_{\bar{x}^2}
\]

Write \(f = H + \mu_1 \tau^1 + \mu_2 \tau^2 + \lambda_1 \bar{\tau}^1 + \lambda_2 \bar{\tau}^2 + G \tau^1 \wedge \tau^2 + F \bar{\tau}^1 \wedge \bar{\tau}^2 \)
Proof : We calculate $\tilde{d}_{\tau_1}(f)$.

$$
\tilde{d}_{\tau_1}(f) = H \tau^1 + \mu_1 \tau^1 \otimes \tau^1 + \Gamma^0(\tau^1, \bar{\tau}^1) \bar{\mu}_1 + \mu_2 \tau^2 \otimes \bar{\tau}^1 + \Gamma^0(\tau^2, \bar{\tau}^1) \mu_2
$$

for a generic element of W (here, $H, \mu_a, \lambda, G, F, A_{ab}, \eta_a, \psi_a, \varphi$ are complex numbers).

Proposition 7.5. An element $f \in W$ belongs to the chiral subspace W_{chiral} if and only if

$$
f = (\Gamma^0(\tau^1, \bar{\tau}^1) \Gamma^0(\tau^2, \bar{\tau}^2) - \Gamma^0(\tau^2, \bar{\tau}^1) \Gamma^0(\tau^1, \bar{\tau}^2)) \varphi$$

$$
+ \lambda_1 \bar{\tau}^1 \otimes \tau^1 + \lambda_2 \bar{\tau}^1 \otimes \bar{\tau}^2 + G(\tau^1 \otimes \tau^2) \otimes \tau^1 + \Gamma^0(\tau^1, \bar{\tau}^1) G \tau^2 - \Gamma^0(\tau^2, \bar{\tau}^1) G \tau^1
$$

$$
+ A_{11} \tau^1 \otimes (\bar{\tau}^1 \cdot \bar{\tau}^1) + \Gamma^0(\tau^1, \bar{\tau}^1) A_{11} \bar{\tau}^1 + A_{12} \tau^1 \otimes (\bar{\tau}^1 \cdot \bar{\tau}^2) + \Gamma^0(\tau^1, \bar{\tau}^1) A_{12} \bar{\tau}^2
$$

$$
+ A_{21} \tau^2 \otimes (\bar{\tau}^1 \cdot \bar{\tau}^1) + \Gamma^0(\tau^2, \bar{\tau}^1) A_{21} \bar{\tau}^1 + A_{22} \tau^2 \otimes (\bar{\tau}^1 \cdot \bar{\tau}^2) + \Gamma^0(\tau^2, \bar{\tau}^1) A_{22} \bar{\tau}^2
$$

$$
+ \eta_1 (\tau^1 \otimes \tau^2) \otimes (\bar{\tau}^1 \cdot \bar{\tau}^1) + \Gamma^0(\tau^1, \bar{\tau}^1) \eta_1 \tau^2 \otimes \bar{\tau}^1 - \Gamma^0(\tau^2, \bar{\tau}^1) \eta_1 \bar{\tau}^1 \otimes \bar{\tau}^1
$$

$$
+ \eta_2 (\tau^1 \otimes \tau^2) \otimes (\bar{\tau}^1 \cdot \bar{\tau}^2) + \Gamma^0(\tau^1, \bar{\tau}^1) \eta_2 \tau^2 \otimes \bar{\tau}^2 - \Gamma^0(\tau^2, \bar{\tau}^1) \eta_2 \bar{\tau}^1 \otimes \bar{\tau}^2
$$

$$
+ \Gamma^0(\bar{\tau}^1, \tau^1) \psi_1 \bar{\tau}^1 \otimes \tau^2 + \Gamma^0(\bar{\tau}^2, \tau^1) \psi_2 \bar{\tau}^1 \otimes \bar{\tau}^2 + \Gamma^0(\bar{\tau}^1, \tau^1) \varphi \tau^2 \otimes (\bar{\tau}^1 \cdot \bar{\tau}^2)
$$

$$
- \Gamma^0(\tau^2, \bar{\tau}^1) \varphi \tau^1 \otimes (\bar{\tau}^1 \cdot \bar{\tau}^2)
$$

We calculate $\tilde{d}_{\tau_2}(f)$.

$$
\tilde{d}_{\tau_2}(f) = H \tau^2 + \mu_1 \tau^1 \otimes \tau^2 + \Gamma^0(\tau^1, \tau^2) \mu_1 + \mu_2 \tau^2 \otimes \tau^2 + \Gamma^0(\tau^2, \tau^2) \mu_2
$$

$$
+ \lambda_1 \tau^2 \otimes \tau^2 + \lambda_2 \tau^2 \otimes \bar{\tau}^2 + G(\tau^1 \otimes \tau^2) \otimes \tau^2 + \Gamma^0(\tau^1, \tau^2) G \tau^2 - \Gamma^0(\tau^2, \tau^2) G \tau^1
$$
\[+ A_{11} \tau^1 \otimes (\bar{\tau}^2 \wedge \bar{\tau}^1) + \Gamma^0(\tau^1, \bar{\tau}^2) A_{11} \tau^1 + A_{12} \tau^1 \otimes (\bar{\tau}^2 \wedge \bar{\tau}^2) + \Gamma^0(\tau^1, \bar{\tau}^2) A_{12} \bar{\tau}^2 \\
+ A_{21} \tau^2 \otimes (\bar{\tau}^2 \wedge \bar{\tau}^1) + \Gamma^0(\tau^2, \bar{\tau}^2) A_{21} \tau^1 + A_{22} \tau^2 \otimes (\bar{\tau}^2 \wedge \bar{\tau}^2) + \Gamma^0(\tau^2, \bar{\tau}^2) A_{22} \bar{\tau}^2 \\
+ \eta_1 (\tau^1 \wedge \tau^2) \otimes (\bar{\tau}^2 \wedge \bar{\tau}^1) + \Gamma^0(\tau^1, \bar{\tau}^2) \eta_1 \tau^2 \otimes \bar{\tau}^1 - \Gamma^0(\tau^2, \bar{\tau}^2) \eta_1 \tau^1 \otimes \bar{\tau}^1 \\
+ \eta_2 (\tau^1 \wedge \tau^2) \otimes (\bar{\tau}^2 \wedge \bar{\tau}^2) + \Gamma^0(\tau^1, \bar{\tau}^2) \eta_2 \tau^2 \otimes \bar{\tau}^2 - \Gamma^0(\tau^2, \bar{\tau}^2) \eta_2 \tau^1 \otimes \bar{\tau}^2 \\
+ \Gamma^0(\tau^1, \bar{\tau}^2) \psi_1 \bar{\tau}^1 \wedge \bar{\tau}^2 + \Gamma^0(\tau^2, \bar{\tau}^2) \psi_2 \bar{\tau}^1 \wedge \bar{\tau}^2 + \Gamma^0(\tau^1, \bar{\tau}^2) \varphi \bar{\tau}^2 \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2) \\
- \Gamma^0(\tau^2, \bar{\tau}^2) \varphi \bar{\tau}^1 \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2) \\
\]

We see that \(d_{\varphi_1}(f) = 0 \) and \(d_{\varphi_2}(f) = 0 \) is equivalent to:

\[G = \mu_1 = \mu_2 = \eta_1 = \eta_2 = 0 \]
\[H = -\Gamma^0(\tau^1, \bar{\tau}^1) A_{11} - \Gamma^0(\tau^2, \bar{\tau}^1) A_{21} \quad , \quad \lambda_2 = -\Gamma^0(\tau^1, \bar{\tau}^1) \psi_1 - \Gamma^0(\tau^2, \bar{\tau}^1) \psi_2 \]
\[A_{12} = \Gamma^0(\tau^2, \bar{\tau}^1) \varphi \quad , \quad A_{22} = -\Gamma^0(\tau^1, \bar{\tau}^1) \varphi \]
\[H = -\Gamma^0(\tau^1, \bar{\tau}^2) A_{12} - \Gamma^0(\tau^2, \bar{\tau}^2) A_{22} \quad , \quad \lambda_1 = \Gamma^0(\tau^1, \bar{\tau}^2) \psi_1 + \Gamma^0(\tau^2, \bar{\tau}^2) \psi_2 \]
\[A_{11} = -\Gamma^0(\tau^2, \bar{\tau}^2) \varphi \quad , \quad A_{21} = \Gamma^0(\tau^1, \bar{\tau}^2) \varphi \]

It follows that \(H = (\Gamma^0(\tau^1, \bar{\tau}^1) \Gamma^0(\tau^2, \bar{\tau}^2) - \Gamma^0(\tau^2, \bar{\tau}^1) \Gamma^0(\tau^1, \bar{\tau}^2)) \varphi \)

and we obtain the result. \(\square \)

By Proposition 1, the subspace \(W_{\text{chiral}} \) is \(S^s \)-invariant, and it is not difficult to check that it is \(K \)-invariant as well. Thus, it is \(\bar{K} \)-invariant.

Now define the “second-order” endomorphisms of \(W \):

\[d^2 := \varepsilon_{ab} \bar{d}_{\varphi_a} \circ \bar{d}_{\varphi_b} \quad \text{and} \quad d^2 := \varepsilon_{ab} d_{\varphi_a} \circ d_{\varphi_b}. \]

Another expression for \(d^2 \) and \(d^2 \) can be obtained as follows: set \(i^2 := -\frac{1}{2} \varepsilon_{ab} \iota_{\varphi_a} \circ \iota_{\varphi_b}. \)

Note that \(i^2 : \bigwedge^* S^*_+ \rightarrow \bigwedge^* S^*_+ \), but we see it as \(i^2 : \bigwedge^2 S^*_+ \rightarrow \mathbb{C} \) since it kills any term of degree strictly lower than 2. So we calculate:

\[i^2(\tau^a \wedge \tau^b) = -\frac{1}{2} \varepsilon_{ab} \iota_{\varphi_a} (\Gamma^0(\tau^b, \tau)_r)^r - \Gamma^0(\tau^b, \tau^r)(\tau^a, r) = -\frac{1}{2} \varepsilon_{ab} \big(\Gamma^0(\tau^b, \tau)_r \Gamma^0(\tau^a, \tau^r) - \Gamma^0(\tau^b, \tau^r) \Gamma^0(\tau^a, \tau) \big) \]

Thus,

\[i^2(\tau^a \wedge \tau^b) = \varepsilon_{ab} \Gamma^0(\tau^a, \tau^b) \Gamma^0(\tau^a, \tau^b) \]

In particular,

\[i^2(\bar{\tau}^1 \wedge \bar{\tau}^2) = \Gamma^0(\tau^1, \bar{\tau}^1) \Gamma^0(\tau^2, \bar{\tau}^2) - \Gamma^0(\tau^1, \bar{\tau}^2) \Gamma^0(\tau^2, \bar{\tau}^1) \]

Set \(e^2 = \varepsilon_{ab} \iota_{\varphi_a} \circ \iota_{\varphi_b} = \varepsilon_{ab} \iota_{\varphi_a} \iota_{\varphi_b} = \varepsilon_{ab} \iota_{\varphi_a} \iota_{\varphi_b} = \varepsilon_{ab} \).

Note that \(e^2 : \bigwedge^* S^*_+ \rightarrow \bigwedge^* S^*_+ \), but we see it as \(e^2 : \mathbb{C} \rightarrow \bigwedge^2 S^*_+ \) since it kills any
term of degree strictly higher than 0. Thus, $e^2(\lambda) = \lambda \varepsilon$ for every $\lambda \in \mathbb{C}$. Similarly, one can also define $\bar{i}^2 : \Lambda^* S^*_+ \to \Lambda^* S^*_+$ and $\bar{e}^2 : \Lambda^* S^*_+ \to \Lambda^* S^*_+$.

It is easy to check that $\bar{d}^2 = (\text{Id} \otimes \bar{e}^2) + (\bar{i}^2 \otimes \text{Id})$ and $\bar{d}^2 = (e^2 \otimes \text{Id}) + (\text{Id} \otimes i^2)$.

Consequently, $d^2(f) = (\Gamma^0(\tau^1, \bar{\tau}^1) \Gamma^0(\bar{\tau}^2, \bar{\tau}^2) - \Gamma^0(\tau^2, \bar{\tau}^1) \Gamma^0(\tau^1, \tau^2)) \varphi \tau^1 \wedge \tau^2 + (\Gamma^0(\tau^1, \bar{\tau}^2) \psi_1 + \Gamma^0(\tau^2, \bar{\tau}^2) \psi_2) (\tau^1 \wedge \tau^2) \otimes \bar{\tau}^1 + (-\Gamma^0(\tau^1, \bar{\tau}^1) \psi_1 - \Gamma^0(\tau^2, \bar{\tau}^1) \psi_2) (\tau^1 \wedge \tau^2) \otimes \bar{\tau}^2 + \Gamma^0(\tau^1 \wedge \tau^2) \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2) + \Gamma^0(\tau^1, \bar{\tau}^1) \Gamma^0(\bar{\tau}^2, \bar{\tau}^2) - \Gamma^0(\tau^2, \bar{\tau}^1) \Gamma^0(\bar{\tau}^1, \bar{\tau}^1) \psi_1 \tau^1 + \Gamma^0(\tau^1, \bar{\tau}^1) \Gamma^0(\bar{\tau}^2, \bar{\tau}^2) - \Gamma^0(\bar{\tau}^1, \bar{\tau}^2) \Gamma^0(\bar{\tau}^1, \bar{\tau}^1) \psi_2 \tau^2 + \Gamma^0(\tau^1, \bar{\tau}^1) \Gamma^0(\bar{\tau}^2, \bar{\tau}^2) - \Gamma^0(\tau^2, \bar{\tau}^1) \Gamma^0(\bar{\tau}^1, \bar{\tau}^1) \varphi \tau^1 \wedge \tau^2

2. The supersymmetric symbols

Proposition 7.6.

1. i^2 is K-equivariant.

2. Let $\zeta_i(p) := m^2 i^2 \cdot h_p^{-1}$. Then

$$\zeta_i(p) (r \wedge r') = \varepsilon_{ab} p(\Gamma_C(\tau^a, r)) \cdot p(\Gamma_C(\tau^b, r'))$$

Proof: 1. For every $k \in K$, we have:

$$i^2(k^{-1}(r \wedge r')) = i^2(k^{-1}r \wedge k^{-1}r') = \varepsilon_{ab} \Gamma^0(\tau^a, k^{-1}r) \Gamma^0(\bar{\tau}^b, k^{-1}r')$$

$$= \varepsilon_{ab} e^0(\Gamma_C(\tau^a, k^{-1}r)) \cdot e^0(\Gamma_C(\tau^b, k^{-1}r')) = \varepsilon_{ab} e^0(k^{-1} \Gamma_C(\tau^a, r)) \cdot e^0(k^{-1} \Gamma_C(\tau^b, r'))$$

$$= \varepsilon_{ab} e^0(\Gamma_C(\tau^a, r)) \cdot e^0(\Gamma_C(\tau^b, r')) = \varepsilon_{ab} e^0(\Gamma_C(k^{-1} \tau^a, r)) \cdot e^0(\Gamma_C(k^{-1} \tau^b, r'))$$

$$= \varepsilon_{ab} \Gamma^0(\tau^a, r) \Gamma^0(\tau^b, r') (r \wedge r') = i^2(r \wedge r').$$

2. $i^2(h_p^{-1}(r \wedge r')) = i^2(h_p^{-1}r \wedge h_p^{-1}r') = \varepsilon_{ab} \Gamma^0(\tau^a, h_p^{-1}r) \Gamma^0(\bar{\tau}^b, h_p^{-1}r')$

$$= \varepsilon_{ab} e^0(\Gamma_C(\tau^a, h_p^{-1}r)) \cdot e^0(\Gamma_C(\tau^b, h_p^{-1}r')) = \varepsilon_{ab} e^0(h_p^{-1} \Gamma_C(h_p \tau^a, r)) \cdot e^0(h_p^{-1} \Gamma_C(h_p \tau^b, r'))$$

$$= \varepsilon_{ab} (h_p e^0)(\Gamma_C(\tau^a, r)) \cdot (h_p e^0)(\Gamma_C(\tau^b, r')) = \varepsilon_{ab} (h_p e^0)(\Gamma_C((h_p \tau^a, r)) \cdot (h_p e^0)(\Gamma_C((h_p \tau^b, r'))$$

30
\[(h_p)_C (h_p)_d \varepsilon_{ab} (h_p e^0) (\Gamma_C(\tau^c, r)) (h_p e^0) (\Gamma_C(\tau^d, r')) = \varepsilon_{cd} \frac{1}{m} p(\Gamma_C(\tau^c, r)) \frac{1}{m} p(\Gamma_C(\tau^d, r')). \]

\[\square \]

Equivalently,
\[\zeta_{i^2}(p) = \varepsilon_{ab} \zeta_{i^+}(p) \circ \zeta_{i^-}(p) \]

where
\[\zeta_{i^+}(p)(\lambda + t + r \wedge r') := p(\Gamma_C(s_+, t)) + p(\Gamma_C(s_+, r))r' - p(\Gamma_C(s_+, r'))r \]

Similarly, one can define
\[\zeta_{i^-}(p)(\lambda + t + r \wedge r') := p(\Gamma_C(t, s_-)) + p(\Gamma_C(r, s_-))r' - p(\Gamma_C(r', s_-))r \]

Proposition 7.7. The symbols corresponding to the endomorphisms \(d_{\tau^a} \) and \(d_{\tau^a} \) of \(W \) are given by:

\[\zeta_{d_{\tau^a}}(p) := (\text{Id} \otimes e_{\tau^a}) + (\zeta_{i^a}(p) \otimes \text{Id}) \quad \text{and} \quad \zeta_{d_{\tau^a}}(p) := (e_{\tau^a} \otimes \text{Id}) + (\text{Id} \otimes \zeta_{i^a}(p)). \]

Write
\[f(p) = H(p) + \mu_1(p) \tau^1 + \mu_2(p) \tau^2 + \lambda_1(p) \bar{\tau}^1 + \lambda_2(p) \bar{\tau}^2 \]
\[+ G(p) \tau^1 \wedge \tau^2 + F(p) \bar{\tau}^1 \wedge \bar{\tau}^2 \]
\[+ A_{11}(p) \tau^1 \otimes \bar{\tau}^1 + A_{12}(p) \tau^1 \otimes \bar{\tau}^2 + A_{21}(p) \tau^2 \otimes \bar{\tau}^1 + A_{22}(p) \tau^2 \otimes \bar{\tau}^2 \]
\[+ \eta_1(p) (\bar{\tau}^1 \otimes \bar{\tau}^2) \otimes \bar{\tau}^1 + \eta_2(p) (\bar{\tau}^1 \otimes \bar{\tau}^2) \otimes \bar{\tau}^2 \]
\[+ \psi_1(p) (\tau^1 \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2)) + \psi_2(p) \tau^2 \otimes (\tau^1 \wedge \bar{\tau}^2) + \varphi(p) (\tau^1 \wedge \tau^2) \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2) \]

for the expression of a generic map \(f : O_m \rightarrow W \).

Proposition 7.8. We have \(f(p) \in \text{Ker} \zeta_{d_{\tau^1}}(p) \cap \text{Ker} \zeta_{d_{\tau^2}}(p) \) if and only if

\[f(p) = (p(\Gamma_C(\tau^1, \bar{\tau}^1))) p(\Gamma_C(\tau^2, \bar{\tau}^2)) - p(\Gamma_C(\tau^2, \bar{\tau}^1)) p(\Gamma_C(\tau^1, \bar{\tau}^2)) \varphi(p) \]
\[+ (p(\Gamma_C(\tau^1, \bar{\tau}^2)) \psi_1(p) + p(\Gamma_C(\tau^2, \bar{\tau}^2)) \psi_2(p)) \bar{\tau}^1 \]
\[+ (-p(\Gamma_C(\tau^1, \tau^1))) \psi_1(p) - p(\Gamma_C(\tau^2, \tau^1)) \psi_2(p)) \tau^2 \]
\[+ F(p) \bar{\tau}^1 \wedge \bar{\tau}^2 + (-p(\Gamma_C(\tau^2, \bar{\tau}^2)) \varphi(p)) \tau^1 \otimes \bar{\tau}^1 + (p(\Gamma_C(\tau^2, \tau^1)) \varphi(p)) \tau^1 \otimes \tau^2 \]
\[+ (p(\Gamma_C(\tau^1, \bar{\tau}^2)) \varphi(p)) \tau^2 \otimes \bar{\tau}^1 + (-p(\Gamma_C(\tau^1, \tau^1)) \varphi(p)) \tau^2 \otimes \bar{\tau}^2 \]
\[+ \psi_1(p) \tau^1 \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2) + \psi_2(p) \tau^2 \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2) + \varphi(p) (\tau^1 \wedge \tau^2) \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2) \]
Proposition 7.9. The symbols corresponding to the “second-order” endomorphisms \tilde{d}^2 and d^2 of W are given by:

$$\zeta_{\tilde{d}^2}(p) = (\text{Id} \otimes e^2) + (\zeta_{d^2}(p) \otimes \text{Id}) \quad \text{and} \quad \zeta_{d^2}(p) = (e^2 \otimes \text{Id}) + (\text{Id} \otimes \zeta_{\tilde{d}^2}(p)).$$

Also, we have:

$$\zeta_{\tilde{d}^2}(p)(f(p)) = (p(\Gamma_C(\tau^1, \bar{\tau}^1)) p(\Gamma_C(\tau^2, \bar{\tau}^2)) - p(\Gamma_C(\tau^1, \tau^2))) \varphi(p) \tau^1 \wedge \tau^2$$

$$+ (p(\Gamma_C(\tau^1, \bar{\tau}^1)) \psi_1(p) + p(\Gamma_C(\tau^2, \bar{\tau}^2)) \psi_2(p)) (\tau^1 \wedge \tau^2) \otimes \bar{\tau}^1$$

$$+ (-p(\Gamma_C(\tau^1, \bar{\tau}^1)) \psi_1(p) - p(\Gamma_C(\tau^2, \bar{\tau}^1)) \psi_2(p)) (\tau^1 \wedge \tau^2) \otimes \bar{\tau}^2$$

$$+ F(p) (\tau^1 \wedge \tau^2) \otimes (\tau^1 \wedge \tau^2) + (p(\Gamma_C(\tau^1, \bar{\tau}^1)) p(\Gamma_C(\tau^2, \bar{\tau}^2)) - p(\Gamma_C(\tau^1, \tau^2))) F(p)$$

$$+ (p(\Gamma_C(\tau^1, \bar{\tau}^1)) p(\Gamma_C(\tau^2, \bar{\tau}^2)) - p(\Gamma_C(\tau^1, \tau^2))) \psi_1(p) \tau^1$$

$$+ (p(\Gamma_C(\tau^1, \bar{\tau}^1)) p(\Gamma_C(\tau^2, \bar{\tau}^2)) - p(\Gamma_C(\tau^1, \tau^2))) \psi_2(p) \tau^2$$

$$+ (p(\Gamma_C(\tau^1, \bar{\tau}^1)) p(\Gamma_C(\tau^2, \bar{\tau}^2)) - p(\Gamma_C(\tau^1, \tau^2))) \varphi(p) (\tau^1 \wedge \tau^2)$$

Now

$$\Gamma_C(\tau^1, \bar{\tau}^1) = e_0 + e_1 \quad \text{and} \quad \Gamma_C(\tau^1, \tau^2) = e_0 - e_1$$

As a result,

$$p(\Gamma_C(\tau^1, \bar{\tau}^1)) p(\Gamma_C(\tau^2, \bar{\tau}^2)) - p(\Gamma_C(\tau^1, \bar{\tau}^2)) = (p_0 + p_1)(p_0 - p_1) - (p_2 - ip_3)(p_2 + ip_3)$$

$$= (p_0)^2 - (p_1)^2 - (p_2)^2 - (p_3)^2 = \|p\|^2.$$

Taking this into account, and conjugating f, we obtain:

$$\tilde{f}(p) = \|p\|^2 \tilde{\varphi}(p)$$

$$+ (p(\Gamma_C(\tau^2, \bar{\tau}^1)) \tilde{\psi}_1(p) + p(\Gamma_C(\tau^2, \bar{\tau}^2)) \tilde{\psi}_2(p)) \tau^1$$

$$+ (-p(\Gamma_C(\tau^1, \bar{\tau}^1)) \tilde{\psi}_1(p) - p(\Gamma_C(\tau^1, \tau^2)) \tilde{\psi}_2(p)) \tau^2$$

$$+ F(p) \tau^1 \wedge \tau^2 + (-p(\Gamma_C(\tau^2, \bar{\tau}^2)) \tilde{\varphi}(p)) \tau^1 \otimes \tau^1 + (p(\Gamma_C(\tau^1, \tau^2)) \tilde{\varphi}(p)) \tau^2 \otimes \bar{\tau}^1$$

$$+ (p(\Gamma_C(\tau^2, \bar{\tau}^1)) \tilde{\varphi}(p)) \tau^1 \otimes \bar{\tau}^2 + (-p(\Gamma_C(\tau^1, \bar{\tau}^1)) \tilde{\varphi}(p)) \tau^2 \otimes \bar{\tau}^2$$

$$+ \tilde{\psi}_1(p) (\tau^1 \wedge \tau^2) \otimes \bar{\tau}^1 + \tilde{\psi}_2(p) (\tau^1 \wedge \tau^2) \otimes \bar{\tau}^2 + \tilde{\varphi}(p) (\tau^1 \wedge \tau^2) \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2)$$

and

$$\zeta_{d^2}(p)(f(p)) = \|p\|^2 \varphi(p) \tau^1 \wedge \tau^2$$
\[+ (p(\Gamma_\mathbb{C}(\tau_1, \tau^2)) \psi_1(p) + p(\Gamma_\mathbb{C}(\tau^2, \tau^2)) \psi_2(p)) (\tau^1 \wedge \tau^2) \otimes \bar{\tau}^1 \\
+ (-p(\Gamma_\mathbb{C}(\tau_1, \tau^1)) \psi_1(p) - p(\Gamma_\mathbb{C}(\tau^2, \tau^1)) \psi_2(p)) (\tau^1 \wedge \tau^2) \otimes \bar{\tau}^2 \\
+ F(p) (\tau^1 \wedge \tau^2) \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2) + \|p\|^2 F(p) \\
+ \|p\|^2 \psi_1(p) \tau^1 + \|p\|^2 \psi_2(p) \tau^2 + \|p\|^2 \varphi(p) \tau^1 \wedge \tau^2 \]

Finally, imposing
\[\zeta_{\mathbb{C}}(p)(f(p)) = mf(p) \]
implies
\[m\tilde{\varphi}(p) = F(p) \quad m\tilde{F}(p) = \|p\|^2 \varphi(p) \]
\[m\tilde{\psi}_1(p) = p(\Gamma_\mathbb{C}(\tau_1, \tau^2)) \psi_1(p) + p(\Gamma_\mathbb{C}(\tau^2, \tau^2)) \psi_2(p) \]
\[m\tilde{\psi}_2(p) = -p(\Gamma_\mathbb{C}(\tau_1, \tau^1)) \psi_1(p) - p(\Gamma_\mathbb{C}(\tau^2, \tau^1)) \psi_2(p) \]

In particular,
\[(\|p\|^2 - m^2) \varphi(p) = 0 \]

8 Super Fourier transform

In [DeB], a Fourier transform is defined in superspace, using a kernel that transforms under the group \(\text{Sp}(2n, \mathbb{R})\) rather than the orthogonal group (here, \(n\) is the odd dimension). Inspired from this, we use the standard supermetric on \(M_{cs}\) to define a natural version of the Fourier transform for Minkowski superspacetime, taking superfunctions in \(C^\infty_\mathbb{C}(M)[\theta^a, \bar{\theta}^a]\) to superfunctions in \(C^\infty(V^*)[\tau^a, \bar{\tau}^a]\). Once an expression for the super Fourier transform of a superfunction is obtained, we see that the purely odd part of the transform coincides with the Hodge isomorphism defined by the invariant symplectic structure on the spinors. From this, it is easy to check that the super Fourier transform has natural properties such as exchanging the odd derivative \(\frac{\partial}{\partial \theta^a}\) with exterior multiplication by \(i\tau^2\), and multiplication by \(\theta^1\) with the contraction \(-i\frac{\partial}{\partial \tau^2}\). The \(1 \leftrightarrow 2\) exchange is not surprising since the super Fourier transform is defined via a symplectic structure. Then, we apply the exchange properties to prove that the supersymmetric differential operators corresponding to the supersymmetric symbols \(\zeta_{\mathbb{C}, a}\) and \(\zeta_{\mathbb{C}, a}\) constructed in the preceding section are nothing but the supertranslation-invariant odd vector fields \(D_a\) and \(\overline{D}_a\) defined in section [4]. From this, we obtain the super Poincaré equivariant differential equation selecting the massive irreducible unitary representation of superspin 0.

We define the super Fourier transform of a (compactly supported) superfunction \(f \in C^\infty_\mathbb{C}(M, \Lambda^\bullet S^*_\mathbb{C}) \simeq C^\infty_\mathbb{C}(M)[\theta^a, \bar{\theta}^a]\) as follows: it is the element \(*f \in C^\infty(V^*)[\tau^a, \bar{\tau}^a]\) defined by:
\[*\hat{f} := \int_{M_{cs}} e^{-i((p,x) + \varepsilon_a(\tau, \bar{\theta}) + \varepsilon_-(\tau, \bar{\theta}))} f \, dx \, d\theta \, d\bar{\theta} \]
If we define the bosonic Fourier transform of \(f \) to be given by:

\[
\hat{f}(p) := \int_{\mathcal{M}} e^{-i(p,x)} f(x) \, dx
\]

then

\[
\ast \hat{f}(p) = \int e^{-i(x_+ (\tau, \theta) + x_- (\bar{\tau}, \bar{\theta}))} \hat{f}(p) \, d\theta \, d\bar{\theta}
\]

Let \(f(x) = \varphi(x) + \psi_1(x) \theta^1 + \psi_2(x) \theta^2 + \eta_1(x) \bar{\theta}^1 + \eta_2(x) \bar{\theta}^2 \)

\[
+ F(x) \theta^1 \wedge \theta^2 + G(x) \bar{\theta}^1 \wedge \bar{\theta}^2
\]

\[
+ A_{11}(x) \theta^1 \otimes \bar{\theta}^1 + A_{12}(x) \theta^1 \otimes \bar{\theta}^2 + A_{21}(x) \theta^2 \otimes \bar{\theta}^1 + A_{22}(x) \theta^2 \otimes \bar{\theta}^2
\]

\[
+ \lambda_1(x) (\theta^1 \otimes \theta^2) \otimes \bar{\theta}^1 + \lambda_2(x) (\theta^1 \otimes \theta^2) \otimes \bar{\theta}^2
\]

\[
+ \mu_1(x) \theta^1 \otimes (\bar{\theta}^1 \wedge \theta^2) + \mu_2(x) \theta^2 \otimes (\bar{\theta}^1 \wedge \bar{\theta}^2) + H(x) (\theta^1 \wedge \theta^2) \otimes (\bar{\theta}^1 \wedge \bar{\theta}^2)
\]

be the expression of a generic superfunction \(f : \mathcal{M} \rightarrow \wedge^* S_c^\times \).

Then \(\hat{f}(p) = \hat{\varphi}(p) + \hat{\psi}_1(p) \theta^1 + \hat{\psi}_2(p) \theta^2 + \hat{\eta}_1(p) \bar{\theta}^1 + \hat{\eta}_2(p) \bar{\theta}^2 \)

\[
+ \hat{F}(p) \theta^1 \wedge \theta^2 + \hat{G}(p) \bar{\theta}^1 \wedge \bar{\theta}^2
\]

\[
+ \hat{A}_{11}(p) \theta^1 \otimes \bar{\theta}^1 + \hat{A}_{12}(p) \theta^1 \otimes \bar{\theta}^2 + \hat{A}_{21}(p) \theta^2 \otimes \bar{\theta}^1 + \hat{A}_{22}(p) \theta^2 \otimes \bar{\theta}^2
\]

\[
+ \hat{\lambda}_1(p) (\theta^1 \otimes \theta^2) \otimes \bar{\theta}^1 + \hat{\lambda}_2(p) (\theta^1 \otimes \theta^2) \otimes \bar{\theta}^2
\]

\[
+ \hat{\mu}_1(p) \theta^1 \otimes (\bar{\theta}^1 \wedge \theta^2) + \hat{\mu}_2(p) \theta^2 \otimes (\bar{\theta}^1 \wedge \bar{\theta}^2) + \hat{H}(p) (\theta^1 \wedge \theta^2) \otimes (\bar{\theta}^1 \wedge \bar{\theta}^2)
\]

In order to derive an expression for the super Fourier transform \(\ast \hat{f}(p) \), we first expand the exponential:

\[
e^{-i(x_+ (\tau, \theta) + x_- (\bar{\tau}, \bar{\theta}))} = e^{-i(x_+ (\tau, \theta))} e^{-i(x_- (\bar{\tau}, \bar{\theta}))} = e^{-i(\tau_1 \theta^2 - \tau^2 \theta^1)} e^{-i(\bar{\tau}_1 \bar{\theta}^2 - \bar{\tau}^2 \bar{\theta}^1)}
\]

\[
= (1 - i\tau^1 \theta^2 + i\tau^2 \theta^1 + \tau^1 \tau^2 \theta^2 \bar{\theta}^1) (1 - i\bar{\tau}^1 \bar{\theta}^2 + i\bar{\tau}^2 \bar{\theta}^1 + \bar{\tau}^1 \bar{\tau}^2 \bar{\theta}^1 \bar{\theta}^2)
\]

Then, we multiply the result by the expansion of \(\hat{f}(p) \), keeping only the coefficients of \((\theta^1 \otimes \theta^2) \otimes (\bar{\theta}^1 \wedge \bar{\theta}^2)\):

\[
e^{-i(x_+ (\tau, \theta) + x_- (\bar{\tau}, \bar{\theta}))} \hat{f}(p) = \left(\hat{H}(p) + i\hat{\mu}_1(p) \tau^1 + i\hat{\mu}_2(p) \tau^2 + i\hat{\lambda}_1(p) \bar{\tau}^1 + i\hat{\lambda}_2(p) \bar{\tau}^2 \right)
\]

\[
+ \hat{G}(p) \tau^1 \wedge \tau^2 + \hat{F}(p) \bar{\tau}^1 \wedge \bar{\tau}^2
\]

\[
- \hat{A}_{11}(p) \tau^1 \otimes \tau^1 - \hat{A}_{12}(p) \tau^1 \otimes \tau^2 - \hat{A}_{21}(p) \tau^2 \otimes \tau^1 - \hat{A}_{22}(p) \tau^2 \otimes \tau^2
\]

\[
+ i\hat{\eta}_1(p) (\tau^1 \otimes \tau^1) \otimes \bar{\tau}^1 + i\hat{\eta}_2(p) (\tau^1 \otimes \tau^2) \otimes \bar{\tau}^2
\]
Finally, we perform a Berezin integration. Thus, we have the following proposition.

Proposition 8.3. The super Fourier transform of a superfunction \(\hat{f} : \hat{M} \rightarrow \bigwedge^\bullet S_C^* \) is given by:

\[
\hat{f}(p) = \hat{H}(p) + i\hat{\mu}_1(p) \tau^1 + i\hat{\mu}_2(p) \tau^2 + i\hat{\lambda}_1(p) \bar{\tau}^1 + i\hat{\lambda}_2(p) \bar{\tau}^2 \\
+ \hat{G}(p) \tau^1 \wedge \bar{\tau}^2 + \hat{F}(p) \bar{\tau}^1 \wedge \tau^2 \\
- \hat{A}_{11}(p) \tau^1 \otimes \tau^1 - \hat{A}_{12}(p) \tau^1 \otimes \bar{\tau}^2 - \hat{A}_{21}(p) \bar{\tau}^2 \otimes \tau^1 - \hat{A}_{22}(p) \tau^2 \otimes \bar{\tau}^2 \\
+ i\hat{\nu}_1(p) (\tau^1 \wedge \tau^2) \otimes \tau^1 + i\hat{\nu}_2(p) (\tau^1 \wedge \tau^2) \otimes \bar{\tau}^2 \\
+ i\hat{\psi}_1(p) (\tau^1 \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2)) + i\hat{\psi}_2(p) (\tau^2 \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2)) + \hat{\phi}(p) (\tau^1 \wedge \tau^2) \otimes (\bar{\tau}^1 \wedge \bar{\tau}^2)
\]

Comparing this with the expression of \(\hat{f}(p) \), we have the following theorem:

Theorem 8.2. The purely odd super Fourier transform coincides with the Hodge dual (with respect to the symplectic form \(\varepsilon \) on \(S_C \)).

Proposition 8.4.

1. \(\star \left(\frac{\partial f}{\partial \theta^a} \right) = i\varepsilon_{ab} \tau^b (\star f) \), \(\star \left(\frac{\partial f}{\partial \theta^a} \right) = i\varepsilon_{ab} \bar{\tau}^b (\star f) \)

2. \(\star (\theta^a f) = -i\varepsilon^{ab} \frac{\partial}{\partial \tau^b} (\star f) \), \(\star (\theta^a f) = -i\varepsilon^{ab} \frac{\partial}{\partial \bar{\tau}^b} (\star f) \)

Proof: Follow directly from 8.1 \(\square \)

Recall that for every superfunction \(f : \hat{M} \rightarrow W \), we have \(D_a f = \frac{\partial f}{\partial \theta^a} - i\Gamma^\mu_{ab} \hat{\theta}^b \frac{\partial f}{\partial \tau^\mu} \) and \(\hat{D}_a f = \frac{\partial f}{\partial \theta^a} - i\Gamma^\mu_{ab} \hat{\theta}^b \frac{\partial f}{\partial \bar{\tau}^\mu} \).

Proposition 8.3.

\(\star \hat{D}_a f(p) = i\varepsilon_{ab} \zeta_{a,b}(p)(\star \hat{f}(p)) \), \(\star \hat{D}_a f(p) = i\varepsilon_{ab} \zeta_{a,b}(p)(\star \hat{f}(p)) \)

Proof: We prove only the second equality, the proof being similar for the first.

\[
\star \hat{D}_a f = \star \left(\frac{\partial f}{\partial \theta^a} \right) - i\Gamma^\mu_{ab} \star \left(\theta^b \frac{\partial f}{\partial \tau^\mu} \right) \\
= i\varepsilon_{ab} \hat{\pi}^b (\star f) - \Gamma^\mu_{bc} \varepsilon_{bc} \frac{\partial}{\partial \tau^\mu} (\star f) = i\varepsilon_{ab} \hat{\pi}^b (\star f) - i\Gamma^\mu_{bc} \varepsilon_{bc} \frac{\partial}{\partial \tau^\mu} (\star f) \\
= i\varepsilon_{ab} \left(\hat{\pi}^b (\star f) + \Gamma^\mu_{bc} \varepsilon_{bc} \frac{\partial}{\partial \tau^\mu} (\star f) \right) = i\varepsilon_{ab} \left(\hat{\pi}^b (\star f) + \Gamma^\mu_{bc} \varepsilon_{bc} \frac{\partial}{\partial \tau^\mu} (\star f) \right)
\]

35
Proposition 8.6. The equations

\[\begin{aligned}
&= i\varepsilon_{ab} \left(\hat{\tau}^b (\ast \hat{f}) + p(\Gamma_C(\tau^c, \hat{\tau}^b)) \frac{\partial}{\partial \tau^c} (\ast \hat{f}) \right) = i\varepsilon_{ab} \left((\text{Id} \otimes e_\pm b) + (\zeta_{\ast b} (p) \otimes \text{Id}) \right) (\ast \hat{f}) \\
&= i\varepsilon_{ab} \zeta_{\ast b} (p)(\ast \hat{f})
\end{aligned} \]

Recall that for every superfunction \(f : M \to W \), we have

\[D^2 f = \varepsilon^{a_1 a_2} D_{a_1} D_{a_2} f \quad \text{and} \quad \overline{D}^2 f = \varepsilon^{a_1 a_2} \overline{D}_{a_1} \overline{D}_{a_2} f. \]

Proposition 8.5. \(\ast \overline{D}^2 f(p) = -\zeta_{\ast b}(p)(\ast \hat{f}(p)) \), \(\ast \overline{D}^2 f(p) = -\zeta_{\ast b}(p)(\ast \hat{f}(p)) \)

Proof: We prove only the first equality, the proof being similar for the second.

\[\ast \overline{D}^2 f = \varepsilon^{a_1 a_2} \ast (D_{a_1} \overline{D}_{a_2} f) \]

\[= \varepsilon^{a_1 a_2} i\varepsilon_{a_1 b_1} \zeta_{d_{a_1} b_1} (p)(\ast \overline{D}_{a_2} f) = \varepsilon^{a_1 a_2} i\varepsilon_{a_1 b_1} \zeta_{d_{a_1} b_1} (p) i\varepsilon_{a_2 b_2} \zeta_{d_{a_2} b_2} (p)(\ast \hat{f}) \]

\[= -\varepsilon^{a_1 a_2} i\varepsilon_{a_1 b_1} \zeta_{d_{a_1} b_1} (p) \zeta_{d_{a_2} b_2} (p)(\ast \hat{f}) = -\varepsilon_{b_1 b_2} \zeta_{d_{b_1} b_2} (p) \zeta_{d_{b_2} b_2} (p)(\ast \hat{f}) \]

\[= -\zeta_{\ast b}(p)(\ast \hat{f}) \]

We deduce immediately from the above the following proposition.

Proposition 8.6. The equations

\[\zeta_{\ast_{i_1}} (p)(\ast \hat{f}(p)) = 0 \quad \text{and} \quad \zeta_{\ast i_2} (p)(\ast \hat{f}(p)) = 0 \quad \text{and} \quad \zeta_{\ast b}(p)(\ast \hat{f}(p)) = m \overline{\ast \hat{f}(p)} \]

are equivalent to:

\[\overline{D}_{\overline{i}} f = 0 \quad \text{and} \quad D^2 f = -m \hat{f}. \]

The following theorem summarizes the main result that we have obtained: a realization of the irreducible unitary representation of the super-Poincaré group of mass \(m \) and superspin 0 in terms of partial differential equations involving superfunctions in the Berezin-Kostant-Leites sense (resp. ordinary \(i.e. \) non-Grassmannian) complex-valued functions on spacetime).

Theorem 8.7. Let \(M_{cs} \) be the linear \(cs \) supermanifold associated to the super vector space \(V_C \oplus S_C \) (where \(V \) is a four-dimensional Lorentzian vector space, and \(S_C \) the corresponding four-dimensional complex space of Dirac spinors). The irreducible unitary representation of the super-Poincaré group of mass \(m \) and superspin 0 can be realized as the sub-superspinor vector space of \(\mathcal{O}_{M_{cs}}(\tilde{M}) = \mathcal{C}^\infty(\tilde{M}, \wedge^* S_C^*) \) made of the superfunctions satisfying the differential equations:

\[\overline{D}_{\overline{i}} f = 0 \quad \text{and} \quad D^2 f = -m \hat{f}. \]

In components, this representation space corresponds to:

\[\{ (\varphi, \psi) \in \mathcal{C}^\infty(\tilde{M}, \mathbb{C}) \times \mathcal{C}^\infty(\tilde{M}, S_C^*) \mid \begin{cases} (\Box + m^2) \varphi = 0 \\ i\Gamma^a_{ab} \partial_a \psi_b + m \psi_a = 0 \end{cases} \}. \]
9 Link with the superfield-theoretic approach

We have obtained at the end of the preceding section supersymmetric differential equations corresponding to the massive irreducible unitary representations of superspin 0 of the super Poincaré group. These equations involve superfunctions, whose components are ordinary complex-valued functions on spacetime (we are working in the Berezin–Kostant–Leites category of supermanifolds). In particular, these equations reduce to a Klein–Gordon equation, and a Dirac equation which involves ordinary spinor fields with complex-valued components. This is in contrast with the physics literature, where the spinor fields occurring in supersymmetric theories have always anticommuting Grassmann-valued components. In fact, one can proceed differently in order to realize the representations: one can consider a priori a suitable action functional for superfields on Minkowski superspacetime, and then obtain differential equations selecting the representation as the Euler–Lagrange equations corresponding to that action functional. This Lagrangian field-theoretic approach involves the differential geometry of the underlying supermanifold (here Minkowski superspacetime), in order to carry out the calculus of variations, and is most conveniently dealt with by applying the functor of points. This is what is implicitly done in the physics literature, and it leads naturally to odd Grassmannian spin or fields. One can obtain in this way the Wess–Zumino equations for massive chiral superfields (cf. [WB] for instance).

In this section, we view the solutions of these equations as a functor; it turns out that this functor is representable, precisely by the solutions of our supersymmetric equations (that we have obtained otherwise from momentum space via super Fourier transform).

The generalized supermanifold of superfields is \(\mathcal{F} := \text{Hom}(M_{cs}, \mathbb{C}) \). It is by definition the contravariant functor from \(s\text{Man}_{0}^{\mathbb{R}^{1,0}} \to \text{Set} \) given by

\[
\mathcal{F}(B) = \text{Hom}(B \times M_{cs}, \mathbb{C})
\]

for all complex supermanifolds \(B \). One would like to think of \(\mathcal{F} \) as some kind of infinite-dimensional supermanifold (\(\mathcal{F}, \mathcal{O}_{\mathcal{F}} \)).

If \(\Phi_{\text{geom}} = (\Phi, \Phi^{\sharp}) : B \times M_{cs} \to \mathbb{C} \) is a superfield, then \(\Phi^{\sharp} : C^{\infty}(\mathbb{C}, \mathbb{C}) \to \mathcal{O}_{B}(|B|) \otimes \mathcal{O}_{M_{cs}}(\hat{M}) \) is entirely determined by \(\Phi^{\sharp}(\text{Id}_{\mathbb{C}}) \in (\mathcal{O}_{B}(|B|) \otimes \mathcal{O}_{M_{cs}}(M))_{0} \). Thus, the information about \(\Phi_{\text{geom}} \) is fully contained in \(\Phi^{\sharp}(\text{Id}_{\mathbb{C}}) \in (\Lambda^{*} S_{c}^{0} \otimes C^{\infty}(\hat{M}, \mathbb{C}) \otimes \mathcal{O}_{B}(|B|))_{0} \).

Using \(x^{\mu}, \theta^{a}, \bar{\theta}^{b} \) as coordinates on \(M_{cs} \), we may write, for any \(f \in C^{\infty}(\mathbb{C}, \mathbb{C}) \),

\[
\Phi^{\sharp}(f) = \varphi^{\sharp}(f) + \theta^{a}(\eta_{a})^{\sharp}(f) + \bar{\theta}^{b}(\bar{\eta}_{b})^{\sharp}(f) + \theta^{1} \theta^{2} F^{\sharp}(f) + \theta^{1} \bar{\theta}^{2} G^{\sharp}(f) + \bar{\theta}^{1} \bar{\theta}^{2} H^{\sharp}(f)
\]

where \(\varphi^{\sharp}(f) \in C^{\infty}(\hat{M}, \mathbb{C}) \otimes \mathcal{O}_{B}(|B|)_{0}, (\psi_{a})^{\sharp} \in C^{\infty}(\hat{M}, \mathbb{C}) \otimes \mathcal{O}_{B}(|B|)^{1} \) (while \(\theta^{a}(\psi_{a})^{\sharp}(f) \in S_{c}^{0} \otimes C^{\infty}(\hat{M}, \mathbb{C}) \otimes \mathcal{O}_{B}(|B|)_{1} \), etc...

If \(g \in C^{\infty}(\mathbb{C}, \mathbb{C}) \) is another function, writing \(\Phi^{\sharp}(fg) = \Phi^{\sharp}(f) \Phi^{\sharp}(g) \) will give

\[
\varphi^{\sharp}(fg) = \varphi^{\sharp}(f) \varphi^{\sharp}(g),
\]

so \(\varphi^{\sharp} \) corresponds indeed to a morphism \(\varphi_{\text{geom}} : B \times \hat{M} \to \mathbb{C} \).

But at order 1, \(\Phi^{\sharp}(fg) = \Phi^{\sharp}(f) \Phi^{\sharp}(g) \) will give \((\psi_{a})^{\sharp}(fg) = (\psi_{a})^{\sharp}(f) \varphi^{\sharp}(g) + \varphi^{\sharp}(f) (\psi_{a})^{\sharp}(g) \) and same for \((\eta_{a})^{\sharp} \). So \((\psi_{a})^{\sharp} \) and \((\eta_{a})^{\sharp} \) are derivations, and not pull-backs of morphisms. Consequently, \(\psi_{\text{geom}} : B \times M \to L(\{0\} \oplus S_{c}^{0}) \) and \(\eta_{\text{geom}} : B \times M \to L(\{0\} \oplus S_{c}^{0}) \) should be considered as odd vector fields along \(\varphi_{\text{geom}} \).
To the superfield Φ_{geom}, we can associate a map $\Phi : M_{cs}(B) \rightarrow O_B(|B|)_0$ in the following way: let $\beta \in M_{cs}(B) = \text{Hom}(B, M_a)$. Then $\beta^g_M : \bigwedge^r S^*_C \otimes C^\infty(M, \mathbb{C}) \rightarrow O_B(|B|)$ can be extended into $\beta^g_M \otimes \text{Id}_{O_B(|B|)} : \bigwedge^r S^*_C \otimes C^\infty(M, \mathbb{C}) \otimes O_B(|B|) \rightarrow O_B(|B|) \otimes O_B(|B|)$. On the other hand, we have a canonical map $\Delta^\sharp_{[B]|B]} : O_B(|B|) \otimes O_B(|B|) \rightarrow O_B(|B|)$. Composing with $\Phi^\sharp_C : C^\infty(C, \mathbb{C}) \rightarrow \bigwedge^r S^*_C \otimes C^\infty(M, \mathbb{C}) \otimes O_B(|B|)||B]_0$, we obtain a map $\Delta^\sharp_{[B]|B]} \circ (\beta^g_M \otimes \text{Id}_{O_B(|B|)}) \circ \Phi^\sharp_C : C^\infty(C, \mathbb{C}) \rightarrow O_B(|B|)||B]_0$. Now set $\Phi(\beta) := (\Delta^\sharp_{[B]|B]} \circ (\beta^g_M \otimes \text{Id}_{O_B(|B|)}) \circ \Phi^\sharp_C)(\text{Id}_C)$. Then $\Phi(\beta) \in O_B(|B|)_0$.

Here is alternative way to define $\Phi(\beta)$, equivalent but slightly simpler. We have the diagonal morphism $\Delta : B \times B \rightarrow B$, as well as the morphism $\text{Id}_B \times \beta : B \times B \rightarrow B \times M_{cs}$. Composing with $\Phi_{geom} : B \times M_{cs} \rightarrow \mathbb{C}$, we obtain an element $\Phi_{geom} \circ (\text{Id}_B \times \beta) \circ \Delta \in \text{Hom}(B, \mathbb{C})$. Now set $\Phi(\beta) = (\Phi_{geom} \circ (\text{Id}_B \times \beta) \circ \Delta)^2(\text{Id}_C)$.

Let $y^\mu := \beta_M^\mu(x^\mu) \in O_B(|B|)_0$, $\xi^a := \beta_M^a(\theta^a) \in O_B(|B|)_1$, and $\bar{\xi}^b := \beta_M^b(\bar{\theta}^b) \in O_B(|B|)_1$. We may write $\beta = (y^\mu, \xi^a, \bar{\xi}^b)$ or $\beta = (y, \xi, \bar{\xi})$.

Recall that
\[
\Phi^\sharp_{(\text{Id}_C)} = \varphi^\varphi(\text{Id}_C) + \theta^a(\psi_a)^2(\text{Id}_C) + \bar{\theta}^a(\bar{\psi}_a)^2(\text{Id}_C) + \theta^1 \theta^2 F^2(\text{Id}_C) + \bar{\theta}^1 \bar{\theta}^2 G^2(\text{Id}_C) + i\Gamma_{ab}^\mu \theta^a \bar{\theta}^b (A_\mu)^2(\text{Id}_C)
\]
\[+ \theta^1 \theta^2 \bar{\theta}^a (\lambda_a)^2(\text{Id}_C) + \bar{\theta}^1 \bar{\theta}^2 \bar{\theta}^a (\bar{\lambda}_a)^2(\text{Id}_C) + \theta^1 \theta^2 \bar{\theta}^2 \bar{\theta}^2 H^2(\text{Id}_C)\]

Applying $\Delta^\sharp_{[B]|B]} \circ (\beta^g_M \otimes \text{Id}_{O_B(|B|)})$ to both sides of this equality, we obtain the following expression for $\Phi : M_{cs}(B) \rightarrow O_B(|B|)_0$:
\[
\Phi(y, \xi, \bar{\xi}) = \varphi(y) + \xi^a \psi_a(y) + \bar{\xi}^b \bar{\psi}_b(y) + \xi^1 \xi^2 F(y) + \bar{\xi}^1 \bar{\xi}^2 G(y) + i\Gamma_{ab}^\mu \xi^a \bar{\xi}^b A_\mu(y)
\]
\[+ \xi^1 \xi^2 \xi^a \lambda_a(y) + \bar{\xi}^1 \bar{\xi}^2 \xi^a \bar{\lambda}_a(y) + \xi^1 \xi^2 \xi^2 \bar{\xi}^2 H(y)\]
where $\varphi(y) \in O_B(|B|)_0$, $\xi^a \in O_B(|B|)_1$ and $\psi_a(y) \in O_B(|B|)_1$ (so $\xi^a \psi_a(y) \in O_B(|B|)_0$), etc...

Definition 9.1. Let $\Phi : M_{cs} \rightarrow O_B(|B|)_0$ be a scalar superfield. We say that Φ is chiral (resp. antichiral) if $\mathcal{D}_1 \Phi = \mathcal{D}_2 \Phi = 0$ (resp. $D_1 \Phi = D_2 \Phi = 0$).

For any chiral superfield, let
\[
\mathcal{A}(\Phi) = \int_{M_{cs}(B)} \Phi \Phi \, d^2 \xi \, d^2 \bar{\xi} \, d^3y + \int_{M_{cs}(B)} \frac{1}{2} m \Phi^2 \, d^2 \xi \, d^3y \]

Proposition 9.2. The superfield equation corresponding to the above action functional is
\[-\mathcal{D}^2 \Phi + m \Phi = 0\]

Let $\mathcal{E}(B) := \{ \Phi : M_{cs}(B) \rightarrow O_B(|B|)_0 \mid -\mathcal{D}^2 \Phi + m \Phi = 0 \}$
\[\approx \{(\varphi, \psi) \in \text{Map}(M(B), O_B(|B|)_0) \times \text{Map}(M(B), O_B(|B|)_1) \mid \begin{cases} i\Gamma_{ab}^\mu \partial_\mu \psi^b + m \psi_a = 0 \\ (\varphi + m^2) \varphi = 0 \end{cases} \} \]

Proposition 9.3. $\mathcal{E}(B)$ is SII(V)(B)-invariant.
\[\mathcal{E} \text{ is the solution functor of the superfield equation. It is a generalized supermanifold on which SHI(V) acts. We will see that } \mathcal{E} \text{ is representable by a super-vector space } E \text{ which gives rise to the super-Hilbert space of 1-superparticle states of mass } m \text{ and superspin } 0. \]

The action of the super Lie group SII(V) on the generalized supermanifold \(\text{Hom}(M_{cs}, \mathbb{C}) \) is obtained from the representation of SII(V) on the super-vector space \(\mathcal{O}_{M_{cs}}(\hat{M}) \). Viewing SII(V) as a Harish-Chandra pair \((\Pi(V), \sigma\tau(V))\), this representation is equivalent to a pair \((\rho, \eta)\) where \(\rho : \Pi(V) \rightarrow \text{Aut}(\mathcal{O}_{M_{cs}}(\hat{M})) \) is a morphism of Lie groups, and \(\eta : \sigma\tau(V) \rightarrow \mathfrak{gl}(\mathcal{O}_{M_{cs}}(\hat{M})) \) is a morphism of super Lie algebras, and we have seen that \(\eta(e_{\mu}) = P_{\mu}, \eta(f_{a}) = Q_{a} \) and \(\eta(f_{b}) = Q_{b} \).

Recall that \(\mathcal{O}_{M_{cs}}(\hat{M}) = C^\infty(\hat{M}, \mathbb{C}) \otimes \wedge^* S^+_c \simeq C^\infty(\hat{M}, \mathbb{C}) \otimes \wedge^* S^+_\chi \).

There are two interesting sub-super vector spaces in \(\mathcal{O}_{M_{cs}}(\hat{M}) \), the subspace of chiral (resp. antichiral) superfunctions (and it is not difficult to see that each of them is SII(V)-invariant):

\[\mathcal{O}_{M_{cs}}(\hat{M})_{\text{chiral}} := \{ f \in \mathcal{O}_{M_{cs}}(\hat{M}) | D_1 f = D_2 f = 0 \} \simeq C^\infty(\hat{M}, \mathbb{C}) \otimes \wedge^* S^+_\chi \]

\[\mathcal{O}_{M_{cs}}(\hat{M})_{\text{antichiral}} := \{ f \in \mathcal{O}_{M_{cs}}(\hat{M}) | D_1 f = D_2 f = 0 \} \simeq C^\infty(\hat{M}, \mathbb{C}) \otimes \wedge^* S^-_\chi \]

Note that any \(f \in \mathcal{O}_{M_{cs}}(\hat{M})_{\text{chiral}} \) can be written as follows:

\[f = \varphi + \theta^a \psi_a + \theta^1 \theta^2 F - \Gamma^\mu_{ab} \theta^a \bar{\theta}^b \partial_\mu \varphi - \Gamma^\mu_{ab} \theta^a \bar{\theta}^b \partial_\mu \psi_c + \theta^1 \theta^2 \partial_1 \partial_2 \varphi \]

where \(\varphi \in C^\infty(\hat{M}, \mathbb{C}), \psi \in C^\infty(\hat{M}, S^+_\chi) \) and \(F \in C^\infty(\hat{M}, \mathbb{C}) \).

Then \(\bar{f} \in \mathcal{O}_{M_{cs}}(\hat{M})_{\text{antichiral}} \) and is given by:

\[\bar{f} = \bar{\varphi} + \bar{\theta}^a \bar{\psi}_a + \bar{\theta}^1 \bar{\theta}^2 \bar{F} + \Gamma^b_{ab} \bar{\theta}^a \bar{\theta}^b \partial_\mu \bar{\varphi} - \Gamma^b_{ab} \bar{\theta}^a \bar{\theta}^b \partial_\mu \bar{\psi}_c + \theta^1 \theta^2 \partial_1 \partial_2 \bar{\varphi} \]

Proposition 9.4. Let \(E := \{ f \in \mathcal{O}_{M_{cs}}(\hat{M})_{\text{chiral}} | - D^2 f + mf = 0 \} \). Then

1. \(E \simeq \{ (\varphi, \psi) \in C^\infty(\hat{M}, \mathbb{C}) \times C^\infty(\hat{M}, S^+_\chi) | \begin{align*} (\Box + m^2) \varphi &= 0 \\ i\Gamma^\mu_{ab} \partial_\mu \bar{\psi}_b + m \psi_a &= 0 \end{align*} \}

2. \(E \) is SII(V)-invariant.

The link between our equations and the Wess-Zumino equations for massive chiral superfields is made precise by the following result:

Theorem 9.5. Let \(\mathcal{E} \) be the solution functor of the Wess-Zumino equations for massive chiral superfields (that is, the functor from the category of supermanifolds to the category of sets defined by \(\mathcal{E}(B) := \{ \Phi : M_{cs}(B) \rightarrow \mathcal{O}_B(|B|)_0 \mid - D^2 \Phi + m\Phi = 0 \} \)). Then \(\mathcal{E} \) is representable by the super vector space \(E = \{ f \in \mathcal{O}_{M_{cs}}(\hat{M})_{\text{chiral}} | - D^2 f + mf = 0 \} \). In other words, there is a natural isomorphism of functors:

\[\mathcal{E} \simeq \mathcal{L}E \]

where \(\mathcal{L}E(B) := (E_0 \otimes \mathcal{O}_B(|B|)_0) \oplus (E_1 \otimes \mathcal{O}_B(|B|)_1) \) for every supermanifold \(B \). Moreover, this isomorphism is SII(V)-equivariant.
References

[BK] I.L. Buchbinder & S.M. Kuzenko: *Ideas and Methods of Supersymmetry and Supergravity*, Institute of Physics Pub., Bristol, 1998.

[ČS] A. Čap & J. Slovák: *Parabolic Geometries I: Background and General Theory*, Mathematical Surveys and Monographs, 154 (2009).

[CCTV] C. Carmeli & C. Cassinelli & G. Toigo & V.S. Varadarajan: *Unitary Representations of Super Lie Groups and Applications to the Classification and Multiplet Structure of Super Particles*, Comm. Math. Phys. 263 (2006), 217–258.

[DeB] H. De Bie: *Fourier transform and related integral transforms in superspace*, J. Math. Anal. Appl. 345 (2008), 147–164.

[DM] P. Deligne & J. Morgan: *Notes on supersymmetry (following Joseph Bernstein)*, *Quantum Fields and Strings: A Course for Mathematicians*, American Mathematical Society, Providence, 1,2 (1999), 41–97.

[vdB] E. van den Ban: *Representation theory and applications in classical quantum mechanics*, Lecture notes for the MRI Spring School ‘Lie groups in Analysis, Geometry and Mechanics’, Utrecht, June 2004.

[Var1] V.S. Varadarajan: *Supersymmetry for mathematicians: an introduction*, Courant Institute of Mathematical Sciences, New York University, 2004.

[Var2] V.S. Varadarajan: *Geometry of Quantum Theory*, 2nd edition, Springer New York, 2007.

[WB] J. Wess & J. Bagger: *Supersymmetry and Supergravity*, Princeton University Press, (1992).

[Wig] E.P. Wigner: *On Unitary Representations of the Inhomogeneous Lorentz Group*, Ann. Math. (2) 40 (1939), 149–204.