Streptococcus pyogenes (group A Streptococcus, GAS) is a human-adapted pathogen responsible for a wide spectrum of disease. GAS can cause relatively mild illnesses, such as strep throat or impetigo, and less frequent but severe life-threatening diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS is an important public health problem causing significant morbidity and mortality worldwide. The main route of GAS transmission between humans is through close or direct physical contact, and particularly via respiratory droplets. The upper respiratory tract and skin are major reservoirs for GAS infections. The ability of GAS to establish an infection in the new host at these anatomical sites primarily results from two distinct physiological processes, namely bacterial adhesion and colonization. These fundamental aspects of pathogenesis rely upon a variety of GAS virulence factors, which are usually under strict transcriptional regulation. Considerable progress has been made in better understanding these initial infection steps. This review summarizes our current knowledge of the molecular mechanisms of GAS adhesion and colonization.

Keywords: adherence; biofilm; colonization; pathogenesis; *Streptococcus pyogenes*; transcriptional regulation

Abbreviations
- ECM, extracellular matrix; GAS, group A *Streptococcus*; MSCRAMMs, microbial surface components recognizing adhesive matrix molecules; QS, quorum sensing; RALPs, RoA-like proteins; SDH, streptococcal surface dehydrogenase; SEN, streptococcal surface enolase; Shr, streptococcal hemoprotein receptor; SlaA, secreted phospholipase A2; SOF, serum opacity factor; SpeB, streptococcal pyrogenic exotoxin B.
Dissemination of GAS occurs primarily by person-to-person contact or via contaminated airborne droplets. Skin infection may lead to pyoderma, with ~111 million cases occurring each year [1], and respiratory tract infection by GAS may result in pharyngitis, with ~600 million cases worldwide [1]. The epithelial lining of the upper respiratory tract represents a particularly favorable aerobic and nutrient-rich environment for the growth of many bacteria. Thus, GAS has to find a way to compete in the dynamic airway microbiota.

The pathogenesis of GAS is highly complex, and has been extensively reviewed elsewhere [7,8]. Undoubtedly, one of the very first and fundamental stages of GAS pathogenesis is adhesion to and colonization of the epithelium [9–13] (Fig. 1). The ability of GAS to adhere to host epithelia is serotype-specific and depends on the repertoire of adhesins and systems for sensing changes to environmental conditions. In principle, however, all adhesins fulfill a similar function by bringing the bacterial cell into close contact with the host cell by specific adhesin–receptor interactions.

After initial attachment, GAS has been observed to form microcolonies. These macroscopic structures have been implicated in streptococcal skin infection and acute bacterial tonsillopharyngitis [18,19]. When bacterial cells proliferate, such microcolonies may form complex groups that constitute organized three-dimensional structures, a sessile lifestyle commonly referred to as a biofilm. It is now broadly accepted that GAS is capable of microcolony and biofilm formation and that this sessile lifestyle plays an important role in GAS pathogenesis [20]. As there is a fluent transition between reversible and irreversible attachment during biofilm formation, most of the adhesins of GAS are also required for this multicellular surface-attached community state. Finely tuned expression of adhesins and other virulence factors is therefore critical for efficient colonization and infection.

Regulation of adherence occurs at multiple levels and has been extensively discussed in previous reviews [21–23]. These complex regulatory networks include two component regulatory systems (e.g., CovRS/ CsrRS, FasBCAX) and ‘stand-alone’ transcriptional regulators. One example is the Mga regulator whose regulon comprises ~10% of the GAS genome that includes numerous genes important for adhesion and the metabolic homeostasis of GAS [24]. Other stand-alone regulators include RofA-like proteins (RALPs) and the regulator RopB (also known as Rgg) [25]. All of these systems respond to growth-related or environmental signals to control expression of genes involved in colonization. In recent years, it has become increasingly apparent that small noncoding RNA represent a further level of regulation in GAS [23,26].

Although we do not as yet clearly understand the precise mechanisms by which GAS facilitates the initial interaction with host epithelial cells, the past few years have witnessed substantial advances in our understanding of this stage of S. pyogenes infection. This review aims to provide an overview of our current knowledge on the initial host–pathogen interaction during GAS colonization.

Adherence of GAS

The GAS cell surface displays a variety of proteins and other macromolecules that facilitates the colonization of host tissues (for a review see [10]). The initial attachment process has long been hypothesized to be a two-step process, with weak and/or long-range interactions followed by more specific, high-affinity binding [27]. Weak, hydrophobic interactions mediated by lipoteichoic acids may contribute to initial adherence to host surfaces [27]. This weak interaction, in turn, may permit longer distance first attachment events mediated through extending surface appendages such as pili, followed by multiple, higher affinity binding events such as protein–protein or lectin–carbohydrate interactions. The GAS cell surface incorporates numerous protein adhesins that allow GAS to colonize distinct tissue sites (Table 1). Many of these adhesive proteins are covalently attached to the cell wall peptidoglycan by sortase enzymes [96–98].

![Fig. 1. Streptococcus pyogenes adherence and invasion of host cells. (A) Adherence to and induction of cytoskeletal rearrangements by non-PrfF1/SfbI expressing S. pyogenes, and (B) internalization of host cell via fibronectin and PrfF1/SfbI [14–17].](image-url)
Sortases

A hallmark of the majority of GAS adhesins is their covalent linkage to the GAS peptidoglycan via sortase enzymes. GAS sortases are broadly classified into two types: the 'housekeeping sortase' SrtA, which anchors the majority of cell surface proteins via their LPXTG motif to the cell wall peptidoglycan [97], and the pilus-associated sortases SrtB, SrtC1, and SrtC2 [97,99], which mediate the polymerization of pilin subunits into long, fibrillar surface structures [100]. Sortase enzymes, and their mechanism of action, have been characterized for numerous gram-positive organisms (for a review see [98,101–103]).

GAS pili

Group A Streptococcus pili are long, flexible rods protruding up to 3 μm from the cell surface [100]. They consist of a major backbone pilin subunit (BP), and one or more minor ancilliary protein subunits (AP1/Cpa and AP2), which are polymerized into the mature pilus structures by a series of transpeptidation reactions catalyzed by the pilus-associated sortases [99,100,104–107]. The assembled pilus structure is then ultimately anchored to the cell wall by SrtA [108]. The sortase-catalyzed assembly mechanism of gram-positive pili has been reviewed extensively elsewhere [101,109–111].

The genes encoding pili, along with genes required for their assembly and regulation, are localized to a single genomic island. Collectively, this region is referred to as the FCT region, as this island often encodes adhesins that mediate binding to fibronectin and collagen in addition to the pili, which comprise the T-serotyping system [100,112]. At least nine different FCT regions occur in GAS, and these have been termed FCT-1 to FCT-9 [104,113]. With few exceptions, GAS isolates belonging to the same *emm* type belong to the same FCT type. The major M types responsible for human disease in developed countries belong to the following FCT types: FCT-1 (*emm*6), FCT-2 (*emm*1, *emm*28), FCT-3 (*emm*3, *emm*12), FCT-4 (*emm*12, *emm*28, *emm*89), and FCT-5 (*emm*4) [114].

Group A Streptococcus pili mediate attachment to a variety of cell lines and primary human tissues, and adhesive properties are likely conveyed by the accessory, minor pilus subunits. In FCT-2 pili, deletion of the tip adhesin Cpa reduced binding to primary tonsil explants and primary skin keratinocytes, without affecting pilus production [30,115]. Surprisingly, this adhesion was not inhibited by preincubation with any of the published ligands for Cpa [30], suggesting that the true epithelial receptor for FCT-2 pili remains to be identified. In addition to primary cells and tissues, FCT-1 and FCT-2 pili have also been shown to mediate adhesion to a variety of epithelial cell lines [29,30,107,115]. Similarly, the FCT-1 ancilliary protein AP1 was found to mediate binding to A549 epithelial cells, and Lactococcus lactis engineered to express FCT-1 pili were able to adhere to A549 cells in an AP1-dependent manner [42]. FCT-1 and FCT-2 pili

Table 1. GAS cell wall-anchored adhesins and target host receptors.

Adhesin	Receptor(s) and/or function(s)	Reference(s)
FCT region		
Pili	Salivary agglutinin gp-340, bind to epithelial cells	[28–30]
Sfb1/Frt1	Fibronectin, fibrinogen	[14,31–36]
PrtF2/FbaB/PFBP	Fibronectin, fibrinogen	[33,36–40]
Cpa/AP1	Collagen type I	[41–43]
Other fibronectin-binding proteins		
SOF/Sfb2	Fibronectin, fibrinogen, fibrinogen	[44–49]
FbaA	Fibronectin, factor H	[50–52]
SfbX	Fibronectin	[48]
Scl1/2	Fibronectin, laminin, α₂β₁ integrin, α₁β₁ integrin, factor H, lipoproteins, CFHR1	[53–62]
M or M-like proteins		
M proteins	Fibronectin, plasminogen, fibrinogen, factor H, sialic acid, CD46, glycosaminoglycans, beta 2-microglobulin, albumin, immunoglobulins, collagen type I and IV	[63–76]
Mrp	Immunoglobulins, fibrinogen	[77]
Arp	Immunoglobulins	[77–79]
Sir	Immunoglobulins	[77,80]
Other laminin-binding proteins		
Lsp	Laminin	[81]
Lbp	Laminin	[82]
Other plasminogen-binding proteins		
PAM	Plasminogen	[83]
Prp	Plasminogen	[84]
Epf	Plasminogen	[85]
Other saliva-binding proteins		
AspA	Salivary agglutinin gp-340	[86–88]
GrpE	Salivary proline-rich proteins	[89]
Other adhesins		
Protein H	Immunoglobulins	[90,91]
PuA	Glycoproteins	[92]
R28	Unknown, binds to epithelial cells	[93]
Sir	Collagen type I	[76]
SpyAD	Human keratin 1, collagen type VI	[94,95]
have also been shown to mediate bacterial autoaggregation, which may increase colonization through the formation of microcolonies and/or biofilms [29,42,116]. In the case of FCT-2 pili, this aggregation was mediated by host glycoprotein gp340 binding [28].

In contrast to the FCT-1 and FCT-2 pili, relatively little is known about the contribution of pili from other FCT types to GAS adhesion to host cells. FCT-3 pili from both M49 and M53 GAS strains have been found to be dispensable for adhesion to HEP-2 epithelial cells and human skin [117,118]. However, Cpa appears to mediate the adhesion to human skin [118], a finding that could be attributed to the apparent localization of Cpa at the FCT-3 pilus base rather than at the tip of the FCT-3 pili [117].

Fibronectin-binding proteins

A common theme in bacterial adhesion to host tissues is the involvement of proteins that bind extracellular matrix (ECM) components such as fibronectin, collagen, and laminin. Collectively, these bacterial adhesins have been termed microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) [119]. GAS produces multiple MSCRAMMs that interact with fibronectin, collagen, and laminin. By far the most abundant class of these are those that bind fibronectin; a total of 10 fibronectin-binding proteins have been characterized in GAS with the majority of these proteins anchored to the cell wall through an LPXTG motif (Tables 1–3). Fibronectin-binding proteins broadly belong to two types, depending on whether or not they contain fibronectin-binding repeats (for a review see [139]).

The FCT region of most GAS strains encodes one or both of the major fibronectin-binding proteins PrtF1/Sfb1 [31], and PrtF2 [37,39,112]. PrtF2, in turn, exists as two separate alleles as a result of deletion mutations in the prtF2 sequence; PFBP lacks 105 amino acids at the N terminus in comparison to FbaB [39]. PrtF1 and PrtF2 proteins exhibit a high affinity to human fibronectin (Kd ~ 5 nm for PrtF1 and ~ 2 to 8 nm for PrtF2; [36]), and deletion of the encoding genes usually reduces fibronectin binding considerably [31,33,37,140]. In strains that do encode them, heterologous expression of PrtF1 and PrtF2 has been shown to mediate adhesion to a variety of epithelial cell lines [14,38,40,140,141]. PrtF2 was also shown to be required for adhesion of M53 GAS to human skin [118]. Thus, the FCT-encoded PrtF1 and PrtF2 surface proteins are likely to be important GAS adhesins through interaction with host fibronectin. Although considered primarily as fibronectin-binding proteins, PrtF1 and PrtF2 were also shown to bind fibrinogen [35,36]. Walden and colleagues recently demonstrated that PrtF1 covalently binds fibrinogen via an unusual thioester bond, possibly helping the bacterial cell to irreversibly attach itself to the host’s tissues [34]. The authors suggest that this novel role of bacterial adhesins as ‘chemical harpoons’ may in fact be a common, yet unrecognized, mechanism of covalent attachment of bacterial proteins to fibrinogen [34]. It is worth noting that FCT-2 strains, which include the major pathogenic serotype M1T1, encode neither PrtF1 nor PrtF2. However, the M1 protein has been shown to bind fibronectin with high affinity (~ 48 nm) [36], indicating that FCT-2 strains bind fibronectin in an FCT-independent manner.

In addition to the FCT region, a second genomic region present in approximately half of GAS strains also contributes to fibronectin binding. This genomic region encodes two fibronectin proteins that are cotranscribed: serum opacity factor (SOF) and SfbX [48]. Both SOF and SfbX are predicted to be cell wall anchored via SrtA. While purified SOF does mediate binding to HEP-2 cells [49], an isogenic M49 sof mutant was not altered in its ability to bind HEP-2 cells. However, SOF was required for GAS to invade these cells [142]. This may reflect the presence of other high-affinity fibronectin-binding proteins in M49 GAS strains, such as PrtF2. Surprisingly, while purified SOF bound HEP-2 cells, this binding was found to be independent of the Fn-binding domain [47].

In addition to the FCT and SOF genomic regions described above, multiple other fibronectin-binding

| Table 2. Host receptors of secreted GAS adhesins. |
Adhesin	Receptors(s) and/or function(s)	Reference(s)
SpeB	Laminin, α2β1 integrin, α2β3 integrin, thyroglobulin, glycoproteins	[120–122]
SlaA	Unknown	[123,124]
Shr	Laminin, fibronectin, hemoprotein	[125–127]
GAPDH/SDH	Fibronectin, lysosome, myosin, actin, plasminogen, uPAR/CD87	[128–133]
α-enolase (SEN)	Plasminogen	[134–136]
Fbp54	Fibronectin	[137,138]

| Table 3. Host receptors of anchorless GAS adhesins. |
Adhesin	Receptors(s) and/or function(s)	Reference(s)
GAPDH/SDH	Fibronectin, lysosome, myosin, actin, plasminogen, uPAR/CD87	[128–133]
α-enolase (SEN)	Plasminogen	[134–136]
Fbp54	Fibronectin	[137,138]
domain proteins have been characterized in GAS (Table 1; for a review see [139]). These proteins are sporadically distributed in different GAS strains, with the exception of Fbp54, which is encoded in every strain that has been examined [39]. Many of these have also been shown to mediate adhesion to human cells with different host cell tropism. For example, Fbp54 has been shown to mediate adherence to buccal epithelial cells, but not HEp-2 epithelial cells [137]. Likewise, there appear to be serotype-specific differences in the adhesive properties of fibronectin-binding proteins. For example, the streptococcal hemoprotein receptor (Shr, see below) from M49 GAS [125], but not M1T1 GAS [143], was shown to mediate binding to HEp-2 cells. Thus, it is important to interpret the function of GAS fibronectin-binding proteins in the context of both strain serotype and host cell specificity.

There is much redundancy in the ability of GAS to bind fibronectin. This may reflect the expression of different fibronectin-binding proteins under different environmental conditions or niches, or the preferential binding of particular proteins to certain fibronectin isotypes. It is worth noting that in addition to cell and tissue adherence, several other phenotypes have been attributed to fibronectin-binding proteins. These include invasion of host epithelial and endothelial cells [15,142,144–146], binding other host ligands such as fibrinogen [34–36,147,148], collagen [41,149], plasminogen [128,129], fibulin-1 [44] and heme [125], and evasion of host immunity [150]. Clearly, much work remains to be done in this area in order to fully understand the complex interplay of GAS fibronectin-binding proteins with host tissues.

In addition to the fibronectin-binding proteins discussed above, GAS has been shown to bind other ECM proteins, including type I and IV collagen and laminin. Binding of these ECM proteins can be mediated directly, or indirectly via fibronectin acting as a bridging molecule; such GAS adhesins may additionally bind other host molecules. For example, in addition to binding fibronectin, the Sfb1 protein discussed above can recruit type IV collagen via surface-bound fibronectin, which results in the formation of large bacterial aggregates [149]. The M1 and M18 proteins (discussed in detail below), have been shown to bind type IV collagen [72,151], while the Cpa pilus protein discussed above binds type I collagen [41]. A GAS surface protein (Lbp) that mediates binding to laminin has also been identified, and shown to bind HEp-2 epithelial cells [82]. Surprisingly, this protein is structurally related to bacterial zinc receptors, and as such has been suggested to mediate laminin binding via laminin-bound zinc [152].

Collagen-like proteins

In addition to the MSCRAMM proteins discussed above, GAS also possesses one or more collagen-like proteins, Scl1 and Scl2, which bind to host receptors by mimicking human collagen. The collagen-like domain consists of varying numbers of Gly-X-X motifs, and exhibits a triple-helical elongated protein structure similar to human collagen [153]. As such, the GAS Scl proteins can bind to the host collagen receptors, α2β1 and α1β1 integrins [56–58], as well as a variety of other host ligands, including high- and low-density lipoproteins, fibronectin, laminin, and the complement receptors CFHR1 and factor H [54,59–62]. Scl1, which is encoded in the genome of all GAS strains [154], has also been shown to mediate adherence and internalization into HEp-2 epithelial cells [54,55,58].

Role of M proteins in adherence

The M protein, encoded by the enm gene, is a major surface protein and virulence factor, and forms the basis of the major typing scheme for GAS. M protein exists as an alpha helical coiled-coil dimer extending ~60 nm from the bacterial surface [155], with each monomer anchored to the cell wall peptidoglycan by SrtA [97,156]. M protein is comprised of four repeat regions (A–D), which vary in size and amino acid composition. The surface-exposed N terminus exhibits considerable antigenic diversity, and sequencing of the hypervariable A-repeat region has identified >220 variants. As such, a large number of functions, and interactions with host molecules, have been ascribed to different M protein variants [157–160]. For this review, we will focus on the role of M protein as an epithelial colonization factor.

Numerous studies have provided evidence that M protein contributes to the adherence of GAS to host cells. M proteins from multiple serotypes (M1, M3, M5, M6, M18, and M24) have all been shown to contribute to GAS adherence to immortalized cell lines such as HEP-2 [30,138,161–164], and Detroit 562 [70,74]. In addition, several host cell molecules, including sialic acid [70], CD46 [66,71], dermatin sulfate and heparin sulfate [74], beta2-microglobulin [67], and collagen type I and IV [72,76], have been reported to bind to certain M proteins (Table 1). However, there are serotype-specific differences in the interactions with these receptors. For example, M6 protein has been reported to bind CD46 [66,71], while M18 does not [165]. Likewise, M3 protein binds collagen type IV, while M6 and M18 proteins do not bind this ligand.
Given the extraordinary diversity of the surface-exposed N terminus of M proteins, these serotype-specific differences in binding to different host cell ligands are not surprising.

Despite numerous investigations, the direct interaction of M protein with primary human cells is somewhat more controversial. M proteins have been shown in several studies not to confer significant binding to primary buccal cells [138, 166], primary keratinocytes [30], immortalized primary pharyngeal cells [75], or the HaCaT cell line [30, 75]. In fact, an isogenic M1 protein negative mutant has been shown to adhere better than the wild-type strain in some studies [30, 75]. In research using primary human tonsil explants, M1 protein was shown to provide a minor contribution to GAS adhesion [30], and M6 protein was shown not to contribute to GAS adhesion [166]. In both of these studies, the authors noted a reduced ability of the M protein mutant strains to clump together and form microcolonies on the epithelial surface. It is therefore possible that the role of M protein in mediating adherence to host tissues is in its ability to promote the formation of bacterial microcolonies on the host cell surface, rather than direct interaction with host cell receptors.

In addition to these roles in mediating adherence, M1 protein has also been shown to promote invasion of immortalized cell lines, via cooperative binding to CD46 and fibronectin [146].

Secreted adhesins

In addition to cell wall-anchored adhesins, GAS also secretes proteins to make physical contact with the host. These secreted adhesins lack the classical LPXTG anchoring domain, but possess a signal peptide for bacterial secretion. The well-studied adhesins in this category are the streptococcal pyrogenic exotoxin B (SpeB) and the prophage-encoded secreted phospholipase A2 (SlaA). These multifunctional proteins are both important for host cell adhesion and GAS virulence. Further to this, we include the Shr as a secreted adhesion since it is not only expressed on the cell surface of GAS [125] but Shr is also a secreted protein [125, 126].

Streptococcal pyrogenic exotoxin B

Streptococcal pyrogenic exotoxin B does not contain an LPXTG anchoring motif but does incorporate an amino-terminal leader peptide [167]. SpeB is a secreted cysteine protease with the ability to degrade a wide range of host molecules in addition to streptococcal proteins (for a review see [168]). Analysis of the speB gene sequence from 200 GAS isolates led to the classification of SpeB into three different mature SpeB variants (mSpeB1, mSpeB2, and mSpeB3) [121]. The mSpeB2 variant contains an RGD (Arg-Gly-Asp) sequence, a signature recognition sequence for integrin binding [169]. Initial experiments examining the binding properties of mSpeB2 showed that this variant was indeed able to bind to \(\alpha_5\beta_1 \) and \(\alpha_2\beta_1 \) integrins on the surface of transfected cell lines, and such binding could be inhibited by an integrin-specific mAb [121]. Integrins have been previously described to be important targets for pathogen entry into host cells [170, 171]. Therefore, it has been hypothesized that the mSpeB2-integrin interaction could favor GAS virulence. Although a direct correlation has not been established, the mSpeB2 variant is expressed in various GAS serotypes such as M1, which is responsible for a significant number of severe invasive infections globally [172].

The role of SpeB in apoptosis has been investigated. Interaction of recombinant SpeB containing the RGD domain caused apoptosis of A549 cells via \(\alpha_5\beta_3 \) integrin binding [122]. In addition, the Fas-mediated cell death pathway was also activated by the interaction of SpeB with Fas following a RGD independent mechanism [122]. Aside from integrin and Fas, SpeB also binds thyroglobulin, laminin, and other glycoproteins [120]. This binding was detected in a GAS strain that expresses a SpeB variant that lacks the RGD motif involved in integrin binding, suggesting that laminin and other glycoprotein binding is mediated by a different mechanism [120]. Taken together, these observations suggest that SpeB may play a role in mediating GAS adhesion and invasion into host cells, however, these effects seem to be strain specific and complex. A study using GAS M1T1 and M49 strains showed that the expression of SpeB protease did not significantly affect the ability of GAS to adhere to A549 epithelial cells, while it increased the ability of both GAS strains to invade [173]. Other studies have shown that the deletion of the speB gene from M2 and M3 GAS strains increased the ability of the mutant strains to internalize into human umbilical vein endothelial cells, A549 human lung fibroblasts [174] and HEp-2 cells [175].

In addition to the adhesin functions attributed to SpeB, this protease has also been reported to influence invasion of CHO-K1 cells by inhibiting fibronectin-dependent internalization [176]. Although the mechanism is not fully elucidated, it is thought that SpeB proteolytic activity modifies the bacterial surface thus abrogating fibronectin-mediated binding [176].
Secreted phospholipase A2

Secreted phospholipase A2 contains a secretion signal, however, it lacks the LPXTG anchoring domain [177]. It possesses phospholipase activity against several phospholipid substrates [178]. Expression of SlaA is increased when GAS is cocultured with epithelial cells and saliva [179], suggesting its involvement in the initial steps of colonization. Deletion of slaA resulted in a M3 mutant strain with decreased ability to bind to D562 epithelial cells compared to wild-type. Furthermore, addition of recombinant SlaA improved the ability of the mutant strain to adhere to D562 cells [123]. A nonhuman primate model of pharyngitis in cynomolgus macaques was used to show that the SlaA mutant was unable to colonize the pharynx of NHPs and establish an infection, compared to the M3 wild-type strain [123]. Further research is required to confirm which specific host components SlaA targets and how this enhances the ability of GAS to colonize the upper respiratory tract.

Streptococcal hemoprotein receptor

Streptococcal hemoprotein receptor is a streptococcal protein that lacks an LPXTG anchoring motif but contains an N-terminal signal peptide, and is also found associated with the membrane via a putative C-terminal transmembrane domain [125]. It is part of the heme acquisition system of GAS, where its function is to bind host heme-containing proteins [126]. Shr is able to sequester heme from methemoglobin [127] which is then transferred to Shp, another constituent of the GAS heme acquisition system [180]. In addition to its iron acquisition and transfer functions, Shr is able to bind fibronectin and laminin in vitro. Deletion of the shr gene in a M49 GAS strain resulted in a decrease in the ability of the mutant strain to adhere to HEp-2 cells and attenuated virulence in a zebrafish model compared to the wild-type isogenic strain [125]. Studies using other GAS strains have shown differing outcomes. A GAS M1T1 isogenic mutant strain for shr showed a reduction in ability to bind laminin compared to the wild-type strain, however, the isogenic mutant bound fibronectin as well as wild-type [143]. The laminin- and fibronectin-binding experiments in this study were undertaken using the GAS M1T1 strain, while in the previous study [125] binding to these proteins was determined using recombinant Shr. This might in part explain the differences regarding the ability of Shr to bind fibronectin. Binding to HEp-2 and HaCaT cells was not affected by the deletion of shr in the GAS M1T1 mutant strain, however, this mutant strain caused smaller skin lesions compared to the wild-type in a subcutaneous murine infection model [143].

Anchorless adhesins

Anchorless adhesins are a group of streptococcal surface proteins that lack the classic LPXTG motif usually present in surface-anchored proteins and a signal peptide for secretion [10]. The mechanism by which anchorless adhesins are exported from the cytosol to the surface is not well understood. The most important anchorless adhesins in GAS are housekeeping enzymes that not only perform important virulence roles on the surface but also carry out essential catalytic functions within the cytoplasm [181]. Here, we review some of the GAS anchorless adhesins that have shown evidence for a role in GAS adhesion and colonization (Table 3).

Streptococcal surface dehydrogenase (GAPDH/SDH)

GAPDH/SDH, also known as the plasmin receptor protein (Plr) [182], is a glyceraldehyde-3-phosphate dehydrogenase that catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate during glycolysis, and is therefore an essential GAS enzyme [128]. GAPDH/SDH is also found on the GAS surface where it mediates important roles in virulence. GAPDH/SDH is able to bind to important host molecules such as fibronectin, lysozyme, myosin, actin [128], and plasmin(ogen) [129,133]. Substitution of the C-terminal lysine with a leucine in purified recombinant GAPDH/SDH showed decreased plasmin binding compared to the wild-type protein [133]. However, live GAS carrying the same amino acid substitution did not show a commensurate reduction in binding, indicating that GAPDH/SDH is not the only plasmin receptor present on GAS [133].

Purified GAPDH/SDH or GAPDH/SDH present in live GAS was able to activate protein phosphorylation in pharyngeal cells [183]. In particular, the presence of GAPDH/SDH triggered phosphorylation of histone 3 protein (H3) by tyrosine kinase [183]. Although phosphorylation did not influence the ability of GAS to adhere to pharyngeal cells, it was advantageous for GAS invasion. The authors of this study hypothesized that the activation of protein tyrosine kinase may activate the influx of Ca^{2+}, increasing inositol phosphate and/or diacylglycerol facilitating GAS invasion via the actin polymerization pathway [183]. However, in order to confirm this hypothesis, further studies need to be undertaken.
GAPDH/SDH may play a further role in pharyngeal colonization via the ability to bind uPAR/CD87 (N-terminal D1 domain) on pharyngeal cells, which has been shown to be upregulated upon infection [130]. Modification of the C-terminal lysine of GAPDH/SDH abrogated binding to uPAR, demonstrating the importance of this particular residue. GAS mutants expressing a GAPDH/SDH with a substituted or deleted C-terminal lysine were less capable of adhering to Detroit 562 pharyngeal cells, suggesting a key role for this anchorless adhesin in GAS adherence and potentially colonization [130]. Introduction of a hydrophobic tail at the C-terminal end of GAPDH/SDH decreased export of the protein from the cytoplasm to the surface [131].

Streptococcal surface enolase

Streptococcal surface enolase (SEN) is the glycolytic enzyme, α-enolase, an octameric metalloenzyme that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate [134,136,184]. SEN is found in the cytosol and on the surface of GAS, and possesses high binding affinity for plasminogen. Plasmin bound to SEN retains proteolytic activity, suggesting an important role in GAS virulence and tissue dissemination [134]. C-terminal lysine residues are in part responsible for SEN high affinity for plasminogen. Substituting the last two lysine residues of SEN for leucine residues (K434-435L) in a M6 GAS strain resulted in a significant reduction in the ability to bind plasminogen and penetrate extracellular matrix in an in vitro assay [135]. Further studies using recombinant SEN mutants in native conformation revealed that in addition to K434-435, lysine residues 252 and 255 also contribute to plasminogen affinity [136]. Substitution of all four lysine residues abrogates SEN’s ability to bind plasminogen [185]. The interaction between SEN and plasminogen allows GAS to access tricellular tight junctions (tTJs), where plasminogen functions as a bridge between SEN and the major component of tTJs, tricellulin. The ability of GAS to establish the SEN-plasminogen-tricellulin molecular interaction potentially facilitates bacterial translocation via a paracellular route [185], hence improving GAS ability to adhere to and colonize the host.

FBP54

FBP54 is an anchorless streptococcal adhesin that binds fibronectin and fibrinogen in soluble and immobilized forms [186]. Adhesion of a M5 GAS strain to human buccal epithelial cells was inhibited by recombinant FBP54, while adhesion to HEp-2 cells was not significantly affected [137]. The authors argue that fibronectin has little effect in GAS adherence to HEp-2 cells; however, this is potentially a GAS strain-specific effect, as other studies have shown that blocking of fibronectin with other GAS fibronectin-binding proteins such as SfbI inhibits GAS adhesion to HEp-2 cells [14]. A more detailed study regarding the role FBP54 in GAS adhesion, colonization and virulence is necessary to determine the relevance of this anchorless adhesin.

Biofilm formation and the interaction of GAS with the microbiota

Many bacteria are capable of switching between single-cell planktonic forms and biofilms. Biofilms are adherent aggregates of bacterial cells that form on biofilm and abiotic surfaces, including human tissues. Biofilm formation is well known to play an important role in many chronic bacterial infections. However, the process of biofilm production in GAS has not been extensively characterized, and the relevance for pathogenesis has only recently been recognized. There is an increasing appreciation that the biofilm phenotype of GAS is of clinical relevance contributing to oto-nasopharyngeal and skin infection [20].

The fact that GAS does not exclusively live a planktonic lifestyle is well documented by several studies (both in vitro and in vivo), but there is also a high variability in biofilm formation by different GAS serotypes [187,188]. It is evident that the M or M-like proteins play a crucial role in the establishment of biofilms [189], and there are several other factors which affect the course of biofilm development including adhesins such as pilli [29,190], AspA [87], Scl1 [53], and SpeB [191]. In contrast, the involvement of the GAS capsule has not been fully elucidated and remains a point of contention [20]. To date, relatively limited data are available on the nature of the GAS biofilm. However, a transcriptomic analysis has been conducted on biofilm gene expression. In that study, mRNA expression profiles of the M14 GAS strain, HSC5, showed differential regulation of ~25% of the genome upon adapting to biofilm growth in vitro [192]. This profile, however, differed from that of GAS biofilm-like structures present in infected zebrafish tissue and, thus, may not accurately reflect the in vivo situation [192]. A recent study, using the M3 GAS strain MGAS315, reported differing data concerning the expression of virulence genes, such as speB and sagA, in biofilm-adapted cells grown in association with live keratinocytes [193]. Such differences may represent a level of strain or serotype specificity in biofilm formation,
and suggests it may be difficult to fit different data into a general profile related to GAS biofilm.

A limitation of in vitro and in vivo models to study mono-species biofilm formation is that they do not necessarily mimic the situation in humans, where an established and complex microflora exists. GAS must compete with and penetrate this established community of microbial species colonizing the upper respiratory tract or skin, in order to establish infection.

Fiedler and colleagues [194] demonstrated in vitro that GAS can form mixed-species biofilms with other respiratory tract streptococci. Interestingly, the early colonizer S. oralis consistently formed the bottom layer of these biofilms triggering colonization by even poor biofilm producers such as GAS serotype M49. However, established biofilms of S. oralis and S. salivarius on HEp-2 cells abolished adherence and invasion by GAS, suggesting probiotic properties of the resident oral microbiota. The study nicely highlights the complex interspecies interactions that may occur in the human airway. There is also in vivo evidence that GAS is a member of multispecies biofilms in root canals and the nasopharynx [195, 196].

Given the complexity of the process involved in biofilm formation, it is unsurprising that transcriptional regulation of biofilm-associated genes is sophisticated and complex, and GAS gene regulation occurs in response to environmental triggers such as pH, temperature, and oxygen saturation that control the fate of GAS infection [21, 190]. Mutation in the two-component Control of Virulence (CovRS, also referred to as SHP) gene regulatory system has been shown to alter both GAS adherence and biofilm formation [197]. In the globally disseminated serotype M1T1, mutation in the gene encoding CovS resulted in reduced biofilm formation in vitro and adhesion in vivo [197].

Quorum sensing in GAS

Gram-positive cell–cell communication systems typically make use of small peptide pheromones. These signaling peptides are exported as propeptides and are then post-translationally processed to generate mature pheromones. Upon re-entry into the bacterial cell, these bind to a cognate member of the RRNPP family of transcriptional regulators to control transcriptional regulator-mediated activation of target genes [198]. The Rgg pheromone-responsive transcriptional regulators are members of one of the most relevant and widespread quorum sensing (QS) families in streptococci [199]. The past few years have witnessed significant interest in the four Rgg QS systems identified in GAS, all of which regulate multicellular behaviors such as biofilm formation or coordinated expression of virulence factors.

The two Rgg/Shp pairs, Rgg2/Shp2 and Rgg3/Shp3, were the first conserved QS systems identified in GAS [200]. The regulators of both systems compete for binding to specific promoters of the two adjacent shp genes along with several other coregulated genes. Rgg3 acts as a repressor and Rgg2 has an activator function. Although the regulated genes are not directly involved in adherence, the Rgg2/3 pathway was found to increase biogenesis of biofilms in the M49 GAS strain NZ131 [200]. For the M1 serotype GAS strain SF370, rgg2 mutation increased biofilm formation, but abolished growth in human blood and virulence in mice [201]. Rgg2/3 signaling has been shown to contribute to resistance to lysozyme as a physiological response to metal limitation and utilization of alternate carbon sources [202]. This effect was observed across multiple serotypes and supports a role for the Rgg2/3 regulatory circuit in protection from host defense and early colonization. Recent studies significantly extend our understanding of Rgg-Shp-mediated QS in GAS demonstrating that the Shp signaling peptides enable interspecies communication between streptococci, affecting the dynamics of GAS biofilm development [203, 204]. This is an important observation, considering that GAS is able to grow in multispecies biofilms with oral streptococci [194].

Another intriguing finding is the presence of an internal control system in GAS, whereby the endopeptidase PepO is capable of degrading the signaling molecules Shp2 and Shp3 [205]. The CovRS-regulated PepO allows fine-tuning of Rgg/Shp signaling in both M49 GAS strain NZ131 and M1T1 GAS strain MGAS5005. However, it appears that this role of PepO in GAS QS is serotype specific, where PepO proved to be ineffective in disrupting the Rgg2/3 QS pathway in the M14 GAS strain HSC5 [205].

There exists a third Rgg QS system in GAS that is fundamentally distinct from the aforementioned Rgg/Shp QS systems. Although the regulator of proteinase B (RopB/Rgg1) shares structural homology to the RRNPP family of QS regulators, no prepeptide-encoding ORF has been identified to date [199, 206]. Instead, the RopB regulator was shown to bind an amino-terminal signal peptide of the Vfr protein, repressing RopB-dependent speB expression [207, 208]. Production of the cysteine protease SpeB, in turn, is linked to GAS biofilm dispersal [209]. However, it has long been hypothesized that RopB may use an unknown secreted peptide as a signal to induce speB expression [199]. Makthal and colleagues recently provided experimental evidence of such a low molecular weight proteinaceous
secreted factor that induced RopB-dependent speB expression during high cell density, although the identity of this peptide remains elusive [206]. Additionally, the activity of RopB is under catabolic control via direct protein–protein interaction with the aldolase LacD1, that results in the repression of speB transcription [210]. As these examples illustrate, there are complex regulatory circuits that control speB expression and thus affect biofilm development in GAS.

ComR is the fourth Rgg paralog present in GAS, and like the other Rgg regulators it plays an important role in biofilm formation. Marks and colleagues recently observed that ComR is necessary for planktonic bacteria to adopt the biofilm lifestyle and is crucial for the ability of biofilm GAS grown on human SCC-13 squamous carcinoma cells to take up exogenous DNA [193].

Conclusions

Recent years have witnessed a better understanding of the molecular basis and mechanisms of GAS colonization. Prevention of bacterial adhesion and/or biofilm formation is a promising phenotype to target for GAS vaccine development. Successful colonization depends on both intra- and intercellular regulatory networks controlling the expression of adhesins and other virulence determinants contributing to colonization. These networks, however, may vary between different GAS serotypes, which make general assumptions regarding their precise role during GAS colonization difficult. Recent studies on bacteria–bacteria interactions within the epithelial microbiota further highlight the requirement for a better understanding of the interactions and dynamics between GAS and mixed bacterial communities and how such interactions govern pathogenesis.

References

1. Carapetis JR, Steer AC, Mulholland EK, and Weber M (2005) The global burden of group A streptococcal diseases. *Lancet Infect Dis* 5, 685–694.
2. Tse H, Bao JYJ, Davies MR, Maamary P, Tsoi H-W, Tong AHY, Ho TCC, Lin C-H, Gillen CM, Barnett TC *et al.* (2012) Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. *J Infect Dis* 206, 341–351.
3. Ben Zackour NL, Davies MR, You Y, Chen JHK, Forde BM, Stanton-Cook M, Yang R, Cui Y, Barnett TC, Venturini C *et al.* (2015) Transfer of scarlet fever-associated elements into the group A *Streptococcus* M1T1 clone. *Sci Rep* 5, 15877.
4. Davies MR, Holden MT, Coupland P, Chen JHK, Venturini C, Barnett TC, Zakour NLB, Tse H, Dougan G, Yuen K-Y *et al.* (2015) Emergence of scarlet fever *Streptococcus pyogenes* emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. *Nat Genet* 47, 84–87.
5. Aziz RK and Kohl M (2008) Rise and persistence of global M1T1 clone of *Streptococcus pyogenes*. *Emerg Infect Dis* 14, 1511–1517.
6. Albrich WC, Monnet DL, and Harbarth S (2004) Antibiotic selection pressure and resistance in *Streptococcus pneumoniae* and *Streptococcus pyogenes*. *Emerg Infect Dis* 10, 514–517.
7. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML and Nizet V (2014) Disease manifestations and pathogenic mechanisms of group A *Streptococcus*. *Clin Microbiol Rev* 27, 264–301.
8. Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, McArthur JD, Dinkla K, Aziz RK, Kansal RG *et al.* (2007) DNase Sd1 provides selection pressure for a switch to invasive group A streptococcal infection. *Nat Med* 13, 981–985.
9. Courtney HS, Hasty DL and Dale JB (2002) Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. *Ann Med* 34, 77–87.
10. Nobbs AH, Lamont RJ and Jenkinson HF (2009) *Streptococcus* adherence and colonization. *Microbiol Mol Biol Rev* 73, 407–450.
11. Moschioni M, Pansegrau W and Barocchi MA (2010) Adhesion determinants of the *Streptococcus* species. *Microb Biotechnol* 3, 370–388.
12. Rohde M and Chhatwal GS (2013) Adherence and invasion of streptococci to eukaryotic cells and their role in disease pathogenesis. *Curr Top Microbiol Immunol* 368, 83–110.
13. Nobbs AH, Jenkinson HF and Everett DB (2015) Generic determinants of *Streptococcus* colonization and infection. *Infect Genet Evol* 33, 361–370.
14. Molinari G, Talay SR, Valentini-Weigand P, Rohde M and Chhatwal GS (1997) The fibronectin-binding protein of *Streptococcus pyogenes*, SfbI, is involved in the internalization of group A streptococci by epithelial cells. *Infect Immun* 65, 1357–1363.
15. Talay SR, Zock A, Rohde M, Molinari G, Oggioni M, Pozzi G, Guzman CA and Chhatwal GS (2000) Cooperative binding of human fibronectin to SfbI protein triggers streptococcal invasion into respiratory epithelial cells. *Cell Microbiol* 2, 521–535.
16. Jadoun J, Ozeri V, Burstein E, Skutelsky E, Hanski E and Sela S (1998) Protein F1 is required for efficient entry of *Streptococcus pyogenes* into epithelial cells. *J Infect Dis* 178, 147–158.
Streptococcus pyogenes adhesion and colonization

S. Brouwer et al.

17 Rohde M, Muller E, Chhatwal GS and Talay SR (2003) Host cell caveolae act as an entry-port for group A streptococci. Cell Microbiol 5, 323–342.

18 Akiyama H, Morizane S, Yamasaki O, Oono T and Iwatsuki K (2003) Assessment of Streptococcus pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. J Dermatol Sci 32, 193–199.

19 Roberts AL, Connolly KL, Kirse DJ, Evans AK, Poehling KA, Peters TR and Reid SD (2012) Detection of group A Streptococcus in tonsils from pediatric patients reveals high rate of asymptomatic streptococcal carriage. BMC Pediatr 12, 3.

20 Fiedler T, Koller T and Kreikemeyer B (2015) Streptococcus pyogenes biofilms-formation, biology, and clinical relevance. Front Cell Infect Microbiol 5, 15.

21 Kreikemeyer B, McIver KS and Podbielski A (2003) Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol 11, 224–232.

22 Kreikemeyer B, Klenk M and Podbielski A (2004) The intracellular status of Streptococcus pyogenes: role of extracellular matrix-binding proteins and their regulation. Int J Med Microbiol 294, 177–188.

23 Patenge N, Fiedler T and Kreikemeyer B (2013) Common regulators of virulence in streptococci. Curr Top Microbiol Immunol 368, 111–153.

24 Hondorp ER and McIver KS (2007) The Mga virulence regulen: infection where the grass is greener. Mol Microbiol 66, 1056–1065.

25 McIver KS (2009) Stand-alone response regulators controlling global virulence networks in Streptococcus pyogenes. Contrib Microbiol 16, 103–119.

26 Miller EW, Cao TN, Pfughofert KJ and Sumby P (2014) RNA-mediated regulation in Gram-positive pathogens: an overview punctuated with examples from the group A Streptococcus. Mol Microbiol 94, 9–20.

27 Hasty DL, Ofek I, Courtney HS and Doyle RJ (1992) Multiple adhesins of streptococci. Infect Immun 60, 2147–2152.

28 Edwards AM, Manetti AG, Falugi F, Zingaretti C, Capo S, Buccato S, Bensi G, Telford JL, Margarit I and Grandi G (2008) Scavenger receptor gp340 aggregates group A streptococci by binding pili. Mol Microbiol 68, 1378–1394.

29 Manetti AG, Zingaretti C, Falugi F, Capo S, Bombaci M, Bagnoli F, Gambellini G, Bensi G, Mora M, Edwards AM et al. (2007) Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol Microbiol 64, 968–983.

30 Abbot EL, Smith WD, Siou GPS, Chiriboga C, Smith RJ, Wilson JA, Hirst BH and Kehoe MA (2007) Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol 9, 1822–1833.

31 Hanski E and Caparon M (1992) Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes. Proc Natl Acad Sci USA 89, 6172–6176.

32 Ozeri V, Tovi A, Burstein I, Natanson-Yaron S, Caparon MG, Yamada KM, Akiyama SK, Vlodavsky I and Hanski E (1996) A two-domain mechanism for group A streptococcal adherence through protein F to the extracellular matrix. EMBO J 15, 989–998.

33 Hanski E, Jaffe J and Ozeri V (1996) Proteins F1 and F2 of Streptococcus pyogenes. Properties of fibronectin binding. Adv Exp Med Biol 408, 141–150.

34 Walden M, Edwards JM, Dziewulska AM, Bergmann R, Saalbach G, Kan SY, Miller OK, Weckener M, Jackson RJ, Shirran SL et al. (2015) An internal thioester in a pathogen surface protein mediates covalent host binding. Elife 2, doi:10.7554/eLife.06638.

35 Katerov V, Andreev A, Schalen C and Tolotian AA (1998) Protein F, a fibronectin-binding protein of Streptococcus pyogenes, also binds human fibrinogen: isolation of the protein and mapping of the binding region. Microbiology 144, 119–126.

36 Margarit I, Bonacci S, Pietrocola G, Rindi S, Ghezzo C, Bombaci M, Nardi-Dei V, Grifantini R, Speziale P and Grandi G (2009) Capturing host–pathogen interactions by protein microarrays: identification of novel streptococcal proteins binding to human fibronectin, fibrinogen, and C4BP. FASEB J 23, 3100–3112.

37 Jaffe J, Natanson-Yaron S, Caparon MG and Hanski E (1996) Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol Microbiol 21, 373–384.

38 Terao Y, Kawabata S, Nakata M, Nakagawa I and Hamada S (2002) Molecular characterization of a novel fibronectin-binding protein of Streptococcus pyogenes strains isolated from toxic shock-like syndrome patients. J Biol Chem 277, 47428–47435.

39 Ramachandran V, McArthur JD, Behm CE, Gutzeit C, Dowton M, Fagan PK, Towers R, Currie B, Srirprakash KS and Walker MJ (2004) Two distinct genotypes of prtF2, encoding a fibronectin binding protein, and evolution of the gene family in Streptococcus pyogenes. J Bacteriol 186, 7601–7609.

40 Kreikemeyer B, Oehmcke S, Nakata M, Hoffrogge R and Podbielski A (2004) Streptococcus pyogenes fibronectin-binding protein F2: expression profile, binding characteristics, and impact on eukaryotic cell interactions. J Biol Chem 279, 15850–15859.

41 Kreikemeyer B, Nakata M, Oehmcke S, Gschwendtner C, Normann J and Podbielski A (2005) Streptococcus pyogenes collagen type I-binding Cpa surface protein.
Expression profile, binding characteristics, biological functions, and potential clinical impact. *J Biol Chem* **280**, 33228–33239.

42 Becherelli M, Manetti AG, Buccato S, Viciani E, Ciucchi L, Mollica G, Grandi G and Margarit I (2012) The ancillary protein 1 of *Streptococcus pyogenes* FCT-1 pili mediates cell adhesion and biofilm formation through heterophilic as well as homophilic interactions. *Mol Microbiol* **83**, 1035–1047.

43 Linke-Winnebeck C, Paterson NG, Young PG, Middleditch MJ, Greenwood DR, Witte G and Baker EN (2014) Structural model for covalent adhesion of *Streptococcus pyogenes* opacity factor protein 1 (Scl1) via their conserved C termini allows immunization with fibronectin-binding protein. *J Infect Dis* **192**, 2081–2091.

44 Courtney HS, Li Y, Twal WO and Argraves WS (2015) Structure of the first prokaryotic collagen sequence motif that selectively binds cellular fibronectin and laminin, and mediates pathogen internalization by human cells. *FEMS Microbiol Lett* **303**, 61–68.

45 Kreikemeyer B, Talay SR and Chhatwal GS (1995) Characterization of a novel fibronectin-binding surface protein in group A streptococci. *Mol Microbiol* **17**, 137–145.

46 Kreikemeyer B, Martin DR and Chhatwal GS (1999) SfbII protein, a fibronectin binding surface protein of group A streptococci, is a serum opacity factor with high serotype-specific apolipoproteinase activity. *FEMS Microbiol Lett* **178**, 305–311.

47 Gillen CM, Courtney HS, Schulze K, Rohde M, Wilson MR, Timmer AM, Guzman CA, Nizet V, Chhatwal GS and Walker MJ (2008) Opacity factor activity and epithelial cell binding by the serum opacity factor protein of *Streptococcus pyogenes* are functionally discrete. *J Biol Chem* **283**, 6359–6366.

48 Jeng A, Sakota V, Li Z, Dutta V, Beall B and Nizet V (2003) Molecular genetic analysis of a group A *Streptococcus* operon encoding serum opacity factor and a novel fibronectin-binding protein, SfbX. *J Bacteriol* **185**, 1208–1217.

49 Oehmcke S, Podbielski A and Kreikemeyer B (2004) Function of the fibronectin-binding serum opacity factor of *Streptococcus pyogenes* in adherence to epithelial cells. *Infect Immun* **72**, 4302–4308.

50 Terao Y, Kawabata S, Kunitomo E, Murakami J, Nakagawa I and Hamada S (2001) Fba, a novel fibronectin-binding protein from *Streptococcus pyogenes*, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. *Mol Microbiol* **42**, 75–86.

51 Pandiripally V, Gregory E and Cue D (2002) Acquisition of regulators of complement activation by *Streptococcus pyogenes* serotype M1. *Infect Immun* **70**, 6206–6214.

52 Terao Y, Okamoto S, Kataoka K, Hamada S and Kawabata S (2005) Protective immunity against *Streptococcus pyogenes* challenge in mice after immunization with fibronectin-binding protein. *J Infect Dis* **192**, 2081–2091.

53 Oliver-Kozup H, Martin KH, Schwegler-Berry D, Green BJ, Betts C, Shinde AV, Van De Water L and Lukomski S (2013) The group A streptococcal collagen-like protein-1, Scl1, mediates biofilm formation by targeting the extra domain A-containing variant of cellular fibronectin expressed in wounded tissue. *Mol Microbiol* **87**, 672–689.

54 Caswell CC, Oliver-Kozup H, Han R, Lukomska E and Lukomski S (2010) Scl1, the multifunctional adhesin of group A *Streptococcus*, selectively binds cellular fibronectin and laminin, and mediates pathogen internalization by human cells. *FEMS Microbiol Lett* **303**, 61–68.

55 Chen S-M, Tsai Y-S, Wu C-M, Liao S-K, Wu L-C, Chang C-S, Liu Y-H and Tsai P-J (2010) *Streptococcal* collagen-like surface protein 1 promotes adhesion to the respiratory epithelial cell. *BMC Microbiol* **10**, 320.

56 Huntsoe JO, Kim JK, Xu Y, Keene DR, Hook M, Lukomski S and Wary KK (2005) A *streplococcal* collagen-like protein interacts with the α2β1 integrin and induces intracellular signaling. *J Biol Chem* **280**, 13848–13857.

57 Caswell CC, Barczyk M, Keene DR, Lukomska E, Gullberg DE and Lukomski S (2008) Identification of the first prokaryotic collagen sequence motif that mediates binding to human collagen receptors, integrins α2β1 and α1β1. *J Biol Chem* **283**, 36168–36175.

58 Caswell CC, Lukomska E, Sow NS, Hook M and Lukomski S (2007) Scl1-dependent internalization of group A *Streptococcus* via direct interactions with the α2β1 integrin enhances pathogen survival and re-emergence. *Mol Microbiol* **64**, 1319–1331.

59 Caswell CC, Han R, Hovis KM, Ciborowski P, Keene DR, Marconi RT and Lukomski S (2008) The Scl1 protein of M6-type group A *Streptococcus* binds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement. *Mol Microbiol* **67**, 584–596.

60 Gao Y, Liang C, Zhao R, Lukomski S and Han R (2010) The Scl1 of M41-type group A *Streptococcus* binds the high-density lipoprotein. *FEMS Microbiol Lett* **309**, 55–61.

61 Han R, Caswell CC, Lukomska E, Keene DR, Pawlowski M, Bujnicki JM, Kim JK and Lukomski S (2006) Binding of the low-density lipoprotein by streptococcal collagen-like protein Scl1 of *Streptococcus pyogenes*. *Mol Microbiol* **61**, 351–367.

62 Reuter M, Caswell CC, Lukomski S and Zipfel PF (2010) Binding of the human complement regulators CFHR1 and factor H by streptococcal collagen-like protein 1 (Scl1) via their conserved C termini allows...
S. Brouwer et al.

Streptococcus pyogenes adhesion and colonization

control of the complement cascade at multiple levels. J Biol Chem 285, 38473–38485.

63 Hryniewicz W, Lipinski B and Jeljaszewicz J (1972) Nature of the interaction between M protein of Streptococcus pyogenes and fibrinogen. J Infect Dis 125, 626–630.

64 Horstmann RD, Sievertsen HJ, Knobloch J and Fischetti VA (1988) Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc Natl Acad Sci USA 85, 1657–1661.

65 Kotarsky H, Hellwage J, Johnsson E, Skerka C, Svensson HG, Lindahl G, Sjobring U and Zipfel PF (1998) Identification of a domain in human factor H regions in Streptococcus pyogenes that binds the cell wall-anchored M1 protein from Streptococcus pyogenes both interact with type I collagen. PLoS One 6, e20345.

66 Okada N, Liszewski MK, Atkinson JP and Caparon M (1995) Membrane cofactor protein (CD46) is a keratinocite receptor for the M protein of the group A Streptococcus. Proc Natl Acad Sci USA 92, 2489–2493.

67 Bjorck L, Tylewska SK, Wadstrom T and Kronvall G (2002) Analysis of a streptococcal M protein to human fibrinogen, albumin and fibronectin. J Biol Chem 277, 1185–1194.

68 Schmidt KH, Mann K, Cooney J and Kohler W (1993) Multiple binding of type 3 streptococcal M protein to human fibrinogen, albumin and fibronectin. FEMS Immunol Med Microbiol 7, 135–143.

69 Ringdahl U and Sjobring U (2000) Analysis of plasminogen-binding M proteins of Streptococcus pyogenes. Methods 21, 143–150.

70 Ryan PA, Pancholi V and Fischetti VA (2001) Group A streptococci bind to mucin and human pharyngeal cells through sialic acid-containing receptors. Infect Immun 69, 7402–7412.

71 Giannakis E, Jokiranta TS, Ormsby RJ, Dutry TG, Male DA, Christiansen D, Fischetti VA, Bagley C, Loveland BE and Gordon DL (2002) Identification of the streptococcal M protein binding site on membrane cofactor protein (CD46). J Immunol 168, 4585–4592.

72 Dinkla K, Rohde M, Jansen WTM, Kaplan EL, Chhatwal GS and Talay SR (2003) Rheumatic fever–associated Streptococcus pyogenes isolates aggregate collagen. J Clin Invest 111, 1905–1912.

73 Carlsson F, Berggård K, Stålhammar-Carllemalm M and Lindahl G (2003) Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein. J Exp Med 198, 1057–1068.

74 Frick IM, Schmidtchen A and Sjobring U (2003) Interactions between M proteins of Streptococcus pyogenes and glycosaminoglycans promote bacterial adhesion to host cells. Eur J Biochem 270, 2303–2311.

75 Anderson EL, Cole JN, Olson J, Ryba B, Ghosh P and Nizet V (2014) The fibrinogen-binding M1 protein reduces pharyngeal cell adherence and colonization phenotypes of M1T1 group A Streptococcus. J Biol Chem 289, 3539–3546.

76 Bober M, Morgelin M, Olin AL, von Pawel-Rammingen U and Collin M (2011) The membrane bound LRR lipoprotein Sir, and the cell wall-anchored M1 protein from Streptococcus pyogenes both interact with type I collagen. PLoS One 6, e20345.

77 Stenberg L, O’Toole P and Lindahl G (1992) Many group A streptococcal strains express two different immunoglobulin-binding proteins, encoded by closely linked genes: characterization of the proteins expressed by four strains of different M-type. Mol Microbiol 6, 1185–1194.

78 Johnsson E, Andersson G, Lindahl G and Heden LO (1994) Identification of the IgA-binding region in streptococcal protein Arp. J Immunol 153, 3557–3564.

79 Lindahl G and Akerstrom B (1989) Receptor for IgA in group A streptococci: cloning of the gene and characterization of the protein expressed in Escherichia coli. Mol Microbiol 3, 239–247.

80 Stenberg L, O’Toole P, Mestecky J and Lindahl G (1994) Molecular characterization of protein Sir, a streptococcal cell surface protein that binds both immunoglobulin A and immunoglobulin G. J Biol Chem 269, 13458–13464.

81 Elsner A, Kreikemeyer B, Braun-Kiewnick A, Spellerberg B, Buttaro BA and Podbielski A (2002) Involvement of Lsp, a member of the LraI-lipoprotein family in Streptococcus pyogenes, in eukaryotic cell adhesion and internalization. Infect Immun 70, 4859–4869.

82 Terao Y, Kawabata S, Kunitomo E, Nakagawa I and Hamada S (2002) Novel laminin-binding protein of Streptococcus pyogenes, Lbp, is involved in adhesion to epithelial cells. Infect Immun 70, 993–997.

83 Wistedt AC, Ringdahl U, Muller-Esterl W and Sjobring U (1995) Identification of a plasminogen-binding motif in PAM, a bacterial surface protein. Mol Microbiol 18, 569–578.

84 Sanderson-Smith ML, Dowton M, Ranson M and Walker MJ (2007) The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues. J Bacteriol 189, 1435–1440.

85 Linke C, Siemens N, Oehmcke S, Radjainia M, Law LO, Whisstock JC, Baker EN and Kreikemeyer B (2012) The extracellular protein factor Epf from Streptococcus pyogenes reduces adhesion to epithelial cells through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein. J Biol Chem 287, 38178–38189.

86 Zhang S, Green NM, Sitkiewicz I, Lefebvre RB and Musser JM (2006) Identification and characterization of the streptococcal M protein with streptococcal M proteins.
of an antigen I/II family protein produced by group A Streptococcus. *Infect Immun* **74**, 4200–4213.

87 Maddocks SE, Wright CJ, Nobbs AH, Brittan JL, Franklin L, Strömberg N, Kadioglu A, Jepson MA and Jenkinson HF (2011) Streptococcus pyogenes antigen I/II-family peptidylglycine α-carboxyl aminopeptidase (PepN) is required for respiratory infection by group A streptococci. *PLoS One* **6**, e26433.

88 Murakami J, Terao Y, Morisaki I, Hamada S and Kawabata S (2012) Group A Streptococcus adhesins to pharyngeal epithelial cells with salivary proline-rich proteins via GrpE chaperone protein. *J Biol Chem* **287**, 22266–22275.

89 Akesson P, Cooney J, Kishimoto F and Björck L (1994) Protein H – a novel IgG binding bacterial protein. *Mol Immunol* **27**, 523–531.

90 Akesson P, Cooney J, Sjöbring U, Schmidt KH, Gomi H, Hattori S, Tagawa C, Kishimoto F and Björck L (1994) Protein H – a surface protein of Streptococcus pyogenes with separate binding sites for IgG and albumin. *Mol Microbiol* **12**, 143–151.

91 Hytönen J, Haataja S and Finne J (2003) Streptococcus pyogenes glycoprotein-binding streptadhesin activity is mediated by a surface-associated carbohydrate-degrading enzyme, pullulanase. *Infect Immun* **71**, 784–793.

92 Stalhammar-Carlmark M, Areschoug T, Larsson C and Lindahl G (1999) The R28 protein of *Streptococcus pyogenes* is related to several group B streptococcal surface proteins, confers protective immunity and promotes binding to human epithelial cells. *Mol Microbiol* **33**, 208–219.

93 Bensi G, Mora M, Tuscano G, Biagini M, Chiarot E, Bombaci M, Capo S, Falugi F, Manetti AGO, Donato et al. (2012) Multi high-throughput approach for highly selective identification of vaccine candidates: the group A *Streptococcus* case. *Mol Cell Proteomics* **11**, M111.015693.

94 Gallotta M, Gancitano G, Pietrocyla G, Mora M, Pezzicoli A, Tuscano G, Chiarot E, Nardi-Dei V, Tagliazucchi AR, Rindi S et al. (2014) SpyAD, a moonlighting protein of group A *Streptococcus* contributing to bacterial division and host cell adhesion. *Infect Immun* **82**, 2890–2901.

95 Schneewind O, Mihaylova-Petkov D and Model P (1993) Cell wall sorting signals in surface proteins of gram-positive bacteria. *EMBO J* **12**, 4803–4811.

96 Barnett TC and Scott JR (2002) Differential recognition of surface proteins in *Streptococcus pyogenes* by two sortase gene homologs. *J Bacteriol* **184**, 2181–2191.

97 Scott JR and Barnett TC (2006) Surface proteins of gram-positive bacteria and how they get there. *Annu Rev Microbiol* **60**, 397–423.

98 Barnett TC, Patel AR and Scott JR (2004) A novel sortase, SrtC2, from *Streptococcus pyogenes* anchors a surface protein containing a QVPTGV motif to the cell wall. *J Bacteriol* **186**, 5865–5875.

99 Barnett TC, Patel AR and Scott JR (2004) A novel sortase, SrtC2, from *Streptococcus pyogenes* anchors a surface protein containing a QVPTGV motif to the cell wall. *J Bacteriol* **186**, 5865–5875.

100 Mora M, Bensi G, Capo S, Falugi F, Zingaretti C, Manetti AG, Maggi T, Taddei AR, Grandi G and Telford JL (2005) Group A *Streptococcus* produce pilus-like structures containing protective antigens and Lancefield T antigens. *Proc Natl Acad Sci USA* **102**, 15641–15646.

101 Hendrickx AP, Budzik JM, Oh SY and Schneewind O (2011) Architects at the bacterial surface – sortases and the assembly of pili with isopeptide bonds. *Nat Rev Microbiol* **9**, 166–176.

102 Schneewind O and Missiakas D (2014) Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria. *Biochim Biophys Acta* **1843**, 1687–1697.

103 Spirig T, Weiner EM and Clubb RT (2011) Sortase enzymes in Gram-positive bacteria. *Mol Microbiol* **82**, 1044–1059.

104 Falugi F, Zingaretti C, Pinto V, Mariani M, Amodeo L, Manetti AG, Capo S, Musser JM, Orefici G, Margarit I et al. (2008) Sequence variation in group A *Streptococcus* pili and association of pilus backbone types with lancefield T serotypes. *J Infect Dis* **198**, 1834–1841.

105 Kang HJ, Coulibaly F, Proft T and Baker EN (2011) Crystal structure of Spy0125, a *Streptococcus pyogenes* class B sortase involved in pilus assembly. *PLoS One* **6**, e15969.

106 Quigley BR, Zahner D, Hatkoff M, Thanassi DG and Scott JR (2009) Linkage of T3 and Cpa pilins in the *Streptococcus pyogenes* M3 pilus. *Mol Microbiol* **72**, 1379–1394.

107 Smith WD, Pointon JA, Abbot E, Kang HJ, Baker EN, Hirst BH, Wilson JA, Banfield MJ and Kehoe MA (2010) Roles of minor pilin subunits Spy0125 and Spy0130 in the serotype M1 *Streptococcus pyogenes* strain SF370. *J Bacteriol* **192**, 4651–4659.

108 Nakata M, Kimura KR, Sumitomo T, Wada S, Sugauchi A, Oiki E, Higashino M, Kreikemeyer B, Podbielski A, Okahashi N et al. (2011) Assembly mechanism of FCT region type I pilin in serotype M6 *Streptococcus pyogenes*. *J Biol Chem* **286**, 37566–37577.

109 Danne C and Dramsi S (2012) Pili of gram-positive bacteria: roles in host colonization. *Res Microbiol* **163**, 645–658.

110 Kreikemeyer B, Gámez G, Margarit I, Giard J-C, Hammerschmidt S, Hartke A and Podbielski A (2011)
Genomic organization, structure, regulation and pathogenic role of pilus constituents in major pathogenic streptococci and enterococci. *Int J Med Microbiol* **301**, 240–251.

111 Ton-That H and Schneewind O (2004) Assembly of pili in Gram-positive bacteria. *Trends Microbiol* **12**, 228–234.

112 Bessen DE and Kalia A (2002) Genomic localization of a T serotype locus to a recombinatorial zone encoding extracellular matrix-binding proteins in *Streptococcus pyogenes*. *Infect Immun* **70**, 1159–1167.

113 Kratovac Z, Manoharan A, Luo F, Lizzano S and Bessen DE (2007) Population genetics and linkage analysis of loci within the FCT region of *Streptococcus pyogenes*. *J Bacteriol* **189**, 1299–1310.

114 Köller T, Manetti AGO, Kreikemeyer B, Lemcke C, Margarit I, Grandi G and Podbielski A (2010) Typing of the pilus-protein-encoding FCT region and biofilm formation as novel parameters in epidemiological investigations of *Streptococcus pyogenes* isolates from various infection sites. *J Med Microbiol* **59**, 442–452.

115 Crotty Alexander LE, Maisey HC, Timmer AM, Rooijakkers SH, Gallo RL, von Kockritz-Blickwede M and Nizet V (2010) M1T1 group A streptococcal pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment. *J Mol Med* **88**, 371–381.

116 Kimura KR, Nakata M, Sumitomo T, Kreikemeyer B, Podbielski A, Terao Y and Kawabata S (2012) Involvement of T6 pili in biofilm formation by serotype M6 *Streptococcus pyogenes*. *J Bacteriol* **194**, 804–812.

117 Nakata M, Koller T, Moritz K, Ribardo D, Jonas L, McIver KS, Sumitomo T, Terao Y, Kawabata S, Podbielski A *et al.* (2009) Mode of expression and functional characterization of FCT-3 pilus region-encoded proteins in *Streptococcus pyogenes* serotype M49. *Infect Immun* **77**, 32–44.

118 Lizzano S, Luo F and Bessen DE (2007) Role of streptococcal T antigens in superficial skin infection. *J Bacteriol* **189**, 1426–1434.

119 Patti JM, Allen BL, McGavin MJ and Hook M (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. *Annu Rev Microbiol* **48**, 585–617.

120 Hytönen J, Haataja S, Gerlach D, Podbielski A and Finne J (2001) The SpeB virulence factor of *Streptococcus pyogenes*, a multifunctional secreted and cell surface molecule with strepahesin, laminin-binding and cysteine protease activity. *Mol Microbiol* **39**, 512–519.

121 Stockbauer KE, Magoun L, Liu M, Burns EH, Gubba S, Renish S, Pan X, Bodary SC, Baker E, Coburn J *et al.* (1999) A natural variant of the cysteine protease virulence factor of group A *Streptococcus* with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins α5β3 and α2β1. *Proc Natl Acad Sci USA* **96**, 242–247.

122 Tsai WH, Chang CW, Lin YS, Chuang WJ, Wu JJ, Liu CC, Tsai PJ and Lin MT (2008) *Streptococcal* pyrogenic exotoxin B-induced apoptosis in A549 cells is mediated through α5β3 integrins and Fas. *Infect Immun* **76**, 1349–1357.

123 Sitkiewicz I, Nagiec MJ, Sumby P, Butler SD, Cywes-Bentley C and Musser JM (2006) Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2. *Proc Natl Acad Sci USA* **103**, 16009–16014.

124 Olsen RJ, Shelburne SA and Musser JM (2009) Molecular mechanisms underlying group A streptococcal pathogenesis. *Cell Microbiol* **11**, 1–12.

125 Fisher M, Huang Y-S, Li X, McIver KS, Toukoki C and Eichenbaum Z (2008) Shr is a broad-spectrum surface receptor that contributes to adherence and virulence in group A *Streptococcus*. *Infect Immun* **76**, 5006–5015.

126 Bates CS, Montañez GE, Woods CR, Vincent RM and Eichenbaum Z (2003) Identification and characterization of a *Streptococcus pyogenes* operon involved in binding of hemeproteins and acquisition of iron. *Infect Immun* **71**, 1042–1055.

127 Lu C, Xie G, Liu M, Zhu H and Lei B (2012) Direct heme transfer reactions in the group A *Streptococcus* heme acquisition pathway. *PLoS One* **7**, e37556.

128 Pancholi V and Fischetti VA (1992) A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. *J Exp Med* **176**, 415–426.

129 Winram SB and Lottenberg R (1996) The plasmin-binding protein Plr of group A streptococci is identified as glyceraldehyde-3-phosphate dehydrogenase. *Microbiology* **142**, 2311–2320.

130 Jin H, Song YP, Boel G, Kochar J and Pancholi V (2005) Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharynxal cell and mediates bacterial adherence to host cells. *J Mol Biol* **350**, 27–41.

131 Jin H, Agarwal S, Agarwal S & Pancholi V (2011) Surface export of GAPDH/SDH, a glycolytic enzyme, is essential for *Streptococcus pyogenes* virulence. *mBio* **2**, e00668-11.

132 Boel G, Jin H and Pancholi V (2005) Inhibition of cell surface export of group A streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. *Infect Immun* **73**, 6237–6248.

133 Winram SB and Lottenberg R (1998) Site-directed mutagenesis of streptococcal plasmin receptor protein (Plr) identifies the C-terminal Lys334 as essential for plasmin binding, but mutation of the plr gene does
not reduce plasmin binding to group A streptococci. *Microbiology* **144**, 2025–2035.

134 Pancholi V and Fischetti VA (1998) α-Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. *J Biol Chem* **273**, 14503–14515.

135 Derbise A, Song YP, Parikh S, Fischetti VA and Pancholi V (2004) Role of the C-terminal lysine residues of streptococcal surface enolase in glu- and lys-plasminogen-binding activities of group A streptococci. *Infect Immun* **72**, 94–105.

136 Cork AJ, Jerige S, Hammerschmidt S, Kobe B, Pancholi V, Benesch JLP, Robinson CV, Dixon NE, Aquilina JA and Walker MJ (2009) Defining the structural basis of human plasminogen binding by streptococcal surface enolase. *J Biol Chem* **284**, 17129–17137.

137 Courtney HS, Dale JB and Hasty DI (1996) Differential effects of the streptococcal fibronectin-binding protein, FBP54, on adhesion of group A streptococci to human buccal cells and HEP-2 tissue culture cells. *Infect Immun* **64**, 2415–2419.

138 Courtney HS, Bronze MS, Dale JB and Hasty DL (2002) Mapping of the structural basis of human respiratory tract pathogens. *J Innate Immun* **2**, 160–166.

139 Yamaguchi M, Terao Y and Kawabata S (2013) Pleiotropic virulence factor – *Streptococcus pyogenes* fibronectin-binding proteins. *Cell Microbiol* **15**, 503–511.

140 Hanski E, Horwitz PA and Caparon MG (1992) Expression of protein F, the fibronectin-binding protein of *Streptococcus pyogenes* JRS4, in heterologous streptococcal and enterococcal strains promotes their adherence to respiratory epithelial cells. *Infect Immun* **60**, 5119–5125.

141 Talay SR, Valentin-Weigand P, Jerlstrom PG, Timmis KN and Chhatwal GS (1992) Fibronectin-binding protein of *Streptococcus pyogenes*: sequence of the binding domain involved in adherence of streptococci to epithelial cells. *Infect Immun* **60**, 3837–3844.

142 Timmer AM, Kristian SA, Datta V, Jeng A, Gillen CM, Walker MJ, Beall B and Nizet V (2006) Serum opacity factor promotes group A streptococcal epithelial cell invasion and virulence. *Mol Microbiol* **62**, 15–25.

143 Dahesh S, Nizet V and Cole JN (2012) Study of streptococcal hemoprotein receptor (Shr) in iron acquisition and virulence of M1T1 group A *Streptococcus*. *Virulence* **3**, 566–575.

144 Amelung S, Nerlich A, Rohde M, Spellerberg B, Cole JN, Nizet V, Chhatwal GS and Talay SR (2011) The FbaB-type fibronectin-binding protein of *Streptococcus pyogenes* promotes specific invasion into endothelial cells. *Cell Microbiol* **13**, 1200–1211.

145 Okada N, Tatsuno I, Hanski E, Caparon M and Sasakawa C (1998) *Streptococcus pyogenes* protein F promotes invasion of HeLa cells. *Microbiology* **144**, 3079–3086.

146 Rezcallah MS, Hodges K, Gill DB, Atkinson JP, Wang B and Cleary PP (2005) Engagement of CD46 and αβ1 integrin by group A streptococci is required for efficient invasion of epithelial cells. *Cell Microbiol* **7**, 645–653.

147 Courtney HS, Dale JB and Hasty DL (2002) Mapping the fibrinogen-binding domain of serum opacity factor of group A streptococci. *Curr Microbiol* **44**, 236–240.

148 Hong K (2007) Characterization of group A streptococcal M23 protein and comparison of the M3 and M23 protein’s ligand-binding domains. *Curr Microbiol* **55**, 427–434.

149 Dinkla K, Rohde M, Jansen WT, Carapetis JR, Chhatwal GS and Talay SR (2003) *Streptococcus pyogenes* recruits collagen via surface-bound fibronectin: a novel colonization and immune evasion mechanism. *Mol Microbiol* **47**, 861–869.

150 Hyland KA, Wang B and Cleary PP (2007) Protein F1 and *Streptococcus pyogenes* resistance to phagocytosis. *Infect Immun* **75**, 3188–3191.

151 Bober M, Enochsson C, Collin M and Morgelin M (2010) Collagen VI is a subepithelial adhesive target for human respiratory tract pathogens. *J Innate Immun* **2**, 160–166.

152 Linke C, Caradoc-Davies TT, Young PG, Profit T and Baker EN (2009) The laminin-binding protein Lbp from *Streptococcus pyogenes* is a zinc receptor. *J Bacteriol* **191**, 5814–5823.

153 Xu Y, Keene DR, Bujnicki JM, Hook M and Lukomski S (2002) Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices. *J Biol Chem* **277**, 27312–27318.

154 Lukomski S, Nakashima K, Abd I, Cipriano VJ, Ireland RM, Reid SD, Adams GG and Musser JM (2000) Identification and characterization of the scl gene encoding a group A *Streptococcus* extracellular protein virulence factor with similarity to human collagen. *Infect Immun* **68**, 6542–6553.

155 Phillips GN Jr, Flicker PF, Cohen C, Manjula BN and Fischetti VA (1981) Streptococcal M protein: alpha-helical coiled-coil structure and arrangement on the cell surface. *Proc Natl Acad Sci USA* **78**, 4689–4693.

156 Fischetti VA, Pancholi V and Schniewind O (1990) Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. *Mol Microbiol* **4**, 1603–1605.

157 Smeesters PR, McMillan DJ and Sriprakash KS (2010) The streptococcal M protein: a highly versatile molecule. *Trends Microbiol* **18**, 275–282.

158 Fischetti VA (2016) M protein and other surface proteins on streptococci. In *Streptococcus pyogenes*: adhesion and colonization S. Brouwer et al.
Basic Biology to Clinical Manifestations (Ferretti JJ, Stevens DL and Fischetti VA, eds), pp. 23–43. University of Oklahoma Health Sciences Center, Oklahoma City, OK.

159 Sanderson-Smith M, De Oliveira DM, Guglielmini J, McMillan DJ, Vu T, Holien JK, Henningham A, Steer AC, Bessen DE, Dale JB et al. (2014) A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J Infect Dis 210, 1325–1338.

160 McArthur JD and Walker MJ (2006) Domains of group A streptococcal M protein that confer resistance to phagocytosis, opsonization and protection: implications for vaccine development. Mol Microbiol 59, 1–4.

161 Berkower C, Ravins M, Moses AE and Hanski E (1990) Role of M protein in adherence of group A streptococci. Mol Immunol 27, 659–670.

162 Courtney HS, Liu S, Dale JB and Hasty DL (1997) Conversion of M serotype 24 of Streptococcus pyogenes to M serotypes 5 and 18: effect on resistance to phagocytosis and adhesion to host cells. Infect Immun 65, 2472–2474.

163 Courtney HS, Ofek I and Hasty DL (1997) M protein mediated adhesion of M type 24 Streptococcus pyogenes stimulates release of interleukin-6 by HEp-2 tissue culture cells. FEMS Microbiol Lett 151, 65–70.

164 Cue D, Dombek PE, Lam H and Cleary PP (1998) Streptococcus pyogenes serotype M1 encodes multiple pathways for entry into human epithelial cells. Infect Immun 66, 4593–4601.

165 Feito MJ, Sanchez A, Oliver MA, Perez-Caballero D, Rodriguez de Cordoba S, Alberti S and Rojo JM (2007) Membrane cofactor protein (MCP, CD46) binding to clinical isolates of Streptococcus pyogenes: binding to M type 18 strains is independent of Emm or Enn proteins. Mol Immunol 44, 3571–3579.

166 Caparon MG, Stephens DS, Olsen A and Scott JR (1991) Role of M protein in adherence of group A streptococci. Infect Immun 59, 1811–1817.

167 Hauser AR and Schlievert PM (1990) Nucleotide sequence of the streptococcal pyrogenic exotoxin type B gene and relationship between the toxin and the streptococcal proteinase precursor. J Bacteriol 172, 4536–4542.

168 Chiang-Ni C and Wu J-J (2008) Effects of streptococcal pyrogenic exotoxin B on pathogenesis of Streptococcus pyogenes. J Formos Med Assoc 107, 677–685.

169 Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12, 697–715.

170 Ishibashi Y, Relman DA and Nishikawa A (2001) Invasion of human respiratory epithelial cells by Bordetella pertussis: possible role for a filamentous hemagglutinin Arg-Gly-Asp sequence and α5β1 integrin. Microb Pathog 30, 279–288.

171 Eto DS, Jones TA, Sundsbak JL and Mulvey MA (2007) Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog 3, e100.

172 Cole JN, Barnett TC, Nizet V and Walker MJ (2011) Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9, 724–736.

173 Tsai PJ, Kuo CF, Lin KY, Lin YS, Lei HY, Chen FF, Wang JR and Wu JJ (1998) Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect Immun 66, 1460–1466.

174 Burns EH Jr, Lukomski S, Rutangirwa J, Podbielski A and Musser JM (1998) Genetic inactivation of the extracellular cysteine protease enhances in vitro internalization of group A streptococci by human epithelial and endothelial cells. Microb Pathog 24, 333–339.

175 Jadoun J, Eyal O and Sela S (2002) Role of CsrR, hyaluronic acid, and SpeB in the internalization of Streptococcus pyogenes M type 3 strain by epithelial cells. Infect Immun 70, 462–469.

176 Chaussee MS, Cole RL and van Putten JP (2000) Streptococcal erythrogenic toxin B abrogates fibronectin-dependent internalization of Streptococcus pyogenes by cultured mammalian cells. Infect Immun 68, 3226–3232.

177 Beres SB, Sylvia GL, Barbian KD, Lei B, Hoff JS, Mammarella ND, Liu MY, Smoot JC, Porcella SF, Parkins LD et al. (2002) Genome sequence of a serotype M3 strain of group A Streptococcus: phase-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci USA 99, 10078–10083.

178 Nagiec MJ, Lei B, Parker SK, Basil ML, Matsumoto M, Ireland RM, Beres SB, Hoe NP and Musser JM (2004) Analysis of a novel prophage-encoded group A Streptococcus extracellular phospholipase A2. J Biol Chem 279, 45909–45918.

179 Shelburne SA, Granville C, Tokuyama M, Sitkiewicz I, Patel P and Musser JM (2005) Growth characteristics of and virulence factor production by group A Streptococcus during cultivation in human saliva. Infect Immun 73, 4723–4731.

180 Zhu H, Liu M and Lei B (2008) The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp. BMC Microbiol 8, 15.

181 Pancholi V and Chhatwal GS (2003) Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293, 391–401.

182 Lottenberg R, Broder CC, Boyle MDP, Kain SJ, Schroeder BL and Curtiss Lii R (1992) Cloning, sequence analysis, and expression in Escherichia coli of Streptococcus pyogenes adhesion and colonization.
a streptococcal plasmin receptor. J Bacteriol 174, 5204–5210.

183 Pancholi V and Fischetti VA (1997) Regulation of the phosphorylation of human pharyngeal cell proteins by group A streptococcal surface dehydrogenase: signal transduction between streptococci and pharyngeal cells. J Exp Med 186, 1633–1643.

184 Karbassi F, Quiros V, Pancholi V and Kornblatt MJ (2010) Dissociation of the octameric enolase from S. pyogenes –one interface stabilizes another. PLoS One 5, e8810.

185 Sumitomo T, Nakata M, Higashino M, Yamaguchi M and Kawabata S (2016) Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions. Sci Rep 7, 20069.

186 Courtney HS, Li Y, Dale JB and Hasty DL (1994) Transduction between streptococci and pharyngeal group A streptococcal surface dehydrogenase: signal transduction across epithelial barrier via tricellular tight junctions. Sci Rep 7, 20069.

187 Lembke C, Podbielski A, Hidalgo-Grass C, Jonas L, Hanski E and Kreikemeyer B (2006) Characterization of biofilm formation by clinically relevant serotypes of group A streptococci. Appl Environ Microbiol 72, 2864–2875.

188 Thenmozhi R, Balaji K, Kumar R, Rao TS and Pandian SK (2011) Characterization of biofilms in different clinical M serotypes of Streptococcus pyogenes. J Basic Microbiol 51, 196–204.

189 Conley J, Olson ME, Cook LS, Ceri H, Phan V and Davies HD (2003) Biofilm formation by Group A streptococci: is there a relationship with treatment failure? J Clin Microbiol 41, 4043–4048.

190 Manetti AGO, Köller T, Becherelli M, Buccato S, Kreikemeyer B, Podbielski A, Grandi G and Margarit I (2010) Environmental acidification drives S. pyogenes pilus expression and microcolony formation on epithelial cells in a FCT-dependent manner. PLoS One 5, e13864.

191 Doern CD, Roberts AL, Hong W, Nelson J, Lukomski S, Swords WE and Reid SD (2009) Biofilm formation by group A Streptococcus: a role for the streptococcal regulator of virulence (Srv) and streptococcal cysteine protease (SpeB). Microbiology 155, 46–52.

192 Cho KH and Caparon MG (2005) Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol 57, 1545–1556.

193 Marks LR, Mashburn-Warren L, Federle MJ and Hakansson AP (2014) Streptococcus pyogenes biofilm growth in vitro and in vivo and its role in colonization, virulence, and genetic exchange. J Infect Dis 210, 25–34.

194 Fiedler T, Riani C, Koczan D, Standar K, Kreikemeyer B and Podbielski A (2013) Protective mechanisms of respiratory tract streptococci against Streptococcus pyogenes biofilm formation and epithelial cell infection. Appl Environ Microbiol 79, 1265–1276.

195 Takemura N, Noiri Y, Ehara A, Kawahara T, Noguchi N and Ebisu S (2004) Single species biofilm-forming ability of root canal isolates on gutta-percha points. Eur J Oral Sci 112, 523–529.

196 Torretta S, Marchisio P, Drago L, Baggì E, De Vecchi E, Garavello W, Nazzari E, Pignataro L and Esposito S (2012) Nasopharyngeal biofilm-producing otopathogens in children with nonsevere recurrent acute otitis media. Otolaryngol Head Neck Surg 146, 991–996.

197 Hollands A, Pence MA, Timmer AM, Osvalth SR, Turnbull L, Whitchurch CB, Walker MJ and Nizet V (2010) Genetic switch to hypervirulence reduces colonization phenotypes of the globally disseminated group A Streptococcus M1T1 clone. J Infect Dis 202, 11–19.

198 Parashar V, Aggarwal C, Federle MJ and Neiditch MB (2015) Rgg protein structure-function and inhibition by cyclic peptide compounds. Proc Natl Acad Sci USA 112, 5177–5182.

199 Cook LC and Federle MJ (2014) Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev 38, 473–492.

200 Chang JC, LaSarre B, Jimenez JC, Aggarwal C and Federle MJ (2011) Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS Pathog 7, e1002190.

201 Zutkis AA, Anbulagan S, Chaussee MS and Dmitriev AV (2014) Inactivation of the Rgg2 transcriptional regulator ablates the virulence of Streptococcus pyogenes. PLoS One 9, e114784.

202 Chang JC, Jimenez JC and Federle MJ (2015) Induction of a quorum sensing pathway by environmental signals enhances group A streptococcal resistance to lysozyme. Mol Microbiol 97, 1097–1113.

203 Fleuchot B, Guillot A, Mézange C, Besset C, Chambellon E, Monnet V and Gardan R (2013) Rgg-associated SHP signaling peptides mediate cross-talk in streptococci. PLoS One 8, e66042.

204 Cook LC, LaSarre B & Federle MJ (2013) Interspecies communication among commensal and pathogenic streptococci. mBio 4, e00382-13.

205 Wilkening RV, Chang JC and Federle MJ (2016) PepO, a CovRS-controlled endopeptidase, disrupts Streptococcus pyogenes quorum sensing. Mol Microbiol 99, 71–87.

206 Makthal N, Gavagan M, Do H, Olsen RJ, Musser JM and Kumaraswami M (2016) Structural and functional analysis of RopB: a major virulence regulator in Streptococcus pyogenes. Mol Microbiol 99, 1119–1133.
Ma Y, Bryant AE, Salmi DB, McIndoo E and Stevens DL (2009) vfr, a novel locus affecting cysteine protease production in *Streptococcus pyogenes*. *J Bacteriol* **191**, 3189–3194.

Shelburne SA, Olsen RJ, Makthal N, Brown NG, Sahasrabhojane P, Watkins EM, Palzkill T, Musser JM and Kumaraswami M (2011) An amino-terminal signal peptide of Vfr protein negatively influences RopB-dependent SpeB expression and attenuates virulence in *Streptococcus pyogenes*. *Mol Microbiol* **82**, 1481–1495.

Connolly KL, Roberts AL, Holder RC and Reid SD (2011) Dispersal of group A streptococcal biofilms by the cysteine protease SpeB leads to increased disease severity in a murine model. *PLoS One* **6**, e18984.

Loughman JA and Caparon MG (2006) A novel adaptation of aldolase regulates virulence in *Streptococcus pyogenes*. *EMBO J* **25**, 5414–5422.