ON T-CHARACTERIZED SUBGROUPS OF COMPACT ABELIAN GROUPS

S. GABRIYELYAN

Abstract. We say that a subgroup H of an infinite compact Abelian group X is T-characterized if there is a T-sequence $u = \{u_n\}$ in the dual group of X such that $H = \{x \in X : \langle u_n, x \rangle \to 1\}$. We show that a closed subgroup H of X is T-characterized if and only if H is a \mathbb{T}-subgroup of X and the annihilator of H admits a Hausdorff minimally almost periodic group topology. All closed subgroups of an infinite compact Abelian group X are T-characterized if and only if X is metrizable and connected. We prove that every compact Abelian group X of infinite exponent has a T-characterized subgroup which is not an F_σ-subgroup of X that gives a negative answer to Problem 3.3 in [10].

1. Introduction

Notation and Preliminaries. Let X be an Abelian topological group. We denoted by \hat{X} the group of all continuous characters on X, \hat{X} endowed with the compact-open topology is denoted by X^\wedge. The homomorphism $\alpha_X : X \to X^\wedge$, $x \mapsto (\chi \mapsto \langle \chi, x \rangle)$, is called the canonical homomorphism. Denote by $n(X) = \bigcap_{\chi \in X} \ker(\chi) = \ker(\alpha_X)$ the von Neumann radical of X. The group X is called minimally almost periodic (MAP) if $n(X) = X$, and X is called maximally almost periodic (MAP) if $n(X) = \{0\}$. Let H be a subgroup of X. The annihilator of H we denote by H^\perp, i.e., $H^\perp = \{\chi \in X^\wedge : \langle \chi, h \rangle = 1 \text{ for every } h \in H\}$.

Recall that an Abelian group G is of finite exponent or bounded if there exists a positive integer n such that $ng = 0$ for every $g \in G$. The minimal integer n with this property is called the exponent of G and is denoted by $\exp(G)$. When G is not bounded, we write $\exp(G) = \infty$ and say that G is of infinite exponent or unbounded. The direct sum of ω copies of an Abelian group G we denote by $G^{(\omega)}$.

Let $u = \{u_n\}_{n \in \omega}$ be a sequence in an Abelian group G. In general no Hausdorff topology may exist in which u converges to zero. A very important question whether there exists a Hausdorff group topology τ on G such that $u_n \to 0$ in (G, τ), especially for the integers, has been studied by many authors, see Graev [22], Nieuwny [24], and others. Protasov and Zelenyuk [26] obtained a criterion that gives a complete answer to this question. Following [20], we say that a sequence $u = \{u_n\}$ in an Abelian group G is a T-sequence if there is a Hausdorff group topology on G in which u_n converges to zero. The finest group topology with this property we denote by τ_u.

The counterpart of the above question for precompact group topologies on \mathbb{Z} is studied by Raczkowski [28]. Following [4] and motivated by [28], we say that a sequence $u = \{u_n\}$ is a TB-sequence in an Abelian group G if there is a precompact Hausdorff group topology τ on G in which u_n converges to zero. For a TB-sequence u we denote by τ_{\min} the finest precompact group topology on G in which u converges to zero. Clearly, every TB-sequence is a T-sequence, but in general, the converse assertion does not hold.

While it is quite hard to check whether a given sequence is a T-sequence (see, for example, [11] [12] [21] [26] [27]), the case of TB-sequences is much simpler. Let X be an Abelian topological group and $u = \{u_n\}$ be a sequence in its dual group X^\wedge. Following [13], set

$$s_u(X) = \{x \in X : \langle u_n, x \rangle \to 1\}.$$

In [4] the following simple criterion to be a TB-sequence was obtained:

Fact 1.1. [4] A sequence u in a (discrete) Abelian group G is a TB-sequence if and only if the subgroup $s_u(X)$ of the (compact) dual $X = G^\wedge$ is dense.

Motivated by Fact 1.1 Dikranjan et al. [13] introduced the following notion related to subgroups of the form $s_u(X)$ of a compact Abelian group X:

Definition 1.2. [13] Let H be a subgroup of a compact Abelian group X and $u = \{u_n\}$ be a sequence in \hat{X}. If $H = s_u(X)$ we say that u characterizes H and that H is characterized (by u).

Note that for the torus T this notion was already defined in [7]. Characterized subgroups has been studied by many authors, see, for example, [6] [7] [10] [12] [13] [16]. In particular, the main theorem of [12] (see also [4]) asserts
that every countable subgroup of a compact metrizable Abelian group is characterized. It is natural to ask whether a closed subgroup of a compact Abelian group is characterized. The following easy criterion is given in [10]:

Fact 1.3. [10] A closed subgroup H of a compact Abelian group X is characterized if and only if H is a G_δ-subgroup. In particular, X/H is metrizable and the annihilator H^\perp of H is countable.

The next fact follows easily from Definition 1.2

Fact 1.4. ([9], see also [10]) Every characterized subgroup H of a compact Abelian group X is an $F_{\sigma \delta}$-subgroup of X, and hence H is a Borel subset of X.

Facts 1.3 and 1.4 inspired in [10] the study of the Borel hierarchy of characterized subgroups of compact Abelian groups. For a compact Abelian group X denote by $\text{Char}(X)$ the set of all characterized subgroups (respectively, F_σ-subgroups, $F_{\sigma \delta}$-subgroups and G_δ-subgroups) of X. The next fact is Theorem E in [10]:

Fact 1.5. [10] For every infinite compact Abelian group X, the following inclusions hold:

$$\text{SG}_\delta(X) \subseteq \text{Char}(X) \subseteq \text{SF}_{\sigma \delta}(X) \quad \text{and} \quad \text{SF}_\sigma(X) \not\subseteq \text{Char}(X).$$

If in addition X has finite exponent, then

$$\text{Char}(X) \not\subseteq \text{SF}_\sigma(X).$$

The inclusion 1.1 inspired the following question:

Question 1.6. [10] Problem 3.3] Does there exist a compact Abelian group X of infinite exponent whose all characterized subgroups are F_σ-subsets of X?

Main results. It is important to emphasize that there is no any restriction on a sequence u in Definition 1.2.

If a characterized subgroup H of a compact Abelian group X is dense, then, by Fact 1.1 a characterizing sequence is also a TB-sequence. But if H is not dense, we can not expect in general that a characterizing sequence of H is a T-sequence. Thus it is natural to ask:

Question 1.7. For which characterized subgroups of compact Abelian groups one can find characterizing sequences which are also T-sequences?

This question is of independent interest because every T-sequence u naturally defines the group topology τ_u satisfying the following dual property:

Fact 1.8. [20] Let H be a characterized subgroup of an infinite compact Abelian group X by a T-sequence u. Then $(\hat{X}, \tau_u)^w = H(= s_u(X))$ and $u(\hat{X}, \tau_u) = H^\perp$ algebraically.

This motivates us to introduce the following notion:

Definition 1.9. Let H be a subgroup of a compact Abelian group X. We say that H is a T-characterized subgroup of X if there exists a T-sequence $u = \{u_n\}_{n \in \omega}$ in \hat{X} such that $H = s_u(X)$.

Denote by $\text{Char}_T(X)$ the set of all T-characterized subgroups of a compact Abelian group X. Clearly, $\text{Char}_T(X) \subseteq \text{Char}(X)$. Hence, if a T-characterized subgroup H of X is closed it is a G_δ-subgroup of X by Fact 1.3. Note also that X is T-characterized by the zero sequence.

The main goal of the article is to obtain a complete description of closed T-characterized subgroups (see Theorem 1.10) and to study the Borel hierarchy of T-characterized subgroups (see Theorem 1.13) of compact Abelian groups. In particular, we obtain a complete answer to Question 1.7 for closed characterized subgroups and give a negative answer to Question 1.6.

Note that, if a compact Abelian group X is finite, then every T-sequence u in \hat{X} is eventually equal to zero. Hence $s_u(X) = X$. Thus X is the unique T-characterized subgroup of X. So in what follows we shall consider only infinite compact groups.

The following theorem describes all closed subgroups of compact Abelian groups which are T-characterized.

Theorem 1.10. Let H be a proper closed subgroup of an infinite compact Abelian group X. Then the following assertions are equivalent:

1. H is a T-characterized subgroup of X;
2. H is a G_δ-subgroup of X and the countable group H^\perp admits a Hausdorff MinAP group topology;
(3) H is a G_δ-subgroup of X and one of the following holds:
(a) H^\perp has infinite exponent;
(b) H^\perp has finite exponent and contains a subgroup which is isomorphic to $\mathbb{Z}(\exp(H^\perp))^{(\omega)}$.

Corollary 1.11. Let X be an infinite compact metrizable Abelian group. Then the trivial subgroup $H = \{0\}$ is T-characterized if and only if \hat{X} admits a Hausdorff MinAP group topology.

As an immediate corollary of Fact 1.3 and Theorem 1.10 we obtain a complete answer to Question 1.7 for closed characterized subgroups.

Corollary 1.12. A proper closed characterized subgroup H of an infinite compact Abelian group X is T-characterized if and only if H^\perp admits a Hausdorff MinAP group topology.

If H is an open proper subgroup of X, then H^\perp is non-trivial and finite. Thus every Hausdorff group topology on H^\perp is discrete. Taking into account Fact 1.3 we obtain:

Corollary 1.13. Every open proper subgroup H of an infinite compact Abelian group X is a characterized non-T-characterized subgroup of X.

Nevertheless (see Example 2.11 below) there is a compact metrizable Abelian group X with a countable T-characterized subgroup H such that its closure \hat{H} is open. Thus it may happened that the closure of a T-characterized subgroup is not T-characterized.

It is natural to ask for which compact Abelian groups all their closed G_δ-subgroups are T-characterized. The next theorem gives a complete answer to this question.

Theorem 1.14. Let X be an infinite compact Abelian group. The following assertions are equivalent:

1. All closed G_δ-subgroups of X are T-characterized;
2. X is connected.

By Corollary 2.8 of [10], the trivial subgroup $H = \{0\}$ of a compact Abelian group X is a G_δ-subgroup if and only if X is metrizable. So we obtain:

Corollary 1.15. All closed subgroups of an infinite compact Abelian group X are T-characterized if and only if X is metrizable and connected.

Theorems 1.10 and 1.14 are proved in Section 2.

In the next theorem we give a negative answer to Question 1.6.

Theorem 1.16. Every compact Abelian group of infinite exponent has a dense T-characterized subgroup which is not an F_σ-subgroup.

As a corollary of the inclusion (1.1) and Theorem 1.16 we obtain:

Corollary 1.17. For an infinite compact Abelian group X the following assertions are equivalent:

1. X has finite exponent;
2. every characterized subgroup of X is an F_σ-subgroup;
3. every T-characterized subgroup of X is an F_σ-subgroup.

Therefore, $\text{Char}(X) \subseteq \text{SF}_\sigma(X)$ if and only if X has finite exponent.

In the next theorem we summarize the obtained results about the Borel hierarchy of T-characterized subgroups of compact Abelian groups.

Theorem 1.18. Let X be an infinite compact Abelian group X. Then:

1. $\text{Char}_T(X) \subseteq \text{SF}_\sigma(X)$;
2. $\text{SG}_\delta(X) \cap \text{Char}_T(X) \subseteq \text{Char}_T(X)$;
3. $\text{SG}_\delta(X) \subseteq \text{Char}_T(X)$ if and only if X is connected;
4. $\text{Char}_T(X) \cap \text{SF}_\sigma(X) \subseteq \text{SF}_\sigma(X)$;
5. $\text{Char}_T(X) \subseteq \text{SF}_\sigma(X)$ if and only if X has finite exponent.

We prove Theorems 1.16 and 1.18 in Section 3.

The notions of g-closed and g-dense subgroups of a compact Abelian group X were defined in [13]. In the last section of the paper, in analogy to these notions, we define g_T-closed and g_T-dense subgroups of X. In particular, we show that every g_T-dense subgroup of a compact Abelian group X is dense if and only if X is connected (see Theorem 4.22).
2. The Proofs of Theorems 1.10 and 1.14

The subgroup of a group G generated by a subset A we denote by $\langle A \rangle$.

Recall that a subgroup H of an Abelian topological group X is called dually closed in X if for every $x \in X \setminus H$ there exists a character $\chi \in H^*$ such that $(\chi, x) \neq 1$. H is called dually embedded in X if every character of H can be extended to a character of X. Every open subgroup of X is dually closed and dually embedded in X by Lemma 3 of [25].

The next notion generalizes the notion of the maximal extension in the class of all compact Abelian groups introduced in [11].

Definition 2.1. Let G be an arbitrary class of topological groups. Let $(G, \tau) \in G$ and H be a subgroup of G. The group (G, τ) is called a maximal extension of $(H, \tau|_H)$ in the class G if $\sigma \leq \tau$ for every group topology on G such that $\sigma|_H = \tau|_H$ and $(G, \sigma) \in G$.

Clearly, the maximal extension is unique if it exists. Note that in Definition 2.1 we do not assume that $(H, \tau|_H)$ belongs to the class G.

If H is a subgroup of an Abelian group G and \mathbf{u} is a T-sequence (respectively, a TB-sequence) in H, we denote by $\tau_\mathbf{u}(H)$ (respectively, $\tau_{\mathbf{u}}(H)$) the finest (respectively, precompact) group topology on H generated by \mathbf{u}. We use the following easy corollary of the definition of T-sequences.

Lemma 2.2. For a sequence \mathbf{u} in an Abelian group G the following assertions are equivalent:

1. \mathbf{u} is a T-sequence in G;
2. \mathbf{u} is a T-sequence in every subgroup of G containing $\langle \mathbf{u} \rangle$;
3. \mathbf{u} is a T-sequence in $\langle \mathbf{u} \rangle$.

In this case, $\langle \mathbf{u} \rangle$ is open in $\tau_\mathbf{u}$ (and hence $\langle \mathbf{u} \rangle$ is dually closed and dually embedded in $(G, \tau_\mathbf{u})$), and $(G, \tau_\mathbf{u})$ is the maximal extension of $\langle \mathbf{u}, \tau_\mathbf{u}(\langle \mathbf{u} \rangle) \rangle$ in the class G.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let \mathbf{u} be a T-sequence in $\langle \mathbf{u} \rangle$. Let τ be the topology on G whose base is all translates of $\tau_\mathbf{u}(\langle \mathbf{u} \rangle)$-open sets. Clearly, \mathbf{u} converges to zero in τ. Thus \mathbf{u} is a T-sequence in G. So (3) implies (1).

Let us prove the last assertion. By the definition of $\tau_\mathbf{u}$ we have also $\tau \leq \tau_\mathbf{u}$, and hence $\tau|_{\langle \mathbf{u} \rangle} = \tau_\mathbf{u}(\langle \mathbf{u} \rangle) \leq \tau|_{\langle \mathbf{u} \rangle}$. Thus $\langle \mathbf{u} \rangle$ is open in $\tau_\mathbf{u}$, and hence it is dually closed and dually embedded in $(G, \tau_\mathbf{u})$ by [25]Lemma 3.3. On the other hand, $\tau_\mathbf{u}|_{\langle \mathbf{u} \rangle} \leq \tau_\mathbf{u}(\langle \mathbf{u} \rangle) = \tau|_{\langle \mathbf{u} \rangle}$ by the definition of $\tau_\mathbf{u}(\langle \mathbf{u} \rangle)$. So $\tau_\mathbf{u}$ is an extension of $\tau_\mathbf{u}(\langle \mathbf{u} \rangle)$. Now clearly, $\tau = \tau_\mathbf{u}$ and $(G, \tau_\mathbf{u})$ is the maximal extension of $\langle \mathbf{u}, \tau_\mathbf{u}(\langle \mathbf{u} \rangle) \rangle$ in the class G.

For TB-sequences we have the following:

Lemma 2.3. For a sequence \mathbf{u} in an Abelian group G the following assertions are equivalent

1. \mathbf{u} is a TB-sequence in G;
2. \mathbf{u} is a TB-sequence in every subgroup of G containing $\langle \mathbf{u} \rangle$;
3. \mathbf{u} is a TB-sequence in $\langle \mathbf{u} \rangle$.

In this case, the subgroup $\langle \mathbf{u} \rangle$ is dually closed and dually embedded in $(G, \tau_{\mathbf{u}})$, and $(G, \tau_{\mathbf{u}})$ is the maximal extension of $\langle \mathbf{u}, \tau_{\mathbf{u}}(\langle \mathbf{u} \rangle) \rangle$ in the class of all precompact Abelian groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let \mathbf{u} be a TB-sequence in $\langle \mathbf{u} \rangle$. Then $\langle \mathbf{u}, \tau_{\mathbf{u}}(\langle \mathbf{u} \rangle) \rangle$ separates the points of $\langle \mathbf{u} \rangle$. Let τ be the topology on G whose base is all translates of $\tau_{\mathbf{u}}(\langle \mathbf{u} \rangle)$-open sets. Then $\langle \mathbf{u}, \tau_{\mathbf{u}}(\langle \mathbf{u} \rangle) \rangle$ is an open subgroup of (G, τ). It is easy to see that $(G, \tau)^+$ separates the points of G. Since \mathbf{u} converges to zero in τ, it is also converges to zero in τ^+, where τ^+ is the Bohr topology of (G, τ). Thus \mathbf{u} is a TB-sequence in G. So (3) implies (1).

The last assertion follows from Proposition 1.8 and Lemma 3.6 in [11].

For a sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$ of characters of a compact Abelian group X set

$$K_{\mathbf{u}} = \bigcap_{n \in \omega} \ker(u_n).$$

The following assertions is proved in [10]:

Fact 2.4. [10] Lemma 2.2(i)] For every sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$ of characters of a compact Abelian group X, the subgroup $K_{\mathbf{u}}$ is a closed G_δ-subgroup of X and $K_{\mathbf{u}} = \langle \mathbf{u} \rangle^\perp$.
The next two lemmas are natural analogues of Lemmas 2.2(ii) and 2.6 of [10].

Lemma 2.5. Let X be a compact Abelian group and $u = \{u_n\}_{n \in \omega}$ be a T-sequence in \tilde{X}. Then $s_u(X)/K_u$ is a T-characterized subgroup of X/K_u.

Proof. Set $H := s_u(X)$ and $K := K_u$. Let $q : X \to X/K$ be the quotient map. Then the adjoint homomorphism q^\wedge is an isomorphism from $(X/K)^\wedge$ onto K^\perp in X^\wedge. For every $n \in \omega$, define the character \tilde{u}_n of X/K as follows:

$$(\tilde{u}_n, q(x)) = (u_n, x)$$

$$(\tilde{u}_n \text{ is well-defined since } K \subseteq \ker(u_n)).$$

Then $\tilde{u} = \{\tilde{u}_n\}_{n \in \omega}$ is a sequence of characters of X/K such that $q^\wedge(\tilde{u}_n) = u_n$. Since $u \subseteq K^\perp$, u is a T-sequence in K^\perp by Lemma 2.5. Hence \tilde{u} is a T-sequence in $(X/K)^\wedge$ because q^\wedge is an isomorphism.

We claim that $H/K = s_u(X/K)$. Indeed, for every $h+K \in H/K$, by definition, we have $(\tilde{u}_n, h+K) = (u_n, h) \to 1$. Thus $H/K \subseteq s_u(X/K)$. If $x + K \in s_u(X/K)$, then $(\tilde{u}_n, x + K) = (u_n, x) \to 1$. This yields $x \in H$. Thus $x + K \in H/K$.

Let $u = \{u_n\}_{n \in \omega}$ be a T-sequence in an Abelian group G. For every natural number m set $u_m = \{u_n\}_{n \geq m}$. Clearly, u_m is a T-sequence in G, $\tau_u = \tau_{u_m}$ and $s_u(X) = s_{u_m}(X)$ for every natural number m.

Lemma 2.6. Let K be a closed subgroup of a compact Abelian group X and $q : X \to X/K$ be the quotient map. Then H is a T-characterized subgroup of X/K if and only if $q^{-1}(H)$ is a T-characterized subgroup of X.

Proof. Let \tilde{H} be a T-characterized subgroup of X/K and let a T-sequence $\tilde{u} = \{\tilde{u}_n\}_{n \in \omega}$ characterize \tilde{H}. Set $H := q^{-1}(\tilde{H})$. We have to show that H is a T-characterized subgroup of X.

Note that the adjoint homomorphism q^\wedge is an isomorphism from $(X/K)^\wedge$ onto K^\perp in X^\wedge. Set $u = \{u_n\}_{n \in \omega}$, where $u_n = q^\wedge(\tilde{u}_n)$. Since q^\wedge is injective, u is a T-sequence in K^\perp. By Lemma 2.6, u is a T-sequence in \tilde{X}. So it is enough to show that $H = s_u(X)$. This follows from the following chain of equivalences. By definition, $x \in s_u(X)$ if and only if

$$(u_n, x) \to 1 \iff (\tilde{u}_n, q(x)) \to 1 \iff q(x) \in H = H/K \iff x \in H.$$

The last equivalence is due to the inclusion $K \subseteq H$.

Conversely, let $H := q^{-1}(\tilde{H})$ be a T-characterized subgroup of X and a T-sequence $u = \{u_n\}_{n \in \omega}$ characterize H. Proposition 2.5 of [10] implies that we can find $m \in \mathbb{N}$ such that $K \subseteq K_{u_m}$. So, taking into account that $H = s_u(X) = s_{u_m}(X)$ for every natural number m, without loss of generality we can assume that $K \subseteq K_u$. By Lemma 2.6, H/K_u is a T-characterized subgroup of X/K_u. Denote by q_u the quotient homomorphism from X onto X/K_u. Then $\tilde{H} = q^{-1}(H/K_u)$ is T-characterized in X/K_u by the previous paragraph of the proof.

The next theorem is an analogue of Theorem B of [10], and it reduces the study of T-characterized subgroups of compact Abelian groups to the study of T-characterized subgroups of compact Abelian metrizable groups:

Theorem 2.7. A subgroup H of a compact Abelian group X is T-characterized if and only if H contains a closed G_δ-subgroup K of X such that H/K is a T-characterized subgroup of the compact metrizable group X/K.

Proof. Let H be a T-characterized subgroup of X by a T-sequence $u = \{u_n\}_{n \in \omega}$ in \tilde{X}. Set $K := K_u$. Since K is a closed G_δ-subgroup of X by Fact 2.2, X/K is metrizable. By Lemma 2.4, H/K is a T-characterized subgroup of X/K.

Conversely, let H contain a closed G_δ-subgroup K of X such that H/K is a T-characterized subgroup of the compact metrizable group X/K. Then H is a T-characterized subgroup of X by Lemma 2.6.

As it was noticed in [13] before Definition 2.33, for every T-sequence u in an infinite Abelian group G the subgroup $\langle u \rangle$ is open in (G, τ_u) (see also Lemma 2.2), and hence, by Lemmas 1.4 and 2.2 of [3], the following sequences are exact:

$$0 \to \langle (u), \tau_u \rangle \to (G, \tau_u) \to G/\langle u \rangle \to 0,$$

$$0 \to (G/\langle u \rangle)^\wedge \to (G, \tau_u)^\wedge \to \langle (u), \tau_u \rangle^\wedge \to 0,$$

where $(G/\langle u \rangle)^\wedge \cong \langle u \rangle^\perp$ is a compact subgroup of $(G, \tau_u)^\wedge$ and $(\langle u \rangle, \tau_u)^\wedge \cong (G, \tau_u)^\wedge/\langle u \rangle^\perp$.

Let $u = \{u_n\}_{n \in \omega}$ be a T-sequence in an Abelian group G. It is known [27] that τ_u is sequential, and hence (G, τ_u) is a k-space. So the natural homomorphism $\alpha := \alpha_{(G, \tau_u)} : (G, \tau_u) \to (G, \tau_u)^\wedge$ is continuous by [2] 5.12. Let us recall that (G, τ_u) is MinAP if and only if $(G, \tau_u) = \ker(\alpha)$.

To prove Theorem 2.10, we need the following:

Fact 2.8. [10] For each T-sequence u in a countably infinite Abelian group G the group $(G, \tau_u)^\wedge$ is Polish.
Now we are in position to prove Theorem 1.10.

Proof of Theorem 1.10. (1) ⇒ (2) Let \(H \) be a proper closed \(T \)-characterized subgroup of \(X \) and a \(T \)-sequence \(u = \{ u_n \}_{n \in \omega} \) characterize \(H \). Since \(H \) is also characterized it is a \(G_\delta \)-subgroup of \(X \) by Fact 1.3. We have to show that \(H^\perp \) admits a MinAP group topology.

Our idea of the proof is the following. Set \(G := \hat{X} \). By Fact 1.8 \(H^\perp \) is the von Neumann radical of \((G, \tau_\alpha) \). Now assume that we found another \(T \)-sequence \(v \) which characterizes \(H \) and such that \((v) = H^\perp \) (maybe \(v = u \)). By Fact 1.8, we have \(n(G, \tau_\alpha) = H^\perp = (v) \). Lemma 2.2 implies that the subgroup \((v, \tau_v|_\langle v \rangle) \) of \((G, \tau_\alpha) \) is open, and hence it is dually closed and dually embedded in \((G, \tau_\alpha) \). Hence \(n((v, \tau_v|_\langle v \rangle)) = n(G, \tau_\alpha)(= (v)) \) by Lemma 4 of 1.10. So \((v, \tau_v|_\langle v \rangle) \) is MinAP. Thus \(H^\perp = (v) \) admits a MinAP group topology, as desired.

We find such a \(T \)-sequence \(v \) in 4 steps (in fact we show that \(v \) has the form \(u_m \) for some \(m \in \mathbb{N} \)).

Step 1. Let \(q : X \to X/K_u \) be the quotient map. For every \(n \in \omega \), define the character \(\bar{u}_n \) of \(X/K_u \) by the equality \(u_n = \bar{u}_n \circ q \) (this is possible since \(K_u \subseteq \ker(u_n) \)). As it was shown in the proof of Lemma 2.5, the sequence \(\bar{u} = \{ \bar{u}_n \}_{n \in \omega} \) is a \(T \)-sequence which characterizes \(H/K_u \) in \(X/K_u \). Set \(\hat{X} := X/K_u \) and \(\hat{H} := H/K_u \). So that \(\hat{H} = s_u(\hat{X}) \). By 19 5.34 and 24.11 and since \(K_u \subseteq H \), we have

\[
(2.2) \quad H^\perp \cong (X/H)^\wedge \cong \left(\hat{X}/\hat{H} \right)^\wedge \cong \hat{H}^\perp.
\]

By Fact 1.3, \(\hat{X} \) is metrizable. Hence \(\hat{H} \) is also compact and metrizable, and \(\hat{G} := \hat{X} \) is a countable Abelian group by 19 24.15. Since \(H \) is a proper closed subgroup of \(X \), (2.2) implies that \(\hat{G} \) is non-zero.

We claim that \(\hat{G} \) is countably infinite. Indeed, suppose for a contradiction that \(\hat{G} \) is finite. Then \(X/K_u = \hat{X} \) is also finite. Now Fact 2.4 implies that \((u) \) is a finite subgroup of \(G \). Since \(u \) is a \(T \)-sequence, \(u \) must be eventually equal to zero. Hence \(H = s_u(X) = X \) is not a proper subgroup of \(X \), a contradiction.

Step 2. We claim that there is a natural number \(m \) such that the group \(\langle (\bar{u}_m), \tau_\alpha|_\langle \bar{u}_m \rangle \rangle = \langle (\bar{u}_m), \tau_\alpha|_\langle \bar{u}_m \rangle \rangle \) is MinAP.

Indeed, since \(\hat{G} \) is countably infinite, we can apply Fact 1.8. So \(\hat{H} = (\hat{G}, \tau_\alpha)^\wedge \) algebraically. Since \(\hat{H} \) and \((\hat{G}, \tau_\alpha)^\wedge \) are Polish groups (see Fact 2.8), \(H \) and \((\hat{G}, \tau_\alpha)^\wedge \) are topologically isomorphic by the uniqueness of the Polish group topology. Hence \((\hat{G}, \tau_\alpha)^\wedge = \hat{H}^\perp \) is discrete. As it was noticed before the proof, the natural homomorphism \(\bar{\alpha} : (\hat{G}, \tau_\alpha) \to (\hat{G}, \tau_\alpha)^\wedge \) is continuous. Since \((\hat{G}, \tau_\alpha)^\wedge \) is discrete we obtain that the von Neumann radical \(\ker(\bar{\alpha}) \) of \((\hat{G}, \tau_\alpha) \) is open in \(\tau_\alpha \). So there exists a natural number \(m \) such that \(\bar{u}_n \in \ker(\bar{\alpha}) \) for every \(n \geq m \). Hence \(\langle \bar{u}_m \rangle \subseteq \ker(\bar{\alpha}) \). Lemma 2.4 implies that the subgroup \(\langle \bar{u}_m \rangle \) is open in \((\hat{G}, \tau_\alpha) \), and hence it is dually closed and dually embedded in \((\hat{G}, \tau_\alpha) \). Now Lemma 4 of 1.10 yields \(\langle \bar{u}_m \rangle = \ker(\bar{\alpha}) \) and \(\langle \bar{u}_m \rangle \) is MinAP.

Step 3. Set \(v = \{ v_n \}_{n \in \omega} \), where \(v_n = u_n + m \) for every \(n \in \omega \). Clearly, \(v \) is a \(T \)-sequence in \(G \) characterizing \(H \), \(\tau_v = \tau_\alpha \) and \(K_u \subseteq K_v \). Let \(t : X \to X/K_v \) and \(r : X/K_u \to X/K_v \) be the quotient maps. Analogously to Step 1 and the proof of Lemma 2.5, the sequence \(\bar{v} = \{ v_n \}_{n \in \omega} \) is a \(T \)-sequence in \(\hat{X}/\hat{K}_v \) which characterizes \(H/K_v \) in \(X/K_v \), where \(v_n = \bar{v}_n \circ t \). Since \(t = r \circ q \) we have

\[
v_n = \bar{v}_n \circ t = t^\wedge(\bar{v}_n) = q^\wedge(r^\wedge(\bar{u}_n)),
\]

where \(t^\wedge \), \(r^\wedge \) and \(q^\wedge \) are the adjoint homomorphisms to \(t \), \(r \) and \(q \) respectively.

Since \(q^\wedge \) and \(r^\wedge \) are embeddings, we have \(r^\wedge(\bar{u}_n) = \bar{u}_{n+m} \). In particular, \(\langle v \rangle \cong \langle \bar{v} \rangle \cong \langle \bar{u}_m \rangle \) and

\[
\langle \bar{u}_m \rangle, \tau_\alpha|_\langle \bar{u}_m \rangle \rangle = \langle \bar{u}_m \rangle, \tau_\alpha|_\langle \bar{u}_m \rangle \rangle \cong \langle \bar{v} \rangle, \tau_v|_\langle \bar{v} \rangle \rangle \cong \langle v \rangle, \tau_v|_\langle v \rangle \rangle.
\]

By Step 2 \(\langle \bar{u}_m \rangle \) is MinAP. Hence \(\langle v \rangle, \tau_v|_\langle v \rangle \rangle \) is MinAP as well.

Step 4. By the second exact sequence in 2.1, applying to \(v \), Fact 1.8 and since \(\langle v \rangle, \tau_v|_\langle v \rangle \rangle \) is MinAP (by Step 3), we have \(H = s_v(X) = (\hat{G}, \tau_v)^\wedge = (G/\langle v \rangle)^\wedge = (v)^\perp \) algebraically. Thus \(H^\perp = (v) \), and hence \(H^\perp \) admits a MinAP group topology generated by the \(T \)-sequence \(v \).

(2) ⇒ (1): Since \(H \) is a \(G_\delta \)-subgroup of \(X \), \(H \) is closed by Proposition 2.4 and \(X/H \) is metrizable (due to the well known fact that a compact group of countable pseudocharacter is metrizable). Hence \(H^\perp = (X/H)^\wedge \) is countable. Since \(H^\perp \) admits a MinAP group topology, \(H^\perp \) must be countably infinite. By Theorem 3.8 of 21, \(H^\perp \) admits a MinAP group topology generated by a \(T \)-sequence \(u = \{ u_n \}_{n \in \omega} \). By Fact 1.8, this means that \(s_u(X/H) = \{ \langle u_n \rangle \} \). Let \(q : X \to X/H \) be the quotient map. Set \(u_n = \bar{u}_n \circ q \). Since \(q^\wedge \) is injective, \(u \) is a \(T \)-sequence in \(\hat{X} \) by Lemma 2.2. We have to show that \(H = s_u(X) \). By definition, \(x \in s_u(X) \) if and only if \((u_n, x) = (\bar{u}_n, q(x)) \to 1 \Leftrightarrow q(x) \in s_u(X/H) \Leftrightarrow q(x) = 0 \Leftrightarrow x \in H \).

(2)⇔(3) follows from Theorem 3.8 of 21. The theorem is proved. □
Proof of Theorem 1.14. (1) ⇒ (2): Suppose for a contradiction that \(X \) is not connected. Then, by [24, 24.25], the dual group \(G = X^\wedge \) has a non-zero element \(g \) of finite order. Then the subgroup \(H := (g) \perp \) of \(X \) has finite index. Hence \(H \) is an open subgroup of \(X \). Thus \(H \) is not \(T \)-characterized by Corollary 1.13. This contradiction shows that \(X \) must be connected.

(2) ⇒ (1): Let \(H \) be a proper \(G_\delta \)-subgroup of \(X \). Then \(H \) is closed by [10, Proposition 2.4], and \(X/H \) is connected and non-zero. Hence \(H^\perp \cong (X/H)^\wedge \) is countably infinite and torsion free by [23, 24.25]. Thus \(H^\perp \) has infinite exponent. Therefore, by Theorem 1.10 \(H \) is \(T \)-characterized. □

The next proposition is a simple corollary of Theorem B in [10].

Proposition 2.9. The closure \(\hat{H} \) of a characterized (in particular, \(T \)-characterized) subgroup \(H \) of a compact Abelian group \(X \) is a characterized subgroup of \(X \).

Proof. By Theorem B of [10], \(H \) contains a compact \(G_\delta \)-subgroup \(K \) of \(X \). Then \(\hat{H} \) is also a \(G_\delta \)-subgroup of \(X \). Thus \(\hat{H} \) is a characterized subgroup of \(X \) by Theorem B of [10].

In general we cannot assert that the closure \(\hat{H} \) of a \(T \)-characterized subgroup \(H \) of a compact Abelian group \(X \) is also \(T \)-characterized as the next example shows.

Example 2.10. Let \(X = \mathbb{Z}(2) \times \mathbb{T} \) and \(G = \hat{X} = \mathbb{Z}(2) \times \mathbb{Z} \). It is known (see the end of (1) in [13]) that there is a \(T \)-sequence \(u \) in \(G \) such that the von Neumann radical \(u(G, \tau_u) \) of \((G, \tau_u) \) is \(\mathbb{Z}(2) \times \{0\} \), the subgroup \(H := s_u(X) \) is countable and \(\hat{H} = \{0\} \times \mathbb{T} \). So the closure \(\hat{H} \) of the countable \(T \)-characterized subgroup \(H \) of \(X \) is open. Thus \(\hat{H} \) is not \(T \)-characterized by Corollary 1.13.

We do not know answers to the following questions:

Problem 2.11. Let \(H \) be a characterized subgroup of a compact Abelian group \(X \) such that its closure \(\hat{H} \) is \(T \)-characterized. Is \(H \) a \(T \)-characterized subgroup of \(X \)?

Problem 2.12. Does there exists a metrizable Abelian compact group which has a countable non-\(T \)-characterized subgroup?

3. The Proofs of Theorems 1.10 and 1.18

Recall that a Borel subgroup \(H \) of a Polish group \(X \) is called polishable if there exists a Polish group topology \(\tau \) on \(H \) such that the inclusion map \(i : (H, \tau) \to X \) is continuous. Let \(H \) be a \(T \)-characterized subgroup of a compact metrizable Abelian group \(X \) by a \(T \)-sequence \(u = \{u_n\}_{n \in \omega} \). Then, by [16] Theorem 1, \(H \) is polishable by the metric

\[
\rho(x, y) = d(x, y) + \sup\{|(u_n, x) - (u_n, y)|, n \in \omega\},
\]

where \(d \) is the initial metric on \(X \). Clearly, the topology generated by the metric \(\rho \) on \(H \) is finer than the induced one from \(X \).

To prove Theorem 1.16 we need the following three lemmas.

For a real number \(x \) we write \([x]\) for the integral part of \(x \) and \(\|x\| \) for the distance from \(x \) to the nearest integer. We also use the following inequality proved in [15]

\[
|\pi|\varphi| \leq |1 - e^{2\pi i \varphi}| \leq 2|\varphi|, \quad \varphi \in \left[-\frac{1}{2}, \frac{1}{2}\right).
\]

Lemma 3.1. Let \(\{a_n\}_{n \in \omega} \subset \mathbb{N} \) be such that \(a_n \to \infty \) and \(a_n \geq 2, n \in \omega \). Set \(u_n = \prod_{k \leq n} a_n \) for every \(n \in \omega \). Then \(u = \{u_n\}_{n \in \omega} \) is a \(T \)-sequence in \(X = \mathbb{T} \), and the \(T \)-characterized subgroup \(H = s_u(T) \) of \(T \) is a dense non-\(F_\sigma \)-subset of \(T \).

Proof. We consider the circle group \(T \) as \(\mathbb{R}/\mathbb{Z} \) and write it additively. So that \(d(0, x) = \|x\| \) for every \(x \in \mathbb{T} \). Recall (see, for example, the proof of Lemma 1 in [13]) that every \(x \in \mathbb{T} \) has the unique representation in the form

\[
x = \sum_{n=0}^{\infty} \frac{c_n}{u_n},
\]

where \(0 \leq c_n < a_n \) and \(c_n \neq a_n - 1 \) for infinitely many indices \(n \).

It is known [1] (see also (12) in the proof of Lemma 1 of [15]) that \(x \) with representation (3.3) belongs to \(H \) if and only if

\[
\lim_{n \to \infty} \frac{c_n}{a_n} \equiv 0 \quad (\text{mod } 1).
\]
Hence H is a dense subgroup of \mathbb{T}. Thus \mathfrak{u} is even a TB-sequence in \mathbb{Z} by Fact 11.

We have to show that H is not an F_{σ}-subset of \mathbb{T}. Suppose for a contradiction that H is an F_{σ}-subset of \mathbb{T}. Then $H = \bigcup_{n \in \mathbb{N}} F_n$, where F_n is a compact subset of \mathbb{T} for every $n \in \mathbb{N}$. Since H is a subgroup of \mathbb{T}, without loss of generality we can assume that $F_n - F_n \subseteq F_{n+1}$. Since all F_n are closed in (H, ρ) as well, the Baire theorem implies that there are $0 < \varepsilon < 0.1$ and $m \in \mathbb{N}$ such that $F_m \supseteq \{ x : \rho(0, x) \leq \varepsilon \}$.

Fix arbitrarily $l > 0$ such that $\frac{2}{u_{l-1}} < \frac{\varepsilon}{20}$. For every natural number $k > l$, set

$$x_k := \sum_{n=l}^{k} \frac{1}{u_n} \cdot \left[\frac{(a_n - 1)\varepsilon}{20} \right].$$

Then, for every $k > l$, we have

$$x_k = \sum_{n=l}^{k} \frac{1}{u_n} \cdot \left[\frac{(a_n - 1)\varepsilon}{20} \right] < \sum_{n=l}^{k} \frac{1}{u_{n-1}} \cdot \frac{\varepsilon}{20} < \frac{1}{u_{l-1}} \sum_{n=0}^{k-l} \frac{1}{2^n} < \frac{2}{u_{l-1}} < \frac{\varepsilon}{2} < \frac{1}{2}.$$

This inequality and (3.2) imply that

$$(3.5) \quad d(0, x_k) = \| x_k \| = x_k < \frac{\varepsilon}{20}, \quad \text{for every } k > l.$$

For every $s \in \omega$ and every natural number $k > l$, we estimate $|1 - (u_s, x_k)|$ as follows.

Case 1. Let $s < k$. Set $q = \max\{s + 1, l\}$. By the definition of x_k, we have

$$2\pi \left[(u_s \cdot x_k) \mod 1 \right] = 2\pi \left[\sum_{n=l}^{k} \frac{1}{u_n} \cdot \left[\frac{(a_n - 1)\varepsilon}{20} \right] \mod 1 \right] < 2\pi \sum_{n=q}^{k} \frac{u_s}{u_n} \cdot \frac{(a_n - 1)\varepsilon}{20}$$

$$< \frac{\pi \varepsilon}{10} \left(1 + \frac{1}{a_{s+1}} + \frac{1}{a_{s+1}a_{s+2}} + \frac{1}{a_{s+1}a_{s+2}a_{s+3}} + \ldots \right)$$

$$< \frac{\pi \varepsilon}{10} \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \ldots \right) = \frac{\pi \varepsilon}{10} \cdot 2 < \frac{2\varepsilon}{3} < \frac{1}{2}. $$

This inequality and (3.2) imply that

$$(3.6) \quad |1 - (u_s, x_k)| = |1 - \exp \left(2\pi i \cdot \left[(u_s \cdot x_k) \mod 1 \right] \right)| < \frac{2\varepsilon}{3}. $$

Case 2. Let $s \geq k$. By the definition of x_k, we have

$$(3.7) \quad |1 - (u_s, x_k)| = 0.$$

In particular, (3.7) implies that $x_k \in H$ for every $k > l$.

Now, for every $k > l$, (3.1) and (3.5)-(3.7) imply

$$\rho(0, x_k) < \frac{\varepsilon}{20} + \frac{2\varepsilon}{3} < \varepsilon.$$

Thus $x_k \in F_m$ for every natural number $k > l$. Clearly,

$$x_k \to x := \sum_{n=l}^{\infty} \frac{1}{u_n} \cdot \left[\frac{(a_n - 1)\varepsilon}{20} \right] \quad \text{in } \mathbb{T}.$$

Since F_m is a compact subset of \mathbb{T}, we have $x \in F_m$. Hence $x \in H$. On the other hand, we have

$$\lim_{n \to \infty} \frac{1}{a_n} \cdot \left[\frac{(a_n - 1)\varepsilon}{20} \right] \mod 1 = \frac{\varepsilon}{20} \neq 0.$$

So (3.1) implies that $x \not\in H$. This contradiction shows that $H = s_{\mathfrak{u}}(\mathbb{T})$ is not an F_{σ}-subset of \mathbb{T}. Q.E.D.

For a prime number p, the group $\mathbb{Z}(p^\infty)$ is regarded as the collection of fractions $m/p^n \in [0, 1)$. Let Δ_p be the compact group of p-adic integers. It is well known that $\hat{\Delta}_p = \mathbb{Z}(p^\infty)$.

Lemma 3.2. Let $X = \Delta_p$. For an increasing sequence of natural numbers $0 < n_0 < n_1 < \ldots$ such that $n_{k+1} - n_k \to \infty$, set

$$u_k = \frac{1}{p^{n_k + 1}} \in \mathbb{Z}(p^\infty).$$
Then the sequence $\mathbf{u} = \{u_k\}_{k \in \omega}$ is a T-sequence in $\mathbb{Z}(p^\infty)$, and the T-characterized subgroup $H = s_\mathbf{u}(\Delta_p)$ is a dense non-F_σ-subset of Δ_p.

Proof. Let $\omega = (a_n)_{n \in \omega} \in \Delta_p$, where $0 \leq a_n < p$ for every $n \in \omega$. Recall that, for every $k \in \omega$, \cite[25.2]{23} implies

$$
(3.8) \quad (u_k, \omega) = \exp \left\{ \frac{2\pi i}{p^{n_k+1}} (a_0 + pa_1 + \cdots + p^{n_k}a_{n_k}) \right\}.
$$

Further, by \cite{23}[10.4], if $\omega \neq 0$, then $d(0, \omega) = 2^{-n}$, where n is the minimal index such that $a_n \neq 0$.

Following \cite[2.2]{17}, for every $\omega = (a_n) \in \Delta_p$ and every natural number $k > 1$, set

$$
m_k = m_k(\omega) = \max\{j_k, n_k-1\},
$$

where

$$
j_k = n_k \text{ if } 0 < a_{n_k} < p-1,
$$

and otherwise

$$
j_k = \min\{j : \text{ either } a_s = 0 \text{ for } j < s \leq n_k, \text{ or } a_s = p-1 \text{ for } j < s \leq n_k\}.
$$

In \cite[2.2]{17} it is shown that

$$
(3.9) \quad \omega \in s_\mathbf{u}(\Delta_p) \text{ if and only if } n_k - m_k \to \infty.
$$

So $H := s_\mathbf{u}(\Delta_p)$ contains the identity $1 = (1, 0, 0, \ldots)$ of Δ_p. By \cite[Remark 10.6]{23}, (1) is dense in Δ_p. Hence H is dense in Δ_p as well. Now Fact \cite{14} implies that u is a T-sequence in $\mathbb{Z}(p^\infty)$.

We have to show that H is not an F_σ-subset of Δ_p. Suppose for a contradiction that $H = \cap_{n \in \mathbb{N}} F_n$ is an F_σ-subset of Δ_p, where F_n is a compact subset of Δ_p for every $n \in \mathbb{N}$. Since H is a subgroup of Δ_p, without loss of generality we can assume that $F_n - F_n \subseteq F_{n+1}$. Since all F_n are closed in (H, p) as well, the Baire theorem implies that there are $0 < \varepsilon < 0.1$ and $m \in \mathbb{N}$ such that $F_m \supseteq \{x : \rho(0, x) \leq \varepsilon\}$.

Fix a natural number s such that $\frac{1}{2^s} < \frac{\varepsilon}{20}$. Choose a natural number $l > s$ such that, for every natural number $n \geq l$, we have

$$
n_{w+1} - n_w > s.
$$

For every $r \in \mathbb{N}$, set

$$
\omega_r := (a^*_n), \text{ where } a^*_n = \begin{cases}
1, & \text{if } n = n_{l+i} - s \text{ for some } 1 \leq i \leq r, \\
0, & \text{otherwise.}
\end{cases}
$$

Then, for every $r \in \mathbb{N}$, \eqref{3.10} implies that ω_r is well-defined and

$$
(3.11) \quad d(0, \omega_r) = \frac{1}{2^m} < \frac{1}{2^i} < \frac{1}{2} < \frac{1}{2^s} < \frac{\varepsilon}{20}.
$$

Note that

$$
(3.12) \quad 1 + p + \cdots + p^k = \frac{p^{k+1} - 1}{p - 1} < p^{k+1}.
$$

For every $k \in \omega$ and every $r \in \mathbb{N}$, we estimate $|1 - (u_k, \omega_r)|$ as follows.

Case 1. Let $k \leq l$. By \eqref{3.8}, \eqref{3.10} and the definition of ω_r we have

$$
(3.13) \quad |1 - (u_k, \omega_r)| = 0.
$$

Case 2. Let $l < k \leq l + r$. Then \eqref{3.12} yields

$$
\frac{2\pi}{p^{n_k+1}} |p^{n_k+s} + \cdots + p^{n_k-s}| < \frac{2\pi}{p^{n_k+1}} \cdot p^{n_k-s+1} = \frac{2\pi}{p^s} \leq \frac{2\pi}{2^s} < \frac{\varepsilon}{2}.
$$

This inequality and the inequalities \eqref{3.12} and \eqref{3.8} imply

$$
(3.14) \quad |1 - (u_k, \omega_r)| = \left| 1 - \exp \left\{ \frac{2\pi i}{p^{n_k+1}} (p^{n_k+s} + \cdots + p^{n_k-s}) \right\} \right| < \frac{\varepsilon}{2}.
$$

Case 3. Let $l + r < k$. By \eqref{3.12} we have

$$
\frac{2\pi}{p^{n_k+1}} |p^{n_k+s} + \cdots + p^{n_k-r-s}| < \frac{2\pi}{p^{n_k+1}} \cdot p^{n_k-r-s+1} < \frac{2\pi}{p^{n_k+1}} \cdot p^{n_k-s+1} = \frac{2\pi}{p^s} \leq \frac{2\pi}{2^s} < \frac{\varepsilon}{2}.
$$
These inequalities, \(3.12\) and \(3.13\), immediately yield
\[
|1 - (u_k, \omega_r)| = \left| 1 - \exp \left\{ \frac{2\pi i}{p^{n_k+1}} (p^{n_{k+1}} - s + \cdots + p^{n-r-s}) \right\} \right| \leq \frac{\varepsilon}{2},
\]
and
\[
|1 - (u_k, \omega_r)| < \frac{2\pi}{p^{n_k+1}} \cdot p^{n_{k+1} - s + 1} \to 0, \quad \text{as } k \to \infty.
\]
So, \(3.10\) implies that \(\omega_r \in H\) for every \(r \in \mathbb{N}\).

For every \(r \in \mathbb{N}\), by \(3.1, 3.11\) and \(3.13 - 3.15\) we have
\[
\rho(0, \omega_r) = d(0, \omega_r) + \sup \{ |1 - (u_k, \omega_r)|, \, k \in \omega \} < \frac{\varepsilon}{20} + \frac{\varepsilon}{2} < \varepsilon.
\]
Thus \(\omega_r \in F_m\) for every \(r \in \mathbb{N}\). Evidently,
\[
\omega_r \to \bar{\omega} = (\bar{a}_n) \in \Delta_p, \quad \text{where } \bar{a}_n = \begin{cases} 1, & \text{if } n = n_{l+i} - s \text{ for some } i \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{cases}
\]
Since \(F_m\) is a compact subset of \(\Delta_p\), we have \(\bar{\omega} \in F_m\). Hence \(\bar{\omega} \in H\). On the other hand, it is clear that \(m_k(\bar{\omega}) = n_k - s\) for every \(k \geq l + 1\). Thus for every \(k \geq l + 1\), \(n_k - m_k(\bar{\omega}) = s \neq \infty\). Now \(3.10\) implies that \(\bar{\omega} \notin H\).

This contradiction shows that \(H\) is not an \(F_\sigma\)-subset of \(\Delta_p\).

Lemma 3.3. Let \(X = \prod_{n \in \omega} Z(b_n), \) where \(1 < b_0 < b_1 < \ldots\) \(G := \hat{\prod} = \bigoplus_{n \in \omega} Z(b_n)\). Set \(u = \{u_n\}_{n \in \omega}, \) where \(u_n = 1 \in Z(b_n)^\omega \subset G\) for every \(n \in \omega\). Then \(u\) is a T-sequence in \(G\), and the T-characterized subgroup \(H = s_u(X)\) is a dense non-\(F_\sigma\)-subset of \(X\).

Proof. Set \(H := s_u(X)\). In \(17\) 2.3 it is shown that
\[
\omega = (a_n) \in s_u(X) \text{ if and only if } \left\| \frac{a_n}{b_n} \right\| \to 0.
\]
So \(\bigoplus_{n \in \omega} Z(b_n) \subseteq H\). Thus \(H\) is dense in \(X\). Now Fact \(14\) implies that \(u\) is a T-sequence in \(G\).

We have to show that \(H\) is not an \(F_\sigma\)-subset of \(X\). Suppose for a contradiction that \(H = \bigcup_{n \in \mathbb{N}} F_n\) is an \(F_\sigma\)-subset of \(X\), where \(F_n\) is a compact subset of \(X\) for every \(n \in \mathbb{N}\). Since \(H\) is a subgroup of \(X\), without loss of generality we can assume that \(F_n - F_n \subseteq F_{n+1}\). Since all \(F_n\) are closed in \((H, \rho)\) as well, the Baire theorem yields that there are \(0 < \varepsilon < 0.1\) and \(m \in \mathbb{N}\) such that \(F_m \supseteq \{ \omega \in X : \rho(0, \omega) \leq \varepsilon \}\).

Note that \(d(0, \omega) = 2^{-l}\), where \(0 \neq \omega = (a_n)_{n \in \omega} \in X\) and \(l\) is the minimal index such that \(a_l \neq 0\). Choose \(l\) such that \(2^{-l} < \varepsilon/3\). For every natural number \(k > l\), set
\[
\omega_k := (a_n^k), \quad \text{where } a_n^k = \begin{cases} \left\lfloor \frac{\varepsilon b_n}{20} \right\rfloor, & \text{for every } n \text{ such that } l \leq n \leq k, \\ 0, & \text{otherwise.} \end{cases}
\]
Since \((u_n, \omega_k) = 1\) for every \(n > k\), we obtain that \(\omega_k \in H\) for every \(k > l\). For every \(n \in \omega\) we have
\[
2\pi \cdot \frac{1}{b_n} \left\lfloor \frac{\varepsilon b_n}{20} \right\rfloor < \frac{2\pi \varepsilon}{20} < \varepsilon < \frac{1}{2}.
\]
This inequality and the inequalities \(3.1, 3.2\) imply
\[
\rho(0, \omega_k) = d(0, \omega_k) + \sup \{ |1 - (u_n, \omega_k)|, \, n \in \omega \}
\]
\[
\leq \frac{1}{2} + \max \left\{ 1 - \exp \left\{ 2\pi i \frac{1}{b_n} \left\lfloor \frac{\varepsilon b_n}{20} \right\rfloor \right\}, \, l \leq n \leq k \right\}
\]
\[
\leq \frac{\varepsilon}{3} + 2\pi \cdot \max \left\{ \frac{1}{b_n} \left\lfloor \frac{\varepsilon b_n}{20} \right\rfloor, \, l \leq n \leq k \right\} < \frac{\varepsilon}{3} + \frac{2\pi \varepsilon}{20} < \varepsilon.
\]
Thus \(\omega_k \in F_m\) for every natural number \(k > l\). Evidently,
\[
\omega_k \to \bar{\omega} = (\bar{a}_n)_{n \in \omega} \text{ in } X, \quad \text{where } \bar{a}_n = \begin{cases} \left\lfloor \frac{\varepsilon b_n}{20} \right\rfloor, & \text{if } l \leq n. \\ 0, & \text{if } 0 \leq n < l, \end{cases}
\]
Since F_m is a compact subset of X, we have $\bar{w} \in F_m$. Hence $\bar{w} \in H$. On the other hand, since $b_n \to \infty$ we have
\[
\lim_{n \to \infty} \left| \frac{a_n}{b_n} \right| = \lim_{n \to \infty} \frac{1}{b_n} \left\lfloor \frac{\varepsilon b_n}{20} \right\rfloor = \frac{\varepsilon}{20} \neq 0.
\]
Thus $\bar{w} \notin H$ by (3.17). This contradiction shows that H is not an F_σ-subset of X. □

Now we are in position to prove Theorems 1.16 and 1.18.

Proof of Theorem 1.16. Let X be a compact Abelian group of infinite exponent. Then $G := \hat{X}$ also has infinite exponent. It is well-known that G contains a countably infinite subgroup S of one of the following forms:

- (a) $S \cong \mathbb{Z}$;
- (b) $S \cong \mathbb{Z}(p^\infty)$;
- (c) $S \cong \bigoplus_{n \in \omega} (b_n)$, where $1 < b_0 < b_1 < \ldots$.

Fix such a subgroup S. Set $K = S^\perp$ and $Y = X/K \cong S_d^\perp$, where S_d denotes the group S endowed with the discrete topology. Since S is countable, Y is metrizable. Hence $\{0\}$ is a G_δ-subgroup of Y. Thus K is a G_δ-subgroup of X. Let $q : X \to Y$ be the quotient map. By Lemmas 3.1 and 3.3, the compact group Y has a dense T-characterized subgroup \tilde{H} which is not an F_σ-subset of Y. Lemma 2.6 implies that $H := q^{-1}(H)$ is a dense T-characterized subgroup of X. Since the continuous image of an F_σ-subset of a compact group is an F_σ-subset as well, we obtain that H is not an F_σ-subset of X. Thus the subgroup H of X is T-characterized but it is not an F_σ-subset of X. The theorem is proved. □

Proof of Theorem 1.18. (1) follows from Fact 1.2.

(2) By Lemma 3.6 in [10], every infinite compact Abelian group X contains a dense characterized subgroup H. By Fact 1.1, H is T-characterized. Since every G_δ-subgroup of X is closed in X by Proposition 2.4 of [10], H is not a G_δ-subgroup of X.

(3) follows from Theorem 1.14 and the aforementioned Proposition 2.4 of [10].

(4) follows from Fact 1.5.

(5) follows from Corollary 1.14. □

It is trivial that $\text{Char}_T(X) \subseteq \text{Char}(X)$ for every compact Abelian group X. For the circle group \mathbb{T} we have.

Proposition 3.4. $\text{Char}_T(\mathbb{T}) = \text{Char}(\mathbb{T})$.

Proof. We have to show only that $\text{Char}(\mathbb{T}) \subseteq \text{Char}_T(\mathbb{T})$. Let $H = s_u(\mathbb{T}) \in \text{Char}(\mathbb{T})$ for some sequence u in \mathbb{Z}.

If H is infinite, then H is dense in \mathbb{T}. So u is a T-sequence in \mathbb{Z} by Fact 1.1. Thus $H \in \text{Char}_T(\mathbb{T})$.

If H is finite, then H is closed in \mathbb{T}. Clearly, \bar{H} has infinite exponent. Thus $H \in \text{Char}_T(\mathbb{T})$ by Theorem 1.10. □

Note that, if a compact Abelian group X satisfies the equality $\text{Char}_T(X) = \text{Char}(X)$, then X is connected by Fact 1.3 and Theorem 1.14. This fact and Proposition 3.4 justify the next problem:

Problem 3.5. Does there exists a connected compact Abelian group X such that $\text{Char}_T(X) \neq \text{Char}(X)$? Is it true that $\text{Char}_T(X) = \text{Char}(X)$ if and only if X is connected?

For a compact Abelian group X, the set of all subgroups of X which are both $F_{\sigma\delta}$- and $G_{\delta\sigma}$-subsets of X we denote by $\text{S}\Delta_0^\delta(X)$. To complete the study of the Borel hierarchy of (T)-characterized subgroups of X we have to answer to the next question.

Problem 3.6. Describe compact Abelian groups X of infinite exponent for which $\text{Char}(X) \subseteq \text{S}\Delta_0^\delta(X)$. For which compact Abelian groups X of infinite exponent there exists a T-characterized subgroup H that does not belong to $\text{S}\Delta_0^\delta(X)$?

4. g_T-closed and g_T-dense subgroups of compact Abelian groups

The following closure operator g of the category of Abelian topological groups is defined in [13]. Let X be an Abelian topological group and H its arbitrary subgroup. The closure operator $g = g_X$ is defined as follows
\[
g_X(H) := \bigcap_{u \in \hat{X}} \{ s_u(X) \mid H \leq s_u(X) \},
\]
and we say that H is g-closed if $H = g(H)$, and H is g-dense if $g(H) = X$.

The set of all T-sequences in the dual group \hat{X} of a compact Abelian group X we denote by $T_s(\hat{X})$. Clearly, $T_s(\hat{X}) \subseteq \hat{X}$. Let H be a subgroup of X. In analogy to the closure operator g, g-closure and g-density, the operator g_T is defined as follows

$$g_T(H) := \bigcap_{u \in T_s(\hat{X})} \{ s_u(X) : H \leq s_u(X) \},$$

and we say that H is g_T-closed if $H = g_T(H)$, and H is g_T-dense if $g_T(H) = X$.

In this section we study some properties of g_T-closed and g_T-dense subgroups of a compact Abelian group X. Note that every g-dense subgroup of X is dense by Lemma 2.12 of \cite{13}, but for g_T-dense subgroups the situation changes:

Proposition 4.1. Let X be a compact Abelian group.

1. If H is a g_T-dense subgroup of X, then the closure \bar{H} of H is an open subgroup of X.
2. Every open subgroup of a compact Abelian group X is g_T-dense.

Proof. (1) Suppose for a contradiction that \bar{H} is not open in X. Then X/\bar{H} is an infinite compact group. By Lemma 3.6 of \cite{10}, X/\bar{H} has a proper dense characterized subgroup S. Fact \cite{13} implies that S is a T-characterized subgroup of X/\bar{H}. Let $\bar{q} : X \to X/\bar{H}$ be the quotient map. Then Lemma 2.6 yields that $q^{-1}(S)$ is a T-characterized dense subgroup of X containing H. Since $q^{-1}(S) \neq X$, we obtain that H is not g_T-dense in X, a contradiction.

(2) Let H be an open subgroup of X. If $H = X$ the assertion is trivial. Assume that H is a proper subgroup (so X is disconnected). Let u be an arbitrary T-sequence such that $H \subseteq s_u(X)$. Since H is open, $s_u(X)$ is open as well. Now Corollary \cite{13} implies that $s_u(X) = X$. Thus H is g_T-dense in X. □

Proposition \cite{11}(1) shows that g_T-density may essentially differ from the usual g-density. In the next theorem we characterize all compact Abelian groups for which all g_T-dense subgroups are also dense.

Theorem 4.2. All g_T-dense subgroups of a compact Abelian group X are dense if and only if X is connected.

Proof. Assume that all g_T-dense subgroup of X are dense. Proposition \cite{11}(2) implies that X has no open proper subgroups. Thus X is connected by \cite{23} 7.9.

Conversely, let X be connected and H be a g_T-dense subgroup of X. Proposition \cite{11}(1) implies that the closure \bar{H} of H is an open subgroup of X. Since X is connected we obtain that $\bar{H} = X$. Thus H is dense in X. □

For g_T-closed subgroups we have:

Proposition 4.3. Let X be a compact Abelian group.

1. Every proper open subgroup H of X is a g-closed non-g_T-closed subgroup.
2. If every g-closed subgroup of X is g_T-closed, then X is connected.

Proof. (1) The subgroup H is g_T-dense in X by Proposition \cite{11}. Therefore H is not g_T-closed. On the other hand, H is g-closed in X by Theorem A of \cite{10}.

(2) Item (1) implies that X has no open subgroups. Thus X is connected by \cite{23} 7.9. □

We do not know whether the converse in Proposition \cite{13}(2) holds true:

Problem 4.4. Let a compact Abelian group X be connected. Is it true that every g-closed subgroup of X is also g_T-closed?

Historical Note. This paper (with $a_n = n$ in Lemma 3.1) was sent for possible publications to the journal “Topology Proceedings” at 25 November 2012. However, the author till now did not received even a report from the referee. Since the paper is cited in \cite{10,21} and other articles which have already been published, the author decided to put it in ArXiv.

References

[1] J. Aaronson, M. Nadkarni, L_∞ eigenvalues and L_2 spectra of non-singular transformations, Proc. London Math. Soc. 55 (3) (1987) 538-570.
[2] L. Außenhofer, Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups, Dissertation, Tübingen, 1998, Dissertationes Math. (Rozprawy Mat.) 384 (1999), 113p.
[3] W. Banaszczyk, M. J. Chasco, E. Martín-Peinador, Open subgroups and Pontryagin duality, Math. Z. 215 (1994), 195–204.
[4] G. Barbieri, D. Dikranjan, C. Milan, H. Weber, Answer to Raczkowski’s question on convergent sequences of integers, Topology Appl. 132 (2003), 89–101.
ON T-CHARACTERIZED SUBGROUPS OF COMPACT ABELIAN GROUPS

[5] G. Barbieri, D. Dikranjan, C. Milan, H. Weber, Convergent sequences in precompact group topologies, Appl. Gen. Topology 6 (2005), 149–169.

[6] M. Beiglböck, C. Steinedeer, R. Winkler, Sequences and filters of characters characterizing subgroups of compact abelian groups, Topology Appl. 153 (2006), 1682–1695.

[7] A. Biró, J.-M. Deshouillers, V. T. Sós, Good approximation and characterization of subgroups of R/Z, Studia Sci. Math. Hungar. 38 (2001), 97–113.

[8] J.-P. Borel, Sur certains sous-groupes de R liés à la suite des factorielles, Colloq. Math. 62 (1991), 21–30.

[9] W. Comfort, S. Raczkowski, F.-J. Trigos-Arrieta, Making group topologies with, and without, convergent sequences, Appl. Gen. Topology 7 (2006), 109–124.

[10] D. Dikranjan, S. Gabriyelyan, On characterized subgroups of compact abelian groups, Topology Appl. 160 (2013), 2427–2442.

[11] D. Dikranjan, S. Gabriyelyan, V. Tarieladze, Characterizing sequences for precompact group topologies, J. Math. Anal. Appl. 412 (2014), 505–519.

[12] D. Dikranjan, K. Kunen, Characterizing subgroups of compact abelian groups, J. Pure Appl. Algebra 208 (2007), 285–291.

[13] D. Dikranjan, C. Milan, A. Tonolo, A characterization of the MAP abelian groups, J. Pure Appl. Algebra 197 (2005), 23–41.

[14] S. Gabriyelyan, Characterization of almost maximally almost-periodic groups, Topology Appl. 156 (2009), 2214–2219.

[15] S. Gabriyelyan, Groups of quasi-invariance and the Pontryagin duality, Topology Appl. 157 (2010), 2786–2802.

[16] S. Gabriyelyan, On T-sequences and characterized subgroups, Topology Appl. 157 (2010), 2834–2843.

[17] S. Gabriyelyan, Reflexive group topologies on Abelian groups, J. Group Theory 13 (2010), 891-901.

[18] S. Gabriyelyan, Characterizable groups: some results and open questions, Topology Appl. 159 (2012), 2378–2391.

[19] S. Gabriyelyan, Finitely generated subgroups as a von Neumann radical of an Abelian group, Matematychni Studii 38 (2012), 124–138.

[20] S. Gabriyelyan, On a generalization of Abelian sequential groups, Fund. Math. 221 (2013), 95–127.

[21] S. Gabriyelyan, Bounded subgroups as a von Neumann radical of an Abelian group, Topology Appl. 178 (2014), 185–199.

[22] M. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 278–324.

[23] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis, Vol. I, 2nd ed. Springer-Verlag, Berlin, 1979.

[24] J. Nienhuys, Construction of group topologies on Abelian groups, Fund. Math. 75 (1972), 101–116.

[25] N. Noble, k-groups and duality, Trans. Amer. Math. Soc. 151 (1970), 551–561.

[26] I. V. Protasov, E. G. Zelenyuk, Topologies on abelian groups, Math. USSR Izv. 37 (1991), 445–460. Russian original: Izv. Akad. Nauk SSSR 54 (1990), 1090–1107.

[27] I. V. Protasov, E. G. Zelenyuk, Topologies on groups determined by sequences, Monograph Series, Math. Studies VNTL, L’viv, 1999.

[28] S. U. Raczkowski, Totally bounded topological group topologies on the integers, Topology Appl. 121 (2002), 63–74.

S. GABRIEYLEYAN: DEPARTMENT OF MATHEMATICS, BEN-GURION UNIVERSITY OF THE NEGEV, BEER-SHEVA, P.O. 653, ISRAEL
E-mail address: saak@math.bgu.ac.il