Efficacy of Wells score and Pulmonary Embolism Rule Out Criteria (PERC) to exclude pulmonary embolism in a pulmonary emergency ward

Wells ve PERC skorlarının bir göğüs hastalıkları hastanesi acil servisinde pulmoner emboliyi dışlamada etkinliği

Abstract

Aim: The Pulmonary Embolism Rule-out Criteria (PERC) rule is a diagnostic algorithm to exclude pulmonary embolism (PE). Even it is not widely used in routine practice, has better negative predictive value in low-risk populations among existed clinical assessment tests. We aimed to examine availability of PERC rules combined with Wells score in a pulmonary emergency ward.

Material and Methods: A retrospective hospitalized database study was conducted with 163 patients. All patients who underwent radiological investigation due to suspicious for PE were included. We calculated prevalence of PE in group of PERC negative and PERC positive. All PERC parameters were evaluated solely for risk of PE.

Results: PERC positivity was 82.4% in patients diagnosed with PE. There were no significant differences in terms of PERC positivity between PE+ and PE- groups (p=0.336). False positivity rate for moderate to high Wells score was 36.1%. Frequency of PERC negativity among PE negative patients was only %36.1 and %17.6 in PE positive group (p=0.75 and r=-0.025). The sensitivity of the PERC test was 82.3%, specificity 19.6%, PPV 63.1%, NPV 40%, false positivity rate 36.8% and false negativity rate 60%. Among patients with moderate to high wells, 61 patients were diagnosed PE and 14 of them were PERC negative.

Conclusion: Our study suggests that PERC scoring system even combined with Wells score does not sufficient enough to prevent unnecessary radiative imaging studies in a pulmonary emergency ward.

Keywords: Wells; PERC; pulmonary embolism
Introduction
Pulmonary embolism (PE) can be highly mortal if remains undiagnosed. Referral symptoms are usually non-specific but in cases where hemodynamic instability develops-potential life-threatening condition, the emergency physician does not have enough time to diagnose. In daily practises there are some risk stratification models (Wells score, Geneva score) to estimate clinic probability before diagnostic methods or clinical probability of PE, estimated by the clinician gestalt (unstructured empirical probability) can be preferable.[1]
When probability of PE is low and D-dimer level is under 500 µg/mL we tend to exclude PE but higher level of D-dimer can cause further investigation.[2] Computed tomography pulmonary angiogram (CTPA) is first choice in emergency departments (ED) if there is no contraindication. However, by widespread use of CTPA more PE is diagnosed, overall mortality due to PE do not change.[3,4] More over incidence of allergic reactions or nephrotoxicity due to contrast agents are increased.
To avoid unnecessary further diagnostic steps, a scoring system - Pulmonary Embolism Rule-out Criteria (PERC) - was developed to rule out PE by Kline et al. in 2004.[5] PERC contains eight items; age < 50 years, pulse < 100 bpm, arterial oxygen saturation (SpO2) > 94 %, no unilateral leg swelling, no haemoptysis, no recent trauma or surgery, no prior PE or deep venous thrombosis (DVT) and no exogenous oestrogen use. PERC (-) means a patient fulfilling all 8 criteria.[5] Validation studies designed with low clinical probability patients revealed that PERC (-) negative patients’ PE risk vary between 0%-1.4%.[6-8] However, its’ negative predictive value (NPV) decreased among unselected patient group disregarding degree of clinical probability as shown in Righini’s study that 6.7% of PERC (-) patients had PE.[9]
There are many studies investigating reliability of PERC score in ED.[7-11] But to our knowledge there is not any data of pulmonary hospital about using PERC. So, primary outcome is to present our approach to patients suspected to be PE in ED regarding to both PERC and Wells score. Secondary aim is to demonstrate reliability of this score in patients with all clinical probability.

Material and Methods
Study setting and population
This is a retrospective hospitalized database study. All enrolled patients were assessed in ED and who underwent CTPA and ventilation/perfusion scan (VPS) to exclude or verify PE. When scanning data retrospectively, International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10) coding system were used. Patients whose principal or preliminary diagnosis was recorded one of these diagnosis; I.26 (pulmonary embolism), I26.0 (pulmonary embolism with acute cor pulmonale), I.26.9 (pulmonary embolism without cor pulmonale) and I.82 (venous emboli and thrombosis) enrolled to the study. Cut-off value for D-dimer was 500 µg/L.
Study was approved by hospital ethical committee with number; 498-23.06.2015. Written informed consents were obtained from each participants before enrollment.
Statistical Analyses

Analyses were performed using SPSS version 15.0 (SPSS Inc, Chicago, IL). Continuous variables were expressed as mean ± standard deviation and categorical variables were defined as percentages. Other descriptive statistics were presented as median, minimum and maximum values. The categorical variables were compared with Chi-Square and Fisher's Exact test. Comparisons between two independent groups were performed using Student’s t-test for normally distributed continuous variables, and Mann - Whitney U test when the distribution was skewed. Correlations were evaluated with Pearson’s or Spearman’s correlation tests. A p value less than 0.05 was considered as statistically significant.

Results

One hundred sixty-three patients suspected for venous thromboembolism were enrolled study. Among 133 PERC positive group 84 patients were diagnosed PE. However, 18 patients had PE in PERC negative group (n=30, 18.4%). Study algorithm and score results of both groups (PERC positive/negative) was summarized in Figure 1.

Mean age was 57.3±17.9 (±SD) and gender distribution was almost closed to each other. Chronic obstructive pulmonary disease (COPD) and coronary arterial disease (CAD) were most common co-morbidities (27% vs. 15.2%). Among all patients 102 (62.6%) were diagnosed with PE and deep vein thrombosis (DVT) was accompanied in 19 (11.7%) patients. In diagnostic procedures while 132 (81%) patients underwent CTPA, 31 (19%) patients were performed VPC due to renal failure or contrast allergy. Transthoracic echocardiogram (TE) and chest x-ray findings were shown in (Table 1).

A hundred two patients were diagnosed PE and all were symptomatic. In PE group D-dimer level, Wells score were higher than PE negative patients. (p=0.336 vs p=0.003). As expected patients diagnosed with PE had PERC positivity with 82.4% ratio. But even number of PERC positive patients were lower in PE negative group (n=61), there were no significant differences in terms of PERC positivity between PE+ and PE- groups (PE+: 80.3%, PE -: 82.4% and p=0.336). False positivity rate for moderate to high Wells score was 36.1% (Table 2).

| Table 1. Demographic features of study group |
|-----------------|-----------------|-----------------|
| Variable | Age (years) | Gender |
| | 57.3±17.9 | Male 79 (48.5%) |
| | | Female 84 (51.5%) |
| Comorbidity | COPD | Malignancy 10 (6.1%) |
| | Hypertension 28 (17.2%) | Diabetes mellitus 10 (6.1%) |
| | Cerebrovascular event 1 (0.6%) | Coronary arterial disease 25 (15.3%) |
| | Congestive heart failure 18 (11%) | Alzheimer 2 (1.2%) |
| Pulmonary embolism | 102 (62.6%) | Concomittant DVT 19 (11.7%) |
| Chest x-ray findings | Normal 53 (32.5%) | Atelectasis 42 (25.8%) |
| | Pleural effusion 34 (20.9%) | Consolidation 19 (11.7%) |
| | Consolidation 19 (11.7%) | Diaphragm elevation 9 (5.5%) |
| | Infarction 6 (3.7%) | Pulmonary embolism 102 (62.6%) |
| Diagnosis with | CT angiography 132 (81%) | Lung scintigraphy 31 (19%) |
| Transthoracic echocardiogram | Pulmonary artery pressure 34.2±11.5 | Right ventricular dysfunction 15 (9.2%) |
| | Pericardial effusion 3 (1.8%) | Admission d-dimer level 707 (100-6879) |

COPD: Chronic obstructive pulmonary disease, DVT: Deep vein thrombosis, CT: Computed tomography

| Table 2. Comparison of the reasons for ordering diagnostic tests to patients with and without pulmonary embolism |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Variable | PE+ (n=102) | PE- (n=61) | P value |
| Symptoms | 102 (100%) | 60 (%98.4) | 0.195 |
| Risk factors | 33 (32.4%) | 22 (36.1%) | 0.754 |
| Chest X-ray findings | 71 (69.6%) | 39 (63.9%) | 0.565 |
| High D-dimer level | 66 (82.5%) | 30 (73.2%) | 0.336 |
| Moderate to high Wells score | 61 (59.8%) | 22 (36.1%) | 0.003 |
| PERC rule positivity | 84 (82.4%) | 49 (80.3%) | 0.909 |

KABALAK at al. PERC and Wells scores to rule out pulmonary embolism
Demographic features between two groups were similar. Number of patients presenting with cough and frequency of concomitant DVT is significantly higher in PE positive group (p=0.03 and p=0.005 respectively) (Table 3).

Table 3. Comparison of clinical and laboratory findings of two groups

Variable	PE+ (n=102)	PE- (n=61)	P value
Age (years)	57.4±17.5	57.2±18.6	0.96
Female gender	48 (47.1%)	36 (59%)	0.14
Comorbidity			
COPD	29 (28.4%)	15 (24.6%)	0.73
Malignancy	7 (6.9%)	3 (4.9%)	0.75
Hypertension	21 (20.6%)	7 (11.5%)	0.2
Diabetes mellitus	7 (6.9%)	3 (4.9%)	0.75
Cerebrovascular event	-	1 (1.6%)	0.37
Coronary arterial disease	16 (15.7%)	9 (14.8%)	1
Congestive heart failure	11 (10.8%)	7 (11.5%)	1
Alzheimer	-	2 (3.3%)	0.14
Symptoms			
Chest pain	55 (53.9%)	33 (54.1%)	0.98
Dyspnea	65 (63.7%)	38 (62.3%)	0.99
Fever	8 (7.8%)	1 (1.6%)	0.15
Syncope	1 (1%)	-	1
Cough	26 (25.5%)	6 (9.8%)	0.03
Hemoptysis	13 (12.7%)	4 (6.6%)	0.32
Concomittant DVT	18 (17.6%)	1 (1.6%)	0.005
Chest x-ray findings			
Atelectasis	25 (24.5%)	17 (27.9%)	0.77
Pleural effusion	24 (23.5%)	10 (16.4%)	0.38
Consolidation	13 (12.7%)	6 (9.8%)	0.76
Diaphragm elevation	6 (5.9%)	3 (4.9%)	1
Infarction	3 (2.9%)	3 (4.9%)	0.67
Transthoracic echocardiogram			
Pulmonary artery pressure	34.9±10.4	32.8±13.6	0.4
RV dysfunction	11 (15.7%)	4 (12.1%)	0.77
Pericardial effusion	2 (2.9%)	1 (3%)	1
Admission d-dimer level	1152.6±1363	621.5±313.9	0.02
Wells score (median (min-max))	3 (0-7.5)	1.5 (0-7)	0.009

In PE negative group number of patients with low wells score was higher with statistically significance (p=0.003 and r=-0.23). Most of patients in PE positive group had moderate to high wells score significantly when compared to PE negative group (p=0.003 and r=0.23) (Table 2). Frequency of PERC negativity among PE negative patients was only %36.1 and %17.6 in PE positive group (p=0.75 and r=-0.025). As a component of PERC score, while ‘pulse rate lower than 100/minute’ had a weak negative correlation and ‘no previous history of VTE’ had weak but significant positive correlation for exclusion of PE (p=0.03, r=-0.168 and p=0.006, r=0.213 respectively) (Table 4).

Table 4. Correlation of wells and PERC score in diagnosis and exclusion of pulmonary embolism

Variable	PE+ (n=102)	PE- (n=61)	p value	r value
Low Wells score (score < 2)	41 (40.2%)	39 (63.9%)	0.003	-0.23
Moderate to high Wells score (score > 2)	61 (59.8%)	22 (36.1%)	0.003	0.23
PERC (-)	18 (17.6%)	12 (19.7%)	0.75	-0.025
PERC criteria				
Age < 50 years	35 (34.3%)	22 (36.1%)	0.82	-0.018
Pulse rate < 100/minute	83 (81.4%)	57 (93.4%)	0.03	-0.168
O2 sat > 94%	79 (77.5%)	53 (86.9%)	0.14	-0.116
No leg swelling	95 (93.1%)	59 (96.7%)	0.34	-0.076
No hemoptysis	89 (87.3%)	57 (93.4%)	0.21	-0.098
No recent operation	91 (89.2%)	55 (90.2%)	0.85	-0.015
No previous PE and DVT	95 (93.1%)	48 (78.7%)	0.006	0.213
No hormone use	98 (96.1%)	61 (100%)	0.12	-0.123

When evaluated according to wells score 80 of them had low and 83 had moderate to high wells score. Even wells score is low number of PE positive patients were similar to PE negatives (PE+ n=41 vs PE- n=39). Nine of PE negative patients were PERC negative. Among patients with moderate to high wells, 61 patients were diagnosed PE and 14 of them were PERC negative (Figure 2).

The sensitivity of moderate to high Wells score was 59.8%, specificity 63.9%, positive predictive value (PPV) 73.5% and NPV 48.7%. The sensitivity of the PERC test was 82.3%, specificity 19.6%, PPV 63.1%, NPV 40%, false positivity rate 36.8% and false negativity rate 60%.

COPD: Chronic obstructive pulmonary disease, DVT: Deep vein thrombosis, RV: Right ventricle
Figure 2. Flowchart to distribution of patients according to both Wells and PERC scores

Discussion

An appropriate approach to PE suspected patients is a common problem in both emergency wards, intensive care units and internal/surgery services. Nowadays clinicians rely on diagnostic procedures combining with probability assessment tests to diagnose or exclude PE.[4]

Study of Dachs and colleagues revealed a 100% sensitivity and 24.6% specificity for PERC rule to exclude PE in an emergency department. So they had concluded that applying PERC rule can reduce 23% of unnecessary CTPA evaluation in an emergency department.[8] A study from Turkey (in an ED) resulted 98% sensitivity and 7% specificity for PERC score. But among 125 patients there were only 5 PERC negative patients. [10] Similar to these two studies in current study while sensitivity of the PERC test was 82.3%, specificity was 19.6%. So it should not be considered as an excellent scoring system to exclude PE in ED.

When figure 2 is examined, adding probability assessment with wells score does not seem to change clinicians’ behaviour. Because among 80 low wells patients 13 of them were PERC negative. Even the number of patients diagnosed with PE were nearly half of total wells negative patients (n=41). From another point of view there were 17 PERC negative patients in wells positive group. A previous study with 377 patients with a Wells score (<2), highlighted that the combination of a Wells score (<2) and PERC score (=0) had suboptimal sensitivity for excluding PE in ED (2). So we do not still have a strong scoring system to exclude PE without and imaging method in ED. Similarly, another PERC study combined with the revised Geneva score concluded that even in low risk patients PERC scoring system does not seem to be sufficient enough to prevent unnecessary irradiative imaging studies.

Conclusion

Our results revealed that even combined with clinical probability tests, PERC score is not sufficient enough to exclude PE. Additionally, co-morbidities are important confounding factors so even in low risk patients PERC scoring system does not seem to be sufficient enough to prevent unnecessary irradiative imaging studies.

Declaration of conflict of interest

The authors received no financial support for the research and/or authorship of this article. There is no conflict of interest.

References

1. Freund Y, Rousseau A, Guyot-Rousseau F et al. PERC rule to exclude the diagnosis of pulmonary embolism in emergency low-risk patients: study protocol for the PROPER randomized controlled study. Trials 2015; 16: 537
2. Theunissen JMG, Scholing C, van Hasselt WE, van der Maten J, ter Avest E. A retrospective analysis of the combined use of PERC rule and Wells score to exclude pulmonary embolism in the Emergency Department. Emerg Med J 2016; 33: 696–70.
3. Wiener RS, Schwartz LM, Woloshin S. When a test is too good: how CT pulmonary angiograms find pulmonary emboli that do not need to be found. BMJ 2013; 347: 3368.
4. Wiener RS, Schwartz LM, Woloshin S. Time trends in pulmonary embolism in the United States: evidence of overdiagnosis. Arch Intern Med 2011; 171: 831–37.

5. Kline JA, Mitchell AM, Kabrhel C, Richman PB, Courtney DM. Clinical criteria to prevent unnecessary diagnostic testing in emergency department patients with suspected pulmonary embolism. J Thromb Haemost 2004; 2: 1247–55.

6. Hogg K, Dawson D, Kline J. Application of pulmonary embolism rule-out criteria to the UK Manchester Investigation of Pulmonary Embolism Diagnosis (MIOPED) study cohort. J Thromb Haemost 2005; 3: 592–93.

7. Kline JA, Courtney DM, Kabrhel C, Moore CL, Smithline HA, Plewa MC, Richman PB, O’Neil BJ, Nordenholz K. Prospective multicentre evaluation of the pulmonary embolism rule-out criteria. J Thromb Haemost 2008; 6: 772–80.

8. Dachs RJ, Kulkarni D, Higgins GL III. The pulmonary embolism rule-out criteria rule in a community hospital ED: a retrospective study of its potential utility. Am J Emerg 2010; 5: 18.

9. Righini M, Le Gal G, Perrier A, Bounnameaux H. More on: clinical criteria to prevent unnecessary diagnostic testing in emergency department patients with suspected pulmonary embolism. J Thromb Haemost 2005; 3: 188–89.

10. Aydoğdu M, Topbaşi Sinanoğlu N et al. Wells score and Pulmonary Embolism Rule Out Criteria in preventing over investigation of pulmonary embolism in emergency departments. Tuberk Toraks 2014; 62: 12-21.

11. Hugli O, Righini M, Le Gal G et al. The pulmonary embolism rule-out criteria (PERC) rule does not safely exclude pulmonary embolism. J Thromb Haemost 2011; 9: 300-4.

12. Buchanan I, Teeple T, Carlson M, Steenblik J, Bledsoe J, Madsen T. Pulmonary Embolism Testing Among Emergency Department Patients Who Are Pulmonary Embolism Rule-out Criteria Negative. Acad Emerg Med 2017; 24: 1369-76.

13. Bokobza J, Aubry A, Nakle N et al. Pulmonary Embolism Rule-out Criteria vs D-dimer testing in low-risk patients for pulmonary embolism: a retrospective study. Am J Emerg Med 2014; 32: 609-13.