Building evidence for conservation globally

Journal of Threatened Taxa

Open Access

10.11609/jott.2022.14.11.22039-22206
www.threatenedtaxa.org

26 November 2022 (Online & Print)
14 (11): 22039–22206
ISSN 0974-7893 (Print)
Notes on the nesting and foraging behaviours of the Common Coot

Fulica atra in the wetlands of Viluppuram District, Tamil Nadu, India

M. Pandian

No. F1901, AIS Housing Complex, Natesan Nagar West, Virugambakkam, Chennai, Tamil Nadu 600092, India.
pandian.m14@gmail.com

Abstract: The nesting and foraging behaviours of the Common Coot *Fulica atra* were studied in the wetlands of Viluppuram District, Tamil Nadu during the breeding season. A total of 4,054 individuals of Common Coot including 467 juveniles and 1,327 nests were enumerated. Of the 1,327 nests, 1,191 were built on *Ipomoea carnea* vegetation and 136 on open water. The birds used twigs of *Ipomoea carnea* and various parts of eight other plant species as nest material. The nests were elliptical in shape, with flattened upper surfaces containing nest cup and a ramp-like structure each. 49.96% of nests were found within 50 m distance from the edge of wetlands. A total of 16 plant species were identified as food sources including five algal species, such as *Aphanathece stagnina*, *Spirogyra irregularis*, *Chara flaccida*, *C. vulgaris*, and *C. zeylanica*. The Common Coots maintained strict territory during the breeding season and no other water birds were observed in the vicinity of their nesting and foraging sites. Even after completion of the breeding season, sporadic nesting was observed by a few pairs till June 2022.

Keywords: Chick behaviour, foraging plants, nest cup, nest materials, open nests, reproduction.
INTRODUCTION

The Eurasian Coot or Common Coot *Fulica atra* (Linnaeus, 1758) (Aves: Gruiformes: Rallidae) is a sexually monomorphic, monogamous, gregarious, aggressive, and territorial bird. The Common Coot occurs as an extant species (resident) in India, Sri Lanka, Nepal, Bangladesh, Pakistan, Afghanistan, Bhutan, China, France, Germany, Egypt, Saudi Arabia, and the United Kingdom (BirdLife International 2019). The Common Coot has four subspecies, namely *Fulica atra australis* of Australia and New Zealand (Gill et al. 2020). The IUCN Red List of Threatened Species has classified the species as ‘Least Concern’ (BirdLife International 2019).

The reproductive biology of the Common Coot was studied in North-east Algeria (Samraoui & Samraoui 2007) and in Heilonjiang Province of China (Zhang et al. 2018). Common Coots have been reported breeding in Gujarat (Himmatsinhji et al. 1991; Patel et al. 1998), Maharashtra (Khacher 1978), Andhra Pradesh (Nadarajan et al. 1993), and Tamil Nadu (Balachandran 1994; Santharam 1996). No other literature is available on the nesting and foraging behaviours of the Common Coot in Tamil Nadu. In order, to fill the gap, the present study was carried out.

In this study, I documented the number of birds and nests, and the roosting and foraging habits of the Common Coot in the wetlands of Viluppuram District in Tamil Nadu. This study aimed to investigate the number of individuals of the Common Coot inhabiting the wetlands during the breeding season, the source of their nesting materials and food, and the total number of nests. Additionally, roosting and foraging behaviours and interactions with other bird species were addressed.

MATERIALS AND METHODS

Study area

The present study was carried out at 30 sites in the wetland areas covering 29 villages in the Viluppuram District (12.0579°N & 79.5603°E), of Tamil Nadu (Table 1). Except for the Veedur reservoir other wetlands are seasonal and found dry during the summer months of June–August. These wetlands get filled in the Northeast monsoon during October–December every year. The vegetation at the study sites mainly consisted of herbs like *Ipomoea carnea*, reeds/grass *Typha angustifolia*, and *Chrysopogon zizanoides*, and trees such as *Vachellia niliotica* and *Prosopis juliflora*. Agriculture is the primary occupation in the district. The major crops of the area are Paddy *Oryza sativa*, Jowar *Sorghum bicolor*, Pearl Millet *Pennisetum glaucum*, Finger Millet *Eleusine coracana*, Foxtail Millet *Setaria italica*, Sugarcane *Saccharum officinarum*, and Pulses, such as Black gram *Vigna mungo*, Green gram *Vigna radiata*, and Pigeon pea *Cajanus cajan*. Temperature ranges 36–20 °C. The average annual rainfall is 1,060 mm (Viluppuram 2021).

Methods

With the help of two field assistants, the survey was conducted in the wetlands of Veedur Reservoir and wetlands of other areas in the district between 0545 and 1800 h, during the breeding season from the third week of December 2021 to the fourth week of March 2022. The number of birds was counted by following the total count method (Bibby et al. 2000) when the birds were foraging. Bird census was carried out over three monthly sessions during the second week of every month for three months and the bird population size was arrived at as the average of each session’s total count. Chicks at various developmental stages were counted during March 2022. Variables such as nesting sites, sources of nest materials, and food sources, such as algae and angiosperm plants foraged by the birds were identified. The distance between the nests and the edges of water bodies was measured using measurement tape after the breeding season. The distance between the nests and edges of the water body was grouped into intervals 0–50, 51–100, 101–150, and 151–200 m. The exterior length and width of the nests as well as the length, width, depth of nest cups, and the height of nests above the water level were measured using a measuring tape after the nests (20) were abandoned by the birds. The count of adult, and juvenile birds, their roosting and foraging activities, and interactions with other water bird species within the wetland were observed using binoculars from a safe distance (ca. 30 m). All the guidelines and protocols of nesting studies, as prescribed by Barve et al. (2020) were followed scrupulously. No eggs, chicks, and adult birds were handled during the study. The locations of nesting sites were determined using Garmin Etrex 20x GPS device. Photographs and videos were taken using Nikon P1000 digital camera. The collected data were tabulated, analyzed and shown as a graphical representation.
RESULTS

A total of 3,587 adult individuals, 467 chicks, and 1,327 active nests of the Common Coot were enumerated in 30 water bodies. Out of 1,327 nests, 89.75% of nests (n = 1,191) were found constructed in the thick vegetation of Ipomoea carnea (Figure 2d,e) and 10.25% of nests (n = 136) were found constructed in open water (Figure 2a–c). At the end of the breeding season, a total of 467 chicks were enumerated (Table 1).

Nest construction

Nine plant species belonging to seven genera and seven families were utilized by the Common Coot as nesting materials. Of the nine plant species, eight were dicotyledons and one monocotyledon. The birds utilized various plant parts such as twigs, petioles, leaves, inflorescence, and even entire plants as nesting material. During nest construction, Common coots used live and dead twigs of I. carnea, formed base-like structures for nests and added dry twigs brought from nearby places. The nests are elliptical with a flattened upper surface containing the nest cup. The major part of the nest consisted of twigs of I. carnea. Open nests were built on leaves of Nymphaea spp. or Aponogeton natans using the twigs of I. carnea along with various parts of other plant species (Table 2). Moreover, they added leaves and inflorescence of grass C. zizanoides in the inner surface of the nest cup as egg lining. Even during incubation, many nests contained partly eaten fruits of species of genera Nelumbo and Nymphaea (Image 1,3b).

Abandoned nests (n = 20) after the breeding season revealed that the nests were found 12–18 cm height above the water level. The entire length of the nests including nest cups was in the range of 64.7±21.79 cm and the width was in the range of 46.95±17.56 cm. The length of the elliptical-shaped nest cup was in the range of 21.3±3.29 cm and the width of the nest cup was 9.85±2.52 cm. The depth of the nest cup was in the range of 7.45±2.63 cm.

Distance between the edges of water bodies and the locations of nests (both open nests and nests on vegetation) revealed that a maximum of 49.96 % of nests (n = 663) occurred within 50 m distance from the edges and 1.88% of nests (n = 25) between 151 and 200 m distance from edges of water bodies. The percentage of nests that occurred at various distance interval ranges is given in Figure 2. The clutch size ranged 3–8 eggs.

The study revealed that the adult birds continued to expand their nests even after the chicks had grown by adding plant materials and used the nests as roosting sites. It was observed that chicks also brought plant materials and added them to the nests. The size of the nest cup was relatively small when compared to the overall upper surface area of the nest. Apart from the nest cup, each nest contained a peculiar ramp-like structure on the margin. Whenever residents entered the water to harvest lotus/lilies or for fishing, young chicks jumped into the water, swam, temporarily hid in the nearby I. carnea vegetation and later returned to the nests by climbing through the ramps (Image 2j,k). Even partly grown-up chicks used the ramps to climb into their nests. The present study revealed that the breeding of the Common Coot concluded during the fourth week of March 2022. Sporadic nesting (11 nests in May and eight nests in June), however, was observed till the second week of June 2022.

Foraging

In the present study, 16 plant species belonging to nine families foraged by the Common Coot were observed. Out of the 16 species, five were algae (thallophytes), a solitary grass species C. dactylon (monocotyledon) and the remaining 10 species were dicotyledons. The Common Coots swallowed entire colonies of blue-green alga Aphanothece stagnina and thalli of macro green algae Spirogyra irregularis and Chara spp. The birds usually dive into the water and cut off fruits of Nelumbo nucifera and Nymphaea spp. along with peduncles submerged in water, take them and placed them in the nests, pluck seeds using beaks, and feed their chicks. Adults were also observed consuming such seeds. Apart from hydrophytes, adult birds were found foraging on terrestrial plants, such as C. dactylon and Phyla nodiflora on the banks of water bodies. A list of plant species and their parts consumed by the birds is given in Table 3. In three instances, the adults collected small insects on the leaves of Nymphaea spp. and placed them in front of young chicks in the nests and the chicks swallowed the prey. Eight abandoned nests contained empty shells of snails.

Chicks

A total of 467 chicks at various developmental stages were enumerated at the end of the breeding period. Eighty-nine adults were found moving with a single chick each, 81 adults had two chicks each, 41 adults had three chicks each, eight adults had four chicks each, and the remaining 61 chicks were found wandering independently without any adult/parent birds probably because the parents had abandoned them or the parent birds might have been killed by predators (Image 2f,g).
Notes on the nesting and foraging behaviours of Common Coot Pandian

Table 1. Details of nesting sites, number of birds, nests, distance from water body edges, and chicks of Common Coot counted in the study area.

Name of the village/ study sites	GPS coordinates	Lake/ pond	Number of adult birds counted	Number of active nests counted	Open nests	Nests found in bushes	Number of nests located from edges of water bodies	Total number of chicks counted				
							0–50 m	51–100 m	101–150 m	151–200 m		
1 Veedur	12.073201°N–79.620535°E	Reservoir	45	16	10	6	0	2	3	11	12	
2 Veedur	12.072787°N–79.621395°E	Lake	320	62	28	34	14	27	7	14	72	
3 Vallam	12.253836°N–79.512884°E	Lake	130	41	3	38	35	6	0	11		
4 Aligramam	12.174401°N–79.577936°E	Lake	600	230	20	210	30	110	90	0	60	
5 Keezhadayalam	12.170917°N–79.628823°E	Lake	170	78	4	74	32	12	34	0	22	
6 Thennkalavai	12.178328°N–79.642191°E	Lake	18	6	0	6	2	2	2	0	8	
7 Annamputhur	12.173708°N–79.644004°E	Lake	169	56	0	56	27	9	20	0	12	
8 Ormandur	12.170285°N–79.684428°E	Lake	8	2	0	2	0	1	1	0	0	
9 Urani	12.154740°N–79.907088°E	Lake	260	110	10	100	70	40	0	0	43	
10 Munoor	12.188669°N–79.813499°E	Lake	68	17	0	17	13	4	0	0	7	
11 Thenkolapakam	12.122414°N–79.633037°E	Lake	10	4	0	4	3	1	0	0	6	
12 Ponnampoodi	12.050018°N–79.622626°E	Lake	320	130	20	110	70	60	0	0	23	
13 Eraiyur	12.064028°N–79.649245°E	Lake	210	65	0	65	35	20	10	0	17	
14 Ambuzhukai	12.053135°N–79.652319°E	Lake	215	110	25	85	60	50	0	0	34	
15 Pomboor	12.039517°N–79.601541°E	Lake	2	1	0	1	0	1	0	0	0	
16 Siruvai	12.085022°N–79.603747°E	Lake	12	3	0	3	2	1	0	0	6	
17 Kooteripet	12.152769°N–79.602806°E	Lake	12	4	0	4	2	1	1	0	0	
18 Kodima	12.168730°N–79.596345°E	Lake	22	9	0	9	6	3	0	0	0	
19 Kenipet	12.172076°N–79.606865°E	Lake	27	11	0	11	8	3	0	0	9	
20 Thenpasyar	12.188961°N–79.613161°E	Lake	70	29	4	25	23	6	0	0	0	
21 Jakkampeattai	12.188895°N–79.610063°E	Lake	32	13	0	13	9	4	0	0	8	
22 Karnavoor	12.195530°N–79.651071°E	Lake	278	112	12	100	59	53	0	0	34	
23 Deevanur	12.259598°N–79.557778°E	Lake	73	29	0	29	21	8	0	0	12	
24 Mannampoodi	12.292093°N–79.557769°E	Lake	43	16	0	16	12	4	0	0	5	
25 P.S. Palayam	11.962182°N–79.634226°E	Lake	10	4	0	4	3	1	0	0	0	
26 Sorathur	12.206139°N–79.458818°E	Lake	36	16	0	16	9	7	0	0	0	
27 Kanniym	12.087708°N–79.635363°E	Lake	14	6	0	6	4	2	0	0	0	
28 Kallakulathur	12.128919°N–79.649977°E	Lake	212	76	0	76	55	17	4	0	45	
29 Vengai	12.164787°N–79.659801°E	Lake	22	7	0	7	4	3	0	0	0	
30 Kazhuveli	12.150835°N–79.905336°E	Lake	179	64	0	64	55	9	0	0	21	
Total			3587	1327	136	1191	663	467	172	25	467	
Interactions with other birds and threats

Common Coots maintained strict nesting territory during the breeding season and no other water birds were observed in the vicinity of their nesting and foraging sites. Other water bird species, such as Little Egret *Egretta garzetta*, Lesser Duck *Aythya affinis*, Indian Spot-billed Duck *Anas poecilorhyncha*, Pheasant-tailed Jacana *Hydrophasianus chirurgus*, Little Grebe *Tachybaptus ruficollis*, and Lesser Whistling Duck *Dendrocygna javanica* were found foraging in the water bodies where nests of the Common Coot occurred. Individual Common Coots used to chase/attack when other bird species come in the vicinity of their nesting and foraging sites. Other bird species stop their activities like swimming, foraging, preening, or perching on aquatic plants, and become alert and ready to escape whenever a Common Coot moves nearby. In four instances, individuals of Pheasant-tailed Jacana used abandoned nests of Common Coot as a day roost. Fishing by locals caused disturbance to the foraging of adults and chicks. No killing of adult birds/nest predation, however, was observed (Image 4).

DISCUSSION

Nest construction

In southern Algeria, 63.2% of nests of Common Coot were associated with *Phragmites australis* probably to reduce predation risk from the air (Samraoui & Samraoui 2007). Emergent vegetation is important for habitat selection by Coots, presumably because it provides nesting habitats and protection against aerial predators (Nieczym & Kloskowski 2018). In the present study, 89.75% of nests were built in emergent vegetation *l. carnea* probably to avoid aerial predators as stated by Samraoui & Samraoui (2007) and Nieczym & Kloskowski (2018). Most of the nests of Common Coot were associated with *T. angustifolia* in Algerian Sahara (El-Yamine et al. 2018). Though *T. angustifolia* reeds occurred abundantly in the present study area, the birds did not build nests on these reeds, whereas they preferred *l. carnea* vegetation. The study also revealed that 50% of the nests occurred within 0–50 m and another 35.19% of nests occurred within 51–100 m

Image 1. Nest types of Common Coot in the study area. a—An individual Common Coot searching nest site | b & c—Open type nests, and | d—Nest built on Ipomoea carnea vegetation. © M. Pandian.
Notes on the nesting and foraging behaviours of Common Coot

Pandian

The construction of the highest number of nests near the edges is probably due to the shallow water containing emergent *I. carnea* vegetation, the availability of abundant nest material and food sources like algae and other hydrophytes. Studies over larger geographical areas, however, may throw light on the causes for the construction of more nests near the edges of water bodies.

Common Coots rarely raise two broods per season (Taylor 1998). The present study reveals that despite the conclusion of breeding during the fourth week of March 2022, sporadic nesting by a few pairs continued till the second week of June 2022. It was not possible to ascertain whether these were cases of late breeding or it was a second breeding in the year. Nests often remain used by the family for roosting (Taylor 1998). In the study sites, adult Common Coots with their juveniles not only used their nests for roosting but also expanded the existing nests further by adding fresh nest materials. These observations corroborate the findings of Taylor (1998).

Foraging

The Common Coot is omnivorous, feeding on small prey, eggs of other birds, algae, vegetation, seeds and fruits (Martin et al. 1997). Sago pondweed *Stuckenia pectinata* in France and Germany (Allouche & Tamisier 1984; Hilt 2006) and Watermilfoil *Myriophyllum verticillatum* and horn-wort *Ceratophyllum demersum* in China are their main sources of food (Wang et al. 1990; Zhang & Ma 2011). Submerged vegetation is an important food source for Common Coot and it is positively related to its breeding success (Nieoczym & Kloskowski 2018). The Common Coots exhibit considerable plasticity in their foraging behaviours by foraging on a wide range of plants and animal materials.
Notes on the nesting and foraging behaviours of Common Coot

Pandian

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 November 2022 | 14(11): 22139–22147

Image 2. Nest and foraging habits of Common Coot in the study area. a—Nest found hidden in Ipomoea carnea vegetation | b—Nest containing a partly eaten fruit of Nymphaea spp. | c—An empty shell of snail in nest cup | d—Common Coot consuming Hydrilla verticillata plant | e—Common Coot swallows thalli of blue-green alga Aphanothece stagnina | f—Foraging adult bird with a solitary chick | g—Two chicks foraging without a parent | h—Colonies of blue-green alga Aphanothece stagnina | i—Chara zeylanica thallus | j—Leaves of Otellia alsinoides | k—Hydrilla verticillata plant. © M. Pandian.
such as algae, macrophytes, seeds, insects, and benthic invertebrates (Draulans & Vanherck 1987; Howes & Perrow 1994). In the present study area, diverse animal/plant species, such as snails, insects, five algal species, and eleven macrophytes including submerged, floating and terrestrial plants played an important role as a food source of Common Coots. Hence, the present study corroborates the findings of Martin et al. (1997), Draulans & Vanherck (1987), Howes & Perrow (1994), and Nieoczyn & Kloskowski (2018).

CONCLUSION

The present study area harbours 4054 individuals of Common Coot including 467 juveniles and 1327 nests. Birds collected nest material mainly from *I. carnea* and eight other plant species for the construction of nests. The wetland habitats contained a wide range of food materials and nesting sites. Despite rapid urbanization, industrialization, population increase, habitat destruction, and decreasing areas of wetlands, considerable populations of the Common Coot exist in the study area. A special management plan could be devised for the area, considering the anthropogenic pressures on the habitats like fishing, and harvesting of flowers and reeds by residents.

REFERENCES

Allouche, L. & A. Tamisier (1984). Feeding convergence of gadwall, coot and other herbivorous waterfowl species wintering in the Camargue: a preliminary approach. *Wildfowl* 35: 135–142.

Balachandran, C. (1994). Breeding records of Coot (*Fulica atra* Linn.) in south Tamil Nadu, India. *Journal of the Bombay Natural History Society* 91(2): 314.

Barve, S., T.R.S. Raman, A. Datta & G. Jathar (2020). When and how to study the nesting biology of Indian birds: Research needs, ethical considerations, and best practices. *Indian Birds* 16(1): 1–9.

Bibby, C. J., N.D. Burgess, D.A. Hill & S.M. Mustoe (2000). *Bird census techniques*. 2nd edition. Academic Press, London, UK, 614pp.

BirdLife International (2019). *Fulica atra*. The IUCN Red List of Threatened Species 2019:e.72692913A154269531 (Accessed on 11 May 2022).

Draulans, D. & L. Vanherck (1987). Food and foraging of Coot (*Fulica atra*) on fish ponds during autumn migration. *Wildfowl* 38: 63–69.

El-Yamine, G., N. Yassine, B. Choayb, B. Ettayib, H. Soumia & H. Moussa (2014). Breeding ecology of the Common Coot (*Fulica atra*)...
Notes on the nesting and foraging behaviours of Common Coot

Gill, F., D. Donsker & P. Rasmussen (eds.) (2020). Flufftails, finfoots, rails, trumpeters, cranes, limpkin. IOC World Bird List (Version 10.1. International Ornithology Union (Accessed on 10 June 2022).

Hilt, S. (2006). Recovery of Potamogeton pectinatus L. stands in a shallow eutrophic lake under extreme grazing pressure. Hydrobiologia 570: 95–99.

Himmatsinhji, M.K., S.N. Varu & N.N. Bapat (1991). Occurrence, status and breeding of Podiceps cristatus (Linn.) and Fulica atra Linn. Journal of the Bombay Natural History Society 88(3): 439–441.

Howes, J.R. & M.R. Perrow (1994). Macrophyte grazing by coot in the boards: bird-resource interactions. In. Pitt, J.A. & G.L. Phillips (eds.), The Development of Biomanipulation Techniques & Control of Phosphorus Release from sediments. EC LIFE project 92-3/UK/031, NRI Report No.475121A. National River Authority/Boards Authority, Bristol, UK.

Khacher, L. (1978). The Coot Fulica atra (Linn.) nesting near Nasik, Maharashtra. Journal of the Bombay Natural History Society 74(3): 525.

Martin, R.P., J.H. Schutten, R.H. John, T. Holzer, F.J. Madgwick & J.D.J. Adian (1997). Interactions between coot (Fulica atra) and submerged macrophytes: the role of birds in the restoration process. Hydrobiologia 342/343: 241–255.

Nadarajan, N.R., P.A. Azeez & C.R. Ajithkumar (1993). The Coot Fulica atra (Linn.) breeding further south in the Indian peninsula. Journal of the Bombay Natural History Society 90(2): 289-290.

Nieczym, M. & J. Kloskowski (2018). Habitat selection and reproductive success of Coot Fulica atra on ponds under different fish size and density condition. Hydrobiologica 820: 267–279.

Patel, S.B., A.D. Patel, G. Sharma, R.B. Chauhan & B.N. Parasharya (1998). Recent records of the Coot, Fulica atra, Breeding in Gujarat. Pavo 36(1 & 2): 124.

Samraoui, F. & B. Samraoui (2007). The reproductive ecology of the Coot Fulica atra L. in the Hauts Plateaux, northeast Algeria. Waterbirds 30: 133–139.

Santharam, V. (1996). Comments on some new bird records from Tamil Nadu. Journal of the Bombay Natural History Society 99(3): 589–590.

Taylor, B. (1998). Rails: A Guide to the Rails, Crakes, Gallinules and Coots of the World. Pica Press, Sussex, 600 pp.

Viluppuram (2021). Government of Tamil Nadu: Viluppuram District Website. https://www.viluppuram.nic.in [Accessed on 10 June 2022].

Wang, J.S., S.Q. Zhang, J.S. Liu, C.J. Yang & B.C. He (1990). The breeding ecology of the Common Coot. Journal of Zoology 25(3): 24–29.

Zhang, W., T. Liu, K. Cheng & P. Rummy (2018). Declining water depth delayed the breeding time of Fulica atra, not human disturbance. *PLoS ONE* 13(8): e0202684. https://doi.org/10.1371/journal.pone.0202684

Zhang, W.W. & J.Z. Ma (2011). Breeding behaviour of Common Coot (Fulica atra). Chinese Journal of Ecology 30(8): 1686–1690.
JOTT is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJorL WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to: The Managing Editor, JOTT, c/o Wildlife Information Liaison Development Society, 43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641035, India
ravi@threatenedtaxa.org

Reviewers 2019–2021
Due to paucity of space, the list of reviewers for 2018–2020 is available online.
Communications

New records of pteridophytes in Mount Matutum Protected Landscape, South Central Mindanao, Philippines with notes on its economic value and conservation status
– Christine Dawn Galope-Obemio, Inocencio E. Buot Jr. & Maria Celeste Banaticla-Hilario, Pp. 22039–22057

Some threatened woody plant species recorded from forests over limestone of the Philippines
– Inocencio E. Buot Jr., Marne G. Origenes, Ren Divien R. Obeña, Elaine Loreen C. Villanueva & Marjorie D. delos Angeles, Pp. 22058–22079

Status of mangrove forest in Timaco Mangrove Swamp, Cotabato City, Philippines
– Cherie Cano-Mangaoang, Zandra Caderon Amino & Baingan Brahim Mastur, Pp. 22080–22085

A comparative analysis of the past and present occurrences of some species of Pophiopedium (Orchidaceae) in northeastern India using MaxEnt and GeoCAT
– Debonina Dutta & Aparajita De, Pp. 22086–22097

Foraging activity and breeding system of Avicennia officinalis L. (Avicenniaceae) in Kerala, India
– K. Vinaya & C.F. Binoy, Pp. 22098–22104

Diversity patterns and seasonality of hawkmoths (Lepidoptera: Sphingidae) from northern Western Ghats of Maharashtra, India
– Aditi Sunil Shere-Kharwar, Sujata M. Magdum, G.D. Khedkar & Supriya Singh Gupt, Pp. 22105–22117

Population trends of Mugger Crocodile and human-crocodile interactions along the Savitri River at Mahad, Maharashtra, India
– Utkarsha Manish Chavan & Manoj Ramakant Borkar, Pp. 22118–22132

Paresis as a limiting factor in the reproductive efficiency of a nesting colony of Lepidochelys olivacea (Eschscholtz, 1829) in La Escobilla beach, Oaxaca, Mexico
– Alejandra Buenrostro-Silva, Jesús García-Grajales, Petra Sánchez-Nava & María de Lourdes Ruiz-Gómez, Pp. 22133–22138

Notes on the nesting and foraging behaviours of the Common Coot Fulica atra in the wetlands of Viluppuram District, Tamil Nadu, India
– M. Pandian, Pp. 22139–22147

Population abundance and threats to Black-headed Ibis Threskiornis melanocephalus and Red-naped Ibis Pseudibis papillosa at study sites in Hajjar district, Haryana, India
– Anjali & Sarita Rana, Pp. 22148–22155

Crop raiding and livestock predation by wildlife in Khaptad National Park, Nepal
– Ashish Bashyal, Shyam Sharma, Narayan Koirala, Nischal Shrestha, Nischit Aryal, Bhupendra Prasad Yadav & Sandeep Shrestha, Pp. 22156–22163

Review

An annotated checklist of odonates of Amboli-Chaukul-Parpoli region showing new records for the Maharashtra State, India with updated state checklist
– Dattaprasad Sawant, Hemant Ogale & Rakesh Mahadev Deulkar, Pp. 22164–22178

Short Communications

The new addition of Blue Pimpernel of Primulaceae to the state flora of Assam, India
– Sushmita Kalita, Barnali Das & Namita Nath, Pp. 22179–22183

A new species of genus Neocerura Matsumura, 1929 (Notodontidae: Lepidoptera) from India
– Amritpal Singh Kaleka & Rishi Kumar, Pp. 22184–22189

Rediscovery of an interesting preying mantis Deiphobella laticeps (Mantodea: Rivetinidae) from Maharashtra, India
– Gauri Sathaye, Sachin Ranade & Hemant V. Ghat, Pp. 22190–22194

Camera trapping records confirm the presence of the elusive Spotted Linsang Prionodon pardicolor (Mammalia: Carnivora: Prionodontidae) in Murlen National Park (Mizoram, India)
– Amit Kumar Bal & Anthony J. Giordano, Pp. 22195–22200

Notes

First sighting record of the Orange-breasted Green-Pigeon Treron bicinctus (Aves: Columbiformes: Columbidae) from Chittaranjan, West Bengal, India
– Shahbaz Ahmed Khan, Nazneen Zehra & Jamal Ahmad Khan, Pp. 22201–22202

Book Reviews

Decoding a group of winged migrants!
– Review by Priyanka Iyer, Pp. 22203–22204

First steps of citizen science programs in India
– Review by Aishwarya S. Kumar & Lakshmi Nair, Pp. 22205–22206