Genome-Wide Identification and Characterization of TCP Family Genes in *Brassica juncea* var. *tumida*

Jing He, Equal first author, 1, Xiaohong He, Equal first author, 1, Pingan Chang 1, Huaizhong Jiang 1, Daping Gong, Correspond. 2, Quan Sun, Correspond.

1 Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
2 Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China

Corresponding Authors: Daping Gong, Quan Sun
Email address: gongdaping@caas.cn, sunquan@cqupt.edu.cn

Background

Teosinte branched1/ *Cycloidea* /proliferating cell factors (TCPs) are plant-specific transcription factors widely involved in leaf development, flowering, shoot branching, the circadian rhythm, hormone signaling, and stress responses. However, the TCP function in *Brassica juncea* var. *tumida*, the tumorous stem mustard, has not yet been reported. This study identified and characterized the entire TCP family members in *B. juncea* var. *tumida*.

Methods

We identified 62 BjTCP genes from the *B. juncea* var. *tumida* genome and analyzed their phylogenetic relationship, gene structure, protein motifs, chromosome location, and expression profile in different tissues.

Results

Of the 62 BjTCP genes we identified in *B. juncea* var. *tumida*, containing 34 class I and 28 class II subfamily members, 61 were distributed on 18 chromosomes. Gene structure and conserved motif analysis showed that the same clade genes displayed a similar exon/intron gene structure and conserved motifs. Cis-acting element results showed that the same clade genes also had a similar cis-acting element; however, subtle differences implied a different regulatory pathway. The BjTCP18s members were low-expressed in Dayejie strains and the unswelling stage of Yonganxiaoye strains. Treatment with gibberellin (GA) and salicylic acid (SA) showed that GA and SA affect the expression levels of multiple TCP genes.

Conclusion

We performed the first genome-wide analysis of the TCP gene family of *B. juncea* var. *tumida*. Our results have provided valuable information for understanding the classification and functions of TCP genes in *B. juncea* var. *tumida*.
Genome-Wide Identification and Characterization of TCP Family Genes in *Brassica juncea* var. *tumida*

Jing He\(^{1}\#\), Xiaohong He\(^{1}\#\), Pingan Chang\(^{1}\), Huaizhong Jiang\(^{1}\), Daping Gong\(^{2}*\), Quan Sun\(^{1}*)

1. Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing, China.
2. Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China

\# these authors contributed equally to this work.

*Correspondence:
Daping Gong: gongdaping@caas.cn
Quan Sun: sunquan@cqupt.edu.cn

Abstract

Background

Teosinte branched1/*Cycloidea*/proliferating cell factors (TCPs) are plant-specific transcription factors widely involved in leaf development, flowering, shoot branching, the circadian rhythm, hormone signaling, and stress responses. However, the TCP function in *Brassica juncea* var. *tumida*, the tumorous stem mustard, has not yet been reported. This study identified and characterized the entire TCP family members in *B. juncea* var. *tumida*.

Methods

We identified 62 BjTCP genes from the *B. juncea* var. *tumida* genome and analyzed their phylogenetic relationship, gene structure, protein motifs, chromosome location, and expression profile in different tissues.
Results

Of the 62 BjTCP genes we identified in B. juncea var. tumida, containing 34 class I and 28 class II subfamily members, 61 were distributed on 18 chromosomes. Gene structure and conserved motif analysis showed that the same clade genes displayed a similar exon/intron gene structure and conserved motifs. Cis-acting element results showed that the same clade genes also had a similar cis-acting element; however, subtle differences implied a different regulatory pathway. The BjTCP18s members were low-expressed in Dayejie strains and the unswelling stage of Yonganxiaoye strains. Treatment with gibberellin (GA) and salicylic acid (SA) showed that GA and SA affect the expression levels of multiple TCP genes.

Conclusion

We performed the first genome-wide analysis of the TCP gene family of B. juncea var. tumida. Our results have provided valuable information for understanding the classification and functions of TCP genes in B. juncea var. tumida.

Keywords: tumorous stem mustard, TCP Transcription factors, gene expression, swelling

Introduction

The teosinte branched1/Cycloidea/proliferating cell factor (TCP) family is a group of plant-specific transcription factors (TFs) reportedly involved in embryonic growth (Takeda et al. 2003), leaf development (Bresso et al. 2018; Danisman et al. 2012; Du et al. 2017; Kieffer et al. 2011; Liu et al. 2018b; Ma et al. 2016; Uberti-Manassero et al. 2012; Wang et al. 2018), branching (Aguilar-Martinez et al. 2007; Brewer 2015; Dixon et al. 2018; Gonzalez-Grandio et al. 2013; Gonzalez-Grandio et al. 2017; Martin-Trillo et al. 2011; Maurya et al. 2020; Niwa et al. 2013; Seale et al. 2017; Shen et al. 2019; Wang et al. 2019a), flowering (Aguilar-Martinez et al. 2007; Damerval et al. 2007; Finlayson 2007; Madrigal et al. 2017; Navarro et al. 2015; Yang et al. 2015), the circadian rhythm (Beveridge et al. 2003; Giraud et al. 2010), hormone signaling (Wang et al. 2019a), and stress responses (Danisman 2016; Guan et al. 2017; Martin-Trillo and
The TCP domain is highly conserved in the TCP family and is formed by an N-terminal region enriched in basic amino acids, followed by two amphipathic α-helices connected by a disordered loop (Cubas et al. 1999; Doebley et al. 1997).

On the basis of this conserved domain, TCP proteins are divided into two subfamilies, class I and class II (Li 2015; Martin-Trillo and Cubas 2010). The difference between the two classes is the deletion of four amino acids in the TCP domain in class I. In Arabidopsis, TCP2–5, TCP10, TCP13, TCP17, and TCP24 are related to lateral organ organogenesis and control leaf development (Efroni et al. 2008; Hay et al. 2004; Koyama et al. 2007; Qin et al. 2005). Belonging to the same subfamily, branched1 (TCP18) and branched2 (TCP12) play an important role in controlling branch outgrowth (Aguilar-Martinez et al. 2007; Gonzalez-Grandio et al. 2013; Muhr et al. 2016; Wang et al. 2019a). By interacting with florigen proteins FLOWRING LOCUS T (FT), TCP18 inhibits floral transition of axillary meristems in Arabidopsis (Niwa et al. 2013).

The BRC1 homolog gene in the hybrid aspen also mediates photoperiodic control of seasonal growth (Maurya et al. 2020), and TIG1, encoding a TCP TF, contributes to plant architecture domestication in rice (Zhang et al. 2019). TCP21 participates in the circadian rhythm by binding to TIMING OF CAB EXPRESSION 1 (TOC1) and the CIRCADIAN AND CLOCK ASSOCIATED1 (CCA1) promoter (Pruneda-Paz et al. 2009). In addition, TCP proteins, such as brassinosteroids (BRs), jasmonic acid, indole-3-acetic acid (IAA), and strigolactone (SL), involved in plant growth and development, are usually regulated by phytohormone synthesis and metabolism (Braun et al. 2012; Danisman et al. 2012; Li 2015; Liu et al. 2017; Muhr et al. 2016; Qin et al. 2005; Schommer et al. 2008). Studies have also reported on TCP genes regulated by sugars (Wang et al. 2019b) and light (Kebrom et al. 2006).

Recently, TCP proteins have been shown to be related to defense responses. For example, TCP13, TCP14, and TCP19 are directly targeted by effectors from Pseudomonas syringae and Hyaloperonospora arabidopsidis (Mukhtar et al. 2011). Kim et al. (2014) reported that TCP8, TCP13, TCP15, TCP20, TCP22, and TCP23 can interact with the Arabidopsis immune adaptor SUPPRESSOR OF rps4-RLD1 (SRFR1), which is a negative regulator of effector-triggered
immunity (Kim et al. 2014). TCP genes are also regulated by microRNA 319 (miR319) and are involved in leaf development in *Arabidopsis* (Bresso et al. 2018; Palatnik et al. 2003; Schommer et al. 2008; Wang et al. 2018).

The TCP family has been identified in many different plant species, such as 24 TCP genes in *Arabidopsis* (Martin-Trillo and Cubas 2010), 28 in *Oryza sativa*, 30 in *Lycopersicon esculentum* (Parapunova et al. 2014), 33 in *Populus euphratica* (Ma et al. 2016), 27 in *Citrus lanatus* (Shi et al. 2016), 66 in *Triticum aestivum* (Zhao et al. 2018), 75 in *Gossypium barbadense* (Zheng et al. 2018), 31 in *Solanum tuberosum* (Wang et al. 2019c), 39 in *Brassica rapa L. ssp. Pekinensis* (Liu et al. 2018b), and 39 in *B. rapa ssp. rapa* (Du et al. 2017). Liu et al. performed a genome-wide systematic identification of the TCP proteins in the major plant lineages (47 species) (Liu et al. 2019).

The tumorous stem mustard (*B. juncea* var. tumida) is an important crop of great economic value in China, so improving its yield is key issue for the Chinese pickle industry. The growth of *B. juncea* var. tumida involves four stages: germination, seedling, stem swelling, and flowering. Stem swelling is essential for tumorous stem formation, and the stem swelling–flowering balance is directly related to the quality and yield of tumorous mustards. *B. juncea* var. tumida is an annual plant, and for stem swelling, it is essential that the seeds be sown between mid-September and mid-October in Chongqing and other valleys of the Yangtze River, China. Therefore, the production period of edible stems is limited.

TCP proteins are extensively involved in branching, flowering, development, and plant morphology (Aguilar-Martinez et al. 2007; Bai et al. 2012; Braun et al. 2012; Danisman et al. 2012; Dixon et al. 2018; Feng et al. 2018; Finlayson et al. 2010; Gonzalez-Grandio et al. 2013; Gonzalez-Grandio et al. 2017; Ho and Weigel 2014; Li 2015; Martin-Trillo et al. 2011; Nicolas et al. 2015; Niwa et al. 2013; Prusinkiewicz et al. 2009; Rameau et al. 2014; Seale et al. 2017; Teichmann and Muhr 2015). However, there are few reports on the TCP family in *B. juncea* var. tumida, and whether TCP proteins control stem swelling and flowering in *B. juncea* var. tumida is still unknown.
Since the entire genome of *B. juncea* var. tumida was sequenced (Yang et al. 2016), this study performed a genome-wide analysis of *TCP* genes for the first time. Of the 62 *BjTCP* genes identified, we analyzed their phylogenetic relationship, gene structure, protein motifs, chromosome location, and expression profile in different tissues. The results can provide valuable information for the classification of *BjTCP* genes and lay the foundation for exploring the molecular mechanism underlying stem swelling and flowering orchestrated by *TCP* genes in *B. juncea* var. tumida.

Materials and Methods

Plant materials, growth conditions, and treatment

B. juncea var. tumida cultivar YA (with swollen tumorous stems) was used to analyze gene expression patterns. Seeds were sowed into 2:1 vermiculite:turfy soil and cultured at a constant temperature of 22°C in a 16/8 h light/dark cycle in a culture room. Next, 3-week-old seedlings were used for exogenous hormone treatment; the seedlings were sprayed with 100 µM salicylic acid (SA) (Feng et al. 2018) and 100 µM gibberellin (GA) (Rosa et al. 2017). The second true leaf on each seedling was sampled at 0 (control), 2, 4, 6, 8, and 24 h after spraying. All treatments were repeated thrice, and each treatment was given to at least 20 seedlings. All materials were frozen immediately in liquid nitrogen and stored at −70°C until RNA isolation.

Identification of TCP proteins in *B. juncea* var. tumida

The genome sequences of *B. juncea* var. tumida (version 1.5), *B. nigra* (version 1.1), and *B. rapa* (version 3.0) were downloaded from the Brassica database (BRAD; http://brassicadb.org/brad/datasets/pub/Genomes/) (Cheng et al. 2011; Yang et al. 2016). In addition, the TCP domain in the Pfam database (accession no. PF03634) was downloaded (Finn et al. 2010), and the domain was searched in the BRAD using HMMER 3.0 with an E-value of <1e-6 (Finn et al. 2011). To confirm the results obtained by the HMMER algorithm, the TCP domain was further verified with Pfam and Smart databases (Finn et al. 2010; Letunic and Bork...
The TCP protein sequences of *A. thaliana* were downloaded from the *Arabidopsis* information resource website (https://www.arabidopsis.org).

Sequence and phylogenetic analysis

We used the ClustalW program to perform multiple alignments of TCP protein sequences from *B. juncea* var. tumida and *A. thaliana* (Thompson et al. 1997). A phylogenetic tree was constructed using MEGA 7.0 software and the maximum likelihood method based on the Poisson correction model and a bootstrap test replicated 1000 times (Tamura et al. 2013). A gene structure diagram was drawn using the online software of the GSDS2.0 server (http://gsds.cbi.pku.edu.cn/) (Hu et al. 2015). The physical location data of *BjTCP* genes were retrieved from the *B. juncea* var. tumida genome. We subsequently mapped these *TCP* genes using MapInspect software. Conserved protein motifs were identified by using default parameters for the Multiple Em for Motif Elicitation (MEME; http://meme-suite.org/) program, and maximum 12 motifs were set. Subcellular localization of *BjTCPs* was predicted using ProtComp9.0 (www.softberry.com), and the identified protein motifs were further annotated using Weblogo (http://weblogo.berkeley.edu/). Finally, 2000 bp of the 5′ sequence were used as the promoter region of each TCP gene to analyze the cis-acting elements using PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Lescot et al. 2002).

Chromosomal location and prediction of miR319 target genes

The physical location data of *BjTCP* genes were retrieved from the *B. juncea* var. tumida genomes. The mapping of these TCP genes was subsequently performed using MapInspect software. To predict miR target genes, we analyzed the full lengths of candidate TCP coding sequences using the psRNATarget website (Dai and Zhao 2011).

Expression profile of TCP genes

RNA-sequencing (RNA-seq) data from our previous research were downloaded from the National Center for Biotechnology Information Sequence Read Archive database
With the following accession numbers: SRX108496 (Dayejie [DY] stems, a mutant variety without inflated stems, were collected 22 weeks after seeding), SRX108498 (YA1; Yonganxiaoye [YA] stems were collected 18 weeks after seeding), SRX108499 (YA2; YA stems were collected 20 weeks after seeding), SRX108500 (YA3; YA stems were collected 22 weeks after seeding), SRX108501 (YA4; YA stems were collected 25 weeks after seeding), and SRX108502 (YAr; YA mix roots were collected 20 and 22 weeks after seeding) (Sun et al. 2012). Clean reads filtered from raw reads were mapped onto B. juncea genome version 1.5 (http://brassicadb.org/brad/datasets/pub/Genomes/Brassica_juncea/V1.5/) (Yang et al. 2016) using Tophat2 with default parameters (Trapnell et al. 2009; Trapnell et al. 2012). Gene expression levels of individual genes were quantified using reads per kilobase of transcript per million (RPKM) values using Cufflinks 2.2.1 with default parameters (Trapnell et al. 2012).

RNA extraction and real-time quantitative PCR analysis

Total RNA was extracted from different plant materials using RNA plant plus reagent (Tiangen Biotech Co., Ltd., Beijing, China) and treated with DNase I (Takara, Qingdao, China) to remove genomic DNA. Reverse transcription was performed using the Hiscript II 1st strand complementary DNA (cDNA) synthesis kit (Vazyme, Nanjing, China). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed with 20 μL volume using TB Green™ Premix Ex Taq™ II (Tli RNaseH Plus) (Takara). BjActin was used as the internal reference gene for qRT-PCR; Supplementary Table S1 lists gene-specific primers.

Three replicate samples of each period were subjected to three biological replicates using the BioRad IQ5 Real-Time PCR instrument (BioRad Laboratories, Hercules, CA, USA). Amplification parameters were as follows: activation at 50°C for 2 min, predenaturation at 95°C for 2 min, denaturation at 95°C for 15 s, and annealing at 60°C for 1 min for 40 cycles. Finally, the relative gene expression level was calculated using the 2^(-ΔΔCt) method (Livak and Schmittgen 2001).
Results

Identification of TCP family members in *B. juncea* var. tumida

To identify TCP proteins in *B. juncea* var. tumida, we screened out 63 genes and confirmed the domain using Pfam and Smart databases. Finally, we identified 62 *BjTCP* genes in *B. juncea* var. tumida. On the basis of similarity with *A. thaliana* homology genes, the 62 *BjTCP* genes were named with *BjTCP1a-BjTCP24d* (Table 1). The coding amino acids were from 171 to 639, with a molecular weight of 18.6–71.87 kDa and an isoelectric point (pI) of 5.5–10.18. Of the 62 genes, 61 were located on 18 chromosomes, except *BjTCP17b* anchored in contig6125. There was one TCP gene each on chromosomes A04, A08, A10, B01, and B06; two *TCP* genes each on chromosomes A01 and A05; and three to seven genes on other chromosomes (Figure 1A-R). We also found that most of the BjTCP proteins were localized in the nucleus, except BjTCP13a-c, whose location information was not found (Table 1), indicating that BjTCPs are TFs. These 62 TCP proteins may have multiple functions, and they mainly enriched in multiple GO terms, such as biological regulation, response to stimulus, rhythmic process and so on (Supplementary Table S2).

The phylogenetic tree of *BjTCP* genes and *AtTCPs*

Multiple-sequence alignment of TCP proteins showed that the conserved region was mainly focused on the TCP domain (Supplementary Figure S1).

To assess the phylogenetic relationships of the TCP family, we used the predicted TCP protein sequences from *B. juncea* var. tumida and *A. thaliana* to construct a phylogenetic tree. Results indicated that all TCP proteins are divided into two groups, class I and class II (Figure 2A). In class II, the TCP proteins were further subdivided into CYC, TB1, and CIN groups. The CYC group was mainly clustered by AtTCP1 and AtTCP12, containing four AtTCP1 homologous proteins BjTCP1a-d, BjTCP2a-d, and two AtTCP12 homologous proteins BjTCP12a-b. The TB1 group comprised AtTCP18 and four homologous TCP proteins BjTCP18a-d. In the CIN group, we found no proteins to be homologous with AtTCP4 and AtTCP10, while the other TCP
proteins had at least one homologous protein, such as AtTCP24 (four homologous proteins
BjTCP24a–d), AtTCP13 (three homologous proteins BjTCP13a–c), AtTCP17 (two homology
proteins BjTCP17a and BjTCP17b), and AtTCP5 (three homologous proteins BjTCP5a–c). In
class I, we found no homologous proteins in B. juncea var. tumida, except AtTCP11, AtTCP16,
and AtTCP23, but the other TCP proteins had multiple homologous proteins, such as AtTCP15,
and AtTCP21 even had six homologous proteins.

Interestingly, a series of genes, such as BjTCP15b, BjTCP15c, BjTCP1b, and BjTCP22b, were
located on the same chromosome A07 (Figure 1G). Their homologous genes (BjTCP15e,
BjTCP15f, BjTCP1c, and BjTCP22d) showed the same order on chromosome B03 (Figures 1M
and 2). The eight genes were searched in B. rapa (AA) and B. nigra (BB) using the BLASTP
program, and four highly similar genes were screened out in B. rapa (AA) and B. nigra (BB).
The evolutionary relationships suggested that the four genes located on chromosome A07 were
clustered with the homologous genes of a subgenome ancestor B. rapa (AA) in one branch
(Supplementary Figure S2). The four genes on chromosome B03 also corresponded to the B
subgenome ancestor B. nigra (BB) (Supplementary Figure S2). These results indicated that the
fragments between the four genes of chromosomes A07 and B03 might be formed from B. rapa
(AA) and B. nigra (BB), respectively.

BjTCP proteins had a typical bHLH motif in all identified TCP proteins (Figure 2B, C). In A.
thaliana, the main difference between classes I and II was the identity of the residue at positions
10–15 of the TCP domain. Most class I BjTCP proteins lost four amino acids at positions 9–13
and had Gly at position 15, while class II BjTCP proteins had Asp at position 15 in the TCP
domain (Figure 2B, C).

Gene structures and conserved motif analysis of BjTCP genes

To further analyze the characteristic of BjTCP genes, we explored the exon/intron gene structure.
Results indicated that most BjTCP genes only have one exon, except BjTCP18s, BjTCP12s,
BjTCP20b, and BjTCP13b, which contain two or more exons. We also found that the genetic
structure and evolutionary relationships of all TCP family members of B. juncea var. tumida are
closely related. Genes within the same subfamily often showed similar gene structures. *BjTCP12a* and *BjTCP12b* comprised two exons, while *BjTCP18a-d* comprised more than three exons (Figure 3A, B). In Chinese cabbage, the homologous *BrTCP1a* and *BrTCP1b* genes have two exons, and this exon number was highly similar to *B. juncea* var. tumida’s homology genes; for example, *BrTCP6–13* and *BrTCP15* had only one exon. Although *BjTCP18a* and *BjTCP18b* have two exons, *BjTCP18c* and *BjTCP18d* have four exons, which is similar with their homologous *B. rapa* *BrTCP18a* and *BrTCP18b* genes (Liu et al. 2018b). The conserved motifs in these *BjTCP* genes also showed similar characters within the same subgroup, such as three similar motifs in all *BjTCP15* homologous proteins and five similar motifs in all *BjTCP21* homologous proteins (Figure 3C).

BjTCP genes with miR319 target sites

In *Arabidopsis*, *AtTCP2-4*, *AtTCP10*, and *AtTCP24* are post-transcriptionally regulated by miR319 (Bresso et al. 2018; Palatnik et al. 2003). In *B. juncea* var. tumida, the evolutionarily closest homologs of these genes are *BjTCP2a–d* and *BjTCP24a–d*, which contain sequences well matched with miR319 and might be the targets of miRs (Figure 4). *BjTCP3* did not contain the putative miR319 recognition site, but mismatches of other genes mainly existed at 3’ of miR319 and 5’ of the targeted *BjTCP* mRNA, and core target sequences were conserved.

Promoter cis-acting element analysis of BjTCP genes

The *cis*-acting elements in the promoter of a gene usually regulate gene expression and function. In this study, we found multiple *cis*-acting elements in TCP gene promoters, such as plant hormone response elements, light response elements, stress response elements, meristem expression, circadian control, and low-temperature and wound response elements (Figure 5 and Supplementary Table S3).

For hormone-related *cis*-acting elements, we identified abscisic acid (ABA) response elements (ABREs) and found at least two or more ABRE *cis*-acting elements in *B. juncea* var. tumida TCP gene promoters, expect *BjTCP5s*, *BjTCP18s*, *BjTCP19*, and *BjTCP24*. Auxin response elements
included AuxRP and TGA elements, and AuxRP had a relatively small number of components, mainly in the *BjTCP5*, *BjTCP19*, and *BjTCP20* promoters, while the TGA element was relatively more extensively distributed. The MeJA response elements CGTCA and TGACG were found on most promoters, except for *BjTCP12*, *BjTCP19*, and *BjTCP20*. We also found a number of other hormone-related cis-elements, such as ethylene (ET) response element (ERE), GA response elements (GAREs) P-box and TATC-box, and the SA response element TCA element in some *BjTCP* promoters.

In addition, we found a large number of cis-acting elements related to light response in these promoters, including the 3-AF1 binding site, ACE, AE-box, TCT-motif, ATC-motif, Box 4, GATA-motif, G-Box, GT1-motif, and I-box. We also found other elements, including WUN-motif (related to wounds), meristem element (related to the meristem), circadian element (related to circadian control), LTR element (related to low-temperature induction), and defense and stress responsiveness elements (including MBS, Myb, Myc, STRE, TC-rich, W box, and ARE elements). In particular, we identified MYB and MYC-motif elements in almost all TCP promoters.

Tissue-specific expression profiles of *BjTCP* genes

In *A. thaliana*, TCP proteins were found to be mainly involved in development and defense. We analyzed the expression patterns of all *TCP* genes in different development periods and tissues on the basis of previous RNA-seq data (Sun et al. 2012). *BjTCP1a* and *BjTCP5c* expression could not be detected in all samples. However, 26 TCP genes were highly expressed in at least two tissues (log2 (fragments per kilobase of transcript per million [FPKM]) ≥ 3; subgroup half-bottom in Figure 6). *BjTCP13b* and *BjTCP5a* were weakly expressed in no-swelling strain (DA) samples. We did not detect *BjTCP1b*, *BjTCP1c*, *BjTCP1d*, *BjTCP5c*, *BjTCP7c*, *BjTCP13a*, *BjTCP13c*, *BjTCP18d*, and *BjTCP19* expression in DY stem tissue. *BjTCP12a*, *BjTCP12b* and *BjTCP18c* were weakly expressed in DY, YA1, and/or YA2 strains (Figure 6).

In addition, we analyzed the expression profiles of *B. juncea* var. tumida seedlings and tumorous stems. The expression levels of these four genes (*BjTCP18a-d*) were low in these tissues; the
Expression levels gradually decreased along with the swelling of tumorous stems (Supplementary Figure S3).

Expression analysis of **BjTCP** genes in response to exogenous hormones

To predict the possible functions of TCP genes in environmental adaptation, we investigated their transcriptional profile after SA and GA treatment. Multiple gene family members in the same branch often have highly similar sequence characteristics and contain similar \textit{cis}-acting elements (Figure 5), so we selected one corresponding homologous gene from each \textit{A. thaliana} TCP for qRT-PCR analysis.

After SA treatment for 2–8 h, almost all the detected \textit{BjTCP} genes were upregulated, except \textit{BjTCP1a}, \textit{BjTCP12a}, and \textit{BjTCP17a}, while after 24 h, the \textit{BjTCP} genes were downregulated to a low level. \textit{BjTCP9a}, \textit{BjTCP13a}, \textit{BjTCP15a}, \textit{BjTCP18a}, \textit{BjTCP19a}, \textit{BjTCP22a}, and \textit{BjTCP24a} were induced at early stages and maintained at a relatively high level until 8 h. \textit{BjTCP17a} was induced slowly and was highly expressed 24 h after SA treatment (Figure 7).

After GA treatment, we did not detect \textit{BjTCP12a}, \textit{BjTCP17a}, and \textit{BjTCP20a} expression. In contrast, the expression of other genes was induced at early stages but decreased to a low level mainly after 8 h (Figure 7).

Discussion

Plant-specific TCP TFs play various roles in plant growth and development. In many plants, the general organization of the TCP family is conserved, and there are more members in class I compared to class II (Du et al. 2017; Li et al. 2017; Liu et al. 2018b; Ma et al. 2014; Ma et al. 2016; Shi et al. 2016; Wang et al. 2018; Wang et al. 2019c; Zhao et al. 2018; Zheng et al. 2018).

In \textit{B. juncea} var. tumida, we found 62 \textit{BjTCP} genes. As a tetraploid plant, \textit{B. juncea} var. tumida contains twice as many TCP proteins as \textit{Arabidopsis} (24 TCP proteins), indicating that some genes are duplicated during evolution. However, recent studies have reported 36 and 38 TCP genes in \textit{B. rapa} (AA) and \textit{B. oleracea} (CC), respectively (Liu et al. 2019), indicating that the \textit{B. juncea} genome might contain >70 TCP genes, although we identified only 62. We used
HMMER 3.0 to search for TCP domain proteins and further removed members that did not contain the TCP domain using the Pfam database. We did not find the homologous genes of AtTCP4, AtTCP10, AtTCP11, and AtTCP16, which is similar to the study by Liu et al. (2018b), who did not find the homologous genes of ATCP11 and ATCP16 during the identification of the TCP family in the Chinese cabbage using the BLASTP program (Liu et al. 2018b). In this study, BjuA003953, BjuA026354, BjuB013551, and BjuB044682 (named BjTCP2a–d) were found to be similar to AtTCP2, but the confidence level was low when analyzed using the Pfam database, and MEME analysis showed that no motif included the TCP domain. In addition, the BjTCP2a-d amino acid sequence was not clustered with the homolog protein AtTCP2 in the phylogenetic tree, which might be because of the incompletely predicted amino acid sequences during assembling of the genome sequence.

The exon/intron gene structure, conserved motif distribution patterns, and BjTCP homologous gene domain often show high similarity, such as BjTCP21a-f, BjTCP12a/b, and so on, and we believe that these similarities within the cluster of homologous genes members suggest that they might have a similar function during B. juncea var. tumida growth and development.

We located two genes clusters (BjTCP15b, BjTCP15c, BjTCP1b, and BjTCP22b) and (BjTCP15f, BjTCP15e, BjTCP1c, and BjTCP22d) on chromosomes A07 and B03, respectively. Evolutionary relationship results showed the allopolyploid B. juncea var. tumida (B. juncea, AABB) might form by hybridization between the diploid ancestors of B. rapa (AA) and B. nigra (BB), followed by spontaneous chromosome doubling. These results also indicated that the division of BjTCP15b and BjTCP15c might occur earlier than tetraploid formation.

As mentioned before, there are 24 TCP genes in Arabidopsis. Some corresponding homologous of TCP genes were not found in B. juncea var. tumida, such as TCP4, TCP10, TCP11, and TCP16, probably due to gene loss events during evolution. B. juncea var. tumida is a tetraploid plant that belongs to the cruciferous near-source species of Arabidopsis. In B. juncea var. tumida, some TCP genes have more than two homologous genes, such as BjTCP1 (four homologous genes), BjTCP18 (four homologous genes), BjTCP21 (six homologous genes), and BjTCP15 (six...
homologous genes). These genes may be formed by multiple gene duplication events, and the functions of these paralogous genes gradually differentiated during evolution. Most paralogous genes had similar cis-acting elements, but there were a few differences. For example, the four paralogues of BjTCP18 had no ABA and auxin cis-acting elements, but BjTCP18b was the only member with circadian regulatory elements, suggesting that BjTCP18b might be involved in the circadian rhythm. Correspondingly, the expression patterns of these paralogous genes were also different.

In addition, six homologous genes of AtTCP15 and AtTCP21 in B. juncea var. tumida are interesting. AtTCP15 plays an important role in regulating endoreduplication during development in Arabidopsis (Li et al. 2012; Uberti-Manassero et al. 2012). In different developmental stages, the six BjTCP genes are highly expressed in DY, but there are chronological differences among the swollen tuber cultivars, suggesting that several genes might be involved in developmental regulation at different stages.

Interestingly, as mentioned before, in Arabidopsis, AtTCP2, AtTCP3, AtTCP4, AtTCP10, and AtTCP24 are post-transcriptionally regulated by miR319, and these genes mainly regulate leaf morphogenesis and senescence (Bresso et al. 2018; Palatnik et al. 2003). In B. juncea var. tumida, no AtTCP4 and AtTCP10 homolog genes have been identified, and BjTCP3 does not contain the miR319 regulation site. Only BjTCP2a–d and BjTCP24a–d have the putative miR319 recognition site, and their expression levels in stem development of the swelling strains (YA1–YA4) are relatively low compared to the no-swelling strain (DA). These results indicate that miR319 might not be involved in stem-swelling regulation in B. juncea var. tumida.

The Arabidopsis BRANCHED1 (BRC1), the rice TB1, and the maize TB1 function as negative regulators of the growth of axillary buds and branching (Aguilar-Martinez et al. 2007; Dixon et al. 2018; Finlayson 2007; Takeda et al. 2003). BRC1/TB1 orthologues play a similar role in the development of the primary shoot architecture and negatively regulate lateral branching (Aguilar-Martinez et al. 2007; Dixon et al. 2018; Finlayson 2007; Gonzalez-Grandio et al. 2013; Muhr et al. 2016; Wang et al. 2019a; Yang et al. 2015). In addition, OsTB1 can be regulated by
IPA1 to suppress tillering in rice, and TB1 can interact with FT1 to regulate inflorescence architecture in bread wheat (Dixon et al. 2018; Guo et al. 2013; Takeda et al. 2003). In B. juncea var. tumida, which has a close phylogenetic relationship with Arabidopsis, BjTCP18s might play a similar function in branching. There are four BjTCP18 homologous genes in B. juncea var. tumida, which might have been formed by gene duplication. Functional differentiation might occur between the four TCP18 genes, given their differential expression patterns during tissue development. The flowering stage in B. juncea var. tumida is mainly characterized by swelling of the tumorous stem. At this time, the plant shows a bolting and flowering phenomenon similar to Arabidopsis. Since BRC1 inhibits branching and flowering, gradual downregulation of its messenger RNA (mRNA) levels might reflect a gradual decrease in the ability to inhibit branching and flowering. These events also indicate that B. juncea var. tumida is about to enter the period of reproductive growth.

There are 16 varieties of mustard species identified and used for food consumption, in which the main difference is the tissue shape, including the root, stem, leaf, and branch (Qiao et al. 1998). The BRC1 gene controls plant branching and interacts with the flowering time–relate gene FT, and four identified BjBRC1 genes might imply further functional differentiation of branch development and floral transition. Among these BjTCP genes, multiple BjTCP15 and BjTCP21 genes are highly expressed in the DY and/or the early stage of seedling and tumorous stem per-swelling stage as compared to the swelling stage. DY is a mutant line with no swelling, and YA1 and YA2 also have not started to swell. These findings indicate that these genes are involved in the process of stem swelling in B. juncea var. tumida.

Increasing evidence verifies that TCP proteins are involved in responses to plant hormones (Braun et al. 2012; Danisman et al. 2012; Dun et al. 2012; Feng et al. 2018; Gonzalez-Grandio et al. 2017; Hay et al. 2004; He et al. 2016; Liu et al. 2018a; Lopez et al. 2015; Nicolas and Cubas 2016; Qin et al. 2005; Schommer et al. 2008; Shen et al. 2019; Wang et al. 2019a; Wang et al. 2013). In this study, most of B. juncea var. tumida TCP genes appeared to be regulated by SA and GA. In A. thaliana, several TCPs interact with the SA biosynthetic enzyme
ISOCHORISMATE SYNTHASE 1 gene and enhance its expression by binding to the TCP-binding motif in its promoter region (Wang et al. 2015). Our results showed that there are many SA-related *cis*-elements in the promoter regions of *BjTCP* genes, and the expression levels of several *BjTCP* genes significantly increase after SA treatment, indicating that *BjTCP* genes might be involved in SA signal transduction. However, SA treatment does not seem to directly affect the expression of these genes. For example, the promoter regions of *BjTCP1a* and *BjTCP12a* contain two TCA elements, but there was almost no expression of these genes. In contrast, although the promoter regions of *BjTCP7a*, *BjTCP8a*, *BjTCP17a*, and *BjTCP20a* contain no TCA elements, the expression levels of these four genes changed after SA treatment at different times. The other ten genes containing the TCA element were upregulated almost 2 h after SA treatment. These results suggest that SA might not only directly regulate the TCA element but also link other pathways to indirectly regulate the expression of some TCP genes.

Most *BjTCP* genes have the polytype GA response elements GARE, P-box, and TATC-box in their promoter regions, which might lead to more complex regulation of their expression and more diverse expression patterns. Analysis of the GA response elements of these genes showed no GA-related elements in the promoter regions of *BjTCP1a*, *BjTCP7a*, *BjTCP8a*, *BjTCP12a*, *BjTCP14a*, *BjTCP20a*, and *BjTCP22a*. After GA treatment, no expression of *BjTCP12a* and *BjTCP20a* was detected, while *BjTCP1a*, *BjTCP7a*, *BjTCP8a*, *BjTCP14a*, and *BjTCP22a* expression first increased and then decreased. In addition, although there was a P-box element in *BjTCP17a*, the expression level did not change after GA treatment. The remaining genes including one or more GA response elements in their promoter regions were upregulated after GA treatment. These results suggest that GA affects the expression levels of most of the TCP genes.

This study was the first to identify 62 *BjTCP* genes in *B. juncea* var. tumida and to investigate their roles in stem development. On the basis of our results and reports on *A. thaliana*, we believe that *BjTCP* is also regulated by many factors and is involved in hormone response, plant architecture, inflorescence development, and immune regulation in *B. juncea* var. tumida (Figure ...
Our results will provide the foundation for further determining the molecular mechanism underlying stem swelling and flowering orchestrated by TCP genes in *B. juncea* var. tumida.

Conclusions

We performed a genome-wide analysis and identified 62 *BjTCP* genes in *B. juncea* var. tumida. These genes are divided into two 34 class I and 28 class II subfamilies. Of these 62 *BjTCP* genes, 61 are heterogeneously distributed on 18 chromosomes, 51 have no introns, and most of the *BjTCP* genes in the same cluster have similar patterns of exon length, intron number, and conserved motifs. Several genes are highly expressed in the development of *B. juncea* var. tumida, and branching-related genes have low expression in the swelling stage of vegetative growth.

Acknowledgements

We acknowledge Dr Yinghong Li for his assistance in RNA-seq data processing and related bioinformatics analysis. The funders have no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests

The authors declare that they have no competing interests.

References

Aguilar-Martinez JA, Poza-Carrion C, and Cubas P. 2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. *Plant Cell* 19:458-472.

Bai F, Reinheimer R, Durantini D, Kellogg EA, and Schmidt RJ. 2012. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize. *Proceedings of the National Academy of Sciences of the United States of America* 109:12225-12230.

Beveridge CA, Weller JL, Singer SR, and Hofer JM. 2003. Axillary meristem development. Budding relationships between networks controlling flowering, branching, and photoperiod responsiveness. *Plant Physiology* 131:927-934.

Braun N, de Saint Germain A, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, and Rameau C. 2012. The pea TCP
transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching. *Plant Physiology* 158:225-238.

Bresso EG, Chorostecki U, Rodriguez RE, Palatnik JF, and Schommer C. 2018. Spatial Control of Gene Expression by miR319-Regulated TCP Transcription Factors in Leaf Development. *Plant Physiology* 176:1694-1708.

Brewer PB. 2015. Plant Architecture: The Long and the Short of Branching in Potato. *Current Biology* 25:R724-725.

Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, and Wang X. 2011. BRAD, the genetics and genomics database for Brassica plants. *BMC Plant Biology* 11:136.

Cubas P, Vincent C, and Coen E. 1999. An epigenetic mutation responsible for natural variation in floral symmetry. *Nature* 401:157-161.

Dai X, and Zhao PX. 2011. psRNATarget: a plant small RNA target analysis server. *Nucleic Acids Research* 39:W155-159.

Danisman S. 2016. TCP Transcription Factors at the Interface between Environmental Challenges and the Plant's Growth Responses. *Frontiers of Plant Science* 7:1930.

Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk AD, Muino JM, Cutri L, Dornelas MC, Angenent GC, and Immink RG. 2012. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. *Plant Physiology* 159:1511-1523.

Dixon LE, Greenwood JR, Bencivenga S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain SM, and Boden SA. 2018. TEOSINTE BRANCHED1 Regulates Inflorescence Architecture and Development in Bread Wheat (Triticum aestivum). *Plant Cell* 30:563-581.

Doebley J, Stec A, and Hubbard L. 1997. The evolution of apical dominance in maize. *Nature* 386:485-488.

Du J, Hu S, Yu Q, Wang C, Yang Y, Sun H, Yang Y, and Sun X. 2017. Genome-Wide Identification and Characterization of BrrTCP Transcription Factors in Brassica rapa ssp. rapa. *Frontiers of Plant Science* 8:1588.

Dun EA, de Saint Germain A, Rameau C, and Beveridge CA. 2012. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. *Plant Physiology* 158:487-498.

Efroni I, Blum E, Goldshmidt A, and Eshed Y. 2008. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. *Plant Cell* 20:2293-2306.

Feng ZJ, Xu SC, Liu N, Zhang GW, Hu QZ, and Gong YM. 2018. Soybean TCP transcription factors: Evolution, classification, protein interaction and stress and hormone responsiveness. *Plant Physiology and Biochemistry* 127:129-142.

Finlayson SA. 2007. Arabidopsis Teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched1. *Plant and Cell Physiology* 48:667-677.

Finlayson SA, Krishnareddy SR, Kebrom TH, and Casal JJ. 2010. Phytochrome regulation of branching in Arabidopsis. *Plant Physiology* 152:1914-1927.

Finn RD, Clements J, and Eddy SR. 2011. HMMPER web server: interactive sequence similarity searching. *Nucleic Acids Research* 39:W29-37.
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, and Bateman A. 2010. The Pfam protein families database. *Nucleic Acids Research* 38:D211-222.

Giraud E, Ng S, Carrie C, Duncan O, Low J, Lee CP, Van Aken O, Millar AH, Murcha M, and Whelan J. 2010. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. *Plant Cell* 22:3921-3934.

Gonzalez-Grandio E, Pajoro A, Franco-Zorrilla JM, Tarancón C, Immink RG, and Cubas P. 2017. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. *Proceedings of the National Academy of Sciences of the United States of America* 114:E245-E254.

Gonzalez-Grandio E, Poza-Carrion C, Sorzano CO, and Cubas P. 2013. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. *Plant Cell* 25:834-850.

Guan P, Ripoll JJ, Wang R, Vuong L, Bailey-Steinitz LJ, Ye D, and Crawford NM. 2017. Interacting TCP and NLP transcription factors control plant responses to nitrate availability. *Proceedings of the National Academy of Sciences of the United States of America* 114:2419-2424.

Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, and Chong K. 2013. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. *Nat Commun* 4:1566.

Hay A, Barkoulas M, and Tsiantis M. 2004. PINning down the connections: transcription factors and hormones in leaf morphogenesis. *Current Opinion in Plant Biology* 7:575-581.

He Y, Liu X, Ye L, Pan C, Chen L, Zou T, and Lu G. 2016. Genome-Wide Identification and Expression Analysis of Two-Component System Genes in Tomato. *Int J Mol Sci* 17.

Ho WW, and Weigel D. 2014. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. *Plant Cell* 26:552-564.

Hu B, Jin J, Guo AY, Zhang H, Luo J, and Gao G. 2015. GSDS 2.0: an upgraded gene feature visualization server. *Bioinformatics* 31:1296-1297.

Kebrom TH, Burson BL, and Finlayson SA. 2006. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. *Plant Physiology* 140:1109-1117.

Kieffer M, Master V, Waites R, and Davies B. 2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. *Plant Journal* 68:147-158.

Kim SH, Son GH, Bhattacharjee S, Kim HJ, Nam JC, Nguyen PD, Hong JC, and Gassmann W. 2014. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. *Plant Journal* 78:978-989.

Koyama T, Furutani M, Tasaka M, and Ohme-Takagi M. 2007. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. *Plant Cell* 19:473-484.

Lescoat M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, and Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Research* 30:325-327.

Letunic I, and Bork P. 2018. 20 years of the SMART protein domain annotation resource. *Nucleic Acids Research* 46:D493-D496.
Letunic I, Doerks T, and Bork P. 2015. SMART: recent updates, new developments and status in 2015. *Nucleic Acids Research* 43:D257-260.

Li S. 2015. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. *Plant Signal Behav* 10:e1044192.

Li W, Li DD, Han LH, Tao M, Hu QQ, Wu WY, Zhang JB, Li XB, and Huang GQ. 2017. Genome-wide identification and characterization of TCP transcription factor genes in upland cotton (*Gossypium hirsutum*). *Sci Rep* 7:10118.

Li ZY, Li B, and Dong AW. 2012. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. *Mol Plant* 5:270-280.

Liu HL, Wu M, Li F, Gao YM, Chen F, and Xiang Y. 2018a. TCP Transcription Factors in Moso Bamboo (*Phyllostachys edulis*): Genome-Wide Identification and Expression Analysis. *Frontiers of Plant Science* 9:1263.

Liu J, Cheng X, Liu P, and Sun J. 2017. miR156-Targeted SBP-Box Transcription Factors Interact with DWARF53 to Regulate TEOSINTE BRANCHED1 and BARREN STALK1 Expression in Bread Wheat. *Plant Physiology* 174:1931-1948.

Liu MM, Wang MM, Yang J, Wen J, Guo PC, Wu YW, Ke YZ, Li PF, Li JN, and Du H. 2019. Evolutionary and Comparative Expression Analyses of TCP Transcription Factor Gene Family in Land Plants. *Int J Mol Sci* 20:3591.

Liu Y, Guan X, Liu S, Yang M, Ren J, Guo M, Huang Z, and Zhang Y. 2018b. Genome-Wide Identification and Analysis of TCP Transcription Factors Involved in the Formation of Leafy Head in Chinese Cabbage. *Int J Mol Sci* 19.

Livak KJ, and Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25:402-408.

Lopez JA, Sun Y, Blair PB, and Mukhtar MS. 2015. TCP three-way handshake: linking developmental processes with plant immunity. *Trends in Plant Science* 20:238-245.

Ma J, Wang Q, Sun R, Xie F, Jones DC, and Zhang B. 2014. Genome-wide identification and expression analysis of TCP transcription factors in *Gossypium raimondii*. *Sci Rep* 4:6645.

Ma X, Ma J, Fan D, Li C, Jiang Y, and Luo K. 2016. Genome-wide Identification of TCP Family Transcription Factors from *Populus euphratica* and Their Involvement in Leaf Shape Regulation. *Sci Rep* 6:32795.

Madrigal Y, Alzate JF, and Pabon-Mora N. 2017. Evolution and Expression Patterns of TCP Genes in Asparagales. *Frontiers of Plant Science* 8:9.

Martin-Trillo M, and Cubas P. 2010. TCP genes: a family snapshot ten years later. *Trends in Plant Science* 15:31-39.

Martin-Trillo M, Grandio EG, Serra F, Marcel F, Rodriguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, and Cubas P. 2011. Role of tomato BRANCHED1-like genes in the control of shoot branching. *Plant Journal* 67:701-714.

Maurya JP, Singh RK, Miskolczi PC, Prasad AN, Jonsson K, Wu F, and Bhalerao RP. 2020. Branching Regulator BRC1 Mediates Photoperiodic Control of Seasonal Growth in Hybrid Aspen. *Current Biology* 30:122-126 e122.
Muhr M, Prufer N, Paulat M, and Teichmann T. 2016. Knockdown of strigolactone biosynthesis genes in Populus affects BRANCHED1 expression and shoot architecture. New Phytologist 212:613-626.

Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT, Pevzner SJ, Donovan SE, Ghamsari L, Santhanam B, Romero V, Poulin MM, Gebreab F, Gutierrez BJ, Tam S, Monachello D, Boxem M, Harbort CJ, McDonald N, Gai L, Chen H, He Y, European Union Effectoromics C, Vandenhaute J, Roth FP, Hill DE, Ecker JR, Vidal M, Beynon J, Braun P, and Dangl JL. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596-601.

Navarro C, Cruz-Oro E, and Prat S. 2015. Conserved function of FLOWERING LOCUS T (FT) homologues as signals for storage organ differentiation. Current Opinion in Plant Biology 23:45-53.

Nicolas M, and Cubas P. 2016. TCP factors: new kids on the signaling block. Current Opinion in Plant Biology 33:33-41.

Nicolas M, Rodriguez-Buey ML, Franco-Zorrilla JM, and Cubas P. 2015. A Recently Evolved Alternative Splice Site in the BRANCHED1a Gene Controls Potato Plant Architecture. Current Biology 25:1799-1809.

Niwa M, Daimon Y, Kurotani H, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M, and Araki T. 2013. BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis. Plant Cell 25:1228-1242.

Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, and Weigel D. 2003. Control of leaf morphogenesis by microRNAs. Nature 425:257-263.

Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG, Angenent GC, and de Maagd RA. 2014. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology 14:157.

Pruneda-Paz JL, Breton G, Para A, and Kay SA. 2009. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323:1481-1485.

Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, and Leyser O. 2009. Control of bud activation by an auxin transport switch. Proceedings of the National Academy of Sciences of the United States of America 106:17431-17436.

Qiao AM, Liu PY, and Lei JJ. 1998. RAPD analysis of sixteen varieties of mustard. Acta Botanica Sinica 40:915-921.

Qin G, Gu H, Zhao Y, Ma Z, Shi G, Yang Y, Pichersky E, Chen H, Liu M, Chen Z, and Qu LJ. 2005. An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17:2693-2704.

Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, and Sakr S. 2014. Multiple pathways regulate shoot branching. Frontiers of Plant Science 5:741.

Rosa M, Abraham-Juarez MJ, Lewis MW, Fonseca JP, Tian W, Ramirez V, Luan S, Pauly M, and Hake S. 2017. The Maize MID-COMPLEMENTING ACTIVITY Homolog CELL NUMBER REGULATOR13/NARROW ODD DWARF Coordinates Organ Growth and Tissue Patterning. Plant Cell 29:474-490.

Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U, and Weigel D. 2008. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biology 6:e230.
606 Seale M, Bennett T, and Leyser O. 2017. BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development 144:1661-1673.
607
608 Shen J, Zhang Y, Ge D, Wang Z, Song W, Gu R, Che G, Cheng Z, Liu R, and Zhang X. 2019. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proceedings of the National Academy of Sciences of the United States of America 116:17105-17114.
609
610 Shi P, Guy KM, Wu W, Fang B, Yang J, Zhang M, and Hu Z. 2016. Genome-wide identification and expression analysis of the CITCP transcription factors in Citrullus lanatus. BMC Plant Biology 16:85.
611
612 Sun Q, Zhou G, Cai Y, Fan Y, Zhu X, Liu Y, He X, Shen J, Jiang H, Hu D, Pan Z, Xiang L, He G, Dong D, and Yang J. 2012. Transcriptome analysis of stem development in the tumourous stem mustard Brassica juncea var. tumida Tsen et Lee by RNA sequencing. BMC Plant Biology 12:53.
613
614 Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, and Ueguchi C. 2003. The OsTB1 gene negatively regulates lateral branching in rice. Plant Journal 33:513-520.
615
616 Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725-2729.
617
618 Teichmann T, and Muhr M. 2015. Shaping plant architecture. Frontiers of Plant Science 6:233.
619
620 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876-4882.
621
622 Trapnell C, Pachter L, and Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111.
623
624 Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, and Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Proct 7:562-578.
625
626 Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, and Gonzalez DH. 2012. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. Journal of Experimental Botany 63:809-823.
627
628 Wang H, Wang H, Liu R, Xu Y, Lu Z, and Zhou C. 2018. Genome-Wide Identification of TCP Family Transcription Factors in Medicago truncatula Reveals Significant Roles of miR319-Targeted TCPs in Nodule Development. Frontiers of Plant Science 9:774.
629
630 Wang M, Le Moigne MA, Bertheloot J, Crespel L, Perez-Garcia MD, Oge L, Demotes-Mainard S, Hamama L, Daviere JM, and Sakr S. 2019a. BRANCHED1: A Key Hub of Shoot Branching. Frontiers of Plant Science 10:76.
631
632 Wang M, Oge L, Voisine L, Perez-Garcia MD, Jeaffre J, Saint-Oyant LH, Grappin P, Hamama L, and Sakr S. 2019b. Posttranscriptional Regulation of RhBRC1 (Rosa hybrida BRANCHED1) in Response to Sugars is Mediated via its Own 3’ Untranslated Region, with a Potential Role of RhPUF4 (Pumilio RNA-Binding Protein Family). Int J Mol Sci 20.
633
634 Wang MY, Zhao PM, Cheng HQ, Han LB, Wu XM, Gao P, Wang HY, Yang CL, Zhong NQ, Zuo JR, and Xia GX. 2013. The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. Plant Physiology 162:1669-1680.
Wang X, Gao J, Zhu Z, Dong X, Wang X, Ren G, Zhou X, and Kuai B. 2015. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana. *Plant Journal* 82:151-162.

Wang Y, Zhang N, Li T, Yang J, Zhu X, Fang C, Li S, and Si H. 2019c. Genome-wide identification and expression analysis of StTCP transcription factors of potato (Solanum tuberosum L.). *Computational Biology and Chemistry* 78:53-63.

Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P, Li X, Xie K, Zhang J, Wang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie SA, and Zhang M. 2016. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. *Nature Genetics* 48:1225-1232.

Yang X, Zhao XG, Li CQ, Liu J, Qiu ZJ, Dong Y, and Wang YZ. 2015. Distinct Regulatory Changes Underlying Differential Expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR Genes Associated with Petal Variations in Zygomorphic Flowers of Petrocosmea spp. of the Family Gesneriaceae. *Plant Physiology* 169:2138-2151.

Zhang W, Tan L, Sun H, Zhao X, Liu F, Cai H, Fu Y, Sun X, Gu P, Zhu Z, and Sun C. 2019. Natural Variations at TIG1 Encoding a TCP Transcription Factor Contribute to Plant Architecture Domestication in Rice. *Mol Plant*.

Zhao J, Zhai Z, Li Y, Geng S, Song G, Guan J, Jia M, Wang F, Sun G, Feng N, Kong X, Chen L, Mao L, and Li A. 2018. Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat (Triticum aestivum L.). *Frontiers of Plant Science* 9:1282.

Zheng K, Ni Z, Qu Y, Cai Y, Yang Z, Sun G, and Chen Q. 2018. Genome-wide identification and expression analyses of TCP transcription factor genes in Gossypium barbadense. *Sci Rep* 8:14526.
Figure 1

The gene locations of *BjTCP* gene family.

The chromosome name is at the top of each bar. The scale of the chromosome is in millions of bases (Mb).
Figure 2

Evolutionary relationships of taxa.

A. The evolutionary history was inferred by using the Maximum Likelihood method based on the Poisson correction model. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The analysis involved 86 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 66 positions in the final dataset. Evolutionary analyses were conducted in MEGA7. B. A conserved motif in the Class I subfamily of the BjTCP gene family. C. A conserved motif in the Class II subfamily of the BjTCP gene family. The consensus sequences were displayed using Weblogo (http://weblogo.berkeley.edu).
Figure 3

Genomic structure and motif composition of BjTCPs.

A. The phylogenetic tree of BjTCP proteins. B. Genomic structure of BjTCPs family members in tumorous stem mustard. Exons and introns are represented with blank boxes and blank lines. C. The conserved motifs in tumorous stem mustard TCP proteins were identified using MEME. Each motif is represented with a specific color and the characters sequence were showed below.
Figure 4

Alignment of putative target areas for miR319.

Mismatches and G-U wobbles were represented by yellow and green, respectively.
	miR319	BJTCP2a	BJTCP2b	BJTCP2c	BJTCP2d	BJTCP24a	BJTCP24b	BJTCP24c	BJTCP24d
	U	G	C	C	U	G	A	G	G
	A	G	G	C	G	G	A	C	C
	C	U	U	C	A	G	U	C	C
	C	C	U	U	C	A	G	U	C
	C	A	G	U	C	A	G	U	C
	G	U	C	A	G	U	C	A	A
	G	A	C	C	U	U	C	A	G
	G	A	C	C	U	U	C	A	G
	G	A	C	C	U	U	C	A	G
	G	A	U	C	A	G	U	C	A
	G	A	U	C	A	G	U	C	A
	G	A	U	C	A	G	U	C	A
	G	A	U	C	A	G	U	C	A
	G	A	U	C	A	G	U	C	A
	G	A	U	C	A	G	U	C	A
Figure 5

Cis-acting elements on promoters of *BjTCP* genes.

The colour bar shows the number of cis-acting elements.
Figure 6

Expression patterns of TCP genes in different tissues and development stages of *B. juncea* var. tumida.

DY, *Dayejie* stems were collected 22 weeks after seeding (daye3bianzhong); YA1-4, The stems of *Yong’an* were collected 18, 20, 22, and 25 weeks after seeding; YAr, The mix roots samples of 18 and 22 weeks after seeding. The expression levels are represented by the color bar (log2-transformed).
Figure 7

Expression levels of *BjTCPs* under SA and GA treatment by qRT-PCR.

The number represented the treatment times (hours). The colour scales represent relative expression data.
Figure 8

The putative mechanism diagram on the basis of current results and the reports of proximal species *A. thaliana*.

Red letter shows the genes may regulated by SA. Green circle means the genes may induced by GA. Arrows indicate possible regulatory relationships.
Table 1 (on next page)

The TCP protein family members in *B. juncea* var. *tumida*
ID	pfam domain (star-end)	name	chr	start	end	sense+/antisense-	Subcellular localization	homolog	PI	MW (kD)	protein(aa)	
BjuA007230	84 242 BjTCP1a A02	10613454	10614491	-	Nuclear	AtTCP1	5.5	39.28	346			
BjuA027377	84 232 BjTCP1b A07	29105069	29106097	-	Nuclear	AtTCP1	6.68	38.96	343			
BjuB030534	84 233 BjTCP1c B03	29932727	29933758	-	Nuclear	AtTCP1	5.98	39.1	344			
BjuB043984	85 235 BjTCP1d B03	27732982	27734025	-	Nuclear	AtTCP1	5.96	39.57	348			
BjuB045720	81 300 BjTCP1e B05	38301640	38302668	-	Nuclear	AtTCP1	5.88	38.91	343			
BjuB013551	72 251 BjTCP2a B05	13742319	13743080	+	Nuclear	AtTCP2	6.64	27.45	254			
BjuB044682	161 261 BjTCP2b B02	58451263	58452048	+	Nuclear	AtTCP2	6.71	28.53	262			
BjuA013153	162 236 BjTCP2c A01	16646189	16646968	+	Nuclear	AtTCP2	6.69	28.34	260			
BjuA003953	81 236 BjTCP2d A01	5519388	5520104	-	Nuclear	AtTCP2	6.48	25.82	259			
BjuB045012	1 158 BjTCP3 B07	27416073	27416864	+	Nuclear	AtTCP3	6.55	28.64	264			
BjuB027204	34 231 BjTCP5a B04	184613	186371	-	Nuclear	AtTCP5	9.33	30.31	275			
BjuB037760	6 364 BjTCP5b B02	59342015	59343112	+	Nuclear	AtTCP5	6.21	40.73	365			
BjuB039698	62 262 BjTCP5c B07	12846872	12847951	-	Nuclear	AtTCP5	6.95	34.36	304			
BjuA016046	36 211 BjTCP6 A04	13029721	13033965	-	Nuclear	AtTCP6	7.98	71.87	639			
BjuA023481	42 223 BjTCP7a A06	20165661	20166410	-	Nuclear	AtTCP7	9.69	27	250			
BjuA032507	14 189 BjTCP7b A09	5290320	5290967	-	Nuclear	AtTCP7	9.38	23.12	216			
BjuA045586	1 151 BjTCP7c A02	34582679	34583206	-	Nuclear	AtTCP7	7.92	18.6	176			
BjuB039713	14 190 BjTCP7d B07	12703979	12704632	-	Nuclear	AtTCP7	9.82	23.3	218			
BjuB044801	42 235 BjTCP7e B02	60858548	60859336	+	Nuclear	AtTCP7	9.51	28.37	263			
BjuA033567	35 218 BjTCP8a A09	15197090	15198274	+	Nuclear	AtTCP8	6.09	41.43	395			
BjuB028163	54 232 BjTCP8b B04	9742480	9743682	-	Nuclear	AtTCP8	6	42.26	401			
BjuA010736	71 197 BjTCP9a A03	13517323	13518273	-	Nuclear	AtTCP9	9.86	33.84	317			
BjuA018039	62 178 BjTCP9b A05	3386569	3387543	-	Nuclear	AtTCP9	9.41	33.43	325			
BjuB016827	72 201 BjTCP9c B08	26586920	26587915	-	Nuclear	AtTCP9	9.67	35.15	332			
BjuB020003	67 184 BjTCP9d B06	3171113	3172111	-	Nuclear	AtTCP9	9.58	35.15	333			
BjuA041558	100 193 BjTCP12a A02	11715044	11716146	-	Nuclear	AtTCP12	8.78	37.88	322			
BJbA003932	37	50	BjTCP15d	B05	51941921	51942820	-	Nuclear	AtTCP15	8.05	32.02	300
BJbB030482	55	196	BjTCP15f	B03	32626814	32627776	+	Nuclear	AtTCP15	7.15	33.49	321
BJbA073309	32	164	BjTCP17a	A03	1624898	1625620	+	Nuclear	AtTCP17	8.53	19.12	171
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
BJbA003932	37	254	BjTCP17b	Contig6125	66534	67304	+	Nuclear	AtTCP17	6.7	28.54	257
BJbA012606	154	319	BjTCP18a	A03	22282211	22283992	+	Nuclear	AtTCP18	8.56	48.45	425
Code	M	B	Genotype	Accession No. 1	Accession No. 2	Expression	Protein	Name	Score	Identity	Length	
-------------	------	-----	----------	-----------------	-----------------	------------	----------	---------------	-------	-----------	--------	
BjuB010697	56	186	BJTCP22c	B05	59790473	59791573	-	Nuclear	AtTCP22, AtTCP23	8.63	38.41	367
BjuB044035	45	168	BJTCP22d	B03	38473563	38474609	+	Nuclear	AtTCP22, AtTCP23	6.31	36.59	349
BjuA034777	46	138	BJTCP24a	A09	31311472	31312425	+	Nuclear	AtTCP24	7.8	35.29	318
BjuB029526	47	139	BJTCP24b	B04	35033858	35034823	-	Nuclear	AtTCP24	6.90	35.7	322
BjuB032913	66	306	BJTCP24c	B03	5929399	5930376	+	Nuclear	AtTCP24	7.16	36.57	326
BjuA029872	55	284	BJTCP24d	A08	20433785	20434732	+	Nuclear	AtTCP24	6.81	35.46	316