Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Assessment of an immunochromatographic kit for detection of severe acute respiratory syndrome coronavirus 2 and influenza viruses

Satoshi Oshiro a, Yoko Tabe b, Keiji Funatogawa c, Kaori Saito b, Tatsuya Tada a, Naeko Mizutani a, Makoto Akiwa d, Jun-ichiro Sekiguchi d, Takashi Miida b, Teruo Kirikae a,∗

a Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
b Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
c Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Tochigi, Japan
d Microbiology Research Division, Kohjin Bio Co., Ltd., Saitama, Japan

ARTICLE INFO

Keywords:
• Immunochromatographic kit
• Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
• Influenza virus

ABSTRACT

An immunochromatographic kit was developed to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses (A and B) on two detection positions of a single strip. The sensitivity and specificity for SARS-CoV-2 were 97.4 % and 100 %, respectively, and those for influenza viruses were 100 %, respectively.

WHO (2022a) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started in December 2019 and continues at the time of writing in 2021 (https://www.who.int/emergencies/diseases/novel-coronavirus-2019) with no predictable endpoint (Telenti et al., 2021). A worrisome problem is that an influenza epidemic or pandemic may occur during the COVID-19 pandemic because both viruses cause respiratory tract infections and are transmitted by respiratory droplets and/or aerosols (Telenti et al., 2021). We describe here production of an immunochromatographic assay (ICA) to detect both SARS-CoV-2 and influenza A and B (A/B) viruses.

Monoclonal antibodies were prepared by immunization of rats with recombinant SARS-CoV-2 nucleocapsid (N) protein (Oshiro et al., 2021) or N proteins of influenza A/B viruses (Flarebio Biotech, LLC, MD, USA and Sino Biological Inc, Beijing, China, respectively). The ICA was developed by coating nitrocellulose membranes with capture antibodies for SARS-CoV-2 (N1J7–1), and influenza A/B virus (K2A4 and K3B1, respectively) and control goat anti-rodent IgG antibody. Detection antibody-conjugated colloidal gold nanoparticles for SARS-CoV-2 (N3J3–1), and influenza A/B virus (K2A7 and K3B2, respectively) were immersed into glass fiber. The ICA kit, KMB LineCheck nCoV/Flu, was a single-strip, lateral-flow device comprising three detection positions on the strip, including a test position for SARS-CoV-2, a test position for influenza A/B viruses, and a control position (Fig. 1). To examine the stability of the ICA kit, the sensitivity and specificity of the kits were regularly determined using SARS-CoV-2 and influenza A/B virus antigens after stored at room temperature (5–30 °C). The sensitivity and specificity did not changed after 6 months storage. Further examination is now in progress. A nasopharyngeal swab sample (50 μL) obtained from a patient suspected COVID-19 or seasonal influenza was added in elution buffer (200 μL Tris-based buffer, pH 7.6). Three droplets of the solution were added into the sample well. To determine the detection limit of the ICA, culture supernatants of SARS-CoV-2 (2019-nCoV/JPN/TY/WK-521, 4.2 × 104 tissue culture infectious dose 50 (TCID50)/mL), influenza A virus [A/New Jersey/8/76(H1N1), 1.24 × 105 plaque forming unit (PFU)/mL] or influenza B virus (B/Taiwan/2/62, 1.72 × 104 PFU/mL) were diluted in PBS. An aliquot of diluted supernatant (10 μL) was further diluted in 240 μL of Tris-based buffer (pH 7.6), and 90 μL of the product was used to test the ICA. A total of 100 nasopharyngeal swab samples were collected from patients suspected of COVID-19 with symptoms such as fever, dry cough, fatigue, loss of taste/smell, nasal congestion, conjunctivitis, sore throat, headache, muscle/joint pain, skin rash, nausea/vomiting, diarrhea and/or chills/dizziness; during September 2020 to February 2021 at a university hospital in Tokyo. All samples were subjected to RT-PCR for the detection of SARS-CoV-2 according to protocol (Shirato et al., 2020). Of the 100 samples, 39 were RT-PCR-positive for SARS-CoV-2 (Table 1) among which 38 were ICA-positive for SARS-CoV-2. All 61 RT-PCR-negative samples were ICA-negative for SARS-CoV-2 (Table 1).
All 100 samples were ICA-negative for influenza (Table 1). The sensitivity and specificity of ICA for SARS-CoV-2 detection were 97.4 % and 100 %, respectively. The lower detection limit of ICA for SARS-CoV-2 was \(7.81 \times 10^{-2}\) TCID\(_{50}\)/mL. The ICA for influenza viruses was negative even at the highest concentration of \(2.5 \times 10^{3}\) TCID\(_{50}\)/mL of SARS-CoV-2 (data not shown). The samples in elution buffer containing SARS-CoV-2 at less than the lowest detection limit of ICA (4.88 \(\times 10^{-2}\) TCID\(_{50}\)/mL) were RT-PCR-positive for SARS-CoV-2.

A total of 152 nasopharyngeal swab samples were collected from patients suspected of seasonal influenza with symptoms such as fever, cough, headache, muscle and joint pain, severe malaise, sore throat and a runny nose (WHO (2022b); during January to April 2016 in seven clinics in Fukuoka, Japan. All samples were subjected to RT-PCR for the detection of influenza A/B viruses. Of them, 42 were RT-PCR-positive for influenza A and 50 were positive for influenza B (Table 2) of which all were ICA-positive for influenza viruses. All RT-PCR-negative samples were ICA-negative for influenza viruses (Table 2). All the 152 samples were ICA-negative for SARS-CoV-2 (Table 2). The sensitivity and specificity of KBM LineCheck nCoV/Flu for influenza viruses were 100 %, respectively. The lower detection limits of ICA for influenza A/B viruses were \(1.21 \times 10^{-1}\) PFU/mL and \(1.68 \times 10^{-1}\) PFU/mL, respectively. The ICA for SARS-CoV-2 was negative even at the highest concentrations of \(1.55 \times 10^{-3}\) PFU for influenza A and \(2.15 \times 10^{-3}\) PFU for influenza B viruses, respectively (data not shown). The samples in elution buffer containing influenza viruses at less than the lowest detection limit of ICA (6.05 PFU/mL and 8.4 PFU/mL, respectively) were RT-PCR-positive for influenza viruses.

As shown in Table S1, recombinant N proteins of SARS-CoV-1 and SARS-CoV-2 were ICA-positive for SARS-CoV-2 and ICA-negative for influenza virus. Influenza A virus (H1N1) (A/Virginia/ATCC1/2009, A/Swine/1976/31, A/Swine/Iowa/15/30), influenza A virus (H3N2) A/HongKong/8/68(TC-adapted) and influenza B virus, B/Lee/20 were ICA-positive for influenza virus and ICA-negative for SARS-CoV-2 (Table S1). Three recombinant N proteins of MERS-coronavirus, human coronavirus OC43 and human coronavirus 299E, and 59 pathogens causing respiratory infections were ICA-negative for both SARS-CoV-2 and influenza viruses (Table S1).

KMB LineCheck nCoV/Flu is a useful kit to test for COVID-19 and influenza simultaneously, especially during an influenza season amid the COVID-19 pandemic.

Authors’ contributions

MA, JS and SO developed the kit. JS and YT acquired clinical samples. SO, NM and KS assessed the kit and analyzed the data. KF, MA and JS conducted RT-PCR. YT, TM, TT and TK supervised the study. All authors approved this final version manuscript.

Table 1

Detection of SARS-CoV-2 by KBM LineCheck nCoV/Flu in 100 nasopharyngeal swab samples from COVID-19 suspected patients.

	Positive	Negative	Total
SARS-CoV-2 (influenza virus)	\(38 (0)\)	\(0 (0)\)	\(38 (0)\)
ICA for SARS-CoV-2 (influenza virus)	\(62 (100)\)	\(0 (100)\)	\(62 (100)\)
Total	\(39 (0)\)	\(61 (100)\)	\(100 (100)\)

a Numbers of RT-PCR samples for SARS-CoV-2 (samples of RT-PCR-positive or negative for influenza virus).

b Numbers of samples ICA-positive or negative for SARS-CoV-2 (samples ICA-positive or negative for influenza virus).

Fig. 1. Details of the immunochromatographic assay kit (KBM LineCheck nCoV/Flu). Samples showing a single line at the control position were negative for SARS-CoV-2 or influenza A and B viruses (a), whereas samples showing two lines, one each at the control and test position for SARS-CoV-2 or influenza A and B viruses, were positive for SARS-CoV-2 (b) or influenza A and B viruses (c).
Table 2
Detection of influenza A and B viruses by KBM LineCheck nCoV/Flu in 153 nasopharyngeal swab samples from influenza suspected patients.

	RT-PCR		
	Influenza viruses (SARS-CoV-2)		
	Positive	Negative	Total
ICA			
Influenza viruses (SARS-CoV-2)	92 (0)	0 (0)	92 (0)
Negative	0 (0)	61 (153)	61 (153)
Total	92 (0)	61 (153)	153 (153)

*Numbers of samples RT-PCR-positive or negative for influenza viruses (those of samples RT-PCR-positive or negative forSARS-CoV-2).

Funding

This study was supported by a grant from the Japan Agency for Medical Research and Development (grant number20he0622015h0001).

Declaration of Competing Interest

MA and JS are employees of Kohjin Bio Co., Ltd.

Acknowledgments

This study was approved by the ethics committees at Juntendo University (20-036) and Kohjin Bio (02608-2105 & 02608-2106). SARS-CoV-2 isolates 2019-nCoV/JPN/TY/WK-521 were from National Institute of Infectious Disease, Tokyo, Japan. The authors thank all participating patients, and staff of Department of Clinical Laboratory Medicine, Juntendo University.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jviromet.2022.114477.

References

Oshiro, S., Tabe, Y., Funatogawa, K., Saito, K., Tada, T., Hishinuma, T., et al., 2021. Development of an immunochromatographic kit to detect severe acute respiratory syndrome coronavirus 2. J. Virol. Methods 294, 114183. https://doi.org/10.1016/j.jviromet.2021.114183.

Shirato, K., Nao, N., Katano, H., Takayama, I., Saito, S., Kato, F., et al., 2020. Development of genetic diagnostic methods for detection for novel coronavirus 2019 (nCoV-2019) in Japan. Jpn. J. Infect. Dis. 73 (4), 304–307. https://doi.org/10.7883/yonem.JID.2020.061.

Telenti, A., Arvin, A., Corey, L., Corti, D., Diamond, M.S., García-Sastre, A., et al., 2021. After the pandemic: perspectives on the future trajectory of COVID-19. Nature 596 (7873), 495-504. https://doi.org/10.1038/s41586-021-03792-w.

WHO. Coronavirus disease (COVID-19) pandemic. Coronavirus disease (COVID-19) (who.int).

WHO. Influenza (seasonal). Influenza (Seasonal) (who.int).