Interleukin-10 Producing T Lymphocytes Attenuate Dermal Scarring

Walker D. Short, MD,* Xinyi Wang, PhD,* Hui Li, PhD,* Ling Yu, MD,* Aditya Kaul, BS,* Gisele A. Calderon, PhD,* Jamie Gilley, APRN, NNP-BC,* Paul L. Bollyky, MD, DPhil,† Swathi Balaji, PhD,* and Sundee G. Keswani, MD,*

Objective: Demonstrate the impact of IL-10 producing T lymphocytes on mediating dermal scarring.

Summary Background Data: We demonstrated that CD4+ cells are essential to improving postinjury wound healing and preventing fibrosis. CD4+ subsets secrete differential cytokine and growth factor profiles, though their role in fibrosis is not known. IL-10, a key anti-inflammatory cytokine shown to promote regenerative wound healing, is secreted by some CD4+ subsets. We, therefore, hypothesize that IL-10 producing CD4+ T lymphocyte subsets selectively attenuate dermal wound fibrosis.

Methods: IL-10+ and wild-type murine splenocytes were enriched for CD4+ lymphocytes and adoptively transferred into severe combined immune-deficient (SCID) mice that received full-thickness wounds which were analyzed at days 7 and 28 for inflammation and collagen content. We then sorted CD4+CD44lowFoxP3+CD62L+ T cells (Tnaive) or CD4+CD44hiFoxP3+ type 1 regulatory (Tr1) T cell subsets from 10BiT murine splenocytes, activated them, and transferred them into wounds. In vitro, dermal fibroblasts were cocultured with Tnaive or Tr1 and the effect on extracellular matrix (ECM) regulation was analyzed.

Results: The anti-inflammatory and antifibrotic effects of CD4+ cells on SCID wounds were lost with cells from IL-10+ mice. Adoptive transfer of Tr1 into SCID mice resulted in accelerated wound closure at d7 with reduced fibrosis at d28, with Tr1 favoring hyaluronan production by fibroblasts, an ECM molecule implicated in IL-10-induced regenerative healing.

Conclusions: IL-10 producing T-lymphocytes, specifically Tr1, regulate inflammatory cell cytokine expression to promote HA-rich ECM deposition and attenuate fibrosis. Promoting IL-10 producing lymphocytes in wounds may be a therapeutic target to promote regenerative wound healing.

Keywords: Cutaneous, fibrosis, immunity, inflammation, lymphocytes, scarring, wound healing

Postnatal healing of dermal wounds in most mammals leads to scar formation, and involves innate and adaptive inflammatory immune responses in concert with dermal fibroblasts and keratinocyte activation to optimize wound healing, prevent pathogen invasion, and improve cell survival and function. In contrast, midgestational fetal wounds heal regeneratively without scar formation, with reconstitution of dermal appendages and neurovasculature, which is dependent upon interleukin (IL)-10 induction of a hyaluronic (HA) rich wound microenvironment.1–4 Notably, therapeutic interventions which promote mechanisms that closely mirror fetal-like wound healing without pathogenic scarring remain elusive, despite the significant understanding of the cell and molecular players engaged in the process. Studies on dermal fibrosis not only lead to advances that reduce the psychosocial impact of scarring and morbidity of burn contractures, but also implement research models to investigate mechanisms of scar that translate into innovative treatments of fibrosis in other organ systems.5

The influence of various immune cells on wound healing and scarring has been heavily studied, including early mast cell activation and neutrophil and macrophage infiltration. Recently, lymphocytes have been highlighted as important cells that regulate wound healing responses.5–8 We demonstrated a role for lymphocytes, specifically CD4+ lymphocytes, in regulation of dermal fibrosis in the severe combined immune deficient (SCID) mouse model.9 Of the CD4+ subtypes, two immunoregulatory subsets stand out as producers of IL-10, CD4+ Foxp3+ regulatory T cells (Treg) which also produce transforming growth factor (TGF)-β and CD4+ Foxp3 CD49β–Lag3+ type 1 regulatory T cells (Tr1) which additionally produce TGF-β, IFN-γ, and low levels of IL-4.10 Macrophage transition from an inflammatory (M1) to a reparative (M2) phenotype assists in propagation of the wound healing phases, with M2 macrophage subtypes playing a greater role in reducing collagen deposition and scarring.11–13 IL-10 levels in the wound microenvironment contribute to the anti-inflammatory M2 macrophage polarization and function, which further propagates M2 mediated IL-10 expression in the local milieu.14 IL-10 is also well established to induce a postnatal regenerative wound healing phenotype with scarless dermal architecture.15–23 Besides its well-established role as an anti-inflammatory mediator, IL-10 has been shown to signal via STAT3 to induce HA synthesis, which plays key molecular weight dependent functions in wound healing.23

High molecular weight-HA (HMW-HA) is defined as being >1000 kDa, whereas low molecular weight-HA (LMW-HA) consists of degraded HA <500 kDa.24 Post wound tissue damage upregulates both hyaluronan synthase (HAS) and hyaluronidase (HYAL) expression, leading to a greater turnover of HA that yields
proinflammatory LMW-HA fragments, which contrast the regenerative anti-inflammatory and anti-fibrotic properties of HMW-HA isoforms.\(^3\), 26,27\) Therefore, an imperative unmet clinical need to achieve scarless wound repair involves a conceivable strategy to reprogram immune responses to increase in situ IL-10 secretion, inducing HMW-HA synthesis, and remodeling fibroblast HA extra-cellular matrix (ECM) deposition.

We recently reported that adoptive transfer of total unfracti-onated CD4\(^{+}\) T cells into SCID mice, that lack functional T- and B cells, reduce inflammation and collagen deposition.\(^9\) In view of the known contribution of IL-10 to regenerative wound healing, we hypothesize that IL-10 producing CD4\(^{+}\) lymphocyte subsets produce the beneficial role that we have shown CD4\(^{+}\) cells to have on wound healing. Here, we first demonstrate that IL-10 capacity is essential for CD4\(^{+}\) lymphocytes to exert their function on fibrosis, as unfracti-onated CD4\(^{+}\) cells from IL-10 deficient mice were unable to reduce postwounding fibrosis in SCID mice. Using lymphocytes isolated from 10BiT mice, with reporter genes for GFP and CD90.1 to respectively confirm Foxp3 and IL-10 expression, we are able to further support that individual IL-10 competent CD4\(^{+}\) T cell subsets promote HA production by fibroblasts in vitro, with their individual beneficial effects on wound healing demonstrated in adoptive transfer experiments, with Tr1 promoting the most anti-fibrotic phenotype.\(26,28\)

METHODS

Please refer to supplemental materials, http://links.lww.com/SLA/D189.

RESULTS

Increased Inflammation and Collagen Deposition in SCID Mice Treated With IL-10\(^{-/-}\), CD4\(^{+}\) Cells

To confirm if IL-10 production by CD4\(^{+}\) cells is essential for its effects on scarring, we adoptively transferred WT or IL-10\(^{-/-}\) CD4\(^{+}\) cells to SCID mice at time of wounding. We studied the inflammatory infiltration of macrophages and the differentiation and migration of myofibroblasts in wounds 7 days post wounding (Fig. 1A, B). In comparison to mice receiving IL-10\(^{-/-}\), CD4\(^{+}\) (2.1±0.5 versus 45.8±11.5 positive F4/80% (HPF, \(P < 0.01\)), WT CD4\(^{+}\) cells-treated mice showed a significant reduction of macrophage content. There was no difference in myofibroblast content in wounds of mice treated with WT CD4\(^{+}\) cells vs IL-10\(^{-/-}\) cells (37.0±16.7 versus 42.3±14.3 positive \(\alpha\)SMA %/HPF, \(P = 0.62\)). Quantification of Masson trichrome staining of day 28 wounds showed that the decrease in collagen content in mice treated with WT CD4\(^{+}\) cells was lost when mice were treated with IL-10\(^{-/-}\) CD4\(^{+}\) cells (135.44±29.1 vs 410.98±122.10 pixel/HPF, \(P < 0.01\)).

To validate our hypothesis in vitro, we harvested media from activated WT and IL-10\(^{-/-}\) total lymphocytes or unfractionated CD4\(^{+}\) T-cells and used this media to incubate WT fibroblasts, measuring mRNA 24 hours later (Fig. 1C). Fibrosis RT2 PCR profile arrays revealed that in comparison to IL-10\(^{-/-}\) lymphocytes-treated fibroblasts, inflammation markers such as TNF, CCL3, TGF-\(\beta\)1 and TGF-\(\beta\)2 were reduced in WT lymphocytes-treated fibroblasts, particularly in CD4\(^{+}\) subsets. Moreover, we found that in contrast to IL-10\(^{-/-}\) lymphocyte-treated fibroblasts, the ECM remodeling enzyme, MMP9 was similarly reduced in WT T lymphocytes treated fibroblasts. Our results suggest that in vivo and in vitro IL-10 deficiency can lead to increased inflammation and pathologic remodeling.

Characterization of Culture-expanded Tnaive and Tr1 Cells

To examine the specific roles of IL-10 producing CD4\(^{+}\) lymphocyte subsets in wound healing, effective isolation, differentiation, expansion, and lineage maintenance of the subsets are critical to this study. We isolated CD4\(^{+}\)CD44\(^{+}\)/low-Foxp3 CD62L\(^{+}\) T cells (Tnaive) and CD4\(^{+}\)CD44\(^{hi}\)/Foxp3 Tr1 precursors from 10BiT mouse splenocytes using fluorescence-activated cell sorting (FACS) (Supplemental Figure 1, http://links.lww.com/SLA/D189), and activated the cells for 6days. We then performed flow cytometry, gating for live singlet lymphocytes, to analyze IL-10 production by CD90.1, surface markers CD49b and LAG3, and Foxp3 expression by GFP. As depicted in Figure 2, our results show that activated Tr1 precursors express higher production of IL-10 by increased CD90.1 versus Tnaive (47.4±24.05 vs 1.18±1.15% positive cells, \(P < 0.01\)). To further confirm successful enrichment of Tr1 from precursors, flow cytometry analysis of surface CD49b and LAG3 was conducted, which revealed characteristic coexpression by Tr1.\(^{10}\) Specifically, a mean of 41.88% of cells gated for live singlet lymphocytes out of the Tr1 culture coexpressed CD49b and LAG3 while the proportion of Foxp3\(^{+}\) cells, marked by GFP fluorescence in 10BiT mice, was negligible in both Tr1 and Tnaive, substantiating that these IL-10 producing cells are not polarized Foxp3\(^{+}\) (Fig. 2A–C). These collective data support the effective Tr1 polarization of 10BiT mouse-derived Tr1 precursors with a significant proportion of them being IL-10 producers.

Coculture of Dermal Fibroblasts With Tr1 Cells Increases HAS and Down regulates Ctgf

To test if the polarized Tr1 produces functional IL-10, we quantified IL-10 and performed trans-well Tr1/fibroblasts coculture experiments and assessed the effects on HA synthesis and degradation. IL-10 production by Tr1 cells was measured by ELISA using coculture media after 24 hours of treatment (Fig. 3A). Because we have previously reported that IL-10 induces in vivo and in vitro HA production, we determined the expression of HA synthases (Has)1, 2, and 3 (Fig. 3B). We observed that in comparison to fibroblasts cocultured with Tnaive or untreated controls, Has1 expression by fibroblasts exposed to Tr1 was significantly increased (2.76±0.83 \(P < 0.001\); 1.189±0.77 \(P < 0.0001\); 15.06±1.99 fold expression). Has2 expression was decreased in fibroblasts cocultured with Tr1 in comparison to untreated fibroblasts (0.26±0.04 vs 1.04±0.34 fold expression, \(P < 0.001\)) or exposure to Tnaive (0.638±0.26 fold expression, \(P < 0.05\)) while Has3 expression was virtually unaltered (Fig. 3C). Expression of major HA degradation enzyme Hyal1 decreased in fibroblasts cocultured with Tr1 in comparison to untreated (0.43±0.017 vs 1.02±0.23 fold expression, \(P < 0.01\)) and when compared to Tnaive (0.81±0.095 fold expression, \(P < 0.05\)). A similar decrease was seen in Kial1 (expression 0.13±0.05 vs 1.02±0.23, \(P < 0.0001\) vs 0.773±0.39 fold expression, \(P < 0.001\)), the latter of which is predominantly active in dermal fibroblasts.\(^{29,30}\) At the same time, Figure 3C displays a qualitative increase in pericellular HABP staining of fibroblasts cocultured with Tr1, though HA levels in supernatant of treated fibroblasts did not reflect the increase 48 hours post-treatment (Fig. 3D). Although fibroblasts exposed to Tr1 culture did not reveal a significant reduction in collagen I, collagen III, or \(\alpha\)SMA gene expression, we noted a significant reduction of Ctgf expression, a potent fibrogenic ECM mediator of myofibroblast transition, thus underscoring the dermal regenerative potential of Tr1 exposure (Fig. 3E). Although the exposure of fibroblasts to Tr1 did result in a relative decrease in \(\alpha\)SMA protein levels after 48hours, the change did not reach statistical significance (Fig. 3F, G). These collective findings highlight a physiological balance to regulate HA synthesis and degradation to promote an anti-inflammatory/regenerative HMW-HA over a proinflammatory/fibrotic LMW-HA ECM by Tr1.
Adoptive Transfer of Tr1 Reduces Inflammation and Improves Wound Healing Outcome

Regulatory T lymphocytes feature multifaceted IL-10 and other cytokine-driven interactions with effector cells to orchestrate measured homeostatic responses and immune tolerance. In the present study, we sought to take a further step to examine the effects of Tr1 as a distinct IL-10 producing CD4⁺ subset with antiscarring effects and compare to our previously demonstrated effects of FoxP3⁺ Treg. To that end, we adoptively transferred Tr1-enriched CD4⁺ lymphocytes into SCID mice, which subsequently received dermal wounds that were harvested at 7 days and 4 weeks post-wounding.

Wounds were first examined at day 7 to assess wound closure, angiogenesis, and macrophage quantity (Fig. 4). We observed that in comparison to untreated SCID mouse controls, adoptively transplanted cohorts with enriched activated Tr1 CD4⁺ cells displayed rapid wound closure defined by the percentage of re-epithelialization at day 7 (41.0 ± 9.9% vs 83.0 ± 18.6% closure, *P < 0.01). The accelerated wound closure in the Tr1 group was accompanied by an increased number of myofibroblasts in the wound, detected by positive αSMA staining, which contrasted with the levels detected in untreated SCID mice (47.6 ± 2.9% vs 32.8 ± 12.0% positive cells/HPF, *P < 0.05). Wounds of mice treated with Tr1 also displayed greater microvascular density than untreated mice (23.1 ± 2.5 vs 10.5 ± 4.1 CD31 positive vessels/HPF, *P < 0.0001). In SCID

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
mice adoptively transplanted with Tr1 lymphocytes, there was a significant decrease in macrophages in the wound compared to the untreated cohorts (10.2 ± 6.5% vs 28.6 ± 11.7% F4/80 positive cells/HPF, \(P < 0.05 \)) (Fig. 4B).

To illustrate the spatial relationship of our cellular subsets of interest, such as CD4\(^+\) T cells, Tr1, and macrophages, in the wound healing process, we utilized high-dimensional imaging mass cytometry (IMC), which enables the simultaneous visualization of up to 40 different epitopes using antibodies conjugated to lanthanide metals, avoiding the pitfalls of spectral overlap in traditional immunofluorescence.\(^{31}\) Using this technique, we are able to uncover the spatial relationship of various cells in the Tr1 treated SCID wounds (Fig. 4C, D). CD4\(^+\) cells can be seen concentrated in the base of the wound in SCID wounds treated with Tr1, and are surrounded by macrophages, with a greater concentration of CD206 staining, implying M2 polarization of these macrophages. This cellular distribution suggests that Tr1 may be secreting factors that act locoregionally to influence the polarization of macrophages to M2.\(^{32}\)

DISCUSSION

We report that Tr1-enriched CD4\(^+\) lymphocytes comprise a key IL-10 producing subset with the capacity to heal murine wounds more rapidly and with less fibrosis. Here, we provide *in vitro* and *in vivo* evidence that IL-10 production is necessary to promote CD4\(^+\)
FIGURE 3. Coculture of dermal fibroblasts with Tr1 cells increases hyaluronan synthesis and downregulates Ctgf. A, IL-10 content of medium in fibroblast-lymphocyte co-culture after 24 hours of no treatment, treatment with Tnaive, or treatment with Tr1. B, Gene expression of hyaluronan synthase and degradation enzymes expressed as fold expression normalized to untreated fibroblasts compared to treatment groups of activated Tnaive and Tr1. C, HABP staining of dermal fibroblasts cultured in medium alone, with Tnaive, or Tr1. Scale bars: 50 μm. D, HA content normalized to total protein of medium in fibroblast-lymphocyte coculture after 24 hours of no treatment, treatment with Tnaive, or treatment with Tr1. E, Gene expression of Col1a1, Col3, αSma, and Ctgf similarly depicted. F, Western blot image for protein isolated from dermal fibroblasts cultured in medium alone, with Tnaive, or Tr1. G, Quantification of F. Data presented as mean±SD. *P < 0.05, **P < 0.01, ***P < 0.001. ****P < 0.0001.
lymphocyte-driven anti-fibrotic wound healing. Tr1, in particular, show a potential to regulate the fibrogenic responses in the healing wound with one of the key mechanisms comprising proteoglycan-rich ECM production, specifically HA, by fibroblasts while concurrently inhibiting hyaluronidase activity.

Our data suggest that IL-10 secretion by lymphocytes is essential for their effect on tissue repair. Furthermore, as we have shown that lymphocytes are present early in the wound repair process, it is conceivable that IL-10 production by these lymphocytes in the wound microenvironment may promote macrophage M1 to M2 polarization, thus activating anti-inflammatory and anti-fibrotic processes. Tr1 were first identified in sera of patients who exhibited immune tolerance after HLA-mismatched stem cell transplants, highlighting their regulatory role to dampen inflammatory responses. Although Tr1 have not been studied in the context of cutaneous wound repair, lymphocytes are known to regulate macrophage differentiation via cytokine secretion, thus we posit that the lymphocytes may be governors of the inflammatory wound repair process upstream of macrophages.

Although IL-10 was previously believed to exert its antifibrotic effects via an immunomodulatory mechanism, we reported an essential mechanism of IL-10 to stimulate fibroblast induction of...
We chose NLRP3 inflammasome activity is responsible for cellular events that are essential for tissue repair.\(^4\) Tr1 have also been demonstrated to suppress NLRP3 inflammasome activation, an effect noted by Treg. Along these lines, our previously published work demonstrates that Treg were not able to achieve an antifibrotic effect when adoptively transferred in this wound model, despite being a known producer of IL-10.\(^5\) One explanation may be that although equal numbers of cells were adoptively transferred, more Treg seem to be recruited to the wound as compared to Tr1 (Supplemental Figure 3, http://links.lww.com/SLA/D189), suggesting there are inherent differences in reparative capacities of these cells which is not only limited to IL-10. Notably, knockdown of Treg in mice leads to spontaneous dermal fibrosis, thus underscoring their regulatory impact to influence scarless tissue repair.\(^8\) This work suggests that Treg require effector cells to regulate in order for their antifibrotic effects to become apparent, thus in SCID mice we may not see this effect. Knockdown of Tr1 in normal wound healing is a challenge, as there is no single transcription factor or surface marker that can be attributed specifically to Tr1. For instance, co-expression of CD49b and LAG3 is currently the most accepted method to identify Foxp3\(^+\) Treg; however, co-expression of these surface markers has also been demonstrated in Foxp3\(^+\) Treg, highlighting the importance of our verification studies confirming the specific polarization of Foxp3\(^+\) Tr1; however, co-expression of these surface markers has also been demonstrated in Foxp3\(^+\) Treg, highlighting the importance of our verification studies confirming the specific polarization of Foxp3\(^+\) Treg. Our observation of Tr1 as potent producers of IL-10 renders these cells as capable of not only modulating the immune response but also as regulators of antifibrotic ECM milieu. In support of this notion, we observed in Tr1 treated wounds the pattern of αSMA expression closely follows the re-epithelializing wound margins and regressed once the wound was healed with no difference in αSMA in day 28 wounds between Tr1-treated and untreated SCID mice (data not shown), with overall reduced fibrosis in the Tr1 treated wounds. Further, our in vitro Tr1/fibroblast coculture data demonstrated a potent suppression of Ctgf which is a key growth factor that regulates fibrosis, suggesting that Tr1 reduces the fibrotic phenotype of fibroblasts.\(^38\) Additionally, our IMC data demonstrated that Treg were not able to achieve an antifibrotic effect when adoptively transferred in this wound model, despite being a known producer of IL-10.\(^5\) One explanation may be that although equal numbers of cells were adoptively transferred, more Treg seem to be recruited to the wound as compared to Tr1 (Supplemental Figure 3, http://links.lww.com/SLA/D189), suggesting there are inherent differences in reparative capacities of these cells which is not only limited to IL-10. Notably, knockdown of Treg in mice leads to spontaneous dermal fibrosis, thus underscoring their regulatory impact to influence scarless tissue repair.\(^8\) This work suggests that Treg require effector cells to regulate in order for their antifibrotic effects to become apparent, thus in SCID mice we may not see this effect. Knockdown of Tr1 in normal wound healing is a challenge, as there is no single transcription factor or surface marker that can be attributed specifically to Tr1. For instance, co-expression of CD49b and LAG3 is currently the most accepted method to identify Foxp3\(^+\) Treg; however, co-expression of these surface markers has also been demonstrated in Foxp3\(^+\) Treg, highlighting the importance of our verification studies confirming the specific polarization of Foxp3\(^+\) Treg. Our observation of Tr1 as potent producers of IL-10 renders these cells as capable of not only modulating the immune response but also as regulators of antifibrotic ECM milieu. In support of this notion, we observed in Tr1 treated wounds the pattern of αSMA expression closely follows the re-epithelializing wound margins and regressed once the wound was healed with no difference in αSMA in day 28 wounds between Tr1-treated and untreated SCID mice (data not shown), with overall reduced fibrosis in the Tr1 treated wounds. Further, our in vitro Tr1/fibroblast coculture data demonstrated a potent suppression of Ctgf which is a key growth factor that regulates fibrosis, suggesting that Tr1 reduces the fibrotic phenotype of fibroblasts.\(^38\) Additionally, our IMC data demonstrated that Treg were not able to achieve an antifibrotic effect when adoptively transferred in this wound model, despite being a known producer of IL-10.\(^5\) One explanation may be that although equal numbers of cells were adoptively transferred, more Treg seem to be recruited to the wound as compared to Tr1 (Supplemental Figure 3, http://links.lww.com/SLA/D189), suggesting there are inherent differences in reparative capacities of these cells which is not only limited to IL-10. Notably, knockdown of Treg in mice leads to spontaneous dermal fibrosis, thus underscoring their regulatory impact to influence scarless tissue repair.\(^8\) This work suggests that Treg require effector cells to regulate in order for their antifibrotic effects to become apparent, thus in SCID mice we may not see this effect. Knockdown of Tr1 in normal wound healing is a challenge, as there is no single transcription factor or surface marker that can be attributed specifically to Tr1. For instance, co-expression of CD49b and LAG3 is currently the most accepted method to identify Foxp3\(^+\) Treg; however, co-expression of these surface markers has also been demonstrated in Foxp3\(^+\) Treg, highlighting the importance of our verification studies confirming the specific polarization of Foxp3\(^+\) Treg. Our observation of Tr1 as potent producers of IL-10 renders these cells as capable of not only modulating the immune response but also as regulators of antifibrotic ECM milieu. In support of this notion, we observed in Tr1 treated wounds the pattern of αSMA expression closely follows the re-epithelializing wound margins and regressed once the wound was healed with no difference in αSMA in day 28 wounds between Tr1-treated and untreated SCID mice (data not shown), with overall reduced fibrosis in the Tr1 treated wounds. Further, our in vitro Tr1/fibroblast coculture data demonstrated a potent suppression of Ctgf which is a key growth factor that regulates fibrosis, suggesting that Tr1 reduces the fibrotic phenotype of fibroblasts.\(^38\) Additionally, our IMC data demonstrated that Treg were not able to achieve an antifibrotic effect when adoptively transferred in this wound model, despite being a known producer of IL-10.\(^5\) One explanation may be that although equal numbers of cells were adoptively transferred, more Treg seem to be recruited to the wound as compared to Tr1 (Supplemental Figure 3, http://links.lww.com/SLA/D189), suggesting there are inherent differences in reparative capacities of these cells which is not only limited to IL-10. Notably, knockdown of Treg in mice leads to spontaneous dermal fibrosis, thus underscoring their regulatory impact to influence scarless tissue repair.\(^8\) This work suggests that Treg require effector cells to regulate in order for their antifibrotic effects to become apparent, thus in SCID mice we may not see this effect. Knockdown of Tr1 in normal wound healing is a challenge, as there is no single transcription factor or surface marker that can be attributed specifically to Tr1. For instance, co-expression of CD49b and LAG3 is currently the most accepted method to identify Foxp3\(^+\) Treg; however, co-expression of these surface markers has also been demonstrated in Foxp3\(^+\) Treg, highlighting the importance of our verification studies confirming the specific polarization of Foxp3\(^+\) Treg.
lymphocytes appear to be spatially associated closely with an increased proportion of M2 macrophages, suggesting a role in M2 polarization and thus improved healing outcomes, though Tr1 interactions with macrophages remain to be fully explored.

Although proposing the use of Tr1 as a therapeutic means to ameliorate dermal scarring may seem farfetched, this unique lymphocyte subset is currently being tested in clinical trials of graft versus host disease and refractory Crohn’s disease. Although the strategies used in these treatments involve expansion of Tr1 in vivo, it is possible to enrich the wound environment with Tr1 without the need for expensive ex vivo expansion strategies that require further regulatory approval. For example, HA has the capacity to induce Tr1 proliferation and cytokine production, making biomaterial wound dressings a plausible player to consolidate Tr1 and IL-10 in the wound. Naturally occurring Tr1 are also activated in an antigen-specific manner, functioning to promote immune tolerance to recognized environmental antigens. The significance of immune tolerance to wound healing has been demonstrated in studies where oral administration of proteins such as ovalbumin and zein (a protein found in corn) to mice leads to reduced scarring after intraperitoneal immunization with the respective desensitizing protein. Although no explicit link to Tr1 as drivers of the reduced scarring is made, the authors emphasize the attenuated inflammatory responses and increased CD3 content in the wounds. Physiologic Tr1 activation in vivo requires cognate antigens, which upon activation regulate non-specific immune responses. As ovalbumin administration is a validated in vitro and in vivo method of priming Tr1 towards antigen-specific activation, it reveals potential mechanisms that could apply to wound healing. Although cell therapy with ex vivo expanded or engineered Tr1 has proven to be safe and feasible, these cells can also be induced in vivo from effector memory T cell precursors through cognate HMW-HA/CD44 interactions. We therefore posit that Tr1 can be attracted to the wound environment by mechanisms of specific HA formulations to increase endogenous IL-10 production in the wound and support dermal wound repair.

In that context, we envision to harness the learned knowledge in the present study to further investigate the contributions of lymphocyte subsets to wound repair. While results from this study support our original premise that adaptively transferred Tr1 improve SCID mice wound healing, the activity or even presence of these regulatory immune cells in the wound under physiologic healing conditions have yet to be demonstrated. To that end, we aim to characterize these cells in wound physiology and develop new methods of recruiting Tr1 to cutaneous wounds to promote endogenous IL-10 production.

In summary, we unveiled beneficial effects of Tr1 in wound healing, which follows upon our findings on total unfractonated CD4+ lymphocytes that showed positive roles of IL-10’s regenerative effect on wound healing. Future work will investigate how Tr1 mechanistically influence physiologic wound healing by examining their spatiotemporal interaction with other CD4+ lymphocytes, non-lymphoid cell lineages, and molecular mediators in the healing wound, which will place our research a step closer to translating our discoveries on the bench into bedside applications to achieve regenerative wound healing.

ACKNOWLEDGMENTS

The authors thank the Office of Surgical Research Administration at Texas Children’s Hospital (Dr. Hector Martinez-Valdez and Monica Fahrenholtz) for editorial support; Dr. Qi Miao for preliminary experimental designs and technical assistance; Dr. Weiguo Wu, Ms. Patricia Phillips and Dr. Paul Porter at the Cytometry and Cell Sorting Core at Baylor College of Medicine for their relentless assistance in performing IMC.

REFERENCES

1. Adzick NS, Harrison MR, Glick PL, et al. Comparison of fetal, newborn, and adult wound healing by histologic, enzyme-histochemical, and hydroxyproline determinations. J Pediatr Surg. 1985;20:315–319.
2. Krummel TM, Nelson JM, Diegelmann RF, et al. Fetal response to injury in the rabbit. J Pediatr Surg. 1987;22:640–644.
3. King A, Balaji S, Le LD, et al. Interleukin-10 regulates fetal extracellular matrix hyaluronan production. J Pediatr Surg. 2013;48:1211–1217.
4. King A, Balaji S, Marsh E, et al. Interleukin-10 regulates the fetal hyaluronan-rich extracellular matrix via a STAT3-dependent mechanism. J Surg Res. 2013;184:671–677.
5. Brown BC, McMenna SP, Siddiqui K, et al. The hidden cost of skin scars: quality of life after skin scarring. J Plast Reconstr Aesthet Surg. 2008;61:1049–1058.
6. Groppa E, Colliva A, Vieruch R, et al. Immune cell therapies to improve regeneration and revascularization of non-healing wounds. Int J Mol Sci. 2020;21:15.
7. Boothby IC, Cohen JN, Rosenblum MD. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Sci Immunol. 2020;5:47.
8. Munoz LD, Sweeney MJ, Steen JM. Skin resident gammadelta T cell function and regulation in wound repair. Int J Mol Sci. 2020;21:23.
9. Wang X, Balaji S, Steen EH, et al. T lymphocytes attenuate dermal scarring by regulating inflammation, neovascularization, and extracellular matrix remodeling. Adv Wound Care (New Rochelle). 2019;8:527–537.
10. Yao Y, Yen-Schmidt J, McGough MD, et al. Tr1 cells, but not Foxp3+ regulatory T cells, suppress NLRP3 inflammasome activation via an IL-10-dependent mechanism. J Immunol. 2015;195:488–497.
11. Ley K. M1 means kill; M2 means heal. J Immunol. 2017;199:2191–2193.
12. Nathan CF, Murray HW, Wiebe ME, et al. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158:670–689.
13. Willenborg S, Eming SA. Macrophages - sensors and effectors coordinating skin damage and repair. J Dtsch Dermatol Ges. 2014;12:214–223. 214-21.
14. Makita N, Hizukuri Y, Yamashiro K, et al. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int Immunol. 2015;27:131–141.
15. Krishnamurthy P, Thal M, Verma S, et al. Interleukin-10 deficiency impairs bone marrow-derived endothelial progenitor cell survival and function in ischemic myocardium. Circ Res. 2011;109:1280–1290.
16. Steen EH, Wang X, Balaji S, et al. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Adv Wound Care (New Rochelle). 2020;9:184–198.
17. Samanta A, Dawn B. IL-10 for cardiac autophagy modulation: new direction in the pursuit of perfection. J Mol Cell Cardiol. 2016;91:204–206.
18. Nakagome K, Dohi M, Okunishi K, et al. In vivo IL-10 gene delivery attenuates bleomycin induced pulmonary fibrosis by inhibiting the production and activation of TGF-beta in the lung. Thorax. 2006;61:886–894.
19. Shahmokhtari EA, Kratochvil MJ, Orcholski ME, et al. Hydrogel-based delivery of IL-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials. 2019;203:52–62.
20. Mu W, Ouyang X, Agarwal A, et al. IL-10 suppresses chemokines, inflammation, and fibrosis in a model of chronic renal disease. J Am Soc Nephrol. 2005;16:3651–3660.
21. Gregorini M, Corradetti V, Rocca C, et al. Mesenchymal stromal cells prevent renal fibrosis in a rat model of unilateral ureteral obstruction by suppressing the renin-angiotensin system via HuR. PLoS One. 2016;11: e0148542.
22. Wang X, Balaji S, Steen EH, et al. High-molecular weight hyaluronan attenuates tubulointerstitial scarring in kidney injury. JCI Insight. 2020;5:12.
23. Balaji S, Wang X, King A, et al. Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling. FASEB J. 2017;31:868–881.
24. Peranteau WH, Zhang L, Muvarak N, et al. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Invest Dermatol. 2008;128:1852–1860.
25. Gordon A, Kozin ED, Keswani SG, et al. Permissive environment in postnatal wounds induced by adenosinergic-mediated overexpression of the anti-inflammatory cytokine interleukin-10 prevents scar formation. Wound Repair Regen. 2008;16:70–79.
26. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85:699–715.
27. Singampalli KL, Balaji S, Wang X, et al. The role of an IL-10-dependent hyaluronan axis in dermal wound healing. Front Cell Dev Biol. 2020;8:636.
and Foxp3- precursor cells from KO mice into SCID mice rather than just wounding the IL-10 KO mice that they had?

When examining the role of IL-10 in wound healing, why did they decide to place CD4+ cells from KO mice into SCID mice rather than just wounding the IL-10 KO mice that they had?

If both Treg and Tr1 cells secrete IL-10, suppress SMA and collagen metabolism in human skin fibroblasts, does this suggest that the biological complexity of just increased IL-10 secretion is greater than just wounding the IL-10 KO mice that they had?

Response from Dr. Walker D. Short

Thank you for the generous invitation to comment on your manuscript. It is an excellent question, because there are some limitations to this model. What we were trying to accomplish with this experiment is to determine if the positive effects on wound repair are mediated by CD4+ lymphocytes that secrete IL-10. By taking CD4 cells from an IL-10 KO mouse, we introduced those cells into a mouse that has no IL-10. We are trying to determine if the effects we were seeing with adoptive transfer of CD4 cells were dependent on IL-10. By taking CD4 cells from an IL-10 KO mouse, we introduced those cells into a mouse that has no IL-10. We are trying to determine if the effects we were seeing with adoptive transfer of CD4 cells were dependent on IL-10. By taking CD4 cells from an IL-10 KO mouse, we introduced those cells into a mouse that has no IL-10.

In other words, macrophages react to the wound. Interestingly, macrophages, which are very understudied within dermal wound repair have recently been shown to have an active role in the tissue repair process, in fact, we recently published a very significant role for lymphocytes in the dermal wound repair process. There is also a body of literature that suggests lymphocytes actually regulate macrophage differentiation, making them upstream of the macrophage response. That's why we have such an interest in lymphocytes as governors or regulators of the wound repair process and the specific subpopulations of lymphocytes that secrete IL-10 to see what role they have in modulating the scarring process.

This is an excellent question, because there are some limitations to this model. What we were trying to accomplish with this experiment is to determine if the positive effects on wound repair that we've previously shown with CD4 lymphocytes is dependent on their IL-10 production. So to do that we had to eliminate any other lymphocyte population, because that's the model we've previously used when showing the beneficial effects of CD4+ cells on wound healing. It is certainly a complex system and what we really wanted to determine is if the effects we were seeing with adoptive transfer of CD4 cells were dependent on IL-10. By taking CD4 cells from an IL-10 KO mouse, we introduced those cells into a mouse that has no lymphocytes, but still contains cells that can produce IL-10. This is an excellent question, because there are some limitations to this model. What we were trying to accomplish with this experiment is to determine if the positive effects on wound repair that we've previously shown with CD4 lymphocytes is dependent on their IL-10 production. So to do that we had to eliminate any other lymphocyte population, because that's the model we've previously used when showing the beneficial effects of CD4+ cells on wound healing. It is certainly a complex system and what we really wanted to determine is if the effects we were seeing with adoptive transfer of CD4 cells were dependent on IL-10. By taking CD4 cells from an IL-10 KO mouse, we introduced those cells into a mouse that has no lymphocytes, but still contains cells that can produce IL-10. This is an excellent question, because there are some limitations to this model. What we were trying to accomplish with this experiment is to determine if the positive effects on wound repair that we've previously shown with CD4 lymphocytes is dependent on their IL-10 production. So to do that we had to eliminate any other lymphocyte population, because that's the model we've previously used when showing the beneficial effects of CD4+ cells on wound healing. It is certainly a complex system and what we really wanted to determine is if the effects we were seeing with adoptive transfer of CD4 cells were dependent on IL-10. By taking CD4 cells from an IL-10 KO mouse, we introduced those cells into a mouse that has no lymphocytes, but still contains cells that can produce IL-10.
This again a very insightful question, and one that we have been investigating. The biology is absolutely more complex than just IL-10 secretion. What we’ve shown in this presentation is that while Treg and Tr1 both produce IL-10 and have similar effects on gene expression in fibroblasts, there are many other avenues to explore for why there’s a difference. For example, we’ve subsequently done imaging mass cytometry that allows us to spatially see where these Tr1 cells are functioning in the wound, and what we find is in the Tr1 wounds specifically compared to Treg, there are Tr1 cells at the base of the wounds and an increased proportion of M2 antifibrotic macrophages associated with these Tr1. So while you’re completely correct that Treg and Tr1 have similar effects on fibroblasts, we see a striking difference in the effect they have on macrophages. We also see in our 28 days time point, the wounds of mice treated with Tr1 still have lymphocytes present whereas Treg don’t, suggesting that perhaps Tr1 are exerting their effects in the wound healing process for a longer duration. So these reasons may explain why Tr1 have a greater effect on fibrosis while the earlier timepoints are similar to Treg.