Serogroups, subtypes and virulence factors of shiga toxin-producing Escherichia coli isolated from human, calves and goats in Kerman, Iran

Rohollah Taghadosi¹, Mohammad Reza Shakibaie¹, Hesam Alizade², Hossein Hosseini-Nave¹, Asma Askari³, Reza Ghanbarpour³
¹Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
²Infectious and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
³Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran

ABSTRACT

Aim: The present study was conducted to detect the occurrence, serogroups, virulence genes and phylogenetic relationship of shiga toxin-producing Escherichia coli (STEC) in human, clave and goat in Kerman (southeast of Iran).

Background: STEC have emerged as the important foodborne zoonotic pathogens causing human gastrointestinal disease and confirming the risk to public health.

Methods: A total of 671 fecal samples were collected from diarrheic patients (n=395) and healthy calves (n=156) and goats (n=120) and screened for the presence of stx gene. Furthermore, the prevalence of stx1 and stx2 variants, serotypes (O157, O145, O103, O26, O111, O91, O128, and O45), phylogenetic groups and the presence of ehxA, eae, hylA, iha and saa virulence genes were studied.

Results: Prevalence of STEC in human diarrheic isolates was 1.3% (5 isolates), in calves was 26.3% (41 isolates) and in goats was 27.5% (33 isolates). stx1 gene was the most prevalent variant and detected in 75 isolates. Furthermore, stx1c was the most predominant stx subtype, found in 56 isolates. The ehxA identified in 36 (45.6%) isolates, followed by iha 5 (6.3%), eaeA 4 (5.1%), hylA 2 (2.5%) and saa 2 (2.5%). Most of the isolates belonged to phylogroup B1. Only two O26 and one O91 isolates were detected in our study.

Conclusion: Our results show that STEC strains were widespread among healthy domestic animals in the southeast of Iran

Keywords: Shiga toxin-producing E. coli, serogroup, virulence factors.

(Please cite as: Taghadosi R, Shakibaie MR, Alizade H, Hosseini-Nave H, Askari A, Ghanbarpour R. Serogroups, subtypes and virulence factors of shiga toxin-producing Escherichia coli isolated from human, calves and goats in Kerman, Iran. Gastroenterol Hepatol Bed Bench 2018;11(1):60-67.)

Introduction

Shiga toxin-producing by Escherichia coli (STEC) is an important enteric pathogen, has been reported in several outbreaks with clinical manifestations including mild diarrhea, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) (1, 2). The disease in human is primarily a food-borne infection. Although STEC strains have been isolated from other animals such as goats, sheep, swine, wild animals and humans, cattle are the major source of food contamination (3). The ability of STEC strains to cause human disease is mainly due to the production of shiga-like toxins (stx) which are classified into two closely related subgroups, stx1 and stx2 (encoded by the stx1 and stx2 genes). Stx1 is a homologous group with only three variants (stx1a, stx1c, and stx1d), while stx2 is a more heterogeneous group and is comprised of several subtypes (stx2a, stx2b, stx2c, stx2d, stx2e, stx2f and stx2g) (4, 5). STEC strains producing stx2a, stx2c, or stx2d subtypes are more associated with HC and HUS in humans. In contrast, stx2b, stx2e, stx2f and stx2g are related to animal infections (6). Additional factors that contribute to virulence have also been described, including intimin (encoded by the eae gene), involved
in the attachment of E. coli to the enterocyte, plasmid-encoded enterohemolysin (encoded by ehxA gene) which acts as a pore-forming cytolysin, alpha-hemolysin (encoded by the hlyA gene), IrgA homologue adhesin (ihA) which is a STEC adherence-conferring molecule and Saa which is an autoagglutinating adhesin produced by LEE-negative STEC (3, 7-9). Epidemiologic investigations demonstrated that O157 is the main cause of HC and HUS in human; however, additional serogroups that have been reported in human clinical cases are O26, O45, O91, O103, O111, O128 and O145, and others in recent years (10, 11).

E. coli can also be assigned to one of the four major phylogenetic groups (A, B1, B2 and D) based on the presence or absence of chuA, yjaA and TspE4.C2 (12). Bearing in mind the importance of E. coli as foodborne pathogens, as vehicle of human disease, the objectives of this study were to investigate the distribution of subtypes, serotypes, virulence factors and phylogenetic groups among STEC strains from healthy domestic animals (calves and goats) and patients with diarrhea in Kerman, southeast of Iran.

Methods

Specimen collection and microbiological processing

In a prospective study, from October 2014 to November 2015, a total of 671 fecal samples were collected from diarrheic patients (n=395) and fecal healthy calves (n=156) and goats (n=120). The human samples were related to both male (n=215) and female (n=180). Their age ranged from <5 years old (n=107), 5 to 15 years old (n=146), 15 to 40 years old (n=75) and 40 to 90 years old (n=67). The human isolates obtained from the rectal swab of the patient with diarrhea referred to Afzalipour and Payambar-Azam hospitals. All animal samples were collected by veterinarians from School of Veterinary Medicine, Shahid Bahonar University, Kerman, Iran. All samples were placed into Amies medium (Becton Dickinson, BBL, and USA) and were sent out to the laboratory in ice-cooled containers. The samples were taken to the microbiology laboratory, Kerman University of Medical Sciences and identified as E. coli by biochemical characteristics and conventional diagnostic tests (13). All strains were stored at −70°C in Trypticase Soy broth (Difco Laboratories, Detroit, Mich.) containing 30% glycerol for further study.

Detection of STEC strains

For the detection of stx gene, DNA template was obtained by boiling method (14). Presence of stx gene in the selected E. coli colonies was verified by PCR method (15). In addition, stx-positive isolates were examined for the presence of stx1 and stx2 genes by using duplex-PCR (16). A positive control for PCR was E. coli strain MG1655 was used as a negative control for virulence genes. Details of the primers and the length of the expected amplification product are listed in Table 1.

Identification of subtype genes

We used PCR method for determination of stx1 and stx2 subtypes. PCR for detection of stx1a, stx1c, stx1d, stx2a, stx2b, stx2c, stx2d and stx2e and stx2f subtypes was carried out by methods described previously (17-19) (Table 1).

Identification of serogroup genes

Furthermore, PCR assay was used for the identification of O157, O145, O103, O26, O111, O91, O128 and O45 as described by Hemmatinezhad et al. (20) (Table 1).

Identification of virulence genes

The presence of following virulence genes ehxA, eae, hlyA, iha and saa were detected by PCR assay (21-24) (Table 1).

Determination of STEC strains phylogenetic groups

Strains assigned to one of the four main phylogenetic group of E. coli (A, B1, B2 and D) by using a PCR-based method as described previously (12). The genomic DNA of bacterial strains amplified by triplex-PCR using primers targeted at three markers, chuA, yjaA and TspE4.C2.

Statistical analysis

SPSS version 15.0 software for Windows (SPSS Inc., Chicago) was used for statistical analysis. P values of less than 0.05 were considered to be significant.

Results

Among 671 E. coli isolates isolated from healthy farm calves, goats and patients with sign of diarrhea, 79 strains were positive for the presence of stx gene and identified as STEC. Among STEC strains 41 strains were positive in calves, 33 strains in goats and 5 strains
Table 1. Oligonucleotide Primers Used in this Study.

Target gene	Primer sequence (5'-3')	Size (bp)	Annealing temp (°C)	References
stx	GAGCGAAATAATTTATATGGTG	518	55	15
	TGGATGATGGCAATTTCAATGAT			
stx1	TAAAACGCACTCGTGTACAC	180	58	16
	AGAAGCCTCCTGAGATCATC			
stx2	GGCACCTGTCGGAACTGTCGCC	255	60	16
	TGGCCAGTTATTCTGACATTCTG			
stx1a	CAGGTTACACGCGTGTGGCA	219	57	18
	CCGCCGACTGAATCATCC			
stx1c	TTTCACATGTACCTCTCTCTCT	498	54	17
	CATAGAAAGGAAACTCTATTAGG			
stx1d	CTTTTTCAGTTAACTGGATGCT	192	57	18
	AACCCTATATGACGTACTG			
stx2a	AGATATCGACCCCTCTTGGAA	969	55	18
	GTGCAACCTCAGTAAATG			
stx2b	AAATATGAGAAAGATTTTGGAGGC	251	60	19
	CAGCAGAAACTCTGAACTGAG			
stx2c	GCCGTITTTATTTGCATTGT	124	55	17
	AGTACTCTTCTTCCGACCT			
stx2d	GGTAAAATGTTTCTCTAAATGAT	175	58	17
	CAGCAGAAACTCTGAACTGAG			
stx2e	CAGAAGGAAGTGTATTTAAGCA	267	56	17
	TCGAGAAGCTTCACCTGAGGC			
stx2f	CTTTTCAGTTAATGGATGCT	192	57	18
	AACCCTATATGACGTACTG			
stx2g	CACCGGGTATTTATATTT CCTCTGATATC	573	62	19
	GATGCCAATTTCAAGATAACCCGT			
chuA	GAGCGAAACTCGGACAGCT	279	59	12
	TGCCGCAAGTAACCCGAGCA			
YjaA	TGGGCGTCAGGAGAGCTG	211	59	12
	TGGGCGTCAGGAGAGCTG			
	TGGGCGTCAGGAGAGCTG			
	CTCCCTAAGCTCCCGCCGCTGA	1087	65	22
	TCAGCGTGGGTTGGATCAACCT			
TspE4.C2	CTGGCG CAAAGACTGATCATCT	152	59	12
	CCGCGCAAGAAGATATTA CG			
ehxA	GGTGCGAGCAAAAAAAGTGTGA	1551	61	24
	TCTCGCTGTAAGTGGTGTTGTA			
hylA	AACAAAGGATAGGCACCTGTTCGCT	1177	61	21
	ACCATATAAGCGTGCTATCCGCTA			
saa	CGTGTAGAAGAAGCTGTAATGC	119	59	23
	ATGGGACCTGGTGCGCACAC			
iha	CTGGCGGAGGCTCGAGTACGA	827	59	23
	TCTTAAAGCTCCCGCCGCTGA			
eaeA	CAGGTCGCTGATGCTGCTTAAA	1087	65	22
	TCACGCGTGTTGGATCAACCT			
O157	CGGACATCCATGTTAGATGG	259	58	20
	TTGCTATGTACAGCTAATTCC			
O145	CCATACCAAGATTAGGAGTGA	609	58	20
	TTTCCTCCGCCAAATCTAC			
O111	TAGAAAGGAATATCAAGTTAGTCC	406	58	20
	ATAGTTATGAACATTTGTTGAGC			
O91	GCTGAACCTTATGATGTTGTA	291	58	20
	TAATTTAACCCTGTAGAATCTGCT			
O128	GCTTTTGCGTATATTGCGC	289	58	20
	CCGACAGATGATGCCGAGTAGT			
O45	CCGGGTTGCTGATGTTGGAAGTGG	527	58	20
	CACAAGCACTACTAAGCCAGAAA			
O103	TGCCGCGTAATCGGACCT	321	58	20
	CTCGCCGAGACGCTATAAG			
O26	CAGAATTGTATGCTAATGT	423	58	20
	CTTACATTGTTCCTGCAGCATC			
in human samples. Our results showed that 54 (68.4%) of the strains carried \(stx_1 \) only, 4 (5.1%) contained \(stx_2 \) only, and 21 (26.6%) possessed both \(stx_1 \) and \(stx_2 \).

Two \(stx_1 \) subtypes (\(stx_{1a} \) and \(stx_{1c} \)) and four \(stx_2 \) subtypes (\(stx_{2a} \), \(stx_{2b} \), \(stx_{2c} \) and \(stx_{2d} \)) were detected with a total of 13 different \(stx_1 \) and \(stx_2 \) subtypes combinations as shown in Table 2. Among the subtypes, \(stx_{1c} \) was detected in 56 strains, followed by \(stx_{1a} \) (25 strains), \(stx_{2b} \) (20 strains), \(stx_{2c} \) (19 strains) and \(stx_{2a} \) (1 strain). In addition, \(stx_{2d} \) (11 strains) was detected only in combination with other \(stx \) genes (Table 2). There was no correlation between \(stx \) subtypes and animal sources \((P \leq 0.05) \).

The \(STEC \) strains were further tested for five putative virulence factors, including \(eaeA \), \(hlyA \), \(iha \), \(ehxA \) and \(saa \). Out of 79 strains, 49 (62%) carried at least one virulence gene tested. The \(ehxA \) was detected in 36 (45.6%), \(eaeA \) in 4 (5.1%), \(iha \) in 5 (6.3%), \(hlyA \) in 2 (2.5%) and \(saa \) in 2 (2.5%) of the isolates.

Phylogroup B1 was the most prevalent (62/79; 78.5%) among the \(STEC \) strains, followed by phylogenotypes A (12/79; 15.2%) and D (5/79; 6.3%). As shown in Table 3, all isolates of human origin belonged to the D Phylogroup. In this study, phylogenetic group B2 was not detected in \(STEC \) strains.

Serogroup analysis showed that none of the isolates belonged to O45, O103, O111, O128, O145 and O157 serogroups, while O26 and O91 were detected in two (clave and goat) and one (clave) isolate, respectively.

Discussion

\(STEC \) can be found in various food sources, transmission of this pathotype from undercooked or unpasteurized animal products to human is problematic \((1, 10)\). It is estimated that \(STEC \) to cause more than 265,000 illnesses each year in the USA, with more than 3,600 hospitalizations and 30 deaths \((25)\). In the present study, \(STEC \) strains were isolated just from 1.2% of patients with diarrhea which was consistent with previous studies \((26-28)\). According to a survey, high variability of genes-encoding \(stx \) was detected in the \(E. coli \) isolates in HIV and thalassemia patients in Kerman, south-east of Iran. Among \(E. coli \) isolates from faecal samples, 30.8% isolates were positive for \(stx \) genes \((34)\). However, 26.8% of \(E. coli \) isolated from goats and calves carried at least one of the \(stx \) genes.
This frequency was, lower compared to reports from Spain and Brazil (37% and 44%) (29, 30), but higher from results reported in Iran (8.5%) (31). Another study from West Azerbaijan province in Iran revealed that 21.92% of the E. coli isolates recovered from fecal healthy calves harbored stx genes (32). These variations may likely be due to geographical and climatic conditions and differences in the natural intestinal flora present in animal’s gastrointestinal tract (33).

In STEC strains characterized in this study, stx1 was the most common stx gene identified, a result which is similar to previous reports (31, 34). In contrast, some studies have detected stx2 as a dominant stx gene in fecal samples of animals (35, 36). Although, this variant mainly found in strains isolated from healthy human carriers and most likely does not cause severe diseases in human (36).

In the present study, stx1c was the predominant variant among the STEC strains isolated. Stx1c Subtype has also frequently been reported in previous studies (5, 37). However, stx1c-encoding strains are associated with asymptomatic human carriage or mild illness (38). Stx2c and stx2d are associated with HUS. However, they are less toxic on Vero cells compared to stx2a. STEC strains with stx2a are associated with several clinical symptoms, such as HUS and HC (39). Stephan and Hoelzl suggested that stx2a was not associated with severe human diseases, because most strains carrying stx2a were isolated from healthy human carriers (40). In the present study, two strains carrying only stx2a were isolated from human and it was possible that these two STEC strains were not the main causative agent of diarrhea. In this study, two strains isolated from calves carried 5 subtypes of stx1a, stx1c, stx2b, stx2c, stx2d simultaneously. The combination of five stx genes in one isolate had not been previously reported. In the study of Bertin et al. strains with a combination of stx1 and/or stx2 subtypes were found to be more toxic toward Vero cells than other strains (41). In our study, other stx2 subtypes such as stx2a, stx2b and stx2d were not found. These subtypes are related to animal infections (42).

In addition, we studied the distribution of eight important serotypes in the above isolates which associated more frequently with HUS and HC. None of the isolates belonged to O45, O103, O111, O128, O145 and O157 serogroups, while O26 and O91 were detected in two and one isolates respectively. This finding is in agreement with the failure to find these serotypes in yaks and cattle (8, 43). It seems that in some regions, ruminants are not important reservoirs for the outbreak isolates. Although, human infections with stx-producing E. coli O26 is uncommon and has resulted in less severe illness, but is a major cause of HUS in Europe continent (44).

In this study, only four strains contained eaeA gene; however, none of the isolates carried the stx2 subtypes. The low frequency of the eaeA gene found in the present study may be related to the low frequency of certain serogroups, as it has been reported that the presence of the eaeA gene is associated with specific O serogroups of STEC, such as the O157, O145, O103, O26, and O111 (33). Since the majority of the STEC strains lacked eaeA gene, we investigated other factors associated with adherence including iha and saa. These two virulence factors have been reported to be highly important for pathogenicity of eae-negative STEC strains (8). Only 2.5% and 6.35% of strains were positive for saa and iha respectively. It is possible that other virulence factors, that were not investigated in the present study like lpfa and paa play important role in the adherence of STEC strains. Also, we detected ehxA and hlyA genes in 45.6% and 2.5% of strains respectively. Overall, the frequency of virulence factors in STEC isolates was lower than that observed in other studies (8, 45). Carriage of stx gene positive E. coli isolates in the gastrointestinal tract of healthy ruminants proposes that these are transient commensal bacteria in these animals and the virulence genes of these isolates were either not or very poorly expressed (32).

Investigation on STEC phylogroups indicated that majority of commensal and diarrhetic strains are belonged to group B1 and A, while extra intestinal E. coli strains belong mainly to group B2 and D (46). In this study, phylogenetic group B2 were not detected in STEC isolates, which was consistent to previous study (46). However, like in many studies, phylogenetic group B1 was predominant among isolates from animals (47, 48). All of the human strains belonged to phylogenetic group D2, while it was not found in strains isolated from animals.

In conclusion, although STEC strains were widespread among healthy domestic animals in the southeast of Iran, prevalence of STEC in patient with diarrhea was
low and most of the STEC strains did not belong to O
serogroups that are commonly associated with severe
disease in humans. Furthermore, these strains were
mainly belonged to phylogenetic group B1. These facts
together with the high prevalence of stx1c, stx2b, stx2c
subtypes and low prevalence of stx2a, suggest that most
of STEC in Iranian calves and goats may not pose a
serious public health concern.

Acknowledgment

The authors acknowledge Kerman University of
Medical Sciences for the financial support.

Conflict of interests

The authors declare that they have no conflict of
interest.

References

1. Doregiraea F, Alebouyeh M, Nayeri Fasaei B,
Charkhkar S, Tajedin E, Zali MR. Isolation of atypical
enteropathogenic and shiga toxin encoding Escherichia
coli strains from poultry in Tehran, Iran. Gastroenterol
Hepatol Bed Bench 2016;9:53-7.

2. Kargar M, Homayoon M. Prevalence of shiga toxins
(stx1, stx2), eaeA and hly genes of Escherichia
coli O157: H7 strains among children with acute
gastroenteritis in southern of Iran. Asian Pac J Trop
Med 2015;8:24-8.

3. Baliere C, Rince A, Delannoy S, Fach P, Gourmelon
M. Molecular profiling of shiga toxin-producing
Escherichia coli and enteropathogenic E. coli strains
isolated from French coastal environments. Appl
Environ Microbiol 2016;82:3913-27.

4. Jajarmi M, Imani Fooladi AA, Askari Badouei M,
Ahmadi A. Virulence genes, shiga toxin subtypes,
major O-serogroups, and phylogenetic background of
shiga toxin-producing Escherichia coli strains isolated
from cattle in Iran. Microb Pathog 2017;109:274-9.

5. Vu-Khoc H, Cornick NA. Prevalence and genetic
profiles of shiga toxin-producing Escherichia coli
strains isolated from buffaloes, cattle, and goats in
central Vietnam. Vet Microbiol 2008;126:356-3.

6. Fuller CA, Pellino CA, Flagler MJ, Strasser JE,
Weiss AA. Shiga toxin subtypes display dramatic
differences in potency. Infect Immun 2011;79:1329-37.

7. Beutin L, Aleksic S, Zimmermann S, Gleier K.
Virulence factors and phenotypical traits of
verotoxigenic strains of Escherichia coli isolated from
human patients in Germany. Med Microbiol Immunol
1994;183:13-21.

8. Bai X, Zhao A, Lan R, Xin Y, Xie H, Meng Q, et al.
Shiga toxin-producing Escherichia coli in Yaks (Bos
grunniens) from the Qinghai-Tibetan Plateau, China.
PloS One 2013;8:e65537.

9. Caine L, Nwodo U, Okoh A, Ndip R, Green E.
Occurrence of virulence genes associated with
diarrheagenic Escherichia coli isolated from raw cow’s
milk from two commercial dairy farms in the eastern
cape province, South Africa. Int J Environ Res Public
Health 2014;11:11950-63.

10. Wang F, Yang Q, Kase J, Meng J, Clotilde LM, Lin
A, et al. Current trends in detecting non-O157 shiga
toxin-producing Escherichia coli in food. Foodborne
Pathog Dis 2013;10:665-77.

11. Taghadosi R, Shakiabae MR, Ghanarpour R,
Hosseini-Nave H. Role of antigen-43 on biofilm
formation and horizontal antibiotic resistance gene
transfer in non-O157 shiga toxin producing Escherichia
coli strains. Iran J Microbiol 2017;9:89-96.

12. Clermont O, Bonacorsi S, Bingen E. Rapid and
simple determination of the Escherichia coli
phylogenetic group. Appl Environ Microbiol
2000;66:4555-8.

13. Patricia M. Bailey & Scott’s Diagnostic
Microbiology. St. Louis, Missouri: Elsevier, 2014.

14. Hosseini Nave H, Mansouri S, Emaneini M, Moradi
M. Distribution of genes encoding virulence factors and
molecular analysis of Shigella spp. isolated from
patients with diarrhea in Kerman, Iran. Microb Pathog
2016;92:68-71.

15. Nakhjavani FA, Emaneini M, Hosseini H, Iman-
Eini H, Aligholi M, Jabalameli F, et al. Molecular
analysis of typical and atypical enteropathogenic
Escherichia coli (EPEC) isolated from children with
diarrhoea. J Med Microbiol 2013;62:191-5.

16. Paton A, Paton J. Detection and characterization of
shiga toxigenic Escherichia coli by using multiplex
enterohemorrhagic E. coli hlyA, rfb O111, and
detection and characterization of shiga toxigenic
Escherichia coli by using multiplex PCR assays for
stx1, stx2, eae. J Clin Microbiol 1998;36:598-602.

17. Kumar A, Taneja N, Kumar Y, Sharma M.
Detection of Shiga toxin variants among shiga toxin-
forming Escherichia coli isolates from animal stool,
meat and human stool samples in India. J Appl
Microbiol 2012;113:1208-16.

18. He X, Quiñones B, McMahon S, Mandrell RE. A
single-step purification and molecular characterization
of functional Shiga toxin 2 variants from pathogenic *Escherichia coli*. Toxins 2012;4:487-504.

19. Scheutz F, Teel LD, Beutin L, Piérard D, Buvens G, Karch H, et al. Multicenter evaluation of a sequence-based protocol for subtyping shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 2012;50:2951-63.

20. Hemmatinezhad B, Khamisipour F, Mohammadi M, Safapoor Dehkordi F, Mashak Z. Microbiological investigation of O-serogroups, virulence factors and antimicrobial resistance properties of shiga toxin-producing *Escherichia coli* isolated from Ostrich, Turkey and Quail Meats. J Food Saf 2015;35:491-500.

21. Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O. Detection of urovirulence factors in *Escherichia coli* by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol 1995;12:85-90.

22. Gannon VP, D’Souza, S, Graham T, King RK, Rahn K, Read S. Use of the flagellar H7 gene as a target in multiplex PCR assays and improved specificity in identification of enterohemorrhagic *Escherichia coli* strains. J Clin Microbiol 1997;35:656-62.

23. Chapman TA, Wu XY, Barchia I, Bettelheim KA, Driesen S, Trott D, et al. Comparison of virulence gene profiles of *Escherichia coli* strains isolated from healthy and diarrheic swine. Appl Environ Microbiol 2006;72:4782-95.

24. Meng Q, Bai X, Zhao A, Lan R, Du H, Wang T, et al. Characterization of shiga toxin-producing *Escherichia coli* isolated from healthy pigs in China. BMC Microbiol 2014;14:5.

25. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States major pathogens. Emerg Infect Dis 2011;17:7-15.

26. Alizade H, Ghanbapour R, Aflatoonian MR. Molecular study on diarrheagenic *Escherichia coli* pathotypes isolated from under 5 years old children in southeast of Iran. Asian Pac J Trop Dis 2014;4:5813-7.

27. Alizade H, Ghanbapour R, Neokoubi M. Phylogenetic of shiga toxin-producing *Escherichia coli* and atypical enteropathogenic *Escherichia coli* strains isolated from human and cattle in Kerman, Iran. Int J Entrie Pathog 2014;1:e15195.

28. Nguyen BM, Phung DC, Nakasone N, Toma C, Higa N, Iyoda S, et al. Shiga-toxin producing *Escherichia coli* in Vietnam. Trop Med Health 2004;32:339-41.

29. Blanco M, Blanco JE, Blanco J, Mora A, Prado C, Alonso MP, et al. Distribution and characterization of faecal verotoxin-producing *Escherichia coli* (VTEC) isolated from healthy cattle. Vet. Microbiol 1997;54:309-19.

30. Pereira MA, Brod CS, Rodrigues DP, Carvalhal JB, Aleixo JAG. Shiga toxin-producing *Escherichia coli* (STEC) isolated from healthy dairy cattle in southern Brazil. Vet Microbiol 2003;93:179-83.

31. Sepehrireresht S, Zahraei Salehi T, Sattari M, Tadbakhsh H, Aslani M. Detection of shiga toxigenic *Escherichia coli* from fecal samples of calves and cattle by molecular and serological methods. Comp Clin Path 2009;18:53-7.

32. Dastmalchi Saei H, Ayremlou N. Characterization of shiga toxin-producing *Escherichia coli* (STEC) in feces of healthy and diarrheic calves in Urmia region, Iran. Iran J Microbiol 2012;4:63-9.

33. Yaghbozadeh N, Ownagh A, Mardani K, Khalili M. Prevalence, molecular characterization and serology of shiga toxin-producing *Escherichia coli* isolated from buffaloes in west Azerbaijan, Iran. Int J Vet Res 2011;5:113-7.

34. Alizade H, Sharifi H, Naderi Z, Ghanbapour R, Bamorovat M, Aflatoonian MR. High frequency of diarrheagenic *Escherichia coli* in HIV-infected patients and patients with thalassemia in Kerman, Iran. Int Assoc Provid AIDS Care 2017;16:353-8.

35. Oporto B, Esteban JJ, Aduriz G, Juste RA, Hurtado A. Escherichia coli O157:H7 and non-O157 shiga toxin-producing *E. coli* in healthy cattle, sheep and swine herds in Northern Spain. Zoonoses Public Health 2008;55:73-81.

36. Hofer E, Cernela N, Stephan R. Shiga toxin subtypes associated with shiga toxin-producing *Escherichia coli* strains isolated from red deer, roe deer, chamois, and ibex. Foodborne Pathog Dis 2012;9:792-5.

37. Nguyen TD, Vo TT, Vu-Khac H. Virulence factors in *Escherichia coli* isolated from calves with diarrhea in Vietnam. J Vet Sci 2011;12:159-64.

38. Zhang W, Bielaszewska M, Kuczus T, Karch H. Identification, characterization, and distribution of a shiga toxin 1 gene variant (stx1c) in *Escherichia coli* strains isolated from humans. J Clin Microbiol 2002;40:1441-6.

39. Melton-Celsa AR. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol Spectr 2014;2:1-21.

40. Stephan R, Hoelzle LE. Characterization of shiga toxin type 2 variant B-subunit in *Escherichia coli*.
strains from asymptomatic human carriers by PCR-RFLP. Lett Appl Microbiol 2000;31:139-42.

41. Bertin Y, Boukhors K, Pradel N, Livrelli V, Martin C. Stx2 subtyping of shiga toxin-producing *Escherichia coli* isolated from cattle in France: detection of a new stx2 subtype and correlation with additional virulence factors. J Clin Microbiol 2001;3:3060-5.

42. Feng PCH, Reddy S. Prevalence of shiga toxin subtypes and selected other virulence factors among Shiga-toxigenic *Escherichia coli* strains isolated from fresh produce. Appl Enviro. Microbiol 2013;79:6917-23.

43. Auvray F, Dilasser F, Bibbal D, Kérourédan M, Oswald E, Brugère H. French cattle is not a reservoir of the highly virulent enterotoxigenic shiga toxin-producing *Escherichia coli* of serotype O104: H4. Vet Microbiol 2012;158:443-5.

44. Chase-Topping ME, Rosser T, Allison LJ, Courcier E, Evans J, McKendrick II, et al. Pathogenic Potential to Humans of Bovine *Escherichia coli* O26, Scotland. Emerg Infect Dis 2012;18:439-48.

45. Franz E, Van Hoek AHAM, Wuite M, Van Der Wal FJ, De Boer AG, Bouw EI, et al. Molecular hazard identification of non-O157 shiga toxin-producing *Escherichia coli* (STEC). PLoS One 2015;10:e0120353.

46. Carlos C, Pires MM, Stoppe NC, Hachich EM, Sato MIZ, Gomes TAT, et al. *Escherichia coli* phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiol 2010;10:161.

47. Ishii S, Meyer KP, Sadowsky MJ. Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of *Escherichia coli* strains from diverse human and animal sources. Appl Environ Microbiol 2007;73:5703-10.

48. Mora A, López C, Dhabi G, López-Beceiro AM, Fidalgo LE, Díaz EA, et al. Seropathotypes, phylogroups, stx subtypes, and intimin types of wildlife-carried, shiga toxin-producing *Escherichia coli* strains with the same characteristics as human-pathogenic isolates. Appl Environ Microbiol 2012;78:2578-85.