ORIGINAL ARTICLE

Measurement properties of a patient-reported outcome measure assessing psoriasis severity: The psoriasis symptoms and signs diary

Susan D. Mathias¹, Steven R. Feldman², Ross D. Crosby¹,³,⁴, Hilary H. Colwell¹, Kelly McQuarrie⁵, and Chenglong Han⁵

¹Health Outcomes Solutions, Winter Park, FL, USA, ²Wake Forest University School of Medicine, Winston Salem, NC, USA, ³Neuropsychiatric Research Institute, Fargo, ND, USA, ⁴University of North Dakota School of Medicine and Health Sciences, Fargo, ND, USA, and ⁵Janssen Global Services, LLC, Malvern, PA, USA

Abstract

Background: Collecting reliable and valid symptom information from patients is critical for assessing psoriasis severity in clinical research. Objective: To evaluate measurement properties of a new patient-reported outcome (PRO), the Psoriasis Symptoms and Signs Diary (PSSD). Methods: One hundred six US patients with moderate-to-severe plaque psoriasis completed two versions of the PSSD [a 24-hour recall (PSSD-24h) and 7-day recall (PSSD-7d)] using a 0–10 numerical rating scale. Reliability (test-retest and internal consistency), validity (convergent, divergent and known-groups), responsiveness, and version equivalence were evaluated. Minimally important difference was estimated. Results: Based on exploratory factor analysis and clinical input, symptom, sign, and total severity scores were established. Internal consistency (Cronbach’s alpha ≥ 0.944) and test-retest reliability (intraclass correlation coefficients ≥ 0.824) were acceptable. Correlations with Dermatology Life Quality Index (DLQI) (0.489 to 0.644) indicated convergent validity, while low correlations (<0.30) with several Short Form (SF)-36 scales indicated divergent validity. PSSD scores differed when patients were categorized by Body Surface Area, DLQI, and Psoriasis Area Severity Index scores. PSSD-24h and PSSD-7d versions were equivalent (Pearson correlations ≥ 0.953). Limitations: PSSD responsiveness should be evaluated in patients receiving treatment. Conclusion: The PSSD is reliable and valid in measuring symptoms/signs of patients with moderate-to-severe plaque psoriasis.

Keywords

Psoriasis, assessment tool, questionnaire, validity, reliability, minimal important difference

Introduction

Psoriasis is a symptomatic disease that can have a significant impact on health-related quality of life (HRQoL) (1–7). Collecting information directly from patients through the use of patient-reported outcomes (PROs) has become more common in psoriasis research in recent years (8) and can provide valuable information when assessing psoriasis severity and the change of severity resulting from effective therapies (9,10). Currently, available psoriasis-specific PROs are often limited in scope (11–14), or were not developed based on best practices included in the US Food and Drug Administration (FDA) guidance document for PRO Development (10).

Recently, an 11-item PRO measure, the psoriasis symptoms and signs diary (PSSD), was developed for use in assessing patients with moderate-to-severe plaque psoriasis (15,16) per the FDA’s PRO Guidance (10). The PSSD assesses symptoms (itch, pain, stinging, burning, skin tightness) and patient-observable signs (skin dryness, cracking, scaling, shedding/flaking, redness, bleeding). Two versions are available: one with a 24-h recall (PSSD-24h) and one with a 7-day recall (PSSD-7d). The aim of the current study was to evaluate the psychometric properties of the PSSD, including the scale structure and its item and scale variability, reliability, validity and responsiveness to change. Additionally, we sought to estimate the instrument’s minimally important difference (MID) and evaluate the equivalence of the two recall versions.

Methods

Study patients and procedures

Patients signed informed consent forms, and human subjects’ research approval for this project was provided by Copernicus Group (Cary, NC). Patients aged ≥ 18 years with moderate-to-severe plaque psoriasis for ≥ 6 months not currently enrolled in a psoriasis clinical trial were recruited from seven US dermatology practices. Eligible patients were required to have a body surface area (BSA) rating ≥ 10%, a psoriasis area severity index (PASI) ≥ 12 and a physician’s global assessment (PGA) ≥ 3. Patients were excluded if they had a dermatologic condition other than psoriasis or a medical condition or treatment that could interfere with participation. Patients completed a background demographic questionnaire. Participating sites completed clinical case report forms for each patient at baseline and day 14, which
included disease and treatment histories, and BSA, PGA and PASI scores.

Patients were randomly assigned to one of two groups (‘‘A’’ and ‘‘B’’) in an alternating fashion to assess the equivalence of the two versions of the PSSD. Patients in Group A completed the PSSD-24h version daily for the 2-week period (days 1 through 14), while patients in Group B completed it daily during only the second week (days 8 through 14). All patients completed the PSSD-7d, dermatology life quality index (DLQI) (17), short form-36 (SF-36) (18) and patient global impression (PGI) on a weekly basis on days 7 and 14; patients in Group A also completed these assessments on day 1. Patients in both groups were provided with a date and time stamper to track compliance for timely completion of the assessment.

Study measures

The PSSD-7d and PSSD-24h both contain the same 11 items assessing the presence and severity of symptoms and observable signs. Response options use an 11-point numerical rating scale ranging from 0 (absent) to 10 (worst imaginable). In addition, the PSSD-7d asks about frequency of each symptom on a 5-point scale: ‘‘None of the days’’ (0 days), ‘‘A small number of days’’ (1–2 days), ‘‘Some days’’ (3–4 days), ‘‘Most days’’ (5–6 days), ‘‘All of the days’’ (7 days). The DLQI contains 10 items to assess impact of skin disease on QoL. The SF-36 is a 36-item general health measure that produces eight domain scores and two summary scores: a physical component summary (PCS) and mental component summary (MCS). The PGI assesses baseline severity (PGI-B), change in symptoms from baseline (PGI-Sx) and change in HRQoL since baseline (PGI-QoL).

Descriptive analyses and equivalence of PSSD-24h and PSSD-7d

Comparisons were made between Groups A and B on demographic and clinical characteristics using Fisher’s exact test or Chi-square test for categorical measures and independent samples t-tests or Mann–Whitney U-tests for continuous measures. The equivalence of the PSSD-24h and PSSD-7d versions was evaluated using Pearson correlations and scatterplots.

Item-level and exploratory factor analyses

Descriptive measures, including means, standard deviations (SDs), skew and floor and ceiling effects, were calculated for individual items. Exploratory factor analysis (EFA) was performed to determine scale structure and the feasibility of creating

Table 2. Summary of PSSD-24h item and severity scores at week 1.

Item	N	Mean	SD	Floor (n, %)	Ceiling (n, %)	Skew (SE)
Itch	380	4.9	2.7	21 (5.5)	13 (3.4)	–0.14 (0.13)
Dryness	380	5.3	2.9	17 (4.5)	25 (6.6)	–0.17 (0.13)
Cracking	379	4.3	3.0	59 (15.6)	8 (2.1)	0.06 (0.13)
Skin tightness	379	4.0	3.0	55 (14.5)	8 (2.1)	0.27 (0.13)
Scaling	380	5.1	2.9	24 (6.3)	20 (5.3)	–0.17 (0.13)
Flaking	380	5.3	3.0	33 (8.7)	19 (5.0)	–0.29 (0.13)
Redness	379	5.0	3.0	29 (7.7)	13 (3.4)	–0.14 (0.13)
Bleeding	380	2.3	2.8	160 (42.1)	2 (0.5)	1.02 (0.13)
Burning	380	3.3	3.2	119 (31.3)	9 (2.4)	0.49 (0.13)
Stinging	380	3.4	3.0	99 (26.1)	9 (2.4)	0.52 (0.13)
Pain	380	3.5	3.0	97 (25.5)	9 (2.4)	0.48 (0.13)
Total severity	55	42.0	25.1	0 (0.0)	0 (0.0)	0.20 (0.32)
Symptom severity scale	55	37.9	26.2	1 (1.8)	0 (0.0)	0.47 (0.32)
Sign severity scale	55	45.4	25.0	0 (0.0)	0 (0.0)	–0.02 (0.32)

*N: number of data records from diary of 55 patients in Group A for item analysis or number of patients included in the severity scores analysis. PSSD-24h, psoriasis symptoms and signs diary employing 24-h recall; SD, standard deviation; SE, standard error.
Table 4. Convergent and divergent validity for PSSD-24h: Pearson correlations between week-1 PSSD-24h scale scores and collateral instruments at day 7.

	N	Total severity	Symptom severity	Sign severity
DLQI Total score	54	0.516	0.489	0.521
DLQI item #1**	54	-0.620	-0.652	-0.568
SF-36 physical functioning	53	-0.331	-0.351	-0.300
SF-36 role physical	53	-0.247**	-0.240**	-0.245**
SF-36 bodily pain	53	-0.666	-0.682	-0.624
SF-36 general health	54	-0.376	-0.334	-0.398
SF-36 vitality	53	-0.217**	-0.151**	-0.260**
SF-36 social functioning	54	-0.433	-0.432	-0.416
SF-36 role emotional	53	-0.311	-0.295	-0.313
SF-36 mental health	53	-0.279	-0.208**	-0.330
SF-36 PCS	50	-0.408	-0.437	-0.366
SF-36 MCS	50	-0.269**	-0.203**	-0.314

*aAll correlations are statistically significant (p<0.05) unless otherwise specified.
**DLQI item #1 = “In the past week, how itchy, sore, painful or stinging has your skin been?”.

Reliability and validity

To assess test–retest reliability, the intraclass correlation coefficients (ICCs) of each scale at week 1 and week 2 (for the PSSD-24h) and from day 7 and day 14 (for the PSSD-7d) were calculated. Analyses were first performed using only respondents who indicated on the PGI that they had not changed since baseline and then repeated using only patients who indicated no change from baseline based on BSA. An ICC ≥ 0.70 was considered to be acceptable (19). To evaluate internal consistency reliability of the PSSD-24h, Cronbach’s alpha coefficient was calculated for each scale, with ≥ 0.70 considered acceptable (20,21).

Interscale correlations of the PSSD scales with two collateral measures, the SF-36 and DLQI, were calculated to assess divergent and convergent validity. A correlation ≥ 0.30 (22) was required for the evidence of convergent validity, while a correlation <0.30 represented evidence of divergent validity.

Responsiveness and minimally important difference estimation

For responsiveness, the standardized effect size (SES), (22) standardized response mean (SRM), (23) and responsiveness statistic (or Guyatt’s statistic) (24) were calculated for week-1 and week-2 PSSD-24h scores, where ‘‘stable’’ patients were defined as those who rated themselves as unchanged on the PGI at day 14. Responsiveness for the PSSD-7d was assessed similarly, using day-7 and day-14 scores. A combination of anchor- and distribution-based methods was used to estimate MID (see Supplementary Information).

Results

Baseline demographic and clinical characteristics

One hundred sixty patients were enrolled (Table 1), which provided adequate power to perform the necessary analyses. The mean (SD) age was 50.1 (12.1) years, 61% were male, and 72% were Caucasian. The mean BSA was 21.2%, and mean scores for PASI and PGA were 16.4 and 3.3, respectively, indicating moderate-to-severe psoriasis. There were no significant differences between Groups A and B for demographic or clinical characteristics. Completion rates for the PSSD exceeded 98% for Groups A and B.

Item- and scale-level analyses

Descriptive analyses of individual item responses revealed that severity scores were relatively symmetrically distributed. In the PSSD-24h, floor effects (Table 2) were present for bleeding (42%), burning (31%), stinging (26%) and pain (26%). Scale-level analysis of PSSD-24h severity scores did not exhibit substantial ceiling or floor effects. The PSSD-7d version had similar results for severity scores (data not shown). However, for the analyses on symptom and signs frequency in the PSSD-7d, substantial ceiling effects were found for eight frequency items (itch, dryness, cracking, skin tightness, scaling, shedding/flaking, redness, pain). Among these frequency items, the percent of responses listed as ‘‘all of the days’’ ranged from 30% to 61%. Given the high ceiling effects for the frequency items and limited usefulness of the frequency scores, particularly for the PSSD-24h, further results for these items on frequency are not presented.

Exploratory factor analysis (EFA)

EFA of the week-1 severity items resulted in single-factor solutions with eigenvalues > 1.0 for both the PSSD-24h and PSSD-7d, with no indication that any item should be dropped. Multilevel EFA results provided strong empirical evidence for combining symptom and sign items into a single unitary scale. However, when split into sign and symptom scales based on clinical judgment, the subsequent EFA analyses were strong with eigenvalues > 1.0 for each scale. Therefore, two separate scales for sign and symptom severity were retained, and a total severity score was also preserved. The characteristics of severity scores are presented in Table 2.

Equivalence of PSSD-24h and PSSD-7d

When the equivalence of PSSD-24h and PSSD-7d scores was assessed using one-way analysis of variance (ANOVA) with Tukey’s b post hoc comparisons. Similar analyses were performed using day-7 PSSD-7d scores.
PSSD-24h and day-7 PSSD-7d scores were 0.953–0.957, suggesting that severity scores for both versions are highly comparable.

Reliability

Cronbach’s alpha coefficients (Table 3) were ≥0.954 for the PSSD-24h and ≥0.944 for the PSSD-7d, suggesting excellent internal consistency. Among patients with no PGI change, ICCs for all PSSD-24h scales were ≥0.886, and among patients with no change in BSA, ICCs for all PSSD-24h scales were ICCs ≥0.824, suggesting excellent test-retest reliability. Results for PSSD-7d scales were similar: ICCs were ≥0.894 among patients with no change in PGI and ≥0.886 among those with no change in BSA.

Validity

The PSSD-24h was moderately-to-strongly correlated with several collateral measures (Table 4). Correlations with the DLQI ranged from 0.489 (symptom severity) to 0.521 (sign severity) and those with SF-36 bodily pain ranged from −0.624 (sign severity) to −0.682 (symptom severity). Correlations were highest between the PSSD-24h scales and the symptom item in the DLQI versus the nonsymptom items in the DLQI. For example, the correlations with item #1 of the DLQI (“How itchy, sore, painful, or stinging has your skin been?”) were 0.516 (total severity), 0.489 (symptom severity), and 0.521 (signs severity). Comparable results were obtained between day-7 PSSD-7d scales and collateral measures (data not shown). Divergent validity for the

Figure 1. Known-groups validity for the PSSD-24h at week 1 using baseline collateral measures of the (A) PASI, (B) PGI-B and (C) DLQI (presented as means with standard deviations). DLQI, dermatology life quality index; PASI, psoriasis area and severity index; PGI-B, patient global impression at baseline; PSSD-24h, psoriasis symptoms and signs diary employing 24-h recall.
Table 5. Responsiveness of PSSD-24h scores between week 1 and week 2.

PSSD-24h Score	GPG group	N	Mean change	Standardized effect size	Standardized response mean	Responsiveness statistic
Total severity	Improved	9	-12.62	-0.546	-0.884	-1.508
	No change	36	-0.66	-0.026	-0.079	-0.079
	Worse	9	4.26	0.166	-0.536	0.509
Symptom severity	Improved	9	-12.95	-0.579	-0.765	-1.724
	No change	36	0.07	0.003	0.009	0.009
	Worse	9	4.41	0.163	-0.569	0.587
Signs severity	Improved	9	-12.35	-0.495	-0.962	-1.247
	No change	36	-1.28	-0.051	-0.130	-0.130
	Worse	9	4.14	0.168	-0.484	0.418

PSSD-24h was evident based on lower correlations (<0.300) with several SF-36 scales, including SF-36 role physical, SF-36 vitality, SF-36 role emotional, SF-36 mental health and SF-36 MCS. For the PSSD-7d, divergent validity was demonstrated by correlation coefficients <0.300 for all PSSD severity scales with the SF-36 role physical. Known-groups validity was explored using several comparisons. Patients were grouped according to baseline PASI score (<13, 13–16.9, ≥17) (Figure 1A), baseline PGI rating (Figure 1B), and day-7 DLQI score (<6, 7–15, >16) (Figure 1C). In each case, patients in the most severe disease group produced the highest PSSD scores. Data from the PSSD-7d were similar (data not shown).

Responsiveness and MID estimates

Among those rating themselves as improved from week 1 to week 2 on the PGI, there was a decrease (improvement) in PSSD-24h severity scores (Table 5).

Small changes in scores were seen in those rating themselves as unchanged, while those rating themselves as worse demonstrated increases in severity scores, indicating worsening. Similar results were found for the PSSD-7d (data not shown). MID estimates for PSSD-24h and PSSD-7d severity scores ranged from 10–12 points (additional details are provided in the Supplementary Information).

Discussion

In clinical research of psoriasis, severity is primarily evaluated using physicians’ assessments (e.g. BSA, PGA and PASI), based on the extent of the involved area and presence of erythema, induration and scaling. Symptoms reported by patients are not typically part of the assessment. However, PROs, such as the DLQI, can capture additional benefits beyond clinician’s assessments, and may be more sensitive to detect early treatment responses than clinical measures (such as the PASI and PGA) alone (25).

The PSSD differs from existing PROs used in psoriasis research (such as the DLQI), since it only contains items specific to symptoms and patient-observable signs of psoriasis. Because symptoms are more relevant to the patient experience than signs, the PSSD symptom scale can be used to supplement a physician assessment of severity, such as the PASI and BSA, and be considered as a primary endpoint in clinical trials. Also, the PSSD sign severity scale score can be used as a secondary endpoint for assessing psoriasis-associated signs from patients’ perspectives based on their daily experiences.

The results of the current study indicated excellent internal consistency and test–retest reliability of the PSSD. Moderate-to-strong correlations with collateral measures affirmed the tool’s convergent validity, while weaker correlations (<0.300) with several SF-36 scales indicated adequate divergent validity. When patients were split into groups known to differ, PSSD scores differed significantly. Adequate responsiveness was demonstrated by moderate changes in scores for patients who rated themselves as improved or worsening. Given the lack of sufficient change in both the anchors and PSSD scores, MID estimates should be interpreted with caution. These estimates need to be further explored using data from clinical trials of efficacious therapy. The results from the frequency analysis showed high ceiling effects on individual items as well as scale scores. Therefore, the use of the scores based on frequency should be interpreted with caution.

There are additional limitations to this study. This is a US-based study, and the majority of patients were Caucasian. As such, a multinational study is needed for the validation of the PSSD in culturally diverse populations. In addition, the study was conducted over a 2-week time period among patients who were not required to be receiving active treatment, which may not have allowed for measureable change in the PSSD scores for an informative analysis of responsiveness or in the selected anchors for MID estimation.

Conclusions

As the efficacy of medications for the treatment of patients with psoriasis has improved over the last several years (26), a reliable and valid assessment of psoriasis-related symptom severity has become even more important. The PSSD is a brief but comprehensive measure created in accordance with the FDA’s PRO Guidance, using patient and clinician input, well suited for use with electronic data capture. The PSSD allows for the assessment of symptoms on either a daily or weekly basis, and both versions have been found to be reliable and valid.

Acknowledgements

The authors thank Craig Solid (Solid Research Group, LLC) for his assistance in preparing this manuscript and Michelle L. Perate, MS (Janssen Scientific Affairs, LLC) for submission support.

Declaration of interest

This study was supported by Janssen Scientific Affairs, LLC. Susan D Mathias is an employee and Hilary H Colwell and Ross D Crosby are consultants to Health Outcomes Solutions (HOS), and HOS received funding from Janssen Scientific Affairs, LLC to undertake this study. Steven Feldman has received consulting fees, lecture fees, or grant support from Janssen, Amgen, Abbvie, Novartis, Lilly, and Celgene. Kelly McQuarrie and Chenglong Han are employees of Janssen Global Services, LLC and own stock in Johnson & Johnson.
References

1. de Arruda LH, De Moraes AP. The impact of psoriasis on quality of life. Br J Dermatol. 2001;144:33–6.

2. Gelfand JM, Feldman SR, Stern RS, et al. Determinants of quality of life in patients with psoriasis: a study from the US population. J Am Acad Dermatol. 2004;51:704–8.

3. Heyndel VM, de Borgie CA, Spuls P, et al. The burden of psoriasis is not determined by disease severity only. J Invest Dermatol. 2004;9:131–5.

4. Leino M, Mustonen A, Mattila K, et al. Perceived impact of psoriasis on leisure-time activities. Eur J Dermatol. 2014;24:224–8.

5. Martinez-Garcia E, Arias-Santiago S, Valenzuela-Salas I, et al. Quality of life in persons living with psoriasis patients. J Am Acad Dermatol. 2014;71:302–7.

6. Rapp SR, Cottrell CA, Leary MR. Social coping strategies associated with quality of life decrements among psoriasis patients. Br J Dermatol. 2001;145:610–16.

7. Weiss SC, Kimball AB, Liewehr DJ, et al. Quantifying the harmful effect of psoriasis on health-related quality of life. J Am Acad Dermatol. 2002;47:512–18.

8. Otuki MF, Reis RC, Cabrini D, et al. Patient-reported outcomes in psoriasis research and practice. Br J Dermatol. 2011;165:1361–2.

9. Burke LB, Kennedy DL, Miskala PH, et al. The use of patient-reported outcome measures in the evaluation of medical products for regulatory approval. Clin Pharmacol Ther. 2008;84:281–3.

10. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), Center for Devices and Radiological Health (CDRH). Guidance for Industry Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims. 2009. Available from http://www.fda.gov/downloads/Drugs/Guidances/UCM193282.pdf. Accessed May, 2015.

11. Armstrong AW, Schupp C, Wu J, et al. Quality of life and work productivity impairment among psoriasis patients: findings from the National Psoriasis Foundation survey data 2003–2011. PLoS One. 2012;7:e52935.

12. Globe D, Bayliss MS, Harrison DJ. The impact of itch symptoms in psoriasis: results from physician interviews and patient focus groups. Health Qual Life Outcomes. 2009;7:62.

13. Lebwohl MG, Bachelez H, Barker J, et al. Patient perspectives in the management of psoriasis: results from the population-based Multinational Assessment of Psoriasis and Psoriatic Arthritis Survey. J Am Acad Dermatol. 2014;70:871–81.

14. Sampogna F, Tabolli S, Abeni D, on behalf of the IDIMPRoVE investigators. Living with psoriasis: prevalence of shame, anger, worry, and problems in daily activities and social life. Acta Derm Venereol. 2012;92:299–303.

15. Feldman S, Mathias SD, Schenkel B, et al. Development of a patient-reported outcome measure for psoriasis: the psoriasis symptoms, signs and impact questionnaire. International Society for Pharmacoeconomics and Outcomes Research annual international meeting, Montreal, Quebec, Canada, 2014.

16. Feldman S, Mathias SD, Schenkel B, et al. Development of a patient-reported outcome measure for psoriasis: the psoriasis symptoms, signs and impact questionnaire. American Academy of Dermatology annual meeting, Denver, Colorado, 2014.

17. Finlay AY, Khan GK. Dermatology life quality index (DLQI) – a simple practical measure for routine clinical use. Clin Exp Dermatol. 1994;19:210–16.

18. Hays RD, Sherbourne CD, Mazel RM. The RAND 36-item health survey 1.0. Health Econ. 1993;2:217–27.

19. Nunnally JC. Psychometric Theory. 3rd ed. New York: McGraw-Hill, 1994.

20. Cronbach L. Coefficient alpha and the internal structure of tests. Psychometrika. 1951;16:297–333.

21. Lohr KN, Aaronson NK, Alonso J, et al. Evaluating quality-of-life and health status instruments: development of scientific review criteria. Clin Ther. 1996;18:979–92.

22. Cohen J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale, New Jersey: Lawrence Erlbaum, 1988.

23. Stucki G, Liang MH, Fossel AH, Katz JN. Relative responsiveness of condition-specific and generic health status measures in degenerative lumbar spinal stenosis. J Clin Epidemiol. 1995;48:1369–78.

24. Guyatt GH, Bombardier C, Tugwell PX. Measuring disease-specific quality of life in clinical trials. CMAJ. 1986;134:889–95.

25. Lebwohl M, Papp K, Han C, et al. Ustekinumab improves health-related quality of life in patients with moderate-to-severe psoriasis: results from the PHOENIX 1 trial. Br J Dermatol. 2010;162:137–46.

26. Schmitt J, Rosumek S, Thomashewski G, et al. Efficacy and safety of systemic treatments for moderate-to-severe psoriasis: meta-analysis of randomized controlled trials. Br J Dermatol. 2014;170:274–303.

Supplementary material available online