Forward-backward stochastic differential equations driven by
G-Brownian motion under weakly coupling condition

Xiaojuan Li*

November 29, 2022

Abstract. In this paper, we obtain the existence and uniqueness theorem of L^p-solution for coupled forward-backward stochastic differential equations driven by G-Brownian motion (G-FBSDEs) with arbitrary T under weakly coupling condition. Specially, the result for $p \in (1, 2)$ is completely different from the one for $p \geq 2$. Furthermore, by considering the dual linear FBSDE under a suitable reference probability, we establish the comparison theorem for G-FBSDEs under weakly coupling condition.

Key words. G-expectation; G-Brownian motion; Backward stochastic differential equation; Comparison theorem

AMS subject classifications. 60H10

1 Introduction

The classical fully coupled forward-backward stochastic differential equation (FBSDE) has the following form

\begin{equation}
\begin{aligned}
 dX_t &= b(t, X_t, Y_t, Z_t)dt + \sigma(t, X_t, Y_t, Z_t)dW_t, \\
 dY_t &= f(t, X_t, Y_t, Z_t)dt + Z_t dW_t, \\
 X_0 &= x_0, \quad Y_T = \phi(X_T),
\end{aligned}
\end{equation}

where W is classical standard Brownian motion. There are many literatures to study the existence and uniqueness of the solution to FBSDE (1.1). Antonelli [1] first obtained the existence and uniqueness result by fixed point approach for small T. Ma et al. [18] introduced the four step scheme to first obtain the existence and uniqueness theorem for arbitrary T. Hu, Peng [13] and Yong [31] introduced the method of continuation to study FBSDE (1.1). Pardoux and Tang [21] obtained the existence and uniqueness theorem for arbitrary T by fixed point approach under weakly coupling condition. For more results on this topic, the reader may refer to [4, 19, 25] and the references therein. The applications of the theory of FBSDEs in finance can be found in Ma and Yong’s book [20]. Wu [30] studied the comparison theorem for FBSDE (1.1) by duality method (see also [9, 10]).
Motivated by volatility uncertainty in finance (see [2, 17]), Peng [22, 23] introduced a type of consistent sublinear expectation, called the G-expectation $\hat{E}[\cdot]$. The related G-Brownian motion B and Itô's calculus with respect to B were constructed. Moreover, the theory of stochastic differential equation driven by G-Brownian motion (G-SDE) has been established.

Hu et al. [7] studied the backward stochastic differential equation driven by G-Brownian motion (G-BSDE). The theory of quadratic G-BSDE has been established in [12], and the wellposedness of a type of multi-dimensional G-BSDE can be found in [15]. Soner et al. [27] (see also [3]) studied a new type of fully nonlinear BSDE, called 2BSDE, by different formulation and method. The theory of 2BSDE with random terminal time has been obtained in [14].

Recently, Lu and Song [16], and Zheng [32] studied the following coupled forward-backward stochastic differential equation driven by G-Brownian motion (G-FBSDE):

\[
\begin{align*}
\frac{dX_t}{dt} &= b(t, X_t, Y_t)dt + h(t, X_t, Y_t)d\langle B \rangle_t + \sigma(t, X_t, Y_t)dB_t, \\
\frac{dY_t}{dt} &= f(t, X_t, Y_t, Z_t)dt + g(t, X_t, Y_t, Z_t)d\langle B \rangle_t + Z_tdB_t + dK_t, \\
X_0 &= x_0 \in \mathbb{R}^n, \ Y_T = \phi(X_T) \in \mathbb{R}.
\end{align*}
\]

(1.2)

By fixed point approach, they obtained that G-FBSDE (1.2) has a unique L^2-solution (X, Y, Z, K) for small T. Wang and Yuan [29] studied the minimal solution of G-FBSDE (1.2) with monotone coefficients under the assumption that $\sigma(\cdot)$ is independent of Y and $n = 1$.

In this paper, we first study the L^p-solution of G-FBSDE (1.2) for arbitrary T under weakly coupling condition. By fixed point approach, we obtain that G-FBSDE (1.2) has a unique L^p-solution (X, Y, Z, K) with $p \geq 2$ for arbitrary T under weakly coupling condition. But for $p \in (1, 2)$, in order to get contractive mapping for \hat{X}, we need the assumption that $\sigma(\cdot)$ does not depend on Y. The key reason is that the Doob inequality for G-martingale (see [20, 28]) is different from the classical case and

\[
\left(\int_0^T |\hat{Y}_t|^2 dt \right)^{p/2} \leq C \int_0^T |\hat{Y}_t|^p dt
\]

does not hold for $p \in (1, 2)$.

It is well known that the comparison theorem plays an important role in the theory of BSDEs. So, the other purpose of this paper is to establish the comparison theorem for G-FBSDEs under weakly coupling condition. The key point to prove the comparison theorem is to solve the linear G-BSDE. Since the solvability of the dual linear G-FBSDE is unknown, we cannot use the method in [8] to prove the comparison theorem. In order to overcome this difficulty, we must choose a suitable reference probability P^* and consider the dual linear FBSDE under P^*. The BSDE in this dual equation is different from the one in [11] and studied in [19]. By fixed point approach under weakly coupling condition, we can still obtain the solvability of this dual linear FBSDE under P^*. Based on this, we can further obtain the comparison theorem.

The paper is organized as follows. In Section 2, we recall some basic results of G-expectations, G-SDEs and G-BSDEs. The existence and uniqueness theorem, and the related estimates of L^p-solution for G-FBSDEs have been established in Section 3. In Section 4, we obtain the comparison theorem for G-FBSDEs.
2 Preliminaries

We recall some basic results of G-expectations, G-SDEs and G-BSDEs. The readers may refer to Peng’s book [24, 1] and [3] for more details.

Let $T > 0$ be given and let $\Omega_T = C_0([0,T];\mathbb{R}^d)$ be the space of \mathbb{R}^d-valued continuous functions on $[0,T]$ with $\omega_0 = 0$. The canonical process $B_t(\omega) := \omega_t$, for $\omega \in \Omega_T$ and $t \in [0,T]$. For any fixed $t \leq T$, set

$$\text{Lip}(\Omega_t) := \{\varphi(B_{t_1}, B_{t_2} - B_{t_1}, \ldots, B_{t_N} - B_{t_{N-1}}) : N \geq 1, t_1 < \cdots < t_N \leq t, \varphi \in C_bLip(\mathbb{R}^{d \times N})\},$$

where $C_bLip(\mathbb{R}^{d \times N})$ denotes the space of bounded Lipschitz functions on $\mathbb{R}^{d \times N}$.

Let $G : S_d \to \mathbb{R}$ be a given monotonic and sublinear function, where S_d denotes the set of $d \times d$ symmetric matrices. In this paper, we only consider non-degenerate G, i.e., there exists a $\gamma > 0$ such that

$$G(A) - G(B) \geq \frac{\gamma}{2} \text{tr}[A - B] \text{ for } A \geq B.$$

Peng [22, 23] constructed a consistent sublinear expectation space $(\Omega_T, \text{Lip}(\Omega_T), \hat{\mathcal{E}}, (\hat{\mathcal{E}}_t)_{t \in [0,T]})$, called G-expectation space, such that, for $0 \leq t < s \leq T$, $\xi_i \in \text{Lip}(\Omega_t)$, $i \leq m$, $\varphi \in C_bLip(\mathbb{R}^{m+d})$,

$$\hat{\mathcal{E}}_t[\varphi(\xi_1, \ldots, \xi_m, B_s - B_t)] = \psi(\xi_1, \ldots, \xi_m),$$

where $\psi(x_1, \ldots, x_m) = u(s - t, 0)$, u is the solution of the following G-heat equation:

$$\partial_t u - G(D^2 u) = 0, \ u(0, x) = \varphi(x_1, \ldots, x_m, x).$$

The canonical process $(B_t)_{t \in [0,T]}$ is called the G-Brownian motion under $\hat{\mathcal{E}}$.

For each $t \in [0,T]$, denote by $L^1_{\mathcal{G}}(\Omega_t)$ the completion of $\text{Lip}(\Omega_t)$ under the norm $\|X\|_{L^1_{\mathcal{G}}} := (\hat{\mathcal{E}}[|X|^p])^{1/p}$ for $p \geq 1$. It is clear that $\hat{\mathcal{E}}_t$ can be continuously extended to $L^1_{\mathcal{G}}(\Omega_T)$ under the norm $\|\cdot\|_{L^1_{\mathcal{G}}}$.

Definition 2.1 A process $(M_t)_{t \leq T}$ is called a G-martingale if $M_T \in L^1_{\mathcal{G}}(\Omega_T)$ and $\hat{\mathcal{E}}_t[M_T] = M_t$ for $t \leq T$.

The following theorem is the representation theorem of G-expectation.

Theorem 2.2 (24, 11) There exists a unique weakly compact and convex set of probability measures \mathcal{P} on $(\Omega_T, B(\Omega_T))$ such that

$$\hat{\mathcal{E}}[X] = \sup_{P \in \mathcal{P}} E_P[X] \text{ for all } X \in L^1_{\mathcal{G}}(\Omega_T),$$

where $B(\Omega_T) = \sigma\{B_s : s \leq T\}$.

The capacity associated to \mathcal{P} is defined by

$$c(A) := \sup_{P \in \mathcal{P}} P(A) \text{ for } A \in B(\Omega_T).$$

A set $A \in B(\Omega_T)$ is polar if $c(A) = 0$. A property holds “quasi-surely” (q.s. for short) if it holds outside a polar set. In the following, we do not distinguish two random variables X and Y if $X = Y$ q.s.

In order to study G-FBSDE, we need the following spaces and norms.

- $M^0(0,T) := \{\eta_t = \sum_{i=0}^{N-1} \xi_i I_{(t_i, t_{i+1})}(t) : N \in \mathbb{N}, 0 = t_0 < \cdots < t_N = T, \ \xi_i \in \text{Lip}(\Omega_{t_i})\}$.
For each \(\eta \in M^p_G(0, T) \) with \(p \geq 1 \), denote \(\eta = (\eta^1, \ldots, \eta^d)^T \in M^2_G(0, T; \mathbb{R}^d) \), the \(G \)-Itô integral \(\int_0^T \eta^i \, dB_i \) is well defined. Similar for \(L^p_G(\Omega; \mathbb{R}^n) \) and \(S^p_G(0, T; \mathbb{R}^n) \).

For simplicity of presentation, we suppose \(d = 1 \) throughout the paper. The results still hold for \(d > 1 \).

Under this case, the non-degenerate \(G \) is

\[
G(a) = \frac{1}{2}(\bar{\sigma}^2 a^+ - \bar{\sigma}^2 a^-) \quad \text{for} \quad a \in \mathbb{R},
\]

where \(0 < \bar{\sigma} \leq \bar{\sigma} < \infty \). If \(\underline{\sigma} = \bar{\sigma} \), then \(\bar{\sigma}^{-1}B \) is a classical standard Brownian motion. So we suppose \(\underline{\sigma} < \bar{\sigma} \) in the following.

Let \(\langle B \rangle \) be the quadratic variation process of \(B \). By Corollary 3.5.5 in Peng [24], we have

\[
\underline{\sigma}^2 s \leq \langle B \rangle_{t+s} - \langle B \rangle_t \leq \bar{\sigma}^2 s \quad \text{for each} \quad t, s \geq 0.
\] (2.1)

Since \(B \) is a martingale under each \(P \in \mathcal{P} \), by Theorem 2.2 and the Burkholder-Davis-Gundy inequality, for each \(p > 0 \) and \(\| \eta \|_{M^p_G(0, T)} < \infty \), there exists a constant \(C(p) > 0 \) such that

\[
\mathbb{E} \left[\sup_{t \leq T} \left| \int_0^t \eta_s \, dB_s \right|^p \right] \leq C(p) \mathbb{E} \left[\left(\int_0^T |\eta_s|^2 \, dB_s \right)^{p/2} \right] \leq \bar{\sigma}^p C(p) \mathbb{E} \left[\left(\int_0^T |\eta_s|^2 \, ds \right)^{p/2} \right].
\] (2.2)

In the following, we consider the following \(G \)-FBSDE:

\[
\begin{align*}
\frac{dX_t}{dt} & = b(t, X_t, Y_t) dt + h(t, X_t, Y_t) d\langle B \rangle_t + \sigma(t, X_t, Y_t) dB_t, \\
\frac{dY_t}{dt} & = f(t, X_t, Y_t, Z_t) dt + g(t, X_t, Y_t, Z_t) d\langle B \rangle_t + Z_t dB_t + dK_t, \\
X_0 & = x_0 \in \mathbb{R}^n, \quad Y_T = \phi(X_T),
\end{align*}
\] (2.3)

where \(b, h, \sigma : [0, T] \times \Omega_T \times \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n \), \(f, g : [0, T] \times \Omega_T \times \mathbb{R}^n \times \mathbb{R} \to \mathbb{R} \), \(\phi : \Omega_T \times \mathbb{R}^n \to \mathbb{R} \). We need the following assumptions:

\textbf{(H1)} There exists a \(\beta > 1 \) such that \(b(., ., y), \ h(., ., y) \in M^{1, \beta}_G(0, T; \mathbb{R}^n), \ \sigma(., ., y) \in M^{2, \beta}_G(0, T; \mathbb{R}^n), \ f(., ., y, z), \ g(., ., y, z) \in M^{1, \beta}_G(0, T) \) and \(\phi(x) \in L^p_G(\Omega_T) \) for each \((x, y, z) \in \mathbb{R}^{n+2} \);
(H2) There exist constants $L_i > 0$, $i = 1, 2, 3$, such that, for each $t \leq T$, $\omega \in \Omega_T$, $x, x' \in \mathbb{R}^n$, $y, y', z, z' \in \mathbb{R}$,

$$|b_j(t, x, y) - b_j(t, x', y')| + |h_j(t, x, y) - h_j(t, x', y')| + |\sigma_j(t, x, y) - \sigma_j(t, x', y')|$$

$$\leq L_1|x - x'| + L_2|y - y'|$$, for $j = 1, \ldots, n$,

$$|f(t, x, y, z) - f(t, x', y', z')| + |g(t, x, y, z) - g(t, x', y', z')|$$

$$\leq L_3|x - x'| + L_4(|y - y'| + |z - z'|),$$

$$|\phi(x) - \phi(x')| \leq L_5|x - x'|,$$

where $b(\cdot) = (b_1(\cdot), \ldots, b_n(\cdot))^T$, $h(\cdot) = (h_1(\cdot), \ldots, h_n(\cdot))^T$, $\sigma(\cdot) = (\sigma_1(\cdot), \ldots, \sigma_n(\cdot))^T$.

Now we give the L^p-solution of G-FBSDE (2.3), similar for G-SDE and G-BSDE.

Definition 2.3 For each fixed $p \in (1, \beta)$, (X, Y, Z, K) is called an L^p-solution of G-FBSDE (2.3) if the following properties hold:

(i) $X \in S^p_G(0, T; \mathbb{R}^n)$, $Y \in S^p_G(0, T)$, $Z \in M^p_G(0, T)$, K is a non-increasing G-martingale with $K_0 = 0$ and $K_T \in L^p_G(\Omega_T)$;

(ii) (X, Y, Z, K) satisfies G-FBSDE (2.3).

The following is the standard estimates of G-SDE and G-BSDE.

Theorem 2.4 Suppose assumptions (H1) and (H2) hold. For each $p \in (1, \beta)$ and $(y^{(i)}_t)_{t \leq T} \in S^p_G(0, T)$, $i = 1, 2$. Let $(X^{(i)}_t)_{t \leq T} \in S^p_G(0, T; \mathbb{R}^n)$ be the solution of G-SDE

$$dX^{(i)}_t = b(t, X^{(i)}_t, y^{(i)}_t)dt + h(t, X^{(i)}_t, y^{(i)}_t)d(B)_t + \sigma(t, X^{(i)}_t, y^{(i)}_t)dB_t, \ X^{(i)}_0 = x_0,$$

for $i = 1, 2$. Then there exists a deterministic function $C_1(p, T, L_1, \bar{\sigma}) > 0$, which is continuous in p, such that

$$\mathbb{E} \left[\sup_{t \leq T} |X^{(1)}_t - X^{(2)}_t|^p \right] \leq C_1(p, T, L_1, \bar{\sigma}) \mathbb{E} \left[\left(\int_0^T |\dot{b}_t| + |\dot{h}_t|dt \right)^p + \left(\int_0^T |\dot{\sigma}_t|^2 dt \right)^{p/2} \right], \quad (2.4)$$

where $\dot{b}_t = b(t, X^{(2)}_t, y^{(1)}_t) - b(t, X^{(1)}_t, y^{(1)}_t)$, $\dot{h}_t = h(t, X^{(2)}_t, y^{(1)}_t) - h(t, X^{(1)}_t, y^{(1)}_t)$, $\dot{\sigma}_t = \sigma(t, X^{(2)}_t, y^{(1)}_t) - \sigma(t, X^{(1)}_t, y^{(1)}_t)$.

Proof. For the convenience of the reader, we sketch the proof. Set $\hat{X}_t = X^{(1)}_t - X^{(2)}_t$. For each given $t_0 \in [0, T]$ and $\delta > 0$, we have

$$\hat{X}_t = \hat{X}_{t_0} + \int_{t_0}^t \dot{\hat{b}}(s)ds + \int_{t_0}^t \dot{\hat{h}}(s)d(B)_s + \int_{t_0}^t \dot{\hat{\sigma}}(s)dB_s, \ t \in [t_0, t_0 + \delta],$$

where $|\dot{b}(s)| = |b(s, X^{(1)}_s, y^{(1)}_s) - b(s, X^{(2)}_s, y^{(2)}_s)| \leq nL_1|\hat{X}_s| + |\hat{b}_s|$, similarly, $|\dot{h}(s)| \leq nL_1|\hat{X}_s| + |\hat{h}_s|$, $|\dot{\sigma}(s)| \leq nL_1|\hat{X}_s| + |\hat{\sigma}_s|$. Then we get

$$\sup_{t \in [t_0, t_0 + \delta]} |\hat{X}_t|^p \leq 4^{p-1} \left(|\hat{X}_{t_0}|^p + \left(\int_{t_0}^{t_0 + \delta} |\dot{\hat{b}}(s)|ds \right)^p + \sigma^2 \left(\int_{t_0}^{t_0 + \delta} |\dot{\hat{h}}(s)|ds \right)^p + \sup_{t \in [t_0, t_0 + \delta]} \left(\int_{t_0}^{t} |\dot{\hat{\sigma}}(s)d(B)_s| \right)^p \right).$$
By (2.2), we can deduce
\[
\hat{E} \left[\sup_{t \in [t_0, t_0 + \delta]} \left| \int_{t_0}^{t_0 + \delta} \tilde{\sigma}(s) dB_s \right|^p \right] \leq n^p \sigma^p C(p) \hat{E} \left[\left(\int_{t_0}^{t_0 + \delta} |\tilde{\sigma}(s)|^2 ds \right)^{p/2} \right].
\]

It is easy to verify that
\[
\left(\int_{t_0}^{t_0 + \delta} |\tilde{b}(s)| ds \right)^p \leq 2^{p-1} \left(n L_1 \int_{t_0}^{t_0 + \delta} |\tilde{X}_s| ds \right)^p + \left(\int_{t_0}^{t_0 + \delta} |\tilde{b}_s| ds \right)^p
\]
\[
\leq 2^{p-1} (n L_1 \delta)^p \sup_{t \in [t_0, t_0 + \delta]} |\tilde{X}_t|^p + 2^{p-1} \left(\int_{t_0}^{t_0 + \delta} |\tilde{b}_s| ds \right)^p
\]
and
\[
\left(\int_{t_0}^{t_0 + \delta} |\tilde{\sigma}(s)|^2 ds \right)^{p/2} \leq 2^{p/2} \left[2^{p/2} \left(n^2 L_1^2 \int_{t_0}^{t_0 + \delta} |\tilde{X}_s|^2 ds \right)^{p/2} + \left(\int_{t_0}^{t_0 + \delta} |\tilde{\sigma}_s|^2 ds \right)^{p/2} \right]
\]
\[
\leq 2^p (n L_1)^p \delta^{p/2} \sup_{t \in [t_0, t_0 + \delta]} |\tilde{X}_t|^p + 2^p \left(\int_{t_0}^{t_0 + \delta} |\tilde{\sigma}_s|^2 ds \right)^{p/2}.
\]

Thus we obtain
\[
\hat{E} \left[\sup_{t \in [t_0, t_0 + \delta]} |\tilde{X}_t|^p \right] \leq 4^{p-1} \hat{E} \left[|\tilde{X}_{t_0}|^p \right] + \lambda_1(\delta) \hat{E} \left[\sup_{t \in [t_0, t_0 + \delta]} |\tilde{X}_t|^p \right]
\]
\[
+ \lambda_2 \hat{E} \left[\left(\int_0^T (|\tilde{b}_t| + |\tilde{h}_t|) dt \right)^p + \left(\int_0^T |\tilde{\sigma}_t|^2 dt \right)^{p/2} \right],
\]
where
\[
\lambda_1(\delta) = 8^{p-1} \left(1 + \bar{\sigma}^{2p} (n L_1 \delta)^p + 2 C(p) (L_1 n^2 \bar{\sigma})^p \delta^{p/2} \right), \quad \lambda_2 = 8^{p-1} \left[1 + \bar{\sigma}^{2p} + 2 C(p) (n \bar{\sigma})^p \right].
\]
Choosing \(\delta_0 > 0 \) such that \(\lambda_1(\delta_0) = 0.75 \), then, for \(\delta \leq \delta_0 \wedge (T - t_0) \), we get
\[
\hat{E} \left[\sup_{t \in [t_0, t_0 + \delta]} |\tilde{X}_t|^p \right] \leq 4^p \hat{E} \left[|\tilde{X}_{t_0}|^p \right] + 4 \lambda_2 \hat{E} \left[\left(\int_0^T (|\tilde{b}_t| + |\tilde{h}_t|) dt \right)^p + \left(\int_0^T |\tilde{\sigma}_t|^2 dt \right)^{p/2} \right].
\]

Thus we can deduce
\[
\hat{E} \left[\sup_{T' \leq T} \left| X_t^{(1)} - X_t^{(2)} \right|^p \right] \leq C_1(p, T, L_1, \sigma) \hat{E} \left[\left(\int_0^T (|\tilde{b}_t| + |\tilde{h}_t|) dt \right)^p + \left(\int_0^T |\tilde{\sigma}_t|^2 dt \right)^{p/2} \right],
\]
where
\[
C_1(p, T, L_1, \sigma) = \frac{4 \lambda_2}{4^p - 1} \left(\frac{4^{p(T + 2\delta_0) / \delta_0} - 4^p}{4^p - 1} \frac{T}{\delta_0} \right).
\] (2.5)

It is easy to check that \(C_1(p, T, L_1, \sigma) \) is continuous in \(p \). □
Remark 2.5 If \(p \geq 2 \), then
\[
\left(\int_{t_0}^{t_0 + \delta} |\dot{X}_s|^2 ds \right)^{p/2} \leq \delta^{(p-2)/2} \int_{t_0}^{t_0 + \delta} |\dot{X}_s|^p ds \leq \delta^{(p-2)/2} \sup_{t \in [t_0, t_0 + \delta]} |\dot{X}_t|^p ds.
\]

Taking \(t_0 = 0 \) and \(\delta = T \) in the proof of Theorem 2.4, we obtain
\[
\mathbb{E} \left[\sup_{t \leq T} |\dot{X}_t|^p \right] \leq \lambda_3 \int_0^T \mathbb{E} \left[\sup_{s \leq T} |\dot{X}_s|^p \right] ds + \lambda_4 \mathbb{E} \left[\left(\int_0^T (|\dot{b}_t| + |\dot{g}_t|) dt \right)^p + \left(\int_0^T |\dot{\sigma}_t|^2 dt \right)^{p/2} \right],
\]
where
\[
\lambda_3 = 6^{p-1} \left[1 + \bar{a}^2 p \right] (\mathbb{E} T)^{p-1} + 2C(p)(\mathbb{E} T)^{p-1} \left(\int_0^T (|\dot{b}_t| + |\dot{g}_t|) dt \right)^p + \left(\int_0^T |\dot{\sigma}_t|^2 dt \right)^{p/2}
\]
\[
\lambda_4 = 6^{p-1} \left[1 + \bar{a}^2 p \right] \mathbb{E} T.
\]

By the Gronwall inequality, we get
\[
C_1(p, T, L_1, \bar{a}) = e^{\lambda_3 T} \lambda_4. \tag{2.6}
\]

The following theorem is Propositions 3.8 and 5.1 in [7].

Theorem 2.6 Suppose assumptions (H1) and (H2) hold. For each \(p \in (1, \beta) \) and \((x_i^{(i)})_{t \leq T} \in S_{L_p}(0, T; \mathbb{R}^n) \), \(i = 1, 2 \). Let \((Y_i^{(i)}, Z_i^{(i)}, K_i^{(i)})_{t \leq T} \) be the \(L_p \)-solution of G-BSDE
\[
dY_i^{(i)} = f(t, x_i^{(i)}, Y_i^{(i)}, Z_i^{(i)}) dt + g(t, x_i^{(i)}, Y_i^{(i)}, Z_i^{(i)}) dB_t + dK_i^{(i)}, \quad Y_T^{(i)} = \phi(x_T^{(i)}),
\]
for \(i = 1, 2 \). Then

(i) there exists a deterministic function \(C_2(p, T, L_1, \bar{a}, \underline{a}) > 0 \), which is continuous in \(p \), such that
\[
|\bar{Y}_t| \leq C_2(p, T, L_1, \bar{a}, \underline{a}) \mathbb{E} \mathbb{E} \left[\left(\int_0^T |\bar{b}_t| + |\bar{g}_t| dt \right)^{p/2} \right] + \lambda_3 \mathbb{E} \left[\sup_{t \leq T} |\bar{Y}_t|^p \right] \]
where \(\bar{Y}_t = Y_t^{(1)} - Y_t^{(2)} \), \(\bar{b}_t = \phi(x_T^{(1)}) - \phi(x_T^{(2)}) \), \(\bar{f}_t = f(s, x_s^{(1)}, Y_s^{(2)}, Z_s^{(2)}) - f(s, x_s^{(2)}, Y_s^{(2)}, Z_s^{(2)}) \), \(\bar{g}_s = g(s, x_s^{(1)}, Y_s^{(2)}, Z_s^{(2)}) - g(s, x_s^{(2)}, Y_s^{(2)}, Z_s^{(2)}) \).

(ii) there exists a deterministic function \(C_3(p, T, L_1, \bar{a}, \underline{a}) > 0 \) such that
\[
\mathbb{E} \left[\left(\int_0^T |\bar{Z}_t|^2 dt \right)^{p/2} \right] \leq C_3(p, T, L_1, \bar{a}, \underline{a}) \left\{ \mathbb{E} \left[\sup_{t \leq T} |Y_t^{(i)}|^p \right] + (\lambda_1 + \lambda_2)^{1/2} \left(\mathbb{E} \left[\sup_{t \leq T} |\bar{Y}_t|^p \right] \right)^{1/2} \right\},
\]
where \(\bar{Z}_t = Z_t^{(1)} - Z_t^{(2)} \),
\[
\lambda_i = \mathbb{E} \left[\sup_{t \leq T} |Y_t^{(i)}|^p \right] + \mathbb{E} \left[\left(\int_0^T |f(s, x_s^{(i)}, 0, 0) + g(s, x_s^{(i)}, 0, 0))| ds \right)^p \right] \quad \text{for} \quad i = 1, 2.
\]

Remark 2.7 According to the proof of Proposition 5.1 in [7], we can deduce
\[
C_2(p, T, L_1, \bar{a}, \underline{a}) = 2^{p-1} \left[1 + (1 + \bar{a}^2)^p L_1 (1 + \bar{a}^2) T \right] e^{\lambda_3 T}, \tag{2.7}
\]
where
\[
\lambda_3 = pL_1 (1 + \bar{a}^2) + \frac{1}{2} pL_1^2 \bar{a}^2 (1 + \bar{a}^{-2})^2 [(p - 1)^{-1} \lor 1].
\]
3 Existence and uniqueness of L^p-solution for G-FBSDEs

For simplicity, we use $C_1(p)$ and $C_2(p)$ instead of $C_1(p,T,L_1,\sigma)$ and $C_2(p,T,L_1,\sigma,\bar{\sigma})$ respectively in the following. The first main result in this section is the existence and uniqueness of L^p-solution for G-FBSDE \eqref{eq:G-FBSDE} with $p \geq 2$.

Theorem 3.1 Suppose assumptions (H1) and (H2) hold. If $\beta > 2$ and

$$
\Lambda_p := C_1(p)C_2(p)(nL_2L_3)^p(T^p + T^{p/2})(1 + T)^p < 1
$$

for some $p \in [2, \beta)$, then G-FBSDE \eqref{eq:G-FBSDE} has a unique L^p-solution (X,Y,Z,K).

Proof. We first prove the uniqueness. Let (X,Y,Z,K) and (X',Y',Z',K') be two L^p-solutions of G-FBSDE \eqref{eq:G-FBSDE}. Set

$$
\hat{X}_t = X_t - X'_t, \quad \hat{Y}_t = Y_t - Y'_t, \quad \hat{Z}_t = Z_t - Z'_t \quad \text{for } t \in [0,T].
$$

By Theorem 2.6 we obtain

$$
\mathbb{E}\left[\sup_{t \leq T} |\hat{X}_t|^p\right] \leq C_1(p)\mathbb{E}\left[\left(\int_0^T (|\hat{b}_t| + |\hat{h}_t|)dt\right)^p + \left(\int_0^T |\hat{\sigma}_t|^2dt\right)^{p/2}\right].
$$

(3.2)

where $\hat{b}_t = b(t, X'_t, Y_t) - b(t, X'_t, Y'_t)$, $\hat{h}_t = h(t, X'_t, Y_t) - h(t, X'_t, Y'_t)$, $\hat{\sigma}_t = \sigma(t, X'_t, Y_t) - \sigma(t, X'_t, Y'_t)$. It follows from (H2) that

$$
|\hat{b}_t| + |\hat{h}_t| + |\hat{\sigma}_t| \leq nL_2|\hat{Y}_t|.
$$

Thus we get

$$
\mathbb{E}\left[\sup_{t \leq T} |\hat{X}_t|^p\right] \leq C_1(p)(nL_2)^p(T^{p-1} + T^{(p-2)/2}) \int_0^T \mathbb{E}[|\hat{Y}_t|^p]dt.
$$

(3.3)

By (i) of Theorem 2.6 we obtain

$$
|\hat{Y}_t|^p \leq C_2(p)\mathbb{E}_t\left[\left(|\hat{\phi}_T| + \int_t^T (|\hat{f}_s| + |\hat{g}_s|)ds\right)^p\right],
$$

where $\hat{\phi}_T = \phi(X_T) - \phi(X'_T)$,

$$
\hat{f}_s = f(s, X_s, Y_s', Z'_s) - f(s, X'_s, Y'_s, Z'_s), \quad \hat{g}_s = g(s, X_s, Y_s', Z'_s) - g(s, X'_s, Y'_s, Z'_s).
$$

From (H2), we have

$$
|\hat{\phi}_T| \leq L_3|\hat{X}_T|, \quad |\hat{f}_s| + |\hat{g}_s| \leq L_3|\hat{X}_s|.
$$

Then we deduce

$$
\mathbb{E}[|\hat{Y}_t|^p] \leq C_2(p)L_3^p(1 + T)^p\mathbb{E}\left[\sup_{t \leq T} |\hat{X}_t|^p\right].
$$

(3.4)

It follows from (3.1), (3.3) and (3.4) that

$$
\mathbb{E}\left[\sup_{t \leq T} |\hat{X}_t|^p\right] \leq \Lambda_p\mathbb{E}\left[\sup_{t \leq T} |\hat{X}_t|^p\right],
$$

$$
\mathbb{E}\left[\sup_{t \leq T} |\hat{X}_t|^p\right] \leq \Lambda_p\mathbb{E}\left[\sup_{t \leq T} |\hat{X}_t|^p\right],
$$

on 8
which implies \(\mathbb{E}\left[\sup_{t\leq T} |\hat{X}_t|^p\right] = 0\). Then, by (3.4), we obtain \(\hat{Y}_t = 0\) q.s. Since \(\hat{Y}_t\) is continuous in \(t\), we can deduce

\[
\sup_{t\leq T} |\hat{Y}_t|^p = 0 \text{ q.s.,}
\]

which implies \(\mathbb{E}\left[\sup_{t\leq T} |\hat{Y}_t|^p\right] = 0\). From (ii) of Theorem 2.6 we get

\[
\mathbb{E}\left[\left(\int_0^T |\hat{Z}_t|^2 \, dt\right)^{p/2}\right] = 0,
\]

which implies \(K = K'\) by G-FBSDE (2.3). Thus the \(L^p\)-solution of G-FBSDE (2.3) is unique.

Now we prove the existence. Set \(X_t^{(0)} = x_0\) for \(t \leq T\). Define \((X^{(m)}, Y^{(m)}, Z^{(m)}, K^{(m)}), m \geq 1\), as follows:

\[
\begin{align*}
&dX_t^{(m)} = b(t, X_t^{(m)}, Y_t^{(m)})dt + h(t, X_t^{(m)}, Y_t^{(m)})d(B)_t + \sigma(t, X_t^{(m)}, Y_t^{(m)})dB_t, \\
&dY_t^{(m)} = f(t, X_t^{(m-1)}, Y_t^{(m-1)}, Z_t^{(m-1)})dt + g(t, X_t^{(m-1)}, Y_t^{(m-1)}, Z_t^{(m-1)})d(B)_t + Z_t^{(m)}dB_t + dK_t^{(m)}, \\
&X_0^{(m)} = x_0 \in \mathbb{R}^n, Y_0^{(m)} = \phi(X_0^{(m-1)}).
\end{align*}
\]

For \(m = 1\), we first slove G-BSDE in (3.5) to get \((Y^{(1)}, Z^{(1)}, K^{(1)})\). Since \(X_t^{(0)} \in S^2_G(0, T; \mathbb{R}^n)\) for each \(\alpha < \beta\), we obtain

\[
Y^{(1)} \in S^2_G(0, T), \quad Z^{(1)} \in M^{2, \alpha}_G(0, T), \quad K^{(1)} \in L^2_G(\Omega_T),
\]

for each \(\alpha < \beta\) by Theorem 4.1 in 2.4. We then slove G-SDE in (3.5) to get \(X^{(1)}\). Obviously, \(X^{(1)} \in S^2_G(0, T; \mathbb{R}^n)\) for each \(\alpha < \beta\) by Theorem 2.4. Continuing this process, we can get

\[
X^{(m)} \in S^2_G(0, T; \mathbb{R}^n), \quad Y^{(m)} \in S^2_G(0, T), \quad Z^{(m)} \in M^{2, \alpha}_G(0, T), \quad K^{(m)} \in L^2_G(\Omega_T),
\]

for each \(\alpha < \beta\) and \(m \geq 1\). Since \(\Lambda_p\) is continuous in \(p\) and \(\Lambda_p < 1\), there exists a \(p' \in (p, \beta)\) such that \(\Lambda_{p'} < 1\). Set

\[
\check{X}^{(m)} = X^{(m)} - X^{(m-1)} \text{ for } m \geq 1, \quad \check{Y}^{(m)} = Y^{(m)} - Y^{(m-1)} \text{ and } \check{Z}^{(m)} = Z^{(m)} - Z^{(m-1)} \text{ for } m \geq 2.
\]

By Theorem 2.4 we get, for \(m \geq 2\),

\[
\mathbb{E}\left[\sup_{t\leq T} |\hat{X}_t^{(m)}|^p\right] \leq C_1(p')\mathbb{E}\left[\left(\int_0^T (|\hat{h}_t^{(m)}| + |\hat{\sigma}_t^{(m)}|)\, dt\right)^{p'} + \left(\int_0^T |\hat{\sigma}_t^{(m)}|^2 \, dt\right)^{p' \slash 2}\right],
\]

where \(\hat{h}_t^{(m)} = b(t, X_t^{(m-1)}, Y_t^{(m)}) - b(t, X_t^{(m-1)}, Y_t^{(m-1)})\)

\(\hat{\sigma}_t^{(m)} = \sigma(t, X_t^{(m-1)}, Y_t^{(m-1)}) - \sigma(t, X_t^{(m-1)}, Y_t^{(m-1)})\). Similar to the proof of (3.1), we obtain

\[
\mathbb{E}\left[\sup_{t\leq T} |\hat{X}_t^{(m)}|^p\right] \leq C_1(p')(nL_2^p) (T^{p'-1} + T^{(p'-2)/2}) \int_0^T \mathbb{E}[|\hat{Y}_t^{(m)}|^{p'}] \, dt. \tag{3.6}
\]

It follows from (i) of Theorem 2.6 that, for \(m \geq 2\),

\[
|\hat{Y}_t^{(m)}|^{p'} \leq C_2(p') \mathbb{E}_t\left[\left(\int_t^T (|\hat{f}_s^{(m)}| + |\hat{g}_s^{(m)}|)\, ds\right)^{p'}\right],
\]

9
where \(\hat{\phi}_{T}^{(m)} = \phi(X_{T}^{(m-1)}) - \phi(X_{T}^{(m-2)}) \),

\[
\hat{f}_{s}^{(m)} = f(s, X_{s}^{(m-1)}, Y_{s}^{(m-1)}, Z_{s}^{(m-1)}) - f(s, X_{s}^{(m-2)}, Y_{s}^{(m-1)}, Z_{s}^{(m-1)}),
\]

\[
\hat{g}_{s}^{(m)} = g(s, X_{s}^{(m-1)}, Y_{s}^{(m-1)}, Z_{s}^{(m-1)}) - g(s, X_{s}^{(m-2)}, Y_{s}^{(m-1)}, Z_{s}^{(m-1)}).
\]

Similar to the proof of (3.4), we get

\[
E \left[\sup_{s \leq T} |X_{s}^{(m-1)}|^{p'} \right] \leq C_{2}(p')L_{3}^{p}(1 + T)^{p'} \sup_{s \leq T} |X_{s}^{(m-1)}|^{p'}.
\]

(3.7)

By (3.6) and (3.7), we deduce

\[
E \left[\sup_{s \leq T} |X_{s}^{(m)}|^{p'} \right] \leq C_{2}(p')L_{3}^{p}(1 + T)^{p'} \sup_{s \leq T} |X_{s}^{(m-1)}|^{p'}
\]

which implies

\[
E \left[\sup_{s \leq T} |X_{s}^{(m)}|^{p'} \right] \leq C_{2}(p')L_{3}^{p}(1 + T)^{p'} \sup_{s \leq T} |X_{s}^{(1)}|^{p'}
\]

for \(m \geq 1 \).

For each \(N, k \geq 1 \), we obtain

\[
\left(E \left[\sup_{s \leq T} |X_{s}^{(N+k)} - X_{s}^{(N)}|^{p'} \right] \right)^{1/p'} \leq \sum_{m=N+1}^{\infty} \left(E \left[\sup_{s \leq T} |X_{s}^{(m)}|^{p'} \right] \right)^{1/p'}
\]

\[
\leq \left(1 - \Lambda_{p'}^{1/p'} - \Lambda_{p'}^{N/p'} \left(E \left[\sup_{s \leq T} |X_{s}^{(1)}|^{p'} \right] \right)^{1/p'} \right)^{1/p'},
\]

which tends to 0 as \(N \to \infty \). Thus there exists a \(X \in S_{G}^{p}(0, T; \mathbb{R}^{m}) \) such that

\[
E \left[\sup_{s \leq T} |X_{s}^{(m)} - X_{s}^{(1)}|^{p'} \right] \to 0 \text{ as } m \to \infty.
\]

(3.8)

For each \(N, k \geq 1 \), similar to the proof of (3.4), we can deduce

\[
E \left[\sup_{s \leq T} \left| Y_{s}^{(N+k)} - Y_{s}^{(N)} \right|^{p'} \right] \leq C_{2}(p')L_{3}^{p}(1 + T)^{p'} E \left[\sup_{s \leq T} \left| X_{s}^{(N+k-1)} - X_{s}^{(N-1)} \right|^{p'} \right].
\]

(3.9)

By Doob’s inequality for \(G \)-martingale (see [26, 28]), we have

\[
E \left[\sup_{s \leq T} \left(E \left[\sup_{s \leq T} \left| X_{s}^{(N+k-1)} - X_{s}^{(N-1)} \right|^{p'} \right] \right)^{p/p'} \right] \leq \left(E \left[\sup_{s \leq T} \left| X_{s}^{(N+k-1)} - X_{s}^{(N-1)} \right|^{p'} \right] \right)^{p/p'}.
\]

(3.10)

It follows from (3.8), (3.9) and (3.10) that

\[
E \left[\sup_{s \leq T} \left| Y_{s}^{(N+k)} - Y_{s}^{(N)} \right|^{p'} \right] \to 0 \text{ as } N \to \infty.
\]

Thus there exists a \(Y \in S_{G}^{p}(0, T) \) such that

\[
E \left[\sup_{s \leq T} \left| Y_{s}^{(m)} - Y_{s}^{(1)} \right|^{p'} \right] \to 0 \text{ as } m \to \infty.
\]

(3.11)
Noting that \(\sup_{m \geq 1} \mathbb{E}\left[\left| X_{t}^{(m)} \right| + \left| Y_{t}^{(m)} \right| \right] < \infty \), by (ii) of Theorem \(2.6 \) we get
\[
\mathbb{E}\left[\left(\int_{0}^{T} |Z_{t}^{(N+k)} - Z_{t}^{(N)}|^{2} dt \right)^{p/2} \right] \to 0 \text{ as } N \to \infty.
\]
Thus there exists a \(Z \in M_{G}^{2,p}(0,T) \) such that
\[
\mathbb{E}\left[\left(\int_{0}^{T} |Z_{t}^{(m)} - Z_{t}|^{2} dt \right)^{p/2} \right] \to 0 \text{ as } m \to \infty. \tag{3.12}
\]
From \(2.2 \), we obtain
\[
\mathbb{E}\left[\sup_{t \leq T} \left| \int_{t}^{T} Z_{s}^{(m)} dB_{s} - \int_{t}^{T} Z_{s} dB_{s} \right|^{p} \right] \leq 2p\mathbb{E}\left[\sup_{t \leq T} \left| \int_{0}^{t} Z_{s}^{(m)} dB_{s} - \int_{0}^{t} Z_{s} dB_{s} \right|^{p} \right]
\leq 2p\sigma^{p}C(p)\mathbb{E}\left[\left(\int_{0}^{T} |Z_{t}^{(m)} - Z_{t}|^{2} dt \right)^{p/2} \right] \to 0 \text{ as } m \to \infty.
\]
Since
\[
\sup_{t \leq T} \left| \int_{t}^{T} f(s, X_{s}^{(m-1)}, Y_{s}^{(m)}, Z_{s}^{(m)}) ds - \int_{t}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds \right|^{p} \leq \left(\int_{0}^{T} |f(s, X_{s}^{(m-1)}, Y_{s}^{(m)}, Z_{s}^{(m)}) - f(s, X_{s}, Y_{s}, Z_{s})| ds \right)^{p} \leq 3^{p-1}L_{1}^{p}p^{p} \sup_{s \leq T} |X_{s}^{(m-1)} - X_{s}|^{p} + 3^{p-1}L_{1}^{p}T^{p} \sup_{s \leq T} \left| Y_{s}^{(m)} - Y_{s} \right|^{p} + 3^{p-1}L_{1}^{p}T^{p/2} \left(\int_{0}^{T} |Z_{s}^{(m)} - Z_{s}|^{2} ds \right)^{p/2},
\]
we get
\[
\mathbb{E}\left[\sup_{t \leq T} \left| \int_{t}^{T} f(s, X_{s}^{(m-1)}, Y_{s}^{(m)}, Z_{s}^{(m)}) ds - \int_{t}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds \right|^{p} \right] \to 0
\]
as \(m \to \infty \) by \(3.8 \), \(3.11 \) and \(3.12 \). Similarly, we can obtain
\[
\mathbb{E}\left[\sup_{t \leq T} \left| \int_{t}^{T} g(s, X_{s}^{(m-1)}, Y_{s}^{(m)}, Z_{s}^{(m)}) dB_{s} - \int_{t}^{T} g(s, X_{s}, Y_{s}, Z_{s}) dB_{s} \right|^{p} \right] \to 0,
\]
\[
\mathbb{E}\left[\sup_{t \leq T} \left(\int_{0}^{t} \left| b(s, X_{s}^{(m)}, Y_{s}^{(m)}) - b(s, X_{s}, Y_{s}) \right| ds + \left| \int_{0}^{t} \left(h(s, X_{s}^{(m)}, Y_{s}^{(m)}) - h(s, X_{s}, Y_{s}) \right) dB_{s} \right| \right)^{p} \right] \to 0
\]
and
\[
\mathbb{E}\left[\sup_{t \leq T} \left| \int_{0}^{t} \left(\sigma(s, X_{s}^{(m)}, Y_{s}^{(m)}) - \sigma(s, X_{s}, Y_{s}) \right) dB_{s} \right|^{p} \right] \to 0
\]
as \(m \to \infty \). Set
\[
K_{t} = Y_{t} - Y_{0} - \int_{0}^{t} f(s, X_{s}, Y_{s}, Z_{s}) ds - \int_{0}^{t} g(s, X_{s}, Y_{s}, Z_{s}) dB_{s} - \int_{0}^{t} Z_{s} dB_{s}
\]

11
for $t \in [0,T]$. It is clear that
\[\mathbb{E} \left[\sup_{t \leq T} \left| K_t^{(m)} - K_t^{(p)} \right|^p \right] \rightarrow 0 \text{ as } m \rightarrow \infty. \]
Thus we can easily deduce that K is a non-increasing G-martingale with $K_0 = 0$ and $K_T \in L^p_G(\Omega_T)$. Taking $m \rightarrow \infty$ in (3.3), we obtain that (X,Y,Z,K) is an L^p-solution of G-FBSDE (2.3). \(\square\)

Remark 3.2 For each fixed $\sigma > \underline{\sigma} > 0$, $T > 0$, $L_1 > 0$ and $p \in [2,\beta)$, it is easy to deduce from (3.11) that there exists a $\delta > 0$ satisfying $\Lambda_p < 1$ for each
\[L_2L_3 < \delta. \] (3.13)
The condition (3.13) is called weakly coupling condition for G-FBSDE (2.3) (see [21] for classical FBSDE).

Now we consider the L^p-solution for G-FBSDE (2.3) with $p \in (1,2)$.

Theorem 3.3 Suppose assumptions (H1) and (H2) hold. If $\sigma(\cdot)$ does not depend on y and
\[\tilde{\Lambda}_p := C_1(p)C_2(p)(nL_2L_3)^p(1+T)^p < 1 \] (3.14)
for some $p \in (1,2 \land \beta)$, then G-FBSDE (2.3) has a unique L^p-solution (X,Y,Z,K).

Proof. The proof is similar to the proof of Theorem 3.1. We omit it. \(\square\)

Remark 3.4 If $\sigma(\cdot)$ contains y and $p \in (1,2 \land \beta)$, then $p/2 < 1$ and we can not get
\[\left(\int_0^T |\dot{Y}_t|^2 dt \right)^{p/2} \leq C \int_0^T |\dot{Y}_t|^p dt \]
in (3.13), where $C > 0$ is a constant independent of \dot{Y}. Thus we need the assumption that $\sigma(\cdot)$ is independent of y for $p < 2$.

The following proposition is the estimates for G-FBSDE (2.3).

Proposition 3.5 Suppose that $b^{(i)}(\cdot)$, $h^{(i)}(\cdot)$, $\sigma^{(i)}(\cdot)$, $f_i(\cdot)$, $g_i(\cdot)$, $\phi_i(\cdot)$ satisfy assumptions (H1) and (H2) for $i = 1, 2$. For each fixed $p \in (1,\beta)$, let $(X^{(i)}, Y^{(i)}, Z^{(i)}, K^{(i)})$ be the L^p-solution of G-FBSDE
\[
\begin{align*}
 dX_t^{(i)} &= b^{(i)}(t, X_t^{(i)}, Y_t^{(i)}, Z_t^{(i)})dt + h^{(i)}(t, X_t^{(i)}, Y_t^{(i)})dB_t + \sigma^{(i)}(t, X_t^{(i)}, Y_t^{(i)})d\tilde{B}_t, \\
 dY_t^{(i)} &= f_i(t, X_t^{(i)}, Y_t^{(i)}, Z_t^{(i)})dt + g_i(t, X_t^{(i)}, Y_t^{(i)}, Z_t^{(i)})dB_t + Z_t^{(i)}dB_t + dK_t^{(i)}, \\
 X_0^{(i)} &= x_i \in \mathbb{R}^n, \quad Y_T^{(i)} = \phi_i(X_T^{(i)}),
\end{align*}
\]
for $i = 1, 2$. We have the following estimates.

(i) If $p \geq 2$ and Λ_p defined in (3.14) satisfies $\Lambda_p < 1$, then there exists a constant C_4 depending on p, T, L_1, L_2, L_3, $\underline{\sigma}$ and σ such that
\[
\mathbb{E} \left[\sup_{t \leq T} \left| X_t^{(i)} \right|^p \right] \leq C_4 \mathbb{E} \left[\left(|\dot{x}| + |\dot{\phi}_T| + \int_0^T (|\dot{b}_t| + |\dot{h}_t| + |\dot{f}_t| + |\dot{g}_t|) dt \right)^p + \left(\int_0^T |\sigma_t|^2 dt \right)^{p/2} \right], \quad (3.15)
\]
\[12 \]
where $\tilde{X}_t = X_t^{(1)} - X_t^{(2)}$, $\hat{x} = x_1 - x_2$, $\hat{\Phi}_T = \Phi(X_T^{(2)}) - \Phi(X_T^{(1)})$, $\hat{b}_t = b^{(1)}(t, X_t^{(2)}, Y_t^{(2)}) - b^{(2)}(t, X_t^{(2)}, Y_t^{(2)})$, $\hat{h}_t = h^{(1)}(t, X_t^{(2)}, Y_t^{(2)}) - h^{(2)}(t, X_t^{(2)}, Y_t^{(2)})$, $\hat{\sigma}_t = \sigma^{(1)}(t, X_t^{(2)}, Y_t^{(2)}) - \sigma^{(2)}(t, X_t^{(2)}, Y_t^{(2)})$.

(ii) If $p \in (1, 2)$, $\sigma(\cdot)$ does not depend on y and $\hat{\lambda}_p$ defined in (3.14) satisfies $\hat{\lambda}_p < 1$, then there exists a constant $C_\hat{\lambda}$ depending on p, T, L_1, L_2, L_3, $\hat{\lambda}$ and ϱ such that

$$
\hat{\mathbb{E}} \left[\sup_{0 \leq t \leq T} |\tilde{X}_t|^p \right] \leq C_{\hat{\lambda}} \mathbb{E} \left[\left(\int_0^T (|\hat{b}_t| + |\hat{h}_t| + |\hat{f}_t| + |\hat{g}_t|) dt \right)^p + \left(\int_0^T |\hat{\sigma}_t|^2 dt \right)^{p/2} \right],
$$

where $\hat{\sigma}_t = \sigma^{(1)}(t, X_t^{(2)}) - \sigma^{(2)}(t, X_t^{(2)})$, \hat{X}_t, \hat{x}, $\hat{\Phi}_T$, \hat{b}_t, \hat{h}_t, \hat{f}_t and \hat{g}_t are the same as (i).

Proof. We only prove (i). The proof of (ii) is similar. For each $a_1 > 0$ and $a_2 > 0$, by the mean value theorem, we have

$$(a_1 + a_2)^p - a_1^p = p(a_1 + \theta a_2)^{p-1}a_2 \leq p2^{p-1}(a_1^{p-1}a_2^p),$$

where $\theta \in (0, 1)$. From this, we can deduce

$$(a_1 + a_2)^p \leq (1 + \varepsilon)a_1^p + C(p, \varepsilon)a_2^p$$

for each $\varepsilon > 0$.

where

$$C(p, \varepsilon) = p2^{p-1} + p^{p-2}(p-1)p\varepsilon^{-(p-1)}.$$

Set $\tilde{X}_t^{(i)} = X_t^{(i)} - x_i$ for $i = 1, 2$, and $\tilde{X}_t = \tilde{X}_t^{(1)} - \tilde{X}_t^{(2)}$. It is easy to check that $(\tilde{X}_t^{(i)}, Y_t^{(i)}, Z_t^{(i)}, K_t^{(i)})$ satisfies the G-FBSDE

$$
\begin{align*}
\frac{d\tilde{X}_t^{(i)}}{dt} &= b^{(i)}(t, \tilde{X}_t^{(i)} + x_i, Y_t^{(i)}) dt + h^{(i)}(t, \tilde{X}_t^{(i)} + x_i, Y_t^{(i)}) dB_t + \sigma^{(i)}(t, \tilde{X}_t^{(i)} + x_i, Y_t^{(i)}) d\mathbf{B}_t, \\
\frac{dY_t^{(i)}}{dt} &= f_i(t, \tilde{X}_t^{(i)} + x_i, Y_t^{(i)}, Z_t^{(i)}) dt + g_i(t, \tilde{X}_t^{(i)} + x_i, Y_t^{(i)}, Z_t^{(i)}) dB_t + Z_t^{(i)} dB_t + K_t^{(i)}, \\
\tilde{X}_0^{(i)} &= 0 \in \mathbb{R}^n, \quad Y_0^{(i)} = \phi(\tilde{X}_T^{(i)} + x_i),
\end{align*}
$$

for $i = 1, 2$. Similar to the proof of Theorem 2.4, we have

$$
\mathbb{E} \left[\sup_{0 \leq t \leq T} |\tilde{X}_t| \right] \leq C_1(p) \mathbb{E} \left[\left(\int_0^T (|\tilde{b}_t| + |\tilde{h}_t|) dt \right)^p + \left(\int_0^T |\tilde{\sigma}_t|^2 dt \right)^{p/2} \right],
$$

where $\tilde{b}_t = b^{(1)}(t, X_t^{(2)} + x_1, Y_t^{(1)}) - b^{(2)}(t, X_t^{(2)} + x_2, Y_t^{(2)})$, $\tilde{h}_t = h^{(1)}(t, X_t^{(2)} + x_1, Y_t^{(1)}) - h^{(2)}(t, X_t^{(2)} + x_2, Y_t^{(2)})$, $\tilde{\sigma}_t = \sigma^{(1)}(t, X_t^{(2)} + x_1, Y_t^{(1)}) - \sigma^{(2)}(t, X_t^{(2)} + x_2, Y_t^{(2)})$. From (H2), it is easy to verify that

$$
|\tilde{b}_t| + |\tilde{h}_t| \leq nL_2 \tilde{Y}_t + nL_1 |\tilde{x}| + |\tilde{b}_t| + |\tilde{h}_t|, \quad |\tilde{x}| \leq nL_2 \tilde{Y}_t + nL_1 |\tilde{x}| + |\tilde{\sigma}_t|,
$$

where $\tilde{Y}_t = Y_t^{(1)} - Y_t^{(2)}$. Similar to (3.3), by (3.17), we obtain, for each $\varepsilon > 0$,

$$
\mathbb{E} \left[\sup_{0 \leq t \leq T} |\tilde{X}_t| \right] \leq (1 + \varepsilon)C_1(p)nL_2 \mathbb{E} \left[T^{(p-1)} + T^{(p-2)/2} \right]
$$

$$
+ C_\varepsilon \mathbb{E} \left[\left(|\tilde{x}| + \int_0^T (|\tilde{b}_t| + |\tilde{h}_t|) dt \right)^p + \left(\int_0^T |\tilde{\sigma}_t|^2 dt \right)^{p/2} \right].
$$

13
where the constant $C_0 > 0$ depends on p, T, L_1, $\bar{\sigma}$ and ε. Similar to (3.4), we can get, for each $\varepsilon > 0$,
\[
\hat{\mathcal{E}}[|\hat{Y}_t|^p] \leq (1 + \varepsilon)C_2(p)\mathcal{L}_0^p(1 + T)^p\mathcal{E} \left[\sup_{t \leq T} \left| \hat{X}_t \right|^p \right] + C_T \mathcal{E} \left[\left| \hat{\varepsilon} \right|^{p} + \int_0^T (|\hat{f}_t| + |\hat{g}_t|)dt \right]^p,
\]
where the constant $C_T > 0$ depends on p, T, L_1, L_3, $\bar{\sigma}$, $\bar{\alpha}$ and ε. Thus we obtain
\[
[1 - (1 + \varepsilon)\Lambda_p \mathcal{E} \left[\sup_{t \leq T} \left| \hat{X}_t \right|^p \right]] \leq C_8 \mathcal{E} \left[\left| \hat{\varepsilon} \right|^p + \int_0^T (|\hat{f}_t| + |\hat{g}_t|)dt \right]^p + \left(\int_0^T |\bar{\sigma}|^2 dt \right)^{p/2},
\]
where the constant $C_8 > 0$ depends on p, T, L_1, L_2, L_3, $\bar{\sigma}$, $\bar{\alpha}$ and ε. Since $\Lambda_p < 1$, we can take $\varepsilon_0 > 0$ such that $(1 + \varepsilon_0)\Lambda_p < 1$. Note that $|\hat{X}_t|^p \leq 2^{p-1} |\hat{X}_t|^p + |\hat{\varepsilon}|^p$, then we obtain (3.15). \(\Box\)

4 Comparison theorem for G-FBSDEs

For simplicity, we only study the comparison theorem for $p = 2$. The results for $p \neq 2$ are similar. Consider the following G-FBSDEs:
\[
\begin{align*}
\begin{cases}
\ds dB_t = h(t, X_t, Y_t)dt + \sigma(t, X_t, Y_t)dB_t, \\
\ds dY_t = f(t, X_t, Y_t, Z_t)dt + g(t, X_t, Y_t, Z_t)dB_t + dK_t,
\end{cases}
\end{align*}
\]
(4.1)

\textbf{Theorem 4.1} Suppose that assumptions (H1) and (H2) hold for $i = 1, 2$ with $\beta > 2$. Then there exists a $\delta > 0$ depending on n, T, L_1, $\bar{\sigma}$ and $\bar{\alpha}$ such that the following results hold.

(i) If $L_2L_3 < \delta$, then G-FBSDE (4.1) has a unique L^2-solution $(X^{(i)}, Y^{(i)}, Z^{(i)}, K^{(i)})$ for $i = 1, 2$.

(ii) If $L_2L_3 < \delta$ and $\phi_1(X^{(1)}_T) \geq \phi_2(X^{(2)}_T)$ (resp. $\phi_1(X^{(1)}_T) \geq \phi_2(X^{(1)}_T)$), then we have $Y^{(1)}_0 \geq Y^{(2)}_0$.

\textbf{Proof.} From the definition of Λ_p in (3.1) for $p \geq 2$, it is easy to deduce that there exists a $\delta_1 > 0$ depending on n, T, L_1, $\bar{\sigma}$ and $\bar{\alpha}$ satisfying $\Lambda_2 < 1$. By Theorem 3.1, we obtain (i) under the assumption $L_2L_3 < \delta_1$.

We only prove the case $\phi_1(X^{(2)}_T) \geq \phi_2(X^{(1)}_T)$ for (ii). The proof for $\phi_1(X^{(1)}_T) \geq \phi_2(X^{(1)}_T)$ is similar. Under the assumption $L_2L_3 < \delta_1$, it is clear that $(X^{(i)}, Y^{(i)}, Z^{(i)}, K^{(i)})$ is the L^2-solution of G-FBSDE (4.1) for $i = 1, 2$ under each $P \in \mathcal{P}$, where \mathcal{P} is defined in Theorem 2.2. Since \mathcal{P} is weakly compact and $\hat{\mathcal{E}}[K^{(2)}_T] = 0$ with $K^{(2)}_T \leq 0$, there exists a $P^* \in \mathcal{P}$ such that $K^{(2)}_T = 0$ P^*-a.s. Noting that $K^{(2)}_T$ is a non-increasing with $K^{(2)}_0 = 0$, we obtain $K^{(2)}_T = 0$ under P^*. By (2.3), we know that $d(B)_t = \gamma_t dt$ q.s. with $\gamma_t \in [\sigma^2, \bar{\alpha}^2]$.

Set $X^{(i)}_t = (X^{(i)}_{1,t}, \ldots, X^{(i)}_{n,t})^T$ for $i = 1, 2$, $X_t = (X_{1,t}, \ldots, X_{n,t})^T = X^{(1)}_t - X^{(2)}_t$, $Y_t = Y^{(1)}_t - Y^{(2)}_t$, $Z_t = Z^{(1)}_t - Z^{(2)}_t$. Since $(X^{(i)}, Y^{(i)}, Z^{(i)}, K^{(i)})$ satisfies G-FBSDE (4.1) for $i = 1, 2$ under P^*, we obtain P^*-a.s.
\[
\begin{align*}
\begin{cases}
\ds d\hat{X}_t = \left[a^{(2)}_1(t) \hat{X}_t + a^{(2)}_2(t) \hat{Y}_t \right] dt + \left[a^{(3)}_1(t) \hat{X}_t + a^{(3)}_2(t) \hat{Y}_t \right] dB_t, \\
\ds d\hat{Y}_t = \left[a^{(5)}_1(t) \hat{X}_t + a^{(5)}_2(t) \hat{Y}_t + a^{(7)}_1(t) \hat{Z}_t \right] dt + \hat{Z}_t dB_t + dK^{(1)}_t, \\
\hat{X}_0 = 0 \in \mathbb{R}^n, \hat{Y}_T = (a^{(8)}_1, \hat{X}_T) + \phi_1(X^{(1)}_T) - \phi_2(X^{(2)}_T),
\end{cases}
\end{align*}
\]
(4.2)
where $a^{(1)}(t) = (a_{j,k}^{(1)}(t))_{j,k=1}^{n}$ and $a^{(2)}(t) = (a_{j}^{(2)}(t), \ldots, a_{n}^{(2)}(t))^T$ with
\[
\begin{align*}
 a_{j,k}^{(1)}(t) & = b_{j}(t, k - 1) - b_{j}(t, k) + h_{j}(t, k - 1) - h_{j}(t, k) \gamma_{j} \langle \hat{X}_{k}^{\gamma} \rangle^{-1} I_{\{\hat{X}_{k}^{\gamma} \neq 0\}}, \\
 a_{j}^{(2)}(t) & = \begin{bmatrix}
 b_{j}(t, X_{1}^{(2)}, Y_{1}^{(2)}) - b_{j}(t, X_{1}^{(2)}, Y_{2}^{(2)}) + \left(h_{j}(t, X_{1}^{(2)}, Y_{1}^{(2)}) - h_{j}(t, X_{1}^{(2)}, Y_{2}^{(2)}) \right) \gamma_{j} \langle \hat{Y}_{1} \rangle^{-1} I_{\{\hat{Y}_{1} \neq 0\}}, \\
 b_{j}(t, k) = b_{j}(t, X_{1}^{(2)}, \ldots, X_{k-1}^{(2)}, X_{k+1}^{(2)}, \ldots, X_{n}^{(2)}, Y_{1}^{(2)}),
 \end{bmatrix}
\end{align*}
\]
similar for the definition of notations $b_{j}(t, k - 1), h_{j}(t, k - 1), h_{j}(t, k), a^{(3)}(t), a^{(4)}(t), a^{(5)}(t), a^{(6)}(t), a^{(7)}(t)$ and $a_{p}^{(8)}$. From the assumption (H2), it is easy to verify that
\[
\begin{align*}
 |a^{(1)}(t)| & \leq nL_{1}(1 + \sigma^{2}), |a^{(2)}(t)| \leq nL_{2}(1 + \sigma^{2}), |a^{(3)}(t)| \leq nL_{1}, |a^{(4)}(t)| \leq nL_{2}, \\
 |a^{(5)}(t)| & \leq L_{3}(1 + \sigma^{2}), |a^{(6)}(t)| + |a^{(7)}(t)| \leq L_{1}(1 + \sigma^{2}), |a_{p}^{(8)}| \leq L_{3}.
\end{align*}
\]
Consider the following FBSDE under P^*:
\[
\begin{align*}
 dl_{t} & = \left[-a^{(6)}(t)l_{t} + \langle a^{(2)}(t), p_{t} \rangle + \langle \gamma_{t}a^{(4)}(t), q_{t} \rangle \right] dt - \gamma_{t}^{-1}a^{(7)}(t)l_{t}dB_{t}, \\
 dp_{t} & = \left[l_{t}a^{(5)}(t) - a^{(1)}(t)p_{t} - \sigma_{t}a^{(3)}(t)q_{t} \right] dt + q_{t}dB_{t} + dN_{t}, \\
 l_{0} & = 1, \quad pt = l_{T}a_{T}^{(8)} \in \mathbb{R}^{n},
\end{align*}
\]
where N is a \mathbb{R}^{n}-valued square integrable martingale with $N_{0} = 0$ such that each component of N is orthogonal to B under P^*. By Theorem 6.1 in [1], for each $(l_{t})_{t \leq T} \in S_{P^{*}}^{2}\left(0, T\right)$, the BSDE
\[
dp_{t} = \left[l_{t}a^{(5)}(t) - a^{(1)}(t)p_{t} - \sigma_{t}a^{(3)}(t)q_{t} \right] dt + q_{t}dB_{t} + dN_{t}, \quad pt = l_{T}a_{T}^{(8)},
\]
has a unique L^{2}-solution (p, q, N) with $p \in S_{P^{*}}^{2}\left(0, T; \mathbb{R}^{n}\right)$ and $q \in M_{P^{*}}^{2,2}\left(0, T; \mathbb{R}^{n}\right)$, where $S_{P^{*}}^{2}\left(0, T\right)$ (resp. $M_{P^{*}}^{2,2}\left(0, T\right)$) is the completion of $S_{0}^{0}\left(0, T\right)$ (resp. $M_{0}^{0}\left(0, T\right)$) under the norm
\[
||\eta||_{S_{P^{*}}^{2}\left(0, T\right)} := \left(E_{P^{*}}\left[\sup_{t \leq T} ||\eta_{t}||^{2} \right] \right)^{1/2}, \quad ||\eta||_{M_{P^{*}}^{2,2}\left(0, T\right)} := \left(E_{P^{*}}\left[\int_{0}^{T} ||\eta_{t}||^{2} dt \right] \right)^{1/2}.
\]
Similar to the proof of Theorem 3.1, we can deduce that there exists a $\delta_{2} > 0$ depending on n, T, L_{1}, σ and σ such that FBSDE [13] has a unique L^{2}-solution (l, p, q, N) under the assumption $L_{2}L_{3} < \delta_{2}$.

Taking $\delta = \delta_{1} \wedge \delta_{2}$, we assume $L_{2}L_{3} < \delta$ in the following. Applying Itô’s formula to $\langle p_{t}, \hat{X}_{t} \rangle - l_{t}\hat{Y}_{t}$ under P^*, we obtain
\[
\hat{Y}_{0} = E_{P^{*}}\left[l_{T} \left(\phi_{1}(X_{T}^{(2)}) - \phi_{2}(X_{T}^{(2)}) \right) - \int_{0}^{T} l_{t}dK_{t}^{(1)} \right].
\]
Since $\phi_{1}(X_{T}^{(2)}) \geq \phi_{2}(X_{T}^{(2)})$ and $dK_{t}^{(1)} \leq 0$, we only need to prove $l_{t} \geq 0$ P^{*}-a.s. for $t \in [0, T]$. Define the stopping time
\[
\tau = \inf\{t \geq 0 : l_{t} = 0\} \wedge T.
\]
It is clear that $l_{\tau} = 0$ on $\{\tau < T\}$ and $l_{T} \geq 0$ on $\{\tau = T\}$. Consider the following FBSDE on $[\tau, T]$ under P^*:
\[
\begin{align*}
 dl'_{t} & = \left[-a^{(6)}(t)l'_{t} + \langle a^{(2)}(t), p'_{t} \rangle + \langle \gamma_{t}a^{(4)}(t), q'_{t} \rangle \right] dt - \gamma_{t}^{-1}a^{(7)}(t)l'_{t}dB_{t}, \\
 dp'_{t} & = \left[l'_{t}a^{(5)}(t) - a^{(1)}(t)p'_{t} - \sigma_{t}a^{(3)}(t)q'_{t} \right] dt + q'_{t}dB_{t} + dN'_{t}, \\
 l'_{0} = l_{\tau}, \quad p'_{T} = l'_{T}a_{T}^{(8)} \in \mathbb{R}^{n}, \quad t \in [\tau, T].
\end{align*}
\]
It is easy to verify that

\[
(l_t^0, p_t^0, q_t^0, N_t^0)_{t \in [\tau, T]} = \left(l_T I_{\{\tau = T\}}, l_T a_T^{(8)} I_{\{\tau = T\}}, 0, 0 \right)_{t \in [\tau, T]}
\]
satisfies FBSDE (4.5). Obviously, \((l_t^0, p_t^0, q_t^0, N_t^0)_{t \in [\tau, T]} = (l_t, p_t, q_t, N_t - N_\tau)_{t \in [\tau, T]}\) satisfies FBSDE (4.5). Since the \(L^2\)-solution to FBSDE (4.5) is unique, we obtain \(l_t = l_T I_{\{\tau = T\}}\) for \(t \in [\tau, T]\). Thus \(l_t \geq 0\) \(P^*\)-a.s. for \(t \in [0, T]\). By (4.4), we get \(\hat{Y}_0 \geq 0\), which implies (ii). \(\square\)

Suppose \(n = 1\) in the following and consider the following G-FBSDEs:

\[
\begin{align*}
 dX_t^{(i)} &= b(t, X_t^{(i)}, Y_t^{(i)}, Z_t^{(i)}) dt + h(t, X_t^{(i)}, Y_t^{(i)}, Z_t^{(i)}) d\langle B \rangle_t + \sigma(t, X_t^{(i)}, Y_t^{(i)}) dB_t, \\
 dY_t^{(i)} &= f(t, X_t^{(i)}, Y_t^{(i)}, Z_t^{(i)}) dt + g(t, X_t^{(i)}, Y_t^{(i)}, Z_t^{(i)}) d\langle B \rangle_t + Z_t^{(i)} dB_t + K_t^{(i)}, \\
 X_0^{(i)} &= x_i \in \mathbb{R}, \ Y_0^{(i)} = \phi(X_T^{(i)}), \ i = 1, 2.
\end{align*}
\]

Theorem 4.2 Suppose that assumptions (H1) and (H2) hold with \(n = 1\) and \(\beta > 2\). Then there exists a \(\delta > 0\) depending on \(T, L_1, \sigma\) and \(\sigma\) such that the following results hold.

(i) If \(L_2 L_3 < \delta\), then G-FBSDE (4.6) has a unique \(L^2\)-solution \((X^{(i)}, Y^{(i)}, Z^{(i)}, K^{(i)})\) for \(i = 1, 2\).

(ii) If \(L_2 L_3 < \delta\), \(x_1 \geq x_2\), \(\phi(\cdot)\) is non-decreasing, \(f(\cdot)\) and \(g(\cdot)\) are non-increasing in \(x\), then we have \(Y_0^{(1)} \geq Y_0^{(2)}\).

Proof. The proof is similar to the proof of Theorem 4.1. For the convenience of the reader, we sketch the proof. (i) is obvious. For (ii), we can similarly find a \(P^* \in \mathcal{P}\) such that \(K_T^{(2)} = 0\) \(P^*\)-a.s. The equation (4.2) is rewritten as the following equation: \(P^*\)-a.s.

\[
\begin{align*}
 d\hat{X}_t &= \left[a^{(1)}(t) \hat{X}_t + a^{(2)}(t) \hat{Y}_t \right] dt + \left[a^{(3)}(t) \hat{X}_t + a^{(4)}(t) \hat{Y}_t \right] d\langle B \rangle_t, \\
 d\hat{Y}_t &= \left[a^{(5)}(t) \hat{X}_t + a^{(6)}(t) \hat{Y}_t + a^{(7)}(t) \hat{Z}_t \right] dt + \hat{Z}_t dB_t + K_t^{(1)}, \\
 \hat{X}_0 &= x_1 - x_2, \ \hat{Y}_T = a_T^{(8)} \hat{X}_T,
\end{align*}
\]

where the notations \(a^{(1)}(t), a^{(2)}(t), a^{(3)}(t), a^{(4)}(t), a^{(5)}(t), a^{(6)}(t)\) and \(a^{(7)}(t)\) are the same as the notations in the proof of Theorem 4.1 under \(n = 1\),

\[
a_T^{(8)} = \left[\phi(X_T^{(1)}) - \phi(X_T^{(1)}) \right] \left(\hat{X}_T \right)^{-1} I_{\{\hat{X}_T \neq 0\}}.
\]

Since \(\phi(\cdot)\) is non-decreasing, \(f(\cdot)\) and \(g(\cdot)\) are non-increasing in \(x\), it is easy to verify that

\[
a_T^{(8)} \geq 0 \text{ and } a_T^{(5)}(t) \leq 0 \text{ for } t \in [0, T]. \tag{4.8}
\]

Applying Itô’s formula to \(p_t \hat{X}_t - l_t \hat{Y}_t\) under \(P^*\), where \((l, p, q, N)\) is the \(L^2\)-solution of FBSDE (4.3) under \(n = 1\), we obtain

\[
\hat{Y}_0 = p_0(x_1 - x_2) + E_{P^*} \left[- \int_0^T l_t dK_t^{(1)} \right].
\]
We have obtained \(l_t \geq 0 \) \(P^*\)-a.s. for \(t \in [0,T] \) in the proof of Theorem \ref{thm:main}. Thus we get
\[
\hat{Y}_0 \geq p_0(x_1 - x_2).
\] (4.9)

By (4.8), we have
\[
l_T a_T^{(8)} \geq 0 \quad \text{and} \quad l_t a_t^{(5)}(t) \leq 0 \quad \text{for} \quad t \in [0,T].
\]

By comparison theorem for BSDEs
\[
d\hat{p}_t = \left[l_t a_t^{(5)}(t) - a_t^{(4)}(t)p_t - \gamma_t a_t^{(3)}(t)q_t \right] dt + q_t dB_t + dN_t, \quad \hat{p}_T = l_T a_T^{(8)},
\]
and
\[
d\tilde{p}_t = \left[-a_t^{(1)}(t)\tilde{p}_t - \gamma_t a_t^{(3)}(t)\tilde{q}_t \right] dt + \tilde{q}_t dB_t + d\tilde{N}_t, \quad \tilde{p}_T = 0,
\]
we get \(p_0 \geq \tilde{p}_0 = 0 \). Thus, from (4.8), we deduce \(\hat{Y}_0 \geq 0 \), which implies (ii). \(\square \)

References

[1] F. Antonelli, Backward-forward stochastic differential equations, Ann. Appl. Probab., 3 (1993), 777-793.

[2] M. Avellaneda, A. Levy, A. Paras, Pricing and hedging derivative securities in markets with uncertain volatilities, Appl. Math. Finance, 2 (1995), 73-88.

[3] P. Cheridito, H. Soner, N. Touzi, N. Victoir, Second order backward stochastic differential equations and fully nonlinear parabolic pdes, Commun. Pure Appl. Math., 60(7) (2007), 1081-1110.

[4] F. Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stoch. Process. Appl., 99 (2002), 209-286.

[5] L. Denis, M. Hu, S. Peng, Function spaces and capacity related to a sublinear expectation: application to \(G \)-Brownian motion paths, Potential Anal., 34 (2011), 139-161.

[6] N. El Karoui, S. Huang, A general result of existence and uniqueness of backward stochastic differential equations, in Backward Stochastic Differential Equations, N. El Karoui, and L. Mazliak, eds., Pitman Res. Notes Math. Ser., 364, Longman, Harlow, 1997, 27-36.

[7] M. Hu, S. Ji, S. Peng, Y. Song, Backward stochastic differential equations driven by \(G \)-Brownian motion, Stochastic Process. Appl., 124 (2014), 759-784.

[8] M. Hu, S. Ji, S. Peng, Y. Song, Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by \(G \)-Brownian motion, Stochastic Process. Appl., 124 (2014), 1170-1195.

[9] M. Hu, S. Ji, X. Xue, A global stochastic maximum principle for fully coupled forward-backward stochastic systems, SIAM J. Control, Optim., 56(6) (2018), 4309-4335.

[10] M. Hu, S. Ji, X. Xue, The existence and uniqueness of viscosity solution to a kind of Hamilton-Jacobi-Bellman equation, SIAM J. Control Optim., 57 (2019), 3911-3938.
[11] M. Hu, S. Peng, On representation theorem of G-expectations and paths of G-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 539-546.
[12] Y. Hu, Y. Lin, A. S. Hima, Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation, Stochastic Process. Appl., 128 (2018), 3724-3750.
[13] Y. Hu, S. Peng, Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields, 103(2) (1995), 273-283.
[14] Y. Lin, Z. Ren, N. Touzi, J. Yang, Second order backward SDE with random terminal time, Electron. J. Probab., 25 (2020), 1-43.
[15] G. Liu, Multi-dimensional BSDEs driven by G-Brownian motion and related system of fully nonlinear PDEs, Stoch. Int. J. Probab. Stoch. Process., 92(6) (2019), 1-25.
[16] H. Lu, Y. Song, Forward-backward stochastic differential equations driven by G-Brownian motion, arXiv:2104.06868v1, (2021).
[17] T. Lyons, Uncertain volatility and the risk-free synthesis of derivatives, Appl. Math. Finance, 2 (1995), 117-133.
[18] J. Ma, P. Protter, J. Yong, Solving forward-backward stochastic differential equations explicitly-a four step scheme, Probab. Theory Related Fields, 98(2) (1994), 339-359.
[19] J. Ma, Z. Wu, D. Zhang, J. Zhang, On well-posedness of forward-backward SDEs-A unified approach, Ann. Appl. Probab., 25(4) (2015), 2168-2214.
[20] J. Ma, J. Yong, Forward-backward stochastic differential equations and their applications, Springer Science & Business Media, (1999).
[21] E. Pardoux, S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields, 114(2) (1999), 123-150.
[22] S. Peng, G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô type, Stochastic analysis and applications, Abel Symp., Vol. 2, Springer, Berlin, 2007, 541-567.
[23] S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process. Appl., 118 (2008), 2223-2253.
[24] S. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer (2019).
[25] S. Peng, Z. Wu, Fully coupled forward-backward stochastic differential equation and applications to optimal control, SIAM J. Control Optim., 37(3) (1999), 825-843.
[26] H. M. Soner, N. Touzi, J. Zhang, Martingale Representation Theorem under G-expectation, Stochastic Process. Appl., 121 (2011), 265-287.
[27] H. M. Soner, N. Touzi, J. Zhang, Wellposedness of Second Order Backward SDEs, Probab. Theory Related Fields, 153 (2012), 149-190.
[28] Y. Song, Some properties on G-evaluation and its applications to G-martingale decomposition, Sci. China Math., 54(2) (2011), 287-300.

[29] B. Wang, M. Yuan, Forward-backward stochastic differential equations driven by G-Brownian motion, Appl. Math. Comput., 349 (2019), 39-47.

[30] Z. Wu, The comparison theorem of FBSDE, Stat. Probab. Lett., 44(1) (1999), 1-6.

[31] J. Yong, Finding adapted solution of forward-backward stochastic differential equations-method of continuation, Probab. Theory Related Fields, 107(4) (1997), 537-572.

[32] G. Zheng, Local wellposedness of coupled backward stochastic differential equations driven by G-Brownian motions, J. Math. Anal. Appl., 506(1) (2022), 1-18.