INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVID-19), has rapidly spread across the globe generating profound effects in the human health and behavior and in global economy.

Coronaviruses are a group of enveloped RNA viruses with a typical "crowned" structure with the "spike protein" in its membrane envelope (Zhu et al., 2020). The target of the SARS-CoV-2 spike protein is the angiotensin-converting enzyme 2 (ACE2) receptor, which is responsible for the entry of the virus into cells (Chen et al., 2020). ACE2 receptor is widely expressed in different tissues and organs, that is, mucosal tissues, gingiva, non-keratinizing squamous epithelium, and tongue and salivary gland epithelial cells (Hamming et al., 2004). As SARS-CoV-2 has been detected in saliva samples (To et al., 2020), viral transmission can potentially occur via interactions with saliva and aerosol droplets deriving from oropharynx during coughing, sneezing, talking, and even during oral inspection or dental procedures (Li et al., 2020). Facial masks, facial barriers, and gloves can protect from the viral transmission, but dental procedures can produce a high generation

1 Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
2 Department of Veterinary Medicine, University of Bari, Valenzano, Italy
3 Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
4 Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, Bari, Italy

Correspondence
Gianvito Lanave, Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima km. 3, 70010 Valenzano, Bari, Italy.
Email: gianvito.lanave@uniba.it

Abstract
Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur through saliva and aerosol droplets deriving from the upper aerodigestive tract during coughing, sneezing, talking, and even during oral inspection or dental procedures. The aim of this study was to assess in vitro virucidal activity of commercial and experimental mouthwashes against a feline coronavirus (FCoV) strain. Commercial and experimental (commercial-based products with addition of either sodium dodecyl sulfate (SDS) or thymus vulgaris essential oil (TEO) at different concentrations) mouthwashes were placed in contact with FCoV for different time intervals, that is, 30 s (T30), 60 s (T60), and 180 s (T180); subsequently, the virus was titrated on Crandell Reese Feline Kidney cells. An SDS-based commercial mouthwash reduced the viral load by 5 log10 tissue culture infectious dose (TCID50/50 µl at T30 while a cetylpyridinium (CPC)-based commercial mouthwash was able to reduce the viral titer of 4.75 log10 at T60. Furthermore, five experimental mouthwashes supplemented with SDS reduced the viral titer by 4.75–5 log10 according to a dose- (up to 4 mM) and time-dependent fashion.

KEYWORDS
dental practice, feline coronavirus, in vitro, mouthwashes, virucidal activity

1 INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVID-19), has rapidly spread across the globe generating profound effects in the human health and behavior and in global economy.

Coronaviruses are a group of enveloped RNA viruses with a typical "crowned" structure with the "spike protein" in its membrane envelope (Zhu et al., 2020). The target of the SARS-CoV-2 spike protein is the angiotensin-converting enzyme 2 (ACE2) receptor, which is responsible for the entry of the virus into cells (Chen et al., 2020). ACE2 receptor is widely expressed in different tissues and organs, that is, mucosal tissues, gingiva, non-keratinizing squamous epithelium, and tongue and salivary gland epithelial cells (Hamming et al., 2004). As SARS-CoV-2 has been detected in saliva samples (To et al., 2020), viral transmission can potentially occur via interactions with saliva and aerosol droplets deriving from oropharynx during coughing, sneezing, talking, and even during oral inspection or dental procedures (Li et al., 2020). Facial masks, facial barriers, and gloves can protect from the viral transmission, but dental procedures can produce a high generation
of aerosols overcoming physical barriers. High-speed dental handpieces and ultrasonic tips, typically used for common dental procedures like caries treatment or tartar removal, produce aerosols that can also remain suspended in the air for long periods and contaminate surfaces with a potential subsequent transmission risk. It is possible to substitute this protective equipment with manual instruments and/or anti-retraction handpieces and, when possible, use rubber dam, but potential risk remains (Gandolfi et al., 2020; Prati et al., 2020).

Besides physical barriers, another approach is the adoption of chemical-based detergents to inactivate SARS-CoV-2 on surfaces and biological tissues (Peng et al., 2020). Handwash is a well-documented procedure that is able to reduce the risk of SARS-CoV-2 spread by contact transmission (Jing et al., 2020).

Commercial mouthwashes that did not show significant virucidal activity were supplemented with different concentrations of thymus vulgaris essential oil (TEO) (Specchiasol, Bussolengo, Verona, Italy) (Catella et al., 2021) or SDS (Sigma-Aldrich) (data not shown) based on expected antiviral activity. Therefore, the following experimental mouthwashes were also tested:

- M5: (M1 + TEO 3000 μg/ml);
- M6: (M1 + TEO 30,000 μg/ml);
- M7: (M2 + 4 mM SDS);
- M8: (M2 + 3 mM SDS);
- M9: (M2 + 2 mM SDS);
- M10: (M2 + 1 mM SDS);
- M11: (M2 + 0.5 mM SDS).

2.2 Viruses and cell cultures

The virucidal activity was evaluated against the FCoV type II (FCoV II) strain 25/92 (Buonavoglia et al., 1995). FCov type II strain was used as surrogate of SARS-CoV-2 for several reasons: (i) lack of any biological risk for operators as FCov is not pathogenic for humans; (ii) FCov belongs to the Coronaviridae family (such as SARS-CoV-2); and (iii) FCov-II induces rapid and evident cytopathic effect (cpe) in vitro.

The virus was cultured on Crandell Reese Feline Kidney (CRFK), using Dulbecco’s minimal essential medium (D-MEM) with 10% fetal bovine serum.

The viral titer of stock virus used for virucidal activity assays was 5.50 tissue culture infectious doses (TCID$_{50}$/50 μl).

2.3 Virucidal activity assay

The viral stock (1 ml) was placed in contact at room temperature with the same amount of each mouthwash. After 60-s (T60) and
180-s (T180) contacts at room temperature, samples were 10-fold diluted from 10⁻¹ to 10⁻⁶ using DMEM. The undiluted mixture and each dilution were dispensed into 96-well microtiter plates using 4 wells for each dilution (100 µl/well).

CRFK cells suspended in D-MEM with 10% fetal bovine serum (20,000 cells/100 µl/well) were then added to each well.

Control virus, used for the tests and maintained for 60 and 180 s under the same conditions as mouthwashes/virus, was also titrated.

The plates were incubated for 72 h at 37°C in an incubator with 5% CO₂. On the basis of the cpe, the titer was calculated using the Karber formula (Kärber, 1931).

Mouthwashes M3, M4, M7, M8, and M9, resulting in a reduction of viral titer of 4.75 log 10 at T60 and T180, were chosen for the evaluation of virucidal activity also at 30-s (T30) contact.

Bovine serum albumin (BSA), as an interfering substance, was added to the mouthwashes/control solutions to mimic environmental contamination.

All the experiments were performed in triplicate.

2.4 | Data analysis

Normality of distribution was assessed by Shapiro–Wilk test. Data from virucidal activity of mouthwashes were assessed by Student’s t-test for independent samples (statistical significance set at 0.05).

Statistical analyses were performed with the software GraphPad Prism v 8.0.0 (GraphPad Software).

3 | RESULTS

In the virucidal activity assays, control virus did not show significant variations in the viral titers at different time intervals as evaluated on CRFK cells.

Preliminary experiments performed with mouthwashes (without FCoV) on CRFK cells evidenced cytotoxic effect in undiluted solutions. Cytotoxic effects were often observed in the wells containing undiluted mixture composed of mouthwashes and virus and in some cases M4, also in the wells containing the 10⁻¹ dilution of the mouthwash/virus mixture.

The results of viral titrations on CRFK cells at T30, T60, and T180 contacts of the mouthwashes with the FCoV were reported in Figure 1. Moreover, virucidal activity of the mouthwashes against FCoV was statistically compared with virus control and reported in Table 1.

M1 and M2 did not reduce or slightly reduce (0.25 log 10) viral titers, respectively, as compared to those of the control virus at T60 and T180 (5 log 10).

Despite the presence of cytotoxic effects in the wells inoculated with the undiluted mixture and partially in those inoculated with the 10⁻¹ dilution that hampered the ability to verify the possible presence of cpe, M3 significantly reduced the viral titer of 5.00 log10 at T30 (p < 0.0001) and 4.75 log 10 at T60 and T180 (p < 0.0001) while M4 significantly reduced viral titers of 3.00 log 10 at T30 (p = 0.0001) and 4.75 log 10 at T60 and T180 (p < 0.0001).

Both results were compared to the respective virus controls at T30 (5.50 log 10) and T60 and T180 (5.25 log 10).

M5 did not show any significant reduction in viral titer at T60 and T180 as the titer of the mouthwash/virus mixture was identical to that of the control virus at the respective time intervals.

M6 consistently reduced the viral titers of 2.50 log 10 at T60 and T180 (p = 0.0003) as compared to the control virus (5 log 10) at the respective time intervals.

Despite the presence of cytotoxic effects in the wells inoculated with the undiluted mixture, M7 and M8 showed a consistent reduction in viral titer of 5 log 10 at T30 (p < 0.0001) and 4.75 log 10 T60 and T180 (p < 0.0001) while M9 reduced viral titer of 3.75 log 10 at T30 (p < 0.0001) and 4.75 log 10 at T60 and T180 (p < 0.0001) as compared to the respective time interval of the virus control.

M10 determined a significant reduction in viral titer of 4.00 log 10 at T60 (p < 0.0001) and 4.75 log 10 and T180 (p < 0.0001), while M11 reduced the viral titer of 1.50 at T60 (p = 0.0018) and 4.75 log 10 at T180 (p < 0.0001), with respect to virus control at the different time intervals.

The experiments performed using BSA did not exhibit significant differences as compared to experiments without BSA.

4 | DISCUSSION

Various compounds were used in mouthwashes for treatment and/or prevention of oral bacterial infection, such as periodontal diseases and postsurgical infections (Jenkins et al., 1994). The interaction and efficacy of mouthwashes on viruses were historically neglected, but actually mouthwashes have been addressed as a potential tool for the prevention of SARS-CoV-2 (Carrouel, Gonçalves, et al., 2021).

Preprocedural mouthwashes containing oxidative agents such as H₂O₂ or PVP-I have been suggested to reduce the salivary viral load of SARS-CoV-2 (Elzein et al., 2021; Peng et al., 2020).

H₂O₂ liberates oxygen-free radicals and disrupts viral lipid envelope (O’Donnell et al., 2020; Peng et al., 2020), and as reported in in vitro studies, coronaviruses and influenza viruses were most sensitive to 3% H₂O₂ within 1–30 min (Mentl et al., 1977). Moreover, H₂O₂-based mouthwashes are safe for mucous membranes, even when H₂O₂ is used at a concentration of 3% over 6 min (Caruso et al., 2020). Moreover, 1.5% H₂O₂-based mouthwash significantly reduced SARS-CoV-2 viral load up to 30 min after rinsing (Eduardo et al., 2021).

PVP-I disrupt proteins and oxidize nucleic acid structures with free iodine dissociation, and it has higher virucidal activity against both enveloped and nonenveloped viruses (Pattanshetty et al., 2021).

In a recent study, a comparison of in vitro inactivation of SARS-CoV-2 with H₂O₂ and PVP-I was reported. After 15 and 30 s of contact time, PVP-I completely inactivated the virus at the concentrations of 0.5%, 1.25%, or 1.5% (Bidra et al., 2020a). Conversely, H₂O₂ (1.5% and 3%) showed minimal virucidal activity in the same contact time (Bidra et al., 2020b). A comparison of PVP-I (0.5%, 1%, and 1.5%) and 70% ethanol was reported showing that after 15 s of contact, PVP-I completely inactivated
SARS-CoV-2 whereas ethanol 70% inactivated the virus after 30 s of contact (Bidra et al., 2020a).

Using real-time reverse transcriptase PCR (RT-qPCR) to analyze the effect of gargling in the mouth and throat with 20 ml of H$_2$O$_2$ 1% for 30 s, no significant decrease in SARS-CoV-2 viral load was observed (Gottsauner et al., 2020).

PVP-I appear more effective for viral inactivation. PVP-I at 0.5% for 15 s reduce SARS-CoV-2 load by 4 log 10, whereas application for 30 or 60 s reduces the load by more than 5 log 10 (Hassandarvish et al., 2020).

Moreover, the use of 15 ml of 1% PVP-I mouthwash for 1 min significantly reduced the SARS-CoV-2 titer in the saliva for 3 h, as evaluated by RT-qPCR (Martínez Lamas et al., 2020).

However, the use of PVP-I is contraindicated in patients with allergy to iodine, with thyroid disease, pregnancy, or treatment with radioactive iodine (Gray et al., 2013).

In this study, the virucidal effects of several mouthwashes were evaluated in vitro against FCoV at different contact times, ranging from 30 s to 1 min and to 3 min, which are the common times for application of mouthwashes (Jenkins et al., 1994). A commercial CHX-based mouthwash (M1), tested in this study, appeared ineffective against FCoV. Virucidal effects at 0.2% concentration were not observed at T60 and T180. CHX, a cationic bisbiguanide, induces bacterial and fungal lysis increasing the permeability of the cell wall (da Costa et al., 2017). In vitro effects have been reported against enveloped viruses (Bernstein et al., 1990; Elzein et al., 2021). In this study, a commercial CPC-based mouthwash (M4) used at a concentration of 0.1% was able to reduce viral titer by 3 log 10 at T30 and 4.75 log 10 at T60 and T180. CPC, a cationic quaternary ammonium compound, is used as an alternative to CHX (Feres et al., 2010). The antiviral effect of CPC against coronaviruses is probably based on its lysosomotropic activity and its ability to destroy viral capsids (Baker et al., 2020). Eduardo et al. (2021) described the efficacy of CPC and CHX-based mouthwashes in reducing SARS-CoV-2 viral load in saliva up to 60 min after rising.

A commercial ethanol and EO-based mouthwash (M2) was also tested in this study. Ethanol is an excipient used in various mouthwashes, and it is active at high concentration on the inactivation of enveloped viruses, by dissolving the lipid membrane and denaturing the proteins (Jing et al., 2020). In this study, M2 did not show virucidal effects at T60 and T180. In a previous report, ethanol at a 70% concentration was able to inactivate SARS-CoV-2 after a 30-s contact (Bidra et al., 2020b). Many proprietary mouthwashes contain alcohol (ethanol), and in some products the concentration of ethanol
containing EOs demonstrated virucidal activity on SARS-CoV-2 in the mixture. EOs, volatile and odorous products extracted from the plants, have antiseptic properties. EOs have been demonstrated in vitro (Xu et al., 2021). Other in vivo and in vitro studies reported the efficacy of cyclodextrin- and citrox- or anionic phthalocyanine derivative-based mouthwashes against SARS-CoV-2 (Carrouel, derivate-based mouthwash (M3) was also assessed against FCoV. SDS, an anionic surfactant, is generally included in toothpastes, and it is known for its efficiency to dissolve the outer layer of viruses and bacteria, while the hydrophilic side dissolves in water, acting as an emulsifier for its efficiency to dissolve the outer layer of viruses and bacteria, while the hydrophilic side dissolves in water, acting as an emulsifier. SDS interacts with cell membranes, elevating the intracellular Ca2+ influx with an increase in intracellular reactive oxygen species (ROS) and IL-1α production. ROS increase could also interfere with viral replication, with an indirect cellular stimulation (Mizutani et al., 2016).

M3 reduced viral titer by 4.75–5 log10 consistently at any time intervals. Also, in this report, we assessed the virucidal effects of experimental M2-based mouthwashes, namely, M7, M8, M9, M10, and M11, containing decreasing concentrations of SDS (4, 3, 2, 1, and 0.5 mM, respectively). M7 and M8 consistently decreased the viral titer by 4.75–5 log10 at any time intervals, while M9, M10, and M11 reduced the viral titers with a dose- and time-dependent fashion.

5 | CONCLUSIONS

In our study, the most promising mouthwashes were those based on SDS. Both commercial (M3) or experimental (M7 to M11) SDS-based mouthwashes showed virucidal effects at all the tested contact times. Interestingly, a decrease in SDS concentrations in the mouthwashes affected the ability to inactivate the virus. The SDS concentration was not reported originally in the commercial SDS-based mouthwash label; it is likely that the SDS concentration was over 2 mM, considering the virucidal effects of the SDS-based M9, M10, and M11.

Another commercial mouthwash, M4, showed promising results. M4 contained CPC 0.1% and required a longer contact time than SDS-based commercial or experimental mouthwashes tested in our study.

Commercial (M1 and M2) and experimental (M5 and M6) CHX 0.2% and ethanol + EO-based mouthwashes appeared ineffective against FCoV. Adding TEO at 30,000 µg/ml to CHX 0.2% revealed promising virucidal properties, even if with lower efficacy than other

TABLE 1 Virucidal activity of mouthwashes (M1 to M11) against feline coronavirus evaluated in CRFK cells after a contact time of 30 s (T30), 60 s (T60), and 180 s (T180) compared with control virus (CV)

Comparisons	Viral titers (log10 TCID50/50 µl)	T30 MDV 95% CI	p value	T60 MDV 95% CI	p value	T180 MDV 95% CI	p value		
CV versus M1	NA	NA	NA	0	[−0.567; 0.567]	>0.9999 ns	0.25	[−0.817; 0.317]	0.2879 ns
CV versus M2	NA	NA	NA	0	[−0.567; 0.567]	>0.9999 ns	0.50	[−1.067; 0.067]	0.0705 ns
CV versus M3	5.00	[−5.567; −4.433]	<0.0001b	4.75	[−5.317; −4.813]	<0.0001b	4.75	[−5.317; −4.813]	<0.0001b
CV versus M4	3.00	[−3.567; −2.433]	0.0001b	4.75	[−5.317; −4.813]	<0.0001b	4.75	[−5.317; −4.813]	<0.0001b
CV versus M5	NA	NA	NA	0	[−0.567; 0.567]	>0.9999 ns	0.25	[−0.817; 0.317]	0.2879 ns
CV versus M6	NA	NA	NA	2.50	[−3.067; −1.933]	0.0003b	2.50	[−3.067; −1.933]	0.0003b
CV versus M7	5.00	[−5.567; −4.433]	<0.0001b	4.75	[−5.317; −4.813]	<0.0001b	4.75	[−5.317; −4.813]	<0.0001b
CV versus M9	4.00	[−4.567; −3.433]	<0.0001b	4.75	[−5.317; −4.813]	<0.0001b	4.75	[−5.317; −4.813]	<0.0001b
CV versus M10	NA	NA	NA	4.00	[−4.567; −3.433]	<0.0001b	4.75	[−5.317; −4.813]	<0.0001b
CV versus M11	NA	NA	NA	1.50	[−2.067; −0.933]	0.0018b	4.75	[−5.317; −4.813]	<0.0001b

Abbreviations: 95% CI, 95% confidence interval; MDV, mean difference of viral titers; NA, not assessed; ns, not significant.

aVery significant.
bHighly significant.
mouthwashes. Accordingly, CHX should be used in combination with other virucidal compounds as suggested by recent guidelines (Meng et al., 2020).

The results reported in this study are speculative and preliminary as obtained using a feline coronavirus strain. However, since coronaviruses share similar physicochemical features, further in vitro and in vivo studies using SARS-CoV-2 are encouraged to confirm the virucidal effects of SDS-, CPC-, and TEO-based mouthwashes in the oral cavity.

Another pivotal aim will be to determine the duration of a rinse required to reduce the viral titer. This would allow the estimation of the right time for repeating a rinse to avoid the risk of SARS-CoV-2 transmission.

ACKNOWLEDGMENTS

Open Access Funding provided by Universita degli Studi di Bari Aldo Moro within the CRUI-CARE Agreement.

CONFLICT OF INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

AUTHOR CONTRIBUTIONS

Alessio Buonavoglia: Conceptualization; Writing—original draft. Michele Camero: Methodology. Gianvito Lanave: Formal analysis; Software. Cristina Catella: Methodology. Claudia Maria Trombetta: Visualization. Maria Giovanna Gandolfi: Validation. Gerardo Palazzo: Methodology. Vito Martella: Resources; Supervision. Carlo Prati: Supervision; Writing-review & editing.

PEER REVIEW

The peer review history for this article is available at https://publon ns.com/publon/10.1111/odi.14067.

ORCID

Gianvito Lanave https://orcid.org/0000-0003-4614-677X

REFERENCES

American Dental Association. (2020). ADA interim guidance for minimizing risk of COVID-19 transmission. https://snl.isit/wp-content/uploads/2020/04/ADA_COVID_Int_Guidance_Treat_Pts.pdf

Baker, N., Williams, A. J., Tropsha, A., & Ekins, S. (2020). Repurposing quaternary ammonium compounds as potential treatments for COVID-19. Pharmaceutical Research, 37(6), 104. https://doi.org/10.1007/s11095-020-02842-8

Bernstein, D., Schiff, G., Echter, G., Prince, A., Keller, M., & Briner, W. (1990). In vitro virucidal effectiveness of a 0.12%-chlorhexidine gluconate mouthrinse. Journal of Dental Research, 69(3), 874–876. https://doi.org/10.1177/00220345900690030901

Bidra, A. S., Pelletier, J. S., Westover, J. B., Frank, S., Brown, S. M., & Tessema, B. (2020a). Rapid in-vitro inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using povidone-iodine oral antiseptic rinse. Journal of Prosthodontics, 29(6), 529–533. https://doi.org/10.1111/jopr.13209

Bidra, A. S., Pelletier, J. S., Westover, J. B., Frank, S., Brown, S. M., & Tessema, B. (2020b). Comparison of in vitro inactivation of SARS CoV-2 with hydrogen peroxide and povidone-iodine oral antiseptic rinses. Journal of Prosthodontics, 29(7), 599–603. https://doi.org/10.1111/jopr.13220

Buonavoglia, C., Sagazio, P., Cirone, F., Tempesta, M., & Marsilio, F. (1995). Isolamento e caratterizzazione di uno stipite di virus della peritonite infettiva felina [Isolation and characterization of a feline infectious peritonitis strain]. Veterinaria, 9, 91–93.

Carrouel, F., Gonçalves, L. S., Conte, M. P., Campus, G., Fisher, J., Fraticelli, L., Gadea-Deschamps, E., Ottolenghi, L., & Bourgeois, D. (2021). Antiviral activity of reagents in mouth rinses against SARS-CoV-2. Journal of Dental Research, 100(2), 124–132. https://doi.org/10.1177/0022034520967933

Carrouel, F., Valette, M., Gadea, E., Esparcieux, A., Illis, G., Langlois, M. E., Perrier, H., Dussart, C., Tramini, P., Ribaud, M., Bouscambert-Duchamp, M., & Bourgeois, D. (2021). Use of an antiviral mouthwash as a barrier measure in the SARS-CoV-2 transmission in adults with asymptomatic to mild COVID-19: A multicentre, randomized, double-blind controlled trial. Clinical Microbiology & Infection, 27(10), 1494–1501. https://doi.org/10.1016/j.cmi.2021.05.028

Caruso, A. A., Del Prete, A., Lazzarino, A. I., Capaldi, R., & Grumetto, L. (2020). Might hydrogen peroxide reduce the hospitalization rate and complications of SARS-CoV-2 infection? Infection Control and Hospital Epidemiology, 41, 1360–1361.

Catella, C., Camero, M., Lucente, M. S., Fracchiolla, G., Sbano, S., Tempesta, M., Martella, V., Buonavoglia, C., & Lanave, G. (2021). Virucidal and antiviral effects of Thymus vulgaris essential oil on feline coronavirus. Research in Veterinary Science, 137, 44–47. https://doi.org/10.1016/j.rvsc.2021.04.024

Centers for Disease Control and Prevention. (2020). Interim infection prevention and control guidance for dental settings during the COVID-19 response. https://www.cdc.gov/coronavirus/2019-ncov/hcp/dental-settings.html

Chen, Y., Guo, Y., Pan, Y., & Zhao, Z. J. (2020). Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications, 525, 135–140. https://doi.org/10.1016/j.bbrc.2020.02.071

da Costa, L. F. N. P., Amaral, C. D. S. F., Barbirato, D. D. S., Leão, A. T. T., & Fogacci, M. F. (2017). Chlorhexidine mouthwash as an adjunct to mechanical therapy in chronic periodontitis: A meta-analysis. Journal of the American Dental Association, 148(5), 308–318. https://doi.org/10.1016/j.adaj.2017.01.021

Eduardo, F. P., Corrêa, L., Heller, D., Daep, C. A., Benitez, C., Malheiros, Z., Stewart, B., Ryan, M., Machado, C. M., Hamerschlag, N., Rebelo Pinho, J. R., & Bezinelli, L. M. (2021). Salivary SARS-CoV-2 load reduction with mouthwash use: A randomized pilot clinical trial. Helenyon, 7(6), e07346. https://doi.org/10.1016/j.helenyon.2021.e07346

Elzein, R., Abdel- Sater, F., Hanna, P. A., Feghali, R., Hamad, H., & Ayoub, F. (2021). In vivo evaluation of the virucidal efficacy of chlorhexidine and povidone-iodine mouthwashes against salivary SARS-CoV-2. A randomized-controlled clinical trial. Journal of Evidence Based Dental Practice, 21(3), 101584. https://doi.org/10.1177/jjebdp.2021.101584

Feres, M., Figueiredo, L. C., Faveri, M., Stewart, B., & de Vizio, W. (2010). The effectiveness of a preprocedural mouthrinse containing cetylpyridinium chloride in reducing bacteria in the dental office. Journal of the American Dental Association, 141(4), 415–422. https://doi.org/10.14219/jada.archive.2010.0193

Gandolfi, M. G., Zamparini, F., Spinelli, A., Sambri, V., & Prati, C. (2020). Risks of aerosol contamination in dental procedures during the second wave of COVID-19-experience and proposals of innovative IPC in dental practice. International Journal of Environmental
Meng, L., Hua, F., & Bian, Z. (2020). Coronavirus disease 2019 (COVID-19): Emerging and future challenges for dental and oral medicine. Journal of Dental Research, 99(5), 481–487. https://doi.org/10.1177/0022034520914246

Mentel, R., Shirmakher, R., Kevich, A., Dreizin, R. S., & Shmidt, I. (1977). Inaktivatsiya virusov perekis'iu vodoroda [Virus inactivation by hydrogen peroxide]. Voprosy Virusologii, 6, 731–733.

Mizutani, T., Mori, R., Hirayama, M., Sagawa, Y., Shimizu, K., Okano, Y., & Masaki, H. (2016). Sodium lauryl sulfate stimulates the generation of reactive oxygen species through interactions with cell membranes. Journal of Oleo Science, 65(12), 993–1001. https://doi.org/10.6560/Josess16074

Muñoz-Basagoiti, J., Pérez-Zsolt, D., León, R., Blanc, V., Raich-Regué, D., Cano-Sarabia, M., Trinité, B., Pradenas, E., Blanco, J., Gispert, J., Clotet, B., & Izquierdo-Useros, N. (2021). Mouthwashes with CPC reduce the infectivity of SARS-CoV-2 variants in vitro. Journal of Dental Research, 100(11), 1265–1272. https://doi.org/10.1177/00220345211029269

O’Donnell, V. B., Thomas, D., Stanton, R., Maillard, J.-Y., Murphy, R. C., Jones, S. A., Humphreys, I., Wakelam, M. J. O., Fegan, C., Wise, M. P., Bosch, A., & Sattar, S. A. (2020). Potential role of oral rinses targeting the viral lipid envelope in SARS-CoV-2 infection. Function, 1(1). https://doi.org/10.1093/function/zqaa002

Pattanayak, S. K., Narayana, A., & Radhakrishnan, R. (2021). Povidoneiodine gargle as a prophylactic intervention to interrupt the transmission of SARS-CoV-2. Oral Diseases, 27(Suppl. 3), 752–753. https://doi.org/10.1111/odi.13378

Peng, X., Xu, X., Li, Y., Cheng, L., Zhou, X., & Ren, B. (2020). Transmission routes of 2019-nCoV and controls in dental practice. International Journal of Oral Science, 12, 9. https://doi.org/10.1038/s41368-020-0075-9

Prati, C., Pelliccioni, G. A., Sambri, V., Chersoni, S., & Gandolfi, M. G. (2020). COVID-19: Its impact on dental schools in Italy, clinical problems in endodontic therapy and general considerations. International Endodontic Journal, 53(5), 723–725. https://doi.org/10.1111/iej.13291

Santos, C., da Fonseca, O. B., Brito Reia, V. C., Ribeiro, L. G., Grotto, R. M. T., Prudenciatti, A., de Moraes, L. N., Raggianti Zangrando, M., Vilhena, F. V., & da Silva Santos, P. S. (2021). Virucidal activity of the antiseptic mouthwash and dental gel containing anionic phthalocyanine derivative: In vitro study. Clinical, Cosmetic and Investigational Dentistry, 28(13), 269–274. https://doi.org/10.2147/CCIDE.S315419

Seneviratne, C. J., Balan, P., Ko, K. K. K., Udawatte, N. S., Lai, D., Ng, D. H. L., Venkatachalam, I., Lim, K. S., Ling, M. L., Oon, L., Goh, B. T., & Sim, X. Y. J. (2021). Efficacy of commercial mouth-rinse on SARS-CoV-2 viral load in saliva: Randomized control trial in Singapore. Infection, 49(2), 305–311. https://doi.org/10.1007/s15010-020-01563-9

Sharun, K., Sircar, S., Malik, Y. S., Singh, R. K., & Dhama, K. (2020). How close is SARS-CoV-2 to canine and feline coronaviruses? Journal of Small Animal Practice, 61(8), 523–526. https://doi.org/10.1111/j sap.13207

Silva, J. K. R. D., Figueiredo, P. L. B., Byler, K. G., & Setzer, W. N. (2020). Essential oils as antimicrobial agents-myth or real alternative? Molecules, 25(11), 2130. https://doi.org/10.3390/ molecules24112130
Xu, C., Wang, A., Hoskin, E. R., Cugini, C., Markowitz, K., Chang, T. L., & Fine, D. H. (2021). Differential effects of antiseptic mouth rinses on SARS-CoV-2 infectivity in vitro. *Pathogens*, 10(3), 272. https://doi.org/10.3390/pathogens10030272

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Ni, P., Zhan, F., Ma, X., Wang, X., Xu, W., Wu, G., Gao, G., Tan, W., & China Novel Coronavirus Investigating and Research Team. (2020). A novel coronavirus from patients with pneumonia in China, 2019. *New England Journal of Medicine*, 382, 727–733.

How to cite this article: Buonavoglia, A., Camero, M., Lanave, G., Catella, C., Trombetta, C. M., Gandolfi, M. G., Palazzo, G., Martella, V., & Prati, C. (2022). Virucidal activity in vitro of mouthwashes against a feline coronavirus type II. *Oral Diseases*, 28(Suppl. 2), 2492–2499. https://doi.org/10.1111/odi.14067