Hypomyces pseudolactifluorum sp. nov.
(Hypocreales: Hypocreaceae) on Russula sp. from Yunnan, PR China

Feng-ming Yu‡§, Ruvishika S. Jayawardena§, Jianwei Liu‡, Kevin D. Hyde‡§‖, Qi Zhao‡¶

‡ Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
§ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiangrai, Thailand
‖ Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
¶ Institute of Applied Fungi, Southwest Forestry University, Kunming, China

Corresponding author: Qi Zhao (zhaoqi@mail.kib.ac.cn)

Abstract

Background

Hypomyces is a large genus of fungicolous fungi, parasitising the fruiting bodies of Agaricales, Boletales, Helotiales, Pezizales and Polyporales. Hypomyces currently comprises of 147 species widely distributed in Australia, China, France, Germany, Italy, Japan, North America, Sri Lanka, Thailand and UK. Amongst them, 28 species have been recorded in China.

New information

Hypomyces pseudolactifluorum sp. nov., growing on the fruiting bodies of Russula sp. in subsect. Lactarioideae and collected from Yunnan, China, is described with illustrations and molecular phylogenetic data (combined ITS, LSU, TEF1-α and RPB2 sequence dataset). The new species is characterised by semi-immersed to immersed perithecia and
fusiform, apiculate and verrucose ascospores. We also review the species diversity of the genus *Hypomyces* in China.

Keywords

Mycoparasite, species diversity, muti-gene phylogeny

Introduction

Fungicolous fungi are a large and diverse ecological group, currently containing more than 1500 taxa distributed in many lineages across the fungal kingdom (Põldmaa 2011, Sun et al. 2019a). *Hypomyces* (Fr.) Tul. & C. Tul. is an important genus of fungicolous fungi and placed in the family Hypocreaceae (Hypocreales, Sordariomycetes, Ascomycota) (Hyde et al. 2020). *Hypomyces* was originally introduced as a subgenus of *Hypocrea* Fr. (Fries 1825) and then Tulasne and Tulasne (1860) revised it to a genus and designated *H. lactifluorum* (Schwein.) Tul. & C. Tul. from the USA as its type. *Hypomyces* parasitises the fruiting bodies of Agaricales, Boletales, Helotiales, Pezizales and Polyporales (Rossman et al. 1999, Tamm and Põldmaa 2013, Sun et al. 2019a). *Hypomyces* is characterised by: superficial or immersed, spherical to ovate, pyriform, papillate and yellow, orange, tawny red or green perithecia in a subiculum; 8-spored, subcylindrical to cylindrical and with a thickened apical ascus; and ellipsoid, lanceolate, fusiform to navicular, 0-1-septate or rarely 3-septate, hyaline, spinulose or verrucose and smooth-walled ascospores (Rossman et al. 1999, Zeng and Zhuang 2015). Its allied genera include *Cladobotryum* Nees, *Mycogone* Link, *Sepedonium* Link and *Stephanoma* Wallr (Wijayawardene et al. 2017) and its asexual morphs are *Acremonium*-, *Dactylaria*-, *Papulaspora*-, *Trichothecium*- or *Verticillium*-like (Jaklitsch et al. 2006, Hyde et al. 2020). *Hypomyces* currently comprises of 147 species in Species Fungorum (http://www.speciesfungorum.org/, accessed in April 2020) and is widely distributed in Australia, China, France, Germany, Italy, Japan, North America, Sri Lanka, Thailand and UK (Zhuang et al. 2012, Rossman et al. 2013, Zeng and Zhuang 2016, Zare and Gams 2016, Lechat et al. 2017, Wei and Kirschner 2017, Sun et al. 2019a, Sun et al. 2019b, Zeng and Zhuang 2019). Amongst them, 28 species have been reported in China (Table 1).

Taxa names	Hosts	Distribution	References
Hypomyces amaniticola	*Amanita* sp.	China (Yunnan)	Zeng and Zhuang 2016
Taxa names	Hosts	Distribution	References
-----------------	--	--	---------------------------------
H. aurantius	*Agaricus bisporus*, *Polyporales (Cymatoderma sp., Laetiporus sulphureus, Panellus sp., Polyporus picipes)*, *Stereum sp.*	China (Anhui, Fujian, Guangxi, Hainan, Hebei, Hunan, Jiangsu, Jiangxi, Shanghai, Sichuan, Zhejiang), New Zealand, USA	Chen and Fu 1989, Põldmaa 2011, Luo and Zhuang 2012
H. aureonitens	*Phlebia tremellosa*, *Polyporus sp.*	China (Fujian, Guangxi), Europe	Teng 1963, Sun et al. 2019a
H. chlorinigenus	*Agariceae, Boletaceae*	Belgium, China (Taiwan), Guyana; Indonesia, New Zealand, USA	Rogerson and Samuels 1989, Zeng and Zhuang 2016
H. chrysospermus	*Boletus sp., Hemileccinum impolitum, Suillus americanus, Russula sp.*	China (Fujian, Jiling, Nanjing), Russia	Ma 2008, Luo and Zhuang 2012
H. completiopsis	*Boletus sp.*	China (Yunnan)	Zeng and Zhuang 2016
H. fistulina	*Fistulina sp.*	China (Guangxi)	Sun et al. 2019b
H. hubeiensis	*Agaricus sp.*	China (Hubei)	Zeng and Zhuang 2019
H. hyalinus	*Agaricales (Amanita sp.), Polyporales*	Canada, China (Jiangsu, Japan, USA)	Teng 1934, Teng 1963, Rogerson and Samuels 1994
H. lateritius	*Lactarius camphoratus, L. chelidonium, L. controversus, L. deliciosus, L. sanguifluus, L. thejogalus, L. trivialis, Lactarius sp.*	Canada, China (Tibet), Europe, Japan, Mexico, New Zealand, USA	Rogerson and Samuels 1994, Luo and Zhuang 2012
H. luteovirens	*Russula atropurpurea, R. rosea, R. sanguinaria, Russula sp.*	Canada, China (Inner Mongolia), Europe, Japan, Russia, USA	Rogerson and Samuels 1994, Ma 2008
H. macrosporus	*Russulaceae*	China (Hubei), Mexico, USA	Rogerson and Samuels 1994, Luo and Zhuang 2012
H. microspermus	*Boletaceae, Boletus sp., Imleria badia, Xanthoconium affine, Xerocomellus chrysenteron, Xerocomus sp.*	China (Fujian, Guizhou, Hainan, Hubei, Jilin, Taiwan, Yunan), Indonesia, New Zealand, USA	Rogerson and Samuels 1989, Zeng and Zhuang 2016
H. mycophilus	*Auricularia sp., Bulgari sp., Marasmius sp., Polyporus sp., Trametes versicolor*	China (Guangdong), USA	Rogerson and Samuels 1993, Zeng et al. 2017
H. ochraceus	Decaying leaves, wood and fungi (e.g. *Russula sp.*)	China (Guangxi, Yunnan), Europe, USA	Teng 1963, Sun et al. 2019a
H. orthosporus	*Polyporales*	China (Tibet), Estonia, Finland, The Netherlands	Põldmaa 1996, Zeng and Zhuang 2019
Taxa names	Hosts	Distribution	References
----------------------------	--	-------------------------------	--
H. papulasporae	Geoglossum difforme, G. fallax, G. glabrum, G. nigritum, G. simile,	China, USA, New Zealand	Rogerson and Samuels 1985, Sun et al. 2019a
	Glutinoglossum glutinosum, Trichoglossum hirsutum, T. walteri		
H. polyporinus	Auricularia auricula-judae, Polyporales, Trametes versicolor, T. pubescens, Polyporus sp.	Canada, China (Guangxi), USA	Teng 1963, Rogerson and Samuels 1993
H. pseudolactifluorum sp. nov.	Russula sp.	China (Yunnan)	This study
H. rosellus	Agaricus bisporus, Armillaria sp., Hydnellum sp., Hyphoderma sp., Mycena sp., Polyporus sp., Russula sp., Trichaptum sp.	China (Gansu), Europe, Iran, Japan, Korea, USA	Tamm and Pöldmaa 2013, Sun et al. 2019b
H. semicircularis	Ganoderma sichuanense, Microporus xanthopus	Cuba, China	Wei and Kirschner 2017, Sun et al. 2019a
H. sibirinae	Aphyllorophales, Boletus sp., Polyporales	China (Hunan), Indonesia, USA	Samuels et al. 1990, Zeng et al. 2017, Sun et al. 2019a
H. sinicus	Schizophyllum sp.	China (Anhui)	Zhuang et al. 2012
H. stephanomatis	Humaria hemisphaerica, Humaria sp.	Canada, China (Hubei), Germany, USA	Rogerson and Samuels 1985,Zeng and Zhuang 2016
H. subiculosus	Polyporaceae (Microporus affinis, Trametes versicolor)	China (Anhui, Beijing, Guangxi, Zhejiang), Cuba, Japan	Rogerson and Samuels 1993, Luo and Zhuang 2012
H. succineus	Pholiota sp.	China (Taiwan), USA	Rogerson and Samuels 1994, Zeng and Zhuang 2016
H. tegillum	Aphyllorophales, Polyporales	Brazil, China (Guangxi, Yunnan), Panama, USA	Rogerson and Samuels 1993, Luo and Zhuang 2012
H. triseptatus	Bark or associated with an ascomycete; Pyrenomycete	China (Hunan, Guangdong), Gabon	Rossman and Rogerson 1981, Zeng et al. 2017
H. yunnanensis	Boletus sp.	China (Yunnan)	Zeng and Zhuang 2016

Fungicolous fungi play important roles in the processes of the growths and degradations of their hosts. With the rapid development of mushroom industries, the fungicolous fungi on mushrooms have received more and more attention (Hyde et al. 2019). In this paper, we
introduce a new member of fungicolous fungi, Hypomyces pseudolactifluorum sp. nov., on the fruiting bodies of Russula sp., collected from Yunnan Province, China. At the same time, we review the species diversity of the genus Hypomyces in China.

Materials and methods

Collections and Morphology

Hypomyces specimens, including their host mushrooms, were collected in an evergreen broad-leaved forest in Baihualing, Baoshan, Yunnan Province, China. The specimens, as well as collected host mushrooms, were placed on a piece of aluminium foil at first, then rolled the paper into a cylinder, twisted at the ends for sealing and lastly taken back to the laboratory for study (McKnight and McKnight 1997). Colour codes were recorded following those of Kornerup and Wanscher (1978). A Nikon Coolpix P510 camera was used to take photos in the wild. Dried specimens were observed and photographed using an Olympus SZ61 stereomicroscope and a Nikon ECLIPSE Ni compound microscope fitted with a Canon EOS 600D digital camera. Measurements were made using the Tarosoft® Image Frame Work programme v.0.9.7. The colour change of the perithecial wall was tested using 5% potassium hydroxide (KOH). Type specimens are deposited at the Herbarium of Mae Fah Luang University, Thailand (MFLU) and the Herbarium of Cryptogams Kunming Institute of Botany, Chinese Academy of Sciences, PR China (HKAS).

DNA extraction, PCR amplification and sequencing

The genomic DNA was extracted from the dried materials using the CTAB method (Doyle 1987). Tissues from the ascocarps of parasitic fungi and fruiting bodies of the host mushrooms were used to extract DNA, respectively. Primer pairs ITS1F/ITS4 (White et al. 1990), LR0R/LR5 (Rehner and Samuels 1994, Vilgalys and Hester 1990), TEF1-α 983f/TEF1-α 2218r (Carbone and Kohn 1999, Rehner and Buckley 2005) and RPB2-5f/RPB2-7cR (Liu et al. 1999) were used for amplification of the ITS, LSU, TEF1-α and RPB2 gene regions.

PCR was performed in a 25 μl reaction volume: 12.5 μl Taq PCR Master Mix (Abmgood, Richmond, BC, Canada), 1 μl forward primer, 1 μl reverse primer, 1 μl DNA template and 9.5 μl ddH₂O. For ITS and LSU, PCR reaction conditions are: 8 min at 94°C, followed by 30 s at 94°C, 30 s at 52°C and 1 min at 72°C for 35 cycles and a final extension of 10 min at 72°C. PCR reaction conditions of TEF1-α and RPB2 are: 8 min at 94°C, followed by 1 min at 95°C, 45 s at 59°C for RPB2/55°C for TEF1-α and 1 min at 72°C for 35 cycles and a final extension of 10 min at 72°C. The PCR products were detected using agarose gel electrophoresis and, in the gel documentation system, clear bands were observed. Sequencing was performed by Sangon Biotech (Shanghai) Co. Ltd., PR China; partial impure products were purified using the Cycle-pure-kit (Omega, America) and then cloned into pClone007 Simple vector (TSV-007S from Beijing TsingKe Biotech). Twenty clones of PCR products of each gene were sequenced using the universal primer pairs M13-47/M13-48.
Sequence alignment and phylogenetic analyses

The parasitic fungus: *Hypomyces pseudolactifluorum* sp. nov.

Molecular phylogenetic trees were constructed using our sequencing results of *H. pseudolactifluorum* sp. nov. and the voucher sequences of their allies obtained from NCBI GenBank (Table 2). Two species of *Trichoderma*, *T. hamatum* (DAOM 167057) and *T. viride* (CBS 119325) were used as outgroup taxa. All sequences were assembled and aligned using MAFFT v6.8 (Katoh et al. 2005) and manually edited via BioEdit version 7.0.9 (Hall 1999). Four sequence matrices of ITS, LSU, *TEF1*-α and *RPB2* genes, respectively, were compiled. The optimal substitution model for each gene dataset was determined using jModelTest2 under the Akaike information criterion (AIC) (Darriba et al. 2012). The results indicated that the GTR+I+G model (-lnL = 8658.2624) is optimal for the ITS dataset, as well as the TIM1+I+G model (-lnL = 4392.5417) for LSU, the TrN+I+G model (-lnL = 5751.4959) for *TEF1*-α and the model SYM+I+G (-lnL = 6419.6669) for *RPB2*, respectively. Using the aligned sequence matrices, a combined gene sequence dataset (ITS, LSU, *TEF1*-α and *RPB2*, orderly) was assembled and aligned and was finally deposited in TreeBASE database (http://purl.org/phylo/treebase/phylows/study/TB2:S26593?x-access-code=152eadfc2292343af7627cfad5c2946c&format=html).

Table 2.
Voucher information and GenBank accession numbers for samples appearing in the *Hypomyces* phylogenetic tree. Our sequencing results are displayed in bold. (Label T indicate the sequences from ex-type strains.)

Taxa names Specimen/Strain number	GenBank accession numbers	References			
	ITS	LSU	*TEF1*-α	*RPB2*	
Cladobotryum amazonense CBS 470.80	MH861285	MH873051	/	/	Vu et al. 2019
C. apiculatum CBS 174.56 T	NR_159770	MH869109	/	/	Vu et al. 2019
C. asterophorum CBS 676.77 T	FN859395	MH872869	FN868712	FN868649	Põldmaa 2011
C. croceum CBS 231.95	MH862511	MH874154	/	/	Vu et al. 2019
C. cubitense CBS 416.85 G.A. m643.w	FN859396	/	FN868713	FN868650	Põldmaa 2011
C. indoafrum TFC 201295	FN859403	FN859403	FN868721	FN868657	Põldmaa 2011
C. multiseptatum CBS 472.71 T	FN859405	MH871991	FN868723	FN868659	Põldmaa 2011
C. obconicum CBS 528.81	MH861373	MH873126	/	/	Vu et al. 2019
C. paravirescens TFC 97-23 T	FN859406	FN859406	FN868724	FN868660	Põldmaa 2011
C. penicillatum CBS 407.80 T	FN859407	MH873046	FN868725	FN868661	Põldmaa 2011
C. protrusum CBS 118999	FN859408	FN859408	FN868726	FN868662	Põldmaa 2011
C. purpureum CBS 154.78 T	FN859415	/	FN868733	FN868669	Põldmaa 2011
C. rubrobrunnescens CBS 176.92 T	FN859416	MH874016	FN868734	FN868670	Põldmaa 2011
Taxa names	Specimen/ Strain number	GenBank accession numbers	References		
--------------------------------	-------------------------	---------------------------	---------------------		
Cladobotryum sp.	FSU 5046	FN859421	Põldmaa 2011		
	MN860217	MH871984	/		
C. *stereicola*	CBS 457.71 T	FN859419	Vu et al. 2019		
	MH864924	MH868737	Põldmaa 2011		
C. *tchimbelense*	TFC 201146 T	FN859420	Põldmaa 2011		
C. *tenue*	CBS 152.92 T	FN859420	Põldmaa 2011		
Hypomyces *aconidialis*	TFC 201334 T	FN859457	Põldmaa 2011		
	TFC 201215	FN859456	Põldmaa 2011		
H. *albidus*	CBS 460.71	MH860220	Vu et al. 2019		
	MH871987	/	/		
H. *armeniacus*	TFC 02-86/2 T	FN859424	Põldmaa 2011		
H. *aurantius*	TFC 95-171	FN859425	Põldmaa 2011		
H. *australasaticus*	TFC 03-8 T	FN859428	Põldmaa 2011		
	TFC 99-95	FN859427	Põldmaa 2011		
H. *australis*	TFC 2007-18	AM779860	Põldmaa 2011		
H. *boletiphagus*	MFLU 17-1391	MH459152	Sun et al. 2019b		
	MH459168	/	/		
H. *boletus*	MFLU 17-1392	MH459153	Sun et al. 2019b		
	MH459170	/	/		
H. *chlorinigenus*	KSH511	KT946843	Otto et al. 2016		
	KSH512 T	KT946844	Otto et al. 2016		
H. *complectus*	KSH411 (S172)	KT946842	Otto et al. 2016		
	KSH410 (S171) T	KT946841	Otto et al. 2016		
H. *corticicola*	CBS 137.71 T	MH860037	Vu et al. 2019		
H. *dactylarioides*	CBS 141.78 T	FN859429	Põldmaa 2011		
H. *fistulina*	HMAS 279800 T	MH459154	Sun et al. 2019b		
	MH459171	MH464781	/		
H. *gabonensis*	TFC 201156 T	FN859430	Põldmaa 2011		
H. *heterosporus*	CBS 719.88 T	FN859398	Põldmaa 2011		
H. *kaoyaiensis*	G.J.S. 01-304 T	FN859431	Põldmaa 2011		
	AJ583483	FN868750	/		
H. *lactifluorum*	TAAM 170476 T	FN859432	Põldmaa 2011		
	EU710768	FN868751	/		
H. *laeticolor*	JCM 10758 T	LC228655	Sun et al. 2019b		
H. *luteovirens*	CBS 128483	MH864958	Vu et al. 2019		
H. *mycophilus*	CBS 175.56	MH865767	Vu et al. 2019		
	MH869110	/	/		
H. *odoratus*	G.A. m329	FN859434	Põldmaa 2011		
	TFC 200887	FN859439	/		

Hypomyces pseudolactifluorum sp. nov. (Hypocreales: Hypocreaceae) on Russula ...
Taxa names	Specimen/ Strain number	GenBank accession numbers	References
H. orthosporus	10736	MK478468	Zeng and Zhuang 2019
H. penicillatus	NBRC 100524	LC146740	Sun et al. 2019b
H. pseudolactifluorum sp.nov.	MFLU 20-0265 T	MT260402	This study
H. polyporinus	ATCC 76479	AF543771	Currie et al. 2003
H. pseudocorticicola	JCM 12654 T	LC228663	Sun et al. 2019b
H. rosellus	TFC 201071	FN859443	Põldmaa 2011
H. samuelsii	CBS 536.88 T	FN859444	Põldmaa 2011
H. semicircularis	CBS 705.88 T	FN859417	Põldmaa 2011
H. semitranslucens	CBS 458.71	MH860218	Vu et al. 2019
H. sibirinae	CBS 744.88	MH862151	Vu et al. 2019
H. sinicus	G.J.S. 88-50	AF160243	Zhuang et al. 2012
H. stephanomatis	TFC 97.166	FN859452	Põldmaa et al. 2000
H. subiculosus	CBS 115.79	KU382164	Vu et al. 2019
H. tubariicola	CBS 225.84	KU382162	Zare and Gams 2016
H. virescens	G.A. i1906 T	FN859454	Põldmaa 2011
S. chalcipori	CBS 278.92	MH862358	Vu et al. 2019
S. tulasneanum	CBS 940.69	MH859489	Vu et al. 2019
Trichoderma hamatum	DAOM 167057 T	EU280124	Hoyos-Carvajal et al. 2009
T. viride	CBS 119325 T	DQ677655	Jaklitsch et al. 2006

Maximum Likelihood (ML) analysis was performed using IQ-Tree (Nguyen et al. 2014, Chernomor et al. 2016) with the computing models listed above and a bootstrap test of
1000 replicates. Bayesian Inference (BI) analysis was carried out using MrBayes v3.2.6 (Ronquist et al. 2012). The TIM1 and TrN substitution models were replaced by the GTR model (Huelsenbeck and Rannala 2004). Four simultaneous Markov Chain Monte Carlo (MCMC) chains were run for random trees of 10,000,000 generations and were sampled by every 100 generations. The computing was stopped when the standard deviation of the split frequencies fell below 0.01 and ESS values > 200. Subsequently, phylogenetic trees were summarised and posterior probabilities (PP) were performed using MCMC by discarding the first 25% generations as “burn-in” (Huelsenbeck and Ronquist 2001). Gaps were treated as missing data. Phylogenetic trees were viewed in FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree).

The host mushroom: Russula sp.

Voucher sequences (ITS gene) for phylogenetic analyses of the host mushroom and its allies were obtained from our sequencing results and GenBank databases (Li et al. 2020) (Table 3). Five species of Russula subg. Compactae, R. acrifolia, R. adusta, R. eccentrica, R. nigricans and R. subnigricans were selected as the outgroup taxa. Sequence alignment and phylogenetic analyses followed those of the parasitic fungus above. ML analysis was performed using IQ-Tree with TVM+I+G model (-lnL = 5298.7964) (Nguyen et al. 2014, Chernomor et al. 2016). The ITS sequence matrix of the host mushroom and its allies were deposited in the TreeBASE database (http://purl.org/phylo/treebase/phylows/study/TB2:S26693?x-access-code=2e445b17aebe1f93266051a8920ae62f&format=html).

Taxa names	Specimen/Strain number	GenBank accession	References
Russula acrifolia	TUB UE12.09.2003-3	DQ421998	Eberhardt 2002
R. adusta	PC 547RUS27	AY061652	Miller and Buyck 2002
R. aff. chloroides	FH 12273	KT934015	Looney et al. 2016
R. brevipes	SMI329	FJ845429	Kranabetter et al. 2009
R. brevipes	JS160927-01	MG407682	GenBank
R. brevipes var. acrior	JMP 0058	EU819422	Palmer et al. 2008
R. byssina	HGAS-MF 009907	MN648951	Li et al. 2020
R. byssina	HGAS-MF009921	MN648949	Li et al. 2020
R. byssina	HGAS-MF 009913	MN648950	Li et al. 2020
R. cascadensis	UBC F30189	KX812838	Bazzicalupo 2018
R. cascadensis	UBC F19691	HM240541	Buyck et al. 2017
R. cf. angustispora	PC BB2004-252	EU598152	GenBank
R. cf. brevipes	F 28785	MH718203	GenBank
Taxa names	Specimen/Strain number	GenBank accession	References
-------------------	------------------------	-------------------	------------------------------
R. cf. brevipes	F CDW47	GQ166868	GenBank
R. cf. brevipes	GO 2009-276	KC152212	GenBank
R. cf. delica	UBC F30260	KX812852	Bazzicalupo 2018
R. chloroides	PC 205RUS24	AY061663	Miller and Buyck 2002
R. chloroides	UBC F20353	KC581331	GenBank
R. chloroides	RUS-12091401	KF432954	Wisitrassameewong et al. 2014
R. cremicolor	HGAS-MF 009901	MN648955	Li et al. 2020
R. cremicolor	HGAS-MF 009908	MN648952	Li et al. 2020
R. cremicolor	HGAS-MF 009912	MN648953	Li et al. 2020
R. cremicolor	HGAS-MF 009919	MN648954	Li et al. 2020
R. delica	hue22 (TUB)	AF418605	Eberhardt 2002
R. delica	FH 12-272	KF432955	Wisitrassameewong et al. 2014
R. delica	HA 2015-004	KX263000	Aghajani et al. 2017
R. delica	PC 496RUS26	AY061671	Miller and Buyck 2002
R. delica	TUB hue22	AF418605	Eberhardt 2002
R. delica	UBC F30263	KX812842	Bazzicalupo 2018
R. delica	RMUKK 37	KX267630	GenBank
R. delica	KA 12-1327	KR673555	Kim et al. 2015
R. delica	HMJAU 32182	KX094989	Liu et al. 2017
R. eccentrica	HCCN 23685	KC699778	Park et al. 2014
R. japonica	MHHNU 31049	MK167414	Chen and Zhang 2019
R. japonica	HGAS-MF 009923	MN648957	Li et al. 2020
R. japonica	HGAS-MF 009915	MN648956	Li et al. 2020
R. leucocarpa	HGAS-MF 009910	MN648948	Li et al. 2020
R. leucocarpa	HGAS-MF 009916	MN648947	Li et al. 2020
R. littoralis	PC 1222IS87	AY061702	Miller and Buyck 2002
R. marangania	MEL 2293694	EU019930	Lebel and Tonkin 2007
R. nigricans	TUB fo46761	AF418607	Eberhardt 2002
R. palidospora	PC 2-1221IS85	AY061701	Miller and Buyck 2002
R. punicoida	MEL T-14771	EU019931	Lebel and Tonkin 2007
R. sinuata	MEL H4755	EU019943	Lebel and Tonkin 2007
R. subnigricans	MHHNU ZP6932	EF534351	Yin et al. 2008
R. vesicatoria	PC 0124666	KY800359	Buyck et al. 2017
Russula sp.	MFLU 20-0265 (host)	MT755627	In this study
Taxon treatment

Hypomyces pseudolactifluorum F. M. Yu, Q. Zhao & K. D. Hyde, sp. nov.

Materials

Holotype:
- scientificName: _Hypomyces pseudolactifluorum_
- country: China
- stateProvince: Yunnan
- locality: Baoshan, Longyang, Baihualing
- verbatimElevation: 2094m
- locationRemarks: label transliteration: "Yunnan, Baoshan, Longyang, Baihualing, on Russula sp., 20 July 2018, Jian-Wei Liu; [云南保山百花岭 2094 m, 2018.07.20, 刘建伟]; verbatimCoordinates: 25°17.931’N, 98°47.0718’E; decimalLatitude: 25.2989; decimalLongitude: 98.7845;
goreferenceProtocol: label
-lifeStage: Telemorph
catalogNumber: MFLU 20-0265
-recordedBy: Jian-Wei Liu; identifiedBy: Feng-Ming Yu; dateIdentified: 2019

Paratype:
- scientificName: _Hypomyces pseudolactifluorum_
- country: China
- stateProvince: Yunnan
- locality: Baoshan, Longyang, Baihualing
- verbatimElevation: 2094m
- locationRemarks: label transliteration: "Yunnan, Baoshan, Longyang, Baihualing, on Russula sp., 20 July 2018, Jian-Wei Liu; [云南保山百花岭 2094 m, 2018.07.20, 刘建伟]; verbatimCoordinates: 25°17.931’N, 98°47.0718’E; decimalLatitude: 25.2989; decimalLongitude: 98.7845;
goreferenceProtocol: label
-lifeStage: Telemorph
catalogNumber: MFLU 20-0266
-recordedBy: Jian-Wei Liu; identifiedBy: Feng-Ming Yu; dateIdentified: 2019

Isotype:
- scientificName: _Hypomyces pseudolactifluorum_
- country: China
- stateProvince: Yunnan
- locality: Baoshan, Longyang, Baihualing
- verbatimElevation: 2094m
- locationRemarks: label transliteration: "Yunnan, Baoshan, Longyang, Baihualing, on Russula sp., 20 July 2018, Jian-Wei Liu; [云南保山百花岭 2094 m, 2018.07.20, 刘建伟]; verbatimCoordinates: 25°17.931’N, 98°47.0718’E; decimalLatitude: 25.2989; decimalLongitude: 98.7845;
goreferenceProtocol: label
-lifeStage: Telemorph
catalogNumber: HKAS 107300
-recordedBy: Jian-Wei Liu; identifiedBy: Feng-Ming Yu; dateIdentified: 2019

Description

Index Fungorum number: IF557817

Sexual morph. _Subiculum_ light yellow (4A4–5) when fresh and pale orange, light orange to brownish-orange (5A3–4, 5C4, 6C6) after being dried, usually covering the pileus, stipe and deformed gills of the host mushroom. _Perithecia_ aggregated, semi-immersed to immersed in subiculum, except for their erumpent papilla, yellowish-brown to dark brown (5E6, 6E6, 6F6–8), pyriform to subglobose, 262–484 × 136–284 μm; perithecial wall 12–25 μm thick, single-layer, cells 9–22 × 4–8 μm. _Papilla_ prominent, 129–177 μm high, at base 135–284 μm wide. _Asci_ 8-spored, cylindrical, 147–222 × 4–9 μm; apex thickened, 4.9–6.0 wide and 2.5–3.0 μm high. _Ascospores_ uniseriate and with ends overlapping, fusiform, 30–38 × 6–8 μm, single-septate, septum median and with dense verrucae and prominently apiculate, apiculi 4.5–8.0 μm long, straight or curved. _Asexual morph:_ unknown. (Fig. 1)
Diagnosis

The new species is similar to Hypomyces lactifluorum on Russula and Lactarius spp. from North America (Rogerson and Samuels 1994), but has smaller perithecia and shorter asci. The main differences of the two species are compared in Table 4.

Table 4.
Main differences between Hypomyces lactifluorum and H. pseudolactifluorum sp. nov..

	H. lactifluorum	H. pseudolactifluorum
Subiculum	Pale yellowish-orange to bright orange (young), in age becoming deep red, reddish-purple to very dark purple (old), occasionally fading to pink, turning purple in 3% KOH.	Light yellow (4A4–5) when fresh, and pale orange to light orange to brownish-orange (5A3–4, 5C4, 6C6) after being dried, KOH (-).
H. lactifluorum
Rogerson and Samuels 1994

Perithecia	Ovate to obpyriform, deep orange to reddish-purple, 400–600 × 200–450 μm
Embedded type	Immersed except for papilla
Papilla	Averaging 120 μm high, 120 μm wide
Asci	Long cylindrical, 200–260 × 5–10 μm
Ascospores	Fusiform, 1-septate, 35–40 × 4.5–7 μm
Apiculi	4.5–7.5 μm long
Hosts	*Russula* and *Lactarius* spp.
Distribution	North America

H. pseudolactifluorum

Perithecia	Pyriform to subglobose, yellowish-brown to dark brown (5E6, 6E6, 6F6–8), 262–484 × 136–284 μm
Embedded type	Semi-immersed to immersed except for papilla
Papilla	129–177 μm high and 135–284 μm wide at base
Asci	Cylindrical, 147–222 × 4–8.5 μm
Ascospores	Fusiform, 1-septate, 30–38 × 5.5–8 μm
Apiculi	4–6 μm long
Hosts	*Russula* sp.
Distribution	P.R. China (Yunnan)

Etymology

Referring to the most closely-related species, *Hypomyces lactifluorum*.

Distribution

PR CHINA (Yunnan).

Host

On the fruiting bodies of *Russula* sp. that grew on the humus layer in an evergreen broad-leaved forest of a rainforest. The host mushrooms: basidiocarps medium-sized and infundibuliform, pilei 63–77 mm in diameter. As serious degradation has occurred, the colour and other characters of the host mushrooms cannot be determined. Molecular phylogenetic evidence indicates it is a *Russula* species.

Notes

Only sexual morph had been discovered on the hosts (*Russula* sp.) of the new species.

Analysis

Phylogenetic analyses

Parasitic fungus: Hypomyces pseudolactifluorum sp. nov

The combined ITS+LSU+*TEF1*-α+RPB2 sequence dataset (excluding the outgroup taxa) contains 3,262 characters (709 for ITS, 893 for LSU, 921 for *TEF1*-α and 739 for RPB2) from 56 *Hypomyces* species and two *Trichoderma* species. Amongst them, 2,246
characters are constant, 209 variable characters are parsimony-uninformative and 807 characters are parsimony-informative. The ML and BI analyses resulted in trees with similar topology and support values and the ML tree is shown in Fig. 2.

Figure 2. ML tree of Hypomyces pseudolactifluorum sp. nov. and its allies generated from a combined ITS, LSU, TEF1-α and RPB2 gene sequence dataset. Supporting values of MLBP (left, greater than 75%) and BIBP (right, greater than 0.9) are shown at the nodes, respectively. The new species is marked in red.
In the phylogenetic tree, the parasitic fungi MFLU 20-0265 and MFLU 20-0266 are clustered together and formed a distinct lineage with the same branch length and strong supportive values (MLBP = 100%, BIPP = 1), which support them to be conspecific. The parasitic fungi are closely related \textit{H. lactifluorum} and they form a sister clade also with strong supportive values (MLBP = 100%, BIPP = 1). Comparing the gene sequences of the two species, there are 25 bp (4.3%) differences across 582 bp in ITS, 28 bp (3.2%) differences across 870 bp in LSU, 24 bp (2.6%) differences across 921 bp in \textit{TEF1-\alpha} and 24 bp (3.2%) differences across 739 bp in \textit{RPB2} (Suppl. material 1). Following the recommendations from Jeewon and Hyde (2016), we assign the parasitic fungi as \textit{H. pseudolactifluorum} sp. nov.

The host mushroom: \textit{Russula} sp.

According to the ITS phylogenetic tree of the host mushroom and its allies, the host mushroom (MFLU 20-0265) is clustered together with \textit{Russula leucocarpa} (HGAS-MF 009910 and HGAS-MF 009916) (MLBP = 100%) in subsect. \textit{Lactarioideae}. However, their ITS sequences have 24 bp (3.5%) differences across 694 bp, which indicated they may be two distinct species. Due to lack of sufficient morphological evidence, the host mushroom was temporarily identified as \textit{Russula} sp. (Fig. 3).

Discussion

Zeng and Zhuang (2016) described \textit{H. amaniticola} on \textit{Amanita} sp. and \textit{H. completiopsis} and \textit{H. yunnanensis} on \textit{Boletus} sp., also from China. Though with similar colour and shapes of perithecia, the host of \textit{H. pseudolactifluorum} sp. nov. is decidedly different from those of these three species. Furthermore, \textit{H. pseudolactifluorum} sp. nov. (KOH-) has smaller perithecia and larger ascospores than those of \textit{H. completiopsis} (KOH+) and \textit{H. pseudolactifluorum} sp. nov. has larger perithecia, asci and ascospores than those of \textit{H. amaniticola} (KOH+) and \textit{H. yunnanensis} (KOH-). Unfortunately, these three species all lack molecular data.

With the rapid development of mushroom industries, fungal pathogens on mushrooms have received more and more attention (Hyde et al. 2019). The fungicolous fungi \textit{Hypomyces} is an important group of mushroom pathogens. Many \textit{Hypomyces} species, for example, \textit{H. aurantius}, \textit{H. perniciosus}, \textit{H. rosellus}, \textit{H. odoratus} etc., have all been recorded as the causes of Cobweb or Web bubble disease which seriously influence mushroom industries (Fletcher and Gaze 2007, Carrasco et al. 2017, Zhang et al. 2017, Zhang et al. 2017). \textit{Russula} is the largest subgenus in agaric with approximately 800 species (Li et al. 2020) and many \textit{Russula} species are important edible mushrooms. Since growing on \textit{Russula} sp., \textit{H. pseudolactifluorum} sp. nov., as well as \textit{H. lactifluorum} from North America (Rogerson and Samuels 1994), could be one of the potential pathogens of some \textit{Russula} species in Asia.
Figure 3. ML tree of *Russula* sp. (in red) and its allies inferred from the ITS sequence dataset. Five species of *Russula* subg. *Compactae* were used as the outgroup taxa. Supporting values of MLBP (greater than 75%) are shown at the nodes.

Acknowledgements

The research is supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant No. 2019QZKK0503); the Open Research Project of “Cross-Cooperative Team” of the Germplasm Bank of Wild Species, Kunming Institute of...
Botany, Chinese Academy of Sciences (Grant No. 292019312511043); Science and Technology Service Network Initiative of the Chinese Academy of Sciences (KFJ-STS-QYZD-171); the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, PR China (2019HJ2096001006) and Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion (Grant No. RDG6130001).

References

- Aghajani H, Hojjati SM, Tajick-Ghanbari MA, Puormaljidian MR, Borhani A (2017) Molecular Identification of Ectomycorrhizal Fungal Communities Associated with Oriental Beech Trees (*Fagus orientalis* Lipsky) in Hyrcanian Forest of Iran. Iranian Journal of Science and Technology, Transactions A: Science 43 (1): 25-32. https://doi.org/10.1007/s40995-017-0435-2
- Bazzicalupo AL (2018) Evaluating morphology and geographic range extent of genetically delimited species of mushrooms. The University of British Columbia, Vancouver, 1-247 pp.
- Buyck B, Duhem B, Das K, Jayawardena RS, Niveiro N, Pereira OL, Prasperer IB, Adhikari S, Albertó EO, Bulgakov TS, Castañeda-Ruiz RF, Hembrom ME, Hyde KD, Lewis DP, Michlig A, Nuytinck J, Parihar A, Popoff OF, Ramirez NA, da Silva M, Verma RK, Hofstetter V (2017) Fungal biodiversity profiles 21-30. Cryptogamie Mycologie 38 (1): 101-146. https://doi.org/10.7872/crym/v38.iss1.2017.101
- Carbone I, Kohn L (1999) A method for designing primer sets for speciation studies in filamentous Ascomycetes. Mycologia 91: 553-556. https://doi.org/10.2307/3761358
- Carreño J, Navarro M, Gea F (2017) Cobweb, a serious pathology in mushroom crops: A review. Spanish Journal of Agricultural Research 15 (2). https://doi.org/10.5424/sjar/2017152-10143
- Chen J, Fu X (1989) The verticillium-like genera parasitic on mushrooms. Acta Mycologica Sinica 8: 123-132. [In Chinese].
- Chen ZH, Zhang P (2019) Atlas of macrofungi in Hunan. Normal University Press, Changsha, 1-426 pp. [In Chinese].
- Chernomor O, von Haeseler A, Minh BQ (2016) Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. Systematic Biology 65 (6): 997-1008. https://doi.org/10.1093/sysbio/syw037
- Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung G, Spatafora JW, Straus NA (2003) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299: 386-388. https://doi.org/10.1126/science.1078155
- Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9 (8): 772-772. https://doi.org/10.1038/nmeth.2109
- Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11-15.
- Eberhardt U (2002) Molecular kinship analyses of the agaricoid Russulaceae: Correspondence with mycorrhizal anatomy and sporocarp features in the genus *Russula*. Mycological Progress 1 (2): 201-223. https://doi.org/10.1007/s11557-006-0019-6
• Fletcher JT, Gaze RH (2007) Mushroom Pest and Disease Control: A Colour Handbook. Academic Press, San Diego. https://doi.org/10.1201/b15139
• Fries E (1825) Systema Orbis Vegetabilis. Primas lineas novae constructionis periclitatur EF Pars I. Plantæ Homonemæ. Lundæ : Typographia Academica, Lund, 369 pp.
• Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
• Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genetics and Biology 46: 615-631. https://doi.org/10.1016/j.fgb.2009.04.006
• Huelsenbeck J, Rannala B (2004) Frequentist Properties of Bayesian Posterior Probabilities of Phylogenetic Trees Under Simple and Complex Substitution Models. Systematic Biology 53 (6): 904-913. https://doi.org/10.1080/10635150490522629
• Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
• Jaklitsch W, Samuels G, Dodd S, Lu B, Druzhinina I (2006) Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warded conidia. Studies in Mycology 56: 135-177. https://doi.org/10.3114/sim.2006.56.04
• Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7 (11): 1669-1677. https://doi.org/10.5943/mycosphere/7/11/4
• Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic acids research 33: 511-8. https://doi.org/10.1093/nar/gki198
• Kim CS, Jo JW, Kwag Y, Sung G, Lee S, Kim S, Shin C, Han S (2015) Mushroom Flora of Ulleung-gun and a Newly Recorded \textit{Bovista} Species in the Republic of Korea. Mycobiology 43 (3): 239-257. https://doi.org/10.5941/myco.2015.43.3.239
• Kornerup A, Wanscher JH (1978) Methuen Handbook of Colour, 3rd edn. London: Eyre Methuen
• Kranabetter JM, Friesen J, Gamiet S, Kroeger P (2009) Epigeous fruiting bodies of ectomycorrhizal fungi as indicators of soil fertility and associated nitrogen status of boreal forests. Mycorrhiza 19 (8): 535-548. https://doi.org/10.1007/s00572-009-0255-0
• Lebel T, Tonkin J (2007) Australasian species of \textit{Macowanites} are sequestrate species of Russula (Russulaceae, Basidiomycota). Australian Systematic Botany 20 (4): 355-381. https://doi.org/10.1071/sb07007
• Lechat C, Gardiennet A, Fournier J (2017) First report of a lichenicolous species of \textit{Hypomyces} (Hypocreaceae), \textit{H. peltigericola} sp. nov. Ascomycete. org 9: 23-26.
• Li GJ, Deng CY, Shi LY, Wang J, Meng QF, Li SM (2020) Three new species of Russula subsect. Lactarioideae from China. Mycosystema 39 (4): 618-636.
• Liu XL, Bau T, Wang XH (2017) Species diversity of Russula from the Greater and Lesser Hinggan Mountains in Northeast China. Mycosystema 36 (10): 1355-1368.
• Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
• Looney B, Ryberg M, Hampe F, Sánchez-García M, Matheny PB (2016) Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Molecular Ecology 25 (2): 630-647. https://doi.org/10.1111/mec.13506
• Looney B, Meidl P, Piatek M, Miettinen O, Martin F, Matheny PB, Labbé J (2018) Russulaceae: a new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytologist 218 (1): 54-65. https://doi.org/10.1111/nph.15001
• Luo J, Zhuang W (2012) Re-examinations of the \textit{Hypomyces} specimens on deposit in HMAS. Mycosystema 31: 784-788.
• Ma J (2008) Study on morphology and taxonomy of mycoparasite fungi. Jilin Agricultural University, Changchun, 73 pp. [In Chinese].
• McKnight KH, McKnight VB (1997) A field guide to mushrooms: North America. Vol. 34. Houghton Mifflin Harcourt.
• Miller S, Buyck B (2002) Molecular phylogeny of the genus \textit{Russula} in Europe with a comparison of modern infrageneric classifications. Mycological Research 106 (3): 259-276. https://doi.org/10.1017/s0953756202005610
• Nguyen L, Schmidt H, von Haeseler A, Minh BQ (2014) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 32 (1): 268-274. https://doi.org/10.1093/molbev/msu300
• Otto A, Laub A, Wendt L, Porzel A, Schmidt J, Palfner G, Becerra J, Krüger D, Stadler M, Wessjohann L, Westermann B, Arnold N (2016) Chilenopeptins A and B, peptaibols from the Chilean Sepedonium aff. chalciporii KSH 883. Journal of Natural Products 79: 929-938. https://doi.org/10.1021/acs.jnatprod.5b01018
• Palmer J, Lindner D, Volk T (2008) Ectomycorrhizal characterization of an American chestnut (\textit{Castanea dentata})-dominated community in Western Wisconsin. Mycorrhiza 19 (1): 27-36. https://doi.org/10.1007/s00572-008-0200-7
• Park MS, Lee H, Oh S, Jung PE, Seok SJ, Fong J, Lim YW (2014) Species delimitation of three species within the Russula subgenus Compacta in Korea: *R. eccentrica*, *R. nigricans*, and *R. subnigricans*. Journal of Microbiology 52 (8): 631-638. https://doi.org/10.1007/s12275-014-4168-z

• Põldmaa K (1996) A new species of *Hypomyces* and three of *Cladobotryum* from Estonia, with a discussion of their taxonomic position. Mycotaxon 59: 389-405.

• Põldmaa K, Larsson E, Kõljalg U (2000) Phylogenetic relationships in *Hypomyces* and allied genera, with emphasis on species growing on wood-decaying homobasidiomycetes. Canadian Journal of Botany 77 (12): 1756-1768. https://doi.org/10.1139/b99-148

• Põldmaa K (2011) Tropical species of *Cladobotryum* and *Hypomyces* producing red pigments. Studies in Mycology 68: 1-34. https://doi.org/10.3114/sim.2011.68.01

• Rehner S, Samuels G (1994) Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98 (6): 625-634. https://doi.org/10.1016/s0953-7562(09)80409-7

• Rehner SA, Buckley E (2005) A *Beauveria* phylogeny inferred from nuclear ITS and EF1- sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. Mycologia 97 (1): 84-98. https://doi.org/10.3852/mycologia.97.1.84

• Rogerson C, Samuels G (1985) Species of *Hypomyces* and *Nectria* occurring on Discomycetes. Mycologia 77 (5). https://doi.org/10.2307/3793285

• Rogerson C, Samuels G (1989) Boleticolous species of *Hypomyces*. Mycologia 81 (3). https://doi.org/10.2303/7360079

• Rogerson C, Samuels G (1993) Polyporicolous species of *Hypomyces*. Mycologia 85 (2). https://doi.org/10.2307/3760461

• Rogerson C, Samuels G (1994) Agaricicolous species of *Hypomyces*. Mycologia 86 (6). https://doi.org/10.2307/3760597

• Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard M, Huelsenbeck J (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539-542. https://doi.org/10.1093/sysbio/sys029

• Rossman A, Rogersson C (1981) A new species of *Hypomyces* (Hypocreaceae) with phragmosporous ascospores. Brittonia 33 (3). https://doi.org/10.2307/2806428

• Rossman A, Samuels G, Rogerson C, Lowen R (1999) Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Studies in Mycology 42: 1-260.

• Rossman A, Seifert K, Samuels G, Minnis A, Schroers H, Lombard L, Crous P, Põldmaa K, Cannon P, Summerbell R, Geiser D, Zhuang W, Hirooka Y, Herrera C, Salgado-Salazar C, Chaverri P (2013) Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales, Ascomycetes). Studies in Mycology 42: 1-260.

• Sun J, Liu X, McKenzie EC, Jeewon R, Liu Jl, Zhang X, Zhao Q, Hyde K (2019a) Fungicolous fungi: terminology, diversity, distribution, evolution, and species checklist. Fungal Diversity 95 (1): 337-430. https://doi.org/10.1007/s13225-019-00422-9
Hypomyces pseudolactifluorum sp. nov. (Hypocreales: Hypocreaceae) on Russula ... 21

• Sun J, Liu X, Jeewon R, Lin C, Tian Q, Zhao Q, Xiao X, Hyde K, Nithong S (2019b) Fifteen fungicolous Ascomycetes on edible and medicinal mushrooms in China and Thailand. Asian Journal of Mycology 2 (1): 129-169. https://doi.org/10.5943/ajom/2/1/7
• Tamm H, Põldmaa K (2013) Diversity, host associations, and phylogeography of temperate aurofusarin-producing Hypomyces / Cladobotryum including causal agents of cobweb disease of cultivated mushrooms. Fungal Biology 117 (5): 348-367. https://doi.org/10.1016/j.funbio.2013.03.005
• Teng S (1934) Notes on Hypocreales from China. Sinensia 4: 269-298.
• Teng S (1963) Fungi of China. 1st Edition. Science Press, Beijing, 808 pp. [In Chinese].
• Tulasne L, Tulasne C (1860) De quelques sphéries fongicoles, à propos d’un mémoire de M. Antoine de Bary sur les Nyctalis . Annales des Sciences Naturelles Botanique 13: 5-19.
• Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172 (8): 4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
• Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJ (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135-154. https://doi.org/10.1016/j.simyco.2018.05.001
• Wei I, Kirschner R (2017) Two fungicolous anamorphic species of Hypomyces s. lat. from Taiwan. Fungal Science 32: 15-25.
• White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols 315-322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
• Wijayawardene N, Hyde K, Tibpromma S, Wanasinghe D, Thambugala K, Tian Q, Wang Y (2017) Towards incorporating asexual fungi in a natural classification: checklist and notes 2012–2016. Mycosphere 8: 1457-1555. https://doi.org/10.5943/mycosphere/8/9/10
• Wistrassameewong K, NUYTINCK J, HYDE KD, VERBEKEN A (2014) Lactarius subgenus Russularia (Russulaceae) in Southeast Asia: 1. Species with very distant gills. Phytotaxa 158 (1): 23-42. https://doi.org/10.11646/phytotaxa.158.1.2
• Yin JH, Zhang P, Gong QF, Chen ZH (2008) Sequence analysis of the internal transcribed spacer of gene coding for rDNA in Russula subnigricans and R. nigricans . Mycosystema 27 (2): 237-242. [In In Chinese].
• Zare R, Gams W (2016) More white verticillium-like anamorphs with erect conidiophores. Mycological Progress 15: 993-1030. https://doi.org/10.1007/s11557-016-1214-8
• Zeng Z, Zhuang W (2015) Current understanding of the genus Hypomyces (Hypocreales). Mycosystema 34: 809-816. [In Chinese].
• Zeng Z, Zhuang W (2016) Three new species and two new Chinese records of Hypomyces (Hypocreales). Mycosystema 35: 1048-1055. [In Chinese].
• Zeng Z, Wing X, Zhuang W (2017) Three new Chinese records of Hypomyces (Hypocreales). Mycosystema 36: 522-527.
• Zeng ZQ, Zhuang WY (2019) Two new species and a new Chinese record of Hypocreaceae as evidenced by morphological and molecular data. Mycobiology 47 (3): 280-291. https://doi.org/10.1080/12298093.2019.1641062
• Zhang C, Kakishima M, Xu J, Wang Q, Li Y (2017) The effect of Hypomyces perniciosus on the mycelia and basidiomes of Agaricus bisporus. Microbiology 163 (9): 1273-1282. https://doi.org/10.1099/mic.0.000521
• Zhang CL, Xu JZ, Kakishima M, Li Y (2017) First Report of Wet Bubble Disease Caused by Hypomyces perniciosus on Pleurotus citrinopileatus in China. Plant Disease 101 (7): 1321-1321. https://doi.org/10.1094/pdis-02-17-0179-pdn
• Zhuang W, Chen S, Zeng Z, Zheng H (2012) A new species of Hypomyces (Hypocreales) on Schizophyllum sp. from China. Mycosystema 31: 821-826.

Supplementary material

Suppl. material 1: Hypomyces pseudolactifluorum sp. nov. (Hypocreales: Hypocreaceae) on Russula sp. from Yunnan, PR China doi

Authors: FENG-MING YU, RUVISHIKA S. JAYAWARDENA, JIAN-WEI LIU, KEVIN D. HYDE, QI ZHAO
Data type: word
Brief description: Sequence differences of ITS, LSU, TEF1-α and RPB2 genes between H. lactifluorum (TAAM 170476) and H. pseudolactifluorum sp. nov.. The locus’ numbers refer to the nucleotide positions of the gene sequences of H. lactifluorum from GenBank. Gap is replaced by ‘-‘.
Download file (20.36 kb)