P2X7 gene polymorphisms and risk assessment for pulmonary tuberculosis in Asian Indians

Venkatasubramanian Sambasivana, Kolluri Janaki Rama Murthyb, Ravindra Reddyc, Valluri Vijayalakshimib,c and Qurratulain Hasana,d,*

aDepartment of Genetics, Bhagwan Mahavir Medical Research Centre, 10-1-1, A.C. Guards, Hyderabad, 500004, India
bDepartment of Immunology, Bhagwan Mahavir Medical Research Centre, 10-1-1, A.C. Guards, Hyderabad, 500004, India
cBlue Peter Research Centre, Cherlapally, Hyderabad, 501301, India
dDepartment of Genetics & Molecular Medicine, Kamineni Hospitals. L.B. Nagar, Hyderabad, 500068, India
eDepartment of Pulmonology, Kamineni Hospitals. L.B. Nagar, Hyderabad, 500068, India

Abstract. Objective: Pulmonary tuberculosis (PTB) is a leading cause of morbidity and mortality. Macrophages play an important role in the immunopathogenesis of tuberculosis. Extracellular ATP induces macrophage bactericidal activity through activation of the purinergic P2X7 receptor. This case-control study assesses the association of \(-762\ T/C, \ 1513A/C\) and \(1729T/A\) P2X7 polymorphisms in patients with PTB and healthy controls to establish association if any with risk of developing the disease.

Materials and methods: The genotyping for P2X7 was carried out using PCR and RFLP analysis in 256 individuals, which included 156 active PTB patients and 100 age and sex, matched healthy volunteers with no clinical symptoms or family history of PTB as controls.

Results: A chi square test showed a significant difference between the PTB patient and controls for \(-762\ C\) allele; \(p = 0.0051\) (OR 1.6972, CI 95\% 1.1839 to 2.4332) and \(1729\ T\) allele was found to be positively associated with the PTB; \(p < 0.0005\) (OR-2.4623, CI 95\% 1.6376 to 3.7022). \(1513A/C\) polymorphism did not show any significant difference between the two groups.

Significance: The study revealed a significant association of P2X7-762C allele and P2X7 1729T allele receptor polymorphisms with PTB in Asian Indian population. The use of these alleles as biomarkers for identifying individuals at high risk of developing TB needs to be ascertained.

Keywords: Tuberculosis, P2X7 Gene polymorphisms, \textit{Mycobacterium tuberculosis}, Purinergic Receptor

1. Introduction

Tuberculosis (TB) remains a global health burden and in humans it is mainly caused by \textit{Mycobacterium tuberculosis} (\textit{M.tbc}) infection. Pulmonary tuberculosis (PTB) is still a leading cause of death worldwide, and the incidence of the disease has been reported to have increased since 1980. India accounts for a fifth of the world's new TB cases with 1.8 million being diagnosed annually [1]. Almost a third of the world's population is infected with \textit{M. tb}, however, only 5–15\% of those who have been infected develop clinical TB during their lifetime [2,3]. It is considered that genes regulating the immune response confer susceptibility to active disease [4,5].

Macrophages, the principal host cells for intracellular replication of mycobacteria, play an important role...
in controlling the infection. They act as antigen presenting cells during reactivation of lymphocytes at the sites of infection [6]. Extracellular ATP induces the bacteriocidal activity of macrophages through activation of the P2X7 purinergic receptor, this leads to apoptosis of the macrophage, which serve as an important host defense mechanism against \(M. \) \textit{tb} infection [7].

Various gene polymorphisms of the P2X7 receptor have been identified which affect its function and have been associated with a number of diseases including TB [8–10]. Several genetic polymorphisms have been studied in association with TB in Indian population but to the best of our knowledge there are no studies associating P2X7 polymorphisms with TB [11,12]. Hence, this case – control study assessed three polymorphisms of P2X7: (i) \(-762 C/T\) promoter polymorphism, (ii) A1513C (rs3751143) and (iii) T1729A (rs1653624) polymorphisms in Indian PTB patients.

2. Materials and methods

PTB patients who attended two hospitals in Hyderabad, a cosmopolitan city of south India were enrolled in this study (Refer Acknowledgement). A total of 256 individuals were assessed after obtaining written consent from each subject. This includes 156 unrelated newly diagnosed active PTB patients confirmed by sputum smear positive for \(M. \) \textit{tb} and Chest X-ray findings according to World Health Organization (WHO)/Renewed National Tuberculosis Control Programme (RNTCP) norm [1,2]. Hundred age and sex matched healthy unrelated volunteers with no clinical symptoms or family history of TB were taken as controls. The study was approved by the institutional ethical committee. Detailed clinical and family history was collected in a well-designed Proforma. One ml peripheral blood was taken and genomic DNA was isolated by the method routinely followed in our lab [13].

The three P2X7 gene polymorphisms were analyzed with PCR followed by Restriction fragment length polymorphism (RFLP) and electrophoresis. Briefly genotyping was carried out by a 3-step PCR in Xp thermal-cycler (Hangzhou, China) at 94°C for 3 minutes followed by 35 cycles at 94°C for 30 seconds, annealing at specific temperatures for 30 seconds and extension at 72°C for 45 seconds and a final extension at 72°C for 5 minutes was carried out [13].

The primers for \(-762 C/T\) and 1729T/A polymorphism were designed using Primer 3 Input software version 3.1 while the primers for 1513A/C was based on an earlier report and their details are given in Table 1 [8]. Primers sets were synthesized by MWG (Bangalore, India). Hinc II and Hae II were procured from Fermentas (Bulington, Ontario, Canada) and BstCI from New England Biolabs, (Ipswsh, Suffolk, UK). PCR product analysis was done on 2% agarose gel while RFLP products were visualized after silver staining of 15% Poly acrylamide gel electrophoresis (PAGE). Genotyping of P2X7 \(-762 C/T\) polymorphism was done by digesting the 126bp PCR product with Hinc II, while 1729T/A was genotyped with BstCI. The genotyping for 1513A/G was carried out as described by Li et al. [17].

Chi square test was used for comparison of expected and observed frequencies of categorical variables. Values of \(p \) (two – tailed) less than 0.05 were considered statistically significant. Odds ratio was calculated. Statistical analysis was performed using MedCalc for Windows, version 7.4.1.0 (MedCalc Software, Mariakerke, Belgium).

3. Results

The mean age of PTB patients and controls was 30.4 ± 18.3 years and 35.6 ± 13.3 years, respectively. Out of 156 PTB patients 50.7% were male and 49.4% female, while 57% males and 43% females were in the control group.

Genotyping of P2X7 \(-762 C/T\) polymorphism; 80 and 46bp fragments indicated a homozygous CC geno-
Comparison of frequency distribution of P2X7 –762C/T genotypes and alleles in pulmonary tuberculosis patients and controls in the present study with other studies

Population studied	PTB patients	Controls	P value	Ref. No
	Genotype (%)	Allele		
Gambian PTB	CC TC TT	C T		
(n = 323)	(7.1) (36.5) (56.3)	0.25 0.75		
Mexican PTB	8 (32) 52 (57.45)	0.25 0.75		
(n = 92)				
Russian PTB	86 (45.8) 17 (8.9)	0.68 0.32		
(n = 190)				
Chinese	23 (11) 4 (21.4)	0.75 0.25		
Hans PTB	(60.5) (28.9) (10.5)			
(n = 38)				
Chinese Hans EP TB	40 (12) 6 (19.23)	0.77 0.23		0.262
(n = 58)				
Our Study	38 (24.3) 30 (19.23)	0.53* 0.47		0.60
(n = 156)				

*χ² = 0.0051 and OR = 1.6972 (CI 95% 1.1839 to 2.4332) between Pulmonary TB subjects and controls.

Comparison of frequency distribution of P2X7 1513A/C genotypes and alleles in pulmonary tuberculosis patients and controls in the present study with other studies

Population studied	PTB patients	Controls	P value	Ref. No
	Genotype (%)	Allele		
	AA AC CC	A C		
Gambian PTB	261 (58) 6 (1.8)	0.89 0.11		
(n = 325)				
Mexican PTB	80.3 (17.8) 52 (1.8)	0.88 0.12		
(n = 94)				
Russian PTB	53 (8) 8 (12.2)	0.80 0.20		
(n = 188)				
Australian PTB	34 (17) 5 (9.7)	0.75 0.25		
(n = 56)				
Australian EP TB	9 (17) 4 (13.3)	0.58 0.42		
(n = 30)				
Chinese Hans EP TB	21 (51.2) 2 (4.9)	0.73 0.27		
(n = 38)				
Chinese EP TB (n = 58)	30 (54.5) 6 (10.9)	0.72 0.28		
Our Study	89 (55) 12 (7.7)	0.74 0.26		
(n = 156)				

Type, while CT heterozygotes showed 126, 80 and 46 bp fragments and TT homozygotes had only the 126 bp band when visualized on PAGE. The genotype and allele frequencies for the −762C/T polymorphism are given in the Table 2. The chi square between the PTB patient and control group was significant for −762 C allele (p = 0.0051) and a dominant mode of analysis for genotype (CC+CT) showed a significant difference (p = 0.004). The −762 C allele was significantly associated with PTB in the cohort of patients from our population (OR 1.6972, CI 95% 1.1839 to 2.4332).

Genotyping of P2X7 1513A/C polymorphism; an uncut PCR product of 319bp for AA genotype, while 200 and 119bp fragments indicated CC genotype and heterozygote had all three bands. The genotype and allele frequencies for the 1513A/C polymorphism in patients and controls are shown in Table 3. A statistical analysis did not show association of this polymorphism with PTB.

Genotyping of P2X7 1729T/A polymorphism; the uncut PCR product of 319bp for AA genotype, while 200 and 119bp fragments indicated CC genotype and heterozygote had all three bands. The genotype and allele frequencies for the 1513A/C polymorphism in patients and controls are shown in Table 3. A statistical analysis did not show association of this polymorphism with PTB.
while 98bp and 40bp bands indicate AA genotype. The
genotype and allele frequencies for the 1729T/A poly-
morphism in patients and controls are shown in Table 4.
The 1729 T allele was found to be positively associated
with the PTB (OR- 2.4623, CI 95% 1.6376 to 3.7022,
\(p < 0.0005 \)). The AA genotype was not identified in
any of the patients and controls from Indian population.

4. Discussion

P2X7 receptor is a ligand-gated channel, selective for
cationic permeants, it has a wide distribution on human
cells including those of the immune system especially
macrophage and hemopoietic system [14,15]. The hu-
man P2X7 gene is located on chromosome 12q24.31
and consists of 13 exons, with exon 12 and 13 coding
for the C-terminal tail of this molecule [16]. After ATP
activation this receptor opens a channel that allows a
cascade of intracellular downstream events which lead
to the apoptosis of the target cell. The expression of this
receptor is further up-regulated by Interferon- gamma
(IFN- \(\gamma \)), an important cytokine playing a major role in
the inflammatory process seen in TB infection. Various
gene polymorphisms like –762 C/T, 1513 A/C and
1729 T/A in P2X7 receptor gene have been reported,
some have been associated with TB in different ethnic
groups [8–10,17,18]. This is the first report from In-
dia on all three P2X7 gene polymorphisms and their
association with PTB.

The result from the present study suggests a posi-
tive association of P2X7 –762C/T polymorphism with
PTB. There are four reports on P2X7 –762C/T poly-
morphism in PTB with Gambian, Mexican, Russian
and Chinese Han populations [17,18,20,21]. The fre-
quency of T allele in controls is 0.6 in our study which
is similar to that of Gambian (0.67) and Mexican (0.66)
populations but is two-fold higher than the frequency
of T allele reported for the Russian (0.30) and Chinese
Han (0.28) population. This shows that T allele may
have been favored during evolution in this region akin to
the prevalence of the sickle cell anemia allele in African
and Mediterranean populations where malaria is highly
prevalent [22]. The-762 promoter polymorphism falls
in the region where various transcription factors tend
to bind [17]. Thus, sequence changes in promoter re-
region may influence the activity of P2X7 receptor ex-
pression and alters its ability to regulate macrophage
activity which helps in controlling TB infection [17,
19]. The variations observed in the allele frequency
for P2X7 –762C/T polymorphism in different ethnic
groups explains the survival advantage over TB infec-
tion [22]. The result from the present study suggests
a significant association between P2X7 –762C allele
with PTB (OR 1.6972, CI 95% 1.1839 to 2.4332). The
other three studies did not show any association with
PTB patients.

The frequency of genotypes and alleles for P2X7
1513 polymorphism appears to be similar across most
populations as is seen in the controls from five ethnic
groups including ours. However, the Gambian popu-
lation has the lowest 1513C allele frequency [17]. Ana-
lysis from the present study shows no association of ei-
ther genotype or allele with the PTB, similar result was
observed in studies from Gambian, Chinese Hans and
Australian PTB patients. However, a positive associ-
ation of 1513C allele was reported with PTB in Russian
and Mexican population and Extra-pulmonary TB in
Australian-Vietnamese population [17–20]. This poly-
morphism does not seem be associated with PTB in In-
dian population; however, studies on extra-pulmonary
TB are warranted.

Population	Cases Genotype (%)	Controls Genotype (%)	\(P \) value	Ref. No								
	TT	TA	AA	T	A	TT	TA	AA	T	A		
Australian (CLL) \((n = 45)\)	42	3	(93.4)	0.97	0.03	(n = 85)	82	3	96.6	0.963	0.037	0.73
American \((n = 1764)\) Postmenopausal woman	1646	117	1	93.3	0.97	0.03	0.73					
Our study PTB \((n = 156)\)	99	57	(63.46)	0.81*	0.19	(n = 100)	29	71	(29)	64*	0.36	

\(x^2 < 0.0001 \) and \(OR = 2.4623(CI 95\% 1.6376 \) to 3.7022) between Pulmonary TB subjects and controls.

Table 4 Frequency of P2X7 1729T/A genotype and allele frequencies in the studies in which it was assessed
The P2X7 1729T/A gene polymorphism did not follow the Hardy-Weinberg equilibrium (P > 0.05), since the AA genotype was not detected in any of the 256 individuals analyzed in the present study. Similarly a study from Australia (n = 130) did not identify any individuals with AA genotype [10]. However, a recent study from USA by Ohlendroff et al. [23] on a large sample (n = 1764) revealed AA genotype in one individual (< 0.05%) [23]. This polymorphism results in loss of receptor trafficking and thereby affecting the receptor expression. All these observations suggest that the AA genotype may have a deleterious effect in persons with this genotype may fail to survive. The other possibility is that they may develop neuronal problems since P2X7 is said to play a major role in neural development during embryogenesis [15]. It is surprising that the A allele is 13 times higher than what is reported in American and Australian population and this needs to be investigated [13,23]. The P2X7 1729 T allele was found to be significantly associated with PTB (OR > 0.05), since P2X7 is said to play a major role in neural development during embryogenesis [15]. It is surprising that the A allele is 13 times higher than what is reported in American and Australian population and this needs to be investigated [13,23]. The P2X7 1729 T allele was found to be significantly associated with PTB (OR > 0.05), since P2X7 is said to play a major role in neural development during embryogenesis [15]. It is surprising that the A allele is 13 times higher than what is reported in American and Australian population and this needs to be investigated [13,23]. The P2X7 1729 T allele was found to be significantly associated with PTB (OR > 0.05), since P2X7 is said to play a major role in neural development during embryogenesis [15]. It is surprising that the A allele is 13 times higher than what is reported in American and Australian population and this needs to be investigated [13,23]. The P2X7 1729 T allele was found to be significantly associated with PTB (OR > 0.05), since P2X7 is said to play a major role in neural development during embryogenesis [15]. It is surprising that the A allele is 13 times higher than what is reported in American and Australian population and this needs to be investigated [13,23]. The P2X7 1729 T allele was found to be significantly associated with PTB (OR > 0.05), since P2X7 is said to play a major role in neural development during embryogenesis [15]. It is surprising that the A allele is 13 times higher than what is reported in American and Australian population and this needs to be investigated [13,23]. The P2X7 1729 T allele was found to be significantly associated with PTB (OR > 0.05), since P2X7 is said to play a major role in neural development during embryogenesis [15]. It is surprising that the A allele is 13 times higher than what is reported in American and Australian population and this needs to be investigated [13,23].

In conclusion, our study revealed a significant association of two P2X7 receptor polymorphisms with PTB in our population. The –762C and 1729T alleles may be used as biomarkers for identifying contacts at high risk (family members and health personnel, who are taking care of PTB) and putting them on surveillance thereby helping in reducing the incidence of PTB.

Acknowledgements

We acknowledge the help of the DOTS unit of BMMC and Department of Pulmonology, Kamineni Hospital for providing samples. We thank Ms. Manorama for her kind cooperation in sample collection. We would like to thank DBT, Govt. of India for funding the project (BT/PR5828/med/14/702/2005).

References

[1] TB India 2008 – RNTCP status report. RNTCP, 2008.
[2] World Health Organization. Global tuberculosis control: surveillance, planning, financing. WHO report 2008. Geneva, World Health Organization 2008.
[3] P.E. Smith and A.R. Moss. Epidemiology of tuberculosis, in: Tuberculosis: Pathogenesis, Protection, and Control, B.R. Bloom, ed., Am. Soc. Microbiol., Washington DC, 1994, pp. 47–66.
[4] D. Lykouras, F. Sampsonas, A. Kaparianos, K. Kackoulia, G. Tsoukalas and K. Spiriopoulos. Human genes in TB infection: their role in immune response, Monaldi Arch Chest Dis 69 (2008), 24–31.
[5] W.J. Britton, S.L. Fernando, B.M. Saunders, R. Sulter and J.S. Wiley. The genetic control of susceptibility to Mycobacterium tuberculosis, Novartis found Symp 281 (2007), 79–89.
[6] C. Manca, S. Paul, C.E. Barry, V.H. Freedman and G. Kaplan. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro, Infect Immun 67 (1999), 74–79.
[7] I.P. Fairbairn, C.B. Stober, D.S. Kumararatne and D.A. Lammas. ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X7-dependent process inducing bacterial death by phagosome-lysosome fusion, J Immunol 167 (2001), 3300–3307.
[8] B.J. Gu, W. Zhang, R.A. Worthington, R. Sluyter, P. Dau-Ung, S. Petrou, J.A. Barden and J.S. Wiley. A Gln-1513 to Ala polymorphism leads to loss of function of the human P2X receptor, J Biol Chem 276 (2001), 11135–11142.
[9] B.J. Gu, R. Sluyter, K.K. Skarratt, A.N. Shemon, L.P. Dau-Ung, S.J. Fuller, J.A. Barden, A.L. Clarke, S. Petrou and J.S. Wiley. An Arg102 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X receptor, J Biol Chem 279 (2004), 31287–31295.
[10] J.S. Wiley, L.P. Dau-Ung, C. Li, A.N. Shemon, B.J. Gu, M.L. Smart, S.J. Fuller, J.A. Barden, S. Petrou and R. Sluyter. An allele of P2X7 receptor prevents normal trafficking and function of the human P2X7 receptor, J Biol Chem 278 (2003), 17108–17113.
[11] B. Anuradha, S. Rakh, Md. Ishaq and V. Valuri. Interferon-γ/γLow producer genotype +874 overexpressed in Bacillus Calmette-Guein non-responding children, Pediatr Infect Dis J 27 (2008), 325–329.
[12] P. Selvaraj, K. Alagarasu, M. Harishankar, M. Vidyarani and P.R. Narayanan, Regulatory polymorphisms of vitamin D receptor gene in pulmonary tuberculosis patients and normal healthy subjects of south India, Int J Immunogenet 35 (2008), 251–254.
[13] R.V. Alluri, M. Mohan, S. Komandur, K. Chauhri, J.R. Chaudhuri and Q. Hasan, MTHFR C677T gene mutation as a risk factor for arterial stroke: A hospital based study, Eur J Neurol 12 (2005), 40–44.
[14] F. Di Virgilio, P. Chiozzi, D. Ferrari, S. Falzoni, J.M. Sanz, A. Morelli, M. Torboli, G. Bolognesi and O.R. Baricordi. Nucleotide receptors: an emerging family of regulatory molecules in blood cells, Blood 3 (2001), 587–600.
[15] R.A. North, Molecular Physiology of P2X Receptors, Physiol Rev 82 (2002), 1013–1067.
[16] A. Supranant, F. Rassendren, E. Kawashima, R.A. North and G. Buell. The cytoplasmic P2X7 receptor for extracellular ATP identified as a P2X7 receptor (P2X7), Science 272 (1996), 735–738.
[17] C.M. Li, S.J. Campbell, D.S. Kumararatne, R. Bellamy, C. Ruwende, K. P. McAdam, A.V. Hill and A. L. Lammas. Association of a polymorphism in the P2X7 gene with tuberculosis in a Gambian population, J Inf Diseases 186 (2002), 1458–1462.
[18] S.L. Fernando, B.M. Saunders, R. Sluyter, K.K. Skarratt, H. Goldberg, G.B. Marks, J.S. Wiley and W.J. Britton. A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis, Am J Res and Critical Care Medicine 175 (2007), 360–366.
[19] P. Niño-Moreno, D. Portales-Pérez, B. Hernández-Castro, L. Portales-Cervantes, V. Flores-Meraz, L. Baranda, A. Gómez-Gómez, V. Acuña-Alonzo, J. Granados and R. González-Amaro, P2X7 and NRAMP1/SLC11A1 gene polymorphism in Mexican mestizo patients with pulmonary tuberculosis, Clin Exp Immunol 148 (2007), 469–477.

[20] I. Mokrousov, N. Sapozhnikova and O. Narvskaya, Mycobacterium tuberculosis co-existence with human: making an imprint on the macrophage P2X7 receptor gene?, J Med Micro 57 (2008), 581–584.

[21] J. Xiao, L. Sun, W. Jiao, Z. Li, S. Zhao, H. Li, J. Jin, A. Jiao, Y. Guo, Z. Jiang, I. Mokrousov and A. Shen, Lack of association between polymorphisms in the P2X7 gene and tuberculosis in a Chinese Han population, FEMS Immunol Med Microbiol 55 (2009), 107–111.

[22] A.C. Allison, Two lessons from the interface of genetics and medicine, Genet 166 (2004), 1591–1599.

[23] S.D. Ohlendorff, C.L. Töføng, J.E. Jensen, S. Petersen, R. Civitelli, M. Feng, B. Abrahamsen, A.P. Hermann, P. Eiken and N.R. Jørgensen, Single nucleotide polymorphism in the P2X7 gene is associated to fracture risk and to effect of estrogen treatment. PhamGene Geno, 17 (2007), 555–567.