A Note on Chromatic Sum

Meysam Alishahi and Ali Taherkhani

Department of Mathematical Sciences
Shahid Beheshti University, G.C.,
P.O. Box 19839-63113, Tehran, Iran
malishahi@sbu.ac.ir
a_taherkhani@sbu.ac.ir

Abstract

The chromatic sum $\Sigma(G)$ of a graph G is the smallest sum of colors among proper coloring with the natural number. In this paper, we introduce a necessary condition for the existence of graph homomorphisms. Also, we present $\Sigma(G) < \chi_f(G) |G|$ for every graph G.

Key words: chromatic sum, graph homomorphism, Fractional chromatic number.

Subject classification: 05C.

1 Introduction and Preliminaries

We consider finite undirected graphs with no loops and multiple edges and use [4] for the notions and notations not defined here. Let G be a graph and c be a proper coloring of it, define $\Sigma_c(G) = \sum_{v \in V(G)} c(v)$. The vertex-chromatic sum of G, denoted by $\Sigma(G)$, is defined as $\min\{\Sigma_c(G) | c$ is a proper coloring of $G\}$. The vertex-strength of G denoted by $s(G)$, or briefly by s, is the smallest number s such that there is a proper coloring c with s colors where $\Sigma_c(G) = \Sigma(G)$. Clearly, $s(G) \geq \chi(G)$ and equality does not always hold. In fact, for every positive integer k, almost all trees satisfy $s > k$; see [7]. Chromatic sum has been investigated in literature [1, 2, 3, 5, 6, 7, 10].

In [10], Thomassen et al. obtained several bounds for chromatic sum for general graphs. The first is a rather natural result of an application of a greedy algorithm: $\Sigma(G) \leq n + e$, where n and e are the number of vertices and edges of G, respectively. Also, they presented an upper and lower limit for the chromatic sum in terms of e. They showed that $\sqrt{8e} \leq \Sigma(G) \leq \frac{3}{2}(e + 1)$ and these bounds are sharp.

Let G and H be two graphs. A homomorphism σ from a graph G to a graph H is a map $\sigma : V(G) \rightarrow V(H)$ such that $uv \in E(G)$ implies $\sigma(u)\sigma(v) \in E(H)$. The set of all homomorphisms from G to H is denoted by $\text{Hom}(G, H)$. An isomorphism of G to H is a homomorphism $f : G \rightarrow H$ which is a vertex and edge bijective homomorphism. An isomorphism $f : G \rightarrow G$ is called an automorphism of G, and the set of all automorphism of G is denoted by $\text{Aut}(G)$.

Suppose $m \geq 2n$ are positive integers. We denote by $[m]$ the set $\{1, 2, \cdots, m\}$, and denote by $\binom{[m]}{n}$ the collection of all n-subsets of $[m]$. The Kneser graph $KG(m, n)$

1 Corresponding author. Tel.: +98 2129902917.
2 This paper is partially supported by Shahid Beheshti University.
has vertex set \(\binom{m}{n} \), in which \(A \sim B \) if and only if \(A \cap B = \emptyset \). The graph \(KG(5, 2) \) is named Petersen graph that is denoted by \(P \). It was conjectured by Kneser in 1955 and proved by Lovász [8] in 1978 that \(\chi(KG(m, n)) = m - 2n + 2 \).

The fractional chromatic number of a graph \(G \), denoted by \(\chi_f(G) \), is the infimum of the ratios \(\frac{m}{n} \) such that there is a homomorphism from \(G \) to \(KG(m, n) \). It is known [9] that the infimum in the definition can be attained, and hence can be replaced by the minimum. It is easy to see \(\chi_f(G) \leq \chi(G) \). On the other hand, the ratio \(\frac{\chi(G)}{\chi_f(G)} \) can be arbitrary large, see [9].

In next section we present a necessary condition for existence of graph homomorphisms in terms of chromatic sum. Next, we introduce an upper bound for chromatic sum based on fractional chromatic number.

2 Graph Homomorphism and Chromatic Sum

Graph homomorphism is a fundamental concept in graph theory, where it is related to many important concepts and problems in the field. It is well-known that in general it is a hard problem to decide whether there exists a homomorphism from a given graph \(G \) to a given graph \(H \), and consequently, it is interesting to obtain necessary conditions for the existence of such mappings. In this regard, we have the following theorem.

Theorem 1. Let \(G \) and \(H \) be two graphs such that \(H \) is a vertex transitive graph. If \(\sigma : G \rightarrow H \) is a homomorphism, then

\[
\frac{\Sigma(G)}{|G|} \leq \frac{\Sigma(H)}{|H|}.
\]

Proof. Let \(\text{Aut}(H) = \{ f_1, f_2, \ldots, f_t \} \) and \(\tilde{G} = \bigcup_{i=1}^{t} G_i \) that \(G_i \) is an isomorphic copy of \(G \). Define \(\tilde{\sigma} : \tilde{G} \rightarrow H \) such that its restriction to \(G_i \) is \(f_i \circ \sigma \). Since \(H \) is a vertex transitive graph, one can easily show that for every \(v \in V(H) \), \(|\tilde{\sigma}^{-1}(v)| = \frac{|G|}{|H|} \) and it is independent of \(v \). Now, suppose \(c \) is a proper coloring of \(H \) such that \(\Sigma_c(H) = \Sigma(H) \). For any vertex \(v \in V(\tilde{G}) \), set \(\tilde{c}(v) = c(\tilde{\sigma}(v)) \). Obviously, \(\tilde{c} \) is a proper coloring of \(\tilde{G} \) and also \(\Sigma_{\tilde{c}}(\tilde{G}) = \frac{|G|}{|H|} \times \Sigma(H) \). Therefore, there is an \(i \) such that \(\Sigma_{\tilde{c}|_{G_i}}(G_i) \leq \frac{|G|}{|H|} \times \Sigma(H) \) and since \(G = G_i \), \(\Sigma(G) \leq \frac{|G|}{|H|} \times \Sigma(H) \) which is the desired conclusion. \(\blacksquare \)

Theorem 1 provides a necessary condition for the existence of graph homomorphisms. Here we show that The Petersen graph \(P \) has the same chromatic number and circular chromatic number. One can check that \(\Sigma(P) = 19 \) and \(\Sigma(K_8) = 15 \). Therefore, as an application of the previous theorem, there is no homomorphism from \(P \) to \(K_8 \).

It is well-known that the chromatic sum is an NP-complete problem[7]. In this regard, finding upper and lower bounds for chromatic sum is useful. It was shown in [8] that \(\Sigma(G) \leq \binom{\chi(G)+1}{2} |G| \). Since \(\Sigma(K_n) = \frac{n(n+1)}{2} \), if we set \(H = K_{\chi_f(G)} \), then Theorem 1 implies this bound. Here we obtain an upper bound for the chromatic sum in terms of fractional chromatic number.
For an independent set S in a graph G the following inequality is an immediate consequence of the definition of the chromatic sum \((2)\),

$$
\Sigma(G) \leq |G| + \Sigma(G \setminus S).
$$

(1)

Theorem 2. For every graph G, we have

$$
\Sigma(G) < \chi_f(G)|G|.
$$

Proof. Assume that $\chi_f(G) = \frac{m}{n}$ and $\text{Hom}(G, KG(m, n)) \neq \emptyset$. In view of equation \([1]\) we have $\Sigma(KG(m, n)) \leq \left(\binom{m}{n}\right) + \Sigma(KG(m - 1, n))$. Hence $\Sigma(KG(m, n)) \leq \sum_{i=0}^{m-2n-1} \left(\binom{m-i}{n}\right) + \Sigma(KG(2n, n))$. On the other hand, $\sum_{i=0}^{m-2n-1} \left(\binom{m-i}{n}\right) = \left(\frac{m+1}{n+1}\right) - \left(\frac{2n+1}{n+1}\right)$ and $\Sigma(KG(2n, n)) = \frac{3}{2} \binom{2n}{n}$. Therefore, $\Sigma(KG(m, n)) \leq \left(\frac{m+1}{n+1}\right) - \left(\frac{n-1}{2n+2}\right) \binom{2n}{n}$.

Now, since $\text{Hom}(G, KG(m, n)) \neq \emptyset$, Theorem 2 implies that

$$
\Sigma(G) \leq \left(\frac{m+1}{n+1} - \left(\frac{n-1}{2n+2}\right) \binom{2n}{n}\right) |G|.
$$

Furthermore, $\frac{m+1}{n+1} - \left(\frac{n-1}{2n+2}\right) \binom{2n}{n} \leq m/n = \chi_f(G)$, as desired. \(\blacksquare\)

In particular, if G is a vertex transitive graph, $\chi_f(G) = \frac{|G|}{\alpha(G)}$ and hence $\Sigma(G) < \frac{|G|^2}{\alpha(G)}$. Furthermore, $e(G) = \frac{\Delta(G)|G|}{2}$. If $\chi_f(G) \leq \frac{\Delta(G)}{2}$, then $\chi_f(G)|G| < \frac{3}{2}(e(G) + 1)$. Therefore, the bound in Theorem 2 is better than the upper bound $\frac{3}{2}(e(G) + 1)$ (see [10]).

On the other hand, in view of Theorem 1 we have

$$
\Sigma(G) \geq \frac{\omega(G) + 1}{2} |G|
$$

where G is a vertex transitive graph and $\omega(G)$ is the size of the largest clique in it.

Also, it is a known result that the ratio $\frac{\chi_f(G)}{\chi_f(G_n)}$ can be arbitrary large (see [9]). Let $G = \{G_i\}_{i \in \mathbb{N}}$ such that $\frac{\chi_f(G_n)}{\chi_f(G_n)} \to \infty$. We can assume that G_n is critical for all n (G is critical if $\chi(G \setminus v) < \chi(G)$ for every $v \in V(G)$). Thus, $e(G_n) \geq \frac{|G_n||\chi(G_n)|}{2}$ and we also have $\frac{\Delta(G_n)}{\chi_f(G_n)} \to \infty$. It means the bound in Theorem 2 is better than the upper bound $\frac{3}{2}(e(G) + 1)$ for the graphs in G.

In Theorem 2 we used an upper bound of $\Sigma(KG(m, n))$, but we do not know the exact value of $\Sigma(KG(m, n))$. The improvement of this upper bound yields an improvement in Theorem 2.

Problem 1 What is the exact value of $\Sigma(KG(m, n))$? Is it true that $\Sigma(KG(m, n)) = \left(\binom{m}{n}\right) \left(\frac{m+1}{n+1} - \left(\frac{n-1}{2n+2}\right) \binom{2n}{n}\right)$?

Acknowledgment

We would like to thank Hossein Hajiabolhassan and Moharam Nejad Iradmusa for their useful comments.
References

[1] Paul Erdős, Ewa Kubicka, and Allen J. Schwenk. Graphs that require many colors to achieve their chromatic sum. In *Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989)*, volume 71, pages 17–28, 1990.

[2] H. Hajiabolhassan, M. L. Mehrabadi, and R. Tusserkani. Minimal coloring and strength of graphs. *Discrete Math.*, 215(1-3):265–270, 2000.

[3] H. Hajiabolhassan, M. L. Mehrabadi, and R. Tusserkani. Tabular graphs and chromatic sum. *Discrete Math.*, 304(1-3):11–22, 2005.

[4] Pavol Hell and Jaroslav Nešetřil. *Graphs and homomorphisms*, volume 28 of *Oxford Lecture Series in Mathematics and its Applications*. Oxford University Press, Oxford, 2004.

[5] Tao Jiang and Douglas B. West. Coloring of trees with minimum sum of colors. *J. Graph Theory*, 32(4):354–358, 1999.

[6] Ewa Kubicka. The chromatic sum of a graph: history and recent developments. *Int. J. Math. Math. Sci.*, (29-32):1563–1573, 2004.

[7] Ewa Kubicka and Allen J. Schwenk. An introduction to chromatic sums. *Proc. ACM Computer Science Conference*, Louisville(Kentucky):39–45, 1989.

[8] L. Lovász. Kneser's conjecture, chromatic number, and homotopy. *J. Combin. Theory Ser. A*, 25(3):319–324, 1978.

[9] Edward R. Scheinerman and Daniel H. Ullman. *Fractional graph theory*. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, 1997. A rational approach to the theory of graphs, With a foreword by Claude Berge, A Wiley-Interscience Publication.

[10] Carsten Thomassen, Paul Erdős, Yousef Alavi, Paresh J. Malde, and Allen J. Schwenk. Tight bounds on the chromatic sum of a connected graph. *J. Graph Theory*, 13(3):353–357, 1989.