Comparative Study of Hemodynamics Electrolyte and Metabolic Changes During Prone and Complete Supine Percutaneous Nephrolithotomy

Hosein Khoshrang 1, Siavash Falahatkar 1*, Sara Ilat 1, Manzar Hossein Akbar 1, Maryam Shakiba 1, Alireza Farzan 1, Nadia Rastjou Herfeh 1, Aliakbar Allahkhah 1

1 Urology Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, IR Iran

Article type: Original Article

Article history:
Received: 07 Jan 2012
Revised: 23 Jan 2012
Accepted: 02 Feb 2012

Keywords:
Electrolyte
Prone Position
Supine Position
Percutaneous Nephrolithotomy

ABSTRACT

Background: Nowadays Percutaneous Nephrolithotomy (PCNL) is performed in prone and supine positions. Physiologic solutions should be used to irrigate during PCNL. Irrigation can cause hemodynamic, electrolyte and acid-base changes during PCNL.

Objectives: The current study aimed to compare the electrolyte, hemodynamic and metabolic changes of prone and complete supine PCNL.

Patients and Methods: It was a randomized clinical trial study on 40 ASA class I and II patients. Twenty of patients underwent prone PCNL (Group A) and the other twenty underwent complete supine PCNL (Group B). The two groups received the same premedication and induction of anesthesia. Blood pressure (systolic, diastolic and mean) and pulse rate were recorded before, during and after anesthesia and Hb, Hct, BUN, Cr, Na, and K were also measured before and after operation in the two groups. The volume of irrigation fluid, total effluent fluid (the fluid in the bucket and the gazes) and volume of absorbed fluid were measured.

Results: There were no significant differences in Na, K, BUN, Cr, Hb and Hct between the two groups. Absorption volume was significantly different between the two groups (335 ± 121.28 mL in group A and 159.45 ± 73.81 mL in group B, respectively) (P = 0.0001). The mean anesthesia time was significantly different between the two groups (P = 0.012). There was a significant difference in bleeding volume between supine and prone PCNL (270.4 ± 229.14 in group A and 594.2 ± 290 in group B, respectively) (P = 0.0001). Mean systolic blood pressure during operation and recovery was 120.2 ± 10.9 and 140.7 ± 17.48 in the supine group and 113.4 ± 6.4 and 126.2 ± 12.7 in group B, respectively. Systolic blood pressure between the two groups during operation and recovery was significantly different (P = 0.027 and P = 0.022, respectively). Mean diastolic blood pressure in supine group during operation and recovery was 80.53 ± 7.57 and 95.75 ± 17.48, and 73.95 ± 3.94 and 83.4 ± 12.54 in prone group, respectively. Diastolic blood pressure was significantly different between the two groups. It was 80.55 ± 7.57 and 95.75 ± 17.48, respectively during operation and recovery in the supine group and 73.95 ± 3.94 and 83.4 ± 12.54 in the prone group, respectively (P = 0.001 and P = 0.04, respectively), but there was no significant difference between the pulse rate mean value of the two groups.

Conclusions: The electrolyte and metabolic changes were not significantly different between the two groups, and although fluid absorption in prone group was more than that of the complete supine group, there was no significant difference between the two groups. Considering advantages of complete supine PCNL such as less hemodynamic changes (less hypotension, less fluid absorption and less duration of operation) this kind of PCNL was recommended.

Copyright © 2012 Kowsar Corp. All rights reserved.

* Corresponding author: Hosein Khoshrang, Urology Research Center, Razi Hospital Urology Research Center, Razi Hospital, Guilan University of Medical Sciences, SardareJangal Street, Rasht, IR Iran. Tel/Fax: +98-1315525259, E-mail: hkhoshrang@yahoo.com, urc184@yahoo.com

DOI: 10.5812/nunmonthly.4099

Copyright © 2012 Kowsar Corp. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Background

Percutaneous nephrolithotripsy (PCNL) is a common technique to treat kidney stones and is also used to fragment and remove the calyx and pelvic stones (1-5). Nowadays to manage large stones, stones resistant to fragmentation, or stones with an abnormal anatomy in kidney, PCNL is preferred (6-8).

Generally, the advantages of PCNL are less mortality rate, less pain after operation, quick improvement after operation and less scar formation. PCNL is usually performed in the prone position but the complete supine position (csPCNL) has potential advantages compared with the prone position. The lateral and some modified supine positions were reported safe in high-risk patients and also all the other cases. The patients in csPCNL were placed at the bed edge. There was no rolled tower on the flank and no change in leg position in csPCNL. This endoscopic technique (csPCNL) which needs continuous irrigation can result in serious complications (5). One of the most important complications is extravasation of large amount of irrigation fluid to retroperitoneal space that increases the likelihood of septic complications (9-12).

There were few surveys on hemodynamic, electrolytic, acid-base changes due to PCNL, which suggested different ideas (8). In some studies electrolytic changes due to PCNL, showed hyponatremia and metabolic acidosis other than hypertension (3, 13). To avoid complications due to absorption of fluid without electrolytes, normal saline is the fluid which is commonly used for irrigation (3, 5). Manipulation under X-ray or endoscopy, by continuous open flowing system can also be used to prevent electrolytic imbalance. If the difference between inflow and outflow fluid is more than 500 mL, operation should be stopped and a nephrostomy tube must be applied, and electrolyte measurement is also necessary. Ethanol monitoring can also help to evaluate absorption volume and direction detection (14).

2. Objectives

Considering the limited number of studies on hemodynamic, metabolic and electrolyte changes due to PCNL and lack of studies on comparison of electrolytic, hemodynamic and metabolic changes between the supine and the prone PCNL, it was decided to analyze the effects and the fluid absorption levels between the two methods of operation.

3. Patients and Methods

In the clinical trial done in a period of 6 months on 40 patients with ASA class I, and II, who had undergone prone or complete supine PCNL, the subjects were divided into two groups (20 patients in each group) by blocked randomization method. Patients with hypertension, heart failure, renal failure and those who had undergone any kind of medical therapy which could affect hemodynamic and electrolyte status, were not included in the study. Inclusion criteria were having one or more stones > 2 cm which could be removed by a percutaneous surgery and no contraindications for the prone position. Exclusion criteria were kidney anomalies, uncontrolled coagulopathies, pregnancy, immunodeficiency, ASA class III and IV and age < 10 year old.

Before the surgery, systolic, diastolic and mean blood pressure and pulse rate, Hb, HCT, BUN, Cr, Na and K were assessed and measured in a blood sample. Anesthesia was induced by Sodium Thiopental (5 mg/kg), Atracurium (0.6 mg/kg) and Fentanyl (2 µg/kg), and maintained with halothane 0.5%, N2O + O2 (50:50) and Atracurium (0.2 mg/kg) every 30 minutes. At the end of the procedure, neuromuscular blockage was reversed by Neostigmin 0.04 mg/kg and Atropine 0.02 mg/kg.

Ringer was used as an intravenous fluid in all patients. All of the patients got dextrose saline as maintenance fluid therapy after the operation. If there was more than 20% hypotension from the baseline, Normal saline or Ringer fluid were replaced. Irrigation fluid was Glycine. Total volume of irrigation fluid which was used and total effluent fluid (the fluid in the grading bucket and the number of drench gazes) were measured and the difference between them was taken as the absorbed fluid volume.

The second blood sample was taken 6 hours after the operation to measure blood hemoglobin (Hb), hematocrit (HCT), blood urea nitrogen (BUN), creatinine (Cr), Na and K. Blood pressure and pulse rate were measured before anesthesia, during induction and intubation period, every 5 minutes during maintenance of anesthesia and after anesthesia with ECG, non invasive blood pressure (NIBP) and by the use of a pulse oxymeter (model: B5 - SNTI/E/M/C manufactured by Pooyandegane Rah Saadat company) the level of saturation was monitored.

The size of stones were also evaluated by kidney ureter bladder radiography (KUB) and sonography. All data were analyzed by paired t-test, Turkey’s and independent t-test and P value < 0.05 was considered significant.
4. Results

From 20 patients in the prone group, 6 patients (30%) were female and 14 patients (70%) were male. In csPCNL group 12 patients (60%) were male and 8 patients (40%) were female. Mean age of patients was 46.07 ± 10.43 (range 23-70) years old. The mean anesthesia duration in the supine group was 110.5 ± 20.76 min and in the prone group it was 137.25 ± 39.31 min, and there was no significant difference between the two groups (\(P = 0.12\)). In the supine group, the mean Hb was 13.46 ± 1.65 mg/dL and the mean Hb after operation was 11.97 ± 1.61 mg/dL. The current study indicated a significant difference in mean level of Hb and HCT in the supine group before and after operation (\(P = 0.0001, P = 0.0001\)).

In the prone group the mean Hb before operation was 13.95 ± 1.68 mg/dL and after the operation was 11.94 ± 1.93 mg/dL, which indicated that there was significant difference between Hb and HCT levels before and after opera-

variable	Time Episodes	Group	Mean	SD	P value
Systolic	Pre induction	supine	138.3	14.3	0.281
		Prone	133.5	13	
	Induction	supine	113.9	15.2	0.812
		Prone	114.9	9	
	Operation	supine	120.2	10.9	0.022
		Prone	113.4	6.4	
	Extubation	supine	126.6	21.1	0.544
		Prone	123.5	8.1	
	Recovery	supine	140.7	25.1	0.027
		Prone	126.2	12.7	
Mean	Pre induction	supine	115.1	14.98	0.204
		Prone	110	9.15	
	Induction	supine	92.9	14.53	0.495
		Prone	95.55	9.15	
	Operation	supine	98.4	10.47	0.184
		Prone	94.75	5.84	
	Extubation	supine	102.1	18.6	0.609
		Prone	104.45	8.13	
	Recovery	supine	116.2	16.68	0.039
		Prone	107	9.51	
Diastolic	Pre induction				0.261
Hemodynamics Electrolyte and Percutaneous Nephrolithotomy

Group	Time	Mean	SD	P value
	supine	88	8.02	0.345
	Prone	85	8.57	0.001
	Induction	77.35	13.52	0.812
	Operation	80.55	7.57	0.014
	Extubation	81.8	13.11	0.505
	Recovery	95.75	17.48	0.211

Table 2. Comparison of Different Between Lab Data Before and After Surgery in Patients With Supine (Group B) and Prone Position (Group A)

Group	Time	Mean	SD	P value	
BUN	Supine	Before	15.9	5.23	0.009
		After	14.2	4.94	
	Prone	Before	14.7	4.65	0.505
		After	14	3.69	
Cr	Supine	Before	1.01	0.31	0.815
		After	1	0.29	
	Prone	Before	0.9	0.4	0.644
		After	0.93	0.3	
Na+	Supine	Before	138.65	3.63	0.201
		After	139.8	4.93	
	Prone	Before	139.1	3.16	0.201
		After	139.95	3.42	
K+	Supine	Before	4.37	0.38	0.918
		After	4.36	0.25	
	Prone	Before	4.26	0.44	0.124
		After	4.44	0.5	
Hemodynamics Electrolyte and Percutaneous Nephrolithotomy

Khoshrang et al. Hemodynamics Electrolyte and Percutaneous Nephrolithotomy

Time Episodes	Group	Mean	SD	P value
Pre induction	Supine	80.3	12.8	0.654
	Prone	82	9.5	
Induction	Supine	72.1	12.8	0.589
	Prone	73.8	5.4	
Operation	Supine	70.5	7.3	0.861
	Prone	70.9	7	
Extubation	Supine	72.6	9	0.086
	Prone	77.3	7.8	
Recovery	Supine	80.4	14.5	0.799
	Prone	81.5	12.5	

Table 3. Comparison of Mean Heart Rate in Different Time Episodes in Patients Prone (Group A) and Supine Position (Group B)

Discussion

In the current study the electrolyte, hemodynamic and metabolic changes in the prone and complete supine PCNL were compared. In the study of Mohta et al. there was no significant change in mean heart rate and arterial blood pressure before and after irrigation (the irrigation fluid was normal saline) (3).

Mean systolic blood pressure during the operation and recovery was 120.2 ± 10.9 and 140.7 ± 25.1, in the supine group and 113.4 ± 6.4 and 126.2 ± 12.7, in the prone group, respectively. There was a significant difference in systolic blood pressure of the two groups (P = 0.0001) in this regard.

Mean systolic blood pressure during the operation and recovery was 120.2 ± 10.9 and 140.7 ± 25.1, in the supine group and 113.4 ± 6.4 and 126.2 ± 12.7, in the prone group, respectively. There was a significant difference in systolic blood pressure of the two groups during the operation and recovery (P = 0.027, P = 0.022, respectively). Mean diastolic blood pressure during operation and recovery was 80.55 ± 7.57, 95.75 ± 17.48, in the supine group, and 73.95 ± 3.94, 83.4 ± 12.54, in the prone group, respectively. There was also a significant difference in diastolic blood pressure of the two groups during the operation and recovery (P = 0.001, P = 0.014) (Table 1). Finally, mean heart rate was not significantly different between the two groups (Table 2).

The mean level of BUN before and after the operation was 15.9 ± 5.23 and 14.2 ± 4.93 in the supine group and 14.7 ± 4.65 and 14 ± 3.69 in the prone group, respectively. The Cr level before and after the operation was 1.01 ± 0.31 and 1 ± 0.29, in the supine group, and 0.9 ± 0.4 and 0.93 ± 0.3 in the prone group, respectively.

Mean Na level before and after the operation was 138.65 ± 3.63 and 139.8 ± 4.93 in the supine group and 139.95 ± 3.43 in the prone group, respectively. Mean K level before and after the supine PCNL was 4.37 ± 0.38 and 4.36 ± 0.25 in the supine group, and 4.26 ± 0.44 and 4.44 ± 0.5 in the prone group, respectively.

There was no significant difference in BUN, Cr, Na, K levels between the two groups (the prone and the supine) before and after the operation (Table 3). Mean stone diameter in the supine group was 26.32 ± 9.15 mm and in the prone group was 26.8 ± 5.78 mm and there was no significant difference between the two groups (P = 0.846) regarding the mean stone diameter.

5. Discussion

In the current study the electrolyte, hemodynamic and metabolic changes in the prone and complete supine PCNL were compared. In the study of Mohta et al. there was no significant change in mean heart rate and arterial blood pressure before and after irrigation (the irrigation fluid was normal saline) (3).

Also Koroglu et al. couldn’t find significant changes in blood pressure, heart rate and central venous pressure before and after irrigation (13). In the current study, systolic and diastolic blood pressure during the operation and in the recovery room and mean blood pressure in the recovery room decreased considerably in the prone group in comparison to the supine group. Considering that in prone position, pressure on abdomen can decrease venous return by compressing the abdominal veins, maybe a decrease in venous return is the reason of hypotension during the operation in the prone position. Although absorbed fluid was more in the prone group,
probably it was not enough to improve hemodynamic imbalance which occurred during the operation.

In Mohta and Koroglu’s studies there was no significant change in electrolyte levels (Na and K) (3, 13). In another study, it was found that after irrigation by distilled water there was a significant change in Na but not in K (8). In the current study, changes in Na and K levels before and six hours after the operation were not significant between the two groups and relationship between Na, K and the volume of used and absorbed fluid were not considerable.

Mohta and Koroglu found no significant difference between BUN and Cr levels before and after the operation, but in Kilic’s study, Cr level significantly increased immediately after PCNL, but on the following day of the operation it decreased in comparison to its preoperation level. Changes of BUN level were not significant (2, 12, 13). In the current study, in the supine group, BUN level changed significantly after the operation in comparison to its level before operation, but comparing BUN and Cr levels in the two groups, no significant difference was found. It was not related to volume of used and absorbed fluid either.

In a study on 80 patients who underwent PCNL (40 patients underwent csPCNL and 40 patients underwent prone PCNL), blood transfusion was needed because of the bleeding volume, there was no significant difference between the supine and the prone groups (15). In another study, 28 patients underwent PCNL and irrigation was performed by isotonic solutions such as manitol, in which, bleeding during operation was a warning sign and was an effect of the irrigation fluid used (16).

In the current study, bleeding during the operation was significantly higher in the prone group in comparison to the supine group. In the supine group, one case (5%) and in prone group 3 cases (15%) needed transfusion but the difference was not significant. The bleeding was detected from surgical field, a drop of Hb and HCT prior to the supine position in the prone group. The volume of absorbed fluid during operation was 159.45 ± 73.8 in supine group and 355 ± 121.28 in prone group which indicated a significant difference between the two groups (P = 0.0001). The amount of absorbed fluid depends mostly on the irrigant pressure and the length of the procedure (18, 19).

Considering the results of the current study and some other related studies, it can be concluded that the complete supine PCNL was more advantageous according to its less hemodynamic changes (less hypotension), less fluid absorption, lower duration of operation, less bleeding and need for transfusion, better access to urethra, less manipulation of the patient, better control of airways during the operation, and possibility of simultaneous PCNL and urethroscopy.

Acknowledgments

With regret and sorrow we just learn in URC about the sudden death of our colleague Dr. Sara Ilat. On behalf of URC, we extend our deeply felt condolences to the family and colleagues of Dr. Sara Ilat’s sudden death.

Authors’ Contribution

None declared.

Financial Disclosure

No competing financial interests exist.

Funding/Support

No competing financial interests exist.

References

1. Autorino R, Giannarini G. Prone or supine: is this the question? Eur Urol. 2008;54(6):126-8.
2. Dasgupta P, Rose K, Wickham JE. Percutaneous renal surgery: a pioneering perspective. J Endourol. 2006;20(3):367-9.
3. Mohta M, Bhagchandani T, Tyagi A, Pendse M, Sethi AK. Haemodynamic, electrolyte and metabolic changes during percutaneous nephrolithotomy. Int Urol Nephrol. 2008;40(2):477-82.
4. Alken P, Hutschenreiter G, Gunther R, Marberger M. Percutaneous stone manipulation. J Urol. 1988;139(4):463-6.
5. Gehring H, Nahm W, Zimmermann K, Fornara P, Ocklitz E, Schmucker P. Irrigating fluid absorption during percutaneous nephrolithotomy. Acta Anaesthesiol Scand. 1999;43(3):316-21.
6. Preminger GM, Assimos DG, Lingeman JE, Nakada SY, Pearl MS, Wolf JS. Jr. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J Urol. 2005;173(6):2099-2000.
7. Peterson GN, Krieger JN, Glauber DT. Anaesthetic experience with percutaneous lithotripsy. A review of potential and actual complications. Anaesthesia. 1985;40(5):460-4.
8. Feizzadeh B, Doosti H, Movareh M. Distilled water as an irrigation fluid in percutaneous nephrolithotomy. Urol J. 2006;3(4):208-11.
9. El-Husseiny T, Moraitis K, Maan Z, Papasoritis A, Saunders P, Goldren B, et al. Percutaneous endourologic procedures in high-risk
patients in the lateral decubitus position under regional anesthesia. J Endourol. 2009;23(10):860-6.

10. Papatsoris A, Masood J, El-Husseiny T, Maan Z, Saunders P, Buchholz NP. Improving patient positioning to reduce complications in prone percutaneous nephrolithotomy. J Endourol. 2009;23(5):835-2.

11. Papatsoris AG, Masood J, Saunders P. Supine valdivia and modified lithotomy position for simultaneous antegrade and retrograde endourological access. BJU Int. 2007;100(5):1092.

12. Kilic S, Oguz F, Kahraman B, Altunoluk B, Ergin H. Prospective evaluation of the alterations in the morphology and vascular resistance of the renal parenchyma with color Doppler ultrasonography after percutaneous nephrolithotomy. J Endourol. 2008;22(4):405-21.

13. Koroglu A, Togal T, Cicak M, Kilic S, Ayas A, Ersoy MO. The effects of irrigation fluid volume and irrigation time on fluid electrolyte balance and hemodynamics in percutaneous nephrolithotripsy. Int Urol Nephrol. 2003;35(1):1-6.

14. de la Rosette JJ, Tsakiris P, Ferrandino MN, Elsakka AM, Rioja J, Preminger GM. Beyond prone position in percutaneous nephrolithotomy: a comprehensive review. Eur Urol. 2008;54(6):1262-9.

15. Falahatkar S, Moghaddam AA, Salehi M, Nikpour S, Esmaii F, Khaki N. Complete supine percutaneous nephrolithotripsy comparison with the prone standard technique. J Endourol. 2008;22(11):2513-7.

16. Dimberg M, Norlen H, Hoglund N, Allgen LG. Absorption of irrigating fluid during percutaneous transrenal lithotripsy. Scand J Urol Nephrol. 1993;27(4):463-7.

17. Vorakitpokatorn P, Permthongchuchai K, Raksamani EO, Phettongkam A. Perioperative complications and risk factors of percutaneous nephrolithotomy. J Med Assoc Thai. 2006;89(6):826-33.

18. McDougall E, Liatsikos E, Dinlenc C, Smith A. Percutaneous approaches to the upper urinary tract. In: Walsh PC, Retik AB, Vaughan ED, Jr., editors. Wein AJ Campbell's urology. 8th ed. Philadelphia: Saunders; 2002. pp. 3320-60.

19. Tanagho EA, McAninch JW. Smith's general urology. In: Thuroff JW, Gilfrich CP, editors. Percutaneous endourology & ureteroscopy: McGraw-Hill Medical: 2004. pp. 123-39.