Dietary inflammatory index and osteoporosis: the National Health and Nutrition Examination Survey, 2017–2018

Saisai Zhao1 · Wenhui Gao1 · Jingsong Li2 · Mengzi Sun1 · Jiaxin Fang1 · Li Tong1 · Yue He1 · Yanfang Wang1 · Yuan Zhang1 · Yan Xu1 · Shuman Yang1 · Lina Jin1

Received: 2 June 2022 / Accepted: 17 August 2022 / Published online: 31 August 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Purpose The dietary inflammatory index (DII) is a scoring system to quantify the inflammatory effects of nutrients and foods. Inflammation may affect bone health. The purpose of this study was to explore the relationships of DII with bone mineral density (BMD) and osteoporosis.

Methods This study involved 1023 women and 1080 men (age ≥ 50) in the US National Health and Nutrition Survey (NHANES), 2017–2018. Multivariable linear regression models were used to estimate the associations between DII and BMD. Association between DII and osteoporosis was tested with multivariable logistic regression models.

Results In women, DII was negatively associated with total hip and femoral neck BMD after adjusting for covariates ($P < 0.05$). In men, DII was negatively associated with lumbar spine BMD ($P < 0.05$). DII was positively associated with osteoporosis in women ($P < 0.05$). The odds ratios (ORs) (95% CI) for osteoporosis associated with DII quartiles 2, 3 and 4 vs. quartile 1 were 2.95 (1.08, 8.09), 5.63 (2.87, 11.04), and 6.14 (2.55, 14.78), respectively. No significant association was observed in men.

Conclusions Higher DII scores were associated with increased osteoporosis risk in women, while no association was found in men. Greater pro-inflammatory diets might be associated with lower BMD in both women and men.

Keywords Dietary inflammatory index · Osteoporosis · Bone-mineral density

Introduction

Osteoporosis is a common senile disease characterized by low bone mass and degradation of bone microstructure; osteoporosis can lead to increased bone fragility, fracture tendency, and risk of death [1]. Bone mineral density (BMD) is a common parameter for evaluating bone health [2]. A study has shown that the lifelong risk of osteoporotic fractures is 40–50% for women worldwide, and 13–22% for men [3]. Osteoporosis has affected about 200 million people all over the world, resulting in high disability rates and increased societal costs, thereby becoming a serious global burden [3]. A study in nine developed countries reported that up to 38% of women and 8% of men aged 50 years old or over had osteoporosis [4]. With the aging of the society, osteoporosis has become a serious public threat [5].

Ageing and hormone abnormality are the main cause of osteoporosis [6]. Other risk factors for osteoporosis include weight, calcium intake, smoking, and alcohol intake [7]. Dietary factors are also useful to maintain bone health and prevent fragility fractures [8]. Studies have found that people’s eating habits could influence inflammation, while chronic inflammation is closely related to osteoporosis [5, 9]. Several proinflammatory cytokines, such as TNF-α, IL-1, IL-17, and type III IFNs (IFN-λ) could activate osteoclasts, whereas other inflammatory cytokines, such as
IL-12, IL-18, IL-33, and type I IFNs (IFN-α/β), type II IFN (IFN-γ) inhibit bone loss [10, 11].

The dietary inflammatory index (DII), which is developed by Shivappa et al. through extensive literature search, is a scoring system to quantify the inflammatory effects of nutrients and foods [12]. It is created by assigning a score for each of 45 food parameters reported to regulate the levels of 6 specific inflammatory biomarkers (IL-1β, IL-4, IL-6, IL-10, TNF-α, and CRP) [13]. DII is standardized to global dietary intakes, which are allowed to be used in different cultures and dietary patterns [14]. Higher DII scores are associated with increased concentration of inflammatory biomarkers (such as CRP and TNF-α); this suggests that DII may be used to determine the association between dietary inflammatory potential and chronic disease [15, 16]. It is reported that there is a positive correlation between DII and fracture risk in adult Americans [17]. A meta-analysis indicates that high pro-inflammatory diets are significantly related to lower BMD of lumbar spine and total hip [13]. However, Cervo et al. found that there is no significant link between DII and BMD in older Australian men [18].

Due to the limited and inconsistent evidence on the association between DII and osteoporosis, we examined the associations between DII and BMD and osteoporosis using the nationally representative data from the US.

Materials and methods

Study population and data collection

Data for this research were extracted from the National Health and Nutrition Examination Survey (NHANES), which was conducted by the National Center for Health Statistics, including cross-sectoral, multi-stage, stratified, and aggregated probability samples of the US non-institutional population. The NHANES was approved by the National Center for Health Statistics Research Ethics Review Board and received written informed consent from all participants. In the present study, we focused on the participants who were aged ≥50 years in NHANES 2017–2018. Among the original 3069 participants, those with missing dietary data (n = 464), those with unreliable calorie intake (men <500 kcal or >8000 kcal; women <500 kcal, or >5000 kcal, n = 21), and those with missing BMD data (n = 368) were excluded. Finally, 2103 participants were involved in this study (Fig. 1).

Calculation of DII

The development and validation of the DII have been presented in detail elsewhere [12]. Briefly, The Z-score is created by subtracting the global average daily intake and divided by the standard deviation, converting it to a percentile score, which is then doubled and subtracted by “1” to achieve a symmetrical distribution. Then, the percentile value is multiplied by the corresponding overall inflammation effect score, we can get an individual “overall DII score” by adding up each DII score. In the present study, we used two 24-h dietary recalls (24HRs) to obtain dietary information. 27 of the 45 food parameters were used for the calculation of the DII score, which included carbohydrates; protein; fat; alcohol; fiber; cholesterol; saturated, monounsaturated, and polyunsaturated fatty acids; omega3 and omega6 polyunsaturated fatty acids; niacin; vitamins A, B1, B2, B6, B12, C, D, E; iron; magnesium; zinc; selenium; folic acid; beta carotene; and caffeine. Importantly, even if the nutrients applied for the calculation of DII are <30, the DII scores are still available [12]. A low DII is indicative of...
an anti-inflammatory diet, and a high DII of a pro-inflammatory diet. To control for the effect of total energy intake, the DII was calculated per 1000 calories of food consumed [19].

BMD measurement and osteoporosis diagnosis

The BMD of lumbar spine, femoral neck, and total hip were measured by dual-energy X-ray absorptiometry (DXA). Briefly, the hip and lumbar spine BMD measurements were performed by the Hologic QDR-4500A fan-beam densitometers (Hologic; Bedford, MA) and analyzed by Hologic APEX, version 4.0, software. The detailed DXA measurement agreement is publicly available at http://www.cdc.gov/nchs/nhanes/. Total hip, lumbar spine, and femoral neck BMD were converted into T-scores using the formula: T-score = (BMD respondent−mean BMD reference group)/SD reference group [20]. Any T scores at total hip, lumbar spine, or femoral neck BMD ≤ −2.5 were used to define osteoporosis; T scores < −1 and ≥ −2.5 were used to define osteopenia [21].

Covariate ascertainment

The following covariates that adjusted in multivariable models were summarized as follows: continuous variables consisted of age, calcium intake (g/day), and serum phosphate (mg/dL). Categorical variables included gender (women, men), marital status (single, living with partner), race (Hispanic, non-Hispanic white, non-Hispanic black, and other race), BMI group (<25 kg/m², 25–30 kg/m², ≥30 kg/m²) and BMI was calculated using the formula: body weight (kg) divided by body height squared (m²). Three classifications of smokers were created: for the present analysis, variables from the “Smoking—Cigarette Use” questionnaire were used, where participants are asked if they have smoked 100 cigarettes in their lives. If someone answered “no”, they were classified as a never smoker. If someone answered “yes,” they were further subclassified by an additional question, which asks if they is a current smoker. If someone answered that they have smoked >100 cigarettes in life and also stated that they were not a current smoker, they were classified as former smoker. If someone answered “yes” to both questions, they were classified as a current smoker.

Statistical analysis

Characteristics of participants in the present study by osteoporosis status were descriptively analyzed for all individuals as well as by sex. The continuous variables were expressed as means with standard deviation or median [P₂₅, P₇₅] and compared by the t test or Mann-Whitney U test, respectively. The categorical variables were presented as counts and percentages and compared by Chi-square test. Multivariable linear regression models were used to estimate the associations between DII and BMD; DII was treated as continuous variable in the model. The association between DII and osteoporosis was tested with multivariable logistic regression models. In the model, DII was then categorized into quartiles, with quartile 1 serving as the referent group. The P for trend was tested by treating the median value of DII in each quartile as a continuous variable. Subgroup analyses by age and BMI were also performed. After removing participants with osteoporosis, the association between DII and osteopenia was also performed with multivariable logistic regression models.

Survey sampling weight was considered in all analyses. All analyses were performed with SPSS (version 24.0; IBM SPSS Statistics, Armonk, NY, USA) and R (version 4.1; R Foundation for Statistical Computing). P < 0.05 was considered statistically significant.

Results

Characteristics of study participants

The characteristics of participants by osteoporosis status are presented in Table 1. There were 2103 participants (1023 women and 1080 men) in the study. As compared with non-osteoporosis individuals, osteoporotic patients were older, thinner, higher calcium intake, and more likely to be non-Hispanic white (P < 0.05). There were no significant differences in DII score between the osteoporosis and non-osteoporosis groups. In women, people with osteoporosis were older and more likely to be Non-Hispanic white than those without osteoporosis (P < 0.05). Women with osteoporosis had a higher mean DII score than those without osteoporosis (P < 0.05). In addition, women and men with BMI < 25 kg/m² had higher proportion of osteoporosis than those with BMI ≥ 25 kg/m² (P < 0.05).

BMD according to DII

The BMD according to DII is shown in Table 2. In women, DII was negatively associated with total hip and femoral neck BMD after adjusting for covariates in model 2 (P < 0.05). In men, DII was negatively associated with lumbar spine BMD (P < 0.05), but no association was observed for total hip and femoral neck BMD (P > 0.05).

Risk of osteoporosis according to DII

The analysis results of the adjusted odds ratios (ORs) for risk of osteoporosis according to the quartiles of DII are shown in Table 3 and Fig. 2. In women, DII was
Table 1 Characteristics of study participants according to osteoporosis in women and men (n(%)/M[P_{25}, P_{75}]/ X ± S)

Variables	Osteoporosis	Without osteoporosis	P-value
All individuals			
N(2103)	196	1907	<0.001
Age (years)	68.5[62.00, 79.75]	62.00[56.00, 69.00]	
Race, N(%)			0.054
Hispanic	42(10.0)	435(11.9)	
Non-hispanic white	92(74.1)	719(69.5)	
Non-hispanic black	23(5.0)	457(10.0)	
Other race	40(11.0)	296(8.5)	
Marital status, N(%)			0.038
Single	90(42.6)	737(31.6)	
Live with others	106(57.4)	1170(68.4)	
BMI, kg/m², N(%)			<0.001
<25	95(45.8)	392(20.2)	
25–30	64(31.0)	699(33.4)	
≥30	37(23.2)	816(46.4)	
Smoker, N(%)			0.566
Never	117(59.2)	1015(55.4)	
Former	50(24.2)	607(31.0)	
Current	29(16.6)	285(13.5)	
Calcium intake (mg/day)^a	469.12[349.47, 579.91]	432.31[330.51, 562.71]	0.017
Serum phosphate (mg/dL)	3.70[3.40, 4.10]	3.70[3.40, 4.00]	0.335
DII	−0.16 ± 0.14	−0.20 ± 0.06	0.537
Women			
N(1023)	156	867	<0.001
Age (years)	69.0[62.0, 79.8]	62.0[56.0, 69.3]	
Race, N(%)			0.015
Hispanic	36(10.7)	206(12.2)	
Non-hispanic white	70(74.4)	311(68.7)	
Non-hispanic black	14(2.6)	220(10.6)	
Other race	36(12.3)	130(8.5)	
Marital status, N(%)			0.626
Single	75(42.2)	416(38.7)	
Live with others	81(57.8)	451(61.3)	
BMI, kg/m², N(%)			0.001
<25	76(45.5)	168(22.0)	
25–30	48(30.5)	289(31.0)	
≥30	32(24.0)	410(47.0)	
Smoker, N(%)			0.742
Never	102(61.2)	589(64.5)	
Former	33(23.3)	184(24.3)	
Current	21(15.5)	94(11.2)	
Calcium intake (mg/day)^a	475.85[349.47, 575.70]	430.23[330.43, 560.10]	0.114
Serum phosphate (mg/dL)	3.70[3.40, 4.00]	3.50[3.20, 3.90]	0.103
DII	−0.13 ± 0.14	−0.18 ± 0.06	0.059
Men			
N(1080)	40	1040	0.085
Age (years)	69.50[61.00, 80.00]	63.00[57.00, 71.00]	
positively associated with the risk of osteoporosis in all models \((P < 0.05) \). The significantly increased ORs (95% CI) of model 2 between the risk of osteoporosis and DII across quartiles 2, 3 and 4 compared with quartile 1 were 2.95 (1.08, 8.09), 5.63 (2.87, 11.04), and 6.14(2.55, 14.78), respectively. No significant association was observed in men \((P > 0.05) \). Association between DII and osteopenia was not found in both women and men \((P > 0.05) \) (Table S2).

After stratifying by age, significant differences were observed in women \((P < 0.05) \) and the OR among those younger than 65 years old was higher than that of those older than 65 years old in Q4 after adjusting for all covariates (Fig. 3 and Table S3). There was no association

Table 1 (continued)

Variables	Osteoporosis	Without osteoporosis	P-value
Race, N(%)			
Hispanic	6(6.3)	229(11.6)	0.445
Non-hispanic white	21(72.7)	408(70.3)	
Non-hispanic black	9(16.2)	237(9.5)	
Other race	4(4.8)	166(8.5)	
Marital status, N(%)			0.149
Single	15(44.6)	321(24.9)	
Live with others	25(55.4)	719(75.1)	
BMI, kg/m², N(%)			0.021
<25	19(47.1)	224(18.5)	
25–30	16(33.3)	410(35.7)	
≥30	5(19.6)	406(45.9)	
Smoker, N(%)			0.686
Never	15(49.5)	426(46.8)	
Former	17(28.2)	423(37.5)	
Current	8(22.2)	191(15.7)	
Calcium intake (mg/day)#	420.24[338.65, 524.28]	398.29[304.56, 526.23]	0.169
Serum phosphate (mg/dL)	3.60[3.30, 3.90]	3.40[3.10, 3.80]	0.435
DII	−0.05 ± 0.29	0.26 ± 0.05	0.198

#Data were adjusted for energy intake (kcal/day)

Table 2 Adjusted \(\beta \) [95% CI] from multivariable linear regression models between DII and BMD

BMD	Women	Men		
Total hip BMD (g/cm²)				
model 1	−0.007(−0.012, −0.001)	0.021	−0.007(−0.016, 0.002)	0.102
model 2	−0.009(−0.014, −0.003)	0.005	−0.005(−0.015, 0.004)	0.253
Lumbar spine BMD (g/cm²)				
model 1	−0.006(−0.016, 0.005)	0.302	−0.021(−0.035, −0.007)	0.005
model 2	−0.009(−0.020, 0.001)	0.085	−0.020(−0.034, −0.007)	0.006
Femoral neck BMD (g/cm²)				
model 1	−0.007(−0.013, −0.001)	0.032	−0.004(−0.013, 0.005)	0.335
model 2	−0.009(−0.015, −0.002)	0.011	−0.003(−0.013, 0.007)	0.495

\(\beta \) partial regression coefficient, CI confidence interval, BMD bone-mineral density

Model 1: Adjusted for age, race, BMI

Model 2: Adjusted for marital status, smoker, calcium and serum phosphate in addition to model 1
Table 3 Associations between DII and osteoporosis: multivariable logistic regression analyses

Variables	DII OR (95% CI)	P for trend			
	Q1(≤−1.24)	Q2(−1.24−−0.00)	Q3(−0.00−1.30)	Q4(1.30+)	
Women					
Model 1	reference	2.56(0.98, 6.65)	4.77(2.44, 9.35)	4.72(2.03, 10.98)	<0.001
Model 2	reference	2.95(1.08, 8.09)	5.63(2.87, 11.04)	6.14(2.55, 14.78)	<0.001
Men					
Model 1	reference	2.23(0.45, 11.09)	0.28(0.06, 1.33)	0.73(0.17, 3.09)	0.121
Model 2	reference	2.45(0.49, 12.33)	0.24(0.04, 1.40)	0.82(0.16, 4.23)	0.306

OR odds ratio, CI confidence interval
Model 1: Adjusted for age, race, BMI
Model 2: Adjusted for marital status, smoker, calcium, and serum phosphate in addition to model 1

Fig. 2 Forest plot of stratified analyses of the associations between Dietary Inflammatory Index (DII) and osteoporosis

Fig. 3 Forest plot of age-stratified analyses of the associations between Dietary Inflammatory Index (DII) and osteoporosis
in men ($P > 0.05$) (Fig. 3 and Table S4). Subgroups analysis by BMI is shown in Fig. 4 and Tables S5 and S6. In the subgroup BMI < 25 kg/m², the association between DII and osteoporosis was found in women ($P < 0.05$), but not in men ($P > 0.05$).

Discussion

Our results revealed that higher DII, indicating more pro-inflammatory diets, were associated with higher osteoporosis risk in women, while no association was found in men. An increased DII was associated with lower total hip and femoral neck BMD in women. There was a negative association between DII and lumbar spine BMD in men.

Consistent with previous findings, our study suggested that higher inflammation levels lead to higher osteoporosis rate and lower BMD [22–26]. Pro-inflammatory diets could contribute to poor musculoskeletal health by several mechanisms [18]. For instance, the effect of pro-inflammatory diet on osteoclast activity increases systemic inflammation [27]. IL-1 and IL-6 have uncoupled bone remodeling by enhancing bone resorption and suppressing bone formation [26]. Moreover, existing studies demonstrated that inflammatory cytokines directly mediate bone loss by stimulating the formation and maturation of osteoclast or indirectly by promoting the release of ligand-RANKL [28].

A large number of studies have indicated that diet, as the key source of biologically active ingredients, could mediate inflammation response [29]. A previous study found that the diet with high inflammatory components was significantly associated with an increased risk of osteoporosis in women, but not in men [5]. A study including both men and women aged 45–79 years indicated that a more pro-inflammatory diet was associated with higher incidence of fractures in women, but not in men [24], which was consistent with our findings. However, another study in China reported that a pro-inflammatory diet was associated with a higher risk of osteoporotic hip fracture in both men and women [30]. Despite this fact, most evidence has been observed in postmenopausal women [6, 22, 23]. A study has shown that menopause increased the risk of osteoporosis and fracture [31]. 80% of individuals with osteoporosis are women; among the 196 patients with osteoporosis in our study, 156 (79.6%) were women. This is largely due to the marked loss in BMD that begins at menopause, secondary to the marked decrease in estrogen related to the loss of ovarian function [32]. Moreover, estrogen plays a key role in regulating the production and activity of inflammatory cytokines like IL-1, IL-6 and TNF-α [33]. Previous studies have also suggested that due to the influence of sex hormones and genetic difference between men and women, women account for the majority of patients with osteoporosis, which is an age-related degenerative disease [34, 35]. Sex hormones alter the immune response, resulting in different

![Fig. 4 Forest plot of BMI stratified analyses of the associations between Dietary Inflammatory Index (DII) and osteoporosis](image_url)
disease phenotypes according to sex [36]. Therefore, further investigations are needed to clarify the association between DII and the risk of osteoporosis in men.

In subgroup analysis by age, DII was positively associated with osteoporosis in women. However, after adjusting for all covariates, the OR of those <65 years old was higher than that of those ≥65 years old, possibly due to the rapid bone loss in the first few years of post-menopause [37]. In the analyses of BMI stratified subgroups, we found that DII was positively linked with osteoporosis in women when BMI < 25 kg/m². According to the previous study, a BMI of 25 kg/m² was identified as the reference point, below which, the risk of hip and any bone osteoporotic began to increase [38].

With the in-depth exploration of the mechanism of bone diseases, studies on inflammatory and BMD at different sites have been leaping forward [13]. A meta-analysis study indicated that diets with high pro-inflammatory components might reduce the BMD of lumbar spine and total hip [13], and another study reported that the higher DII score was associated with a decrease in hip BMD in women [22].

Our study found that increased DII was associated with lower total hip and femoral neck BMD in women. These discrepancies regarding the affected area could be partly explained due to differences in the relationship between BMD with bone mineral content and bone area size [39]. In addition, there was a negatively association between DII and BMD in lumbar spine in men. This may be due to the whole bone strength depends on the relative proportions of cortical and trabecular tissue [40–42]. Males had a relatively higher proportion of trabecular bone at the lumbar spine, a lower proportion of cortical bone, and greater bone loss in the trabecular bone compared with other sites [43–45]. The above associations varied by sex as well as by site may relate to differences between men and women in nutrient intake, vertebral structure, spinal loading, and factor-of-risk [46].

More prospective studies involving populations of diverse genders are expected to verify the universality of the results.

There was no association between DII and osteopenia in our study. There may be some reasons: 1) Osteopenia is a term to define bone density that is not normal but also not as low as osteoporosis, thus, inflammation may not have a significant impact on the outcome. 2) The uncertainty of dietary intake and the interaction between different dietary nutrients may affect the association between DII and osteopenia. Dietary information was based on one 24HRs self-report which may not account for day-to-day variability in diet and may lead to imprecise estimates [47]. In addition, mixtures of multiple nutrients, as well as their interactions, may also influence this association [48]. 3) In addition to diets, aging, genetics and other hormonal factors also play a crucial role in bone mass regulation and preservation [49].

Previous studies have mostly focused on the relationship between specific nutrients or dietary patterns and the risk of osteoporosis or BMD. It was reported that intake of red meat and butter might increase the concentration of CRP, E-selectin, and soluble vascular cell adhesion molecule, reflecting rising systemic inflammation [29]. Another study of 3236 Scottish women aged 50–59 found that eating more fruits and vegetables might reduce bone loss and dietary patterns rich in processed foods were linked with reduced BMD [50]. These studies may have some limitations. On one hand, the real effects of the food or nutrient may be weakened or aggravated because of dietary correlations [51]. On the other hand, adherence to a specific diet pattern may not be a practical choice for most people due to differences in dietary culture and availability [52]. DII considers the full spectrum of food ingredients that regulate inflammation. It reflects the relationship between diet and BMD more accurately than individual nutrients [51]. In addition, it is more reliable to assess the quantitative relationship between diet quality and osteoporosis, rather than dietary patterns, which are not quantitative [25].

There were some limitations in this study. First, the causality deduction between DII and BMD was limited, because it was a cross-sectional study. Second, even if BMD represented the accumulation of bone changes that reflected long-term diet exposure for many years, the DII was calculated using 24HRs recall data. Thirds, due to the differences between the individuals being included and excluded, there might be potential selection bias. Fourth, there were too few cases of osteoporosis in men to make precise conclusions. Despite these limitations, this study has several strengths. First, our data were adjusted for several demographic factors, lifestyles, and dietary factors as confounders. Second, the data in this study were based on a nationally representative random sample of the general population of US, so we could extrapolate our results to the general population.

In conclusion, diets with higher inflammatory potentials were significantly associated with increased risk of osteoporosis in women, though not significantly in men. Increased DII was associated with lower total hip, and femoral neck BMD in women. In men, DII was only negatively correlated with BMD at lumbar spine. Therefore, the intake of foods with less inflammation to prevent osteoporosis has become increasingly important.

Author contributions SZ and WG: Data curation, Conceptualization, Methodology, Software, Formal analysis, Validation, Writing - Original draft preparation, Writing - review & editing. JL, MS, JF, and LT: Writing - Review & Editing, Investigation. YH, YW, YZ, and YX, Resources, Supervision. SY and LJ: Writing - Review & Editing.
Supervision, Conceptualization, Project administration. All authors agreed with the final version of the manuscript.

Funding This research work was conducted with financial support from the Natural Science Foundation of Science and Technology Development of Jilin Province, China (Grant No. 20180101129JC).

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

References

1. J.A. Kanis, C. Cooper, R. Rizzoli, J.-Y. Register, European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 30, 3–44 (2019)

2. S. Xue, O. Kemal, M. Lu, L.M. Lix, W.D. Leslie, S. Yang, Age at attainment of peak bone mineral density and its associated factors: The National Health and Nutrition Examination Survey 2005–2014. Bone 131, 115163 (2020)

3. N.E. Lane, Epidemiology, etiology, and diagnosis of osteoporosis. Am. J. Obstet. Gynecol. 194(Suppl 2), S3–11 (2006)

4. S.W. Wade, C. Strader, L.A. Fitzpatrick, M.S. Anthony, C.D. O’Malleya, Estimating prevalence of osteoporosis: examples from industrialized countries. Arch. Osteoporos. 9, 182 (2014)

5. H.S. Kim, C. Sohn, M. Kwon, W. Na, N. Shivappa, J.R. Hébert et al. Positive association between dietary inflammatory index and the risk of osteoporosis: Results from the KoGES health examinee (HEXA) cohort study. Nutrients 10, 1999 (2018)

6. W. Na, S. Park, N. Shivappa, J.R. Hébert, M.K. Kim, C. Sohn, Association between inflammatory potential of diet and bone-mineral density in Korean postmenopausal women: Data from fourth and fifth Korea national health and nutrition examination surveys. Nutrients 11, 885 (2019)

7. J. Thulkar, S. Singh, S. Sharma, T. Thulkar, Preventable risk factors for osteoporosis in postmenopausal women: systematic review and meta-analysis. J. Mid-Life Health 7, 108–113 (2016).

8. R. Rizzoli, E. Biver, T.C. Brennan-Speranza, Nutritional intake and bone health. Lancet Diabetes Endocrinol. 9, 606–621 (2021)

9. P.C. Calder, R. Albers, J.M. Antoine, S. Blum, R. Bourdet-Sicard, G.A. Ferns et al. Inflammatory diet increases circulating inflammatory cytokines in the bone. Eur. J. Clin. Invest. 41, 1361–1366 (2011)

10. G. Schett, Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur. J. Clin. Investig. 41, 1361–1366 (2011)

11. Z. Deng, W. Hu, H. Ai, Y. Chen, S. Dong, The dramatic role of IFN family in aberrant inflammatory osteolysis. Curr. Gene Ther. 21, 112–129 (2020)

12. N. Shivappa, S.E. Steck, T.G. Hurley, J.R. Hussey, J.R. Hébert, Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 17, 1689–1696 (2014).

13. Y. Fang, J. Zhu, J. Fan, L. Sun, S. Cai, C. Fan et al. Dietary Inflammatory Index in relation to bone mineral density, osteoporosis risk and fracture risk: a systematic review and meta-analysis. Osteoporos. Int. 32, 633–643 (2021)

14. M. Mazidi, N. Shivappa, M.D. Wirth, J.R. Hébert, D.P. Mikhailidis, A.P. Kengne et al. Dietary inflammatory index and cardiovascular risk in US adults. Atherosclerosis 276, 23–27 (2018)

15. N. Shivappa, J.R. Hébert, E.R. Rietzschel, M.L. de Buyzere, M. Langlois, E. Debruyne et al. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br. J. Nutr. 113, 665–671 (2015)

16. N. Shivappa, S.E. Steck, T.G. Hurley, J.R. Hussey, Y. Ma, L.S. Ockene et al. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 17, 1825–1833 (2014)

17. M. Mazidi, N. Shivappa, M.D. Wirth, J.R. Hébert, H. Vatnaparast, A.P. Kengne, The association between dietary inflammatory properties and bone mineral density and risk of fracture in US adults. Eur. J. Clin. Nutr. 71, 1273–1277 (2017)

18. M.M.C. Cervo, D. Scott, M.J. Seibel, R.G. Cumming, V. Nag Nathan, F.M. Blyth et al. Proinflammatory diet increases circulating inflammatory biomarkers and falls risk in community-dwelling older men. J. Nutr. 150, 373–381 (2020)

19. M.D. Wirth, N. Shivappa, J.B. Burch, T.G. Hurley, J.R. Hébert, The dietary inflammatory index, shift work, and depression: results from NHANES. Health Psychol. 36, 760–769 (2017)

20. H.P. Dimai, Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases. Bone 104, 39–43 (2017)

21. A.C. Looker, H.W. Wahner, W.L. Dunn, M.S. Calvo, T.B. Harris, S.P. Heyse et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos. Int. 8, 468–489 (1998)

22. T. Orchard, V. Yildiz, S.E. Steck, J.R. Hébert, Y. Ma, J.A. Cauley et al. Dietary inflammatory index, bone mineral density, and risk of fracture in postmenopausal women: results from the women’s health initiative. J. Bone Miner. Res. 32, 1136–1146 (2017)

23. R. Li, W. Zhan, X. Huang, J. Wang, S.S. Lv, L. Liang et al. Associations between Dietary Inflammatory Index (DII) and bone health among postmenopausal women in the United States. Int. J. Gynecol. 158, 663–670 (2021)

24. N. Veronese, B. Stubbs, A. Koyanagi, J.R. Hébert, C. Cooper, M.G. Caruso et al. Pro-inflammatory dietary pattern is associated with fractures in women: an eight-year longitudinal cohort study. Osteoporos. Int. 29, 143–151 (2018)

25. Y. Fan, S. Ni, H. Zhang, Association between Healthy Eating Index-2015 total and component food scores with osteoporosis in middle-aged and older Americans: a cross-sectional study with U.S. National Health and Nutrition Examination Survey. Osteoporos. Int. 33, 921–929 (2022)

26. F. Lui, L.A. Córdova, T. Pajarinen, T.H. Lin, Z. Yao, S.B. Goodman, Inflammation, fracture and bone repair. Bone 86, 119–130 (2016)

27. H. Takayanagi, Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292–304 (2007)

28. S. Wagner, A. Fahleiter-Prammer, Levels of osteoprotegerin (OPG) and receptor activator for nuclear factor kappa B ligand (RANKL) in serum: are they of any help? Wiener Med. Wochenschr. 160, 452–457 (2010)

29. A. Esmailizadeh, M. Kiamaei, Y. Mehrabi, L. Azadabakht, F.B. Hu, W.C. Willett, Dietary patterns and markers of systemic inflammation among Iranian women. J. Nutr. 137, 992–998 (2007)

30. Z.Q. Zhang, W.T. Cao, N. Shivappa, J.R. Hébert, B.L. Li, J. He et al. Association between diet inflammatory index and osteoporotic hip fracture in elderly Chinese population. J. Am. Med. Dir. Assoc. 18, 671–677 (2017)

31. S. Cai, H. Yu, Y. Li, X. He, L. Yan, X. Huang et al. Bone mineral density measurement combined with vertebral fracture assessment increases diagnosis of osteoporosis in postmenopausal women. Skelet. Radiol. 49, 273–280 (2020).

32. G.R. Mundy, Osteoporosis and Inflammation. Nutr. Rev. 65(12 Pt 2), S147–51 (2007)

33. E.R. Gertz, N.E. Silverman, K.S. Wise, K.B. Hanson, D.L. Alekel, J.W. Stewart et al. Contribution of serum inflammatory markers to changes in bone mineral content and density in postmenopausal women: a 1-year investigation. J. Clin. Densitom. 13, 277–278 (2010)
34. G.J.A. Casimir, J. Duchateau, Gender differences in inflammatory processes could explain poorer prognosis for males. J. Clin. Microbiol. 49, 478–479 (2011)
35. R.A. Iseme, M. Mecevoy, B. Kelly, L. Agnew, F.R. Walker, J. Attia. Is osteoporosis an autoimmune mediated disorder? Bone Rep. 7, 121–131 (2017)
36. D. Fairweather. Sex differences in inflammation during atherosclerosis. Clin. Med. Insights: Cardiol. 8(Suppl 3), 49–59 (2015)
37. T. Douchi, S. Kosha, H. Uto, T. Oki, M. Nakae, N. Yoshimitsu et al. Precedence of bone loss over changes in body composition and body fat distribution within a few years after menopause. Maturitas 46, 133–138 (2003)
38. C. de Laet, J.A. Kanis, A. Odén, H. Johanson, O. Johnell, P. Delmas et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos. Int. 16, 1330–1338 (2005)
39. H.W. Deng, F.H. Xu, K.M. Davies, R. Henney, R.R. Recker. Differences in bone mineral density, bone mineral content, and bone areal size in fracturing and non-fracturing women, and their interrelationships at the spine and hip. J. Bone Miner. Res. 20, 358–366 (2002)
40. V.V. Shanbhogue, K. Brixen, S. Hansen, Age- and sex-related changes in bone microarchitecture and estimated strength: a three-year prospective study using HRpQCT. J. Bone Miner. Res. 31, 1541–1549 (2016)
41. B.A. Christiansen, D.L. Kopperdahl, D.P. Kiel, T.M. Keaveny, M.L. Bouxsein. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J. Bone Miner. Res. 26, 974–983 (2011)
42. M.J. Silva, T.M. Keaveny, W.C. Hayes. Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22, 140–150 (1997)
43. E.J. Samelson, B.A. Christiansen, S. Demissie, K.E. Broe, Q. Louie-Gao, L.A. Cupples et al. QCT measures of bone strength at the thoracic and lumbar spine: the Framingham study. J. Bone Miner. Res. 27, 654–663 (2012)
44. C. Brown. Osteoporosis: staying strong: an improved understanding of bone loss can help women reduce their risk of fractures as they age. Nature 550, S15–S17 (2017)
45. E. Seeman. Pathogenesis of bone fragility in women and men. Lancet 359, 1841–1850 (2002)
46. A.G. Bruno, K.E. Broe, X. Zhang, E.J. Samelson, C.A. Meng, R. Manoharan et al. Vertebral size, bone density, and strength in men and women matched for age and areal spine BMD. J. Bone Miner. Res. 29, 562–569 (2014)
47. P.P. Basiotis, S.O. Welsh, F.J. Cronin, J.L. Kelsay, W. Mertz. Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. J. Nutr. 117, 1638–1641 (1987)
48. M. Vajdi, M.A. Farhangi, L. Nikniaz. Diet-derived nutrient patterns and components of metabolic syndrome: a cross-sectional community-based study. BMC Endocr. Disord. 20, 69 (2020)
49. Y.Z. Liu, Y.J. Liu, R.R. Recker, H.W. Deng. Molecular studies of identification of genes for osteoporosis: the 2002 update. J. Endocrinol. 177, 147–196 (2003)
50. A.C. Hardcastle, L. Aucott, W.D. Fraser, D.M. Reid, H.M. MacDonald. Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur. J. Clin. Nutr. 65, 378–385 (2011)
51. N. Shivappa, J.R. Hebert, M. Karamati, S.E. Shariati-Bafghi, B. Rashidkhani. Increased inflammatory potential of diet is associated with bone mineral density among postmenopausal women in Iran. Eur. J. Nutr. 55, 561–568 (2016)
52. R. da Silva, A. Bach-Faig, B. Raidó Quintana, G. Buckland, M.D. Vaz De Almeida, L. Serra-Majem. Worldwide variation of adherence to the Mediterranean diet, in 1961–1965 and 2000–2003. Public Health Nutr. 12, 1676–1684 (2009)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.