The Effects of the WISE/\textit{GALEX} Photometry for the SED-Fitting with M31 Star Clusters and Candidates

Zhou Fan1 & Song Wang1

zfan@bao.ac.cn

ABSTRACT

Spectral energy distribution (SED) fitting of stellar population synthesis models is an important and popular way to constrain the physical parameters — e.g., the ages, metallicities, masses for stellar population analysis. The previous works suggest that both blue-bands and red-bands photometry works for the SED-fitting. Either blue-domained or red-domained SED-fitting usually lead to the unreliable or biased results. Meanwhile, it seems that extending the wavelength coverage could be helpful. Since the Galaxy Evolution Explorer (\textit{GALEX}) and Wide-field Infrared Survey Explorer (WISE) provide the FUV/NUV and mid-infrared \textit{W}1/\textit{W}2 band data, we extend the SED-fitting to a wider wavelength coverage. In our work, we analyzed the effect of adding the FUV/NUV and \textit{W}1/\textit{W}2 band to the optical and near-infrared \textit{UBVRIJHK} bands for the fitting with the Bruzual \& Charlot 2003 (BC03) models and \textit{galev} models. It is found that the FUV/NUV bands data affect the fitting results of both ages and metallicities much more significantly than that of the WISE \textit{W}1/\textit{W}2 band with the BC03 models. While for the \textit{galev} models, the effect of the WISE \textit{W}1/\textit{W}2 band for the metallicity fitting seems comparable to that of \textit{GALEX} FUV/NUV bands, but for age the effect of the \textit{W}1/\textit{W}2 band seems less crucial than that of the FUV/NUV bands. Thus we conclude that the \textit{GALEX} FUV/NUV bands are more crucial for the SED-fitting of ages and metallicities, than the other bands, and the high-quality UV data (with high photometry precision) are required.

Subject headings: galaxies: individual (M31) — galaxies: star clusters — globular clusters: general — star clusters: general

1Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, China
1. Introduction

SED-fitting of the simple stellar population (SSP) models is an important method to estimate the physical parameters, e.g., the ages, metallicities and masses of star clusters by the χ^2_{min} techniques. It is based on the precise multi-band photometry and it has been applied in great number of recent works for the star clusters in the extra-galaxies. de Grijs et al. (2003) fit the SEDs from broad-band Ultra-violet (UV), optical to NIR observations of *Hubble Space Telescope* (*HST*) to derive age, metallicity and extinction of star cluster system of NGC 3310. Bastian et al. (2005) constrain the age, mass, extinction, and effective radius of 1152 star clusters in M51 by fitting the SEDs from the *HST* imaging from ultraviolet to near infrared, with Galaxy Evolutionary Synthesis Models (*galev*; Lilly & Fritze-v. Alvensleben 2006; Kotulla et al. 2009), which considers the gaseous emission lines as well as continuum emission and thus it is important for the young star clusters. Based on the Beijing-Arizona-Taiwan-Connecticut (BATC) multi-color photometry system, Fan et al. (2006); Ma et al. (2007, 2009, 2011, 2012); Wang et al. (2010, 2012) have done series of work on the SED-fitting of M31 star clusters with the SSP models such as Bruzual & Charlot (2003) models and *galev* models. In order to improve the fitting results and partly break the age-metallicity degeneracy, other photometry bands, such as the *UBVRI* broadband, Two Micron All Sky Survey (2MASS) *JHK* band, Galaxy Evolution Explorer (*GALEX*) near-ultraviolet (NUV) and far-ultraviolet (FUV), even the Sloan Digital Sky Survey (SDSS) *ugriz* bands are applied for the fitting, especially for the UV passband, (see, e.g., Kaviraj et al. 2007; Bianchi 2009). Fan et al. (2010); Fan & de Grijs (2012, 2014) also fit the SEDs of M31 and M33 star clusters in the *UBVRIJHK* bands and *ugriz* band with *Bruzual & Charlot* (2003) models/*galev*/BS-SSP models and PARSEC ISOCHRONES. Similarly, Kang et al. (2012) performed the photometry with *GALEX* NUV and FUV imaging data of star clusters and fitted the SED in up to 16 passbands ranging from FUV to NIR with data gathered from the literature values and the Revised Bologna Catalog (RBC v4) and they obtained ages and masses of 176 young (≤ 1 Gyr) clusters and 446 old (> 1 Gyr) clusters.

Since WISE provides near- and mid-infrared W1/W2 (3.4μ/4.6μ) band data respectively, we could extend to a wider wavelength coverage for the SED-fitting and check the effect of the WISE bands. As a matter of fact, in the similar bands, *Spitzer*- Infrared Array Camera (IRAC) colors has been applied for the stellar population analysis. For instance, Peletier et al. (2012) investigated the ([3.6]-[4.5]) color for the stellar populations in the early-type galaxies and found that the color is likely to be a good metallicity indicator: the color becomes bluer with increasing metallicity, which is attributed to the increasing importance of a CO absorption feature in the [4.5] bandpass. Barmby & Jalilian (2012) also analyzed the *Spitzer* IRAC colors with several stellar population synthesis models for the massive, old GCs in M31 and it is found that although the colors become slightly bluer with
age, the effect is quite small, just a few tenths of a magnitude. Further, the \([3.6]-[4.5]\) color
dose not show apparent relation with metallicity either for the models or for the cluster data. Meidt et al. (2012) found that the independent component analysis (ICA) technique with the
\([3.6]-[4.5]\) color can isolate the old stellar light from contaminant emission in a sample of six
disk galaxies. After removing the emission from evolved red objects with low mass-to-light
ratios, it is found that the underlying old distribution of light with \([3.6]-[4.5]\) colors is consistent
with the colors of K and M giants. Meidt et al. (2014) also found that the \([3.6]-[4.5]\) color is bluer at higher metallicity due to the CO absorption in the \([4.5]\) band for the giant
stars, but it is not very sensitive to age. Norris et al. (2014) also found that a linear relation
between the \(W1-W2\) color and metallicity for the nearby GCs and the early-type galaxies
although the scatter is large and only the models considering the effect of the increasing
CO absorption in the W2 band can successfully reproduce the observed trend. The \(W1-W2\) color is insensitive to age for age > 2 Gyr. It is also found that the mass-to-light ratio \(M/L\)
for old stellar population at 3.6 \(\mu m\) varies modestly with the age and metallicity (see, e.g.,
Querejeta et al. 2015), which is also confirmed by Röck et al. (2015), who found that both
\([3.6]-[4.5]\) color and \(W1-W2\) become only 0.01-0.02 mag redder with ages for ages above 2
Gyr and it becomes up to 0.04 mag bluer with increasing metallicity. Norris et al. (2016)
found that the \(W1\) band is an exceptional tracer of stellar mass for the quiescent/early-type
galaxies and it is highly recommended.

In fact, the effects and comparisons of different combinations of passbands for the SED
fitting have been studies in many previous works. Anders et al. (2004) investigate effects
cauised by the number of passbands, different passband combinations, observational errors
and non-continuous models, by fitting the SEDs of artificial star clusters with evolutionary
synthesis models with different set and number of passbands from \(UBVRIJH\). They found
that the \(U\) and \(B\) band are most important, and \(V\) and near-infrared are also helpful for
the fitting the age, metallicity, extinction and mass. As we mentioned above, de Grijs et al.
(2003) also investigated the effects by fitting the SEDs of NGC 3310 star clusters with differ-
ent passband combinations from UV to NIR observations of \(HST\) and they found that the
blue-selected passband combinations lead to a slightly bias towards lower ages but the red-
dominated passband combinations, especially dominated by NIR filters, should be avoided.
de Grijs et al. (2005) analyzed the systematic uncertainty of the SED-fitting with \(HST\)
imaging observations in UV+optical+NIR band and conclude that as extensive a wave-
length coverage as possible is required to obtain robust age and mass estimates for the
SED-fittings of various models with reasonable uncertainties. Kannappan & Gawiser (2007)
also fit different passband combination of the optical and NIR photometry with BC03 and
Maraston models and compared the stellar+gas mass with the dynamical mass in different
class of galaxies.
In this paper, we focus on the analysis and comparison of the parameters of age and metallicity, which could be derived directly from the SED-fit, while the mass is estimated with mass-to-light ratio M/L and it depends on the estimated age and metallicity, which introduce the uncertainties again. Besides, the number of works for constraining masses of M31 star clusters is relatively less than that of ages and metallicities (even no masses included in the RBC catalog), which makes it more difficult to compare with, although WISE W1 is an exceptional tracer of mass after all. We compare the results of SED-fit with different combinations of the photometry bands, from GALEX FUV, NUV, to the JHK and WISE bands of the M31 star clusters. This paper is organized as follows. In Section 2 we describe the stellar population synthesis models applied in our work and the convolution of the AB magnitudes. In Section 3 we introduce our sample of M31 GCs and the fitting methods. In Section 4 we give the fitting results and comparisons of the ages and metallicities based on χ^2_{min} fitting, using various models and methods. Finally, we summarize our work and give the conclusions in Section 5.

2. The Models and χ^2_{min}-fitting Method

In our work, two stellar population synthesis models are used.

1. The Bruzual & Charlot (2003, hereafter BC03) stellar population synthesis models provide SEDs of various physical parameters, such as ages, metallicities and masses. The stellar evolutionary tracks of Padova 1994 and 2000 Padova are given, and the Initial Mass Functions (IMFs) of Salpeter (1955) and Chabrier (2003) IMFs are provided. The wavelength ranges are from 91 Å to 160 µm. For the Padova 1994 tracks, models of metallicities for $Z = 0.0001, 0.0004, 0.004, 0.008, 0.02,$ and 0.05 are provided, as for the Padova 2000 tracks, models of metallicities ($Z = 0.0004, 0.001, 0.004, 0.008, 0.019,$ and 0.03) are given. Since the metallicity steps are too large for the fitting, we interpolate the models to attain smaller intervals of the parameter space, i.e. 51 metallicities with equal steps in logarithmic space) to obtain the subtle results. Meanwhile, 221 ages 0-20 Gyr in unequally spaced time steps are provided. Different combinations of Padova 1994/2000 stellar evolutionary tracks and IMFs are computed for the models. However, it is known that for a different IMF dose not affect the results including the uncertainties more significantly than the stellar evolutionary track dose. We should note that the best-fitting metallicity range for the Padova 2000 tracks is not as wide as that obtained from the Padova 1994 tracks due to the metallicity limitations of the models.

2. The galev models, which can be applied to constrain the chemical evolution of the gas and the spectral evolution of the stellar population in star clusters or galaxies simulta-
neously. The stellar evolutionary tracks/isochrones Padova and Geneva are provided, and in our work we adopt the Padova evolutionary track. The models not only give the photometry but also provide the Lick absorption-line indices for different stellar populations with different star-formation rates or even the SSPs for the single burst. For the ages, 5001 values 4 Myr - 20 Gyr provide by the models, and metallicities of $Z = 0.0001, 0.0004, 0.001, 0.004, 0.008, 0.02,$ and 0.05 are given, for which the grid step is too large. Thus we also interpolate the metallicities to a grid of 51 values which lead to more accurate results. The model spectra coverages the wavelength from XUV at ~ 90 Å to the FIR 160 μm, with a spectral resolution of 20 Å in the UV-optical and 50-100 Å in the NIR wavelength range. Then we convolve the model spectra with the filter transmissions and obtain the model magnitudes. Nevertheless as Fan & de Grijs (2012) pointed out, the galev models usually predict younger ages than other models, like BC03 and works better for young stellar populations.

In fact, Norris et al. (2014) found that many models, including the BC03 models and the galev models, fail to fit the observed W_1-W_2 colors of stellar populations dramatically around solar metallicity. The observed scatter is too large to make the W_1-W_2 color to be one metallicity indicator. These two models can give the correct zeropoint in the W_1 band, however they substantially underpredict the absolute zeropoint in the W_2 band. Röck et al. (2015) also suggest that the galev models predict redder color by about 0.10-0.13 of absolute values of the Spitzer ([3.6]-[4.5]) than that of their SSP models due to the theoretical stellar atmospheres and not considering the CO absorption in the 4.5 μm. Fortunately it is also well known that in continuing the trend for IR photometry, the WISE W_1 and W_2 bands have significantly reduced sensitivity to age and metallicity (see the discussion in Sect. III). Therefore it seems that the determination of age and metallicity is unaffected by the use of WISE photometry for the BC03 and galev models.

For both of the galev and BC03 SSP models, the theoretical spectra can be convolved to magnitudes in the AB system using the filter-response functions in FUV/NUV/UBVRIJHK bands and W_1/W_2 bands (Jarrett et al., 2011). The AB magnitudes of synthesis models are given by,

$$m_{AB}(t) = -2.5 \log \frac{\int_{\lambda_1}^{\lambda_2} d\lambda \; \lambda \; F_{\lambda}(\lambda, t) \; R(\lambda)}{\int_{\lambda_1}^{\lambda_2} d\lambda \; R(\lambda)} - 48.60,$$

where $R(\lambda)$ is filter-response function and $F_{\lambda}(\lambda, t)$ is the flux, which is a function of wavelength (λ) and evolutionary time (t). λ_1 and λ_2 are the lower and upper wavelength cutoffs of the respective filter.
3. The Cluster Sample Selection and the χ^2_{min}-Fitting

In our work, we collected the photometry of M31 star clusters and candidates from ultraviolet bands to the middle infrared bands for the SED-fitting. For the photometry of FUV and NUV bands, i.e., Galaxy Evolution Explorer (GALEX) data, the $UBVRI$ broad band data and Two Micron All Sky Survey (2MASS) JHK band data are from Revised Bologna Catalogue of M31 GCs and candidates (RBC v5, Galleti et al. 2004, 2006, 2009). Since the catalog also includes the non-cluster objects, such as stars or background galaxies, which may contaminate our fitting results, we then exclude these objects from the catalog and only include the star clusters and candidates in our sample, namely $f=1, 2$ or 8 in RBC. In the catalog, the photometry only from the ultraviolet bands to the near-infrared bands (i.e., FUV and NUV bands of GALEX data, the $UBVRI$ band and 2MASS JHK bands) are included. The RBC catalog dose not include the middle infrared photometry. Fortunately, All WISE Source Catalog of Infrared Processing and Analysis Center (IPAC) Infrared Science Archive (IRSA) provides the WISE (Wright et al. 2010) profile-fit photometry and curve-of-growth corrected “standard-aperture” photometry in $W1$, $W2$, $W3$, $W4$ bands, of which the central wavelengths are 3.4, 4.6, 12 and 22 µm. Since the profile-fit photometry provides the most accurate measurements for unresolved objects, we adopted it for our SED-fitting. The standard deviation of WISE magnitudes (limiting magnitudes) of 11 frames for the S/N of 5 are 17.11, 15.66, 11.40, and 7.97 mag in $W1$, $W2$, $W3$, $W4$ bands (Wright et al. 2010). It suggests that the sensitivity of $W3$, $W4$ bands are not high enough for the fitting of our M31 star cluster sample. Therefore, Table 1 only lists the WISE photometry associated with the uncertainties in $W1$, $W2$ bands, which are actually applied in our work. For the convenience of the fitting and comparisons, we only select the star clusters and candidates in RBC with the available photometry in all bands, namely from GALEX FUV, NUV, broadband $UBVRI$, 2MASS JHK as well as the WISE $W1$, $W2$ bands. Finally we have only 123 star clusters and candidates in our sample. The photometry of WISE $W1$ and $W2$ bands are listed in Table 1 which are in the the Vega system.

The GALEX FUV, NUV data of the RBC are actually from the literature works of Rev et al. (2007) and Kang et al. (2012). For the former work, the authors applied the DAOPHOT II package (Stetson 1987) to perform the photometry in both FUV and NUV bands within a radius of 3 pixel ($4''.5$) for each point source. In FUV and NUV bands, 5-16 and 19-44 isolated stars per frame were applied for the aperture corrections. Kang et al. (2012) adopted the same photometry method and parameters as done by Rev et al. (2007).

1http://www.bo.astro.it/M31/
2http://irsa.ipac.caltech.edu/Missions/wise.html
While for the WISE W_1, W_2, the azimuthally averaged PSF with FWHMs of 6′′.1 and 6′′.4 (Wright et al. 2010). Thus, although the background of the galaxy is complicated and pixel scale is relatively large, the background estimated is just in a very small region, slightly larger than the photometry aperture. Therefore, it is relatively uniform for the background flux subtraction and it dose not affect much of the photometry accuracy, which also can be seen from the photometry errors.

For the convenience of model SED-fitting, we convert all the photometry of Vega system to AB system in our sample for the bands from $UBVRIJHK$ and W_1, W_2 bands using the Kurucz (1992) SEDs. As we know, reddening values could affect SED fitting significantly. Although Schlafly & Finkbeiner (2011) recalibrate the infrared-based dust map of Schlegel, Finkbeiner & Davis (1998) with SDSS photometry to higher accuracy even outside of the SDSS footprint, they only consider the Galactic extinction. For reddening correction of M31 star clusters, and the reddening values of M31 galaxy should be considered as well. In our work, reddening values for our sample star clusters were adopted from Caldwell et al. (2011) and Fan et al. (2008), in higher priority of former work as their redenings of star clusters were derived from spectroscopy. For the unavailable ones not found in the literature works above, we adopted $E(B−V) = 0.24$ mag instead, which is the average reddening value of Caldwell et al. (2011), as the representative reddening value of M31 star clusters. The extinction A_λ can be computed using the equations of Cardelli et al. (1989), and we adopted a typical foreground Milky Way extinction law, $R_V = 3.1$. We fitted the SEDs using

$$\chi^2_{\text{min}} = \min \left[\sum_{i=1}^{8} \left(\frac{M_{\lambda_i}^\text{obs} - M_{\lambda_i}^\text{mod}(t, [Z/H])}{\sigma_{M,i}} \right)^2 \right], \tag{2}$$

where $M_{\lambda_i}^\text{mod}(t, [Z/H])$ is the i^{th} magnitude provided in the stellar population model for age t, metallicity $[Z/H]$; $M_{\lambda_i}^\text{obs}$ represents the observed dereddened magnitude in the i^{th} band.

Eq. 3 represents the errors associated with our SED-fittings,

$$\sigma_{M,i}^2 = \sigma_{\text{obs},M,i}^2 + \sigma_{\text{mod},M,i}^2, \tag{3}$$

where $\sigma_{M,i}$ is the magnitude uncertainty in the i^{th} filter. For the photometric errors of RBC, Galleti et al. (2004) suggested for the typical error of CCD photometry are 0.08 mag in U, 0.05 mag in $BVRI$, 0.1 mag in J, and 0.2 mag in HK; for the photographic magnitudes the photometric error is 0.05-0.2 mag. Actually in the updated version of RBC v5, a series of high precision photometry have been included. In our sample, most of the photometry of RBC are from Barmby et al. (2000); Barmby & Huchra (2001) and Fan et al. (2010) and we adopted the photometric errors from these literature works if available. For those photometric errors which can not be found in the literature works, we adopted a mean photometric errors
depending on the brightness of the sources. The model errors adopted were 0.05 mag, which is the typical photometric error for the Bruzual & Charlot (2003) and GALEV SSP models (e.g., Fan et al. 2006; Ma et al. 2007, 2009; Wang et al. 2010; Fan & de Grijs 2014).

4. The Fitting Results and Discussion

In order to check the fitting results of our work when adding the WISE data, we compare that with the results from various literature works. Figure 1 shows the comparisons of metallicity fitted with Padova 2000 evolutionary track and Chabrier (2003) IMF of Bruzual & Charlot (2003) models and that from four of recent works. Chen et al. (2016) have determined the metallicities, ages and masses of 306 star clusters in M31, which are selected from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) spectral survey (Zhao et al. 2012). The metallicities derived from full spectral fitting of PEGASE-HR model and Vazdekis et al. (2010) model, as well as that derived from Lick Fe indices and EZ_Ages code are given in Chen et al. (2016). However we adopted the metallicities of PEGASE-HR model for the comparison, which seems most reliable and most comprehensive, and it is shown on the top left panel. The dashed line represents the best linear fit and the slope is 0.45, indicating a positive correlation between our SED-fitting result of BC03 model agree with that of Chen et al. (2016), with the systematic offset of $[\text{Fe/H}]_{\text{Chen+2016}} - [\text{Fe/H}]_{\text{our work}} = 0.06 \pm 0.65$ dex. The Top Right Panel shows the comparison between our fitting result and that of Caldwell et al. (2011), who have taken the high-quality spectra of 323 old M31 star cluster with the 6.5-m MMT telescope and they have determined the [Fe/H] by using the MW GC bi-linear relation and the Lick Fe indices. It seems the correlation between the metallicities from Caldwell et al. (2011) and our result is weak, with the linear fit slope (dashed line) of only 0.14, and systematic offset is $[\text{Fe/H}]_{\text{Caldwell+2011}} - [\text{Fe/H}]_{\text{our work}} = 0.01 \pm 0.53$ dex. Besides, Kang et al. (2012) provide a compiled catalog by collecting the metallicity measurements of 399 star clusters in M31 from the spectroscopic observations of Caldwell et al. (2011), Galleti et al. (2009), Perrett et al. (2002) and Barmby et al. (2000). The mean value of metallicity from the literature values is adopted in the catalog. However, for star clusters with a metallicity value in only one literature work, the value is adopted. The comparison is shown on the bottom left panel, suggesting that the metallicities of Kang et al. (2012) is slightly lower than that of our results, with systematic offset of $[\text{Fe/H}]_{\text{Kang+2012}} - [\text{Fe/H}]_{\text{our work}} = -0.04 \pm 0.68$ dex. The slope of the linear fit is -0.02, suggesting that there is almost no correlation between results of the two works, which may be due to the systematic offsets between literature values gathered in their final catalogue. In addition, Fan et al. (2010) updated the $UBVRI$ photometry and in order to determine the ages and masses of 445 confirmed globular-like and
candidate clusters of M31, the spectroscopic metallicities are collected from Perrett et al. (2002), Barmby et al. (2000) and Huchra et al. (1991), which are shown on the bottom right panel. It suggests that the metallicities from the compiled catalogue of Fan et al. (2010) is systematically higher than the value of our work, with the systematic offset of $[\text{Fe/H}]_{\text{Fan+2010}} - [\text{Fe/H}]_{\text{our work}} = 0.35 \pm 0.75$ dex. The slope of the linear fit is 0.67, indicating that their result is consistent with that of our work basically, at least showing a positive trend for the correlation.

Further the galev models of Kroupa (2001) IMF is also applied for the same comparisons as Figure 1 shown in Figure 2. It seems that the agreement of our results and that from literature works are better overall, which can be seen from the dashed lines (the slopes of linear fits). The systematic offsets are 0.17 ± 0.51, 0.11 ± 0.39, 0.07 ± 0.54 and 0.46 ± 0.60 and the slopes are 0.89, 0.67, 0.49 and 1.08 respectively in the order of literature works as Figure 1. We find that the systematic offset of Kang et al. (2012) is the smallest while that of Fan et al. (2010) is the largest, but seems all can be ignored if considering the errors; for the slope, it is found that Kang et al. (2012) is the worst fit while Fan et al. (2010) is the best. In fact the it can be seen that our fit results basically agree with the metallicities of Chen et al. (2016) and Caldwell et al. (2011).

Figure 3 is the same as Figure 1 but for comparisons of the ages, derived from SED-fitting with Padova 2000 evolutionary track and Chabrier (2003) IMF of Bruzual & Charlot (2003) model and that from literature works: Chen et al. (2016) obtained the ages through full-spectral fitting the LAMOST data with PEGASE-HR models / Vazdeks models. Although the EZAges code and SED-fitting of ugriz bands also have been applied for the age estimates, the ages from PEGASE-HR models seems most reliable and are adopted for the comparison as discussed above, which is shown on the Top Left Panel. It is found for the most old star clusters, i.e., age log $t > \sim 9.5$ (yr), the agreement is roughly good, while for the clusters younger than that, our fits gives younger ages. The dashed line is the best linear fit and the slope is 0.01. It can be seen that the ages of Chen et al. (2016) seems in a consistent range between log $t \sim 9.5$ and ~ 10.3 (yr). As we discussed above, Caldwell et al. (2011) determined the ages of a sample of M31 GCs with the EZAges and the Lick indices from MMT spectra. However, for clusters which fall outside the index - index grids, the ages are set to 14 Gyr. The comparison is shown on the Top Right Panel, from which it is found that most ages from the fitting of Caldwell et al. (2011) are at the upper limit. The slope of the linear fit is -0.04 and it can be seen that as most of the ages are at the upper limit, which makes it seem that the ages from Caldwell et al. (2011) are almost constant, independent of our result. Kang et al. (2012) estimate the ages of 182 young clusters (younger than 1 Gyr) by multi-band SED fitting, which is shown on the Bottom Left Panel. It seems that the ages of Kang et al. (2012) are systematically younger (~ 0.3 dex) than that of our
estimates. The slope of the best fit is 0.57, suggesting that the agreement is not good, but the trend is positive. The ages of 445 confirmed globular-like and candidate clusters from Fan et al. (2010) are determined by χ^2_{min}-fitting of the $UBVRIJK$ photometry and the BC03 models, for which the comparison are shown on the Bottom Right Panel. The slope of the best linear fit is 0.59, and we found that the ages derived from Fan et al. (2010) are younger than our results for $\log t \sim 10$ (yr).

Similar to Figure 3, we also plot the age comparison of GALEV models of Kroupa (2001) IMF in Figure 4. The slopes of the best linear fits are 0.20, -0.02, 0.60 and 1.24 respectively in the order of literature works as Figures above. We find that for the Fan et al. (2010) the agreement is the best, while for Caldwell et al. (2011) and Chen et al. (2016) the agreement seems not good and ages from literature works seems independent of our fit ages, which is may be due to the same reason as Figure 3. While for the ages of Kang et al. (2012), our result is basically agree with the literature values.

Before compare the different sets of photometry passbands, we would like to know that the effects of different stellar evolutionary tracks and different IMFs. We compared the metallicity derived from different stellar evolutionary tracks and IMFs of the Bruzual & Charlot (2003) models in Figure 5. The photometry of all bands are used for the fittings on all the panels. The Top Left Panel shows the comparisons of Padova 1994 and Padova 2000 evolutionary tracks with same IMF of Salpeter (1955), and the comparison of fitting results due to the two different tracks with same IMF of Chabrier (2003) are shown on the Top Right Panel. It can be seen that for the metallicity $[\text{Fe/H}] > -1.3$ dex, the metallicities derived from two evolutionary tracks basically consistent with each other, although there are few outliers with $[\text{Fe/H}] > 0$ dex in the fitting of Padova 1994 track where the Padova 2000 fits seems systematically lower. However, since the lower limit of the metallicity of the two tracks are different, i.e. $[\text{Fe/H}] = -2.2490$ for Padova 1994 and $[\text{Fe/H}] = -1.6469$ for Padova 2000, the difference between the results derived from the two evolutionary tracks becomes significant, especially for metallicity close to the lower limit of Padova 2000 evolutionary tracks. It can be seen that the upper two panels are almost in the same case and the IMF almost dose not affect the fits. Similarly, the comparisons of different IMFs of Salpeter (1955) and Chabrier (2003) with Padova 1994 evolutionary tracks are shown on Bottom Left Panel; the same comparison but with Padova 2000 evolutionary tracks are shown on Bottom Right Panel. Apparently the metallicities derived from IMFs of Salpeter (1955) and Chabrier (2003) agree with each other very well for any case, which also suggests that the IMF dose not affect models significantly.

Figure 6 is the same as Figure 5 but for the ages, which are also derived from evolutionary tracks of Padova 1994/Padova 2000 on the top panels and IMFs of Chabrier (2003)/Salpeter
of the Bruzual & Charlot (2003) models on the bottom panels. The photometry of all bands are used for the fitting. From the top panels we can see that the results derived from the two different evolutionary tracks, Padova 1994 or the Padova 2000, basically consist with each other for both young and old ages, except for some outlier which seems older in Padova 1994 models but younger in Padova 2000 models. The dashed lines are the best linear fit, showing the difference of results fit by two evolutionary tracks. On the bottom panels, again we found that the results from IMFs of Chabrier (2003) and Salpeter (1955) agree with each other very well, although there are some outliers. It suggests that for the Bruzual & Charlot (2003) models, the IMFs of Chabrier (2003) and Salpeter (1955) do not significantly affect the fitting results, either for the Padova 1994 or the Padova 2000 evolutionary tracks. Since the Chabrier (2003) IMF and Padova 1994 evolutionary track are more up-to-date, we will apply them in the following work.

In order to figure out the effects of the FUV, NUV and W1, W2 in the SED-fitting, we compare the results with different sets of photometry passband combinations. Table 2 is the Ages and Metallicities Derived from the SED χ^2_{min}-fitting with BC03 models (Bruzual & Charlot 2003) of Padova 2000 stellar evolutionary track and IMF of Chabrier (2003), which is more up-to-date. The three cases are considered in our work: 1. fitting with all bands (FUV, NUV, UBVRIJHK, W1, W2); 2. fitting without WISE data (FUV, NUV, UBVRIJHK); 3. fitting without GALEX data (UBVRIJHK, W1, W2). Figure 7 presents the comparisons of metallicities fitted with Bruzual & Charlot (2003) models and photometry in all bands and that without GALEX data on the Left Panel or the fitting without WISE data on the Right Panel. Obviously, it found that the fitting without WISE data agree significantly better with the fitting of all band than the case without GALEX data as the scatter is much smaller. It may indicate that effect of the GALEX data plays an much more significantly role than that of WISE data, or say, the SED-fitting is much more sensitive to the GALEX data than that of WISE data. Therefore the precision of the GALEX UV bands is important for the fitting results. Figure 8 is the same but shows the comparisons of ages from with photometry of all bands and that without GALEX data on the Left Panel and that without WISE data on Right Panel. Again, the “best” assumptions, Padova 2000 evolutionary track and Chabrier (2003) IMF are applied in the fitting. Similarly, we found that the ages from fitting without WISE data agree much better with fitting of all band than the case without GALEX data. However it is worth noting that some outliers around log $t \sim 9.2$ fitted without WISE data but log $t \sim 10.2$ fitted with all-band or log $t \sim 10.3$ fitted without WISE data but log $t \sim 9.2$ fitted with all-band, which seems lead to “unstable” results. We have check the fit carefully and found the photometry and fits are good. It may be due to that the models have very small distance between the two parameter node. Further we also can see that the number of the points is quite few compared
to the whole sample. Actually it is found that the agreement is good in general. Thus we conclude that the GALEX data is much more sensitive to the SED-fittings than the case without WISE data in the Bruzual & Charlot (2003) models. In addition, we found that for the clusters with age log $t > \sim 10$ (yr) for the all-band fitting, the results from fitting without GALEX data seems systematically younger, while for clusters $\sim 9 < \log t < \sim 9.5$ the results agree with each other well although there are some outliers likely to be older than that fit with all-band data.

Furthermore, we also would like to see the effect of the different IMF for the GALEV models. Figure 9 is the same as Figure 5 but for comparisons of metallicity fitted with GALEV models. The fitting results of Kroupa (2001)/Scalo/Salpeter (1955) IMFs are compared. We found that the fitting results of the three IMFs are basically the same, suggesting that the effect on different IMF for the GALEV models are quite slight on metallicity, which is even can be ignored. Figure 10 is the same as Figure 6 but showing ages derived models with different IMFs of Kroupa (2001)/Scalo/Salpeter (1955). The comparisons shows that the IMFs seems almost do not affect the fitting results either. However, we prefer the IMF of Kroupa (2001), which is more up-to-date and reasonable.

We also would like to check the effect of the GALEX FUV and NUV bands and that of the WISE W1 and W2 bands for SED-fitting with the galev models. Table 3 is the same as Table 2 but for the ages and Metallicities derived from the SED fitting with galev models and Kroupa IMF. All the three cases are considered: 1. fitting with all bands (FUV, NUV, $UBVRIJHK, W1, W2$); 2. fitting without WISE data (FUV, NUV, $UBVRIJHK$); 3. fitting without GALEX data ($UBVRIJHK, W1, W2$). Figure 11 is the same as Figure 7 but for the galev models of Kroupa (2001) IMF. We compared the fitting metallicities with photometry in all bands and that without GALEX data on the Left Panel, and the comparison of that without WISE data on the Right Panel. The dashed lines are the best linear fits. We found that the results basically consist with each other for both left and right panels, despite of scatters and a few outliers. For the left panel, it is found that the fitting without GALEX data will lead to higher metallicity around $[\text{Fe/H}] \sim -1$ in the all-band fit. While the right panel shows that the metallicity fitted without WISE data seems higher than that fitted with all-band photometry for $[\text{Fe/H}] < \sim -1$.

Figure 12 is the same as Figure 8 but for ages fitted with the GALEV models of Kroupa (2001) IMF. It shows the fitting results from GALEV models Kroupa (2001) IMF with all-band photometry and the fitting results without GALEX data on the Left Panel and the fitting results without WISE data on the Right Panel. The dashed lines are the best linear fit and it seems the ages derived without GALEX is systematically older than that from all-band fit by ~ 0.2 dex. However the ages fitted without WISE data agree well with that
of all-band fit on the right panel. Thus it is found that the fitting results are much more sensitive to the FUV and NUV bands of *GALEX* than that of the WISE *W1* and *W2* bands, since the agreement of fitting results is much better for the latter than that for the former. On the other hand, the uncertainties of ages increase significantly when the FUV and NUV band data are involved in the fitting, indicating that the high-quality FUV and NUV data is much more important for the age-fitting than the *W1* and *W2* bands. In other words, introducing the WISE *W1* and *W2* bands data to the SED-fitting is helpful but not as significant for the age fitting of the *galev* models as that of the FUV and NUV data.

5. Summary and Conclusion

In our work, we collected the photometry of M31 star clusters and candidates from ultraviolet bands to the middle infrared bands for the SED-fitting. For the photometry, the FUV and NUV bands, *UBVRI* broadband, 2MASS *JHK* bands are from RBC v5 catalog. The WISE *W1/W2* band photometry are downloaded from the IPAC/IRAS website. The χ^2_{min} technique is applied for the SED-fitting.

The [Bruzual & Charlot (2003)](#) models with Padova 2000 track and [Chabrier (2003)](#) IMF are adopted in the fitting, which are more up-to-date. First we compare our fitting results with the recent works of [Chen et al. (2016)](#), [Caldwell et al. (2011)](#), [Kang et al. (2012)](#) and [Fan et al. (2010)](#), which give the fitting results of large samples of star clusters.

1. For the metallicity, our fitting result agree with that of [Chen et al. (2016)](#) in general, with the systematic offset of 0.06 ± 0.65 dex. While the correlation between the metallicities from [Caldwell et al. (2011)](#) and our result seems weak, but the systematic offset is only 0.01 ± 0.53 dex, which shows good consistency at the average level. The metallicities of [Kang et al. (2012)](#) is slightly lower than that of our results, with systematic offset of −0.04 ± 0.68 dex. The metallicities of [Kang et al. (2012)](#) is almost independent of our fits, which may be due to the systematic offsets of metallicities that the authors gathered from various literature works. While for comparison of [Fan et al. (2010)](#), it suggests that the metallicities are systematically higher than that of our work, with the systematic offset of 0.35 ± 0.75 dex and their result is consistent with that of our work in general. We also compared with *galev* models and it is found that the metallicities from literature works agree with our fitting results better than that of [Bruzual & Charlot (2003)](#) models overall, especially for [Caldwell et al. (2011)](#) and [Chen et al. (2016)](#).

2. For the comparison of ages from literature works, we found the results of both [Caldwell et al. (2011)](#) and [Chen et al. (2016)](#) are almost independent of our results derived
from either Bruzual & Charlot (2003) models or the galev models, which may be due to the reason that the ages of the two literature works are concentrated in a very narrow range or at an upper limit in the fitting. However for the results of Kang et al. (2012) and Fan et al. (2010), the best linear fit shows positive correlations and agreements with our results in general for both models.

We compared the effects of the different IMFs and evolutionary tracks for the SED-fitting:

1. For the Bruzual & Charlot (2003) models, it is found that fitted metallicities of the models with Padova 1994 and the Padova 2000 evolutionary tracks are basically consistent with each other for $[\text{Fe/H}] \sim -1.3$ dex with the IMF of either Salpeter (1955) or Chabrier (2003), despite of systematic offset for few outliers with $[\text{Fe/H}] > 0$. However for the metallicity close to the lower limits of the Padova 2000 tracks, the difference between the two fitting results becomes significant. It is also noted that for either Padova 1994 and the Padova 2000 evolutionary track, different IMF does not affect the result significantly. While for ages, the results derived from the evolutionary tracks of Padova 1994 and Padova 2000 agree with each other better than that for metallicity, except for a few outliers. Again different IMF seems not affect the fitted ages significantly for either Padova 1994 or Padova 2000 evolutionary tracks.

2. For the galev models, the different IMFs have been compared in the SED-fitting. We found that the effects of different IMFs for Kroupa (2001)/Scalo/Salpeter (1955) are quite insignificant for either metallicity-fitting or the age-fitting.

Further we investigated the fitting results of different passband combinations. Three main cases are considered in our analysis: 1. fitting with all bands (FUV, NUV, $UBVRIJHK$, W_1, W_2); 2. fitting without WISE data (i.e., FUV, NUV, $UBVRIJHK$); 3. fitting without GALEX data (i.e., $UBVRIJHK$, W_1, W_2). Two different SSP models, Bruzual & Charlot (2003) and galev are applied in the comparison and analysis:

1. For the Bruzual & Charlot (2003) models with Padova 2000 tracks, for either ages or metallicities, the fitting results without WISE data agree with that of all-band data better than the case fitting without GALEX data and fitting with all-band data. Thus we conclude that the GALEX data is more sensitive to the SED-fittings than the WISE data with the Bruzual & Charlot (2003) models.

2. For the GALEX models with IMF of Kroupa (2001), for metallicity, the fitting results either without GALEX data or without WISE data agree with all-band fitting results in general. However, for the fitting of ages, GALEX data seems affect the fitting results more significantly than the WISE data.
Therefore, it is found that *GALEX* FUV and NUV bands play more important roles for the fitting than that of WISE W1 and W2 bands and the observing accuracy of FUV and NUV bands are more crucial than that of the mid-infrared bands, such as W1 and W2.

The authors thank the anonymous referee for helpful suggestions that greatly improved the manuscript. This research was supported by the National Program on Key Research and Development Project (Grant No. 2016YFA0400804), the National Key Basic Research Program of China (973 Program) grant 2015CB857002, and the National Natural Science Foundation of China (NFSC) through grants 11373003, 11603035 and U1631102.

REFERENCES

Anders, P., Bissantz, N., Fritze-v. Alvensleben, U., de Grijs, R. 2004, MNRAS, 347, 196

Barmby, P., Huchra, J., Brodie, J., et al. 2000, AJ, 119, 727

Barmby, P., & Huchra, J. 2001, AJ, 122, 2458

Barmby, P., & Jalilian, F. F. 2012, ApJ, 143, 87

Bastian, N., Gieles, M., Lamers, H. J. G. L. M., et al., A&A, 431, 905

Bianchi, L. 2009, Ap&SS, 320, 11

Bruzual A., G., & Charlot, S. 2003, MNRAS, 344, 1000

Caldwell, N., Schiavon, R., Morrison, H., Rose, J., & Harding, P. 2011, AJ, 141, 61

Cardelli, J. A., Clayton, G. C., & Mathis, J. S., 1989, ApJ, 345, 245

Chabrier, G., 2003, PASP, 115, 763

Chen, B. Q., Liu, X. W., Xiang, M. S., et al. 2016, AJ, 152, 45

de Grijs, R., Fritze-v. Alvensleben, U., Anders, P., et al. 2003, MNRAS, 342, 259

de Grijs, R., Anders, P., Lamers, H. J. G. L. M., et al. 2005, MNRAS, 359, 874

Fan, Z., Ma, J., de Grijs, R., Yang, Y., & Zhou, X. 2006, MNRAS, 371, 1648

Fan, Z., Ma, J., de Grijs, R., & Zhou, X. 2008, MNRAS, 385, 1973

Fan, Z., de Grijs, R., & Zhou, X. 2010, ApJ, 725, 200
Fan, Z., & de Grijs, R., 2012, MNRAS, 424, 2009
Fan, Z., & de Grijs, R., 2014, ApJS, 211, 22
Galleti, S., Federici, L., Bellazzini, M., Fusi Pecci, F., & Macrina, S. 2004, A&A, 426, 917
Galleti, S., Federici, L., Bellazzini, M., Buzzoni, A., & Fusi Pecci, F. 2006, A&A, 456, 985
Galleti, S., Bellazzini, M., Buzzoni, L., Federici, L., & Fusi Pecci, F. 2009, A&A, 508, 1285
Huchra J. P., Brodie J. P., & Kent S. M. 1991, ApJ, 370, 495
Jarrett, T. H., Cohen, M., Masci, F., et al. 2011, ApJ, 735, 112
Kang, Y., Rey, S.-C., Bianchi, L., et al. 2012, ApJS, 199, 37
Kannappan, S. J., & Gawiser, E. 2007, ApJ, 657, L5
Kaviraj, S., Rey, S.-C., Rich, R. M., Yoon, S.-J., & Yi, S. K. 2007, MNRAS, 381, L74
Kotulla, R., Fritze, U., Weilbacher, P., & Anders, P., 2009, MNRAS, 396, 462
Kroupa, P. 2001, MNRAS, 322, 231
Kurucz, R. L. 1992, in IAU Symp. 149, The Stellar Populations of Galaxies, ed. B. Barbuy & A. Renzini (Dordrecht: Kluwer), 225 First citation in article
Lilly, T., & Fritze-v. Alvensleben, U. 2006, A&A, 457, 467
Ma, J., Yang, Y. B., Burstein, D., et al. 2007, ApJ, 659, 359
Ma, J., Fan, Z., de Grijs, R., et al. 2009, AJ, 137, 4884
Ma, J., Wang, S., Wu, Z., et al. 2011, AJ, 141, 86
Ma, J., Wang, S., Wu, Z., et al. 2012, AJ, 143, 29
Meidt, S. E., Schinnerer, E., Knapen, J. H., et al. 2012, ApJ, 744, 17
Meidt, S. E., Schinnerer, E., van de Ven, G., et al. 2014, ApJ, 788, 144
Norris, M. A., Meidt, S., Van de Ven, G., et al. 2014, ApJ, 797, 55
Norris, M. A., Van de Ven, G., Schinnerer, E., et al. 2016, ApJ, 832, 198
Peletier, R. F., Kudremir, E., van der Wolk, G., et al. 2012, MNRAS, 419, 2031
Perrett, K. M., Bridges, T. J., Hanes, D. A., et al. 2002, AJ, 123, 2490
Querejeta, M., Meidt, S. E., Schinnerer, E., et al. 2015, ApJS, 219, 5
Rey, S.-C., Rich, R. M., Sohn, S. T., et al. 2007, ApJS, 173, 643
Röck, B., Vazdekis, A., Peletier, R. F., et al. 2015, MNRAS, 449, 2853
Salpeter, E. E. 1955, ApJ, 121, 161
Schlafly, E. F., Finkbeiner, D. P. 2011, ApJ, 737, 103S
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Stetson, P. B. 1987, PASP, 99, 191
Vazdekis, A., Sánchez-Blázquez, P., Falcón-Barroso, J., et al. 2010, MNRAS, 404, 1639
Wang, S., Fan, Z., Ma, J., de Grijs, R., & Zhou, X. 2010, AJ, 139, 1438
Wang, S., Ma, J., Fan, Z., et al. 2012, AJ, 144, 191
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
Zhao, G., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, RAA, 12, 723

This preprint was prepared with the AAS \LaTeX macros v5.2.
Table 1. The WISE Photometry in W1/W2 bands, which is downloaded from All Wise Source Catalog of IPAC Infrared Science Archive (IRSA), http://irsa.ipac.caltech.edu/Missions/wise.html. We only list the W1/W2 bands, which are reliable for the fittings.

Name	W1 (mag)	W2 (mag)	Name	W1 (mag)	W2 (mag)
B003	15.05 ± 0.04	15.03 ± 0.07	B009	14.32 ± 0.03	14.77 ± 0.06
B010	13.88 ± 0.03	13.63 ± 0.03	B011	13.67 ± 0.03	14.09 ± 0.04
B012	12.69 ± 0.02	12.73 ± 0.02	B019	11.91 ± 0.02	11.95 ± 0.02
B020	12.12 ± 0.02	12.18 ± 0.02	B022	15.19 ± 0.04	15.50 ± 0.09
B023	10.64 ± 0.02	10.67 ± 0.02	B025	13.94 ± 0.06	13.76 ± 0.04
B027	13.07 ± 0.04	13.11 ± 0.03	B038	13.62 ± 0.04	13.77 ± 0.04
B046	15.20 ± 0.04	15.35 ± 0.08	B047	14.94 ± 0.03	14.97 ± 0.06
B048	13.04 ± 0.04	13.34 ± 0.07	B049	14.88 ± 0.10	14.16 ± 0.05
B058	12.34 ± 0.03	12.38 ± 0.03	B061	12.93 ± 0.03	12.94 ± 0.03
B064	13.35 ± 0.07	13.81 ± 0.21	B065	14.43 ± 0.03	14.79 ± 0.05
B074	14.07 ± 0.03	14.11 ± 0.04	B076	14.18 ± 0.16	14.35 ± 0.14
B081	13.92 ± 0.04	14.17 ± 0.04	B083	14.48 ± 0.03	14.57 ± 0.05
B085	14.49 ± 0.03	14.65 ± 0.05	B086	12.07 ± 0.05	12.44 ± 0.07
B088	12.12 ± 0.03	12.14 ± 0.02	B096	12.12 ± 0.04	12.88 ± 0.07
B100	15.03 ± 0.10	15.31 ± 0.11	B101	13.28 ± 0.08	13.82 ± 0.14
B103	11.20 ± 0.04	11.98 ± 0.05	B107	11.99 ± 0.04	12.71 ± 0.05
B110	12.26 ± 0.03	12.31 ± 0.03	B126	11.62 ± 0.04	13.35 ± 0.10
B135	13.04 ± 0.03	13.08 ± 0.03	B147	12.05 ± 0.04	12.52 ± 0.07
B148	11.85 ± 0.06	12.79 ± 0.13	B151	11.14 ± 0.03	11.35 ± 0.03
B153	12.23 ± 0.05	13.01 ± 0.09	B158	11.77 ± 0.02	11.86 ± 0.02
B165	14.02 ± 0.09	14.14 ± 0.11	B174	12.47 ± 0.03	12.52 ± 0.03
B178	12.46 ± 0.05	12.57 ± 0.06	B179	12.50 ± 0.05	12.79 ± 0.06
B181	13.52 ± 0.07	13.31 ± 0.06	B182	12.23 ± 0.03	12.33 ± 0.03
B193	12.07 ± 0.03	12.12 ± 0.03	B194	14.74 ± 0.23	14.87 ± 0.22
B205	12.61 ± 0.04	12.62 ± 0.04	B206	12.40 ± 0.04	12.41 ± 0.04
B207	15.13 ± 0.06	15.30 ± 0.10	B211	14.30 ± 0.07	14.57 ± 0.08
B212	13.08 ± 0.03	13.13 ± 0.03	B218	11.88 ± 0.03	11.92 ± 0.03
B224	13.30 ± 0.04	13.36 ± 0.04	B225	10.97 ± 0.02	11.00 ± 0.02
B229	14.24 ± 0.08	14.21 ± 0.08	B230	13.82 ± 0.03	13.83 ± 0.04
B232	13.27 ± 0.03	13.28 ± 0.03	B233	13.13 ± 0.03	13.18 ± 0.03
Table 1—Continued

Name	W1 (mag)	W2 (mag)	Name	W1 (mag)	W2 (mag)
B235	13.28 ± 0.05	13.26 ± 0.06	B237	14.73 ± 0.04	14.81 ± 0.07
B240	12.79 ± 0.02	12.83 ± 0.03	B255	15.06 ± 0.07	15.38 ± 0.09
B289	13.77 ± 0.02	13.70 ± 0.03	B292	14.87 ± 0.03	14.92 ± 0.05
B293	13.97 ± 0.03	13.88 ± 0.03	B302	14.50 ± 0.04	14.54 ± 0.06
B304	14.51 ± 0.03	14.52 ± 0.05	B310	14.62 ± 0.03	14.65 ± 0.05
B311	12.73 ± 0.03	12.77 ± 0.03	B312	12.67 ± 0.03	12.71 ± 0.03
B313	12.98 ± 0.03	12.97 ± 0.03	B315	14.20 ± 0.04	14.49 ± 0.05
B317	14.48 ± 0.03	14.53 ± 0.05	B321	14.60 ± 0.04	14.35 ± 0.04
B325	14.58 ± 0.05	14.68 ± 0.06	B327	14.19 ± 0.05	14.53 ± 0.05
B330	13.98 ± 0.04	15.30 ± 0.12	B337	14.28 ± 0.03	14.23 ± 0.04
B338	11.75 ± 0.04	11.81 ± 0.04	B343	13.96 ± 0.03	13.98 ± 0.04
B345	14.31 ± 0.05	14.26 ± 0.05	B347	14.22 ± 0.03	14.21 ± 0.04
B350	14.27 ± 0.03	14.32 ± 0.04	B352	14.22 ± 0.03	14.25 ± 0.04
B356	14.21 ± 0.03	14.27 ± 0.05	B358	12.95 ± 0.02	12.97 ± 0.03
B361	14.69 ± 0.03	14.92 ± 0.06	B365	14.20 ± 0.03	14.29 ± 0.04
B370	13.32 ± 0.03	13.37 ± 0.04	B377	14.82 ± 0.03	14.92 ± 0.06
B380	15.10 ± 0.05	15.48 ± 0.11	B382	15.12 ± 0.04	15.54 ± 0.10
B386	12.85 ± 0.02	12.85 ± 0.03	B396	15.13 ± 0.03	15.13 ± 0.07
B405	12.61 ± 0.02	12.65 ± 0.02	B411	14.26 ± 0.03	13.94 ± 0.03
B412	13.74 ± 0.03	13.59 ± 0.03	B467	15.32 ± 0.04	15.40 ± 0.09
B472	12.53 ± 0.05	12.50 ± 0.04	B475	14.52 ± 0.06	15.10 ± 0.11
B486	15.36 ± 0.04	15.23 ± 0.07	G001	10.78 ± 0.02	10.83 ± 0.02
G002	13.58 ± 0.03	13.56 ± 0.03	G085	14.71 ± 0.05	15.28 ± 0.09
G260	14.61 ± 0.03	14.69 ± 0.06	G327	13.57 ± 0.02	13.63 ± 0.03
G353	14.86 ± 0.03	14.81 ± 0.05	VDB0	12.73 ± 0.03	12.67 ± 0.03
B011D	11.90 ± 0.02	11.80 ± 0.02	B108D	14.81 ± 0.06	14.95 ± 0.09
B110D	15.16 ± 0.21	15.16 ± 0.12	B134D	14.41 ± 0.03	13.96 ± 0.03
B165D	14.38 ± 0.03	14.23 ± 0.04	B167D	15.38 ± 0.04	15.26 ± 0.07
B233D	12.56 ± 0.02	12.28 ± 0.02	B256D	13.43 ± 0.04	13.69 ± 0.05
B344D	14.50 ± 0.03	14.45 ± 0.04	BA11	15.23 ± 0.04	15.03 ± 0.06
Table 1—Continued

Name	W1	W2	Name	W1	W2
	(mag)	(mag)		(mag)	(mag)
BA22	14.67 ± 0.03	14.38 ± 0.04	BH05	13.77 ± 0.05	13.93 ± 0.05
SK107B	12.74 ± 0.07	13.77 ± 0.14			
Table 2. Ages and Metallicities Derived from the SED fitting with BC03 models of Padova 1994 stellar evolutionary track. The IMFs of Salpeter (1955) and Chabrier (2003) are adopted.

No.	Name	[Fe/H] (dex)	Age (Gyr)	[Fe/H] (dex)	Age (Gyr)	[Fe/H] (dex)	Age (Gyr)
1	B003	-1.63±0.11	12.250±3.230	-1.63±0.10	12.250±2.593	-1.61±0.29	8.750±5.600
2	B009	-1.53±0.10	10.500±1.119	-1.53±0.10	10.500±0.631	-1.57±0.06	14.250±9.171
3	B010	-0.98±0.05	1.43±0.030	-1.63±0.05	17.000±3.000	-0.64±0.12	1.700±0.102
4	B011	-0.85±0.05	1.43±0.005	-1.07±0.05	1.43±0.037	-0.58±0.15	2.750±0.631
5	B012	-1.44±0.04	1.90±0.129	-1.07±0.04	1.43±0.013	-0.63±0.28	3.500±1.929
6	B019	-1.38±0.04	20.00±0.144	-1.38±0.04	20.00±0.889	-0.84±0.13	12.000±4.718
7	B020	-1.41±0.04	20.00±0.000	-1.39±0.06	20.00±0.933	-0.82±0.15	12.000±5.361
8	B022	-0.84±0.10	1.27±0.031	-1.32±0.13	2.00±0.163	-1.03±0.22	1.27±0.042
9	B023	-1.40±0.07	20.00±0.000	-1.39±0.06	20.00±0.889	-0.95±0.14	12.000±5.000
10	B025	-1.61±0.24	1.70±0.337	-1.63±0.14	1.80±0.217	-1.63±0.27	1.800±0.262
11	B027	-1.63±0.07	14.75±3.222	-1.62±0.10	16.500±3.500	-1.38±0.19	7.000±5.186
12	B038	-1.63±0.07	1.27±0.050	-1.63±0.05	1.278±0.062	-1.26±0.12	1.278±0.052
13	B046	-1.03±0.07	1.43±0.055	-0.96±0.07	1.43±0.021	-0.78±0.19	2.600±1.903
14	B047	-1.52±0.12	2.40±0.463	-1.52±0.11	2.40±0.335	-1.63±0.14	6.500±2.929
15	B048	-1.63±0.03	20.00±0.000	-1.63±0.02	20.000±0.000	-0.76±0.15	3.750±2.626
16	B049	-0.97±0.07	1.43±0.023	-0.09±0.07	0.64±0.037	0.28±0.09	6.410±0.078
17	B058	-1.57±0.07	17.250±2.750	-1.55±0.06	17.750±2.250	-1.20±0.15	11.000±6.976
18	B061	-1.63±0.03	1.609±0.194	-1.63±0.00	1.43±0.015	-1.23±0.19	19.500±5.500
19	B064	-1.04±0.06	1.43±0.030	-1.05±0.06	1.43±0.026	-0.66±0.14	1.700±0.464
20	B065	-1.61±0.17	10.500±1.015	-1.46±0.12	11.250±1.654	-1.57±0.23	6.500±4.386
21	B074	-1.63±0.09	13.750±2.163	-0.91±0.05	1.43±0.045	-1.63±0.22	14.250±4.661
22	B076	-1.63±0.06	17.250±2.750	-1.63±0.00	18.250±3.319	-1.61±0.02	12.500±7.309
23	B081	-0.87±0.05	1.43±0.009	-0.88±0.06	1.43±0.008	-0.21±0.12	2.000±0.325
24	B083	-1.40±0.08	16.500±3.500	-1.40±0.07	17.750±0.049	-1.63±0.27	17.250±7.598
25	B085	-1.56±0.07	2.750±0.281	-1.02±0.10	1.700±0.161	-1.63±0.14	6.500±2.829
26	B086	-1.07±0.04	1.43±0.021	-1.10±0.05	1.43±0.029	-0.96±0.07	1.43±0.027
27	B088	-1.63±0.14	1.43±0.121	-1.63±0.07	1.609±0.178	-0.33±0.08	1.015±0.883
28	B096	-1.63±0.06	1.68±0.081	-1.63±0.05	1.609±0.072	-0.37±0.14	1.278±0.004
29	B100	-1.47±0.13	20.00±0.000	-1.52±0.11	20.000±0.716	-0.75±0.14	12.000±3.365
No.	Name	All Data [Fe/H] (dex)	All Data Age (Gyr)	Without WISE Data [Fe/H] (dex)	Without WISE Data Age (Gyr)	Without GALEX Data [Fe/H] (dex)	Without GALEX Data Age (Gyr)
-----	-------	-----------------------	--------------------	--------------------------------	-----------------------------	---------------------------------	-----------------------------
30	B101	-0.84±0.05	1.43±0.00	-1.63±0.09	20.00±0.00	0.06±0.12	2.000±0.499
31	B103	-0.64±0.09	1.43±0.016	-0.62±0.10	1.43±0.19	-0.31±0.10	2.000±0.415
32	B107	-0.88±0.05	1.43±0.007	-1.63±0.07	20.00±0.00	-0.09±0.14	2.000±0.461
33	B110	-1.41±0.05	20.000±0.00	-1.42±0.04	20.000±0.00	-0.66±0.13	18.000±2.000
34	B126	-0.83±0.05	1.43±0.004	-1.12±0.06	1.43±0.016	-0.33±0.02	1.43±0.002
35	B135	-1.04±0.05	1.43±0.008	-1.00±0.05	1.43±0.029	-1.48±0.21	14.250±5.430
36	B147	-0.82±0.08	20.000±0.00	-0.88±0.07	20.000±0.00	-0.25±0.10	10.750±4.362
37	B148	-0.33±0.09	0.571±0.021	-1.63±0.05	1.609±0.066	0.28±0.00	0.719±0.110
38	B151	-1.48±0.11	14.250±2.184	-1.45±0.09	17.000±3.969	-1.25±0.13	9.250±7.156
39	B153	-0.34±0.06	1.43±0.004	-0.76±0.07	20.000±0.00	0.17±0.10	2.600±0.458
40	B158	-1.40±0.05	20.000±0.00	-1.40±0.05	20.000±0.00	-0.84±0.14	13.000±7.000
41	B165	-1.63±0.11	2.300±0.453	-1.63±0.10	2.300±0.367	-1.63±0.29	2.200±3.282
42	B174	-1.56±0.07	18.750±3.107	-1.53±0.06	20.000±2.831	-1.18±0.17	12.000±7.175
43	B178	-1.63±0.03	20.000±0.00	-1.63±0.02	20.000±0.00	-0.91±0.16	3.500±2.372
44	B179	-1.01±0.11	14.750±2.889	-1.03±0.10	14.750±2.751	-0.60±0.14	3.750±1.230
45	B181	-0.72±0.04	1.43±0.004	-0.74±0.04	1.43±0.005	0.27±0.01	1.609±0.975
46	B182	-1.14±0.04	1.43±0.035	-1.12±0.05	1.43±0.023	-1.08±0.17	2.750±1.579
47	B193	-0.82±0.07	20.000±0.00	-0.82±0.06	20.000±0.00	-0.58±0.09	12.000±8.000
48	B194	-1.63±0.15	2.100±0.328	-1.63±0.15	2.000±0.363	-1.25±0.16	1.700±0.258
49	B205	-0.97±0.10	14.750±2.570	-0.98±0.10	14.750±2.944	-0.54±0.11	3.750±2.224
50	B206	-1.37±0.04	20.000±0.00	-1.37±0.03	20.000±0.00	-0.65±0.10	3.750±2.176
51	B207	-1.63±0.04	18.250±3.152	-1.63±0.04	18.250±3.060	-1.39±0.24	6.750±3.194
52	B211	-1.56±0.14	2.200±0.472	-1.10±0.06	1.43±0.152	-1.63±0.32	2.750±3.817
53	B212	-1.52±0.11	1.900±0.134	-1.13±0.05	1.43±0.019	-1.63±0.27	2.750±3.999
54	B218	-1.57±0.06	20.000±0.00	-1.59±0.07	20.000±0.00	-0.88±0.13	13.000±7.000
55	B224	-0.42±0.05	0.905±0.031	-0.79±0.05	1.278±0.19	-1.24±0.30	1.278±0.046
56	B225	-0.80±0.05	20.000±0.00	-0.82±0.07	20.000±0.00	-0.19±0.11	5.250±3.451
57	B229	-0.79±0.06	1.278±0.014	-1.63±0.00	14.250±0.967	-1.62±0.01	3.500±1.490
58	B230	-1.55±0.08	2.000±0.186	-1.12±0.05	1.43±0.115	-1.63±0.15	4.750±2.832
No.	Name	All Data [Fe/H] (dex)	Age (Gyr)	Without WISE Data [Fe/H] (dex)	Age (Gyr)	Without GALEX Data [Fe/H]	Age (Gyr)
-----	------	-----------------------	-----------	--------------------------------	-----------	----------------------------	-----------
59	B232	-1.36±0.12	1.609±0.95	-1.63±0.10	2.000±0.19	-1.01±0.17	1.278±0.007
60	B233	-1.54±0.07	15.750±2.920	-0.88±0.04	1.434±0.018	-0.38±0.02	14.000±5.608
61	B235	-1.45±0.09	20.000±2.863	-0.17±0.07	20.000±0.000	-0.69±0.014	17.500±2.500
62	B237	-0.84±0.10	1.278±0.005	-0.81±0.08	1.278±0.007	-1.27±0.012	1.609±0.169
63	B240	-1.11±0.04	1.434±0.139	-1.05±0.05	1.434±0.030	-1.48±0.023	5.000±5.196
64	B255	-0.52±0.14	0.571±0.064	-0.63±0.16	0.571±0.074	-0.19±0.020	0.719±0.138
65	B289	-1.11±0.11	1.139±0.053	-0.89±0.09	1.015±0.071	-1.13±0.15	1.139±0.101
66	B292	-1.41±0.15	1.278±0.045	-1.63±0.16	1.609±0.126	-0.33±0.003	1.015±0.012
67	B293	-1.35±0.13	1.278±0.078	-1.41±0.13	1.434±0.037	-1.25±0.016	1.278±0.055
68	B302	-1.45±0.06	19.500±2.209	-1.43±0.05	20.000±0.000	-1.17±0.18	11.000±2.068
69	B304	-1.00±0.07	1.700±0.119	-0.96±0.06	1.434±0.039	-1.39±0.024	5.000±6.408
70	B310	-1.63±0.04	15.750±2.122	-0.97±0.05	1.434±0.037	-1.62±0.28	14.250±3.750
71	B311	-1.04±0.09	1.139±0.042	-1.63±0.06	1.800±0.131	-1.26±0.37	1.278±0.041
72	B312	-1.63±0.10	16.500±3.500	-1.61±0.09	17.500±2.500	-1.48±0.27	14.250±3.750
73	B313	-1.63±0.10	1.700±0.091	-1.63±0.07	1.680±0.116	-1.44±0.22	9.000±7.777
74	B315	-0.61±0.13	0.360±0.028	-0.33±0.15	0.321±0.040	-0.65±0.14	0.404±0.057
75	B317	-0.86±0.06	1.278±0.019	-1.01±0.07	1.609±0.084	-0.30±0.16	1.015±0.111
76	B321	0.28±0.09	0.143±0.016	0.28±0.00	0.143±0.008	0.07±0.011	0.028±0.002
77	B325	-0.63±0.12	0.509±0.075	-0.64±0.08	0.571±0.066	-1.32±0.20	2.750±1.514
78	B330	-0.85±0.06	1.434±0.013	-0.92±0.06	1.434±0.027	-0.05±0.18	1.700±0.493
79	B335	-0.85±0.06	1.434±0.005	-1.01±0.07	1.434±0.009	-0.90±0.20	3.750±3.500
80	B336	-1.51±0.09	17.250±2.306	-0.86±0.05	1.434±0.017	-0.25±0.14	6.750±5.245
81	B338	-1.63±0.03	20.000±2.716	-1.63±0.03	20.000±0.000	-1.25±0.22	6.750±3.024
82	B343	-1.62±0.12	1.900±0.152	-1.14±0.06	1.434±0.022	-1.62±0.01	3.500±1.579
83	B345	-1.61±0.15	1.700±0.164	-1.58±0.13	1.700±0.154	-1.63±0.40	2.750±3.968
84	B347	-1.21±0.09	14.500±2.218	-0.68±0.03	1.434±0.044	-1.05±0.16	12.000±7.761
85	B350	-1.63±0.05	14.250±3.266	-0.94±0.05	1.434±0.045	-1.63±0.26	14.250±5.109
86	B352	-1.63±0.12	1.800±0.114	-1.58±0.05	1.800±0.097	-1.63±0.00	2.750±1.071
87	B356	-1.38±0.11	2.000±0.274	-1.63±0.05	17.250±2.750	-1.61±0.23	6.500±4.180
No.	Name	[Fe/H]	Age	[Fe/H]	Age	[Fe/H]	Age
-----	------	--------	------	--------	------	--------	------
		(dex)	(Gyr)	(dex)	(Gyr)	(dex)	(Gyr)
88	B358	-1.63±0.05	13.250±1.337	-1.63±0.06	13.000±1.227	-1.63±0.22	6.500±4.998
89	B361	-1.46±0.13	1.800±0.117	-1.10±0.05	1.434±0.019	-1.62±0.35	3.500±1.575
90	B365	-0.96±0.08	1.278±0.007	-1.10±0.05	1.434±0.012	-1.27±0.16	1.609±0.188
91	B370	-1.12±0.04	1.434±0.054	-1.08±0.06	1.434±0.027	-1.10±0.18	2.750±1.406
92	B377	-0.99±0.12	1.800±0.186	-0.91±0.08	1.434±0.012	-1.26±0.20	5.000±2.629
93	B380	-0.35±0.03	1.015±0.009	-0.38±0.04	1.015±0.018	-1.18±0.16	1.139±0.094
94	B382	-1.25±0.12	1.278±0.048	-1.16±0.12	1.278±0.038	-1.25±0.15	1.278±0.051
95	B386	-1.50±0.09	12.000±1.614	-0.76±0.04	1.434±0.034	-1.58±0.26	16.500±6.422
96	B396	-1.44±0.12	2.000±0.287	-1.43±0.14	2.000±0.206	-1.63±0.32	3.500±1.648
97	B405	-1.19±0.04	1.434±0.067	-1.15±0.04	1.434±0.034	-1.41±0.25	3.500±3.827
98	B411	-0.42±0.11	0.571±0.026	-0.63±0.05	0.571±0.030	-0.48±0.12	1.434±0.005
99	B412	-0.82±0.06	1.434±0.007	-0.63±0.08	2.000±0.000	0.07±0.13	2.600±0.794
100	B467	-1.63±0.07	14.250±2.700	-1.63±0.09	14.250±3.615	-1.54±0.09	6.500±4.019
101	B472	-1.63±0.07	20.000±0.000	-1.63±0.06	20.000±0.000	-0.69±0.13	2.600±1.358
102	B475	-0.11±0.17	0.641±0.063	-0.14±0.09	0.641±0.038	-0.23±0.24	0.641±0.081
103	B486	-1.02±0.14	1.278±0.013	-0.96±0.11	1.278±0.016	-0.32±0.07	1.015±0.024
104	G001	-1.36±0.03	20.000±0.000	-1.39±0.04	20.000±0.000	-0.23±0.15	2.100±0.454
105	G002	-1.63±0.00	12.500±1.985	-1.63±0.11	12.500±1.465	-1.59±0.32	10.000±7.986
106	G085	0.19±0.09	0.128±0.002	0.28±0.01	0.128±0.005	0.28±0.05	0.047±0.003
107	G260	-1.15±0.14	1.139±0.043	-0.95±0.13	1.139±0.029	-1.23±0.15	1.139±0.118
108	G327	-1.62±0.14	4.000±1.005	-1.52±0.12	4.000±0.697	-1.63±0.25	3.500±3.375
109	G353	-1.08±0.13	1.139±0.053	-0.99±0.15	1.139±0.078	-1.19±0.17	1.139±0.079
110	VDB0	-0.33±0.12	0.064±0.011	-0.10±0.21	0.055±0.008	-0.84±0.61	0.055±0.017
111	B011D	-0.83±0.03	1.434±0.001	-0.98±0.04	1.434±0.002	-0.28±0.02	20.000±0.727
112	B108D	0.28±0.00	0.143±0.005	0.28±0.00	0.143±0.014	-0.28±0.00	0.641±0.092
113	B110D	-1.11±0.07	1.434±0.014	-1.63±0.00	1.680±0.148	-1.03±0.08	1.434±0.012
114	B134D	0.28±0.00	0.045±0.003	0.28±0.00	0.045±0.003	0.07±0.16	0.571±0.100
115	B165D	-0.43±0.10	0.571±0.019	-0.59±0.09	0.571±0.015	-0.64±0.13	1.434±0.005
116	B167D	-1.12±0.05	1.434±0.040	-1.11±0.05	1.434±0.033	-1.06±0.09	1.434±0.014
No.	Name	All Data	Without WISE Data	Without GALEX Data			
-----	-------	----------	-------------------	-------------------			
		[Fe/H] (dex)	Age (Gyr)	[Fe/H] (dex)	Age (Gyr)	[Fe/H] (dex)	Age (Gyr)
117	B233D	$-1.07^{+0.03}_{-0.04}$	$1.434^{+0.008}_{-0.004}$	$-1.63^{+0.04}_{-0.00}$	$1.680^{+0.049}_{-0.112}$	$-0.36^{+0.12}_{-0.10}$	$1.434^{+0.010}_{-0.004}$
118	B256D	$-0.96^{+0.05}_{-0.04}$	$0.010^{+0.001}_{-0.000}$	$-0.93^{+0.05}_{-0.05}$	$0.010^{+0.000}_{-0.000}$	$-0.62^{+0.16}_{-0.11}$	$0.015^{+0.001}_{-0.002}$
119	B344D	$-1.63^{+0.05}_{-0.00}$	$20.000^{+0.000}_{-1.525}$	$-1.63^{+0.04}_{-0.00}$	$20.000^{+0.000}_{-1.242}$	$-0.71^{+0.14}_{-0.21}$	$4.250^{+2.916}_{-1.827}$
120	BA11	$-1.63^{+0.08}_{-0.00}$	$20.000^{+0.000}_{-1.362}$	$-1.63^{+0.06}_{-0.00}$	$20.000^{+0.000}_{-1.151}$	$-0.62^{+0.14}_{-0.17}$	$3.500^{+2.917}_{-1.244}$
121	BA22	$-1.03^{+0.11}_{-0.05}$	$1.434^{+0.009}_{-0.005}$	$-0.49^{+0.11}_{-0.14}$	$0.571^{+0.052}_{-0.022}$	$-0.38^{+0.16}_{-0.10}$	$1.434^{+0.013}_{-0.005}$
122	BH05	$-0.67^{+0.13}_{-0.04}$	$0.015^{+0.001}_{-0.000}$	$-0.75^{+0.14}_{-0.13}$	$0.015^{+0.001}_{-0.000}$	$-0.72^{+0.15}_{-0.10}$	$0.015^{+0.001}_{-0.000}$
123	SK107B	$-0.88^{+0.04}_{-0.05}$	$1.434^{+0.003}_{-0.002}$	$-1.63^{+0.00}_{-0.00}$	$20.000^{+0.000}_{-2.56}$	$0.28^{+0.00}_{-0.01}$	$1.609^{+0.003}_{-0.004}$
Table 3. Ages and Metallicities Derived from the SED fitting with GALEV models and Kroupa IMF.

No.	Name	All Data [Fe/H] (dex)	All Data Age [Gyr]	Without WISE Data [Fe/H] (dex)	Without WISE Data Age [Gyr]	Without GALEX Data [Fe/H] (dex)	Without GALEX Data Age [Gyr]
1	B003	-1.70±0.21	2.692±0.460	-1.70±0.22	2.692±0.410	-1.70±0.09	15.912±0.088
2	B009	-1.52±0.15	3.268±0.398	-1.34±0.14	2.976±0.375	-1.70±0.35	1.220±14.071
3	B010	-1.38±0.12	1.792±0.142	-1.45±0.14	1.836±0.125	-1.56±0.14	4.912±11.088
4	B011	-0.95±0.06	1.372±0.231	-0.95±0.06	1.304±0.254	-1.13±0.18	3.312±7.784
5	B012	-1.70±0.07	1.764±0.102	-1.70±0.12	1.820±0.090	-1.70±0.08	1.592±0.237
6	B019	-0.92±0.04	1.416±0.151	-0.95±0.04	1.428±0.147	-1.17±0.12	15.256±7.744
7	B020	-0.95±0.07	1.340±0.176	-0.95±0.04	1.340±0.165	-1.20±0.15	15.956±4.044
8	B022	-1.70±0.00	1.848±0.232	-1.70±0.00	1.948±0.177	-1.70±0.00	1.000±0.266
9	B023	-1.09±0.09	1.908±0.235	-0.99±0.06	1.780±0.196	-1.31±0.16	14.676±3.324
10	B025	-1.70±0.19	2.040±0.342	-1.34±0.14	1.876±0.147	-1.70±0.09	15.860±2.960
11	B027	-1.70±0.00	2.020±0.104	-1.70±0.00	2.020±0.078	-1.70±0.00	1.000±0.376
12	B038	-1.70±0.11	1.260±0.039	-1.59±0.11	1.260±0.037	-1.31±0.18	5.292±10.708
13	B046	-1.31±0.22	0.496±0.070	-0.03±0.06	0.512±0.087	-0.03±0.24	0.500±0.050
14	B047	-1.70±0.00	1.828±0.314	-1.70±0.00	1.864±0.355	-1.70±0.00	1.592±0.105
15	B048	-1.59±0.25	1.620±0.039	-1.59±0.11	1.620±0.037	-1.31±0.18	5.292±10.708
16	B049	0.01±0.06	0.496±0.024	-0.03±0.06	0.512±0.087	-0.03±0.24	0.500±0.050
17	B058	-1.31±0.10	1.812±0.114	-1.02±0.09	1.260±0.214	-1.56±0.14	15.460±0.540
18	B061	-0.95±0.17	0.496±0.070	-0.89±0.20	0.500±0.040	-1.41±0.13	13.984±12.178
19	B064	-1.27±0.17	1.176±0.075	-1.27±0.15	1.176±0.067	-1.52±0.38	1.224±0.988
20	B065	-1.70±0.08	3.396±0.510	-1.59±0.11	3.276±0.445	-1.70±0.00	1.688±0.236
21	B074	-1.63±0.15	2.232±0.239	-1.49±0.13	2.076±0.251	-1.70±0.00	3.240±11.530
22	B076	-1.59±0.11	1.880±0.243	-1.45±0.24	1.756±0.518	-1.70±0.00	4.788±2.994
23	B081	-0.56±0.06	0.912±0.044	-0.40±0.00	0.324±0.026	0.02±0.11	1.088±0.104
24	B083	-1.31±0.15	2.292±0.320	-1.17±0.13	2.056±0.171	-1.70±0.00	7.984±6.010
25	B085	-1.70±0.07	1.892±0.390	-1.70±0.12	1.968±0.406	-1.70±0.08	1.588±0.258
26	B086	-1.31±0.12	1.188±0.064	-1.59±0.11	1.440±0.224	-1.17±0.33	1.184±0.099
27	B088	-1.70±0.05	0.972±0.046	-1.70±0.15	0.992±0.050	-1.70±0.06	1.000±0.031
28	B096	-0.95±0.21	0.504±0.060	-1.02±0.25	0.500±0.073	-1.34±0.19	1.596±0.490
29	B100	-0.99±0.12	1.260±0.094	-1.02±0.10	1.260±0.276	-1.09±0.14	15.988±3.311
Table 3—Continued

No.	Name	All Data		Without WISE Data		Without GALEX Data	
	[Fe/H]	Age (Gyr)	[Fe/H]	Age (Gyr)	[Fe/H]	Age (Gyr)	
-----	--------	-----------	--------	-----------	--------	-----------	
30	B101						
31	B103						
32	B107						
33	B110						
34	B126						
35	B135						
36	B147						
37	B148						
38	B151						
39	B153						
40	B158						
41	B165						
42	B174						
43	B178						
44	B179						
45	B181						
46	B182						
47	B193						
48	B194						
49	B205						
50	B206						
51	B207						
52	B211						
53	B212						
54	B218						
55	B224						
56	B225						
57	B229						
58	B230						
No.	Name	[Fe/H] (dex)	Age (Gyr)	[Fe/H] (dex)	Age (Gyr)	[Fe/H] (dex)	Age (Gyr)
-----	-------	--------------	-----------	--------------	-----------	--------------	-----------
59	B232	−1.70±0.04	1.584±0.066	−1.70±0.08	1.584±0.112	−1.70±0.08	1.000±0.036
60	B233	−1.41±0.12	1.976±0.218	−1.20±0.08	1.812±0.122	−1.70±0.20	6.252±9.748
61	B235	−0.99±0.10	1.320±0.368	−0.99±0.09	1.320±0.276	−0.95±0.13	7.500±5.000
62	B237	−1.70±0.06	0.800±0.522	−1.70±0.07	1.896±0.487	−1.70±0.00	1.000±0.173
63	B240	−1.70±0.12	1.784±0.136	−1.41±0.11	1.564±0.147	−1.70±0.17	1.740±0.382
64	B255	−1.13±0.26	0.592±0.124	−1.17±0.27	0.600±0.106	−1.17±0.29	0.684±0.250
65	B289	−1.70±0.06	1.000±0.018	−1.70±0.17	0.000±0.000	−1.70±0.05	0.120±0.005
66	B292	−1.70±0.06	0.900±0.024	−1.66±0.02	1.000±0.070	−1.70±0.00	0.620±0.148
67	B293	−1.70±0.08	1.000±0.026	−1.63±0.019	0.000±0.048	−1.70±0.05	0.508±0.036
68	B302	−1.24±0.10	1.932±0.134	−0.93±0.05	1.260±0.216	−1.59±0.19	14.464±1.536
69	B304	−1.70±0.13	1.984±0.352	−1.45±0.13	1.880±0.132	−1.70±0.19	1.800±0.487
70	B310	−1.70±0.17	1.956±0.244	−1.41±0.13	1.788±0.132	−1.70±0.16	3.596±12.404
71	B311	−1.70±0.06	1.000±0.019	−1.52±0.19	1.000±0.048	−1.70±0.05	0.628±0.144
72	B312	−1.49±0.16	1.916±0.235	−1.09±0.12	1.264±0.400	−1.70±0.21	5.540±1.160
73	B313	−1.70±0.10	1.132±0.062	−1.70±0.09	1.136±0.063	−1.70±0.01	1.166±0.005
74	B315	−1.70±0.04	0.504±0.034	−1.70±0.09	0.504±0.049	−1.70±0.14	0.116±0.001
75	B317	−1.70±0.06	1.860±0.111	−1.70±0.10	1.940±0.204	−1.70±0.10	1.000±0.061
76	B321	−0.38±0.10	0.120±0.003	−0.38±0.14	0.120±0.006	−0.35±0.06	0.116±0.003
77	B325	−1.70±0.30	0.396±0.047	−1.06±0.25	0.480±0.067	−1.70±0.16	1.592±0.165
78	B327	−0.42±0.09	0.040±0.004	−0.38±0.15	0.040±0.004	−0.56±0.25	0.024±0.004
79	B330	−1.02±0.11	1.472±0.247	−1.13±0.13	1.268±0.409	−0.70±0.21	1.644±1.220
80	B337	−1.24±0.12	1.844±0.130	−0.99±0.08	1.348±0.244	−1.45±0.21	4.136±11.864
81	B338	−1.38±0.10	1.467±0.217	−1.27±0.10	1.264±0.241	−1.70±0.15	5.224±10.776
82	B343	−1.70±0.06	1.584±0.103	−1.70±0.14	1.524±0.224	−1.70±0.18	1.056±0.263
83	B345	−1.70±0.20	1.076±0.071	−1.52±0.19	1.072±0.070	−1.70±0.18	1.040±0.074
84	B347	−1.09±0.10	2.432±0.243	−0.95±0.07	2.108±0.184	−1.45±0.20	9.996±6.865
85	B350	−1.70±0.17	2.040±0.330	−1.49±0.14	1.936±0.194	−1.70±0.14	3.300±10.104
86	B352	−1.49±0.15	1.024±0.049	−1.27±0.13	1.000±0.049	−1.70±0.00	1.000±0.336
87	B356	−1.70±0.09	1.812±0.201	−1.70±0.22	1.924±0.275	−1.70±0.08	1.640±1.857
No.	Name	[Fe/H] (dex)	Age (Gyr)	[Fe/H] (dex)	Age (Gyr)	[Fe/H] (dex)	Age (Gyr)
-----	-------	-------------	-----------	-------------	-----------	-------------	-----------
88	B358	−1.70 ± 0.09	3.238 ± 0.169	−1.70 ± 0.15	2.372 ± 0.138	−1.70 ± 0.14	1.592 ± 1.499
89	B361	−1.70 ± 0.10	1.592 ± 0.119	−1.59 ± 0.17	1.536 ± 0.199	−1.70 ± 0.16	1.056 ± 0.292
90	B365	−1.70 ± 0.07	1.652 ± 0.094	−1.70 ± 0.12	1.764 ± 0.108	−1.70 ± 0.13	1.000 ± 0.277
91	B370	−1.63 ± 0.15	1.520 ± 0.218	−1.17 ± 0.12	1.096 ± 0.066	−1.70 ± 0.30	1.196 ± 0.468
92	B377	−1.70 ± 0.20	2.236 ± 0.546	−0.81 ± 0.14	1.116 ± 0.077	−1.70 ± 0.19	3.336 ± 10.368
93	B380	−1.70 ± 0.02	3.052 ± 0.333	−1.70 ± 0.03	3.004 ± 0.029	−1.70 ± 0.04	0.504 ± 0.140
94	B382	−1.70 ± 0.08	1.000 ± 0.043	−1.70 ± 0.04	1.584 ± 0.078	−1.70 ± 0.04	1.000 ± 0.100
95	B386	−1.41 ± 0.13	2.504 ± 0.346	−1.24 ± 0.11	2.333 ± 0.193	−1.70 ± 0.19	5.888 ± 10.112
96	B396	−1.70 ± 0.11	1.720 ± 0.202	−1.70 ± 0.13	1.796 ± 0.215	−1.70 ± 0.09	1.592 ± 0.105
97	B405	−1.70 ± 0.07	1.576 ± 0.073	−1.45 ± 0.16	1.124 ± 0.056	−1.70 ± 0.16	1.624 ± 1.791
98	B411	−0.42 ± 0.12	0.356 ± 0.036	−0.70 ± 0.14	0.316 ± 0.010	−0.18 ± 0.12	0.796 ± 0.111
99	B412	−1.02 ± 0.12	1.280 ± 0.379	−1.20 ± 0.17	1.260 ± 0.116	−0.49 ± 0.15	5.836 ± 5.146
100	B467	−1.70 ± 0.14	2.136 ± 0.329	−1.63 ± 0.07	2.108 ± 0.194	−1.70 ± 0.06	15.868 ± 1.387
101	B472	−1.20 ± 0.11	1.260 ± 0.256	−1.17 ± 0.08	1.260 ± 0.189	−1.34 ± 0.16	4.728 ± 9.981
102	B475	−1.70 ± 0.17	1.592 ± 0.248	−1.06 ± 0.20	1.000 ± 0.045	−1.24 ± 0.30	0.588 ± 0.216
103	B486	−1.70 ± 0.07	1.584 ± 0.149	−1.70 ± 0.11	1.584 ± 0.200	−1.70 ± 0.12	0.508 ± 0.507
104	G001	−0.92 ± 0.05	1.488 ± 0.152	−0.92 ± 0.05	1.428 ± 0.137	−0.70 ± 0.17	2.056 ± 0.790
105	G002	−1.63 ± 0.10	2.400 ± 0.324	−1.45 ± 0.15	2.260 ± 0.223	−1.70 ± 0.10	15.860 ± 1.410
106	G085	−0.46 ± 0.08	0.112 ± 0.004	−0.31 ± 0.08	0.112 ± 0.004	0.15 ± 0.10	0.048 ± 0.009
107	G260	−1.70 ± 0.05	1.000 ± 0.047	−1.70 ± 0.07	1.000 ± 0.049	−1.70 ± 0.06	0.116 ± 0.002
108	G327	−1.70 ± 0.04	3.172 ± 0.428	−1.70 ± 0.08	3.440 ± 0.340	−1.70 ± 0.15	1.012 ± 0.600
109	G353	−1.70 ± 0.07	1.000 ± 0.023	−1.70 ± 0.18	1.000 ± 0.043	−1.70 ± 0.04	0.508 ± 0.029
110	VDB0	−0.42 ± 0.05	0.068 ± 0.009	−0.38 ± 0.11	0.064 ± 0.014	−1.13 ± 0.13	0.040 ± 0.023
111	B011D	0.40 ± 0.01	0.292 ± 0.011	0.40 ± 0.04	0.264 ± 0.017	0.40 ± 0.01	1.588 ± 0.009
112	B108D	−0.85 ± 0.39	0.156 ± 0.026	−1.24 ± 0.34	0.148 ± 0.031	−0.28 ± 0.29	0.472 ± 0.147
113	B110D	−1.06 ± 0.29	0.736 ± 0.120	−1.70 ± 0.19	1.104 ± 0.074	−1.41 ± 0.28	1.152 ± 0.835
114	B134D	0.11 ± 0.01	0.064 ± 0.001	0.18 ± 0.11	0.052 ± 0.003	−1.13 ± 0.23	0.200 ± 0.192
115	B165D	−0.70 ± 0.07	0.500 ± 0.021	−0.70 ± 0.09	0.500 ± 0.022	−0.60 ± 0.20	1.612 ± 0.297
116	B167D	−1.34 ± 0.16	1.128 ± 0.073	−1.31 ± 0.15	1.128 ± 0.074	−1.38 ± 0.34	1.108 ± 0.787
No.	Name	All Data	Without WISE Data	Without GALEX Data			
-----	-------	----------	-------------------	--------------------			
		[Fe/H]	Age (dex)	[Fe/H]	Age (Gyr)	[Fe/H]	Age (Gyr)
117	B233D	$0.29^{+0.04}_{-0.06}$	$0.276^{+0.015}_{-0.019}$	$-0.24^{+0.09}_{-0.10}$	$0.400^{+0.035}_{-0.016}$	$0.40^{+0.00}_{-0.10}$	$0.616^{+0.147}_{-0.120}$
118	B256D	$-0.85^{+0.16}_{-0.19}$	$0.016^{+0.000}_{-0.000}$	$-0.70^{+0.04}_{-0.22}$	$0.016^{+0.000}_{-0.000}$	$-0.56^{+0.12}_{-0.11}$	$0.016^{+0.000}_{-0.001}$
119	B344D	$-1.34^{+0.18}_{-0.21}$	$1.260^{+0.170}_{-0.046}$	$-1.34^{+0.19}_{-0.19}$	$1.260^{+0.137}_{-0.038}$	$-1.38^{+0.18}_{-0.18}$	$12.024^{+3.976}_{-8.509}$
120	BA11	$-1.24^{+0.16}_{-0.21}$	$1.260^{+0.182}_{-0.044}$	$-1.24^{+0.16}_{-0.19}$	$1.260^{+0.146}_{-0.037}$	$-1.34^{+0.20}_{-0.19}$	$8.744^{+7.256}_{-4.996}$
121	BA22	$0.26^{+0.11}_{-0.09}$	$0.232^{+0.034}_{-0.027}$	$-0.70^{+0.18}_{-0.09}$	$0.316^{+0.016}_{-0.009}$	$0.36^{+0.04}_{-0.12}$	$0.720^{+0.147}_{-0.152}$
122	BH05	$-0.74^{+0.11}_{-0.19}$	$0.016^{+0.000}_{-0.000}$	$-0.85^{+0.17}_{-0.25}$	$0.016^{+0.000}_{-0.000}$	$-0.63^{+0.11}_{-0.22}$	$0.016^{+0.000}_{-0.001}$
123	SK107B	$0.40^{+0.00}_{-0.01}$	$0.080^{+0.000}_{-0.001}$	$0.40^{+0.04}_{-0.04}$	$0.144^{+0.015}_{-0.018}$	$0.33^{+0.05}_{-0.07}$	$1.584^{+0.152}_{-0.049}$
Fig. 1.— Comparisons of metallicity fit with Padova 2000 evolutionary track and Chabrier (2003) IMF of Bruzual & Charlot (2003) model and that from literature works: Chen et al. (2016) (Top Left Panel); Caldwell et al. (2011) (Top Right Panel); PBH spectroscopies (Perrett et al. 2002; Barmby et al. 2000; Huchra et al. 1991) (Bottom Left Panel); Fan et al. (2010) (Bottom Right Panel). The dashed lines represent the best linear fits.
Fig. 2.— The same as Figure 1 but for GALEV models of Kroupa IMF. The dashed lines represent the best linear fits.
Fig. 3.— The same as Figure 1, but for comparisons of the ages fit with Padova 2000 evolutionary track and Chabrier (2003) IMF of Bruzual & Charlot (2003) model and that from literature works: Chen et al. (2016) (Top Left Panel); Caldwell et al. (2011) (Top Right Panel); Wang et al. (2010) (Bottom Left Panel); Fan et al. (2010) (Bottom Right Panel). The dashed lines represent the best linear fits.
Fig. 4.— The same as Figure 2 but for GALEV models of Kroupa IMF. The dashed lines represent the best linear fits.
Fig. 5.— Comparisons of metallicity derived from the Bruzual & Charlot (2003) models of Padova 1994/Padova 2000 evolutionary tracks (Top Panels) and IMFs of Chabrier (2003)/Salpeter (1955) (Bottom panels). The photometry of all bands are used for the fitting. The dashed lines represent the best linear fits.
Fig. 6.— Same as Figure 5 but for the ages, which are derived from evolutionary tracks of Padova 1994/Padova 2000 and IMFs of Chabrier (2003) / Salpeter (1955) of the Bruzual & Charlot (2003) models. The photometry of all bands are used for the fitting. The dashed lines represent the best linear fits.
Fig. 7.— Comparisons of metallicity fitted from the BC03 models with photometry of all bands and that without GALEX data (LEFT PANEL) and that without WISE data (RIGHT PANEL). The Padova 2000 evolutionary track and Chabrier (2003) IMF are applied. The dashed lines represent the best linear fits.
Fig. 8.— Comparisons of ages fitted from the BC03 models with photometry of all bands and that without GALEX data (LEFT PANEL) and that without WISE data (RIGHT PANEL). The Padova 2000 evolutionary track and Chabrier (2003) IMF are applied. The dashed lines represent the best linear fits.
Fig. 9.— Same as Figure 5 but for galev models of Kroupa/Scalo/Salpeter (1955) IMFs. The dashed lines represent the best linear fits.

Fig. 10.— Same as Figure 6 but for galev models with IMFs of Kroupa/Scalo/Salpeter (1955). The dashed lines represent the best linear fits.
Fig. 11.— Same as Figure 7 but for galev models of Kroupa IMF with photometry of all bands and that without GALEX data (Left Panel) and that without WISE data (Right Panel). The dashed lines represent the best linear fits.

Fig. 12.— Same as Figure 8 but for galev models of Kroupa IMF with photometry of all bands and that without GALEX data (Left Panel) and that without WISE data (Right Panel). The dashed lines represent the best linear fits.