Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease

Dennis McGonaglea,b,⁎, Kassem Sharifb,c, Anthony O'Regand, Charlie Bridgewooda

a Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
b National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
c Sheba Medical Center, Tel Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
d National University of Ireland, Saolta University Healthcare Group, Galway, Ireland

A B S T R A C T

Severe COVID-19 associated pneumonia patients may exhibit features of systemic hyper-inflammation designated under the umbrella term of macrophage activation syndrome (MAS) or cytokine storm, also known as secondary haemophagocytic lymphohistocytosis (sHLH). This is distinct from HLH associated with immunodeficiency states termed primary HLH -with radically different therapy strategies in both situations. COVID-19 infection with MAS typically occurs in subjects with adult respiratory distress syndrome (ARDS) and historically, non-survival in ARDS was linked to sustained IL-6 and IL-1 elevation. We provide a model for the classification of MAS to stratify the MAS-like presentation in COVID-19 pneumonia and explore the complexities of discerning ARDS from MAS. We discuss the potential impact of timing of anti-cytokine therapy on viral clearance and the impact of such therapy on intra-pulmonary macrophage activation and emergent pulmonary vascular disease.

1. Introduction

We live in extraordinary times with intensive care units around the globe being overwhelmed with severe COVID-19 viral pneumonia that leads to severe adult respiratory distress syndrome (ARDS). Given the lack of a vaccine or proven effective anti-viral therapy and non-existent herd immunity, anti-cytokine therapy, most notably anti-IL-6 and others including IL-1 antagonism have been proposed for mitigating against the hyper-inflammation that may develop in conjunction with this virally induced ARDS \cite{1,2}. The backdrop for cytokine antagonism of hyper-inflammation in non-immunodeficient patients emerged in children with systemic onset juvenile inflammatory arthritis (sJIA) also known as Stills disease where a severe hyper-cytokineemic inflammatory state variously termed as a cytokine storm, macrophage activation syndrome (MAS) or secondary haemophagocytic lymphohistocytosis (sHLH) may occur \cite{3–5}. Impressive responses to antagonism of either IL-6 or IL-1 have been reported in sJIA \cite{6,7}.

The suspicion that overzealous immune responses associated with MAS/sHLH may be driving COVID-19 related ARDS has created a tremendous interest for anti-cytokine therapy for dampening of such exaggerated immune responses as a beneficial therapeutic strategy \cite{2}. The focus of this article is to explore COVID-19 pulmonary immunopathology and describe the potential benefits or disadvantages of IL-6 antagonism is patients with severe inflammatory responses that has implications for other anti-cytokine strategies including IL-1, IL-18 or IFNγ antagonism. Other DMARDs may also have potential use for treating COVID-19 patients, and excellent reviews can be found elsewhere \cite{8}.

2. Macrophage activation syndrome in COVID-19 pneumonia?

Although pneumonitis may occur, the classic MAS/sHLH picture in sJIA and other settings most often occurs outside the lungs and manifests as fevers, adenopathy, hepatosplenomegaly, anaemia, other cytopenias, liver function derangement and the activation of intravascular coagulation cascades secondary to inflammation, and is accompanied by marked hypercytokinaemia. (Fig. 1A) Clinical and laboratory parameters in the MAS/sHLH phenotype are similar to primary HLH but the latter is invariably autosomal recessive, presenting in childhood, and is typically due to mutations that impair NK and CD8+ cytotoxic T-cell function \cite{9–11}, although there are emergent overlaps. As the focus of this perspective is restricted to IL-6 in potential MAS in COVID-19 related pneumonia, the reader is referred to several recent articles on primary and secondary HLH and sJIA with MAS \cite{12–15}.

Laboratory parameters including highly elevated CRP and hyperferritinaemia, the latter of which may play a complex role in disease \cite{16–18}, are key to the diagnosis of MAS/HLH and are elevated in many severe COVID-19 pneumonia cases. Other features including coagulopathy and abnormal liver function may be evident suggesting that a subgroup of COVID-19 pneumonia cases also have MAS/sHLH.
The limited COVID-19 post mortem data shows prominent alveolar oedema, hyalinosis (intra-alveolar proteinosis) and fibrin deposition with pneumocytes viral cytopathic change and immune cell infiltration including lymphocytes is typical or ARDS [26] as is evolving severe multi-organ damage including renal, cardiac and liver dysfunction with hypoproteininaemia [28]. In patients with ARDS (not generally due to viral pneumonia, but other causes) the elevation in baseline plasma levels of IL-6 predicted a poor survival [29] as did even higher bronchoalveolar (BAL) fluid levels indicating a pulmonary, rather than systemic origin for these cytokines in ARDS pathology [30]. Therefore, the overlapping cytokine profiles between severe ARDS and MAS/sHLH may limit the utility of cytokine profiling in the differentiation between both conditions and many of the laboratory changes reported in COVID-19 could predominantly reflect ARDS. (Fig. 2).

3. A new proposed integrated innate and adaptive immune mechanisms in MAS/HLH

The link between a COVID-19 induction of a temporary immunodeficiency states (with features resembling primary HLH) rather than MAS/sHLH (that may occur in completely immunocompetent states) is not something yet that is fully appreciated. At first glance, the notion of hyper-inflammation in the face of immunodeficiency seems counter-intuitive, but that is exactly what happens in primary HLH. Inflammation against self occurs along an immunological disease continuum with pure innate and pure adaptive immunity at opposite
boundaries [31]. Within these clear boundaries it is possible to stratify immune responses as being loss of function, normal or gain of function which then permits a better conceptual understanding of the integrated workings of the system [32] (Fig. 3).

Primary HLH broadly defines hyper inflammatory immunodeficiency states that often equate with failure of the perforin and NK and CD8+ cytotoxic T-cells killing machinery that forms pores leading to cell lysis to initiate apoptosis of virally infected cells [9,33,34]. This leads to widespread T-cell mediated IFN-γ driven secondary cytokine driven macrophage activation (Fig. 3A). Vigorous immunosuppression and sometimes anti-viral chemotherapy in these settings only represents a bridging strategy towards definitive allo- geneic bone marrow transplantation strategies with immunosuppression being futile. Indeed evidence for such a primary HLH with immunodeficiency picture in adults succumbing to H1N1 influenza viral pneumonia has been reported [19], making it possible that patients succumbing to COVID-19 may also occasionally harbour perforin pathway mutations.

The COVID-19 associated pneumonia is associated with lung damage and ARDS and robust interferon suppression with lymphopenia as part of the virally induced immunosuppression. Also, preliminary data suggest that disease severity in COVID-19 may be associated with low IFN-γ production by CD4 + T-cells [35]. The related SARS-CoV virus open reading frame (ORF) and N proteins, act as antagonists to the interferon pathway by regulating IFN-β synthesis and signalling [36] which was mirrored in another experimental model [37]. In MERS-CoV-infected rhesus macaques, treatment with interferon-a2b was able to improve outcome [38]. Both IFN-β and IFN-γ inhibit the replication of SARS-CoV [39]. A characteristic feature of primary HLH but not sHLH/MAS is defective NK function which is also reported in COVID-19 infection, but by different mechanisms [40].

Analogous to primary HLH, the loss of “front line” anti-viral defence mechanism may activate a “second wave” of more tissue aggressive immunity including exaggerated IL-6 production with a secondary cytokine storm superimposed with increased tissue damage (Fig. 3C) and (Fig. 4). Other “second wave” of non-type-1 interferon pathway myeloid and stromal derived cytokines including IL-1, TNF, IL-18, GM-CSF would be expected to be part of blood hyper-cytokinaemia and MAS picture (Panel 4C). Accordingly, there are similarities between COVID-19 and primary HLH which would point towards the importance of viral load reduction in COVID-19 (Fig. 3C).

It is also postulated that the typical MAS/sHLH pathology that arises in immunocompetent cases (Fig. 3B) may also arise in the COVID-19 infection (Fig. 3D). However, how this occurs in the face of active infection and how these two patterns of MAS could be differentiated and whether this clinically matters, especially in advanced ARDS is presently unclear. Stated differently, such a hypersensitive T-cell mediated reaction against virally infected cells would be expected to clear the actual infection, but contributing to ongoing damage and ARDS (Fig. 4D). Viral pneumonia has been reported in up to 40% of cases [41] with one study showing a strong correlation between serum viral RNA load and ARDS severity [42]. A simple serological score including serial measurements of CRP, ferritin and blood viral load could therefore be used to evaluate therapy strategies for these different types of MAS (Table 2), but it is essential to appreciate that the hypoxaemic environment of ARDS complicates the perceived MAS picture.

4. Interleukin-6 and immune function in COVID-19 related pneumonia

Clues as to how the increased levels of IL-6 and other cytokines that arise in ARDS impact on immunity come from experimentally induced viral lung infection where IL-6 may have contextual protective or exacerbating roles including severity of infection, survival and tissue remodelling, but there are very limited data on coronavirus family members in general (Table 1). Interleukin-6 also plays an important role in lung repair responses following viral or chemical insults indicating that timing of administration of anti-IL6R could impact on proper tissue remodelling (Table 1). In human epithelial cells, SARS-CoV was able to induce greater IL-6 when compared to Influenza-A virus and human parainfluenza virus type 2, but interestingly induced less SOCS3 than other viruses, suggesting a potential basis for exaggerated IL-6 responses with this family of viruses [43].

A picture emerges of COVID-19 ARDS and “second wave” pro-inflammatory cytokines including IL-6 and others leading to the MAS like pathology (Fig. 4C and D). The biology of IL-6 is complex with cytokine engagement of membrane anchored IL-6R and gp130 co-receptor being known to have tissue homeostatic and repair responses [44]. However, many non-immune cells including stromal and epithelial cells can induce marked inflammatory responses when soluble IL-6R-IL-6 anchors to membrane gp130 in what is termed trans-signalling. This engagement potently activates inflammatory responses [45] (Fig. 4B). Reports indicate that murine pulmonary stromal cells including myofibroblasts signal via both IL-6R and trans signalling but type 2 pneumocytes lack the soluble membrane IL-6 receptor indicating that these signals exclusively via IL-6R trans signalling [46] (Fig. 4D). Given that trans signalling typically drives inflammatory reactions this may impact on COVID-19 immunity [47-49].

5. Key messages and considerations for IL-6 for COVID-19 pneumonia, ARDS and MAS

We highlight how COVID-19 pneumonia may represent a novel viral MAS-like immunopathology, where hyper-inflammation may be key to virus control in the face of disabled type-1 interferon responses. Furthermore, the recognition of MAS/sHLH is problematic in COVID-19 pneumonia cases with the severe inflammation emanating from the pulmonary compartment mimicking MAS, but the lack of other classical systemic clinical features making MAS presentation atypical and diagnosis more difficult. Consequently, many cases receiving anti-IL6R or other cytokine inhibitors therapy may have severe infection related ARDS without superimposed MAS. Although inflammation is more lung centered, than multi-organ, the argument for IL-6 involvement in COVID-19 related MAS comes from biochemical parameters changes including ferritin and the preliminary open reports of anti-IL6R efficacy [28,50]. We appear to be dealing with a pulmonary pathology distinct from MAS with DIC with both the macrophage activation and
associated coagulopathy being more centered on the lung and not systemic (Figure 1B).

Considerations around timing of anti-IL-6 therapy and its use outside a clear-cut systemic MAS pictures are key. Early use of anti-retroviral therapy strategies to reduce viral load appear crucial to preventing the relative immunosuppression that might be contributing to the MAS like picture development. The subtle overlap in features of severe COVID-19 pneumonia with primary HLH and the sub-analysis of the failed anti-retroviral trial in COVID-19 pneumonia suggested a potential benefit of early anti-viral therapy initiation [1,51].

It is presently unclear if elevated IL-6 levels are detrimental or beneficial in COVID-19 pneumonia. In experimental model systems, IL-6 can either suppress or facilitate viral replication [49], so studies on COVID-9 are urgently needed. Timing of anti-IL-6R, if too early might adversely affect viral clearance which needs to be assessed in trials. If it emerges that blocking IL-6R early in the course of COVID pneumonia MAS-like disease has a detrimental impact on type-2 pneumocyte anti-viral immunity, then local augmentation of IL-6 could be considered. Such are the complexities that only trial results will clarify.

In this perspective we focused on IL-6 and its relationship to the COVID-19 MAS-like pathology but several other relevant cytokines including IL-18, IFNγ, and the JAK1 pathway critically control...
Macrophage function including IL-6 production during MAS states [52]. Antagonism of either IFN-γ or IL-18 that may be upstream of IL-6 and IL-1 has been associated with efficacy in human HLH and SJIA [53, 54]. Both the short term and long-term outcome of trials of IL-6 blockers in COVID-19 pneumonia are eagerly awaited to clarify nature of the MAS-like state.

If a MAS-like state exists and excessive IL-6 levels are detrimental—why shouldn’t corticosteroids be first line therapy as these will vigorously suppress IL-6 and a raft of other cytokines? Although the recent open label study from Wu and colleagues showed a benefit for corticosteroids, the consensus is that these should not be used based on clinical experience in SARS-CoV, MER-CoV and other infections including influenza and respiratory syncytial virus infection, where collectively there is evidence for delayed viral clearance [20, 55]. The MAS-like state in COVID-19 exhibits features of both primary and secondary HLH with death being linked to respiratory viral persistence [59]. Also in experimental models, IL-6 may either suppress or facilitate viral replication depending on the virus [49], so data on COVID-19 related disease is eagerly awaited.

Table 1
Impact of Interleukin-6 on viral pneumonitis and lung injury.

Experimental model	Key findings	Reference
Infection of human epithelial cells with SARS-CoV	• SARS-CoV induces greater IL-6 when compared to Influenza-A virus and human parainfluenza virus type 2	[43]
Infection of monocytes/macrophages with SARS-spike protein	• Upregulation of IL-6	[60, 61]
Murine SARS-CoV model	• Disease dependent on infiltrating monocytes, which produced high levels of IL-6, IL-1β and TNF	[62]
Influenza infection with IL-6 KO mice	IL-6 KO mice show	[63, 64]
	• Increased mortality	
	• Reduced macrophage phagocytic function	
	• Fibroblast proliferation, migration and collagen deposition	
	• Prevents viral induced neutrophil death	
HSV-1 respiratory infection with IL-6KO mice	IL-6 KO mice show increased mortality	[65]
Experimental ARDS induced by the intratracheal instillation of bacterial endotoxin	• Reduced pulmonary inflammation by the addition of recombinant IL-6	[66, 67]
Infectious models of tuberculosis, pneumococcal pneumonia and pulmonary aspergillosis	IL-6 KO mice show increased mortality in all infectious models	[68-70]
Bleomycin lung injury model with IL-6 neutralization	IL-6 neutralization resulted in:	[71]
	• Accelerated type 2 pneumocyte apoptosis	
	• Neutrophilic inflammation	
	• Accelerated lung fibrosis	
Rat model of bacterial sepsis remote from the lung with tocilizumab	Tocilizumab (anti-IL-6) resulted in:	[72]
	• Reduced sepsis-induced pulmonary and renal inflammatory	
	• Decreased mortality	
in the aforementioned Wu et al. study, indicating that, analogous to primary HLH, ongoing infection may be a driver. The role of IL-6 and other cytokines in what could be a distinct MAS-like lung inflammation with associated inflammation driven pulmonary vascular disease awaits clarification.

Financial disclosure

Conflict of Interest: Dennis McGonagle has received speaker fees and honoraria from Roche, Sobi and Novartis and research grants from Novartis.

Acknowledgements

Dr. Rachel Tattersall and Dr. Jessica Manson for gathering together the UK HLH Across Specialty Collaboration Group and the group members themselves for discussions on Policy Development towards MAS in COVID-19 Pneumonia.

Figures were created using Biorender.com

References

[1] Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of Lopinavir/Ritonavir in adults hospitalized with severe Covid-19. New Engl J Med 2020.
[2] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: the first month of the pandemic: an international perspective. Lancet 2020.
[3] Schulert GS, Yasin S, Carey B, Chalk C, Do T, Schapiro AH, et al. Systemic Juvenile Idiopathic Arthritis. 12. 2012. p. 56–9.
[4] Behrens EMJAR. Macrophage activation syndrome in rheumatic disease: what is the role of IL-6 and biologics? Autoimmun Rev 19 (2020) 102537.
[5] Poddighe D, Cavagna L, Brazzelli V, Bruni P, Marsiglia GLJAR. A hyper-ferritinemia syndrome evolving in recurrent macrophage activation syndrome, as an onset of amyopathic juvenile dermatomyositis: a challenging clinical case in light of the current diagnostic criteria. 13. 2014. p. 1142-8.
[6] Colaraficce S, Priori R, Alessandri C, Astori E, Perricone C, Blank M, et al. AntiCD3 in AOSD: a biomarker for macrophage activation related to hyperferritinaemia. 60. 2014. p. 177-83.
[7] Rosario C, Zandman-Goddard G, Meyron-Holtz EG, D’Cruz DP, Shoenfeld YJBM. The hyperferritinecemic syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. 11. 2013. p. 185.
[8] Sharif K, Vieira Borba V, Zandman-Goddard G, Shoenfeld YJC, E. Immunology. Eppur Si Muove: ferritin is essential in modulating inflammation. 191. 2018. p. 149-50.
[9] Bracaglia C, Precigre G, De Benedetti F. Macrophage activation syndrome: different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol Online J 2017;15: 5-5.
[10] Wu C, Chen X, Cai Y, Xia JA, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020.
[11] Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv 2020. 2020.02.10.20021832.
[12] Vastert SJ, Jamilloux Y, Quartier P, Ohlman S, Osterling Koskinen L, Kullenberg T, et al. An international consensus survey of diagnostic criteria for macrophage activation syndrome evolving in recurrent macrophage activation syndrome, as an onset of amyopathic juvenile idiopathic arthritis (ANAJIS trial). Ann Rheum Dis 2011;70:747-54.
[13] Yokota S, Imagawa T, Mori M, Miyamae T, Aihara Y, Takei S, et al. Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis under treatment with Tocilizumab. J Rheumatol 2015;42:712-22.
[14] Yao XH, Li TY, He ZC, Ping YF, Liu HW, Yu SC, et al. A pathological report of three cases of hyperferritinemic syndrome. Zhonghua Bing Li Xue Za Zhi 2020;49. E009.
[15] Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012;76:16-32.
[16] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020.
[17] Meduri GU, Headley S, Kohler G, Stentz F, Tolley E, Umberger R, et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS: plasma IL-6 and IL-6 levels are consistent and efficient predictors of outcome over time. 107. 1995. p. 1062-73.
[18] Meduri GU, Kohler G, Headley S, Tolley E, Stentz F, Postlethwaite AJC. Inflammatory cytokines in the BAL of patients with ARDS: persistent elevation over time predicts poor outcome. 108. 1995. p. 1303–14.
[19] McGonagle D, McDermott MF. A proposed classification of autoinflammatory diseases. PLoS Med 2006;3:e297.
[20] Grateau G, Hentgen V, Steichen O. How should we approach classification of autoinflammatory diseases? Nat Rev Rheumatol 2012;8:624-9.
[21] Grom AA. Primary hemophagocytic lymphohistiocytosis and macrophage activation syndrome: the importance of timely clinical differentiation. J Pediatr 2017;189:21-29. e1.
[22] Brune E, Matthys P, Wouters GH. Understanding the spectrum of haemophagocytic lymphohistiocytosis: update on diagnostic challenges and therapeutic options. Br J Haematol 2016;174:175–87.
[23] Chen G, Wu D, Guo C, Yao H, Huang D, Wang H, et al. Clinical and immunologic features in severe and moderate forms of Coronavirus Disease 2019. 2020.
[24] Kopecky-Bromberg SA, Martinez-Sobredo L, Frieden M, Baric RA, Palese P. Severe...
acut respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid protein function as interferon antagonists. J Virol 2007;81:548–57.

[37] Cameron MJ, Kelvin AA, Leon AJ, Cameron CM, Ran L, Xu L, et al. Lack of innate interferon responses during SARS coronavirus infection in a vaccination and re-infection ferret model. PLoS One 2012;7:e45842–e45842.

[38] Falzarano D, de Wit E, Rasmussen AL, Feldmann F, Okumura A, Scott DP, et al. Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med 2013;19:1313–7.

[39] Sainz Jr. B, Mosel EC, Peters G, Garry RFJV. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). 329. 2004. p. 11–7.

[40] Zheng M, Gao V, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. 2020. p. 1–3.

[41] Zhang W, Du R-H, Li B, Zheng X-S, Yang X-L, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. 9. 2020. p. 386–9.

[42] Chen W, Lan Y, Yuan X, Deng X, Li Y, Cai X, et al. Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. 9. 2020. p. 469–73.

[43] Okabayashi T, Karifu H, Yokota S, Iki S, Indoh T, Yokosawa N, et al. Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol 2006;78:417–24.

[44] Mihara M, Hashizume M, Yoshida H, Suzuki M, Shina MJCS. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. 122. 2012. p. 143–59.

[45] Jones SA, Richards PJ, Scheller J, Rose-John SJJOL, C. Research. IL-6 trans-signaling: the in vivo consequences. 25. 2005. p. 241–53.

[46] Le T-TT, Karmouty-Quintana H, Melico E, Le T-TT, Weng T, Chen N-Y, et al. Blockade of IL-6 receptor trans-signaling in acute lung injury. 5. 2012. p. 258.

[47] Scheller J, Ohnæsorge N, Rose-John S. Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand J Immunol 2006;63:321–9.

[48] Barbers C, Rose-John S. Dissecting Interleukin-6 classic- and trans-signaling in inflammation and cancer. Methods Mol Biol (Clifton, NJ) 2018;1725:127–40.

[49] Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Boreca MV. The role of interleukin 6 during viral infections. 10. 2019. p. 1057.

[50] Buan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of 150 patients from Wuhan, China. Intensive Care Med 2020.

[51] Baden LR, Rubin EJ. Covid-19 — the search for effective therapy. New Engl J Med 2020.

[52] Bracaglia C, Caiello I, De Graaf K, D’Ariò G, Guilbert F, Ferlin W, et al. Interferon-gamma (IFNγ) in macrophage activation syndrome (MAS) associated with systemic juvenile idiopathic arthritis (sJIA). High levels in patients and a role in a murine mas model. Pediatr Rheumatol Online J 2014;12:03-03.

[53] Vallurupalli M, Berliner N. Emapalumab for the treatment of relapsed/refractory hemophagocytic lymphohistiocytosis. Blood 2019;134:1783–6.

[54] Dinarello CA. Targeting interleukin 18 with interleukin 18 binding protein. Ann Rheum Dis 2005;59(Suppl. 1):117–20.

[55] Russell CD, Millar JE, Bailie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395:473–5.

[56] Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020.

[57] Registry CTT. A multicenter, randomized controlled trial for the efficacy and safety of tocilizumab in the treatment of new coronavirus pneumonia (COVID-19). 2020.

[58] Gupta S, Weitzman S. Primary and secondary hemophagocytic lymphohistiocytosis: clinical features. Pathogen Ther 2010;6:137–94.

[59] Le T-TT, Karmouty-Quintana H, Melico E, Le T-TT, Weng T, Chen N-Y, et al. Blockade of IL-6 Trans signaling attenuates pulmonary fibrosis. 193. 2014. p. 3755–68.

[60] Dushe SF, Mahajan SD, Collinis ARUV. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NFκB pathway in human monocyte macrophages in vitro. 142. 2009. p. 19–27.

[61] Wang W, Ye L, Ye L, Li B, Gao B, Zeng Y, et al. Up-regulation of IL-6 and TNF-α induced by SARS coronavirus spike protein in murine macrophages via NF-κB pathway. 128. 2007. p. 1–8.

[62] Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. 19. 2016. p. 181–93.

[63] Dienz O, Rud JG, Eaton SM, Lanthier PA, Burg E, Drew A, et al. Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. 5. 2012. p. 258–66.

[64] Yang M-L, Wang C-T, Yang S-J, Leu C-H, Chen S-H, Wu C-L, et al. IL-6 ameliorates acute lung injury in influenza virus infection. 7. 2017. p. 1–11.

[65] Murphy EA, Davis JM, Brown AS, Carmichael MD, Ghaffar A, Mayer EPJJ, et al. Effect of IL-6 deficiency on susceptibility to HSV-1 respiratory infection and intranasal macrophage antiviral resistance. 2008;28:589–96.

[66] Bhargava R, Jansen W, Altmann C, André-Hernando A, Okamura K, Vandiver RW, et al. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice. 8. 2013.

[67] Voigt R, Razavi K, Anslem V, Van Nhieu JT, Abd S, Adnot S, et al. Interleukin-6 displays lung anti-inflammatory properties and exerts protective hemodynamic effects in a double-hit murine acute lung injury. 2017;18:64.

[68] Ladel CH, Blum C, Dreher A, Keifenberg K, Kopf M, SJJL, Krausmann, and immunity. Lethal tuberculosis in interleukin-6-deficient mutant mice. 65. 1997. p. 4843–9.

[69] van der Poll T, Keogh CV, Guirao X, Buurman WA, Kopf M, Lanthier PA, Burg E, Drew A, et al. Bidirectional role of IL-6 signal in pathogenesis of lung fibrosis. 16. 2015. p. 99.

[70] Ibrahim FY, Mousa RA, Bayoumi AM, Ahmed A-SFFJ. Tocilizumab attenuates acute lung and kidney injuries and improves survival in a rat model of sepsis via down-regulation of NFκB/JNK: a possible role of P-glycoprotein. 28. 2020. p. 215–30.