Improved policy mechanisms for the promotion of future digital business economy during covid-19 pandemic

Xuesong Zhou1 · Zhengyang Chen2 · Xiang Zhan2 · S. BalaMurugan3 · K. Deepa Thilak4

Accepted: 6 April 2021 / Published online: 21 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Recent advances in the field of digital technology have enabled the expansion of the business market to a new level. Digital business markets encompass eminent features like increased transparency, enhanced customer relationship, flexible business targets, customer participation, etc. It aids in enhancing traditional business quality by bridging the relationship between the suppliers and the customers. The massive development of internet technology in recent years has largely contributed to the emergence of digital business. The digitization of the business world helps small and medium enterprises create a new digital network, which allows overcoming large enterprises’ dominance. Since small and medium enterprises play a major role in determining a country’s economy, the digital market’s emergence and development are very important. The self-organizing capability of the digital market is the main advantage for newly emerging enterprises. Recently, the Covid-19 pandemic has resulted in customers’ migration from offline shopping to the online market. These changing business models mandate the need for policies and control mechanisms. Using these policies, digital business projects are developed using an open environment using which the small and medium enterprises can interact with each other. These policies and control mechanisms outline the rules to be followed to avoid the current digital market issues. These policies must be designed to improve and ensure
the welfare of future digital business systems. Thus, this paper aims to explore the policies associated with regulating and promoting the digital business economy.

Keywords Digital business · Policy · Control mechanism · Economy

1 Introduction

The recent innovations in cloud computing, the internet of things, big data analysis, etc., has led to various sectors’ digital transformation. Digital companies use technology to generate new value for their core business models, customer service and internal capabilities. The term includes both digital brands and traditional players who use digital technology to transform their market. A COVID19 vaccine is a coronavirus 2 virus inducing acquired immunity against severe acute respiratory syndrome (COVID-19). Pre-COVID-19 pandemic work has developed knowledge of Coronavirus structure and function. This knowledge allowed accelerated development of the various vaccine technologies in early 2020 to build coronavirus vaccine vaccines such as acute severe respiratory syndrome (SERS) and the Middle East respiratory syndrome.

To achieve various benefits such as improved productivity, increased quality, enhanced profit, innovations, etc., these business sectors have recently migrated towards digitization [1, 2]. Many small and medium scale enterprises are benefited through business digitization transformation. The three main dimensions to support these enterprises’ sustainability involve social dimension, economic dimension, and environmental dimension [3, 4]. The contribution of these enterprises to the economic development of a country is substantial [5]. A roadmap for the digitization of the business sector has been presented in the literature. This involves sketching the current business strategy, framing a firm’s objectives, a logical combination of various business elements, identifying customer requirements, and the final implementation of the model [6]. The four main schemes involved in directing the business towards digitization are determining scope, establishing a business scale, presenting business speed, and creating valuable sources [7]. To build a digital framework, the most crucial element is customer identification. This gives us the dimension of the model. The second is the interaction with the customer. This is done to ensure that the customers’ requirements are collected before the establishment of products. The third is to interconnect the customers and their monetization [8]. Big data analysis (BDA) plays a major role in the digitization of the business model. The BDA is a valuable tool for analysing and interpreting a huge amount of data related to the business strategies available online [9]. These data are processed using BDA analytics to render useful information that aids in establishing successful business strategies [10, 11]. An end to end ecosystem of digital business comprises of initial production of materials, assembly, integration, usage of the materials, maintenance, support, repair of the product, and recycling [12].

Digitalization speeds economic growth and generates jobs: it raises world economic production by $193 billion and created six million employment in 2011.
There was a mistake. Although digitalization has a positive effect on productivity across industries, it has an unequal effect on employment. Firstly, due to the rising importance of the digital economy: estimates placed their value between 5 and 15% of the world’s GDP; contributions of 3–10% of global jobs; and usually double-digit annual growth recording. Second, since in developed countries digital economies are far below their capacity for growth because of numerous constraining obstacles, such as national contributions to GDP and jobs, which are about half the size of the global North, and even less the poorer developing countries. Improved efficiency of business models powered by data. The enhanced value chains management using market models focused on networks. The sharing economy provides new opportunities for more tax revenue from increased commercial operation and corporate formalization.

During digitization, every step in the cycle must be converted to support online models [13, 14]. The Internet of things is rapidly gaining importance, especially in terms of digitization due to its enormous impact on people’s everyday lives [15]. This technology has helped to bridge the gap between the producers and customers to a great extent. In addition, this technology has aided in the development of innovative products that are customizable. People have migrated mainly towards such innovative products due to their flexibility and reliability [16, 17]. The firm’s overall performance depends primarily on creative actions and strategy, competition in the business world, technological advancements, and experimentation done by the firm [18, 19]. The sectors that majorly require digitization include the retail sector, health sector, manufacturing sector, telecom sector, etc. The main aim is to minimize costs and maximize revenue. Usage of appropriate strategies and innovations can quickly help implement these sectors [20].

2 Related works

Mithas et al. [21] have presented a framework that analyzed the effect and influence of the digital business sector’s competitive environment. In this work, two types of investments were considered, namely, IT and IT outsourcing. Based on the movement of the digital strategy, it is classified into two types. If the digital strategy’s movement is towards the mean, then it is convergence, and if it moves away from the mean, then it is divergence. Three important factors responsible for the digital business were discussed in this work. The first factor was industrial turbulence. This refers to the rate at which various industrial firms enter into and exit from the industry. Such firms have instability and are required to operate independently. The second factor is concentration. It refers to the competitive nature of various industrial firms. The last factor is growth. The paper refers to the superior performance and development of industrial firms.

Parida et al. [22] have presented a detailed review of various business digitization models. The first perspective reviewed in this paper was the resource-based view. Here, the main focus of digitization was based on the Internet of Things (IoT). The main feature involved here was the customization of services. The second perspective was the transition theory. Here digitization was done using
the development of newer pathways. It involved changes in the structural components. The thirst perspective was Entrepreneurship. Here digitization was done using technological advancements. It included the generation of new values from the latest technologies. The fourth perspective was the cost of transactions. The digitization theory used here was the reduction in the cost of the measurements. This was aimed at managing the downside risks. The final perspective was platform theory. In this theory, the digital platform was utilized. It was done under integrating the back and the front end.

Krause [23] has proposed a scheme for enabling the transition from the traditional to the digital business ecosystem. The main aim was to encourage the development of smaller hubs networks. This is done to remove the dominance of larger hubs in the ecosystem. This was presented by using the internet era. The technological advancement in terms of internet technologies could be used to develop digital business for small-scale enterprises. Internet technology can enhance digital business quality by understanding the requirements, possibilities, future demand, future customers, and the availability of newer products. The main limitation of the smaller hubs is the maintenance cost. The second barrier is the increased network traffic. This mandates the requirements of maintaining an adequate amount of free capacity by the hubs. The interaction of different business hubs plays a major role in digitization.

Winarsih et al. [24] have presented a framework representing the impact of Covid-19 on the digitization of small enterprises. This work stated that the digitization of small enterprises could be achieved using three key factors. The first was the implementation of skills. The second was the competition. Thus the third was the e-wallet system. Using these schemes, sustainability could be achieved. In addition, the usage of social media could play a major role in marketing products. The implementation of digital business can be a success if different strategic decisions are taken and implemented effectively. The generation of online applications and web services play a major role in digitization. In this paper, the authors further provided a scheme for ensuring the sustainability of these enterprises.

Brousseau [25] has proposed a model for representing the digitization of business. In this paper, the authors have presented three different dimensions for the evaluation of business models. The first dimension is the management of knowledge and skills. The second is the management of costs, and the third is the scaling of economics. This paper presented the concept of mass-customization. This was framed based on the customization as per the user’s demands. The service responsible for this was called the assembling service. The functionality producer would provide additional customization ideas. Thus, the depth of integration would play a major role in determining the overall quality. This paper pointed out that; the evolution of the internet sector plays a major role in determining the success of the entire digitization framework. Remane et al. [26] have discussed the mechanisms for establishing digital business with the existing traditional market. The authors presented the scheme to be used by conventional business holders to modify their business market to suit the digital world. The first step in this scheme was the selection of existing services. The second was the modification of the business model, and the third was establishing newer configurations. This paper presented the taxonomy of
various business frameworks in the mobility unit. The relationship between the elements of business models and the corresponding target market was defined in this paper. The ways by which the new models could be explored were illustrated in this work. The models for exploring the digital business was discussed. The models included a value proposition, a platform for services, a revenue model, a model for arrangement, and the interface models.

Martin-Pena et al. [27] presented a brief review of the digital business models. They illustrated the evolution of the digital business market. The evolution started with the products, followed by its services and then the solutions and finally the smart services. The authors presented the review based on two phases: the selection phase and the analysis phase. The literature was grouped based on definition, components, taxonomies, models, design tools, and capabilities. It was shown that servitization and digitization are two components that positively influence each other and are completely interrelated. This paper presented a plan for establishing digital models for business. The agenda included identifying the firm’s key role, model analysis, exploring how organizations perform in the digital sector and emphasizing the ecosystem. Zhang et al. [28] analyzed digital business models; the authors presented three mechanisms to attain scalability. These mechanisms involved both payable and non-payable customers, customization of business, and multi-sided modeling. This modelling’s main inputs included scale economics, network configuration, technological relationship, and learning adaptability. Thus the authors discussed the sources of scaling and listed the elements for model design. Scale economics requires sufficient resources for allocating non-payable customers. The network configuration must be optimized because the non-payable customers may widen the size of the network. Other sub-technologies from other supply chains influence the technological relationship. Finally, learning adaptability is vital since understanding technology helps in the complete utilization of the resources.

Tauscher et al. [29] have demonstrated the robustness of digitization of business based on sustainability. This work’s main ideology was to explore the robustness of different digital business models using simulation analysis. The simulation was applied using the Coursera digital education system. The variation of sustainable performance concerning time was analyzed in this work. For simulation, the stock and flow models were utilized in this paper. The model is comprised of three blocks, namely, value creation, value capture, and customer block. The value creation block was employed for the indication of resources. Here the value capture block was used for the computation of the performance of the firm financially. This integrates both the input expenses and the output revenue. The customer block was used to denote the services available to the users. The users include both free and paid users. Matt et al. [30] have presented a strategy that can be used for the conversion of a traditional business framework to a digital framework. Four different dimensions were presented in this paper. The first dimension was the implementation of technology. The firm has to decide what type of technology is to be deployed. The second dimension is the evaluation of changes in value. The deviation of value based on digitization must be evaluated. The third dimension is the change in the structural organization. This indicates the change in the setup; the final dimension is the economic changes.
Williamson, B [31]. proposed Social and emotional learning (SEL) creates new statistical ‘psycho-economic’ types involving students and integrates psychometry with the economic analysis. The paper discusses the evolving SEL infrastructure and identifies how policy-related empirical knowledge and statistical psycho data are developed by psychologic and economic experts to influence SEL policy. The research explores how a computer-based evaluation on a wide score of social and emotional skills focuses internationally on "personality," which transforms observable socio-emotional measures into projected socio-economical results for policy action and "human capital."

3 Contribution of the paper

The contributions of this paper are as follows:

- A new architecture of business digitization is proposed.
- Policies to ensure the sustainability of digital firms are presented.
- Three-dimensional tools for the enhancement of the digital business model is presented.
- Control measures to achieve the scalability of digital business is listed.
- Quantitative evaluation of digital business strategy using evaluation metrics is performed.
- Analysis of the average percentage of usage of traditional and online market pre and post Covid-19 was presented.
- Variation of the level of influence of various media on brand selection was discussed.
- A new framework called the Innovative Excellence based Business Level Estimation (IEBLE) system has been proposed.

4 Objective

This work’s main objective is to present the policies and control mechanisms to ensure the future digital business’s success. Since the Covid-19 crisis has resulted in extensive migration of people towards the digital sector, many firms were not prepared to face digitization immediately. Hence, to avoid this issue in the future, we have presented various methods and policies to be followed by firms to ensure their success in transforming the digital model. One of the main challenges of digital marketing for companies is how to compete with larger players without a digital marketing budget. This concern is combined with a slight propensity for Google’s brand search algorithm though Google insists it is not. The most significant funding, the audience section Invest in Local, Get Social-Specific, and use Social Media Pay Advertised, connect these four digital marketing problems with influencers.
5 Problem formulation

The main aim is to find a novel solution to transform the traditional business sector into the digital business sector. We have presented the firms’ architecture, policies, tools, and control measures for enhanced digitization in our work.

6 Existing system with disadvantages

The existing business system is the traditional business model where the customers go to the shops to purchase the products. The Covid-19 crisis has shown that this model is completely unsafe and unreliable for the customers.

7 Proposed methodology

In the proposed methodology, we present the architecture for the transformation to business digitization. Present the policies to ensure sustainability, three-dimensional tools for enhancing the digital business model, and the control measures to achieve digital business’s scalability.

7.1 The architecture of business digital transformation

The architecture for transforming the traditional business model to the digital model is shown in Fig. 1. It comprises five main components. These components include Technological advancement, Financial stability, Structural modification, Functional modification, and Adaptability.

![The proposed architecture of business digital transformation](image-url)
7.1.1 Technological advancement

The ability to adapt to the new technological advancements is a key for successive digitization. Understanding technology gives competitive advantages to a firm. A firm must be capable of making flexible changes in response to the latest technologies. This will help the firm to reach its customers easily. Internet is the core of business digitization. Effective usage of this technology is a must to develop a competitive digital firm.

7.1.2 Financial stability

Financial stability acts as a binding force for the transformation of traditional to digital business. A firm must be financially stable to support digitization. Digitization reduces the travel of the customers and enables product delivery at their doorsteps. To aid this, the firm must be economically strong to withstand all the necessary modifications needed to support this system. In addition, to ensure the customers’ satisfaction, a firm must not have any financial pressure during the digitization process.

7.1.3 Structural modification

Adaptability to change is essential during any transformation. Owing to digitization, the customers may not migrate, the employees may have to migrate often. Hence, during digitization, the employees may have to undergo several structural modifications. The change in employee location, migration of employees, change in hub location, etc., are necessary during the transformation process.

7.1.4 Functional modification

The digitization process is subject to higher risks due to the lack of experience in a completely new domain. Hence, several modifications concerning functional aspects are necessary. These include creating websites, change in customer support, continuous monitoring of online progress, constant updation of market level, etc. These modifications could attract customers and improve their response.

7.1.5 Adaptability

Adaptability is an essential factor during digitization because any business’s expansion and enrichment can only adapt to the current trend. The deviation of the firm from the current trend must be first analyzed. Steps to bridge the gap must be framed, and they must be implemented to achieve an enriched digital business transformation. This produces competitive advantages for a firm.
7.2 Sustainability of digital firms

Recently, people have changed their shopping from offline purchases to online shopping to ensure safety and convenience. The key methodologies to be implemented to ensure sustainability in the digital market is shown in Fig. 2. They include Demand management, Digital marketing, Digital wallet, Flexibility, and the Internet of Things.

7.2.1 Demand management

Monitoring and management of business demand is a crucial step to ensure sustainability. The current pandemic has clearly shown the rise in the demand for certain products and a decrease in demand for many. Hence, the business strategy should be designed so that the products with high demand must be available for the customers according to the current scenario. Demand management is a framework for planning goods and services foreseen, scheduled and controlled. It can be at macroeconomic and microeconomic levels in individual organizations. A digital wallet refers to software, electronic devices, or online services that allow individuals or companies to conduct electronic transactions. It saves user payment details for various payment methods and other items, including gift cards and driver's licenses, to different websites. Often known as an e-wallet is a digital wallet; flexibility has many beneficial effects on the body and is an essential component of physical health. It enhances mobility, posture, coordinates muscles, and decreases injury risk and muscle soreness.

7.2.2 Digital marketing

Digital marketing is yet another valuable tool that influences sustainability. The recent boom in internet technology has resulted in creating a lot of influence on customer purchases. Hence, digital marketing helps the firm to get connected to the
customers serenely. The firm must establish effective digital marketing tools projecting the quality of its products to enhance customer relationships. Monitoring business processes is the practice to assess and examine the output of those processes to detect outcomes and issues. Monitoring is an important part of the lifecycle of business process administration (BPM). The notion of business process monitoring involves such a wide variety of operations, theoretically, in all company areas. A systematic approach is important to achieve success in business process monitoring.

Demand planning is a method of predicting or forecasting supply chain management of product demand to guarantee customer fulfilment and customer satisfaction. The purpose is to balance the amount of inventory necessary to satisfy the needs of consumers without creating an excess.

Activities to control demand should include:

- Identification and review of market trends of services-related operations.
- User profiles can be identified and their usability patterns analyzed.
- Identification, acceptance and implementation of market effect initiatives following capacity management.

7.2.3 Digital wallet

The migration of cash to cashless strategy has resulted in the large-scale usage of the digital wallet system. Hence the digital business firm must ensure that they support various digital wallet techniques to secure transactions. Use of online software, Paytm, google pay, credit card, debit card, etc., must be encouraged to ensure facile billing and payment between the customers and the business owner.

7.2.4 Flexibility

Flexibility is essential to maintain the profit margin. To sustain the digital market from various risk factors, the business owners must maintain the budget related to income and expenditure. Here the digital market must be designed to adapt to the changes in the current scenario. The flexibility can be achieved based on the results of the analysis of the income and expenditure budgets.

7.2.5 Internet of things (IoT)

Internet of Things plays a major role in determining the success and sustainability of a digital market. In the digital market, the business owner can reach customers only using IoT. The business owners can understand the actual requirement and the expectation of the customers using IoT. In addition, demand forecasting can be done using IoT. Thus, the business owner can plan for new products and be prepared to face future requirements.
7.3 Enhancement of digital business model

The enhancement of digital business models can be achieved using a three-dimensional tool. The first dimension is knowledge accumulation. The second dimension is innovation, and the third strategy is feedback analysis. This is shown in Fig. 3.

7.3.1 Knowledge accumulation

The accumulation of information or knowledge is very important to enhance the success of a digital market. Experience related to current trends, customer expectation, recent issues faced, quality of other firms, strategies of other firms, type of customers, future demand, etc., must be gathered and analyzed. This analysis would help in building a successful firm that would easily attract more customers.

7.3.2 Innovation

Innovation is key to project a particular business firm compared to the rest of the firms. In this digital world, customers have easy access to compare various brands and products. Hence, innovative products’ development using creative ideas is a must to ensure a firm’s quality. Data science can be used as a valuable tool for accomplishing innovation. These tools help the business owners to predict the preferences of the customers. Digital economy refers to a digital computing-driven economy, while we increasingly regard this as a business across internet-based and global web-based markets. The digital economy is known as Internet Economics, Modern Economy and Webservices. The digital economy is becoming more and more interwoven with the conventional economy, making simple concepts more difficult. It results from billions of online interactions between individuals, organizations, computers, data and processes every day. It is focused...
on the interconnections between individuals, groups and machines resulting from the Internet, mobile technology and the internet (IoT).

The definition "Digital Economy" can define three key components:

- Infrastructure E-business (hardware, software, telecom, networks, human capital, etc.),
- E-business (how business is conducted, any process that an organization conducts over computer-mediated networks),
- E-business (transfer of goods, for example, when a book is sold online).

The ex-post legislation (such as exploitation of domination) is very restrictive in competition terms (exclusive competence).

7.3.3 Feedback analysis

Feedback analysis is very important because it helps to rectify the issues and to enhance the customer relationship. The quality of the products can be improved concerning the needs of the customers. The current internet technology easily aids in the collection of feedback from the customers. This can be used during the development of newer projects. The feedback from the customers can be used for providing constant support to the customers.

7.4 Scalability of digital business

The scalability of a digital business helps to ensure growth and increase the quality of the products. Every digital firm must ensure that it is scalable so that it can achieve success. The control measures to achieve a digibusiness’s scalability are customer identification, requirement analysis, product research, customization, and growth analysis. This is illustrated in Fig. 4. A scalable company is at its core, which focuses on processes leading to a successful activity. Scalability is possible for the workflow and market structure. There was a mistake. A flexible organization has appropriate measuring methods to analyze and control the entire enterprise at any level. Scalability is a system’s ability to expand to meet the business needs of an organization. It encourages increasing the supply of a commodity, service or process.

![Control measures to achieve scalability of digital business](image-url)
to meet changing demand levels. There was a mistake. Scalability is the ability to manage an increasing amount of work for an organization, network, method or device.5 Beautiful tips for building a scalable company:

- Build trustworthy relationships.
- Offer important marketing significance.
- Technological expenditure.
- Outsourcing tactically.

7.4.1 Customer Identification

Identifying customers is significant because the products must be designed to satisfy the needs of the customers. Hence, in a digital market, the identification of customers play a vital role. There are two types of customers in a digital firm, namely, paying customers and non-paying customers. Every business firm must ensure that they provide some products free of cost to non-paying customers. Based on the products’ quality, these customers can soon be converted to the paying customer category.

7.4.2 Requirement analysis

The analysis of requirements is crucial since the customers easily attract the products designed based on the requirements. Hence, the firm must first conduct a survey and understand the customers’ needs using internet technology. This would help the organization to adopt and produce new products following customer needs. This analysis can be done using various machine learning tools.

7.4.3 Product research

Product research is mandatory for any business firm. This is because it avoids the possibility of product failure. A business firm’s ability to produce quality product lines with the background research done regarding the product: based on the type of users, the availability, current demand, previous brands used, current requirements, etc., an in-depth analysis must be done before producing a product.

7.4.4 Customization

Recently, customization of products has become a trending technique employed by various firms. Using online technology, the users can indicate their preferences, alterations, innovations, ideas, etc., to the firm, and the firm customizes the products based on the user’s requirements. This provides greater satisfaction to the users. More customers would be attracted to a firm that offers the facility of customization.
7.4.5 Growth analysis

Growth analysis is a must for any firm. The firm must keep track of the growth rate of its organization and of its competitive organizations. This indicates the level of a firm among various other firms. Whenever the growth rate decreases, the business owner must find the reason and ensure that it is corrected and the growth rate is stabilized. Thus, growth analysis helps to maintain the integrity of a digital business model.

7.5 Advantages of proposed methodology

The proposed methodology can be helpful for small and medium enterprises to shine in the business world. The digitization of these sectors helps to improve the overall economy of the country.

8 Quantitative evaluation of digital business strategy

The North American Industry Classification System (NAICS) is the commonly used standard that defines the business economy. The metrics used for evaluating the digital business strategy[11] are the industry turbulence, Herfindahl–Hirschman, industry growth, and related diversification.

8.1 Industry turbulence index (I_T)

This metric indicates the rate of change in customer composition. Recently, due to the development of the internet of things, customer demands have increased. Customers prefer customized, high-quality products. Due to this, the composition of the customers keeps changing. This can be tracked using this metric. The industry turbulence index is computed as

$$I_T = \frac{N_{en} + N_{ex}}{N_{in}} \quad (1)$$

The total number of companies that enter 3-digit NAICS in a particular year N_{en} is the number of companies that exit from the 3-digit NAICS for a specific year. The total number of companies in 3-digit NAICS in the previous year-end.

8.2 Herfindahl–Hirschman index (H_H)

This index measures the concentration of the market. The competitiveness of a market is indicated using this value. The drawback of this metric is that it does not consider the complexities associated with the market. A value of less than 1500 indicates a competitive system. Values ranging from 1500 to 2500 suggests that the
system has an average concentration. Any value greater than 2500 shows a high concentration. The TheHerfindahl-Hirschman index is computed using

\[H_H = \sum_k S_{kj}^2 \]

(2)

where \(S_{kj} \) is the share of the market of a company \(k \) in the industry \(j \).

8.3 Industry growth index (\(I_G \))

Compared to all the other firms, the total amount of sales or profit of a particular firm indicates the industry growth index. This index shows the capacity and quality of a specific firm. A firm having the highest value of industry growth index leads as the biggest competitor in the market. The industry growth index is calculated as

\[I_G = \frac{(S_t - S_{t-3})}{(0.5 * S_t + 0.5 * S_{t-3})} \]

(3)

where \(S_t \) denotes the size of the market.

8.4 Related diversification index (\(R_D \))

Whenever a particular firm modifies, adds, or removes its existing production base, related diversification occurs. In many cases, the firm may start producing new products to satisfy the customers’ changing demands. In some cases, the firm may combine with other firms and create partnerships. The related diversification index measures the related entropy component \(E_{rc} \) that is computed as

\[E_{rc} = E_4 - E_2 = \sum P_4 \log \left(\frac{1}{P_4} \right) - \sum P_2 \log \left(\frac{1}{P_2} \right) \]

(4)

4-digit NAICS, the entropy of 2-digit NAICS, \(P_4 \) is the % of 4-digit NAICS and \(P_2 \) is the % of sales of 2-digit NAICS.

8.5 Proposed innovation excellence index (\(I_E \))

The proposed index is generated using the four above mentioned indices. The proposed metric aims to consider all the business strategies such that the system can be optimally expressed. This is shown using Fig. 5. The proposed \(I_E \) index is computed as

\[I_E = \frac{H_H * I_G * R_D}{I_T} \]

(5)
Fig. 5 Computation of Innovation Excellence index

Fig. 6 Proposed Innovative Excellence based Business Level Estimation (IEBLE) framework
8.6 Proposed innovative excellence based business level estimation (IEBLE) framework

This research proposes a new framework called the Innovative Excellence-based Business Level Estimation (IEBLE) framework. This is shown in Fig. 6. In the proposed framework, we first collect the business data. This data is then evaluated for the computation of the four metrics, namely, the industry turbulence index, Herfindahl–Hirschman index, industry growth index, and the related diversification index. Using these values, the innovation excellence index value is computed according to Eq. 5. Using the machine learning algorithm support vector machine (SVM), the data is classified into one of the four levels, namely Level-1, Level-2, Level-3 or Level-4. Each level indicates a particular standard for the business firm. Level-1 demonstrates that the firm is below the average level. Level-2 suggests that the firm is at an intermediate level. Level-3 indicates that the firm is at an acceptable level and the final Level-4 suggests that the firm has achieved excellence level. Based on the estimated level, the firm can understand its position compared to other market firms. This helps them to improve their performance.

The proposed IEBLE analysis of conventional and online markets’ widespread use, both before and after Covid-19, is evaluated precision, specificity, F-score, recall.

9 Results and discussion

To analyze the Covid-19 crisis’s effect, in our work, we took a survey with 1000 participants, including both males and females, with age groups ranging from 12 to 65. These participants were asked to mention the percentage of traditional and online market pre-Covid-19 and post Covid-19 period. The average values of the

Items	Pre Covid-19	Post Covid-19		
	Traditional market (in %)	Online market (in %)	Traditional market (in %)	Online market (in %)
Textile	81.4	18.6	23.3	76.7
Vegetables	91.1	8.9	62.5	37.5
Fruits	85.4	14.6	63.3	36.7
Dairy Products	91.5	8.5	55.5	44.5
Stationery	65.4	34.6	32.6	67.4
Gadgets	25.3	74.7	5.1	94.9
Accessories	28.4	71.6	3.7	96.3
Baking	81.3	18.7	25.4	74.6
Footwear	51.4	48.6	23.1	76.9
Cosmetics	55.2	44.8	15.4	84.6
Kitchenware	68.3	31.7	11.1	88.9
percentage obtained for the 1000 participants are shown in Table 1. Table 1 shows that the customers have primarily migrated from the traditional to the online business market.

From Table 1, we infer that the average value of usage pre-Covid-19 for the traditional and online market for all the items is 65.88% and 34.11%, respectively. Similarly, the average value of usage post-Covid-19 for the traditional and online market for all the items is 29.18% and 70.81%, respectively. This indicates the migration of customers towards the online market owing to the Covid-19 pandemic.

The success of a firm lies in the marketing of its product. There are various ways through which the product reaches customers. The survey conducted using the same group of 1000 volunteers was used to generate the following graph. This graph is shown in Fig. 7. The Digital Marketing Fundamentals are the basis for understanding how to use the various digital marketing tools to maximize consumer value for consumers and improve overall competence.

The first four methods, namely friends (8%), experts (5%), brand name (7%), and retailer (7%), are the traditional methods. These methods amount to about 27% of the total branding of the product. Digital marketing techniques using Facebook, Twitter, Youtube, Instagram, and company blogs amount to 73% of the total branding. Thus, the digital market plays a vital role in influencing the product to the customers.

To evaluate the excellence of the proposed IEBLE, we performed a comparison of this framework with other performance measures[11] like outsourcing strategic posture (OSP), competitive uncertainty (CU), free cash flow (FCF), and market share (MS).

Figure 8a shows the comparison of specificity for various methods. From this figure, it is clear that the proposed IEBLE system produces excellent results in terms of all four levels. Figure 8b shows the comparison of precision for various methods. The average value of the precision of the proposed IEBLE is 99.30%. This is very large compared to that of OSP, CU, FCF, and MS systems.
Figure 9a shows the comparison of recall for various methods. From this figure, it is clear that the proposed IEBLE system produces excellent results in terms of all four levels. Figure 9b shows the comparison of the F-score for various methods. The average value of the F-score of the proposed IEBLE is 99.29%. This is very large compared to that of OSP, CU, FCF, and MS systems.

The proposed IEBLE analysis of the overall use of conventional and online markets, both before and after Covid19, is evaluated and achieved high precision, high specificity, f1-score, improved recall when compared to outsourcing strategic posture (OSP), competitive uncertainty (CU), free cash flow (FCF) and market share (MS), other methods.
10 Conclusion and future work

In this research, we have presented a new architecture for business digitization. In addition, we have contributed various policies to be followed to ensure digital firms’ sustainability. The three-dimensional tools for enhancing digital business and control measures to achieve scalability were introduced in this work. Analyzed the percentage of usage of traditional and online market pre-Covid-19 and posted the Covid-19 period. It was observed that the overall rate of customers using the online market has risen from 34.11% to 70.81%. It was inferred that digital marketing plays a major role in establishing the success of a digital business. We have proposed a new framework called IEBLE. It was demonstrated that the proposed system produces excellent performance compared to other metrics like OSP, CU, FCF, and MS systems.

In the future, we plan to implement various quantitative evaluation metrics using real-time data from the internet and perform big data analysis to evaluate different firms’ performance in small and medium enterprises.

Acknowledgement This work was sponsored in part by The Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province of China (2020SJA0292)

Declaration

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Moreira, F., Ferreira, M. J., & Seruca, I. (2018). Enterprise 4.0-the emerging digital transformed enterprise? Procedia Computer Science, 138, 525–532
2. Yadav, N., Gupta, K., Rani, L., & Rawat, D. (2018). Drivers of sustainability practices and smes: A systematic literature review. European Journal of Sustainable Development, 7(4), 531–544
3. Schallmo, D., Williams, C. A., & Boardman, L. (2017). Digital transformation of business models-best practice, enablers, and roadmap. International Journal Innovation Management., 21(8), 1740014
4. Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: Toward the next generation of insights. MIS Q. Manag. Inf. Syst., 37(2), 471–482
5. Baden-Fuller, C., & Haefliger, S. (2013). Business models and technological innovation. Long Range Planning, 46(6), 419–426
6. Loebecke, C., & Picot, A. (2015). Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda. The Journal of Strategic Information Systems, 24(3), 149–157
7. Hakanen, E., & Rajala, R. (2018). Material intelligence as a driver for value creation in IoT-enabled business ecosystems. The Journal of Business and Industrial Marketing, 33(6), 857–867
8. Metallio, C., Agrifoglio, R., Schiavone, F., & Mueller, J. (2018). Understanding business model in the Internet of Things industry. Technology Forecasting Social Change, 136, 298–306
9. Bouwman, H., Nikou, S., Molina-Castillo, F. J., & de Reuver, M. (2018). The impact of digitalization on business models. Digital Policy, Regulation and Governance., 20(2), 105–124
10. Vendrell-Herrero, F., Parry, G., Bustinza, O. F., & Gomes, E. (2018). Digital business models: Taxonomy and future research avenues. Strategic Change, 27(2), 87–90
Improved policy mechanisms for the promotion of future digital …

11. Manogaran, G., Alazab, M., Saravanan, V., Rawal, B. S., Sundarasekar, R., Nagarajan, S. M., … & Montenegro-Marin, C. E. (2020). Machine Learning Assisted Information Management Scheme in Service Concentrated IoT. IEEE Transactions on Industrial Informatics.

12. Abdel-Basset, M., Manogaran, G., Gamal, A., & Chang, V. (2019). A novel intelligent medical decision support model based on soft computing and IoT. IEEE Internet of Things Journal, 7(5), 4160–4170.

13. Abiad, M., Kadry, S., Ionescu, S., & Niculescu, A. (2019). Customers’ Perception of Telecommunication Services. FAIMA Business & Management Journal, 7(2), 51–62.

14. Rahman, M., Ahmed, S. H., & Yuksel, M. (2018, October). Proof of sharing in inter-operator spectrum sharing markets. In 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) (pp. 1–5). IEEE.

15. Bansal, G., Hasija, V., Chamola, V., Kumar, N., & Guizami, M. (2019, December). Smart Stock Exchange Market: A Secure Predictive Decentralized Model. In 2019 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.

16. Nie, X., Fan, T., Wang, B., Li, Z., Shankar, A., & Manickam, A. (2020). Big data analytics and IoT in operation safety management in under water management. Computer Communications, 154, 188–196.

17. Saravanan, V., Hussain, F., & Kshirasagar, N. (2019). Role of Big Data in the Internet of Things Networks. In Handbook of Research on Big Data and the IoT (pp. 273–299). IGI Global.

18. Goyal, S., Sharma, N., Bhushan, B., Shankar, A., & Sagayam, M. IoT Enabled Technology in Secured Healthcare: Applications, Challenges, and Future Directions. In Cognitive Internet of Medical Things for Smart Healthcare (pp. 25–48). Springer, Cham.

19. Acevedo, Y. V. N., Quintero, J. F. L., Marin, C. E. M., & Clavijo, C. C. G. (2016). Business rules model for the automation in the receipt of credit applications by financial institutions based on archiMate. IEEE Latin America Transactions, 14(6), 2801–2806.

20. Balaanand, M., Karthikeyan, N., & Karthik, S. (2019). Envisioning social media information for big data using big vision schemes in the wireless environment. Wireless Personal Communications, 109(2), 777–796.

21. Täuscher, K., & Abdelkafi, N. (2018). Scalability and robustness of business models for sustainability: A simulation experiment. Journal of Cleaner Production, 170, 654–664.

22. Strategy, D. I. B. U. S., Mithas, S., Tafti, A., & Mitchell, W. (2013). How a firm’s competitive environment and digital strategic posture influence digital business strategy. Digital Business Strategies, 37(2), 511–536.

23. V. Parida, D. Sjödin, and W. Reim (2019) “Reviewing the literature on digitalization, business model innovation, and sustainable industry: Past achievements and future promises,” Sustainability. 11(2)

24. A. R. Razavi, P. J. Krause, and A. Strømmen-Bakhtiar, “From Business Ecosystems towards Digital Business Ecosystems,” 4th IEEE International Conference on. Digital. Ecosystem and Technol. Conference Processings. IEEE-DEST, 2010; DEST, 2010, no. September, pp. 290–295, 2010.

25. Winarsih, M. Indriastuti, and K. Fuad, Impact of covid-19 on digital transformation and sustainability in small and medium enterprises (SMEs): a conceptual framework, AISC. Springer International Publishing, 2021.

26. Brousseau, E., & Penard, T. (2009). The economics of digital business models: a framework for analyzing the economics of platforms. Review of Network Economics, 6(2), 81–114.

27. Remane, G., Hanelt, A., Nickerson, R. C., & Kolbe, L. M. (2017). Discovering digital business models in traditional industries. The Journal of Business Strategy, 38(2), 41–51.

28. Luz Martín-Peña, M., Díaz-Garrido, E., & Sánchez-López, J. M. (2018). The digitalization and servitization of manufacturing: a review on digital business models. Strategic Change, 27(2), 91–99.

29. Zhang, J. J., Lichtenstein, Y., & Gander, J. (2015). Designing scalable digital business models. Advance Strategic Management, 33, 241–277.

30. Matt, C., Hess, T., & Benlian, A. (2015). Digital Transformation Strategies. Business & Information Systems Engineering, 57(5), 339–343.

31. Williamson, B. (2021). Psychodata: disassembling the psychological, economic, and statistical infrastructure of ‘social-emotional learning.’ Journal of Education Policy, 36(1), 129–154.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.