Dinuclear PhosphoiminoBINOL-Pd Container for Malononitrile: Catalytic Asymmetric Double Mannich Reaction for Chiral 1,3-Diamine Synthesis

Takayoshi Arai1,2,3, Katsuya Sato1,2,3, Ayu Nakamura1,2,3, Hiroki Makino1,2,3 & Hyuma Masu4

A phosphoiminoBINOL ligand was designed to form a dinuclear metal complex that could hold a malononitrile molecule. The dinuclear bis(phosphoimino)binaphthoxy-Pd2(OAc)2 complex catalyzed a double Mannich reaction of N-Boc-imines with malononitrile to give chiral 1,3-diamines with high enantioselectivity. The rational asymmetric catalyst, which smoothly introduces the first coupling product to the second coupling reaction while avoiding the reverse reaction, facilitates the over-reaction into a productive reaction process.

The importance of catalysts with high catalytic activity in achieving "green" or sustainable chemistry has been well documented1. The benefit of high catalytic activity is not limited to reducing the amount of catalyst used. Catalysts with superior activity have the potential to promote unprecedented chemical transformations. As shown in Fig. 1, in the reaction of a nucleophile (Nu) with an electrophile (E), conventional catalysts are used for the synthesis of the 1:1 coupling adduct Nu−E (eq. 1).

If the first coupling product (Nu−E) can be made to react subsequently with further electrophiles through catalysis, 1:2 and/or 1:3 adducts (i.e. Nu−E2, Nu−E3) can be obtained. Although reactions of this type can be seen as over-reactions (eq. 2), such multicomponent coupling reactions are fascinating due to their potential as a direct approach toward highly functionalized advanced materials. List et al. reported an outstanding example: the condensation of acetaldehyde with two molecules of N-Boc imine using 20 mol% proline as a catalyst, which was originally developed for a single condensation reaction2. In order to utilize the double condensation reaction as a rational asymmetric catalytic reaction, new concepts for the design of highly active catalysts are required, and the first coupling product must be smoothly introduced to the second coupling reaction while avoiding the reverse reaction. Here, we report the design and development of a dinuclear palladium catalyst that enables a novel double Mannich reaction.

In this study, malononitrile was selected as a nucleophile with two acidic protons to be directed toward a double Mannich reaction3–6. In the interactions of nitriles with late transition metal salts, malononitrile can bind to two metal atoms7. For example, for the 5th-period elements, the two metal centers should be around 7.5 Å from each side of the malononitrile unit (Fig. 2A). In order to achieve a dinuclear reaction in one asymmetric reaction sphere while retaining the same geometry, a novel phosphoiminoBINOL ligand was designed, as shown in Fig. 2B. The phosphoimino moiety is designed to capture soft metals such as Pd, Rh, Au, Ag, and Cu, and the soft dinuclear complex binds strongly to malononitrile (or an anion of malononitrile generated during the reaction). The phenol functions in the ligand contribute by stabilizing the intermediate through hydrogen bonding. If the phenols incorporate a hard metal such as Li, Mg, or Zn, the resulting metal phenoxide acts as a Brønsted base, enhancing the catalytic activity. The hard Lewis acidity of the metal phenoxide is also characteristic.

1Soft Molecular Activation Research Center (SMARC), Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan. 2Molecular Chirality Research Center (MCRC), Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan. 3Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan. 4Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan. Correspondence and requests for materials should be addressed to T.A. (email: tarai@faculty.chiba-u.jp)
The synthesis of phosphoiminoBINOLs L1-L4 can be readily achieved through imine formation between 3,3′-formyl BINOL and the corresponding aminophosphine (Fig. 2C). The isopropyl-substituted phosphoiminoBINOL (L1) was stable to handling under air, and showed a high affinity with various soft metal salts. When 2 mol equiv. of Pd(OAc)2 was added to L1, the formation of a dinuclear palladium complex took place, as demonstrated by ESI-MS: an ion peak was detected at m/z = 1117.1705 in CH2Cl2, and this was attributed to [L1(−2H)+Pd2(OAc)]+. Fine crystals were obtained from a CH2Cl2 solution, and the structure of phosphoiminoBINOL- Pd2(OAc)2 was determined by X-ray crystallographic analysis (Fig. 3).

Based on this structure, one of the acetoxy anions of Pd(OAc)2 was replaced with L1 to make a palladium acetoxy phenoxide. The distance between two palladium cations is 6.907 Å, which is suitable for binding malononitrile (or a generated anion of malononitrile), and there is one H2O molecule positioned at the center of the asymmetric sphere. L1-Pd2 reacted smoothly with malononitrile. The 1H NMR spectrum of free malononitrile in CDCl3 shows a single methylene peak at 3.60 ppm. When malononitrile is added to 1 equiv. of L1-Pd2, the peak was shifted to 2.43 ppm 1H NMR (see details in Supplementary Information). ESI-MS analysis of a 1:1 mixture of malononitrile with L1-Pd2 showed a clear new peak at m/z = 1123.1764, attributed to [L1(−2H)+Pd2+NCCHCN]+.

With this fascinating container for malononitrile (L1-Pd2) in hand, the optimum catalyst for the conventional single Mannich reaction was examined before we attempted the challenge of the double Mannich reaction (Table 1). Although the Mannich reaction was smoothly catalyzed by the simple use of L1-Pd2, the Mannich product 2a was obtained with only 8% ee. As we expected cooperative effects due to the phenoxy unit of L1-Pd2 (Fig. 2B), the addition of several hard metal salts was examined (Entries 2–8). Several metal acetates were effective in improving asymmetric induction. With assistance from Zn(OAc)2 or Mg(OAc)2, L1-Pd2 smoothly catalyzed the Mannich reaction to give 2a with 68% ee and 74% ee, respectively. The structure-activity relationship of the ligands is also shown in Table 1. The equivalent catalyst using the methyl analog of L1 ((L2)-Pd2) gave 2a with only 11% ee (entry 9).

Although the t-Butyl analog L4-Pd2 gave 2a with 77% ee, the catalyst activity was reduced (entry 11). The diastereomeric ligand L5 synthesized from (S)-BINOL, and L6 and L7 for constructing mono-nuclear palladium complex resulted in low levels of asymmetric induction. For L1-Pd2 with a Zn(OAc)2 catalyst system, when the N-Boc imine 1a was added slowly, the Mannich adduct 2a was obtained with 91% ee in 5 mol % catalyst use (entry 15).
Figure 3. X-ray structure of L1-Pd2 (CCDC 1543349).

Figure 4. Dinuclear phosphoiminoBINOL-Pd catalyzed asymmetric Mannich reaction using malononitrile.

1 eq slow addition over 4 h
1.5 eq

2a: 70% conv. amine/diamine = 73/27 91% ee
2b: 50% conv. amine/diamine = 66/34 81% ee
2c: 66% conv. amine/diamine = 76/24 94% ee
2d: 60% conv. amine/diamine = 87/13 96% ee
2e: 95% conv. amine/diamine = 66/34 81% ee
2f: 84% conv. amine/diamine = 49/51 94% ee
2g: 85% conv. amine/diamine = 49/51 91% ee
2h: 97% conv. a) Conversion yield (determined as same as Table 1). b) Carried out in CHCl₃.
The results of the L1-Pd2-catalyzed asymmetric Mannich reaction under the optimized conditions are summarized in Fig. 4. Aromatic imines with various substituents were smoothly converted to the Mannich products with high enantioselectivity.

Using monobenzylated malononitrile, the chiral amine 2h having adjacent quaternary carbon center was obtained in 97% yield with 93% ee. This suggests the strong catalyst activity of the dinuclear L1-Pd2 complex. We assumed that the highly active dinuclear L1-Pd2 catalyst would facilitate the conversion of the Mannich adducts (2a–d) to the second Mannich reaction for giving the 1,3-diamines 3. Actually, the use of L1-Pd2 with a Zn(OAc)2 catalyst system resulted in the production of a significant amount of the 1:2 adduct 3, as desired. For the synthesis of 2f and 2g, co-production of the same amount of diamines was observed even when 1.5 equiv. of malononitrile was applied to the imine substrate24,25. For the double Mannich reaction, the reaction conditions were modified

Figure 5. Catalytic asymmetric double Mannich reaction.

The results of the L1-Pd2-catalyzed asymmetric Mannich reaction under the optimized conditions are summarized in Fig. 4. Aromatic imines with various substituents were smoothly converted to the Mannich products with high enantioselectivity.

Using monobenzylated malononitrile, the chiral amine 2h having adjacent quaternary carbon center was obtained in 97% yield with 93% ee. This suggests the strong catalyst activity of the dinuclear L1-Pd2 complex. We assumed that the highly active dinuclear L1-Pd2 catalyst would facilitate the conversion of the Mannich adducts (2a–d) to the second Mannich reaction for giving the 1,3-diamines 3. Actually, the use of L1-Pd2 with a Zn(OAc)2 catalyst system resulted in the production of a significant amount of the 1:2 adduct 3, as desired. For the synthesis of 2f and 2g, co-production of the same amount of diamines was observed even when 1.5 equiv. of malononitrile was applied to the imine substrate24,25. For the double Mannich reaction, the reaction conditions were modified
so that 2.5 equiv. of N-Boc imine were used with respect to the malononitrile. L1-Pd2 with Zn(OAc)2 catalyzed the double Mannich reaction quite smoothly to give the 1,3-diamine 3a in quantitative yield with high diastereoselectivity (dl/meso = 93/7)\(^{26-43}\). The major dl-isomer was obtained in 99% ee. The results of 1,3-diamine synthesis by the double Mannich reaction are summarized in Fig. 5.

For N-Boc-imines derived from both electron-donating and electron-deficient benzaldehydes, chiral 1,3-diamines were obtained in a highly enantioselective manner. A chiral bisfuryl-1,3-diamine(3i) was obtained with 86% ee, and a bisnaphthyl-1,3-diamine(3j) was also obtained successfully with 91% ee. When the second Mannich reaction was examined using rac-2a with N-Boc-imine, 3a was obtained in 73% ee with increasing co-production of the meso-form in dl/meso = 1:1. This result suggests that the second Mannich reaction is catalyzed independently from the first Mannich reaction, and the enantiomeric excess of 3a is improved due to the meso-trick\(^{44}\).

The formation of the (R)-enriched Mannich adduct using L1 can be explained using the working model described in Fig. 6.

The dinuclear L1-Pd\(_2\) complex binds to malononitrile at both nitrogen atoms of the nitrile moieties. Although the formation of palladium enolate by simple mixing of malononitrile with L1-Pd\(_2\) is suggested by the detection of an ion peak for [L1(−2H) + Pd\(_2\) + NCCHCN]\(^+\) at m/z = 1123.1764, the addition of Zn(OAc)\(_2\) also assists the smooth formation of the palladium enolate. The low asymmetric induction and catalyst activity of the mono-nuclear palladium complex using L6 and L7 suggest the effective role of the dinuclear palladium complex for converting 2a to 3a (Table 1, entries 13, 14) Moreover, because asymmetric induction of the Mannich adducts 2a and 3a is strongly influenced by the selection of hard metal salts, as shown in Table 1, a Zn(OAc)\(_2\)-driven reactant is incorporated in the asymmetric reaction sphere\(^{45-53}\). When the hard zinc atom is captured by the two hard phenoxy oxygens of L1-Pd\(_2\), the zinc atom can act as a Lewis acidic site for activating Boc-imines. During nucleophilic attack by the Pd-enolate malononitrile of the zinc-activated N-Boc imine, the approach shown in model A (Fig. 6) involves serious steric repulsion between a benzene ring from the phosphine in L1 and the

Table 1. Development of dinuclear phosphoiminoBINOL-metal catalyst for Mannich reaction using malononitrile.

Entry	Ligand	Additive	Yield (%)\(^a\)	2a/3a	ee of 2a (%)
1	L1	—	99	83/17	8
2	L1	LiOAc	86	84/16	10
3	L1	NaOAc	99	72/28	26
4	L1	Mg(OAc)\(_2\)	91	57/43	74
5	L1	Ca(OAc)\(_2\)	94	74/26	30
6	L1	Zn(OAc)\(_2\)	93	60/40	68
7	L1	ZnCl\(_2\)	88	92/8	7
8	L1	Zn(OTf)\(_2\)	66	93/7	18
9	L2	Zn(OAc)\(_2\)	46	96/4	11
10	L3	Zn(OAc)\(_2\)	72	85/15	37
11	L4	Zn(OAc)\(_2\)	78	68/32	77
12	L5	Zn(OAc)\(_2\)	73	78/22	6
13\(^b\)	L6	Zn(OAc)\(_2\)	75	90/10	10
14\(^b\)	L7	Zn(OAc)\(_2\)	65	92/8	rac
15\(^c\)	L1	Zn(OAc)\(_2\)	70	73/27	91

\(^a\)Conversion yield (see details for the determination in SI). \(^b\)10 mol % of Pd(OAc)\(_2\) were used. \(^c\)5 mol % of PhosphoiminoBINOL, 10 mol % of Pd(OAc)\(_2\), and 5 mol % of Zn(OAc)\(_2\) were used. Imine 1a was slowly added over 4 h.

The formation of the (R)-enriched Mannich adduct using L1 can be explained using the working model described in Fig. 6.
N-Boc imine. By flipping the face of the N-Boc imine, as shown in Model B, the steric repulsion can be released, and nucleophilic attack of the Re-face of the N-Boc imine gives the (R)-enriched Mannich product.

In conclusion, the dinuclear bis(phosphoimino)binaphthoxy-Pd$_2$(OAc)$_2$ complex described herein facilitated a double Mannich reaction of N-Boc-imine with malononitrile to give chiral 1,3-diamines in a highly enantioselective manner. This demonstrates that over-reaction need not always be useless and undesired: well managed over-reaction can open up novel synthetic processes.

References
1. Eds. Sheldon, R. A., Arends, I. & Hanefeld, U. Green Chemistry and Catalysis (Wiley-VCH, 2007).
2. Chandler, C., Galzerano, P., Michrowska, A. & List, B. The Proline-Catalyzed Double Mannich Reaction of Acetaldehyde with N-Boc Imines. Angew. Chem. Int. Ed. 48, 1978–1980 (2009).
3. Taylor, M. S. & Jacobsen, E. N. Enantioselective Michael Additions to α,β-Unsaturated Imides Catalyzed by a Salen—Al Complex. J. Am. Chem. Soc. 125, 11204–11205 (2003).
4. Hoashi, Y., Okino, T. & Takemoto, Y. Enantioselective Michael Addition to α,β-Unsaturated Imides Catalyzed by a Bifunctional Organocatalyst. Angew. Chem., Int. Ed. 44, 4032–4035 (2005).
5. Molletti, N., Rana, N. K. & Singh, V. K. Highly Enantioselective Conjugate Addition of Malononitrile to α-Enolpyryridines with Bifunctional Organocatalyst. Org. Lett. 14, 4322–4325 (2012).
6. Li, X., Wang, B., Zhang, J. & Yan, M. Asymmetric Organocatalytic Double-Conjugate Addition of Malononitrile to Dienones: Efficient Synthesis of Optically Active Cyclohexanones. Org. Lett. 13, 374–377 (2011).
7. Naota, K., Tanina, A. & Murahashi, S.-I. Synthesis and Characterization of C- and N-Bound Isomers of Transition Metal α-Cyanocarbanions. J. Am. Chem. Soc. 122, 2960–2961 (2000).
8. For a review of catalytic asymmetric Mannich reaction, Kobayashi, S. & Ueno, M. Mannich Reaction, Comprehensive Asymmetric Catalysis, Supplement, 1, 143–150 (2004).
9. Lu, Z. et al. Cinchona Alkaloid-catalyzed Asymmetric Direct Mannich Reaction of Malononitrile to Imine for Synthesis of α-Amino Malononitrile. Chinese J. Chem. 30, 2333–2337 (2012).
10. Poulsen, T. B., Alemparte, C., Saaby, S., Bella, M. & Jørgensen, K. A. Direct Organocatalytic and Highly Enantio- and Diestereoselective Mannich Reactions of α-Substituted α-Cyanoacetates. Angew. Chem. Int. Ed. 44, 2896–2899 (2005).
11. Nojiri, A., Kumagai, N. & Shibasaki, M. Asymmetric Catalysis via Dynamic Substrate/Ligand/Rare Earth Metal Conglomerate. J. Am. Chem. Soc. 130, 5630–5631 (2008).

12. Nojiri, A., Kumagai, N. & Shibasaki, M. Linking Structural Dynamics and Functional Diversity in Asymmetric Catalysis. J. Am. Chem. Soc. 131, 3779–3784 (2009).

13. Lee, J. H. & Kim, D. Y. Enantio- and Diastereoselective Mannich-Type Reactions of α-Cyano Ketones with N-Boc Aldimines Catalyzed by Chiral Bisfunctional Urea. Adv. Synth. Catal 351, 1779–1782 (2009).

14. González, P. B., Lopez, R. & Palomo, C. Catalytic Enantioselective Mannich-Type Reaction with (β-Peryl Sulfonyl Acetonitrile. J. Org. Chem. 75, 3920–3922 (2010).

15. Matsuzawa, A., Nojiri, A., Kumagai, N. & Shibasaki, M. Solvent-Dependent Self-Discrimination of Bis(2-hydroxyphenyl)diamides. Chem. Eur. J. 16, 3036–3042 (2010).

16. Yamashita, Y., Matsumoto, M., Chen, Y.-J. & Kobayashi, S. Catalytic Mannich-type reactions of α-aminoacetonitrile using florouremidine as a protecting and activating group. Tetrahedron 68, 7558–7563 (2012).

17. Ohmatsu, K., Goto, A. & Ooi, T. Catalytic asymmetric Mannich-type reactions of α-cyano α-sulfonyl carbanions. Chem. Commun. 48, 7913–7915 (2012).

18. Hyodo, K., Nakamura, S. & Shibata, N. Enantioselective Azad-Morita–Baylis–Hillman Reactions of Acrylonitrile Catalyzed by Palladium(II) Pincer Complexes having C2 Symmetric Chiral Bis(midazolino) Ligands. Angew. Chem., Int. Ed. 51, 10337–10341 (2012).

19. Chen, X. et al. Asymmetric One-Pot Sequential Mannich/Hydroamination Reaction by Organono- and Gold Catalysts: Synthesis of Spiro[pyrrolidin-3,2′-oxindole] Derivatives. Org. Lett. 15, 1846–1849 (2013).

20. Zhao, J. et al. Asymmetric Synthesis of 3′-Amino Nitriles through a SCi-Catalyzed Three-Component Mannich Reaction of Silyl Ketone Imines. Angew. Chem. Int. Ed. 52, 3473–3477 (2013).

21. Zhao, J. et al. Enantioselective Construction of Vicinal Tetrasubstituted Sterocenters by the Mannich Reaction of Silyl Ketene Imines with Isatin-Derived Ketimines. Angew. Chem. Int. Ed. 54, 241–244 (2015).

22. Lin, S., Kawato, Y., Kumagai, N. & Shibasaki, M. Catalytic Asymmetric Mannich-Type Reaction of N-Alkylidene-α-Aminoacetonitrile with Ketimines. Angew. Chem. Int. Ed. 54, 5183–5186 (2015).

23. Lin, S., Kubo, T., Sugiura, M., Kotani, S. & Nakajima, M. Stereoselective Synthesis of Multiple Stereocenters by Using a Double Aldol Reaction. Angew. Chem. Int. Ed. 52, 3461–3464 (2013).

24. Anderson, J. C., Blake, A. J., Mills, M. & Ratcliffe, P. D. A General One-Step Synthesis of 3,5-Disubstituted Pyrazolidines via Pd-Catalyzed trans-3,5-Disubstituted Pyrazolidines. J. Am. Chem. Soc. 130, 12907–12911 (2008).

25. Kodama, K., Sugawara, K. & Hirose, T. Synthesis of Chiral 1,3-Diamines Derived from tert-Butylsulfinyl Acetonitrile and Their Application in the Cu-Catalyzed Enantioselective Henry Reaction. Chem. - A Euro. J. 17, 13584–13592 (2011).

26. Rabalakos, C. & Wulff, W. D. Enantioselective Organocatalytic Direct Michael Addition of Nitroalkanes to Nitroolefins Promoted by a Unique Bifunctional DMAP-Thiourea. J. Am. Chem. Soc. 130, 13524–13525 (2008).

27. Kurokawa, T. & Kim, M. & J. Du Bos, Synthesis of 1,3-Diamines Through Rhodium-Catalyzed C=C Insertion. Angew. Chem., Int. Ed. 48, 2777–2779 (2009).

28. Fan, Z.-Y., Xiong, H. & Gong, L.-Z. Dynamic kinetic asymmetric transfer hydrogenation of racemic 2,4-diaryl-2,3-dihydrobenzo[b][1,4]diazepines catalyzed by chiral phosphoric acids. Bioorg. Med. Chem. Lett. 19, 3729–3732 (2009).

29. Trout, B. M., Malhotra, S., Olson, D. E., Maruniak, A. & Bois, J. D. Asymmetric Synthesis of Diamine Derivatives via Sequential Palladium and Rhodium Catalysis. J. Am. Chem. Soc. 131, 4190–4191 (2009).

30. Daguisset, G., Drouet, F., Masson, G. & Zhu, J. Chiral Bransted Acid-Catalyzed Enantioselective Multicomponent Mannich Reaction: Synthesis of anti-1,3-Diamines Using Eneecarbamates as Nucleophiles. Org. Lett. 11, 5546–5549 (2009).

31. Martijuga, M., Shabayash, D., Belyakov, S., Liepshin, E. & Suna, E. Asymmetric Synthesis of 1,3-Diamines by Diastereoselective Reduction of Enantiopure N-tert-Butanesulfinylketimines: Unusual Directing Effects of the ortho-Substituent. J. Org. Chem. 75, 2357–2368 (2010).

32. Kodama, K., Sugawara, K. & Hirose, T. Synthesis of Chiral 1,3-Diamines Derived from cis-2-Benzamidocyclohexanecarboxylic Acid and Their Application in the Cu-Catalyzed Enantioselective Henry Reaction. Chem. - A Euro. J. 17, 13584–13592 (2011).

33. Kumar, P., Jha, V. & Gonnade, R. Proline-Catalyzed Asymmetric Synthesis of syn- and anti-1,3-Diamines. J. Org. Chem. 78, 11756–11764 (2013).

34. Liu, Y., Xie, Y., Wang, H. & Huang. H. Enantioselective Aminomethylation of Conjugated Dienes with Aminals Enabled by Chiral Palladium Complex-Catalyzed C-N Bond Activation. J. Am. Chem. Soc. 138, 4314–4317 (2016).

35. Ji, X. & Huang, H. Synthetic methods for 1,3-diamines. Org. Biomol. Chem. 14, 10557–10566 (2016).

36. Fischl, A., Klaus, M., Mayer, H., Schönholzer, P. & Ruegg, R. Eine chiral ökonomische Totalsynthese von natürlichen und unnatürlichen Prostaglandinen. Helv. Chim. Acta. 58, 584–584 (1975).

37. Eds. Shibasaki, M. & Yamamoto, Y. Multimetallic Cataylsts in Organic Synthesis (Wiley-VCH, 2004).

38. Annamalai, V., DeMauro, E. E., Carroll, P. J. & Kozlowski, M. C. The Michael Addition Reaction by Late Transition Metal Complexes of BINOL-Derived Salens. J. Org. Chem. 68, 1973–1983 (2003), and references cited therein.

39. Yang, M., Zhu, C., Yuan, F., Huang, Y. & Pan, Y. Enantioselective Ring-Opening Reaction of meso-Epoxides with ArS-Enalyzed by Heterometalic Ti-Ga–Salen System. Org. Lett. 7, 1927–1930 (2005).

40. Li, W. et al. Synthesis of optically active 2-hydroxy monoesters via kinetic resolution and asymmetric cyclization catalyzed by heterometalic chiral (salen) Co complexes. Tetrahedron Lett. 47, 3453–3457 (2006).

41. Mazet, C. & Jacobsen, E. N. Dinuclear [[(salen)Al] Complexes Developed Expanded Scope in the Conjugate Cyation of α,β-Unsaturated Imides. Angew. Chem., Int. Ed. 47, 1762–1765 (2008).

42. Hirahata, W., Thomas, R. M., Lobkovsky, E. B. & Coates, G. W. Enantioselective Polymerization of Epoxides: A Highly Active and Selective Catalyst for the Preparation of Stereoregular Polyethers and Enantiopure Epoxides. J. Am. Chem. Soc. 130, 17658–17659 (2008).

43. Byun, S.-Y., Suh, J.-S., Kim, D. & Cho, J.-S. Highly Enantioselective Michael Addition of Nitroalkanes to Nitroolefins Catalyzed by La(OIT)/N,N′-Dioxide Complexes. Angew. Chem., Int. Ed. 47, 7079–7081 (2008).

44. Giampietro, N. C. & Wolfe, J. P. Stereoselective Synthesis of cis- or trans-3,3-Disubstituted Pyrazolidones via Pd-Catalyzed Carbosilation Reactions: Use of Allylic Strain to Control Product Stereoreactivity Through N-Substituent Manipulation. J. Am. Chem. Soc. 130, 12907–12911 (2008).
51. Mihara, H., Xu, Y., Shepherd, N. E., Matsunaga, S. & Shibasaki, M. A Heterobimetallic Ga/Yb-Schiff Base Complex for Catalytic Asymmetric α-Addition of Isocyanides to Aldehydes. J. Am. Chem. Soc. 131, 8384–8385 (2009).

52. Arai, T. et al. Trinuclear Zn3(OAc)4-3,3′-bis(aminooimino)binaphthoxide Complex for Highly Efficient Catalytic Asymmetric Iodolactonization. Chem. Comm. 42, 8287–8290 (2014).

53. Xu, Y., Kaneko, K., Kanai, M., Shibasaki, M. & Matsunaga, S. Regiodivergent Kinetic Resolution of Terminal and Internal rac-Aziridines with Malonates under Dinuclear Schiff Base Catalysis. J. Am. Chem. Soc. 136, 9190–9194 (2014).

Acknowledgements
This research is supported by JSPS KAKENHI Grant Number JP16H01004 in Precisely Designed Catalysts with Customized Scaffolding, and Workshop on Chirality at Chiba University (WCCU).

Author Contributions
T.A. wrote the main manuscript text, K.S., A.N. and H.M. did experiments, and H.M. operated X-ray crystallographic analysis.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-19178-4.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018