Analysis of water balance on Lake Maninjau, West Sumatera

Sunaryo¹, Y D Nola², B Istijono¹, Junaidi¹
¹ Civil Engineering Department of Faculty of Andalas University
² Master Collage of Andalas University, Padang, Padang 25157, Indonesia

Email: yennola@yahoo.com

Abstract. Lake Maninjau is located in Tanjung Raya sub-district, Agam Regency, West Sumatra Province. Geographically, it's located at 100 ° 32'46.33 "and 0 ° 50'84.2". The research was to analyze the water balance of Lake Maninjau in accordance with the rainfall data. The data used in this study was a land use map in order to determine the progress of its land cover, rainfall data, and outlet data of Lake Maninjau. The rainfall value was the value of the debit calculation input using FJ Mock, and ETo from the calculation of annual air temperature climatology data. Outflow data was obtained from a summary of the measurements of Lake Maninjau hydropower from the year of 2007 to 2017. From the analysis of water availability of Lake Maninjau, an analysis of water needs and its availability was considered sufficient to meet the water needs around the lake. It was occurred when the average lake water inflow was 174,935 m³ / sec per year with 5,593 m³ / sec per year on the need for (outflow) lake water, and the difference between the two was 169,342 m³ / sec per year according to data from 2007 to 2017. Therefore, the capacity of Lake Maninjau's water is still requisite in number.

1. Introduction
A lake that has an important role in West Sumatera Province is Lake Maninjau due to its function as a power plant, and tourism site for this province. Lake Maninjau is located in Tanjung Raya Sub-district, Agam Regency, West Sumatra Province with a distance of 105 kms from the city of Padang. Geographically, this lake is located at 100 ° 32'46.33 "and 0 ° 50'84.2"[3].

As a matter of the fact, this lake has several functions for its surrounding life, such as the source for the clean water for the surrounding community, a source of fish cultivation, tourism attraction, hydroelectric power resource, and maintaining the balance of the surrounding natural ecosystem.

To some extent, this leads to the lake arrangement and management so it is maximally utilized, and to control water pollution in order to maintain the water quality of the lake well. Taking this into consideration, the analysis of water balance on Lake Maninjau is discussed.

The purpose of this study is to analyze the availability of water (water balance) of Lake Maninjau. To add, it is set to analyze the water balance of this lake also according to the obtained rainfall data. This study takes place in Lake Maninjau shown in figure 1.1 Map and the Situation Picture of Lake Maninjau.
2. Literature Review

2.1. Literature review

In 2014, Dewi R [5] et al. conducted a research on the participation of Lake Beratan communities in the water resources conservation aiming to identify and analyze community participation around this lake in the conservation of water resources.

In 2015, Ahmad R [1] carried out an analysis of water quality and pollution load in Pondok Lapan Lake in Langkat District. The goal is to find out whether the polluted or uncontaminated lake water must be analyzed for the water quality including biological, physical, and chemical parameters. All these parameters must be balanced so that they can continuously support the survival of organisms which live in these waters. The unbalance on each of these parameters value can cause disruption in the life cycle in the aquatic ecosystem.

Bambang I [2] in 2014 set up a water balance estimation for PLTA Maninjau using TRMM and debit data. The study concerned on the flow of Lake Maninjau, which used to produce 68 megawatts of hydropower, and irrigate 4200 ha of rice fields. There are 19 rivers flowing into the lake, where the main rivers are Sundai Batang Limau, Maransi Batang, Bandar Ligin, Ampang Bridge, Batang Kalarian, and Diding Asam. The exit from the station's hydropower plant flows to the Batang Antokan which, and ends in the Indian Ocean in the West. The balanced water for inflows and outflows from 2009 to 2012 showed an increase from an average of 5.8 m3 / second to 23.53 m3 / second. This condition raised concerns that rainfall input could not maintain a sustainable water level. In addition, the measurement of instant debit on March 25 and 26, 2013 showed that the input to the lake was smaller than the output. The study found that the rainfall flow was dominant during the rainy season which contributed to the outflow of the dam.

Daru S R [3] in 2015 also performed a study on the implementation of eco-hydraulic engineering for strengthening riverbanks, and restoring the habitat of the Surabaya fish reserve area. Recovery for the damage on the littoral habitat due to riverbank erosion in the Surabaya River Fish Reserved Area was carried out by applying the eco-hydrolytic engineering model utilizing local natural materials namely river stone, logs, and bamboo, as well as planting natural vegetation along the riverbanks. This model was an effort to reduce riverbank erosion at a lower cost and is more environmentally friendly than erosion control using a conventional technique for building slope and concrete slabs.

Jaya A [6] also presented the current conditions, problems and management of Lake Maninjau. Here, the study examined the condition of Maninjau Lake where it mainly comes from the rivers along the
watershed, and leads to the lake, rainwater, and from inside the lake itself. In the lake area, there are 88 large and small rivers with a maximum width of 8 meters and flow into the lake. The rivers on the north which lead to Lake Maninjau have a linear pattern (straight or unbranched), while the river on the west part is generally dendritic (branched) pattern. Most of these rivers (61.4%) are dry during the dry season, while the rivers of water throughout the year are only 34 rivers. The rivers flow with a relatively small discharge. According to the West Sumatera Bapedalda in 2001, most of Lake Maninjau water circulations derive from the river, and also the water at the lake’s bottom. Here, the analysis of the water balance is the one from Lake Maninjau, West Sumatra.

2.2. FJ Mock [7]
The Mock (1973) method pointed out a water balance analysis in order to calculate the monthly discharge price based on the transformation of monthly rainfall data, evapotranspiration, soil moisture, and groundwater reservoirs. This method principle stated that rain falls on the water catchment area, some would be lost due to evapotranspiration. Some immediately become direct runoff and some others diffused into the ground or infiltrate. At first, this infiltration would saturate the soil, then percolation occurred, and the water came out through the base flow.

To explain the process of water flow in soil and river systems, therefore the approach developed by Mock was applied. This calculation requires bulk data rain, ETo, soil moisture, and groundwater reservoirs to estimate the magnitude runoff. This method is able to predict infiltration (I), base flow (Bf), and runoff (Ro) which value corresponds to the following equation:

\[I = S \times i \] \hspace{1cm} (1)

\[DRo = S - I \] \hspace{1cm} (2)

\[Vn = [0.5 \times (1 + k) \times I] + (k + Vn-1) \] \hspace{1cm} (3)

\[Bf = I \times (Vn - Vn-1) \] \hspace{1cm} (4)

\[Ro = Bf + DRo \] \hspace{1cm} (5)

Where \(I \) is infiltration, \(S \) is the surplus obtained from equation (2), \(i \) is the infiltration coefficient, \(Vn \) is groundwater storage, \(Bf \) is the base flow, and \(Ro \) is the runoff. The Surplus Water Equation (SS) is as follow:

\[WS = (P - Ea) + SS \] \hspace{1cm} (6)

In the Mock method, the soil moisture reservoir is calculated as follow:

\[SMS = ISMS + (P - Ea) \] \hspace{1cm} (7)

Where:

\(ISMS = \) Initial Soil Moisture Storage is a soil moisture capacity (SMC) of the previous month.
\(P - Ea = \) Precipitation that has experienced evapotranspiration.

There are two conditions to determine the SMC, namely:
1. SMC = 200 mm / month, if \(P - Ea = 0 \)
2. SMC = SMC the previous month + \((P - Ea) \), if \(P - Ea <0 \)

For Base Flow calculation, Direct Off and Storm Runoff according to Mock, the amount of infiltration is the water surplus (WS) multiplied by the infiltration coefficient (if), or infiltration \((i) = WS \times if \).

The zone (groundwater storage abbreviated GS) is formulated as follow: \(\{0.5 \times (1 + K) \times i\} + \{K \times GSom\} \).

Perubahan dalam penyimpanan air tanah (GSA) adalah perbedaan antara bulan penyimpanan air tanah yang ditinjau dengan penyimpanan air tanah bulan sebelumnya. Arus basis perhitungan dihitung dalam bentuk persamaan:
The change in groundwater storage (GSA) is the difference between the month of storing the groundwater reviewed by the groundwater storage in the previous month. The calculation Base Flow is measured in the form of the equation:

\[BF = i - \Delta GS \]

\[\text{Equation (8)} \]

Direct run off is calculated by the equation:

\[DRO = WS - i \]

\[\text{Equation (9)} \]

After the base flow and direct runoff, the other components of the discharge are storm runoff where Mock determined them as listed below:

If Precipitation (P) > maximum soil moisture capacity, then the value of storm runoff = 0
If P < maximum soil moisture capacity then storm runoff is the amount of rainfall in the relevant month multiplied by percentage factor, or: \(SRO = P \times PF \).

Total Run Off (TRO) is the component forming the river discharge (stream flow). It is the amount between base flow, direct runoff and storm runoff, or: \(TRO = BF + DRO + SRO \). If this TRO is multiplied by the water catchment area in km², with a certain conversion number, the amount of discharge in m³ / dt will be obtained.

2.3. Availability Water (water balance)

Water balance is a way of analyzing the balance (water) equation based on the law of mass conservation stating that a substance cannot be created or destroyed, however, a substance can change its shape. This water balance equation shows the amount of input (inflow / gain), and output (outflow / losses), and storage.

In the process of water circulation, the relationship between the flow of water into inflow and outflow in a particular area for a certain period is called the water balance see in figure 2.1.

The balance relationship is as follow:

\[P = (D2 - D1) + E + (G2 - G1) + M \]

\[\text{Equation (10)} \]

Where:

D1 : Surface water from the upstream that flows into the reviewed area
D2 : Surface water flowing out of the downstream reviewed area
G1 : Groundwater flowing from upstream to the reviewed area
G2 : Groundwater flowing out of the downstream reviewed area
M : Addition onto soil moisture
P : Precipitation
E : Evapotranspiration

3. Research Methodology

Principally, the research implementation process is divided into three parts; data collection, data processing, and output in the form of conclusions and recommendations taken from the results. The study procedures are illustrated in the flowchart below in figure 3.1:

Figure 3.1 Research Flowchart

4. Discussion
Rainfall data of Lake Maninjau, and Gumarang Hydropower Station are taken to analyze the water balance on the years of 2007-2017 at Table 4.1.
Based on the results of the performed analysis, the results of the water demand analysis / water balance are obtained as follow at table 4.2, table 4.3 and figure 4.1.

Table 4.2 Inflow from the lake referred to the rainfall and inflow data from the year 2007 to 2017

Years	Lake Inflow from rainfall	Lake Inflow	
	m³/s	m³	
2007	58.60	1,822,784,227	4929.71
2008	108.84	3,385,278,148	5343.64
2009	116.65	3,628,255,332	5223.55
2010	186.29	5,794,348,836	6694.31
2011	110.25	3,429,247,848	4486.55
2012	135.14	4,203,445,355	4251.24
2013	110.79	3,445,984,966	5690.00
2014	76.93	2,392,938,191	4928.47
2015	9.11	283,210,569	4128.71
2016	64.90	2,018,691,730	5824.48
2017	83.88	2,609,025,545	5973.99

Table 4.3 Analysis of water availability in Lake Maninjau

Years	Inflow	Requirement Outflow	Initial Pool	Difference (m³)	Accommodation Capacity	Runoff
	m³	m³	m³	m³	m³	m³
2007	340	355,136,442,544.81	171,950	3,418,548,000.00	10,265,800,000.00	145,750,911,814.81
2008	340	355,136,442,544.81	171,950	3,418,548,000.00	10,265,800,000.00	145,750,911,814.81
2009	360	356,181,693,764.39	176,620	4,871,580,000.00	10,265,800,000.00	161,359,155,294.39
2010	360	356,181,693,764.39	176,620	4,871,580,000.00	10,265,800,000.00	161,359,155,294.39
2011	340	354,634,135,393.29	181,840	4,349,538,380.00	10,265,800,000.00	132,804,568,333.29
2012	340	354,634,135,393.29	181,840	4,349,538,380.00	10,265,800,000.00	132,804,568,333.29
2013	360	356,181,693,764.39	176,620	4,871,580,000.00	10,265,800,000.00	174,896,753,928.00
2014	360	356,181,693,764.39	176,620	4,871,580,000.00	10,265,800,000.00	174,896,753,928.00
2015	360	356,181,693,764.39	176,620	4,871,580,000.00	10,265,800,000.00	174,896,753,928.00
2016	360	356,181,693,764.39	176,620	4,871,580,000.00	10,265,800,000.00	174,896,753,928.00
2017	360	356,181,693,764.39	176,620	4,871,580,000.00	10,265,800,000.00	174,896,753,928.00

| Total | 1,208,794,728,392.23 | 58,301,000,000.00 | 1,762,901,945,923.23 |

The amount of excess (m³) | 53,047,609
The Water Analysis Results (Water Balance) of Lake Maninjau based on the rainfall data in the year 2007 to 2017 was in the form of the analysis of water utilization in terms of the outlet water needs of the electricity operation supply at Lake Maninjau hydropower, and maximum lake capacity seen from 2014 bathymetry data.

5. Conclusion
The analysis of lake water availability is reviewed based on an analysis of water needs, and availability. The conclusion that can be drawn from this analysis are; the analysis results of the water availability determines that the water availability in Lake Maninjau is adequate to meet the water needs around the Lake. When the average of lake water inflow 174,952 m³ / sec per year with lake water needs (outflow) 5,593 m³ / sec per year, and the difference between the two is 169,359 m³ / sec per year referred to the data from 2007 to 2017, therefore the capacity of Lake Maninjau's water is still sufficient in number. Lake Maninjau's water capacity to store and keep the water is still satisfactory. This is shown in the amount of water availability that exceeds the needs of the lake water every year.

By all means, the recommended suggestions that can be drawn are; since the rainfall data used in this analysis was from 2007 to 2017, thus for longer periods of calculation by utilizing the rainfall data for more than 20 years is considered much better. The need for water in this study is still derived from assumptions due to the limitations of the data obtained. Significantly, detailed research on water requirements such as groundwater storage capacity, and other variables needed for other water needs can be carried out, and use them as input data.

6. References

[1] Ahmad R 2015 Analysis of Water Quality and Pollution Load in Lake Pondok Lapan (Salapian Subdistrict Langkat Regency - University of North Sumatra – Medan).
[2] Bambang I 2014 Estimation of Water Balance for Managing Hydropower using TRMM and Discharge Data (Andalas University – Padang).
[3] Daru S R 2015 Application of Ecohydrolic Engineering for Strengthening River Cliffs and Restoring Habitat of Surabaya River Fish Sanctuary (Universitas Brawijaya – Malang).
[4] Department of Water Resources Management of West Sumatra Province 2017 PSDA in Figures 2017 (Department of Water Resources Management of West Sumatra Province –
[5] Dewi R 2014 *Community Participation Around Lake Beratan in Conservation of Water Resources* (Udayana University - Bali).

[6] Jaya A 2009 *Lake Reviewing the Current Conditions of Problems and Management* (University of North Sumatra - Medan).

[7] Mock FJ 1973 *Indonesian Land Capability Appraisal* (UNDP-FAO Water Availability Appraisal – Bogor).

[8] Suyono S 2003 *Hydrology for Water Resources, Director General of Irrigation* (Department of Public Works and Electric Power – Jakarta).