Identification DNA Methylation Change of ABCC8 Gene in Type 2 Diabetes Mellitus as Predictive Biomarkers

Harem O. Smail¹,², Dlnya A. Mohamad²
¹Department of Biology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region – F.R. Iraq
²Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah, Kurdistan Region – F.R. Iraq

Abstract—Type 2 diabetes mellitus is the most common chronic endocrine disorder that affecting 5%–10% of adults globally. Recently, the disease has rapidly spread throughout the Kurdistan Region. This study investigates DNA methylation status in the ABCC8 gene among the study population, and it possibly used as a biomarker. One hundred and thirteen individuals were included in this study, and they were divided into three categories (47 diabetes, 36 prediabetic, and 30 controls). Blood samples were collected to investigate DNA methylation status in patients who attended private clinical sectors in Koya city, Kurdistan Region of Iraq, between August and December 2021. Methylation-specific PCR (MSP) uses paired primers for each methylated and unmethylated region. In addition, the X² Kruskal–Wallis statistical and Wilcoxon signed-rank tests were run with a significance level of p < 0.05. In comparison to the healthy group, hypermethylation of DNA is detected in the promoter region of diabetes and prediabetes. In addition, age, gender, BMI, alcohol use, family history, and physical activity all influence the degree of DNA methylation in people who have had coronavirus illness. The above-mentioned findings suggest that DNA methylation alterations in the ABCC8 promoter region might be exploited as a possible predictive biomarker for type 2 diabetes mellitus diagnosis.

Index Terms—ABCC8 gene, Diabetes mellitus, DNA methylation, Methylated primer, Unmethylated primer.

I. INTRODUCTION

Diabetes mellitus (DM) is a leading cause of death and disability worldwide, affecting 415 million people in 2017, and this is expected to increase to 592 million by 2035 (Willmer, et al., 2018). The disease is the most common chronic endocrine disorder, affecting 5%–10% of adults worldwide. Type 2 diabetes mellitus (T2DM) is associated with resistance to insulin action and inadequate compensatory insulin secretory response (ADA 2019). Type 2 diabetes affects both the old and the youth (Asiimwe, Mauti and Kiconco, 2020).

The study of epigenetic mechanisms can provide novel insights into the pathophysiology of diabetes and its complications, which may result in the identification of new drug targets. In addition, the investigation of associations with DNA methylation (DNAm)in peripheral blood may identify novel biomarkers for noninvasive early disease detection since P.B. (Florath, et al., 2016). Multiple genes and their interactions are involved in the insulin secretion pathway. For example, sulfonylurea receptor encoded by ABCC8(ATP Binding Cassette Subfamily C Member 8) gene, together with inward-rectifier potassium ion channel (Kir6.2), regulates insulin secretion by ATP-sensitive K+ (KATP) channel located in the plasma membranes (Haghverdizadeh, et al., 2014). In T2D, the ABCC8 gene is an essential target for candidate gene association studies. Single nucleotide polymorphism (SNP) in these genes has been associated with metabolic syndrome features across various populations (Matharoo, Arora and Bhanwer, 2013).

II. MATERIAL AND METHODS

A. Study Design and Sample Collection

A cross-sectional study consisting of 113 blood samples was collected from both men and women who visited clinical sectors in the Koya city Kurdistan area of Iraq between August and December 2021 after taking approval and instructions institutional of the scientific Committee. The study population was divided into 47 diabetes, 36 prediabetes, and 30 apparently healthy individuals according to medical history and clinical and laboratory examination. All blood samples were placed in a test tube containing anticoagulant ethylene diamine tetraacetic acid (EDTA) to prevent clotting of the blood (Smail, 2016), which were diagnosed by the HbA1c analyzer, (HbA1c) parameter to determine the prediabetes and diabetic groups. For people without diabetes, the normal range for the hemoglobin A1C level is between 4% and 5.6%. Hemoglobin A1C levels between 5.7% and 6.4% mean you have a higher chance of getting
diabetes. Levels of 6.5% or higher mean you have diabetes. Besides the blood collection, also asked the participants about age, gender, body max index, smoking, family history, and alcohol with measured random blood sugar (RBS).

B. DNA Extraction

The ReliaPrep™ Blood gDNA Miniprep System performed DNA extraction (Cat. No. A5081, Promega Compa Promega, USA) according to the manufacturer’s instructions, briefly included four essential steps, homogenizing the whole blood to release. The DNA, Binding DNA to the ReliaPrep™ Binding Column, Removing impurities with wash solution repeated three times, and Eluting purified DNA

C. Bisulfite DNA Conversion

MethylEdge™ Bisulfite Conversion System (Promega Compa Promega, USA) was perfumed according to manufactures instructions (N1301). The bisulfite-converted reaction was based on the unmethylated cytosine converted to uracil whereas methylated cytosine was unaffected.

D. Determination DNA Quality and Quantitates

Typical nucleic acid concentration ranges for direct A280 absorbance measurements using nanoudops were used to determine quantities of bisulfite-converted DNA. The sample type was set to RNA-40 because bisulfite-converted DNA contains uracil and is widely single-stranded. DNA samples (100 ng of each sample) were run on the 1% agarose gel and stained with Diamond Nucleic™ Acid Dye. To evaluate the level of fragmentation following conversion, but nanodrop was set to DNA-50 to estimate DNA concentration before bisulfite conversion and stained with ethidium bromide

E. Methylation Specific PCR Primer

MethPrimer is a tool for creating methylation PCR primers based on bisulfite conversion. It is currently possible to develop methylation-specific PCR, as it is shown in Table I. PCR products were analyzed on 2% agarose gel electrophoresis, stained with ethidium bromide, and visualized under U.V. illumination, as shown in Tables II and III. The methylation band was present at 135 base pairs and the unmethylation band at 136 base pairs. Control reactions were prepared using pre-qualified methylated DNA from a source similar to the source of the experimental samples. Converted Methylated Human Control has been bisulfite-converted. High percent methylation of CpG sites run opposite with samples (N1231 Promega Compa Promega, USA), as demonstrated in Table IV.

F. Statistical Analysis

Methylation-specific PCR results were determined by deviation from the Normal pattern. Next, the difference in methylation percentage expression between all groups and normal ones was analyzed. According to Shapiro–Wilk and Kolmogorov–Smirnov’s nonparametric test, the study data were nonparametric (Non-Normal Distribution) using the Kruskal–Wallis and Wilcoxon signed-rank test. For categorical variables, frequencies were chosen. Descriptive statistics (mean and standard deviation) are used for continuous variables. The receiver operating characteristic curve (ROC curve) estimated the biomarker test. P<0.05 was considered statistically significant. In addition, GraphPad Prism 8 was used for statistical data analysis.

III. Results

Several variables were studied; body max index random blood sugar and hemoglobin A1c showed highly significant differences (P = 0.000), significant differences were noticed within age, gender, and alcohol, while non-significant with others as shown in Table V.
Regarding the methylation status, methylated was more frequent in diabetes and prediabetes than in the control group with 23, 23, and 10 cases, respectively, while 10, 7, and 17 cases in unmethylated. On the other hand, the methylated and methylated as 14 and 6 then 3 cases in control with highly significant differences \(P = 0.000 \) as shown in Table VI.

In the same group association between DNA methylation status and some clinicopathologic characteristics showed that there was highly significant between DNA methylation and HbA1c and as well as blood sugar with highly significant differences \(P=0.000 \), whereas less significant was observed among other parametric such as smoking, age, and alcohol as shown in Table VII.

IV. Discussion

The present study has investigated diabetes-related ABCC8 methylation qualitatively using methylation-specific PCR on blood. Interestingly, ABCC8 methylation was detected at a high frequency, which was 23 (48.9%) out of 47 samples of diabetes, 23 (63.9%) prediabetes out of 36 samples, and 10 (33.3%) of control out of 30 samples limited studies have done regards identifying ABCC8 gene methylation in Kurdistan region of Iraq. DNAm marks mainly occur at the \(S \) position of the cytosine residues of cytidine-guanine dinucleotides (CpG). Clustered CpG dinucleotides forming dense repeat sequences in the genome are termed CpG islands. Islands are located especially in promoter regions. However, they can also be found in intragenic and enhancer regions (Jones 2012). Many studies have revealed that DNAm also occurs at sites other than the CpG sequences (non-CpG methylation). Non-CpG methylation has been suggested to be prevalent in human embryonic stem cells and the brain. (Jang, et al., 2017). Methylation of cytosine residues in DNA (DNA methylation) are the most studied epigenetic trait. Recent data show significant influences of age and lifestyle-related risk factors such as overweight and physical activity on site-specific DNAm in blood and tissues relevant to T2D (Dayeh, et al., 2014; Smail, 2019).

Methylation-specific PCR can rapidly determine virtually any cytosine methylation status from CpG sites within a CpG island. MSP requires very small amounts of DNA, is susceptible to 0.1% of a given CpG island locus methylated alleles and can be carried out in paraffin-embedded DNA extracted samples (Herman, et al., 1996). Nested MSP can be conducted if an experiment could not amplify the product abundantly for analysis by direct MSP. A different primer set is required for Nested MSP, which covers the amplified product sequence with two selected pairs of primers. A second PCR with two pairs of primers (each primer set for different methylation states) is carried out after the first PCR with nested MSP primers using the amplified products from the first PCR (Hanaei, et al., 2020). In the current study, there were significant differences between DNA methylation changes in diabetes and prediabetes with control, as shown in Table VI; there was a strong relationship between DNA methylation in all three groups; the p-value was 0.002. Our data demonstrated that higher DNA methylation was detected in females in diabetes and prediabetes groups.

In contrast, minimum DNA methylation was recorded in the male of the healthy group (Table VII). Identifying CpG loci of which DNAm levels are under genetic control or are related to age or gender will facilitate further studies into the role of DNAm and disease (Boks, et al., 2009). Associations between age acceleration and body mass index, total cholesterol to high-density lipoprotein cholesterol ratios, socioeconomic status, high blood pressure, and smoking behavior (McCarty, et al., 2018). With the advent of microarray technology, it became possible to assess many specific genomic sites for age-related changes in DNAm. Microarray studies confirmed a decrease in DNAm with age, whereas site-specific analysis indicated an increase in variability of DNA methylation with age (Jones, et al., 2015). Furthermore, demonstrate that genotype state at methylation quantitative trait loci (meQTLs) can affect some age-associated CpG sites (Gopalan, et al., 2017).

The statistical analysis showed an association between MSP results with BMI, HbA1c, and random blood sugar, and the p-value was 0.000, as analyzed in Table VII. Moreover, recent studies have shown that changes in body weight and increased physical activity seem to impact the DNAm of certain genes related to T2D (de Mello, et al., 2014). Thus, the search for new biomarkers is ongoing. There is great interest in epigenetic biomarkers such as DNAm, which can influence the environment and potentially improve T2D prediction (Dayeh, et al., 2016). Data demonstrate highly significant correlations between DNAm and the most important risk

TABLE V

General Characteristics of the Studied Population

Variable	Diabetes (30)	Prediabetes (30)	Control (30)	P value
Age	49±12.5	46±11.4	41±10.6	0.012
Gender				
Male	(18) 18(38.3)	16(44.4)	21 (70%)	0.022
Female	(29) 61.7	20 (50.6)	9 (30%)	
BMI (body max index)	30.5±2.8	26±4.1	23.8±4.3	0.000
Smoking	5 (10.6)	5 (13.9)	5 (16.7)	0.74
Family history	7 (14.9%)	2 (5.6%)	5 (16.7%)	0.316
Covid 19	7 (14.9%)	9 (25%)	3 (10%)	0.244
Alcohol	1 (2.1%)	0 (0%)	4 (13.3%)	0.020
Physical Activity	13 (27.7%)	13 (36.1%)	15 (50%)	0.141
RBC (random blood sugar)	248±84.6	145.8±26.8	113.1±23.7	0.000
HbA1c (hemoglobin A1c)%	9.5±2	6.1±0.3	4.7±0.4	0.000

Sig(\(P<0.05\), NS: \(P>0.05\)) using Kruskal–Wallis test.

TABLE VI

Correlation Methylation Status with the Control Groups

Groups	Unmethylated (100%)	Methylated (100%)	Total (%)	P value
Diabetes	10 (21.3)	23 (48.9)	47 (100)	0.002
Prediabetes	7 (19.4)	23 (63.9)	36 (100)	
Control	17 (56.7)	10 (33.3)	30 (100)	

Sig(\(P<0.05\)) using Kruskal–Wallis test.
Table VII

ASSOCIATION OF PROMOTER REGION METHYLATION CLINIC PATHOLOGIC CHARACTERISTICS WITHIN SAME GROUPS

	Diabetes	Prediabetes	Control									
	U	M	UM	P value	U	M	Um	P value	U	M	UM	P value
Age	54.1±10.8	44.4±8.7	54.1±15.9	0.000	52.2±11.8	45.3±11.9	43.8±7.9	0.000	40.9±7.2	36.6±7.4	56.6±22.1	0.000
Gender												
Male	1	9	8	0.003	2	11	3	0.007	13	0	0	0.106
Female	9	14	6		5	12	3		4	10	3	
BMI (body max index)	18±4.2	30.7±1.8	32.2±1.8	0.000	25.4±2.2	26.7±4.5	24.3±4.2	0.000	25.0±15.8	21.7±3.3	24.2±7.5	0.000
Smoking	0	3	2	0.106	1	3	1	0.346	2	2	1	0.061
Family history	1	4	2	0.055	0	2	0	0.796	3	2	0	0.039
Covid 19	1	3	3	0.061	1	6	2	0.101	2	1	0	0.012
Alcohol	0	1	0	0.317	0	0	0	0.782	3	1	0	0.018
Physical activity	1	10	2	0.006	3	8	2	0.014	12	1	2	0.755
RBC (random blood sugar) mg/dL	233.9±91.5	243.3±91.8	268.2±67.9	0.000	148.8±5.7	144.8±31	146±274	0.000	114.6±22.6	102.7±21.4	139±13.0	0.000
HbA1c (hemoglobin A1c) %	9.1±2.5	8.9±1.2	10.6±5.7	0.000	6.3±0.1	6.0±0.0	6.0±0.2	0.000	4.9±0.3	4.7±0.2	4.8±0.2	0.000

M: Methylated, U: Unmethylated, UM: Unmethylated and methylated (partial), significant difference Wilcoxon signed-rank test.

Fig. 1: ROC curve of MSP results in diabetes.

Fig. 2: ROC curve of MSP results in prediabetes.

Fig. 3: Methylation-specific PCR (MSP) analysis of ABCC8 gene. *Lane 1: DNA Marker ((3kb. DNA ladder). Agarose gel electrophoresis (2%) of MSP Products are both an excellent demonstration. M refers to a methylated specific primer; U refers to an unmethylated-specific primer. The expected product size was 136 bp for unmethylated primer and 135 bp for methylated primer.

Fig. 4: Methylation-specific PCR (MSP) analysis of ABCC8 gene. *Lane 1: DNA Marker ((3kb. DNA ladder). Agarose gel electrophoresis (2%) of MSP Products is both an excellent demonstration. M refers as a methylated specific primer; U refers to unmethylated-specific primer. P.C.: Positive control (Methylated Human Control) and NC: negative control (Distil water) The expected product size was 136 bp for unmethylated primer and 135 bp for methylated primer.
MSP products are an excellent demonstration. Using unconverted DNA (UDNA) instead of converted DNA demonstrated that the primer was only specific for the converted DNA; the agarose gel showed not any PCR product either for methylated or unmethylated ABCC8 gene.

V. Conclusion

Increased DNA methylation in type 2 diabetes patients may have correlated with pathogenesis and developed symptoms of diabetes, and the results of this study demonstrated that the hypermethylation of the ABCC8 gene is associated with BMI, HbA1c, and Random blood sugar. Industrially may be the hypermethylation of the ABCC8 gene is associated with cardiovascular disease.

VI. Acknowledgments

We thank the Science and Health Research Center staff, especially their laboratory technicians, Mr. Hiwa Abdurahman and Mr. Shwan Salih, for their help and support in doing this research.

References

American Diabetes Association, 2019. Classification and diagnosis of diabetes: standards of medical care in diabetes 2019. Diabetes Care, 42, pp.S13-S28.

Asiimwe, D., Mauti, G.O. and Kiconco, R., 2020. Prevalence and risk factors associated with Type 2 diabetes in elderly patients aged 45-80 years at Kanungu District. Journal of Diabetes Research, 2020, p.5152146.

Boks, M.P., Derks, E.M., Weisenberger, D.J., Strengman, E., Janson, E., Sommer, I.E., Kahn, R.S. and Ophoff, R.A., 2009. The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS One, 4, p.e6767.

Dayeh, T., Tuomi, T., Almgren, P., Peräälä, A., Jansson, P.A., de Mello, V.D., Pihlajamäki, J., Vaag, A., Group, L., Nilsson, E. and Ling, C., 2016. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future Type 2 diabetes risk. Epigenetics, 11, pp.482-488.

Dayeh, T., Volkov, P., Salio, S., Hall, E., Nilsson, E., Olsson, A.H., Kirkpatrick, C.L., Wollheim, C.B., Eliasson, L., Rönn, T. and Bacos, K., 2014. Genome-wide DNA methylation analysis of human pancreatic islets from Type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genetics, 10(3), p.e1004160.

de Mello, V.D.F., Pulkkinen, L., Lalli, M., Kolehmainen, M., Pihlajamäki, J. and Uusitupa, M., 2014. DNA methylation in obesity and Type 2 diabetes. Annals of Medicine, 46(3), pp.103-113.

Florath, I., Butterbach, K., Heiss, J., Bewerunge-Hudler, M., Zhang, Y., Schoettker, B. and Brenner, H., 2016. Type 2 diabetes and leukocyte DNA methylation: an epigenome-wide association study in over 1,500 older adults. Diabetologia, 59(1), pp.130-138.

Gillberg, L. and Ling, C., 2015. The potential use of DNA methylation biomarkers to identify risk and progression of Type 2 diabetes. Frontiers in Endocrinology, 6, p.43.

Gopalan, S., Carja, O., Fagny, M., Patin, E., Myrick, J.W., McEwen, L.M., Mah, S.M., Kobor, M.S., Froment, A., Feldman, M.W. and Quintana-Murci, L., 2017. Trends in DNA methylation with age replicate across diverse human populations. Genetics, 206, pp.1659-1674.

Haghverdizadeh, P., Haerian, M.S., Haghverdizadeh, P. and Haerian, B.S., 2014. ABCC8 genetic variants and risk of diabetes mellitus. Gene, 545, pp.198-204.

Hanaei, S., Sanati, G., Zoghi, S., Gharibzadeh, S., Ziaee, V. and Rezaeei, N., 2020. The status of FOXP3 gene methylation in pediatric systemic lupus erythematosus. Allergology et Immunopathologia, 48, pp.332-338.

Herman, J.G., Graff, J.R., Myöhänen, S.B.D.N., Nelkin, B.D. and Baylin, S.B., 1996. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences, 93, pp.9821-9826.

Jang, H.S., Shin, W.J., Lee, J.E. and Do, J.T., 2017. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes, 8(6), p.148.

Jones, M.J., Goodman, S.J. and Kobor, M.S., 2015. DNA methylation and healthy human aging. Aging Cell, 14(6), p.924-932.

Jones, P.A., 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13(7), pp.484-492.

Matharoo, K., Arora, P. and Bhanwer, A.J.S., 2013. Association of adiponectin (AdipoQ) and sulphoylurcine receptor (ABCC8) gene polymorphisms with Type 2 Diabetes in North Indian population of Punjab. Gene, 527(1), pp.228-234.

McCartney, D.L., Stevenson, A.J., Walker, R.M., Gibson, J., Morris, S.W., Campbell, A., Murray, A.D., Whalley, H.C., Porteous, D.J., McIntosh, A.M. and Evans, K.L., 2018. Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer’s disease. Alzheimers and Dementia: Diagnosis, Assessment and Disease Monitoring, 10, pp.429-437.

Smail, H.O., 2016. Qualitative and Quantitative Identification of DNA Methylation Changes in Blood of the Breast Cancer Patients. (MSC Thesis, University of Sulaimani).

Smail, H.O., 2019. The epigenetics of diabetes, obesity, overweight and cardiovascular disease. AIMS Genetics, 6, pp.36-45.

Willmer, T., Johnson, R., Louw, J. and Pheiffer, C., 2018. Blood-based DNA methylation biomarkers for Type 2 diabetes: Potential for clinical applications. Frontiers in Endocrinology, 9, p.744.