A Novel AGRN Mutation Leads to Congenital Myasthenic Syndrome Only Affecting Limb-girdle Muscle

Ying Zhang1,2, Yi Dai1, Jing-Na Han1, Zhao-Hui Chen1, Li Ling1, Chuan-Qiang Pu1, Li-Ying Cui3,4, Xu-Sheng Huang1

1Department of Neurology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
2Cadre Ward Two, The First Affiliated Hospital of Chinese People’s Liberation Army General Hospital, Beijing 100843, China
3Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, China
4Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100730, China

Ying Zhang and Yi Dai contributed equally to this work.

Abstract

Background: Congenital myasthenic syndromes (CMSs) are a group of clinically and genetically heterogeneous disorders caused by impaired neuromuscular transmission. The defect of AGRN was one of the causes of CMS through influencing the development and maintenance of neuromuscular transmission. However, CMS reports about this gene mutation were rare. Here, we report a novel homozygous missense mutation (c.5302G>C) of AGRN in a Chinese CMS pedigree.

Methods: We performed a detailed clinical assessment of a Chinese family with three affected members. We screened for pathogenic mutations using a disease-related gene panel containing 519 genes associated with genetic myopathy (including 17 CMS genes).

Results: In the family, the proband showed limb-girdle pattern of weakness with sparing of ocular, facial, bulbar, and respiratory muscles. Repetitive nerve stimulation showed a clear decrement of the compound muscle action potentials at 3 Hz only. Pathological analysis of the left tibialis anterior muscle showed predominance of type I fiber and the presence of scattered small angular fibers. The proband’s two elder sisters shared a similar but more severe phenotype. By gene analysis, the same novel homozygous mutation (c.5302G>C, p. A1768P) of AGRN was identified in all three affected members, whereas the same heterozygous mutation was found in both parents, revealing an autosomal recessive transmission pattern. All patients showed beneficial responses to adrenergic agonists.

Conclusions: This study reports a Chinese pedigree in which all three children carried the same novel AGRN mutation have CMS only affecting limb-girdle muscle. These findings might expand the spectrum of mutation in AGRN and enrich the phenotype of CMS.

Key words: AGRN; Congenital Myasthenic Syndrome; Gene Mutation

INTRODUCTION

Congenital myasthenic syndromes (CMSs [MIM 608931]) represents a group of clinically and genetically heterogeneous disorders caused by impaired neuromuscular junction (NMJ) transmission leading to fatigable weakness.[1] Conventionally, CMS were classified on the basis of the location of a mutated protein as presynaptic, synaptic basal lamina-associated, or postsynaptic. Currently, gene defects that influence the development and maintenance of NMJ are assigned to a separate group of the CMS and rank second in the disease causes following defects of the acetylcholine receptors (AChRs).[2] These genes include RAPSN, DOK7, LRP4, MUSK, and AGRN.[3,4] Agrin, encoded by AGRN, is a cell-specific heparan sulfate proteoglycan generated by alternative splicing. Motoneuron-derived agrin is secreted from nerve terminals into the synaptic cleft and leads to clustering and synthesis of postsynaptic AChRs through activation of the postsynaptic LRP4-MuSK-Dok-7 complex.[5] There are only a few cases reported about this gene mutation so far.[6-9] Here, we report a novel homozygous missense mutation (c.5302G>C) of AGRN in a Chinese CMS pedigree.
METHODS

Ethical approval
The study was conducted in accordance with the Declaration of Helsinki and was approved by the Ethics Committee of Chinese People’s Liberation Army General Hospital. Informed consent was obtained from all subjects.

Clinical assessment
A detailed history was taken, and a thorough neurological examination was performed. Electrophysiological studies and muscle pathology studies were performed to determine the location and nature of the impairment. Auxiliary examinations included muscular magnetic resonance imaging (MRI), creatine kinase levels and anti-AChR and anti-MuSK antibody tests. The diagnosis of CMS can be suspected when there are clinical symptoms of early onset fatigable muscle weakness, a positive family history, and a decremental response of repetitive nerve stimulation (RNS). Genetic studies are needed to confirm the diagnosis.

Genetic and bioinformatics analyses
Venous blood samples were obtained from the pedigree. Genomic DNA was extracted from peripheral blood using a standard procedure. The amplified DNA of the proband was captured with a disease-related gene panel containing 519 genes associated with genetic myopathy including 17 CMS genes [Supplementary Table S1] using biotinylated oligoprobes (MyGenostics GenCap Enrichment technologies) and sequenced on an Illumina HiSeq 2000. The candidate variant was confirmed by Sanger’s sequencing and was evaluated the pathogenicity by three algorithms, namely, SIFT (http://sift.jcvi.org/), PolyPhen (http://genetics.bwh.harvard.edu/pph2/index.shtml) and Mutation Taster (http://mutationtaster.org/) as described previously. Sanger’s sequencing was then conducted across the family.

RESULTS

Clinical features
The proband (II-3, the pedigree shown in Figure 1) was a 27-year-old man who had an apparently normal childhood and adolescence except failing to pass the physical examination of high jump and running. At 21 years old, he began to suffer from fatigable weakness of lower limbs. Gradually, he had difficulty standing up from a squat position, jumping, and running. During the cause of the disease, he had no ptosis, bulbar or facial weakness. Neurological examination at the age of 25 years revealed normal cranial nerves and mild muscle atrophy of lower legs. Muscle strength of lower limbs was Medical Research Council (MRC) Grade 4-/5 in proximal and Grade 4+/5 in distal. Tendon reflexes were preserved except bilateral Achilles reflexes. Ocular, facial, bulbar, and respiratory muscles were not involved. Creatine kinase level was normal and anti-AChR, and anti-MuSK antibody tests were negative. The MRI of lower extremities was normal. The nerve conduction study and needle electromyography were within normal limits. RNS at 3 Hz evoked from common peroneal nerves showed a clear decrement of the compound muscle action potentials, with 16% and 18% decline in left and right tibialis anterior, respectively. No significant changes were recorded of RNS at 10 Hz or 20 Hz. Pathological analysis of the left tibialis anterior muscle under light microscopy showed a predominance of type I fiber and the presence of scattered small angular fibers [Figure 2].

The other two elder sisters shared a similar but more severe phenotype. The 29-year-old sister (II-2) suffered from lower limb weakness at the age of 7 years. She complained of walking slowly, difficulty in climbing and a tendency to fall. Upper limbs became involved from the age of 9 years. Neurological assessment at 12 years old showed normal cranial nerve function except trapezius muscles weakness (MRC Grade 4/5). Muscle strength of limbs was Grade 4/5 in proximal and Grade 5-/5 in distal. Deep tendon reflexes were decreased. Muscle enzyme levels were normal. Needle electromyography of distal muscles in four extremities showed short duration and low amplitude motor unit potentials with a few abnormal spontaneous potentials. Nerve conduction studies were normal. Pathological analysis of muscle biopsy under light microscopy revealed type II muscle fiber atrophy. Another sibling, a 31-year-old female (II-1), showed a similar manifestation, but she did not undergo evaluation.

Genetic analysis
We identified a novel homozygous missense mutation (c.5302G>C) in exon 31 of AGRN leading to the substitution of alanine to proline in the C-terminal LG2 domain of agrin (p. A1768P; RefSeq: NM_198576). All three siblings were homozygous for the mutation while both parents were heterozygous [Figure 3]. This variation is not
found in ExAC population database. SIFT predicted the substitution to affect protein function with a score of 0.03. Polyphen revealed the mutation to be probably damaging with a score of 1.0 and Mutation Taster predicted that this mutation was disease-causing. Therefore, we made the diagnosis of CMS caused by a novel homozygous mutation in AGRN (c.5302G>C) (we have submitted the variant to Leiden Open Variation Database http://databases.lovd.nl/shared/variants/0000128826).

Treatment and follow-up
First treatment with pyridostigmine only showed a beneficial response during the 1st month, then, the symptoms were aggravated, so we tried ephedrine and acquired an evident symptomatic improvement after only 3 days of treatment. Due to the difficulty in obtaining ephedrine, we changed the treatment to salbutamol and observed a similar therapeutic effect as ephedrine. After treatment, the more severely affected sister (II-1) could walk a much longer distance, improving from <50 m to more than 500 m. All three patients are still receiving treatment and have taken salbutamol (2 mg tid) for more than 1 year, and the movement status is sustained.

Discussion
We report a Chinese pedigree with all three CMS patients harboring the same novel missense pathogenic mutation (c.5302G>C p. A1768P) of AGRN. Genetic analysis revealed both parents were heterozygous carrying one single mutated allele that had been transmitted to their three affected children. The parents denied that they were consanguineous, but both of them were from a small village. To the best of our knowledge, previously, only four reports described CMS caused by defects in AGRN, which displayed heterogeneous clinical features. In 2009, Huzé et al. first reported two siblings from a consanguineous family carrying a homozygous missense mutation (G1709R) and presented with ptosis, mild facial and limb-girdle muscles weakness. The second report described a severe CMS patient who required continuous respiratory support caused by two compound heterozygous mutations (V1727F, Q353X). The third article reported five patients from three unrelated families who shared different phenotypes of distal muscle weakness and atrophy. The latest case reported a 17-month-old boy harboring a homozygous mutation (G1765S) who presented with dropped head in addition to proximal muscle weakness, ptosis, and ophthalmoplegia. Acetylcholinesterase inhibitors were not helpful in most of the cases, while adrenergic agonists provided a positive effect for some of the patients. More detailed, there are three mutations located in the LG2 domain as well as our report. As we know, agrin includes three globular, C-terminal LG domains, an N-terminal (NtA) domain and follistatin-like domains. The NtA domain is responsible for binding to basal laminae. The C-terminal LG3 domain is critical for the aggregation of AChRs and other molecules at the NMJ, whereas LG1 and LG2 domain of agrin are involved in interacting with α-dystroglycan, which is a multimeric transmembrane protein complex and is thought to be associated with structural stability of muscle cell membrane. The interaction seems to promote the binding of agrin to the surface of muscle cells, and hence increase the potency of agrin in inducing AChRs clustering, which is an important event in NMJ development. The way in which the interaction affects neuromuscular transmission remains unclear. Studied about the G1709R substitution in LG2 domain showed

![Figure 2: Pathological results of left tibialis anterior muscle from the proband (original magnification, ×100). (a) Presence of scattered small angular fibers (H & E staining). (b) ATPase staining showed predominance of type I fiber (dark).](image)

![Figure 3: Sanger sequences of AGRN mutation (c.5302G>C) across the family. The red arrow indicated the mutation site.](image)
that the mutation did not affect agrin’s ability to activate MuSK or cluster AChRs, nor does it affect the interaction with α-dystroglycan, it seemed to perturb the endplate maintenance.(6) On the contrary, another analysis showed that V1727F mutation in LG2 domain significantly reduced AChRs clustering activity by impairing MuSK activation and increased affinity to α-dystroglycan, which mimics non-neural isoform agrin.(7) In our report, the patients showed a typical electrophysiological change in the RNS test. The pathology demonstrated the predominance of type I fiber and a slight myopathic change. The therapeutic effects of adrenergic agonists on all three patients are evident. All these features are in accordance with congenital muscular dystrophy caused by AGRN mutation. However, the clinical manifestations of our patients were somewhat different from those of previously reported cases. They showed a limb-girdle pattern weakness without the involvement of ocular, facial, bulbar, and respiratory muscles. Although bearing the same mutation, the three siblings showed variations in age of onset and in symptom severity. The missense mutation we identified were predicted to affect the function of the protein. However, future investigations are needed to pin down the detailed molecular mechanism how a defect in the C-terminal LG2 domain of agrin influence NMJ.

In conclusion, we report a Chinese CMS pedigree with a novel AGRN mutation only affecting limb-girdle muscle. The study findings might expand the spectrum of mutation in AGRN and enrich the phenotype of CMS.

Supplementary information is linked to the online version of the paper on the Chinese Medical Journal website.

Acknowledgments
We would like to thank all the patients and clinicians who took part in this study and Beijing MyGenostics for technical assistance.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Rodríguez Cruz PM, Palace J, Beeson D. Congenital myasthenic syndromes and the neuromuscular junction. Curr Opin Neurol 2014;27:566-75. doi: 10.1097/WCO.0000000000000134.
2. Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: Pathogenesis, diagnosis, and treatment. Lancet Neurol 2015;14:420-34. doi: 10.1016/S1474-4422(14)70201-7.
3. Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2011;71:982-1005. doi: 10.1002/dneu.20953.
4. Terzak T, Inoue A, Hoshi T, Weatherbee SD, Burgess RW, Ueta R, et al. The MuSK activator agrin has a separate role essential for postnatal maintenance of neuromuscular synapses. Proc Natl Acad Sci U S A 2014;111:16556-61. doi: 10.1073/pnas.1408409111.
5. Burden SJ, Yumoto N, Zhang W. The role of muSK in synapse formation and neuromuscular disease. Cold Spring Harb Perspect Biol 2013;5:a009167. doi: 10.1101/cshperspect.a009167.
6. Huzé C, Bauché S, Richard P, Chevessier F, Goillot E, Gaudon K, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 2009;85:155-67. doi: 10.1016/j.ajhg.2009.06.015.
7. Maselli RA, Fernández JM, Arredondo J, Navarro C, Ngo M, Beeson D, et al. LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (α-) agrin. Hum Genet 2012;131:1123-35. doi: 10.1007/s00439-011-1132-4.
8. Nicole S, Chaouch A, Torbergsen T, Bauché S, de Bruyckere F, Follent E, Gaudon K, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 2009;85:155-67. doi: 10.1016/j.ajhg.2009.06.015.
9. Karakaya M, Ceyhan-Birsoy O, Beggs AH, Topaloglu H. A novel missense variant in the AGRN gene; congenital myasthenic syndrome presenting with head drop. J Clin Neuromuscul Dis 2017;18:147-67. doi: 10.1007/s00092-017-9765-z.
10. Burgess RW, Skarnes WC, Sanes JR. Agrin isoforms with distinct amino termini: Differential expression, localization, and function. J Cell Biol 2000;151:41-52. doi: 10.1083/jcb.151.1.41.
11. Sciandra F, Bozzi M, Bianchi M, Pavoni E, Giardina B, Brancaccio A, et al. Dystroglycan and muscular dystrophies related to the dystrophin-glycoprotein complex. Ann Ist Super Sanita 2003;39:173-81.
12. Gesemann M, Cavalli V, Denzer AJ, Brancaccio A, Schumacher B, Ruegg MA, et al. Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron 1996;16:755-67. doi: 10.1016/S0896-6273(00)80096-3.
Supplementary Table S1: The list of 519 genes related with genetic myopathy contained in the panel

ARAT	ABCB1	ABCB2	ABCB8	ABCC1	ABCC2	ABCC8	ACOX1	ACT1
AGA	AH1	AKT2	AKT3	ALDH2A	ALDH4A	ALDH5A1	ALDH7A1	ADCK3
ALG1	ALG6	ALG8	ALG9	ALG11	ALG12	ALG13	ALG16	ADSL
ALPS2	APTX	ARFGF2	ARG1	ARHGEF15	ARHGEF9	ARG2	ARG3	ARG4
ARSB	ARX	ASAH1	ASPA	ATIC	ATN1	ATP13A2	ATP13A2	ATP1A2
ATP1A3	ATP2A2	ATP5A1	ATP6AP2	ATP6QOA2	ATP7A	ATP9F2	ATP9F2	ATR
ATRX	ACPF1A	B4AGTL1	BCKDHA	BCKDHB	BCKD	BCS1L	BDNF	BDK
BLK	BRAF	BRAT1	BRD2	BTD	BUB1B	C1orf57	C1orf57	CBL
C1orf57	CACNA1A1	CACNA1C	CACNA1H	CACNB4	CASK	CASR	CENPJ	CEP152
CC2D2A	CLC2	CDR5RAP2	CDKL5	CDON	CEL	CENPJ	CEP152	CHRNA4
CEP290	CHD2	CHD4	CHD7	CHD8	CHRNA4	CHRNA4	CHRNA4	CHRN3
CISD2	CLCN2	CLCN4	CLCNKA	CLCNKB	CLN3	CLN5	CLN6	CHRN2
CLN8	CNTN2	CNTNAP2	COG1	COH4	COG5	COG6	COG7	COH
COG8	COL18A1	COL4A1	COQ2	COQ9	COX15	CP	CPT1A	CPT2
CPT2	CREBBP	FMBR1	FOLR1	FOX1	FOXH1	FOXP1	CYP1B1	CYP2B1
CYP2B1	CYP2B6	CYP2C9	CYP2D6	CYP2R1	CYP2U1	CYP3A5	CYP42	CYT5F2
DRT	DCX	DDC	DDOST	DEPD5C	DHC7	DLD	DMD	DMD
DOLK	DPM1	DPM2	DPM3	DPYD	DRYK1A	DRYK1A	DRYK1A	DRYK1A
EFHC2	EHMT1	EIF2AK3	EIF2B1	EIF2B2	EIF2B2	EIF2B5	EIF2B5	EIF2J
EMX2	EPM2A	ERC5C	ERC6	ERTA	ETFB	ETFDH	E4H2	E4H2
FAAH	FAM126A	FGFI	FGFR1	FGFR2	FGFR3	FI	FIP1	FMN
FKR1	FKTN	FLRC2R	FRM1	FOXR1	FOXI	FOXP1	CYP1B1	CYP1B1
FOXP2	FOXP3	FTL	FUCAI	GABBR2	GABRA1	GABRA2	GABRA3	GABRA3
GABRD	GABRG2	GALC	GALNS	GAMT	GATA6	GATM	GCDH	GCDH
GCK	GCSH	GAPF	GLB1	GLDC	GLI2	GLT3	GLT3	GNP3
GLRA1	GLRB	GLUD1	GUL	GNAO1	GNE	GNP3A	GNP3A	GNP3A
GNS	GOSR2	GPC3	GPHN	GPR56	GRI3	GRI3	GRI3	GRI3
GRIN2B	GU2B	HADH	HCNI	HCN4	HAT	HEX	HEX	HEX
HGSNAT	HNF1A	HNF1B	HNF4A	HHNPU	HOXA1	HOPD	HPR1	HPR1
HGAS	HSDB17B10	HSDB17B4	HYAI1	IB2P	ID2	ID3	ID3	ID3
JER3IP1	INP5P5E	INS	INSR	IQ5SEC2	KAT6B	KCN1	KCN1	KCN1
KCDH7	KDMS5C	KIAA1279	KLF11	KRAS	L1CAM	L2HDG	LARGE	LARGE
LRB	LGI1	LIAS	LIG4	LRPPRC	MAG12	MAG1	MAG1	MAG1
MAP2K2	MAPK10	MBDS	MCOLN1	MCH1P1	ME2	ME2	ME2	ME2
MED17	MEF2C	MET	MFSD8	MGAT2	MID1	MKS	MKS	MKS
MMACHC	MOC5I	MOCS2	MOGS	MPDU1	MP1	MTHFR	MTR	MTR
MTRR	MYBPC1	NAGLU	NDE1	NDUF1A	NDUF2A	NDUF3S	NDUF3S	NDUF3S
NDUF54	NDUF57	NDUF58	NDUFV1	NEU1	NEUROD1	NEUROD3	NEF	NEF
NGLY1	NHE1J	NHLC1	NIH	NIPBL	NKLX2-2	NLG3	NLG3	NLG4X
NODAL	NOTCH3	NPC1	NPC2	NPH1	NRS4	NRSX1	NSD1	NSD1
OFD1	OBA1	OHPIN	OPAH1B1	PAK3	PAK2	PAX4	PAX6	PAX6
PC	PCDH19	PDEGRF	PDH1A	PDH2	PDSS1	PDSS2	PDX1	PDX1
PEXI	PEX10	PEX12	PEX13	PEX14	PEX16	PEX19	PEX2	PEX2
PEX26	PEX3	PEX5	PEX6	PEX7	PGK1	PGM1	PHX1	PHX1
PHF5D	PIGV	PIK3CA	PIK3R2	PLA2G6	PLAG1	PLB1	PLP1	PLP1
PIM2	PNK	PNPO	POLG	POMGNT1	POMT1	POMT2	PP1	PP1
PQBP1	PRICKLE1	PRICKLE2	PRODH	PRRT2	PSAP	PSAT1	PTC6	PTC6
PTPN	PTP1A	PTPN11	QDPR	RAB3B9	RABGAP1	RAD21	RAP1	RAP1
RA1	RARS2	RFT1	RFX6	RNASE2H2A	RNASE2H2B	RNASE2H2C	RPRG1P1L	RPRG1P1L
RPS6KA3	RRP1B	RTTN	SAMHD1	SCARB2	SCARB2	SCN10A	SCN10A	SCN10A
SCN2A	SCN2A	SCN2B	SCN3A	SCN3B	SCN4B	SCN5A	SCN5A	SCN5A
SCG9A	SC02	SDHA	SERPI1N	SETBP1	SGCE	SGSH	SHANK2	SHANK2
SHANK3	SHH	SHOC2	SI3	SLC16A2	SLC17A5	SLC19A2	SLC19A2	SLC19A2
SLC1A3	SLC2O2A	SLC25A15	SLC25A19	SLC25A2	SLC2A1	SLC35A1	SLC35A1	SLC35A1
SLC35C1	SLC46A1	SLC6A4	SLC6A5	SLC6A8	SLC9A6	SMC1A	SMC1A	SMC1A
SMN1	SMPO1	SMS	SNP29	SNIP1	SOS1	SPP1	SPTAN1	SPTAN1
SRD5A3	SRPX2	ST3GAL5	STIL	STRADA	STXB1	SUC2A1	SUMF1	SUMF1
Supplementary Table S1: Contd...

SUOX	SURF1	SYN1	SYNGAP1	SYP	TACO1	TBC1D24	TRX1
TCF4	TGIF1	TMEM165	TMEM216	TMEM67	TMEM70	TPP1	TBRX1
TRPM6	TSC1	TSC2	TSEN2	TSEN34	TSEN54	TUBA1A	TUBA8
YUBB2B	TUSC3	UBE3A	UCP2	VANGLI	VPS13A	VPS13B	VPK1
WDR45	WDR62	WFS1	ZEB2	ZFP57	ZIC2	CHAT*	COLQ*
LAMB2*	CHRNA1*	CHRNBI*	CHRNND*	CHRNNE*	CHRNG*	AGRN*	DOK7*
MUSK*	RAPSN*	GFPT1*	DPAGT1*	ALG2*	PLEC*	SCN4A*	

*The 17 genes are congenital myasthenic syndrome related genes screened in the study.