Intrinsic one-dimensional (1D) ferroelectric materials are rarely reported but are highly sought to break the size limit of nanostructured conventional ferroelectrics. Herein, we report a class of inborn 1D ferroelectric nanowires, namely 1D NbOX3 (X = Cl, Br, and I), that can be directly obtained from experimentally realized van der Waals crystals. In addition to the sizable spontaneous polarization, 1D NbOX3 exhibits low ferroelectric switching barriers, small coercive electric fields, and high critical temperature, governed by the hybridization of the Nb empty d orbitals and the O p orbitals (d^2 rule). Moreover, the double-channel structure of 1D NbOX3 also enables the emergence of 1D antiferroelectric metastable states. Our findings not only propose a class of 1D ferroelectric materials toward the development of miniaturized and high-density electronic devices, but also pave an avenue of obtaining intrinsic 1D ferroelectrics from van der Waals crystals.

ARTICLE

PURELY ONE-DIMENSIONAL FERROELECTRICITY AND ANTIFERROELECTRICITY FROM VAN DER WAALS NIOBIUM OXIDE TRIHALIDES

Lei Zhang1,2, Cheng Tang1,2, Stefano Sanvito3 and Aijun Du1,2✉

Intrinsically one-dimensional (1D) ferroelectric materials have broad technological applications, such as non-volatile random-access memories1–3, field-effect transistors4–5, sensors6,7, and photovoltaics8,9. Driven by the increasing demand for device miniaturization, significant progress has been made in two-/one-dimensional (2D/1D) ferroelectrics. The exploration of 2D FE materials started with the direct downsizing of conventional bulk FE materials, a strategy found numerous obstacles such as enhanced depolarizing electrostatic fields, severe surface reconstruction, dangling bonds at the surface, etc., thus imposing great limits on their use for practical applications10–13. The recent emergence of van der Waals (vdW) layered 2D FE materials14,15 has stimulated extensive research, both experimentally and theoretically, by providing a possible solution to overcome these challenges thanks to their inborn atomic-thin structures16–27. Compared to 2D ferroelectrics, 1D FE materials are expected to be superior for building high-density FE devices. Several 1D FE nanostructures, including nanowires, nanotubes, nanoribbons, and belts, have been proposed. These are all based on manipulating conventional FE compounds28–33, meaning that such structures could suffer from the same drawbacks of their 2D counterparts. Moreover, the diameters of these 1D structures usually range from several tens to hundreds of nanometers, namely they are far from a nearly atom-scale size28,34. Ideally, 1D ferroelectrics should not only possess robust ferroelectricity but also simultaneously harbor small diameters, strong chemical bonding within the chain, and high stability. In order to overcome these challenges, it is highly important to explore new routes for the discovery of 1D ferroelectrics.

Experimentally a number of vdW crystals made of weakly bonded 1D building blocks (chains or molecular wires) have been successfully fabricated35–38. Inspired by the exfoliation of 2D functional materials from bulk layered structures, such type of vdW crystals could offer a great platform to explore the rich physics within the pure 1D limit. To date, research on 1D materials obtained from vdW bulk compounds is still limited, but some interesting properties have been already discussed, such as charge density waves in NbSe339, nontrivial band topology in TiCl340, and power-law dependent tunneling conductance in MoSe41. Importantly, the isolation of pure 1D structures from vdW crystals has been demonstrated possible in molybdenum based polyoxometalates42. If the 1D building block in a vdW crystal possesses broken centrosymmetry along the chain direction, then intrinsic 1D ferroelectrics at ultrasmall dimensions could be obtained via exfoliation from the corresponding vdW crystals.

In this work we report a family of intrinsic 1D ferroelectrics, namely 1D NbOX3 (X = Cl, Br, and I), which are analyzed by mean of density functional theory (DFT) and model Hamiltonian Monte Carlo (MC) simulations. 1D NbOX3 could be easily exfoliated from the experimentally synthesized vdW crystals due to the small binding energy. Moreover, 1D NbOX3 exhibits sizable spontaneous polarization above room temperature, low FE transition barriers, and low coercive electric fields. The two-channel 1D geometry of NbOX3 also enables the emergence of AFE metastable states, which has never been reported in the purely 1D regime. Our findings highlight an interesting avenue to realize intrinsic 1D ferroelectricity and antiferroelectricity from the vdW crystals.

RESULTS AND DISCUSSION

Structural exploration and stability

The structures of the experimental bulk phases43,44 of NbOX3 (X = Cl, Br, and I) are presented in Fig. 1a–c. Bulk NbOCl3 and NbOBr3 crystallize in a tetragonal lattice with the P4_2/m space group, while NbOCl displays a monoclinic structure with a lowered C2 symmetry. The PBE-calculated lattice parameters are summarized in Table 1 and they are in great agreement with the experimental values43,44. Interestingly, bulk NbOX3 possesses a peculiar unit cell consisting of two parallel 1D NbOX3 nanowires, where the Nb ions show an off-center displacement, δnbo, along the O-Nb-O atomic chain direction. In the 3D crystals, δnbo in neighboring 1D nanowires aligns antiparallelly in NbOCl3/NbOBr3, and parallelly

 butchered

butchered

butchered
leading to anti-polarized and polarized bulk structures for NbOCl$_3$, NbOBr$_3$, and NbOI$_3$. The polarization direction of the individual 1D nanowires is explicitly shown by the dotted and crossed circles. Despite the different overall polar orders of bulk NbOX$_3$, each 1D NbOX$_3$ nanowire within the bulk phase is perfectly polarized and weakly vdW-bound. These features provide the opportunity to exfoliate the long-sought 1D polarized structures with perfect radical boundaries from experimentally accessible bulk phases. The binding energy E_b is then evaluated to determine the strength of the vdW interactions in the bulk. The relevant quantity is $E_b = E_{1D} - 2E_{Nb} - 2E_O - 6E_X$ where E_{1D}, E_{Nb}, E_O, and E_X represent the energy of 1D NbOX$_3$, single Nb, O, and X atoms, respectively. The E_b of 1D NbOCl$_3$, NbOBr$_3$, and NbOI$_3$ is calculated to be -4.82, -4.46, and -4.09 eV/atom, respectively, indicating their strong bonding characteristics.

1D NbOX$_3$ possesses two parallel NbOX$_4$ channels with the shared halogen atoms in the center as shown in Fig. 1d. In order to extensively explore the polar configurations possible in these double-channel 1D structures, the centrosymmetric phase ($Pmmm$ symmetry) in which there is no Nb displacement along the b axis in NbOI$_3$, leading to anti-polarized and polarized bulk structures for NbOCl$_3$, NbOBr$_3$, and NbOI$_3$, respectively.

Despite the different overall polar orders of bulk NbOX$_3$, each 1D NbOX$_3$ nanowire within the bulk phase is perfectly polarized and weakly vdW-bound. These features provide the opportunity to exfoliate the long-sought 1D polarized structures with perfect radical boundaries from experimentally accessible bulk phases. The binding energy E_b is then evaluated to determine the strength of the vdW interactions in the bulk. The relevant quantity is $E_b = E_{1D} - 2E_{Nb} - 2E_O - 6E_X$ where E_{1D}, E_{Nb}, E_O, and E_X represent the energy of 1D NbOX$_3$, single Nb, O, and X atoms, respectively. The E_b of 1D NbOCl$_3$, NbOBr$_3$, and NbOI$_3$ is calculated to be -4.82, -4.46, and -4.09 eV/atom, respectively, indicating their strong bonding characteristics.

1D NbOX$_3$ possesses two parallel NbOX$_4$ channels with the shared halogen atoms in the center as shown in Fig. 1d. In order to extensively explore the polar configurations possible in these double-channel 1D structures, the centrosymmetric phase ($Pmmm$ symmetry) in which there is no Nb displacement along the b axis in NbOI$_3$, leading to anti-polarized and polarized bulk structures for NbOCl$_3$, NbOBr$_3$, and NbOI$_3$, respectively.

Table 1

The lattice parameters (a, b, and c), the Nb polar displacement (d_{Nb}) relative to the center of the NbO$_2$X$_4$ octahedra, and the spontaneous polarization (P) for bulk and 1D NbOX$_3$.

NbOX$_3$	a (Å)	b (Å)	c (Å)	d_{Nb} (Å)	P (μC per cm2)
NbOCl$_3$	10.97 (0.6%)	10.97 (0.6%)	3.92 (0.7%)	0.18	0.00 (0.00)
Bulk	11.70 (0.6%)	11.70 (0.6%)	3.91 (1.1%)	0.17	0.00 (0.00)
1D FE	N/A	3.91	N/A	0.17	20.19 (3.37)
1D AFE	N/A	3.91	N/A	0.16	0.00 (0.00)
NbOBr$_3$	14.76 (0.9%)	3.94 (1.3%)	12.74 (1.1%)	0.16	15.49 (6.18)
Bulk	14.76 (0.9%)	3.94 (1.3%)	12.74 (1.1%)	0.15	15.56 (3.11)
1D FE	N/A	3.94	N/A	0.15	15.56 (3.11)
1D AFE	N/A	3.94	N/A	0.15	0.00 (0.00)

For bulk NbOX$_3$, the differences between calculated lattice parameters and the experimental values are shown in parentheses (in percent). The P (in eÅ per unit cell) is also given in parentheses for clarity. Note that bulk NbOI$_3$ contains two 1D nanowires in its unit cell thus its P (in eÅ per unit cell) is around twice that of 1D FE NbOI$_3$. No symbols were broken.
is chosen as paraelectric (PE) configuration and the associated phonon spectra are examined first. Figure 1e presents the calculated phonon spectrum of 1D PE NbOBr₃ as an example. Clearly, two optical phonon modes show imaginary frequency ($\Gamma_1 = -3.4$ THz and $\Gamma_2 = -3.1$ THz) at the Γ point, indicating a dynamical instability of 1D PE NbOBr₃. Further analysis of the phonon eigenvectors confirms that the Γ_1 and Γ_2 soft modes correspond to the off-center displacement, d_{Nb}, with either identical or opposite sign in the two NbOBr₄ channels. Such soft modes spontaneously drive the system into either a FE (space group of Pmm2) or an AFE (space group of P2/m) state, whose dynamical stabilities are confirmed by the phonon spectra (see Fig. 1f, g) showing no negative frequencies. Similarly, we can identify the stable FE and AFE phases of 1D NbOCl₃ and NbOI₃, as shown in Supplementary Fig. 2, which are energetically not favorable compared with the FE and AFE phases. The elastic constants are calculated to be 76.93, 73.75, and 54.67 GPa for 1D FE NbOCl₃, NbOBr₃, and NbOI₃ respectively by using density-functional perturbation theory (DFPT) method, suggesting their flexible 1D structures. The thermal stability of the ferroic states is confirmed by the small energy fluctuations and structural variations observed during 5ps-long AIMD simulations at 300 K (see Supplementary Fig. 3). It is worth noting that the 1D AFE states are only slightly higher in energy (<3 meV) than the FE states with opposite polarization directions, we systematically scanned the energy surface of 1D NbOX₃ with respect to two independent reaction coordinates, d_{Nb} and d_{Nb2}, namely the polar displacements of Nb in the individual channels. As shown in Fig. 2a–c, two low-energy FE and AFE states with opposite polarized directions (namely, S_{FE}/S'_{FE} and S_{AFE}/S'_{AFE}) are found along the diagonal directions, and they are separated by a high-energy PE state. This is consistent with the predicted two soft modes of 1D PE NbOX₃, which spontaneously drive the PE state to a lower-energy state (either FE or AFE). FE switching would then proceed by crossing the AFE metastable state, instead of being a direct transition going through the PE configuration, due to the large energy difference between the FE and PE states. The NEB method is further exploited to refine the transition pathways from S_{FE} to S'_{FE} and to determine accurately the transition barriers. As shown in Fig. 2d, d_{Nb} in one of the S_{FE} channels is first reversed, while that in another channel remains unchanged, leading the system to an intermediate AFE state. Then, d_{Nb} in the unchanged channel gets reversed as well, realizing the transition from S_{FE}.
to \(S'_{\text{FE}} \). The overall transition barriers are calculated to be only 47, 34, and 16 meV for 1D FE NbOCl\(_3\), NbOBr\(_3\), and NbOI\(_3\), respectively. These values are much smaller than those of many widely studied FE materials, such as PbTiO\(_3\), BaTiO\(_3\), and 2D In\(_2\)Se\(_3\).

Electronic properties

Having explored the polar nature of 1D NbOX\(_3\), we further investigate the origin of the 1D ferroelectricity and antiferroelectricity. 1D NbOX\(_3\) nanowires are found to be semiconductors with band gaps ranging between 1.4 eV and 4.3 eV and display similar band compositions, as shown in Fig. 3a–f and Supplementary Figs. 4–6. By taking 1D FE NbOBr\(_3\) as an example, we plot the orbital-resolved band structures for Br, O, and Nb atoms in 1D NbOBr\(_3\) (see Fig. 3d–f). The Nb-\(d^x\), \(d^y\), \(d^z\)/Br-\(p_{xy}\), Nb-\(d_{xyz}\)/O-\(p_{xy}\), and Nb-\(d^z\)/O-\(p_z\) hybridization can be clearly seen below the Fermi level and it is expected from the Nb–Br and Nb–O bonding geometry. The mixing of Nb-\(d^+\) empty \(d\) orbitals and O-\(\sigma^+\) \(p\) orbitals along the polar direction thus dominates the emergence of the FE/AFE states in 1D NbOBr\(_3\), namely the \(d^0\) principle is found for this class of compounds, in analogy with the well-known FE perovskite oxides\(^{60,61}\). Figure 3g and Supplementary Fig. 7 present the calculated -COHP (crystal orbital Hamilton population) integral for all the \(d-p\) interactions between Nb and O atoms in PE, FE, and AFE phases of 1D NbOBr\(_3\).

Monte Carlo simulations

For practical applications, the critical temperature, \(T_C \), of 1D FE NbOX\(_3\) needs to be high enough so that their polarization can persist above room temperature. The effect of finite temperature is then investigated via Monte Carlo (MC) simulations based on a Landau-Ginzburg model\(^{20}\), in which the energy, \(E \), of 1D NbOX\(_3\) can be expressed by an expansion of the order parameter \(d_i \) (\(d_{\text{Nb}} \) of \(i^{\text{th}} \) NbOxBr\(_4\) octahedron),

\[
E = \sum_i \left[\frac{A}{2} \sigma_i^2 + \frac{B}{4} \sigma_i^4 + \frac{C}{6} \sigma_i^6 \right] + \sum_{i \neq j} \frac{D_{ij}}{2} (d_i - d_j)^2 + \sum_{i \neq j} \frac{D_{ij}'}{2} (d_i - d_j)^2
\]

(1)

where the first term describes the on-site potential energy and the parameters \(A \), \(B \), and \(C \) can be obtained by fitting the energy-\(d_{\text{Nb}} \) double-well curve (see Fig. 4a). The other two terms represent the harmonic interactions between two neighboring dipole moments (Supplementary Fig. 8) along the \(x \) and \(y \) directions, respectively. The coefficients \(D_{ij} \) and \(D_{ij}' \) can be estimated based on the nearest-neighbor approximation as shown in Supplementary Fig. 9. All the parameters \((A, B, C, D_{ij}, \text{and } D_{ij}') \) for 1D FE NbOX\(_3\) are summarized in Supplementary Table 1. The limitation of this model is discussed in Supplementary Note 1.

With the above effective Hamiltonian, Eq. (1), the phase transition at finite temperature can be investigated by MC simulations. Figure 4b plots the averaged polar displacements of Nb ions as a function of temperature. Clearly, this quantity drops abruptly at a temperature close to the \(T_C \), suggesting the occurrence of a phase transition. The \(T_C \) are then calculated from the singular point of the specific heat (see Supplementary Fig. 10).
to be 630, 520, and 320 K for NbOCl₃, NbOBr₃, and NbOI₃, respectively. The robust room-temperature ferroelectricity for 1D NbOX₃ can also be validated by the averaged Nb displacements during the last 2 ps in our AIMD simulations at 300 K (Supplementary Fig. 11), where no significant reduction of dₙb is observed under thermal perturbation. Notably, the Tc of 1D FE NbOX₃ follows the NbOCl₃ > NbOBr₃ > NbOI₃ order, mirroring the order of their double-well potential depths.

Finally, we investigate the electric field induced FE transition by MC simulations. When an electric field, E, is applied along the polar direction, an additional energy term -E(Zd₂Z²) must be incorporated into Eq. (1), where Z² is the Born effective charge. Figure 4c presents the simulated FE hysteresis loops. The critical electric fields that trigger the depolarization are determined to be around 0.61, 0.33, and 0.04 MV per cm for NbOCl₃, NbOBr₃, and NbOI₃, respectively, which are comparable or even smaller than those of reported FE materials including HfO₂ (~1 MV per cm)⁶³, HfZrO₄ (~1.2 MV per cm)⁶⁴, CuInP₂S₆ (~10 MV per cm)⁶⁵, and 2D In₂Se₃ (6–10 MV per cm)⁶⁶. The small coercive fields of 1D FE NbOX₃ will substantially facilitate the FE switching under low electric voltage, promising great potential for low energy-cost FE devices.

In summary, we have predicted the long-sought intrinsic 1D ferroelectricity in 1D NbOX₃ nanowires. 1D NbOX₃ is highly likely to be exfoliated from the experimentally synthesized vdW bulk phases due to the small binding energies. Notably, 1D NbOX₃ possesses great dynamical and thermal stabilities, sizable spontaneous polarizations, low switching barriers and coercive fields, and above room temperature Tc, holding great potentials for applications in nanoscale FE devices such as high-density nonvolatile memories. In addition, the double-channel 1D structure also enables AFE metastable states in 1D NbOX₃, offering a great platform to explore complex ferroic orders down to the 1D limit. The polarized nature of 1D NbOX₃ originates from the dₚ rule, namely from the hybridization of the Nb-dₚ⁡(x²-y²)/O-pₓ and Nb-dₚ⁡/O-pₓ orbitals, a mechanism similar to that found in conventional FE materials, like PbTiO₃ and BaTiO₃. Our findings highlight a class of intrinsic 1D FE compounds with extraordinary ferroelectricity and point to a feasible route for the exploration of exotic 1D physics from the vdW crystals containing 1D building blocks.

METHODS

Geometry optimization and electronic structure calculations

Our DFT calculations were carried out using the Vienna ab initio simulation package (VASP)⁶⁷-⁶⁹. The electron-core interaction was described by using the projector augmented wave (PAW) method⁷⁰ and the exchange and correlation energy was treated with the generalized gradient approximation (GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE)⁷¹,⁷². The vdW interactions were included throught the DFT-D3 scheme⁷³. The cutoff energy for the plane-wave expansion was set to 520 eV and the Brillouin zone was sampled by a 1×12×1 mesh. The geometries were fully optimized until the residual forces and the energy were converged to 0.005 eV per Å and 1×10⁻⁶ eV, respectively. A vacuum region always >15 Å was introduced to avoid the interaction between the neighboring periodic images. The Heyd-Scuseria-Ernzerhof hybrid functional (HSE06) was also utilized to obtain an accurate description of the electronic properties⁷⁴.

Phonon, NEB, and AIMD calculations

Phonon spectra were calculated based on 1×4×1 supercells by using the finite displacement method as implemented in the PHONOPY code⁷⁵. The threshold for energy is tightened to 10⁻⁵ eV to get the accurate forces. The nudged elastic band (NEB) method⁷⁶ was applied to study the FE phase transition, with 17 images used in total. Ab initio molecular dynamics (AIMD) simulations were carried out using 1×8×1 supercells for a total of 5 ps with a time step of 1.0 fs. The NVT ensemble is used in the simulations with the temperature controlled by the Langevin thermostat⁷⁷,⁷⁸.

Monte Carlo simulations

Metropolis-algorithm MC simulations were performed for a periodic 1D supercell containing 20,000 unit cells. The first 2×10⁶ MC steps were used for equilibration, followed by additional 2×10⁶ MC steps to obtain the thermal averages. Each simulation was repeated 100 times and then the results were averaged to eliminate numerical errors.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 2 June 2021; Accepted: 28 July 2021; Published online: 19 August 2021

REFERENCES

1. Cao, Q. et al. Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces 12, 42449–42471 (2020).
2. Chanthbouala, A. et al. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7, 101–104 (2012).
3. Das, S. & Appenzeller, J. F. An organic ferroelectric material based novel random access memory cell. Nano Lett. 11, 4003–4007 (2011).
4. Hoffman, J. et al. Ferroelectric field effect transistors for memory applications. Adv. Mater. 22, 2957–2961 (2010).
5. Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field effect transistors technology. Nat. Electron. 3, 588–597 (2020).
6. Lee, Y. et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and line response over exceptionally broad pressure range. ACS Nano 12, 4045–4054 (2018).
7. Wang, L., Teleki, A., Pratsinis, S. E. & Gouma, P. I. Ferroelectric WO₃ nanoparticles for acetone selective detection. Chem. Mater. 20, 4794–4796 (2008).
8. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010).
9. Yuan, Y., Xiao, Z., Yang, B. & Huang, J. Aising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2, 6027–6041 (2014).
10. Han, H., Kim, Y., Alexe, M., Hesse, D. & Lee, W. Nanostructured ferroelectrics: fabrication and structure–property relations. Adv. Mater. 23, 4599–4613 (2011).
11. Batra, I. P., Wurfl, P. & Silverman, B. D. Phase transition, stability, and depolarization field in ferroelectric thin films. Phys. Rev. B 8, 3257–3265 (1973).
12. Sepulvasky, M. L., Stashchioti, M. G. & Migoni, R. L. Surface reconstruction and ferroelectricity in PBTiO3 thin films. Phys. Rev. B 72, 014110 (2005).
13. Setter, N. et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).
14. Guan, Z. et al. Recent progress in two-dimensional ferroelectric materials. Adv. Electron. Mater. 6, 1900818 (2020).
15. Wu, M. & Jena, P. The rise of two-dimensional van der Waals ferroelectrics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1365 (2018).
16. Bellaninov, A. et al. CullP256 room temperature layered ferroelectric. Nano Lett. 15, 3808–3814 (2015).
17. Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ 2D Mater. Appl. 2, 18 (2018).
18. Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2420 (2020).
19. Zhang, L., Tang, C., Zhang, C. & Du, A. First-principles screening of novel ferroelectric mene phases with a large piezoelectric response and unusual anisotropy. Nanoscale 12, 21291–21298 (2020).
20. Fei, R., Kang, W. & Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117, 097601 (2016).
21. Zhang, L.J. & Yang, L. Pure two-dimensional ferroelectric with high transition temperature. J. Am. Chem. Soc. 140, 9768–9773 (2018).
22. Yang, Q., Xiong, W., Zhu, L., Gao, G. & Wu, M. Chemically functionalized phosphorene: two-dimensional multiferroics with vertical polarization and mobile magnetism. J. Am. Chem. Soc. 139, 11506–11512 (2017).
23. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelecricics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).
24. Ma, L., Jia, Y., Ducharme, S., Wang, J. & Zeng, X. C. Disopropylammonium bromide based two-dimensional ferroelectric monolayer molecular crystal with large in-plane spontaneous polarization. J. Am. Chem. Soc. 141, 1452–1456 (2019).
25. Huang, C. & Wang, L. Prediction of intrinsic ferroelectricity in a transition-metal halide monolayer with high transition temperature. J. Am. Chem. Soc. 140, 10154–10159 (2018).
26. Xu, C. et al. Electric-field switching of magnetic topological charge in type-I multiferroics. Phys. Rev. Lett. 125, 037203 (2020).
27. Rarvik, P. M., Grande, T. & Einarrud, M.-A. One-dimensional nanostructures of ferroelectric perovskites. Adv. Mater. 23, 4007–4034 (2011).
28. Hu, Y. et al. A chiral switchable photovoltaic ferroelectric 1D perovskite. Sci. Adv. 6, eaay4213 (2020).
29. Jung, J. H. et al. Lead-free KNbO3 ferroelectric nanorods based flexible nano-generators and capacitors. Nanotechnology 23, 375401 (2012).
30. Kim, S. et al. Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature. J. Am. Chem. Soc. 135, 6–9 (2013).
31. Xiao, J. et al. Synthesis of hybrid perovskites. Chem. Commun. 49, 408–409 (2003).
32. Kim, J. et al. Ferroelectricity in highly ordered arrays of ultra-thin-walled Pb(Zr,Ti)O3 nanotubes composed of nanometer-sized perovskite crystallites. Nano Lett. 8, 1813–1818 (2008).
33. Liang, L., Kang, X., Sang, Y. & Liu, H. One-dimensional ferroelectric nanostructures: synthesis, properties, and applications. Adv. Sci. 3, 1500358 (2016).
34. Cheon, G. et al. Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 17, 1915–1923 (2017).
35. Stephens, J. & Cruickshank, D. The crystal structure of (Croc)3–: Acta Crystallogr. B Struct. Cryst. Chem. 26, 222–226 (1970).
36. Shorafa, H. & Seppelt, K. The structures of C1F5 and C1F5·SbF5. Z. Anorg. Allg. Chem. 635, 112–121 (2009).
37. Eckel, O. & Simon, A. Redetermination of the crystal structure of copper dibromide, CuBr2, Z. Kristallogr. 215, 13–15 (2000).
38. Slot, E., Holst, M. A., van der Zant, H. S. J. & Zaitsev-Zotov, S. V. One-dimensional conduction in charge-density-wave nanowires. Phys. Rev. Lett. 93, 176602 (2004).
39. Park, C., Kim, S. W. & Yoon, M. First-principles prediction of new electrides with nontrivial band topology based on one-dimensional building blocks. Phys. Rev. Lett. 120, 026401 (2018).
40. Venkataraman, L., Hong, Y. S. & Kim, P. Electron transport in a multichannel one-dimensional conductor: molybdenum selenide nanowires. Phys. Rev. Lett. 96, 076601 (2006).
41. Zhang, Z. et al. Ultrathin inorganic molecular nanowire based on poly-oxometalates. Nat. Commun. 6, 7731 (2015).
42. Hartwig, S. & Hillebrecht, H. Crystal structures of NbO3 and NbOBr3 – polar double chains in different non-centrosymmetric structures. Z. Anorg. Allg. Chem. 634, 115–120 (2008).
43. Sands, D. E., Zalkin, A. & Elson, R. E. The crystal structure of NbOCl3. Acta Crystallogr. 12, 21–23 (1959).
44. Zhuang, H. L. & Hennig, R. G. Computational search for single-layer transition-metal dichalcogenide photocatalysts. J. Phys. Chem. C 117, 20421–20445 (2013).
45. Shulenburger, L., Baczewski, A. D., Zha, Z., Guan, J. & Tománek, D. The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 15, 8170–8175 (2015).
46. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).
47. Spaldin, N. A. A beginner’s guide to the modern theory of polarization. J. Solid State Chem. 195, 2–10 (2012).
48. Oeckler, O. & Simon, A. Redetermination of the crystal structure of copper dibromide, CuBr2, Z. Kristallogr. 215, 13–15 (2000).
49. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
50. Dering, J. P., Erzerhof, M. & Burke, K. Rational for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).
51. Perdew, J. P., Burke, K. & Erzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
52. Grimm, S. Semiempirical Gga-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
53. Kudin, A. V., Vydrov, O. A., Izyumsky, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).
ACKNOWLEDGEMENTS

We acknowledge generous grants of high-performance computing resources provided by NCI National Facility and the Pawsey Supercomputing Centre through the National Computational Merit Allocation Scheme supported by the Australian Government and the Government of Western Australia. A.D. also greatly appreciates the financial support of the Australian Research Council under Discovery Project (DP170103598, DP210100721, and DP210100331). S.S. acknowledges financial support from the Irish Research Council [IR-CLA/2019/127].

AUTHOR CONTRIBUTIONS

L.Z. performed the conceptualization, investigation, and writing-original draft. C.T., S.S., and A.D. discussed the results and provided many suggestions. A.D. also performed the supervision and writing-review and editing.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41524-021-00602-9.

Correspondence and requests for materials should be addressed to A.D.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021