Quantum Dotes of Perovskites Solar Cells based on ZnSe as ETM

Dhuha E. Tareq 1,2, Samir M. AbdulAlmohsin2 and Hussein H. Waried 3

1,2,3Department of Physics, Thi Qar University, Nasiriya, Iraq

Email: dhuha_imphy@sci.utq.edu.iq

Abstract: Numerical analysis and performance improvements of nanostructured Cu2O / CH3NH3PbI3 / ZnSe in heterojunction solar cells have been documented in this paper. The choice for conventional solar cells reaching maximum efficiency of 22.1 percent is predominant for Perovskite photovoltaics. In recent years, organic-inorganic hybrid perovskite solar cells in the photovoltaic research community have gained great interest because of their ease of processing. Low manufacturing costs, excellent characteristics of light-harvesting, A relatively high performance Making it more appealing than other current materials from solar cells. In this study, a numerical simulation using the Solar Cell Capacitance Simulator (SCAPS) of a thin film heterojunction perovskite solar cell to study some parameters that can affect the performance of CH3NH3PbI3 PSC with Cu2O as HTL and ZnSe as ETL performed. The absorber material thickness, ETL and HTL, the absorber material bandgap, and ETL were investigated. Results have shown that the thickness of ZnSe greatly influences the device's Process / Analysis: The Capacitance Simulator(SCAPS) is used to perform the study of solar cell design. It is a computer-based software tool and is well adapted for homo and heterojoint, multi-junction, and photovoltaic structure analysis. This software instrument is based on the continuity and Poisson equation of the Holes and Electrons. It is used to optimize the different parameters, such as thickness and temperatures, for this model.CE. As the thickness of ZnSe decreases, the efficiency of the cell increases.

1. Introduction

Hybrid perovskites solar cells was received considerable foucassing as an hybrid layer in thin film solar cells after Kojima et al. introduced methylammonium lead halide based solar cells in 2009[1]. The characteristics of these materials, such as the strong coefficient of absorption[2], indicate excellent transport properties. [3], tunable bandgap [4]. The materials are ideal for low-cost photovoltaic (PV) applications due to the absence of deep trap states within the bandgap[5-6], low temperature processing, etc. perovskite solar cells have involved substantial interest in the photovoltaic research field as result their ease of handling, low manufacture charges and its has high performance, making them more preferable than other present-day solar cell materials[7]. Improving the efficiency and substantial possessions of the architecture of the solar cell is of great significance. The intention in this field is to study the act of optimized zinc selenide (ZnSe) such as electron transporting material (ETM), cuprous oxide (Cu2O) used as hole transporting material (HTM).
2. **Modeling and Computer Simulation**

Simulation is a critical technique to gain a deep insight into the physical activity, the feasibility of the physical interpretation suggested, and the impact of physical changes on the efficiency of the solar cell devices. The solar cell factors used to determine the efficiency of a solar cell system. The one-dimensional simulation program SCAPS-1D was established by Burgelman et al. The flow diagram under displays measures for running SCAPS and its act panel for simulation.

![Flow diagram of SCAPS](image)

The perovskites are based on FTO / ETL / perovskite / HTL / Ag where the transparent conducting oxide is referred to by the FTO electron transport layer, ETL and HTL. The hole transportation layer and the Perovskite semiconductor are the central of the solar cell. The energy bandgap for this work is given in Figure 2.

![Energy bandgap diagram](image)

Figure 1. map and action panel SCAPS [8].

Figure 2. Model of layer structure simulated and diagram of energy levels of various perovskite solar cell ETMs
3. Numerical Method

SCAPS-1D extracts solar cell parameters such as quantum efficiency and I-V characteristics, which are depend on the succeeding Poisson equation [9]:

\[
\frac{d}{dx} \phi(x) = \frac{e}{\varepsilon_0 \varepsilon_r} \left[P(x) - N_D(x) - N_A(x) + \rho_p(x) - \rho_n(x) \right] \tag{1}
\]

Here \(\Phi \) is electrostatic potential, \(\varepsilon_0 \) is the vacuum dielectric permittivity and \(\varepsilon_r \) is relative, \(N_D \) and \(N_A \) are donor and acceptor charged impurities, \(e \) is the electron charge, \(\rho_n \) and \(\rho_p \) are electrons and holes densities. The electrons and holes continuous mathematical expression areas [10]:

\[
\frac{d}{dx} J_n(x) - e \frac{\partial n(x)}{\partial t} - e \frac{\partial n(x)}{\partial t} - e \frac{\partial p(x)}{\partial t} = G(x) - R(x) \tag{2}
\]

\[
\frac{d}{dx} J_p(x) + e \frac{\partial p(x)}{\partial t} + e \frac{\partial p(x)}{\partial t} = G(x) - R(x) \tag{3}
\]

\(G(x) \) and \(R(x) \) are generation and recombination rate \(J_p \) and \(J_n \) are hole and electron current density [10].

Table 1. Summary of parameters used for perovskite SCAPS modeling [11,12]

parameters	Cu2O	CH3NH3PbI3	ZnSe
Band gap (ev)	2.17	1.5	1.4
Electron effinity (ev)	3.20	3.9	4.1
Dielectric permittivity	7.11	10	10
CB effective density of states (1/cm²)	2.02E+17	2.75E+18	1.800E+18
VB effective density of states (1/cm²)	1.10E+19	3.9E+18	1.800E+19
Electron mobility (cm²/v.s)	2.000E+2	1.00E+1	1.000E+2
Hole mobility (cm²/v.s)	8.00E+18	1.0E+1	2.500E+1
Table 2: Devise Parameters use in Scaps.

Right contact electrical properties (Au)	
Thermionic emission /surface recombination	
Velocity of electron (cm/s)	10^5
Thermionic emission /surface recombination	
Velocity of hole (cm/s)	10^7
Metal (Au) work function (ev)	5.1
Left contact electrical properties	
Thermionic emission /surface recombination	
Velocity of electron (cm/s)	10^7
Thermionic emission /surface recombination	
Velocity of hole (cm/s)	10^5
the work function of ITO (ev)	4.4

4. Result and discussion

4.1- Effect of layer thickness and Temperatures change on the Cu2O/CH3NH3PbI3/Znse solar cells devices

4.1.1- Impact of a change in Cu2O layer thickness on solar cells

The absorber layer should be set to the optimal thickness to absorb the maximum number of photons and to create electron-hole pairs. The absorber layer thickness ranged from 0.3μm to 1.8μm. The longer wavelength of the illumination causes a reasonable amount of electron-hole pair generation as the thickness of the absorber's layer rises. The depletion layer gets very close to the back contact, by increasing the thickness of the absorber layer, and the back contact collects more electrons for recombination. Via these fewer electrons, the generation process will participate and eventually lead to the Voc, Jsc increase, Decreased fill factor, and enhanced performance. The variance of PV parameters with the thickness of the absorber layer is seen in Figure 3. Due to the increased exciton performance, the graph shows an efficiency gain as we switch from the thinner absorber to the thicker absorbers. But in the fill factor, there is a fast drop.
Thickness (µm) Cu₂O	Voc (V)	Jsc (mA/cm²)	F.F (%)	η (%)
0.3	0.829	23.875	22.23	4.42
0.8	0.9229	33.966	22.64	7.10
1.300	0.997	36.175	21.29	7.68
1.800	1.049	37.388	20.53	8.06
2.300	1.085	38.209	20.14	8.36
2.800	1.111	38.821	19.95	8.61
3.300	1.131	39.297	19.86	8.83
3.800	1.146	39.690	19.84	9.03
4.300	1.158	40.013	19.86	9.21
4.800	1.168	40.288	19.92	9.38
5.300	1.177	40.535	19.98	9.54
5.800	1.187	40.743	20.07	9.69
6.300	1.191	40.927	20.16	9.83
6.800	1.196	41.091	20.26	9.97
7.300	1.201	41.239	20.37	10.10
7.800	1.206	41.387	20.47	10.22
8.300	1.210	41.509	20.58	10.34
8.800	1.214	41.580	20.71	10.46
9.300	1.217	41.68	20.82	10.57
9.800	1.220	41.752	20.95	10.68
1.300	0.983	35.850	21.52	7.59
1.800	1.049	37.388	20.53	8.06
4.1.2. Effect of the CH3NH3PbI3 layer thickness change on solar cells

The absorber layer thickness ranged from 0.2 µm to 0.6 µm. The variance of PV parameters with absorber layer thickness is shown in Figure 4. The graph shows that, as we're switching from a thinner absorber to a thicker one, the performance, Voc, and Jsc are decreased. But there is an improvement. Table number four displays the data on the drawing. One shows that the optimal thickness for perovskite solar cells is 0.2 micrometer as listed in table 4 where 0.2-micrometer thickness corresponds to the efficiency of (10.77)%.

Thickness (µm)	Voc (V)	Jsc (mA/cm²)	F.F (%)	η (%)
CH3NH3PbI3				
0.2	1.220	41.876	21.06	10.77
0.250	1.230	35.001	17.86	7.69
0.3	1.206	26.186	18.62	5.88
0.350	1.165	19.540	21.39	4.87
0.4	1.136	14.967	25.78	4.39
0.450	1.124	11.843	31.25	4.16
0.5	1.120	9.728	37.27	4.06
0.550	1.117	8.344	43.07	4.02
0.6	1.117	7.49	47.73	4
4.1.3-Effect of the ZnSe layer thickness change on solar cells

The effect of zinc selenide (ETL) thickness on cell output parameters fluctuating from 0.01 to 0.140μm is shown in Fig 5. Table 5 shows that the thickness of the electron transporting material is increased, JSC, FF, and system efficiency are decreased while VOC increases. This indicates that the semiconductor material is thicker, it provides a longer diffusion path for the electron to reach the electrode Which limits the efficiency of charge collection, and transmission of an incident photon (the solar cell parameters) decreases with increasing thickness. High output was achieved when ETL thickness was obtained, 0.01µm with JSC of 41.876 mA/cm², VOC of 1.2209V, FF of 21.06%, and high efficiency of 10.77%.
Table 5: Variation of Thickness for ZnSe with device parameters

Thickness (µm)	Voc (V)	Jsc (mA/cm²)	F.F (%)	η (%)
ZnSe				
0.01	1.2209	41.876	21.06	10.77
0.02	1.220	41.819	21.06	10.75
0.03	1.2207	41.813	21.07	10.75
0.04	1.2207	41.788	21.02	10.72
0.05	1.2209	41.752	20.95	10.68
0.06	1.2210	41.713	20.87	10.63
0.07	1.2211	41.675	20.80	10.59
0.08	1.2213	41.638	20.74	10.55
0.09	1.2214	41.604	20.68	10.51
0.100	1.2215	41.572	20.62	10.47
0.110	1.2216	41.542	20.57	10.44
0.120	1.2217	41.514	20.53	10.41
0.130	1.2218	41.488	20.48	10.38
0.140	1.2219	41.464	20.44	10.36
0.150	1.2219	41.4416	20.41	10.33

Figure 5: Variation of PV parameters by adjusting the thickness of PV parameters ZnSe
4.1.4 Effect of annealing temperatures for ZnSe

The results of simulation I-V characteristic such as PCE, FF, Jsc, and Voc of the perovskite solar cells with varying environment temperature as shown in Table 6 where the highest efficiency is 10.77% with Jsc = 41.876 mA/cm², FF = 21.06% and Voc = 1.2209 is achieved when the temperature at 333.15 K. Consequently, the best outcome at very high levels. The temperature is very good for working in a vacuum. When the temperature is decreased, due to the decrease in the generation of electron-hole pairs in the perovskite materials with increasing temperature, the PCE, Voc and Jsc degrees are from 333.15 K to 233.15 K, as shown in Illustration 6. The open-circuit voltage steadily decreases with a decrease in Figure 6. Due to the regulation of the temperature, the performance can be modified by temperature.

Table 6: The parameter of the Cu2O/CH3NH3PbI3/ZnSe hetrojunction solar cell

Temperature (K)	Voc (V)	Jsc (mA/cm²)	F.F (%)	η (%)
333.15	1.2209	41.876	21.06	10.77
313.15	1.220	41.819	21.06	10.75
293.15	1.2207	41.813	21.07	10.75
273.15	1.2207	41.788	21.02	10.72
253.15	1.2209	41.752	20.95	10.68
233.15	1.2210	41.713	20.87	10.63

Figure 6: The variation of solar cell parameters with the temperature

5. Conclusions
In this study, the thickness was changed for CH3NH3PbI3, ZnSe, and Cu2O, were observed for each substance and after that. Also, the study with a variety of temperature, defect and work function to get optimum condition corresponding to best efficiency of the structure Cu2O/CH3NH3PbI3/ZnSe device which reached to 10.77% to be amazing device structure and best Efficiency while the structure of Cu2O/CH3NH3PbI3/ZnSe device reaches to 10.77% at 0.01µm. And all other parameter solar cells improved as result to use ZnSe as electron transport materials.
6. Acknowledgments
We would like to thank mark burger man, the electronic and information system (Elis), university of gent, Belgium, for providing us the free access to scaps simulation software, and supervisor Samir M. AbdulAlmohsin Thi Qar University, supervisor Hussien -hade Thi Qar University

7. References

[1] Kojima A et al. 2009 Organometal halide perovskites as visible-light sensitizers for photovoltaic cells J. Am. Chem. Soc.; vol. 131; 6050–6051.
[2] Park N; 2015 Perovskite solar cells: An emerging photovoltaic technology; Mater. Today, vol. 18; pp. 65–72.
[3] Stranks S et al.; 2013; Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber; Science; v. 342; pp. 341–344.
[4] Noh J et al.; 2013; Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells; Nanoletters, v. 13, pp. 1764–1769.
[5] Yin W et al; 2014 Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber; Appl. Phys. Lett.; v. 104; p. 063903.
[6] Kim J et al.; 2014; The role of intrinsic defects in methylammonium lead iodide perovskite; J. Phys. Chem. Lett.; vol. 5; pp. 1312–1317.
[7] Noel K. N., Samuel D. S., Antonio A., Christian W., Simone G., Amir A. H., Aditya S., Giles E. E., Sandeep K. P., Michael B. J., Annamaria P., Laura M. H., and Henry J. S., 2014 Lead-Free Organic-Inorganic Tin Halide Perovskites for Photovoltaic Applications, Energy Environ. Sci., vol. 7, pp. 3061–3068.
[8] Anish. M., Fabian. B., Jesper. G. A., Fredrik. H., 2017A review of solar Energy Based heat and power generation Systems, Renewable and Sustainable Energy Reviews, vol. 67, pp. 1047–1064.
[9] Kumar A, and Ajay D.2015 Analysis Of SnS2 Buffer Layer And SnS Back Surface Layer Based CZTS Solar Cells Using SCAPS, arXiv preprint arXiv:1510.05092.
[10] Hossein M. , 2014 Optimization of the CIGS based thin-film solar cells: Numerical simulation and analysis, Optik 125, no. 1 67-70.
[11] Wang D, Cui H, Su G 2015, A modeling method to enhance the conversion efficiency by optimizing light-trapping structure in thin-film solar cells, Sol. Energy 120 505–513. https://doi.org/10.1016/j.solener.2015.07.051.
[12] Mohammad I, Fahad H, Nouar T. 2015 Qatar Environment & Energy Research Institute, Doha, Qatar Solar Energy, 120, 370–380.