Association of Genomic Features with Integration:
Unselected vs. Puromycin-Selected MLV

April 21, 2006

Contents

1 Introduction 3

2 Preference for Genes 4
 2.1 Acembly Genes ... 4
 2.2 refGenes .. 6
 2.3 ensGenes .. 8
 2.4 genScan Genes ... 10
 2.5 uniGenes ... 12

3 CpG Island Neighborhoods 14
 3.1 1 kilobase neighborhoods 14
 3.2 5 kilobase neighborhoods 15
 3.3 10 kilobase neighborhoods 16
 3.4 25 kilobase neighborhoods 17
 3.5 50 kilobase neighborhoods 18

4 Gene Density, Expression 'Density', and CpG Island Density 19
 4.1 25 kiloBase Window .. 20
 4.2 50 kiloBase Window .. 26
 4.3 100 kiloBase Window .. 31
 4.4 250 kiloBase Window 36
 4.5 500 kiloBase Window 41
 4.6 1 megaBase Window ... 46
 4.7 2 megaBase Window ... 51
 4.8 4 megaBase Window ... 56
 4.9 8 megaBase Window ... 61
 4.10 16 megaBase Window 66
 4.11 32 megaBase Window 71
5 Juxtaposition with Gene Start and End Positions 76
 5.1 Acembly Annotations 76
 5.2 RefSeq Annotations 80
 5.3 genScan Annotations 84
 5.4 uniGene Annotations 88

6 GC content 92

7 Cytobands 93
1 Introduction

In this document, I examine the association of integration siting with various genomic features.

The numbers are shown below:

Origin of data set	MLV-Burgess	MLVPuro
917	544	

The distribution of relative frequency of insertions across the chromosomes is given in this barplot:

Are there chromosomes that are particularly favored for integration by one group over the other? This was tested for statistical significance. The test performed used the likelihood ratio statistic for the logistic regression model (reviewed in [1]) as implemented by the \texttt{glm} function of R using the \texttt{binomial} family. The null hypothesis tested is the ratio of true integration events in the two groups is constant across all chromosomes. This test attains a p-value of 1.6095×10^{-5}.

2 Preference for Genes

2.1 Acembly Genes

Here we examine the relative preference that integration events in the two groups have for genes. In the following plot we show the relative frequency of integrations in genes according to the ‘Acembly’ annotation. The bars grouped over the label “In Gene” give the relative frequency of integration events (compared to control sites) between bases located within Acembly gene annotations, while the label “Not in Gene” give the relative frequency of integration events (compared to control sites) between bases not located within Acembly gene annotations.

Is there is a difference in the tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.12085. In the following plot we show the relative frequency of insertions in exons according to the ‘Acembly’ annotation. The bars grouped over the label “In Exon” give the relative frequency of integration events (compared to control sites) between bases located in exons according to the Acembly annotation, while the label “Not in Exon” give the relative frequency of integration events (compared to control sites) between bases not located in exons according to the Acembly gene annotation.
Here is the table of coefficients of the log ratio of intensities along with their standard errors, z statistics, and p-values:

	coef	se	z	p
Intercept	-0.63800	0.0929	-6.8700	6.62e-12
in.gene	0.17800	0.1180	1.5100	1.32e-01
in.exon	-0.00828	0.1780	-0.0466	9.63e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.
2.2 refGenes

Here we examine the relative preference that insertions of the two types have for genes. In the following plot we show the relative frequency of insertions in genes according to the ‘refGene’ annotation.

![Graph showing relative frequency of insertions in genes](image)

Is there a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.65712.

In the following plot we show the relative frequency of insertions in exons according to the ‘refGene’ annotation.
Here is the table of coefficients of the log ratio of intensities for along with their standard errors, z statistics, and p-values:

	coef	se	z	p
(Intercept)	-0.5430	0.0723	-7.510	5.87e-14
in.gene	0.0387	0.1100	0.350	7.26e-01
in.exon	0.2170	0.3910	0.555	5.79e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as ‘in.exon’ is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.
2.3 ensGenes

Here we examine the relative preference that insertions of the two types have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'ensGene' annotation.

Is there a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.28032.

In the following plot we show the relative frequency of insertions in exons according to the 'ensGene' annotation.
Here is the table of coefficients of the log ratio of intensities for along with their standard errors, z statistics, and p-values:

	coef	se	z	p
(Intercept)	-0.578	0.0752	-7.690	1.51e-14
in.gene	0.112	0.1100	1.020	3.10e-01
in.exon	0.110	0.3580	0.307	7.59e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.
2.4 genScan Genes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'genScan' annotation.

Is there a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.8604.

In the following plot we show the relative frequency of insertions in exons according to the 'genScan' annotation.
Here is the table of coefficients of the log ratio of intensities along with their standard errors, z statistics, and p-values:

	coef	se	z	p
Intercept	-0.5090	0.0941	-5.4100	6.40e-08
in.gene	-0.0112	0.1150	-0.0969	9.23e-01
in.exon	-0.3450	0.4270	-0.8090	4.19e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.
2.5 uniGenes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'uniGene' annotation.

Is there a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.76307.

In the following plot we show the relative frequency of insertions in exons according to the 'uniGene' annotation.
Here is the table of coefficients of the log ratio of intensities along with their standard errors, z statistics, and p-values:

	coef	se	z	p
(Intercept)	-0.5070	0.0746	-6.790	1.11e-11
in.gene	-0.0664	0.1140	-0.583	5.60e-01
in.exon	0.2140	0.2140	0.998	3.18e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.
3 CpG Island Neighborhoods

Here we study the effect of being in the neighborhood of CpG Islands. Following Wu et al [2], who found that the neighborhoods within ±1kb of CpG islands are enriched for MLV insertions, we study such neighborhoods.

3.1 1 kilobase neighborhoods

The following plot shows the effect of being in or within ±1kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.92303.
3.2 5 kilobase neighborhoods

The following plot shows the effect of being in or within ±5kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.20711.
3.3 10 kilobase neighborhoods

The following plot shows the effect of being in or within ±10kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.024048.
3.4 25 kilobase neighborhoods

The following plot shows the effect of being in or within ± 25kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of $8.0113e^{-06}$.
3.5 50 kilobase neighborhoods

The following plot shows the effect of being in or within ±50kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 8.9273e−09.
4 Gene Density, Expression ’Density’, and CpG Island Density

In this section the association with gene density is examined. The ’genes’ that are counted are the genes represented on the microarray. In addition, we the number of such genes expressed at various levels. The levels are

- low.ex Count genes whose expression is in the upper half and divide by number of bases
- med.ex Count genes whose expression is in the upper $1/8^{th}$ and divide by number of bases
- high.ex Count genes whose expression is in the upper $1/16^{th}$ and divide by number of bases

The bolded terms are used as abbreviations in what follows. The abbreviation dens is used to indicate gene density as number of genes per base.
4.1 25 kiloBase Window

In the barplot that follows we examine the association of insertion sites with gene density in a 25 kilobase window surrounding each locus. More such plots will follow and the method of their construction is always to try to divide the data according to the deciles of density. However, it often happens that there is a very skewed distribution of density and often even the 90th percentile is zero. In that case, the barplots simply show the sites for which the density is zero and those for which it is non-zero. If there are fewer than ten groups of bars, then the groupings contain ten percent of the sites each except for the leftmost grouping which will contain all of the remaining sites.

Also note that the title of the plot contains clues as to its content; the prefix indicates the type of variable studied while the suffix indicates the window width in the number of bases. The p-value given is the result of fitting a cubic polynomial to the gene density values.

The following expression data and probe set were used for this report:

[1] "HeLa_exp_data-HU133a"
[1] "HG-U133"

Category limits

lower category	upper	1 0e+00	group.1	8.0e-06	2 8e-06	group.2	4.0e-05	3 4e-05	group.3	2.4e-04

20
dens.25k – p-value = 0.058192
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper
1 0e+00	group.1 0.00002
2 2e-05	group.2 0.00014

low.ex.25k - p-value = 0.07045

![Chart showing expression density](chart.png)
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper
0%	0.000000e+00
100%	6.666667e-06

med.ex.25k $- p$-value $= 0.00043909$
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
0%	0.000000e+00
100%	6.666667e-06

- MLV−Burgess
- MLVPuro

high.ex.25k $- p$-value $= 0.051816$
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper
1 0e+00	group.1
2 2e-05	group.2
3 4e-05	group.3
4 6e-05	group.4

$cpg.dens.25k$ − p-value = 0.65373
4.2 50 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 50 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1 0e+00	group.1 0.00001
2 1e-05	group.2 0.00002
3 2e-05	group.3 0.00002
4 2e-05	group.4 0.00016

\[\text{dens.50k} \quad \text{p-value} = 0.00039696\]
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper
1 0e+00 group.1	1e-05
2 1e-05 group.2	2e-05
3 2e-05 group.3	9e-05

\[\text{low.ex.50k} - p\text{–value} = 0.0030384 \]
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper
0e+00	group.1 1e-05
1e-05	group.2 7e-05

med.ex.50k − p-value = 0.0005986

![Bar chart showing proportion of sites for MLV-Burgess and MLVPuro in group 1 and group 2.](chart.png)
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
0\%	0.0e+00
100\%	2.5e-06

High ex.50k p-value = 0.020289

![Bar chart showing high ex.50k and p-value](chart.png)

Group 1
- Proportion of sites: 0.8

Group 2
- Proportion of sites: 0.0
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper
1 0e+00	group.1 0.00001
2 1e-05	group.2 0.00002
3 2e-05	group.3 0.00003
4 3e-05	group.4 0.00005
5 5e-05	group.5 0.00022

cpg.dens.50k – p-value = 0.80214
4.3 100 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 100 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1 0.000000e+00	group.1 3.333333e-06
2 3.333333e-06	group.2 6.666667e-06
3 6.666667e-06	group.3 1.000000e-05
4 1.000000e-05	group.4 1.346667e-05
5 1.346667e-05	group.5 2.000000e-05
6 2.000000e-05	group.6 1.050000e-04

dens.100k − p−value = 2.4677e−05
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper
1 0.0e+00	group.1 2.5e-06
2 2.5e-06	group.2 5.0e-06
3 5.0e-06	group.3 1.0e-05
4 1.0e-05	group.4 1.4e-05
5 1.4e-05	group.5 5.5e-05

low.ex.100k – p-value = 8.5754e-08

![Bar chart showing the proportion of sites for different groups and conditions.](chart.png)
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper
1 0e+00	group.1 5e-06
2 5e-06	group.2 1e-05
3 1e-05	group.3 5e-05

med.ex.100k – p-value = 0.0010961
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1 0e+00	group.1 5.00e-06
2 5e-06	group.2 3.25e-05

high.ex.100k – p-value = 0.044116
Here the effect of density of CpG islands is studied:

Category limits
lower category
1 0.0e+00
2 5.0e-06
3 1.0e-05
4 1.5e-05
5 2.0e-05
6 2.5e-05
7 4.5e-05

\[\text{cpg.dens.100k} - \text{p-value} = 0.15775 \]
4.4 250 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 250 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1 0.000000e+00	group.1 2.000000e-06
2 2.000000e-06	group.2 4.000000e-06
3 4.000000e-06	group.3 4.571429e-06
4 4.571429e-06	group.4 6.666667e-06
5 6.666667e-06	group.5 9.333333e-06
6 9.333333e-06	group.6 1.200000e-05
7 1.200000e-05	group.7 1.866667e-05
8 1.866667e-05	group.8 8.466667e-05

dens.250k – p-value = 9.8932e−11
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper
0.000000e+00	group.1 1.333333e-06
1.333333e-06	group.2 2.000000e-06
2.000000e-06	group.3 4.000000e-06
4.000000e-06	group.4 5.000000e-06
5.000000e-06	group.5 7.000000e-06
7.000000e-06	group.6 1.000000e-05
1.000000e-05	group.7 4.600000e-05

low.ex.250k – p-value = 1.1407e−10
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper
1 0.000000e+00	group.1 1.333333e-06
2 1.333333e-06	group.2 2.666667e-06
3 2.666667e-06	group.3 4.000000e-06
4 4.000000e-06	group.4 6.000000e-06
5 6.000000e-06	group.5 2.733333e-05

med.ex.250k – p-value = 2.4297e−06
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper category	limit
1	group.1	1e-06
2	group.2	2e-06
3	group.3	4e-06
4	group.4	2e-05

high.ex.250k – p-value = 0.00067273

![Bar chart showing proportions of sites for groups 1 to 4 with bars for MLV-Burgess and MLV-Puro.]
Here the effect of density of CpG islands is studied:

Category limits

lower	category	upper
1 0.0e+00	group.1	0.000002
2 2.0e-06	group.2	0.000004
3 4.0e-06	group.3	0.000006
4 6.0e-06	group.4	0.000008
5 8.0e-06	group.5	0.000010
6 1.0e-05	group.6	0.000014
7 1.4e-05	group.7	0.000018
8 1.8e-05	group.8	0.000026
9 2.6e-05	group.9	0.000042
10 4.2e-05	group.10	0.000164

cpg.dens.250k − p−value = 0.040590

![Bar chart showing proportion of sites across different categories](chart.png)
4.5 500 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 500 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1 0.000000e+00	group.1 1.480000e-06
2 1.480000e-06	group.2 2.500000e-06
3 2.500000e-06	group.3 3.666667e-06
4 3.666667e-06	group.4 5.000000e-06
5 5.000000e-06	group.5 6.666667e-06
6 6.666667e-06	group.6 8.926667e-06
7 8.926667e-06	group.7 1.150000e-05
8 1.150000e-05	group.8 1.666667e-05
9 1.666667e-05	group.9 7.566667e-05

dens.500k − p−value = < 2.22e−16
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category limit	upper category limit	group label
0.000000×10^0	1.777778×10^{-7}	group.1
1.777778×10^{-7}	1.000000×10^{-6}	group.2
1.000000×10^{-6}	2.000000×10^{-6}	group.3
2.000000×10^{-6}	2.500000×10^{-6}	group.4
2.500000×10^{-6}	3.333333×10^{-6}	group.5
3.333333×10^{-6}	4.500000×10^{-6}	group.6
4.500000×10^{-6}	6.295238×10^{-6}	group.7
6.295238×10^{-6}	9.000000×10^{-6}	group.8
9.000000×10^{-6}	3.633333×10^{-5}	group.9

low.ex.500k – p-value $= < 2.22e-16$
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper
1	6.666667e-07
2	1.000000e-06
3	2.000000e-06
4	2.400000e-06
5	3.666667e-06
6	5.333333e-06
7	2.066667e-05

\text{med.ex.500k} - p-value = 3.1218e-12

![Graph showing proportion of sites for different groups]
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1 0.000000e+00	group.1 6.666667e-07
2 6.666667e-07	group.2 1.400000e-06
3 1.400000e-06	group.3 2.000000e-06
4 2.000000e-06	group.4 3.000000e-06
5 3.000000e-06	group.5 1.400000e-05

high.ex.500k – p-value = 4.7864e−09
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper category	upper limit
0.0e+00	group.1	0.000002
2.0e-06	group.2	0.000004
4.0e-06	group.3	0.000006
6.0e-06	group.4	0.000008
8.0e-06	group.5	0.000010
1.0e-05	group.6	0.000013
1.3e-05	group.7	0.000017
1.7e-05	group.8	0.000025
2.5e-05	group.9	0.000037
3.7e-05	group.10	0.000151

![Graph showing proportion of sites against different groups](attachment:image)

cpg.dens.500k - **p-value** = 0.030598
4.6 1 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 1 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1	0.000000e+00
2	8.190476e−07
3	1.750000e−06
4	2.666667e−06
5	3.700000e−06
6	4.844444e−06
7	6.250000e−06
8	8.161905e−06
9	1.101576e−05
10	1.656333e−05

 dens.1M – p−value = < 2.22e−16
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper
0.000000e+00	group.1 7.000000e-07
7.000000e-07	group.2 1.250000e-06
1.250000e-06	group.3 1.750000e-06
1.750000e-06	group.4 2.333333e-06
2.333333e-06	group.5 3.083333e-06
3.083333e-06	group.6 4.166667e-06
4.166667e-06	group.7 5.416667e-06
5.416667e-06	group.8 8.353333e-06
8.353333e-06	group.9 2.891667e-05

low.ex.1M − p−value = < 2.22e−16
Now we count genes in the upper $1/8$th:

Category limits

lower category	upper category limits
1 0.000000e+00	group.1 1.111111e-07
2 1.111111e-07	group.2 5.000000e-07
3 5.000000e-07	group.3 9.000000e-07
4 9.000000e-07	group.4 1.200000e-06
5 1.200000e-06	group.5 1.666667e-06
6 1.666667e-06	group.6 2.200000e-06
7 2.200000e-06	group.7 3.000000e-06
8 3.000000e-06	group.8 4.500000e-06
9 4.500000e-06	group.9 1.600000e-05

med.ex.1M − p−value = 4.6488e−14

![Bar chart showing proportion of sites for different groups.](chart.png)
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1 0.000000e+00	group.1 2.500000e-07
2 2.500000e-07	group.2 5.000000e-07
3 5.000000e-07	group.3 1.000000e-06
4 1.000000e-06	group.4 1.122222e-06
5 1.122222e-06	group.5 1.666667e-06
6 1.666667e-06	group.6 2.500000e-06
7 2.500000e-06	group.7 1.050000e-05

high.ex.1M $-$ p-value $= 5.7933e-10$

![Bar chart showing proportion of sites for groups 1, 3, 5, and 7 for MLV-Burgess and MLV-Puro.](chart.png)
Here the effect of density of CpG islands is studied:

Category limits

lower	category	upper
1.00e+00	group.1	3.00e-06
3.00e-06	group.2	4.50e-06
4.50e-06	group.3	6.00e-06
6.00e-06	group.4	7.50e-06
7.50e-06	group.5	9.50e-06
9.50e-06	group.6	1.25e-05
1.25e-05	group.7	1.65e-05
1.65e-05	group.8	2.25e-05
2.25e-05	group.9	3.33e-05
3.33e-05	group.10	1.48e-04

\[\text{cpg.dens.1M} - \text{p-value} = 0.060626 \]
4.7 2 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 2 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1 0.000000e+00	group.1 1.250000e-06
2 1.250000e-06	group.2 1.916667e-06
3 1.916667e-06	group.3 2.736508e-06
4 2.736508e-06	group.4 3.619167e-06
5 3.619167e-06	group.5 4.648810e-06
6 4.648810e-06	group.6 5.837143e-06
7 5.837143e-06	group.7 7.583333e-06
8 7.583333e-06	group.8 1.008750e-05
9 1.008750e-05	group.9 1.575000e-05
10 1.575000e-05	group.10 3.950000e-05

dens.2M – p-value = < 2.22e−16
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category
0.000000e+00	group.1 4.185714e-07
4.185714e-07	group.2 8.750000e-07
8.750000e-07	group.3 1.250000e-06
1.250000e-06	group.4 1.713333e-06
1.713333e-06	group.5 2.216667e-06
2.216667e-06	group.6 2.750000e-06
2.750000e-06	group.7 3.655000e-06
3.655000e-06	group.8 5.250000e-06
5.250000e-06	group.9 7.683333e-06
7.683333e-06	group.10 1.933333e-05

low.ex.2M – p-value = < 2.22e-16
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper category	p-value
0.000000e+00	group.1 7.619048e-08	
7.619048e-08	group.2 3.333333e-07	
3.333333e-07	group.3 5.833333e-07	
5.833333e-07	group.4 8.316667e-07	
8.316667e-07	group.5 1.125000e-06	
1.125000e-06	group.6 1.481667e-06	
1.481667e-06	group.7 1.995000e-06	
1.995000e-06	group.8 2.602778e-06	
2.602778e-06	group.9 4.083333e-06	
4.083333e-06	group.10 1.108333e-05	

med.ex.2M – p-value = $4.0348e-16$
And here we count genes in the upper $\frac{1}{16}^{th}$:

Category limits

lower category	upper
1 0.000000e+00	group.1 2.500000e-07
2 2.500000e-07	group.2 4.166667e-07
3 4.166667e-07	group.3 5.416667e-07
4 5.416667e-07	group.4 7.500000e-07
5 7.500000e-07	group.5 1.000000e-06
6 1.000000e-06	group.6 1.408333e-06
7 1.408333e-06	group.7 2.075000e-06
8 2.075000e-06	group.8 6.875000e-06

high.ex.2M – p-value = $6.5308e^{-13}$

![Bar chart with two lines for MLV-Burgess and MLVPuro showing the proportion of sites across groups.](image)
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper
1 0.000e+00	group.1 0.0000032500
2 3.250e-06	group.2 0.0000045000
3 4.500e-06	group.3 0.0000057500
4 5.750e-06	group.4 0.0000070000
5 7.000e-06	group.5 0.0000087500
6 8.750e-06	group.6 0.0000123500
7 1.235e-05	group.7 0.0000162500
8 1.625e-05	group.8 0.0000220500
9 2.205e-05	group.9 0.0000370000
10 3.700e-05	group.10 0.0001313264

cpg.dens.2M − p−value = 0.017862

![Bar chart showing proportion of sites for different groups and two conditions: MLV-Burgess and MLVPuro. The y-axis represents the proportion of sites ranging from 0.00 to 0.12, and the x-axis represents the groups: group.1, group.3, group.5, group.7, and group.9. The bars for MLV-Burgess are in red, and the bars for MLVPuro are in green. The p-value for the comparison is 0.017862.]
4.8 4 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 4 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
0.000000e+00	group.1
1.462121e-06	group.2
2.162857e-06	group.3
2.758750e-06	group.4
3.453571e-06	group.5
4.229167e-06	group.6
5.488333e-06	group.7
7.319167e-06	group.8
9.755714e-06	group.9
1.441848e-05	group.10

\[\text{dens.4M} \quad \text{p-value} = < 2.22e-16 \]
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper
0.000000e+00	group.1 5.955357e-07
5.955357e-07	group.2 9.583333e-07
9.583333e-07	group.3 1.208333e-06
1.208333e-06	group.4 1.562500e-06
1.562500e-06	group.5 2.000000e-06
2.000000e-06	group.6 2.614167e-06
2.614167e-06	group.7 3.550794e-06
3.550794e-06	group.8 4.844167e-06
4.844167e-06	group.9 6.855357e-06
6.855357e-06	group.10 1.792917e-05

low.ex.4M – p-value = < 2.22e-16

![Chart showing expression density for different groups with MLV-Burgess and MLVPuro](chart.png)
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper
1 0.000000e+00	group.1 2.500000e-07
2 2.500000e-07	group.2 4.154762e-07
3 4.154762e-07	group.3 5.938095e-07
4 5.938095e-07	group.4 7.708333e-07
5 7.708333e-07	group.5 1.041667e-06
6 1.041667e-06	group.6 1.360000e-06
7 1.360000e-06	group.7 1.854167e-06
8 1.854167e-06	group.8 2.550000e-06
9 2.550000e-06	group.9 3.588333e-06
10 3.588333e-06	group.10 9.337500e-06

med.ex.4M – p-value = < 2.22e–16

![Bar chart showing proportion of sites for different groups](chart.png)
And here we count genes in the upper 1/16th:

Category limits

lower category	upper
1 0.000000e+00	group.1 5.000000e-08
2 5.000000e-08	group.2 1.696429e-07
3 1.696429e-07	group.3 2.915793e-07
4 2.915793e-07	group.4 3.773061e-07
5 3.773061e-07	group.5 5.208333e-07
6 5.208333e-07	group.6 6.666667e-07
7 6.666667e-07	group.7 8.958333e-07
8 8.958333e-07	group.8 1.250000e-06
9 1.250000e-06	group.9 1.742760e-06
10 1.742760e-06	group.10 5.766667e-06

high.ex.4M − p−value = 1.5645e−13

![Graph showing proportion of sites for high.ex.4M with p-value](image-url)
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper category
1 5.000000e-07	group.1 3.375000e-06
2 3.375000e-06	group.2 4.375000e-06
3 4.375000e-06	group.3 5.750000e-06
4 5.750000e-06	group.4 6.875000e-06
5 6.875000e-06	group.5 8.875000e-06
6 8.875000e-06	group.6 1.162500e-05
7 1.162500e-05	group.7 1.475000e-05
8 1.475000e-05	group.8 2.065000e-05
9 2.065000e-05	group.9 3.623310e-05
10 3.623310e-05	group.10 1.122037e-04

cpg.dens.4M − p−value = 0.0045673

![Bar chart showing proportion of sites across different groups with p-value 0.0045673]
4.9 8 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 8 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1 2.083333e-07	group.1 1.636001e-06
2 1.636001e-06	group.2 2.194223e-06
3 2.194223e-06	group.3 2.689183e-06
4 2.689183e-06	group.4 3.294554e-06
5 3.294554e-06	group.5 4.201190e-06
6 4.201190e-06	group.6 5.327738e-06
7 5.327738e-06	group.7 6.808690e-06
8 6.808690e-06	group.8 8.450099e-06
9 8.450099e-06	group.9 1.359810e-05
10 1.359810e-05	group.10 2.813750e-05

MLV−Burgess
MLVPuro

proportion of sites

dens.8M − p−value = < 2.22e−16

61
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category	upper value
1 6.250000e-08	group.1	7.002976e-07
2 7.002976e-07	group.2	8.975000e-07
3 8.975000e-07	group.3	1.178750e-06
4 1.178750e-06	group.4	1.489167e-06
5 1.489167e-06	group.5	1.870238e-06
6 1.870238e-06	group.6	2.560417e-06
7 2.560417e-06	group.7	3.239821e-06
8 3.239821e-06	group.8	4.160417e-06
9 4.160417e-06	group.9	6.275545e-06
10 6.275545e-06	group.10	1.238347e-05

low.ex.8M − p-value = < 2.22e−16
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper category
0.000000e+00	2.812500e-07
2.812500e-07	4.410256e-07
4.410256e-07	5.937500e-07
5.937500e-07	7.908333e-07
7.908333e-07	1.008333e-06
1.008333e-06	1.300620e-06
1.300620e-06	1.674167e-06
1.674167e-06	2.164815e-06
2.164815e-06	3.285476e-06
3.285476e-06	6.927083e-06

med.ex.8M – p-value = 8.6076e−16
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1 0.000000e+00	group.1 1.250000e-07
2 1.250000e-07	group.2 2.039881e-07
3 2.039881e-07	group.3 2.844290e-07
4 2.844290e-07	group.4 3.946429e-07
5 3.946429e-07	group.5 4.86071e-07
6 4.86071e-07	group.6 6.458333e-07
7 6.458333e-07	group.7 8.440164e-07
8 8.440164e-07	group.8 1.094014e-06
9 1.094014e-06	group.9 1.540278e-06
10 1.540278e-06	group.10 4.458333e-06

high.ex.8M – p-value = 7.4982e−13

![Graph showing proportion of sites across different groups with colors for MLV-Burgess and MLVPuro]
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper category
1 8.125000e-07	group.1 3.625000e-06
2 3.625000e-06	group.2 4.562500e-06
3 4.562500e-06	group.3 5.865175e-06
4 5.865175e-06	group.4 7.250000e-06
5 7.250000e-06	group.5 8.125000e-06
6 8.125000e-06	group.6 1.068750e-05
7 1.068750e-05	group.7 1.449859e-05
8 1.449859e-05	group.8 1.876250e-05
9 1.876250e-05	group.9 2.829574e-05
10 2.829574e-05	group.10 8.290307e-05

cpg.dens.8M $- p$-value $= 0.015535$
4.10 16 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 16 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1 6.166667e-07	group.1
2 1.857909e-06	group.2
3 2.288328e-06	group.3
4 2.728423e-06	group.4
5 3.297317e-06	group.5
6 3.984970e-06	group.6
7 4.808304e-06	group.7
8 6.038077e-06	group.8
9 7.897006e-06	group.9
10 1.119436e-05	group.10

dens.16M – p-value = 5.1261e−15
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category	upper limit
1	group.1	7.923160e-07
2	group.2	9.843750e-07
3	group.3	1.193839e-06
4	group.4	1.406250e-06
5	group.5	1.859598e-06
6	group.6	2.321042e-06
7	group.7	2.761047e-06
8	group.8	3.579107e-06
9	group.9	5.516101e-06
10	group.10	9.091874e-06

MLV−Burgess

MLVPuro

proportion of sites

low.ex.16M − p−value = 8.0215e−15
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper
1 6.250000e-08	group.1 3.498512e-07
2 3.498512e-07	group.2 4.889583e-07
3 4.889583e-07	group.3 6.076306e-07
4 6.076306e-07	group.4 7.614583e-07
5 7.614583e-07	group.5 9.724702e-07
6 9.724702e-07	group.6 1.186458e-06
7 1.186458e-06	group.7 1.431250e-06
8 1.431250e-06	group.8 1.899306e-06
9 1.899306e-06	group.9 2.853750e-06
10 2.853750e-06	group.10 4.848850e-06

med.ex.16M $\sim\text{p-value }= 9.4351e^{-15}$
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1 0.000000e+00	group.1 1.583333e-07
2 1.583333e-07	group.2 2.447917e-07
3 2.447917e-07	group.3 3.160417e-07
4 3.160417e-07	group.4 3.906250e-07
5 3.906250e-07	group.5 4.812500e-07
6 4.812500e-07	group.6 5.795833e-07
7 5.795833e-07	group.7 7.750000e-07
8 7.750000e-07	group.8 9.510417e-07
9 9.510417e-07	group.9 1.339583e-06
10 1.339583e-06	group.10 2.718750e-06

high.ex.16M − p−value = 6.1283e−12

![Bar chart](chart.png)
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper category
1 1.312500e-06	group.1 4.020451e-06
2 4.020451e-06	group.2 5.156250e-06
3 5.156250e-06	group.3 6.093750e-06
4 6.093750e-06	group.4 7.250000e-06
5 7.250000e-06	group.5 8.638967e-06
6 8.638967e-06	group.6 1.065000e-05
7 1.065000e-05	group.7 1.324375e-05
8 1.324375e-05	group.8 1.729446e-05
9 1.729446e-05	group.9 2.161923e-05
10 2.161923e-05	group.10 6.622230e-05

\[\text{cpg.dens.16M} \quad - \quad p\text{-value} = 0.043687 \]
4.11 32 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 32 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower	category	upper
1	6.308649e-07	group.1 1.911353e-06
2	1.911353e-06	group.2 2.404606e-06
3	2.404606e-06	group.3 2.775409e-06
4	2.775409e-06	group.4 3.330213e-06
5	3.330213e-06	group.5 3.968424e-06
6	3.968424e-06	group.6 4.736310e-06
7	4.736310e-06	group.7 5.246540e-06
8	5.246540e-06	group.8 6.878760e-06
9	6.878760e-06	group.9 8.908811e-06
10	8.908811e-06	group.10 1.858283e-05

dens.32M - p-value = 3.576e-10
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category
1 2.794834e-07	group.1 8.289446e-07
2 8.289446e-07	group.2 1.060074e-06
3 1.060074e-06	group.3 1.252016e-06
4 1.252016e-06	group.4 1.472961e-06
5 1.472961e-06	group.5 1.736979e-06
6 1.736979e-06	group.6 2.105536e-06
7 2.105536e-06	group.7 2.529449e-06
8 2.529449e-06	group.8 3.353331e-06
9 3.353331e-06	group.9 4.258287e-06
10 4.258287e-06	group.10 8.892661e-06

low.ex.32M – p-value = 1.0011e-10

![Graph](image-url)
Now we count genes in the upper 1/8th:

Category limits

lower category	upper
1 1.551484e-07	group.1 4.047619e-07
2 4.047619e-07	group.2 5.375000e-07
3 5.375000e-07	group.3 6.435583e-07
4 6.435583e-07	group.4 7.867708e-07
5 7.867708e-07	group.5 9.072917e-07
6 9.072917e-07	group.6 1.078542e-06
7 1.078542e-06	group.7 1.315626e-06
8 1.315626e-06	group.8 1.793056e-06
9 1.793056e-06	group.9 2.168327e-06
10 2.168327e-06	group.10 4.529922e-06

med.ex.32M – p-value = 2.5708e−10

![Bar graph showing proportions of sites across different groups.](image-url)
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper category
5.202368e-08	2.008088e-07
2.008088e-07	2.716076e-07
2.716076e-07	3.322716e-07
3.322716e-07	3.939286e-07
3.939286e-07	4.685497e-07
4.685497e-07	5.973958e-07
5.973958e-07	7.083723e-07
7.083723e-07	8.227806e-07
8.227806e-07	9.995536e-07
9.995536e-07	2.177009e-06

high.ex.32M − p-value = 7.8043e−09

![Graph showing proportion of sites for different groups](image-url)
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper
1 3.000000e-06 group.1 4.609375e-06	
2 4.609375e-06 group.2 5.531250e-06	
3 5.531250e-06 group.3 6.406250e-06	
4 6.406250e-06 group.4 7.179893e-06	
5 7.179893e-06 group.5 7.896610e-06	
6 7.896610e-06 group.6 9.635388e-06	
7 9.635388e-06 group.7 1.148158e-05	
8 1.148158e-05 group.8 1.508771e-05	
9 1.508771e-05 group.9 1.917786e-05	
10 1.917786e-05 group.10 3.888930e-05	

cpg.dens.32M − p-value = 0.23734
5 Juxtaposition with Gene Start and End Positions

5.1 Acembly Annotations

In this section we study the effect of juxtaposition in terms of gene start and end positions. The first barplot shows the effect of gene width for those insertions that are located within an Acembly gene.

Category limits

lower category	upper
1 326.0	group.1
2 8389.5	group.2
3 18419.0	group.3
4 28768.0	group.4
5 44126.0	group.5
6 66097.5	group.6
7 94890.0	group.7
8 130663.0	group.8
9 197164.0	group.9
10 310763.0	group.10

acembly gene.width − p−value = 0.0031508
The next plot uses the width of a non-gene region for insertions that fall into such regions.

Category limits

lower	category	upper
1	group.1	5814.0
2	group.2	14692.0
3	group.3	23137.8
4	group.4	31492.4
5	group.5	41490.0
6	group.6	65738.0
7	group.7	87563.0
8	group.8	136570.4
9	group.9	214759.0
10	group.10	733739.0

acembly non−gene width − p−value = 0.07905
The next plot studies the distance to the nearest boundary between a gene and a non-gene region. The distance is expressed as a fraction of the length of the region. Thus, '0.25' refers to one quarter of the distance from the site to nearest boundary divided by the total width of the region.

Category limits

lower category	upper category	upper value
1	0.0001629966	group.1
	0.02422400	
2	0.0242239990	group.2
	0.06169855	
3	0.0616985504	group.3
	0.10831464	
4	0.1083146372	group.4
	0.15879184	
5	0.1587918380	group.5
	0.21012944	
6	0.2101294427	group.6
	0.26253887	
7	0.2625388740	group.7
	0.32510730	
8	0.3251073039	group.8
	0.38227968	
9	0.3822796821	group.9
	0.43986921	
10	0.4398692059	group.10
	0.49962244	

acembly boundary.dist – p-value = 0.14643
This plot studies the effect of nearness to the beginning of a transcript. For sites in genes, it is the distance to the start of the gene divided by the width of the gene. For other sites it is the distance from the site to the nearer gene if that gene boundary is also a transcription starting point. Locations near '0' are relatively near the beginning of transcription, while those near '1' are near the termination of the transcript.

Category limits

lower category	upper
1 0.0001629966	group.1 0.03194402
2 0.0319440186	group.2 0.10429321
3 0.1042932149	group.3 0.18197543
4 0.1819754324	group.4 0.27825009
5 0.2782500880	group.5 0.36999400
6 0.3699939971	group.6 0.47428155
7 0.4742815470	group.7 0.60099307
8 0.6009930664	group.8 0.74663747
9 0.7466374667	group.9 0.86910984
10 0.8691098371	group.10 0.99970222

acembly start.dist − p-value = 0.55714
5.2 RefSeq Annotations

Category limits

lower category	upper
1 437.0	group.1
2 15657.2	group.2
3 29811.6	group.3
4 53185.2	group.4
5 73121.2	group.5
6 102946.0	group.6
7 137449.4	group.7
8 183002.4	group.8
9 248874.0	group.9
10 388421.4	group.10

refSeq gene.width − p-value = 0.031322

Category limits

lower category	upper
1 720.0	group.1
2 16279.7	group.2
3 36052.6	group.3
4 60577.1	group.4
refSeq non-gene width – p-value = 3.4359e-10

Category limits

lower category	upper
0.0001676227	group.1 0.02314041
0.0231404114	group.2 0.05673877
0.0567387687	group.3 0.10346024
0.1034602352	group.4 0.15794733
0.1579473307	group.5 0.20902820
0.2090282002	group.6 0.27251156
0.2725115616	group.7 0.33133189
0.3313318905	group.8 0.38102827
0.3810282654	group.9 0.44537610
0.4453760992	group.10 0.49986464
refSeq boundary.dist – p-value = 0.08173

Category limits

lower category	upper
1 0.001022040	group.1 0.0424551
2 0.042455097	group.2 0.1183958
3 0.118395781	group.3 0.2124120
4 0.212412046	group.4 0.3155718
5 0.315571838	group.5 0.4104853
6 0.410485296	group.6 0.5073843
7 0.507384290	group.7 0.6460025
8 0.646002524	group.8 0.7796176
9 0.779617614	group.9 0.9022631
10 0.902263084	group.10 0.9998324
refSeq start.dist − p−value = 0.80345

proportion of sites

group.1 group.3 group.5 group.7 group.9

MLV−Burgess
MLVPuro
5.3 genScan Annotations

Category limits

lower category	upper category
528.0	18950.5
18950.5	32159.0
32159.0	44187.0
44187.0	59619.0
59619.0	77935.0
77935.0	95755.0
95755.0	120931.5
120931.5	161743.0
161743.0	221476.0
221476.0	646561.0

![genScan gene.width - p-value = 0.059774](image)

Category limits

lower category	upper category
778.0	6125.6
6125.6	9893.2
9893.2	16013.2
16013.2	20307.8
genScan non−gene width − p−value = 0.010348

Category limits

lower category	upper
1 0.0002773669	group.1 0.03163856
2 0.0316385574	group.2 0.07389331
3 0.0738933124	group.3 0.12543881
4 0.1254388101	group.4 0.17225923
5 0.1722592265	group.5 0.22848296
6 0.2284829603	group.6 0.27822067
7 0.2782206676	group.7 0.33569052
8 0.3356905161	group.8 0.38240106
9 0.382401608	group.9 0.44344987
10 0.4434498657	group.10 0.49997099
genScan boundary.dist – p-value = 0.032223

Category limits

lower category	upper	
0.0002773669	group.1	0.04896258
0.0489625790	group.2	0.14423475
0.1442347542	group.3	0.24692466
0.2469246614	group.4	0.33433309
0.3343330876	group.5	0.42112499
0.4211249898	group.6	0.53551710
0.5355171033	group.7	0.64369593
0.6436959281	group.8	0.78417772
0.7841777172	group.9	0.89494284
0.8949428355	group.10	0.99897901
genScan start.dist – p-value = 0.047501
5.4 uniGene Annotations

Category limits

lower category	upper
1 528.0	group.1
2 18950.5	group.2
3 32159.0	group.3
4 44187.0	group.4
5 59619.0	group.5
6 77935.0	group.6
7 95755.0	group.7
8 120931.5	group.8
9 161743.0	group.9
10 221476.0	group.10

uniGene gene.width = p-value = 0.059774

Category limits

lower category	upper
1 778.0	group.1
2 6125.6	group.2
3 9893.2	group.3
4 16013.2	group.4
MLV−Burgess
MLVPuro
proportion of sites
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
uniGene non−gene width − p−value = 0.010348

Category limits

lower category	upper
0.002773669	group.1 0.03163856
0.0316385574	group.2 0.07389331
0.0738933124	group.3 0.12543881
0.1254388101	group.4 0.17225923
0.1722592265	group.5 0.22848296
0.2284829603	group.6 0.27822067
0.2782206676	group.7 0.33569052
0.3356905161	group.8 0.38824016
0.3882401608	group.9 0.44344987
0.4434498857	group.10 0.49997099
uniGene boundary.dist – p-value = 0.032223

Category limits

lower	category	upper
1	0.0002773669	group.1 0.04896258
2	0.0489625790	group.2 0.14423475
3	0.1442347542	group.3 0.24692466
4	0.2469246614	group.4 0.33433309
5	0.3343330876	group.5 0.42112499
6	0.4211249898	group.6 0.53551710
7	0.5355171033	group.7 0.64369593
8	0.6436959281	group.8 0.78417772
9	0.7841777172	group.9 0.89494284
10	0.8949428355	group.10 0.99897901
uniGene start.dist – p-value = 0.047501

The graph shows the proportion of sites for different groups and treatments.

- **Group.1** and **MLV-Burgess** treatment
- **Group.3** and **MLV-Burgess** treatment
- **Group.5** and **MLV-Burgess** treatment
- **Group.7** and **MLV-Burgess** treatment
- **Group.9** and **MLV-Burgess** treatment

- **Group.1** and **MLVPuro** treatment
- **Group.3** and **MLVPuro** treatment
- **Group.5** and **MLVPuro** treatment
- **Group.7** and **MLVPuro** treatment
- **Group.9** and **MLVPuro** treatment

The p-value of 0.047501 indicates a statistically significant difference in the proportion of sites between the groups and treatments.
6 GC content

Here we study the effect of GC content on insertion. The GC content is taken from the Human Genome Draft at GoldenPath from the table http://genome.ucsc.edu/goldenPath/hg17/database/gc5Base.txt.gz.

Following the plot is a table of fitted coefficients based on splitting the GC percent data at the median.

Category limits	lower category	upper
1	28.88672	group.1 36.07422
2	36.07422	group.2 38.51562
3	38.51562	group.3 40.50781
4	40.50781	group.4 42.01172
5	42.01172	group.5 43.82812
6	43.82812	group.6 45.72266
7	45.72266	group.7 47.98828
8	47.98828	group.8 50.33203
9	50.33203	group.9 54.10156
10	54.10156	group.10 67.44141

$gcpct \quad p-value = 4.524e^{-11}$
7 Cytobands

Here we study the association of cytoband with insertion intensity. The data are obtained from
http://genome.ucsc.edu/goldenPath/hg17/database/cytoBand.txt.gz.

A formal test of significance attains a p-value of 0.080486.

References

[1] P. McCullagh and John A. Nelder. *Generalized linear models.* (Chapman & Hall ltd, 1999).

[2] Xiaolin Wu, Yuan Li, Bruce Crise, Shawn M. Burgess “Transcription Start Regions in the Human Genome Are Favored Targets for MLV Integration,” *Science,* 300(5626), (June 2003): 1749-1751.