The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

Journal of Threatened Taxa
Building evidence for conservation globally
www.threatenedtaxa.org
ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

COMMUNICATION

A STUDY ON DIVERSITY OF MAMMALIAN SPECIES USING CAMERA TRAPS AND ASSOCIATED VEGETATION IN MIZORAM UNIVERSITY CAMPUS, AIZAWL, MIZORAM

J.H. Zothanpuii, Sushanto Gouda, Abinash Parida & G.S. Solanki

26 December 2020 | Vol. 12 | No. 17 | Pages: 17330–17339
DOI: 10.11609/jott.6465.12.17.17330-17339

For Focus, Scope, Aims, Policies, and Guidelines visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0
For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions
For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2
For reprints, contact <ravi@threatenedtaxa.org>

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
A study on diversity of mammalian species using camera traps and associated vegetation in Mizoram University Campus, Aizawl, Mizoram

J.H. Zothanpuii1, Sushanto Gouda2, Abinash Parida3 & G.S. Solanki4

1–4 Department of Zoology, Mizoram University, Aizawl, Mizoram 796009, India. 1zothanpui84@gmail.com, 2sushantogouda@gmail.com, 3abinash.wild@gmail.com, 4drghanshyam.solanki@gmail.com (corresponding author)

Abstract: Fragmented forests often have conservation value, serving as a refuge or corridors for small mammalian species. In the study, the diversity of mammals was studied within Mizoram University (MZU) campus. Forty-eight plant species from 25 families were recorded on different sites. Thirty quadrates were nested at the locations of occurrence of mammalian species for vegetation type analysis. Schima wallichi was the most dominant plant species with the highest IVI values of (31.7%), followed by Aporosa octandra (22.93%) and Castanopsis tribuloide (21.17%). Camera trap method was used to collect information about the mammalian diversity in the campus. The mammalian species recorded in this study makes 15% of mammalian fauna of the state of Mizoram. Twelve mammal species and six bird species were recorded by the camera traps. With proper awareness among residents of the campus and a planned approach for developmental activities, the findings of our study can make an important extension for the coexistence of mammalian species and long term survivability within MZU campus.

Keywords: Camera traps, coexistence, mammalian diversity, Mizoram University, Urban biodiversity.
INTRODUCTION

The northeastern region of India shares two biodiversity hotspots and has rich mammalian and avian diversity (Choudhury 2006). The state of Mizoram is part of the Indo-Myanmar Biodiversity Hotspot region and harbours 126 species of mammals including 37 threatened species (Lalthanzara 2017). The rapid expansion of shifting cultivation and urbanization in the region has, however, led to a contemporary changes in landscape, forest fragmentation, and ecosystem modification (Teegalalapalli et al. 2009; Yadav 2013). Such anthropogenic activities have created a mosaic of remnant forest patches of varying size, demarcated by a network of roads, concerts, and settlements areas (Mazumdar et al. 2011). Recent researches on biodiversity conservation put urban areas having rich biodiversity into the limelight for the long-term persistence of native species (Ordenana et al. 2010; Lopucki & Kitowski 2017; Hill et al. 2018). Urbanization is often considered to have several negative impacts on the native flora and fauna; nevertheless, it also serves as valuable habitat and corridor for dispersal of certain animal species (Opdam et al. 2003; Fernandez & Simonetti 2013). Urban and semi-urban green forest patches serves as surrogate and refuge habitat to be utilized for dispersal and migration for birds and many small to medium size mammals (Gallo et al. 2017). The role of degraded forest landscapes and patches within the campus of academic institutions as a potential habitat for small mammals and birds has also been acknowledged in some studies (Vallejo et al. 2008; Mazumdar et al. 2011; Voon et al. 2014; Nerlekar et al. 2016).

The camera trap is a useful technique widely used for collecting information on elusive species (Kelly et al. 2008; Linkie & Ridout 2011). Information on species diversity and distribution is considered to be the primary need for conservation activities (Geldmann et al. 2013; Brncic et al. 2015). While information on biodiversity in megacities and large urban areas are easily available, the same is scarce in small cities and educational campuses (Lopucki et al. 2013; Lopucki & Kitowski 2017). Mizoram University (MZU) campus at Aizawl, Mizoram encompasses a large area with lush green landscape having several patches of natural forest vegetation. Although research on herpetofauna (Vanalhlimpuia 2012), butterfly (Barua 2017), spiders (Lalthafamkima 2017), and birds (Sailo et al. 2019) are available from MZU campus, no study has been undertaken on the distribution of mammalian species. Therefore, a study was planned to determine the mammalian diversity using mainly camera traps and direct observations within the campus.

MATERIALS AND METHODS

Study area

Mizoram University (MZU) is located at the western end of the Aizawl town, the state capital of Mizoram at a distance of about 15km. The campus of MZU is spread in an area of 978.1988 acres and lies between 23.7394°N & 92.6651°E. The elevation ranges between 300–880 m. University campus encompasses the administrative block, academic blocks, hostels, and other facilities which are sparsely embedded within regenerating tropical wet evergreen and semi-evergreen forests (Image 1). The campus also harbors a protected forested water catchment reserve in the north and a small biodiversity park. In the vicinity of the campus, there are settlement areas, where residents undertake agriculture practice (jhum cultivation), which is the primary source of income and livelihood. Several small natural and seasonal streams also flow through the campus. Vegetation profile is dominated by trees comprised of 384 species of vascular plants from 290 genera and 107 families (Lalchhuanawma 2008; Rai 2016; Sailo et al. 2019). A map of the university is presented in Figure 1.

Vegetation analysis

A preliminary survey of campus area was carried out to select the sampling site for vegetation study. Transects were set up in areas where signs and evidence of animals’ presence were observed. For vegetation sampling 10m x 10m quadrates were plotted at every 200m interval along transects for tree diversity analysis. Thirty quadrates were plotted in different sites and only trees having DBH more than 10cm were considered for the analysis (Daniels et al. 1996). Vegetation analysis was done for the relative frequency of occurrence of the species; relative density, relative abundance and important value index (IVI) were determined following methods of Lalchhuanawma (2008) and Ahmed (2012).

Camera trapping

The camera traps are often used for understanding the secretive behavior or nocturnal activity, and estimating animal population comprehensively even at relatively low densities of animals (Ordenana et al. 2010; Gouda et al. 2020). Camera deployment points were chosen based on the presence of visible animal trails, footprints,
scats, activity areas such as dens or close to streams (Sasidhran et al. 2016). Nine camera traps (Cuddeback) were randomly deployed at 15 sampling points within the study sites for 45 days as presented in Figure 2. The cameras were installed on a tree trunk at a suitable height of 30–50 cm above the ground at optimum angles based on slope conditions for viewing the animal trails without the camera view being blocked by any objects (Image 1). Camera traps were programmed to take sequential photographs with five seconds delay registering date and time for each exposure. On average the camera traps were operational for five days and were checked every two days for photos and battery replacement. GPS (Garmin map 78S) was also used to record coordinates, elevation, and slope of camera trap locations. The relative abundance index (RAI) value was calculated using the method suggested by Jenks et al. (2011). Whenever possible we also recorded directly observed species especially arboreal ones around the camera trap locations.
RESULTS

Forty-eight plant species which belongs to 25 families were recorded along the transect lines during the vegetation study. Vegetation samples were analyzed for the parameters mentioned in Table 1. The analysis showed that *Schima wallichii* is the most dominant plant species having the highest IVI values (31.7%), followed by *Aporosa octandra* (22.93%), *Castanopsis tribuloide* (21.17%), and *Syzgium praecox* (17.86%). Plant species such as *Hibiscus macrophyllus*, *Bischofia javanica*, *Cinnamomum cassia*, and *Acer laevigatum* were some of the least available species (Table 1). The family Euphorbiaceae contributed for the highest IVI, followed by Theaceae and Fagacae while the family Pandanaceae had the lowest IVI values among the recorded plant families (Figure 3).

The mammalian diversity on MZU campus is 19 mammalian species; 12 were captured through camera traps (Table 2) (Image 2) and seven were recorded by direct observations (Table 3). Six bird species were also photo-captured during this study (Table 4) (Image 3). Among the mammalian species, civets are predominant with 30.17% followed by felids (25%). The presence of Marbled Cat *Pardofelis marmorata* (Near Threatened), Clouded Leopard *Neofelis nebulosa* (Vulnerable), and Golden Jackal *Canis aureus* (Least Concern) were important and majestic mammalian species. Such valuable observations from the fragmented habitat of an urban landscape are significant for species conservation. Other recorded species are categorised as Least Concern. The relative abundance index (RAI) value was highest (16.67) for Crab-eating Mongoose *Herpestes urva* followed by Common Palm Civet *Paradoxurus hermaphroditus* (13.3), and Leopard Cat *Prionailurus bengalensis* (10) (Table 2). Sites with minimal human disturbance and water bodies within the campus had higher RAI values. Among directly observed mammalian species squirrels and shrews were the major ones (Table 3). Seven avian species namely Khalij Pheasant (male and female), Blue Whistling Thrush, Forktail, Asian Barred Owlet, Long-tailed Nightjar, and Large Cuckoo

![Image 1](image-url)
Table 1. Vegetation composition and analysis.

Name of species	Mizo name	Family	Relative density (%)	Relative Frequency (%)	Relative Dominance (%)	Important Value Index (IVI)
1 Acer laevigatum	Thingkhim	Aceraceae	0.54	0.36	0.38	1.28
2 Albizia chinensis	Vang	Mimosaceae	2.20	1.84	1.93	5.97
3 Albizia richardiana	Theichhawl	Mimosaceae	2.20	1.65	3.23	7.08
4 Albizia procera	Kangtek	Mimosaceae	1.37	1.10	2.48	4.95
5 Anogeissus acuminate	Zairum	Combretaceae	0.29	0.73	0.69	1.71
6 Aporosa octandra	Chhawntual	Euphorbiaceae	10.09	4.61	8.23	22.93
7 Artocarpus lacoocha	Theitat	Moraceae	0.83	1.10	1.01	2.94
8 Balakata baccata	Thingvawkpui	Euphorbiaceae	1.37	3.68	1.84	6.89
9 Bischofia javanica	Khuanghli	Euphorbiaceae	0.12	0.01	0.15	0.28
10 Bombax insigne	Pang	Bimaceae	1.78	1.47	3.29	6.54
11 Callicarpa arboarea	Hnakhkiah	Verbenaceae	4.4	3.13	1.95	9.48
12 Castanopsis indicia	Sehawr	Fagaceae	3.74	1.84	1.40	6.98
13 Castanopsis lancefolia	Vawmbuh	Fagaceae	0.41	1.29	0.87	2.57
14 Castanopsis tribuloides	Thingsia	Fagaceae	8.43	3.13	9.61	21.1
15 Cedrelatoona	Tei	Meliaceae	0.29	0.36	0.30	0.95
16 Cinnamomum cassio	Thalthing	Lauraceae	0.12	0.01	0.13	0.26
17 Cinnamomum tamala	Tespata	Lauraceae	2.36	1.47	1.81	5.64
18 Colona floribunda	Hnahthap	Tiliaceae	0.12	0.36	0.17	0.65
19 Cordiawallichi	Muk	Boraginaceae	0.83	2.02	2.05	4.9
20 Dennis robusta	Thingkha	Fanaceae	1.12	1.29	0.92	3.33
21 Dennis thrysiflora	Hulhu	Papilionaceae	0.12	0.01	0.19	0.32
22 Drymarcus racemosus	Vawmbal	Anacardiaceae	3.44	1.65	5.24	10.3
23 Duabanga grandiflora	Zuang	Sonnerataceae	0.12	0.01	0.28	0.41
24 Emblica officinalis	Sunhlu	Euphorbiaceae	0.54	0.55	0.51	1.6
25 Erythrina variegata	Fartuah	Papilionaceae	0.41	0.73	1.99	3.13
26 Ficus hirta	Sazuthiepui	Moraceae	0.54	0.62	0.67	2.13
27 Glochidion keynaneum	Thingpawncchia	Euphorbiaceae	2.78	2.02	2.15	6.95
28 Gmelina arborea	Thlanwawng	Verbenaceae	0.71	0.55	1.22	2.48
29 Haldea cordifolia	Lungkhup	Rubiaceae	2.20	1.10	1.62	4.92
30 Hiliscus macrophyllus	Vaiza	Malvaceae	0.12	0.01	0.07	0.20
31 Ilex godajam	Thinguihnhni	Aquifoliaceae	0.41	0.73	0.82	1.96
32 Lithocarpus elegans	Thingpuithing	Fagaceae	0.70	0.36	0.72	1.78
33 Litsea monon petala	Nauthak	Lauraceae	2.07	1.84	1.60	5.51
34 Macaranga indica	Hnakhkhar	Euphorbiaceae	4.86	2.94	3.74	11.54
35 Macropanax undulatum	Phuanberh	Araliaceae	0.41	0.92	0.85	2.18
36 Messua ferrua	Herhse	Guttiferae	0.70	0.36	0.31	1.37
37 Pandanus fasicularis	Ramlakhui	Pandanaceae	0.41	1.47	0.33	2.21
38 Pterium serratum	Bil	Burseraceae	1.37	0.92	1.45	3.74
39 Saurauia punduana	Tiar	Actinidiaceae	2.78	1.29	1.96	6.03
40 Schima khasiana	Klango	Theaceae	0.64	0.92	0.67	2.23
41 Schima wallichi	Kl Iron	Theaceae	13.29	4.05	14.36	31.70
42 Sterculia villosa	Khaupui	Sterculaceae	1.12	0.92	1.33	3.37
43 Stereospermum tetrangum	Zinghal	Bignoniaceae	0.41	1.17	0.75	2.63
Shrike were also captured by camera traps in different areas of the campus (Table 4, Image 3).

DISCUSSION

This study can make an important extension in documentation and range of faunal species available within a university campus. The VI and other quantitative values obtained for different plant species in the study coincide with the findings of Lalramenga (2006) and Lalchhuanawma (2008) that were carried out within the campus. The rich floral diversity plays a key role in supporting both the avifauna and mammalian fauna in the campus. The presence of roadside plants like *Ficus benghalensis*, *F. religiosa*, *Trema orientalis*, *Lantana camara*, *Musa paradise*, and *Casia auriculata* in MZU campus can serve as good habitat and feeding grounds for birds and small mammals as reported by Lalchhuanawma (2008) and Rai (2016).

The undisturbed forest patches within MZU campus appears to support a diverse group of mammalian species. The record of 19 mammalian species in the campus is an evidence of its rich mammalian diversity, which contributes for 15% of the mammalian fauna of the state of Mizoram. Family viverridae is highly diverse in MZU campus; five species of family viverridae were also reported earlier in Mizoram (Lalthanza 2017). Presence of felids (three species) in the campus also forms 37.5%, as eight fields were previously reported by Lalthanza (2017) in Mizoram. Species such as Clouded Leopard, Marbled Cat, Golden Jackal, and Ferret Badger not only indicates the potential of the university campus to support the cohabitation and co-existence with mammals but also highlights the values of urban diversity.

The relative abundance index (RAI) indicates that ground dwelling birds such as Khalij Pheasant (male and females) were dominant (RAI = 13.33) and also are the prey species for carnivorous mammals. The mammalian species evident in MZU campus are very rare and may be difficult to record even in a protected forest. Dense shrub forests, tall fruiting trees, and low lying natural streams along the edges of the campus that provides ideal forest

Table 2. Mammalian diversity based on photo captured and their status

Family	Common name	Scientific name	IUCN status	RAI
Felidae	Clouded Leopard	Neofelis nebulosa	Vulnerable	3.33
Felidae	Marbled Cat	Pardofelis marmorata	Near threatened	3.33
Felidae	Leopard Cat	Prionailurus bengalensis	Least concern	10.00
Suidae	Wild Pig	Sus scrofa	Least concern	3.33
Viverridae	Large Indian Civet	Viverra zibetha	Least Concern	13.33
Viverridae	Small Indian Civet	Viverricula indica	Least concern	10.00
Viverridae	Common Palm Civet	Paradoxurus hermaphroditus	Least concern	13.33
Herpestidae	Crab-eating Mongoose	Herpestes urva	Least concern	16.67
Canidae	Golden Jackal	Canis aureus	Least concern	3.33
Viverridae	Himalayan Palm Civet	Paguma larvata	Least concern	6.67
Mustelidae	Ferret Badger	Melogale sp.	Least concern	3.33
Tupaiidae	Tree Shrew	Cladobats belingari	Least concern	3.33
Table 3. Mammalian species observed directly during study and their status.

Family	Common name	Scientific name	IUCN status
1 Mustelidae	Yellow-throated Martin	Martes flavigula	Least Concern
2 Cervidae	Barking Deer	Muntiacus muntjak	Least Concern
3 Sciuridae	Pallas’s Squirrel	Collosciurus erythraeus	Least Concern
4 Sciuridae	Himalayan Hoary-bellied Squirrel	Collosciurus pygerythrus	Least Concern
5 Tupaiidae	Northern Tree Shrew	Tupaia belangeri	Least Concern
6 Muridae	Black Rat	Rattus rattus	Least Concern
7 Soricidae	House Shrew	Suncus murinus	Least Concern

Table 4. Avian species photo-captured during the study and their status.

Family	Common name	Scientific name	IUCN	RAI
1 Phasianidae	Khalij Pheasant	Lophura leucomelanos	Least Concern	13.33
2 Muscicapidae	Blue Whistling Thrush	Myophonus caeruleus	Least Concern	3.33
3 Muscicapidae	Forktail	Enicurus leschenaulti	Least Concern	3.33
4 Strigidae	Asian-barred Owlet	Glaucidium cuculoides	Least Concern	6.67
5 Campephagidae	Large Cuckoo Shrike	Coracina macei	Least Concern	3.33
6 Caprimulgidae	Long-tailed Nightjar	Caprimulgus climacurus	Least Concern	3.33

Cover and feeding opportunities are contributing to the abundance of these species within the campus. The low resident human population (little over 2000 individuals) with a good sense of conservation value and long forest corridors are also key factors for the distribution of such majestic species within the campus. Anthropogenic activities like hunting, jhumming or shifting cultivation in the vicinity of the campus, collection of NTFP’s and the ever-increasing chain of construction works can have negative impacts on biodiversity in general and particularly on mammals of MZU campus. Information on mammalian diversity recommends that a long-term and systematic study on biodiversity profile of the MZU campus is needed.
Diversity of mammalian species in Mizoram University Campus

Zothanpuii et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 December 2020 | 12(17): 17330–17339

Image 2. a—Clouded Leopard | b—Golden Jackal | c—Himalayan Palm Civet | d—Crab-eating Mongoose | e—Leopard Cat | f—Large Indian Civet | g—Small Indian Civet | h—Himalayan Hoary-bellied Squirrel | i—Common Palm Civet | j—Ferret Badger | k—Wild Boar | l—Marbled Cat.

REFERENCES

Ahmed, A. (2012). Analysis of forest vegetation in Ranikhet, Kumaon Himalayas, Uttarakhand, India. Indian Journal of Fundamental and Applied Life Sciences 2(4): 16–23.

Baruah, P. (2017). Diversity of butterflies in Mizoram University campus, Aizawl. MSc dissertation submitted to Mizoram University. India.

Brncic, T., B. Amarasekaran, A. McKenna, R. Mundry & H.S. Kuhl (2015). Large mammal diversity and their conservation in the human-dominated land-use mosaic of Sierra Leone. Biodiversity Conservation 24: 2417–2438.

Choudhury, A. (2006). Notable bird records from Mizoram in northeast India. Forktail 22: 152–155.

Daniels, R.J.R., J. Venkatesan & C. Anuradha (1996). Biodiversity indexing in AgricultureLandscapes to species. M.S. Swaminathan Research Foundation, Chennai. FAO/UNDP.PERCENT 43.

Fernández, I.C. & J.A. Simonetti (2013). Small mammal assemblages in fragmented shrublands of urban areas of Central Chile. Urban Ecosystems 16: 377–387. https://doi.org/10.1007/s11252-012-0272-1

Gallo, T., M. Fidino, E.W. Lehrer & S.B. Magle (2017). Mammal diversity and meta-community dynamics in urban green spaces: Implications for urban wildlife conservation. Ecological Applications 27(8): 1–12.
Diversity of mammalian species in Mizoram University Campus

Zothanpuii et al.

Image 3. Birds captured by camera trap: a—Blue Whistling Thrush | b—Large Cuckoo Shrike | c—Long-tailed Nightjar | d—Khalij Pheasant female | e—Khalij Pheasant male | f—Forktail.

Geldmann, J., M. Barnes, L. Coad, I.D. Craigie, M. Hockings & N.D. Burgess (2013). Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. *Biological Conservation* 161:230–238.

Gouda, S., N.S. Chauhan, J. Sethy & H.K. Sahu (2020). Daily activity pattern of Malayan Sun bear in Dampa Tiger Reserve, Mizoram, India. *Journal of Wildlife and Biodiversity* 4(2): 56–64.

Hill, M.J., J. Biggs, I. Thornhill, R.A. Briers, M. Ledger, D.G. Gledhill, P.J. Wood & C. Hassall (2018). Community heterogeneity of aquatic macro-invertebrates in urban ponds at a multi-city scale. *Landscape Ecology* 33:389–405.

Jenks, K.E., P. Chanteap, K. Damrongchainarong, P. Cutter, T. Redford, A.J. Lynam, J. Howard & P. Leimgruber (2011). Using relative abundance indices from camera-trapping to test wildlife conservation hypotheses - an example from Khaoyai National Park, Thailand. *Tropical Conservation Science* 4: 113–131.

Kelly M.J., A.J. Noss, M. Di-Bitetti, L. Maffei, R.L. Arispe, A. Pavolo, C. De Angelo & Y.E. Di Blanco (2008). Estimating Puma densities from camera trapping across three study sites: Bolivia, Argentina, and Belize. *Journal of Mammalogy* 89(2): 408–418.

Lalramenga, P.C. (2006). Studies on plant diversity of undisturbed forest in Mizoram University campus, Tanhri. M.Sc. dissertation submitted to Mizoram University, India.

Lalthanzara, H. (2017). A systematic list of mammals of Mizoram, India. *Science Vision* 17(2): 104–121.

Lalthafamkima, K. (2017). Study on diversity of spiders inside Mizoram University campus, Aizawl, Mizoram. MSc dissertation submitted to Mizoram University, India.

Lalchhuamanwa (2008). Ecological studies on plant diversity and productivity of herbaceous species in Mizoram university campus at Tanhri, Aizawl, Mizoram (N.E. India). PhD Thesis. Submitted to Mizoram University, India.

Linkie, M. & M.S. Ridout (2011). Assessing tiger-prey interactions in Sumatran rainforest. *Journal of Zoology* 284(3): 224–229.

Lopucki, R. & I. Kitowski (2017). How small cities affect the biodiversity of ground-dwelling mammals and the relevance of this knowledge in planning urban land expansion in terms of urban wildlife. *Urban Ecosystem* 20: 933–943.

Lopucki, R., I. Mroz, L.B. Ski & M. Burzycz (2013). Effects of urbanization on small-mammal communities and the population structure of synurbic species: an example of a medium-sized city. *Canadian Journal of Zoology* 91: 554–561.

Mazumdar, K., R. Soud & A. Gupta (2011). Mammalian diversity of degraded forest habitats around Assam University Campus, Cachar, Assam, India, with notes on conservation status. *Our Nature* 9: 119–127.

Nerlekar, A.N., A.M. Warudkar, G.G. Gowande, S.S. Salve, A. Raut, S.R. Patankar & S.B. Nalavade (2016). A review of the faunal diversity of the Fergusson College campus, Pune, India. *Zoo’s Prints* 29(10): 4–25.

Opdam, P., J. Verboom & R. Pouwels (2003). Landscape cohesion: an index for the conservation potential of landscapes for biodiversity. *Landscape Ecology* 18: 113–126.

Ordenana, M.A., K.R. Crooks, E.E. Boydston, R.N. Fisher, L.M. Lyren, S. Siudyla, C.D. Haas, S. Harris, S.A. Hathaway, G. M. Turschak, A.K. Miles & D.H. van Vuren (2010). Effects of urbanization on carnivore species distribution and richness. *Journal of Mammalogy* 91(6): 1322–1331. https://doi.org/10.1644/09-MAMM-A-312.1

Rai, P.K. (2016). Biodiversity of roadside plants and their response to air pollution in an Indo-Burma hotspot region: implications for urban ecosystem restoration. *Journal of Asia-Pacific Biodiversity* 9: 47–55.

Sailo, L., G.S. Solanki & C. Lahirualezela (2019). Avian diversity in Mizoram University Campus, Aizawl, Mizoram. *Science and Technology Journal* 7(1): 54–68.

Sasidhran, S., N. Adila, M.S. Hamdan, L. Samantha, D. Aziz, N. Kamardin & B. Azhar (2016). Habitat occupancy patterns and activity rate of native mammals in tropical fragmented peat swamp
reserves in Peninsular Malaysia. Forest Ecology and Management 363:140–148. https://doi.org/10.1016/j.foreco.2015.12.037

Teegalapalli, K., G.V. Gopi & P.K. Samal (2009). Forest recovery following shifting cultivation: an overview of existing research. Tropical Conservation Science 2(4): 374–387.

Vallejo, B., A. Aloya, P. Ong, A. Tamino & J. Villasper (2008). Spatial patterns of bird diversity and abundance in an urban tropical landscape: The University of the Philippines Diliman campus. Science Diliman 20(1): 1–10.

Vanlalhlimpuia (2012). Diversity of herpetofauna in Mizoram University campus, Aizawl, Mizoram. MSc dissertation submitted to Mizoram University, India.

Voon, A.M., K.A. Nasradhi, M.A. Rahman & J.M. Azlan (2014). Bird diversity, density and foraging activities in a university campus landscape in Sarawak. Borneo Journal of Resources Science and Technology 4(2): 9–20.

Yadav, P.K. (2013). Slash-and-burn agriculture in north-east India. Expert Opinion in Environment and Biology 2(1): 1–4. https://doi.org/10.4172/2325-9655.1000102
Article

Genetic and reproductive characterization of distylous *Primula reinii* in the Hakone volcano, Japan: implications for conservation of the rare and endangered plant
– Masaya Yamamoto, Honami Sugawara, Kazuhiro Fukushima, Hiroaki Setoguchi & Kaoruko Kurata, Pp. 17263–17275

Review

A review about fish walking on land
– Arumugam Kumaraguru, Rosette Celsiya Mary & Vijayaraghavalu Saisaraswathi, Pp. 17276–17286

Communications

Diversity, distribution and conservation status of the Adder’s-tongue ferns in Goa, India
– Sachin M. Patil & Kishore Rajput, Pp. 17287–17298

An inventory of the native flowering plants in East Siang District of Arunachal Pradesh, India
– Momang Taram, Dipankar Borah, Hui Tag & Ritesh Kumar Choudhary, Pp. 17299–17322

Crepuscular hunting of swiftlets (Family: Apodidae) by Besra (Family: Accipitridae) in the urban areas of the Andaman Islands, India
– Amruta Dhamorikar, Dhanusha Kawalkar, Prathamesh Gurjarpadhye & Shirish Manchi, Pp. 17323–17329

A study on diversity of mammalian species using camera traps and associated vegetation in Mizoram University Campus, Aizawl, Mizoram
– J.H. Zothanpuii, Sushanto Gouda, Abinash Parida & G.S. Solanki, Pp. 17330–17339

Short Communications

Distribution of *Syzygium travancoricum* Gamble (Myrtaceae), a Critically Endangered tree species from Kerala part of Western Ghats, India
– V.B. Sreekumar, K.A. Sreejith, M.S. Sanil, M.K. Harinarayanan, M.P. Prejith & R.V. Varma, Pp. 17340–17346

Butterflies (Lepidoptera: Rhopalocera) of the undivided Midnapore District, West Bengal, India: a preliminary report
– Anirban Mahata, Niladri Prasad Mishra & Sharat Kumar Palita, Pp. 17347–17360

Occurrence of *Corica soborna* Hamilton, 1822 (Clupeiformes: Clupeidae) in the Godavari basin, India
– Kante Krishna Prasad, Mohammad Younus & Chelmala Srinivasulu, Pp. 17361–17365

Notes

Strobilanthes affinis (Acanthaceae): a new addition to the flora of Manipur, India
– Sanjeet Kumar & Rajkumari Supriya Devi, Pp. 17366–17369

A new species of the genus *Opius* Wesmael, 1835 (Hymenoptera: Braconidae: Opininae) from Kashmir Himalaya, India
– Zaheer Ahmed, Ahmad Samiuddin, Altaf Hussain Mir & Mohammad Shamim, Pp. 17370–17373

Larvae of the blow fly *Caisa testacea* (Diptera: Calliphoridae) as egg predators of Polypedates cruciger Blyth, 1852 (Amphibia: Anura: Rhacophoridae)
– W.G.D. Chathuranga, K. Kariyawasam, Anslm de Silva & W.A. Priyanka P. de Silva, Pp. 17374–17379

Blank Swift *Caltoris kumara moorei* (Evans, 1926) (Lepidoptera: Hesperiidae) in Dehradun Valley, Uttarakhand, India: a new record for the western Himalaya
– Arun Pratap Singh, Pp. 17380–17382

First photographic record of the Asiatic Brush-tailed Porcupine *Atherurus macrourus* (Linnaeus, 1758) (Mammalia: Rodentia: Hystricidae) from the Barak Valley region of Assam, India
– Rejoice Gassah & Vijay Anand Ismavel, Pp. 17383–17384

Book Review

A look over on Red Sanders
– S. Suress Ramanan, Pp. 17385–17386