Closely related type II-C Cas9 orthologs recognize diverse PAMs

Jingjing Wei1, Linghui Hou1, Jingtong Liu1, Ziwen Wang2, Siqi Gao1, Tao Qi1, Song Gao2, Shuna Sun3*, Yongming Wang1,4*

1State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; 2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; 3Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China; 4Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China

Abstract The RNA-guided CRISPR/Cas9 system is a powerful tool for genome editing, but its targeting scope is limited by the protospacer-adjacent motif (PAM). To expand the target scope, it is crucial to develop a CRISPR toolbox capable of recognizing multiple PAMs. Here, using a GFP-activation assay, we tested the activities of 29 type II-C orthologs closely related to Nme1Cas9, 25 of which are active in human cells. These orthologs recognize diverse PAMs with variable length and nucleotide preference, including purine-rich, pyrimidine-rich, and mixed purine and pyrimidine PAMs. We characterized in depth the activity and specificity of Nsp2Cas9. We also generated a chimeric Cas9 nuclease that recognizes a simple N4C PAM, representing the most relaxed PAM preference for compact Cas9s to date. These Cas9 nucleases significantly enhance our ability to perform allele-specific genome editing.

Editor’s evaluation This work is relevant to all who are interested in genome editing. The versatile Cas9 nuclease has enabled creative genome editing applications, yet the targetable sequence space is limited by the PAM specificity of the Cas9 RNP. This manuscript expands the Cas9 toolbox by defining the PAM specificity and genome editing activity of a large group of smaller-sized type II-C Cas9s. The results also contribute to our understanding of the diversity of Cas enzymes and show that there is a significant potential in mining for non-trivial genome editing tools amongst highly similar Cas orthologs.

Introduction RNA-guided CRISPR/Cas9 was originally identified as part of the microbial adaptive immune system, which contains three crucial components: a Cas9 endonuclease, a CRISPR RNA (crRNA), and a trans-activating CRISPR RNA (tracrRNA) (Koonin et al., 2017; Deltcheva et al., 2011). These three components constitute an active ribonucleaseprotein complex to recognize and cleave foreign DNA (Gasiunas et al., 2012; Jinek et al., 2012). To recognize foreign DNA, the target sequence should contain (i) a complementary sequence with the crRNA and (ii) a protospacer-adjacent motif (PAM) immediately downstream of the target (Jinek et al., 2012). The PAM allows this system to differentiate between the DNA target in invading genetic material (non-self) and the same DNA sequence encoded within CRISPR arrays (self) (Mojica et al., 2009).

The competitive coevolution of CRISPR/Cas9 systems with different evolving viruses leads to acceptance of diverse PAMs across the Cas9 nucleases (Collias and Beisel, 2021; Gasiunas et al., 2020).
For instance, SpCas9 recognizes an NGG PAM (Jiang et al., 2013; Qi et al., 2020; Wang et al., 2019; Xie et al., 2017); SaCas9 recognizes an NNGRRT PAM (R=A, G) (Ran et al., 2015); CjCas9 recognizes an N4RYAC (Y=C, T) PAM (Kim et al., 2017); St1Cas9 recognizes an NNNGRRAA PAM (Aguadelo et al., 2020); BlatCas9 recognizes an N4CNAA PAM (Gao et al., 2020). A recent study screened a list of 79 Cas9 orthologs and identified multiple PAMs, including A, C, T, and G-rich nucleotides, from single-nucleotide recognition to sequence strings longer than four nucleotides (Gasiunas et al., 2020).

Several studies have revealed that even phylogenetically closely related Cas9 orthologs may recognize distinct PAMs (Edraki et al., 2019; Hu et al., 2021). In this study, ‘closely related Cas9 orthologs’ means that these orthologs have >50% sequence identity and can recognize each other’s processed crRNA:tracrRNA duplexes as the guide RNA (gRNA). SpCas9 and SaCas9 are representative type II-A Cas9 nucleases (Edraki et al., 2019; Cong et al., 2013; Chatterjee et al., 2018). ScCas9 has 83.3% sequence identity with SpCas9 and recognizes an NNG PAM (Chatterjee et al., 2018). SmacCas9 has 58.4% sequence identity with SpCas9 and recognizes an NAA PAM (Chatterjee et al., 2020). We recently identified four Cas9 orthologs that are closely related to SaCas9 and recognized NNGG, NNRR, and NNGGV PAMs (V=A, C, G), respectively (Hu et al., 2021; Hu et al., 2020). However, type II-C Cas9 nucleases account for nearly half of the total type II Cas9s (Shmakov et al., 2017), but their PAM diversity within closely related orthologs remains largely unknown.

The CRISPR/Cas9 system is a powerful tool for genome editing (Xie et al., 2017). By fusing catalytically disabled Cas9 protein to other enzymes, the CRISPR/Cas9 system has been used for base editing (Gaudelli et al., 2017; Komor et al., 2016), primer editing (Anzalone et al., 2019), and gene activation/repression (Konermann et al., 2015; Gilbert et al., 2013). These new applications need the Cas9-guide RNA (gRNA) complex to precisely target genomic sites. Engineered Cas9 variants with flexible PAMs can increase targeting scope. For example, SaCas9 was engineered to accept an NNNRRT PAM (Kleinistiver et al., 2015); SpCas9 was engineered to accept almost all PAMs (Walton et al., 2020), but this strategy is time-consuming, and often comes at a cost of the reduced on-target activity. Another strategy is to harness natural Cas9 nucleases for genome editing. We have developed several closely related Cas9 orthologs for genome editing (Ran et al., 2015; Wang et al., 2022). The advantage of developing tools from closely related Cas9 orthologs is that they can exchange the PAM-interacting (PI) domain. If an ortholog recognizes a particular PAM but does not work efficiently in human cells, we can use this ortholog PI to replace another ortholog PI to generate a chimeric Cas9.

Several type II-C Cas9s, including NmeCas9 (Hou et al., 2013), Nme2Cas9 (Edraki et al., 2019), CjCas9 (Kim et al., 2017), GeoCas9 (Harrington et al., 2017), BlatCas9 (Gao et al., 2020), and PpCas9 (Fedorova et al., 2020) have been developed for genome editing. Nme1Cas9 is a representative type II-C ortholog that was first developed for genome editing in 2013 (Hou et al., 2013; Mali et al., 2013). It is a compact and high-fidelity enzyme but recognizes a long PAM. To expand the targeting scope, Edraki et al. investigated two Nme1Cas9 orthologs (Nme2Cas9 and Nme3Cas9) and demonstrated that Nme2Cas9 recognized a simple N4CC PAM (Edraki et al., 2019). In this study, we investigated the editing capacity of 29 Nme1Cas9 orthologs, 25 of which were active in human cells. These orthologs recognized diverse PAMs with variable length and nucleotide preference. Importantly, based on these orthologs, we generated a chimeric Cas9 nuclease that recognized a simple N3,C PAM for genome editing. These Cas9 nucleases significantly enhance our ability for precise targeting.

Results
Investigation of PAM diversity within Nme1Cas9 orthologs
To investigate the PAM diversity within Nme1Cas9 orthologs, we selected 29 Nme1Cas9 orthologs from the UniProt database (UniProt Consortium, T, 2018) using Nme1Cas9 as a reference (Figure 1—figure supplement 1 and Table 1). The amino-acid identities of Nme1Cas9 varied from 59.6% to 70.4%. A previous structural study had shown that residues Q981, H1024, T1027, and N1029 in the Nme1Cas9 PI domain are crucial for PAM recognition (Sun et al., 2019). Amino acid sequence alignment revealed that 28 selected orthologs differed in at least one residue corresponding to the four residues of Nme1Cas9 (Figure 1—figure supplement 2A-C), indicating that these orthologs may recognize distinct PAMs. BdeCas9 had the same four residues as Nme1Cas9. Nme1Cas9 H1024 forms hydrogen bonds with the fifth nucleotide of the N4GATT PAM (Sun et al., 2019). According to the amino acids corresponding to the Nme1Cas9 H1024, the orthologs selected here could be divided...
into three groups, which contained aspartate (D), histidine (H), and asparagine (N) residues, respectively (Figure 1—figure supplement 2A-C).

Next, we investigated the conservation of the CRISPR direct repeat sequences and tracrRNA sequences among Nme1Cas9 orthologs. Both direct repeats and putative tracrRNAs were identified for 26 Cas9 orthologs. Sequence alignment revealed that direct repeats and the 5’ end of tracrRNAs were conserved among Nme1Cas9 orthologs (Figure 1—figure supplement 3A-B). We generated

UniProt ID	Host strain	Name	Length (aa)	Identity to Nme1Cas9 (%)
A0A011P7F8	Mannheimia granulomatis	MgrCas9	1,049	65.5
A0A0A2YBT2	Gallibacterium anatis IPDH697-78	GanCas9	1,035	59.7
A0A10YQ19	Neisseria arctica	NarCas9	1,070	70.4
A0A1T0B6J6	[Haemophilus felis]	HfeCas9	1,058	65.3
A0A1X3DFB7	Neisseria dentiae	NdeCas9	1,074	66.4
A0A263HCH5	Actinobacillus seminis	AseCas9	1,059	66
A0A2M8S290	Conservatibacter flavescens	ClfCas9	1,063	64.2
A0A2U0SK41	Pasteurella langaensis DSM 22999	PlaCas9	1,056	63.9
A0A356E7S3	Pasteurellaceae bacterium	PstCas9	1,076	63
A0A369Z1C7	Haemophilus parainfluenzae	Hpa1Cas9	1,056	64.8
A0A369Z3K3	Haemophilus parainfluenzae	Hpa2Cas9	1,054	65.2
A0A377J007	Haemophilus pittmaniae	HpiCas9	1,053	65.2
A0A378UFN0	Bergenella denitrificans (Neisseria denitrificans)	BdeCas9	1,069	68.8
A0A379B6M0	Pasteurella maini	PmaCas9	1,061	63.1
A0A379CB86	Phocoenobacter uteri	PutCas9	1,059	63
A0A380MYP0	Suttonella indologenes	SinCas9	1,071	67.8
A0A3N3EE71	Neisseria animalis	Nan1Cas9	1,074	66.6
A0A354XT82	Neisseria animaloris	Nan2Cas9	1,078	65.4
A0A420XER8	Otariodibacter oris	OorCas9	1,058	64.4
A0A448K7T0	Pasteurella aerogenes	PaeCas9	1,056	68.2
A0A4S2QB06	Rodentibacter pneumotropicus	RpnCas9	1,055	63.7
A0A4Y9GBC9	Neisseria sp. WF04	Nsp2Cas9	1,067	59.6
A6VLA7	Actinobacillus succinogenes (strain ATCC 55618/DSM 22257/1302)	AsuCas9	1,062	64.6
C551N0	Actinobacillus minor NM305	AmiCas9	1,056	67.7
E0F2V7	Actinobacillus pleuropneumoniae serovar 10 str. D13039	ApsCas9	1,054	65.4
F2B8K0	Neisseria bacilliformis ATCC BAA-1200	NbaCas9	1,077	66.5
J4KDT3	Haemophilus sputorum	HspCas9	1,052	65.2
V9H606	Simonsiella muelleri ATCC 29453	SmuCas9	1,063	62.2
W0Q6X6	Mannheimia sp. USDA-ARS-USMARC-1261	MspCas9	1,047	65.7
single guide RNA (sgRNA) scaffolds for these orthologs by fusing the 3’ end of a truncated direct repeat with the 5’ end of the corresponding tracrRNA, including the full-length tail, via a 4-nt linker. The RNAfold web server predicted that these sgRNAs contained a conserved stem loop at each end, similar to the Nme1Cas9 sgRNA (Figure 1—figure supplement 4). Twenty orthologs contained one stem loop in the middle, while six orthologs contained two stem loops in the middle.

Next, the human-codon-optimized Nme1Cas9 orthologs were synthesized and cloned into the Nmecas9_AAV plasmid backbone (Edraki et al., 2019). The expression of each Cas9 protein was confirmed by Western blot (Figure 1—figure supplement 5). We used a previously developed PAM-screening assay (Hu et al., 2020) to determine their PAMs. This is a GFP-activation assay where a 24-nt protospacer followed by an 8 bp random sequence was inserted between the ATG start codon and GFP-coding sequence, resulting in a frameshift mutation. The library was stably integrated into the human genome (HEK293T cells) using a lentivirus. If a Cas9 ortholog enables editing the protospacer, it will generate insertions/deletions (indels) at the protospacer and induce GFP expression in a portion of cells (Figure 1A–B). The Nme1Cas9 sgRNA scaffold was used for all Cas9 orthologs in this study. Each Cas9 expression plasmid was co-transfected with an sgRNA plasmid into the cell library. The cells without transfection were included as a negative control, and Nmecas9 was included as a positive control. Five days after transfection, GFP-positive cells were observed for 25 orthologs through fluorescence microscope. The percentage of GFP-positive cells varied from ~0.01% to 0.18%, as revealed by flow cytometry analysis (Figure 1C).

Next, we analyzed the PAM for each active ortholog. The GFP-positive cells were sorted by flow cytometry, and the protospacer and the 8 bp random sequence were PCR-amplified for deep sequencing. The sequencing results revealed that indels were generated at the target site (Figure 2A). We generated the WebLogo diagram for each ortholog based on deep sequencing data. Typically, Nme1Cas9 orthologs displayed minimal or no base preference at PAM positions 1–4. For the orthologs that potentially require PAMs longer than 8 bp, we shifted the target sequence by three nucleotides in the 5’ direction to allow PAM identification to be extended from 8 to 11 bp.

Interestingly, Nme1Cas9 orthologs recognized diverse PAMs (Figure 2B–C and Figure 2—figure supplement 1). Generally, they displayed strong nucleotide preferences for up to four base pairs. When orthologs contained an aspartate (D) residue corresponding to the Nme1Cas9 H1024, they displayed a strong C preference at PAM position 5 (Figure 2B); when orthologs contained histidine (H), or asparagine (N) residues corresponding to the Nme1Cas9 H1024, they displayed a strong R (R=A or G) preference at PAM position 5 (Figure 2C). The length of PAM recognition varied between 5 and 11 base pairs. Nmecas9 recognized an N4CC PAM, consistent with a previous report (Edraki et al., 2019). BdeCas9 recognized an N4GATT PAM that was the same as Nme1Cas9 (Hou et al., 2013). In addition, many orthologs displayed degenerate PAM recognition (e.g. HpiCas9, MgrCas9, and NbaCas9).

We have generated calculated structural models of these orthologs in complex with sgRNA and DNA using the crystal structure of Nme1Cas9 (PDB ID: 6JDV). Some specificity shifts can be well explained by these structural models. When the amino acid near the 5 position of the PAM is histidine, its side chain forms a potential hydrogen bond with the 6-hydroxyl group of guanine. Replacement of this guanine by cytosine or thymine would cause a major clash, whereas adenine lacks the hydroxyl group to form hydrogen bond with the histidine (Figure 2—figure supplement 2A). Likewise, an aspartate at 5 position of the PAM would favor a specific recognition of cytosine via hydrogen bonding with its 4-amine group, but not of other bases that may either result in major clash or abolish the hydrogen bond (Figure 2—figure supplement 2B). Similar explanation applies also to the apparent specificity between glutamine and adenine at the 8 position of the PAM on the target sequence (TS, Figure 2—figure supplement 2C).

Nsp2Cas9 enables genome editing for endogenous sites

We tested the optimized crRNA length for Nsp2Cas9. We designed a series of crRNAs varied from 18 to 26 nt to target GRIN2B gene. The results showed that 22–26 nt crRNA activities were comparable (Figure 3—figure supplement 1). The 22 nt crRNA was used in the following study. To test whether Nsp2Cas9 enables genome editing for endogenous targets in human cells, we selected a panel of 19 targets. Nmecas9 has the same expression backbone as Nsp2Cas9 and was used for side-by-side
Figure 1. Screening of Nme1Cas9 orthologs activities through a GFP-activation assay. (A) Schematic of the GFP-activation assay. A protospacer flanked by an 8 bp random sequence is inserted between the ATG start codon and GFP-coding sequence, resulting in a frameshift mutation. The library DNA is stably integrated into HEK293T cells via lentivirus infection. Genome editing can lead to in-frame mutation. The protospacer sequence is shown below. (B) The procedure of the GFP-activation assay. Cas9 and sgRNA expression plasmids were co-transfected into the reporter cells. GFP-positive cells could
comparison (Figure 3A). Western blot analysis revealed that their protein expression levels were comparable (Figure 3B). Five days after transfection of Cas9 and sgRNA expression plasmids, cells were harvested, and genomic DNA was extracted for targeted deep sequencing. The results revealed that Nsp2Cas9 and Nme2Cas9 displayed comparable editing activity, although the activities varied depending on the targets (Figure 3C–D). We tested Nsp2Cas9 editing capacity in additional cell lines, including HeLa, HCT116, A375, SH-SY5Y, and mouse N2a cells, and it could also generate indels in these cells with varying efficiencies (Figure 3—figure supplement 2A–E). In summary, these results demonstrated that Nsp2Cas9 could serve as a new player for genome editing.

It has been reported that residues S593 and W596 in Nme1Cas9 play vital roles in cleavage activity. Replacement of the single or double residues with arginine could increase the cleavage activity of Nme1Cas9 in vitro (Sun et al., 2019). To test whether these two residues could influence Nsp2Cas9 activity, we identified the corresponding residues S597 and W600 in Nsp2Cas9 by protein sequence alignment and replaced the single or double residues with arginine. To test the activities of the resulting Cas9 variants, we constructed a GFP-activation cell line that was similar to the PAM-screening construct but with a fixed PAM (Figure 3—figure supplement 3A). The editing activities could be reflected by the GFP-positive cells. However, five days after genome editing, the results showed that single or double mutation variants could not improve the editing activities (Figure 3—figure supplement 3B).

NarCas9 enables genome editing for endogenous sites

In addition to Nsp2Cas9, we also tested the editing ability of NarCas9, which recognizes a simple N4C PAM. Five days after transfection of NarCas9 and sgRNA expression plasmids, the cells were harvested, and genomic DNA was extracted for targeted deep sequencing. The results showed that NarCas9 could generate indels in both HEK293T and HeLa cells, but the efficiency was low (Figure 3—figure supplement 3A–C). SmuCas9 also recognizes a simple N4C PAM, but it exhibited minimal activity in the PAM-screening assay, and we did not study this further.

A chimeric Cas9 nuclease enables genome editing for endogenous sites

We and others have demonstrated that swapping the PI domain between closely related orthologs can generate a chimeric nuclease that recognizes distinct PAMs (Edraki et al., 2019; Chatterjee et al., 2020; Hu et al., 2020). To expand the targeting scope, we replaced the Nsp2Cas9 PI with SmuCas9 PI, resulting in a chimeric Cas9 nuclease that we named ‘Nsp2-SmuCas9’ (Figure 4A). The PAM-screening assay revealed that Nsp2-SmuCas9 could induce GFP expression (Figure 4—figure supplement 1A). Deep sequencing analysis revealed that Nsp2-SmuCas9 recognized an N4C PAM (Figure 4B–C). We tested the activities of Nsp2-SmuCas9 in a panel of 12 endogenous targets that have been used for NarCas9. Targeted deep sequencing revealed that Nsp2-SmuCas9 could efficiently induce indels at these sites (Figure 4D). Importantly, Nsp2-SmuCas9 displayed higher activities than NarCas9 (Figure 4E).

We also replaced the Nsp2Cas9 PI with NarCas9 PI to generate a chimeric Nsp2-NarCas9; replaced the Nme2Cas9 PI with SmuCas9 PI to generate a chimeric Nme2-SmuCas9; replaced Nme2Cas9 PI with NarCas9 PI to generate a chimeric Nme2-NarCas9. The PAM-screening assay revealed that only
Figure 2. PAM analysis for each Cas9 nuclease. (A) Example of indel sequences measured by deep sequencing for Nsp2Cas9. The GFP coding sequences are shown in green; an 8 bp random sequence is shown in orange; black dashes indicate deleted bases; red bases indicate insertion mutations. (B) The PAM WebLogos for Nme1Cas9 orthologs containing an aspartate residue corresponding to the Nme1Cas9 H1024. PAM positions for each WebLogo are shown below. The PAM WebLogos for Nme2Cas9, Nsp2Cas9, PutCas9, SmuCas9, NarCas9, PstCas9 are generated from the first round of PAM screening. (C) The second round of PAM screening for PaeCas9, HfeCas9, MgrCas9, NbaCas9, AmiCas9, SinCas9, BdeCas9, NdeCas9, Hpa2Cas9, Nan2Cas9, RpnCas9, HspCas9, CfiCas9.
Nme2-SmuCas9 could induce GFP expression (Figure 4—figure supplement 1A). Deep sequencing analysis revealed that Nme2-SmuCas9 recognized an N4C PAM (Figure 4—figure supplement 1B-C). We tested the activities of Nme2-SmuCas9 in a panel of 12 endogenous targets that have been used for NarCas9. Targeted deep sequencing revealed that Nme2-SmuCas9 could induce indels at two sites (Figure 4—figure supplement 1D). These data demonstrated that Nme2-SmuCas9 activity is low.

We generated structural models of Nsp2-NarCas9, Nsp2-SmuCas9, and NarCas9 using the crystal structure of highly homologous Nme1Cas9 in complex with sgRNA and dsDNA (PDB ID: 6JDV) as the template by SWISS-MODEL. By superimposing these models, we noticed that residues G1035, K1037 and T1038 of Nsp2-NarCas9 chimera protrude towards the DNA molecule, which would prevent the binding with DNA and thereby abolishing the editing activity (Figure 4—figure supplement 2A). In comparison, Nsp2-SmuCas9 and NarCas9, which possess the Cas activity, show no protrusion at the corresponding position (Figure 4—figure supplement 2B-C). When Nme2-NarCas9 was analyzed by the same method, 1052 Arg will crash with the DNA strand, leading to a failure of binding with DNA. The predicted result revealed that the Nme2-SmuCas9 1052 Arg also crash with the DNA strand, which may lead to low editing efficiency (Figure 4—figure supplement 3A-B).

Activity comparison

Next, we compared the activity of Nsp2Cas9 and Nsp2-SmuCas9 to the extensively used Cas9 variants, including wild-type SpCas9 (SpCas9-WT) (Cong et al., 2013), SpCas9-NG (Nishimasu et al., 2018), and SpCas9-RY (Walton et al., 2020). We cloned these Cas9 variants into identical plasmid backbones (Figure 5A). Western blot analysis revealed that their protein expression levels were comparable (Figure 5B). We compared their activities with a panel of 11 targets. After 5 days of genome editing, targeted deep sequencing results revealed that SpCas9 was the most active enzyme. Nsp2Cas9, SpCas9-NG, and SpCas9-RY displayed similar activity. Nsp2-SmuCas9 displayed lower activities than other Cas9 variants (Figure 5C-D).

Analysis of Nsp2Cas9 specificity

Next, we analyzed Nsp2Cas9 specificity by using the GFP-activation assay, and Nme2Cas9 was used for comparison. We generated a panel of 11 sgRNAs with dinucleotide mismatches. Five days after co-transfection of Nsp2Cas9 with individual sgRNAs, GFP-positive cells were analyzed by using a flow cytometer. The results showed that Nsp2Cas9 displayed moderate off-target effects with some sgRNAs (sgRNAs M1, M4, M8, M9, and M10) (Figure 6A). In contrast, Nme2Cas9 was a highly specific enzyme that did not tolerate dinucleotide mismatches (sgRNAs M2-M11), consistent with a previous study (Edraki et al., 2019).

To further compare the specificity of Nsp2Cas9 and Nme2Cas9, we performed genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) (Kleinsteiver et al., 2015). Three endogenous sites targeting GRIN2B, VEGFA and AAVS1 were selected. Five days after electroporation of the Cas9 expression plasmid with GUIDE-seq oligos into HEK293T cells, libraries were prepared for deep sequencing. The sequencing analysis revealed that both Cas9 nucleases could robustly generate indels at three on-targets, as reflected by the high GUIDE-seq read counts (Figure 6B). We only detected one off-target site for Nsp2Cas9 on the GRIN2B target (Figure 6B).
Figure 3. Nsp2Cas9 enables editing in HEK293T cells. (A) Schematic of Cas9 and sgRNA expression constructs. U1A: U1A promoter; pA: polyA; NLS: nuclear localization signal; HA: HA tag. (B) Protein expression levels of Nsp2Cas9 and Nme2Cas9 were analyzed by Western blot. HEK293T cells without Cas9 transfection were used as negative control (NC). (C) Comparison of Nsp2Cas9 and Nme2Cas9 editing efficiencies at 19 endogenous loci in Figure 3 continued on next page
Analysis of Nsp2-SmuCas9 specificity

Next, we analyzed Nsp2-SmuCas9 specificity by using the GFP-activation assay. Nsp2-SmuCas9 enzyme showed a minimal or background level of off-target effects with mismatched sgRNAs (Figure 7A). Next, GUIDE-seq was performed to test the specificity of Nsp2-SmuCas9. We selected three target sites containing N4C PAMs. The results revealed that one off-target cleavage occurred on the EMX1 target (Figure 7B). Altogether, these results demonstrated that Nsp2Cas9 and Nsp2-SmuCas9 offered new platforms for genome editing.

Discussion

Type II CRISPR/Cas9, including subtypes II-A, -B, and -C, is the most common class 2 system found in bacteria and archaea (Makarova et al., 2015). We and others previously demonstrated that closely related type II-A orthologs preferred variable but purine-rich PAMs (Hu et al., 2021; Chatterjee et al., 2018; Chatterjee et al., 2020; Hu et al., 2020; Wang et al., 2022). The PAM diversity was also observed within the closely related type V-A orthologs, where Cas12a nucleases recognize the canonical TTTV (V=A/C/G) motif but notable deviations of nucleotide preference existed (Jacobsen et al., 2020). In this study, we investigated the PAM diversity within closely related type II-C orthologs. We identified PAMs for 25 Nme1Cas9 orthologs, significantly extending the list of type II-C Cas9 PAMs. These PAMs included purine-rich (e.g. PaeCas9 and HfeCas9), pyrimidine-rich (e.g. Nsp2Cas9 and Nan1Cas9), and mixed purine and pyrimidine (e.g. HpiCas9 and NdeCas9) PAMs, which are more diverse than those identified from type II-A and type V-A orthologs. The PAM length also varied dramatically from a single nucleotide (e.g. NarCas9) to up to 11 nucleotides (e.g. CflCas9). These findings have increased knowledge of PAM diversity within type II-C Cas9s.

Our study offers new Cas9 tools for genome editing. We demonstrated that Nsp2Cas9 was an efficient enzyme for genome editing. By swapping PIs between two Cas9s, we generated a chimeric Nsp2-SmuCas9 that recognizes a simple N4C PAM. To our knowledge, the N4C PAM is the most relaxed PAM recognized by compact Cas9 orthologs identified to date. Based on PAMs identified in this study, more chimeric Cas9s can be developed to expand targeting scope. For clinical applications, it is crucial to develop a CRISPR toolbox capable of recognizing multiple PAMs. For example, allele-specific gene disruption through non-homologous end joining (NHEJ) is a potential strategy to treat autosomal dominant diseases (Gao et al., 2018; Diakatou et al., 2021), where the causative gene is haplosufficient. Autosomal dominant diseases are mainly caused by single-nucleotide missense mutations (Guo et al., 2013). If missense mutations form novel PAMs, CRISPR/Cas9 nucleases can disrupt mutant alleles by a PAM-specific approach (Diakatou et al., 2021; Courtney et al., 2016). With
Figure 4. Characterization of Nsp2-SmuCas9 for genome editing. (A) Schematic diagram of chimeric Cas9 nucleases based on Nsp2Cas9. PI domain of Nsp2Cas9 was replaced with the PI domain of SmuCas9. (B) Sequence logos and (C) PAM wheel diagrams indicate that Nsp2-SmuCas9 recognizes an N4C PAM. (D) Nsp2-SmuCas9 generated indels at endogenous sites with N4C PAMs in HEK293T cells. Indel efficiencies were determined by targeted deep sequencing. NarCas9 is used as a control. Data represent mean ± SD for n=3 biologically independent experiments. (E) Quantification of the Figure 4 continued on next page
further development, we anticipate that CRISPR tools from type II-C Cas9 orthologs can play a vital role in therapeutic applications.

Materials and methods

Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Gene (Homo sapiens)	AAVS1	GenBank	HGNC.HGNC:22	
Gene (Homo sapiens)	VEGFA	GenBank	HGNC.HGNC:12680	
Gene (Homo sapiens)	EMX1	GenBank	HGNC.HGNC:3340	
Gene (Homo sapiens)	GRIN2B	GenBank	HGNC.HGNC:4586	
Recombinant DNA reagent	Instant Sticky-end Ligase Master Mix	NEB	Catalog #: M03705	
Recombinant DNA reagent	T4 DNA ligase	NEB	Catalog #: M002S	
Cell line (Homo sapiens)	HEK293T (normal, Adult)	ATCC	CRL-3216	
Cell line (Homo sapiens)	HeLa	ATCC	CRM-CCL-2	
Cell line (Homo sapiens)	SH-SYSY	ATCC	CRL-2266	
Cell line (Homo sapiens)	A375 (normal, Adult)	ATCC	CRL-1619	
Cell line (Homo sapiens)	HCT116 (adult male)	ATCC	CCL-247	
Cell line (Mus musculus)	N2a cells (mouse neuroblasts)	ATCC	CCL-131	
Antibody	Anti-HA (rabbit polyclonal)	abcam	abcam: ab137838; RRID:AB_262051; 1:1000	
Antibody	Anti-GAPDH (rabbit polyclonal)	Cell Signaling	Cell Signaling:#3683; RRID:AB_307275; 1:1000	
Sequence-based reagent	dsODN-F	This paper	dsODN oligo primer	5’-P-G*T*T TAAATTGAGTTGTCATATGTTAATAACGGT*A*T-3’
Sequence-based reagent	dsODN-R	This paper	dsODN oligo primer	5’-P-A*T*A CCGTTATTAACATGACAACCACTAATTAA*A*C-3’

Continued on next page
Continued

Plasmid construction

Cas9 expression plasmid construction

The plasmid Nme2Cas9_AAV (Addgene #119924) was amplified by the primers Nme2Cas9-F/Nme2Cas9-R to obtain the Nme2Cas9_AAV backbone. The human codon-optimized Cas9 gene ([Supplementary file 1](#)) was synthesized by HuaGene (Shanghai, China) and cloned into the Nme2Cas9_AAV backbone by the NEBuilder assembly tool (NEB) according to the manufacturer’s instructions. Sequences of each Cas9 were confirmed by Sanger sequencing (GENEWIZ, Suzhou, China). The maps of all plasmids used in the study are packaged in Figure 1—source data 1. The primer sequences for the Nme2Cas9_AAV backbone, variants of Nsp2Cas9 and chimeric Cas9 nucleases are listed in [Supplementary file 1](#). Single-guide RNA sequences for each Cas9 are listed in [Supplementary file 2](#).

sgRNA expression plasmid construction

The sgRNA expression plasmids were constructed by ligating sgRNA into the Bsa1-digested U6-Nme2_scaffold plasmid, which is the same as Nme1-scaffold. The primer sequences and target sequences are listed in [Supplementary file 3](#) and [Supplementary file 4](#), respectively.

Cell culture and transfection

The cell culture reagents were purchased from Gibco unless otherwise indicated. HEK293T, HeLa, SH-SYSY, A375 and N2a cell lines were maintained in Dulbecco’s modified Eagle’s medium (DMEM). HCT116 cells were cultured in McCoy’s 5 A medium (Gibco). All cell cultures were supplemented with 10% fetal bovine serum (FBS) (Gibco) that was inactivated at 56 °C for 30 min and 1% penicillin-streptomycin (Gibco). All cell cultures were maintained in a humidified incubator at 37 °C and 5% CO₂. All cell lines identities were validated by STR profiling (ATCC) and repeatedly tested for mycoplasma by PCR.

HEK293T, HeLa, and N2a cells were transfected with Lipofectamine 2000 (Life Technologies) according to the manufacturer’s instructions. SH-SYSY, A375, and HCT116 cells were transfected with...
Figure 5. Comparison of indel efficiency between Nsp2Cas9, Nsp2-SmuCas9, and SpCas9. (A) Schematic of Cas9 and sgRNA expression constructs. U1A: U1A promoter; pA: polyA; NLS: nuclear localization signal; HA: HA tag. (B) Protein expression levels of Nsp2Cas9, Nsp2-SmuCas9, and SpCas9 were analyzed by western blot. HEK293T cells without Cas9 transfection were used as a negative control (NC). (C) The editing efficiencies of Nsp2Cas9, Nsp2-SmuCas9, and SpCas9 varied depending on the target sites. The PAM sequences (NGGNCC) were shown below. Data represent mean ± SD for Figure 5 continued on next page
Lipofectamine 3000 (Life Technologies) according to the manufacturer’s instructions. For transient transfection, a total of 300 ng Cas9-expressing plasmid and 200 ng sgRNA plasmid were co-transfected into a 48-well plate. For Cas9 PAM sequence screening, 1.2×10^7 HEK293T cells were transfected with 10 μg of Cas9 plasmid and 5 μg of sgRNA plasmid in 10 cm dishes.

Flow cytometry analysis

Transfected library cells with a certain percentage of GFP-positive cells were collected by centrifugation at 1000 rpm for 5 min and resuspended in PBS. Then, GFP-positive cells were collected by flow cytometry and cultured in six-well plates. Five days after culture, we extracted the genome and built deep sequencing libraries.

PAM sequence analysis

Twenty-base-pair sequences (AAGCCTTTGTTCACCAGTGATCAGGCGGAGCT) flanking the target sequence (GAGATACTAGAGGCCTGCCGTAAGTGGCGAGCT) were used to fix the target sequences. CTG and GTGAGCAAGGGCG AGGAGCT were used to fix 8 bp random sequences. Target sequences with in-frame mutations were used for PAM analysis. The 8 bp random sequence was extracted and visualized by WebLogo (Crooks et al., 2004) and a PAM wheel chart to identify PAMs (Leenay et al., 2016). The median coverage of every individual PAM variant and the number of unique PAM sequences are listed in Figure 2—source data 1.

Genome editing and deep sequencing analysis of indels for endogenous sites

Cells were seeded into 48-well plates one day prior to transfection and transfected at 70–80% confluency using Lipofectamine 2000 (Life Technologies) following the manufacturer’s recommended protocol. For genome editing, 10^5 cells were transfected with a total of 300 ng of Cas9 plasmid and 200 ng of sgRNA plasmid in 48-well plates. Five days after transfection, the cells were harvested, and genomic DNA was extracted in QuickExtract DNA Extraction Solution (Epicenter). To measure indel frequencies, the target sites were amplified by two rounds of nested PCR to add the Illumina adaptor sequence. The PCR products (~400 bp in length) were gel-extracted by a QIAquick Gel Extraction Kit (QIAGEN) for deep sequencing.

Western blot analysis

HEK293T cells were seeded into 24-well plates. The next day, the Cas9-expressing plasmid (800 ng) was transfected into cells using Lipofectamine 2000 (Invitrogen). Three days after transfection, cells were collected and resuspended in cell lysis buffer for Western blotting and IP (Beyotime) supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF) (Beyotime). Cell lysates were then centrifuged at 12,000 rpm for 20 min at 4 °C, and the supernatants were collected and mixed with 5 x loading buffer followed by boiling at 95 °C for 10 min. Equal amounts of protein samples were subjected to SDS-PAGE, followed by transfer to polyvinylidene difluoride (PVDF) membranes (Merck, Darmstadt, Germany). The PVDF membranes were blocked with 5% BSA in TBST for 1 hr at room temperature and then incubated with the anti-HA antibody (1:1000; Abcam) and anti-GAPDH antibody (1:1000; Cell Signaling) at 4 °C overnight.

The membrane was washed three times in TBS-T for 5 min each time. The membranes were incubated in the secondary goat anti-rabbit antibody (1:10,000; Abcam) for 1 hr at room temperature. The membranes were then washed with TBST buffer three times and imaged.
To test the specificity of Nsp2Cas9 and Nsp2-SmuCas9, we generated a GFP reporter cell line with a fixed PAM (5'-CGTTCC-3'). HEK293T cells were seeded into 48-well plates and transfected with 300 ng of Cas9 plasmids and 200 ng of sgRNA plasmids by using Lipofectamine 2000. Five days after transfection, the GFP-positive cells were digested and centrifuged at 1000 rpm for 3 min, and the cells were resuspended in phosphate-buffered saline (PBS). Finally, the cells were analyzed on a Calibur instrument (BD). The data were analyzed using the FlowJo software.

Figure 6. Analysis of Nsp2Cas9 specificity. (A) Analysis of Nsp2Cas9 and Nme2Cas9 specificity with a GFP-activation assay. A panel of sgRNAs with dinucleotide mutations (red) is shown below. The editing efficiencies reflected by ratio of GFP-positive cells are shown. Data represent mean ± SD for n=3 biologically independent experiments. (B) GUIDE-seq was performed to analyze the genome-wide off-target effects of Nsp2Cas9 and Nme2Cas9. On-target (indicated by stars) and off-target sequences are shown on the left. Read numbers are shown on the right. Mismatches compared to the on-target site are shown and highlighted in color.

The online version of this article includes the following source data for figure 6:

Source data 1. Source data for the Figure 6A.
Figure 7. Analysis of Nsp2-SmuCas9 specificity. (A) Analysis of Nsp2-SmuCas9 specificity with a GFP-activation assay. A panel of sgRNAs with dinucleotide mutations (red) is shown below. The editing efficiencies reflected by ratio of GFP-positive cells are shown. Data represent mean ± SD for *n=3* biologically independent experiments. (B) GUIDE-seq was performed to analyze the genome-wide off-target effects of Nsp2-SmuCas9. On-target
GUIDE-seq
We performed a GUIDE-seq experiment with some modifications to the original protocol, as described (Tsai et al., 2015). On the day of the experiment, 2x10^5 HEK293T cells per target site were harvested and washed in PBS and transfected with 500 ng of Cas9 plasmid, 500 ng of sgRNA plasmid and 100 pmol annealed GUIDE-seq oligonucleotides through the Neon Transfection System. The electroporation voltage, width, and number of pulses were 1150 V, 20ms, and 2 pulses, respectively. Genomic DNA was extracted with the DNeasy Blood and Tissue kit (QIAGEN) 6 days after electroporation according to the manufacturer’s protocol. The genome library was prepared and subjected to deep sequencing.

Statistical analysis
All data are presented as the mean ± SD. Statistical analysis was conducted using GraphPad Prism 7. Student’s t test or one-way analysis of variance (ANOVA) was used to determine statistical significance between two or more than two groups, respectively. A value of p<0.05 was considered to be statistically significant (*p<0.05, **p<0.01, ***p<0.001). Raw data from all reported summary statistics were listed in Supplementary file 5.

Acknowledgements
We thank supports from mRNA innovation and translation center, Shanghai. This work was supported by grants from the National Key Research and Development Program of China (2021YFA0910602, 2021YFC2701103); the National Natural Science Foundation of China (82070258, 81870199); Open Research Fund of State Key Laboratory of Genetic Engineering, Fudan University (No. SKLGE-2104), Science and Technology Research Program of Shanghai (19DZ2282100); the Natural Science Fund of Shanghai Science and Technology Commission (19ZR1406300).

Additional information

Competing interests
Siqi Gao, Yongming Wang: author on patent application number 202110878452X, “Cas9 protein, gene editing system containing Cas9 protein and application”; this patent relates to the technical field of gene editing, and specifically designs a CRISPR/Cas9 gene editing system and its application. The other authors declare that no competing interests exist.

Funding

Funder	Grant reference number	Author
National Key Research and Development Program of China	2021YFA0910602	Yongming Wang
National Natural Science Foundation of China	82070258	Yongming Wang
Fudan University	No. SKLGE-2104	Yongming Wang
Shanghai Association for Science and Technology	19DZ2282100	Yongming Wang
Shanghai Science and Technology Committee	19ZR1406300	Yongming Wang
Funder | Grant reference number | Author
--- | --- | ---
National Key Research and Development Program of China | 2021YFC2701103 | Yongming Wang
National Natural Science Foundation of China | 81870199 | Yongming Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions
Jingjing Wei, Data curation, Methodology, Writing - original draft; Linghui Hou, Siqi Gao, Methodology; Jingtong Liu, Tao Qi, Data curation; Ziwen Wang, Song Gao, Investigation; Shuna Sun, Resources; Yongming Wang, Resources, Formal analysis, Supervision, Project administration, Writing – review and editing

Author ORCIDs
Ziwen Wang http://orcid.org/0000-0002-1678-7624
Song Gao http://orcid.org/0000-0001-7427-6681
Yongming Wang http://orcid.org/0000-0001-8269-5296

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.77825.sa1
Author response https://doi.org/10.7554/eLife.77825.sa2

Additional files
Supplementary files
- Supplementary file 1. The Cas9 ID and human codon-optimized Cas9 gene. The file contains the Cas9 ID, tracrRNA, and amino acid sequences of Nme1Cas9 orthologs used in this study. The human codon-optimized Cas9 genes were synthesized. The primers used for the chimera’s construction were also listed in this file.
- Supplementary file 2. The single-guide RNA sequence. The single-guide RNA sequence for Nme1Cas9 orthologs and chimeras used in this study.
- Supplementary file 3. Primers used in this study. A list of oligonucleotide pairs and primers used for deep sequencing.
- Supplementary file 4. Target sites used in this study. A list of the endogenous target sites of human and mouse and their downstream PAM. PAM, protospacer adjacent motif.
- Supplementary file 5. Underlying values for all reported summary statistics. Raw data from all reported summary statistics.
- Transparent reporting form

Data availability
All data generated or analysed during this study are included in the manuscript and supporting file.

References
Agudelo D, Carter S, Velimirovic M, Duringer A, Rivest J-F, Levesque S, Loehr J, Mouchiroud M, Cyr D, Waters PJ, Laplante M, Moineau S, Goulet A, Doyon Y. 2020. Versatile and robust genome editing with streptococcus thermophilus CRISPR1-cas9. Genome Research 30:107–117. DOI: https://doi.org/10.1101/gr.255414.119, PMID: 31900288
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157. DOI: https://doi.org/10.1038/s41586-019-1711-4, PMID: 31634902
Chatterjee P, Jakimo N, Jacobson JM. 2018. Minimal PAM specificity of a highly similar spcas9 ortholog. Science Advances 4:eaau0766. DOI: https://doi.org/10.1126/sciadv.aau0766, PMID: 30397647
Chatterjee P, Lee J, Nip L, Koseki SRT, Tysinger E, Sontheimer EJ, Jacobson JM, Jakimo N. 2020. A cas9 with PAM recognition for adenine dinucleotides. Nature Communications 11:2474. DOI: https://doi.org/10.1038/s41467-020-16117-8, PMID: 32424114
Collias D, Beisel CL. 2021. CRISPR technologies and the search for the PAM-free nuclease. Nature Communications 12:555. DOI: https://doi.org/10.1038/s41467-020-20633-y, PMID: 33483498

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/cas systems. Science 339:819–823. DOI: https://doi.org/10.1126/science.1231143, PMID: 23287718

Courtney DG, Moore JE, Atkinson SD, Maurizi E, Allen EHA, Pedrioli DML, McLean WHI, Nesbit MA, Moore CBT. 2016. CRISPR/cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting. Gene Therapy 23:108–112. DOI: https://doi.org/10.1038/gt.2015.82, PMID: 26289666

Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: A sequence logo generator. Genome Research 14:1188–1190. DOI: https://doi.org/10.1101/gr.849004, PMID: 15173120

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chaoy P, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor Rnase III. Nature 471:602–607. DOI: https://doi.org/10.1038/nature09886, PMID: 21455174

Diakatou M, Dubois G, Erkili N, Sanjurjo-Soriano C, Meunier I, Kalatzis V. 2021. Allele-specific knockdown by CRISPR/cas to treat autosomal dominant retinitis pigmentosa caused by the G56R mutation in NR2E3. International Journal of Molecular Sciences 22:2607. DOI: https://doi.org/10.3390/ijms22052607, PMID: 33807610

Edraki A, Mir A, Ibrahim R, Gainetdinov I, Yoon Y, Song C-Q, Cao Y, Gallant J, Xue W, Rivera-Pérez JA, Sontheimer EJ. 2019. A compact, high-accuracy cas9 with A dinucleotide PAM for in vivo genome editing. Molecular Cell 73:714–726. DOI: https://doi.org/10.1016/j.molcel.2018.12.003, PMID: 30581144

Fedorova I, Vasileva A, Selkova P, Abramova M, Arseniev A, Pobegalov G, Kazalov M, Musharova O, Goryanin I, Harrington LB, Paez- Espino D, Staahl BT, Chen JS, Ma E, Kyrpides NC, Doudna JA. 2017. A thermostable cas9 from pasteurella pneumotropica - a compact type II-C cas9 ortholog active in human cells. Nucleic Acids Research 48:12297–12309. DOI: https://doi.org/10.1093/nar/gkaa998, PMID: 33152077

Gao X, Tao Y, Lamas V, Huang M, Yeh W-H, Pan B, Hu Y-J, Hu JH, Thompson DB, Shu Y, Li Y, Wang H, Yang S, Xu Q, Polley DB, Liberman MC, Kong W-J, Holt JR, Chen Z-Y, Liu DR. 2018. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553:217–221. DOI: https://doi.org/10.1038/nature25164, PMID: 29258297

Gao N, Zhang C, Hu Z, Li M, Wei J, Wang Y, Liu H. 2020. Characterization of brevibacillus laterosporus cas9 (blatcas9) for mammalian genome editing. Frontiers in Cell and Developmental Biology 8:583164. DOI: https://doi.org/10.3389/fcell.2020.583164, PMID: 33195228

Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crma ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–E2586. DOI: https://doi.org/10.1073/pnas.1208507109, PMID: 22949671

Gasiunas G, Young JK, Karvelis T, Kazlauskas D, Urbaitis T, Jasnauskaitė M, Grusyte MM, Paulraj S, Wang P-H, Hou Z, Dooley SK, Cigan M, Alarcon C, Chilcoat ND, Bigelyste G, Gurcuru JL, Mabuchi M, Sun Z, Fuchs RT, Schildkraut E, et al. 2020. A catalogue of biochemically diverse CRISPR-cas9 orthologs. Nature Communications 11:5512. DOI: https://doi.org/10.1038/s41467-020-19344-1, PMID: 33139742

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DJ, Liu DR. 2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551:464–471. DOI: https://doi.org/10.1038/nature24644, PMID: 29160308

Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JD, Lim WA, Weissman JS, Qi LS. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. DOI: https://doi.org/10.1016/j.cell.2013.06.044, PMID: 23849981

Guo Y, Wei X, Das J, Grimson A, Lipkin SM, Clark AG, Yu H. 2013. Dissecting disease inheritance modes in a three-dimensional protein network challenges the “guilt-by-association” principle. American Journal of Human Genetics 93:78–89. DOI: https://doi.org/10.1016/j.ajhg.2013.05.022, PMID: 23791107

Harrington LB, Paez-Espino D, Staal BH, Chen JS, Ma E, Kyripides NC, Doudna JA. 2017. A thermostable cas9 with increased lifetime in human plasma. Nature Communications 8:1424. DOI: https://doi.org/10.1038/s41467-017-01408-4, PMID: 29127284

Hou Z, Yang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA. 2013. Efficient genome engineering in human pluripotent stem cells using cas9 from neisseria meningitidis. PNAS 110:15644–15649. DOI: https://doi.org/10.1073/pnas.1313587110, PMID: 23940360

Hu Z, Wang S, Zhang C, Gao N, Li M, Wang D, Wang D, Liu D, Liu H, Ong SG, Wang H, Wang Y. 2020. A compact cas9 ortholog from staphylococcus auricularis (sauricas9) expands the DNA targeting scope. PLOS Biology 18:e3000686. DOI: https://doi.org/10.1371/journal.pbio.3000686, PMID: 32226015

Hu Z, Zhang C, Wang S, Gao S, Wei J, Li M, Hou L, Mao H, Wei Y, Qi T, Liu H, Liu D, Lan F, Lu D, Wang H, Li J, Wang Y. 2021. Discovery and engineering of small slugcas9 with broad targeting range and high specificity and activity. Nucleic Acids Research 49:4008–4019. DOI: https://doi.org/10.1093/nar/gkab148, PMID: 33721016

Jacobson T, Tofafii F, Liao C, Manchulu S, Gray BN, Beisel CL. 2020. Characterization of cas12a nucleases reveals diverse PAM profiles between closely-related orthologs. Nucleic Acids Research 48:5624–5638. DOI: https://doi.org/10.1093/nar/gkaa272, PMID: 32329776

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-cas systems. Nature Biotechnology 31:233–239. DOI: https://doi.org/10.1038/nbt.2508, PMID: 23360965
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. DOI: https://doi.org/10.1126/science.1235829, PMID: 2245249

Kim E, Koo T, Park SW, Kim D, Kim K, Cho H-Y, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim J-S. 2017. In vivo genome editing with a small cas9 orthologue derived from campylobacter jejuni. Nature Communications 8:14500. DOI: https://doi.org/10.1038/ncomms14500, PMID: 28220790

Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK. 2015. Broadening the targeting range of Staphylococcus aureus CRISPR-cas9 by modifying PAM recognition. Nature Biotechnology 33:1293–1298. DOI: https://doi.org/10.1038/nbt.3404, PMID: 26524662

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424. DOI: https://doi.org/10.1038/nature17946, PMID: 27096365

Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Mali P, Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Charpentier E, Hait DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MR, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, et al. 2015. An updated evolutionary classification of CRISPR-cas9 systems. Nature Microbiology 13:722–736. DOI: https://doi.org/10.1038/nmrc.3569, PMID: 26411297

Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM. 2013. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 31:833–838. DOI: https://doi.org/10.1038/nbt.2675, PMID: 23907171

Mojica FJM, Diez-Villaseñor C, García-Martínez J, Almendros C. 2009. Short motif sequences determine the DNA endonuclease in adaptive bacterial immunity. Science 324:2320. DOI: https://doi.org/10.1126/science.1173625, PMID: 19246744

Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano A, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, et al. 2018. Engineered CRISPR-cas9 nuclease with expanded targeting space. Science 361:1259–1262. DOI: https://doi.org/10.1126/science.aas9129, PMID: 30166441

Qi T, Wu F, Xie Y, Gao S, Li M, Pu J, Li D, Lan F, Wang Y. 2020. Base editing mediated generation of point mutations into human pluripotent stem cells for modeling disease. Frontiers in Cell and Developmental Biology 8:590581. DOI: https://doi.org/10.3389/fcell.2020.590581, PMID: 33102492

Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. 2015. In vivo genome editing using Staphylococcus aureus cas9. Nature 520:186–191. DOI: https://doi.org/10.1038/nature14299, PMID: 25830891

Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV. 2017. Diversity and evolution of class 2 CRISPR-cas systems. Nature Reviews. Microbiology 15:169–182. DOI: https://doi.org/10.1038/nrmicro.2016.184, PMID: 28111461

Sun W, Yang J, Cheng Z, Amrani N, Liu C, Wang K, Ibraheem R, Edrahi A, Huang X, Wang M, Wang J, Liu L, Sheng G, Yang Y, Lou J, Sontheimer EJ, Yang W. 2019. Structures of neisseria meningitidis cas9 complexes in catalytically poised and anti-CRISPR-inhibited states. Molecular Cell 76:938–952. DOI: https://doi.org/10.1016/j.molcel.2019.09.023, PMID: 31668930

Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Vyvekens N, Khayer C, Iafrate AJ, Le LP, Aryee MJ, Joung JK. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-cas9 nucleases. Nature Biotechnology 33:187–197. DOI: https://doi.org/10.1038/nbt.3117, PMID: 25513782

UniProt Consortium, T. 2018. UniProt: the universal protein knowledgebase. Nucleic Acids Research 46:2699. DOI: https://doi.org/10.1093/nar/gkx1122, PMID: 29425356

Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. 2020. Unconstrained genome targeting with near-pamless engineered CRISPR-cas9 variants. Science 368:290–296. DOI: https://doi.org/10.1126/science.aba8853, PMID: 32217751

Wang B, Wang Z, Wang D, Zhang B, Ong S-G, Li M, Yu W, Wang Y. 2019. Kr-CRISPR: an easy and efficient strategy for generating conditional knockout of essential genes in cells. Journal of Biological Engineering 13:35. DOI: https://doi.org/10.1186/s13036-019-0150-y, PMID: 31049076

Wang S, Mao H, Hou L, Hu Z, Wang Y, Qi T, Tao C, Yang Y, Zhang C, Li M, Liu H, Hu S, Chai R, Wang Y. 2022. Compact schcas9 recognizes the simple NNGR PAM. Advanced Science 9:e2104789. DOI: https://doi.org/10.1002/advs.202104789, PMID: 34874112

Xie Y, Wang D, Lan F, Wei G, Ni T, Chai R, Liu D, Hu S, Li M, Li D, Wang H, Wang Y. 2017. An epismal vector-based CRISPR/cas9 system for highly efficient gene knockout in human pluripotent stem cells. Scientific Reports 7:2320. DOI: https://doi.org/10.1038/s41598-017-02456-y, PMID: 28539611