Chemical cleaning to evaluate the performance of silica-pectin membrane on acid mine drainage desalination

F R Mustalifah1,3, A Rahma3, Mahmud2, Sunardi4 and M Elma1,3
1 Chemical Engineering Department, Engineering Faculty, Lambung Mangkurat University (ULM), Jalan A. Yani KM 36, Banjarbaru, South Kalimantan, Indonesia 70714
2 Environmental Engineering Department, Engineering Faculty, Lambung Mangkurat University (ULM), Jalan A. Yani KM 36, Banjarbaru, South Kalimantan, Indonesia 70714
3 Materials and Membranes Research Group (M2ReG), Lambung Mangkurat University, Jalan A. Yani KM 36, Banjarbaru, South Kalimantan, Indonesia 70714
4 Chemistry Department, Earth and Science Faculty, Lambung Mangkurat University (ULM), Jalan A. Yani KM 36, Banjarbaru, South Kalimantan, Indonesia 70714
Email: melma@ulm.ac.id

Abstract. Pervaporation process is an excellent and potential way applied for desalting acid mine drainage water. Nevertheless, the water flux was reduced gradually due to the issue of membrane fouling. To resolve this problem, cleaning process was chosen to maintain the water flux of silica-pectin membranes. This study aims to recover the water flux and salt rejection of the silica-pectin membranes via chemical cleaning process applied for acid mine drainage water desalination with various temperature of feed water (25-60 °C). Silica-pectin membrane was formulated by employing TEOS functioning as silica precursor and pectin as carbon template from banana peels. Chemical cleaning of the membrane carried out by employing TiO\textsubscript{2} solution + UV light radiation for an hour. Performance of the silica-pectin membrane was evaluated via pervaporation process under dead-end system. The performance of silica-pectin banana peels membrane found flux recovery from 10.6 kg.m^{-2}.h^{-1} and flux recovery of 17.54 kg.m^{-2}.h^{-1}. It shows that flux recovery higher than before backwashing process. Also, silica-pectin membrane results in all of the salt rejection <99 %. It is concluded that the chemical backwashing process is important to apply to recover the water flux of membrane, also, this process considers to save and reduce the operational costs.

1. Introduction
South Kalimantan, Indonesia has potential of natural mineral resources, it is found that the mining activities is still more important for economy region. Generally, mining activities in South Kalimantan, Indonesia using open pit mining method and generated Acid Mine Drainage (AMD) [1]. The AMD has negative effect to the environmental [2]. The characteristics of AMD on production activities/pit area have pH \pm 4.28, high content of Fe reaching 9.1 mg/L and Mn content of 6.4 mg/L [3]. Modernise, product AMD has been processed using membrane technology with desalination process to reduce fouling or pollutants AMD [4]. Pervaporation in membrane desalination has preferred technique to convert to be portable water [5–9]. The
pervaporation process has advantage of the difference partial pressure from the pump as the driving force in the feed water and the permeate [5, 9–11]. Silica membrane with Tetraethyl orthosilicate (TEOS) as main precursor in the polymerisation process have a longer life time for desalination water [12]. Nonetheless, silica still has limitation due to low hydro-stability properties [13], consequently a new innovation by addiction of pectin into the silica membrane can increasing hydro-stability properties of membrane [14, 15]. The carbon content in pectin includes neutral sugar chains derived from complex polysaccharide compounds [16] strengthen the pore structure of the membrane and makes the membrane pore resistance stronger and has high salt rejection [4, 17, 18]. Hence, the large of pollutants will decrease water flux and performance of membrane, resulting in membrane fouling [19, 20].

Generally, fouling membrane type are reversible and irreversible. Particulates are deposited on the membrane such as colloids, macromolecules, salts and microorganisms. In other research there are various types of particulates that have an impact on membrane surface fouling, including inorganic particulates, dissolved organic matter, and dissolved solids [21, 22]. Impurity particles on the membrane surface impact on decreasing the permeate flux of the membrane, the difficulty of operating performance and the short life time and make decrease productivity of the system [23, 24]. Fouling membrane may reduce using backwashing membrane or chemical cleaning membrane [25]. There are type of backwashing membrane process, such as: a physical backwashing and chemical cleaning, but pollutants stronger adhering to the membrane surface, needed chemical materials to optimally cleaning. Especially photocatalytic and catalyst titanium dioxide (TiO₂) is a material that has advantages to removed fouling membrane [26]. The other advantages of using photocatalytic and TiO₂ such as catalyst in membrane separation can be recycled for reuse and increase flux recovery in the membrane [27].

Photocatalytic is a method that had founded with various applications in the reduction of persistent organic micro pollutants [28]. Concept of photocatalytic + TiO₂ as catalyst utilizes the concept of generating energy bandgaps in the excitation of photons which have semiconductor materials [29]. Photocatalytic-membrane application rehabilitated performance of the membrane [30]. In addition, TiO₂ as well as environmentally friendly catalyst [31, 32], and TiO₂ catalyst can reduce the activation energy which accelerates the reaction and pollutants are oxidised to carbon dioxide and water [33]. Utilising photocatalytic + catalyst TiO₂ methods in reducing pollutants, this work is aimed at water flux and salt rejection recovery of silica-pectin membrane by applying chemical backwash process evaluated on acid mine drainage water desalination with various feed water (25 - 60 °C).

2. Methodology

2.1. Chemicals and materials

Acid Mine Drainage (AMD) taken from South of Kalimantan-Indonesia specially at the Kintap region. Membrane support in this study from a macro-porous alumina tubular with pore size<100 nm. Membrane. Silica-pectin sols is fabricated from Tetraethyl Orthosilicate (TEOS, 99 %, Sigma-Aldrich), ethanol (EtOH, 96 %), ammonia (NH₃, 0.0003 M, Merck) and citric acid (HNO₃, 0.0078 M, Merck), pectin from banana peels (concentration 0.1 % and 0.5 %), glycerol (85 %, Merck). Chemical cleaning membrane in this study using liquid titanium dioxide (TiO₂, Merck) with photocatalytic UV (type C Philip 18 Watt).

2.2. Fabrication and characterisation silica-pectin membrane

Sol-gel membrane silica-pectin was method to product thin film membrane. pH sols at final process adjusted to pH ± 6. In other side, preparing carbon template from pectin which extract from banana peels. Prepared glycerol at 50 °C for 90 times to mix pectin-glycerol (0.1 % and 0.5 % pectin concentration). Final molar ratio was conducted from our previous work which become EtOH : TEOS :H₂O :HNO₃ :NH₃ : pectin, measure 38: 1: 5: 0.0008: 0.0003: x, where x was variation of pectin from banana peels concentration with
0.0063 grams to concentration 0.1 % and 0.032 grams to concentration 0.5 % [4]. Finishing process, the silica-pectin sols was coating in tubular membrane 1 hour for 1 layer until 4 layers. Membrane was characterisation preparing with dried sols into oven for 24 hours to product xerogel. Xerogel was calcined at 300 °C and 400 °C temperature using Rapid Thermal Processing (RTP). Finally, xerogel was ready to be characterised using FTIR spectra.

2.3. Membrane pervaporation
Performance and evaluation of membrane silica-pectin determine using pervaporation process. AMD water is used to determine the resistance and ability of silica-pectin membrane with measure of water flux, water flux recovery, and salt rejection. Feed water temperature was variations were carried out at room temperature (25 °C), 40 °C and 60 °C. Pervaporation was carried out for 20 minutes. Set up pervaporation was design as shown in figure 1.

\[F = \left(\frac{M}{A dt} \right) \]

Wherein, mass of flux permeate (kg) collected in the cold trap (M), A is an activated-area on surface silica-pectin membrane (m²) and operational times was symbol of dt (h). Salt rejection in silica-pectin banana peels membrane measured with the equations (2):

\[R = \left(\frac{CF - CP}{CF} \right) \times 100 \% \]

Wherein, \(CF \) is a permeate solution and \(CP \) is a retentate solution. Salinity of solution can measure using conductivity meter (OHAUS SF300C-G)

2.4. Chemical cleaning (Backwashing membrane)
Chemical cleaning to recovery performance of membrane silica-pectin prepared with hired submersion of membrane silica-pectin using titanium dioxide solid and accompanied by irradiation photocatalytic UV for an hour. Set up of chemical cleaning membrane as shown in figure 2.
3. Result and Discussion

3.1. Characteristic of Acid Mine Drainage

Acid Mine Drainage (AMD) as samples taken from Kintap, South Kalimantan-Indonesia was treated using pervaporation of membrane silica-pectin. Firstly, AMD was characterized with parameters which shown in table 1 and integrated with Indonesian regulatory standards regarding AMD for hygiene sanitation:

No.	Parameters	Unit	Value	Standard Indonesia's Ministry of Health No. 32 2017th
1.	Fe	mg/L	3.69	1
2.	Total Dissolved Solid	mg/L	652	
3.	Conductivity	µS/cm	1400	
4.	pH	-	4	6.5-8.5

3.2. Morphology and Characterisation of Silica-pectin Membrane

Acid Mine Drainage (AMD) as samples taken from Kintap, South Kalimantan-Indonesia was treated using pervaporation of membrane silica-pectin. Firstly, AMD was characterized with parameters which shown in table 1 and integrated with Indonesian regulatory standards regarding AMD for hygiene sanitation:

3.2.1. Scanning Electro-Microscopy Membrane. The structure of the silica-pectin membrane was analysed using Scanning Electron Microscopy (SEM) which shows on figure 3. Analysed SEM aims to determine the surface morphological structure of the membrane. The surface area of the membrane affected the performance of membrane infiltration process [13, 34].
The thickness of membrane silica-pectin was shown in figure 3(a) the thickness of membrane in this study ~2 μm. The membrane with thin film was thinner result higher of water flux [7, 35–37]. In this study, the silica-pectin membrane using interlayer free membrane to reduce the thickness of membrane and to low cost in production. Therefore, in this work dip-coating of membrane silica-pectin was carried out 4 times to result 4 layers. Figure 3(b) shows the surface area of membrane silica-pectin. It shown there are no cracks on surface area membrane. The membrane silica-pectin looks asymmetrical due the calcination technique. In this work, calcination process using RTP method. There is an instantaneous temperature increasing during the calcined process [38, 39]. This technique has the advantage of speeding up the manufacture of membranes with still good results.

3.2.2. Fourier Transform Infra-Red. Silica-pectin membrane was analysed using FTIR-ATR technique. Figure 4(a). Shows region the FTIR-ATR spectra calculated peaks at 1300-700 cm\(^{-1}\). Peaks of siloxane (Si-O-Si) region of silica-pectin membrane measure on region 1080 cm\(^{-1}\), silanol (Si-OH) on region 976 cm\(^{-1}\) and pectin on region 790 cm\(^{-1}\). Region ± 970 cm\(^{-1}\) on the deconvolution of silanol peaks identified as the spin out mode of silica-carbon and shaking mode of carbon couple to Silica (Si) [15, 40–43]. Peaks at region 1080 cm\(^{-1}\) are delegated to a symmetric bond spin out vibration of Si-O-Si network [44]. In region 2001-2029 cm\(^{-1}\) there are the carbon bond vibration. The deconvolution of the band on region 976 cm\(^{-1}\) and region 1080 cm\(^{-1}\) to investigated of pectin with systematic incorporation measured using the peaks area ratio of Si-OH group vs Si-O-Si group was shown in figure 4(b). Fityk software was used to evaluate the amounts of areas on the silica-pectin membrane. The lowest peak area ratio between silanol and siloxane at xerogel sample on the membrane with concentration pectin 0.1 % calcined in air 400 °C. High concentration of siloxane region with an area of silanol region representing mesoporous or micropores [12, 13]. Actually, silica-carbon group contributed to determines the pore on the membrane silica-pectin. carbon chain clusters precedence to the formation of small pores but strengthen Si-OH bonds. This work results, the membrane concentration 0.5 % has high peak area ratio between silanol and carbon chains [45].
3.3. Performance of membrane after chemical cleaning process

The performance of silica-pectin membrane after chemical cleaning process of the membrane was shown in figure 5.

Generally, the membrane was cleaned due to membrane fouling which caused particles adhering to the membrane surface. Irreversible type of membrane fouling can be removed by physical washing [46]. However, particles fouling too attached the membrane surface, physical cleaning not optimal. Hence, chemical cleaning method of membranes can cleaning the membrane optimally and improve the flux and life time the membrane longer period [35, 47]. Therefore, this work using titanium dioxide such as chemical material in chemical cleaning membrane. Figure 5 was shown the performance of silica-pectin membrane with variations temperature of AMD (25 - 60 °C). Result of this work showed performance of silica-pectin
membrane after chemical cleaning using titanium dioxide is excellent. The flux recovery after chemical cleaning is higher than before cleaning process. Flux recovery from silica-pectin membrane concentration 0.1 % result 9.82 kg.m⁻².h⁻¹ with salt rejection 99.61 %. Then, flux recovery on silica-pectin membrane was 27.20 % higher before cleaning. The best result in this work is still flux recovery from membrane with concentration of pectin 0.5 %. The value of flux recovery during the pervaporation process 20 minutes is 17.54 kg.m⁻².h⁻¹ with salt rejection <99 % at room temperature. This flux showed that flux recovery of silica-pectin membrane recovery 65.32 % higher before cleaning. In other results, at temperature variations also showed that backwashing membrane with chemical cleaning was able to recovery water flux membrane. On feed temperature of 40 °C because of the driving force of the feed water temperature increase a high flux recovery. The flux value come to 13.59 kg.m⁻².h⁻¹ with salt rejection reaching 99.60 % at 0.1 % pectin concentration. Meanwhile, membranes with a pectin concentration of 0.5 % were able to produce a flux recovery of 21.26 kg.m⁻².h⁻¹ with a salt rejection of 99.60 %. The feed water temperature to evaluate the membrane performance was also carried out at on operating temperature of 60 °C. The resulting flux recovery increased at pectin concentrations of 0.1 % and 0.5 % consecutive 18.79 kg.m⁻².h⁻¹ and 29.51 kg.m⁻².h⁻¹ with the ability of salt rejection results still 99.52 % and 99.31 %. This proves that the silica pectin membrane that has been backwashed with chemical cleaning process exactly may improves the performance of the silica pectin membrane, also, the membrane is able to maintain salt rejection <99 %. The results of high salt rejection after chemical cleaning also prove that photocatalytic irradiation + TiO₂ catalyst able to change the compounds/ pollutants attached to the membrane surface can be converted into simple compounds which reduce fouling on the membrane as evidenced by the high salt rejection in the pervaporation process using a silica-pectin membrane.

4. Conclusion
Chemical cleaning of silica-pectin membranes using a photocatalytic membrane + TiO₂ catalyst shows that the evaluation results with pervaporation on various temperature are very excellent. Result shown in this work produce flux recovery reached 27.20 % and 65.32 % higher than the water flux before backwashing process. It is at an operating temperature of 25 °C. The increasing of flux recovery feed water temperature variations resulted in an increase with the ability of salt rejection <99 % in all variations in the temperature of the feed water.

Acknowledgments
Muthia thanks to the Advanced Membrane Technology Research Centre (AMTEC), University Teknologi Malaysia (UTM) and Materials and Membranes Research Group (M2ReG), Lambung Mangkurat University for the facilities. Muthis thanks to Applied Research of Universities Grant 2021-2023, Basic Research Grant 2021-2022 and World Class Research Grant 2021-2023 Deputy of Research and Development National Research and Innovation Agency, Directorate General of Higher Education, The Ministry of Cultural and Education Republic of Indonesia.

References
[1] Wahyudin I, Widodo S and Nurwaskito A 2018 Analysis of coal mine acid water handling Geomine J. 6
[2] Hidayat L 2017 Environmental management of coal mining area:(Case study of acid mining drainage at PT. Bhumi Rantau Energi Tapin Regency South Kalimantan) Adhum: J. Res. Dev. Administrative Sci. Humanit. 7 44–52
[3] Ferdian I 2020 Analysis of successful handling of mine acid water based on pH, TSS, Fe and Mn parameters at KPL AL 01 PT Bukit Asam, Tbk. In: National Seminar on Suboptimal Land
Elma M, Mustalifah F R, Suryani L, Rampun E L A and Rahma A 2020 Wetland saline water and acid mine drainage desalination by interlayer-free silica pectin membrane from banan peels *Nusantara Sci. Technol. Proc.* 271–9

Elma M, Pratiwi A E, Rahma A, Rampun E L A and Handayani N 2020 The performance of membranes interlayer-free silica-pectin templated for seawater desalination *via* pervaporation operated at high temperature of feed solution. In: *Mater. Sci. Forum* (Trans Tech Publ) pp 349–55

Elma M and Saputro G S 2020 Performance of cobalt-silica membranes through pervaporation process with different feed solution concentrations. In: *Mater. Sci. Forum* (Trans Tech Publ) pp 342–8

Elma M and Assyaiﬁ Z L 2018 Desalination process *via* pervaporation of wetland saline water. In: *IOP Conf. Series: Earth Environ. Sci.*: IOP Publishing p 012009

Elma M, Rahman A and Hidayati R 2018 Silica P123 membranes for desalination of wetland saline water in South Kalimantan. In: *IOP Conf. Series: Earth Environ. Sci.*: IOP Publishing p 012007

Elma M and Riskawati N 2018 Silica membranes for wetland saline water desalination: performance and long term stability. In: *IOP Conf. Series: Earth Environ. Sci.*: IOP Publishing p 012006

Wang Q, Li N, Bolto B, Hoang M and Xie Z 2016 Desalination by pervaporation: A review *Desalin.* 387 46–60

Ayu Lestari R, Elma M, Rahma A, Suparsih D, Anadhliyay S, Ledyana Sari N, Ari Pratomo D, Sumardi A, Lestari A and Assyaiﬁ Z L 2020 Organo silica membranes for wetland saline water desalination: effect of membranes calcination temperatures. In: *E3S Web Conf.* p 07006

Elma M, Yacou C, Diniz da Costa J C and Wang D K 2013 Performance and long term stability of mesoporous silica membranes for desalination *Membr.* 3 136–50

Elma M, Yacou C, Wang D K, Smart S and Diniz da Costa J C 2012 Microporous silica based membranes for desalination *Water* 4 629–49

Rahman S K, Rahma A, Syauqiah I and Elma M 2020 Functionalization of hybrid organosilica based membranes for water desalination–Preparation using ethyl silicate 40 and P123 *Mater. Today: Proc.* 31 60–4

Elma M, Rampun E L, Rahma A, Assyaiﬁ Z L, Sumardi A, Lestari A E, Saputro G S, Bilad M R and Darmawan A 2020 Carbon templated strategies of mesoporous silica applied for water desalination: A review *J. Water Process Eng.* 38 101520

Tuhuloula A, Budiyarti L and Fitriana E N 2013 Characterization of pectin by utilizing banana peel waste using conversion extraction method 2 21–7

Elma S and Wang Y's research influenced the addition of PECTIN as an interlayer-free silica-pectin membrane coating through the salt marsh water desalination process.

Elma M, Mahmud M, Handayani N, Putri V S and Rahmah A 2019 Performance of interlayer-free silica-pectin membranes in seawater desalination with temperature variations of 25°C and 40°C with membrane calcination temperature of 300°C. In: *Proced. Natl. Semin. Wetland Environ.* pp 279–8

Elma M, Mahmud M, Handayani N, Putri V S and Rahmah A 2019 Performance of interlayer-free silica-pectin membranes in seawater desalination with temperature variations of 25°C and 40°C with 300°C temperature membrane calcination. In: *Proc. Natl. Wetland Environ. Semin.* pp 279–84

Waqas S, Bilad M R, Aqsha A, Harun N Y, Ayoub M, Wirzal M D H, Jaafar J, Mulyati S and Elma M 2021 Effect of membrane properties in a membrane rotating biological contactor for wastewater treatment *J. Environ. Chem. Eng.* 9 104869

Beyer M, Lohrengel B and Nghiem L D 2010 Membrane fouling and chemical cleaning in water
recycling applications Desalin. 250 977–81

[22] Waqas S, Bilad M R, Man Z B, Suleman H, Nordin N A H, Jaafar J, Othman M H D and Elma M 2021 An energy-efficient membrane rotating biological contactor for wastewater treatment J. Clean. Prod. 282 124544

[23] Razak N N A N, Rahmawati R, Bilad M R, Pratiwi A E, Elma M, Nawi N I M, Jaafar J and Lam M K 2020 Finned spacer for enhancing the impact of air bubbles for membrane fouling control in Chlorella vulgaris filtration Bioreour. Technol. Rep. 11 100429

[24] Elma M 2017 Optimum ratio between waste cooking oil and coconut oils as raw material for biodiesel production International J. Adv. Sci. Eng. Inf. Technol.

[25] Sulistyani E and Fitrianingtyas M 2010 Ultrafiltration membrane fouling control with automatic backwash and membrane washing system. Department of Chemical Engineering Faculty of Engineering UNDIP

[26] Khuzwayo Z and Chirwa E M 2017 Analysis of catalyst photo-oxidation selectivity in the degradation of polyorganochlorinated pollutants in batch systems using UV and UV/TiO2 S. Arf. J. Chem. Eng. 23 17–25

[27] Wang D K, Elma M, Motuzas J, Hou W C, Schmeda-Lopez D R, Zhang T and Zhang X 2016 Physicochemical and photocatalytic properties of carbonaceous char and titania composite hollow fibers for wastewater treatment Carbon 109 182–91

[28] Leyva-Díaz J, López-López C, Martín-Pascual J, Muñío M and Poyatos J 2015 Kinetic study of the combined processes of a membrane bioreactor and a hybrid moving bed biofilm reactor-membrane bioreactor with advanced oxidation processes as a post-treatment stage for wastewater treatment Chem. Eng. Proc.: Process Intensification 91 57–66

[29] Chun H, Yizhong W and Hongxiao T 2000 Destruction of phenol aqueous solution by photocatalysis or direct photolysis Chemosphere 41 1205–9

[30] Wang D K, Elma M, Motuzas J, Hou W C, Xie F and Zhang X 2017 Rational design and synthesis of molecular-sieving, photocatalytic, hollow fiber membranes for advanced water treatment applications J. Membr. Sci. 524 163–73

[31] Molinari R, Argurio P and Palmisano L 2015 Advances in Membrane Technologies for Water Treatment, ed A Basile, et al. (Oxford: Woodhead Publishing) pp 205–38

[32] Assyaifi Z L, Elma M, Syauqiah I, Rampun E L, Rahma A, Sumardi A, Lestari A E, Suryani L, Mustalifah F R and Huda N 2021 Photocatalytic–pervaporation using membranes based on organo-silica for wetland saline water desalination Membr. Technol. 2021 7–11

[33] Ramadhani S U, Destiarti L and Syahbanu I 2017 Degradation of organic matter in peat water with photocatalyst TiO2 thin layer J. Equat. Chem. 6

[34] Elma M, Ayu R, Rampun E L A, Annahdiyiah S, Suparsih D R, Sari N L and Pratomo D A 2019 Fabrication of interlayer-free silica-based membranes – Effect of low calcination temperature using an organo-catalyst Membr. Technol. 2019 6–10

[35] Rampun E L A, Elma M, Syauqiah I, Putra M D, Rahma A and Pratiwi A E 2019 Interlayer-free silicapectin membrane for pervaporation of salt marsh water Journal of Chemical Science and Applications 22 99–104

[36] Rampun E L, Elma M, Rahma A and Pratiwi A E 2019 Interlayer-free silica–pectin membrane for sea-water desalination Membr. Technol. 2019 5–9

[37] Elma M, Setyawan H, Rahma A, Pratiwi A and Rampun E L A 2019 Fabrication of interlayer-free P123 caronised template silica membranes for water desalination: Conventional versus rapid thermal processing (CTP vs RTP) techniques. In: IOP Conf. Series: Earth Environ. Sci.: IOP Publishing p 012076

[38] Elma M 2020 Rapid thermal processing and long term stability of interlayer-free silica-P123
membranes for wetland saline water desalination

[39] Rahma A, Elma M, Rampun E L A, Pratiwi A E, Rakhman A and Fitriani F 2021 Rapid thermal processing and long term stability of interlayer-free silica-P123 membranes for wetland saline water desalination J. Adv. Res. Fluid Mech. Therm. Sci. 71 1–9

[40] Wieder H 1979 M. Cardona and CR Guarnieri Phys. Status Solidi B 92 99

[41] Lestari R A, Elma M, Rampun E L A, Sumardi A, Paramitha A, Lestari A E, Rabiah S, Assyaiﬁ Z L and Satriaji G 2020 Functionalization of Si-C using TEOS (tetra ethyl ortho silica) as precursor and organic catalyst E3S Web Conf. 148 07008

[42] Pratiwi A E, Elma M, Rahma A, Rampun E L A and Saputro G S 2019 Deconvolution of pectin carbonised template silica thin-film: synthesis and characterisation Membr. Technol. 2019 5–8

[43] Elma M and Setyawan H 2018 Synthesis of silica xerogels obtained in organic catalyst via sol gel route. In: IOP Conf. Series: Earth Environ. Sci.: IOP Publishing p 012008

[44] Elma M, Wang D K, Yacou C and Diniz da Costa J C 2015 Interlayer-free P123 carbonised template silica membranes for desalination with reduced salt concentration polarisation J. Membr. Sci. 475 376–83

[45] Elma M, Wang D K, Yacou C, Motuzas J and Diniz da Costa J C 2015 High performance interlayer-free mesoporous cobalt oxide silica membranes for desalination applications Desalin. 365 308–15

[46] Jayanti R D and Widiasa I N 2016 Fouling and Cleaning Of Low Pressure Reverse Osmosis Membranes for Domestic Wastewater Recycling Applications. In: National Semin. Chem. Eng. p 2

[47] Arnal J M, Garcia-Fayos B and Sancho M 2011 Expanding issues in desalination: IntechOpen