The Sequencing of hpmB Gene in *Proteus mirabilis* Among UTIs Patients

Anwar M. Lazm¹, Mohammed S. Jebur², Hussein O.M. Al-Dahmoshi³* and Noor S. Al-khafaji³

¹Department of Biology, Al-Farabi University College, Baghdad, Iraq. ²College of Health and Medical Technology, Middle Technical University, Baghdad, Iraq. ³Biology Department, College of Science, University of Babylon, Babylon, Iraq.

Abstract

The present study was carried out during February to May 2018 in Baghdad hospitals. A sample of urine has been collected from fifty patients with an infection in their urinary tract (UTIs) of both sexes and different ages. Bacteriological investigation of urine samples from UTIs patients is made to isolate and diagnose *Proteus mirabilis* bacterium. In addition, the study detects the phenotypic and genetic characteristic of *Proteus mirabilis* α-hemolysin activity. Moreover, for the study to prove its hypothesis, a molecular detection has been carried out utilizing specific primer to hpmB gene which encodes α-Hemolysin as a factor of virulence of *Proteus mirabilis* through the use of PCR. The results show that 7(100%) of isolates are positive for hpmB at 422 bp. Two isolates of *P. mirabilis* are sequenced as hpmB genes. The ratio of identity of the hpmB genes with the CP017085.1 and CP020052.1 stains at NCBI global databases comprised 100%, 99% respectively.

Keywords: *P. mirabilis*, virulence factors gene hpmB, Sequencing.

Correspondence: dahmoshi83@gmail.com; +9647807771411

(Received: 29 October 2018; accepted: 15 December 2018)

Citation: Anwar M. Lazm, Mohammed S. Jebur, Hussein O. M. Al-Dahmoshi and Noor S. Al-khafaji, The Sequencing of hpmB Gene in *Proteus mirabilis* Among UTIs Patients, *J Pure Appl Microbiol.*, 2019; Vol. 13(1):447-453 doi: 10.22207/JPAM.13.1.49
INTRODUCTION

Proteus mirabilis refers to a Gram-negative bacterium. Its harmful virulence factors can be recognized by P. mirabilis that is able to access and settle the host urinary tract. These include toxins like hemolysin and its function of pore formation, biofilm formation and regulation of pathogenesis. Proteus mirabilis has numerous virulence factors that may inflict UTIs. These factors have an important role in causing an infection in varying spots of the urinary tract. Alpha (a) hemolysin hpmA is created by P. mirabilis that leads to an injury in kidney tissues. This α-hemolysin belongs to the cell, independent of calcium, pores-former which is encoded by two genes, hpmA and hpmB, that control the hpmB (63kDa) proteins. hpmA α-hemolysin accountable for destructive and triggering the tissue when its N-terminal peptide is slashed. So, the result can activate hpmA and hpmB that is responsible for hpmA activation and transport. The present study aims to characterize the hpmB among P. mirabilis isolated from UTIs patients.

MATERIALS AND METHODS

Patients with urinary tract infection are from Baghdad Teaching Hospital during the period from September to October 2018. Midstream urine samples are collected and controlled in sterilized wide-container from one hundred urinary tract infection patients. The extraction of the Proteus mirabilis DNA from bacterial cells is carried out by using Genomic DNA Mini kit which supplemented by the manufacturing company (Promega, US). DNA electrophoresis in agarose gel is performed according to Ouda, 2014.

Thermic cycles program for amplifying the DNA

Specific primers are used for detecting the Proteus mirabilis virulence gene encodes of β-hemolysin sequence according to Cestari et al., 2013. These primers are provided by Promega Company (USA) and prepared according to the information of the supplying company, which is listed below:

DNA Sequencing of hpmB gene

The process of sequencing through PCR-sequences included two. This is performed according to Macrogen company/Korea sending. The nucleotide replacement is decided by combiner. The data that obtained are from gene bank which is available at NCBI https://www.ncbi.nlm.nih.gov.

RESULTS AND DISCUSSION

The technique used to investigate the genes responsibility for the virulence factor in P. mirabilis is Single Polymerase Chain Reaction Technique. This has been conducted through using segments of the DNA with restricted number of nucleotides (oligonucleotide). Their action is to be primers specialized for virulence genes in P. mirabilis. hpmB is also included and it is responsible for producing hemolycin P. mirabilis β-hemolysin that is different from other Proteus spp. It is organized by two genes, (hpmA and hpmB) that encodes the hpmA and hpmB proteins respectively.

The present study shows that hpmB gene is present in all 7 isolates at rate (100%) from urine samples of RA patients as shown in fig (1). The results contest the result which is verified by Al-Jumaily and Zgaer. In their study, it is declared that the frequency of this gene in P. mirabilis isolates is %100; that is isolated from patients suffering from urinary tract infections. While Cestari et al., 2013 find the ratio of this gene in bacterial isolates comprising 96.24% existing amplification for the hpmA and hpmB genes by PCR. The α-hemolycin toxin acts as a destroyer to the leukocyte membrane through creating small holes in the leukocyte membrane and epithelial cell. So, its presence is a vital factor in supplying the bacteria with iron and because of having the cytotoxic effects, this could lead to the destruction of the host kidney tissue. Isolates with hpmA gene in them is in compatibility with the characterization presented by Uphoff and Welch (1990) who state the necessity of cleaving the N-terminal peptide of the hpmA by hpmB for the purpose of activating and transporting the hemolytic hpmA protein out of the cell. This standard indicates that hpmA is a factor in the pathogenesis of P. mirabilis samples isolated from human urine. Among the other results are those reported by Swihart and Welch, 1990 referring that all P. mirabilis strains as having hpmA but HlyA is not detected in P. mirabilis isolates and is found only in 2 of the 24 P. vulgaris strains examined. Since P. mirabilis composes most (97%) of the Proteus urinary tract isolates, this suggests that hpmA is the predominant Proteus hemolysin and...
might play a role in extra intestinal infections caused by *Proteus* spp\(^{11}\). These positive isolates with *hpmB* gene are also checked to confirm their ability to produce hemolysin on blood agar and it has been found that all the isolates (100\%) have the ability to produce hemolysin. These results agree with the results of Sosa et al. (2006) and AL-Jumaa et al. (2011), who demonstrate that all isolates (100\%) of *Proteus* bacterium which are isolated from different clinical sources exhibit hemolysin on blood agar plates, but Mishara et al. (2001) find that (85.14\%) of *Proteus* isolates produce \(\alpha\)-hemolysis while other isolates produce \(\beta\)-hemolysis on blood agar plate\(^{12,13,14}\). The results of the study demonstrate that the detection of *hpmB* gene by PCR is sensitive enough to be used for discovering these virulence factors produced by *P. mirabilis*. The PCR technique is shown to be precise, fast, cheap and more accurate therefore this suggests that *hpmB* could be used as a diagnostic tool for *P. mirabilis* bacterium.

DNA sequencing analysis

Analyzing DNA sequence of *hpmB* gene

Three isolates were sequenced by Macrogen/Korea. The nucleotide switch is firmed by comber. The data are obtained from gene bank available at NCBI (https://www.ncbi.nlm.nih.gov). The results of gene sequence analysis *hpmB* show that there are two polymorphism in 2 isolates of the gene *hpmB* as shown in fig (2) and table (1). In the isolation of *P. mirabilis* (MF993448) Thymine nucleotide substitutions to Adenine is found at locus 2389107 and Cytosine has substitutions to Thymine at locus 2389062. Finally, the results show nonsense polymorphism as predict. Also, the results show silent variation and this type of variation doesn’t change the sequence of amino acid in the protein and doesn’t alter protein function as shown in table (1)\(^{15}\). Samples (MF993446) show 100 \% identity for *hpmB* in comparison to the same genes of the CP017085.1. While samples, (MF993448) show 99 \% identity for *hpmB* in comparison to the same genes of the CP020052.1 strain.

It is noticed, through the process of sequencing of the *α*-hemolysin at *P. mirabilis*, that it consists of two genes *hpmA* and *hpmB*. *P. mirabilis* hemolysin *hpmA* investigation and description is necessary to clarify its significance as a virulence factor. Furthermore, it might have a possible association with other elements that are produced by *P. mirabilis*. These altogether could contribute to cytotoxicity in the UTIs of humans\(^{7}\). Mordi and Momoh (2009) find that a change in the amino acid or replacement with other amino acid may lead to a change in the nature of protein or output and thus lead to the emergence of strains resistant or sensitive to antibiotics\(^{16}\). The *hpmA* and *hpmB* genes are sequenced from local isolated samples presented 98 \% identity for *hpmA* and *hpmB* compared to the same genes of the Hi4320 (wild strain) (NCBI GenBank Number NC_010554.1). When the samples of the study are compared with each other 100 \% identity is found among these genes\(^{17}\). The results of the study display that the amino acid remained the same and that indicates variation from the silent type. In contrast, there is a study conducted on *hpmB* gene like Strauss et al., (1997) find that mutations enhance the function of *hpmB* (increase in hemolytic activity). This increasing in hemolytic activity could be a result of *hpmB* activating and secreting more *hpmA*\(^{18}\). Genotyping works to establish the relationship between bacteria strain on the basis of their genetic content uses. Many genotyping methods become important in the field of genealogy, classification of bacteria, identification of sources, method of infection and the differentiation of strain of high virulent bacteria to prevent their spread and elimination\(^{19}\).

Table 1. Primer sequence of *hpmB* gene and PCR condition

Genes	Sequence (S’ to 3’)	PCR condition	Size (bp)	References
hpmB	F:CAGTGGATTAAGCGAAATG	95°C 5min 1x 95°C 30sec	422	(Cestari et al., 2013)
	R:CCTTCAATAGTCTACAAACC	62°C 30sec 30x 72°C 20 sec 72°C 5min 1x		
Table 2. Identity of hpmB gene sequence in

Range of nucleotide	Sequence ID	Score	Expect	Identities	Source
3196590 to 3196919	CP017085.1	610	0	100%	Proteus mirabilis HPMB
2389008 to 2389362	CP020052.1	645	0	99%	Proteus mirabilis HPMB

Table 3. Polymorphism of hpmB gene sequence

Sample	Type of substitution	Location change	Nucleotide change	Amino acid change	Effect
1	Transversion	2389107	ACT>ACA	Threonine	Silent
2	Transition	2389062	TTC>TTT	Phenylalanine	Silent

Table 4. Alignment of hpmB gene sequence *Proteus mirabilis* strain T18

Sequence ID: CP017085.1	Length: 4131426	Range 1: 3196590 to 3196919
Score	Expect	Identities
610 bits(330)	8e-171	330/330(100%)
	Gaps	0/330(0%)
	Strand	Plus/Plus
Query 1	GAAATTAATCTAATTAATAAGAACAAACTCGTATCAGCAACTGCAAGAAGAAAGCGGTAAAT 60	
Sbjct 3196590	GAAATTAATCTAATTAATAAGAACAAACTCGTATCAGCAACTGCAAGAAGAAAGCGGTAAAT 3196649	
Query 61	ATTTCAACTCCCCAATTTATATTACTGAGTCAAGAAGACTGTTGGCTCTATAAAGAACGGT 120	
Sbjct 3196650	ATTTCAACTCCCCAATTTATATTACTGAGTCAAGAAGACTGTTGGCTCTATAAAGAACGGT 3196709	
Query 121	TATATCACCACCTATTTACTCTGAGGATCTCATCCATTTACTCTCTCTCCTCCTACTTACCT 180	
Sbjct 3196710	TATATCACCACCTATTTACTCTGAGGATCTCATCCATTTACTCTCTCTCCTCCTACTTACCT 3196769	
Query 181	GATCAATGTATTAAGAGTGCTGTATAATTACGCCCTGTGAAAGAAGACTCCTAGCTAGTTAT 240	
Sbjct 3196770	GATCAATGTATTAAGAGTGCTGTATAATTACGCCCTGTGAAAGAAGACTCCTAGCTAGTTAT 3196829	
Query 241	CTCAATAGTTGATATAACACGGGGATATCAATTCAGCTCAATTCCTAGAGGGAGAGGTGTTG 300	
Sbjct 3196830	CTCAATAGTTGATATAACACGGGGATATCAATTCAGCTCAATTCCTAGAGGGAGAGGTGTTG 3196889	
Query 301	TTAGGTCTGATGTATGCTAGAGGGGTGTTGTT 330	
Sbjct 3196890	TTAGGTCTGATGTATGCTAGAGGGGTGTTGTT 3196919	

Table 5. Alignment of hpmB gene sequence *Proteus mirabilis* strain AR_0059

Sequence ID: CP020052.1	Length: 4191021	Range 1: 2389008 to 2389362
Score	Expect	Identities
645 bits(349)	0.0	353/355(99%)
	Gaps	0/355(0%)
	Strand	Plus/Minus
Query 1	GAAATTAATCTAATTAATAAGAACAAACTCGTATCAGCAACTGCAAGAAGAAAGCGGTAAAT 60	
Sbjct 3196590	GAAATTAATCTAATTAATAAGAACAAACTCGTATCAGCAACTGCAAGAAGAAAGCGGTAAAT 3196649	
Query 61	ATTTCAACTCCCCAATTTATATTACTGAGTCAAGAAGACTGTTGGCTCTATAAAGAACGGT 120	
Sbjct 3196650	ATTTCAACTCCCCAATTTATATTACTGAGTCAAGAAGACTGTTGGCTCTATAAAGAACGGT 3196709	
Query 121	TATATCACCACCTATTTACTCTGAGGATCTCATCCATTTACTCTCTCTCCTCCTACTTACCT 180	
Sbjct 3196710	TATATCACCACCTATTTACTCTGAGGATCTCATCCATTTACTCTCTCTCCTCCTACTTACCT 3196769	
Query 181	GATCAATGTATTAAGAGTGCTGTATAATTACGCCCTGTGAAAGAAGACTCCTAGCTAGTTAT 240	
Sbjct 3196770	GATCAATGTATTAAGAGTGCTGTATAATTACGCCCTGTGAAAGAAGACTCCTAGCTAGTTAT 3196829	
Query 241	CTCAATAGTTGATATAACACGGGGATATCAATTCAGCTCAATTCCTAGAGGGAGAGGTGTTG 300	
Sbjct 3196830	CTCAATAGTTGATATAACACGGGGATATCAATTCAGCTCAATTCCTAGAGGGAGAGGTGTTG 3196889	
Query 301	TTAGGTCTGATGTATGCTAGAGGGGTGTTGTT 330	
Sbjct 3196890	TTAGGTCTGATGTATGCTAGAGGGGTGTTGTT 3196919	
Therefore, the study finds a great importance in the genetic sequence of *P. mirabilis* virulence factors. The study finds that variant isolates possess polymorphism in hpmB genes.

A phylogenetic tree based on the hpmB gene

Molecular phylogenetic is a branch of phylogeny that analyzes hereditary molecular differences mainly in DNA sequences to gain information on an organism's evolutionary relationships. The identified genetic profile of any bacteria by a specific genotyping method can be as unique as a fingerprint. However, phylogeny estimated from a single gene should be treated with caution. The phylogenetic tree derived from hpmB gene sequences of clinical strains of 2 samples *Proteus*

![Agarose gel electrophoresis](image)

Fig. 1. Agarose gel electrophoresis (2% agarose, 75 V for 1:45 hour) of hpmB and PCR products (422bp) codify for α-hemolysin of *P. mirabilis* isolates. Lane 1DNA ladder), 100-1100bp molecular marker, lanes 2-10 isolates were positive results.
mirabilis with other sequences is available at NCBI showed in (Fig. 2). As to be seen in this figure, *P. mirabilis* (MF993443) lies in the same branch of the phylogenetic tree with *P. mirabilis* (WP_088207120.1).

Sequences of 16SrRNA with the size of 1.5 Kb is considered and widely used in bacterial taxonomy because it contains high conservation region which has variable region in different species. Furthermore, the most important was that 16SrRNA gene which could be sequenced easily\(^\text{22}\). On the other hand, the sensitivity of this approach is questioned particularly among human bacterial closely related to Enterobacteriaceae, which includes many common pathogens because of the high degree of conservation in species\(^\text{22}\). Therefore, the use of other genes rather than 16SrRNA gene and the distinction between bacteria at the species level is regarded as a very important issue\(^\text{23}\). Results indicate that since there is an increase in clinical significance of *P. mirabilis*, the choice of effectual molecular methods is of great epidemiological reputation. Bacterial genotyping opened new chances on epidemiological studies by the documentation of clinical and ecological isolates, the assessment of this association, the watching of clone propagation and the classification of bacterial populations within more or less constrained environments\(^\text{24}\).

By joining molecular phylogeny with traditional approach such as morphological, physiological and biochemical characteristics, bacteria identification could be achieved in a more accurate way\(^\text{25,26}\).

![Fig. 2. Phylogenetic tree of Proteus species based on hpmB gene sequence analysis.](image-url)
ACKNOWLEDGMENT

None

CONFLICT OF INTERESTS

The authors declare that there is no conflicts of interest.

REFERENCES

1. Shakibaie, M., Forootanfar, H., Golkari, Y., Mohammadi-Khorsand, T., and Shakibaie, M. R. Ant-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol. 2015; 29:235-241.

2. Mohammed, G. J., Kadhim, M. J., and Hameed, I. Proteus species: Characterization and herbal antibacterial: A review. International J Pharmaco and Physchem Res, 2016; 8(11):1844-1854.

3. Stankowska, D., Kwinkowski, M., and Kaca, W. Quantification of Proteus mirabilis virulence factors and modulation by acylated homoserine lactones. J Microbiol Immunol Infect, 2008; 41(3):243-253.

4. Howery, K. E., Clemmer, K. M., and Rother, P. N. The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Curr Genetics, 2016; 62(4):775-789.

5. Ouda, S. M. Some nanoparticles effects on Proteus sp. and Klebsiella sp. isolated from water. Am J Infect Dis Microbiol, 2014; 2(1):4-10.

6. Cestari, S.E., Ludovico, M.S., Martins, F.H., Rocha, S.P.D., Elias, W.P. and Pelayo, J.S. Molecular Detection of HpmA and HlyA Hemolysin of Uropathogenic Proteus mirabilis. Curr Microbiol, 2013; 67:703–707.

7. Rozalski, A., Torzewska, A., Moryl, M., Kwil, I., Mazewska, A., Ostrowska, K., and Stanzek, P. Proteus sp.–an opportunistic bacterial pathogen–classification, swarming growth, clinical significance and virulence factors. Folia Biologica et Oecologica, 2012; 8(1):1-17.

8. Uphoff, T. and Welch, R. Nucleotide sequencing of the Proteus mirabilis calcium independent hemolysin genes (hpmA and hpmB) reveals sequence similarity with Serratia marcescens hemolysin genes (shlA and shlB). J Bacteriol., 1990; 172:1206–1216.

9. Jumaily, E. F., and Zgaer, S. H. Characterization and molecular detection of purified Proteus mirabilis pmb 41 alpha-hemolysin. Basrah J Veter Res, 2016; 15(3).

10. Liaw, S. J., Lai, H. C., Ho, S. W., Luh, K. T., and Wang, W. B. Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis. J Med Microbiol, 2003; 52(1):19-28.

11. Hotz, K. G., and Welch, R. A. The HpmA hemolysin is more common than HlyA among Proteus isolates. Infect and Immun, 1990; 58(6):1853-1860.

12. Sosa, V.; Schlapp, G.and Zunino, P. Proteus mirabilis isolates of differentorigins do not show correlation with virulence attributes and can colonize the urinary tract of mice. Microbiol, 2006; 152(7):2149-2157.

13. AL-Jumaa, M. H.; Bnyan, I. A. and Al-Khafaji, J. K. Bacteriological and Molecular Study of Some Isolates of Proteus mirabilis and Proteus vulgaris in Hilla Province. A thesis for the Degree of Master of Science in Microbiology. College of Medicine, University of Babylon, 2011.

14. Mishara, M.; Thakar, Y.S. and Pathak, A. A. Haemagglutination, haemolysin production and serum resistance of Proteus and related species isolated from clinical sources, Indian J Med Microbiol. 2001; 19(2):5-11.

15. Abdul-Lateef, L. A. Sequencing of Proteus Toxic Agglutinin (Pta) Gene in Proteus Mirabilis and Cytotoxic Effect of Pta on Human Colon Cancer Cell and Human Kidney Cell. J Global Pharma Technol, 2017; 9(9).

16. Morsi, R. M., and Momoh, M. I. Incidence of Proteus species in wound infections and their sensitivity pattern in the University of Benin Teaching Hospital. African J Biotechnol, 2009; 8(5).

17. Fraser GM, Claret L, Furness R, Gupta S, Hughes C. Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiol, 2002; 148:2191–2201.

18. Straus, E. J., Ghor, N., and Falkow, S. An Edwardsiella tarda strain containing a mutation in a gene with homology to shiB and hmbB is defective for entry into epithelial cells in culture. Infect and Immun, 1997; 65(9):3924-3932.

19. Plomin, R., DeFries, J. C., Nopik, V. S., and Neiderheiser, J. Behavioral genetics. Palgrave Macmillan, 2013.

20. Li, W., Raoult, D., and Fournier, P. E. Bacterial strain typing in the genomic era. FEMS Microbiol Revs, 2009; 33(5):892-916.

21. Hadfield, J. D., and Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi trait models for continuous and categorical characters. J Evolution Biol, 2010; 23(3), 494-508.

22. Case, R. J., Boucher, Y., Dahllof, I., Holmström, C., Doolittle, W. F., and Kjelleberg, S. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environmen Microbiol, 2007; 73(1):278-288.

23. Ghebremedhin, B., Layer, F., Konig, W., and Konig, B. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 165 rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clinic Microbiol, 2008; 46(3):1019–1025.

24. Michelm, L., Muller, G., Zacaria, J., Delmarae, A. P., Costa, S. O. P. D., and Echeverrigaray, S. Comparison of PCR-based molecular markers for the characterization of Proteus mirabilis clinical isolates. Brazilian J Infect Dis, 2008; 12(5), 423-429.

25. Ma, R., Wu, X., Wang, R., Wang, C., and Zhu, J. Identification and phylogenetic analysis of a bacterium isolated from the cloaca of Chinese alligator. African J Biotechnol, 2008; 7(13).

26. Brenner, D. J., Staley, J. T., and Krieg, N. R. Classification of Procaryotic Organisms and the Concept of Bacterial Speciation. Bergey’s Manual of Systematics of Archaea and Bacteria, 2015; 1-9.