The Ethanol Oxidation Reaction Performance of Carbon-Supported PtRuRh Nanorods

Tzu-Hsi Huang¹, Dinesh Bhalothia², Lin Shuan¹, Yu-Rewi Huang¹ and Kuan-Wen Wang¹∗

¹ Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
² Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan

Corresponding Author:

Kuan-Wen Wang
Email: kuanwen.wang@gmail.com
Table 1. SEM-EDS and XRD results of Pt, PtRu, PtRh, and PtRuRh catalysts.

Sample	Chemical composition (at. %)	Lattice parameter (nm)	Grain size (nm)			
	Pt	Ru	Rh			
Pt	100	-	-	0.392	5.3	
PtRu	90	10	-	0.388	4.6	
PtRh	89	-	11	0.388	4.6	
PtRuRh	85	5	15	0.384	4.8	

Table S1. XPS characterization of Pt, PtRu, PtRh, and PtRuRh.

Sample	Surface composition (at. %)						
	Pt	PtOx	Ru	RuOx	Rh	RhOx	OCS
Pt	74.8	25.2	-	-	-	-	25.2
PtRu	63.6	35.2	1.1	0.1	-	-	35.3
PtRh	62.6	10.2	-	-	15.1	12.2	22.4
PtRuRh	55.1	25.5	0.1	0.4	8.9	10.0	35.5

Table S3. CO-stripping results for Pt, PtRu, PtRh, and PtRuRh.

Sample	Onset potential (V)	ECSAco (m²/g(Pt))
Pt	0.37	44.3
PtRu	0.23	92.6
PtRh	0.32	121.6
PtRuRh	0.29	157.0
Table S4. Comparison of EOR activity between PtRuRh and other PtRu and PtRh based ternary catalysts taken from literature.

Samples	Electrolyte	Onset potential (V)	Specific Activity (mA/cm²)	Ref.
MoPtRu	1M EtOH + 0.5 M H₂SO₄	0.30	SA₀.₆ = 0.08	Int. J. Hydrogen Energy, 2012, 37, 7131-7140
PtRhSn	0.5 M EtOH + 0.5 M H₂SO₄	0.29	SA₀.₆ = 1.78	ACS. Catal., 2014, 4, 1859
PtSnRu	1 M EtOH + 0.05 M H₂SO₄	0.24	SA₀.₄₅ = 0.01	J. Power Sources, 2015, 284, 623
PtRhSn/C	0.5 M EtOH + 0.1 M HClO₄	0.35	SA₀.₄₅ =0.187	ChemElectroChem, 2015, 19, 903
Pt₃RhSn	0.5 M EtOH + 0.1 M HClO₄	0.29	SA₀.₅₅ = 0.19	J. Mater. Chem. A, 2018, 6, 11270
PtRuRh	1M EtOH + 0.5 M H₂SO₄	0.30	SA₀.₆ = 0.38	This study
Figure S1. The XRD characterization of Pt, PtRu, PtRh, and PtRuRh.