Natural antioxidants in the treatment and prevention of diabetic nephropathy; a potential approach that warrants clinical trials

Noori Al-Waili*, Hamza Al-Waili*, Thia Al-Waili* and Khelod Salom*

New York Medical Care for Nephrology, Al-Waili Foundation for Science, New York, USA

ABSTRACT
Diabetic nephropathy is the major cause of end-stage renal disease and effective and new therapeutic approaches are needed in diabetic nephropathy and chronic kidney diseases. Oxidative stress and inflammatory process are important factors contributing to kidney damage by increasing production of oxidants. KEAP1/Nrf2/ARE pathway regulates the transcription of many antioxidant genes and modulation of the pathway up regulates antioxidants. NFκB controls the expression of genes involved in the inflammatory response. Natural substances have antioxidant and anti-inflammatory activities and have an impact on NFκB and KEAP1/Nrf2/ARE pathways. The preclinical studies explored the effectiveness of whole herbs, plants or seeds and their active ingredients in established diabetic nephropathy. They ameliorate oxidative stress induced kidney damage, enhance antioxidant system, and decrease inflammatory process and fibrosis; most likely by activating KEAP1/Nrf2/ARE pathway and by deactivating NFκB pathway. Whole natural products contain balanced antioxidants that might work synergistically to induce beneficial therapeutic outcome. In this context, more clinical studies involving whole plants or herbal products or mixtures of different herbs and plants and their active ingredients might change our strategies for the management of diabetic nephropathy. The natural products might be useful as preventive interventions and studies are required in this field.

Introduction
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD). It is a progressive and irreversible kidney disease that is characterized by initial hyperfiltration, albuminuria, expansion of mesangial matrix, interstitial fibrosis, thickening of basement membranes, and renal cell damage. DN affects 20–30% of the diabetic patients [1].

Many pathways involved in DN have been postulated such as hyperglycemia, oxidative stress (OS), and activation of protein kinase C (PKC) [2–4] (Table 1). The upregulation of the receptors for AGE (RAGE) has been implicated as a major mediator in the development and progression of DN. Renal fibrosis, characterized by the accumulation of extracellular matrix protein, results in CKD including DN. It was found that transforming growth factor (TGF-β1) signaling pathway plays a key role in mediating renal fibrosis. Therefore, agents that antagonize TGF-β signaling might be useful for kidney disease therapy.

OS is characterized by increases in reactive oxygen species (ROS) and/or reactive nitrogen species (RNS). RNS and ROS include various agents that contribute to pathological processes in the renal systems. The antioxidant system includes the major ROS scavenging enzymes. Glutathione (GSH) and thioredoxin-2 system are the principal thiol antioxidant systems in mitochondria, which depend on the reducing power of NADPH/NADP+ [5]. GSH is the major endogenous antioxidant produced by the cells [6]. It has been shown that oxidative damage plays an important role in the pathogenesis of DN. At a high level, ROS have an important role in the generation of OS and several inflammatory cytokines that cause damage to protein, lipid, and nuclear DNA [7–9].

In clinical practice, reduction of blood pressure, normalizing blood sugar, and controlling dyslipidemia are the main strategies to ameliorate albuminuria and to treat diabetic patients with DN [2,5]. However, these interventions do not prevent progression to ESRD. Furthermore, various etiologies and many mechanisms of pathogenesis of DN have been postulated, accordingly, multiple interventions have been tested in clinical settings, but they did not show promising outcome. Traditional herbs and spices are important sources of functional foods. They contain antioxidants and many of them showed considerable effects on biological activities and diseases process. Furthermore, many antioxidants, derived from dietary and medicinal plants, have been found to activate redox-sensitive transcription factors, and potentiate the cellular antioxidant or detoxification capability. This paper summarizes beneficial effects of common herbs and spices in DN.

The transcription factors
Nuclear factor-E2-related factor 2 (Nrf2), silent information regulator factor 2-related enzyme 1 (Sirt1), nuclear factor kappaB (NFκB), and antioxidant response element (ARE) are involved in the pathological progression of DN. Nrf2 plays a major role in the regulation of redox homeostasis and the cellular detoxification response. It modulates the gene expression of a number of enzymes to detoxify pro-oxidative stressors [10]. The activation of Nrf2 results in the upregulation of several antioxidant enzymes and cytoprotective genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx),

CONTACT Noori Al-Waili dmooori@yahoo.com New York Medical Care for Nephrology, Al-Waili Foundation for Science, Queens, New York 11418, USA

© 2017 Informa UK Limited, trading as Taylor & Francis Group

KEYWORDS
Diabetes mellitus; kidney; antioxidants; oxidative stress; herbs; diabetic nephropathy
and heme oxygenase-1 (HO-1). Several Nrf2 activators have been proved effective at activating Nrf2 signaling through different mechanisms in both in vitro and in vivo models of diabetes [11]. It was found that the activation of Nrf2–ARE pathway led to the quenching of ROS overproduction caused by advanced glycation end products (AGEs) [12]. Nrf2 is the key to regulating GSH levels by upregulating enzymes involved in GSH synthesis. Nrf2 increases glutamate cysteine ligase catalyzes (GCL), the rate-limiting step in GSH synthesis [13].

Under physiological conditions, Nrf2 locates in the cytoplasm and combines with its inhibitor Kelch-like ECH-associated protein-1 (KEAP1). During OS, Nrf2 is free from KEAP1 and binds to the genes encoding antioxidant enzymes in the nucleus to increase their expression [14,15]. It was found that Nrf2 has a protective effect on high glucose-induced oxidative damage in the cultured cells and on the diabetic complications in animal models [16]. Hyperglycemia activates the Nrf2 pathway through the generation of ROS in the kidney tissue of human or animals with DN as well as tissue cultures (Figure 1) [17–21].

NFKB controls the expression of genes involved in chemokines, inflammatory response, growth factors, cytokines, and adhesion molecules. Increased activation of NFkB was observed in DN in animal and human studies [17,22]. In CKD and anti-GBM-glo-merulonephritis, the increased activation of p65/NFkB molecule interacts with KEAP1 in the cytoplasm and prevents the release and translocation of Nrf2 in the nucleus, and in the nucleus, it prevents binding of Nrf2 to the ARE of its target genes [23,24].

IkB (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) is a cellular protein that inhibits the NFkB by masking the nuclear localization signals of NFkB proteins and keeping them sequestered in the cytoplasm and by inhibiting NFkB to bind to DNA. IKK-β, inhibitor of nuclear factor kappa-B kinase subunit beta, causes activation of NFkB and phosphorylates IkBα which is degraded by the ubiquitination pathway. Then NFkB is free and enters into the nucleus of the cell to activate various genes involved in inflammatory reactions.

Sirt1, a member of deacetylation enzymes, can deacetylate NFKB and Nrf2 [25,26]. Sirt1 can release Nrf2 by changing KEAP1 conformation, and then Nrf2 translocates into the nucleus and binds with ARE [26,27]. Sirt1 can inhibit the transcriptional activity of NFKB and reduce the levels of proinflammatory cytokines [28,29]. It was found that Sirt1 is downregulated in diabetic rats [30]. Another study showed that AGEs/RAGE system downregulated Sirt1 expression and promoted TGF-β1 expression in male rat glomerular mesangial cells [31].

Diabetes and oxidative stress

OS and inflammation are involved in the pathogenesis of DN. OS is an intercellular biochemical dysregulation of the redox status, whereas inflammation is the biological response to OS. Data from experimental and diabetic patients showed that increase of OS plays a major role in the initiation and progression of diabetic complications [32,33]. Furthermore, epidemiological studies have demonstrated an association between inflammation and OS markers with cardiovascular disease (CVD) and renal outcomes in CKD and ESRD [34]. Compared with control subjects, antioxidative agents, such as SOD, GPx, CAT, and vitamin C, were decreased in patients with DN. There was a significant increase in serum malondialdehyde (MDA), AGEs, protein carbonyl, and 8-hydroxy-2′-deoxyguanosine in diabetes patients [7]. Data showed that various factors and agents such as inflammatory cells, cytokines, and profibrotic growth factors including TGF-β, monocyte chemoattractant protein-1 (MCP-1), connective tissue growth factor (CTGF), tumor necrosis factor (TNF-α), interleukin (IL) IL-1, IL-6, IL-18, and cell adhesion molecules (CAMs) are involved in the pathogenesis of DN via increased vascular inflammation and fibrosis [10].

Hyperglycemia causes high production of ROS [8,9]. It is known that free radicals cause oxidative damage to the kidney and it contributes to hypertension (HTN)-induced kidney and vascular injury and enhances fibrosis, cell proliferation, and matrix accumulation [35,36].

OS induces NFKB and activation of NFKB was observed in DN in animal and human studies [37,38]. NFKB mediates damages in extracellular matrix, glomerulosclerosis, and renal failure, and provides a molecular mechanism responsible for the inflammation and insulin resistance in diabetes mellitus (DM) [39]. PKC activates NFKB and intensifies the
inflammatory response [40]. PKC-βII, isoform of PKC, induces the formation of production of TGF-β, CTGF, AGE, and vascular endothelial growth factor (VEGF) [40,41].

ROS are produced due to hyperglycemia, AGEs, PKC, free fatty acids, cytokines, and TGF-β that activate the NADPH/NADPH oxidase system in renal cells [42,43]. ROS are involved in the expression of mediators of inflammation, fibrosis, and cell death, and these are affected by the activation of NFκB, activator protein-1, and specificity protein-1 [44,45]. Another study showed that GSH level and GSH/GSSG ratio were decreased in diabetic rats [46]. The increased production of ROS could compromise nitric oxide (NO) bioavailability and lead to the formation or activation of vasoconstrictive mediators that could affect tissue perfusion and glomerular filtration [47]. In DM, NO availability is usually decreased, and it might contribute to the vasculopathy present in DN [47]. Endothelial dysfunction has been commonly found in subjects with DN. It was found that blocking endothelial NO leads to an increase in microvascular disease in animals with CKD and arteriosclerosis [48].

Therefore, OS, inflammation, Nrf2, Sirt1, and NFκB have a great role in the pathogenesis and prevention of DN. Factors upregulating Nrf2 and Sirt1 and downregulating NFκB and damping inflammation will contribute to new interventions for the management of DN. Natural products have antioxidant properties and many studies showed that they have important effects on the Nrf2, Sirt1, and NFκB.

Natural antioxidants in diabetic nephropathy

Many natural antioxidants, herbs, seeds, and plants’ extracts were tested in animals’ model of DN. Some of these natural products with their beneficial effects on DN and possible mechanism of action are summarized in Table 2.

Ginger (Zingiber officinale Roscoe)

Ginger shows an antioxidant activity, and more than 50 antioxidants were isolated from the rhizomes of ginger [49]. Ginger also possessed antioxidants, anti-inflammatory, anticancer, anticoagulant, antihyperglycemic, diuretics, and analgesic activities [50–53]. It reduces blood glucose levels (BGL) in STZ-induced DM in rats [54]. The combination of honey and ginger reduced SOD and CAT activities and lowered the MDA level and increased GSH level and GSH/GSSG ratio back to normal level in diabetic rats [55]. Ginger increases insulin release and sensitivity, which involve interaction with the 5-HT3 receptor [56].

Another study demonstrated that ethanolic ginger extract reduced BGL and restores the total carbohydrates, pyruvate, glycogen, and total protein in the kidney tissue of STZ-induced diabetic rats [57]. Furthermore, ginger extract injected intraperitoneally decreased significantly serum glucose and urine protein, and it effectively attenuated the progression of structural nephropathy in diabetic rats [58].
Table 2. Effects of common plants and spices on kidney function in diabetic animals and human experiments with suggested mechanism of action.

Name of the plants/herbs (active ingredients)	Effects on diabetic nephropathy in rats or mice	Mechanism of action	References
Ginger (Gingerdione) (Zerumbone) (Gingerol)	Decreases BGL, increases insulin release	Antioxidant	[49–64]
	Decreases BUN, urinary albumin	Anti-inflammatory	
	Reduces antioxidants SOD and CAT and lowers MDA level	Increases NOQ1 activity	
	Attenuates the progression of structural nephropathy	Decreases iNOS, MCP-1, TGF-β1, and NFκB activation	
	Increases GSH level and GSH/GSSG ratio	Upregulates the expression of ARE-target genes	
	Reducing degradation of iκBα		
Turmeric (Curcumin) (Curcuminoids)	Induces expression of SOD, CAT, GR, GPx, HO-1, and GST	Antioxidant	[65–82]
	Lowers mesangial area, proteinuria, BUN, and Scr	Anti-inflammatory	
	Protects the kidneys of rats or mice with DM	Induction of Nrf2	
	Inhibits inflammatory gene expression and ameliorates DN	Suppresses phosphorylation of cavelin-1	
	Prevents epithelial–mesenchymal transition of podocytes and proteinuria	Inhibits phosphorylation of STAT3 and degradation of iκBα	
	Decreases albuminuria and attenuates glomerular sclerosis		
	Lowers mesangial area, proteinuria, BUN, and Scr		
Coenzyme Q10	Attenuates diabetes-induced decreases in antioxidant defense mechanisms	Antioxidants	[83–90]
	Inhibits leukocyte infiltration, glomerulosclerosis, and MDA	Induces Nrf2 nuclear translocation	
	Increases serum levels of GSH, CAT, and SOD	Suppresses TGF-β1	
	Prevents altered mitochondrial function and morphology, glomerular hyperfiltration, and proteinuria		
Green tea (Catechins) (Epigallocatechin-3-gallate)	Protects kidney against gentamycin, cyclosporine, and i.v. contrast	Antioxidant	[91–105]
	Has renoprotective properties comparable with ACEi	Anti-inflammatory	
	Reduced BGL, HbA1c, Scr, and BUN	Increases NFκ2 and NQO1 mRNA	
	Attenuates proteinuria, hyperfiltration, glomerulosclerosis, and tubulointerstitial fibrosis	Diminishes AKT/ERK/NFκB pathways	
	Ameliorates cisplatin-induced acute kidney injury and lupus nephritis	Activates Sirt1	
Guava (Psidium guajava) (Total triterpenoids)	Decreases BGL and increases the insulin sensitivity index	Antioxidant	[106–110]
	Protects renal lesions in diabetic rats	Anti-inflammatory	
	Decreases BUN and Scr and improves the renal structural damages	Inhibition of NFκB activation	
	Reduces BGL and increases the insulin sensitivity index	Suppresses LPS-induced iκBα degradation	
	Protects renal lesions in diabetic rats	Inhibits iNOS, COX-2	
	Decreases BUN and Scr and improves the renal structural damages		
	Reduces renal antioxidant enzyme activity and defences against SOD and CAT and lowers MDA level	Anti-inflammatory	[178–188]
	Decreases proteinuria, suppresses AGEs/RAGE axis	Antioxidant, anti-inflammatory	
	Improves renal function parameters	Reduces the levels of CRP and the expression of TNF-α, monocyte chemoattractant protein 1, and intercellular adhesion molecule 1	
	Decreases proteinuria, attenuates the progression of nephropathy in diabetic rats	Inhibiting NFκB activation and subsequent iNOS and COX-2 expression	
	5-reduced albuminuria	Increases ARE-responsive HO-1 and GSR	
	Decreases fasting BGL, serum insulin, HbA1c, and systolic blood pressure	Down regulating expression of CTGF	
	Reduces albuminuria and attenuates glomerular sclerosis	Suppresses AGERAGE	
Ginkgo biloba	Reduces OS, and improves the renal tissue structure and renal functions	Antioxidants and anti-inflammatory	[189–197]
	Protects against glomerulosclerosis of mesangial cells	Inhibits sAGEs production	
	Decreases BGL, Scr, BUN, urine protein, and OS	Reduces CTGF and TGF-β1 mRNA	
	Inhibits AGE production	Increases Nrf2 and upregulation of HO-1	
	Improves renal tissue structure and renal functions		
	Decreases the urinary albumin excretion, BGL, Scr, and BUN in diabetic patients		
	Prevents heavy metals-induced nephrotoxicity and OS damage	Antioxidants and anti-inflammatory	[198–212]
	Reduces proteinuria and glomerular and tubulointerstitial lesions	Inhibits thromboxan A2 and B, prostaglandin E, and prostaglandin I, activating protein-1, MCP-1, and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling	
	Reduces levels of OS and increases the antioxidant defense systems	Anti-inflammatory	
	Protects rodents against ischemic acute renal failure, IgA- or cyclosporine A-induced nephrotoxicity, and STZ-induced type 1 and type 2 DN	Inhibits AGE	
	Attenuates tubulointerstitial fibrosis and inflammation		
	Has renal protective effect in DN patients	Has anti-inflammatory and antioxidant activity	[223–233]
	Reduces BUN, Scr, BGL, and albuminuria in diabetic patients	Uregulates c-met (a receptor tyrosine kinase) expression in human kidney	
	Reverses the glomerular hyperfiltration state	Reduces TGF-β1 expression	
	Ameliorates the pathological changes of early DN	Reduces mRNA level of NFκB	
	Increases the inhibition of NFκB protein mRNA expression	Increases in inhibitory NFκB protein mRNA expression	
	Modulates TGF-β/Smad signaling		
	Reduces proteinuria and glomerular sclerosis		
	Lowers mesangial area, proteinuria, BUN, and Scr		
	Lowers mesangial area, proteinuria, BUN, and Scr		
	Reduces albuminuria and attenuates glomerular sclerosis		
	Lowers mesangial area, proteinuria, BUN, and Scr		
	Attenuates diabetes-induced decreases in antioxidant defense mechanisms		
	Inhibits leukocyte infiltration, glomerulosclerosis, and MDA		
	Increases serum levels of GSH, CAT, and SOD		
	Prevents altered mitochondrial function and morphology, glomerular hyperfiltration, and proteinuria		
	Reduces renal antioxidant enzyme activity and defences against SOD and CAT and lowers MDA level		
	Decreases proteinuria, suppresses AGEs/RAGE axis		
	Improves renal function parameters		
	Decreases proteinuria, attenuates the progression of nephropathy in diabetic rats		
	5-reduced albuminuria		
	Decreases fasting BGL, serum insulin, HbA1c, and systolic blood pressure		
	Reduces OS, and improves the renal tissue structure and renal functions		
	Protects against glomerulosclerosis of mesangial cells		
	Decreases BGL, Scr, BUN, urine protein, and OS		
	Inhibits AGE production		
	Improves renal tissue structure and renal functions		
	Decreases the urinary albumin excretion, BGL, Scr, and BUN in diabetic patients		
	Prevents heavy metals-induced nephrotoxicity and OS damage		
	Reduces proteinuria and glomerular and tubulointerstitial lesions		
	Reduces levels of OS and increases the antioxidant defense systems		
	Protects rodents against ischemic acute renal failure, IgA- or cyclosporine A-induced nephrotoxicity, and STZ-induced type 1 and type 2 DN		
	Attenuates tubulointerstitial fibrosis and inflammation		
	Has renal protective effect in DN patients		
	Reduces BUN, Scr, BGL, and albuminuria in diabetic patients		
	Reverses the glomerular hyperfiltration state		
	Ameliorates the pathological changes of early DN		
	Has anti-inflammatory and antioxidant activity		
	Uregulates c-met (a receptor tyrosine kinase) expression in human kidney		
	Reduces TGF-β1 expression		
	Reduces mRNA level of NFκB		
	Increases in inhibitory NFκB protein mRNA expression		
	Modulates TGF-β/Smad signaling		
(Continued)
Table 2. Continued.

Name of the plants/herbs (active ingredients)	Effects on diabetic nephropathy in rats or mice	Mechanism of action	References	
Panax ginseng	Has protection against alloxaan-induced renal damage	Upregulates cellular protein levels of Nrf2, GSH levels, and HO-1 and gamma-glutamyl-cysteine synthetase	[111–113]	
	Reduces urinary albumin and creatinine	Upregulates cellular GHS levels		
		Regulates Nrf2		
		Increases ARE-activity		
		Upregulates thioredoxin reductase-1		
Rosa laevigata Michx	Ameliorates renal dysfunction cell injury	Antioxidant	[111–113]	
	Decreases SCR and BUN levels	Anti-inflammatory		
		Inhibits expression of NF-kB p65 and MCP-1		
		Increases the expression of the IkBa protein		
		Upregulates the levels of Nrf2, Sirt1 and HO-1		
		Downregulates the levels of KEAP1 and NFkB p65		
Garlic	Reduces hyperglycemia	Antioxidant	[114–130]	
(Alllicin)	Attenuates mesangial expansion and glomerulosclerosis	Anti-inflammatory		
(S-allyl cysteine)	Decreases urinary excretions of albumin			
(Diallyl trisulfide)	Decreases BGL, BUN, and SCR	Activates the Nrf2–ARE signaling pathway		
	Normalizes blood pressure and renal clearance function	Decreases the expression of VEGF		
			Decreases levels of collagen I, TGF–β1 and p-ERK1/2	
Black seed	Reduces the elevated levels of BGL in diabetic rats	Antioxidant	[131–146]	
(Thymoquinone)	Stimulates insulin release	Anti-inflammatory		
	Lowers SCR and BUN			
	Improves renal function	Reduces TNF-α		
	Reduces renal inflammation and oxidative injury in ischemia reperfusion injury	Inhibits the phosphorylation of mitogen-activated protein kinases production of NO by iNOS enzyme		
		Suppresses NFkB activation		
		Ameliorates albuminuria		
		Restores the decrease in IL-10 levels and Nrf2 mRNA levels		
Panax ginseng	Reduces the cisplatin-induced nephrotoxicity	Antioxidant	[147–154]	
(Ginsenosides)	Ameliorates hyperglycemia and renal damage in diabetic rats	ARE inducer		
(Panaxytriol)	Decreases hyperglycemia and proteinuria	Induces NQO1		
	Normalizes creatinine clearance			
Fenugreek	Ameliorates SCR in diabetic animals	Antioxidant	[155–162]	
(Fenugreek oil)	Reduces the high levels of BGL, BUN, SCR, and IL-6	Anti-inflammatory		
(GI)	Reduces BGL, improves renal functions	Restrains TGF–β1/CTGF signaling pathway		
(Glycosides)	Suppresses ECM accumulation	Increases Nrf2		
	Attenuates the cisplatin-induced biochemical and histopathological alterations, inflammation, and apoptosis kidney			
Rosmarinus officinalis	Decreases focal glomerular necrosis, dilatation of Bowman’s capsule, degeneration of tubular epithelium, necrosis in tubular epithelium, and tubular dilatation	Antioxidant and anti-inflammatory	[163–177]	
(Rosmarinic acid)	Prevents ischemia/reperfusion injury in the kidneys			
(Carnosic acid)	Ameliorates glomerulosclerosis			
	Protects podocyte by increasing antioxidative capacity and ameliorating the renal OS			
	Reduces albuminuria, and GBM thickness in the kidneys			
	Decreases BUN, SCR, and urinary albumin excretion rate			
	Increases creatinine clearance rate			
	Lowers albuminuria in type 2 diabetic patients with microalbuminuria			
	Reduces HbA1c levels in diabetic patients			
Vitamin C	Protects podocyte	Antioxidants and anti-inflammatory	[234–243]	
	by increasing antioxidative capacity and ameliorating the renal OS	Increases HO-1 protein expression in a concentration- and time-dependent manner		
	Reduces albuminuria, and GBM thickness in the kidneys	Causes Nrf2 activation		
	Decreases urinary albumin excretion rate	Downregulates expressions of collagen type IV		
	Increases SCR and SCR			
	Increases BUN and creatinine clearance rate			
	Lowers albuminuria in type 2 diabetic patients with microalbuminuria			
	Reduces HbA1c levels in diabetic patients			
Vitamin E	Ameliorates SCR in diabetic animals	Suppresses the activation of NFkB signaling pathway	[244–251]	
(Tocotrienol)	Normalizes elevated baseline creatinine clearance in type 1 diabetic patients	Antioxidant		
	Reduces HbA1c levels in type 2 diabetes	Decreases thromboxane A2 production		
	Decreases microalbuminuria	Increases GSH level and CAT activity		
	Has a nephroprotective effect	Improves the index of NO−/NO3− generation		
	Reduces proximal tubular injury and renal LPO			
Zinc	Has a favorable effect on glycemic control in diabetic patients	Antioxidant properties and anti-inflammatory	[252–259]	
	Reduces diabetes-induced renal damage	Prevents hyperglycemia-induced CTGF expression		
	Decreases BSL, triglyceride, urinary albumin excretion, and inflammation in type 2 diabetic nephropathy patients	Causes stimulation of metallotriphosine synthesis		
	Downregulates Nrf2 function via activating Akt-mediated inhibition of Fyn function			
Oats	Slow down renal fibrosis	Downregulates the TGF–β1 and receptors for AGE expression at mRNA levels	[260–264]	
(β–0-glucan)	Reduce BGL, HbA1c, and OS markers	Causes disruption of the detrimental receptors for AGE-NFkB axis		
(Avenanthramides)	Lower BSL and HbA1c in diabetic patients	Normalizes NFkB activation and TNF-α expression		
		Increases HO-1 expression which was mediated by Nrf2 translocation		
Ginger and its derivatives might decrease inflammatory processes in DN as well as increase antioxidants by affecting KEAP1. Another study showed that gingerol has a protective effect with KEAP1. Zerumbone upregulates the expression of ARE-target genes and decreases levels of HbA1c. Increases SOD, GPx activity, and total antioxidant capacity. Decreases CRP levels, and decreases MDA concentration in diabetic patients. Decreases the urinary albumin–creatinine ratio, urinary levels of TNF-α, and urinary and serum levels of MDA in diabetic patients.

Compounds isolated from ginger (1-dehydro-6-gingerdione, 6-shogaol, and hexahydrocurcumin) increased NAD(P)H quinone oxidoreductase 1 (NQO1) activity and decreased induced nitric oxide synthase (iNOS) activity in LPS-stimulated macrophages. Zerumbone, one of the pungent constituents of Zingiber zerumbet (L) and Smith (Zingiberaceae family), decreased the expression of intercellular adhesion molecule-1, MCP-1, TGF-β1, and fibronectin in the DN. It improved histological architecture in the diabetic kidney. Furthermore, zerumbone suppresses NFκB activation induced by several proinflammatory stimuli by reducing the phosphorylation and degradation of IkBα by interfering with IKK activity. Zerumbone upregulates the expression of ARE-target genes and downregulates NFκB-targets by direct interaction with KEAP1.

Gingerol (100 mg/kg bw), the major pungent component in ginger, significantly decreased blood glucose in db/db type 2 diabetic mice and lowered lipids and fatty acid. Another study showed that gingerol has a protective effect on pancreatic β-cells and it restored the plasma insulin level. Ginger and its derivatives might decrease inflammatory processes in DN as well as increase antioxidants by affecting NFκB activation, expression of ARE-target genes and by interaction with KEAP1.

Turmeric

Curcumin is a famous spice used in cooking and traditional medicine. It is a polyphenol (diferuloylmethane) and it is the main active component of turmeric isolated from the plant Curcuma longa L. It was found that curcumin has many antidiabetic activities which was postulated to be due to the antioxidant property.

Curcuminoids have an antioxidant activity in several in vitro and in vivo models, such as preventing lipid peroxidation in a variety of cells. Curcumin scavenges superoxide anion (O2·), hydroxyl radical (OH), hydrogen peroxide (H2O2), singlet oxygen, NO, peroxynitrite, and peroxyl radical (ROO·). It can induce the expression of SOD, CAT, GPx, HO-1, GST, NQO1, and γ-glutamyl-cysteine ligase. The renoprotective effect of curcumin has been evaluated in several experimental models including DN, CKD, ischemia and reperfusion, and nephrotoxicity induced by various compounds. The renoprotective effect of curcumin was due to the induction of Nrf2, inhibition of mitochondrial dysfunction, attenuation of the inflammatory response, preservation of antioxidant enzymes, and prevention of OS. Another study has suggested that curcumin treatment ameliorates DN via inhibition of inflammatory gene expression by reversing caveolin-1 Tyr14 phosphorylation that influenced Toll-like receptor 4 activation.

Epithelial–mesenchymal transition plays a key role in DN. Recently, it was suggested that curcumin prevents epithelial–mesenchymal transition of podocytes, proteinuria, and kidney injury in DN by suppressing the phosphorylation of caveolin-1, and increasing stabilization of caveolin-1 and β-catenin. Curcumin protects DN by reducing AGE-induced OS and restoring AGE-induced mesangial cell apoptosis. In the treatment of DN in db/db mice, curcumin decreases albuminuria and attenuates glomerular sclerosis by inhibiting phosphorylation of STAT3 and degradation of IkB.[76]

In the clinical setting, it was found that curcumin at the dose of 500 mg/day markedly attenuates urinary microalbumin excretion, reduces plasma MDA level with enhanced the NrF2 system specifically regulated protein, NQO-1, together with other antioxidative enzymes in diabetic patients’ blood lymphocytes. After curcumin administration, there was an increased IkB, an inhibitory protein on inflammatory signaling in patient’s lymphocytes. A recent review of 14 randomized controlled studies showed that curcumin significantly lowers mesangial area, proteinuria, blood urea nitrogen (BUN), and serum creatinine (Scr) and protects the kidneys of rats or mice with diabetes.

Curcumin activates NrF2 and HO-1, and protects the NRK-52E cells from the high glucose-induced epithelial-to-mesenchymal transition of mature tubular epithelial cells. The expression levels of NrF2 and HO-1 protein were elevated to a greater extent in the curcumin-pretreated NRK-52E cells. Furthermore, curcumin effectively attenuates OS, inflammation, and renal fibrosis by modulating NrF2–KEAP1 pathway.

Table 2. Continued.

Name of the plants/herbs (active ingredients)	Effects on diabetic nephropathy in rate or mice	Mechanism of action	References
Lycopus lucidus Turcz	Inhibits renal fibrosis	Blocks TGF-β signaling pathway	[265–268]
Milk thistle (Flavonolignans) (Silymarin)	Reduces urinary excretion of albumin	Antioxidant and anti-inflammatory effects	[269–274]

GSTs: Glutathione-s-transferase; OS: oxidative stress; NO: nitric oxide; TNF-α: tumor necrosis factor; GCS: γ-glutamyl-cysteine synthetase; ROS: reactive oxygen species; PKC: protein kinase C; SOD: superoxide dismutase; RNS: reactive nitrogen species; AGEs: advanced glycation end products; NFκB: nuclear factor kappa B; Nrf2: nuclear factor erythroid 2-related factor 2; HO1: heme oxygenase-1; NQO1: NAD(P)H quinone oxidoreductase 1; MCP-1: monococyte chemoattractant protein-1;IKK-β: inhibitor of nuclear factor kappa-B kinase subunit beta;IκBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha.
induced Nrf2 and prevents OS, glomerular hypertension, hyperfiltration, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats [81]. Furthermore, curcumin upregulates HO-1 in a rat smooth muscle cell line and it is a potent activator of Nrf2 [82].

Coenzyme Q10

Coenzyme Q10 (ubiquinone) is an endogenous lipid and a natural antioxidant and scavenging free radicals. It is an oil-soluble vitamin-like substance that is a component of the electron transport chain. It is found in the membranes of many organelles, and it involves in aerobic cellular respiration as an electron carrier for generating energy. A meta-analysis of clinical studies concluded that coenzyme Q10 had the potential for lowering blood pressure in hypertensive patients [83]. It was suggested that a deficiency in mitochondrial oxidized coenzyme Q10 may be a precipitating factor for DN [84]. Coenzyme Q10 attenuates diabetes-induced decreases in antioxidant defense mechanisms and this effect was potentiated by IGF-1 antagonism [85]. Coenzyme Q10 significantly inhibited leukocyte infiltration, glomerulosclerosis and decreased levels of MDA in serum and kidney content. Another study has found that coenzyme Q10 significantly increased serum levels of GSH, CAT, and SOD in the diabetic animals [86]. Furthermore, coenzyme Q10 decreases leukocyte infiltration and glomerulosclerosis and it exerts beneficial effects on the lipid peroxidation and antioxidant enzymes activity in alloxan-induced type 1 diabetic rats [86]. Data from another study demonstrated that coenzyme Q10 prevents altered mitochondrial function and morphology, glomerular hyperfiltration, and proteinuria in db/db mice [87]. Coenzyme Q10 ameliorated glomerulosclerosis and improved tissue antioxidant enzymes in diabetic rats [88]. It was shown that coenzyme Q10 induces Nrf2 nuclear translocation, augments the cellular antioxidant defense capacity and attenuates H2O2-induced in PC12 cells [89]. Furthermore, solubilized coenzyme Q10 inhibited dimethylnitrosamine-induced liver fibrosis through suppression of TGF-β1 expression via Nrf2/ARE activation in mice [90].

Green tea

Green tea (Camellia sinensis L.) has antioxidant and anti-inflammatory properties. It contains strong antioxidative flavonoids. Green tea polyphenols have a beneficial effect on pathological entities related to OS of renal tissues [91]. It protects kidney against gentamycin, cyclosporine, and intravenous contrast [92,93]. In randomized clinical trial, it was found that green tea polyphenol reduces albuminuria in diabetic patients receiving the maximum recommended dose of renin–angiotensin inhibition [94]. In this study, podocyte apoptosis and in vitro albumin permeability were higher in human podocytes exposed to plasma from diabetics compared to podocytes treated with plasma from normal individuals; therefore, it was suggested that reduction in podocyte apoptosis by activation of the WNT pathway may have contributed to the green tea effect.

Green tea treatment significantly reduced BGL, glycosylated protein (HbA1c), SCr, and BUN in diabetic rats. In addition, the green tea-treated group showed a significant higher creatinine clearance compared with the untreated diabetic rat and green tea also prevented glycogen accumulation in the renal tubules [95]. Another study showed that green tea polyphenols increased the activity of SOD in the kidney rats that had been subjected to subtotal nephrectomy and injection of STZ [96]. In mice, green tea extract increased Nrf2 and NQO1 mRNA, and lowered hepatic steatosis, MDA, lipid uptake and lipogenic gene expression, and NFκB-dependent inflammation [97].

The green tea catechins have potent anti-inflammatory and antioxidant agents. They inhibit chelate transition metals, leukocyte chemotaxis, quench free radicals, and lipid peroxidation chain reaction [98]. It has been demonstrated that high doses of catechins-rich OPLE for 4 weeks in STZ-induced diabetic rats attenuate proteinuria, hyperfiltration, glomerulosclerosis, and tubulointerstitial fibrosis and causes suppression of 8-hydroxy-2′-deoxyguanosine, lipid peroxides, and TGF-β1 [99]. Another study showed that catechin has renoprotective properties comparable with renin–angiotensin inhibition, and co-administration with enalapril might be useful in reducing albumin excretion as well as improving endothelial function [100].

Epigallocatechin-3-gallate is the most abundant and most active catechin polyphenol extracted from green tea. It could restore unilateral ureteral obstruction-induced renal dysfunction, and prevent unilateral ureteral obstruction-induced OS in inflammatory responses in the obstructed kidney. Furthermore, epigallocatechin-3-gallate could induce both NfkB and Nrf2 nuclear translocation in the unilateral ureteral obstruction kidney and promote HO-1 production [101]. Epigallocatechin 3-O-gallate reversed an increase in the levels of BGL, BUN, SCr, and urine protein in STZ-induced DN in mice [102]. Therefore, epigallocatechin 3-O-gallate might provide an effective protection against STZ-induced DN in mice by osteopontin suppression [102].

Epigallocatechin-3-gallate activates Nrf2–ARE and peroxisome proliferator-activated receptor pathway, diminishes AKT/ERK/NFkB pathways to reduce OS and inflammation, and activates Sirt1 in mice with crescentic glomerulonephritis [103]. Moreover, it upregulates Nrf2 signaling and ameliorates cisplatin-induced acute kidney injury and lupus nephritis in animal models [104,105].

Guava (Psidium guajava)

Guava (Psidium guajava) is one of the popular tropical fruits rich in vitamin C, fiber, and phenolic compounds. Psidium cattleianum Sabine (Myrtacea) is rich in vitamin C and phenolic compounds, including epicatechin and gallic acid as the main components. It was considered as a good source of natural antioxidants [106]. Psidium guajava is an evergreen small tree or shrub whose origin is America. Its extract contains caffeic acid, myricetin, and quercetin, coumarin and ferulic acids [107]. This fruit extract dose-dependently reserved GSH content, retained activity of CTA and GPx, and decreased ROS, IL-6, TNF-α, and IL-1β levels in the kidney and therefore, it can protect the kidney against diabetic progression via its antioxidative, anti-inflammatory, and anti-glycative effects [107]. Extract of Psidium guajava possesses a significant free radical scavenging and antioxidant activities [108]. Total triterpenoids from Psidium guajava leaves decrease the level of BGL of diabetic rats, increase the insulin sensitivity index, and protect renal lesions in diabetic rats [109]. It also suppressed renal activity of aldose reductase. The levels of BUN and SCr were decreased and the renal
structural damages were improved with the use of *Psidium guajava* leaves in STZ-induced diabetic rats [109].

It was found that the flavonoid fraction of guava leaf extract inhibits LPS-induced NO and PGE2 production, TNF-α, IL-1β, IL-10, INOS, COX-2, and LPS-induced NfκB transcriptional activity in diabetic mice [107]. The flavonoid fraction of guava leaf extract suppresses the expression of inflammatory mediators that involves the inhibition of NfκB activation through the suppression of LPS-induced IkB-α degradation [110].

Rosa laevigata Michx

Rosa laevigata Michx is a well-known medicinal plant, and it has been widely used in China for a long time. Previous studies revealed that the total flavonoids fraction from the *Rosa laevigata Michx* has potent antioxidant, hypolipidemic, hepatoprotective, and antithrombotic activities through attenuating inflammation, suppression of apoptosis, and altering mitogen-activated protein kinase signaling pathways [111]. Another study showed that *Rosa laevigata Michx* significantly ameliorates renal dysfunction in diabetic rats [112]. The protection involves increasing the activity of SOD and total antioxidant capacity, decreasing the levels of MDA and ROS, and inhibiting the expression of NfκB p65 and MCP-1 at both the protein and mRNA levels with an increase in the expression of the IkBa protein [112].

Total flavonoids from *Rosa laevigata Michx* fruit attenuated cell injury and decreased Scr and BUN levels in rats with ischemia/reperfusion injury [113]. They also decreased the levels of MDA, SOD, GSH and GPx, and ROS, upregulated the levels of Nrf2, Sirt1, and HO-1, downregulated the levels of KEAP1 and NfκB p65, and increased the mRNA levels of IL-6, IL-1β, and TNF-α. Furthermore, inhibiting Sirt1 attenuated the protecting effect of the total flavonoids on renal ischemia/reperfusion injury, suggesting that the effect of the extract depended on Sirt1. Therefore, the total flavonoids have nephroprotective effect against ischemia/reperfusion injury by affecting Sirt1/Nrf2/NfκB signaling pathway [116].

Garlic

Large data from human and animal studies have reported the health-promoting properties of garlic (*Allium sativum* L.), a widely used condiment and spice. Many studies have shown that fresh garlic has the anti-diabetic properties. Raw garlic extract is active in reducing hyperglycemia and alleviating dyslipidemia and OS in both animal models and humans [114–117].

In diabetic rats, garlic showed normalization or attenuation in plasma and kidney ACE-1 and angiotensinogen II, normalization of blood pressure, and renal clearance function [114]. RAGE was significantly increased in renal and hepatic tissues of diabetic rats, which involved mesangial cells in glomeruli exhibiting signs of mesangial expansion, mesangial nodule formation, and glomerulosclerosis. Garlic significantly reduced RAGE throughout renal and hepatic regions [118]. In diabetic rats, the use of the garlic extract (500 mg/kg body weight) caused a significant decrease in the expression of VEGF and extracellular signal-regulated kinase-1 compared to diabetic rats, and attenuating mesangial expansion and glomerulosclerosis [119].

Garlic increased the serum antioxidant levels after 3 weeks of treatment in both diabetic and hypertensive rats. It decreased BGL and lowered systolic blood pressure [116]. Another study showed that fresh garlic homogenate significantly attenuated STZ-induced DN by attenuation of BGL, insulin, total triacylglycerol, total cholesterol, and creatinine clearance in rats. Urinary excretions of albumin and N-acetyl-beta-D-glucosaminidase were reduced. In addition, a marked improvement of GSH content in the kidney homogenates was also observed. It enhanced urinary excretion of nitrates [120].

Aged garlic extract is produced by storing sliced and macerated fresh garlic at room temperature for 20 months. Aged garlic extract contains many of the bioactive compounds found in fresh garlic including flavonoids and sapo-nins, the water-soluble allyl amino acid derivatives, stable lipid-soluble allyl sulfides, and S-allylcysteine and S-allylmercaptocysteine [121]. Aged garlic extract exhibits a dose-dependent ameliorative action on indicators of DM including serum insulin, total antioxidant level, and CAT activity in the serum, kidney, and liver in STZ-induced diabetic rats [122]. In animal models, it was found that aged garlic extract lowers OS by increasing endogenous antioxidant enzymes, such as CAT and GPx, and lowering xanthine oxidase and NADPH oxidase [123,124]. Aged garlic extract reduces the formation of superoxide and lipid peroxidation [125]. Aged garlic activated the Nrf2–ARE signaling pathway and induced the expression of antioxidant enzymes HO-1 and GCL modifier subunit [126].

Allicin is a major biologically active component of garlic. A study showed that allicin treatment for 12 weeks ameliorated diabetes-induced morphological alterations of the kidney and decreased BGL, Scr, triglyceride, and 24 h urine albumin excretion in diabetic rats. It decreased the expression levels of collagen I, TGF-β1, and p-ERK1/2 [127].

S-allylcysteine is a garlic-derived antioxidant. Data showed that S-allylcysteine (25 mg/kg) prevents the cisplatin-induced renal damage and attenuates cisplatin-induced decrease in Nrf2 levels and increase in PKCβ2, p47(phox) and gp91(phox) expression in renal cortex and OS, and decrease in the activity of CAT, GPx, and glutathione reductase (GSR) in the proximal and distal tubules [128]. Recently, it was shown that S-allylcysteine activates Nrf2 factor in cerebral cortex [129]. Diallyl trisulfide is the most powerful antioxidant among the sulfur-containing compounds in garlic oil. The study demonstrated that diallyl trisulfide protects against hyperglycemia-induced ROS-mediated apoptosis by upregulating the PI3K/Akt/Nrf2 pathway, which activates Nrf2 in cardiomyocytes exposed to high glucose [130].

Black seed (Nigella sativa)

Black seed is composed of fixed and essential oil. Dihomo-γ-linolenic acid presents in the fixed oil of seeds and it has a powerful antioxidant [131]. It contains vitamin E, vitamin A, β-carotene, and thymoquinone. It was found that ethanol extract of *Nigella sativa* seeds to STZ-induced diabetic rats for 30 days significantly reduced the elevated levels of BGL, and improved levels of CAT, SOD, reduced GST and GPx in the liver and kidney [132]. Results showed that vitamin C and *Nigella sativa* oil lowered the Scr, BUN, and antioxidant activity as compared to gentamicin control group values. When these were given as combination, they have synergistic nephroprotective effect [133]. Pretreatment with black seed for 3 weeks prior to ischemia reperfusion injury improved
renal function and reduced renal inflammation and oxidative injury [134]. It was suggested that the anti-diabetic properties of *Nigella sativa* seeds may be mediated by stimulated insulin release [135]. In STZ-induced diabetic rats, black seed oils significantly induced the gene expression of insulin receptor and they upregulated the expression of IGF-1. Also they significantly reduced BGL, OS parameters, serum insulin/insulin receptor ratio, and TNF-α [136].

Thymoquinone, an active quinone, that is the main component of black seed, has antioxidant, anti-inflammatory, and anti-diabetic effects. A study showed that thymoquinone has markedly reduced renal damage induced by doxorubicin with the restoration of decrease in IL-10 levels, Nrf2 mRNA levels towards normal values [137]. Thymoquinone is effective in protecting rats against N(omega)-nitro-L-arginine methyl esters-induced HTN and renal damage [138].

Thymoquinone decreased MDA and 8-isoprostanol levels in renal tissues and reduced levels of SCr and BUN concentration [139]. It was found that the protective effect of thymoquinone in STZ-induced diabetic rats is mediated via inhibiting the phosphorylation of mitogen-activated protein kinases production of NO by iNOS enzyme [140]. In a model of vancomycin- or gentamycin-induced nephrotoxicity in rats, thymoquinone caused reversal of the increase in BUN, SCr, and lipid peroxides [141,142].

Thymoquinone significantly abolished LPS-induced pro-inflammatory cytokines, such as IL-1β, TNF-α, COX-2, and prostaglandin E2 [143]. Oral administration of thymoquinone (80 mg/kg) to diabetic rats for 45 days reversed the decreased activities of CAT, Gpx, and glutathione S-transferase (GST), and increased GSH and vitamins C and E [144]. *Nigella sativa* oil and thymoquinone prevented diabetes-induced down-regulation of mRNA expression of the podocyte-specific marker and the mRNA over expression of collagen IV, TGF-β1, and VEGF in the diabetic kidney, and ameliorated albuminuria [145]. It was suggested that the anti-inflammatory activities of black seed and thymoquinone may be mediated through the suppression of NfκB activation [146].

Panax ginseng

The root of *Panax ginseng* has been widely used for the management of many diseases, including cancer, DM, and CVD for thousands of years [147,148]. Ginsenosides, main pharmacologically active constituents of ginseng and the secondary metabolites of the *Panax* species, have antioxidants and free radicals scavenging properties [149]. It reduced the cisplatin-induced nephrotoxicity in cultured renal proximal tubular epithelial cells in a dose-dependent manner [150]. North American ginseng has preventive effects on DN and it works through its anti-hyperglycemic and antioxidant activities [151].

In type 1 insulin-dependent DN animal models induced by STZ, it was found that sun ginseng, heat-processed American ginseng, and 20(S)-ginsenoside Rg3 ameliorated hyperglycemia and renal damage [152]. In type 2 insulin-independent DN animal models, ginsenoside Rg3 decreased hyperglycemia and proteinuria and augmented creatinine clearance [111].

Panaxytriol, an active component of red ginseng extracts, is a potent ARE inducer. The upregulation of aldo–keto reductase enzymes, induced by chemically homogeneous panaxytriol, was partially dependent on PKC and PI3K kinases. Aldo–keto reductase enzymes play an important role in the transformation and detoxification of aldehydes and ketones generated during drug detoxification and xenobiotic metabolism. This cellular mechanism may account for panaxytriol’s neuroprotective, neuroprotective, and anti-cancer properties [153]. It has been shown that ginseng induces NQO1, a phase 2 detoxification enzyme protect against carcinogenesis and OS, and the most potent inducing red ginseng extract has the highest panaxytriol content [154].

Fenugreek (Trigonella foenum-graecum)

Fenugreek (*Trigonella foenum-graecum*) is used as a daily diet of the general population in many countries. It was found that extractions from fenugreek seed have anti-diabetic and antioxidant effects. Fenugreek has a favorable function on peripheral glucose utilization and insulin secretagogue actions [155]. Furthermore, another study showed that fenugreek ameliorates SCr in diabetic animals [156]. In diabetic rats, treatment with fenugreek for 12 weeks reduces the high levels of glucose, BUN, SCr, and IL-6. It also reduced the levels of MDA and IL-6 in the kidney homogenate and increased the concentration of GSH and the activity of both SOD and CAT. These results suggest a therapeutic potential of fenugreek against DN by its antioxidative/anti-inflammatory properties [156]. In STZ-induced DN in rats, fenugreek treatment significantly reduced BGL, improved renal functions, suppressed ECM accumulation, and it relieved OS with the restrained TGF-β1/CTGF signaling pathway [157]. Cisplatin administration triggered inflammatory responses and apoptosis in rat livers and kidneys by increased expression of pro-inflammatory cytokine, TNF-α, and apoptotic marker p38 mitogen-activated protein kinases; results of overproduction of ROS. Fenugreek significantly attenuated the cisplatin-induced biochemical and histopathological alterations, inflammation, and apoptosis in rat kidneys. The results suggested that fenugreek has a powerful antioxidant effect [158].

Acrylamide intoxication significantly increased serum levels of LDH, AST, ALT, APL, γ-GT, cholesterol, uric acid, BUN, SCr, 8-oxo-2′-deoxyguanosine, IL-1β, IL-6, and TNF-α. Fenugreek oil supplementation normalized the altered serum parameters, prevented lipid peroxidation, and enhanced the antioxidant biomarker concentrations and activities in the hepatic, renal, and brain tissues in a dose-dependent manner [159].

Treatment with GII, a water-soluble compound purified from fenugreek seeds, for 15 days in the subdiabetic and moderately diabetic rabbits and for 30 days in the severely diabetic rabbits decreased the elevated TC, TG, LDL, VLDL and increased the decreased HDL, increased the decreased SOD and Gpx. Therefore, the treatment with GII compound corrects the altered polyol pathway and antioxidant enzymes [160].

Another study showed that *Trigonella foenum-graecum* seed aqueous extract confers protection against functional and morphologic injuries in the kidneys of diabetic rats by increasing activities of antioxidants and inhibiting the accumulation of oxidized DNA in the kidney [161]. In addition, glycosides fenugreek seed extract showed anti-fibrotic efficacy through induction of Nrf2 in rats with bleomycin-induced pulmonary fibrosis [162].

Rosmarinus officinalis

Rosmarinic acid is a polyphenolic phytochemical, found in *Perilla*, rosemary and mint; it is the main constituent of
Rosmarinus officinalis. It has antioxidant and anti-inflammatory properties [163]. Rosmarinic acid exerts an early renal protective role to DN by inhibiting CTGF [164]. It significantly decreased focal glomerular necrosis, dilatation of Bowman’s capsule, degeneration of tubular epithelium, necrosis in tubular epithelium, and tubular dilatation [165]. DM caused a significant decrease in the activity of SOD and CAT in rats. The treatment with rosmarinic acid (10 mg/kg) prevented the alteration in SOD and CAT activity and it reversed the decrease in ascorbic acid and non-protein-thiol levels in diabetic rats [166].

Rosmarinic acid has antioxidant and anti-inflammatory activity [163,167,168]. It prevented ischemia/reperfusion injury in the kidneys by decreasing OS [165]. Furthermore, rosmarinic acid was found to reduce NfκB, and increase glutathione transferase, anti Bcl-2 activity, and scavenger of peroxynitrite [169,170]. It conserves the glomerular number in diabetic rats and ameliorates glomerulosclerosis [171]. Furthermore, it was found that rosemary extract can inhibit the increased serum MDA in treated diabetic rats [172]. Other studies showed that rosmarinic acid improves activity of kidney antioxidants, such as SOD, GPx, and CAT, in gentamicin-induced nephrotoxicity and ameliorated DN in rats [173].

Carnosic acid, a phenolic diterpene isolated from Rosmarinus officinalis, exerts anti-inflammatory, antioxidant, and anticarcinogenic activities. It was found to cross the blood-brain barrier to support neuronal growth, and upregulates the production of neural protection factors in an Nrf2-dependent manner [174,175]. Furthermore, it was found that carnosic acid activated Nrf2 through modulation of PI3K/Akt pathway resulting in increased levels of antioxidant enzymes [176]. Carnosic acid prevented methylglyoxal-dependent neurotoxicity by activating the PI3K/Akt/Nrf2 signaling pathway and the antioxidant enzymes modulated by Nrf2 transcription factor [177].

Grape seed

Whole grape-based diet increased cardiac GSH and GSR activity in hypertensive rats [178]. Grape-derived phytochemicals, resveratrol and pterostilbene, were both protective against azoxymethane-induced colon carcinoma by inhibiting NFκB activation and subsequent iNOS and COX-2 expression, concomitant with increased ARE-responsive HO-1 and GSR [179].

Grape seed proanthocyanidin extract, a polyphenol compound derived from grape seeds, has antioxidant, anti-inflammatory, and antitumor activities, and it mediates resistance to free radicals and has protection from CVD [180,181]. Its antioxidant activity is 50 times higher than that of vitamin E and 20 times higher than that of vitamin C. It has been shown that this extract could downregulate OS proteins and increase renal antioxidant enzyme activity and ameliorate DN [182,183]. Another study showed that it can decrease proteinuria, attenuating the progression of nephropathy in diabetic rats that are correlated with suppression on AGEs/RAGE axis, and downregulating expression of CTGF [184]. Furthermore, it was found that proanthocyanidins protect the kidney of diabetic rats by increasing the renal antioxidative ability [185].

A recent study showed that proanthocyanidins decreases fasting BGL, serum insulin, HbA1c, and systolic blood pressure, improves renal function parameters, reduces the expression of tissue inhibitor of metalloproteinase1 and increases the activity of matrix metalloproteinase in diabetic rats. It also increased the activity of antioxidant enzymes and reduced the levels of CRP and the expression of TNF-α, MCP-1, and ICAM-1 in the kidney [186]. It was found that proanthocyanidin significantly decreases lipid peroxidation and augments the activities of antioxidant enzymes in the kidney of DN rats and also reduces albuminuria. It was suggested that these results were due to the reduction of the OS and increase in renal antioxidant enzyme activity [182]. In rat mesangial cells treated with high-dose glucosamine, the administration of grape seed procyanidin B2 significantly increased the viability of mesangial cells, inhibited apoptosis, and suppressed OS. It activated the protein expression of PPARγ co-activator-1α, SIRT1, and AMP-activated protein kinase in mesangial cells. It was suggested that grape seed procyanidin B2 ameliorates mitochondrial dysfunction and inhibits apoptosis due to the activation of the AMPK-SIRT1-PGC-1α axis [187].

Grape seed proanthocyanidin causes a significant improvement in renal OS markers in the kidneys of cadmium-treated rats, decreases the amount of iNOS, NFκB, TNF-α, caspase-3, and Bax and increases the levels of Bcl-2 protein expression. Furthermore, it normalizes the renal expression of NfκB/Keap1 and its downstream regulatory proteins. These results suggested that proanthocyanidin ameliorates renal dysfunction and OS through the activation of the Nrf2 pathway in cadmium-intoxicated rats [188].

Ginkgo biloba

Ginkgo biloba has a number of benefits including scavenging ROS [189]. Extract of Ginkgo biloba could inhibit AGEs production and downregulate RAGE expressions by reducing OS, and improve the renal tissue structure and renal functions of DN rats [190]. Furthermore, Ginkgo biloba extract has a protective property against glomerulosclerosis of mesangial cells in DN [191]. Data showed that Ginkgo biloba decreased BGL, SCR, BUN, urine protein, and the intensity of the OS in DN rats. It reduced AGE, collagen IV, laminin, TGF-β1 mRNA, CTGF, mesangium hyperplasia, and thickness of GBM [192]. A systemic review of randomized controlled trials conducted on adults with early DN showed that Ginkgo biloba extract decreased the urinary albumin excretion, BGL, SCR, and BUN [193].

Endothelial progenitor cells are precursor cells that can differentiate into vascular endothelial to form new blood vessels. These cells could be damaged by OS in DM [194]. It was found that Ginkgo biloba can improve SOD activity and reduce the rate of apoptosis of endothelial progenitor cells within the peripheral blood of diabetic patients [195].

In mouse C2C12 myoblasts, Ginkgo biloba extract shows that cytoprotective effects from OS induced by alcohol depend on the transcriptional upregulation of HO-1 via the major mitogen-activated protein kinases/Nrf2 pathway. Furthermore, Ginkgo biloba extract produced an increase in Nrf2 and upregulation of HO-1 [196]. It could inhibit cyto-kine-induced endothelial adheriveness by inducing HO-1 expression via the activation of p38 and Nrf2 pathways. Ginkgo biloba extract might exert its anti-atherogenesis and vascular protective effects by inducing vascular HO-1 expression [197]. It could reduce leukocyte adherence to injured arteries, and enhance HO-1 expression in circulating monocytes and in blood vessels.
Flaxseed (Linum usitatissimum)

Flaxseed (*Linum usitatissimum*) contains plenty of omega-3 fatty acid. Therefore, flaxseed oil may prevent many diseases such as CVD, HTN, cancer, skin diseases, renal failure, rheumatoid arthritis, and multiple sclerosis [198]. Data showed that it has favorable effects on renal injury [199]. Flaxseed also prevents heavy metals-induced nephrotoxicity and OS damage [200]. It was found that flaxseed can reduce proteinuria and glomerular and tubulointerstitial lesions in obese SHR/N-cp rats [201]. It was found that flaxseed may have beneficial effects on DN by reducing the levels of the OS and increasing the antioxidant defense systems [202]. Flaxseed and Pumpkin seed mixture supplemented in diet may be helpful to prevent DM and its complications in diabetic rats [203].

Flax seed, walnuts, and fish oil contain omega 3. Omega-3 fatty acids, such as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid, are polyunsaturated fatty acids that have anti-inflammatory and antioxidant activity. Omega-3 has antithrombotic, antihyperlipidemic, antiatherogenic, and anti-inflammatory actions [204,205]. Omega-3 can slow disease progression in human and experimental DN. It was suggested that omega-3 can ameliorate glomerular lesions by the inhibition of thromboxan A2 and B, prostaglandin E, and prostaglandin I, activating protein-1, MCP-1, and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling [205,206]. The omega-3 polyunsaturated fatty acids docosahexaenoic acid and/or eicosapentaenoic acid protect rodents against ischemic acute renal failure, IgA- or cyclosporine A-induced nephrotoxicity, and STZ-induced type 1 and type 2 DN [207,208]. It was found that TAK-085, a concentrated formulation of omega-3 polyunsaturated fatty acids, can attenuate albuminuria and renal dysfunction in type 2 diabetic db/db mice [209]. The omega-3 polyunsaturated fatty acids protect against DN by inhibiting inflammation [210]. During tarcolumus use, it was suggested that renoprotective effects of long-chain omega-3 fatty acids derived from fish oil may be attributed to decreased production of inflammatory mediators, decreasing the generation and expression of proinflammatory cytokines, and a block of angiotensin II signaling in the kidney [211]. Another study demonstrated that omega-3 fatty acids lowered several components of OS and markers of inflammatory and fibrotic response and they attenuated tubulointerstitial fibrosis and inflammation in the remnant kidney [212].

Cinnamon (Cinnamomum zeylanicum)

Cinnamon is a well-known spice and it is the second most important spice used in the USA and European markets. It has antimicrobial, antioxidant, antiulcerogenic, antiobiotic, and analgesic effects [213,214]. Cinnamon is beneficial for the health of patients with type 2 diabetes [215].

The oils and extracts from *Cinnamomum zeylanicum* L. possess a powerful antioxidant activity due to the presence of phenolic and polyphenolic substances [216]. *Cinnamomum zeylanicum* demonstrated numerous beneficial effects both in vitro and in vivo as a potential therapeutic agent for DM, and it also showed beneficial effects against diabetic neuropathy and DN [217]. It reduces BSL. Furthermore, studies showed that polyphenols from cinnamon have in vitro and in vivo insulin-enhancing biological activity [218]. The volatile oil from cinnamon contains more than 98% cinnamaldehyde and that it showed a dose-dependent significant protection against alloxan-induced renal damage [219]. Cinnamon can inhibit AGE, and its procyanidin-B2 fraction ameliorates the diabetes-mediated renal malfunction in rats by reducing urinary albumin and creatinine [220].

Trans-cinnamaldehyde (cinnamaldehyde), the key flavor compound in cinnamon essential, was found to be an inducer of Nrf2 transcriptional activity. Cinnamaldehyde treatment upregulates cellular protein levels of Nrf2, GSH levels, and HO-1 and gamma-glutamyl-cysteine synthetase. Cinnamaldehyde pretreatment strongly upregulates cellular GHS levels and protected HCT116 cells against H2O2-induced genotoxicity and arsenic-induced oxidative insult in cultured human epithelial colon cells [221]. The volatile oil from cinnamon contains more than 98% cinnamaldehyde and that shows a dose-dependent, significant protection against alloxan-induced renal damage [219]. In vascular endothelial cells treated with TNF-α, cinnamaldehyde pretreatment prevented NFκB activation by inhibiting IκBα, resulting in reduced expression of VCAM-1 and ICAM-1 [222]. Cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein IκBα, and by the induction of Nrf2-related genes, including HO-1. In addition, cinnamaldehyde upregulates Nrf2, increases ARE-luciferase activity, and upregulates thioredoxin reductase-1, another Nrf2-related gene.

Astragalus membranaceus

Astragalus membranaceus is a flowering plant in the family *Fabaceae* which is commonly used in traditional Chinese medicine. It is used to strengthen immune system and help wound healing.

It has anti-inflammatory and antioxidant activity [223,224]. A meta-analysis comprising 25 studies showed that *Astragalus* had a therapeutic effect in DN patients, such as decreasing BUN, Scr, and urine protein and improving creatinine clearance and serum albumin level [225]. A review of 13 reports focusing on animal models showed that the *Astragalus membranaceus* are effective in reducing BGL and albuminuria, in reversing the glomerular hyperfiltration state, and in ameliorating the pathological changes of early DN in rat models [226].

Radix astragali, the dried root of perennial herbs *Astragalus membranaceus*, was reported to upregulate c-met (a receptor tyrosine kinase) expression in human kidney fibroblasts to delay the progression of DN [227]. Two major isoflavonoids in radix astragali, calycosin and calycosin-7-O-beta-glucoside, could inhibit high glucose-induced mesangial cell early proliferation and AGES-mediated cell apoptosis [228]. Astragaloside IV, active constituent in radix astragali, inhibits human tubular epithelial cells apoptosis and reduces TGF-β1 expression probably by the inhibition of p38 MAPK pathway activation [229].

The mechanisms of *Astragalus membranaceus* action in DN are based on the reduction in the mRNA level of NFκB, and an increase in inhibitory NFκB protein mRNA expression in the renal cortex [230,231]. *Astragalus* may protect diabetic rats’ kidney by downregulation of Tie-2 (a receptor tyrosine kinase of the Tie family), a receptor for angiopoietin 1 [232]. Furthermore, it was suggested that the modulation of TGF-β/Smad signaling could be a potential mechanism to prevent DN in KK-Ay mice [233].
Vitamin C and E

Vitamin C plays a major role in the antioxidant defense system and in the apoptosis. The decrease in vitamin C was observed in patients with DN [234]. In diabetes, it was demonstrated that vitamin C depletion from tubular epithelial cells, through the competition of glucose and dehydroascorbate for a common transport mechanism, would deprive the cells of antioxidant ability and could lead to ROS accumulation [235]. Another study showed that in diabetic rats the administration of vitamin C can protect podocyte by increasing antioxidative capacity and ameliorating the renal OS [236,237]. In addition, vitamin C decreased lipid peroxidation and augmented the activities of antioxidant enzymes, SOD, CAT, and GPx and reduced albuminuria, and GBM thickness in the kidneys of diabetic rats [238]. Vitamin C decreased BUN, SCr, and urinary albumin excretion rate as well as increased creatinine clearance rate in DN rats. Furthermore, the expressions of collagen type IV were significantly downregulated in treatment groups. It was found that vitamin C protects renal lesions in DN by inhibiting expression of type IV collagen [239]. It has been shown that vitamin C increases HO-1 protein expression in a concentration- and time-dependent manner via Nrf2 activation in RAW 264.7 cells [240].

In a double-blind study, 4 weeks’ treatment with vitamin C and E in pharmacological doses lowers albuminuria in type 2 diabetic patients with micro/macroulurinuria [241]. A combination of metformin and vitamin C significantly reduced HbA1c levels in diabetic patients as compared to metformin alone [242]. Another study showed that administering vitamin C with antidiabetic drugs enhanced antioxidant defenses and reduced oxidative damage [243].

Studies showed that vitamin E and tocotrienol ameliorate SCr in diabetic animals [244,245]. In a clinical setting, oral vitamin E normalized elevated baseline creatinine clearance in type 1 diabetic patients without much effect on glycemie control in an 8-month randomized double-blind placebo-controlled trial [246]. Vitamin E reduced HbA1c levels in type 2 diabetes [247]. It was shown that vitamin E and C combination improved renal function and reduced albuminuria in patients with type 2 diabetes [241]. In 19 diabetic patients, the treatment with vitamin E decreased microalbuminuria, and it showed nephroprotective effect that was mediated by the antioxidant action and the decrease of thromboxane A2 production [248]. Tocotrienol, a member of the vitamin E family, reduced proximal tubular injury and renal LPO, increased GSH level and CAT activity and improved the index of NO²⁻/NO³⁻ generation [249]. However, vitamin E did not show a beneficial effect on diabetic complication including albuminuria [250].

At the early stage of nitrosomethylbenzylamine-induced esophageal cancer, α-tocopherol could block the initiation of carcinogenesis through suppressing the activation of NFκB signaling pathway [251]. This might be a case in DN though no study was conducted to show such effect.

Zinc

Zinc is an essential trace metal that has important physiological functions and it acts as a cofactor for many enzymes and proteins. Furthermore, it is an essential component of numerous proteins involved in the defense system against the OS. It was known that patients with DM often have zinc deficiency because of the increased urinary excretion and the restricted certain food intake [252].

Meta-analyses showed that zinc supplementation has a favorable effect on glycemic control in diabetic patients [253]. Furthermore, zinc supplementation in diabetic mice and rats significantly reduce diabetes-induced renal damage [254]. In STZ-induced diabetic rats, zinc supplementation can attenuate diabetes-induced renal pathological changes likely through prevention of hyperglycemia-induced CTGF expression by zinc-induced cardiac metallothionein in renal tubular cells [255]. It was found also that supplementation of zinc improved the effectiveness of hypoglycemic agents and may be beneficial in decreasing BSL, triglyceride, urinary albumin excretion, and inflammation in type 2 diabetic nephropathy patients [256]. A recent study showed that zinc has a protective effect against diabetic damage through stimulation of metallothionein synthesis, a potent antioxidant, and regulation of the OS [255].

Zinc upregulates Nrf2 function via activating Akt-mediated inhibition of Fyn function, Nrf2 nuclear exporter. Treatment of diabetic mice with TPEN, zinc chelator, decreased renal zinc level and Nrf2 expression and transcription, with an exacerbation of renal oxidative damage, inflammation and fibrosis. These results suggest that zinc is essential for Nrf2 expression and transcription function [257]. Zinc has antioxidant properties that may be mediated by the upregulation of Nrf2 [258]. Zinc treatment of diabetic mice for 3 months significantly upregulated the expression and function of Nrf2 and the expression of metallothionein [259].

Oats

Oats are a source of several natural antioxidants [260]. Oat downregulates the TGF-β1 and receptors for AGE expression at mRNA levels and it can suppress DN in rats and may slow down renal fibrosis by the disruption of the detrimental receptors for AGE-NFκB axis [261]. After 12 weeks of diabetes in rats, oat treatment reduced BGL, HbA1c, and OS markers, and normalized NFκB activation and TNF-α expression. Furthermore, it reduced VEGF in the diabetic retina by 43% (P < 0.001). Oat β-D-glucan had a strong hypoglycemic effect in streptozotocin-nicotinamide-induced mice [262]. Meta-analysis of four articles dealing with 350 type 2 DM patients showed that the administrated oat β-D-glucan from 2.5 to 3.5 g/day for 3–8 weeks caused significantly lowered concentrations in BSL and HbA1c [263]. Avenanthramides, unique group of alkaloids in oat that contain a phenolic group, could significantly increase HO-1 expression in both a dose- and time-dependent manner which was mediated by Nrf2 translocation in HK-2 cells [264]. They have antioxidant and anti-inflammatory activities.

Lycopus lucidus Turcz

Lycopus lucidus Turcz has been widely used as a traditional oriental medicine and it contains antioxidant phenol. It was shown that *Lycopus* can inhibit renal fibrosis by blocking TGF-β signaling pathway and it has a protective effect on renal damage of STZ-induced DN in rats [265]. In primary cultured human umbilical vein endothelial cells, it was found that high glucose induces H₂O₂ production and ROS formation; however, pretreatment with aqueous extract of the leaves of *L. lucidus Turcz* inhibited the high
glucose-induced ROS formation. In addition, the aqueous extract suppressed the translocation and promoter transcriptional activity of NFκB that was increased by high glucose [266]. Furthermore, administration of lycopene decreased the levels of MDA content and expression of CTGF, increased protein kinase (Akt/PKB) phosphorylation and SOD activity in diabetic renal tissues in rats. It was proposed that lycopene prevents development of DN and ameliorates renal function through improving OS and regulating p-Akt and CTGF [267].

Lycopus suppressed rhTGF-β1-induced Smad2 and ERK1/2 activation, downregulated the expression of TGF-βRI, TGF-βRII, Smad4 and Smad7 in SV40 MES13 cells [268]. In STZ-induced DN rat’s model, Lycopus inhibited Smad2 phosphorylation, reduced mRNA level of TGF-β1, ameliorated expansion of the mesangial area and decreased SCR, BUN and reduced the SOD activity. Therefore, it was suggested that by blocking TGF-β signaling pathway, Lycopus is a novel inhibitor of renal fibrosis [268].

Milk thistle

Milk thistle has been known as a remedy for a variety of disorders. *Silybum marianum*, the Latin term for the plant and its seeds, contains flavonolignans and silymarin is a dry mixture of these compounds. Silymarin has antioxidant and anti-inflammatory effects. It reduces urinary excretion of albumin, TNF-α, and MDA in patients with DN [269]. Silybin, the active constituent of silymarin, was tested on cultures of mouse podocytes and in the OVE26 mouse, a model of type 1 DM and DN [270]. The results showed a protective effect of silybin against high glucose-induced podocyte injury. Another study showed that silymarin lowers levels of BSL, HbA1c, urine volume, SCr, serum uric acid, and urine albumin, and the histopathological studies strongly supported the protective effect of silymarin [271]. In diabetic rats, silibinin decreased levels of HbA1c, serum triglyceride, cholesterol, BGL, and the apoptosis ratio of pancreatic β-cells. Interestingly, silibinin reversed STZ-induced downregulation of Sirt-1 expression. Silibinin may reverse hyperglycemia and repair damaged pancreatic β-cells by promoting Sirt-1 expression [272].

In a randomized, triple-blinded, placebo-controlled clinical trial, 40 type 2 diabetes patients were treated with silymarin supplementation which increased SOD, GPx activity and total antioxidant capacity, reduced CRP levels, and decreased MDA concentration [273]. In another randomized, double-blind, placebo-controlled, 2-arm parallel trial, 60 patients with type 2 diabetes with macroaluminuria despite treatment with the maximum dose of a renin–angiotensin system inhibitor were randomly assigned to two equal groups to receive three 140-mg tablets of silymarin or three tablets of placebo daily for 3 months. The results showed that the urinary albumin–creatinine ratio, urinary levels of TNF-α, and urinary and serum levels of MDA decreased significantly in the silymarin compared with the placebo group [269]. It increases CAT, albumin, and hemoglobin in ESRD [274]. Silibinin decreased the NADPH oxidase, iNOS and NFκB over expression by arsenic and upregulated the Nrf2 expression in the renal tissue [275]. Furthermore, it caused a decrease in lipid peroxidation and an increase in the level of renal antioxidant defense system.

Conclusion

This review shows that many natural products have antioxidant and anti-inflammatory properties, and they have potential therapeutic properties in DM and DN. Data showed that the natural substances or their active ingredients modulate Keap1/Nrf2/ARE pathway and NFκB. They upregulate Keap1/Nrf2/ARE pathway and stimulate antioxidant status of living cells and tissue. And by downregulating NFκB, the natural substances decrease productions and activities of chemokines, growth factors, cytokines, and adhesion molecules, and ameliorate inflammatory response. Most of the studies, preclinical as well as clinical, included the introduction of herbs, plants or their active ingredient after the establishment of DM and DN. The results showed the obvious therapeutic outcome in preclinical studies that used whole natural substances or the active ingredients, but there is little evidence in clinical settings that taking single antioxidant has a therapeutic effect. There is a lack of randomized controlled trials using whole natural products or combined antioxidants in the management of DN. Furthermore, there was no consistency and subsequent studies following a positive result in animals’ experiments. Also the effective doses of the plants or their derivatives or extracts are still to be determined. Therefore, it is suggested that the use of combined antioxidants or whole natural plant products might demonstrate the expected beneficial results in patients with DM and DN.

A finding of new successful therapeutic intervention for the management of DN is demanded. However, prevention of DM complication such as DN is very important. The natural substances might have strong preventive properties. Such data exploring this potential property are lacking in preclinical and clinical settings. Therefore, studies on using natural substances in the prevention of DM complications and DN are important. We believe that using natural substances in prediabetic status of disease and before development of DN will explore more beneficial outcome in clinical trials.

Since biological systems always are under oxidative and inflammatory insults due to the change in lifestyle and pollution, antioxidant and anti-inflammatory pathways play a major role in keeping healthy environments for cells and organs. Therefore, using natural substances augments antioxidants and anti-inflammatory system before establishment or appearance of diseases. It is important to stress that the future work should include using natural substances as supplementary interventions besides standard therapeutic interventions, using natural substances before the appearance of disease or complication such as DN, and focusing on the development of new ingredients that work directly in Keap1/Nrf2/ARE/NFκB pathways.

Disclaimer statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by None.

Notes on contributors

Noori Al-Waili MD, PhD is a consultant and research scientist. His research interest is in clinical trials, experimental biology, and alternative medicine. His current affiliation is New York Medical Care for Nephrology Queens, New York.
Hamza Al-Waili BSc is a research associate. His research interest is in experimental biology and alternative medicine. His current affiliation is New York Medical Care for Nephrology Queens, New York.

Thia Al-Waili is a researcher in Public health. His research interest is in biostatistics and experimental biology. His current affiliation is New York Medical Care for Nephrology Queens, New York.

Khaled Salom BSc, MD is an Internist and research scientist. Her research interest is in experimental biology and alternative medicine. Her current affiliation is New York Medical Care for Nephrology Queens, New York.

References

[1] Thorp ML. Diabetic nephropathy: common questions. Am Fam Physician. 2005;72:96–99.
[2] Vasavada N, Agarwal R, Vasavada N, et al. Role of oxidative stress in diabetic nephropathy. Adv Chronic Kidney Dis. 2005;12(2):146–154.
[3] Shena F, Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy. JASN. 2005;16:330–133.
[4] Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–1070.
[5] Go Y, Jones P. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta. 2008;1780:1273–1290.
[6] Scholz R, Graham K, Gunpricht E, et al. Mechanism of interaction of vitamin E and glutathione in the protection against membrane lipid peroxidation. Ann NY Acad Sci. 1989;570:514–17.
[7] Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammation in diabetes mellitus. Diabetes Metab. 2009;35:509–517.
[8] Slatter D, Bolton C, Bailey A. The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia. 2000;43:550–557.
[9] Cederberg J, Basu S, Eriksson U. Increased rate of lipid peroxidation and protein carbonylation in experimental diabetic pregnancy. Diabetes. 2005;54:167–173.
[10] Calvert JW, Jha S, Gundewar S, et al. The protective role of Nrf2 in streptozotocin and diabetic nephropathy. Am J Physiol Renal Physiol. 2010;298:F662–F671.
[11] Peng A, Ye T, Rakhje D, et al. Green tea polyphenol, epigallocatechin-3-gallate (EGCG), ameliorates experimental immune-mediated glomerulonephritis. Kidney Int. 2011;80:601–611.
[12] Fan H, Yang C, You L, et al. The histone deacetylase, sir2t, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2013;83:404–413.
[13] Gu L, Tao X, Xu Y, et al. Dioscin alleviates BDL- and DMN-induced hepatic fibrosis via Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway. Toxicol Appl Pharmacol. 2016;292:19–29.
[14] Kulkarni S, Donepudi A, Xu X, et al. Fasting induces nuclear factor E2-related factor 2 and ATP-binding cassette transporters via protein kinase A and Sirtuin-1 in mouse and human. Antioxid Redox Signal. 2014;29:15–30.
[15] Baur J, Ungvari Z, Minor R, et al. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov. 2012;11:443–461.
[16] Hernandez-Jimenez M, Hurtado O, Cuartero M, et al. Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke. 2013;44:2333–2337.
[17] Yu W, Wan Z, Qiu XF, et al. Resveratrol, an activator of SIRT1, restores erectile function in streptozotocin-induced diabetic rats. Asian J Androl. 2013;15:646–651.
[18] Huang KP, Chen C, Hao J, et al. AGES-RAGE system down-regulates Sirt1 through the ubiquitin-proteasome pathway to promote FN and TGF-β1 expression in male rat glomerular mesangial cells. Endocrinology. 2015;156(1):268–279.
[19] Taniyama Y, Griending K. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension. 2003;42:1075–1081.
[20] Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349–1354.
[21] Cachofeiro V, Goicochea M, de Vinuesa SG, et al. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl. 2008;111:S4–S9.
[22] Shah S. Oxidants and iron in chronic kidney disease. Kidney Int Suppl. 2004;66:S50–S55.
[23] Wardle E. Cellulare oxidative processes in relation to renal disease. Am J Nephrol. 2005;25:13–22.
[24] Ghosh S, Hayden M. New regulators of NF-kappaB in inflammation. Nature Rev Immunol. 2000;8:837–848.
[25] Nam J, Cho M, Lee G. The activation of NF-κB and AP-1 in peripheral blood mononuclear cells isolated from patients with diabetic nephropathy. Diabetes Res Clin Pract. 2008;81:25–32.
[26] Zhang X, Dong F, Ren J, et al. High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol. 2005;191:318–312.
[27] Morino K, Petersen K, Shulman G. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55:559–515.
[28] Ikeda A, Matsushita S, Sakakibara Y. Inhibition of protein kinase C ameliorates impaired angiogenesis in type I diabetic mice complicating myocardioc infarction. Circulation J. 2012;76:943–949.
[29] Lai M, Brismar H, Eklof A, et al. Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney Inter. 2002;61:2006–2014.
[30] Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:831–820.
[31] Lee H, Yu M, Yang Y, et al. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol. 2003;14(Suppl 31):S241–S245.
[32] Sanz A, Sanchez-Nino M, Ramos A. NF-κB in renal inflammation. J Am Soc Nephrol. 2010;21:1254–1262.
[33] Das J, Vasan V, Sil PC. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):296–308.
[34] Tessari P. Nitric oxide in the normal kidney and in patients with diabetic nephropathy. J Nephrol. 2015;28(3):257–268.
Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiber officinale (Roscio) rhizomes (Zingibgeae) in mice and rats. Phytother Res. 2006;20:764–772.

Ahmad N, Sulaiman S, Mukti NA, et al. Effects of ginger extract on antioxidant status of hepatocarcinoma induced rats. Malay J Biochem Mol Biol. 2006;14:7–12.

Harlansyah H, Murad NA, Ngah ZW, et al. Antiproliferative, antioxidant and anti-apoptotic effects of Zingiber officinale and 6-gingerol on HepG2 cells. Asian J Biochem. 2009;2(6):421–426.

Morakinyo A, Akindele A, Ahmed Z. Modulation of antioxidant enzymes and inflammatory cytokines: possible mechanism of anti-diabetic effect of ginger extracts. Afr J Biomed Res. 2011;14:195–202.

Sani NF, Belani DK, Sin CP, et al. Effect of the combination of gelam honey and ginger on oxidative stress and metabolic profile in streptozotocin-induced diabetic Sprague-Dawley rats. Biomed Res Int. 2014;2014:60965.

Heimes K, Feistel B, Verspohl EJ. Impact of the 5-HT3 receptor channel system for insulin secretion and interaction of ginger extracts. Eur J Pharmacol. 2009;624:58–65.

Shanmugam KR, Ramakrishna CH, Mallikarjuna K, et al. The impact of ginger on kidney carbohydrate metabolic profiles in STZ induced diabetic rats. Asian J Exp Sci. 2009;23:127–134.

Al-Qattan K, Thomson M, Ali M. Garlic (Allium sativum) and ginger (Zingiber officinale) attenuate structural nephropathy progression in streptozotocin-induced diabetic rats. ESPEN. 2008;3(2):e62–e71.

Li F, Wang Y, Parkin K, et al. Isolation of quinine reductase (QR) inducing agents from ginger rhizome and their in vitro anti-inflammatory activity. Food Res Int. 2011;44:1597–1603.

Tseng TF, Liou SS, Chang CJ, et al. A tropical ginger sesquiterpene, ameliorates streptozotocin-induced diabetic nephropathy in rats by reducing the hyperglycemia induced inflammatory response. Nutr Metab (Lond). 2013;10(1):64. DOI:10.1186/17437075-10-64.

Takada Y, Murakami A, Aggarwal B. Zerumbone abolishes NF-κB and IκBα kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene. 2005;24:6957–6969.

Ohnishi K, Irie K, Murakami A. In vitro covalent binding of zerumbone, a chemopreventive food factor. Biosci Biotechnol Biochem. 2009;73(12):2905–2915.

Singh AB, Akanksa, Singh N, et al. Anti-hyperglycaemic, lipid lowering and anti-oxidant properties of 6-gingerol in db/db mice. Inter J Med Sci. 2009;1(12):536–544.

Chakraborty D, Mukherjee A, Sridhar S, et al. 6-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicol Lett. 2012;210(1):34–43.

Aggarwal B. Targeting inflammation-induced obesity and metabolic disease by curcumin and other nutraceuticals. Ann Rev Nutr. 2010;30:173–199.

Meng B, Li J, Cao H. Antioxidant and anti-inflammatory activities of curcumin on diabetes mellitus and its complications. Curr Pharm Des. 2013;19(11):2101–2113.

Reddy S, Aggarwa B. Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett. 1994;341:19–22.

Ak T, Gülcin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Int. 2008;174:27–37.

Das K, Das C. Curcumin (diferuloylmethane), a singlet oxygen (1O2) quencher. Biochem Biophys Res Commun. 2002;295:62–66.

Barzegar A, Moosavi-Movahedi A. Intracellular ROS protection efficiency and free radical scavenging activity of curcumin. PLoS One. 2011;6:e26012.

Panchal H, Vranizan K, Lee C, et al. Early anti-oxidative and anti-proliferative curcumin effects on neuroglioma cells suggest therapeutic targets. Neurochem Res. 2008;33:1701–1710.

Trujillo J, Chirino Y, Molina-Jijón E, et al. Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol. 2013;1(1):448–456.

Sun LN, Yang ZY, Lv SS, et al. Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin-1 Tyr14 phosphorylation influenced TR4 activation. Int Immunopharmacol. 2014;23:236–246.

Sun LN, Chen ZX, Liu XC, et al. Curcumin ameliorates epithelial-to-mesenchymal transition (EMT) in podocytes in vivo and in vitro via regulating caveolin-1. Biomol Pharmacother. 2014;68:1079–1088.

Liu J, Feng L, Zhu M. The in vitro protective effects of curcumin and demethoxycurcumin in Curcuma longa extract on advanced glycation end products-induced mesangial cell apoptosis and oxidative stress. PLoa Med. 2012:7:1875–1760.

Lu M, Tao L, Mei W. Effect of curcumin on the expression of p-STAT3 and IκB in db/db mice. J Central South Univ (Med Sci). 2014;39(6):591–597.

Yang H, Xu W, Zhou Z, et al. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repressing inflammatory signaling efficacies. Exp Clin Endocrinol Diabetes. 2015;123(6):360–367.

Wu W, Geng H, Liu Z, et al. Effect of curcumin on rats/mice with diabetic nephropathy: a systematic review and meta-analysis of randomized controlled trials. J Tradit Chin Med. 2014;34(3):419–429.

Zhang X, Liang D, Guo L, et al. Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1. Mol Med Rep. 2015;12:1347–1355.

Soetikno V, Sari FR, Lakshmanan AP, et al. Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Mol Nutr Food Res. 2013;57(9):1649–1659.

Tapia E, Soto V, Ortiz-Vega K, et al. Curcumin I induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidative stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. Oxdid Med Cell Longev. 2012;2012:269039.

Pae O, Jeong S, Jeong O, et al. Roles of heme oxygenase-1 in curcumin-induced growth inhibition in rat smooth muscle cells. Exp Mol Med. 2007:39:267–277.

Rosenfeldt FL, Haas SJ, Krum H. Coenzyme Q10 in the treatment of hypertension: a meta-analysis of the clinical trials. J Hum Hypertens. 2007;21(4):297–306.

Sourri K, Harcourt B, Tang P, et al. Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. J Free Radic Biol Med. 2012;52:716–723.

Wold L, Muralikrishnan D, Albano CB, et al. Insulin-like growth factor I (IGF-1) supplementation prevents diabetes-induced alterations in coenzymes Q9 and Q10. Acta Diabetol. 2003;40:271–750.

Ahmadivand H, Tavafi M, Khorashi-Darjerid M. Role of heme oxygenase-1 in altered antioxidant enzymes activity and glomerulosclerosis by coenzyme Q10 in alloxan-induced diabetic rats. J Diabetes Complications. 2012;26:476–482.

Perrson MF, Franzen S, Catrina S, et al. Coenzyme Q10 prevents GO-sensitve mitochondrial uncoupling, glomerular hyperfiltration and proteinuria in kidneys from db/db mice as a model of type 2 diabetes. Diabetologia. 2012;55(12):3135–1342.

Maheshwari R, Balaraman R, Sen A, et al. Effect of coenzyme Q10 alone and its combination with metformin on streptozotocin-nicotinamide-induced diabetic nephropathy in rats. Indian J Pharmacol. 2014;46:627–632.

Li L, Du J, Lian Y, et al. Protective effects of Coenzyme Q10 against hydrogen peroxide-induced oxidative stress in PC12 cell: the role of Nrf2 and antioxidant enzymes. Cell Mol Neurobiol. 2016;36:103–111.

Choi HK, Pokhare Y, Lim SC, et al. Effect of curcumin on diabetes mellitus and its complications. J Renal Nutr. 2014;64:306.

Chek HK, Pokharel YR, Lim SC, et al. Inhibition of liver fibrosis by solubilized coenzyme Q10: role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression. Toxicol Appl Pharmacol. 2009;240:377–384.

Rafieian-Kopaie M, Baradaran A. Plants antioxidants: from laboratory to clinic. J Nephropathol. 2013;2:152–153.

Rehman H, Krishnasamy Y, Haque K, et al. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats. PLoS One. 2013;8:1–12.
Ryu HH, Kim HL, Chung JH, et al. Renoprotective effects of green tea extract on renin-angiotensin-aldosterone system in chronic cyclosporine-treated rats. Nephrol Dial Transplant. 2011;26:1188–1193.

Kang M, Park Y, Kim B, et al. Preventive effects of green tea (Camellia sinensis var. Assamica) on diabetic nephropathy. Yonsei Med J. 2012;53:138–144.

Renno WM, Abdeen S, Alkhalaif M, et al. Effect of green tea on kidney tubules of diabetic rats. Br J Nutr. 2008;100:652–659.

Yokozawa T, Nakagawa T, Oya T, et al. Green tea polyphenols and dietary fibre protect against kidney damage in rats with diabetic nephropathy. J Pharm Pharmacol. 2005;57(7):773–780.

Li J, Sapper TN, Mah E, et al. Protective effects of (+)-catechin in streptozotocin-induced diabetic rat model. Nutr Res. 2012;32(5):347–356.

Sen SS, Sukumaran V, Giri SS, et al. Protective effects of epigallocatechin-3-gallate. Redox Biol. 2014;2:187–195.

Chennasamudram SP, Kudugunti S, Boreddy PR, et al. Nrf2-independent protection against lipid accumulation and nephropathy. J Pharm Pharmacol. 2005;57(6):773–780.

Kang M, Park Y, Kim B, et al. Preventive effects of green tea (Camellia sinensis var. Assamica) on diabetic nephropathy. Yonsei Med J. 2012;53:138–144.

Renno WM, Abdeen S, Alkhalaif M, et al. Effect of green tea on kidney tubules of diabetic rats. Br J Nutr. 2008;100:652–659.

Yokozawa T, Nakagawa T, Oya T, et al. Green tea polyphenols and dietary fibre protect against kidney damage in rats with diabetic nephropathy. J Pharm Pharmacol. 2005;57(7):773–780.

Li J, Sapper TN, Mah E, et al. Protective effects of (+)-catechin in streptozotocin-induced diabetic rat model. Nutr Res. 2012;32(5):347–356.

Sen SS, Sukumaran V, Giri SS, et al. Protective effects of epigallocatechin-3-gallate. Redox Biol. 2014;2:187–195.

Van der Veen H, Sprenger B, Hellinga M, et al. Protective effects of black currant (Ribes nigrum L.) phytopharmaceuticals. J AOAC Int. 2014;116:1210–1215.

Ye T, Zhen J, Du Y, et al. Green tea polyphenol (→) epigallocatechin-3-gallate restores Nrf2 activity and ameliorates crescentic glomerulonephritis. PLoS One. 2015. DOI: 10.1371/journal.pone.0119543.

Yoon SP, Maeng YH, Hong R, et al. Protective effects of epigallocatechin-gallate (EGCG) on streptozotocin-induced diabetic nephropathy in mice. Acta Histochem. 2014;116:1210–1215.

Sahin K, Tuzcu M, Gencoglu H, et al. Aqueous extract of Allium sativum L bulbs offer nephroprotection by attenuating vascular endothelial growth factor and extracellular signal-regulated kinase-1 expression in diabetic rats. Indian J Exp Biol. 2013;51(2):139–148.

Mariae AD, Abd-Allah GM, El-Yamany MF. Renal oxidative stress and nitric oxide production in streptozotocin-induced diabetic nephropathy in rats: the possible modulatory effects of garlic (Allium sativum L.). Biotechnol Appl Biochem. 2009;52(Pt 3):227–232.

Amagase H, Petesch BL, Matsuura H, et al. Intake of garlic and its bioactive components. J Nutr. 2001;131:955–956.

Thomson M, Al-Qattan KK, Ali M. Anti-diabetic and anti-oxidant potential of aged garlic extract (AGE) in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2016. DOI: 10.1186/s12906-016-0992-5.

Maldonado PD, Herrera B, Medina-Campos ON, et al. Aged garlic attenuates genticacin-induced renal damage and oxidative stress in rats. Life Sci. 2003;73:2543–2556.

Colin-Gonzalez AL, Santana RA, Silva-Isaías CA, et al. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid Med Cell Longev. 2012;2012:907162. DOI:10.1155/2012/907162.

Dillon SA, Burmi RS, Lowe GM, et al. Antioxidant properties of aged garlic extract: an in vitro study incorporating human low density lipoprotein. Life Sci. 2003;72:1583–1594.

Hiramatsu K, Tsuneyoshi T, Ogawa T, et al. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modif er subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells. Nutr Res. 2016;36(2):143–149.

Huang H, Jiang Y, Mao G, et al. Protective effects of allcin on streptozotocin-induced diabetic nephropathy in rats. J Sci Food Agric. 2016. DOI: 10.1002/jsfa.7874.

Gomez-Sierra T, Molina-Jijon E, Tapia E, et al. S-allylcysteine prevents cisplatin-induced nephrotoxicity and oxidative stress. J Pharm Pharmacol. 2014;66(9):1271–1281.

Shi H, Jing X, Wei X, et al. S-allyl cysteine activates the Nrf2-dependent antioxidant response element and protects neurons against ischemic injury in vitro and in vivo. J Neurochem. 2015;133(2):298–308.

Tsai CY, Wang CC, Lai TY, et al. Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int J Cardiol. 2013;168(2):1286–1297.

Hadjad GM, Salam RA, Soliman RM, et al. High-performance liquid chromatography quantification of principal antioxidants in black seed (Nigella sativa L) phytopharmaceuticals. J AOAC Int. 2015;98(3):1043–1047.

Kaleem M, Kirmani D, Asif M, et al. Biochemical effects of Nigella sativa L seeds in diabetic rats. Indian J Exp Biol. 2006;44(9):745–748.

Saleem U, Ahmad B, Rehman K, et al. Nigella sativa L. oil on gentamicin associated nephrotoxicity in rats. Comp Biochem Physiol A. 2003;135:539–547.

Thomson M, Al-Amin ZM, Al-Qattan KK, et al. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int J Diabetes Metab. 2006;15:108–115.

Drobiha O, Thomson M, Al-Qattan K, et al. Garlic increases antioxidative levels in diabetic and hypertensive rats determined by a modified peroxidase method. Evid Based Complement Altern Med. 2011;2011:703049. DOI:10.1093/ecam/nep011.

Eidi A, Eidi M, Esmaili E. Antidiabetic effect of garlic (Allium sativum L) in normal and streptozotocin-induced diabetic rats. Phytomedicine. 2006;13:624–629.
diabetic rats fed with a high-fat diet. Oxid Med Cell Longev. 2016:2016:2492107. DOI:10.1155/2016:2492107.

[137] Elsherbiny NM, El-Sherbiny M. Thymoquinone attenuates doxorubicin-induced nephrotoxicity in rats: role of Nrf2 and NOX4. Chem Biol Interact. 2014 Nov 5;223:102–108.

[138] Khattab MM, Naji MN. Thymoquinone supplementation attenuates hypertension and renal damage in nitric oxide deficient hypertensive rats. Phytother Res. 2007;21(9):410–414.

[139] Rezza R, Donati A, Tuzcu M, et al. Regulation of renal organic anion and cation transporters by thymoquinone in cisplatin induced kidney injury. Food Chem Toxicol. 2012;50:1675–1679.

[140] El-Mahmoudy A, Matsuyama H, Borgen MA, et al. Thymoquinone suppresses expression of inducible nitric oxide synthase in rat macrophages. Int Immunopharmacol. 2002;2:1603–1611.

[141] Ayed-Ahmed MM, Naji MN. Thymoquinone supplementation prevents the development of gentamicin-induced acute renal toxicity in rats. Clin Exp Pharmacol Physiol. 2007;34:399–405.

[142] Basarslan F, Yilmaz N, Ates S, et al. Protective effects of thymoquinone on vancomycin-induced nephrotoxicity in rats. Hum Exp Toxicol. 2012;31:726–733.

[143] Vaillancourt F, Silva P, Shi Q, et al. Elucidation of molecular mechanisms underlying the protective effects of thymoquinone against rheumatoid arthritis. J Cell Biochem. 2011;112:107–117.

[144] Sankaranarayanan C, Pari L. Thymoquinone ameliorates renal ischaemia/reperfusion injury in rats. J Pak Med Assoc. 2014;64(3):260–265.

[145] Sethi G, Ahn KS, Aggarwal BB. Targeting nuclear factor-kappa B as a therapeutic strategy for the treatment of cancer, inflammation, and cardiovascular disease. Biochim Biophys Acta. 2010;1800:126–135.

[146] Al-Trad B, Al-Batayneh K, El-Metwally S, et al. Protective effect of rosmarinic acid against renal ischaemia/reperfusion injury in rats. J Pak Med Assoc. 2014;64(3):260–265.

[147] Jeanette S, Alex K, Adviye E. Oxidative stress and the use of antioxidants in diabetes. Cardiovasc Diabetol. 2005;4:5–9.

[148] Tavafi M, Ahmadvand H, Tamjidipoor A. Rosmarinic acid ameliorates hypertension and renal damage in nitric oxide deficient hypercholesterolemic rats. Chem Biol Interact. 2011;191:148–154.

[149] Tilton RG, Chang K, Hasan AG. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. 2008;69:1059–1070.

[150] Bolton WK, Catrann DC, Williams ME. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol. 2004;24:32–40.

[151] Tilton RG, Chang K, Hasan AG. Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes. 1993;42:221–232.

[152] Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. 1999;58:1685–1693.

[153] Baek SH, Piao XL, Lee UJ, et al. Reduction of cisplatin-induced nephrotoxicity by ginsenosides isolated from processed ginseng in cultured renal tubular cells. Biol Pharm Bull. 2006;29:2051–2055.

[154] Sen S, Chen S, Feng B, et al. Preventive effects of North American ginseng (Panax quinquefolium) on diabetic nephropathy. Phytomedicine. 2012;19(6):494–505.

[155] Kang K, Ham JY, Kim Y, et al. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism. J Ginseng Res. 2013;37:417–398.

[156] Hallim M, Yee DJ, Sames D. Imaging induction of cytoprotective enzymes in intact human cells: coumberone, a metabolite reporter for human AKR1C enzymes reveals activation by panaxynitol, a active component of red ginseng. J Am Chem Soc. 2008;130(43):14123–14125.

[157] Lee LS, Stayton PK, Falvey JW, et al. Induction of chemoprotective phase 2 enzymes by ginseng and its components. Planta Med. 2009;75(10):1129–1133.

[158] Jin Y, Shi Y, Zou Y, et al. Fenugreek prevents the development of STZ-induced diabetic nephropathy in a rat model of diabetes. Evid Based Complement Altern Med. 2014;2014.

[159] Abdel-Daim MM, Abd Eldaim MA, Hassan AG. Trigonella foenum-graecum ameliorates acrylamide-induced toxicity in rats: roles of oxidative stress, proinflammatory cytokines, and DNA damage. Biochem Cell Biol. 2015;93(3):192–198.

[160] Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. 2008;69:1059–1070.

[161] Tavafi M, Ahmadvand H, Tamjidipoor A. Rosmarinic acid ameliorates acute renal ischemia/reperfusion injury in rats. J Pak Med Assoc. 2014;64(3):260–265.

[162] Mushtaq N, Schmatz R, Ahmed M, et al. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of streptozotocin-induced diabetic rats. J Physiol. 2015;71(4):743–751.

[163] Tavafi M, Ahmadvand H, Tamjidipoor A. Rosmarinic acid ameliorates diabetic nephropathy in uninephrectomized diabetic rats. Iran J Basic Med Sci. 2011;14(3):275–283.

[164] Bakirel T, Bakirel U, Keleş OU, et al. In vivo assessment of anti-bacterial and antioxidant activities of rosmary (Rosmarinus officinalis) in alluxan – diabetic rabbits. J Ethnopharmacol. 2008;116:64–73.

[165] Tavafi M, Ahmadvand H. Effect of rosmarinic acid on inhibition of gentamicin-induced nephrotoxicity in rats. Tissue Cell. 2011;43(6):392–397.

[166] Kosaka K, Mimura J, Itoh K, et al. Role of Nrf2 and p62/ZIP in the regulation of renal organic anion transporters by thymoquinone in cisplatin induced kidney injury. Food Chem Toxicol. 2012;50:1675–1679.

[167] Tavafi M, Ahmadvand H. Effect of rosmarinic acid on inhibition of gentamicin-induced nephrotoxicity in rats. Tissue Cell. 2011;43(6):392–397.

[168] de Oliveira MR, Ferreira GC, Schuck PF. Protective effect of rosmarinic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: role for PI3K/Akt/Nrf2 pathway. Toxicol In Vitro. 2016;32:41–54.

[169] de Oliveira MR, Ferreira GC, Schuck PF, et al. Role of the PI3K/Akt/Nrf2 signaling pathway in the protective effects of rosmarinic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact. 2015;242:396–406.

[170] Seymour E, Bennink M, Bolling S. Diet-relevant phytochemical intake affects the cardiac AhR and nrf2 transcriptome and reduces heart failure in hypertensive rats. J Nutr Biochem. 2013;24:1580–1586.

[171] Chiuoy Y, Tsai M, Nagabhusnam K, et al. Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway. J Agric Food Chem. 2011;59:2725–2733.

[172] Bagchi D, Swaroop A, Preuss HG, et al. Free radical scavenging, anti-oxidant and cancer chemoprevention by grape seed proanthocyanidins: an overview. Mutat Res. 2014;768:69–73.

[173] Blád C, Aragonés G, Arola-Árnal A, et al. Proanthocyanidins in health and disease. Biofactors. 2016;42(1):5–12.
Mansouri E, Panahi M, Ghaffari MA, et al. Effects of grape seed proanthocyanidin extract on oxidative stress induced by diabetes in rat kidney. Iran Biomed J. 2011;15(3):100–106.

Li X, Yao X, Gao H, et al. Grape seed proanthocyanidins ameliorate diabetic nephropathy via modulation of levels of AGE, RAGE and CTGF. Nephron Exp Nephrol. 2009;111(2):e31–e41.

Liu YN, Shen XN, Yao GY. Effects of grape seed proanthocyanidins extracts on experimental diabetic nephropathy in rats. Wei Sheng Wu Xue. 2006;35(6):703–705.

Bao L, Zhang Z, Dai X, et al. Effects of grape seed proanthocyanidin extract on renal injury in type 2 diabetic rats. Mol Med Rep. 2015;11(1):645–652.

Gao Z, Liu G, Hu Z, et al. Grape seed proanthocyanidin extract protects from cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress induced apoptosis. Mol Med Rep. 2014;9:801–807.

Yang J, Cai X, Zhang Z, et al. Grape seed procyanidin B2 ameliorates mitochondrial dysfunction and inhibits apoptosis via the AMP-activated protein kinase-silent mating type information regulation 2 homologue 1-PPAR co-activator-1α axis in rat mesangial cells under high-dose glucosamine. Br J Nutr. 2015;113(1):35–44.

Nazima B, Manoharan V, Miltonprabu S. Grape seed proanthocyanidins ameliorates cadmium-induced renal injury and oxidative stress in experimental rats through the up-regulation of nuclear related factor 2 and antioxidant responsive elements. Biochem Cell Biol. 2015;93(3):210–226.

Akisu M, Kultursay N, Coker I, et al. Protective effects of extract from Ginkgo biloba on glomerulosclerosis in rat mesangial cells. J Ethnopharmacol. 2009;6;124(1):26–33.

Lu Q, Yin XX, Wang YJ, et al. Effects of Ginkgo biloba on prevention of development of experimental diabetic nephropathy in rats. Acta Pharmac Sin. 2007;28(6):818–828.

Zhang L, Wei W, Guo X, et al. Ginkgo biloba extract for patients with early diabetic nephropathy: a systematic review. Evid Based Complement Altern Med. 2013;2013, article id 689142, 17 p., doi:10.1155/2013/689142.

Galasso G, Schiekofer S, Sato K, et al. Impaired angiogenesis in gluthatione peroxidase-1-deficient mice is associated with endothelial progenitor cell dysfunction. Circ Res. 2006;98:254–261.

Zhao M. Effects of the Ginkgo biloba extract on the superoxide dismutase activity and apoptosis of endothelial progenitor cells from diabetic peripheral blood. Genet Mol Res. 2013;296:F306–F316.

Wang J, Zhang L, Zhang Y, et al. Transcriptional upregulation central of HO-1 by EGB via the MAPKs/Nrf2 pathway in mouse C2C12 myoblasts. Toxicol In Vitro. 2015;29(2):380–388.

Chen JS, Kuhn P, Poulev A, et al. Protective effect of cinnamon and its chemical composition and synergistic antioxidant response in human epithelial colon cells. Molecules. 2010;15(5):3338–3355.

Prasad K. Flaxseed: a source of hypocholesterolemic and anti-inflammatory properties. J Med Assoc Thai. 2011;94(9):171–177.

Velazquez XM, Perez-Brignoli E, et al. Dietary flavonoid meals reduces proteinuria and ameliorates nephropathy in an animal model of type II diabetes mellitus. Kidney Int. 2003;64(6):2100–2107.

Halliga R, Mocanu V, Paduraru I, et al. Effects of dietary flavonoid supplementation on renal oxidative stress in experimental diabetes. Rev Med Chir Soc Med Nat Iasi. 2009;113(4):1200–1204.

Makni M, Sefi M, Fetoui H, et al. Flax and pumpkin seeds mixture ameliorates diabetic nephropathy in rats. Food Chem Toxicol. 2010;48(8–9):2407–2412.

Chen JS, Huang PH, Wang CH, et al. Protective effect of Ginkgo biloba extract on glomerulosclerosis in rat mesangial cells. J Ethnopharmacol. 2011;6;124(1):26–33.

Akpolat M, Kanter M, Topcu Y, et al. Protective effect of cinnamon and its chemical composition and synergistic antioxidant activities of essential oils from Cinnamomum cassia Blume. Am J Chin Med. 2006;34:511–522.

Cheng D, Kuhn P, Poulev A, et al. In vivo and in vitro antioxidative effects of aqueous cinnamon extract and cinnamon polyphenol-enriched food matrix. Food Chem. 2012;135:2994–3002.

Murukutla N, Kalapati P, Polansky M, et al. Isolation and characterization of polyphenol type-A polymers from cinnamomum bark. Carbohydr Polym. 2010;80(3):444–451.

Chericoni S, Prieto JM, Iacopini P, et al. Antioxidant activity of Ginkgo biloba extract on renal injury in hyperlipidemic rats: the effect of flaxseed oil on renal oxidative stress, lipid profile and renal function in IgA nephropathy. J Med Assoc Thai. 2004;87:143–149.

Suh JS, Park BJ, Kim HI, et al. Protective effect of flaxseed oil on oxidative stress, lipid profile and renal function in IgA nephropathy. J Med Assoc Thai. 2004;87:143–149.

Garman J, Mulroney S, Manigrasso M, et al. Grape seed procyanidin B2 ameliorates diabetic nephropathy via modulation of levels of AGE, RAGE and CTGF. Nephron Exp Nephrol. 2009;111(2):e31–e41.

Lin C, Wu S, Chang C. Antioxidant activity of Cinnamomum cassia. Phytother Res. 2003;17:726–730.

Chen JS, Huang PH, Wang CH, et al. Effects of Ginkgo biloba extract on glomerulosclerosis in rat mesangial cells. J Ethnopharmacol. 2009;6;124(1):26–33.

Muthenenna P, Ierapetritou M, Macopini P, et al. In vitro activity of the essential oil of Cinnamomum zeylanicum and eugenol in peroxynitrite-induced oxidative processes. J Agric Food Chem. 2005;53(12):4762–4765.

An W, Kim H, Cho K, et al. Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am J Physiol. 2009;297:F895–F903.

Ooi L, Li Y, Kam S, et al. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Med Sci. 2006;34:511–522.

Khan A, Safdar M, Khan M, et al. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003;26:3215–3218.

Wondrak GT, Villeneuve NF, Lamore SD, et al. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules. 2010;15(5):3338–3355.

Muthenenna P, Raghuv, Kumar PA, et al. Effect of cinnamon and its procyandin-B2 enriched fraction on diabetic nephropathy in rats. Chem Biol Interact. 2014;222C68–76.

Lai PK, Chan JY, Cheng L, et al. Protective effect of Astragalus membranaceus (root) on diabetic nephropathy in diabetic nephropathy in rats. J Ethnopharmacol. 2011;133:412–419.

Zhang J, Xie X, Li C, et al. Systematic review of the renal protective effect of Astragalus membranaceus (root) on diabetic nephropathy in animal models. J Ethnopharmacol. 2009;126:189–196.
[227] Mou S, Ni Z, Zhang Q. Expression of c-met in human kidney fibroblasts induced by high glucose in vitro and the regulation of Radix astragali. J Chinese Integrat Med. 2008;6:482–487.

[228] Tang D, He B, Zheng ZG, et al. Inhibitory effects of two major isoflavonoids in Radix astragali on high glucose-induced mesangial cells proliferation and AGEs-induced endothelial cells apoptosis. Planta Med. 2011;77:729–732.

[229] Wang Q, Shao X, Xu W. Astragalosides IV inhibits high glucose-induced cell apoptosis through HGF activation in cultured human tubular epithelial cells. Renal Failure. 2014;36:400–406.

[230] Zhang YW, Wu CY, Cheng JT. Effects of Astragalus polysaccharide in the improvement of early diabetic nephropathy with an effect on mRNA expressions of NF-κB and kb in renal cortex of streptozotocin-induced diabetic rats. J Ethnopharmacol. 2007;114:387–392.

[231] Gui D, Huang J, Guo Y, et al. Effects of Astragaloside IV in ameliorates renal injury in streptozotocin-induced diabetic rats through inhibiting NF-κB-mediated inflammatory genes expression. Cytoenzyme. 2013;61:970–977.

[232] Gu H, Ni Z, Gu L. Effects of Astragalus on expression of renal angiopeptin receptor Tie-2 in diabetic rats. J Chinese Integrat Med. 2007;5(5):536–540.

[233] Nie Y, Li S, Yi Y. Effects of Astragalus injection on the TGFβ/Smad pathway in the kidney in type 2 diabetic mice. BMC Complement Altern Med. 2014;14. DOI:10.1186/1472-6882-14-148.

[234] Varma V, Varma M, Sarkar P, et al. Correlation of vitamin C with HBAlC and oxidative stress in diabetes mellitus with or without nephropathy. Nat J Med Res. 2014;41:151–155.

[235] Chen L, Jia RH, Qiu CJ, et al. Supplementation of vitamin C on type 2 diabetes mellitus patients along with two pathogenic changes in the aorta: roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2. Cardiovasc Diabetol. 2013;12:1–13.

[236] Emmons CL, Peterson DM, Paul GL. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J Agric Food Chem. 1999;47(12):4894–4898.

[237] Kim SR, Ha YM, Kim YM, et al. Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals. Biochem Pharmacol. 2015;95(4):279–289.

[238] Gaede P, Poulsen HE, Parving HH, et al. Double-blind, randomized study of the effect of combined treatment with vitamin C and E on albuminuria in type 2 diabetic patients. Diabetes Med. 2001;18(9):756–760.

[239] Dakhane GN, Chaudhari HV, Shrivastava M. Supplementation of vitamin C replaces food dehydroascorbate in tubular epithelial cell. Am J Nephrol. 2005;25:459–465.

[240] Lee EY, Lee MY, Hong SW, et al. Blockade of oxidative stress by vitamin C ameliorates albuminuria and renal sclerosis in experimental diabetic rats. Yonsei Med J. 2007;48:847–855.

[241] Qin QJ, Deng HC, Zhao TF, et al. Study on the effect and mechanism of ascorbic acid on renal podocytes in diabetes. Zhongguo Ying Ke Xue Za Zhi. 2008;24(1):112.

[242] Kuhad A, Chopra K. Attenuation of diabetic nephropathy by tocopherol receptor Tie-2 in diabetic rats. J Chinese Integrat Med. 2008;6:482–488.

[243] Fallahzadeh MK, Dormanesh B, Sagheb MM, et al. Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: a randomized,
double-blind, placebo-controlled trial. Am J Kidney Dis. 2012;60(6):896–903.

[270] Khazim K, Gorin Y, Cavaglieri RC, et al. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. Am J Physiol Renal Physiol. 2013;305(5):F691–700.

[271] Sheela N, Jose MA, Sathyamurthy D, et al. Effect of silymarin on streptozotocin-induced diabetic nephropathy. Iran J Kidney Dis. 2013;7(2):117–123.

[272] Wang Q, Liu M, Liu WW, et al. In vivo recovery effect of silibinin treatment on streptozotocin-induced diabetic mice is associated with the modulations of Sirt-1 expression and autophagy in pancreatic β-cell. J Asian Nat Prod Res. 2012;14(5):413–423.

[273] Ebrahimpour S, Gargari BP, Mobasser M, et al. Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: a randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine. 2015;22(2):290–296.

[274] Omidreza O, Khajehrezaei S, Ezzatadegan S, et al. Effects of silymarin on biochemical and oxidative stress markers in end-stage renal disease patients undergoing peritoneal dialysis. Hemodial Inter. 2016;20:558–563.

[275] Prabu SM, Muthumani M. Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Mol Biol Rep. 2012;39(12):11201–11216.