The Age Dating of Deep Paleogroundwater in Jijicao Preselected Site for High Level Radioactive Waste Geological Disposal

Zhichao Zhou, Ju Wang, Rui Su, Yonghai Guo, Jiebiao Li, Jingbo Zhao, Ruili Ji, Ming Zhang*, Lihong Ma
Beijing Research Institute of Uranium Geology, Beijing, China

* Corresponding Author’s E-mail: zhangming542@126.com

Abstract. The geological disposal of high-level radioactive waste is concerned with the systematic characteristics of the long-time scale of groundwater. As part of the china site investigations and research associated with the disposal of high-level radioactive waste, the paleogroundwater in deep boreholes have been employed in order to characterize groundwater flow in the fractured bedrock at Jijicao preselected site. By obtaining the deep groundwater samples from deep borehole, this study focused on krypton isotope data, the groundwater mixing and relationship were analyzed, and the paleogroundwater dating results were corrected. It found that the age of deep groundwater is 25ka and 46ka, the characteristics of slow groundwater circulation rate and long residence time are conductive to the safe disposal of high-level radioactive waste.

1. Introduction
The safe disposal of high-level radioactive waste is a major issue related to the sustainable development of the nuclear energy industry, environmental protection, public health and safety. At present, deep geological disposal for high-level radioactive waste is the most technically feasible method [1]. For the high-level radioactive waste geological repository system, the groundwater is most likely to make the radionuclides release and enter the biosphere [2]. The geological disposal of high-level radioactive waste concerns ten thousand years scale time behaviors and performances in the deep groundwater, which as one of the core elements in the evaluation of disposal sites. The paleogroundwater dating is very important for determining the residence time of groundwater in the geological repository. The study has important application prospects and practical significance for the effective safety performance evaluation of the repository.

At present, there are isotopic methods developed for measuring paleogroundwater age, such as 14C, 36Cl, 81Kr, 39Ar, 4He, 234U/238U and so on, most of them need complex corrections when applied in groundwater age dating. The inert gas is evenly distributed in the atmosphere and the content of inert gas remains stable for a long time [3]. 81Kr is mainly produced in the upper atmosphere through the cosmic rays and nucleon reaction in atmosphere, and is distributed uniformly in the atmosphere, the isotopic abundance is (5.2±0.6)) ×10^{-13}, the half-life is 229ka [4], and it is suitable for the age dating of groundwater in the 20~100ka age range [5]. At the same time, the cosmic ray intensity fluctuation cycle caused by the influence of the solar activity is far less than the 81Kr half-life, which will not
cause significant changes to the ^{81}Kr concentration in the atmosphere [6], ^{81}Kr produced by nuclide and neutron-induced fission can be ignored [7]. In addition, ^{81}Kr is a stable radioisotope that is both chemically and physically stable, does not participate in chemical reactions in the environment, and the mixing transport process is simple [8, 9]. Therefore, the ^{81}Kr became an ideal tracer isotope for measuring paleogroundwater age.

2. Overview of the Study Area

The Jijicao rock mass is located in the pre-selected site of high-level radioactive waste repository in Beishan area (as shown in Figure.1), and is about 70km south from YuMen city, the altitude of this area is 1650 to 1700m. As to the arid climate, there are no perennial surface rivers in the area. The study area is lack of rainfall and the average annual temperature is about 4.4°C in the Mazong Mountains, and the annual evaporation capacity is more than 3000mm, the annual average temperature in the east is about 8.3°C, and the annual evaporation capacity is more than 3500mm, which is a typical inland arid climate.

The Jijicao rock mass is NW-SE trend and with the area about 40 km2. The hercynian biotite monzonitic granite is the main rock; there are a small amount of metamorphic rock biorelicts and quaternary loose sediments around the rock mass. The metamorphic rock biorelicts is Proterozoic biotite schist, and the quaternary sediment is a mixture of gravel, sandy soil and clay layer, the average thickness is less than 2m.

![Figure 1. Sketch map of the study area](image)

3. ^{81}Kr Age Dating Principle

3.1. Krypton in the environment

The krypton has six stable isotopes in the natural environment, of which ^{84}Kr is the most abundant, and it is occupying 57% of krypton in the environment (as shown in Table 1), there are a total of
eleven krypton radioactive isotopes, but more than 2 days of half-life, and only ^{81}Kr and ^{85}Kr can be used for environmental process research, their half-lives are 229,000 and 10.76 years. In 1969, Loosli and Oeschger of the University of Berne in Switzerland discovered radioactive isotope ^{81}Kr in the air for the first time. This nuclide is produced by cosmic rays and is very evenly distributed in the atmosphere, and Natural abundance of isotope is about 6×10^{-13}.

Table 1. Krypton in the environment

Category/physical features	Value	Unit	Reference
^{81}Kr stable isotope concentration in the air	1.1	ppm	Aoki and Makide (2005)
^{78}Kr	0.35	%	Ozima and Podosek (2002)
^{80}Kr	2.26	%	Ozima and Podosek (2002)
^{82}Kr	11.52	%	Ozima and Podosek (2002)
^{83}Kr	11.48	%	Ozima and Podosek (2002)
^{84}Kr	57	%	Ozima and Podosek (2002)
^{86}Kr	17.4	%	Ozima and Podosek (2002)
^{85}Kr/Kr (2008)	2.4	$\times 10^{-11}$	Winger et al. (2005)
^{85}Kr/Kr (air)	5.2±0.6	$\times 10^{-13}$	Du et al. (2003); Collon et al. (1997)
^{85}Kr/Kr (2008)	46.2		Du et al. (2003); Collon et al. (1997)
^{81}Kr half-life	10.76 a		Firestone and Shirley (1996)
^{81}Kr half-life	229000 a		Firestone and Shirley (1996)
^{83}Kr atom/L water (2008)	57845		Du et al. (2003); Collon et al. (1997)
^{81}Kr atom/L (modern water)	1253		Du et al. (2003); Collon et al. (1997)
soluble in water Kr (10°C)	0.081	cm$^3_{\text{atm}}$ cm$^{-3}_{\text{water}}$	Weiss and Kyser (1978)
Kr diffusion coefficient in the air (20°C)	~0.13	cm2/s	Weast (1981)
Kr diffusion coefficient in water (20°C)	~6.2	10^{-5} cm2/s	Weast (1981)

3.2. Atom trap trace analysis method

Atom trap trace analysis is a good method for direct detection of single atom. It is based on the technology of laser cooling and trapping atom; its basic principle is to use the magneto-optical trap method to selectively trap atoms of specific isotopes. The test equipment (as shown in Figure 2), low-pressure krypton (0.1Pa) passes through a section of 1cm diameter quartz tube from the gas source chamber, it is ionized by radio-frequency discharge, generates metastable state krypton atoms into the lateral cooling chamber, it is compressed by the transverse 811 nm resonant laser beam, reduce the divergence angle of the atomic beam and increase the flow of the atomic beam. The atomic beam passes through Zeeman slow-speed tube, which is decelerated by the laser and then enters the magneto-optical trap. In this magneto-optical trap, it is cooled by six slightly red detuned 811 nm lasers and trapped in a magneto-optical trap, and emitted resonance fluorescence is detected by the detector, by precisely tuning the laser frequency, only certain isotope atoms can be cooled and trapped by the laser. Only one atom can occur in the magneto-optical trap, at the same time, and its fluorescence signal is also very weak. Through the imaging system, the single-atom fluorescence signal is efficiently collected to a highly sensitive single-photon detector, and the background scattered light signal is filtered as much as possible, thereby improving the signal-to-noise ratio of single-atom signals and achieving single atom measurement [14-15].

From the radioactive Kr atom content in the sample, the age of the sample can be determined by the following formula:

$$t_{Kr} = \frac{T}{\ln 2} \cdot \ln \left(\frac{R_{air}}{R} \right)$$

The half-life of $T^{81}\text{Kr}$ (about 2.29 × 105 a); R_{air}-the atomic ratio of 81Kr isotope atom in atmospheric precipitation of the supply area; R-the ^{81}Kr isotope ratio in the groundwater.
4. 81Kr Sampling and Testing

As the 81Kr content in groundwater is extremely low, in order to measure the 81Kr age in groundwater, it is necessary to extract more than one hundred litres of original groundwater sample based on the double packer hydrogeological system (as shown in Figure 3). The fluorescein sodium spectrophotometer was used to detect the concentration of tracer in the groundwater sample. After collecting enough groundwater samples, the krypton gas is separated in the laboratory by low temperature fractionation and chromatography technology, then the krypton gas was measured by atomic trap trace analysis method which established by the team of University of Science and Technology of China, the atomic number of 81Kr can be collected, and the concentration ratio and other data of isotope can be obtained [16,17].

5. Results

Compared with the test results (as shown in Table 2), it can be seen from the measurement results of 85Kr and 81Kr, CY-02 samples are close to the value of modern air, this indicates that the CY-02 sample may have been contaminated during the extraction of the water sample or groundwater dissolves gas. The concentration of 81Kr in the CY-01 sample is relatively low, but the value of 85Kr is relatively high, it may be contaminated in the 85Kr test process or influenced by the mixing effect of younger groundwater. The 85Kr content of CY-03 was measured to be 12.9 ± 1.4 dpm/cc, the ratio of 81Kr content to the corresponding content in the modern atmosphere is 1.08 ± 0.09, the groundwater sample of CY-03 maybe a mixed sample, therefore, 85Kr data can be used to correct test results.

The CY-02 sample measurement result is selected as the initial concentration of 85Kr, use the 85Kr test results to calculate the mixing ratio of younger groundwater, assume that the deep paleogroundwater mixed by shallow groundwater and the piston flow is main mechanism, namely the young groundwater is mixed during sampling in piston flow type of paleogroundwater system, the age distribution function of the sampling point water is:

$$g(t) = \sum a_k \delta(t-t_k)$$

The a_k age is the share of t_k groundwater ($\sum a_k$), and δ is the Dirac delta function.
Figure 3. Device of the groundwater sampling and gas separation
Table 2. Results of krypton isotopes in groundwater

Sample	CY-01	CY-02	CY-03
Sample depth /m	390~	330~340	390~
Krypton / microlitre	1	1.3	6
Sample time	2013-11-04	2013-10-21	2013-10-30
Count time /hour	4.5	5	4.5
\(^{83}\text{Kr}:^{85}\text{Kr}:^{81}\text{Kr}\) measurement time	1:2:4	2:5:15	1:2:4
\(^{85}\text{Kr}\) counting	192	304	170
\(^{85}\text{Kr}(\text{dpm/cc})\)	67.8±5.8	75.6±5.8	12.9±1.4
\(^{81}\text{Kr}\) counting	45	85	188
\(^{81}\text{Kr}_{\text{sample}}:^{81}\text{Kr}_{\text{air}}\)	0.87±0.14	1.15±0.13	1.08±0.09

According to formula (2), the proportion of younger groundwater in the samples can be calculated. The high value of \(^{85}\text{Kr}\) in CY-03 is a mixed sample of groundwater, the corrected groundwater mixed ratio and age data can be obtained based on the \(^{85}\text{Kr}\) mixed model, the depth of groundwater age of CY-01 and CY03 is 46ka and 25ka, the paleogroundwater ratio of CY-03 is about 83% (as shown in Table.3).

Table 3. The results of paleo-groundwater dating corrected by 85Kr

Sample	\(^{85}\text{Kr}(\text{dpm/cc})\)	\(^{81}\text{Kr}_{\text{sample}}:^{81}\text{Kr}_{\text{air}}\)	Ratio of paleogroundwater	Ratio of young water	Corrected age/ka
CY-01	67.8±5.8	0.87±0.14	100%	0	46
CY-02	75.6±5.8	1.15±0.13	0	100%	modern
CY-03	12.9±1.4	1.08±0.09	83%	17%	25

6. Conclusion

The krypton isotope can be used to carry out dating research on the deep groundwater, the results show that the \(^{81}\text{Kr}\) ages of the deep groundwater in Jijiao preslected site are 25ka and 46ka, respectively, it shows that the deep environmental groundwater circulation rate is extremely slow, this feature is conducive to the safe disposal of high-level radioactive waste.

The use of \(^{85}\text{Kr}\) isotope can effectively determine the mixing effect and ratio of younger groundwater and paleogroundwater, and can be applied to the correction of the \(^{81}\text{Kr}\) age.

Considering the harsh conditions of the krypton isotope dating method, the uncertainty of the isotope dating method, and the complexity of the deep geological environment, isotope dating studies are needed to verify its credibility further, and various dating methods need be used for comparative studies, then the characteristics of the deep groundwater system can be described more accurately and reliably, thus providing a reliable reference for the suitability evaluation of the high-level radioactive waste repository.

References

[1] Wang Ju, Chen Weiming, Su Rui et al, 2006. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 25(4): 801-812. (In Chinese).
[2] Pan Ziqiang, Qian Qihu, 2009. Research on geological disposal strategy for high-level radioactive waste[M]. Beijing: Atomic Energy Press. (In Chinese).
[3] OZIMA M,PODOSEK F A,1983.Noble gas geochemistry[M]. [S.l.]:Cambridge University Press.
[4] COLLON P, ANTAYA T,DAVIDS B, et al,1997. Measurement of \(^{81}\text{Kr}\) in the atmosphere[J].
Nuclear instruments and methods in physics research section B, 123(1):122-127.

[5] Isotope mehtods for dating old groundwater:-Vienna : International Atomic Energy Agency, 2013.

[6] BAGLIN C M, 2008.Nuclear data sheets for Kr-81[J]. Nuclear data sheets, 109(10):2257-2437.

[7] FLORKOWSKI T,1991. Natural production of radionuclides in geological formations[J]Journal of physics G,17(S): S513.

[8] Yang Guomin. Measurement of 85Kr and 81Kr in environmental samples by atomic trap trace analysis [D]. University of Science and Technology of China. 2015. (In Chinese).

[9] R. Yokochi, N.C. Sturchio, R,2013. Purtschert et al. Noble gas radionuclides in Yellowstone geothermal gas emissions: A reconnaissance [J]. Chemical Geology,339:43–51.

[10] H. H. Loosli, H. Oeschger,1969. 37Ar and 81Kr in the atmosphere [J]. Earth Planet, Sci. Lett. 7:67-71.

[11] V. V. Kuzminov and A. A.Pomansky, 1983. 81Kr production rate in the atmosphere [J]. Proc.18th Int. Cosmic Ray Conf, Bangalore , Indis, IUPAP (2):357.

[12] P. collon, D. Cole , B. Davids, etc,1999. Measurement of the longlived radionuclide 81Kr in pre-nuclear and Present-day atmospheric krypton [J]. Radiochim. Acta, 85:13-19.

[13] Zhou Zhichao, Yun Long, Wang Ju, et al, 2014. Application of paleogroundwater dating method in geological disposal of high-level radioactive waste[J]. Uranium Geology, 30(1):57-64. (in chinese).

[14] B.E. Lehmann, A. Love, R. Purtschert, et al, 2003. A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia[J]. Earth and Planetary Science Letters,211:237-250.

[15] W. Jiang, K. Bailey, Z.-T. Lu, et al, 2012. An atom counter for measuring 81Kr and 85Kr in environmental samples [J]. Geochimica et Cosmochimica Acta, 91:1-6.

[16] Jiang Wei, Cheng Guosheng, Sun Yu, et al, 2010. Measurement of groundwater age by laser trapped radioactive krypton isotope technique[J]. Quaternary Sciences,30(1):224-227. (In Chinese).

[17] C. F. Cheng, I G. M. Yang, I W. Jiang, et al,2013. Normalization of the single atom counting rate in an atom trap[J]. OPTICS LETTERS,38(1):31-33.