A theoretical model to study the interactions of xanthene-1,2,3-triazolyl-N-riboside and xanthene-piperidinyl-benzisoxazole based conjugates with the insulin: Design, docking and ADME studies

Bhaskara Nand,¹,* Kamlesh Kumari,² Prashant Singh¹

¹Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India; ²Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India

Email ID: bhaskarpantdu@gmail.com & psingh@arsd.du.ac.in; * Corresponding author

Abstract

Literature reported the insulin is an important for the humans and it is secreted in the pancreas and controls, regulates the glucose level. It also controls the mechanism and growth. On decreasing the amount of insulin can caused diabetes, several cancers and other disease. Therefore, there is a need to find promising candidates can binds with insulin and stabilize them. Organic compounds containing hetero atoms have lots of biological potency in different area, therefore, researchers are designing new biological potent compounds. Further, insilico studies attracted the researchers in last one decade mainly to get the drug in less time with a clear strategy. In the present work, authors have designed two types of conjugates, xanthenes with trizole as well benzisoxazole and study their interaction with the insulin using computational methods. The library of compounds was screened through molecules docking in terms of binding energy between the designed compound and the active site of the receptor. Further, their ADME properties are investigated. CMPD19 showed best binding affinity with the insulin and may be considered as oral drug based on the bioactive scores.

Keywords: Conjugates compounds; insulin; docking; ADME
Introduction

Insulin hormone which is the major secretion of the β-cells of endocrine gland (pancreas), regulates the extent of glucose in blood by promoting glucose uptake or by quashing glucose production. Diabetes mellitus (DM) is a result of the failure of insulin making or malfunction of tissue sensitivity to insulin [1-9]. Type 1 diabetes mellitus (T1DM) is caused due to the loss of β-cells of pancreas through immune destruction, which leads to inadequate insulin production. Hence, the T1DM patients needed to give insulin from outside for maintaining the required glucose level in the blood [10-13]. The declined tissue sensitivity towards insulin hormone leads to type 2 diabetes mellitus (T2DM). In order to cure T2DM, the hepatic glucose production is reduced and the peripheral glucose utilization is boosted by working on two different approaches, one is to enhance the release of insulin and the other is to improve the action of insulin [14, 15]. Nevertheless, these treatment methods no longer remains very effective when the disease progresses on advance stages and type 2 diabetic patients requires insulin therapy. Therefore, to identify new molecular targets for the development of novel remedial approaches to restore insulin action always be a matter of good research.

Benzo[a]xanthenes play very important role in pharmaceutical chemistry due to their several biological activities [16]. Molecular hybrids holding 1,2,3-triazole own a diversity of medicinal properties including anti-microbial, anti-tumor, anti-alzheimer, anti-diabetic / hypoglycemic activities [17-22]. Further 1,2,3-Triazolyl-N-Glycosides/ N-glycosides are proven to be very effective anti-diabetic agents [23]. The benzisoxazoles exemplify one of the most privileged structure motifs in medicinal chemistry and different biological studies are increasing day by day on benzisoxazole-containing compounds. The unique benzisoxazole framework shows potent medicinal properties like anti-bacterial, anti-tumor, anti-inflammatory, anti-glycation, anti-psychotic, anti-diabetic etc [24-29].

Keeping in mind the bio-mimicry i.e. bio-motivated design and rational design two or more different biologically active molecules could be joined in a single molecular entity to obtain the hybrid molecules with two distinct pharmacophores and dual mode of action. Hence the technique of molecular hybridization is used in drug design and discovery to get the molecules having improved biological activity with the same or
different mode of action compared to the precursors [30, 31]. Computational approaches could also be valuable tool to take decision for the synthesis of molecules to make libraries of desired compounds. Herein, the authors have designed two schemes to get conjugates of xanthenes with the trizole and benzisoxazole. Further, the screening of the compounds was done using the docking and ADME properties to get a promising candidate.

Experimental
Designing of biological potent xanthenes based conjugates to study the interaction with the insulin as in Scheme 1 and 2. Authors have designed the synthesis of xanthene-1,2,3-Triazolyl-N-riboside via the reaction between the sugar or the 2-azido-5-(hydroxymethyl)tetrahydrofuran-3,4-diolk with xanthenes as in Scheme 1 to get compounds 1-28. Further, synthesis of xanthenepiperidinyll benzisoxazole hybrids is designed via the reaction between 6-fluro-3-(piperidin-4-yl)benzo[d]isoxazole and xanthenes as in Scheme 2 to get compounds 29-56. Compounds 1-28 and 29-56 are obtained on changing the substituents (Ar and R) on the cyclic ring of xanthenes as mentioned in Table 1.

Scheme 1 Design the synthesis of xanthene-1,2,3-triazolyl-N-riboside via the reaction between the sugar or the 2-azido-5-(hydroxymethyl)tetrahydrofuran-3,4-diolk with xanthenes
Scheme 2 Design the synthesis of xanthene-piperidinyl benzisoxazole hybrids via the reaction between 6-fluro-3-(piperidin-4-yl)benzo[d]isoxazole and xanthenes

Table 1 A library of compounds on varying Ar and R in Scheme 1 & 2

C. No	Ar	R	C. No	Ar	R
1	4-NO₂C₆H₄	CH₃	29	4-FC₆H₄	CH₃
2	4-BrC₆H₄	CH₃	30	4-BrC₆H₄	CH₃
3	4-FC₆H₄	CH₃	31	4-ClC₆H₄	CH₃
4	4-ClC₆H₄	CH₃	32	4-CH₃C₆H₄	CH₃
5	4-CH₃C₆H₄	CH₃	33	4-OCH₃C₆H₄	CH₃
6	4-OCH₃C₆H₄	CH₃	34	4-NO₂C₆H₄	CH₃
7	3,4-(OCH₃)₂C₆H₃	CH₃	35	C₆H₅	CH₃
8	C₆H₅	CH₃	36	3,4-(OCH₃)₂C₆H₃	CH₃
9	3-NO₂C₆H₄	CH₃	37	3-NO₂C₆H₄	CH₃
10	4-Me₂CHC₆H₄	CH₃	38	4-Me₂CHC₆H₄	CH₃
11	4-FC₆H₄	CH₃	39	4-FC₆H₄	CH₃
12	2-Naphthyl	CH₃	40	1-Naphthyl	CH₃
13	1-Naphthyl	CH₃	41	2-Naphthyl	CH₃
14	9-Anthryl	CH₃	42	9-Anthryl	CH₃
15	4-OCH₃C₆H₄	H	43	3-NO₂C₆H₄	H
16	3,4-(OCH₃)₂C₆H₃	H	44	4-Me₂CHC₆H₄	H
17	C₆H₅	H	45	4-FC₆H₄	H
18	3-NO₂C₆H₄	H	46	1-Naphthyl	H
19	4-Me₂CHC₆H₄	H	47	2-Naphthyl	H
20	4-FC₆H₄	H	48	9-Anthryl	H
21	2-Naphthyl	H	49	4-FC₆H₄	H
22	1-Naphthyl	H	50	4-BrC₆H₄	H
Molecular docking
All the compounds designed are drawn using Chemdraw and then they were optimized using MM2 for the study. Protein data bank file for the insulin is taken from the RCSB and the ID is 5mam. Then, the pdb is prepared for the docking by the removal of the ligands/cofactors/solvents and then addition of atoms, if any. The interactions between the insulin and the designed compounds was performed using molecular docking with the help of a computational tool i.e. iGemdock. The screening is done based on the binding energy for the formation of the complex between the compound and the insulin. This binding is obtained by the electrostatic and van der Waals interaction along with the hydrogen bonding. Further, the molecular interactions of best five compounds with insulin at residues level were studied [32-47].

Absorption, distribution, metabolism, and excretion (ADME) properties of the designed compounds
Absorption, distribution, metabolism, and excretion (ADME) properties of the compounds were determined using http://www.swissadme.ch/, an online web-server. It is used to explain the disposition of a molecule in the organism. These properties of a molecule affect the tissues in the organisms and explain the pharmacology of the molecule.

Result & discussion
Molecular docking
Docking of the all the designed 56 compounds were docked with insulin and the binding energy for the formation of the complex is given in Table 2. Binding energy for the formation of the complex between the insulin and best five compounds are 19, 25, 23, 17 & 34 with their binding energy are -126.26, -123.617, -119.702, -110.639 and -110.414 kcal/mol. From this, it is understood that the compounds designed from Scheme 1 are more biologically potential. Out of all designed compounds, CMPD19 showed the best binding affinity with the insulin. Energy contributed from the van der Waals interaction is significant for the formation of complex between the CMPD19 and insulin. Two and three dimensional view for the interaction best five compounds with the amino-acids of the insulin is given in Figure 1 and the types of interactions is given in Table 3.

CMPD19 showed different types of interactions with the insulin and these are hydrogen bonding (classical and non-classical), hydrophobic and others. CMPD19 forms hydrogen with CYS-C-7; THR-C-8; CYS-D-7; CYS-C-11 and HIS-D-10 of insulin with distance of 2.56; 2.68; 3.20; 3.29 and 3.04 Å. It also forms hydrophobic interactions with LEU-C-16; ALA-D-14; ILE-C-10 and HIS-D-10 of insulin with distance of 4.98; 3.19, 4.04; 3.76 and 3.77 Å. Some other interactions are also observed between the CMPD19 with CYS-C-6 and CYS-C-11 with distance of 2.96 and 5.96 Å.
Figure 1 Interaction view of the best five compounds (19, 25, 23, 17 & 34) based on the docking with insulin

Table 2 Total energy obtained on applying docking of the designed compounds with insulin

C. No	Total Energy	E_{VDW}	E_{H-Bonding}	E_{Elec}	C. No	Total Energy	E_{VDW}	E_{H-Bonding}	E_{Elec}
1	-103.475	-90.9092	-13.1713	0.605098	29	-105.663	-91.1232	-14.5398	0
2	-100.223	-90.6664	-9.55675	0	30	-93.7386	-85.6796	-8.05902	0
3	-95.0079	-89.264	-5.7439	0	31	-92.7295	-88.9469	-3.78254	0
4	-97.4916	-87.2296	-10.262	0	32	-85.4703	-79.1663	-6.30399	0
5	-95.6749	-87.009	-8.66584	0	33	-91.0151	-89.2924	-1.72264	0
6	-100.133	-87.9581	-12.1752	0	34	**-110.414**	-89.1574	**-21.8205**	0.56412
7	-103.348	-87.1948	-16.1531	0	35	-96.7847	-83.024	-13.7608	0
8	-102.658	-78.129	-24.5294	0	36	-100.94	-85.6775	-15.2626	0
9	-89.5631	-73.8248	-15.7383	0	37	-107.718	-97.6659	-11.0423	0.99078
10	-99.0018	-80.0554	-18.9465	0	38	-84.5454	-80.3046	-4.24082	0
11	-105.862	-89.5569	-16.3048	0	39	-99.4778	-96.7699	-2.70791	0
12	-104.492	-92.6053	-11.887	0	40	-96.5244	-87.0444	-9.5	0
13	-108.332	-93.1772	-15.155	0	41	-88.0899	-85.5899	-2.5	0
14	-104.462	-87.3984	-22.0637	0	42	-92.2911	-89.2969	-2.99414	0
15	-94.9422	-81.1558	-13.7863	0	43	-105.287	-95.1022	-11.3353	1.1691
16	-103.122	-89.0381	-14.0836	0	44	-97.9091	-92.8259	-5.08316	0
17	**-110.639**	**-98.2899**	**-12.3486**	0	45	-101.413	-101.413	0	0
18	-104.74	-86.6321	-18.1079	0	46	-102.368	-97.3683	-5	0
19	**-126.26**	**-104.354**	**-21.9062**	0	47	**-93.7946**	**-92.0404**	-1.75423	0
20	-104.294	-93.6311	-10.6631	0	48	-108.539	-102.539	6	0
21	-96.517	-81.515	-15.002	0	49	-94.2811	-87.3834	-6.89776	0
22	-101.87	-89.5003	-12.3695	0	50	-90.8006	-84.1727	-6.6279	0
23	**-119.702**	**-103.659**	**-16.0435**	0	51	-103.799	-100.608	-3.19042	0
24	-101.262	-90.7072	-10.5546	0	52	-106.444	-93.9568	-12.4869	0
25	**-123.617**	**-102.086**	**-21.5304**	0	53	**-91.3455**	**-89.3**	**-2.04543**	0
26	-97.0398	-84.1852	-12.8547	0	54	-107.579	-100.834	-7	0.255258
27	-109.683	-101.762	-8.51703	0.596614	55	-96.9498	-86.4498	-10.5	0
28	-108.675	-94.2878	-14.3874	0	56	-103.849	-93.4877	-10.3616	0
Table 3 Different interaction of the best five compounds (19, 25, 23, 17 & 34) with insulin through molecular docking

C. No.	H-bonds	Hydrophobic	Miscellaneous		
		Classical	Non-classical		
19	CYS-C-7; THR-C-8; CYS-D-7; CYS-C-11; HIS-D-10;	2.56; 2.68; 3.20; 3.29; 3.04	LEU-C-16; ALA-D-14; ILE-C-10; HIS-D-10;	4.98; 3.19, 4.04; 3.76; 3.77	CYS-C-6; CYS-C-11; 2.96; 5.96
25	CYS-C-7; THR-C-8; HIS-D-10	3.31; 2.72; 3.14	ILE-C-10; HIS-D-10; ALA-D-14; LEU-C-13	4.09; 4.65; 4.87, 4.20, 5.24; 5.44	CYS-C-6; 5.63, 5.96
23	CYS-C-11; HIS-D-10	3.00; 2.72	LEU-D-11; LEU-C-16; ALA-D-14; CYS-C-6; CYC-C-11	4.54; 4.62, 5.45; 4.39, 5.23, 3.33, 3.42, 5.96; 5.63	CYS-C-6;
17	HIS-D-10; CYC-C-7	2.79; 3.35	CYS-C-11; ILE-C-10; HIS-C-10; ALA-D-14; GLU-D-13	5.10; 3.25; 4.75; 5.38, 5.14, 4.13; 4.93	CYS-11; 5.97
34	VAL-18; HIS-10	3.10; 2.59, 2.55	ILE-10; LEU-13; VAL-18; ALA-14	5.37, 4.86; 4.73, 4.71; 3.97; 3.93, 5.04, 4.48	CYC-6; 2.61
The superimposed views of the best four and five compounds with the insulin are given in the Figure 2. From this, it can be clearly understood that these compounds binds to the same active site of the receptor of the insulin.

![Figure 2](image)

Figure 2 Superimposed views of the best (a) four and (b) five compounds with the insulin

It is also important to understand to find the interaction of the promising compound with the amino-acids of the receptor at the active site. Significant energy contributions from the interacted amino-acids of insulin with CMPD19 are V-S-HIS-10, V-M-ALA-14 and V-M-THR-8 as in Figure 3.

![Graph](image)
Figure 3 Plot for the significant energy contribution of the insulin with CMPD19

ADME properties of the compounds

The designed compounds in the Scheme 1 and 2 are studied for the ADME properties. Different physio-chemical properties (molecular weight, number of heavy atoms, number of rotational bonds, number of hydrogen bond donors and number of hydrogen bond acceptors) of the compounds are determined. Further, number of violations for the drug likeness (Lipinski’s rule of five, Ghosh, Veber, Egan and Muegge) are determined using the web-server as in **Table 4**. The number of violations for the Lipinski’s rule of five, Ghosh, Veber, Egan and Muegge of screened CMPD19 are 1, 3, 0, 1 and 0. Usually, Lipinski’s rule of five is considered by the researchers to understand the behavior of compounds to act as drug. If the number of violation in Lipinski’s rule of five is 0 or 1, then the compound is acceptable. For the selection of a compound to be a drug then it is important for the compound to reach the target in enough concentration so the expected biological action can take place. In view of it, **CMPD19** may be considered as a promising drug candidate.

Table 4 Physio-chemical descriptors of the designed compounds as in **Table 1**

C. No.	Mol. wt. (g/mol)	No. of heavy atoms	No. of rotatable bonds	No. of H-bond donors	No. of H-bond acceptors	Drug likeness (No. of Violations)				
						Lipinski	Ghosh	Veber	Egan	Muegge
1	628.63	46	7	3	11	2	3	1	1	3
2	662.53	44	6	3	9	1	3	0	1	1
3	601.62	44	6	3	10	1	3	0	1	1
4	618.08	44	6	3	9	1	3	0	1	1
5	597.66	44	6	3	9	1	3	0	1	0
6	613.66	45	7	3	10	2	3	1	1	1
7	643.68	47	8	3	11	2	3	1	1	3
8	583.63	43	6	3	9	1	3	0	1	0
9	628.63	46	7	3	11	2	3	1	1	3
10	625.71	46	7	3	9	1	3	0	1	1
11	651.63	47	7	3	12	1	3	0	1	2
12	633.69	47	6	3	9	1	3	0	1	2
13	633.69	47	6	3	9	1	3	0	1	2
14	683.75	51	6	3	9	1	4	0	1	3
15	585.60	43	7	3	10	2	3	1	1	0
16	615.63	45	8	3	11	2	3	1	1	3
17	555.58	41	6	3	9	1	2	0	1	0
Later, other bioactive scores (LogP_{o/w}, GI absorption, BBB permeability, P-gp binder, LogK_p and others) of the designed compounds are determined as in Table 5. LogP_{o/w} is an important parameter in development of drug designing and it is a partition coefficient between the n-octanol and water. LogP_{o/w} of CMPD is 3.39 and considered to moderately polar in nature and may be considered for oral drug. Further, it has low GI absorption and
not a good permeable to blood brain barrier. P-gp of CMPD19 has a good ATP-binding cassette transporter for active efflux through biological membranes.

Table 5 Various bioactive score of the designed compounds as in Table 1

C. No.	Log P_{o/w}	GI absorption	BBB permeant	P-gp substrate	Log K_p (cm/s)	Lead-likeness	TPSA (Å²)
1	2.40	Low	No	Yes	-7.88	No	181.98
2	3.68	Low	No	Yes	-7.47	No	136.16
3	3.35	Low	No	Yes	-7.53	No	136.16
4	3.58	Low	No	Yes	-7.25	No	136.16
5	3.43	Low	No	Yes	-7.31	No	136.16
6	3.09	Low	No	Yes	-7.69	No	145.39
7	3.04	Low	No	Yes	-7.89	No	154.62
8	3.07	Low	No	Yes	-7.49	No	136.16
9	2.41	Low	No	Yes	-7.88	No	181.98
10	3.88	Low	No	Yes	-6.94	No	136.16
11	4.04	Low	No	Yes	-7.27	No	136.16
12	3.88	Low	No	Yes	-6.91	No	136.16
13	3.95	Low	No	Yes	-6.91	No	136.16
14	4.63	Low	No	Yes	-6.32	No	136.16
15	2.45	Low	No	No	-8.11	No	145.39
16	2.38	Low	No	No	-8.32	No	154.62
17	2.36	High	No	No	-7.91	No	136.16
18	1.82	Low	No	Yes	-8.30	No	181.98
19	3.36	Low	No	Yes	-7.36	No	136.16
20	3.65	Low	No	Yes	-7.69	No	136.16
21	3.39	Low	No	Yes	-7.32	No	136.16
22	3.30	Low	No	Yes	-7.32	No	136.16
23	4.06	Low	No	Yes	-6.74	No	136.16
24	2.78	Low	No	Yes	-7.73	No	136.16
25	3.02	Low	No	Yes	-7.67	No	136.16
26	3.14	Low	No	Yes	-7.90	No	136.16
27	1.74	Low	No	Yes	-8.30	No	181.98
28	2.83	Low	No	Yes	-7.95	No	136.16
29	7.66	Low	No	No	-4.36	No	64.80
30	7.97	Low	No	No	-4.31	No	64.80
31	7.89	Low	No	No	-4.08	No	64.80
32	7.71	Low	No	No	-4.15	No	64.80
33	7.33	Low	No	No	-4.52	No	74.03
34	6.57	Low	No	No	-4.71	No	110.62
35	7.30	Low	No	No	-4.32	No	64.80
36	7.28	Low	No	No	-4.73	No	83.26
Conclusion

Insulin is used to control the mechanism and growth in humans. With decrease in amount of the insulin may cause diabetes and some other diseases. Therefore, there is a need to explore to find the promising molecules for the binding with insulin. A library of the conjugates based on the xanthenes with ribose and benzisoxazole are designed studied their interaction with insulin using molecular docking and ADME properties. Based on the molecular docking, it showed the best binding affinity with insulin. Further, based on the ADME scores, CMPD19 may be a promising candidate.

Acknowledgments

One of the authors BN acknowledges Prof. J. M. Khurana for the guidance.

References

[1] Rondinone, C.M.; Wang, L. M.; Lonnroth, P.; Wesslau, C.; Pierce, J. H.; Smith, U. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-
insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 1997, 94 (8), 4171, 5.

[2] Kornmann, M.; Maruyama, H.; Bergmann, U.; Tangvoranuntakul, P.; Beger, H. G.; White, M. F.; Korc, M. Enhanced expression of the insulin receptor substrate-2 docking protein in human pancreatic cancer. Cancer Res. 1998, 58 (19), 4250-4.

[3] Elmendorf, J. S.; Boeglin, D. J.; Pessin, J. E. Temporal separation of insulin-stimulated GLUT4/IRAP vesicle plasma membrane docking and fusion in 3T3L1 adipocytes. J. Biol. Chem. 1999, 274, (52), 37357-61.

[4] Sanchez-Margalet, V.; Najib, S., Sam68 is a docking protein linking GAP and PI3K in insulin receptor signaling. Mol. Cell Endocrinol. 2001, 183, (1-2), 113-21.

[5] Ohara-Imaizumi, M.; Cardozo, A. K.; Kikuta, T.; Eizirik, D. L.; Nagamatsu, S. The cytokine interleukin-1beta reduces the docking and fusion of insulin granules in pancreatic beta-cells, preferentially decreasing the first phase of exocytosis. J. Biol. Chem. 2004, 279 (40), 41271-4.

[6] Ohara-Imaizumi, M.; Nishiwaki, C.; Nakamichi, Y.; Kikuta, T.; Nagai, S.; Nagamatsu, S. Correlation of syntaxin-1 and SNAP-25 clusters with docking and fusion of insulin granules analysed by total internal reflection fluorescence microscopy. Diabetologia 2004, 47 (12), 2200-7.

[7] Kasai, K.; Ohara-Imaizumi, M.; Takahashi, N.; Mizutani, S.; Zhao, S.; Kikuta, T.; Kasai, H. Nagamatsu, S.; Gomi, H.; Izumi, T. Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J Clin Invest. 2005, 115 (2), 388-96.

[8] Kikuta, T.; Ohara-Imaizumi, M.; Nakazaki, M.; Nishiwaki, C.; Nakamichi, Y.; Tei, C.; Aguilar-Bryan, L.; Bryan, J. Nagamatsu, S. Docking and fusion of insulin secretory granules in SUR1 knock out mouse beta-cells observed by total internal reflection fluorescence microscopy. FEBS Lett. 2005, 579 (7), 1602-6.

[9] Tsuboi, T.; Ravier, M. A.; Xie, H.; Ewart, M. A.; Gould, G. W.; Baldwin, S. A.; Rutter, G. A. Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis. J Biol Chem. 2005, 280 (27), 25565-70.
[10] Gonzalez, E.; McGraw, T. E. Insulin signaling diverges into Akt-dependent and independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the plasma membrane. Mol Biol Cell 2006, 17 (10), 4484-93.

[11] Nagamatsu, S.; Ohara-Imaizumi, M.; Nakamichi, Y.; Kikuta, T.; Nishiwaki, C. Imaging docking and fusion of insulin granules induced by antidiabetes agents: sulfonylurea and glinide drugs preferentially mediate the fusion of newcomer, but not previously docked, insulin granules. Diabetes 2006, 55 (10), 2819-25.

[12] Gao, N.; White, P.; Doliba, N.; Golson, M. L.; Matschinsky, F. M.; Kaestner, K. H. Foxa2 controls vesicle docking and insulin secretion in mature Beta cells. Cell Metab. 2007, 6 (4), 267-79.

[13] Chen, Y.; Wang, Y.; Ji, W.; Xu, P.; Xu, T. A pre-docking role for microtubules in insulin-stimulated glucose transporter 4 translocation. FEBS J. 2008, 275 (4), 705-12.

[14] Mosedale, M.; Egodage, S.; Calma, R. C.; Chi, N. W.; Chessler, S. D. Neurexin-1alpha contributes to insulin-containing secretory granule docking. J Biol Chem. 2012, 287 (9), 6350-61.

[15] Elmazar, M. M.; El-Abhar, H. S.; Schaalan, M. F.; Farag, N. A. Phytol/Phytanic acid and insulin resistance: potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations. PLoS One 2013, 8 (1), e45638.

[16] Khurana, J. M.; Nand, B.; Sneha An efficient and convenient approach for the synthesis of novel-2-hydroxy-12-aryl-8,9,10,12 tetrahydrobenzo[a]xanthene-11-ones using p-toluenesulfonic acid in ethanol and ionic liquid, J. Heterocyclic Chem. 2011, 48, 1388-1392.

[17] Zhang, B. Comprehensive review on the anti-bacterial activity of 1, 2, 3-triazole hybrids. Eur. J. Med. Chem. 2019, 168, 357–372.

[18] Khanaposhtani, M. M.; Safavi, M.; Sabourian, R.; Mahdavi, M.; Pordeli, M. Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis induction study of new 9 (10H)-acridinone-1, 2, 3-triazoles. Mol. Divers. 2015, 19, 787–795.
[19] Khanaposhtani, M. M.; Mahdavi, M.; Saeedi, M.; Sabourian, R.; Safavi, M. Design, synthesis, biological evaluation, and docking study of acetylcholine esterase inhibitors: new acridone-1, 2, 4-oxadiazole-1, 2, 3-triazole hybrids. Chem. Biol. Drug Des. 2015, 86, 1425–1432.

[20] Wang, G.; Peng, Z.; Wang J.; Li, X.; Li, J. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur. J. Med. Chem. 2017, 4, 423–429.

[21] Mohamed, M. A. A.; Allah, O. A. A.; Bekhit, A. A.; Kadry, A. M.; El-Saghier A. M. M. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J. Heterocyclic Chem. 2020, 57, 2365–2378.

[22] Asgari, M. S.; Khanaposhtani, M. M.; Mitra, K.; Ranjbar, P. R.; Zabihi, E.; Pourbagher, R. Biscoumarin-1,2,3-triazole hybrids as novel anti diabetic agents: Design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies. Bioorg. Chem. 2019, 92, 103206.

[23] Palasz1, A.; Ciez, D.; Trzewik1, B.; Miszczak1, K.; Tynor1 G.; Bazan, B. In the Search of glycoside-based molecules as antidiabetic agents. Top. Curr. Chem. 2019, 377 (19), 1-84.

[24] Farr, R. A.; Peet, N. P. Novel glucohydrolase inhibitors useful as antidiabetic agents. 1992, WO Patent 011867.

[25] Ziyang, C. Preparation of benzisoxazole derivatives as antidiabetic agents. 2015, CN 105037290 A 20151111.

[26] Purohit, S. S.; Veerapur, V. P. Predicting the possibility of novel 5 substituted benzisoxazole containing thiazolidine-2, 4-dione derivatives as potent PPAR-γ agonists. Inter. J. Pharma Bio Sci. 2012, 3, 142–149.

[27] Shi, G. Q.; Dropinski, J. F.; McKeever, B. M.; Shihua, X. Design and synthesis of α-aryloxyphenylacetic acid derivatives: a novel class of ppar-α/γ dual agonists with potent antihyperglycemic and lipid modulating activity. J. Med. Chem. 2005, 13, 4457–4468.

[28] Kun, L.; Libo, X.; Brian, J. A. Preparation of benzisoxazolylxyacetic acids for treatment of diabetes and lipid disorders. 2002, US 20020173663 A1 20021121.
[29] Rakesh, K. P.; Shantharam, C. S.; Sridhara, M. B.; Manukumar, H. M.; Qin, H. L. Benzisoxazole: a privileged scaffold for medicinal chemistry. Med. Chem. Commun. 2017, 8, 2023-2039.

[30] Tietze, L. F.; Hubertus, P. B.; Chandrasekhar, S. Natural product hybrids as new leads for drug discovery. Angew. Chem., Int. Ed. 2003, 42, 3996-4028.

[31] Mehta, G.; Singh, V. Hybrid systems through natural product leads: An approach towards new molecular entities. Chem. Soc. Rev. 2002, 31, 324-334.

[32] Vishvakarma, V. K.; Kumari, K.; Singh, P. A model to study the inhibition of arginase II with noscapine & its derivatives. J Pro Res Bioinf. 2020, 2, (1), 1-14.

[33] Kumar, D.; Kumari, K.; Vishvakarma, V. K.; Jayaraj, A.; Kumar, D.; Ramappa, V. K.; Patel, R.; Kumar, V.; Dass, S. K.; Chandra, R.; Singh, P. Promising inhibitors of main protease of novel corona virus to prevent the spread of COVID-19 using docking and molecular dynamics simulation. J Biomol Struct Dyn. 2020, 1-15.

[34] Kumar, D.; Kumari, K.; Jayaraj, A.; Singh, P. Development of a theoretical model for the inhibition of nsP3 protease of Chikungunya virus using pyranooxazoles. J Biomol Struct Dyn. 2020, 30 (10), 3018-3034.

[35] Kumar, D.; Kumari, K.; Jayaraj, A.; Kumar, V.; Singh, P.; Chandra, R.; Ramappa, V. K. Selective docking of pyranooxazoles against nsP2 of CHIKV eluted through isothermally and non-isothermally MD simulations. Chemistry Select 2020, 5, (14), 4210-4220.

[36] Kumar, D.; Kumari, K.; Jayaraj, A.; Kumar, V.; Kumar, R. V.; Dass, S. K.; Chandra, R.; Singh, P. Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. J Biomol Struct Dyn. 2020, 1-14.

[37] Vishvakarma, V. K.; Singh, P.; Kumar, V.; Kumari, K.; Patel, R.; Chandra, R. Pyrrolothiazolones as potential inhibitors for the nsP2B-nsP3 protease of dengue virus and their mechanism of synthesis. Chemistry Select 2019, 4 (32), 9410-9419.

[38] Vishvakarma, V. K.; Shukla, N.; Reetu; Kumari, K.; Patel, R.; Singh, P. A model to study the inhibition of nsP2B-nsP3 protease of dengue virus with imidazole,
oxazole, triazole thia diazole, and thiazolidine based scaffolds. Heliyon 2019, 5 (8), e02124.

[39] Singh, P.; Kumar, D.; Vishvakarma, V. K.; Yadav, P.; Jayaraj, A.; Kumari, K. Computational approach to study the synthesis of noscapine and potential of stereoisomers against nsP3 protease of CHIKV. Heliyon 2019, 5 (12), e02795.

[40] Kumar, D.; Singh, P.; Jayaraj, A.; Kumar, V.; Kumari, K.; Patel, R. A theoretical model to study the interaction of erythro-noscapines with nsP3 protease of chikungunya virus Chemistry Select 2019, 4 (17), 4892-4900.

[41] Vishvakarma, V. K.; Singh, P.; Kumari, K.; Chandra, R. Rational Design of Threo as Well Erythro Noscapines, an Anticancer Drug: A Molecular Docking and Molecular Dynamic Approach Biochemistry & Pharmacology 2017, 6 (3), 1-7.

[42] Vishvakarma, V. K.; Patel, R.; Kumari, K.; Singh, P. Interaction between bovine serum albumin and gemini surfactants using molecular docking characterization Inf Sci Lett 2017, 3, 1-9.

[43] Singh, P.; Vishvakarma, V. K.; Pant, B.; Yadav, S.; Aslam, M.; Yadav, J.; Yadav, A.; Kumari, K.; Patel, R.; Chandra, R. Computational docking studies of noscapines: A potential bioactive agent Amer J Pharmacol Pharmacother. 2017, 4 (1), 9-14.

[44] Kumar, D.; Singh, P.; Chandra, R.; Kumari, K.; Kumar, M. Impact of gemini surfactants on the stability of insulin using computational tools. J Nanomed Biother. 2017, 7, 1-5.

[45] Singh, P.; Kumari, K.; Chandra, R. Energy optimization and QSAR properties of thiazolidine-2,4-dione and its analogue J Pharm App Chem. 2016, 2, 1-11.

[46] Chakravarty, A. K.; Singh, P.; Kumari, K. One pot green synthesis of biological potent thiazolopyrans and docking against human pancreatic lipase related protein 1 receptors. Inter J Curr Adv Res. 2016, 5 (1), 559-563.

[47] Vishvakarma, V. K.; Kumari, K.; Patel, R.; Dixit, V. S.; Singh, P.; Mehrotra, G. K.; Chandra, R.; Chakrawarty, A. K., Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc. 2015, 143, 319-23.
