Modulation of inflammatory factors predicts the outcome following spinal cord injury

CURRENT STATUS: UNDER REVIEW

Zepeng Yu
Second Affiliated Hospital of Soochow University

Xingwei Sun
Second Affiliated Hospital of Soochow University

Rui Xia
Second Affiliated Hospital of Soochow University

Qian Chen
Affiliated Suzhou Hospital of Nanjing Medical University

Qin Wu
Suzhou Science and Technology Town Hospital,Suzhou Hospital Affiliated to Nanjing Medical University

Weiwei Zheng
Affiliated Suzhou Hospital of Nanjing Medical University

Corresponding Author
zhengweiweidoctor@163.com

DOI: 10.21203/rs.3.rs-17829/v1

SUBJECT AREAS
Orthopedics Orthopedic Surgery

KEYWORDS
Spinal Cord Injury, Inflammatory Responses, Basso-Beattie-Bresnahan scores, IL-4, IL-10
Abstract

BACKGROUND: The correlation between inflammatory responses caused by spinal cord injury (SCI) and the prognosis of patients with SCI still remains controversial.

METHODS: In the present study, we preliminary investigated the serum levels of interleukin (IL)-4, IL-10, major histocompatibility complex (MHC)-I and inducible nitric oxide synthase (iNOS), and compared the serum IL-4 and IL-10 expression in rats of high BBB scores with these of low Basso-Beattie-Bresnahan (BBB) scores. Besides, the infiltration of macrophage and the axonal regeneration of the injured spinal cord were observed from day 10 to day 30.

RESULTS: We found that higher serum levels of IL-4 and IL-10 can reflect the restorability degree of SCI and could be potential biomarkers for the prognosis of SCI. The infiltration of M2 subtype of macrophage and the axons regrowth might contribute to better prognosis.

CONCLUSIONS: Collectively, the current study demonstrates that the serum levels of IL-4 and IL-10 are preliminary adopted as serologic markers to forecast SCI, and high serum levels of IL-4 and IL-10 may indicate a better prognosis. Moreover, the way to promote macrophage polarization from M1 to M2 may contribute to better axonal regeneration.

Background

Spinal cord injury (SCI) caused by trauma often leads to the disruption of axonal tracts, which has the third leading cause of acquired disability worldwide[1, 2]. After the initial traumatic insult, the cascade reaction of blood supply reduction, oxidation and inflammation following SCI leads to neurological disorders, including destruction of blood-spinal cord barrier, neuroinflammation, oxidative stress, etc.[3, 4]. Inflammation in the early stage of SCI promoted the recovery of injured spinal cord, and prematurely glial scar or inflammation inhibition might lead to more serious damage to the injured spinal cord[5]. It is believed that different phenotypes of inflammatory cells play critical roles in neuroprotection. Neuroinflammation occurs almost immediately after spinal cord injury, including activation of immune cells and cytokines[6]. Studies have demonstrated that mast cells, bone marrow-derived macrophages, dendritic cells, type 2 congenital lymphocytes (ILC2S) and T cells might influence the outcome of spinal cord injury[7-11]. These cells release a large number of
inflammatory factors (IL-1, IL-6, IL-8, IL-12, IFN-α, IFN-γ), chemokines (CXCL-1, CXCL-2), proteolytic enzymes and complement proteins when damage occurs[12, 13] Among these cytokines, the pro-inflammatory mediators, reactive oxygen species, and NO often contribute to inflammation and aggravate the traumatic injury[14]. On the contrary, the interleukin (IL)-4, IL-10, and IL-13 are pro-regenerative cytokines which can contribute to tissue repair, wound healing and promote axons regeneration[15-17].

Despite therapeutic strategies and imaging diagnostic techniques have developed dramatically in the past decades, the prognostic evaluation of SCI still depends on computed tomography (CT), magnetic resonance imaging (MRI), as well as the physical examination of neurological functions[18, 19]. Few studies have examined proinflammatory cytokines and immune cells to evaluate the prognosis of patients with SCI. In the current study, we evaluated the prognostic value of the serums IL-4 and IL-10 expression and observed the inflammatory cells of the injured spinal cord in predicting the prognosis of neurological function in patients with spinal cord injury.

Materials And Methods

Animal breeding

32 male Sprague Dawley rats, aged 6~8 weeks, weighing 220-250 g, were housed in Laboratory Animal Centre of Nanjing Medical University in accordance to the animal experimental guidelines set by and with the approval of the National Institute of Health and the Nanjing Medical University.

SCI procedures

The rats were intraperitoneally injected with 10% chloral hydrate (0.35 ml/kg). The model of SCI was established as previously described. Briefly, the spinous process and the vertebral lamina were removed to expose the spinal cord in a circular region at the T10 level. A graduated force of 70 g was placed over the exposed dura and left for 60 s to induce a compression injury. Each rat was feed separately, and the bladder of rats were given artificial massage twice a day. Sham-operated mice received laminectomy without compression injury.

Basso-Beattie-Bresnahan (BBB) scores

Lower limb motor function was evaluated using BBB score, as previously described by Basso et al[20].
The rats were placed in an open field and two independent, blinded examiners observed these rats for 10 minutes individually. The rats were tested 30 days post SCI surgery.

Study design

The motor function of lower limbs in 32 rats was evaluated using BBB score after SCI operation. Three rats with the highest BBB score (BBB high group) and the three with the lowest BBB score (BBB low group) were executed at the day10, day20 and day30, respectively. The spinal cord tissues of the executed rats were removed and used for immunofluorescence detection.

Serum evaluation

Serum levels of interleukin (IL)-4, IL-10, major histocompatibility complex (MHC)-I and inducible nitric oxide synthase (iNOS) were detected using enzyme-linked immunosorbent assay (ELISA) according to manufacturer's instructions. The final concentrations of IL-4, IL-10, MHC-I and iNOS were interpolated from the determined standard curve of absorbance.

Immunofluorescence

Spinal cord tissues were deparaffinized and rehydrated in coronal sections (4 μm thickness), then, the sections were blocked in 5% bovine serum albumin at room temperature for 30 min and then washed with PBS three times for 10 min. Sections were then incubated with corresponding primary antibodies overnight at 4°C, including F4/80, iNOS, Arginase(Arg)1 and NF200 (Invitrogen, Carlsbad, CA, USA), and incubated with secondary antibody (1:500; Abcam, Shanghai, China) for 3h. The slides were visualized using a fluorescence microscope (Olympus BX 51, Tokyo, Japan) and Image J (Wayne Rasband, National Institutes of Health, Bethesda, MD, USA) was used for quantitative analysis.

Statistical analysis

All data were presented as Mean± Standard Error of Mean (SEM), and were analyzed by two-way ANOVA repeated measurement using SPSS Statistics 20.0 (SPSS Inc., Chicago, IL, USA) for statistical significance. A P value < 0.05 was considered statistically significant.

Results

The change of cytokines in serum is related to the prognosis

The SCI model was successfully established and all rats survived and were included in the statistical
Our findings suggested that the lower limb motor function of rats gradually recovered following SCI, and BBB score increased with the prolongation of operation time (Figure. 1). Elisa revealed that the levels of serum IL-4 IL-10 MHC-I and iNOS grew steadily from day 5 to day 30 after SCI, among which, the fold changes of IL-4 and IL-10 were the most obvious (Figure. 2). Therefore, we speculated that serum levels of IL-4 and IL-10 might change in rats with different prognosis. Ulteriorly, we compared the serum levels of IL-4 and IL-10 in BBB high group and BBB low group, and we found that the serum levels of IL-4 and IL-10 in BBB high group were significant higher than those in the BBB low group (Figure. 3). These results suggested that IL-4 and IL-10 might be effective cytokines for predicting the prognosis of SCI, which needs further experiments to confirm.

The polarization of macrophage predicts the prognosis of SCI

Macrophage plays critical role in the inflammatory response following SCI, therefore, the macrophage polarization was analyzed. F4/80 is a definite marker of macrophages. iNOS indicates that macrophages polarize to M1 and Arg1 indicates that macrophages polarize to M2. Immunofluorescence showed the F4/80 expression increased significantly from day 10 to day 30, indicating that the infiltration of macrophage in the injured spinal cord increased along with the time after SCI (Figure. 4A, B, C). Besides, the fluorescence intensity of Arg1 was upregulated and iNOS was downregulated markedly from day 10 to day 30, indicating that macrophages polarize from M1 to M2 along with the time following SCI. Additionally, the fluorescence intensity of Arg1 in BBB high group was significantly higher than that in BBB low group (Figure. 4D). Thses results indicates that the upregulation of M2 subtype of macrophage may predict the better prognosis following SCI.

The axonal regrowth was activated after SCI

Axon regeneration promotes lower limb motor function after spinal cord injury in rats. To observe axonal regeneration in spinal cord tissue, NF200 was determined by immunofluorescence. NF200 is a specific marker of axonal regeneration. Our findings suggested that fluorescence intensity of NF200 increased significantly from day 10 to day 30, indicating that axon regeneration increased along with the time following SCI (Figure. 5A, B, C). Besides, fluorescence intensity of NF200 was upregulated markedly from day 10 to day 30, indicating that fluorescence intensity of NF200 in BBB high group was
significantly higher than that in BBB low group (Figure. 5D).

Discussion
Auxiliary examinations such as imaging and electrophysiological examinations are frequently used to evaluate SCI severity but fail to predict the prognosis[21, 22]. Therefore, a quantitative index must be established to allow the objective evaluation of SCI severity and prognosis. An inflammatory response at the injured spinal cord leads to compressing within the vertebral column and results to secondary damage[23–25]. The pro-inflammatory cytokines such as MHC-I and nitric oxide (NO), all contribute to inflammation and tissue damage[26]. By contrast, the pro-regenerative cytokines including interleukin (IL)-4, IL-10 contribute to wound healing and tissue repair, and enhance regrowth of axons[27]. However, few studies have explored their roles in assessing SCI severity in rats with spine trauma.

BBB score is an effective evaluation method for recovery of lower limb motor function after spinal cord injury. A higher the BBB score indicates a better the prognosis. In the present study, a compression injury of the spinal cord was successfully established in rats, and we found that BBB score increased over time, indicating that the lower limb motor function of rats gradually recovered following SCI. Interestingly, we found that the serum levels of IL-4 IL-10 MHC-I and iNOS grew steadily from day5 to day30 following SCI, especially the fold changes of IL-4 and IL-10 exhibit the most obvious. To explore the difference of cytokines between a high BBB score and low BBB score, 3 rats with the highest BBB score and the 3 with the lowest BBB score were selected at the day10, day20 and day30, respectively. We found that the serum levels of IL-4 and IL-10 in rats with high BBB scores were significant higher than those in rats with low BBB scores, indicating that serums IL-4 and IL-10 might be effective cytokines for predicting the prognosis of SCI. To observe the inflammation and axon regeneration of the injured spinal cord at pathological level. The protein expression of F4/80, iNOS, Arg1 and NF200 were assessed by immunofluorescence. F4/80 is a definite marker of macrophages[28]. iNOS indicates that macrophages polarize to M1 and Arg1 indicates that macrophages polarize to M2[29]. NF200 is a specific marker of axonal regeneration. Our findings suggested that the expression of F4/80 was increased following SCI, suggesting that macrophages
were infiltrated in the injured spinal cord. As time went on and with the increasing of BBB score, Arg1 expression increased, while iNOS decreased, suggesting that macrophages polarized from M1 to M2. Besides, NF200 expression increased significantly over, indicating that axon regeneration increased following SCI. Moreover, fluorescence intensity of NF200 was upregulated effectively over time, indicating that axon regeneration in rats with high BBB scores was significantly higher than that in rats with low BBB scores.

Anti-inflammatory cytokines play an critical role in axon regeneration following SCI. In the neuroinflammatory microenvironment, the pro-inflammatory cytokines are cytotoxic to neurons, which lead to extend short neurite sprouts after SCI[15, 30]. IL-10 has been demonstrated to upregulate anti-apoptotic factors such as B cell lymphoma 2 (Bcl-2) and provide a direct trophic influence on neurons to improve the neurotoxic microenvironment[31, 32]. IL-4 in the SCI phase reduces the release of pro-inflammatory factors at the impaired spinal cord[33, 34]. Moreover, IL-10 has shown to induce expression of IL-4R, and stimulate M2 subtype of macrophages to produce both IL-10 and IL-4, which may create a feed-forward process at the injured spinal cord site[17, 35]. As previous studies have demonstrated that a change from M1 to M2 is an essential part of the repair process, and polarization of macrophages from M1 to M2 may contribute to a better axon regeneration and prognosis[36-38].

Conclusions
Collectively, the current study demonstrates that the serum levels of IL-4 and IL-10 are preliminary adopted as serologic markers to forecast SCI, and high serum levels of IL-4 and IL-10 may indicate a better prognosis. Moreover, the way to promote macrophage polarization from M1 to M2 may contribute to better axonal regeneration. There might be some correlations between serums IL-4, IL-10 and macrophage polarization in regulating axon regeneration, and the potential mechanisms need further exploration.

Abbreviations
SCI: spinal cord injury; IL-4: interleukin-4; IL-10: interleukin-10; MHC-I: major histocompatibility complex-I; iNOS: inducible nitric oxide synthase; BBB: Basso-Beattie-Bresnahan; ILC2S: type 2
congenital lymphocytes; CT: computed tomography; MRI: magnetic resonance imaging; ELISA: enzyme-linked immunosorbent assay; Arg: Arginase; SEM: Standard Error of Mean; NO: nitric oxide; Bcl-2: B cell lymphoma 2

Declarations

Acknowledgements: None.

Funding: This project was supported by Scientific Research Topics of Jiangsu Provincial Health Commission (No. H2018027), Science and Education to Promote Health of Suzhou (KJXW2016034) and the Suzhou Science and Technology Development Plan Project (SYSD2018146).

Availability of data and materials:
Research data can be obtained from corresponding author upon reasonable request.

Authors’ contributions:
Zepeng Yu and Xingwei Sun proposed the study and wrote the first draft. Qian Chen and Rui Xia analyzed the data. Weiwei Zheng and Qin Wu contributed to the design of the study.

Ethics approval and consent to participate:
The study was approved by the ethics committee of The Second Affiliated Hospital of Soochow University.

Consent for publication
Not applicable.

Competing interests: The authors declare that they have no conflict of interest.

References
[1] Silva NA, Sousa N, Reis RL and Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2014; 114: 25-57.
[2] Young M, McKay C, Williams S, Rouse P and Bilzon JLJ. Time-related changes in quality of life in persons with lower limb amputation or spinal cord injury: protocol for a systematic review. Syst Rev 2019; 8: 191.
[3] Zhang D, Ma G, Hou M, Zhang T, Chen L and Zhao C. The Neuroprotective Effect of Puerarin in Acute Spinal Cord Injury Rats. Cell Physiol Biochem 2016; 39: 1152-1164.
[4] He J, Zhao J, Peng X, Shi X, Zong S and Zeng G. Molecular Mechanism of MiR-136-5p Targeting NF-kappaB/A20 in the IL-17-Mediated Inflammatory Response after Spinal Cord Injury. Cell Physiol Biochem 2017; 44: 1224-1241.

[5] Chio JCT, Wang J, Badner A, Hong J, Surendran V and Fehlings MG. The effects of human immunoglobulin G on enhancing tissue protection and neurobehavioral recovery after traumatic cervical spinal cord injury are mediated through the neurovascular unit. J Neuroinflammation 2019; 16: 141.

[6] Kigerl KA, McGaughy VM and Popovich PG. Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol 2006; 494: 578-594.

[7] Vangansewinkel T, Geurts N, Quanten K, Nelissen S, Lemmens S, Geboes L, Dooley D, Vidal PM, Pejler G and Hendrix S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6. Faseb j 2016; 30: 2040-2057.

[8] Wang L, Yu WB, Tao LY and Xu Q. Myeloid-derived suppressor cells mediate immune suppression in spinal cord injury. J Neuroimmunol 2016; 290: 96-102.

[9] Yaguchi M, Tabuse M, Ohta S, Ohkusu-Tsukada K, Takeuchi T, Yamane J, Katoh H, Nakamura M, Matsuzaki Y, Yamada M, Itoh T, Nomura T, Toyama Y, Okano H and Toda M. Transplantation of dendritic cells promotes functional recovery from spinal cord injury in common marmoset. Neurosci Res 2009; 65: 384-392.

[10] Gadani SP and Smirnov I. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. 2017; 214: 285-296.

[11] Sun G and Yang S. gammadelta T cells provide the early source of IFN-gamma to aggravate lesions in spinal cord injury. 2018; 215: 521-535.

[12] Park J, Lim E, Back S, Na H, Park Y and Sun K. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. J Biomed Mater Res A 2010; 93: 1091-1099.

[13] Chen Z, Park J, Butler B, Acosta G, Vega-Alvarez S, Zheng L, Tang J, McCain R, Zhang W,
Ouyang Z, Cao P and Shi R. Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury. J Neurochem 2016; 138: 328-338.

[14] Kim DK, Kweon KJ, Kim P, Kim HJ, Kim SS, Sohn NW, Maeng S and Shin JW. Ginsenoside Rg3 Improves Recovery from Spinal Cord Injury in Rats via Suppression of Neuronal Apoptosis, Pro-Inflammatory Mediators, and Microglial Activation. Molecules 2017; 22:

[15] David S and Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011; 12: 388-399.

[16] Martinez FO and Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13.

[17] Mantovani A, Biswas SK, Galdiero MR, Sica A and Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 2013; 229: 176-185.

[18] Frontera JE and Mollett P. Aging with Spinal Cord Injury: An Update. Phys Med Rehabil Clin N Am 2017; 28: 821-828.

[19] Talbott JF, Huie JR, Ferguson AR, Bresnahan JC, Beattie MS and Dhall SS. MR Imaging for Assessing Injury Severity and Prognosis in Acute Traumatic Spinal Cord Injury. Radiol Clin North Am 2019; 57: 319-339.

[20] Basso DM, Beattie MS and Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995; 12: 1-21.

[21] Ahuja CS, Schroeder GD, Vaccaro AR and Fehlings MG. Spinal Cord Injury-What Are the Controversies? J Orthop Trauma 2017; 31 Suppl 4: S7-s13.

[22] Skeers P, Battistuzzo CR, Clark JM, Bernard S, Freeman BJC and Batchelor PE. Acute Thoracolumbar Spinal Cord Injury: Relationship of Cord Compression to Neurological Outcome. J Bone Joint Surg Am 2018; 100: 305-315.

[23] David S, Lopez-Vales R and Wee Yong V. Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. Handb Clin Neurol 2012; 109: 485-502.

[24] Park J, Zheng L, Acosta G, Vega-Alvarez S, Chen Z, Muratori B, Cao P and Shi R. Acrolein contributes to TRPA1 up-regulation in peripheral and central sensory hypersensitivity following spinal
cord injury. J Neurochem 2015; 135: 987-997.

[25] Due MR, Park J, Zheng L, Walls M, Allette YM, White FA and Shi R. Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat. J Neurochem 2014; 128: 776-786.

[26] He FY, Feng WZ, Zhong J, Xu W, Shao HY and Zhang YR. Effects of propofol and dexmedetomidine anesthesia on Th1/Th2 of rat spinal cord injury. Eur Rev Med Pharmacol Sci 2017; 21: 1355-1361.

[27] Lima R, Monteiro S, Lopes JP, Barradas P, Vasconcelos NL, Gomes ED, Assuncao-Silva RC, Teixeira FG, Morais M, Sousa N, Salgado AJ and Silva NA. Systemic Interleukin-4 Administration after Spinal Cord Injury Modulates Inflammation and Promotes Neuroprotection. Pharmaceuticals (Basel) 2017; 10:

[28] Kiguchi N, Kobayashi D, Saika F, Matsuzaki S and Kishioka S. Inhibition of peripheral macrophages by nicotinic acetylcholine receptor agonists suppresses spinal microglial activation and neuropathic pain in mice with peripheral nerve injury. J Neuroinflammation 2018; 15: 96.

[29] Zhang Y, Liu Z, Zhang W, Wu Q, Zhang Y, Liu Y, Guan Y and Chen X. Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. J Neurosci Res 2019; 97: 733-743.

[30] Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ and Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009; 29: 13435-13444.

[31] Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ and Hanna A. The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma 2013; 30: 1311-1324.

[32] Zhou Z, Peng X, Insolera R, Fink DJ and Mata M. Interleukin-10 provides direct trophic support to neurons. J Neurochem 2009; 110: 1617-1627.

[33] Bhattacharjee A, Shukla M, Yakubenko VP, Mulya A, Kundu S and Cathcart MK. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic Biol Med 2013; 54: 1-16.
Garcia E, Aguilar-Cevallos J, Silva-Garcia R and Ibarra A. Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. Mediators Inflamm 2016; 2016: 9476020.

Margul DJ, Park J, Boehler RM, Smith DR, Johnson MA, McCreedy DA, He T, Ataliwala A, Kukushliev TV, Liang J, Sohrabi A, Goodman AG, Walthers CM, Shea LD and Seidlits SK. Reducing neuroinflammation by delivery of IL-10 encoding lentivirus from multiple-channel bridges. Bioeng Transl Med 2016; 1: 136-148.

Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM and Ffrench-Constant C. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013; 16: 1211-1218.

Miron VE and Franklin RJ. Macrophages and CNS remyelination. J Neurochem 2014; 130: 165-171.

Gensel JC and Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 2015; 1619: 1-11.

Figures
Figure 1

BBB scores of rats following SCI over time
The serum levels of cytokines (IL-4, IL-10, MHC-I and iNOS) were quantified by ELISA over time following SCI.

Comparison of serums IL-4 and IL-10 in BBB high group and BBB low group. The serum levels of IL-4(A) and IL-10(B) was significantly higher in BBB high group. *P<0.05, **P<0.01, as compared with BBB high group.
Figure 4

Polarized Macrophages were observed by immunofluorescence following SCI. The number of macrophage in damaged spinal cord rose dramatically at day 10 (A), day 20 (B), and day 30 (C) after SCI. The M2 subtype of macrophage in BBB high is significantly higher than that in BBB low group from day 10 to day 30 following SCI (D). *P<0.05, **P<0.01, as compared with BBB high group.
Axons were observed by immunofluorescence following SCI. The number of axons in injured spinal cord increased at day10(A), day20(B) and 30 days(C) following SCI. The reborn axons in BBB high group were markedly increased from day20 to day30 following SCI(D). *P<0.05, **P<0.01, as compared with BBB high group.