Конечные группы с заданными системами обобщенных σ-перестановочных подгрупп

В. С. ЗАКРЕВСКАЯ

Гомельский государственный университет им. Франциска Скорины, ул. Советская, 104, 246019, г. Гомель, Беларусь

Пусть $\sigma = \{\sigma_i | i \in I\}$ – разбиение множества всех простых чисел \mathbb{P}, а G – конечная группа. Множество \mathcal{H} подгрупп группы G называется полным σ-множеством группы G, если каждый член $\neq 1$ из \mathcal{H} является холловой подгруппой группы G для некоторого $i \in I$ и \mathcal{H} содержит ровно одну холлову σ_i-подгруппу группы G для всех i таких, что $\sigma_i \cap \pi(G) \neq \emptyset$. Группа считается σ-примарной, если она есть конечная σ_i-группа для некоторого i. Подгруппа A группы G называется σ-перестановочной в G, если G содержит полное σ-множество \mathcal{H} такое, что $AH = H'A$ для любого $H \in \mathcal{H}$ и любого $x \in G$; σ-субнормальная в G, если существует подгруппа цепи $A = A_0 \leq A_1 \leq \ldots \leq A_t = G$ такая, что либо $A_i = \sigma(A_i - 1)$, либо $A_i/\sigma(A_i - 1)$ является σ-примарной для всех $i = 1, \ldots, t$; σ-нормальной в G, если каждый главный фактор группы G между A_i и A_i^G циклический. Мы говорим, что подгруппа H группы G является: (i) частично σ-перестановочной в G, если существуют σ-нормальная подгруппа A и σ-перестановочная подгруппа B из G такие, что $H = <A, B>$; (ii) σ-вложенной в G, если существуют частично σ-перестановочная подгруппа S и σ-субнормальная подгруппа T из G такие, что $G = HT$.

О б р а з е ц ц и т и р о в а н и я:
Закревская В.С. Конечные группы с заданными системами обобщенных σ-перестановочных подгрупп. Журнал Белорусского государственного университета. Математика. Информатика. 2021;3:25–33 (на англ.). https://doi.org/10.33581/2520-6508-2021-3-25-33

F o r c i t a t i o n:
Zakrevskaya VS. Finite groups with given systems of generalised σ-permutable subgroups. Journal of the Belarusian State University. Mathematics and Informatics. 2021;3:25–33. https://doi.org/10.33581/2520-6508-2021-3-25-33

A u t h o r:
Виктория Сергеевна Закревская – аспирантка кафедры алгебры и геометрии факультета математики и технологий программирования. Научный руководитель – доктор физико-математических наук А. Н. Скиба.

A u t h o r:
Viktoria S. Zakrevskaya, postgraduate student at the department of algebra and geometry, faculty of mathematics and technologies of programming.
tory.zakreuskaya@gmail.com

БГУ – столетняя история успеха
Let $\sigma = \{\sigma_i | i \in I\}$ be a partition of the set of all primes \mathbb{P} and G be a finite group. A set \mathcal{H} of subgroups of G is said to be a complete Hall σ-set of G if every member $\neq 1$ of \mathcal{H} is a Hall σ_i-subgroup of G for some $i \in I$ and \mathcal{H} contains exactly one Hall σ_i-subgroup of G for every i such that $\sigma_i \cap \pi(G) \neq \emptyset$. A group is said to be σ-primary if it is a finite σ_i-group for some i. A subgroup A of G is said to be σ-permutable in G if G possesses a complete Hall σ-set \mathcal{H} such that $AH^x = H^xA$ for all $H \in \mathcal{H}$ and all $x \in G$; σ-subnormal in G if there is a subgroup chain $A = A_0 \leq A_1 \leq \ldots \leq A_t = G$ such that either $A_{i-1} \leq A_i$ or A_i/A_{i-1} is σ-primary for all $i = 1, \ldots, t$; σ-nilpotent in G if every chief factor of G between A_G and G^G is cyclic. We say that a subgroup H of G is: (i) partially σ-permutable in G if there are a σ_i-normal subgroup A and a σ-permutable subgroup B of G such that $H = A \times B$; (ii) (\mathcal{U}, σ)-embedded in G if there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that $G = HT$ and $H \cap T \leq S \leq H$. We study G assuming that some subgroups of G are partially σ-permutable or (\mathcal{U}, σ)-embedded in G. Some known results are generalised.

Keywords: finite group; σ-soluble groups; σ-nilpotent group; partially σ-permutable subgroup; (\mathcal{U}, σ)-embedded subgroup; \mathcal{U}-normal subgroup.

Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

A subgroup A of G is said to be \mathcal{U}-normal in G [1] if either $A < G$ or $A_G \neq A^G$ and every chief factor of G between A_G and G^G is cyclic.

Following L. Shemetkov [2], we use σ to denote some partition of \mathbb{P}. Thus $\sigma = \{\sigma_i | i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. The symbol $\pi(\sigma(n))$ denotes the set $\{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}; \sigma(G) = \sigma(|G|)$.

The group G is said to be $[3–5]$: σ-primary if G is a σ_i-group for some $i \in I$; σ-nilpotent if $G = G_1 \times \ldots \times G_n$ for some σ-primary groups G_1, \ldots, G_n; σ-soluble if every chief factor of G is σ-primary.

A set \mathcal{H} of subgroups of G is said to be a complete Hall σ-set of G [6; 7] if every member $\neq 1$ of \mathcal{H} is a Hall σ_i-subgroup of G for some $i \in I$ and \mathcal{H} contains exactly one Hall σ_i-subgroup of G for every i such that $\sigma_i \cap \pi(G) \neq \emptyset$.

A subgroup A of G is said to be $[3]$: σ-permutable in G if G possesses a complete Hall σ-set \mathcal{H} such that $AH^x = H^xA$ for all $H \in \mathcal{H}$ and all $x \in G$; σ-subnormal in G if there is a subgroup chain $A = A_0 \leq A_1 \leq \ldots \leq A_t = G$ such that either $A_{i-1} \leq A_i$ or A_i/A_{i-1} is σ-primary for all $i = 1, \ldots, t$.

Note that in the classical case when $\sigma = \{\{2\}, \{3\}, \ldots\}$, σ-permutable subgroups are also called S-permutable [8; 9], and in this case A is σ-subnormal in G if and only if it is subnormal in G.

The σ-permutable and σ-subnormal subgroups were studied by a lot of authors (see, in particular, the papers [3–6; 10–29]).

In this paper we consider some applications of the following generalisation of σ-subnormal and σ-permutable subgroups.
Definition 1. We say that a subgroup H of G is
(i) partially σ-permutable in G if there are a Ω-normal subgroup A and a σ-permutable subgroup B of G
 such that $H = <A, B>$;
(ii) (Ω, σ)-embedded in G if there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that $G = HT$ and $H \cap T \leq S \leq H$.

Note that every Ω-normal subgroup $A = <A, 1>$ and every σ-permutable subgroup $B = <1, B>$ are partially σ-permutable in G. Moreover, every partially σ-permutable subgroup S is (Ω, σ)-embedded in G since in this case we have $G = SG$ and $S \cap G = S \leq S$, where G is a σ-subnormal subgroup of G by definition.

Now we consider the following examples, which allow you to get various applications of the introduced concepts.

Example 1. (i) A subgroup H of G is said to be weakly σ-permutable [30] or weakly σ-quasinormal [31] in G if there is a σ-subnormal subgroup T and a σ-permutable subgroup S of G such that $G = HT$ and $H \cap T \leq S \leq H$.

Every weakly σ-quasinormal subgroup is (Ω, σ)-embedded in the group.

(ii) A subgroup H of G is said to be weakly σ-permutable in G [32] if there are an S-permutable subgroup S and a subnormal subgroup T of G such that $G = HT$ and $H \cap T \leq S \leq H$. It is clear that every weakly S-permutable subgroup is (Ω, σ)-embedded for every partition σ of G.

(iii) Recall that a subgroup M of G is called modular in G if M is a modular element (in the sense of Kurosh [33, p. 43]) of the lattice $L(G)$ of all subgroups of G, that is $<X, M \cap Z> = <X, M> \cap Z$ for all $X \leq G$, $Z \leq G$ such that $X \leq Z$, and $<M, M \cap Z> = <Y, M \cap Z>$ for all $Y \leq G$, $Z \leq G$ such that $M \leq Z$.

A subgroup H of G is called m-σ-permutable in G [34] if there are a modular subgroup A and a σ-permutable subgroup B of G such that $H = <A, B>$. In view of [33, theorem 5.1.9], every modular subgroup is Ω-normal in the group. Therefore, every m-σ-permutable subgroup is partially σ-permutable.

(iv) A subgroup H of G is called weakly m-σ-permutable in G [34] if there are an m-σ-permutable subgroup S and a σ-subnormal subgroup T of G such that $G = HT$ and $H \cap T \leq S \leq H$. It is clear that every weakly m-σ-permutable subgroup is (Ω, σ)-embedded.

(v) A subgroup A of G is said to be c-normal in G [35] if for some normal subgroup T of G we have $AT = G$ and $A \cap T \leq A_G$. Every c-normal subgroup is (Ω, σ)-embedded.

Our first observation generalises corresponding results in [34; 35].

Theorem A. (i) If every non-nilpotent maximal subgroup of G is (Ω, σ)-embedded in G, then G is σ-soluble.

(ii) G is soluble if and only if every maximal subgroup of G is (Ω, σ)-embedded in G and G possesses a complete Hall σ-set \mathcal{H} whose members are soluble groups.

In view of example 1 (iii), we get also from Theorem A the following corollary.

Corollary 1 [34, theorem B]. If every non-nilpotent maximal subgroup of G is weakly m-σ-permutable in G, then G is σ-soluble.

In the case when $\sigma = \{\{2\}, \{3\}, \ldots\}$ we get from theorem A (ii) the following know result.

Corollary 2 [35, theorem 3.1]. If every maximal subgroup of G is c-normal in G, then G is soluble.

Now, recall that if $M_2 < M_1 < G$ where M_2 is a maximal subgroup of M_1 and M_1 is a maximal subgroup of G, then M_2 is said to be a 2-maximal subgroup of G.

Our next theorem generalises a well-known Agrawal’s result on supersolubility of groups with S-permutable 2-maximal subgroups.

Theorem B. If every 2-maximal subgroup of G is partially σ-permutable in G and G possesses a complete Hall σ-set \mathcal{H} whose members are supersoluble, then G is supersoluble.

Corollary 3. If every 2-maximal subgroup of G is σ-permutable in G and G possesses a complete Hall σ-set \mathcal{H} whose members are supersoluble, then G is supersoluble.

In the case when $\sigma = \{\{2\}, \{3\}, \ldots\}$ we get from theorem B the following known results.

Corollary 4 [36; 37, chapter 1, theorem 6.5]. If every 2-maximal subgroup of G is S-permutable in G, then G is supersoluble.

Corollary 5 [38]. If every 2-maximal subgroup of G is modular in G, then G is supersoluble.

Recall that G is meta-σ-nilpotent [7] if G is an extension of a σ-nilpotent group by a σ-nilpotent group. An analysis of many open questions leads to the necessity of studying various classes of meta-σ-nilpotent groups (see, for example, the recent papers [3; 11–18; 30] and the survey [7]).

Our next result gives the following characterisation of meta-σ-nilpotent groups.

Theorem C. (i) The following conditions are equivalent:
(a) G possesses a complete Hall σ-set \mathcal{H} whose members are (Ω, σ)-embedded in G;
(b) G is meta-σ-nilpotent;
(c) G is σ-soluble and every σ-Hall subgroup H of G (that is σ(H) ∩ σ([G : H]) = ∅) is c-normal in G.

(ii) If G possesses a complete Hall σ-set ℍ whose members are partially σ-permutable in G, then the derived subgroup G′ of G is σ-nilpotent.

A group G is said to be: a Dσ-group if G possesses a Hall π-subgroup E and every π-subgroup of G is contained in some conjugate of E; a σ-full group of Sylow type [3] if every subgroup E of G is a Dσ-group for each σ ∈ σ(E).

In view of example 1 (ii) we get from theorem C the following known result.

Corollary 6 [30, theorem 1.4]. Let G be a σ-full group of Sylow type. If every Hall σ-subgroup of G is weakly σ-permutable in G for all σ ∈ σ(G), then G is σ-soluble.

In the case when σ = {2}, {3}, ... we get from theorem C the following known result.

Corollary 7 [39, chapter I, theorem 3.49]. G is metanilpotent if and only if every Sylow subgroup of G is c-normal.

Proof of theorem A

First we prove the following two lemmas.

Lemma 1. Let A, B and N be subgroups of G, where A is partially σ-permutable in G and N is normal in G. Then:

(1) AN/N is partially σ-permutable in G/N.
(2) If G is σ-full group of Sylow type and A ≤ B, then A is partially σ-permutable in B.
(3) If G is σ-full group of Sylow type, N ≤ B and B/N is partially σ-permutable in G/N, then B is partially σ-permutable in G.
(4) If G is σ-full group of Sylow type and B is partially σ-permutable in G, then <A, B> is partially σ-permutable in G.

Proof. Let A = <L, T>, where L is Λ-normal and T is σ-permutable subgroups of G.

(1) AN/N = <LN/N, TN/N>, where LN/N is Λ-normal in G/N by [40, lemma 2.8 (2)] and TN/N is σ-permutable in G/N by [3, lemma 2.8 (2)]. Hence AN/N is partially σ-permutable in G/N.

(2) This follows from [3, lemma 2.8 (1); 40 lemma 2.8].

(3) Let B/N = <V/N, W/N>, where V/N is Λ-normal in G/N and W/N is σ-permutable in G/N. Then B = <V, W>, where V is Λ-normal in G by [40 lemma 2.8 (3)] and W is σ-permutable in G. Hence B is partially σ-permutable in G.

(4) Let B = <V, W>, where V is Λ-normal and W is a σ-permutable subgroups of G. Then

<A, B> = <L, T>, <V, W> = <L, V>, <T, W>.

where <L, V> is Λ-normal in G by [40, lemma 2.8 (1)] and <T, W> is σ-permutable in G by [3, lemma 2.8 (4)]. Hence <A, B> is partially σ-permutable in G.

The lemma is proved.

Lemma 2. Let A, B and N be subgroups of G, where A is (Λ, σ)-embedded in G and N is normal in G.

(1) If either N ≤ A or |Λ, N| = 1, then AN/N is (Λ, σ)-embedded in G/N.
(2) If G is σ-full group of Sylow type and A ≤ B, then A is (Λ, σ)-embedded in B.
(3) If G is σ-full group of Sylow type, N ≤ B and B/N is (Λ, σ)-embedded in G/N, then B is (Λ, σ)-embedded in G.

Proof. Let T be a σ-subnormal subgroup of G such that AT = G and A ∩ T ≤ S ≤ A for some partially σ-permutable subgroup S of G.

(1) First note that NT ∩ NA = (T ∩ A)N. Therefore G/N = (AN/N)(TN/N) and

(AN/N) ∩ (TN/N) = (AN ∩ TN/N) = (A ∩ T)N/N ≤ SN/N,

where SN/N is a partially σ-permutable subgroup of G/N by lemma 1 (1). Hence AN/N is (Λ, σ)-embedded in G/N.

(2) B = A(B ∩ T) and (B ∩ T) ∩ A = T ∩ A ≤ S ≤ A, where S is partially σ-permutable in B by lemma 1 (2). Hence A is (Λ, σ)-embedded in B.

(3) See the proof of (1) and use lemma 1 (3).

The lemma is proved.

Proof of theorem A. (i) Assume that this assertion is false and let G be a counterexample of minimal order. Let R be a minimal normal subgroup of G.
(1) G/R is σ-soluble. Hence R is not σ-primary and it is a unique minimal normal subgroup of G.

Note that if M/R is a non-nilpotent maximal subgroup of G/R, then M is a non-nilpotent maximal subgroup of G and so it is (\mathfrak{U}, σ)-embedded in G by hypothesis. Hence M/R is (\mathfrak{U}, σ)-embedded in G/R by lemma 2 (1).

Therefore the hypothesis holds for G/R. Hence G/R is σ-soluble and so R is not σ-primary by the choice of G. Now assume that G has a minimal normal subgroup $N \neq R$. Then G/N is σ-soluble and N is not σ-primary. But, in view of the G-isomorphism $RN/R \cong N$, the σ-solubility of G/R implies that N is σ-primary. This contradiction completes the proof of (1).

In view of claim (1), R is not abelian. Hence $|\pi(R)| > 1$. Let p be any odd prime dividing $|R|$ and R_p a Sylow p-subgroup of R.

(2) If G_p is a Sylow p-subgroup of G with $R_p = G_p \cap R$, then there is a maximal subgroup M of G such that $RM = G$ and $G_p \leq N_G(R_p) \leq M$.

It is clear that $G_p \leq N_G(R_p)$. The Frattini argument implies that $G = RN_G(R_p)$. Conversely, claim (1) implies that $N_G(R_p) \neq G$, so for some maximal subgroup M of G we have $RM = G$ and $G_p \leq N_G(R_p) \leq M$.

(3) M is not nilpotent and $M_{\sigma} = 1$. Hence M is (\mathfrak{U}, σ)-embedded in G.

Assume that M is nilpotent, and let $D = M \cap R$. Then D is a normal subgroup of M and R_p is a Sylow p-subgroup of D since $R_p \leq G_p \leq M$. Hence R_p is characteristic in D and so it is normal in M. Therefore $Z(J(R_p))$ is normal in M. Claims (1) and (2) imply that $M_{\sigma} = 1$. Hence $N_G(Z(J(R_p))) = M$ and so $N_p(Z(J(R_p))) = D$ is nilpotent. This implies that R is p-nilpotent by the Glauberman – Thompson theorem on the normal p-complements. But then R is a p-group, contrary to claim (1). Hence we have (3).

(4) There is a σ-subnormal subgroup T of G such that $MT = G$, $M \cap T = 1$ and p does not divide $|T|$.

By claim (3), there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that $G = MT$ and $M \cap T \leq S \leq M$. Then $S = <A, B>$ for some \mathfrak{U}-normal subgroup A and σ-permutable subgroup B of G. Moreover, from the definition \mathfrak{U}-normality and claim (1) it follows that, in fact, $S = B$ and $S_G = 1$. Suppose that $S \neq 1$. Then for every $\sigma \in \sigma(S)$ we have $S = S_{\sigma}(S) \times S_{\sigma}(S)$ by [3, theorem B]. Therefore for every Hall σ-subgroup H of G from $SH = HS = S_{\sigma}(S)H$ we get that $1 < S_{\sigma}(S) \leq H_G$, contrary to claim (1). Therefore $S = 1$, so $T \cap M = 1$. Hence $|T| = |G : M|$, so p does not divide $|T|$ since $G_p \leq M$ by claim (2).

The final contradiction for (i). Let L be a minimal σ-subnormal subgroup of G contained in T. Then L is a simple group. If L is a σ_i-group for some i, then $L \leq O_{\sigma_i}(G)$ by [12, lemma 2.2 (10)], which is impossible by claim (1).

Hence L is non-abelian, so it is subnormal in G by [12, lemma 2.2 (7)]. Suppose that $L \nsubseteq R$. Then $L \cap R = 1$. Conversely, $R \leq N_G(L)$ by [41, chapter A, theorem 14.3]. Hence $LR = L \times R$, so $L \leq C_G(R)$. But claim (1) implies that $R \nsubseteq C_G(R)$ and so $C_G(R) = 1$, a contradiction. Hence L is a minimal normal subgroup of R. It follows that p divides $|L|$ and hence p divides $|T|$, contrary to claim (4). Therefore assertion (i) is true.

(ii) In view of theorem A, it is enough to show that if G is soluble, then every maximal subgroup M of G is (\mathfrak{U}, σ)-embedded in G. If $M_G \neq 1$, then M/M_G is (\mathfrak{U}, σ)-embedded in G/M_G by induction, so M is (\mathfrak{U}, σ)-embedded in G by lemma 2 (3). Conversely, if $M_G = 1$ and R is a minimal normal subgroup of G, then R is abelian and so $G = R \rtimes M$. Hence M is (\mathfrak{U}, σ)-embedded in G.

The theorem is proved.

Proof of theorem B

Lemma 3 [6, theorem A]. If G is σ-soluble, then G is a σ-full group of Sylow type.

Lemma 4. If G is σ-soluble and G possesses a complete Hall σ-set whose members are p-soluble, then G is p-soluble.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Let $\mathcal{H} = \{H_1, ..., H_i\}$ be a complete Hall σ-set of G. Then H_i is p-soluble by lemma 3 for all i.

First show that if R is minimal normal subgroup of G, then G/R is p-soluble. It is enough to show that the hypothesis holds for G/R.

Note that for every chief factor $(H/R)/(K/R)$ of G/R we have that $(H/R)/(K/R) = G/HK$, where H/K is a chief factor of G and H/K is σ-primary since G is σ-soluble. So $(H/R)/(K/R)$ is σ-primary, hence G/R is σ-soluble.

Математическая логика, алгебра и теория чисел
Mathematical Logic, Algebra and Number Theory
Note also that \(\{H_iR/R, \ldots, H_iR/R\} \) is a complete Hall \(\sigma \)-set of \(G/R \), where \(H_iR/R = H_i/(H_i \cap R) \) is \(p \)-soluble since \(H_i \) is \(p \)-soluble. Therefore the hypothesis holds for \(G/R \), so \(G/R \) is \(p \)-soluble by the choice of \(G \).

Now show that \(R \) is \(p \)-soluble. Since \(G \) is \(\sigma \)-soluble, \(R \) is \(\sigma \)-primary, that is, \(\sigma \)-group for some \(i \). Also, for every Hall \(\sigma_i \)-subgroup \(H \) of \(G \) we have \(R \leq H \). So, \(R \) is \(p \)-soluble by the hypothesis, hence \(G \) is \(p \)-soluble.

The lemma is proved.

Proof of theorem B. Suppose that this theorem is false and let \(G \) be a counterexample of minimal order. Let \(\mathcal{H} = \{H_1, \ldots, H_t\} \). Then \(t > 1 \) since \(H_1 \) is \(p \)-soluble by hypothesis.

1. If \(R \) is minimal normal subgroup of \(G \), then \(G/R \) is supersoluble. Hence \(R \) is the unique minimal normal subgroup of \(G \), \(R \) is not cyclic and \(R \not\leq \Phi(G) \).

 It is enough to show that the hypothesis holds for \(G/R \). First note that \(\{H_iR/R, \ldots, H_iR/R\} \) is a complete Hall \(\sigma \)-set of \(G/R \), where \(H_iR/R = H_i/(H_i \cap R) \) is \(p \)-soluble since \(H_i \) is \(p \)-soluble by hypothesis.

 Now assume that statement (1) is false. Then \(G/R \) is not nilpotent, so every Sylow \(p \)-subgroup in \(G/R \) is proper. Then for every Sylow \(p \)-subgroup \(P \) of \(G/R \) it follows that \(P \) is contained in some maximal subgroup of \(G/R \). Hence \(R \) is contained in some 2-maximal subgroup \(T \) of \(G \) and so \(T \) is partially \(\sigma \)-permutable in \(G \) by the hypothesis. But then \(T/R \) is 2-maximal of \(G/R \) and partially \(\sigma \)-permutable in \(G/R \) by lemma 1 (1). Therefore the hypothesis holds for \(G/R \), so \(G/R \) is supersoluble by the choice of \(G \). Then we have a contradiction.

 Moreover, it is well-known that the class of all supersoluble groups is a saturated formation [42 chapter VI, definition 8.6]. Hence the choice of \(G \) implies that \(R \) is the unique minimal normal subgroup of \(G \), \(R \) is not cyclic and \(R \not\leq \Phi(G) \). Hence we have (1).

2. \(G \) is solvable.

 Every 2-maximal subgroup in \(G \) is partially \(\sigma \)-permutable and so, partially \(\sigma \)-subnormal in \(G \) by [3, theorem B]. Then, in view of theorem in [40], \(G \) is \(\sigma \)-soluble. Hence, from lemma 4 it follows that \(G \) is soluble. So we have (2).

3. \(R = O_p(G) \not\leq \Phi(G) \) for some prime \(p \in \sigma \). Hence for some maximal subgroup \(M \) of \(G \) we have \(G = R \rtimes M \) and \(M \neq M_1 = 1 \).

 By claim (2), \(G \) is solvable and so \(R \) is a \(p \)-group for some \(p \in \sigma \). Hence the choice of \(G \) and claim (1) imply that \(R \) is a unique minimal normal subgroup of \(G \). Moreover, \(R \not\leq \Phi(G) \) by claim (1), so \(R = C_G(R) = O_p(G) \) by [41, chapter A, lemma 15.2]. Hence for some maximal subgroup \(M \) of \(G \) we have \(G = R \rtimes M \) and \(M \neq M_1 = 1 \) by claim (1).

4. If \(1 < H \leq M \), then \(H \) is not \(\Delta \)-normal in \(G \).

 Indeed, if \(H \) is \(\Delta \)-normal in \(G \), then \(H^G/H_G \leq Z_\Delta(G/H_G) \), where \(H_G = 1 \) by claim (3). Hence \(R \leq H^G \leq Z_\Delta(G) \) by claim (1). But then \(R \) is cyclic, contrary to claim (1). This contradiction completes the proof of the claim.

5. \(M \) is not a group of prime order:

 Suppose that \(|M| = q \) for some prime \(q \). Hence \(|M| = |G : R| \) is a prime and so \(R \) is a maximal subgroup of \(G \). Then every maximal subgroup \(V \) of \(R \) is 2-maximal in \(G \), so \(V \) is partially \(\sigma \)-permutable in \(G \) by hypothesis. So \(V = A \times B \), where \(A \) is \(\Delta \)-normal and \(B \) is \(\sigma \)-permutable in \(G \). Assume \(A \neq 1 \). Note \(A_G = 1 \) by the minimality of \(R \). Then \(R \leq A^G \leq Z_\Delta(G) \) and so \(R \) is cyclic, contrary to claim (1). Hence \(V = B \) is \(\sigma \)-permutable in \(G \). Therefore every maximal subgroups of \(R \) is \(\sigma \)-permutable in \(G \).

 Note that \(R \leq H_i \) since \(R \) is \(\sigma \)-group by claim (3) and \(H_i = R \rtimes (H_i \cap M) \), again by claim (3). Since \(H_i \) is super-soluble by hypothesis, some maximal subgroup \(W \) of \(R \) is normal in \(H_i \). In addition, \(W \) is \(\sigma \)-permutable in \(G \) since it is a maximal subgroup of \(R \). Hence for each \(j \neq i \) we have \(WH_j = H_jW_j \), which implies that \(H_j \leq N_G(W) \) since \(R \cap WH_j = W \cap H_j = W \). Therefore \(W \) is normal in \(G \), so the minimality of \(R \) implies that \(W = 1 \) and hence \(|R| = p \), which is impossible by claim (3). Hence we have (5).

6. If \(T \) is a maximal subgroup of \(M \), then \(T^G \) is a \(\sigma \)-subgroup of \(G \).

 Indeed, \(T \) is partially \(\sigma \)-permutable in \(G \) by hypothesis, so \(T = A \times B \) for some \(\Delta \)-normal subgroup \(A \) and some \(\sigma \)-permutable subgroup \(B \) of \(G \). Note that \(T \neq 1 \) by claim (5). Conversely, \(A = 1 \) by claim (4) and so \(T = B \) is \(\sigma \)-permutable in \(G \). Therefore \(T^G/T_G \) is \(\sigma \)-nilpotent [3, theorem B (ii)]. We have \(T_G \leq M_G = 1 \), so \(T^G/T_G \simeq T^G/T_G \simeq T^G/1 \simeq T^G \) is \(\sigma \)-nilpotent group. Hence the subgroup \(O_{\sigma_i}(T^G) \) is characteristic in \(T^G \), so it is normal in \(G \). By claim (3) we have that \(O_{\sigma_i}(T^G) = 1 \) for all \(k \neq i \). Hence \(T^G = O_{\sigma_i}(T^G) \) is a \(\sigma_i \)-subgroup of \(G \).

7. \(M \) is not \(\sigma_i \)-group.

 Suppose that this is false and let \(T \) be a maximal subgroup of \(M \). Then \(T \neq 1 \) by claim (5). Conversely, \(T \) is a \(\sigma_i \)-group by the hypothesis and \(T^G \) is a \(\sigma_i \)-subgroup of \(G \) by claim (6). Then we have a contradiction. Hence, \(M \) is not a \(\sigma_i \)-group.
(8) M is not σ_i-group (this follows from the facts that $t > 1$ and R is a σ_i-group).

Final contradiction.

Let T be a maximal subgroup of M, containing a Hall σ_j-subgroup of M. Then T^G is σ_j-group by claim (6). Therefore, a Hall σ_j-subgroup of M is the identity group. Hence M is σ_j-group, contrary to claim (8). This contradiction completes the proof of the result.

Proof of theorem C

We use \mathfrak{H}_a to denote the class of all α-nilpotent groups.

Lemma 5 [3, corollary 2.4 and lemma 2.5]. (1) The class \mathfrak{H}_a is closed under taking products of normal subgroups, homomorphic images and subgroups.

(2) If G/N and G/R are σ_α-nilpotent, then $G/(N \cap R)$ is σ_α-nilpotent.

(3) If E is a normal subgroup of G and $E/(E \cap \Phi(G))$ is σ_α-nilpotent, then E is σ_α-nilpotent.

Recall that G^{σ_α} denotes the σ_α-nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ_α-nilpotent quotient G/N. In view of [43, proposition 2.2.8], we get from lemma 5 (1) the following result.

Lemma 6. If N is a normal subgroup of G, then $(G/N)^{\sigma_\alpha} = G^{\sigma_\alpha} N/N$.

The next lemma is proved by the direct verifications on the basis of lemmas 5 and 6.

Lemma 7. (1) G is meta-σ_α-nilpotent if and only if G^{σ_α} is σ_α-nilpotent.

(2) If G is meta-σ_α-nilpotent, then every quotient G/N of G is meta-σ_α-nilpotent.

(3) If G/N and G/R are meta-σ_α-nilpotent, then $G/(N \cap R)$ is meta-σ_α-nilpotent.

(4) If E is a normal subgroup of G and $E/(E \cap \Phi(G))$ is meta-σ_α-nilpotent, then E is meta-σ_α-nilpotent.

Lemma 8. Let A, B and N be subgroups of G, where A is c-normal in G and N is normal in G.

(1) If $N \vartriangleleft A$ or $([A], [N]) = 1$, then AN/N is c-normal in G/N.

(2) If $N \vartriangleleft B$ and B/N is c-normal in G/N, then B is c-normal in G.

Proof. See the proof of lemma 2.

A natural number n is said to be a Π-number if $\sigma(n) \subseteq \Pi$. A subgroup A of G is said to be: a Hall Π-subgroup of G [6; 7] if $[A]$ is a Π-number and $|G/A|$ is a Π-number; a σ-Hall subgroup of G if A is a Hall Π-subgroup of G for some $\Pi \subseteq \sigma$.

Recall also that a normal subgroup E of G is called hypercyclically embedded in G [33, p. 217] if every chief factor of G below E is cyclic.

Proof of theorem C. Let $D = G^{\sigma_\alpha}$ be the σ_α-nilpotent residual of G.

(i) (a) \Rightarrow (b). Assume that this is false and let G be a counterexample of minimal order. Then D is not σ_α-nilpotent since G/D is σ_α-nilpotent by lemma 5 (2). Let $\mathcal{H} = \{H_1, \ldots, H_t\}$. We can assume without loss of generality that H_i is a σ_i-group for all $i = 1, \ldots, t$. Let S_i be a partially σ_i-permutable subgroup and T_j be a subnormal subgroup of G such that $S_i \leq H_j$, $H_j T_j = G$ and $H_j \cap T_j \leq S_i$ for all $i = 1, \ldots, t$. Then, for every i, $S_i = \langle A_i, B_i \rangle$ for some Φ-normal subgroup A_i and σ_i-permutable subgroup B_i of G.

(1) If R is a σ-primary minimal normal subgroup of G, then G/R is meta-σ_α-nilpotent and so G is σ-soluble.

Moreover, R is a unique minimal normal subgroup of G. $C_G(R) \vartriangleleft R$ and R is not cyclic.

First we show that G/R is meta-σ_α-nilpotent. In view of the choice of G, it is enough to show that the hypothesis holds for G/R. Since R is σ-primary, for some i we have $R \vartriangleleft H_i$ and $|R|, |H_j| = 1$ for all $j \neq i$. Therefore $\{H_i/R, H_j/R\}$ is a complete Hall σ-set of G/R whose members are (Φ, σ)-embedded in G/R by lemma 2 (1). Hence the hypothesis holds for G/R, so G/R is meta-σ_α-nilpotent and G is σ-soluble. Hence every minimal normal subgroup of G is σ-primary, so R is a unique minimal normal subgroup of G and $R \not\subseteq \Phi(G)$ by lemma 7 (4). Hence $C_G(R) \vartriangleleft R$ by [41, chapter A, lemma 15.6]. Finally, note that in the case when R is cyclic we have $|R| = p$ for some prime p and so $G/C_G(R) = G/R$ is cyclic, which implies that G is metanilpotent and so it is meta-σ_α-nilpotent. Therefore we have (1).

(2) For some i, $i = 1$ say, we have $S_i = S_i \neq 1$. Moreover, if for some k we have $S_k = 1$, then T_k is a normal complement to H_k in G.

Assume that $S_i = 1$. Then $H_i \cap T_i = 1$, so T_i is a σ-subnormal Hall σ_i-subgroup of G. Hence T_i is a normal complement to H_i in G by [3, lemma 2.6 (10)]. Moreover, $G/T_i \simeq H_i$ is σ-nilpotent. Suppose that $S_i = 1$ for all $i = 1, \ldots, t$. Then $T_1 \cap \ldots \cap T_t = 1$ by [41, chapter A, theorem 1.6 (b)], so

$$G = G/1 = G/(T_1 \cap \ldots \cap T_t)$$

is σ-nilpotent by lemma 5 (2). Then we have a contradiction. Hence for some i we have $S_i \neq 1$. This completes the proof.

БГУ — столетняя история успеха
(3) If $S_i \neq 1$, then $(H_i)_{G_i} \neq 1$.

Assume that this is false. Then every non-identity subgroup L of H_i is not σ-permutable in G since otherwise for every $x \in G$ we have $L^x = H_i^x L = H_i^y$ which implies that $1 < L \leq (H_i)_{G_i} = 1$.

Therefore $B_1 = 1$ and so $S_1 = A_i$ is a Δ-normal subgroup of G with $(S_1)_{G_1} = 1$. But then we have $1 < (S_i)_{G_i}$ is hypercyclically embedded in G by the definition Δ-normality and so R is cyclic, contrary to claim (1). Hence we have (3).

(4) G possesses a σ-primary minimal normal subgroup, R say.

Claims (2) and (3) imply that $(H_i)_{G_i} \neq 1$. Therefore, if R is a minimal normal subgroup of G contained in $(H_i)_{G_i}$, then R is σ-primary.

The final contradiction for the implication $(a) \Rightarrow (b)$. Claims (1) and (4) imply that G is σ-soluble, so R is a unique minimal normal subgroup of G by claim (1). Hence claims (2) and (3) imply that T_1, \ldots, T_t are normal subgroups of G and $G/T_k \cong H_k$ for all $k = 2, \ldots, t$. Hence $G/(T_2 \cap \ldots \cap T_t)$ is σ-nilpotent by lemma 5 (2). Conversely, $T_2 \cap \ldots \cap T_t = H_i$ by [41, chapter A, theorem 1.6 (b)] and so G is meta-σ-nilpotent, contrary to the choice of G. This contradiction completes the proof of the $(a) \Rightarrow (b)$.

$(b) \Rightarrow (c)$. The subgroup D is σ-nilpotent by lemma 7 (1). Let $\Pi = \sigma(H)$. Then H is a Hall Π-subgroup of G.

Suppose that $H_G \neq 1$. Then H/H_G is c-normal in G by induction since the hypothesis holds for G/H_G by lemma 7 (2). Hence H is c-normal in G by lemma 8 (2).

Now assume that $H_G = 1$. Then, since D is σ-nilpotent, it follows that $D \cap H = 1$. Conversely, G/D is σ-nilpotent by lemma 5 (2) and $H = HD/D$ is a Hall Π-subgroup of G/D, so HD/D has a normal complement T/D in G/D. Then T is a normal subgroup of G such that $HT = G$ and $T \cap H \leq T \cap HD \leq H \leq D \cap H = 1$. Hence H is c-normal in G. Therefore the implication $(b) \Rightarrow (c)$ holds.

$(c) \Rightarrow (b)$. In view of example 1 (v), this application is a corollary of the implication $(a) \Rightarrow (b)$.

(ii) Suppose that this assertion is false and let G be a counterexample of minimal order. Then G is not σ-nilpotent, so $\sigma(G) > 1$. Moreover, from part (i) we know that D is σ-nilpotent and so G is σ-soluble. Let $H = \{H_i, \ldots, H_n\}$.

Let R be a minimal normal subgroup of G. Then R is a σ_i-group for some i, so the hypothesis holds for G/R by lemma 1 (1). Hence $(G/R)_{c}(G/R) = G'/(G' \cap R)$ is σ-nilpotent by the choice of G. Therefore $R \leq G'$ and $R \not\leq \Phi(G)$ by lemma 5 (3). Moreover, if G has a minimal normal subgroup $N \neq R$ of G, then $N \leq G'$ and $G'/1 = G'/1(R \cap N)$ is σ-nilpotent, contrary to the choice of G. Therefore R is a unique minimal normal subgroup of G and $C_G(R) \leq R$ by [41, chapter A, lemma 16.5]. We can assume without loss of generality that $R \leq H_i$.

Let M be a maximal subgroup of G such that $R \not\leq M$. Then $M_G = 1$ and $|G : M|$ is a σ_i-number. Therefore for some $x \in G$ we have $H = H_i^x \leq M$. Then $H = A_i = B_i$ for some Δ-normal subgroup A and σ-permutable subgroup B of G. Moreover, $A_i \leq M_G = 1$, so A_i is hypercyclically embedded in G by the definition Δ-normality. If $A \neq 1$, then $R \leq A^x$ and so $[R] = p$ for some prime p. But then $C_G(R) = R$ and $G/R = G/C_G(R)$ is cyclic. Hence G' is nilpotent. This contradiction shows that $A = 1$, so $H = B$ is σ-permutable in G. But then $H/H_i = H'/H = H'$ for all $x \in G$ since H is a Hall σ_i-subgroup of G for some i. Hence H is normal in G, so $1 < H \leq M_G$, a contradiction. Therefore assertion (ii) is true.

The theorem is proved.

References

1. Hu B, Huang J, Skiba AN. Finite groups with only Φ-normal and Φ-abnormal subgroups Journal of Group Theory. 2019;22(5): 915–926. DOI: 10.1515/jgth-2018-0199.

2. Shemetkov LA. Formatsii konechnykh grupp [Finite group formations]. Moscow: Nauka; 1978. 272 p. Russian.

3. Skiba AN. On σ-subnormal and σ-permutable subgroups of finite groups. Journal of Algebra. 2015;436:1–16. DOI: 10.1016/j. jalgebra.2015.04.010.

4. Skiba AN. Some characterizations of finite σ-soluble ΔT-groups. Journal of Algebra. 2018;495:114–129. DOI: 10.1016/j. jalgebra.2017.11.009.

5. Skiba AN. On sublattices of the subgroup lattice defined by formation fitting sets. Journal of Algebra. 2020;550:69–85. DOI: 10.1016/j.jalgebra.2019.12.013.

6. Skiba AN. A generalization of a Hall theorem. Journal of Algebra and Its Applications. 2016;15(5):1650085. DOI: 10.1142/ S0219498816500857.

7. Skiba AN. On some results in the theory of finite partially soluble groups. Communications in Mathematics and Statistics. 2016; 4(3):281–309. DOI: 10.1007/s40304-016-0088-z.

8. Ballester-Bolíches A, Beidleman JC, Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute. Illinois Journal of Mathematics. 2003;47(1–2):63–69. DOI: 10.1215/ijm/1258488138.
25. Ballester-Bolinches A, Kamornikov SF, Pedraza-Aguilera MC, Yi X. On
σ-quasinormal subgroups of factorised finite groups. Publicationes Mathematicae
Debrecen. 2017;91(3–4):489–502.
26. Hu B, Huang J, Skiba AN. On weakly σ-permutable subgroups of finite groups. Journal of Group Theory. 2018;21(2):236–248. DOI: 10.1007/s10474-017-0743-1.
27. Guo W, Zhang C, Skiba AN, Sinitza DA. On $H_{σ}$-permutably embedded subgroups of finite groups. Rendiconti del Seminario Matematico della Università di Padova. 2018;139:143–158. DOI: 10.4171/SMUP/139-4.
28. Kamornikov SF, Tyutyanov VN. On σ-subnormal subgroups of finite groups. Siberian Mathematical Journal. 2020;61(2):266–270. DOI: 10.1134/S0037446620020095.
29. Kamornikov SF, Tyutyunov VN. On σ-subnormal subgroups of finite p-groups. Ukrainian Mathematical Journal. 2020;72(6):935–941. DOI: 10.1007/s11253-020-01833-7.
30. Yi X, Skiba AN. Some new characterizations of PST-groups. Journal of Algebra. 2020;559:195–202. DOI: 10.1016/j.jalgebra.2020.05.002.
31. Hu B, Huang J, Skiba AN. On weakly σ-permutable subgroups of finite groups. Communications in Algebra. 2020;48(8):3624–3627. DOI: 10.1080/00927872.2020.1743248.
32. Ballester-Bolinches A, Kamornikov SF, Pedraza-Aguilera MC. Groups with σ-normality criteria in finite $σ$-soluble groups. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. 2020;114(2):94. DOI: 10.1007/s13398-020-00824-4.
33. Schmidt R. Subgroup lattices of groups. Berlin: Walter de Gruyter; 1994 (De Gruyter Expositions in Mathematics; volume 4).
34. Doerk K, Hawkes TO. Finite soluble groups. Berlin: De Gruyter; 1992. 891 p. (De Gruyter Expositions in Mathematics; volume 14).
35. Doerk K, Hawkes TO. Finite soluble groups. Berlin: De Gruyter; 1992. 891 p. DOI: 10.1007/978-3-642-64981-3.
36. Al-Shomrani MM, Heliel AA, Ballester-Bolinches A. On $H_{σ}$-subnormal subgroups of finite groups. Journal of Group Theory. 2020;23(3):4158–4165. DOI: 10.1007/s10474-017-0011-2.
37. Wright E. On the structure of the subgroup lattice of a finite group. Journal of Algebra. 1976;47(3):945–956. DOI: 10.1007/s10474-017-0051-6.