Multiple supermassive black hole systems: SKA’s future leading role

Roger Deane
University of Cape Town

Zsolt Paragi (JIVE), Matt Jarvis (Oxford / UWC), Mickael Coriat (UCT), Sandor Frey (SGO), Gianni Bernardi (Rhodes / SKA-SA / Harvard), Ian Heywood (CSIRO / Rhodes), Hans-Rainer Kloeckner (MPIfR)
two primary messages:

1. multiple SMBH science will become mainstream with next-generation facilities

2. SKA will lead through broad range of techniques and perspectives
from the **galaxy evolution** viewpoint
galaxy mergers/interactions are a major observational focus
galaxy mergers/interactions are a major observational focus
galaxy mergers/interactions are a major observational focus
dual/binary AGN are not (yet)
candidate dual/binary AGN in 2014
(from direct imaging)

squares = X-ray triangles = optical/NIR stars = radio

0402+379 3C75 NGC 326 NGC 6240 Mrk 739 Mrk 463 NGC 3393 SDSS J1715+6008 IRAS 05589+2828 SDSS J0952+2552 CID-42 LBQS 0103-2753 SDSS J1108+0659 SDSS J1131-0204 SDSS J1146+5110 SDSS J1332+0606 CXO J1426+35
candidate dual/binary AGN in 2004
(from direct imaging)

squares = X-ray triangles = optical/NIR stars = radio

- Chandra
- HST
- VLBI

- 3C75
- NGC 6240
candidate dual/binary AGN in 2014
(from direct imaging)

squares = X-ray triangles = optical/NIR stars = radio

0402+379 J1502S 3C75 NGC 326 NGC 6240 Mrk 739 Mrk 463 NGC 3393
IRAS 05589+2828 SDSS J1715+6008 SDSS J0952+2552 CID-42
LBQS 0103-2753 SDSS J1108+0659 SDSS J1131-0204 SDSS J1146+5110
SDSS J1332+0606 CXO J1426+35

triangles = optical/NIR
candidate dual/binary AGN 2014
(+ non-imaging)

squares = X-ray
triangles = optical/NIR
stars = radio

double-peaked BLR ▲
optical variability ▲

redshift

projected separation / parsec

0402+379
J1502S
3C75
NGC 326
NGC 6240
Mrk 739
Mrk 463
NGC 3393
SDSS J1715+6008
IRAS 05589+2828
SDSS J0952+2552
CID-42
LBQS 0103-2753
SDSS J1108+0659
SDSS J1113-0204
SDSS J1146+5110
SDSS J1332+0606
CXO J1426+35
SDSS 1536+0441
OJ287
candidate dual/binary AGN 2014
(+ non-imaging)

squares = X-ray triangles = optical/NIR stars = radio

Milky Way SMBH Schwartzchild radius
dual/binary AGN orbital evolution

<1 pc ~10 pc ~kpc

separation
dual/binary AGN orbital evolution

<1 pc ~10 pc ~kpc

separation

\textbf{dynamical friction}

1000s of examples
(e.g. Koss+2011, Liu+2011)
The page contains a presentation slide about dual/binary AGN orbital evolution. The slide includes a timeline showing different separations:

- Less than 1 pc
- Approximately 10 pc
- Kelvins (kpc)

The timeline describes the evolution of such systems, mentioning 'hardened' binaries with insprial driven by stellar 3-body interactions.

The slide highlights examples of dual AGN:
- **0402+379**: 7 pc (Rodriguez+2006)
- **NGC 3393**: 150 pc (Fabbiano+2011)
- **J1502S**: 138 pc (Deane+2014)

Additionally, it notes that 1000s of examples are available, such as in the work of Koss+2011 and Liu+2011.
dual/binary AGN orbital evolution

<1 pc ~10 pc ~kpc

gravitational radiation

`hardened' binary: in-spiral driven by stellar 3-body interactions

candidates from spectroscopic & periodic light curve signatures

(e.g. Valtonen+2008; Boroson & Lauer 2009)

0402+379 7 pc Rodriguez+2006

J1502S 138 pc Deane+2014

NGC 3393 150 pc Fabbiano+2011

1000s of examples (e.g. Koss+2011, Liu+2011)
`hardened' binary: in-spiral driven by stellar 3-body interactions

dynamical friction

pulsar timing (+ variability)

radio-jet morphology

direct imaging of flat-spectrum sources

separation 'coverage' with SKA
direct imaging

- flat-spectrum sources (with jets, multi-wavelength counterparts, etc.)
- image-splitting in lensing searches
- super-resolution with polarization
- SKA/radio will lead due to:
 - insensitivity to dust/gas attenuation
 - raw sensitivity
 - angular resolution
max GW frequency of SMBH binaries

assumes:
- binary SMBHs have angular separation = 2 PSFs
- circular orbits
- equal mass $10^8 M_\odot$ SMBHs

- ~ 1 day

- ~ 30 years

max GW frequency / Hertz vs. redshift

SKA Phase 2
SKA Phase 1
radio-jet morphology signatures
(aka "corkscrew relics")
Massive black hole binaries in active galactic nuclei

M. C. Begelman*, R. D. Blandford† & M. J. Rees‡

* Department of Astronomy, University of California, Berkeley, California 94720
† Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125
‡ Institute of Astronomy, Madingley Road, University of Cambridge, Cambridge CB3 0HA, UK

Most theoretical discussions of active galactic nuclei (including quasars) attribute their energy production either to an accreting black hole or to a precursor stage—for instance a dense star cluster or a supermassive star—whose inevitable end point is a massive black hole. We explore here the possibility that some active nuclei may contain two massive black holes in orbit about each other. This hypothesis suggests a new interpretation for the observed bending and apparent precession of radio jets emerging from these objects and may indeed be verified through detection of the direct consequences of orbital motion.
a simple precessing jet model
(ala SS433)
a simple precessing jet model (ala SS433)

SS 433
credit: Blundell & Bowler, NRAO/AUI/NSF
~0.1 pc
A simple precessing jet model (ala SS433)

SS 433
credit: Blundell & Bowler, NRAO/AUI/NSF

~0.1 pc

SMBH binaries scaled up by 5-8 dex?
predicted binary SMBH in-spiral rates

binary separation evolves from 1 kpc to <1 pc in ~few 10s of Myr
predicted binary SMBH in-spiral rates

binary separation evolves from 1 kpc to <1 pc in \(\sim\) few 10s of Myr

comparable to radio jet lifetimes of \(\sim\) 10 Myr
radio-jet morphology signatures
(aka “corkscrew relics”)

Roger Deane
AASKA14
13/6/2014

radio-jet morphology signatures
(aka "corkscrew relics")
radio-jet morphology signatures
(aka “corkscrew relics”)

<100 micro-arcsecond resolution
radio-jet morphology signatures
(aka “corkscrew relics”)

<100 micro-arcsecond resolution
stochastic GW background spectrum

- standard spectrum $\alpha = -2/3$ (assumes circular orbits)
- should change at ~10 nanoHz (when stellar scattering and gas dynamics dampen signal)
- binary eccentricity important in the nanoHz regime
- triple systems also lead to high eccentricities (via Kozai-Lidov mechanism) and recoiling/ejected SMBHs (Hoffman & Loeb 2007; Blecha+2011)
- therefore, very important to measure GW spectrum, not just single detection, from a galaxy evolution perspective to understand binary SMBH environment coupling
environment coupling
(with SKA and other facilities)

stellar `scouring'

mass deficits 1-10 times mass of SMBH binary
flattens inner density profile of galactic halo

molecular gas dynamics

NGC 1433 CO (3-2)
ALMA 24 pc spatial res.
Coombes+2013

HI emission and absorption

HI abs. in binary SMBH 0402+379
Rodriguez+2009, Morganti+2009

variability/transients

quasi-periodic accretion, light curves

Table 1

Component	Amplitude (mJy)	Central Velocity (km s$^{-1}$)	FWHM (km s$^{-1}$)	τ_{peak}	N_{HI} (cm$^{-2}$)
CW	2.8 ± 0.1	16,927 ± 7	300 ± 20	0.025 ± 0.001	(1.303 ± 0.006) × 1021
CE	1.5 ± 0.2	15,856 ± 9	170 ± 20	0.018 ± 0.002	(4.1 ± 0.1) × 1020

Notes.

a CW and CE refer to the western and eastern jet components where we find absorption lines respectively.

b Assuming a spin temperature of 100 K.

c Assuming a spin temperature of 6000 K.

by 370 ± 10 km s$^{-1}$ and for CE is blueshifted by 700 ± 10 km s$^{-1}$ from the systemic velocity of the source (16,558 ± 3 km s$^{-1}$). No absorption was found at either C1 or C2 (see Figure 2). We calculate a limit on the HI opacity at the location of C1 and C2, and obtain less than 0.17 and less than 0.03, respectively. Figure 3 shows a map of both the central velocity and width of the HI absorption profiles over the source. Figure 4 shows a velocity slice of the continuum-subtracted cube (right panel), accompanied by the HI opacity distribution over the source (left panel). This result shows that either the two HI abs. in binary SMBH 0402+379
Rodriguez+2009, Morganti+2009

HI emission

and absorption

variability/transients

quasi-periodic accretion, light curves

stellar `scouring'

mass deficits 1-10 times mass of SMBH binary
flattens inner density profile of galactic halo

molecular gas dynamics

NGC 1433 CO (3-2)
ALMA 24 pc spatial res.
Coombes+2013

HI emission and absorption

HI abs. in binary SMBH 0402+379
Rodriguez+2009, Morganti+2009

variability/transients

quasi-periodic accretion, light curves
summary plot

- inspiral/mergers via transients?
- direct imaging
- radio-jet morphology
- pulsar timing arrays

Milky Way SMBH Schwartzchild radius

Projected separation / parsec vs. redshift

SKA1-mid
SKA2-mid
1. multiple SMBH science will become mainstream with next-generation facilities

2. the SKA is likely to lead through broad range of techniques and perspectives
summary

• most modes of the SKA will probe cosmic SMBH evolution history
• will do so over > 6 dex of orbital separation dynamic range
• high complimentarily between imaging & non-imaging methods which must form a consistent, cohesive picture
• SKA could lead the way ahead of other large multi-wavelength facilities
• gravitational wave astronomy will provide deep insights on galaxy evolution