Catalyst-Free Cross-Dehydrogenative Coupling Strategy Using Air as an Oxidant: Synthesis of α-Aminophosphonates

Jayaraman Dhineshkumar, Prasanjit Samadder, and Kandikere Ramaiah Prabhu*©

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India

Supporting Information

ABSTRACT: α-Aminophosphonates are synthesized by employing unfunctionalized starting materials using cross-dehydrogenative coupling strategy. This method does not require any catalyst and proceeds in the presence of open air as the only oxidant. Mechanistic studies revealed that the reaction is nucleophile dependent and specific to dialkyl phosphate and N-aryl tetrahydroisoquinoline derivatives.

INTRODUCTION

Among the traditional C−C bond-forming reactions, cross-dehydrogenative coupling (CDC) reactions have received great importance in synthetic chemistry as they provide excellent tool for forming C−C bonds between two different C−H bonds without using prefunctionalized starting materials.1 Activation of C−H bonds via CDC reactions can be achieved by various transition-metal catalysts, such as Cu,2 Ru,3 Fe,4 V,5 Au,6 Pt,7 iodine,16a and Ir,8 in the presence of suitable oxidants, whereas nonmetal catalysts, such as iodine,17a−c 2,3-dichloro-5,6-dicyano-1,4-benzoquinone,96 phenylidonium diacetate,9 Rose Bengal,10 and Eosin Y,10 have also shown good prospects. Oxidants used in these reactions generally accept hydrogen and/or maintain the redox catalytic cycle. Commonly used oxidants under CDC conditions are O2, tert-butyl hydroperoxide (TBHP), and H2O2.11 CDC reactions have been used to activate sp3 C−H bonds of benzylic and allylic compounds and alkanes, and α−C−H bonds of heteroatoms, such as nitrogen or oxygen.2−11 As nitrogen-containing molecules are common structural motifs in a variety of biologically active compounds, a great deal of effort has been put forward for the α−C−H activation of tertiary amines and coupling them with a variety of nucleophiles.12 α-Aminophosphonates are one such biologically important frameworks that are isoelectronic analogues of α-amino acids (Figure 1; glyphosate, alafosfalin, etc.).13 They find wide applications in medicinal chemistry and pharmaceutical and agricultural industries.13 The bioactivity of these molecules as antitumor, anti-inflammatory, enzyme inhibitor, and antifungal agents is one of the reasons for them to be attractive synthetic targets.14 Glyphosate is one of the most used herbicides in agricultural sector,14 whereas medicinally important compound alafosfalin has a basic α-aminophosphonate moiety.14

Generally, α-amino phosphoric acids are not soluble in water as well as in most of the organic solvents.15 α-Aminophosphonates are used as intermediates in multistep synthesis.15 Li and co-workers were the first to report Cu-catalyzed α-phosphorylation of N-phenyl tetrahydroisoquinolines to produce sp3 C−P bonds.16α

RESULTS AND DISCUSSION

The screening studies were carried out using N-phenyl tetrahydroisoquinoline (THIQ) (1a) and diethyl phosphate (2a) as nucleophile (Table 1). Thereby, N-phenyl tetrahydroisoquinoline (1a) and diethyl phosphate (2a) were dissolved in MeOH and stirred at room temperature (rt) for 24 h in open air. Then (the reaction was monitored by thin-layer chromatography (TLC)), a trace amount of product was observed (entry 1). When the same reaction was reoptimized the reaction conditions to enhance the yield. The screening studies were carried out using N-phenyl tetrahydroisoquinoline (THIQ) (1a) and diethyl phosphate (2a) as nucleophile (Table 1). Thereby, N-phenyl tetrahydroisoquinoline (1a) and diethyl phosphate (2a) were dissolved in MeOH and stirred at room temperature (rt) for 24 h in open air. Then (the reaction was monitored by thin-layer chromatography (TLC)), a trace amount of product was observed (entry 1). When the same reaction was reoptimized the reaction conditions to enhance the yield. The reaction was facile in most of the solvents, except toluene and water (entries 3 and 4, respectively). The reaction of 1a with 2a...
in solvents such as CH$_3$CN, dimethylformamide, and trifluoroethanol furnished the expected product 3a in moderate yields (58, 47, and 66%, respectively, entries 5–7, Table 1). In 1,4-dioxane, the expected product 3a was obtained in 74% yield (entry 8), whereas in dichloroethane (DCE), the product 3a was obtained in 80% yield (NMR yield, entry 9). When a mixture of solvents such as dichloroethane and 1,4-dioxane in 1:1 ratio was used, the reaction furnished 3a in only 65% yield (entry 10). Increasing the amount of phosphite (2a) to 2 equiv furnished 3a in 82% (entry 11). To gain more insight into the oxidation process, the reaction was carried out under argon atmosphere (entry 12). In this reaction, the yield of the expected product 3a dropped to 33% (NMR yield, entry 12). This reaction clearly indicates that the molecular oxygen present in the open air is playing a crucial role. And, 33% yield of the expected product may be attributed to the presence of dissolved oxygen in the solvent. To corroborate our understanding, the reaction was carried out under argon atmosphere using degassed solvent (DCE) to obtain the expected product 3a in 5% yield (entry 13).

After finding the optimal reaction conditions (entry 11, Table 1), the substrate scope and generality of the reaction were explored using a variety of tetrahydroisoquinoline derivatives and dialkyl phosphites (Scheme 2). Reaction of

![Figure 1. Biologically important compounds.](image)

Scheme 1. The Outlook

![Earlier reports](image)

Table 1. Screening Studies for Optimization

entry	solvent	temperature	NMR yield (%)b
1	MeOH	rt	trace
2	MeOH	60	64
3	toluene	110	ndc
4	H$_2$O	100	nd
5	CHCN	80	58
6	DMF	100	47
7	CF$_3$CH$_2$OH	60	66
8	1,4-dioxane	80	74
9	DCE	80	80d
10	DCE + 1,4-dioxane (1:1)	80	65
11	DCE	80	82e
12	DCE	80	33f
13	DCE	80	5g

aReaction conditions: 1a (0.25 mmol) and 2a (0.5 mmol) in 2 mL of solvent. bH NMR yield was calculated using terephthaldehyde as an internal standard. cnd = not detected. d1.2 equiv of 2a was used. e2 equiv of 2a was used. fReaction in argon atmosphere. gReaction in degassed solvent, DCE in argon atmosphere.
N-phenyl THIQ (1a) and diethyl phosphite (2a) under the optimal reaction conditions furnished the expected α-amino-phosphonate 3a in 74% isolated yield (Scheme 2). Other dialkyl phosphites, such as dimethyl phosphite, diisopropyl phosphite, and dibenzyl phosphite, underwent a smooth reaction with N-phenyl tetrahydroisoquinoline (1a), furnishing the coupled products 3b−d in good to moderate yields (60, 75, and 63% yields, respectively, Scheme 2). THIQ derivatives that contain electron-releasing group on N-phenyl moiety, such as 2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline, reacted well with dimethyl phosphite, diethyl phosphite, and diisopropyl phosphite, furnishing the corresponding α-amino-phosphonates 3e−g in moderate to good yields (35, 78, and 72% yields, respectively). Similarly, 2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline reacted with dimethyl phosphite, diethyl phosphite, and diisopropyl phosphite, furnishing the corresponding α-amino-phosphonates 3h−j in good to moderate yields (48, 50, and 60%, respectively). 2-(4-Fluorophenyl)-1,2,3,4-tetrahydroisoquinoline, in which electron-withdrawing group, such as fluorine, is attached to N-phenyl moiety, reacted with dimethyl phosphite, diethyl phosphite, and diisopropyl phosphite affording the cross-dehydrogenative coupled products 3k−m in poor yields (44, 30, and 28%, respectively). The poor yields obtained in these reactions may be due to the instability of intermediate iminium-ion formed in situ in the reaction mixture. The reactions of veratrole-derived 6,7-dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline with diethyl and diisopropyl phosphites were examined under the standard reaction conditions, which furnished the expected products 3n and 3o in moderate yields (50 and 57%, respectively).

It was disappointing to note that the reaction of diphenyl phosphite with N-phenyl tetrahydroisoquinoline was unsuccessful (Scheme 3). This reaction indicates that the reaction conditions are very specific for dialkyl phosphite derivatives.

Scheme 2. Substrate Scope for C−P Bond Formation

N-phenyl THIQ (1a) and diethyl phosphite (2a) under the optimal reaction conditions furnished the expected α-amino-phosphonate 3a in 74% isolated yield (Scheme 2). Other dialkyl phosphites, such as dimethyl phosphite, diisopropyl phosphite, and dibenzyl phosphite, underwent a smooth reaction with N-phenyl tetrahydroisoquinoline (1a), furnishing the coupled products 3b−d in good to moderate yields (60, 75, and 63% yields, respectively, Scheme 2). THIQ derivatives that contain electron-releasing group on N-phenyl moiety, such as 2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline, reacted well with dimethyl phosphite, diethyl phosphite, and diisopropyl phosphite, furnishing the corresponding α-amino-phosphonates 3e−g in moderate to good yields (35, 78, and 72% yields, respectively). Similarly, 2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline reacted with dimethyl phosphite, diethyl phosphite, and diisopropyl phosphite, furnishing the corresponding α-amino-phosphonates 3h−j in good to moderate yields (48, 50, and 60%, respectively). 2-(4-Fluorophenyl)-1,2,3,4-tetrahydroisoquinoline, in which electron-withdrawing group, such as fluorine, is attached to N-phenyl moiety, reacted with dimethyl phosphite, diethyl phosphite, and diisopropyl phosphite affording the cross-dehydrogenative coupled products 3k−m in poor yields (44, 30, and 28%, respectively). The poor yields obtained in these reactions may be due to the instability of intermediate iminium-ion formed in situ in the reaction mixture. The reactions of veratrole-derived 6,7-dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline with diethyl and diisopropyl phosphites were examined under the standard reaction conditions, which furnished the expected products 3n and 3o in moderate yields (50 and 57%, respectively).

It was disappointing to note that the reaction of diphenyl phosphite with N-phenyl tetrahydroisoquinoline was unsuccessful (Scheme 3). This reaction indicates that the reaction conditions are very specific for dialkyl phosphite derivatives.
The reactions of other nucleophiles, such as indole, 4-hydroxycoumarin, and TBHP, with N-phenyl tetrahydroisoquinoline did not afford the coupled products under the optimal reaction conditions (Scheme 3). Reaction of acyclic tertiary amines, such as N,N-dimethyl aniline and N-benzyl-N-methyl amine, under the standard reaction conditions, did not furnish the expected cross-dehydrogenative coupled products (Scheme 3).

Presuming that dialkyl phosphite may play a crucial role in the oxidation of tertiary amines, a reaction of N-phenyl THIQ and different nucleophiles (indole or 4-hydroxycoumarin or TBHP) in the presence of dialkyl phosphite was carried out.
Scheme 6. Tentative Mechanism

(Scheme 4). However, in this reaction, only the phosphite-coupled product was observed (40–65%, NMR yield).

A gram-scale experiment has also been performed to explore the efficiency of the reaction. Hence, the reaction of N-phenyl THIQ (1a, 2.5 mmol) and diethyl phosphate (2a, 5 mmol) under the standard reaction conditions furnished the CDC product 3a in 55% yield (Scheme 5).

On the basis of the literature precedence\(^1\)\(^2\) as well as from our earlier studies,\(^1\)\(^7\)\(^e\) a tentative mechanism has been proposed (Scheme 6). N-Aryl THIQ (1) reacts with molecular oxygen, which is present in air, to form the intermediate A. The intermediate A further undergoes a radical cleavage of proton to form the iminium-ion intermediate B. This iminium-ion intermediate (B) is then captured by the active nucleophile, such as dialkyl phosphate (2), to afford the CDC product (3).

In summary, an efficient CDC reaction has been developed for the synthesis of α-aminophosphonate using open air as the only oxidant. A variety of THIQ-derived aminophosphonates were synthesized using these mild reaction conditions. Control studies revealed that the reaction occurs only when dialkyl phosphate acts as a nucleophile. Dialkyl phosphate plays a crucial role in the oxidative coupling, and the reaction is nucleophile dependent. The reaction holds good for gram-scale synthesis also.

EXPERIMENTAL SECTION

General Information. All reactions were carried out using distilled solvents. Reactions were monitored using precoated silica TLC plates. Mass spectra were recorded on electron ionization and electrospray ionization (ESI) (time-of-flight) modes. NMR spectra were recorded on 400 MHz spectrometers in CDCl\(_3\), dimethyl sulfoxide (DMSO)-\(_d_6\) tetramethysilane (\(\delta = 0.00\) ppm), which served as an internal standard for \(^1\)H NMR. The corresponding residual nondeuterated solvent signal (CDCl\(_3\); \(\delta = 77.00\) ppm; DMSO-\(_d_6\) \(\delta = 39.52\) ppm) was used as an internal standard for \(^13\)C NMR. Column chromatography was carried out on silica gel 230–400 mesh or 100–200 mesh (Merck), and thin-layer chromatography was carried out using silica gel GF-254. Chemicals obtained from commercial suppliers were used without further purification. Tetrahydroisoquinoline derivatives were synthesized using known procedures.\(^1\)\(^7\)\(^d\)

Typical Experimental Procedure for the Synthesis of α-Aminophosphonates. To the mixture of N-phenyl tetrahydroisoquinoline 1a (0.25 mmol) in DCE (2 mL), diethyl phosphate 2a (0.5 mmol) was added dropwise using a syringe. The reaction mixture was heated to reflux at 80 °C for 48 h. The completion of the reaction was monitored by TLC, and reaction mixture was directly taken for purification through column chromatography using petroleum ether/ethyl acetate (EtOAc) solvent system to afford the products.

Characterization Data for 1-Aminophosphonates.

- **Diethyl(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3a).**\(^1\)\(^7\)e Brown oily liquid; yield, 74%; RF (30% EtOAc/hexane) 0.2; prepared as shown in general experimental procedure. IR (neat, cm\(^{-1}\)) 1: 3465, 2981, 2264, 1500, 1244, 1024, 750; \(^1\)H NMR (400 MHz, CDCl\(_3\)); \(\delta = 7.15–7.38\) (m, 6H), 6.97 (d, \(J = 8.4\) Hz, 2H), 6.79 (t, \(J = 7.2\) Hz, 1H), 5.18 (d, \(J = 20\) Hz, 1H), 3.90–4.10 (m, 5H), 3.62–3.65 (m, 1H), 2.98–3.07 (m, 2H), 1.23 (t, \(J = 7.2\) Hz, 3H), 1.13 (t, \(J = 7.2\) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)); \(\delta = 149.3\) (d, \(J = 6\) Hz), 136.4 (d, \(J = 5.3\) Hz), 130.6, 129.1, 128.7, 128.6, 128.1, 127.4, 127.3, 125.8, 125.7, 118.4, 114.7, 130.6, 129.1, 128.7, 128.6, 128.1, 127.4, 127.3, 125.8, 125.7, 118.4, 114.7, 63.3 (d, \(J = 7.1\) Hz), 62.3 (d, \(J = 7.6\) Hz), 58.7 (d, \(J = 15.8\) Hz), 43.4, 26.7, 16.4 (d, \(J = 5.5\) Hz), 16.3 (d, \(J = 6.1\) Hz); \(^31\)P NMR (162 MHz, CDCl\(_3\)); \(\delta = 22.2\); high-resolution ESI-mass spectrometry (HRESI-MS) (m/z): calcd for C\(_{18}\)H\(_{24}\)NO\(_3\)P (M + Na): 368.1392, found (M + Na): 368.1392.

Dimethyl(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3b).\(^1\)\(^7\)e Red oily liquid; yield, 60%; RF (30% EtOAc/hexane) 0.3; prepared as shown in general experimental procedure. IR (neat, cm\(^{-1}\)) 1: 3449, 3059, 2992, 2950 1597, 1247, 1057, 946; \(^1\)H NMR (400 MHz, CDCl\(_3\)); \(\delta = 7.35\) (d, \(J = 6.4\), 1H), 7.16–7.28 (m, 5H), 6.97 (d, 2H, \(J = 8.4\) Hz), 6.81 (t, 1H, \(J = 7.2\) Hz), 5.20 (d, 1H, \(J = 20\) Hz), 3.98–4.04 (m, 1H), 3.62–3.67 (m, 7H) 2.99–3.07 (m, 2H). \(^13\)C NMR (100 MHz,
CDCl$_3$): δ 149.2 (d, J = 5.9 Hz), 136.4 (d, J = 5.7 Hz), 130.38, 129.22, 128.88 (d, J = 2.6 Hz), 127.9 (d, J = 4.5 Hz), 127.5 (d, J = 3.4 Hz), 126.0, (d, J = 2.78 Hz), 114.9, 54.7, 58.8 (d, J = 160 Hz), 53.9 (d, J = 7.2 Hz), 52.9 (d, J = 7.7 Hz), 43.5, 26.6. 31P NMR (162 MHz, CDCl$_3$): δ 2.44; HRESI-MS (m/z): calculated for C$_{24}$H$_{28}$NO$_3$P (M + Na): 340.1079, found (M + Na): 340.1082.

Diisopropyl(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-phosphonate (3c). White oil; yield, 75%; RF (20% EtOAc/hexane) 0.2; prepared as shown in general experimental procedure. IR (neat, cm$^{-1}$): 2977, 1598, 1499, 1240, 982, 749; 1H NMR (400 MHz, CDCl$_3$): δ 7.40 (d, J = 8 Hz, 1H), 7.11–7.25 (m, 3H), 6.95 (d, J = 8 Hz, 2H), 6.77 (t, J = 6.8 Hz, 1H), 5.14 (d, J = 2.12 Hz, 1H), 4.60–4.64 (m, 2H), 4.01–4.05 (m, 5H), 1.63–3.67 (m, 1H), 2.98–3.01 (m, 2H), 1.27–1.30 (m, 6H), 1.14 (d, J = 6 Hz, 3H), 0.94 (d, J = 6 Hz, 3H); 31C NMR (100 MHz, CDCl$_3$): δ 149.5 (d, J = 6.8 Hz), 136.4 (d, J = 5.6 Hz), 130.9, 130.8, 128.9, 128.7, 128.3, 127.2, 127.2, 125.6, 125.5, 118.2, 115.2, 72.2 (d, J = 7.7 Hz), 70.8 (d, J = 8 Hz), 58.6 (d, J = 160 Hz), 43.4, 26.5, 24.5 (d, J = 2.6 Hz), 24.1 (d, J = 3 Hz), 23.7 (d, J = 5.6 Hz), 23.3 (d, J = 5.6 Hz); 31P NMR (162 MHz, CDCl$_3$): δ 6.29; HRESI-MS (m/z): calculated for C$_{23}$H$_{28}$NO$_3$P (M + Na): 396.1705, found (M + Na): 396.1705.

Dibenzyl(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-phosphonate (3d). Pale yellow solid; yield, 63%; mp: 98–100 °C; RF (30% EtOAc/hexane) 0.6; prepared as shown in general experimental procedure. IR (neat, cm$^{-1}$): 3024, 2982, 1593, 1497, 1230, 1008, 771, 547; 1H NMR (400 MHz, CDCl$_3$): δ 7.10–7.32 (m, 16H), 6.96 (d, J = 8 Hz, 2H), 6.78 (t, J = 8.5 Hz, 1H), 5.28 (d, J = 20.0 Hz, 1H), 4.83–5.1 (m, 3H), 4.73–4.76 (m, 1H), 3.98–4.0 (m, 1H), 3.58–3.64 (m, 1H), 2.97–3.04 (m, 2H); 31C NMR (100 MHz, CDCl$_3$): δ 149.1, 136.1–136.5 (m), 130.3, 129.1, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.5, 127.4, 125.9, 118.6, 114.8, 68.6 (d, J = 7.2 Hz), 67.7 (d, J = 7.8 Hz), 58.9 (d, J = 157.0 Hz), 43.4, 26.7; 31P NMR (162 MHz, CDCl$_3$): δ 22.9; HRESI-MS (m/z): calculated for C$_{25}$H$_{30}$NO$_3$P (M + Na): 418.2058, found (M + Na): 418.2059.

Dimethyl(2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-phosphonate (3g). Yellow oily liquid; yield, 50%; RF (30% EtOAc/hexane) 0.2; prepared as shown in general experimental procedure. IR (neat, cm$^{-1}$): 3519, 3308, 2619, 2221, 1616, 1515, 1249, 1029, 825, 592; 1H NMR (400 MHz, CDCl$_3$): δ 7.35 (d, J = 8 Hz, 1H), 7.12–7.19 (m, 3H), 7.05 (d, J = 8 Hz, 2H), 6.87 (d, J = 8 Hz, 2H), 5.13 (d, J = 20.8 Hz, 1H), 3.97–4.03 (m, 1H), 3.63–3.67 (m, 7H), 2.97–2.98 (m, 2H), 2.25 (s, 3H); 31C NMR (100 MHz, CDCl$_3$): δ 147.2 (d, J = 7 Hz), 136.4 (d, J = 6.6 Hz), 130.3, 129.7, 128.8, 128.2, 127.9, 127.8, 127.4, 125.9, 115.3, 58.9 (d, J = 158.5 Hz), 53.98 (d, J = 7.0 Hz), 52.8 (d, J = 7.5 Hz), 43.8, 26.3, 20.2; 31P NMR (162 MHz, CDCl$_3$): δ 24.4; HRESI-MS (m/z): calculated for C$_{20}$H$_{20}$NO$_3$P (M + Na): 354.1235, found (M + Na): 354.1235.

Diethyl(2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-phosphonate (3j). Yellow oily liquid; yield, 60%; RF (30% EtOAc/hexane) 0.4; prepared as shown in general experimental procedure. IR (neat, cm$^{-1}$): 3439, 2977, 2924, 1614, 1515, 1379, 1241, 1105, 1006; 1H NMR (400 MHz, CDCl$_3$): δ 7.38–7.40 (m, 1H), 7.09–7.16 (m, 3H), 7.04 (d, J = 8 Hz, 2H), 6.87 (d, J = 8 Hz, 2H), 5.11 (d, J = 20.8 Hz, 1H), 3.84–3.88 (m, 1H), 3.56–3.62 (m, 1H), 2.97 (m, 2H), 2.24 (s, 3H), 1.25 (t, J = 8 Hz, 3H), 1.13 (t, J = 8 Hz, 3H); 31C NMR (100 MHz, CDCl$_3$): δ 147.3 (d, J = 7.0 Hz), 136.4 (d, J = 5.6 Hz), 130.5, 129.6, 128.7 (d, J = 2.0 Hz), 128.1 (d, J = 4.0 Hz), 127.9, 127.2, 125.7, 115.2, 63.3 (d, J = 7.1 Hz), 62.2 (d, J = 7.6 Hz), 58.9 (d, J = 158.0 Hz), 43.7, 26.3, 20.2, 16.4 (d, J = 5.3 Hz), 16.3 (d, J = 5.8 Hz); 31P NMR (162 MHz, CDCl$_3$): δ 22.2; HRESI-MS (m/z): calculated for C$_{18}$H$_{18}$NO$_3$P (M + Na): 382.1548, found (M + Na): 382.1542.
Dimethyl(2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3k). Viscous liquid; yield, 44%; Rf (50% EtOAc/hexane) 0.2; prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 3450, 2900, 1510, 1290, 1190, 1140; ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.36 (m, 1H), 7.15–7.22 (m, 3H), 6.88–6.97 (m, 4H), 5.06 (d, J = 20.2 Hz, 1H), 3.99–4.03 (m, 1H), 3.64 (d, J = 10.4 Hz, 6H), 3.51–3.57 (m, 1H), 2.95–2.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.4 (d, J = 238 Hz), 146 (dd, J = 2.2, 2.2 Hz), 136.2 (d, J = 5.8 Hz), 130.1, 128.9 (d, J = 2.3 Hz), 127.95 (d, J = 4.8 Hz), 127.57 (d, J = 3.7 Hz), 126.1 (d, J = 2.9 Hz), 116.68 (s, J = 7.3 Hz), 115.5 (d, J = 22 Hz), 59.2 (d, J = 160 Hz), 53.85 (d, J = 6.7 Hz), 52.9 (d, J = 7.3 Hz), 44.4, 26.4; ¹³P NMR (162 MHz, CDCl₃): δ 24.2; HREI-MS (m/z): calcd for C₂₁H₂₈NO₅P (M + Na): 358.0984, found (M + Na): 358.0982.

Diethyl(2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3l). Pale yellow oil; yield, 30%; Rf (50% EtOAc/hexane) 0.4; prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 3422, 2920, 1510, 1238, 1160; ¹H NMR (400 MHz, CDCl₃): δ 7.36–7.38 (m, 1H), 7.16–7.21 (m, 3H), 6.90–6.93 (m, 4H), 5.05 (d, J = 20.3 Hz, 1H), 3.9–4.11 (m, 5H), 3.50–3.56 (m, 1H), 2.9–3.0 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.4 (d, J = 238 Hz), 146.1 (dd, J = 1.9, 6.6 Hz), 136.3 (d, J = 5.6 Hz), 130.3, 128.7 (d, J = 2.5 Hz, 128.1, 145.3 (d, J = 4.5 Hz), 127.4 (d, J = 3.4 Hz), 125.9 (d, J = 2.9 Hz), 116.5 (d, J = 7.4 Hz), 115.4 (d, J = 22.1 Hz), 63.2 (d, J = 7.2 Hz), 62.3 (d, J = 7.6 Hz), 59.3 (d, J = 159.0 Hz), 44.2, 26.5, 16.4 (d, J = 5.6 Hz), 16.3 (d, J = 5.9 Hz); ¹³P NMR (162 MHz, CDCl₃): δ 22.04; HREI-MS (m/z): calcd for C₂₃H₂₉NO₅P (M + Na): 386.1297, found (M + Na): 386.1298.

Diisopropyl(2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3m). Pale yellow liquid; yield, 57%; Rf (50% EtOAc/hexane) 0.5; prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 3393, 2927, 1726, 1256, 1113, 1031, 981, 742; ¹H NMR (400 MHz, CDCl₃): δ 7.26–7.20 (2H, m), 6.97–6.93 (3H, m), 6.77 (1H, t, J = 7.2 Hz), 6.60 (1H, s), 5.04 (1H, d, J = 21.4 Hz), 4.71–4.60 (2H, m), 4.09–4.02 (1H, m), 3.87 (3H, s), 3.71–3.63 (1H, m), 2.93–2.77 (2H, m), 1.30 (6H, dd, J₁ = 6.1 Hz, J₂ = 10.1 Hz) 1.21 (3H, d, J = 6.1 Hz), 0.97 (3H, d, J = 6.1 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 149.7 (d, J = 7.9 Hz), 148.1, 146.8, 128.9, 128.5 (d, J = 6.3 Hz), 122.2, 118.5, 115.5, 111.4 (d, J = 14.8 Hz), 72.3 (d, J = 7.7 Hz), 70.5 (d, J = 7.9 Hz), 58.3 (d, J = 161.1 Hz), 55.8 (d, J = 8.3 Hz), 43.4, 25.6, 24.6 (d, J = 2.4 Hz), 24.1 (d, J = 3.4 Hz), 24.0, 23.3 (d, J = 5.6 Hz); ¹³P NMR (162 MHz, CDCl₃): δ 21.0; HREI-MS (m/z): calcd for C₂₆H₂₈NO₅P (M + Na): 456.1916, found (M + Na): 456.1917.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.7b00881.
Optimization data; ¹H and ¹³C NMR spectral data of all compounds (PDF)

AUTHOR INFORMATION
Corresponding Author
*E-mail: prabhu@orgchem.isc.ernet.in.
ORCID
Kandikere Ramaiah Prabhu: 0000-0002-8342-1534

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The financial supports from IISc, SERB, New Delhi (No. SB/S1/OC-56/2013), CSIR, New Delhi (No. 02(0226)15/EMR-II), and RL Fine Chem are gratefully acknowledged. The authors thank Dr. A.R. Ramesha (RL Fine Chem) for useful discussion. J.D. acknowledges CSIR for a senior fellowship.

REFERENCES
(1) CDC reviews (a) Li, C.-J.; Li, Z. Green chemistry: The development of cross-dehydrogenative coupling (CDC) for chemical synthesis. Pure Appl. Chem. 2006, 78, 935–945. (b) Murahashi, S.-I.; Zhang, D. Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450. Chem. Soc. Rev. 2008, 37, 1490–1501. (c) Li, C.-J. Cross-Dehydrogenative Coupling (CDC): Exploring C–H Bond Formations beyond Functional Group Transformations. Acc. Chem. Res. 2009, 42, 335–344.
(2) (a) Li, Z.; Li, C.-J. CuB-Polymerized Efficient Alkylation of sp³ C–H Bonds Adjacent to a Nitrogen Atom. J. Am. Chem. Soc. 2004, 126, 11810–11811. (b) Li, Z.; Li, C.-J. Catalytic Enantioselective Alkylation of Prochiral sp³ C–H Bonds Adjacent to a Nitrogen Atom. Org. Lett. 2004, 6, 4977–4979. (c) Li, Z.; Bohle, D. S.; Li, C.-J. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for...
C–C bond formations via the oxidative activation of sp³–C–H bonds. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928–8933. (d) Li, Z.; MacLeod, P. D.; Li, C.-J. Studies on Cu-catalyzed asymmetric alkylation of tetrahydroisoquinoline derivatives. Tetrahedron: Asymmetry 2006, 17, 590–597. (e) Baslé, O.; Li, C.-J. Copper catalyzed oxidative alkylation of sp³–C–H bond adjacent to a nitrogen atom using molecular oxygen in water. Green Chem. 2007, 9, 1047–1050. (f) Sureshkumar, D.; Sud, A.; Klussmann, M. Aerobic Oxidative Coupling of Tertiary Amines with Silyl Enolates and Ketene Acetals. Synlett 2009, 10, 1558–1561. (g) Gu, W.; Yu, J.; Li, Z.; Jiang. Z. Solvent-Free Cross-Dehydrogenative Coupling Reactions under High Speed Ball-Milling Conditions Applied to the Synthesis of Functionalized Tetrahydroisoquinolines. J. Org. Chem. 2011, 76, 9144–9150. (h) Boese, E.; Schmitz, C.; Klussmann, M. A Comparative Mechanistic Study of Cu-Catalyzed Oxidative Coupling Reactions with N-Phenyltetrahydroisoquinoline. J. Am. Chem. Soc. 2012, 134, 5317–5325. (i) Hudson, R.; Ishikawa, S.; Li, C.-J.; Moores, A. Magnetically Recoverable CuFe₂O₄ Nanoparticles as Highly Active Catalysts for Csp³–Csp and Csp–Csp Oxidative Cross-Dehydrogenative Coupling. Synlett 2013, 24, 1637–1642. (j) Yu, J.; Li, Z.; Jia, K.; Liu, M.; Su, W.; Jiang, Z. Fast, solvent-free asymmetric alkylation of prochiral sp³–C–H bonds in a ball mill for the preparation of optically active tetrahydroisoquinoline derivatives. Tetrahedron Lett. 2013, 54, 2006–2009. (k) Wang, F.-F.; Luo, C.-P.; Deng, G.; Yang, L. C(sp³)−C(sp³) bond formation via copper/brønsted acid co-catalyzed C(sp³)−H bond oxidative cross-dehydrogenative-coupling (CDC) of azarenes. Green Chem. 2014, 16, 2428–2431. (l) Deng, G. H.; Nguyen, D. T.; Le, D. T.; Truong, T.; Phan, N. T. S. Propargylamine synthesis via direct oxidative C–C coupling reaction between N,N-dimethylanilines and terminal alkynes under metal–organic framework catalysis. J. Mol. Catal. A: Chem. 2014, 395, 300–306. (m) Liu, X.; Zhang, J.; Ma, S.; Ma, Y.; Wang, R. Oxidative cross-dehydrogenative coupling between N-aryl tetrahydroisoquinolines and 5H-oxazol-4-ones through two methodology: copper catalysis or a metal-free strategy. Chem. Commun. 2014, 50, 15714–15717. (n) Sun, S.; Li, C.; Floreancing, P. E.; Lou, H.; Liu, L. Highly Enantioselective Catalytic Cross-Dehydrogenative Coupling of N-Carbanoyl Tetrahydroisoquinolines and Terminal Alkynes. Org. Lett. 2015, 17, 1684–1687. (o) Perepichka, I.; Kundu, S.; Hearne, Z. Li, C.-J. Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. Org. Biomol. Chem. 2016, 14, 447–451. (p) Gooi, A.; Sau, P.; Ali, W.; Guin, S.; Patel, B. K. Copper(II)-Catalyzed Synthesis of Indoloquinolinoxalin-6-ones through Oxidative Mannich Reaction. Eur. J. Org. Chem. 2016, 1449–1453. (q) Majji, G.; Rout, S. K.; Rajamanickam, S.; Guin, S.; Patel, B. K. Synthesis of esters via sp³ C–H functionalization. Org. Biomol. Chem. 2016, 14, 8178–8211. (3) (a) Meng, Q.-Y.; Liu, Q.; Zhong, J.-J.; Zhang, H.-H.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Amino C Bond Formation Using Visible Light. Chem. – Eur. J. 2012, 18, 5170–5174. (c) Freeman, D. B.; Furst, L.; Condée, A. G.; Stephenson, C. R. J. Functionally Diverse Nucleophilic Trapping of Iminium Intermediates Generated Utilizing Visible Light. Org. Lett. 2012, 14, 94–97. (d) Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Visible Light Photoredox Catalysis: Generation and Addition of N-Aryltetrahydroisoquinoline-Derived α-Amino Radicals to Michael Acceptors. Org. Lett. 2012, 14, 672–675. (e) Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J. Visible-Light Photoredox Catalysis in Flow. Angew. Chem., Int. Ed. 2012, 51, 4144–4147. (f) Espelet, L. R.; Wiensch, E. M.; Yoon, T. P. Brønsted Acid Cocatalysts in Photocatalytic Radical Addition of α-Amino C–H Bonds across Michael Acceptors. J. Org. Chem. 2013, 78, 4107–4114. (g) Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. A Cascade Cross-Coupling Hydrogen Evolution Reaction by Visible Light Catalysis. J. Am. Chem. Soc. 2013, 135, 19052–19055. (h) Bergonzini, G.; Schindler, C. S.; Wallentin, C.-J.; Jacobsen, E. N.; Stephenson, C. R. J. Photoredox activation and anion binding catalysis in the dual catalytic enantioselective synthesis of β-aminosteres. Chem. Soc. 2014, 5, 112–116. (i) Zeng, T.; Song, G.; Moores, A.; Li, C.-J. Magnetically Recoverable Iron Nanoparticle Catalyzed Cross-Dehydrogenative Coupling (CDC) between Two Csp−H Bonds Using Molecular Oxygen. Synlett 2010, 2002–2007. (j) Han, W.; Mayer, P.; Oflah, A. R. Iron-Catalyzed Oxidative Mono- and Bis-Phosphonation of N,N-Dialkylanilines. Adv. Synth. Catal. 2010, 352, 1667–1676. (k) Liu, P.; Zhou, C.-Y.; Xiang, S.; Che, C.-M. Highly efficient oxide carbon–carbon coupling with SBA-15-support iron terpyridine catalyst. Chem. Commun. 2010, 46, 2739–2741. (l) Ratnikov, M. O.; Xu, X.; Doyle, M. P. Simple and Sustainable Iron-Catalyzed Aerobic C–H Functionalization of N,N-Dialkylanilines. J. Am. Chem. Soc. 2013, 135, 9475–9479. (m) Jones, K. M.; Karier, P.; Klussmann, M. C. Substituted N-Alkyl Tetrahydroisoquinoline Derivatives through V-Catalyzed Oxidative Coupling. ChemCatChem 2012, 4, 51–54. (n) Xie, J.; Li, H.; Zhou, J.; Cheng, Y.; Zhu, C. A Highly Efficient 2015. (o) Perepichka, I.; Kundu, S.; Hearne, Z.; Li, C.-J. Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. Org. Biomol. Chem. 2016, 14, 447–451. (p) Gooi, A.; Sau, P.; Ali, W.; Guin, S.; Patel, B. K. Copper(II)-Catalyzed Synthesis of Indoloquinolinoxalin-6-ones through Oxidative Mannich Reaction. Eur. J. Org. Chem. 2016, 1449–1453. (q) Majji, G.; Rout, S. K.; Rajamanickam, S.; Guin, S.; Patel, B. K. Synthesis of esters via sp³ C–H functionalization. Org. Biomol. Chem. 2016, 14, 8178–8211.
(11) For metal free methods using a stoichiometric amount of oxidant (a) Tsang, A. S.-K.; Todd, M. H. Facile synthesis of vicinal diamines via oxidation of N-phenyltetrahydroisoquinolines with DDQ. Tetrahedron Lett. 2009, 50, 1199−1202. (b) Zhang, G.; Wang, S.; Ma, Y.; Kong, W.; Wang, R. Mild Metal-Free Intramolecular Oxidative Alkylation of a Csp3−H Bond Adjacent to a Nitrogen Atom: A Versatile Approach to Ring-Fused Tetrahydroquinolines. Adv. Synth. Catal. 2013, 355, 874−879. (c) Su, W.; Yu, J.; Li, Z.; Jiang, Z. Solvent-Free Cross-Dehydrogenative Coupling Reactions under High Speed Ball-Milling Conditions Applied to the Synthesis of Functionalized Tetrahydroisoquinolines. J. Org. Chem. 2011, 76, 9144−9150. (d) Shen, X.-Z.; Xia, X.-F.; Yang, Y.-F.; Ji, K.-G.; Liu, X.-Y.; Liang, Y.-M. Selective Catalyzed Cross-Dehydrogenative Coupling Reaction between Two sp3 C−H Bonds Using Hydrogen Peroxide. Org. Lett. 2013, 15, 574−577. (g) Richter, H.; Frohlich, R.; Daniluc, C.-G.; Mancheño, O. G. Mild Metal-Free Tandem α-Alkylation/Cyclization of N-Benzyl Carbamates with Simple Olefins. Angew. Chem., Int. Ed. 2012, 51, 8656−8660. (h) Neel, A. J.; Huhn, J.; Tripet, P. F.; Toste, F. D. Asymmetric Cross-Dehydrogenative Coupling Enabled by the Design and Application of Chiral Triazole-Containing Phosphoric Acids. J. Am. Chem. Soc. 2013, 135, 14044−14047. (12) (a) Dahström, B.; Mellstråd, T.; Löfdahl, C.-G.; Johansson, M. Pharmacokinetic properties of nocapare. Eur. J. Clin. Pharmacol. 1982, 22, 535−539. (b) Kartsev, V. G. Natural compounds in drug discovery. Biological activity and new trends in the chemistry of isoquinoline alkaloids. Med. Chem. Rev. 2004, 13, 325−336. (c) Vetulani, J.; Nalepa, I.; Antkiewicz-Michaluk, L.; Sansone, M. Opposite effect of simple tetrahydroisoquinolines on amphetamine- and morphine-stimulated locomotor activity in mice. J. Neural Transm. 2001, 108, 513−526. and references cited therein. (d) De Ysern, M. E. Z.; Ordoñez, L. A. Tetrahydroisoquinolines: a review. Prog. Neuro-Psychopharmacol. 1981, 5, 343−345. (13) Edmundson, R. S. The Chemistry of Organophosphorus Compounds; Hartley, F. R., Ed.; John Wiley & Sons: New York, 1996; Vol. 4; p 147. (14) (a) Klemmer, T.; Valenzuela-Paz, P.; Kepler, B. K.; Angres, G.; Schett, M. R.; Wingen, F.; Schmade, D.; Amelung, F. Cispallated phosphonates in the treatment of the transplantable osteosarcoma in vitro and in vivo. Cancer Treat. Rev. 1990, 17, 253−259. (b) Collins, J. F.; Dixon, A. J.; Badman, G.; De Sarro, G.; Chapman, A. G.; Hart, G. P.; Meldrum, B. S. Kainic acid derivatives with anticonvulsant activity. Neurosci. Lett. 1984, 51, 371−376. (c) Peyman, A.; Budt, K.-H.; Paning, J.; Stowasser, B.; Ruppert, D. C., symmetric phosphonic acid inhibitors of HIV protease. Tetrahedron Lett. 1992, 33, 4549−4552. (d) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassal, C. H.; Holmes, S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. Phosphonopeptides, a new class of synthetic antibacterial agents. Nature 1978, 272, 56−58. (15) Smith, A. B.; Yager, K. M.; Taylor, C. M. Enantioselective Synthesis of Diverse alpha-Amino Phosphonate Diesters. J. Am. Chem. Soc. 1995, 117, 10879−10888. (16) (a) Baslé, O.; Li, C.-J. Copper-catalyzed aerobic phosphorylation of sp3 C-H bonds. Chem. Commun. 2009, 4124−4126. (b) Rueping, M.; Zhu, S.; Koenigs, R. M. Phosphoredox catalyzed C−P bond forming reactions—visible light mediated oxidative phosphorylations of amines. Chem. Commun. 2011, 47, 8679−8681. (c) Hari, D. P.; Ko, H.; Eosin Y Catalyzed Visible Light Oxidative C−C and C−P Bond Formation. Org. Lett. 2011, 13, 3852−3855. (d) Wang, H.; Li, X.; Wu, F.; Wan, B. Direct oxidative phosphorylation of amines under metal-free conditions. Tetrahedron Lett. 2012, 53, 681−683. (e) Xie, J.; Li, H.; Xue, Q.; Cheng, Y.; Zhu, C. A Scalable, Efficient Gold-Catalyzed Oxidative Phosphonation of sp3 C−H Bonds using Air as Sustainable Oxidant. Adv. Synth. Catal. 2012, 354, 1646−1650. (f) Rueping, M.; Vila, C.; Bootwicha, T. Continuous Flow Organocatalytic C−C Functionalization and Cross-Dehydrogenative Coupling Reactions: Visible Light Organophotocatalysis for Multicomponent Reactions and C−C, C−P Bond Formations. ACS Catal. 2013, 3, 1676−1680. (g) Yoo, W.-J.; Kobayashi, S. Efficient visible light-mediated cross-dehydrogenative coupling reactions of tertiary amines catalyzed by a polymer-immobilized iridium-based photocatalyst. Green Chem. 2014, 16, 2438−2442. (h) Gandy, M. N.; Raston, C. L.; Stubbs, K. A. Photoredox catalysis under near neutral pH conditions using vortex microfluidics. Chem. Commun. 2015, 51, 11041−11044. (i) Wang, X.-Z.; Meng, Q.-Y.; Zhong, J.-J.; Gao, X.-W.; Lei, T.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. The single excited state of BODIPY promoted aerobic cross-dehydrogenative coupling reactions under visible light. Chem. Commun. 2015, 51, 11256−11259. (j) Huo, C.; Xie, H.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. CbRe-Mediated Cross-Dehydrogenative Coupling Reaction of Amines. Chem. − Eur. J. 2015, 21, 5723−5726. (k) Ho, H. E.; Ishikawa, Y.; Asao, N.; Yamamoto, Y.; Jin, T. Highly efficient heterogeneous aerobic cross-dehydrogenative coupling via C−H functionalization of tertiary amines using a nanoporous gold skeleton catalyst. Chem. Commun. 2015, 51, 12764−12767. (l) Gu, K.; Zhang, Z.; Bao, Z.; Xing, H.; Yang, Q.; Ren, Q. Thiourea-Catalyzed Cross-Dehydrogenative Coupling of C(sp3)−H with Diethyl Phosphite. Eur. J. Org. Chem. 2016, 3939−3942. (17) (a) Majji, G.; Guín, S.; Roux, S. J.; Behera, A.; Patel, B. K. Cyclic ethers to esters and monoesters to bis-esters with unconventional coupling partners under metal free conditions via sp3 C−H functionalization. Chem. Commun. 2014, 50, 12193−12196. (b) Majji, G.; Rajamanickam, S.; Khutan, N.; Santra, S. K.; Patel, B. K. Genetically Engineered Cross-Coupling of C−H Bonds under Metal-Free Conditions. Science 2011, 333, 5586−5589. Earlier reports from our lab: (d) Alagiri, K.; Devadiga, Pr.; Prabhu, K. R. Molybdenum trioxide catalyzed oxidative cross-dehydrogenative coupling of benzyl sp3 C-H bonds: synthesis of α-amino phosphonates under aerobic conditions. Tetrahedron Lett. 2012, 53, 1456−1459. (e) Dhinesh Kumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. A Versatile C−H Functionalization of Tetrahydroisoquinolines Catalyzed by Iodine at Aerobic Conditions. Org. Lett. 2013, 15, 6062−6065. (f) Dhinesh Kumar, J.; Prabhu, K. R. An Efficient Tertiary Azidation of 1,3-Dicarbonyl Compounds in Water Catalyzed by Tetrabutylammonium Iodide. Eur. J. Org. Chem. 2016, 447−452. (h) Muniraj, N.; Dhinesh Kumar, J.; Prabhu, K. R. N-iodosuccinimide Catalyzed Oxidative Selenocyanation and Thiocyanation of Electron Rich Arenes. ChemistrySelect 2016, 1, 1033−1038. (i) Dhinesh Kumar, J.; Samaddar, P.; Prabhu, K. R. A copper catalyzed azidation and peroxidation of β-naphthols via an oxidative dearomatization strategy. Chem. Commun. 2016, 52, 11084−11087. (j) Varun, B. V.; Dhinesh Kumar, J.; Betta padur, K. R.; Siddaraju, Y.; Alagiri, K.; Prabhu, K. R. Recent advancements in dehydrogenative cross coupling reactions for C−C bond formation. Tetrahedron Lett. 2017, 58, 803−824.