Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

Johann G. Zaller, Florian Heigl, Liliane Ruess & Andrea Grabmaier

Institute of Zoology, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Straße 33, 1180 Vienna, Austria,

Institute of Biology, Ecology Group, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.

Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

Earthworms and arbuscular mycorrhizal fungi (AMF) are important components in temperate ecosystems, influencing nutrient cycling and overall ecosystem functioning1,2. Earthworms are considered to be ecosystem engineers because they shred and redistribute organic material in soil, increase soil penetrability for roots, thus improving overall soil fertility3,4. Because of their importance, earthworms have also been used as bioindicators of soil health and quality5,6. Mycorrhizal fungi form a symbiosis with over 80% of vascular plant species and are also considered keystone species in temperate ecosystems because of their influence on plant nutrient supply7 and soil aggregation8. In arable soils AMF are the dominant root symbionts that sustain plant growth9. Mycorrhized plants commonly show a higher uptake of phosphorus and nitrogen, as the fungal mycelium has more efficient mechanisms for absorbing mineral nutrients than roots and by extending the root system enabling further exploration of the soil resources3,10,11. In return, host plants provide photoassimilates (predominantly glucose and fructose) that are converted to lipids by the fungus and used for carbon transport and storage12,13. Recently, the analysis of fatty acids as biochemical markers considerably improved our knowledge in AMF distribution and foraging activity in soil14. Thereby, the soil phospholipid fatty acid (PLFA) 16:1ω5 represents viable hyphal biomass, while the neutral lipid fatty acid (NLFA) reflects fungal storage reserves such as spores, vesicles and propagules14,15. Moreover, the ratio of 16:1ω5 NLFA to PLFA indicates fungal phenology such as senescence or active colonization phases12,16.

Despite their important roles in ecosystems, our understanding on ecological interactions between earthworms and AMF is rather limited. The few studies investigating earthworm-AMF interactions suggest that the response patterns are dependent on the species involved; as a result effects range from additive, synergistic, antagonistic or no interactive effects17-20. Here we examined, whether the interactions between earthworms and AMF are affected by herbicide application. We experimented with two essential players in temperate soil ecosystems: the anecic, vertically burrowing earthworm Lumbricus terrestris (Linnaeus 1758) and the arbuscular mycorrhizal fungi Glomus mosseae (T.H. Nicolson & Gerd.). As a herbicide we used Roundup (RU), the most widely used pesticide worldwide21 containing the active ingredient glyphosate. Glyphosate is a broad-spectrum, post-emergence, non-selective chemical that kills plants by affecting the shikimate-pathway during photosynthesis22. Generally, glyphosate is regarded as environmentally friendly due to its fast biodegradation and strong adsorption to soil.
particles. However, there is mounting evidence that many amphibian species and other wildlife can be detrimentally affected by glyphosate-based herbicides.

Contrary to the wide use of glyphosate surprisingly little is known on potential side effects on interactions between key soil organisms such as earthworms or AMF. Glyphosate effects on earthworms vary from detrimental to no effects, however, to what extent their interaction with other soil organisms is affected by glyphosate has never been investigated. Studies testing glyphosate effects on AMF show an inhibition of AM fungal spore germination and germ tube growth or reduced mycorrhiza in soil, however only at concentrations greater than those recommended for field use. Several other reports show no effect of glyphosate on mycorrhiza when applied at recommended doses. The fate of glyphosate in ecosystems is another aspect which has rarely been investigated. While glyphosate sorbs strongly to soil minerals, leaching and soil erosion by water or wind can transport glyphosate from land to water environments. This glyphosate leaching is assumed to be affected by earthworms and/or AMF. Earthworms maintain soil structure and foster macro pores, which may influence water infiltration and thereby increase glyphosate leaching. On the other hand, mycorrhiza could lead to stronger absorption of glyphosate by binding and enmeshing soil particles into larger aggregates.

To investigate interrelationships between herbicide application, earthworms and AMF we set up a full-factorial mesocosm greenhouse experiment. We planted the mesocosms with the leguminous forb white clover (Trifolium repens L.), which is frequently used as green manure in agriculture. Three hypotheses were tested. First, herbicide application will increase earthworm activity as an increased amount of dead plant material will be available as food for earthworms. Second, herbicide application will not affect AMF in soil because of the very plant-specific mode of symbiotic interaction. Third, herbicide-stimulated earthworm activity increases the preferential flow of rainwater through burrows and therefore increase leaching of glyphosate; whereas AMF counteract glyphosate leaching as they enhance soil aggregation. Such terrestrial model ecosystems have been proposed as an ideal tool to evaluate the effects of chemicals in soil ecosystems in order to achieve a greater realism in the ecotoxicological evaluation of chemicals to non-target organisms.

Results

Plants. Trifolium leaves were killed by the herbicide within several hours, whereas stolon remained partly green. Shoot biomass of T. repens at harvest was significantly reduced by earthworms (F1;16 = 5.485, P = 0.032) but not significantly affected by RU application (F1;16 = 2.529, P = 0.131) or AMF (F1;16 = 0.220, P = 0.645); shoot biomass across AMF and RU treatments: EW 23.724 ± 2.283 g, RU 18.812 ± 3.169 g. Root biomass of T. repens was unaffected by RU (F1;16 = 0.190, P = 0.668), AMF (F1;16 = 0.682, P = 0.421) or earthworms (F1;16 = 0.082, P = 0.778; root biomass across treatments: 1.775 ± 0.361 g).

Earthworms. Earthworm activity was similar across treatments prior to herbicide addition with mean surface cast production of 1.5 ± 0.1 casts day−1 mesocosm−1 and 3.6 ± 0.4 moved toothpicks day−1 mesocosm−1. Earthworm activity measured by toothpicks was marginally significantly lower after herbicide application (F1;10 = 4.490, P = 0.060), however was not influenced by AMF (F1;10 = 0.001, P = 0.977; Figure 1a). Herbicide application reduced earthworm activity (toothpicks) in +AMF mesocosms (F1;4 = 9.042, P = 0.040; Figure 1b) but had no influence on earthworm activity in −AMF mesocosms (Figure 1a). Earthworm activity measured by surface cast production was neither influenced by RU nor AMF (Figure 1).

Earthworm fresh mass at harvest was on average 72% of the initially added fresh mass; neither AMF inoculation (F1;10 = 0.138, P = 0.720) nor RU application (F1;10 = 2.903, P = 0.127) affected recaptured earthworm fresh mass, but a significant AMF × RU interaction occurred (F1;10 = 6.388, P = 0.035). Earthworm mass in the different treatments was: −RU/−AMF 11.0 ± 7.0 g, +RU/−AMF 9.5 ± 5.7 g, −RU/+AMF 5.3 ± 9.1 g, +RU/+AMF 16.4 ± 3.4 g. Earthworm activity (both moved toothpicks and surface castings) was not correlated to earthworm biomass or greenhouse mean air temperature or relative humidity (data not shown).

Mycorrhizae. Thirty-six weeks after AMF inoculation, average mycorrhization rates of Trifolium roots were 26% in +AMF and 15% in −AMF treatments. Across soil layers, herbicide application significantly reduced mycorrhization in +AMF (F1;10 = 7.887, P = 0.023) but had no effect on mycorrhization rates in −AMF mesocosms (Figure 2). The reduction in mycorrhization due to herbicide application was even more pronounced when soil layers were considered separately (Table 1, Figure 2). In −RU/−EW mesocosms mycorrhization was significantly different between layer 0–5 cm and layer 5–10 cm (F1;10 = 14.756, P = 0.018). In −RU + EW mesocosms mycorrhization differed significantly between layer 0–5 cm and layer 10–30 cm (F1;10 = 23.093, P = 0.009). In +RU/−EW mesocosms mycorrhization differed significantly between layer 0–5 cm and layer 10–30 cm (F1;10 = 20.050, P = 0.011). Earthworms had no influence on root AMF colonisation.
across soil depths ($F_{1,10} = 2.575, P = 0.147$; also no RU × EW interaction).

Hyphal biomass in soil assigned by 16:1ω5 PLFAs was not enhanced by AMF inoculation (Table 2, Figure 3). Highest PLFA concentrations of 16:1ω5 in soil were found in the layer 0–5 cm in mesocosms without any manipulation (–EW, –AMF, –RU). A significant herbicide AMF interaction occurred (no interaction between the three treatment factors). We found higher PLFA concentrations of 16:1ω5 in mesocosms with herbicide application, especially in combination with earthworms. AMF spores, vesicles and propagules assigned by 16:1ω5 in soil NLFAs were significantly enhanced by AMF inoculation (Table 2, Figure 3). Most storage reserves were found in mesocosms without any manipulation in layer 0–5 cm. Earthworms reduced the concentration of 16:1ω5 NLFAs and had a strong negative effect on storage structures of AMF assigned by NLFA/PLFA ratio (Table 2, Figure 3). This effect diminished in presence of herbicide, but was still visible. A herbicide-earthworm interaction occurred in layer 5–10 cm: means in NLFA concentration in –RU/–EW was higher than in +RU/+EW mesocosms (Figure 3).

Water infiltration and herbicide leaching. Water infiltration rate was unaffected by earthworms or AMF (Figure 4). Herbicide application showed a trend towards reduced water infiltration ($F_{2,22} = 3.796, P = 0.069$; there was no Roundup × AMF interaction).

Concentration of glyphosate or its metabolite AMPA in the leachate was unaffected by earthworms or AMF (Figure 5). However, concentrations of glyphosate were significantly ($F_{1,10} = 7.572, P = 0.025$) and of AMPA marginally significantly ($F_{1,10} = 4.515, P = 0.066$) interactively affected by earthworms and AMF with increasing herbicide effects in –AMF and decreasing herbicide effects in +AMF mesocosms (Figure 5). In –AMF mesocosms earthworms significantly increased glyphosate leaching ($F_{1,4} = 9.439, P = 0.037$).

Discussion

To our knowledge, this is among the first studies investigating the impact of a glyphosate-based herbicide on ecological interactions between a vertically burrowing earthworm species (*Lumbricus terrestris*) and symbiotic mycorrhizal fungi. Contrary to our hypothesis, Roundup did not stimulate but rather decrease earthworm activity, especially in mesocosms with AMF amendment. Also in the +AMF mesocosms, earthworm biomass was 50% higher after Roundup application, than in –AMF mesocosms. This suggests that over the short duration of our experiment, Roundup led to heavier earthworms that were less active at the surface, probably because there was abundant food in form of dead roots or AMF in the soil that precluded earthworms from foraging food from the surface. Other studies showed that earthworm biomass was unaffected by glyphosate-based herbicides for endogeic species48, whereas in temperate epigeic species10,49 and tropical earthworms strong mass loss after glyphosate application was found50. Studies investigating effects of Roundup on soil dwelling endogeic earthworm species (*Aporrectodea caliginosa*) found no alteration of the energy status after acute exposure31. Glyphosate had no effect on growth of *A. caliginosa* in a pot experiment where the herbicide was mixed with soil3, in contrast, another study showed that glyphosate reduces the growth of *A. caliginosa* even at a rate lower than recommended by the manufacturer52. Surface dwelling, epigeic earthworms showed no avoidance of Roundup treated leaves (*Eisenia andrei*) or response in their depth distribution (E. fetida33) but avoided glyphosate treated soil28,29. Previous studies found no influence of glyphosate on the survival rate in temperate earthworm species *Aporrectodea trapezoides*, A. rosea, A. caliginosa or A. longa populations10,48, whereas a 50% reduction in mortality was found for the tropical earthworm species *Pheretima elongata*44. Effects of glyphosate had no influence on reproduction of E. fetida54, whereas others reported a significant reduction of hatched cocoons in glyphosate treated soil for this species29,30.

Two things are important to note, when evaluating our current results and previous results from the literature. First, we monitored the surface activity of earthworms over a period of only two weeks after Roundup application and therefore no conclusions on long-term effects, consequences for reproduction or changes in belowground activity can be derived from this study. Second, findings on herbicide effects on epigeic species such as *E. fetida* are important contributions when testing possible mode of actions in ecotoxicological tests, however they are of limited value when aiming to evaluate pesticide effects under field situations as these species preferably live in habitats with an abundant surface litter layer which is not the case in arable agroecosystems where these herbicides are applied.

We found a 40% reduction of mycorrhization after Roundup application in soils amended with the mycorrhizal fungi *G. mosaeae*. This is in contrast to what we hypothesized, based on the allegedly fast degradation of the herbicide and the very plant-specific mode of action. We explain this mainly by direct and indirect influences. Roundup could have directly affected active metabolite production in the plant with detrimental effects on root AMF colonisation39. Indirect effects of Roundup on AMF could have affected the intradical phase of AMF that has been shown to be sensitive to several host plant metabolites which regulate AMF abundance38–40. Mycorrhizal infection of maize, soybean and cotton was influenced by glyphosate in pasteurized soil but not in non-pasteurized soil43. Our soil mixture was steam-sterilized, but afterwards amended with a microbial wash from field soil, therefore only differing from field

Table 1 | ANOVA results on the effects of herbicide application (RU) and earthworms (EW) on *Trifolium repens* root AMF colonisation. ANOVA with * for $P < 0.05$, ** for $P < 0.01$, *** for $P < 0.001$

Soil layer	Roundup (RU)	Earthworms (EW)	RU × EW		
F-value	**P-value**	**F-value**	**P-value**	**F-value**	**P-value**
0–5 cm	29.826	0.001**	3.818	0.074	0.789
5–10 cm	0.994	0.348	1.388	0.203	0.145
10–30 cm	3.870	0.085	4.300	0.533	1.346

Table 2 | ANOVA results for effects of Arbuscular mycorrhizal fungi (AMF), Earthworms (EW), Roundup (RU) and their interaction on PLFA amount of 16:1ω5 and NLFA amount of 16:1ω5 in different soil layers. ANOVA with * for $P < 0.05$, ** for $P < 0.01$, *** for $P < 0.001$

Parameter	PLFA	NLFA	NLFA:PLFA ratio			
F	**P**	**F**	**P**	**F**	**P**	
Soil depth 0–5 cm						
AMF	4.926	0.041*	0.296	0.594	0.046	0.832
EW	0.029	0.866	4.595	0.048*	5.445	0.033*
RU	1.154	0.299	0.064	0.803	0.520	0.481
AMF × EW	0.751	0.399	0.425	0.524	1.207	0.288
AMF × RU	9.069	0.008**	6.353	0.023*	2.730	0.118
EW × RU	5.957	0.027*	2.543	0.130	0.734	0.404
AMF × EW × RU	0.031	0.862	3.486	0.080	4.267	0.055
Soil depth 5–10 cm						
AMF	0.011	0.918	4.485	0.050*	4.165	0.058
EW	8.047	0.011**	4.399	0.052	13.135	0.002**
RU	0.470	0.503	2.241	0.154	3.448	0.082
AMF × EW	4.146	0.059	3.126	0.096	0.411	0.530
AMF × RU	4.522	0.049*	3.424	0.083	0.454	0.510
EW × RU	2.050	0.171	5.449	0.033*	2.346	0.145
AMF × EW × RU	0.948	0.345	0.038	0.849	0.522	0.480
soil by the presence or absence of the inoculated AMF taxa. However, the latter did not enhance AMF hyphal biomass measured by 16:1ω5 PLFA, whereas spores assigned by fungal storage lipids, i.e. 16:1ω5 NLFA, were highest in soils without any manipulations (−AMF, −RU, −EW). These fungal propagules obviously have survived the steam-sterilization procedure. The generally low impact of soil amendment by the mycorrhiza inoculum points to competition with the indigenous soil community hampering the establishment of introduced G. mosseae. However, this cannot be assigned by the used biomarker fatty acid, 16:1ω5, as it is a measure for viable fungal hyphae biomass and storage fat in spores across the genus Glomus.

Direct influence of Roundup on AM fungi are generally regarded to be minor as soil fungi are well protected from direct contact with the herbicide. Indeed reports show rather insignificant influence of glyphosate on hyphal growth and germination of spores as well as root AMF colonisation. However, in the present experiment Roundup application affected hyphal (i.e. amount of 16:1ω5 PLFA) and spore (i.e. amount of 16:1ω5 NLFA) biomass in the soil. Spore biomass generally declined with herbicide application, which is in accordance with others who showed reduced spore viability even under the lowest glyphosate rate. Interestingly, the presence of earthworms resulted in a comparable negative effect on fungal storage structures. Earthworms are reported to influence AMF positively

Figure 3 | PLFA amount of 16:1ω5, NLFA amount of 16:1ω5 in nmol g⁻¹ DW soil and the ratio of 16:1ω5 NLFA to PLFA in different soil layers without (white) and with (grey) Roundup application, without/with earthworms in mesocosms without/with AMF inoculation. Mean ± SE, n = 3.

Figure 4 | Water infiltration rate measured in mesocosms without earthworms (a) and with earthworms (b) in response to AMF, without (white) and with (grey) Roundup application. Means ± SE, n = 3.

Figure 5 | Glyphosate concentration (a) and its metabolite AMPA (b) in soil leachate. Illustrated are concentrations in mesocosms with herbicide application, without and with AMF inoculation and without (white) and with (grey) earthworms. Means ± SE, n = 3.
AM fungi would require more fertilization with economical and ecological consequences for farmland management. The finding that Roundup affects, together with earthworms and AMF, water infiltration requires more attention especially as climate change models project higher heavy rainfall. Results of this study also highlight the importance of more complex experimental settings that investigate interactions of several species in order to better assess potential effects of pesticides on the environment.

Methods

Experimental setup. We conducted a full-factorial mesocosm experiment manipulating the three factors Earthworms (two levels: earthworm addition, +EW vs. no earthworms, −EW), AMF (two levels: AMF inoculation, + AMF vs. no AMF inoculation, − AMF) and Herbicide treatment (two levels: − Roundup application, − RU vs. no Roundup application, + RU). More details on the individual treatments (14 hours light, 10 hours night).

We used 24 plastic pots (volume: 20 l, diameter: 31 cm, height: 30 cm; called mesocosms) which were lined out with two layers of garden fleece at the bottom and extended at the upper rim with a 10 cm high barrier of transparent plastic to prevent earthworms from escaping; the fence and barriers were also installed in mesocosms containing no earthworms to create similar microclimatic conditions among treatments.

Treatments. AMF treatments were prepared in March 2011 by first filling the mesocosms with 12 l steam-sterilized (3 hours at 100°C) field soil (Haplic Chernozem, silt loam) mixed with quartz sand (grain size 1.4–2.2 mm) in a ratio of 40:60 vol/vol. Characteristics of this soil mixture: Corg = 2.4 ± 1 g kg⁻¹, Norg = 0.98 ± 0.06 g kg⁻¹, pH = 5.1, K = 17.2 ± 0.01 mg kg⁻¹, P = 58.4 ± 0.8 mg kg⁻¹, H 2O content 60 vol/vol. Characteristics of this soil mixture: Corg = 2.4 ± 1 g kg⁻¹, Norg = 0.98 ± 0.06 g kg⁻¹, pH = 5.1, K = 17.2 ± 0.01 mg kg⁻¹, P = 58.4 ± 0.8 mg kg⁻¹, H2O content 60 vol/vol. Characteristics of this soil mixture: Corg = 2.4 ± 1 g kg⁻¹, Norg = 0.98 ± 0.06 g kg⁻¹, pH = 5.1, K = 17.2 ± 0.01 mg kg⁻¹, P = 58.4 ± 0.8 mg kg⁻¹, H2O content 60 vol/vol.

To inoculate each mesocosm to inoculate the steam-sterilized soil with microorganisms present in field soil. This microbial wash contained 300 ml soil suspension (3500 g fresh soil mixed with 7200 ml distilled H2O filtered through a sieve-cascade from 2000 μm to 25 μm mesh size) and 100 ml AMF suspension (466 g AMF-inoculum dispensed in 2400 ml distilled H2O filtered through the same sieve-cascade).

In April 2011 mesocosms were planted with white clover (Trifolium repens L.). Therefore, the mesocosms were first propagated from seeds in steam-sterilized potting soil, sieved through 10 mm (average height above 20 mm, seedling diameter 5–7 mm, and two real leaves) were transplanted into each mesocosm in a regular hexagonal pattern with an equidistance to each other of 5 cm (240 seedlings m⁻²). This seed material is commonly used by farmers in mixtures for green manuring and was obtained from the BOKU Department of Crop Sciences. No fertilizers were applied during the course of the experiment.

In December 2011 we added 4 adult individuals of vertically burrowing Lümbricus terrestris L. to the + EW mesocosms (16.6 ± 2.1 g mesocosm⁻¹, equivalent to 220.6 g m⁻²). Earthworm densities were roughly oriented on the average earthworm biomass in temperate grassland ranges between 52–305 g m⁻² where 30–75% of the biomass is earthworms. Earthworms purchased through a bait shop. To acquaint earthworms with experimental conditions, we cultivated them in plastic boxes (climate chamber at 15°C) filled with steam-sterilized field soil and ground out flakes as food before they were introduced to the mesocosms. Before earthworms were randomly added to the + EW mesocosms, they were washed free of attached soil, dried off on filter paper and weighed. All earthworms buried themselves in the soil within a few minutes. The mesocosms were randomly placed on greenhouse tables and randomly repositioned every second week to avoid treatment interactions with potential microclimatic gradients inside the greenhouse. No additional food was provided for earthworms in the mesocosms as there was abundant dead organic material on the soil surface. An automatic irrigation system added on average 0.5 l tap water day⁻¹ to each mesocosm.

Herbicide was applied five days after earthworm insertion on half of the mesocosms comprising all treatment combinations. We used Roundup Speed (Monsanto Inc., St. Louis, Missouri, USA), a systemic, broad-spectrum herbicide containing 72.2 g l⁻¹ of the active ingredient glyphosate. This herbicide is recommended for use in garden and lawn areas and was obtained from a garden center in Vienna. Following the instructions for use, we applied the herbicide directly onto the plants from the original bottle with the attached fine mist spray nozzle. We applied the herbicide once on day 5 after earthworm embedding at 4 p.m. without direct sunlight at an air temperature of 16.1°C.
perature of 25 °C. As recommended in the instruction text we sprayed the herbicide so that the plant surface was homogeneously covered and shiny from the herbicide film. This application needed 14 squirts of Roundup Speed with the spray nozzle meso-

consm

m 2

2

s

These treatments were replicated three times in a full-factorial design: two earth-

worm treatments × two AMF treatments × two RU treatments × three replicates equals totally 24 mesocosms.

Measurements and analyses. Earthworm activity was indirectly assessed during nighttime by 30 toothpicks mesocosm 1 that were vertically inserted (0.5 cm deep) in a consistent pattern. In the following morning the number of toothpicks differing from the original vertical position was considered as a measure of earthworm activity because earthworms crawl over the soil surface when searching for food. Knocked over toothpicks were counted as 1 and inclined toothpicks were counted as 0.5. As another measure of earthworm activity we additionally measured the number of freshly produced casts on the soil surface8. Both activity measurements were done parallel three times before and six times after herbicide application.

Water infiltration and Roundup leaching was measured seven days after the Roundup application by pouring 3 l of distilled water on top of the mesocosms simulating a rain shower of about 40 l m

2

m (see also8). The time from pouring the water onto the mesocosms until the last water pool disappeared from the soil surface was recorded and used to calculate the water infiltration rate in m s

1

2

min

5

C. The oven temperature program started with 170

0.25 mm i.d., film thickness 0.25

C and increased by 28

u

C

1 to 300

u

C. A mass range

5

20

u

C

1 to 300

u

C was applied as

157

85

0.2 mm i.d., film thickness

1. Edwards, C. A. Earthworm Ecology. (CRC/Lewis Press, 1998).

2. Gianinazzi, S. et al. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519–530 (2010).

3. Syers, I. K. & Springett, J. A. Earthworms and soil fertility. Plant Soil 76, 93–104 (1984).

4. Lavelle, P. Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Adv Ecol Res 27, 93–132 (1997).

5. Gobat, J. M., Aragono, M. & Matthey, W. The Living Soil: Fundamentals of Soil Science and Soil Biology. (Science Publishers, 2004).

6. Paoletti, M. G. The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosystem Environ 74, 137–155 (1999).

7. Cameron, D. D. Arbuscular mycorrhizal mycorrhiza as (agro)ecosystem engineers. Plant Soil 333, 1–5 (2010).

8. Siddiky, M. R. R., Keh, J., Cosme, M. & Biling, M. C. Soil biota effects on soil structure: Interactions between arbuscular mycorrhizal fungal mycelium and collembo. Soil Biol. Biochem. 50, 33–39 (2012).

9. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis. 3rd edn, (Academic Press, 2008).

10. Neumann, E. & George, E. Colonisation with the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) enhanced phosphorus uptake from dry soil in sorghum bicolor (L.) Plant Soil 261, 245–252 (2004).

11. Govindaraju, M. et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819–823 (2005).

12. Gavito, M. E. & Olsson, P. A. Allocation of plant carbon to foraging and storage in arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 45, 181–187 (2003).

13. Olsson, P. A., Jakobsen, I. & Wallander, H. Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. Ecol Studies 157, 93–116 (2007).

14. Ling, J., Carolin, B., Daniel, E. & Bjoern, T. Use of the signature fatty acid 16:1o5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. J Lipids Article ID 236807, 8 pages (2012).

15. Olsson, P. A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soils. FEMS Microbiol Ecol 29, 103–310 (1999).

16. Olsson, P. A. & Johansen, A. Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages. Mycol Res 104, 429–434 (2000).

17. Olsson, P. A., Jakobsen, I. & Wallander, H. Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. Ecol Studies 157, 93–116 (2007).

18. Wurst, S., Dugassa-Gobena, D., Langel, R., Bonkowski, M. & Scheu, S. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol. 163, 169–176 (2004).

19. Eisenhauer, N. et al. Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biol. Biochem. 41, 561–567 (2009).

20. Milleret, R., Le Bayon, R. C. & Gobat, J. M. Root, mycorrhiza and earthworm interactions: their effects on soil structure processes, plant and soil nutrient concentration and plant biomass. Plant Soil 516, 1–12 (2009).

21. Zaller, J. G., Saccani, F. & Frank, T. Effects of earthworms and mycorrhizal fungi on the growth of the medicinal herb Calendula officinalis (Asteraceae). Plant Soil Environ. 57, 499–504 (2011).

22. Duke, S. O. & Powles, S. B. Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 56, 309–312 (2000).

23. Duke, S. O. & Powles, S. B. Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64, 319–325 (2008).

24. Vereecken, H. Mobility and leaching of glyphosate: a review. Pest Manag Sci 61, 1113–1151 (2005).

25. Reylea, R. A. The lethal impact of roundup on aquatic and terrestrial amphibians. Ecol. Appl. 15, 1118–1124 (2005).

26. Kühler, H. R. & Triebeskorn, R. Wildife Ecotoxicology of Pesticides: Can We Track Effects to the Population Level and Beyond? Science 341, 759–765, doi:10.1126/science.1237591 (2013).

27. Verrelli, P. & Van Buskirk, E. As the worm turns: Eisienia fetida avoids soil contaminated by a glyphosate-based herbicide. Bull Environm Contamin Toxicol 72, 219–224 (2004).

28. Casabé, N. et al. Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. J Soils Sediment 8, 1–8 (2007).

29. Correia, F. V. & Moreira, J. C. Effects of glyphosate and 2,4-D on earthworms (Eisenia fetida) in laboratory tests. Bull Environm Contamin Toxicol 85, 264–268 (2010).

30. Bon, D. et al. In vivo 31P and 1H HR-MAS NMR spectroscopy analysis of the unsturbed Arthropodacta caliginosa (Lambriuridae). Biol. Fertil. Soils 43, 191–196 (2006).

31. Pereira, J. L. et al. Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicol 18, 455–463 (2009).

32. Santoro, M. J. G., Morgado, R., Ferreira, N. G. C., Soares, A. M. V. M. & Loureiro, S. Evaluation of the joint effect of glyphosate and dinitrochlorobenzene using a small-scale terrestrial ecosystem. Ecoloxom Environ Safety 74, 1994–2001 (2011).
