Abstract

To deal with increasing amounts of uncertainty and incompleteness in relational data, we propose unifying techniques from probabilistic databases and relational embedding models. We use probabilistic databases as our formalism to define the probabilistic model with respect to which all queries are done. This allows us to leverage the rich literature of theory and algorithms from probabilistic databases for solving problems. While this formalization can be used with any relational embedding model, the lack of a well defined joint probability distribution causes simple problems to become provably hard. With this in mind, we introduce TRAC-TOR, a relational embedding model designed in terms of probabilistic databases to exploit typical embedding assumptions within the probabilistic framework. Using principled, efficient inference algorithms that can be derived from its definition, we empirically demonstrate that TRACTOR is an effective and general model for these tasks.

1 INTRODUCTION

Relational database systems are ubiquitous tools for data management due to their ability to answer a wide variety of queries. However, with systems having an increasing need to deal with uncertain and incomplete data, we must search for new tools to accomplish this. In this work we marry ideas from machine learning and databases to provide a framework for answering such queries.

The first key question we need an answer for when dealing with uncertain relational data is how to handle the fact that our data is invariably incomplete. That is, there will always be facts that we do not explicitly see, but would like to be able to infer. In the machine learning community, this problem is known as link prediction, a task which has garnered a lot of attention in recent years. [Nickel et al., 2015 2011, Kazemi & Poole 2018, Trouillon et al., 2016] using a variety of techniques [Blockeel & Raedt, 1997, ?]. Recently, the most common techniques for this problem are relational embedding models, which embed relations and entities as vectors and then use a scoring function to predict whether or not facts are true. While these techniques are popular and have proven effective for link prediction, they lack a consistent underlying probabilistic semantics, which makes their beliefs about the world unclear. As a result, investigations into them have rarely gone beyond this question of link prediction [Hamilton et al., 2018 ?].

On the other hand, the databases community has produced a rich body of work for handling uncertainty via probabilistic databases. In contrast to relational embedding models which are fundamentally predictive models, probabilistic databases (PDBs) [Suciu et al., 2011, Van den Broeck & Suciu, 2017] are defined by a probabilistic semantics, with strong and clearly specified independence assumptions. With these semantics, PDBs provide us with a wealth of theoretical and algorithmic research into complex queries, including tractability results [Dalvi & Suciu, 2004, 2007, 2012, Fink & Olteanu, 2016] and approximations [den Heuvel et al., 2019, Gribkoff & Suciu, 2016]. More recently there has even been work in finding explanations for queries [Ceylan et al., 2017, Gribkoff et al., 2014], as well as querying subject to constraints [Borgwardt et al., 2017, Bienvenu, 2016, Friedman & Van den Broeck, 2019]. Where probabilistic databases fall short is in two major areas. Firstly, populating PDBs with meaningful data in an efficient way remains a major challenge due to their brittleness to incomplete data. Secondly, while querying is well understood, certain types of desirable queries are provably difficult [Roth, 1996, Dalvi & Suciu, 2012].

For the rest of this work, our goal will be to unify the pre-
We begin with necessary background from function-free finite-domain first-order logic. An atom $R(x_1, x_2, \ldots, x_n)$ does give us a meaningful way to populate a PDB, the resulting model is making some clearly problematic independence assumptions, and moreover still struggles with making some queries tractable.

At its core, the reason this straightforward solution is ineffective is as follows: while both PDBs and relational embedding models make simplifying assumptions, these assumptions are not being taken into account jointly. Each is treating the other as a black box. To overcome this, we incorporate the factorization assumption made by many relational embedding models [Yang et al., 2014; Nickel et al., 2011] directly into our probabilistic database. The resulting model which we call TRACTOR thus takes advantages of the benefits of both: it can efficiently and accurately predict missing facts, but it also provides a probabilistic semantics which we can use for complex reasoning. Due to its factorization properties, TRACTOR can even provide efficient reasoning where it was previously difficult in a standard PDB.

The rest of the paper is organized as follows. First, Section 2 provides the required technical background on PDBs and their associated queries. Then in Section 3 we discuss using (tuple-independent) PDBs as the technical framework for relational embedding models, as well as giving a brief formalization and discussion of challenges. In Section 4 we introduce TRACTOR, a relational embedding model designed around PDBs to allow for a large range of efficient queries. Section 5 provides an empirical evaluation of TRACTOR. Finally, Section 6 gives a broad discussion on related work along with ties to future work.

2 PROBABILISTIC DATABASES

We now provide the necessary technical background on probabilistic databases, which will serve as the foundation for our probabilistic semantics and formalism for queries, as well as the underlying inspiration for TRACTOR.

2.1 RELATIONAL LOGIC AND DATABASES

We begin with necessary background from function-free finite-domain first-order logic. An atom $R(x_1, x_2, \ldots, x_n)$ does give us a meaningful way to populate a PDB, the resulting model is making some clearly problematic independence assumptions, and moreover still struggles with making some queries tractable.

At its core, the reason this straightforward solution is ineffective is as follows: while both PDBs and relational embedding models make simplifying assumptions, these assumptions are not being taken into account jointly. Each is treating the other as a black box. To overcome this, we incorporate the factorization assumption made by many relational embedding models [Yang et al., 2014; Nickel et al., 2011] directly into our probabilistic database. The resulting model which we call TRACTOR thus takes advantages of the benefits of both: it can efficiently and accurately predict missing facts, but it also provides a probabilistic semantics which we can use for complex reasoning. Due to its factorization properties, TRACTOR can even provide efficient reasoning where it was previously difficult in a standard PDB.

The rest of the paper is organized as follows. First, Section 2 provides the required technical background on PDBs and their associated queries. Then in Section 3 we discuss using (tuple-independent) PDBs as the technical framework for relational embedding models, as well as giving a brief formalization and discussion of challenges. In Section 4 we introduce TRACTOR, a relational embedding model designed around PDBs to allow for a large range of efficient queries. Section 5 provides an empirical evaluation of TRACTOR. Finally, Section 6 gives a broad discussion on related work along with ties to future work.
of the form $\langle t : p \rangle$ where t is a σ-atom and $p \in [0, 1]$. Furthermore, each t can appear at most once.

Given such a collection of tuples and their probabilities, we are now going to define a distribution over relational databases. The semantics of this distribution are given by treating each tuple as an independent random variable.

Definition 2. A probabilistic database \mathcal{P} for vocabulary σ induces a probability distribution over σ-interpretations ω:

$$
P_{\mathcal{P}}(\omega) = \prod_{t \in \omega} P_{\mathcal{P}}(t) \prod_{t \notin \omega} (1 - P_{\mathcal{P}}(t))
$$

where $P_{\mathcal{P}}(t) = \begin{cases} p & \text{if } \langle t : p \rangle \in \mathcal{P} \\ 0 & \text{otherwise} \end{cases}$

Each tuple is treated as an independent Bernoulli random variable, so the probability of a relational database instance is given as a simple product, based on which tuples are or are not included in the instance.

2.3 Probabilistic Queries

Much as in relational databases, in probabilistic databases we are interested in answering queries – the difference being that we are now interested in probabilities over queries. In particular, we study the theory of queries that are fully quantified, also known as Boolean queries – we will see later how other queries can be reduced to this form. On a relational database, this corresponds to a query that has an answer of True or False. Queries containing constants can be converted to boolean queries in a process known as shattering [Van den Broeck & Suciu, 2017].

For example, on the database given in Figure 1, we might ask if there is a scientist who is a coauthor:

$$Q_1 = \exists x. \exists y. S(x) \land CoA(x, y)$$

Which there clearly is, by taking x to be Einstein and y to be Erdős. If we instead asked this query of the probabilistic database in Figure 2, we would be computing the probability by summing over the worlds in which the query is true:

$$P_{\mathcal{P}}(Q_1) = \sum_{\omega \models Q_1} P_{\mathcal{P}}(\omega)$$

Queries of this form that are a conjunction of atoms are called conjunctive queries. They are commonly shortened as:

$$Q_1 = S(x), \text{CoA}(x, y).$$

A disjunction of conjunctive queries is known as a union of conjunctive queries (UCQ). While they capture a rather complex set of queries, the algorithmic landscape of UCQs is remarkably well understood.

Theorem 1. [Dalvi & Suciu, 2012] Let Q be a UCQ and \mathcal{P} be a tuple-independent probabilistic database. Then Q is either:

- Safe: $P_{\mathcal{P}}(Q)$ can be computed in time polynomial in $|\mathcal{P}|$ for all probabilistic databases \mathcal{P} using the standard lifted inference algorithm (see Section 2.3.2)
- Unsafe: Computing $P_{\mathcal{P}}(Q)$ is a $\#P$-hard problem

Furthermore, we can efficiently determine whether Q is safe or unsafe.

In much of the literature of probabilistic databases [Suciu et al., 2011, Dalvi & Suciu, 2012], as well as throughout this paper, UCQs (and consequently conjunctive queries) are the primary query object studied.

2.3.1 Reduction to Boolean Queries

In general, one is not always interested in computing full quantified queries. For example, in Section 5 one of the queries we will be interested in computing will be of the form

$$\exists x, y. R(a, x) \land S(x, y) \land T(y, t)$$

For relations R, S, T and constants a, t. To convert this query to a fully quantified one, we need to shatter the query [Van den Broeck & Suciu, 2017, Dalvi & Suciu, 2012]. In this case, we do this by replacing the binary relation $R(a, x)$ by the unary query $R_a(x)$, where $\forall x. R_a(x) = R(a, x)$. A similar procedure for T gives us the following query:

$$H_0 = \exists x, y. R_a(x) \land S(x, y) \land T_t(y)$$

This is now a fully quantified query, and is also a simple example of an unsafe query. That is, for an arbitrary probabilistic database \mathcal{P} we can not compute $P_{\mathcal{P}}(Q)$ in time polynomial in $|\mathcal{P}|$ given our current assumptions.

2.3.2 Efficient Query Evaluation

In addition to providing an underlying probabilistic semantics, one of the motivations for exploring probabilistic databases as the formalism for relational embedding models was to be able to evaluate complex queries efficiently. Algorithm 1 does this in polynomial time for all safe queries. We now explain the steps in further detail.

We begin with the assumption that Q has been processed to not contain any constant symbols, and that all variables appear in the same order in repeated predicate occurrences.
Algorithm 1 Lift\(^{R}(Q, \mathcal{P})\), abbreviated by \(L(Q)\)

Require: UCQ \(Q\), prob. database \(\mathcal{P}\) with constants \(T\).
Ensure: The probability \(P_{\mathcal{P}}(Q)\)

1: \textbf{Step 0} Base of Recursion
2: \hspace{1em} if \(Q\) is a single ground atom \(t\)
3: \hspace{2em} if \((t : p) \in \mathcal{P}\) return \(p\) else return 0
4: \textbf{Step 1} Rewriting of Query
5: \hspace{1em} Convert \(Q\) to conjunction of UCQ: \(Q = Q_1 \land \cdots \land Q_m\)
6: \textbf{Step 2} Decomposable Conjunction
7: \hspace{1em} if \(m > 1\) and \(Q = Q_1 \land Q_2\) where \(Q_1 \perp Q_2\)
8: \hspace{2em} return \(L(Q_1) \cdot L(Q_2)\)
9: \textbf{Step 3} Inclusion-Exclusion
10: \hspace{1em} if \(m > 1\) but \(Q\) has no independent \(Q_i\)
11: \hspace{2em} (Do Cancellations First)
12: \hspace{2em} return \(\sum_{s \subseteq [m]} (-1)^{|s|+1} \cdot L(\bigvee_{i \in s} Q_i)\)
13: \textbf{Step 4} Decomposable Disjunction
14: \hspace{1em} if \(Q = Q_1 \lor Q_2\) where \(Q_1 \perp Q_2\)
15: \hspace{2em} return \(1 - (1 - L(Q_1)) \cdot (1 - L(Q_2))\)
16: \textbf{Step 5} Decomposable Existential Quantifier
17: \hspace{1em} if \(Q\) has a separator variable \(x\)
18: \hspace{2em} return \(1 - \prod_{c \in T} (1 - L(Q[x/c]))\)
19: \textbf{Step 6} Fail (the query is \#P-hard)

in \(Q\). These preprocessing steps are known as \textit{shattering} (as mentioned above) and \textit{ranking} respectively, and can be done efficiently for tuple-independent probabilistic databases [Dalvi & Suciu 2012] – we will see later they are not necessary for TRACTOR.

\textbf{Step 0} covers the base case where \(Q\) is simply a tuple, so it looks up in \(\mathcal{P}\). \textbf{Step 1} attempts to rewrite the UCQ into a conjunction of UCQs to find decomposable parts. For example, the UCQ \((R(x) \land S(y, z)) \lor (S(x, y) \land T(x))\) can be written as the conjunction of \((R(x)) \lor (S(x, y) \land T(x))\) and \((S(y, z)) \lor (S(x, y) \land T(x))\). When multiple conjuncts are found this way, there are two options. If they are symbolically independent (share no symbols, denoted \(\perp\)), then \textbf{Step 2} applies independence and recurses. Otherwise, \textbf{Step 3} recurses using the inclusion-exclusion principle, performing cancellations first to maintain efficiency [Dalvi & Suciu 2012]. If there is only a single UCQ after rewriting, \textbf{Step 4} tries to split it into independent parts, applying independence and recursing if anything is found.

Next, \textbf{Step 5} searches for a \textit{separator} variable, one which appears in every atom in \(Q\). If \(x\) is a separator variable for \(Q\), and \(a, b\) are different constants in the domain of \(x\), this means that \(Q[x/a]\) and \(Q[x/b]\) are independent. This independence is again recursively exploited. Finally, if \textbf{Step 6} is reached, then the algorithm has failed and the query provably cannot be computed efficiently [Dalvi & Suciu 2012].

3 RELATIONAL EMBEDDINGS AS PROBABILISTIC DATABASES

We now tackle the primary goal of this work: to use probabilistic databases as the central formalism for doing reasoning with relational embeddings. We begin with some background.

3.1 RELATIONAL EMBEDDING MODELS

Suppose we have a knowledge base \(\mathcal{K}\) consisting of triples \((h_i, R_i, t_i)\), denoting a head entity, relation, and tail entity (equivalently \(R_i(h_i, t_i)\) in probabilistic database notation). Relational embedding models aim to learn continuous representations for both entities and relations, which together can be used to predict the presence of a triple.

\textbf{Definition 3.} Suppose we have a knowledge base \(\mathcal{K}\) consisting of triples \((h_i, R_i, t_i)\), with entities \(E\) and relations \(R\). Then a \textit{relational embedding model} consists of

- Real vectors \(v_R, v_e\) for all relations \(R \in \mathcal{R}\) and entities \(e \in E\)

- A scoring function \(f(v_h, v_R, v_t) \rightarrow \mathbb{R}\) which induces a ranking over triples

In general, these vectors may need to be reshaped into matrices or tensors before the scoring function can be applied. Table 1 gives some examples of models with the form their vector representations take, as well as their scoring functions.

3.2 PROBABILISTIC INTERPRETATIONS OF RELATIONAL EMBEDDINGS

Given a relational embedding model from Definition 3, if we want to give it a clear probabilistic semantics using our knowledge of probabilistic databases from Section 2, we need to find away to interpret the model as a probability distribution.

\(R(x, y)\) Score	\(R(x, y)\) Pr
\(A\ B\) -0.6	\(A\ B\) 0.35
\(B\ C\) 0.2	\(B\ C\) 0.55
\(A\ C\) 2.3	\(A\ C\) 0.91

Figure 3: An example of mapping a relational embedding to a probabilistic database using the sigmoid function.
The simplest approach is to choose some mapping function $g: \mathbb{R} \rightarrow [0, 1]$ which converts all the scores produced by the model’s scoring function into probabilities. This provides us marginal probabilities, but no obvious joint distribution. Again, we can make the simplest choice and interpret these probabilities as being independent. That is, we would essentially treat it as a probabilistic database with only binary relations, where the probabilities are determined using our mapping function. Figure 2 gives an example of such a conversion, using the sigmoid function as the mapping.

After doing this conversion, we can directly use Algorithm 1 to efficiently evaluate any safe query. This is a step in the right direction, but there are still two big issues here: firstly, as a simplifying assumption this triple-independence presents potential issues as discussed in Meilicke et al. [2019]. For example, suppose we have a relational model containing Works-In(Alice, London) and Lives-In(Alice, London); clearly these triples should not be independent. The second issue, which is perhaps even more critical for our purposes, is that even this assumption is not sufficient for all queries to be tractable:

Theorem 2. Suppose we have a knowledge base K with entities E and relations R. Then, suppose we have a mapping function g and a relational embedding model represented by a scoring function f which is fully expressive. That is, for any configuration of marginal probabilities $P(R(h,t))$ over all possible triples, there is some assignment of entity and relation vectors such that $\forall R, h, t. \ g(f(v_h, v_R, v_t)) = P(R(h,t))$.

Then for any unsafe query Q, evaluating $P(Q)$ is a $\#P$-hard problem.

So in addition to problematic independence assumptions, Theorem 2 tells us that any sufficiently expressive relational embedding model using the mapping interpretation described above will certainly fail on any unsafe query.

4 TRACTOR

The main takeaway from Section 3 is that although useful, interpreting relational embedding models as providing marginals for probabilistic databases still has major challenges. While we do now have a probabilistic semantics for our relational embedding model, the fact that we used the model as a black box means that we wind up treating all triples as independent. This limits the expressiveness of the resulting probabilistic model, and comes with the issues previously discussed with treating all triples as independent. Furthermore, due to Theorem 2 we will always have some limitations in our querying capabilities as a result of this black box usage.

These limitations motivate the search for a model which will not be treated as a black box within the framework of our probabilistic database semantics. Rather than simply have an arbitrary statistical model which fills in our probabilistic database, we would like to actually exploit properties of this statistical model. To put it another way: a fundamental underpinning of relational embedding models such as DistMult [Yang et al., 2014] or TransE [Bordes et al., 2013] is that they make simplifying assumptions about how entity and relation vectors relate to link prediction. In Section 3, our probabilistic interpretations of these models had no way of knowing about these simplifying assumptions; now we are going to write them down in the language of PDBs.

4.1 FACTORIZING IN PROBABILISTIC DATABASES

Relational embedding models such as DistMult [Yang et al., 2014] and ComplEx [Trouillon et al., 2016], or any model derived from the canonical Polyadic decomposition [Hitchcock, 1927] are essentially making an assumption about the way in which the tensor representing all triples factorizes. A similar idea has been used in the context of first order logic, where boolean matrices representing binary relations are rewritten in terms of unary relations to make inference tractable [Van den Broeck & Darwiche, 2013]. We will now apply this technique of rewriting binary relations into unary relations as the basis for our relational embedding model.

Suppose we have a binary relation $R(x, y)$, and our model defines a single random variable $E(x)$ for each entity $x \in E$ as well as a random variable $T(R)$ for relation R. Then we assume that the relation R decomposes in the following way:

$$\forall x, y. R(x, y) \iff E(x) \land T(R) \land E(y)$$ (3)
We are assuming that all of the model’s newly defined variables E and T are independent random variables, so Equation 3 implies that

$$P(R(x, y)) = P(E(x)) \cdot P(T(R)) \cdot P(E(y))$$

Figure 4.1 gives an example of probabilities for E and T, with corresponding probabilities for R subject to Equation 3. For example, we compute $P(R(A, B))$ by:

$$P(R(A, B)) = P(E(A)) \cdot P(T(R)) \cdot P(E(B)) = 0.04$$

To incorporate a relation S, we would define an additional $T(S)$ – no new random variable per entity is needed.

There are a few immediate takeaways from the rewrite presented in Equation 3. Firstly, as a result of sharing dependencies in the model, we no longer have that all triples are independent of each other. For example $R(A, B)$ and $S(A, C)$ are not independent as they share a dependency on the random variable $E(A)$. Secondly, we are critically no longer subject to the querying limitations described by Theorem 2. In fact, any UCQ can now be computed efficiently. This will be proven in Section 4.4 but intuitively binary relations must be involved for Algorithm 1 to get stuck, and our rewrite allows us to avoid this.

Of course, the major drawback is that Equation 3 describes an incredibly simple and inexpressive embedding model – we can only associate a single probability with each entity and relation! We address this next.

4.2 Mixtures

In a situation such as ours where we have a simple model which is efficient for some task but not expressive, the standard machine learning approach is to employ a mixture model. For example, while probability trees [Chow & Liu, 1968] provide efficient learning and inference, they are limited in their expressive capability: so a commonly used alternative is a mixture of trees [Meila & Jordan, 1998]. Similarly, while Gaussians are limited in their expressiveness, mixture of Gaussian models [Titterington et al., 1985] have found widespread use throughout machine learning. These mixtures can typically approximate any distribution given enough components.

In our case, we will take the model described in Equation 3 as our building block, and use it to create a mixture model. For a d-dimensional mixture, we have tables T_i, E_i such that for each element i of the mixture we have

$$\forall x, y. R_i(x, y) \iff E_i(x) \land T_i(R) \land E_i(y)$$

Then, to compute the probability of a fact $R(x, y)$ (or a more complex query), we simply average over the components of the mixture. This mixture is what we call TRACTOR, and will be used throughout the rest of the paper. Figure 4.2 gives an example 2-dimensional TRACTOR model, including probabilities for E_1, E_2, T_1, T_2, and corresponding probabilities for materialized relation R. For example, we compute $P(R(A, B))$ by:

$$P(R(A, B)) = \frac{1}{2} (P(E_1(A))P(T_1(R))P(E_1(B)) + P(E_2(A))P(T_2(R))P(E_2(B))) = 0.17$$

Defining TRACTOR in this way means that we have a model which is sufficiently expressive for predicting facts, while also allowing for efficient inference across a wide range of queries due to the structure of Equation 3.

4.3 Equivalence to DistMult

We know from the decomposition properties of Equation 3 and Algorithm 1 that TRACTOR supports efficient inference on a wide variety of queries and has a consistent probabilistic semantics, so the next question we should ask is how effective it is link prediction. Recall from Table 1 that for entity embeddings $v_h, v_t \in \mathbb{R}^d$ and relation embedding $v_R \in \mathbb{R}^d$, the score of a potential triple under DistMult is $\langle v_h, v_R, v_t \rangle$. This is the sum over all dimensions of the elementwise product: precisely what TRACTOR computes (with an additional $\frac{1}{d}$ factor due to averaging rather than summing). This means that provided the necessary constraints on the embeddings $(v_h, v_t, v_R \in [0, 1]^d)$, DistMult and TRACTOR will make exactly the same predictions.

4.3.1 Positive and Negative Weights

While we have seen that the computation used for link prediction in TRACTOR is identical to that of DistMult, there remains a key difference: TRACTOR has a probabilistic semantics, and thus all parameters must be probabilities. One option here is to indeed force all parameters to be positive, and live with any performance loss incurred. Another option is allowing for negative probabilities in E, T meaning that we can achieve exactly the same link prediction results as DistMult, whose predictive power is
well documented [Yang et al., 2014]. It has been previ-
ously shown that probability theory can be consistently
extended to negative probabilities [?], and their usefulness
has also been documented in the context of probabilistic
databases [?]. Furthermore, by adding a simple disjunctive bias term, we can ensure that all fact predictions are indeed positive probabilities. In Section 5 we will explore both options.

4.4 QUERY EVALUATION

Finally, we explore query evaluation for the TrACTOR model. Suppose we have some arbitrary UCQ Q over binary and unary relations, and we would like to compute P(Q) where all binary relations are given by a TrACTOR model. First, we substitute each binary relation according to Equation 3 using TrACTOR tables E and T. What remains is a query Q′ which contains only unary relations.

Theorem 3. Suppose that Q′ is a UCQ consisting only of unary relations. Then Q′ is safe.

Proof. We prove this by showing that Algorithm 1 never fails on Q′. We begin with a couple of key observations.

1. For each CQ in Q′, relations can only appear once. This is because the relations are all unary, and thus any repeated relations will imply each other. For example \(x, y, R(x) \land R(y) \) is equivalent to \(\exists x. R(x) \).

2. If Q′ can not be be rewritten as a conjunction of UCQs, each CQ must contain a single quantified variable. This is because if a CQ does contain more than one variable, observation 1 tells us there must be a way to split the CQ, which would allow us to rewrite the UCQ as a conjunction of multiple UCQs.

These two observations tell us that if we ever reach step 5 of Algorithm 1, each CQ has only has a single variable, meaning we must have a separator. Thus Algorithm 1 never fails and Q′ must be safe.

Thus we can evaluate any UCQ efficiently on TrACTOR using Algorithm 1.

5 EMPIRICAL EVALUATION

We will now empirically investigate the effectiveness of TrACTOR as a relational embedding model. As discussed in Section 4.3 for the purposes of link prediction TrACTOR actually turns out to be equivalent to DistMult. While it does have certain limitations regarding asymmetric relations, the overall effectiveness of DistMult for link prediction has been well documented [Yang et al., 2014], so we will not be evaluating TrACTOR on link prediction. Instead, we will focus on evaluating TrACTOR performance when computing more advanced queries. While training the models we evaluated, we confirmed that training TrACTOR and DistMult produced the same embeddings and link prediction performance.

5.1 QUERIES & COMPARISON TARGET

As our comparison for evaluation, we will use the graph query embeddings (GQE) [Hamilton et al., 2018] framework and evaluation scheme. Fundamentally, GQE differs from TrACTOR in its approach to query prediction. Where TrACTOR is a distribution representing beliefs about the world which can then be queried to produce predictions, GQE treats queries as their own separate prediction task and defines vector operations to specifically be used for conjunctive query prediction. The consequence of this is that where TrACTOR has a single correct way to answer any query (the answer induced by the probability distribution), a method in the style of GQE needs to find a new set of linear algebra tools for each type of query.

In particular, GQE uses geometric transformations as representations for conjunction and existential quantifiers, allowing it to do query prediction via repeated application of these geometric transformations. [Hamilton et al., 2018] details further exactly which queries are supported, but put simply it is any conjunctive query that can be represented as a directed acyclic graph with a single sink.

To evaluate these models, the first question is which queries should be tested. We describe a query template as follows: R, S, T are placeholder relations, \(a, b, c \) placeholder constants, \(x, y, z \) quantified variables, and \(t \) is the parameterized variable. That is, the goal of the query is to find the entity \(t \) which best satisfies the query (in our framework gives the highest probability). Table 5.1 gives a series of example template CQs and UCQs. In
While the bio dataset provides our entities and relations, that each test query relies on at least one edge not present in the bio data. For this, we again follow the procedures from Hamilton et al. [2018]. First, we sample a 90/10 train/test split for the edges in the bio data. Then, we generate evaluation queries (along with answers) using both train and test edges from the bio dataset, but sample in such a way that each test query relies on at least one edge not present in the training data. This ensures that we can not template match queries based on the training data. For each query template we sample 10,000 queries for evaluation. For further details, including queries for which some edges are adversarially chosen, see Hamilton et al. [2018].

5.2 Dataset

For our dataset, we use the same choice in relational data as [Hamilton et al. 2018]. In that work, two datasets were evaluated on which were termed bio and reddit respectively. Bio is a dataset consisting of knowledge from public biomedical databases, consisting of nodes which correspond to drugs, diseases, proteins, side effects, and biological processes. It includes 42 different relations, and the graph in total has over 8 million edges between 97,000 entities. The reddit dataset was not made publicly available so we were unable to use it for evaluation.

5.2.1 Generating Queries

While the bio dataset provides our entities and relations, we need to create a dataset of conjunctive queries to evaluate on. For this, we again follow the procedures from Hamilton et al. [2018]. First, we sample a 90/10 train/test split for the edges in the bio data. Then, we generate evaluation queries (along with answers) using both train and test edges from the bio dataset, but sample in such a way that each test query relies on at least one edge not present in the training data. This ensures that we can not template match queries based on the training data. For each query template we sample 10,000 queries for evaluation. For further details, including queries for which some edges are adversarially chosen, see Hamilton et al. [2018].

5.3 Evaluation

For each evaluation query, we ask the model being evaluated to rank the entity which answers the query in comparison to other entities which do not. We then evaluate the performance of this ranking using a ROC AUC score, as well as an average percentile rank (APR) over 1000 random negative examples.

5.3.1 Baselines and Model Variants

We evaluate two versions of our model: TRACTOR indicates a model where the unary predicate probabilities are allowed to be negative, and a bias term is added to ensure all triples have positive predicted probability. TRACTOR+ indicates a model where unary predicate probabilities are constrained to be positive via squaring.

As baselines, we consider model variants from [Hamilton et al. 2018] which do not include extra parameters which must be explicitly trained on queries, as our model contains no such parameters. These models are each built on a pre-existing relational embedding model (Bi-linear [Nickel et al. 2011], DistMult [Yang et al. 2014], and TransE [Bordes et al. 2013] respectively) which is used for link prediction and composition, as well as a mean vector operator used for queries. For example, for query Q5, these baselines will make a prediction for that satisfy \(R(a, t) \) and \(S(b, t) \) separately, and then take the mean of the resulting vectors.

5.3.2 Training

All model variants and baselines were trained using the max-margin approach with negative sampling [Mikolov et al. 2013] which has become standard for training rela-

Table 2: Example CQs and UCQs
\(Q_1(t) = R(a, t) \)
\(Q_2(t) = \exists x. R(a, x) \)
\(Q_3(t) = \exists x. R(a, x) \land S(x, t) \)
\(Q_4(t) = \exists x, y. R(a, x) \land S(x, y) \land T(y, t) \)
\(Q_5(t) = R(a, t) \land S(b, t) \)
\(Q_6(t) = R(a, t) \land S(b, t) \land T(c, t) \)
\(Q_7(t) = \exists x. R(a, x) \land S(x, t) \lor \exists y. R(a, y) \land T(y, t) \)
\(Q_8(t) = \exists x. R(a, x) \land S(x, t) \land T(b, t) \)
\(Q_9(t) = \exists x. R(a, x) \land S(b, x) \land T(x, t) \)
\(Q_{10}(t) = \exists x_1, y_1. R(a, x_1) \land S(x_1, y_1) \lor \exists x_2, y_2. S(x_2, y_2) \land T(y_2, t) \)
\(Q_{11}(t) = \exists x, y, z. R(a, x) \land S(x, y) \land T(y, z) \)
Table 3: Overall query performance on bio dataset

Method	AUC	APR
Bilinear	79.2	78.6
DistMult	86.7	87.5
TransE	78.3	81.6
TRACTOR+	75.0	84.5
TRACTOR	82.8	86.3

Parameters were optimized using the Adam optimizer [Kingma & Ba, 2014], with an embedding dimension of 128, a batch size of 256, and learning rate of 0.01.

5.3.3 Results & Discussion

Table 3 presents AUC and APR scores for all model variants and baselines on the bio dataset. TRACTOR and TRACTOR+ both perform better than TransE and Bilinear based baselines in APR, and are competitive with the DistMult baseline. Evaluating by AUC the performance is slightly worse, but TRACTOR remains better than or comparable to all baselines. These results are very encouraging as TRACTOR is competitive despite the fact that it is representing much more than just conjunctive query prediction. TRACTOR represents a complete probability distribution: effective and efficient query prediction is simply a direct consequence.

Another interesting observation to make here is the gap between TRACTOR and TRACTOR+, where the only difference is whether the parameters are constrained to be positive. The difference in performance here essentially comes down to the difference in performance on link prediction: not being allowed to use negative values makes the model both less expressive and more difficult to train, leading to worse performance on link prediction. We did not find that increasing the number of dimensions used in the representation to make up for not having negative values helped significantly. Finding ways to improve link prediction subject to this constraint seems to be valuable for improving performance on query prediction.

6 DISCUSSION, FUTURE & RELATED WORK

Querying Relational Embeddings Previous work studying queries beyond link prediction in relational embedding models proposed replace logical operators with geometric transformations [Hamilton et al., 2018], and learning new relations representing joins [?]. Our work differs from these in that we formalize an underlying probabilistic framework which immediately defines algorithms for doing querying, rather than treating querying as a new learning task.

Symmetric Relations A limitation of the TRACTOR model which also appears in models like DistMult [Yang et al., 2014] and TransE [Bordes et al., 2013] is that since head and tail entities are treated the same way, they can only represent symmetric relations. This is, of course, problematic as many relations we encounter in the wild are not. Solutions to this include assigning complex numbers for embeddings with an asymmetric scoring function [Trouillon et al., 2016], and keeping separate head and tail representations but using inverse relations to train them jointly [Kazemi & Poole, 2018]. Borrowing these techniques presents a straightforward way to extend TRACTOR to represent asymmetric relations.

Incomplete Knowledge Bases One of main goals of this work is to overcome the common issue of incomplete knowledge. That is, what do we do when no probability at all is known for some fact. In this work, we directly incorporate machine learning models to overcome this. Another approach to this problem is to suppose a range of possibilities for our unknown probabilities, and reason over those. This is implemented via open-world probabilistic databases [Ceylan et al., 2016], with extensions to incorporate background information in the form of ontological knowledge [Borgwardt et al., 2019] and summary statistics [Friedman & Van den Broeck, 2019].

Increasing Model Complexity TRACTOR is a mixture of very simple models. While this makes for highly efficient querying, accuracy could potentially be improved by rolling more of the complexity into each individual model at the probabilistic database level. The natural approach to this is to follow Van den Broeck & Darwiche [2013] and replace our simple unary conjunction with a disjunction of such conjunctions. This raises interesting theoretical and algorithmic questions with potential for improving query prediction.

Further Queries Finally, there are further question one can ask of a PDB beyond the probability of a query. For example, Gribkoff et al. [2014] poses the question of which world (i.e. configuration of tuple truths) is most likely given a PDB and some constraints, while Ceylan et al. [2017] studies the question of which explanations are most probable for a certain PDB query being true. Extending these problems to the realm of relational embeddings poses many interesting questions.
Acknowledgements

We thank Yitao Liang, YooJung Choi, and Pasha Khosravi for helpful feedback. This work is partially supported by NSF grants #IIS-1943641, #IIS-1633857, #CCF-1837129, DARPA XAI grant #N66001-17-2-4032, and gifts from Intel and Facebook Research.

References

Abiteboul, S., Hull, R., and Vianu, V. Foundations of databases. 1995.

Bienvenu, M. Ontology-mediated query answering: Harnessing knowledge to get more from data. In IJCAI, 2016.

Blockeel, H. and Raedt, L. D. Top-down induction of logical decision trees. 1997.

Bordes, A., Usunier, N., García-Durán, A., Weston, J., and Yakhnenko, O. Translating embeddings for modeling multi-relational data. In NIPS, 2013.

Borgwardt, S., Ceylan, I. I., and Lukasiewicz, T. Ontology-mediated queries for probabilistic databases. In AAAI, 2017.

Borgwardt, S., Ceylan, I. I., and Lukasiewicz, T. Ontology-mediated query answering over log-linear probabilistic data. In AAAI, 2019.

Ceylan, I. I., Darwiche, A., and Van den Broeck, G. Open-world probabilistic databases. In KR, May 2016.

Ceylan, I. I., Borgwardt, S., and Lukasiewicz, T. Most probable explanations for probabilistic database queries. In IJCAI, 2017.

Chow, C. K. and Liu, C. N. Approximating discrete probability distributions with dependence trees. IEEE Trans. Information Theory, 14:462–467, 1968.

Dalvi, N. N. and Suciu, D. Efficient query evaluation on probabilistic databases. The VLDB Journal, 16:523–544, 2004.

Dalvi, N. N. and Suciu, D. The dichotomy of conjunctive queries on probabilistic structures. In PODS, 2007.

Dalvi, N. N. and Suciu, D. The dichotomy of probabilistic inference for unions of conjunctive queries. J. ACM, 59: 30:1–30:87, 2012.

den Heuvel, M. V., Ivanov, P., Gatterbauer, W., Geerts, F., and Theobald, M. Anytime approximation in probabilistic databases via scaled dissociations. In SIGMOD Conference, 2019.

Fink, R. and Olteanu, D. Dichotomies for queries with negation in probabilistic databases. ACM Trans. Database Syst., 41: 4:1–4:47, 2016.

Friedman, T. and Van den Broeck, G. On constrained open-world probabilistic databases. In IJCAI, aug 2019.

Gribkoff, E. and Suciu, D. Slimshot: In-database probabilistic inference for knowledge bases. PVLDB, 9:552–563, 2016.

Gribkoff, E., Van den Broeck, G., and Suciu, D. The most probable database problem. Proc. BUDA, 2014.

Hamilton, W. L., Bajaj, P., Zitnik, M., Jurafsky, D., and Leskovec, J. Embedding logical queries on knowledge graphs. In NeurIPS, 2018.

Hinrichs, T. and Genesereth, M. Herbrand logic. Technical Report LG-2006-02, Stanford University, 2006.

Hitchcock, F. L. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics, 6 (1-4):164–189, 1927.

Kazemi, S. M. and Poole, D. Simple embedding for link prediction in knowledge graphs. In NeurIPS, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

Meila, M. and Jordan, M. I. Learning with mixtures of trees. J. Mach. Learn. Res., 1:1–48, 1998.

Meilicke, C., Chekol, M. W., Ruffinelli, D., and Stuckenschmidt, H. Anytime bottom-up rule learning for knowledge graph completion. In IJCAI, 2019.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.

Nickel, M., Tresp, V., and Kriegel, H.-P. A three-way model for collective learning on multi-relational data. In ICML, 2011.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. A review of relational machine learning for knowledge graphs. Proceedings of the IEEE, 104:11–33, 2015.

Reiter, R. On closed world data bases. In Readings in artificial intelligence, pp. 119–140. Elsevier, 1981.

Roth, D. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273–302, 1996.

Suciu, D., Olteanu, D., Christopher, R., and Koch, C. Probabilistic Databases. Morgan & Claypool Publishers, 2011.

Titterington, D., Smith, A., and Makov, U. Statistical Analysis of Finite Mixture Distributions. Wiley, New York, 1985.

Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and Bouchard, G. Complex embeddings for simple link prediction. In NeurIPS, 2016.

Van den Broeck, G. and Darwiche, A. On the complexity and approximation of binary evidence in lifted inference. In Advances in Neural Information Processing Systems 26 (NIPS), December 2013.

Van den Broeck, G. and Suciu, D. Query Processing on Probabilistic Data: A Survey. Foundations and Trends in Databases. Now Publishers, August 2017.

Yang, B., tau Yih, W., He, X., Gao, J., and Deng, L. Embedding entities and relations for learning and inference in knowledge bases. CoRR, abs/1412.6575, 2014.