Effects of Thermal Processing on the Nutritional, Antinutrient, and \textit{In Vitro} Antioxidant Profile of \textit{Monodora myristica} (Gaertn.) Dunal Seeds

Anna Ngozi Agiriga1,2 and Muthulisi Siwela1

1School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa
2Department of Food Science and Technology, Federal University Oye-Ekiti, Ekiti State 371010, Nigeria

\textbf{ABSTRACT:} Proximate, minerals, and anti-nutrient content of raw \textit{Monodora myristica} seed and \textit{Monodora myristica} seeds boiled and roasted for 10, 20, and 30 min, respectively were assessed. In addition, the effects of boiling and roasting for 10, 20, and 30 min on the antioxidant properties of \textit{Monodora myristica} seed extract were evaluated. Results showed that moisture, ash, fat, and crude protein were significantly reduced by boiling and roasting. Acid and neutral detergent fibres were significantly increased by roasting and boiling, with boiling causing a more significant increase than roasting. Processing resulted in significant decrease in magnesium, potassium, phosphorus, zinc, copper, manganese, and iron while calcium levels were unchanged. Total phenolics levels of raw seeds [(21.94 mg/100 g gallic acid equivalent (GAE)] showed a remarkable decrease (18.64 mg/100 g GAE) when the boiling time was increased to 30 min. Free fraction phenolics increased with thermal processing whereas bound phenolics decreased. Boiling was more effective in reducing anti-nutrients than roasting. Extracts of \textit{Monodora myristica} seeds possess significant 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) free radical scavenging properties in a concentration-dependent manner, and this was significantly reduced after thermal processing. \textit{Monodora myristica} seed extracts could be pharmaceutically exploited for antioxidant properties, and roasting may be preferred to retain the nutrient composition and antioxidant properties of \textit{Monodora myristica} seeds.

Keywords: \textit{Monodora myristica}, anti-nutrient, antioxidant properties, total phenol, thermal processing

INTRODUCTION

\textit{Monodora myristica} (Gaertn.) Dunal is a useful but under-utilized tropical tree from the \textit{Annonaceae} or custard apple family of flowering plants (1,2). It is variously known as \textit{Iwor} amongst the Itsekiris; \textit{Ikposa} (Benin); \textit{Ehiri} or \textit{Ehuru} (Ibo); \textit{Gujia} dan \textit{miya} (Hausa), \textit{Arivo}, \textit{arigbo}, \textit{Abo} \textit{lakoshe}, or \textit{eyi naghose} (Yoruba); \textit{Ehinawosin} (Ikale), \textit{Uyengben} (Edo), and \textit{Fausse noix de muscade} (French) (3-5). The most economically important parts are the seeds (3,4). The aromatic seeds are antiemetic, aperient, stimulant, stomachic, and tonic, and they are added to medicines to impart stimulating properties (6-8). The seeds also possess magnesium, calcium, potassium, phosphorus, manganese, iron, sodium, copper, aluminium, and zinc (1,9). It also possesses an impressive range of medicinal and antioxidant properties and has several applications in traditional medicine, which is primarily based on indigenous knowledge systems (IKS) (10).

\textit{Monodora myristica} seeds are processed locally (in the sub-Sahara African regions) using various IKS-based processing techniques like boiling, roasting, and frying for varying lengths of time. They are then dehulled and crushed into flour for use in local dishes, such as the West African “kunu”, “tuwo”, and “waina”. Some natives simply dehull using stone and crush the raw seed for use in local dishes (10). Different processing techniques utilized often have effects on the levels of nutrients and bioactives (11). These processing treatments are also effective in eliminating the anti-nutritional factors in foods (12). Research on the effects of different processing methods on the chemical composition and organoleptic properties of African Nutmeg (\textit{Monodora myristica}) dealt with a single boiling and roasting time of 20 and 15 min, respectively (13). Also, the antioxidant activity of the flavonoid fraction of the seed extract of \textit{Monodora myr-
MATERIALS AND METHODS

Reagents and chemicals
Unless otherwise stated, all the chemicals/reagents used were of analytical grade from Sigma-Aldrich Co., Ltd. (Steinheim, Germany).

Plant materials
Monodora myristica seeds harvested wild at Oke Oro Ekiti were purchased on the 20th May, 2016 from Oja Oba (Kings market) at Ado-Ekiti, Ekiti, Nigeria.

Sample preparation
The seeds (1.5 kg) were cleaned and extraneous materials like dry leaves and stones removed. Samples were divided into seven portions (213 g each) and prepared using the method of Mbah et al. (14) with slight modifications. The first portion was raw and served as the control. The second, third, and fourth portions were boiled (100°C) for different times (10, 20, and 30 min) on the nutritional, chemical, and in vitro antioxidant properties of Monodora myristica seeds with a view to providing information towards effective utilization of the seed in food applications. This information will be used for optimal nutrient retention, thereby improving the nutritional status of consumers. Raw seeds of Monodora myristica were used as control.

Preparation of methanolic extracts
Flour samples were extracted (1:5 w/v) using methanol. Extracts were concentrated to dryness under reduced pressure in a rotary evaporator (40°C). Dried extracts were re-dissolved in methanol for further experiments.

Determination of proximate, macro, and micro mineral elements composition
Standard methods from the Association of Analytical Chemists (AOAC) (15) were used for the analysis of moisture, acid detergent fibre, neutral detergent fibre, ash, and crude fat contents. Nitrogen was determined using the micro-Kjeldahl method. Crude protein content was estimated by multiplying %N by a factor, 6.25. All analyses were carried out in duplicate. Micro and macro mineral contents were determined in duplicate using an atomic absorption spectrophotometer (210 VGP, Buck Scientific, East Norwalk, CT, USA).

Tannin content determination
Quantitative determination of tannins was carried out using the modified vanillin-HCl method as described by Mazahib et al. (16). A 0.2 g of each flour sample was extracted with 10 mL 1% (v/v) HCl in methanol for 20 min in capped rotating test tubes. Vanillin reagent (0.5%, 5 mL) was added to the extract (1 mL), and the absorbance was read at 500 nm after 20 min. Oxalates and phytates were determined using the method of AOAC (17).

Total phenol content (TPC) determination
Phenols were determined according to Hertog et al. (18), with slight modifications. Briefly, 0.2 g of Monodora myristica flour was mixed with 10 mL methanol [99.8% (v/v)] and vortexed for 30 s. The mixture was left overnight at room temperature to extract the free phenols and subsequently filtered through Whatman® no. 1 filter paper. Bound phenols were released from the remaining flour residue by acid hydrolysis. A 10 mL portion of acidified (2 M hydrochloric acid) 60% (v/v) aqueous methanol was added to each sample, which was then incubated at 90°C for 90 min. Samples were allowed to cool before the supernatant was filtered and analyzed for phenols. Free and bound phenol concentrations were determined by a spectrophotometer at 765 nm. Milliliters of distilled water, 1 mL Folin-Ciocalteu reagent, 10 mL 7% sodium carbonate, and 8 mL distilled water was added to 1 mL of the extract. The solution was incubated for 3 h in a...
dark room and the absorbance read. The calibration curve was plotted by mixing 1 mL aliquots of 50, 100, 150, 200, 250, 300, 350, 400, and 450 µg/mL gallic acid solutions with 5.0 mL of Folin-Ciocalteu reagent (diluted tenfold) and 4.0 mL of sodium carbonate solution (75 g/L). The absorbance was measured after 30 min at 765 nm. The amount of phenols in the seed extract was expressed as gallic acid equivalents (GAE).

Determination of in vitro antioxidant activity Scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH): The free radical scavenging activities (FRSA) of the methanolic extracts against DPPH were evaluated according to the method of Gyamfi et al. (19) with slight modifications. One mL of the extract was mixed with 1 mL of the 0.2 mM methanolic solution of the DPPH radicals. The mixture was vortexed thoroughly and left in the dark for 30 min. The absorbance was measured with a Shimadzu UV 1800 spectrophotometer (Shimadzu, Kyoto, Japan) with wavelength set at 517 nm.

\[
\text{DPPH FRSA} = \left(\frac{A_0 - A_1 - AS}{A_0} \right) \times 100
\]

where \(A_0\) is absorbance of the control solution containing only DPPH, \(A_1\) is absorbance in the presence of extract in DPPH solution, and \(AS\) is the absorbance of the sample extract solution without DPPH.

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity: To determine ABTS radical scavenging assay, the method of Re et al. (20) was adopted. The stock solutions included 7 mM ABTS solution and 2.4 mM potassium persulfate solution. The working solution was then prepared by mixing the two stock solutions in equal quantities and allowing them to react for 12 h at room temperature in the dark. The solution was diluted by mixing 1 mL ABTS solution with 60 mL methanol to obtain an absorbance of 0.706±0.001 units at 734 nm using a spectrophotometer. Fresh ABTS solutions were prepared for each assay. Plant extracts (1 mL) were allowed to react with 1 mL of the ABTS solution, and the absorbance was measured at 734 nm after 7 min using the spectrophotometer.

\[
\text{ABTS FRSA} \% = \left(\frac{A_0 - AS}{A_0} \right) \times 100
\]

where \(A_0\) is the absorbance of ABTS radical+methanol and \(AS\) is the absorbance of ABTS radical+sample extract.

Statistical analysis
All data were expressed as the mean±standard deviation (SD). The Statistical Package for Social Sciences (SPSS, version 20, SPSS Inc., Chicago, IL, USA) was used to obtain mean and standard deviations. Analysis of variance (ANOVA) was done and judged for significance at \(P \leq 0.05\). Means were separated using Duncan’s multiple range test (DMRT).

RESULTS AND DISCUSSION
Effect of cooking methods on nutritional composition of Monodora myristica seeds
The proximate analysis of raw and processed Monodora myristica seeds are presented in Table 1. Moisture, ash, fat, and crude protein contents were significantly \((P \leq 0.05)\) reduced by boiling and roasting. The slight differences in proximate analysis of raw Monodora myristica seeds in comparison with proximate compositions reported by Ehirim Fidelis et al. (13) and Ekeanyanwu et al. (9) could be due to variations in environmental and soil conditions (21). However, they are in agreement with the findings of Enwereuzoh et al. (22), Burubai et al. (1), and Zaragozá (23). The fat content of the control (46.4%) had the highest value when compared to the processed samples. This means that treatment with Monodora myristica do not improve the fat content of the seeds. The fat content of the control and processed samples is higher when compared to the fat content of soybean seeds (22.7%) (24), but lower than that of castor seed and sesame seed, respectively (50%) (25). The result indicates that raw and processed Monodora myristica seeds are a better source of oil than soybean seed, hence it could be grouped under oil rich plant foods. Its seeds could also be a source of vegetable oil for domestic and industrial purposes. Fat is important in diets because it promotes fat soluble vitamin absorption. It is a high energy nutrient and does not add bulk to the diet (26).

The moisture content of the raw and processed seeds ranged from 6.7∼9.0% (Table 1). Processing reduced the moisture content of Monodora myristica seeds when compared to that of the raw sample. However, research had shown that low moisture content of food samples is a desirable phenomenon since it reduces microbial activity (27). Low moisture content of these seeds is an indicator that the seeds may not support the growth of microorganisms as high moisture content hastens food spoilage and enhances microbial growth (28,29). Oyedeji et al. (30) reported moisture content of 10.1% for flame of forest (Delonix regia) seeds while Akpabio (31) reported moisture content of 25.2% for almond (Terminalia catappa) seeds.

The level of crude protein found in raw and processed Monodora myristica seeds can qualify it as a good source of protein, if bio-available and easily digestible by the body. Ash content signifies the level of mineral present in the
sample (31). The slightly lower value of ash and crude protein in boiled *Monodora myristica* seeds as compared to the raw and roasted form that recorded in this research might be as a result of leaching of minerals and soluble proteins into the boiling water (43). A similar observation was made by Chukwuma et al. (32) for yellow qual-

protein maize and Adeparusi (33) for lima beans (\(x^2\)) was made by Chukwuma et al. (32) for yellow qual-

Fibre is important for the physiological role of mainte-

nation of the intestinal tract (37). Diets with a high con-

centration of fibre have a positive effect on health since their

Values with different letters (a-e) along the row are significan-

tly different at \(P \leq 0.05\). Values are expressed as mean±SD.

Parameters	Raw	R10	R20	R30	B10	B20	B30
Moisture	8.96±0.09c	7.39±0.27b	6.84±0.40bc	7.05±0.12bc	6.95±0.35bc	6.81±0.78bc	6.72±0.11c
Ash	3.46±0.04a	3.29±0.06b	3.12±0.01d	3.23±0.11bc	3.04±0.09ab	2.92±0.00c	2.89±0.01a
Fat	46.36±3.02	41.15±1.82	40.06±0.20	40.31±1.63	45.80±1.13	44.76±1.14	35.86±2.14d
ADF	46.14±1.41	52.03±0.80	51.54±2.05	53.73±0.57	56.78±0.02	57.20±0.48	58.30±1.72a
NDF	71.51±3.29	76.10±0.66	77.16±1.39	79.37±0.20	79.98±2.28	83.61±1.27	84.69±0.86a
Crude protein	23.32±0.27a	21.23±0.19b	21.11±0.20b	21.40±0.06b	20.42±0.13	20.44±0.06	19.92±0.17d

Macro-nutrients (%)

Ca	0.16±0.00a	0.15±0.00a	0.13±0.00a	0.13±0.00a	0.12±0.00a	0.14±0.00a	0.13±0.00a
Mg	0.32±0.01a	0.29±0.00b	0.28±0.00c	0.30±0.00b	0.25±0.00a	0.27±0.00b	0.26±0.01ab
K	1.03±0.01a	0.95±0.00b	0.96±0.01b	0.96±0.02b	0.87±0.00a	0.89±0.01c	0.83±0.03d
Na	0.04±0.01ab	0.00±0.00a	0.04±0.01ab	0.06±0.01a	0.00±0.00a	0.05±0.01ab	0.02±0.03bc
P	0.44±0.00c	0.38±0.00bc	0.41±0.00abc	0.42±0.01ab	0.34±0.00b	0.40±0.00bc	0.37±0.05cd

Micro-nutrients (mg/kg or ppm)

Zn	28.00±0.741a	20.00±1.41cd	26.00±4.24a	24.00±0.00abc	16.50±0.71a	22.00±1.41bc	16.00±0.00d
Cu	26.50±0.71a	24.00±1.41bc	25.00±0.00abc	26.00±0.00ab	21.50±0.71a	23.00±0.00b	23.00±1.41cd
Mn	14.00±0.00a	12.00±0.00a	11.50±0.71bc	12.00±0.00b	10.50±0.71a	11.50±0.71bc	11.00±0.00bc
Fe	44.00±0.00a	29.50±2.71cd	31.50±2.12ac	35.00±1.41b	26.00±0.00a	31.50±0.71bc	27.00±4.24ad

Values with different letters (a-e) along the row are significan-
tly different from each other at \(P \leq 0.05\).

Table 1. Nutritional composition of raw and processed *Monodora myristica* seeds

The results of the mineral analysis of processed and raw *Monodora myristica* seeds as presented in Table 1 show that there was no significant (\(P \geq 0.05\)) difference in the calcium content of raw and processed samples. Processing resulted in a significant decrease in magnesium, potassi-
um, phosphorus, zinc, copper, manganese, and iron. The decrease in some minerals may be attributed to losses caused by discarding the water used in boiling *Monodora myristica* seed. A similar observation was made by Adeniyi et al. (37) for beniseed. Akinnutumi et al. (43) reported that processing reduces the nutrient composi-
tion, and they attributed these reductions to solubilisation of nutrients and leaching as a result of boiling. Re-

RESULTS obtained in the current study are in agreement with the results obtained by Ehirim Fidelis et al. (13). Macro and micro elements are necessary for normal physiolog-
ical function, the deficiency of which causes serious metab-
olic abnormalities and the increase of which leads to
toxicity (44). The most abundant macro-minerals are
potassium, phosphorus, and magnesium. However, this
is not in agreement with the works of Aremu and Ibrahim (45) who showed that phosphorus, calcium, and magne-
sium were the most predominant minerals in Nigeria

plant foods. The implication of the mineral element con-

tent in *Monodora myristica* is that, it could serve as a nu-

trient supplement and in the formulation of infant’s food

show that when the seed is incorporated into food, it will

help to prevent many metabolic or digestive disorders

such as constipation and irritable bowels (37).
Effect of cooking methods on TPC and antioxidant activities of *Monodora myristica* seeds

The TPC of the methanolic extract of seeds of *Monodora myristica* ranged from 18.64±0.11 to 21.94±0.10 mg/g GAE (Table 2). However, the amount of these plant phytochemicals was higher in the raw extracts, and this value is in agreement with the value reported by Ogunmoyole et al. (46) but higher than the value (41.2%) reported by Ju et al. (54) for citrus peel extracts. Phenolic contents, including the free and bound forms, during processing depend on the type of fruit or vegetable (56). Heat treatment of table beets at 105 ○C for 15∼45 min either retained or increased free, bound and total phenolic content, total flavonoids, and total antioxidant activity (57). The same investigators also observed reductions in the antioxidant activity, phenolic contents, and total flavonoids (the majority from free flavonoids) in green beans at similar processing conditions of 100∼121○C for 10∼40 min.

Phenols possess significant antioxidant capacities that are associated with lower occurrence and lower mortality rates of several human diseases (48,49). The results of this study showed that thermal processing significantly decreased total phenolic contents, and the loss during the boiling treatment was significantly higher than that of roasting methods (P ≤ 0.05) (Table 2). The same observation was made by Otles and Selel (50) for chestnuts. Khalil and Mansour (51) also stated that cooking treatments significantly decreased the phenolic contents of faba beans. Barros et al. (52) reported that cooking could destroy the structures of phenolics and decrease their contents as some phenolic compounds are unstable and easily become non-antioxidative under heating. Therefore, cooking not only decreased the total phenolic contents, but also changed the type and relative amounts of phenolics (53). On the other hand, Adeniyi et al. (37) reported that the total phenolics levels of raw beniseed (0.2 mg/g) showed a remarkable increase as the boiling time was increased to 30 min with a level of 0.4 mg/g GAE. They reported that aqueous extracts of boiled be-

Table 2. Chemical/anti-nutrient properties of raw and processed *Monodora myristica* seeds

Sample	Tannins (mg/100 g)	Phytales (mg/100 g)	Oxalates (mg/100 g)	Bound phenol (mg/100 g GAE)	Free phenol (mg/100 g GAE)	Total phenol (mg/100 g GAE)
RAW	0.59±0.00	4.11±0.00	1.07±0.04	20.58±0.16	1.35±0.01	21.94±0.10
R10	0.34±0.01	3.16±0.01	1.03±0.00	20.26±0.21	1.39±0.00	21.63±0.04
R20	0.44±0.00	2.68±0.10	0.74±0.00	19.76±0.10	1.42±0.04	21.16±0.01
R30	0.18±0.04	2.15±0.00	0.60±0.01	18.82±0.00	1.79±0.16	20.64±0.07
B10	0.46±0.00	2.52±0.07	1.02±0.00	18.49±0.17	1.15±0.00	19.64±0.01
B20	0.19±0.06	2.29±0.06	0.54±0.00	17.84±0.10	1.48±0.01	19.31±0.09
B30	0.15±0.00	1.15±0.26	0.12±0.06	17.10±0.03	1.57±0.03	18.64±0.11
Permissible limits	20 mg/g	250−500 mg/g	3−5 mg/kg	NA	NA	NA

Values with different letters (a−g) along the column are significantly different from each other at P≤0.05. Values are expressed as mean±SD. R10−R30, roasted for 10, 20, and 30 min; B10−B30, boiled for 10, 20, and 30 min. NA, not applicable.

Antioxidant properties of raw and processed *Monodora myristica* seeds

DPPH radical scavenging properties: Fig. 1 shows the dose-response curve of DPPH radical scavenging property of the methanol extracts of the seeds of *Monodora myristica*. DPPH is a stable free radical, which accepts an electron or hydrogen radical to become a stable diamagnetic molecule. Antioxidants induce a reduction of DPPH radicals causing a decrease in the absorbance as a result of a visual discoloration from purple to yellow. Hence, DPPH is usually used as a substrate to evaluate antioxidative activity of antioxidants since such antioxidant have the ability to readily donate their hydrogen to DPPH (58). The DPPH radical scavenging activity of *Monodora myristica* seeds was concentration dependent.

At a concentration of 50 mg/mL, raw *Monodora myristica* seeds extract scavenged 65.5% DPPH radicals. This result is in agreement with the value reported by Ogunmoyole et al. (46) but higher than the value (41.2%) reported by

processed products.

Antioxidant activity, phenolic contents, and total flavonoids (the majority from free flavonoids) in green beans at similar processing conditions of 100-121°C for 10-40 min.
Fig. 1. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging ability of raw and processed Monodora myristica seed extracts. Values are mean±SD of triplicate determinations. Values with different letters (a, b) indicate significant difference at P≤ 0.05. R10−R30, roasted for 10, 20, and 30 min; B10−B30, boiled for 10, 20, and 30 min.

Fig. 2. 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging ability of raw and processed Monodora myristica seed extracts. Values are mean±SD of triplicate determinations. Values with different letters (a, b) indicate significant difference at P≤0.05. R10−R30, roasted for 10, 20, and 30 min; B10−B30, boiled for 10, 20, and 30 min.

Feyisayo and Oluokun (3). While the reason for these differences in radical scavenging activity is not completely understood, it could suggest differences in the phytochemical constituents, which are responsible for scavenging free radicals. Logically, extracts with higher phytochemical constituents have higher free radical scavenging effect. Many studies in the literature present positive correlations between the quantity of phenolic compounds and the DPPH free radical scavenging effect (47, 53). Furthermore, this can also be attributed to the solubility of the individual phytochemical in different solvents. Most of the phenols which might not be soluble in water may become soluble in ethanol or methanol hence they get extracted leading to increase in the phytochemical content and subsequent increase in radical scavenging activity.

ABTS radical scavenging activity: The methanol extracts of the seeds of *Monodora myristica* seeds were fast and effective scavengers of the ABTS radical (Fig. 2). ABTS, a protonated radical, has characteristic absorbance maxima at 734 nm, which decreases with the scavenging of the proton radicals (59). The scavenging of the ABTS radical by the extracts was found to be much higher than that of DPPH radical. Factors like stereoselectivity of the radicals or the solubility of the extract in different testing systems have been reported to affect the capacity of extracts to react and quench different radicals (60). Wang et al. (61) found that some compounds, which have ABTS radical scavenging activity, did not show DPPH scavenging activity.

Monodora myristica seed extracts were found to be very effective scavenger of ABTS radical, and the activity increased in a concentration dependent manner (Fig. 2). At 50 mg/mL, the extracts exerted the highest ABTS⁺ scavenging activities ranging from 42.1 to 65.7%. It is apparent that *Monodora myristica* is a good free radical scavenger, and it could effectively act as a primary antioxidant against free radicals and be considered a good source of natural antioxidant in preventing lipid peroxidation and protection from oxidative damage (62).

The DPPH and ABTS radical scavenging activity of *Monodora myristica* seed extract was significantly reduced (P≤0.05) after thermal processing. This may be due to the instability of strongly antioxidant phenolic compounds at high temperatures (63, 64). Reduction in antioxidant activity during roasting could have been a result of decomposition of larger molecular weight phenolic compounds, particularly tannins. High-tannin grains have been reported to exhibit higher antioxidant activity than low-tannin grains (65). Boiling and steaming caused a higher reduction in the antioxidant capacity of red pepper than stir-frying and roasting (66). Siddhuraju and Becker (67) also reported a decrease in % FRSA of dry heated cowpea samples. Also, the antioxidant activities of these samples may be linked to their TPC. For instance, raw *Monodora myristica* seed, which had the highest TPC (Table 2), had a relatively higher DPPH and ABTS FRSA than the other samples. According to recent reports, a highly positive relationship between total phenols and antioxidant activity appears to be the trend in many plant species (53). Phenolics are commonly known for their antioxidant effects. They react and capture free radicals thereby inhibiting oxidative stress. They are also commonly known to exhibit anti-allergic, anti-inflammatory, antimicrobial, and anticancer activity (68). It is therefore rational to believe that extracts, which contain a higher content of these important phytochemicals, would exhibit a higher free radical scavenging ability. These findings indicate that the processing methods used in the current study would contribute to a decrease in the health-pro-
moting potential of Monodora myristica due to reductions in antioxidant activity.

Effect of processing methods on anti-nutrient content of Monodora myristica seeds

The presence of anti-nutritional factors in foods hinders the efficient utilization, absorption, or digestion of some nutrients and thus reduces their bioavailability and nutritional quality (69,70). Tannins for instance interact with protein and cause a significant reduction in protein digestibility (71). The results of the current study demonstrated that boiling was more effective in the reduction of anti-nutritional factors than roasting (Table 2). The reason may be attributed to the fact that boiling led to a breakdown of the plant cell wall which permitted the leakage of cell contents including anti-nutrients (72) while roasting is a mere gradual evaporation processes (73). It could also suggest that the anti-nutrients leached into the water (13). The significantly (P ≤ 0.05) lower levels of oxalate, phytate, and tannins in the flours prepared from the boiled seeds and roasted seeds when compared with their values in the flour from raw seeds are in agreement with the reports by Igbedioh et al. (74), Inyang et al. (73), and Nwosu (75). Reduction in oxalate and phytate contents as a result of boiling and roasting of the seeds may lead to the improvement on the bioavailability of essential minerals like calcium, magnesium, and iron that usually form complexes with these compounds (76). Also, reduction in tannins may lead to the improvement on protein digestibility, better bioavailability, and utilization of amino acid contents in the flour protein (76).

The value of 0.6 mg/100 g of tannin in the raw Monodora myristica is slightly higher than the value of 0.5 mg/100 g reported by Ehirim Fidelis et al. (13) but lower than 0.64 mg/100 g reported by Ekeanyanwu et al. (9). Raw Monodora myristica seeds had the highest tannin value, which explains that processing methods (boiling and roasting) reduce the tannin content of Monodora myristica seeds. The same observation was made by for Mbah et al. (14) for Moringa oleifera seeds. However, tannin values obtained for the raw and processed seeds are lower than the critical value of 20 mg/g that could induce tannin toxicity (77). This suggests that the tannin content in the Monodora myristica seeds will have no adverse effect on consumers. Antinutritional effects of tannins include interference with the digestive processes either by binding enzymes or by binding to food components like proteins or minerals (78,79). Tannins also have the ability to complex with vitamin B12 (80).

Phytate levels of 1.2 to 4.1 mg/100 g were observed. The knowledge of phytate levels in foods is necessary because high levels could cause adverse effects on digestibility (81). Phytate forms stable complexes with copper, zinc, cobalt, manganese, iron, and calcium (9). Phytates consumption should be lowered as much as possible, ideally to 25 mg or less per 100 g or to about 0.03% of the phytate-containing food eaten (82). They are known to reduce bioavailability of minerals, impair protein digestibility caused by formation of phytic-protein complexes, and hinder absorption of nutrients due to damage to the pyloric caeca region of the intestine (83).

Oxalate levels of 0.1 to 1.1 mg/g were observed. These values are lower than the values of 2.5-3.6 mg/100 g reported by Mbah et al. (14) for Moringa oleifera seeds. Oxalate has been implicated in the formation of kidney stones and a decrease in calcium absorption (30), but consumption of seeds of low oxalate content such as Monodora myristica may not induce any of these.

In conclusion, boiling was more efficient in reducing the anti-nutrients content of Monodora myristica seeds implying that the anti-nutrients are more susceptible to moist heat than dry heat. The significant reduction of anti-nutrients during processing suggests that the nutritional components of Monodora myristica seeds will be more bioavailable. This research suggests that Monodora myristica has tremendous potential in alleviating protein energy malnutrition in Africa since it is nutritionally rich in protein. Methanolic extracts of raw and processed Monodora myristica seeds contained large amounts of phenolic acids and exhibited high scavenging activities. These in vitro assays indicate that this plant extract is a significant source of natural antioxidant, which might be helpful in preventing the progress oxidative stress. Further investigations need to be carried out to isolate and identify the antioxidant compounds present in the plant extract. Furthermore, the in vivo antioxidant activity of this extract needs to be assessed prior to clinical use.

ACKNOWLEDGEMENTS

The authors are thankful to the College of Agriculture, Engineering and Science, University of KwaZulu-Natal, for financial support.

AUTHOR DISCLOSURE STATEMENT

The authors declare no conflict of interest.

REFERENCES

1. Burubai W, Amula E, Daworiye PS, Suowari T, Nimame P. 2009. Proximate composition and some technological properties of African nutmeg (Monodora myristica) seeds. Electron J Environ Agric Food Chem 8: 396-402.

2. Ojiako OA, Igwe CU, Agha NC, Ogbuie CA, Onwuliri VA.
2010. Protein and amino acid compositions of Sphenostyli stenocarpa, Sesamum indicum, Monodora myristica and Afzelia africana seeds from Nigeria. Pak J Nutr 9: 368-372.

3. Feysiaoy A, Oluokun OO. 2013. Evaluation of antioxidant potentials of Monodora myristica (Gaernt) dunel seeds. Afr J Food Sci 7: 317-324.

4. Enabulele SA, Oboh FOJ, Uwadije EO. 2014. Antimicrobial, nutritional and phytochemical properties of Monodora myristica seeds. IOSR J Pharm Biol Sci 9: 1-6.

5. Abdou Boba A, Ponka R, Njintang Yanou N, El-Sayed MAH, Monett D, Scher J, Mboufong CM. 2016. Amino acid and fatty acid profile of twenty wild plants used as spices in Cameroon. Am J Food Technol Sci 4: 29-37.

6. Weiss EA. 2002. Spice crops. CABI Publishing, Wallingford, UK. p 102-103.

7. Udeala OK, Onyechi JO, Agu SI. 1980. Preliminary evaluation of dike fat, a new tablet lubricant. J Pharm Pharmacol 32: 6-9.

8. Iwu MM, Igboko OA, Onwuchekwa UA, Okunji CO. 1987. Evaluation of the antihepatotoxic activity of the biflavonoids of Garcinia kola seed. J Ethnopharmacol 21: 127-138.

9. Ekanyanwu CR, Ogu IG, Nwachukwu UP. 2010. Biochemical characteristics of the African nutmeg, Monodora myristica. Agric J 5: 303-308.

10. Agiriga A, Siwela M. 2017. Monodora myristica (Gaernt.) Dunal: a plant with multiple food, health and medicinal applications: a review. Am J Food Technol Sci 12: 271-284.

11. Ndidi US, Ndidi CU, Aimola IA, Bassa OY, Mankilik M, Adamu Z. 2014. Effects of processing (boiling and roasting) on the nutritional and antinutritional properties of Bambara groundnut (Vigna subterranea [L.] Verdc.) from Southern Kaduna, Nigeria. J Food Process 2014: 472219.

12. Nzewi DC, Egbooru ACC. 2011. Effect of boiling and roasting on some anti-nutrient factors of asparagus bean (Vigna sesquipedalis) flour. Afr J Food Sci Technol 2: 75-78.

13. Ehirim Fidelis N, Onugha Fidelis C, Agomuo Jude K. 2017. Effect of different processing methods on the chemical composition and organoleptic properties of African nutmeg (Monodora myristica). J Nutr Food Sci 5: 232-235.

14. Mbah BO, Empe PE, Ogbugu OF. 2012. Effect of cooking methods (boiling and roasting) on nutrients and anti-nutrients content of Moringa oleifera seeds. Pak J Nutr 11: 211-215.

15. AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists, Arlington, VA, USA. p 40-53.

16. Mazahib AM, Nuhu MO, Salawa IS, Babiker EE. 2013. Some nutritional attributes of bambara groundnut as influenced by domestic processing. Int Food Res J 20: 1165-1171.

17. AOAC. 2005. Official methods of analysis. 18th ed. Association of Official Analytical Chemist, Washington, DC, USA. p 38-46.

18. Hertog MGL, Hollman PCH, Venema DP. 1992. Optimization of a quantitative HPLC determination of potentially antitumoral flavonoids in vegetables and fruits. J Agric Food Chem 40: 1591-1598.

19. Gyamfi MA, Yonamine M, Aniya Y. 1992. Free-radical scavenging action of medicinal herbs from Ghana: Thornmingia sanguina on experimentally-induced liver injuries. Gen Pharmacol 32: 661-667.

20. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26: 1231-1237.

21. Horax R, Hettiarachchy N, Kannan A, Chen A. 2010. Proximate composition and amino acid and mineral contents of Mormordica charantia L. pericarp and seeds at different maturity stages. Food Chem 122: 1111-1115.

22. Enwereuozoh RO, Okafor DC, Uzoukwu AE, Ukanwone MO, Nwakaudu AA, Uyanwa CN. 2015. Flavour extraction from Monodora myristica and Tetrapleur e tetrapetra and production of flavoured popcorn from the extract. Eur J Food Sci Technol 3: 1-17.

23. Zaragoza FT. 2016. Classification of food spices by proximate content: principal component, cluster, meta-analyses. NERIE 8: 23-33.

24. Siulapwa N, Mwambungu A. 2014. Nutritional value of differently processed soybean seeds. Int J Res Agric Food Sci 2: 8-16.

25. Massoura E, Vereijjken JM, Kolster P, Derksen JTP. 1996. Isolation and functional properties of proteins from Crambe abyssinica oil seeds. In Progress in New Crops. Janick J, ed. ASHS Press, Alexandria, VA, USA. p 322-327.

26. Adeyeye EL, Ayejuyo OO. 1994. Chemical composition of Cola acuminata and Garcinia kola seeds grown in Nigeria. Int J Food Sci Nutr 45: 223-230.

27. Kordylas JM. 1990. Processing and preservation of tropical and sub-tropical foods. Macmillan Education Ltd., Hampshire, London, UK. p 109-119.

28. Azeze L, Adeove MD, Ganiyu OT, Abdulnasamli MO, Majoljbe TA, Lawal AT. 2012. Influence of microbial contamination on the antioxidant composition and free radical scavenging effects of fresh and decaying spices. Fountain J Nat App Sci 1: 55-64.

29. Fagbohun ED, Egbere AO, Lawal OU. 2012. Phytochemical screening, proximate analysis and in-vitro antimicrobial activities of melantholic extract of Cridoscolus acomitifolius leaves. Int J Pharm Sci Rev Res 13: 28-33.

30. Oyedeji OA, Azeze LA, Osifade BG. 2017. Chemical and nutritional compositions of flame of forest (Delonix regia) seeds and seed oil. S Afr J Chem 70: 16-20.

31. Akpabio UD. 2012. Evaluation of proximate composition, mineral element and anti-nutrient in almond (Terminalia carpa) seeds. Adv Appl Sci Res 3: 2247-2252.

32. Chukwuma OE, Taiwo OO, Boniface UV. 2016. Effect of the traditional cooking methods (boiling and roasting) on the nutritional profile of quality protein maize. J Food Nutr Sci 4: 34-40.

33. Adeparusi EO. 2001. Effect of processing on the nutrients and anti-nutrients of lima bean (Phaseolus lunatus L.) flour. Nahrung 45: 94-96.

34. FAO. 1982. Food composition table for use in Africa. Food and Agriculture Organization of the United Nations, Rome, Italy. p 32.

35. Pérez-Hidalgo M, Guerra-Hernández E, García-Villanova B. 1997. Determination of insoluble dietary fiber compounds: cellulose, hemicellulose and lignin in legumes. Arq Pharm 38: 357-364.

36. Fagbemir TN, Oshodi AA. 1991. Chemical composition and functional properties of full fat fluted pumpkin seed (Telfairia occidentalis) flour. Nig Food J 9: 26-32.

37. Adeniyi OO, Ibuken EO, Ogundobu Y, Seseigbe MI. 2013. Effect of boiling on the nutritional composition and antioxidant properties of beniseed (Sesamum indicum L.). Food Sci Qual Manage 11: 39-49.

38. Igwenyi IO, Isiguzo OE, Aja PM, Ugwu Okechukwu PC, Ezeari NN, Uraku AJ. 2015. Proximate composition, mineral content and phytochemical analysis of the African oil bean (Pentaclethra macrophylla) seed. American-Eurasian J Agric Environ Sci 15: 1873-1875.

39. Emelike NJT, Barber LI, Ebere CO. 2015. Proximate composition, mineral and functional properties of defatted and undefatted cashew (Anacardium occidentale Linn.) kernel flour. Eur J Food Sci Technol 3: 11-19.

40. Thibault JF, Lahaye M, Guillen F. 1992. Physicochemical properties of food plant cell walls. In Dietary Fibre - A Component of Food: Nutritional Function in Health and Disease. Schweizer TE,
Edwards CA, eds. Springer-Verlag, Berlin, Germany. p 21-39.
41. Herranz J, Vidal-Valverde C, Rojas-Hidalgo E. 1983. Cellulose, hemicellulose and lignin content of raw and cooked processed vegetables. J Food Sci 48: 274-275.
42. Beecher GR. 1999. Phytochemicals’ role in metabolism: effects on resistance to degenerative processes. Nutr Rev 57: 3-6.
43. Akinmutimi AH, Uzuegbu HO, Abasiekeong SF. 2009. Antioxidant activity of Andrographis paniculata and Cinnamomum verum. J Food Chem 112: 1411-1417.
44. Piluzza G, Bullitta S. 2011. Correlations between phenolic compounds and antioxidant capacity of citrus fruits. Food Chem 125: 1035-1041.
45. Aremu MO, Ibrahim H. 2014. Mineral content of some plant foods grown in Nigeria: a review. Food Sci Qual Manag 29: 73-89.
46. Ogunnayole T, Inaboye S, Akunna JO, Kade J. 2013. Differences in the phenolic antioxidant properties of ethanols and water soluble phytochemicals of false nutmeg (Monodora myristica) seeds. Int J Biochem Biotechnol 2: 253-262.
47. Pluzza G, Bullitta S. 2011. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharmacol Biol 49: 240-247.
48. Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, Steinberg FM. 2001. Walnut polyphenolics inhibit oxidation of human plasma and LDL oxidation. J Nutr 131: 2837-2842.
49. Djeridane A, Youssi M, Nadjemi B, Bouattousoua D, Stocker F, Vital N. 2006. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97: 654-660.
50. Otles S, Selek I. 2012. Effect of processing on the phenolic content and antioxidant activity of chestnuts. Qual Assur Saf Crops Foods 4: e3-e11.
51. Khalil AH, Mansour EH. 1995. The effect of cooking, autoclaving and germination on the nutritional quality of faba beans. Food Chem 54: 177-182.
52. Barros L, Baptista P, Correia DM, Morais JS, Ferreira ICFR. 2007. Effects of heat treatment on the oxalate levels of some Nigerian leafy vegetables. J Food Chem 100: 10-19.
53. Olgun M, Taylor JRN, de Milliano WAJ, Duodu KG. 2007. Occurrence and location of tannins in finger millet grain and antioxidant activity of different grain types. Cereal Chem 84: 169-174.
54. Hwang IG, Shin YJ, Lee S, Lee J, Yoo SM. 2012. Effects of different cooking methods on the antioxidant properties of red pepper (Capsicum annuum L.). Proc Nutr Food Sci 17: 286-292.
55. Siddharaju P, Becker K. 2007. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata) seed extracts. Food Chem 101: 10-19.
56. Balch JF, Balch PA. 2000. Prescription for nutritional healing. 3rd ed. Penguin Putnam Inc., New York, NY, USA. p 267-270.
57. Morrow B. 1991. The rebirth of legumes. Food Technol 45: 96-121.
58. Stanley DW. 1992. Hard beans—a problem for growers, processors, and consumers. Hort Technol 2: 370-378.
59. van der Poel AFV, Gravandeel S, Boer H. 1991. Effect of different processing methods on tannin content and in vitro protein digestibility of faba beans (Vicia faba L.). Anim Feed Sci Technol 33: 49-58.
60. Ogbadour EO, Makun HA, Afolayan AJA. 2006. The effect of processing and preservation methods on the mineral contents and anti-nutritional factors in seven accessions of Colocasia esculenta (L.) Schott growing in South Africa. J Food Compos Anal 23: 389-393.
61. Sato T, Schuster AR, Symons HE, Kariya K, Khanna MM. 1999. Antioxidant activity of processed soybean meal. J Agric Food Chem 47: 1766-1770.
81. Akintayo ET, Bayer E. 2002. Characterisation and some possible uses of Plukenetia conophora and Adenopus breviflorus seeds and seed oils. Bioresour Technol 85: 95-97.
82. Bello F, Salami-Jaji JI, Sani I, Abdulhamid A, Fakai IM. 2013. Evaluation of some antinutritional factors in oil-free white Sesamum indicum L. seed cake. Int J Food Nutr Saf 4: 27-33.
83. Francis G, Makkar HPS, Becker K. 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199: 197-227.