Alzheimer’s disease (AD) is a progressive and degenerative brain disease with dementia (Dubois et al., 2007). Although early studies found that senile plaques, aggregations of amyloid β (Aβ), and tangles, aggregations of tau protein, are the major hallmarks of AD and they could induce AD-like pathology (Selkoe, 1991), pharmacological prevention or supplements of AD progression are still not developed.

Aβ, which can be produced by the cleavage of amyloid precursor protein, a membrane protein, is toxic when it is aggregated into oligomeric and fibril forms (Hardy and Selkoe, 2002; Viola and Klein, 2015). Extracellular oligomeric Aβ can bind to various receptors and ion channels, resulting in their dysfunction (Hardy and Selkoe, 2002; Viola and Klein, 2015). These various dysfunctions induce neuronal and synaptic dysfunctions resulting in dementia (Hardy and Selkoe, 2002; Viola and Klein, 2015). Therefore, an agent that can prevent Aβ-induced dysfunction of various neuronal functions could be developed as a treatment or supplement for preventing the progression of AD.

Moreover, oligomeric Aβ can penetrate into intracellular space and cause dysfunction of various intracellular signaling systems (Hardy and Selkoe, 2002; Viola and Klein, 2015). These various dysfunctions induce neuronal and synaptic dysfunctions resulting in dementia (Hardy and Selkoe, 2002; Viola and Klein, 2015). Therefore, an agent that can prevent Aβ-induced dysfunction of various neuronal functions could be developed as a treatment or supplement for preventing the progression of AD.

Oligomeric Aβ is reported to induce aberrant synaptic plasticity, a cellular model of learning and memory (Walsh et al., 2002). Oligomeric Aβ blocks long-term potentiation (LTP) and facilitates long-term depression (LTD). Previous findings indicated that agents preventing Aβ-induced aberrant synaptic plasticity could ameliorate AD-like pathologies, includ-
ing memory impairment (Fu et al., 2014; Yan et al., 2016). Therefore, trials to find agents that can modulate Aβ-induced aberrant synaptic plasticity could be a good method for finding medicines or supplements for AD.

β-Amyrin is natural chemical compound of the triterpene class. β-Amyrin is widely distributed in plants and is a component of glycyrrhizin, which is a major bioactive compound with a wide range of pharmacological properties and is used worldwide as a natural sweetener. Moreover, β-amyrin is also present in the surface wax of the tomato fruit (Szakiel et al., 2012). Previous studies revealed that β-amyrin has anti-fibrotic effects on liver injury models (Maurya et al., 2014), anti-diabetic (Nair et al., 2014), anti-hyperglycemic, and hypolipidemic effects (Maurya et al., 2012; Santos et al., 2012). Moreover, β-amyrin induces angiogenesis (Ishii et al., 2015), memory (Park et al., 2014), and nociception (da Silva et al., 2011; Chicca et al., 2012). However, the effect of β-amyrin on AD has not been studied before. In the present study, we tested whether β-amyrin has anti-AD effects using electrophysiological and behavioral studies. Minocycline is a broad-spectrum tetracycline antibiotic antibiotic. Although minocycline has various side effects in clinical uses, various reports suggested minocycline as potential therapeutics with various positive effects in AD models (Noble et al., 2009; Ferretti et al., 2012; Amani et al., 2019). Therefore, we used minocycline as positive control.

MATERIALS AND METHODS

Materials

Aβ1 was purchased from AnaSpec (CA, USA). Anti-phospho-phosphatidylinositol-3-kinase (pPI3K), PI3K, phosphor-Akt (pAkt), and Akt antibodies were obtained from Cell Signaling Technology (MA, USA). β-amyrin and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA); LY294002 and U0126 were obtained from Tocris Bioscience (MO, USA).

Animals

We obtained male CD-1 mice (26-28 g, 6 weeks old) from SAMTAKO biokorea (Osan, Korea). Mice were housed in an animal facility for 1 week prior to the study for adaptation to the new environment. Four mice were kept in a cage and allowed free access to water and food (temperature: 23 ± 1°C, humidity: 60 ± 10%). The lights were on from 07:00 to 19:00. The institutional Animal Care and Use Committee of Dong-A University approved protocols for all animal experiments. All animal experiments followed the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978).

Hippocampal slice preparation and field EPSP recording

Artificial cerebrospinal fluid (ACSF) was comprised of 124 mM NaCl, 3 mM KCl, 26 mM NaHCO₃, 1.25 mM NaH₂PO₄, 2 mM CaCl₂, 1 mM MgSO₄, and 10 mM D-glucose. We rapidly removed the brain and isolated the mouse hippocampus. Mouse hippocampal tissues were sliced using a McIlwain tissue chopper. 400-μm-thick hippocampal slices were made and incubated in ACSF (20-25°C) for 1 h before the experiment.

Field potential responses were recorded in the Schaffer collateral-commissural pathway in area CA1. Stimuli (constant voltage) were delivered at 30 s intervals. The slope of the evoked field potential responses (fEPSP) was averaged from four consecutive recordings evoked at 30 s intervals. To induce LTP, two trains of high frequency stimulation (HFS: 100 Hz, 100 pulses in 1 s, 30 s interval) were introduced at 20 min after the initiation of a stable baseline. LTP was quantified by comparing the mean fEPSP slope at 80 min after the HFS period with the mean fEPSP slope during the baseline period and calculating the percentage change from the baseline. For the experiments, slices were incubated in ACSF containing vehicle or drugs for 30 min, and then further incubated in ACSF containing Aβ (1 μM) and/or drugs for 2 h before recording.

Western blot

Hippocampal slices were incubated in β-amyrin-containing ACSF for 30 min. Then the slices were further incubated in Aβ1 and β-amyrin-containing ACSF for 2 h. Afterwards hippocampal slices were homogenized in ice-chilled M-PER buffer (Thermo, Rockford, IL, USA), a containing protease inhibitor, and phosphatase inhibitor cocktail (Thermo). Debris was removed by microcentrifugation (4200×g, 20 min). Proteins from whole-cell lysates were quantified using a BCA protein assay kit following the manufacturer’s instructions. Samples (30 μg of protein) were then subjected to SDS-PAGE (12% gel) under reducing conditions. Proteins were transferred to PVDF membranes using transfer buffer (25 mM Tris-HCl, pH 7.4 containing 192 mM glycine and 20% v/v methanol) at 400 mA for 2 h (4°C). Next, blots were incubated for 2 h with blocking solution (5% skimmed milk for total proteins, 5% BSA for phosphorylated proteins) and then placed at 4°C overnight with 1:1000 dilutions of primary antibody. After serial washing, blots were incubated with a 1:5000 dilution of horseradish peroxidase-conjugated secondary antibody (Santa Cruz Biotechnology) for 1 h at room temperature.

![Fig. 1. The effect of β-amyrin on hippocampal long-term potentiation (LTP). LTP was measured in Schaffer-collateral pathway of the hippocampus. β-amyrin was pretreated for 2 h to hippocampal slices. Data represent as mean ± SD (n=7/group).](www.biomolther.org)
Aβ injection and drug administration

We added 1.0% NH₄OH directly to the Aβ₁₋₄₂ (35-40 µl to 0.5 mg peptide or 70-80 µl to 1 mg peptide). This solution was immediately diluted with 1X phosphate-buffered saline (PBS) to a concentration of 1 mg/ml. The solution was gently vortexed and sonicated at room temperature until fully miscible. Aβ₁₋₄₂ (10 µM) was incubated at 37°C for 24 h to obtain various soluble oligomeric species, and then 5 µl of Aβ or vehicle (PBS) was acutely injected into the left lateral ventricle by hand (Kim et al., 2016). β-Amyrin (4 mg/kg, p.o.) and vehicle (10% tween 80 solution) was administered from 1 day to 5 day after the Aβ injection (Park et al., 2014). Minocycline (30 mg/kg, i.p.) was used as a positive control (Jiang et al., 2015).

Behavioral tests

Object recognition test: Mice were habituated to the open field (25 cm×25 cm×25 cm) with an internal cue on one of the four walls for 10 min. Thirty minutes after the habituation; mice were re-placed in the same box with two distinct objects. The objects consisted of a glass box and a plastic cylinder. Mice were allowed to freely explore the objects freely for 10 min. After 2 h, mice were placed back in the same box for the test phase. The two objects were again present, but one object was now displaced to a novel spatial location. Mice were allowed to freely explore the environment and the objects for 5 min. Time spent exploring the displaced and non-displaced objects were measured. A preference ratio was calculated using the

![Behavioral tests](image)
following formula: \(T_{\text{displaced}} \) or \(T_{\text{non-displaced}}/(T_{\text{displaced}}+T_{\text{non-displaced}}) \times 100 \), where \(T_{\text{displaced}} \) is the time spent exploring the displaced object and \(T_{\text{non-displaced}} \) denotes the time spent exploring the non-displaced object.

Passive avoidance test: We conducted passive avoidance test using shuttle box, which is composed of separated dark and illuminating rooms. There was guillotine door between rooms. In a training trial, mouse was located in the illuminating room and then guillotine door was opened 10 s later. When the mouse entered the dark room through the guillotine door, the door closed and an electric shock (0.5 mA for 3 s) was delivered through grid floor (training trial). The following day, mouse was re-introduced in illuminating room. Step-through latency to enter the dark room was measured for a period of 300 s (test trial).

Tissue preparation and immunohistochemistry

Immediately after the behavioral tests, we rapidly removed the brain and washed it with phosphate buffer (100 mM, pH 7.4). The brains were fixed in phosphate buffer (50 mM, pH 7.4) containing 4% paraformaldehyde overnight, then immersed in 30% sucrose solution (in 50 mM PBS) and stored at 4°C until sectioning. Frozen sections were prepared in the coronal plane (30 \(\mu \)m) using a cryostat (Leica, Nussloch, Germany) and kept in storage solution (30% ethylene glycol and 30% glycerol in DW) at 4°C. Forty-five sections were obtained from each mouse. Five sections separated by 9-section intervals (270 \(\mu \)m) were used for each immunohistochemical analysis.

For immunohistochemistry, sections were incubated with blocking solution for 2 h, then with goat anti-doublecortin (DCX, 1:500, Santa Cruz Biotechnology) or rat anti-Ki67 (1:500, Santa Cruz Biotechnology) antibody overnight at 4°C. After washing in PBS, the sections were incubated with biotinylated secondary antibody (1:200 dilution, Vector Laboratories, Inc., Burlingame, CA, USA) for 2 h at room temperature and then with avidin-biotin-peroxidase complex (1:100 dilution, Vector). Thereafter, they were reacted with 0.02% 3,3’-diaminobenzidine and 0.01% \(\text{H}_2\text{O}_2 \) for about 3 min. After each incubation step, the sections were washed three times with PBS. Finally, they were mounted on gelatin-coated slides, dehydrated in ascending alcohol concentrations, and cleared in xylene.

The DCX- or Ki67-positive cells in the SGZ region of the hippocampus were quantified in 5 sections from each mouse by an experimenter who was blind to the identities of the treatment groups. Cell quantification was performed on each marker that was almost entirely included in the section throughout the z-axis at 100\(\times \) magnification (the average cell diameter was \(-8 \mu m\), and cells \(<4 \mu m\) in diameter were ignored). The average number of immunopositive cells per section was normalized for the entire hippocampus by multiplying this average by the number of 30 \(\mu \)m sections (50 sections) corresponding to the entire hippocampus.

Statistics

Values are expressed as the mean ± SD. Data were analyzed by one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test for multiple comparisons and t-test for single comparisons. For the inhibition study, two-way ANOVA followed by Bonferroni post hoc test. Statistical significance was set at \(p<0.05 \).

RESULTS

\(\beta \)-Amyrin blocked \(\alpha \beta \)-induced synaptic dysfunction

Impairment of synaptic function is shown in the early phase of AD. Oligomeric \(\alpha \beta \) plays important role in this phenomenon. Therefore, we tested the effect of \(\beta \)-amyrin on oligomeric \(\alpha \beta \)-induced LTP impairments in the hippocampal tissues. Before the experiment, we found that \(\beta \)-amyrin did not affect basal LTP in normal hippocampal slices (Fig. 1). In the \(\alpha \beta \)-treated experiments (Fig. 2A), although LTP was induced by HFS in control slices, HFS failed to induce LTP in the oligomeric \(\alpha \beta \)-treated slices, suggesting that oligomeric \(\alpha \beta \) impairs synaptic function in the hippocampus (Fig. 2B). Pretreatment with \(\beta \)-amyrin ameliorated \(\alpha \beta \)-induced LTP impairments in a concentration dependent manner (Fig. 2C-2E). Moreover, miconnycine, a positive control, ameliorated \(\alpha \beta \)-induced LTP impairments (Fig. 2F). One-way ANOVA revealed that there is a significant group effect in this experiment (\(F_{5,36}=8.072, p<0.05, n=7 \text{group}, \text{Fig. } 2G \)). These results suggest that \(\beta \)-amyrin ameliorates \(\alpha \beta \)-induced LTP impairments.

\(\beta \)-Amyrin ameliorated established LTP impairment induced by \(\alpha \beta \)

AD patients already have \(\alpha \beta \) deposits in their brain and established synaptic dysfunction. Therefore, if drugs can be developed for AD patients, the drug should overcome this established synaptic dysfunction. To test this, we examined the effect of delayed treatment with \(\beta \)-amyrin on established LTP impairment induced by \(\alpha \beta \) (Fig. 3A). Two-hour incubation of hippocampal slices with \(\alpha \beta \) blocked LTP induction. However,
delayed treatment with β-amyrin improved LTP (F_{2,3}=3.177, p<0.05, n=7/group, Fig. 3B). This suggests that β-amyrin restores LTP after established impairment by Aβ.

PI3K/Akt signaling was involved in the effect of β-amyrin

A previous study reported that glycogen synthase kinase-3β (GSK-3β) inhibitors ameliorated established LTP impairment in an AD model (Jo *et al.*, 2011). Moreover, Aβ impairs PI3K/Akt signaling, an upstream regulator of GSK-3β (Chen *et al.*, 2009; Reddy, 2013). Therefore, we next tested the effect of β-amyrin on PI3K/Akt signaling. As in previous reports, Aβ decreased the activities of PI3K and Akt, which were shown by decreases in their phosphorylation levels (Fig. 4A, 4B, 4D, 4E). β-Amyrin (30 μM) ameliorated the Aβ-induced reduction of PI3K/Akt signaling (PI3K: F_{2,3}=4.543, p<0.05, n=4/group, Fig. 4A, 4B; pAkt: F_{2,3}=8.438, p<0.05, n=4/group, Fig. 4D, 4E). Total forms of PI3K and Akt were not changed by treatment (PI3K: F_{2,3}=0.05842, p>0.05, n=4/group, Fig. 4A, 4C; Akt: F_{2,3}=1.622, p>0.05, n=4/group, Fig. 4D, 4F). These results suggest that β-amyrin ameliorates Aβ-induced abnormality of PI3K/Akt signaling.

To confirm these results, we conducted a blocking experiment with the PI3K inhibitor LY294002. Aβ impaired LTP and β-amyrin ameliorated the LTP deficit in the hippocampal slices (Fig. 5A). An off-target inhibitor, U0125 [mitogen-activated protein kinase (MAPK) inhibitor], failed to affect Aβ-impaired LTP and the effect of β-amyrin (two-way ANOVA: U0126, F_{1,16}=1.910, p>0.05; amyrin, F_{1,16}=122.4, p<0.05; interaction, F_{1,16}=0.007 p>0.05, n=5/group, Fig. 5A, 5B). However, LY294002 blocked the effect of β-amyrin (two-way ANOVA: LY294002, F_{1,16}=77.95, p<0.05; amyrin, F_{1,16}=62.15, p<0.05; interaction, F_{1,16}=57.79 p<0.05, n=5/group, Fig. 5C, 5D). These results suggest that β-amyrin ameliorates Aβ-induced LTP impairment through PI3K/Akt signaling.

![Fig. 4. Effect of β-amyrin on phosphatidylinositol-3-kinase (PI3K)/Akt pathway.](image)

![Fig. 5. Effect of phosphatidylinositol-3-kinase (PI3K) inhibitor on the effect of β-amyrin on amyloid β (Aβ)-induced LTP impairment.](image)
β-Amyrin ameliorated memory impairments induced by Aβ

To test whether β-amyrin ameliorates memory impairments induced by Aβ, we tested the effect of β-amyrin on memory impairments in an Aβ-injected mouse AD model (Fig. 6A). Aβ-injected mice showed memory impairments in an object recognition test (Fig. 6B). However, β-amyrin (4 mg/kg, p.o.) ameliorated Aβ-induced memory impairments in the object recognition test (Fig. 6B). Minocycline (30 mg/kg, i.p.), a positive control, also ameliorated memory impairments induced by Aβ (F[3,36]=2.657, p<0.05, n=10/group, Fig. 6B). During the tests, the total duration of exploration was not different among groups (F[3,36]=0.04404, p>0.05, n=10/group, Fig. 6C). In the training trial of passive avoidance test, there was no significant difference of the step-through latency between groups (p>0.05, Fig. 6D). However, β-amyrin or minocycline ameliorated memory impairment induced by Aβ (F[3,36]=9.093, p<0.05, n=10/group, p<0.05, Fig. 6E). These results suggest that β-amyrin ameliorates Aβ-induced memory impairments.

β-Amyrin ameliorated neurogenesis impairments induced by Aβ

PI3K/Akt signaling plays an important role in adult neurogenesis, which is aberrantly regulated in the AD brain (Mu and Gage, 2011; Rodriguez and Verkhratsky, 2011; Kitlagishi et al., 2014). Therefore, we examined neurogenesis in the hippocampus of Aβ-injected AD model mice with immunohistochemistry with DCX, an immature neuron marker, and Ki67, a proliferation marker. As in previous reports, Aβ treatment decreased neurogenesis, which was confirmed by a reduction of the number of DCX- and Ki67-positive cells in the hippocampus (Fig. 7) (Haughey et al., 2002). β-Amyrin (4 mg/kg, p.o.) and minocycline (30 mg/kg, i.p.) ameliorated the reduction of neurogenesis in our AD model (DCX: F[3,24]=4.589, p<0.05, n=5/group, Fig. 7A; Ki67: F[3,24]=4.990, p<0.05, n=5/group, Fig. 7B). These results suggest that β-amyrin ameliorates the Aβ-induced reduction in hippocampal neurogenesis.

DISCUSSION

In the present study, we found that β-amyrin ameliorated Aβ-induced synaptic dysfunction. PI3K inhibition blocked the effect of β-amyrin, suggesting that β-amyrin ameliorates Aβ-induced synaptic dysfunction through the PI3K/Akt pathway. Moreover, delayed β-amyrin administration improved memory impairments and the reduction of hippocampal neurogenesis induced by Aβ injection.

Hippocampal LTP is the enhancement of synaptic efficacy. Many findings suggest that hippocampal LTP is the cellular basis of learning and memory (Nabavi et al., 2014; Penn et al., 2017; Shimsheh et al., 2017). In various pathological situations including AD, Parkinson’s disease and stroke, hippocampal LTP is aberrantly regulated (Stein et al., 2015; Tozzi et al., 2015; Zhu et al., 2015). Therefore, regulation of hippocampal LTP might be a candidate means of treating these pathological conditions. Aβ causes over-activation of the NMDA receptor, and results in synaptic dysfunction and cell death (Birnbaum et al., 2015; Arbel-Ornath et al., 2017). Recent findings indicated that activation of PI3K/Akt signaling could prevent various Aβ-induced various pathological conditions (Tiwari et al., 2015; Yi et al., 2018). PI3K/Akt activation inhibits GSK-3β, a key molecule for Aβ-induced synaptic dysfunction (Beurel et al., 2015), and rescues aberrant synaptic plasticity and cell death by Aβ (Yi et al., 2018). A previous report suggested that β-amyrin activates extracellular signal-regulated kinase (ERK) and inhibits GSK-3β in the presence of scopolamine (Park et al., 2014). In the present study, we found that β-amyrin activates PI3K/Akt in the presence of Aβ (Fig. 4). However, blockade of PI3K/Akt prevented an Aβ-induced LTP deficit, but ERK prevention failed. These results suggest that β-amyrin prevents Aβ-induced LTP deficits through PI3K/Akt activation. Interestingly, the present results show that β-amyrin restored established LTP impairment by Aβ. This suggests that β-amyrin might be a disease-modifying drug. A previous study indicated that regulation of GSK-3β could restore Aβ-induced LTP deficits (Jo et al., 2011). Because β-amyrin regulated...
PI3K/Akt signaling in the present study and GSK-3β activity in previous study (Park et al., 2014), the effect of β-amyrin on an established LTP deficit seems to be due to its effect on PI3K/Akt/GSK-3β signaling. To test this in an in vivo system, we examined the effect of delayed administration of β-amyrin on memory impairments in an AD mouse model. This experiment showed that delayed administration of β-amyrin ameliorated memory impairments in our AD mouse model. These results suggest that β-amyrin could be a drug candidate for moderate to severe AD patients. Moreover, according to guidelines for dose conversion between animals and humans (Nair and Jacob, 2016), 4 mg/kg of β-amyrin in mice could be converted to 0.325 mg/kg in humans. However, β-amyrin failed to activate PI3K/Akt signaling in in vivo experiment (data not shown). It could be speculated that β-amyrin may be metabolized in the liver and the metabolite of β-amyrin may act differently in the brain. Further study will be needed to clarify this.

From a functional point of view, hippocampal neurogenesis plays an important role in structural plasticity and network maintenance. Therefore, it is likely to contribute to information storage, as well as learning and memory processes. The hippocampus is affected early in AD. Analysis of post mortem brain tissues from humans clinically diagnosed with AD revealed a reduction of progenitors in the subventricular zone (Ziabreva et al., 2006). Moreover, although it is still controversial, many studies suggested that neurogenic capabilities are impaired in the subgranular zone of the hippocampal DG (Rodriguez et al., 2008; Rodriguez and Verkhratsky, 2011). Voluntary running or environmental enrichment enhanced memory in transgenic mouse models of AD (Rodriguez et al., 2011; Gregoire et al., 2014), as well as increasing hippocampal neurogenesis (Rodriguez et al., 2011; Tapia-Rojas et al., 2016). Moreover, 5-HT facilitation by antidepressants ameliorates AD-like pathology and neurogenesis deficits at late ages (Ma et al., 2017). In the present study, we found that β-amyrin prevents Aβ-induced reduction in neurogenesis. This suggests that β-amyrin might be another therapeutic candidate for AD.

ACKNOWLEDGMENTS

This study was supported by the Korea Small and Medium Business Administration (Grant No. S2230716) and BB21+ project in 2018.

REFERENCES

Amani, M., Shokouhi, G. and Salari, A. A. (2019) Minocycline prevents the development of depression-like behavior and hippocampal inflammation in a rat model of Alzheimer’s disease. Psychopharmacology (Berl.) 236, 1281-1292.

Arbel- Omnath, M., Hudry, E., Boivin, J. R., Hashimoto, T., Takeda, S., Kuchibhotla, K. V., Hou, S., Lattarulo, C. R., Belcher, A. M., Shackerdge, N., Trujillo, P. B., Muzikansky, A., Betensky, R. A., Hyman, B. T. and Bacskaï, B. J. (2017) Soluble oligomeric amyloid-beta induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol. Neurodegener. 12, 27.

Beurel, E., Grieco, S. F. and Jope, R. S. (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148, 114-131.

Birnbaum, J. H., Bai, J., Rajendran, L., Nitsch, R. M. and Tackenberg, C. (2015) Calcium flux-independent NMDA receptor activity is required for Abeta oligomer-induced synaptic loss. Cell Death Dis. 6, e1791.

Chen, T. J., Wang, D. C. and Chen, S. S. (2009) Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons. J. Neurosci. Res. 87, 2297-2307.

Chicca, A., Marazzi, J. and Gertsch, J. (2012) The antinociceptive tri-terpene beta-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydro-

Fig. 7. Effect of β-amyrin on amyloid β (Aβ)-induced neurogenesis impairment. (A) Photomicroscopies and quantitative analysis of doublecortin (DCX-positive cells in the hippocampus. (B) Photomicroscopies and quantitative analysis of Ki67-positive cells in the hippocampus. Bar=150 μm. Data represent as mean ± SD (n=5/group). *p<0.05 vs. control group. #p<0.05 vs. Aβ-treated group.
lysis without directly targeting cannabinoid receptors. Br. J. Pharmacol. 167, 1596-1606.

da Silva, K. A., Paszczuk, A. F., Passos, G. F., Silva, E. S., Bento, A. F., Meotti, F. C. and Calixto, J. B. (2011) Activation of cannabinoid receptors by the pentacyclic triterpene alpha,beta-amyrin inhibits inflammatory and neuropathic persistent pain in mice. Pain 152, 1872-1877.

Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barber-Ga- teau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O’Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P. J. and Scheitens, P. (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734-746.

Ferretti, M. T., Allard, S., Partridge, V., Ducatenzeiler, A. and Cuello, A. C. (2012) Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J. Neuroinflammation 9, 62.

Fu, A. K., Hung, K. W., Huang, H., Gu, S., Shen, Y., Cheng, E. Y., Ip, F. C., Huang, X., Fu, W. Y. and Ip, N. Y. (2014) Blockade of EPH4A signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 111, 9959-9964.

Gregoire, C. A., Bonenfant, D., Le Nguyen, A., Aumont, A. and Fernandez, K. J. (2014) Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis. PLoS ONE 9, e86237.

Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353-356.

Haughey, N. J., Nath, A., Chan, S. L., Borchard, A. C., Rao, M. S. and Mattson, M. P. (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J. Neurochem. 83, 1509-1524.

Ishii, M., Nakahara, T., Ikeuchi, S. and Nishimura, M. (2015) beta-Amyrin induces angiogenesis in vascular endothelial cells through the Akt/endothelial nitric oxide synthase signaling pathway. Biochim. Biophys. Res. Commun. 467, 676-682.

Jeon, S. J., Park, H. J., Gao, Q., Lee, H. E., Park, S. J., Hong, E., Jiang, D. S., Shin, Y. C., Cheong, J. H. and Ryu, J. H. (2015) Positive effects of beta-amyrt on pentobarbital-induced sleep in mice via GABAAergic neurotransmitter system. Behav. Brain Res. 291, 232-236.

Jiang, Y., Liu, Y., Zhu, C., Ma, X., Ma, L., Zhou, L., Huang, Q., Cen, L., Pi, R. and Chen, X. (2015) Minocycline enhances hippocampal memory, neuromplasticity and synapse-associated proteins in aged C57BL/6 mice. Neurobiol. Learn. Mem. 121, 20-29.

Jo, J., Whitcomb, D. J., Olsen, K. M., Kerrigan, T. L., Lo, S. C., Gauthier, S., Chib, P., Dickinson, B., Scullion, S., Sheng, M., Collingridge, G. and Cho, K. (2011) Abeta(1-42)-inhibition of LTP is mediated by a C57 BL/6 mice. Behav. Brain Res. 221, 545-547.

Kim, H. Y., Lee, D. K., Chung, B. R., Kim, H. V. and Kim, Y. (2016) Intracerebroventricular injection of amyloid-beta peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J. Vis. Exp. (109), e53308.

Kilagish, Y., Nakaniishi, A., Ogura, Y. and Matsuda, S. (2014) Dietary regulation of PI3K/AKT/GSK-3beta pathway in Alzheimer’s disease. Alzheimers Res. Ther. 6, 35.

Krishnan, K., Mathew, L. E., Vijayalakshmi, N. R. and Helen, A. (2014) Anti-inflammatory potential of beta-amyrin, a triterpenoid isolated from Costus igneus. Antimicrob. Agents Chemother. 58, 5847.

LaFerla, F. M., Oddo, S. and Verkhratsky, A. (2008) Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS ONE 3, e2935.

Rodriguez, J. J., Noristani, H. N., Olabarria, M., Fletcher, J., Somervile, T. D., Yeh, C. Y. and Verkhratsky, A. (2011) Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 8, 707-717.

Rodriguez, J. J. and Verkhratsky, A. (2011) Neurogenesis in Alzheimer’s disease. J. Anat. 219, 78-89.

Santos, F. A., Frata, J. T., Arruda, B. R., de Melo, T. S., da Silva, A. A., Brito, G. A., Chaves, M. H. and Rao, V. S. (2012) Antihippocytical and hypolipidemic effects of alpha,beta-amyrt, a triterpenoid mixture from Protiun hepatophyllum in mice. Lipids Health Dis. 11, 98.

Selkoe, D. J. (1991) The molecular pathology of Alzheimer’s disease. Neuron 6, 487-498.

Shimshek, D. R., Bus, T., Schupp, B., Jensen, V., Marx, V., Layer, L. E., Kohr, G. and Sprengel, R. (2017) Different forms of AMPA receptor mediated LTP and their correlation to the spatial working memory formation. Front. Mol. Neurosci. 10, 214.

Stein, E. S., Itosekkon-Hayosh, Z., Aronovich, A., Reisner, Y., Bushi, D., Pick, C. G., Tanne, D., Chapman, J., Vlachos, A. and Maggio, N. (2015) Thrombin induces ischemic LTP (ILTP): implications for synaptic plasticity in the acute phase of ischemic stroke. Sci. Rep. 5, 7912.

Szkield, A., Paczkowski, C., Pensek, F. and Bertsch, C. (2012) Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochemistry 85, 384-388.

Reddy, P. H. (2013) Amyloid beta-induced glycogen synthase kinase 3beta phosphorylated VDAC1 in Alzheimer’s disease: implications for synaptic dysfunction and neuronal damage. Biochim. Biophys. Acta 1832, 1913-1921.

Park et al. Anti-Alzheimer’s Disease Effect of [l-Amyrin]
ative deficits in an amyloid-beta toxin-induced alzheimer rat model via the phosphatidylinositol 3-kinase (PI3K)/Akt/Wnt/beta-catenin pathway. J. Biol. Chem. 290, 28540-28558.

Tozzi, A., Sclip, A., Tantucci, M., de Iure, A., Ghiglieri, V., Costa, C., Di Filippo, M., Borsello, T. and Calabresi, P. (2015) Region- and age-dependent reductions of hippocampal long-term potentiation and NMDA to AMPA ratio in a genetic model of Alzheimer’s disease. Neurobiol. Aging 36, 123-133.

Viola, K. L. and Klein, W. L. (2015) Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuro-pathol. 129, 183-206.

Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J. and Selkoe, D. J. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535-539.

Yan, R., Fan, Q., Zhou, J. and Vassar, R. (2016) Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer’s disease. Neurosci. Biobehav. Rev. 65, 326-340.

Yi, J. H., Baek, S. J., Heo, S., Park, H. J., Kwon, H., Lee, S., Jung, J., Park, S. J., Kim, B. C., Lee, Y. C., Ryu, J. H. and Kim, D. H. (2018) Direct pharmacological Akt activation rescues Alzheimer’s disease like memory impairments and aberrant synaptic plasticity. Neuropharmacology 128, 282-292.

Zhu, G., Li, J., He, L., Wang, X. and Hong, X. (2015) MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. Br. J. Pharmacol. 172, 2354-2368.

Ziabreva, I., Perry, E., Perry, R., Minger, S. L., Ekonomou, A., Przyborski, S. and Ballard, C. (2006) Altered neurogenesis in Alzheimer’s disease. J. Psychosom. Res. 61, 311-316.