Reconfigurable and Storable Chaotic Logic Operations in Drive-Response VCSELs with Optical Feedback

GELIANG XU¹, SONG YE¹, JIAN XU¹
¹School of Electronic Engineering, Chaohu University, Hefei, 238000 China
Corresponding author: Geliang Xu (e-mail: xugeliang1027@163.com).

This work was supported by the Natural Science Foundation of the Higher Education Institutions of Anhui Province (No. KJ2019A0685) and the School-Level Scientific Research Project of Chaohu University (No. XLY-202001).

ABSTRACT Based on the system of drive-response vertical cavity surface emitting lasers (VCSELs) with optical feedback and the new electro-optic (EO) modulation theory, we propose a novel reconfigurable and storable logic operations scheme to perform the behaviors of flexible switching and delayed storage among different logic operations. Here, the optical feedback intensity is modulated into logic input, the applied electric field in drive system and response system are modulated into logical control signals, the logic output is decoded by threshold mechanism. When the logical control signal in drive system and response system remain equal and both of them satisfy different logic operation relationships with the logic inputs, the system can perform the mutual conversion and delayed storage among the logic operations such as AND, NAND, OR, NOR, XOR and XNOR. Furthermore, the half adder logic operations are also being realized. Finally, the influence of bit duration time and noise intensity on the reliability of the logic operations is analyzed, and the results indicate that the logic operations have good anti-noise performance.

KEYWORDS Vertical cavity surface emitting laser, reconfigurable, chaotic logic operations, success probability

I. INTRODUCTION

It is well known that the chaotic laser signal is not only extremely sensitive to the initial conditions of the system and external interference, but also has the characteristics of aperiodic and high randomness, which makes it widely used in the field of optical communication, such as high-speed physical random number generators, high-speed key distribution and signal carrier, etc. In recent years, optical chaotic logic operations based on semiconductor laser has attracted widespread attention since it provides a scheme to realize reconfigurable logic operation, where different logic operations such as AND, OR, XNOR, NAND, NOR, XOR, etc., are flexibly converted by the slight change of the parameters in a chaotic system. And optical chaotic logic operations are the most critical technology in future optical chaotic network secure communication, however, the technology of the optical chaotic logic operations still lags behind. For most of the logic processing of optical chaotic signals, such as multiplexing, demultiplexing, switching, regeneration, storage and calculation, it is necessary to implement all-optical chaotic logic devices and sequential logic ones with low power consumption and high speed. Compared to edge emitting laser, vertical cavity surface emitting laser (VCSEL) exhibits many advantages such as large modulation bandwidth, low threshold current, round beam output and easy coupling with fiber, etc. [1]-[4]. Under the conditions of external light injection or bias current injection, the VCSEL is easy to emit mutually orthogonal chaotic x-polarized light (x-PL) and chaotic y-polarized light (y-PL), and it can also exhibit rich dynamic behaviors such as polarization switch and polarization bistability [5]-[14]. Based on the dynamic characteristics of VCSEL’s polarization bistability, the C. Masoller’s research group successfully implemented stochastic logic gates with different technical schemes [1], [2], [15]. In 2013, Yan put forward a feasible plan to implement all-optical logic gates based on "master-slave-response" synchronization system of chaotic multiple-quantum-well lasers [16]. In 2015, Zhong’s team obtained optoelectronic composite logic gates based on electro-optic (EO) modulation theory and the VCSEL subjected to external optical injection [17].
2016, all-optical stochastic logic gates and their delay storages were successfully implemented based on generalized chaotic synchronization and polarization switch in system of the cascaded VCSELs with optical-injection [18]. In 2017, based on polarization bistability, the reconfigurable all-optical chaotic logic gates were firstly being successfully realized by the scheme for VCSEL subject the injection of light from tunable sampled grating distributed Bragg reflector laser [19]. In 2020, my research group use a simple technical scheme for the VCSEL subject the optical feedback to implement the reconfigurable optoelectronic chaotic logic gates [20]. Next year, a novel scheme for the reconfigurable optical chaotic logic operations with fast rate of picoseconds scale were proposed in our laboratory [21].

However, the most of logic operations implemented by the above schemes are static, the development of dynamic and reconfigurable chaotic logic operations are still in the initial stage. Since the VCSEL with external optical feedback or external optical injection, as a nonlinear system with high dimension has rich nonlinear dynamic behaviors, it is great prospect that reconfigurable chaotic logic operations are implemented. In this paper, we put forward a novel implementation scheme for reconfigurable and storable chaotic logic operations in a chaotic polarization system of drive-response VCSELs with optical feedback. And the half adder logic operations can also be performed based on this system. Finally, the reliability of logic operations is further analyzed.

II. THEORY AND MODEL

The composition of the drive-response system and detailed light path are displayed in Figure 1. In the drive system, the light emitted by D-VCSEL first passes through the isolator 3 (IS3), and then is separated into x-PL and y-PL by polarization beam splitter 2 (PBS2). The x-PL passes through the light intensity meter 1 (LIM1) and then is divided into two beams by beam splitter 2 (BS2). One beam of the x-PL is feedback to the periodic poled LiNbO3 (PPLN1) crystal by the plane mirror 1 (M1). M2 and M6 in the feedback cavity, and the other beam of x-PL is directly injected into the PPLN2 crystal. The y-PL from PBS2 is divided into two beams by BS5. One beam of y-PL is reflected by M3, M4, and M5 and then passes through the Faraday rotator 1 (FR1) and half wave plate 1 (HWP1), and finally injected into the PPLN1 crystal. The other beam of y-PL is directly injected into the PPLN1 crystal through FR2 and HWP2. The above FR and HWP are mainly used to convert the polarized direction of y-PL to the z-axis direction of the crystal. The x-PL and y-PL injected into the crystal are regarded as the initial input of o-light and e-light respectively. The electric fields applied to PPLN1 and PPLN2 are denoted by E1 and E2, respectively. The x-PL and y-PL from the PPLN1 crystal (e-light is converted into y-PC by FR2 and HWP2) pass through IS1 and IS2 respectively, and then are injected into PBS1 together. The light output from PBS1 is divided into two beams by BS4, and then these two beams are injected into D-VCSEL through polymer tunable diffraction grating variable attenuator 1 (VA1) and VA2, respectively. The x-PL and y-PL from the PPLN2 crystal pass through IS4 and IS5 respectively, and then are combined by PBS5 into a beam of light, which is injected into the R-VCSEL through VA3.

In order to implement dynamic switching between different logic operations, the logical control signal needs to meet the different logic operation relationships with the logic inputs synchronously. To solve this problem, we give the following technical solutions: the time-varying current source 1 (I1) and 2 (I2) output the current u1, u1′, u2 and u2′. Here, the current u1 and u2, in turn, are encoded into two electric logic inputs of the field programmable gate array (FPGA) such as i1 and i2. Because the polymer tunable diffraction grating VA is controlled by the current, the optical feedback intensity k1 and k2 are determined by u1′ and u2′ respectively (see Fig. 1). Here, the k01 and

![Image](https://example.com/image.png)
\[k_{I2} \] are encoded into optical logic inputs \(I_1 \) and \(I_2 \), respectively. Due to \(u_i = u_i^+ \) and \(u_i = u_i^- \), the logic sets of the signals \(I_1 \) and \(I_2 \) are synchronized with those of the signals \(I_1 \) and \(I_2 \). The two logic outputs of the FPGA are defined as \(Y_1 \) and \(Y_2 \), which respectively control the \(E_1 \) and \(E_2 \).

Here, \(Y_1 = Y_2 = 0 \) is encoded in the low level \(E_0 \); \(Y_1 = Y_2 = 1 \) is encoded in the high level \(E_2 \). Namely if \(Y_1 = Y_2 = 0 \), we obtain \(E_1 = E_2 = E_0 \) and \(C_D = C_R = 1 \); when \(Y_1 = Y_2 = 1 \), we have \(E_1 = E_2 = E_0 \) and \(C_D = C_R = 1 \). Using the FPGA, \(Y_1 \) and \(Y_2 \) both can perform different logic operations with \(i_1 \) and \(i_2 \), so that \(C_D \) and \(C_R \) can implement different logic operations with \(I_1 \) and \(I_2 \) indirectly.

The D-VCSEL in the drive system is injected by the light from the PPLN\(_1\) crystal, its rate equations are derived as:

\[
\frac{dE_{D_1}(t)}{dt} = k(1+ia)[(N_{D_1}(t)-1)] \begin{pmatrix} E_{D_1}(t) \\ iN_{D_1}(t) \end{pmatrix} + k(1+ia)n_{D_1}(t) \begin{pmatrix} E_{D_1}(t) \\ iN_{D_1}(t) \end{pmatrix}
\]

\[
T\gamma_\sigma + i\gamma_\rho \begin{pmatrix} E_{D_1}(t) \\ iN_{D_1}(t) \end{pmatrix} + k_{1D} \begin{pmatrix} E_{P_{D_1}}(t-\tau_1) \\ E_{P_{D_1}}(t-\tau_1) \end{pmatrix} \times \exp(-io_\sigma \tau)
\]

\[
\frac{dN_{D_1}(t)}{dt} = -\gamma_\sigma [N_{D_1}(t) - \mu_{D_1} + \gamma_{D_1}(t)] E_{D_1}(t)^2 + |E_{D_1}(t)|^2
\]

\[
+ in_{D_1}(t)(E_{D_1}(t)E^*_{D_1}(t) - E_{D_1}(t)E^*_{D_1}(t))
\]

Similarly, the rate equations of the R-VCSEL in the response system can be expressed as:

\[
\frac{dE_{R_1}(t)}{dt} = k(1+ia)[(N_{R_1}(t)-1)] \begin{pmatrix} E_{R_1}(t) \\ iN_{R_1}(t) \end{pmatrix} + k(1+ia)n_{R_1}(t) \begin{pmatrix} E_{R_1}(t) \\ iN_{R_1}(t) \end{pmatrix}
\]

\[
+ \gamma_\sigma + i\gamma_\rho \begin{pmatrix} E_{R_1}(t) \\ iN_{R_1}(t) \end{pmatrix} + k_{1R} \begin{pmatrix} E_{P_{R_2}}(t-\tau_2) \\ E_{P_{R_2}}(t-\tau_2) \end{pmatrix} \times \exp(-io_\sigma \tau)
\]

\[
\frac{dN_{R_1}(t)}{dt} = -\gamma_\sigma [N_{R_1}(t) - \mu_{R_1} + \gamma_{R_1}(t)] E_{R_1}(t)^2 + |E_{R_1}(t)|^2
\]

\[
+ in_{R_1}(t)(E_{R_1}(t)E^*_{R_1}(t) - E_{R_1}(t)E^*_{R_1}(t))
\]

In the above rate equations, the subscripts \(x \), \(y \), \(D \), and \(R \) respectively mean the \(x \)-PL, \(y \)-PL, D-VCSEL and R-VCSEL; \(E \) represents the complex amplitude of light; \(N \) is the total carrier concentration; \(n \) is the difference in concentration between carriers with spin-up and carriers with spin-down; \(k_i \) represents the optical feedback intensity; \(\tau_1 \) is the round-trip time in the external cavity; \(\tau_2 \) is the propagation time of light from the PPLN\(_2\) to the R-VCSEL; \(\omega_0 \) represents the center frequency of D-VCSEL and R-VCSEL; \(\zeta_x \) and \(\zeta_y \) are a pair of gaussian white noises that are independent of each other and obey the standard normal distribution. \(E_{P_{x1}} \) and \(E_{P_{y1}} \) are the complex amplitudes of the \(x \)-PL and \(y \)-PL output from the PPLN\(_1\) crystal; similarly, \(E_{P_{x2}} \) and \(E_{P_{y2}} \) are the those of \(x \)-PL and \(y \)-PL from the PPLN\(_2\) crystal. The meanings and values of other physical parameters are presented in Table I below.
Table I The parameters of the system

Parameters	value
Line-width enhancement factor a	3
Effective refractive index of active layer n_g	3.6
field decay rate k	300
Polar angle θ/π	1/2
Spin relaxation rate γ_s	50 ns$^{-1}$
Azimuth ϕ	0
Nonradiative carrier relaxation γ_e	1 ns$^{-1}$
Normalized injection current μ_0	1.5
Dichroism γ_d	-0.1 ns$^{-1}$
Refractive index of crystal n_1	2.24
Crystal length L	15 mm
Delay time τ_1	2 ns
Normalized injection current μ_k	1.5
Delay time τ_2	4 ns
Effective area of light spot S_A	38.485 um2
Refractive index of e-light n_2	2.17
Length of the laser cavity L_c	10 um
Optical injection intensity k_{ij}	1.13 ns$^{-1}$
Volume of the active layer V	384.85 um3
Central wavelength λ_0	1550 nm
Differential material gain g	2.9×10^{12} s/m$^{-1}$
Field confinement factor to the active region Γ	0.05
The bit duration time T	10 ns
The noise intensity β_{sp}	2×10^9

Considering the x-PL and y-PL from D-VCSEL as the original inputs of the o-light and the e-light in PPLN$_1$ crystal, respectively, we have

$$E_{o,e}(0,t-\tau_i) = \sqrt{\frac{\hbar \alpha V}{S_A T_{l_i} n_{1,2}}} E_{in, o,e}(t-\tau_i)$$ (7)

In the same way, the amplitude of the original inputs of the o-light and e-light in PPLN$_2$ crystal satisfy

$$E_{o,e}(0,t-\tau_2) = \sqrt{\frac{\hbar \alpha V}{S_A T_{l_2} n_{1,2}}} E_{in, o,e}(t-\tau_2)$$ (8)

In the above formula, E_o and E_e represent the amplitude of o-light and e-light respectively; \hbar is the Planck constant; S_A denotes the effective area of the light spot; V is volume of the active layer; T_{l_i} is the round trip time in the laser cavity and $T_{l_i} = 2n_i \nu_c / c$, L_c is the length of the laser cavity, n_g represents the effective refractive index of active layer, ν_c is the speed of light in vacuum; c is the light velocity in a vacuum, n_1 and n_2 are the undisturbed refractive indices of the o-light and the e-light, respectively. Due to the phase mismatch and the weak second-order nonlinear effect, the analytical solutions of the wave-coupling equations of the linear EO effect for the light in the PPLN$_1$ and the PPLN$_2$ are written as:

$$E_{o,e}(L,t-t_0) = \rho_{o,e}(L,t-t_0)\exp(i\beta_{L}L)\exp[i\phi_{o,e}(L,t-t_0)]$$ (9)

where $t_0 = \tau_i$ or τ_2, the meanings and mathematical expressions of other physical parameters are present in Ref. [18]. When the D-VCSEL are subject to the injection of the output x-PL and y-PL from the PPLN$_1$ crystal, we have:

$$E_{p_{1,2},o,e}(t-\tau_i) = \sqrt{\frac{S_A T_{l_i} n_{1,2}}{\hbar \alpha_o V}} U_{o,e}(L,t-\tau_i)$$ (10)

Similarly, while the output x-PL and y-PL from the PPLN$_2$ crystal are injected into the R-VCSEL, we obtain

$$E_{p_{1,2},o,e}(t-\tau_2) = \sqrt{\frac{S_A T_{l_2} n_{1,2}}{\hbar \alpha_o V}} U_{o,e}(L,t-\tau_2)$$ (11)
III. RESULTS AND DISCUSSION

Here, we suppose that the optical feedback intensity equals to the sum of two square waves that encode the two logic inputs, i.e., $k_1=k_{1R}+k_{1D}$. Here, the logic input for the optical feedback intensity k_{1R} is defined as I_1, and that for the optical feedback intensity k_{1D} is defined as I_2. In this case, there are four logic input sets: (0, 0), (0, 1), (1, 0), and (1, 1). Representing the (0, 1) and (1, 0) with the same optical feedback intensity k_{1R}, we can encode the four inputs with the three-level signals k_{1R}, k_{1Ri}, and k_{1Di}, where k_{1R} accounts for the set (0, 0), and k_{1Di} represents the set (1, 1). The three-level signal used to vary k_1 is constant during a time interval T, defined as the bit duration time.

We suppose that $I_1=I_2=0$ when $k_{1R}=k_{1D}=0.56ns^{-1}$ ($k_{1Ri}=1.12ns^{-1}$); when $k_{1R}=k_{1D}=0.57ns^{-1}$, $I_1=I_2=1$ ($k_{1Ri}=1.14ns^{-1}$); $I_1=0$, $I_2=1$ if $k_{1R}=0.56ns^{-1}$ and $k_{1D}=0.57ns^{-1}$ ($k_{1Di}=1.13ns^{-1}$), similarly $k_{1R}=0.57ns^{-1}$, $k_{1D}=0.56ns^{-1}$ ($k_{1Di}=1.13ns^{-1}$) indicate that $I_1=1$, $I_2=0$. The applied electric field E_1 and E_2 in drive-response system are modulated into the logical control signal C_{D} and C_{R} respectively, it means that, if $E_1=E_2=E_{0i}=0.3kV/mm$, $C_{D}=C_{R}=0$; else if $E_1=E_2=E_{0i}=0.75kV/mm$, $C_{D}=C_{R}=1$. The logic output X_1 of the drive system is demodulated by the difference between the average value A_{D} of the x-PL intensity from the D-VCSEL and the threshold A_T; similarly, the logic output X_2 of the response system is demodulated by the difference between the average value A_{R} of that from the R-VCSEL and the threshold A_T. Namely, if $A_D-A_T>0$, $X_1=1$, else $X_1=0$; in the same way $X_2=1$ if $A_R-A_T>0$, else $X_2=0$.

The threshold value A_T determines the reliability of the logic operations. In order to obtain a suitable threshold, we adopt the following technical solutions: since C_{D} and C_{R} can perform different logic operations with I_1 and I_2 by FPGA, such as AND, OR, XOR, etc. For different cases of logic operation $C_{D,R}$, we have calculated the maximum value A_{Dmax} of A_D when $C_{D}=0$, and the minimum value A_{Dmin} of that under $C_{D}=1$. The maximum value A_{Rmax} of A_R when $C_{R}=0$, and the minimum value A_{Rmin} of that under $C_{R}=1$ also have been calculated. The specific calculation results are displayed in table II. From the table, we obtain that the maximum value of A_{Dmax} equals to 0.0053, and the minimum value of A_{Dmin} equals to 0.016. Therefore, the threshold A_T needs to satisfy the following condition: $0.0053<=A_T<=0.016$. Hence, we take A_T as 0.01, that is, if $A_D<0.01$ and $A_R<0.01$, $X_1=X_2=0$; else $X_1=X_2=1$ when $A_D>0.01$ and $A_R>0.01$.

Logic operations	$(I_1, I_2) = (0, 0)$	$(I_1, I_2) = (0, 1)$	$(I_1, I_2) = (1, 0)$	$(I_1, I_2) = (1, 1)$
$C_{D,R} = I_1 + I_2$	$A_{Dmax}=0.051$	$A_{Rmin}=0.003$	$A_{Dmin}=0.0025$	$A_{Rmax}=0.019$
$C_{D,R} = I_1 \cdot I_2$	$A_{Dmax}=0.022$	$A_{Rmin}=0.019$	$A_{Dmin}=0.0048$	$A_{Rmax}=0.0024$
$C_{D,R} = I_1 \oplus I_2$	$A_{Dmax}=0.0053$	$A_{Rmin}=0.0042$	$A_{Dmin}=0.0034$	$A_{Rmax}=0.018$
$C_{D,R} = I_1 \ominus I_2$	$A_{Dmax}=0.0048$	$A_{Rmin}=0.0019$	$A_{Dmin}=0.0005$	$A_{Rmax}=0.0002$
$C_{D,R} = I_1 \otimes I_2$	$A_{Dmax}=0.005$	$A_{Rmin}=0.002$	$A_{Dmin}=0.0048$	$A_{Rmax}=0.0031$

The system can realize different logic operations when the logical control signal meets different logic operation relationships with the logic inputs. In this paper, relying on FPGA to convert the logic operation relationships between the logical control signals C_D (C_R) and I_1, I_2, the response system has the same logic outputs as the drive system when C_R remains equal to C_D, i.e., $X_2(t) = X_1(t-\tau^\pm \tau_1)$, so as to realize the reconfigurable and storable logic operations.

Figure 2 shows the numerical simulation results of logic operations. The blue dotted line in Fig. 2(a) represents the applied electric field E_1 (encoded into C_{D}), and the red dotted line represents the three-level signals k_{1R}, k_{1D}, and k_{1Di} (encoded into the logic inputs), the solid black line in Fig. 2(b) denotes the intensity I_{Dx} of x-PL from the D-VCSEL, and $I_{Dx}=|E_{Dx}|^2$. The logic output X_1
obtained by the threshold mechanism as shown in Fig. 2(c). From Figs. 2(a), 2(b) and 2(c), it is found that when the noise intensity β_{sp} is 2×10^9, the different logic operations at different time periods can be implemented, controlling the logic operation between C_D and two logic inputs. For example, if $C_D = I_1 \cdot I_2$ when the time t is between 10 ns and 50 ns, we obtain the logic AND operation, i.e., $X_1 = I_1 \cdot I_2$; while t is between 50 ns and 90 ns, the logic OR operation can be performed when $C_D = I_1 + I_2$, i.e., $X_1 = I_1 + I_2$; with t varying from 90 ns to 130 ns, $X_1 = I_1 \odot I_2$ if $C_D = I_1 \odot I_2$, the logic output is logic XNOR operation; in the case that $C_D = I_1 \cdot I_2$, the logic output is of logic NAND operation, i.e., $X_1 = I_1 \cdot I_2$, and when 130 ns $\leq t \leq 170$ ns; If $C_D = I_1 + I_2$, it is converted into the XNOR operation, i.e., $X_1 = I_1 + I_2$. Finally, with t being between 210 ns to 250 ns, the logic output is further converted into logic XOR operation due to the fact that $C_D = I_1 \oplus I_2$.

The logical control signals C_D and C_R remain equal at all times, the logic operations performed by the response system are the same as that of the drive system, as shown in Figs. 2(d), 2(e) and 2(f), indicating that the system has the ability to reconstruct and store logic operations.

Controlling the logic operation between the logical control signals and two logic inputs, the reconfigurable and storable logic operations such as XOR, AND, XNOR, OR, NAND and NOR are further implemented as shown in Fig. 3.

Depending on FPGA, we have $C_D = I_1 \cdot I_2$ and $C_R = I_1 \oplus I_2$ (see Figs. 4(a) and 4(d)) at the same time, thus the drive system can implement the logic AND operation, i.e., $X_1 = I_1 \cdot I_2$, and the response system can realize the logic XOR operation, i.e., $X_2 = I_1 \oplus I_2$, as shown in Figs 4(b), 4(c), 4(e) and 4(f). Therefore, the half adder logic operations are also successfully implemented.

The reliability of logic operations depends strongly on some system parameters. In the following we calculate the success probability P_1 and P_2 (as the ratio between the number of correct bits to the total number of bits) to quantify the reliabilities of the logic operations performed by the drive system and the response system, respectively.

![FIGURE 2. Reconfigurable chaotic logic operations and their delayed storage.](image)

![FIGURE 3. Reconfigurable chaotic logic operations and their delayed storage](image)
Here, we take the logic operations shown in Fig. 2 as an example to calculate the evolutions of P_1 and P_2 in the space of noise intensity β_{sp} and bit duration T, as shown in Fig 5. It is found that the area of P_1<0.8 in Fig. 5(a) accounts for a larger proportion when T varies from 0ns to 1ns, indicating that the reliability of logic operations is poor; As T gradually increases from 1ns to 2ns, the area with P_1>0.9 accounts for a larger proportion, denoting that the reliability of logic operations is enhanced; when T continues to increase from 2ns to 10ns, the proportion of the area with P_1=1 increases rapidly. It can also be seen that as the noise intensity β_{sp} increases from 0 to 4×10^9, the proportion of area with P_1=1 is gradually shrinking, showing that reliability is slowly getting worse. The evolution trajectory of P_2 in Fig. 5(b) is similar to that of P_1 in Fig. 5(a).

In order to show the local changes of P_1 and P_2 in Fig. 5 in more detail, we further analyze the dependence of the success probability on the β_{sp} for different T, as displayed in Fig. 6. As we can see from the Fig. 6(a) that if T=4ns, the value of P_1 is always equal to 1 when $0<\beta_{sp}<1\times 10^9$, which indicates that the reliability of the logic operations is strong, and no error appeared in logic outputs; as β_{sp} exceeds 1×10^9, the value of P_1 begins to fluctuate, but is still above 0.9. When $0<\beta_{sp}<3.75\times 10^9$, the P_1 is always equal to 1 if $T=8$ns, denoting that the logic operations are of reliability and stability; P_1 varies in a small range when β_{sp} exceeds 3.75×10^9, the reliability of the logic operations gets slightly worse. When β_{sp} varies from 0 to 4×10^9, the logic operations are so reliable that P_1 is always equal to 1 if $T=10$ns. From Fig. 6(b), one sees that value of P_2 oscillates severely with β_{sp} increasing if $T=4$ns. When β_{sp} increases from 0 to 2.7×10^6, the value of P_2 always equals to 1 since $T=8$ns; with β_{sp} further increasing from 2.7×10^6 to 4×10^9, P_2 begin to fluctuate. The β_{sp} within the range of 4×10^9 will not cause errors to the logic outputs due to the P_2 is always equal to 1 when $T=10$ns.

From the above results, it is concluded that the success probability P_1 and P_2 for logic operations implemented by the drive system and response system respectively are seriously dependent on the noise intensity β_{sp} and bit duration time T. The values of P_1 and P_2 will become small and unstable if the value of T is too small or the value of β_{sp} is too large. It is noted that the logic operations are highly reliable that both P_1 and P_2 are always equal to 1 under appropriate conditions such as $T=8$ns and $\beta_{sp}<2.7\times 10^6$, or $T=10$ns and β_{sp} within the 4×10^9.
VI. CONCLUSIONS

We propose a novel reconfigurable and storable chaotic logic operations scheme by using the drive-response VCSELs with optical feedback, based on the EO modulation theory. Here, the optical feedback intensity is modulated into logic input, the applied electric field in drive system and response system are modulated into logical control signals, and logic outputs are demodulated by the threshold mechanism. Relying on FPGA to convert the logic operation relationships between the logical control signals and logic input, the system can perform the reconfigurable and storable processing of logic operations. Furthermore, the system can also implement the halfadder logic operations when the chaotic logic AND and XOR operations are performed by the drive system and the response system, respectively. It is noted that the bit duration time and noise intensity have an impact on success probability of logic operations. And the reliability of logic operations are so strong that the success probability can be always equal to 1 even though the noise intensity is as high as 4×10^5, indicating that the logic operations have good anti-noise performance. These results have potential application in the reconfigurable and storable chaotic logic computing system with high speed, security and low power cost.

VII. REFERENCE

[1] J. Zamora-muntand, C. Masoller, “Numerical implementation of a VCSEL-based stochastic logic gate via polarization bistability,” Opt. Express, vol. 18, no. 16, pp. 16418-16429, Aug, 2010.

[2] S. Perrone, R. Vilaseca, and C. Masoller, “Stochastic logic gate that exploits noise and polarization bistability in an optically injected VCSEL,” Opt. Express, vol. 20, no. 20, pp. 22692-22699, Sep, 2012.

[3] X. X. Zhang, S. H. Zhang, T. A. Wu, and W. Y. Sun, “Polarization switching characteristics of polarization maintaining optical feedback and orthogonal optical injection of 1550nm-VCSEL,” Acta. Phys. Sin, vol. 65, no. 21, pp.214206, 2016.

[4] D. Z. Zhong, G. Q. Xia, F. Wang, Z. M. Wu, “Vectorial chaotic synchronization characteristics of unidirectionally coupled and injected vertical-cavity surface-emitting lasers based on optical feedback,” Acta Phys. Sin, vol. 56, no. 6, pp. 3279-3291, Mar, 2007.

[5] S. Xiang, W. Pan, L. Yan, B. Luo, N. Jiang, K. Wen, X. Zou, and L.Yang, “Variable-polarization optical feedback induced hysteresis of the polarization switching in vertical-cavity surface-emitting lasers,” Opt. Soc. Am. B, vol. 27, no. 12, pp. 2512-2517, Dec, 2010.

[6] W. L. Zhang, W. Pan, B. Luo, X. H. Zuo, and M. Y. Wang, “Polarization switching and hysteresis of VCSEL with time-varying optical injection,” IEEE J. Quantum Electron, vol. 14, no. 3, pp. 889-894, Jun, 2008.

[7] K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5um wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett, vol. 20, no. 10, pp. 779-781, Apr, 2008.

[8] H. Y. Qiu, Z. M. Wu, T. Deng, Y. He, and G. Q. Xia, “Polarization switching characteristics in a 1550 nm VCSEL subject to circularly polarized optical injection,” Chin. Opt. Lett, vol. 14, no. 2, pp. 33-37, 2016.

[9] Z. Q. Zhong, S. S. Li, S. C. Chan, G. Q. Xia, and Z. M. Wu, “Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL,” Opt. Express, vol. 23, no. 12, pp. 15459-15468, Jun, 2015.

[10] P. Guo, W. J. Yang, D. Parekh, C. J. Chang-Hasnain, A. Xu and Z. Y. Chen, “Experimental and theoretical study of wide hysteresis cycles in 1550 nm VCSELs under optical injection,” Opt. Express, vol. 21, no. 3, pp. 3125-3132, Feb, 2013.

[11] T. Deng, Z. M. Wu, Y. Xie, J. G. Wu, X. Tang, L. Fan, P. Krassimir, and G. Q. Xia, “Impact of optical feedback on current-induced polarization behavior of 1550 nm vertical-cavity surface-emitting lasers,” Applied Optics, vol. 52, no. 16, pp. 3833-3837, 2013.

[12] J. J. Chen, G. Q. Xia, Z. M. Wu, “Power-induced polarization switching and bistability characteristics in 1550-nm VCSELs subjected to orthogonal optical injection,” Chin. Phys: B, vol. 24, no. 2, pp. 186-190, Feb, 2015.

[13] T. Deng, Z. M. Wu, and G. Q. Xia, “Two-mode coexistence in 1550 nm VCSELs with optical feedback,” IEEE Photon. Technol. Lett, vol. 27, no. 19, pp. 2075-2078, 2015.

[14] D. Z. Zhong, Z. M. Wu, “Manipulation of the vector chaotic polarization of VCSEL output with external optical feedback by electro-optic modulation,” Acta. Phys. Sin, vol. 61, no. 3, pp. 355-357, 2012.

[15] M. F. Salvade, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a VCSEL with tunable optical injection,” IEEE J. Quantum. Electron, vol. 49, no. 10, pp. 886-893, Aug, 2013.

[16] S. L. Yan, “Chaotic laser parallel synchronization and its application in all-optical logic gates,” Acta Phys. Sin, vol. 62, no. 23, pp. 230804, Dec, 2013.

[17] D. Z. Zhong, Y. Q. Ji and W. Luo, “Controllable optoelectric composite logic gates based on the polarization switching in an optically injected VCSEL,” Opt. Express, vol. 23, no. 23, pp. 29823, Nov, 2015.

[18] D. Z. Zhong, W. Luo, and G. L. Xu, “Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection,” Chin. Phys. B, vol. 25, no. 9, pp. 342-354, 2016.
[19] D. Z. Zhong, G. L. Xu and W. Luo, “Reconfigurable dynamic all-optical chaotic logic operations in an optically injected VCSEL”, Chin Phys. B, vol. 26, no. 12, pp. 124204, Dec. 2017.

[20] G. L. Xu, C. Da, Q. L. Ni, et al, “Reconfigurable optoelectronic chaotic logic gates in vertical cavity surface emitting laser with optical feedback,” Chinese Journal of Lasers, vol. 47, no. 12, pp. 1206003, Dec., 2020.

[21] G. L. Xu, J. Xu, L. L. Kong, et. al, “Reconfigurable optical chaotic logic operations with fast rate for picosecond scale,” Acta. Photonica Sinica, vol. 50, no. 5, pp. 0506008, May, 2021.

GELIANG XU received the master’s degree in information and communication engineering from the Wuyi University in 2018. He participated in the National Natural Science Foundation of China during the postgraduate study. Since graduating from a master's degree, he has been working as a teacher in Chaohu University. His research interests include nonlinear optics, chaos computing, and chaos lidar ranging.

SONG YE received the Ph.D degree in optical engineering from the Sichuan University. As a professor in Chaohu University. He has presided over a number of national, provincial and ministerial projects. His research interests include micro-nano optical technology and chaos computing.

JIAN XU received the Ph. D degree in optical engineering from Fujian Normal University in 2018. He is currently a teacher in Chaohu University. His main research interests include chaos and the application of laser in biomedicine.