PROPERTIES OF M31. V. 298 ECLIPSING BINARIES FROM PAndromeda

C.-H. Lee1,2, J. Koppenhoefer1,2, S. Seitz1,2, R. Bender1,2, A. Riffeser1,2, M. Kordic1,2, U. Hopp1,2, J. Snigula1,2, C. Gössl1,2, R.-P. Kudritzki3, W. Burgett3, K. Chambers3, K. Hodapp1, N. Kaiser1, and C. Waters3

1 University Observatory Munich, Scheinerstrasse 1, D-81679 Munich, Germany
2 Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany
3 Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA

Received 2014 July 9; accepted 2014 October 7; published 2014 November 20

ABSTRACT

The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detached eclipsing binaries spectroscopically and determine the distance to M31.

Key words: binaries: eclipsing – galaxies: individual (M31) – stars: distances – stars: fundamental parameters

Online-only material: color figures

1. INTRODUCTION

Eclipsing binaries are important in two aspects. First of all, they can provide information on the physical parameters of the system. For example, their light curves can be used to derive the inclination angle of their orbital plane and the stellar radius in terms of the orbital distance. Spectroscopic observation can be used to infer the mass of individual stars, the orbital distance, and stellar temperature. This information is essential for the theoretical study of stellar evolution.

Second, eclipsing binaries can serve as distance indicators. This is possible because once we know the stellar radius and temperature from joint photometric and spectroscopic observations, we can derive the distance (d) from (see, e.g., Bonanos et al. 2006)

$$f_\lambda = \frac{1}{d^2} (R_1^2 f_{1,\lambda} + R_2^2 f_{2,\lambda}) \times 10^{-0.4 A(\lambda)}$$

(1)

where $R_{1,2}$ are the radii of the primary and secondary, $F_{1,\lambda}$ and $F_{2,\lambda}$ are the surface fluxes of the primary and secondary components, and $A(\lambda)$ is the total extinction:

$$A(\lambda) = E(B-V) [k(\lambda-V) + R_v]$$

(2)

where $E(B-V)$ is the reddening, $k(\lambda-V)$ is the normalized extinction curve defined as $E(\lambda-V)/E(B-V)$, and R_v is the ratio of total to selective extinction in the V band. By matching the model atmospheres to the broadband photometry, we were able to determine the value of $E(B-V)$ and R_v and estimate the extinction, which is usually hard to measure, and assumed $R_v = 3.1$.

It is worth noting that according to the extent of Roche-lobe filling and deformation of the stellar surface, eclipsing binaries can be classified into subclasses of detached, semi-detached, and overcontact. It has been suggested that detached eclipsing binaries are more suitable for distance determination (see, e.g., Paczyński 1997), although some authors argue that the Roche-lobe-filling semi-detached eclipsing binaries can put more constraints on the light-curve modeling and thus have advantages of being standard candles as well (Wytie & Wilson 2002).

Previous studies of extragalactic distance determination used the Large Magellanic Cloud (LMC) as a distance anchor. While the LMC is irregular in its three-dimensional shape and has low metallicity, many authors suggest using M31 as a stepping stone to the cosmic distance determination (see, e.g., Clementini et al. 2001; Vilardell et al. 2010, and references therein). The merits of M31 include its simple geometry; its stars, which are potential distance indicators in M31, being bright enough to be resolved; the fact that it is a local counterpart of the spiral galaxies used to determine the extragalactic distance (see, e.g., Freedman et al. 2001); and that it is a local benchmark to calibrate the Tully–Fisher relation.

In order to detect the eclipsing binaries in M31, monitoring a large fraction of M31 with high cadence is required. Previous studies, e.g., the DIRECT project (Kaluzny et al. 1998; Stanek et al. 1998, 1999; Kaluzny et al. 1999; Mochejska et al. 1999; Bonanos et al. 2003) observed M31 with an 11′ × 11′ field of view (FOV) in 1996 and 1997, and later expanded to a 22′ × 22′ FOV in 1998 and 1999 in a mosaic way to cover an area of 0.5 deg² (Macri 2004). On the other hand, Vilardell et al. (2006) use the 33′.8 × 33′.8 Wide Field Camera on the Isaac Newton Telescope in Spain to observe the northeastern part of M31 from 1999 to 2003 (in total 21 nights). The limitations of these studies is that their observations only cover part of M31’s disk. With the ≈7 deg² FOV of Pan-STARRS 1 (PS1), we are able to cover the entire disk of M31 in one shot (see, e.g., Figure 1 of Lee et al. 2013) with a time resolution of up to 0.5 days. PS1 started observing M31 in 2010. Here we present the results from the three-year PS1 monitoring.

This paper is organized as follows. In Section 2 we present our data analysis. In Section 3 we describe our procedure to search for periodic variable sources and invented a modified box-fitting method to identify eclipsing binary candidates. Classifications of our binary candidates are presented in Section 4. We cross-match detached binaries in our sample with the Local Group Survey to find binaries that are ideal to follow up; we further use the detached eclipsing binary light curve fitter to characterize
these bright candidates, and extract their parameters in Section 5, followed by a summary in Section 6.

2. DATA ANALYSIS

The Pan-STARRS 1 (hereafter PS1) survey\footnote{http://pan-starrs.ifa.hawaii.edu/public/} uses a 1.8 m telescope equipped with a giga-pixel camera (GPC) located at Haleakala in Hawaii. The camera consists of 60 detectors; each detector is segmented in an 8 \times 8 array of 590 \times 598 pixel cells. Each pixel has a size of 10 \mu m, corresponding to 0.258 pixel\(^{-1}\). The FOV of each detector is 20.95 \times 20.74 and the FOV of the 60 detectors is approximately 7 deg\(^2\).

The PS1 survey includes dedicated observations of M31, the so-called PAndromeda project. PAndromeda makes use of \(\sim 2\%\) of the PS1 observation time, starting from July until December each year, to monitor M31. In this work we present the result of the three-year PAndromeda data, taken between 2010 and 2012. The original objective of PAndromeda is to search for short timescale microlensing events, and thus we monitor M31 in two time blocks per night, separated by three to five hours, to have a time resolution of less than one day. Such high-cadence observation strategy is also useful for short period variables. The two observation blocks yield 12 observations in \(rP_1\) and 6 observations in \(iP_1\), with an exposure time of 60 s. The observations in each block are combined to increase the S/N. In the end we have 330 epochs in \(rP_1\) and 250 epochs in \(iP_1\).

After the images are taken with the PS1 telescope, they are processed by the Image Processing Pipeline (IPP; Magnier 2006). The pipeline runs several successive steps, including bias and dark correction, masking, artifact removing, flat-fielding, astrometric calibration (Magnier et al. 2008), and resampling to a common pixel scale to a sky-based image plane, so-called sky cells.

Afterwards, we perform Difference Imaging Analysis (DIA; Alard & Lupton 1998) using our customized software MDia (Koppenhoefer et al. 2013) and generate light curves of all point sources. Details of our analysis can be found in Lee et al. (2012) and Kodric et al. (2013).

3. SEARCH FOR VARIABILITY

In order to identify all periodic signals that can be attributed to eclipsing binary systems we apply a detection algorithm to all 738,755 \(rP_1\)-band light curves that have been extracted from the PAndromeda data. Our detection procedure is based on the boxfitting algorithm (Kovács et al. 2002) which has been developed to detect box-shaped brightness decreases such as planetary transits. We run the boxfitting algorithm using 100,001 test periods between 0.25 days and 19.1 days, which are equally spaced in planetary transits. We run the boxfitting algorithm using 100,001 test periods between 0.25 days and 19.1 days, which are equally distributed in 1/\(p\). The duration of the eclipses is limited to 0.25 phase units. The algorithm is known to be also useful in detecting detached and semi-detached eclipsing binary systems (e.g., Nefs et al. 2012); however, due to the larger ratio between the radii of the primary and secondary star, the light curves of eclipsing binaries are generally more V-shaped than in the case of planetary transits. In order to account for that we re-fit the folded light curve for each detected period with a symmetric trapezium that has the same FWHM as the best-fitting box. The approach has already been used by Zendegas Domínguez et al. (2013). We define the V-shape parameter as the fraction of the time spent in ingress and egress with respect to the total duration of the eclipse:

\[
V = \frac{(T_2 - T_1 + T_4 - T_3)/(T_4 - T_1)}{T_2 - T_1},
\]

with \(T_1\) and \(T_2\) being the phase values at the beginning and end of the ingress and \(T_3\) and \(T_4\) being the phase values at the beginning and end of the egress. Note that the values of \(T_1\), \(T_2\), \(T_3\), and \(T_4\) are parameters that are fitted when applying the detection algorithm and they do not relate in a direct way to the real start/end of the ingress/egress of the light curve since the fitted trapezium model is only an approximation of the real brightness variation. With this definition, \(V = 0\) corresponds to a pure box-shaped eclipse and \(V = 1\) corresponds to an eclipse without a flat central part (i.e., \(T_2 = T_3\)). In addition we define the signal-to-noise ratio (S/N) of the detection as the eclipse depth \(\delta\) divided by the standard deviation \(\sigma_{\text{ecl}}\) of the combination of all points during the eclipse (i.e., all points between \((T_1 + T_2)/2\) and \((T_3 + T_4)/2\)):

\[
S/N = \frac{\delta}{\sigma_{\text{ecl}}},
\]

We calculate the S/N for both the primary and the secondary eclipse. After removing the eclipses we re-run the boxfitting algorithm a second time on each light curve and calculate the S/N of the best-fitting period \(S/N_{\text{removed}}\). This value is a good measure for the variation of the out-of-eclipse part of the candidate and can be used to distinguish eclipsing binaries from other variable sources (see below).

Eclipsing binary light curves usually show a secondary eclipse which is offset by 0.5 in phase units for circular orbits. We therefore fit a secondary eclipse that has been detected by the boxfitting algorithm for each period. The secondary eclipse is first fitted as a box which is offset by exactly 0.5 phase units from the center of the primary eclipse and subsequently refined to a trapezium shape in the same way the primary eclipse has been refined. Figure 1 shows an example of a folded light curve of one of our detected eclipsing binaries together with the best-fitting trapezium-shaped primary and secondary eclipse models.

![Figure 1. Example normalized and phase-folded light curve of one of the detached eclipsing binaries we detected in M31. The overplotted green line shows the best-fitting trapezium model as fitted by our detection algorithm. (A color version of this figure is available in the online journal.)](image-url)
close to alias periods that are enhanced by the window functions of the observations. The alias periods are identified as peaks in the histogram of detected periods. In addition we require a candidate to have at least 10 points in the primary eclipse and 5 points in the secondary eclipse. We split the remaining detections in two samples.

1. The high S/N sample contains all light curves with an rms of the out-of-eclipse part of the light curve of lower than 0.20 and an effective signal-to-noise ratio S/N_{eff} larger than 12. S/N_{eff} is calculated as the sum of the S/N of primary and secondary eclipse reduced by S/N_{removed} (see above).

2. The low x^2 sample contains all light curves with a reduced x^2 of the refined binary fit lower than 2 and a sum of the S/N of the primary and secondary eclipse larger than 12.

We visually inspected 5344 candidates in the high S/N sample and 824 candidates in the low x^2 sample and identified 298 eclipsing binary systems. The remaining candidates were false detections due to systematic outliers and pulsating variable stars such as δ-Cepheids. We only select light curves for which the primary and secondary eclipses show a symmetric shape in order to have a clean sample.

The number of 298 eclipsing binaries is a rather small value compared with that from Vilardell et al. (2006). The reason for the relatively low number of detected eclipsing binaries is due to the relatively short exposure times of the current work compared to Vilardell et al. (2006). Note also that we only select eclipsing binary systems with high S/N and good light curves.

4. CLASSIFICATION

In this section we attempt to classify our eclipsing binaries based on the shape of their light curves. The broadly used taxonomy of eclipsing systems is based on the resemblance of light curves to certain prototypes, which are categorized as Algol type (EA), β Lyrae type (EB), and W Ursae Majoris type (EW); see, e.g., the General Catalog of Variable Stars (GCVS database; Samus et al. 2009). However, this classification scheme does not fully reflect the physical configuration of a binary system. Alternatively, we classify our binary systems based on the scheme of detached (ED), semi-detached (ESD), and contact (EC), which reflect the Roche-lobe-filling status of both components.

Following the procedure of Rucinski (1993) and Pojmanski (2002), we classify our candidates with the Fourier decomposition method by fitting the phase-folded normalized light curves with a series of sine and cosine functions:

$$f(\phi) = \sum_{i=1}^{4} a_i \cos(2\pi i \phi) + b_i \sin(2\pi i \phi)$$ (5)

where $f(\phi)$ is the normalized flux at phase ϕ. It has been shown that the different configurations of eclipsing binaries are separated on the a_2–a_4-plane. Such an approach has been used to classify eclipsing binaries in the Milky Way from the ASAS sample (Pojmanski 2002) and in the Magellanic Clouds from the MACHO sample (Derekas et al. 2007). Before extending this classification scheme to our sample, we verify this classification scheme using two well-studied binaries in M31 (Ribas et al. 2005; Vilardell et al. 2010), where their configurations are well-known from joint analysis of photometric and spectroscopic analysis. The Fourier decomposition method returns the correct configuration for these two extra-galactic binaries. We thus adopted the boundary values of a_2 and a_4 from Pojmanski (2002) and classify our candidates accordingly. The results can be seen in Figure 2. To have an idea of how robust the a_2 and a_4 parameters are determined from the light curves, we perform a bootstrapping test on each light curve for 100 iterations, and calculate the standard deviation within these 100 iterations.
The standard deviation of a_2 and a_3 is then plotted as errorbar in Figure 2.

We note that there are fewer contact binaries (22) than detached (120) and semi-detached (158) systems, contrary to the results of the Milky Way sample from the All Sky Automated Survey (ASAS) in Paczyński et al. (2006). This might be contributed by the combination of the intrinsic faintness of the contact system and the remoteness of M31. The expected brightness of contact binaries in M31 can be derived using the period–luminosity relation from Rucinski (1996):

$$M_V = -2.38 \log P + 4.26(B - V) + 0.28$$ \hspace{1cm} (6)

with a 1σ dispersion of 0.24. Assuming a period of one day, a $(B - V)$ color of 0.0 (see Figure 3), and given a distance modulus of 24.36 mag for M31 (Vilardell et al. 2010), the period–luminosity relation predicts a observed magnitude of $V = 24.12$ mag, which is not reached in the PAndromeda survey. Hence, our contact binary candidates are either more likely to reside in the foreground, or indeed belong to M31 but have longer periods. In addition, our search algorithm limits the duration of the eclipses to be 0.25 in orbital phase; while contact binaries have largely sinusoidal light curves and the eclipses can span more than half of the orbital phase, the highly distorted contact systems can be missed by our algorithm, hence the detection bias can affect the number of the contact systems as well.

The spatial distribution of our binary candidates are shown in Figure 4. From the spatial distribution, there are some binaries located outside the main disk of M31, which could be attributed to foreground stars in the Milky Way. Indeed, one of our bright detached systems presented in Section 5, i.e., 036–15741, falls...
outside the main disk of M31, and is too bright/red to fit into the M31 scenario, hence we attribute it to be a foreground Milky Way system. From the ASAS Milky Way sample, the detached systems are concentrated on the Galactic plane, suggesting that these are more massive and intrinsic brighter systems, while the contact systems are isotropically distributed (Paczyński et al. 2006). However, due to our limited sample of contact binaries and the highly inclined disk of M31, we could not distinguish the difference in the spatial distribution of these two different systems. In addition, we would like to note that the eclipsing binaries detected in the survey will likely have rather bright and blue components (see, e.g., Figure 4 in Vilardell et al. 2006) and are expected to have young massive components, hence mostly distributed along the spiral arms. To verify this hypothesis, we cross-match our eclipsing binaries with the photometry of Massey et al. (2006) to derive their colors and present their color–magnitude diagram in Figure 3, and find out that they indeed exhibit blue colors.

We also show the period distribution in Figure 5. The contact systems dominate the short period range, while the detached and semi-detached systems peaked at log $P > 1$ day, in agreement with the results of the Milky Way sample from ASAS. The only exception is a contact system with period greater than 10 days. We check the error budget of d_2 and a_d estimated from bootstrapping, which indicates a solid contact classification on the a_2–a_4–plane. We note that there are several apparently contact systems with period greater than 10 days reported by Rucinski & Maceroni (2001). Such systems can be explained by a semidetached scheme, where one of the components is filling its Roche lobe and the other component is small or with lower temperature, thus the light curve reflects only the ellipsoidal variations of the larger, Roche-filling component. The color of such systems is red compared to normal contact systems. We thus cross-match the position with the local group survey (Massey et al. 2006) and find that the color of our long-period contact binary is indeed red, with $(V - I) = 0.824$, and belongs to the long-period semi-detached scheme as shown in Figure 2 of Rucinski & Maceroni (2001).

5. DETACHED BINARIES SUITABLE FOR DISTANCE DETERMINATION

We cross-match our detached binaries with the catalog of the Local Group Survey (Massey et al. 2006), and among the 298 binaries in our sample we find 13 candidates brighter than 20.5 mag in V, for which we could obtain radial velocity information from the 8–10 m class telescopes in a reasonable amount of time. We further fit their light curves with the Detached Eclipsing Binary Light curve fitter (DEBiL) developed by Devor (2005). Provided with an eclipsing binary light curve and its period, DEBiL can determine the eccentricity (e), the radius of the primary and secondary component in units of semimajor axis (R_1/a and R_2/a), and the inclination angle ($\sin i$) of the binary system in a robust manner. The results of the best-fitted model are shown in Table 1. Please note that the eccentricity is always fitted, but we only show the ones with errors smaller than the value of e. For the cases where the errors are larger than e, we consider the eccentricity to be insignificant and show the best-fit value plus the error as an upper limit in Table 1. Note that in such cases it can be either that there is negligible

![Figure 5. Period distribution of different binary configurations. Contact systems are shown in red, detached systems are marked in blue, and the semi-detached systems are denoted in green. Most of the contact systems show relatively short periods, while the detached and semidetached systems peaked at periods greater than one day.](image-url)

Table 1

Name	R.A.(J2000) (deg)	Dec.L(J2000) (deg)	Period (day)	e	R_1/a	R_2/a	$\sin i$	V (mag)	$B - V$ (mag)
026-01331	9.8894899	40.3386213	13.7	0.27±0.09	0.16±0.03	0.15±0.03	0.99±0.01	19.151	−0.306
026-08840	10.1470368	40.4485614	1.7	0.09±0.02	0.42±0.12	0.14±0.03	0.99±0.34	20.484	−0.116
026-31174	10.1376832	40.6107178	4.4	0.10±0.09	0.28±0.03	0.16±0.03	1.00±0.02	20.042	−0.169
027-24278	9.7924434	40.6230922	6.8	≤0.44	0.28±0.01	0.06±0.04	0.99±0.07	20.061	0.068
034-19151	11.2190806	41.0353092	1.1	≤0.19	0.19±0.01	0.11±0.05	1.00±0.01	18.113	0.898
036-15741	10.1831493	40.8530845	0.7	≤0.07	0.31±0.02	0.26±0.05	0.99±0.01	18.204	0.687
054-04001	11.0970184	41.4524026	5.8	0.17±0.11	0.27±0.02	0.22±0.10	0.98±0.01	19.221	0.006
054-31132	11.0230636	41.6583295	5.9	≤0.26	0.39±0.04	0.21±0.10	0.95±0.05	20.417	−0.159
055-44407	11.3321220	41.7514398	8.1	0.29±0.24	0.23±0.03	0.16±0.04	0.99±0.01	19.605	−0.187
055-01161	10.5500807	41.4274429	8.9	0.28±0.06	0.32±0.05	0.17±0.06	0.98±0.03	19.134	0.139
055-19435	10.7472466	41.6168303	14.0	0.18±0.05	0.16±0.03	0.08±0.03	1.00±0.01	20.450	0.342
055-20813	10.7648537	41.6314877	11.0	≤0.14	0.26±0.03	0.11±0.03	1.00±0.02	20.498	0.372
063-35392	11.5440668	42.2123537	2.4	≤0.29	0.28±0.01	0.08±0.03	1.00±0.05	19.618	−0.148
eccentricity, or that the semimajor axis is aligned to our line of sight, hence the eccentricity effect on the light curve is compromised. DEBiL can only give symmetric errors, which are shown in Table 1, following the best-fitted values of each parameter. The light curves, as well as the best-fitted DEBiL models, are shown in Figure 6.

Among the 13 bright detached binary systems, we find two of them are too bright to fit into the M31 scenario, and hence could be foreground stars. To assess their origin as Milky Way foreground stars, we investigate the color–magnitude diagram using $B - V$ versus V, where the M31 blue super giants, the foreground dwarves, and giants from the Milky Way are clearly separated, as shown in Massey et al. (2006). We find that the two brightest systems, 034–19151 and 036–15741, exhibit relatively red color and fit into the Milky Way foreground dwarf scenario, while the remaining 11 systems are bluer and better fit into the M31 blue giants scenario, as shown in Figure 7.

Figure 6. Light curves and best-fitted DEBiL model for the 13 detached binaries. The parameters at the top of each panel are explained in Table 1; see the text also.

(A color version of this figure is available in the online journal.)
Figure 7. Color–magnitude diagram for the 13 bright detached binaries. The underlying black dots are photometric measurements taken from the Local Group Galaxy Survey (Massey et al. 2006). Different M31 and Milky Way underlying black dots are photometric measurements taken from the Local Group Galaxy Survey (Massey et al. 2006). Different M31 and Milky Way populations are clearly separated, e.g., blue super giants (BSG) and red super giants (RSG) in M31, foreground dwarves (FD) and foreground giants (FG) from Milky Way. The two brightest detached binaries (marked in pink rhombi) from our sample exhibit relatively red color and fit into the foreground dwarf scenario, while the remaining 11 systems (marked in blue dots) are bluer and better fit into the M31 blue giants scenario.

(A color version of this figure is available in the online journal.)

6. SUMMARY

We have established a customized pipeline that generates difference imaging light curves for the PS1 M31 data. Possible variable candidates are selected with a simple χ^2 criterion. We apply a modified box-fitting algorithm to determine their period and identify eclipsing binary candidates. These candidates are further classified into categories of detached, semidetached, and contact systems with Fourier decomposition, which is carried out for M31 binaries for the first time. The period distribution shows detached and semidetached systems are longer and peak at \sim10 days, while the contact systems have rather short periods. The only exception is a contact system with period greater than 10 days. Such a system can be explained by a semidetached configuration, where one of the component is Roche-lobe-filling, while the other component is considerably smaller or cooler. The red color of this system indeed points toward the semidetached scheme.

Following the classification, we cross-match our detached binaries with the Local Group Galaxy Survey, and select 13 systems brighter than 20.5 mag in V, rendering its spectroscopic followup with 8–10 m class ground-based telescopes feasible. We note that the distance to M31 has been determined to \sim4% accuracy using two binary systems (Vilardell et al. 2010). However, these two binaries are semi-detached, which complicate the light curve analysis with distortions and reflection effects due to proximity of the components. In our detached binary sample, there are several systems exhibiting eccentric orbits, where the components can be considered well separated, and reduce the complexity of light curve modeling.

We thank the referee for the insightful comments. This work was supported by the DFG cluster of excellence “Origin and Structure of the Universe” (http://www.universe-cluster.de) and its Munich Institute for Astro and Particle Physics (MIAPP; http://www.munich-iapp.de). R.P.K. acknowledges support by the National Science Foundation under grant AST-1008798. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE).

REFERENCES

Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325
Bonanos, A. Z., Stanek, K. Z., Kudritzki, R. P., et al. 2006, ApJ, 652, 313
Bonanos, A. Z., Stanek, K. Z., Sasselov, D. D., et al. 2003, AJ, 126, 175
Clementini, G., Federici, L., Corsi, C., et al. 2001, ApJL, 559, L109
Derekas, A., Kiss, L. L., & Bedding, T. R. 2007, ApJ, 663, 249
Devor, J. 2005, ApJ, 628, 411
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47
Gil de Paz, A., Boissier, S., Madore, B. F., et al. 2007, ApJS, 173, 185
Kaluzny, J., Mochejska, B. J., Stanek, K. Z., et al. 1999, AJ, 118, 346
Kaluzny, J., Stanek, K. Z., Krockenberger, M., et al. 1998, AJ, 115, 1016
Kodric, M., Riffeser, A., Hopp, U., et al. 2013, AJ, 145, 106
Koppenhoeffer, J., Saglia, R. P., & Riffeser, A. 2013, ExA, 35, 329
Kovács, G., Zucker, S., & Mazeh, T. 2002, A&A, 391, 369
Lee, C.-H., Kodric, M., Seitz, S., et al. 2013, ApJ, 777, 35
Lee, C.-H., Riffeser, A., Koppenhoeffer, J., et al. 2012, AJ, 143, 89
Macri, L. M. 2004, in IAU Colloq. 193, in ASP Conf. Proc., Vol. 310, Variable Stars in the Local Group, ed. D. W. Kurtz & K. R. Pollard (San Francisco, CA: ASP), 33
Magnier, E. 2006, in The Advanced Maui Optical and Space Surveillance Technologies Conference, The Pan-STARRS PS1 Image Processing Pipeline, ed. S. Ryan (Maui, HI: The Maui Economic Development Board), E50
Magnier, E. A., Liu, M., Monet, D. G., & Chambers, K. C. 2008, in IAU Symp. 248, A Giant Step: From Milli- to Micro-arcsecond Astrometry, ed. W. J. Jin, I. Platais, & M. A. C. Perryman (Cambridge: Cambridge Univ. Press), 553
Massey, P., Olsen, K. A. G., Hodge, P. W., et al. 2006, AJ, 131, 2478
Mochejska, B. J., Kaluzny, J., Stanek, K. Z., Krockenberger, M., & Sasselov, D. D. 1999, AJ, 118, 2211
Nefs, S. V., Birkby, J. L., Snellen, I. A. G., et al. 2012, MNRAS, 425, 950
Paczyński, B. 1997, in The Extragalactic Distance Scale, ed. M. Livio (London: Cambridge Univ. Press), 273
Paczyński, B., Szczygieł, D. M., Pilecki, B., & Pojmański, G. 2006, MNRAS, 368, 1311
Pojmański, G. 2002, AcA, 52, 397
Riba, I., Jordi, C., Vilardell, F., et al. 2005, ApJL, 635, L37
Rucinski, S. M. 1993, PASP, 105, 1433
Rucinski, S. M. 1996, in The Origins, Evolution, and Destinies of Binary Stars in Clusters, Vol. 90, ed. M. F. Milone & J.-C. Mermilliod (San Francisco, CA: ASP), 270
Rucinski, S. M., & Maceroni, C. 2001, AJ, 121, 254
Samus, N. N., Durlevich, O. V., Kazarovets, R. V., et al. 2009, yCat, 1, 2025
Stanek, K. Z., Kaluzny, J., Krockenberger, M., et al. 1998, AJ, 115, 1894
Stanek, K. Z., Kaluzny, J., Krockenberger, M., et al. 1999, AJ, 117, 2810
Vilardell, F., Riba, I., Jordi, C., Fitzpatrick, E. L., & Guinan, E. F. 2010, A&A, 509, A70
Wyithe, J. S. B., & Wilson, R. E. 2002, ApJ, 571, 293
Zendejas Dominguez, J., Koppenhoefer, J., Saglia, R. P., et al. 2013, A&A, 560, A92