Interleukin 8 in progression of hormone-dependent early breast cancer

JELENA MILOVANOVIĆ*, NATASA Todorović-Raković, TIJANA Vujasinović and ZAKI ABU RABI
Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia

*Corresponding author (Email, jelena.mil10@gmail.com)

The only way to perceive the real clinical course of disease and the prognostic significance of potential biomarkers is follow-up of patients who did not receive any kind of adjuvant therapy. Many studies have confirmed high levels of interleukin 8 (IL8) in HER2-enriched and basal-like (ER–) primary breast tumours, but less is known about the significance of IL8 in hormone-dependent breast cancer. The aim of this study was to evaluate the prognostic significance of IL8 and clinicopathological parameters in hormone-dependent breast cancer, and to examine possible associations between them that might imply possible biological dependence. The study included 91 early-stage breast cancer patients with detectable levels of hormone receptors (ER>0, PR>0). None of the patients received adjuvant therapy according to valid protocol at that time. HER2 status was determined on paraffin-embedded tumour tissue sections by CISH. IL8 levels were determined by ELISA in cytosol tumour extracts of 65 patients with long-term follow-up (144 months). Nonparametric statistical tests were used for data analyses. Patients with low IL8 levels (M<88.8 pg/mg) had significantly longer relapse-free survival (RFS) compared to patients with high IL8 levels (M≥88.82 pg/mg) (Log rank test, p=0.002). Patients with ERhighIL8low phenotype had significantly longer RFS compared to those with ERhighIL8high and ERlowIL8high phenotypes (p=0.04 and p=0.02, respectively); patients with PRlowIL8low phenotype had significantly longer RFS compared to those with PRlowIL8high and PRhighIL8-high phenotypes (p=0.003 and p=0.02, respectively); patients with HER2-IL8low phenotype had significantly longer RFS compared to those with HER2-IL8high and HER2+IL8high phenotypes (p=0.01 and p=0.02, respectively). Our results indicate significant contribution of IL8 on survival of hormone-dependent early-stage breast cancer patients and association with established parameters such as ER/PR and HER2.

1. Background

Breast cancer is hormone-dependent disease with great genetical, pathological and clinical heterogeneity. Hormone receptors (ER and PR) together with human epidermal growth factor receptor 2 (HER2) are the main determinants of breast cancer and still the most important established biomarkers. The only way to perceive the real clinical course of disease and the prognostic significance of potential biomarkers is follow-up of patients who did not receive any kind of adjuvant (postoperative) therapy and had only surgical intervention. Very little data is available regarding this issue because some kind of adjuvant therapy is given to all breast cancer patients nowadays.

Interleukin 8 (IL8) has been intensively examined in recent years as potential prognostic biomarker in different types of human cancers. IL8 is an inflammatory cytokine that belongs to the class of CXC chemokines, a potent chemoattractant and activator of neutrophils, monocytes and other immune cells. Elevated expression of IL8 has been characterized in many different chronic inflammatory conditions and different types of human cancers (reviewed in Qazi et al. 2011). Literature have indicated that IL8 could contribute to tumour growth and progression directly, by

Keywords. Breast cancer; HER2; hormone receptor; interleukin 8
acting as mitogenic and potent angiogenic factor, as well as indirectly, by chemotactic infiltration of immune cells that secrete by themselves growth and angiogenic factors (reviewed in Xie 2001). Moreover, recent studies have supported the involvement of IL8 signaling in regulation of stem cells activity, which is considered to be responsible for tumour initiation, maintenance, metastases and disease recurrence (Singh et al. 2013). Many studies have indicated that there are high levels of IL8 in basal-like (ER−) and HER2-enriched (HER2+) primary breast tumours, two subtypes characterized by a particularly poor prognosis (Aceto et al. 2012), but less is known about the role and the significance of IL8 in hormone-dependent breast cancer.

The aims of the study were to evaluate the prognostic significance of interleukin 8 and clinicopathological parameters in hormone-dependent breast cancer, and to examine possible associations between them that might imply possible biological dependence.

2. Materials and methods

The study included 91 early-stage breast cancer patients (clinical stadium I/II) with known clinicopathological parameters. All patients were postmenopausal and had detectable levels of hormone receptors (ER>0, PR>0) that should indicate hormone-dependent breast cancer. All patients underwent surgical removal of their primary tumour at the Institute of Oncology and Radiology of Serbia. After surgery, histological specimens were examined and classified according to the criteria of AJCC/UICC (American Joint Committee on Cancer/Union International Contre le Cancer) for TNM stage and histological type, and part of the tumour was frozen. Age and menopausal status, regional lymph node status (N), tumour size (T), tumour grade (G) and histological type were obtained after the Institutional Review Board approval. None of the patients received adjuvant therapy according to valid protocol at that time, due to favorable clinicopathological parameters, preferentially N0 status and absence of G3 tumour grade. The course of disease was followed from surgical intervention till relapse, so-called, relapse-free survival (RFS).

HER2 status (absence or presence of gene amplification) was determined on formalin-fixed paraffin-embedded tumour tissue sections by chromogenic in situ hybridization (CISH), according to the manufacturer’s instructions (Invitrogen SPOT-Light HER2 CISH Kit, USA). Hybridization results were evaluated in 40× and 100× magnification (Olympus BX51 light microscope). One to 5 gene copies per nucleus were defined as no amplification, while more than 6 gene copies per nucleus or large gene copy clusters in more than 50% of tumour cells defined amplification.
Table 2. Survival analyses for subgroups of patients formed according to available clinicopathological parameters

Clinicopathological parameters	Number of patients	Number of relapses	Relapses (%)	RFS (months)	Median RFS (months)	p-Value (Log Rank)
Age (years)						
<62 (median)	44	12	28.6	4–161	95	0.5
≥62	47	11	23.9	3–165	127	
NA	0					
Tumour size (cm)						
T<2	49	8	16.3	3–161	144	0.03
T≥2	40	14	35	3–165	95	
NA	2					
Histological type						
IDC	36	5	13.9	6–165	145	0.01
ILC	27	11	40.7	3–158	69	
NA	2					
Tumour grade						
G1	9	1	11.1	24–158	145	0.3
G2	80	22	27.5	3–165	103.5	
NA	1					
ER status						
ERlow	20	5	25	3–162	65	0.6
ERhigh	71	18	25.3	3–165	108	
NA	0					
PR status						
PRlow	70	19	27.1	3–165	106.5	0.5
PRhigh	21	4	19	4–165	97	
NA	0					
Receptor status						
ERlowPRlow	20	5	25	3–162	65	0.5
ERhighPRhigh	21	4	19	4–165	97	
NA	0					
HER2 status						
HER2–	65	16	24.6	3–165	114	0.8
HER2+	20	5	25	10–155	101	
NA	6					

IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; ERlow, ER<10 fmol/mg; ERhigh, ER≥10 fmol/mg; PRlow, PR<20 fmol/mg; PRhigh, PR≥20 fmol/mg; HER2–, HER2 gene not amplified; HER2+, HER2 gene amplified; NA, data not available.

Table 3. Survival analysis for subgroups of patients formed according to the median IL8 level

Biomarker	Number of patients*	Number of relapses	Relapses (%)	RFS (months)	Median RFS (months)	p-Value (Log Rank)
IL8						
IL8low	33	5	15.1	19–161	150	0.002
IL8high	32	14	43.7	3–165	96	

*IL8 levels were measured in cytosol tumour extracts of 65 patients with long-term follow-up (144 months).
IL8low, IL8<88.82 pg/mg; IL8high, IL8≥88.82 pg/mg.

J. Biosci. 42(2), June 2017
Cytosol tumour extracts were prepared from frozen tumours by a following workflow: homogenization in 5 mM phosphate buffer pH 7.4–7.7 containing 20% glycerol, 1 mM monothioglycerol and 1.5 mM EDTA, centrifugation at 800–1000 g for 30 min, followed by ultracentrifugation at 100000 g for 60 min (ultracentrifuge Beckman L5-50). The whole procedure was performed at +4°C. Tumour extract protein concentrations were assayed by the Lowry method. Hormone receptor concentrations were determined by the standard ligand-binding assay. ER levels <10 fmol/mg and PR levels <20 fmol/mg was considered as low. ER levels ≥10 fmol/mg and PR levels ≥20 fmol/mg was considered as high.

IL8 concentrations were determined by ELISA in cytosol tumour extracts of 65 patients with long-term follow-up (144 months), according to the manufacturer’s instructions (Ray-Bio® Human IL8 ELISA Kit, USA). The assay employs an antibody specific for human IL8 coated on a 96-well plate. IL8 present in the sample is bound to the well by immobilized antibody and colour develops in proportion to the amount of IL8 bound. The median IL8 value was used as cut off value.

Figure 1
Survival analysis for subgroups of patients formed according to the median IL8 level (M=88.82 pg/mg).

Cytosol tumour extracts were prepared from frozen tumours by a following workflow: homogenization in 5 mM phosphate buffer pH 7.4–7.7 containing 20% glycerol, 1 mM monothioglycerol and 1.5 mM EDTA, centrifugation at 800–1000g for 30 min, followed by ultracentrifugation at 100000g for 60 min (ultracentrifuge Beckman L5-50). The whole procedure was performed at +4°C. Tumour extract protein concentrations were assayed by the Lowry method. Hormone receptor concentrations were determined by the standard ligand-binding assay. ER levels <10 fmol/mg and PR levels <20 fmol/mg was considered as low. ER levels ≥10 fmol/mg and PR levels ≥20 fmol/mg was considered as high.

IL8 concentrations were determined by ELISA in cytosol tumour extracts of 65 patients with long-term follow-up (144 months), according to the manufacturer’s instructions (Ray-Bio® Human IL8 ELISA Kit, USA). The assay employs an antibody specific for human IL8 coated on a 96-well plate. IL8 present in the sample is bound to the well by immobilized antibody and colour develops in proportion to the amount of IL8 bound. The median IL8 value was used as cut off value.

Table 4
Survival analyses for subgroups of patients formed according to ER status and the median IL8 level

Phenotype	Number of patients	Number of relapses	Relapses (%)	RFS (months)	Median RFS (months)	p-Value (Log Rank)
ERlowIL8low	5	0	0	52–159	148	0.07
ERlowIL8high	9	5	55.5	3–165	114	0.04
ERhighIL8low	28	5	17.9	19–161	150	0.3
ERhighIL8high	23	9	39.1	3–165	85	
ERlowIL8low	5	0	0	52–159	148	0.1
ERhighIL8low	28	5	17.9	19–161	150	
ERlowIL8high	5	0	0	52–159	148	0.5
ERhighIL8high	23	9	39.1	3–165	85	
ERlowIL8high	9	5	55.5	3–165	114	0.02
ERhighIL8low	28	5	17.9	19–161	150	
ERlowIL8high	9	5	55.5	3–165	114	0.5
ERhighIL8low	23	9	39.1	3–165	85	

ERlow, ER<10 fmol/mg; ERhigh, ER≥10 fmol/mg; IL8low, IL8<88.82 pg/mg; IL8high, IL8≥88.82 pg/mg.
3. Results

Patient’s clinicopathological parameters at the time of primary diagnosis are presented in table 1. There were no statistically significant differences in the expression of IL8 between subgroups of patients formed according to patient’s age, tumour size, histological type, tumour grade and receptor status (Mann-Whitney rank sum test). There was no statistically significant correlation between ER and IL8 expression, neither between PR and IL8 expression (Spearman rank order test).

Survival analyses for subgroups of patients formed according to available clinicopathological parameters are presented in table 2. There were no statistically significant differences in relapse-free survival (RFS) between subgroups formed according to patient’s age, tumour grade and receptor status but there was a statistically significant difference in RFS between subgroups formed according to tumour size (Log rank test, $p=0.03$) and histological type ($p=0.01$).

Survival analysis for subgroups formed according to the median IL8 value ($M=88.82$ pg/mg; range 5.07–1846.32 pg/mg) is presented in table 3. There was a statistically significant difference in RFS (Log rank test, $p=0.002$) and patients with low IL8 levels ($M<88.82$ pg/mg) had better prognosis (figure 1).

Survival analyses for subgroups of patients formed according to ER status and the median IL8 value ($M=88.82$ pg/mg) are presented in Table 4. In all combinations of phenotypes, patients with low IL8 levels ($M<88.82$ pg/mg) had lower percentage of relapses and longer RFS compared to patients with high IL8 levels ($M\geq88.82$ pg/mg), regardless of ER status. There was a statistically significant difference in RFS between patients with ERhighIL8low and ERhighIL8high phenotypes (Log rank test, $p=0.04$) as well as between patients with ERhighIL8low and ERlowIL8high phenotypes ($p=0.02$). Patients with ERhighIL8low phenotype had significantly longer RFS compared to patients with ERhighIL8high phenotype (figure 2a) and patients with ERhighIL8low phenotype had significantly longer RFS compared to patients with ERlowIL8high phenotype (figure 2b).

Survival analyses for subgroups formed according to PR status and the median IL8 value ($M=88.82$ pg/mg) are presented in table 5. In all combinations of phenotypes, patients with low IL8 levels had lower percentage of relapses and longer RFS compared to patients with high IL8 levels, irrespective of PR status. There was a statistically significant difference in RFS between patients with PRlowIL8low and PRlowIL8high phenotypes ($p=0.003$) as well as between patients with PRlowIL8low and PRhighIL8high phenotypes ($p=0.02$). Patients with PRlowIL8low phenotype had significantly longer RFS compared to patients with PRlowIL8high phenotype.
Patients with PRlowIL8low phenotype had significantly longer RFS compared to patients with PRhighIL8high phenotype (figure 3b). Survival analyses for subgroups formed according to HER2 status and the median IL8 value (M=88.82 pg/mg) are presented in table 6. In all combinations of phenotypes, patients with low IL8 levels had lower percentage of relapses and longer RFS compared to patients with high IL8 levels, regardless of HER2 status. There was a statistically significant difference in RFS between patients with HER2–IL8low and HER2–IL8high phenotypes (p=0.01) as well as between patients with HER2–IL8low and HER2+IL8high phenotypes (p=0.02). Patients with HER2–IL8low phenotype had significantly longer RFS compared to patients with HER2–IL8high phenotype (figure 4a) and patients with HER2–IL8low phenotype had significantly longer RFS compared to patients with HER2+IL8high phenotype (figure 4b).

4. Discussion

Our results showed prognostic significance of IL8 and patients with low IL8 levels had better prognosis (figure 1). Recent literature have indicated the significance of IL8 as potential prognostic marker in different types of human cancers. Increased IL8 expression in ovarian cyst fluid, ascites, serum and tumour tissue from ovarian cancer patients correlated with poor prognosis and survival (Wang et al. 2012). Increased IL8 expression in tumour tissue from endometrial cancer patients was associated with poor survival (Mannelqvist et al. 2011). Two large clinical studies showed that increased levels of both serum IL6 and IL8 were associated with lung cancer, but only IL8 levels were in direct relation to lung cancer risk several years before diagnosis (Pine et al. 2011). Some authors indicated that IL8 could be a marker for predicting the prognosis and monitoring disease progression of pancreatic cancer patients (Chen et al. 2012) as well as colorectal cancer patients (Biasi et al. 2012). Reis et al. first indicated the prognostic relevance of IL8 mRNA expression in bladder cancer (Reis et al. 2012). Nasopharyngeal carcinoma (NPC) has the highest metastatic potential among head and neck cancers. A study on 250 patients with NPC revealed that higher IL8 expression in primary tumour tissue was an independent prognostic factor for overall survival, disease-free survival and distant metastasis-free survival (Li et al. 2012).

Literature related to the prognostic significance of IL8 in early and advanced breast cancer is not extensive. Skoog et al. showed that inflammatory breast cancer, a distinct and aggressive form of locally advanced breast cancer, was associated with high levels of IL8 (Skoog et al. 1987). According to literature, IL8 from serum and/or tumour tissue could be used to diagnose women with breast cancer and to identify patients with poor prognosis (Kozłowski et al. 2003; Benoy et al. 2004; Yao et al. 2007). Benoy et al. showed that serum IL8 had an independent prognostic significance for postrelapse survival (Benoy et al. 2004) and Yao et al. showed significance of tumour tissue IL8 for disease-free survival (Yao et al. 2007). Papaxoinis et al. showed that HER2-ECD, NO and IL8 plasma levels had prognostic value for survival of patients with metastatic breast cancer treated with weekly docetaxel (Papaxoinis et al. 2010). High pretreatment IL8 levels were of adverse prognostic value for survival and patients with high IL8 relative change had worse progression-free survival. Two large clinical studies showed that the polymorphisms in IL8 and CXCR2 genes

Phenotype	Number of patients	Number of relapses	Relapses (%)	RFS (months)	Median RFS (months)	p-Value (Log Rank)
PRlowIL8low	24	2	8.3	45–161	150	0.003
PRhighIL8high	25	11	44	3–165	107	
PRlowIL8low	9	3	33.3	19–161	109	0.6
PRhighIL8high	7	3	42.9	16–160	85	
PRlowIL8low	24	2	8.3	45–161	150	0.07
PRhighIL8high	7	3	42.9	16–160	85	
PRlowIL8high	24	2	8.3	45–161	150	0.02
PRhighIL8high	7	3	42.9	16–160	85	
PRlowIL8high	25	11	44	3–165	107	0.5
PRhighIL8low	9	3	33.3	19–161	109	
PRlowIL8high	25	11	44	3–165	107	0.8
PRhighIL8low	7	3	42.9	16–160	85	

PRlow, PR<20 fmol/mg; PRhigh, PR≥20 fmol/mg; IL8low, IL8<88.82 pg/mg; IL8high, IL8≥88.82 pg/mg.
were associated with increased breast cancer risk and prognosis (Snoussi et al. 2010). The presence of the IL8 (-251) A allele and/or the CXCR2 (+1208) T allele showed a significant association with decreased overall survival and decreased disease-free survival. We have recently shown the prognostic relevance of IL8 in adjuvantly untreated early breast cancer patients in short-term and long-term follow-up (Milovanović et al. 2013; Abu Rabi et al. 2015).

The most important relation of IL8 is to ER and/or HER2 status, since receptor status is still the main determinant of breast cancer. According to literature, IL8 is highly expressed in ER– breast cancers and it is also highly expressed in HER2-enriched breast cancers (Freund et al. 2003; Yao et al. 2007; Aceto et al. 2012). Moreover, IL8 expression is inversely related to ER status in breast cancer cells (Freund et al. 2003; Aceto et al. 2012). It is postulated that the net effect of IL8 action in breast cancer is the result of a delicate balance between ER inhibition and HER2 induction of IL8 expression and activity (reviewed in Todorović-Raković and Milovanović 2013). In our study receptor status did not have prognostic significance (table 2), although available literature have implied that hormone receptor-positive and/or HER2-negative status is generally associated with better prognosis (Clark et al. 1983; Slamon et al. 1987; Dunnwald et al. 2007).

According to our results, IL8 seems to be more reliable prognostic marker than receptor status in early-stage breast cancer. When comparing RFS of patients stratified in different phenotypes according to receptor status and the median IL8 value (tables 4, 5 and 6), in all combinations of phenotypes patients with low IL8 levels had lower percentage of relapses and longer RFS compared to patients with high IL8 levels, irrespective of ER/PR/HER2 status.

When patients were stratified according to ER status and the median IL8 level (table 4), IL8 expression had no influence on survival of ERlow subgroup, but had significant influence on survival of ERhigh subgroup. Patients with ERhighIL8low phenotype had almost twice longer median RFS (150 months) compared to patients with ERhighIL8high phenotype (85 months) and the number of relapses in ERhighIL8low subgroup was 18% versus 39% in ERhighIL8high subgroup. This implies the significant role of IL8 in progression of hormone-dependent early breast cancer, in contrast to the previously accepted hypothesis that IL8 expression is important feature that exclusively influences the course of disease of ER– breast cancer. Furthermore, patients with ERhighIL8low phenotype had significantly longer median RFS compared to patients with PRlowIL8high phenotype (150 and 114 months, respectively). This indicates that ER as a marker of favorable prognosis and IL8 as a marker of unfavorable prognosis (which is probably downregulated by ER), could influence the course of disease in an additive manner. It is interesting that according to our results, the impact of IL8 on survival is much stronger in PRlow tumours compared to PRhigh tumours (table 5). This

Figure 3. Survival analyses for subgroups of patients formed according to PR status and the median IL8 level (M=88.82 pg/mg).
could be explained by the fact that the most frequent subtype of tumours in this study was ERhighPRlow (55%).

When patients were stratified according to HER2 status and the median IL8 level (table 6), IL8 expression had significant influence on survival of HER2− subgroup, but had no influence on survival of HER2+ subgroup. Patients with HER2−IL8low phenotype had significantly longer median RFS compared to patients with HER2−IL8high phenotype (150 and 64 months, respectively) and the number of relapses in HER2−IL8low subgroup was 15% versus 42% in HER2−IL8high subgroup. Although IL8 has been identified as a marker of HER2-enriched breast cancer, our results indicate the significant influence of IL8 on the course of HER2−breast cancer. Furthermore, patients with HER2−IL8low phenotype had significantly longer median RFS compared to patients with HER2+IL8low phenotype (153 and 100 months, respectively). This implies that HER2 and IL8 as markers of unfavorable prognosis, could act additively on the course of disease.

According to our results, if IL8 is highly expressed, the influence of ER is weaker and that is the reason why there is no significant difference in RFS between patients with ERlowIL8high and ERhighIL8high phenotypes. The same is true for PR and HER2 and there is no significant difference in RFS between patients with PRlowIL8high and PRhighIL8high phenotypes, neither between patients with HER2−IL8high and HER2+IL8high phenotypes.

Literature related to the hormonal regulation of IL8 is controversial. Many authors found that multiple cytokines including IL8 were overexpressed in ER− breast cancer (Bieche et al. 2007; Chavey et al. 2007). On the other hand, Bendrik and Dabrosin found a significant positive correlation between IL8 and estradiol in normal breast tissue in situ and ER+PR+ breast cancer in vivo (Bendrik and Dabrosin 2009). Wen et al. first demonstrated in vitro and in mice in vivo that expression of IL8 was directly stimulated by activation of HER2 and downstream PI3K/Akt pathway (Wen et al. 2006). Azenshtein et al. showed that epidermal growth factor (HER2 ligand) potently upregulated IL8 secretion by breast tumour cells, and its effect was promoted by a consecutive treatment of the cells by estrogen and progesterone (Azenshtein et al. 2005). Haim et al. showed that EGF and estrogen upregulated in an additive manner the transcription and the secretion of IL8 in breast tumour cells (Haim et al. 2011). They postulated that EGF and estrogen probably act in independent transcriptional pathways that complement each other, in the upregulation of IL8.

Our results indicate significant contribution of IL8 on survival of hormonal dependent early-stage breast cancer patients and association with established parameters such as ER/PR and HER2. However, we must refrain and point that these results deserve further investigation, since we had small and unequal numbers of observations in subgroups. Our results are in contrast to the previously accepted hypothesis that IL8 expression is important feature that exclusively influences the course of ER− breast cancer. Furthermore, although IL8 has been identified as a marker of HER2-enriched breast cancer, our results indicate the significant influence of IL8 on the course of HER2−breast cancer. Moreover, not only expression of IL8 is dependent on ER and HER2 cross-talk, but also receptor-mediated signaling could act additively with IL8 in progression of hormone-dependent breast cancer.

Table 6. Survival analyses for subgroups of patients formed according to HER2 status and the median IL8 level

Phenotype	Number of patients	Number of relapses	Relapses (%)	RFS (months)	Median RFS (months)	p-Value (Log Rank)
HER2−IL8low	27	4	14.8	19–161	150	0.01
HER2−IL8high	19	8	42.1	3–165	64	
HER2+IL8low	6	1	16.7	45–158	153	0.2
HER2+IL8high	8	4	50	3–158	100	
HER2−IL8low	27	4	14.8	19–161	150	0.9
HER2−IL8high	19	8	42.1	3–165	64	0.2
HER2+IL8low	6	1	16.7	45–158	153	0.2
HER2+IL8high	8	4	50	3–158	100	
HER2−IL8low	27	4	14.8	19–161	150	0.2
HER2−IL8high	19	8	42.1	3–165	64	0.7
HER2+IL8low	6	1	16.7	45–158	153	
HER2+IL8high	8	4	50	3–158	100	

HER2−, HER2 gene not amplified; HER2+, HER2 gene amplified; IL8low, IL8<88.82 pg/mg; IL8high, IL8 ≥ 88.82 pg/mg.
Acknowledgements

This work was supported by Grant No. 175068 ‘Molecular biomarkers of breast cancer and changes of their significance depending on the follow-up of the disease’ from the Ministry of Science and Technological Development of the Republic of Serbia.

References

Abu Rabi Z, Todorović-Raković N, Vujasinović T, Milovanović J and Nikolić-Vukosavljević D 2015 Markers of progression and invasion in short term follow up of untreated breast cancer patients. Cancer Biomark. 15 745–754

Aceto N, Duss S, McDonald G, Meyer DS, Roloff TC, et al. 2012 Co-expression of HER2 and HER3 receptor tyrosine kinases enhances invasion of breast cells via stimulation of interleukin-8 autocrine secretion. Breast Cancer Res. 14 R131

Azenshtein E, Meshel T, Shina S, Barak N, Keydar I and Ben-Baruch A 2005 The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors. Cancer Lett. 217 73–86

Bendrik C and Dabrosin C 2009 Estradiol increases IL-8 secretion of normal human breast tissue and breast cancer in vivo. J. Immunol. 182 371–378

Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, et al. 2004 Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin. Cancer Res. 10 7157–7162

Biasi F, Guina T, Maina M, Nano M, Falcone A, et al. 2012 Progressive increase of matrix metalloprotease-9 and interleukin-8 serum levels during carcinogenic process in human colorectal tract. PLoS One 7 e41839

Bièche I, Chavey C, Andrieu C, Busson M, Vacher S, et al. 2007 CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocr. Relat. Cancer 14 1039–1052

Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissière F, et al. 2007 Estrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res. 9 R15

Chen Y, Shi M, Yu GZ, Qin XR, Jin G, et al. 2012 Interleukin-8, a promising predictor for prognosis of pancreatic cancer. World J. Gastroenterol. 18 1123–1129

Clark GM, McGuire WL, Hubay CA, Pearson OH and Marshall JS 1983 Progesterone receptors as a prognostic factor in Stage II breast cancer. N. Engl. J. Med. 309 1343–1347

Dunnwald LK, Rossing MA and Li CI 2007 Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res. 9 R6

Freund A, Chauveau C, Brouillet JP, Lucas A, Lacroix M, et al. 2003 IL-8 expression and its possible relationship with estrogen receptor-negative status of breast cancer cells. Oncogene 22 256–265

Haim K, Weitzenfeld P, Meshel T and Ben-Baruch A 2011 Epidermal growth factor and estrogen act by independent pathways to additively promote the release of the angiogenic chemokine CXCL8 by breast tumor cells. Neoplasia 13 230–243

Kozłowski L, Zakrzewska I, Tokajuk P and Wojtukiewicz MZ 2003 Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Roczn. Akad. Med. Białymst. 48 82–84

Figure 4. Survival analyses for subgroups of patients formed according to HER2 status and the median IL8 level (M=88.82 pg/mg).
Li XJ, Peng LX, Shao JY, Lu WH, Zhang JX, et al. 2012 As an independent unfavorable prognostic factor, IL-8 promotes metastasis of nasopharyngeal carcinoma through induction of epithelial-mesenchymal transition and activation of AKT signaling. Carcinogenesis 33 1302–1309
Mannelqvist M, Stefansson IM, Bredhold G, Hellem BT, Oyan AM, et al. 2011 Gene expression patterns related to vascular invasion and aggressive features in endometrial cancer. Am. J. Pathol. 178 861–871
Milovanović J, Todorović-Raković N and Abu Rabi Z 2013 The prognostic role of interleukin-8 (IL-8) and matrix metalloproteinase -2 and -9 (MMP-2 and MMP-9) in node - negative untreated breast cancer patients. J Clin Oncol ASCO Annual Meeting Abstracts 28 e21004
Papaxoinis G, Pectasides DG, Korantzis I, Koutras A, Kosmidis PA, et al. 2010 Plasma angiogenic markers in patients with metastatic breast cancer treated with weekly docetaxel. J Clin Oncol ASCO Annual Meeting Abstracts 28 e21004
Pine SR, Mechanic LE, Enewold L, Chaturvedi AK, Katki HA, et al. 2011 Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer. J Natl Cancer Inst. 103 1112–1122
Qazi BS, Tang K and Qazi A 2011 Recent advances in underlying pathologies provide insight into interleukin-8 expression-medi gated inflammation and angiogenesis. J. Interferon Cytokine Res. 33 563–570
Wang Y, Xu RC, Zhang XL, Niu XL, Qu Y, et al. 2012 Interleukin-8 secretion by ovarian cancer cells increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion. Cytokine 59 145–155
Wen XF, Yang G, Mao W, Thornton A, Liu J, et al. 2006 HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy. Oncogene 25 6986–6996
Xie K 2001 Interleukin 8 and human cancer biology. Cytokine Growth Factor Rev. 12 375–391
Yao C, Lin Y, Chua MS, Ye CS, Bi J, et al. 2007 Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int. J. Cancer 121 1949–1957

MS received 29 September 2016; accepted 13 February 2017

Corresponding editor: RITA MULHERKAR

J. Biosci. 42(2), June 2017