Small Fermi energy, zero point fluctuations and nonadiabaticity in MgB$_2$

L. Boeri1,2, E. Cappelluti2,1, and L. Pietronero1,2

1Dipart. di Fisica, Università di Roma “La Sapienza”, P.le A. Moro, 2, 00185 Roma, Italy
2INFM and “Istituto dei Sistemi Complessi” del CNR, v. dei Taurini 19, 00185 Roma, Italy

(Dated: November 7, 2018)

Small Fermi energy effects are induced in MgB$_2$ by the low hole doping in the σ bands which are characterized by a Fermi energy $E_F^\sigma \sim 0.5$ eV. We show that, due to the particularly strong deformation potential relative to the E_{2g} phonon mode, lattice fluctuations are reflected in strong fluctuations in the electronic band structure. Quantum fluctuations associated to the zero-point lattice motion are responsible for an uncertainty of the Fermi energy of the order of the Fermi energy itself, leading to the breakdown of the adiabatic principle underlying the Born-Oppenheimer approximation in MgB$_2$ even if $\omega_{ph}/E_F \sim 0.1 - 0.2$, where ω_{ph} are the characteristic phonon frequencies. This amounts to a new nonadiabatic regime, which could be relevant to other unconventional superconductors.

PACS numbers: 74.70.Ad, 63.20.Kr, 71.38.-k

Four years after the discovery of superconductivity at 39 K in MgB$_2$ the superconducting properties of this material are still object of investigation. One of the anomalous characteristics of MgB$_2$ with respect to conventional ME superconductors is the remarkable smallness of the Fermi energy E_F^σ associated with the hole-like σ bands, which are the most involved in the Cooper pairing. ME theory holds true indeed only if the Fermi energy E_F is much larger than any other energy scale of the system. Several analyses indicate however that this is not the case of MgB$_2$. LDA calculations, for instance, estimate the energy distance between the chemical potential and the top of the σ bands to be $\sim 0.4-0.6$ eV\cite{2}, in agreement with ARPES measurements\cite{5,6}. Estimates of the Fermi energy can be inferred also from penetration depth measurements giving $E_F = 3200$ K in MgB$_2$\cite{5} and even less in Al and C doped compounds\cite{5,6}

In previous studies we have analyzed some of the effects related to a small Fermi energy E_F^σ on different electronic and vibrational properties of MgB$_2$. One of these effects is the breakdown of Migdal’s theorem, and consequently of the Migdal-Eliashberg diagrammatic theory, which occurs when the Fermi energy E_F^σ and the phonon energy ω_{ph} are comparable ($\omega_{ph}/E_F^\sigma \lesssim 1$)\cite{5}. Another one is the remarkable anharmonicity of the E_{2g} phonon mode, related to the splitting in energy of the σ bands under the E_{2g} distortion\cite{7,8}

In this paper we want to discuss in greater detail new physical consequences of the comparable size of E_F^σ and the E_{2g} splitting energy of the σ bands in MgB$_2$. In particular we review in a critical way the validity of the adiabatic Born-Oppenheimer (BO) approximation for the E_{2g} phonon, which is the most relevant to the superconducting pairing. As our main result we show that, due to the large quantum fluctuations associated with the zero point motion, the BO principle is broken down independently of the ω_{ph}/E_F^σ ratio. This novel kind of adiabatic breakdown is thus shown to be related to the parameter $\kappa = g_E E_{2g}/E_F^\sigma$, where g_E is the electron-phonon matrix element which couples the electrons in σ bands to the E_{2g} phonon mode in MgB$_2$. A simple quantum analysis gives $\kappa \sim 0.9 - 1$, strongly questioning the reliability of a Born-Oppenheimer based analysis.

The Born-Oppenheimer principle is implicitly assumed in writing down an effective electron-phonon model starting from ab-$initio$ techniques. In simple terms, the BO principle permits to describe the full many-body wave function $\Psi(r;u)$ in terms of two separate quantum systems: a purely electronic problem, which depends parametrically on the ion variables, and an effective lattice problem, where the electronic degrees of freedom have been integrated out\cite{7}. The total wave function $\Psi(r;u)$ can thus be written as the product of two “partial” wave functions:

$$\Psi_{\alpha,n}(r;u) \simeq \chi_{\alpha,n}(u) \varphi_u(r;[u]),$$

where r and u represent the electronic and lattice degrees of freedom respectively and $\{\ldots;[u]\}$ indicates a parametric (not quantum) dependence on the lattice variable. The index α identifies the quantum number of the electronic state and the label u the phonon eigenstate in the effective lattice potential which depends on the electronic cloud $\varphi_u(r;[u])$.

In the spirit of the BO approximation, the electronic ground state wave function $\varphi(r;[u])$ is obtained as the lowest energy electronic state available for fixed u. M. Born and J.R. Oppenheimer showed that Eq. [1] can be considered a good approximation as far as $\left(\hbar^2/M\right) \nabla_u^2 \varphi(r;[u])$ (M being the atomic mass) is negligible. This assumption corresponds to the adiabatic hypothesis that the electronic dynamics of $\varphi(r;[u])$, is much faster than the lattice one. In common metals a widely used parameter to evaluate this condition is the adiabatic ratio ω_{ph}/E_F, where E_F can be estimated in the undistorted $u = 0$ ground state configuration, $E_F = E_F[u = 0]$, and ω_{ph} is the lowest energy excitation of the $\chi_{\alpha,n}$ phonon spectrum. However it should be noted that, in order for the adiabatic principle to apply, the condition $\left(\hbar^2/M\right) \nabla_u^2 \varphi(r;[u]) \sim 0$ must be fulfilled in all the region of the u-space where $\chi(u)$ has a sizable

The Born-Oppenheimer principle is implicitly assumed in writing down an effective electron-phonon model starting from ab-$initio$ techniques. In simple terms, the BO principle permits to describe the full many-body wave function $\Psi(r;u)$ in terms of two separate quantum systems: a purely electronic problem, which depends parametrically on the ion variables, and an effective lattice problem, where the electronic degrees of freedom have been integrated out\cite{7}. The total wave function $\Psi(r;u)$ can thus be written as the product of two “partial” wave functions:

$$\Psi_{\alpha,n}(r;u) \simeq \chi_{\alpha,n}(u) \varphi_u(r;[u]),$$

where r and u represent the electronic and lattice degrees of freedom respectively and $\{\ldots;[u]\}$ indicates a parametric (not quantum) dependence on the lattice variable. The index α identifies the quantum number of the electronic state and the label u the phonon eigenstate in the effective lattice potential which depends on the electronic cloud $\varphi_u(r;[u])$.

In the spirit of the BO approximation, the electronic ground state wave function $\varphi(r;[u])$ is obtained as the lowest energy electronic state available for fixed u. M. Born and J.R. Oppenheimer showed that Eq. [1] can be considered a good approximation as far as $\left(\hbar^2/M\right) \nabla_u^2 \varphi(r;[u])$ (M being the atomic mass) is negligible. This assumption corresponds to the adiabatic hypothesis that the electronic dynamics of $\varphi(r;[u])$, is much faster than the lattice one. In common metals a widely used parameter to evaluate this condition is the adiabatic ratio ω_{ph}/E_F, where E_F can be estimated in the undistorted $u = 0$ ground state configuration, $E_F = E_F[u = 0]$, and ω_{ph} is the lowest energy excitation of the $\chi_{\alpha,n}$ phonon spectrum. However it should be noted that, in order for the adiabatic principle to apply, the condition $\left(\hbar^2/M\right) \nabla_u^2 \varphi(r;[u]) \sim 0$ must be fulfilled in all the region of the u-space where $\chi(u)$ has a sizable
where the electron-phonon matrix element, \(g_u \), motion. For the moment a perfectly harmonic phonon mode with static terms in the interaction is different for the two mode and the sign where \(\sigma \hbar/w \approx 4-0.6 \text{ eV} \), defined as the distance in energy between the chemical potential and the edge of the \(\sigma \) bands. Assuming for the moment a perfectly harmonic phonon mode with elastic constant \(a_2 \); \(V(u) = a_2 u^2 \), we can write Eq. 2 in second quantization [\(u = (\hbar^2/4M_{E_{2g}} a_2)^{1/4}(a + a^\dagger)]:

\[
H = \sum_k c_k^\dagger c_k + I_{E_{2g}} \sum_k c_k^\dagger c_k u - \frac{\hbar^2}{2M_{E_{2g}}} + V(u),
\]

where \(u \) is the lattice displacement of the \(E_{2g} \) phonon mode and the sign \(\pm \) in the Jahn-Teller electron-phonon interaction is different for the two \(\sigma \) bands. Assuming for the moment a perfectly harmonic phonon mode with elastic constant \(a_2 \); \(V(u) = a_2 u^2 \), we can write Eq. 2 in second quantization [\(u = (\hbar^2/4M_{E_{2g}} a_2)^{1/4}(a + a^\dagger)]:

\[
H = \sum_k c_k^\dagger c_k + I_{E_{2g}} \sum_k c_k^\dagger c_k (a + a^\dagger) + \omega_{E_{2g}} a^\dagger a,
\]

where the electron-phonon matrix element \(g_{E_{2g}} = I_{E_{2g}}/\sqrt{4M_{E_{2g}} a_2} \), determines the change in the electron energy bands associated with the ground state zero point motion.

Frozen phonon calculations have been previously employed in Ref. to point out the connection between small Fermi energy and anharmonic effects of the \(E_{2g} \) phonon mode in MgB\(_2\). The appearance of anharmonic terms in the static phonon potential has indeed been related to a strong lattice displacement regime, namely:

\[
D_{E_{2g}}^g = I_{E_{2g}} u \gtrsim E_{g}^F. \]

On physical grounds, we can expect that anharmonic terms will be experimentally observable only if the lattice fluctuations allowed in the system are sufficiently strong to sample regions of phase space in which the effective Fermi energy is small (\(I_{E_{2g}} u \sim E_{g}^F \)). We are going to show that a similar condition rules the breakdown of the adiabatic BO principle.

In Fig. 1(a) we plot the \(E_{2g} \) frozen phonon potential \(V(u) \) obtained by local density (LDA) calculations (see Ref. for details). In the spirit of the BO principle we can evaluate the ground state phonon wave function \(\chi_{E_{2g}}(u) \) by the numerical solution of the Schrödinger equation [\(-(\hbar^2/2M_{E_{2g}}) \nabla^2 + V(u))\chi_{E_{2g}}(u) = E_{E_{2g}}\chi_{E_{2g}} \). We can also define a lattice probability distribution functions (PDF) \(P(u) \) through the relations \(P(u) = |\chi_{E_{2g}}(u)|^2 \), which is plotted in Fig. 1(a). In the classical (strictly adiabatic) \(M_{E_{2g}} \rightarrow \infty \) limit, and \(P(u) \) becomes

\[
\begin{align*}
\rho_\sigma &= 0.08, \\
\rho_\pi &= 0.2.
\end{align*}
\]
a δ-function centered at \(u = 0 \). The electronic structure of the undistorted lattice, which corresponds thus to the adiabatic limit, is shown in panel (b) as solid lines.

As mentioned above, there are two different sources of quantum fluctuations of the lattice configuration with respect to the classical, static limit. The first one is given by the possibility of quantum transitions between different electron and lattice eigenfunctions. This gives rise, when expanded around the lattice equilibrium position \(u = 0 \), to the conventional electron-phonon scattering which leads to the dynamical electron-phonon renormalization of the electronic and lattice properties, usually taken into account by the corresponding self-energies. A different effect of the quantum lattice fluctuations is the fact that the ground state PDF acquires a non-zero amplitude at \(u \neq 0 \), corresponding to the zero-point motion. In this framework an appropriate quantity to estimate the amplitude of the lattice quantum fluctuations is the root mean square (r.m.s) lattice displacement:

\[
\langle u^2 \rangle^{1/2} = \left[\int du u^2 P(u) \right]^{1/2}.
\]

In the following we focus on the interesting implications of this second effect on the electronic structure. We shall show that the zero-point lattice fluctuations are unavoidably reflected, through the deformation potential, in an intrinsic source of quantum fluctuations for the electronic structure and for the Fermi energy.

A rough estimate of these effects is provided by their r.m.s values. Applying the definition (4), we obtain for the zero-point motion of the \(E_{2g} \) phonon mode a vibrational amplitude \(\langle u^2 \rangle^{1/2} \approx 0.034 \) Å. The changes in the electronic structure corresponding to this lattice fluctuations are represented in Fig. 1(b) by the grey regions. The main changes of the electronic structure close to the \(\Gamma \) point, \(D_{E_{2g}}^F = I_{E_{2g}} \langle u^2 \rangle^{1/2} \), can be obtained from the deformation potential and roughly correspond to the thickness of the grey region at the \(\Gamma \) point. As shown in the figure, the strong quantum lattice fluctuations are reflected in strong electronic changes with a rms value of the \(\sigma \) band Fermi energy fluctuations \(\langle (E_F^\sigma(u) - E_F^\sigma(0))^2 \rangle^{1/2} = I_{E_{2g}} \langle u^2 \rangle^{1/2} \approx 0.39 \) eV, which is slightly smaller than the electron-phonon matrix element \(g_{E_{2g}} = 0.45 \) eV because it includes anharmonic effects. This value is comparable to the Fermi energy of the undistorted (adiabatic) case \(E_F^\sigma = 0.45 \) eV, resulting in a range of Fermi energy fluctuation 0.06 eV < \(E_F^\sigma < 0.84 \) eV, and casts doubts on the usual definition of the Fermi energy, based on the BO approximation.

The relevance of this regime may be measured by the dimensionless parameter:

\[
\kappa = \frac{\langle (E_F^\sigma(u) - E_F^\sigma(0))^2 \rangle^{1/2}}{E_F^\sigma} \approx \frac{I_{E_{2g}} \langle u^2 \rangle^{1/2}}{E_F^\sigma} \approx 0.91.
\]

In common metals, although the numerator can be of the order of a fraction of eV, the denominator is usually of 5 – 10 eV, so that \(\kappa \ll 1 \) and the role of the quantum lattice fluctuations on the electronic structure is negligible. Things are radically different for the \(E_{2g} \) phonon of MgB\(_2\), where the large value of \(\kappa \) (≈ 1) is driven by the extremely small Fermi energy of the \(\sigma \) bands.

The sizable magnitude of the parameter \(\kappa \) calls for some physical considerations. Due to these strong quantum fluctuations, the system indeed samples, with a sizable weight, electronic configurations with zero or vanishing Fermi energy. The system has thus an intrinsic nonadiabatic character even if the phonon frequencies \(\omega_{ph} \) are sensibly smaller than \(E_F(u = 0) \). An alternative way to understand the breakdown of the BO principle is to observe that for \(u \approx E_F^\sigma/I_{E_{2g}} \), the electronic Fermi energy \(E_F^\sigma(u) \), which governs the dynamics of the \(\sigma \) bands, is comparable with \(\omega_{ph} \), which governs the lattice dynamics. The variable \(u \) cannot thus be treated as a classical degree of freedom in a parametric way and \(\Psi(r; u) \neq \chi(u)\psi(r; |u|) \).

We would like to stress once more that the origin of the nonadiabatic breakdown of the BO principle stems from the strong lattice quantum fluctuations which make the electron-phonon matrix element, the second term in Eqs. 2-3, comparable with the Fermi energy. This is thus qualitatively different from what discussed in Refs. 7,8, where the nonadiabatic effects are ruled by the ratio between the energy scale of the third term in Eq. 3 and the Fermi energy, namely \(\omega_{E_{2g}}/E_F^\sigma \). Note also that the phonon frequency \(\omega_{E_{2g}} \) does not depend on the amplitude of the lattice fluctuations, on the contrary of the parameter \(I_{E_{2g}} \langle u^2 \rangle^{1/2}/E_F^\sigma \). This means that the onset of one kind of nonadiabatic effects does not necessarily implies the onset of the other one, and vice versa.

In order to further clarify this statement let us assume for the moment a perfectly harmonic phonon mode with elastic constant \(a_2 \): \(V(u) = a_2u^2 \). Anharmonic contributions do not play any important role in the following discussion, so we will take them into account through an “effective” elastic constant as in Ref. 17 to give the anharmonic hardening of the phonon.

The two different sources of breakdown of the BO principle are illustrated in Fig. 2 where we plot on the \(x \) axis the inverse of the square root of the phonon mass \(1/\sqrt{M_{E_{2g}}} \) and on the \(y \) axis the inverse of the square root of the elastic constant \(1/\sqrt{a_2} \). The limit \(M_{E_{2g}} \to \infty \), denoted by the thick line, is the strictly classical (adiabatic) case where both kinds of nonadiabatic effects are negligible. In the so-defined phase space a fixed phonon frequency is given by a straight line cutting through the origin. In Fig. 2 we show as dashed lines the three frequencies \(\omega_{E_{2g}} = 68 \text{ meV} \), 81 meV, and 0.45 eV, corresponding to the harmonic and anharmonic frequencies of the \(E_{2g} \) phonon, and to a hypothetical phonon in the fully nonadiabatic regime \(\omega_{ph} = E_F^\sigma \) respectively. The empty (filled) circles represent respectively the actual position of the \(E_{2g} \) phonon of MgB\(_2\) (\(M = 10.81 \) a.m.u.) with (without) taking into account the anharmonic hardening. The nonadiabatic breakdown of the BO principle
FIG. 2: Schematic phase diagram for the different kinds of nonadiabatic effects. See text for details.

underlined in Ref. 7 arises in the region $\omega_{ph} \simeq E_F^2$, and is represented by the vertically-dashed area, corresponding to $\omega_{ph}/E_F^2 \geq 0.5$.

The breakdown of the BO principle due to the zero point motion, determined by the parameter κ, of the lattice fluctuation is also shown in Fig. 2. κ-isolines are easily defined by the relations $a_2(u^2)^{1/2} = \hbar \omega_{ph}/2$ and $\kappa = I_{E_{2g}}(u^2)^{1/2}/E_F$ using LDA values $I_{E_{2g}} = 12$ eV / Å and $E_F^2 = 0.45$ eV. The horizontally-dashed region ($\kappa \geq 0.5$) represents the range of parameters where nonadiabatic effects could be triggered by the zero-point fluctuations. It is interesting to note that in this new regime nonadiabatic effects induced by lattice fluctuations can be operative even quite far from the usual “nonadiabatic” regime $\omega_{ph} \sim E_F$. Of course, the two sources of nonadiabaticity merge together in the highly nonadiabatic case $M \to 0$, where E_F is smaller than ω_{ph} already in the absence of fluctuations. This could be the case for the cuprates and fullerene compounds since in their case E_F is smaller than in MgB$_2$, while the relevant phonon frequencies are comparable.

In conclusion, in this work we have pointed out the inadequacy in MgB$_2$ of the BO approximation which is at the basis of many ab-$initio$ techniques, when applied to coupling between the E_{2g} phonon and the σ holes, which are mainly responsible for superconductivity. We have related such inadequacy to the strong lattice fluctuations of zero-point motion which, due to the large deformation potential associated with the E_{2g} phonon, induce electronic changes of the σ bands of the same order of magnitude of their Fermi energy ($E_F^2 \simeq 0.45$ eV). The breakdown of the BO approximation has important consequences since it implies the failure of many ab-$initio$ techniques. An appropriate inclusion of these effects is a formidable task which goes beyond the aim of this paper. We note however that the structural and cohesive properties of MgB$_2$ are expected to be weakly affected by the zero-point fluctuations, both because they depend on the whole set of occupied bands (whose width is 10-20 eV), and because they involve all phonons. Its transport and superconducting properties, instead, are mainly determined from the small fraction of carriers within an energy range $\sim \omega_{ph}$ close to the Fermi level, and which are strongly coupled to the relevant E_{2g} phonon.

As a last remark, it is interesting to remind that the nonadiabatic effects induced by lattice fluctuations are increased as the force constant decreases. Electron-phonon systems with incipient lattice instabilities (corresponding to flattening of the lattice potential) could be thus good candidates for the observation of similar nonadiabatic effects in other materials than MgB$_2$. Good candidates in this direction are bismuthates, A15 compounds and possibly monoatomic metals as Nb or V. In particular, the important role of the lattice fluctuations in A15 compounds, which was already pointed out by P.W. Anderson in Ref. 14, could provide the basis to investigate some interesting similarities between A15 and diborides systems.

We thank G.B. Bachelet, C. Grimaldi, S. Ciuchi and M. Capone for many fruitful discussions. We acknowledge also the project PRA-UMBRA of the INFM for financial support.

1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
2. J.M. An and W.E. Pickett, Phys. Rev. Lett. 86, 4366 (2001).
3. J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, and L.L. Boyer, Phys. Rev. Lett. 86, 4656 (2001).
4. H. Uchiyama, K.M. Shen, S. Lee, A. Damascelli, D.H. Lu, D.L. Feng, Z-X. Shen, and S. Tajima, Phys. Rev. Lett. 88, 157002 (2002).
5. K. Papagelis, J. Arvanitidis, K. Prassides, A. Schenck, T. Takenobu, and Y. Iwasa, Europhys. Lett. 61, 254 (2003).
6. S. Serventi, G. Alldi, C. Bucci, R. De Renzi, G. Guidi, A. Palenzona, P. Manfrinetti, and A.D. Hillier, Physica B 326, 350 (2003).
7. E. Cappelluti, S. Ciuchi, C. Grimaldi, L. Pietronero, and S. Strässler, Phys. Rev. Lett. 88, 117003 (2002).
8. E. Cappelluti, S. Ciuchi, C. Grimaldi, and L. Pietronero, Phys. Rev. B 68, 174509 (2003).
9. L. Boeri, G.B. Bachelet, E. Cappelluti, and L. Pietronero, Phys. Rev. B 65, 214501 (2002).
10. G. Grimvall, The Electron-Phonon Interaction in Metals (North-Holland, Amsterdam, 1981).
11. Y. Kong, O.V. Dolgov, O. Jepsen, and O.K. Andersen, Phys. Rev. B 64, 020501 (2001).
12. A.Y. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).
In the following thermal fluctuations will be safely disregarded since they are not expected to play any role as long as $T \ll E_F^{\sigma} \simeq 5000 \text{ K}$.

P.W. Anderson and C.C. Yu, in *Highlights of Condensed Matter Theory*, Proc. of the Int. School of Physics “Enrico Fermi”, LXXXXIX, (Ed. F. Bassani and M. Tosi, North-Holland, 1985). See also C.C. Yu and P.W. Anderson, Phys. Rev. B 29, 6165 (1984).