Constraints on relativistic beaming from estimators of the unbeamed flux

S. Heinz1*† and A. Merloni2
1Center for Space Research, MIT, 77 Mass. Ave., Cambridge, MA 02139, USA
2Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, 85743 Garching, Germany

ABSTRACT
We review the statistical properties of relativistic Doppler boosting relevant for studies of relativistic jets from compact objects based on radio–X-ray(–mass) correlations, such as that found in black-hole X-ray binaries in the low/hard state, or the ‘fundamental plane’ of Merloni, Heinz & Di Matteo. We show that the presence of only moderate scatter in such relations does not necessarily imply low Lorentz factors of the jets producing the radio emission in the samples under consideration. Applying Doppler beaming statistics to a large sample of XRBs and AGN, we derive a limit on the width of the Lorentz factor distribution of black holes with relativistic jets: if the X-rays are unbeamed (e.g. if they originate in the accretion disc or in the slower, innermost part of the jet), the width of the β/G distribution should be about one order of magnitude or less. If the scatter about the ‘fundamental plane’ is entirely dominated by relativistic beaming, a lower limit on the mean Lorentz factor $\langle \beta/G \rangle > 5$ can be derived. On the other hand, if the X-rays are boosted by the same factor as the radio emission, we show that the observed scatter cannot be reasonably explained by Doppler boosting alone.

Key words: black hole physics – relativity – galaxies: jets – radio continuum: general – X-rays: binaries – X-rays: galaxies.

1 INTRODUCTION
Astrophysical jets from black holes in active galactic nuclei (AGNs) and X-ray binaries (XRBs) are known to propagate with velocities close to the speed of light. Evidence for relativistic bulk motion stems from variability and compactness limits in compact cores (Jones, O’dell & Stein 1974), from superluminal motions of knots (Whitney et al. 1971; Cohen et al. 1971), and from Doppler boosted jet-to-counter-jet flux ratios (e.g. Perley, Fomalont & Johnston 1982). While proper motion measurements typically only constrain pattern speeds, the body of evidence points towards a range of mildly to ultrarelativistic jet speeds. As a result, the observed flux densities from these jets can be affected by strong Doppler boosting, which must be corrected for if one wants to infer the intrinsic luminosity of the jet, emitted in the rest frame of the plasma, which is important when calculating the physical parameters of the jet.

Recently, a correlation between the radio emission from steady jets and the hard (2–10 keV) X-ray emission has been found in black hole XRBs (Corbel et al. 2003; Gallo, Fender & Pooley 2003). This relation implies that in a given XRB in the low/hard state (see McClintock & Remillard 2004, for a review of the state classification in XRBs), the radio flux is proportional to the X-ray flux to the 0.7th power. This trend has been observed for different sources.
luminosity function and on possible selection effects, not knowing what the unboosted flux of any particular source in the sample is.

What makes the situation considered in this paper different is that we actually have an unbiased estimator of the unbeamed radiation: in the case of XRBs it is the X-ray luminosity, in the more general case of black holes of all masses it is the FP relation that links radio and X-ray luminosity, black hole mass and luminosity. It is therefore worth considering the statistical properties of relativistic Doppler boosting under those conditions.

In Section 2 we will review the basic properties of Doppler boosting and define the statistical integrals necessary for the remainder of the paper. In Section 3 we will apply these results to individual pairs of XRBs and argue that the observed moderate amount of scatter in the XRB radio–X-ray relation alone cannot be used to argue for low jet velocities. In Section 4 we apply the same method to the FP sample to derive constraints on the Lorentz factor distribution of the source in the sample. Section 5 presents our conclusions.

2 THE BEAMING PROBABILITY DISTRIBUTION

In the following we will consider radio emission from two-sided jets. We will assume that the approaching jet is identical to the receding jet. We will further assume that the spectrum emitted by the jet is a power law with index α, such that the jet flux is $F_{\nu} \propto \nu^{-\alpha}$. We will use a fiducial value of $\alpha = 0$, appropriate for the cores of jets observed in AGNs and XRBs, which show a roughly flat spectrum emitted from a continuous jet. For a review on jet properties and relativistic beaming, see e.g. Begelman, Blandford & Rees (1984).

We are interested in situations where we have an independent estimator of the relative radio flux of different sources in the sample from observables like the X-ray flux, the distance and the black hole mass. It is therefore worth considering the statistical properties of relativistic Doppler boosting under those conditions.

As we are considering steady, quasi-kinematical relativistic Doppler boosting, that is randomly distributed between 0 and π/2, we can invert equation (3) to find the cumulative probability of observing a source at a flux lower than F_ν (plotted in Fig. 1):

$$P(< F_\nu) = \frac{1}{2} \left[1 + \frac{1}{F^2_{\nu}/F_{\nu,m}^2} - \sqrt{1 + \frac{1}{F^2_{\nu}/F_{\nu,m}^2}} \right]^2 - 1$$

and, conversely, $P(> F_\nu) = 1 - P(< F_\nu)$.

It is clear from equation (4) that, in a randomly oriented sample of jets with identical Γ, most of the sources fall into a relatively narrow flux range: using $0 \leq \beta \leq 1$, we can see that 50 per cent of the sources fall within the range

$$\frac{2}{\Gamma^2 + \beta^2} \leq F_\nu \leq \frac{1}{\Gamma^2 + \beta^2} \left[2^{k+\alpha} + \left(\frac{2}{3} \right)^{k+\alpha} \right]$$

For the fiducial parameters, these two limits fall within a factor of 2.2. Thus, independently of the actual Lorentz factor, the fluxes of 50 per cent of the sources in a randomly oriented sample of flat spectrum jets with identical Γ fall within a factor of 2.2 from each other. The remaining sources are distributed in a tail to larger observed fluxes, cutting off at the maximum flux, $F_\nu \leq \Gamma^2 (2 + 2\beta^2)$ (see Fig. 1). The curves for $\Gamma = 10$ and $\Gamma = 100$ differ only below $P(< F_\nu) < 3$ per cent, i.e. for 3 out of 100 sources.

Well below this cut-off, the probability distribution is very similar for different Γ, but shifted to lower fluxes (i.e. deboosted) by a factor of $\xi_0 \equiv 1/\Gamma^{1+\alpha}$. Thus, measuring the width of the flux distribution (FWHM) of randomly oriented sources with identical Γ is not sufficient to determine Γ if the width is larger than about a factor of 2.2. A proper determination would require sampling the cut-off. For a measured width of $\delta \equiv F_{\nu,\max}/F_{\nu,\min} > 2.2$, to be able to say that the upper limit corresponds to the cut-off would require a total number of sources well in excess of

$$N(\delta) = \left[1 - \sqrt{\frac{325 + 1 - \sqrt{851 + 1}}{2\delta}} \right]^{-1}$$

where we used equation (3) and $\alpha = 0$ and $k = 2$.

However, it is rather unlikely that the bulk Lorentz factors of all the sources are identical. Instead, $\beta \Gamma$ will follow some distribution $f(\beta \Gamma)$ around a mean $\bar{\beta} \Gamma$ mean = $\langle \beta \Gamma \rangle$. Because of the strong dependence of the shift ξ_0 of the flux distribution on Γ and because the flux distribution for a given Γ is strongly concentrated around the minimum value, the spread δ in the flux distribution of a randomly oriented sample is typically dominated by the spread in Γ, not by viewing angle effects.
Thus, for flux distributions significantly wider than $\delta \sim 2.2$, we cannot determine the maximum or mean $\beta \Gamma$ simply by measuring the width of the flux distribution, assuming an inherently uniform flux, or by imposing a universal radio–X-ray relation (Gallo et al. 2003; Merloni et al. 2003; Falcke et al. 2004) and measuring the spread against this relation. Only if the distribution contains a total number of sources well in excess of the value of equation (6) and if the upper cut-off of the flux distribution is well sampled can one derive an upper limit on $\beta \Gamma$. Otherwise, the only conclusion that can be reached from a relatively narrow distribution in fluxes around a radio–X-ray relation is that the spread in $\beta \Gamma$ around $\beta \Gamma_{\text{mean}}$ is small.

3 Constraints for a Single Pair of Radio Jets

For situations where a tight relation between the beamed radio jet emission with some unbeamed observables (e.g. the X-ray flux) is observed over a large range in the secondary observables but for a small number of sources, one can derive constraints on the Lorentz factors of individual pairs of sources from the difference in normalization of the observed relation, assuming that it reflects only differences in orientation and Lorentz factor.

One such example is the XRB–radio–X-ray relation (Corbel et al. 2003; Gallo et al. 2003), where the number of sources contributing is rather small – between 2 and 4 on the low-luminosity end, where the relation holds most firmly. The two most significant sources in the sample are VX04 Cyg and GX339-4. Following Gallo et al. (2003), the radio flux in VX04 is a factor of about 2.5 to 5 larger than that of GX339-4 for the same X-ray flux. Allowing for some uncertainty in the mass of the black hole in GX339-4 (Hynes et al. 2004) and of the distances to GX339-4 and VX04 (Hynes et al. 2004; Jonker & Nelemans 2004), the confidence limits on this ratio fall between 1.5 and 5. We can then ask what constraints on beaming can be derived from this observation.

We assume that, at the same X-ray luminosity, both sources have the same comoving (i.e. unbeamed) radio luminosity, i.e. they fall on the same X-ray–radio relation when corrected for beaming. In other words, we assume that the X-rays are not affected by beaming (see Section 4 for more discussion of this assumption). If the jets have Lorentz factors of Γ_{GX39} and Γ_{VX04}, the probability that the observed radio flux from VX04 is larger than that of GX339 by a factor δ is

$$P(F_{\text{VX04}} > \delta F_{\text{GX39}}) = 1 - \int_0^1 dp P(\delta F, (p, \Gamma_{\text{GX39}}), \Gamma_{\text{VX04}})$$

where $F_r(p, \Gamma)$ follows equation (3) and $P(F, \Gamma)$ is taken from equation (4).

Fig. 2 shows the 1-, 2- and 3σ contours on $\beta \Gamma$ of both jets for the range in normalization offsets allowed by the observations (Gallo et al. 2003) $1.5 \lesssim F_{\text{VX04}/F_{\text{GX39}}} \lesssim 5$. The fact that the ratio of $F_{\text{VX04}}/F_{\text{GX39}}$ is close to unity implies that the Lorentz factors of both sources fall within roughly a factor of 2 and that the jet in GX339-4 likely has a higher Lorentz factor than that of VX04. The possible presence of larger uncertainties in black hole mass and distance to both objects that are unaccounted for in our estimate of δ imply that the confidence contours in Fig. 2 will be widened and the constraints on $\beta \Gamma_{\text{VX04}}/\beta \Gamma_{\text{GX39}}$ will be less stringent, thus allowing the Γ of both objects to be more different than otherwise implied.

While it is not possible to extend this graphical analysis to more than two sources, the formalism can easily be adapted to N sources, in which case the confidence contours turn into $N - 1$ dimensional hyper-surfaces in an N-dimensional log $\beta \Gamma$ space. Asymptotically (at large $\beta \Gamma$), the surfaces will describe hypercylinders around an axis parallel to the diagonal vector $(1, 1, \ldots, 1)$, shifted along each axis by the square root of the flux ratio of the reference source relative to source n. For large N, this distribution of shifts is then a representation of the distribution of Γ.

The formal conclusion we reach from this analysis is that the relative similarity in the normalization of the radio–X-ray relations for GX339-4 and VX04 Cyg does not imply that the Lorentz factors of both jets are small, but rather that they are similar. From the constraints on the scatter about the radio–X-ray relation, we cannot put any upper limit on Γ of either source. However, because the observed radiation is severely de-boosted for large Γ, other physical limitations can provide such limits. For example, at very large Γ, the implied kinetic power would vastly exceed any reasonable limits (Fender, Gallo & Belloni 2004). Also, radio timing constraints from Cyg X-1 indicate that its jet is only moderately relativistic (Gleissner et al. 2004).

4 The Spread in the FP

We will now use the scatter observed in the radio–X-ray–mass FP correlation found by Merloni et al. (2003) and Falcke et al. (2004) to constrain the Lorentz factor distribution of the jets in the sample. These limits will be based on the assumption that the orientation of the sources is random and that the scatter in the distribution is at least partly due to relativistic beaming. Clearly, other sources of scatter will enter (e.g. uncertainty in black hole mass, spin, variations in α_i), so the observed scatter cannot be solely due to relativistic boosting. This implies that any constraints derived here will be upper limits. We will show that the observed scatter can only be used to constrain the width of the Lorentz factor distribution.

4.1 Unbeamed X-rays

If the X-ray emission of the sources in the sample stems from the accretion disc, the X-rays will not be affected by relativistic beaming. It should be noted that the disc X-ray emission can still be anisotropic simply due to the nature of the accretion flow (e.g. Shakura & Sunyaev 1973; Beloborodov 1999), however, the scatter produced by the differences in viewing angle is a relatively mild effect and is small compared to the scatter due to boosting, so we will neglect this effect in the following. We can estimate the radio Doppler boosting

© 2004 RAS, MNRAS 355, L1–L5
factor from equation (3) using $k = 2$ and $\alpha_x = 0$. We can then relate this expression to the scatter about the FP,
\[
\delta = F_r / \left(10^{0.33} F_0^{0.6} M_7^{0.78} \right)
\]
(8)

Because we have no information about the distribution of Γ, we will take two simple functional forms as templates. First, we will use a lognormal distribution of the form (see Fig. 3):
\[
f(\beta \Gamma) = \frac{N \exp \left[-\left(\log \beta \Gamma - \beta \Gamma_{\text{mean}} \right)^2 / (2\sigma^2) \right]}{\beta \Gamma \sigma \sqrt{2\pi}}
\]
(9)

Because the unbeamed normalization of the radio flux is unknown (the mean in the FP distribution corresponds to an average over all angles and Γ values), we have to allow for an arbitrary renormalization of the flux δ_0. We can then produce a histogram of the scatter δ of all the sources in the FP relation. This is shown in Fig. 3. We have used Poisson errors for the histogram bins. Also shown is a fit of a lognormal distribution in $\beta \Gamma$ to this histogram (fit parameters: $\beta \Gamma_{\text{mean}} = 7$, $\sigma = 0.78$, $\delta_0 = 0.74$), which can reproduce the range and shape of the scatter distribution rather well.

Fitting a logflat distribution of the form $f(\beta \Gamma) = N / (\ln (\sigma^2) \beta \Gamma)$ for $\beta \Gamma_{\text{mean}} / \sigma \leq \beta \Gamma \leq \beta \Gamma_{\text{mean}}$ and $f(\beta \Gamma) = 0$ elsewhere, provides a marginally better fit, which can be understood by the fact that it is a decent approximation to equation (9) to lowest order. This shows that we cannot constrain the shape of the $\beta \Gamma$ distribution very well. For the purpose of this Letter, we shall limit ourselves to constraining the width of this distribution. A better determination of the shape of the distribution will only be possible when a larger, more carefully selected sample is available.

In Section 1 we argued that the width of the scatter distribution about a radio–X-ray–(mass) relation can only be used to constrain the width σ of the distribution, not $\beta \Gamma_{\text{mean}}$ itself. To demonstrate this point quantitatively, Fig. 4 shows the chi-squared distribution of the two interesting parameters $\beta \Gamma_{\text{mean}}$ and σ (marginalizing over the unknown radio flux normalization ζ_0 of the underlying, unbeamed FP relation) of the assumed lognormal distribution in $\beta \Gamma$ used to fit the δ histogram in Fig. 3. The 1-, 2- and 3σ confidence contours show that σ is constrained much better than $\beta \Gamma_{\text{mean}}$. In fact, the fit only provides a lower limit on $\beta \Gamma_{\text{mean}}$, similar to the result in Fig. 2.

However, because other sources of scatter are present, the scatter about the FP provides only upper limits on the effects of beaming. Thus, the lower limit on $\beta \Gamma_{\text{mean}}$ is not meaningful, whereas we can safely state that $\sigma \leq 0.8^{+0.2}_{-0.0}$ (3σ limits).

In this context, it is interesting to note the recent claim of limits $0.43 \leq \beta \Gamma \leq 1$ for the jet in Cyg X-1 (Gleissner et al. 2004), which is part of the FP sample. Given the upper limit on σ, this would place a 3σ upper limit on $\beta \Gamma_{\text{mean}} \leq 250$ and put Cyg X-1 at the low end of $\beta \Gamma$ distribution. In other words, if most of the scatter in the distribution is indeed due to relativistic beaming, then most of the jets in the sample should have faster velocities than Cyg X-1. The limit on $\beta \Gamma$ for Cyg X-1 is based on the lack of correlations between radio and X-ray emission above a given frequency. If other XRB jet sources are indeed significantly faster, this should manifest itself in correlations between radio and X-rays on shorter time-scales than in Cyg X-1, which can be tested observationally.

The sample used to derive the FP contains some steep spectrum sources and some sources without measured α_x. As discussed in Merloni et al. (2003), this can be an additional source of scatter. In order to assess the influence of the presence of steep spectrum sources on the scatter about the FP and on the limits we can place on the $\beta \Gamma$ distribution, we repeated the same analysis as above limited to sources that are known to have flat radio spectra. We find that the scatter is slightly reduced and that the 1σ confidence contour moves downward to lower values of σ, while the 2- and 3σ confidence contours are expanded in all directions. This is because the number of sources in the sample is reduced significantly, thus reducing the statistical significance of the result. The overall shape of the contours is not changed, and the main conclusion that one can only place an upper limit of $\sigma \leq 0.4^{+0.2}_{-0.0}$ remains.

4.2 Beamed X-rays

If we try to reproduce the scatter about the FP in a model where the X-rays are produced in the jet at the same Γ as the radio (e.g. as synchrotron or synchrotron self-Compton radiation), the formalism changes: assuming the X-ray and radio fluxes are emitted with the same Γ and the same viewing angle, and taking the X-ray flux to follow a power law of the form $F_0 \propto \nu^{-\alpha_x}$, the observed deviation of the radio flux from the FP defined in equation (8) is
\[
\delta(P, \Gamma) = \frac{\Gamma^{0.6 \alpha_x - 0.42} [1/(1 + \beta P)^{\alpha_x}] + 1/(1 - \beta P)^{\alpha_x} \sin \theta_{0.0}}{[1/(1 + \beta P)^{\alpha_x}] + 1/(1 - \beta P)^{\alpha_x} \sin \theta_{0.0}^{0.6} (10)}
\]
For \(k \sim 2, \alpha_t \sim 0, \) and \(\alpha_s \sim 1/2 \) (typical for optically thin synchrotron emission), it turns out that equation (10) requires unrealistically large values of \(\Gamma \) to obtain the observed scatter about the FP, as plotted in the right-hand panel of Fig. 4. The range in \(\Gamma \) implied by the 1σ contours on \(\beta \Gamma_{\text{mean}} \) and \(\sigma \) would reach from \(\Gamma \) of order unity to \(\Gamma \sim 10^5 \) or higher. Furthermore, in many sources the X-ray spectra are steeper than \(\alpha_s = 1/2 \). As can be seen from equation (10), the effectiveness of beaming to produce scatter about the FP is reduced further when \(\alpha_s \) is increased from 0.5 to 1 (in the latter case, values of \(\beta \Gamma_{\text{mean}} \sim 10^8 \) and \(\sigma \sim 10 \) are required to produce the observed amount of scatter).

Two possible conclusions arise from this result: if the X-rays are produced by the jet, then (i) some other source of statistical uncertainty must be present to dominate the observed scatter about the FP, and/or (ii) the X-ray emission must arise from a region of the jet that suffers less relativistic beaming. Most jet acceleration models actually accelerate the jet over several decades in distance to the core. The latter scenario would therefore be compatible with the general notion that the optically thin X-ray synchrotron emission is dominated by the innermost region of the jet, closest to the core, while the optically thick radio emission stems from a region further out that might have been accelerated to larger \(\Gamma \).

Simple direct synchrotron models do present other challenges (Heinz 2004). More realistic scenarios include a combination of synchrotron plus synchrotron self-Compton and inverse Compton scattering of disc radiation (Markoff & Nowak 2004). It is not clear whether the X-ray emitting region in this scenario would be co-spatial with the radio emitting region or not. Certainly, however, the modest amount of scatter in the XRB radio–X-ray relation and in the FP relation cannot be used to argue in favour of a jet origin of the X-ray – both disc X-rays and X-rays from the base of the jet can easily produce the observed amount of scatter.

4.3 Blazars and highly beamed sources

As mentioned in Section 2, in the absence of velocity constraints on individual sources (such as those on Cyg X-1 used above), the only way to obtain an upper limit on \(\beta \Gamma \) from this method is to observe the cut-off at high luminosities where the sources fall into the beaming angle and no further amplification is possible. However, in those sources the X-rays almost certainly contain a beamed component from the jet, as observed in blazars and BL Lacs. Thus, the source of the X-rays is possibly not the same as in the un-beamed sources and the upper cut-off will not adequately sample the maximum \(\Gamma \). Furthermore, the sample used here was selected to exclude blazars and BL Lac objects with the exception of 3C279 as they are always strongly selection-biased and because the X-rays most likely come from a different source. Thus we have specifically eliminated the possibility to sample the upper cut-off even if it were observable.

Following equation (10), the effect of an additional, strongly beamed X-ray component is to reduce the deviation from the regular FP relation that would otherwise be measured for a large positive beaming of the radio flux alone. For a truly randomly oriented, unbiased sample, the large majority of the sources will not be strongly affected by this, because at high \(\beta \Gamma \), a very small fraction of sources falls into the beaming cone, while at low \(\beta \Gamma \), beaming is unimportant. Because we cannot be sure that the FP sample is free of bias, a note of caution is in order regarding possible selection effects. Still, because the conclusions reached in this paper are not based on claims about the upper cut-off in the flux distribution, the results should be robust even if the contribution from highly beamed sources is not treated entirely self-consistently.

5 CONCLUSIONS

We showed that the scatter in the radio–X-ray relation in XRBs and in the ‘fundamental plane’ relation in accreting black holes can be used to constrain the width of the Lorentz factors distribution of the jets in these sources. It cannot be used to put an upper limit on the mean Lorentz factor \(\langle \Gamma \rangle \) of the jets in the sample. However, if all of the scatter is indeed due to relativistic Doppler boosting, we show that a lower limit can be put on \(\langle \beta \Gamma \rangle \). Both lognormal and logflat distributions in \(\beta \Gamma \) fit the observed scatter well. We show that, if the X-rays are produced in the jet, they either have to originate in an unbeamed portion of the jet (close to the base) or other sources of scatter must dominate in the ‘fundamental plane’ relation.

ACKNOWLEDGMENTS

We thank Rob Fender, Sera Markof, Mike Nowak and the anonymous referee for helpful insights and discussions. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Postdoctoral Fellowship Award Number PF3-40026 issued by the Chandra X-ray Observatory Centre, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-39073.

REFERENCES

Begelman M. C., Blandford R. D., Rees M. J., 1984, Rev. Mod. Phys., 56, 255
Beloborodov A. M. 1999, ApJ, 510, L123
Cohen M. H., Cannon W., Purcell G. H., Shaffer D. B., Broderick J. J., Kellermann K. I., Jauncey D. L., 1971, ApJ, 170, 207
Corbel S., Nowak M. A., Fender R. P., Tzioumis A. K., Markoff S., 2003, A&A, 400, 1007
Falcke H., Kording E., Markoff S., 2004, A&A, 414, 895
Fender R., Gallo E., Belloni T., 2004, MNRAS, in press (doi:10.1111/j.1365-2966.2004.08384.x)
Gallo E., Fender R. P., Pooley G. G., 2003, MNRAS, 344, 60
Gleissner T. et al., 2004, A&A, 425, 1061
Heinz S., 2004, MNRAS, in press (doi:10.1111/j.1365-2966.2004.08361.x)
Heinz S., 2004, MNRAS, in press (astro-ph/0409029)
Hynes R. I., Steeghs D., Casares J., Charles P. A., O’Brien K., 2004, ApJ, 609, 317
Jones T. W., O’dell S. L., Stein W. A., 1974, ApJ, 192, 261
Jonker P. G., Nelemans G., 2004, MNRAS, 344
Lister M. L., 2003, ApJ, 599, 105
Lister M. L., Marscher A. P., 1997, ApJ, 476, 572
McClintock J., Remillard R., 2003, in Lewin W., van der Klis M., eds, Compact Stellar X-ray Sources. Cambridge Univ. Press, Cambridge, in press (astro-ph/0306213)
Markoff S., Nowak M., 2004, ApJ, 609, 972
Merloni A., Heinz S., di Matteo T., 2003, MNRAS, 345, 1057
Morganti R., Oosterloo T. A., Fosbury R. A. E., Tadhunter C. N., 1995, MNRAS, 274, 393
Orr M. J. L., Browne I. W. A., 1982, MNRAS, 200, 1067
Perley R. A., Fomalont E. B., Johnston K. J., 1982, ApJ, 255, L93
Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
Urry C. M., Padovani P., 1991, ApJ, 371, 60
Urry C. M., Padovani P., 1995, ApJ, 107, 803
Urry C. M., Shafer R. A., 1984, ApJ, 280, 569
Whitney D. A. et al., 1971, Sci, 173, 225

This paper has been typeset from a TeX/LaTeX file prepared by the author.