Strategic aspects of the probabilistic serial rule for the allocation of goods

HARIS AZIZ and SERGE GASPERS and NICK MATTEI and TOBY WALSH, NICTA and University of New South Wales, Australia and NINA NARODYTKA, University of Toronto, Canada

The probabilistic serial (PS) rule is one of the most prominent randomized rules for the assignment problem. It is well-known for its superior fairness and welfare properties. However, PS is not immune to manipulative behaviour by the agents. We examine computational and non-computational aspects of strategising under the PS rule. Firstly, we study the computational complexity of an agent manipulating the PS rule. We present polynomial-time algorithms for optimal manipulation. Secondly, we show that expected utility best responses can cycle. Thirdly, we examine the existence and computation of Nash equilibrium profiles under the PS rule. We show that a pure Nash equilibrium is guaranteed to exist under the PS rule. For two agents, we identify two different types of preference profiles that are not only in Nash equilibrium but can also be computed in linear time. Finally, we conduct experiments to check the frequency of manipulability of the PS rule under different combinations of the number of agents, objects, and utility functions.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-numerical Algorithms and Problems—Computations on discrete structures; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Multiagent Systems; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: fair division, strategyproofness, random assignment, probabilistic serial rule, Nash dynamics, best responses.

1. INTRODUCTION

The assignment problem is one of the most fundamental and important problems in economics and computer science [see e.g., Bogomolnaia and Moulin 2001; Gärdenfors 1973; Hylland and Zeckhauser 1979; Aziz et al. 2013b; Saban and Sethuraman 2013a]. Agents express preferences over objects and, based on these preferences, the objects are allocated to the agents. A randomized or fractional assignment rule takes the preferences of the agents into account in order to allocate each agent a fraction of the object. If the objects are indivisible, the fraction can also be interpreted as the probability of receiving the object. Randomization is widespread in resource allocation since it is one of the most natural ways to ensure procedural fairness [Budish et al. 2013]. Randomized assignments have been used to assign public land, radio spectra to broadcasting companies, and US permanent visas to applicants [Footnote 1 in Budish et al. 2013].

Typical criteria for randomized assignment being desirable are fairness and welfare. The probabilistic serial (PS) rule is an ordinal randomized/fractional assignment rule that fares better on both counts than any other random assignment rule [Bogomolnaia and Heo 2012; Bogomolnaia and Moulin 2001; Budish et al. 2013; Katta and Sethuraman 2006; Kojima 2009; Yilmaz 2010; Saban and Sethuraman 2013b]. In particular, it satisfies strong envy-freeness and efficiency with respect to both stochastic dominance (SD) and downward lexicographic (DL) relations [Bogomolnaia and Moulin 2001; Schulman and Vazirani 2012; Kojima 2009]. SD is one of the most fundamental relations between fractional allocations because one allocation is SD-preferred over another iff for any utility representation consistent with the ordinal preferences, the
former yields at least as much expected utility as the latter. DL is a refinement of SD and based on lexicographic comparisons between fractional allocations. Generalizations of the PS rule have been recommended in many settings [see e.g., Budish et al. 2013]. The PS rule also satisfies some desirable incentive properties. If the number of objects is not more than the number of agents, then PS is weak strategyproof with respect to stochastic dominance [Bogomolnaia and Moulin 2001]. However, PS is not immune from manipulation.

PS works as follows. Each agent expresses linear orders over the set of houses (we use the term house throughout the paper though we stress any object could be allocated with these mechanisms). Each house is considered to have a divisible probability weight of one, and agents simultaneously and with the same speed consume the probability weight of their most preferred house. Once a house has been consumed, the agent proceeds to eat the next most preferred house that has not been completely consumed. The procedure terminates after all the houses have been consumed. The random allocation of an agent by PS is the amount of each object he has eaten.

We examine the following natural questions for the first time: what is the computational complexity of an agent computing a different preference to report so as to get a better PS outcome? How often is a preference profile manipulable under the PS rule?

The complexity of manipulation of the PS rule has bearing on another issue that has recently been studied—preference profiles that are in Nash equilibrium. Ekici and Kesten [2012] showed that when agents are not truthful, the outcome of PS may not satisfy desirable properties related to efficiency and envy-freeness. Because the PS rule is manipulable it is important to understand how hard, computationally, it is for an agent to compute a beneficial misreporting as this may make it difficult in practice to exploit the mechanism. It is also interesting to identify preference profiles for which no agent has an incentive to unilaterally deviate to gain utility with respect to his actual preferences. Hence, we consider the following problem: for a preference profile, does a (pure) Nash equilibrium exist or not and if it exists how efficiently can it be computed?

In order to compare random allocations, an agent needs to consider relations between random allocation. We consider three well-known relations between lotteries [see e.g., Bogomolnaia and Moulin 2001; Schulman and Vazirani 2012; Saban and Sethuraman 2013b; Cho 2012]: (i) expected utility (EU), (ii) stochastic dominance (SD), and (iii) downward lexicographic (DL). For EU, an agent seeks a different allocation that yields more expected utility. For SD, an agent seeks a different allocation that yields more expected utility for all cardinal utilities consistent with the ordinal preferences. For DL, an agent seeks an allocation that gives a higher probability to the most preferred alternative that has different probabilities in the two allocations. Throughout the paper, we assume that agents express strict preferences, i.e., they are not indifferent between any two houses.

Contributions. We initiate the study of computing best responses and checking for Nash equilibrium for the PS mechanism — one of the most established randomized rules for the assignment problem. We present a polynomial-time algorithm to compute

1. Another well-established rule random serial dictator (RSD) is strategyproof but it is not envy-free and not as efficient as PS [Bogomolnaia and Moulin 2001]. Moreover, in contrast to PS, the fractional allocations under RSD are #P-complete to compute [Aziz et al. 2013a].
2. Although PS was originally defined for the setting where the number of houses is equal to the number of agents, it can be used without any modification for fewer or more houses than agents [see e.g., Bogomolnaia and Moulin 2001; Kojima 2009].
3. This problem of computing the optimal manipulation has already been studied in great depth for voting rules [see e.g., Faliszewski and Procaccia 2010; Faliszewski et al. 2010].
the DL best response for multiple agents and houses. The algorithm works by carefully simulating the PS rule for a sequence of partial preference lists. For the case of two agents we present a polynomial-time algorithm to compute an EU best response for any utilities consistent with the ordinal preferences. The result for the EU best response relies on an interesting connection between the PS rule and the sequential allocation rule for discrete objects. We leave open the problem of computing the expected utility response for arbitrary number of agents. The fact that a similar problem has also remained open for sequential allocation [Bouveret and Lang 2011] gives some indication of the challenge of the problem.

We then examine situations in which all agents are strategic. We first show that expected utility best responses can cycle. Nash dynamics in matching theory has been active area of research especially for the stable matching problem [see e.g., Ackermann et al. 2011]. We then prove that a (pure) Nash equilibrium exists for any number of agents and houses. To the best of our knowledge, this is the first proof of the existence of a Nash equilibrium for the PS rule. For the case of two agents we present two different linear-time algorithms to compute a preference profile that is in Nash equilibrium with respect to the original preferences. One type of equilibrium profile results in the same assignment as the one by original profile.

Finally, we perform an experimental study of the frequency of manipulability of the PS mechanism. We investigate, under a variety of utility functions and preference distributions, the likelihood that some agent in a profile has an incentive to misreport his preference. The experiments identify settings and utility models in which PS is less susceptible to manipulation.

2. PRELIMINARIES

An assignment problem \((N, H, \succ)\) consists of a set of agents \(N = \{1, \ldots, n\}\), a set of houses \(H = \{h_1, \ldots, h_m\}\) and a preference profile \(\succ = (\succ_1, \ldots, \succ_n)\) in which \(\succ_i\) denotes a complete, transitive and strict ordering on \(H\) representing the preferences of agent \(i\) over the houses in \(H\). Since each \(\succ_i\) will be strict throughout the paper, we will also refer to it simply as \(\succ_i\).

A fractional assignment is a \((n \times m)\) matrix \([p(i)(j)]\) such that for all \(i \in N\), and \(h_j \in H\), \(0 \leq p(i)(j) \leq 1\); and for all \(j \in \{1, \ldots, n\}\), \(\sum_{i \in N} p(i)(j) = 1\) The value \(p(i)(j)\) is the fraction of house \(h_j\) that agent \(i\) gets. Each row \(p(i) = (p(i)(1), \ldots, p(i)(m))\) represents the allocation of agent \(i\). A fractional assignment can also be interpreted as a random assignment where \(p(i)(j)\) is the probability of agent \(i\) getting house \(h_j\). We will also denote \(p(i)\) by \(p(i)(h_j)\).

Relations between random allocations. A standard method to compare lotteries is to use the SD (stochastic dominance) relation. Given two random assignments \(p\) and \(q\), \(p(i) \succSD q(i)\) i.e., a player \(i\) SD prefers allocation \(p(i)\) to \(q(i)\) if \(\sum_{h_j \in \{h_k : h_k \succ_i h_j\}} p(i)(h_j) \geq \sum_{h_j \in \{h_k : h_k \succ_i h_j\}} q(i)(h_j)\) for all \(h \in H\) and \(\sum_{h_j \in \{h_k : h_k \succ_i h_j\}} p(i)(h_j) > \sum_{h_j \in \{h_k : h_k \succ_i h_j\}} q(i)(h_j)\) for some \(h \in H\).

Given two random assignments \(p\) and \(q\), \(p(i) \succDL q(i)\) i.e., a player \(i\) DL prefers allocation \(p(i)\) to \(q(i)\) if \(p(i) \neq q(i)\) and for the most preferred house \(h\) such that \(p(i)(h) \neq q(i)(h)\), we have that \(p(i)(h) > q(i)(h)\).

When agents are considered to have cardinal utilities for the objects, we denote by \(u_i(h)\) the utility that agent \(i\) gets from house \(h\). We will assume that total utility of an agent equals the sum of the utilities that he gets from each of the houses. Given two

4The two-agent case is also of special importance since various disputes arise between two parties.
random assignments \(p \) and \(q, p(i) \succ^E q(i) \) i.e., a player \(i \) \(EU \) (expected utility) prefers allocation \(p(i) \) to \(q(i) \) iff \(\sum_{h \in H} u_i(h)p(i)(h) > \sum_{h \in H} u_i(h)q(i)(h) \).

Since for all \(i \in N \), agent \(i \) compares assignment \(p \) with assignment \(q \) only with respect to his allocations \(p(i) \) and \(q(i) \), we will sometimes abuse the notation and use \(p \succ^S q \) for \(p(i) \succ^S q(i) \). A random assignment rule takes as input an assignment problem \((N,H,\succ)\) and returns a random assignment which specifies how much fraction or probability of each house is allocated to each agent.

3. THE PROBABILISTIC SERIAL RULE AND ITS MANIPULATION

Recall that the Probabilistic Serial (PS) rule is a random assignment algorithm in which we consider each house as infinitely divisible. At each point in time, each agent is consuming his most preferred house that has not completely been consumed and each agent has the same unit speed. Hence all the houses are consumed at time \(m/n \) and each agent receives a total of \(m/n \) unit of houses. The probability of house \(h_i \) being allocated to \(i \) is the fraction of house \(h_i \) that \(i \) has eaten. The PS fractional assignment can be computed in time \(O(mn) \). We refer the reader to [Bogomolnaia and Moulin 2001] or [Kojima 2009] for alternative definitions of PS. The following example adapted from [Section 7, Bogomolnaia and Moulin 2001] shows how PS works.

Example 3.1 (PS rule). Consider an assignment problem with the following preference profile.

\[\succ_1: h_1, h_2, h_3 \quad \succ_2: h_2, h_1, h_3 \quad \succ_3: h_2, h_3, h_1 \]

Agents 2 and 3 start eating \(h_2 \) simultaneously whereas agent 1 eats \(h_1 \). When 2 and 3 finish \(h_2 \), agent 3 has only eaten half of \(h_1 \). The timing of the eating can be seen below.

```
                     7 8 9
Agent 1 | h1 | h1 | h3
Agent 2 | h2 | h1 | h3
Agent 3 | h2 | h3 | h1
```

The final allocation computed by PS is \(PS(\succ_1, \succ_2, \succ_3) = \begin{pmatrix} 3/4 & 0 & 1/4 \\ 1/4 & 1/2 & 1/4 \\ 0 & 1/2 & 1/2 \end{pmatrix} \).

Consider the assignment problem in Example 3.1 If agent 1 misreports his preferences as follows: \(\succ'_1: h_2, h_1, h_3 \), then \(PS(\succ'_1, \succ_2, \succ_3) = \begin{pmatrix} 1/3 & 2/1 & 1/6 \\ 1/3 & 1/2 & 1/6 \\ 1/3 & 0 & 2/3 \end{pmatrix} \). Then, if \(u_1(h_1) = 7, u_1(h_2) = 6, \) and \(u_1(h_3) = 0 \), then agent 1 gets more expected utility when he reports \(\succ'_1 \). In the example, although truth-telling is a DL best response, it is not necessarily an EU best response for agent 1.

Examples 1 and 2 of [Kojima 2009] show that manipulating the PS mechanism can lead to an SD improvement when each agent can be allocated more than one house. In light of the fact that the PS rule can be manipulated, we examine the complexity of a single agent computing a manipulation, in other words, the best response for the PS rule.\(^5\) We then study the existence and computation of Nash equilibria. For \(\mathcal{E} \in \{SD, EU, DL\} \), we define the problem \(\mathcal{E}_\text{BEstResponse} \): given \((N,H,\succ)\) and agent

\(^5\)Note that if an agent is risk-averse and does not have information about the other agent’s preferences, then his maximin strategy is to be truthful. The reason is that if all agents have the same preferences, then the optimal strategy is to be truthful.
In this section, we present a polynomial-time algorithm for DLBestResponse. Lexicographic preferences are well-established in the assignment literature [see e.g., Saban and Sethuraman 2013b; Schulman and Vazirani 2012; Cho 2012]. Let \((N, H, \succ)\) be an assignment problem where \(N = \{1, \ldots, n\}\) and \(H = \{h_1, \ldots, h_m\}\). We will show how to compute a DL best response for agent \(1 \in N\). It has been shown that when \(m \leq n\), then truth-telling is the DL best response but if \(m > n\), then this need not be the case [Saban and Sethuraman 2013b; Schulman and Vazirani 2012; Kojima 2009].

Recall that a preference \(\succ_{i}^\prime\) is a DL best response for agent \(i\) if the fractional allocation agent \(i\) receives when reporting \(\succ_{i}^\prime\) is DL preferred to any fractional allocation agent \(i\) receives by reporting another preference. That is, there is no preference \(\succ_{i}''\) such that \(PS(N, H, (\succ_{i}'' \setminus \succ_{i}^\prime)) \succ_{i}^\prime PS(N, H, (\succ_{i}^\prime \setminus \succ_{i}'))\). For a constant \(m\), the problem \(\text{BESTRESPONSE}\) can be solved by brute force by trying out each of the \(m!\) preferences. Hence we won’t assume that \(m\) is a constant.

We establish some more notation and terminology for the rest of the paper. We will often refer to the PS outcomes for partial lists of houses and preferences. We will denote by \(PS(\succ_{1}, \succ_{-1})(i)\), the allocation that agent \(i\) receives when his preferences are restricted to the list \(L\) where \(L\) is an ordered list of a subset of houses. When an agent runs out of houses in his preference list, he does not eat any other houses. The length of a list \(L\) is denoted \(|L|\), and we refer to the \(k\)th house in \(L\) as \(L(k)\). In the PS rule, the eating start time of a house is the time point at which the house starts to be eaten by some agent. In Example 3.1, the eating start times of \(h_1, h_2\) and \(h_3\) are 0, 0 and 0.5, respectively.

4. LEXICOGRAPHIC BEST RESPONSE

In this section, we present a polynomial-time algorithm for DLBestResponse. Lexicographic preferences are well-established in the assignment literature [see e.g., Saban and Sethuraman 2013b; Schulman and Vazirani 2012; Cho 2012]. Let \((N, H, \succ)\) be an assignment problem where \(N = \{1, \ldots, n\}\) and \(H = \{h_1, \ldots, h_m\}\). We will show how to compute a DL best response for agent \(1 \in N\). It has been shown that when \(m \leq n\), then truth-telling is the DL best response but if \(m > n\), then this need not be the case [Saban and Sethuraman 2013b; Schulman and Vazirani 2012; Kojima 2009].

Recall that a preference \(\succ_{i}^\prime\) is a DL best response for agent \(i\) if the fractional allocation agent \(i\) receives when reporting \(\succ_{i}^\prime\) is DL preferred to any fractional allocation agent \(i\) receives by reporting another preference. That is, there is no preference \(\succ_{i}''\) such that his share of a house \(h\) when reporting \(\succ_{i}''\) is strictly larger than when reporting \(\succ_{i}^\prime\) while the share of all houses he prefers to \(h\) (according to his true preference \(\succ_{i}\)) is the same whether reporting \(\succ_{i}^\prime\) or \(\succ_{i}''\).

Our algorithm will iteratively construct a partial preference list for the \(i\) most preferred houses of agent \(1\). Without loss of generality, denote \(\succ_{i}^\prime = h_1, h_2, \ldots, h_m\).

For any \(i, 1 \leq i \leq m\), denote \(H_i = \{h_1, \ldots, h_i\}\). A (partial) preference of agent \(1\) restricted to \(H_i\) is a preference over a subset of \(H_i\). Note that a preference for \(H_i\) need not list all the houses in \(H_i\). For the preference of agent \(1\) restricted to \(H_i\), the PS rule computes an allocation where the preference of agent \(1\) is replaced with this preference and the preferences of all other agents remain unchanged. Recall that agent \(1\) can only be allocated a non-zero fraction of a house if this house is in the preference list he submits. The notions of DL best response and DL preferred fractional assignments with respect to a subset of houses \(H_i\) are defined accordingly for restricted preferences of agent \(1\).

For a house \(h \in H_i\), let \(PS1(L, h)\) denote the fraction of house \(h\) that the PS rule assigns to agent \(1\) when he reports the (partial) preference \(L\).

We start with a simple lemma showing that a DL best response for agent \(1\) for the whole set \(H\) can be no better and no worse on \(H_i\) than a DL best response for \(H_i\).

Lemma 4.1. Let \(i \in \{1, \ldots, m\}\). A DL best response for agent \(1\) on \(H\) gives the same fractional assignment to the houses in \(H_i\) as a DL best response for agent \(1\) on \(H_i\).

Proof. We have that a preference for agent \(1\) on \(H_i\) can be extended to a preference for all houses that gives the same fractional allocation to agent \(1\) for the houses in \(H_i\). Namely, the remaining houses \(H \setminus H_i\) can be appended to the end of his preference list, giving the same allocation to the houses in \(H_i\) as before.
On the other hand, consider a DL best response \succ'_1 for agent 1 on H, giving a fractional allocation p to agent 1. Restricting this preference to H_i gives a fractional allocation q for H_i. If q is DL preferred to $p_{|H_i}$, i.e., the fractional allocation p restricted to H_1, then $q = p_{|H_1}$, otherwise we would have a contradiction to \succ'_1 being a DL best response as per the previous argument that we can extend any preference for H_i to H giving the same fractional allocation to agent 1 for the houses in H_i. \(\square\)

Our algorithm will compute a list L_i such that $L_i \subseteq H_i$. The list L_i will be a DL best response for agent 1 with respect to H_i. Suppose the algorithm has computed L_{i-1}. Then, when considering $H_i = H_{i-1} \cup \{h_i\}$, it needs to make sure that the new fractional allocation restricted to the houses in H_{i-1} remains the same (due to Lemma 4.1). For the preference to be optimal with respect to H_i, the algorithm needs to maximize the fractional allocation of h_i to agent 1 under the previous constraint.

Our algorithm will compute a canonical DL best response that has several additional properties.

Definition 4.2. A preference L_i for H_i is no-0 if L_i contains no house h with $PS1(L_i, h) = 0$.

Any DL best response for agent 1 for H_i can be converted into a no-0 DL best response by removing the houses for which agent 1 obtains a fraction of 0.

Definition 4.3. For a no-0 preference L_i for H_i, the stingy ordering for a position j is determined by running the PS rule with the preference $L_i(1) \oplus \cdots \oplus L_i(j-1)$ for agent 1 where \oplus denotes concatenation. It orders the houses from $\bigcup_{k=1}^{i-1} L_i(k)$ by increasing eating start times, and when 2 houses h, h' have the same eating start time, we order h before h' iff $h \succ_1 h'$.

Intuitively, houses occurring early in this ordering are the most threatened by the other agents at the time point when agent 1 comes to position j. The following definition takes into account that the eating start times of later houses may change depending on agent 1’s ordering of earlier houses.

Definition 4.4. A preference L_i for H_i is stingy if it is a no-0 DL best response for agent 1 on H_i, and for every $j \in \{1, \ldots, i\}$, $L_i(j)$ is the first house in the stingy ordering for this position such that there exists a DL best response starting with $L_i(1) \oplus \cdots \oplus L_i(j)$.

We note that, due to Lemma 4.1, there is a unique stingy preference for each H_i.

Example 4.5. Consider the following assignment problem.

$\succ_1: h_1, h_2, h_3, h_4, h_5, h_6$

$\succ_2: h_3, h_6, h_4, h_5, h_1, h_2$

The preferences h_3, h_1, h_4, h_2 and h_3, h_2, h_4, h_1 are both no-0 DL best responses for agent 1 with respect to H_1, allocating $h_1(1), h_2(1), h_3(1/2), h_4(1/2)$ to agent 1. When running the PS rule with h_3 as the preference list, h_4’s eating start time comes first among $\{h_1, h_2, h_4\}$. However, there is no DL best response for H_4 starting with h_3, h_4. The next house in the stingy ordering is h_1. The preference h_3, h_1, h_4, h_2 is the stingy preference for H_4.

The next lemma shows that when agent 1 receives a house partially (a fraction different from 0 and 1) in a DL best response, a stingy preference would not order a less preferred house before that house.

6When we treat a list as a set we refer to the set of all elements occurring in the list.
LEMMA 4.6. Let L_i be a stingy preference for H_i. Suppose there is a $h_j \in H_i$ such that $0 < PS1(L_i, h_j) < 1$. Then, $P \subseteq H_j$, where $L_i = P \ominus h_j \ominus S$.

PROOF. For the sake of contradiction, assume P contains a house h_k such that $h_j \succ h_k$ (i.e., $j < k$). Let K denote all houses h_k in P such that $h_j \succ h_k$. Since L_i is no-0, $PS1(L_i, h_k) > 0$ for all $h_k \in K$. But then, removing the houses in K from L_i gives a preference that is strictly DL preferred to L_i, since this increases agent 1’s share of h_j while only the shares of less preferred houses decrease. This contradicts L_i being a DL best response for H_i, and therefore proves the lemma. □

The next lemma shows how the houses allocated completely to agent 1 are ordered in a stingy preference.

LEMMA 4.7. Let L_i be a stingy preference for H_i. If $h_j, h_k \in H_i$ are two houses such that $PS1(L_i, h_j) = PS1(L_i, h_k) = 1$, with $L_i = P \ominus h_j \ominus M \ominus h_k \ominus S$, then either the eating start time of h_j is smaller than h_k’s eating start time when agent 1 reports P, or it is the same and $h_j \succ h_k$.

PROOF. Suppose not. But then, L_i is not stingy since swapping h_j and h_k in L_i gives the same fractional allocation to agent 1. □

We now show that when iterating from a set of houses H_{i-1} to H_i, the previous solution can be reused up to the last house that agent 1 receives partially.

LEMMA 4.8. Let L_{i-1} and L_i be stingy preferences for H_{i-1} and H_i, respectively. Suppose there is a $h \in H_{i-1}$ such that $0 < PS1(L_{i-1}, h) < 1$. Then the prefixes of L_{i-1} and L_i coincide up to h.

PROOF. Suppose not. By Lemma 4.1, $PS1(L_i, h) = PS1(L_{i-1}, h)$. Let $P_{i-1} = P_i$ denote a maximum common prefix of L_{i-1} and L_i, and write $L_{i-1} = P_{i-1} \oplus x_{i-1} \oplus M_{i-1} \ominus h \ominus S_{i-1}$ and $L_i = P_i \ominus x_i \oplus M_i \ominus h \ominus S_i$. By Lemma 4.6, $h > h_i$, and therefore, $h_i \in S_i$. Since L_{i-1} and L_i are no-0, we have that $PS1(L_{i-1}, x_{i-1}) > 0$ and $PS1(L_i, x_i) > 0$. Now, if $PS1(L_{i-1}, x_{i-1}) < 1$, then since at least one other agent eats x_{i-1} concurrently with agent 1 when he reports L_{i-1}, he loses a non-zero fraction of x_{i-1} when instead he reports L_i and eats x_i after having exhausted P_i, we have that $PS1(L_i, x_{i-1}) < PS1(L_{i-1}, x_{i-1})$, a contradiction to Lemma 4.1. Similarly, we obtain a contradiction when $PS1(L_i, x_i) < 1$. Therefore, $PS1(L_{i-1}, x_{i-1}) = PS1(L_i, x_i) = 1$. Now, by Lemma 4.1 we also have that $PS1(L_{i-1}, x_{i-1}) = PS1(L_i, x_i) = 1$. But only one of x_{i-1}, x_i can come earlier in the stingy ordering. The other one contradicts Lemma 4.7. □

We are now ready to describe how to obtain L_i from L_{i-1}. See Algorithm 1 for the pseudocode. The subroutine EST(N, H, \succ) executes the PS rule for (N, H, \succ) and for each item, records the first time point where some agent starts eating it. It returns the eating start times est(h) for each house $h \in H$.

Let p be the last position in L_{i-1} such that the house $L_{i-1}(p)$ is partially allocated to agent 1. In case agent 1 receives no house partially, set $p := 0$ and interpret $L_{i-1}(p)$ as an imaginary house before the first house of L_{i-1}. By Lemma 4.8, we have that $L_{i-1}(s) = L_i(s)$ for all $s \leq p$. By Lemma 4.1, we have that the fractional assignment resulting from L_i must wholly allocate all houses $L_{i-1}(p+1), \ldots, L_{i-1}(|L_{i-1}|)$ to agent 1, and allocate a share of 0 to all houses in $H_{i-1} \setminus L_{i-1}$.

It remains to find the right ordering for $\{L_{i-1}(s) : p + 1 \leq s \leq |L_{i-1}|\} \cup \{h_i\}$. By Lemmas 4.6 and 4.7, the prefixes of L_{i-1} and L_i coincide up to h. We will describe in the next paragraph how to determine the position q where h_i should be inserted. Having determined this position one may then need to re-order the subsequent houses. This is because inserting h_i in the list may change the eating start times of the subsequent houses.
Input: \((N, H, \succ)\)
Output: DL Best response of agent 1

1. \(L_1 \leftarrow h_1\) // Best response for agent 1 w.r.t. \(H_1 = \{h_1\}\)
2. for \(i = 2\) to \(n\) do // Compute a best response w.r.t. \(H_2, \ldots, H_n\)
3. \(p \leftarrow 0\)
4. if \(\exists q \in \{1, \ldots, i - 1\}\) such that \(0 < PS(L_{i-1}, L_{i-1}(q)) < 1\) then
5. \(p \leftarrow \max\{q \in \{1, \ldots, i - 1\} : 0 < PS(L_{i-1}, L_{i-1}(q)) < 1\}\)
6. end if
7. for \(q \leftarrow p + 1\) to \(|L_i| + 1\) do // New house \(h_i\) inserted after position \(p\)
8. \(L_i \leftarrow L_{i-1}(1) \oplus \cdots \oplus L_{i-1}(q - 1) \oplus h_i\)
9. while \(|L_i| \leq |L_{i-1}|\) do // Complete the list according to the stingy ordering
10. \(\text{est} \leftarrow \text{EST}(N, H, (L_i^q, \succ_2, \ldots, \succ_n))\)
11. \(S \leftarrow \{h \in L_{i-1} \setminus L_i^q : \text{est}(h)\text{ is minimum}\}\)
12. \(h_s \leftarrow\text{first house among } S \text{ in } \succ_1\)
13. \(L_i \leftarrow L_i \oplus h_s\)
14. end while
15. if \(PS(L_i^q, h_i) = 0\) then
16. \(L_i^q \leftarrow L_{i-1}\)
17. end if
18. end for
19. \(q \leftarrow p\) // Determine which \(L_i^q\) is stingy
20. worse[\(p - 1\)] \(\leftarrow\) true
21. \(\text{finished} \leftarrow\) false
22. while \(\text{finished} = \) false do
23. if \(\exists h \in H_{i-1}\) such that \(PS(L_i^q, h) \neq PS(L_{i-1}, h)\) then
24. \(\text{worse}[/q[/] \(\leftarrow\) true
25. \(q \leftarrow q + 1\)
26. else
27. \(\text{worse}[/q[/] \(\leftarrow\) false
28. if \(PS(L_i^q, h_1) > 0 \text{ and } PS(L_i^q, h_1) < 1\) then
29. \(q \leftarrow q - 1\)
30. end if
31. \(\text{finished} \leftarrow\) true
32. else if \(PS(L_i^q, h_1) = 1\) then
33. \(\text{est} \leftarrow \text{EST}(N, H, (L_i^q(1) \oplus \cdots \oplus L_i^q(q - 1), \succ_2, \ldots, \succ_n))\)
34. if \(\exists h \in \{L_i^q(q + 1), \ldots, L_i^q(|L_i^q|)\}\) such that \(\text{est}(h) \leq \text{est}(h_i)\) then
35. \(q \leftarrow q + 1\)
36. \(\text{else}\)
37. \(\text{finished} \leftarrow\) true
38. end if
39. end if
40. end if
41. end while
42. \(L_i \leftarrow L_i^q\)
43. end for
44. return \(L_n\)

Algorithm 1: DL best response for \(n\) agents

houses. This leads us to the following insertion procedure. The list \(L_i^q\) obtained from \(L_{i-1}\) by inserting \(h_i\) at position \(q\), with \(p < q \leq |L_i| + 1\), is determined as follows. Start with \(L_i^q := L_{i-1}(1) \oplus \cdots \oplus L_{i-1}(q - 1) \oplus h_i\). While \(|L_i^q| \leq |L_{i-1}|\), we append to the end of \(L_i^q\) the first house among \(L_{i-1} \setminus L_i^q\) in the stingy ordering for this position. After the while-loop terminates, run the PS rule for the resulting list \(L_i^q\). In case we obtain that \(PS(L_i^q, h_i) = 0\), we remove \(h_i\) again from this list (and actually obtain \(L_i^q = L_{i-1}\)).

The position \(q\) where \(h_i\) is inserted is determined as follows. Start with \(q := p\). We have an array worse keeping track of whether the lists \(L_i^q, \ldots, L_i^q\) produce a worse outcome for agent 1 than the list \(L_{i-1}\). Set worse[\(p - 1\)] := true. As long as the list \(L_i^q\) has
not been determined, proceed as follows. Obtain \(L_3^q \) from \(L_{i-1} \) by inserting \(h_i \) at position \(q \), as described earlier. Consider the allocation of agent 1 when he reports \(L_3^q \). If this allocation is not the same for the houses in \(H_{i-1} \) as when reporting \(L_{i-1} \), then set \(\text{worse}[q] := 0 \), otherwise set \(\text{worse}[q] := 1 \). If \(\text{worse}[q] = 0 \), then increment \(q \). This is because, by Lemma 4.1, this preference would not be a DL best response with respect to \(H_i \). Otherwise, if \(0 < PS1(L_i^q, h_i) < 1 \), then we can determine \(h_i \)'s position. If \(\text{worse}[q-1] \), then set \(L_i := L_3^q \), otherwise set \(L_i := L_{i-1}^q \). This position for \(h_i \) is optimal since moving \(h_i \) later in the list would decrease its share to agent 1. Otherwise, we have that \(\text{worse}[q] = 0 \) and \(PS1(L_i^q, h_i) \in \{0, 1\} \). This will be the share agent 1 receives of \(h_i \). If \(PS1(L_i^q, h_i) = 0 \), then set \(L_i := L_{i-1} \). Otherwise (\(PS1(L_i^q, h_i) = 1 \)), it still remains to check whether the current position for \(h_i \) gives a stingy preference. For this, run the PS rule with the preference \(L_i^q(1) \oplus \cdots \oplus L_i^q(q-1) \) for agent 1. If \(h_i \)'s eating start time is smaller than the eating start time of each house \(L_i^q(r) \) with \(r > q \), then set \(L_i := L_i^q \), otherwise increment \(q \).

Thus, given \(L_{i-1} \), the preference \(L_i \) can be computed by executing the PS rule \(O(m) \) times. The DL best response computed by the algorithm is \(L_m \). Since the PS rule can be implemented to run in linear time \(O(mn) \), the running time of this DL best response algorithm is \(O(nm^3) \).

Theorem 4.9. DLBestResponse can be solved in \(O(nm^3) \) time.

Example 4.10. Consider the following instance.

\[
\begin{align*}
\succ_1: & \ h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9, h_{10} \\
\succ_2: & \ h_8, h_3, h_5, h_2, h_{10}, h_1, h_6, h_7, h_4, h_9 \\
\succ_3: & \ h_9, h_4, h_7, h_1, h_2, h_6, h_5, h_3, h_8, h_{10} \\
\end{align*}
\]

After having computed \(L_2 = h_1, h_2 \), this algorithm is to consider \(H_3 \). Since \(PS1(L_2, h_1) = PS1(L_2, h_2) = 1 \), the algorithm first considers \(L_3^1 = h_3, h_2, h_1 \). Note that \(h_1 \) and \(h_2 \) have been swapped with respect to \(L_2 \) since agent 2 starts eating \(h_2 \) before agent 3 starts eating \(h_1 \) when agent 1 reports the preference list consisting of only \(h_3 \). It turns out that \(PS1(L_3^1, h_1) = PS1(L_3^1, h_2) = PS1(L_3^1, h_3) = 1 \). Thus, \(\text{worse}[1] = 0 \). Since \(h_3 \) does not come first in the stingy ordering, the algorithm needs to verify whether moving \(h_3 \) later will still give a DL best response with respect to \(H_3 \). It then considers \(L_3^2 = h_1, h_3, h_2 \). However, this allocates only half of \(h_3 \) to agent 1, implying \(\text{worse}[2] = 0 \). Since \(\text{worse}[1] = 0 \), the algorithm sets \(L_3 = L_3^2 \). The DL best response computed by the algorithm is \(L_{10} = h_3, h_2, h_1, h_6 \).

![Diagram of constructing a DL best response for agent 1](image)

Fig. 1: Illustration of constructing a DL best response for agent 1 for the preference profile specified above.

Example 4.11. Figure 1 depicts how the DL best response of agent 1 looks like. After \(h_1 \) is inserted, the starting eating time \(h_3 \) is before \(h_4 \). But after \(h_2 \) is inserted in to form \(L_2 \), then the starting eating time of \(h_4 \) comes before \(h_3 \) because agent 2 won’t be able to eat \(h_2 \). After \(h_4 \) is inserted to build \(L_4 \), it turns out that agent 2 will not be able to eat \(h_4 \) at all. That is why \(h_2 \) is shaded in the eating line of agent 2 because it will already be eaten by the time agent 2 considers eating it at time 10/3.

The DL optimal best response algorithm carefully builds up the DL optimal preferences list while ensuring it is stingy.

We note that a DL best response is also an SD best response. A best response was defined as a response that is not dominated. Hence a DL-best response is one which no other response DL-dominates. This means that no other response SD-dominates (as DL is a refinement of SD) it. Hence, a DL best response is also a SD best response. One may wonder whether an algorithm to compute the DL best response also provides us with an algorithm to compute an EU best response. However, a DL best response may not be an EU best response for three or more agents. Consider the preference profile in Example 3.1. Since the number of houses is equal to the number of agents, reporting the truthful preference is a DL best response [Schulman and Vazirani 2012]. However, we have shown a different preference for agent 1 where he may obtain higher utility.

5. EXPECTED UTILITY BEST RESPONSE

In this section we present an algorithm to compute an EU best response for two agents for the PS rule. First, we reveal a tight connection between a well-known mechanism for sequential allocation of indivisible houses and the PS mechanism (Section 5.1). Then we demonstrate how the expected utility best response algorithm for the sequential allocation of indivisible houses and the PS mechanism (Section 5.1) can be used to build a best response for the PS algorithm (Section 5.2).

5.1. A connection between allocation mechanisms for divisible and indivisible houses

We can obtain the same allocation given by the PS algorithm using the alternation policy, which is a simple mechanism for dividing discrete houses between agents. The alternating policy lets the agents take turns in picking the house that they value most: the first agent takes his most preferred house, then the second agent takes his most preferred house from the remaining houses, and so on. We use the notation 1212... to denote the alternation policy. To obtain the allocation of the PS algorithm using the alternation policy we split our houses into halves and treat them as indivisible houses and adjust agents’ preferences over these halves in a natural way.

Recall that \(H = \{h_1, \ldots, h_m\} \) is the set of houses. Assume \(\succ_2: h_1, \ldots, h_m \) and the preference of agent 1 is a permutation of \(h_1, \ldots, h_m \) as follows \(\succ_1: h_{\pi(1)}, \ldots, h_{\pi(m)} \). We denote \(\succ_i(k) \) the \(k \)th preferred house of the agent \(i \), and by \(\succ_1^{-1}(h_i) \) we mean the position of \(h_i \) in \(\succ_1 \).

We split each house \(h_i, i = 1, \ldots, m \), into halves and treat these halves as indivisible houses. Given \(h_i \), we say that \(h_i^1 \) and \(h_i^2 \) are two halves of \(h_i \). Given the set of houses \(H \), we denote \(H^{\text{CLONED}} \) the set of all halves of all houses in \(H \), so that \(H^{\text{CLONED}} = \{h_1^1, h_1^2, \ldots, h_m^1, h_m^2\} \). Given \(\succ_1 \) and \(\succ_2 \), we introduce profiles \(\succ_1^{\text{CLONED}} \) and \(\succ_2^{\text{CLONED}} \) that are obtained by straightforward splitting of houses into halves in \(\succ_1 \) and \(\succ_2 \). \(\succ_1^{\text{CLONED}} = h_{\pi(1)}^1, h_{\pi(1)}^2, \ldots, h_{\pi(m)}^1, h_{\pi(m)}^2 \) and \(\succ_2^{\text{CLONED}} = h_1^1, h_2^1, \ldots, h_m^1, h_m^2 \). We call this transformation the order-preserving bisection.

Definition 5.1. Let \(\succ_s \) be a preference over a subset of half-houses \(S \subseteq H^{\text{CLONED}} \). The preference \(\succ_s \) has the consecutivity property if and only if \(\succ_s^{-1}(h_i^1) + 1 = \succ_s^{-1}(h_i^2) \).
for all pairs \(h^1_i, h^2_i \in S \). In other words, all half-houses of the same house are ranked consecutively in \(\simeq_s \).

The preference \(\simeq_s = h^1_1, h^2_1, h^3_2, h^4_3, h^5_4, h^6_5 \) has the consecutivity property over the set \(S = \{h^1_1, h^2_1, h^3_2, h^4_3, h^5_4, h^6_5\} \), while \(\simeq_s = h^1_1, h^2_1, h^3_2, h^4_3, h^5_4, h^6_5 \) does not since \(h^1_5 \simeq h^4_3 \). We observe that \(\simeq^{\text{Cloned}}_1 \) and \(\simeq^{\text{Cloned}}_2 \) that are obtained from \(\simeq_1 \) and \(\simeq_2 \) using the order-preserving bisection, respectively, have the consecutivity property.

Next, we define the order-preserving join operation. It is the reverse operation for the order-preserving bisection. Given a preference \(\simeq^{\text{Cloned}}_s \) of the order-preserving join operation merges all halve houses that are ordered consecutively into a single house and leaves the other houses unchanged. Applying the order-preserving join to \(\simeq^{\text{Cloned}}_s = h^1_1, h^2_1, h^3_2, h^4_3, h^5_4, h^6_5 \) gives \(\simeq_s = h^1_1, h^2_1, h^3_2, h^4_3 \).

Next, we show the main result of this section. The outcome of the alternation policy over \(\simeq^{\text{Cloned}}_1 \) and \(\simeq^{\text{Cloned}}_2 \) are obtained by the order-preserving bisection from \(\simeq_1 \) and \(\simeq_2 \). In the alternation policy 12, . . . , 12 we call a pair of consecutive steps 12 a round.

Lemma 5.2. The allocation obtained by the PS algorithm over the preferences \(\simeq_1 \) and \(\simeq_2 \) of length \(m \) is the same as the allocation obtained by the alternation policy of length \(2m \) over the preferences \(\simeq^{\text{Cloned}}_1 \) and \(\simeq^{\text{Cloned}}_2 \).

Proof. The proof is by induction on the number of steps of the PS rule. A step in the PS rule starts when agent 1 starts eating a house and finishes when agent 1 finishes eating that house. For the base case, at time point 0, both the PS algorithm and the alternation policy have not allocated a house to any agent.

Suppose the statement holds for \(i-1 \) steps of the PS rule, where \(i \geq 1 \). If both agents have the same most preferred house \(h_k \) among the remaining houses, then each of them gets half of this house in the PS rule. Consider the next round of the alternation policy: agent 1 gets a half of \(h_k \) and agent 2 gets the other half of \(h_k \). Hence, the allocation is the same.

If the most preferred houses of the two agents are different, say the most preferred house among the remaining houses of agent 1 is \(h_j \), and the most preferred of agent 2 is \(h_k \), then agent 1 completely receives house \(h_j \) and agent 2 completely receives house \(h_k \) in step \(i \) of the PS rule. In the alternation policy, agent 1 gets \(h^1_j, h^2_j \) and agent 2 gets \(h^1_k, h^2_k \) in the next two rounds. Hence, the allocation is the same. \(\square \)

Example 5.3. Consider two agents with preferences \(\simeq_1 = h_5, h_6, h_1, h_3, h_4, h_2 \) and \(\simeq_2 = h_1, h_2, h_3, h_4, h_5, h_6 \). The allocation obtained by the PS algorithm over \(\simeq_1 \) and \(\simeq_2 \) is \(PS(\simeq_1, \simeq_2) = \begin{pmatrix} \frac{0}{0} & \frac{1}{2} & \frac{1}{2} & 1 & \frac{1}{1} & \frac{1}{1} \end{pmatrix} \). The identical allocation given by the alternation policy with \(\simeq^{\text{Cloned}}_1 \) and \(\simeq^{\text{Cloned}}_2 \) is

Rounds	1	2	3	4	5	6
	\(h^1_5 \)	\(h^2_5 \)	\(h^3_6 \)	\(h^4_6 \)	\(h^5_4 \)	\(h^6_4 \)
	\(h^1_1 \)	\(h^2_1 \)	\(h^3_2 \)	\(h^4_2 \)	\(h^5_3 \)	\(h^6_3 \)

5.2. Computing an EU best response

In this section we present an algorithm to compute an expected utility best response for the PS mechanism. First, we recap our settings. We are given two agents 1 and 2 with profiles \(\simeq_1 \) and \(\simeq_2 \), respectively, over houses in \(H \). We assume that agent 1 plays strategically and agent 2 plays truthfully. The goal is to find an expected utility best response for agent 1 for the PS rule. To do so, we reuse an EU best response for the alternation policy over split houses, \(\simeq^{\text{Cloned}}_1 \) and \(\simeq^{\text{Cloned}}_2 \). Our algorithm is based on
lemma. Let \(\succ_{1}^{\text{BEST}} \) be an expected utility best response for agent 1 to \(\succ_{2}^{\text{CLONED}} \) for the alternation policy.

Lemma 5.4. Suppose \(\succ_{1}^{\text{CLONED}} \) has the consecutivity property. Then, \(\succ_{1}^{\text{BEST}} \), obtained by the order-preserving join from \(\succ_{1}^{\text{CLONED}} \) is an EU best response to \(\succ_{2} \).

Proof. The proof is by contradiction. Suppose, \(\succ_{1}^{\text{BEST}} \) is EU preferred to \(\succ_{1}^{\text{CLONED}} \). We transform \(\succ_{1}^{\text{BEST}} \) into \(\succ_{1}^{\text{CLONED}} \) using the order-preserving bisection. By Lemma 5.2 if we run the alternation policy over \(\succ_{1}^{\text{CLONED}} \) and \(\succ_{2}^{\text{CLONED}} \), the agents get the same allocation as by running PS. Hence, \(\succ_{1}^{\text{CLONED}} \) is not the best response to \(\succ_{2}^{\text{CLONED}} \). This leads to a contradiction. \(\square \)

Lemma 5.4 suggests a straightforward way to compute agent 1’s best response \(\succ_{1}^{\text{BEST}} \) for the PS algorithm. We run Kohler and Chandrasekaran’s algorithm that finds a best response for the alternation policy given agents’ preferences \(\succ_{1}^{\text{CLONED}} \) and \(\succ_{2}^{\text{CLONED}} \). If \(\succ_{1}^{\text{CLONED}} \) has the consecutivity property then we can use the order-preserving join to obtain \(\succ_{1}^{\text{BEST}} \) which is the expected utility best response to \(\succ_{2} \) in PS by Lemma 5.4. The main problem with this approach is that the algorithm of Kohler and Chandrasekaran [1971] may return \(\succ_{1}^{\text{CLONED}} \) that does not have the consecutivity property (we provide such an example in the full report). However, we show in Algorithm 2 that we can always find another expected utility best response \(\succ_{1}^{\text{CLONED}} \) that has the consecutivity property. We need to delay the allocation of some half-houses that agent 1 gets. The modifications of the best response \(\succ_{1}^{\text{CLONED}} \) in lines 3–12 produce another best response that has the consecutivity property for agent 1. A detailed description of the algorithm from [Kohler and Chandrasekaran 1971] and a proof of correctness of Algorithm 2 can be found in the full report.

Remark 5.5. The EU best response algorithm is independent of particular utilities and holds for any utilities consistent with the ordinal preferences. Since PS for two agents only involves fractions \(0, \frac{1}{2}, \) and 1, a DL best response is also equivalent to an EU best response. Hence we have proved that the DL best response algorithm in Section 4 is also an EU best response algorithm for the case of two agents.

6. NASH DYNAMICS AND EQUILIBRIUM

In contrast to the previous sections where a single agent is strategic, we consider the setting when all the agents are strategic. We first prove that for expected utility best
Strategic aspects of the probabilistic serial rule

responses, the preference profile of the agents can cycle when agents have Borda utilities. This means that it is possible that self interested agents, acting unilaterally, may never stop reacting.

Theorem 6.1. With 3 agents and 6 items where agents have Borda utilities, a series of expected utility best responses by the agents can lead to a cycle in the profile.

Using a computer program we have found a sequence of best response that cycle.

Checking the existence of a preference profile that is in Nash equilibrium appears to be a challenging problem. The naive way of checking existence of Nash equilibrium requires going through $O(m^n)$ profiles, which is super-polynomial even when $n = O(1)$ or $m = O(1)$. Although computing a Nash equilibrium is a challenging problem, we show that at least one (pure) Nash equilibrium is guaranteed to exist for any number of houses, any number of agents, and any preference relation over fractional allocations.

The proof relies on showing that the PS rule can be modelled as a perfect information extensive form game.

Theorem 6.2. A pure Nash equilibrium is guaranteed to exist under the PS rule for any number of agents and houses, and for any relation between allocations.

Proof Sketch. Let t_0, \ldots, t_k be the $k+1$ different time steps in the PS algorithm. Let $g = \text{GCD}\{t_{i+1} - t_i : i \in \{0, \ldots, k-1\}\}$ where GCD denotes the greatest common divisor. The time interval length g is small enough such that the PS rule can be considered to have m/g stages of duration g. Each stage can be viewed as having n sub-stages so that in each stage, agent i eats g units of a house in sub-stage i of a stage. In each sub-stage only one agent eats g units of the most favoured house that is available. Hence we now view PS as consisting of a total of mn/g sub-stages and the agents keep coming in order $1, 2, \ldots, n$ to eat g units of the most preferred house that is still available. If an agent ate g units of a house in a previous sub-stage then it will eat g units of the same house in the next sub-stage as long as the house has not been fully eaten. Consider a perfect information extensive form game tree. For a fixed reported preference profile, the PS rule unravels accordingly along a path starting at the root and ending at a leaf. Each level of the tree represents a sub-stage in which a certain agent has his turn to eat g units of his most preferred available house. Note that there is a one-to-one correspondence between the paths in the tree and the ways the PS algorithm can be implemented, depending on the reported preference.

A subgame perfect Nash equilibrium is guaranteed to exist for such a game via backward induction: starting from the leaves and moving towards the root of the tree, the agent at the specific node chooses an action that maximizes his utility given the actions determined for the children of the node. The subgame perfect Nash equilibrium identifies at least one such path from a leaf to the root of the game. The path can be used to read out the most preferred house of each agent at each point. The information provided is sufficient to construct a preference profile that is in Nash equilibrium. Those houses that an agent did not eat at all can conveniently be placed at the end of the preference list. Such a preference profile is in Nash equilibrium. Hence, a pure Nash equilibrium exists under the PS rule.

We also know that DL-Nash equilibrium is an SD-Nash equilibrium because if there is an SD deviation, then it is also a DL deviation. Our argument for the existence of a Nash equilibrium is constructive. However, naively constructing the extensive form game and then computing a sub-game perfect Nash equilibrium requires exponential space and time. It is an open question whether a sub-game perfect Nash equilibrium or

7We already know from Nash’s original result that a mixed Nash equilibrium exists for any game.
for that matter any Nash equilibrium preference profile can be computed in polynomial time. We can prove the following theorem for the “threat profile” whose construction is shown in Algorithm 3.

Theorem 6.3. Under PS and for two agents, there exists a preference profile that is in DL-Nash equilibrium and results in the same assignment as the assignment based on the truthful preferences. Moreover, it can be computed in linear time.

Proof. The proof is by induction over the length of the preference lists constructed. The main idea of the proof is that if both agents compete for the same house then they do not have an incentive to delay eating it. If the most preferred houses do not coincide, then both the agents get them with probability one but will not get them completely if they delay eating them.

Let the original preferences of agent 1 and agent 2 be represented by lists \(P_1 \) and \(P_2 \). We present an algorithm to compute preferences \(Q_1 \) and \(Q_2 \) that are in DL-Nash equilibrium. Initialise \(Q_1 \) and \(Q_2 \) to empty lists. Now consider the maximal elements \(h \) from \(P_1 \) and \(h' \) from \(P_2 \). Element \(h \) is appended to the list \(Q_1 \) and \(h' \) is appended to the list \(Q_2 \). At the same time \(h \) is deleted from \(P_1 \) and \(h' \) is deleted from \(P_2 \). Now if \(h \neq h' \), then \(h' \) is appended to \(Q_1 \) and \(h' \) is appended to \(Q_2 \). The process is repeated until \(Q_1 \) and \(Q_2 \) are complete lists and \(P_1 \) and \(P_2 \) are empty lists. The algorithm is described as Algorithm 3.

We now prove that \(P_1 \) is a DL best response against \(P_2 \) and \(P_2 \) is a DL best response against \(P_1 \). The proof is by induction over the length of the preference lists. For the first elements in the preference lists \(P_1 \) and \(P_2 \), if the elements coincide, then no agent has an incentive to put the element later in the list since the element is both agents’ most preferred house. If the maximal elements do not coincide i.e. \(h \neq h' \), then 1 and 2 get \(h \) and \(h' \) respectively with probability one. However they still need to express these houses as their most preferred houses because if they don’t, they will not get the house with probability one. The reason is that \(h \) is the next most preferred house after \(h' \) for agent 2 and \(h' \) is the next most preferred house after \(h \) for agent 1. Agent 1 has no incentive to change the position of \(h' \) since \(h' \) is taken by agent 2 completely before agent 1 can eat it. Similarly, agent 2 has no incentive to change the position of \(h \) since \(h \) is taken by agent 1 completely before agent 2 can eat it. Now that the positions of \(h \) and \(h' \) have been completely fixed, we do not need to consider them and we reason in the same manner over the updated lists \(P_1 \) and \(P_2 \). □

The desirable aspect of the threat profile is that since it results in the same assignment as the assignment based on the truthful preferences, the resultant assignment satisfies all the desirable properties of the PS outcome with respect to the original preferences. Due to Remark 5.5, we get the following corollary.

Corollary 6.4. Under PS and for 2 agents, there exists a preference profile that is Nash equilibrium for any utilities consistent with the ordinal preferences. Moreover it can be computed in linear time.

In this next example, we show how Algorithm 3 is used to compute a preference profile that is in DL-Nash equilibrium. The example also shows that it can be the case that one preference profile is in DL-Nash equilibrium and the other is not, even if both profiles yield the same outcome.

Example 6.5 (Computing a threat profile).

\[\succ_1: h_1, h_2, h_3, h_4 \quad \succ_2: h_2, h_3, h_1, h_4 \]

We now use Algorithm 3 to compute a preference profile \((\succ_1', \succ_2')\) that is in DL-Nash equilibrium: \(\succ_1' = h_1, h_2, h_3, h_4\) and \(\succ_2' = h_2, h_1, h_3, h_4\). Note that \(PS(\succ_1', \succ_2') = \)
Algorithm 3: Threat profile DL-Nash equilibrium for 2 agents (which also is an EU Nash equilibrium)

\[
\begin{pmatrix}
1 & 0 & 1/2 & 1/2 \\
0 & 1 & 1/2 & 1/2
\end{pmatrix}
\]. Although \(PS(\succ_1, \succ_2) = PS(\succ'_1, \succ'_2) \), we see that \((\succ'_1, \succ'_2) \) is in DL-Nash equilibrium but \((\succ_1, \succ_2) \) is not!

Next we show how our identified links with sequential allocation allocation of indistinguishable houses leads us to another Nash equilibrium profile called the crossout profile. The algorithm to compute the crossout profile is stated as Algorithm 4.

Algorithm 4: Crossover profile DL-Nash equilibrium for 2 agents (which also is an EU Nash equilibrium)

In Algorithm 4, the Nash equilibrium problem for PS is changed into the same problem for sequential allocation by changing each house into a half house. The idea behind the crossout profile for the sequential allocation setting is that no agent will choose the least preferred object unless it is the only object left. Thus agent 2 will be forced to get the least preferred object of agent 1 [Levine and Stange 2012, Kohler and Chandrasekaran 1971]. In Algorithm 4, we use this idea recursively to build sequences of objects \(Q'_1 \) and \(Q'_2 \) for each agent that are allocated to them. If one agent gets a half house and the other agent gets the other half house, it can be proved that the positions of the half houses in \(Q'_1 \) and \(Q'_2 \) are same. This sequence of objects for each agent are then extended to preferences that give the same allocations under sequential allocation and which also satisfy the consecutivity property. The preferences for sequential allocation are then transformed via order-preserving join to obtain the crossover Nash equilibrium profile for the PS rule. By Lemma 5.4, the preference profile is in Nash equilibrium. Next we show that the threat profile and crossout profile are different and may also give different assignments.
Example 6.6 (Crossout profile). Consider the following profile.

\[\succ_1: h_1, h_2, h_3, h_4 \quad \succ_2: h_2, h_3, h_1, h_4 \]

We now use Algorithm 4 to compute a preference profile \((\succ_1', \succ_2')\) that is in DL-Nash equilibrium where \(\succ_1' = h_2, h_1, h_4, h_3\) and \(\succ_2' = h_2, h_3, h_4, h_1\). Note that \(PS(\succ_1', \succ_2') = \begin{pmatrix} 1 & 1/2 & 0 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \end{pmatrix}\). The crossout Nash equilibrium profile is different from the threat Nash equilibrium profile for the problem instance.

The complexity of computing a Nash equilibrium profile for more than two agents still remains open. However we have presented a positive result for two agents — a case which captures various fair division scenarios.

7. EXPERIMENTS

In this section, we examine the likelihood that at least one agent would have an incentive to misreport his preferences to get more expected utility. To gain insight into this issue we have performed a series of experiments to determine the frequency that, for a given number of agents and houses, a profile will have a beneficial strategic reporting opportunity for a single agent.

In order to preform this experiment we need to generate preferences and utilities for each of the agents. We consider two different models to generate profiles. (i) In the Impartial Culture (IC) model, the assumption is that for each agent and a given number of houses, each of the \(|H|\) preference orders over the houses is equally likely \((1/|H|)\). (ii) In the Uniform Single Peaked (USP), the assumption is that all single peaked preference profiles are equally likely. Single peaked preferences are a profile restriction introduced by Black [1948] and well studied in the social choice literature. Informally, in a single peaked profile, given all possible 3-sets of houses, no agent ever ranks some particular house last in all 3 sets that it appears.

In order to evaluate if an agent has a better response we need to assign utilities to the individual houses for each agent. While there are a number of ways to model utility we have selected the following mild restrictions on utilities in order to gain an understanding of the manipulation opportunities. (i) In the Random model, we uniformly at random generate a real number between 0 and 1 for each house that is compatible with the generated preference order. We normalize these utilities such that each agent’s utility sums to a constant value that is the same for all agents. In our experiments each agent’s utility sums to the number of houses in the instance. (ii) In the Borda model, we assign \(|H| - 1\) utility to the first house, \(|H| - 2\) to the second house, down to 0 utility for the least preferred house. (iii) In the Exponential (Exp) model, we assign utility \(2^{|H|-1}\) to the first house, \(2^{|H|-2}\) to the second house, down to 0 utility for the least preferred house.

We generated for each pair in \(|N| = \{1, \ldots, 8\} \times |H| = \{1, \ldots, 8\}\) 1,000 profiles according to a utility and preference distribution. For each of these instances, we searched to see if any agent could get more utility by misreporting his preferences, if so, then we say that profile admitted a manipulation. Figure 2 show the percentage of instances that were manipulable for each of the domain, utility, number of agent, and number of house combinations (Borda is omitted for space).

Looking at Figure 2, we observe that as the utility and preference models become more restrictive, the opportunities for a single agent to manipulate becomes smaller.

8Independent from our work, Philipp [2013] also examined how susceptible PS can be to manipulation. Hugh-Jone et al. [2013] conducted laboratory experiments which do look at the manipulability of PS mathe-matically but according to the strategic behaviour of humans.

Technical Report: January 2014.
The Random-IC experiment yields the most frequently manipulable profiles, strictly dominating all the other runs of the experiment for every combination except one (Random-USP with 3 houses and 3 agents). Each experiment with single peaked preferences (save one) is dominated by the experiment with the unrestricted preference profiles for the same utility model.

The PS rule is strategyproof with respect to the DL relation in the case where the number of agents and the number of houses are equal. Our experiment with the Exp model (which is similar to the DL relation but not exact) found no manipulable instances when the number of agents is less than or equal to the number of houses. It is encouraging that the manipulation opportunities for Exp-USP are so low. In this setting each agent is valuing the houses along the same axis of preference and prefers their first choice exponentially more than their second choice. As the number of houses relative to the number of agents grows, the opportunities to manipulate increase, maximizing around 99%.

8. CONCLUSIONS

We conducted a detailed computational analysis of strategic aspects of the PS rule. Our study leads to a number of new research directions. PS is well-defined even for indifferences [Katta and Sethuraman 2006]. It will be interesting to extend our results for strict preferences to the case with ties. Two interesting problems are still open. Firstly, What is the complexity of computing an expected utility best response for more than two agents? The problem is particularly intriguing because even for the related and conceptually simpler setting of discrete allocation, computing an expected utility best response for more than two agents has remained an open problem [Bouveret and Lang 2011]. Another problem is the complexity of computing a Nash equilibrium for more than two agents. It will also be interesting to examine coalitional manipulations...
and coalitional Nash equilibria. Finally, an analysis of Nash dynamics under the PS rule is an intriguing research problem.

REFERENCES

ACKERMANN, H., GOLDBERG, P. W., MIRROKNI, V. S., RÖGLIN, H., AND VÖCKING, B. 2011. Uncoordinated two-sided matching markets. *SIAM Journal on Computing* 40, 1, 92–106.

AZIZ, H., BRANDT, F., AND BRILL, M. 2013a. The computational complexity of random serial dictatorship. *Economics Letters* 121, 3, 341–345.

AZIZ, H., BRANDT, F., AND STURSBERG, P. 2013b. On popular random assignments. In *Proceedings of the 6th International Symposium on Algorithmic Game Theory (SAGT)*, B. Vöcking, Ed. Lecture Notes in Computer Science (LNCS) Series, vol. 8146. Springer-Verlag, 183–194.

BLACK, D. 1948. On the rationale of group decision-making. *Journal of Political Economy* 56, 1, 23–34.

BLOOM, D. 1973. Assignment problem based on ordinal preferences. *Management Science* 20, 3, 331–340.

HYLLAND, A. AND ZECKHAUSER, R. 1979. The efficient allocation of individuals to positions. *The Journal of Political Economy* 87, 2, 293–314.

KATTA, A.-K. AND SETHURAMAN, J. 2006. A solution to the random assignment problem on the full preference domain. *Journal of Economic Theory* 131, 1, 231–250.

KÖHLER, D. A. AND CHANDRASEKARAN, R. 1971. A class of sequential games. *Operations Research* 19, 2, 270–277.

KOJIMA, F. 2009. Random assignment of multiple indivisible objects. *Mathematical Social Sciences* 57, 1, 134–142.

LEVINE, L. AND STANGE, K. E. 2012. How to make the most of a shared meal: Plan the last bite first. *The American Mathematical Monthly* 119, 7, 550–565.

PHILIPP, B. 2013. Simulation of boundedly rational manipulation strategies in one-sided matching markets. M.S. thesis, Faculty of Economics, University of Zurich.

SABAN, D. AND SETHURAMAN, J. 2013a. House allocation with indifferences: a generalization and a unified view. In *Proceedings of the 14th ACM Conference on Electronic Commerce (ACM-EC)*, 803–820.

SABAN, D. AND SETHURAMAN, J. 2013b. A note on object allocation under lexicographic preferences. *Journal of Mathematical Economics*.

SCHULMAN, L. J. AND VAZIRANI, V. V. 2012. Allocation of divisible goods under lexicographic preferences. Tech. Rep. [arXiv:1206.4366](http://arXiv.org).

YILMAZ, O. 2010. The probabilistic serial mechanism with private endowments. *Games and Economic Behavior* 69, 2, 475–491.
A. PSEUDOCODE OF PS
We write the formal definition of PS from [Kojima 2009] as an algorithm. For any \(h \in H' \subset H \), let \(N(h, H') = \{ i \in N : a \succ_i b \text{ for every } b \in H' \} \) be the set of agents whose most preferred house in \(H' \) is \(h \). PS is defined as Algorithm 5.

```
Input: (N, H, \succ)
Output: p the random assignment returned by PS
1 s ← 0 (s is the stage of the algorithm)
2 \( H^0 ← H; t^0 ← 0; p_{th}^0 ← 0 \) for all \( i \in N \) and \( h \in H \).
3 while \( H^s \neq \emptyset \) do
4 \( t^{s+1}(h) = \sup \{ t \in [0, |H|] : \sum_{i \in N} p_{th}^s + |N(h, H^s)| (t - t^s) < 1 \} \)
5 \( t^{s+1} ← \min_{h \in H^s} t^s(h) \)
6 \( H^s = H^s \setminus \{ h \in H^{s-1} : t(h) = t^s \} \)
7 for all \( i \in N \) and \( h \in H \) do
8 if \( i \in N(h, H^s) \) then
9 \( p_{ih}^{s+1} ← p_{ih}^s + t^{s+1} - t(s) \)
10 else
11 \( p_{ih}^{s+1} ← p_{ih}^s \)
12 end if
13 end for
14 s ← s + 1
15 end while
16 return \( p = p^s \)
```

Algorithm 5: PS

B. EXPECTED UTILITY BEST RESPONSE FOR THE ALTERNATION POLICY
In this section we recall the best response algorithm proposed in [Kohler and Chandrasekaran 1971] as we will use it to derive the best response algorithm for the PS algorithm.

We denote the algorithm from [Kohler and Chandrasekaran 1971] \textsc{BestEUResponseAlgo}. In particular, we describe \textsc{BestEUResponseAlgo} for the special case \(k_i = 1 \) and \(n_i = 2 \) so that we follow the alternation policy. We also assume that the number of houses is even as this is sufficient for our purposes. These restrictions simplify the algorithm.

Following Kohler and Chandrasekaran [Kohler and Chandrasekaran 1971], we use a matrix \(V = V_{i,j}, i = 1, 2, j = 1, \ldots, m \), where \(V_{i,j} \) represents the utility value that the \(i \)-th player will gain if he selects the \(h_j \) object. In our case, we assume that \(V_{i,j} = u_{i,j}, i = 1, 2, j = 1, \ldots, m, \) such that \(u_{i,j} \in \mathbb{R} \) and \(u_{i,j} > u_{i,j'} \iff h_j \succ_i h_{j'} \). As \(\succ \) ranks houses \(h_j, j = 1, \ldots, m, \) lexicographically, we have \(V_{2,j} \geq V_{2,j+1}, j = 1, \ldots, m - 1 \). Algorithm 6 shows a pseudocode for the simplified version of \textsc{BestEUResponseAlgo}.

We refer to \(J^k \) as an ordered set formed at the \(k \)-th stage of \textsc{BestEUResponseAlgo}. The ordered set \(J^{m/2} \) is the optimal set of houses for agent 1 to choose, and agent 1 must choose them in the lexicographic order. We denote \(\text{BestEUResponse} = \text{BestEUResponseAlgo}(V) \). Note that the number of houses in \text{BestEUResponse} is \(m/2 \).

Example B.1. Consider two agents with preferences \(\succ_1 = h_5, h_6, h_1, h_3, h_4, h_2 \) and \(\succ_2 = h_1, h_2, h_3, h_4, h_5, h_6 \). First, we form a matrix \(V \). We select arbitrary numbers \(u_{i,j} \) that satisfy conditions above, e.g.
Input: \((V_{ij}, i = 1, 2, j = 1, \ldots, m) \)
Output: the set of houses allocated to agent 1 as a result of his best response.

1. for \(k \in [1, m/2] \) do
2. \(I^k \leftarrow \{h_{2k-1}, h_{2k}\} \)
3. end for
4. if \(\succ_1^{-1}(h_1) < \succ_2^{-1}(h_2) \) then
5. \(J^1 \leftarrow \{h_1\} \)
6. else
7. \(J^1 \leftarrow \{h_2\} \)
8. end if
9. for \(k \in [2, m/2] \) do
10. \(J^k \leftarrow \{h_{2k-1}, h_{2k}\} \)
11. end for
12. \(T^I \leftarrow J^1 \)
13. for \(k \in [2, m/2] \) do
14. \(T^k \leftarrow \{h_j | h_j \in T^{k-1} \cup J^k; V_{1j} \geq k \text{ maximal of } \{V_i | h_i \in T^{k-1} \cup J^k\}\} \)
15. end for
16. return \(T^{m/2} \).

Algorithm 6: \textsc{BestEuResponseAlgo} for sequential allocation for two agents

\[
V = \begin{pmatrix}
4 & 1 & 3 & 2 & 6 & 5 \\
6 & 5 & 4 & 3 & 2 & 1
\end{pmatrix}
\]

The following table shows an execution of the algorithm on this example over profiles \(\succ_1 \) and \(\succ_2 \).

\(J^1 \)	\(J^2 \)	\(J^3 \)
\{h_1, h_2\}	\{h_3, h_4\}	\{h_5, h_6\}
\{h_1\}	\{h_3, h_4\}	\{h_5, h_6\}
\{h_1\}	\{h_1, h_3\}	\{h_5, h_6\}

Table I: An execution of \textsc{BestEuResponseAlgo} on Example B.1

\textsc{BestEuResponse} = \(T^3 = \{h_1, h_5, h_6\} \).

Given \textsc{BestEuResponse} we define a profile that corresponds to the best response \(\succ_1^{\text{Best}} \). By \textsc{BestEuResponse}(i) we refer to the house at the \(i \)th position. First, we rank houses in \textsc{BestEuResponse} in the same order as they occur in \textsc{BestEuResponse}, so that \(\succ_1^{\text{Best}}(i) = \textsc{BestEuResponse}(1), \ldots, \textsc{BestEuResponse}(m/2) \). Then, after \textsc{BestEuResponse}(m/2), we rank houses that agent 2 gets in the same order as agent 2 obtains them. In Example B.1 \(\succ_1^{\text{Best}} = h_1, h_5, h_6, h_2, h_3, h_4 \).

C. A BEST RESPONSE WITHOUT THE CONSECUTIVITY PROPERTY (EXAMPLE)

Next we provide an example that shows that a best response returned by Algorithm 6 over \(\succ_1^{\text{Cloned}} \) and \(\succ_2^{\text{Cloned}} \) might not have the consecutivity property.

Example C.1. Consider two agents from Example 5.3. We recall that if we split all houses into halves then we obtain profiles: \(\succ_1^{\text{Cloned}} = h_1^1, h_1^2, h_2^1, h_2^2, h_3^1, h_3^2, h_4^1, h_4^2, h_5^1, h_5^2, h_6^1, h_6^2 \) and \(\succ_2^{\text{Cloned}} = h_1^1, h_1^2, h_2^1, h_2^2, h_3^1, h_3^2, h_4^1, h_4^2, h_5^1, h_5^2, h_6^1, h_6^2 \).
A matrix V is the following
\[
V = \begin{pmatrix}
4 & 4 & 1 & 1 & 3 & 3 & 2 & 2 & 6 & 6 & 5 & 5 \\
6 & 6 & 5 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 1 & 1
\end{pmatrix}
\]

Table II shows an execution of \besteuresponsealg over profiles $\succeq_1^{\text{cloned}}$ and $\succeq_2^{\text{cloned}}$. $\besteuresponse = \tau^6 = \{h_1^1, h_3^1, h_5^1, h_6^2, h_7^1, h_2^2, h_3^2, h_4^1, h_5^2\}$. We extend \besteuresponse with houses that are not allocated to agent 1 and obtain $\succeq_1^{\text{cloned-best}} = h_1^1, h_3^1, h_5^1, h_2^2, h_7^1, h_2^2, h_3^2, h_4^1, h_5^2$.

Table II: An execution of \besteuresponsealg over profiles $\succeq_1^{\text{cloned}}$ and $\succeq_2^{\text{cloned}}$.

Unfortunately, $\succeq_1^{\text{cloned-best}}$ does not have the consecutivity property and Lemma 5.4 cannot be applied. Note that agent 2 gets $\{h_7^1, h_2^1, h_3^2, h_4^1, h_5^2\}$.

In the next section, we show that we can always find another $\succeq_1^{\text{cloned-best}}$ that has the consecutivity property.

D. EXPECTED UTILITY BEST RESPONSE FOR THE PS MECHANISM (FULL PROOF).

In this section, we demonstrate that given $\succeq_1^{\text{cloned}}$ and $\succeq_2^{\text{cloned}}$ we can always find the expected utility best response to $\succeq_1^{\text{cloned}}$ that has the consecutivity property. To do so, we first run \besteuresponsealg to obtain \besteuresponse. Then we demonstrate that it can be modified and extended to a profile over H^{cloned} that has the consecutivity property.

Given \besteuresponse, we denote the ordered set of houses allocated to agent j \bestalloc_j, $j = 1, 2$. Note that $\bestalloc_1 = \besteuresponse$. Then $\bestalloc_1(i)$ and $\bestalloc_2(i)$ are houses that are allocated to agent 1 and agent 2, respectively, in the ith round of the alternation policy.

Example D.1. Consider Example C.1

$\bestalloc_1 = \{h_1^1, h_3^1, h_5^1, h_6^2, h_7^1\}$.

and

$\bestalloc_2 = \{h_2^2, h_4^1, h_4^1, h_5^2\}$.

We say that \bestalloc has the consecutivity property iff for all $h_1^1, h_2^2 \in \bestalloc$, h_1^1 and h_2^2 are ordered consecutively. We say that a half-house of h_i is allocated to agent 1 if and only if agent 1 gets h_i^1 and agent 2 gets h_i^2. We say that a full-house of h_i is allocated to agent 1 if and only if agent 1 gets h_i^1 and h_i^2.

In the proof we often consider an ordered set of houses $\{h_i^1, \ldots, h_i^n\}$ that obeys the following property: $h_i^1 \succ_2 \ldots \succ_2 h_i^n$. We will say these houses are lexicographically ordered as agent 2 orders his houses w.r.t. the lexicographic order by our assumption in Section 5.1.

Technical Report: January 2014.
First, we give an overview of the construction. Our construction is motivated by an observation that if BEST-ALLOC\textsubscript{1} and BEST-ALLOC\textsubscript{2} have the consecutivity property and half houses are obtained by agent 1 and 2 at the same round then it is straightforward to extend BEST-ALLOC\textsubscript{1} to \(\succ_1^{\text{CLONED-BEST}} \) over \(H^{\text{CLONED}} \) that has the consecutivity property. Consider the following example.

Example D.2. Suppose BEST-ALLOC\textsubscript{1} = \(\{ h_1^1, h_2^2, h_3^1, h_4^1, h_5^2, h_6^1 \} \) and BEST-ALLOC\textsubscript{2} = \(\{ h_1^1, h_2^2, h_3^1, h_4^1, h_5^2, h_6^1 \} \). Note that halfhouses are allocated in the same rounds in BEST-ALLOC\textsubscript{1} and BEST-ALLOC\textsubscript{2}. The 1st agent expected utility best response profile is \(\succ_1^{\text{CLONED-BEST}} = h_1^1, h_2^2, h_3^1, h_4^1, h_5^2, h_6^1 \). Note that \(\succ_1^{\text{CLONED-BEST}} \) does not have consecutivity property.

Next we demonstrate how to change \(\succ_1^{\text{CLONED-BEST}} \) so that it has the consecutivity property and leads to the same allocation. For each half house \(h_i^1 \) allocated to agent 1 we rank \(h_i^2 \) right after \(h_i^1 \). We keep houses that are not allocated to agent 1 in the end of the profile. In this example, we rank \(h_2^2 \) and \(h_6^2 \) after \(h_1^1 \) and \(h_5^2 \), respectively. We obtain the following profile: \(\succ_1^{\text{CLONED-BEST}} = h_1^1, h_2^2, h_3^1, h_4^1, h_5^2, h_6^1 \). Note that inserting \(h_2^2 \) after \(h_1^1 \) does not change the allocation as we know that \(h_2^2 \) is allocated to agent 2 at the same round as \(h_1^1 \) is allocated to agent 1. Hence, \(h_2^2 \) will never be the top element for agent 1 at any round and \(\succ_1^{\text{CLONED-BEST}} \) gives the same allocation as BEST-ALLOC\textsubscript{1}.

Based on this observation, the goal of the construction is to transform BEST-ALLOC\textsubscript{1} is such a way that half houses of \(h_i \) that are allocated to different agents are allocated to them in the same round while preserving allocations of both agents. To do so, we prove that an allocation of half houses and full houses in an execution of BEST\textsc{EU}RESPONSEALGO follows simple patterns. The first property concerns full houses: halves of full houses allocated to an agent are always allocated in consecutive rounds. The second key property concerns half houses. Let \(H_{(i)} = \{ h_i^1, \ldots, h_i^6 \} \) be the lexicographically ordered set of half houses allocated to agent \(j, j = 1, 2 \). Then allocation of half houses obeys the following order: agent 1 gets \(h_i^1 \) at round \(k_i \), then, possibly in later round \(k_i' \), agent 2 gets \(h_i^2 \). Next, agent 1 gets \(h_i^1 \) at round \(k_i \), then, possibly in later round \(k_i' \), agent 2 gets \(h_i^2 \), and so on. In other words, half houses are allocated to agents in lexicographic order and each half house is allocated to both agents before the next half houses is allocated. Based on these properties, we will prove that we can delay an allocation of \(h_i^1 \) to agent 1 till round \(k_i' \) and preserve the allocations.

We need to prove several useful properties of BEST\textsc{EU}RESPONSE.

The next proposition states that if only half of \(h_i \) is allocated to agent 1(2) then this half is \(h_i^1(h_i^2) \). We use this observation to simplify notations.

Proposition D.3. If \(h_i^1 \) is allocated to agent 1 and \(h_i^{j/2+1} \) is allocated to agent 2 then \(h_i^1 \) is allocated to agent 1 and \(h_i^2 \) is allocated to agent 2.

Proof. Follows from BEST\textsc{EU}RESPONSEALGO and \(\succ_1^{\text{CLONED}} \) as between \(h_i^1 \) and \(h_i^2 \) agent 1 always prefers \(h_i^1 \). \(\square \)

The next lemma shows that for all full houses allocated to \(i \), both halves are allocated in consecutive rounds.

Proposition D.4. If a full-house of \(h_i \) is allocated to 1(2) then \(h_i^1 \) and \(h_i^2 \) are allocated to 1(2) in two consecutive rounds.

Proof. For agent 1 it follows from construction of BEST-ALLOC\textsubscript{1} in BEST\textsc{EU}RESPONSEALGO. For agent 2 it follows from the definition \(\succ_2^{\text{CLONED}} \), as
h^1_1 and h^2_1 are ordered consecutively in \succ_2^{CLONED}, and the fact that we use the alternation policy to obtain BEST-ALLOC$_2$. □

We denote $H_{G_j} = \{h^1_{i_1}, \ldots, h^1_{i_p}\}$ the lexicographically ordered set of half-houses allocated to agent j, $j = 1, 2$. We show that utilities of these houses decrease monotonically given this order.

PROPOSITION D.5. $V_{1h^1_{i_1}} \succ \ldots \succ V_{1h^1_{i_p}}$ for $h^1_{i_1}, \ldots, h^1_{i_p} \in H_{G_1}$.

PROOF. By contradiction, suppose that h^1_i is a half-house that violates the statement: $V_{1h^1_{i'}} < V_{1h^1_i}$. The equality is not possible as we have strict preferences over houses. We denote $t = t' - 1$ to simplify notations. From BESTEURESPONSEALGO, it follows that h^1_i was added to J_t from $J_t = \{h^1_1, h^1_2\}$ at the stage t and h^1_i was added to $J_{t'}$ from $J_{t'} = \{h^1_1, h^1_2\}$ at the stage t'. As $h^1_i \succ h^1_{i'}$, $t < t'$. In other words, h^1_i was added to the BESTEURESPONSE after h^1_i. As $V_{1h^1_{i'}} < V_{1h^1_i}$, h^2_i is also added to $J_{t'}$ at the stage t'. As h^1_i is half-house allocated to agent 1, h^2_i was removed from $J_{t''}$ at some later stage t''. However, it cannot be removed before h^1_1 which has a smaller utility. This leads to a contradiction as $h^1_1 \in \text{BEST-ALLOC}_1$ and $h^2_i \notin \text{BEST-ALLOC}_1$. □

The next lemma shows that BEST-ALLOC$_1$ is point-wise at most as good as BEST-ALLOC$_2$ with respect agent 2 preferences.

LEMMA D.6. BEST-ALLOC$_2(k) \succ_2 \text{BEST-ALLOC}_2(k)$ or BEST-ALLOC$_1(k)$ and BEST-ALLOC$_2(k)$ are halves of the same house $k = 1, \ldots, 2m$.

PROOF. By induction on the number of rounds. The base case holds trivially as BEST-ALLOC$_2(1)$ is in $\{h^1_1, h^2_1\}$ and $h^1_1 \succ h^2_1$ BEST-ALLOC$_2(1)$ or BEST-ALLOC$_1(1) = h^1_1$ and BEST-ALLOC$_2(1) = h^2_1$.

Assume that the statement holds for $i - 1$ rounds. Consider the ith round.

Suppose, by contradiction, $h := \text{BEST-ALLOC}_1(i) \succ_2 \text{BEST-ALLOC}_2(i) =: h'$ and h and h' are not halves of the same house. As h and h' are allocated houses at the ith round then these houses are top preferences of agent 1 and agent 2, respectively, after $i - 1$th round. As $h \succ h'$, there exists a round $i' < i$ such that h is the top preference of agent 2 at this round. Moreover, h is available to agent 2 at this round as agent 1 only requests it at the ith round. Hence, h will be allocated to agent 2 at the i'th round. This contradicts the assumption that h is allocated to agent 1. □

The next result is the key result the section on computing the best EU response. We consider half-houses $G_{H_1} = \{h^1_{i_1}, \ldots, h^1_{i_p}\}$ allocated to agent 1 and $G_{H_2} = \{h^2_{i_1}, \ldots, h^2_{i_p}\}$ allocated to agent 2. G_{H_1} and G_{H_2} are lexicographically ordered. We show that, first, $h^1_{i_1}$ and $h^2_{i_1}$ are allocated to agent 1 and agent 2, respectively, after that, $h^1_{i_2}$ and $h^2_{i_2}$ are allocated and so on.

LEMMA D.7. Suppose houses in G_{H_1} are allocated in rounds $h^1_{i_1}, \ldots, h^1_{i_p}$ and houses in G_{H_2} are allocated in rounds $h^2_{i_1}, \ldots, h^2_{i_p}$. Then $k^1_{i_1} < k^2_{i_1} < k^1_{i_2} < k^2_{i_2} < \ldots < k^1_{i_p} < k^2_{i_p}$.

PROOF. By contradiction, suppose that h^1_1 is the first half-house allocated to agent 1 that violates the statement so that $k^1_{i_1} < k^2_{i_1} < \ldots < k^2_{i_1}$. In other words, first, agent 1 gets h^1_1 at the $k^1_{i_1}$th round and h^2_1, which is a half of another house $h_{i'}$, at the $k^2_{i_1}$th round, and later agent 2 gets h^2_1 at the $k^2_{i_1}$th round.

CLAIM 1. The following inequality holds:

$h^1_1 \succ_2 h^2_{i'}$.

Technical Report: January 2014.
Proof. This follows from the fact that houses in \(\text{BEST-ALLOC}_1 = \text{BEST-EU RESPONSE} \) are lexicographically ordered and the fact that \(h^1_t \) is allocated before \(h^1_t \) to agent 1. \(\square \)

Claim 2. The following inequality holds:
\[k^2_1 < k^2_{t'}. \]

Proof. This follows from the structure \(\succ_2^{\text{CLONED}} \) and \(h^1_t \succ_2 h^1_{t'} \) (Claim 1). \(\square \)

From Claim 2 and our assumption hypothesis we have \(k^1_1 < k^1_t < \ldots < k^2_2 < k^2_{t'} \).

Suppose, \(h^p_1 \) and \(h^q_1 \) are allocated to agent 1 at rounds \(k^2_1 \) and \(k^2_{t'} \), respectively.

Claim 3. The following inequality holds:
\[h^1_1 \succ_2 h^1_{t'} \succ_2 h^q_1 \succ_2 h^t_{t'}. \]

Proof. Follows from Claim 2 \(k^1_1 < k^1_t < \ldots < k^2_2 < k^2_{t'}, \) and the fact that houses in \(\text{BEST-ALLOC}_1 = \text{BEST-EU RESPONSE} \) are lexicographically ordered. \(\square \)

We schematically show an allocation in the relevant rounds in the following table. The top part of the table shows allocation at rounds \(k^1_1, k^1_t, k^2_2 \) and \(k^2_{t'} \). We use \(\bullet \) to indicate that a house is allocated at a certain round but its label is not important for the proof:

Rounds	\(\ldots, k^1_1, k^1_t, k^2_2, k^2_2 + 1, \ldots, k^2_2 + 1, k^2_1, \ldots \)
\text{BEST-ALLOC}_1 \| \{ \ldots, h^1_1, \ldots, h^1_t, \bullet, \ldots, \bullet, h^2_1, \ldots \}	
\text{BEST-ALLOC}_2 \| \{ \ldots, \bullet, \ldots, k^2_2, h^1_1, \ldots, h^1_t, \bullet, \ldots \}	

New allocation

| \text{BEST-ALLOC}_1 \| \{ h^2_1 \} \{ \ldots, h^1_1, \ldots, h^1_t, \bullet, \ldots, \bullet, h^2_1 \} |
| \text{BEST-ALLOC}_2 \| \{ h^2_1 \} \{ \ldots, \bullet, \ldots, h^1_1, \bullet, \ldots, h^1_t, \bullet \} |

Table III: A schematic representation of the proof of Claim 5

Claim 4. The following inequality holds:
\[V_{h^1_t} \geq V_{h^1_{t'}}. \]

Proof. Follows from Claim 1 and Proposition D.5. \(\square \)

Next we show that agent 1 can improve his outcome by deviating from \(\text{BEST-ALLOC}_1 \) and obtain a contradiction to the assumption that \(\text{BEST-ALLOC}_1 \) is a best response.

Claim 5. If agent 1 requests \(h^2_t \) instead of \(h^1_t \) at the \(k^1_1 \) round then agent 1 improves its outcome.

Proof. First, we note that \(h^2_t \) is available for agent 1 at the \(k^1_1 \) round. Indeed, by our assumption \(k^1_1 < k^2_2 \), hence, the house \(h^2_t \) is available to agent 1 at round \(k^1_1 \). Second, we show that even if agent 1 takes \(h^2_t \) instead of \(h^1_t \) at the \(k^1_1 \) th round, agent 1 can get all houses \(\text{BEST-ALLOC}_1 \setminus \{ h^1_t \} \). This shows that agent 1 improves his outcome.

From Claim 3 \(h^1_t \succ_2 h^t_{t'} \). From the structure of \(\succ_2^{\text{CLONED}} \) we know that \(\ldots \succ_2 h^1_{t'} \succ_2 h^2_{t'} \succ_2 \ldots \). Hence, due to Lemma D.6 during rounds \(k^2_2, \ldots, k^2_{t'} - 1 \), the top houses of agent 2 are ranked higher than \(h^1_t \) in his profile. Also, the house \(h^2_t \) is not available to agent 2 at the \(k^2_1 \) round. Hence, agent 2 is allocated the same houses in rounds \(k^2_1, \ldots, k^2_{t'} - 2 \) as he was allocated before the change during rounds \(k^2_1 + 1, \ldots, k^2_{t'} - 1 \) (see the second part of the table above).
Consider the round $k_t^2 - 1$. As agent 1 was not allocated h_t^1 at the k_t^1-th round, h_t^1 is available for agent 2 at the $k_t^2 - 1$-th round. Hence, agent 2 is allocated h_t^1 at the $k_t^2 - 1$-th round and h_t^1 at the k_t^2-th round. The remaining rounds are identical to allocation using BEST-ALLOC. The new allocation of agent 1 is $\text{BEST-ALLOC}_1 \cup \{h_1^2\} \setminus \{h_1^1\}$ which is strictly better than BEST-ALLOC$_1$.

Claim 5 shows that agent 1 can improve his outcome and BESTEURESPONSE is not a best response. This leads to a contradiction.

We denote $\text{BEST-ALLOC}^{-1}_1(h_t^2)$ the round when h_t^2 is allocated.

Definition D.8. A pair BEST-ALLOC$_1$ and BEST-ALLOC$_2$ has the matching property if and only if for each pair of half-houses h_1^1 and h_2^1 such that $h_1^1 \in \text{BEST-ALLOC}_1$ and $h_2^1 \in \text{BEST-ALLOC}_2$, we have $\text{BEST-ALLOC}^{-1}_1(h_1^1) = \text{BEST-ALLOC}^{-1}_2(h_2^1)$.

Example D.9. Consider $\text{BEST-ALLOC}_1 = \{h_1^1, h_2^1, h_3^1, h_4^1, h_5^2, h_6^2\}$ and $\text{BEST-ALLOC}_2 = \{h_1^2, h_2^2, h_3^2, h_4^2, h_5^2, h_6^2\}$. These profiles have the matching property as $\text{BEST-ALLOC}^{-1}_1(h_1^1) = \text{BEST-ALLOC}^{-1}_2(h_1^2)$ and $\text{BEST-ALLOC}^{-1}_1(h_3^1) = \text{BEST-ALLOC}^{-1}_2(h_3^2)$.

Consider $\text{BEST-ALLOC}_1 = \{h_1^1, h_3^1, h_5^2, h_2^2, h_4^1, h_6^2\}$ and $\text{BEST-ALLOC}_2 = \{h_1^2, h_2^2, h_3^2, h_4^1, h_5^1, h_6^2\}$. These profiles do not have the matching property as $\text{BEST-ALLOC}^{-1}_1(h_3^1) \neq \text{BEST-ALLOC}^{-1}_2(h_3^2)$.

Lemma D.10. For any BEST-ALLOC$_1$ there exists BEST-ALLOC'$_1$ that has the consecutivity property and such the pair BEST-ALLOC'$_1$ and BEST-ALLOC$_2$ has the matching property. Moreover, the allocation obtained by agent 1 using BEST-ALLOC'$_1$ is the same as the allocation obtained using BEST-ALLOC$_1$.

Proof. We set BEST-ALLOC'$_1$ = BEST-ALLOC$_1$. Note that BEST-ALLOC'$_1$ has the consecutivity property as BEST-ALLOC$_1$ does as by Proposition 1.4 if a full-house of h_i is allocated to 1(2) then h_1^1 and h_2^1 are allocated to 1(2) in two consecutive rounds.

Suppose, the pair BEST-ALLOC'$_1$ and BEST-ALLOC$_2$ satisfies the statement up to round k_t^1. As BEST-ALLOC'$_1$ has the consecutivity property, only the matching property can fail: h_1^1 is allocated to agent 1 at the k_t^1 round and h_2^1 is allocated to agent 2 at the k_t^2 round and $k_t^1 < k_t^2$.

We show that we can move h_1^1 to round k_t^2 and move all houses allocated during round $k_t^1 + 1, \ldots, k_t^2$ one round forward in BEST-ALLOC'$_1$. These shifts preserve the same allocation for agent 1 and agent 2 and the consecutivity property.

By Lemma D.7 we know that none of the half-houses are allocated to agent 1 during rounds $k_t^1 + 1, \ldots, k_t^2$. Hence, only full houses are allocated between these rounds. This means that the number of rounds between $k_t^1 + 1$ and k_t^2 is even or 0.

We also observe that none of the half houses are allocated to agent 2 between rounds $k_t^1 + 1$ and k_t^2 as h_t^1 is the first half-house allocated to agent 2 after round k_t^1. Moreover, agent 2 is not allocated houses greater than h_t^2 during rounds $k_t^1 + 1, \ldots, k_t^2$.

We move the house h_t^1 to the position k_t^2 and shift all houses in positions $k_t^1 + 1$ and k_t^2 one round forward in BEST-ALLOC'$_1$. Note that we preserve consecutivity property as all halves are moved together.

After the move, agent 1 still gets the same houses in rounds k_t^1, \ldots, k_t^2 as shifted houses are allocated even in earlier rounds compared to BEST-ALLOC$_1$ and agent 1 is allocated h_1^1 in the same round as agent 2. Hence, allocations up to the round k_t^2 are identical for BEST-ALLOC$_1$ and BEST-ALLOC'$_1$ and both consecutivity and matching properties hold.
We repeat the argument for the next half-house that violates the statement. □

Example D.11. Best-Alloc\(_1\) = \(\{h^1_1, h^2_1, h^3_1, h^4_1, h^5_1\}\) and Best-Alloc\(_2\) = \(\{h^1_2, h^2_2, h^3_2, h^4_2, h^5_2\}\). We do not need to move \(h^1_1\) as it is matched with \(h^2_1\). We move \(h^1_3\) to the fourth round so that it is allocated at the same round as \(h^2_3\).

Rounds	1	2	3	4	5	6
An allocation obtained from BESTRESPONSEALLO	Best-Alloc\(_1\) = \{h^1_1, h^2_1, h^3_1, h^4_1, h^5_1\}\)	Best-Alloc\(_2\) = \{h^1_2, h^2_2, h^3_2, h^4_2, h^5_2\}\)				
New allocation with the matching property	Best-Alloc\(_1\) = \{h^1_1, h^2_1, h^3_1, h^4_1, h^5_1\}\)	Best-Alloc\(_2\) = \{h^1_2, h^2_2, h^3_2, h^4_2, h^5_2\}\)				

Table IV: A schematic representation of Example D.11

A proof of Lemma D.10 gives a correctness argument for lines 5–8 in Algorithm 2. In these lines we put half-houses allocated to agent 1 later in the ordering to ensure that the matching property holds, i.e. agents obtain half-houses in the same rounds.

Lemma D.12. Consider Best-Alloc\(_1\) and Best-Alloc\(_2\) that satisfy consecutivity and matching properties. Then there exists a preference \(\succeq^{CLONED-BEST}_1\) over \(H^{CLONED}\) for agent 1 that has the consecutivity property and gives the same allocation as Best-Alloc\(_1\).

Proof. Given Best-Alloc\(_1\) that satisfies properties in the statement of the lemma, we build a preference \(\succeq^{CLONED-BEST}_1\) in the following way. We keep houses as they are ordered in Best-Alloc\(_1\). For each half-house \(h^1_1\) allocated to agent 1 we rank \(h^2_1\) right after \(h^1_1\). We put houses that are not allocated to agent 1 in an arbitrary order, keeping halves together, at the end of the profile. Note that inserting \(h^2_1\) after \(h^1_1\) does not change the allocation as we know that \(h^2_1\) is allocated to agent 2 in the same round as \(h^1_1\) is allocated to agent 1. Hence, \(h^2_1\) will never be the top element for agent 1 at any round. Hence, \(\succeq^{CLONED-BEST}_1\) gives the same allocation as Best-Alloc\(_1\). □

A proof of Lemma D.12 provides a correctness argument for lines 11–19 in Algorithm 2. In these lines we move half-houses obtained by agent 2 right after corresponding half-houses obtained by agent 2.

By Lemma 5.4, given \(\succeq^{CLONED-BEST}_1\) which is the best response for \(\succeq^{CLONED}_2\), that satisfies the consecutivity property, \(\succeq^{BEST}_1\) obtained by the order-preserving join from \(\succeq^{CLONED-BEST}_1\) is the best response for \(\succeq^{BEST}_2\) using PS.

Theorem D.13. For the case of two agents and the PS rule, a DL best response and an EU best response are equivalent.

Proof. For two agents, PS assigns probabilities from the set \{0, 1/2, 1\}. Hence DL preferences can be represented by the EU preferences where the utility are exponential: the utility of a more preferred house is twice the utility of the next preferred house. Hence a response if a DL best response if it is an EU best response for exponential utilities. On the other we have shown that for two agents and the PS rule, an EU best response is the same for any utilities compatible with the preferences. Hence for two agents, an EU best response for any utilities is the same as the EU best response for exponential utilities which in turn is the same as a DL best response. □

E. PROOF OF THEOREM ??

Proof. Using a computer program we have found the following 15 step sequence which leads to a cycling of the preference profile. We use \(U\) to denote the matrix of
utilities of the agents over the items such that $U_{1[1]}$ is the utility of agent 1 for house h_1. We use P to represent the reported profile of each agent, $P[i][j]$ denotes the jth most preferred house of agent i. Note that P starts as the truthful reporting in our example. We use $PS[i][j]$ to represent the fraction of house j that is eaten by agent i. We use $EU[i]$ to be the expected utility of agent i.

The initial preferences and utilities of the agents are

$$P_0 = \begin{pmatrix}
 h_2 & h_3 & h_1 & h_4 & h_6 & h_5 \\
 h_6 & h_5 & h_2 & h_1 & h_4 & h_3 \\
 h_3 & h_6 & h_2 & h_1 & h_5 & h_4
\end{pmatrix}$$

$$U_0 = \begin{pmatrix}
 3 & 5 & 4 & 2 & 0 & 1 \\
 2 & 3 & 0 & 1 & 4 & 5 \\
 2 & 3 & 5 & 0 & 1 & 4
\end{pmatrix}.$$

This yields the following allocation and utilities at the start

$$P_0 = \begin{pmatrix}
 h_2 & h_3 & h_1 & h_4 & h_6 & h_5 \\
 h_6 & h_5 & h_2 & h_1 & h_4 & h_3 \\
 h_3 & h_6 & h_2 & h_1 & h_5 & h_4
\end{pmatrix}$$

$$PS_0 = \begin{pmatrix}
 1/2 & 1 & 0 & 1/2 & 0 & 0 \\
 0 & 0 & 0 & 1/4 & 3/4 & 1 \\
 1/2 & 0 & 1 & 1/4 & 1/4 & 0
\end{pmatrix}$$

$$EU_0 = \begin{pmatrix}
 7.5 \\
 6.25
\end{pmatrix}.$$

In Step 1, agent 3 changes his report and improves his utility.

$$P_1 = \begin{pmatrix}
 h_2 & h_3 & h_1 & h_4 & h_6 & h_5 \\
 h_6 & h_5 & h_2 & h_1 & h_4 & h_3 \\
 h_3 & h_6 & h_2 & h_1 & h_5 & h_4
\end{pmatrix}$$

$$PS_1 = \begin{pmatrix}
 5/12 & 1 & 1/4 & 1/3 & 0 & 0 \\
 1/6 & 0 & 0 & 1/3 & 1 & 1/2 \\
 5/12 & 0 & 3/4 & 1/3 & 0 & 1/2
\end{pmatrix}$$

$$EU_1 = \begin{pmatrix}
 7.9167 \\
 7.1667
\end{pmatrix}.$$

In Step 2, agent 1 changes his report in response.

$$P_2 = \begin{pmatrix}
 h_3 & h_2 & h_1 & h_4 & h_6 & h_5 \\
 h_6 & h_5 & h_2 & h_1 & h_4 & h_3 \\
 h_3 & h_6 & h_2 & h_1 & h_5 & h_4
\end{pmatrix}$$

$$PS_2 = \begin{pmatrix}
 1/24 & 7/8 & 3/4 & 1/3 & 0 & 0 \\
 1/24 & 1/8 & 0 & 1/3 & 1 & 1/2 \\
 11/12 & 0 & 1/4 & 1/3 & 0 & 1/2
\end{pmatrix}$$

$$EU_2 = \begin{pmatrix}
 8.1667 \\
 5.0833
\end{pmatrix}.$$

In Step 3, agent 3 again changes his report.

$$P_3 = \begin{pmatrix}
 h_3 & h_2 & h_1 & h_4 & h_5 & h_6 \\
 h_6 & h_5 & h_2 & h_1 & h_4 & h_3 \\
 h_3 & h_6 & h_2 & h_1 & h_5 & h_4
\end{pmatrix}$$

$$PS_3 = \begin{pmatrix}
 1/2 & 5/8 & 1/2 & 3/8 & 0 & 0 \\
 0 & 0 & 0 & 5/16 & 15/16 & 3/4 \\
 1/2 & 3/8 & 1/2 & 5/16 & 1/16 & 1/4
\end{pmatrix}$$

$$EU_3 = \begin{pmatrix}
 7.3750 \\
 7.8125
\end{pmatrix}.$$

In Step 4, agent 1 reacts again.

$$P_4 = \begin{pmatrix}
 h_2 & h_1 & h_3 & h_4 & h_5 & h_6 \\
 h_6 & h_5 & h_2 & h_1 & h_4 & h_3 \\
 h_3 & h_6 & h_2 & h_1 & h_5 & h_4
\end{pmatrix}$$

$$PS_4 = \begin{pmatrix}
 1/2 & 1 & 0 & 1/2 & 0 & 0 \\
 0 & 0 & 0 & 1/4 & 3/4 & 1 \\
 1/2 & 0 & 1 & 1/4 & 1/4 & 0
\end{pmatrix}$$

$$EU_4 = \begin{pmatrix}
 7.500 \\
 8.250
\end{pmatrix}.$$

In Step 5, agent 3 reacts again.

$$P_5 = \begin{pmatrix}
 h_2 & h_1 & h_3 & h_4 & h_5 & h_6 \\
 h_6 & h_5 & h_2 & h_1 & h_4 & h_3 \\
 h_6 & h_2 & h_3 & h_1 & h_4 & h_5
\end{pmatrix}$$

$$PS_5 = \begin{pmatrix}
 7/8 & 3/4 & 1/16 & 5/16 & 0 & 0 \\
 1/8 & 0 & 0 & 3/8 & 1 & 1/2 \\
 0 & 1/4 & 15/16 & 5/16 & 0 & 1/2
\end{pmatrix}$$

$$EU_5 = \begin{pmatrix}
 7.250 \\
 7.125
\end{pmatrix}.$$

In Step 6, agent 2 reacts.

$$P_6 = \begin{pmatrix}
 h_2 & h_1 & h_3 & h_4 & h_5 & h_6 \\
 h_6 & h_2 & h_1 & h_5 & h_3 & h_4 \\
 h_6 & h_2 & h_3 & h_1 & h_4 & h_5
\end{pmatrix}$$

$$PS_6 = \begin{pmatrix}
 1/2 & 2/3 & 1/4 & 1/2 & 1/12 & 0 \\
 1/2 & 1/6 & 0 & 0 & 5/6 & 1/2 \\
 0 & 1/6 & 3/4 & 1/2 & 1/12 & 1/2
\end{pmatrix}$$

$$EU_6 = \begin{pmatrix}
 6.833 \\
 7.333
\end{pmatrix}.$$

In Step 7, agent 3 reacts.

Technical Report: January 2014.
In Step 15, agent 2 reacts once more to agent 3. This last step is the same profile as step 11, which means we have cycled. □