The Ca\(^{2+}\)/Calmodulin-dependent Protein Kinase Kinases Are AMP-activated Protein Kinase Kinases*\\n
The AMP-activated protein kinase (AMPK) is an important regulator of cellular metabolism in response to metabolic stress and to other regulatory signals. AMPK activity is absolutely dependent upon phosphorylation of AMPK\(\alpha\)/Thr-172 in its activation loop by one or more AMPK kinases (AMPKKs). The tumor suppressor kinase, LKB1, is a major AMPKK present in a variety of tissues and cells, but several lines of evidence point to the existence of other AMPKKs. We have employed three cell lines deficient in LKB1 to study AMPK regulation and phosphorylation, HeLa, A549, and murine embryo fibroblasts derived from LKB1\(^{-}\) mice. In HeLa and A549 cells, mannitol, 2-deoxyglucose, and ionomycin, but not 5-aminoimidazole-4-carboxamide-1-\(\beta\)-d-ribofuranoside (AICAR), treatment activates AMPK by \(\alpha\)/Thr-172 phosphorylation. These responses, as well as the downstream effects of AMPK on the phosphorylation of acetyl-CoA carboxylase, are largely inhibited by the Ca\(^{2+}\)/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, STO-609. AMPKK activity in HeLa cell lysates measured in vitro is totally inhibited by STO-609 with an IC\textsubscript{50} comparable with that of the known CaMKK isoforms, CaMKK\(\alpha\) and CaMKK\(\beta\). Furthermore, 2-deoxyglucose- and ionomycin-stimulated AMPK activity, \(\alpha\)/Thr-172 phosphorylation, and acetyl-CoA carboxylase phosphorylation are substantially reduced in HeLa cells transfected with small interfering RNAs specific for CaMKK\(\alpha\) and CaMKK\(\beta\). Lastly, the activation of AMPK in response to ionomycin and 2-deoxyglucose is not impaired in LKB1\(^{-}\) murine embryo fibroblasts. These data indicate that the CaMKKs function in intact cells as AMPKKs, predicting wider roles for these kinases in regulating AMPK activity in vivo.

The AMP-activated protein kinase (AMPK) regulates many aspects of cellular metabolism, especially in response to metabolic stress (1). AMPK is a serine/threonine protein kinase and a member of the Snf1/AMPK protein kinase family (1). It is an \(\alpha\)/\(\beta\)/\(\gamma\) heterotrimeric protein, consisting of an \(\alpha\) catalytic subunit, a \(\beta\) subunit important both for enzyme activity and for targeting, and a \(\gamma\) regulatory subunit, which binds the allosteric activator, AMP. The activity of AMPK absolutely requires phosphorylation of the \(\alpha\) subunit on Thr-172 in its activation loop by one or more upstream kinases (AMPKK) (1).

The major breakthrough in identifying AMPK upstream kinases came from the study of the regulation of the AMPK ortholog, Snf1, in Saccharomyces cerevisiae, in which Pak1 was shown to act as a Snf1p kinase (2). Subsequently, it was shown that three closely related kinases, Pak1p, Tos3p, and Elm1p, needed to be deleted to generate the Snf1\(^{-}\) phenotype (3, 4). Sequence comparison revealed that the human LKB1 tumor suppressor kinase was the most closely related mammalian kinase. LKB1 was subsequently identified by several groups as being an important upstream kinase active on AMPK (5–7).

Several lines of evidence point to the presence of non-LKB1 AMPKKs. Multiple AMPKK activities are separable during chromatography of extracts from rodent heart (8, 9). Murine fibroblasts obtained from LKB1\(^{-}\) embryonic embryos by two different groups still demonstrate residual AMPK\(\alpha\)272 phosphorylation and AMPK activity, albeit not as responsive to the usual activators of AMPK, such as the nucleoside AICAR (5, 7). Partially purified Ca\(^{2+}\)/CaM-dependent protein kinase kinase (CaMKK) from pig brain has been shown to be active in vitro on AMPK, but it was concluded that the kinetics of phosphorylation by CaMKK were weaker than those for a partially purified AMPKK and that CaMKKs were unlikely to function as AMPKKs in intact cells and tissues (10). Although this view has been widely accepted (28), Nath et al. (2) suggested that CaMKK\(\beta\) may be an AMPKK based on homology with yeast PAK1. Recently, CaMKK\(\beta\) has been shown directly to function as a Snf1-activating kinase in yeast cells lacking the three Snf-activating kinases, Pak1, Tos3, and Elm1 (29).

The protein products of the CaMKK gene family, CaMKK\(\alpha\) and CaMKK\(\beta\), show significant homology to LKB1 and to the three aforementioned yeast kinases (3–5). In the present study, we have investigated the possibility that one or both CaMKKs might serve as AMPKKs to regulate AMPK in cell lines lacking expression of LKB1.
EXPERIMENTAL PROCEDURES

Cell Culture and Incubations—Panc-1, AsPC-1, and COS cells were purchased from ATCC. Mouse embryo fibroblasts (MEFs) from LKB1+/− and LKB1−/− mice and HeLa cells were kindly provided by Reuben Shaw (Harvard University). These cell lines were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin. A549 cells (ATCC) were grown in Ham’s F-12 medium supplemented with 10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin. All cell lines were maintained at 37 °C in a humidified atmosphere containing 5% CO₂. Cells were incubated in 6-well plates after various additions (see the figure legends) prior to extraction for immunoblotting and analysis of AMPK activity.

Preparation of Cell Extracts—Cell extracts were prepared by three different methods. For analysis of AMPK activity, digitonin lysis followed by ammonium sulfate precipitation was employed, as in Ref. 11. For immunoblotting of total cellular protein, cells were lysed either in a Triton X-100-containing buffer, as in Ref. 12, or in an SDS-containing buffer. For the latter, cells were rinsed with phosphate-buffered saline (2×) and lysed directly on the plate with boiling SDS buffer (1% SDS, 100 mM NaCl, 10 mM Tris-HCl, pH 7.5). These extracts were then sheared with a 25-gauge needle and boiled for 5 min. Protein concentration in all extracts was determined with a BCA assay (Pierce), according to the manufacturer’s protocol.

FIG. 1. Human cell lines lacking LKB1. SDS lysates were prepared from wild-type (+/+) or LKB1 null (−/−) MEFs and from four human cancer cell lines Panc-1, A549, AsPC-1, and HeLa, as described under “Experimental Procedures.” Equal amounts of protein from each (20 μg/lane) were subjected to SDS-PAGE followed by immunoblot analysis using an antibody directed against LKB1.

FIG. 2. AMPK activity and phosphorylation in HeLa cells. HeLa cells were incubated in serum-free Dulbecco’s modified Eagle’s medium with either STO-609 (1 μg/ml) or an equivalent volume of its diluent, Me₂SO (1:2000), for 6 h followed by treatment with one of the following reagents: AICAR (2 mM, 2 h), mannitol (0.6 M, 15 min), 2-DG (50 mM, 15 min), and ionomycin (Iono) (1 μM, 5 min). In these and the other cell experiments in this study, cells were plated in 6-well plates. Cells extracts were then prepared by the digitonin lysis method, as described under “Experimental Procedures.” Each extract (n) represents a pooling of three wells incubated under identical conditions. A, extracts (n = 3 at each condition) were assayed for AMPK activity, as described under “Experimental Procedures.” Open bars represent treatment with Me₂SO, and shaded bars represent treatment with STO-609. Data are expressed as mean ± S.D. as pmol of 32P incorporation into the SAMS peptide per minute per mg of protein. As determined by ANOVA analysis, the stimulations by mannitol, 2-DG, and ionomycin and the inhibition of these effects by STO-609 are significant at p < 0.0001; there is no statistically significant difference between control (CON) and AICAR samples either in the presence or in the absence of STO-609. For the entire data set, F(4,20) = 26.4, p < 0.001 for the effects of STO-609. B, representative immunoblots of duplicate extracts from each incubation condition are shown developed with antibodies directed against either AMPKα/T172p (top and middle) or total AMPKα (bottom).
Enzyme Activities and Immunoblotting—AMPK activity against the SAMs peptide was determined at a saturating concentration of AMP, as in Ref. 11. AMPKK activity in Triton X-100 cell lysates was determined by phosphorylation of a recombinant AMPKα protein, as in Ref. 12. Cell extracts were examined by immunoblotting, as in Ref. 12, employing a panel of different antibodies/reagents. These included anti-AMPK total (α reactive against α and σ), anti-AMPKαT172p, anti-ACC579p, streptavidin-HRP (13), anti-CaMKKαβ (C-terminal; BD Transduction Laboratories catalog number 610544), and anti-LKB1 (a kind gift from Reuben Shaw and Ronald DePhino (Harvard University)) (7).

RNA Interference—siRNA oligonucleotides designed against CaMKKα (siRNA Gene Silencers, human) were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). HeLa cells were plated at a density of 5 × 10^3 cells/well in a 6-well plate and incubated with 0.5 μg of siRNA per well in 1 ml of medium per well for 72 h. All transfections were carried out using Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. At 48 h after transfection, cells were either harvested or treated with AMPK activators and then harvested.

Preparation of LKB1/STRAD/Mo25 Complex—Cos cells were triply transfected with cDNAs expressing glutathione S-transferase-tagged LKB1 and FLAG-tagged STRAD and Mo25 (generous gifts from David Darby (University of Dundee)) using Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. Cells were lysed in buffer containing 1% Triton X-100, as described above, 48 h after transfection. Cleared supernatants were aliquoted into microcentrifuge tubes (1 ml/tube) and incubated with 100 μl of 50% glutathione bead slurry (Sigma) for 2 h at 4 °C. Lysates were spun down briefly (20 s, 14,000 rpm) to gently pellet beads. The supernatant was carefully removed, and beads were washed once with buffer containing 0.5% Triton X-100 and then subsequently washed two times with 4× assay buffer (0.4 M HEPES, 0.6 M NaCl). Beads were then resuspended in 4× assay buffer containing 20 μM glutathione (Sigma) to elute the enzyme complex. Following a 20-min incubation on ice, samples are spun down for 1–2 min at 14,000 rpm to firmly pellet beads, and the supernatant, containing the purified LKB1/STRAD/Mo25 complex, was removed and used immediately in the in vitro kinase kinase assays.

Statistical Analysis—Statistical analysis of experimental data were performed by a factorial ANOVA with multiple comparisons, using the least significant difference by the STATISTICA software package.

RESULTS AND DISCUSSION

In an effort to identify AMPKKs distinct from LKB1, two human cell lines that are deficient in LKB1 were selected for study, the cervical carcinoma-derived HeLa and the lung adenocarcinoma-derived A549 lines. LKB1 is not detectable in these two lines nor in LKB1−/− mouse embryonic fibroblasts by immunoblotting (Fig. 1). We did detect expression of LKB1 in other human cancer lines including Panc-1 and AsPC-1, the latter previously thought to be LKB1-negative (14).

HeLa and A549 cells were stimulated with a variety of agents known to activate AMPK by increasing phosphorylation of AMPKαT172p and with ionomycin, the latter to increase intracellular Ca^{2+}. Mannitol, 2-deoxyglucose (2-DG), and ionomycin, but not AICAR, markedly stimulated both AMPK activity (Fig. 2A and αT172p phosphorylation (Fig. 2B, top panel) in HeLa cells. In A549 cells, mannitol and 2-deoxyglucose (2-DG), but not AICAR (data not shown), also stimulated AMPK activity and phosphorylation (Supplemental Fig. 1). The inability of AICAR to stimulate AMPK in HeLa cells and in LKB1−/− mouse embryonic fibroblasts has been observed previously (5, 7).

The above experiments indicate the presence of AMPKK(s) in HeLa and A549 cells distinct from LKB1. Two other mammalian protein kinases have a significant homology to mammalian LKB1 and to the LKB1 orthologs in S. cerevisiae, namely Ca^{2+}/CaM-dependent protein kinase α (CaMKKα) and Ca^{2+}/CaM-dependent protein kinase kinase β (CaMKKβ) (15–20). A CaMKK preparation from pig brain (isolated prior to the recognition that there were two isoforms of the enzyme) has previously been shown to phosphorylate and activate AMPK in vitro; this phosphorylation is enhanced by the binding of AMP to the AMPK heterotrimer (10). Since both CaMKKα and CaMKKβ are expressed in HeLa cells (but not in murine embryonic fibroblasts), they were chosen for study of the possible roles for these enzymes (21).

To test the hypothesis that one or both CaMKKs in HeLa cells functions as an AMPKK, HeLa cells were incubated under basal conditions or were stimulated with mannitol, 2-DG, or ionomycin in the presence of increasing concentrations of 2-DG (0, 0.01, 0.1, 1, 10 μg/ml). Reactions were stopped by the addition of 4× Laemmli sample buffer, and samples were boiled for 5 min. Proteins were separated on 9% SDS-PAGE and probed with an antibody directed against AMPKαT172p to detect phosphorylation of the recombinant AMPKα.

Interestingly, STO-609 inhibits AMPK and ACC phosphorylation in response to 2-deoxyglucose in HeLa cells. HeLa cells, preincubated with either STO-609 (1 μg/ml) or an equivalent volume of Me2SO for 6 h, were treated with increasing concentrations of 2-DG (5, 10, 25, 50 mM) for 15 min. Cell extracts were prepared by the digitonin lysis method, as described under “Experimental Procedures.” Duplicate samples, matched for protein, from each incubation condition were pooled and subjected to SDS-PAGE followed by immunoblot analysis using antibodies AMPKαT172p, total AMPKα (Total α), or ACC579p. Total ACC was detected by blotting with streptavidin-HRP, pACC, phosphorylated ACC.
stream target of activated AMPK, acetyl-CoA carboxylase (ACC), were significantly inhibited by STO-609 in HeLa cells at 2-DG concentrations of ≤10 mM (Fig. 3). The IC\textsubscript{50} for STO-609 inhibition of 2-DG-stimulated \alpha T172 phosphorylation in HeLa cells was ~0.7 µg/ml (data not shown). In other experiments (data not shown), we have found that STO-609 can inhibit the \textit{in vitro} activity of purified AMPK against the SAMS peptide, although the IC\textsubscript{50} is 20-fold higher than that for the CaMKKs.
CaMKKs, however cannot clearly distinguish between the two CaMKK isoforms, CaMKKa and CaMKKb.

HeLa cells have been reported to express both CaMKKa and CaMKKb mRNAs (21). The CaMKKβ gene encodes several isoforms generated through differential usage of polyadenylation sites and/or as a result of alternative splicing of the internal exons 14 and/or 16 (21, 25), although the characteristics of the protein products (gel mobility, kinase activity, and tissue distribution) have not been fully delineated. In HeLa cells, the β1 and β2 isoforms are absent; mRNAs encoding two novel CaMKK isoforms (CaMKKβ3 and CaMKKβ3x) generated through alternative splicing have been noted (21). As probed with a monoclonal antibody that recognizes a C-terminal sequence common to CaMKKa and CaMKKb, HeLa cell extracts display two immunoreactive species, migrating similarly to a CaMKK standard and at the predicted molecular masses of CaMKKβ3 (60 kDa) and CaMKKβ3x (55 kDa) (Fig. 5A) (21).

Given the possibility that the effects of STO-609 to inhibit AMPK activity were not entirely mediated by specific chemical inhibition of the CaMKKs, we employed RNA interference as an independent way to inhibit their activity. As compared with transfected non-targeting siRNA, CaMKKβ-specific siRNA substantially decreased basal and 2-DG-stimulated AMPK activity and αT172 phosphorylation, whereas CaMKKa-specific siRNA had smaller, but still apparent, effects on these 2-DG-stimulated AMPK alterations (Fig. 6A). No significant effects of the individual siRNAs on 2-DG-stimulated ACC phosphorylation are seen, and this is likely explained by the residual 2-DG-stimulated AMPK activity (Fig. 6B). We have noted that the phosphorylation of ACC in other systems is very sensitive to even small changes in AMPK activity (27). The combination of both CaMKKa siRNAs nearly eliminated both basal and stimulated AMPK activity (Fig. 6A) and αT172 and ACC phosphorylation (Fig. 6B). Both CaMKKa- and CaMKKβ-specific siRNAs also significantly reduced ionomycin-stimulated AMPK activity (Fig. 7). CaMKKβ-specific siRNA eliminated
the 55-kDa band and diminished the 60-kDa band observed on immunoblotting, whereas CaMKKa-specific siRNA diminished slightly the 60-kDa band observed (Fig. 5B). This observation indicates that the upper band in HeLa extracts is a mixture of CaMKKβ3 and CaMKKa and that the lower band is CaMKKβ3x. We have been unable to confirm the specificity of a commercially available CaMKKa antibody (Santa Cruz Biotechnology, Inc.) to verify more precisely the composition of the 60-kDa band. The individual siRNAs have negligible effects on either ACC or total AMPKα, although total AMPKα is slightly diminished in the presence of both (Fig. 6B). The combined siRNAs eliminate nearly all immunoreactivity of the CaMKK bands (Fig. 5B), coincident with a near abrogation of AMPK activity and phosphorylation (Fig. 6).

To examine the relative roles of LKB1 and the CaMKKs in a cultured cell line in which all three kinases are expressed, LKB1+/− MEFs were stimulated with ionomycin and 2-DG in the presence and absence of STO-609. Basal and stimulated AMPK activity was then compared with that observed in LKB1−/− cells (Fig. 8). We and others have previously found that AICAR, hydrogen peroxide, and phenformin fail to activate AMPK in LKB1−/− MEFs (5, 7). Activation of AMPK (Fig. 8A) and αT172 phosphorylation (Fig. 8B) in response to ionomycin and 2-DG is not impaired in LKB1−/− MEFs as compared with LKB1+/− cells. Indeed, the response to ionomycin appeared to be enhanced in the absence of LKB-1 expression.

STO-609 partially blocks the response to ionomycin in both cell types, whereas its ability to inhibit 2-DG-stimulated AMPK activation is only observed in the LKB1−/− MEFs. These data revealed that ionomycin-induced AMPK activation is mediated largely through one or both CaMKKs, whereas the 2-DG response may be contributed to by either LKB1 or the CaMKKs. In the wild-type cells, however, any contribution of CaMKKs might be redundant to that of LKB1. We cannot, of course, exclude the involvement of yet-to-be characterized AMPKKs in either cell line.

The data reported herein provide compelling evidence that both CaMKKs function as AMPKKs in the cell lines studied, making them attractive candidates for non-LKB1 AMPKKs in other tissues and cell lines. Although initially characterized and isolated from neuronal tissue, both CaMKKβ and CaMKKβ3 have a wide expression in rodent tissues (16, 17, 26), suggesting important roles for each in the regulation of AMPK activity in vivo. The data further indicate that both cellular calcium and AMP may play separate or interdependent roles in the regulation of AMPK activity.

With the recognition of three mammalian AMPKKs, future investigation will be required to characterize in detail their relative contributions to AMPK regulation in other individual tissues and cell types. Although LKB1 may be the predominant AMPKK regulating AMPK responses to contraction and phenformin in murine skeletal muscle (30), it seems quite likely,
given variable tissue expression of these AMPKKs, that there may be considerable heterogeneity in the regulation of AMPK under both basal and stimulated conditions, perhaps dependent on the nature of the stimulus. In addition, recent data from yeast indicate that the different β subunit-containing isoforms of the Snf1 kinase display stress-dependent preferences for Pak1, Tos3, and Elm1 upstream kinases (31). Thus, it might be anticipated that different AMPK heterotrimers composed of varying combinations of different catalytic α subunits (α1, α2) and non-catalytic subunits (β1 and β2; γ1, γ2, and γ3) might be differentially regulated by the three mammalian AMPKKs, increasing the complexity of overall regulation of AMPK activity in vivo.

Acknowledgments—We acknowledge the helpful advice and the provision of reagents from Hiroshi Tokumitsu (Kagawa University), Thomas Soderling (Oregon Health Sciences Center), Reuben Shaw and Ronald DePinho (Harvard University), and Dario Alessi (University of Dundee). Mark McPeek (Dartmouth College) gave valuable assistance with the statistical analysis.

REFERENCES

1. Hardie, D. G., Scott, J. W., Pan, D. A., and Hudson, E. R. (2003) FEBS Lett. 546, 113–120
2. Nath, N., McCartney, R. R., and Schmidt, M. C. (2003) Mol. Cell. Biol. 23, 3909–3917
3. Hong, S. P., Leiper, F. C., Woods, A., Carling, D., and Carlson, M. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 8839–8843
4. Sutherland, C. M., Hawley, S. A., McCartney, R. R., Leech, A., Stark, M. J., Schmidt, M. C., and Hardie, D. G. (2003) Curr. Biol. 13, 1299–1305
5. Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Makela, T. P., Alessi, D. R., and Hardie, D. G. (2003) J. Biol. Chem. 278, 28–37
6. Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schluttner, U., Walliman, T., Carlson, M., and Carling, D. (2003) Curr. Biol. 13, 2004–2008
7. Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A., and Cantley, L. C. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 3329–3335
8. Altarejos, J. Y., Taniguchi, M., Clanachan, A. S., and Lopaschuk, G. D. (2005) J. Biol. Chem. 280, 183–190
9. Baron, S. J., Li, J., Russell, B. R., III, Neumann, D., Miller, E. J., Tuerk, R., Walliman, T., Hurley, R. L., Witters, L. A., and Young, L. H. (2005) Circ. Res. 96, 337–345
10. Hawley, S. A., Selbert, M. A., Goldstein, E. G., Edelman, A. M., Carling, D., and Hardie, D. G. (1995) J. Biol. Chem. 270, 27186–27191
11. Witters, L. A., and Kemp, B. E. (1992) J. Biol. Chem. 267, 2864–2867
12. Hamilton, S. R., Stapleton, D., O’Donnell, J. B., Jr., Kung, J. T., Dalal, S. R., Kemp, B. E., and Witters, L. A. (2001) FEBS Lett. 500, 163–168
13. Hamilton, S. R., Stapleton, D., O’Donnell, J. B., Jr., Kung, J. T., Dalal, S. R., Kemp, B. E., and Witters, L. A. (2001) FEBS Lett. 506, 163–168
14. Qanungo, S., Haldar, S., and Basu, A. (2003) Neoplasia 5, 367–374
15. Selbert, M. A., Andersen, K. A., Huang, Q. H., Goldstein, E. G., Means, A. R., and Edelman, A. M. (1995) J. Biol. Chem. 270, 17616–17621
16. Edelman, A. M., Mitchellhill, K. I., Selbert, M. A., Andersen, K. A., Hook, S. S., Stapleton, D., Goldstein, E. G., Means, A. R., and Kemp, B. E. (1996) J. Biol. Chem. 271, 10806–10810
17. Andersen, K. A., Means, R. L., Huang, Q. H., Kemp, B. E., Goldstein, E. G., Selbert, M. A., Edelman, A. M., Fremeau, R. T., and Means, A. R. (1998) J. Biol. Chem. 273, 31880–31889
18. Soderling, T. R. (1999) Trends Biochem. Sci 24, 232–236
19. Soderling, T. R., and Stall, J. T. (2001) Chem. Rev. 101, 2341–2352
20. Corcoran, E. E., Means, A. R., Edelman, A. M., Mitchellhill, K. I., Selbert, M. A., Andersen, K. A., Hook, S. S., Stapleton, D., Goldstein, E. G., Kemp, B. E., and Huang, Q. H. (2001) J. Biol. Chem. 276, 2975–2978
21. Ishikawa, Y., Tokumitsu, H., Inuzuka, H., Murata-Hori, M., Hosoya, H., and Kobayashi, R. (2003) FEBS Lett. 550, 57–63
22. Tokumitsu, H., Inuzuka, H., Ishikawa, Y., Ikeda, M., Saji, I., and Kobayashi, R. (2002) J. Biol. Chem. 277, 15813–15818
23. Tokumitsu, H., Inuzuka, H., Ishikawa, Y., and Kobayashi, R. (2003) J. Biol. Chem. 278, 10908–10913
24. Morgan, A. J., and Jacob, R. (1994) Biochem. J. 300, 665–672
25. Hsu, L. S., Chen, G. D., Lee, L. S., Chi, C. W., Cheng, J. F., and Chen, J. Y. (2003) J. Biol. Chem. 276, 31113–31123
26. Vinet, J., Carra, S., Blom, J. M., Harvey, M., Brunello, N., Barden, N., and Tascedda, F. (2003) Brain Res. Mol. Brain Res. 111, 216–221
27. Chen, Z. P., Stephens, T. J., Murthy, S., Canny, B. J., Hargreaves, M., Witters, L. A., Kemp, B. E., and McConell, G. K. (2003) Diabetes 52, 2205–2212
28. Carling, D. (2004), Trends Biochem. Sci. 29, 18–24
29. Hong, S.-P., Momcilovic, M., and Carlson, M. (2005) J. Biol. Chem. 280, 21804–21809
30. Sakamoto, K., McCarthy, A., Smith, D., Green, K. A., Grahame Hardie, D., Ashworth, A., and Alessi, D. R. (2005) 24, 1810–1820
31. McCarty, R. R., Rubenstein, E. M., and Schmidt, M. C. (2005) J. Biol. Chem. 279, 435–444