EQUILATERAL WEIGHTS ON THE UNIT BALL OF \mathbb{R}^n

EMMANUEL CHETCUTI AND JOSEPH MUSCAT

Abstract. An equilateral set (or regular simplex) in a metric space X, is a set A such that the distance between any pair of distinct members of A is a constant. An equilateral set is standard if the distance between distinct members is equal to 1. Motivated by the notion of frame-functions, as introduced and characterized by Gleason in [6], we define an equilateral weight on a metric space X to be a function $f : X \to \mathbb{R}$ such that $\sum_{i \in I} f(x_i) = W$, for every maximal standard equilateral set $\{x_i : i \in I\}$ in X, where $W \in \mathbb{R}$ is the weight of f. In this paper we characterize the equilateral weights associated with the unit ball B^n of \mathbb{R}^n as follows: For $n \geq 2$, every equilateral weight on B^n is constant.

1. Introduction

Equilateral sets have been extensively studied in the literature for a number of metric spaces [2]. An equilateral set (or regular simplex) in a metric space X, is a set A such that the distance between any pair of distinct members of A is ρ, where $\rho \neq 0$ is a constant. The equilateral dimension of X is defined to be $\sup \{|A| : A \text{ is an equilateral set in } X\}$.

Suppose that $\{x_1, \ldots, x_k\}$ is an equilateral set in \mathbb{R}^n (equipped with the ℓ_2-norm). Then the vectors $v_i := x_{i+1} - x_1$ for $i = 1, \ldots, k-1$ are linearly independent. Indeed, let A be the $(k-1) \times (k-1)$ matrix (a_{ij}) defined by $a_{ij} := \langle v_i, v_j \rangle$. Then $a_{ij} = \frac{\rho^2}{2}(1 + \delta_{ij})$ where $\rho \neq 0$ is a constant and δ_{ij} is the Kronecker delta. Let $\{e_1, \ldots, e_n\}$ be the canonical basis of \mathbb{R}^n and let B be the $n \times (k-1)$ matrix (b_{ij}) defined by $b_{ij} := \langle v_j, e_i \rangle$. Since $A = B^*B$ and A is clearly non-singular, we deduce that B is non-singular, i.e. the vectors $v_i := x_{i+1} - x_1$ for $i = 1, \ldots, k-1$ are linearly independent and therefore $k \leq n + 1$. To see that the equilateral dimension of \mathbb{R}^n (equipped with the ℓ_2-norm) is $n + 1$ observe that the set $\{x_1 - c, \ldots, x_k - c\}$ where $c := \frac{1}{k} \sum_{i=1}^k x_i$ has linear dimension $k-1$ and so if $k < n + 1$, there exists a unit vector $u \in \mathbb{R}^n$ such that $u \perp x_i - c$ for each $i = 1, \ldots, k$, and therefore the set $\{x_1, \ldots, x_k\}$ can be enlarged to a bigger equilateral set in \mathbb{R}^n. Let us only mention here that the situation is far more complicated for the other ℓ_p-norms [11, 9, 1] (and others).

Date: November 10, 2014.

2010 Mathematics Subject Classification. 51M04,39B55.
An equilateral set in \mathbb{R}^n is standard if the distance between distinct points is equal to 1. If $\{x_1, \ldots, x_k\}$ is a standard equilateral set in \mathbb{R}^n, its centre $\frac{1}{k} \sum_{i=1}^k x_i$ will be denoted by $c(x_1, \ldots, x_k)$. The radius of $\{x_1, \ldots, x_k\}$ is $\|x_i - c(x_1, \ldots, x_k)\|$ and is denoted by β_k. A simple calculation yields

$$\beta_k = \left\| x_i - c(x_1, \ldots, x_k) \right\| = \frac{1}{k} \sum_{1 \leq j \leq k, j \neq i} (x_j - x_i) = \frac{1}{k} \sqrt{k - 1 + \frac{(k - 1)(k - 2)}{2}} = \sqrt{\frac{k - 1}{2k}}.$$

If x_{k+1} is another point in \mathbb{R}^n such that $\{x_1, \ldots, x_k, x_{k+1}\}$ is again a standard equilateral set, then $x_{k+1} - c(x_1, \ldots, x_k)$ is orthogonal to $x_i - c(x_1, \ldots, x_k)$ for every $i = 1, \ldots, k$, and thus

$$\left\| x_{k+1} - c(x_1, \ldots, x_k) \right\| = \sqrt{1 - \beta_k^2} = \sqrt{\frac{k + 1}{2k}}.$$

We will call $\alpha_{k+1} := \sqrt{\frac{k + 1}{2k}}$ the perpendicular height of $\{x_1, \ldots, x_k, x_{k+1}\}$.

We shall now introduce the notion of equilateral weights. The motivation behind this definition is the notion of frame functions. These were introduced and characterized by Gleason [6] in his famous theorem describing the measures on the closed subspaces of a Hilbert space. Gleason’s Theorem is of utmost importance in the laying down of the foundations of quantum mechanics [12, 10, 7, 4, 8] (and others). Let $S(0,1)$ denote the unit sphere of a Hilbert space H. A function $f : S(0,1) \to \mathbb{R}$ is called a frame function on H if there is a number $w(f)$, called the weight of f, such that $\sum_{i \in I} f(u_i) = w(f)$ for every orthonormal basis $\{u_i : i \in I\}$ of H. We recall that a bounded operator T on H is of trace-class if the series $\sum_{i \in I} \langle Tu_i, u_i \rangle$ converges absolutely for any orthonormal basis $\{u_i : i \in I\}$ of H. (It is well-known that if the series converges for an orthonormal basis $\{u_i : i \in I\}$ then it converges for any orthonormal basis and the sum does not depend on the choice of the basis.) Clearly, if T is self-adjoint and of trace-class the function $f_T(x) = \langle Tx, x \rangle$ ($x \in S(0,1)$) defines a continuous frame function on H. Gleason’s Theorem says that when $\dim H \geq 3$ every bounded frame function arises in this way. The heart of the proof of Gleason’s Theorem is the treatment of the case when H is the real three-dimensional Hilbert space \mathbb{R}^3. In fact all the other cases can be reduced to this case. Thus, as a matter of fact, it can be said that the crux of this theorem can be rendered to the following statement: For every bounded frame function f on \mathbb{R}^3 there exists a symmetric matrix T on \mathbb{R}^3 such that $f(u) = \langle Tu, u \rangle$ for every unit vector $u \in \mathbb{R}^3$. The notion of frame functions and the fact that an orthonormal basis of \mathbb{R}^3...
is simply a maximal equilateral set on the unit sphere of \(\mathbb{R}^3 \), suggest the following definition:

Definition 1.1. Let \(X \) be a metric space and let \(W \in \mathbb{R} \). An equilateral weight on \(X \) with weight \(W \) is a function \(f : X \to \mathbb{R} \) such that

\[
\sum_{i \in I} f(x_i) = W
\]

whenever \(\{x_i : i \in I\} \) is a maximal standard equilateral set in \(X \).

Given a metric space, can one describe the equilateral weights associated with it?

Example 1.2. Every equilateral weight on \(\mathbb{R}^2 \) is constant. First observe that for every pair of points \(x \) and \(y \) in \(\mathbb{R}^2 \) there are points \(x_1, x_2, \ldots, x_n \) in \(\mathbb{R}^2 \) such that \(\|x_1 - x\| = \|x_{i+1} - x_i\| = \|y - x_n\| = 1 \) for every \(i = 1, \ldots, n - 1 \). Thus, it suffices to to show that \(f(x) = f(y) \) for all \(x, y \in \mathbb{R}^2 \) satisfying \(\|x - y\| = 1 \). Let \(x, y \in \mathbb{R}^2 \) such that \(\|x - y\| = 1 \). Observe that if \(\{a, b, c\} \) and \(\{d, b, c\} \) are the vertices of two unit equilateral triangles and \(f \) is an equilateral weight, then \(f(a) = f(d) \). Thus, \(f \) takes the constant value \(f(x) \) on the circle with centre \(x \) and radius \(\sqrt{3} \), and the constant value \(f(y) \) on the circle with centre \(y \) and radius \(\sqrt{3} \). Since these circles intersect, it follows that \(f(x) = f(y) \). Using a similar argument but replacing \(\sqrt{3} \) with \(2\alpha_{n+1} \), one can easily show that every equilateral weight on \(\mathbb{R}^n \) is constant. The same cannot be said for \(\mathbb{R} \) – it is easy to find non-trivial equilateral weights on \(\mathbb{R} \).

Example 1.3. Let \(S \) be the sphere in a Hilbert space \(H \) with centre 0 and radius \(1/\sqrt{2} \). Two vectors \(u \) and \(v \) in \(S \) satisfy \(\|u - v\| = 1 \) if, and only if, \(\langle u, v \rangle = 0 \). Thus, each maximal standard equilateral set in \(S \) corresponds to a rescaling of some orthonormal basis of \(H \) by a factor of \(1/\sqrt{2} \). It is clear therefore that the equilateral weights on \(S \) correspond to the frame-functions on \(H \) (composite with a rescaling by a factor of \(\sqrt{2} \)). Thus, in view of Gleason’s Theorem if \(\dim H \geq 3 \) and \(f \) is a bounded equilateral weight on \(S \), there exists a self-adjoint, trace-class operator \(T \) such that

\[
f(u) = \langle Tu, u \rangle
\]

for all \(u \in S \). Let us emphasize that such a description does not hold when \(\dim H = 2 \) and that the assumption of boundedness is not redundant when \(\dim H \) is finite. It known that \(\mathbb{R}^n \) admits frame functions that are unbounded and that therefore cannot be described by such an equation (see [4, Proposition 3.2.4]).

By contrast, the boundedness assumption is superfluous when the space is infinite dimensional. This surprising result is due to Dorofeev and Sherstnev [3] and allows us to describe the equilateral weights.
associated with the metric space S of an infinite dimensional Hilbert space directly from Gleason’s Theorem.

Proposition 1.4. Let H be an infinite dimensional Hilbert space and let S be the sphere in H with centre 0 and radius $1/\sqrt{2}$. If f is an equi- lateral weight on S, then there exists a self-adjoint, trace-class operator T on H such that $f(u) = \langle Tu, u \rangle$ for every vector u in S.

The aim of the present paper is to describe the equilateral weights associated with another bounded metric space; namely the unit ball of \mathbb{R}^n.

2. **Standard equilateral sets in the unit ball of \mathbb{R}^n**

In what follows we will be interested in standard equilateral sets contained in the (closed) unit ball of \mathbb{R}^n, denoted by B^n. It is clear that the equilateral dimension of B^n is equal to that of \mathbb{R}^n. We start by exhibiting some properties of standard equilateral sets in B^n.

Proposition 2.1. Let $\{x_1, \ldots, x_k\}$ ($k \leq n+1$) be a standard equilateral set in B^n. Then $\|c(x_1, \ldots, x_k)\| \leq \alpha_{k+1}$.

Proof. First observe that

$$2\langle x_i, x_j \rangle = \|x_i\|^2 + \|x_j\|^2 - \|x_i - x_j\|^2 \leq 1,$$

and therefore

$$\|c(x_1, \ldots, x_k)\|^2 = k^{-2}\left(\sum_{i=1}^{k} x_i, \sum_{i=1}^{k} x_i\right) = k^{-2}\left[\sum_{i=1}^{k} \|x_i\|^2 + \sum_{1 \leq i, j \leq k, i \neq j} \langle x_i, x_j \rangle\right] \leq k^{-2}\left[k + \frac{k(k - 1)}{2}\right] = \alpha_{k+1}^2. \quad \square$$

In the extremal case $k = n + 1$ the bound obtained in Proposition 2.1 can be improved as shown in the next Proposition. This improvement is needed to prove Proposition 2.4. We first prove a lemma.

Lemma 2.2. Let $\{x_1, x_2, \ldots, x_{n+1}\}$ be a maximal standard equilateral set in \mathbb{R}^n with centre at the origin and let $x \in \mathbb{R}^n$ satisfy $\langle x, x_i \rangle \geq 0$ for $i = 2, 3, \ldots, n + 1$. If $\|x\| \geq 1$, then $\langle x, x_2 + x_3 + \cdots + x_{n+1} \rangle \geq 1/2$.

Proof. Let $v := x_2 + x_3 + \cdots + x_{n+1}$ and let

$K := \{x \in \mathbb{R}^n : \langle x, v \rangle \leq 1/2, \langle x, x_i \rangle \geq 0 \text{ for each } i = 2, 3, \ldots, n + 1\}$.

4
K is the intersection of half-spaces and therefore a point of K is an extreme point if and only if it is the intersection of n hyperplanes whose normals form a basis of \mathbb{R}^n. Using the fact that $\langle x_i, x_j \rangle$ is independent of i, j (when $i \neq j$) it is easy to see that the extreme points of K are $\{0, x_2 - x_1, x_3 - x_1, \ldots, x_{n+1} - x_1\}$. The norm, being a strictly convex function, i.e.

$$\|\lambda x + (1 - \lambda)y\| < \max(\|x\|, \|y\|), \quad x \neq y, \quad 0 < \lambda < 1 \quad (\star)$$

takes a maximum value at an extremal point and therefore, since $\|x_i - x_1\| = 1 \ (i = 2, 3, \ldots, n + 1)$, it follows that $\|x\| \leq 1$ for every $x \in K$.

From the strict inequality of (\star) and from the fact that each of the vectors $x_i - x_1 \ (i = 2, 3, \ldots, n + 1)$ lies in the hyperplane $\langle x, v \rangle = 1/2$, it follows that if $x \in \mathbb{R}^n$ satisfies $\langle x, x_i \rangle \geq 0 \ (i = 2, 3, \ldots, n + 1)$ and $\langle x, v \rangle < 1/2$, then $\|x\| < 1$.

\begin{proposition}
Let $\{u_1, \ldots, u_{n+1}\}$ be a standard equilateral set in B^n. Then $\|c(u_1, \ldots, u_{n+1})\| \leq \beta_{n+1}$. \\
\begin{proof}
Let $\{u_1, u_2, \ldots, u_{n+1}\}$ be a maximal standard equilateral set in B^n. Then $\{0, u_2 - u_1, \ldots, u_{n+1} - u_1\}$ is again a maximal standard equilateral set in B^n. Let us denote its centre by c. Note that $\|c\| = \beta_{n+1}$.

For each $i = 1, 2, \ldots, n+1$, let $x_i := u_i - u_1 - c$. Then $\{x_1, x_2, \ldots, x_{n+1}\}$ is a maximal standard equilateral set with centre at the origin. Note that

$$c(u_1, u_2, \ldots, u_{n+1}) = c(x_1, x_2, \ldots, x_{n+1}) + u_1 + c = u_1 + c.$$

Thus

$$\|c(u_1, u_2, \ldots, u_{n+1})\|^2 = \|u_1 + c\|^2 = \|u_1\|^2 + \|c\|^2 + 2\langle u_1, c \rangle,$$

and therefore for the proposition to hold we require

$$\left\langle \frac{-u_1}{\|u_1\|}, c \right\rangle \geq \frac{\|u_1\|}{2}. \quad (\star)$$

To this end we calculate

$$1 \geq \|u_1\|^2 = \|x_i + c\|^2 + \|u_1\|^2 + 2\langle u_1, x_i + c \rangle$$

$$= 1 + \|u_1\|^2 + 2\langle u_1, x_i \rangle + 2\langle u_1, c \rangle$$

which implies

$$\left\langle \frac{-u_1}{\|u_1\|}, x_i \right\rangle \geq \frac{\|u_1\|}{2} - \left\langle \frac{-u_1}{\|u_1\|}, c \right\rangle. \quad (\star\star)$$

for each $i = 2, 3, \ldots, n + 1$. Now, if the right hand side of $(\star\star)$ is ≤ 0, then (\star) is satisfied. On the other hand, if the right hand side of $(\star\star)$ is greater than 0, then Lemma 2.2 can be applied to conclude

$$\frac{\|u_1\|}{2} \leq \frac{1}{2} \leq \left\langle \frac{-u_1}{\|u_1\|}, x_2 + x_3 + \cdots + x_{n+1} \right\rangle = \left\langle \frac{-u_1}{\|u_1\|}, -x_1 \right\rangle = \left\langle \frac{-u_1}{\|u_1\|}, c \right\rangle,$$

which completes the proof.
\end{proof}
\end{proposition}
Proposition 2.4. Every standard equilateral set in B^n can be enlarged to one having size $n+1$ such that its members all lie in B^n.

Proof. Let $\{x_1, \ldots, x_k\}$ ($1 \leq k \leq n$) be a standard equilateral set in B^n. We show that there exists a vector $x_{k+1} \in B^n$ such that $\{x_1, \ldots, x_k, x_{k+1}\}$ is a standard equilateral set. The proof will then follow by induction.

Let $N := \text{span}\{x_i - c(x_1, \ldots, x_k) : 1 \leq i \leq k\}$ and set $a := (I - P_N)c(x_1, \ldots, x_k)$, where P_N is the projection of \mathbb{R}^n into N and I is the identity. The intersection of B^n with the translation $a + N$ is a $(k-1)$-dimensional ball with centre a and radius $\sqrt{1 - \|a\|^2}$. The set $\{x_1, \ldots, x_k\}$ is a standard equilateral set in $(a + N) \cap B^n$ and thus, in view of Proposition 2.3, it follows that $\|c(x_1, \ldots, x_k) - a\| \leq \beta_k$.

Set $u := -\alpha_{k+1}v$, where $v := a/\|a\|$ if $a \neq 0$ and any unit vector in N^\perp if $a = 0$. Then $\|a + u\| \leq \|u\| = \alpha_{k+1}$ since $\alpha_{k+1} \geq \beta_k = \|c(x_1, \ldots, x_k)\| \geq \|a\|$. Put $x_{k+1} := c(x_1, \ldots, x_k) + u$. The set $\{x_1, \ldots, x_k, x_{k+1}\}$ is a standard equilateral set in \mathbb{R}^n. Moreover,

$$
\|x_{k+1}\|^2 = \|c(x_1, \ldots, x_k) + u\|^2 = \|c(x_1, \ldots, x_k) - a\|^2 + \|a + u\|^2 \\
\leq \beta_k^2 + \alpha_{k+1}^2 = 1.
$$

\[\square\]

3. Equilateral weights on B^n

In this section we shall prove that the only admissible equilateral weights on the unit ball of \mathbb{R}^n are those that take a constant value.

For any linear subspace M of \mathbb{R}^n, $a \in M$ and $r > 0$, we denote the closed ball in M with centre a and radius r by $B^M(a, r)$, i.e. $B^M(a, r) = \{x \in M : \|x - a\| \leq r\}$. We will also denote by $S^M(a, r)$ the sphere in M with centre a and radius r, i.e. $S^M(a, r) = \{x \in M : \|x - a\| = r\}$. We will write $B(a, r)$ (resp. $S(a, r)$) instead of $B^{\mathbb{R}^n}(a, r)$ (resp. $S^{\mathbb{R}^n}(a, r)$). We will need the following definition.

Definition 3.1. Let $a, b \in B^n$, $a \neq b$ and $N := (b - a)^\perp$. For any subspace $M \neq \{0\}$ of \mathbb{R}^n define

$$
\gamma^M(a, b) := \sup \left\{ r > 0 : \frac{a + b}{2} + B^{M \cap N}(0, r) \subseteq B^n \right\}.
$$

Note that the set involved in the definition of $\gamma^M(a, b)$ is not empty and bounded above by 1. Instead of $\gamma^{\mathbb{R}^n}(a, b)$ we will simply write $\gamma(a, b)$. It is easy to see that $\gamma^M(a, b)$ is in fact equal to the maximum of the set of its definition. In addition, if M_1 and M_2 are subspaces of \mathbb{R}^n such that $M_1 \subseteq M_2$, then $\gamma^{M_2}(a, b) \leq \gamma^{M_1}(a, b)$. The motivation behind this definition lies in the following observation.
Lemma 3.2. Let \(a, b \in B^n \) such that \(\|b-a\| = 2\alpha_{n+1} \) and \(\gamma(a, b) \geq \beta_n \). Then \(f(a) = f(b) \) for every equilateral weight \(f \) on \(B^n \).

Proof. Let \(N := (b-a)^\perp \) and let \(\{x_1, \ldots, x_n\} \) be a standard equilateral set in
\[
\frac{a + b}{2} + S^N(0, \beta_n) \subseteq B^n.
\]
Each \(x_i \) can be written as \((a + b)/2 + n_i \), where \(n_i \in N \) and \(\|n_i\| = \beta_n \). Thus,
\[
\|x_i - a\|^2 = \left\| \frac{b-a}{2} + n_i \right\|^2 = \alpha_{n+1}^2 + \beta_n^2 = 1.
\]
Similarly, \(\|x_i - b\| = 1 \), i.e. \(\{a, x_1, \ldots, x_n\} \) and \(\{b, x_1, \ldots, x_n\} \) are maximal standard equilateral sets in \(B^n \), and therefore
\[
f(a) + \sum_{i=1}^n f(x_i) = f(b) + \sum_{i=1}^n f(x_i),
\]
for every equilateral weight \(f \) on \(B^n \). \(\square \)

Lemma 3.3. Let \(a, b \in B^n \), \(a \neq b \) and let \(T \) be a two-dimensional subspace of \(\mathbb{R}^n \) containing \(a \) and \(b \). Then \(\gamma^T(a, b) = \gamma(a, b) \).

Proof. We show that \(\gamma(a, b) \geq \gamma^T(a, b) \). Let \(u \) be a unit vector in \(T \) such that \(\langle u, b-a \rangle = 0 \) and \(\langle u, b+a \rangle \geq 0 \). Set \(x_0 := (a+b)/2 \). Let \(r > 0 \) such that \(\|x_0 + ru\| \leq 1 \) and let \(x \in (b-a)^\perp \) such that \(\|x\| \leq r \). Then \(P_T x = \lambda u \) where \(|\lambda| \leq \|x\| \leq r \). Hence
\[
\|x_0 + x\|^2 = \|x_0\|^2 + \|x\|^2 + 2 \langle x_0, x \rangle \\
\leq \|x_0\|^2 + \|x\|^2 + 2 |\langle P_T x_0, x \rangle| \\
= \|x_0\|^2 + \|x\|^2 + 2 |\lambda| \langle x_0, u \rangle \\
\leq \|x_0\|^2 + r^2 + 2r \langle x_0, u \rangle \\
= \|x_0 + ru\|^2 \\
\leq 1,
\]
and therefore \(\gamma(a, b) \geq \gamma^T(a, b) \) as required. \(\square \)

Lemma 3.4. Let \(f \) be an equilateral weight on \(B^n \). There exists \(0 \leq \lambda_n < 1 \) such that \(f \) is constant in \(\{ x \in B^n : \|x\| \geq \lambda_n \} \).

Proof. It suffices to show that there exists \(0 \leq \lambda_n < 1 \) such that \(f \) is constant in \(\{ x \in B^n \cap T : \|x\| \geq \lambda_n \} \) for every two-dimensional subspace \(T \) of \(\mathbb{R}^n \).

Fix an arbitrary two-dimensional subspace \(T \) and let \(D \) denote the closed unit disc \(B^n \cap T \). To make calculations easier we fix a rectangular coordinate system in \(D \) with origin \(o \) at the centre of \(D \) (see Figure 1.). Consider the points \(w(0, -1), x(-1, 0), y(0, 1) \) and \(z(1, 0) \). Let \(C_w \) (resp. \(C_x, C_y, C_z \)) be the circular arc with centre \(w \) (resp. \(x, y, z \))
and radius $2\alpha_{n+1}$. The arcs C_w and C_z meet in D at the point a the coordinates of which can be easily calculated:

$$a\left(\frac{-1 + \sqrt{8\alpha_{n+1}^2 - 1}}{2}, -1 + \sqrt{8\alpha_{n+1}^2 - 1} \right).$$

Similarly, let $b, c, d \in D$ such that $C_x \cap C_y = \{b\}$, $C_y \cap C_z = \{c\}$ and $C_z \cap C_w = \{d\}$. Let C_a (resp. C_b, C_c and C_d) denote the circular arc in D having centre a and radius $2\alpha_{n+1}$ (see Figure 1).

First we show that $\gamma^T(a, w) \geq \beta_n$. Let g be the point $(\frac{\sqrt{3}}{2}, -\frac{1}{2})$. Since $2\alpha_{n+1} \leq \sqrt{3}$, it easy to see that the circular arc in D having centre g and radius 1 intersects C_w, say at h. Observe that if l is the midpoint of the line segment wh, then $|lg| = \beta_n$. So to show that $\gamma^T(w, a) \geq \beta_n$, it suffices to show that the angle \widehat{oaw} is less than or equal to the angle \widehat{owh}. To this end, it is enough to show that $\sin \widehat{oaw} \leq \sin \widehat{owh}$. Since $\widehat{doa} = \frac{\pi}{2}$, we have

$$\sin \widehat{oaw} = \sin(\pi/4 - \widehat{ow})$$

$$= \frac{1}{\sqrt{2}}(\cos \widehat{ow} - \sin \widehat{ow}).$$

Applying the sine rule for triangle oaw we deduce that

$$\sin \widehat{ow} = \frac{\sin 3\pi/4}{2\alpha_{n+1}} = \frac{1}{2}\sqrt{\frac{n}{n+1}}$$

and

$$\cos \widehat{ow} = \frac{1}{2}\sqrt{\frac{3n+4}{n+1}}.$$
Thus,
\[\sin \hat{ow} = \frac{1}{2\sqrt{2}} \left(\sqrt{3 + \frac{1}{n+1}} - \sqrt{1 - \frac{1}{n+1}} \right). \]

On the other-hand
\[\sin \hat{oh} = \sin(\pi/3 - \hat{wg}) \]
\[= \frac{1}{2}(\sqrt{3}\cos \hat{wg} - \sin \hat{wg}) \]
\[= \frac{1}{2}(\sqrt{3}\alpha_{n+1} - \beta_n) \]
\[= \frac{1}{2\sqrt{2}} \left(\sqrt{3 + \frac{3}{n}} - \sqrt{1 - \frac{1}{n}} \right). \]

Thus, \(\sin \hat{ow} \leq \sin \hat{oh} \) and therefore \(\gamma^T(w,a) \geq \beta_n. \)

It is clear (see Figure 1.) that \(\gamma^T(u,a) \geq \gamma^T(w,a) \) for every \(u \in C_a \). Thus, in view of Lemma 3.2 and Lemma 3.3, it follows that \(f \) is constant on \(C_n \). By symmetry, it follows that \(f \) is constant on the circuit \(C_a \cup C_b \cup C_c \cup C_d \). If \(\{w', x', y', z'\} \) is another quadruple of points on the circumference of \(D \) such that \(w'y' \) and \(x'z' \) are perpendicular, then we can repeat the same as above to deduce that \(f \) is constant on the corresponding circuit joining the points \(w', x', y' \) and \(z' \). Moreover, since any two such circuits intersect, it follows that \(f \) is constant in the annulus \(\{u \in D : |ou| \geq 2\alpha_{n+1} - |oa|\} \). Let \(\lambda_n := 2\alpha_{n+1} - |oa| \). From the coordinates of \(a \) one can calculate
\[\lambda_n = \frac{1}{\sqrt{2}} \left(1 + \sqrt{4 + \frac{4}{n}} - \sqrt{3 + \frac{4}{n}} \right). \]

For each \(\rho \in [\beta_n, 1] \) define \(\eta_n(\rho) := \alpha_{n+1} - \sqrt{\rho^2 - \beta_n^2} \). Observe that the value \(\eta_n(\rho) \) decreases strictly from \(\alpha_{n+1} \) (when \(\rho = \beta_n \)) to 0 (when \(\rho = 1 \)) and \(\eta_n(\rho) = 0 \) if, and only if, \(\rho = \beta_n \). Thus, \(\eta_n(\rho) \geq \rho \) for every \(\rho \in [\beta_n, \beta_{n+1}] \) and \(\eta_n(\rho) < \rho \) when \(\rho \in (\beta_{n+1}, 1] \). The geometric meaning of \(\eta_n(\rho) \) becomes apparent from the following Lemma.

Lemma 3.5. (a) Let \(1 \geq \rho \geq \beta_n \) and let \(x \in B^n \) such that \(\|x\| = \eta_n(\rho) \). Then there exists a standard equilateral set \(\{x_1, x_2, \ldots, x_n\} \) such that \(\|x_i\| = \rho \) and \(\|x_i - x\| = 1 \) for every \(i = 1, 2, \ldots, n \).

(b) Conversely, if \(\{x_1, x_2, \ldots, x_{n+1}\} \) is a maximal standard equilateral set in \(B^n \) and \(\|x_i\| = \rho \) for every \(i = 1, 2, \ldots, n \), then \(\rho \geq \beta_n \) and if \(\text{conv}(x_1, \ldots, x_{n+1}) \) contains 0, then \(\|x_{n+1}\| = \eta_n(\rho) \).

Proof. (a) First note that if \(\rho = 1 \), then \(0 = \eta_n(\rho) = \|x\| \) and therefore the statement is true in this case. Suppose that \(\beta_n \leq \rho < 1 \). Let \(\{u_1, u_2, \ldots, u_n\} \) be a maximal standard equilateral set in \(x^+ \) with centre
0. Then \(\|u_i\| = \beta_n \). It is easy to check that the vectors
\[
x_i := u_i - \sqrt{\rho^2 - \beta_n^2} \frac{x}{\|x\|} \quad (i = 1, 2, \ldots, n)
\]
satisfy the required conditions.

(b) The locus of points in \(\mathbb{R}^n \) equidistant from each of the \(x_i \)'s \((i = 1, \ldots, n)\) is the line passing through 0 and parallel to \(x_{n+1} - c(x_1, \ldots, x_n) \). The point on this line with shortest distance from any (and therefore from each) of the \(x_i \)'s \((i = 1, \ldots, n)\) is that with position vector \(c(x_1, \ldots, x_n) \). Thus
\[
\beta_n = \|c(x_1, \ldots, x_n) - x_i\| \leq \|x_i\| = \rho \quad (i = 1, 2, \ldots, n).
\]

If \(0 \in \text{conv}(x_1, \ldots, x_{n+1}) \), then \(0 = \lambda x_{n+1} + (1 - \lambda)c(x_1, \ldots, x_n) \) for some \(\lambda \in [0, 1] \). Thus
\[
\alpha_{n+1} = \|x_{n+1} - c(x_1, \ldots, x_n)\| = \|x_{n+1}\| + |c(x_1, \ldots, x_n)|
= \|x_{n+1}\| + \sqrt{\rho^2 - \beta_n^2}.
\]

\[\square\]

Lemma 3.6. Let \(f \) be an equilateral weight on \(B^n \) taking the constant value \(\delta \) in \(\{ x \in B^n : \|x\| \geq \rho_0 \} \), where \(\rho_0 \in [\beta_n, 1] \). Then \(f \) takes the constant value \(W - n\delta \) in \(B(0, \eta_n(\rho_0)) \) where \(W \) is the weight of \(f \). If \(\rho_0 \leq \beta_{n+1} \), then \(f \) takes the constant value \(\frac{W}{n+1} \) in \(B^n \).

Proof. Let \(x \in B(0, \eta_n(\rho_0)) \). The inequality \(0 \leq \|x\| \leq \eta_n(\rho_0) \) implies that there exists \(1 \geq \rho \geq \rho_0 \) such that \(\eta_n(\rho) = \|x\| \). Thus, by Lemma 3.5 there are vectors \(\{x_1, x_2, \ldots, x_n\} \) such that \(\|x_i\| = \rho \) for \(1 \leq i \leq n \) and such that \(\{x, x_1, x_2, \ldots, x_n\} \) is a maximal standard equilateral set in \(B^n \). So, \(f(x) + n\delta = W \).

If \(\rho_0 \leq \beta_{n+1} \), then \(\eta_n(\rho_0) \geq \rho_0 \), i.e.
\[
\{ x \in B^n : \|x\| \geq \rho_0 \} \cap B(0, \eta_n(\rho_0)) \neq \emptyset,
\]
and thus \(W - n\delta = \delta \). \[\square\]

We are now ready to prove the result announced in the abstract.

Theorem 3.7. Every equilateral weight on \(B^n \) is constant.

Proof. Set \(\mu_n(\rho) := 1 - \eta_n(\rho) \) and \(\nu_n(\rho) := \rho - \mu_n(\rho) \) when \(\rho \in [\beta_n, 1] \). Observe that \(\mu_n \) is strictly increasing with range \([1 - \alpha_{n+1}, 1]\). It is easy to check that \(\nu_n \) is strictly decreasing and that \(\nu_n(1) = 0 \). Thus, \(\mu_n(\rho) < \rho \) for all \(\rho \in [\beta_n, 1] \).

Let \(f \) be an equilateral weight on \(B^n \). In view of Lemma 3.4 we can define \(\theta := \inf\{\rho : f \text{ is constant in } B^n \setminus B(0, \rho)\} \) and note that \(\theta \leq \lambda_n \). In view of Lemma 3.6 the proof would be complete if we could show that \(\theta < \beta_{n+1} \). So we suppose that \(\theta \geq \beta_{n+1} \) and seek a contradiction. Let \(\epsilon \) be a positive real number satisfying
\[
\epsilon < \min\{\nu_n(\lambda_n), \beta_{n+1} - \beta_n\}.
\]
Then \(\theta - \epsilon > \beta_n > 1 - \alpha_{n+1} \) and thus \(\mu_n^{-1}(\theta - \epsilon) \) is defined. In addition, it follows that \(\mu_n^{-1}(\theta - \epsilon) > \theta \), for if \(\mu_n^{-1}(\theta - \epsilon) \leq \theta \), then (since \(\mu_n \) is strictly increasing) we would have \(\theta - \epsilon \leq \mu_n(\theta) \) and this would lead to \(\epsilon \geq \nu_n(\theta) \geq \nu_n(\lambda_n) \), which contradicts our choice of \(\epsilon \).

Fix \(\rho_0 := \mu_n^{-1}(\theta - \epsilon) \). Then, since \(\mu_n^{-1}(\theta - \epsilon) > \theta \), \(f \) takes a constant value, say \(\delta \), in the annulus \(\{ x \in B^n : \|x\| \geq \rho_0 \} \) and therefore, by virtue of Lemma 3.6, \(f \) takes the constant value \(W - n\delta \) in \(B(0, \eta_n(\rho_0)) \), where \(W \) is the weight of \(f \). We show that \(f \) then must take the constant value \(\delta \) in the annulus \(\{ x \in B^n : \|x\| \geq \mu(\rho_0) \} \). This would contradict the definition of \(\theta \) and thus conclude the proof.

To this end, fix and arbitrary vector \(u \in B^n \) such that

\[
1 - \eta_n(\rho_0) = \mu_n(\rho_0) \leq \|u\| \leq \rho_0,
\]

and let \(v = -\frac{1-\|u\|}{\|u\|}u \). Then \(v \in B^n \) and \(1 = \|u - v\| = \|u\| + \|v\| \).

From the inequalities

\[
1 - \eta_n(\rho_0) + \|v\| \leq \|u\| + \|v\| = 1 \leq \rho_0 + \|v\|
\]

we obtain \(1 - \rho_0 \leq \|v\| \leq \eta_n(\rho_0) \) and therefore, in virtue of Lemma 3.6, we obtain \(f(v) = W - n\delta \). We can now apply Proposition 2.4 to obtain an enlargement \(\{ x_1, \ldots, x_{n-1}, u, v \} \) of \(\{u, v\} \) to a maximal standard equilateral set in \(B^n \). Let \(w := (u + v)/2 \). For each \(i = 1, 2, \ldots, n - 1 \) we have

\[
\|x_i\|^2 = \|x_i - w\|^2 + \|w\|^2 = \frac{3}{4} + \left(\|u\| - \frac{1}{2} \right)^2.
\]

If \(\eta_n(\rho_0) > \frac{1}{2} \), then \(\rho_0^2 < 5/4 - \alpha_{n+1} \) and thus

\[
\|x_i\|^2 \geq \frac{3}{4} + \frac{5}{4} - \frac{1}{\sqrt{2}} > \frac{5}{4} - \alpha_{n+1} > \rho_0^2.
\]

On the other-hand, if \(\eta_n(\rho_0) \leq \frac{1}{2} \), then \((*)\) implies

\[
\frac{1}{2} \leq 1 - \eta_n(\rho_0) \leq \|u\|
\]

and therefore

\[
\|x_i\|^2 = \frac{3}{4} + \left(\|u\| - \frac{1}{2} \right)^2
\]

\[
\geq \frac{3}{4} + \left(\frac{1}{2} - \eta_n(\rho_0) \right)^2
\]

\[
= 1 - \eta_n(\rho_0) + \eta_n(\rho_0)^2
\]

\[
= (1 - 2\alpha_{n+1}) \left(\sqrt{\rho_0^2 - \beta_n^2} - \alpha_{n+1} \right) + \rho_0^2
\]

\[
\geq \rho_0^2.
\]

11
So in both cases we conclude that \(f(x_i) = \delta \) for each \(i = 1, 2, \ldots, n - 1 \) and therefore

\[
 f(u) = W - f(v) - \sum_{i=1}^{n-1} f(x_i)
 = W - (W - n\delta) - (n - 1)\delta = \delta,
\]
as required. This completes the proof. \(\square \)

Remark 3.8.

(i) It follows immediately from the theorem proved here that an equilateral weight on a connected subset of \(\mathbb{R}^n \) that is the union of unit balls, is constant.

(ii) Our method of the proof should work also to show that an equilateral weight on an \(n \)-dimensional (closed) ball with radius greater than \(\alpha_{n+1} \) is constant. What is not completely clear to us is the case when the radius lies in the interval \((\beta_{n+1}, \alpha_{n+1}] \).

(iii) Although we have defined equilateral weights as real-valued functions, it is apparent from the proof that the same conclusion can be drawn if one considers group-valued equilateral weights on the unit ball of \(\mathbb{R}^n \).

REFERENCES

[1] N. Alon and P. Pudlák, *Equilateral sets in \(\ell^n_p \)*, Geom. Funct. Anal. 13 (2003), 467–482.

[2] L. M. Blumenthal, *Theory and applications of distance geometry*, Clarendon Press, Oxford, 1953.

[3] S.V. Dorofeev and A.N. Sherstnev, *Frame-type functions and their applications*, Izv. vuzov matem. no. 4 (1990), 23–29 (in Russian).

[4] A. Dvurečenskij, *Gleason’s Theorem and Its Applications*, Kluwer Acad. Publ., Dordrecht, Ister Science Press, Bratislava, 1992.

[5] A. Dvurečenskij and S. Pulmannová, *New Trends in Quantum Structures*, Kluwer Acad. Publ., Dordrecht, 2000.

[6] A.M. Gleason, *Measures on the closed subspaces of a Hilbert space*, J. Math. Mech. 6 (1957), 885–893.

[7] S. P. Gudder, *Quantum Probability*, Academic Press Inc., Boston, San Diego, New York, Berkeley, Tokyo, Toronto, 1988.

[8] J. Hamhalter, *Quantum Measure Theory*, Kluwer Acad. Publ., Dordrecht, 2003.

[9] J. Koolen, M. Laurent, and A. Schrijver, *Equilateral dimension of the rectangular space*, Des. Codes Cryptogr. 21 (2000), 149–164.

[10] P. Pták and S. Pulmannová, *Orthomodular Structures as Quantum Logics*, Kluwer Acad. Publ., Dordrecht, 1991.

[11] C. M. Petty, *Equilateral sets in Minkowski spaces*, Proc. Amer. Math. Soc. 29 (1971), 369-374.

[12] V. S. Varadarajan, *Geometry of Quantum Theory*, Springer-Verlag, New York Inc., 1985.

E. Chetcuti, Department of Mathematics, Faculty of Science, University of Malta, Msida MSD 2080, Malta

E-mail address: emanuel.chetcuti@um.edu.mt
