An Approach for IOT based Power Consumption and Usage Minimization

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA

Volume 179
Number 33

Year of Publication: 2018

Authors:
Surbhi Mohnani, Priyanka Saxena

10.5120/ijca2018916736

Abstract

IOT is playing a very important role in information technology. Since, we all know that internet provides us the facility to share and access our useful information and the main role of IOT is to keep an eye on devices, and intake of electricity and how it can be used in our future houses to consume the energy. And so, in this era the smart homes and energy intake that will be beneficial for our home that includes-money usage in a proper manner. In previous approach we used techniques such as- genetic algorithm, apriori random pattern findings approaches; also some hybrid approach is used. Here approaches have been used that provides less solution. Because they have low accuracy intake parameters. In this paper ANN approach has been used that provides accurate result. It works on removing of noise and then find the accurate output in the field of electricity intake. The framework that we have used is JAVA and inputs or say parameters used are- accuracy, precision etc. are used to check an efficient proposed work. Then in future a hardware implementation is left.

References
1. Jatinder Singh, Thomas Pasquier, Jean Bacon, Hajoon Ko, and David Eyers, Twenty security considerations for cloud-supported Internet of Things, Internet Of Things Journal, IEEE 2015.

2. Md.Sarwar Kamal, Sazia Parvin, Kashif Saleem, Hussam Al-Hamadi, Amjad Gawanmeh, Efficient Low Cost Supervisory System for Internet of Things Enabled Smart Home, ICC2017: WT04-5thIEEE International Workshop on Smart Communication Protocols and Algorithms (SCPA 2017).

3. Guanglou Zheng, Rajan Shankaran, Mehmet Orgun, Li Qiao, and Kashif Saleem, Ideas and challenges for securing wireless implantable medical devices: A review, IEEE Sensors Journal, 2016.

4. Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab Hamid, Mohammad Shojaifar, Abdelmuttlib Ibrahim Abdalla Ahmed, Sajjad A Madani, Kashif Saleem, and Joel JPC Rodrigues, A survey on energy estimation and power modeling schemes for smartphone applications, International Journal of Communication Systems, 2016.

5. João Santos, Joel JPC Rodrigues, Bruno MC Silva, João Casal, Kashif Saleem, and Victor Denisov, An iot-based mobile gateway for intelligent personal assistants on mobile health environments, Journal of Network and Computer Applications, vol. 71, pp. 194–204, 2016.

6. João Santos, Joel JPC Rodrigues, João Casal, Kashif Saleem, and Victor Denisov, Intelligent personal assistants based on internet of things approaches, IEEE Systems Journal, 2016.

7. Qi Jing, Athanasios V Vasilakos, Jiafu Wan, Jingwei Lu, and Dechao Qiu, Security of the internet of things: perspectives and challenges, Wireless Networks, vol. 20, no. 8, pp. 2481–2501, 2014.

8. John A. Stankovic, Research Directions for the Internet of Things, National Science Foundation under grants CNS-1239483, CNS-1017363, and CNS-1319302. Copyright (c) 2014 IEEE

9. Design and Implementation of a Simple User Interface of a Smartphone for the Elderly 2014 IEEE 3rd global conferences on consumer electronices(GCCE)

10. Securing the IP-based internet of things with HIP and DTLS, April 2013

11. Research Directions for the Internet of Things 2014 IEEE

12. Omar Said, Development of an Innovative Internet of Things Security System, IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013

13. Thomas Kothmayr, Corinna Schmitt, Wen Hu, Michael Brunig, Georg Carle, DTLS based Security and Two-Way Authentication for the Internet of Things, Elsevier Journal of AdHoc Networks in May 2013.

14. Z. Shelby, K. Hartke, C. Bormann, B. Frank, Constrained Application Protocol (CoAP), IETF draft, RFC Editor (March 2013).

Index Terms

Computer Science

Information Sciences
Keywords

Energy consumption, ANN, Apriori Algorithm, IoT Devices, Smart Home, Energy Consumption.