Extended Reality Guidelines for Supporting Autism Interventions Based on Stakeholders’ Needs

Valentin Bauer1, Tifanie Bouchara1,2, Patrick Bourdot1

Accepted: 16 January 2022 / Published online: 4 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
While Extended Reality (XR) autism research, ranging from Augmented to Virtual Reality, focuses on socio-emotional abilities and autistic children requiring low support, common interventions address the entire spectrum and focus on other abilities, including perceptual abilities. Based on these observations, this paper first addresses common practitioners’ interventions, and then suggests XR use cases and guidelines to better support them. To do so, 34 interviews were conducted with stakeholders, mainly including practitioners, and then analyzed. Emerging XR use cases were compared with the findings from two former systematic literature reviews, and emerging design guidelines were compared with the findings from a literature survey that we conducted. Findings suggest that collaborative XR sensory-based and mediation approaches could benefit the entire spectrum.

Keywords
Extended reality · Autism spectrum disorder · Interviews · Design guidelines · Mediation · Multi-sensorimotor

Introduction
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition with a worldwide prevalence of around one percent (Lord et al., 2020), and three main features (American Psychiatric Association, 2013): social communication and social interaction disorders, focused interests, and sensory modulation disorders. In particular, sensory disorders affect around 90% of autistic people1 over the different sensory channels (Robertson & Baron-Cohen, 2017). Autistic traits include a tendency to focus on the details rather than on the overall situation (Frith, 1989), a perception that the world is going too fast (Gepner, 2018), executive dysfunction with for instance a resistance to change (Lord et al., 2020), and an associative thinking requiring to compare past experiences in order to make sense of a situation (Grandin, 2009). Co-occurring conditions are also common, e.g., attention disorders (Lord et al., 2020). Since autistic people belong to a spectrum, they display various sensorimotor and cognitive abilities, some requiring substantial support, being non-verbal and with cognitive disabilities, while others require “minimal support to complete academic work” (Bottema-Beutel et al., 2021, p.3).

While early, structured, and individualized approaches are advised to address autism challenges, multiple interventions exist (Sandbank et al., 2020). Behavioral interventions, such as Applied-Behavior Analysis (ABA), focus on the child’s behavior, including its antecedents and consequences, with many strategies, e.g., reinforcements (Lovaas, 1987). They can be combined with alternative communication methods, e.g., the Picture Exchange Communication System (PECS) (Flippin et al., 2010), or Makaton (Montoya & Bodart, 2009). Developmental interventions are grounded in developmental psychology and focus on active exploration and child-practitioner interactions (Piaget et al., 1969). Naturalistic Developmental Behavioral Interventions (NDBI) draw upon both previous interventions to teach developmental skills within naturalistic settings (Schreibman et al., 2015), e.g., the Early Start Denver Model (ESDM) (Rogers et al., 2012). Other interventions mainly focus on structuring the environment and self-monitoring, e.g., Treatment and Education of Autistic and related Communication-handicapped

1 This article uses autism stakeholders’ preferences in terms of terminology, such as identity-first language (e.g., autistic people) (Bottema-Beutel et al., 2021).
CChildren (TEACCH) (Mesibov et al., 2004). Psychodynamic interventions then focus on the social interactions and how thoughts affect behavior (Midgley et al., 2021). Sensory-based interventions also exist, to enhance the integration of multisensory interactive processes and cognitive abilities, such as with Sensory Integration Therapy (Schoen et al., 2018), or to prompt child-practitioner interactions through multisensory spaces, such as with Snoezelen (Lancioni et al., 2002). At last, integrative interventions use elements from different interventions to best cater for the child’s needs (Klein & Kemper, 2016). Yet, interventions often present challenges, such as difficulties in terms of access, flexibility, hard-to-get training, or expensive cost (Griffith et al., 2012; Lang et al., 2010). This paper suggests using technology-based interventions to support them.

Technology-based interventions using video games on various mediums such as tablets, desktop computers, or robots, are promising to overcome these issues, as they often appeal to autistic children (Grynszpan et al., 2014; Mazurek et al., 2015). More specifically, recent reviews highlight that Virtual Reality (VR) (Bradley & Newbutt, 2018; Dechsling et al., 2021; Mesa-Gresa et al., 2018; Parsons & Cobb, 2011; Parsons et al., 2017) and Augmented Reality (AR) (Benguer et al., 2020; Khowaja et al., 2020; Marto et al., 2019) are promising to complement autism interventions, through the creation of secure and individualized spaces, with a precise control over different stimuli, and the possibility to rehearse and record actions. Moreover, they display a good acceptability and usability with Head-Mounted Displays (HMDs) (Malihi et al., 2020; Newbutt et al., 2020) and room-centric spaces, e.g., Cave Automatic Virtual Environments (CAVE) (Cruz-Neira et al., 1992; Mesa-Gresa et al., 2018). In this paper, VR and AR are referred under the term Extended Reality (XR), because what belongs to the real and virtual worlds is a matter of proportions according to the virtuality continuum (Milgram & Kishino, 1994). Contrary to low-immersive devices (e.g., desktop computers), XR technology offers embodied multisensory capabilities which can be highly engaging for autistic individuals (Miller & Bugnariu, 2016). Although previous XR design reviews were conducted about autism interventions (Bozgeyikli et al., 2018), or more specifically NDBI (Dechsling et al., 2021), they seem to be disconnected from field practices that stakeholders encounter or use on a daily basis. Indeed, they are not informed by stakeholders’ views, namely, the views from practitioners and autistic individuals. Hence, this paper aims at extending these previous reviews by adopting a participative design perspective mainly accounting for practitioners’ views.

So far, most XR studies focus on socio-emotional abilities, as revealed by two systematic reviews (Benguer et al., 2020; Mesa-Gresa et al., 2018). Indeed, even when some studies mention using XR as Assistive Technologies for autism interventions (Rosenfield et al., 2019; Syriopoulou-Delli & Stefani, 2021), they concern the training of socio-emotional abilities, and not XR technologies that could be added to support and enhance the daily life of autistic people. Thus, most studies exclude the individuals who cannot work on such skills, because these individuals already require substantial support for conducting daily tasks (Bozgeyikli et al., 2018). Yet, Parsons et al. (2019)’s findings from a two-year seminar including 240 stakeholders indicated that perceptual specificities have to be more considered during the design process to better support autism interventions. This involves using participative design to give all stakeholders a voice (Fletcher-Watson et al., 2019; Frauenberger et al., 2011; Parsons et al., 2019; Porayska-Pomsta et al., 2012). By using such a participative design approach and considering all stakeholders’ concerns, this study aims at suggesting XR use cases to complement common interventions.

Moreover, most XR studies display inherent biases, due to possible misunderstandings or anxiety from autistic users, which prevent from their full validation (Bozgeyikli et al., 2018). They often come from a lack of communication between the different stakeholders involved (i.e., academics, practitioners, autistic individuals) (Pellicano et al., 2013, 2014), or from a non-consideration of autistic perception, non-ecological tests, or non-collaborative designs (Bozgeyikli et al., 2018; Parsons et al., 2019). Yet, apart from the recent Dechsling et al. (2021)’s study which extends NDBI to XR, no XR design recommendations are rooted in common interventions. Thus, a new set of XR user-centered design guidelines must be derived, informed by stakeholders’ insights about common interventions, and by stakeholders’ insights about XR guidelines in comparison with the existing XR autism literature. This paper aims at offering such guidelines.

The contributions of this paper are threefold. First, common practices of autism interventions are presented based on 34 semi-structured interviews with autism stakeholders, mainly including practitioners. Second, potential XR uses for autism interventions are derived from a comparison between the interviews’ findings and the findings from two systematic reviews about XR autism interventions (Benguer et al., 2020; Mesa-Gresa et al., 2018). Third, autism XR design guidelines are drawn from a comparison between the interviews’ findings, and the findings from a literature survey that we conducted. After detailing the methods, results are presented following these three contributions. A discussion finally suggests future directions for the XR autism research field.

Methods

The first objective of this paper was to get insights about common autism interventions, to then derive XR use cases and guidelines that are close to stakeholders’ needs. To that
respect, semi-directed interviews were designed and conducted, following methods that are described in the next subsection. The second objective was to check whether stakeholders’ insights about potential XR uses as a support for interventions, that were collected during the interviews, matched the focus of the existing XR studies. As two recent systematic literature reviews focusing on XR autism interventions existed at the time of our study (Berenguer et al., 2020; Mesa-Gresa et al., 2018), the interviews’ findings were compared with the findings from these reviews. At last, this paper aimed at offering XR design guidelines drawing upon stakeholders’ needs, as such guidelines were not provided by the two previous systematic reviews, nor by other reviews specifically focusing on XR autism design guidelines (Bozgeyikli et al., 2018; Dechsling et al., 2021). Thus, an XR literature design survey was conducted to look for these guidelines, and the interviews’ findings were then compared with the survey’s findings. The method used to conduct this survey is presented in the second subsection called “Method for the literature survey”.

Method for the Semi-directed Interviews

Semi-directed interviews were conducted with French autism stakeholders, mainly including practitioners. After presenting the methodology, data analyses are exposed, both being summarized in Fig. 1.

Participants

To get in contact with autism stakeholders, personalized emails were sent to three Autism Resource Centers, 49 healthcare structures specialized in autism and neurodevelopmental disorders, three associations representing autistic individuals and relatives, and 66 practitioners. Most contacts were found in the TAMIS address list. Moreover, proceedings of recent conferences about autism, sensoriality and technology were identified, using queries with the following keywords: “ASD” OR “autism”, “digital” OR “technology”, and “sensoriality”. In Europe, sixteen conferences or workshops appeared, from 2012 to 2019, mainly in France, except for two in Spain and one in England. Every attendee’s profile was examined and contacted when their activity simultaneously focused on autism, technology, and sensoriality. Furthermore, people interviewed were asked for other contacts at the end of each interview. Other experts were discovered through papers, blogs, and Autism Resource Centers’ webpages. Only French participants were contacted to avoid language misunderstanding with the main author. Moreover, most participants were in the Ile de France area (i.e., Paris district), to facilitate further in-situ investigations, e.g., observations of clinical practice.

Protocol

Interviews had two objectives: first getting an overview of how autism interventions are conducted, and second gathering the potential needs and viewpoints of participants regarding the use of digital tools as a support for interventions, and particularly XR. Interviews were based on a semi-directed questionnaire targeting practitioners that was built in three phases as suggested by Lallemand and Gronier (2016): phase 1 demographics (5mn, 2 questions); phase 2 interview body (30 mn, 9 questions); and phase 3 – ending (5 mn, 2 questions). The interview body is divided into two main parts targeting common autism interventions without digital tools from questions 3 to 9 (Q3 to Q9), and then with digital tools from Q10 to Q11. About the first part, Q3 to Q7 covered the main aspects of non-digital autism interventions.

Fig. 1 Method used to conduct and analyze the semi-directed interviews
These questions were derived from the authors’ knowledge at the beginning of the study, coming from a non-exhaustive review of the literature, including the French grey literature about intervention guidelines (Haute Autorité de Santé, 2018), as well as online communications from Autism Resource Centers. Then, Q8 targeted sensory-based interventions, to assess their relative importance among common practices. Q9 was added after the sixth interview, as all participants mentioned the use of mediation activities. Then, the second part investigated the current use and potential needs regarding digital tools (Q10) and XR (Q11). All questions were rephrased depending on the participant and on the context of the interview. Table 2 presents the basis of the questions in column 2, with respect to the three interview phases in column 1. For each question, keywords being representative of related topics were used to ask for additional details when these topics were not spontaneously mentioned by the interviewee. The list of keywords was gradually extended and refined over time, as the authors gained insights about autism interventions, the final list being displayed in column 3. To elicit more insights over specific actions and practices, the critical incident technique (Flanagan, 1954) was used, i.e., participants were always asked to give precise examples of the elements they were speaking about, for instance by describing the last time when the element occurred. With autistic participants, non-appropriate question was removed (Q3), and two questions were added: QA1 assessed their viewpoints regarding the healthcare interventions that they experienced, and QA2 asked about their atypical sensory perception. With academic participants Q3 was removed, and technology-focused questions were more explored (Q10, Q11).

Interviews with autism experts last between 34’ and 94’ with a mean duration of 59’. They include 19 women and 11 men, and were conducted using phone (n = 18), visioconference (n = 7), or face-to-face (n = 5). With autistic individuals and/or their families, they last between 43’ and 70’, with a mean duration of 51’, and were conducted using phone (n = 3), or face-to-face (n = 1). Two interviews were conducted with mothers of autistic children (one boy and one girl), one interview with an autistic man, and one interview with an autistic man and his family (the family being present due to his specific needs). Every participant signed a consent form prior interview, mentioning they were free to stop whenever they wanted. All interviews were audio recorded. All data collected were anonymized for transcription and analysis, using the “itw” keyword followed by the
For security reasons, no online cloud system was used to store data, and transcriptions were made manually.

Data Analysis

Data analysis mainly used a bottom-up approach with inductive coding called *grounded theory* (Charmaz, 2006). Hence, interview data was coded to extract meaningful phrasings, that were then sorted into different concepts and categories. The technique starts from no preconceived concepts. Instead, they are gradually built through multiple iterations between the data, concepts, and categories, which involves the use of constant comparative methods at the different analytic stages (Charmaz, 2006, p.54). The analysis process stops when the classification becomes stable. As concepts are sometimes connected, the same phrasing can be sorted into multiple concepts. During this qualitative analysis process, the first author’s subjectivity could have influenced the findings. Thus, to limit potential biases, an objectivist approach was used, i.e., the analysis focused on the interview data for themselves, without considering how they were produced (Charmaz, 2006, p. 131). Hence, repetitions, hesitations,
and prosody were not considered during the transcription process.

This overall grounded theory analysis includes three main steps. First, four main grounded theory iterations were conducted by the first author at different times (i.e., offset of several weeks) to reduce potential biases. Since all interviews were conducted in French, the concepts and categories were first created in French, and then translated and refined in English. To analyze interview data about non-digital interventions, only inductive coding was used. About data regarding digital tools and XR, inductive coding was first used, and then, from a late analytic stage, the emerging concepts were refined in connection with the XR autism literature to reveal potential gaps (Charmaz, 2006). This comparison process started at a late analytic stage to avoid importing too many pre-conceived ideas when starting the analysis. It involved the second and third steps of our overall analysis process. In the second step, participants’ needs regarding XR uses were compared with the existing XR uses that were reported by two systematic reviews (Berenguer et al., 2020; Mesa-Gresa et al., 2018) (see results’ section called “Comparison Between Stakeholders’ Needs and Literature XR uses”). These reviews were selected as they were recent, systematic, and exhaustive regarding XR existing use cases, and thus allowed to derive objective percentages representing the relative significance of the different purposes of XR autism studies (e.g., social training). Thus, they were suitable to draw a comparison with our interviews’ findings, and to reveal potential gaps. At last, during a third analytic step, since the two systematic reviews did not provide XR design guidelines accounting for stakeholders’ needs, nor other reviews specifically focusing on XR autism design guidelines (Bozgeyikli et al., 2018; Dechsling et al., 2021), an XR autism literature survey was conducted in relation to our emerging grounded theory. The objective was to identify such guidelines that we could then compare with the interviews’ findings (see results’ section “Comparison Between Stakeholders’ XR Design Insights and Literature guidelines”). The method that was used to conduct this literature survey is described hereafter. The three overall analytic steps were here presented sequentially for enhanced clarity, but they were conducted in parallel during the late analytic stage.

Method for the Literature Survey

Method for the Article Selection from the Literature

Drawing from Charmaz (2006, pp.164–168)s grounded theory method, we conducted an XR autism literature survey during the late analytic stage. The purpose was to derive literature design guidelines that we could compare with the interviews’ findings. At this late analytic stage, major XR concepts about sensorimotor and mediation issues had emerged that were not expected when conducting the interviews. Hence, as the survey was informed by the state of the grounded theory, it focused more on XR sensorimotor and mediation issues. Moreover, the survey mainly considered participative design approaches to consider all stakeholders’ views. Online queries were made with Google Scholar engine, to use the “cited by” option for each paper and thus reference more recent studies with similar interests. They combined the keywords: “Autism” OR “ASD”, “Virtual Reality” OR “Virtual Environment” OR “Augmented Reality” OR “Mixed Reality” OR “Technology” OR “Digital Tool”, “Multisensory Environment” OR “Sensoriality” OR “Mediation”, and “Participative Design”.

Two inclusion/exclusion criteria were used: (1) autism-related stereoscopic XR studies were included (e.g., CAVE and HMDs), or computer-related studies, if presenting relevant features for the XR medium (i.e., robot, touch-screen device, or room-centric setup); and (2) articles not offering design guidelines were excluded. Moreover, we focused more on participative design studies, as being more representative of all stakeholders’ views.

Screening Process and Protocol for Analysis

The first author searched the literature and reviewed all the studies according to the inclusion/exclusion criteria. The title was first screened. If relevant, the abstract was then screened, and followed by a full-text reading. If relevant, the study was then included in the survey. In total, 37 articles were selected (Alcorn et al., 2014; Aruanno et al., 2018; Bartoli et al., 2014; Bozgeyikli et al., 2018; Brosnan et al., 2019; Brown et al., 2016; Carlier et al., 2020; Constantini et al., 2017; Dautenhahn, 2000; Dechsling et al., 2021; Duris & Clément, 2018; Garzotto & Gelsomini, 2018; Garzotto et al., 2017; Halabi et al., 2017; Kerns et al., 2017; Koirala et al., 2019; Krishnappa Babu et al., 2018; Kuriakose & Lahiri, 2017; Lorenzo et al., 2019; Malihi et al., 2020; Maskey et al., 2019; Newbutt, 2013; Newbutt et al., 2016; Pares et al., 2005; Parsons et al., 2017, 2019; Robins et al., 2004; Spiel et al., 2017, 2019; Tang et al., 2019; Tarantino et al., 2019; Tardif et al., 2017; Tsikinas & Xinogalos, 2019; Virole, 2014; Wallace et al., 2010, 2017; Whyte et al., 2015). The selected articles were first screened for XR design guidelines, and then sorted according to the emerging concepts coming from the interview analysis. If a literature design guideline matched some emerging concept from the interviews, it was assigned to it. Else, if no relevant concept could be found, a new concept was created, and the guideline was assigned to it. In that case, the already assigned phrasings from the interviews and the literature design guidelines were double checked to see if they could also fit with this
new concept. This refactoring process was also applied when concepts gradually changed during the analysis of the interviews.

Results

Stakeholders’ insights about autism interventions without and with digital tools are first detailed, and respectively summarized in Tables 3 and 4. Then, stakeholders’ needs are compared with existing XR uses from autism research drawing from two literature reviews (Berenguer et al., 2020; Mesa-Gresa et al., 2018), the findings being summarized in Table 5. Finally, stakeholders’ design insights are compared with XR literature design guidelines, the findings being summarized in Table 6. For all tables, concepts and categories are reported from the most to the least reported concept or category according to stakeholders. Throughout the article, the number X of participants mentioning each concept is written inside parenthesis (n = X), next to a literature reference if also containing it. The categories’ names are italicized. Participants’ quotes were translated from French to English. The term “autistic child” is often employed, as participants mainly spoke about autistic children.

Analysis of Common Autism Interventions

This subsection details common autism interventions according to stakeholders, first without and then with digital tools. For enhanced readability, and due to differences between methods’ names in France and in other countries, methods’ names are not mentioned, except when important for the overall understanding.

Common Non-digital Autism Interventions

About the intervention context, Individualize the invention program and Structure the intervention program largely appear (respectively n = 33, n = 27), as ritualization and strong interindiviol differences are common. Individualization requires practitioners to be “creative”, as a psychomotor therapist says, depending on the intended therapeutic outcomes, i.e., starting from the child’s interests (n = 32) to tailor rewards (n = 16) and games (n = 10). For instance, a team supervisor says: “if a child loves the cartoon “Cars” then we’ll use boxes with Cars!” Such creativity concerns long-term projects (n = 13), the care methods used (n = 6), and the sessions (n = 14), as they always depend on the child’s state (e.g., tired). Though, individualization remains challenging (n = 15), being the most-reported sub-concept about difficulties faced in interventions, especially with non-verbal children who require substantial support. About structuration, at the session level, it consists in offering predictability (n = 27), of time (n = 21) and space (n = 19), such as routines (n = 17). For instance, a speech therapist always “sets the phone in the drawer to avoid unexpected ringing”. This prevents children from getting over aroused due to unexpected stimuli. Yet, difficulties can also be activity-related (n = 14), for instance since providing structured settings may be easier in public institutions. At the intervention program level, different periods of time with different activities are planned (n = 11) which last from days to months, depending on children. Practitioners first observe children through free play (n = 8), and then leverage their interests to strengthen the dyadic relationship through working activities (n = 7). Yet, practitioners warn about not overusing structuration (n = 6), as not preparing for real life (n = 4).

Regarding the intervention process, most stakeholders advise to Engage children in their intervention program (n = 33), to maximize the intended outcomes. This mainly relies on using playful activities (n = 30), strengthening the therapeutic alliance (n = 30) (i.e., child-practitioner relationship), and using behavioral strategies (n = 26). Playful activities derive from developmental methods. The therapeutic alliance consists in building a secure dyadic relationship then allowing to perform challenging tasks. It involves working on the content, with individualized playful activities (n = 27), as well as on the context, for instance by adapting the practitioner’s behavior (n = 19). As an occupational practitioner said: “I whisper, speak quiet, speak up, or speak with Makaton gestures”. Behavioral strategies (n = 26) mainly include using rewards (n = 19) and gradually increasing challenges (n = 18). Yet, building the therapeutic alliance remains difficult (n = 9), especially with children requiring substantial support (n = 9).

Work on sensoriality in intervention (n = 26) largely appears due to widespread sensory disorders, with two main concepts, i.e., Work on Sensory Processing Disorders (n = 21) and Provide multisensory environmental adaptations (n = 20). Practitioners often use sensory habituation to train hypo/hyper sensitivities (n = 15). To that respect, multisensory spaces allow “to first remove distressing elements and then to increase them” (n = 2). Other practices consist in modulating the audio-visual speed (n = 7), or in working on multisensory binding (n = 5). Sensory adaptations aim at maximizing attention and engagement, with various techniques. For instance, sensory loads targeting the hyposensitive channels can be used to regulate the child sensorimotor balance (n = 13), or sensory protections to protect the hypersensitive channels (n = 12), such as protection headphones (n = 12).

At last, it is necessary to Assess the state of the individual over time (n = 29), on the long (n = 28) and on the short
Category	Concept	Sub-concept	Examples/Details
Individualize interventions (n = 33)	Start from the child’s interests (n = 32)	Create game depending on the purpose (n = 10)	Game must depend on child’s interests (n = 4), skills (n = 2), fears (n = 1)
		Individualize rewards (n = 16)	
	Individualize communication method (n = 17)	Use alternative communication systems (n = 16)	Use pictograms / gestures, e.g., PECS (n = 14) & Makaton (n = 7) systems
		Communicate through mediation activities (n = 4)	Use any game (n = 3) or object (n = 1)
	Individualize sessions (n = 14)		
	Build personalized project (n = 13)		
	Individualize care method (n = 6)		
Engage children in their intervention program (n = 33)	Build and strengthen the therapeutic alliance (n = 30)	Use individualized playful activities (n = 27)	Use mediation activities (n = 24), e.g., music (n = 14), fine arts (n = 5)
			Use any appealing games (n = 12), e.g., video games (n = 5)
			Use autistic interests: sensory stimulation (n = 6), music (n = 5), machines (n = 4), geometric shapes (n = 3), things that spin (n = 3), bubbles (n = 3)
			Adapt the practitioner’s behaviors depending on the child (n = 19)
	Use playful activities (n = 26)		Be slow and enveloping (n = 12), e.g., adjust voice intensity (n = 4), do not over anticipate (n = 3), adapt to the child’s pace (n = 2)
			Provide meaningful explanations (n = 8)
			Understand the “autistic world” (n = 8), e.g., allow stereotypies (n = 1)
			Create a secure relationship with the child (n = 14)
			Create a secure relationship (n = 9); Enjoy the activity conducted (n = 7)
			Goal can be social (n = 13), cognitive (n = 5), sensory (n = 4)
Category	Concept	Sub-concept	Examples/Details
----------	---------	-------------	-----------------
Use behavioral strategies (n = 26)	Use rewards (n = 19)	Use sensory-based rewards (n = 9), the token economy method (n = 5), or verbal congrats (n = 4)	
	Gradually increase the challenge (n = 18)	Gradually adjust sensory loads (n = 13), helping strategies (n = 3), number of elements (n = 3), therapist place (n = 1)	
	The child imitates the practitioner (n = 7)		
	Use physical prompts (n = 4)		
	Set things available to prompt demands (n = 3)		
	Provide a sense of agency (n = 16)	Give choice over a few tasks (n = 16), offer possibilities to move (n = 1)	
	Alternate activities (n = 15)	Use challenging vs. appealing (n = 13), known vs. unknown tasks (n = 1)	
		Often change activities (n = 3)	
		Task can be done sitting (n = 3), moving (n = 3), outside (n = 1)	
	Use compensation strategies to relax the child (n = 14)	Make the child ready for performing challenging tasks (n = 12)	
		Use sensory stimulation (n = 7), relaxing activity (n = 4), start from stereotypic behaviors (n = 2)	
	Assess the state of the individual over time (n = 29)	Give daily strategies to prevent meltdowns (n = 4)	
	Assess child state on the long-term (n = 28)	Conduct sensory evaluation (n = 21)	
		Conduct sensory profiles (n = 20), clinical observations (n = 9), sensorimotor evaluation (n = 4)	
		Conduct psycho-developmental evaluation (n = 18)	
		Assess developmental state and autism severity (n = 15), language skills (n = 8), conduct clinical observations (n = 5)	
		Ask questions to parents (n = 10)	
		Use discussions (n = 7) and questionnaires (n = 3)	
	Assess the child evolution on the short term (n = 21)	Conduct observations (n = 18)	
		Take notes (n = 3), observe number of shared attentions (n = 3) and stereotypic behaviors (n = 2), new interests (n = 5)	
		Assess child at different intervention times (n = 8)	
		Conduct specific assessments (n = 8)	
		Discuss with people knowing the child (n = 8)	
		Discuss with relatives (n = 8), people at school (n = 2)	
Category	Concept	Sub-concept	Examples/Details
---	--	--	--
Structure the intervention program (n = 27)	Offer predictability of intervention program (n = 27)	Offer time predictability (n = 21)	Show visual planning at session start (n = 6) and timers (n = 4)
		Offer space predictability (n = 19)	Finish session with appealing activity (n = 4)
		Use routines (n = 17)	Use clear learning areas (n = 6), clean space before child arrives (n = 3)
			Show pictures of activities before to start (n = 2)
			Ritualize activities and their organization (n = 14)
		Use similar methods in all activities/spaces (n = 9)	Repeat activities (n = 6)
		Observe individual to detect his interests (n = 8)	Provide parental advice (n = 9)
		Build the relationship with the child (n = 7)	
Structure intervention over different periods (n = 11)		Prepare for real life unpredictability (n = 4)	
		Over structuration can prompt ritualization (n = 3)	
Don’t overuse structuration (n = 6)			
Faced difficulties in interventions (n = 27)	Faced difficulties working with autistic individuals and their families (n = 21)	Find the suitable individualized intervention approach (n = 15)	Some sensory channels remain hard to stimulate (n = 7)
			Assess the impact of the intervention (n = 6)
			Help without stigmatizing (n = 4)
			Make activities meaningful (n = 2)
		Build the therapeutic alliance (n = 9)	Understand the child’s actions and feelings (n = 6)
		Reassure parents about possible fears (n = 8)	Handle heteroaggressivity (n = 3)
			Fears of the methods used (n = 6) and institution (n = 4)
		Faced activity-related difficulties (n = 14)	Health environment differs from daily life (n = 9)
			Face difficulties linked with private/public work context (n = 7)
			Healthcare equipment is often expensive (n = 3), e.g., Snoezelen
			Sensoriality in interventions remains new (n = 6)
			Face lack of specialized practitioners (n = 6)
Category	Concept	Sub-concept	Examples/Details
---	---	---	--
Work on sensoriality in intervention (n = 26)	Work on sensory processing disorders (n = 21)	Conduct gradual sensory habituation (n = 15)	Gradually adjust specific sensory loads (n = 13)
		Modulate audiovisual information speed (n = 7)	Work in flexible multisensory environment (n = 8)
		Work on multisensory representations (n = 5)	Use Logiral (n = 6) (Tardif et al., 2017) or Youtube (n = 1)
		Use contrasted sensory elements (n = 3)	Use sensory lottos (n = 5); Gradually adjust sensory density (n = 1)
		Provide multisensory environmental adaptations (n = 20)	Use environmental contrast in multisensory spaces (n = 2)
		Offer sensory loads to regulate the child sensorimotor balance (n = 13)	Give specific simulation based on child particularities (n = 9)
		Use sensory protections (n = 12)	Work in adjustable multisensory environment (n = 8)
		Use contrasted sensory elements (n = 3)	Protections can be audio (n = 12) (headphones), tactile (n = 2), (smooth ground cover), visual (n = 1) (sunglasses)
		Work in a neutral environment (n = 11)	Limit environmental sensory information: visual distractors (n = 6) (posters on walls...), neutral colour of walls (n = 3)

Token economy method can be situated within ABA methods. It uses systematic reinforcements of target behaviors, with "tokens" that can be exchanged for other rewards
Category	Sub-category	Content description	Game name (when mentioned) and medium
Social skills (38% / n = 13)	Social skills and emotions (n = 4)	Video modeling (n = 2)	Autimo (P, n = 1) (Auticiel, 2015)
		Social scenario (n = 3)	JeMIME (C, 3D, n = 1) (Grosbard et al., 2019)
			JeStimULE (C, 3D, n = 1) (Sernet et al., 2014)
Group activities (n = 2)	Video game workshop (n = 2)	Degrees of Separation (C/PS, n = 1) (Moondrop, 2019)	Human Full Flat (C/PS, 3D, n = 1) (No Brakes Games, 2016)
		Storytelling workshop (n = 1)	Ico (C/PS, 3D, n = 1) (Sony Interactive Entertainment, 2011)
Assistive technologies (38% / n = 13)	Alternate and Augmented Communication (n = 12)	Tailored pictograms (n = 12)	NikiTalk (P, n = 3) (La Rocca, 2019)
			Snap Core (C/P, n = 2) (Tobii Dynavox, 2021)
			LetMeTalk (P, n = 1) (appNotize UG, 2014)
			Dis-mol! (P, n = 1) (Carlavier, 2013)
		Daily planning (n = 1)	PROLOQUO2GO (P, n = 1) (AssistiveWare, 2013)
		Visual planning (n = 1)	Avaz (P, n = 1) (Avaz, Inc., 2020)
			CommunicatioTool (P, n = 1) (C. Texdev, 2016)
Mediation/Well-being (29% / n = 10)	Rewarding activity (n = 10)	Any appealing game	Application allowing to burst balloons (P, n = 1)
			Youtube Channels (C/P, NS, n = 1)
		Mediation (n = 4)	Angry birds (all, n = 2) (Rovio, 2009)
			Bumpy (Cons, n = 1) (Loriciels, 1989)
			Théâtre de Minuit (C, n = 1) (Dada Média, 1999)
			Various brick breaker games (T/C, n = 1)
			Video game displaying an aquarium (C, n = 1)
			Tetris (all, n = 1) (Pajitnov, 1984)
			My Talking Panda (P, n = 1) (Sofia_Sof, 2017)
			My Piano (P, n = 1) (Trajkovski Labs, 2000)
			Real Drum (P, n = 1) (Kolb Sistemas, 2012)
			Noogra Nuts (C/P, n = 1) (Bengigi, 2012)
			Games based on « Simon Says» (all, n = 1)
			Talking Ginger (P, n = 3) (Outfit7, 2012)
			GTA Vice City (Cons, 3D, n = 1) (Rockstar North, 2015)
Table 4 (continued)

Category	Sub-category	Content description	Game name (when mentioned) and medium
Education (24% / n = 8)	Cognitive remediation	Programming workshop (n = 2)	2D graphics
	(n = 8)	Appealing game, e.g., puzzle, memory game (n = 7)	3D graphics/other
			RobAutisme (C/R, other, n = 1)
			Scratch Programming
			Language (C, other, n = 1)
			Resnick, 2006
	Narrative understanding	Storytelling workshop (n = 1)	*School* (P, other, n = 1, other)
(n = 1)			*LearnEnjoy*, 2012
	Daily living skills	Activity: brushing teeth (n = 1)	*Watch’n’Learn* (P, other, n = 1)
(n = 1)			*Peters*, 2018
	Sensoriality (24% / n = 8)	Multisensory binding (n = 6)	2D graphics
		Looking at videos and slowing down their speed (n = 4)	3D graphics/other
		Playful activity to increase auditory understanding (n = 1)	
		Playful activity with audio-tactile tangibles (n = 2)	*Logiral* (C/P, other, n = 3)
	Psychomotor difficulties	Playful activity to work on fine motor skills (n = 1)	*Application for doing listening lottos* (NS, other, n = 1)
(n = 2)			*Tangible allowing to play music (TI, other, n = 1)
			Theremin instrument (TI, other, n = 1)
	Body awareness (n = 1)	Storytelling workshop (n = 1)	
			RobAutisme (C/R, other, n = 1)
	Diagnosis (6% / n = 2)	Sensory profile (n = 1)	*SensoEval* and *SensoMott* (P, other, n = 1)
		Assessment of language understanding (n = 1)	

C: Desktop Computer; P: Tablet and/or Phone; R: Robot; TI: Tangible Interface; PS: Projected Screen; Cons: Video Game Console; Ki: Kinect; NS: Non-specified

Listening lottos are listening games where the child has to listen to sounds that are presented and to associate them with the corresponding images.
Category	Concept	Objectives	Examples
Mediation and well-being	Make the child ready for challenging tasks	Use individualized multisensory space (n = 8)	Snoezelen-inspired (n = 10), tipi-like spaces (n = 1)
		Use individualized real stereotypes (n = 3)	Breaking glasses (n = 1), being on a trampoline (n = 1), in a car (n = 1)
		Use audio-only appealing environment (n = 2)	
	Support the therapeutic alliance through mediation activities	Do creative activities (n = 3)	Painting (n = 2), making music (n = 2)
		Do any appealing activity (n = 1)	Any activity for the child
		Use Snoezelen-like space (n = 1)	
	Enhance Well-being though Physical Activity	Give motivation to do sport (n = 0, MG:3%, B:0%)	Solarjumper VR exergame-SSS (Finkelstein et al., 2013)
Social and cognitive training	Train socio-emotional and Interactional abilities	Train Social and Interaction abilities (n = 13, MG:45%, B:55%)	Virtual dolphin to interact with as dolphin trainer— VR—R (Cai et al., 2013); Collaborative activity involving perspective-taking—VR—C (Parsons, 2015); Extension of pictogram communication systems—AR—P (Taryadi and Kurniawan, 2018); Virtual agent using artificial intelligence— VR—M and Eye tracking (Bernardini et al., 2013)
		Anticipate fearful situations (n = 7, MG:3%, B:0%)	
		Medical examinations (n = 6), transports (n = 2)	
Category	Concept	Objectives	Examples
----------	---------	------------	----------
Train emotions (n = 1, MG:21%, B:20%)	NM	Social scenarios (home scene, school bus, school library, tuck shop, physical education class on the playground)—Half-CAVE—VR (Ip et al., 2018); Facial expressions and emotions using an augmented storybook—AR—P (Chen et al., 2016)	
Train cognitive abilities (n = 3, MG:5%, B:15%)	Adapting VB-MAPP (n = 1) and Boehm concepts to XR (n = 1)		
Train daily living skills (n = 4, MG:13%, B:5%)	Indoor environment: taking a shower (n = 2), brushing their teeth (n = 2)	Indoor environment: Brushing teeth—marker-based AR picture prompt to trigger a video model clip of a student (Cihak et al., 2016)	
Indoor environment	Outdoor environment: Sensory integration in multisensory spaces (n = 6): Snoezelen-like (n = 6)	Outdoor environment: Real-life social scenarios (e.g., supermarket)—HMD-VR (Adjorlu et al., 2017); Pretend-Play—PP & AR—C (Bai et al., 2015)	

Table 5 (continued)

Category	Concept	Objectives	Examples	
Sensoriality	38% / n = 13	MG: 0% B: 5%	Rehabilitate sensory disorders (n = 10, MG: 0%, B: 5%)	Sensory habituation to real-life scenarios (n = 7): school (n = 3), supermarket (n = 2), daily situations (n = 2)
			Rehabilitate sensorimotor disorders (n = 10, MG: 0%, B: 5%)	Sensory integration in multisensory spaces (n = 6): Snoezelen-like (n = 6)
				SEMI Project—Four interactive games—AR—Ki (Magrini et al., 2019)
Table 5 (continued)

Category	Concept	Objectives	Examples
Name	Weight \(P\) L	Name Weight \(P\) L	Participants Literature (from MG and B reviews)
Assess sensory disorders	\(n = 6\) \(MG:0\%\) \(B:0\%\)	Assess sensory disorders (\(n = 4\))	Real-life scenario (\(n = 2\)), e.g., supermarket (\(n = 1\))
			Non-realistic scenario (\(n = 2\)), e.g., Snoezelen (\(n = 2\))
Work on action-reaction principles	\(n = 4\) \(MG:0\%\) \(B:0\%\)	Get inspiration from real-life scenario (\(n = 3\))	–
Assistive technologies	\(15\% / n = 5\) \(MG:0\%\) \(B:0\%\)	Add assistive virtual information (\(n = 3\))	Adding information to daily social situations (\(n = 1\)), e.g., about emotions (\(n = 1\))
			Filtering distressing noises (\(n = 1\))
Support sensory strategies	\(n = 1\) \(MG:0\%\) \(B:0\%\)	Offer a resourceful sensory space (\(n = 1\))	Creating an AR tipi-life space (\(n = 1\))

AR Augmented Reality, *P* participants, *L* literature, Comparison with Literature reviews in *VR* from *Mesa Gresa* (MG) and *AR* from *Berenguer* (B), *R* (Room-centric display), *HMD* head-mounted display, *P* Tablet and/or phone; *C* Desktop Computer, *SS* stereoscopic surround-screen, *SM* Smartglasses, *PP* physical props, *M* multitouch display, *Ki* Kinect, *NM* not mentioned.
terms (n = 21). On the long term, evaluations are first conducted at the intervention start, by combining standardized tests about sensorimotor (n = 21), and psycho-developmental features (n = 18). These tests are mainly based on questionnaires, interviews with relatives and/or the child, and clinical observations (respectively n = 9, n = 5). Then, combining evaluations at regular time intervals (n = 8) allows to infer the child’s progress. On the short term, observations are used (n = 18) by looking at specific individualized features, e.g., repetitive behaviors (n = 2).

Existing Uses of Digital Tools in Interventions

According to most participants, digital tools can support common interventions (n = 27), as they are engaging (n = 2), predictable (n = 2), individualizable (n = 2), repeatable (n = 2), responsive (n = 1), stable (n = 1), can relieve from human interaction (n = 2), and can allow to be wrong (n = 1) (see Table 4). Tablets are often used, being intuitive for children (n = 4), as well as computers. Participant’s interests go beyond social skills, and include three main categories, namely Social skills (n = 13), Assistive technologies (n = 13), and Mediation/Well-being (n = 10), and three minor categories, namely Education (n = 8), Sensoriality (n = 8), and Diagnosis (n = 2). Various games are used to adapt to the child’s abilities, the intervention context, and the intended outcomes. Games with simple interfaces, little information, and clear goals are preferred (n = 5). To train social skills, social scenarii (n = 3) are often used with solo (n = 4) or group (n = 2) activities. Then, assistive technologies are highly individualized. For instance, a team supervisor mentions the case of a non-verbal autistic child, who knows all Disney cartoons by heart, and uses a tablet to select and, through secure intermediate XR spaces. To that respect, task-dependent features can be modulated (e.g., number of people) in various aversive situations (n = 12) (e.g., medical examinations). These tests are mainly based on questionnaires, interviews with relatives and/or the child, and clinical observations (respectively n = 9, n = 5). Then, combining evaluations at regular time intervals (n = 8) allows to infer the child’s progress. On the short term, observations are used (n = 18) by looking at specific individualized features, e.g., repetitive behaviors (n = 2).

Comparison Between Stakeholders’ Needs and Literature XR Uses

The findings from the comparison between the stakeholders’ insights and the XR systematic reviews (Berenguer et al., 2020; Mesa-Gresa et al., 2018) are presented following four main categories which emerged from the analysis: Mediation and Well-being (n = 16), Social, Education and Cognitive Training (n = 14), Sensoriality (n = 13), and Assistive technologies (n = 5) (see Table 5).

Mediation and Well-Being

Although most participants mention the Mediation and Well-being category (47%), it remains under-researched, only representing three percent of the studies in Mesa-Gresa et al. (2018)’s review. Though, Newbut et al. (2020) previously raised this need, with 29 autistic children answering “It relaxes me and I feel calm” to the question “What could or would you use VR HMDs for?”. Participants evoke two main concepts, i.e., Make the child ready for performing challenging tasks (n = 13), which considers ways to reach a secure state before performing them, and Support the therapeutic alliance through mediation activities (n = 6). Three use cases appear. First, use cases draw upon multisensory spaces such as Snoezelen (n = 8), to strengthen the therapeutic alliance through secure intermediate XR spaces. Second, use cases are tailored to real-life stereotypic behaviors that children need to use to calm down, e.g., being in a car (n = 1). A team director describes them as “derivatives of stereotypies”, to “fill some sensory needs in a less stigmatizing way”. At last, creative scenarii appear, in line with common interventions (n = 3), e.g., music-making (n = 2). Yet, as some children may struggle to stop using these appealing environments (n = 3), participants suggest to gradually decrease any appealing stimuli before to stop (n = 1).

Social and Cognitive Training

Whereas 41% of the stakeholders mention the Social and Cognitive Training category, more than 87% of the studies from the two literature reviews are connected to it (Berenguer et al., 2020; Mesa-Gresa et al., 2018). Real-life use cases mainly appear, with two main concepts, i.e., Train socio-emotional & Interactional abilities (n = 14) and Train cognitive abilities (n = 6). The first concept consists in gradually habituating the child to daily social situations through a secure XR space. To that respect, task-dependent features can be modulated (e.g., number of people) in various aversive situations (n = 12) (e.g., medical examinations (n = 6)), to promote the generalization of the skills learned into real life. Then, cognitive abilities include daily living skills (n = 4), at home (e.g., brushing teeth) or outside (e.g., buying things in a supermarket). Other cognitive skills are mentioned (n = 3), such as attentional abilities (Escobedo et al., 2014), inspired from behavioral (e.g., ABA) (n = 1) or educational approaches (e.g., Boehm-3) (n = 1) (Boehm and Psychological Corporation, 2000). Yet, such scenarii would only benefit individuals requiring low support, being able to understand them. An autistic participant also stresses that “No manual could ever cover all possible situations.”
Table 6 Comparison of XR guidelines coming from the literature with suggestions from the participants

Cat	Concept	Sub-concept	Literature	Participants	
Task design	Individualization	Content	Individualize content: Vary the tasks, interactions, stimuli, graphics	Individualize content (n = 15): Set up a familiar environment with reassuring elements (n = 14), adjust every sensory information (n = 5), possibly switch on/off every parameter (n = 2), set an open/closed space depending on the individual (n = 1), individualize rewards (n = 1), integrate individualized and alternative communication systems (n = 1)	
			(Bozgeyikli et al., 2018; Carlier et al., 2020; Dautenhahn, 2000; Dechsling et al., 2021; Parsons et al., 2017, 2019; Tarantino et al., 2019; Whyte et al., 2015), add familiar objects into XR (Tang et al., 2019), or onto the real-environment with AR (Tarantino et al., 2019), use physiological data to tailor the content, e.g., gaze (Krishnappa Babu et al., 2018), heart rate, skin temperature (Kuriakose & Lahiri, 2017)		
			Individualize content (n = 15): Set up a familiar environment with reassuring elements (n = 14), adjust every sensory information (n = 5), possibly switch on/off every parameter (n = 2), set an open/closed space depending on the individual (n = 1), individualize rewards (n = 1), integrate individualized and alternative communication systems (n = 1)		
Medium	Individualize medium according to the child’s preferences (Dechsling et al., 2021): Use CAVE system if HMD is not tolerated, or desktop computer or tablet if more feasible	Individualize medium according to the child’s preferences (n = 1): Use tablet/desktop computer if HMD is not accepted	Make it playful: Use individual’s interests (n = 5) (i.e., music (n = 3), circular elements (n = 2)), visualize progress (e.g., scoring system, collectables) (n = 3), use feedbacks/feedforwards (n = 2), use rewards (n = 2), play around presence/absence (n = 2), play with their own shadow (n = 1)	Make it playful (n = 5): Use individual’s interests (n = 5) (i.e., music (n = 3), circular elements (n = 2)), visualize progress (e.g., scoring system, collectables) (n = 3), use feedbacks/feedforwards (n = 2), use rewards (n = 2), play around presence/absence (n = 2), play with their own shadow (n = 1)	
Engagement	Fun		Make it playful: Use a scoring system (Bozgeyikli et al., 2018; Kerns et al., 2017), challenges and hidden elements (Tang et al., 2019; Tsikinas & Xinogalos, 2019), storytelling and short/long term goals (Tang et al., 2019; Whyte et al., 2015), non-linear gameplay (Tang et al., 2019), digital companion (Tang et al., 2019), immediate feedback, and customization of avatars	Make it playful (n = 5): Use individual’s interests (n = 5) (i.e., music (n = 3), circular elements (n = 2)), visualize progress (e.g., scoring system, collectables) (n = 3), use feedbacks/feedforwards (n = 2), use rewards (n = 2), play around presence/absence (n = 2), play with their own shadow (n = 1)	Make it playful: Use a scoring system (Bozgeyikli et al., 2018; Kerns et al., 2017), challenges and hidden elements (Tang et al., 2019; Tsikinas & Xinogalos, 2019), storytelling and short/long term goals (Tang et al., 2019; Whyte et al., 2015), non-linear gameplay (Tang et al., 2019), digital companion (Tang et al., 2019), immediate feedback, and customization of avatars
			Prompt discovery: Use various non-concurrent elements (Bozgeyikli et al., 2018), e.g., movement (Bozgeyikli et al., 2018; Dautenhahn, 2000), shapes (Bozgeyikli et al., 2018), audiovisual stimuli (Carlier et al., 2020), 3D animations (Bozgeyikli et al., 2018), as well as unexpected elements (Alcorn et al., 2014; Brown et al., 2016; Virole, 2014)	Prompt discovery: Use unexpected elements (n = 3), use various non-concurrent elements (e.g., audiovisual stimuli surrounding the child) (n = 1)	Prompt discovery: Use various non-concurrent elements (Bozgeyikli et al., 2018), e.g., movement (Bozgeyikli et al., 2018; Dautenhahn, 2000), shapes (Bozgeyikli et al., 2018), audiovisual stimuli (Carlier et al., 2020), 3D animations (Bozgeyikli et al., 2018), as well as unexpected elements (Alcorn et al., 2014; Brown et al., 2016; Virole, 2014)
			Broaden the child’s attention (Dechsling et al., 2021): Use eye-tracking to detect fixations	Prompt discovery: Use unexpected elements (n = 3), use various non-concurrent elements (e.g., audiovisual stimuli surrounding the child) (n = 1)	Prompt discovery: Use various non-concurrent elements (Bozgeyikli et al., 2018), e.g., movement (Bozgeyikli et al., 2018; Dautenhahn, 2000), shapes (Bozgeyikli et al., 2018), audiovisual stimuli (Carlier et al., 2020), 3D animations (Bozgeyikli et al., 2018), as well as unexpected elements (Alcorn et al., 2014; Brown et al., 2016; Virole, 2014)
Body awareness		See oneself in XR (Bozgeyikli et al., 2018)	See oneself in XR (n = 1): See one’s shadow (n = 1)	See oneself in XR (n = 1): See one’s shadow (n = 1)	See oneself in XR (n = 1): See one’s shadow (n = 1)
Cat	Concept	Sub-concept	Literature	Participants	
-------------	--------------------------------	--------------------------------------	---	--	
Environmental adaptations	Gradually increase/decrease: motor and cognitive complexity	Gradually increase/decrease (n = 13): number and types of stimuli (n = 8), level of realism (for social scenarios) (n = 4), predictability (n = 3), environmental neutrality (n = 3), level of control (n = 1), number of distractors (n = 1), dynamism (n = 1), prompts (n = 1)	Gradually increase/decrease (n = 13): number and types of stimuli (n = 8), level of realism (for social scenarios) (n = 4), predictability (n = 3), environmental neutrality (n = 3), level of control (n = 1), number of distractors (n = 1), dynamism (n = 1), prompts (n = 1)		
	Gradually increase/decrease: number and types of elements (e.g., crowdedness, stimuli, dynamism) (Tarantino et al., 2019) or types of elements (e.g., shapes, avatar’s reactions, instructions, gestural prompts) (Dechsling et al., 2021)	Gradually increase/decrease (n = 13): number and types of stimuli (n = 8), level of realism (for social scenarios) (n = 4), predictability (n = 3), environmental neutrality (n = 3), level of control (n = 1), number of distractors (n = 1), dynamism (n = 1), prompts (n = 1)	Gradually increase/decrease (n = 13): number and types of stimuli (n = 8), level of realism (for social scenarios) (n = 4), predictability (n = 3), environmental neutrality (n = 3), level of control (n = 1), number of distractors (n = 1), dynamism (n = 1), prompts (n = 1)		
	Gradually increase/decrease: motor and cognitive complexity (Bozgeyikli et al., 2018; Carlier et al., 2020; Dechsling et al., 2021; Tang et al., 2019; Tarantino et al., 2019; Whyte et al., 2015), i.e., number of elements (e.g., crowdedness, stimuli, dynamism) (Tarantino et al., 2019) or types of elements (e.g., shapes, avatar’s reactions, instructions, gestural prompts) (Dechsling et al., 2021)	Gradually increase/decrease (n = 13): number and types of stimuli (n = 8), level of realism (for social scenarios) (n = 4), predictability (n = 3), environmental neutrality (n = 3), level of control (n = 1), number of distractors (n = 1), dynamism (n = 1), prompts (n = 1)	Gradually increase/decrease (n = 13): number and types of stimuli (n = 8), level of realism (for social scenarios) (n = 4), predictability (n = 3), environmental neutrality (n = 3), level of control (n = 1), number of distractors (n = 1), dynamism (n = 1), prompts (n = 1)		
Rewards	Individualize rewards (Dechsling et al., 2021; Tang et al., 2019): Use personal (Kientz et al., 2013; Whyte et al., 2015) sensory-based (Bozgeyikli et al., 2018; Carlier et al., 2020) or generic (Constantin et al., 2017) rewards, often assess new child’s rewards (Dechsling et al., 2021)	Individualize rewards (n = 1)	Individualize rewards (n = 1)		
Sense of agency	Make the child feel in control (Bozgeyikli et al., 2018; Dautenhahn, 2000; Parsons et al., 2019; Spiel et al., 2019): Use child-initiated episodes (e.g., from what they like, or by making them choose between different actions/activities/game pathways) (Dechsling et al., 2021; Pares et al., 2005; Parsons et al., 2019; Tang et al., 2019; Whyte et al., 2015), adjust the information speed (Tardif et al., 2017), make the environment respond to various actions (e.g., gestures, voice) (Pares et al., 2005)	Make the child feel in control (n = 14): Use child-initiated episodes (e.g., from what they like, or by making it possible to choose between different activities (n = 6), give them the possibility to freely move in space (n = 2)	Make the child feel in control (n = 14): Use child-initiated episodes (e.g., from what they like, or by making it possible to choose between different activities (n = 6), give them the possibility to freely move in space (n = 2)		
	Make the child feel in control (Bozgeyikli et al., 2018; Dautenhahn, 2000; Parsons et al., 2019; Spiel et al., 2019): Use child-initiated episodes (e.g., from what they like, or by making them choose between different actions/activities/game pathways) (Dechsling et al., 2021; Pares et al., 2005; Parsons et al., 2019; Tang et al., 2019; Whyte et al., 2015), adjust the information speed (Tardif et al., 2017), make the environment respond to various actions (e.g., gestures, voice) (Pares et al., 2005)	Make the child feel in control (n = 14): Use child-initiated episodes (e.g., from what they like, or by making it possible to choose between different activities (n = 6), give them the possibility to freely move in space (n = 2)	Make the child feel in control (n = 14): Use child-initiated episodes (e.g., from what they like, or by making it possible to choose between different activities (n = 6), give them the possibility to freely move in space (n = 2)		
	Allow the user to author the XR environment (Parsons et al., 2019)	Allow the user to author the XR environment (n = 3): Record and repeat sounds or videos (n = 3)	Allow the user to author the XR environment (n = 3): Record and repeat sounds or videos (n = 3)		
Imitation	Use modelling partners who simulate situations (Dechsling et al., 2021), e.g., peers, avatars	Use modelling partners who simulate situations (n = 1)	Use modelling partners who simulate situations (n = 1)		
	Use avatars who imitate the child (Dechsling et al., 2021), e.g., language, play, and body movements	Use avatars who imitate the child (n = 1)	Use avatars who imitate the child (n = 1)		
Cat	Concept	Sub-concept	Literature	Participants	
------------------------------	-----------------------------	--------------------------------	---	---	
Sensoriality and perception	Structuration of time & space	Offer predictability (Bozgeyikli et al., 2018; Carlier et al., 2020; Dautenhahn, 2000); Avoid loud sudden sounds (Bozgeyikli et al., 2018)	Offer predictability \((n = 8) \): Use little distractors \((n = 6) \), use visual activity timers \((n = 3) \), alert about the presence of stimuli \((n = 2) \)		
		Give repetition possibilities (Bozgeyikli et al., 2018; Carlier et al., 2020; Lorenzo et al., 2019), e.g., routine in training (Bozgeyikli et al., 2018; Carlier et al., 2020)	Give repetition possibilities \((n = 10) \)		
Interaction types	Use accessible interaction types (Bozgeyikli et al., 2018; Brown et al., 2016; Parsons et al., 2019), e.g., speech recognition (Halabi et al., 2017), or touchless interaction (Bartoli et al., 2014)	Use accessible interaction types \((n = 4) \), i.e., ergonomic controllers \((n = 4) \), tangibles XR controllers \((n = 3) \)			
		Offer various ways to interact (Bozgeyikli et al., 2018; Pares et al., 2005; Parsons et al., 2019)	Use motion-based embodied interaction \((n = 1) \), e.g., no teleportation \((n = 1) \)		
		Use motion-based embodied interaction (Bartoli et al., 2014; Brown et al., 2016; Dautenhahn, 2000)			
Meaningful experiences	Draw links with the real world (Bozgeyikli et al., 2018; Tang et al., 2019)	Draw links with the real world \((n = 1) \)			
		Make experiences meaningful (Dautenhahn, 2000): Consider autism perception, e.g., visual memory (Bozgeyikli et al., 2018), and associative way of thinking (Dechsling et al., 2021; Virole, 2014)	Make experiences meaningful \((n = 1) \): Use the individualized communication system of the child in XR \((n = 1) \)		
Collaboration	Prompting & reassurance	A practitioner/relative can prompt the child (Dechsling et al., 2021; Parsons et al., 2019), e.g., instructions, gestures, physical prompts	The practitioner/relative can prompt the child \((n = 2) \), e.g., to help \((n = 2) \)		
		The child can see the practitioner, e.g., for reassurance (Dautenhahn, 2000)	The child can see the practitioner \((n = 10) \): for reassurance \((n = 2) \) or if context-relevant \((n = 2) \)		
Shared controls		Share controls between the child and practitioner \((n = 10) \)			
Table 6 (continued)

Cat	Concept	Sub-concept	Literature	Participants
Protocol to conduct XR sessions	Intervention context	Secure environment	*Give predictability:* Practitioners may wear the HMD and suggest the child to handle it before to wear it (Garzotto et al., 2017)	*Give predictability* ($n = 5$): Make the planning clear before to start ($n = 3$), use pictograms showing what the XR space will look like ($n = 1$), practitioners may wear the HMD before the child ($n = 1$)
Organization of sessions			*Make the experience meaningful for the child:* Combine different elements and strategies (Dechsling et al., 2021)	*Make the experience meaningful for the child:* Use understandable vocabulary to present the experience ($n = 4$), make sure everything is understood prior to start ($n = 2$)
Keep the child engaged			*Keep the child engaged:* Make short sessions and include breaks (Bozgeyikli et al., 2018)	*Keep child engaged* ($n = 8$): Alternate work and relaxation activities in XR ($n = 5$), alternate work in XR and in real life ($n = 2$), keep sessions short ($n = 1$) (e.g., around 15 mn)
Include XR experiment as part of the overall intervention			*Include XR experiment as part of the overall intervention:* Make long-term studies (Bozgeyikli et al., 2018; Robins et al., 2004)	*Include XR experiment as part of the overall intervention* ($n = 4$): Set up weekly sessions ($n = 2$), use XR at specific moments of the therapy ($n = 1$), make long-term studies ($n = 1$)
Establish detailed procedures and provide training for the practitioners			***	
Cat	Concept	Sub-concept	Literature	Participants
---------------	-----------------------------	----------------------------	--	--
Mixed methods	Quantitative Evaluation	Assess the child’s state before the experience	(Malihi et al., 2020; Maskey et al., 2019)	Assess initial state of the child (n = 1): Conduct sensory profile
		Assess the child’s experience: No consensus exists: Collect behavioral data (Dechsling et al., 2021), e.g., repetitive behaviors (Pares et al., 2005), interaction logs (Dechsling et al., 2021), eye-tracking (Dechsling et al., 2021; Koirala et al., 2019); collect physiological data (Kuriakose & Lahiri, 2017); use custom questionnaires (Aruanno et al., 2018; Garzotto & Gelsomini, 2018; Garzotto et al., 2017; Tarantino et al., 2019); use common XR presence/anxiety questionnaires (Malihi et al., 2020; Wallace et al., 2010, 2017); use autism intervention questionnaires (Malihi et al., 2020; Maskey et al., 2019)	Assess the child’s experience and performance (n = 2): Collect physiological data for stress (e.g., biosensors, pressure sensors) (n = 2), log observational data (n = 2)	
		Assess practioners’ actions	(Dechsling et al., 2021), e.g., behavioral data, prospective adjustments	Measure the ongoing progress (Dechsling et al., 2021): Collect data from multiple measures
	Qualitative evaluation	Conduct behavioral observations: Film sessions (Pares et al., 2005) and take notes (Brown et al., 2016)	Conduct behavioral observations (n = 2): film sessions (n = 2), take notes (n = 1)	Carry out interviews (n = 1): if children can answer (n = 1)
		Conduct interviews, i.e., with caregivers/parents (Pares et al., 2005) and children	Carry out interviews (n = 1): if children can answer (n = 1)	Carry out interviews (n = 1): if children can answer (n = 1)
		Conduct interviews, i.e., with caregivers/ parents (Pares et al., 2005) and children (use videos, images, drawings if non-verbal, and closed questions, with screenshots, smileys if verbal) (Spiel et al., 2017)	Carry out interviews (n = 1): if children can answer (n = 1)	Carry out interviews (n = 1): if children can answer (n = 1)
Cat	Concept	Sub-concept	Literature	Participants
----------------------	--------------------------	------------------------------	---	--------------
Design process	Participative design	Participative design	Use participative design (Bozgeyikli et al., 2018; Brosnan et al., 2019; Dechsling et al., 2021; Parsons et al., 2019; Spiel et al., 2019): Value the design experience of the child (Parsons et al., 2019)	Use participative design (n = 5)
			Explicit all questions between stakeholders before to engage in collaboration (Parsons et al., 2019)	
Inclusivity			Consider the entire autism spectrum: Consider autism strengths and difficulties, include individuals requiring substantial support and adults (Bozgeyikli et al., 2018; Parsons et al., 2019)	Consider the entire autism spectrum (n = 7): Include individuals requiring substantial support (n = 5) and adults (n = 2)
Equipment	Context-dependent		Use ergonomic and affordable equipment, i.e., light (Bozgeyikli et al., 2018), portable, small (Newbutt et al., 2016), non-tethered, affordable (Parsons et al., 2019)	Use ergonomic and affordable equipment (n = 4): resistive (n = 3), not cumbersome (n = 2), portable (n = 2), affordable by using HMDs (n = 2), non-tethered or with long wires (n = 1)
Task-dependent			Use AR to aid in the generalization from virtual to the real world (Dechsling et al., 2021)	
Use context	Setting		Conduct experiments in ecological settings (Bozgeyikli et al., 2018; Parsons et al., 2019)	Conduct experiments within ecological settings (n = 1)
Age range			Age range: Possible from 13 years old for non-autistic people (Gent, 2016)	Age range is task-dependent (n = 7)
Information presentation	Little and clear information	Little information	Use little tasks to complete, e.g., unique goal per gaming session (Carlier et al., 2020)	Use little tasks to complete (n = 4)
			Avoid stimuli when not task-relevant (Bozgeyikli et al., 2018; Carlier et al., 2020; Virole, 2014): Use simplified graphics (Bozgeyikli et al., 2018; Tarantino et al., 2019)	Avoid stimuli when not task-relevant: Use neutral environment (n = 7) and simplified graphics (n = 4)
			Display clear information (Bozgeyikli et al., 2018): foreground/background differentiation, clutter-free	Make information clearly visible (n = 1): Use clear foreground/background differentiation
			Minimize transitions between game states (no sound, animations) (Carlier et al., 2020)	Minimize transitions (n = 1): Gradually decrease appealing stimuli before to remove the HMD
			Avoid using metaphors (Bozgeyikli et al., 2018)	Avoid using metaphors (n = 4)
Cat	Concept	Sub-concept	Literature	Participants
-------------------	----------------------------------	--	---	---
Adaptation to the child's pace		Make it possible to repeat or adjust information speed (Tardif et al., 2017)	Make it possible to repeat or adjust information speed (n = 13)	
		Use minimal prosody no emotions (Duris & Clément, 2018), e.g., little text/language (Carlier et al., 2020)		
Task-dependent	Socio-emotional abilities	Allow for rapid shifts between XR environments (Dechsling et al., 2021)	Use adjustable realistic naturalistic settings (n = 5): to enhance the generalization of skills	
		Use adjustable realistic naturalistic settings (Dechsling et al., 2021): Support the adult–child relationship, give precise control over the virtual surroundings		
		Train various rather than specific skills (Dechsling et al., 2021)		
		Train balanced turn-taking (Dechsling et al., 2021): Use various contexts, visual prompting, rewards		
Others		Realistic and non-realistic environments will interest different practitioners (n = 1)		
Avatars	Representation	Use cartoonish non-human avatars (Bozgeyikli et al., 2018; Newbutt, 2013)	Use cartoonish non-human avatars (n = 1)	
		Make XR avatars customizable (Bozgeyikli et al., 2018; Newbutt, 2013)		
		Only hear a XR avatar instead of both hearing and seeing it (Newbutt, 2013)		
		Position the avatars at real-world height (Bozgeyikli et al., 2018)		
	Use	Use avatars as tutors for children (Bozgeyikli et al., 2018)		
Indeed, a psychomotor therapist reports the case of an autistic adult who had learned the “right” way to greet people and got lost at work due to the variety of situations encountered.

Sensoriality

Whereas participants highly mention the *Sensoriality* category (38%), including all psychomotor and occupational therapists, it remains under-explored in the literature. Indeed, only the SEMI project (Magrini et al., 2019) focuses on training motor skills, using a Kinect camera and four distinct applications. Three main concepts appear, i.e., Rehabilitation sensory disorders (n = 10), Assess sensory disorders (n = 6), and Work on action-reaction principles (n = 4). Two main use cases emerge from the interviews: gradually adding stimuli to reach the tolerance thresholds, and then conduct sensory habituation; or gradually removing stimuli from a multisensory scene to assess the tolerance thresholds. A psychomotor therapist says: “the challenge is to recreate contexts for assessing the tolerance thresholds while conducting a therapy”. Possible scenarios range from real-life (n = 7) to multisensory (n = 6) spaces, depending on practitioners’ preferences and the child’s abilities. For instance, they include a supermarket with adjustable stimuli (e.g., dimming the lights) or Snoezelen-like spaces. A psychologist stresses that working on sensory disorders allows to better include non-verbal individuals with cognitive impairments. At last, an occupational therapist warns about the impossibility to recreate the richness of real-life stimuli in XR.

Assistive Technologies

Although some participants mention the minor category Assistive technologies (15%), it is absent from the two literature reviews considered. Two main concepts appear: Provide context relevant-only information (n = 4) and Support sensory strategies (n = 1). The first one can be achieved by adding and/or removing contextual information, e.g., adding information about the emotions of people around (n = 1), or filtering a distressing noise (n = 1). The second one aims at making the child secure enough to then be able to perform challenging tasks. To that respect, a participant suggests creating a tipi-like space augmented with sounds and colors, inspired from a child who could enter a tipi-like space in his classroom when feeling overwhelmed to get resourced and then go back to his class.

Comparison Between Stakeholders’ XR Design Insights and Literature Guidelines

This section draws design guidelines from the comparison between the interviews’ findings and the literature (see Table 6). Its subsections follow the main categories that were derived from the grounded theory process.

Task Design

Individualization is advised to cater for children and practitioners, regarding both the content (Bozgeyikli et al., 2018; Carlier et al., 2020; Dautenhahn, 2000; Dechsling et al., 2021; Parsons et al., 2017, 2019; Tang et al., 2019; Tarantino et al., 2019; Whyte et al., 2015; n = 15) (e.g., stimuli, tasks), and the medium (Dechsling et al., 2021; n = 1). For instance, a psychomotor therapist mentioned using video games as “modelling dough”, i.e., by adjusting every possible parameter. Whereas participants mainly suggest displaying familiar XR content (n = 14) (e.g., drawings), the literature focuses on adapting the way the environment works (e.g., number of stimuli), sometimes with physiologically informed platforms (Krishnappa Babu et al., 2018; Kuriakose & Lahiri, 2017).

As in common interventions, engagement aims at maximizing the intended outcomes. According to the participants and the literature, it requires to tailor the environmental motor and cognitive complexity to the child’s abilities and to the intervention context (Bozgeyikli et al., 2018; Carlier et al., 2020; Dechsling et al., 2021; Tang et al., 2019; Tarantino et al., 2019; Whyte et al., 2015; n = 13). It also relies on offering predictable and simplified audiovisual content to prompt discovery (Bozgeyikli et al., 2018; Carlier et al., 2020; Dautenhahn, 2000), including some unexpected events (Alcorn et al., 2014; Brown et al., 2016; Virole, 2014; n = 3), to create a “slight strangeness”, as a psychologist said. Using common NDBI principles is advised, i.e., rewards, imitation, and sense of agency. Rewards must be tailored to the performance (Constantin et al., 2017; Dechsling et al., 2021). About imitation, the practitioner may imitate the child, or conversely, with promising outcomes over the therapeutic alliance and the training (Dechsling et al., 2021; n = 1). Supporting the sense of agency then consists in making the child active (Bozgeyikli et al., 2018; Dautenhahn, 2000; Parsons et al., 2019; Spiel et al., 2019; n = 14), possibly with authoring activities (Bozgeyikli et al., 2018; Pares et al., 2005; Parsons et al., 2019; n = 3), e.g., drawing upon the painting VR game *Tiltbrush* (Ying-Chun & Chwen-Liang, 2018; n = 2). All these features and other strategies (Bozgeyikli et al., 2018; Kerns et al., 2017; Tang et al., 2019; Tiskinas & Xingogalos, 2018; Whyte et al., 2015; n = 5), such as using a scoring system (Bozgeyikli et al., 2018; Kerns et al., 2017) promote the child’s fun.

Considering autism sensoriality and perception allows to create well-suited designs for children from the entire spectrum. To that respect, structuring the time and space is advised (Bozgeyikli et al., 2018; Carlier et al., 2020; Dautenhahn, 2000; n = 8), e.g., using time timers and allowing to rehearse actions (Bozgeyikli et al., 2018; Carlier et al.,
The level of details and the realism of the graphics must be task-dependent (n = 7), e.g., realistic for social scenarios, but task-dependent (n = 7), e.g., realistic for social scenarios, but using touchless interaction (Bozgeyikli et al., 2018; Brown et al., 2016; Parsons et al., 2019; n = 4), as well as offering varied interaction possibilities (Bozgeyikli et al., 2018; Pares et al., 2005; Parsons et al., 2019). To move in space, embodied interaction is preferred over teleportation techniques (Bozgeyikli et al., 2016; n = 1). Finally, drawing links with the real world is advised to make experiences meaningful, e.g., including familiar objects into XR (Bozgeyikli et al., 2018; Tang et al., 2019; n = 1), and by considering autism perception during the design process, e.g., associative thinking (Dautenhahn et al., 2021; Virole, 2014, n = 2).

Collaboration possibilities must be offered, as the child-practitioner relationship is at the core of interventions. Hence, practitioners have to be able to prompt children (Dechsling et al., 2021; Parsons et al., 2019; n = 2), while children can see them in order to be reassured (Dautenhahn, 2000; n = 10). Moreover, controls must be shared between them (n = 10) so that the child can be active. Indeed, a psychomotor therapist suggests that the impossibility in many VR applications to be with the patient decreases practitioners’ acceptability. According to two participants, the practitioner must be visible only if context-relevant regarding the XR scenario, e.g., for medical examinations.

Protocol to Conduct XR Sessions

Stakeholders insist on creating a secure context to reduce potential biases, possibly due to participants’ anxiety. Before and during sessions, it consists in offering predictability (Garzotto et al., 2017; n = 5), making the experience meaningful (Dechsling et al., 2021; n = 4), and supporting engagement (Bozgeyikli et al., 2018; n = 8). In the long run, it relies on including the XR experiment as part of the overall intervention (Bozgeyikli et al., 2018; Robins et al., 2004; n = 4), and/or on planning a free play period to get the child accustomed to the system (n = 3).

Mixed methods (i.e., qualitative and quantitative methods) that are adapted to children’s abilities may help to assess their experience. Although no consensus exists in the literature, and a comprehensive overview is beyond the scope of this paper, our analysis suggests major practices. Before sessions, clinical questionnaires may be used to assess developmental and sensorimotor abilities (Malhii et al., 2020; Maskey et al., 2019). A quantitative analysis of behavioral and physiological data before and during sessions may help to infer the child’s state (Dechsling et al., 2021; Koirala et al., 2019; Kuriakose & Lahiri, 2017). Then, custom questionnaires, often self-report, are often used to assess engagement (Aruanno et al., 2018; Garzotto & Gelsomini, 2018; Garzotto et al., 2017; Tarantino et al., 2019), along with standardized XR questionnaires, e.g., targeting the feeling of presence (Wallace et al., 2010, 2017). Evaluations must consider the practitioner’s impact over the child (Dechsling et al., 2021). Their comparisons at regular time intervals may yield insights about the child’s evolution. Such evaluations can be combined with qualitative evaluations, i.e., observations (Brown et al., 2016; Pares et al., 2005; n = 2), or interviews with practitioners, relatives, and the child if possible (Spiel et al., 2017; n = 1). Yet, a psychiatrist says that assessing the intervention outcomes remains challenging, as “during the week the child does 300,000 things”.

Design Process

Creating autism-friendly environments requires using participative design (Bozgeyikli et al., 2018; Brosnan et al., 2019; Parsons et al., 2019; Spiel et al., 2019; n = 5), to consider all stakeholders’ needs, including autistic individuals requiring substantial support (Bozgeyikli et al., 2018; Parsons et al., 2019; n = 7). According to the participants and the literature, equipment choices must depend on: the healthcare context, e.g., being affordable (Parsons et al., 2019; n = 2); the child’s abilities, e.g., being resistive and non-tethered (Bozgeyikli et al., 2018; Dautenhahn, 2000; Newbutt et al., 2016; n = 1); and the XR tasks (Dechsling et al., 2021), e.g., using AR to prompt the generalization of skills. Whereas four participants are reluctant about using HMD with autistic children, mainly due to risks of isolation (n = 2), the other participants advocate for a controlled use, namely, with a practitioner. Yet, practitioners stress that the acceptability and usability may be child-dependent (n = 9). Moreover, to not induce anxiety, wearing the HMD may require using sensory habituation beforehand (n = 3), and conducting the experiment in the usual clinical setting of the child (Bozgeyikli et al., 2018; Parsons et al., 2019; n = 1). At last, although manufacturers recommend using XR from the age of 13 (Gent, 2016), participants advocate for using task-dependent age recommendations, based on the child’s abilities and the practitioner’s expertise (n = 7), e.g., 7/8 for sensory-based and relaxation purposes (n = 2), and 10/13 otherwise (n = 5).

Information Presentation

Displaying little and clear information is advised due to autism filtering difficulties, i.e., only task-relevant stimuli (Bozgeyikli et al., 2018; Carlier et al., 2020; Virole, 2014), and audiovisual simplification (Bozgeyikli et al., 2018; Tarantino et al., 2019; n = 4). Adapting to the child’s pace may also support understanding, e.g., adjusting the information speed (Tardif et al., 2017; n = 13). Indeed, as a psychomotor therapist said, “learning requires slowness”.

The level of details and the realism of the graphics must be task-dependent (n = 7), e.g., realistic for social scenarios, but task-dependent (n = 7), e.g., realistic for social scenarios, but task-dependent (n = 7), e.g., realistic for social scenarios, but...
(n = 5), and abstract and creative for mediation purposes (n = 1). To that respect, a psychologist stressed that “realistic and non-realistic environments won’t interest the same practitioners” (n = 1). About social scenarios, adjustable collaborative realistic settings are advised to train various skills, and especially turn-taking (Dechsling et al., 2021).

Since little information is advised, simplified cartoonish avatars with customization possibilities are preferred to represent the others as well as the self (Bozgeyikli et al., 2018; Newbutt, 2013; n = 1). The avatar of the child has to be positioned at real-world height (Bozgeyikli et al., 2018). Moreover, due to common perceptual filtering difficulties, only hearing others’ avatars instead of both hearing and seeing them can be preferred (Newbutt, 2013).

Discussion

Summary of Results

The first objective of this article was to check whether autism stakeholders’ XR needs matched the existing XR uses. Our comparison between 34 interviews, mainly conducted with practitioners, and the literature, revealed that whereas more than 87 percent of the studies focus on training socio-emotional abilities, participants mentioned three main XR objectives, i.e., well-being and mediation, social and cognitive training, and sensoriality (see Table 5). These objectives simultaneously draw upon the main features of practitioners’ interventions without or with digital tools (see Tables 3 and 4). This gap calls for more research to explore XR sensory-based and mediation approaches, and for more considering autistic individuals requiring high support. These objectives are also strongly inclusive and bridge the gap between a mere focus on training abilities and an only focus on changing the society to improve the well-being of autistic individuals. To that respect, our findings extend Parsons et al. (2019)’s research roadmap for the XR medium. Possible use cases that implement these categories, and particularly benefit from using AR, are discussed in the next subsection. The second objective of this article was to provide XR design guidelines that are representative of autism stakeholders. Whereas the guidelines from the interviews and XR autism literature presented similarities, gaps also emerged (see Table 6). More specifically, stakeholders advocated for paying more attention to the intervention context and for using more collaborative designs. XR design guidelines are outlined in the third subsection, followed by limitations to this work.

Suggestions of Use Cases for Future Autism XR Research

To train social abilities, using VR social scenarios (e.g., school playground) with a precise control of all stimuli by the practitioner is suggested. Yet, due to the autism literal way of learning, more research is needed to maximize the generalization of skills learned from VR into real-life (Bozgeyikli et al., 2018). Moreover, whereas quickly shifting between different use cases could enhance the intended outcomes (Dechsling et al., 2021), two participants stress that the richness of real-life situations could not be recreated. Hence, VR training should be considered as part of the overall intervention program, and within a gradual transition from VR to AR and finally real life. For instance, a bakery scenario consisting in buying bread could first be trained in VR, to limit possible anxiety, and then in a real bakery, using AR to withdraw distressing information (e.g., lights) and add contextual elements (e.g., emotion detection). This VR-AR progression could help to gradually work in more ecological contexts due to AR capabilities (Berenguer et al., 2020), and to maximize the generalization of the skills learned by gradually confronting the child to the unpredictability of real-life. These finding extend the complementary training and prosthetic roles previously assigned to VR and AR by Tarantino et al. (2019).

To make the child in an optimal secure state, three XR sensory-based approaches which draw upon common interventions emerged, i.e., multisensory relaxing spaces, derivatives of stereotypes, and mediation spaces.

Creating collaborative multisensory relaxing XR spaces largely emerged, often Snoezelen-inspired. A psychomotor therapist described them as “sensory backpacks”. To that respect, whereas VR can offer a precise control over all stimuli, it also displays risks of isolation (Parsons & Mitchell, 2002). Moreover, due to common autistic proprioception and symbolization difficulties, children could misunderstand the avatar representations of themselves and the practitioner. Thus, this could prevent the use of such scenarios for children needing high support. Even if AR also presents risks of isolation (Berenguer et al., 2020), AR sensory approaches could overcome these issues by perceiving the real surroundings and not using avatars. Thus, their low appearance in surveys (Berenguer et al., 2020; Mesa-Gresa et al., 2018) calls for more research. Possible use cases include real spaces where the proportion of real and virtual elements could be adapted to the session’s needs, e.g., withdrawing posters on walls.

Some participants advise creating XR derivatives of stereotypes to replace with a non-stigmatizing XR approach the repetitive behaviors that children often use to calm themselves but are often considered as non-socially appropriate. Regarding that unexplored approach, both VR and AR call
for more research. VR use cases could be considered if a whole context must be recreated. For instance, one team supervisor mentioned the case of a boy who needs to be driven by his parents on Paris ring-road to get relaxed. Recreating this context in VR could support both the boy and his family. AR could be also used for recreating specific elements, e.g., spinning objects.

At last, XR mediation activities focus on strengthening the therapeutic alliance through collaborative free play activities, to prompt symbolization processes, as common mediation activities (Brun, 2013). Yet, whereas the activity theory (Engeström et al., 1999) considers technology as mediating tools that encourage social processes, they remain unexplored in XR. However, according to a psychologist, this approach raises some psychology research questions, for instance to explore the concept of potential space (Winnicott, 1999), i.e., an intermediary area between the subjective experience and the objective reality for playful and creative experiences. Such approaches could draw upon previous non-XR digitally-augmented multisensory experiences which displayed promising outcomes about the therapeutic alliance (Brown et al., 2016; Garzotto & Gelsomini, 2018; Gelsomini et al., 2019; Mora-Guiard et al., 2017; Pares et al., 2005; Ringland et al., 2014). They allowed to trigger multiple stimuli through body movements and various interfaces (e.g., reactive surfaces). Mediate was conducted in a large space (Pares et al., 2005), Magic Room (Garzotto & Gelsomini, 2018), Magika (Gelsomini et al., 2019), Sensory Paint (Ringland et al., 2014), and Land of Fog (Mora-Guiard et al., 2017) took place in smaller spaces, and Responsive Dome Environment relied on a dome-like space (Brown et al., 2016). Yet, these bespoke projects can be expensive and/or lack of flexibility. XR research should consider overcoming these limits with HMD-based AR.

XR sensory-based playful activities allow to assess or rehabilitate sensory disorders, or work on action/reaction principles, often by gradually adding/removing stimuli. VR and AR both provide solutions for creating such scenarii. The first half of the participants mention VR Snoezelen-like scenarii. The other half mentions realistic scenarii ranging from VR to AR, for instance by starting in a controllable VR space, and gradually going to AR. A possible use case could consist in recreating a VR supermarket, and then work in the real supermarket while using AR to remove distressing elements and add contextual help. Such AR setups could also be used as daily compensation strategies, in line with common strategies (e.g., protection headphones). Hence, AR appears as highly inclusive, since it allows children to enter spaces usually considered as overwhelming. While such sensory-based AR scenarii remain under-explored, the current evolution of HMDs calls for more research in this area.

Suggestions of XR Autism Design Guidelines

XR task design draws upon many common intervention principles (see Table 3), e.g., individualization, structuration, gradual challenges, or offering a sense of agency. Yet, contrary to the literature, stakeholders emphasize the importance of creating collaborative designs, as the success of common interventions largely relies on the therapeutic alliance. To that respect, AR seems promising, as it allows to connect with the familiar environment of the child, by perceiving the usual practitioners and not using avatars. Then, two practitioners remarked that many design requirements that are listed in Table 6 draw from common educational practices, and in particular from Piaget et al. (1969) and Montessori and George (1964). As these practices often advise to use handling activities, and as AR can easily be combined with tangibles, AR seems well-suited to extend them.

Methodological insights expand previous XR recommendations (Bozgeyikli et al., 2018), by suggesting to focus on two aspects of the intervention: the context, and the evaluation of the outcomes. About the context, creating a secure space to conduct experiments was less emphasized in the literature to our knowledge. On the short term it consists in offering predictability, i.e., before, during and after the session. To that respect, AR seems well-suited, due to the reasons above-mentioned. On the long term, XR protocols may split into two periods, i.e., first make the child feel secure, and then train specific abilities. To assess the XR intervention outcomes, mixed methods (i.e., qualitative and quantitative methods) can be used to adapt to the diversity of autistic profiles. Although it remains challenging due to the overall intervention that children take part in, regular evaluations may help to infer their evolution over time. So far, no standardized XR questionnaire exists to assess the autistic user’s experience, and XR studies mainly focus on observable features. Yet, some custom questionnaires have been created. For instance, Tarantino et al. (2019) suggest to focus on four main features, i.e., the impact of photorealism, the understanding of real versus virtual elements, the body movements, and the active exploration. Creating such questionnaires leads to reconsider some commonly measured aspects with non-autistic individuals which affect autistic users differently. For instance, assessing the feeling of presence, i.e., the feeling of “being here” (Biocca, 1997), can already lead to ambiguous results with non-autistic children, and is even more questionable with some autistic children who may struggle to say if they feel present in real-life (Dautenhahn, 2000). Moreover, whereas photorealism may engage non-autistic users, it may distract autistic users (Tarantino et al., 2019). At last, self-report questionnaires that are used in most studies (Newbitt et al., 2020) cannot be used for individuals with intellectual impairments. This
calls for more research to create such questionnaires, to be filled by practitioners, as well as the child if possible, in line with Aruanno et al. (2018)’s study. They could also be combined with physiological data to get anxiety markers, e.g., heart rate (Kuriakose & Lahiri, 2017). Yet, more research is also needed to understand which relevant factors allow to get insights about complex perceptions (e.g., engagement), while using low intrusive technologies, such as light bracelets (Simões et al., 2018).

About the design process, using participative design is advised, as suggested by prior research (Parsons et al., 2019), as well as conducting field studies in clinical settings. Equipment choices must be made accordingly, depending both on the use context and on the intended task. While most stakeholders are positive about using HMDs, in line with the literature, they suggest that they must be used in a controlled way, i.e., with a practitioner. This paper also reveals that participants would prefer using task-dependent age recommendations, e.g., eight years old for mediation applications focusing on well-being purposes. This was absent from the literature to our knowledge.

About information presentation, in addition to simplifying the audiovisual content, in line with the 2D games that often appeal to autistic individuals (see Table 4), and with Bozgeyikli et al. (2018)’ findings, this paper suggests to adapt the graphics’ realism both to the intended task and to the practitioners’ preferences. Indeed, depending on the type of intervention that practitioners use (e.g., NDBI, or psycho-dynamic), they may prefer using non-realistic creative scenarios, or realistic scenarios. Giving control over the audiovisual speed and prosody is also advised, as in Tardif et al. (2017)’s study. Indeed, decreasing the audiovisual speed may increase the child’s understanding. At last, adding some unexpected events within a highly-structured XR space to enhance engagement connects with Remington et al. (2019)’s findings, which stress that using too little or too many distractors may hinder the attention of autistic children. This recommendation is also linked with common compensation strategies that individuals with Attention-Deficit Hyperactivity Disorder use to keep focused. Hence, future XR autism research may consider neurodevelopmental disorders in general, due to its potential impacts beyond the scope of autism.

Limitations

Findings must be considered in the light of some limitations. Interviews were mainly conducted with practitioners, since XR guidelines aimed at supporting their interventions. Yet, this may have led to less consider the views of autistic individuals. Moreover, no single stakeholder could expertly provide insights about XR, but only suggestions based on their knowledge of common interventions with or without digital tools.

The evaluation of the included publications in terms of design features was conducted qualitatively and may contain inaccuracies. Also, no systematic literature review of XR design guidelines was made, and the articles were mainly hand-searched. Conducting such a systematic review about XR design guidelines and comparing it with our interviews’ findings may yield further design insights.

The evolution of the understanding of the autism field by the first author throughout the interview process may have gradually changed his way to ask questions to the interviewees, and to adapt to them. This also may have led to elicit more answers over time. Elements from the first author’ background also may have influenced the results of the grounded theory analysis. At last, as the first author is not a native English speaker, translating interviews from French to English may have led to inaccuracies, even if efforts were made to remain close to the original wordings during the process.

Only interviewing French speaking participants may have led to overlook some insights, possibly being more prominent with international stakeholders. This calls for future research to complement the present study by interviewing stakeholders from different countries and comparing their standpoints with our findings.

To complement and extend the findings from this paper, it will be particularly useful to conduct XR participative design workshops with autism stakeholders being representative from all autism fields.

Conclusion

XR autism research displays a strong potential for complementing existing common autism interventions due to embodied immersive multisensory capabilities. Though, most autism XR studies focus on training socio-emotional abilities and concern children requiring low support. To get insights over common interventions, and then derive XR use cases and designs that could better support practitioners and could concern the entire spectrum, 34 interviews were conducted with stakeholders, mainly including practitioners. They were then analyzed using a grounded theory approach, involving three steps. First, a classification of the data according to concepts and categories was built from the interviews. Second, emerging XR use cases from the interviews were compared with two systematic literature reviews (Berenguer et al., 2020; Mesa-Gresa et al., 2018) to look for potential gaps between practitioners’ needs and the objectives of existing studies. Finally, XR design guidelines were obtained by comparing the findings from the interviews with an autism XR literature survey that was built in relation to our emerging grounded theory. Findings reveal that most stakeholders already use technology-based approaches...
to support interventions, often with tablets and desktop computers. Drawing upon them, as well as common non-digital interventions, they were interested in three main categories of XR use cases: (a) mediation and well-being, (b) social and cognitive training, and (c) sensoriality. In addition to these categories, technical and practical guidelines emerged. The main technical guidelines suggest that future research should consider using AR rather than VR to target children from the entire spectrum. Indeed, AR appears to be more inclusive and ecological than VR, as it allows to perceive the real child’s surroundings. Moreover, gradually going from VR to AR seems promising to prompt the generalization of the skills learned into real life. To do so, the practitioner could handle the real-virtual proportion depending on the child’s abilities. The main practical guidelines suggest that XR designs should include collaboration capabilities. Furthermore, XR studies should be considered as part of the child’s overall intervention program, for instance by conducting studies within the usual clinical setting of the child.

Acknowledgments Thanks to all participants for their time, trust, and precious help without whom this article would not have been possible. This work is part of the AudioXR4TSA project, funded by the DIM RFSI Ile de France.

References

Adorjlu, A., Hoeg, E. R., Mangano, L., & Serafin, S. (2017). daily living skills training in virtual reality to help children with autism spectrum disorder in a real shopping scenario. In 2017 IEEE international symposium on mixed and augmented reality (ISMAR-Adjunct) (pp. 294–302). Nantes, France: IEEE. https://doi.org/10.1109/ISMAR-Adjunct.2017.93

Alcorn, A. M., Pain, H., & Good, J. (2014). Motivating children’s initiations with novelty and surprise: initial design recommendations for autism. In Proceedings of the 2014 conference on Interaction design and children - IDC ’14 (pp. 225–228). Aarhus, Denmark: ACM Press. https://doi.org/10.1145/2593968.2610458

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition.). American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425596

Arutunian, B., Garzotto, F., Torelli, E., & Vona, F. (2018). HoloLearn: Wearable Mixed Reality for People with Neurodevelopmental Disorders (NDD). In Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 40–51). ACM. https://doi.org/10.1145/3234695.3236351

Bai, Z., Blackwell, A. F., & Coulouris, G. (2015). Using Augmented reality to elicit pretend play for children with autism. IEEE Transactions on Visualization and Computer Graphics, 21(5), 598–610. https://doi.org/10.1109/TVCG.2014.2385092

Bartoli, L., Garzotto, F., Gelosimini, M., Oliveto, L., & Valoriani, M. (2014). Designing and evaluating touchless playful interaction for ASD children. In Proceedings of the 2014 conference on Interaction design and children - IDC ’14 (pp. 17–26). ACM Press. https://doi.org/10.1145/2593968.2593976

Berenguer, C., Baixauli, I., Gómez, S., Andrés, M. D. E. P., & De Stasio, S. (2020). Exploring the impact of augmented reality in children and adolescents with autism spectrum disorder: a systematic review. International Journal of Environmental Research and Public Health, 17(17), 6143. https://doi.org/10.3390/ijerph17176143

Bernardini, S., Poraysak-Pomsta, K., & Sampath, H. (2013). Designing an intelligent virtual agent for social communication in autism. In Proceedings of the ninth AAAI conference on artificial intelligence and interactive digital entertainment (AIIDE013) (pp. 9–15). Boston, MA, USA.

Biocca, F. (1997). The Cyborg’s Dilemma: Progressive Embodiment in Virtual Environments. Journal of Computer Mediated Communication. https://doi.org/10.1111/j.1083-6101.1997.tb00070.x

Boehm, A. E. & Psychological Corporation. (2000). Boehm test of basic concepts: Boehm-3 kit form E. Psychological Corp.

Bottema-Beutel, K., Kapp, S. K., Lester, J. N., Sasson, N. J., & Hand, B. N. (2021). Avoiding ableist language: Suggestions for autism researchers. Autism in Adulthood, 3(1), 18–29. https://doi.org/10.1089/aut.2020.0014

Bozgeyikli, E., Bozgeyikli, L., Raja, A., Katkoori, S., Alqasemi, R., & Dubey, R. (2016). Virtual reality interaction techniques for individuals with autism spectrum disorder: Design considerations and preliminary results. In M. Kurosu (Ed.), Human-computer interaction. interaction platforms and techniques (Vol. 9732, pp. 127–137). Springer International Publishing. https://doi.org/10.1007/978-3-319-39516-6_12

Bozgeyikli, L., Raja, A., Katkoori, S., & Alqasemi, R. (2018). A survey on virtual reality for individuals with autism spectrum disorder: Design considerations. IEEE Transactions on Learning Technologies, 11(2), 133–151. https://doi.org/10.1109/TLT.2017.2739747

Bradley, R., & Newbut, N. (2018). Autism and virtual reality head-mounted displays: A state of the art systematic review. Journal of Enabling Technologies, 12(3), 101–113. https://doi.org/10.1108/JET-01-2018-0004

Brosnan, M., Good, J., Parsons, S., & Yuill, N. (2019). Look up! Digital technologies for autistic people to support interaction and embodiment in the real world. Research in Autism Spectrum Disorders, 58, 52–53. https://doi.org/10.1016/j.rasd.2018.11.010

Brown, S. A., Silvera-Tawil, D., Gemeinboeck, P., & McGhee, J. (2016). The case for conversation: a design research framework for participatory feedback from autistic children. In Proceedings of the 29th Australian conference on computer-human interaction - OzCHI ’16 (pp. 605–613). ACM Press. https://doi.org/10.1145/3019015.3019014

Brun, A. (2013). L’acte de création et ses processus dans les médiations thérapeutiques pour enfants autistes et psychotiques. Enfances & Psy, 61(4), 109. https://doi.org/10.3971/epdi.0610109

Cai, Y., Chia, N. K. H., Thalmann, D., Kee, N. K.N., Zheng, J., & Thalmann, N. M. (2013). Design and development of a virtual dolphinarium for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 208–217. https://doi.org/10.1109/TNSRE.2013.2240700

Carlier, S., Van der Paelt, S., Ongenae, F., De Backere, F., & De Turck, F. (2020). Empowering children with ASD and their parents: design of a serious game for anxiety and stress reduction. Sensors, 20(4), 966. https://doi.org/10.3390/s20040966

Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. SAGE.

Chen, C.-H., Lee, I.-J., & Lin, L.-Y. (2016). Augmented reality-based video-modeling storybook of nonverbal facial cues for children with autism spectrum disorder to improve their perceptions and judgments of facial expressions and emotions. Computers in Human Behavior, 55, 477–485. https://doi.org/10.1016/j.chb.2015.09.033

Chuk, D. F., Moore, E. J., Wright, R. E., McMahon, D. D., Gibbons, M. M., & Smith, C. (2016). Evaluating augmented reality to
complete a chain task for elementary students with autism. *Journal of Special Education Technology, 31*(2), 99–108. https://doi.org/10.1177/0162643416651724

Constantin, A., Johnson, H., Smith, E., Lengyel, D., & Brosnan, M. (2017). Designing computer-based rewards with and for children with autism spectrum disorder and/or intellectual disability. *Computers in Human Behavior, 75*, 404–414. https://doi.org/10.1016/j.chb.2017.05.030

Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., & Hart, J. C. (1992). The CAVE: Audio visual experience automatic virtual environment. *Communications of the ACM, 35*(6), 64–72. https://doi.org/10.1145/129888.129892

Daunenhahn, K. (2000). Design issues on interactive environments for children with autism. In *Proc. 3rd intl conf. disability, virtual reality & assoc. tech, Alphero, Italy.*, 153–159.

Dechsling, A., Shic, F., Zhang, D., Marschik, P. B., Esposito, G., Orm, S., et al. (2021). Virtual reality and naturalistic developmental behavioral interventions for children with autism spectrum disorder. *Research in Developmental Disabilities, 111*, 103885. https://doi.org/10.1016/j.ridd.2021.103885

Duris, O., & Clément, M.-N. (2018). The robot Nao comme support relationnel et de dynamique groupale auprès d'enfants porteurs de troubles du spectre autistique. In *Robots, de nouveaux partenaires de soins psychiques* (pp. 67–76). ERES. https://doi.org/10.3917/eres.tisse.2018.02.0067

Engeström, Y., Miettinen, R., & Punamäki-Gitai, R.-L. (Eds.). (1999). *Perspectives on activity theory*. Presented at the international congress for research on activity theory. Cambridge University Press.

Escobedo, L., Tentori, M., Quintana, E., Favela, J., & Garcia-Rosas, D. (2014). Using augmented reality to help children with autism stay focused. *IEEE Pervasive Computing, 13*(1), 38–46. https://doi.org/10.1109/MPRV.2014.19

Finkelstein, S., Barnes, T., Wartell, Z., & Suma, E. A. (2013). Evaluation of the exertion and motivation factors of a virtual reality exercise game for children with autism. In *2013 1st workshop on virtual and augmented assistive technology (VAAT)* (pp. 11–16). IEEE. https://doi.org/10.1109/VAAT.2013.6786186

Flanagan, J. C. (1954). The critical incident technique. *Psychological Bulletin, 51*(4), 327–358. https://doi.org/10.1037/h0061470

Fletcher-Watson, S., Adams, J., Brook, K., Charman, T., Crane, L., Cusack, J., et al. (2019). Making the future together: Shaping autism research through meaningful participation. *Autism, 23*(4), 943–953. https://doi.org/10.1177/1362361318791721

Flippin, M., Reszka, S., & Watson, L. R. (2010). Effectiveness of the picture exchange communication system (PECS) on communication and speech for children with autism spectrum disorders: A meta-analysis. *American Journal of Speech-Language Pathology, 19*(2), 178–195. https://doi.org/10.4463/1058-0360(2010-09-0022)

Frauenberger, C., Good, J., & Keay-Bright, W. (2011). Designing technology for children with special needs: Bridging perspectives through participatory design. *CoDesign, 7*(1), 1–28. https://doi.org/10.1080/15710882.2011.587013

Frith, U. (1989). *Autism: Explaining the enigma*. Basil Blackwell.

Garzotto, F., & Gelsomini, M. (2018). Magic room: A smart space for children with neurodevelopmental disorder. *IEEE Pervasive Computing, 17*(1), 38–48. https://doi.org/10.1109/MPRV.2018.011591060

Garzotto, F., Gelsomini, M., Occhiuto, D., Matarazzo, V., & Messina, N. (2017). Wearable immersive virtual reality for children with disability: A case study. In *Proceedings of the 2017 conference on interaction design and children - IDC '17* (pp. 478–483). ACM. https://doi.org/10.1145/3078072.3084312

Gelsomini, M., Cosentino, G., Spitalé, M., Gianotti, M., Fiscaro, D., Leonardi, G., et al. (2019). Magika, a multisensory environment for play, education and inclusion. In *Extended abstracts of the 2019 CHI conference on human factors in computing systems* (pp. 1–6). ACM. https://doi.org/10.1145/3290607.3312753

Gent, E. (2016). Are virtual reality headsets safe for kids? *livescience.com*. Retrieved June 13, 2021, from https://www.livescience.com/56346-are-virtual-reality-headsets-safe-for-kids.html

Gepner, B. (2018). Ralentir le monde pour mieux le percevoir : Un nouveau traitement pour les enfants autistes ? *Revue Francophone D’orthoptie, 11*(3), 153–156. https://doi.org/10.1016/j.rf.2018.08.003

Grandin, T. (2009). How does visual thinking work in the mind of a person with autism? A personal account. *Philosophical Transactions of the Royal Society B, 364*(1522), 1437–1442. https://doi.org/10.1098/rstb.2008.0297

Griffith, G. M., Totsika, V., Nash, S., & Hastings, R. P. (2012). ‘I just don’t fit anywhere’: Support experiences and future support needs of individuals with Asperger syndrome in middle adulthood. *Autism, 16*(5), 532–546. https://doi.org/10.1177/1362145823

Grossard, C., Hun, S., Dapogne, A., Juillet, E., Hamel, F., Jean-Marie, H., et al. (2019). teaching facial expression production in autism: The serious game JEMlMe: *Creative Education, 10*(11), 2347–2366. https://doi.org/10.4236/ce.2019.10.11167

Grynszpan, O., Weiss, P. L., Perez-Diaz, F., & Gal, E. (2014). Innovative technology-based interventions for autism spectrum disorders: A meta-analysis. *Autism, 18*(4), 346–361. https://doi.org/10.1177/1362361314576676

Halabi, O., Abou El-Seoud, S., Alja’am, J., Alpona, H., Al-Hemadi, M., & Al-Hassan, D. (2017). Design of immersive virtual reality system to improve communication skills in individuals with autism. *International Journal of Emerging Technologies in Learning (iJET), 12*(05), 50. https://doi.org/10.3991/ijet.v12i05.6766

Haute Autorité de Santé. (2018). *Trouble du spectre de l’autisme: Signes d’alerte, repérage, diagnostic et évaluation chez l’enfant et l’adolescent*. Méthode Recommandations pour la pratique clinique (p. 45). Saint-Denis, La Plaine.

Ip, H. H. S., Wong, S. W. L., Chan, D. F. Y., Byrne, J., Li, C., Yuan, V. S. N., et al. (2018). Enhance emotional and social adaptation skills for children with autism spectrum disorder: A virtual reality enabled approach. *Computers & Education, 117*, 1–15. https://doi.org/10.1016/j.compedu.2017.09.010

Kerns, K. A., Macoun, S., MacSween, J., Pei, J., & Hutchison, M. (2017). Attention and working memory training: A feasibility study in children with neurodevelopmental disorders. *Applied Neuropsychology: Child, 6*(2), 120–137. https://doi.org/10.1080/21262965.2015.1109513

Khowaja, K., Banire, B., Al-Thani, D., Sqalli, M. T., Aqle, A., Shah, A., & Salim, S. S. (2020). Augmented reality for learning of children and adolescents with autism spectrum disorder (ASD): A systematic review. *IEEE Access, 8*, 78779–78807. https://doi.org/10.1109/ACCESS.2020.2986608

Kientz, J. A., Goodwin, M. S., Hayes, G. R., & Abowd, G. D. (2013). Interactive technologies for autism. *Synthesis Lectures on Assistive, Rehabilitative, and Health-Preserving Technologies, 2*(2), 1–177. https://doi.org/10.2200/S00533ED1V01Y201309A RH004

Klein, N., & Kemper, K. J. (2016). Integrative approaches to caring for children with autism. *Current Problems in Pediatric and Adolescent Health Care, 46*(6), 195–201. https://doi.org/10.1016/j.cppeds.2015.12.004

Koirala, A., Yu, Z., Schiltz, H., Van Hecke, A., Koth, K. A., & Zheng, Z. (2019). An exploration of using virtual reality to assess the sensory abnormalities in children with autism spectrum disorder. In *Proceedings of the interaction design and children - IDC*
Magrini, M., Curzio, O., Carboni, A., Moroni, D., Salvetti, O., & Mel-

Krishnappa Babu, P. R., Oza, P., & Lahiri, U. (2018). Gaze-sensitive
virtual reality based social communication platform for individu-
als with autism. *IEEE Transactions on Affective Computing, 9*(4),
450–462. https://doi.org/10.1109/TAffc.2016.2641422

Kuriakose, S., & Lahiri, U. (2017). Design of a physiology-sensitive
VR-Based social communication platform for children with autism.
*IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 25*(8), 1180–1191. https://doi.org/10.1109/
TNSRE.2016.2613879

Lallemand, C., & Gronier, G. (2016). *Méthodes de design UX: 30
méthodes fondamentales pour concevoir et évaluer les systèmes
interactifs*. Eyrolles.

Lancioni, G. E., Cuvo, A. J., & O’Reilly, M. F. (2002). Snoezelen: An
overview of research with people with developmental disabili-
dies and dementia. *Disability and Rehabilitation, 24*(4), 175–184.
https://doi.org/10.1080/09638280110074911

Lang, R., O’Reilly, M. F., Sigafoos, J., Machalicek, W., Rispoli, M.,
Shogren, K., et al. (2010). Review of teacher involvement in the
applied intervention research for children with autism spectrum
disorders. *Education and Training in Autism and Developmental
Disabilities, 45*(2), 268–283.

Lord, C., Brugha, T. S., Charman, T., Cusack, J., Dumas, G., Frazier, T.,
et al. (2020). Autism spectrum disorder. *Nature Reviews Disease
Primers, 6*(1), 5. https://doi.org/10.1038/s41572-019-0138-4

Lorenzo, G., Lledó, A., Arriáez-Vera, G., & Lorenzo-Lledó, A. (2019).
The application of immersive virtual reality for students with
ASD: A review between 1990–2017. *Education and Information
Technologies, 24*(1), 127–151. https://doi.org/10.1007/
s10639-018-9766-7

Lovaas, O. I. (1987). Behavioral treatment and normal educational
and intellectual functioning in young autistic children. *Journal
of Consulting and Clinical Psychology, 55*(1), 3–9. https://doi.
or/10.1037/0022-006x.55.1.3

Magrini, M., Curzio, O., Carboni, A., Moroni, D., Salvetti, O., & Mel-
ni, A. (2019). Augmented interaction systems for supporting
autistic children. Evolution of a multichannel expressive tool: The
SEMI project feasibility study. *Applied Sciences, 9*(15), 3081.
https://doi.org/10.3390/app9153081

Malhi, M., Nguyen, J., Cardy, R. E., Eldon, S., Petta, C., & Kushki, A.
(2020). Short report: Evaluating the safety and usability of head-
mounted virtual reality compared to monitor-displayed video for
children with autism spectrum disorder. *Autism, https://doi.org/
10.1177/1362361320934214*

Manju, T., Padmavathi, S., & Tamilselvi, D. (2018). A rehabilitation
therapy for autism spectrum disorder using virtual reality. In
G. P. Venkataramani, K. Sankaranarayanan, S. Mukherjee, K.
Arputharaj, & S. Sankara Narayanan (Eds.), *Smart secure sys-
tems – IoT and analytics perspective* (Vol. 808, pp. 328–336).
Springer Singapore. https://doi.org/10.1007/978-981-10-7635-
0_26

Marto, A., Almeida, H. A., & Gonçalves, A. (2019). Using augmented
reality in patients with autism: A systematic review. In J. M. R.
S. Tavares & R. M. Nataf Jodge (Eds.), *VipIMAGE 2019* (Vol.
34, pp. 454–463). Springer International Publishing. https://doi.
or/10.1007/978-3-030-32040-9_46

Maskey, M., Rodgers, J., Grahame, V., Glod, M., Honey, E., Kin-
near, J., et al. (2019). A randomised controlled feasibility trial of
immersive virtual reality treatment with cognitive behaviour
therapy for specific phobias in young people with autism spectrum
disorder. *Journal of Autism and Developmental Disorders, 49*(5),
1912–1927. https://doi.org/10.1007/s10803-018-3861-x

Mazurek, M. O., Engelhardt, C. R., & Clark, K. E. (2015). Video
games from the perspective of adults with autism spectrum
disorder. *Computers in Human Behavior, 51*, 122–130. https://
doi.org/10.1016/j.chb.2015.04.062

Mesa-Grese, P., Gil-Gómez, H., Lozano-Quilis, J.-A., & Gil-Gómez,
J.-A. (2018). Effectiveness of virtual reality for children and
adolescents with autism spectrum disorder: An evidence-based
systematic review. *Sensors, 18*(8), 2486. https://doi.org/10.3390/
s18082486

Mesibov, G. B., Shea, V., & Schopler, E. (2004). *The TEACCH
approach to autism spectrum disorders*. Kluwer Academic/Ple-
num Publishers.

Midgley, N., Mortimer, R., Cirasola, A., Batra, P., & Kennedy, E.
(2021). The evidence-base for psychodynamic psychotherapy
with children and adolescents: A narrative synthesis. *Frontiers
in Psychology, 12*, 662561. https://doi.org/10.3389/fpsyg.2021.
662561

Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual
displays. *IEICE Transactions on Information and Systems, 77*,
1321–1329.

Miller, H. L., & Bugnariu, N. L. (2016). Level of immersion in vir-
tual environments impacts the ability to assess and teach social
skills in autism spectrum disorder. *Cyberpsychology, Behavior,
and Social Networking, 19*(4), 246–256. https://doi.org/10.1089/
cyber.2014.0682

Montessori, M., & George, A. E. (1964). *The Montessori method*
.Schocken Books.

Montoya, D., & Bodart, S. (2009). Le programme Makaton auprès d’un
enfant porteur d’autisme : Le cas de Julien. *Développements,
3*(3). 15. https://doi.org/10.3917/develop.003.0015

Mora-Guiard, J., Crowell, C., Pares, N., & Heaton, P. (2017). Sparking
social initiation behaviors in children with Autism through full-
body Interaction. *International Journal of Child-Computer Inter-
action, 11*, 62–71. https://doi.org/10.1016/j.ijcci.2016.10.006

Newbutt, N. A. (2013). Exploring communication and representation
of the self in a virtual world by young people with autism.
University College Dublin.

Newbutt, N., Bradley, R., & Conley, I. (2020). Using virtual reality
head-mounted displays in schools with autistic children: Views,
experiences, and future directions. *Cyberpsychology, Behavior,
and Social Networking, 23*(1), 23–33. https://doi.org/10.1089/
cyber.2019.0206

Newbutt, N., Sung, C., Kuo, H.-J., Leahy, M. J., Lin, C.-C., & Tong, B.
(2016). Brief report: A pilot study of the use of a virtual reality
headset in autism populations. *Journal of Autism and Develop-
mental Disorders, 46*(9), 3166–3176. https://doi.org/10.1007/
s10803-016-2830-5

Pajitnov, A. (1984). *Tetris*.

Pares, N., Masri, P., van Wolfereen, G., & Creed, C. (2005). Achieving
dialogue with children with severe autism in an adaptive mul-
tisensory interaction: The ‘MEDIATE’ project. *IEEE Transac-
tions on Visualization and Computer Graphics, 11*(6), 734–743.
https://doi.org/10.1109/TVCG.2005.88

Parsons, S. (2015). Learning to work together: Designing a multi-user
virtual reality game for social collaboration and perspective-
taking for children with autism. *International Journal of Child-
Computer Interaction, 6*, 28–38. https://doi.org/10.1016/j.ijcci.
2015.12.002

Parsons, S., & Cobb, S. (2011). State-of-the-art of virtual reality tech-
nologies for children on the autism spectrum. *European Journal
of Special Needs Education, 26*(3), 355–366. https://doi.org/10.
1080/08856257.2011.593831

Parsons, S., & Mitchell, P. (2002). The potential of virtual reality in
social skills training for people with autistic spectrum disorders:
Autism, social skills and virtual reality. *Journal of Intellectual
Disability Research, 46*(5), 430–443. https://doi.org/10.1046/j.
1365-2788.2002.00425.x
Parsons, S., Yuill, N., Good, J., & Brosnan, M. (2019). ‘Whose agenda? Who knows best? Whose voice?’ Co-creating a technology research roadmap with autism stakeholders. *Disability & Society, 35*(2), 201–234. https://doi.org/10.1080/09687599.2019.1624152

Parsons, T. D., Riva, G., Parsons, S., Mantovani, F., Newburt, N., Lin, L., et al. (2017). Virtual reality in pediatric psychology. *Pediatrics, 140*(Supplement 2), S86–S91. https://doi.org/10.1542/peds. 2016-1758I

Pellicano, E., Dinsmore, A., & Charman, T. (2013). A future made together: shaping autism research in the UK. Institute of Education, University of London. https://discovery.ucl.ac.uk/id/eprint/10017703.

Pellicano, E., Dinsmore, A., & Charman, T. (2014). What should autism research focus upon? Community views and priorities from the United Kingdom. *Autism, 18*(7), 756–770. https://doi.org/10.1177/13623634134929627

Piaget, J., Inhelder, B., & Weaver, H. (1969). *The Psychology of the child* (Nachdr.). Basic Books, Inc.

Porayska-Pomsta, K., Frauenberger, C., Pain, H., Rajendran, G., Smith, T., Menzies, R., et al. (2012). Developing technology for autism: An interdisciplinary approach. *Personal and Ubiquitous Computing, 16*(2), 117–127. https://doi.org/10.1007/s00779-011-0384-2

Remington, A., Hanley, M., O’Brien, S., Ribly, D. M., & Swettenham, J. (2019). Implications of capacity in the classroom: Simplifying tasks for autistic children may not be the answer. *Research in Developmental Disabilities, 45*, 197–204. https://doi.org/10.1016/j.ridd.2018.12.006

Ringland, K. E., Zalapa, R., Neal, M., Escobedo, L., Tentori, M., & Hayes, G. R. (2014). SensoryPaint: A multimodal sensory intervention for children with neurodevelopmental disorders. In *Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing - UbiComp ’14 Adjunct* (pp. 873–884). ACM Press. https://doi.org/10.1145/2632048.2632065

Robertson, C. E., & Baron-Cohen, S. (2017). Sensory perception in autism. *Nature Reviews Neuroscience, 18*(11), 671–684. https://doi.org/10.1038/nrn.2017.112

Robins, B., Dautenhahn, K., te Boekhorst, R., & Billard, A. (2004). Effects of repeated exposure to a humanoid robot on children with autism. In S. Keates, J. Clarkson, P. Langdon, & P. Robinson (Eds.), *Designing a more inclusive world* (pp. 225–236). Springer London. https://doi.org/10.1007/978-0-85729-372-5_23

Rogers, S. J., Estes, A., Lord, C., Vismara, L., Winter, J., Fitzpatrick, R., et al. (2017). Sensory perception in autism: Examining the impact of sensory processing difficulties on the family. *Autism, 15*(3), 373–389. https://doi.org/10.1177/1362361310386505

Schoen, S. A., Lane, S. J., Mailloux, Z., May-Benson, T., Parham, L. D., Smith Roley, S., & Schaaf, R. C. (2018). A systematic review of ayres sensory integration intervention for children with autism. *Autism Research, 10*(1), 1–40. https://doi.org/10.1002/aur.2046

Schreibman, L., Dawson, G., Stahmer, A. C., Landa, R., Rogers, S. J., McGee, G. E., et al. (2015). Naturalistic developmental behavioral interventions: Empirically validated treatments for autism spectrum disorder. *Journal of Autism and Developmental Disorders, 45*(8), 2411–2428. https://doi.org/10.1007/s10803-015-2407-8

Serret, S., Hun, S., Iakimova, G., Lozada, J., Anastassova, M., Santos, A., et al. (2014). Facing the challenge of teaching emotions to individuals with low- and high-functioning autism using a new serious game: A pilot study. *Molecular Autism, 5*(1), 37. https://doi.org/10.1186/2040-2392-5-37

Simões, M., Bernardes, M., Barros, F., & Castelo-Branco, M. (2018). Virtual travel training for autism spectrum disorder: Proof-of-concept interventional study. *JMIR Serious Games, 6*(1), e5. https://doi.org/10.2196/games.8428

Spiel, K., Frauenberger, C., Hornecker, E., & Fitzpatrick, G. (2017). When empathy is not enough: Assessing the experiences of autistic children with technologies. In *Proceedings of the 2017 CHI conference on human factors in computing systems—CHI’17* (pp. 2853–2864). ACM. https://doi.org/10.1145/3025453.3025785

Spiel, K., Frauenberger, C., Keyes, O., & Fitzpatrick, G. (2019). Agency of autistic children in technology research—A critical literature review. *ACM Transactions on Computer-Human Interaction, 26*(6), 1–40. https://doi.org/10.1145/3344919

Syriopoulou-Delli, C. K., & Stefani, A. (2021). Applications of assistive technology in skills development for people with autism spectrum disorder: A systematic review. *Research, Society and Development, 10*(11), 24.

Tang, J. S. Y., Falkmer, M., Chen, N. T. M., Bölte, S., & Girdler, S. (2019). Designing a serious game for youth with ASD: Perspectives from end-users and professionals. *Journal of Autism and Developmental Disorders, 49*(3), 978–995. https://doi.org/10.1007/s10803-018-3801-9

Tarantino, L., De Gasperis, G., Mascio, T. D., & Pino, M. C. (2019). Immersive applications: What if users are in the autism spectrum? In *The 17th international conference on virtual-reality continuum and its applications in industry—VRCAI ’19* (pp. 79–87). ACM. https://doi.org/10.1145/3359977.3365696

Tardif, C., Latzko, L., Arciszewski, T., & Gepner, B. (2017). Reducing information’s speed improves verbal cognition and behavior in autism. A 2-cases report. *Pediatrics, 139*(6), e20154207. https://doi.org/10.1542/peds.2015-4207

Taryadi, & Kurniawan, I. (2018). The improvement of autism spectrum disorders on children communication ability with PECS method. In *Advances in Multimedia Augmented Reality-Based. Journal of Physics: Conference Series, 947*(1), 012009. https://doi.org/10.1088/1742-6596/947/1/012009

Tsikinas, S., & Xinogalos, S. (2018). Designing effective serious games for people with intellectual disabilities. In *2018 IEEE global engineering education conference (EDUCON)* (pp. 1896–1903). Tenerife, Spain: IEEE. https://doi.org/10.1109/EDUCON.2018.8363467

Tsikinas, S., & Xinogalos, S. (2019). Design guidelines for serious games targeted to people with autism. In V. L. Uskov, R. J. Howlett, & L. C. Jain (Eds.), *Smart education and e-learning 2019* (Vol. 144, pp. 489–499). Springer Singapore. https://doi.org/10.1007/978-981-13-8260-4_43

Virole, B. (2014). Autisme et tablettes numériques. *Enfances & Psy, 63*(2), 123. https://doi.org/10.3917/ep.063.0123
Wallace, S., Parsons, S., & Bailey, A. (2017). Self-reported sense of presence and responses to social stimuli by adolescents with autism spectrum disorder in a collaborative virtual reality environment. *Journal of Intellectual & Developmental Disability, 42*(2), 131–141. https://doi.org/10.3109/13668250.2016.1234032

Wallace, S., Parsons, S., Westbury, A., White, K., White, K., & Bailey, A. (2010). Sense of presence and atypical social judgments in immersive virtual environments: Responses of adolescents with autism spectrum disorders. *Autism, 14*(3), 199–213. https://doi.org/10.1177/1362361310363283

Whyte, E. M., Smyth, J. M., & Scherf, K. S. (2015). Designing serious game interventions for individuals with autism. *Journal of Autism and Developmental Disorders, 45*(12), 3820–3831. https://doi.org/10.1007/s10803-014-2333-1

Winnicott, D. W. (1999). *Jeu et réalité: l’espace potentiel*. Gallimard.

Ying-Chun, L., & Chwen-Liang, C. (2018). The application of virtual reality technology in art therapy: A case of tilt brush. In *2018 1st IEEE international conference on knowledge innovation and invention (ICKII)* (pp. 47–50). IEEE. https://doi.org/10.1109/ICKII.2018.8569081

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.