Existence and Uniqueness of Quasi-stationary Distributions for Symmetric Markov Processes with Tightness Property

Masayoshi Takeda

Received: 6 December 2017 / Revised: 3 January 2019 / Published online: 17 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Let X be an irreducible symmetric Markov process with the strong Feller property. We assume, in addition, that X is explosive and has a tightness property. We then prove the existence and uniqueness of quasi-stationary distributions of X.

Keywords Quasi-stationary distribution · Symmetric Markov process · Dirichlet form · Yaglom limit · Tightness

Mathematics Subject Classification (2010) 60B10 · 60J25 · 37A30 · 31C25

1 Introduction
Let E be a locally compact separable metric space and m a positive Radon measure on E with full topological support. Let $X = (\Omega, X_t, \mathbb{P}_x, \zeta)$ be an m-symmetric Markov process (SMP for short) on E. Here ζ is the lifetime of X. We assume that the process X is irreducible and strong Feller, in addition, possesses a tightness property, i.e., for any $\epsilon > 0$, there exists a compact set K such that $\sup_{x \in E} E_x (e^{\gamma \zeta (1 - K^c)}) < \infty$. Here 1_{K^c} is the indicator function of the complement of K and R_1 is the 1-resolvent of X. In this paper, we call the family of SMPs with these three properties Class (T).

We prove in [21] that if X is in Class (T), then for any $\gamma > 0$ there exists a compact set K such that

$$\sup_{x \in E} E_x (e^{\gamma \zeta (1 - K^c)}) < \infty,$$
where τ_{K^c} is the first exit time from K^c. As a result, its transition operator p_t is a compact operator on $L^2(E; m)$ and all its eigenfunctions have bounded continuous versions \[21, \text{Theorem 4.3, Theorem 5.4}.\] If X in Class (T) is not conservative, it explodes very fast in a sense that the lifetime is exponentially integrable \[see \ (8) \ below\]. In particular, X is almost surely killed, $\mathbb{P}_x(\zeta < \infty) = 1$ for all $x \in E$. The objective of this paper is to prove the existence and uniqueness of quasi-stationary distributions of explosive SMPs in Class (T).

A probability measure ν on E is said to be a quasi-stationary distribution (QSD for short) of X, if for all $t \geq 0$ and all Borel subset B of E

$$\nu(B) = \mathbb{P}_\nu(X_t \in B \mid t < \zeta),$$

that is, the distribution of X_t conditioned to survive up to t equals ν over time if the initial distribution ν is a QSD.

Let ϕ_0 be the smallest (principal) eigenfunction of p_t with eigenvalue λ_0, $p_t \phi_0 = e^{-\lambda_0 t} \phi_0$. As stated above, we can suppose that ϕ_0 is a bounded continuous. Moreover, we can show that ϕ_0 is strictly positive and integrable, $\phi_0 \in L^1(E; m)$ (Lemma 3.4).

Hence we can define the probability measure ν^{ϕ_0} by

$$\nu^{\phi_0}(B) = \frac{\int_B \phi_0 \, dm}{\int_E \phi_0 \, dm}, \quad B \in \mathcal{B}(E),$$

where $\mathcal{B}(E)$ denotes the totality of Borel subset of E. Our main result is as follows (Theorem 3.1): If X is in Class (T), then ν^{ϕ_0} is the unique QSD of X.

For the proof of Theorem 3.1, the following fact is crucial: Every SMP can be transformed to an ergodic SMP by multiplicative functional. More precisely, let $X^{\phi_0} = (\Omega, X_t, \mathbb{P}^{\phi_0}_x, \zeta)$ be the process transformed by the multiplicative functional,

$$L^{\phi_0}_t = e^{\lambda_0 t} \frac{\phi_0(X_t)}{\phi_0(X_0)} 1_{\{t < \zeta\}}.$$

We then see from Lemma 6.3.2 in [8] that X^{ϕ_0} is an irreducible, conservative $\phi_0^2 m$-SMP on E. We can prove that ν^{ϕ_0} is a QSD using the $\phi_0^2 m$-symmetry and conservativeness of X^{ϕ_0} (Corollary 3.6). Applying Fukushima’s ergodic theorem (Theorem 2.2 below) to X^{ϕ_0}, we can prove that ν^{ϕ_0} is a unique QSD of X. Indeed, since ϕ_0 is strictly positive, bounded continuous as remarked above,

$$\sup_{x \in E} \frac{1}{\phi_0}(x) \leq \frac{1}{\inf_{x \in K} \phi_0(x)} < \infty$$

for any compact set K. Hence by Theorem 2.2 and Corollary 2.1, we have

$$\lim_{t \to \infty} \mathbb{E}^{\phi_0}_x \left(\frac{1}{\phi_0}(X_t) \right) = \int_K \phi_0 \, dm, \quad \forall x \in E,$$

which leads us to the uniqueness of QSD (Theorem 3.1).
We know that a minimal one-dimensional diffusion process is in Class (T) if and only if no natural boundaries in Feller’s classification are present (Example 3.1). In [2,6], they treat a one-dimensional diffusion process on \([0, \infty)\) defined as the solution of the SDE:

\[dX_t = dB_t - q(X_t)dt\]

whose boundaries 0 and \(\infty\) are exit and entrance, respectively. Theorem 3.1 says that one-dimensional diffusion processes without natural boundary have a unique QSD in general.

We give two examples of multi-dimensional SMPs in Class (T), absorbing Brownian motions on domain thin at infinity and killed Brownian motions on \(\mathbb{R}^d\), which are treated in [22].

Finally, we remark that if the semigroup of an explosive symmetric Markov processes in Class (T) is intrinsic ultracontractive, \(\nu_{\phi_0}\) is a Yaglom limit: for any probability measure \(\mu\)

\[\lim_{t \to \infty} \mathbb{P}_\mu(X_t \in B \mid t < \zeta) = \nu_{\phi_0}(B).\]

For example, let \(X^D = (\mathbb{P}^D_x, X_t, \tau_D)\) be an absorbing rotationally symmetric \(\alpha\)-stable process on bounded open set \(D\), where \(0 < \alpha < 2\) and \(\tau_D\) is the first exit time from \(D\). We then see that \(X^D\) is intrinsic ultracontractive [12], and thus

\[\lim_{t \to \infty} \mathbb{P}^D_x(X_t \in B \mid t < \tau_D) = \nu_{\phi_0}(B), \quad \forall B \in \mathcal{B}(D),\]

which is an extension of a result of Pinsky [16] to absorbing symmetric \(\alpha\)-stable processes. In [14, Example 4], the give examples of open sets \(D\) such that \(m(D) = \infty\) and \(X^D\) are intrinsic ultracontractive. Applications of the intrinsic ultracontractivity to the Yaglom limit were studied in [13,15].

2 Ergodic Properties of SMPs

In this section, we summarize results on ergodic properties of SMPs. Let \(E\) be a locally compact separable metric space and \(E_\Delta\) the one-point compactification of \(E\) with adjoined point \(\Delta\). Let \(m\) be a positive Radon measure on \(E\) with full topological support. Let \(X = (\Omega, X_t, \mathbb{P}_x, \zeta)\) be an \(m\)-SMP. Here \(\zeta\) is the lifetime of \(X\), \(\zeta = \inf\{t > 0 : X_t = \Delta\}\). Denote by \(\{p_t; t \geq 0\}\) and \(\{R_\alpha; \alpha > 0\}\) the semigroup and resolvent of \(X\):

\[p_t f(x) = \mathbb{E}_x(f(X_t)), \quad R_\alpha f(x) = \mathbb{E}_x\left(\int_0^\infty e^{-\alpha t} f(X_t)dt\right).\]

In this section, we further assume that \(X\) is conservative, \(\mathbb{P}_x(\zeta = \infty) = 1\), and satisfies
(I) (Irreducibility) If a Borel set A is p_t-invariant, that is, $p_t(1_A f)(x) = 1_A p_t f(x)$ m-a.e. for any $f \in L^2(E; m) \cap b \mathcal{B}(E)$ and $t > 0$, then A satisfies either $m(A) = 0$ or $m(E \setminus A) = 0$. Here $b \mathcal{B}(E)$ is the space of bounded Borel functions on E.

The symmetry of X enables us to strengthen the ergodic theorem as follows: Suppose $m(E) < \infty$. For $f \in L^\infty(E; m)$

$$p_t f(x) \to \frac{1}{m(E)} \int_E f(x) dm, \quad m\text{-a.e. } x. \quad (3)$$

Following the argument in [7], we will give a proof of (3).

Theorem 2.1 Suppose $m(E) < \infty$. For any $f \in L^\infty(E; m)$, there exists a function g in $L^\infty(E; m)$ such that

$$\lim_{t \to \infty} p_t f = g, \quad m\text{-a.e. and in } L^1(E; m).$$

Moreover, g is p_t-invariant, $p_t g = g$, m-a.e.

Proof Define $\mathcal{G}_t = \{X_s \mid s \geq t\}$ and $Y_t = \mathbb{E}_m(f(X_0)|\mathcal{G}_t)$, where $\mathbb{P}_m(\cdot) = \int_E \mathbb{P}_x(\cdot) dm(x)$. By the time reversibility of X_t with respect to \mathbb{P}_m, $Y_t = p_t f(X_t)$, \mathbb{P}_m-a.e., and so

$$\mathbb{E}_m(Y_t|\mathcal{F}_0) = \mathbb{E}_m(p_t f(X_t)|\mathcal{F}_0) = p_{2t} f(X_0), \quad \mathbb{P}_m\text{-a.e.}$$

Here $\mathcal{F}_0 = \{X_0\}$. Since $f(X_0) \in L^1(\mathbb{P}_m)$ and Y_t is a reversed martingale,

$$\lim_{t \to \infty} Y_t = \mathbb{E}_m(f(X_0)| \cap_{t>0} \mathcal{G}_t), \quad \mathbb{P}_m\text{-a.e. and in } L^1(\mathbb{P}_m)$$

(cf. [17, Theorem:II.51.1]). Put $Z = \mathbb{E}_m(f(X_0)| \cap_{t>0} \mathcal{G}_t)$. Noting that $|Y_t| \leq \|f\|_\infty$, \mathbb{P}_m-a.e. by the definition of Y_t, we see from the conditional bounded convergence theorem (cf. [17, II.40.41, (41)(g)]) that

$$\lim_{t \to \infty} p_{2t} f(X_0) = \lim_{t \to \infty} \mathbb{E}_m(Y_t|\mathcal{F}_0) = \mathbb{E}_m(Z|\mathcal{F}_0) = \mathbb{E}_X(Z), \quad \mathbb{P}_m\text{-a.e. and in } L^1(\mathbb{P}_m). \quad (4)$$

Put $g(x) = \mathbb{E}_x(Z)$. We then see from (4) that $\lim_{t \to \infty} p_t f = g$, m-a.e. and in $L^1(E; m)$. The p_t-invariance of g follows from

$$p_t g = \lim_{s \to \infty} p_t(p_s f) = \lim_{s \to \infty} p_{t+s} f = g, \quad m\text{-a.e.},$$

which completes the proof. \hfill \square

Theorem 2.2 [7] Assume $m(E) < \infty$. If the Markov process X is irreducible and conservative, then for $f \in L^\infty(E; m)$

$$\lim_{t \to \infty} p_t f(x) = \frac{1}{m(E)} \int_E f dm, \quad m\text{-a.e. and in } L^1(E; m) \quad (5)$$
Proof By combining Theorem 2.1 with [4, Theorem 2.1.11](see also [10, Theorem 1]), we see \(\lim_{t \to \infty} p_t f \) is constant \(m \)-a.e. Since \((p_t f, 1)_m = \int_E f \, dm \), the constant is equal to the right-hand side of (5).

Remark 2.1 Suppose that \(X \) satisfies the absolute continuity condition:

\((\text{AC}) \ p_t(x, dy) = p_t(x, y)m(dy), \forall t > 0, \forall x \in E \).

Then “\(m \)-a.e. \(x \)” in Theorem 2.2 can be strengthened to “all \(x \)” Indeed, for any \(x \in E \)

\[
\lim_{t \to \infty} p_t f(x) = \lim_{t \to \infty} \int_E p_1(x, y) \left(\int_E p_t - 1(y, z) f(z) \, dm(z) \right) \, dm(y) = \int_E p_1(x, y) \left(\frac{1}{m(E)} \int_E f \, dm \right) \, dm(y) = \frac{1}{m(E)} \int_E f \, dm.
\]

Corollary 2.1 Suppose the assumptions of Theorem 2.2 hold. Assume, in addition, \((\text{AC}) \) and the ultracontractivity, \(\| p_t \|_{1, \infty} \leq c_t < \infty \). Here \(\| \cdot \|_{1, \infty} \) is the operator norm from \(L^1(E; m) \) to \(L^\infty(E; m) \). Then for \(f \in L^1(E; m) \)

\[
\lim_{t \to \infty} p_t f(x) = \frac{1}{m(E)} \int_E f \, dm, \forall x \in E.
\]

Proof For \(f \in L^1(E; m) \), \(p_1 f \in L^\infty(E; m) \) by the ultracontractivity. Hence

\[
\lim_{t \to \infty} p_t f(x) = \lim_{t \to \infty} p_{t - 1}(p_1 f)(x) = \frac{1}{m(E)} \int_E p_1 f \, dm, \forall x \in E
\]

by Theorem 2.2 and Remark 2.1. By the symmetry with respect to \(m \) and conservativeness of \(p_1 \)

\[
\int_E p_1 f \, dm = \int_E p_1 \cdot f \, dm = \int_E f \, dm,
\]

and (6) is proved.

3 Quasi-stationary Distribution

In this section, we consider the existence and uniqueness of quasi-stationary distributions. We assume that \(X \) possesses the next three properties:

(I) (Irreducibility)

(II) (Strong Feller Property) For each \(t > 0, p_t(b \mathcal{B}(E)) \subset bC(E), \) where \(bC(E) \) is the space of bounded continuous functions on \(E \).
(III) **(Tightness)** For any \(\epsilon > 0 \), there exists a compact set \(K \) such that

\[
\sup_{x \in E} R_1 1_{K^c}(x) \leq \epsilon.
\]

A SMP with three properties above is said to be in **Class \((T)\)**. Note that Condition \((\text{II})\) implies \((\text{AC})\).

We see that if \(X \) is not conservative, the tightness property implies a fast explosion in a sense that the lifetime \(\zeta \) is exponentially integrable. In particular, \(X \) is almost surely killed, \(\mathbb{P}_x(\zeta < \infty) = 1 \) for any \(x \in E \). Indeed, let \((\mathcal{E}, \mathcal{D}(\mathcal{E}))\) be the Dirichlet form on \(L^2(E; m) \) generated by \(X \):

\[
\begin{aligned}
\mathcal{D}(\mathcal{E}) &= \left\{ u \in L^2(E; m) \mid \lim_{t \to 0} \frac{1}{t} (u - T_t u, u)_m < \infty \right\} \\
\mathcal{E}(u, v) &= \lim_{t \to 0} \frac{1}{t} (u - T_t u, v)_m.
\end{aligned}
\]

We define

\[
\lambda_0 = \inf\{ \mathcal{E}(u, u) \mid u \in \mathcal{D}(\mathcal{E}), \|u\|_2 = 1 \},
\]

where \(\| \cdot \|_2 \) is the \(L^2(E; m) \)-norm. We then see in [18, Corollary 3.8] that \(\lambda_0 > 0 \) and for \(0 < \gamma < \lambda_0 \)

\[
\sup_{x \in E} \mathbb{E}_x(e^{\gamma \zeta}) < \infty.
\]

In the sequel, we assume that \(X \) is an explosive SMP in **Class \((T)\)**.

A probability measure \(\nu \) on \(E \) is said to be **quasi-stationary distribution** (**QSD** for short) of \(X \) if for all \(t \geq 0 \) and all Borel set \(B \in \mathcal{B}(E) \),

\[
\nu(B) = \mathbb{P}_\nu(X_t \in B \mid t < \zeta) = \left(\frac{\mathbb{P}_\nu(X_t \in B)}{\mathbb{P}_\nu(X_t \in E)} \right).
\]

where \(\mathbb{P}_\nu(\cdot) = \int_E \mathbb{P}_\nu(\cdot) d\nu(x) \). QSDs capture the long-time behavior of surely killed process \(X \) when \(X \) is conditioned to survive.

A function \(\phi_0 \) on \(E \) is called a **ground state** of \((\mathcal{E}, \mathcal{D}(\mathcal{E}))\) if \(\phi_0 \in \mathcal{D}(\mathcal{E}) \), \(\|\phi_0\|_2 = 1 \) and \(\lambda_0 = \mathcal{E}(\phi_0, \phi_0) \). The ground state \(\phi_0 \) exists because the embedding of \((\mathcal{E}_1, \mathcal{D}(\mathcal{E}))\) into \(L^2(E; m) \) is compact [19, Theorem 2.1]. Here \(\mathcal{E}_1 = \mathcal{E} + (\cdot, \cdot)_m \).

Lemma 3.1 *For a Borel set \(B \subset E \) with \(m(B) > 0 \), define

\[
\lambda_0^B = \inf \left\{ \mathcal{E}(u, u) + \int_B u^2 dm \mid u \in \mathcal{D}(\mathcal{E}), \|u\|_2 = 1 \right\}.
\]

Then it holds that \(\lambda_0^B > \lambda_0 \).*
Proof. There exists a minimizer ϕ_0^B attaining the infimum in (9) by Takeda [19, Theorem 2.1]. Hence

$$\lambda_0^B = \mathcal{E}(\phi_0^B, \phi_0^B) + \int_B (\phi_0^B)^2 dm > \mathcal{E}(\phi_0^B, \phi_0^B) \geq \mathcal{E}(\phi_0, \phi_0) = \lambda_0.$$

\square

Proposition 3.1 [21] The ground state ϕ_0 has a bounded continuous version with $\phi_0(x) > 0$ for any $x \in E$.

For a compact set K with $m(K) > 0$, define

$$p_t^K f(x) = \mathbb{E}_x \left(e^{-\int_0^t 1_K(X_s) ds} f(X_t) \right), \quad t \geq 0,$$

$$R_{\beta}^{\lambda_0, K} f(x) = \mathbb{E}_x \left(\int_0^\infty e^{-\beta t + \lambda_0 t} p_t^K f(x) dt \right), \quad \beta \geq 0.$$

We denote $R_{\lambda_0, K}$ for $R_{\lambda_0, K}^0$ simply.

Lemma 3.2 It holds that $\sup_{x \in E} R_{\lambda_0, K} 1(x) < \infty$.

Proof. By the L^p-independence of the growth bound of p_t^K [5, Theorem 1.3], for any $\delta > 0$ there exists a positive constant $C(\delta)$ such that

$$\sup_{x \in E} p_t^K 1(x) = \|p_t^K 1\|_\infty \leq C(\delta) e^{-(\lambda_0^K - \delta)t}.$$

Since $\lambda_0^K > \lambda_0$ by Lemma 3.1, for $0 < \delta < \lambda_0^K - \lambda_0$

$$\|R_{\lambda_0, K} 1\|_\infty \leq \int_0^\infty e^{\lambda_0^K t} \sup_{x \in E} p_t^K 1(x) dt \leq C(\delta) \int_0^\infty e^{-(\lambda_0^K - \lambda_0 - \delta)t} dt$$

$$= \frac{C(\delta)}{\lambda_0^K - \lambda_0 - \delta} < \infty.$$

\square

We define symmetric bilinear forms on $L^2(E; m)$: For $u \in \mathcal{D}(\mathcal{E})$

$$\mathcal{E}^{\lambda_0}(u, u) = \mathcal{E}(u, u) - \lambda_0 \int_E u^2 dm,$$

$$\mathcal{E}^{\lambda_0, K}(u, u) = \mathcal{E}(u, u) - \lambda_0 \int_E u^2 dm + \int_E u^2 1_K dm.$$

For a general symmetric bilinear form \mathcal{A}, \mathcal{A}_β denotes $\mathcal{A} + \beta(\cdot, \cdot)_m$.

Lemma 3.3 The ground state ϕ_0 satisfies $\phi_0(x) = R_{\lambda_0, K}^{\phi_0 1_K}(x)$ for all $x \in E$.

 Springer
Proof For $\varphi \in b\mathcal{B}_0^+(E)$, the set of nonnegative bounded functions with compact support,

$$
\mathcal{E}_{\lambda,0}^K \left(R_{\beta}^{\lambda_0,K} \varphi, R_{\beta}^{\lambda_0,K} \varphi \right) \leq \mathcal{E}_{\beta}^{\lambda_0,K} \left(R_{\beta}^{\lambda_0,K} \varphi, R_{\beta}^{\lambda_0,K} \varphi \right) = \int_E \varphi R_{\beta}^{\lambda_0,K} \varphi dm \leq \int_E \varphi R_{\lambda_0,K} \varphi dm < \infty
$$

by Lemma 3.2. Since $R_{\beta}^{\lambda_0,K} \varphi \uparrow R_{\lambda_0,K} \varphi$ as $\beta \downarrow 0$, the function $R_{\lambda_0,K} \varphi$ belongs to the extended Schrödinger space $\mathcal{D}_e(\mathcal{E}_{\lambda_0,K})$ (For the definition of extended Schrödinger space, see [20, Section 2]).

By the definition of $\mathcal{E}_{\lambda_0,K}$,

$$
\mathcal{E}_{\lambda_0,K} \left(\phi_0, R_{\beta}^{\lambda_0,K} \varphi \right) = \mathcal{E}_{\lambda_0} \left(\phi_0, R_{\beta}^{\lambda_0,K} \varphi \right) + \int_E 1_K \phi_0 R_{\beta}^{\lambda_0,K} \varphi dm.
$$

Noting that $\mathcal{D}_e(\mathcal{E}_{\lambda_0,K}) \subset \mathcal{D}_e(\mathcal{E}_{\lambda_0})$ because $\mathcal{E}_{\lambda_0}(u, u) \leq \mathcal{E}_{\lambda_0,K}(u, u)$, we have

$$
\mathcal{E}_{\lambda_0,K} \left(\phi_0, R_{\lambda_0,K} \varphi \right) = \mathcal{E}_{\lambda_0} \left(\phi_0, R_{\lambda_0,K} \varphi \right) + \int_E 1_K \phi_0 R_{\lambda_0,K} \varphi dm \quad (10)
$$

as $\beta \to 0$.

Since ϕ_0 is the eigenfunction corresponding to λ_0, $\mathcal{E}_{\lambda_0}(\phi_0, R_{\beta}^{\lambda_0,K} \varphi) = 0$ for any $\beta > 0$, and so $\mathcal{E}_{\lambda_0}(\phi_0, R_{\lambda_0,K} \varphi) = 0$. Hence, by (10) and the symmetry of $R_{\lambda_0,K}$ with respect to m

$$
\mathcal{E}_{\lambda_0,K} \left(\phi_0, R_{\lambda_0,K} \varphi \right) = \int_E 1_K \phi_0 R_{\lambda_0,K} \varphi dm = \int_E R_{\lambda_0,K}(1_K \phi_0) \varphi dm. \quad (11)
$$

On the other hand,

$$
\mathcal{E}_{\lambda_0,K} \left(\phi_0, R_{\beta}^{\lambda_0,K} \varphi \right) = \mathcal{E}_{\beta}^{\lambda_0,K} \left(\phi_0, R_{\beta}^{\lambda_0,K} \varphi \right) - \beta \int_E \phi_0 R_{\beta}^{\lambda_0,K} \varphi dm \quad (12)
$$

$$
= \int_E \phi_0 \varphi dm - \beta \int_E \phi_0 R_{\beta}^{\lambda_0,K} \varphi dm.
$$

Since

$$
\int_E \phi_0 R_{\beta}^{\lambda_0,K} \varphi dm = \int_E R_{\beta}^{\lambda_0,K} \phi_0 \varphi dm \leq \|\phi_0\|_\infty \|R_{\lambda_0,K} 1\|_\infty \int_E \varphi dm < \infty,
$$

by Lemma 3.2, we have from (12)

$$
\mathcal{E}_{\lambda_0,K} \left(\phi_0, R_{\lambda_0,K} \varphi \right) = \int_E \phi_0 \varphi dm. \quad (13)
$$

by letting $\beta \to 0$.
By (11) and (13),
\[\int_E R^{\lambda_0, K}(\phi_0 1_K) \varphi \, dm = \int_E \varphi \phi_0 \, dm, \ \forall \varphi \in bB_0^+(E) \]
and thus
\[\phi_0 = R^{\lambda_0, K}(\phi_0 1_K), \ m\text{-a.e.} \]
By the continuity of both functions, “m-a.e. \(x\)” can be strengthened to “all \(x\)”.

\[\begin{array}{c}
\text{Lemma 3.4} \\
The ground state \(\phi_0\) belongs to \(L^1(E; m)\).
\end{array} \]

Proof By Lemma 3.3 and the symmetry of \(R^{\lambda_0, K}\) with respect to \(m\), we see
\[\int_E \phi_0 \, dm = \int_E R^{\lambda_0, K}(1_K \phi_0) \, dm = \int_E 1_K \phi_0 R^{\lambda_0, K} \, 1 \, dm. \]
The right hand side is finite by Proposition 3.1 and Lemma 3.2.

\[\begin{array}{c}
\text{Lemma 3.5} \\
Let \(\mu\) be a QSD. Then \(\mu\) is absolutely continuous with respect to \(m\).
\end{array} \]

Proof If \(m(B) = 0\), then
\[\mathbb{P}_\mu(X_t \in B) = \int_E \left(\int_B p_t(x, y) \, dm(y) \right) \, d\mu = 0, \]
and thus \(\mu(B) = \mathbb{P}_\mu(X_t \in B)/\mathbb{P}_\mu(t < \zeta) = 0\).

We define the space \(D^+(A)\) by
\[D^+(A) = \left\{ R_\alpha f \mid \alpha > 0, \ f \in L^2(E; m) \cap bC^+(E), \ f \not\equiv 0 \right\}. \]

Here \(bC^+(E)\) is the set of nonnegative bounded continuous functions. For \(\phi = R_\alpha g \in D^+(A)\) define the multiplicative functional \(L_\phi^\alpha\) by
\[L_\phi^\alpha_t = \frac{\phi(X_t)}{\phi(X_0)} \exp \left(-\int_0^t A\phi/\phi(X_s) \, ds \right) 1_{[t < \zeta]}, \ A\phi = \alpha \phi - g. \quad (14) \]

Let \(X^\phi = (\Omega, X_t, \mathbb{P}_x^{\phi, \xi})\) the transformed process of \(X\) by \(L_\phi^\alpha\) and denote by \(p_t^\phi\) its semigroup, \(p_t^\phi f(x) = \mathbb{E}_x(L_t^\phi f(X_t))\). We then see from Lemma 6.3.2 in [8] that \(X^\phi\) is an irreducible, conservative \(\phi^m\)-SMP on \(E\), \((p_t^\phi f, g)_{\phi^m} = (f, p_t^\phi g)_{\phi^m}\) (In [3] this fact is extended to \(\phi \in D(E)\)). Since \(\phi_0 \in D^+(A)\) and \(A\phi_0 = -\lambda_0 \phi_0\), \(L_{\phi_0}^\alpha\) in (14) is simply written as
\[L_{\phi_0}^\alpha = e^{\lambda_0 t} \frac{\phi_0(X_t)}{\phi_0(X_0)} 1_{[t < \zeta]}. \quad (15) \]
Hence the following equalities hold:

\[p_t^{\phi_0} f(x) = e^{\lambda_0 t} \frac{1}{\phi_0(x)} \mathbb{E}_x (\phi_0(X_t) f(X_t)) = e^{\lambda_0 t} \frac{1}{\phi_0(x)} p_t(\phi_0 f)(x) \]

and so

\[p_t f(x) = e^{-\lambda_0 t} \phi_0(x) p_t^{\phi_0} \left(\frac{f}{\phi_0} \right)(x). \tag{16} \]

We see from Lemma 3.4 that the probability measure \(\nu^{\phi_0} \) can be defined by

\[\nu^{\phi_0}(B) = \frac{\int_B \phi_0 \, dm}{\int_E \phi_0 \, dm}. \tag{17} \]

Lemma 3.6 The measure \(\nu^{\phi_0} \) is a QSD of \(X \).

Proof By (16)

\[\mathbb{P}^{\nu^{\phi_0}}(X_t \in B) = \frac{\int_E \mathbb{P}_x^t (X_t \in B) \phi_0(x) \, dm}{\int_E \phi_0(x) \, dm} = e^{-\lambda_0 t} \int_E \mathbb{E}_x^{\phi_0} ((1_B/\phi_0)(X_t)) \phi_0^2(x) \, dm \frac{\int_E \phi_0(x) \, dm}{\int_E \phi_0(x) \, dm}. \]

Since \(X^{\phi_0} \) is \(\phi_0^2m \)-symmetric and conservative, \(p_t^{\phi_0} 1 = 1 \),

\[\int_E \mathbb{E}_x^{\phi_0} ((1_B/\phi_0)(X_t)) \phi_0^2(x) \, dm = \int_E p_t^{\phi_0} (1_B/\phi_0)(x) \phi_0^2(x) \, dm \]

\[= \int_E (1_B/\phi_0)(x) p_t^{\phi_0} 1(x) \phi_0(x)^2 \, dm = \int_B \phi_0 \, dm. \]

Hence we see

\[\mathbb{P}^{\nu^{\phi_0}}(X_t \in B \mid X_t \in E) = \frac{\mathbb{P}^{\nu^{\phi_0}}(X_t \in B)}{\mathbb{P}^{\nu^{\phi_0}}(X_t \in E)} = \frac{\int_B \phi_0 \, dm}{\int_E \phi_0 \, dm} = \nu^{\phi_0}(B). \]

\(\square \)

Theorem 3.1 Assume that \(X \) is an explosive SMP in Class \((T)\). Then the measure \(\nu^{\phi_0} \) defined in (17) is the unique QSD of \(X \).

Proof Let \(\mu \) is a QSD, i.e.,

\[\mu(B) = \mathbb{P}^{\mu}(X_t \in B \mid t < \xi) = \frac{\mathbb{P}^{\mu}(X_t \in B)}{\mathbb{P}^{\mu}(X_t \in E)}. \]

\(\square \)
For compact sets \(K, F \subset E \),

\[
\mu(K) = \frac{\mathbb{P}_\mu(X_t \in K)}{\mathbb{P}_\mu(X_t \in E)} \leq \frac{\mathbb{P}_\mu(X_t \in K)}{\mathbb{P}_\mu(X_t \in F)} = \frac{\int_E p_t 1_K \, d\mu}{\int_E p_t 1_F \, d\mu}.
\]

By (16), the right hand side equals

\[
\int_E \phi_0 p_t \frac{1_K}{\phi_0} \, d\mu = \int_E \phi_0 p_t \frac{1_F}{\phi_0} \, d\mu.
\]

Since

\[
\frac{1_K(x)}{\phi_0(x)} \leq \frac{1}{\inf_{x \in K} \phi_0(x)} < \infty,
\]

\(1_K/\phi_0 \) belongs to \(L^\infty(E; m) \). Noting \(X^{\phi_0} \) satisfies (AC) by definition, we see from Remark 2.1 that

\[
\lim_{t \to \infty} \mathbb{P}_\nu(X_t \in B | t < \zeta) = \nu(\phi_0)(B),
\]

for any probability measure \(\nu \).

Lemma 3.7 If \(X \) is intrinsic ultracontractive, then

\[
\lim_{t \to \infty} \mathbb{P}_\nu(X_t \in B | t < \zeta) = \nu(\phi_0)(B)
\]

for any probability measure \(\nu \).
Proof Since
\[P_\nu(X_t \in B) = e^{-\lambda_0 t} \int_E \phi_0 p_t^{\phi_0} \left(\frac{1_B}{\phi_0} \right) d\nu, \]
we have
\[P_\nu(X_t \in B \mid t < \zeta) = \frac{\int_E \phi_0 p_t^{\phi_0} \left(\frac{1_B}{\phi_0} \right) d\nu}{\int_E \phi_0 p_t^{\phi_0} \left(\frac{1}{\phi_0} \right) d\nu}. \]
Noting that \(1/\phi_0 \in L^1(\phi_0^2 m) \), we have this lemma by Corollary 2.1.

Example 3.1 Let us consider a one-dimensional diffusion process \(X = (X_t, \mathbb{P}_x, \zeta) \) on an open interval \(I = (r_1, r_2) \) such that \(\mathbb{P}_x(X_{\zeta^-} = r_1 \text{ or } r_2, \ zeta < \infty) = \mathbb{P}_x(zeta < \infty), \ x \in I, \) and \(\mathbb{P}_a(\sigma_b < \infty) > 0 \) for any \(a, b \in I \). The diffusion \(X \) is symmetric with respect to its canonical measure \(m \) and it satisfies I and II. The boundary point \(r_i \) of \(I \) is classified into four classes: regular boundary, exit boundary, entrance boundary and natural boundary [9, Chapter 5]:

(a) If \(r_2 \) is a regular or exit boundary, then \(\lim_{x \rightarrow r_2} R_1 l (x) = 0. \)
(b) If \(r_2 \) is an entrance boundary, then \(\lim_{x \rightarrow r_2} \sup_{x \in l} R_1 l (r_2) (x) = 0. \)
(c) If \(r_2 \) is a natural boundary, then \(\lim_{x \rightarrow r_2} R_1 l (r_2) (x) = 1 \) and thus \(\sup_{x \in (r_1, r_2)} R_1 l (r_2) (x) = 1. \)

Therefore, the tightness property III is fulfilled if and only if no natural boundaries are present. For the intrinsic ultracontractivity of one-dimensional diffusion processes, refer to [23].

Example 3.2 Let \(\mathcal{D} \) be the family of open sets in \(\mathbb{R}^d \). We set
\[\mathcal{D}_0 = \left\{ D \in \mathcal{D} \mid \lim_{x \in D, |x| \rightarrow \infty} m(D \cap B(x, 1)) = 0 \right\}, \]
where \(m \) denotes the Lebesgue measure on \(\mathbb{R}^d \) and \(B(x, 1) \) the open ball with center \(x \) and radius 1. Let \(X \) be the symmetric \(\alpha \)-stable process, the Markov process generated by \((-\Delta)^{\alpha/2} \) \((0 < \alpha \leq 2) \). We can show by the same argument as in [22, Lemma 3.3] that if an open set \(D \) belongs to \(\mathcal{D}_0 \), then the absorbing process \(X^D \) on \(D \) is in Class (T). For the intrinsic ultracontractivity of \(X^D \), refer to [1, 12, 14]. In particular, it is shown in [12] that for \(0 < \alpha < 2 \) \(X^D \) is intrinsic ultracontractive for any bounded open set \(D \). As a result,
\[\lim_{t \rightarrow \infty} \mathbb{P}^D_x (X_t \in B \mid t < \tau_D) = \nu^{\phi_0} (B), \ \forall B \in \mathcal{B}(D). \]
In [14, Example 4], the author gives an example of open set \(D \) such that \(m(D) = \infty \) and \(X^D \) is intrinsic ultracontractive.
Example 3.3 Let V be a positive function in the local Kato class. If

$$\lim_{|x| \to \infty} m(\{x \in \mathbb{R}^d \mid V(x) \leq M\}) = 0 \text{ for any } M > 0,$$

then the subprocess of the BM by $\exp \left(- \int_0^t V(B_s) \, ds \right)$ is in Class (T) [22]. For the intrinsic ultracontractivity of Schrödinger semigroups, refer to [11].

References

1. Aikawa, H.: Intrinsic ultracontractivity via capacitary width. Rev. Mat. Iberoam. 31, 1041–1106 (2015)
2. Cattiaux, P., Collet, P., Lambert, A., Martínez, S., Meleard, S., San Martín, J.: Quasi-stationary distributions and diffusion models in population dynamics. Ann. Probab. 37, 1926–1969 (2009)
3. Chen, Z.-Q., Fitzsimmons, P.J., Takeda, M., Ying, J., Zhang, T.-S.: Absolute continuity of symmetric Markov processes. Ann. Probab. 32, 2067–2098 (2004)
4. Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change and Boundary Theory, London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton (2012)
5. Chen, Z.-Q., Kim, D., Kuwae, K.: L^p-independence of spectral radius for generalized Feynman–Kac semigroups. Math. Ann. (to appear)
6. Collet, P., Martínez, S., San Martín, J.: Quasi-stationary Distributions, Markov Chains, Diffusions and Dynamical Systems. Springer, Berlin (2013)
7. Fukushima, M.: A note on irreducibility and ergodicity of symmetric Markov processes. Springer Lecture Notes in Physics vol. 173, pp. 200–207 (1982)
8. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, 2nd edn. de Gruyter, Berlin (2010)
9. Itô, K.: Essentials of Stochastic Processes. American Mathematical Society, Providence (2006)
10. Kajino, N.: Equivalence of recurrence and Liouville property for symmetric Dirichlet forms. Math. Phys. Comput. Simul. 40, 89–98 (2017)
11. Kaleta, K., Kulczycki, T.: Intrinsic ultracontractivity for Schrödinger operators based on fractional Laplacians. Potential Anal. 33, 313–339 (2010)
12. Kulczycki, T.: Intrinsic ultracontractivity for symmetric stable processes. Bull. Polish Acad. Sci. Math. 46, 325–334 (1998)
13. Knobloch, R., Partzsch, L.: Uniform conditional ergodicity and intrinsic ultracontractivity. Potential Anal. 33, 107–136 (2010)
14. Kwasnicki, M.: Intrinsic ultracontractivity for stable semigroups on unbounded open sets. Potential Anal. 31, 57–77 (2009)
15. Miura, Y.: Ultracontractivity for Markov semigroups and quasi-stationary distributions. Stoch. Anal. Appl. 32, 591–601 (2014)
16. Pinsky, R.G.: On the convergence of diffusion processes conditioned to remain in a bounded region for large time to limiting positive recurrent diffusion processes. Ann. Probab. 13, 363378 (1985)
17. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales, vol. 1, 2nd edn. Cambridge University Press, Foundations (2000)
18. Takeda, M.: A tightness property of a symmetric Markov process and the uniform large deviation principle. Proc. Am. Math. Soc. 141, 4371–4383 (2013)
19. Takeda, M.: A variational formula for Dirichlet forms and existence of ground states. J. Funct. Anal. 266, 660–675 (2014)
20. Takeda, M.: Criticality and subcriticality of generalized Schrödinger forms. Ill. J. Math. 58, 251–277 (2014)
21. Takeda, M.: Compactness of symmetric Markov semi-groups and boundedness of eigenfunctions. Trans. Amer. Math. Soc. (to appear)
22. Takeda, M., Tawara, Y., Tsuchida, K.: Compactness of Markov and Schrödinger semi-groups: a probabilistic approach. Osaka J. Math. 54, 517–532 (2017)
23. Tomisaki, M.: Intrinsic ultracontractivity and small perturbation for one-dimensional generalized diffusion operators. J. Funct. Anal. 251, 289–324 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.