The effects of ex vivo cold-storage on cryopreservation of the goat (Capra hircus) epididymal sperm

Seyed Kamal-Aldin Hoseinzadeh-Sani1 D.V.M., Farid Barati1 D.V.M., Ph.D., Mahmoud Khaksary Mahabady2 D.V.M., Ph.D.

1. Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2. Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Corresponding Author:
Farid Barati, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran. P.O.Box: 61355-145 Email: fabritir@yahoo.com Tel/Fax: (+98) 6113330073

Received: 19 December 2012
Revised: 9 March 2013
Accepted: 12 May 2013

Abstract

Background: There are many studies focused on long or short storage time of epididymal sperm (EPS) of different species. There are limited studies on preservation or cryopreservation of the domestic goat EPS.

Objective: The aim of the present study was to evaluate the effects of ex vivo cold-storage on freezing of EPS from goat (Capra hircus).

Materials and Methods: In a split-plot design the caprine testes-epididymides (40 pairs) were divided to 4 storage-time groups equally (0, 24, 48 and 72 h), then subjected to cryopreservation using Bioxell. Sperm parameters were analyzed before and after freezing.

Results: Duration of cold-storage as well as freezing at all storage-time points reduced sperm viability and progressive motility while increased sperm tail abnormalities (p<0.0001). Freezing reduced the percentage of cytoplasmic droplets (p<0.0001). The percentage of detached heads was increased at all storage-time points following freezing (p=0.0019), except at time 0 h.

Conclusion: It can be concluded that cold storage [in refrigerator (4°C) for 72 h] of epididymides efficiently protected the goat EPS in terms of progressive motility and viability. However, cold-storage may not protect the goat EPS against cryopreservation with Bioxell.

Key words: Epididymal sperm retrieval, Cryopreservation, Refrigeration, Cold-storage, Goat.

Introduction

Epididymal sperm (EPS), although doesn’t have a notable role in artificial insemination, is important in understanding the bases of sperm preservation as a tool for conservation of genetic resources of endangered dead wild life species or assisted technology for treatment of the some cases (e.g. obstructive azoospermia) of human infertilities (1, 2). However, the low quarter neurologic disorders and some extracts may influence the quality of EPS (3, 4). On the other hand, short-time storage of sperm usually is possible above zero temperatures, for manipulation purposes, and may protect the fertility potential of sperm. Short-time storage of the EPS usually, is done within or out of the epididymis in a cool condition (5-7). Pre-freezing poor sperm quality has detrimental effects on the sperm cryopreservation (8).

The postmortem changes within epididymis can reduce the quality of cool-stored EPS, and in turn decrease the freezing output of the EPS (7, 9). Ganan et al showed the efficacy of 24 h cold-storage on the quality and cryopreservation of EPS from domestic cat (6). The fresh EPS of different species has been collected and frozen successfully (7, 10, 11). Sperm handling procedure is critical for optimal sperm freezing output. The basic media as well as the commercial extenders were used for EPS freezing (7, 12-14). The addition of the protective agents and seminal plasma and determination of optimal equilibration time have been considered in EPS cryopreservation, too (15-17).

The aim of the present study was to find the effects of ex vivo cold-storage on cryopreservation of the goat EPS with a known commercial sperm freezing extender.

Materials and methods

Reagents and diluents

Tyrode solution ingredients and sodium lactate were from Merck, Germany. Bovine
albumin, sodium pyrovate and eosin-B and nigrosin were bought from Sigma-Aldrich, USA. Bioxell® was provided from IMV Technology, France. Giemsa stain was provided from Baharafshan, Iran.

Experimental procedures

Preparation of Epididymal sperm

The testes-epididymides were provided from slaughtered bucks (9-13 months of age) at the local slaughterhouse during January to March 2012 (breeding season) and transported on ice to the laboratory of IVF, Shahid Chamran University of Ahvaz, in 1 h. Both left and right cauda-epididymides were separated and a deep incision was placed on their ventral part, and then left in the warmed TALP (Tyrode-Albumin-Lactate-Pyrovate) solution (2 mL) for 15 min to retrieve sperm.

Sperm analysis

Equal volumes (≈50 µL) of the stain (Eosin B- nigrosin) with the sperm suspension (fresh or frozen samples) were mixed on a glass slide, smeared and finally dried with a hair dryer. Pink or red sperm considered as dead and white sperm considered as live sperm. The percentages of live sperm were estimated from five separated fields with magnification of X40. Another drop of the sperm suspension was smeared on a glass slide, left to be air-dried, fixed with absolute methanol (Baharafshan, Iran) and finally stained with the Giemsa stain (5%) to see the sperm morphological abnormalities (magnification of ×100).

The sperm head abnormalities were small, tapered, pyriform, round and amorphous. The tail abnormalities were bent tail and coiled tail. Cytoplasmic droplets and the most important midpeice abnormality, detached heads, were considered separately. A drop of sperm suspension was placed on a warmed slide and sperm progressive motility was estimated by observation of four different microscopic fields. The sperm concentration of the suspension was estimated using a modified Neubar chamber; based on the procedure for the red blood cell count.

Sperm cryopreservation

Sperm cryopreservation was carried out according to the instruction manual of IMV technology for freezing of bull semen with Bioxell®. Briefly, the working solution was prepared by mixing 4 to 1 (v/v) of Bioxell® to double distilled water. The sperm suspension was extended in a single step with the working solution. The final concentration of 20×10^6 sperm/mL of extended sperm was adjusted for freezing.

The extended sperms were packaged at 4°C (0.25 mL straws; IMV technology, France) and equilibrated for 4 h at 4°C. The equilibrated straws were placed on the liquid nitrogen (LN) vapour (4 cm above LN) for 10 min, then seeding was done by touching one end of straws with a super-cooled forceps (in LN). Finally, straws were plunged in LN and remained, at least, for 48 h and thawed in a 37°C (for 30 sec) water bath for analysis.

Experimental design

The testes-epididymides (n=40 pairs) were assigned to four storage-time groups (0, 24, 48 and 72h; Ten pairs of testes-epididymides per each time) in a 4°C refrigerator. After storage, sperm was collected and frozen. Sperm parameters were analyzed before freezing and after thawing. Two straws per storage time were used for frozen sperm analysis.

Statistical analysis

All of the collected data on the sperm parameters in the study were considered in a split plot design which main plot was cold-storage time (0h, 24, 48 and 72 h) and subplot was type of analyzed sperms (before freezing or after freezing). The General Linear Model (GLM) procedure in SAS was used to analyze the effects of cold-storage and freezing on the goat EPS (18). The difference between the least square means (LS means) was calculated using pdiff statement in SAS. Data expressed as LS means and standard error of mean (SEM).

Results

Freezing, duration of cold-storage (0h, 24h, 48h and 72 h) and their two-way interaction affected (p<0.0001) the percentage of viable spermatozoa. Cold-storage also can protect the goat epididymal sperm up to 24h, however the values of 48 and 72 h are acceptable for
sperm viability. Freezing at any time of storage with Bioxell® decreased the sperm viability. However, this effect is significant from 48 h storage onwards (Table I).

The head abnormalities of goat EPS were significantly affected in the model (p=0.013). The effect was appeared after 48 h of cold-storage (Table I, p=0.0092) in both fresh and frozen samples. The sperm tail abnormalities significantly changed in the model (p<0.0001). This abnormality was mainly caused by independent effects of freezing and duration of cold-storage (p<0.0001), i.e., the interaction of both parameters was non-significant (p=0.66). The sperm tail abnormalities were significantly increased from 48 h storage onwards in both fresh and frozen samples (Table I; p<0.0001).

The percentage of detached heads was significantly increased by freezing (p=0.0019). Duration of cold-storage (p=0.09) did not influence the abnormality. There was no interaction (p=0.21) between duration of cold-storage and freezing on the percentage of detached heads. While the abnormality in the fresh samples of time 0 h was not affected by freezing, the cold stored sperm lost their heads after freezing, significantly (Table I). A significant regression model was detected between the percentage of head and tail abnormalities before and after freezing as follows (Figure 1);

\[PTA = (0.882 \times PFA) + 13.28 \]

Where PTA is the percentage of post-thaw sperm abnormalities and PFA is the percentage of pre-freezing sperm abnormalities.

The percentage of cytoplasmic droplets was significantly affected by freezing, duration of cold-storage and their two-way interaction (p<0.0001). While the percentage of cytoplasmic droplet tend to decrease with increasing time of storage, the respected values significantly declined following cryopreservation at any storage time point (Table I; p<0.0001).

Table I. The effects of duration of cold-storage and cryopreservation† on different goat (Caprus hircus) epididymal sperm parameters (L.S.Mean±S.E.M)

	Cold-storage time (h)			
	0	24	48	72
Sperm viability				
Pre Freezing	94.1 ± 2.53^aA	90.8 ± 2.71^aB	76.4 ± 2.71^Ab	79.6 ± 2.75^Ab
Post thawing	70.5 ± 2.55^aB	65.6 ± 2.56^bB	32.7 ± 2.71^bB	30.7 ± 2.82^bB
Head abnormalities				
Pre Freezing	0.4 ± 0.27^aA	0.57 ± 0.28^aB	1.7 ± 0.28^bB	0.43 ± 0.29^aB
Post thawing	1.03 ± 0.24^aB	0.5 ± 0.29^aB	0.9 ± 0.27^aB	0.37 ± 0.29^aB
Tail abnormalities				
Pre Freezing	9.04 ± 1.84^aA	11.0 ± 1.91^aB	17.9 ± 1.95^bB	18.9 ± 1.98^bB
Post thawing	17 ± 1.81^aA	18.1 ± 1.98^aB	28.3 ± 1.91^bB	30.2 ± 2.04^aB
Cytoplasmic droplets				
Pre Freezing	46.6 ± 2.51^aB	39.8 ± 2.6B	22.3 ± 2.67^bB	20.7 ± 2.7^bB
Post thawing	22.2 ± 2.46^bB	15.2 ± 2.7^aB	13.8 ± 2.6^bB	7.75 ± 2.7^cB
Detached heads				
Pre Freezing	1.7 ± 0.55^aC	0.7 ± 0.57^abC	2.4 ± 0.58^cB	0.94 ± 0.59^abc
Post thawing	1.7 ± 0.54^aC	2.4 ± 0.59^abC	3.3 ± 0.57^bB	3.4 ± 0.61^ab
Progressive motility				
Pre Freezing	86.4 ± 3.63^aB	71 ± 3.63^aB	51.1 ± 3.63^aB	42.2 ± 3.63^aB
Post thawing	27.5 ± 3.63^bB	28.5 ± 3.63^bB	16.7 ± 3.63^bB	10.2 ± 3.63^bB

Values with different superscripts within rows significantly differ (p<0.05).

Values with different superscript within column significantly differ (p<0.05).

Ten pairs of testes-epididymes within each storage time group. Two straws per storage time were used for frozen sperm analysis.
Figure 1. The scatter plot shows a significant linear relationship between the percentages of fresh and frozen sperm abnormalities (p<0.0001). PTA: Post-thaw sperm abnormalities and PFA: pre-freezing sperm abnormalities.

Discussion

The results of the present study showed that long time (48 h onwards) in situ cold-storage reduces viability and progressive motility and increases abnormalities of goat EPS. Different studies highlighted the impact of postmortem time to sperm recovery on the EPS parameters (1, 19). Elongation of postmortem time to sperm recovery alters the chemical composition and reduces pH of epididymal lumen, and in turn reduces the sperm quality (9). Cold-storage postpones the beginning of the postmortem changes and may protect EPS (1, 9, 20).

However, the EPS response to cold-storage depends on species (7, 20). Elongated post-mortem time to sperm recovery in Spanish ibex did not influence DNA integrity of EPS (1). In the present study, freezing significantly reduced the sperm viability, progressive motility and increased sperm abnormalities. The responses of cold-stored EPS to freezing were similar at all storage-time points, except detached heads. The caprine EPS was successfully cryopreserved and some attempts to develop a suitable extender for the goat EPS cryopreservation were reported (21-24).

Blash et al reported the first successful freezing of the goat EPS compared to the ejaculated semen (21). To optimize a freezing medium, Kundu et al found that modified ringer solution with DMSO and ethylene glycol may not protect the goat EPS against freezing damage (23). Addition of dextran and amino acids to modified ringer solution improved sperm progressive motility of goat EPS following freezing (22, 24).

Some studies on freezing of the wild species of goat (Spanish ibex) EPS have been documented. Santiago-Moreno et al found that chicken egg yolk in tris-citric acid-glucose-lactose solution can improve freezing of goat EPS specially with 6% (v/v) (25, 26). The present study addressed the effect of an environmental insult, i.e. freezing of cold-stored sperm, on the percentage detached heads. It means while the minimum changes within epididymal lumen occur, the retrieved sperm will be sensitive to freezing in term of increase detached heads. There are different reports on the possible pathogenesis of this defect.

Freezing as well as the duration of cold-storage (up to 72 h) reduced the percentage of cytoplasmic droplets. The possible mechanism for cytoplasmic droplet loss in ejaculated sperm is exposure to seminal vesicle fluid, which has a different electrolyte composition to that of epididymal lumen (36). During cryopreservation, sperm has to tolerate hyperosmotic solutions and pass the
crystal formation temperature zone: Which factor cause cytoplasmic droplet to loss, is not known. Alteration in the contents of epididymal lumen during cold-storage may contribute in droplet loss in the present study.

Conclusion

In conclusion, the goat EPS was stored in refrigerator (4°C) for 72h with acceptable progressive motility and viability. However, cold-storage may not protect the goat EPS against cryopreservation damages with Bioxell.

Acknowledgements

Authors should thank the Research Deputy of Shahid Chamran University for funding this study and the staff of the Ahvaz Slaughterhouse for their collaboration in sample providing.

Conflict of interest

Authors declare no conflict of interest.

References

1. Fernández-Santos MR, Soler AJ, Ramón M, Ros-Santaella JL, Maroto-Morales A, García-Alvarez O, et al. Effect of post-mortem time on post-thaw characteristics of Spanish ibex (Capra pyrenaica) spermatozoa. Anim Reprod Sci 2011; 129: 56-66.
2. Azambuja R, Badalotti M, Teloken C, Michelon J, Petracco A. Successful birth after injection of frozen human oocytes with frozen epididymal spermatozoa. Reprod Biomed Online 2005; 11: 449-451.
3. Talebi AR, Khalili MA, Nahangi H, Abbasi A, Anvari M. Evaluation of epididymal necrospermia following experimental chronic spinal cord injury in rat. Iran J Repr Med 2007; 5: 171-176.
4. Dehghan MH, Martin T, Dehghanian R. Antifertility effect of Iranian neem seed alcoholic extract on epididymal sperm of mice. Iran J Reprod Med 2005; 2: 83-89.
5. Barati F, Papahn AA, Afrough M, Barati M. Effects of Tyrode’s solution osmolarities and milk on bull sperm storage above zero temperatures. Iran J Repr Med 2011; 9: 25-30.
6. Ganan N, Gomendio M, Roldan ER. Effect of storage of domestic cat (Felis catus) epididymides at 5 degrees C on sperm quality and cryopreservation. Theriogenology 2009; 72: 1268-1277.
7. Barati F, Khaksary mahabady M, Mohammadi GhA. Cryopreservation of in situ cool stored buffalo (Bubalus bubalis) epididymal sperm. Iran J Vet Res 2009; 10: 339-345.
8. Hallak J, Mahran A, Chae J, Agarwal A. Poor semen quality from patients with malignancies does not rule out sperm banking. Urol Res 2000; 28: 281-284.
9. Kaabi M, Paz P, Alvarez M, Anel E, Boixo JC, Rouissi H, et al. Effect of epididymis handling conditions on the quality of ram spermatozoa recovered post-mortem. Theriogenology 2003; 60: 1249-1259.
10. Ebling C, Rath D, Struckmann C, Frenzel A, Schindler L, Niemann H. Utilization of frozen-thawed epididymal ram semen to preserve genetic diversity in Scirapie susceptible sheep breeds. Theriogenology 2006; 66: 2160-2164.
11. Malo C, Gil L, Cano R, Martinez F, Gale I. Antioxidant effect of rosemary (Rosmarinus officinalis) on boar epididymal spermatozoa during cryopreservation. Theriogenology 2011; 75: 1735-1741.
12. Datta U, Chandra Sekar M, Hembraj ML, Dasgupta R. Development of a new method to preserve caprine cauda epididymal spermatozoa in-situ at -10°C with electrolyte free medium. J Assist Reprod Genet 2009; 26: 467-473.
13. Herold FC, Aurich JE, Gerber D. Epididymal sperm from the African buffalo (Syncerus caffer) can be frozen successfully with AndroMed® and with Triladyl™ but the addition of bovine seminal plasma is detrimental. Theriogenology 2004; 61: 715-724.
14. Axnér E, Hermansson U, Linde-Forsberg C. The effect of Equex STM paste and sperm morphology on post-thaw survival of cat epididymal spermatozoa. Anim Reprod Sci 2004; 84: 179-191.
15. Morton KM, Bathgate R, Evans G, Maxwell WM. Cryopreservation of epididymal alpaca (Vicugna pacos) sperm: a comparison of citrate-, Tris- and lactose-based diluents and pellets and straws. Reprod Fertil Dev 2007; 19: 792-796.
16. Graham JK. Effect of seminal plasma on the motility of epididymal and ejaculated spermatozoa of the ram and bull during the cryopreservation process. Theriogenology 1994; 41: 1151-1162.
17. Herold FC, de Haas K, Colenbrander B, Gerber D. Comparison of equilibration times when freezing epididymal sperm from African buffalo (Syncerus caffer) using Triladyl™ or AndroMed®. Theriogenology 2006; 66: 1123-1130.
18. SAS Institute Inc. SAS/STAT 9.1 User’s guide. Cary NC; SAS Institute Inc 2004: 1731-1907.
19. Saragusty J, Gacitua H, King R, Arav A. Post-mortem semen cryopreservation and characterization in two different endangered gazelle species (Gazella gazella and Gazella dorcas) and one subspecies (Gazella gazelle acaiae). Theriogenology 2006; 66: 775-784.
20. Hori T, Uehara Y, Kawakami E, Tsutsui T. Influence of the time between removal and cooling of the canine epididymis on post-thaw caudal epididymal sperm quality. J Vet Med Sci 2009; 71: 811-815.
21. Blash S, Melican D, Gavin W. Cryopreservation of epididymal sperm obtained at necropsy from goats. Theriogenology 2000; 54: 899-905.
22. Kundu CN, Chakraborty J, Dutta P, Bhattacharyya D, Ghosh A, Majumder GC. Effect of dextrins on...
cryopreservation of goat cauda epididymal spermatozoa using a chemically defined medium. Reproduction 2002; 123: 907-913.

23. Kundu CN, Chakraborty J, Dutta P, Bhattacharyya D, Ghosh A, Majumder GC. Development of a simple sperm cryopreservation model using a chemically defined medium and goat cauda epididymal spermatozoa. Cryobiology 2000; 40: 117-125.

24. Kundu CN, Das K, Majumder GC. Effect of amino acids on goat cauda epididymal sperm cryopreservation using a chemically defined model system. Cryobiology 2001; 42: 21-27.

25. Santiago-Moreno J, Toledano-Díaz A, Pulido-Pastor A, Dorado J, Gómez-Brunet A, López-Sebastián A. Effect of egg yolk concentration on cryopreserving Spanish ibex (Capra pyrenaica) epididymal spermatozoa. Theriogenology 2006; 66: 1219-1226.

26. Santiago-Moreno J, Toledano-Díaz A, Dorado J, Pulido-Pastor A, Coloma MA, Lopez-Sebastian A. Recovery and cryopreservation of Spanish ibex epididymal spermatozoa. Arch Androl 2007; 53: 309-316.

27. Yu WJ, Lee BJ, Nam SY, Ahn B, Hong JT, Do JC, et al. Reproductive disorders in pubertal and adult phase of the male rats exposed to vinclozolin during puberty. J Vet Med Sci 2004; 66: 847-853.

28. Chandiran IS, Vrushabendra Swamy BM, Kumar BP, Narayanan V, Kumar SV, Muralidharan P. Studies on spermatotoxic effect of ethanolic extract of root of "Caesalpinia digyna (Rottler)". Pharmacol Online 2008; 2: 790-795.

29. Boockfor FR, Blake CA. Chronic administration of 4-tert-octylphenol to adult male rats causes shrinkage of the testes and male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities. Biol Reprod 1997; 57: 267-277.

30. Baccetti B, Capitani S, Collobi G, Di Cairano G, Gambera L, Moretti E, et al. Genetic sperm defects and consanguinity. Hum Reprod 2001; 16: 1365-1371.

31. Collobi G, Moretti E. Sperm morphology and aneuploidies: Defects of supposed genetic origin. Andrologia 2006; 38: 208-215.

32. Pant HC, Mittal AK, Kasiraj R, Prabhakar JH, Misra AK. Abnormal detached heads: A characteristic morphological abnormality in spermatozoa of Holstein Friesian x Sahiwal crossbred bulls. Indian J Anim Sci 2002; 72: 316-318.

33. Barth AD. Sperm accumulation in the ampullae and cauda epididymides of bulls. Anim Reprod Sci 2007; 102: 238-246.

34. Young RJ. Cross-link formation at the head-tail junction of mammalian spermatozoa during aging is dependent on sperm motility. Arch Androl 1985; 14: 15-19.

35. Nöthling JO, Volkmann DH. Case report Dilatation of the ampullae and an increased incidence of loose sperm heads after bilateral vesiculectomy in a bull. Reprod Domes Anim 1997; 32: 321-324.

36. Cooper TG. The epididymis, cytoplasmic droplets and male fertility. Asian J Androl 2011; 13: 130-138.