Synthesis and Properties of N-Bromosuccinimide Derivatives of Ammonium Dialkyl/Alkylene Dithiophosphates

Neelam Harkut
B. K. Jha
Padam N. Nagar
Department of Chemistry, University of Rajasthan, Jaipur, India

Reactions of N-bromosuccinimide with ammonium salt of alkylene (dialkyl) dithiophosphates; \(\text{OGOPS}_2\text{NH}_4; G = -\text{CMe}_2\text{CMe}_2-\text{CH}_2\text{CMe}_2\text{CH}_2-, \text{CMe}_2\text{CH}_2\text{CHMe}-, \text{CH}_2\text{CH}_2\text{CHMe}-; (\text{RO})_2\text{PS}_2\text{NH}_4; R = \text{C}_2\text{H}_5, n-\text{C}_3\text{H}_7, i-\text{C}_3\text{H}_7 \) in 1:1 molar ratio in refluxing benzene solution yields red/brown-colored sticky liquids. These newly synthesized complexes have been characterized by physicochemical and spectroscopic techniques (MW, IR, and NMR \([\text{^1H and ^31P}]\)). The computational semi-empirical calculations (MOPAC6P/c) have also been studied for these complexes. On the basis of above studies, the formation of P-S-N chemical linkage has been established.

Keywords IR; NMR spectra; N-Bromo succinimide, 1-((dialkyoxyphosph-orothioyl)-thio)pyrroldine-2,5-dione, 1-((alkylene Dithiophosphate))-2,5-dione

INTRODUCTION

A lot of work had been reported on organic, metal and organometal derivatives of O, O’ alkylene/dialkyl dithiophosphates from our laboratories\(^1\)\(^-\)\(^10\) during the last decade. In continuation of our earlier investigations into the synthesis and properties of phenyl acetyl, p-methyl benzoyl,\(^11\) 2-alkylene dialkyl dithiophosphato-2-oxo-1,3,2-dioxaphosphorinane\(^12\) and phosphorus trichloride,\(^13\) and thio phosphoryl chloride\(^14\) derivatives of alkylene dithiophosphates, we are interested in extending the investigations on the derivatives of the above ligands with N-bromosuccinimide.

RESULTS AND DISCUSSION

Reaction of N-bromosuccinimide with ammonium dialkyl (alkylene) dithiophosphates have been carried out in the presence of anhydrous
acetonitrile which was completed within 6 to 7 h (refluxing) with the precipitation of ammonium bromide.

These derivatives are reddish- or brown-colored sticky liquids. These are non-volatile even under reduced pressure and are miscible with common organic solvents. When heating these compounds, they tend to decompose. The above compounds are reddish-colored sticky liquids, so it could not be possible to have a single crystal X-ray data for correlation. The computational semi-empirical calculations (Mopac6p/c) for one representative complex 1-[(dithioxy phosphorothioyl)thio] pyrroldidine-2,5-dione have been studied. The molecular weight data corresponding with the results obtained. The molecular data indicates large deviation in the tetrahedral bond angle values for almost all the atoms. The data indicates good stability of the molecule (ΔHf = −178.8 K.Cal). The five-membered ring at nitrogen atom seems to be puckered, therefore, a distorted tetrahedral structure around phosphorus atom has been proposed. These computer-based calculations/data are also in good agreement with the analytical and spectroscopic (I.R, PMR, 31P NMR) data obtained for these compounds.

Spectral Studies

IR Spectra

The IR spectra of these derivatives show the following characteristic changes (Table I):

1) the νC=O absorption band is present in the region 1700–680 cm\(^{-1}\); no change in its position has been observed;
2) the νP–S–N absorption band present in the region 1270–1250 cm\(^{-1}\) has been shifted towards a lower wave number (20–30 cm\(^{-1}\)) for six-membered (dioxaphosphorinane) ring derivatives;
3) a strong absorption band present in the region 1125–1020 cm\(^{-1}\) and 905–865 cm\(^{-1}\) has been observed for ν(P)–OC and νP–O(C) stretching vibrations, respectively;
| S. no. | Compounds | ν(P)O–C | νP–O(C) | νP=S | νP–S | νC=O | νS–N |
|-------|---|---------|---------|------|------|------|------|
| 1 | oCH₂CH₂CHMeOP(S)SNCl₂ | 1120 | 900 | 950 | 660 | 580 | 1685 |
| 2 | oCH₂C(Me)₂CH₂OP(S)SNCl₂ | 1115 | 905 | 960 | 670 | 575 | 1680 |
| 3 | OC(Me)₂CH₂CHMeOP(S)SNCl₂ | 1115 | 905 | 950 | 670 | 575 | 1685 |
| 4 | OC(Me)₂C(Me)₂OP(S)SNCl₂ | 1125 | 900 | 964 | 670 | 580 | 1690 |
| 5 | o(C₂H₃O)₂P(S)SNCl₂ | 1020 | 875 | | 650 | 560 | 1700 |
| 6 | (C₂H₅O)₂P(S)SNCl₂ | 1050 | 865 | | 640 | 555 | 1682 |
| 7 | (n-C₂H₅O)₂P(S)SNCl₂ | 1025 | 885 | | 650 | 550 | 1700 |

TABLE I IR Spectral Data of N-Bromosuccinimide Derivatives of Ammonium Dialkyl/Alkylene Dithiophosphate
4) the νN–Br absorption band present in the region 912–866 cm$^{-1}$ has disappeared, which supports the formation of >P–S–N chemical linkage; and

5) the absorption band around 640–670 cm$^{-1}$ has been observed for $\nu P=\text{S}$ vibrations and absorption band present in the region 550–580 cm$^{-1}$ is due to νP–S vibrations. Ring vibrations have been observed in the region 964–950 cm$^{-1}$.

$^1\text{H NMR Spectra}$

^1H NMR spectra of these derivatives are listed in Table II. The spectra show the characteristic resonance for alkyl and glycoxy groups present on phosphorus. A multiplet at δ 4.7–4.9 ppm is assigned for glycoxy protons, which is due to long-range coupling of these protons with magnetically active phosphorus atoms. A singlet appears for CH$_2$ proton of succinimide ring at δ1–1.5 ppm.

$^{31}\text{P NMR Spectra}$

In the proton-decoupled ^{31}P NMR spectra, only one ^{31}P NMR signal has been observed for each compound (Table II). Only one sharp resonance signal appears at δ8–62 ppm shows purity of these compounds. An upfield shift (δ19–22 ppm) is observed for these derivatives in comparison to parent dialkyl (alkylene) dithiophosphates, which suggests the covalent nature of newly-formed sulfur-nitrogen linkage, as well as

S. no.	Compounds	^1H (δ ppm)	^{31}P (δ ppm)
1	OCH$_2$CH$_2$CHMeOP(S)SN	1.40, d, 3H(CH$_3$); 2.7–3.1, m, 2H(CH$_2$)	
 | C(O)-CH$_2$
 | 4.7–4.9, m, 3H(OCH$_2$, OCH); 1.5, s,
 | C(O)-CH$_2$
 | 4H(CH$_2$)
 | 59.12 |
| 2 | OCH$_2$(Me)$_2$CH$_2$OP(S)SN | 1.5, S, 6H(CH$_3$); 4.2, d, 4H(CH$_2$O)
 | C(O)-CH$_2$
 | 1.1–1.5, s, 4H(CH$_2$)
 | C(O)-CH$_2$
 | 59.71 |
| 3 | OC(Me)$_2$CH$_2$CHMeOP(S)SN | 2.1–2.5, m, 11H(CH$_3$, CH$_2$); 5.2–5.4,
 | C(O)-CH$_2$
 | m, 1H (CHO), 1.7, s, 4H(CH$_2$)
 | C(O)-CH$_2$
 | 60.32 |
| 4 | OC(Me)$_2$(Me)$_2$OP(S)SN | 1.7, S, 12H(CH$_3$); 1.6, s, 4H(CH$_2$)
 | C(O)-CH$_2$
 | 62.51 |
| 5 | (i-C$_3$H$_7$O)$_2$P(S)SN | 1.42–1.53, d, 12H(CH$_3$); 1.6, s,
 | C(O)-CH$_2$
 | 4H(CH$_2$)
 | C(O)-CH$_2$
 | 55.61 |
| 6 | (C$_2$H$_5$O)$_2$P(S)SN | 1.45–1.72, t, 6H(CH$_3$); 4.9–5.3, m,
 | C(O)-CH$_2$
 | 4H(OCH$_2$); 1.7, s, 4H(CH$_2$)
 | C(O)-CH$_2$
 | 58.71 |
| 7 | (n-C$_3$H$_7$O)$_2$P(S)SN | 1.4–1.52, t, 6H(CH$_3$); 2.01–3.1, m,
 | C(O)-CH$_2$
 | 4H(CH$_2$); 4.8–5.5, m, 4H(OCH$_2$);
 | C(O)-CH$_2$
 | 1.6, s, 4H(CH$_2$)
 | 57.32 |
absence of any coordinating tendencies in above derivatives. Thereby, it appears a unidentate nature of dithiophosphate moiety.

On the basis of above spectral [IR, NMR (1H, 31P)] and other physicochemical evidence, the formation of [P–S–N] chemical bond has been established, and Figure 1 has been tentatively assigned for the above derivatives.

EXPERIMENTAL

Solvents were dried by standard methods. Ammonium salt of dialkyl/alkylene dithiophosphate were prepared by the methods reported in the literature. Sulfur was estimated gravimetrically as barium sulfate (messenger method). Molecular weights were determined by the “Knaur Vapor pressure Osmometer” using a chloroform solution at 45°C. IR spectra were recorded in Nujol mull. (4000–200 cm$^{-1}$) on a FT IR spectrophotometer model Megna-IR-550 MICOLAC-USA. Carbon and hydrogen analysis were performed on a Perkin Elmer CHN/O analyzer. 1H NMR spectra were recorded in CDCl$_3$ solution on a 90 MHz
S. No.	G=	R=	Reactant g (mM)	Found/(Calculated) (in %)	Product	M. wt Found (Calculated)			
			OGOP(S)SNH₄/(RO)₂P(S)SNH₄	Reactant g (mM)	Product	C	H	S	
1	CH₂CH₂CHMe−	1.37 (6.81)	1.15	OGCH₂CH₂CHMeOP(S)SN₃(C(O)CH₂)	33.21	3.81	21.92	277	
2	CH₂C(Me)₂CH₂−	1.34 (6.23)	1.05	OGCH₂C(Me)₂CH₂OP(S)SN₃(C(O)CH₂)	37.01	5.12	22.10	—	
3	C(Me)₂CH₂CHMe−	1.33 (5.80)	0.98	OC(Me)₂CH₂CHMeOP(S)SN₃(C(O)CH₂)	39.01	4.83	21.11	—	
4	C(Me)₂C(Me)₂−	1.70 (7.42)	1.25	OC(Me)₂C(Me)₂OP(S)SN₃(C(O)CH₂)	37.91	4.52	21.11	305	
5	i-C₃H₇−	1.80 (7.79)	1.31	(i-C₃H₇O)₂P(S)SN₃(C(O)CH₂)	39.01	6.11	21.11	—	
6	C₂H₅−	1.22 (8.86)	1.01	(C₂H₅O)₂P(S)SN₃(C(O)CH₂)	34.15	5.16	23.03	279	
7	n-C₃H₇−	1.71 (7.40)	1.25	(n-C₃H₇O)₂P(S)SN₃(C(O)CH₂)	39.15	6.81	21.37	—	
JEOL FX 90 spectrometer using TMS as an internal reference. 3P NMR was recorded in C$_6$H$_6$ using H$_3$PO$_4$ as an external reference (CDRI Lucknow). The experimental details of representative compounds are described in the following sections. Analytical results are summarized in Table III.

Preparation of $\text{OC(Me)}_2\text{CH}_2\text{CHMeOP(\bar{S})SNC(O)CH}_2\text{CH}_2\text{C(O)}$

An anhydrous acetonitrile solution (50 ml) of N-bromosuccinimide (0.98 g) was added into the suspension of ammonium salt of hexylene dithiophosphate (1.33 g) and refluxed for 6 to 7 h. Ammonium bromide precipitated within the course of reaction, was filtered off, and the solvent was removed under reduced pressure. A red/brown colored sticky liquid product (1.8 g, 82.21%) was isolated. Synthetic and analytical data are given in Table III.

REFERENCES

[1] H. P. S. Chauhan, C. P. Bhasin, G. Srivastava, and R. C. Mehrotra, *Phosphorus, Sulfur, and Silicon*, **15**, 99 (1983).
[2] K. C. Molloy, M. B. Hossain, D. V. Helim, J. J. Zuckerman, and I. Haidue, *Inorg. Chem.*, **18**, 3507 (1979).
[3] K. C. Molloy, M. B. Hossain, D. V. Helim, J. J. Zuckerman, and I. Haidue, *Inorg. Chem.*, **19**, 3507 (1980).
[4] R. C. Mehrotra, G. Srivastava, and B. P. S. Chauhan, *Coord. Chem. Rev.*, **55**, 207 (1984).
[5] A. Chaturvedi, P. N. Nagar, and G. Srivastava, *Phosphorus, Sulfur, and Silicon*, **80**, 141 (1993).
[6] P. N. Nagar, *Phosphorus, Sulfur, and Silicon*, **79**, 207 (1993).
[7] A. Chaturvedi, P. N. Nagar, and G. Srivastava, *Main group Met. Chem.*, **16**, 45 (1993).
[8] A. Chaturvedi, P. N. Nagar, and A. K. Rai, *Synth. React., Inorg. Met. Chem.*, **26**, 1025 (1996).
[9] A. Chaturvedi, R. K. Sharma, P. N. Nagar, and A. K. Rai, *Phosphorus, Sulfur, and Silicon*, **112**, 179 (1996).
[10] R. Purwar and P. N. Nagar, *Phosphorus Sulfur and Silicon*, **86**, 211 (1994).
[11] R. Purwar, M. K. Sharma, R. K. Sharma, and P. N. Nagar, *Phosphorus, Sulfur and Silicon*, **174**, 15 (2001).
[12] C. S. Sharma and P. N. Nagar, *Phosphorus, Sulfur and Silicon*, **181**, 1–8 (2006).
[13] N. Harkut and P. N. Nagar, *Phosphorus, Sulfur, and Silicon*, **180**, 2517–2524 (2005).
[14] C. S. Sharma, B. K. Jha, and P. N. Nagar, *Phosphorus, Sulfur, and Silicon*, (2008) (Accepted).
[15] A. I. Vogel; *A Text Book of Quantitative Inorganic Analysis* (ELBS, London, 1973), 4th Ed.