Sharpness of Lenglart’s domination inequality and a sharp monotone version

Sarah Geiss†‡ Michael Scheutzow ‡

Abstract
We prove that the best so far known constant $c_p = \frac{p}{1-p}$, $p \in (0, 1)$ of a domination inequality, which originates to Lenglart, is sharp. In particular, we solve an open question posed by Revuz and Yor [13]. Motivated by the application to maximal inequalities, like e.g. the Burkholder-Davis-Gundy inequality, we also study the domination inequality under an additional monotonicity assumption. In this special case, a constant which stays bounded for p near 1 was proven by Pratelli and Lenglart. We provide the sharp constant for this case.

Keywords: Lenglart’s domination inequality, Garsia’s Lemma, sharpness, monotone Lenglart’s inequality, BDG inequality

MSC2020 subject classifications: 60G44, 60G40, 60G42, 60J65

1 Introduction

In this note, we prove that the best so far known constant c_p of a domination inequality, which originates to Lenglart [6, Corollaire II] (see Theorem 1.1), is sharp. In particular, we solve an open question posed by Revuz and Yor [13, Question IV.1, p.178]. Furthermore, motivated by the method of applying Lenglart’s inequality to extend maximal inequalities to small exponents, we study Lenglart’s domination inequality under an additional monotonicity assumption: A result by Pratelli [11] and Lenglart [6] implies (under the additional monotonicity assumption) a constant, which is bounded by 2, and hence considerably improves the constant of Lenglart’s inequality for p near 1. We provide a sharp constant. The sharpness of our monotone version of Lenglart’s inequality is related to a result by Wang [17].

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \geq 0})$ be a filtered probability space satisfying the usual conditions. The following lemma is [8, Lemma 2.2 (ii)]:

Theorem 1.1 (Lenglart’s inequality). Let X and G be non-negative adapted right-continuous processes, and let G be in addition non-decreasing and predictable such that $\mathbb{E}[X_\tau | \mathcal{F}_0] \leq \mathbb{E}[G_\tau | \mathcal{F}_0] \leq \infty$ for any bounded stopping time τ. Then for all $p \in (0, 1),$

$$\mathbb{E}\left[\left(\sup_{t \geq 0} X_t\right)^p \mid \mathcal{F}_0\right] \leq c_p \mathbb{E}\left[\left(\sup_{t \geq 0} G_t\right)^p \mid \mathcal{F}_0\right]$$

†This author was supported by the Elsa-Neumann-Stipendium des Landes Berlin.
‡Technische Universität Berlin, Germany. E-mail: ms@math.tu-berlin.de
where $c_p := \frac{p}{1-p}$.

In the original work by Lenglart [6, Corollaire II], the inequality is proven for $c_p = \frac{2-p}{1-p}$, $p \in (0,1)$. The constant c_p is improved to $\frac{p}{1-p}$ by Revuz and Yor in [13, Exercise IV.4.30] for continuous processes X and G. This result is generalized to c\`adl\`ag processes by Ren and Shen in [12, Theorem 1] and is extended to a more general setting than [6, Corollaire II] by Mehri and Scheutzow [8, Lemma 2.2 (ii)]. Furthermore, the growth rate of the optimal constant c_{opt}^{p} for c\`adl\`ag processes has been studied (see e.g. [13, Theorem IV.4.1]): It holds that $(c_{opt}^{p})^{1/q} = O(1/p)$ for $p \to 0^{+}$. We prove (see Theorem 2.1) that $\frac{p}{1-p}$ is sharp.

Lenglart’s inequality yields a very short proof of the Burkholder-Davis-Gundy inequality for continuous local martingales for small exponents (see e.g. [13, Theorem IV.4.1]): Let $(M_t)_{t \geq 0}$ be a continuous local martingale with $M_0 = 0$. To prove $\mathbb{E}[(M,M)_t^{q/2}] \lesssim \mathbb{E}[\sup_{s \leq t} |M_s|^q]$ for $q \in (0,2)$, take

$$X_t := \langle M, M \rangle_t, \quad G_t := \sup_{0 \leq s \leq t} |M_s|^2.$$

Using the BDG inequality for $q = 2$ we have $\mathbb{E}[X_\tau] \leq \mathbb{E}[G_\tau]$ for any bounded stopping time τ. Applying Lenglart’s inequality with $p = q/2$, we obtain

$$\mathbb{E}[(M,M)^{q/2}_t] \leq c_{q/2} \mathbb{E}[\sup_{t \geq 0} |M_t|^q].$$

For $q = 1$, this implies $c_{BDG,1} = c_{q/2} = 2\sqrt{2} \approx 2.8284$. The optimal BDG constant can be computed numerically for this case (see Schachermayer and Stebegg [14]) and is $c_{BDG,1}^{(opt)} \approx 1.2727$. A better constant than $c_{q/2}$ can be achieved if we apply the following proposition due to Lenglart [6, Proposition I] and Pratelli [11, Proposition 1.2] instead:

Proposition 1.2 (Lenglart, Pratelli). Let F be a concave non-decreasing function with $F(0) = 0$ and let $c > 0$ be a constant. Let Y and G be adapted non-negative right-continuous processes starting in 0. Furthermore, let G be non-decreasing and predictable. Assume that $\mathbb{E}[Y_\tau] \leq c \mathbb{E}[G_\tau]$ holds for all finite stopping times τ. Then, for all finite stopping times τ, we have

$$\mathbb{E}[F(Y_\tau)] \leq (1 + c) \mathbb{E}[F(G_\tau)].$$

Let X and G be as in Theorem 1.1. Assume in addition that both processes start in 0. Then Proposition 1.2 implies, choosing $F(x) = x^p$ for some $p \in (0,1)$ and optimizing over c, that

$$\mathbb{E}[X^p_t] \leq (1-p)^{-(1-p)}p^{-p} \mathbb{E}[G^p_t].$$

Hence, Proposition 1.2 gives $c_{BDG,1} = 2$. We show that the constant of Proposition 1.2 in the special case $F(x) := x^p, p \in (0,1)$ can be improved to p^{-p} (see Theorem 2.2), which is sharp. In particular, by the argument described above we now achieve $c_{BDG,1} = \sqrt{2} \approx 1.4142$. For the right-hand side of the BDG inequality $\mathbb{E}[\sup_{t \geq 0} |M_t|^q] \lesssim \mathbb{E}[(M,M)^{q/2}_t]$, the sharp constant for $q = 1$ ($c_{1,BDG} = 1.4658$) was found by Osekowski [10]. Here, the monotone version of Lenglart’s inequality does not yield a sharper constant than the normal Lenglart’s inequality.
Lenglart’s inequality is frequently applied to extrapolate maximal inequalities to smaller exponents (see e.g. [2], [7], [13], [16] and [18]). Furthermore, Lenglart’s inequality is a useful tool for proving stochastic Gronwall inequalities (see e.g. [1] and [8]) and more generally studying SDEs (see e.g. [5] and [9]). In many of the application examples listed above, the additional assumption, that X is non-decreasing is satisfied. Hence, instead, Theorem 2.2 could be applied, improving the constant considerably for p near 1.

2 Main results

We assume, unless otherwise stated, that all processes are defined on an underlying filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \geq 0})$ which satisfies the usual conditions.

The following theorem answers the open question posed by Revuz and Yor [13, Question IV.1, p. 178].

Theorem 2.1 (Sharpness of Lenglart’s inequality). For all $p \in (0, 1)$, there exist families of continuous processes $X^{(n)} = (X^{(n)}_t)_{t \geq 0}$ and $G^{(n)} = (G^{(n)}_t)_{t \geq 0}$ (depending on p) which satisfy the assumptions of Theorem 1.1 such that

$$\frac{p - p}{1 - p} = \lim_{n \to \infty} \frac{\mathbb{E} \left[\left(\sup_{t \geq 0} X^{(n)}_t \right)^p \right]}{\mathbb{E} \left[\left(\sup_{t \geq 0} G^{(n)}_t \right)^p \right]}. \quad (1)$$

In particular, the constant $c_p = \frac{p - p}{1 - p}$ in Theorem 1.1 is sharp.

As explained in the introduction, the application to maximal inequalities motivates us to consider the following monotone version of Lenglart’s inequality. We assume in addition that X is non-decreasing and obtain a considerably improved constant for p near 1.

Theorem 2.2 (Sharp monotone Lenglart’s inequality). Let X and G be non-decreasing non-negative adapted right-continuous processes, and let G be in addition predictable such that $\mathbb{E}[X_\tau | \mathcal{F}_0] \leq \mathbb{E}[G_\tau | \mathcal{F}_0] \leq \infty$ for any bounded stopping time τ. Then for all $p \in (0, 1)$,

$$\mathbb{E} \left[\left(\sup_{t \geq 0} X_t \right)^p \bigg| \mathcal{F}_0 \right] \leq p^{-p} \mathbb{E} \left[\left(\sup_{t \geq 0} G_t \right)^p \bigg| \mathcal{F}_0 \right]. \quad (2)$$

Furthermore, for all $p \in (0, 1)$ there exist continuous processes $\tilde{X} = (\tilde{X}_t)_{t \geq 0}$ and $\tilde{G} = (\tilde{G}_t)_{t \geq 0}$, satisfying the assumptions above such that

$$p^{-p} = \lim_{n \to \infty} \frac{\mathbb{E} \left[\left(\sup_{t \geq 0} \tilde{X}_{t \wedge n} \right)^p \right]}{\mathbb{E} \left[\left(\sup_{t \geq 0} \tilde{G}_{t \wedge n} \right)^p \right]}.$$

In particular, the constant p^{-p} is sharp.

Remark 2.3. Inequality (2) is a sharpened special case of Proposition 1.2, its proof is a modification of the proof of [11, Proposition 1.2]. The theorem generalizes a result by Garsia [4, Theorem III.4.4, page 113]. In [17, Theorem 2], Wang proved that [4, Theorem III.4.4, page 113] is sharp. Hence, by translating his result from discrete to continuous time proves sharpness of p^{-p}.
Theorem 1.1, Theorem 2.1, and Theorem 2.2 also hold in discrete time. Here, sharpness
found in [6, Remarque after Corollaire II].

exists no finite constant in inequality (2). An example which demonstrates this can be
adapted processes, and let

\(\tau \) for all \(t \geq 0 \) and noting that \((\hat{X}_t)_{t \geq 0} \) and

\((G_{t,\tau})_{t \geq 0} \) satisfy the assumptions of Theorem 2.2.

Remark 2.4. Theorem 2.2 can be also applied when \(X \) is not non-decreasing. In that
case, the theorem implies for any stopping time \(\tau \) the inequality \(\mathbb{E}[X_\tau] \leq p^{-p} \mathbb{E}[G_\tau] \). This
can be seen by defining \(\hat{X}_t := X_t 1_{(\tau,\infty)}(t) \) for all \(t \geq 0 \) and noting that \((\hat{X}_t)_{t \geq 0} \) and

Remark 2.5. In Theorem 2.2, the assumption that \(G \) is right-continuous and predictable
can be replaced by the assumption that \(G \) is left-continuous.

Remark 2.6. A key part of the proof of Lenglart’s inequality is the inequality

\[\mathbb{P}
\left(
\sup_{t \geq 0} X_t > c \mid F_0
\right)
\leq \frac{1}{c}
\mathbb{E}
\left(
\sup_{t \geq 0} G_t \wedge d \mid F_0
\right)
+ \mathbb{P}
\left(
\sup_{t \geq 0} G_t \geq d \mid F_0
\right),
\]

for all \(c, d > 0 \). If \(X \) is non-decreasing, this can be improved to

\[\frac{1}{c}
\mathbb{E}
\left(
\sup_{t \geq 0} X_t \wedge c \mid F_0
\right)
\leq \frac{1}{c}
\mathbb{E}
\left(
\sup_{t \geq 0} G_t \wedge d \mid F_0
\right)
+ \mathbb{P}
\left(
\sup_{t \geq 0} G_t \geq d \mid F_0
\right),
\]

which is used to prove the monotone version of Lenglart’s inequality.

Remark 2.7. If \(G \) is not predictable and no further assumptions are made, then there
exists no finite constant in inequality (2). An example which demonstrates this can be
found in [6, Remarque after Corollaire II].

Theorem 1.1, Theorem 2.1, and Theorem 2.2 also hold in discrete time. Here, sharpness
of \(p^{-p} \) follows immediately from [17, Theorem 2].

Corollary 2.8 (Discrete Lenglart’s inequality). Let \((X_n)_{n \in \mathbb{N}_0}\) and \((G_n)_{n \in \mathbb{N}_0}\) be non-negative
adapted processes, and let \(G \) be in addition non-decreasing and predictable such that
\(\mathbb{E}[X_\tau \mid F_0] \leq \mathbb{E}[G_\tau \mid F_0] \leq \infty \) for any bounded stopping time \(\tau \). Then for all \(p \in (0,1) \),

\[\mathbb{E}
\left(
\left(
\sup_{n \in \mathbb{N}_0} X_n
\right)^p \mid F_0
\right)
\leq c_p \mathbb{E}
\left(
\left(
\sup_{n \in \mathbb{N}_0} G_n
\right)^p \mid F_0
\right),
\]

where \(c_p := \frac{p^{-p}}{\mathbb{E}[G_\tau \mid F_0]} \) and the constant \(c_p \) is sharp.

If we assume in addition, that \((X_n)_{n \in \mathbb{N}_0}\) is non-decreasing, then we have

\[\mathbb{E}
\left(
\left(
\sup_{n \in \mathbb{N}_0} X_n
\right)^p \mid F_0
\right)
\leq p^{-p} \mathbb{E}
\left(
\left(
\sup_{n \in \mathbb{N}_0} G_n
\right)^p \mid F_0
\right)
\]

and the constant \(p^{-p} \) is sharp.

3 Proof of Theorem 2.1

Proof of Theorem 2.1. Choose an arbitrary \(p \in (0,1) \) for the remainder of this proof.
First, we define non-decreasing processes \(\hat{X} = (\hat{X}_t)_{t \geq 0} \) and \(\hat{G} = (\hat{G}_t)_{t \geq 0} \) which satisfy the
assumptions of Theorem 1.1, such that

\[p^{-p} = \lim_{n \to \infty} \frac{\mathbb{E}[(\sup_{t \geq 0} \hat{X}_{t \wedge n})^p]}{\mathbb{E}[(\sup_{t \geq 0} \hat{G}_{t \wedge n})^p]}. \]
To obtain the extra factor $(1 - p)^{-1}$, we modify \tilde{X} and \tilde{G} using an independent Brownian motion: This gives us the families $\{(X_t^{(n)})_{t \geq 0}, n \in \mathbb{N}\}$ and $\{(G_t^{(n)})_{t \geq 0}, n \in \mathbb{N}\}$.

Note that if we have non-negative random variables $X_{RV} := 1$ and G_{RV} with $\mathbb{E}[X_{RV}] = \mathbb{E}[G_{RV}]$, then we obtain $\mathbb{E}[X_{RV}^p] >> \mathbb{E}[G_{RV}^p]$ for example by choosing G_{RV} to be very large on a set with small probability and everywhere else 0. Keeping this in mind, we construct \tilde{X} and \tilde{G} as follows: Let Z be an exponentially distributed random variable on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}[Z] = 1$. Set
\[
A : [0, \infty) \to [0, \infty), \quad t \mapsto \exp(t/p).
\]
Define for all $t \geq 0$
\[
\tilde{X}_t := A(Z) \mathbb{1}_{[Z, \infty)}(t), \quad \tilde{G}_t := \int_0^{t \wedge Z} A(s) ds.
\]
Choose $\tilde{F}_t := \sigma(\{Z \leq r\} \mid 0 \leq r \leq t)$ for all $t \geq 0$. Observe that \tilde{X} and \tilde{G} are non-decreasing non-negative adapted right-continuous processes, and \tilde{G} is in addition continuous, hence predictable. Furthermore, due to Z being exponentially distributed, \tilde{G} is the compensator of \tilde{X}, implying $\mathbb{E}[\tilde{X}_\tau] = \mathbb{E}[\tilde{G}_\tau]$ for all bounded τ.

Now we use the processes \tilde{X} and \tilde{G} to construct the families $\{(X_t^{(n)})_{t \geq 0}, n \in \mathbb{N}\}$ and $\{(G_t^{(n)})_{t \geq 0}, n \in \mathbb{N}\}$: Assume w.l.o.g. that there exists a Brownian motion B on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $(\mathcal{F}_t)_{t \geq 0}$ be the smallest filtration satisfying the usual conditions which contains $(\tilde{F}_t)_{t \geq 0}$ and w.r.t. which B is a Brownian motion. Denote by $g_{n,n+1} : [0, \infty) \to [0, 1]$ a continuous non-decreasing function such that
\[
g_{n,n+1}(t) = 0 \quad \forall t \leq n, \quad \text{and} \quad g_{n,n+1}(t) = 1 \quad \forall t \geq n + 1.
\]
Define:
\[
\tau^{(n)} := \inf\{t \geq n + 1 \mid \tilde{X}_n + (B_t - B_{n+1}) \mathbb{1}_{\{t \geq n+1\}} = 0\},
\]
\[
X_t^{(n)} := g_{n,n+1}(t) \tilde{X}_n + (B_{t \wedge \tau^{(n)}} - B_{t \wedge (n+1)})
\]
\[
G_t^{(n)} := \tilde{G}_{t \wedge n}
\]
The stopping time $\tau^{(n)}$ ensures that $X_t^{(n)}$ is non-negative. By construction, we have for every bounded $(\mathcal{F}_t)_{t \geq 0}$ stopping time τ
\[
\mathbb{E}[X_{\tau}^{(n)}] \leq \mathbb{E}[\tilde{X}_{\tau \wedge n} + B_{\tau \wedge \tau^{(n)}} - B_{\tau \wedge (n+1)}] = \mathbb{E}[\tilde{G}_{\tau \wedge n}] = \mathbb{E}[G_{\tau}^{(n)}].
\]
Hence, $(X_t^{(n)})_{t \geq 0}$ and $(G_t^{(n)})_{t \geq 0}$ are continuous processes that satisfy the assumptions of Theorem 1.

It remains to calculate $\mathbb{E}\left[(\sup_{t \geq 0} X_t^{(n)})^p\right]$ and $\mathbb{E}\left[(\sup_{t \geq 0} G_t^{(n)})^p\right]$, to show that equation (2) is satisfied. We have
\[
\mathbb{E}[\tilde{X}_t^p] = \int_0^\infty A(x)^p \mathbb{1}_{\{t \geq x\}} \exp(-x) dx = t,
\]
\[
\mathbb{E}[\tilde{G}_t^p] = \int_0^\infty \left(\int_0^{t \wedge x} A(s) ds \right)^p \exp(-x) dx \leq p^p (t + 1),
\]

(6)
which implies in particular that $\mathbb{E}[(\sup_{t \geq 0} G_t^{(n)})^p] \leq p^p(n + 1)$.

We calculate $\mathbb{E}[(\sup_{t \geq 0} X_t^{(n)})^p]$ using the independence of Z and B. To this end, let \tilde{B} be some Brownian motion and consider for all $0 \leq x < a^{1/p}$ the stopping times

$$\sigma_x := \inf\{t \geq 0 \mid \tilde{B}_t + x = 0\}, \quad \sigma_{x,a} := \inf\{t \geq 0 \mid \tilde{B}_t + x = a^{1/p}\}.$$

Define the family of random variables $Y_x := \sup_{t \geq 0} \tilde{B}_t \wedge \sigma_x + x, x \geq 0$. Then $\mathbb{E}[\tilde{B}_{\sigma_x} \wedge \sigma_{x,a}] = 0$ implies $\mathbb{P}[Y_x \geq a^{1/p}] = \mathbb{P}[\sigma_{x,a} < \sigma_x] = xa^{-1/p}$, and hence

$$\mathbb{E}[Y_x^p] = x^p + \int_{x^p}^{\infty} \mathbb{P}[Y_x \geq a^{1/p}] da = x^p + x^p \frac{p}{1 - p} = \frac{x^p}{1 - p}. \quad (7)$$

Hence, we have by (6), (7) and independence of $(B_t - B_{n+1})_{t \geq n+1}$ and \mathcal{F}_{n+1}:

$$\mathbb{E}[(\sup_{t \geq 0} X_t^{(n)})^p] = \mathbb{E}[\mathbb{E}[(\sup_{t \geq 0} X_t^{(n)})^p \mid \mathcal{F}_{n+1}]]$$

$$= \mathbb{E}\left[\frac{1}{1 - p} (\tilde{X}_n)^p\right]$$

$$= \frac{n}{1 - p}.$$

Therefore, we have:

$$c_p \geq \frac{\mathbb{E}[\sup_{t \geq 0} X_t^{(n)p}]}{\mathbb{E}[\sup_{t \geq 0} G_t^{(n)p}]} \geq \frac{n}{1 - p} \frac{p^{-p}}{n + 1},$$

which implies (1). \qed

4 Proof of Theorem 2.2

Remark 4.1. The following proof of inequality (2) is a modification of the proof of [11, Proposition 1.2]. Sharpness of the constant can be proven using [17, Theorem 2].

Proof of Theorem 2.2. We first show that p^{-p} is the optimal constant. Sharpness of p^{-p} can be proven by translating [17, Theorem 2] into continuous time. Alternatively, one can use the processes \tilde{X} and \tilde{G} and the filtration $(\mathcal{F}_t)_{t \geq 0}$ from the proof of Theorem 2.1. Equation (6) implies, that

$$p^{-p} = \lim_{n \to \infty} \frac{\mathbb{E}\left[\left(\sup_{t \geq 0} \tilde{X}_{t/n}\right)^p\right]}{\mathbb{E}\left[\left(\sup_{t \geq 0} \tilde{G}_{t/n}\right)^p\right]},$$

and therefore that p^{-p} is sharp.

Now we prove that inequality (2) holds true. We may assume w.l.o.g. that $(G_t)_{t \geq 0}$ is bounded (because it is predictable). This implies $\mathbb{E}[\sup_{t \geq 0} X_t] < \infty$. To shorten notation, we define

$$X_\infty := \sup_{t \geq 0} X_t, \quad G_\infty := \sup_{t \geq 0} G_t.$$

(8)
We use the following formulas for positive random variables Z (equation (10) is a direct consequence of [9], alternatively see also [3] Theorem 20.1, p. 38-39):

\[
E[Z^p \mid \mathcal{F}_0] = \int_0^\infty P[Z \geq u^{1/p} \mid \mathcal{F}_0] \, du,
\]

(9)

\[
E[Z^p \mid \mathcal{F}_0] = p(1-p) \int_0^\infty E[Z \wedge u \mid \mathcal{F}_0] \, u^{p-2} \, du.
\]

(10)

We will apply (10) to X. Because (9), alternatively see also [3, Theorem 20.1, p. 38-39]):

\[
E[X_\tau^p \mid \mathcal{F}_0] = \int_0^\infty P[X_\tau \geq u^{1/p} \mid \mathcal{F}_0] \, du,
\]

(11)

\[
P[X_\tau \geq u \mid \mathcal{F}_0] \leq \lambda E[G_\infty \wedge \lambda t \mid \mathcal{F}_0] = \lambda \int_0^\infty P[G_\infty \geq \lambda u \mid \mathcal{F}_0] \, du.
\]

(12)

On $\{\tau = \infty\} \cup \{G_0 > \lambda t\}$ we have $\lim_{n \to \infty} X_{\tau^{(n)}} \wedge \lambda t = X_\infty \wedge \lambda t$, which implies:

\[
E[X_\infty \wedge t - X_{\tau^\wedge} \wedge t \mid \mathcal{F}_0] \leq t E[1_{(\tau<\infty) \cap \{G_0 \leq \lambda t\}} \mid \mathcal{F}_0].
\]

(13)

Combining inequalities (11) and (12) gives:

\[
E[X_\infty \wedge t \mid \mathcal{F}_0] \leq \lim_{n \to \infty} E[X_{\tau^{(n)}} \mid \mathcal{F}_0] 1_{\{G_0 \leq \lambda t\}} + \lim_{n \to \infty} E[X_\infty \wedge t - X_{\tau^\wedge} \wedge t \mid \mathcal{F}_0] \leq \lambda \int_0^\infty P[G_\infty \geq \lambda u \mid \mathcal{F}_0] \, du.
\]

(14)

Applying (10) to X_∞ and inserting (13) gives:

\[
E[X_\infty^p \mid \mathcal{F}_0] \leq \lambda p(1-p) \int_0^\infty E[(G_\infty \wedge \lambda u) \mid \mathcal{F}_0] \, u^{p-2} \, du + p(1-p) \int_0^\infty P[G_\infty \geq \lambda u \mid \mathcal{F}_0] \, u^{p-1} \, du.
\]

(15)

Applying (9) and (10) to G_∞ in the previous inequality implies:

\[
E[X_\infty^p \mid \mathcal{F}_0] \leq \lambda^{1-p} E[G_\infty^p \mid \mathcal{F}_0] + (1-p) \int_0^\infty P[G_\infty \geq \lambda y^{1/p} \mid \mathcal{F}_0] \, dy \leq \lambda^{-p}(\lambda + 1-p) E[G_\infty^p \mid \mathcal{F}_0].
\]

Choosing $\lambda = p$ implies the assertion of the theorem. \hfill \Box

5 Proof of Corollary 2.8

Proof of Corollary 2.8. We first prove inequalities (3) and (4): We turn the processes $(X_n)_{n \in \mathbb{N}_0}$ and $(G_n)_{n \in \mathbb{N}_0}$ into càdlàg processes in continuous time as follows: Set for all $n \in \mathbb{N}_0, t \in [n, n+1)$:

\[
X_t := X_n, \quad G_t := G_n, \quad \mathcal{F}_t := \mathcal{F}_n.
\]
As we can approximate \((G_t)_{t \geq 0}\) by left-continuous adapted processes, it is predictable. Now Theorem 1.1 and Theorem 2.2 immediately imply inequalities (3) and (4).

Sharpness of \(p-p\) follows from [17, Theorem 2]. We show that \(p- p\) is sharp. Let \(X^{(n)}, G^{(n)}, A, (F_t)_{t \geq 0}\) be as in proof of Theorem 2.1. Fix some arbitrary \(N \in \mathbb{N}\). Set for all \(k, n \in \mathbb{N}\)

\[
X^{(n,N)}_0 := X^{(n)}_0, \quad X^{(n,N)}_k := X^{(n)}_{k+2N},
\]

\[
G^{(n,N)}_0 := G^{(n)}_0, \quad G^{(n,N)}_k := G^{(n)}_{k+2N} + \int_{(k-1)2^{-N} \wedge n}^{k2^{-N} \wedge n} A(s)ds,
\]

\[
F^{(n,N)}_0 := F_0, \quad F^{(n,N)}_k := F_{k+2N}.
\]

The processes \((X^{(n,N)}_k)_{k \in \mathbb{N}_0}\) and \((G^{(n,N)}_k)_{k \in \mathbb{N}_0}\) are non-negative and adapted, \((G^{(n,N)}_k)_{k \in \mathbb{N}_0}\) is in addition non-decreasing and predictable. Since \(G^{(n)}_{k+2N} \leq G^{(n,N)}_k\), the processes satisfy the Lenglart domination assumption.

Hence, noting that

\[
\lim_{N \to \infty} \mathbb{E} \left[\left(\sup_{k \in \mathbb{N}_0} X^{(n,N)}_k \right)^p \right] = \mathbb{E} \left[\left(\sup_{t \geq 0} X^{(n)}_t \right)^p \right],
\]

\[
\lim_{N \to \infty} \mathbb{E} \left[\left(\sup_{k \in \mathbb{N}_0} G^{(n,N)}_k \right)^p \right] = \mathbb{E} \left[\left(\sup_{t \geq 0} G^{(n)}_t \right)^p \right],
\]

implies the assertion of the corollary.

\[\square\]

References

[1] Rodrigo Bañuelos and Fabrice Baudoin, *Martingale transforms and their projection operators on manifolds*, Potential Anal. 38 (2013), 1071–1089. MR 3042695

[2] Zdzisław Brzeźniak, *Some remarks on Itô and Stratonovich integration in 2-smooth Banach spaces*, Probabilistic methods in fluids (I. Davies et. al., ed.), World Sci. Publ., River Edge, NJ, 2003, pp. 48–69. MR 2083364

[3] Donald L. Burkholder, *Distribution function inequalities for martingales*, Ann. Probability 1 (1973), 19–42. MR 365692

[4] Adriano M. Garsia, *Martingale inequalities: Seminar notes on recent progress*, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973, Mathematics Lecture Notes Series. MR 0448538

[5] James-Michael Leahy and Remigijus Mikulevičius, *On degenerate linear stochastic evolution equations driven by jump processes*, Stochastic Process. Appl. 125 (2015), 3748–3784. MR 3373302

[6] Érik Lenglart, *Relation de domination entre deux processus*, Ann. Inst. H. Poincaré Sect. B (N.S.) 13 (1977), 171–179. MR 0471069
[7] Carlo Marinelli and Michael Röckner, *On maximal inequalities for purely discontinuous martingales in infinite dimensions*, Séminaire de Probabilités XLVI (A. Lejay C. Donati-Martin and A. Rouault, eds.), Lecture Notes in Math., vol. 2123, Springer, Cham, 2014, pp. 293–315. MR 3330821

[8] Sima Mehri and Michael Scheutzow, *A stochastic Gronwall lemma and well-posedness of path-dependent SDEs driven by martingale noise*, ALEA, Lat. Am. J. Probab. Math. Stat. 18 (2021), 193–209.

[9] Remigijus Mikulevičius and Fanhui Xu, *On the rate of convergence of strong Euler approximation for SDEs driven by Levy processes*, Stochastics 90 (2018), 569–604. MR 3784978

[10] Adam Osekowski, *Sharp maximal inequalities for the martingale square bracket*, Stochastics 82 (2010), 589–605. MR 2783421

[11] Maurizio Pratelli, *Sur certains espaces de martingales localement de carré intégrable*, Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975) (P. Meyer, ed.), Springer, 1976, pp. 401–413. Lecture Notes in Math., Vol. 511. MR 0438467

[12] Yoafeng Ren and Jing Shen, *A note on the domination inequalities and their applications*, Statist. Probab. Lett. 82 (2012), 1160–1168. MR 2915083

[13] Daniel Revuz and Marc Yor, *Continuous martingales and Brownian motion*, third ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357

[14] Walter Schachermayer and Florian Stebegg, *The sharp constant for the Burkholder-Davis-Gundy inequality and non-smooth pasting*, Bernoulli 24 (2018), 2499–2530. MR 3779693

[15] Jan van Neerven and Jiahui Zhu, *A maximal inequality for stochastic convolutions in 2-smooth Banach spaces*, Electron. Commun. Probab. 16 (2011), 689–705. MR 2861433

[16] Mark Veraar and Lutz Weis, *A note on maximal estimates for stochastic convolutions*, Czechoslovak Math. J. 61(136) (2011), 743–758. MR 2853088

[17] Gang Wang, *Sharp inequalities for the conditional square function of a martingale*, Ann. Probab. 19 (1991), 1679–1688. MR 1127721

[18] Ivan Yaroslavtsev, *Burkholder-Davis-Gundy inequalities in UMD Banach spaces*, Comm. Math. Phys. 379 (2020), 417–459. MR 4156214