Morphological Identification and Geographical Distribution of Scorpions in Azilal Province (Morocco)

Oulaid Touloun, Naima Moudden

ABSTRACT

Background: Scorpionism is considered as one of the health and medical problem in undeveloped tropical and subtropical countries in the world. In Morocco, Azilal province is considered among the most Moroccan regions affected by the scorpion sting and envenomation. Despite of its epidemiological status, little is known about the distribution of scorpions in Azilal province. Any strategy against these envenomation must first go through a good knowledge of the composition and distribution of scorpion fauna involved. The current study aimed to study the scorpion fauna of this province in order to manage and control scorpionism related problems.

Methods: In this field-laboratory investigation during 2014-2017, different localities of Azilal province were surveyed. 14 sampling localities were selected based on geographical situation, climate and local data. In the laboratory, the collected scorpions were determined morphologically based on the valid taxonomic keys.

Conclusion: Our investigations in the Azilal province have allowed us to inventory seven species. Among the inventoried species some are deemed dangerous for humans. The geographical distribution of collected species was discussed. The present work will be a complementary contribution to the comprehensive study of the scorpion sting syndrome in Morocco.

Key words: Azilal province, Distribution, Inventory, Morocco, Scorpions.

INTRODUCTION

People in tropical and semi-tropical areas are in danger of scorpion sting and this situation constitutes a serious health problem in the region. The annual number of scorpion stings exceeds 1.2 million leading to more than 3250 deaths (0.27%) (Chippaux and Goyffon, 2008). In Morocco, the scorpionism represents the most frequent cause of poisoning as reported by the Poison Control and Pharmacovigilance Center of Morocco (Soulaymani and El Oufir, 2009). The central regions of Morocco remain the most affected by scorpionic envenomation with many cases of death being recorded each year, particularly in the region of Beni Mellal Khenifra including Azilal province (Charrab et al. 2009).

Morocco by its vast geographic scope, its various climates and diverse ecosystems houses a diverse scorpion fauna. More than 61 scorpion species, belonging to 12 genera and two families (Buthidae and Scorpionidae) have been described in the country. The other particularity of this fauna is its remarkable endemicity. Indeed about 72% of these species (44 species) are endemic to Morocco (Touloun, 2019).

The objective of this study is to develop a database on the identification and mapping of the spatial ranges of the scorpionic fauna of the study area. This can aid in the development and implementation of any strategy to combat this scourge, which represents a real problem for both the local population and the health staff.

MATERIALS AND METHODS

Study Area

Azilal province constitutes one of the five provinces of the region of Beni Mellal-Khenifra located in the center of Morocco (Fig 1). It covers an area of 10050 km². According to the general census of 2014 of the Kingdom of Morocco the province’s population is 554,001 inhabitants in 2014, with urban residents accounting for 18.2% is urban. The density of the population is 55.12 per km² (Ministère de l’Intérieur, 2015).

The province is characterized by a wide geographical diversity with almost all types of landforms: plains, mountains and plateaus. Its climate varies from semi-arid type in the plains to continental in the mountains. Rainfall occurs mostly during the first few months of the crop year and may extend into May. The mountainous areas whose altitude exceeds 1000 m, are experiencing snowfall from October and persisting throughout the spring (Ministry of Interior, 2010).

Scorpion collection was carried out between March and June of each year during 2014 - 2017 period. 14 localities with climatologic and topographic gradient were selected for collection through random sampling (Fig 1; Table 1).
Morphological Identification and Geographical Distribution of Scorpions in Azilal Province (Morocco)

Collection and identification of scorpions

The scorpions were captured from under rocks, crevices and burrows and under tree barks. The nocturnal missions in the field were carried out with ultraviolet lamps. The scorpions were then collected by the tail with long-handled tongs. The collected species were transferred to glass jars containing 70% ethanol and labeled with the collector’s name, the location and the date of sampling. The collected specimens were then identified based on taxonomic descriptions according to previous works (Vachon, 1952; Vachon, 1974; Lourenço, 2003; Lourenço, 2005; Lourenço, 2009).

RESULTS AND DISCUSSION

Scorpion fauna composition

During the period between 2014 and 2017, 152 scorpion specimens were examined from studied sites of the province of Azilal and examined in the laboratory. These specimens are distributed among seven species belonging to four genera in Buthidae and Scorpionidae families. The identified species are as follows: Androctonus mauritanicus, Butheloides slimanii, Buthus lienhardi, Buthus malhommei, Buthus paris, Scorpio fuliginosus and Scorpio weidholzi (Fig 2).

Ecological and biogeographical characteristics of inventory scorpion fauna

Genus Androctonus Ehrenberg, 1828

In Morocco androctonus genus is currently represented by 9 species, 7 of which are endemic to Morocco (Touloun, 2019). According to Vachon (1952) this genus was composed of several subspecies. Subsequently, a taxonomic revision of the genus allowed the elevation of certain subspecies into species (Lourenço, 2005). The two subspecies A. mauritanicus mauritanicus and A. mauritanicus bourdoni are united in the species A. mauritanicus (Lourenço, 2005). In the studied area, the genus is represented by A. mauritanicus.

Androctonus mauritanicus (Pocock, 1902)

It has a wide distribution in Morocco, where it is endemic and reputedly the most dangerous (Touloun et al., 2001). The presence of the species was reported by Vachon (1952) between Tiznit in the south and the region of Rabat in the north. It is found in various climates and different altitudes from the plain to highest mountains (Vachon, 1952; Touloun, 2012). It presents little preference for high altitudes where its relative abundance thus remains low. However, according to previous studies, the species still shows high frequencies (Touloun et al., 2001). This species was collected in all the stations studied (Table 2).

Genus Butheloides Hirst, 1925

Morocco has the highest diversity of Butheloides genera with five species known (Vachon, 1952, Lourenço, 2010; Lourenço et al., 2011; Touloun, 2019). The discovery of all
species of the genus *Butheoloides* are difficult, because of its small size and also because it often occupies rugged habitats (Touloun and Boumezzough, 2013). In the region studied, the genus is represented by *Butheoloides slimanii*.

Butheoloides slimanii Lourenço, 2010

It is described from the region of Tanant in the North range of Atlas Mountains. This species has also been recorded in November 2012 in the Grouka forest (Al Haouz Province) 43 km south-east of Marrakesh (Touloun and Boumezzough, 2013). The species was discovered in the station of Ait Taguella about 60 km from the typical station, thereby widening the known range of distribution of the species to the north (Table 2).

Genus *Buthus* Leach, 1815

The genus *Buthus* has a wide distribution in Africa, the Middle East, Asia and Europe (Fet *et al.* 2000). Lourenço (2003) revised the North African scorpions of the genus

Table 1: Coordinates of the sampling localities in the study area.

Sampling	GPS coordinates	Height (sea level m)
S1 Tagleft	6°07'18" 32°13'59"	1078
S2 Ait Aitlab	6°43'22" 32°06'08"	784
S3 Ait Ouarzizk	6°21'31" 32°11'04"	1173
S4 Bin El Ouidane	6°27'58" 32°06'20"	1000
S5 Ouaouizegh	6°20'18" 32°10'14"	1110
S6 Afourar	6°30'57" 32°13'21"	466
S7 Tilouguite	6°12'27" 32°02'04"	1300
S8 Ait M'hamed	6°28'19" 31°53'07"	1716
S9 Demnate	6°59'35" 31°43'33"	1001
S10 Ait Oumras	6°57'21" 31°54'40"	921
S11 Tabia	6°47'41" 32°01'51"	556
S12 Tanant	6°57'28" 31°51'38"	841
S13 Ouled Ayyad	6°46'58" 32°12'10"	449
S14 Ait Taguella	7°04'41" 32°04'06"	547

Table 2: Distribution of scorpion species in the studied area (* : presence).

A. mauritanicus	B. slimanii	B. lienhardi	B. malhommei	B. paris	B. weidholzi	B. fuliginosus
1078	*					
784	*	*				
1173	*	*	*			
1000	*			*		
1110	*	*				
466	*					
1300	*	*	*			
1716	*	*				
1001	*					
921	*					
556	*					
841	*					
449	*					
547	*					

Buthus He described several new species by taking up certain subspecies and varieties, which Vachon (1952) had described, according to the collections of the Museum of Natural History of Geneva. Thus among the subspecies and varieties that made up the species *B. occitanus*, six have been raised to the rank of the species.

In Morocco, during the last years, several new species have been well described and several old varieties and/or subspecies have been restored to the rank of subspecies or even species (Lourenço, 2003; Lourenço and Vachon, 2004; Touloun and Boumezzough, 2011; Lourenço *et al.* 2012).

Three species of the genus were inventoried in the study area, *B. paris, B. lienhardi* and *B. malhommei*, with the two latter being endemic to Morocco.

Buthus lienhardi Lourenço, 2003

This species corresponds to *Buthus occitanus tunetanus var. lepineyi* Vachon, 1949 before regaining at the species rank by Lourenço (2003). It is one of the representatives of the Moroccan fauna of high mountains. In the High Atlas Mountains, we have found it at altitudes between 1100 m and 2600 m (Touloun, 2012). In these regions, it occupies also the asylvatic biotopes where the snow persists several months. In the study area this species has been located in two altitude stations, Demnate and Ait Mhamed (S8) (Table 2).

Buthus malhommei Vachon, 1949

This species corresponds to *Buthus occitanus malhommei* Vachon, 1949 before regaining at the species rank (Lourenço, 2003). It may be found in the area that covers the Haouz plain and extends north toward the Jbelits small mountain range to occupy the Central Bahira and El Kelâa des Seraghna (Touloun, 2012). In the studied area, this species has been collected in one station in Oued Ayyad (S13) (Table 2).

Buthus paris (C.L. Koch, 1839)

It corresponded to *Buthus occitanus paris* before regaining
at the species rank (Lourenço, 2003). In Morocco, this species is adjusted to the foothills north of the High Central and Western Atlas below 1300 m altitude (Touloun, 2012). It also occupies massive coasts of Tunisia and eastern Algeria to the west Algiers meridian (Arroyo, 1963). It has been located also in the eastern region of Oujda, Ain Beni Mathar and Tandrara (Touloun et al. 2014). In the study area, this species always remains confined to the Atlas foothills where it was inventoried in eight stations (Table 2).

Genus Scorpio Linnaeus, 1758

Vachon (1952) had already reported the complexity of this monospecific genus. This led to a revision of this genus in which several subspecies have been elevated to the species rank (Lourenço, 2009). The species of this genus are strictly ground-dwelling. Its burrows which sometimes exceed a meter deep are built preferably under or near clumps of vegetation where the substrate is soft and easy to widen. Two species endemic to Morocco, were surveyed in the study area *S. fuliginosus* and *S. weidholzi.*

S. fuliginosus (Pallary, 1928)

It is known from pre-forest and forest areas of the High Atlas from 900 m of altitude (Vachon, 1952; Touloun, 2012). In our study it was collected in three stations all located at altitudes exceeding 1000m, in Demnate, Tilouguite and Ait Mhamed (Table 2).

S. weidholzi Werner, 1929

It is the most common species of the genera in the Haouz plain in the center of Morocco (Touloun, 2012). In this study, it was discovered in three low altitude stations in Tagleft, Ait Abbas and Ouled Ayyad (Table 2).

Distribution of specimens collected according to biotopes

In Beni Mellal-Khenifra region, including Azilal province, scorpions have great medical importance and scorpionism remains a serious public health problem for local populations (Soulaymani et al. 2002; Charrab et al. 2009).

Among inventoried species some show a tendency to territorial expansion often caused by human activities and their adaptation to anthropized environments, particularly *A. mauritanicus* and certain species of the *Buthus* genus, increasing the risk of stings inside dwellings and their neighborhoods (Fig 3).

A. mauritanicus is the most dangerous species in Morocco and has been reported to be responsible for the highest number of serious, often deadly envenomings, especially in children (Toulou et al. 2001, Oukkache et al. 2014). Moreover, in the fields, far from human dwellings, agricultural work poses a major risk of envenomation by species of genus *Buthus* (Touloun, 2019).

Species of *Scorpio* genera are strictly burrowing that spends most of its time hidden in deep galleries (Fig 3). It has almost no contact with man. All stings caused by *Scorpio sp.* were recorded in children who had been intentionally manipulating the scorpion after dislodging it from its burrow. Bites from species of the genus are not dangerous and only cause simple local pain (Goyffon and Heurtault, 1995, Touloun 2012).

Scorpion fauna in the Azilal province are little explored, except some general contributions on scorpions such as Vachon (1952), Lourenço (2010) and Touloun (2012). The specific richness at the level of the sampling localities is between one and four species. The majority of them contain at least 3 species.

Our study revealed that *A. mauritanicus* has a fairly wide ecological niche since it occupies habitats with different environmental features (various climates and different altitudes in all stations). The wide distribution of this species is due also to its adaptation to the areas modified by human activities and their neighbourhood.

The discovery of *B. slimanii*, like the other species of the genus *Butholoides*, is difficult, due to its small size and its cryptic form. It is likely that future surveys might reveal other localities for this species as well as other species of the genus whose distribution remains unclear.

![Fig 3: Distribution of scorpion species according to biotopes](image-url)
The distribution of *Buthus* species follows an altitudinal gradient. *Buthus malhonnei* which is the typical species of the Haouz plain of Marrakech region (Touloun, 2012) was inventoried in Ouled Ayyad which is also a plain station. It represents so far the most northerly collection site for the distribution of this species according to our research work.

In the center of western Morocco, *B. parsi* occupies the stations of the north Atlas mountains under 1300 m altitude (Touloun, 2012). In the present study, this species started to be found from low altitudes (556 m in Tabia).

B. liehtradi that represents the most alticulous species of the genus in Morocco remains limited to stations located at altitudes between 1100 m in Ouaouiezgh and 1716 m in Ait Mhamed.

Since all the species of the genus *Scorpio* are all burrowing, it is very likely that the study area contains other species of the genus. Another species of the genus, *S. maurost stennerianus*, was described from Demnate in Azilal province (Schenkel, 1949) but it has been reported “nomen dubia” by Kovarik (2009).

CONCLUSION

The present work is the first one to highlight the composition of scorpion community in the province of Azilal. The specific richness of scorpion fauna in our study area can be explained by the diversity of habitats. However, it should be noted that this inventory is not exhaustive and needs to be completed by further other investigations in order to update the distribution of this scorpion fauna.

In addition to its ecological and biogeographical importance, this fauna is of importance in the biomedical field. Indeed, certain species are upstream of several cases of serious poisonings, sometimes fatal, especially in young children. This work could constitute a complementary contribution to the comprehensive study of the scorpion sting syndrome in Morocco.

Conflict of Interest

There is no conflict of interest to be declared.

REFERENCES

Arroyo, H. (1963). Etude biométrique préliminaire sur la variété oranaise du scorpion *Buthus occitanus*. Archives de l’Institut Pasteur d’Alger. 41: 72-74.

Charrab, N., El Ouifir, R., Soulajmani, A., Semlali, I., Mokhtar, A. and Soulajmani, R. (2009). Risk factors for scorpion stings in the BeniMellass province of Morocco. Journal of Venomous Animals and Toxins including Tropical Diseases. 15(4): 707-717.

Chippaux, J.P. and Goyffon, M. (2008). Epidemiology of scorpionism: a global appraisal. Acta Tropica. 107(1): 71-79.

Ehrenberg, C.G. (1828). Naturgeschichfliche Reisen durch Nord-Afrika und West-Asien in den Jahren 1820 bis 1825 von Dr. F.W. Hemprich und Dr. C.G. Ehrenberg. Herausgegeben von Dr. Ehrenberg, Erster Band, Erste Abteilung. Historischer Teil. Ernst Siegfried Mittler, Berlin, Posen und Bromberg.

Fet, V., Sissom W.D., Lowe G. and Braunwalder, M.E. (2000). Catalog of the scorpions of the world (1758-1998). New York Entomological Society, New York, 690 p.

Goyffon, M. and Heurtault, J. (1995). La fonction venimeuse. Editions Masson, 284 p.

Hirst, S. (1925). On some scorpions from Morocco, with the description of a new genus and species. Annals and Magazine of Natural History, ser. 9. 15: 414-416.

Koch, C.L. (1839). Die Arachniden. Getreut nach der Natur abgebildet und beschrieben. 5. C.H. Zeh’schen Buchhandlung, Nürnberg, 158 pp. http://www.biodiversitylibrary.org/item/110884

Kovarik, F. (2009). Illustrated catalog of scorpions; Part I. Clarian Productions, Prague, 169 p.

Leach, W.E. (1815) A Tabular View of the external Characters of Four Classes of Animals, which Linné arranged under INSECTA; with the Distribution of the Genera composing Three of these Classes into Orders andc. and Descriptions of several New Genera and Species. Transactions of the Linnean Society of London 11: 306–400. https://doi.org/10.1111/j.1096-3642.1813.tb00065.x

Linnaeus C. (1758). *Scorpio*. In: Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Laurentii Salvii, Holmiae [Stockholm], 624-625. https://doi.org/10.5962/bhl.title.542

Lourenço, W.R. (2003). Compléments à la faune de scorpions (Arachnida) de l’Afrique du nord avec des considérations sur le genre *Buthus* Leach, 1815. Revue Suisse de Zoologie. 110(4): 875-912.

Lourenço, W.R. (2005). Nouvelles considérations taxonomiques sur les espèces du genre *Androctonus* Ehrenberg, 1829 et description de deux nouvelles espèces (Scorpiones, Buthidae). Revue Suisse de Zoologie. 112(1): 145-171.

Lourenço, W.R. (2010). A new species of *Butholoeides* Hirst, 1925 from Morocco (Scorpiones, Buthidae). Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, 15(183): 183 189.

Lourenço, W.R. (2009). Reanalysis of the genus *Scorpio* Linnaeus 1758 in sub-Saharan Africa and description of one new species from Cameroon (Scorpiones, Scorpionidae). Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, 15(181): 99-113.

Lourenço, W.R., Touloun, O. and Boumezzough, A. (2011). The genus *Butholeoïdes* Hirst, 1925 (Scorpions, Buthidae) in Morocco, with a description of a new species. Euscorpius,113: 1-7.

Lourenço, W.R., Touloun, O. and Boumezzough, A. (2012). Un nouveau *Buthus* Leach, 1815 (Scorpiones, Buthidae) du Nord du Maroc ; possible lien entre les populations marocaines et européennes. Revista Ibérica de Aracnología. 21: 21-25.

Lourenço, W.R. and Vachon, M. (2004). Considerations on the genus *Buthus* Leach, 1815 in Espagne, and description of two nouvelles espèces (Scorpiones, Buthidae). Revista Ibérica de Aracnología. 9: 81-94.

Ministère de l’Intérieur (2015). La Région de Béni Mellal-Khénifra: Monographie générale. Publication de la direction régionale des collectivités locales: 51p.

Oukkache, O., El Jaoudi, R., Ghalim, N., Chgoury, F., Bouhaouala,
B., El Mdaghri, N. and Sabatier, J.M. (2014). Evaluation of the Lethal Potency of Scorpion and Snake Venoms and Comparison between Intraperitoneal and Intravenous Injection Routes. Toxins. 6: 1873-1881.
Pallary, P. (1928). Description de quatre Scorpions nouveaux de la Berberie. Bull. Mus. Natn. Hist. Nat. 5: 346-351. Paris.
Pocock R. I. (1902). A contribution to the systematic of scorpions. Ann. Mag. Nat. Hist. London, 10: 364-380.
Schenkel, E. (1949). Mitteilungen über Spinnentiere. Skorpioneaus Marokko. Verhandlungen der Naturforschenden Gesellschaft in Basel. 60: 186-201.
Soulaymani, R., Faraj, Z., Semlati, I., Khattabi, A., Skalli, S., Berkirane, R. and Badri, M. (2002). Epidémiologie des piqûres des scorpions au Maroc. Revue Epidemiologique de. Santé Publique. 50: 341-347.
Soulaymani, R. and El Oufir, R. (2009). Stratégie nationale de lutte contre les piqûres et les envenimations scorpioniques. Revue Toxicologie Maroc. 2: 3-9.
Touloun, O. (2012). Les peuplements de scorpions du sud-ouest marocain: Ecologie, Biogéographie et Epidémiologie des envenimations. Publications des Editions Universitaires Européennes. 157 p.
Touloun, O. (2019). Liste actualisée et commentée de la faune scorpionique du Maroc (Arachnida: Scorpiones). Revista Ibérica de Aracnología. 34: 126-132.
Touloun, O. and Boumezzough, A. (2011). Une nouvelle espèce du genre Buthus Leach, 1815 (Scorpiones: Buthidae) du Maroc. Boletín de la Sociedad Entomológica Aragonesa (S.E.A.). 48: 183 187.
Touloun, O. and Boumezzough, A. (2013). Nouvelle donnée sur la répartition de Buthoeioides (Buthoeioides) slimani Lourenço, 2010 (Scorpiones, Buthidae) au Maroc. Poiétia. 5: 15-19.
Touloun, O., Elhidan, M. A. and Boumezzough, A. (2014). Inventory and distribution of scorpion fauna in eastern Morocco (Arachnida, Scorpiones). Serket. 14(2): 73-79.
Touloun, O., Slimani, T. and Boumezzough, A. (2001). Epidemiological survey of scorpion envenomation in southwestern Morocco. Journal of Venomous Animals and Toxines. 7(2): 199-218.
Vachon, M. (1952). Etude sur les scorpions. Arch. Inst. Pasteur Alger: 482 p.
Vachon, M. (1974). Etude des caractères utilisés pour classer les familles et les genres de Scorpions (Arachnides). 1. La trichobothriotaxie en arachnologie. Sigles trichobothriaux et types de trichobothriotaxie chez les Scorpions. Bulletin du Muséum national d’Histoire naturelle. Paris, 3ème série, n°140, Zool. 104: 857-958.
Werner, F. (1929). Wissenschaftliche Ergebnisse einer zoologischen Forschungsreise nach Westalgerien und Marokko. III. Scorpiones. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse. Wien 138: 1-34. http://www.zobodat.at/publikation _articles.php?id=169321.