Different Kinds of Methods and Materials for Determination of Bisphenol A in Urine and In Water

Yanpeng Shi*, Xiaoyue Shanb, Ji Shao, Haipeng Ye, Siwei Tan*

Hangzhou Hospital for the Prevention and Treatment of Occupational Diseases,
Hangzhou 310014, China

*Corresponding author e-mail: 37652241@qq.com, *syp1226syp@163.com,
b617304832@qq.com, *605202969@qq.com, *287280292@qq.com

Abstract. Bisphenol A (BPA; 4,4’-(propane-2,2-diyl) diphenol) is a very important chemical raw material, but which is damaged to human beings and animals. Then, enrichment and detection of BPA in urine and water is particularly important. This paper summarized and compared the difference kinds of methods and materials for determination of Bisphenol A in human urine and water.

1. Introduction

BPA is mainly used in the production of epoxy resin, polycarbonate acid vinegar [1]. More than 27 million tons of plastics containing BPA are produced worldwide every year. BPA also is an endocrine disruptor, which is released into the environment in large quantities and will cause great harm to human body and the environment.

BPA interferes with normal functions of the body through a variety of metabolic pathways, especially the function of the reproductive system. In addition, BPA may also have genetic toxicity and change the normal cell proliferation, which may cause symptoms such as obesity, diabetes, heart disease, liver toxicity and neurotoxicity. Then, the enrichment and detection of BPA in human urine is particularly important.

A series of analytical methods have been developed for determination of BPA in urine, such as, HPLC [2], GC–MS [3], HPLC–MS/MS [4], or UV spectroscopy. The spectrophotometry and fluorescence spectrophotometry instruments have low cost, simple operation and relatively low sensitivity. GC–MS and HPLC–MS are expensive, which greatly improve the qualitative ability of BPA and the detection sensitivity. Solid phase extraction saves the pretreatment time of samples and simplifies the operation procedures. Because of this, researchers have developed lots of materials as adsorbent in solid phase extraction.

This paper summarized various kinds of methods and materials for determination of Bisphenol A in Urine and water, and described the advantages and compared difference between different kinds of methods and materials.

2. Different methods for determination of BPA in human urine

Researchers have developed lots of methods for determination of BPA in urine, such as HPLC–MS, GC–MS, HPLC, or HPLC–FLD spectroscopy. Table 1 showed different methods for determination of
BPA in human and showed that HPLC is the most widely used method in detecting BPA in water and urine.

Table. 1 Different methods for determination of BPA in human urine

Analyte	Method	LOD (ng/mL)	References
BPA	HPLC	1.0	[2]
	UPLC-MS/MS	0.10	[5]
	HPLC-MS/MS	0.32	[6]
	GC-MS	0.13	[3]
	MD-GC/MS	0.03	[7]
	Aptamer/Graphene Oxide FRET Biosensor	0.05	[8]
	SPE-GC–MS	0.0002–0.0018	[9]
	HPLC-MS/MS	0.00073	[10]
	ID-GC–MS	0.03	[11]
	HPLC-DAD	2.60	[12]
	HPLC-FLD	0.1	[13]

3. Different materials for determination of BPA in urine

According to reports, little materials were invented to apply to extract BPA from urine. Because of this, some researchers have developed some materials which are easy preparation, low-cost, easy operation and easy to store. Table 2 showed that little materials was applied to detect BPA in urine.

Table. 2 Different materials for determination of Bisphenol A in Urine

Analyte	Materials	Method	LOD or LOQ (ng/mL)	References
BPA	Porous Organogel Materials	HPLC-MS/MS	<1.0	[14]
	MIPs	GC-MS	50	[15]

4. Different methods for determination of BPA in water

From then on, researchers have invented lots of methods for removal and determination of BPA in water, such as HPLC–MS, GC–MS, HPLC, or HPLC-FLD spectroscopy. Razieh Sohrabi [16] used HPLC to detect BPA in water. The limits of detection and enrichment factor could be reach 0.02 ng/mL and 333, respectively. Feng Tan [17] invented an electrochemical sensor for detecting BPA in water, and the method is very simple. The limits of detection and enrichment factor could be reach 0.04 ng/mL. The result of table 3 showed that HPLC was the most widely used in detecting BPA in water and the limits of detection can reach from 0.003 ng/mL to 0.34 ng/mL.

Table. 3 Different methods for determination of BPA in water

Analyte	Method	LOD (ng/mL)	References
BPA	HPLC	0.02	[16]
	SPE-HPLC-UV	0.3	[18]
	HPLC-DAD	0.07	[19]
	MI-MSPE- HPLC-DAD	0.003	[20]
	An Electrochemical Sensor	0.04	[17]
	Fe@MgAl-LDH -HPLC	0.24–0.34	[21]
	AuNPs-Colorimetric Aptasensor	0.11	[22]
	MMSPD- DLLME- HPLC–FLU	0.003	[23]
	SPE-HPLC	0.07	[24]
	MEPS-HPLC-UV	0.0416	[25]
5. Different materials for determination of BPA in water

Researchers are more interested in AC, graphene and graphene-based composites since they found AC, graphene and graphene-based composites with special properties and multiples of capability of adsorption. In recent years, researchers try their best to invent various kinds of graphene-based composites and AC for detecting BPA in water, such as ILGNPE [26], MWCNT/GONRs [27], MIP-coated CDs nanocomposite [28] and MWCNTs [29] etc. Most of them are with large surface area, unique mechanical and physical properties. Xiaodong Xin [27] invented an electrochemical BPA sensor showed shows low detection limit (0.001 ng/mL), good reproducibility, selectivity, and acceptable stability. AMaria Stella Cosioa [30], Lingling Wang [31] and Leena Omer [29] applied MWCNTs to detect BPA in water. The limits of detection were 0.81 ng/mL, 0.10 ng/mL ~0.30 ng/mL and 0.81 ng/mL. The limits detection of combining MWCNTs with HPLC is lower.

However, separating this kind of adsorbents from aqueous solution is difficult. Therefore, synthesizing new materials with magnetism, such as magG@PDA@Zr-MOF [32], 3DG/ZnFe2O4[33] and Fe@Fe2O3/GO [34], is easy for them to separate adsorbents from aqueous solution. Meanwhile, all studies discussed the pH of solution affected the extraction.

Table. 4 Graphene-based composites and AC for determination of BPA in water

Analyte	Materials	Method	LOD (ng/mL)	References
BPA	MWCNT/GONRs	Electrochemical bisphenol A sensor	0.001	[27]
	ILGNPE	Electrochemical bisphenol A sensor	55.0	[26]
	magG@PDA@Zr-MOF	HPLC	0.1~1.0	[32]
	3DG/ZnFe2O4	HPLC	0.05~0.18	[33]
	MIP-coated CDs nanocomposite	A new fluorescent approach	30	[28]
	Fe@Fe2O3/GO	HPLC	0.08~0.10	[34]
	MWCNTs	A novel amperometric sensor	0.81	[30]
	GA	HPLC	0.01~0.11	[35]
	MWCNTs	HPLC	0.10~0.30	[36]
	MWCNTs	HPLC	0.30	[29]
	3D-PSGR	HPLC	0.39~3.97	[31]
	GNP-AuNPs	HPLC	0.027	[37]

6. Other materials for determination of BPA in water

Before researchers invented graphene-based and AC composites, many materials had been applied to detect BPA in water due to their easy preparation, low-cost, the ease of operation and easy to store. Compared with graphene-based composites and AC, those materials have fewer mechanical properties and less specific surface area. Because of low-cost and easy preparation, those materials are still widely used. With the technology developing, researchers developed lots of nanometer materials, such as DFMNPs [38], PDA@Fe3O4 [39], Fe3O4/SiO2/TiO2 NPs [1] and so on. New materials also show preferable extraction capacity. Meanwhile, those materials can be used to others fields. Table 5 showed other materials for determination of BPA in water.
Table 5 Other materials for determination of BPA in water

Analyte	Materials	Method	LOD (ng/mL)	References
BPA	DFMNPs	HPLC	20.0	[38]
	PDA@Fe3O4	HPLC	0.16–1.2	[39]
	Fe3O4/SiO2/TiO2 NPs	HPLC	0.5	[1]
	Fe3O4@SiO2	HPLC	0.09	[40]
	Magnetic-MMT	HPLC	0.15	[41]
	PANI@SiO2@Fe	HPLC	0.009–0.04	[42]
	P-CDP	HPLC	0.3	[43]
	MI-MNP	HPLC	0.3	[44]
	XOD/GCE	Biosensor	1.0	[45]
	Octadecylsilane/Nylon-6	HPLC	0.05	[46]
	ON-MNPs	HPLC	0.1	[47]

7. Conclusion

Many methods have been applied to detect BPA in water and urine, such as HPLC–MS, GC–MS, or HPLC-FLD spectroscopy. Moreover, HPLC is the most widely used method in detecting BPA in water and urine. At the same time, many materials have been applied to determination of BPA in water, such as activated carbon, Graphene-based composites and so on. Compared with other materials, activated carbon and Graphene-based composites have large specific surface area, high selectivity, low-cost, and good stability. However, little materials have been applied to determination of BPA in urine. Because of this, researchers can try to apply graphene-based composites and Activated carbon to detecting BPA in urine.

Acknowledgments

This work was financially supported by the Medical Health Foundation for Key Talents in Zhejiang Province, 322 China (2019KY543), National Natural Science Foundation of China (No. 21775138,32121607135) and Jinhua Science and Technology Bureau (No.3202018-4-006).

References

[1] Sobhi, H.R., et al., Application of dispersive solid phase extraction based on a surfactant-coated titanium-based nanomagnetic sorbent for preconcentration of bisphenol A in water samples. J Chromatogr A, 2017. 1518: p. 25-33.

[2] Su, Y., et al., Extraction and detection of bisphenol A in human serum and urine by aptamer-functionalized magnetic nanoparticles. Anal Bioanal Chem, 2018. 410(7): p. 1885-1891.

[3] Correia-Sa, L., et al., Micro-QuEChERS extraction coupled to GC-MS for a fast determination of Bisphenol A in human urine. J Chromatogr B Analyt Technol Biomed Life Sci, 2018. 1072: p. 9-16.

[4] Zhou, F., et al., Measurement of phenolic environmental estrogens in human urine samples by HPLC–MS/MS and primary discussion the possible linkage with uterine leiomyoma. Journal of Chromatography B, 2013. 938: p. 80-85.

[5] Buscher, B., et al., Quantitative analysis of unconjugated and total bisphenol A in human urine using solid-phase extraction and UPLC-MS/MS: method implementation, method qualification and troubleshooting. J Chromatogr B Analyt Technol Biomed Life Sci, 2015. 1005: p. 30-8.

[6] Zhou, F., et al., Measurement of phenolic environmental estrogens in human urine samples by HPLC-MS/MS and primary discussion the possible linkage with uterine leiomyoma. J Chromatogr B Analyt Technol Biomed Life Sci, 2013. 938: p. 80-5.
[7] Cunha, S.C. and J.O. Fernandes, Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC/MS). Talanta, 2010. 83(1): p. 117-25.

[8] Zhu, Y., et al., Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl Mater Interfaces, 2015. 7(14): p. 7492-6.

[9] Azzouz, A., A.J. Rascon, and E. Ballesteros, Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas chromatography-mass spectrometry. J Pharm Biomed Anal, 2016. 119: p. 16-26.

[10] Ndaw, S., et al., Occupational exposure of cashiers to Bisphenol A via thermal paper: urinary biomonitoring study. International Archives of Occupational and Environmental Health, 2016. 89(6): p. 935-946.

[11] Chung, S.H. and W.H. Ding, Isotope-dilution gas chromatography-mass spectrometry coupled with injection-port butylation for the determination of 4-t-octylphenol, 4-nonylphenols and bisphenol A in human urine. J Pharm Biomed Anal, 2018. 149: p. 572-576.

[12] Yang, J., et al., A Phenolphthalein-Dummy Template Molecularly Imprinted Polymer for Highly Selective Extraction and Clean-Up of Bisphenol A in Complex Biological, Environmental and Food Samples. Polymers, 2018. 10(10): p. 1150.

[13] Errico, S., et al., Analysis and occurrence of some phenol endocrine disruptors in two marine sites of the northern coast of Sicily (Italy). Mar Pollut Bull, 2017. 120(1-2): p. 68-74.

[14] Ter Halle, A., et al., Development of an extraction method based on new porous organogel materials coupled with liquid chromatography-mass spectrometry for the rapid quantification of bisphenol A in urine. J Chromatogr A, 2015. 1414: p. 1-9.

[15] Brigante, T.A.V., et al., Pipette tip dummy molecularly imprinted solid-phase extraction of Bisphenol A from urine samples and analysis by gas chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2017. 1067: p. 25-33.

[16] Sohrabi, R., et al., Pre-concentration of trace amount of bisphenol A in water samples by palm leaf ash and determination with high-performance liquid chromatography. Biomed Chromatogr, 2016. 30(8): p. 1256-62.

[17] Tan, F., et al., An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sensors and Actuators B: Chemical, 2016. 233: p. 599-606.

[18] Hu, X., et al., Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples. Talanta, 2016. 148: p. 29-36.

[19] Rozaini, M.N.H., et al., Rapid ultrasound assisted emulsification micro-solid phase extraction based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol A in aqueous matrices. Talanta, 2017. 171: p. 242-249.

[20] Liu, Y., et al., Dummy-template molecularly imprinted micro-solid-phase extraction coupled with high-performance liquid chromatography for bisphenol A determination in environmental water samples. Microchemical Journal, 2019. 145: p. 337-344.

[21] Zhou, Q., et al., Sensitive determination of bisphenol A, 4-nonylphenol and 4-octylphenol by magnetic solid phase extraction with Fe@MgAl-LDH magnetic nanoparticles from environmental water samples. Separation and Purification Technology, 2017. 182: p. 78-86.

[22] Xu, J., et al., Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchimica Acta, 2015. 182(13-14): p. 2131-2138.

[23] Li, C., et al., Magnetic Multi-Walled Carbon Nanotubes Matrix Solid-Phase Dispersion with Dispersive Liquid–Liquid Microextraction for the Determination of Ultra Trace Bisphenol A in Water Samples. Chromatographia, 2017. 80(8): p. 1189-1197.
[24] R. R. Kahkha, M., et al., Fast determination of bisphenol A in spiked juice and drinking water samples by pipette tip solid phase extraction using cobalt metal organic framework as sorbent. Bulletin of the Chemical Society of Ethiopia, 2018. 32(3): p. 595.

[25] Saini, S.S., et al., A miniaturised analytical protocol for highly sensitive determination of bisphenol A in bottled drinking water. Analytical Methods, 2015. 7(21): p. 9365-9372.

[26] Beitollahi, H. and S. Tajik, Construction of a nanostructure-based electrochemical sensor for voltammetric determination of bisphenol A. Environ Monit Assess, 2015. 187(5): p. 257.

[27] Xin, X., et al., Electrochemical bisphenol A sensor based on core–shell multiwalled carbon nanotubes/graphene oxide nanoribbons. Sensors and Actuators B: Chemical, 2015. 209: p. 275-280.

[28] Liu, G., et al., In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sensors and Actuators B: Chemical, 2016. 228: p. 302-307.

[29] Leena, O., A. Hassn, and E. Abdalla, Determination of bisphenol A in exposed bottled water samples to direct sun light using multi walled carbon nanotubes as solid phase extraction sorbent. Journal of Environmental Chemistry and Ecotoxicology, 2016. 8(7): p. 51-57.

[30] Cosio, M.S., et al., A simple hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for rapid amperometric detection of bisphenol A. Sensors and Actuators B: Chemical, 2017. 246: p. 673-679.

[31] Wang, L., Q. Li, and L. Zhang, A convenient approach for the determination of multiple trace BPs using an in-syringe-assisted solid phase microextraction system packed with elastic spongy graphene rods coupled with HPLC. Analytical Methods, 2017. 9(18): p. 2673-2681.

[32] Wang, X. and C. Deng, Preparation of magnetic graphene @polydopamine @Zr-MOF material for the extraction and analysis of bisphenols in water samples. Talanta, 2015. 144: p. 1329-35.

[33] Wang, L., et al., Magnetic solid-phase extraction using nanoporous three dimensional graphene hybrid materials for high-capacity enrichment and simultaneous detection of nine bisphenol analogs from water sample. J Chromatogr A, 2016. 1463: p. 1-10.

[34] Li, F., et al., Extraction of endocrine disrupting phenols with iron-ferric oxide core-shell nanowires on graphene oxide nanosheets, followed by their determination by HPLC. Microchimica Acta, 2015. 182(15-16): p. 2503-2511.

[35] Han, Q., et al., Graphene aerogel based monolith for effective solid-phase extraction of trace environmental pollutants from water samples. J Chromatogr A, 2016. 1447: p. 39-46.

[36] Wang, L., et al., Simultaneous determination of four trace level endocrine disrupting compounds in environmental samples by solid-phase microextraction coupled with HPLC. Talanta, 2015. 142: p. 97-103.

[37] Zou, J., et al., Highly sensitive detection of bisphenol A in real water samples based on in-situ assembled graphene nanoplatelets and gold nanoparticles composite. Microchemical Journal, 2019. 145: p. 693-702.

[38] Sheng, Y., et al., Double-functionalised magnetic nanoparticles for efficient extraction of bisphenol A from river water. Environmental Chemistry, 2016. 13(1): p. 43.

[39] Li, J.-y., et al., Magnetic solid-phase extraction based on a polydopamine-coated Fe3O4nanoparticles absorbent for the determination of bisphenol A, tetrabromobisphenol A, 2,4,6-tribromophenol, and (S)-1,1′-bi-2-naphthol in environmental waters by HPLC. Journal of Separation Science, 2016. 39(13): p. 2562-2572.

[40] Chen, S., J. Chen, and X. Zhu, Solid phase extraction of bisphenol A using magnetic core-shell (Fe3O4@SiO2) nanoparticles coated with an ionic liquid, and its quantitation by HPLC. Microchimica Acta, 2016. 183(4): p. 1315-1321.

[41] Salehinia, S., et al., Hydrophobic magnetic montmorillonite composite material for the efficient adsorption and microextraction of bisphenol A from water samples. Journal of Environmental Chemical Engineering, 2016. 4(4): p. 4062-4071.
[42] Zhou, Q., et al., Sensitive determination of typical phenols in environmental water samples by magnetic solid-phase extraction with polyaniline@SiO2@Fe as the adsorbents before HPLC. J Sep Sci, 2017. 40(20): p. 4032-4040.
[43] Li, Y., et al., Simultaneous Solid-Phase Extraction and Determination of Three Bisphenols in Water Samples and Orange Juice by a Porous β-Cyclodextrin Polymer. Food Analytical Methods, 2017. 11(5): p. 1476-1484.
[44] Wu, X., et al., Dummy molecularly imprinted magnetic nanoparticles for dispersive solid-phase extraction and determination of bisphenol A in water samples and orange juice. Talanta, 2017. 162: p. 57-64.
[45] Ben Messaoud, N., et al., A novel amperometric enzyme inhibition biosensor based on xanthine oxidase immobilised onto glassy carbon electrodes for bisphenol A determination. Talanta, 2018. 184: p. 388-393.
[46] Saraji, M. and A. Keykavoooci, Octadecylsilane/Nylon-6 composite as a thin-film microextraction sorbent for the determination of bisphenol A in water samples. J Sep Sci, 2016. 39(18): p. 3616-23.
[47] Lin, Z., et al., Selective extraction of bisphenol A from water by one-monomer molecularly imprinted magnetic nanoparticles. J Sep Sci, 2018. 41(9): p. 2029-2036.