Endothelial, platelet, and macrophage microparticle levels do not change acutely following transcatheter aortic valve replacement

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Marchini, Julio F., Ayumi Aurea Miyakawa, Flavio Tarasoutchi, José Eduardo Krieger, Pedro Lemos, and Kevin Croce. 2016. “Endothelial, platelet, and macrophage microparticle levels do not change acutely following transcatheter aortic valve replacement.” Journal of Negative Results in Biomedicine 15 (1): 7. doi:10.1186/s12952-016-0051-2. http://dx.doi.org/10.1186/s12952-016-0051-2.

Published Version
doi:10.1186/s12952-016-0051-2

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26860121

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Endothelial, platelet, and macrophage microparticle levels do not change acutely following transcatheter aortic valve replacement

Julio F. Marchini1,3*, Ayumi Aurea Miyakawa1, Flavio Tarasoutchi2, José Eduardo Krieger1, Pedro Lemos3 and Kevin Croce4

Abstract

Background: Patients with severe aortic stenosis have increased levels of prothrombotic and proinflammatory microparticles (MP), and MPs actively regulate pathological processes that lead to atherothrombotic cardiovascular events. Shear stress is a validated stimulus of MP production, and abnormal shear stress in aortic stenosis increases MP release in ex-vivo studies. We hypothesized that in patients with severe aortic stenosis, percutaneous replacement of the aortic valve (TAVR) would reduce abnormal shear stress and would decrease levels of circulating MPs.

Findings: The experimental protocol utilized flow cytometry (FC) and nanoparticle tracking analysis (NTA) to quantify circulating plasma MP levels in aortic stenosis patients at baseline and 5 days after TAVR. The baseline and 5 day MP counts measured by FC were $6.10 \times 10^5 \pm 1.21 \times 10^5$ MP/μL and $5.74 \times 10^5 \pm 9.54 \times 10^4$ MP/μL, respectively ($p = 0.91$). The baseline and 5 day MP counts measured by NTA were $9.29 \times 10^{13} \pm 1.66 \times 10^{13}$ MP/μL and $3.95 \times 10^{14} \pm 3.11 \times 10^{14}$ MP/μL, respectively ($p = 0.91$). When MPs were stratified by cell source, there was no difference in pre/post TAVR endothelial, platelet, or leukocyte MP levels.

Conclusion: Levels of circulating MPs do not change acutely following TAVR therapy for aortic stenosis. Trial registered at clinicaltrials.gov NCT02193035 on July 11, 2014.

Keywords: Severe aortic stenosis, Microparticles, Nanoparticle-tracking analysis, Flow cytometry

Findings

Background

Microparticles (MPs) are submicron membrane fragments that impair endothelial function, promote thrombosis, and increase the risk of cardiovascular (CV) events [1–5]. Endothelial cells, platelets, and macrophages release MPs in response to inflammatory activation and apoptotic signaling [6–8]. Endothelial and platelet MPs circulate at elevated levels in patients with severe aortic stenosis [9]. Shear stress is a validated stimulus of MP production. Abnormal shear stress in aortic stenosis increases MP release in ex-vivo studies [7, 9]. We hypothesized that in patients with severe aortic stenosis, percutaneous replacement of the aortic valve (TAVR) would reduce abnormal shear stress and would decrease levels of circulating plasma MPs.

Methods

This study included patients with severe aortic stenosis selected for TAVR. Pre-specified exclusions are listed in the Additional file 1. The institutional review board approved the protocol (Comissão de Ética para Análise de Projetos de Pesquisa—CAPESQ / FMUSP #12079). The protocol registration number is NCT02193035 (clinicaltrials.gov). All patients provided informed consent to participate in the study. The experimental
We identified the cell origin of MPs by detecting antibodies directed against endothelial cells, platelets, and leukocytes. The flow cytometry quantification of MPs pre- and 5-day post-TAVR is shown in Fig. 2. There was no difference in total, endothelial cell, platelet, or macrophage MP counts prior to vs. 5 days after TAVR. Total Annexin V positive MPs were $6.10 \times 10^5 \pm 1.21 \times 10^5$ pre-TAVR vs. $5.74 \times 10^5 \pm 9.54 \times 10^4$ MP/μL post-TAVR ($p = 0.91$). Endothelial MPs were $2.05 \times 10^5 \pm 3.61 \times 10^4$ MP/μL pre-TAVR vs. $2.17 \times 10^5 \pm 3.38 \times 10^4$ MP/μL post-TAVR ($p = 0.73$). Platelet MPs were $2.79 \times 10^5 \pm 5.02 \times 10^4$ MP/μL pre-TAVR vs. $2.74 \times 10^5 \pm 4.41 \times 10^4$ MP/μL post-TAVR ($p = 0.82$). Macrophage MPs were $2.18 \times 10^5 \pm 3.49 \times 10^4$ MP/μL pre-TAVR vs. $2.07 \times 10^5 \pm 3.23 \times 10^4$ MP/μL post-TAVR ($p = 0.82$).

Similar to the FC quantification, there was no difference in NTA-measured MP counts pre vs. 5 days post-TAVR ($9.29 \times 10^{13} \pm 1.66 \times 10^{13}$ MP/μL pre-TAVR vs. $3.95 \times 10^{14} \pm 3.18 \times 10^{14}$ MP/μL post-TAVR, $p = 0.91$, Fig. 3a). In our data set, there was no correlation between MP levels measured by FC vs. NTA (Fig. 3b, $r^2 = 0.01$).

Previous investigations have demonstrated that there is a 40 % drop in platelet count following TAVR with a significant incidence of new thrombocytopenia [12]. In our study, the average baseline platelet count was $220 \times 10^9 \pm 90 \times 10^9$/L pre-TAVR, and $183 \times 10^9 \pm 78 \times 10^9$/L post-TAVR ($p = 0.0093$). Platelet counts fell by an average of 17 %, and 44 % of patients developed thrombocytopenia.

We evaluated 15 patients that were enrolled over the course of 12 months and excluded six patients from the study; the reasons for exclusion were fatal stroke (1 patient), fatal cardiogenic shock (1 patient), severe infection (3 patients), and deep venous thrombosis (1 patient). Baseline characteristics of the 9 patients that we analyzed are presented in Table 1.
Table 1: Patient and procedure characteristics and outcomes

Characteristics	N = 9
Age	84.8 ± 5.1
Male	67 %
Euroscore (Logistic)	23.5 ± 12.5 %
Peripheral artery disease	11 %
End stage renal failure	0
Creatinine (mg/dL)	1.52 ± 0.6
LV-Ao peak gradient	66.4 ± 26.2
LV-Ao mean gradient	43.9 ± 18.2
AVA (cm²)	0.7 ± 0.1

Medtronic Corevalve Size
- 26: 22 %
- 29: 56 %
- 31: 22 %

Outcomes
- Post-TAVR LV-AO peak gradient: 13.8 ± 6.4
- Death within 30 days: 0
- Stroke/TIA: 0
- MI: 0
- Pacemaker: 44 %
- Other Complications: 11 %

LV-AO left ventricle—aortic, AVA aortic valve area, TAVR transcatheter aortic valve replacement, TIA transient ischemic attack, MI myocardial infarction, AF atrial fibrillation. Other complications includes arrhythmias, major bleeding and renal failure.

Discussion

Although the sample size could be larger, our initial results predict a futile effort to show a difference in microparticle level pre TAVR vs. 5 days post TAVR. Previous reports demonstrated a 16.8 % decrease in microparticles 90 days post-TAVR [13]. We therefore simulated adding new cases where all the additional cases have a 20 % decrease in microparticle counts. To calculate the likelihood of this scenario we used the distribution of our original sample. In it, we observed a 10 % average increase in flow cytometry (FC) microparticle counts from pre-TAVR to post-TAVR with a standard deviation of 60 %. Assuming this is a normal distribution, a 20 % decrease corresponds to half a standard deviation less than the mean. The area of the normal distribution below half a standard deviation is 30.9 %, which means that 30.9 % of patients would have at least a 20 % decrease in microparticles. Therefore, the likelihood of a scenario where all six patients present a 20 % decrease in microparticles is 30.9 % to the power of 6, which is 0.09 %.

Next, we did the same modeling for the nanoparticle tracking analysis (NTA). The estimated likelihood of a scenario where all the additional patients would have a decrease of 20 % in microparticle levels is 0.03 %. Thus, there is less than 0.1 % chance that increasing the sample size would have an impact on the mean change in microparticle levels for both methods.

Moreover, if we expanded the sample size to 15 patients, and patients number 10 through 15 each had a microparticle level that was 20 % less than their pre-TAVR level, the p value for the difference would still be non-significant for both methods (modeled p value for FC: 0.51 and NTA: 0.13). Therefore, we conclude that there is no justification to expand the study, because doing so would not alter the results or conclusions.

In our investigations, patients with severe aortic stenosis had higher levels of MPs compared to published reports of MP levels in healthy patients. One study that used similar flow cytometry methods found 3.14·10⁵ MP/μL (IQR 2.27·10⁵–4.45·10⁵ MP/μL) total MPs [14, 15]. Meanwhile, protocols using NTA methodology report MP levels of 1–5·10¹² MP/μL in healthy controls subjects [11, 16]. Notably, our finding that FC MP quantification varied by an order of magnitude compared to NTA MP quantification corroborates similar findings from another group [17]. An explanation for the difference in MP counts between the two methods is that unlike FC, NTA quantifies large, small, and ultra-small MPs, as well as both phosphatidylserine positive and negative MPs [17].

Similar to previous reports, we observed marked thrombocytopenia following the TAVR procedure [12]. Platelet consumption has the potential to increase platelet activation and increase associated production of platelet MPs. Despite the potential link between platelet count and MP levels, we saw no relationship between these two parameters in our study (correlation between platelet count, absolute platelet decrease and FC-measured MP, \(r^2 = 0.02 \) and \(r^2 = 0.16 \), respectively; correlation between platelet count, absolute platelet decrease and NTA-measured MP, \(r^2 = 0.08 \) and \(r^2 = 0.06 \); NTA, respectively).

This current clinical study demonstrates that circulating MP levels do not change acutely 5 days following TAVR. Although the number of patients enrolled in this study was small, based on the observed means and standard deviation, an increase in sample size would not change the overall conclusions. When interpreting the negative results of this study, it is important to consider the following points: (1) the half-life of circulating vascular MPs is unknown, and if MPs circulate for several days, our brief 5 day follow-up window might prevent detection of changes in MP levels post TAVR, (2) thrombotic or inflammatory processes may be playing a greater role than shear stress in promoting MP elevation in patients with aortic stenosis, (3) the acute stress of the TAVR procedure might promote MP production—potentially negating the reduction in
MP generation achieved by replacing the stenotic valve, and (4) the 5 day follow-up time that we chose might be too short to enable a resetting of homeostatic systems that activate MP release. Of note, a recent investigation demonstrated that circulating MP levels do decrease 90 days following TAVR [13]. The later time point of 90 days may provide adequate time for recovery from the TAVR procedure and/or resetting of homeostatic systems that promote MP production [13, 18].

Conclusions

Our data found increased MP levels in patients with severe aortic stenosis in comparison to reports of healthy patients. We did not observe a reduction of MP levels in a short follow-up of TAVR. MPs, which have prothrombotic and proinflammatory effects, imply an increased risk of CV events for patients with severe aortic stenosis that persists acutely after TAVR treatment. Targetting MP generation or effects could reduce TAVR periprocedural CV events.

Fig. 2 Flow cytometry measurement of microparticle levels before and 5 days after TAVR procedure. (A) Total phosphatidylserine positive microparticles, (B) endothelial microparticles, (C) platelet microparticles, and (D) macrophage microparticles. MP: microparticles

Fig. 3 Nanoparticle tracking analysis measurement of microparticle levels before and 5 days after TAVR procedure. (A) Total microparticle levels. (B) Flow cytometry Annexin V positive microparticle events vs. nanoparticle-tracking analysis microparticle events with linear regression comparison between the two MP quantification methods. MP: microparticles; NTA: nanoparticle-tracking analysis
et al. Journal of Negative Results in BioMedicine (2016) 15:7

Additional file

Additional file 1: Detailed description of the methods. (DOCX 25 kb)

Abbreviations
FC: flow cytometry; MP: microparticle; TAVR: transcatheter aortic valve replacement; NTA: nanoparticle-tracking analysis.

Competing interests
The authors declare no competing interest.

Authors’ contributions
JM, AAM, FT, JYEK, PL and KC contributed to the design of the study and its protocol. PI performed the TAVR procedures. JM acquired the samples, performed the experiments. JM and KC wrote the article. KC revised the article. JM, AAM, FT, JYEK, PL and KC read the manuscript and approved the final version.

Acknowledgments

Jorrniko de Ambitiâo à Pesquisa do Estado de São Paulo (BR) provided funding for this project to J.E.K #2013/17368-0.

Author details
1Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil. 2Valvular Heart Disease Unit, University of São Paulo Medical School, São Paulo, Brazil. 3Hemodynamics and Interventional Cardiology Service, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil. 4Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.

Received: 24 October 2015 Accepted: 1 April 2016
Published online: 11 April 2016

References
1. Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, Mallat Z. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation. 2001;104:2649–52.
2. Pfister SL. Role of platelet microparticles in the production of thromboxane by rabbit pulmonary artery. Hypertension. 2004;43:428–33.
3. Toti F, Satta N, Fressinaud E, Meyer D, Freyssinet JM. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood. 1996;87:1409–15.
4. Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, Binder BR, Leitinger N. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol. 2002;22:101–7.
5. Viera AJ, Moolberry M, Key NS. Microparticles in cardiovascular disease pathophysiology and outcomes. J Am Soc Hypertens. 2012;6:243–52.
6. Jimenez JJ, Jy W, Mauro LM, Horstman LL, Soderland C, Ahn YS. Endothelial microparticles released in thrombotic thrombocytopenic purpura express von Willebrand factor and markers of endothelial activation. Br J Haematol. 1993;123:896–902.
7. Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis. 2001;158:277–87.
8. Mesri M, Alberi DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem. 1999;274:31111–8.
9. Diehl P, Nagy F, Sosson V, Helbing T, Beyersdorf F, Olschewski M, Bode C, Moser M. Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb Haemost. 2008;99:711–9.
10. van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8:2596–607.
11. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine. 2011;7:780–8.
12. McCabe JM, Huang PH, Riedl LA, Devereuxy SR, Grondell J, Connors AC, Davidson MU, Eisenhauer AC, Welt FG. Incidence and implications of idiopathic thrombocytopenia following transcatheter aortic valve replacement with the Edwards Sapien((c)) valves: a single center experience. Catheter Cardiovasc. Interv. 2014;83:633–41.
13. Horn P, Stem D, Veulemans V, Heiss C, Zeis T, Menx MW, Kelm M, Westenfeld R. Improved endothelial function and decreased levels of endothelium-derived microparticles after transcatheter aortic valve implantation. EuroIntervention. 2015;10:1456–63.
14. Jy W, Horstman LL, Jimenez JJ, Ahn YS, Biro E, Nieuwland R, Sturk A, Dignat-George F, Sabatié F, Camoin-Jau L, et al. Measuring circulating cell-derived microparticles. J Thromb Haemost. 2004;2:1842–51.
15. Hron G, Kollars M, Weber H, Sagaster V, Quehenberger P, Eichinger S, Kytle PA, Wetternheim A. Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost. 2007;97:110–3.
16. Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013;2:19671.
17. van der Pol E, Coumans FA, Grootevaert AE, Gardiner C, Sargent IL, Harrison P, Sturk A, van Leeuwen TG, Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12:1182–92.
18. Petrov G, Regitz-Zagrosek V, Lehmkühl E, Krabatsch T, Dunkel A, Dandel M, Dworzak E, Mahmoonzadeh S, Schubert C, Becker E, et al. Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation. 2010;122:523–28.

Submit your next manuscript to BioMed Central and we will help you at every step:

• We accept pre-submission inquiries
• Our selector tool helps you to find the most relevant journal
• We provide round the clock customer support
• Convenient online submission
• Thorough peer review
• Inclusion in PubMed and all major indexing services
• Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit