Abstract

Let G be a graph embedded on a surface S_ε with Euler genus $\varepsilon > 0$, and let $P \subseteq V(G)$ be a set of vertices mutually at distance at least 4 apart. Suppose all vertices of G have $H(\varepsilon)$-lists and the vertices of P are precolored, where $H(\varepsilon) = \left\lceil \frac{7 + \sqrt{24\varepsilon + 1}}{2} \right\rceil$ is the Heawood number. We show that the coloring of P extends to a list-coloring of G and that the distance bound of 4 is best possible. Our result provides an answer to an analogous question of Albertson about extending a precoloring of a set of mutually distant vertices in a planar graph to a 5-list-coloring of the graph and generalizes a result of Albertson and Hutchinson to list-coloring extensions on surfaces.

Keywords: list-coloring; Heawood number; graphs on surfaces
1 Introduction

For a graph \(G \) the distance between vertices \(x \) and \(y \), denoted \(\text{dist}(x, y) \), is the number of edges in a shortest \(x-y \)-path in \(G \), and we denote by \(\text{dist}(P) \) the least distance between two vertices of \(P \). In [1] M. O. Albertson asked if there is a distance \(d > 0 \) such that every planar graph with a 5-list for each vertex and a set of precolored vertices \(P \) with \(\text{dist}(P) \geq d \) has a list-coloring that is an extension of the precoloring of \(P \). In that paper he proved such a result for 5-coloring with \(d \geq 4 \), answering a question of C. Thomassen. There have been some preliminary answers to Albertson’s question in [4, 8, 11]; initially Tuza and Voigt [17] showed that \(d > 4 \). Kawarabayashi and Mohar [11] have shown that when \(P \) contains \(k \) vertices, there is a function \(d_k > 0 \) that suffices for such list-coloring. Then recently Dvořák, Lidický, Mohar and Postle [9] have announced a complete solution, answering Albertson’s question in the affirmative, independent of the size of \(P \).

Let \(S_\varepsilon \) denote a surface of Euler genus \(\varepsilon > 0 \). Its Heawood number is given by

\[
H(\varepsilon) = \left\lfloor \frac{7 + \sqrt{24\varepsilon + 1}}{2} \right\rfloor
\]

and gives the best possible bound on the chromatic number of \(S_\varepsilon \) except for the Klein bottle whose chromatic number is 6. (For all basic chromatic and topological graph theory results, see [10, 13].) In many instances results for list-coloring graphs on surfaces parallel classic results on surface colorings. Early on it was noted that the Heawood number also gives the list-chromatic number for surfaces; see [10] for history. Also Dirac’s Theorem [7] has been generalized to list-coloring by Böhme, Mohar and Stiebitz for most surfaces; the missing case, \(\varepsilon = 3 \), was completed by Král’ and Škrekovski. This result informs and eases much of our work.

Theorem 1.1 ([5, 12]). If \(G \) embeds on \(S_\varepsilon, \varepsilon > 0 \), then \(G \) can be \((H(\varepsilon) - 1) \)-list-colored unless \(G \) contains \(K_{H(\varepsilon)} \).

Analogously to Albertson’s question on the plane, we and others (see [11]) ask related list-coloring questions for surfaces. In this paper we ask if there is a distance \(d > 0 \) such that every graph on \(S_\varepsilon, \varepsilon > 0 \), with \(H(\varepsilon) \)-lists on each vertex and a set of precolored vertices \(P \) with \(\text{dist}(P) \geq d \) has a list-coloring that is an extension of the precoloring of \(P \). In [3] Albertson and Hutchinson proved the following result; the main result of this paper generalizes this theorem to list-coloring.
Theorem 1.2 ([3]). For each $\varepsilon > 0$, except possibly for $\varepsilon = 3$, if G embeds on a surface of Euler genus ε and if P is a set of precolored vertices with $\text{dist}(P) \geq 6$, then the precoloring extends to an $H(\varepsilon)$-coloring of G.

Others have studied similar extension questions with k-lists on vertices for $k \geq 5$. For example, see [16], Thm. 4.4, for $k \geq 6$ and [11], Thm. 6.1, for $k = 5$; however, in both results the embedded graphs must satisfy constraints depending on the Euler genus and the number of precolored vertices. Our main result is Thm. 1.3, which shows that there is a constant bound on the distance between precolored vertices that ensures list-colorability for all graphs embedded on all surfaces when vertices have $H(\varepsilon)$-lists. It improves on Thm. 1.2 by removing the possible exception for $\varepsilon = 3$, reducing the distance of the precolored vertices from 6 to 4, and broadening the results to list-coloring.

Theorem 1.3. Let G embed on S_ε, $\varepsilon > 0$, and let $P \subset V(G)$ be a set of vertices with $\text{dist}(P) \geq 4$. Then if the vertices of P each have a 1-list and all other vertices have an $H(\varepsilon)$-list, G can be list-colored. The distance bound of 4 is best possible.

When G is embedded on S_ε, let the width [2] denote the length of a shortest noncontractible cycle of G; this is also known as edge-width. For list-coloring we have the following corollary of Thms. 1.1 and 1.3.

Corollary 1.4. If G embeds on S_ε, $\varepsilon > 0$, with width at least 4, if the vertices of $P \subset V(G)$ have 1-lists and all other vertices have $H(\varepsilon)$-lists, then G is list-colorable when $\text{dist}(P) \geq 3$. The distance bound of 3 is best possible.

Given that graphs embedded with very large width can be 5-list-colored as proved in [6], it is straightforward to deduce a 6-list-coloring extension result for such graphs. When G embeds on S_ε, $\varepsilon > 0$, with width at least $2^{O(\varepsilon)}$, if a set of vertices P with $\text{dist}(P) \geq 3$ have 1-lists and all others have 6-lists, then after the vertices of P are deleted and the color of each $x \in P$ is deleted from the lists of x’s neighbors, the remaining graph has 5-lists, large width, and so is list-colorable. Thus G is list-colorable, but only when embedded with large width whose size increases with the Euler genus of the surface.

A consequence of Thomassen’s proof of 5-list-colorability of planar graphs [15] is that if all vertices of a graph in the plane have 5-lists except that the vertices of one face have 3-lists, then the graph can be list-colored. For surfaces, we offer as a related result another corollary of Thm. 1.3.
Corollary 1.5. If \(G \) embeds on \(S_{\varepsilon}, \varepsilon > 0 \), and contains a set of faces each pair of which is at distance at least two apart, with all vertices on these faces having \((H(\varepsilon) - 1) \)-lists and all other vertices having \(H(\varepsilon) \)-lists, then \(G \) can be list-colored.

The paper concludes with related questions.

2 Background results on surfaces, Euler genus and the Heawood formula

Let \(S_{\varepsilon} \) denote a surface of Euler genus \(\varepsilon > 0 \). If \(\varepsilon \) is odd, then \(S_{\varepsilon} \) is the nonorientable surface with \(\varepsilon \) crosscaps, but when \(\varepsilon \) is even, \(S_{\varepsilon} \) may be orientable or not. We let \(\mathcal{T} \) denote the torus, the orientable surface of Euler genus 2, and \(K \) the Klein bottle, the nonorientable surface of Euler genus 2.

The Heawood number \(H(\varepsilon) \), defined above, gives the largest \(n \) for which \(K_n \) embeds on a surface \(S_{\varepsilon} \) of Euler genus \(\varepsilon \), as well as the chromatic number of \(S_{\varepsilon} \), except that \(K_6 \) is the largest complete graph embedding on \(K \) and 6 is its chromatic number.

The least Euler genus \(\varepsilon \) for which \(K_n \) embeds on \(S_{\varepsilon} \) is given by the inverse function

\[
\varepsilon = I(n) = \left\lceil \frac{(n - 3)(n - 4)}{6} \right\rceil.
\]

Each \(K_n, n \geq 5 \), of course, has a minimum value of \(\varepsilon > 0 \) for which it embeds on \(S_{\varepsilon} \), called the Euler genus of \(K_n \), but for \(\varepsilon \geq 2 \) more than one surface \(S_{\varepsilon} \) may have the same maximum \(K_n \) that embeds on it. For example, both \(S_5 \) and \(S_6 \) have Heawood number 9 with \(K_9 \) being the largest complete graph embedding on \(K \) and 6 is its chromatic number.

For our results we need to know when \(K_{H(\varepsilon)} \) necessarily has a 2-cell embedding on \(S_{\varepsilon} \). When \(K_n \) embeds on \(S_{\varepsilon} \), but not on \(S_{\varepsilon-1} \), then \(K_n \) necessarily embeds with a 2-cell embedding. When \(K_n \) embeds in addition on \(S_{\varepsilon+1}, \ldots, S_{\varepsilon+i} \) with \(i > 0 \), then it may not have a 2-cell embedding on the latter surfaces. For example, on surfaces \(S_1, \mathcal{T}, S_4, \) and \(S_5 \), the complete graphs
Table 1: Embedding parameters for $K_{H(\varepsilon)}$

ε	$H(\varepsilon)$	e	f	Largest Face	ε	$H(\varepsilon)$	e	f	Largest Face
1	6	15	10	3	13	12	66	43	6
2	7	21	14	3	14	12	66	42	9
3	7	21	13	6	15	13	78	52	3
4	8	28	18	5	16	13	78	51	6
5	9	36	24	3	17	13	78	50	9
6	9	36	23	6	18	13	78	49	12
7	10	45	30	3	19	14	91	60	5
8	10	45	29	6	20	14	91	59	8
9	10	45	28	9	21	14	91	58	11
10	11	55	36	5	22	15	105	70	3
11	11	55	35	8	23	15	105	69	6
12	12	66	44	3	24	15	105	68	9

K_6, K_7, K_8 and K_9 have 2-cell embeddings, respectively, but K_6, K_7 and K_9 may or may not have 2-cell embeddings on K, S_3 and S_6, respectively.

If f is a face of an embedded graph G, let $V(f)$ and $E(f)$ denote the incident vertices and edges of f. We say that $V(f) \cup E(f)$ is the boundary of f and that the closure of f is the union of f and its boundary. Each edge of $E(f)$ either lies on another face besides f or it might lie just on f. For example, Fig. 1 shows two graphs embedded on the torus, \mathcal{T}. In the first graph, edges 2-3 and 4-7 each border two faces, but edges 3-6 and 8-9 each border only one face. The size s of a face f is determined by counting, with multiplicity, the number of edges on its boundary, and we then call f an s-region. In other words, when s_1 edges of $E(f)$ lie on another face of G besides f and s_2 edges lie only on f, then we call f an s-region where $s = s_1 + 2s_2$. When f is a 2-cell, $E(f)$ forms a single facial walk W_f, and the size of the face equals the length of the facial walk, counting multiplicity of repeated edges. Since an s-region f may have repeated edges and repeated vertices, we indicate $|V(f)| = t$ by calling f also a t-vertex-region where $t \leq s$. Hence the shaded region in the first graph in Fig. 1 is a 13-region and a 9-vertex-region, since two edges and four vertices are repeated; the shaded region in the second graph, with no repeated vertices or edges, is a 13-region...
and a 13-vertex-region.

Figure 1: A 2-cell region in a graph embedded on the torus, \mathcal{T}, before and after vertex- and edge-duplication

Here in summary are statistics on 2-cell embeddings of $K_{H(\varepsilon)}$. The patterns presented are visible from Table 1 and are easily derived from Euler’s formula and the function $I(n)$, given above.

Lemma 2.1. Let $\varepsilon \geq 1$ and suppose $K_{H(\varepsilon)}$ has a 2-cell embedding on S_ε (but $S_\varepsilon \neq K_n$). Set $i = \left\lfloor \frac{H(\varepsilon) - 3}{3} \right\rfloor$ so that $H(\varepsilon) = 3i + 3, 3i + 4$ or $3i + 5$ with $i \geq 1$.

1. If $H(\varepsilon) = 3i + 3$, then $\varepsilon = (3i^2 - i)/2, (3i^2 - i + 2)/2, \ldots, (3i^2 + i - 2)/2$. The number of faces of the embedding is given by $f = 3i^2 + 5i + 2, 3i^2 + 5i + 1, \ldots, 3i^2 + 4i + 3$, respectively, and the largest possible face is an s-region with $s = 3, 6, \ldots, 3i$, resp.

2. If $H(\varepsilon) = 3i + 4$, then $\varepsilon = (3i^2 + i)/2, (3i^2 + i + 2)/2, \ldots, (3i^2 + 3i)/2$. The number of faces of the embedding is given by $f = 3i^2 + 7i + 4, 3i^2 + 7i + 3, \ldots, 3i^2 + 6i + 4$, respectively, and the largest possible face is an s-region with $s = 3, 6, \ldots, 3i + 3$, resp.

3. If $H(\varepsilon) = 3i + 5$, then $\varepsilon = (3i^2 + 3i + 2)/2, (3i^2 + 3i + 4)/2, \ldots, (3i^2 + 5i)/2$. The number of faces of the embedding is given by $f = 3i^2 + 9i + 6, 3i^2 + 9i + 5, \ldots, 3i^2 + 8i + 7$, respectively, and the largest possible face is an s-region with $s = 5, 8, \ldots, 3i + 2$, resp.

From the point of view of the genus, given $\varepsilon > 0$, we can determine directly whether or not $K_{H(\varepsilon)}$ necessarily has a 2-cell embedding on S_ε. $K_{H(\varepsilon)}$ necessarily has a 2-cell embedding if and only if $\varepsilon = (3i^2 - i)/2$ or $(3i^2 + i)/2$.
or \((3i^2 + 3i + 2)/2\) for some value of \(i > 0\). Thus given \(\varepsilon > 0\), we compute \(H(\varepsilon)\) and set \(i = \lfloor H(\varepsilon)/3 \rfloor - 1\) so that \(H(\varepsilon) = 3i + 3, 3i + 4, \) or \(3i + 5\). Then \(K_{H(\varepsilon)}\) necessarily embeds with a 2-cell embedding if \(I(H(\varepsilon)) = \varepsilon\); that is, \(S_{\varepsilon}\) is the genus surface for \(K_{H(\varepsilon)}\).

In the results of Table 1 we do not claim that every 2-cell embedding of \(K_{H(\varepsilon)}\) achieves the maximum face size when that size is greater than three. For example when \(K_{H(\varepsilon)}\) has a largest face being a 5- or 6-region, it might embed as a near-triangulation with one 5- or 6-region, respectively, or it might be a triangulation except for two 4-regions or a triangulation except for a 4- and a 5-region, resp. (An embedding is a near-triangulation if at most one region is not 3-sided.)

We note from Table 1 and Lemma 2.1 that there are some instances of \(\varepsilon\) when \(K_{H(\varepsilon)}\) embeds possibly with an \((H(\varepsilon) - 1)\)-region which might allow for the embedding of two different (not disjoint, but distinct) copies of \(K_{H(\varepsilon)}\) on \(S_{\varepsilon}\), as explained in the next lemma.

Lemma 2.2. Let \(K_{H(\varepsilon)}\) have a 2-cell embedding on \(S_{\varepsilon}\), \(\varepsilon > 0\).

1. The largest possible face in the embedding is an \((H(\varepsilon) - 1)\)-region. If there is an \((H(\varepsilon) - 1)\)-region, there is just one, and the embedding is a near-triangulation.

2. If every face of the embedding is at most an \((H(\varepsilon) - 2)\)-region, then no additional copy of \(K_{H(\varepsilon)}\) can simultaneously embed on \(S_{\varepsilon}\).

3. When \(K_{H(\varepsilon)}\) can embed with an \((H(\varepsilon) - 1)\)-region that is also an \((H(\varepsilon) - 1)\)-vertex-region, then two different copies of \(K_{H(\varepsilon)}\) can embed, by adding a vertex adjacent to all vertices of that region, and then the two complete graphs share a copy of \(K_{H(\varepsilon) - 1}\). Such an embedding is possible only if \(H(\varepsilon) = 3i + 4\) and \(\varepsilon = (3i^2 + 3i)/2\), and the resulting embedding is a triangulation.

We call the latter graph \(DK_{H(\varepsilon)}\); it is also \(K_{H(\varepsilon) + 1} \setminus \{e\}\) for some edge \(e\).

Proof. Suppose that \(K_{H(\varepsilon)}\) has a 2-cell embedding with at least one \(s\)-region where \(s \geq H(\varepsilon) - 1\). Then Euler’s formula plus a count of edges on faces with multiplicities leads to a contradiction to Lemma 2.1 in all cases except when there is precisely one \((H(\varepsilon) - 1)\)-region, \(H(\varepsilon) = 3i + 4\), \(\varepsilon = (3i^2 + 3i)/2\), and all other faces are 3-regions.
Suppose $K_{H(\varepsilon)}$ embeds on S_ε with every face having at most $H(\varepsilon) - 2$ sides. No two additional vertices in different faces of $K_{H(\varepsilon)}$ can be adjacent. For $2 \leq k \leq 4$, k mutually adjacent, additional vertices cannot form $K_{H(\varepsilon)}$ together with $H(\varepsilon) - k$ vertices on the boundary of a face.

Proofs of remaining parts follow easily from Euler’s Formula and Lemma 2.1.

If $V' \subseteq V(G)$, we denote by $G[V']$ the induced subgraph on the vertices in V'; for $E' \subseteq E(G)$, we denote by $G[E']$ the induced subgraph on the edge set E'. When f is a face of an embedded G, we may also call the subgraph $G[E(f)]$ the boundary of f; that is, it may be convenient at times to think of the boundary of a face f as a set $V(f) \cup E(f)$ and at other times as the subgraph $G[E(f)]$.

We restate two very useful corollaries of Thm. 6 in [5]. The first involves a case that is not covered in that theorem, but which follows easily from their proof. If f is the infinite face of a connected plane graph, we call the boundary of f the outer boundary of G, and when $G[E(f)]$ is a cycle, we call it the outer cycle. Without loss of generality we may suppose that for a connected plane graph the outer boundary is a cycle.

Corollary 2.3. ([5]) Let G be a connected plane graph with outer cycle C that is a k-cycle with $k \leq 6$. If every vertex of G has a list of size at least 6, then a precoloring of C extends to all of G unless $k = 6$, there is a vertex in $V(G) \setminus V(C)$ that is adjacent to all vertices of $V(C)$, and its list consists of six colors that appear on the precolored C.

Then the results of Thm. 6 in [5] together with Cor. 2.3 give the next corollary.

Corollary 2.4 ([5]). Let G be a connected plane graph with outer cycle C that is a k-cycle with $3 \leq k \leq 6$. If every vertex of G has a list of size at least $\max(5, k + 1)$, then a precoloring of C extends to all of G.

The next lemma is used repeatedly in the proof of Thms. 3.3 and 4.3. It is an extension of the similar result for 5-list-colorings in [5]. The parameters are motivated by the “Largest Face” and $H(\varepsilon)$-list sizes from Table 1.

Lemma 2.5. Let H be a connected graph with a 2-cell embedding on S_ε, $\varepsilon > 0$, and let f be a 2-cell k-region of H, $k \geq 3$. Let G be a plane graph embedded within f and let G_f be a simple, connected graph that consists
of G, $H[E(f)]$, and edges joining $V(G)$ and $V(f)$ so that G_f is embedded in the closure of f. Let $P = \{v_1, \ldots, v_j\}$ be a subset of $V(G_f)$ satisfying $\text{dist}(P) \geq 3$. Then if every vertex of G_f has an ℓ-list except that the vertices of P each have a 1-list, every proper precoloring of $H[E(f)]$ extends to a list-coloring of G_f provided that no vertex of P is adjacent to a vertex of $V(f)$ with the same color as its 1-list, and

1. $k = 3$ and $\ell \geq 6$,
2. $k \geq 4$ and $\ell \geq k + 2$, or
3. $k = 6$ or $k \geq 9$, $\ell = k + 1$, and there is no vertex x adjacent to $k + 1$ vertices of $V(f) \cup \{v_i\}$, for some $i = 1, \ldots, j$, with x’s list consisting of $\ell = k + 1$ colors that all appear on $V(f) \cup \{v_i\}$.

Proof. Note that $G_f[E(f)] = H[E(f)]$. Also note that the condition $\text{dist}(P) \geq 3$ guarantees that no vertex of G_f is adjacent to more than one v_i. For $v_i \in P \setminus V(f)$, we say that we excise v_i if we delete it and delete its color from the list of colors for each neighbor that is not precolored. The proof has three cases that together prove parts 1-3 of the lemma.

Case A. Assume $k = 3$ and $\ell \geq 6$, $4 \leq k \leq 6$ and $\ell \geq k + 2$, or $k = 6$ and $\ell = 7$. In these cases first we excise the vertices of $P \setminus V(f)$ so that every remaining vertex of G has a list of size at least 5 for $k = 3$, of size at least $k + 1$ for $k = 4, 5, 6$, or else of size at least 6 when $k = 6$.

In the following we may need to do some surgery, perhaps repeatedly, on the face f and its boundary, so that we can apply Cor. 2.4. First, more easily, when f is a 2-cell k-region on which lies no repeated vertex, then G_f is a plane graph with outer cycle a k-cycle, $k \leq 6$. By Cor. 2.4 a precoloring of $G_f[E(f)]$ extends to $G_f \setminus P$ and this coloring extends to all of G_f unless there is a vertex x with a 6-list, adjacent to six vertices of $V(f)$ with the six colors of x’s list. If x’s list was decreased to a 6-list, x was adjacent to some vertex v_i, but this situation is disallowed by hypothesis in part 3.

Otherwise in a traversal of W_f we visit a vertex more than once and may travel along an edge twice. In the former case, each time we revisit a vertex x, we can split that vertex in two, into x_1 and x_2, and similarly divide the edges incident with x so that the face f is expanded to become the new face f', still a k-region, and the graph G_f becomes $G_{f'}$ which is naturally embedded in the closure of f' and contains the same adjacencies. Now there is one more vertex in $V(f')$ and the same set of edges $E(f') = E(f)$ on
the boundary and in the boundary subgraph $G_f'[E(f')]$. A precoloring of $G_f[E(f)]$ gives a precoloring of $G_f'[E(f')]$ in which vertices x_1 and x_2 receive the same color; we call this procedure vertex-duplication. In the latter case, when we revisit an edge $e = (y, y')$, we may visit both of its endpoints twice or one endpoint twice and the other just once. We similarly duplicate the edge $e = (y, y')$ by duplicating one or both of its endpoints and splitting e into two new edges e_1 and e_2. Then we divide the other edges incident with e so that G_f becomes G_f' which is naturally embedded in the closure of the new face f', still a k-region, but now with one or two more vertices in $V(f')$, the same number of edges in $E(f')$ and in $G_f'[E(f')]$, and with one less duplicated edge in W_f'. A precoloring of $G_f[E(f)]$ gives a precoloring of $G_f'[E(f')]$ in which duplicated vertices receive the same color; we call this procedure edge-duplication. We note that in both duplications there cannot be a vertex x that is adjacent to both copies of a duplicated vertex (since G_f is a simple graph). As an example, the first graph in Fig. 1 shows a 2-cell face that is a 13-region, in which vertices 3, 6, 7, and 8, are repeated, and edges 3-6 and 8-9 are repeated. Vertex- and edge-duplication produces the second graph, which has a new face that is a 13-region and whose facial walk is a cycle given by 1-8-9-8'-7-2-3-6-5-7'-4-6'-3'-1.

In all cases after vertex- and edge-duplication, the 2-cell k-region f becomes a 2-cell k-region f^* with no repeated vertex or edge on the outer boundary. G_f has been transformed into a plane graph G_{f^*} with outer cycle, $G_{f^*}[E(f^*)]$, of length $k \leq 6$. The precoloring of $G_f[E(f)]$ has become a precoloring of $G_{f^*}[E(f^*)]$ with duplicated vertices receiving the same color. Then by Cor. 2.4, the precoloring of $G_{f^*}[E(f^*)]$ extends to $G_{f^*} \setminus P$ and so the precoloring of $G_f[E(f)]$ extends to $G_f \setminus P$ and to all of G_f since the exceptional case of part 3 cannot occur. (Since f^* is at most a 6-region and has a duplicated vertex, it is a t-vertex-region for some $t < 6$, and there cannot be a vertex adjacent to six vertices of $V(f^*)$.)

Case B. Suppose $k \geq 7$ and $\ell \geq k + 2$ so that in all cases $\ell \geq 9$. For $v \in V(G)$, let $E_f(v)$ denote the set of edges joining v with a vertex of $V(f)$. Suppose there is a vertex x of $V(G)$ that is adjacent to at least $k - 3$ vertices of $V(f)$. If $x = v_i$ for some $i, 1 \leq i \leq j$, then $G_f[E(f) \cup E_f(v_i)]$ can be properly colored by assumption. If $x \neq v_i$ for any $i, 1 \leq i \leq j$, then x is adjacent to either one or no vertex v_i, and since x has an ℓ-list, $\ell \geq k + 2$, the coloring of $G_f[E(f) \cup E_f(v_i)]$ (respectively, $G_f[E(f)]$) extends to x. In all cases $G_f[E(f) \cup E_f(x)]$ divides f into regions of size at most 6, and the coloring of $G_f[E(f) \cup E_f(x)]$ extends to the interior of each s-region,
3 \leq s \leq 6$, by Case A since interior vertices, other than the v_i, have 9-lists.

Otherwise every vertex x in G is adjacent to at most $k - 4$ vertices of $V(f)$. For each such vertex x we delete from its list the colors of $V(f)$ to which it is adjacent. This may reduce the list for x to one of size six or more. Next we excise the vertices of P in $G \setminus V(f)$, resulting in the planar graph $G \setminus P$ with every vertex having a list of size at least five, which can be list-colored by [15]. This list-coloring is compatible with the precoloring of $G_f[E(f)]$ and extends to P and so to all of G_f.

Case C. The case of $k = 6, \ell = 7$ was covered in Case A. Suppose that $k \geq 9$ and $\ell = k + 1 \geq 10$. Suppose there is a vertex x of $V(G)$ that is adjacent to at least $k - 4$ vertices of $V(f)$. As before, if $x = v_i$ for some $i, 1 \leq i \leq j$, then $G_f[E(f) \cup E_f(v_i)]$ can be properly colored by assumption. If $x \neq v_i$ for any $i, 1 \leq i \leq j$, then x is adjacent to one or no vertex v_i, and the coloring of $G_f[E(f) \cup E_f(v_i)]$ (resp., $G_f[E(f)]$) extends to x in all cases unless (since $\ell = k + 1$) x is adjacent to all vertices of $V(f) \cup \{v_i\}$ for some $i, 1 \leq i \leq j$, and x’s list consists of ℓ colors all appearing on $V(f) \cup \{v_i\}$. We have disallowed this case. Now $G_f[E(f) \cup E_f(x)]$ forms a graph that consists of triangles and s-regions with $s \leq 7$. The coloring of $G_f[E(f) \cup E_f(x)]$ extends to the interior of each region by the previous cases, since $\ell \geq 10$.

Otherwise every vertex x of G is adjacent to at most $k - 5$ vertices of $V(f)$, and we proceed as in the proof of Case B by decreasing the lists of vertices adjacent to $V(f)$ and excising all the v_i to create a planar graph with every vertex having at least a 5-list. The resulting graph is list-colorable with a coloring compatible with that of $G_f[E(f)]$ and extending to G_f.

\section{Results on K_n genus surfaces}

Most parts of the proof of the next lemma are clear; these results are used repeatedly in the proof of the main results.

\begin{lemma}
1. Suppose at most one vertex of K_n has a 1-list, at least one vertex has an n-list, and the remaining vertices have $(n - 1)$-lists or n-lists. Then K_n can be list-colored.

2. If one vertex of DK_n has a 1-list and all other vertices have n-lists, then DK_n can be list-colored.

3. If at most six vertices of DK_n, $n \geq 7$, have lists of size $n - 1$ and all others have n-lists, then DK_n can be list-colored.
\end{lemma}
Proof. We include the proof of part 3. Suppose that one of the two vertices of degree \(n-1\), say \(x\), has an \(n\)-list. Then \(K_n = DK_n \setminus \{x\}\) has at most six vertices with \((n-1)\)-lists and can be list-colored since \(n \geq 7\). This coloring extends to \(x\) which has an \(n\)-list and is adjacent to \(n-1\) vertices of the colored \(K_n\). Otherwise both vertices of degree \(n-1\), say \(x\) and \(y\), have \((n-1)\)-lists, \(L(x)\) and \(L(y)\) respectively. Suppose there is a common color \(c\) in \(L(x)\) and \(L(y)\). Then coloring \(x\) with \(c\) extends to a coloring of \(K_n = DK_n \setminus \{y\}\) after which \(y\) can also be colored with \(c\). Otherwise \(L(x)\) and \(L(y)\) are disjoint. Suppose that when \(DK_n \setminus \{y\}\) is list-colored, the colors on \(K_{n-1} = DK_n \setminus \{x, y\}\) are precisely the \(n-1\) colors of \(L(y)\) so that the coloring does not extend. If there is some vertex \(z\) of \(K_{n-1}\) with an \(n\)-list that contains a color not in \(L(y)\) and different from the color \(c_x\) used on \(x\), we use \(c_x\) on \(z\), freeing up the previous color of \(z\) for \(y\). Otherwise, for every \(z\) with an \(n\)-list, that list equals \(L(y)\) \(\cup\) \(\{c_x\}\). Besides these vertices of \(K_{n-1}\) with prescribed \(n\)-lists, there are at most four others in \(K_{n-1}\) which have \(n-1\) lists. These four vertices might be colored with colors from \(L(x)\), but that still leaves at least one color \(c'_{x} \neq c_{x}\) in \(L(x)\) that has not been used. We change the color of \(x\) to \(c'_{x}\) and the color of one of the \(n\)-list vertices of \(K_{n-1}\) to \(c_{x}\), thus freeing up that vertex’s previous color to be used on \(y\). \(\square\)

Theorem 3.2. Suppose \(G\) embeds on \(S_\varepsilon, \varepsilon > 0\), and does not contain \(K_{H(\varepsilon)}\). Then when every vertex of \(G\) has an \(H(\varepsilon)\)-list except that the \(j\) vertices of \(P = \{v_1, \ldots, v_j\}\), \(j \geq 0\), have \(1\)-lists and \(dist(P) \geq 3\), then \(G\) is list-colorable.

Proof. Let \(G\) embed on \(S_\varepsilon, \varepsilon > 0\), and suppose \(G\) does not contain \(K_{H(\varepsilon)}\). We excise the vertices of \(P = \{v_1, \ldots, v_j\}\), if present, leaving a graph with all vertices having at least \((H(\varepsilon) - 1)\)-lists since \(dist(P) \geq 3\). By [5, 12], the smaller graph can be list-colored, and that list-coloring extends to \(G\). \(\square\)

In particular this result holds for all graphs on the Klein bottle since \(K_7\) does not embed there. The first value not covered by the next theorem is \(\varepsilon = 3\) with \(H(\varepsilon) = 7\).

Theorem 3.3. Suppose \(G\) has a 2-cell embedding on \(S_\varepsilon, \varepsilon > 0\), and contains \(K_{H(\varepsilon)}\). Then when every vertex of \(G\) has an \(H(\varepsilon)\)-list except that the \(j\) vertices of \(P = \{v_1, \ldots, v_j\}\), \(j \geq 0\), have \(1\)-lists, \(G\) is list-colorable provided that \(\varepsilon\) is of the form \(\varepsilon = (3i^2 - i)/2, (3i^2 + i)/2, \) or \((3i^2 + 3i + 2)/2\), for some \(i \geq 1\), and \(dist(P) \geq 4\).
Proof. We know that $K_{H(\varepsilon)}$ necessarily has a 2-cell embedding on S_ε for $\varepsilon = 1, 4$ as does K_7 on T. (K_6 and K_7 may or may not have 2-cell embeddings on K and on S_3, respectively.)

The values $\varepsilon = (3i^2 - i)/2, (3i^2 + i)/2, or (3i^2 + 3i + 2)/2$ for some $i \geq 1$ are those for which $K_{H(\varepsilon)}$ necessarily has a 2-cell embedding on S_ε; they give the value of the genus surface of $K_{H(\varepsilon)}$ for each of the modulo 3 classes of $H(\varepsilon)$. Since $\text{dist}(P) \geq 4$, at most one vertex $v_k \in P$ is in or is adjacent to a vertex of $K_{H(\varepsilon)}$ (but not both), and in the latter case v_k is adjacent to at most $H(\varepsilon) - 1$ vertices of the complete graph since $K_{H(\varepsilon)+1}$ does not embed on S_ε. Thus in all cases $K_{H(\varepsilon)} \cup P$ can be list-colored by Lemma 3.1.1. When $\varepsilon = 1, H(\varepsilon) = 6$, and K_6 embeds as a triangulation on S_1. When $\varepsilon > 1$, if $\varepsilon = (3i^2 - i)/2$ or $(3i^2 + i)/2$, $K_{H(\varepsilon)}$ embeds as a triangulation, and if $\varepsilon = (3i^2 + 3i + 2)/2$, $K_{H(\varepsilon)}$ embeds with the largest face size at most five, and in all cases $H(\varepsilon) \geq 7$. Hence we apply Lemma 2.5 for $\varepsilon \geq 1$ to see that the list-coloring of $K_{H(\varepsilon)}$ extends to the interior of each of its faces and so G is list-colorable.

A similar proof would show that when the orientable surface S_ε with ε even is the orientable genus surface for $K_{H(\varepsilon)}$ (i.e., when ε is even and gives the least Euler genus such that $K_{H(\varepsilon)}$ embeds on orientable S_ε), then for every G with a 2-cell embedding on orientable S_ε and containing $K_{H(\varepsilon)}$ the same list-coloring result holds. The first corollary of Section 1 also follows easily.

Proof of Cor. 1.4. Suppose $H(\varepsilon) = 3i + 3, i \geq 1$. If $\varepsilon = (3i^2 - i)/2$, then $K_{H(\varepsilon)}$ embeds with $f = (i+1)(3i+2)$ faces by Lemma 2.1.1. $K_{H(\varepsilon)}$ contains $(3i+3)(3i+2)(3i+1)/6$ 3-cycles, more than the number of faces so that $K_{H(\varepsilon)}$ embeds with a noncontractible 3-cycle. Thus in this case G cannot contain $K_{H(\varepsilon)}$ and by Thm. 3.2, G can be list-colored. If $\varepsilon = (3i^2 - i + 2)/2, \ldots, or (3i^2 + i - 2)/2$, then $K_{H(\varepsilon)}$ embeds with fewer than $f = (i+1)(3i+2)$ faces and so the same result holds.

When $H(\varepsilon) = 3i + 4 or 3i + 5, i \geq 1$, an analogous proof shows that G cannot contains $K_{H(\varepsilon)}$ and so is list-colorable.

To see that distance at least 3 is best possible for the precolored vertices, take a vertex x with a k-list $L(x)$ and attach k pendant edges to vertices, precolored with each of the colors of $L(x)$.

\[\square \]
4 All surfaces

First we explore some topology of surfaces and non-2-cell faces of embedded graphs. Cycles on surfaces (i.e., simple closed curves on the surface), for both orientable and nonorientable surfaces, are of three types: contractible and surface-separating, noncontractible and surface-separating, and noncontractible and surface-nonseparating. (When the meaning is clear, we suppress the prefix “surface.”) A non-2-cell face of an embedded graph must contain a noncontractible surface cycle within its interior. For example, in the second graph in Fig. 1, the shaded region is a 2-cell face, and the unshaded region is a non-2-cell face that contains a noncontractible and nonseparating cycle. (For a more detailed discussion see Chapters 3 and 4 of [13].)

Suppose f is a non-2-cell face of $K_{H(\varepsilon)}$ embedded on S_ε. We repeatedly “cut” along simple noncontractible surface cycles that lie wholly within the face f until the “derived” face or faces become 2-cells. Each “cut” is replaced with one or two disks, creating a new surface, and with each “cut” $K_{H(\varepsilon)}$ stays embedded on a surface $S_{\varepsilon'}$ with $\varepsilon' < \varepsilon$. Below we explain this surface surgery and count the number of newly created faces, called derived faces in the surgery.

Lemma 4.1. Suppose $K_{H(\varepsilon)}$ embeds on S_ε, $\varepsilon > 0$. Then the largest possible 2-cell face in the embedding is an $(H(\varepsilon) - 1)$-region.

Proof. Suppose the embedded $K_{H(\varepsilon)}$ has a non-2-cell k-region f; initially there are no derived faces. In f we can find a simple noncontractible cycle C, disjoint from its boundary, $V(f) \cup E(f)$. If C is surface-separating, it is necessarily 2-sided. We replace C by two copies of itself, C and C', and insert in each copy a disk, producing surfaces $S(1)$ and $S'(1)$, each with Euler genus that is positive and less than ε. Since $K_{H(\varepsilon)}$ is connected, it is embedded on one of these surfaces, say $S(1)$. The face f of $K_{H(\varepsilon)}$ on S_ε becomes the derived face f_1 of $K_{H(\varepsilon)}$ on $S(1)$ and retains the same set of boundary vertices $V(f_1) = V(f)$ and edges $E(f_1) = E(f)$ so that f_1 is also a k-region. Initially f is not a derived face, f_1 becomes a derived face and the Euler genus decreases by at least 1. If, later on in the process, f is a derived face, then f_1 is also a derived face, the number of derived faces does not increase, and the Euler genus decreases by at least 1.

If C is not surface-separating and is 2-sided, we duplicate it and sew in two disks, as above, to create one new surface $S(1)$ of lower and positive Euler genus on which $K_{H(\varepsilon)}$ is embedded. If C was not separating within the
face f, then the derived face f_1 keeps the same set of boundary vertices and edges as f and remains a k-region. As above, the number of derived faces increases by at most 1 and the Euler genus decreases by at least 2. If C was separating within the face f, then f splits into two derived faces f_1 and f'_1. Each vertex of $V(f)$ and each edge of $E(f)$ appears on one of these derived faces or possibly two when it was a repeat on f. More precisely, if f_1 is a k_1-region and f'_1 is a k'_1-region, then necessarily $k_1 + k'_1 = k$. In this case the Euler genus decreases by 2 and number of derived faces increases by at most 2, increasing by 2 only when the face being cut was an original face of $K_{H(\varepsilon)}$. If C is not surface-separating and is 1-sided, we replace C by a cycle DC of twice the length of C and insert a disk within DC, producing a surface $S(1)$ with Euler genus that is less than ε. $K_{H(\varepsilon)}$ remains embedded on $S(1)$, necessarily with positive Euler genus, and the derived face f_1 keeps the same boundary vertices and edges as f, remaining a k-region. Thus the number of derived faces increases by at most 1 and the Euler genus decreases by at least 1.

Now we prove the lemma by induction on the number of non-2-cell faces of the embedded $K_{H(\varepsilon)}$. We know the conclusion holds when there are no non-2-cell faces by Lemma 2.2. Otherwise let f be a non-2-cell k-region. We repeatedly cut along simple noncontractible cycles within f and its derived faces, creating surfaces $S(1), S(2), \ldots$ on which $K_{H(\varepsilon)}$ remains embedded. We continue until every derived face of f is a 2-cell. Then $K_{H(\varepsilon)}$ is embedded on, say, $S_{\varepsilon'}$ with $\varepsilon' < \varepsilon$ and has fewer non-2-cell faces. By induction each 2-cell face has size at most $H(\varepsilon) - 1$ and thus every original 2-cell face, which has not been affected by the surgery, also has size at most $H(\varepsilon) - 1$. \square

We have purposefully proved more within the previous proof.

Corollary 4.2. Suppose $K_{H(\varepsilon)}$ has a non-2-cell embedding on S_{ε}, and suppose that after cutting along noncontractible cycles in non-2-cell faces, $K_{H(\varepsilon)}$ has a 2-cell embedding on $S_{\varepsilon'}$, $\varepsilon' < \varepsilon$. Then the number of faces in the latter embedding that are derived from faces in the original embedding is at most $\varepsilon - \varepsilon'$.

Proof. In the previous proof we saw that with some cuts the number of derived faces is increased by at most 1 and the Euler genus is decreased by at least 1; let c_0 denote the number of cuts in which there is no increase in the number of derived faces and c_1 the number of cuts in which there is an increase of 1 in the number of derived faces. If the increase is always at
most 1, then the result follows. The number of derived faces is increased by 2 precisely when the cutting cycle C within a face f' is 2-sided, is not surface-separating, is separating within f', and f' is an original face of the embedding. In that case the Euler genus is decreased by 2 also; let c_0 denote the number of such cuts. Then the decrease in the Euler genus, $\varepsilon - \varepsilon'$ is at least $c_0 + c_1 + 2c_2 \geq c_1 + 2c_2$, which equals the number of derived faces. □

Theorem 4.3. Given $\varepsilon > 0$ and G a graph on n vertices that has a 2-cell embedding on S_ε, suppose that G contains $K_{H(\varepsilon)}$. If $P \subset V(G)$ satisfies $\text{dist}(P) \geq 4$, then if the vertices of P each have a 1-list and every other vertex of G has an $H(\varepsilon)$-list, then G can be list-colored.

Proof. The proof is by induction on ε and on n. We know the theorem holds for G with a 2-cell embedding on S_ε for $1 \leq \varepsilon \leq 2$ by Thm. 3.3. Consider graphs with 2-cell embeddings on S_{ε^*} for $\varepsilon^* \geq 3$. For each such embedded graph, the subgraph $K_{H(\varepsilon^*)}$ inherits an embedding on S_{ε^*}, and $H(\varepsilon^*) \geq 7$.

Since $\text{dist}(P) \geq 4$ we know that at most one vertex of P lies in or is adjacent to a vertex of $K_{H(\varepsilon^*)}$. If there is one, call it v^*_i and if not, ignore reference to v^*_i in the following. By Lemma 3.1.1 we know that $G[V(K_{H(\varepsilon^*)}) \cup \{v^*_i\}]$ can be list-colored since v^*_i is adjacent to at most $H(\varepsilon^*) - 1$ vertices of $K_{H(\varepsilon^*)}$ (because $K_{H(\varepsilon^*)+1}$ does not embed on S_{ε^*}). If G contains a vertex x in neither $V(K_{H(\varepsilon^*)})$ nor P, then $G[V(K_{H(\varepsilon^*)}) \cup \{x\}]$ can be list-colored by first coloring $K_{H(\varepsilon^*)}$ and then coloring x, which has an $H(\varepsilon^*)$-list and is adjacent to at most $H(\varepsilon^*) - 1$ vertices of $K_{H(\varepsilon^*)}$.

Thus on surface S_{ε^*} we know the result holds for every graph on n vertices with $n \leq H(\varepsilon^*) + 1$. Let G have n^* vertices, $n^* > H(\varepsilon^*) + 1$, and have a 2-cell embedding on S_{ε^*}.

Let f be a k-region in the inherited embedding of $K_{H(\varepsilon^*)}$ with incident vertices $V(f)$ and edges $E(f)$, and let G_f denote the subgraph of G lying in the closure of f, $f \cup V(f) \cup E(f)$. Suppose f is a 2-cell face of $K_{H(\varepsilon^*)}$ in whose interior lie vertices of $V(G) \setminus \{V(f) \cup \{v^*_i\}\}$; call these interior vertices U_f. Then after deleting the vertices of U_f, $G \setminus U_f$ has a 2-cell embedding on S_{ε^*} with fewer than n^* vertices, contains $K_{H(\varepsilon^*)}$, and contains vertices of $P' \subseteq P$ with $\text{dist}(P') \geq 4$. By induction $G \setminus U_f$ is list-colorable. By Lemma 4.1 $k \leq H(\varepsilon^*) - 1$. We claim that the resulting list-coloring of $G[V(f) \cup \{v^*_i\}]$ extends to G_f.

If $k \leq H(\varepsilon^*) - 2$, then the coloring extends by Lemma 2.5.1 and 2.5.2. Otherwise $k = H(\varepsilon^*) - 1$ and the coloring then extends by Lemma 2.5.3, unless there is a vertex x of G_f that has an $H(\varepsilon^*)$-list, is adjacent to v^*_i, not
in $V(f)$, and to all vertices of $V(f)$, and its $H(\varepsilon^*)$-list consists of $H(\varepsilon^*)$ colors that appear on its neighbors. Then $G[V(K_{H(\varepsilon^*)}) \cup \{x\}]$ forms $DK_{H(\varepsilon^*)}$, which triangulates S_{ε^*} and does not contain another vertex of P since $dist(P) \geq 4$. Since $v_i^* \in V$ is adjacent to at most three vertices of $DK_{H(\varepsilon^*)}$ (the vertices of a 3-region), $G[V(DK_{H(\varepsilon^*)}) \cup \{v_i^*\}]$ can be list-colored by Lemma 3.1.3. Then the list-coloring extends to the graph in the interior of each 3-region by Lemma 2.5.1 since $H(\varepsilon^*) \geq 7$.

Thus we can assume that every vertex of $V(G) \setminus \{V(K_{H(\varepsilon^*)}) \cup \{v_i^*\}\}$ lies in a non-2-cell region of the embedding of $K_{H(\varepsilon^*)}$ on S_{ε^*}. We claim there are two vertices of $K_{H(\varepsilon^*)}$ that lie only on its 2-cell faces; we prove that below. One of these might lie in P or be adjacent to v_i^*, but the other, say x^*, has an $H(\varepsilon^*)$-list and is adjacent only to vertices of $K_{H(\varepsilon^*)}$, precisely $H(\varepsilon^*) - 1$ of these.

In that case we consider $G \setminus \{x^*\}$. If $G \setminus \{x^*\}$ does not contain $K_{H(\varepsilon^*)}$, it can be list-colored by Thm. 3.2. Otherwise $G \setminus \{x^*\}$ does contain $K_{H(\varepsilon^*)}$. $G \setminus \{x^*\}$ might have a 2-cell embedding on S_{ε^*} or it might not. In the former case, by induction on n it can be list-colored. Suppose that $G \setminus \{x^*\}$ does not have a 2-cell embedding on S_{ε^*}. Then the face f^* that was formed by deleting x^* is the one and only non-2-cell face of that embedding since no other face of G has been changed by the deletion of x^*. Then we cut along noncontractible cycles within f^*, as described in Lemma 4.1, until every face, derived from f^*, is a 2-cell in $G \setminus \{x^*\}$ now embedded on $S_{\varepsilon'}$ with $\varepsilon' < \varepsilon^*$. We have $H(\varepsilon') = H(\varepsilon^*)$ since $G \setminus \{x^*\}$ contains $K_{H(\varepsilon^*)}$. Thus $G \setminus \{x^*\}$ can be list-colored by induction on the Euler genus, and in all cases that coloring extends to G since x^* has a list of size $H(\varepsilon^*)$ which is larger than its degree.

We return to the claim that there are two vertices of $K_{H(\varepsilon^*)}$ that lie only on 2-cell faces of its embedding on S_{ε^*}, given that every vertex of $V(G) \setminus \{V(K_{H(\varepsilon^*)}) \cup \{v_i^*\}\}$ lies in a non-2-cell face of the embedded $K_{H(\varepsilon^*)}$. Since the number of vertices of G, n^*, is greater than $H(\varepsilon^*) + 1$, there are some non-2-cell faces containing other vertices of G. We count the maximum number of vertices of $K_{H(\varepsilon^*)}$ that lie on these non-2-cells to show that number is at most $H(\varepsilon^*) - 2$.

As in Lemma 4.1 we repeatedly cut each non-2-cell face of the embedded $K_{H(\varepsilon^*)}$ until all remaining faces, the original and the derived, are 2-cells; suppose $K_{H(\varepsilon^*)}$ is then embedded on $S_{\varepsilon'}$ with $\varepsilon' < \varepsilon^*$. We know that every vertex originally on a non-2-cell face of $K_{H(\varepsilon^*)}$ is represented on at least one derived face and we show below that the total number of vertices on derived faces is at most $H(\varepsilon^*) - 2$. We also know that $\varepsilon' \geq I(H(\varepsilon^*))$. Let
\(n_1 = \varepsilon' - I(H(\varepsilon^*)), \) which is nonnegative, and \(n_2 = \varepsilon^* - \varepsilon', \) which is positive. The variable \(n_1 \) will determine the face sizes in the 2-cell embedding of \(K_{H(\varepsilon^*)} \) on \(S_{\varepsilon'} \) (see Table 1), and \(n_2 \) will determine the maximum number of derived faces that have been created.

We consider the modulo 3 class of \(H(\varepsilon^*) \), and we begin with the case of \(H(\varepsilon^*) = 3i + 4, i \geq 1 \). We know that \(\varepsilon^* \in \{(3i^2 + i)/2, \ldots, (3i^2 + 3i)/2\} = \{I(3i + 4), \ldots, I(3i + 4) + i\} \) so that \(n_1 + n_2 \leq i \) by Lemma 2.1. By Cor. 4.2 the number of derived faces is at most \(n_2 \). We can determine the possible face sizes of a 2-cell embedding of \(K_{H(\varepsilon^*)} \) on \(S_{\varepsilon'} \) with \(\varepsilon' = I(3i + 4) + n_1 \). A 2-cell embedding on \(S_{I(3i+4)} \) is necessarily a triangulation. A 2-cell embedding on \(S_{I(3i+4)+1} \) consists of triangles except possibly for one 6-region, or triangles plus two faces whose sizes sum to 9, or triangles plus three faces whose sizes sum to 12 (necessarily three 4-regions). More generally when \(\varepsilon' = I(3i + 4) + n_1 \), then the embedding might consist of triangles plus one \((3n_1 + 3)\)-region, or triangles plus two faces whose sizes sum to \(3n_1 + 6 \), or triangles plus three faces whose sizes sum to \(3n_1 + 9 \), etc. And if we choose \(n_2 \) faces, all the derived faces, the sum of their sizes can be at most \(3n_1 + 3n_2 \leq 3i < 3i + 2 = H(\varepsilon^*) - 2 \).

For \(i \geq 1 \), the same calculation holds when \(H(\varepsilon^*) = 3i + 3 \), and when \(H(\varepsilon^*) = 3i + 5 \), a similar count will work. In the latter case we have \(n_1 + n_2 \leq i - 1 \), though the face sizes may be slightly larger. A 2-cell embedding of \(K_{H(\varepsilon^*)} \) on \(S_{I(3i+5)} \) may have triangles plus a 5-region or triangles plus two 4-regions. In general a 2-cell embedding of \(K_{H(\varepsilon^*)} \) on \(S_{I(3i+5)+n_1} \) might have triangles plus one \((3n_1 + 5)\)-region or triangles plus two regions whose sizes sum to \(3n_1 + 8 \), etc. With \(n_2 \) faces, all the derived faces, their sum of sizes can be at most \(3n_1 + 3n_2 + 2 \leq 3i - 1 < 3i + 3 = H(\varepsilon^*) - 2 \). \(\square \)

We now complete the proof our main result, Thm. 1.3.

Proof of Thm. 1.3. If \(G \) has a non-2-cell embedding on \(S_{\varepsilon} \) that contains \(K_{H(\varepsilon)} \), we can perform surgery on the non-2-cell faces, as we did in the proof of Lemma 4.1 and Thm. 4.3, to obtain a 2-cell embedding of \(G \) on a surface of Euler genus \(\varepsilon' < \varepsilon \) that still contains \(K_{H(\varepsilon)} \), and hence \(H(\varepsilon') = H(\varepsilon) \). We can thus apply Thm. 4.3 to \(G \) on \(S_{\varepsilon'} \). This shows that the result holds for every embedding, 2-cell or non-2-cell, and Thm. 1.3 follows. \(\square \)

The distance bound of 4 in Thms. 1.3 and 4.3 is best possible, for consider \(K_{H(\varepsilon)} \) with a pendant edge attaching a degree-1 vertex to each vertex of \(K_{H(\varepsilon)} \). Give each degree-1 vertex the list \(\{1\} \) and place that vertex in the set.
When every other vertex has an identical $H(\varepsilon)$-list that contains 1, the graph is not list-colorable and $\text{dist}(P) = 3$.

The second corollary of Section 1 now follows easily.

Proof of Cor. 1.5. Let f_1, \ldots, f_j be the faces with vertices with smaller lists. Add a vertex x_i to f_i and make it adjacent to all vertices of $V(f_i)$. Give each x_i a 1-list $\{\alpha\}$ where α appears in no list of a vertex of G, and add α to the list of each vertex of $V(f_i)$, now the neighbors of x_i. Then $G \cup \{x_1, \ldots, x_j\}$ can be list-colored by Thm. 1.3 since with $P = \{x_1, \ldots, x_j\}$, $\text{dist}(P) \geq 4$, and this coloring is a list-coloring of G. \qed

5 Concluding Questions

1. Škrekovski [14] has shown the extension of Dirac’s theorem that if G is embedded on S_ε, $\varepsilon \geq 5$, $\varepsilon \neq 6, 9$, and does not contain $K_{H(\varepsilon)-1}$ or $K_{H(\varepsilon)-4} + C_5$, then G can be ($H(\varepsilon) - 2$)-colored. Is the same true for list-coloring?

2. If G embeds on S_ε and does not contain one of the two graphs of Question 1, if the vertices of one face have at least ($H(\varepsilon) - 2$)-lists, and if all other vertices have at least $H(\varepsilon)$-lists, can G be list-colored?

Acknowledgements

We wish to thank D. Archdeacon and a referee for helpful comments and Z. Dvořák and K.-I. Kawarabayashi for information on background material.

References

[1] M. O. Albertson. You can’t paint yourself into a corner. J. Combin. Theory Ser. B, 73:189–194, 1998.

[2] M. O. Albertson and J. P. Hutchinson. The independence ratio and genus of a graph. Trans. Amer. Math. Soc., 226:161–173, 1977.

[3] M. O. Albertson and J. P. Hutchinson. Graph color extensions: when Hadwiger’s conjecture and embeddings help. Electron. J. Combinatorics, 9:R37, 2002.
[4] M. Axenovich, J. P. Hutchinson, and M. A. Lastrina. List precoloring extension in planar graphs. *Discrete Math.*, 311:1046–1056, 2011.

[5] T. Böhme, B. Mohar, and M. Stiebitz. Dirac’s map-color theorem for choosability. *J. Graph Theory*, 32:327–339, 1998.

[6] M. DeVos, K.-I. Kawarabayashi, and B. Mohar. Locally planar graphs are 5-choosable. *J. Combin. Theory Ser. B*, 98:1215–1232, 2008.

[7] G. Dirac. Short proof of a map-colour theorem. *Canad. J. Math.*, 9:225–226, 1957.

[8] Z. Dvořák, B. Lidický, and B. Mohar. 5-choosability of graphs with crossings far apart. Manuscript, 2011.

[9] Z. Dvořák, B. Lidický, B. Mohar, and L. Postle. 5-list-coloring planar graphs with distant precolored vertices. Manuscript, 2011.

[10] T. Jensen and B. Toft. *Graph Coloring Problems*. John Wiley and Sons, New York, USA, 1995.

[11] K.-I. Kawarabayashi and B. Mohar. List-color-critical graphs on a fixed surface. In *Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1156–1165, 2009. SODA ’09.

[12] D. Král’ and R. Škrekovski. The last excluded case of Dirac’s map-color theorem for choosability. *J. Graph Theory*, 51:319–354, 2006.

[13] B. Mohar and C. Thomassen. *Graphs on Surfaces*. Johns Hopkins University Press, Baltimore, MD, USA, 2001.

[14] R. Škrekovski. A theorem on map colorings. *Bull. of Inst. of Comb. and Appl.*, 35:53–60, 2002.

[15] C. Thomassen. Every planar graph is 5-choosable. *J. Combin. Theory Ser. B*, 62(1):180–181, 1994.

[16] C. Thomassen. Color-critical graphs on a fixed surface. *J. Combin. Theory Ser. B*, 70:67–100, 1997.

[17] Z. Tuza and M. Voigt. A note on planar 5-list-colouring: non-extendability at distance 4. *Discrete Math.*, 251:169–172, 2002.