I. INTRODUCTION

The characterization of semiconductor devices is essential for the development of new materials which are interesting from both a physical and technological point of view. Hall-effect measurements are very frequently used for this characterization, especially when two-dimensional systems are investigated.\[1\]

The simplest ideal material has a single charge carrier with isotropic energy bands and energy-independent scattering mechanisms. The resulting longitudinal resistivity ρ and Hall coefficient R_H are constant with respect to the application of magnetic field. Such a picture is effective in a basic understanding of certain solid state phenomena.

In modern semiconductor devices, heterostructures are increasingly employed where different semiconductor materials are grown epitaxially in layers on a substrate. In this manner, structures can be designed in which charge carriers are confined in a quantum well physically remote from the dopant atoms they originate from; ionized impurity atoms can strongly limit the mobility of charge carriers so this method of modulation doping can lead to greatly enhanced transport properties.\[2,3,4\]

However, the physics of magnetotransport in such heterostructures is considerably more complicated if there are two or more distinct carrier gases present in the material (for example, the intended carrier gas in the quantum well plus the doped region) or the carrier gases feature a spread of mobilities due to energy-dependent scattering mechanisms or multiple subband occupancy. This leads to resistivities and Hall coefficients which are dependent on a generalized conductivity function, $s(\mu)$, via the integral transforms,

$$\sigma_{XX}(B) = \int_{-\infty}^{\infty} \frac{s(\mu)}{1 + \mu^2 B^2} d\mu \quad (1)$$

and

$$\sigma_{XY}(B) = \int_{-\infty}^{\infty} \frac{\mu B s(\mu)}{1 + \mu^2 B^2} d\mu \quad (2)$$

where

$$s(\mu) = n_s(\mu) e\mu \quad (3)$$

and $n_s(\mu)$ represents the number (per unit area) of carriers with a mobility μ averaged over the sample.

The Hall coefficient and resistivity are related to the elements of the conductivity tensor in the standard way,

$$\rho(B) = \rho_{XX} = \frac{\sigma_{XX}}{\sigma_{XX}^2 + \sigma_{XY}^2} \quad (4)$$

and

$$R_H(B) = \frac{\rho_{XY}}{B} = -\frac{1}{B} \frac{\sigma_{XY}}{\sigma_{XX}^2 + \sigma_{XY}^2} \quad (5)$$

The function $s(\mu)$ appearing in Eqs. (1)-(3) is often known as the mobility spectrum. It gives the contribution to the conductivity due to the density of carriers with mobility μ. In this investigation, it is assumed that $s(\mu)$ does not change with magnetic field. At high fields and low temperatures this is not true because of the formation of Landau levels: the density of states becomes a function of magnetic field if $\hbar \omega_c > k_BT$ where ω_c is the cyclotron frequency eB/m^*. Also, at very low fields and low temperatures (such that $\mu B < \hbar/E_F \tau$ where E_F is the Fermi energy and τ is the momentum relaxation time) quantum effects such as weak localization contribute to the magnetoresistance.\[10\]
According to Eqns. 11 and 12 magnetoresistance is always positive; negative magnetoresistance can only be analyzed by assuming a magnetic-field dependent mobility or momentum relaxation time. 11, 12

Finding the magnetoresistance given a form for the mobility spectrum is straightforward. However, performing the so-called inverse transform problem (that is, finding the mobility spectrum from magnetoresistance data) is non-trivial with a noisy, limited data set and is the subject of much investigation. 13, 14, 16, 17, 18, 19

We replace the traditional MAXENT algorithm used by Kintgamoehai et al. 13, 19 with Bryan’s algorithm. 20 This approach has two major advantages over the previous technique: (1) A Bayesian analysis is performed on the resulting spectrum, and (2) the search process is optimized by null space decomposition of the kernel. The Bayesian aspect of Bryan’s algorithm ensures that we choose the most probable balance between the fit quality, given by least squared minimization, and the information content of the solution, given by the maximization of entropy. The null space decomposition provides an exponential basis for the solution. The exponential basis is particularly well suited to this type of problem since it significantly reduces the number of dimensions in the search space. It therefore allows reliable well-conditioned analysis of greater quantities of data, avoiding the need for potentially biased data selection. In this way, the results should be relatively free from common artifacts such as mirror peaks, peaks of unnatural shape, or structure in the spectrum at very low mobility values, provided that the artifacts are not introduced by systematic measurement errors. 21

We present this paper as follows. In Sec. II, early approaches to this problem are reviewed, before considering the method of maximum entropy in more detail. In Sec. III the maximum entropy method used in this paper is introduced, and technical details of Bryan’s algorithm are described. In Sec. IV we perform a case study on model data using our Bryan’s Algorithm Mobility Spectrum (BAMS) method. The usefulness of the mobility spectrum technique for the analysis of real data is discussed in light of these results, and a brief summary is given in Sec. V.

II. BACKGROUND

The approach of Beck and Anderson, 8 which first introduced the concept of the mobility spectrum and has been developed into commercial software, involves a multi-stage solution method (the numerical details of which will not be explored). The number of data points used to create a solution is equal to the number of distinct carriers gases within the sample, plus one. The method either searches for an imposed number of carrier gases or fits for a single carrier system, then a two-carrier system, and so on. During each search for n gases, the method tries fitting to every available combination of $n + 1$ data points from the complete data set, only keeping the sets which lead to “physical” solutions. From the retained sets, the algorithm generates an “envelope function” within which the mobility spectrum should be contained.

Once a set of carrier gases has been found, the validity of the solution is confirmed by performing a least-squares fit on the original data with respect to the carrier gas parameters. If the parameters emerge virtually unchanged from the second stage, then the results of the original analysis are considered to be reasonable.

If only a limited number of data points (~ 10) are available and the system contains only two or three distinct (i.e. with mobilities which differ significantly from each other) carrier gases, then this method is quite efficient. However, with automated systems the data collected can comprise thousands of values and the system simply cannot cope; choosing points or creating averaged data by hand imposes artificial constraints on the final solution. Also, this method does not respond well to errors in the experimental data. 18

Reference 15 introduces and describes the Reduced Conductivity Tensor method for extracting the carrier concentration and mobility of each component of a multilayer semiconductor system. It is assumed that the carrier gases are essentially degenerate and that the effective mass is isotropic. These assumptions immediately remove the possibility of gaining insight into energy-dependent scattering mechanisms in non-degenerate systems, and also the possibility of analyzing for example p-type conduction in pure germanium in which the anisotropy of the heavy hole band should be evident as “harmonics” in the mobility spectrum. 5, 22, 22 Nevertheless, the method works well for up to three carrier gases.

In Ref. 15 it is assumed that the mobility for a gas subjected to mixed scattering can be approximated by the phenomenological expression:

$$\mu = \mu_0 x^\alpha$$

(6)

and that the mobility spectrum of non-degenerate carriers in a spherical band can be approximated by:

$$s(\mu) = S_0 e^{-x(\mu)} x(\mu)$$

(7)

where S_0, μ_0 and α are coefficients depending on the density of states and on the parameters of the scattering mechanisms. Then, the integrations in Eqns. 11 and 12 are converted to summations of discrete spectra for electrons and holes and an iterative transformation procedure may be performed. The results are decomposed into high and low-mobility carrier contributions. The distinction between low-mobility carriers and high-mobility carriers is to some extent arbitrary, however, it corresponds to the visible separation between two different regions on the mobility spectrum. Results for the high-mobility carrier gas seem much more satisfactory than results for the low-mobility carrier gas in each case.
References 16 and 17 describe the quantitative mobility spectrum technique (QMSA) and the improved quantitative mobility spectrum technique (i-QMSA) respectively. These are also iterative techniques but with no initial assumption about the solution (although the Beck-Anderson approach is used to create a trial solution, and conductivity data is extrapolated to higher magnetic field values to extend the available mobility range). The i-QMSA method introduces a few extra tricks for improving the fits whilst smoothing the spectra and making them more physically reasonable. This method has also been successfully applied to conduction in anisotropic bands by incorporating an explicit anisotropy coefficient. In Ref. 19 it is shown that this method does not deal with error very well.

III. MAXIMUM ENTROPY

A serious issue (regarding inverse transformation problems in general) is that while a particular spectrum $s(\mu)$ may easily be transformed to produce a magnetoconductivity $\sigma(B)$, the inverse problem is ill-conditioned and the solution obtained for $s(\mu)$ by inverting the kernel is extremely sensitive to small changes or errors in the $s(B)$ data. In particular, there is not necessarily a unique $s(\mu)$ within the uncertainty bounds of the original data. For example, since the integral transform has a blurring effect, then it is possible for the data to have large local fluctuations while producing a smooth $\sigma(B)$.

The technique of Maximum Entropy has been employed to solve this and other problems involving inverse integral transformation where the result is a positive, additive function. Generally, if two solutions (found by any means) are of equal merit (in terms of, for example, their least-squares fits to the original results) then the solution with the larger “entropy” is to be favoured, since it is maximally non-committal with regard to missing (unmeasured) information in the original data. In other words, the solution favoured by the maximum entropy method extracts the most information out of the original data with the most reasonable assumptions regarding information which is unavailable.

By discretising the mobility spectrum $\{s\}$, the entropy S can be defined as:

$$S\{s\} = \sum_{j=1}^{N} (p_j - m_j - p_j \ln p_j/m_j)$$

where $\tan(\theta) = \mu B$. This produces a fit to $\sigma_{XX}(B) + \sigma_{XY}(B)$ rather than optimally to each component, which

$$p_j = \frac{s_j}{\sigma_0}$$

where p_j is chosen so that the spectrum has a normalization of unity and σ_0 is the conductivity at zero magnetic field. The form of the entropy imposes the condition that the mobility spectrum is non-negative, which is physically realistic. If any prior information about the form of the spectrum is available then this may be incorporated as a so-called default model $\{m\}$. Fitting is now a matter of minimizing the function Q:

$$Q = \chi^2 - \alpha S$$

where $\chi^2 = \frac{1}{2} \sum_i \left(\frac{\sigma_i(\mu) - \sigma_i(\mu)}{\delta} \right)^2$; $\sigma_i(\mu)$ is magnetoconductivity calculated from the fitting mobility spectrum, δ is the error in the data such that a chi-squared which respects the data has a value of approximately M (the number of “observations” or data points) and α is a hyper-parameter which controls the relative importance of the least-squares and entropic constraints. There are various flavors of the maximum entropy method, which differ in the way α is determined. In the case of historic maximum entropy, different values of α are tried, until the minimization of Q [Eq. 10] gives $\chi^2 = M$. In the case of classic maximum entropy, the most probable value of α is found, given the data and the default model. Alternatively, the method described in Ref. 28 treats the maximization of the entropy as a natural starting-point for derivations of other results of statistical mechanics.

The approach of Bryan’s algorithm is to calculate spectra for a range of α values and evaluate the probability that the solution is correct given the data and the default model. A weighted average over α is then taken. However, this method may not work well if α is very small. In the method developed in Ref. 31 a solution produced by Bryan’s algorithm maximum entropy is used as the default model for the next solution. This procedure is iterated until the most probable solution corresponds to an α value well within the range of applicability of Bryan’s algorithm.

Since there are two integral transforms involved in calculating $\sigma(B)$, then we work with 19.
could be seen as a drawback. Efforts towards the development of a method which inverts each of the $\sigma_{XY}(B)$ and $\sigma_{XX}(B)$ transforms in a semi-independent manner have not been successful so far. However, since $\sigma_{XX}(B)$ is an even function and $\sigma_{XY}(B)$ is odd, then if both negative and positive magnetic field values are used symmetrically, a fit to $\sigma_{XX}(B) + \sigma_{XY}(B)$ unambiguously fits $\sigma_{XX}(B)$ and $\sigma_{XY}(B)$. This improves results, especially for low mobility carrier gases, as will be seen in Sec. IV.

Since we have assumed discrete forms for $s(\mu)$ and $\sigma(B)$, then Eq. (11) can be rewritten $\sigma_i = K_{ij}s_j$ (with M data points and N mobility spectrum points). The mobility spectrum may be computed as:

$$s_j = K_{ij}^{-1}\sigma_i$$

(12)

Since the magnetoconductivity $\sigma(B_i)$ is relatively insensitive to the details of the mobility spectrum $s(\mu_j)$, the kernel contains a large quantity of repeated information; many of the linear equations described by the kernel are (almost) identical. In addition, elements of the kernel matrix which are dominated by signal noise or computation errors are liable to make a huge contribution to Eq. (12).

The dominant effects of data error in the problem can be investigated via singular value decomposition (SVD). The $M \times N$ kernel may generally be rewritten as $K = UWV^T$, where U is an $M \times M$ column-orthogonal matrix, W an $N \times N$ diagonal matrix with nonnegative values (the “singular values”) and V^T the transpose of an orthogonal $N \times M$ matrix V. As a result of the orthogonalities, the inverse of the kernel can simply be written as $K^{-1} = VW^{-1}U^T$.

If one of the elements of W is zero then the corresponding element of W^{-1} will be zero and the matrix is singular. However, small (non-zero) elements resulting from inaccuracies invert to large values, whereas they should become zeros. It is therefore justified to set values of W with magnitude smaller than the data error to zero.

SVD reduces the dimensionality of the space that must be searched for a solution giving a massive increase in speed, and discards the effects of noise which would corrupt the solution. It is therefore a very important feature of the following analysis.

A simple, powerful and successful maximum-entropy method for finding a mobility spectrum is described in Refs. 18 and 19, based on the method of Jaynes. The described procedure does not, however, use SVD to remove overspecification and noise and so the calculation time increases with the square of the product of the number of mobility and magnetic field points, $(NM)^2$, nor does it make explicit a hyper-parameter α in Eq. (10) for balancing fit quality against the maximization of the entropy, or deal with error in the data in an obvious way. Also, there does not appear to be any way in which the likelihood of the solution is checked and this leads to overfitting and the creation of artifacts in the mobility spectrum when applied to real data.

Minimising Q leads to the following relation:

$$-\alpha \ln\left(\frac{s_i}{m_i}\right) = \frac{1}{2} \sum_j K_{ij}^2 \frac{\partial^2 \chi^2}{\partial \sigma_j^2}(B)$$

(13)

By introducing the SVD to this relation, it can be shown that the s_i can be cast in the form of an exponential basis,

$$s_i = m_i \exp\left(\sum_j U_{ij}^{(s)} u_j\right)$$

(14)

where the superscript (s) represents matrices in the reduced space.

The solution may then be found in terms of the s-dimensional u_i space rather than the N_{out}-dimensional s_i space. The u_i are found iteratively by using a Newton method to obtain the increment in parameter space δu_j,

$$\left((\alpha + \epsilon)\delta_{ij} + \sum_k M_{ik}D_{kj}\right) \delta u_j = - \alpha u_j - g_j$$

(15)

where,

$$g_i = \frac{1}{2} \sum_j w_i^{(s)} \sum_j V_{ij}^{(s)} \frac{\partial \chi^2}{\partial \sigma_j^2}(B)$$

(16)

and two new matrices,

$$M = \frac{1}{2} \sum_j w_i^{(s)} \sum_j V_{ij}^{(s)} \frac{\partial \chi^2}{\partial \sigma_j^2}(B)$$

(17)

$$D = \left[U^{(s)}\right]^T \text{diag}[s] U^{(s)}$$

(18)

are defined to speed up the algorithm: M can be calculated once at the beginning of the algorithm, leaving the smaller computation of D to the iterative process.

Many solutions are found for different values of α and, by considering the curvature of the parameter space in the vicinity of the solution, the relative probability of the spectrum for a given α can be found. Performing the weighted average should then give the most probable mobility spectrum.

$$P[\alpha|\mathbf{m}, \mathbf{G}] \propto \prod_i \left(\frac{\alpha}{\alpha + \lambda_i}\right)^{1/2} \exp[-\chi^2/2 + \alpha S]P[\alpha]$$

(19)

where, λ_i are eigenvalues of the matrix, Λ_i, which describes the curvature of parameter space in the vicinity of the solution.

$$\Lambda = \text{diag}[s^{1/2}] U^T M U \text{diag}[s^{1/2}]$$

(20)

and $P[\alpha]$ (which must be rescalable) is normally given by the Jeffries prior.

$$P[\alpha] = 1/\alpha$$

(21)
In the BAMS method described below, the calculation time scales as $N^{1.5} M^{0.6}$. The SVD scales as $N^2 M$, and remains a few percent of the calculation time. For input data at 500 magnetic field values and an output spectrum of 300 points (finding solutions at 1000 values of α) the first BAMS result is produced in roughly 3 minutes on a 1.7GHz Intel Pentium 4 system running Linux, the first few seconds of which are the SVD. Such a number of input points is realistic given automated data-gathering systems; the time-limiting factor in such experiments is often the rate at which the magnetic field can be swept. All previous mobility spectrum analysis methods require that ~ 90% of a typical data set were discarded by the user in order that the algorithm would complete in a reasonable time or indeed work at all. The SVD essentially performs this same task (of reducing the space that must be searched for a solution) in a mathematically rigorous manner, removing user bias and also saving time.

IV. RESULTS ON SYNTHETIC DATA

In order to characterize the BAMS solution method, synthetic data were generated using Eqs. (1)-(5) with realistic parameters and subject to varying degrees of noise. Carrier gases were modelled as Gaussian peaks in $s(\mu)$ centered at the specified values. Since the conductivity of the carrier gas is given by the area under the peak (see Eq. (8)), the intended sheet carrier density and peak width were also specified for each carrier gas. The height of a peak in $s(\mu)$ generally has no physical significance.

There were 1000 $(B, \sigma_{XX}, \sigma_{XY})$ points from -10 T to 10 T in each case, apart from Fig. 2 where a dataset with 500 points from 0 T to 10 T is used for comparison.

The results shown in Fig. 1 (for synthetic data created from a spectrum of two Gaussian peaks with $\mu_1 = 0.2 \text{ m}^2\text{V}^{-1}\text{s}^{-1}$ and $n_1 = 1 \times 10^{11} \text{cm}^{-2}$, $\mu_2 = 0.6 \text{ m}^2\text{V}^{-1}\text{s}^{-1}$ and $n_2 = 1 \times 10^{11} \text{cm}^{-2}$; in this case the width of each peak is proportional to the peak mobility) demonstrate how error in the data leads to very little broadening and inaccuracy of peaks in the output spectrum. The iterative procedure where one solution is used as the default model for the next (see Eq. (8)) was not necessary in this case. By integrating over each peak (nominating a suitable μ_{peak} value) the number of carriers can be found within each gas:

$$\int \limits_{\mu_{\text{peak}}} s(\mu) d\mu = n_s e \mu_{\text{peak}}$$

(22)

Additionally, since the Hall sheet density is defined as $n_{\text{Hall}} = (e R_H (B \rightarrow 0))^{-1}$ then from Eqs. (2) and (5):

$$n_{\text{Hall}} = \frac{\sigma_0^2}{e \int \mu s(\mu) d\mu}$$

(23)

$$\mu_{\text{Hall}} = \sigma_0 R_H (B \rightarrow 0) = \frac{1}{\sigma_0} \int \mu s(\mu) d\mu$$

(24)

The true (drift) carrier concentration is simply found by summing the carrier concentrations of each peak:

$$n_{\text{Drift}} = \sum_i |n_i|$$

so the drift mobility is:

$$\mu_{\text{Drift}} = \frac{\sigma_0}{e \sum_i |n_i|}$$

(26)

A summary of the results from Fig. 1 are shown in Table 1; a simple algorithm was used to find local maxima in the spectra. (Rather than fit a Gaussian to the spectrum to determine the position of the peak, we simply find the highest point: this method is therefore limited in its precision by the number of mobility points chosen for the spectrum.) In addition to the peaks described, there were generally a few much smaller peaks contributing in total to less than 0.5% of the conductivity. (For clarity, not all of the results summarized in Table 1 are shown in Fig. 1).

Generally, when the peak mobility is overestimated the sheet density is underestimated (and vice-versa) leading to a correct partial conductivity. The Hall mobility compares well with the “ideal” value of $5000\text{cm}^2\text{V}^{-1}\text{s}^{-1}$ at $1.6 \times 10^{11} \text{cm}^{-2}$ (given by the two-carrier Hall effect equations). Even with 3% error in the data the results are acceptable.

With this software (as with that described in Refs. 18 and 19) it is possible to find peaks in the mobility spectrum at mobilities smaller than $1/B_{\text{max}}$, and this is...
shown in Fig. 2 and Table I. The synthetic data feature two carrier gases \((\mu_2=200 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \text{ and } n_2=1 \times 10^{13} \text{ cm}^{-2})\) with \(0.01\%\) random data error.

If only positive field values are used, the peaks are found at mobility (density) values of 377 \(\text{cm}^2\text{V}^{-1}\text{s}^{-1}\) and 1533 \(\text{cm}^2\text{V}^{-1}\text{s}^{-1}\). The low mobility peak is not in exactly the correct position, but the high mobility peak (which tends to be more important for real systems) is located accurately.

However, if both positive and negative field values are used the peaks are found to be much closer to the specified values, at mobility (density) values of 226 \(\text{cm}^2\text{V}^{-1}\text{s}^{-1}\) \((8.8 \times 10^{12} \text{ cm}^{-2})\) and 1482 \(\text{cm}^2\text{V}^{-1}\text{s}^{-1}\) \((1.0 \times 10^{12} \text{ cm}^{-2})\). This is because the use of positive and negative field values fits better to \(\sigma_{XX}\) and \(\sigma_{XY}\) whilst the use of one field direction only fits to \(\sigma_{XX} + \sigma_{XY}\).

In Fig. 2, which features three carrier gases, the evolution of the spectrum with increasing iteration over default models is shown. The positions of the peaks are summarized in Table II. With increasing iteration the peaks become too narrow, but the accuracy of the determination of the peak position increases slightly. This demonstrates that many iterations over successive default models is not necessary; it also shows that this mobility spectrum analysis method may not necessarily be relied upon the provide information regarding peaks shapes or widths. Rather than converge on the true spectrum, with increasing iteration over the default model the algorithm appears to converge towards sharp narrow peaks.

This algorithm has also been tested extensively on real data sets. For example, magnetoresistance measurements on the device “6016” presented in Ref. 3 has been analyzed. The structure of this device, grown using low-energy plasma-enhanced chemical vapor deposition, is shown in Fig. 3.

It features a strained 20 nm quantum well of pure Ge, on a relaxed virtual substrate of Si_{0.3}Ge_{0.7}. The structure is doped with ten \(\delta\) spikes of boron 10 nm above the channel. This gives a sheet density in the channel at 4.2 K of \(6.2 \times 10^{11} \text{cm}^{-2}\) with a mobility of \(87,000 \text{cm}^2\text{V}^{-1}\text{s}^{-1}\).

At 300 K there is significant parallel conduction from the doped region, giving a Hall mobility of \(1790 \text{cm}^2\text{V}^{-1}\text{s}^{-1}\) at a sheet density of \(1.8 \times 10^{12} \text{cm}^{-2}\). We find a result for the channel mobility at 300 K to be \(2940 \text{cm}^2\text{V}^{-1}\text{s}^{-1}\) with a sheet density of \(5.7 \times 10^{11} \text{cm}^{-2}\) which agrees closely with the quoted mobility value of \(3000 \text{cm}^2\text{V}^{-1}\text{s}^{-1}\).

V. SUMMARY

A powerful mobility spectrum analysis method has been presented, based on the application of Bryan’s al-

Table I: Summary of results of BAMS analysis on the 2-peak synthetic data shown in Fig. 2

Error	\(\mu_1\) \((\text{cm}^2\text{V}^{-1}\text{s}^{-1})\)	\(n_1\) \((10^{11} \text{cm}^{-2})\)	\(\mu_2\) \((\text{cm}^2\text{V}^{-1}\text{s}^{-1})\)	\(n_2\) \((10^{11} \text{cm}^{-2})\)	\(\mu_{H}\) \((\text{cm}^2\text{V}^{-1}\text{s}^{-1})\)	\(n_{H}\) \((10^{11} \text{cm}^{-2})\)
Specification	2000	1.00	6000	1.00	5000	1.60
0.01%	1982	0.99	5946	1.01	5006	1.59
0.03%	1982	1.01	5946	1.01	5026	1.59
0.1%	1982	1.01	5946	1.01	5028	1.59
0.3%	1982	1.01	5946	1.01	5028	1.59
1%	2022	1.00	5986	1.00	5037	1.59
3%	2022	1.04	6066	0.98	5057	1.59
TABLE II: Summary of results of BAMS analysis on the 2-peak synthetic data shown in Fig. 2. If both field directions are used then the peaks are found more accurately. This effect is strongest for the low mobility peak.

Specification	μ_1 [cm2V$^{-1}$s$^{-1}$]	n_1 [1012 cm$^{-2}$]	μ_2 [cm2V$^{-1}$s$^{-1}$]	n_2 [1012 cm$^{-2}$]
-10T to +10T	226	8.8	1482	1.0
0T to +10T	377	5.6	1533	0.9

TABLE III: Summary of results of BAMS analysis on the 3-peak synthetic data shown in Fig. 3. The effects of increasing iteration over default models can be seen. The peak at lowest mobility is not found in the correct position because of the limited mobility resolution and the simple algorithm used to find the maximum.

Specification	μ_1 [cm2V$^{-1}$s$^{-1}$]	n_1 [1012 cm$^{-2}$]	μ_2 [cm2V$^{-1}$s$^{-1}$]	n_2 [1012 cm$^{-2}$]	μ_3 [cm2V$^{-1}$s$^{-1}$]	n_3 [1012 cm$^{-2}$]
1 iteration	300	6.5	1421	1.08	5946	1.01
3 iterations	300	6.5	1461	1.06	5986	1.00
10 iterations	260	7.5	1461	1.07	6026	0.99
30 iterations	260	7.4	1461	1.08	6026	0.99
100 iterations	260	7.5	1502	1.05	6026	0.99

FIG. 3: Mobility spectra calculated on 1000-point synthetic data featuring three carrier gases and 0.01% data error, with increasing iteration over the default model. There were 1000 output points in the mobility spectrum (linearly spaced) between $\mu = -2.0$ m2V$^{-1}$s$^{-1}$ and +2.0 m2V$^{-1}$s$^{-1}$ but only the region of interest is shown. Peak positions are summarized in Table III. On this logarithmic scale it is possible to see that the lowest mobility peak is only defined by a few spectrum points.

algorithm to the maximum entropy method. Our method goes beyond a previous maximum entropy mobility spectrum analysis\cite{18,19} by using singular value decomposition (SVD) to reduce the dimensionality of the search space, and consequently improve the conditioning of the problem. Thus, overspecification and noise in the data are dealt with properly. This means that a large data set of 100 \sim 1000 points may be used directly without a serious penalty in terms of calculation time. User bias with regard to data point selection is therefore avoided. No other mobility spectrum analysis method can deal with such large data sets without a serious calculation time penalty.

No previous assumptions regarding the form of the re-

FIG. 4: The structure of device number 6016 grown by low-energy plasma-enhanced chemical vapor deposition\cite{3,34}. It features a strained 20 nm quantum well of Ge on a relaxed virtual substrate of Si$_{0.3}$Ge$_{0.7}$. There are ten δ spikes of boron 10 nm above the channel. At 300 K there is conduction in both the quantum well and the doped region so mobility spectrum analysis is required to extract the properties of the 2-dimensional hole gas in the quantum well.
sult are required, apart from the range over which to search for mobilities. Mobilities can be accurately found which are smaller than $1/B_{\text{max}}$. Also, since the algorithm works in a reduced space, there is no risk that peaks are lost entirely if insufficient mobility resolution is specified.

This algorithm calculates mobility spectrum over a range of α values (where α controls the relative importance of χ^2 versus the entropy, that is, between a good fit and a physically reasonable result) and calculates the probability $P[\alpha]$ of each spectrum. Then, the algorithm performs an average of the spectra weighted by their calculated probabilities. The ensures that the solution is the best that can be reasonably deduced from the data given Eqs. 11-15. In this way, the results should be relatively free from common artifacts such as mirror peaks, provided that the artifacts are not introduced by systematic measurement errors.

However, there are a few caveats regarding mobility spectrum analysis in general. It has been suggested that the shapes of the peaks in a mobility spectrum of a non-degenerate carrier gas could give information regarding the energy-dependence of the momentum relaxation time and therefore the dominant scattering mechanisms. However, the effect on peak shape of different scattering mechanisms is very subtle and we believe that it is unreasonable to expect any useful results from real data. However, if BAMS analysis is performed on data from a range of temperatures then the temperature dependence of the mobility can be examined to give information about scattering mechanisms.

Also, whilst it should be possible to observe “harmonics” in a mobility spectrum due to anisotropy of the effective mass\(^1\) (for example, in the heavy-hole band of germanium)\(^2\) only Ref. 24 seems to have explored this possibility.

Significant intersubband scattering can also invalidate mobility spectrum analysis; in this case it is the intersubband scattering rates rather than the transport scattering rates which must be considered.\(^3\)

One final issue to consider is that the longitudinal magnetoresistance in real data increases monotonically with field, whereas Eqs. 11-15 predict that it should saturate.\(^22\) This is a serious issue when analyzing real high magnetic field data, generic to all mobility spectrum techniques, and may relate to the underlying assumption that $s(\mu)$ is independent of magnetic field.\(^30\) Often the solution seems to be to assume (possibly unreasonably) that there are mobilities which are much smaller than $1/B_{\text{max}}$.\(^5\) However, using Bryan’s algorithm to balance the least squares fitting error with a physically reasonable result ensures that this mobility spectrum method should minimize such problems.

Acknowledgments

We would like to thank B. Rößner and H. von Känel for help and support, and for making experimental data available. Parts of this work were supported financially by the EPSRC and the INFM. Financial support from GROWTH program ECOPRO No. GRD2-2000-30064 is gratefully acknowledged.

[1] R. A. Stradling and P. C. Klipstein, in Growth and Characterisation of Semiconductors (IOP Publishing, Bristol, 1990), pp. 165–185.
[2] F. Schäffler, Semicond. Sci. Technol. 12, 1515 (1997).
[3] H. von Känel, M. Kummer, G. Isella, E. Müller, and T. Hackbarth, Appl. Phys. Lett. 80, 2922 (2002).
[4] M. Myronov, T. Irisawa, O. A. Myronov, S. Koh, Y. Shiraki, T. E. Whall, and E. H. C. Parker, Appl. Phys. Lett. 80, 3117 (2002).
[5] W. Koschinski, K. Dettmer, and F. R. Kessler, Journal of Crystal Growth 157, 85 (1995).
[6] Z. Dziuba, J. Antoszewski, J. M. Dell, L. Faraone, P. Kozodoy, S. Keller, B. Keller, S. P. DenBaars, and U. K. Mishra, J. Appl. Phys. 82, 2996 (1997).
[7] J. W. McClure, Phys. Rev. 101, 1642 (1956).
[8] W. A. Beck and J. R. Anderson, J. Appl. Phys. 62, 541 (1987).
[9] P. T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989).
[10] M. J. Kearney, Semicond. Sci. Technol. 7, 804 (1992).
[11] Z. Dziuba, T. Przeslawski, K. Dybkko, M. Górska, J. Marczewski, and K. Regiński, J. Appl. Phys. 85, 6619 (1999).
[12] A. Dmitriev, M. Dyakonov, and R. Jullien, Phys. Rev. B 64, 233321 (2001).
[13] J. S. Kim, D. G. Seiler, and W. F. Tseng, J. Appl. Phys. 73, 8324 (1993).
[14] J. S. Kim, J. Appl. Phys. 86, 3187 (1999).
[15] K. Regiński, J. Marczewski, Z. Dziuba, and E. Grodzicka, J. Appl. Phys. 82, 6102 (1997).
[16] J. R. Meyer, C. A. Hoffman, J. Antoszewski, and L. Faraone, J. Appl. Phys. 81, 709 (1997).
[17] I. Vurgaftman, J. R. Meyer, C. A. Hoffman, D. Redfern, J. Antoszewski, L. Faraone, and J. R. Lindemuth, J. Appl. Phys. 84, 4966 (1998).
[18] S. Kihtagamolchai, Ph.D. thesis, University of Warwick, U.K. (2000).
[19] S. Kihtagamolchai, M. Myronov, O. A. Mironov, V. G. Kantser, E. H. C. Parker, and T. E. Whall, Phys. Rev. E 66, 036705 (2002).
[20] M. Jarrell and J. E. Gubernatis, Physics Reports 269, 133 (1996).
[21] J. Acher, C. Varenne-Guillot, F. Barbarin, and M. Dugay, Appl. Surf. Sci. 158, 345 (2000).
[22] C. Goldberg, E. N. Adams, and R. E. Davis, Phys. Rev. 105, 865 (1957).
[23] A. C. Beer and R. K. Willardson, Phys. Rev. 110, 1286 (1958).
[24] I. Vurgaftman, J. R. Meyer, C. A. Hoffman, S. Cho, J. B.
Ketterson, L. Faraone, J. Antoszewski, and J. R. Lindemuth, Journal of Electronic Materials 28, 548 (1999).
[25] D. S. Sivia, Los Alamos Science 19, 180 (1990).
[26] D. Chrastina, Ph.D. thesis, University of Warwick, U.K. (2001).
[27] D. P. Chu and M. G. Dowssett, Phys. Rev. B 56, 15167 (1997).
[28] E. T. Jaynes, Phys. Rev. 104, 620 (1957).
[29] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys. Rev. B 44, 6011 (1991).
[30] E. Gallicchio and B. J. Berne, J. Chem. Phys. 105, 7064 (1996).
[31] J. P. Hague, Ph.D. thesis, University of Warwick, U.K. (2001).
[32] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992).
[33] H. Touchette and D. Poulin, Rapport technique du CRPS, Département de physique, Université de Sherbrooke (1999).
[34] M. Kummer, C. Rosenblad, A. Dommann, T. Hackbarth, G. Höck, M. Zeuner, E. Müller, and H. von Känel, Mat. Sci. Eng. B 89, 288 (2002).
[35] S. A. Studenikin, A. V. Chaplik, I. A. Panaev, G. Salis, K. Ensslin, K. Maranowski, and A. C. Gossard, Semicond. Sci. Technol. 14, 606 (1999).
[36] P. N. Argyres and E. N. Adams, Phys. Rev. 104, 900 (1956).
[37] S. Contreras, W. Knap, E. Frayssinet, M. L. Sadowski, M. Goiran, and M. Shur, J. Appl. Phys. 89, 1251 (2001).