International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil

Marcelo P. N. de Carvalho1 | Miriam R. Fernandes2 | Fábio P. Sellera3 | Ralf Lopes4 | Daniel F. Monte5 | Alícia G. Hippólito6 | Liliane Milanelo7 | Tânia F. Raso8 | Nilton Lincopan2,4

1Department of Veterinary Clinics and Surgery, Federal University of Minas Gerais, Belo Horizonte, Brazil
2Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
3Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
4Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
5Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
6Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
7Reception Center for Wildlife, Ecological Park Tietê, São Paulo, Brazil
8Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil

Correspondence
Fábio P. Sellera or Nilton Lincopan, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil. Email: fsellera@usp.br or lincopan@usp.br

Funding information
Bill & Melinda Gates Foundation- Grand Challenges Explorations Brazil – New approaches to characterize the global burden of antimicrobial resistance [grant OPP1193112], Fundação de Amparo à Pesquisa do Estado de São Paulo [grant 2016/08593-9], Conselho Nacional de Desenvolvimento Científico e Tecnológico [grant 443819/2018-1, 433128/2018-6, 312249/2017-9].

Abstract
CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli strains. Resistome analyses revealed that all E. coli strains carried bla_{CTX-M}-type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments.

Keywords
Enterobacterales, ESBL, MDR bacteria, resistome, wildlife
1 | INTRODUCTION

The spread of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriales has been broadly reported worldwide (Brolund, 2014; Fernandes et al., 2018; Pardon et al., 2015). In this respect, a number of interlinked factors, such as food animals, environmental sources, human migration and access to basic sanitation in highly populated cities, are contributing for the accelerated dissemination of these bacteria in urban and wild environments (Radhouani et al., 2014; Sacramento et al., 2018; Sellera, Fernandes, Moura, Carvalho, & Lincopan, 2018).

While the exposure to polluted environments constitutes a risk factor for humans to acquire multidrug-resistant (MDR) bacteria, recent studies have pointed out that it could also have implications for wildlife (Cerdà-Cuéllar et al., 2019; Sellera, 2019; Wang et al., 2017). In fact, although this matter remains poorly addressed under ecological perspectives, the scientific community and nature conservation authorities have begun to see wild animals as reservoirs and potential disseminators of ESBL-producing bacteria (Ardiles-Sanchez et al., 2017). In fact, although this matter remains poorly addressed under ecological perspectives, the scientific community and nature conservation authorities have begun to see wild animals as reservoirs and potential disseminators of ESBL-producing bacteria (Ardiles-Sanchez et al., 2017). Nowadays, most ESBL-producing Escherichia coli circulating at the human-animal-environment interface belong to international sequence types (STs) such as ST10, ST38, ST131, ST212, ST648, ST744, ST1158 and ST1251 (Borges, Tarlton, & Riley, 2019; Cao et al., 2014; Castellanos et al., 2017; Haenni et al., 2018; Nüesch-Inderbinen et al., 2019; Pitout, 2012; Taconó et al., 2017; Tafoukt, Touati, Leangapichart, Bakour, & Rolain, 2017; Vignoli et al., 2016; Zurfluh et al., 2017), suggesting a broad host adaptation of these pathogens. In this study, we report the occurrence of pandemic clones of CTX-M-producing E. coli recovered from a diversity of peri-urban wild animals in Brazil, highlighting the transmission of this sort of bacteria in anthropogenic-shared environments.

2 | MATERIALS AND METHODS

Between June 2017 and July 2018, a local surveillance study was conducted to monitor the presence of MDR Gram-negative bacteria in urbanized wild animals, in São Paulo, Brazil, the largest metropolitan city in South America. For this purpose, we sampled rectal or cloacal swabs from 90 wild animals, including reptiles, birds and mammals’ species rescued by authorities (firefighters and environmental police) and delivered to wildlife rehabilitation centres. The sampled species included Alouatta guariba (n = 4), Asio clamator (n = 7), Asio stygius (n = 1), Caracara plancus (n = 2), Coragyps atratus (n = 27), Didelphis aurita (n = 11), Egeretta thula (n = 1), Hydrochoerus hydrochaeris (n = 14), Hydromedusa testifera (n = 2), Megascops choliba (n = 2), Nasua nasua (n = 13), Nycticorax nycticorax (n = 1), Sapajus apella (n = 1), Tapisir terrestris (n = 1), Tupinambis merianae (n = 2) and Tyto furcata (n = 1). Biological sample collections were authorized by the Authorization System and Information on Biodiversity (SISBIO licence number 558042).

Swab samples were streaked onto MacConkey agar plates supplemented with ceftriaxone (2 µg/ml), colistin (2 µg/ml) or meropenem (2 µg/ml), and the grown bacteria were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF). Antimicrobial susceptibility was determined by disc diffusion and/or E-test methods, using breakpoints approved by the Clinical and Laboratory Standards Institute (CLSI, 2015, 2017). Twenty-two antibiotics were tested including amikacin, amoxicillin/clavulanic acid, ampicillin, aztreonam, cefaclor, cefazolin, cefoxitin, cefotaxime, doxycycline, enrofloxacin, fleroxacin, gentamicin, kanamycin, tobramycin and streptomycin. Additionally, the presence of CTX-M-type (blaCTX-M-1, blaCTX-M-2, blaCTX-M-8 and blaCTX-M-9) groups, carbapenemase (blaKPC-2) and mobilized colistin resistance (mcr-1) genes was evaluated by PCR analysis (Droga et al., 2016; Liu et al., 2016; Minarini, Poirel, Trevisani, Darini, & Nordmann, 2009; Muzasheed et al., 2008; Poirel, Walsh, Cuvillier, & Nordmann, 2011; Saladin et al., 2002).

The isolates confirmed positive by PCR were whole-genome sequenced. Genomic DNA was extracted from overnight cultures using the PureLink® Genomic DNA Mini Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. Whole-genome sequencing (WGS) was performed using Illumina NextSeq500 platform (Illumina, San Diego, CA) (150 bp paired-end), and the reads were de novo assembled using Velvet 1.2.10 (Zerbin & Birney, 2008) or SPAdes 3.9 (Bankevich et al., 2012). Sequence types, serotypes, plasmid replicon types, antimicrobial resistance genes and virulence genes were identified using MLST 2.0, SerotypeFinder 2.0 (identity ≥ 85%; coverage ≥ 60%), PlasmidFinder 2.1 (identity ≥ 95%; coverage ≥ 60%), ResFinder 3.2 (identity ≥ 90%; coverage ≥ 60%) and VirulenceFinder 2.0 (identity ≥ 90%; coverage ≥ 60%) tools, respectively, available from the Center for Genomic Epidemiology (http://www.genomicepidemiology.org/). Analysis of the genetic context of blaCTX-M genes was performed with BLASTn and ISFinder analyses (Siguier, Perochon, Lestrade, Mahillon, & Chandler, 2006) followed by manual curation using Geneious 10.2.6.

Plasmid transfer was performed by conjugation using streptomycin-resistant E. coli C600 or azide-resistant E. coli JS3 recipient strains in LB broth assays, ratio 3:1 (recipient:donor). Transconjugants were selected using MacConkey agar supplemented with ceftriaxone (2 µg/ml) and streptomycin (2000 µg/ml), or ceftriaxone (2 µg/ml) and sodium azide (200 µg/ml). In transformation assays, plasmids were extracted by the alkaline lysis method (Sambrook & Russel, 2001), and ultra-competent E. coli TOP10 was heat shock transformed as previously described (Inoue, Nojima, & Okayama, 1990), increasing the thermal shock time at 42°C to 1.5 min. Transformants were selected using MacConkey agar supplemented with ceftriaxone (2 µg/ml). Positive transconjugants and transformants strains were confirmed by blaCTX-M genes using PCR.
In this study, eight ceftriaxone-resistant E. coli isolates (8/90; 8.88%) were recovered from five birds (one owl and four vultures) and three mammals (coatis). MDR profiles, defined as resistant to three or more classes of antibiotics (Magiorakos et al., 2012), were evidenced in six isolates (ECPET11, ECPET31, ECPET36, ICBUR6, ICBUR15 and ICBUR20). ECPET3 displayed resistance only to cephalosporins and aztreonam, whereas ECPET13 was resistant to cephalosporins, aztreonam and nalidixic acid. Additionally, ESBL production was confirmed by double-disc synergy test (DDST), and PCR analysis revealed the presence of blaCTX-M-type genes in all eight bacterial isolates (Table 1). No MCR-1-positive or carbapenemase-producing bacteria were identified.

WGS analysis revealed six different serotypes (i.e. O18/ O18ac:H49, O89/O162:H10, O78:H21, O130:H26, O17/O44/O77:H34, O86:H18). In this regard, the O86:H18 has been previously identified in diarrhoeagenic E. coli isolated from humans, in Brazil (Ghilardi, Gomes, & Trabulsi, 2001; Piva et al., 2003), and in Asian and African countries (Sonda et al., 2018; Suzuki et al., 2009). On the other hand, while E. coli O89/O162:H10 has been associated with hospital-acquired infections, in Asian countries (Lin, Kuroda, Suzuki, & Mu, 2019; Nguyen et al., 2019), E. coli O18:H49 and O78:H21 have been reported in wild animals from Europe and Asia (Bai et al., 2013; Eggett et al., 2013). Escherichia coli O130:H26 and O17/O44/O77:H34 have been identified in human and animal samples from Asia, Europe, Australia, Antarctica and South America (Bettelheim et al., 2003; Delgado-Blas, Ovejero, Abadia-Patino, & Gonzalez-Zorn, 2016; Ho, Tan, Ooi, Yeo, & Thong, 2013; Mora et al., 2018; Müller et al., 2007).

Virulome analysis revealed a diversity of virulence determinants, including cdhB (endonuclease colicin E2), iga (IrgA homolog adhesin), air (enteroaggregative immunoglobulin repeat protein), ireA (serophore receptor), astA (EAST1 toxin), cma (colicin M), gad (glutamate decarboxylase), elia (Salmonella H1a homolog), lpfA (long polar fimbriae), iron (enterobactin siderophore receptor protein) and iss (increased serum survival) (Table 1). Interestingly, air, astA and elia genes have been found in enteroaggregative E. coli (EAEC) causing acute and chronic diarrhoea (Konno, Yatsuyanagi, & Saito, 2012; Nüesch-Inderbinen, Hofer, Hachler, Beutin, & Stephan, 2013; Sheikh et al., 2006). The lpfA gene has been identified in enteropathogenic E. coli (EPEC), the most important diarrhoeal pathogen in paediatric patients (Afset et al., 2006).

In addition to blaCTX-M-type genes, resistome analysis confirmed that the E. coli strains carried other clinically relevant resistance genes to β-lactams [blaTEM-1B], aminoglycosides [aadA1, aadA2, aadA5, aac(3)-Id, aac(3)-Ia, aac(6′)-Ib-cr, aph(3′)-la, aph(3′)-lb, aph(3′)-Id, aph(4)-la and aph(6)-Id], phenicol [catA1, catB3 and cmlA1], tetracyclines [tet(A) and tet(B)], sulfonamides [sul1 and sul2], trimethoprim [dfrA1, dfrA7, dfrA14 and dfrA17], fosfomycin [fosA3], quinolones [qnrB1, qnrB9 and aac(6′)-Ib-cr] and macrolides [mtdA1]. Interestingly, in Brazil, there are only three studies regarding the plasmid-mediated quinolone resistance qnrB1 gene, which has been harboured by K. pneumoniae and Enterobacter cloacae (Scavuzzi et al., 2017; Viana et al., 2013), and Enterobacter hormaechei (Pereira et al., 2015). On the other hand, qnrB19, blaCTX-M-2, blaCTX-M-15 and blaCTX-M-55 genes have been carried by members of Enterobacteriales genus isolated from human and non-human hosts (Goldberg et al., 2019; Monte et al., 2019; Rocha, Pinto, & Barbosa, 2016; Sartori et al., 2017; Silva et al., 2018).

Schematic representations of the genetic contexts surrounding blaCTX-M-type genes in E. coli strains are presented in Figure 1. International genetic contexts of blaCTX-M-14 (ISEcp1-blaCTX-M-14), blaCTX-M-15 (ISEcp1-blaCTX-M-15-orf477) (Dhanji et al., 2011) were identified in E. coli strains ST38 (ICBUR15 and ICBUR20) and ST1251 (ECPET36) isolated from C. atratus and N. nasua, respectively. In addition, two different contexts were found surrounding the blaCTX-M-55. The typical structure (ISEcp1-blaCTX-M-55-orf477 (2,956 bp) was present in E. coli belonging to ST744 (ECPET11), whereas a similar array exhibiting a 243 bp with ISEcp1 truncated by an IS26 upstream of the blaCTX-M-55 gene was found in E. coli strains ECPET3 and ECPET13 (ST121). Similar genetic contexts of blaCTX-M-55 have been reported in Enterobacteriaceae isolated from humans, animals and food animals (Hu et al., 2018; Lv et al., 2013). Furthermore, blaCTX-M-2 gene from E. coli strains ST58 (ECPET31) and ST1158 (ICBUR6) was present into complex class 1 integrons (9,456 and 8,879 bp, respectively), sharing 99.7% and 99.9% nucleotide identity with partial integrons of E. coli (GenBank: AM040710) (8,133 bp) and K. pneumoniae (GenBank: KY286109) (7,824 bp) isolated from French and Chilean hospitals, respectively.

Although different plasmid replicon types were found amongCTX-M-producing E. coli strains, blaCTX-M genes were carried on IncF (FIA, FIB, and FII) plasmids, except blaCTX-M-14, which were carried on IncI1 plasmids. Most plasmids harbouringblaCTX-M genes were successfully transferred by conjugation (from E. coli donors ECPET3, ECPET13, ECPET36 and ICBUR6), or by transformation assays using plasmids from ICBUR15 and ICBUR20 strains. As previously reported, IncF plasmids have been widely associated with the spread ofblaCTX-M-15. Whereas IncF, IncK and IncI are commonly associated with blaCTX-M-14 and other blaCTX-M-type genes (Zhao & Hu, 2013). Regarding other plasmids identified in this study, IncN and IncHI2 have been related to the spread ofblaCTX-M-1 and blaCTX-M-55, respectively, and IncQ1 or IncX plasmid has been responsible by dissemination of carbapenemase encoding genes (Conde et al., 2019; Mollenkopf et al., 2017; Paul et al., 2017; Zhao & Hu, 2013).

In this study, genomic analysis identified E. coli strains belonging to international ST38, ST58, ST212, ST744, ST1158 and ST1251 (Table 1). The global distribution of these E. coli clones is presented in Figures 2 and 3. The broadly distributed E. coli ST38 and ST744 have been reported in wildlife, farm animals and human samples from Europe, Africa, Asia, Australia and America, in general associated with the production of clinically significant beta-lactamases (i.e. carbapenemases or ESBL) (Abraham et al., 2015; Belmahdi, Bakour, Al Bayssari, Touati, & Rolain, 2016; Guenther et al., 2017; Hasan et al., 2012; Ho et al., 2016; Mshana et al., 2011; Pitout, 2012; Poirel, Bernabeu, et al., 2011; Sellera et al., 2018; Stoeisser et al., 2017; Tavares et al., 2016).
Escherichia coli ST38 has been frequently reported causing extraintestinal diseases, mainly bloodstream and urinary tract infections (Cao et al., 2014; Mendes, Jones, Woosley, Cattoir, & Castanheira, 2019; Pitout, 2012). In some cases, E. coli ST744 has been associated with plasmid-mediated colistin resistance genes (mcr-1 and mcr-3) (Haenni et al., 2018; Tacão et al., 2017). Furthermore, ESBL or CMY-2-producing E. coli ST212 and ST1158 were previously isolated from farm animals, animal production chain and humans (Cadona, Bustamante, Gonzalez, & Sanso, 2016; Castellanos et al., 2017; Maamar et al., 2016; Mo, Slettemes, Berg, Norstrom, & Sunde, 2016; Steinsland, Lacher, Sommerfelt, & Whittam, 2010; Vignoli et al., 2016; Zurluhf et al., 2014). Carbapenemase or CMY-2-producing E. coli ST212 was also recovered from diseased companion animal and water environments (Tafoukt et al., 2017; Vignoli et al., 2016; Zurfluh et al., 2014). Carbapenemase or CMY-2-producing E. coli ST212 was also recovered from diseased companion animal and water environments (Tafoukt et al., 2017; Vignoli et al., 2016; Zurfluh et al., 2014).
was recovered from food animals (Vogt et al., 2014). Regarding *E. coli* ST1251, fluoroquinolone-resistant strains have been reported in animal faeces and wastewater (Jamborova et al., 2015; Varela, Macedo, Nunes, & Manaia, 2015), as well as *mcr-1*-harbouring strains from food animals (Zurfluh et al., 2017).

Escherichia coli belonging to ST58 has been globally reported from a variety of sources including food (Ben Said et al., 2015), polluted mangrove (Sacramento et al., 2018), poultry, hospital- and community-acquired infections (Borges et al., 2019; McKinnon, Chowdhury, & Djordjevic, 2018) and bovine mastitis (Nüesch-Inderbinen et al., 2019). Interestingly, ST58/CC155 frequently shares identical antimicrobial resistance patterns in both animal and human populations. Such evidence may significantly explain the successful establishment of this international lineage (Borges et al., 2019).

ESBL-producing *E. coli* in wild animals begun to be documented in 2006, in Portugal (Costa et al., 2006), and then were rapidly observed in other countries from Europe, Africa, Asia, South America, North America and Australia (Allen et al., 2010; Wang et al., 2017). Predominantly, *E. coli* - and *K. pneumoniae*-producing CTX-M seem to be the most adapted to these hosts; however, the identification of ESBL genes in other different species of Enterobacterales has already been reported (Wang et al., 2017). In most of cases, animals became colonized in gastrointestinal tract without any evidences of infection, contributing for the silent dissemination of these critically important pathogens in natural environments.

A widely debated example is the occurrence of ESBL-producing bacteria in migratory birds, which are probably involved in the spread of these pathogens through long distances, including natural reserves and pelagic areas with low anthropogenic impact (Ardiles-Villegas et al., 2011; Cerdá-Cuéllar et al., 2019). Otherwise, the role of peri-urban wild animals as disseminators of bacterial pathogens has been so far neglected. In this study, all animals sampled lived in the transboundary area of São Paulo city, the most populated metropolitan region of Brazil, with about 21.5 million inhabitants, and one of the ten most populous metropolitan regions in the world. Even though the source of these bacterial isolates remains uncertain, wildlife is not directly exposed to antibiotics in most cases and other anthropogenic pathways of transmission, such as contact to contaminated water and predation of infected animals, should be considered (Wang et al., 2017). Yet, it is important to take in account that some highly polluted rivers cross this area, where KPC-2- and ESBL-producing *K. pneumoniae* isolates from water samples were previously reported (Cerdeira et al., 2017; Oliveira et al., 2014).

Since, in this study, ESBL-positive isolates were recovered from predators with different ecological behaviours [i.e. vultures are
FIGURE 2 Global distribution of *Escherichia coli* belonging to sequence types (a) ST38, (b) ST58 and (c) ST212. This map was created using an online service (https://mapchart.net/) [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 3 Global distribution of *Escherichia coli* belonging to sequence types (a) ST744, (b) ST1158 and (c) ST1251. This map was created using an online service (https://mapchart.net/) [Colour figure can be viewed at wileyonlinelibrary.com]
scavengers and diurnal predators; owls are nocturnal hunters of small rodents; and coatis are remarkably well adapted predators, feeding on fruits, insects and small vertebrates), in order to investigate in more detail the genetic relatedness among these Enterobacteriaceae, core genome multilocus sequence typing (cgMLST) was performed by uploading the sequencing reads of the eight strains into cgMLSTFinder 1.1 (https://cge.cbs.dtu.dk/services/cgMLSTFinder/). Interestingly, two E. coli ST212 strains (ECPET3 and ECPET13) isolated from different hosts (black vulture and striped owl) were nested together (Figure S1). Remarkably, these strains also shared identical serotype, resistome and plasmidome. These findings suggest an adaptation of CTX-M-producing E. coli into the wildlife food chain and the versatility of these bacteria to colonize different hosts. Indeed, interspecific interactions among wild animals colonized by ESBL producers represent an incommensurable threat to ecosystem maintenance, since Enterobacteriaceae constitutes the gut microbiota of most endothermic animals (Madoshi et al., 2016). Thus, antimicrobial resistance must also be viewed as an ecological problem (Fuentes-Castillo et al., 2019).

In conclusion, anthropogenic activities have been contributing for the dissemination of ESBL-producing bacteria in wildlife. The occurrence of ESBL-producing bacteria in peri-urban wild animals from highly populated cities is a critical issue and deserves special attention. Therefore, continuous epidemiological and genomic surveillance studies are urgently required to determine routes of transmission of these bacteria in wildlife. Finally, while humans can negatively affect nature environments for contributing to the spread of MDR bacteria, animals could also disseminate these pathogens to humans in a continuous cycle.

ACKNOWLEDGEMENTS

This work was funded by research grants from Bill & Melinda Gates Foundation - Grand Challenges Explorations Brazil - New approaches to characterize the global burden of antimicrobial resistance [grant OPP1193112], Fundação de Amparo à Pesquisa do Estado de São Paulo [FAPESP 2016/08593-9, 2015/13527-2 and 2016/03044-7], Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq 462042/2014-6, 443819/2018-1, 433128/2018-6, 312249/2017-9] and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [F.P.S. Finance Code 001]. N.L. is a research fellow of CNPq [312249/2017-9]. We thank Cefar Diagnóstica Ltda. (Brazil), which kindly supplied antibiotic discs for antimicrobial susceptibility testing, and the CEFAP-Genial by whole-genome sequencing support.

ETHICAL STATEMENT

The authors confirm that the ethical policies of the journal, as noted on the journal’s author guidelines page, have been adhered to and the appropriate ethical review committee approval has been received.

CONFLICT OF INTEREST

The authors have no conflict of interest to declare.

ORCID

Fábio P. Sellera https://orcid.org/0000-0002-4725-0125

Ralf Lopes https://orcid.org/0000-0001-8223-1758
Daniel F. Monte https://orcid.org/0000-0003-3787-1988
Nilton Lincopan https://orcid.org/0000-0003-0161-5800

REFERENCES

Abraham, S., Jordan, D., Wong, H. S., Johnson, J. R., Toleman, M. A., Wakeham, D. L., ... Trott, D. J. (2015). First detection of extended-spectrum cephalosporin- and fluoroquinolone-resistant Enterobacteriaceae in Australian food-producing animals. Journal of Global Antimicrobial Resistance, 3(4), 273–277. https://doi.org/10.1016/j.jgar.2015.08.002

Afset, J. E., Bruant, G., Brousseau, R., Harel, J., Anderssen, E., Bevanger, L., & Bergh, K. (2006). Identification of virulence genes linked with diarrhea due to atypical enteropathogenic Escherichia coli by DNA microarray analysis and PCR. Journal of Clinical Microbiology, 44(10), 3703–3711. https://doi.org/10.1128/JCM.00429-06

Allen, K. H., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251-259. https://doi.org/10.1038/nrmicro2312

Ardiles-Villegas, K., González-Acuña, D., Waldenström, J., Olsen, B., & Hernández, J. (2011). Antibiotic resistance patterns in fecal bacteria isolated from Christmas shearwater (Puffinus nativitatis) and masked booby (Sula dactylatra) at remote Easter Island. Avian Diseases, 55(3), 486–489. https://doi.org/10.1637/9619-122010-ResNote.1

Bai, X., Zhao, A., Lan, R., Xin, Y., Xie, H., Meng, Q., ... Xiong, Y. (2013). Shiga toxin-producing Escherichia coli in yaks (Bos grunniens) from the Qinghai-Tibetan Plateau, China. PLoS ONE, 8(6), e65537. https://doi.org/10.1371/journal.pone.0065537

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. V., Dvorkin, M., Kulikov, A. S., ... Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021

Belmahdi, M., Bakour, S., Al Baysari, C., Touati, A., & Rolain, J. M. (2016). Molecular characterisation of extended-spectrum β-lactamase- and plasmid AmpC-producing Escherichia coli strains isolated from broilers in Béjaïa, Algeria. Journal of Global Antimicrobial Resistance, 6, 108–112. https://doi.org/10.1016/j.jgar.2016.04.006

Ben Said, L., Jouini, A., Klibi, N., Dziri, R., Alonso, C. A., Boudabous, A., ... Torres, C. (2015). Detection of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in vegetables, soil and water of the farm environment in Tunisia. International Journal of Food Microbiology, 161(203), 86–92. https://doi.org/10.1016/j.ijfoodmicro.2015.02.023

Bettelheim, K. A., Beutin, L., Gleier, K., Pearce, J. L., Luke, R. K., & Zimmermann, S. (2003). Serotypes of Escherichia coli isolated from healthy infants in Berlin, Germany and Melbourne, Australia. Comparative Immunology, Microbiology & Infectious Diseases, 26(1), 55–63. https://doi.org/10.1016/s0147-9571(02)00015-2

Borges, C. A., Tarlton, N. J., & Riley, L. W. (2019). Escherichia coli from commercial broiler and backyard chickens share sequence types, antimicrobial resistance profiles, and resistance genes with human extraintestinal pathogenic Escherichia coli. Foodborne Pathogens and Disease, 16(12), 813–822. https://doi.org/10.1089/fpd.2019.2680

Brolund, A. (2014). Overview of ESBL-producing enterobacteriaceae from nordic perspective. Infection Ecology and Epidemiology, 4(1), 24555. https://doi.org/10.3402/iee.v4.24555

Cadona, J. S., Bustamante, A. V., Gonzalez, J., & Sanso, A. M. (2016). Genetic relatedness and novel sequence types of non-O157 shiga toxin-producing Escherichia coli strains isolated in Argentina. Frontiers in Cellular and Infection Microbiology, 6, 93. https://doi.org/10.3389/fcimb.2016.00093

Cao, X., Zhang, Z., Shen, H., Ning, M., Chen, J., Wei, H., & Zhang, K. (2014). Genotypic characteristics of multidrug-resistant Escherichia coli.

Daniel F. Monte

Nilton Lincopan
Zurfluh, K., Wang, J., Klumpp, J., Nuesch-Inderbinen, M., Fanning, S., & Stephan, R. (2014). Vertical transmission of highly similar blaC-TX-M-1-harborin IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid. Frontiers in Microbiology, 5(519), 1–7. https://doi.org/10.3389/fmicb.2014.00519

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: de Carvalho MPN, Fernandes MR, Sellera FP, et al. International clones of extended-spectrum \(\beta \)-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. Transbound Emerg Dis. 2020;67:1804–1815. https://doi.org/10.1111/tbed.13558