Improvement on Brook’s theorem for 3K₁-free Graphs
Medha Dhurandhar

Abstract: Problem of finding an optimal upper bound for the chromatic no. of a 3K₁-free graph is still open and pretty hard. Here we prove that for a 3K₁-free graph G with Δ(G) ≥ 8, χ(G) ≤ max{Δ-1, 4}. We also prove that if G is 3K₁-free, ω = 4 and Δ(G) ≥ 7, then χ(G) ≤ Δ-1. This implies that Borodin & Kostochka Conjecture is true for 3K₁-free graphs as a corollary.

Introduction:
In [1], [2], [3], [4] chromatic bounds for graphs are considered especially in relation with ω and Δ. Gyárfás [5] and Kim [6] show that the optimal χ-binding function for the class of 3K₁-free graphs has order ω²/log(ω). If we forbid additional induced subgraphs, the order of the optimal χ-binding function drops below ω²/log(ω). In 1941, Brooks’ theorem stated that for any connected undirected graph G with maximum degree Δ, the chromatic number of G is at most Δ unless G is a complete graph or an odd cycle, in which case the chromatic number is Δ + 1 [5]. In 1977, Borodin & Kostochka conjectured that if Δ(G) ≥ 9, then χ(G) ≤ max{ω, Δ-1} [6]. In 1999, Reed proved the conjecture for Δ ≥ 10¹⁴ [7]. Also D. W. Cranston and L. Rabern [8] proved it for claw-free graphs. Here we prove that if a graph G is 3K₁-free and Δ(G) ≥ 8, then χ(G) ≤ max{Δ-1, 4}. For a 3K₁-free graph with ω = 4 we prove a stronger result that if Δ(G) ≥ 7, then χ(G) ≤ Δ-1. These results prove Borodin & Kostochka conjecture for 3K₁-free graphs as a corollary.

Notation: For a graph G, V(G), E(G), Δ, ω, χ denote the vertex set, edge set, maximum degree, size of a maximum clique, chromatic number of G resp. For u ∈ V(G), N(u) = {v ∈ V(G) / uv ∈ E(G)}, and \(\overline{N}(u) = N(u) \cup \{u\} \). If S ⊆ V, then <S> denotes the subgraph of G induced by S. If C is some coloring of G and if a vertex u of G is colored i in C, then u is called a i-vertex. Also if P is a path in G s.t. vertices on P are alternately colored say i and j, then P is called an i-j path. All graphs considered henceforth are simple. We consider here simple and undirected graphs. For terms which are not defined herein we refer to Bondy and Murty [9].

Main Result 1: Let G be 3K₁-free, if ω = 4 and Δ ≥ 7, then χ ≤ Δ-1.
Proof: Let if possible G be a smallest 3K₁-free graph with Δ ≥ 7 and χ > Δ-1. Then clearly as G ≠ C₂₀+₁ or K_{|V(G)|}, χ ≥ Δ > ω. Let u ∈ V(G). Then G-u ≠ K_{|V(G)|} (else χ = ω). If Δ(G-u) ≥ 7, then by minimality χ(G-u) ≤ max{ω(G-u), Δ(G-u)-1}. Clearly if ω(G-u) ≤ Δ(G-u)-1, then χ(G-u) = Δ(G-u)-1 ≤ Δ-1 and otherwise χ(G-u) = ω(G-u) ≤ ω < Δ. In any case χ(G-u) ≤ Δ-1. Also if Δ(G-u) < 7, then as G-u ≠ C₂₀+₁ (else as G is 3K₁-free, G-u ~ C₅), by Brook’s Theorem χ(G-u) ≤ Δ (G-u) < 7 ≤ Δ. Thus always χ(G-u) ≤ Δ-1 and in fact, χ(G-u) = Δ-1 and deg v ≥ Δ-1 ∨ v ∈ V(G).

Let Q ⊆ V(G) be s.t. <Q> is a maximum clique in G. Let u ∈ Q be s.t. deg u = max v ∈ Q deg v. Let S = \{1,..., Δ\} be a Δ-coloring of G s.t. u is colored Δ and vertices in Q are colored 1,..., |Q|-1. Every vertex v of N(u) with a unique color say i has at least one j-vertex j ≠ i (else color v by j and u by i). Also as G is 3K₁-free, <V(G)- \(\overline{N}(u) \)> is complete and hence by maximality |Q| ≥ |V(G)- \(\overline{N}(u) \)|

Case 1: deg u = Δ-1 for every maximal clique <Q> in G and a vertex u of maximum degree in Q.
Then deg v ≥ Δ-1 ∀ v ∈ Q. As G is 3K₁-free and deg u ≥ 6, |Q| ≥ 4. Let A, C, D ∈ Q be colored 1, 2, 3 resp. Clearly every j-vertex v of Q has a unique i-vertex in N(v) where i ≠ j (else N(v) has color i
missing in \(\overline{N(v)} \). Color \(v \) by \(i, u \) by \(j \). As \(\Delta > \omega \), \(|N(u)\cdot Q| \geq 1 \). W.l.g. let \(B \in N(u)\cdot Q \) be colored \(\omega \) and \(A \in Q \) be s.t. \(AB \not\in E(G) \). Let \(R \) be a component containing \(A \) s.t. vertices in \(R \) are colored either 1 or \(\omega \). Then \(B \in R \) (else alter colors in \(R \) and color \(u \) by 1). Let \(P = \{A, E, F, B\} \) be a 1-\(\omega \) path in \(R \). \(F \) is the only 1-vertex of \(B \) and \(FV \not\in E(G) \) for any \(V \in Q \). Then \(F \) has a \(r \)-vertex adjacent in \(V(G)\cdot \overline{N(u)} \) \(\forall r, 2 \leq r \leq |Q|-1 \) (else color \(F \) by \(r \), \(B \) by 1 and \(u \) by \(\omega \)) . By I, \(E \) is adjacent to all these \(|Q| \cdot 2 \) vertices and \(|V(G)\cdot \overline{N(u)}| \geq |Q| \). Hence by I, \(|V(G)\cdot \overline{N(u)}| \geq |Q| \) or \(B \) is non-adjacent to all vertices of \(Q \Rightarrow E \) is adjacent to all vertices of \(Q \) and by assumption \(\Delta - 1 = \deg E \geq 2(|Q| - 1) = 2(\Delta - 1) \Rightarrow \Delta = 1 \), a contradiction.

Case 2: Let \(\deg u = \Delta \).

Let \(A, B, C \in Q \) be colored 1, 2, 3.

First let \(N(u)\cdot Q \) have a repeat color and \(D, E \in N(u)\cdot Q \) be colored 4 and 5, 6 resp. W.l.g. let \(DB \not\in E(G) \Rightarrow BE \in E(G) \) and w.l.g. let \(EA \not\in E(G) \Rightarrow AD \in E(G) \). Now \(D \) has a 2-vertex in \(V(G)\cdot \overline{N(u)} \) (else color \(D \) by 2, A by 4, \(u \) by 1). Similarly \(E \) has a 1-vertex in \(V(G)\cdot \overline{N(u)} \).

Also as \(<Q> \) is a maximum clique in \(G \), \(F \in G \) is non-adjacent to some vertex in \(Q \) and \(V(G)\cdot \overline{N(u)} \) has a 5-vertex and a 6-vertex. Then by I, \(|V(G)\cdot \overline{N(u)}| = |Q| \) and \(V(G)\cdot \overline{N(u)} \) has no 3-vertex. Clearly \(N(C) = N(u) \) (else \(G \) is \((\Delta - 1) \)-colorable). But then as \(G \) is \(3K_1 \)-free, \(\omega(A,B,D,E,F,G) \geq 3 \) and \(\omega(G) \geq 5 \), a contradiction.

Next w.l.g. let \(D, E, F, G \in N(u)\cdot Q \) be colored 1, 4, 5, 6 resp. Now \(\omega(E,F,G) \geq 2 \). W.l.g. let \(EF \in E(G) \). Again each of \(E, F, G \) is non-adjacent to \(B \) or \(C \) (else if say \(EB, EC \in E(G) \), then by replacing \(Q \) with \(Q-A+E \) we get the earlier case). Thus \(|V(G)\cdot \overline{N(u)}| \geq 5 \), a contradiction.

This proves the result.

Main Result 2: If \(G \) is \(3K_1 \)-free and \(\Delta \geq 8 \), then \(\chi \leq \max \{\omega, \Delta - 1\} \).

Proof: As before let \(G \) be a smallest \(3K_1 \)-free graph with \(\Delta \geq 8 \) and \(\chi > \max \{\omega, \Delta - 1\} \). As before we have \(\chi(G-u) = \Delta - 1 \) and \(\deg u \geq \Delta - 1 \ \forall \ v \in V(G) \). Let \(|Q| \geq 5 \).

Let \(Q \subseteq V(G) \) be s.t. \(<Q> \) is a maximum clique in \(G \). Let \(u \in Q \) be s.t. \(\deg u = \max_{v \in Q} \deg v \). Let \(\{1, 2, \ldots, \Delta\} \) be a \(\Delta \)-coloring of \(G \) s.t. \(u \) is colored \(\Delta \) and vertices in \(Q \) are colored 1, 2, \ldots, \(|Q| - 1 \). Every vertex \(v \) of \(N(u) \) with a unique color say \(i \) has at least one \(j \)-vertex \(j \neq i \) (else color \(v \) by \(j \) and \(u \) by \(i \)). Also as \(G \) is \(3K_1 \)-free, \(|V(G)\cdot \overline{N(u)}| \) is complete and hence by maximality \(|Q| \geq |V(G)\cdot \overline{N(u)}| \)

Case 1: \(\deg u = \Delta - 1 \) for every maximal clique \(<Q> \) in \(G \) and a vertex \(u \) of maximum degree in \(Q \).

Same proof as in the **Main Result 1** holds good.

Case 2: \(\deg u = \Delta \geq 8 \)

Case 2.1: \(N(u)\cdot Q \) has a repeat color

Let \(A, B \in N(u)\cdot Q \) be colored 5. W.l.g. let \(\exists D \) colored 2 in \(Q \) s.t. \(AD \not\in E(G) \). Then \(DB \in E(G) \).

Also let \(\exists C \) colored 1 in \(Q \) s.t. \(BC \not\in E(G) \). Then \(CA \in E(G) \).

Let \(E, F \in Q \) be colored 3, 4 resp.

Case 2.1.1: \(\exists \) a vertex \(X \in Q \) s.t. \(XA, XB \in E(G) \). W.l.g. let \(X = E \).
Case 2.1.1: \(\exists \) a vertex \(Y \in Q \cdot C \) s.t. \(YA \in E(G) \) and \(YB \not\in E(G) \). W.l.g. let \(Y = F \). As \(D \) has at the most one repeat color in \(\overline{N(D)} \), w.l.g. let \(C \) be the only 1-vertex of \(D \). Now let \(G \) be the 2-vertex of \(A \) in \(V(G) \cdot \overline{N(u)} \) (else color \(A \) by 2, \(C \) by 5, \(u \) by 1) and similarly \(H \) be the 1-vertex, 4-vertex of \(B \) in \(V(G) \cdot \overline{N(u)} \) resply. Now \(AH \in E(G) \) (else color \(A \) by 1, \(C \) by 5, \(D \) by 1, \(u \) by 2) \(\Rightarrow \) \(F \) is the only 4-vertex of \(A \) \(\Rightarrow DJ \in E(G) \) (else color \(A \) by 4, \(F \) by 5, \(D \) by 4, \(u \) by 2). Thus \(E \) is the only 3-vertex of \(A \) and \(D \). Also as \(E \) has two 5-vetices \(D \) is its only 2-vertex. Color \(E \) by 2, \(D \) by 3, \(A \) by 3, \(C \) by 5, \(u \) by 1, a contradiction.

Case 2.1.2: \(\forall V \in Q \cdot \{C, D\}, VA, VB \in E(G) \).

As before let \(G \) be the 2-vertex of \(A \) and \(H \) be the 1-vertex of \(B \). As \(E, F \) have two 5-vetices each, \(C, D \) are the only 1, 2 vertices of \(E \) and \(F \). Also w.l.g. let \(E \) be the only 3-vertex of \(A \) \(\Rightarrow DJ \in E(G) \) where \(J \) is the 3-vertex in \(V(G) \cdot \overline{N(u)} \) (else color \(E \) by 1, \(C \) by 5, \(A \) by 3, \(D \) by 3, \(u \) by 2). Again \(AK \in E(G) \) where \(K \) is the 4-vertex in \(V(G) \cdot \overline{N(u)} \) (else color \(F \) by 1, \(C \) by 5, \(A \) by 4, \(D \) by 4, \(u \) by 2). Thus \(C \) (\(A \)) is the only 1 (5) vertex of \(A \) (\(C \)) and \(C \) is the only 1-vertex of \(D \). Color \(C \) by 5, \(A \) by 1, \(D \) by 1, \(u \) by 2, a contradiction.

Case 2.1.2.a: Every \(V \in Q \) is adjacent to only one of \(A \) or \(B \).

Case 2.1.2.1: \(\exists \) two vertices in \(Q \cdot C \) say \(E, F \) adjacent to say \(A \).

W.l.g. let \(C, E \) be the unique 1, 3 vertices of \(A \) and \(E \) be the unique 3-vertex of \(D \). Color \(E \) by 5, \(A \) by 3, \(D \) by 3, \(u \) by 2, a contradiction.

Case 2.1.2.2: No two vertices in \(Q \cdot C \) (\(Q \cdot D \)) are adjacent to \(A (B) \).

Then \(|Q| = 5 \) (else we get Case 2.1.2.1). W.l.g. let \(EA, FB \in E(G) \) and \(C, D \) be the only 1, 2 vertex of \(A, B \) resply \(\Rightarrow C (D) \) has another 2 (1) vertex in \(V(G) \cdot \overline{N(u)} \) and \(A (B) \) has another 3 (4) vertex in \(V(G) \cdot \overline{N(u)} \) and \(|V(G) \cdot \overline{N(u)}| \geq 4 \). Also as \(\Delta \geq 8 \), and \(|Q| = 5 \), \(|N(u) \cdot Q \cdot \{A, B\}| \geq 2 \). Clearly \(|V(G) \cdot \overline{N(u)}| \geq 6 \), contrary to \(I \).

Case 2.2: \(A \in Q \) and \(B \in N(u) \cdot Q \) have a common color 1.

Now every vertex say \(V \in R = N(u) \cdot Q \cdot B \) is non-adjacent to some vertex of \(Q \cdot u \cdot A \) (replace \(Q \) by \(Q \cdot A + V \) to get Case 2.1). Let \(C, D, E \in Q \) have colors 2, 3, 4 resply.

Claim: \(|Q| \geq 6 \)

If \(|Q| = 5 \), then as \(\Delta \geq 8 \), \(|R| \geq 4 \) and \(w < R \geq 2 \). W.l.g. let \(FG \in E(G) \) and \(FC, GD \not\in E(G) \). Let \(F, G, H \in R \) be colored 5, 6, 7 resply. \(\Rightarrow V(G) \cdot \overline{N(u)} \) has a 2-vertex, 3-vertex, 5-vertex, 6-vertex and a 7-vertex. Hence by \(I \) \(E \) is the unique 4-vertex in \(V(G) \). As \(E \) has at the most one repeat color in \(N(E) \), w.l.g. let \(F \) be the only 5-vertex of \(E \). Color \(F \) by 4, \(E \) by 5, \(C \) by 4, \(u \) by 2, a contradiction.

This proves the Claim.

Let \(L \in Q \) be colored 6 and \(F \in R \) be colored 5.

Case 2.2.1: \(\exists \) a vertex in \(R \) non-adjacent to two vertices in \(Q \cdot A \).

W.l.g. let \(FC, FD \not\in E(G) \). Then \(\exists \) a 2-5 path \(P = \{C, G, H, F\} \). Similarly let \(R = \{D, G, J, F\} \) 3-5 path. As \(G \) has two 2-vertices and 3-vertices, \(G \) has a unique 4-vertex (else some color \(r \) is missing in \(\overline{N(G)} \), color \(G \) by \(r \), \(C \) by 5, \(u \) by 2). Then \(GE \not\in E(G) \) (else color \(E \) by 2, \(C \) by 5, \(G \) by 4, \(u \) by 4), \(F \) is the only 5-vertex of \(E \) and let \(K \in V(G) \cdot \overline{N(u)} \) be the unique 4-vertex of \(G \).
If $|Q| \geq 7$, then let M be the 7-vertex in Q. Now as before G has a unique 6-vertex, 7-vertex and LG, $MG \notin E(G)$. Also as F has at most one repeat color in $\overline{N(F)}$ w.l.g. let E, L be the only 4-vertex, 6-vertex of F. Again C has either a unique 4-vertex or 6-vertex. W.l.g. E be the only 4-vertex of C. Color E by 5, F by 4, C by 4, u by 2, a contradiction.

Hence let $|Q| = 6$. W.l.g. let E be the only 4-vertex of F. If E is the only 4-vertex of C (D), then color E by 5, F by 4, C (D) by 4, u by 2 (3), a contradiction. Hence $CK, DK \in E(G)$ where K is the 4-vertex in $V(G) - \overline{N(u)}$. Then L is the only 6-vertex of C, D. If L is the only 6-vertex of F, then color L by 5, F by 6, C by 6, u by 2, a contradiction. Hence F has another 6-vertex M in $V(G) - \overline{N(u)}$. As $\Delta \geq 8$, and $|Q| = 6$, $\exists N, P \in N(u) - Q$ colored 7, 8 resp. By I, either N or P is the unique 7-vertex or 8-vertex in $V(G)$. W.l.g. let N be the unique 7-vertex in $V(G)$. As N has a unique 2-vertex or 5-vertex, w.l.g. let C be its unique 2-vertex. Color N by 2, C by 7, F by 7, u by 5, a contradiction.

Case 2.2.2: Every vertex of R is non-adjacent to exactly one vertex in Q-A.

Let $FC \notin E(G)$. As F has at most one color repeated in $\overline{N(F)}$ w.l.g. let D, E be the unique 3-vertex and 4-vertex of F. Again w.l.g. let D be the unique 3-vertex of C. Now D has either a unique 2-vertex or 5-vertex. W.l.g. let C be the unique 2-vertex of D. Color D by 2, C by 3, F by 3, u by 5, a contradiction.

This proves the theorem.

Corollary: Borodin and Kostochka conjecture is true for $3K_1$-free graphs.

References

[1] “Linear Chromatic Bounds for a Subfamily of 3K1-free Graphs”, S. A. Choudum, T. Karthick, M. A. Shalu, Graphs and Combinatorics 24:413–428, 2008
[2] “On the divisibility of graphs”, Chinh T. Hoang, Colin McDiarmid, Discrete Mathematics 242, 145–156, 2002
[3] “ω, Δ, and χ”, B.A. Reed, J. Graph Theory 27, pp. 177-212, 1998
[4] “Some results on Reed's Conjecture about ω, Δ and χ with respect to α”, Anja Kohl, Ingo Schiermeyer, Discrete Mathematics 310, pp. 1429-1438, 2010
[5] Brooks, R. L., "On colouring the nodes of a network", Proc. Cambridge Philosophical Society, Math. Phys. Sci., 37 (1941), 194–197
[6] O. V. Borodin and A. V. Kostochka, “On an upper bound of a graph's chromatic number, depending on the graph's degree and density”, JCTB 23 (1977), 247–250.
[7] B. A. Reed, “A strengthening of Brooks' Theorem”, J. Comb. Theory Ser. B, 76 (1999), 136–149.
[8] D. W. Cranston and L. Rabern, “Coloring claw-free graphs with Δ-1 colors” SIAM J. Discrete Math., 27(1) (1999), 534–549.
[9] J.A. Bondy and U.S.R. Murty. Graph Theory, volume 244 of Graduate Text in Mathematics. Springer, 2008.