MULTITALE: linking medical concepts by means of frames

Isa Maks and Willy Martin
Vrije Universiteit Amsterdam
Dept. of Lexicology
De Boelelaan 1105, 1081 HV Amsterdam
makse@jet.let.vu.nl
martin_w@jet.let.vu.nl

ABSTRACT
In this paper MULTITALE, a system for the semantic tagging of medical neurosurgical texts and for the semi-automatic expansion of the medical lexicon, will be presented. Given the textual information explosion (in particular in, though not restricted to, specialized domains) there is an urgent need for tools enabling to exploit the information available in natural language texts. MULTITALE has been devised therefore primarily with the aim to make explicit semantic information in medical texts, which should lead to more refined information retrieval results. By making "educated guesses" the system moreover has a possibility to expand its own lexicon of medical terms so to be able to cope with new texts.

I. INTRODUCTION
MULTITALE has been developed as part of an EU project (MLAP 93-04) which has been started in 1994 and has been completed recently. The English part of it was carried out by the Belgian partner (Office Line Engineering NV, Zonnegem; RAMIT, Gent), the Dutch part by the Dutch partner (Lexicology Research Group, Free University Amsterdam1). Although both groups share the same starting point and objectives, the methods followed show some idiosyncracies, thercibre if in what follows MULTITALE is mentioned, actually the MULTITALE Dutch module is meant.

II. SEMANTIC MODEL
The semantic tagging is based on the CEN/TC251-model for Surgical Procedures (CEN,1994). This model is a classification and coding system of medical procedures. It distinguishes the following concept types:
- CC_Surgical Deed (indicating the surgical intervention),
- CC_Anatomy (indicating anatomical concepts),
- CC_Pathology (indicating pathological concepts),
- CC_Interventional_Equipment (indicating the instrument),
- CC_Combi (a term which has a medical meaning only in combination with another -medical- term),

1 T. Frizzarin (syntax), A. Kramer (lexicon), I. Maks (syntax and semantics), W. Martin (overall supervision)

The Surgical deed concept is classified into 12 subtypes, among others: CS_remove, CS_close, CS_create, CS_close, CS_install, CS_make_appear. The Surgical deed concept is considered as the nucleus of the surgical procedure and may have different types of relationships with the other medical concepts:
- the R_Direct_object indicates the object on which the surgical deed is carried out;
- the R_Indirect/Object indicates the object to or from or in which the surgical deed is carried out;
- the R_Location indicates the place where the Surgical Deed is carried out;
- the R_means indicates that with which the Surgical Deed is carried out;
- the R_manner indicates how the Surgical Deed is carried out.

The next example illustrates the CEN/TC251-model. The input is taken from a report of a neurosurgical intervention; the output is generated by the MULTITALE system.

(ex. 1)
INPUT:
Enkele fragmenten discus worden nog verwijderd, dan worden met een beitelje de osteofytische randen van de dekplaat weggenomen.
(Some fragments of the discus are removed, thereafter the osteophytic edges of the cover plate are taken away with a chisel)

OUTPUT:
Enkele fragmenten discus worden nog verwijderd, dan worden met een beitelje de osteofytische randen van de dekplaat weggenomen.
(Some fragments of the discus are removed, thereafter the osteophytic edges of the cover plate are taken away with a chisel)
III. OVERALL ARCHITECTURE OF THE MULTITALE SYSTEM

The MULTITALE system consists of 5 modules:

1. A syntactic tagger and lemmatizer for Dutch medical language.
2. A syntactic module for the formation of minimal NPs and PPs.
3. An attribute module for the formation of minimal NPs and PPs.
4. A linking module for linking concepts.
5. A guessing module for suggesting concept type.

During this process MULTITALE uses the following knowledge bases:

(A): the surgical deed lexicon; a lexicon of surgical deed concepts, containing about 250 tokens with their concept type (CC surgical deed), surgical deed subtype and part-of-speech (= cat/).<lemma> beiteteltje CC interve equip s noun</lemma> <cat> verb</cat> <concept type> CC surgical deed</concept> <concept subtype>CS remove</concept> <endlemma>

(B): the non-surgical-deed-lexicon; a lexicon of non-surgical-deed concepts, containing about 800 tokens with their concept type and part-of-speech.
<lemma> beiteteltje CC interventional Equipment s noun</lemma> <cat> noun</cat> <concept type> CC interventional equipment</concept> <endlemma>

(C): the type lexicon; a knowledge base with an entry for each of the 12 surgical deed subtypes and 1 "neutral" subtype. For each entry are specified, the possible Semantic Links and the possible concept types related with those Semantic Links. For an example see section V.2 (ex. 8c) and section V.3 (ex. 10).

IV. THE LINKING MODULE

IV.1 INTRODUCTION

The input of the linking module is the sentence segmented in NPs, PPs and verbs with - if relevant - their concept type (assigned by the concept type assignment module).

(ex. 2)
<lemma> enkele fragmenten discus CC Anatomy</lemma>
<lemma> worden CC surgical deed, CS remove</lemma>
<lemma> met een beiteteltje CC Interventional Equipment</lemma>

The task of the linking module is to combine the concepts of the sentence in order to build a composite surgical procedure concept, respecting the CEN norms. Since the CEN-model has much in common with Fillmore's Case Grammar (Fillmore, 1968), Case grammar-like frames for the implementation of the model have been used. Case grammar gives an analysis of a sentence, centered around the verb. CEN gives an analysis of a surgical procedure, centered around the Surgical Deed concept (which is often a verb). The definition of the cases of Case Grammar is similar to the definition of CEN Semantic Links, both of them expressing relations between various parts of the sentence. In Case Grammar, selection restrictions are specified for cases, in CEN those parts of the sentence which are candidate for a Semantic Link, refer to one of the CEN-defined medical concepts.
Het aneurysma wordt afgeclippen met een rechte clip.
(The aneurysm is cut off with a straight clip)

Considering a sentence like example 3, the system has to
decide which noun phrase can be related to the verb and
what is the nature of that relationship. The possible
Semantic Links correspond to the CEN Semantic Links.
So, in relation to the verb afdopen (to cut off) we find
among others- Direct Object and Means. Like for Case
Grammar, there are markers, like prepositions or the lack
of prepositions, which point to a certain Semantic Link.
In the above example, the preposition met (with) is an
indicator for Means and it is the absence of a preposition
which points to the Direct Object. For identifying the
Semantic Links, three particular kinds of information are
needed:
1. the surgical deed concept and its possible Semantic
Links
2. the NP and its concept type
3. the Prepositions and their values (I_values).

Frames are chosen for the implementation of the
model. They have a top level which is fixed and represents
things that are true of a certain situation. They have a lower
level with slots, conditions on the slots and fillers which
represent things that are expected for a certain situation
(Minsky, 1975). As regards the top level, three different
kinds of frames are defined for Multitale.

iv.2 the linking module step by step

For filling in the frame and analyzing the sentence, the
system performs the following steps for each Surgical-
deed-clause.

The conditions on the fillers are found in the surgical deed
lexicon and the type lexicon. The type lexicon gives
information for the surgical deed subtype; the
surgical deed lexicon gives information for the individual
token, the individual surgical deed concept.
d. if necessary, adaptation of the flame will be carried out
if the surgical deed concept is a noun or a non-finite form
of the verb.

The subtype frame is specified for the finite form of the
verb and the past participle. If the surgical deed concept is
a noun or an infinitive form of the verb, the
R direct object is marked by the preposition van (I value
= I van). Therefore, the condition on the <IND>-slot of
the R Direct object, will be changed to I van.
e. filling in the slots:

(ex. 4b)
.. de catheter wordt in de wond geplaatst

LEXICAL ELEMENT geplaatst
PART_OF_SPEECH verb
CONCEPT TYPE CC_surgical_deed
CONCEPT SUBTYPE CS_install
ROLE R DIRECT OBJECT
ARG -> de catheter
CC CC_INTERVENT_EQUIPMENT
IND I_NONE(-)

The linking module tries to match the specifications of the
elements of a Surgical-Deed-clause with the conditions on
the fillers of a slot.

IV.3 THE LINKING MODULE AND
PREPOSITIONAL PHRASE ATTACHMENT

For all non-surgical-deed concepts, namely CC_anatomy,
CC_pathology, CC_combi, and CC_intervent_equipment,
the following frame has been defined:

top-level:
LEXICAL ELEMENT non-surgical-deed concept
PART_OF_SPEECH NP or PP
CONCEPT TYPE CC_anatomy/ CC_combi
CC_pathology/ CC_intervent_equipment
lower level:
ROLE R_POST_MOD
ARG
CC *non-surgical-deed concept type
IND I_VAN
POS +1

There is only one set of slots, expressing the link between
two non-surgical-deed concepts in a sentence:

(ex. 5)
..het intracellair gedeelte van de tumor wordt uitgecurett-

(If the intracellular part of the tumor is cleaned)

The prepositional phrase van de tumor modifies the noun
phrase het intra-
cellair gedeelte. The link between these
two phrases is called post-modification link. The slot
POS(tion) in combination with the constraint +1 requires
that the postmodifying phrase directly follows the NP for
which this frame is defined.

(ex. 6-a)
non-surgical-deed frame with slots filled in:
LEXICAL ELEMENT het intracellair gedeelte
PART_OF_SPEECH NP
CONCEPT TYPE CC_surgical_deed
CONCEPT SUBTYPE CS_install
ROLE R POST MOD
ARG -> van de tumor
CC CC Pathology
IND I-VAN
POS +1

(ex. 6-b)
surgical deed frame with slots filled in:
LEXICAL ELEMENT uitgecuretteerd
PART_OF_SPEECH verb
CONCEPT TYPE CC_surgical_deed
CONCEPT SUBTYPE CS_clean
ROLE R DIRECT OBJECT
ARG -> het intracellair gedeelte van de tumor
CC CC Pathology
IND I_VAN
POS +1

The linking module tries to match the specifications of the
elements of a Surgical-Deed-clause with the conditions on
the fillers of a slot.

V. THE GUESSING MODULE

V.1 INTRODUCTION

The guessing module of the Multitale system deals with
the semi-automatic augmentation of the concept lexicons
(=lexicons of surgical deeds and non-surgical deeds). The
performance of the tagger depends on a great deal on the
completeness of the lexicon. If the lexicon does not contain
a medical term, the tagger cannot assign a semantic link to
this unknown term and another one in the sentence. The
guessing module is an important help for the augmentation
of the concept lexicon, and consequently an important part
of the Multitale system when tagging unknown texts.
The function of the module is twofold:
1. - generation of a list of words which are likely to be
medical terms and CEN concepts. The list does not present
just a list of words unknown to the system but a selection
of words relevant to CEN.
2. - suggestions regarding the concept type for each word
of the generated list. The suggested concept types are
CC_surgical_deed (without subtype), CC_anatomy, CC_pathology, CC_intervent_equipment and CC_way.

The module works semi-automatically: the list of unknown words is generated in an automatic way, but the user of the system has to decide whether the suggestion is correct or not before adding it to the lexicon.

V.2 GUESSING NON-SURGICAL-DEED CONCEPTS

The guessing module uses the frames of the linking module. For the guessing of the non-surgical-deed concepts, it uses the constraints given for the fillers of the slots of the surgical deed frame. The general rule is the following: if a phrase (noun phrase or prepositional phrase) has a Semantic Link with a surgical deed concept, at least one of the words of the phrase is a CEN-concept. Suppose a sentence contains a surgical deed concept, but the system is not able to make a semantic link between the surgical deed concept and another concept in the surgical-deed-clause. In most cases, this is due to the fact that the concept type of the terms is not known, for example:

(ex. 8)
.. de tumor wordt verwijderd..
-de tumor CC-?
-verwijderd CC_surgical_deed CS_remove
(.. the tumour will be removed.)

Suppose that tumor is not present in the lexicon, then the system is not able to meet the conditions of the slots of verwijderen and cannot indicate the R_direct_object. The I_value of de tumor meets the required value for the slot <IND>, but none of the concept classes required for the <CC> slot can be matched.

(ex. 8a)
LEXICAL ELEMENT verwijderd
PART_OF_SPEECH verb
CONCEPT_TYPE CC_surgical_deed
CONCEPT_SUBTYPE CS_remove
ROLE *R_DIRECT_OBJECT
ARG *CC_pathology/CC_combi/
*CC_anatomy/
*CC_intervent_equipment
IND *1_NONE

The guessing module then 'relaxes' the conditions set and now considers the syntactic function of a noun phrase or a prepositional phrase (expressed by its I value) as a sufficient indication for a semantic link. In other words: if the I value of an element in the surgical-deed-clause satisfies one of the I values required for an <IND> slot, then the element will be linked.

(ex. 8b)
LEXICAL ELEMENT verwijderd
PART_OF_SPEECH verb
CONCEPT_TYPE CC_surgical_deed
CONCEPT_SUBTYPE CS_remove
ROLE_DIRECT_OBJECT
ARG -->de tumor

The next step is to make a guess about the concept type of the filled-in element. The constraints - CC_pathology, CC_combi and CC_anatomy (see frame for verwijderen) - of the <CC> slot, are considered as good candidates. To be able to make a choice for one of them, the constraints are connected with priority numbers, obtained by corpus observation:

(ex. 8c)
part of the entry CS_remove of the type lexicon:

priority number:
<conceptClass> CC_surgical_deed
<conceptSubclass>CS_remove
<rol> R_DIRECT_OBJECT
<cc1> CC_pathology 1
<cc2> CC_anatomy 2
<cc3> CC_intervent_equipment 3
<cc4> CC_combi 2
<prep1> 1_NONE
<rol>..

The numbers are based on the occurrences of combinations of concept types in the corpus. These occurrences are translated into priority numbers for the constraints on the <CC> slots which are registered in the type and surgical deed lexicon. The concept type with the highest occurrence (in combination with the given surgical deed concept and the given Semantic Link) was marked with the highest priority number (namely 1). The concept type with the highest number is considered the most likely candidate for the filled-in element. So, the system will suggest the concept type CC_pathology for tumor in (ex. 8). In most cases the element, for which the concept type is guessed, consists of more than one word:

(ex. 9)
.. om de laterale tumorale expansie te kunnen verwijderen..
-de laterale tumorale expansie CC-?
-verwijderen CC_surgical_deed CS_remove
(.. to be able to remove the tumoral expansion)

The guessed concept type is suggested for all the nouns and adjectives, being the meaningful words in the phrase. Words which have a meaning in general language are marked <GEN>, to indicate that the guess is more questionable than in other cases.

results of the guessing module for (ex.) 9:
laterale CC_pathology?
tumorale CC_pathology?
expansie CC_pathology?

The suggestion is only correct for tumorale, whereas laterale is of the type MC_bodyside and expansie of the CC_combi. In a later phase we intend to correct these cases of overgeneration.

V.3 GUESSING SURGICAL DEED CONCEPTS

The general rule for the guessing of surgical deeds is: each verb that has a Semantic Link with a CEN-concept, is a
surgical deed concept. For finding the unknown surgical deed concepts, Multitale makes use of the frames as well. For each verb in the text that is not in the concept lexicon, a frame is built. This frame is called CS_neutral. Its semantic constraints - the allowed concept types - and its syntactic constraints - the I_values - are less strict than the constraints which have been specified for the frames of the surgical deeds belonging to a specific subtype. Because of the 'neutral' character of the frame, no priority information can be given, so every constraint is labelled with the same degree of priority (1).

(ex. 10)
entry of CS_neutral in the type lexicon:

```
<conceptClass> CC_surgical deed
<conceptSubclass> CS_neutral
<role> R DIRECT OBJECT
<cc1> CC_pathology 1
<cc2> CC_anatomy 1
<cc3> CC_intervention equipment 1
<cc4> CC Combi 1
<prep1> I NONE 1
<role> R INDIRECT OBJECT
<cc1> CC_pathology 1
<cc2> CC_anatomy 1
<cc4> CC_combi 1
<prep1> I SOURCE 1
<prep2> I SITE 1
<role> R MEANS
<cc1> CC_anatomy 1
<cc2> CC_intervention equipment 1
<prep1> I MEANS 1
<role> R MANNER
<cc1> CC_surgical deed 1
<prep1> I MANNER 1
```

If the verb has at least one of the Semantic Links of the entry CS_neutral, it will be considered as a surgical deed concept:

(ex. 11)
.. wordt de peritoneale drain intercurtaan getunneld ..
-peritoneale drain [CC_intervention equipment R DIRECT OBJECT?]
-getunneld [CC_surgical deed, CS_neutral?]
(the drain is .. connected)

(ex. 12)
.. wordt losgemaakt door wegboren ..
-loosgemaakt [CC_surgical deed, CS_neutral?]
<door wegboren [CS_remove R MANNER?]]
(.. freed by removing ..)

VI. EVALUATION AND CONCLUSION

By way of conclusion we will mention the main results obtained until now. MULTITALE has not yet been extensively tested, yet when confronted with new texts, results look quite satisfactorily and promising. The following table is based upon 5 new medical reports (each some 200 wordtokens in length), the words not being a priori in the lexicon.

```
syntax
present Npa 56
correctly assigned 49
successrate 87%

concept type assignment
present medical concepts 121
correctly assigned 114
successrate 94%

concept linking
links present 53
correctly assigned 45
successrate 85%
```

Although these results should be confirmed by further tests and although the restricted character of the domain, no doubt, has got an influence on the score, yet we hope to have shown that the approach as such to semantic/conceptual tagging of medical reports seems both to be promising and worth while of further exploration.

References

CEN: European Committee for Standardisation (TC251) 1984. Terminology and coding systems of medical procedures and surgical procedures.

Deville, G. 1989. Modelization of task-oriented utterances in a man-machine dialogue system. PhD-thesis, Antwerp.

Fillmore, C. J. 1968. The case for case. In Bach, E. and Harms, R. T., eds., Universals in Linguistic Theory. Holt, Rinehart and Winston, New York.

Martin, W. 1992 On the parsing of definitions. In Euralex-Proceedings-92, pp. 247-256.

Martin, W. 1992. Concept-oriented parsing of definitions. In Coling-92 Proceedings, pp. 988-992.

Martin, W. 1994. Knowledge-representation schemata and dictionary definitions. In Carlin, K., ed., Perspectives on English. Peeters, Leuven.

Minsky, M. 1975. A framework for representing knowledge. In Winston, P. H., ed., The psychology of Computer Vision. Mc Graw-Hill, New York.

MULTITALE. 1996. Final Report, VU Amsterdam, RAMIT Gent, Office Line Engineering Zonnegem. (in press).

Pinkhof-Hilfmann, 1992. Geneeskundig woordenboek. Bohn Staafle van Loghum, Houten/Zaventum.

Wegner, I. 1985. Frame-Theorie in der lexicographie. Niemeyer, Tuebingen.