Combined Application of Tranexamic Acid and Thrombelastography in Pediatric Epilepsy Surgery

Qing-Fang Duan¹, Wen-Ya Fu³, Wei Xiao¹, Jia-Jian Qi¹, Guo-Guang Zhao¹, Yong-Zhi Shan², Xiao-Tong Fan², and Tian-Long Wang¹

ABSTRACT

Background: Pediatric patients undergoing epilepsy surgeries are under high risks of bleeding, hemodynamic instability and complications related to transfusions. This study aimed to investigate whether combined application of tranexamic acid (TXA) and thrombelastography (TEG) in pediatric epilepsy surgery can decrease blood loss, transfusion requirements and post-operation complications.

Methods: Thirty-two pediatric patients undergoing elective epilepsy surgery were randomized into two groups. Group T (Group T=Group Treatment, n=16) was given a loading dose of 10 mg/kg TXA in 15 minutes and then maintained at the speed of 5 mg/kg/h, while Group C (Group C=Group Control, n=16) was given the same dosage of normal saline. TEG tests were performed at the beginning of surgery (T1), opening the dura mater (T2), closing the dura mater (T3) and the end of surgery (T4) in both groups. In Group T, transfusion decision was made according to TEG results; while in Group C, it was made by anesthetist’s experience without knowing the TEG results. The volume of blood loss, blood transfusion, post-operative drainage and complications were recorded.

Results: In Group T, intraoperative bleeding volume was significantly lower than Group C ([8.23 ± 4.10] ml/kg vs [12.86 ± 5.30] ml/kg, P=0.010), and subsequently the ratio of transfusion of red blood cells (RBC) (18.75% vs 56.25%, P=0.026), fresh frozen plasma (FFP) (32.15% vs 43.75%, P=0.465) were significantly reduced. Maximal amplitude (MA) value of TEG at T3 (Group T=[61.11 ± 4.58] mm vs Group C=[56.09 ± 8.03] mm, P=0.038) and T4 (Group T=[60.31 ± 6.23] mm vs Group C=[54.08 ± 7.28] mm, P=0.014) in Group T were significantly higher than those in Group C. A significant difference existed between two groups in postoperative drainage volume in the first 24 hours (Group T=[4.19 ± 1.55] ml/kg vs Group C=[5.83 ± 2.07] ml/kg, P=0.017). Postoperative hospital stay was significantly shortened in Group T, compared to Group C ([7.9 ± 2.1] days vs [10.8 ± 3.8] days, P=0.014). No transfusion related complications occurred in both groups.

Conclusions: Combined application of TXA and TEG in pediatric epilepsy surgery may decrease blood loss, reduce transfusion requirements. The risk of thromboembolism may not be increased.
Epilepsy is a chronic neurological disorder (1). Surgery is the most effective way to control seizures in drug-resistant focal epilepsy, and surgery may result in improvements in cognition, behavior, and quality of life, especially in children (2). Because the head of children accounts for 19% of the body, compared to 19% in adults, a large percentage of cardiac output is directed to the brain and results in greater cerebral blood volume, compared to adults; meanwhile children have less autoregulatory reserves and less blood volume. These factors place the infants at risk for significant hemodynamic instability during neurosurgical procedures, as compared to adults (3). Besides, long-term antiepileptic drugs (AEDs) taken often cause coagulopathies, such as hypofibrinogenemia (4). Therefore pediatric patients undergoing epilepsy surgery are under high risks of bleeding, hemodynamic instability, and coagulopathies. Coagulation management is thus very essential in pediatric epilepsy surgery to maintain hemodynamic stability, reduce allogeneic transfusion, and decrease corresponding complications.

Lacking of timely and accurate monitoring of coagulation status in this kind of surgery, component blood transfusion had to rely on anesthetists’ experience. Relying on prothrombin time (PT) and active partial thromboplastin time (APTT) tested prior to operation may result in misunderstanding of coagulation status, because they could not reflect the whole coagulation process and timely coagulation status during operation.

Thrombelastography (TEG) plays an important role in perioperative transfusion guidelines, and has been proven useful for rapid assessment of homeostasis in patients with coagulopathy (5-8). TEG permits characterization of clotting process in whole blood by visualizing the viscoelastic changes that occur during coagulation in vitro, then providing a graphical representation of the fibrin polymerization process.

Tranexamic acid (TXA) is a potent antifibrinolytic drug that prevents plasminogen activated by plasminogen activator (9). It is useful in the treatment of bleeding, without increasing the risk of thromboembolism in adult cardiac surgery, knee replacement surgery, and hip fracture surgery (10-12), as well as in pediatric cardiac surgery, spine surgery and craniosynostosis surgery (13-15).

The main goal of this study is to investigate whether combined application of TXA and TEG in pediatric epilepsy surgery can decrease blood loss, transfusion requirements and post-operative complications.

MATERIALS AND METHODS

Patients and Ethical Approval

The study was conducted at the Department of Anesthesiology, Xuanwu Hospital, Beijing, China, from 1 June 2014 to 31 March 2016, after obtaining approval from the Ethic Committee of Xuanwu Hospital and informed consents signed by patients’ guardians.

Thirty-two pediatric patients aged 1-10 years, graded as American Society of Anesthesiologists physical status (ASA) I-II, scheduled for elective epilepsy surgery under general anesthesia were randomized by random number table to Group T (Group T=Group Treatment, n=16) and Group C (Group C=Group Control, n=16, Figure 1). Patients with hepatic dysfunction, renal dysfunction, blood disease, family history of hemorrhagic disease, allergies history of TXA or operation duration was less than 3 hours or over 8 hours were excluded. Cases undergoing a second surgery because of severe post-operative complications were removed from the study.

Anesthesia Process

All patients received general anesthesia. Electrocardiogram (ECG), heart rate (HR), pulse oxygen saturation (SpO2), end-tidal partial pressure of carbon dioxide (P_eCO2) and nasopharyngeal temperature (NT), invasive blood pressure (IBP) and pulse pressure variation (PPV), central venous pressure (CVP) were continuously monitored via a multifunctional monitor (AS/5, Datex-Ohmeda, Finland). Sedation depth was monitored by bispectral index (BIS, Covidien, MA, USA) and maintained between 40 and 60 during surgery. NT was controlled between 36℃ and 37℃ by an automatic heating blanket and heated air device. Ketamine of 5-7 mg/kg was injected intramuscularly prior to induction if patients can’t cooperate with anesthetists. Otherwise, uncooperative patients were induced by inhalation of 8% sevoflurane in 8 l/min fresh gas for 5 minutes. After ve-
nous access in the upper limb was obtained, anesthesia induction was performed with propofol of 1-2 mg/kg, fentanyl of 3 µg/kg, and rocuronium of 0.6 mg/kg, and then endotracheal intubation was performed. Patients were ventilated with 50% oxygen in air. Tidal volume was set as 8-10 ml/kg, and I:E ratio was 1:2. P_{a}O_{2} was maintained between 30 mm Hg and 35 mm Hg. Anesthesia was maintained with a continuous infusion of propofol (6-8 mg/kg/h) and remifentanil (0.2-0.4 µg/kg/min). Goal directed fluid therapy (GDFT) strategy was employed during operation to maintain the PPV value between 13%. Postoperative analgesia was carried out by intravenous parecoxib sodium (1 mg/kg) and 0.25% ropivacaine was used as local infiltration anesthesia at the incision site.

Coagulation Management

TEG analyses (CFMS TM, Sinopharm Cmic, Beijing, China) was used to guide clotting factors supplement. TEG curve reflects different phases of the clotting process. The parameters used in this study are defined as follows: R (reaction/clotting) time is the period from the initiation of test till the beginning of the clot formation, reflecting coagulation factor activities. The \(\alpha \)-angle is the angle between the baseline and the tangent to the TEG curve through the starting point of coagulation (the split after the end point of the R-time), indicating shortage of fibrinogen (Fib). Maximal amplitude (MA) is a direct measure of the highest point on the TEG curve and represents clot strength. Low MA means reduced platelet function. Ly30 is calculated on basis of the reduction in the area under the curve, which reflects fibrinolysis (6).

At the beginning of surgery, Group T was given TXA at a loading dose of 10 mg/kg in 15 minutes and then maintained at the speed of 5 mg/kg/h; while Group C was given the same dosage of normal saline. TEG and blood gas analysis were taken at the following time points: the beginning of surgery (T1), opening the dura mater (T2), closing the dura mater (T3) and the end of surgery (T4) in both groups. As T1-T4 were the key procedures of the surgery and between T1-T4 were the main procedures causing bleeding. Transfusion strategy of fresh frozen plasma (FFP), platelet (PLT), and Fib was made by experience according to evaluated volume of blood loss and blood gas results, without knowing the TEG results in Group C. While in Group T, it was made according to TEG results: 1) if R>8 minutes, FFP of 8 ml/kg was transfused; 2) when \(\alpha \)-angle<53°, Fib of 15 mg/kg was given; 3) if MA<50 mm, platelet concentrates of 1 unit was infused.
Red blood cells (RBC) were transfused when hemoglobin (Hb) in blood gas analysis was less than 70 g/l or circulatory instability in both groups.

The primary endpoints of this study were blood loss and transfusion requirements. The secondary endpoints were postoperative hospital stay and relative complications. The volume of blood loss, blood transfusion, post-operative drainage and complications were recorded. The results of TEG test and blood gas analysis at T1-T4 were recorded, so were blood routine examinations and coagulation tests prior to and following operation.

Statistical Analysis

Sample Size Calculation

According to the preliminary experiments in 2012-2014 in our Hospital, a sample size of 13 patients per group would give a power of 90% at a level of 0.05 to detect 30% or more reduction in allogenetic transfusion, which was 41% in pediatric elective epilepsy surgery. 32 patients were recruited to compensate any exclusion. Data are presented as means±standard deviation or medians with ranges, 25% and 75% percentiles.

Data Analysis

Statistical analysis was performed with SPSS19.0. All quantitative data were evaluated for Gaussian distribution and homogeneity before statistical analysis. Mann-Whitney U-test was used intra and between groups with non-normally distributed quantitative data. Normally distributed quantitative data was analyzed by unpaired t-test with between groups, and One-way ANOVA intra-group. \(\chi^2 \) test was used for categorical data. P<0.05 was considered as a statistical significance.

RESULTS

32 pediatric patients undergoing elective epilepsy surgery (frontal lobe resection or temporal lobe resection) were recruited and randomized into two groups. There is no significant difference in general condition (Table 1), pre-operative Hb, pre-operative hematocrit (Hct) or baseline coagulation function (Table 2). The incidence of fibrinogen inefficiency was 31.25% and 37.50% in Group T and Group C individually (P=0.710).

Table 1. Demographic Data and Anesthesia Characteristics.

	Group T	Group C	P value
Gender (Male/Female)	8/8	10/8	0.476
Age (yr)	4.44±2.80	4.00±2.28	0.632
BMI (kg/m²)	16.58±2.13	17.09±2.17	0.560
ASA (I / II)	10/6	12/4	0.446
Surgery time (minutes)	309.81±92.16	332.25±88.08	0.704
Frontal lobe resection (%)	37.5	43.8	0.719

Measurement data were expressed as means ± SD (n=32). \(\chi^2 \) test was used for analysis on gender ratio and frontal lobotomized.
pared to values at T1 in Group C (T4=[54.08±7.28] mm vs T1=[58.36±7.78] mm, P=0.039).
Compared to Group C, MA values at closing the dura mater (T3) (Group T=[61.11±4.58] mm vs Group C=[56.09±8.03] mm, P=0.038) and T4 (Group T=[60.31±6.23] mm vs Group C=[54.08±7.28] mm, P=0.014) were significantly higher in Group T (Table 3). Intra-operative blood loss was significant less in Group T ([8.23±4.10] ml/kg vs [12.86±5.30] ml/kg, P=0.010). Therefore, the transfusion ratio and volume of RBC and FFP were subsequently lower in Group T (Table 4). There was no PLT transfusion in both groups. No differences exist in fibrinogen between groups (Table 4).

Post-operative blood routine examinations showed similar results compared to pre-operative examinations except for lower PLT counts, especially in Group C ([244±69.31]×10^9/L vs [190±71.90]×10^9/L, P=0.041, Table 5). Postoperative values of PT, APTT and fibrinogen (Fib) were significantly increased when compared with pre-operative results (Table 6). A significant difference existed in Fib level between groups. 3 cases of hypofibrinogenemia happened in Group C, but no one in Group T (Table 6). Postoperative drainage volume was obviously different between the two groups in the first 24 hours following surgery (Group T=[4.19±1.55] ml/kg vs Group C=[5.83±2.07] ml/kg, P=0.017). Postoperative hospital stay was shortened significantly in Group T, when compared with Group C ([7.9±2.1] days vs [10.8±3.8] days, P=0.014). No complications occurred in both groups, such as thromboembolism, allergy or transfusion-related lung injury.

DISCUSSION

Epilepsy is a chronic neurological disease and may impair cognition progressively. For refractory epilepsy, surgery is indicated (1). Patients undergoing epilepsy surgery suffering long period of operation and extensive insult, are under high risks of blood loss, coagulopathy and transfusion related complications, especially in children who have less blood volume and inadequate automatic circulatory regulation. AEDs taken before surgery also result in coagulation dysfunction, such as thrombocytopenia, abnormal platelet function and hypofibrinogenemia.

Table 2. Blood Routine Examination and Coagulation Function Test Pre-Operation.

	Group T	Group C	P value
Hb (g/L)	120.63±14.33	124.69±10.64	0.370
Hct (%)	35.15±3.67	36.37±3.11	0.319
PLT (10^9/L)	281.00±72.42	279.88±97.73	0.971
PT (s)	13.51±0.65	13.81±0.67	0.207
APTT (s)	39.46±2.03	38.61±1.76	0.215
Fib (g/L)	2.47±0.65	2.24±0.50	0.265

Table 3. Intra-Operative TEG Results.

	R (min)	K (min)	Alpha (°)	MA (mm)
Group T	T1	T2	T3	T4
	7.15±2.10	7.16±1.86	6.33±1.59	6.26±1.12
	2.33±0.71	2.41±0.93	2.01±0.31	2.04±0.45
	65.80±5.82	65.23±5.16	68.03±3.84	67.99±4.07
	59.30±8.71	58.98±7.89	61.11±5.84	59.31±6.23

Table 4. Volume of Intra-Operative Blood Loss and Intra-Operative Transfusions.

	Group T	Group C	P value
Blood loss (ml/kg)	(8.23±4.10)	(12.86±5.30)	0.010
Suspension red blood cells	18.75	56.25	0.026
Infusion quantity per person (ml/kg)	2.80	6.89	0.054
FFP	31.25	43.75	0.465
Infusion quantity per person (ml/kg)	3.07	3.38	0.573
PLT	0(0)	0(0)	1.000
Fib	31.25	31.25	1.000

Table 5. Blood Routine Examination following Operation.

	Group T	Group C	P value
Hb (g/L)	93.69±11.14	98.00±17.78	0.418
Hct (%)	27.29±2.98	28.35±5.38	0.497
PLT (10^9/L)	244.00±69.31	190.75±71.90	0.041

WBC, white blood cell; Hb, hemoglobin; Hct, hematocrit; PLT, platelet; PT, prothrombin time; APTT, active partial thromboplastin time; Fib, fibrinogen.

Table 6. Coagulation Function Test Comparison.

	Pre-operation	Post-operation	Pre-operation	Post-operation
PT (s)	13.51±0.65	14.25±0.86	13.81±0.67	14.78±1.39
APTT (s)	39.46±2.03	41.04±1.83	38.61±1.76	40.12±1.81
Fib (g/L)	2.47±0.65	3.38±1.06	2.24±0.50	2.61±0.82

PT, prothrombin time; APTT, active partial thromboplastin time; Fib, fibrinogen. P<0.05 (compared to pre-operation); P<0.05 (compared to Group C).
(16-19). Besides, extensive tissue injury of the surgery induced large amount of tissue activators of fibrinolytic system, which leads to hyperfibrinolysis. Thus, reducing transfusions and related complications by coagulation management is essential in pediatric epilepsy surgery.

Current strategy of transfusion is almost relying on anesthetists’ experience and laboratory examination. RBC was transfused when Hb was less than 70 g/L, and FFP administered only when PT and APTT are >1.5 times the normal value. PLT transfusions may be indicated to maintain concentrations greater than $50 \times 10^9/l$ (20). However, tests taken after massive bleeding, leading to delayed transfusion, and PT, APTT or PLT tested pre-operatively could not reflect whole procedure of coagulation. It’s difficult to reduce transfusion and complications caused by massive blood loss, such as low body temperature, circulatory failure, coagulopathy, allergy, pyrexia, or infectious disease, etc (21).

TEG gives us a new choice in pediatric coagulation management. It could reflect whole procedure of coagulation and fibrinolysis, and thereby provides a global assessment of haemostatic function. The technology is based on measurements of the viscoelastic changes associated with fibrin polymerization that are happening during coagulation of a whole blood sample in vitro. The viscoelastic changes are recorded and finally converted to a curve. It may help doctors evaluate coagulation function to decrease the risk for bleeding and reduce the allogeneic blood transfusion in cardiac surgery with cardiopulmonary bypass and in liver surgery (6, 22-24). TXA reversibly blocks the lysine binding sites of plasminogen, prevents activation of plasmin and stops lysis of polymerized fibrin. When massive blood loss is expected, prophylactic use of TXA can be a part of blood conservation strategy (9, 25). TXA prevents massive bleeding caused by AED related hypofibrinogenemia and surgery related hyperfibrinolysis, without increasing the risk of thromboembolism. However, few researches revealed pharmacokinetics and dosage regimen of TXA in pediatric patients. We used a TXA loading dose of 10 ml/kg and followed by continuous infusion of 5ml/kg/h, which was recommended by pharmacokinetic modeling (15, 26). Our results suggested combined application of TXA and TEG in pediatric epilepsy surgery may decrease perioperative hemorrhage and allogeneic blood transfusion ratio, which was consistent with the previous studies performed in other kinds of surgeries. In a case report with 3 pediatric patients undergoing elective hemispherectomy, using the same dosage of TXA together with hourly TEG results, observed a decrease in transfusions than reported (27). There was no significant difference in RBC and FFP transfusion volume per kilogram, and further study with enlarged sample size was indicated. Evenmore, in our study, as revealed by the TEG results, no hyper coagulative status was induced by this strategy. Post-operative seizures were less than pre-operation apparently.

No death occurred in 32 pediatric patients during hospital stay; postoperative hospital stay was shortened significantly in Group T. It suggested combined application of TXA and TEG may contribute to better postoperative recovery. Further studies were indicated.

Although our study suggested combined application of TXA and TEG in Group T may have many advantages over Group C, there are still some limitations. Firstly, this study was performed only in one center and the sample size was small. It may cover some side effects of our strategy. Secondly, this study recruited patients undergoing resection of frontal and temporal lobes. Although patients were randomized into two groups, the difference of excision location and size may still influence volume of blood loss. Thus, further study should enlarge the sample size to eliminate the difference and explore long-term effects.

CONCLUSIONS

Infusion of TXA and TEG guided coagulation management in pediatric epilepsy surgery may decrease blood loss, reduce transfusion requirements and shorten postoperative hospitalization. This strategy may not increase the risks of thromboembolism.

Acknowledgments

Source of Support: This program was supported by Beijing 215 high level healthcare talent plan-academic leader 008-0027, and Beijing municipal administration of hospitals’ ascent plan, Code DFL20150802. We thank Hanliang Wei for his help in performing TEG.

No potential conflict of interest relevant to this article was reported.
References

1. Maranhão MV, Gomes EA, de Carvalho PE. Epilepsy and anesthesia. Rev Bras Anestesiol 2011;61:232-41,242-54,124-36.
2. Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol 2014;13:1114-26.
3. Soriano SG, Bozza P. Anesthesia for epilepsy surgery in children. Childs Nerv Syst 2006;22:834-43.
4. Manochar C, Arístizabal R, Lozano S, González-Martínez J, Cara JP. The effect of antiepileptic drugs on coagulation and bleeding in the perioperative period of epilepsy surgery: the Cleveland Clinic experience. J Clin Neurosci 2011;18:1180-4.
5. Solomon C, Sörensen B, Hochleitner G, Kashuk KG, Størkson R, et al. Thrombelastography. Apher Sci 2009;40:119-23.
6. Reikvam H, Steien E, Hauge B, Liseth K, Hagen A. Comparison of whole blood fibrin-based clot tests in thrombelastography and thromboelastometry. Anesth Analg 2012;114:721-30.
7. Kozek-Langenecker SA, Alshari A, Albudaij P, Santallana CA, De Robertis E, Filipescu DC, et al. Thrombelastography and meta-analysis. Ann Pharmacother 2013;52:267-76.
8. Solomon C, Hägg N, Krokfelt M, Dieguez R. Management of coagulopathy and bleeding in the perioperative period of epilepsy surgery: a double-blind, placebo-controlled trial. Anesthesiology 2019;131:R76.
9. Aasted B. Clinical pharmacology of tranexamic acid. Scand J Gastroenterol Suppl 1987;137:22-5.
10. Adler MA SC, Bender W, Burton G, Gallacher S, Hong FC, Manelius J, et al. Tranexamic acid is associated with less blood transfusion in off-pump coronary artery bypass graft surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth 2011;25:26-35.
11. Xu Q, Yang Y, Shi P, Zhou J, Dai W, Yao Z, et al. Repeated doses of intravenous tranexamic acid are effective and safe at reducing perioperative blood loss in total knee arthroplasty. Biosci Trends 2014;8:169-75.
12. Poreen J, Rauli R, Suzuki S, Damminger T, Mazumdar M, Oppher M, et al. Tranexamic acid use and postoperative outcomes in patients undergoing total hip or knee arthroplasty in the United States: retrospective analysis of effectiveness and safety. BMJ 2014;349:g8289.
13. Reid RW, Zimmerman AA, Lausen PC, Mayer JE, Garlin JB, Burrows FA. The efficacy of tranexamic acid versus placebo in decreasing blood loss in pediatric patients undergoing repeat cardiac surgery. Anesth Analg 1997;84:990-6.
14. Sethna NF, Zarakowski D, Brustowicz RM, Baccik J, Sullivan LJ, Shapiro F. Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing acclizus surgery. Anesthesiology 2005;102:727-32.
15. Gobeil SM, Meier PM, Pereira LM, McGowan FX, Prescilla RA, Scharp LA, et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology 2011;114:862-73.
16. Fusarier J, Pelá E, Hess B, Severe, isolated thrombocytopenia under polytherapy with carbamazepine and valproate. Psychiatry Clin Neurosci 2001;55:621-4.
17. Holtzer CD, Reimer-Keller LA. Phenytoin-induced thrombocytopenia. Ann Pharmacother 1997;31:435-7.
18. Gerstner T, Trich M, Bell N, Longin E, Dempfl CE, Brand J, et al. Valproate-associated coagulopathy in neonates is frequent and variable in children. Epilepsia 2006;47:116-43.
19. Pietrini D, Zanghi F, Pusateri A, Tosi F, Pialitano S, Piastra M. Anesthesiological and intensive care considerations in children undergoing extensive cerebral excision procedure for congenital epileptogenic lesions. Childs Nerv Syst 2016;32:844-51.
20. Pan CF, Shen MY, Wu CJ, Hsiao G, Chou DS, Shue JR. Inhibitory mechanisms of gabapentin, an antiepileptic drug, on platelet aggregation. J Pharm Pharmacol 2007;59:1255-61.
21. Hendrickson JE, Hiller CD. Noninfectious serious hazards of transfusion. Anesth Analg 2009;108:759-69.
22. Kang YG, Martín DJ, Marquez J, Lewis JH, Bentonpo FA, Shaw BW Jr, et al. Intraoperative changes in blood coagulation and thromboelastographic monitoring in liver transplantation. Anesth Analg 1985;64:888-96.
23. Hertfelder HJ, Bix M, Weber D, Winkler K, Hanfield B, Prieß CJ. Perioperative monitoring of primary and secondary hemostasis in coronary artery bypass grafting. Semin Thromb Hemost 2005;31:426-40.
24. Shore-Lesserson L, Mansepeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgeries. Anesth Analg 1999;88:312-9.
25. Oremann E, BesserMW, Klein AA. Antifibrinolytic agents in current anaesthetic practice. Br J Anaesth 2011;101:549-63.
26. Gobeil SM, Meier PM, Sethna NF, Soriano SG, Zarakowski D, Samanta S, et al. Population pharmacokinetics of tranexamic acid in pediatric patients undergoing craniosynostosis surgery. Clin Pharmacokinet 2013;52:267-76.
27. Xiao W, Fu W, Wang T, Zhao L. Prophylactic use of tranexamic acid combined with thromboembolography-guided coagulation management may reduce blood loss and alloimmune transfusion in pediatric hemispherectomy: case series. J Clin Anesth 2016;33:149-55.