Exocrine Pancreatic Pathology in Female Harlan Sprague-Dawley Rats after Chronic Treatment with 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-like Compounds

Abraham Nyska,1 Micheal P. Jokinen,2 Amy E. Brix,3 Donald M. Sells,4 Michael E. Wyde,5 Denise Orzech,5 Joseph K. Haseman,6 Gordon Flake,1 and Nigel J. Walker7

1Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA; 2Pathology Associates—A Charles River Company, Durham, North Carolina, USA; 3Experimental Pathology Laboratories, Research Triangle Park, North Carolina, USA; 4Battelle Columbus Laboratories, Columbus, Ohio, USA; 5Toxicology Operation Branch, 6Biostatistics Branch, and 7Laboratory of Computational Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA

We evaluated the effect of chronic exposure to dioxin and dioxin-like compounds on the pancreas in female Harlan Sprague-Dawley rats. This investigation represents part of an ongoing National Toxicology Program initiative to determine the relative potency of chronic toxicity and carcinogenicity of polychlorinated dioxins, furans, and biphenyls. Animals were treated by gavage for up to 2 years with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), or a toxic-equivalency-factor (TEF) mixture of these agents; control animals received corn oil—acetone vehicle alone. A complete necropsy was performed on all animals, and a full complement of tissues was collected and examined microscopically. Administration of each of the four compounds was associated with increased incidences of several nonneoplastic changes in the exocrine pancreas, including cytoplasmic vacuolation, chronic active inflammation, atrophy, and arteritis. Low incidences, but higher than those in the historical database, of pancreatic acinar adenoma and carcinoma were seen in the TCDD, PeCDF, and TEF-mixture groups. These results indicate that the pancreatic acini are target tissues for dioxin and certain dioxin-like compounds. Key words: carcinogenesis, dioxin, furans, inflammation, pancreas, polychlorinated biphenyls. Environ Health Perspect 112:903–909 (2004), doi:10.1289/ehp.6869 available via http://dx.doi.org/ [Online 4 March 2004]

In the United States, pancreatic cancer ranks as the fifth most common cause of cancer death in humans of both sexes (American Cancer Society 2003). Risk factors for pancreatic cancer include heritable, germline mutations in genes such as p16 (Hruban et al. 1999) and BRCA2 (Risch et al. 2001); cigarette smoking [International Agency for Research on Cancer (IARC) 1986]; and a diet consisting of an increased intake of meat or cholesterol (Howg and Burch 1996). Recently, Risch (2003) proposed that the risk of pancreatic cancer is also increased by prolonged excessive gastric/duodenal acidity and frequent or repeated exposure to N-nitroso compounds or their precursors. Of particular concern are observations suggesting that chronic pancreatitis may predispose individuals to cancer of the pancreas.

Chronic pancreatitis, an irreversible process with permanent loss of pancreatic function due to fibroinflammatory changes originating from various factors (Maisonuneuve and Lowenfels 2002), often precedes the development of pancreatic malignancies. This chronic condition occurs in tropical regions or it may result from metabolic or hereditary disorders. Patients suffering from tropical calcifying pancreatitis (a form of nonalcoholic calcific pancreatitis in adolescents or young adults with no proven etiologic factor) have a significantly increased risk of developing pancreatic cancer (Chari et al. 1994), suggesting that chronic pancreatitis is a premalignant disease. Two independent epidemiologic studies calculated a 7- to 50-fold increased risk of pancreatic cancer in patients with hereditary pancreatitis (Lowenfels et al. 1997). Chronic pancreatic inflammation may also be induced by alcohol, congenital defects such as cystic fibrosis, some infectious diseases, drugs, and radiation therapy. Epidemiologic studies support the concept that inflammation associated with glandular destruction is a risk factor for exocrine pancreatic cancer. Lowenfels et al. (1993) studied 2,015 subjects with chronic pancreatitis and concluded that the risk of pancreatic cancer is significantly increased in this population and appears to be independent of sex, country, and type of pancreatitis. In addition, several environmental agents have been proposed as causal for chronic pancreatitis and pancreatic carcinomas and are associated with the wood and pulp industry, the dry cleaning business, and gasoline production and use (Foster et al. 1993; Lin and Kessler 1981; Milham and Demers 1984).

Polychlorinated aromatic hydrocarbons (PHAHS) comprise a large class of compounds including polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes, and polybrominated diphenyl ethers. Certain PCDDs, PCDFs, and coplanar PCBs have the ability to bind to the aryl hydrocarbon receptor (AhR) and exhibit biologic actions similar to those of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); they are commonly referred to as dioxin-like compounds (DLCs). Exposure of humans to high levels of TCDD has been implicated in the development of diabetes. According to one study (Bertazzi et al. 2001), an increase of diabetes mellitus was suggestively time related among females in all exposure groups. Exposure of female Sprague-Dawley rats of the Spartan strain to 100 ng/kg TCDD for 2 years was associated with atrophy, fibrosis, and periarthritis of the pancreas (Kociba et al. 1978), whereas TCDD administered intraperitoneally to hamsters at the dose of 100 μg/kg induced hepatocytic transdifferentiation of the acinar pancreatic cells (Rao et al. 1988). Others, however, have observed little or no correlation between diabetes and dioxin exposure (Steeland et al. 1999).

The National Toxicology Program (NTP) has recently conducted multiple 2-year lifetime rat bioassays to evaluate the chronic toxicity and carcinogenicity of DLCs, structurally related PCBs, and mixtures of these compounds. Given the known mode of action of DLCs acting through the AhR, one of the hypotheses tested in these studies was that both individual compounds and mixtures would elicit a similar spectrum of nonneoplastic and nonneoplastic responses after chronic exposure. Our work describes the incidences and morphologic aspects of pancreatitis and exocrine pancreatic cancer related to these
DLCs, as observed in the 2-year toxicity and carcinogenicity studies.

Materials and Methods

Study design. These studies were conducted by the NTP (2004) as part of an ongoing series of chronic 2-year rat bioassays examining the relative potencies for carcinogenicity of individual dioxins and mixtures of DLCs. In these studies, TCDD, 3,3′,4,4′,5-penta-chlorodibenzofuran (PeCDF), and a mixture of TCDD, PCB-126, and PeCDF were tested at levels based on their toxic equivalency factors (TEFs); the studies were conducted with female Harlan Sprague-Dawley rats because these had been used in prior investigations of DLCs and because the female rat is more sensitive to the effects of TCDD than the male (Kociba et al. 1978). The same study design was used for the TCDD, PCB-126, and PeCDF studies and included interim evaluation groups, 2-year study groups, and a single stop-study group that received the highest dose of chemical. The stop-study group was added to investigate the potential reversibility of various pathologic effects induced by these compounds upon withdrawal of daily administration and to evaluate whether lesions seen at the end of the 2 years of study required persistent lifetime exposure (Walker et al. 2000).

The investigation of the tertiary mixture did not include a stop-study group. Interim evaluations of 10 animals/group were conducted at weeks 14, 31, and 53 of the study. The stop-study groups contained 50 animals, whereas each 2-year study group contained 53. Animals were dosed once daily for 5 days/week by oral gavage using the test compound mixed in a corn oil:acetone vehicle (99:1 vol:vol). The control animals received the vehicle only. All animals were dosed for the duration of the study except for the stop-study animals, which were dosed for 31 weeks and then given the vehicle only until study termination at 2 years.

TCDD is the most potent DLC and the reference compound to which all DLCs are compared in the TEF methodology. Doses for the TCDD study were 0, 3, 10, 22, 46, and 100 ng/kg/day; the stop-study dose was 100 ng/kg/day. These doses were based on average human tissue levels of these compounds, they represent approximately 43% of the human tissue burden of the TCDD toxic equivalent (TEQ). The TEF mixture was composed of equal ratios (1:1:1) of TEQs for TCDD, PCB-126, and PeCDF. The TEQ, calculated by multiplying the TEF value of each specific compound by the concentration of that compound in the mixture, results in the TCDD equivalent of that compound. For the TEF mixture, selected doses were 0, 10, 22, 46, and 100 ng TEQ/kg/day using the WHO TEF values of 1.0 for TCDD, 0.1 for PCB-126, and 0.5 for PeCDF. Specific doses used in the TEF-mixture study were 10 ng TEQ/kg (3.3 ng/kg TCDD, 6.6 ng/kg PeCDF, 33.3 ng/kg PCB-126), 22 ng TEQ/kg (7.3 ng/kg TCDD, 14.5 ng/kg PeCDF, 73.3 ng/kg PCB-126), 46 ng TEQ/kg (15.2 ng/kg TCDD, 30.4 ng/kg PeCDF, 153 ng/kg PCB-126), and 100 ng TEQ/kg (33 ng/kg TCDD, 66 ng/kg PeCDF, 333 ng/kg PCB-126).

Chemicals. TCDD (lot no. CR82-2-2) was supplied by IIT Research Institute (Chicago, IL), and PCB-126 (lot no. 130494) by AccuStandard, Inc. (New Haven, CT). PeCDF (lot 080196) was purchased from Cambridge Isotope Laboratories (Cambridge, MA). For the TEF mixture, we used the same chemicals as in the single-compound studies. The dose formulations were prepared by mixed volumes of the TCDD, PeCDF, and PCB-126 formulations. Each chemical was received in one lot that was used for the entire study. Purity was determined several times during the study by gas chromatography/mass spectrometry; by nuclear magnetic resonance spectroscopy; and by gas chromatography using flame ionization detection (PCB-126), electron capture detection (TCDD), proton and 13C nuclear magnetic spectroscopy (PeCDF), and gas chromatography/mass spectrometry (TEF mixture). Purities of TCDD, PCB-126, and PeCDF, were determined to be approximately 98%, 99.51%, 97%, respectively, with no change in purity observed over the duration of the studies. The corn oil was analyzed by potentiometric titration, and the acetone by

Table 1. Incidence and average severity of selected pancreatic lesions in rats treated with TCDD.

Vehicle control	TCDD dose (ng/kg/day)					
#	3	10	22	46	100	stop
14-Week interim evaluation						
No. of animals examined	10	10	10	10	10	10
Inflammation, chronic active (no. with lesion)	0	0	0	0	0	2
Acinus, atrophy (no. with lesion)	0	0	0	0	0	2
31-Week interim evaluation						
No. of animals examined	10	10	10	10	10	10
Acinus, vacuolation cytoplasmic (no. with lesion)	0	0	0	0	0	5
52-Week interim evaluation						
No. of animals examined	8	8	8	8	8	8
Acinus, vacuolation cytoplasmic (no. with lesion)	0	0	0	0	0	7
2-Year evaluation						
Probability of survival (%) at end of study (Kaplan-Meier determinations)	47	39	49	36	42	40
No. of organs examined	51	54	52	53	53	51
Acinus, vacuolation cytoplasmic (no. with lesion)	1	0	0	1	15	51
Inflammation, chronic active (no. with lesion)	2	2	2	3	4	6
Acinus, atrophy (no. with lesion)	1	2	4	4	4	9
Artery, inflammation, chronic active (no. with lesion)	0	1	1	2	2	2
Acinus, adenoma (no. with lesion)	0	0	0	0	0	1
Acinus, carcinoma (no. with lesion)	0	0	0	0	0	2

Lesion severity is shown in parentheses. Grades of lesion severity: 1, minimal; 2, mild; 3, moderate; 4, marked.

*Historical incidence (pooled control incidence from the four studies) for 2-year gavage studies with Sprague-Dawley vehicle control group; 1 of 207, range, 0–2%. *Historical incidence: 0 of 207. **Significantly different (p ≤ 0.05) from vehicle control group by Fisher exact test (interim evaluations) or Poly-3 test (2-year study). ***Significantly different (p ≤ 0.01) from vehicle control group by Fisher exact test (interim evaluations) or Poly-3 test (2-year study). ***Significantly different (p ≤ 0.01) from the 100-ng/kg study group by the Poly-3 test.
infrared spectroscopy. Dose formulations were prepared for gavage administration by mixing the test chemical in a corn oil vehicle containing 1% USP-grade acetone. Homogeneity and stability studies of dose formulations indicated that all study chemicals could maintain an acceptable homogeneity for dosing and stability for 35 days when stored at room temperature. Dose formulations analyzed were within 10% of the target concentrations.

Animals. The animal studies were conducted at Battelle Columbus Laboratories (Columbus, OH). Female Sprague-Dawley rats, approximately 6 weeks of age, were obtained from Harlan (Indianapolis, IN). The animals were held under quarantine for approximately 2 weeks for health screening and were approximately 8 weeks of age at the start of the study. After quarantine, the animals were randomly assigned to control or treatment groups and permanently identified by tail tattoo. They were housed five per cage in solid-bottom polycarbonate cages (Lab Products, Inc., Maywood, NJ) suspended on stainless steel racks. Filtered room air underwent at least 10 changes/hour. Animal rooms were maintained at 69–75°F with 35–65% relative humidity and 12 hr of light and 12 hr of dark. Irradiated NTP-2000 pelleted feed (Zeigler Bros., Inc., Gardners, PA) and water were available *ad libitum*. All animals were observed twice daily for morbidity checks and once each month for formal clinical signs of toxicity; moribund animals were euthanized and necropsied. The health status of the animals was monitored by serologic analysis of serum samples collected from both the study animals and male sentinel rats placed in the study rooms. Serum samples remained negative for any significant rodent pathogen. Animal husbandry and handling were conducted in accordance with National Institutes of Health *Guide for the Care and Use of Laboratory Animals* (Institute of Laboratory Animal Resources 1996).

Pathology. At necropsy, all tissues were examined grossly, any observed lesions were recorded, and a full complement of tissues was removed and fixed in 10% neutral buffered formalin for microscopic evaluation. After fixation, the tissues were trimmed, processed, embedded in paraffin, sectioned at a thickness of 5 µm, stained with hematoxylin and eosin (H&E), and examined microscopically. The severity of lesions was graded on a four-point scale: 1, minimal; 2, mild; 3, moderate; and 4, marked. The pathology findings from all studies were subjected to a full NTP peer review. For assuring the consistency of the histopathologic diagnoses among the TEF dioxin projects, the same study pathologist, quality assurance pathologist, pathology working group chairperson, NTP pathologist, and members of the pathology working group served in all studies to peer-review the study pathology findings.

Statistical analysis. Incidences of lesions in the study animals were evaluated statistically by the Poly-3 test of Portier and Bailer (1989) and Bailer and Portier (1988), which makes adjustments for survival differences among groups. Incidences of lesions in animals from each of the interim evaluations and from the 2-year study were analyzed separately. For animals in the 2-year studies, the incidences of total lesions, including findings from animals that survived until study termination and from early-death animals, were included in the analysis.

Results

Survival data for the 2-year exposures to TCDD, PCB-126, PeCDF, and the TEF-mixture studies are given in Tables 1–4.

We observed no significant reductions in survival of test animals relative to control animals in any of the four studies. Although none of the individual dose groups showed a significant reduction in survival relative to controls, in the PCB-126 and mixture studies there was a significant (*p* < 0.05) decreasing overall trend in survival, due primarily to a marginally increased mortality in the highest dose group relative to the other groups.

Administration of the four compounds was associated with increased incidences of

Table 2. Incidence and average severity of selected pancreatic lesions in rats treated with PCB-126.

	PCB-126 dose (ng/kg/day)							
	10	30	100	175	300	550	1,000	1,000-stop
Vehicle control								
No. of animals examined	10	10	9	10	10	10	10	10
Acinus, atrophy (no. with lesion)	0	0	0	0	0	0	1	(1.0)
Acinus, atrophy (no. with lesion)	0	0	0	0	0	0	1	(1.0)
31-Week interim evaluation								
No. of animals examined	8	8	7	8	8	8	8	8
Acinus, vacuolation cytoplasmic (no. with lesion)	0	0	0	0	0	0	1	(1.0)
Acinus, atrophy (no. with lesion)	0	0	0	0	0	0	1	(1.0)
53-Week interim evaluation								
No. of animals examined	8	8	7	8	8	8	8	8
Acinus, vacuolation cytoplasmic (no. with lesion)	0	0	0	0	0	0	1	(1.0)
Acinus, atrophy (no. with lesion)	0	0	0	0	0	0	1	(1.0)
2-Year evaluation								
Probability of survival (%) at end of study (Kaplan-Meier determinations)	31	48	49	42	31	43	13	57
No. of animals examined	51	55	53	53	53	52	51	48
Acinus, vacuolation cytoplasmic (no. with lesion)	0	0	1	4	9**	20**	23**	1***
Acinus, atrophy (no. with lesion)	5	1	3	4	4	6	13*	4***
Inflammation, chronic active (no. with lesion)	(1.6)	(1.0)	(2.0)	(1.3)	(1.8)	(2.3)	(2.2)	(1.5)
Acinus, atrophy (no. with lesion)	(2.0)	(1.3)	(2.5)	(1.6)	(2.5)	(2.2)	(2.1)	(1.4)
Artery, inflammation, chronic active (no. with lesion)	0	(2.0)	(3.0)	(2.5)	(2.5)	(2.5)	(2.9)	(2.0)
Acinus, adenoma (no. with lesion)	1	0	0	2	0	0	0	0
Acinus, carcinoma (no. with lesion)	0	0	0	1	0	0	0	0

Lesion severity is shown in parentheses. Grades of lesion severity: 1, minimal; 2, mild; 3, moderate; 4, marked.

*Significantly different (*p* < 0.05) from vehicle control group by Poly-3 test (2-year evaluation) or Fisher exact test (53-week interim evaluation). **Significantly different (*p* < 0.01) from vehicle control group by Poly-3 test. ***Significantly different (*p* < 0.01) from 1,000 ng/kg study group by Poly-3 test.
nonneoplastic changes of the exocrine pancreas, including cytoplasmic vacuolization, chronic active inflammation, atrophy, and arteritis, variably observed in the 14-, 31-, and 53-week interim sacrifices and seen in the 2-year studies (Tables 1–4, Figures 1–8). In addition, low incidences of acinar adenoma and carcinoma were also seen in the TCDD, PeCDF, and TEF-mixture studies. The general histologic characteristics were comparable for all chemicals.

Cytoplasmic vacuolization consisted of small, clear, discrete vacuoles within pancreatic acinar cells (Figures 2 and 3). Occasionally a single large vacuole was noted. The severity of the change was determined by the degree of vacuolization per cell and the amount of tissue involved.

Table 3. Incidence and average severity of selected pancreatic lesions in rats treated with PeCDF.

2-Year evaluation	Vehicle control	PeCDF dose (ng/kg/day)			200	stop		
Probability of survival (%) at end of study (Kaplan-Meier determinations)	47	42	47	48	38	43	43	30
No. of animals examined	53	53	53	52	52	52	49	
Acinus, vacuolation cytoplasmic	0	0	0	0	2	23**	2***	
(no. with lesion)	(1.0)	(1.1)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	
Artery, inflammation, chronic active	1	2	1	2	4	11**	1***	
(no. with lesion)	(1.0)	(2.0)	(1.0)	(2.5)	(2.3)	(3.3)	(2.0)	
Acinus, adenoma (no. with lesion)	0	0	0	0	1	0	1	
Acinus, carcinoma (no. with lesion)	0	0	0	0	1	0	1	

Lesion severity is shown in parentheses. Grades of lesion severity: 1, minimal; 2, mild; 3, moderate; 4, marked. **Significantly different (p ≤ 0.01) from vehicle control group by Poly-3 test. ***Significantly different (p ≤ 0.01) from vehicle control group by Fisher exact test (interim evaluations) or Poly-3 test (2-year study).

Table 4. Incidence and average severity of selected pancreatic lesions in rats treated with TEF mixture.

Vehicle control	TEF dose (ng TEQ/kg/day)					
14-Week interim evaluation	10	10	10	10	10	10
No. of animals examined	0	0	0	0	0	0
Acinus, atrophy (no. with lesion)	0	0	0	0	0	0
(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)
31-Week interim evaluation	10	10	10	10	10	10
No. of animals examined	0	0	0	0	0	0
Acinus, vacuolation cytoplasmic (no. with lesion)	1	1	2	2	0	0
(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)
53-Week interim evaluation	8	8	8	8	8	8
No. of animals examined	0	0	0	0	0	0
Acinus, vacuolation cytoplasmic (no. with lesion)	0	0	0	0	0	0
(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)
Acinus, atrophy (no. with lesion)	1	1	2	2	0	0
(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)
2-Year evaluation	30	43	46	44	44	16
Probability of survival (%) at end of study (Kaplan-Meier determinations)	52	53	53	53	53	51
No. of animals examined	0	6**	3	8**	14**	
Artery, inflammation, chronic active (no. with lesion)	(2.2)	(1.7)	(2.6)	(2.9)	(2.9)	
Acinus, vacuolation cytoplasmic (no. with lesion)	1	0	3	15**	30**	
(1.0)	(1.3)	(1.0)	(1.1)	(1.1)		
Acinus, atrophy (no. with lesion)	3	2	7	7	20**	
(1.3)	(1.0)	(1.7)	(1.7)	(2.0)		
Acinus, adenoma (no. with lesion)	3	1	6	7	16**	
(1.7)	(3.0)	(1.3)	(1.7)	(1.8)		
Acinus, carcinoma (no. with lesion)	0	0	2	0	0	
(3.0)	(3.0)	(3.0)	(3.0)	(3.0)		

Lesion severity is shown in parentheses. Grades of lesion severity: 1, minimal; 2, mild; 3, moderate; 4, marked. *Significantly different (p ≤ 0.05) from vehicle control group by Fisher exact test (interim evaluations) or Poly-3 test (2-year study). **Significantly different (p ≤ 0.01) from vehicle control group by Fisher exact test (interim evaluations) or Poly-3 test (2-year study).

Atrophy was a focal to multifocal to diffuse change consisting of a reduction in the amount of acinar tissue with an associated increase in stromal fibrous connective tissue and dilatation of the ducts (Figures 4, 5, and 7). Chronic active inflammation was generally seen in association with atrophy and consisted of an infiltrate of mononuclear cells with occasional neutrophils within the stroma. The islets of Langerhans were morphologically normal (Figures 2–4), dispersed throughout the affected acinar tissue and without reduction in their number. This inflammatory reaction often extended into the surrounding parenchyma.

Adenoma of the acinar cells was characterized microscopically by a discrete mass consisting of tubular and acinar structures composed of small acinar cells with brightly eosinophilic cytoplasm lacking zymogen granules. In contrast, a single case of carcinoma exhibited a...
large, multinodular lesion with moderate amounts of dense fibrous stroma. Carcinomas appeared composed of densely packed clusters of poorly formed acinar structures consisting of small acinar cells with prominent vesicular nuclei and small amounts of eosinophilic cytoplasm with indistinct borders. Scattered solid areas composed of densely packed, highly pleomorphic, round to ovoid acinar cells with large vesicular nuclei and scant cytoplasm also occurred.

In the TCDD study, treatment-related nonneoplastic changes were seen at the 31-week interim sacrifice and became progressively more prominent at the other sacrifice periods (Table 1). The incidences of the nonneoplastic lesions in the stop-exposure group were less than those in the 100-ng/kg study group. One acinar adenoma and two acinar carcinomas were seen in the 100-ng/kg study group. The incidences of acinar cell carcinoma and adenoma or carcinoma (combined) exceeded those within the historical control range (overall incidence of acinar cell carcinoma, 0%). A single acinar cell carcinoma was seen in the stop-exposure group.

In the PCB-126 study, treatment-related nonneoplastic changes observed at the 31-week sacrifice period became progressively more prominent at the other sacrifice periods (Table 2). We found fewer nonneoplastic lesions in the stop-exposure group than in the 1,000 ng/kg study group. In the 2-year study group, exocrine adenomas and carcinomas were observed sporadically in treated groups but were not related to exposure with PCB-126. Only one adenoma was observed in the control group.

At the 2-year sacrifice of the PeCDF portion of this investigation, we observed one acinar adenoma and one acinar carcinoma in both the 92-ng/kg group and the 200-ng/kg stop-exposure group (Table 3). An increased incidence of acinar cytoplasmic vacuolation and increased incidence and severity of arteritis also occurred in the 92-ng/kg and 200-ng/kg study groups; the incidence in the 200-ng/kg stop-exposure study group was significantly decreased compared with the 200-ng/kg study group.

In the TEF-mixture group, treatment-related nonneoplastic changes were seen at the 14-week sacrifice period and became progressively worse at the other sacrifice periods (Table 4). At 2 years, sporadic incidences of acinar adenoma and acinar carcinoma were observed in all dosed groups except those administered 100 ng/kg. The incidence of acinar adenoma in the 22-ng/kg group and the incidences of acinar carcinoma in the 10-ng/kg and 46-ng/kg groups exceeded the historical control ranges (overall incidence of acinar cell adenoma, 1 of 207 or 0.5%, range 0–2%; overall incidence of acinar cell carcinoma, 0%).

Discussion
In these studies, we evaluated the effects of chronic exposure to dioxin and multiple DLCs on the pancreas in the female Harlan Sprague-Dawley rat. Our data indicate that the pancreatic exocrine acini are a target tissue of the DLCs, inducing mainly degenerative, inflammatory, and atrophic lesions and possibly also sporadic acinar adenomas and carcinomas. Despite the low incidences, we found one pancreatic tumor effect that was statistically significant (p < 0.001): the increasing trend in pancreatic acinar cell adenoma/carcinoma in the TCDD study. Although the marginal increases in the other studies would not be particularly noteworthy when considered individually, it is the consistency of the effects in all four studies that is important. Only a single control animal (of 207) had a pancreatic...
lobulation on cut section, simulating the lobu-
be well circumscribed and often exhibit coarse
et al. 1993). These tumors typically appear to
children, the average age of adults with acinar
toma, has not been clearly established (Lack
nence of a benign counterpart, acinar cell ade-
aries (Tables 1, 3, and 4). Both the adenomas
shape with moderate amounts of dense fibrous
zymogen granules. In contrast, the acinar cell
or carcinomas induced in rats by five weekly
pcations in about 50% of the patients at the time
peripancreatic retroperitoneal fatty tissue
Lack 2003b). Excluding the rare cases in
children, the average age of adults with acinar
cell carcinoma in two series was 62 years
(Klimstra et al. 1992) and 55 years (Hoorens
et al. 1993). These tumors typically appear to
be well circumscribed and often exhibit coarse
lobulation on cut section, simulating the lobu-
rular character of the normal human pancreas.
Microscopically, the tumor lobules are highly
Acinar cell tumors (an adenoma), confirming that this tumor is relatively uncommon. Yet in
the TCDD, PCB-126, PeCDF, and TEF-
mixture groups, we found four, four, four, and
five pancreatic acinar cell tumors, respectively, including two or more carcinomas in each
study. It is this consistency of effect for these
DLCs for a relatively uncommon tumor that
is impressive. The potential copromotional
effect of corn oil on the pancreatic tumors has
been considered (Eustis and Boorman 1985);
however, this association was primarily
reported as a male rat phenomenon, and we
found only 1 adenoma in 362 female rats
treated with corn oil for 2 years and used as
controls in our TEF studies. Majeed (1997)
reported that the historical incidence of exocrine
pancreatic tumors in aged CD female
rats was 0.1% for adenomas and 0.02% for
carcinomas. Two collections of historical
data dealing with the Sprague-Dawley rats
reported zero incidence of pancreatic acinar
tumors (Kaspereit and Rittinghausen 1999;
McMartin et al. 1992). We observed low inci-
dences, but higher than historical levels, of
pancreatic acinar adenoma and carcinoma in
the TCDD, PeCDF, and TEF-mixture stud-
ies (Tables 1, 3, and 4). Both the adenomas
and carcinomas observed in these studies were
exclusively of exocrine acinar cell origin.
Therefore, regarding the pancreatic tumors,
we conclude that there was a marginal increase in
this uncommon tumor in all four studies.
The acinar cell adenomas we observed in
the rats were characterized by being a discrete
mass consisting of tubular and acinar struc-
tures composed of small acinar cells with
brightly eosinophilic cytoplasm and lacking
zymogen granules. In contrast, the acinar cell
carcinoma was a large, multinodular lesion,
with moderate amounts of dense fibrous
stroma. Carcinomas were composed of
densely packed clusters of poorly formed aci-
inar structures consisting of small acinar cells
with prominent vesicular nuclei and small
amounts of eosinophilic cytoplasm with indist-
tinct borders. We also observed scattered solid
areas composed of densely packed, highly
pleomorphic, round-to-ovoid acinar cells with
large vesicular nuclei and scant cytoplasm.
Acinar cell carcinomas do occur rarely in
humans, approximately 1% of all pancreatic
tumors (Solcia et al. 1997); however, the exis-
tence of a benign counterpart, acinar cell ade-
noma, has not been clearly established (Lack
2003a, 2003b). Excluding the rare cases in
children, the average age of adults with acinar
cell carcinoma in two series was 62 years
(Klimstra et al. 1992) and 55 years (Hoorens
et al. 1993). These tumors typically appear to
be well circumscribed and often exhibit coarse
lobulation on cut section, simulating the lobu-
lar character of the normal human pancreas.
Microscopically, the tumor lobules are highly
with the same receptor and the same ligand,
both qualitative and quantitative differences
exist in the response to TCDD, depending on
the tissue and species involved.
A relationship among exposure to environ-
mental lipophilic chemicals, elevated levels of
drug-metabolizing enzymes in the pancreatic
exocrine and endocrine cells, and increased
incidences of pancreatic cancer and chronic
pancreatitis may exist in humans (Foster et al.
1993; Standop et al. 2002). Future studies of
samples from our DLC studies in the rat are
aimed at investigating the potential involve-
ment of cytochrome P450 induction in the
pathogenesis of the pancreatic acinar pathology.
The observed acinar atrophy of the pancre-
creas may be related in part to the down-regu-
lation of CCK, an important regulator of
pancreatic growth and function (Baldwin
1995; Varga et al. 1998). As shown by Lee
et al. (2000) in samples from the present
PCB-126 study, levels of intestinal CCK are
reduced by PCB-126 exposure. Down-regula-
tion of CCK is likely due to a general
endocrine effect resulting from the reduction
in body weight gain observed with exposure
to DLCs. Previous studies have shown that
increased apoptosis and pancreatic acinar
atrophy occur in Otsuka Long-Evans
Tokushima Fatty rats that lack the CCK-A
receptor gene (Jimi et al. 1997). In addition,
agonism of CCK action by chemical
development (devazepide) blockage of the CCK-A
receptor can lead to reduced pancreatic proliferation
(Ohllson et al. 1995).
TCDD influences and disturbs vitamin A
dynamics and metabolism; vitamin A metabo-
lites are known to affect the endocrine and
exocrine glandular cell integrity (Fattore et al.
2000; Nilsson and Hakansson 2002; Schmidt
et al. 2003). Certain synthetic retinoids,
administered in the diet for 1 year at a dose of
0.5–2 mmol/kg, have chemopreventive
potential, reducing the progression of pancre-
atic carcinomas induced in rats by five weekly
injections of azaserine (Longnecker et al.
1983). More studies are required to deter-
mine the presence or absence of disturbed vit-
amin A metabolism in Sprague-Dawley rats
exposed to DLCs; the biologic relevance of
disturbed vitamin A metabolism to the patho-
genesis of exocrine-gland pathology remains
to be elucidated.
Chronic inflammation is associated with
oxidative stress, which leads to DNA damage
and cancer promotion in experimental studies
and clinical cases. In a study of inhalation
exposure to indium phosphate, a pulmonary
carcinogen, severe pulmonary inflammation
occurred that correlated with the infiltration
of reactive oxygen-generating immune cells,
and macrophages exhibited high levels of the
inducible forms of nitric oxide synthase
(i-NOS) and cyclo-oxygenase (COX-2)
Eustis SL, Boorman GA. 1985. Proliferative lesions of the exocrine pancreas: relationship to corn oil gavage in the National Toxicology Program. J Natl Cancer Inst 79:1057–1073.

Fattore E, Trosiki M, Danielewicz K, Galkowski S. 2001. Health effects of dioxin exposure: a 20-year mortality study. Am J Epidemiol 153:1031–1044.

Charl S, Mohan V, Pitchumoni CS, Viswanathan M, Madanagopalan N, Lowenfels AB. 1994. Risk of pancreatic carcinoma in tropical calyculating pancreatitis: an epidemiological study. Pancreas 9:62–66.

Doyle KM, Schmidt JV, Carver LA, Swanson HL, Bradfield CA. 1993. Cloning and expression of a human Ah receptor (zeta) cDNA. Mol Pharmacol 44:911–917.

Eber K, Matsumura F, Enan E, Ohlen H. 1993. 2,3,7-Tetrachlorodibenzo-p-dioxin (TCDD) alters pancreatic membrane translocation phosphorylation following acute treatment. J Biochem Toxicol 8:77–81.