Fluctuations in a diffusive medium with gain

Stefano Lepri

1Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
(Dated: August 30, 2012)

We present a stochastic model for amplifying, diffusive media like, for instance, random lasers. Starting from a simple random-walk model, we derive a stochastic partial differential equation for the energy field with contains a multiplicative random-advection term yielding intermittency and power-law distributions of the field itself. Dimensional analysis indicate that such features are more likely to be observed for small enough samples and in lower spatial dimensions.

PACS numbers: 05.40.-a,42.55.Zz

Wave transport in disordered media can be described as a multiple scattering process in which waves are randomly scattered by a large number of separate elements \[1\]. To first approximation this gives rise to a diffusion process. A particularly interesting situation arises when gain is added to a random material. In optics this is realized, for instance, in the form of a suspension of micro particles with added laser dye or by grinding a laser crystal. If the total gain becomes larger then the losses, fluctuations grow and these systems exhibit a lasing threshold \[1\] yielding the so called random laser (see e.g. Refs. \[3\] \[8\] and the bibliography therein). The complexity generated by the interplay between gain and disorder leads to intriguing connections with other fundamental problems like Anderson localization \[6\] or the physics of glasses \[6\]. Besides their fundamental interest, random lasers are likely to have a technological impact as low-cost light sources.

Similar situations occur in other branches of physics like neutron diffusion in fissile materials, or stochastic wave growth \[7\] and acceleration of plasma particles \[8\] As known, the competition between growth and propagation or diffusion is also a basic mechanism of population dynamics and theoretical ecology \[6\].

Diffusive random lasing has been observed experimentally in various active random media, including powders, laser dye suspensions and organic systems \[10\] \[12\].

Theoretical descriptions often relies on the diffusive approximation either by reaction-diffusion type of equations \[12\] \[13\] or, on a more microscopic level, by the master-equation approach \[14\], \[15\], \[16\]. Monte Carlo simulations play of course an important role \[13\] \[15\].

One of the salient experimental features of random laser emission is its large statistical variability \[17\]. Indeed, already within the diffusive approximation, the addition of gain (and saturation) naturally generates fat-tailed distributions \[18\] that stems from rare long light paths \[16\]. This mechanism is of pure statistical origin and that does not require localization or interference \[17\]. It was also proposed that such systems can exhibit Lévy type statistics in the distribution of intensities \[18\] \[19\] and crossovers among different statistics has been predicted \[21\]. Remarkably, those prediction were very recently confirmed experimentally \[22\] (see also Ref.\[23\]).

In this work we present first a simple stochastic model that can be analytically solved and that yields large statistical fluctuations. From it, we derive an equation for the energy field which contains a stochastic multiplicative term whose strength controls such anomalous fluctuations. The magnitude of this term introduces another scale in the problem which thus provides a criterion for the observability of such intermittency in the field distribution.

We choose to describe isotropic diffusion of light in terms of an ensemble of independent random walkers each carrying a given energy (number of photons). This may be visualized as an ensemble of “beams” propagating independently throughout the sample, each interacting with an underlying atomic population providing a gain mechanism via stimulated emission. This procedure of attaching an energy to a random walk of photons is a common practice in Monte Carlo simulations of absorption in complex materials like e.g. tissues \[24\]. It has been also employed previously for random lasers \[16\] \[21\], under the implicit assumption that all the photons generated by amplification are diffused in the same direction at each scattering event.

Let us denote by \(x \) and \(E \) the walker position and energy. We discuss the one-dimensional case in which the walker resides on a finite interval, \(0 \leq x \leq L \). The dynamics is formulated as follows. A new walker is generated at a random position by a spontaneous emission event with a rate \(\gamma \) and initial energy \(E = \varepsilon \). In terms of the underlying active media, \(\gamma \) denotes the spontaneous emission rate of the single atom. The walker position \(x \) changes to \(x \pm a \) according to a standard random walk rule on a lattice with spacing \(a \). At the same time, the walker energy \(E \) may increase by one unit due to the process of stimulated emission, \(E \rightarrow E + \varepsilon \), with a rate \(\Gamma(E) \). The simplest choice would be \(\Gamma(E) = \gamma E \) or, to mimic saturation effects we may consider a gain of the form \(\Gamma(E) = \gamma E / (1 + E/E_0) \).

The probability \(P_{L,n} \) for the walker to be at \(x = ia \) having an energy \(E = n\varepsilon \) evolves according to a master
equation, that can be solved by standard methods \[25\]. Here, to simplify further, we work directly in the continuum limit and treat \(x \) and \(E \) as continuous variables, obeying the Langevin equations

\[
\dot{x} = \sqrt{2D} \xi, \quad \dot{E} = \Gamma(E) + \sqrt{\Gamma(E)} \eta \tag{1}
\]

where \(\xi, \eta \) are \(\delta \)-correlated Gaussian variables with unit variance. To keep things as simple as possible, bulk absorption or the possibility that diffusion is affected by the energy are neglected from scratch but can be easily included.

To demonstrate that this dynamics naturally generates power-law distributions of energies, we solve the associated Fokker-Planck equation (Ito interpretation of Eq. (1))

\[
\dot{P} = D \frac{\partial^2 P}{\partial x^2} - \frac{\partial}{\partial E} \left(\Gamma P - \frac{1}{2} \frac{\partial \Gamma P}{\partial E} \right) \tag{2}
\]

where \(P(x, E, t) \) is the probability of finding a walker with energy \(E \) at \(x \). Four boundary conditions are necessary on the contour of the domain \([0, L] \times [1, \infty)\). To account for complete absorption at the boundaries we let \(P(0, E, t) = P(L, E, t) = 0 \). Moreover, \(P(x, 1, t) = f(x, t) \) is determined as a solution of

\[
\dot{f} = Df'' - \gamma f + \gamma \tag{3}
\]

where we approximated \(\Gamma(1) \approx \gamma \). This condition may appear somehow unusual and is justified as follows: the number of particles with unit energy increases at rate \(\gamma \) and are free to diffuse without increasing their energy. Their number diminishes by a term \(-\gamma f\) because they gain energy by amplification. Note that Eq. (3) can be derived exactly from the underlying master equation for the discrete variables 23.

The stationary solution of Eq. (2) can be found by separation of variables \(P(x, E) = Q(x)W(E) \) yielding \(Q \sim \sin(kx) \) with \(k = m\pi/L \) \((m \text{ integer})\) being the separation constant \((\text{the wavenumber})\) that somehow couples diffusion and gain. The equations for \(W \) may be integrated exactly, but for our purposes it suffices to solve an approximated form where energy-diffusion term in Eq. (2) is neglected, \(W \approx \exp \left(-Dk^2 \int E \Gamma^{-1}(E') dE' \right) / \Gamma(E) \). Thus for the linear gain \(W \) has a power-law tail while for the saturating case

\[
W(E) \propto \frac{\exp(-Dk^2E/\gamma E_s)}{E_1^{1+\alpha/\gamma}} \tag{4}
\]

(we have also assumed \(E_s \gg E \gg 1 \)). The general solution is a sum over the allowed \(ks \). As a further approximation, we consider only the first Fourier mode \(k = \pi/L \), which is mathematically justified noting that \(Q \) is fixed by the stationary solution of Eq. (3) with

\[
f(0) = f(L) = 0 \quad (\beta \equiv \sqrt{\pi D})
\]

\[
f(x) = 1 + \frac{\sinh(\beta(x-L)) - \sinh(\beta x)}{\sinh(\beta L)} \tag{5}
\]

In the critical region (to be defined below), \(\beta \sim \pi/L \) so that \(f \) (and thus \(Q \)) is indeed very close to the shape of the first Fourier mode itself. The result is that the distribution of energies displays a parameter-dependent power-law

\[
P(x, E) \propto \sin \left(\frac{\pi x}{L} \right) \exp \left(-\alpha E/E_s \right) \tag{6}
\]

where \(\gamma_c \equiv D(\pi/L)^2 \) and \(\alpha \equiv \gamma_c/\gamma \) which is exponentially cut-off at \(E \sim E_s \). The origin of the power-law \(\[15\] \) is traced back to very long paths which, although exponentially rare, acquire an exponentially large energy while diffusing throughout the sample \[15, 21\]. Note that \(\gamma = \gamma_c \) correspond to the case of a Cauchy-like tail \(\alpha = 1 \), \(P(x, E) \propto E^{-2}, \) yielding a diverging average value of the energy for \(E_s \rightarrow \infty \). It is thus natural to identify this as the “laser threshold” for the model: it will be shown below that this coincide with the usual criterion of gain overcoming the losses.

So far we have described the system in terms of a single walker properties. Suppose we are dealing from a population of \(M \) walkers, and denote by \(x_i \) and \(E_i \) their position and energies, each obeying the equation of motion \[1\]. We thus describe the model in terms of the energy density field

\[
\phi(x, t) = \sum_i E_i \delta(x - x_i(t)) \tag{7}
\]

The number \(M(t) \) fluctuates in time due to the fact that walkers are created (at a rate \(\gamma L \)) and absorbed at the boundaries (at a rate \(D(\pi/L)^2 M \)), so that \(M \sim \gamma L^3/D \). For \(\gamma \sim \gamma_c \sim D/L^2 \) (which is the regime of interest here) \(M/L \sim 1 \) i.e. there are a few walkers per unit length and fluctuations must be very relevant there. To study the problem from this point of view, we derive the Langevin equation for the field. This is accomplished by standard Ito calculus \[24\] upon writing down the equation for \(\phi(t + \Delta t) - \phi(t) \), expanding definition \[7\] to second order in \(\Delta t \) and using Eq. \[1\] along with some properties of the Dirac \(\delta \)-functions \[24\]. If, as above, we neglect the fluctuating term proportional to \(\sqrt{\Gamma} \) in Eq. \[1\] the calculation yields

\[
\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2} + \Gamma(\phi) + \frac{\partial}{\partial x}(v\phi) + s \tag{8}
\]

The same \(\Gamma \) as in the single-walker case is used, which is justified since the walkers are non-interacting. The additive, spatially uncorrelated, spontaneous emission noise \(s(x, t) \) is a Poissonian process whereby \(\phi \) is increased by \(\varepsilon \) at random times, whose separation \(\tau \) is a distributed as \(\Gamma \exp(-\gamma \tau) \). The \(v(x, t) \) is a Gaussian, uncorrelated noise

\[
\langle v(x, t)v(x', t') \rangle = D\delta(x - x')\delta(t - t') \tag{9}
\]

where the spatial scale \(\ell \) is introduced for dimensional consistency.
The mean-field equation obtained by neglecting fluctuations in Eq. (8) and replacing s by its average γ is basically a simplified, one-dimensional version of Letokhov equation for random lasers [2]. The steady state solution $\bar{\phi}(x)$ is not identically zero due to the γ term. If we neglect this, we straightforwardly obtain that $\bar{\phi}$, destabilizes for $\gamma = \gamma_c$ thus defining a threshold as assumed above [28].

As usual for stochastic partial differential equation [29], Eq. (8) is intended as a limit of some discretization on a finite mesh whose spacing we denote by Δx. For definiteness and for actual numerical investigation, we choose the discretized equation for ϕ_i to be ($i = 0, \ldots, N + 1$, $(N + 1)\Delta x = L$)

$$
\phi_i = D[\phi_{i+1} + \phi_{i-1} - 2\phi_i] + \Gamma(\phi_i) + \frac{1}{2}(v_{i+1} - v_{i-1}) + s_i
$$

with v_i being independent Gaussian variables with $\langle v_1 \rangle = 0$ and $\langle v_i^2 \rangle = D\ell$ (we set the mesh spacing $\Delta x = 1$). The boundary conditions are $\phi_0 = \phi_{N+1} = 0$ and we also impose $v_1 = v_N = 0$ to ensure that the multiplicative term conserves the total energy $\sum_i \phi_i$. For the time derivative, we use a simple Euler discretization with a time step Δt.

In the simulations, we choose s_i to be either a Poisson process, (i.e. $s_i = 1$ or zero with probability $\gamma\Delta t$ and $1 - \gamma\Delta t$, respectively) or a Gaussian with the same average, $s_i = \gamma + \sqrt{\pi r_i}$, r_i being normally-distributed and independent random numbers with zero average and unit variance. Although the first choice is closer to the original formulation of the model, we found that in practice, the two processes yield almost indistinguishable results.

FIG. 1: (Color online) Intermittent evolution of the intensity $\phi(x, t)$ obtained by numerical integration of Eq. (10); $L = 16$, $\gamma = 1.02\gamma_c$, $D = 1/2$, $\ell = 1$, $\Gamma(\phi) = \gamma\phi/(1 + \phi/\phi_s)$, $\phi_s = 10^5$; and in the following $\Delta t = 0.01$. Additive noise s_i is Poissonian (see text).

The term in v of Eq. (8) is the leading stochastic correction to the mean-field evolution. It is a multiplicative process and can be regarded as a kind of random advection whereby fluctuations are transported almost coherently, while keeping the total energy conserved. It thus acts against the diffusive term that tends to smooth out fluctuations. As a consequence, the field is highly intermittent in time, with large-amplitude bursts emerging from a lower-amplitude background (Fig. 1). It is thus intuitively plausible that such term is responsible of most of the nontrivial statistics of the field. As a matter of fact, random advection dynamics is known to yield strongly non-Gaussian distributions for the fields, and even power-law tails [30]. Actually, equations similar to (10) (with linear gain and periodic boundary conditions) have been studied in Refs. [31, 32] as a model for an active scalar (e.g. a temperature field) convected by a random velocity field. It was argued that power law tails generically arise when both multiplicative and additive noises are present, which is indeed the case here. As a matter of fact, there are two sources of additive noise. One is of course the spontaneous emission term s; the other stems from the fact that the deterministic, steady state value $\bar{\phi}$ is non vanishing, thus yielding a additive contribution of order $\partial(\bar{\phi})/\partial x$. There is however a crucial difference, which is dictated by the physical origin of the noise: the advective term is a finite-size effect which decreases with the system size. This can be demonstrated by dimensional analysis. To be more general, let us consider the extension of Eq. (8) to d dimensions,

$$
\frac{\partial \phi}{\partial t} = D\nabla^2 \phi + \gamma \phi + \nabla \cdot (v \phi) + \gamma
$$

where v is a d-dimensional vector whose components v_v ($v = 1, \ldots, d$) are Gaussian distributed and satisfy a relation akin to (9),

$$
\langle v_v(x, t)v_{v'}(x', t') \rangle = D\ell^d \delta_{vv'}\delta(\mathbf{x} - \mathbf{x}')\delta(t - t')
$$

For simplicity, we neglected again the $\sqrt{\Gamma}$ term, replaced s by its average γ and restricted to the simpler case $\Gamma(\phi) = \gamma\phi$. Let us rewrite Eq. (8) introducing the dimensionless variables $x/L \rightarrow x$, $D t/L^2 \rightarrow t$, $\phi/\varepsilon \rightarrow \phi$ and we also rescale $D\gamma/L^2 \rightarrow \gamma$. The noise rescales accordingly as $\sqrt{D\ell^d/\ell v} \rightarrow v$. Thus, Eq. (8) is written in the dimensionless form

$$
\frac{\partial \phi}{\partial t} = \nabla^2 \phi + \gamma \phi + \lambda(L)\nabla \cdot (u \phi) + \gamma
$$

where u is again an uncorrelated Gaussian noise with unit variance and we have made explicit the rescaled noise strength which turns out to be $\lambda \propto (\ell/L)^{d/2}$. As a consequence, we expect that the multiplicative noise to yield sizeable power-law tails only for small enough sizes. When $L \rightarrow \infty$, the diffusive term in Eq. (11) dominates and power law are no longer observable.

The numerical simulations of Eq. (11) are in qualitative agreement with the above argument. We monitored the
distribution of the field at the center of the mesh \(\phi_{N/2} \) as well as the the outcoming flux \(J = D[\phi_1(t) + \phi_{N}(t)]/2 \) as function of time. This quantity is of experimental interest, being related to the emission spectra. The tail of the distributions of both observables display, upon increasing \(L \), a smooth crossover from a power-law tail with an exponent \(\alpha \) very close to the one predicted by Eq. (3) to a faster decay (see Fig.2a). The same occurs for fixed \(L \) upon approaching the threshold \(\gamma_c \) (Fig.2b).

The existence of fat tails is intimately related to the the possibility for a spontaneous fluctuation to grow well beyond the average. The indicator to quantify this is the generalized Lyapunov exponent [33]. For a perturbation \(\delta \phi(x, t) \) of the field, which evolves according to the linearized version of Eq. (8), let \(R(\tau) = ||\delta \phi(t + \tau)||/||\delta \phi(t)|| \) be the response function after a time \(\tau \) to a disturbance at time \(t \). The generalized finite-time Lyapunov exponent \(\Lambda(q) \) is then defined by \(R^q(\tau) \sim \exp(\Lambda(q)\tau) \) where the overline denote an average over time. If \(\Lambda(q) > 0 \) for large enough \(q \) then the system has a finite probability that a small perturbation results in a large fluctuation. Moreover, the deviations of \(\Lambda(q) \) from a linear behaviour in \(q \) are a measure of intermittency [33]. Fig.2 shows that \(\Lambda \) becomes positive for larger and larger values of \(q \) upon increasing \(L \), signalling that events far from the average becomes increasingly rare, in agreement with the dimensional arguments discussed above.

To summarise, we have presented a simple model for diffusive random media with gain which yields power law distribution of the intensities. Our main result is the Langevin equation for the energy density field, Eq. (8), that establishes a novel connection between the physics of scattering media with gain (e.g. random lasers) and the theory of nonequilibrium phenomena in spatially extended systems. The random advection, multiplicative term in Eq. (8) competes with diffusive and gain terms and is responsible for unconventional fluctuations. Its relevance is gauged by the effective noise strength \(\lambda(L) \). This means that Lévy-like fluctuations are more likely to be observed in lower dimensions (for instance in \(d = 2 \)) and when the mean free path of photons is not too short with respect to the sample size. Those simple criteria should be of general guidance to interpret and compare data for different type of scattering media and in different experimental condition.

I thank S. Cavalieri, F. Ginelli and R. Livi for useful comments.

FIG. 2: (Color online) Probability distribution functions of the flux \(J \) for (a) different \(L, \gamma = \gamma_c \) and (b) \(L = 16, \) different \(\gamma \) values. The straight dashed line corresponds to the power law \(\alpha = 1 \) expected from Eq. (6). Flux data have been binned over consecutive time windows of duration \(T_W = 10 \), over a run of about \(10^6 \) time units. Additive noise is Gaussian (see text); other parameters as in previous figure.

FIG. 3: (Color online) The generalized finite-time Lyapunov exponent \(\Lambda(q) \) for \(\tau = 200 \) and different system lengths \(L \).
[14] L. John and S. Florescu, Phys. Rev. Lett. 93, 013602 (2004).
[15] G. Kempe, M. Genack, and A. Berger, Phys. Rev. E 56, 6118 (1997).
[16] S. Cavalieri, D. S. Wiersma, and S. Mujumdar, J. Opt. Soc. Am. B 21, 201 (2004).
[17] S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, Phys. Rev. Lett. 93, 053903 (2004).
[18] D. Ramachandran, H. Kumar, and N. Sharma, Fluctuation and Noise Letters 6, L95 (2006).
[19] X. Wu and H. Cao, Phys. Rev. A 77, 013832 (2008).
[20] O. Zaitsev, L. Deych, and V. Shuvayev, Phys. Rev. Lett. 102, 043906 (2009).
[21] S. Lepri, S. Cavalieri, G.-L. Oppo, and D. S. Wiersma, Phys. Rev. A 75, 063820 (2007).
[22] R. Uppu, A. Tiwari, and S. Mujumdar, Opt. Lett. 37, 662 (2012).
[23] G. Zhu, L. Gu, and M. A. Noginov, Phys. Rev. A 85, 043801 (2012).
[24] S. Prahl, M. Keijzer, S. Jacques, and A. Welch, Dosimetry of Laser Radiation in Medicine and Biology 5, 102 (1989).
[25] S. Lepri (unpublished).
[26] D. Dean, J. Phys. A: Math. Gen. 29, L613 (1996).
[27] P. A. Robinson, Phys. Rev. B 55, 12175 (1997).
[28] Actually, the noise term may shift such threshold by some amount proportional to the noise strength 27, but this issue is not relevant for the present discussion.
[29] J. García-Ojalvo and J. Sancho, Noise in spatially extended systems (Springer Verlag, 1999).
[30] H. Takayasu and Y. Taguchi, Phys. Rev. Lett. 70, 782 (1993).
[31] J. M. Deutsch, Phys. Rev. E 48, 4179 (1993).
[32] J. M. Deutsch, Physica A 208, 445 (1994).
[33] R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, J. Phys. A: Math. Gen. 18, 2157 (1985).