THREE NEW RECORDS OF FISHES AND THEIR PARASITE FAUNA FROM POMERANIAN BAY, BALTIC SEA

Beata WIĘCASZEK 1, Ewa SOBECKA 1, Sławomir KESZKA 2, Remigiusz PANICZ 3, Klaudia GÓRECKA 1, Angelika LINOWSKA 1, and Sebastian KRÓL 4

1 Division of Hydrobiology, Ichthyology, and Biotechnology of Breeding, 2 Division of Aquaculture, 3 Division of Meat Technology 4 Division of Fisheries Management and Water Protection, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Poland

Więcaszek B., Sobecka E., Keszka S., Panicz R., Górecka K., Linowska A., Król S. 2019. Three new records of fishes and their parasite fauna from Pomeranian Bay, Baltic Sea. Acta Ichthyol. Piscat. 49 (1): 65–73.

Abstract. This paper reports the occurrence of three new fish species, extremely rare in the Baltic Sea, and provides new data on their parasite fauna. The fish collected were Barbus barbus (Linnaeus, 1758), Salvelinus fontinalis (Mitchill, 1814), and Scophthalmus rhombus (Linnaeus, 1758). Their taxonomic identity was confirmed through genetic analyses using DNA extracted from fin clips. The stomach contents were examined, and age was determined by otolith or scale readings. Parasitological examinations focused on the skin, vitreous humour, eye lenses, mouth and nasal cavities, gills, gonads, viscera, and muscles. Furthermore, the changes of fish species composition over 20 years in Pomeranian Bay were analysed. The sequence comparisons against GenBank records revealed that sequences obtained for B. barbus and S. rhombus from Pomeranian Bay represent new rhodopsin barcodes. Record of the juvenile B. barbus in this study is the first in the Baltic Sea. Scophthalmus rhombus is a new host for the ciliate Trichodina jadranica, while Neogobius melanostomus (Pallas, 1814) is a new food item in the diet of S. rhombus in the Baltic Sea. Acanthocephalan Pomphorhynchus laevis found in the adult specimen of B. barbus and myxozoan Myxobolus musculi, noted in the juvenile specimen, have not been recorded previously in this fish species in Polish waters. Species collected as bycatch can potentially be used for monitoring potential changes in the overall fish community structure and biodiversity.

Keywords: Neogobius melanostomus, Salvelinus fontinalis, Barbus barbus, Scophthalmus rhombus, ichthyofauna, Pomeranian Bay, parasite fauna

INTRODUCTION

Since the mid-1990s, the Baltic Marine Biologists (BMB) has encouraged research on non-commercial coastal fishes with regard to the occurrence, distribution, and the overall ecological status (Winkler et al. 2000, Więcaszek et al. 2015).

Pomeranian Bay (Bornholm Basin; ICES division IIId, subdivision SD 24), a highly dynamic environment, is a large, shallow basin off the Polish and German coasts, with the depth not exceeding 30 m. The salinity at the bottom layers ranges from 7.2‰ to 7.6‰ (mean 7.4‰), while at the surface layers it is 3.9‰–7.3‰ (mean 6.2‰). The water temperature at the bottom layers ranges from 7.0 to 22.3°C (mean 16.0°C), while at the surface layers it is 7.8–23.4°C (mean 16.4°C) (Abbas et al. 2015). Pomeranian Bay is a water-mixing region with two important factors: riverine water input and water exchange with adjacent open seawaters that influence the hydrological conditions of the area (Beszczyńska-Möller 1999). Data on the fish species composition of Pomeranian Bay quite recent, but the monitoring surveys in 2007–2008 and 2011–2015 conducted by Dudko et al. (2015) focused on commercial species, mainly Clupea harengus Linnaeus, 1758, Sprattus sprattus (Linnaeus, 1758), Gadus morhua Linnaeus, 1758, Platichthys flesus (Linnaeus, 1758), Sander lucioperca (Linnaeus, 1758), and Perca fluviatilis Linnaeus, 1758. However, since surveys usually collect many other species as bycatch, they can potentially be used to monitor changes in the overall fish community structure and biodiversity (Ojaveer et al. 2010). Generally, the information concerning fish species that are caught sporadically or are commercially insignificant is not available (Psuty-Lipska...
and Garbacik-Wesołowska 1998). In recent years, only Kesza and Raczyński (2002), Czerniejewski et al. 2008, Więcaszek et al. (2011, 2015), and Panicz and Kesza (2016) have presented results of studies on endangered, non-commercial, new, or visiting fish species recorded as bycatch during monitoring surveys in Pomeranian Bay. Next to nothing is known about the relations between the age and length, the diet, and the parasite fauna of the bycatch fishes from Pomeranian Bay.

The main objectives of the presently reported study were to

- Report on the occurrence of three new fish species captured as bycatch during monitoring surveys in 2014 and 2015.
- Provide the relevant biological data, especially concerning their parasite fauna.
- Present a checklist of the fish species recorded in Pomeranian Bay, thus contributing to the knowledge on the Pomeranian Bay biodiversity.

MATERIALS AND METHODS

The study material was collected in May 2014 and in May 2015 as bycatch during monitoring surveys focusing on commercial fish species. The survey was carried out in Pomeranian Bay from the research vessel SNB-AR-1 (depicted on the back inner cover of this journal) with trawls (mesh size of 10–20 mm), at the depth of 9.8–14.6 m, over the sandy bottom (Table 1).

The fish collected were one juvenile and one adult specimen each of common barbel, Barbus barbus (Linnaeus, 1758) (Cyprinidae), one specimen of brook trout, Salvelinus fontinalis (Mitchill, 1814) (Salmonidae), and two specimens of brill, Scophthalmus rhombus (Linnaeus, 1758) (Scophthalmidae). All fish specimens collected were measured and weighed. The basic metric measurements and meristic counts of taxonomical keys (Nielsen 1986, Kottelat and Freyhof 2007). The taxonomic identity of the specimens collected were prepared for species determination by examining specimens in fresh mounts or after immersion in glycerin under transient light.

RESULTS

The meristic and metric characters of the taxonomic significance were taken of each fish specimen and were used to identify the specimens to the species level according to the standard length, SL = total length, TL = total length, A = 54°00′–54°01′N, 014°30′–014°35′E, B = 54°00′–54°08′N, 014°20′–014°35′E, S = scale reading, O = otolith reading.

Table 1

Species	CS	Depth [m]	Date	SL [cm]	TL [cm]	Weight [g]	Age
Barbus barbus	A	9.8–11.9	6 May 2014	7.23	7.31	0+ S	
Barbus barbus	B	9.8–14.6	18 May 2015	23.3	29.0	4+ S	
Salvelinus fontinalis	B	9.8–14.6	18 May 2015	34.6	38.0	4+ S	
Scophthalmus rhombus	A	9.8–11.9	6 May 2014	17.0	69.6	4+ O	
Scophthalmus rhombus	A	9.8–11.9	6 May 2014	21.5	90.6	5+ O	

Provide the relevant biological data, especially concerning their parasite fauna. The stomach contents were examined following commonly accepted methods, and age was determined by otolith or scale readings. Parasitological examinations focused on the skin, vitreous humour of the eye, eye lenses, mouth and nasal cavities, gills, gonads, gastrointestinal tract, kidneys, swim bladder, urinary bladder, gall bladder, peritoneum, and muscles. The parasites found were prepared for species determination by examining specimens in fresh mounts or after immersion in glycerin under transient light.

The main objectives of the presently reported study

- Report on the occurrence of three new fish species captured as bycatch during monitoring surveys in 2014 and 2015.
- Provide the relevant biological data, especially concerning their parasite fauna.
- Present a checklist of the fish species recorded in Pomeranian Bay, thus contributing to the knowledge on the Pomeranian Bay biodiversity.

The study material was collected in May 2014 and in May 2015 as bycatch during monitoring surveys focusing on commercial fish species. The survey was carried out in Pomeranian Bay from the research vessel SNB-AR-1 (depicted on the back inner cover of this journal) with trawls (mesh size of 10–20 mm), at the depth of 9.8–14.6 m, over the sandy bottom (Table 1).

The fish collected were one juvenile and one adult specimen each of common barbel, Barbus barbus (Linnaeus, 1758) (Cyprinidae), one specimen of brook trout, Salvelinus fontinalis (Mitchill, 1814) (Salmonidae), and two specimens of brill, Scophthalmus rhombus (Linnaeus, 1758) (Scophthalmidae). All fish specimens collected were measured and weighed. The basic metric measurements and meristic counts of taxonomical keys (Nielsen 1986, Kottelat and Freyhof 2007). The taxonomic identity of the specimens collected were prepared for species determination by examining specimens in fresh mounts or after immersion in glycerin under transient light.

The smaller specimen of Barbus barbus was a juvenile (aged 0+) measuring 7.23 cm SL (the caudal fin was destroyed), while the second specimen was a female (aged 4+) measuring 23.3 cm SL and 29.0 cm TL. Figure 1 shows the characteristic structure of the last dorsal fin (spinous, serrated along the entire posterior edge), which distinguished this common barbel from other Barbus species in Europe.

Only undetermined ingested remains were found in the barbel stomachs. Parasitological studies of the muscles of the juvenile specimen indicated the presence of spores of the myxozoan, Myxobolus musculi. In the anterior intestine of the adult barbel 17 specimens of Pomphorhynchus laevis were found. Additionally, there were four specimens of the nematode Rhabdochona hellichi in the mucus from the middle part of the intestine (Table 2).

The collected specimen of Salvelinus fontinalis was a female (4+) measuring 34.6 cm SL and 38.0 cm TL. The
New records of fish species from Pomeranian Bay

Table 2

Meristic and metric characters of taxonomical significance of *Barbus barbus*, *Salvelinus fontinalis*, and *Scophthalmus rhombus* specimens, collected as bycatch in 2014 and 2015 from Pomeranian Bay

Character	*Barbus barbus*	*Barbus barbus*	*Salvelinus fontinalis*	*Scophthalmus rhombus*
	6 May 2014	18 May 2015	18 May 2015	6 May 2014
Dorsal rays	IV, 8	III, 9	3/10	78
Anal rays	III, 5	III, 6	3/10	57
Pectoral rays	I, 17	I, 17	1/12	12
Ventral rays	II, 8	II, 8	1/7	6
Caudal rays	—	—	—	16
LL	56	56	—	—
Gill rakers	—	—	18	—
Pharyngeal teeth	5.3.1–1.3.5	5.3.1–1.3.5	—	—
Metric characters expressed as % of SL				
TL	—	—	—	123.19
HL	29.74	24.02	28.36	32.61
Maximum body depth	21.16	21.50	26.92	—
Minimum body depth	10.10	9.86	11.00	—
Head height	—	—	19.90	—
Body width	13.86	12.70	—	—
Metric characters expressed as % of HL				
Length of lower jaw	29.77	29.80	74.99	16.67
Length of upper jaw	—	—	69.48	—
Eye diameter	17.67	15.30	15.61	—
Interocular distance	25.58	30.27	—	—
Head height	56.74	60.91	67.35	27.54
Head width	43.26	49.26	—	—

LL = number of lateral line scales, TL = total length, HL = head length, SL = standard length.
DISCUSSION

Three species described in this paper, *Barbus barbus*, *Salvelinus fontinalis*, and *Scophthalmus rhombus*, were noted for the first time in Pomeranian Bay. Values of the morphological characters of the specimens were consistent with the ranges provided by Nielsen (1986) and Kottelat and Freyhof (2007).

We prepared a checklist with 56 fish and two lamprey species reported from Pomeranian Bay, and among these 58 species, 35 species are marine, 13 are freshwater, and 10 are diadromous. Dudko et al. (2015) reported the occurrence of 41 fish and one lamprey species in Pomeranian Bay, with *Sprattus sprattus*, *Osmerus eperlanus* (Linnaeus, 1758), and *Platichthys flesus* dominating the catches (jointly 66% in terms of numbers). Psuty-Lipska and Garbachik-Wesołowska (1998) and Dudko et al. (2015) reported different fish species composition in Pomeranian Bay, which probably depended on the season and the distance from land. The checklist of fish and lamprey species in Pomeranian Bay, is presented in Table 3. Dudko et al. (2015) listed two species of the Gobiidae as permanent residents of Pomeranian Bay: *Pomatoschistus minutus* (Pallas, 1770) and *Neogobius melanostomus*. The abundance of the latter species has increased markedly since 2007–2008. First catches of this species were recorded in the area in 2003 (Winkler 2006), confirmed by our own study in 2006 (authors’ unpublished data). In this study *Neogobius melanostomus* was found as a new food item in the diet of *Scophthalmus rhombus*, thus becoming a new and important link in the trophic structure of Pomeranian Bay. It was previously reported as a new prey for predatory fish like *Gadus morhua*, *Perca fluviatilis*, *Sander lucioperca* in Pomeranian Bay (Dąbrowski et al. 2017).

Two of the three new species, *Barbus barbus* and *Salvelinus fontinalis*, are freshwater fishes. The natural habitat of *B. barbus* are the upper and middle sections of fast flowing streams. This fish occurs in some Pomeranian rivers and lakes that are linked to the Baltic Sea. There is no evidence that barbel reproduces in the Baltic Sea. It only occurs intermittently in estuaries and brackish waters, e.g., in the Curonian Lagoon (Adjers et al. 2006) or in the Gulf of Gdańsk (Skóra 1996). According to Thiel et al. (2013), adult *B. barbus* are encountered occasionally in the Baltic Sea coastal zone, but they do not occur in the coastal zones of the North Sea. *Barbus barbus* is considered a typical stenohaline freshwater species (Calin Sandu and Oprea 2013). This can be explained by a strong, permanent input of riverine waters to the coastal waters of Pomeranian Bay (Beszczyńska-Möller 1999).

Salvelinus fontinalis is an indigenous species of the north-eastern United States and Canada. It has also been released (intentionally or not) into different bodies of water (including brackish water) worldwide, where it is usually regarded as an invasive species. Some individuals commonly referred to as salters, move to the sea in the spring as stream temperatures rise, and they inhabit areas close to river mouths (Beitinger and Bennett 2000). In Europe, only non-anadromous populations are recorded (Kottelat and Freyhoff 2007), however, the non-migratory forms, when introduced directly into seawater, well adapt to salinity changes (Besner and Pelletier 1991). It is classified as a non-native species that was intentionally introduced for fishing and angling in the late nineteenth century in Baltic Sea drainage basin countries (Leppäkoski and Olenin 2000). Since then, escapes from hatcheries and aquaculture facilities located along the coast of the Baltic have been reported (Welcomme 1992).

Scophthalmus rhombus is a marine species, distributed from Norway to the Black Sea. According to Nielsen (1986) and Anonymous (2014), in the Baltic Sea, *S. rhombus* is distributed primarily in the western part, however, Heessen et al. (2015) noted its regular occurrence off Cape Arkona and around Bornholm. The eastern limit of its range has yet to be clearly defined. Skóra (1996) reported its presence in the Gulf of Gdańsk, but he categorized it as an extremely rare species. Grygiel (2009) described a...
Table 3

A checklist of fishes and lampreys recorded in Pomeranian Bay

Family	Species	Reference
Petromyzontidae	Lampetra fluviatilis (Linnaeus, 1758)	Dudko et al. 2015
	Petromyzon marinus Linnaeus, 1758	Więczaśek et al. 2015
	Eptatretus spinax (Linnaeus, 1758)	Więczaśek et al. 2018
Acipenseridae	Acipenser gueldenstaedtii Brandt et Ratzeburg, 1833	Keszka and Heese 2003
Anguillidae	Anguilla anguilla (Linnaeus, 1758)	Dudko et al. 2015
Engraulidae	Engraulis encracicolus (Linnaeus, 1758)	Dudko et al. 2015
Clupeidae	Alosa fallax Linnaeus, 1758	Krzykawski et at. 2001
	Clupea harengus Linnaeus, 1758	Dudko et al. 2015
	Sprattus sprattus (Linnaeus, 1758)	Dudko et al. 2015
Cyprinidae	Abramis brama Linnaeus, 1758	Dukdo et al. 2015
	Alburnus alburnus (Linnaeus, 1758)	Dukdo et al. 2015
	Ballerus ballerus (Linnaeus, 1758)	Dukdo et al. 2015
	Barbus barbus (Linnaeus, 1758)	This study
	Blicca bjoerka (Linnaeus, 1758)	Dukdo et al. 2015
	Rutulus rutulus (Linnaeus, 1758)	Dukdo et al. 2015
	Scardinius erythrophthalmus (Linnaeus, 1758)	Dukdo et al. 2015
	Vimba vimba (Linnaeus, 1758)	Dukdo et al. 2015
	Osmerus eperlanus (Linnaeus, 1758)	Dukdo et al. 2015
Salmonidae	Coregonus maraena (Bloch, 1779)	Dukdo et al. 2015
	Salmo trutta (Linnaeus, 1758)	Dukdo et al. 2015
	Salvelinus fontinalis (Mitchell, 1814)	This study
Esocidae	Esox lucius Linnaeus, 1758	Dukdo et al. 2015
Gadidae	Gadus morhua Linnaeus, 1758	Dukdo et al. 2015
	Merlangius merlangus (Linnaeus, 1758)	Dukdo et al. 2015
	Pollachius virens (Linnaeus, 1758)	Krzykawski et at. 2001
Lotidae	Enchelyopus cimbrius (Linnaeus, 1766)	Więczaśek et al. 2015
	Lota lota (Linnaeus, 1758)	Dukdo et al. 2015
Mugilidae	Chelon labrosus (Risso, 1827)	Czerniejewski et al. 2008
	Chelon ramados (=Liza ramada) (Risso, 1827)	Więczaśek et al. 2011
Belonidae	Belone belone (Linnaeus, 1760)	Dukdo et al. 2015
Gasterostidae	Gasterosteus aculeatus Linnaeus, 1758	Dukdo et al. 2015
	Spinachia spinachia (Linnaeus, 1758)	Więczaśek et al. 2015
Syngnathidae	Nerophis ophidion (Linnaeus, 1758)	Więczaśek et al. 2015
	Syngnathus typhle Linnaeus, 1758	Więczaśek et al. 2015
Triglidae	Chelidonichthys lucerna (Linnaeus, 1758)	Krzykawski et at. 2001
		Więczaśek et al. 2011
Cotididae	Myxoxocephalus scorpius (Linnaeus, 1758)	Dukdo et al. 2015
Agonidae	Agonus cataphractus (Linnaeus, 1758)	Więczaśek et al. 2015
Cyclopteridae	Cyclopterus lumpus Linnaeus, 1758	Dukdo et al. 2015
Moronidae	Dicentrarchus labrax (Linnaeus, 1758)	Krzykawski et at. 2001
Percidae	Gymnocephalus cernua (Linnaeus, 1758)	Dukdo et al. 2015
	Perca fluviatilis Linnaeus, 1758	Dukdo et al. 2015
	Sander lucioperca (Linnaeus, 1758)	Dukdo et al. 2015
Carangidae	Trachurus trachurus (Linnaeus, 1758)	Więczaśek et al. 2011
Mullidae	Mullus surmuletus Linnaeus, 1758	Więczaśek et al. 2011
Labridae	Labrus bergylta Ascanius, 1767	Keszka and Raczyński 2002
Zoarcidae	Zoarces viviparus (Linnaeus, 1758)	Dukdo et al. 2015
Pholidae	Pholis gunnellus (Linnaeus, 1758)	Więczaśek et al. 2015
Ammodytidae	Ammodytes tobianus Linnaeus, 1758	Dukdo et al. 2015
	Hyperoplus lanceolatus (Le Sauvage, 1824)	Dukdo et al. 2015

Table continues on next page.
A single specimen of *S. rhombus* from the mid-Polish coast, caught in 2008. Plikšs and Aleksejevs (1998) reported single occurrences of *S. rhombus* in Latvian waters in the 1960s. There have been only scarce published records on length–weight relations, age, and the reproductive biology of *S. rhombus* carried out in the Atlantic Ocean and the Adriatic Sea (Turan et al. 2016).

Scophthalmus rhombus is a commercially exploited species, but not in the Baltic Sea where it usually appears as bycatch, and its stocks are currently not regulated by the Total Allowable Catch (TAC) quotas. In 2012–2015 the landings in SD 24–32 were null while in 2016 they amounted to 1 t. Swedish and Danish landings for the period of 2012–2016 were null in SD 24–32, while German landings in SD 22 (Kiel Bight and Mecklenburg Bay) amounted to 2 t (no data for SD 24) (Anonymous 2017). It is unclear whether more than one stock of *S. rhombus* exists in the Baltic Sea, or if the Baltic population of *S. rhombus* is a part of a larger stock complex (Anonymous 2013). According to Blanquer et al. (1992), the weak geographic structure of *brill* seems to result from rapid re-colonization following the last ice age.

The growth rates of *S. rhombus* are slower in the northern parts of its distribution, and maturation is attained at shorter lengths; however, no precise data are available in the literature. In this study, the male specimens were aged 4+ and 5+ (17 and 21.5 cm TL), while in the Adriatic Sea males aged 4+ and 5+ attained from 38 to 40 cm TL (Arneri et al. 2001). ICES categorizes the brill stock as 'data limited' (Anonymous 2017). The parasites recovered from this fish species in Poland, where *Myxobolus pfeifferi*, *M. cordis*, and *Eimeria carpeni* are known from cultured fish (Malanowski 1951). *Rhabdochon hellichi* presently found in the adult *B. barbus* specimen that was reported from Polish waters in two host species, *Barbus barbus* and *Barbus peloponnesius* Valenciennes, 1842. Described by Janiszewska (1955) as *Rhabdochonoides barbi*, it was detected in rivers of southern Poland and since then it has probably not been observed. This is a stenoxenic nematode that requires an obligatory intermediate host such as the caddisfly larvae of the genus *Hydropsyche* (see Okulewicz et al. 2008) that inhabits only rivers and streams. Specimens of the acanthocephalan *P. laevis* penetrated the intestinal wall of the adult *barbel*. This parasite has not been recorded previously in this fish species in Poland, however, it is a common parasite of flounder in the brackish waters of the Baltic Sea (Chibani and Rokicki 2004).

There have been only few studies on parasitic fauna of *Scophthalmus rhombus*. The parasites recovered from this fish include a myxozoan intestinal parasite *Enteromyxum scophthalmi* (see Losada et al. 2014), tapeworms *Bothriocerplus scorpii* (see Renaud et al. 1984), and *B. andresi*, the trypanorhynch mesenteric cestode *Nybelinia linguis*, the digenean *Derogenes varicus*, the acanthocephalan *Acanthocephaloides propinquus* (see Eiras 2016), and two species of copepods, *Lepeopeltius hippoglissi* (see Hayward and Ryland 2003) and *L. europensis* (see Dawson et al. 2000). However, data from the Baltic Sea are lacking. The ciliate *Trichodina jadranica* noted in this study has not yet been recorded nor in this host neither in other fishes from the Pomeranian Bay area. This parasite is typical for *Platichthys flesus* recorded in the Kiel Bight (Dobberstein and Palm 2000), in the Gulf of Riga (Kirjušina and Vismanis 2007), and also in Danish eel farms on *Anguilla anguilla* (see Madsen et al. 2000). The diameter of the adhesive discs differs slightly among specimens from *P. flesus* and *A. anguilla*, and they also differ among individuals, but the differences are recognized as intraspecific variations. In Pomeranian Bay another species of *Trichodina* was found, namely

Table 1 cont.

Family	Species	Reference
Trachinidae	*Trachinus draco* Linnaeus, 1758	Krzykawski et al. 2001
Gobiidae	*Neogobius melanostomus* (Pallas, 1814)	Dudko et al. 2015
Pomatoschistus minute	(Pallas, 1770)	Dudko et al. 2015
Scombridae	*Scimpanther scumbi* Linnaeus, 1758	Dudko et al. 2015
Xiphidiidae	*Xiphias gladius* Linnaeus, 1758	Krzykawski et al. 2001
Scophthalmidae	*Scophthalmus maximus* (Linnaeus, 1758)	Dudko et al. 2015
	Scophthalmus rhombus (Linnaeus, 1758)	This study
Pleuronectidae	*Platichthys flesus* (Linnaeus, 1758)	Dudko et al. 2015
	Pleuronectes platessa Linnaeus, 1758	Dudko et al. 2015
New records of fish species from Pomeranian Bay

T. borealis in P. flesus (see Korłatowicz and Piasecki 2001), similarly like in the Gulf of Gdańsk (Chibani and Rokicki 2004). No ectoparasites were noted in this study, but they could have died because of their sensitivity to environmental changes from fresh to marine water.

The occurrence of Barbus barbus in Pomeranian Bay might have resulted from restocking activities and may represent the Oder River population. In recent years the density and the biomass of many rheophilous cyprinids have decreased considerably in many component river subsystems of the Oder River basin (Witkowski et al. 2007). In order to support the barbel population for over the past 15 years, a stocking program has been carried out by the Polish Angling Association in the West Pomeranian area. In turn, the specimen of Salvelinus fontinalis, collected in this study, might have escaped from an aquaculture facility in Pomerania (Inter-boundary region of Poland and Germany). This could have happened, for example, when ponds were damaged during a severe thunderstorm, such as that reported in August 2017, when dozens of brook trout and sturgeon escaped into the Baltic Sea through the Pomeranian Grabowa River. Similarly, Keszka and Heese (2003) described two specimens of Acipenser gueldenstaedtii Brandt et Ratzeburg, 1833 in Pomeranian Bay that were likely escapes from fish farming facilities.

The occurrence of Scophthalmus rhombus specimens in Pomeranian Bay might be a result of its active migration from the Arkona or Bornholm areas or a passive translocation with inflows of higher-salinity waters from the western Baltic. A weak Major Baltic Inflow from the North Sea occurred in March 2014. Previously, two smaller inflow events in November 2013 and February 2014 affected the Bornholm Basin (Naumann et al. 2018). The presently reported occurrence of the fish specimens recorded for the first time in Pomeranian Bay can be related to stocking (B. barbel), aquaculture activities (S. fontinalis), the migratory behaviour of species, or inflows of higher-salinity waters from the western Baltic (S. rhombus).

REFERENCES

Abbas B., Jaszkowiak K., Nawrocki A., Junge M., Rohde S., Kulaszka W., Demidowicz M., Siwka A., Mazur-Chrzanowska B., Landsberg-Uczciw M., Zloczowska I., Wierzchowska E., Sroka E., Arias-Blanquer A., Alayse J.P., Berrada-Rkhami O., Berrebi P. 1992. Allozyme variation in turbot (Psetta maxima) and brill (Scophthalmus rhombus) (Osteichthyes, Pleuronectiformes, Scophthalmidae) throughout their range in Europe. Journal of Fish Biology 41 (3): 277–288. DOI: 10.1023/A:1007618927527

Besner M., Pelletier D. 1991. Adaptation of the brook trout, Salvelinus fontinalis, to direct transfer to sea water in spring and summer. Aquaculture 97 (2–3): 217–230. DOI: 10.1016/0044-8486(91)90266-A

Beitinger T.L., Bennett W.A. 2000. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environmental Biology of Fishes 58 (3): 277–288. DOI: 10.1016/A:1007618927527

Benser M., Pelletier D. 1991. Adaptation of the brook trout, Salvelinus fontinalis, to direct transfer to sea water in spring and summer. Aquaculture 97 (2–3): 217–230. DOI: 10.1016/0044-8486(91)90266-A

Bieszczęyska-Möller A. 1999. Transport of the Odra River waters and circulation patterns in the Pomeranian Bay. Oceanologia 41 (3): 279–309.

Bielecki A., Cichocka J.M., Terlecki J., Witkowski A. 2011. The invasion of the leech Piscicola respirans (Hirudinea: Piscicolidae) on the fins of European grayling Thymalus thymalus. Biologia 66 (2): 294–298. DOI: 10.2478/s11756-011-0019-0

Blanquer A., Alayse J.P., Berrada-Rkhami O., Berrebi P. 1992. Allozyme variation in turbot (Psetta maxima) and brill (Scophthalmus rhombus) (Osteichthyes, Pleuronectiformes, Scophthalmidae) throughout their range in Europe. Journal of Fish Biology 41 (3): 277–288. DOI: 10.1016/A:1007618927527

Calin Sandu P.G., Oprea L. 2013. Estimating fish communities structure and diversity from predeltic Danube area. Animal Science and Biotechnologies 46 (2): 227–233.

Chibani M., Rokicki J. 2004. Seasonal occurrence of parasites of flounder Platichthys flesus (L.) from the Gulf of Gdańsk. Oceanological and Hydrobiological Studies 33 (3): 17–30.

Czernecki P., Keszka S., Rybczyk A. 2008. Chelona labrosus (Risso, 1827)—the first record from Lake Dąbie (Poland). Oceanologia 50 (2): 281–284.
Dawson L.H.J., Renaud F., Guégan J.F., de Meeûs T. 2000. Experimental evidence of asymmetrical competition between two species of parasitic copepods. Proceedings of the Royal Society of London. Series B. Biological Sciences 267 (1456): 1973–1978. DOI: 10.1098/rspb.2000.1238

Dąbrowski J., Więcaszek B., Górecka K. 2017. Alien and invasive animal species in the food of predatory fish from the Pomeranian Bay. Pp. 47–48. In: Konferencja Międzynarodowa: Nauka w służbie przyrody – Genetyka konservatorska i przeciwdziałanie inwazjom biologicznym. [International Conference: Science in service to nature—Conservation genetics and prevention of biological invasions.] 25–26 September 2017, Szczecin, Poland. [In English.]

Djikanovic V., Gacic Z., Cakic P. 2010. Endohelminth fauna of barbel Barbus barbus (L. 1758) in the Serbian section of the Danube River, with dominance of acanthocephalan Pomphorhynchus laevis. Bulletin of the European Association of Fish Pathologists 30 (6): 229–236.

Dobberstein R.C., Palm H.W. 2000. Trichodinid ciliates (Peritrichia: Trichodinidae) from the Bay of Kiel, with description of Trichodina claviformis sp. n. Folia Parassitologica 47 (2): 81–90. DOI: 10.14411/fp.2000.018

Douda K., Vrtílek M., Slavík O., Reichard M. 2012. The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biological Invasions 14 (1): 127–137. DOI: 10.1007/s10530-011-9989-7

Dudko S., Król S., Wojnar K., Wawrzyniak W. 2015. Charakterystyka karybackich fiofauny Zatoki Pomorskiej (w oparciu o wyniki monitoringu polowowego wykonanego w latach 2011–2014). [Fisheries characteristics of ichthyofauna of Pomeranian Bay (Based on the results of fishing monitoring carried out within 2011–2014)]. Wydawnictwo Josephs’s Sons, Szczecin, Poland. [In Polish.] http://fishbayproject.pl/files/fishbay_publikacja.pdf

Eiras J.C. 2016. Parasites of marine, freshwater and farmed fishes of Portugal: A review. Revista Brasileira de Parasitologia Veterinaria 25 (3): 259–278. DOI: 10.1590/S1984-296120160157

Ergens R. 1976. Gyrudactylus barbisp. n. (Monogeneidea) from the fins of barbels. Věstník československé společnosti zoologické 40 (3): 161–162.

Grabda-Kazub ska B., Piilea-Rapacz M. 1987. Parasites of Leuciscus idus (L.), Aspis aspis (L.) and Barbus barbus (L.) from the river Vistula near Warsaw. Acta Parasitologica Polonica 31 (25): 219–230.

Grygiel W. 2009. Niektóre obce i rzadkie gatunki ryb w polskich połowach na Bałtyku [Some alien and rare fish species in Polish catches in the Baltic Sea.]. Wydawnictwo Josephs’s Sons, Szczecin, Poland. [In Polish.]

Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hayward P.J., Ryland J.S. (eds.) 2003. Handbook of the marine fauna of north-west Europe. 2nd edn. Oxford University Press, Oxford, UK.

Heessen H.J.L., Daan N., Ellis J.R. (eds.) 2015. Fish atlas of the Celtic Sea, North Sea, and Baltic Sea. Based on international research-vessel surveys. KNNV Publishing, Wageningen Academic Publishers.

Herlyn H., Ehlers U. 2001. Organisation of the praesoma in Acanthocephalus anguillae (Acanthocephala, Palaeacanthocephala) with special reference to the muscular system. Zoomorphology 121 (1): 13–18. DOI: 10.1007/s004350100039

Janiszewska J. 1955. Rhabdochonoides barbi g. n., sp. n., subfamily Rhabdochonoidinae sub fam. n. (Fam. Rhabdochonidae Skrjabin) an intestinal parasite in cyprinid fish. Acta Parasitologica Polonica 3 (9): 233–244.

Keska S., Heese T. 2003. Occurrence of exotic Russian sturgeons, Acipenser gueldenstaedtii Brandt et Ratzburg, 1833 (Acipenseriformes: Acipenseridae) in the Baltic Sea. Acta Ichthyologica et Piscatoria 33 (2): 173–178. DOI: 10.3750/AIP2003.33.2.07

Keska S., Raczyński M. 2002. Wargacz kniazik Labrus bergylta Ascanius, 1767 u wybrzeży polskich. [Ballan wrasse Labrus bergylta Ascanius, 1767 off Polish coasts.] Komunikaty Rybackie 2002 (5): 22–23. [In Polish.]

Kirjušina M., Vismanis K. 2007. Checklist of the parasites of fishes of Latvia. FAO Fisheries Technical Paper: 369/3. FAO, Rome.

Korlatowicz A., Piasecki W. 2001. Parasite fauna of flounder, Platichthys flesus (L.) from the Pomeranian Bay, southwestern Baltic Sea. Wiadomości Rybackie 47 (Suppl. 2): 24.

Kottelat M., Freyhof J. 2007. Handbook of European freshwater fishes. Kottelat and Freyhof, Cornol, Switzerland, Berlin, Germany.

Krzykawski S., Więcaszek B., Keska S. 2001. The taxonomic revue of representatives of the extremely rare species in Polish waters collected within 1993–1999. Folia Universitas Agriculturae Stetinensis 218 Piscaria 28: 53–62.

Leppäkoski E., Olenin S. 2000. Non-native species and rates of spread: Lessons from the brackish Baltic Sea. Biological Invasions 2 (2): 151–163. DOI: 10.1023/A:1010052809567

Losada A.P., Bermúdez R., Falide I.D., Di Giancamillo A., Domenechini C., Quiroga M.I. 2014. Effects of Enteromyxum scopthalmi experimental infection on the neuroendocrine system of turbot, Scophthalmus maximus (L.). Fish and Shellfish Immunology 40 (2): 577–583. DOI: 10.1016/j.fsi.2014.08.011

Madsen H.C.K., Buchmann K., Mellergaard S. 2000. Trichodina sp. (Ciliophora: Peritrichida) in eel Anguilla anguilla in recirculation systems in Denmark: Host–parasite relations. Diseases of Aquatic Organisms 42 (2): 149–152. DOI: 10.3354/dao042149

Małanowski Z. 1951. Fauna pasożytnicza brzany (Barbus barbus L.) z środkowego biegu Wisły. [Parasite fauna of Barbus barbus from the middle section of the Vistula River.] Roczniki Nauk Rolniczych 58: 373–383. [In Polish.]

Molnár K., Eszterbauer E., Marton S., Székely C., Eiras J.C. 2012. Comparison of the Myxobolus fauna...
of common barbel from Hungary and Iberian barbel from Portugal. Diseases of Aquatic Organisms 100 (3): 231–248. DOI: 10.3354/dao02469

Moravec F., Scholz T. 1994. Seasonal occurrence and maturation of Neoechinorhynchus ratilii (Acanthocephala) in barbel, Barbus barbus (Pisces), of the Jihlava River, Czech Republic. Parasite 1 (3): 271–278. DOI: 10.1051/parasite:1994013271

Naumann M., Mohrholz V., Waniek J. 2018. Water exchange between the Baltic Sea and the North Sea, and conditions in the deep basins. HELCOM Baltic Sea Environmental Fact Sheet 2017.

Nielsen J.G. 1986. Scophthalmidae. Pp. 1291–1292. In: Whitehead P.J.P., Bauchot M.-L., Hureau J.C., Nielsen J., Tortoneese E. (eds.) Fishes of the North-eastern Atlantic and the Mediterranean. Vol. 3. UNESCO, Paris.

Ojaveer H., Jaanus A., MacKenzie B.R., Hureau J.-C., Olenin S., Radziejewska T., Telesh I., Zettler M.L., Zaiko A. 2010. Status of biodiversity in the Baltic Sea. PLoS ONE 5 (9): e12467. DOI: 10.1371/journal.pone.0012467

Okulewicz A., Perec-Matsyiak A., Hildebrand J., Zalesny G. 2008. Specyficzność żywicielska krajowych nicieni. [Host specificity of domestic nematodes.] Wiadomości Parazytologiczne 54 (1): 11–16. [In Polish.]

Panicz R., Keszka S. 2016. First occurrence of thinline grey mullet, Liza ramada (Risso, 1827) in the Odra River estuary (NW Poland): genetic identification. Oceanologia 58 (3): 196–200. DOI: 10.1016/j.oceano.2016.02.001

Pliks M., Aleksejevs E. 1998. Zivis [Fishes.] Latvijas daba, sugu enciklopēdija. [Nature of Latvia, Species Encyclopaedia.] Gandrs, Riga, Latvia. [In Latvian.]

Psuty-Lipska I., Garbacik-Wesołowska A. 1998. Species composition and fish distribution in the Pomeranian Bay and the Szczecin Lagoon. Bulletin of the Sea Fisheries Institute 1998 (3): 2–20.

Renaud F., Gatrell C., Romestaing P., Schlumberger C., Scholz T., Scholz T. 2005. Aspidogaster limacoides Diesing, 1835 (Trematoda, Aspidogastridae): A new parasite of Barbus barbus (L.) (Pisces, Cyprinidae) in Austria. Parasite 12 (4): 143–149.

Schlumberger C., Laingrubner S., Konesny R., Schabuss M. 2005. Aspidogaster limacoides Diesing, 1835 (Trematoda, Aspidogastridae): A new parasite of Barbus barbus (L.) (Pisces, Cyprinidae) in Austria. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie 106: 141–144.

Sevilla R.G., Diez A., Norén M., Mouchel O., Jérôme M., Verrez-Bagnis V., van Pelt H., Favre-Krey L., Krey G., the Fishtrace Consortium, Bautista J.M. 2007. Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Molecular Ecology Resources 7 (5): 730–734. DOI: 10.1111/j.1471-2121.2007.01863.x

Skóra K. 1996. New and rare fish species from the Gulf of Gdańsk. Zoologica Poloniae 41 (Suppl.): 113–130. [In Polish.]

Thiel R., Winkler H., Böttcher U., Dänhardt A., Fricke R., George M., Kloppmann M., Scharaenschmidt T., Ubl C., Vorberg R. 2013. Rote Liste und Gesamartenliste der etablierten Fische und Neuanagen (Elasmobranchii, Actinopterygii und Petromyzontida) der marinen Gewässer Deutschlands. In: Becker N., Haupt H., Hofbauer N., Ludwigs G., Nehring S. (eds.) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeresorganismen. Münster (Landwirtschaftsverlag). Naturschutz und Biologische Vielfalt 70 (2): 11–76.

Turan C., Yağlıoğlu D., Ergüden D., Gürlek M., Uyan A., Karan S., Doğdu S. 2016. Threatened brill species in marine waters of Turkey: Scophthalmus [sic] rhombus (Linnaeus, 1758) (Scophthalmidae [sic]). Natural and Engineering Sciences 1 (1): 1–6.

Welcomme R.L. 1992. A history of international introductions of inland aquatic species. ICES Marine Science Symposium 194: 3–14.

Więczak S., Sobeka E., Dudko S., Keszka S. 2011. New and ‘visiting’ fish species collected off the western coast of Poland (Baltic Sea) in 2007–2008 with a description of their parasite fauna. Oceanologia 53 (1): 163–179. DOI: 10.5697/oc.53.1.163

Więczak S., Sobeka E., Keszka S., Stepanowska K., Dudko S., Biernaczyk M., Wrzecionkowski K. 2015. Studies on endangered and rare non-commercial fish species recorded in the Pomeranian Bay (southern Baltic Sea) in 2010–2013. Helgoland Marine Research 69 (4): 411–416. DOI: 10.1007/s10152-015-0442-7

Więczak S., Sobeka E., Panicz R., Keszka R., Górecka K., Linowska A. 2018. First record of the deep-water shark Etmopterus spinax (Chondrichthyes: Etmopteridae) from the southern Baltic Sea (Pomeranian Bay). Oceanologia 60 (3): 426–430. DOI: 10.1016/j.oceano.2018.02.001

Winkler H.M. 2006. Die Fischfauna der südlichen Ostsee. Meeresangler-Magazin 16: 17–18.

Winkler H.M., Skóra K., Repecka R., Płosk M., Neelov A., Urho L., Gushin A., Jespersen H. 2000. Checklist and status of fish species in the Baltic Sea. ICES CM 2000/Mini Symposium 11: 1–15.

Witkowski A., Penczak T., Kotusz J., Przybylski M., Kruk A., Błachuta J. 2005. Checklist of the Sea Fisheries Institute of Gdańsk. Oceanologia 48 (3): 231–248. DOI: 10.1007/s10152-015-0442-7