宇宙重加热产生的随机引力波背景

吴岳良

Citation: 科学通报 63, 1071 (2018); doi: 10.1360/N972018-00132

View online: http://engine.scichina.com/doi/10.1360/N972018-00132

View Table of Contents: http://engine.scichina.com/publisher/scp/journal/CSB/63/12

Published by the 《中国科学》杂志社

Articles you may be interested in

由星族Ⅲ加热的尘埃所引起的宇宙微波背景谱的转变
Chinese Science Bulletin 30, 1805 (1985);

引力闪烁、背景辐射的各向异性和宇宙物质分布的非均匀性
Science in China Series A-Mathematics, Physics, Astronomy & Technological Science (in Chinese) 12, 1006 (1982);

诱生引力宇宙波函数
Chinese Science Bulletin 32, 1081 (1987);

Probing primordial gravitational waves: All CMB Polarization Telescope
National Science Review 6, 145 (2019);

中心对称静引力场背景下的孤立波式引力波解
Chinese Science Bulletin 33, 575 (1988);
宇宙重加热产生的随机引力波背景

吴岳良 1,2

1. 中国科学院大学亚太国际理论物理中心，北京 100049；
2. 中国科学院理论物理研究所，北京 100190
E-mail: ylwu@ucas.ac.cn; ylwu@itp.ac.cn

2015年9月14日，人类首次直接探测到了致密双星并合产生的引力波，验证了广义相对论在100年前对引力波的预言，打开了人类认识宇宙的一扇崭新的窗口，也拉开了引力波天文学和引力波宇宙学的序幕[1]。除了致密双星并合系统外，宇宙早期发生的暴胀也能产生引力波，这类随机引力波称为原初引力波。暴胀理论预言的原初引力波在揭示宇宙的物理起源中扮演着重要的角色。无论在暴胀过程中还是在暴胀结束后的重加热阶段产生的原初引力波，都携带着早期宇宙的物理信息[2]。因此，直接或间接地探测这类随机引力波背景，为我们提供了检验暴胀理论的唯一窗口。

暴胀理论不仅解决了热大爆炸宇宙模型中存在的一些疑问，而且预言的原初密度扰动为宇宙大尺度结构的形成提供了原初种子，同时十分自然地解释了宇宙微波背景辐射的温度涨落[3-5]。然而，什么驱动了宇宙早期的暴胀(或者说暴胀场的物理本质)仍是目前理论物理学家和宇宙学家积极研究的课题。该问题也被美国Science杂志列为21世纪有待解决的125个基本科学问题之一。此外，暴胀发生时的能标仍然不能被确定，目前宇宙微波背景辐射观测数据，譬如BICEP2和Planck 2015，只能提供暴胀发生能标的上限[6,7]。另外，由于暴胀过程中产生的原初引力波在视界后很快衰减，因此地面激光干涉仪直接探测到这类引力波在高频窗口的微弱信号，只能通过宇宙微波背景辐射在大尺度上的B模式极化来间接探测；而暴胀结束后重加热或预加热过程为地面激光干涉仪直接探测原初引力波提供了可能的波源。

2018年1月19日，中国科学院理论物理研究所博士研究生刘京、研究员郭宗宽、蔡荣根与中国科学院大学短期千
人教授肖文礼在Physical Review Letter发表题为“Gravitational waves from oscillons with cuspy potentials”的研究论文[8]。文中提到的尖角势函数可以在超弦理论中的一些非微扰效应中出现。他们发现，该模型产生的原初密
度扰动和原初引力波与目前的宇宙微波背景观测数据一致。在暴胀结束时的宇宙重加热阶段能够产生具有双峰结构的随机引力波能谱。此能谱与一般的暴胀场产生的单
峰能谱显著不同；该预言能够被将来的LIGO(laser interferometer gravitational wave observatory)实验所检验。暴胀
结束后暴胀场在尖角势函数的极小值点附近振荡。由于势函数的二阶导数是狄拉克函数，暴胀场的能谱在动量空间
一些区域随时间剧烈增长，产生大量的能量聚集的振荡子结构(图1)，暴胀场自身变得极不均匀，这种空间不均匀的
结构导致了很强的随机引力波背景的产生。

利用格点计算方法数值模拟了具有这类尖角势暴胀
场在宇宙重加热阶段产生的引力波能谱，能谱的振幅不依
赖模型参数，而能谱的峰值频率依赖于暴胀发生时的能
标。在一定的暴胀能标下，预言的双峰引力波能谱能够被
将来的LIGO实验探测到(图2)。

有望利用LIGO地面激光干涉仪实现对原初引力波的
直接观测。如果将来的LIGO实验探测到了该特征的随机
引力波背景，有望确定暴胀发生时的能标，并为暴胀场的
起源提供可能的解释。

探测随机引力波背景也是未来空间引力波探测计划的
科学目标之一。除了欧洲空间引力波探测计划LISA(laser inter-
ferometer space antenna)外，我国也提出了自己的空间
引力波探测计划。中国科学院组织实施的战略性先导科技
专项，正在开展“空间太极计划”预研究[9]。相对地面激光干
涉仪，空间引力波探测器对低频段引力波更加敏感，也可
开展对这类随机引力波背景的探测。

图2 预言的随机引力波能谱

参考文献

1 Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett, 2016, 116: 061102
2 Cai R G, Cao Z, Guo Z K, et al. The gravitational-wave physics. Natl Sci Rev, 2017, 4: 687–706
3 Starobinsky A A. Relict gravitation radiation spectrum and initial state of the universe. JETP Lett, 1979, 30: 682–685
4 Guth A H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys Rev D, 1981, 23: 347–356
5 Linde A D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys Lett B, 1982, 108: 389–393
6 Ade P A R, Ahmed Z, Aikin R W, et al. Improved constraints on cosmology and foregrounds from BICEP2 and keck array cosmic mic-
wave background data with inclusion of 95 GHz band. Phys Rev Lett, 2016, 116: 031302
7 Ade P, Aghanim N, Arnaud M, et al. Planck 2015 results. XX. Constraints on inflation. Astron Astrophys, 2016, 594: A20
8 Liu J, Guo Z K, Cai R G, et al. Gravitational waves from Oscillons with cuspy potentials. Phys Rev Lett, 2018, 120: 031301
9 Hu W R, Wu Y L. The Taiji program in space for gravitational wave physics and the nature of gravity. Natl Sci Rev, 2017, 4: 685–686