Student perception of the effect of problem familiarity on group discussion quality in a problem-based learning environment

Abstract

Introduction: Problem-based learning (PBL) is a student-centred approach to learning using health problem scenarios to trigger the learning process. Several factors contribute to the role of the problem scenarios in stimulating student learning. One of those factors is the student’s familiarity and knowledge about the problem itself. This may affect the challenge and stimulate the student discussion in the tutorial group. No previous research studied the impact of reusing the case scenarios on the group discussion. This study explored the effect of student familiarity of the problems as a result of reusing the case scenarios on the discussion quality in the tutorial session.

Methods: A qualitative study was used primarily to explore an understanding of the underlying opinions of the medical students of first and second academic year in the college of Medicine, University of Sharjah, UAE. Direct-discussion groups were arranged, and an open-ended online questionnaire was provided.

Results: The results of the study showed that fore-knowledge about the case scenario had no significant adverse effect on the discussion. Students stated that the facilitators played a vital role in maintaining the excellent quality of the discussion.

Discussion: Reuse of problem scenarios in PBL does not hurt the quality of the discussion, provided that the group dynamics are maintained.

Keywords: Problem-based learning, scenarios, familiarity, tutorial discussion

Introduction

Problem-based learning (PBL) is a learning approach started in the 1960s at McMaster University, Canada. It is a student-centered approach that triggers learning by having a problem scenario presented early in the learning process [1], [2], [3], [4], [5], [6]. Each group of students addresses the problem in the presence of a facilitator, following the process of the seven jump [7], [8].

The role of the problem scenario is to encourage students to activate their prior knowledge and to stimulate students’ interest in the subject matter [9], and hence to engage the students in an active discussion and to create a positive learning environment [10], [11], [12]. Several factors affect the quality of the PBL scenario and its effectiveness in stimulating discussions. These factors include the reality of the scenarios, the variety of experiences, the degree of challenge, supporting group work and the ability to activate prior knowledge [13], [14], [15], [16]. PBL aims at helping students to define new learning needs.

Familiarity with the problems and how it affects the degree of challenge and the quality of students’ discussion in the tutorial group has been studied by various authors. Some studied this with a primary focus on the effect of the discussion regarding long-term retention of knowledge. However, no previous research studied the impact of the immediate recognition of a case scenario resulting from its reuse on the group discussion. This gap in the research indicates a need for further study.

This study was conducted at the College of Medicine at the University of Sharjah, where PBL is used as a method of teaching and learning, and as a trigger for the discussion of the curriculum themes. The PBL case scenarios are reused for many years. During the evaluation of the curriculum implementation, the college educational leaders were investigating the effect of reusing the case scenarios with regard to the quality of student discussions. The study was conducted with seeking the permission of the college administration as part of an evaluation process of the PBL by students. The process initially depended on the feedback collected from students through questionnaires after each problem discussion. The questionnaires did not contain questions about the effect of being familiar with the case scenarios beforehand. The objective of this study was to explore the students’ opinion how being familiar with the scenarios as a result
of reusing them impacted on the quality of the discussion during the PBL tutorial session.

Methods

This was a qualitative study conducted with the participation of students in years one and two in the College of Medicine, University of Sharjah. Data were collected through direct discussion within groups and from an online questionnaire with open ended questions. For the discussion, students were placed in the same groups they had originally been assigned to for the problem-based learning. Students were made aware of the research through a formal notification process in the college and were informed that participation was voluntary. A total of 20 group discussions were conducted, ten for each academic year, with 7–10 participants in each group.

The PBL facilitators conducted the discussions after being trained by the researchers. The duration of each discussion was between 30 and 45 minutes. The discussions were carried out at the same time and on the same day for each academic year, after the end of the scheduled PBL tutorial session, to maximise the attendance of students. Students were given the option to leave if they did not want to participate or if they had other commitments (as the discussions were conducted towards the end of the working day).

The discussion addressed two points:

1. For approximately how many “problems” did students attempt to know the scenario and learning objectives from previous years’ colleagues in advance; and
2. If they knew the learning objectives of the problem from other students, did this affect their discussion in the tutorial groups? If so, how?

In the discussion, the facilitator asked a question, allowed 3-5 minutes for the participants to think and then asked them to respond. Responses to both questions were collected in such a way that every one of the students provided an answer. Then, an open free discussion among the group members was allowed and the facilitator worked to monitor the group dynamics. Notes on the discussion were taken by the facilitator, as there were only two points of discussion. The discussion responses were summarised by each group facilitator and provided to the researchers.

To increase the number of responses, the two points discussed were also sent to students in the form of an online questionnaire, using SurveyMonkey®, for those who could not attend the discussions. 48 opened the questionnaire, but only 30 provided responses.

All responses from the group discussions and the online questionnaires were read and analysed by the researchers, using the content analysis technique to generate common themes.

Results

Almost all students in all the groups and those who responded to the questionnaire had some knowledge beforehand about some or all of the problem scenarios they were going to address in the tutorial session. The title or the summary of the scenario was the most common information they knew. A few students tended to identify the learning objectives of particular problems or asked about specific points to discuss. The source of their information were usually senior students.

Below are some of the students’ responses.

- “We have a rough idea about at least the main problems in the scenario almost every week.”
- “I knew the problem only, not the objectives.”
- “Mostly from my colleagues, who had knowledge from senior students…”
- “In year-one scenarios, I had no idea about the objectives before the session; then although I had files from my senior friends, I did not open the objectives.”

Most students thought that their prior knowledge about the problem had a positive impact on the quality and quantity of the discussion they were to have. They stated that, by having this knowledge beforehand, they have more information to share during the discussion and they had more contributions and involvement.

One point the students mentioned was that, through knowledge about the problem scenarios, they could pinpoint the critical points to be discussed, and this would facilitate the production of the learning outcomes. Examples of students’ responses are below.

- “It will enhance my discussion…I would at least have a superficial idea of what is going on, to better-guided brainstorm.”
- “It does not decrease the discussion, but it sometimes stimulates some students to read about the problem before coming to the PBL session, which can affect the session negatively.”
- “I do not think it would affect us in that way; it might even help with more discussion since some members of the group might have already prepared beforehand…”
- “It leads to more discussion; I will prepare myself.”

A few students believed that knowing the learning objectives of the problem from other students affects the discussion negatively, as it limits thinking and generation of probabilities and leads to the dominance of those who know over those who do not know. Below are some of the students’ responses.

- “Yes, it will affect my discussion. I think it will be more passive because I already know the objectives.”
- “It leads to less discussion.”
- “Yes, because then I will not think about all the possibilities…”
• “It is very annoying because the discussion is only limited to one or two students who dominate the discussion.”
• “It will affect it negatively, so some students will jump by introducing the objectives rather than think about the finding.”
• “Considering the fact that there are a few students who know the learning objectives of the scenario in advance, it affects students who are not aware of the objectives, and this leads to less discussion within the group.”

Very few students believed that there was absolutely no effect on the discussion when they were not aware of the learning objectives of the problem.

• “It does not affect the discussion much since we know what the problem is about, but we don't know anything about the topic.”
• “No, it really has no effect knowing or not knowing the problem.”

Students in all the groups agreed that the quality of the discussion depended on the manner in which the facilitator carried out his/her role, and that it was not affected by whether they knew about the problem beforehand or not.

• “It is all about the facilitator.”
• “It will not affect the quality of the discussion as long as the facilitator can direct the discussion.”

Discussion

As per the results obtained, knowledge about the case scenario but not the learning objectives may lead to better discussion as the level of previous knowledge may increase. Sockalingam and Schmidt [17] explored the effect of the cumulative prior knowledge and experience a student may have about the case. They concluded that this prior knowledge and expertise has a positive impact on student learning. Still, they believe that some level of unfamiliarity with the case may be preferable, as it will lead to the generation of more questions and discussion among students. Thus, their conclusion partly supports the results of our study: students still will not know all the aspects of the problem; they know only the summary and some of the points needed to generate learning objectives.

In another study about familiarity (prior knowledge) with the problem, Soppe et al. [9] reported that students perceived the familiar problem as a high-quality one when compared to a non-familiar problem, but there was no difference in the quality of the students’ discussion. On the other hand, the results of this study indicated that knowledge of the learning objectives enhanced the discussion but had a negative impact on its quality. This is also supported by the conclusions from the studies mentioned above and also by the study by Mauffette et al. [2] who indicated that the discussion relating to the problem is affected by many factors, such as the level of challenges perceived by students and how a student conceptualizes the problem from his/her context. These factors will likely be affected when the students know the learning objectives of the case scenario beforehand.

Students in this study indicated that the quality of the discussion depends greatly on the facilitator. The importance of the facilitator's role is well recognized. Maudsley (1999), reported that the PBL facilitator should be a process expert rather than subject expert [18]. Yee et al. (2006) have also concluded that “facilitator can make or break the session”; they argue that facilitators can motivate student learning even if the triggers are not of the most effective quality [19]. The finding from Yee et al. are highly compatible with our findings. We did not come across any article that does not value the role of the facilitator in PBL.

The source of information for students about the problem scenarios is the senior peers; which is considered a difficult source to control.

Conclusion

The results of this study suggest different effects of prior knowledge about the problem scenario on the quality of the discussion within the tutorial group. The effects depend on what is known by students. The results also suggest that reusing problem scenarios in PBL does not hurt the quality of the discussions, provided that the group dynamics are maintained by the facilitator.

Limitations

The study was somewhat limited in that it depended solely on student perceptions; a more objective observation of the discussion in the tutorial groups may lead to better results. The results may need to be supported by another measurement of the quality of the discussion, such as recordings of some of the tutorial sessions or qualitative data from the group facilitators’ opinions. Further involvement of the facilitators as research participants may add to the results of this study.

Competing interests

The authors declare that they have no competing interests.

References

1. Swanwick T. Understanding medical education: Evidence, theory and practice. Hoboken, New Jersey: John Wiley & Sons; 2013. DOI: 10.1002/9781118472361
2. Mauffette Y, Kandlbinder P, Soucisse A. The problem in problem-based learning is the problems: But do they motivate students. In: Savin-Baden M, Wilkie K, eds. Challenging research in problem based learning. Maidenhead: Open University Press; 2004. p.11-25.

3. Wood DF. ABC of learning and teaching in medicine: Problem based learning. BMJ. 2003;326(7384):328. DOI: 10.1136/bmj.326.7384.328

4. Staun M, Bergström B, Wadensten B. Evaluation of a PBL strategy in clinical supervision of nursing students: Patient-centred training in student-dedicated treatment rooms. Nurse Educ Today. 2010;30(7):631-637. DOI: 10.1016/j.nedt.2009.12.013

5. Nieboer E. Focus A problem-based, self-directed approach to the teaching of the principles of environmental and human toxicology. J Environ Mont. 2002;41(14N-18N. DOI: 10.1039/B111668C

6. Faisal R, Bahadur S, Shinwari L. Problem-based learning in comparison with lecture-based learning among medical students. J Pak Med Assoc. 2016;66(6):650-653.

7. Demirören M, Turan Ş, Öztuna D. Medical students' self-efficacy in problem-based learning and its relationship with self-regulated learning. Med Educ Online. 2016;21(1):30049. DOI: 10.3402/meo.v21i.30049

8. Khan IA, Al-Swailmi FK. Perceptions of faculty and students regarding Problem Based Learning: A mixed methods study. J Pak Med Assoc. 2015;65(12):1334-1338.

9. Sorpe M, Schmidt HG, Bruyten RJ. Influence of problem familiarity on learning in a problem-based course. Instruct Sci. 2005;33(3):271-281. DOI: 10.1007/s11251-004-7688-9

10. Keshk LI, El-Azim SA, Qalawa SA. Quality of Problem Based Learning Scenarios at College of Nursing in Egypt and KSA: Comparative Study. Am J Educl Res. 2016;4(4):701-710.

11. Azer SA. Twelve tips for creating trigger images for problem-based learning cases. Med Teach. 2007;29(2-3):93-97. DOI: 10.1080/01421590701291444

12. Dolmans DH, Snellen-Balendong H, van der Vleuten CP. Seven principles of effective case design for a problem-based curriculum. Med Teach. 1997;19(3):185-189. DOI: 10.3109/014215997089013579

13. Walsh K. Oxford textbook of medical education. Oxford: Oxford University Press; 2013. DOI: 10.1093/med/9780199526779.001.0001

14. Russel K. The problem of the problem and perplexity. In: PBL conference. 1999.

15. Dahlgren MA, Öberg G. Questioning to learn and learning to question: Structure and function of problem-based learning scenarios in environmental science education. High Educ. 2001;41(3):263-262. DOI: 10.1023/A:1004138810465

16. Azer SA, Peterson R, Guerrero AP, Edgren G. Twelve tips for constructing problem-based learning cases. Med Teach. 2012;34(5):361-367. DOI: 10.3109/0142159X.2011.613500

17. Skokauskas N, Guerrero AP. Problem-Based Learning as a Vehicle for Collaborating Internationally and Introducing Faculty and Trainees to Different Scholarship Perspectives. Acad Psych. 2017;41(1):149-50. DOI: 10.1007/s40596-016-0602-3

18. Maudsley G. Roles and responsibilities of the problem based learning tutor in the undergraduate medical curriculum. BMJ. 1999;318(7184):657. DOI: 10.1136/bmj.318.7184.657

19. Yee HY, Radhakrishnan A, Ponnudurai G. Improving PBLs in the International Medical University: defining the ‘good’PBL facilitator. Med Teach. 2006;28(6):558-560. DOI: 10.1080/01421590600878226

Corresponding author:
Jun. Prof. Mohamed Ahmed Eladl
University of Sharjah, College of Medicine, Basic Medical Sciences, PO BOX 27272, Sharjah, United Arab Emirates,
Phone: +971 (6) 505 7253
meladl@sharjah.ac.ae

Please cite as
Abdalla ME, Eladl MA. Student perception of the effect of problem familiarity on group discussion quality in a problem-based learning environment. GMS J Med Educ. 2019;36(3):Doc29.
DOI: 10.3205/zma001237, URN: urn:nbn:de:0183-zma0012378

This article is freely available from http://www.egms.de/en/journals/zma/2019-36/zma001237.shtml

Received: 2018-04-22
Revised: 2019-03-04
Accepted: 2019-03-04
Published: 2019-05-16

Copyright
©2019 Abdalla et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Wahrnehmung der Auswirkung der Vertrautheit mit Problemen seitens Studenten auf die Qualität von Gruppendiskussionen in einer problembasierten Lernumgebung

Zusammenfassung

Einführung: Problembasiertes Lernen (PBL) ist ein auf Studenten bezogener Ansatz, um zu lernen, Gesundheitsproblem-Szenarien für das Auslösen eines Lerneffekts zu nutzen. Mehrere Faktoren tragen zur Rolle von Problemszenarien bei, um Studenten zum Lernen anzuregen. Einer der Faktoren ist die Vertrautheit von Studenten mit einem Problem bzw. deren Kenntnis des Problems selbst. Dies kann einen Einfluss auf die Herausforderung und Stimulierung der Studentendiskussion in einer Lerngruppe haben. Bisherige Forschungen haben nicht den Einfluss auf Gruppendiskussionen untersucht, wenn Fallstudien-Szenarien erneut verwendet werden. Die vorliegende Studie hat die Auswirkungen untersucht, die eine Vertrautheit der Studenten mit den Problemen infolge einer erneuten Verwendung von Fallstudien-Szenarien auf die Diskussionsqualität im Tutoriumskurs hat.

Methoden: Eine qualitative Studie wurde vorrangig genutzt, um das Verständnis zugrunde liegender Meinungen von Medizinstudenten des ersten und zweiten akademischen Jahres am College of Medicine, University of Sharjah, VAE, zu untersuchen. Direkte Diskussionsgruppen wurden zusammengestellt und es wurde ein offen endender Online-Fragebogen zur Verfügung gestellt.

Ergebnisse: Die Ergebnisse der Studie zeigten, dass Vorkenntnisse von einem Fallstudien-Szenario keine signifikanten nachteiligen Auswirkungen auf die Diskussion hatten. Studenten gaben an, dass die Moderatorin eine wesentliche Rolle dabei spielten, die hohe Qualität der Diskussion beizubehalten.

Diskussion: Die erneute Verwendung von Problemszenarien im PBL beeinträchtigt nicht die Qualität der Diskussion, vorausgesetzt, die Gruppendynamik bleibt erhalten.

Schlüsselwörter: Problembasiertes Lernen, Szenarien, Vertrautheit, Tutoriumsdiskussion

Einführung

Problembasiertes Lernen (PBL) ist ein Lernansatz, der in den 1960er Jahren an der McMaster University, Kanada begonnen wurde. Es handelt sich um einen auf Studenten bezogenen Ansatz, der ein Lernen dadurch auslöst, dass ein Problemszenario zu einem frühen Zeitpunkt des Lernprozesses vorgestellt wird [1], [2], [3], [4], [5], [6]. Jede Studentengruppe ging das Problem in Anwesenheit eines Moderators an, indem dem 7-Schritte-Prozess gefolgt wurde [7], [8].

Aufgabe des Problemszenarios ist es, die Studenten dazu zu ermutigen, ihre bestehenden Kenntnisse zu aktivieren und das Interesse der Studenten am Gesprächsgegenstand zu stimulieren [9], und dadurch die Studenten in eine aktive Diskussion zu verwickeln und eine positive Lernumgebung zu schaffen [10], [11], [12]. Verschiedene Faktoren haben Einfluss auf das PBL-Szenario und dessen Auswirkungen als Stimulus für Diskussionen. Diese Faktoren umfassen die Realität der Szenarien, eine Vielfalt von Erfahrungen, den Grad der Herausforderung, unterstützende Gruppenarbeit und die Fähigkeit, bereits bestehendes Wissen zu aktivieren [13], [14], [15], [16]. PBL ist darauf gerichtet, Studenten behilflich zu sein, neue Lernbedürfnisse zu definieren. Die Vertrautheit mit Problemen und wie sie den Grad der Herausforderung und die Qualität der studentischen Diskussion in einer Lerngruppe beeinflussen, ist bereits von mehreren Autoren untersucht worden. Einige von ihnen wendeten sich mit primärer Konzentration den Aus-
Die Diskussionen sprachen zwei Punkte an: die Gespräche am Ende des Arbeitstages stattfanden und die Studenten hatten die Möglichkeit zu gehen, falls sie nicht teilnehmen wollten. Anwesenheit der Studenten zu maximieren. Die Studenten zum Ende des geplanten PBL-Tutoriumskurses, um die Ziele zu ihr, 20 Gruppendiskussionen durchgeführt; die Daten wurden erhoben durch direkte Gespräche innerhalb der Gruppen und mit einem offen endenden Online-Fragebogen. Für die Diskussionen wurden die Studenten in dieselben Gruppen aufgeteilt, in denen sie anfangs beim PBL waren. Die Studenten waren einformelles Mitteilungsverfahren am College über die Forschung informiert worden, und ihnen wurde mitgeteilt, dass die Teilnahme freiwillig sei. Es wurden insgesamt 20 Gruppendiskussionen durchgeführt; zehn für jedes akademische Jahr, mit jeweils 7-10 Teilnehmern pro Gruppe. Die PBL-Moderatoren leiteten die Diskussionen, nachdem sie zuvor von den Forschern angerichtet worden waren. Die Dauer der Diskussionen lag zwischen 30 und 45 Minuten. Die Diskussionen fanden für die beiden akademischen Jahre zur selben Zeit und am selben Tag statt, jeweils vom Gruppenmoderator zusammengefasst und den Forschern zur Verfügung gestellt. Um die Anzahl der Antworten zu erhöhen, wurden die beiden diskutierten Punkte in Form eines Online-Fragebogens unter Verwendung von SurveyMonkey® denjenigen Studenten zugesandt, die nicht an den Diskussionen teilnehmen konnten. 48 Personen öffneten den Fragebogen, aber nur 30 gaben Antworten. Alle Antworten aus den Gruppendiskussionen und dem Online-Fragebogen wurden von den Forschern unter Anwendung der Inhaltsanalyse-Technik gelesen und analysiert, um gemeinsame Themen zu schaffen.

Methoden

Es handelte sich um eine qualitative Studie, die unter Beteiligung von Studenten des ersten und zweiten Studienjahres am College of Medicine, University of Sharjah durchgeführt wurde. Die Daten wurden erhoben durch direkte Gespräche innerhalb der Gruppen und mit einem offen endenden Online-Fragebogen. Für die Diskussionen wurden die Studenten in dieselben Gruppen aufgeteilt, in denen sie anfangs beim PBL waren. Die Studenten waren durch ein formelles Mitteilungsverfahren am College über die Forschung informiert worden, und ihnen wurde mitgeteilt, dass die Teilnahme freiwillig sei. Es wurden insgesamt 20 Gruppendiskussionen durchgeführt; zehn für jedes akademische Jahr, mit jeweils 7-10 Teilnehmern pro Gruppe. Die PBL-Moderatoren leiteten die Diskussionen, nachdem sie zuvor von den Forschern angerichtet worden waren. Die Dauer der Diskussionen lag zwischen 30 und 45 Minuten. Die Diskussionen fanden für die beiden akademischen Jahre zur selben Zeit und am selben Tag statt, jeweils zum Ende des geplanten PBL-Tutoriumskurses, um die Anwesenheit der Studenten zu maximieren. Die Studenten hatten die Möglichkeit zu gehen, falls sie nicht teilnehmen wollten oder wenn sie andere Verpflichtungen hatten (da die Gespräche am Ende des Arbeitsstages stattfanden). Die Diskussionen sprachen zwei Punkte an:

1. Für in etwa wie viele “Probleme” versuchten die Studenten, das Szenario und die Lernziele von Mitstudenten aus früheren Jahren im Voraus zu erfahren; und
2. Falls sie die Lernziele des Problems von anderen Studenten kannten, beeinflusste dies ihre Diskussion in der Lerngruppe? Und falls ja, inwiefern?

In der Diskussion stellte der Moderator eine Frage, gestattete den Teilnehmern 3-5 Minuten Bedenkenzeit und fragte dann nach ihren Antworten. Antworten auf beide Fragen wurden so gesammelt, dass jeder einzelne Student eine Antwort gab. Dann wurde eine offene und freie Diskussion unter den Gruppenmitgliedern erlaubt, und der Moderator überwachte die Gruppendifferenz. Der Moderator machte sich selbst Notizen zu den Gesprächen, da es nur zwei Gesprächspunkte gab. Die Diskussionsreaktionen wurden jeweils vom Gruppenmoderator zusammengefasst und den Forschern zur Verfügung gestellt. Um die Anzahl der Antworten zu erhöhen, wurden die beiden diskutierten Punkte in Form eines Online-Fragebogens unter Verwendung von SurveyMonkey® denjenigen Studenten zugesandt, die nicht an den Diskussionen teilnehmen konnten. 48 Personen öffneten den Fragebogen, aber nur 30 gaben Antworten. Alle Antworten aus den Gruppendiskussionen und dem Online-Fragebogen wurden von den Forschern unter Anwendung der Inhaltsanalyse-Technik gelesen und analysiert, um gemeinsame Themen zu schaffen.

Ergebnisse

Fast alle Studenten in den Gruppen und diejenigen, die den Fragebogen ausgefüllt hatten, besaßen gewisse Vorkenntnisse zu einem oder allen Problemszenarien, die in den Tutoriumskursen angesprochen werden sollten. Der Titel oder die Zusammenfassung des Szenarios war die häufigste vorliegende Information. Einige Studenten neigten dazu, die Lernziele bestimmter Probleme zu identifizieren oder sie stellten Fragen zu speziellen Punkten, die diskutiert werden sollten. Die Quelle ihrer Kenntnisse waren üblicherweise höhere Semester. Unten stehend finden sich einige Antworten von Studenten.

- „Wir haben fast jede Woche eine grobe Vorstellung zumindest von den Hauptproblempunkten des Szenarios.“
- „Ich kannte nur das Problem, nicht die Ziele.“
- „Meist durch meine Kollegen, die es von älteren Studenten wussten ...“
- „In den Erst-Jahres-Szenarien hatte ich vor dem Kurs keine Ahnung von den Zielen; dann habe ich die Ziele nicht geöffnet, obwohl ich die Unterlagen von meinen Freunden aus höheren Semestern hatte.“

Die meisten Studenten glaubten, dass ihre Vorkenntnisse zu den Problemen einen positiven Einfluss auf Qualität und Quantität der bevorstehenden Diskussion hatten. Sie gaben an, dass sie aufgrund dieses Wissens während der Diskussion mehr an Informationen mit den anderen...
teilen könnten, und dass sie mehr in Bezug auf Beiträge und Beteiligung leisten können.

Ein von den Studenten angesprochener Punkt war, dass sie durch ihre Kenntnis vom Problemszenario, die zu diskutierenden kritischen Punkte genau bestimmen, und dies das Hervorbringen von Lernergebnissen erleichterte. Beispiele für studentische Antworten finden sich hier unten.

- „Das verbessert meine Diskussion ...Ich hatte zumindest eine überbordende Vorstellung von dem, was vor sich geht, für ein besser angeleitetes Brainstorming.“
- „Es verringert die Diskussion nicht, aber manchmal führt es dazu, dass einige Studenten vor dem PBL-Kurs sich zu dem Problem belesen, was den Kurs negativ beeinflussen kann.“
- „Ich denke nicht, dass es uns auf diese Weise beeinflussen würde; es könnte sogar für mehr Diskussion hilfreich sein, weil sich einige Mitglieder der Gruppe schon im Vorfeld vorbereitet haben ...“
- „Es führt zu mehr Diskussion; ich werde mich vorbereiten.“

Ein paar Studenten glaubten, dass die Kenntnis anderer Studenten über die Lernziele der Probleme die Diskussion negativ beeinflusst, weil dies das Denken und die Entwicklung von Möglichkeiten einschränkt, und zur Dominanz derjenigen, die das Wissen besitzen, über diejenigen, die es nicht besitzen, führt. Beispiele für studentische Antworten finden sich hier unten.

- „Ja, das beeinflusst meine Diskussion. Ich glaube, sie wird passiver sein, weil ich die Ziele schon kenne.“
- „Es führt zu weniger Diskussion.“
- „Ja, weil ich dann nicht über alle Möglichkeiten nachdenke ...“
- „O, Das ist sehr störend, weil sich dann die Diskussion nur auf einen oder zwei Studenten beschränkt, die die Diskussion dominieren.“
- „Es hat einen negativen Einfluss; einige Studenten werden bei der Einführung der Ziele gleich anspringen anstatt über das Ergebnis nachzudenken.“
- „Wenn man berücksichtigt, dass es ein paar Studenten gibt, die die Lernziele des Szenarios im Vorhinein kennen, hat das einen Einfluss auf die Studenten, denen die Ziele nicht bekannt sind, und das führt zu weniger Diskussion innerhalb der Gruppe.“

Sehr wenige Studenten glaubten, dass es gar keine Auswirkung auf die Diskussion haben werde, wenn den Studenten die Lernziele des Problems nicht bekannt sind.

- „Es hat keinen großen Einfluss auf die Diskussion, weil wir das Problem ja kennen, aber wir wissen nichts zum Thema.“
- „Nein, es hat keinen Einfluss, ob man das Problem kennt oder nicht.“

Die Studenten in allen Gruppen waren sich einig, dass die Qualität der Diskussion davon abhing, wie der Moderator seine Rolle wahrnahm, und es nicht davon abhing, ob sie das Problem kannten oder nicht.

- „Es hängt alles vom Moderator ab.“
- „Das hat keinen Einfluss, so lange der Moderator die Diskussion anleiten kann.“

Diskussion

Gemäß den in dieser Studie von Studenten erhaltenen Ergebnissen kann die Kenntnis von einem Fallstudien-Szenario, allerdings nicht die Kenntnis von den Lernzielen, zu einer besseren Diskussion führen, da sich das Niveau des Vorwissens erhöhen kann; Sockalingam und Schmidt [17] untersuchten die Auswirkung von kumulativem Vorwissen und Erfahrung, die ein Student zu einem Fall be sitzen kann. Sie schlussfolgerten, dass Vorkenntnisse und Fachwissen einen positiven Einfluss auf studentisches Lernen haben. Jedoch denken sie, dass ein gewisses Level an Nichtvertrautheit mit einem Fall besser wäre, weil es zu mehr Fragen und Diskussionen unter den Studenten führt. Daher stützt ihre Schlussfolgerung teilweise die Ergebnisse dieser Studie: Studenten kennen nicht sämtliche Aspekte des Problems; sie kennen lediglich die Zusammenfassung und einige der Punkte, die nötig sind, um Lernziele zu entwickeln.

In einer anderen Studie zur Vertrautheit (Vorkenntnisse) mit einem Problem berichteten Soppe u. a. [9], dass Studenten ein vertrautes Problem als hochqualitativ wahrnahmen im Vergleich zu nicht vertrauten Problemen, aber es gab keinen Unterschied in der Qualität der studentischen Diskussion.

Auf der anderen Seite deuten die Ergebnisse dieser Studie darauf hin, dass die Kenntnis von Lernzielen die Diskussion verbesserte, jedoch einen negativen Einfluss auf deren Qualität hat. Dies wird gestützt durch Schlussfolgerungen der o. g. Studien und ebenso durch die Studie von Mauffette u. a. [2], die darauf verweisen, dass die Diskussion eines Problems von vielen Faktoren beeinflusst wird, wie beispielsweise das von den Studenten wahrgenommene Niveau der Herausforderung, und wie ein Student von seinem/ihrer Kontext aus gesehen, über ein Problem nachdenkt. Diese Faktoren werden wahrscheinlich beeinflusst, wenn die Studenten die Lernziele eines Fallstudien-Szenarios bereits im Voraus kennen.

Die Studenten in dieser Studie wiesen darauf hin, dass die Qualität der Diskussion wesentlich vom Moderator abhängt. Die Bedeutung der Rolle des Moderators ist weithin anerkannt; Maudsley (1999) berichtete, dass der PBL-Moderator eher ein Prozessexperte, denn ein Fachexperte sein sollte [18]; Yee u. a. (2006) schlussfolgerten ebenfalls, dass ein „Moderator einen Kurs schaffen oder zerstören kann“ [facilitator can make or break the session]; sie argumentieren, dass Moderatoren studentisches Lernen motivieren können, selbst wenn die Auslöser nicht von besonders wirksamer Qualität sind [19]. Die Ergebnisse von Yee u. a. passen in hohem Maße zu unseren Ergebnissen. Wir fanden nicht einen einzigen Artikel, in dem die Rolle des Moderators bei PBL nicht hoch eingeschätzt wurde.
Die Informationsquelle der Studenten hinsichtlich der Problemszenarien sind Mitstudenten höherer Semester, was als schwierig zu kontrollierende Quelle eingeschätzt wird.

Schlussfolgerung

Die Ergebnisse dieser Forschung deuten unterschiedliche Auswirkungen von Kenntnissen über ein Problemszenario auf die Qualität der Diskussion innerhalb einer Tutoriumsgruppe an. Die Auswirkungen hängen davon ab, was die Studenten wissen. Die Ergebnisse legen zudem nahe, dass die erneute Verwendung von Problemszenarien im PBL keinen nachteiligen Einfluss auf die Qualität der Diskussion hat, vorausgesetzt, die Gruppen dynamik wird durch den Moderator aufrechterhalten.

Einschränkungen

Diese Studie wurde dadurch etwas eingeschränkt, dass sie ausschließlich auf die Wahrnehmung der Studenten stützt; eine objektivere Beobachtung der Diskussion in den Tutoriumsgruppen könnte zu besseren Ergebnissen führen. Die Ergebnisse können durch andere Messungen der Qualität einer Diskussion gestützt werden, wie beispielsweise die Aufzeichnung von Tutoriumskursen oder qualitative Daten basierend auf der Einschätzung der Gruppenmoderatoren. Eine weitere Einbeziehung der Moderatoren als Forschungsbeteiligte könnte die Ergebnisse dieser Studie ergänzen.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Swanwick T. Understanding medical education: Evidence, theory and practice. Hoboken, New Jersey: John Wiley & Sons; 2013. DOI: 10.1002/9781118472361
2. Mauffette Y, Kandlbinder P, Soucisse A. The problem in problem-based learning. Maidenhead: Open University Press; 2004. p.11-25.
3. Wood DF. ABC of learning and teaching in medicine: Problem based learning. BMJ. 2003;326(7384):328. DOI: 10.1136/bmj.326.7384.328
4. Staun M, Bergström B, Wadensten B. Evaluation of a PBL strategy in clinical supervision of nursing students: Patient-centred training in student-dedicated treatment rooms. Nurse Educ Today. 2010;30(7):631-637. DOI: 10.1016/j.nedt.2009.12.013
5. Nieboer E. Focus A problem-based, self-directed approach to the teaching of the principles of environmental and human toxicology. J Environ Monit. 2002;4(1):14N-16N. DOI: 10.1039/B111668C
6. Faisal R, Bahadur S, Shinwari L. Problem-based learning in comparison with lecture-based learning among medical students. J Pak Med Assoc. 2018;68(6):650-653.
7. Demirören M, Turan S, Öztuna D. Medical students’ self-efficacy in problem-based learning and its relationship with self-regulated learning. Med Educ Online. 2016;21(1):30049. DOI: 10.3402/moe.v21.30049
8. Khan IA, Al-Swailmi FK. Perceptions of faculty and students regarding Problem Based Learning: A mixed methods study. J Pak Med Assoc. 2015;65(12):1334-1338.
9. Soppe M, Schmidt HG, Bruysten RJ. Influence of problem familiarity in learning in a problem-based course. Instruct Sci. 2005;33(3):271-281. DOI: 10.1007/s11251-004-7688-9
10. Keshk Li, El-Azim SA, Qalawa SA. Quality of Problem Based Learning Scenarios at College of Nursing in Egypt and KSA: Comparative Study. Am J Educl Res. 2016;4(9):701-710.
11. Azer SA. Twelve tips for creating trigger images for problem-based learning cases. Med Teach. 2007;29(2-3):93-97. DOI: 10.1080/01421590701291444
12. Dolmans DH, Snellens-Balendong H, van der Vleuten CP. Seven principles of effective case design for a problem-based curriculum. Med Teach. 1997;19(3):185-189. DOI: 10.3109/10421599709019379
13. Walsh K. Oxford textbook of medical education. Oxford: Oxford University Press; 2013. DOI: 10.1093/med/9780199652679.001.0001
14. Russel K. The problem of the problem and perplexity. In: PBL conference. 1999.
15. Dahlgren MA, Öberg G. Questioning to learn and learning to question: Structure and function of problem-based learning scenarios in environmental science education. High Educ. 2001;41(3):263-282. DOI: 10.1023/A:100438810465
16. Azer SA, Peterson R, Guerrero AR, Edgren G. Twelve tips for constructing problem-based learning cases. Med Teach. 2012;34(5):361-367. DOI: 10.3109/0142159X.2011.613500
17. Skokauskas N, Guerrero AR. Problem-Based Learning as a Vehicle for Collaborating Internationally and Introducing Faculty and Trainees to Different Scholarship Perspectives. Acad Psych. 2017;41(1):149-50. DOI: 10.1007/s40596-016-0602-3
18. Maudsley G. Roles and responsibilities of the problem based learning tutor in the undergraduate medical curriculum. BMJ. 1999;318(7184):657. DOI: 10.1136/bmj.318.7184.657
19. Yee HY, Radhakrishnan A, Ponnudurai G. Improving PBLs in the International Medical University: defining the ‘good’PBL facilitator. Med Teach. 2006;28(6):558-560. DOI: 10.1080/01421590600878226
20. Abdalla ME, Eladl MA. Student perception of the effect of problem based learning environment. GMS J Med Educ. 2019;36(3):Doc29. DOI: 10.3205/001237, URN: urn:nbn:de:0183-zma0012378
