Space-Round Tradeoffs for MapReduce Computations

Andrea Pietracaprina∗, Geppino Pucci†, Matteo Riondato‡, Francesco Silvestri∗ and Eli Upfal†
∗Dipartimento di Ingegneria dell’Informazione
Università di Padova,
Padova, Italy
Email: {capri,geppo,silvest1}@dei.unipd.it
†Department of Computer Science
Brown University
Providence, RI USA
Email: {matteo,eli}@cs.brown.edu

Abstract—This work explores fundamental modeling and algorithmic issues arising in the well-established MapReduce framework. First, we formally specify a computational model for MapReduce which captures the functional flavor of the paradigm by allowing for a flexible use of parallelism. Indeed, the model diverges from a traditional processor-centric view by featuring parameters which embody only global and local memory constraints, thus favoring a more data-centric view. Second, we apply the model to the fundamental computation task of matrix multiplication presenting upper and lower bounds for both dense and sparse matrix multiplication, which highlight interesting tradeoffs between space and round complexity. Finally, building on the matrix multiplication results, we derive further space-round tradeoffs on matrix inversion and matching.

Keywords—Algorithms for Distributed Computing; Algorithms for High Performance Computing; Parallel Algorithms; Parallel Complexity Theory.

I. INTRODUCTION

In recent years, MapReduce has emerged as a computational paradigm for processing large-scale data sets in a series of rounds executed on conglomerates of commodity servers [1], and has been widely adopted by a number of large Web companies (e.g., Google, Yahoo!, Amazon) and in several other applications (e.g., GPU and multicore processing). (See [2] and references therein.)

Informally, a MapReduce computation transforms an input set of key-value pairs into an output set of key-value pairs in a number of rounds, where in each round each pair is first individually transformed into a (possibly empty) set of new pairs (map step) and then all values associated with the same key are processed, separately for each key, by an instance of the same reduce function (simply called reducer in the rest of the paper) thus producing the next new set of key-value pairs (reduce step). In fact, as already noticed in [3], a reduce step can clearly embed the subsequent map step so that a MapReduce computation can be simply seen as a sequence of rounds of (augmented) reduce steps.

The MapReduce paradigm has a functional flavor, in that it merely requires that the algorithm designer decomposes the computation into rounds and, within each round, into independent tasks through the use of keys. This enables parallelism without forcing an algorithm to cater for the explicit allocation of processing resources. Nevertheless, the paradigm implicitly posits the existence of an underlying unstructured and possibly heterogeneous parallel infrastructure, where the computation is eventually run. While mostly ignoring the details of such an underlying infrastructure, existing formalizations of the MapReduce paradigm constrain the computations to abide with some local and aggregate memory limitations.

In this paper, we look at both modeling and algorithmic issues related to the MapReduce paradigm. We first provide a formal specification of the model, aimed at overcoming some limitations of the previous modeling efforts, and then derive interesting tradeoffs between memory constraints and round complexity for the fundamental problem of matrix multiplication and some of its applications.

A. Previous work

The MapReduce paradigm has been introduced in [1] without a fully-specified formal computational model for algorithm design and analysis. Triggered by the popularity quickly gained by the paradigm, a number of subsequent works have dealt more rigorously with modeling and algorithmic issues [4], [5], [6].

In [4], a MapReduce algorithm specifies a sequence of rounds as described in the previous section. Somewhat arbitrarily, the authors impose that in each round the memory needed by any reducer to store and transform its input pairs has size $O(n^{1-\epsilon})$, and that the aggregate memory used by all reducers has size $O(n^{2-2\epsilon})$, where n denotes the input size and ϵ is a fixed constant in $(0,1)$. The cost of local computation, that is, the work performed by the individual reducers, is not explicitly accounted for, but it is required to be polynomial in n. The authors also postulate, again somewhat arbitrarily, that the underlying parallel infrastructure consists of $\Theta(n^{1-\epsilon})$ processing elements with $\Theta(n^{1-\epsilon})$ local memory each, and hint at a
possible way of supporting the computational model on such infrastructure, where the reduce instances are scheduled among the available machines so to distribute the aggregate memory in a balanced fashion. It has to be remarked that such a distribution may hide non negligible costs for very fine-grained computations (due to the need of allocating multiple reducer with different memory requirements to a fixed number of machines) when, in fact, the algorithmic techniques of [4] do not fully explore the larger power of the MapReduce model with respect to a model with fixed parallelism. In [3] the same model of [4] is adopted but when evaluating an algorithm the authors also consider the total work and introduce the notion of work-efficiency typical of the literature on parallel algorithms.

An alternative computational model for MapReduce is proposed in [5], featuring two parameters which describe bandwidth and latency characteristics of the underlying communication infrastructure, and an additional parameter that limits the amount of I/O performed by each reducer. Also, a BSP-like cost function is provided which combines the internal work of the reducers with the communication costs incurred by the shuffling of the data needed at each round. Unlike the model of [4], no limits are posed to the aggregate memory size. This implies that in principle there is no limit to the allowable parallelism while, however, the bandwidth/latency parameters must somewhat reflect the topology and, ultimately, the number of processing elements. Thus, the model mixes the functional flavor of MapReduce with the more descriptive nature of bandwidth-latency models such as BSP [7], [8].

A model which tries to merge the spirit of MapReduce with the features of data-streaming is the MUD model of [6], where the reducers receive their input key-value pairs as a stream to be processed in one pass using small working memory, namely polylogarithmic in the input size. A similar model has been adopted in [9].

MapReduce algorithms for a variety of problems have been developed on the aforementioned MapReduce variants including, among others, primitives such as prefix sums, sorting, random indexing [5], and graph problems such as triangle counting [10] minimum spanning tree, s-t connectivity, [4], maximal and approximate maximum matching, edge cover, minimum cut [3], and max cover [9]. Moreover simulations of the PRAM and BSP in MapReduce have been presented in [4], [5]. In particular, it is shown that a T-step EREW PRAM algorithm can be simulated by an $O(T)$-round MapReduce algorithm, where each reducer uses constant-size memory and the aggregate memory is proportional to the amount of shared memory required by the PRAM algorithm [4]. The simulation of CREW or CRCW PRAM algorithms incurs a further $O(\log_2(M/m))$ slowdown, where m denotes the local memory size available for each reducer and M the aggregate memory size [5].

All of the aforementioned algorithmic efforts have been aimed at achieving the minimum number of rounds, possibly constant, provided that enough local memory for the reducer (typically, sublinear yet polynomial in the input size) and enough aggregate memory is available. However, so far, to the best of our knowledge, there has been no attempt to fully explore the tradeoffs that can be exhibited for specific computational problems between the local and aggregate memory sizes, on one side, and the number of rounds, on the other, under reasonable constraints of the amount of total work performed by the algorithm. Our results contribute to filling this gap.

Matrix multiplication is a building block for many problems, including matching [11], matrix inversion [12], all-pairs shortest path [12], graph contraction [13], cycle detection [14], and parsing context free languages [15]. Parallel algorithms for matrix multiplication of dense matrices have been widely studied: among others, we remind [16], [17] which provide upper and lower bounds exposing a tradeoff between communication complexity and processor memory. For sparse matrices, interesting results are given in [18], [19] for some network topologies like hypercubes, in [20] for PRAM, and in [21] for a BSP-like model. In particular, techniques in [17], [20] are used in the following sections for deriving efficient MapReduce algorithms. In the sequential settings, some interesting works providing upper and lower bounds are [22], [23] for dense matrix multiplication, and [24], [25], [26] for sparse matrix multiplication.

B. New results

The contribution of this paper is twofold, since it targets both modeling and algorithmic issues.

We first formally specify a computational model for MapReduce which captures the functional flavor of the paradigm by allowing a flexible use of parallelism. More specifically, our model generalizes the one proposed in [4] by letting the local and aggregate memory sizes be two independent parameters, m and M, respectively. Moreover our model makes no assumption on the underlying execution infrastructure, for instance it does not impose a bound on the number of available machines, thus fully decoupling the degree of parallelism exposed by a computation from the one of the machine where the computation will be eventually executed. This decoupling greatly simplifies algorithm design, which has been one of the original objectives of the MapReduce paradigm. (In Section II we quantify the cost of implementing a round of our model on a system with fixed parallelism.)

Our algorithmic contributions concern the study of attainable tradeoffs in MapReduce for several variants of the fundamental primitive of matrix multiplication. In particular, building on the well-established three-dimensional algorithmic strategy for matrix multiplication [16], we develop upper and lower bounds for dense-dense matrix multiplication and provide similar bounds for deterministic and/or randomized
algorithms for sparse-sparse and sparse-dense matrix multiplication. The algorithms are parametric in the local and aggregate memory constraints and achieve optimal or quasi-optimal round complexity in the entire range of variability of such parameters. Finally, building on the matrix multiplication results, we derive similar space-round tradeoffs for matrix inversion and matching, which are important by-products of matrix multiplication.

C. Organization of the paper

The rest of the paper is structured as follows. In Section II we introduce our computational model for MapReduce and describe important algorithmic primitives (sorting and prefix sums) that we use in our algorithms. Section III deals with matrix multiplication in our model, presenting theoretical bounds to the complexity of algorithms to solve this problem. We apply these results in Section IV to derive algorithms for matrix inversion and for matching in graphs.

II. MODEL DEFINITION AND BASIC PRIMITIVES

Our model is defined in terms of two integral parameters M and m, whose meaning will be explained below, and is named MR(m, M). Algorithms specified in this model will be referred to as MR-algorithms. An MR-algorithm specifies a sequence of rounds: the r-th round, with $r \geq 1$ transforms a multiset W_r of key-value pairs into two multisets W_{r+1} and O_r of key-value pairs, where W_{r+1} is the input of the next round (empty, if r is the last round), and O_r is a (possibly empty) subset of the final output. The input of the algorithm is represented by W_1 while the output is represented by $\bigcup_{r \geq 1} O_r$, with \bigcup denoting the union of multisets. The universes of keys and values may vary at each round, and we let U_r denote the universe of keys of W_r. The computation performed by Round r is defined by a reducer function ρ_r, which is applied independently to each multiset $W_{r,k} \subseteq W_r$ consisting of all entries in W_r with key $k \in U_r$.

Let n be the input size. The two parameters M and m specify the memory requirements that each round of an MR-algorithm must satisfy. In particular, let $m_{r,k}$ denote the space needed to compute $\rho_r(W_{r,k})$ on a RAM with $O(\log n)$-bit words, including the space taken by the input (i.e., $m_{r,k} \geq |W_{r,k}|$) and the work space, but excluding the space taken by the output, which contributes either to O_r (i.e., the final output) or to W_{r+1}. The model imposes that $m_{r,k} \in O(m)$, for every $r \geq 1$ and $k \in U_r$, that $\sum_{k \in U_r} m_{r,k} \in O(M)$, for every $r \geq 1$, and that $\sum_{r \geq 1} |O_r| = O(M)$. The complexity of an MR-algorithm is the number of rounds that it executes in the worst case, and it is expressed as a function of the input size n and of parameters m and M. The dependency on the parameters m and M allows for a finer analysis of the cost of an MR-algorithm.

As in [4], we require that each reducer function runs in time polynomial in n. In fact, it can be easily seen that the model defined in [4] is equivalent to the MR(m, M) model with $m \in O(n^{1-\epsilon})$ and $M \in O(n^{2-2\epsilon})$, for some fixed constant $\epsilon \in (0, 1)$, except that we eliminate the additional restrictions that the number of rounds of an algorithm be polylogarithmic in n and that the number of physical machines on which algorithms are executed are $\Theta(n^{1-\epsilon})$, which in our opinion should not be posed at the model level.

Compared to the model in [27], our MR(m, M) model introduces the parameter M which limits the size of the aggregate memory required at each round, whereas in [27] this size is virtually unbounded. Moreover, the complexity analysis in MR(m, M) focuses on the tradeoffs between m and M, on one side, and the number of rounds on the other side, while in [27] a more complex cost function is defined which accounts for the overall message complexity of each round, the time complexity of each reducer computation, and the latency and bandwidth characteristics of the executing platform.

A. Sorting and prefix sum computations

Sorting and prefix sum primitives are used in the algorithms presented in this paper. The input to both primitives consists of a set of n key-value pairs (i, a_i) with $0 \leq i < n$ and $a_i \in S$, where S denotes a suitable set. For sorting, a total order is defined over S and the output is a set of n key-value pairs (i, b_i), where the b_i's form a permutation of the a_i's and $b_{i-1} \leq b_i$ for each $0 < i < n$. For prefix sums, a binary associative operation \oplus is defined over S and the output consists of a collection of n pairs (i, b_i) where $b_i = a_0 \oplus \ldots \oplus a_i$, for $0 \leq i < n$.

By straightforwardly adapting the results in [5] to our model we have:

Theorem 1. The sorting and prefix sum primitives for inputs of size n can be implemented in MR(m, M) with round complexity

$$O(\log_m n),$$

for $M = \Theta(n)$.

We remark that the each reducer in the implementation of the sorting and prefix primitives makes use of $\Theta(m)$ memory words. Hence, the same round complexity can be achieved in a more restrictive scenario with fixed parallelism. In fact, our MR(m, M) model can be simulated on a platform with $\Theta(M/m)$ processing elements, each with internal memory of size $\Theta(m)$, at the additional cost of one prefix computation per round. Therefore, $O(\log_m n)$ can be regarded as an upper bound on the relative power of our model with respect to one with fixed parallelism.

Goodrich [27] claims that the round complexities stated in Theorem 1 are optimal for any $M = \Omega(n)$ as a consequence...
of the lower bound for computing the OR of n bits on the BSP model \cite{25}. It can be shown that the optimality carries through to our model where the output of a reducer is not bounded by m.

III. Matrix Multiplication

Let A and B be two $\sqrt{n} \times \sqrt{n}$ matrices and let $C = A \cdot B$. We use $a_{i,j}$, $b_{i,j}$ and $c_{i,j}$, with $0 \leq i,j < \sqrt{n}$, to denote the entries of A, B and C, respectively. In this section we present upper and lower bounds for computing the product C in $\text{MR}(m, M)$. The algorithms we present envision the matrices as conceptually divided into submatrices of size $\sqrt{m} \times \sqrt{m}$, and we denote these matrices with $A_{i,j}$, $B_{i,j}$ and $C_{i,j}$, respectively, for $0 \leq i,j < \sqrt{n/m}$. Clearly, $c_{i,j} = \sum_{h=0}^{\sqrt{n/m}-1} a_{i,h} \cdot b_{h,j}$.

All our algorithms exploit the following partition of the $(n/m)^{3/2}$ products between submatrices (e.g., $A_{i,h} \cdot B_{h,j}$) into $\sqrt{n/m}$ groups: group G_{ℓ}, with $0 \leq \ell < \sqrt{n/m}$, consists of products $A_{i,h} \cdot B_{h,j}$, for every $0 \leq i,j < \sqrt{n/m}$ and for $h = (i + j + \ell) \mod \sqrt{n/m}$. Observe that each submatrix of A and B occurs exactly once in each group G_{ℓ}.

We focus our attention on matrices whose entries belong to a semiring (S, \oplus, \odot) such that for any $a \in S$ we have $a \odot 0 = 0$, where 0 is the identity for \oplus. In this setting, efficient matrix multiplication techniques such as Strassen’s cannot be employed. Moreover, we assume that the inner products of any row of A and of any column of B with overlapping nonzero entries never cancel to zero, which is a reasonable assumption when computing over natural or real numbers with a finite numerical precision.

In all of our algorithms, the input matrix X ($X = A \cdot B$) is provided as a set of key-value pairs $(k_{i,j}, (i,j,x_{i,j}))$ for all elements $x_{i,j} \neq 0$. Key $k_{i,j}$ represents a progressive index, e.g., the number of nonzero entries preceding $x_{i,j}$ in the row-major scan of X. We call a $\sqrt{n} \times \sqrt{n}$ matrix dense if the number of its nonzero entries is $\Theta(n)$, and we call it sparse otherwise. We suppose that M is sufficiently large to contain the input and output matrices. In what follows, we present different algorithms tailored for the multiplication of dense-dense (Section III-A), sparse-sparse (Section III-B), and sparse-dense matrices (Section III-C). We also derive lower bounds which demonstrate that our algorithms are either optimal or close to optimal (Section III-D), and an algorithm for estimating the number of nonzero entries in the product of two sparse matrices (Section III-B4).

A. Dense-Dense Matrix Multiplication

In this section we provide a simple, deterministic algorithm for multiplying two dense matrices, which will be proved optimal in Subsection III-D. The algorithm is a straightforward adaptation of the well-established three-dimensional algorithmic strategy for matrix multiplication of \cite{17}, \cite{18}, however we describe a few details of its implementation in $\text{MR}(m, M)$ since the strategy is also at the base of algorithms for sparse matrices. W.l.o.g. we may assume that $m \leq 2n$, since otherwise matrix multiplication can be executed by a trivial sequential algorithm. We consider matrices A and B as decomposed into $\sqrt{m} \times \sqrt{m}$ submatrices and subdivide the products between submatrices into groups as described above.

In each round, the algorithm computes all products within $K = \min\{M/n, \sqrt{m}/m\}$ consecutive groups, namely, at round $r \geq 1$, all multiplications in G_r are computed, with $(r-1)K \leq \ell < rK$. The idea is that in a round all submatrices of A and B can be replicated K times and paired in such a way that each reducer performs a distinct multiplication in $\cup_{(r-1)K \leq \ell < rK} G_{\ell}$. Then, each reducer sums the newly computed product to a partial sum which accumulates all of the products contributing to the same submatrix of C belonging to groups with the same index modulo K dealt with in previous rounds. At the end of the $\sqrt{m}/(K\sqrt{m})$-th round, all submatrix products have been computed. The final matrix C is then obtained by adding together the K partial sums contributing to each entry of C through a prefix computation.\footnote{The details of the key assignments needed to perform the necessary data redistributions among reducers are tedious but straightforward, and will be provided in the full version of this abstract.} We have the following result.

Theorem 2. The above $\text{MR}(n, M)$-algorithm multiplies two $\sqrt{n} \times \sqrt{n}$ dense matrices in

$$
\Theta \left(\frac{n^{3/2}}{M\sqrt{m}} + \log_m n \right)
$$

rounds.

Proof: The algorithm clearly complies with the memory constraints of $\text{MR}(m, M)$ since each reducer multiplies two $\sqrt{m} \times \sqrt{m}$ submatrices and the degree of replication is such that the algorithm never exceeds the aggregate memory bound of M. Also, the $(n/m)^{3/2}$ products are computed in $n^{3/2}/(M\sqrt{m})$ rounds, while the final prefix computation requires $O(\log_m K + 1) = O(\log_m n)$ rounds.

We remark that the multiplication of two $\sqrt{n} \times \sqrt{n}$ dense matrices can be performed in a constant number of rounds whenever $m = \Omega(n^c)$, for constant $c > 0$, and $M \sqrt{m} = \Omega \left(n^{3/2} \right)$.

B. Sparse-Sparse Matrix Multiplication

Consider two $\sqrt{n} \times \sqrt{n}$ sparse matrices A and B and denote with $\tilde{n} < n$ the maximum number of nonzero entries in any of the two matrices, and with $\tilde{\phi}$ the number of nonzero entries in the product $C = A \cdot B$. Below, we present two deterministic MR-algorithms (D1 and D2) and a randomized one (R1), each of which turns out to be more efficient than the others for suitable ranges of parameters. We consider only the case $m \leq 2\tilde{n}$, since otherwise matrix
multiplication can be executed by a trivial one-round MR-algorithm using only one reducer. We also assume that the value \(\tilde{n} \) is provided in input. (If this were not the case, such a value could be computed with a simple prefix computation in \(O(\log_m n) \) rounds, which does not affect the asymptotic complexity of our algorithms.) However, we do not assume that \(\tilde{\alpha} \) is known in advance since, unlike \(\tilde{n} \), this value cannot be easily computed. In fact, the only source of randomization in algorithm R1 stems from the need to estimate \(\tilde{\alpha} \).

1) **Deterministic algorithm D1:** This algorithm is based on the following strategy adapted from [20]. For \(0 \leq i < \sqrt{n} \), let \(a_i \) (resp., \(b_i \)) be the number of nonzero entries in the \(i \)th column of \(A \) (resp., \(i \)th row of \(B \)), and let \(\Gamma_i \) be the set containing all nonzero entries in the \(i \)th column of \(A \) and in the \(i \)th row of \(B \). It is easily seen that all of the \(a_i b_i \) products between entries in \(\Gamma_i \) (one from \(A \) and one from \(B \)) must be computed. The algorithm performs a sequence of phases as follows. Suppose that at the beginning of Phase \(t \), with \(t \geq 0 \), all products between entries in \(\Gamma_i \), for each \(i \leq r - 1 \) and for a suitable value \(r \) (initially, \(r = 0 \)), have been computed and added to the appropriate entries of \(C \).

Through a prefix computation, Phase \(t \) computes the largest \(K_t \) such that \(\sum_{j=K_t}^{K_{t+1}} a_j b_j \leq M \). Then, all products between entries in \(\Gamma_j \), for every \(r \leq j \leq r + K_t \), are computed using one reducer with constant memory for each such product. The products are then added to the appropriate entries of \(C \) using again a prefix computation.

Theorem 3. Algorithm D1 multiplies two sparse \(\sqrt{n} \times \sqrt{n} \) matrices with at most \(\tilde{n} \) nonzero entries each in

\[
O\left(\frac{\tilde{n} \min\{\tilde{n}, \sqrt{n}\}}{M} \log_m M\right)
\]

rounds, on an MR(m, M).

Proof: The correctness is trivial and the memory constraints imposed by the model are satisfied since in each phase at most \(M \) elementary products are performed. The theorem follows by observing that the maximum number of elementary products is \(\tilde{n} \min\{\tilde{n}, \sqrt{n}\} \) and that two consecutive phases compute at least \(M \) elementary products in \(O(\log_m M) \) rounds.

2) **Deterministic algorithm D2:** The algorithm exploits the same three-dimensional algorithmic strategy used in the dense-dense case and consists of a sequence of phases. In Phase \(t \), \(t \geq 0 \), all \(\sqrt{m} \times \sqrt{m} \) size products within \(K_t \) consecutive groups are performed in parallel, where \(K_t \) is a phase-specific value. Observe that the computation of all products within a group \(G_t \) requires space \(M_t \in [\tilde{n}, \tilde{n} + \tilde{\alpha}] \), since each submatrix of \(A \) and \(B \) occurs only once in \(G_t \) and each submatrix product contributes to a distinct submatrix of \(C \). However, the value \(M_t \) can be determined in \(\Theta(\tilde{n}) \) space and \(O(\log_m n) \) rounds by “simulating” the execution of the products in \(G_t \) (without producing the output values) and adding up the numbers of nonzero entries contributed by each product to the output matrix. The value \(K_t \) is determined as follows. Suppose that, at the beginning of Phase \(t \), groups \(G_t \) have been processed, for each \(\ell \leq r - 1 \) and for a suitable value \(r \) (initially, \(r = 0 \)). The algorithm replicates the input matrices \(K_t' = \min\{M/\tilde{n}, \sqrt{m}/\sqrt{n}\} \) times. Subsequently, through sorting and prefix computations the algorithm computes \(M_t \) for each \(\ell \leq \ell < r + K_t' \) and determines the largest \(K_t \leq K_t' \) such that \(\sum_{\ell=1}^{r+K_t} M_t \leq M \). Then, the actual products in \(G_t \), for each \(r \leq r < r + K_t \) are executed and accumulated (again using a prefix computation) in the output matrix \(C \). We have the following theorem.

Theorem 4. Algorithm D2 multiplies two sparse \(\sqrt{n} \times \sqrt{n} \) matrices with at most \(\tilde{n} \) nonzero entries each in

\[
O\left(\frac{(\tilde{n} + \tilde{\alpha}) \sqrt{n}}{M/\sqrt{m}} \log_m M\right)
\]

rounds on an MR(m, M), where \(\tilde{\alpha} \) denotes the maximum number of nonzero entries in the output matrix.

Proof: The correctness of the algorithm is trivial. Phase \(t \) requires a constant number of sorting and prefix computations to determine \(K_t \) and to add the partial contributions to the output matrix \(C \). Since each value \(M_t \) is \(O(\tilde{n} + \tilde{\alpha}) \) and the groups are \(\sqrt{m}/\sqrt{n} \), clearly, \(K_t = \Omega\left(\min\{M/(\tilde{n} + \tilde{\alpha}), \sqrt{n}/m\}\right) \), and the theorem follows.

We remark that the value \(\tilde{\alpha} \) appearing in the stated round complexity needs not be explicitly provided in input to the algorithm. We also observe that with respect to Algorithm D1, Algorithm D2 features a better exploitation of the local memories available to the individual reducers, which compute \(\sqrt{m} \times \sqrt{m} \) size products rather than working at the granularity of the single entries.

By suitably combining Algorithms D1 and D2, we can get the following result.

Corollary 1. There is a deterministic algorithm which multiplies two sparse \(\sqrt{n} \times \sqrt{n} \) matrices with at most \(\tilde{n} \) nonzero entries each in

\[
O\left(\frac{\min\{\tilde{n}^2, \tilde{n} \sqrt{n}, (\tilde{n} + \tilde{\alpha}) \sqrt{n}\}}{M} \log_m M\right)
\]

rounds on an MR(m, M), where \(\tilde{\alpha} \) denotes the maximum number of nonzero entries in the output matrix.

3) **Randomized algorithm R1:** Algorithm D2 requires \(O(\log_m M) \) rounds in each Phase \(t \) for computing the number \(K_t \) of groups to be processed. However, if \(\tilde{\alpha} \) were known, we could avoid the computation of \(K_t \) and resort to the fixed-K strategy adopted in the dense-dense case, by processing \(K = M/(\tilde{n} + \tilde{\alpha}) \) consecutive groups per round. This would yield an overall \(O((\tilde{n} + \tilde{\alpha}) \sqrt{n} / (M/\sqrt{m}) + \log_m M) \) round complexity, where the \(\log_m M \) additive term accounts for the complexity of summing up, at the end, the \(K \)
contributions to each entry of C. However, \hat{o} may not be known a priori. In this case, using the strategy described in Section 2.3 we can compute a value \hat{o} which is a 1/2-approximation to \hat{o} with probability at least $1 - 1/n$. (We say that \hat{o} ϵ-approximates \hat{o} if $|\hat{o} - \hat{o}| < \epsilon \hat{o}$.) Hence, in the algorithm we can plug in $2\hat{o}$ as an upper bound to \hat{o}. By using the result of Theorem 6 with $\epsilon = 1/2$ and $\delta = 1/(2n)$, we have:

Theorem 5. Let $m = \Omega (\log^2 n)$. Algorithm R1 multiplies two sparse $\sqrt{n} \times \sqrt{n}$ matrices with at most n nonzero entries in

$$O \left(\frac{\bar{n} + \hat{o}}{M^{1/2}} \sqrt{\frac{n}{m}} + \log_m M \right)$$

rounds on an $\text{MR}(m, M)$, with probability at least $1 - 1/n$.

By comparing the rounds complexities stated in Corollary 1 and Theorem 5 it is easy to see that the randomized algorithm R1 outperforms the deterministic strategies when $m \in (\Omega (\log^2 n), o(M^4))$, for any constant ϵ, $\bar{n} \geq \sqrt{n/m} \log_m M$, and $\hat{o} \leq \hat{n}$ $\min\{\bar{n}, \sqrt{m}\} \log_m M$. For a concrete example, R1 exhibits better performance when $\bar{n} > \sqrt{n}$, $\hat{o} = \Theta (\bar{n})$, and m is polylogarithmic in n. Moreover, both the deterministic and randomized strategies can achieve a constant round complexity for suitable values of the memory parameters.

4) **Evaluation of \hat{o}**: Observe that a \sqrt{n}-approximation to \hat{o} derives from the following simple argument. Let a_i and b_i be the number of nonzero entries in the ith column of A and in the ith row of B respectively, for each $0 \leq i < \sqrt{n}$. Then,

$$\hat{o} \leq \sum_{i=0}^{\sqrt{n}-1} a_i b_i \leq \hat{o} \sqrt{n}.$$

Evaluating the sum requires $O(1)$ sorting and prefix computations, hence a \sqrt{n}-approximation of \hat{o} can be computed in $O (\log_m \bar{n})$ rounds. However, such an approximation is too weak for our purposes and we show below how to achieve a tighter approximation by adapting a strategy born in the realm of streaming algorithms.

Let $\epsilon > 0$ and $0 < \delta < 1$ be two arbitrary values. An ϵ-approximation to \hat{o} can be derived by adapting the algorithm of [29] for counting distinct elements in a stream $x_0 x_1 \ldots$, whose entries are in the domain $[n] = \{0, \ldots, n - 1\}$. The algorithm of [29] makes use of a very compact data structure, customarily called sketch in the literature, which consists of $\Delta = \Theta (\log(1/\delta))$ lists, $L_1, L_2, \ldots, L_\Delta$. For $0 \leq w \leq \Delta$, L_w contains the $t = \Theta \left(\lceil 1/\epsilon^2 \rceil \right)$ distinct smallest values of the set $\{\phi_w(x_i) : i \geq 0\}$, where $\phi_w : [n] \rightarrow [n^3]$ is a hash function picked from a pairwise independent family. It is shown in [29] that the median of the values $t n^3 / v_0, \ldots, t n^3 / v_{\Delta-1}$, where v_i denotes the ith smallest value in L_w, is an ϵ-approximation to the number of distinct elements in the stream, with probability at least $1 - \delta$. In order to compute an ϵ-approximation of \hat{o} for a product $C = A \cdot B$ of $\sqrt{n} \times \sqrt{n}$ matrices, we can modify the algorithm as follows. Consider the stream of values in $[n]$ where each element of the stream corresponds to a distinct product $a_{i,b} b_{n,j} \neq 0$ and consists of the value $j + i \sqrt{n}$. Clearly, the number of distinct elements in this stream is exactly \hat{o}. (A similar approach has been used in [30] in the realm of sparse boolean matrix products.) We now show how to implement this idea on an $\text{MR}(m, M)$.

The MR-algorithm is based on the crucial observation that if the stream of values defined above is partitioned into segments, the sketch for the entire stream can be obtained by combining the sketches computed for the individual segments. Specifically, two sketches are combined by merging each pair of lists with the same index and selecting the t smallest values in the merged list. The $\text{MR}(m, M)$-algorithm consists of a number of phases, where each phase, except for the last one, produces set of M/m sketches, while the last phase combines the last batch of M/m sketches into the final sketch, and outputs the approximation to \hat{o}.

We refer to the partition of the matrices into $\sqrt{m} \times \sqrt{m}$ submatrices and group the products of submatrices as done before. In Phase t, with $t \geq 1$, the algorithm processes the products in $K = \min \{M, \bar{n}, \sqrt{n/m}\}$ consecutive groups, assigning each pair of submatrices in one of the K groups to a distinct reducer. A reducer receiving $A_{i,h}$ and $B_{h,j}$, each with at least a nonzero entry, either computes a sketch for the stream segment of the nonzero products between entries of $A_{i,h}$ and $B_{h,j}$, if the total number of nonzero entries of $A_{i,h}$ and $B_{h,j}$ exceeds the size of the sketch, namely $H = \Theta (\lceil 1/\epsilon^2 \rceil \log(1/\delta))$ words, or otherwise leaves the two submatrices untouched (observe that in neither case the actual product of the two submatrices is computed). In this latter case, we refer to the pair of (very sparse) submatrices as a pseudosketch. At this point, the sketches produced by the previous phase (if $t > 1$), together with the sketches and pseudosketches produced in the current phase are randomly assigned to M/m reducers. Each of these reducers can now produce a single sketch from its assigned pseudosketches (if any) and merge it with all other sketches that were assigned to it. In the last phase ($t = \sqrt{n/m/K}$) the M/m sketches are combined into the final one through a prefix computation, and the approximation to \hat{o} is computed.

Theorem 6. Let $m = \Omega (\lceil (1/\epsilon^2) \log(1/\delta) \log(n/\delta) \rceil)$ and let $\epsilon > 0$ and $0 < \delta < 1$ be arbitrary values. Then, with probability at least $1 - 2\delta$, the above algorithm computes an ϵ-approximation to \hat{o} in

$$O \left(\frac{\bar{n} \sqrt{n}}{M^{1/2}} + \log M \right)$$

rounds, on an $\text{MR}(m, M)$.

Proof: The correctness of the algorithm follows from the results of [29] and the above discussion. Recall that the value computed by the algorithm is an ϵ-approximation to \hat{o} with probability $1 - \delta$. As for the rounds complexity we observe that each phase, except for the last one, requires a constant number of rounds, while the last one involves a
prefix computation thus requiring $O(\log_m M)$ rounds. We only have to make sure that in each phase the memory constraints are satisfied (with high probability). Note also that a sketch of size $H \leq m$ is generated either in the presence of a pair of submatrices $A_{i,h}$, $B_{h,j}$ containing at least H entries, or within one of the M/m reducers. By the choice of K, it is easy to see that in any case, the overall memory occupied by the sketches is $O(M)$. As for the constraint on local memories, a simple modification of the standard balls-into-bins argument \cite{31} and the union bound suffices to show that with probability $1 - \delta$, in every phase when sketches and pseudosketches are assigned to M/m reducers, each reducer receives in $O(m + (1/\epsilon^2) \log(1/\delta) \log(n/\delta)) = O(m)$ words. The theorem follows. (More details will be provided in the full version of the paper.)

C. Sparse-Dense matrix multiplication

Let A be a sparse $\sqrt{n} \times \sqrt{n}$ matrix with at most \tilde{n} nonzero entries and let B be a dense $\sqrt{n} \times \sqrt{n}$ matrix (the symmetric case, where A is dense and B sparse, is equivalent). The algorithm for dense-dense matrix multiplication does not exploit the sparsity of A and requires $O(\tilde{n} \sqrt{n}/(M \sqrt{m}) + \log_m n)$ rounds. Also, if we simply plug $\tilde{n} = n$ in the complexities of the three algorithms for the sparse-sparse case (where \tilde{n} represented the maximum number of nonzero entries of A or B) we do not achieve a better round complexity. However, a careful analysis of algorithm D1 in the sparse-dense case reveals that its round complexity is $O(\tilde{n} \sqrt{n}/M \log_m M)$. Therefore, by interleaving algorithm D1 and the dense-dense algorithm we have the following corollary.

Corollary 2. The multiplication on $\text{MR}(m, M)$ of a sparse $\sqrt{n} \times \sqrt{n}$ matrix with at most \tilde{n} nonzero entries and of a dense $\sqrt{n} \times \sqrt{n}$ matrix requires a number of rounds which is the minimum between $O(\tilde{n} \sqrt{n}/M \log_m M)$ and $O(\tilde{n} \sqrt{n}/(M \sqrt{m}) + \log_m n)$.

Observe that the above sparse-dense strategy outperforms all previous algorithms for instance when $\tilde{n} = o(n/\sqrt{m \log_m M})$.

D. Lower bounds

In this section we provide lower bounds for dense-dense and sparse-sparse matrix multiplication. We restrict our attention to algorithms which perform all nonzero elementary products, that is, on conventional matrix multiplication \cite{16}. Although this assumption limits the class of algorithms, ruling out Strassen-like techniques, an elaboration of a result in \cite{23} shows that computing all nonzero elementary products is necessary when entries of the input matrices are from the semirings $\langle \mathbb{N}, +, \cdot \rangle$ and $\langle \mathbb{N} \cup \{\infty\}, \min, + \rangle$\footnote{The $\langle \mathbb{N} \cup \{\infty\}, \min, + \rangle$ semiring, where ∞ is the identity of the \min operation, is usually adopted while computing the shortest path matrix of a graph given its connection matrix.}

Indeed, we have the following lemma which provides a lower bound on the number of products required by an algorithm multiplying any two matrices of size $\sqrt{n} \times \sqrt{n}$ containing \tilde{n}_A and \tilde{n}_B nonzero entries and where zero entries have fixed positions (a similar lemma holds for $\langle \mathbb{N} \cup \{\infty\}, \min, + \rangle$). As a consequence of the lemma, an algorithm that multiplies any two arbitrary matrices in the semiring $\langle \mathbb{N}, +, \cdot \rangle$ must perform all nonzero products.

Lemma 1. Consider an algorithm A which multiplies two $\sqrt{n} \times \sqrt{n}$ matrices A and B with \tilde{n}_A and \tilde{n}_B nonzero entries, respectively, from the semiring $\langle \mathbb{N}, +, \cdot \rangle$ and where the positions of zero entries are fixed. Then, algorithm A must perform all the nonzero elementary products.

Proof: \cite{23} shows that each $c_{i,j}$ can be computed only by summing all terms $a_{i,h} \cdot b_{h,j}$, with $0 \leq h < \sqrt{n}$, if the algorithm uses only semiring operations. The proof relies on the analysis of the output for some suitable input matrices, and makes some assumptions that force the algorithm to compute even zero products. However, the result still holds if we allow all the zero products to be ignored, but some adjustments are required. In particular, the input matrices used in \cite{23} do not work in our scenario because may contain less than \tilde{n}_A and \tilde{n}_B nonzero entries, however it is easy to find inputs with the same properties working in our case. More details will be provided in the full version.

The following theorem exhibits a tradeoff in the lower bound between the amount of local and aggregate memory and the round complexity of an algorithm performing conventional matrix multiplication. The proof is similar to the one proposed in \cite{16} for lower bounding the communication complexity of dense-dense matrix multiplication in a BSP-like model; however, differences arise since we focus on round complexity and our model does not assume the outdegree of a reducer to be bounded. In the proof of the theorem we use the following lemma which was proved using the red-blue pebbling game in \cite{22} and then restated in \cite{16} as follows.

Lemma 2 (\cite{16}). Consider the conventional matrix multiplication $C = A \cdot B$, where A and B are two arbitrary matrices. A processor that uses N_A elements of A, N_B elements of B, and contributes to N_C elements of C can compute at most $\langle N_A N_B N_C \rangle^{1/2}$ multiplication terms.

Theorem 7. Consider an $\text{MR}(m, M)$-algorithm A for multiplying two $\sqrt{n} \times \sqrt{n}$ matrices containing at most \tilde{n}_A and \tilde{n}_B nonzero entries, using conventional matrix multiplications. Let P and \tilde{o} denote the number of nonzero elementary products and the number of nonzero entries in the output matrix, respectively. Then, the round complexity of A is

$$\Omega \left(\left\lceil \frac{P}{M \sqrt{m}} \right\rceil + \log_m \left(\frac{P}{\tilde{o}} \right) \right).$$
Proof: Let A be an R-round MR(m,M)-algorithm computing $C = A \cdot B$. We prove that $R = \Omega (P/(M\sqrt{m}))$. Consider the r-th round with $1 \leq r \leq R$, and let k be an arbitrary key in U_r and $K_r = |U_r|$. We denote with $o_{r,k}$ the space taken by the output of $\rho_r(W_{r,k})$ which contributes either to O_r or to W_{r+1}, and with $m_{r,k}$ the space needed to compute $\rho_r(W_{r,k})$ including the input and working space but excluding the output. Clearly, $m_{r,k} \leq m$, $\sum_{k \in U_r} m_{r,k} \leq M$, and $\sum_{k \in U_r} o_{r,k} \leq \tilde{d} \leq M$.

Suppose $M/K_r \geq m$. By Lemma 2 the reducer ρ_r with input $W_{r,k}$ can compute at most $m_{r,k}^{\sqrt{O(r)}}$ elementary products since $N_A, N_B \leq m$ and $N_C \leq o_{r,k}$, where N_A and N_B denote the entries of A and B used in $\rho_r(W_{r,k})$ and N_C the entries of C for which contributions are computed by $\rho_r(W_{r,k})$. Then, the number of terms computed in the r-th round is at most $\sum_{k \in U_r} m_{r,k}^{\sqrt{O(r)}} \leq m^{\sqrt{M/K_r}} \leq M/m$, since $K_r \leq M/m$ and the summation is maximized when $o_{r,k} = M/K_r$ for each $k \in U_r$.

Suppose now that $M/K_r < m$. Partition the keys in U_r into K'_r sets $S_0, \ldots, S_{K'_r-1}$ such that $m \leq \sum_{k \in S_j} m_{r,k} \leq 2m$ for each $0 \leq j < K'_r$ (the lower bound may be not satisfied for $j = K'_r - 1$). Clearly, $|M/2m| \leq K'_r \leq [M/m]$. By Lemma 2 the number of elementary products computed by all the reducers $\rho_r(W_{r,k})$ with keys in a set S_j is at most $\sum_{k \in S_j} (m_{r,k}^{\sqrt{O(r)}})^{1/2}$. Since $((x+y)^2 + (x'+y')^2)/2 \leq ((x+x') + (y+y'))((z+z')/2)^{1/2}$ for each non negative assignment of the x, y, z, x', y', z' variables and since $\sum_{k \in S_j} m_{r,k} \leq 2m$, it follows that at most $2m\sqrt{O_{r,j}}$ elementary products can be computed using keys in S_j, where $O_{r,j} = \sum_{k \in S_j} o_{r,k}$. Therefore, the number of elementary products computed in the r-th round is at most $\sum_{j=0}^{K'_r-1} 2m\sqrt{O_{r,j}} \leq 2m\sqrt{M/K'_r} \leq 2M^{1/2}m$, since $K'_r \leq [M/m]$ and the sum is maximized when $O_{r,j} = M/K'_r$ for each $0 \leq j < K'_r$.

Therefore, in each round $O(M/m)$ nonzero elementary products can be computed, and then $R = \Omega ([P/M\sqrt{m}])$. The second term of the lower bound follows since there is at least one entry of C given by the sum of P/\tilde{d} nonzero elementary products.

We now specialize the above lower bound for algorithms for generic dense-dense and sparse-sparse matrix multiplication.

Corollary 3. An MR(m,M)-algorithm for multiplying any two dense $\sqrt{m} \times \sqrt{m}$ matrices, using conventional matrix multiplication, requires $$\Omega \left(\frac{n^{3/2}}{M\sqrt{m}} + \log_m n \right)$$ rounds. On the other hand, an MR(m,M)-algorithm for multiplying any two sparse matrices with at most \tilde{n} nonzero entries requires $$\Omega \left(\frac{\tilde{n} \min\{\tilde{n}, \sqrt{m}\}}{M\sqrt{m}} + \log_m \tilde{n} \right)$$ rounds.

Proof: In the dense-dense case the lower bound follows by the above Theorem since we have $P = n^{3/2}$ and $\tilde{d} = n$ when $\tilde{n}_A = \tilde{n}_B = n$. In the sparse-sparse case, we set $\tilde{n}_A = \tilde{n}_B = \tilde{n}$ and we observe that there exist assignments of the input matrices for which $P = \tilde{n} \min\{\tilde{n}, \sqrt{m}\}$, and others where $P/\tilde{d} = \tilde{O}(\tilde{n})$.

The deterministic algorithms for matrix multiplication provided in this section perform conventional matrix multiplication, and hence the above corollary applies. Thus, the algorithm for dense-dense matrix multiplication described in Section III-A is optimal for any value of the parameters. On the other hand, the deterministic algorithm D2 for sparse-sparse matrix multiplication given in Section III-B is optimal as soon as $\tilde{n} \geq \sqrt{\tilde{n}}, \tilde{d} = \tilde{O}(\tilde{n})$ and m is polynomial in M.

IV. APPLICATIONS

Our matrix multiplications results can be used to derive efficient algorithms for inverting a square matrix and for solving several variants of the matching problem in a graph. The algorithms in this section make use of division and exponentiation. To avoid the intricacies of dealing with limited precision, we assume each memory word is able to store any value that occurs in the computation. A similar assumption is made in the presentation of algorithms for the same problems on other parallel models (see e.g. [12]).

A. Inverting a lower triangular matrix

In this section we study the problem of inverting a lower triangular matrix A of size $\sqrt{m} \times \sqrt{m}$. We adopt the simple recursive algorithm which leverages on the easy formula for inverting a 2×2 lower triangular matrix [12 Sect. 8.2]. We have

$$\begin{bmatrix} a & 0 \\ b & c \end{bmatrix}^{-1} = \begin{bmatrix} a^{-1} & 0 \\ -c^{-1}ba^{-1} & c^{-1} \end{bmatrix}. \quad (1)$$

For $0 \leq k \leq (1/2) \log(n/m)$ and $0 \leq i, j < 2^k$, let $A_{i,j}^{(k)}$ be the (i,j) submatrix resulting from the splitting of A into submatrices of size $(\sqrt{m}/2^k) \times (\sqrt{m}/2^k)$. Since Equation (1) holds even when a, b, c are matrices, we have that $A_{i,j}^{(k)}$ can be expressed as in Equation (2) in Figure 1. Note that $A^{-1} = (A_{0,0}^{(0)})^{-1}$.

The MR(m,M)-algorithm for computing the inverse of A works in $(1/2) \log(n/m)$ phases. Let $v_r = (1/2) \log(n/m) - r$ for $0 \leq r < (1/2) \log(n/m)$. In the first part of Phase 0, the inverses of all the lower triangular submatrices $A_{i,i}^{(v_0)}$, with $0 \leq i < \sqrt{n/m}$, are computed in parallel. Since each submatrix has size $\sqrt{m} \times \sqrt{m}$, each inverse can be computed sequentially within a single reducer. In the second part of Phase 0, each product

$$- \left(A_{2w+1,2w+1}^{(v_0)} \right)^{-1} A_{2w+1,2w} \left(A_{2w+1,2w+1}^{(v_0)} \right)^{-1},$$
for \(0 \leq w < (1/2)\sqrt{n/m}\), is computed within a reducer.

In Phase \(r\), with \(1 \leq r < (1/2)\log(n/m)\), each term
\[
-A_2^{(v_r)} \cdot A_2^{(v_r)} \cdot \left(A_2^{(v_r)} - 1\right),
\]
for \(0 \leq w < 2^{v_{r+1}}\), is computed in parallel by performing two matrix multiplications using \(M/2^{v_{r+1}}\) aggregate memory and local size \(m\). Therefore, at the end of Phase \((1/2)\log(n/m) - 1\) we have all the components of \(A_0^{(0)}\), i.e., of \(A^{-1}\).

Theorem 8. The above algorithm computes the inverse of a nonsingular lower triangular \(\sqrt{n} \times \sqrt{n}\) matrix \(A\) in
\[
O \left(\frac{n^{3/2}}{M \sqrt{m}} + \frac{\log^2 n}{\log m}\right)
\]
rounds on an \(MR(m, M)\).

Proof: The correctness of the algorithm follows from the correctness of (2) which in turns easily follows from the correctness of the formula to invert a lower triangular \(2 \times 2\) matrix. From the above discussion it easy to see that the memory requirements are all satisfied.

We now analyze the round complexity of the algorithm. At Phase \(r\) we have to compute \(2^{1+v_{r+1}} = (1/2)^r \sqrt{n/m}\) products between matrices of size \(\sqrt{n}/2^{v_r} \times \sqrt{n}/2^{v_r} = 2^{r} \sqrt{m} \times 2^{r} \sqrt{m}\). Each product is computed in parallel by using \(M/2^{v_{r+1}} = M2^{v+1}/m/n \geq 1\) aggregate memory and thus each Phase \(r\) requires \(O(2^{2r} \sqrt{mn}/M + \log_m(2^r m))\) rounds by using the algorithm described in Section III-A.

The cost of the lower triangular matrix inversion algorithm is then
\[
O \left(\sum_{r=0}^{(1/2)\log(n/m) - 1} \left(2^{2r} \sqrt{mn}/M + \log_m(2^r m)\right)\right),
\]
which gives the bound stated in the theorem. \(\square\)

If \(M \sqrt{m} = \Omega(n^{3/2})\) and \(m = \Omega(n^\epsilon)\) for some constant \(\epsilon\), the complexity reduces to \(O(\log n)\) rounds, which is a logarithmic factor better than what could be obtained by simulating the PRAM algorithm.

It is also possible to compute \(A^{-1}\) using the closed formula derived by unrolling a blocked forward substitution. In general, the closed formula contains an exponential number of terms. There are nonetheless special cases of matrices for which a large number of terms in the sum are zero and only a polynomial number of terms is left. This is, for instance, the case for triangular band matrices. (Note that the inverse of a triangular band matrix is triangular but not necessarily a triangular band matrix.) If the width of the band is \(O(m \log n)\), then we have a polynomial number of terms in the formula. In this case we can do matrix inversion in constant rounds for sufficiently large values of \(m\) and \(M\). A complete discussion of this method will be presented in the full version of the paper.

B. Inverting a general matrix

Building on the inversion algorithm for triangular matrices presented in the previous subsection, and on the dense-dense matrix multiplication algorithm, in this section we develop an \(MR(m, M)\)-algorithm to invert a general \(\sqrt{n} \times \sqrt{n}\) matrix \(A\). Let the trace \(tr(A)\) of \(A\) be defined as \(\sum_{i=0}^{n-1} a_{i,i}\), where \(a_{i,i}\) denotes the entry of \(A\) on the \(i\)-th row and \(i\)-th column. The algorithm is based on the following known strategy (see e.g., [12, Sect. 8.8]).

1) Compute the powers \(A^2, \ldots, A^n - 1\).
2) Compute the traces \(s_k = \sum_{i=1}^n tr(A^k)\), for \(1 \leq k \leq \sqrt{n} - 1\).
3) Compute the coefficients \(c_i\) of the characteristic polynomial of \(A\) by solving a lower triangular system of \(\sqrt{n}\) linear equations involving the traces \(s_k\) (the system is shown below).
4) Compute \(A^{-1} = -(1/c_0) \sum_{i=1}^n c_i A^i - 1\).

We now provide more details on the MR implementation of above strategy. The algorithm requires \(M = \Omega(n^{3/2})\), which ensures that enough aggregate memory is available to store all the \(\sqrt{n}\) powers of \(A\). In Step1 the algorithm computes naively the powers in the form \(A^2\), \(1 \leq i \leq \log \sqrt{n}\), by performing a sequence of \(\log \sqrt{n}\) matrix multiplications using the algorithm in Section III-A. Then, each one of the remaining powers is computed using \(M/\sqrt{n} \geq n\) aggregate memory and by performing a sequence of at most \(\log \sqrt{n}\) multiplications of the matrices \(A^2\) obtained earlier. In Step2 the \(\sqrt{n}\) traces \(s_k\) are computed in parallel using a prefix like computation, while the coefficients \(c_i\) of the characteristic polynomial are computed in Step3 by solving the following lower triangular system:

\[
\begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
s_{n-1} & s_{n-2} & \ldots & s_1 & n
\end{bmatrix}
\begin{bmatrix}
c_{n-1} \\
c_{n-1} \\
c_{n-3} \\
\vdots \\
c_0
\end{bmatrix}
= \begin{bmatrix}
s_1 \\
s_2 \\
s_3 \\
\vdots \\
s_n
\end{bmatrix}
\]
If we denote with L the matrix on the left hand side, with C the vector of unknowns, and with S the vector of the traces on the right hand side, we have $C = -L^{-1}S$. In order to compute the coefficients in C the algorithm inverts the $\sqrt{n} \times \sqrt{n}$ lower triangular matrix L as described in Section IV-A and computes the product between L^{-1} and S, to obtain C. Finally, Step 4 requires a prefix like computation. We have the following theorem.

Theorem 9. The above algorithm computes the inverse of any nonsingular $\sqrt{n} \times \sqrt{n}$ matrix A in

$$O \left(\frac{n^2 \log n}{M\sqrt{m}} + \frac{\log^2 n}{\log m} \right)$$

rounds on MR(m,M), with $M = \Omega(n^{3/2})$.

Proof: For the correctness of the algorithm see [12] Sect. 8.8). It is easy to check that the memory requirements of the MR(m,M) model are satisfied. We focus here on analyzing the round complexity.

Computing the powers in the form A^i, $1 \leq i \leq \log n$ requires $O \left(\frac{n^{3/2} \log n}{M\sqrt{m}} + \frac{\log^2 n}{\log m} \right)$ rounds, since the algorithm performs a sequence of $\log n$ products. The remaining powers are computed in $O \left(\frac{n^2 \log n}{M\sqrt{m}} + \frac{\log^2 n}{\log m} \right)$ rounds since each power is computed by performing at most $\log n$ product using M/\sqrt{n} aggregate memory. The prefix like computation for finding the \sqrt{n} traces s_k requires $O \left(\log_m n \right)$ rounds, while the linear system takes $O \left(\frac{n^{3/2}}{M\sqrt{m}} + \frac{\log^2 n}{\log m} \right)$ rounds. The final step takes $O \left(\log_m n \right)$ rounds using a prefix like computation. The round complexity in the statement follows. □

If $M\sqrt{m}$ is $\Omega(n^2 \log n)$ and $m = \Omega(n^c)$ for some constant c, the complexity reduces to $O \left(\log n \right)$ rounds, which is a quadratic logarithmic factor better than what could be obtained by simulating the PRAM algorithm.

C. Approximating the inverse of a matrix

The above algorithm for computing the inverse of any nonsingular square matrix requires $M = \Omega(n^{3/2})$. In this section we provide an MR(m,M)-algorithm providing a strong approximation of A^{-1} assuming $M = \Omega(n)$. A matrix B is a strong approximation of the inverse of an $\sqrt{n} \times \sqrt{n}$ matrix A if $\|B - A^{-1}\|/\|A^{-1}\| \leq 2^{-n^c}$, for some constant $c > 0$. The norm $\|A\|$ of a matrix A is defined as

$$\|A\| = \max_{x \neq 0} \|Ax\|_2/\|x\|_2$$

where $\| \cdot \|_2$ denotes the Euclidean norm of a vector. The condition number $\kappa(A)$ of a matrix A is defined as $\kappa(A) = \|A\|/\|A^{-1}\|$.

An iterative method to compute a strong approximation of the inverse of a $\sqrt{n} \times \sqrt{n}$ matrix A is proposed in [12] Sect. 8.8.2. The method works as follows. Let B_0 be a $\sqrt{n} \times \sqrt{n}$ matrix satisfying the condition $\|I_{\sqrt{n}} - B_0A\| = q$ for some $0 < q < 1$ and where $I_{\sqrt{n}}$ is the $\sqrt{n} \times \sqrt{n}$ identity matrix. For a $\sqrt{n} \times \sqrt{n}$ matrix C let $r(C) = I_{\sqrt{n}} - CA$. We define $B_k = (I_{\sqrt{n}} + r(B_{k-1}))B_{k-1}$, for $k > 0$. We have

$$\frac{\|B_k - A^{-1}\|}{\|A^{-1}\|} \leq q^{k}.\!
$$

By setting $B_0 = \alpha A^T$ where $\alpha = \max_i \{\sum_{j=0}^{\infty} |a_{i,j}|\} \max_j \{\sum_{i=0}^{\infty} |a_{i,j}|\}$, we have $q = 1 - 1/(\kappa(A)^2 n)$ [32]. Then, if $\kappa(A) = O(n^c)$ for some constant $c \geq 0$, B_k provides a strong approximation when $k = \Theta(\log n)$. From the above discussion, it is easy to derive an efficient MR(m,M)-algorithm to compute a strong approximation of the inverse of a matrix using the algorithm for dense matrix multiplication in Section III-A.

Theorem 10. The above algorithm provides a strong approximation of the inverse of any nonsingular $\sqrt{n} \times \sqrt{n}$ matrix A in

$$O \left(\frac{n^{3/2} \log n}{M\sqrt{m}} + \frac{\log^2 n}{\log m} \right)$$

rounds on an MR(m,M) when $\kappa(A) = O(n^c)$ for some constant $c \geq 0$.

Proof: The correctness of the algorithm derives from [12]. Once again we only focus on the round complexity of the algorithm. Computing α requires a a constant number of prefix like computations, and hence takes $O(\log_m n)$ rounds. To compute B_k, $k > 0$ from B_{k-1}, we need the value $r(B_{k-1})$ which involves a multiplication between two $\sqrt{n} \times \sqrt{n}$ matrices and a subtraction between two matrices. Hence, each phase requires $O \left(\frac{n^{3/2}}{M\sqrt{m}} + \log_m n \right)$ rounds. Since the algorithm terminates when $k = \Theta(\log n)$, the theorem follows. □

D. Matching of general graphs

A strategy for computing, with probability at least 1/2, a perfect matching of a general graph using matrix inversion is presented in [11]. The strategy is the following:

1) Let the input of the algorithm be the adjacency matrix A of a graph $G = (V,E)$ with \sqrt{n} vertices and k edges.
2) Let B be the matrix obtained from A by substituting the entries $a_{i,j} = a_{j,i} = 1$ corresponding to edges in the graph with the integers $2^{w_{i,j}}$ and $-2^{w_{i,j}}$ respectively, for $0 \leq i < j < \sqrt{n}$, where $w_{i,j}$ is an integer chosen independently and uniformly at random from $[1,2k]$. We denote the entry on the ith row and jth column of B as $b_{i,j}$.
3) Compute the determinant $det(B)$ of B and the greatest integer w such that 2^w divides $det(B)$.
4) Compute $adj(B)$, the adjugate matrix of B, and denote the entry on the ith row and jth column as $adj(B)_{i,j}$.

5) For each edge \((v_i, v_j) \in E\), compute
\[
a_{i,j} = \frac{b_{i,j} \cdot \text{adj}(B)_{i,j}}{2w}.
\]
If \(a_{i,j}\) is odd, then add the edge \((v_i, v_j)\) to the matching.

An MR\((m, M)\)-algorithm for perfect matching easily follows by the above strategy. We now provide more details on the MR implementation which assumes \(M = \Omega \left(n^{3/2} \right) \).

In Step 2 \(B\) is obtained as follows. The algorithm partitions \(A\) into square \(\sqrt{m} \times \sqrt{m} \) submatrices \(A_{\ell,h}\), \(0 \leq \ell, h < \sqrt{n}/m\), and then assigns each pair of submatrices \((A_{\ell,h}, A_{h,\ell})\) to a different reducer. This assignment ensures that each pair of entries \((a_{i,j}, a_{j,i})\) of \(A\) is sent to the same reducer. Consider now the reducer receiving the pair of submatrices \((A_{\ell,h}, A_{h,\ell})\) and consider the set of pairs \((a_{i,j}, a_{j,i})\) of \(A\) such that \(a_{i,j} = a_{j,i} = 1\), where \(\ell \sqrt{m} \leq i < (\ell + 1) \sqrt{m}, h \sqrt{m} \leq j < (h + 1) \sqrt{m}\), and \(i < j\). For each of these pairs the reducer chooses a \(w_{i,j}\) independently and uniformly at random from \([1, 2k]\), and sets \(b_{i,j}\) to \(2^w_{i,j}\) and \(b_{j,i}\) to \(-2^w_{i,j}\). For all the other entries \(a_{i,j} = a_{j,i} = 0\,\text{, the reducer sets } b_{i,j} = b_{j,i} = 0\).

Let \(c_k\), \(0 \leq k \leq \sqrt{n}\) be the coefficients of the characteristic polynomial of \(B\), which can be computed as described in Section IV-B. Steps 3 and 4 can be easily implemented since the determinant of \(B\) is \(c_0\) and \(\text{adj}(B) = -(c_1I + c_2B + c_3B^2 + \cdots + c_{\sqrt{n}}B^{\sqrt{n}-1})\).

Finally, in Step 5, matrices \(B\) and \(\text{adj}(B)\) are partitioned in square submatrices of size \(\sqrt{m} \times \sqrt{m}\), and corresponding submatrices assigned to the same reducer, which computes the values \(a_{i,j}\) for the entries in its submatrices and outputs the edges belonging to the matching.

Theorem 11. The above algorithm computes, with probability at least 1/2, a perfect matching of the vertices of a graph \(G\), in
\[
O \left(\frac{n^2 \log n}{M \sqrt{m}} + \frac{\log^2 n}{\log m} \right)
\]
rounds on MR\((m, M)\), where \(M = \Omega \left(n^{3/2} \right) \).

Proof: The correctness of the algorithm follows from the correctness of [11] and it is easy to see that the memory requirements of the MR\((m, M)\) model are satisfied. We focus here on the round complexity. From the above description, it is easy to see that the computation of \(B\) and the \(w_{i,j}\)'s in Step 2 only takes one round. Steps 3 and 4 require the computation of the coefficients of the characteristic polynomial of \(B\), and so takes a number of rounds equal to the algorithm for matrix inversion described in Section IV-B, i.e., \(O \left(\frac{n^2 \log n}{M \sqrt{m}} + \frac{\log^2 n}{\log m} \right)\).

Step 5 takes one round. Since the round complexity is dominated by the number of rounds needed to compute the coefficients of the characteristic polynomial of \(B\), the theorem follows.

We note that matching is as easy as matrix inversion in the MR\((m, M)\) model. The above result can be extend to minimum weight perfect matching, to maximum matching, and to other variants of matching in the same way as in [11] Sect. 5.

V. Conclusions

In this paper, we provided a formal computational model for the MapReduce paradigm which is parametric in the local and aggregate memory sizes and retains the functional flavor originally intended for the paradigm, since it does not require algorithms to explicitly specify a processor allocation for the reduce instances. Performance in the model is represented by the round complexity, which is consistent with the idea that when processing large data sets the dominant cost is the reshuffling of the data. The two memory parameters featured by the model allow the algorithm designer to explore a wide spectrum of tradeoffs between round complexity and memory availability. In the paper, we covered interesting such tradeoffs for the fundamental problem of matrix multiplication and some of its applications. The study of similar tradeoffs for other important applications (e.g., graph problems) constitutes an interesting open problem.

Acknowledgments

The work of Pietracaprina, Pucci and Silvestri was supported, in part, by MIUR of Italy under project AlgoDEEP, and by the University of Padova under the Strategic Project STPD08JA32 and Project CPDA099949/09. The work of Riondato and Upfal was supported, in part, by NSF award IIS-0905553 and by the University of Padova through the Visiting Scientist 2010/2011 grant.

References

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce. Morgan & Claypool, 2010.

[3] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii, “Filtering: a method for solving graph problems in MapReduce,” in Proc. of the 23rd ACM Symp. on Parallel Algorithms and Architectures, 2011, pp. 85–94.

[4] H. Karloff, S. Suri, and S. Vassilvitskii, “A model of computation for MapReduce,” in Proc. of the 21st ACM-SIAM Symp. On Discrete Algorithms, 2010, pp. 938–948.

[5] M. Goodrich, N. Sitchinava, and Q. Zhang, “Sorting, searching, and simulation in the MapReduce framework,” in Proc. of the 22nd International Symp. On Algorithms and Computation, 2011, to appear. See also CoRR abs/1004.470.

[6] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitkina, “On distributing symmetric streaming computations,” ACM Transactions on Algorithms, vol. 6, no. 4, 2010.
[7] L. Valiant, “A bridging model for parallel computation,” Communications of the ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[8] G. Bilardi and A. Pietracaprina, “Theoretical models of computation,” in Encyclopedia of Parallel Computing, D. Padua, Ed. Springer, 2011, to appear.

[9] F. Chierichetti, R. Kumar, and A. Tomkins, “Max-cover in Map-Reduce,” in Proc. of the 19th World Wide Web Conference, 2010, pp. 231–240.

[10] C. Tsourakakis, U. Kang, G. Miller, and C. Faloutsos, “DOULION: counting triangles in massive graphs with a coin,” in Proc. of the 15th ACM SIGKDD Intl. Conference on Knowledge Discovery and Data Mining, 2009, pp. 837–849.

[11] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, “Matching is as easy as matrix inversion,” Combinatorica, vol. 7, no. 1, pp. 105–113, 1987.

[12] J. JáJá, An Introduction to Parallel Algorithms. Addison Wesley Longman Publishing Co., Inc., 1992.

[13] J. Gilbert, V. Shah, and S. Reinhardt, “A unified framework for numerical and combinatorial computing,” Computing in Science Engineering, vol. 10, no. 2, pp. 20–25, 2008.

[14] R. Yuster and U. Zwick, “Detecting short directed cycles using rectangular matrix multiplication and dynamic programming,” in Proc. of 15th ACM-SIAM Symp. On Discrete Algorithms, 2004, pp. 254–260.

[15] G. Penn, “Efficient transitive closure of sparse matrices over closed semirings,” Theoretical Computer Science, vol. 354, no. 1, pp. 72–81, 2006.

[16] D. Irony, S. Toledo, and A. Tiskin, “Communication lower bounds for distributed-memory matrix multiplication,” Journal of Parallel and Distributed Computing, vol. 64, no. 9, pp. 1017–1026, 2004.

[17] W. F. McColl and A. Tiskin, “Memory-efficient matrix multiplication in the BSP model,” Algorithmica, vol. 24, no. 3, pp. 287–297, 1999.

[18] M. Middendorf, H. Schmeck, H. Schrder, and G. Turner, “Multiplication of matrices with different sparseness properties on dynamically reconfigurable meshes,” VLSI Design, no. 9, pp. 69–81, 1999.

[19] G. Manzini, “Sparse matrix computations on the hypercube and related networks,” Journal of Parallel and Distributed Computing, vol. 21, no. 2, pp. 169–183, 1994.

[20] C. P. Kruskal, L. Rudolph, and M. Snir, “Techniques for parallel manipulation of sparse matrices,” Theoretical Computer Science, vol. 64, no. 2, pp. 135–157, 1989.

[21] A. Buluç and J. R. Gilbert, “Challenges and advances in parallel sparse matrix-matrix multiplication,” in Proc. of 37th International Conference on Parallel Processing, 2008, pp. 503–510, see also CoRR abs/1006.2183.

[22] J.-W. Hong and H. T. Kung, “I/O complexity: The red-blue pebble game,” in Proceedings of the 13th ACM Symp. on Theory of Computing, 1981, pp. 326–333.

[23] L. R. Kerr, “The effect of algebraic structure on the computational complexity of matrix multiplication,” Ph.D. dissertation, Cornell University, 1970.

[24] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication and permuted transposition,” ACM Transactions on Mathematical Software, vol. 4, no. 3, pp. 250–269, 1978.

[25] R. Yuster and U. Zwick, “Fast sparse matrix multiplication,” ACM Transactions on Algorithms, vol. 1, no. 1, pp. 2–13, 2005.

[26] G. Greiner and R. Jacob, “The I/O complexity of sparse matrix dense matrix multiplication,” in Proc. of 9th Latin American Theoretical Informatics, 2010, vol. 6034, pp. 143–156.

[27] M. Goodrich, “Simulating parallel algorithms in the MapReduce framework with applications to parallel computational geometry,” 2010, CoRR abs/1004.470.

[28] M. T. Goodrich, “Communication-efficient parallel sorting,” SIAM Journal on Computing, vol. 29, no. 2, pp. 416–432, 1999.

[29] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan, “Counting distinct elements in a data stream,” in Proc. of the 6th Int. Workshop on Randomization and Approximation Techniques, 2002, pp. 1–10.

[30] R. Amossen, A. Campagna, and R. Pagh, “Better size estimation for sparse matrix products,” in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, ser. Lecture Notes in Computer Science, 2010, vol. 6302, pp. 406–419.

[31] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge MA, 2005.

[32] V. Pan and J. Reif, “Efficient parallel solution of linear systems,” in Proc. of the 17th ACM Symp. on Theory of Computing, 1985, pp. 143–152.