A cavity-QED simulator of slow and fast scrambling

J. Marino1,2,3 and A. M. Rey1,2

1JILA, NIST and University of Colorado, Department of Physics, University of Colorado, Boulder, CO 80309, USA
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA
3Department of Physics, Harvard University, Cambridge MA 02138, United States

(Dated: October 2, 2018)

We study information scrambling, as diagnosed by the out-of-time order correlations (OTOCs), in a system of large spins collectively interacting via spatially inhomogeneous and incommensurate exchange couplings. The model is realisable in a cavity QED system in the dispersive regime. Fast scrambling, signalled by an exponential growth of the OTOCs, is observed when the couplings do not factorise into the product of a pair of local interaction terms, and at the same time the state of the spins points initially coplanar to the equator of the Bloch sphere. When one of these conditions is not realised, OTOCs grow algebraically with an exponent sensitive to the orientation of the spins in the initial state. The impact of initial conditions on the scrambling dynamics is attributed to the presence of a global conserved quantity, which critically slows down the evolution for initial states close to the poles of the Bloch sphere.

Introduction — Information scrambling, and its intimate relation to quantum chaos and holographic duality [1, 2], represents one of the frontiers of research in condensed matter and many-body physics. Out-of-time order correlations (OTOCs) have been raised to the rank of prime quantifiers of information scrambling in this field: for two commuting unitary operators \hat{W} and \hat{V}, OTOCs are defined as

$$C(t) = \langle [\hat{W}(t), \hat{V}(0)]^2 \rangle,$$

(1)

with \hat{W} evolving with the Hamiltonian of the system, H. This quantity is currently considered an indicator of the loss of memory of initial conditions in a quantum system. Specifically, $C(t)$ measures the overlap between two states: one state is prepared through the subsequent application of \hat{V} at time $t = 0$ and \hat{W} at a later time t, while the second reversing this procedure in time.

A system which deteriorates information exponentially in time is called a fast scrambler, and the associated scrambling rate, λ, has been regarded as a quantum analog of the Lyapunov exponent, which in classical chaotic systems dictates the rate at which two initially close trajectories diverge in phase space [4]. In quantum systems, λ, as measured by the OTOC, is bounded, $\lambda \leq 2\pi T$ (with T the temperature of the system), as firstly derived in the context of holographic theory and black holes [11, 2, 5]. However, in any system with finite Hilbert space dimension, the growth in time of the OTOC is a transient phenomenon before saturation to a constant value occurs, since, using triangular inequalities, the norm of $C(t)$ in Eq. (1) can be always bounded by the norm of the operators therein involved. Few condensed matter systems scramble fast [6, 12], and, at the best of our current knowledge, none saturates the bound on the quantum Lyapunov exponent, λ, with the exception of the so called SYK model, a recent extension by Kitaev of an original model introduced by Sachdev and Ye [13, 23], where information is scrambled swiftly as in a black hole. As counterpart, slow scramblers are identified with those systems where out-of-time order correlations grow polynomially in time, with examples ranging from interacting fermions in infinite dimensions [24], to Luttinger Liquids [25], many-body localised systems [26, 27], encompassing periodically kicked quantum Ising chains [28] and spin chains driven by noise [29] (for a connection between scrambling and quantum critical points, see also [30, 31]).

More recent developments include operator spreading and entanglement growth in quantum random circuits [32, 40], the search for velocity-dependent Lyapunov exponents in spatially-extended quantum systems [41–43], and a general resurgence of interest in the concept of quantum chaos [44–47]. Despite the proliferation of

FIG. 1. Sensitivity of the scrambling dynamics to different initial conditions and to the nature of many-body coupling V_{ij}. For non-separable interactions $V_{ij} \neq V_i V_j$, and for initial spin states pointing close to the equator of the Bloch sphere, information is scrambled fast in $C_z(t)$, an OTOC computed from j_i^z spin operators (see Eq. (7)), growing exponentially before saturation. In all other instances, the growth of $C_z(t)$ is algebraic in time ($\alpha \approx 5/2$ and $\beta \approx 9/2$).
In the thermodynamic limit, operators of the SU(2) independent parameter \(L \) on the lattice, governed by the Hamiltonian (2), describes the interaction among \(j \leq i \leq j \), and scaling as \(H \propto L \). Rescaling the spin operators as \(\tilde{J}_i^z = J_i^z / L \), the commutation relations read (\(\alpha, \beta, \gamma = x, y, z \); with \(i \) the imaginary unit)

\[
[J_i^{(\alpha)}, J_j^{(\beta)}] = \frac{i}{L} \epsilon_{\alpha\beta\gamma} \delta_{ij} J_j^{(\gamma)}.
\]

Since \(J_i^{(\alpha)} \) are bounded, Eq. (3) implies that for large \(L \), the Hamiltonian (2) describes the interaction among large, classical spins. Note that the magnitude of the spins is not controlled by the system size, rather by the independent parameter \(L \).

The Hamiltonian (2) can be realised for example considering a system of alkaline earth atoms exhibiting a long-lived optical transition, loaded in a cavity and tightly trapped in the ground vibrational level of a one-dimensional deep optical lattice, with lattice spacing \(\lambda_c \) and with \(N_i \) atoms per site \([60, 61]\). In the dispersive regime of large cavity detuning (see Supplemental Material (SM)), we can adiabatically eliminate the photons, and derive an effective Hamiltonian in the form (2).

We will consider: spatial dependent interactions which factorise, \(V_{ij} = V_i V_j \) (‘separable’ interactions), with

\[
V_i = v \cos(2\pi i \sigma),
\]

and \(\sigma = F_{M-1}/F_M \), where \(F_M \equiv N \) is the \(M \)-th term of the Fibonacci sequence; or ‘non-separable’ interactions \((V_{ij} \neq V_i V_j) \), of the form

\[
V_{i,j} = v^2 \cos(2\pi (i - j) \sigma).
\]

This can be realised considering, in the former case, a cavity which admits a single resonant mode propagating along the one-dimensional lattice with wavevector \(k = 2\pi/\lambda_c \), and, in the latter case, a ring cavity, which supports two degenerate running modes \([62, 63]\). In both cases, we assume that the ratio between \(\lambda_c \) and \(\lambda_i \) incommensurate, and given by \(\sigma = \lambda_i / \lambda_c = 2F_M/F_{M+1} \) (SM) for further details.

Out of time order correlations (OTOCs) — As customary in spin systems with emerging classical behaviour, we introduce \(N \) pairs of canonical coordinates \((q_i, \dot{p}_i) \) with \(i = 1, ..., N \), representing, respectively, on the Bloch sphere, the azimuthal angle, \(0 < \theta_i \leq \pi \), and the polar angle, \(0 < \varphi_i \leq \pi \), via the relation \(p_i = \cos \theta_i \). As anticipated, this constitutes an appropriate effective description of the degrees of freedom of the model, in the limit of a large number of atoms per lattice site \((N \geq L \gg 1) \).

In turn, this allows to rewrite the normalised angular momentum components as

\[
\tilde{J}_i^z = \cos \varphi_i \sqrt{1 - p_i^2}, \quad \tilde{J}_i^y = \sin \varphi_i \sqrt{1 - p_i^2}, \quad \tilde{J}_i^z = p_i,
\]

and accordingly one can write the classicalised version of the OTOC for the \(\tilde{z} \)-spin component

\[
C_z \equiv \langle (\tilde{J}_i^z(t), \tilde{J}_i^z(0))^2 \rangle = \langle (\{p_i(t), p_i(0)\})^2 \rangle = (\frac{\partial p_i(t)}{\partial q_i(0)})^2.
\]

In Eq. (7), the quantum mechanical commutator has been converted into a Poisson parenthesis, given the emerging classical dynamics of (2). Since the main focus of this work is on the slow and fast scrambling properties of the many body simulator in (2), we shall restrict our calculations for the rest of the paper on equal-site correlators for simplicity.

The classical equations of motions for \((q_i, \dot{p}_i) \) read

\[
\dot{p}_i = -\frac{2}{N} \sqrt{1 - p_i^2} \sum_l V_{il} \sin(q_i - q_l) \sqrt{1 - p_l^2},
\]

\[
\dot{q}_i = \frac{2}{N} \frac{p_i}{\sqrt{1 - p_i^2}} \sum_l V_{il} \cos(q_i - q_l) \sqrt{1 - p_l^2}.
\]

Theoretical studies in the last few years, only few experimental proposals and realisations for the measurement of scrambling are currently available \([48]\), encompassing ion traps \([49]\), Ramsey interferometry \([50]\), cavity QED systems \([51]\), and nuclear magnetic resonance simulators \([52, 54]\).
as they can be straightforwardly derived from the Hamilton-Jacobi equations

$$\dot{p}_i = -\partial H / \partial q_i, \quad \dot{q}_i = \partial H / \partial p_i,$$

with

$$H = \frac{1}{N} \sum_{ij} V_{ij} \exp(i(q_i - q_j)) \sqrt{(1 - p_i^2)(1 - p_j^2)}.$$

the classical limit of H.

The instances of OTOC dynamics discussed in this work are realised starting from a product state of identical coherent states at every lattice site, $|\psi\rangle_{(t=0)} = \prod_{i=1}^{N} \otimes |q_i, \theta_i\rangle$ (see also SM). The state $|q_i, \theta_i\rangle$ is obtained rotating on the Bloch sphere the state $|L, -L\rangle_i$ on site i by the pair of angles (q_i, θ_i) (see the SM for the related expression), and, in the large L limit, this corresponds to evolve the effectively classical dynamics of $\mathbf{2}$ from a set of initial random conditions drawn from a certain distribution, as it is done in semi-classical phase-space methods [64].

For instance, for initial states close to the north pole, one has [see Ref. [64]] that $\langle J_i^x \rangle \simeq L$, $\langle J_i^z \rangle \simeq 0$ while $\langle (J_i^x)^2 \rangle = L/2$. Following the semi-classical approach, we average over an ensemble of R different trajectories, each one resulting from a different realisation of the random initial condition. Specifically, we calculate $C_z(t)$ averaged over these R classical trajectories, $C_z^a(t)$, with $a = 1, ..., R$, as

$$C_z(t) = \frac{1}{R} \sum_{a=1}^{R} C_z^a(t).$$

We have compared the classical dynamics sampled over this initial state distribution with a perturbative quantum mechanical calculation valid at short times, and found quantitative agreement (see SM for details).

Slow scrambling — The OTOCs of the model show at short times a growth $\propto t^2$ as it can be shown with perturbation theory (see SM). However, the non-linear character of interactions changes the time-dependent behaviour of the OTOC at later times. In particular, we find that the choice of initial state and the separability of the interaction (or lack of it) influences the temporal dependence of the OTOC. For initial states pointing close the poles of the Bloch sphere, the growth of $C_z(t)$ is power law with $C_z(t) \propto t^\alpha$ for $\alpha \simeq 2.5$ irrespectively of the separability of the interaction couplings, V_{ij}. Fig. 2 shows a second, qualitatively different instance of slow scrambling in the model: $C_z(t) \propto t^3$ with $\beta \simeq 4.5$, for separable interactions and for an initial state pointing along the z-direction on the Bloch sphere.

Fast scrambling — The non-separability of the exchange couplings, $V_{ij} \neq V_iV_j$, has important consequences for initial states pointing along directions coplanar with the equator of the Bloch sphere. In this case, the scaling of the OTOCs at intermediate times is exponential, see Fig. 3 indicating that, in order to realise fast scrambling, the spatial structure of the interactions is crucial.

We now consider initial conditions in the form of tensor products of coherent states with every spin pointing in a direction tilted by a certain polar angle $0 < \vartheta < \pi/2$ with respect to the north pole of the Bloch sphere. Specifically, we want to study how the onset of fast scrambling in $C_z(t)$ depends on ϑ. In Fig. 4...
we report a specific instance for a system of $N = 55$ sites and we find that above a certain critical angle, $\vartheta_c \simeq 0.44\pi$, the out-of-time order correlator $C_z(t)$ still exhibits exponential growth before saturation with a Lyapunov exponent which vanishes continuously as $\vartheta \to \vartheta_c^+$. Approximatively for $\vartheta \lesssim 0.3\pi$ slow scrambling $\propto t^{5/2}$ takes over again, while, in the between of these two critical angles, $C_z(t)$ still grows and saturates, although a neat fit is harder to find. The presence of fast scrambling only for initial states pointing in a neighbourhood of the \hat{x}-direction, can be razionalised recalling that $J^z = \sum_{i=1}^N J^z_i$, the total magnetisation along the \hat{z}-direction, is a conserved quantity in our model and for states closer to the north pole dynamics becomes slower: in the limit case of maximal absolute value of $\langle J^z \rangle$ (all spins pointing initially close to the north or south pole) no evolution occurs. In Fig. 4 we plot the dependence of the exponent, λ, extracted from $C_z(t)$, as a function of the expectation value of J^z_i (identical at each site, for the initial conditions we have chosen). We have checked that for the next Fibonacci number (i.e. changing system’s size), $N = F_{11} = 89$, this scenario remains qualitatively unaltered.

Fidelity OTOCs — As recently pointed out in Refs. [65], the fidelity OTOC, $C_G(t)$, obtained setting in Eq. (1) the operator $\hat{V} = |\psi_0\rangle\langle\psi_0|$ equal to the projector on the state $|\psi_0\rangle$, and $\hat{W} = e^{i\delta\phi\hat{G}}$, with an Hermitian operator $\hat{G} = J^z_i$ (in the case we analyse here), reduces for small perturbations, $\delta\phi \ll 1$, to a measure of the variance, $\Delta G^2(t)$, of the observable \hat{G}. Specifically, up to second order in $\delta\phi$, we have
\begin{equation}
1 - C_G(t) = 1 - |\langle\psi_0|e^{i\delta\phi\hat{G}}|\psi_0\rangle|^2
\simeq \delta\phi^2 (\langle G^2(t) \rangle - \langle G(t) \rangle^2) \equiv \delta\phi^2 \Delta G^2(t).
\end{equation}

The fidelity OTOC thus links fast scrambling with the exponential grow of $\Delta G^2(t)$, and represents the most direct diagnostic of chaotic behaviour [4]. The importance of $C_G(t)$ resides in the fact that variance is an easily accessible quantity as demonstrated in trapped ion magnets [60] or cavity QED platforms [67–73].

We have calculated the variance $\Delta G^2(t)$ of initial states pointing along the \hat{x} direction, in the scrambler given by $[2]$ with non-separable interactions, and we have found that it grows as $\Delta G^2(t) \propto e^{X^t}$, with $X \simeq 0.15$, and saturates quickly, in agreement with the behaviour of $C_z(t)$ (see also inset of Fig. 3). The fact that the Lyapunov exponents extracted from the OTOC and the variance match, is consistent with the picture that the onset of fast scrambling in our model is probably rooted in the presence of an underlying classical chaotic regime for states pointing along the equator of the Bloch sphere.

Perspectives — In summary, our study presents an experimentally viable route for a system where the interplay of initial conditions and the structure of the many-body interactions discriminate between the emergence of slow (algebraic in time) or fast (exponential) information scrambling in the OTOCs dynamics.

Our results open the way to the exciting perspective of studying the scrambling properties of cavity QED simulators in the large cooperativity regime [67, 74, 75], upon tuning the 'level' of randomness [76] in the spin-spin collective interactions, V_{ij}. For instance, it would be interesting to explore the impact of truly disordered interactions on slow scrambling, or the robustness of fast scrambling when perfect periodicity is restored in the spatial structure of the non-separable many-body interactions. Furthermore, it would be worth to explore whether slow and fast scrambling leave signatures on easily accessible observables through measurements of the output cavity field and collective spin distribution.

On the theory side, we believe it would be interesting to study, in the future, the scrambling of extended quantum systems with quasi-periodic (or quasi-random) short range many-body interactions, in order to explore how they would impact on the butterfly velocities and front spreading properties of out-of-time order correlators.

Acknowledgements — We thank E. Altman, J. Kurchan, A. Lerose, B. Lev, R. Lewis-Swan, A. Polkovnikov, T. Prosen, A. Safavi-Naini for useful discussions. We thank R. M. Nandkishore and M. Norcia for comments on the manuscript. J.M. is supported by the Euro-
Supplemental Material

Perturbation theory at short times

In order to benchmark the semi-classical many-body dynamics of the model (2), we consider the short-time expansion for a generic operator $O(t)$, which reads $O(t) \simeq O - \frac{i}{\hbar}[O, H] - \frac{i^2}{2!}[O, H, H] + ...$, with O the operator at time zero. We then expand accordingly the out-of-time order correlator C_z.

For $J_i^z(t)$, this reads

$$J_i^z(t) \simeq J_i^z - \frac{i}{\hbar} t [J_i^z, H] + ...$$ (13)

which, after some straightforward algebra, yields the following expression for the rescaled angular momentum operator

$$\tilde{J}_i^z(t) \simeq \tilde{J}_i^z(0) - \frac{i}{\hbar} \frac{t}{N} \left(\sum_b V_{ib} \tilde{J}_b^+ \tilde{J}_b^- - \sum_a V_{ai} \tilde{J}_a^+ \tilde{J}_a^- \right) + ...$$ (14)

and consequently an expansion for the OTOC in the form

$$C_z(t) = \langle [J_i^z(t), J_i^z(0)]^2 \rangle \simeq \frac{t^2}{(LN)^2} \langle \psi \rangle \sum_{b \neq i, b' \neq i} V_{ib} V_{ib'} (J_i^+ J_{b'}^- + J_i^- J_{b'}^+) (J_i^+ J_{b'}^- + J_i^- J_{b'}^+) \langle \psi \rangle.$$ (15)

As discussed in the main text, in the large L limit, the angular momentum operators have classical commutation relations (cf. Eq. [3]), and the pairs of coordinates $\{(q_i, p_i)\}_{i=1,...,N}$ evolve according to classical equations of motion, assuming one starts from a product state of coherent states. The expression of the latter for a single spin reads

$$|\theta, \varphi\rangle = \frac{1}{(1 + |\tau|^2)^{L/2}} e^{\tau J^+} |L, -L\rangle = \sum_{m=-L}^{L} \frac{1}{(1 + |\tau|^2)^{L/2}} \left(\frac{2L}{m + L} \right)^{1/2} \tau^{m + L} |L, m\rangle,$$ (16)

where $\tau = e^{-i\varphi} \tan(\theta/2)$ and the index m labels the eigenstates of J_z. The coherent state is obtained with a rotation of the state $|L, -L\rangle$, respectively, by the polar and azimuthal angles θ, φ. Accordingly, the state $|\psi\rangle$ in Eq. (15) reads

$$|\psi\rangle = \prod_{i=1}^{M} |\theta, \varphi\rangle_i.$$ (17)

We have benchmarked the short-time, perturbative, quantum mechanical calculation in Eq. (15) and the semi-classical dynamics used in the main text for states pointing close to the north pole (analogous results hold for
the south pole). In this case, the magnitude of the angle involved in the rotation in Eq. (16) can be deduced following the discussion contained in Ref. [64]: the semi-classical spin state has variance along the \hat{x} and \hat{y} directions $\langle L_x^2\rangle$ and $\langle L_y^2\rangle = L/2$, and therefore is closely aligned with the \hat{z} direction. Specifically, the angle measuring the departure from the \hat{z}-axis is given by $\tan \theta \sim 1/\sqrt{L}$ and, for large L, this yields $\theta \sim 1/\sqrt{L}$; in the notation of the canonically conjugated coordinates introduced in the main text, we have $p \simeq 1 - 1/(2L)$. We have run the corresponding semi-classical dynamics, Eqs. (8), and compared with the quantum mechanical prediction at short times, Eq. (16), averaged over the state (17). They both scales $\propto t^2$ and with quantitative agreement on the numerical pre-factor.

Details of the experimental implementation

The model discussed in the main text can be implemented using electronic long-lived optical transitions in alkaline earth atoms or hyperfine ground state levels in generic cold atom laboratories via Raman transitions. Here we focus on the former case but generalization to the latter can be straightforwardly carried out. For the case of optical transitions, we label the corresponding electronic levels as g and e, respectively. In addition we assume the atoms can have internal structure consisting of $\alpha = 1, 2, \ldots, N$ hyperfine levels. We consider the situation when the atoms are tightly trapped in the ground vibrational level of a one dimensional deep optical lattice along the \hat{z} axis with lattice spacing $\lambda_\ell/2$ inside of an optical cavity. For simplicity, we assume the lattice is at the ‘magic wavelength’ so that the trapping potential is the same for the different internal states. The Gaussian profile of the beams generates the transverse confinement which we approximate as a harmonic potential where atoms occupy the different transverse modes $n = \{n_x, n_y\}$.

We assume two different configurations for the cavity. In the first case, the cavity admits a single resonant mode propagating along the one-dimensional lattice with associated wavevector $\vec{k} = k\hat{z}$ and normalized mode profile of the form $\Xi(z) = \cos(kz)$. In the second case, we consider a ring cavity, which supports two degenerate running modes propagating along \hat{z} with normalized mode profile $\Xi^\pm(z) \sim e^{\pm ikz}$. In both cases $k = 2 \pi/\lambda_c$. We will also assume that the ratio between λ_c and λ_ℓ is incommensurate, $\sigma = \lambda_\ell/\lambda_c = 2F_{M-1}/F_M$ with F_M the M-th term of the Fibonacci sequence, and equal to number of lattice sites, $F_M \equiv N$.

The dynamics of the coupled atom-light system is described by a master equation for the density matrix, $\hat{\rho}$,

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[H^{(1)}, \hat{\rho} \right] + \mathcal{L}_c[\hat{\rho}].$$

Here, the Hamiltonian describing the atom-light coupling is, for the single mode cavity

$$H^{(1)} = \Delta_c \hat{a} \hat{a}^\dagger + \sum_{\alpha=1}^{N} \sum_{i=1}^{N} \sum_{n_x=1}^{N} g_\alpha \Xi(i) \left(\hat{a}^\dagger \hat{\sigma}_{\alpha,i,n_x}^- + \hat{a} \hat{\sigma}_{\alpha,i,n_x}^+ \right),$$

(19)

where \hat{a} is the cavity mode annihilation operator, $\hat{\sigma}_{\alpha,i,n_x}^\pm \equiv |e, \alpha, i, n_x\rangle \langle g, \alpha, i, n_x|$, are Pauli raising operators for atoms in hyperfine state α, lattice site i and transverse mode n_x. N_i is the number of atoms in lattice site i and $\Xi(i) = \cos(2\pi \sigma i)$.

For the ring cavity, the Hamiltonian reads, instead,

$$H^{(R)} = \sum_{m=\pm 1} \Delta_c \hat{a}_m \hat{a}_m^\dagger + \sum_{m=\pm 1} \sum_{\alpha=1}^{N} \sum_{i=1}^{N} \sum_{n_x=1}^{N} g_\alpha \Xi^\pm(i) \left(\hat{a}_m^\dagger \hat{\sigma}_{\alpha,i,n_x}^- + \hat{a}_m \hat{\sigma}_{\alpha,i,n_x}^+ \right),$$

(20)

Here \hat{a}_m are the corresponding cavity mode annihilation operators and $\Xi^\pm(i) = \exp[\pm ik i]$. We have assumed all the hyperfine levels are degenerate and detuned from the relevant cavity modes by Δ_c (there is no external magnetic field). In both cases the parameters g_α give the dipolar couplings of the associated $|g, \alpha\rangle \leftrightarrow |e, \alpha\rangle$ transition (assuming linearly polarized light) and are proportional to the corresponding Clebsch-Gordan coefficient. We neglected any dependence on them on the motional degrees of freedom, assumption valid in the Lamb-Dicke regime.

The Lindblad term

$$\mathcal{L}_c[\hat{\rho}] = \sum_m K_m \left(2\hat{a}_m \hat{\rho} \hat{a}_m^\dagger - \hat{a}_m^\dagger \hat{a}_m \hat{\rho} - \hat{\rho} \hat{a}_m^\dagger \hat{a}_m \right),$$

(21)
describes photon loss from the cavity with decay rate κ (identical for all cavity modes).

In the dispersive regime where $\Delta_c \gg \kappa, g_\alpha$, we can adiabatically eliminate the photons, obtaining $\dot{a}_m(t) \approx \frac{2}{\Delta_c + i\kappa} \sum_{n=1}^{N_c} \sum_{i=1}^{N_c} n \alpha g_\alpha \sigma_{m,n}^{i,t}$. By introducing the collective spin operators $\hat{J}^-_{\alpha,i} = \sum_{n=1}^{N_c} \hat{\sigma}^-_{\alpha,i,n}$, Eq. (18) simplifies the model to a master equation for the reduced density matrix $\hat{\rho}_s$ of the spins,

$$\frac{d\hat{\rho}_s}{dt} = -\frac{i}{\hbar} \left[\hat{H}_\text{eff}^{(1)}, \hat{\rho}_s \right] + \hat{L}^{(1)}[\hat{\rho}_s].$$

Here, the effective Hamiltonian for the one mode cavity is

$$\hat{H}_\text{eff}^{(1)} = \frac{4\hbar \Delta_c}{(4\Delta_c^2 + \kappa^2)} \sum_{j=1}^{N_c} \sum_{\alpha,\beta=1}^{N_c} \cos(2\pi\sigma j) \cos(2\pi\sigma l) g_\alpha g_\beta \hat{J}^+_{j,\alpha} \hat{J}^-_{j,\beta}.$$

This is accompanied by a dissipative contribution which describes collective emission into the cavity mode,

$$\hat{L}^{(1)}[\hat{\rho}_s] = \frac{1}{2} \sum_{j=1}^{N_c} \sum_{\alpha,\beta=1}^{N_c} \cos(2\pi\sigma j) \cos(2\pi\sigma l) \sqrt{\Gamma_\alpha \Gamma_\beta} \left(2 \hat{J}^-_{j,\alpha} \hat{\rho}_s \hat{J}^+_{j,\beta} - \hat{J}^+_{j,\alpha} \hat{\rho}_s \hat{J}^-_{j,\beta} - \hat{\rho}_s \hat{J}^+_{j,\alpha} \hat{J}^-_{j,\beta} \right),$$

where $\Gamma_\alpha = 4\kappa g_\alpha^2/(4\Delta_c^2 + \kappa^2)$.

For the ring cavity the corresponding Hamiltonian and Lindblad terms are

$$\hat{H}_\text{eff}^{(R)} = \frac{4\hbar \Delta_c}{(4\Delta_c^2 + \kappa^2)} \sum_{j=1}^{N_c} \sum_{\alpha,\beta=1}^{N_c} \cos[2\pi\sigma(j - l)] g_\alpha g_\beta \hat{J}^+_{j,\alpha} \hat{J}^-_{j,\beta},$$

$$\hat{L}^{(R)}[\hat{\rho}_s] = \frac{1}{2} \sum_{j=1}^{N_c} \sum_{\alpha,\beta=1}^{N_c} \cos[2\pi\sigma(j - l)] \sqrt{\Gamma_\alpha \Gamma_\beta} \left(2 \hat{J}^-_{j,\alpha} \hat{\rho}_s \hat{J}^+_{j,\beta} - \hat{J}^+_{j,\alpha} \hat{\rho}_s \hat{J}^-_{j,\beta} - \hat{\rho}_s \hat{J}^+_{j,\alpha} \hat{J}^-_{j,\beta} \right).$$

In order to recover the hamiltonian in the main text we set $N = 1$ (or $N = 2$, for hyperfine levels with the same g_α), and we operate in the parameter regime $\Delta_c \gg \kappa$, where the Hamiltonian evolution dominates over the dissipative terms (in the main text $\hbar = 1$). For large number of atoms per site, $N_i \approx L \gg 1$, the spin operators \hat{J}^+_{i} describe semi-classical operators of large angular momentum L, as discussed in the main text.

Expression for the OTOC of \hat{J}^+_{i}

The classical limit of the OTOC, C_x, of \hat{J}^+_{i} reads

$$C_x = \left(\frac{\partial \hat{J}^+_{i}(t)}{\partial q_i(0)} \right)^2 \frac{\cos^2 q_i(0) p^2_i(0)}{1 - p^2_i(0)} + \left(\frac{\partial \hat{J}^+_{i}(t)}{\partial p_i(0)} \right)^2 \sin^2 q_i(0) (1 - p^2_i(0)) - \sin(2q_i(0)) p_i(0) \frac{\partial \hat{J}^+_{i}(t)}{\partial q_i(0)} \frac{\partial \hat{J}^+_{i}(t)}{\partial p_i(0)}$$

where $q_i(0)$ and $p_i(0)$ are the initial values of the canonically conjugate coordinates of each angular momentum at site i, \hat{J}^x_{i} is given by the first of [6], and the average is taken over the same initial probability distribution used in the calculation of C_z and discussed in the main text.