O$_2$:CO$_2$ exchange ratios observed in a cool temperate deciduous forest ecosystem of central Japan

By SHIGEYUKI ISHIDOYA1*, SHOHEI MURAYAMA1, CHIKAKO TAKAMURA2, HIROAKI KONDO1, NOBUKO SAIGUSA3, DAISUKE GOTO2,4, SHINJI MORIMOTO2, NOBUYUKI AOKI5, SHUJI AOKI4 and TAKAKIYO NAKAZAWA4, 1Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan; 2National Institute of Polar Research, Tachikawa 190-8518, Japan; 3National Institute for Environmental Studies, Tsukuba 305-8506, Japan; 4Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai 980-8578, Japan; 5National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan

(Manuscript received 12 April 2013; in final form 11 October 2013)

ABSTRACT

Detailed observations of O$_2$:CO$_2$ exchange ratios were conducted in a cool temperate deciduous forest located in central Japan. The exchange ratios of soil respiration and net assimilation were found to be 1.11 \pm 0.01 and 1.02 \pm 0.03 from soil chamber and branch bag measurements, respectively. Continuous measurements of the atmospheric O$_2$/N$_2$ ratio and the CO$_2$ concentration, made inside the canopy during a summer season, indicated that the average exchange ratio was lower in the daytime (0.87 \pm 0.02) than in the nighttime (1.03 \pm 0.02) with a daily mean value of 0.94 \pm 0.01. The observed average daytime and nighttime exchange ratios were nearly consistent with the corresponding values obtained from a one-box canopy O$_2$/CO$_2$ budget model simulation of net turbulent O$_2$ and CO$_2$ fluxes between the atmosphere and the forest ecosystem. Our results suggest that the daily mean exchange ratios of the net turbulent O$_2$ and CO$_2$ fluxes depend sensitively on the forest ecosystem processes.

Keywords: O$_2$:CO$_2$ exchange ratio, forest ecosystem, atmospheric O$_2$/N$_2$ ratio, continuous measurements

1. Introduction

Estimations of oceanic and terrestrial biospheric CO$_2$ uptake based on the observations of the atmospheric O$_2$/N$_2$ ratio have been conducted by many research groups (e.g. Battle et al., 1996, 2000; Keeling et al., 1996; Langenfelds et al., 1999; Bender et al., 2005; Manning and Keeling, 2006; Tohjima et al., 2008; Ishidoya et al., 2012a, b). However, to test the validity of this value, observations of the atmospheric O$_2$/N$_2$ ratio have been conducted in and over various forest canopies (e.g. Seibt et al., 2004; Kozlova et al., 2005, 2008; Sturm et al., 2005; Stephens et al., 2007). By analysing flask air samples collected at a forest site in Hainich National Park (51°N, 10°E) in central Germany for the atmospheric O$_2$/N$_2$ ratio and CO$_2$ concentration, Kozlova et al. (2005) obtained an average ER value of 0.99, with no significant difference between daytime and nighttime values (hereafter the ER value of forest canopy air is referred to as ‘ER$_{atm}$’). From continuous observations of the atmospheric O$_2$/N$_2$ ratio and CO$_2$ concentration at the WLEF tall-tower research site (46°N, 90°W) in a forest in northern Wisconsin, USA, Stephens et al. (2007) also reported average ER$_{atm}$ values ranging from 1.01 to 1.06, depending on the height. The ER$_{atm}$ values obtained by

*Corresponding author.
email: s-ishidoya@aist.go.jp
Kozlova et al. (2005) and Stephens et al. (2007) are smaller than the value of 1.10. However, to examine the ER value of the net turbulent O2 and CO2 fluxes between the forest ecosystem and the atmosphere above the canopy (hereafter referred to as ‘ERF’), Seibt et al. (2004) analysed their observational results in the Griffin forest (57°N, 4°W), UK using a one-box canopy O2/CO2 budget model. Seibt et al. (2004) showed that ERF is different from ERatm inside the canopy; their ERF and ERatm values estimated for the daytime are 1.26–1.38 and 1.01–1.12, respectively, the former being significantly larger than the latter. They suggested that such a difference is attributable to combined effects of the fluxes of turbulent exchange, assimilation, and plant and soil respiration, each with distinct exchange ratios, on the abundances of O2 and CO2 in canopy air. ERF is an important parameter to evaluate the net exchanges of O2 and CO2 between the atmosphere and the terrestrial biosphere, and the value of 1.10 is usually accepted as a global average. If ERF values of 1.26–1.38 of Seibt et al. (2004) are applicable to many forest ecosystems, it is necessary to re-examine terrestrial biospheric/oceanic CO2 uptake and Atmospheric Potential Oxygen (APO = O2 + 1.1 × CO2) (Stephens et al., 1998) calculated employing the 1.10 value.

To contribute to a better understanding of the terrestrial biospheric ER, we conducted soil chamber and branch bag measurements of the O2/N2 ratio and CO2 concentration at Takayama deciduous broadleaf forest site in central Japan (36°09′N, 137°25′E, 1420 m a.s.l.; designated as TKY in the AsiaFlux site code database). We also made continuous measurements of the atmospheric O2/N2 ratio and CO2 concentration at the site during a summer season. Using the data from these measurements, we calculated ER values of net assimilation and soil respiration and the ERatm values, and estimated ERF using a one-box canopy O2/CO2 budget model to compare with the obtained ERatm.

2. Methods

The TKY site is situated about 15 km east of a provincial city, Takayama, as shown in Fig. 1. Major tree species around the site are deciduous broad-leaved trees such as birch and oak, with a canopy height of about 15–20 m, and the ground is covered with bamboo grass. Budding and leaf shedding occur in May and October, respectively, and the ground is usually covered with snow from December to April. The forest has been protected from deforestation for more than 50 yr. The annual mean temperature and precipitation are about 6.4°C and 2100 mm, respectively. The rainy season takes place in the early summer when the site is strongly affected by the Asian monsoon. Possible influence of nearby anthropogenic sources on the atmospheric CO2 concentration at the site is estimated to be relatively small from previous numerical model simulations (Kondo et al., 2001). More detailed descriptions of the TKY site have already been given in our previous papers (e.g. Murayama et al., 2003, 2010). Continuous measurements of the net CO2 flux between the forest and the atmosphere, as well as of meteorological parameters, using a 27-m tall tower were first initiated in 1993 by employing an aero-dynamic method that was replaced in 1998 by an eddy covariance method (Yamamoto et al., 1999; Saigusa et al., 2005). The CO2 flux data taken at TKY are available from the AsiaFlux database (http://www.asiaflux.net/).

Fig. 1. Location of Takayama site (36°09′N, 137°25′E, 1420 m a.s.l., TKY) in central Japan.
To measure the O_2/N_2 ratio and CO$_2$ concentration of soil respiration at the site, air samples were collected at two different places using a stainless-steel closed chamber with a volume of 100 l; one was placed on a small ridge and the other one in a small valley, separated by a distance of 60 m. Each chamber has a cover at its upper part, and it is connected to ambient atmosphere through a 1/16-inch O.D. stainless-steel tube to minimise the pressure imbalance between the soil air and the chamber air. About five air samples were taken from the chamber over a period of 30–60 minutes after closing the cover, using 250-ml Pyrex glass flasks with Viton O-ring seal stopcocks at both ends. During air sampling, we prevented exposing the chamber to direct sunlight using a parasol. As the volume of the chamber is sufficiently larger than the sampled air, it was assumed that an intrusion of ambient atmosphere into the chamber during the collection of air samples from inside the chamber had a negligible impact on the chamber air. Air samples were also collected to measure O_2/N_2 and CO$_2$ of the net plant assimilation. The air sampling was performed eight times during the summer of 2011.

The collected flask samples were brought back to our laboratory and were analysed for the O_2/N_2 ratio and the CO$_2$ concentration. The O_2/N_2 ratio is usually reported in per meg unit:

$$\delta(O_2/N_2) = \left[\frac{[O_2/N_2]_{\text{sample}}}{[O_2/N_2]_{\text{standard}}} - 1 \right] \times 10^6,$$ \hspace{1cm} (1)

where subscripts ‘sample’ and ‘standard’ indicate the sample air and the standard gas, respectively. Because O_2 is 20.946% of air by volume, 4.8 per meg ($=1/0.20946$) corresponds to a change of 1 ppm. In this study, the ratio of 4.8 per meg ppm$^{-1}$ was used to calculate the ER values using the observed $\delta(O_2/N_2)$. The $\delta(O_2/N_2)$ value of each air sample was determined against our working standard gas using a mass spectrometer (Finnigan MAT-252 or Thermo Scientific Delta-V). The measurement precision was estimated to be ± 5.4 per meg ($\pm 1\sigma$) (Ishidoya et al., 2003). The CO$_2$ concentration was determined using the Delta-V for the leaf air samples with a precision of ± 0.3 ppm (Ishidoya and Murayama, 2013), and using a gas chromatograph (Shimadzu GC-9A) equipped with a flame ionization detector and a methanizer for soil respiration air samples with a precision of ± 0.2 ppm, against our air-based CO$_2$ standard gas system maintained at Tohoku University (Tanaka et al., 1983; Nakazawa et al., 1991). By analysing air samples with a wide range of (O_2/N_2) ratios of 0.1–0.3 using the MAT-252, we have confirmed that $\delta(O_2/N_2)$ is linearly related to the (O_2/N_2) ratio, with uncertainties of less than $\pm 2\%$ (Ishidoya et al., 2003). From the estimated uncertainties, it is expected that the ER value can be determined with a precision of ± 0.004 even for the soil respiration air with widely varying $\delta(O_2/N_2)$. Regarding the CO$_2$ concentration, the non-linear output effects of the gas chromatograph and the Delta-V are negligibly small, since our standard gases fully cover the values measured in this study.

We also carried out continuous measurements of the atmospheric O_2/N_2 ratio at the TKY site using a fuel cell analyser (Sable Systems International, Ozilla II) during the period 4 August–4 September 2012. The continuous O_2 measurement system used is similar to that developed by Goto et al. (2013). Sample air was taken from 8.8 m (inside the canopy) and 27 m (above the canopy) using diaphragm pumps, and the air intake set at each height was equipped with an aspirator to avoid different thermal diffusions of O_2 and N_2 due to radiative heating/cooling (Blaine et al., 2006). The sample air taken from each height was introduced into the O_2 analyser at a flow rate of 80 ml min$^{-1}$ and measured for 36 minutes to obtain eight data values of $\delta(O_2/N_2)$, followed by measurements of the standard gases for 14 minutes. After this, the sample air from the other height was analysed by the same procedure. The sample air pressure was stabilised to an order of 10^{-3} Pa using a flow regulation valve (HORIBA STEC, PV-1000) and a precise differential pressure sensor (Setra, 239). The temperature of the fuel cell was stabilised to $32 \pm 0.1^\circ$C using a Peltier control system. Our O_2 measurement system is also equipped with a non-dispersive infrared analyser (LiCOR, LI-6262) to simultaneously measure the CO$_2$ concentration of sample air with a precision of ± 0.05 ppm.

The removal of water vapour from the sample air and the preparation of the standard gases adopted for the present O$_2$ measurement system were different from those described in Goto et al. (2013). Our sample dryer had two air flow paths, and each path was equipped with a water trap set in a Stirling cycle refrigerator (Twinbird, SC-UE15R). The flow paths were alternately switched, so that one trap was cooled at -85°C to remove water vapour from the sample air and the other trap was kept at room
temperatures to discharge the melting ice by flowing ambient air dried by a heatless air dryer (CKD, HD-0.5) through it. By employing the sample dryer, the maintenance of the water trap was automated.

The standard gases were prepared by adding appropriate amounts of pure O2 or N2 to CO2 standard gases, which were mixtures of industrially purified air and CO2. The amount of O2 or N2 to be added to each standard gas was calculated based on the (O2/N2) of the ingredient air that was measured using the Delta-V. The output of the fuel cell O2 analyser depends on the amount of O2 available to diffuse across the membrane of the cell, and the O2 amount is closely related to the total pressure and O2 mole fraction in the cell. Therefore, to calculate (O2/N2) from the analyser output, it is necessary to evaluate the dilution effects caused by changes in gases other than O2 (Keeling et al., 1998; Manning et al., 1999). In this study, we took account of the dilution effects of CO2 and Ar for both the sample air and standard gas. The dilution effects of CO2 contained in the sample air and standard gases were calculated using their measured CO2 concentrations. However, we did not measure the Ar/N2 ratio (hereafter defined by δ(Ar/N2) in the same way as δ(O2/N2) for the O2/N2 ratio) of sample air at TKY. However, Keeling et al. (2004) and Cassar et al. (2008) reported that changes in the atmospheric δ(Ar/N2) are within several tens per meg on a global scale. Considering their observational results, we did not correct our measured δ(O2/N2) of the sample air for the dilution effect by changes in atmospheric Ar. The dilution effect of Ar on δ(O2/N2) of the sample air, arising from the standard gases with different δ(Ar/N2) values, was corrected by the following method. We first determined δ(Ar/N2) of the ingredient air of our standard gases using the Delta-V, and then compared the results with continuously measured values of natural air near the surface at Tsukuba (36°N, 140°E), Japan using the same mass spectrometer (Ishidoya and Murayama, 2013). From this comparison, we found differences of sever per mil between our standards and the ambient air. Therefore, to calculate δ(O2/N2) of the sample air from the analyser output, we used the formula;

\[
\delta(O_2/N_2) = aV + \frac{\delta X_{CO_2}}{1 - X_{O_2}} + \frac{\delta X_{Ar}}{1 - X_{O_2}} \text{(per meg)},
\]

where \(V \) is the voltage output from the analyser, which represents the difference in O2 mole fraction between the sample air (or standard gas) and an arbitrary reference air, \(a \) is the span factor in units of per meg \(V^{-1} \), calculated by analysing high- and low-span standard gases with known O2 mole fractions, \(\delta X_{CO_2} \) (\(\delta X_{Ar} \)) is the difference in CO2 (Ar) mole fraction of the sample air from the reference air, in ppm, and \(X_{O_2} \) is the standard mole fraction of O2 in dry air to be described below. \(\delta X_{CO_2} \) and \(\delta X_{Ar} \) account for the respective dilution effects of changes in CO2 and Ar on the O2 mole fraction in the fuel cell. Equation (2) is the same as that used in Manning et al. (1999) except for inclusion of \(\delta X_{Ar} \). By assuming the standard mole fractions of N2, O2 and Ar in dry air to be 0.78084, 0.20946 and 0.00934, respectively (Nicolet, 1960; Machta and Hughes, 1970), the change of 1 per mil in \(\delta(Ar/N2) \) corresponds to the change of about 9 ppm in \(\delta X_{Ar} \), leading to the change of 12 per meg in \(\delta(O_2/N_2) \). Therefore, the correction of \(\delta(O_2/N_2) \) of the sample air due to our standard gases amounted to several tens per meg.

The precision of our continuous measurements of atmospheric \(\delta(O_2/N_2) \) was estimated to be about ±7 per meg, which is worse than that in Goto et al. (2013) (±1.4–1.9 per meg). The cause may be attributable to unstable room temperature inside the observation hut at TKY.

3. Results

3.1. Exchange ratios of O2:CO2 obtained from soil chamber and branch bag measurements

In this study, soil chamber and branch bag measurements were made 42 and eight times, respectively. The \(\delta(O_2/N_2) \) and CO2 concentration data obtained from the respective measurements are shown in Fig. 2a and b. As mentioned above, five air samples were usually collected in sequence during each sampling. In these figures, the \(\delta(O_2/N_2) \) and CO2 concentration values are expressed as deviations from the corresponding values obtained for the first air sample in each sampling group. By applying a linear regression analysis to the \(\delta(O_2/N_2) \) and CO2 concentration values, the ER values of soil respiration and net assimilation were estimated to be 1.11 ± 0.01 and 1.02 ± 0.03 (±1σ), respectively. These values are significantly different at 99% confidence level. We did not observe any statistically significant difference between the ER values of soil respiration obtained at the two different places. As soil respiration amounts to about 90% of the ecosystem respiration (RE) at TKY (Saigusa et al., 2005), we have assumed that the ER value for RE (hereafter referred to as ‘ERR’) is equal to the soil respiration ER. The RER value of 1.11 ± 0.01 obtained in this study falls in the range of 1.06–1.22 found by Severinghaus (1995) using a flow-through chamber under laboratory conditions. The value is, however, larger than 0.94 ± 0.04 obtained from the soil chamber measurements in the Griffin forest by Seibt et al. (2004).

The photosynthesis ER, that is, for gross primary production (GPP) (hereafter referred to as ‘ERb’), is expected to be 1.00 from photochemical reaction and the Calvin–Benson–Bassham cycle (6CO2 + 12H2O → C6H12O6 + 6H2O + 6O2). It is consistent with the ER value of 1.02 ± 0.03
obtained at TKY for net assimilation. While Seibt et al. (2004) reported ER values of 1.19±0.12 for the Griffin forest site and 1.08±0.16 for the Hainich National Park site based on branch bag measurements, their uncertainties are substantially larger than ours.

3.2. Continuous measurements of the atmospheric \(\delta(O_2/N_2) \) and CO\(_2\) concentration

Figure 3 shows \(\delta(O_2/N_2) \) and the CO\(_2\) concentration observed continuously at the 8.8 and 27 m tower heights during 4 August–4 September 2012. Spline smoothing was applied to the data and the 24-hour running means are also shown. As seen in the figure, the \(\delta(O_2/N_2) \) and CO\(_2\) concentration values vary diurnally almost in opposite phase with each other. The daily maximum (minimum) of \(\delta(O_2/N_2) \) (CO\(_2\) concentration) occurs during the daytime, due to \(O_2 \) production (CO\(_2\) consumption) caused by GPP that is larger than RE (Murayama et al., 2003; Saigusa et al., 2005). Small diurnal amplitudes of \(\delta(O_2/N_2) \) and CO\(_2\) were observed on the days with small photosynthetically active radiation (PAR). This also suggests that GPP is a main contributor to the diurnal cycles. It is also seen from Fig. 3 that the \(\delta(O_2/N_2) \) (CO\(_2\) concentration) values observed at 8.8 m are generally lower (higher) than the values at 27 m in the nighttime, due to the loss of \(O_2 \) (accumulation of CO\(_2\)) by soil respiration in the stable atmosphere near the ground. However, the daytime \(\delta(O_2/N_2) \) and CO\(_2\) concentration values observed at 8.8 m are close to the values at 27 m, probably due to strong convective mixing.

The 24-hour running means of the \(\delta(O_2/N_2) \) and CO\(_2\) concentration values show day-to-day variations, their phases being opposite. It is also seen from Fig. 3 that the day-to-day variations in the CO\(_2\) concentration are generally in phase with those of air temperature at 25 m, with a delay of about 1 d. If the phase of the CO\(_2\) variations is delayed by 1 d, then the correlation coefficient of the day-to-day variations between the air temperature and the CO\(_2\) concentration is calculated to be 0.7. This suggests that the day-to-day variations in \(\delta(O_2/N_2) \) and CO\(_2\) are closely related with changes in RE, since RE at TKY is mostly a function of air temperature (Saigusa et al., 2005). To confirm our suggestion, we examined the relationship between the atmospheric \(\delta(O_2/N_2) \) and CO\(_2\) concentration. From plots of the daily mean values of these variables shown in Fig. 4, an \(E_{\text{atm}} \) value of 1.10±0.05 (±1σ) is obtained for both heights of 8.8 and 27 m. This value of \(E_{\text{atm}} \) agrees well with the ER value derived from our soil chamber measurements (1.11±0.01). As described above, \(E_R \) can be approximated by the soil respiration ER at TKY. Therefore, the inter-diurnal variation in the daily mean \(\delta(O_2/N_2) \) and CO\(_2\) concentration at TKY could be caused mainly by the variation in RE, at least for the observation period under discussion.

4. Discussion and conclusions

By treating the forest canopy air as a well-mixed reservoir unaffected by air–sea exchange and fossil fuel combustion, the respective budgets of CO\(_2\) and \(O_2 \) in a forest ecosystem can be represented by

\[
M \frac{d(CO_2)}{dt} = -A + R - F_c, \tag{3}
\]

and

\[
M \frac{d(O_2)}{dt} = A \cdot E_R - R \cdot E_R + F_c \cdot E_F. \tag{4}
\]

Here, \(A \) (\(\mu\text{mol m}^{-2} \text{s}^{-1} \)), \(R \) (\(\mu\text{mol m}^{-2} \text{s}^{-1} \)) and \(F_c \) (\(\mu\text{mol m}^{-2} \text{s}^{-1} \)) represent GPP, RE and net turbulent CO\(_2\) flux from the forest to the overlying atmosphere, respectively. \(M \) (\(\text{mol m}^{-2} \)) represents the number of moles per

![Fig. 2. Relationships between \(\delta(O_2/N_2) \) and CO\(_2\) concentration obtained from (a) soil chamber and (b) branch bag measurements. Solid lines denote the regression lines fitted to the data.](image)
unit area contained in a column of air extending from the forest floor to the top of the canopy, and CO2 (\(\text{mol mol}^{-1} \), or ppm) and O2 (\(\text{mol mol}^{-1} \), or ppm) are the respective concentrations of CO2 and O2 of air in the same column. ERA and ERR have the same meanings as defined above, and ERF denotes the exchange ratio of O2:CO2 for the net turbulent CO2 flux. In this study, the data obtained from the eddy covariance flux measurements at TKY were used for \(F_c \), and RE was calculated as a function of air temperature inside the canopy (Saigusa et al., 2005). GPP was obtained as the sum of net ecosystem production (NEP) and RE (GPP = NEP + RE), in which NEP was calculated from \(F_c \) and \(M_d(CO_2)dt^{-1} \) (NEP = \(-\left(F_c + M_d(CO_2)dt^{-1}\right)\)). The canopy height was assumed to be 25 m, and ERR was taken to be 1.11 in accordance with the result shown in the preceding section. With respect to ERA, we preferred the value of 1.00 to 1.02 obtained from the branch bag measurements for net assimilation, since we regarded ERA as ER for photosynthesis assuming that leaf respiration, included in net assimilation, is a part of RE. The budgets of O2 and CO2 in a forest ecosystem, as expressed by eqs. (3) and (4), are shown schematically as a vector diagram in Fig. 5. The data in Fig. 8 (discussed below) show that the net changes in O2 and CO2 (\(M_d(O_2)dt^{-1} \) and \(M_d(CO_2)dt^{-1} \)) are generally very small (in magnitude) compared to changes in O2 and CO2 associated with NEP. Thus, the vector diagram makes it clear that if NEP is positive (negative), ERF must be smaller than 1.00 (larger than 1.11).

To examine the relationship between ER atm and ERF on a diurnal time scale, we first extracted intradiurnal components of \(\delta(O_2/N_2) \) and CO2 concentration from their measured values, to calculate ER atm. The calculation involved subtracting 24-hour running mean values of each variable from the corresponding measured values. The diurnal cycles of the atmospheric \(\delta(O_2/N_2) \) and CO2 concentration on 23 August 2012, obtained by detrending the data, are plotted in Fig. 6a, as a typical example of their diurnal cycles. Best-fit curves to the data, represented by the fundamental and its first harmonics (periods of 24 and 12 hours) terms, are also shown in the figure. As seen from Fig. 6a, \(\delta(O_2/N_2) \) and CO2 vary diurnally almost in
After detrending, the data for all the days in this study were combined in a ‘climatological’ of the diurnal cycle. The cycles for both O₂ and CO₂ are shown in Fig. 7a along with the two-harmonic fits. The average diurnal cycles of \(\delta(O_2/N_2) \) and CO₂ at 8.8 (27) m height show peak-to-peak amplitudes of 111 ± 6 (94 ± 6) per meg and 24.2 ± 1.2 (20.0 ± 1.0) ppm, respectively. By approximating the relationship between \(\delta(O_2/N_2) \) and CO₂ concentration shown in Fig. 7a by a linear line, we found the average value of \(E_R_{atm} \) over the observation period to be 0.94 ± 0.01 at 8.8 m and 0.96 ± 0.01 at 27 m. Figure 7b shows the relationships between the best-fit curves of \(\delta(O_2/N_2) \) and CO₂ concentration values shown in Fig. 7a. It is clearly seen in Fig. 7b that the \(E_R_{atm} \) value obtained from the average diurnal cycles of both variables is smaller in the daytime (6:00–13:00) than in the nighttime (18:00–24:00). It was also found that the daytime \(E_R_{atm} \) values at both heights are clearly lower than \(E_R_A \) (1.00). The \(E_R_{atm} \) values at 8.8 m (27 m) for the time intervals of 6:00–13:00 and 18:00–24:00 were calculated to be 0.87 ± 0.02 and 1.03 ± 0.02 (0.86 ± 0.02 and 1.05 ± 0.02), respectively, by applying a linear regression analysis to the \(\delta(O_2/N_2) \) and CO₂ concentration data shown in Fig. 7a.

As mentioned above, \(E_R_F \) is used to estimate regional (and global) CO₂ fluxes from changes in O₂ and CO₂ in the well-mixed troposphere, and it is not directly measurable at present. We calculated the average diurnal variation of \(E_R_F \) by performing a one-box budget model analysis, expressed by eqs. (3) and (4) and illustrated in Fig. 5, using values of GPP, RE, \(Md(O_2)dt^{-1} \) and \(Md(CO_2)dt^{-1} \) obtained for the observation period; we then compared \(E_R_F \) and \(E_R_{atm} \). To obtain average diurnal variations of GPP and RE, the same procedure as employed above for \(\delta(O_2/N_2) \) and CO₂ was applied to these variables. The values of \(Md(O_2)dt^{-1} \) and \(Md(CO_2)dt^{-1} \) were derived respectively from the average diurnal cycles of the atmospheric \(\delta(O_2/N_2) \) and CO₂ concentration observed at 8.8 m. The average diurnal variations of \(E_R_{atm} \), GPP, RE, NEP, \(Md(O_2)dt^{-1} \) and \(Md(CO_2)dt^{-1} \) are shown in Fig. 8. Also shown in this figure is the \(E_R_F \) for the daily-integrated net turbulent flux (hereafter referred to as ‘daily mean \(E_R_F \)’), along with the \(E_R_{atm} \) values at 8.8 m shown in Fig. 7b for the time intervals of 6:00–13:00 and 18:00–24:00 averaged over the observational period. The daily mean \(E_R_F \) is obtained by dividing the daily-integrated values of the net turbulent O₂ flux \([F_o = F_e \times E_R_F, \text{calculated from eq. (4)}] \) by that of net turbulent CO₂ flux \([F_e \text{ from eq. (3)}] \) as follows:

\[
dailymean E_R_F = \frac{\int (F_e) dt}{\int (F_e) dt} = \frac{\int (-A \cdot E_R_A + R \cdot E_R_R + M \cdot d(O_2)/dt) dt}{\int (-A + R - M \cdot d(CO_2)/dt) dt}.
\]
In eq. (5), the time integration range is from 0:00 to 24:00. Therefore, the daily mean ER is flux-weighted value and not consistent with a simple daily average of the temporally different ER values. The time periods of 6:00 and 13:00 correspond to the times when the atmospheric δ(O2/N2) monotonically increases and decreases (see Fig. 7), respectively, as well as when the absolute magnitude of A-R is greater than F_c (see Fig. 5). The ER value is found to be lower in the daytime than in the nighttime, similar to ERatm, and the average daily mean ER value of 0.89 agrees with an average ERatm value for 6:00–13:00 (0.87 ± 0.02). In contrast to our results, Seibt et al. (2004) found that there are large differences between ERatm (~1.0) and ERf (1.26 to 1.38) at the Griffin forest site. The difference between the ERf values reported by Seibt et al. (2004) and our study is mainly ascribed to the fact that we employed 1.00 for ERa and 1.11 for ERr in our one-box model analysis, while Seibt et al. (2004) used the corresponding values of 1.19 and 0.94, based on their branch bag and soil chamber measurements.

In this study, we closely examined the conversion between O2 and CO2 in a Japanese cool temperate deciduous forest ecosystem. The ER value for soil respiration was found to be 1.11 ± 0.01, which is larger than that for net assimilation (1.02 ± 0.03). The average ERatm value, as well as the average ERf calculated using a one-box canopy O2/CO2 budget model on the assumption that ER is 1.00 for GPP (ERa) and 1.11 for RE (ERr), was clearly lower in the daytime than in the nighttime. The averaged ERatm over the time interval of 6:00–13:00 was also found...
to be in agreement with the averaged daily mean \(\text{ER}_F \). Our results also suggest that APO (Stephens et al., 1998), which has been often used to estimate the global CO\(_2\) budget and the air-sea \(\text{O}_2 \) flux (e.g. Manning and Keeling, 2006; Ishidoya et al., 2012b), should be re-examined. APO is defined by assuming that \(\text{ER} \) for net \(\text{O}_2 \) and \(\text{CO}_2 \) fluxes caused by terrestrial biospheric activities (\(\text{ER}_F \) in this study) is 1.1 on average. However, our results indicate that the daily mean \(\text{ER}_F \) could be significantly different depending on \(\text{ER}_R \) and daily-integrated values of GPP and \(\text{RE} \), since \(\text{ER}_\lambda \) is a constant value of 1.00 and the daily-integrated \(\text{Md}(\text{O}_2) \text{dt}^{-1} \) and \(\text{Md}(\text{CO}_2) \text{dt}^{-1} \) are zero. If we assume 0.9 for the global average \(\text{ER}_F \) to calculate APO, instead of the widely accepted value of 1.1, then the terrestrial biospheric \(\text{CO}_2 \) uptake of \(1.0 \pm 0.8 \) GtC yr\(^{-1} \) and the oceanic \(\text{CO}_2 \) uptake of \(2.5 \pm 0.7 \) GtC yr\(^{-1} \) reported by Ishidoya et al. (2012a) for the period 2000–2010 are increased and decreased by 0.22 GtC yr\(^{-1} \), respectively. This change in \(\text{ER}_F \) reduces the discrepancy between the oceanic \(\text{CO}_2 \) uptake estimated from the APO method (Ishidoya et al., 2012a, b) and ocean models (Sarmiento et al., 2010). Therefore, it is important not only to perform further observations with high precision to determine \(\text{ER}_\text{atm} \) but also to directly estimate \(\text{ER}_F \) by conducting simultaneous measurements of \(\text{CO}_2 \) and \(\text{O}_2 \) turbulent fluxes in various forests.

5. Acknowledgments

The authors thank K. Muto and T. Usami (National Institute of Advanced Industrial Science and Technology, Japan) for their support to measurements. This study was partly supported by the Grants-in-Aid for Creative Scientific Research (2005/17GS0203), the Grants-in-Aid for Scientific Research (2010/22710002 and 2012/24241008), the subsidized project ‘Formation of a virtual laboratory for diagnosing the earth’s climate system’ of the Ministry of Education, Science, Sports and Culture, Japan, and the Global Environment Research Account for National Institutes of the Ministry of the Environment, Japan.

References

Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H. and co-authors. 1996. Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature. \textbf{383}(6597), 231–235.

Battle, M., Bender, M. L., Tans, P. P., White, J. W. C., Ellis, J. T. and co-authors. 2000. Global carbon sinks and their variability inferred from atmospheric \(\text{O}_2 \) and \(\delta^{13} \text{C} \). Science. \textbf{287}, 2467–2470.

Bender, M. L., Ho, D. T., Hendricks, M. B., Mika, R., Battle, M. O. and co-authors. 2005. Atmospheric \(\text{O}_2/\text{N}_2 \) changes, 1993–2002: implications for the partitioning of fossil fuel \(\text{CO}_2 \) sequestration. \textit{Glob. Biogeochem. Cycles}. \textbf{19}, GB4017. DOI: 10.1029/2004GB002410.

Blaine, T. W., Keeling, R. F. and Paplawsky, W. J. 2006. An improved inlet for precisely measuring the atmospheric \(\text{Ar}/\text{N}_2 \) ratio. \textit{Atmos. Chem. Phys.} \textbf{6}, 1181–1184.

Cassar, N., Mckinley, G. A., Bender, M. L., Mika, R. and Battle, M. 2008. An improved comparison of atmospheric \(\text{Ar}/\text{N}_2 \) time series and paired ocean–atmosphere model predictions. \textit{J. Geophys. Res.} \textbf{113}, D21122. DOI: 10.1029/2008JD009817.

Goto, D., Morimoto, S., Ishidoya, S., Ogi, A., Aoki, S. and co-authors. 2013. Development of a high precision continuous measurement system for the atmospheric \(\text{O}_2/\text{N}_2 \) ratio and its application at Aobayama, Sendai, Japan. \textit{J. Meteorol. Soc. Jpn.} \textbf{91}, 179–192.

Ishidoya, S., Aoki, S., Goto, D., Nakazawa, T., Taguchi, S. and co-authors. 2012a. Time and space variations of the \(\text{O}_2/\text{N}_2 \) ratio in the troposphere over Japan and estimation of global \(\text{CO}_2 \) budget. \textit{Tellus B}. \textbf{64}, 18964.

Ishidoya, S., Aoki, S. and Nakazawa, T. 2003. High precision measurements of the atmospheric \(\text{O}_2/\text{N}_2 \) ratio on a mass spectrometer. \textit{J. Meteorol. Soc. Jpn.} \textbf{81}, 127–140.

Ishidoya, S., Morimoto, S., Aoki, S., Taguchi, S., Goto, D. and co-authors. 2012b. Oceanic and terrestrial biospheric \(\text{CO}_2 \) uptake estimated from atmospheric potential oxygen observed at Ny-Ålesund, Svalbard, and Syowa, Antarctica. \textit{Tellus B}. \textbf{64}, 18924.
Ishidoya, S. and Murayama, S. 2013. Development of a new high precision continuous measuring system for atmospheric O$_2$/N$_2$ and Ar/N$_2$ and its application to the observation in Tsukuba, Japan. submitted to Tellus B.

Keeling, R. F. 1988. Development of an Interferometric Oxygen Analyzer for Precise Measurement of the Atmospheric O$_2$ Mole Fraction. PhD Thesis, Harvard University, Cambridge.

Keeling, R. F., Blaine, T., Paplawsky, B., Katz, L., Atwood, C. and co-authors. 2004. Measurement of changes in atmospheric Ar/N$_2$ ratio using a rapid-switching, single-capillary mass spectrometer system. Tellus B. 56, 322–338.

Keeling, R. F., Manning, A. C., McElroy, E. M. and Shertz, S. R. 1999. Methods for measuring changes in atmospheric O$_2$ concentration and their application in southern hemisphere air. J. Geophys. Res. 103, 3381–3397.

Keeling, R. F., Piper, S. C. and Heimann, M. 1996. Global and hemispheric CO$_2$ sinks deduced from changes in atmospheric O$_2$ concentration. Nature. 381(6579), 218–221.

Keeling, R. F. and Shertz, S. R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature. 358, 723–727.

Kondo, H., Saigusa, N., Murayama, S., Yamamoto, S. and Kannari, A. 2001. A numerical simulation of the daily variation of CO$_2$ in the central part of Japan summer case. J. Meteorol. Soc. Jpn. 79, 11–21.

Kozlova, E., Manning, A. C., Jordan, A. and Brand, W. 2005. Investigations of the land biotic O$_2$/CO$_2$ exchange ratios in photosynthesis and respiration. In Proceedings (CD) of 7th International Carbon Dioxide Conference, Boulder, CO, September 25–30.

Kozlova, E. A., Manning, A. C., Kisiyakhov, Y., Seifert, T. and Heimann, M. 2008. Seasonal, synoptic, and diurnal-scale variability of biogeochemical trace gases and O$_2$ from a 300-m tall tower in central Siberia. Glob. Biogeochem. Cycles. 22, GB4020. DOI: 10.1029/2008GB003209.

Lagenfelds, R. L., Francey, R. J., Steele, L. P., Battle, M., Keeling, R. F. and co-authors. 1999. Partitioning of the global fossil CO$_2$ sink using a 19-year trend in atmospheric O$_2$. Geophys. Res. Lett. 26(13), 1897–1900.

Machta, L. and Hughes, E. 1970. Atmospheric oxygen in 1967 to 1970. Science 168, 1582–1584.

Manning, A. C. and Keeling, R. F. 2006. Global oceanic and terrestrial biospheric carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B. 58, 95–116.

Manning, A. C., Keeling, R. F. and Severinghaus, J. P. 1999. Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer. Glob. Biogeochem. Cycles. 13, 1107–1115.

Murayama, S., Saigusa, N., Chan, D., Yamamoto, S., Kondo, H. and co-authors. 2003. Temporal variations of atmospheric CO$_2$ concentration in a temperate deciduous forest in central Japan. Tellus B. 55, 232–243.

Murayama, S., Takamura, C., Yamamoto, S., Saigusa, N., Morimoto, S. and co-authors. 2010. Seasonal variations of atmospheric CO$_2$, 13C, and 18O at a cool temperate deciduous forest in Japan: influence of Asian monsoon. J. Geophys. Res. 115, D17304. DOI: 10.1029/2009JD013626.

Nakazawa, T., Aoki, S., Murayama, S., Fukabori, M., Yamanouchi, T. and co-authors. 1991. The concentration of atmospheric carbon dioxide at Japanese Antarctic station, Syowa. Tellus B. 43, 126–135.

Nicolet, M. 1960. The properties and constitution of the upper atmosphere. In: Physics of the Upper Atmosphere (ed. J. A. Ratcliffe). Elsevier, New York, pp. 17–71.

Saigusa, N., Yamamoto, S., Murayama, S. and Kondo, H. 2005. Inter-annual variability of carbon budget components in and ASIAFLUX forest site estimated by long-term flux measurement. Agr. Forest Meteorol. 134, 4–16.

Sarmiento, J. L., Gloor, M., Gruber, N., Beaulieul, C., Jacobson, A. R. and co-authors. 2010. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences. 7, 2351–2367.

Seibt, U., Brand, W. A., Heimann, M., Lloyd, J., Severinghaus, J. P. and co-authors. 2004. Observations of O$_2$/CO$_2$ exchange ratios during ecosystem gas exchange. Glob. Biogeochem. Cycles. 18, GB4024. DOI: 10.1029/2004GB002242.

Severinghaus, J. 1995. Studies of the Terrestrial O$_2$ and Carbon Cycles in Sand Dune Gases and in Biosphere 2. PhD Thesis, Columbia University, New York.

Stephens, B., Keeling, R., Heimann, M., Six, K., Murnane, R. and co-authors. 1998. Testing global ocean carbon cycle models using measurements of atmospheric O$_2$ and CO$_2$ concentration. Glob. Biogeochem. Cycles. 12(2), 213–230.

Stephens, B. B., Bakwin, P. S., Tans, P. P., Teclaw, R. M. and Baumann, D. 2007. Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations. J. Atmos. Ocean. Tech. 24, 82–94.

Sturman, P., Leuenberger, M. and Schmidt, M. 2005. Atmospheric O$_2$, CO$_2$ and 13C observations from the remote sites Jungfraujoch, Switzerland, and Puy de Dôme, France. Geophys. Res. Lett. 32, L17811. DOI: 10.1029/2005GL023304.

Tanaka, M., Nakazawa, T. and Aoki, S. 1983. High quality measurements of the concentration of atmospheric carbon dioxide. J. Meteorol. Soc. Jpn. 61, 678–685.

Tohjima, Y., Mukai, H., Nojiri, Y., Yamagishi, H. and Machida, T. 2008. Atmospheric O$_2$/N$_2$ measurements at two Japanese sites: estimation of global oceanic and land biotic carbon sinks and analysis of the variations in atmospheric potential oxygen (APO). Tellus B. 60, 213–225.

van der Laan-Luijkx, I. T., Karstens, U., Steinbuech, J., Gerbig, C., Sirignano, C. and co-authors. 2010. CO$_2$, SO$_2$/N$_2$ and APO: observations from the Lutjewad, Mace Head and F3 platform flask sampling network. Atmos. Chem. Phys. 10, 10691–10704. DOI: 10.5194/acp-10-10691-2010.

Yamamoto, S., Murayama, S., Saigusa, N. and Kondo, H. 1999. Seasonal and inter-annual variation of CO$_2$ flux between a temperate forest and the atmosphere in Japan. Tellus B. 51, 402–413.