Dairy intakes affect bone density in the elderly1–3

Linda D McCabe, Berdine R Martin, George P McCabe, Conrad C Johnston, Connie M Weaver, and Munro Peacock

ABSTRACT

Background: Race and sex differences in the effect of diet on bone mineral density (BMD) at the hip in the elderly are unknown.

Objectives: This study related cross-sectional nutrient and dairy product consumption to hip BMD in white and black men and women aged >60 y and evaluated the influence of nutrient and dairy product consumption on changes in BMD in a white cohort participating in a calcium, vitamin D, or placebo trial.

Design: The Health Habits and History Questionnaire was used in 289 white women and 116 white men who participated in the trial and in 265 black women and 75 black men to predict total hip and femoral neck BMD or changes in BMD.

Results: Blacks had higher calcium intakes than did whites (700 and 654 mg/d, respectively; \(P = 0.0094 \)), and men had higher calcium intakes than did women (735 and 655 mg/d, respectively; \(P = 0.0007 \)). For men, the correlation between total hip BMD and dairy calcium intake after adjustment for age, race, and weight was 0.23 (\(P < 0.005 \)); this relation was not significant in women (\(r = 0.02, P = 0.12 \)). Similar results were found for femoral neck BMD. In the longitudinal study, calcium supplementation reduced bone loss from the total hip and femoral neck in those who consumed <1.5 servings of dairy products/d and were <72 y old.

Conclusions: Cross-sectional results indicated that higher dairy product consumption is associated with greater hip BMD in men, but not in women. Calcium supplementation protected both men and women from bone loss in the longitudinal study of whites. \textit{Am J Clin Nutr} 2004;80:1066–74.

KEY WORDS Bone mineral density, diet, elderly, dairy consumption, blacks, whites, race, women, men

INTRODUCTION

Osteoporosis is a disease that affects 10 million Americans, and an additional 18 million are at risk because of low bone mass (1). More than 350 000 hip fractures are reported annually, and this number is likely to rise as the population of people >65 y old increases. Hip fracture is the most serious of the age-related osteoporotic fractures in terms of incidence, morbidity, mortality, and financial costs (1). The incidence of fractures among white women in the United States is 2–3 times that among white men, and the incidence among blacks is about one-half that among whites (1). Nutrition plays an important role in promoting and maintaining bone mass. Heaney (2) reviewed the relations between intakes of calcium and dairy products and bone mass and fractures. In 11 of 19 observational studies in the elderly, dietary calcium from supplements and dairy products was associated with either increased bone mass or decreased fracture rates. Eight of these studies were in whites, and 3 were in Asians; none were in blacks. Weinsier and Krumdieck (3) wrote, “There are too few studies in males and ethnic minorities for conclusions to be drawn about the effect of any dairy food on bone health in these groups, which together represent more than half of the US population.”

The primary objective of this study was to examine the cross-sectional relation between calcium and other nutrients from dairy product consumption and bone mineral density (BMD) at the hip in elderly black and white men and women. A second objective was to examine how consumption of calcium and dairy products relates to the effectiveness of a calcium supplement in protecting against BMD loss.

SUBJECTS AND METHODS

Subjects

White women (n = 289) and men (n = 116) from Franklin, IN (a rural community near Indianapolis), and black women (n = 265) and men (n = 75) from Indianapolis were studied. These 745 subjects were ≥60 y of age. The black subjects were recruited for a study of bone strength. The white subjects were participants in a 4-y randomized, double blind, placebo-controlled trial of a daily supplement of 750 mg Ca/d or 15 \(\mu \)g 25-hydroxyvitamin D\textsubscript{3}/d (4). Complete diet and bone information was available for 60 calcium intervention subjects, 61 vitamin D intervention subjects, and 60 placebo subjects. Black subjects from the Indianapolis study were studied in the cross-sectional analysis, and baseline data on the white subjects from the Franklin study were included in that study. White subjects in the intervention trial were studied in the longitudinal analysis. The studies were approved by the Institutional Review Board of Indiana University–Purdue University at Indianapolis. Exclusionary criteria included terminal illness; Paget’s disease of bone; recurrent urinary stone disease; treatment with sodium fluoride, bisphosphonate, steroids, or dilantin; renal disease requiring specific treatment; and disapproval by the primary physician.

1 From Purdue University, West Lafayette, IN (LDM, BRM, GPM, and CMW), and Indiana University School of Medicine, Indianapolis (CCJ and MP).

2 Supported by grants PHS-P01-AG05793, R01AG13408, PHS-M01-RR-750 from the National Dairy Council.

3 Address reprint requests to CM Weaver, Department of Foods and Nutrition, Purdue University, 1264 Stone Hall, 700 West State Street, West Lafayette, IN 47907-2059. E-mail: weavercm@cfs.purdue.edu.

Received February 26, 2004.

Accepted for publication April 5, 2004.

1From Purdue University, West Lafayette, IN (LDM, BRM, GPM, and CMW), and Indiana University School of Medicine, Indianapolis (CCJ and MP).

2Supported by grants PHS-P01-AG05793, R01AG13408, PHS-M01-RR-750 from the National Dairy Council.

3Address reprint requests to CM Weaver, Department of Foods and Nutrition, Purdue University, 1264 Stone Hall, 700 West State Street, West Lafayette, IN 47907-2059. E-mail: weavercm@cfs.purdue.edu.

Accepted for publication April 5, 2004.
Table 1

Subject characteristics of elderly black and white men and women

	Men	Women	P²					
	Total (n = 745)	Black (n = 75)	White (n = 116)	Black (n = 265)	White (n = 289)	Race × sex	Blacks compared with whites	Men compared with women
Age (y)	72.75 ± 7.47	71.25 ± 7.23ab	75.48 ± 7.16a	71.56 ± 7.13b	73.14 ± 7.67b	<0.05	—	—
Weight (kg)	74.76 ± 15.39	82.65 ± 14.51a	79.99 ± 12.43ab	77.69 ± 15.58b	67.92 ± 13.85c	<0.05	—	—
Height (cm)	162.64 ± 9.40	170.41 ± 13.77b	172.88 ± 7.45a	160.40 ± 5.76c	158.57 ± 6.92c	<0.05	<0.05	<0.05
Total hip BMD (g/cm²)	0.912 ± 0.178	1.097 ± 0.163	0.982 ± 0.145	0.946 ± 0.161	0.805 ± 0.140	—	—	—
Femoral neck BMD (g/cm²)	0.859 ± 0.166	1.028 ± 0.152	0.891 ± 0.143	0.899 ± 0.156	0.766 ± 0.129	<0.05	<0.05	<0.05

1 All values are ± SD. BMD, bone mineral density. Values in the same row with different superscript letters are significantly different, P < 0.05 (Tukey multiple-comparison test).
2 Two-way ANOVA.

Analysis

Diet information was collected by using HHHQ-DIETSYS software (version S2.1; National Cancer Institute, Bethesda, MD) from the dietary intake portion of the Health Habits and History Questionnaire distributed by the National Cancer Institute. To better capture dairy food intake, it was necessary to adapt the questionnaire to include yogurt and frozen yogurt, and the data were analyzed by using version 3.4 of the software (5).

Table 2

Daily nutrient intake from dairy and nondairy sources in black and white elderly subjects

Nutrient	Dairy (n = 285)	Nondairy (n = 460)	Total diet (n = 745)
Total energy (kcal)	227 ± 146	1127 ± 398	1296 (829–1950)³
Carbohydrate (g)	21 ± 15	135 ± 49	152 (95–226)
Protein (g)	13 ± 8	43 ± 17	53 (32–82)
Total fat (g)	10 ± 8	46 ± 20	53 (29–86)
Saturated fat (g)	6 ± 4	13 ± 6	17 (9–31)
Calcium (mg)	436 ± 289	239 ± 93	628 (311–1090)
Calcium:phosphorus ratio	1.24 ± 0.02	0.40 ± 0.09	0.69 (0.51–0.87)
Calcium:protein ratio	34.24 ± 2.42	5.79 ± 1.74	12.05 (7.56–17.35)
Dairy servings (no./d)	1.41 ± 0.85	—	—
Cholesterol (mg)	36 ± 28	178 ± 123	182 (84–374)
Linoleic acid (g)	0.30 ± 0.24	11.26 ± 5.31	10.59 (5.51–18.78)
Oleic acid (g)	3.04 ± 2.46	16.81 ± 7.68	18.36 (9.65–31.47)
Vitamin E (α-TE)	0.47 ± 0.38	8.54 ± 5.34	7.73 (4.18–15.04)
Vitamin A (IU)	647 ± 433	7640 ± 4746	7308 (3661–13 827)
(RE)	172 ± 119	1082 ± 657	1125 (561–2103)
β-Carotene (mg)	66 ± 51	3882 ± 3167	3030 (1352–7345)
Retinol (mg)	162 ± 115	477 ± 441	538 (220–1183)
Provitamin A carotenoids (mg)	66 ± 51	3632 ± 2596	3097 (1379–6455)
Folate (mg)	15 ± 11	258 ± 118	257 (138–431)
Thiamine (mg)	0.10 ± 0.08	1.11 ± 0.46	1.14 (0.68–1.83)
Riboflavin (mg)	0.58 ± 0.40	1.03 ± 0.50	1.52 (0.81–2.55)
Niacin (mg)	0.27 ± 0.21	14.27 ± 6.32	13.54 (7.64–22.77)
Pyridoxine (mg)	0.12 ± 0.08	1.26 ± 0.58	1.27 (0.72–2.12)
Vitamin C (mg)	2 ± 2	138 ± 67	130 (63–231)
Iron (mg)	0.22 ± 0.18	9.86 ± 4.03	9.50 (5.51–15.48)
Magnesium (mg)	38 ± 26	240 ± 169	227 (134–496)
Phosphorus (mg)	352 ± 234	607 ± 220	931 (536–1419)
Potassium (mg)	461 ± 337	1765 ± 630	2174 (1328–3160)
Sodium (mg)	324 ± 229	1858 ± 735	2069 (1240–3255)
Zinc (mg)	1.66 ± 1.05	7.30 ± 4.06	8.10 (4.49–13.86)
Zinc from animal (mg)	1.66 ± 1.05	3.25 ± 2.07	4.47 (2.23–8.01)

1 n = 745. α-TE, α-tocopherol equivalents; RE, retinol equivalents.
2 x ± SD (all such values).
3 Median; 10th–90th percentiles in parentheses (all such values).
BMD of total hip and femoral neck were measured by using dual-energy X-ray absorptiometry (Lunar Corp, Madison, WI). After the subject was repositioned, the measurements were repeated. The CV of BMD at the total hip was 2.13%, and that of BMD at the femoral neck was 2.52% (6). A diet questionnaire was administered to the elderly white subjects, and their BMD was measured every 6 mo for 4 y.

Statistical analysis

Two-way analysis of variance models were used to examine differences associated with sex and race. Significant interactions were found for many variables. To provide a clear and consistent exposition, Tukey’s multiple-comparison procedure was used to ascertain significant differences among the 4 sex-by-race groups. SAS software (version 8; SAS Institute, Cary, NC) was used for all statistical analyses.

For the cross-sectional study, partial correlations (7) between BMD and nutrients from dairy and nondairy sources were examined. These partial correlations quantify the strength of the linear relation between BMD and the diet variables after the linear effects of race, weight, and age are removed. They identify diet variables that have incremental predictive power. Appropriate diagnostic plots were examined to verify that these relations were approximately linear. The major interest in these analyses is in elucidating the overall pattern of the correlations, rather than in selecting and interpreting single correlations from a large collection. For this reason, no Bonferroni correction or similar adjustment was made. A partial regression plot (7) is used to visually describe this adjusted relation between total hip BMD and dairy calcium intakes in the men and the women. The partial correlation can be viewed as a quantification of the linear relation in the partial regression plot. To construct the plot, linear models for predicting total hip BMD and dairy calcium intakes by using age, weight, and race are constructed for each sex. The residuals from these models are the points plotted in the partial regression plot. For the longitudinal study, diet assessment during the 4 y of the study was evaluated by using a repeated-measures analysis of variance model. Percentage change in total hip and femoral neck BMD was evaluated by using multiple regression models in subjects who consumed > and <1.5 servings of dairy/d and in those who were older and younger than the median age of 72 y.

TABLE 3

Total dietary nutrient intake of the 4 subgroups of elderly

Nutrient	Men Black	Women Black	Men White	Women White	Men compared with whites	Women compared with whites	P²
Total energy (kcal)	1776 ± 571	1588 ± 436	1300 ± 429	1200 ± 352	—	<0.05	<0.05
Carbohydrate (g)	202 ± 67	172 ± 46	155 ± 56	139 ± 39	—	<0.05	<0.05
Protein (g)	72 ± 27	67 ± 21	51 ± 18	51 ± 17	—	—	<0.05
Total fat (g)	73 ± 28	70 ± 24	52 ± 21	50 ± 20	—	—	<0.05
Saturated fat (g)	25 ± 11	23 ± 9	18 ± 8	16 ± 7	—	—	<0.05
Calcium (mg)	801 ± 400	693 ± 279	672 ± 335	639 ± 288	—	<0.05	<0.05
Calcium:phosphorus ratio	0.66 ± 0.14	0.63 ± 0.11	0.72 ± 0.14	0.70 ± 0.13	—	<0.05	<0.05
Calcium:proportion	11.18 ± 3.35	10.44 ± 3.02	12.91 ± 3.83	12.50 ± 3.95	—	—	<0.05
Cholesterol (mg)	312 ± 157	274 ± 150	200 ± 120	178 ± 110	—	—	<0.05
Linoleic acid (g)	13.92 ± 6.35	14.26 ± 4.75	10.74 ± 5.20	10.60 ± 4.92	—	—	<0.05
Oleic acid (g)	26.64 ± 10.20	24.99 ± 9.27	18.43 ± 7.72	17.31 ± 7.54	—	<0.05	<0.05
Vitamin E (α-TE) (IU)	10.79 ± 6.47	11.08 ± 5.73	7.60 ± 4.18	9.01 ± 5.61	—	—	<0.05
Vitamin A (RE) (IU)	11525 ± 7749	10336 ± 5381	7503 ± 3988	7344 ± 3604	—	<0.05	<0.05
β Carotene (µg)	6804 ± 5088b	4576 ± 3438b	3903 ± 2826b	2995 ± 2026b	<0.05	—	<0.05
Retinol (µg)	709 ± 495	707 ± 445	654 ± 479	579 ± 459	—	—	<0.05
Provitamin A carotenoids (µg)	5502 ± 4381	4793 ± 2846	3196 ± 2025	3251 ± 1947	—	—	<0.05
Folate (µg)	330 ± 157	322 ± 116	246 ± 112	264 ± 110	—	—	<0.05
Thiamine (mg)	1.56 ± 0.63b	1.38 ± 0.46b	1.13 ± 0.45c	1.14 ± 0.43c	<0.05	—	<0.05
Riboflavin (mg)	1.96 ± 0.91	1.78 ± 0.67	1.51 ± 0.71	1.54 ± 0.66	—	—	<0.05
Niacin (mg)	18.58 ± 8.23	17.77 ± 6.40	12.78 ± 5.34	13.78 ± 5.75	—	—	<0.05
Pyridoxine (mg)	1.69 ± 0.78	1.66 ± 0.61	1.21 ± 0.53	1.33 ± 0.56	—	—	<0.05
Vitamin C (mg)	164 ± 84	151 ± 63	139 ± 69	131 ± 61	—	—	<0.05
Iron (mg)	12.58 ± 5.28	12.34 ± 3.92	8.94 ± 3.72	9.58 ± 3.44	—	—	<0.05
Magnesium (mg)	262 ± 90a	317 ± 179a	212 ± 78a	326 ± 238a	<0.05	—	<0.05
Phosphorus (mg)	1182 ± 449	1090 ± 331	908 ± 349	895 ± 303	—	—	<0.05
Potassium (mg)	2740 ± 969	2558 ± 715	2130 ± 762	2046 ± 595	<0.05	—	<0.05
Sodium (mg)	2938 ± 1037	2523 ± 821	2132 ± 766	1895 ± 621	<0.05	—	<0.05
Zinc (mg)	11.15 ± 5.52	11.19 ± 4.82	7.60 ± 3.40	8.76 ± 4.31	—	—	<0.05
Zinc from animal (mg)	6.30 ± 3.17	6.45 ± 2.79	4.21 ± 1.95	4.58 ± 2.13	—	—	<0.05

All values are ± SD. α-TE, α-tocopherol equivalents; RE, retinol equivalents. Values in the same row with different superscript letters are significantly different, P < 0.05 (Tukey multiple-comparison test).

² Two-way ANOVA.
TABLE 4
Dairy nutrient intake of the 4 subgroups of elderly

Nutrient	Black (n = 75)	White (n = 116)	Black (n = 265)	White (n = 289)	All (n = 745)	Race × sex	Blacks compared with whites	Men compared with women
Total energy (kcal)	254 ± 189	249 ± 148	220 ± 148	217 ± 131		—	—	—
Carbohydrate (g)	22 ± 18	21 ± 13	20 ± 15	21 ± 15		—	—	—
Protein (g)	14 ± 10	13 ± 7	13 ± 9	13 ± 8		—	—	—
Total fat (g)	12 ± 9	12 ± 9	10 ± 7	9 ± 7		—	—	—
Saturated fat (g)	7 ± 6	7 ± 5	6 ± 4	5 ± 4		—	—	—
Calcium (mg)	476 ± 354	432 ± 242	429 ± 305	435 ± 274		—	—	—
Calcium:phosphorus ratio	1.25 ± 0.02	1.24 ± 0.02	1.25 ± 0.02	1.23 ± 0.03		<0.05	—	—
Calcium:protein ratio	34.18 ± 2.92	34.39 ± 2.39	34.06 ± 2.35	34.36 ± 2.36		—	—	—
Dairy servings (no/d)	1.44 ± 1.04	1.39 ± 0.68	1.38 ± 0.92	1.42 ± 0.78		—	—	—
Percentage dairy calcium (%)	54 ± 17	59 ± 13	58 ± 18	63 ± 16		<0.05	—	—
Cholesterol (mg)	41 ± 34	46 ± 33	33 ± 25	34 ± 26		<0.05	—	<0.05
Linoleic acid (g)	0.39 ± 0.31	0.35 ± 0.24	0.31 ± 0.24	0.25 ± 0.20		<0.05	—	<0.05
Oleic acid (g)	3.59 ± 2.94	3.86 ± 2.85	2.85 ± 2.20	2.73 ± 2.28		<0.05	—	<0.05
Vitamin E (α-TE) (IU)	0.46 ± 0.36	0.48 ± 0.30	0.46 ± 0.38	0.48 ± 0.41		—	—	—
Vitamin A (IU)	742 ± 534	662 ± 366	640 ± 455	624 ± 405		—	—	—
(RE)	196 ± 144	172 ± 97	171 ± 124	168 ± 116		—	—	—
β-Carotene (µg)	79 ± 62	80 ± 56	64 ± 49	58 ± 45		<0.05	—	—
Retinol (µg)	183 ± 136	159 ± 92	160 ± 118	159 ± 114		—	—	—
Provitamin A carotenoids (µg)	79 ± 62	80 ± 56	64 ± 49	58 ± 45		<0.05	—	<0.05
Folate (µg)	15 ± 13	14 ± 9	14 ± 11	15 ± 11		—	—	—
Thiamine (mg)	0.11 ± 0.09	0.10 ± 0.06	0.10 ± 0.08	0.10 ± 0.08		—	—	—
Riboflavin (mg)	0.64 ± 0.50	0.56 ± 0.33	0.57 ± 0.42	0.58 ± 0.38		—	—	—
Niacin (mg)	0.28 ± 0.24	0.25 ± 0.18	0.26 ± 0.20	0.28 ± 0.22		—	—	—
Pyridoxine (mg)	0.13 ± 0.10	0.12 ± 0.07	0.12 ± 0.08	0.12 ± 0.08		—	—	—
Vitamin C (mg)	2 ± 2	2 ± 2	2 ± 2	2 ± 2		—	—	—
Magnesium (mg)	42 ± 34	37 ± 23	38 ± 28	37 ± 25		—	—	—
Phosphorus (mg)	380 ± 281	348 ± 195	344 ± 244	354 ± 226		—	—	—
Potassium (mg)	501 ± 415	440 ± 274	454 ± 345	465 ± 332		—	—	—
Sodium (mg)	352 ± 257	350 ± 229	315 ± 251	314 ± 198		—	—	—
Zinc (mg)	1.74 ± 1.23	1.74 ± 0.94	1.58 ± 1.07	1.69 ± 1.02		—	—	—
Zinc from animal (mg)	1.74 ± 1.23	1.74 ± 0.94	1.58 ± 1.07	1.69 ± 1.02		—	—	—

1 All values are ± SEM. α-TE, α-tocopherol equivalents; RE, retinol equivalents.
2 Two-way ANOVA.

RESULTS

Subject characteristics are shown in Table 1. The black cohort was from the urban community of Indianapolis, and the white cohort was from Franklin, IN, a more rural setting located 15 miles (24 km) from Indianapolis. The white men were the oldest of the 4 groups. The white women were the least heavy group.

TABLE 5
Percentage distribution of daily dairy product servings

Dairy product	Black (n = 75)	White (n = 116)	Black (n = 265)	White (n = 289)	All (n = 745)	Race × sex	Blacks compared with whites	Men compared with women
%								
Ice cream	16 ± 2.45	19 ± 1.74	16 ± 1.27	14 ± 1.05	16 ± 0.71	—	—	—
Cheese	19 ± 2.44	20 ± 1.68	18 ± 1.19	20 ± 1.17	19 ± 0.71	—	—	—
Yogurt	4 ± 1.12	8 ± 1.11	8 ± 0.92	13 ± 1.04	9 ± 0.57	<0.05	—	<0.05
Milk								
Beverage	36 ± 3.39	26 ± 2.46	30 ± 1.70	28 ± 1.68	29 ± 1.03	—	<0.05	—
On cereal	21 ± 2.21	24 ± 1.69	20 ± 1.20	23 ± 1.13	22 ± 0.70	—	—	—
In coffee	4 ± 0.80a	3 ± 0.92b	8 ± 0.82a	2 ± 0.44b	5 ± 0.39	<0.05	—	—
Total	100	100	100	100	100	—	—	—

1 All values are ± SEM. Values in the same row with different superscript letters are significantly different, P < 0.05 (Tukey multiple-comparison test).
2 Two-way ANOVA.
TABLE 6
Percentage distribution of daily calcium intake*

Source	Men Black (n = 75)	Men White (n = 116)	Women Black (n = 265)	Women White (n = 289)	All (n = 745)	Racexsex	Blacks compared with whites	Men compared with women
	%	%	%	%				
Dairy	54 ± 2.00	59 ± 2.00	58 ± 1.12	63 ± 0.96	60 ± 0.62	—	<0.05	<0.05
Ice cream	5 ± 1.02	7 ± 0.76	5 ± 0.45	4 ± 0.35	5 ± 0.26	—	—	<0.05
Cheese	10 ± 1.28	13 ± 1.10	11 ± 0.66	12 ± 0.66	12 ± 0.41	—	<0.05	—
Yogurt	2 ± 0.37	3 ± 0.55	4 ± 0.45	8 ± 0.64	5 ± 0.32	—	<0.05	<0.05
Milk								
Beverage	24 ± 2.42	18 ± 1.74	22 ± 1.35	21 ± 1.32	21 ± 0.79	—	<0.05	—
On cereal	11 ± 0.81	16 ± 0.87	12 ± 0.56	17 ± 0.69	14 ± 0.38	—	<0.05	—
In coffee	2 ± 0.36b	2 ± 0.62b	4 ± 0.42a	1 ± 0.30b	3 ± 0.22	<0.05	—	—
Nondairy	46 ± 2.00	41 ± 1.20	42 ± 1.12	37 ± 0.96	40 ± 0.62	—	<0.05	<0.05
Total	100	100	100	100	100	100		

* All values are ± SEM. Values in the same row with different superscript letters are significantly different, P < 0.05 (Tukey multiple-comparison test).

Two-way ANOVA.

TABLE 7
Partial correlations of total hip bone mineral density with daily nutrients from dairy and nondairy foods in the elderly*

Source	Black and white men (n = 191)	Black and white women (n = 554)				
	Dairy	Nondairy	Total diet	Dairy	Nondairy	Total diet
Total energy (kcal)	0.18	0.05	0.10	0.02	0.02	0.02
Carbohydrate (g)	0.15	0.04	0.08	−0.00	−0.01	−0.01
Protein (g)	0.23	0.06	0.13	0.02	0.02	0.03
Total fat (g)	0.15	0.05	0.09	0.04	0.04	0.05
Saturated fat (g)	0.15	0.04	0.11	0.04	0.03	0.04
Calcium (mg)	0.23	0.09	0.22	0.02	0.02	0.02
Calcium:phosphorus ratio	0.02	0.02	0.19	0.03	0.06	0.04
Calcium:protein ratio	−0.11	−0.01	0.15	−0.04	−0.05	−0.03
Dairy servings (no./d)	0.19			0.02		
Percentage dairy calcium (%)	0.17			0.00		
Cholesterol (mg)	0.16	0.03	0.06	0.04	−0.00	0.01
Linoleic acid (g)	0.14	0.03	0.03	0.04	0.02	0.02
Oleic acid (g)	0.15	0.04	0.08	0.04	0.04	0.04
Vitamin E (α-TE)	0.13	0.06	0.06	−0.02	0.03	0.02
Vitamin A (IU)	0.20	0.03	0.04	0.03	−0.05	−0.04
(RE)	0.20	0.00	0.03	0.02	−0.05	−0.05
β-Carotene (μg)	0.15	0.05	0.05	0.03	−0.02	−0.01
Retinol (μg)	0.20	−0.06	−0.01	0.02	−0.05	−0.04
Provitamin A carotenoids (μg)	0.15	0.04	0.05	0.03	−0.03	−0.03
Folate (μg)	0.23	0.05	0.07	0.01	0.01	0.01
Thiamine (mg)	0.21	0.03	0.05	0.02	0.02	0.03
Riboflavin (mg)	0.22	0.02	0.13	0.02	0.00	0.01
Niacin (mg)	0.23	0.05	0.06	0.02	0.02	0.02
Pyridoxine (mg)	0.22	0.05	0.07	0.02	0.01	0.02
Vitamin C (mg)	0.21	0.06	0.07	0.04	−0.04	−0.03
Iron (mg)	0.11	0.04	0.04	0.01	0.02	0.02
Magnesium (mg)	0.21	0.15	0.18	0.03	0.02	0.03
Phosphorus (mg)	0.23	0.05	0.17	0.02	0.02	0.03
Sodium (mg)	0.21	0.06	0.13	0.02	−0.02	−0.01
Zinc (mg)	0.20	0.06	0.09	0.01	0.03	0.03
Zinc from animal (mg)	0.20	0.02	0.09	0.01	0.01	0.01

* α-TE, α-tocopherol equivalents; RE, retinol equivalents. Correlations are adjusted for age, race, and weight.

P < 0.05.
The black women weighed less than the black men but not less than the white men. For both total hip and femoral neck BMD, the blacks had higher values than did the whites, and the men had higher values than did the women.

Cross-sectional study

The mean calcium intake from dairy and nondairy sources was 436 mg/d and 239 mg/d, respectively (Table 2). Dairy sources supplied 60% of the daily calcium intake, whereas all other nutrients were derived primarily from nondairy sources (Table 2). Dairy products were also an important source of phosphorus, riboflavin, retinol, and saturated fat, supplying >30% of the daily intake of these nutrients.

The blacks had higher calcium intakes than did the whites (700 and 654 mg/d, respectively; \(P = 0.0094 \)), and the men had higher calcium intakes than did the women (735 and 655 mg/d, respectively; \(P = 0.0007 \)), as shown in Table 3, but calcium intakes from dairy sources did not differ significantly by sex, as shown in Table 4. The men consumed more total energy (1662 compared with 1247 kcal) and energy from dairy sources (251 compared with 219 kcal) than did the women and, consequently, consumed more nutrients. The blacks consumed more total energy than did the whites (1405 compared with 1311 kcal), but energy from dairy sources did not differ significantly.

Milk that was consumed in coffee, on cereal, and as a beverage was the most popular dairy product for all groups, accounting for 53–61% of total dairy servings per day (Table 5). Similarly, in terms of calcium intake (in mg), fluid milk accounted for 38% of the total calcium intake and 63% of the dairy calcium intake (Table 6). The blacks consumed more glasses of milk than did the whites. Yogurt was consumed by the women more than by the men and by the whites more than by the blacks. Dairy calcium intake was unrelated to age, race, sex, or weight (data not shown).

To examine the relations between diet and bone measures, we took into account the fact that the subjects were not all the same age, race, sex, and weight, as discussed in Subjects and Methods. The effect of diet on bone measures did not depend on race; the race-by-diet interactions were not significant (total hip: \(F_{1,737} = 0.004, P = 0.95 \); femoral neck: \(F_{1,737} = 0.08, P = 0.78 \)). However, the sex-by-diet interactions were statistically significant (total hip: \(F_{1,737} = 6.81, P = 0.0092 \); femoral neck: \(F_{1,737} = 3.96, P = 0.0465 \)). We therefore presented separate analyses for the men and the women. Results for total hip BMD are given in Table 7. A positive partial correlation between total hip BMD and dairy calcium intake was found in the men (\(r = 0.23 \)) but not in the women (\(r = 0.02 \)). These partial correlations are depicted in the partial regression plots shown in Figure 1. The line with the positive slope describes the relation in the men, and the line that is essentially flat describes the relation in the women. There was no relation with nondairy calcium intake. In the men only, positive relations were found between both total hip and femoral neck BMD (Table 8) and dairy sources of total energy, carbohydrate, protein, vitamin A, retinol, folate, thiamine, riboflavin, niacin, vitamin B-6, vitamin C, magnesium, potassium, sodium, and zinc.

Regression analysis showed that age, weight, and race explained 29% (\(P < 0.0001 \)) of the variation in total hip BMD in the men and 44% (\(P < 0.0001 \)) of that in the women. For femoral neck BMD, the corresponding values are 33% (\(P < 0.0001 \)) and 42% (\(P < 0.0001 \)), respectively. Higher bone densities were associated with subjects who were younger, heavier, black, and male. Many nutrients from dairy sources strengthened the prediction of total body and femoral neck BMD in the regression model, whereas nutrients from nondairy sources did not improve the prediction. Nutrients with similar partial correlations can be interchanged in the predictive equation.
TABLE 8
Partial correlations of femoral neck bone mineral density with daily nutrients from dairy and nondairy foods in the elderly

	Black and white men ($n = 191$)	Black and white women ($n = 554$)				
	Dairy	Nondairy	Total diet			
	Dairy	Nondairy	Total diet			
Total energy (kcal)	0.152	0.06	0.10	0.07	0.01	0.04
Carbohydrate (g)	0.152	0.06	0.10	0.03	-0.00	0.01
Protein (g)	0.212	0.06	0.12	0.07	0.02	0.05
Total fat (g)	0.11	0.07	0.09	0.09a	0.03	0.05
Saturated fat (g)	0.11	0.04	0.08	0.09a	0.01	0.06
Calcium (mg)	0.212	0.12	0.222	0.07	-0.03	0.05
Calcium:phosphorus ratio	-0.06	0.04	0.172	0.03	-0.092	-0.00
Calcium:protein ratio	-0.03	0.04	0.162	-0.06	-0.07	0.01
Dairy servings (no./d)	0.182	0.06				
Percentage dairy calcium (%)	0.142	0.06				
Cholesterol (mg)	0.12	0.00	0.03	0.09a	0.00	0.02
Linoleic acid (g)	0.10	0.06	0.06	0.09a	0.02	0.02
Oleic acid (g)	0.11	0.06	0.08	0.09a	0.01	0.04
Vitamin E (α-TE)	0.11	0.12	0.12	0.04	0.03	0.04
Vitamin A (RE)	0.192	0.04	0.05	0.06	-0.04	-0.03
β-Carotene (µg)	0.202	0.01	0.04	0.05	-0.05	-0.04
Retinol (µg)	0.202	-0.06	-0.01	0.05	-0.05	-0.04
Provitamin A carotenoids (µg)	0.10	0.06	0.06	0.09a	-0.02	-0.01
Folate (µg)	0.212	0.08	0.10	0.06	0.01	0.01
Thiamine (mg)	0.212	0.04	0.07	0.05	0.04	0.04
Riboflavin (mg)	0.212	0.04	0.14	0.06	-0.01	0.03
Nicin (mg)	0.222	0.08	0.09	0.06	0.01	0.01
Pyridoxine (mg)	0.212	0.06	0.09	0.06	0.02	0.03
Vitamin C (mg)	0.172	0.06	0.06	0.09a	-0.03	-0.03
Iron (mg)	0.11	0.06	0.06	0.05	0.03	0.04
Magnesium (mg)	0.202	0.192	0.212	0.07	0.02	0.03
Phosphorus (mg)	0.212	0.06	0.172	0.06	0.02	0.06
Potassium (mg)	0.202	0.06	0.13	0.05	-0.01	0.02
Sodium (mg)	0.152	0.12	0.14	0.07	-0.02	0.01
Zinc (mg)	0.192	0.07	0.10	0.06	0.03	0.04
Zinc from animal (mg)	0.192	-0.01	0.06	0.06	0.01	0.04

aα-TE, α-tocopherol equivalents; RE, retinol equivalents. Correlations are adjusted for age, race, and weight.

$^2 P < 0.05.$

Longitudinal study

No differences in dairy servings consumed were found between the groups or over time (data not shown). Subjects were classified into 2 groups on the basis of whether they consumed >1.5 or ≤1.5 servings of dairy products/d. This cutoff value was chosen on the assumption that, if milk was the sole contribution to dietary calcium, 1.5 servings would provide 450 mg Ca and, together with the 750 mg Ca from the supplement, that amount would increase the calcium intake to the 1200 mg/d requirement for this age group. The effect of the calcium supplement on percentage change in femoral neck BMD depended on dietary calcium intake ($P < 0.05$ for interaction; Figure 2). The treatment effect was evident in those who had deficient diets (<1.5 servings of dairy products/d or <450 mg/d at baseline) but not in those with calcium intakes ≥1.5 servings of dairy products/d. Those subjects who consumed <1.5 servings of dairy products/d at baseline and were assigned to the placebo group lost >2% BMD at the femoral neck. A similar effect was observed for total hip BMD.

For femoral neck BMD, the effect of calcium supplementation was evident in those <72 y old at the start of the study ($P < 0.05$), but not in those >72 y old ($P < 0.05$ for interaction; Figure 3). Similar results were obtained for total hip BMD.

DISCUSSION

In this cross-sectional study, a significant positive relation was observed between dairy nutrient consumption and BMD at the total hip and femoral neck in white and black elderly men, but not in white and black elderly women. Most of the previous studies examining the relation between diet and BMD were in white postmenopausal women. The nutrient most often predictive of BMD (2) and the one most likely to be deficient in the diet is calcium. The median calcium intake in this sample was only 52.3% of the 1200 mg/d recommended for this age group (8). In contrast to the nationally representative sample of men and women >60 y old, the third National Health and Nutrition Examination Survey (9), in which blacks had lower calcium intakes
women supplemented with 750 mg Ca/d (\(\text{change in femoral neck bone mineral density (BMD)}\) in 121 white men and women supplemented with 750 mg Ca/d (•) or placebo (□) over 4 y (\(P < 0.05\)). A general linear model analysis was used to predict percentage change in femoral neck BMD with calcium intervention, baseline dairy intake, and the interaction between calcium intervention and dairy intake (\(P < 0.05\)). Sample sizes were as follows: calcium and <1.5 dairy servings, \(n = 36\); calcium and ≥1.5 dairy servings, \(n = 34\); and placebo and <1.5 dairy servings, \(n = 26\). Bars equal SEs.

than did whites, the blacks in the current study had higher calcium intakes than did the whites, and the men had higher calcium intakes than did the women. A meta-analysis of osteoporotic fractures in postmenopausal women estimated an odds ratio of 0.96 (95% CI: 0.93, 0.99) for each 300-mg increase in calcium per day (10). Another meta-analysis of 15 controlled trials in postmenopausal women found that calcium supplementation reduced BMD loss at the hip by an average of 1.64% more than in placebo groups, and there was a relative risk of 0.77 (95% CI: 0.54, 1.09) for vertebral fractures and of 0.86 (95% CI: 0.43, 1.72) for nonvertebral fractures (11). Calcium and vitamin D supplementation reduced total-body bone loss in both elderly men and women in a 3-y randomized controlled trial, but the effect on the femoral neck was significant only in the men (12). In the calcium intervention study in the white cohort reported here, we found that calcium supplementation was effective in preventing a decline in total hip and femoral neck BMD in both men and women (4). Despite the benefit of calcium intervention, dairy intake was not significantly related cross-sectionally to BMD in the same women. Others have also reported no significant relation in cross-sectional analysis between calcium intake and BMD or hip fracture risk (13, 14). The discrepancy between predictive behavior based on food-frequency questionnaires and the observed benefit of calcium supplementation in the women contrasted with that in the men may suggest that women are more likely to underreport calcium intake than are men. Underreporting of energy intake increased with increasing energy expenditure in women but not in men in a study that quantified inaccuracies in self-reported energy intakes identified by comparison with double-labeled water determination of energy expenditure (15). Almost all of the nutrients in milk were related to BMD in men but not in women. The pattern of correlations among the dairy intake variables is such that we cannot attribute the effect to a single nutrient after additional adjustment. This is consistent with a scenario in which the factors responsible for the relation in men may be factors other than—or in addition to—calcium.

Other studies have not compared nutrients from dairy sources with nutrients from the total diet. We found that many nutrients from dairy foods are significantly correlated with total hip and femoral neck BMD in men but not in women, whereas nondairy nutrients are not significantly correlated. Similarly, the addition of dairy nutrient intake but not nondairy nutrient intake to regression models strengthened the prediction of BMD. A limitation of this study is that nutrients contributed by dairy sources as part of mixed foods were not captured, and, thus, the strength of the relation may be underestimated. When total diet nutrients are examined, only daily calcium intakes (or the ratio of calcium to protein or calcium to phosphorus) and daily intakes of magnesium, phosphorus, and sodium significantly correlated with total hip BMD in men. Because dairy food consumption in men significantly correlated with total hip and femoral neck BMD, any nutrient that is a marker for dairy food consumption will be predictive of BMD but may not have a unique role in maintaining BMD. However, dairy products contributed <20% of the total intake of these nutrients except for calcium (64.6%), phosphorus (36.7%), saturated fat (31.3%), retinol (25.3%), protein (22.8%), and potassium (20.7%). In a dairy intervention study, the addition of 3 servings of milk/d significantly increased intakes of calcium, protein, phosphorus, magnesium, and vitamin D in men and women aged 55–85 y (16). In contrast to the findings in the elderly population reported here, dairy product consumption was a stronger predictor of BMD in a population of Chinese women than was either calcium or protein intake (17). It is possible that dairy consumption is a marker for a generally healthier lifestyle in the US population.
A limitation of our study is that the database of the HHHQ did not contain vitamin D. Approximately 2 μg vitamin D/d would have come from fortified milk, an amount that is comparable to the 5 μg vitamin D/d consumed from food by a large sample of postmenopausal women, half of which came from fortified milk (14). Vitamin D status averaged 60.5 nmol/L in our longitudinal cohort (4).

An analysis of usual dairy product consumption contributed to our understanding of which subjects responded to calcium supplementation in the intervention trial. Lower consumption of dairy products resulted in more benefit from calcium supplementation during the 4-y study with respect to reducing bone loss in the total hip and femoral neck. The benefit of supplementation decreased after age 72 y. Considering the large numbers of dairy nutrients that were positively related to bone health in the cross-sectional study, it would be expected that consumption of adequate dairy products would be more beneficial than supplementation with 1 or 2 individual nutrients.

In this study of elderly black and white men and women, dairy nutrients contributed significantly and interchangeably to a predictive model of total hip and femoral neck BMD that included weight, age, race, and sex. Milk was the primary source of calcium in all groups. All subjects ingested calcium at intakes well below the requirement for this age group, but the insufficiency was least in the black men. Dairy consumption predicted total hip BMD in the black men but not in the white men and not in the women of either race. Nevertheless, a calcium supplementation intervention was equally effective in protecting against bone loss in the white men and women. Elderly who had lower previous dairy intakes and who were younger than 72 y experienced the greatest positive benefit of calcium supplementation. Overall, this study suggests a positive role for dairy foods in the diet of the elderly.

We are grateful to Bruce Craig of the Department of Statistics at Purdue University for reading the manuscript.

GPM, CMW, and MP were responsible for the study design; LDM and BRM were responsible for data collection; LDM, GPM, and BRM were responsible for data analysis; and LDM, GPM, and CMW were responsible for writing the manuscript. CMW is a member of The National Dairy Council’s Research Scientific Advisory Committee. The other authors have no relationship with the sponsors of the study.

REFERENCES

1. Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement Online. Internet: http://odp.od.nih.gov/consensus/cons/112/112_statement.htm (Accessed 15 April 2003).
2. Heaney RP. Calcium, dairy products and osteoporosis. J Am Coll Nutr 2000;19:83S–99S.
3. Weinsier RL, Krumdieck CL. Reply to CM Weaver and RP Heaney. Am J Clin Nutr 2001;73:660–1 (letter).
4. Peacock M, Liu G, Carey M, et al. Effect of calcium or 25OH vitamin D3 dietary supplementation on bone loss at the hip in men and women over the age of 50. J Clin Endocrinol Metab 2000;85:3011–9.
5. HHHQ-DIETSYS analysis software, version 3.4. Bethesda, MD: National Cancer Institute, 1995.
6. Peacock M, Liu G, Carey M, et al. Bone mass and structure at the hip in men and women over the age of 50. Osteoporosis Int 1998;85:231–9.
7. Neter J, Kutner MG, Nachtsheim CJ, Wasserman W. Applied linear statistical models. 4th ed. Chicago: Irwin, 1996.
8. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. Washington, DC: National Academy Press, 1997.
9. Bialostosky K, Wright J, Kennedy-Stephens J, McDowell M, Johnson C. Dietary intake of macronutrient, micronutrients and other dietary constituents: United States 1988–94. Vital Health Stat 11 2000;(245):1695.
10. Cumming RG, Nevitt MC. Calcium for prevention of osteoporosis fractures in postmenopausal women. J Bone Miner Res 1997;12:1321–9.
11. Wells SB, Cranney A, Zytaruk N, et al. Meta-analysis of therapies for postmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocr Res 2002;23:552–9.
12. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997;337:670–6.
13. Weinsier RL, Krumdieck CL. Dairy foods and bone health: examination of the evidence. Am J Clin Nutr 2000;72:681–9.
14. Feskanich D, Willett WC, Colditz GA. Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am J Clin Nutr 2003;77:504–11.
15. Schoeller DA, Bandini LG, Dieguez WH. Inaccuracies in self-reported intake identified by comparison with the doubly labeled water method. Can J Physiol Pharmacol 1990;68:941–9.
16. Heaney RP, McCarron DA, Dawson-Hughes B, et al. Dietary changes favorably affect bone remodeling in older adults. J Am Diet Assoc 1999;99:1228–33.
17. Hu J-F, Zhao H-H, Jia J-B, Parpia B, Campbell TC. Dietary calcium and bone density among middle-aged and elderly women in China. Am J Clin Nutr 1993;58:219–27.