On the Maximum ABC Spectral Radius of Connected Graphs and Trees

Wenshui Lin¹,², Yiming Zheng², Peifang Fu², Zhangyong Yan², Jia-Bao Liu ³,†

¹ Fujian Key Laboratory of Sensing and Computing for Smart City, Xiamen 361005, China
² School of Informatics, Xiamen University, Xiamen 361005, China
³ School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

(Received April 16, 2020)

Abstract
Let $G = (V, E)$ be a connected graph, where $V = \{v_1, v_2, \cdots, v_n\}$ and $m = |E|$. d_i will denote the degree of vertex v_i of G, and $\Delta = \max_{1 \leq i \leq n} d_i$. The ABC matrix of G is defined as $M(G) = (m_{ij})_{n \times n}$, where $m_{ij} = \sqrt{(d_i + d_j - 2)/(d_i d_j)}$ if $v_i v_j \in E$, and 0 otherwise. The largest eigenvalue of $M(G)$ is called the ABC spectral radius of G, denoted by $\rho_{ABC}(G)$. Recently, this graph invariant has attracted some attentions. We prove that $\rho_{ABC}(G) \leq \sqrt{\Delta + (2m - n + 1)/\Delta - 2}$. As an application, the unique tree with $n \geq 4$ vertices having second largest ABC spectral radius is determined.

Keywords: ABC matrix, Eigenvalues, ABC spectral radius, Upper bounds, Trees.

1 Introduction

Let $G = (V, E)$ be a simple connected graph. Suppose $V = \{v_1, v_2, \cdots, v_n\}$ and $m = |E|$. If $c = m - n + 1 \geq 0$, then G is called a c-cyclic graph. In particular, G is called a tree and a unicyclic graph if $c = 1, 2$, respectively. As usual, S_n, P_n, C_n, and K_n will denote the star, path, cycle, and complete graph with n vertices, respectively.

Let d_i denote the degree of vertex v_i, and $\Delta = \max_{1 \leq i \leq n} d_i$. The atom-bond connectivity index (ABC index in short) of G is defined [1] as $ABC(G) = \sum_{v_i v_j \in E} f(d_i, d_j)$, where

*Supported by the National Science Foundation of China under Grant Nos. 11771362 and 11601006.
†Corresponding author. E-mail address: liujiabaoad@163.com (J. Liu).
\(f(x, y) = \sqrt{(x^2 + y^2)} \). Since this index can predict well the heat of formation of alkanes (see [2,3]), it became a hot topic in the past few years (see [4-30]).

In 2017, Estrada [31] defined the ABC matrix of \(G \) as \(M = M(G) = (m_{ij})_{n \times n} \), where \(m_{ij} = f(d_i, d_j) \) if \(v_i v_j \in E \), and 0 otherwise. The chemical background of this matrix was explicated in [31]. The eigenvalues of \(M \) are called the ABC eigenvalues of \(G \). Because \(M \) is non-negative, symmetric, and irreducible, any ABC eigenvalue of \(G \) is real. In particular, the largest ABC eigenvalue of \(G \) is called its ABC spectral radius, and denoted by \(\rho_{ABC}(G) \). Obviously, \(\rho_{ABC}(G) \) is positive and simple. Moreover, there exists a unique vector \(x > 0 \) such that \(\rho_{ABC}(G) = \max_{\|y\|=1} y^T M y = x^T M x \), which is known as the Perron vector of \(M \).

Estrada [31] proved that \(\frac{2}{n} \rho_{ABC}(G) \leq \rho_{ABC}(G) \leq \max_{1 \leq i \leq n} M_i \), with both equalities iff \(M_1 = M_2 = \cdots = M_n \), where \(M_i = \sum_{1 \leq j \leq n} m_{ij} \). Recently, Chen [32] presented another lower bound of \(\rho_{ABC}(G) \) in terms of \(R_{-1}(G) \), which is the sum of \(\frac{1}{d_i d_j} \) over all edges \(v_i v_j \in E \). Chen [32] further proposed the problem of characterizing graphs with extremal ABC spectral radius for a given graph class. Soon, this problem for trees, connected graphs, and unicyclic graphs were solved by Chen [33], Ghorbani et al. [34], and Li et al. [35], respectively.

Lemma 1.1 [33]. Let \(T \) be a tree with \(n \geq 3 \) vertices. Then

\[
\sqrt{2} \cos \frac{\pi}{n + 1} \leq \rho_{ABC}(G) \leq \sqrt{2n - 4},
\]

with left (right) equality iff \(G \cong P_n \) (resp. \(G \cong S_n \)).

Lemma 1.2 [34]. Let \(G \) be a connected graph with \(n \geq 3 \) vertices. Then

\[
\sqrt{2} \cos \frac{\pi}{n + 1} \leq \rho_{ABC}(G) \leq \sqrt{2n - 4},
\]

with the left (right) equality iff \(G \cong P_n \) (resp. \(G \cong K_n \)).

Lemma 1.3 [35]. Let \(G \) be a unicyclic graph with \(n \geq 4 \) vertices. Then

\[
\sqrt{2} = \rho_{ABC}(C_n) \leq \rho_{ABC}(G) \leq \rho_{ABC}(S_n + e),
\]

with the left (right) equality iff \(G \cong C_n \) (resp. \(G \cong S_n + e \)).

For convenience, let \(\mathcal{C}(n) \) be the set of connected graphs with \(n \) vertices, and \(\mathcal{G}(m, n) \) the set of connected graphs with \(n \) vertices and \(m \) edges. In the present paper, we consider upper bounds of \(\rho_{ABC} \) for connected graphs. In Section 2, it is shown that, if \(G \in \mathcal{G}(m, n) \) and \(\Delta(G) = \Delta \), then \(\rho_{ABC}(G) \leq \sqrt{\Delta + (2m - n + 1)/\Delta - 2} \). As an
application, in Section 3, we characterize the unique tree with $n \geq 4$ vertices having the second largest ABC spectral radius. Finally, some problems are proposed in Section 4.

2 Some upper bounds of the ABC spectral radius

In this section, we present two upper bounds of ρ_{ABC} of connected graphs.

Theorem 2.1. If $G \in \mathcal{G}(m, n)$ and $\Delta(G) = \Delta$, then

$$\rho_{ABC}(G) \leq \sqrt{\Delta + (2m - n + 1)/\Delta - 2}.$$

Moreover, the bound is attainable.

Proof. Let $M = M(G)$, $D = 2m - n + 1$, and $x = (\sqrt{d_1}, \sqrt{d_2}, \cdots, \sqrt{d_n})^T$. From the Perron-Frobenius theory, it suffices to confirm the claim: $(Mx)_i \leq \sqrt{d_i \Delta + D}/\Delta - 2$ or $[(Mx)_i/\sqrt{d_i}]^2 \leq \Delta + D/\Delta - 2$ holds for $1 \leq i \leq n$.

If $d_i < D/\Delta$, then $(Mx)_i = \sum_{v_i v_j \in E} f(d_i, d_j) \sqrt{d_j} \leq d_i \sqrt{d_i + D/\Delta - 2} < \sqrt{d_i \Delta + D/\Delta - 2}$.

Hence assume $d_i \geq D/\Delta$. By using the Cauchy-Schwarz Inequality we have

$$(Mx)_i = \sum_{v_i v_j \in E} \sqrt{(d_i + d_j - 2)/d_i} \leq \sqrt{d_i^2 - 2d_i + \sum_{v_i v_j \in E} d_j} \leq \sqrt{d_i^2 - 2d_i + [2m - d_i - (n - d_i - 1)]} = \sqrt{d_i^2 - 2d_i + D}.$$

Thus we have $[(Mx)_i/\sqrt{d_i}]^2 \leq (d_i^2 - 2d_i + D)/d_i = d_i + D/d_i - 2$. Since $\eta(x) = x + D/x - 2$ is a Nike function and $D/\Delta \leq d_i \leq \Delta$, it follows that

$$[(Mx)_i/\sqrt{d_i}]^2 \leq \max\{\eta(D/\Delta), \eta(\Delta)\} = \Delta + D/\Delta - 2.$$

Finally, to see the bound is attainable, one can take S_n and K_n as examples. The proof is thus completed. \blacksquare

Let $\theta(m, \Delta) = \sqrt{\Delta + (2m - n + 1)/\Delta - 2}$. For fixed m, the monotonicity of θ with respect to Δ is clear. Hence Theorem 2.1 can easily produce a upper bound of ρ_{ABC} for subsets of $\mathcal{G}(m, n)$. For example, an upper bound for c-cyclic graphs is obtained as follows.

Corollary 2.2. Let G be a c-cyclic graph with $n \geq 3$ vertices, and $c \leq (n - 1)/2$. Then

$$\rho_{ABC}(G) \leq \sqrt{n - 2 + 2c/(n - 1)}.$$
Proof. Since \(m = n - 1 + c \) and \(c \leq (n - 1)/2 \), by direct calculations we have

\[
\theta(m, 2) = \sqrt{(n - 1)/2 + c} \leq \theta(m, n - 1) = \sqrt{n - 2 + 2c/(n - 1)},
\]

and the conclusion follows from Theorem 2.1. ■

It is easily seen that, Theorem 2.1 can reproduce the upper bound part of Lemma 1.1. However, if we consider upper bounds of \(\rho_{ABC} \) for a subset of \(C_n \), whose elements have various sizes (numbers of edges), Theorem 2.1 may be not so convenient to applied directly. Hence we deduce the following result.

Corollary 2.3. If \(G \in G(m, n) \) and \(\Delta(G) = \Delta \), then \(\rho_{ABC}(G) \leq \sqrt{\Delta + k - 2} \), where \(k = \lceil (2m - n + 1)/\Delta \rceil \).

Proof. From \(k = \lceil (2m - n + 1)/\Delta \rceil \geq (2m - n + 1)/\Delta \), the conclusion holds immediately from Theorem 2.1. ■

Though Corollary 2.3 is weaker than Theorem 2.1, the upper bound \(\theta'(m, \Delta) = \sqrt{\Delta + k - 2} \) has better property than \(\theta(m, \Delta) \). In fact, for fixed \(m \), \(\theta'(m, \Delta) \) almost strictly decreases with \(\Delta \). To see this, let \(\Delta_1 > \Delta_2 \) and \(D = 2m - n + 1 \). We illustrate the fact with the following two cases.

Case 1. \(D/k \leq \Delta_2 < \Delta_1 < D/(k - 1) \). Then \(\theta'(m, \Delta_2) < \theta'(m, \Delta_1) \) obviously.

Case 2. \(D/k \leq \Delta_2 < D/(k - 1) \leq \Delta_1 \). Then

\[
\theta'(m, \Delta_2) = \sqrt{\Delta_2 + k - 2} \\
\leq \sqrt{\Delta_1 + k - 3} \\
= \theta'(m, \Delta_1),
\]

with equality iff \(\Delta_2 = D/(k - 1) - 1 = \Delta_1 - 1 \).

By the monotonicity of \(\theta'(m, \Delta) \) with respect to \(\Delta \), we are able to reproduce the upper bound part of Lemma 1.2.

Corollary 2.4 [34]. Let \(G \) be a connected graph with \(n \geq 3 \) vertices. Then

\[
\rho_{ABC}(G) \leq \sqrt{2n - 4},
\]

with equality iff \(G \cong K_n \).

Proof. By the monotonicity of \(\theta' \) we have \(\theta'(m, \Delta) \leq \theta'(m, n - 1) \leq \theta'(n(n - 1)/2, n - 1) \), with all the equalities iff \(m = n(n - 1)/2 \), that is, \(G \cong K_n \). The conclusion thus follows from Corollary 2.3. ■
In order to further illustrate the application of Theorem 2.1 and Corollary 2.3, in this section we determine the tree with \(n \geq 4 \) vertices, whose ABC spectral radius is the second largest. For convenience, let \(\mathcal{T}_n \) be the set of trees with \(n \) vertices, and \(\mathcal{T}^{(\Delta)}_n = \{ T \in \mathcal{T}_n | \Delta(T) = \Delta \} \). Let \(T_i, i = 1, 2, 3, 4 \), be the trees shown in Figure 1. \(T_1 \) is just the double star \(S_{n-3}^{(1)} \). If \(T \in \mathcal{T}^{(\Delta)}_n \), then \(T \) contains \(S_{\Delta+1} \) as its (induced) subgraph, hence it is easily seen that \(\mathcal{T}^{(n-1)}_n = \{ S_n \} \), \(\mathcal{T}^{(n-2)}_n = \{ S_{n-3,1} \} \), and \(\mathcal{T}^{(n-3)}_n = \{ T_2, T_3, T_4 \} \).

Our aim in this section is to prove the following conclusion.

Theorem 3.1. If \(n \geq 4 \) and \(T \in \mathcal{T}_n - \{ S_n, S_{n-3,1} \} \), then

\[
\rho_{ABC}(T) < \rho_{ABC}(S_{n-3,1}) < \rho_{ABC}(S_n).
\]

We need some more preliminaries before presenting the proof of Theorem 3.1.

For two vertices \(u \) and \(v \) of a graph \(G \), they are said to be equivalent, denoted by \(u \sim v \), if there is an automorphism of \(G \) sending \(u \) to \(v \). By symmetry, the following result is immediate.

Lemma 3.2. Let \(x \) be the Perron vector of the ABC matrix \(M(G) \) of a connected graph \(G \). If \(u \sim v \), then \(x_i = x_j \).

Lemma 3.3. \(\rho_{ABC}(S_{n-3,1}) > \sqrt{n - 3.5} \) if \(n \geq 4 \).

Proof. Let \(\rho = \rho_{ABC}(S_{n-3,1}) \), and label the vertices of \(S_{n-3,1} \) as in Figure 1. Based on Lemma 3.2, let \(x = (x_1, x_2, x_3, x_4, \ldots, x_4)^T \) be the Perron vector of \(M = M(S_{n-3,1}) \). From \(\rho x = Mx \) we have

\[
\begin{align*}
\rho x_1 &= (n - 3) \sqrt{\frac{n - 3}{n - 2}} x_4 + \sqrt{\frac{1}{2}} x_2 \\
\rho x_2 &= \sqrt{\frac{1}{2}} x_1 + \sqrt{\frac{1}{2}} x_3 > \sqrt{\frac{1}{2}} x_1 \\
\rho x_4 &= \frac{n - 3}{n - 2} x_1
\end{align*}
\]
Hence \(\rho^2 x_1 = (n - 3)\sqrt{\frac{n-3}{n-2}} \rho x_2 + \sqrt{\frac{1}{2}} \rho x_2 > \frac{(n-3)^2}{n-2} x_1 + \frac{1}{2} x_1 \), and we arrive at
\[
\rho^2 > \frac{(n-3)^2}{n-2} + \frac{1}{2} > n - 4 + 0.5 = n - 3.5,
\]
which completes the proof. ■

Lemma 3.4. If \(n \geq 6 \) and \(T \in \{T_2, T_3, T_4\} \), then \(\rho_{ABC}(T) < \sqrt{n - 3.5} \).

Proof. If \(n = 6 \), the conclusion can be verified easily. Hence assume \(n \geq 7 \). Label the vertices of \(T \) as in Figure 1. Let \(M = M(T) \) and \(x = (\sqrt{d_1}, \sqrt{d_2}, \ldots, \sqrt{d_n})^T \). Based on Lemma 2.1, we prove the result by confirming \((Mx)_i/\sqrt{d_i} \leq \sqrt{n - 3.5}\) for \(1 \leq i \leq n \).

We have \((Mx)_i/\sqrt{d_i} \leq \sqrt{d_i - 2 + \sum_{v_i, v_j \in E} d_j/d_i}\) from the proof of Theorem 2.1. Hence
\[
(Mx)_1/\sqrt{d_1} \leq \sqrt{n - 5 + (n - 1)/(n - 3)} = \sqrt{n - 4 + 2/(n - 3)} \leq n - 3.5.
\]
For \(i \geq 2 \), because \(d_i \leq 3 \) and \(n \geq 7 \), it follows
\[
(Mx)_i/\sqrt{d_i} \leq \max\{\sqrt{n - 4}, (n - 1)/2, (n + 2)/3\} < \sqrt{n - 3.5},
\]
and the proof is completed. ■

Now we present the proof of Theorem 3.1.

Proof of Theorem 3.1. It is easily seen that \(\mathcal{T}_4 = \{S_4, S_{1,1} \cong P_4\} \), \(\mathcal{T}_5 = \{S_5, S_{2,1}, P_5\} \), and \(\mathcal{T}_6 = \{S_6, S_{3,1}, T_2, T_3, T_4, P_6\} \), so the conclusion holds if \(n \leq 6 \) from Lemmas 1.1, 3.3, and 3.4. Hence assume \(n \geq 7 \).

If \(\Delta \geq n - 3 \), the conclusion follows from Lemmas 3.3 and 3.4. Otherwise, if \(\Delta \leq n - 4 \), then \(\rho_{ABC}(T) \leq \theta'(n - 1, n - 4) = \sqrt{n - 6 + \left(\frac{n - 1}{n - 4}\right)} \leq \sqrt{n - 4} \) from Corollary 2.3.

The proof is thus completed. ■

4 Further discussions

In this paper, it is shown that \(\rho_{ABC}(G) \leq \sqrt{\Delta + (2m - n + 1)/\Delta - 2} \) if \(G \in \mathcal{G}(m, n) \) and \(\Delta(G) = \Delta \). The bound is attained by \(S_n \) and \(K_n \). Firstly, the following problem may be worth consideration.

Problem 4.1. Characterize the graphs \(G \in \mathcal{G}(m, n) \) such that
\[
\rho_{ABC}(G) = \sqrt{\Delta(G) + (2m - n + 1)/\Delta(G) - 2}.
\]

As well, the double star \(S_{n-3,1} \) is shown to be the unique tree having second largest ABC spectral radius in \(\mathcal{T}_n \), \(n \geq 4 \). Recall that, Lin et al. [36] ordered trees by their
(adjacent) spectral radius λ_1, and showed that, if T_1 and T_2 are two trees with $n \geq 4$ vertice and $\Delta(T_1) > \Delta(T_2) \geq (2n)/3 - 1$, then $\lambda_1(T_1) > \lambda_1(T_2)$. Naturally, the following question is interesting.

Question 4.2. Let G_1 and G_2 be two graphs in a subset of $\mathcal{G}(m, n)$. Is there some integer $l(m, n)$ (depending on n and/or m), such that if $\Delta(G_1) > \Delta(G_2) \geq l(m, n)$, then $\rho_{ABC}(G_1) > \rho_{ABC}(G_2)$?

This question may be difficult to answer at the present, even for trees, and the following two problems are worth investigation in advance.

Problem 4.3 Order graphs in some classes of connected graphs by their ABC spectral radii.

Problem 4.4. Establish non-trivial lower bounds of $\rho_{ABC}(G)$ for a graph $G \in \mathcal{G}(m, n)$ (in terms of m, n, and $\Delta(G)$).

References

[1] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, *Indian J. Chem.* 37A (1998) 849-855.

[2] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, *Chem. Phys. Lett.* 463 (2008) 422-425.

[3] I. Gutman, J. Tošović, S. Radenković, S. Marković, On atom-bond connectivity index and its chemical applicability, *Indian J. Chem.* 51A (2012) 690-694.

[4] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, *Discr. Appl. Math.* 157 (2009) 2828-2835.

[5] K. C. Das, Atom-bond connectivity index of graphs, *Discr. Appl. Math.* 158 (2010) 1181-1188.

[6] R. Xing, B. Zhou, Z. Du, Further results on atom-bond connectivity index of trees, *Discr. Appl. Math.* 157 (2010) 1536-1545.

[7] R. Xing, B. Zhou, F. Dong, On atom-bond connectivity index of connected graphs, *Discr. Appl. Math.* 159 (2011) 1617-1630.
[8] J. Chen, X. Guo, Extreme atom-bond connectivity index of graphs, *MATCH Commun. Math Comput. Chem.* 65 (2011) 713-722.

[9] K. C. Das, I. Gutman, B. Furtula, On atom-bond connectivity index, *Chem. Phys. Lett.* 511 (2011) 452-454.

[10] J. Chen, J. Liu, X. Guo, Some upper bounds for the atom-bond connectivity index of graphs, *Appl. Math. Lett.* 25 (2012) 1077-1081.

[11] I. Gutman, B. Furtula, M. Ivanović, Notes on trees with minimal atom-bond connectivity index, *MATCH Commun. Math Comput. Chem.* 67 (2012) 467-482.

[12] W. Lin, T. Gao, Q. Chen, X. Lin, On the atom-bond connectivity index of connected graphs with a given degree sequence, *MATCH Commun. Math. Comput. Chem.* 69 (2013) 571-578.

[13] W. Lin, X. Lin, T. Gao, X. Wu, Proving a conjecture of Gutman concerning trees with minimal ABC index, *MATCH Commun. Math. Comput. Chem.* 69 (2013) 549-557.

[14] I. Gutman, B. Furtula, M. B. Ahmadi, S. A. Hosseini, P. Salehi Nowbandegani, M. Zarrinderakht, The ABC index conundrum, *Filomat* 27 (2013) 1075-1083.

[15] D. Dimitrov, On structural properties of trees with minimal atom-bond connectivity index, *Discr. Appl. Math.* 172 (2014) 28-44.

[16] D. Dimitrov, On structural properties of trees with minimal atom-bond connectivity index II: Bounds on B_1- and B_2-branches, *Discr. Appl. Math.* 204 (2016) 90-116.

[17] Z. Du, C. M. da Fonseca, On a family of trees with minimal atom-bond connectivity index, *Discr. Appl. Math.* 202 (2016) 37-49.

[18] D. Dimitrov, Z. Du, C. M. da Fonseca, On structural properties of trees with minimal atom-bond connectivity index III: Trees with pendent paths of length three, *Appl. Math. Comput.* 282 (2016) 276-290.

[19] D. Dimitrov, On structural properties of trees with minimal atom-bond connectivity index IV: Solving a conjecture about the pendent paths of length three, *Appl. Math. Comput.* 313 (2017) 418-430.
[20] D. Dimitrov, Z. Du, C. M. da Fonseca, Some forbidden combinations of branches in minimal-ABC trees, *Discr. Appl. Math.* **236** (2018) 165-182.

[21] K. C. Das, S. Elumalai, I. Gutman, On ABC index of graphs, *MATCH Commun. Math. Comput. Chem.* **78** (2017) 459-468.

[22] D. Dimitrov, Efficient computation of trees with minimal atom-bond connectivity index, *Appl. Math. Comput.* **224** (2013) 663-670.

[23] W. Lin, J. Chen, Q. Chen, T. Gao, X. Lin, B. Cai, Fast computer search for trees with minimal ABC index based on tree degree sequences, *MATCH Commun. Math. Comput. Chem.* **72** (2014) 699-708.

[24] W. Lin, C. Ma, Q. Chen, J. Chen, T. Gao, B. Cai, Parallel search trees with minimal ABC index with MPI + OpenMP, *MATCH Commun. Math. Comput. Chem.* **73** (2015) 337-343.

[25] D. Dimitrov, N. Milosavljević, Efficient computation of trees with minimal atom-bond connectivity index revisited, *MATCH Commun. Math. Comput. Chem.* **79** (2018) 431-450.

[26] W. Lin, J. Chen, Z. Wu, D. Dimitrov, L. Huang, Computer search for large trees with minimal ABC index, *Appl. Math. Comput.* **338** (2018) 221-230.

[27] D. Dimitrov, Z. Du, C. M. da Fonseca, The minimal-ABC trees with B_1-branches, *PLoS ONE* **13**(4): e0195153. https://doi.org/10.1371/journal.pone.0195153.

[28] Z. Du, D. Dimitrov, The minimal-ABC trees with B_1-branches II, *IEEE Access* **6** (2018) 66350-66366.

[29] Y. Zheng, W. Lin, Q. Chen, L. Huang, Z. Wu, Characterizing trees with minimal ABC index with computer search: A short survey, *J. Discret. Appl. Math.* **1** (2018) 1-9.

[30] Z. Du, D. Dimitrov, The minimal-ABC trees with B_2-branches, *Comp. Appl. Math.* **39**, 85 (2020). https://doi.org/10.1007/s40314-020-1119-7.

[31] E. Estrada, The ABC matrix, *J. Math. Chem.* **55** (2017) 1021C1033.
[32] X. Chen, On ABC eigenvalues and ABC energy, *Linear Algebra Appl.* **544** (2018) 141-157.

[33] X. Chen, On extremality of ABC spectral radius of a tree, *Linear Algebra Appl.* **564** (2019) 159-169.

[34] M. Ghorbania, X. Li, M. Hakimi-Nezhaada, J. Wang, Bounds on the ABC spectral radius and ABC energy of graphs, *Linear Algebra Appl.* **598** (2020) 145-164.

[35] X. Li, J. Wang, On the ABC spectra radius of unicyclic graphs, *Linear Algebra Appl.* **596** (2020) 71-81.

[36] W. Lin, X. Guo, Ordering trees by their largest eigenvalues, *Linear Algebra Appl.* **418** (2006) 450-456.