Connes Amenability of $l^1$-Munn Algebras

Ali Ghaffari, Samaneh Javadi and Ebrahim Tamimi

Abstract. In this paper, we study Connes amenability of $l^1$-Munn algebras. We apply this results to semigroup algebras. We show that for a weakly cancellative semigroup $S$ with finite idempotents, amenability and Connes amenability are equivalent.

1 Introduction

In [4], Eslamzadeh introduced $l^1$-Munn algebras. He used these algebras to characterize amenable semigroup algebras. A special case of these algebras was introduced by Munn [18]. $l^1$-Munn algebras has been studied in some texts. In [1], Blackmore showed the $l^1$-Munn algebra of the group algebra $l^1(G)$ is weakly amenable. Eslamzadeh in [5] and [6] investigated the structure of $l^1$-Munn algebras. Duncan and Paterson used the $l^1$-Munn algebras to study of semigroup algebras of completely simple semigroups [3].

The motivation to study of the theory of amenable von Neumann algebras stems from the fact that they are dual. In [12], it is shown that if $\mathcal{A}$ is a von Neumann algebra containing a weak*-dense amenable $C^*$-subalgebra, then for every normal Banach $\mathcal{A}$-bimodule $E$, every weak*-continuous derivation $D : \mathcal{A} \rightarrow E$ is inner. This concept of amenability was called Connes amenability [9]. In [21], Runde extended the notion of Connes-amenability to dual Banach algebras. For a locally compact group $G$, the group algebra $l^1(G)$ and the measure algebra $M(G)$ are two examples of dual Banach algebras. In [23], Runde introduced normal, virtual diagonals for a dual Banach algebra and showed that the existence of a normal virtual diagonal for $M(G)$ is equivalent to it being Connes amenable. Also in [22], it is shown that $G$ is amenable if and only if $M(G)$ is Connes amenable. In particular, $l^1(G)$ is amenable if and only if $l^1(G)$ is Connes amenable.

The investigation of Connes amenability for dual Banach algebras which are not von Neumann algebra is interesting for many authors, see [24], [2] and [7]. Several authors have generalized the earlier concept of amenability introduced by Lau in [13] (see [14], [15], [16] and [17]).

2010 Mathematics Subject Classification. 65F05, 46L05, 11Y50.
Key words and phrases. Amenability, Banach algebras, derivation, $l^1$-Munn algebras, semigroup algebras. Corresponding author: Ali Ghaffari.
Recently the authors have introduced the ϕ-version of Connes amenability of dual Banach algebra $A$ that ϕ is a homomorphism from $A$ onto $\mathbb{C}$ that lies in predual $A_*$. We study the Runde’s theorem for the case of semigroup algebra of a weakly cancellative semigroup [8]. In this paper, we study Connes amenability of $l^1$-Munn algebras. We use the $l^1$-Munn algebras to study of Connes amenability of semigroup algebras of weakly cancellative semigroups. In order to do this, we follow the argument of [4].

2 Connes amenability of $l^1$-Munn algebras

Let $A$ be a dual Banach algebra with predual $A_*$. A dual Banach $A$-bimodule $E$ is called normal Banach $A$-bimodule if for each $x \in E$, the maps $a \mapsto x.a$, $a \mapsto a.x$ are weak*-continuous ($a \in A$). $A$ is called Connes amenable, if for every normal Banach $A$-bimodule $E$, every weak*-continuous derivation $D : A \to E$ is inner.

Let $E$ be a Banach $A$-bimodule. An element $x \in E$ is called weak*-weakly continuous if the module maps $a \mapsto x.a$, $a \mapsto a.x$ are weak*-weak continuous ($a \in A$). The collection of all weak*-weakly continuous elements of $E$ is denoted by $\sigma wc(E)$. It is shown that, $\sigma wc(E)^*$ is normal [24]. Let $\pi : A \hat{\otimes} A \to A$ be the multiplication map. From Corollary 4.6 in [24], $\pi^*$ maps $A_*$ into $\sigma wc((A \hat{\otimes} A)^*)$. Consequently, $\pi^{**}$ drops to a homomorphism $\pi_{\sigma wc} : \sigma wc((A \hat{\otimes} A)^*)^* \to A$. An element $M \in \sigma wc((A \hat{\otimes} A)^*)$ is called a $\sigma wc$-virtual diagonal for $A$, if $M.u = u.M$, $u.\pi_{\sigma wc}(M) = u$ for every $u \in A$. In [24], Runde showed that $A$ is Connes amenable if and only if there is a $\sigma wc$-virtual diagonal for $A$.

Let $A$ be a unital Banach algebra, let $I$ and $J$ be nonempty sets and $P = (p_{ij}) \in M_{I \times J}(A)$ be such that $\|P\|_\infty = \sup\{\|p_{ij}\| : j \in J, i \in I\} \leq 1$. The set $M_{I \times J}(A)$ of all $I \times J$ matrices $a = (a_{ij})$ on $A$ with $l^1$-norm and the product $A \otimes B = APB, (A, B \in M_{I \times J}(A))$ is a Banach algebra that is called $l^1$-Munn algebra on $A$ with sandwich matrix $P$. It is denoted by $\mathcal{LM}(A, P, I, J)$ [4]. Also $\xi_{ij}$ is denoted the element of $M_{I \times J}(\mathbb{C})$ with 1 in $(i, j)$th place and 0 elsewhere. Throughout we use the notations of [4]. We define $\Gamma : M_{I \times J}(A_*) \to M_{I \times J}(A)$ by $(\Gamma(f))_{ij} = a_{\xi_{ij}} \rightarrow (\Gamma(f))_{ij} = (\xi_{ij}, a_{\xi_{ij}})$, then $M_{I \times J}(A)$ is a dual space with predual $M_{I \times J}(A_*)$. It is clear that above multiplication in $\mathcal{LM}(A, P, I, J)$ is separately weak*-continuous and from Proposition 1.2 in [21], $\mathcal{LM}(A, P, I, J)$ is a dual Banach algebra.

**Theorem 2.1.** Let $A$ be a unital dual Banach algebra. The following are equivalent:

(i) $\mathcal{LM}(A, P, I, J)$ is Connes amenable;

(ii) $A$ is Connes amenable, $I$ and $J$ are finite and $P$ is invertible.
Proof. (i)⇒(ii) Since $\mathcal{LM}(A, P, I, J)$ is Connes amenable dual Banach algebra, then from Proposition 4.1 in [21], it has a bounded approximate identity. By Lemma 3.7 and Lemma 3.5 in [4], I and J are finite, P is invertible and $\mathcal{LM}(A, P, I, J)$ is topologically algebra isomorphic to $\mathcal{LM}(A, I_m, I, J)$ where $I_m$ is the identity matrix with dimension $m$ and $|I| = |J| = m$. It is known that $\mathcal{LM}(A, I_m, I, J)$ is isometrically algebra isomorphic to $\mathcal{M}_m \otimes A$ where $\mathcal{M}_m$ is the algebra of $m \times m$ complex matrices [19]. Using the idea of Theorem 4.1 in [4] and Theorem 4.8 in [24], we obtain the desired proof.

By Theorem 4.8 in [24], there exists $M \in \sigma wc(\mathcal{M}_m \otimes A \otimes (\mathcal{M}_m \otimes A))^*$ such that

$$M.u = u.M \quad u.\pi_{\sigma wc}(M) = u, \quad u \in (\mathcal{M}_m \otimes A).$$

Now as [24], we consider those elements of $\sigma wc(\mathcal{M}_m \otimes A \otimes (\mathcal{M}_m \otimes A))^*$ that lies in the canonical image of $(\mathcal{M}_m \otimes A \otimes (\mathcal{M}_m \otimes A)$ and we write $M = \Sigma_{i,j=1}^{m}(\xi_{ij} \otimes a_{ij}) \otimes \Sigma_{r,l=1}^{m}(\xi_{rl} \otimes b_{rl})$.

Let $E$ be a normal Banach $A$-bimodule with predual $E_*$ and $D : A \rightarrow E$ be a derivation that is weak$^*$-continuous. By a similar argument in Lemma 3.3 in [8], we may assume that $E$ is a normal dual Banach $A$-bimodule such that its predual is essential. Let

$$\psi : (\mathcal{M}_m \otimes A) \otimes (\mathcal{M}_m \otimes A) \rightarrow (\mathcal{M}_m \otimes \mathcal{M}_m) \otimes (A \otimes A)$$

$$\psi((c \otimes x) \otimes (d \otimes y)) = (c \otimes d) \otimes (x \otimes y) \quad (x, y \in A, c, d \in \mathcal{M}_m)$$

be the onto linear isometry. Let $c \in A$ and $c = \Sigma_{s,t=1}^{m} \xi_{st} \otimes c_{st}$ that $c_{11} = c$, $c_{st} = 0$ if $s \neq 1$ or $t \neq 1$. We have

$$c = c.\pi_{\sigma wc}(M) = \Sigma_{s,t=1}^{m} \xi_{st} \otimes c_{st}.\Sigma_{i,j=1}^{m} (\xi_{it} \otimes a_{ij} b_{ji}) = \Sigma_{i,j,s,t=1}^{m} \xi_{si} \otimes (c_{si} a_{ij} b_{jl}).$$

Then

$$\Sigma_{i,j,s,t=1}^{m} \xi_{si} \otimes (c_{si} a_{ij} b_{jl}) = 0. \quad (2.1)$$

Also

$$c.M = \Sigma_{s,t=1}^{m} (\xi_{st} \otimes c_{st}).(\Sigma_{i,j=1}^{m} (\xi_{ij} \otimes a_{ij}) \otimes \Sigma_{r,l=1}^{m} (\xi_{rl} \otimes b_{rl})).$$

$$= (\Sigma_{i,j=1}^{m} (\xi_{ij} \otimes a_{ij}) \otimes \Sigma_{r,l=1}^{m} (\xi_{rl} \otimes b_{rl})).\Sigma_{s,t=1}^{m} (\xi_{st} \otimes c_{st}) = M.c.$$

Therefore

$$\Sigma_{s,t,r,l,j=1}^{m} (\xi_{sj} \otimes c_{st} a_{ij}) \otimes (\xi_{rl} \otimes b_{rl}) = \Sigma_{i,j,r,l,t=1}^{m} (\xi_{ij} \otimes a_{ij}) \otimes (\xi_{rl} \otimes b_{rl} c_{lt}).$$
Apply \( \psi \), we have

\[
\Sigma_{i,t,r,l,j=1}^m (\xi_{ij} \otimes \xi_{rt}) \otimes (c_{ij} a_{ij} \otimes b_{rl}) = \Sigma_{i,t,r,l,t=1}^m (\xi_{ij} \otimes \xi_{rt}) \otimes (a_{ij} \otimes b_{rl}c_{lt}).
\]

Suppose that \( c = \Sigma_{s,t=1}^m \xi_{st} \otimes c_{st} \) that \( c_{11} = c, c_{st} = 0 \) if \( s \neq 1 \) or \( t \neq 1 \). Then

\[
\Sigma_{r,j=1}^m (\xi_{1j} \otimes \xi_{r1}) \otimes (c_{11} a_{1j} \otimes b_{r1}) = \Sigma_{r,j=1}^m (\xi_{1j} \otimes \xi_{r1}) \otimes (a_{1j} \otimes b_{r1} c_{11}).
\]

Define

\[
\theta : ((\mathcal{M}_m \hat{\otimes} \mathcal{M}_m) \hat{\otimes} (\mathcal{A} \hat{\otimes} \mathcal{A})) \rightarrow E
\]

\[
\theta(\Sigma_{i,j,r,l=1}^m (\xi_{ij} \otimes \xi_{rl}) \otimes (a_{ij} \otimes b_{rl})) = \Sigma_{i,j,r,l=1}^m a_{ij} D(b_{rl}).
\]

It is easy to see that \( \psi \) and \( \theta \) are weak*-continuous. Now consider

\[
\lambda = \theta O \psi : (\mathcal{M}_m \hat{\otimes} \mathcal{A}) \hat{\otimes} (\mathcal{M}_m \hat{\otimes} \mathcal{A}) \rightarrow E.
\]

From Lemma 4.9 in [24] \( \lambda^* \) maps \( E_* \) into \( \sigma wc(((\mathcal{M}_m \hat{\otimes} \mathcal{A}) \hat{\otimes} (\mathcal{M}_m \hat{\otimes} \mathcal{A}))^*) \) and so \( (\lambda^*|_{E_*})^* \) maps \( \sigma wc(((\mathcal{M}_m \hat{\otimes} \mathcal{A}) \hat{\otimes} (\mathcal{M}_m \hat{\otimes} \mathcal{A}))^*)^* \) into \( E \). We apply \( \theta \) on (2.2) and we get

\[
\Sigma_{r,j=1}^m c_{11} a_{1j} D(b_{r1}) = \Sigma_{r,j=1}^m a_{1j} D(b_{r1} c_{11}).
\]

Put \( M_1 = \Sigma_{r,j=1}^m (\xi_{1j} \otimes a_{1j}) \otimes (\xi_{r1} \otimes b_{r1}) \) and \( M' = \lambda(M_1) \). We obtain from (2.1) and (2.3),

\[
\langle x, c.M' \rangle = \langle x, \Sigma_{r,j=1}^m c_{11} a_{1j} D(b_{r1}) \rangle = \langle x, \Sigma_{r,j=1}^m a_{1j} D(b_{r1} c_{11}) \rangle = \langle x, \Sigma_{r,j=1}^m a_{1j} D(b_{r1}).c_{11} + \Sigma_{r,j=1}^m a_{1j} b_{r1} D(c_{11}) \rangle = \langle x, M'.c \rangle + \langle x, D(c) \rangle
\]

for all \( x \in E_\ast \). Consequently \( D(c) = M'.c - c.M' \).

(2) \Rightarrow (1) Let \( E \) be a normal Banach \( \mathcal{M}_n \hat{\otimes} \mathcal{A} \)-bimodule and \( D : \mathcal{M}_n \hat{\otimes} \mathcal{A} \rightarrow E \) be a derivation that is weak*-continuous. Let \( e_A \) denote the identity of \( \mathcal{A} \). We define

\[
\xi_{ij} \bullet x = (\xi_{ij} \otimes e_A).x, \ x \bullet \xi_{ij} = x. (\xi_{ij} \otimes e_A) \ (i, j \in 1, \ldots, m).
\]

So \( E \) is a normal Banach \( \mathcal{M}_n \)-bimodule.

Put \( D_{\mathcal{M}_n} : \mathcal{M}_n \rightarrow E, D_{\mathcal{M}_n}(\xi_{ij}) = D(\xi_{ij} \otimes e_A), \) then

\[
D_{\mathcal{M}_n}(\xi_{ij} \xi_{kl}) = D(\xi_{ij} \xi_{kl} \otimes e_A) = D(\xi_{ij} \otimes e_A). (\xi_{kl} \otimes e_A) + (\xi_{ij} \otimes e_A). D(\xi_{kl} \otimes e_A) = D(\xi_{ij} \otimes e_A) \bullet \xi_{kl} + \xi_{ij} \bullet D(\xi_{kl} \otimes e_A)
\]
\[ D_{\mathcal{M}_n} (\xi_{ij}) \cdot \xi_{kl} + \xi_{ij} \cdot D_{\mathcal{M}_n} (\xi_{kl}). \]

Hence, there exists \( u \in E \) such that \( D_{\mathcal{M}_n} = ad_u \). Therefore, \( \tilde{D} = D(\xi_{ij} \otimes e_A) - ad_u \) vanishes on \( \mathcal{M}_n \otimes e_A \).

Let \( I \) be the identity matrix. Then \( E \) is an \( \mathcal{A} \)-bimodule for the maps defined by

\[ a \circ x = (I \otimes a). x, \quad x \circ a = x. (I \otimes a), \quad (a \in \mathcal{A}, \quad x \in E). \]

Let us now define \( D_A(a) = \tilde{D}(I \otimes a) (a \in \mathcal{A}) \). Define \( K = \{ e \in E_\ast : \langle \tilde{D}(I \otimes a), e \rangle = 0 \} \). Note that \( (\frac{E_\ast}{K})^\ast = \tilde{D}(I \otimes a)^{w_k} \). Further \( \tilde{D}(I \otimes a)^{w_k} \) is a commutative normal Banach \( \mathcal{A} \)-bimodule.

Then, there is \( \nu \in \tilde{D}(I \otimes a)^{w_k} \) such that \( \tilde{D}(I \otimes a) = (I \otimes a). \nu - \nu. (I \otimes a) \). This complete the proof. \( \square \)

3 Semigroup algebra

In this section, we apply these results to semigroup algebra \( l^1(S) \). For a semigroup \( S \) and \( s \in S \), we define maps \( L_s, R_s : S \to S \) by \( L_s(t) = st, \quad R_s(t) = ts, \quad t \in S \). If for each \( s \in S, \) \( R_s \) and \( L_s \) are finite-to-one maps, then we say that \( S \) is weakly cancellative. Before turning our results, we note that if \( S \) is a weakly cancellative semigroup, then \( l^1(S) \) is a dual Banach algebra with predual \( c_0(S) \) [2]. It is known that \( (l^1(S) \overline{\otimes} l^1(S))' = B(l^1(S), l^\infty(S)) = l^1(S \times S)' = l^\infty(S \times S), \) where \( T \in B(l^1(S), l^\infty(S)) \) is identified with \( T \in l^\infty(S \times S), \) where \( T(s, t) = \langle T(\delta_s), \delta_t \rangle. \)

By the Krein-Smulian Theorem, \( T \) is weakly compact if and only if the set \( \{ T(\delta_s) : s \in S \} \) is relatively weakly compact.

A semigroup \( S \) is simple if the only ideal in \( S \) is \( S \). A semigroup \( S \) with zero is called 0-simple if \( \{ 0 \} \) and \( S \) are the only ideals and \( S \neq 0 \). An element \( p \in S \) is an idempotent if \( p^2 = p \), the set of idempotents of \( S \) is denoted by \( E(S) \). For \( p, q \in E(S) \), set \( p \leq q \) if \( pq = qp = p \). An element \( e \in E(S) \) is called primitive if it is nonzero and is minimal in the set of nonzero idempotents. \( S \) is called completely simple if it is simple and contains a primitive idempotent.

Let \( G \) be a group, \( I \) and \( J \) be arbitrary nonempty sets and \( G^0 = G \cup \{ 0 \} \). Let \( P_G = (a_{ij}) \in M_{J \times I}(G) \). For \( x \in G \), let \( (x)_{ij} \) be the element of \( M_{I \times J}(G^0) \) with \( x \) in \( (i, j) \)th place and \( 0 \) elsewhere. The set of all \( (x)_{ij} \) matrices is denoted by \( S \). Multiplication in \( S \) is given by the formula

\[ (x)_{ij}(y)_{kl} = (xa_{jk}y)_{il} \quad (x, y \in G; i, k \in I, j, l \in J). \]

We write \( S = \mathcal{M}(G, P, I, J) \). \( S \) is called Rees matrix semigroup with sandwich matrix \( P \). It is known that \( S \) is a completely simple semigroup and each completely simple semigroup is isomorphic to one constructed in this manner [10]. Similarly, we have the semigroup \( \mathcal{M}^0(G, P, I, J) \) where the elements of this semigroup are those of \( \mathcal{M}(G, P, I, J) \), together with the element 0 so that 0 is a matrix with 0 everywhere and \( P_G = (a_{ij}) \in M_{J \times I}(G^0) \).
Proposition 3.1. Let $S$ be a weakly cancellative semigroup and let $l^1(S)$ be unital with unit $e_{l^1(S)}$. If $l^1(S)$ is Connes amenable, then $E(S)$ is finite.

Proof. For each $s \in S$, we put $[ss^{-1}] = \{x \in S : xs = s\}$ and $[s^{-1}s] = \{x \in S : sx = s\}$ and $\chi(s) = sS \cap [ss^{-1}]$. We follow [3] and consider the equivalence relation $R$ on $E(S)$ by $sRt$ if $s \in \chi(t)$. By this relation, $E(S)$ is partitioned into the sets $\chi(s)$. Suppose via contradiction, there exists an infinite sequence of sets $\chi(k_n), \{k_n\}_{n \in \mathbb{N}} \subset S$.

Let $M \in (l^1(S) \hat{\otimes} l^1(S))^\ast = l^\infty(S \times S)'$ be a $\sigma_{wc}$-virtual diagonal for $l^1(S)$ which satisfies Theorem 5.9 in [2]. Therefore $\langle M, f(hk, g) - f(h, kg) \rangle = 0$ for each $k \in S$ and $f \in l^\infty(S \times S)$. Then $\langle M, f(h', g) \rangle = 0, (h' = hk, g \notin kS)$. In particular $\langle M, f(h', g) \rangle = 0(h' = hk, g \notin kS, ghk = k)$.

Now consider the multiplication map $\pi : l^1(S) \hat{\otimes} l^1(S) \to l^1(S)$ and $f' \in l^\infty(S)$ such that $\pi'f' = f$. We have $\langle \pi'(f'), \delta_g \otimes \delta_h \rangle = \langle f', \delta_{gh} \rangle$. Also

$$
\langle \delta_k, M, \pi'(f') \rangle = \langle \delta_k, (e_{l^1(S)} \otimes e_{l^1(S)}), \pi'(f') \rangle = \langle (\delta_k, e_{l^1(S)} \otimes e_{l^1(S)}), \pi'(f') \rangle.
$$

Consequently

$$
\langle M, f(hk, g) \rangle = \langle M, \pi'(f', \delta_k) \rangle = \langle M, \langle f', \delta_{ghk} \rangle(g, h) \rangle = \langle f'\delta_k, e_A \rangle(g, h) (ghk = k).
$$

This implies that $\langle M, f(h', g) \rangle = \langle f'\delta_k, e_A \rangle(g \in kS, gh'k = k)$. Write $f(h, g) = \langle T(\delta_h), \delta_g \rangle$ where $T \in B(l^1(S), l^\infty(S))$. Since $T$ is weakly compact. By Theorem 5.9 in [2], $\{T(\delta_i) : i \in I\}$ is relatively weakly compact and so totally bounded [20]. Let

$$
Z(k) = \{(h, g) \in S \times S : g \in kS, ghk = k\}.
$$

Since $S$ is weakly cancellative, then each $\chi(k_n)$ is finite and also $Z(k_n)$ is contained in pairwise disjoint sets $\chi(k_n)$. Choose distinct elements $k_1, k_2, \ldots, k_n \in S$ with

$$
L = \min|\langle f', \delta_{k_i} \rangle|, \quad nL \geq ||M|| \Sigma_{i=1}^n ||\sup\{||T(\delta_h), \delta_g||\}.
$$

Therefore

$$
nL \leq \Sigma_{i=1}^n |\langle f', \delta_{k_i} \rangle| = \Sigma_{i=1}^n |\langle M, f(h, g) \rangle| \leq ||M|| \Sigma_{i=1}^n ||\sup\{||T(\delta_h), \delta_g||\}.
$$

This is a contradiction.
Example 1. Let $S$ be the natural numbers $\mathbb{N}$, with the product

$$(m, n) \to m \vee n = \max\{m, n\}.$$  

$S$ is a semigroup with identity 1 and weakly cancellative. Clearly $E(S) = S$. Then $l^1(S)$ is a dual Banach algebra with predual $c_0(S)$ and $l^1(S)$ is not Connes amenable as $E(S)$ is infinite.

It is easy to see that each weakly cancellative semigroup is simple. In fact, suppose that $I$ be a left ideal of $S$ containing a nonzero element $i$, then

$$S = Si \subseteq SI \subseteq I$$

and so $I = S$. Consequently, if $S$ is a weakly cancellative semigroup with $E(S)$ finite, then $S$ is completely simple semigroup and Rees matrix semigroup of the form $S = \mathcal{M}(G, P, I, J)$.

**Theorem 3.1.** Let $S$ be a weakly cancellative semigroup and let $l^1(S)$ be unital with unit $e_{l^1(S)}$. If $l^1(S)$ is Connes amenable, then $S$ is a Rees matrix semigroup of the form $S = \mathcal{M}(G, P, I, J)$, $\mathcal{L}M(l^1(G), P, I, J)$ has an identity and $l^1(G)$ is Connes amenable.

**Proof.** By Proposition 3.1, $S$ is a simple semigroup with $E(S)$ finite, then $S$ is a completely simple semigroup. Therefore, $S$ is a Rees matrix semigroup of the form $S = \mathcal{M}(G, P, I, J)$. By Proposition 5.6 in [4], $l^1(S)$ is isometrically algebra isomorphic to $\mathcal{L}M(l^1(G), P, I, J)$. Since $l^1(S)$ is Connes amenable, then $\mathcal{L}M(l^1(G), P, I, J)$ is Connes amenable and it has an identity. Also by Theorem 2.1, $l^1(G)$ is Connes amenable. \qed

**Theorem 3.2.** Let $S$ be a weakly cancellative semigroup with $E(S)$ finite and let $l^1(S)$ be unital with unit $e_{l^1(S)}$. Then $S$ is a Rees matrix semigroup of the form $S = \mathcal{M}(G, P, I, J)$. With above notation, the following are equivalent:

1. $l^1(S)$ is Connes amenable;
2. $\mathcal{L}M(l^1(G), P, I, J)$ has an identity and $l^1(G)$ is Connes amenable;
3. $l^1(S)$ is amenable.

**Proof.** (i) $\Rightarrow$ (ii) is Theorem 3.1.  
(ii) $\Rightarrow$ (i) $\mathcal{L}M(l^1(G), P, I, J)$ has an identity, then $I$ and $J$ are finite and $P$ is invertible [4]. Since $l^1(G)$ is Connes amenable, then from Theorem 2.1, $\mathcal{L}M(l^1(G), P, I, J)$ is Connes amenable. By Proposition 5.6 in [4], $l^1(S)$ is isometrically algebra isomorphic to $\mathcal{L}M(l^1(G), P, I, J)$ and $l^1(S)$ is Connes amenable.  
(ii) $\Leftrightarrow$ (iii) By Theorem 5.3 in [22], $l^1(G)$ is amenable if and only if $l^1(G)$ is Connes amenable. Then, this is Theorem 5.9 in [4]. \qed
Theorem 3.3. Let $S = \mathcal{M}(G, P, I, J)$ be a weakly cancellative semigroup. Let $l^1(S)$ be unital with unit $e_{l^1(S)}$. With above notation, the following are equivalent:

(i) $l^1(S)$ is Connes amenable;

(ii) $l^1(S)$ is amenable.

Proof. This follows in the same manner as the proof of Theorem 3.2. \qed

Example 2. Let $G$ be an amenable group. Let $J$ be finite of order $n$. Let $S = \mathcal{M}(G, P, 1, J)$ where $P$ is invertible. Let $(a)_{1j}$ and $(b)_{1l}$ be two non-zero elements of $S = \mathcal{M}(G, P, 1, J)$. It is easy to see that

$$(a)_{1j}(p_{j1}^{-1}a^{-1}b)_{1l} = (b)_{1l}.$$ 

Then $S$ is a weakly cancellative semigroup. By [11], $l^1(G)$ is amenable. By Proposition 5.6 and Theorem 4.1 in [4], $l^1(S)$ is amenable. Also $l^1(G)$ is Connes amenable and by Theorem 2.1, $l^1(S)$ is Connes amenable.

Acknowledgments

I would like to thank the referee for his/her careful reading of our paper and many valuable suggestions.

References

[1] T. D. Blackmore, Weak amenability of discrete semigroup algebras, Semigroup Forum, 55 (1997), 196–205.

[2] M. Daws, Connes amenability of bidual and weighted semigroup algebras, Math. Scand., 99 (2006), 217-246.

[3] J. Duncan and A. L. T. Paterson, Amenability for discrete convolution semigroup algebras, Math. Scand., 66 (1990), 141–146.

[4] G. H. Esslamzadeh, Banach algebra structure and amenability of a class of matrix algebras with applications, J. Funct. Anal., 161 (1999), 364–383.

[5] G. H. Esslamzadeh, Representation theory and positive functionals of involutive $l^1$-Munn algebras, Semigroup Forum, 69 (2004), 51–62.

[6] G. H. Esslamzadeh, Duals and topological center of a class of matrix algebras with applications, Proc. Amer. Math. Soc., 128 (2000), 3493–3503.
[7] G. H. Esslamzadeh, B. Shojaee and A. Mahmoodi, Approximate Connes-amenability of dual Banach algebras, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 193–213.

[8] A. Ghaffari and S. Javadi, \( \varphi \)-Connes amenability of dual Banach algebras, Bull. Iran. Math. Soc., 43 (2017), 25–39.

[9] A. Ya. Helemskii, Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule, Sb. Math., 68 (1991), 555–566.

[10] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, San Diego, 1976.

[11] B. E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc., 127 (1972).

[12] B. E. Johnson, R. V. Kadison and J. Ringrose, Cohomology of operator algebras III, Bull. Soc. Math. France, 100 (1972), 73–79.

[13] A. T. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math., 118 (1983), 161–175.

[14] S. M. Maepa and O. T. Mewomo, On character amenability of semigroup algebras, Quaest. Math., 39 (2016), no. 3, 307–318.

[15] O. T. Mewomo and N. B. Okela, On approximate character amenability of Banach algebra, J. Nigerian Math. Soc., 32 (2013), 303–315.

[16] O. T. Mewomo and O. J. Ogunsola, On n-weak amenability of semigroup algebras, J. Nigerian Math. Soc., 32 (2013), 298–301.

[17] O. T. Mewomo, Various notions of amenability in Banach algebras, Expo. Math., 29 (2011), no. 3, 283–299.

[18] W. D. Munn, On semigroup algebras, Math. Proc. Cambridge Philos. Soc., 51 (1955), 1–15.

[19] V. I. Paulsen, Completely Bounded Maps and Dilations, Pitman Res. Notes Math. Ser., 146 Longman, Harlow/New York, 1986.

[20] W. Rudin, Functional Analysis, McGraw Hill, New York, 1991.

[21] V. Runde, Amenability for dual Banach algebras, Studia Math., 148 (2001), 47–66.

[22] V. Runde, Connes amenability and normal virtual diagonals for measure algebras I, J. London Math. Soc., 67 (2003), 643–656.

[23] V. Runde, Connes amenability and normal virtual diagonals for measure algebras II, Bull. Austral. Math. Soc., 68 (2003), 325–328.
[24] V. Runde, Dual Banach algebras: Connes amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math. Scand., 95 (2004), 124–144.

Ali Ghaffari  Department of Mathematics, University of Semnan, P. O. Box 35195-363, Semnan, Iran.

E-mail: aghaffari@semnan.ac.ir

Samaneh Javadi  Faculty of Engineering- East Guilan, University of Guilan, P. O. Box 44891-63157, Rudsar, Iran.

E-mail: s.javadi62@gmail.com

Ebrahim Tamimi  Department of Mathematics, University of Semnan, P. O. Box 35195-363, Semnan, Iran.

E-mail: tamimi-ebrahim@semnan.ac.ir