Cardioprotective Effects of Glucose-Insulin-Potassium Infusion in Patients Undergoing Cardiac Surgery: A Systematic Review and Meta-Analysis

Andres Hagerman, MD,* Raoul Schorer, MD,* Alessandro Putzu, MD,* Gleicy Keli-Barcelos, MD, PhD,* and Marc Licker, MD†

The infusion of glucose-insulin-potassium (GIK) has yielded conflicting results in terms of cardioprotective effects. We conducted a meta-analysis to examine the impact of perioperative GIK infusion in early outcome after cardiac surgery. Randomized controlled trials (RCTs) were eligible if they examined the efficacy of GIK infusion in adults undergoing cardiac surgery. The main study endpoint was postoperative myocardial infarction (MI) and secondary outcomes were hemodynamics, any complications and hospital resources utilization. Subgroup analyses explored the impact of the type of surgery, GIK composition and timing of administration. Odds ratio (OR) or mean difference (MD) with 95% confidence interval (CI) were calculated with a random-effects model. Fifty-three studies (n=6129) met the inclusion criteria. Perioperative GIK infusion was effective in reducing MI (k=32 OR 0.66[0.48, 0.89] P=0.0069), acute kidney injury (k=7 OR 0.57[0.4, 0.82] P=0.0023) and hospital length of stay (k=19 MD -0.89[-1.63, -0.16] days P=0.0175). Postoperatively, the GIK-treated group presented higher cardiac index (k=14 MD 0.43[0.29, 0.57] L/min P<0.0001) and lesser hyperglycemia (k=20 MD -30[-47, -13] mg/dL P=0.0005) than in the usual care group. The GIK-associated protection for MI was effective when insulin infusion rate exceeded 2 mU/kg/min and after coronary artery bypass surgery. Certainty of evidence was low given imprecision of the effect estimate, heterogeneity in outcome definition and risk of bias. Perioperative GIK infusion is associated with improved early outcome and reduced hospital resource utilization after cardiac surgery. Supporting evidence is heterogenous and further research is needed to standardize the optimal timing and composition of GIK solutions.

Semin Thoracic Surg ■■■■■■■■ © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Keywords: Glucose, Insulin, Potassium, Cardiac surgery, Myocardial injury, Mortality, Complications, CABG, Valve

Abbreviations: 95%CI, ninety-five percent confidence interval; AF, atrial fibrillation; AKI, acute kidney injury; AXC, aortic cross-clamping; CABG, coronary artery bypass grafting; CPB, cardiopulmonary bypass; GIK, glucose-insulin-potassium; ICU, intensive care unit; IQR, interquartile range 25%-75%; k, model sample count; MD, mean difference; MI, myocardial infarction (postoperative); n, count (events or participants); OR, odds ratio; RCT, randomized controlled trial

*Dept. of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
†University of Geneva, Faculty of Medicine, Geneva, Switzerland

Funding: This study was not supported by any funding.

Disclosures: The authors have no direct or indirect conflict of interest to report.

Clinical Registration Number: International Prospective Register of Systematic Reviews (PROSPERO) N°CRD42019117728

Address reprint requests to Marc Licker, Dept. of Acute Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland. E-mail: marc-joseph.licker@hcuge.ch

1043-0679/$ – see front matter © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
https://doi.org/10.1053/j.semtcvs.2022.11.002
INTRODUCTION

Each year, cardiac surgery is performed worldwide in ~1.5 million individuals with ischemic, congenital and valvular disorders.1 Over time, outcomes after cardiac surgery have improved along with better preoperative patient preparation, progress in surgical and anesthetic management as well as cardioprotective protocols.2-5 Perioperative ischemia-reperfusion injuries and the release of free radicals and inflammatory mediators are incriminated in causing ventricular dysfunction that either resolves spontaneously or requires cardiovascular drug support and occasionally circulatory assistance.6-8 Importantly, cardiac complications such as postoperative myocardial infarction (MI) and heart failure are known predictors of increasing medical costs, poor survival and decreased quality of life.9,10 Among various cardioprotective protocols, the infusion of glucose-insulin-potassium (GIK) has been studied extensively. In animal models, GIK has been shown effective in reducing the extent of MI and the occurrence of ventricular arrhythmias while preserving ventricular function.11 These cardioprotective effects are mediated by pleiotropic glucose-dependent and -independent mechanisms of insulin involving preferential high-energy substrate production from glucose metabolism as well as upregulation of the reperfusion injury salvage kinase pathway.12 Since its introduction in 1962,13 GIK has failed to show conclusive clinical cardioprotective effects following percutaneous coronary intervention whereas favorable results have been reported after cardiac surgery.12,14 In previous systematic reviews,15-18 the interactions between GIK therapy and confounding factors (e.g., diabetes mellitus, type of surgery, glycaemia or timing and composition of GIK infusion) have not been examined. Hence, our meta-analysis addresses these issues and provides an up-to-date review of the impact of GIK on early postoperative outcome.

SEARCH STRATEGY

This review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and the Cochrane methodology as well as in agreement with a preregistered protocol (PROSPERO CRD 42022120746).19,20 Ethical review board approval was waived due to the absence of new data collection. Minor deviations from the protocol are reported in a Supplemental file (S1). Three investigators (R.S., A.H. and A.P.) independently searched MEDLINE, EMBASE and the Cochrane Central Register of Clinical Trials from inception to September 19th, 2022. The search strategy aimed to select RCTs with the following terms: glucose-insulin-potassium, GIK, cardiac surgery, cardiopulmonary bypass, CPB, coronary artery bypass surgery, CABG, valve (S2). Additional articles were identified by manual review of the references of included studies.

STUDY SELECTION

Search results were examined at the abstract level and the full-text version was retrieved if relevant. Eligibility criteria were defined following the PICOS approach: (P) adult patients scheduled for elective or emergent cardiac surgery with or without cardio-pulmonary bypass (CPB); (I) use of GIK in the perioperative period; (C) usual care or placebo; (O) MI and (S) RCT. Exclusion criteria were inclusion of pediatric cases, studies with overlapping population or irrelevant study endpoints. Four authors (A.H, R.S, A.P., and G.K-B.) independently made the final assessment for inclusion into the analysis and disagreements were resolved through consensus or by third party adjudication (M.L.). If documents did not contain MI data or were unavailable as full-texts, the corresponding authors were contacted for further information. No language restriction was imposed.

DATA ABSTRACTION

The relevant information was extracted from each selected study by a single author (R.S.) and checked by 2 others (A.P. and G.K-B.). Disagreements were resolved by consensus or by third party adjudication (M.L.). Sources of clinical heterogeneity were also extracted according to the same process (ie, study design, clinical setting, inclusion/exclusion criteria. Study characteristics were collected regarding demographic data, the type of surgery, the duration of surgery as well as GIK composition (dose of insulin and glucose) and timing of administration (before, during or after CPB). The primary outcome was postoperative MI and secondary outcomes were in-hospital mortality, the postoperative occurrence of stroke, acute kidney injury (AKI), atrial fibrillation (AF), ventricular fibrillation (VF), any infections, postoperative glycaemia, cardiac index, the need for pharmacological or mechanical circulatory support as well as the duration of mechanical ventilation, intensive care unit (ICU) and hospital stay.

QUALITY ASSESSMENT

Two authors (R.S. and A.P.) independently assessed the internal validity of included trials according to the Cochrane Collaboration methodology (risk of bias 1 tool), namely: risk of bias associated to the random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, completeness of outcome data, selective reporting and other biases.20 Studies were rated as low, unclear, or high risk of bias. Included trials were rated as low risk of bias when 5 or more evaluation domains were judged as low risk of bias.21 Studies that did not detail allocation concealment, blinding of participants and personnel or random sequence generation were graded as unclear.

The certainty of evidence was assessed using GRADE: the grading of recommendations assessment, development, and evaluation framework.22

STATISTICAL ANALYSIS

Odds ratio (OR) or mean difference (MD) with 95% confidence intervals (95%CI) were reported. Random effects models

MATERIAL AND METHODS

Search Strategy

This review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and the Cochrane methodology as well as in agreement with a preregistered protocol (PROSPERO CRD 42022120746).19,20 Ethical review board approval was waived due to the absence of new data collection. Minor deviations from the protocol are reported in a Supplemental file (S1). Three investigators (R.S., A.H. and A.P.) independently searched MEDLINE, EMBASE and the Cochrane Central Register of Clinical Trials from inception to September 19th, 2022. The search strategy aimed to select RCTs with the following terms: glucose-insulin-potassium, GIK, cardiac surgery, cardiopulmonary bypass, CPB, coronary artery bypass surgery, CABG, valve (S2). Additional articles were identified by manual review of the references of included studies.
were used in all cases. Between-study variance for binary analyses was assessed using the Paule-Mandel estimator since the DerSimonian-Laird estimator is known to be unreliable with sparse data.23 Continuous models used the DerSimonian-Laird estimator. Prediction intervals were computed for all models. Heterogeneity was assessed using Cochrane’s Q and the I² value. All models used a continuity correction of 0.5 at each step, except for Peto models. The analysis was performed using R 4.0.4 with package “meta”.24,25 Analysis of the primary outcome was stratified by GIK timing, composition, insulin infusion rate (cutoff 2 mU/I/kg/min),11,26,27 presence of diabetes mellitus and type of surgical procedure (coronary artery bypass, valve or combined surgery). Sensitivity assessments were performed using both fixed and random effects models.

Figure 1. PRISMA workflow chart.
for continuous meta-analyses, while Peto models were used for binary meta-analyses. Small-study effect for the primary outcome was investigated by the trim-and-fill method.25

RESULTS

After removing 3659 duplicates and adding 7 studies through manual search 2,647 citations were identified, of which 2,576 abstracts and 11 full-text articles were considered ineligible (S3).26 A total of 53 RCTs involving 6129 participants were included in the meta-analysis (Figure 1). Additional information was obtained from corresponding authors regarding 8 RCTs.30-40

As reported in Table 1, studies were published between 1977 and 2021, were conducted in 21 countries and included CABG surgery: (39 RCTs),41-81 valve surgery (4 RCTs)82-85 and combined procedures (10 RCTs).39-42,86-91 The median of the mean times of CPB and aortic cross-clamping (AXC) were respectively 99 min (ranging from 47 to 167 min) and 59 min (ranging from 38 to 101 minutes). Patients with diabetes mellitus were enrolled in 31 RCTs. At the evaluation of risk of bias, 8 studies were rated at low risk,31,42,57,58,68,86-89 5 with unclear risk45,62,66,69,70 and 40 trials at high risk of bias.30,40,43,44,46-56,59,61,63-65,67,71-87,91 The risks of bias assessment are summarized in Figure 2 and detailed in a supplementary file (S4).

The proportion of participants with a MI was 5.3% and 8.2% in the GIK and control groups, respectively. As illustrated in Figure 3, the GIK infusion was associated with a decrease in MI (k=32 OR 0.66[0.48, 0.89] \(P=0.0069\) \(I^2=0\%\)).41,42,45,47,49,51,54-58,61,63,65,67-71,73-81 The funnel plot for the primary analysis did not reveal a significant publication bias. A sensitivity cumulative meta-analysis with Peto OR yielded unchanged results (k=32 OR 0.58[0.42, 0.79] \(P=0.0007\) \(I^2=11\%\)). Adjustment for small-study effect left results unchanged (k=32 OR 0.66[0.48, 0.89] \(P=0.0069\) \(I^2=0\%\)) and subgroup analysis of low-risk of bias RCTs also supported the efficacy of GIK treatment (k=7 OR 0.67[0.45, 0.98] \(P=0.0396\) \(I^2=14\%\)).41,42,57,58,68,80,90

A sub-analysis by stratifying all RCTs into 2 time periods ascertained the effectiveness of GIK to reduce the incidence of MI in the early period (from 1977 to 2005; k=19 OR 0.45 [0.22, 0.86]) and in the last period (from 2006 to 2021; k=13 OR 0.67 [0.49, 0.91]).

The GIK infusion was associated with fewer MIs after CABG (k=24 OR 0.47[0.32, 0.68]),5,47,49,51,54-58,61,63,65,67-71,73-81 with no difference between on-pump41,42,47,49,51,54-56,58,61,63,65,67-71,73-81 and off-pump subgroups (Q=0.23 \(P=0.6343\)).73,75 After combined surgery, there was a trend to support the cardioprotective efficacy of GIK (k=5 OR 0.84[0.48, 1.17]),31,42,88,80,91 whereas a single RCT including valve surgery, - although with favorable results-, did not allow further analysis. Importantly, stratification on the rate of insulin infusion indicated that an insulin infusion rate higher than 2 mU/kg/min was protective against MI (k=17 OR 0.42[0.28, 0.62]);11,47,49,51,54-58,61,63,65,67-71,73-81 whereas an insulin infusion rate lower than 2 mU/kg/min failed to provide beneficial effects (k=12 OR 0.79[0.48, 1.3]);42,45,56,58,61,65,68-71,78,83,90 (Q=3.9 \(P=0.0482\)). The occurrence of postoperative MI was decreased regardless of the timing of GIK infusion either started before CPB (k=22 OR 0.69[0.47, 0.9])41,42,45,49,51,54-58,61,63,65,68-71,75,78,81,83,90 or during/after CPB (k=10 OR 0.38 [0.17, 0.85]);77,76,77,79,88,91 \(Q=1.43\) \(P=0.2319\). No subgroup effects were found in trials including only non-diabetic patients (k=17 OR 0.55[0.36, 0.84]),49,54,56,57,61,63,67,68,70,73,75,80,88,90,91 only diabetic patients (k=2 OR 0.35[0.05, 2.64])38,65 or a mixed population (k=13 OR 0.55[0.3, 1.03]);41,42,45,47,51,55,69,71,76,77,79,81,83 (non-diabetics vs diabetics: Q=0.19 \(P=0.9113\); diabetes vs mixed: Q=0.19 \(P=0.9113\)). A summary of the heterogeneity of GIK composition is reported in a supplemental file (S5).

Meta-analyses of secondary endpoints are summarized in Table 2. Perioperative GIK infusion was associated with a reduction in postoperative AF (19.8% vs 24.8% in control groups) and in AKI (3.3% vs 5.7% in control groups), along with higher CI (3.16 vs 2.77 L/min/m² in control groups), faster ventilatory weaning as well as shorter ICU and hospital length of stay. There was no evidence of an association between GIK and in-hospital mortality, cardiovascular drug support, ventricular arrhythmias, infection or stroke.

Postoperative glycemia was higher in control than in GIK-treated patients (mean[SD] 185[49] mg/dL vs 155[42] mg/dL, respectively; MD[95%CI] -30[-46.63 to -13.06] mg/dL, \(P=0.0004\)).44,45,50,52,59,70,78,90,91 In both diabetic and non-diabetic subsets, GIK treatment was associated with lower postoperative glycemia: MD[95%CI] -73.3 [-87 to -59.5] mg/dL, \(I^2=75\%\); \(P=0.0396\)).41,42,57,58,60,64,65,70,73,77,79,82,90,91 Among diabetics, GIK had a higher impact on lowering postoperative glycemia compared to other populations (diabetics vs non-diabetics: Q=11.04 \(P=0.004\); non-diabetics vs mixed: Q=0.78 \(P=0.3775\)).

A summary of the GRADE assessment is reported in supplement S6. The certainty of evidence was graded as low for MI and secondary outcomes due to imprecision of the effect estimate and indirectness related to heterogeneity in outcome definition or GIK regimen.

A video summarizes the key features of this systematic review and is available on the journal website.

DISCUSSION

The previous systematic reviews had focused more on CABG surgery and had examined a restricted time frame15-18 whereas this updated meta-analysis of 53 RCTs (N=6129) included the last well-powered trials and covers the full spectrum of cardiac surgical procedures over more than 4 decades (Supplemental file S7).

In this meta-analysis, we found that, compared with usual care, perioperative GIK infusion was associated with fewer MI, AF and AKI, increased cardiac index, better postoperative glycemic control as well as earlier weaning from the ventilator, shorter length of stay in ICU and faster discharge from the
Authors	Country	Age [y]	M/F	Diabetes	LVEF [%]	AXC [min]	Surgery	GIK Formula	GIK Timing
Ahmad et al. 2017	Pakistan	55(8)/54(10)	(69/11)/(72/8)	No	53(9)/52(10)	64(17)/62(18)	CABGS	0.5 mU/kg/min insulin, 5% dextrose, K 70 mEq/L	preop
Albacker et al. 2007	Canada	59(3)/65(2)	(20/2)/(16/6)	Mixed	49(3)/47(3)	65(5)/71(5)	CABGS	5 mU/kg/min insulin, 20% dextrose, K NA	preop, cpb, postop
Andel et al. 1990	Czechoslovakia	56(NA)/51(NA)	NA	No	NA	57(NA)/54 (NA)	CABGS	1.5 mU/kg/min rapid insulin, 40% glucose, K 60 mEq/L	preop
Barcellos et al. 2007	Brazil	60(9)/59(6)	(7/5)/(8/4)	Yes	60(14)/54(16)	89(29)/87(22)	CABGS	1.2 mU/kg/min regular insulin, 5% glucose, K 80 mEq/L	preop, postop
Besogul et al. 1999	Turkey	38(NA)/35(NA)	(4/11)/(3/12)	Mixed	55(NA)/52 (NA)	76(NA)/73 (NA)	Valve	0.2 mU/kg/min insulin, 20% glucose, K 45 mEq/L	preop
Boldt et al. 1993	Germany	62(7)/63(7)	NA	No	63(9)/64(7)	45(8)/44(11)	CABGS	35.7 mU/kg/min regular insulin, glucose, K 70 mEq/L	preop
Boldt et al. 1993	Germany	61(6)/63(7)	NA	No	66(6)/64(7)	48(8)/44(11)	CABGS	17.9 mU/kg/min regular insulin, glucose, K 70 mEq/L	preop
Brodin et al. 1993	Sweden	60(NA)/57(NA)	(7/0)/(4/3)	Mixed	NA	81(40)/55(21)	CABGS	22.5 mU/kg/min insulin, 30% glucose, K 2000 mEq/L	preop
Bruemmer et al. 2002	UK	64(10)/66(10)	(19/0)/(15/5)	No	NA	51(14)/45(12)	CABGS	2.5 mU/kg/min insulin, 50% glucose, K 160 mEq/L	preop, cpb, postop
Celkan et al. 2006	Turkey	58(11)/56(11)	NA	No	NA	70(15)/64(22)	CABGS	3.3 mU/kg/min insulin, 30% dextrose, K 160 mEq/L	preop, postop
Duncan et al. 2015	USA	70(9)/70(11)	(36/13)/(31/17)	mixed	59(15)/64(9)	NA	Combined	5 mU/kg/min insulin, 20% dextrose, K 40 mEq/L, PO 120 mEq/L	preop, cpb, postop
Duncan et al. 2018	USA	66(11)/66(11)	(520/189)/(546/184)	mixed	NA	80(33)/81(31)	Combined	5 mU/kg/min insulin, 20% dextrose, K 40 mEq/L	NA
Ellenberger et al. 2018	Switzerland	71(11)/72(11)	(73/80)/(37/32)	mixed	43(10)/47(9)	79(36)/76(33)	Combined	4.8 mU/kg/min rapid insulin, 40% glucose, K 10 mEq/L	preop
Foroughi et al. 2012	Iran	61(1)/59(1)	(21/15)/(17/13)	No	NA	62(19)/65(14)	CABGS	1.3 mU/kg/min regular insulin, 10% dextrose, K 80 mEq/L	preop, cpb
Girard et al. 1992	France	58(9)/56(10)	(27/13)/(29/11)	mixed	NA	48(16)/45(16)	CABGS	16.7 mU/kg/min rapid insulin, 33% glucose, K 70 mEq/L	preop
Haider et al. 1984	Austria	58(NA)/52(NA)	NA	mixed	NA	35(NA)/39(NA)	Valve	16.7 mU/kg/min rapid insulin, 33% glucose, K 70 mEq/L	preop

(continued on next page)
Authors	Country	Age [y]	M/F	Diabetes mellitus	LVEF [%]	AXC [min]	Surgery	GIK Formula	GIK Timing	
Hallhagen et al. 1992	Sweden	57(3)/56(4)	NA	No	NA	61(6)/66(8)	CABG	22.7 mUI/kg/min rapid insulin, 40% glucose, K 100 mEq/L	postop	
Howell et al. 2011	UK	70(10)/70(7)	(67/43)/ (77/30)	No	mixed	NA	44(NA)/39(NA)	Combined	NA	postop, preop
Jovic et al. 2009	Serbia	NA	NA	mixed	NA	47(NA)/39(NA)	CABG	0.3 mUI/kg/min insulin, 10% glucose, K 80 mEq/L	preop, postop	
Kjellman et al. 2000	Sweden	64(3)/63(2)	(14/0)/(14/0)	No	47(4)/ 42(6)	64(3)/64(3)	CABG	66.7 mUI/kg/min insulin, 30% glucose, K 40 mEq/L	cpb	
Koskenkari et al. 2006	Finland	67(8)/67(8)	(13/6)/(15/5)	No	NA	93(22)/84(13)	CABG	16.7 mUI/kg/min rapid insulin, 30% glucose, K 20 mEq/L	cpb, postop	
Laiq et al. 2015	Pakistan	NA	NA	Yes	NA	48(2)/45(1)	CABG	1.5 mUI/kg/min regular insulin, 5% dextrose, K 80 mEq/L	preop, cpb, postop	
Lazar et al. 1997	USA	60(NA)/65(NA)	(11/4)/(10/5)	No	44(3)/41(2)	CABG	regular insulin, 30% dextrose, K 80 mEq/L	preop, postop		
Lazar et al. 2000	USA	65(9)/65(11)	(10/10)/(11/9)	Yes	41(10)/ 40(10)	47(12)/42(11)	CABG	1.1 mUI/kg/min regular insulin, 5% dextrose, K 80 mEq/L	preop, postop	
Lazar et al. 2004	USA	64(1)/64(2)	(42/46)/(30/23)	Yes	42(1)/ 41(2)	48(2)/44(1)	CABG	1.1 mUI/kg/min regular insulin, 5% dextrose, K 80 mEq/L	preop, postop	
Leli et al. 2002	USA	62(9)/57(10)	(11/10)/(13/7)	mixed	50(12)/ 41(16)	34(13)/31(14)	CABG	regular insulin, 25% glucose, K 80 mEq/L	preop, cpb, postop	
Lindholm et al. 2001	Sweden	72(8)/74(7)	(8/8)/(5/9)	mixed	57(12)/ 57(15)	84(32)/114(45)	Combined	285.7 mUI/kg/min rapid insulin, 30% glucose, no K	postop	
Lolley et al. 1978	USA	56(NA)/54(NA)	(84/30)/(126/31)	mixed	NA	48(16)/44(15)	CABG	5.7 mUI/kg/min regular insulin, 5% dextrose, K 22.5 mEq/L	cpb	
Lolley et al. 1985	USA	56(1)/54(1)	(40/13)/(40/9)	mixed	62(2)/ 64(2)	47(2)/42(2)	CABG	4.8 mUI/kg/min regular insulin, 5% glucose, K 20 mEq/L	cpb	
Nilsson et al. 1987	Sweden	52(NA)/64(NA)	(5/1)/(5/3)	No	NA	68(10)/78(7)	Combined	2.5 mUI/kg/min rapid insulin, 40% glucose, K 100 mEq/L, PO 120 mEq/L	postop	
Nilsson et al. 1987	Sweden	56(NA)/64(NA)	(4/2)/(5/3)	No	NA	87(7)/78(7)	Combined	5 mUI/kg/min rapid insulin, 40% glucose, K 100 mEq/L, PO 120 mEq/L	postop	
Authors	Country	Age [y]	M/F	Diabetes mellitus	LVEF [%]	AXC [min]	Surgery	GIK Formula	GIK Timing	
----------------------	-------------	---------	-----	-------------------	----------	-----------	---------------	-------------	------------	
Nilsson et al. 1987	Sweden	60(NA)/64(NA)	(8/0)/(5/3)	No	NA	80(7)/78(7)	Combined	16.7 mU/kg/min rapid insulin, 40% glucose, K 100 mEq/L, PO 120 mEq/L	postop	
Oldfield et al. 1986	South Africa	38(27)/41(19)	(6/14)/(8/15)	mixed	NA	67(8)/63(6)	Valve	0.2 mU/kg/min insulin, 20% glucose, K 45 mEq/L	preop	
Quinn et al. 2006	UK	64(9)/64(9)	NA	No	NA	49(16)/48(18)	CABGS	2.1 mU/kg/min rapid insulin, 40% dextrose, K 80 mEq/L	preop, cpb, postop	
Ranasinghe et al. 2006	UK	64(9)/64(9)	(137/20)/(132/28)	No	NA	49(15)/47(18)	CABGS	0.9 mU/kg/min rapid insulin, 40% dextrose, K 80 mEq/L	preop, cpb, postop	
Ray et al. 1977	USA	NA	NA	mixed	NA	NA	CABGS	700 mU/kg/min insulin, 10% glucose, K 120 mEq/L	cpb	
Roh et al. 2015	Korea	61(11)/64(11)	(27/26)/(24/29)	mixed	62(10)/62(11)	96(41)/95(35)	Combined	1.7 mU/kg/min insulin, 30% glucose, K 80 mEq/L	preop	
Ruijrojindakul et al. 2014	Thailand	52(19)/55(15)	(55/44)/(57/43)	mixed	NA	62(24)/60(23)	Combined	5 mU/kg/min insulin, 25% glucose, K 400 mEq/L	preop, cpb, postop	
Salerno et al. 1980	Canada	NA	NA	No	NA	48(NA)/45(NA)	CABGS	0.3 mU/kg/min insulin, 10% dextrose, K 40 mEq/L	preop	
Sato et al. 2011	Canada	64(8)/65(11)	(14/6)/(15/5)	mixed	54(8)/55(8)	84(29)/82(30)	CABGS	5 mU/kg/min insulin, 20% glucose, K NA, PO 120 mEq/L	NA	
Seied et al. 2010	Iran	58(10)/61(8)	(9/16)/(14/6)	Yes	51(8)/50(12)	60(15)/61(17)	CABGS	1.1 mU/kg/min regular insulin, 5% dextrose, K 80 mEq/L	preop, cpb, postop	
Shim et al. 2006	Korea	64(9)/59(10)	(12/31)/(11/28)	Mixed	59(13)/62(12)	NA	CABGS	3.1 mU/kg/min regular insulin, 50% dextrose, K 160 mEq/L	preop, cpb, postop	
Shim et al. 2013	Korea	63(NA)/55(NA)	(20/13)/(23/10)	Mixed	35(11)/39(9)	NA	CABGSOff-pump	3.3 mU/kg/min regular insulin, 50% glucose, K 160 mEq/L	preop, cpb, postop	
Smith et al. 2002	UK	64(8)/68(8)	(9/2)/(10/2)	Mixed	NA	45(14)/40(16)	CABGSOff-pump	0.8 mU/kg/min rapid insulin, 50% dextrose, K 250 mEq/L	preop, cpb, postop	
Straus et al. 2013	Bosnia	62(8)/61(7)	(35/15)/(29/21)	Yes	Mixed	50(NA)/45(NA)	42(NA)/39(NA)	CABGS	251.7 mU/kg/min rapid insulin, 40% glucose, K 100 mEq/L, PO 120 mEq/L	cpb
Svensson et al. 1989	Sweden	61(4)/59(2)	NA	Mixed	50(7)/59(4)	65(7)/57(8)	CABGS	NA	cpb	

(continued on next page)
Authors	Country	Age [y]	M/F	Diabetes mellitus	LVEF [%]	AXC [min]	Surgery	GIK Formula	GIK Timing	
Szabo et al. 2001	Sweden	58(6)/56(9)	(9/1)/(7/3)	Yes	NA	45(22)/46(16)	CABGS	16.7 mUI/kg/min rapid insulin, 30% glucose, no K, PO 160 mEq/L	postop	
Tsang et al. 2007	USA	64(9)/67(7)	(12/2)/(15/2)	Mixed	61(11)/58(14)	43(8)/42(9)	CABGS	0.8 mUI/kg/min regular insulin, 30% dextrose, K 80 mEq/L	preop, postop	
Tunerir et al. 1998	Turkey	38(NA)/35(NA)	(4/11)/(3/12)	Mixed	55(NA)/52(NA)	76(NA)/73(NA)	Valve	0.2 mUI/kg/min insulin, 20% glucose, K 45 mEq/L	preop	
Turkoz et al. 2000	Turkey	64(2)/60(2)	(10/5)/(13/3)	No	40(3)/41(1)	63(5)/63(6)	CABGS	2.3 mUI/kg/min insulin, 30% dextrose, K 160 mEq/L	preop	
Visser et al. 2005	Netherlands	63(NA)/62(NA)	(8/2)/(10/1)	No	NA	57(34)/57(17)	CABGS	1.7 mUI/kg/min rapid insulin, 30% glucose, K 80 mEq/L, PO 240 mEq/L	preop, cpb, postop	
Wallin et al. 2003	Sweden	66(9)/63(9)	(8/1)/(7/2)	No	NA	87(24)/87(24)	Combined	9.2 mUI/kg/min insulin, glucose, K 140 mEq/L	preop, cpb, postop	
Wistbacka et al. 1992	Finland	56(7)/55(8)	(13/3)/(14/2)	No	56(5)/59(7)	104(31)/93(27)	CABGS	2 mUI/kg/min rapid insulin, 17% glucose, K 16.8 mEq/L	preop	
Wistbacka et al. 1994	Finland	55(10)/57(9)	(16/4)/(16/4)	No	58(13)/57(11)	100(36)/102(23)	CABGS	1.2 mUI/kg/min rapid insulin, 20% glucose, K 147 mEq/L, PO 94 mEq/L	preop, cpb, postop	
Zhao et al. 2020	China	42(14)/42(14)	(199/266)/(206/25)	No	NA	51(30)/52(31)	Combined + Congenital	1.1 mUI/kg/min regular insulin, 20% glucose, K 80 mEq/L	preop, cpb, postop	
Zuurbier et al. 2008	Netherlands	63(NA)/64(NA)	(18/5)/(18/3)	No	NA	62(29)/56(17)	CABGS	1.7 mUI/kg/min rapid insulin, 30% glucose, K 80 mEq/L, PO 240 mEq/L	preop, cpb, postop	

AXC, aortic cross clamping; CABGS, coronary artery bypass graft surgery; CPB, cardiopulmonary bypass; LVEF, left ventricular ejection fraction; M/F, male/female
hospital. GIK-induced cardioprotection effects was effective in both diabetic and non-diabetic patients, regardless of the perioperative timing of administration and at insulin dosages higher than 2 mU/kg/min.

Over the 4 decades spanned by this review, perioperative care and the study population risk profile have considerably evolved. Indeed, the infusion of blood or buffered crystalloid solutions directly into the aortic root or selectively into coronary arteries to minimize myocardial injuries became standard since the late 90s. Furthermore, myocardial preconditioning with inhaled anesthetics has been introduced that could also contribute to improve clinical outcomes. Meanwhile, the recent trials have included older participants and new criteria have been adopted to diagnose MI after cardiac surgery. The stable proportion of MI over the review period likely resulted from the (opposite) effects of improved cardioprotective strategies and higher risk profiles of cardiac surgical patients with more sensitive criteria for MI. Altogether, despite improvements in surgical techniques and the higher risk profile of surgical patients, we found similar GIK-induced cardioprotective effects in the early and most recent periods (1977-2005 vs 2006-2021).

Interestingly, we found that perioperative reduction in myocardial injuries was associated with insulin given at rates higher than 2 mU/kg/min. In the context of fasting and surgical stress, this insulin dose regimen causes a shift in ATP production from free fatty acid to glucose oxidation and the increased myocardial ATP store has been associated with improved left ventricular function after experimental ischemia-reperfusion and in patients with heart failure. In this meta-analysis, the usual care group more frequently exhibited hyperglycemia that has been incriminated in blunting anesthetic preconditioning and increasing cardiomyocyte apoptosis. Likewise, the presence of hyperglycemia after major trauma or myocardial infarct has been associated with a higher risk of cardiovascular complications and mortality. In line with our findings, the negative results reported in GIK trials involving patients with acute coronary syndrome could be attributed to insufficient insulin dosages (1 to 1.25 mU/kg/min) and the consequent prolonged period of hyperglycemia.

In most RCTs (39 out of 53), GIK infusion was started before CPB, continued over a median duration of 6 hours and was associated with higher cardiac index (+15%). In contrast with the “oxygen-wasting” effects of adrenergic inotropes owing to fatty acid oxidation, GIK infusion has been shown to provide more efficient cardiac mechanical work by promoting the “oxygen-sparing” pathway of glucose oxidation. In cardiac surgical patients, better preservation of the left ventricular function has been reported following CPB in GIK-treated patients compared with controls. Recent case reports confirm that GIK administration may enhance cardioprotection in non-cardiac surgery and facilitate weaning from mechanical circulatory support in patients with acute cardiogenic shock. In this meta-analysis, faster extubation time, lesser AKI as well as shorter ICU and hospital stay could all be attributed to the improved hemodynamic conditions and in turn, enhanced oxygen transport to the respiratory muscles and the kidneys in GIK treated patients.

Limitations

Our findings are to be interpreted cautiously due to several limitations. Firstly, definitions and reporting of the primary outcome (MI) varied over time and across the different trials with MI criteria being specifically validated in the context of CABG (type V MI) but not for other cardiac procedures according to the Fourth Universal Definition of Myocardial Infarction. However, the various treatments and diagnostic criteria for MI (also AKI) reported in this meta-analysis were equally distributed in the 2 treatment arms and therefore equally influenced the occurrence of MI and other adverse events. Secondly, our study population mainly included middle-aged patients with moderately reduced or preserved left ventricular function undergoing on-pump elective cardiac procedures with AXC < 120 min. Ischemic and anesthetic conditioning are less effective in the senescent heart and in patients treated with beta-blockers. Our data did not allow to discriminate the effects of GIK among elderly patients, those undergoing

Figure 2. risk of bias per-criterion summary.
Figure 3. Forest plot and funnel plot for the main outcome (postoperative myocardial infarction).
complex surgical procedures, as well as the interactions with cardiovascular treatments. Nevertheless, blunting of the postoperative hyperglycemic in GIK-treated patients could contribute to mitigate the perioperative myocardial injuries in addition to the direct insulin mediated anti-apoptotic and metabolic effects on the cardiomyocytes. Thirdly, since all RCTs investigated early outcomes, we ignore whether short-term functional and clinical improvements could translate into better quality of life and prolonged survival. Fourthly, many RCTs included small populations while some large, recent RCTs held little weight in the analysis. Moreover, the analysis of the impact of diabetes mellitus, combined surgery or valve replacement, emergency procedures and off-pump CABG yielded small subgroups of trials, precluding clinical interpretation. Finally, a majority of RCTs were graded as unclear or high risk of bias and the GRADE certainty of evidence was fairly low, indicating a potential for modification or even reversal of effect estimates in future studies.

CONCLUSION

Perioperative GIK infusion is associated with improved early outcome and reduced hospital resource utilization after cardiac surgery.

Table 2. Meta-Analyses of Secondary Endpoints
N RCTs (N participants)

In-hospital mortality
AKI
Atrial fibrillation
Cardiac index [L/min]
Glycemia [mg]
Hospital LOS [d]
ICU LOS [h]
Infection
Mechanical ventilation
Stroke
Ventricular Fibrillation

RCT, randomized control trial; N, participants count; GIK, insulin-glucose-potassium; TE, treatment effect (odds ratio [OR] or mean difference [MD]); 95%CI, 95% confidence interval; AKI, acute kidney injury; AF, atrial fibrillation; CI, cardiac index; LOS, length of stay; ICU, intensive care unit; MVT, mechanical ventilation time; VF, ventricular fibrillation.
surgery (Figure 4, Video abstract). Current supporting evidence is heterogeneous and further research should examine the dose-response and timing of GIK regimens to protect the heart also in higher risk patients such as those with failing heart or ongoing myocardial ischemia.

SUPPLEMENTARY MATERIAL

Scanning this QR code will take you to the article title page to access supplementary material.

REFERENCES

1. Vervoort D, Meurs B, Meyns B, et al: Global cardiac surgery: Access to cardiac surgical care around the world. J Thorac Cardiovasc Surg 159:987–996, e6, 2020. https://doi.org/10.1016/j.jtcs.2019.04.039

2. Hassenloy DJ, Boston-Griffiths E, Yellon DM: Cardioprotection during cardiac surgery. Cardiov Med 9:253–265, 2012. https://doi.org/10.1093/crmed/cvs313

3. Bonanni A, Signori A, Alicino C, et al: Volatile anesthetics versus propofol for cardiac surgery with cardiopulmonary bypass: Meta-analysis of randomized trials. Anesthesiology 132:1429–1446, 2020. https://doi.org/10.1097/ALN.0000000000003236

4. Weisse AB: Cardiac surgery: A century of progress. Tex Heart Inst J 38 (5): 486–490, 2011

5. Adelborg K, Horvath-Puhó E, Schmidt M, et al: Thirty-year mortality after coronary artery bypass graft surgery: A Danish nationwide population-based cohort study. Circ Cardiovasc Qual Outcomes 10:e002708, 2017. https://doi.org/10.1161/CIRCOUTCOMES.116.002708

6. Adelborg K, Horvath-Puhó E, Schmidt M, et al: Risk factors of post-cardiomyotomy ventricular dysfunction in moderate-to-high risk patients undergoing open-heart surgery. Ann Card Anaesth 20:287, 2017. https://doi.org/10.4103/aca.ACA_60_17

7. Jarral OA, Saso S, Harling L, et al: Organ dysfunction in patients with left ventricular dysfunction during cardiac surgery: A review of evidence. Eur J Cardiothorac Surg 25:304–311, 2004. https://doi.org/10.1016/S0145-4222(03)00323-6

8. Algamla A, Abbate A, Girola F, et al: Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: A review of evidence. Eur J Cardiothorac Surg 25:304–311, 2004. https://doi.org/10.1016/S0145-4222(03)00323-6

9. Algamla A, Abbate A, Girola F, et al: Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: A review of evidence. Eur J Cardiothorac Surg 25:304–311, 2004. https://doi.org/10.1016/S0145-4222(03)00323-6

10. Algamla A, Abbate A, Girola F, et al: Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: A review of evidence. Eur J Cardiothorac Surg 25:304–311, 2004. https://doi.org/10.1016/S0145-4222(03)00323-6

11. Klein LJ, Visser FC: The effect of insulin on the heart: Part 1: Effects on metabolism and function. Neth Heart J 18:197–201, 2010. https://doi.org/10.1007/BF03091761

12. Ng KW, Allen ML, Desai A, et al: Cardioprotective effects of insulin: How intensive insulin therapy may benefit cardiac surgery patients. Circulation 125:721–728, 2012. https://doi.org/10.1161/CIRCULATION-NAHA.111.063784

13. Sodi-Pallares D, Testelli MR, Fishleder BL, et al: Effects of an intravenous infusion of a potassium-glucose-insulin solution on the electrocardiographic signs of myocardial infarction. A preliminary clinical report. Am J Cardiol 9:166–181, 1962. https://doi.org/10.1016/0002-9149(62)90035-8

14. Maroko PR, Braunwald E: Effects of metabolic and pharmacologic interventions on myocardial infarct size following coronary occlusion. Circulation 53(3 Suppl):I162–I168, 1976

15. Fan Y, Zhang A-M, Xiao Y-B, et al: Glucose-Insulin-Potassium therapy in adult patients undergoing cardiac surgery: A meta-analysis. Eur J CardioThorac Surg 40:192–199, 2011. https://doi.org/10.1093/ejcts/txr107.007

16. Ali-Hassan-Sayegh S, Mirhosseini SJ, Zerouh M, et al: Safety and efficacy of glucose-insulin-potassium treatment in coronary artery bypass graft surgery and percutaneous coronary intervention. Int J Cardiovasc Thorac Surg 21:667–676, 2015. https://doi.org/10.1093/icvts/ivv222

17. Li Q, Yang J, Zhang J, et al: Effect of perioperative glucose-insulin-potassium therapy in patients undergoing on-pump cardiac surgery: A meta-analysis. Heart Surg Forum 23:E063–E069, 2020. https://doi.org/10.1533/hsf.2020.15237

18. Rahi DM, Clement FM, McAlister FA, et al: Effect of perioperative glucose-insulin-potassium infusions on mortality and atrial fibrillation after coronary artery bypass grafting: A systematic review and meta-analysis. Can J Cardiol 26:e178–e184, 2010. https://doi.org/10.1016/S0888-282X(10)70394-9

19. Shamsir I, Moher D, Clarke M, et al: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 350:g6747, 2015. https://doi.org/10.1136/bmj.g6747

20. Cumpton M, Li T, Page MJ, et al: Updated guidance for trusted systematic reviews: A new edition of the cochrane handbook for systematic reviews of interventions. Cochrane Database Syst Rev 10:ED000142, 2019. https://doi.org/10.1002/14651858.ED000142

21. Savovic J, Turner RM, Mawdsley D, et al: Association between risk-of-bias assessments and results of randomized trials in cochrane reviews: The ROBES meta-epidemiologic study. Am J Epidemiol 187:1113–1122, 2018. https://doi.org/10.1093/aje/kwy344

22. Guyatt GH, Oxman AD, Vist GE, et al: GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926, 2008. https://doi.org/10.1136/bmj.39489.470347.AD

23. Higgins J, Thomas J, Chandler J, et al: Cochrane Handbook for Systematic Reviews of Interventions Version 6.2. 6.2 ed Cochrane Collaboration; 2021 Updated February 2021

24. R Core Team: R: A Language and Environment for Statistical Computing. Published online

25. R Core Team: R: A Language and Environment for Statistical Computing. Published online

26. R Core Team: R: A Language and Environment for Statistical Computing. Published online

27. R Core Team: R: A Language and Environment for Statistical Computing. Published online

28. R Core Team: R: A Language and Environment for Statistical Computing. Published online

29. R Core Team: R: A Language and Environment for Statistical Computing. Published online

30. R Core Team: R: A Language and Environment for Statistical Computing. Published online

31. R Core Team: R: A Language and Environment for Statistical Computing. Published online

32. R Core Team: R: A Language and Environment for Statistical Computing. Published online

33. R Core Team: R: A Language and Environment for Statistical Computing. Published online

34. R Core Team: R: A Language and Environment for Statistical Computing. Published online

35. R Core Team: R: A Language and Environment for Statistical Computing. Published online

36. R Core Team: R: A Language and Environment for Statistical Computing. Published online

37. R Core Team: R: A Language and Environment for Statistical Computing. Published online

38. R Core Team: R: A Language and Environment for Statistical Computing. Published online

39. R Core Team: R: A Language and Environment for Statistical Computing. Published online

40. R Core Team: R: A Language and Environment for Statistical Computing. Published online

41. R Core Team: R: A Language and Environment for Statistical Computing. Published online

42. R Core Team: R: A Language and Environment for Statistical Computing. Published online

43. R Core Team: R: A Language and Environment for Statistical Computing. Published online

44. R Core Team: R: A Language and Environment for Statistical Computing. Published online

45. R Core Team: R: A Language and Environment for Statistical Computing. Published online

46. R Core Team: R: A Language and Environment for Statistical Computing. Published online

47. R Core Team: R: A Language and Environment for Statistical Computing. Published online
31. Rudez I, Sutlić Z, Husedzinović I, et al: The importance of glucose-insulin-potassium with cardiopulmonary bypass prior to cardiopulmonary arrest in open-heart surgery. Ljuc Vjen 117(Suppl 2):105–108, 1995.

32. Cimochowski GE, Harostock MD, Foldes PJ: Minimal operative mortality in patients undergoing coronary artery bypass with significant left ventricular dysfunction by maximization of metabolic and mechanical support. J Thorac Cardiovasc Surg 113:655–666, 1997. https://doi.org/10.1016/S0022-5223(97)70222-8

33. Jeppsson E, Elroth R, Kmíto K, et al: Insulin and amino acid infusion after cardiac operations: Effects on systemic and renal perfusion. J Thorac Cardiovasc Surg 113:594–602, 1997. https://doi.org/10.1016/S0022-5223(97)70375-1

34. Lindholm Lena, Nilsson Boris, Klaus: Is skeletal muscle luxury perfusion the main hemodynamic effect of high-dose insulin in cardiac surgery? Scand Cardiovasc J 3:396–402, 2000. https://doi.org/10.1080/01074179305196234

35. Díaz R, Goyal A, Mehta SR, et al: Glucose-insulin-potassium therapy in patients with ST-segment elevation myocardial infarction. JAMA 298:2399–2405, 2007. https://doi.org/10.1001/jama.298.20.2399

36. Zhao K, Fu F, Zhang Y, et al: Glucose-insulin-potassium improves cardiac performance via inhibiting hexosamine biosynthesis in patients undergoing cardiopulmonary bypass. Cardiology 35, 2013

37. Licker M, Diaper J, Sologashvili T, et al: Glucose-insulin-potassium improves left ventricular performances after aortic valve replacement: A secondary analysis of a randomized controlled trial. BMC Anesthesiology 19:175, 2019. https://doi.org/10.1186/s12871-019-0849-3

38. Ranasinghe AM: How does glucose insulin potassium improve hemodynamic performance? Evidence for altered expression of beta-adrenergic receptor and calcium handling genes. Circulation 114(1_suppl), 2006. http://doi.org/10.1161/CIRCULATIONAHA.105.012391

39. Duncan AE, Kateby Kashy B, Sarwar S, et al: Hyperinsulinemic normoglycemia does not meaningfully improve myocardial performance during cardiac surgery: A randomized trial. Anesthesiology 123:272–287, 2015. https://doi.org/10.1097/ALN.0000000000000216

40. Duncan AE, Sessler DI, Sato H, et al: Hyperinsulinemic normoglycemia during cardiac surgery reduces a composite of 30-day mortality and serious in-hospital complications: a randomized clinical trial. Anesthesiology 128:1125–1139, 2018. https://doi.org/10.1097/ALN.0000000000000216

41. Ellenberger C, Sologashvili T, Kreienbühl L, et al: Myocardial protection by glucoseinsulinpotassium in moderate- to high-risk patients undergoing elective on-pump cardiac surgery: A randomized controlled trial. Anesth Analg 126:1133–1141, 2018. https://doi.org/10.1213/ANE.0000000000002777

42. Un Roh G, Shim JK, Song JW, et al: Effect of glucoseinsulinPotassium on hyperlactataemia in patients undergoing valvular heart surgery: A randomised controlled study. Eur J Anaesthesiol 32:355–562, 2015. https://doi.org/10.1097/EJA.0000000000000250

43. Jovis M, Gradinac S, Lausevic-Vuk L, et al: Preconditioning with glucose-insulin-potassium solution and restoration of myocardial function during coronary surgery: Gen Physiol Biophys 28:262–270, 2009. Spec No

44. Shim YH, Kweon TD, Lee JH, et al: Intravenous glucose?Insulin?Potassium during off-pump coronary artery bypass surgery does not reduce myocardial injury. Acta Anaesthesiologica Scandinavica 50:954–961, 2006. https://doi.org/10.1111/j.1399-6576.2006.01115.x

45. Shim J-K, Yang S-Y, Yoo Y-C, et al: Myocardial protection by glucose-insulin-Potassium in acute coronary syndrome patients undergoing urgent multivessel off-pump coronary artery bypass surgery. Br J Anaesth 110:47–53, 2013. https://doi.org/10.1093/bja/aes324

46. Sato H, Hatakoraizan R, Carvalho G, et al: High-dose insulin administration improves left ventricular function after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 25:1086–1091, 2011. https://doi.org/10.1053/j.jvca.2011.05.009

47. Lolley DM: Preservation of human cardiac contractility during anoxic arrest with glucose-containing cardioplegia. Am Surg 51:256–261, 1985

48. Anděl M, Táborský J, Martinek J, et al: Cardioprotective conditioning with glucose and insulin prior to cardiac surgery involving ischaemic cold arrest. Cor Vasa 32:302–310, 1990

49. Wistbacka M, Kaukoranta PK, Nuutinen LS: Prebypass glucose-insulin-potassium infusion in elective nondiabetic coronary artery surgery patients. J Cardiothorac Vasc Anesth 6:521–527, 1992

50. Boldt J, Knotehe C, Zickmann B, et al: Influence of different glucose-insulin-potassium regimes on glucose homeostasis and hormonal response in cardiac surgery patients. Anesth Analg 76:233–238, 1993. https://doi.org/10.1213/00000539-19930200-00006
66. Celkan M, Kazaz H, Daglar B, et al: Effects of glucose-insulin-potassium solution on cardiac cytokines and enzymes. Thorac cardiovasc Surg 54:332–336, 2006. https://doi.org/10.1053/j.2006-94478

67. Koskenlaak J, Kaukoranta PK, Rimpiläinen J, et al: Anti-inflammatory effect of high-dose insulin treatment after urgent coronary revascularization surgery. Acta Anaesthesiol Scand 50:962–969, 2006. https://doi.org/10.1111/j.1399-6576.2006.01100.x

68. Bansangie AM: Glucose-insulin-potassium and triiodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114(1_suppl), 2006. https://doi.org/10.1161/CIRCULATIONAHA.105.007794.1-245-1-250

69. Smith A, Grattan A, Harper M, et al: Coronary revascularization: A procedure in transition from on-pump to off-pump? The role of glucose-insulin-potassium revisited in a randomized, placebo-controlled study. J Cardiothorac Vasc Anesth 16:413–420, 2002. https://doi.org/10.1053/jcvca.2002.12515

70. Foroughi M, Rahimian H, Dabbagh A, et al: Postoperative N-terminal probrain natriuretic peptide level in coronary artery bypass surgery with ventricular dysfunction after peroperative glucose-insulin-potassium treatment. J Cardiothorac Vasc Anesth 26:631–636, 2012. https://doi.org/10.1053/j.jvca.2011.11.013

71. Tsang MW, Davidoff R, Korach A, et al: Diastolic dysfunction after coronary artery bypass grafting. J Cardiothorac Vasc Anesth 22:185–191, 2007. https://doi.org/10.1053/j.jvca.1540-8191.2007.00382.x

72. Straus S, Gere V, Kacila M, et al: Glucosa-Insulin-Potassium (GIK) solution in patients with diabetes provides better recovery after coronary bypass operations. Med Arch 67:84–87, 2013. https://doi.org/10.5455/medarch.2013.67.84-87

73. Seidi-Hosseini SM, Pourmoghadas A, Aghadavoudi O, et al: Efficacy of glucose-insulin-potassium infusion on left ventricular performance in type I diabetic patients undergoing elective coronary artery bypass surgery. Cardiopulm Vasc Anesth 38:626–628, 2010

74. Wisbacha JO, Nuutinen LS, Lepojärvi AJ, et al: Peroperative glucose-insulin-potassium infusion in elective coronary surgery: Minor benefit in connection with blood cardioplegia. Inflammopharm Transfus Med 21:160–166, 1994. https://doi.org/10.1159/000229676

75. Turkaz A, Toprak H, Sarı S, et al: Glucose-insulin-potassium solution before cardiopulmonary bypass in coronary artery surgery. Turk Anesteziyoloji ve Reanimasyon 28:361–365, 2000

76. Ray JF, Tewksbury DA, Myers WO, et al: Can the frequency of myocardial infarction be reduced during coronary artery operations? Ann Thorac Surg 23:14–19, 1977. https://doi.org/10.1016/0003-4975(77)064-01-1

77. Lolley DM, Ray JF, Myers WO, et al: Reduction of intraoperative myocardial infarction by means of exogenous anaerobic substrate enhancement: A prospective randomized study. Ann Thorac Surg 26:515–524, 1978.

78. Salerno TA, Waisan SM, Charrette EJ: Glucose substrate in myocardial protection. J Thorac Cardiovasc Surg 79:59–62, 1980

79. Svensson S, Ekroth R, Nilsson F, et al: Insulin as a vasodilating agent in the first hour after cardiopulmonary bypass. Scand J Thorac Cardiovasc Surg 23:139–143, 1989. https://doi.org/10.3109/1017438900105983

80. Hallagen S, Svedjeholm R, Ekroth R, et al: Effects of insulin on myocardial uptake of branched chain amino acids soon after cardiac operations. J Thorac Cardiovasc Surg 103:98–107, 1992

81. Albacker TB, Carvalho G, Schiricker T, et al: Myocardial protection during elective coronary artery bypass grafting using high-dose insulin therapy. Ann Thorac Surg 84:1920–1927, 2007. https://doi.org/10.1016/j.athoracsur.2007.07.001

82. Haider W, Benter H, Schütz W, et al: Improvement of cardiac preservation by peroperative high insulin supply. J Thorac Cardiovasc Surg 88:284–300, 1984

83. Oldfield GS, Commerford PJ, Ope LH: Effects of peroperative glucose-insulin-potassium on myocardial glycogen levels and on complications of mitral valve replacement. J Thorac Cardiovasc Surg 91:874–878, 1986

84. Tümerir B, Aslan R, Isiksoy S, et al: Benefits of glucose-insulin-potassium before mitral valve replacement. Asian Cardiovasc Thorac Ann 6:273–278, 1998

85. Besogulli C, Clinical, biochemical and histochemical assessment of pre-treatment with glucoselinsulinPotassium for patients undergoing mitral valve replacement in the third and fourth functional groups of the New York Heart Association. Cardiovasc Surg 7:645–650, 1999. https://doi.org/10.1053/s0697-2109/99/00047-2

86. Bengtsson Lindholm V, Anders: Insulin (GIK) improves central mixed and hepatic venous oxygenation in clinical cardiac surgery. Scand Cardiovasc J 35:347–352, 2001. https://doi.org/10.1080/140174301317116334

87. Wallin M, Barr G, Ówall A, et al: The influence of glucose-insulin-potassium (GIK) on the GH/IGF-1/IGFBP-1 axis during elective coronary artery bypass surgery. J Cardiothorac Vasc Anesth 17:470–477, 2003. https://doi.org/10.1053/j.jvca.2003.12305-6

88. Howell NJ, Ashrafian H, Drury NE, et al: Glucose-insulin-potassium reduces the incidence of low cardiac output episodes after aortic valve replacement for aortic stenosis in patients with left ventricular hypertrophy: Results from the hypertextopy, insulin, glucose, and electrolytes (HINGLE) trial. Circulation 123:170–177, 2011. https://doi.org/10.1161/CIRCULATIONAHA.110.1495170

89. Ruijrokindal P, Labat, Lutkrautk T, Meneil E, et al: Safety and efficacy of intensive intraoperative glycemic control in cardiopulmonary bypass surgery: A randomised trial: Safety and efficacy of glycemic control. Acta Anaesthesiol Scand 58:588–596, 2014. https://doi.org/10.1111/aas.12305

90. Zhao K, Zhang Y, Li J, et al: Modified glucose-insulin-potassium regimen provides cardioprotection with improved tissue perfusion in patients undergoing cardiopulmonary bypass surgery. JAHa 9, 2020. https://doi.org/10.1161/JAHAA.119.012376

91. Nilsson FN, Berglin EE, Ekroth R, et al: Effects of graded insulin infusions on plasma levels of free fatty acids, adrenaline and noradrenaline directly after open heart surgery. Thorac Cardiovasc Surg 35:96–100, 1987. https://doi.org/10.1055-s-2007-1020205

92. Whitaker AB, Alhoudhbir M, Mahbab S, et al: Myocardial protection in cardiac surgery: How limited are the options? A comprehensive literature review. Perfusion 36:338–351, 2021. https://doi.org/10.1177/0267659120942656

93. Thygensen K, Alpert JS, Jaffe AS, et al: Fourth universal definition of myocardial infarction (2018). Circulation 13:e618–e651, 2018. https://doi.org/10.1161/CIR.0000000000000617

94. Kataruka A, Maynard CC, Kearney KE, et al: Temporal trends in percutaneous coronary intervention and coronary artery bypass grafting: Insights from the Washington cardiac care outcomes assessment program. J Am Heart Assoc 9, e015317, 2020. https://doi.org/10.1161/JAHA.119.015317

95. Klein LJ, Visser FC: The effect of insulin on the heart: Part 2: Effects on function during and post myocardial ischaemia. Neth Heart J 18:255–259, 2010. https://doi.org/10.1093/cvr/cvu132

96. Liepins E, Makrecka M, Kuka J, et al: The heart is better protected against myocardial infarction in dogs. Cardiovasc Res 103:238–247, 2014. https://doi.org/10.1093/cvr/cvu132
101. Mapanga RF, Joseph D, Symington B, et al: Detrimental effects of acute hyperglycaemia on the rat heart. Acta Physiol (Oxf) 210:546–564, 2014. https://doi.org/10.1111/apha.12184

102. Bosarge PL, Shoultz TH, Griffin RL, et al: Stress-induced hyperglycemia is associated with higher mortality in severe traumatic brain injury. J Trauma Acute Care Surg 79:289–294, 2015. https://doi.org/10.1097/TA.0000000000000716

103. Punthakee Z, Iglesias PP, Alonso-Coello P, et al: Association of preoperative glucose concentration with myocardial injury and death after non-cardiac surgery (GlucoVISION): A prospective cohort study. Lancet Diabetes Endocrinol 6:790–797, 2018. https://doi.org/10.1016/S2213-8587(18)30205-5

104. Singh K, Hibbert B, Singh B, et al: Meta-analysis of admission hyperglycaemia in acute myocardial infarction patients treated with primary angioplasty: A cause or a marker of mortality? Eur Heart J Cardiovasc Pharmacother 1:220–228, 2015. https://doi.org/10.1093/ehjcvp/pvz023

105. Selker HP, Beshansky JR, Sheehan PR, et al: Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: The IMMEDIATE randomized controlled trial. JAMA 307:1925–1933, 2012. https://doi.org/10.1001/jama.2012.426

106. Korvald C, Elvenes OP, Myrmel T: Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278:H1345–H1351, 2000. https://doi.org/10.1152/ajpheart.2000.278.4.H1345

107. Licker M, Reaud T, Garofano N, et al: Pretreatment with glucose-Insulin-Potassium improves ventricular performances after coronary artery bypass surgery. A randomized controlled trial. J Clin Monit Comput 34:29–40, 2020. https://doi.org/10.1007/s10877-019-00280-5

108. Tesoro R, Hagerman A, Molliqaj G, et al: Cardioprotection with glucose insulin potassium (GIK) during non cardiac surgery in a patient with stress induced myocardial ischemia: A case report. Saudi J Anaesth 16:364–367, 2022. https://doi.org/10.4103/sja.195-22

109. Shah KR, Przybysz TM, Ushakumari D, et al: High dose insulin therapy for inotropic support during veno-arterial extracorporeal membrane oxygenation decannulation: A case report. Medicine 101:e30267, 2022. https://doi.org/10.1097/MD.0000000000030267

110. Annachhatre AS, Annachhatre SR: Preconditioning in cardiac anesthesia. where are we? Ann Card Anaesth 22:412–421, 2019. https://doi.org/10.4103/aca.ACA-16-18