Evaluation of the Quality of Nutritional Management of Tuberculosis Patients under Treatment in the Intensive Phase in Two Benin Health Districts

Sabine Emmanuelle Mbazoa1*, Jacques Saizonou2, Charles Sossa Jérome1, Makoutodé Patrick2, Mongbo Virginie2, Capo-Chichi Justine2, Edgard-Marius Ouendo2

1Department of Health Promotion, Regional Institute of Public Health (IPH) of Ouidah, University of Abomey-Calavi, Benin
2Department of Health Policy and Health Systems, Regional Institute of Public Health (IPH) of Ouidah, University of Abomey-Calavi, Benin

Abstract Adequate nutrition is required for the effectiveness and adherence to medication among TB (Tuberculosis) patients. The purpose of the study was to evaluate the quality of nutritional management of TB patients under treatment in intensive phase in two health districts in Benin. This cross sectional and evaluative study was conducted from February 2nd to 20th July 2016 and included 36 tuberculosis TB patients (exhaustively selected) under treatment in intensive phase and twelve health professionals who provide care to TB patients identified by a reasoned choice. Data on nutritional management of TB patients were collected through interviews, observation and medical records exploitation. The quality of nutritional management for TB patients was assessed according to national and international guidelines. The median age of the 36 TB patients was 40 years and 97.2% (35) were new cases of tuberculosis. Among TB patients, 88.89% consumed less than required intake of fats and proteins. At baseline, 66.67% had BMI <18.5. At the end of intensive phase treatment 44.44% showed BMI <18.5. The quality of nutritional management of TB patients was poor (score = 27.3%) characterized by a fair component “input” (score = 55.6%), poor components "process" (score = 0%) and "results" (score = 20%). Interventions to improve the quality of nutritional care of TB patients under treatment in the two health districts are timely to improve effectiveness of drug treatment.

Keywords Evaluation, Quality, Nutritional Care, Tuberculosis, Benin

1. Introduction

According to the World Health Organization (WHO), nine million people have contracted tuberculosis and 1.5 million died in 2013 [1]. Among those nine million, a quarter was living in the African region. In Benin, the prevalence of TB has stabilized around 40 cases per 100,000 inhabitants and 4092 cases were detected in 2015, with an increase of 3% compared to 2014. Among Tuberculosis patients, 5% are co-infected Tuberculosis / Human Immunodeficiency Virus (HIV). Twenty cases of Multi Drugs Resistance (MDR-TB) per year, with an increasing trend [2] are recorded. In Benin, the number of cases of TB patients in 2013 and 2014 was 3957 and 3977 with a lethal rate of 5% [3].

The TB treatment includes two phases, the intensive phase and the continuation phase. The intensive phase of TB treatment aims to eliminate bacilli, reduce the infectiousness of the patient two weeks later and even reduce bacilli resistance to TB medication. It is used for this purpose 4-5 drugs for 2 to 3 months [4].

The TB infection increases the metabolic requirements but reduces food intake. Nutritional deficiencies due to this infection can worsen the disease or delay recovery. [5]. TB infection usually leads to weight loss and thinness. Weight loss leads to malnutrition when food intake is inadequate for a long period. Then, an adequate nutrition is important for strengthening the immune system, the body's ability to fight against infection and an effective response to treatment [6].

In Benin, the nutritional management of TB patients is usually reasonable limited to the food distribution in the tuberculosis screening and treatment centers (TSTC). This situation could thus hamper the quality of nutritional care of TB patients in intensive phase. The objective of the study was to assess the quality of nutritional management of TB patients under treatment in intensive phase in the health districts of Lokossa and Aplahoué in Benin.

2. Materials and Methods

2.1. Setting

The study was carried out in the health zones of Lokossa in the Mono department and Aplahoué in Couffo department. Each health districts had two TSTCs. The
populations covered by these health districts were estimated to be 161444 in Lokossa and 408186 in Aplahoué in 2013 [7]. In these two health zones, TSTCs were integrated into the health service and managed by a nurse.

2.2. Study Design and Material

This was a cross-sectional and evaluative study. The study material consisted of:

- TB patients under treatment in intensive phase hospitalized or not during the study period.
- Health professionals who provide care to TB patients;
- Patient medical records, drug stock and foods stocks records and guides.

2.3. Sampling Method

The non-probabilistic sampling method was used to select all study materials. TB patients in intensive phase were exhaustively selected and health professionals were identified by the reasoned choice.

2.3.1. Inclusion Criteria

- TB patients under intensive phase treatment in hospital or not in one the TSTC in the two health zones during the study period.
- Health professionals involved in nutritional management of TB patients in the two health zones during the study period (for health workers).

2.3.2. Exclusion Criteria

- Patients who were unable to feed themselves orally.
- Health professionals with less than one month experience (at the time of the survey) in the nutritional management of TB patients in health centers services were concerned.

2.4. Study Variables

A Conceptual framework for evaluating the quality of nutritional management of tuberculosis patients in intensive-phase in the LA and ADD health zones was done. The quality of nutritional management of tuberculosis patients in intensive-phase would only be ensured by the effective availability of inputs and their good management in the process. The results obtained during the take-over would be the image of the quality of the management.

Our hypothesis was that quality of nutritional management of intensive-phase tuberculosis patients in the Lokossa-Athieme and Aplahoué-Dogbo-Djakotomey health zones was insufficient. To Assess the quality of nutritional management of those TB patients in intensive phase and confirm or not our hypothesis, our objectives were to appreciate the availability and the functionality of the inputs of the nutritional management of intensive phase TB patient, to appreciate the process of nutritional management of intensive-phase tuberculosis patients and to analyze the results of the nutritional management of intensive-phase tuberculosis patients.

The components of the quality of nutritional management of TB patients under treatment in the intensive phase were: “inputs”, “process” and “results”.

Inputs constitute the necessary resources for a good quality of the nutritional management of tuberculosis patients. Variables included in the component inputs were food availability, drugs availability, skilled health professional’s availability, availability of trained and supervised health professionals, guidelines of nutritional management of TB patients, availability of logistic logbook.

Food: in order to ensure proper feeding of tuberculosis patients, food must be available in sufficient quantity and in a good variety with at least seven groups. These foods are energy, construction and protection foods. They will ensure the quality of the nutritional care of TB patients;

Medicines: the permanent availability of the medicines required for the intensive phase will ensure the success of drug treatment. Medication can negatively affect absorption, metabolism and distribution of nutrients in the body anywhere. Therefore the intensive phase tuberculosis patients must have adequate and sufficient diet to adequately respond to these demands imposed by drugs. This interaction between food and medicines will therefore improve the quality of therapeutic and nutritional management of intensive phase TB patients;

Technical materials: the available technical and functional materials will make it possible to make a diagnosis of malnutrition in the tuberculosis patient;

Nutrition management documents: the documents will serve as a guide or reference for health professionals to ensure a good nutritional management of tuberculosis patients;

Management documents: these documents will ensure required and objectives information on tuberculosis patients in order to ensure the quality of the nutritional care of the patients.

Trained and supervised health professionals in nutrition to apply a correct nutritional management.

The process of nutritional management of tuberculosis patients is the implementation of the nutritional steps for a successful nutritional management of TB patients by the health professionals. Variables included in the components process were nutritional assessment, anthropometric Assessment, nutritional advice, nutrition Surveillance, nutritional monitoring, counseling, motivational and the nutritional education.

Qualified health professionals trained and supervised in food importance and nutrition will ensure the quality of nutritional management of patients through appropriate care and services. They needed to be able to do:

The nutritional status of the patient (food habits, time and quantity of meals, etc.);
Anthropometric assessment (taking weight, height, Middle Upper Arm Circumference; Body Mass Index etc.);
Adequate nutritional advices based on objective analysis of the situation;
Nutritional assessment and monitoring of food intake and anthropometric measurements;
Interpersonal communication that will take into account:
 • Nutritional Counseling;
 • Motivational interviewing;
 • Education in nutrition for better feeding behavior of tuberculosis patients).

The results are the criteria that will help us assess the quality of the nutritional management. Variables included in
the components results were weight gain, energy intake, Body Mass Index, patient satisfaction and application of nutritional advices. We were to appreciate the proportion of TB patients:
• who gained weight during the intensive treatment;
• with inadequate food intake in accordance with standards and balanced;
• according to changes in body mass index (BMI) classes:
 <16 (severe malnutrition); 16-18.5 (underweight); 18.5
to 24.9 (normal); ≥25 (overweight/obesity)
• satisfied with the nutritional management offered;
• with nutritional counseling and advices ;
• who consumed fruits and dairy products

2.5. Measurement of Variables

For the operational aspects of the variables, we adapted our rating scale and appreciation to the one proposed by
Myriam Hubinon [8].
Predefined scores were assigned to variables according to criteria met for their appreciation. The scores
assigned to the different criteria of the variables varied from 1(if the criteria was met), and 0 (if the criteria was not met).
That appreciation concerned sub components as drugs and support protocol of TB which were irreplaceable and unavoidable with talking about TB. So if there were only one
drug not met, or a TSTC without a support protocol of TB, the score would directly 0. For variables with more than one
assessment criterion, the score assigned to the variable was 1
if more than 75% of the expected criteria were met and 0 if
less than 75% of expected outcomes were observed. But to
assess that information, we first of all calculated the presence of how many elements of the subcomponent corresponded to
75% and more. For example food availability was assessed in relation to the presence of seven food groups (Cereals
tubers, fish-meat, fats, eggs, vegetables, fruits, dairy products), knowing that at least the recommended is seven
groups of food and it wouldn’t be easy to find all those seven. We did (7*75)/100 to find how many groups could we
consider as more 75% or more. We found 5 groups. So in a
TSTC, if we found at least 5 groups of food, the score would
be 1 because considered as 75% and more. That is how the
score was given to all the variables with more than one
assessment. Also for example, technical materials were
assessed in relation with the presence of three technical
materials for nutritional purposes (scales, MUAC, height
board).With that criteria, we did the same operation
(3*75)/100 and we found 2. So if in a TSTC, 2 technical
materials were found, the score would be1. For the health
professionals, they were three per TSTC in charge of TB
patients. Normally they were all supposed to be trained and supervised in nutrition as done in medical way. We also did
(3*75)/100 and found that at least 2 should be trained and supervised for us to give 1 as a score. Another example, for
the sub component gain weight, we did (36*75)/100 and
found 26, so if 26 patients gained weight, the score given
was1. And finally, the percentage assigned to the component was calculated based on the ratio of the observed scores and the maximal expected scores in the four TSTCs. For example, in our study, we met 5 sub components of the component inputs at least average. So that mat the score 1.Although the
score 9 was expected, we did (5/9)*100 to see the percentage of the component. After that, the quality of each component
was appreciated as follow:
• good if the total score is greater than or equal to 75% of
 the expected score;
• acceptable (fair) if the total score is between 50% and
 75% of the expected score excluded;
 For example, the component inputs got (5/9)*100 equal
to 55, 55%
• bad (poor) if the total score is less than 50% of the
 expected score [8].
For example, the component results, got (1/5)*100
equal to 20%
The assessment of the sub components was based on
national standards and international one like Benin's food
guide, the care guide Tuberculosis, international documents
on the nutritional care of people with TB [9, 10, and 11].

2.6. Data Collection

Observation checklists were used to collect data on
availability of food, medicines, document management, technical materials, guidelines documents and records. The
interview guides, questionnaires and observation checklist
were used to collect data in skilled health professionals who
provide care for TB patients and nutritional information of
TB patients themselves. Data were collected by a student at
the end of training in Master in Nutrition.

2.7. Ethical Considerations

Health professionals from the unit and all the TB patients
were informed of the study objectives. Oral consent was
obtained from each person before data collection. That
consent claimed that participants are not at risk by refusing to
participate in the survey or stopping their collaboration
during the study.
Figure 1. Conceptual framework for evaluating the quality of nutritional management of tuberculosis patients under intensive-phase in the LA and ADD health zones in June 2016.
2.8. Data Analysis

Data were analyzed by STATA software (version 11.0). Those analyses were used especially for TB patients to assess our criteria in the results component.

For example, we used the 24-hour recall questionnaire to assess the patients' diet and nutritional information (two 24-hour recalls were made per patients); after Verification of missing data, elaboration, coding and adjustment by excel and 24h recall adjustment software, we used STATA, to calculate the proportion of TB patients with a good balanced in protein, carbohydrate and lipids intake, the proportion of TB patients fruits and dairy intake.

Also with information on height, weight at the beginning of the treatment, concerning TB patients, from reports, medical records, and our own anthropometric measurements (weight, height, MUAC), took to the TB patients during our study. We were able to calculate with STATA the proportion of TB patients with a normal BMI, MUAC, who gain weight and to see the evolution of those anthropometric measurements.

3. Results

3.1. Characteristics of Participants

Among the 36 TB patients under treatment in intensive phase who participated in the study, 18 (50%) were in the health zone of Lokossa. The median age of TB patients was 40 years and 97.2 were new TB cases, 97.2% had pulmonary tuberculosis and 94.4% were HIV-negative.

Concerning health professionals, the health professionals in charge of tuberculosis patients were 12 in our study, including three by TSTC. There were 4 doctors for a particular case of problem concerning TB patients and the 8 other nurses.

The heads of the TSTC were all nurses.

None of these health professionals had been trained on nutritional management. None of these health professionals had done nutritional assessment, prescribed nutritional advices, or had counseling or motivational counseling with their tuberculosis patients.

3.2. Appreciation of the Components of the Nutritional Care of TB Patients under Treatment in Intensive Phase

3.2.1. Assessing the Availability of the Component "Inputs" of Nutritional Management

Those inputs were drugs, food, qualification of health professionals, training and supervision and of health professionals, guidelines of nutritional management of TB patients and logistic logbook. The appreciation of the inputs showed that, the Inputs component of the nutritional management of intensive phase TB patients in LA and ADD was acceptable and the subcomponents of non-compliant inputs were all related to food and nutrition like food availability, availability of food materials, availability of trained and supervised nutrition staff.

Only four groups of food were seen instead of the five at least or the seven recommended in each TSTC.

No food stuffs or document were present in one TSTC.

No formed and supervised health professional in nutrition was notified in one TSTC.

The component "Inputs" was rated 5 points out of 9 (55.6%). The component "inputs" of the nutritional management of TB patients under treatment in intensive phase in the two health zones was fair. The summary of the scores obtained by elements included in the components "Inputs" in the health zones is shown in Table I below.

3.2.2. Appreciation of the Component of the "Process"

The components of that process were, nutritional assessment, anthropometric Assessment, nutritional advice, nutrition Surveillance, nutritional monitoring, counseling, glimpsed motivational and the nutritional education. The appreciation of the process showed that, the "Process" component of the LA and ADD health zones was poor.

Not even one of the steps in nutritional management was made in the four TSTCs.

The component "Process" was rated 0 out of 8 (0.0%) points. Thus, the assessment of the component "Process" of nutritional management of TB patients was poor. Table II summarizes the results obtained by the component “Process.

Table 1. Synthesis of BMIs of tuberculosis patients at the beginning and ending intensive phase treatment

Body Mass Index Class(kg/m²)	Base line %	End of intensive phase treatment		
	Absolute frequency	%	Absolute frequency	%
<16	1	2.78	4	11.11
16 -18.5	23	63.89	12	33.33
18.5-24.9	11	30.56	19	52.78
≥24.9	1	2.78	1	2.78
Total	36	100	36	100
Table 2. Synthesis of the evolution of the body mass index of tuberculosis patients

Baseline body mass index (kg/m²)	Body mass index at the End of intensive phase treatment (kg/m²)	Total
<18.5	15, 9, 0, 24	24
18.5 - 24.9	1, 10, 0, 11	11
≥ 25	0, 0, 1, 1	1
Total	16, 19, 1, 36	36

3.2.3. Appreciation of the Component “Results”

The components of the results were, weight gain, energy intake, Body Mass Index, patient satisfaction and application of nutritional advices. The results showed that the subcomponents that did not meet the defined criteria were counseling, chronic energy deficit, weight gain and structuring in energy intake.

Changes in Body Mass Index of Tuberculosis Patients

At the admission, among our 36 patients, one patient (2.78%) had severe chronic energy deficit, 23 (63.89%) moderate malnutrition and one (2.78%) were obese. At the end of our study, 4 out of 36 patients, 11.11% were severely malnourished (severe chronic energy deficiency), 12 (33.33%) were moderately malnourished and 1 (2.78%) was obese. This subcomponent was rated zero point.

Among the 36 patients in our study, 15 patients, or 41.66%, remained unchanged during our study. One patient, or 2.78%, had changed from normal BMI (18.5 - 24.9) to BMI < 18.5 (malnutrition), and 1 patient, 2.78%, had maintained his BMI ≥ 30 unchanged throughout the study.

Weight Gain

- General weight gain for all patients

In the study, 6 patients (16.67%) out of 36 maintained their weight unchanged; eight patients (22.22%) showed decreasing weight and only 22 patients (61.11%) increased their weight. The variation in weight loss in the eight patients ranged from one to 20 kg and that was of the gain ranged from 1 to 12 kg.

- Weight gain for patients who underwent 60 days of treatment

Of the 36 TB patients, 16 had completed their intensive phase. Of these 16, five (31.25%) showed weight gain ≥ 5% and 11 out of 16 (68.75%) had a weight gain < 5%.

Macronutrients Intake

In our study, none of the 36 patients had unbalanced carbohydrate, lipid and protein intake.

Table 3. Synthesis of the energy input structuring of intensive-phase tuberculosis patients

Energy intake	Compliance	Frequency	Percentage (%)
Carbohydrate intake (45-65%)	Yes	3	8.33
	No	33	91.67
Protein intake (10-35%)	Yes	27	75
	No	9	25
Lipids intake (20-35%)	Yes	9	25
Carbohydrate and lipids intake	Yes	3	8.33
	No	33	91.67
Carbohydrate and protein intake	Yes	0	0
	No	36	100
Lipids and protein intake	Yes	4	11.11
	No	32	88.89
Lipides, carbohydrate and protein intake	Yes	0	0
	No	36	100

Fruits and Dairy Product

Also concerning fruits, only 3 out 36 or 8.33% patients told they took fruits during their treatment and only 1 of them or 0.028% took a dairy product during the treatment.

The component score “Results” of the nutritional management of tuberculosis was 1 out of 5 (20%), and 32 patients (88.9%) were satisfied with the nutritional care. The component “results” was poor. The score of the component results will be summarized in Table III.

MUAC Results

12 or 33.33% among our 36 TB patients had an abnormal brachial perimeter (< 215). The lowest one was 140.

3.3. General Assessment of the Quality of Nutritional Care of TB Patients

The overall score of nutritional management of quality was 27.3%. The quality of nutritional care of TB patients under treatment in intensive phase in the health zones of Lokossa and Aplahoué was poor. Scores are summarized in Table IV below.
Table I. Scores of Component "inputs" of nutritional management of TB patients under treatment in intensive phase in two health zones, Benin, in 2016

Inputs	(% Availability of inputs present in the TSTC	Score observed in the TSTC	Maximum score expected in the TSTC
Food	57	0	1
Drugs	100	1	1
Technical materials	66,7	1	1
TB management guidelines	100	1	1
Nutrition documents	00	0	1
Logistic logbook	100	1	1
Qualified health workers	100	1	1
Trained health workers	33,3	0	1
Workers supervised	33,3	0	1
Total	65,5	5	9

Table II. Scores of component "Process" of nutritional management of TB patients under treatment in intensive phase in two health zones, Benin, in 2016.

Activities	Implementation of activities	Score observed	Maximum score expected
Nutritional assessment	No	0	1
Anthropometric assessment	No	0	1
Nutritional advice	No	0	1
Nutritional surveillance	No	0	1
Nutritional monitoring	No	0	1
Counseling	No	0	1
Glimpsed motivational	No	0	1
Nutritional education	No	0	1
Total	-	0	8

Table III. Score of the component "results" of nutritional management of TB patients under treatment in intensive phase in two health areas, Benin, 2016

Variable	Frequency (%)	Observed score	Score waited
Weight gain	61,1	0	1
Balanced energy intake	0	0	1
Normal Body Mass Index	52,8	0	1
Patient Satisfaction	88,9	1	1
Application nutritional advices	20	0	1

Table IV. Scores of overall nutritional management of TB patients under treatment in intensive phase in two health areas, Benin 2016

Components	observed Score	Score expected	Observed/expected (%)	Appreciation
Inputs	5	9	55,6	Acceptable
Process	0	8	0	Poor
Results	1	5	20	Poor
Quality of nutritional care	6	22	27,3	Poor

4. Discussion

The study evaluated the quality of nutritional care of TB patients under treatment in intensive phase in two health districts of Benin. The study showed that the quality of nutritional management of tuberculosis patients under treatment in the intensive phase was poor.

Food availability is required for a nutritional management of TB patients under treatment in intensive phase. The results for "food availability" might be explained by the fact that all the seven food groups were not available. Furthermore, health professionals in charge of TB patients do not know the required food groups for a well-balanced diet. The result can also be due to the fact that health professionals ignored the consequences of an imbalance between food supply and drug treatment effectiveness in intensive phase. Indeed, a TB
patient has higher nutritional requirements than a normal individual. Therefore these need to increase nutrient requirement to cover all deficiencies. So a TB patient needs balance between energy intakes from macronutrients and even micronutrients. In the present study, it was found that the food provided for patients are generally cereals that were probably insufficient according to our results, since only three patients who had sufficient energy intake of carbohydrates. Indeed, TB patients received biweekly 3kg of rice, cassava flour, corn, beans, two bags of pasta shells 250g, two cans of evaporated milk 170g, two boxes of sardines, two tomatoes in boxes of 70 g and a liter of oil. Foods such as fruits, vegetables and meats, fish were deficient in their diet. Because fruits and vegetables contain nutrients strengthen the immune system. It is also known that fish and meat are involved in the reconstruction of tissues. According to some previous observational studies on the availability of food for TB patients, Depee et al. found a low incidence of TB in Denmark where the availability and consumption of milk products, vegetables, fruits and meats were very high [12].

All these deficiencies noted could explain the imbalance of energy intake observed in all patients in our study.

In addition to these shortcomings, it was noticed that no patient received micronutrients supplementation. While in a study by Kawai K et al, micronutrients supplementation improved the immune response of TB patients [13]. Another study by Paton et al. had shown that many TB patients often suffer from malnutrition when the combination of drug and food supply is deficient [14, 15].

Despite all these shortcomings in the nutritional care, it was found that the majority of our patients were satisfied with the nutritional care. This satisfaction may be due to their lack of information concerning food required for their disease and nutritional requirements relating their disease.

Regarding the results obtained in relation with trained and supervised staff in nutrition, it was noticed that health professionals are trained and supervised only on some aspects of nutritional management (reception conditions, food storage and sorting of spoiled food) which generally ensure the availability of food for patients. But the training and supervision do not include the actual process of nutritional care. Health workers also ignore the existence and the importance of guidelines documents such as Benin’s food guide, the algorithm of nutritional management of tuberculosis.

The adequate management of TB patients results in weight gain and improving the nutritional status of patients. A weight gain of less than 5% from the beginning to the end of the intensive phase, predicts relapse in patients who already have most often underweight at diagnosis [16]. The results of this study showed that the proportion gain of less than 5% of initial weight at diagnosis of tuberculosis at the end of the intensive phase differs from those reported by Khurram et al. in India. According to them, 52% of patients gained less than 5% of the initial weigh [17]. This difference of proportion can be explained rather by the sample size of this study at the end of the intensive phase and in their case, the severity of food insecurity in patients and the early detection of the disease.

Finally, the nutritional management is a process that should be monitored up throughout treatment in intensive phase and even beyond this phase as the treatment of tuberculosis takes six months at least. Therefore it is important to involve patients in the nutritional management of communication strategies including counseling and motivational interviewing to enable them to improve their nutritional status even in their family after the end of the intensive phase. Khan et al. reported that after providing counseling for TB patients, the body mass index and nutritional status of patients were significantly improved [18].

5. Conclusions

The quality of nutritional management of TB patients under treatment in intensive phase in the health districts of Lokossa and Aplahoué Benin was poor and it was characterized by an unbalanced diet, a component "input" acceptable and components "process" and "results" bad or poor. Our hypothesis was confirmed. Improving the quality of the nutritional care of TB patients under treatment in intensive phase in the health zones of Lokossa and Aplahoué is needed for more effectiveness of drug treatment.

Acknowledgements

The authors thank the heads of management units of TB patients and all study participants.

Conflict of Interest

The authors declare no conflict of interest.

Authors' Contributions

SEM, EMO and CSJ wrote the research protocol. SEM data collected under the supervision of EMO and CSJ. SEM, EMO and CSJ analyzed data. SEM and CSJ wrote the draft of the manuscript under the supervision of EMO. All authors contributed to the final revision of the manuscript.

REFERENCES

[1] Organisation Mondiale de la Santé (Genève). Rapport sur la lutte contre la tuberculose dans le monde. Genève, OMS; 2014. [En ligne]. Disponible sur URL: <www.who.int/m
[2] Organisation mondiale de la Santé. Le Bénin a célébré la 21e journée mondiale de lutte contre la tuberculose. [En ligne]. S’unir contre la tuberculose, 2015. [Consulté le 02 septembre 2016]. URL: http://www.afro.who.int/fr/benin/press-materials/item/8448-le-benin-a-celebre-la-21-ieme-journee-mondiale-de-lutte-contre-la-tuberculose.html.

[3] Ministère de la Santé (Bénin). Rapport annuel du programme national contre la tuberculose. Bénin: MS; 2013.

[4] Caley MP. Comité international des pharmaciens sans frontière. Note de synthèse tuberculose et antituberculeux. Paris: ACTED; 2009, (13 p).

[5] Sinclair D, Abba K, Grobler L, Sudarsanam TTD. Nutritional supplements for people being treated for active tuberculosis. Cochrane Database Syst Rev 2011;9(11):doi:10.1002/14651858.CD006086.pub3.

[6] Ministère de la Santé et de l’hygiène publique (Côte-D’Ivoire). Guide national de soins et soutien nutritionnels et alimentaires pour les personnes affectées et infectées par le VIH et ou la tuberculose. Côte-D’Ivoire : MSHP; 2010, (103 p).

[7] Institut National de la Statistique et de l’Analyse Economique. RGP H 4:2015, Cotonou, (33 p).

[8] Hubinon M. Management des unités de soins, de l’analyse systémique à l’évaluation de la qualité. Bruxelles: Breckuniv; 2010.

[9] Ministère de la santé (Bénin). Conseil national de l’alimentation et de la nutrition: Guidealimentaire. Bénin. MS, 2010.

[10] Ministère de la Santé Publique (Bénin). Guide du programme national contre la tuberculose. Bénin, MSP, 2006, (59 p).

[11] Comité de liaison alimentation et nutrition (Paris). Les guides de l’assistance publique des hôpitaux de Paris. Évaluation de la qualité de l’alimentation et de la nutrition dans les services de soin. Paris: CLAN, 2000, (53 p).

[12] Depee Semba RD. Rôle de la nutrition dans l’infection par le VIH: examen des preuves pour une programmation plus efficace dans les milieux ou les ressources sont limitées. Food Nutr Bull 2010;31(4):313-44.

[13] Kawai K, Meydanis SN, Urassa W, Wu D, Mugusi FM, Saathoff E, et al. Micronutrient supplementation and cell-mediated immune responses in patients with tuberculosis in Tanzania. Food Nutr Bull 2010; 31(5): 344-54.

[14] Paton NI, Sangeetha S, Earnest A, Bellamy R. L’impact de la malnutrition sur la survie et la réponse aux taux de CD4 chez les patients infectés par le VIH commençant une thérapie antirétrovirale. HIV Med 2006; 7(5): 323-30.

[15] Vander Sande MAB, VanderLooef MFS, Aveika AA, Sabally S, Togun T, Sarge-Njie R, et al. Indice de masse corporelle au moment du diagnostic du VIH. Acquin Immune Defic Syndr 2004;37(2):1288-94.

[16] United States Agency International Development (New York). Nutrition et tuberculose. New York: USA ID; 2010.

[17] Khurram M, Yong JM, Arshad MM, Khar HT. Factors Affecting Relapse of Tuberculosis. JRMC 2009; 13(1):44-7.

[18] Khan S, Parvez IP, Fouzia H, Khan I, Anjum R, Sareer B. Effect of dietary counseling on the nutritional status of tuberculosis patients. Food Nutr Bull 2010; 31 (5): 346-9.