Endoscopic Biliary Intervention Using Traction Devices for Periampullary Diverticulum: A Case Report

Ryuji Inoue¹, Hiroshi Kawakami²,³, Yoshimasa Kubota²,³ and Tessin Ban²,³

Abstract:
We describe the case of a 92-year-old woman who was admitted to our hospital with choledocholithiasis and periampullary diverticulum (PAD). Due to PAD, clear visualization of the ampulla of Vater could not be obtained. Although selective bile duct cannulation was difficult, a 7-Fr plastic stent was placed during the first session. Fifteen days later, endoscopic retrograde cholangiopancreatography was retried using traction devices, and the papilla became visible. Endoscopic sphincterotomy and stone extraction were performed without any complications. The application of traction devices in endoscopic submucosal dissection may be a promising technique in cases in which endoscopic biliary intervention is difficult due to PAD.

Key words: periampullary diverticulum, traction devices, endoscopic biliary intervention, endoscopic clip, choledocholithiasis

Introduction
Periampullary diverticulum (PAD) is a duodenal mucosal outpunching defined as herniation of the mucosa or submucosa that occurs via a defect in the muscle layer within an area of 2-3 cm around the papilla (1). PAD is a risk factor for failed selective bile duct cannulation (SBDC) (2). The papilla may be unidentifiable within the diverticulum, floppy on the edge of the diverticula, and sometimes hidden by a mucosal fold. Recently, various endoscopic devices and techniques have been developed to improve the success rates of endoscopic biliary intervention in patients with PAD (1). We herein describe the first case in which a patient with choledocholithiasis and PAD was successfully treated by endoscopic biliary intervention with the use of traction devices who underwent; two types of endoscopic clips were applied for endoscopic submucosal dissection (ESD).

Case Report
A 92-year-old woman was admitted with fever and upper abdominal pain. Abdominal computed tomography revealed choledocholithiasis (Fig. 1). She had one common bile duct stone of 10.9 mm in diameter. On the next day of admission, endoscopic retrograde cholangiopancreatography (ERCP) was conducted. During ERCP, PAD was found and located at the edge of the diverticulum, and it was difficult to obtain a front view of the ampulla of Vater (Fig. 2). We performed SBDC using wire-loaded cannulation. A standard duodenoscope (JF-260V, Olympus Inc., Tokyo, Japan), an ERCP catheter (01 20 21 1, MTW Endoskopie, Wesel, Germany), a bendable catheter (PR-233Q, Olympus), and guidewire (0.035 inch, 450 cm; XEMEX ENTRY, ZEON Medical Inc., Tokyo, Japan) were used for SBDC, which was performed within 25 minutes. Although SBDC was achieved, we could not perform endoscopic sphincterotomy because of poor visualization of the papilla and because we considered that it would place a burden on the heart and respiratory function. A 7-French plastic stent was placed in the end of the bile duct. On hospital day 15, a duodenoscope (JF-260V, Olympus) was used while ERCP was performed with the traction device method. We attempted to perform endoscopic sphincterotomy (EST) and endoscopic stone ex-
traction using traction devices. The first endoscopic clip (S-O clip; ZEON Medical Co., Tokyo, Japan) was attached to the duodenal mucosa on the anal side of the papilla (Fig. 3a). The second endoscopic clip (ZEOCLIP; ZEON Medical Co.) was then applied to the loop part of the first endoscopic clip and attached to the contralateral duodenal mucosa (Fig. 3b). As a result, good visualization of the papilla was obtained (Fig. 3c and d). After extracting the biliary stent, SBDC was achieved within 2 minutes. Subsequently, EST was performed after successful stone extraction (Fig. 4a, b and c). Finally, the procedure was accomplished by cutting the loop part of the S-O clip with a disposable high-frequency knife (Fig. 5a and b). There were no subsequent complications.

Discussion

To our knowledge, this is the first report of SBDC following stone extraction using traction devices for PAD. PAD is reported to be common and seen in up to 20% of patients undergoing ERCP (3–5). PAD is further divided by the relative position of the papilla, whether the papilla is situated outside the diverticulum or inside the diverticulum (intradiverticular). PAD is a major cause of failed ERCP, and the presence of PAD is reportedly responsible for 24.6% of unsuccessful ERCPs performed in patients younger than 75 years of age and 46.1% of those who are 75 years of age or older (3). Endoscopic biliary cannulation is more challenging in patients with an intradiverticular papilla (4). To achieve successful biliary cannulation in such patients, various endoscopic devices and techniques have been developed, including wire-guided cannulation, pancreatic guidewire
A) An endoscopic image showing attachment of the S-O clip (ZEON Medical Co., Tokyo, Japan) to the duodenal mucosa on the anal side of the papilla. B) An endoscopic image showing the application of the ZEOCLIP (ZEON Medical Co.) to the loop part of the S-O clip. C) An endoscopic image showing the attachment of the ZEOCLIP (ZEON Medical Co.) to the contralateral duodenal mucosa. Improved visualization of the papilla is obtained. D) An endoscopic image showing clear visualization of the papilla after the extraction of the biliary stent.

Figure 4.

Various methods have been developed to obtain moderate traction in ESD, which is a key for safe and successful dissection. The S-O clip is a clip combined with a spring was developed for the purpose of pulling lesions in arbitrary directions and obtaining moderate traction for ESD (24, 25). When used in the actual ESD procedure, the S-O clip is clipped to the specimen, and the ZEOCLIP is used to clip the loop part of the S-O clip with the mucosa at a distance of 4-5 cm on the opposite side of the lesion (24, 25). We applied this technique in a case of PAD in which endoscopic biliary intervention was difficult due to poor visualization of the papilla as a result of PAD. Traction devices (e.g., the S-O clip and ZEOCLIP) have the following merits: i) they can be manipulated under a duodeno-scope, ii) their traction force is adjustable, and iii) they do not interfere with the instrumental channel of the scope; however, the potential to cause mucosal injury is a possible disadvantage. This technique enabled us to tow the ampulla in the opposite direction from the duodenum, resulting in clear visualization of the papilla, and facilitating successful EST and stone extraction without any complications. For this technique, careful operation of devices and meticulous attention are required to reduce the damage to the duodenal mucosa caused by the attachment of clipping devices.

Conclusion

The towing technique using endoscopic traction devices may be a simple and promising technique for cases in which ERCP is difficult due to PAD.

The authors state that they have no Conflict of Interest (COI).
Figure 5.  a) A radiograph showing selective bile duct cannulation after adjusting the catheter to the bile duct axis using traction devices. b) An endoscopic image showing the papilla after selective bile duct cannulation. c) An endoscopic image showing the papilla after endoscopic sphincterotomy. d) An endoscopic image showing successful stone extraction using a basket catheter after endoscopic sphincterotomy.

Figure 6.  a) An endoscopic image showing detachment manipulation of the loop part of the S-O clip (ZEON Medical Co., Tokyo, Japan) with a disposable high-frequency knife. b) An endoscopic image showing complete detachment of the loop.

References

1. Altonbary AY, Bahgat MH. Endoscopic retrograde cholangiopancreatography in periampullary diverticulum: the challenge of cannulation. World J Gastrointest Endosc 8: 282-287, 2016.
2. Vaira D, Dowsett JF, Hatfield ARW, et al. Is duodenal diverticulum a risk factor for sphincterotomy? Gut 30: 939-942, 1989.
3. Lobo DN, Balfour TW, Ifikhar SY. Periampullary diverticula: consequences of failed ERCP. Ann R Coll Surg Engl 80: 326-331, 1998.
4. Tantau M, Person B, Burtin P, et al. Duodenal diverticula and ERCP: a new trick. Endoscopy 28: 326, 1996.
5. Fujita N, Noda Y, Kobayashi G, Kimura K, Yago A. ERCP for intradiverticular papilla: two-devices-in-one-channel method. Endoscopic Retrograde Cholangiopancreatography. Gastrointest Endosc 48: 517-520, 1998.
6. Fogel EL, Sherman S, Lehman GA. Increased selective biliary cannulation rates in the setting of periampullary diverticula: main pancreatic duct stent placement followed by pre-cut biliary sphincterotomy. Gastrointest Endosc 47: 396-400, 1998.
7. Dumonceau JM, Deviere J, Cremer M. A new method of achieving deep cannulation of the common bile duct during endoscopic
retrograde cholangiopancreatography. Endoscopy 30: 580, 1998.
8. Tóth E, Lindström E, Fork FT. An alternative approach to the in-accessible intradiverticular papilla. Endoscopy 31: 554-556, 1999.
9. Külling D, Haskell E. Double endoscope method to access intradiverticular papilla. Gastrointest Endosc 62: 811-812, 2005.
10. García-Cano J. ERCP cannulation of a hidden papilla within a duodenal diverticulum. Endoscopy 40: E53, 2008.
11. Üstündag Y, Karakaya AK, Aydemir S. Biliary cannulation facilitated by endoscopic clip assistance in the setting of intradiverticular papilla. Turk J Gastroenterol 20: 279-281, 2009.
12. Kawakami H, Maguchi H, Mukai T, et al. A multicenter, prospective, randomized study of selective bile duct cannulation performed by multiple endoscopists: the BIDMEN study. Gastrointest Endosc 75: 362-372, 372.e1, 2012.
13. Parlak E, Köksal AS, Dişişibeyaz S, et al. Additional biliary cannulation methods in patients with juxtapapillary duodenal diverticula. Dig Dis Sci 57: 2982-2987, 2012.
14. Wang BC, Shi WB, Zhang WJ, et al. Entering the duodenal diverticulum: a method for cannulation of the intradiverticular papilla. World J Gastroenterol 18: 7394-7396, 2012.
15. Myung DS, Park CH, Koh HR, et al. Cap-assisted ERCP in patients with difficult cannulation due to periampullary diverticulum. Endoscopy 46: 352-355, 2014.
16. Levenick JM, Gardner TB, Hussain ZH, Gordon SR. SpyBite-assisted biliary cannulation for intradiverticular papilla during ERCP. Endoscopy 46: E514, 2014.
17. Valente R, Baldaque-Silva F, Siiki A, et al. Clip and snare lifting technique to assist cannulation of a papilla hidden behind a mucosal fold. Endoscopy 47: E517-E518, 2015.
18. Elmunzer BJ, Boeticher NC. Reverse guidewire anchoring of the papilla for difficult cannulation due to a periampullary diverticulum. Gastrointest Endosc 82: 957, 2015.
19. Harada H, Saehiro S, Shimizu T, et al. Submucosal injection can facilitate biliary access in patients with periampullary diverticula. Gastrointest Endosc 84: 185-186, 2016.
20. Kim KH, Kim TN. A new technique for difficult biliary cannulation using endobiliary forceps in a patient with a periampullary diverticulum. Endoscopy 49: 824-826, 2017.
21. Balkrishnan M, Jain M, Snk C, Cg S, Ramakrishnan R, Venkataraman J. Cannulation in patients with large periampullary diverticulum using SpyBite miniforceps. Clin Exp Hepatol 4: 41-42, 2018.
22. Calvo MM, Bujanda L, Heras I, et al. The rendezvous technique for the treatment of choledocholithiasis. Gastrointest Endosc 54: 511-513, 2001.
23. Mallory S, Matlock J, Freeman ML. EUS-guided rendezvous drainage of obstructed biliary and pancreatic ducts: report of 6 cases. Gastrointest Endosc 59: 100-107, 2004.
24. Sakamoto N, Osada T, Shibuya T, et al. Endoscopic submucosal dissection of large colorectal tumors by using a novel spring-action S-O clip for traction (with video). Gastrointest Endosc 69: 1370-1374, 2009.
25. Mitsuno H, Sakamoto N, Osada T, et al. Prospective clinical trial of traction device-assisted endoscopic submucosal dissection of large superficial colorectal tumors using the S-O clip. Surg Endosc 21: 3143-3149, 2014.