Singular measures and convolution operators

J. M. Aldaz, Juan L. Varona

Departamento de Matemáticas y Computación, Universidad de La Rioja,
26004 Logroño, Spain

Abstract

We show that in the study of certain convolution operators, functions can be replaced by measures without changing the size of the constants appearing in weak type $(1, 1)$ inequalities. As an application, we prove that the best constants for the centered Hardy-Littlewood maximal operator associated to parallelotopes do not decrease with the dimension.

Key words: Hardy-Littlewood maximal function

1991 MSC: 42A85

1 Introduction

The method of discretization for convolution operators, due to M. de Guzmán (cf. [5], Theorem 4.1.1), and further developed by M. T. Menárguez and F. Soria (cf. Theorem 1 of [9]) consists in replacing functions by finite sums of Dirac deltas in the study of the operator. So far, the main applications of these theorems have been related to the Hardy-Littlewood maximal function, and more precisely, to the determination of bounds for the best constants c_d appearing in the weak type $(1, 1)$ inequalities (cf. [9], [1], [6], and [7] for the one dimensional case, and for higher dimensions, [9] and [2]). In this paper we complement de Guzmán’s Theorem by proving that one can consider arbitrary measures instead of finite discrete measures, and the same conclusions still hold (Theorem 2). A special case of our theorem (where the space is the real line and the convolution operator is precisely the Hardy-Littlewood maximal function) appears in [7] (see Theorem 2).

* Research supported by grant BFM2000-0206-C04-03

Email addresses: aldaz@dmc.unirioja.es (J. M. Aldaz), jvarona@dmc.unirioja.es (Juan L. Varona).
Regarding upper bounds for c_d, E. M. Stein and J. Strömberg (see [10]) showed that the constants grow at most like $O(d \log d)$ for arbitrary balls, and like $O(d)$ in the case of euclidean balls. With respect to lower bounds for the maximal function associated to cubes, it is shown in [9], Theorem 6, that $c_d \geq \left(1 + \frac{2}{d} \right)^d$. These bounds, which decrease with the dimension to $\sqrt{2}$, were conjectured to be optimal in [8]. The “optimality part” of the conjecture was refuted in [2], where it was proved that $\lim \inf_d c_d \geq \frac{47\sqrt{2}}{36}$. It is an easy consequence of Theorem 2 that the “decreasing part” of the conjecture is also false: For cubes the inequality $c_d \leq c_{d+1}$ holds in every dimension d (Theorem 5). In dimensions 1 and 2 the stronger result $c_1 < c_2$ is known, thanks to the recent determination by Antonios D. Melas of the exact value of c_1 as $\frac{11 + \sqrt{61}}{12}$ (Corollary 1 of [7]). Since $c_2 \geq \sqrt{\frac{3}{2}} + \frac{3-\sqrt{2}}{4}$, by Proposition 1.4 of [2], Melas’s result entails that the first inequality is strict.

Finally, we note that the original question of Stein and Strömberg (see also [3], Problem 7.74 c, proposed by A. Carbery) as to whether $\lim_d c_d < \infty$ or $\lim_d c_d = \infty$, remains open.

2 Convolution operators and measures

We shall state the main theorem of this note in terms of a locally compact group X. Denote by $C(X)$ the family of all continuous functions $g: X \to \mathbb{R}$, by $C_c(X)$ the continuous functions with compact support, and by λ the left Haar measure on X. If $X = \mathbb{R}^d$, λ^d will stand for the d-dimensional Lebesgue measure. As usual, we shall write dx instead of $d\lambda(x)$. A finite real valued Borel measure μ on X is Radon if $|\mu|$ is inner regular with respect to the compact sets. It is well known that if X is a locally compact separable metric space, then every finite Borel measure is automatically Radon. Let \mathcal{N} be a neighborhood base at 0 such that each element of \mathcal{N} has compact closure, and let $\{h_U : U \in \mathcal{N}\}$ be an approximate identity, i.e., a family of nonnegative Borel functions such that for every $U \in \mathcal{N}$, supp $h_U \subset U$ and $\|h_U\|_1 = 1$. Furthermore, since for every neighborhood U of 0 there is a continuous function g_U with values in $[0,1]$, $g_U(0) = 1$, and supp $g_U \subset U$, we may assume that each function in the approximate identity is continuous (obtain h_U by normalizing g_U). Let μ be a finite, nonnegative Radon measure on X. Recall that

$$h * f(x) = \int f(y^{-1}x) h(y) \, dy \quad \text{and} \quad \mu * f(x) = \int f(y^{-1}x) \, d\mu(y).$$

Let $g \in C_c(X)$; we shall utilize the following well known results: $\mu * (h_U * g) = (\mu * h_U) * g$, and $h_U * g \to g$ uniformly as $U \downarrow 0$. The idea of the proof below consists simply in replacing the measure μ with the continuous function $\mu * h_U$, using the fact that $\|\mu * h_U\|_1 = \mu(X)$.

2
The L_1 norm refers always in this paper to Haar measure.

Lemma 1 Let $\{k_\beta\}$ be a family of nonnegative lower semicontinuous real valued functions, defined on X. Set $k^* v := \sup_\beta |v \ast k_\beta|$, where v is either a function or a measure. Then, for every finite real valued Radon measure μ on X, and every $\alpha > 0$,

$$\lambda^d \{k^* \mu > \alpha\} \leq \sup \left\{ \lambda^d \{k^* f > \alpha\} : \|f\|_1 = |\mu|(X) \right\}.$$

The same result holds if $\{k_n\}$ is a sequence of nonnegative real valued Borel functions.

PROOF. Consider first the case where $\{k_\beta\}$ is a family of lower semicontinuous functions. We shall assume that functions and measures are nonnegative. There is no loss of generality in doing so since $k^* f \leq k^* |f|$ and $k^* \mu \leq k^* |\mu|$ always. Also, by lower semicontinuity, $\int k_\beta \, d\mu = \sup \{ \int g_{\gamma, \beta} \, d\mu : 0 \leq g_{\gamma, \beta} \leq k_\beta, g_{\gamma, \beta} \in C_c(X) \}$ (Corollary 7.13 of [4]). It follows that for every $x, \sup_\beta \mu \ast k_\beta(x) = \sup_{\gamma, \beta} \{ \mu \ast g_{\gamma, \beta}(x) : 0 \leq g_{\gamma, \beta} \leq k_\beta, g_{\gamma, \beta} \in C_c(X) \}$. Therefore we may assume that the family $\{k_\beta\}$ consists of nonnegative continuous functions with compact support.

Next, let $\{h_U : U \in \mathcal{N}\}$ be an approximate identity as above, with each h_U continuous, and let $C \subset \{k^* \mu > \alpha\}$ be a compact set. It suffices to show that there exists a function f with $\|f\|_1 = \mu(X)$ and $C \subset \{k^* f > \alpha\}$. We shall take f to be $\mu \ast h_{U_0}$, for a suitably chosen neighborhood U_0. Since $\{k^* \mu > \alpha\} = \bigcup_i \{ \mu \ast k_\beta_i > \alpha\}$ and each $\mu \ast k_\beta_i$ is continuous, there exists a finite subcollection of indices $\{\beta_1, \ldots, \beta_\ell\}$ with $C \subset \bigcup_i \{ \mu \ast k_\beta_i > \alpha\}$, so the continuous function $\max_{1 \leq i \leq \ell} \mu \ast k_\beta_i$ attains a minimum value $\alpha + a$ on C, with a strictly positive. Because μ is a finite measure and $h_U \ast k_\beta_i$ converges uniformly to k_β_i as $U \to 0$, $\mu \ast h_U \ast k_\beta_i$ also converges uniformly to $\mu \ast k_\beta_i$. Hence, there exists an $U_0 \in \mathcal{N}$ such that for every $V \subset U_0, V \in \mathcal{N}$, and every $i \in \{1, \ldots, \ell\}$,

$$\|\mu \ast k_\beta_i - \mu \ast h_V \ast k_\beta_i\|_\infty < a/2.$$

In particular, it follows that

$$C \subset \left\{ \max_{1 \leq i \leq \ell} \mu \ast h_{U_0} \ast k_\beta_i > \alpha \right\} \subset \left\{ k^* (\mu \ast h_{U_0}) > \alpha \right\}.$$

The case where $\{k_n\}$ is a sequence of nonnegative bounded Borel functions, can be proven by reduction to the previous one. Choose a finite Radon measure μ and fix $\alpha > 0$. Given $\epsilon \in (0, 1)$, for every n let $g_n \geq k_n$ be a bounded, lower semicontinuous function with

$$\|g_n - k_n\|_1 < \frac{\epsilon^2}{2n+1} \mu(X)$$

(cf. Proposition 7.14 of [4]). Then, for any $f \in L_1(\lambda)$, using the Fubini-Tonelli
Theorem and left invariance we have

\[\|g^*f - k^*f\|_1 = \left\| \sup_n \int g_n(y^{-1}x)f(y)\,dy - \sup_n \int k_n(y^{-1}x)f(y)\,dy \right\|_1 \]

\[\leq \sum_n \int \left| (g_n(y^{-1}x) - k_n(y^{-1}x))f(y) \right|\,dy\,dx \]

\[= \sum_n \int |f(y)| \int (g_n(y^{-1}x) - k_n(y^{-1}x))\,dx\,dy \]

\[= \sum_n \|f\|_1 \|g_n - k_n\|_1 < \|f\|_1 \epsilon^2 (\mu(X))^{-1}. \]

In particular, if \(\|f\|_1 = \mu(X)\), we have that

\[\|g^*f - k^*f\|_1 < \epsilon^2, \]

from which

\[\lambda\{g^*f - k^*f \geq \epsilon\} \leq \frac{\|g^*f - k^*f\|_1}{\epsilon} < \epsilon \]

follows. Now \(\{g^*f > \alpha + \epsilon\} \subset \{k^*f > \alpha\} \cup \{g^*f - k^*f > \epsilon\}\), so

\((\alpha + \epsilon)\lambda\{k^*\mu > \alpha + \epsilon\} \leq (\alpha + \epsilon)\lambda\{g^*\mu > \alpha + \epsilon\} \)

\(\leq (\alpha + \epsilon)\sup\{\lambda\{g^*f > \alpha + \epsilon\} : \|f\|_1 = \mu(X)\} \)

\(\leq (\alpha + \epsilon)(\sup\{\lambda\{k^*f > \alpha\} : \|f\|_1 = \mu(X)\} + \epsilon), \)

and the result is obtained by letting \(\epsilon \downarrow 0\).

Theorem 2 Let \(\{k_\beta\}\) be a family of nonnegative lower semicontinuous real valued functions, defined on \(X\), and let \(c > 0\) be a fixed constant. Then the following are equivalent:

(i) For every function \(f \in L_1(\lambda)\), and every \(\alpha > 0\),

\[\alpha \lambda\{k^*f > \alpha\} \leq c\|f\|_1. \]

(ii) For every finite real valued Radon measure \(\mu\) on \(X\), and every \(\alpha > 0\),

\[\alpha \lambda\{k^*\mu > \alpha\} \leq c|\mu|(X). \]

The same result holds if \(\{k_n\}\) is a sequence of nonnegative real valued Borel functions.
PROOF. (i) is the special case of (ii) where \(d\mu(y) = f(y)\,dy \). For the other direction, by Lemma 1 and part (i) we have

\[
\alpha \lambda \{ k^*\mu > \alpha \} \leq \alpha \sup \{ \lambda \{ k^*f > \alpha \} : \| f \|_1 = |\mu|(X) \} \leq c|\mu|(X).
\]

Remark 3 By the discretization theorem of M. de Guzmán (see [5], Theorem 4.1.1), further refined by M. T. Menárguez and F. Soria (Theorem 1 of [9]), in \(\mathbb{R}^d \) conditions (i) and (ii) of Theorem 2 are both equivalent to

(iii) For every finite collection \(\{ \delta_{x_1}, \ldots, \delta_{x_N} \} \) of Dirac deltas on \(X \), and every \(\alpha > 0 \),

\[
\alpha \lambda \{ k^* \sum_{1}^{N} \delta_{x_i} > \alpha \} \leq cN.
\]

From the viewpoint of obtaining lower bounds, the usefulness of (ii) is due to the fact that it allows to choose among a wider class of potential examples than just finite sums of Dirac deltas. Both (ii) and (iii) will be utilized in the next section.

3 Behavior of constants for the Hardy-Littlewood maximal operator

Let \(B \subset \mathbb{R}^d \) be an open, bounded, convex set, symmetric about zero. We shall call \(B \) a ball, since each norm on \(\mathbb{R}^d \) yields sets of this type, and each bounded \(B \), convex and symmetric about zero, defines a norm. The (centered) Hardy-Littlewood maximal operator associated to \(B \) is defined for locally integrable functions \(f: \mathbb{R}^d \to \mathbb{R} \) as

\[
M_{d,B}f(x) := \sup_{r>0} \frac{\chi_{rB}}{r^d\lambda^d(B)} * |f|(x).
\]

We denote by \(c_{d,B} \) the best constant in the weak type \((1,1)\) inequality \(\alpha \lambda^d \{ M_{d,B}f > \alpha \} \leq c\|f\|_1 \), where \(c \) is independent of \(f \in L^1(\mathbb{R}^n) \) and \(\alpha > 0 \). Let \(s := \{ r_n \}_{-\infty}^{\infty} \) be a lacunary (bi)sequence (i.e., a sequence that satisfies \(r_{n+1}/r_n \geq c \) for some fixed constant \(c > 1 \) and every \(n \in \mathbb{Z} \)). Then the associated maximal operator is defined via

\[
M_{s,d,B}f(x) := \sup_{n \in \mathbb{Z}} \frac{\chi_{r_nB}}{r_n^d\lambda^d(B)} * |f|(x).
\]

The arguments given below are applicable to both the maximal function and to lacunary versions of it, so we shall not introduce a different notation for the
best constants in the lacunary case. In particular, Lemma 4 and Theorem 5 refer to all of these maximal operators, but only the usual maximal operator shall be mentioned in the proofs.

Given a finite sum $\mu = \sum_{i=1}^{k} \delta_{x_i}$ of Dirac deltas, where the x_i's need not be all different, let $\sharp(x + B)$ be the number of point masses from μ contained in $x + B$.

Lemma 4 Let B be a ball in \mathbb{R}^d. Then for every linear transformation $T : \mathbb{R}^d \to \mathbb{R}^d$ with $\det T \neq 0$, $c_{d,B} = c_{d,T(B)}$.

PROOF. Given $\mu := \sum_{i=1}^{k} \delta_{x_i}$ and $T \mu := \sum_{i=1}^{k} \delta_{T(x_i)}$, we have that

$$M_{d,B} \mu(x) := \sup_{r > 0} \frac{\sharp(x + rB)}{r^d \lambda^d(B)}$$

and

$$M_{d,T(B)} T \mu(x) := \sup_{r > 0} \frac{\sharp(x + rT(B))}{r^d \lambda^d(T(B))}.$$

Then $x \in \{M_{d,B} \mu > \alpha\}$ iff $T(x) \in \{M_{d,T(B)} T \mu > (\alpha / |\det T|)\}$. Since

$$|\det T| \lambda^d\{M_{d,B} \mu > \alpha\} = \lambda^d\{M_{d,T(B)} T \mu > (\alpha / |\det T|)\},$$

we have

$$\alpha \lambda^d\{M_{d,B} \mu > \alpha\} = (\alpha / |\det T|) \lambda^d\{M_{d,T(B)} T \mu > (\alpha / |\det T|)\},$$

and the result follows.

Theorem 5 For each $d \in \mathbb{N} \setminus \{0\}$ let B_d be a d-dimensional parallelootope centered at zero. Then $c_{d,B_d} \leq c_{d+1,B_{d+1}}$ for both the maximal operator and for lacunary operators.

PROOF. Since every such B_d is the image under a nonsingular linear transformation of the d-dimensional cube Q_d centered at zero with sides parallel to the axes and volume 1, we may assume that in fact $B_d = Q_d$. With the convex bodies fixed, we will write c_d and M_d rather than c_{d,B_d} and M_{d,B_d}.

Given $\alpha > 0$, $\mu_d = \sum_{i=1}^{k} \delta_{x_i}$ on \mathbb{R}^d and a constant $c > 0$ such that $\alpha \lambda^d\{M_d \mu_d > \alpha\} > c \mu_d(\mathbb{R}^d)$, we want to find a measure μ_{d+1} on \mathbb{R}^{d+1} such that $\alpha \lambda^{d+1}\{M_{d+1} \mu_{d+1} > \alpha\} > c \mu_{d+1}(\mathbb{R}^{d+1})$. This will imply that $c_d \leq c_{d+1}$. Let $L := (k/\alpha)^{1/d}$. Note that if $r \geq L$, then for every $x \in \mathbb{R}^d$, $\frac{\sharp(x + rQ_d)}{r^d} \leq \alpha$. Choose $N \gg L$ such that $\alpha^N L^d \lambda^d\{M_d \mu_d > \alpha\} > c k$, and let $\mu_{d+1} := \mu_d \times \lambda_{[-N,N]}$, where $\lambda_{[-N,N]}$ stands
for the restriction of linear Lebesgue measure to the interval $[-N, N]$. We claim that $\{M_d \mu_d > \alpha\} \times [-N + L, N - L] \subset \{M_{d+1} \mu_{d+1} > \alpha\}$. In order to establish the claim, the following notation shall be used: If $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, by (x, x_{d+1}) we denote the point $(x_1, \ldots, x_d, x_{d+1}) \in \mathbb{R}^{d+1}$. Now if $x \in \{M_d \mu_d > \alpha\}$, then there exists an $r(x) \in (0, L)$ such that $r(x)^{-d} \mu_d(x + r(x)Q_d) > \alpha$, so for every $y \in [-N + L, N - L]$,

$$r(x)^{-d-1} \mu_{d+1}((x, y) + r(x)Q_{d+1}) = r(x)^{-d-1}(\mu_d(x + r(x)Q_d) \times \lambda_{[-N,N]}([y - \frac{r(x)}{2}, y + \frac{r(x)}{2}])) = r(x)^{-d} \mu_d(x + r(x)Q_d) > \alpha,$$

as desired. But now

$$\alpha \lambda^{d+1}\{M_{d+1} \mu_{d+1} > \alpha\} \geq 2\alpha (N - L) \lambda^d \{M_d \mu_d > \alpha\} \geq 2\alpha N (N - L) \lambda^d \{M_d \mu_d > \alpha\} > 2Nck = c\mu_{d+1}(\mathbb{R}^{d+1}).$$

Remark 6 Recall from the Introduction that for the ℓ_∞ balls (i.e., cubes with sides parallel to the axes) $c_1 < c_2$. Since the ℓ_1 unit ball in dimension 2 is a square, it follows from Lemma 4 that the best constant in dimension 2 is equal for the ℓ_1 and the ℓ_∞ norms. It follows that $c_1 < c_2$ in the ℓ_1 case also. It would be interesting to know whether or not the best constants associated to the ℓ_p balls are all the same. Note that establishing bounds of the type $a^{-1}c_{d,2} \leq c_{d,p} \leq ac_{d,2}$ (where the constant $a \geq 1$ is independent of the dimension d and $c_{d,p}$ denotes the best constant associated to the ℓ_p ball), would show that the bounds $O(d)$ (which hold for euclidean balls by [10]) extend to ℓ_p balls.

References

[1] J. M. Aldaz, Remarks on the Hardy-Littlewood maximal function, *Proc. Roy. Soc. Edinburgh Sect. A* 128 (1998), 1–9.

[2] J. M. Aldaz, A remark on the centered n-dimensional Hardy-Littlewood maximal function, *Czech. Math. J.* 50(125) (2000), 103–112.

[3] D. A. Brannan and W. K. Hayman, Research problems in complex analysis, *Bull. London Math. Soc.* 21 (1989), 1–35.

[4] Gerald B. Folland, “Real Analysis. Modern Techniques and Their Applications,” Pure and Applied Mathematics, John Wiley and Sons, New York, 1984.

[5] Miguel de Guzmán, “Real variable methods in Fourier analysis,” North-Holland Mathematics Studies, 46. Notas de Matemática [Mathematical Notes], 75. North-Holland Publishing Co., Amsterdam-New York, 1981.
[6] Antonios D. Melas, On the centered Hardy-Littlewood maximal operator, *Trans. Amer. Math. Soc.* **354** (2002), 3263–3273.

[7] Antonios D. Melas, The best constant for the centered Hardy-Littlewood maximal inequality, *Ann. of Math.*, to appear.

[8] M. Trinidad Menárguez, “Técnicas de discretización en análisis armónico para el estudio de acotaciones débiles de operadores maximales e integrales singulares,” Ph. D. Thesis, Universidad Complutense de Madrid, 1990.

[9] M. Trinidad Menárguez and Fernando Soria, Weak type \((1,1)\) inequalities for maximal convolution operators, *Rend. Circ. Mat. Palermo (2)* **41** (1992), 342–352.

[10] E. M. Stein and J. O. Strömberg, Behaviour of maximal functions in \(\mathbb{R}^n\) for large \(n\), *Ark. Mat.* **21** (1983), 259–269.