Pyrethroid exposure and neurotoxicity: a mechanistic approach

Hamidreza Mohammadi1, Nasrin Ghassemi-Barghi2, Obeid Malakshah3, and Sorour Ashari2

1 Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
2 Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
3 Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

[Received in February 2019; Similarity Check in February 2019; Accepted in June 2019]

Pyrethroids are a class of synthetic insecticides that are used widely in and around households to control the pest. Concerns about exposure to this group of pesticides are now mainly related to their neurotoxicity and nigrostriatal dopaminergic neurodegeneration seen in Parkinson's disease. The main neurotoxic mechanisms include oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The main neurodegeneration targets are ion channels. However, other receptors, enzymes, and several signalling pathways can also participate in disorders induced by pyrethroids. The aim of this review is to elucidate the main mechanisms involved in neurotoxicity caused by pyrethroids deltamethrin, permethrin, and cypermethrin. We also review common targets and pathways of Parkinson's disease therapy, including Nrf2, Nurr1, and PPARγ, and how they are affected by exposure to pyrethroids. We conclude with possibilities to be addressed by future research of novel methods of protection against neurological disorders caused by pesticides that may also find their use in the management/treatment of Parkinson's disease.

KEY WORDS: cypermethrin; deltamethrin; Nrf2; Nurr1; Parkinson's disease; permethrin; pesticides; PPARγ

Pesticides are a major group of chemicals extensively used throughout the world to kill, repel, or control pests. They include fungicides, rodenticides, herbicides, and insecticides. Human exposure to these compounds is inevitable because of pesticide residues in agricultural products and the environment. Pesticides can disrupt the function of different organs in the human body and affect the endocrine, reproductive, renal, immune, cardiovascular, respiratory, and nervous systems.

A number of epidemiological and experimental studies have confirmed the association between exposure to pesticides and the development of neurodegenerative diseases (1–4), which are characterised by progressive degeneration of the structure and function of neurons (5). Several have also confirmed the association between pesticides (such as pyrethroids, organophosphates, and organochlorines) and Parkinson's disease (6–10), characterised by the disappearance of nigrostriatal dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of intraneuronal proteinaceous cytoplasmic inclusions, also known as Lewy bodies (LBs) (11).

Pesticides induce disorders through several mechanisms of action such as inflammation, oxidative stress, mitochondrial dysfunction and cell death (12). The aim of this review is to clarify those involved in neurotoxicity induced by pyrethroids (deltamethrin, cypermethrin, and permethrin) and propose the course of future investigations to improve our understanding of the problems at hand and protection against pyrethroid-induced neurotoxicity.

PYRETHROIDS

Pyrethroids are a class of synthetic insecticides based on pyrethrins isolated from the Chrysanthemum genus of plants (6). These pesticides consist of an acid moiety, a central ester bond, and an alcohol moiety. The acid moiety has two chiral carbons (trans and cis), which makes pyrethroids stereoisomeric (Figure 1). The toxic effects of the cis isomers are typically stronger than those of the trans isomers (13). Pyrethroids are therefore divided in two types (type I and II) according to their toxicity and structural characteristics (Table 1) (6, 14).

In vivo and in vitro studies (Tables 2 and 3) suggest that the main target of pyrethroid-induced neurotoxicity are voltage-gated sodium channels. Pyrethroids connect to the sodium channel α subunit and decelerate the stimulation of the channels. The channel remains active for a longer period of time, permitting more sodium ions to pass and depolarise neuronal membrane (6, 14, 47). The secondary targets of pyrethroid neurotoxicity are calcium and chloride channels (48). Type II pyrethroids, such as deltamethrin and cypermethrin, bind to GABA-gated chloride channels and...
inhibit them (14, 49). The main concern about exposure to pyrethroids is the development of progressive neurodegenerative disorders (50). Due to its lipophilic nature, for example, deltamethrin can reach the brain in amounts that are probably toxic (15). Numerous investigations have indicated that it increases the risk of neurodegenerative diseases (51–54), as it inhibits nerve impulse by altering voltage-sensitive sodium channel kinetics and ligand-gated ion channels (GABA receptors, nicotinic acetylcholine receptors, and glutamate receptors) (14, 54). Its toxicity in the brain has been demonstrated in rats through the inhibition of acetylcholinesterase (AChE) activity (16, 17). Probably due to its lipophilic nature, deltamethrin inhibits AChE activity by reducing the acetylcholine binding space at the aromatic, hydrophobic surface of AChE (17, 55).

Cypermethrin is also lipophilic and involved in the pathogenesis of various neurological disorders as it accumulates in the brain (18, 56). A high concentration of cypermethrin in the brain leads to symptoms of neurobehavioral toxicity (57). Studies in rats have shown that cypermethrin leads to the loss of dopaminergic neurons in the substantia nigra and of the striatal dopamine content (19–21, 58, 59) through oxidative damage, inflammation, and apoptotic cell death (19). Its main target in humans is the voltage-gated sodium channel (VGSC), but chloride channels, voltage-gated calcium channels (VGCC), and potassium channels are also targeted (50).

Permethrin is a type I pyrethroid used to control woodworms indoors and outdoors (60). Like other pyrethroids, permethrin affects the sodium channels, neurotransmitters, and receptor-ionophore complexes (61).
There is increasing evidence of its association with neurological disorders (1). Recent studies in rats suggest that the neurotoxicity it causes is the most devastating in the early stages of development when the signalling pathways are formed (22, 23, 62, 63). Permethrin has been reported to increase α-synuclein, decrease striatal dopamine levels, induce oxidative stress, and inhibit mitochondrial complex I of the electron transport chain (24, 64-67). All of these changes in the striatum are the hallmarks of Parkinson’s disease (66). In fact, the Parkinson’s disease model induced by permethrin in the studies referenced above is suitable for investigating the initial markers of the disease which may help to find new ways to manage it (22).

Pyrethroids are metabolised by oxidation mediated by cytochrome P450 (CYP450) enzymes (37). In the brain, it is CYP2E1 that acts against environmental chemicals and plays a vital role in neuronal detoxification (68, 69). However, its overexpression in the brain tissue, as reported by Galal et al. after deltamethrin treatment (25), could increase the risk of neurotoxicity. Singh et al. (70) reported significantly increased levels of CYP2E1, CYP1A1, CYP2B1, and CYP2B2 in the hypothalamus, cerebellum and hippocampus of rat offsprings after prenatal treatment with high amounts of cypermethrin (2.5 or 5.0 mg/kg). In another study (71), the same group investigated the prenatal effects of low doses of cypermethrin on CYP2D1 and CYP3A1 expression in the brain of rat offspring. The mRNA and protein expression of CYP2D1 or 3A1 were increased, whereas the mRNA and protein expression of GABAAergic, muscarinic, and dopaminergic receptors was decreased. Such reduction in dopaminergic receptors has been reported in Parkinson’s disease (72). The authors concluded that changes in CYP2D1 and 3A1 may be closely associated with changes in these neurotransmitter receptors. Other authors also found the association between these CYPs and adjustments in the neurotransmission pathways (73), but further research is needed to establish the correlation between cytochrome isoenzymes and neurotransmitter receptors more precisely.

MECHANISMS OF PYRETHROID NEUROTOXICITY

Oxidative stress

Oxidative stress is the result of imbalance between free radical production and antioxidant defence (52) and is considered the key mechanism of pesticide toxicity (74). In exposed animals, free radicals such as superoxide anion, hydroxyl radicals, and hydrogen peroxide (H₂O₂) are produced by the metabolism of pyrethroids (37). Oxidative stress seems to particularly target the brain because of its high capacity to consume oxygen (51). Several studies reported it as the main mechanism of deltamethrin toxicity in rat brains (75, 76). Deltamethrin exposure also increases nitric oxide (NO•) and lipid peroxidation (LPO), as determined through its marker malondialdehyde (MDA) (51, 70, 77). Romero et al. (37) were the first to show that deltamethrin metabolites 20-OH- and 40-OH-deltamethrin were in fact more toxic than the parent compound to SH-SYSY neuroblastoma cells.

Oxidative damage in rat brain and other tissues was also reported for cypermethrin (78, 79). Singh et al. (19) identified higher nitrite (an indicator of nitrosamine stress) and lipid peroxide (LPO, an indicator of oxidative stress) levels in the nigrostriatum. Nitrite and LPO were also significantly increased in the peripheral blood of rats exposed to cypermethrin dose that induces nigrostriatal dopaminergic neurodegeneration (26).

On the other arm of the oxidation balance, deltamethrin was reported to substantially decrease antioxidative activities of SOD, CAT, and GPx, and GSH in rat brain tissue (16, 17, 27). Similar effect on antioxidant enzymes was reported for cypermethrin (80 mg/kg, single dose) (79).

Oxidative stress caused by pyrethroids triggers important signalling pathways, including Nrf2 and NF-κB, and it can also induce mitochondrial dysfunction that leads to apoptosis (Figure 2).

Inflammation

Microglia (the resident macrophages in the brain) play a key role in preserving the normal function of the brain. M1 microglia (pro-inflammatory microglia) defend against pathogens by producing pro-inflammatory cytokines and proteins, including tumour necrosis factor alpha (TNFa), interleukin 12a (IL12a), CD16 (Fc receptor, FcyRIII), and inducible nitric oxide synthase (iNOS). M2 microglia (anti-inflammatory microglia), in turn, produce various neuroprotective components like insulin-like growth factor 1 (IGF1) and brain-derived neurotrophic factor (BDNF) (80). Excessive microglial activation, which leads to production of free radicals, cytokines, and chemokines (81), is associated with Parkinson’s disease (82). There are plenty of reactive microglial cells in the substantia nigra and striatum of patients with Parkinson’s disease (83). Microglial activation and subsequent overexpression of pro-inflammatory proteins triggered by cypermethrin show that inflammation is the key to degeneration of the nigrostriatal dopaminergic neurons (20, 21, 59), and NF-κB is the main transcription factor that regulates the genes involved in pro-inflammatory responses (84). In normal conditions, NF-κB remains bound to an inhibitory protein called IκB (inactive) in the cytoplasm (85). External stimulation, however, triggers IκB phosphorylation through the IkB kinase (IKK) complex. NF-κB translocates into the nucleus and stimulates downstream gene transcription (86), inducing the response of proinflammatory cytokines such as IL-1β and TNF-α (87).

There are some agents that modulate the NF-κB activity such as Nurr1 and calcium (Ca²⁺), and they are both affected by pyrethroids. Ca²⁺ is vital for maintaining perfect neuronal...
Table 2 *In vivo* pyrethroid studies

Species	Pesticide	Time of exposure	Dose	Effects	Result	Ref.
Rat	Deltamethrin	90 days	0.32 mg/kg	↓ GSH, ↓ CAT and GPx, ↑ Cyt-c, Cas-3, ↑ MDA	oxidative stress, apoptosis, mitochondrial dysfunction	(15)
Rat	Deltamethrin	14 days	7.2 mg/kg	↑ MDA SOD, CAT, GPx activities, ↓ AChE activity	oxidative stress	(16)
Rat	Deltamethrin	28 days	1.25 mg/100g	↓ AChE activity, ↓ SOD and CAT activity	oxidative stress	(17)
Wistar rats	Cypermethrin	30 days	12 mg/kg	↓ AChE, ↓ Monoamine oxidase (MAO) activity, ↑ Thiobarbituric acid-reactive substances (TBARs), ↓ GSH, ↓ GST, GPX, CAT and SOD	necrosis apoptosis	(18)
Wistar rats	Cypermethrin	Twice a week (1.5 mg/kg) during postnatal days 5–19. Two months later, 12 weeks (15 mg/kg)		↓ Dopaminergic neurons, ↑ Bax, caspase-3, cytochrome C, ↑ COX-2, p53, ↑ JNK, ERK1/2, p38 MAPK, ↑ TNF-α	apoptosis, oxidative stress inflammation	(19)
Male rats	Cypermethrin	Twice a week (1.5 mg/kg) during postnatal days 5–19. Two months later, 12 weeks (15 mg/kg)		↑ JNK, p38 MAPK, ↑ p53, caspase-3, ↑ TNF-α, HO-1, ↓ Bcl-2	mitochondrial dysfunction, apoptosis	(20)
Male rats	Cypermethrin	5–19 days	1.5 mg/kg	↓ Number of TH-positive cells, ↓ Dopamine content, ↑ α-synuclein, ↑ LPO, NO, ↓ Cyt-c, caspase-3, ↓ Bax	oxidative damage, mitochondrial dysfunction and apoptosis	(21)
Male and female Wistar rats	Cypermethrin	15 days PND6 to PND21	34.05 mg/kg	↓ DA, ↓ Dopaminergic neurons	cognitive impairment, deterioration in locomotor performances	(22)
Male and female Wistar rats	Permethrin	15 days PND6 to PND21	34.05 mg/kg	↓ Dopamine and 5-HT, ↑ Dopaminergic and serotonergic turnover (↑ HVA, a dopamine metabolite, ↑ 5-HIAA, a 5-HT metabolite), ↑ NE, ↓ NE turnover, ↓ MHPG (a NE metabolite)	cognitive disorder	(23)
Species	Pesticide	Time of exposure	Dose	Effects	Result	Ref.
-------------------------	-----------------	------------------	----------	---	-----------------------------	-------
Male and female Wistar rats	Permethrin	15 days	34.05 mg/kg	↓ Nurr1 (in striatum), ↓ Glutamate (in hippocampus), ↓ Ca²⁺ (in striatum and hippocampus), ↓ NO (in striatum and hippocampus), ↑ NO (plasma), ↓ SOD (plasma)	oxidative stress (24)	
Rat	Deltamethrin	30 days	0.6 mg/kg	↑ MDA, ↑ NO, ↑ TP53 mRNA, ↑ COX2, ↑ CYP2E1	oxidative stress apoptosis (25)	
Wistar rats	Cypermethrin	Twice a week (1.5 mg/kg) during postnatal days 5–19. Two months later, 12 weeks (15 mg/kg)	↑ Nitrite (end product of nitric oxide), ↑ LPO, ↓ GST activity (plasma), ↓ SOD activity (PMNs), ↓ Catalase activity (plasma)	oxidative stress (26)		
Rat	Deltamethrin	15 days	10 mg/kg	↑ MDA, ↓ GSH, ↓ SOD activity	oxidative stress (27)	
Male and female Wistar rats	Permethrin	15 days	34.05 mg/kg	↓ Nurr1 (striatum), ↑ Nurr1, Nrf-2 and NF-κB p65 (cerebellum), ↓ NO (cerebellum), ↓ Ca²⁺ (cerebellum), ↓ Glutamate (cerebellum)	dopaminergic neuronal disorders (28)	
Rat	Deltamethrin	7 days	12.5 mg/kg	↑ Bax, ↓ Bcl-2	apoptosis (29)	
Fish Common carps	Cypermethrin	3 days (0.01,0.005 ppm)	↑ Caspase 3, caspase 8, ↑ iNOS	inflammation apoptosis (30)		
Male mice	Cypermethrin	18 days	20 mg/kg	Inhibition of AChE activity, ↑ H2O2, ↑ MDA	oxidative stress (31)	
Wistar rats	Cypermethrin	Twice a week (1.5 mg/kg) during postnatal days 5–19. Two months later, 12 weeks (15 mg/kg)	↑ Ulk 1, Beclin 1, Atg 12, ↑ p62 accumulation, ↑ LC3 II, ↓ LAMP 2	aberrant autophagy (32)		
Wistar rats	Cypermethrin	7 days	3.83 mg/kg	↓ LPO, ↓ GSH, ↓ SOD, CAT, GST, GR, and GPx, ↓ AChE	oxidative stress (33)	
Zebra fish	Deltamethrin	2 mg/mL	↓ drd1 mRNA, ↑ th, ↑HVA (metabolite of dopamine)	dopaminergic dysfunction (34)		
Mice	Cypermethrin+ Deltamethrin	E10.5 to E16.5	1.2 mg/kg	↑ Bax, ↓ Bcl-xl	apoptosis (35)	
Male Wistar rats	Permethrin	60 days	150 mg/kg	↓ GSH	oxidative stress (36)	
activity. Yet, high NF-κB activity can increase neuronal and glial Ca²⁺ concentration, as shown in the prefrontal cortex of 500-day-old rats exposed to permethrin in early life (28). Nurr1, in turn, exerts its anti-inflammatory role by repressing NF-κB activity in brain microglia (87).

The pro-inflammatory cytokine TNFα has been suggested to moderate the entire cytokine network. It is regulated by NF-κB, and its production can later enhance the activation of NF-κB (86). At higher levels TNFα can cause oxidative stress via ROS accumulation (88), and several studies have demonstrated that cypermethrin can increase the levels of TNFα (19, 20, 89). Cypermethrin has also been demonstrated to increase IL-1 levels in brain striatum (90). The use of NF-κB signalling pathway inhibitors can therefore decrease pyrethroid-induced neurotoxicity.

Mitochondrial dysfunction

The mitochondrion is an important organelle, as it regulates cell functions such as metabolism, membrane potential, and apoptosis (77, 91). ROS and oxidation damage mitochondrial DNA, disrupt its respiratory chain, and affect membrane permeability (92). Several studies have shown that mitochondrial dysfunction is involved in the aetiology of neurodegenerative disorders, including Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Parkinson’s disease (93, 94). Mitochondrial dysfunction is associated with α-synuclein aggregation in PARK2 iPSC-derived neurons (95).

Pyrethroids seem to affect mitochondrial membrane potential and complex I action, as evidenced in the substantia nigra and striatum of cypermethrin-exposed rats (20, 21). Cypermethrin has also been shown to change mitochondrial proteome profile in the substantia nigra and striatum of rats (Table 4) (20). Similar was observed with mitochondrial Cyt-c and cytosolic Bax proteins, whose levels dropped substantially in cypermethrin-treated animals (21). These changes in the pattern of protein expression reflect abnormal mitochondrial function leading to the nigrostriatal dopaminergic neurodegeneration (96, 102, 103).

Apoptosis

Apoptosis or programmed cell death is triggered by toxins (104), radiation (105), hypoxia (106), oxidative stress (107), ischaemia/reperfusion (108), and DNA damage (109). The mitochondrial (intrinsic) pathway and death receptor (extrinsic) pathway are the two main signalling pathways inducing apoptosis (110). The mitochondrial pathway has been suggested as the main apoptosis pathway.
Table 3 In vitro pyrethroid studies

Type of cell	Pesticide	Dose	Effect	Result	Ref.
SH-SY5Y cells	Deltamethrin and its main metabolites	10 µmol/L	↑ NO	oxidative stress	(37)
			↑ MDA		
PC12 cells	Deltamethrin	10 µmol/L	↑ Nrf2	DLM increases ROS and subsequently increases Nrf2 expression and activity	(38)
			↑ HO-1		
			↑ ROS		
SH-SY5Y cells	Deltamethrin	50–250 µmol/L	↑ cytochrome c	mitochondrial dysfunction apoptosis	(39)
			↑ caspase-9		
			↑ Bax		
			↓ Bel-2		
			↑ PINK1 (in mitochondria)		
PC12 Cells	Deltamethrin	10–100 µmol/L	↑ LDH	pro-oxidant activity of the pesticide lead to Nurr1 up-regulation, that significantly reduced in the presence of antioxidants	(40)
			↓ DA(dopamine)		
			↑ Caspase-9 and -3		
			↑ Beclin-1, p62, and LC3-II		
			↑ ROS		
			↑ ERK1/2, p38, and JNK activity		
PC12 cells	Permethrin	1 µmol/L (72 h)	↑ Nurr1	apoptosis autophagy	(41)
SH-SY5Y cells	Cypermethrin + Deltamethrin	1 µmol/L DM and 100 µmol/L CP	↑ Bax	apoptosis	(35)
			↓ Bel-xl		
SH-SY5Y cells	alpha-cypermethrin	1–100 µmol/L	↑ MDA	oxidative stress	(43)
			↑ NO		
			↑ LDH		
			↑ AKT1; APAF1; ATG3; ATG5; ATG7; ATG12; ATP6V1G2; BCL2; BCL2L1; BIRC2; BMF; CASP3; CASP7; CASP9; COMMD4; CTSB; CYLD; DENND4A; FAS; GADD45A; HSPBAP1; HTT; IGF1R; JPH3; MAP1LC3A; MAPK8; NFKB1; NOL3; PARP2; SNCA; SPATA2; SQSTM1; SYCP2; TXNL4B; ULK1; and XIAP genes		
			↓ GRB2, PARP1 and TP53		
PC12 cells	Cypermethrin	1–300 µmol/L	↑ BCL2	apoptosis mitochondrial dysfunction	(44)
			↑ miR-200a/b/c		
			↑ P53		
SH-SY5Y cells	Chlorpyrifos + Cypermethrin	(17.5+1.75, 25+2.5, 30+3.0 µmol/L)	↑ Caspase 3	apoptosis (TNF-α receptors contribute to the induction of SH-SY5Y cells apoptosis)	(45)
PC12 cells	Deltamethrin	1–100 µmol/L	↓ Dopamine	↓ dopamine biosynthesis	(46)
			↓ TH		
induced by pesticides such as paraquat (111), and various studies have shown that exposure to pyrethroids significantly affects the survival of neurons in rat brain through mitochondrial apoptosis (112, 113).

Pyrethroids can trigger apoptosis through ROS such as H₂O₂ or OH● (38, 75, 114) and cytotoxins (77, 115). Deltamethrin has been evidenced to induce apoptosis in the neuronal cells of the cerebral cortex, hippocampus, and striatum (15, 29).

Apoptosis can also be triggered through mitochondrial damage and activation of caspase-3 and -9, as evidenced for deltamethrin in SH-SY5Y cells (39). Caspase-3 has a vital function in both extrinsic and intrinsic pathways of apoptosis (116, 117). In a study by Gasmi et al. (15), exposure to deltamethrin resulted in higher cytochrome c and caspase-3, followed by apoptosis, which confirmed mitochondrial damage (swelling and permeability).

Tumour protein p53 also plays a critical role in apoptosis (118). Stress signals such as DNA damage can enhance the otherwise low content of p53, which, in turn, increases the levels of the apoptotic gene (COX2) normally expressed in the brain (119, 120). This has been confirmed by Galal et al. (25), who reported that deltamethrin increased the mRNA expression of p53 and COX2. Cypermethrin was also reported to increase the expression of p53 (along with caspase-3) in rat striatum and substantia nigra (19, 20), and these findings were associated with apoptosis. One in vitro study in common carp brain cells (30) suggested that cypermethrin could induce apoptosis through the extrinsic pathway, judging by the elevated caspase 8 levels.

One of important pathways regulating apoptosis involves mitogen-activated protein kinases (MAPKs) (121), which are also involved in the development of neurodegenerative disorders (121, 122) and have been reported in pesticide-induced apoptosis in human neuroblastoma cells (SH-SY5Y) (123). In another study (20), cypermethrin increased the expression of p38 MAPK in the striatum and substantia nigra. Park et al. (40) reported MAPK cascade activation in deltamethrin-induced neuronal cell death through oxidative stress.

NEUROPROTECTIVE MECHANISMS AND PYRETHROID TOXICITY

Keap1/Nrf2/ARE pathway

An efficient repressor system to keep homeostasis (124) is the Keap1-Nrf2 pathway, which triggers the Antioxidant Response Element (ARE), which, in turn, is involved in the expression of antioxidant enzyme genes (124–126). Under oxidative stress, multiple cysteines on Keap1 react with reactive oxygen species (ROS) and lead to a conformational change that releases Nrf2 (127). Nrf2 separates from Keap1 and accumulates in the nucleus to stimulate the expression of several phase 2 drug metabolising enzymes and antioxidant genes (128).

Source of the mitochondrial protein	Protein name	Decrease	Increase	Effect	Ref.
Striatum	PDHE1-β	+			
	NDP kinase A	+			
Substantia nigra	DLAT	+			
	α-tubulin		+		
Substantia nigra	ATP5D	+			
Striatum	NDUFV2	+			
	IDH-NAD α	+			
Substantia nigra	PEBP1	+			
Striatum	GNB-2		+		
Substantia nigra	γ-enolase	+			
Striatum	Hsp-70	+			
Substantia nigra	COX 5a	+			
Striatum	COX Vla (AA 1–118)	+			
Substantia nigra	Cu-Zn SOD	+		oxidative damage and apoptosis	(99, 100)
Substantia nigra	Prx2	+		redox cycling alternation	(101)

Table 4 Mitochondrial protein expression pattern after CYP exposure
In rat brain exposed to deltamethrin Nrf2 activates the HO-1 gene in vitro and in vivo (75, 129). Li et al. (38) confirmed nuclear Nrf2 accumulation and gene expression of HO-1 after exposure to deltamethrin in PC12 cells. Their study has demonstrated for the first time that Nrf2 is triggered by pesticides in PC12 cells and implicated in dopaminergic neuronal cell response to pesticide neurotoxicity. In fact, Nrf2 translocation into the cell nucleus is a response to deltamethrin-induced free radicals (38) and is an attempt to reduce oxidative stress. However, this Nrf2 translocation effect may be inadequate to protect against pyrethroid-induced neurotoxicity. This transcription factor also regulates the genes involved in anti-inflammatory responses. In a study by Carloni et al. (28), Nrf2 gene expression increased after exposure to permethrin in the cerebellum alongside with Nurr1, NF-κB, and Ca²⁺. All these findings suggest that future research could focus on these beneficial properties of Nrf2 in the treatment of neurotoxicity.

Peroxisome proliferator-activated receptors

One of the neuroprotective signalling pathways against pyrethroid-induced toxicity and apoptosis involves peroxisome proliferator-activated receptors (PPARs) including PPARγ, PPARα, and PPARβ/δ. All three PPAR subgroups are believed to regulate gene expression by attaching to response elements (PPREs) in promoter genes. PPARγ regulates mitochondrial function and is extensively expressed in the basal ganglia, piriform cortex, and dentate gyrus of the brain (130). Growing evidence indicates that PPARγ agonists have a neuroprotective role in various animal neurodegeneration models (131–133). Furthermore, Juyeon et al. (39) have reported that rosiglitazone (PPAR-γ agonist) defends against deltamethrin-caused putative kinase 1 (PINK1) mediated apoptosis by suppressing cytosolic PINK1 translocation into mitochondria.

Autophagy

Autophagy has a vital role in eliminating damaged organelles to preserve cell homeostasis (134) and has been reported to protect against deltamethrin neurotoxicity through inhibition of apoptosis (40) (Figure 3). It also has an important role in protecting against neurotoxicity induced by an environmental stressor (135). If it is downregulated, misfolded α-synuclein proteins may aggregate in the neurons, which has been observed in neurodegenerative disorders such as Parkinson’s disease (136). Other studies confirm that autophagy removes accumulated α-synuclein associated with Parkinson’s disease (137–139).

One of the key regulators of autophagy is a kinase called mechanistic target of rapamycin (mTOR). It plays a role in the phosphorylation of ULK1, which activates autophagy by Beclin 1 phosphorylation (140). Figure 4 shows different proteins and molecules involved in autophagy.

Exposure to pesticides was reported to impair autophagic flux and subsequent increase in α-synuclein accumulation (141, 142). Mishra et al. (32) demonstrated that increased Beclin 1, Atg 12, and ULK1 levels and LC3-I conversion to LC3-II in cypermethrin-exposed rats, pointed to the formation of autophagosome, but LAMP2 reduction indicated that despite autophagosome formation, autophagy was disturbed because of poor lysosome quality and acidification. These findings suggest that components that regulate autophagy can be useful against cypermethrin-induced disruptions of autophagy.

Nurr1 and permethrin neurotoxicity

Nurr1 (also known as NR4A2) is an orphan nuclear receptor NR4A that has been demonstrated to regulate dopaminergic neuron development and survival (143). Nurr1 stimulates the transcription of tyrosine hydroxylase (TH) and dopamine active transporter (DAT), which are involved in dopamine biosynthesis and storage, respectively (143). Nurr1 reduction caused by accumulation of α-synuclein has been reported to lead to dopamine neuron dysfunction and downregulation of the Nurr1 gene in the substantia nigra and striatum has been reported in patients with Parkinson’s disease (144–148).

Nurr1 expression declines with age (149). Carloni et al. (24) reported lower Nurr1 mRNA and protein in the striatum of adult (300-day-old) rats exposed to permethrin from postnatal day 6 to 21 in comparison with the control group. In another study, the same authors reported Nurr1 downregulation and at the same time increased Nurr1 protein content in the striatum of 500-day-old rats treated with permethrin from postnatal day 6 to 15 (28), which points to a post-transcriptional compensation mechanism and reduction of Nurr1 ubiquitinylation. Bordoni et al. (150), in contrast, reported that neonatal treatment with permethrin resulted in enhanced Nurr1 gene expression in adolescent rats, which they later confirmed with an upregulation of the Nurr1 gene and its protein level in permethrin-treated PC12 cells (41). The authors suggested...
that permethrin may have enhanced Nurr1 expression through its pro-oxidant activity. However, more studies are required to clarify the mechanisms related to exposure to pyrethroids and change in Nurr1 gene expression.

CONCLUSION

Considering evident pyrethroid neurodegenerative effects common in Parkinson’s disease, the question arises whether they constitute a risk factor for its development. However, little is still known and all implications of an association between pyrethroids and Parkinson’s disease come from experimental studies in animal models, and only an accumulation of future epidemiological knowledge could shed some light on the matter. In the meanwhile, our review points toward new paths of research of molecular mechanisms that could help against pyrethroid-induced neurodegenerative disorders and perhaps find their application in managing/treating Parkinson’s disease. In that respect, signalling pathways such as Nrf2 and Nurr1 have a potential, but the effects of their agonists against pyrethroid-induced neurotoxicity have not yet been investigated. Promising are also the agents that reduce inflammation and apoptosis or improve autophagy, and lysosomal and mitochondrial function.

Acknowledgements

This study was supported by a 2018 grant no. 98 of the student research committee of Mazandaran University of Medical Sciences.

REFERENCES

1. Parrón T, Requena M, Hernández AF, Alarcón R. Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicol Appl Pharmacol 2011;256:379–85. doi: 10.1016/j.taap.2011.05.006
2. Dardiotis E, Xiromerisiou G, Hadjichristodoulou C, Tsatsakis AM, Wilks MF, Hadjigeorgiou GM. The interplay between environmental and genetic factors in Parkinson’s disease susceptibility: the evidence for pesticides. Toxicology 2013;307:17–23. doi: 10.1016/j.tox.2012.12.016
3. Sanchez-Santed F, Colomina MT, Hernández EH. Organophosphate pesticide exposure and neurodegeneration. Cortex 2016;74:417–26. doi: 10.1016/j.cortex.2015.10.003
4. Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 2013;268:157–77. doi: 10.1016/j.taap.2013.01.025
5. Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 2005;113:1250–6. doi: 10.1289/ehp.7567
6. Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases – a mechanistic approach.
19. Singh A, Tripathi P, Prakash O, Singh MP. Ibuprofen abates cypermethrin-induced expression of pro-inflammatory mediators and mitogen-activated protein kinases and averts the nigrostriatal dopaminergic neurodegeneration. Mol Neurobiol 2016;53:6849–58. doi: 10.1007/s12035-015-9577-4.

20. Agrawal S, Singh A, Tripathi P, Mishra M, Singh PK, Singh MP. Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study. Mol Neurobiol 2015;51:448–65. doi: 10.1007/s12035-014-8696-7.

21. Agrawal S, Dixit A, Singh A, Tripathi P, Singh D, Patel DK, Singh MP. Cyclosporine A and MnTMPyP alleviate α-synuclein expression and aggregation in cypermethrin-induced Parkinsonism. Mol Neurobiol 2015;52:1619–28. doi: 10.1007/s12035-014-8954-8.

22. Nasutì C, Brunori G, Eusepi P, Marinelli L, Cicciocippo R, Gabbianelli R. Early life exposure to permethrin: a progressive animal model of Parkinson’s disease. J Pharmacol Toxicol Methods 2017;83:80–6. doi: 10.1016/j.jptm.2016.10.003.

23. Nasutì C, Carloni M, Fedeli D, Gabbianelli R, Di Stefano A, Serafini CL, Silva I, Domingues V, Cicciocippo R. Effects of early life permethrin exposure on spatial working memory and on monoamine levels in different brain areas of presenilin rats. Toxicology 2013;303:162–8. doi: 10.1016/j.tox.2012.09.016.

24. Carloni M, Nasutì C, Fedeli D, Montani M, Amici A, Vadhana MD, Gabbianelli R. The impact of early life permethrin exposure on development of neurodegeneration in adulthood. Exp Gerontol 2012;47:60–6. doi: 10.1016/j.exger.2011.10.006.

25. Galal MK, Khalaf AAA, Ogaly HA, Ibrahim MA. Vitamin E attenuates neurotoxicity induced by deltamethrin in rats. BMC Complementary Altern Med 2014;14:458. doi: 10.1186/1472-6882-14-458.

26. Tripathi P, Singh A, Agrawal S, Prakash O, Singh MP. Cypermethrin alters the status of oxidative stress in the peripheral blood: relevance to Parkinsonism. J Physiol Biochem 2014;70:915–24. doi: 10.1007/s13105-014-0359-7.

27. Al-Afifi SH, Amani EY, Abd Alaa ZM KM. Protective effect of garlic extract against deltamethrin induced oxidative stress in rats. Anim Health Res J 2017;5:67–80.

28. Carloni M, Nasutì C, Fedeli D, Montani M, Vadhana MD, Amici A, Gabbianelli R. Early life permethrin exposure induces long-term brain changes in Nurr1, NF-kB and Nrf2. Brain Res 2013;1515:19–28. doi: 10.1016/j.brainsres.2013.03.048.

29. Khalatbary AR, Ghaffari E, Mohammadrezaei B. Protective role of oleuropein against acute deltamethrin-induced neurotoxicity in rat brain. Iran Biom J 2015;19:247. doi: 10.7508/ibj.2015.04.009.

30. Arslan H, Özdemir S, Altun S. Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L.). Chemosphere 2017;180:491–9. doi: 10.1016/j.chemosphere.2017.04.057.

31. Abdelhafidh K, Mhadhbi L, Mezni A, Badreddine S, Beyrem H, Mahmoudi E. Protective effect of Zizyphus lotus jujube fruits against cypermethrin-induced oxidative stress and neurotoxicity in mice. Biomarkers 2017;23:167–73. doi: 10.1080/1354750X.2017.1390609.

32. Mishra AK, Mishra S, Rajput C, Ur Rasheed MS, Patel DK, Singh MP. Cypermethrin activates autophagosome formation albeit inhibits autophagy owing to poor lysosome quality: relevance to Parkinson’s disease. Neurotox Res 2018;33:377–87. doi: 10.1007/s12640-017-9800-3.
33. Sharma P, Firdous S, Singh R. Neurotoxic effect of cypermethrin and protective role of resveratrol in Wistar rats. Int J Nutr Pharmacol Neurol Dis 2014;4:104–11. doi: 10.4103/2231-0738.129598

34. Kung TS, Richardson JR, Cooper KR, White LA. Developmental deltamethrin exposure causes persistent changes in dopaminergic gene expression, neurochemistry, and locomotor activity in zebrafish. Toxicol Sci 2015;146:235–43. doi: 10.1093/toxsci/kfv087

35. Guo J, Xu J, Zhang J, An L. Alteration of mice cerebral cortex development after prenatal exposure to cypermethrin and deltamethrin. Toxicol Lett 2018;287:1–9. doi: 10.1016/j. toxlet.2018.01.019

36. Nasuti C, Falcioni ML, Nwankwo IE, Cantalamessa F, Gabbianelli R. Effect of permethrin plus antioxidants on locomotor activity and striatum in adolescent rats. Toxicology 2008;251:45–50. doi: 10.1016/j.tox.2008.07.049

37. Romero A, Ramos E, Castellano V, Martinez MA, Ares I, Martinez M, Martinez-Larrañaga MR, Anadón A. Cytotoxicity induced by deltamethrin and its metabolites in SH-SY5Y cells can be differentially prevented by selected antioxidants. Toxicol in Vitro 2012;26:823–30. doi: 10.1016/j.tiv.2012.05.004

38. Li H-Y, Wu S-Y, Shi N. Transcription factor Nrf2 activation by deltamethrin in PC12 cells: involvement of ROS. Toxicol Lett 2007;171:87–98. doi: 10.1016/j.toxlet.2007.04.007

39. Ko J, Park JH, Park YS, Koh HC. PPAR-γ activation attenuates deltamethrin-induced apoptosis by regulating cytosolic PINK1 and inhibiting mitochondrial dysfunction. Toxicol Lett 2016;260:8–17. doi: 10.1016/j.toxlet.2016.08.016

40. Park YS, Park JH, Ko J, Shin IC, Koh HC. mTOR inhibition by rapamycin protects against deltamethrin-induced apoptosis in PC12 cells. Environ Toxicol 2017;32:109–21. doi: 10.1002/tox.22216

41. Bordoni L, Fedeli D, Nasuti C, Capitani M, Fiorini D, Gabbianelli R. Permethrin pesticide induces NURR1 up-regulation in dopaminergic cell line: Is the pro-oxidant effect involved in toxicant-neuronal damage? Comp Biochem Physiol C 2017;201:51–7. doi: 10.1016/j.cbpc.2017.09.006

42. Raszewski G, Lemieszk MK, Łukawski K. Cytotoxicity induced by cypermethrin in Human Neuroblastoma Cell Line SH-SY5Y. Ann Agric Environ Med 2016;23:106–10. doi: 10.4103/2231-0738.129598

43. Romero A, Ramos E, Ares I, Castellano V, Martinez M, Martinez-Larrañaga MR, Anadón A, Martinez MA. Oxidative stress and gene expression profiling of cell death pathways in alpha-cypermethrin-treated SH-SY5Y cells. Arch Toxicol 2017;91:2151–64. doi: 10.1007/s00204-016-1864-y

44. Pandey A, Jauhari A, Singh T, Singh P, Singh N, Srivastava AK, Khan F, Pant AB, Parmar D, Yadav S. Transactivation of P53 by cypermethrin induced mIR-200 and apoptosis in neuronal cells. Toxicol Res 2015;4:1578–86. doi: 10.1039/C5TX00200A

45. Raszewski G, Lemieszek MK, Łukawski K, Juszczak M, Rzeski W. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y. Basic Clin Pharmacol Toxicol 2015;116:158–67. doi: 10.1111/bcpt.12285

46. Liu G-P, Shi N. The inhibitory effects of deltamethrin on dopamine biosynthesis in rat PC12 cells. Toxicol Lett 2006;161:195–9. doi: 10.1016/j.toxlet.2005.09.011

47. Clark JM, Symington SB. Advances in the mode of action of pyrethroids. Top Curr Chem 2012;314:49–72. doi: 10.1007/128_2011_268

48. Breckenridge CB, Holdren L, Sturgess N, Weiner M, Sheets L, Sargent D, Soderlund DM, Choi JS, Symington S, Clark JM, Burr S, Ray D. Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. Neurotoxicology 2009;30(Suppl 1):S17–31. doi: 10.1016/j. neuro.2009.09.002

49. Taylor-Wellins J, Brooke BD, Bermudez I, Jones AK. The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor. J Neurochem 2015;135:705–13. doi: 10.1111/jnc.13290

50. Kumar Singh A, Nath Tiwari M, Prakash O, Pratap Singh M. A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Curr Neuropharmacol 2012;10:64–71. doi: 10.2174/157015912799362779

51. Ogaly HA, Khalaf A, Ibrahim MA, Galal MK, Abd-Elasalam RM. Influence of green tea extract on oxidative damage and apoptosis induced by deltamethrin in rat brain. Neurotoxicol Teratol 2015;50:23–31. doi: 10.1016/j.ntt.2015.05.005

52. Nieradko-Isanicka B, Borzęcki A. Subacute poisoning of mice with deltamethrin produces memory impairment, reduced locomotor activity, liver damage and changes in blood morphology in the mechanism of oxidative stress. Pharmacol Rep 2015;67:535–41. doi: 10.1016/j.pharep.2014.12.012

53. Mani VM, Sadiq AMM. Naringin modulates the impairment of memory, anxiety, locomotion, and emotionality behaviors in rats exposed to deltamethrin; a possible mechanism association with oxidative stress, acetylcholinesterase and ATPase. Biomed Prev Nutr 2014;4:527–33. doi: 10.1016/j. bionut.2014.08.006

54. Mani VM, Asha S, Sadiq AMM. Pyrethroid deltamethrin-induced developmental neurodegenerative cerebral injury and ameliorating effect of dietary glycoside naringin in male wistar rats. Biomed Aging Pathol 2014;4:1–8. doi: 10.1016/j.biagenp.2013.11.001

55. Khan AM, Sultana M, Raina R, Dubey N, Verma PK. Effect of sub-acute oral exposure of bifenthrin on biochemical parameters in crossbred goats. Proc Natl Acad Sci India Sec B Biol Sci 2013;83:323–8. doi: 10.1007/s40011-012-0150-x

56. Starr JM, Scollon EJ, Hughes MF, Ross DG, Graham SE, Crofton KM, Wolansky MJ, Devito MJ, Tornero-Velez R. Environmentally relevant mixtures in cumulative assessments: an acute study of toxicokinetics and effects on motor activity in rats exposed to a mixture of pyrethroids. Toxicol Sci 2012;130:309–18. doi: 10.1093/toxsci/kfs245

57. Ray DE, Fry JR. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol Ther 2006;111:174–93. doi: 10.1016/j.pharmthera.2005.10.003

58. Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP. Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 2012;33:404–15. doi: 10.1016/j.neurobiolaging.2010.02.018

59. Singh AK, Tiwari MN, Dixit A, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP. Nigrostriatal proteomics of cypermethrin-induced dopaminergic neurodegeneration:
microglial activation-dependent and independent regulations. Toxicol Sci 2011;122:526–38. doi: 10.1093/toxsci/kfr115

60. Fedeli D, Montani M, Bordoni L, Galleazzi R, Nasuti C, Correa-Sá L, Domingues VF, Jayant M, Brahmachari V, Massaccesi L, Laudadio E, Gabbianelli R. In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience 2017;340:411–23. doi: 10.1016/j.neuroscience.2016.10.071

61. Darney K, Bodin L, Bouchard M, Côté J, Volatier J-L, Desvignes V. Aggregate exposure of the adult French population to pyrethroids. Toxicol Appl Pharmacol 2018;351:21–31. doi: 10.1016/j.taap.2018.05.007

62. dos Santos Oliveira L, da Silva LP, da Silva AI, Magalhães CP, de Souza SL, de Castro RM. Effects of early weaning on the circadian rhythm and behavioral satiety sequence in rats. Behav Processes 2011;86:119–24. doi: 10.1016/j.beproc.2010.10.001

63. Vaiserman A. Early-life origin of adult disease: evidence from natural experiments. Exp Gerontol 2011;46:189–92. doi: 10.1016/j.exger.2010.08.031

64. Nasuti C, Gabbianelli R, Falcioni ML, Di Stefano A, Sozio P, Cantalamessa F. Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 2007;229:194–205. doi: 10.1016/j.tox.2006.10.015

65. Falcioni M, Nasuti C, Bergamini C, Fato R, Lenaz G, Gabbianelli R. The primary role of glutathione against nuclear DNA damage of striatum induced by permethrin in rats. Neuroscience 2010;168:2–10. doi: 10.1016/j.neuroscience.2010.03.053

66. Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm 2007(Suppl 72):113–20. doi: 10.1007/978-3-211-73574-9_14

67. Fedeli D, Montani M, Nasuti C, Gabbianelli R. Early life permeption treatment induces in striatum of older rats changes in α-synuclein content. J Nutrigenet Nutrigenom 2014;7:75–83.

68. Vences-Mejia A, Gómez-Garduño J, Caballero-Ortega H, Dorado-González V, Nosti-Palacios R, Labra-Ruíz N, Espinosa-Aguirre JJ. Effect of mosquito mats (pyrethroid-based) vapor inhalation on rat brain cytochrome P450s. Toxicol Mech Methods 2012;22:41–6. doi: 10.3109/15376516.2011.91448

69. García-Suáste Gi, Ramos-Chávez L, Rubio-Osorno M, Calvillo-Velasco M, Atzin-Méndez J, Guevara J, Silva-Adaya M, Desvignes V. Aggregate exposure of the adult French population to pyrethroids. Toxicol Appl Pharmacol 2018;351:21–31. doi: 10.1016/j.taap.2018.05.007

70. Singh A, Mudawal A, Shukla RK, Yadav S, Khanna VK, Sethumadhavan R, Parmar D. Effect of gestational exposure of cypermethrin on postnatal development of brain cytochrome P450 2D1 and 3A1 and neurotransmitter receptors. Mol Neurobiol 2015;52:741–56. doi: 10.1007/s12035-014-8903-6

71. Rangel-Barajas C, Coronel I, Florán B. Dopamine receptors and neurodegeneration. Aging Dis 2015;6:349. doi: 10.14366/AD.2015.0330

72. Shahabi HN, Andersson D, Nisobrandt H. Cytochrome P450 2E1 in the substantia nigra: relevance for dopaminergic neurotransmission and free radical production. Synapse 2008;62:379–88. doi: 10.1002/syn.20505

73. Lukaszewicz-Hussain A. Role of oxidative stress in organophosphate insecticide toxicity – Short review. Pestic Biochem Physiol 2010;98:145–50. doi: 10.1016/j.pestbiol.2010.07.006

74. Li H, Wu S, Ma Q, Shi N. The pesticide deltamethrin increases free radical production and promotes nuclear translocation of the stress response transcription factor Nrf2 in rat brain. Toxicol Ind Health 2011;27:579–90. doi: 10.1007/978-4832371039-400

75. Amin KA, Hashem KS. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alphatocopherol. BMC Vet Res 2012;8:45. doi: 10.1186/1746-6148-8-45

76. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 2017;482:426–31. doi: 10.1016/j.bbrc.2016.11.088

77. Giray B, Gürbay A, Hincal C. Cypermethrin-induced oxidative stress in rat brain and liver is prevented by Vitamin E or allopurinol. Toxicol Lett 2001;118:139–46. doi: 10.1016/S0378-4274(00)00277-0

78. Kanbur M, Silig Y, Eraslan G, Karabacak M, Saraca ZS, Şahin S. The toxic effect of cypermethrin, nimtraz and combinations of cypermethrin-nimtraz in rats. Environ Sci Pollut Res Int 2016;23:5232–42. doi: 10.1007/s11356-015-5720-z

79. Takahashi M, Komada M, Miyazawa K, Goto S, Ikeda Y, Bisphenol A exposure induces increased microglia and microglial related factors in the murine embryonic dorsal telencephalon and hypothalamus. Toxicol Lett 2018;284:113–9. doi: 10.1016/j.toxlet.2017.12.010

80. Long-Smith CM, Sullivan AM, Nolan YM. The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 2009;89:277–87. doi: 10.1016/j.pneurobiol.2009.08.001

81. Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, Walker Z, Turkeheimer FE, Brooks DJ. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 2013;38:938–49. doi: 10.1038/npp.2012.255

82. Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA. Microglial activation following early life exposure to permethrin in rat brain. Toxicol Ind Health 2011;27:579–90. doi: 10.1007/978-4832371039-400

83. Prasad S, Ravindran J, Aggarwal BB. NF-κB and cancer: how intimate is this relationship. Mol Cell Biochem 2006.10.071

84. Behav Processes 2011;86:119–24. doi: 10.1016/j.beproc.2010.10.001

85. Vaiserman A. Early-life origin of adult disease: evidence from natural experiments. Exp Gerontol 2011;46:189–92. doi: 10.1016/j.exger.2010.08.031

86. Fedeli D, Montani M, Nasuti C, Gabbianelli R. Early life permeption treatment induces in striatum of older rats changes in α-synuclein content. J Nutrigenet Nutrigenom 2014;7:75–83.
86. Shih R-H, Wang C-Y, Yang C-M. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 2015;8:77. doi: 10.3389/fnmol.2015.00077

87. Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. The nuclear factor kappa B signaling pathway; integrating metabolism with inflammation. Trends Cell Biol 2012;22:557–66. doi: 10.1016/j.tcb.2012.08.001

88. Pacheco FJ, Almaguel FG, Evans W, Rios-Colon L, Filippov T, Langer T. Mitochondrial dynamics and metabolic reprogramming. Trends Endocrinol Metab 2016;27:105–17. doi: 10.1016/j.tem.2015.12.001

89. Fedeli D, Montani M, Carloni M, Nasuti C, Amici A, Gabbianelli R. Leukocyte Nurr1 as peripheral biomarker of early-life environmental exposure to permethrin insecticide. Biomarkers 2012;17:604–9. doi: 10.3109/1354750X.2012.706641

90. Tiwari MN, Singh AK, Agraval S, Gupta SP, Jyoti A, Shanker R, Prakash O, Singh MP. Cypermethrin alters the expression profile of mRNAs in the adult rat striatum: a putative mechanism of postnatal pre-exposure followed by adulthood re-exposure-enhanced neurodegeneration. Neurotox Res 2012;22:321–34. doi: 10.1007/s12640-012-9317-8

91. Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 2016;27:105–17. doi: 10.1016/j.tem.2015.12.001

92. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013;8:2003–14. doi: 10.3969/j.issn.1673-5374.2013.21.009

93. de Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 2010;51:391–405. doi: 10.1002/eem.20575

94. Golpich M, Amini E, Mohamed Z, Azra D, Riou O, Castan F, Coelho M, Nguyen T, Peignaux T, Lartigau E, Mornex F, Kirova Y, Lartigau E, Belkacemi Y, Bourgier C, Noel G, Clippe S, Mornex F, Kramar A, Pelegrin A, Oszaini M. Abstract P3-12-18: Radiation-induced CD8 T-lymphocyte apoptosis as a predictor of late toxicity after radiotherapy: Results of the prospective multicenter French trial. Cancer Res 2016;76(Suppl):P3–12–18. doi: 10.1158/1538-7445.SABCS15-P3-12-18

95. Hofmann H, et al. Pyrethroid exposure and neurotoxicity: a mechanistic approach Arh Hig Rada Toksikol 2019;70:74-89
triggers DNA damage-induced apoptosis in hematological cancers. Nature Med 2014;20:599–606. doi: 10.1038/nm.3562

10. Eum K-H, Lee M. Crosstalk between autophagy and apoptosis in the regulation of paxtauxel-induced cell death in v-Ha-ras-transformed fibroblasts. Mol Cell Biochem 2011;348:61–8. doi: 10.1007/s11010-010-0638-8

11. Fei Q, McCormack AL, DiMonte DA, Ethell DW. Paraoquat neurotoxicity is mediated by a Bak-dependent mechanism. J Biol Chem 2008;283:3357–64. doi: 10.1074/jbc.M708451200

12. Hsu S-S, Jan C-R, Liang W-Z. The investigation of the pyrethroid insecticide lambda-cyhalothrin (LCT)-affected Ca²⁺ homeostasis and activated Ca²⁺-associated mitochondrial apoptotic pathway in normal human astrocytes: The evaluation of protective effects of BAPTA-AM (a selective Ca²⁺ chelator). Neurotoxicology 2018;69:97–107. doi: 10.1016/j.neuro.2018.09.009

13. Park JH, Ko J, Hwang J, Koh HC. Dynamin-related protein 1 mediates mitochondria-dependent apoptosis in chlorpyrifos-treated SH-SY5Y cells. Neurotoxicology 2015;51:145–57. doi: 10.1016/j.neuro.2015.10.008

14. El-Demerdash FM. Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate insecticides. Food Chem Toxicol 2011;49:1346–52. doi: 10.1016/j.foodchem.2011.03.018

15. Thornton C, Hagberg H. Role of mitochondria in apoptotic and necrotic cell death in the developing brain. Clin Chim Acta 2015;451:35–8. doi: 10.1016/j.cca.2015.01.026

16. Martinez MM, Reif RD, Pappas D. Detection of apoptosis: A review of conventional and novel techniques. Anal Methods 2010;2:996–1004. doi: 10.1039/C0AY00247J

17. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 2011;30:87. doi: 10.1186/1756-9966-30-87

18. Li GY, Xie P, Li HY, Hao L, Xiong Q, Qiu T. Involvement of p53, Bax, and Bel-2 pathway in microcystins-induced apoptosis in rat testis. Environ Toxicol 2011;26:111–7. doi: 10.1002/tox.20532

19. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Martin HL, Mounsey RB, Mustafa S, Sathe K, Teismann P. Peroxiredoxin 6 mediates mitochondria-dependent apoptosis in chlorpyrifos-affected SH-SY5Y cells. Neurotoxicology 2018;69:97–107. doi: 10.1016/j.neuro.2018.09.009

20. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011;16:123–40. doi: 10.1111/j.1365-2443.2010.01473.x

21. Ai B, Liu Y, Shi N. The effects of deltamethrin on HO activity and HO-1 protein expression in rat brain. Acta Universitatis Medicinace Tungii 2000;29:236–8.

22. V. MPTP activates ASK1-p38 MAPK signaling pathway through TNF-dependent Trx1 oxidation in parkinsonism mouse model. Free Rad Biol Med 2015;87:312–25. doi: 10.1016/j.freeradbiomed.2015.06.041

23. Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 2010;1802:396–405. doi: 10.1016/j.bbadis.2009.12.009

24. Ray A, Sehgal N, Karunakaran S, Ranganjan G, Ravindranath V. MPTP activates ASK1-p38 MAPK signaling pathway through TNF-dependent Trx1 oxidation in Parkinsonism mouse model. Free Rad Biol Med 2015;87:312–25. doi: 10.1016/j.freeradbiomed.2015.06.041

25. KJ W-Y, Park JH, Lee JE, Shin IC, Koh HC. JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol Lett 2013;218:235–45. doi: 10.1016/j.toxlet.2013.02.003

26. Salminen A, Kaarniranta K. Genetics vs. entropy: longevity factors suppress the NF-xb-driven entropic aging process. Ageing Res Rev 2010;9:298–314. doi: 1016/j.arr.2009.11.001

27. Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011;32:234–46. doi: 10.1016/j.mam.2011.10.006

28. Zhao X, Wang R, Xiong J, Yan D, Li A, Wang S, Xu J, Zhou J. JWA antagonizes paraquat-induced neurotoxicity via activation of Nrf2. Toxicol Lett 2017;277:32–40. doi: 10.1016/j.toxlet.2017.04.011

29. Deshmukh P, Unni S, Krishnappa G, Padmanabhan B. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev 2017;9:41–56. doi: 10.1007/s12551-016-0244-4

30. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011;16:123–40. doi: 10.1111/j.1365-2443.2010.01473.x

31. Lee EY, Lee JE, Park JH, Shin IC, Koh HC. Rosiglitazone, a PPAR-g agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicol Lett 2012;213:332–44. doi: 10.1016/j.toxlet.2012.07.016

32. Martin HL, Mounsey RB, Mustafa S, Sathe K, Teissmann P. Pharmacological manipulation of peroxisome proliferator-activated receptor γ (PPARγ) reveals a role for anti-oxidant protection in a model of Parkinson’s disease. Exp Neurol 2014;253:16–27. doi: 10.1016/j.expneurol.2013.12.012

33. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Martín HL, Mounsey RB, Mustafa S, Sathe K, Teismann P. Pharmacological manipulation of peroxisome proliferator-activated receptor γ (PPARγ) reveals a role for anti-oxidant protection in a model of Parkinson’s disease. Exp Neurol 2014;253:16–27. doi: 10.1016/j.expneurol.2013.12.017

34. Yang J, Wu L-J, Tashino S-I, Onedera S, Ikejima T. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic Res 2008;42:492–504. doi: 10.1080/10715760802112791

35. Srivastava A, Kumar V, Pandey A, Jahan S, Kumar D, Rajpurohit C, Singh S, Khanna VK, Pant AB. Adoptive autophagy activation: a much-needed remedy against chemical induced neurotoxicity/developmental neurotoxicity. Mol Neurobiol 2017;54:1797–807. doi: 10.1007/s12051-016-9778-5

36. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 2011;19:163–74. doi: 11.1097/000328516

37. Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 2008;131:1969–78. doi: 10.1093/brain/awm318

38. Giordano S, Darley-Usmar V, Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative...
Izloženost piretroidima i njihova neurotoksičnost: mehanicistički pristup

Piretroidi su skupina sintetskih insekticida u širokoj primjeni: u kućanstvima i poljoprivredi, šumarstvu i komunalnoj higijeni. Problem vezan uz njihovu primjenu, koji je danas u središtu znanstvene pozornosti, njihova je neurotoksičnost i propadanje nigrostrijatalnih dopaminergičnih neurona kakvo je zamijećeno kod Parkinsonove bolesti. Glavni su mehanizmi tega neurotoksičnog djelovanja oksidacijski stres, upalni procesi, gubitak neurona i mitohondrijska disfunkcija, a ono najviše pogađa ionske kanale. No i drugi su receptori, enzimi i signalni putovi pogođeni odnosno sudjeluju u poremećajima izazvanih piretroidima. Cilj je ovoga preglednog rada rasvijetliti mehanizme neurotoksičnog djelovanja piretroida deltametrina, permetrina i cipermetrina. Također se razmatra kako izloženost piretroidima djeluje na uobičajene ciljeve i putove liječenja Parkinsonove bolesti, uključujući Nrf2, Nurr1 i PPARγ, te na koja pitanja trebaju odgovoriti buduća istraživanja i nove metode zaštite od neuroloških poremećaja izazvanih ovim pesticidima.

KLJUČNE RIJEČI: cipermetrin; deltametrin; Nrf2; Nurr1; Parkinsonova bolest; permetrin; pesticidi; PPARγ

IZLOŽENOST PIRETROIDIMA I NJIHOVA NEUROTOXIKOŠNOST: MEHANIČISTIČKI PRISTUP

Piretroidi su skupina sintetskih insekticida u širokoj primjeni: u kućanstvima i poljoprivredi, šumarstvu i komunalnoj higijeni. Problem vezan uz njihovu primjenu, koji je danas u središtu znanstvene pozornosti, njihova je neurotoksičnost i propadanje nigrostrijatalnih dopaminergičnih neurona kakvo je zamijećeno kod Parkinsonove bolesti. Glavni su mehanizmi toga neurotoksičnoga djelovanja oksidacijski stres, upalni procesi, gubitak neurona i mitohondrijska disfunkcija, a ono najviše pogađa ionske kanale. No i drugi su receptori, enzimi i signalni putovi pogođeni odnosno sudjeluju u poremećajima izazvanima piretroidima. Cilj je ovoga preglednog rada rasvijetliti mehanizme neurotoksičnog djelovanja piretroida deltametrina, permetrina i cipermetrina. Također se razmatra kako izloženost piretroidima djeluje na uobičajene ciljeve i putove liječenja Parkinsonove bolesti, uključujući Nrf2, Nurr1 i PPARγ, te na koja pitanja trebaju odgovoriti buduća istraživanja i nove metode zaštite od neuroloških poremećaja izazvanih ovim pesticidima.

KLJUČNE RIJEČI: cipermetrin; deltametrin; Nrf2; Nurr1; Parkinsonova bolest; permetrin; pesticidi; PPARγ