Tensor Matched Kronecker-Structured Subspace Detection for Missing Information

Ishan Jindal, Student Member, IEEE, and Matthew Nokleby, Member, IEEE
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI, 48202, USA
Email: {ishan.jindal, matthew.nokleby}@wayne.edu

Abstract

We consider the problem of detecting whether a tensor signal having many missing entities lies within a given low dimensional Kronecker-Structured (KS) subspace. This is a matched subspace detection problem. Tensor matched subspace detection problem is more challenging because of the intertwined signal dimensions. We solve this problem by projecting the signal onto the Kronecker structured subspace, which is a Kronecker product of different subspaces corresponding to each signal dimension. Under this framework, we define the KS subspaces and the orthogonal projection of signal onto the KS subspace. We prove that the reliable detection is possible as long as the cardinality of missing signal is greater than the dimensions of the KS subspace by bounding the residual energy of the sampling signal with high probability.

Index Terms

Machine learning, subspace models, Kronecker-structured model, missing multi-dimensional signals.

I. INTRODUCTION

The matched subspace detection problem arises in different scientific areas. This includes medical imaging such as in image representation [1], in shape detection [2], communication MIMO network systems [3], [4], matrix completion [5], [6] etc., where we need to detect whether a given signal lies within a subspace. The matched subspace detection is well studied problem [7], [8]. However, this problem become more challenging when the signal is not completely observable that is only a small subset of the signal entries are known and based on this observation we want to test whether a signal belongs to a given subspace.

To deal with subspace detection with missing information, [9] and [10] provides a way to deal with missing information in the signal. These available methods make an implicit assumption that the signal is present in vectorized form and convert a multi-dimensional signal into a single dimension before testing. Many real-world signals such as dynamic scene video [11] or tomographic images are inherently multi dimensional, which capture the spatial and temporal correlations within the data. However, by vectorizing the signal we lose the multi-dimensional structure of the data, which could be used to enhance the performance of the detector. Previous works, for example [12], consider general subspace structure, whereas our work applies a subspace model to tensors by supposing that each mode of the tensor lies approximately along a subspace similar to [13]. Equivalently, we preserve this multi-dimensional structure of the signal by projecting the signal onto Kronecker-structured subspace, which is a Kronecker product of a number of subspaces corresponding to each signal dimension. While capturing the EEG signals using number of electrodes placed over the scalp, one of the electrodes is broken or tomographic images are inherently multi dimensional, which capture the spatial and temporal correlations within the data.

In this work, we present all our analysis for 2-D signals $Y \in \mathbb{R}^{m_1 \times m_2}$. We study two different ways through which information can be missing. First, when the entire row and/or column of the 2-D signal is missing, represented by Y_{Ω}. For instance, while capturing the EEG signals using number of electrodes placed over the scalp, one of the electrodes is broken or we miss to capture the signal for a time window. Second, a more general case, when only discrete entries are missing, that is, the missing entries need not to be in the form of entire rows and/or columns, represented by $Y_{\Omega'}$. We formulate a binary hypothesis test for the more general case of missing information, where given a Kronecker-structured subspace $D \in \mathbb{R}^{m_1 m_2 \times n_1 n_2}$ we need to find whether $Y \in D$ by just observing the samples of Y with or without noise.

We formulate the hypothesis test as $H_0 : Y \in D$ and $H_1 : Y \notin D$. This test follows immediately by computing the residual energy, that is, if $Y \in D$, then the residual energy $\|Y - U^A Y U^B\|_F^2 = 0$ and $\|Y_{\Omega} - U^A_{\Omega'} Y_{\Omega} U^B_{\Omega'}\|_F^2 = 0$, where U^A and U^B are the orthogonal projection operator onto row and column subspace, respectively. We show that the residual energies of the signal are bounded with high probability. The main result of this work answers, given the row and column subspaces with dimensions $n_1 \ll m_1$ and $n_2 \ll m_2$, respectively, how many rows and columns of the 2-D signal must be observed in order to reliably detect whether the signal belongs to the given subspace.

The rest of the paper is organized as follows: In Section II we define the Kronecker structured subspace model. We present the final results in Section III with the discussion and experiments in Section IV. The hypothesis testing for matched subspace detection is provided in Section V and finally, we conclude this work with future directions in Section VI.

Mathematical Notation: We use lowercase bold letters to represent vectors, such as x and use uppercase bold to represent matrices, such as Y. We use \otimes to represent the Kronecker product between two matrices.
II. Model Definition

A two dimensional signal of interest \(\mathbf{Y} \in \mathbb{R}^{m_1 \times m_2} \) is represented by a matrix \(\mathbf{A} \in \mathbb{R}^{m_1 \times n_1} \), which describes the subspace on which the columns of \(\mathbf{Y} \) approximately lie with \(n_1 \leq m_1 \), and by \(\mathbf{B} \in \mathbb{R}^{m_2 \times n_2} \), which describes the subspace on which the rows of \(\mathbf{Y} \) approximately lie with \(n_2 \leq m_2 \), that is \(\mathbf{Y} = \mathbf{AXB}^T \) where \(\mathbf{X} \in \mathbb{R}^{n_1 \times n_2} \) represents the coefficient matrix. We can also express \(\mathbf{Y} \) in vectorized form

\[
\mathbf{y} = (\mathbf{A} \otimes \mathbf{B})\mathbf{x},
\]

where \(\mathbf{y} = \text{vec}(\mathbf{Y}) \), \(\mathbf{x} = \text{vec}(\mathbf{X}) \) and \(\otimes \) denotes the Kronecker product. Similar to [9], we define the coherence of Kronecker-structured subspace \(\mathbf{D} = \mathbf{A} \otimes \mathbf{B} \in \mathbb{R}^{m_1 m_2 \times n_1 n_2} \) as

\[
\mu(\mathbf{D}) := \frac{m_1 m_2}{n_1 n_2} \max_j \|\mathbf{U}^D e^A_{j} \|_2^2,
\]

where \(\mathbf{U}^D = (\mathbf{D}^T \mathbf{D})^{-1} \mathbf{D}^T \) is the orthogonal projection operator onto \(\mathbf{D} \), \(e^A_{j} \) represents the standard basis vector and \(\| \cdot \|_2 \) represents the Euclidean norm of a vector. The coherence provides the amount of information we can expect from each sample to provide. From [5], the coherence can take values between \(1 \leq \mu(\mathbf{D}) \leq \frac{m_1 m_2}{n_1 n_2} \). For further analysis, we also need to know whether the signal has energy outside the \(n_1 \) and \(n_2 \) dimensional column and row subspaces, respectively. Therefore, we define the coherence of column and row subspaces as

\[
\mu(\mathbf{A}) := \frac{m_1}{n_1} \max_j \|\mathbf{U}^A_{j} \|_2^2,
\]

\[
\mu(\mathbf{B}) := \frac{m_2}{n_2} \max_j \|\mathbf{U}^B_{j} \|_2^2.
\]

Where, \(\mathbf{U}^A = \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \) and \(\mathbf{U}^B = \mathbf{B} (\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \) are the projection operators onto \(\mathbf{A} \) and \(\mathbf{B} \) subspace, respectively and can take values \(1 \leq \mu(\mathbf{A}) \leq \frac{m_1}{n_1} \) and \(1 \leq \mu(\mathbf{B}) \leq \frac{m_2}{n_2} \). To establish the relationship between the coherence of Kronecker-structured subspace with the coherence of individual subspaces we need the Lemma 1.

Lemma 1. The coherence of the Kronecker-structured subspace is equal to the product of coherence of individual subspaces, that is

\[
\mu(\mathbf{A} \otimes \mathbf{B}) = \mu(\mathbf{A}) \mu(\mathbf{B}).
\]

Proof. in Appendix [8]

\(\mu(\mathbf{A}) \) achieves minimum values when all the vectors whose all the entries have magnitude \(\frac{1}{\sqrt{n_1}} \) forms \(\mathbf{A} \) and if \(\mathbf{A} \) contains a standard basis element then \(\mu(\mathbf{A}) \) achieves the maximum value \(\frac{m_1}{n_1} \). Similar analysis holds for \(\mu(\mathbf{B}) \) and \(\mu(\mathbf{D}) \). For a 2-D signal \(\mathbf{Y} \), we let \(\mu(\mathbf{Y}) \) defines the coherence of the subspace spanned by the signal \(\mathbf{Y} \) and we define the \(l_{\infty} \) norm as \(\|\mathbf{Y}\|_{\infty} = \max_{i,j} \text{abs}(\mathbf{Y}(i,j)) \). From [5], we write \(\mu(\mathbf{Y}) = m_1 m_2 \frac{\|\mathbf{Y}\|_{2}}{\|\mathbf{Y}\|_{F}} \).

A. Missing Signals

For tensor signals, we can expect signal entries to be missing along one or many dimensions, for instance, in Fig. [12] entire rows and columns of the 2-D signal \(\mathbf{Y} \) are missing. We represent the signal with this type of missing information as \(\tilde{\mathbf{Y}}_{\Omega} \), where \(\Omega_{k_1 k_2} \) represents the index of non-zero rows (\(k_1 \)) and non-zeros columns (\(k_2 \)). Now onwards, we use shorthand \(\Omega \) in place of \(\Omega_{k_1 k_2} \) throughout the paper. Thus, \(\tilde{\mathbf{Y}}_{\Omega} \) is a signal of dimension \(k_1 \times k_2 \). The energy of the signal \(\mathbf{Y} \) in the subspace \(\mathbf{A} \otimes \mathbf{B} \) is \(\|\mathbf{U}^A \mathbf{Y} (\mathbf{U}^B)^T\|_F^2 \), where \(\mathbf{U}^A \) and \(\mathbf{U}^B \) are the column and row projection operator onto \(\mathbf{A} \) and \(\mathbf{B} \) subspaces, respectively and \(\| \cdot \|_F \) represents the Frobenius norm of the matrix.

Now, we define the column and row subspace for missing signal as \(\mathbf{A}_\Omega \in \mathbb{R}^{k_1 \times n_1} \) and \(\mathbf{B}_\Omega \in \mathbb{R}^{k_2 \times n_2} \). Here, \(k_1 \) and \(k_2 \) are the columns and rows of \(\mathbf{A} \) and \(\mathbf{B} \), respectively indexed by the set \(\Omega_{k_1 k_2} \), arranged in lexicographic order. Since we only observe the signal \(\mathbf{Y} \) for the set of rows and columns indexed by \(\Omega_{k_1 k_2} \), we estimate the missing signal energy \(\mathbf{Y}_{\Omega} \) in \(\mathbf{D} \) as how well the missing signal is best represented by the subspace \(\mathbf{D}_\Omega = \mathbf{A}_\Omega \otimes \mathbf{B}_\Omega \) with the projection operator \(\mathbf{U}^D_\Omega = \mathbf{D}_\Omega (\mathbf{D}^T_\Omega \mathbf{D}_\Omega)^{-1} \mathbf{D}^T_\Omega \). Therefore, if the row and columns of signal \(\mathbf{Y} \) lies in row and column subspace then \(\| \mathbf{Y} - \mathbf{U}^A \mathbf{Y} (\mathbf{U}^B)^T \|_F^2 = 0 \) and hence

\[
\| \mathbf{Y}_{\Omega} - \mathbf{U}^A_{\Omega} \mathbf{Y}_{\Omega} (\mathbf{U}^B_{\Omega})^T \|_F^2 = \| \mathbf{Y}_{\Omega} - \tilde{\mathbf{Y}}_{\Omega} \|_F^2 = 0,
\]

where \(\mathbf{U}^A_{\Omega} = \mathbf{A}_\Omega (\mathbf{A}^T_{\Omega} \mathbf{A}_\Omega)^{-1} \mathbf{A}^T_{\Omega} \) and \(\mathbf{U}^B_{\Omega} = \mathbf{B}_\Omega (\mathbf{B}^T_{\Omega} \mathbf{B}_\Omega)^{-1} \mathbf{B}^T_{\Omega} \).

However, it is not always true that the entire row or and entire column of the signal is missing. It may be the case that, while collecting the sensor output, some sensors are dead for a period of time and then wake up again. Therefore, we extend our analysis to a more general case of missing information, that is when any particular entry in the signal is missing as shown
in Fig. 1(b) where only a fraction of entries are missing. We represent the signal with missing discrete entries as \(Y_{\hat{\Omega}(k_1,k_2)} \), where \(\hat{\Omega}(k_1,k_2) = \{(i,j)\forall (i,j) | Y_{\hat{\Omega}(i,j)} \neq 0 \} \) represents the location of all the non-zero entries.

When the entire rows and/or columns of the signal are missing, we represent the remaining signal as the interaction of remaining rows and columns. Whereas, when discrete entries are missing, we represent the remaining signal as the signal minus the intersection of rows and/or columns that contains missing entries, we call it as union of dimensions. For further clarification, in Fig. 1 we plot a 2-D signal \(Y \in \mathbb{R}^{20 \times 17} \) with \(m_1 = 20 \) and \(m_2 = 17 \). Let 5 rows and 2 columns of the signal \(Y \) is missing, we represent the remaining signal as the intersection of \(k_1 = m_1 - 5 = 15 \) and \(k_2 = m_2 - 2 = 15 \) in Fig. 1A. Similarly, for the missing discrete entries we count the number of rows and columns to which the missing entries belong and subtract the count from corresponding signal dimensions to obtain \(k_1 \) and \(k_2 \). Finally subtract the intersection of the \(k_1 \) and \(k_2 \) from the signal to represent the remaining signal as shown in Fig. 1B.

![Fig. 1: (a) Intersection and (b) union of rows and columns.](Image)

III. MAIN RESULTS

Theorem 1. Let the entire rows or/and columns of the signal be missing, \(\delta > 0 \), \(k_1 \geq \frac{8}{3} n_1 \mu(A) \log \left(\frac{2n_1}{\delta} \right) \) and \(k_2 \geq \frac{8}{3} n_2 \mu(B) \log \left(\frac{2n_2}{\delta} \right) \), then with probability at least \(1 - 8\delta \),

\[
\left(1 - \alpha\right) \left(\frac{k_1 k_2}{m_1 m_2} \right) - \frac{(\beta + 1)^2}{2(1 - \gamma_2)(1 - \gamma_1)} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \\left\| Y - U^A Y U^B \right\|_F^2 \leq \left\| Y - U^A \hat{\Omega} Y_{\hat{\Omega}} U^B \right\|_F^2,
\]

\[
\leq \left(1 + \alpha\right) \left(\frac{k_1 k_2}{m_1 m_2} \right) \\left\| Y - U^A Y U^B \right\|_F^2,
\]

where \(\alpha = \sqrt{2\mu(Y) \log(1/\delta)} \), \(\beta = \sqrt{\frac{4\mu(Y) \log(1/\delta)}{\frac{m_1 n_1}{\mu(A)} + \frac{m_2 n_2}{\mu(B)}}} \), \(\gamma_1 = \sqrt{\frac{8n_1 \mu(A) \log(2n_1/\delta)}{3k_1}} \) and \(\gamma_2 = \sqrt{\frac{8n_2 \mu(B) \log(2n_2/\delta)}{3k_2}} \).

Proof. To prove this theorem, we first solve for the residual energy as follows

\[
\left\| Y - U^A \hat{\Omega} Y_{\hat{\Omega}} U^B \right\|_F^2 = \text{tr} \left(\left(Y - U^A \hat{\Omega} Y_{\hat{\Omega}} U^B \right)^T \left(Y - U^A \hat{\Omega} Y_{\hat{\Omega}} U^B \right) \right)
\]

\[
= \left\| Y_{\hat{\Omega}} \right\|_F^2 - \text{tr} \left(\left(Y^T_{\hat{\Omega}} U^A \hat{\Omega} Y_{\hat{\Omega}} U^B \right) \right)
\]

\[
= \left\| Y_{\hat{\Omega}} \right\|_F^2 - \text{tr} \left(\left(Y^T_{\hat{\Omega}} A_{\hat{\Omega}} A_{\hat{\Omega}}^{-1} A_{\hat{\Omega}}^T Y_{\hat{\Omega}} B_{\hat{\Omega}} B_{\hat{\Omega}}^{-1} B_{\hat{\Omega}}^T \right) \right).
\]

Now to solve the second part in (7), define \(T^T_{\hat{\Omega}} T_{\hat{\Omega}} = (A_{\hat{\Omega}}^T A_{\hat{\Omega}})^{-1} \) and \(V_{\hat{\Omega}} V^T_{\hat{\Omega}} = (B_{\hat{\Omega}}^T B_{\hat{\Omega}})^{-1} \). Using the rotation property of trace we write

\[
\text{tr} \left(Y^T_{\hat{\Omega}} A_{\hat{\Omega}} T^T_{\hat{\Omega}} T_{\hat{\Omega}} A_{\hat{\Omega}}^T Y_{\hat{\Omega}} B_{\hat{\Omega}} V_{\hat{\Omega}} V^T_{\hat{\Omega}} B_{\hat{\Omega}}^T \right) = \left\| T_{\hat{\Omega}} A_{\hat{\Omega}} Y_{\hat{\Omega}} B_{\hat{\Omega}} V_{\hat{\Omega}} V^T_{\hat{\Omega}} \right\|_F^2.
\]

Substituting \(T^T_{\hat{\Omega}} T_{\hat{\Omega}} \) and \(V_{\hat{\Omega}} V^T_{\hat{\Omega}} \) we obtain (7) as:

\[
\left\| Y_{\hat{\Omega}} - \hat{Y}_{\hat{\Omega}} \right\|_F^2 = \left\| Y_{\hat{\Omega}} \right\|_F^2 - \left\| T_{\hat{\Omega}} A_{\hat{\Omega}} Y_{\hat{\Omega}} B_{\hat{\Omega}} V_{\hat{\Omega}} V^T_{\hat{\Omega}} \right\|_F^2
\]

\[
\leq \left\| Y_{\hat{\Omega}} \right\|_F^2 - \left\| T_{\hat{\Omega}} \right\|_F^2 \cdot \left\| A_{\hat{\Omega}} Y_{\hat{\Omega}} B_{\hat{\Omega}} \right\|_F^2 \cdot \left\| V_{\hat{\Omega}} \right\|_F^2.
\]
The final expression for residual energy is
\[
\left\| Y - \hat{Y} \right\|_F^2 \leq \left\| Y_\Omega \right\|_F^2 - \left(\left(A_\Omega^T A_\Omega \right)^{-1} \right) \cdot \left(A_\Omega^T Y_\Omega B_\Omega \right) \cdot \left(B_\Omega^T B_\Omega \right)^{-1} \right\|_F^2.
\]
(10)
We bound the each term in (10) with high probability using the following Lemmas.

Lemma 2. Using the similar notations as Theorem 7 we bound the missing signal energy as
\[
(1 - \alpha) \left(\frac{k_1 k_2}{m_1 m_2} \right) \left\| Y \right\|_F^2 \leq \left\| Y_\Omega \right\|_F^2 \leq (1 + \alpha) \left(\frac{k_1 k_2}{m_1 m_2} \right) \left\| Y \right\|_F^2.
\]
(11)
with probability at least 1 - 2δ.

Lemma 3. With high probability 1 - 2δ and using same notation in Theorem 7
\[
\left\| A_\Omega^T Y_\Omega B_\Omega \right\|_F^2 \leq (\beta + 1)^2 \left(\frac{k_1 k_2}{2 m_1 m_2} \right) \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \left\| Y \right\|_F^2.
\]
(12)

Lemma 4. With high probability 1 - δ and using same notation in Theorem 7 we bound the energy of column subspaces as
\[
\left\| \left(\sum_{i \in \Omega} A_{\Omega_i} A_{\Omega_i}^T \right)^{-1} \right\|_F \leq \frac{m_1}{(1 - \gamma_1)k_1}.
\]
(13)
Similarly, we bound the energy of row subspace as
\[
\left\| \left(\sum_{i \in \Omega} B_{\Omega_i} B_{\Omega_i}^T \right)^{-1} \right\|_F \leq \frac{m_2}{(1 - \gamma_2)k_2}.
\]
(14)

Combining the Lemmas 3 and 4 with the energy of missing signal in Lemma 2 and using the union bound we obtain the final expression in Theorem 1.

We further extend this analysis to a more general scenario when discrete data entries are missing, that is for example, rather than missing an entire row and/or column, only some of the entries from that row and/or column are missing as shown in Fig. 1b.

Theorem 2. Let the discrete entries from the signal be missing, δ > 0, k_1 \geq \frac{\delta}{2} m_1 \mu(A) \log \left(\frac{2m_2}{\delta} \right) and k_2 \geq \frac{\delta}{2} m_2 \mu(B) \log \left(\frac{2m_1}{\delta} \right), than with probability at least 1 - 8δ,
\[
\frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{m_1 m_2} \left(1 - \alpha \right) \left(\frac{m_1 m_2 (\beta + 1)^2}{2 k_1 k_2 (1 - \gamma_1)(1 - \gamma_2)} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \right) \left\| Y - U^A Y U^B \right\|_F^2 \leq \left\| Y_\Omega - U_\Omega^A Y_\Omega U_\Omega^B \right\|_F^2 \leq (1 + \alpha) \frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{m_1 m_2} \left\| Y \right\|_F^2,
\]
(15)
where \(\alpha = \sqrt{\frac{2 \mu(Y)^2 k_1 k_2}{k_1 m_2 + k_2 m_1 - k_1 k_2}} \) \log \left(\frac{1}{\delta} \right), \(\beta = \sqrt{\frac{4 \mu(Y) \log(\frac{1}{\delta})}{\left(\frac{m_1}{n_1} + \frac{m_2}{n_2} - 1 \right)^2 \left(\frac{n_2}{m_2} \mu(B) + \frac{n_1}{m_1} \mu(A) \right)}} \), \(\gamma_1 = \sqrt{\frac{8 n_1 \mu(A)}{3 k_1} \log \left(\frac{2m_2}{\delta} \right)} \) and \(\gamma_2 = \sqrt{\frac{8 n_2 \mu(B)}{3 k_2} \log \left(\frac{2m_1}{\delta} \right)} \).

Lemma 5. Using the similar notations as Theorem 2 we bound the missing signal energy as
\[
(1 - \alpha) \frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{m_1 m_2} \left\| Y \right\|_F^2 \leq \left\| Y_\Omega \right\|_F^2 \leq (1 + \alpha) \frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{m_1 m_2} \left\| Y \right\|_F^2,
\]
(16)
with probability at least 1 - 2δ.

Lemma 6. With high probability 1 - 2δ and using same notation in Theorem 2
\[
\left\| A_\Omega^T Y_\Omega B_\Omega \right\|_F^2 \leq (\beta + 1)^2 \frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{2 m_1 m_2} \cdot \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \left\| Y \right\|_F^2.
\]
(17)

Now we put together Lemmas 5, 6 and 4 in (10) and using the union bound to obtain the final Theorem 2.

Theorem 1 always provides the tighter bound than the Theorem 2. For example, When only one entry from the signal is missing then from the pre-multiplier of upper bound in both the theorems we say that k_1 k_2 < k_1 m_2 + k_2 m_1 - k_1 k_2, because in any case m_1 > k_1 and m_2 > k_2. Furthermore, both the theorems can be very easily extended to tensors with more than 2 dimensions. For the tensors with more than 2 dimensions, the Kronecker subspace is the Kronecker product of more than two subspaces and rest of the analysis follows immediately.
IV. Analysis and Experiments

(a) $Y \in (A \otimes B)^\perp$

(b) $Y \in (A^\perp \otimes B)$

(c) $Y \in (A \otimes B^\perp)$

(d) $Y \in (A \otimes B)$

Fig. 2: The projection residual $\left\|Y - U_A^\Omega YU_B^\Omega\right\|_F$ averaged over 1000 simulations for fixed row $A \in \mathbb{R}^{k_1 \times 10}$ and column $B \in \mathbb{R}^{k_2 \times 10}$ subspaces, fixed sample size defined by k_1 and k_2 but different set of samples $\hat{\Omega}$ drawn without replacement and signal dimension $Y \in \mathbb{R}^{100 \times 100}$.

For completeness, we carry out analysis on more general results, that is on Theorem 2 as all the properties which holds for the general case of missing signals are all applicable for the restricted problem as well. All the parameters α, β, γ_1 and γ_2 depend on δ and the lower bound of the Theorem 2 contains all these parameters. In order to get more information about the lower bound we set all these parameters very near to 0, therefore for an incoherent row and column subspace, that is for $\mu(A) = 1$ and $\mu(B) = 1$ we write the lower bound as:

$$k_1 m_2 + k_2 m_1 - k_1 k_2 \left(1 - \frac{n_1 m_2 + n_2 m_1}{2k_1 k_2}\right) \left\|Y - U^A YU^B\right\|_F^2.$$

For $k_1 < n_1$ and $k_2 < n_2$, the first term in the above expression $\frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{m_1 m_2}$ is always ≤ 0. It is because that the actual signal dimension m_1 and m_2 is greater than the corresponding row and column subspace dimensions n_1 and n_2. Therefore for $m_1 = m_2 = m$, $n_1 = n_2 = n$ and $k_1 = k_2 = k$ we write the lower bound as:

$$\frac{2k(m - k)}{m^2} \left(1 - \frac{n m}{k^2}\right) \left\|Y - U^A YU^B\right\|_F^2.$$

Here the second term is always ≤ 0 as $nm > k^2$. Therefore, for the incoherent row and column subspaces the lower bound is ≤ 0, which is consistent with the fact that $\left\|Y - U_A^\Omega YU_B^\Omega\right\|_F^2 = 0$ for $k_1 < n_1$ and $k_2 < n_2$.
For the experiments, we choose highly incoherent subspaces. Both row and column subspaces have Gaussian random bases, that is $\mu(A) \approx 1.3$ and $\mu(B) \approx 1.3$. In all these simulations in Fig. 2, we plot the residual energy $\left\| Y_\Omega - U_\Omega^A Y_\Omega^B U_\Omega^B \right\|_F^2$ as a function of $k_1 \cdot k_2$. The plots show the maximum, minimum and mean values of the calculated residual energy over 1000 simulations of Ω without replacement for fixed row and column subspace, fixed unit norm signal and $Y \in (A \otimes B)^\perp$ in Fig. 2. We find that the residual energy is always positive when $k_1 \geq n_1 \mu(A) \log(n_1)$ and $k_2 \geq n_2 \mu(B) \log(n_2)$. The threshold in the Fig. 2 is calculated as the product of lower bounds of k_1 and k_2. In Fig. 2b, c we also show that the residual energy is still positive when the signal is sampled from a Kronecker subspace with any one of the subspaces is orthogonal. As expected, the residual energy is 0 for the signal sampled from the Kronecker subspace itself, that is for $Y \in (A \otimes B)$ the residual energy is 0, as shown in Fig. 2d.

V. MATCHED SUBSPACE DETECTION

In the noise less case $Y = AXB^T$ we can assume $\eta = 0$; we form the detection setup for the hypotheses $H_0 : Y \in D$ and $H_1 : Y \notin D$. We use the following test statistics

$$\left\| Y_\Omega - U_\Omega^A Y_\Omega^B \right\|_F^2 \overset{\mathcal{H}_0}{\leq} \eta.$$

For the large enough values of k_1 and k_2 and $\delta > 0$ the probability of detection is greater than $1 - 8\delta$, that is

$$\mathbb{P} \left[\left\| Y_\Omega - U_\Omega^A Y_\Omega^B \right\|_F^2 > 0 \mid \mathcal{H}_1 \right] \geq 1 - 8\delta.$$

Also, as shown in Fig. 2d, the projection error is zero when the signal belongs to the Kronecker-structured subspace. Therefore, the probability of false alarm is also 0, $\mathbb{P} \left[\left\| Y_\Omega - U_\Omega^A Y_\Omega^B \right\|_F^2 > 0 \mid \mathcal{H}_0 \right] = 0$.

With the noisy signal $\hat{Y} = AXB^T + Z$, where $Z \sim \mathcal{N}(0, I)$, we use the same hypothesis but the test statistics changes to

$$\left\| \hat{Y}_\Omega - U_\Omega^A \hat{Y}_\Omega^B \right\|_F^2 \overset{\mathcal{H}_0}{\leq} \eta.$$

Here, we note that according to (17), the test statistics is distributed as a non-central χ^2 with $n_1 n_2$ degrees of freedom and the non-centrality parameter

$$P_D = 1 - \mathbb{P} \left[\chi^2_{n_1 n_2} \left(\left\| Y_\Omega - U_\Omega^A Y_\Omega^B \right\|_F^2 \right. \leq \eta \right]$$

increases monotonically with the non-centrality parameter. Therefore, this means that the detection probability grows with either k_1 or k_2 or both.

VI. CONCLUSION

In this paper, we extend the matched subspace detection for vectorized signals to tensor signals by projecting the signal onto Kronecker-structured subspace. We have further shown that the detection from a highly incomplete tensor signal is possible by computing the energy outside the KS subspace.

REFERENCES

[1] Yeqing Li, Chen Chen, and Jungzhou Huang, “Transformation-invariant collaborative sub-representation,” in 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, 2014, pp. 3738–3743.

[2] Jun Wang and Kai Xu, “Shape detection from raw lidar data with subspace modeling,” IEEE transactions on visualization and computer graphics, vol. 23, no. 9, pp. 2137–2150, 2017.

[3] Hadi Sarieddeen, Mohammad M Mansour, and Ali Chehab, “Efficient subspace detection for high-order mimo systems,” in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on. IEEE, 2016, pp. 1001–1005.

[4] Emmanuel J Candès and Benjamin Recht, “Exact matrix completion via convex optimization,” Foundations of Computational mathematics, vol. 9, no. 6, pp. 717, 2009.

[5] Jun Wang and Kai Xu, “Shape detection from raw lidar data with subspace modeling,” IEEE transactions on visualization and computer graphics, vol. 23, no. 9, pp. 2137–2150, 2017.

[6] Akshay Krishnamurthy and Aarti Singh, “Low-rank matrix and tensor completion via adaptive sampling,” in Advances in Neural Information Processing Systems, 2013, pp. 836–844.

[7] Louis L Scharf and Benjamin Friedlander, “Matched subspace detectors,” IEEE Transactions on signal processing, vol. 23, no. 8, pp. 2146–2157, 1994.

[8] Martin Azizyan and Aarti Singh, “Subspace detection of high-dimensional vectors using compressive sampling,” in 2012 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2012, pp. 724–727.

[9] Laura Balzano, Benjamin Recht, and Robert Nowak, “High-dimensional matched subspace detection when data are missing,” in Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on. IEEE, 2010, pp. 1638–1642.

[10] Tong Wu and Waheed U Bajwa, “Subspace detection in a kernel space: The missing data case,” in Statistical Signal Processing (SSP), 2014 IEEE Workshop on. IEEE, 2014, pp. 93–96.

[11] Ishan Jindal and Matthew Nokleby, “Performance limits on the classification of kronecker-structured models,” in Information Theory (ISIT), 2017 IEEE International Symposium on. IEEE, 2017, pp. 1998–2002.

[12] Mehdi Bahri, Yannis Panagakis, and Stefanos Zafeiriou, “Robust kronecker component analysis,” arXiv preprint arXiv:1801.06432, 2018.

[13] Ishan Jindal and Matthew Nokleby, “Classification and representation via separable subspaces: Performance limits and algorithms,” IEEE Journal of Selected Topics in Signal Processing, 2018.
APPENDIX A

CONCENTRATION INEQUALITIES

Theorem 3 (McDiarmid’s Inequality [16]). Let \(X_1, X_2, \cdots, X_{m_1 m_2}\) be the independent random variables and assume a function \(f\), such that \(f(X_1, X_2, \cdots, X_{m_1 m_2}) := Y\), then for \(\epsilon > 0\) there exists \(t_i\) such that

\[
P[Y \geq E[Y] + \epsilon] \leq \exp \left(\frac{-2\epsilon^2}{\sum_{i=1}^{m_1 m_2} t_i^2} \right),
\]

\[
P[Y \leq E[Y] - \epsilon] \leq \exp \left(\frac{-2\epsilon^2}{\sum_{i=1}^{m_1 m_2} t_i^2} \right).
\]

Theorem 4 (Bernstein’s Inequality [9]). Let \(X_1, X_2, \cdots, X_m\) be the independent non-zero \(r \times r\) matrices and if for almost all \(k, \rho_k^2 = \max\{||E[X_k X_k^T]||_2, ||E[X_k^T X_k]||_2\}\) and \(||X_k||_2 \leq M\) hold true, then for any \(\tau > 0\),

\[
P\left[\left\| \sum_{i=1}^{m} X_i \right\|_2 > \tau \right] \leq 2r \exp \left(\frac{-\tau^2/2}{\sum_{i=1}^{m} \rho_k^2 + M\tau/3} \right)
\]

APPENDIX B

KS COHERENCE

Lemma 7. The coherence of the Kronecker-structured subspace \(A \otimes B \in \mathbb{R}^{m_1 m_2 \times n_1 n_2}\) is equal to the product of coherence of individual subspaces \(A \in \mathbb{R}^{m_1 \times n_1}\) and \(B \in \mathbb{R}^{m_2 \times n_2}\), that is

\[
\mu(A \otimes B) = \mu(A) \mu(B).
\]

Proof: We write the coherence of Kronecker product of two subspaces as

\[
\mu(A \otimes B) = \frac{m_1 m_2}{n_1 n_2} \max_j \left\| U^{(A \otimes B)} e_j^{AB} \right\|_2^2,
\]

where \(U^{(A \otimes B)} = (A \otimes B)(A \otimes B)^T\) is the orthogonal projector operator onto the Kronecker structured subspace \((A \otimes B)\). We can use Kronecker product properties to further simplify this, as

\[
U^{(A \otimes B)} = (A \otimes B)(A \otimes B)^T = (A \otimes B)(A^T A \otimes B^T B)^{-1} - 1 (A \otimes B)^T
\]

\[
= U^A \otimes U^B.
\]

Therefore, we can write \(24\) as:

\[
\mu(A \otimes B) = \frac{m_1 m_2}{n_1 n_2} \max_j \left\| U^A \otimes U^B e_j^{AB} \right\|_2^2.
\]

From [17], for the standard basis \(e_j^A\) and \(e_j^B\) with fixed degrees of freedom, we can always write \(e_j^{AB} = e_j^A \otimes e_j^B\). Thus,

\[
\mu(A \otimes B) = \frac{m_1 m_2}{n_1 n_2} \max_j \left\| U^A e_j^A \otimes U^B e_j^B \right\|_2^2.
\]

We can further simplify the above equation using norm of Kronecker product property in [18], that is, ||A \otimes B||_2 = ||A||_2 ||B||_2. Finally, we can write

\[
\mu(A \otimes B) = \frac{m_1 m_2}{n_1 n_2} \max_j \left(\max_j \left\| U^A e_j^A \right\|_2 \left\| U^B e_j^B \right\|_2 \right)
\]

\[
= \frac{m_1}{n_1} \max_j \left\| U^A e_j^A \right\|_2 \left(\frac{m_2}{n_2} \max_j \left\| U^B e_j^B \right\|_2 \right)
\]

\[
= \mu(A) \mu(B).
\]
APPENDIX C

SIGNAL RESIDUAL ENERGY

Proof of lemma 2 To prove this lemma we use Theorem 3 in Appendix A. Let \(|\Omega_A| = k_1\) and \(|\Omega_B| = k_2\) denotes the number of non-zero rows and columns. Therefore

\[A_{\Omega} \in \mathbb{R}^{k_1 \times n_1} \quad \text{and} \quad B_{\Omega} \in \mathbb{R}^{k_2 \times n_2} \]

and one can write \(|\mathbf{Y}|_F^2 = \frac{1}{2} \left(\sum_{i=1}^{m_1} ||\mathbf{Y}(i,:)||_2^2 + \sum_{j=1}^{m_2} ||\mathbf{Y}(:)\mathbf{y}_j||_2^2 \right)\). Set \(x_{i,j} = \mathbf{Y}_{\Omega(i,j)}^2\) and we know that \(\mathbf{Y}_{\Omega(i,j)}^2 \leq ||\mathbf{Y}||_2^2\) is true \(\forall i \in \{1, 2, \cdots, k_1\}\) and \(\forall j \in \{1, 2, \cdots, k_2\}\). Therefore,

\[
E \left[\sum_{i=1}^{k_1} \sum_{j=1}^{k_2} x_{i,j} \right] = E \left[||\mathbf{Y}\|_F^2 \right] - E \left[\sum_{i=1}^{m_1-k_1} \sum_{j=1}^{m_2-k_2} ||\mathbf{Y}(i,:)||_2^2 + \sum_{j=1}^{m_2-k_2} ||\mathbf{Y}(:)\mathbf{y}_j||_2^2 - \sum_{j=1}^{m_2-k_2} \sum_{i=1}^{m_1-k_1} (\Omega(i,j))^2 \right]
\]

Therefore, \(\sum_{i,j} x_{i,j} \leq \sum_{i,j} ||\mathbf{Y}\|_F^2 - \sum_{i,j} \sum_{k=1}^{m_1-k_1} \sum_{l=1}^{m_2-k_2} (\Omega(i,j))^2 \leq \sum_{i,j} ||\mathbf{Y}\|_F^2 - \sum_{i,j} \sum_{k=1}^{m_1-k_1} \sum_{l=1}^{m_2-k_2} \sum_{i,j} (\Omega(i,j))^2\)).

Proof of lemma 3 To prove this lemma we again use Theorem 3 in Appendix A and Lemma 7 in Appendix B. Let \(\mathbf{Y}_{\Omega_i} = A_{\Omega_i}^T \mathbf{Y}_{\Omega_i} B_{\Omega_i}\) represent the \((i,j)\)th samples index, where \(\Omega_i\) represents the \(i\)th row of the column subspace \(A\) and \(\Omega_j\) represents the \(j\)th row of the column subspace \(B\). Here \(||\sum_{i=1}^{k_1} \sum_{j=1}^{k_2} \mathbf{Y}_{\Omega_{i,j}}||_F \leq ||A_{\Omega_i}^T \mathbf{Y}_{\Omega_i} B_{\Omega_i}||_F\). Now, in order to bound \(|\mathbf{Y}|| we use the vectorized form of the signal and write \(|A_{\Omega_i}^T \mathbf{Y}_{\Omega_i} B_{\Omega_i}||_F = ||A_{\Omega_i}^T \mathbf{Y}_{\Omega_i} B_{\Omega_i}||_F ||\mathbf{e}_i||_2 = ||(A \otimes B)\mathbf{y}_j||_2 = ||D_{\Omega} \mathbf{y}_j||_2\), where \(\mathbf{y} = \text{vec}(\mathbf{Y})\). By definition in (2), we know \(||D_{\Omega(i)}||_2 = ||D_{\Omega}^T \mathbf{e}_i||_2 = ||U_{\Omega}^D \mathbf{e}_j^A \mathbf{B}||_2 \leq \sqrt{\frac{m_1}{k_1m_2}} \mu(D)\). Now from Lemma
we prove that the coherence of Kronecker subspace is product of coherence of individual subspaces. Therefore, we write \(\|D_{\Omega(t)}\|_2 \leq \sqrt{\frac{n_1 n_2}{m_1 m_2}} \mu(A) \mu(B) \). Thus, in vectorized form we write
\[
\|v_t\|_2 \leq \|y_{\Omega(t)}\| \|D_{\Omega(t)}\|_2 \leq \|Y\|_\infty \sqrt{\frac{n_1 n_2}{m_1 m_2}} \mu(A) \mu(B).
\]

Now suppose that the samples are take uniformly without replacement, then we can write the following bound as
\[
E \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{\Omega_{i,j}} \right\|_F^2 \right] = E \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} A_{\Omega_{i,j}}^T Y_{\Omega_{i,j}} B_{\Omega_{i,j}} \right\|_F^2 \right]
= \sum_{p=1}^{n_1} \sum_{q=1}^{n_2} E \left[\sum_{i=1}^{k_1} \sum_{j=1}^{k_2} \sum_{r=1}^{m_1} \sum_{s=1}^{m_2} A_{i,j,r}^2 Y_{r,s}^2 (1_{r=i,s=j}) B_{s,q}^2 \right]
= \sum_{p=1}^{n_1} \sum_{q=1}^{n_2} \frac{k_1 k_2}{m_1 m_2} \left(\sum_{r=1}^{m_1} \sum_{s=1}^{m_2} A_{i,j,r}^2 Y_{r,s}^2 B_{s,q}^2 \right)
= \sum_{p=1}^{n_1} \sum_{q=1}^{n_2} \frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \|Y\|_F^2.
\]
(30)

Using the McDiard’s concentration inequality from Theorem 3 we write the left hand side of (20) as
\[
P \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{\Omega_{i,j}} \right\|_F^2 \geq E \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{\Omega_{i,j}} \right\|_F^2 \right] + \epsilon \right] =
P \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{\Omega_{i,j}} \right\|_F^2 \geq \frac{k_1 k_2}{2m_1 m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \|Y\|_F^2 + \epsilon \right].
\]

For \(\epsilon = \beta \sqrt{\frac{k_1 k_2}{2m_1 m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \|Y\|_F} \), we can bound this probability by
\[
2 \exp \left(-2 \left(\frac{k_1 k_2}{2m_1 m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \|Y\|_F \right)^2 \right)
= 2 \exp \left(\frac{-\beta^2 \left(\frac{k_1 k_2}{2m_1 m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \|Y\|_F^2 \right)}{4k_1 k_2 \|Y\|_F^2} \right)
= 2 \exp \left(\frac{-\beta^2}{4} \left(\frac{m_2}{n_2} \mu(B) + \frac{m_1}{n_1} \mu(A) \right) \left(\frac{\|Y\|_F^2}{m_1 m_2 \|Y\|_\infty^2} \right) \right)
= 2 \exp \left(\frac{-\beta^2}{4} \left(\frac{m_2}{n_2} \mu(B) + \frac{m_1}{n_1} \mu(A) \right) \left(\frac{\|Y\|_F^2}{\|Y\|_\infty^2} \right) \right).
\]

The final bound obtained is:
\[
P \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{\Omega_{i,j}} \right\|_F^2 \geq (\beta + 1)^2 \frac{k_1 k_2}{2m_1 m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \|Y\|_F^2 \right] \leq 2 \exp \left(\frac{-\beta^2}{4} \left(\frac{m_2}{n_2} \mu(B) + \frac{m_1}{n_1} \mu(A) \right) \left(\frac{\|Y\|_F^2}{\|Y\|_\infty^2} \right) \right).
\]

Then for \(\beta = \sqrt{\frac{4 \mu(Y) \log(\frac{1}{\delta})}{(\frac{n_2}{n_2} \mu(B) + \frac{n_1}{n_1} \mu(A))}} \), with the probability \(1 - 2\delta \):
\[
\left\| A_{\Omega(t)}^T Y_{\Omega(t)} B_{\Omega(t)} \right\|_F^2 \leq (\beta + 1)^2 \frac{k_1 k_2}{2m_1 m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \|Y\|_F^2.
\]
(31)

Proof of Lemma 4: Following the same arguments as in (9) and applying the Theorem 4 we bound the following probability
with probability $1 - \delta$. We finally bound the energy of row and column subspaces with probability $1 - \delta$ as follows

$$
\left(1 - \alpha\right) \left(\frac{k_1 k_2}{m_1 m_2}\right) - \frac{\left(\beta + 1\right)^2}{2 \left(1 - \gamma_2\right) \left(1 - \gamma_1\right)} \left(\frac{n_1}{m_1}\mu(A) + \frac{n_2}{m_2}\mu(B)\right) \|Y - U^A Y U^B\|_F^2 \leq \|Y - U^\Omega Y U^\Omega\|_F^2
$$

$$
\leq (1 + \alpha) \left(\frac{k_1 k_2}{m_1 m_2}\right) \|Y - U^A Y U^B\|_F^2, \quad (34)
$$

Proof of lemma 5 To prove this lemma we use Theorem 3 in Appendix A. Let $|\Omega_A| = k_1$ and $|\Omega_B| = k_2$ denotes the number of non-zero rows and columns. Therefore $A_\Omega \in \mathbb{R}^{k_1 \times n_1}$ and $B_\Omega \in \mathbb{R}^{k_2 \times n_2}$ and one can write $\|Y\|_F^2 = \frac{1}{2} \left(\sum_{i=1}^{m_1} \|Y(i,:)\|_2^2 + \sum_{j=1}^{m_2} \|Y(:,j)\|_2^2\right)$. Set $x_{i,j} = Y^\Omega_{\Omega(i,j)}$ and we know that $Y^\Omega_{\Omega(i,j)} \leq \|Y\|_\infty$ is true for $\forall i \in \{1, 2, \cdots, k_1\}$ and $\forall j \in \{1, 2, \cdots, k_2\}$. Therefore,

$$
E \left[\sum_{i=1}^{k_1} \sum_{j=1}^{k_2} x_{i,j}\right] = E \left[\sum_{i=1}^{k_1} \|Y_{\Omega(i,:)}\|_2^2 + \sum_{j=1}^{k_2} \|Y_{\Omega(:,j)}\|_2^2 - \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} (Y_{\Omega(i,j)})^2\right]
$$

$$
= \sum_{i=1}^{k_1} E \left[\sum_{l=1}^{m_1} \|Y(i,:)\|_2^2 1_{\Omega(i,:)=l}\right] + \sum_{j=1}^{k_2} E \left[\sum_{l=1}^{m_2} \|Y(:,j)\|_2^2 1_{\Omega(:,j)=l}\right]
$$

$$
= \frac{k_1}{m_1} \|Y\|_F^2 + \frac{k_2}{m_2} \|Y\|_F^2 - \frac{k_1 k_2}{m_1 m_2} \|Y\|_F^2
$$

$$
= \left(\frac{k_1}{m_1} + \frac{k_2}{m_2} - \frac{k_1 k_2}{m_1 m_2}\right) \|Y\|_F^2, \quad (35)
$$

where 1 represents the indicator function and Ω assumes that the samples are taken uniformly without replacement. Thus, from we write the left hand side of (31) as

$$
P \left[\sum_{i=1}^{k_1} \sum_{j=1}^{k_2} x_{i,j} \leq E \left[\sum_{i=1}^{k_1} \sum_{j=1}^{k_2} x_{i,j}\right] - \epsilon\right] = P \left[\sum_{i=1}^{k_1} \sum_{j=1}^{k_2} x_{i,j} \leq \left(\frac{k_1}{m_1} + \frac{k_2}{m_2} - \frac{k_1 k_2}{m_1 m_2}\right) \|Y\|_F^2 - \epsilon\right].
$$

For $\epsilon = \alpha \left(\frac{k_1}{m_1} + \frac{k_2}{m_2} - \frac{k_1 k_2}{m_1 m_2}\right) \|Y\|_F^2$, we can bound this probability by

$$
2 \exp \left(-2 \left(\frac{k_1}{m_1} + \frac{k_2}{m_2} - \frac{k_1 k_2}{m_1 m_2}\right) \|Y\|_F^2\right) = 2 \exp \left(-\frac{2 \alpha^2 \left(\frac{k_1}{m_1} + \frac{k_2}{m_2} - \frac{k_1 k_2}{m_1 m_2}\right)^2 \|Y\|_F^4}{4 k_1 k_2 \|Y\|_\infty^4}\right)
$$

$$
= 2 \exp \left(-\frac{\alpha^2 (k_1 m_2 + k_2 m_1 - k_1 k_2)^2}{2 k_1 k_2 \|Y\|_\infty^2}\right)
$$

$$
= 2 \exp \left(-\frac{\alpha^2 (k_1 m_2 + k_2 m_1 - k_1 k_2)^2}{2 k_1 k_2 \|Y\|_\infty^2}\right).
$$
The final bound obtained is:

$$\Pr \left[\|Y_{\Omega(i,j)}^2 \|_F^2 \geq (1 - \alpha) \left(\frac{k_1}{m_1} + \frac{k_2}{m_2} - \frac{k_1k_2}{m_1m_2} \right) \|Y\|_F^2 \right] \geq 1 - 2\exp \left(-\alpha^2 \frac{(k_1m_2 + k_2m_1 - k_1k_2)^2}{2k_1k_2\mu(Y)^2} \right).$$

Then for $\alpha = \sqrt{\frac{2\mu(Y)^2k_1k_2}{(k_1m_2 + k_2m_1 - k_1k_2)^2 \log(\frac{1}{\delta})}},$ with the probability $1 - 2\delta$:

$$\left(1 - \alpha \right) \frac{k_1m_2 + k_2m_1 - k_1k_2}{m_1m_2} \|Y\|_F^2 \leq \|Y_{\Omega(i)}\|_F^2 \leq \left(1 + \alpha \right) \frac{k_1m_2 + k_2m_1 - k_1k_2}{m_1m_2} \|Y\|_F^2.$$

(36)

Proof of lemma 6: To prove this lemma we again use Theorem 3 in Appendix A and Lemma 7 in Appendix B. Let $V_{\Omega_{i,j}} = A_{\Omega_{i,j}}^T, Y_{\Omega_{i,j}}, B_{\Omega_{i,j}}$ represent the $(i, j)^{th}$ samples index, where $\Omega_{i,j}$ represents the i^{th} row of the column subspace A and $\Omega_{i,j}$ represents the j^{th} row of the row subspace B. Here $||\sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{\Omega_{i,j}}||_F = ||A_{\Omega}^T Y_{\Omega} B_{\Omega}||_F$. Now, in order to bound $||V||$ we use the vectorized form of the signal and write $||A_{\Omega}^T Y_{\Omega} B_{\Omega}||_F = ||V|| = ||(A \otimes B)_{\Omega}||_2 = ||D_{\Omega} Y||_2,$ where $Y = \text{vec}(Y)$. By definition in (2), we know $||D_{\Omega(i)}||_2 = ||D^T e_i||_2 = ||V_{\Omega(i)}||_F \leq \sqrt{n_1n_2 \mu(A) \mu(B)}.$ Therefore, we write $||V|| \leq \sqrt{n_1n_2 \mu(A) \mu(B)}$. Thus, in vectorized form we write

$$||V|| \leq \sqrt{n_1n_2 \mu(A) \mu(B)}.$$

Now suppose that the samples are taken uniformly without replacement, then we can write the following bound as

$$E \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{\Omega_{i,j}} \right\|_F^2 \right] = E \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} A_{\Omega_{i,j}}^T Y_{\Omega_{i,j}} B_{\Omega_{i,j}} \right\|_F^2 \right]$$

$$= \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} E \left[\sum_{i=1}^{k_1} \sum_{j=1}^{k_2} \sum_{r=1}^{m_1} \sum_{s=1}^{m_2} A_{rr}^2 Y_{rs}^2 \left(\begin{array}{c} 1 \end{array} \right) \right]$$

$$= \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} \left(k_1m_2 + k_2m_1 - k_1k_2 \right) \frac{m_1m_2}{m_1m_2} \left(\sum_{r=1}^{m_1} \sum_{s=1}^{m_2} A_{rr}^2 Y_{rs}^2 \right)$$

$$\leq \frac{k_1m_2 + k_2m_1 - k_1k_2}{2m_1m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \|Y\|_F^2.$$

(37)

Using the McDiard’s concentration inequality from Theorem 3, we write the left hand side of (20) as

$$\Pr \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{\Omega_{i,j}} \right\|_F^2 \geq E \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{\Omega_{i,j}} \right\|_F^2 \right] + \epsilon \right] =$$

$$\Pr \left[\left\| \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{\Omega_{i,j}} \right\|_F^2 \geq \frac{k_1m_2 + k_2m_1 - k_1k_2}{2m_1m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \|Y\|_F^2 + \epsilon \right].$$
For \(\epsilon = \beta \sqrt{\frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{2m_1 m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right)} \|Y\|_F \), we can bound this probability by

\[
2 \exp \left(-2 \left(\beta \sqrt{\frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{2m_1 m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right)} \|Y\|_F \right)^2 \right) \sum_{i=1}^{k_1 k_2} \left(2 \|Y\|_\infty \sqrt{\frac{n_1 n_2}{m_1 m_2} \mu(A) \mu(B)} \right)^2
\]

\[
= 2 \exp \left(-\frac{\beta^2}{4} \left(\frac{m_1}{k_1} + \frac{m_2}{k_2} - 1 \right) \left(\frac{m_2}{n_2} \mu(B) + \frac{1}{n_2} \mu(A) \right) \frac{\|Y\|_F^2}{\|Y\|_\infty^2} \right)
\]

The final bound obtained is:

\[
P \left[\sum_{i=1}^{k_1} \sum_{j=1}^{k_2} V_{i,j} \right]^2 \geq (\beta + 1)^2 \frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{2m_1 m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \|Y\|_F^2
\]

\[
\leq 2 \exp \left(-\frac{\beta^2}{4} \frac{\mu(Y)}{m_1} \left(\frac{m_1}{k_1} + \frac{m_2}{k_2} - 1 \right) \left(\frac{m_2}{n_2} \mu(B) + \frac{1}{n_2} \mu(A) \right) \right)
\].

Then for \(\beta = \sqrt{\left(\frac{m_1}{n_1^2} + \frac{m_2}{n_2^2} - 1 \right) \left(\frac{m_1}{n_1^2 m_1^2} + \frac{m_2}{n_2^2 m_2^2} \right)} \), with the probability \(1 - 2\delta \):

\[
\|A'_\Omega Y B_\Omega\|_F^2 \leq (\beta + 1)^2 \frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{2m_1 m_2} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \|Y\|_F^2.
\]

Combining (36), (38), (32) and (33) we obtain the desired bounds in Theorem 2 as

\[
\frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{m_1 m_2} \left((1 - \alpha) - \frac{(\beta + 1)^2 m_1 m_2}{2k_1 k_2 (1 - \gamma_1) (1 - \gamma_2)} \left(\frac{n_1}{m_1} \mu(A) + \frac{n_2}{m_2} \mu(B) \right) \right) \|Y\|_F^2 \leq \|Y - U_\Omega^A Y U_\Omega^B\|_F^2
\]

\[
\leq (1 + \alpha) \frac{k_1 m_2 + k_2 m_1 - k_1 k_2}{m_1 m_2} \|Y\|_F^2.
\]