New entropic bounds on time scales via Hermite interpolating polynomial

Iqrar Ansari1,2*, Khuram Ali Khan1, Ammara Nosheen1, Dilda Pečarić3 and Josip Pečarić4

*Correspondence: iqrar@math.qau.edu.pk
1Department of Mathematics, University of Sargodha, Sargodha, Pakistan
2Government Mian Muhammad Nawaz Sharif Associate College, Sargodha, Sargodha, Pakistan
Full list of author information is available at the end of the article

Abstract
Hermite's interpolation is utilized to establish a new generalization of an inequality for higher order convex functions containing Csiszár divergence on time scales. New entropic bounds in q-calculus and h-discrete calculus are also deduced. Some estimates for Zipf–Mandelbrot entropy are also given.

Keywords: Hermite interpolating polynomial; Time scales calculus; Quantum calculus; Information theory

1 Introduction
In the literature, several kinds of information divergence measures that compare two probability distributions are discussed and are widely applied in engineering, information theory, and statistics. The classification of these measures, like nonparametric, parametric, and entropy-type measures of information, provides a simple way to distinguish them [31]. The amount of information about an unknown parameter θ supplied by the data is measured using parametric measures of information, which are functions of θ. Fisher’s measure of information is the most well-known example of this type of measure [32]. Nonparametric measures are used to determine the amount of information provided by data in order to discriminate in favor of one probability distribution p1 over another p2, or to measure the affinity or distance among p1 and p2. The well-known measure of this class is Kullback–Leibler measure [42]. Measures of entropy express the amount of information contained in a distribution, that is, the amount of uncertainty associated with the outcome of an experiment. Rényi’s [62] and Shannon’s measures [65] are the most well-known examples of this type of measure. Shannon and Zipf–Mandelbrot entropies are very useful in various applied sciences, for example, in economics, information theory, and biology.

The theory of time scales played a vital role in difference calculus, differential calculus, and quantum calculus. This subject was rapidly developed by several mathematicians, who added various useful results to the literature by utilizing dynamic equations and integral inequalities on time scales, see e.g. [8, 9, 19, 20, 56, 63, 69]. Besides mathematics, inequalities and dynamic equations are also used in other disciplines e.g. physical problems, population dynamics, finance problems, and optical problems [22, 37, 51, 72].

In the early twentieth century, the idea of q-calculus was initiated after the work of Jackson who defined q-Jackson integral [36]. The q-calculus has a lot of applications in many...
disciplines of physics and mathematics [35, 57, 76]. Recently, this subject received a rapid boost in the development of q-calculus, see [11, 21, 34, 40, 50, 52, 55, 70, 71, 77] and the references therein. Several researchers established q-analogue of various integral inequalities, see [18, 27, 30, 37, 43, 46, 47, 68]. Inequalities involving convex functions received a considerable attention (see [7, 12, 33, 61]). Various papers related to inequalities for entropies and divergence measures exist in the literature, see e.g. [1, 3, 4, 6, 13–16, 28, 64] and the references cited therein. Jensen’s inequality plays an important role in information theory. It is useful to compute upper bounds for various divergence measures arising from information theory. Further, it plays a vital part for computing various bounds for conditional entropy, joint entropy, and mutual information. It gives various counterpart inequalities of Shannon entropy that is one of the vital parts applied in information theory and used to solve various problems in statistics, economics, ecology, psychology, accounting, computer science, etc.

It is important to note that results for convex functions may not be valid for n-convex functions. Recently, several inequalities for n-convex functions have been generalized by numerous researchers, see e.g. [23, 25, 39, 44, 54, 59, 60, 66]. Further, in [58], the authors used Hermite interpolation and obtained Popoviciu-type inequalities for n-convex function. In [24, 26], Butt et al. established the identities concerning Popoviciu-type inequalities for n-convex functions by using Green’s function and Hermite’s interpolation. In [5], Khan et al. generalized Sherman’s inequality for n-convex functions by using Hermite’s interpolation. In [2], Adeel et al. used Hermite’s interpolation and generalized Levinson-type inequalities for higher order convex functions. They also applied their results to information theory by finding certain estimates for f-divergence. In [49], Mehmood et al. used Hermite’s interpolation and new Green’s functions and generalized the continuous and discrete cyclic refinements of Jensen’s inequality for n-convex functions. The established results were used to obtain new bounds for relative, Shannon, and Zipf–Mandelbrot entropies. Further, in [38], the authors utilized Hermite’s interpolation and Green’s functions and established new general linear inequalities and identities containing n-convex functions.

Motivated by the above discussion, we use Hermite’s interpolating polynomial and generalize the Csiszár-type inequality on time scales for n-convex functions. Moreover, we compute bounds of differential entropy, Kullback–Leibler divergence, triangular discrimination, and Jeffreys distance on time scales, q-calculus, and h-discrete calculus. Some estimates for Zipf–Mandelbrot entropy are also given.

2 Preliminaries

The details on time scale calculus can be followed from [19, 20]:

A function $f: \mathbb{T} \to \mathbb{R}$ is rd-continuous if its left-sided limit is finite at left-dense points of \mathbb{T} and it is continuous at right-dense points of \mathbb{T}. In this paper, C_{rd} denotes the set of rd-continuous functions.

Theorem A. Every rd-continuous function has an antiderivative. If $x_0 \in \mathbb{T}$, then F given by

$$F(x) := \int_{x_0}^{x} f(\xi) \Delta \xi \quad \text{for } x \in \mathbb{T}$$

is an antiderivative of f.

Consider the following set:

\[\Omega := \left\{ p : p : \mathbb{T} \rightarrow [0, \infty), \int_a^b p(\xi) \Delta \xi = 1 \right\}. \]

In [14], Ansari et al. proved the following result.

Theorem B Suppose that \(\Theta : [0, \infty) \rightarrow \mathbb{R} \) is a convex function on \([\varsigma_1, \varsigma_2] \subset [0, \infty) \) and \(\varsigma_1 \leq 1 \leq \varsigma_2 \). If \(p_1, p_2 \in \Omega \) with \(\varsigma_1 \leq p_1(\xi) \leq p_2(\xi) \leq \varsigma_2 \) for every \(\xi \in \mathbb{T} \),

\[
\int_a^b p_2(\xi) \Theta \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \Delta \xi \leq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \Theta(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \Theta(\varsigma_2). \tag{1}
\]

Under the assumptions of Theorem B, we define the following linear functional:

\[
\tilde{J}(\Theta(x)) = \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \Theta(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \Theta(\varsigma_2) - \int_a^b p_2(\xi) \Theta \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \Delta \xi. \tag{2}
\]

Remark 1 From Theorem B, if \(\Theta \) is continuous and convex, then \(\tilde{J}(\Theta) \geq 0 \) and \(\tilde{J}(\Theta) = 0 \) for \(\Theta(x) = x \) or \(\Theta \) is a constant function.

The following formula of Hermite’s interpolation is given in [10].

Consider \(\varsigma_1, \varsigma_2 \in \mathbb{R} \) and \(\varsigma_1 < \varsigma_2 \) with \(\varsigma_1 = d_1 < d_2 < \cdots < d_s = \varsigma_2 (s \geq 2) \) be the points. For \(\Theta \in C^n[\varsigma_1, \varsigma_2] \), a unique polynomial \(\sigma^{(i)}_H(\varsigma_1) \) of degree \(n - 1 \) exists and satisfies either of the given axioms:

Hermite conditions

\[
\sigma^{(i)}_H(d_j) = \Theta^{(i)}(d_j); \quad 0 \leq i \leq k_j, 1 \leq j \leq s, \sum_{j=1}^s k_j + s = n.
\]

There are a few more specific cases.

Lagrange conditions \((s = n, k_j = 0 \text{ for all } j)\)

\[
\sigma_j(d_j) = \Theta(d_j), \quad 1 \leq j \leq n.
\]

Type \((\vartheta, n - \vartheta)\) conditions \((s = 2, 1 \leq \vartheta \leq n - 1, k_1 = \vartheta - 1, k_2 = n - \vartheta - 1)\)

\[
\sigma^{(i)}_{(\vartheta, n-\vartheta)}(\varsigma_1) = \Theta^{(i)}(\varsigma_1), \quad 0 \leq i \leq \vartheta - 1,
\]

\[
\sigma^{(i)}_{(\vartheta, n-\vartheta)}(\varsigma_2) = \Theta^{(i)}(\varsigma_2), \quad 0 \leq i \leq n - \vartheta - 1.
\]

Two-point Taylor conditions \((n = 2\vartheta, s = 2, k_1 = k_2 = \vartheta - 1)\)

\[
\sigma^{(i)}_{2\vartheta}(\varsigma_1) = \Theta^{(i)}(\varsigma_1), \quad \Theta^{(i)}_{2\vartheta}(\varsigma_2) = \Theta^{(i)}(\varsigma_2), \quad 0 \leq i \leq \vartheta - 1.
\]

The next result is stated in [10].
Theorem C Consider $-\infty < \varsigma_1 < \varsigma_2 < \infty$ and $\Theta \in C^n([\varsigma_1, \varsigma_2])$ with points $\varsigma_1 < d_1 < d_2 < \ldots < d_s \leq \varsigma_2$ ($s \geq 2$). Then we have

$$\Theta(y) = \sigma_H(y) + R_H(\Theta, y),$$

(3)

where $\sigma_H(y)$ represents Hermite's polynomial i.e.

$$\sigma_H(y) = \sum_{j=1}^{k_j} \sum_{i=0}^{k_j-i} \mathcal{H}_j(y) \Theta^{(i)}(d_i);$$

and the Hermite basis \mathcal{H}_j stated as

$$\mathcal{H}_j(y) = \frac{1}{i!} \omega(y) \left(\frac{d^{k_j-i}}{dy^{k_j-i}} \left(\frac{(y-d_j)^{k_j+1}}{\omega(y)} \right) \right) \bigg|_{y=d_j} (y-d_j)^k,$$

(4)

with

$$\omega(y) = \prod_{j=1}^{r} (y-d_j)^{k_j+1},$$

and the remainder is given by

$$R_H(\Theta, y) = \int_{\varsigma_1}^{\varsigma_2} \mathcal{G}_{H,n}(y, z_1) \Theta^{(n)}(z_1) \, dz_1,$$

where $\mathcal{G}_{H,n}(y, z_1)$ is given as

$$\mathcal{G}_{H,n}(y, z_1) = \begin{cases} \sum_{j=1}^{r} \sum_{i=0}^{k_j} \frac{(d_j-z_1)^{n-i}}{(n-i)!} \mathcal{H}_j(y), & z_1 \leq y; \\ \sum_{j=r+1}^{s} \sum_{i=0}^{k_j} \frac{(d_j-z_1)^{n-i}}{(n-i)!} \mathcal{H}_j(y), & z_1 \geq y, \end{cases}$$

(5)

for every $d_r \leq z_1 \leq d_{r+1}; r = 0, 1, \ldots, s$, along $d_0 = \varsigma_1$ and $d_{s+1} = \varsigma_2$.

Remark A Consider the specific cases for Hermite conditions, for the Lagrange conditions, one gets

$$\Theta(y) = \sigma_L(y) + R_L(\Theta, y),$$

where $\sigma_L(y)$ represents Lagrange's polynomial i.e.

$$\sigma_L(y) = \sum_{j=1}^{n} \prod_{k=1, k \neq j}^{n} \left(\frac{y-d_k}{d_j-d_k} \right) \Theta(d_j),$$

and the remainder $R_L(\Theta, y)$ is given by

$$R_L(\Theta, y) = \int_{\varsigma_1}^{\varsigma_2} \mathcal{G}_{L,n}(y, z_1) \Theta^{(n)}(z_1) \, dz_1,$$
with

$$G_L(y, z_1) = \frac{1}{(n - 1)!} \left\{ \sum_{j=1}^{n-1} (d_j - z_1)^{n-1} \prod_{k=1}^{n} \frac{(y - d_k)}{(d_j - d_k)} \right\}, \quad z_1 \leq y, \quad (6)$$

$$d_r \leq z_1 \leq d_{r+1} \quad r = 1, 2, \ldots, n - 1,$n \quad \text{with} \quad d_1 = \varsigma_1 \quad \text{and} \quad d_n = \varsigma_2. \quad \text{From Theorem C, considering type \((\theta, n - \theta)\) conditions, one gets}$$

$$\Theta(y) = \sigma_{(\theta, n)}(y) + R_{\theta, n}(\Theta, y),$$

where \(\sigma_{(\theta, n)}(y)\) is \((\theta, n - \theta)\) interpolating polynomial i.e.

$$\sigma_{(\theta, n)}(y) = \sum_{i=0}^{\frac{n-1}{\theta}} \tau_i(y)\Theta^{(i)}(\varsigma_1) + \sum_{i=0}^{n-1} \eta_i(y)\Theta^{(i)}(\varsigma_2),$$

with

$$\tau_i(y) = \frac{1}{i!} (y - \varsigma_1)^i \left\{ \frac{y - \varsigma_1}{\varsigma_1 - \varsigma_2} \sum_{k=0}^{n-1-i} \left(\frac{n - \theta + k - 1}{k} \right) \left(\frac{y - \varsigma_1}{\varsigma_2 - \varsigma_1} \right)^k \right\}, \quad (7)$$

and

$$\eta_i(y) = \frac{1}{i!} (y - \varsigma_1)^i \left\{ \frac{y - \varsigma_1}{\varsigma_2 - \varsigma_1} \sum_{k=0}^{n-1-i} \left(\frac{\theta + k - 1}{k} \right) \left(\frac{y - \varsigma_2}{\varsigma_2 - \varsigma_1} \right)^k \right\}, \quad (8)$$

and the remainder \(R_{(\theta, n)}(\Theta, y)\) is defined as

$$R_{(\theta, n)}(\Theta, y) = \int_{\varsigma_1}^{\varsigma_2} G_{\theta, n}(y, z_1)\Theta^{(n)}(z_1) \, dz_1,$$

with

$$G_{(\theta, n)}(y, z_1) = \left\{ \begin{array}{ll}
\sum_{j=0}^{\frac{n-1}{\theta}} \left[\sum_{p=0}^{\frac{n-1-j}{\theta}} \frac{(n - \theta + p - 1)}{(n - j + 1)!} \left(\frac{y - \varsigma_1}{\varsigma_1 - \varsigma_2} \right)^{n-j-1} \left(\frac{y - \varsigma_2}{\varsigma_2 - \varsigma_1} \right)^p \right], & z_1 \leq y \leq \varsigma_2; \\
\sum_{j=0}^{\frac{n-1}{\theta}} \left[\sum_{p=0}^{\frac{n-1-j}{\theta}} \frac{(n - \theta + p - 1)}{(n - j + 1)!} \left(\frac{y - \varsigma_1}{\varsigma_1 - \varsigma_2} \right)^{n-j-1} \left(\frac{y - \varsigma_2}{\varsigma_2 - \varsigma_1} \right)^p \right], & \varsigma_1 \leq y \leq z_1; \\
\end{array} \right. \quad (9)$$

From Theorem C, consider type two-point Taylor condition, then

$$\Theta(y) = \sigma_{2T}(y) + R_{2T}(\Theta, y),$$

where

$$\sigma_{2T}(y) = \sum_{i=0}^{\frac{n-1}{\theta}} \sum_{k=0}^{\frac{n-1-i}{\theta}} \left(\theta + k - 1 \right) \left[\frac{(y - \varsigma_1)^i}{i!} \left(\frac{y - \varsigma_2}{\varsigma_1 - \varsigma_2} \right)^\theta \left(\frac{y - \varsigma_1}{\varsigma_2 - \varsigma_1} \right)^k \Theta^{(i)}(\varsigma_1) \right],$$

$$+ \frac{(y - \varsigma_2)^i}{i!} \left(\frac{y - \varsigma_2}{\varsigma_1 - \varsigma_2} \right)^\theta \left(\frac{y - \varsigma_2}{\varsigma_2 - \varsigma_1} \right)^k \Theta^{(i)}(\varsigma_2).$$
and the remainder \(R_{2T}(\Theta, y) \) is given by

\[
R_{2T}(\Theta, y) = \int_{\xi_1}^{\xi_2} G_{2T}(y, z_1) \Theta^{(n)}(z_1) \, dz_1
\]

with

\[
G_{2T}(y, z_1) = \begin{cases}
\frac{(-1)^{p \theta}}{\Gamma(\theta-1)} \sum_{i=0}^{\theta-1} \binom{\theta-1}{i} (y-z_1)^{\theta-1-i} \delta^i(y, z_1), & z_1 \leq z_1 \leq y \leq \xi_2; \\
\frac{(-1)^{p \theta}}{\Gamma(\theta-1)} \delta^p(y, z_1) (z_1-y)^{\theta-1} p(y, z_1), & z_1 \leq y \leq z_1 \leq \xi_2,
\end{cases} \tag{10}
\]

where \(p(y, z_1) = \frac{(1-\xi_1)(\xi_2-z_1)}{\xi_2-\xi_1} \), \(\delta(y, z_1) = p(y, z_1) \) for every \(y, z_1 \in [\xi_1, \xi_2] \).

The nonnegativity of Green’s functions is characterized by Beesack [17] and Levin [45].

Lemma A

(i) \(\frac{\mathcal{G}_{H,n}(y, z_1)}{\omega(y)} > 0 \) \(d_1 \leq y \leq d_i, \ d_1 \leq z_1 \leq d_i; \)

(ii) \(\mathcal{G}_{H,n}(y, z_1) \leq \frac{1}{(\theta-1)(\xi_2-\xi_1)} \omega(y); \)

(iii) \(\int_{\xi_1}^{\xi_2} \mathcal{G}_{H,n}(y, z_1) \, dz_1 = \frac{\omega(y)}{\theta}. \)

3 Csiszár-type inequality on time scales via Hermite interpolation

Let us start with the following main identity.

Theorem 1 Assume the conditions of Theorem B and consider the points \(\xi_1 = d_1 < d_2 < \cdots < d_i = \xi_2 \) (s \(\geq 2 \)) with \(\Theta \in C^s[\xi_1, \xi_2] \). Also let \(\mathcal{H}_{ij}, \mathcal{G}_{H,n} \) be defined in (4) and (5). Then

\[
I_{\Theta}(p_1, p_2) = \int_a^b p_2(\xi) \Theta \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \Delta \xi
\]

\[
= \frac{\xi_2-1}{\xi_2-\xi_1} \mathcal{H}_{ij}(\xi_1) + \frac{1-\xi_1}{\xi_2-\xi_1} \mathcal{H}_{ij}(\xi_2) - \sum_{j=1}^{k_j} \sum_{i=0}^{k_j-i} \Theta^{(i)}(\xi_j) \mathcal{H}_{ij}(\xi_j)
\]

\[
- \int_{\xi_1}^{\xi_2} \mathcal{G}_{H,n}(t, z_1) \Theta^{(n)}(z_1) \, dz_1, \tag{11}
\]

where

\[
\mathcal{J}(\mathcal{H}_{ij}(x)) = \frac{\xi_2-1}{\xi_2-\xi_1} \mathcal{H}_{ij}(\xi_1) + \frac{1-\xi_1}{\xi_2-\xi_1} \mathcal{H}_{ij}(\xi_2) - \int_a^b p_2(\xi) \mathcal{H}_{ij} \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \Delta \xi \tag{12}
\]

and

\[
\mathcal{J}(\mathcal{G}_{H,n}(x, z_1)) = \frac{\xi_2-1}{\xi_2-\xi_1} \mathcal{G}_{H,n}(\xi_1, z_1) + \frac{1-\xi_1}{\xi_2-\xi_1} \mathcal{G}_{H,n}(\xi_2, z_1)
\]

\[
- \int_a^b p_2(\xi) \mathcal{G}_{H,n} \left(\frac{p_1(\xi)}{p_2(\xi)}, z_1 \right) \Delta \xi. \tag{13}
\]

Proof Use (3) in (2) with the linearity of \(\mathcal{J}(x) \) to obtain (11). □

The following result is related to the generalization of new identity (11) for \(n \)-convex function.
Theorem 2 Assume all the conditions of Theorem 1 with Θ is an n-convex function and $\varsigma_2 - 1 \leq \varsigma_1$.

$$
\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} G_{H,n}(\varsigma_1, z_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} G_{H,n}(\varsigma_2, z_1) - \int_a^b p_2(\xi) G_{H,n} \left(\frac{p_1(\xi)}{p_2(\xi)}, z_1 \right) \Delta \xi \geq 0, \tag{14}
$$

where $z_1 \in [\varsigma_1, \varsigma_2]$. Then

$$
\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \Theta(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \Theta(\varsigma_2) - \int_a^b p_2(\xi) \Theta \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \Delta \xi
\geq \sum_{j=1}^s \sum_{i=0}^{h_j} \Theta^{(i)}(d_j) \tilde{J}(H_j(x)). \tag{15}
$$

One can write (15) in terms of Csiszár divergence on time scales as follows:

$$
\int_a^b p_2(\xi) \Theta \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \Delta \xi
\leq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \Theta(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \Theta(\varsigma_2) - \sum_{j=1}^s \sum_{i=0}^{h_j} \Theta^{(i)}(d_j)
\times \left(\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} H_j(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} H_j(\varsigma_2) - \int_a^b p_2(\xi) H_j \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \Delta \xi \right). \tag{16}
$$

Proof As the function Θ is n-convex, hence Θ is n-times differentiable and $\Theta^{(n)}(x) \geq 0$ for each $x \in [\varsigma_1, \varsigma_2]$. Use Theorem 1 to obtain (15). \qed

Use Lagrange conditions in (11) to obtain the following result.

Corollary 1 Under the assumptions of Theorem 1 with Θ is an n-convex function and G_L is given in (6). If

$$
\tilde{J}(G_L(x, z_1)) \geq 0 \quad z_1 \in [\varsigma_1, \varsigma_2], \tag{17}
$$

then

$$
\tilde{J}(\Theta(\cdot)) \geq \sum_{j=1}^n \Theta(d_j) \tilde{J} \left(\prod_{k=1,k \neq j}^n \frac{y - d_k}{d_j - d_k} \right). \tag{18}
$$

Use type $(\vartheta, n - \vartheta)$ conditions in (11) to obtain the following result.

Corollary 2 Under the assumptions of Theorem 1 with Θ is an n-convex function and $G_{\vartheta,n}$ is defined in (9). If

$$
\tilde{J}(G_{\vartheta,n}(x, z_1)) \geq 0 \quad z_1 \in [\varsigma_1, \varsigma_2], \tag{19}
$$

then

$$
\tilde{J}(\Theta(\cdot)) \geq \sum_{i=0}^{\vartheta-1} \tilde{J}(\tau_i(y)) \Theta^{(i)}(\varsigma_1) + \sum_{i=0}^{n-\vartheta-1} \tilde{J}(\eta_i(y)) \Theta^{(i)}(\varsigma_2). \tag{20}
$$
Use the two-point Taylor condition in (11) to get the following corollary.

Corollary 3 Assume the hypothesis of Theorem 1 with \(\Theta \) is an n-convex function and \(G_{2T} \) is defined in (10). If

\[
\tilde{J}(G_{2T}(x, z_1)) \geq 0 \quad z_1 \in [\varsigma_1, \varsigma_2],
\]

then

\[
\tilde{J}(\Theta(\cdot)) \geq \sum_{i=0}^{\theta-1} \sum_{k=0}^{\theta-k-1} \left(\frac{\theta + k - 1}{k} \right) \left[\tilde{J} \left(\frac{(y - \varsigma_1)^i}{i!} \left(\frac{y - \varsigma_2}{\varsigma_2 - \varsigma_1} \right)^{\theta - i} \right) \Theta^{(i)}(\varsigma_1) \right. \\
\left. + \tilde{J} \left(\frac{(y - \varsigma_2)^i}{i!} \left(\frac{y - \varsigma_1}{\varsigma_1 - \varsigma_2} \right)^{\theta - i} \right) \Theta^{(i)}(\varsigma_2) \right].
\]

Theorem 3 Assume the hypothesis of Theorem 1 and \(p \in C([a, b], \mathbb{R}) \) is positive such that \(\int_a^b p(t) \Delta t = 1 \) with \(\Theta \in C^n[\varsigma_1, \varsigma_2] \) being an n-convex function.

(i) For each \(j = 2, \ldots, s \), if \(k_j \) is odd, then (15) is valid.

(ii) Let (15) be valid, and the function

\[
F(t) = \sum_{j=1}^{s} \sum_{i=0}^{k_j} \Theta^{(i+2)}(d_j) \mathcal{H}_j(t)
\]

is convex, the right-hand side of (15) is nonnegative, and

\[
\tilde{J}(\Theta(\cdot)) \geq 0.
\]

Proof

(i) If \(k_j \) is odd, \(\omega(x) \geq 0 \), and use Lemma A to get \(G_{H,n-2}(\cdot, z_1) \geq 0 \). Thus, \(G_{H,n}(-, z_1) \) is convex and \(\tilde{J}(G_{H,n}(-, z_1)) \geq 0 \) by Remark 1. Use Theorem 2 to get (15).

(ii) As (15) holds, one can write the right-hand side of (15) in a functional form, and the nonnegativity of (15) is followed by Remark 1. Use (23) in (15) to obtain (24).

Remark 2 It is also possible to compute Grüss, Ceybešev, and Ostrowski-type bounds corresponding to identity (11).

4 Bounds of divergence measures

In the sequel \(X \) denotes a continuous random variable and \(\bar{b} > 1 \) is base of log.

Consider a positive density function \(p : \mathbb{T} \rightarrow X \) on time scales with \(\int_a^b p(x) \Delta x = 1 \) when the integral exists.

On time scales, the differential entropy is introduced by Ansari et al. [13]:

\[
h_b(X) := \int_a^b p(x) \log \frac{1}{p(x)} \Delta x.
\]
Theorem 4 Assume the hypothesis of Theorem 1 with \(\Theta \in C^n[\varsigma_1, \varsigma_2] \) is an \(n \)-convex function. If \(n \) is even,

\[
h(X) \geq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \log(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \log(\varsigma_2) - \int_a^b p_2(\xi) \log(p_1(\xi)) \Delta \xi
\]

\[
+ \sum_{j=1}^k \sum_{i=0}^{j_i} \frac{(-1)^{i-2}(i-1)!}{(d_j)^{i-1}} \left(\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} H_{i,j}(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} H_{i,j}(\varsigma_2) \right)
\]

\[
- \int_a^b p_2(\xi) \frac{p_1(\xi)}{p_2(\xi)} \frac{\Delta \xi}{(d_j)^i},
\]

where \(h(X) \) is given in (25).

Proof Use \(x \to -\log x \) in Theorem 2 to get (26).

Kullback–Leibler divergence is one of the best known among information divergences. The well-known divergence measure is used in information theory, mathematical statistics, and signal processing (see [75]). On time scales, Kullback–Leibler divergence is defined by Ansari et al. [14]

\[
D(p_1, p_2) = \int_a^b p_1(\xi) \ln \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \Delta \xi.
\]

(27)

Theorem 5 Assume the conditions of Theorem 1 with \(\Theta \in C^n[\varsigma_1, \varsigma_2] \) is an \(n \)-convex function. If \(n \) is even,

\[
D(p_1, p_2) \leq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \varsigma_1 \ln(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \varsigma_2 \ln(\varsigma_2) - \sum_{j=1}^k \sum_{i=0}^{j_i} \frac{(-1)^{i-2}(i-2)!}{(d_j)^{i-1}}
\]

\[
\times \left(\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} H_{i,j}(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} H_{i,j}(\varsigma_2) - \int_a^b p_2(\xi) \frac{p_1(\xi)}{p_2(\xi)} \frac{\Delta \xi}{(d_j)^i} \right),
\]

where \(D(p_1, p_2) \) is given in (27).

Proof Use \(\Theta(\xi) = \xi \ln \xi \) in Theorem 2 to get (28).

Jeffreys distance have many applications in statistics and pattern recognition (see [41, 74]). On time scales, Jeffreys distance is defined by Ansari et al. [14]

\[
D_J(p_1, p_2) := \int_a^b (p_1(\xi) - p_2(\xi)) \ln \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \Delta \xi.
\]

(29)

Theorem 6 Assume the conditions of Theorem 1 with \(\Theta \in C^n[\varsigma_1, \varsigma_2] \) is an \(n \)-convex function. If \(n \) is even,

\[
D_J(p_1, p_2)
\]

\[
\leq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} (\varsigma_1 - 1) \ln(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} (\varsigma_2 - 1) \ln(\varsigma_2) - \sum_{i=0}^{j_i} \frac{(-1)^{(j-2)!}}{(d_j)^{j-1}}
\]
\[
\times \left(i - 1 \frac{d_j}{d_j} + 1 \right) \left(\frac{\varphi_2 - 1}{\varphi_2 - \varphi_1} \mathcal{H}_{ij}(\varphi_1) + \frac{1 - \varphi_1}{\varphi_2 - \varphi_1} \mathcal{H}_{ij}(\varphi_2) - \int_a^b p_2(\xi) \mathcal{H}_{ij} \left(\frac{p_1(\xi)}{p_2(\xi)} \right) d\xi \right),
\]

(30)

where \(D_\Delta(p_1, p_2)\) is given in (29).

Proof Use \(\Theta(\xi) = (\xi - 1) \ln \xi\) in Theorem 2 to get (30). \(\square\)

Triangular discrimination has many applications in statistics and information theory (see [41, 73]). On timescales, triangular discrimination is defined by Ansari et al. [14]

\[
D_\Delta(p_1, p_2) = \int_a^b \frac{[p_2(\xi) - p_1(\xi)]^2}{p_2(\xi) + p_1(\xi)} d\xi.
\]

(31)

Theorem 7 Assume the conditions of Theorem 1 with \(\Theta \in C^n[\varphi_1, \varphi_2]\) is an \(n\)-convex function. If \(n\) is even,

\[
D_\Delta(p_1, p_2) \leq \frac{\varphi_2 - 1}{\varphi_2 - \varphi_1} \Theta(\varphi_1) + \frac{1 - \varphi_1}{\varphi_2 - \varphi_1} \Theta(\varphi_2) - 4 \sum_{j=1}^s \sum_{i=0}^{k_j} (-1)^i (i)!
\]

\[
\times \left(\frac{\varphi_2 - 1}{\varphi_2 - \varphi_1} \mathcal{H}_{ij}(\varphi_1) + \frac{1 - \varphi_1}{\varphi_2 - \varphi_1} \mathcal{H}_{ij}(\varphi_2) - \int_a^b p_2(\xi) \mathcal{H}_{ij} \left(\frac{p_1(\xi)}{p_2(\xi)} \right) d\xi \right),
\]

(32)

where \(D_\Delta(p_1, p_2)\) is given in (31).

Proof Use \(\Theta(\xi) = \frac{(\xi - 1)^2}{\xi + 1}\) in Theorem 2 to get (32). \(\square\)

4.1 Inequalities in classical calculus (continuous case)

In this section, new bounds of Csiszár divergence, differential entropy, Kullback–Leibler divergence, Jeffreys distance, and triangular discrimination are given, respectively.

If \(T = \mathbb{R}\) in Theorem 2, inequality (16) has the following form and gives a new bound for Csiszár divergence:

\[
\int_a^b p_2(\xi) \Theta \left(\frac{p_1(\xi)}{p_2(\xi)} \right) d\xi
\]

\[
\leq \frac{\varphi_2 - 1}{\varphi_2 - \varphi_1} \Theta(\varphi_1) + \frac{1 - \varphi_1}{\varphi_2 - \varphi_1} \Theta(\varphi_2) - \sum_{j=1}^s \sum_{i=0}^{k_j} \Theta^{(i)}(d_j)
\]

\[
\times \left(\frac{\varphi_2 - 1}{\varphi_2 - \varphi_1} \mathcal{H}_{ij}(\varphi_1) + \frac{1 - \varphi_1}{\varphi_2 - \varphi_1} \mathcal{H}_{ij}(\varphi_2) - \int_a^b p_2(\xi) \mathcal{H}_{ij} \left(\frac{p_1(\xi)}{p_2(\xi)} \right) d\xi \right).
\]
If \(T = \mathbb{R} \) in Theorems 4–7, inequalities (26), (28), (30), and (32) take the following new form, respectively:

\[
\int_a^b p_2(\xi) \log \frac{1}{p_2(\xi)} \, d\xi \\
\geq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \log(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \log(\varsigma_2) - \int_a^b p_2(\xi) \log(p_2(\xi)) \, d\xi \\
+ \sum_{j=1}^k \sum_{i=0}^{k_j} \frac{(-1)^{j-2}(i-1)!}{(d_j)^i} \left(\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \mathcal{H}_j(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \mathcal{H}_j(\varsigma_2) \right) \\
- \int_a^b p_2(\xi) \mathcal{H}_j \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \, d\xi,
\]

\[
\int_a^b p_2(\xi) \ln \frac{p_1(\xi)}{p_2(\xi)} \, d\xi \\
\leq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \varsigma_1 \ln(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \varsigma_2 \ln(\varsigma_2) - \sum_{j=1}^k \sum_{i=0}^{k_j} (-1)^{j-2} \\
\times \frac{(i-2)!}{(d_j)^i} \left(\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \mathcal{H}_j(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \mathcal{H}_j(\varsigma_2) \right) - \int_a^b p_2(\xi) \mathcal{H}_j \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \, d\xi,
\]

\[
\int_a^b \left[p_1(\xi) - p_2(\xi) \right] \ln \frac{p_1(\xi)}{p_2(\xi)} \, d\xi \\
\leq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} (\varsigma_1 - 1) \ln(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} (\varsigma_2 - 1) \ln(\varsigma_2) - \sum_{i=0}^{k_j} (-1)^i \\
\times \frac{(i-2)!}{(d_j)^i} \left(\frac{i-1}{d_j} + 1 \right) \left(\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \mathcal{H}_j(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \mathcal{H}_j(\varsigma_2) \right) \\
- \int_a^b p_2(\xi) \mathcal{H}_j \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \, d\xi,
\]

and

\[
\int_a^b \frac{[p_2(\xi) - p_1(\xi)]^2}{p_1(\xi) + p_2(\xi)} \, d\xi \\
\leq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} (\varsigma_1 - 1)^2 + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} (\varsigma_2 - 1)^2 - 4 \sum_{j=1}^k \sum_{i=0}^{k_j} (-1)^i \\
\times \frac{(i)!}{(d_j + 1)^i} \left(\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \mathcal{H}_j(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \mathcal{H}_j(\varsigma_2) \right) \\
- \int_a^b p_2(\xi) \mathcal{H}_j \left(\frac{p_1(\xi)}{p_2(\xi)} \right) \, d\xi.
\]

4.2 Inequalities in \(h \)-discrete calculus

The following inequalities give new bounds of Csiszár divergence, Shannon entropy, Kullback–Leibler divergence, Jeffreys distance, and triangular discrimination in \(h \)-discrete calculus, respectively. In this section, discrete cases of these divergence measures are also given.
Use $T = h\mathbb{Z}$, $h > 0$ in Theorem 2, inequality (16) has the following form:

$$\sum_{v=\frac{s_2}{h}}^{\frac{s_2-1}{h}} p_2(vh) h \Theta \left(\frac{p_1(vh)}{p_2(vh)} \right)$$

$$\leq \frac{s_2-1}{s_2-1} \Theta(\xi_1) + \frac{1-\xi_1}{s_2-1} \Theta(\xi_2) - \sum_{j=1}^{k_j} \sum_{i=0}^{j} \Theta^{(i)}(d_i)$$

$$\times \left(\frac{s_2-1}{s_2-1} H_i(\xi_1) + \frac{1-\xi_1}{s_2-1} H_i(\xi_2) - \sum_{v=\frac{s_2}{h}}^{\frac{s_2-1}{h}} p_2(vh) H_i \left(\frac{p_1(vh)}{p_2(vh)} \right) \right). \quad (33)$$

Use $T = h\mathbb{Z}$, $h > 0$ in Theorems 4–7, inequalities (26), (28), (30), and (32) take the following new form in h-discrete calculus, respectively:

$$\sum_{v=\frac{s_2}{h}}^{\frac{s_2-1}{h}} p_2(vh) h \log \frac{1}{p_2(vh)} h$$

$$\geq \frac{s_2-1}{s_2-1} \log(\xi_1) + \frac{1-\xi_1}{s_2-1} \log(\xi_2) - \sum_{v=\frac{s_2}{h}}^{\frac{s_2-1}{h}} p_2(vh) h$$

$$\times \log(p_1(vh) h) + \sum_{j=1}^{k_j} \sum_{i=0}^{j} (-1)^{i-2} (i-1)! \left(\frac{s_2-1}{s_2-1} H_i(\xi_1) + \frac{1-\xi_1}{s_2-1} H_i(\xi_2) \right)$$

$$- \sum_{v=\frac{s_2}{h}}^{\frac{s_2-1}{h}} p_2(vh) h H_i \left(\frac{p_1(vh)}{p_2(vh)} \right). \quad (34)$$

$$\sum_{v=\frac{s_2}{h}}^{\frac{s_2-1}{h}} p_1(vh) h \ln \left[\frac{p_1(vh)}{p_2(vh)} \right]$$

$$\leq \frac{s_2-1}{s_2-1} \ln(\xi_1) + \frac{1-\xi_1}{s_2-1} \ln(\xi_2) - \sum_{j=1}^{k_j} \sum_{i=0}^{j} (-1)^{i-2}$$

$$\times \frac{(i-2)!}{(d_i)^{i-1}} \left(\frac{s_2-1}{s_2-1} H_i(\xi_1) + \frac{1-\xi_1}{s_2-1} H_i(\xi_2) - \sum_{v=\frac{s_2}{h}}^{\frac{s_2-1}{h}} p_2(vh) h H_i \left(\frac{p_1(vh)}{p_2(vh)} \right) \right), \quad (35)$$

$$\sum_{v=\frac{s_2}{h}}^{\frac{s_2-1}{h}} (p_1 - p_2)(vh) h \ln \frac{p_1(vh)}{p_2(vh)}$$

$$\leq \frac{s_2-1}{s_2-1} (\xi_1 - 1) \ln(\xi_1) + \frac{1-\xi_1}{s_2-1} (\xi_2 - 1)$$

$$- \sum_{i=0}^{k_j} (-1)^{i-2} \frac{(i-1)!}{(d_i)^{i-1}} \left(\frac{s_2-1}{s_2-1} H_i(\xi_1) + \frac{1-\xi_1}{s_2-1} H_i(\xi_2) \right)$$

$$- \sum_{v=\frac{s_2}{h}}^{\frac{s_2-1}{h}} p_2(vh) h \times H_i \left(\frac{p_1(vh)}{p_2(vh)} \right), \quad (36)$$
and

\[\sum_{h=\frac{1}{m}}^{\frac{h}{b}} \left[\frac{p_2(vh) - p_1(vh)}{p_1(vh) + p_2(vh)} \right]^2 \]

\[\leq \frac{s_2 - 1}{s_2 - s_1} \frac{(s_1 - 1)^2}{s_1 + 1} + \frac{1 - s_1}{s_2 - s_1} \frac{(s_2 - 1)^2}{s_2 + 1} - 4 \sum_{j=1}^{s} \sum_{i=0}^{k_j} (-1)^i \]

\[\times \frac{(\theta)!}{(d_j + 1)^i \theta} \left(\frac{s_2 - 1}{s_2 - s_1} H_{ij}(\xi_1) + \frac{1 - s_1}{s_2 - s_1} H_{ij}(\xi_2) \right) \]

\[- \sum_{v=1}^{m} p_2(vh) h H_{ij} \left(\frac{p_1(vh)}{p_2(vh)} \right). \]

Remark 3 If \(h = 1, a = 0, b = m, p_1(v) = (p_1)^{(v)} \) and \(p_2(v) = (p_2)^{(v)} \), inequality (33) takes the following new form and gives a new bound for discrete Csiszár divergence:

\[\sum_{v=1}^{m} (p_2)^{(v)} \Theta \left(\frac{(p_1)^{(v)}}{(p_2)^{(v)}} \right) \leq \frac{s_2 - 1}{s_2 - s_1} \Theta(\xi_1) + \frac{1 - s_1}{s_2 - s_1} \Theta(\xi_2) - \sum_{j=1}^{s} \sum_{i=0}^{k_j} \Theta^{(i)}(d_j) \]

\[\times \left(\frac{s_2 - 1}{s_2 - s_1} H_{ij}(\xi_1) + \frac{1 - s_1}{s_2 - s_1} H_{ij}(\xi_2) - \sum_{v=1}^{m} (p_2)^{(v)} h H_{ij} \left(\frac{(p_1)^{(v)}}{(p_2)^{(v)}} \right) \right). \]

Remark 4 Put \(h = 1, a = 0, b = m, p_1(v) = (p_1)^{(v)} \) and \(p_2(v) = (p_2)^{(v)} \), inequality (34) takes the following form and gives a new bound for discrete Shannon entropy:

\[S = \sum_{v=1}^{m} (p_2)^{(v)} \log \frac{1}{(p_2)^{(v)}} \]

\[\geq \frac{s_2 - 1}{s_2 - s_1} \log(\xi_1) + \frac{1 - s_1}{s_2 - s_1} \log(\xi_2) - \sum_{v=1}^{m} (p_2)^{(v)} \log((p_1)^{(v)}) \]

\[+ \sum_{j=1}^{s} \sum_{i=0}^{k_j} (-1)^{i-2}(i-1)! \frac{d_j^i}{(d_j)^i} \left(\frac{s_2 - 1}{s_2 - s_1} H_{ij}(\xi_1) + \frac{1 - s_1}{s_2 - s_1} H_{ij}(\xi_2) \right) \]

\[- \sum_{v=1}^{m} (p_2)^{(v)} h H_{ij} \left(\frac{(p_1)^{(v)}}{(p_2)^{(v)}} \right). \]

Remark 5 Consider \(h = 1, a = 0, b = m, p_1(v) = (p_1)^{(v)} \) and \(p_2(v) = (p_2)^{(v)} \), inequality (35) takes the following form and gives a new bound for discrete Kullback–Leibler divergence:

\[KL(p_1, p_2) = \sum_{j=1}^{n} (p_1)^{(v)} \log \frac{(p_1)^{(v)}}{(p_2)^{(v)}} \]

\[\leq \frac{s_2 - 1}{s_2 - s_1} \xi_1 \log(\xi_1) + \frac{1 - s_1}{s_2 - s_1} \xi_2 \log(\xi_2) \]

\[- \sum_{j=1}^{s} \sum_{i=0}^{k_j} (-1)^{i-2}(i-2)! \frac{d_j^i}{(d_j)^i} \left(\frac{s_2 - 1}{s_2 - s_1} H_{ij}(\xi_1) + \frac{1 - s_1}{s_2 - s_1} H_{ij}(\xi_2) \right) \]
\[
- \sum_{v=1}^{m} (p_2)_v \mathcal{H}_{ij} \left(\frac{(p_1)_v}{(p_2)_v} \right).
\]

(39)

Remark 6 Put \(h = 1, a = 0, b = m, (p_1)_v = (p_1)_v, \) and \((p_2)_v = (p_2)_v, \) inequality (36) takes the following new form and gives a new bound for discrete Jeffreys distance:

\[
J_a(p_1, p_2) = \sum_{v=1}^{m} (p_1 - p_2)_v \ln \left(\frac{(p_1)_v}{(p_2)_v} \right)
\]

\leq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} (\varsigma_1 - 1) \ln(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} (\varsigma_2 - 1) \ln(\varsigma_2)

\]

\[\leq \sum_{i=0}^{k} \frac{(-1)^i (i - 2)!}{(d_j)^{i+1}} \left(\frac{i - 1}{d_j} + 1 \right) \left(\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \mathcal{H}_{ij}(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \mathcal{H}_{ij}(\varsigma_2) \right)

\]

(40)

Remark 7 Take \(h = 1, a = 0, b = m, (p_1)_v = (p_1)_v, \) and \((p_2)_v = (p_2)_v, \) inequality (37) takes the following new form and gives a new bound for discrete triangular discrimination:

\[
\sum_{v=1}^{m} \left((p_2)_v - (p_1)_v \right)^2
\]

\leq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} (\varsigma_1 - 1)^2 + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} (\varsigma_2 - 1)^2 - 4 \sum_{j=1}^{s} \sum_{i=0}^{k_j} (-1)^i

\]

\[\times \frac{1}{(d_j + 1)^{i+1}} \left(\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \mathcal{H}_{ij}(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \mathcal{H}_{ij}(\varsigma_2) - \sum_{v=1}^{m} (p_2)_v \mathcal{H}_{ij} \left(\frac{(p_1)_v}{(p_2)_v} \right) \right). \]

4.3 Inequalities in \(q \)-calculus

The following inequalities give new bounds in \(q \)-calculus for Csiszár divergence, Shannon entropy, Kullback–Leibler divergence, triangular discrimination, and Jeffreys distance.

Put \(T = q^{|\Theta|} (q > 1), b = q^m, \) and \(a = q^k \) \((k < m)\), inequality (16) becomes

\[
\sum_{v=k}^{m-1} q^{v-k} p_2(q^v) \Theta \left(\frac{p_1(q^v)}{p_2(q^v)} \right)
\]

\leq \frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \Theta(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \Theta(\varsigma_2)

\]

\[- \sum_{j=1}^{s} \sum_{i=0}^{k_j} \Theta^{(i)}(d_j)

\]

\[\times \left(\frac{\varsigma_2 - 1}{\varsigma_2 - \varsigma_1} \mathcal{H}_{ij}(\varsigma_1) + \frac{1 - \varsigma_1}{\varsigma_2 - \varsigma_1} \mathcal{H}_{ij}(\varsigma_2) - \sum_{v=k}^{m} q^{v-k} p_2(q^v) \mathcal{H}_{ij} \left(\frac{p_1(q^v)}{p_2(q^v)} \right) \right). \]
Use $T = q^{\sigma_0}$, $q > 1$, $a = q^k$, and $b = q^m$ with $k < m$ in Theorems 4–7, inequalities (26), (28), (30), and (32) take the following new form in quantum calculus, respectively:

$$
\sum_{v=k}^{m-1} q^{v+1} p_2(q^v) \log \frac{1}{p_2(q^v)} \geq \frac{\xi_2 - 1}{\xi_2 - \xi_1} \log(\xi_1) + \frac{1 - \xi_1}{\xi_2 - \xi_1} \log(\xi_2) - \sum_{v=g}^{h-1} q^{v+1} p_2(q^v) \\
\times \log(p_1(q^v)) + \sum_{j=1}^{s} \sum_{i=0}^{k_j} \frac{(-1)^{i-2}(i-1)!}{(d_j)^i} \left(\frac{\xi_2 - 1}{\xi_2 - \xi_1} H_{ij}(\xi_1) + \frac{1 - \xi_1}{\xi_2 - \xi_1} H_{ij}(\xi_2) \right) \\
- \sum_{v=k}^{m} q^{v+1} p_2(q^v) H_{ij} \left(\frac{p_1(q^v)}{p_2(q^v)} \right),
$$

$$
\sum_{v=k}^{m-1} q^{v+1} p_1(q^v) \ln \frac{p_1(q^v)}{p_2(q^v)} \\
\leq \frac{\xi_2 - 1}{\xi_2 - \xi_1} \xi_1 \ln(\xi_1) + \frac{1 - \xi_1}{\xi_2 - \xi_1} \xi_2 \ln(\xi_2) - \sum_{j=1}^{s} \sum_{i=0}^{k_j} (-1)^{i-2} \\
\times \frac{(i - 2)!}{(d_j)^i - 1} \left(\frac{\xi_2 - 1}{\xi_2 - \xi_1} H_{ij}(\xi_1) + \frac{1 - \xi_1}{\xi_2 - \xi_1} H_{ij}(\xi_2) - \sum_{v=k}^{m} q^{v+1} p_2(q^v) H_{ij} \left(\frac{p_1(q^v)}{p_2(q^v)} \right) \right),
$$

$$
\sum_{v=k}^{m-1} q^{v+1} \left[p_1(q^v) - p_2(q^v) \right] \ln \frac{p_1(q^v)}{p_2(q^v)} \\
\leq \frac{\xi_2 - 1}{\xi_2 - \xi_1} (\xi_1 - 1) \ln(\xi_1) + \frac{1 - \xi_1}{\xi_2 - \xi_1} (\xi_2 - 1) \ln(\xi_2) \\
- \sum_{i=0}^{k_j} \frac{(-1)^{i-2}(1 - i)!}{(d_j)^i - 1} \left(\frac{i - 1}{d_j} + 1 \right) \left(\frac{\xi_2 - 1}{\xi_2 - \xi_1} H_{ij}(\xi_1) + \frac{1 - \xi_1}{\xi_2 - \xi_1} H_{ij}(\xi_2) \right) \\
- \sum_{v=k}^{m} q^{v+1} p_2(q^v) H_{ij} \left(\frac{p_1(q^v)}{p_2(q^v)} \right),
$$

and

$$
\sum_{v=k}^{m-1} q^{v+1} \frac{[p_2(q^v) - p_1(q^v)]^2}{p_1(q^v) + p_2(q^v)} \\
\leq \frac{\xi_2 - 1}{\xi_2 - \xi_1} \left(\frac{(\xi_1 - 1)^2}{\xi_1 + 1} + \frac{1 - \xi_1}{\xi_2 - \xi_1} \frac{(\xi_2 - 1)^2}{\xi_2 + 1} \right) - 4 \sum_{j=1}^{s} \sum_{i=0}^{k_j} (-1)^i \\
\times \frac{(i)!}{(d_j + 1)^i - 1} \left(\frac{\xi_2 - 1}{\xi_2 - \xi_1} H_{ij}(\xi_1) + \frac{1 - \xi_1}{\xi_2 - \xi_1} H_{ij}(\xi_2) - \sum_{v=k}^{m} q^{v+1} p_2(q^v) H_{ij} \left(\frac{p_1(q^v)}{p_2(q^v)} \right) \right).$$
5 Zipf–Mandelbrot law

In the field of information sciences, Zipf’s law is used for indexing [29, 67] in ecological field studies [53], and it plays an important role in art for identifying the aesthetics criteria in music [48].

For $m \in \{1, 2, \ldots\}$, $c \geq 0$, and $l > 0$, the Zipf–Mandelbrot law (probability mass function) is defined as

$$f(v; m, c, l) = \frac{1}{(v + c)^{l} H_{m,c,l}}, \quad v = 1, \ldots, m,$$

(41)

where

$$H_{m,c,l} = \sum_{u=1}^{m} \frac{1}{(u + c)^{l}}$$

(42)

is a generalization of the harmonic number.

Let $m \in \{1, 2, \ldots\}$, $c \geq 0$, and $l > 0$, then the Zipf–Mandelbrot entropy may be defined as

$$Z(H; c, l) = \frac{l}{H_{m,c,l}} \sum_{v=1}^{m} \frac{\ln(v + c)}{(v + c)^{l}} + \ln(H_{m,c,l}).$$

(43)

Assume

$$q_{v} = f(v; m, c, l) = \frac{1}{(v + c)^{l} H_{m,c,l}}.$$

(44)

Use $(p_{2})_{v} = \frac{1}{(v+c)^{l}H_{m,c,l}}$ in (38) to get the following result which establishes the link of Mandelbrot entropy (43) with discrete Shannon entropy:

$$Z(H; c, l) \geq \frac{n_{2} - 1}{n_{2} - n_{1}} \log(n_{1}) + \frac{1 - n_{1}}{n_{2} - n_{1}} \log(n_{2}) - \sum_{v=1}^{m} \left(\frac{1}{(v + c)^{l} H_{m,c,l}} \right) \log((p_{1})_{v})$$

$$+ \sum_{j=1}^{s} \sum_{i=0}^{k_{j}} (-1)^{i}(i - 1)! \left(\frac{n_{2} - 1}{n_{2} - n_{1}} \mathcal{H}_{j}(\xi_{1}) + \frac{1 - n_{1}}{n_{2} - n_{1}} \mathcal{H}_{j}(\xi_{2}) \right)$$

$$- \sum_{v=1}^{m} \left(\frac{1}{(v + c)^{l} H_{m,c,l}} \right) \times \mathcal{H}_{j}((p_{1})_{v}(v + c)^{l} H_{m,c,l}).$$

Use $(p_{1})_{v} = \frac{1}{(v+c)^{l}H_{m,c,l}}$ and $(p_{2})_{v} = \frac{1}{(v+c)^{l}H_{m,c,l}}$ in (39) to get following result which establishes the link of Mandelbrot entropy (43) with Kullback–Leibler divergence:

$$Z(H; c_{1}, l_{1}) \geq \frac{l_{2}}{H_{m_{2},c_{2},l_{2}}} \sum_{v=1}^{m} \frac{\ln(v + c_{2})}{(v + c_{1})^{l_{1}}} + \ln(H_{m_{2},c_{2},l_{2}}) - \frac{n_{2} - 1}{n_{2} - n_{1}} n_{1} \ln(n_{1}) - \frac{1 - n_{1}}{n_{2} - n_{1}} n_{2} \ln(n_{2})$$

$$+ \sum_{j=1}^{s} \sum_{i=0}^{k_{j}} (-1)^{i}(i - 1)! \left(\frac{n_{2} - 1}{n_{2} - n_{1}} \mathcal{H}_{j}(\xi_{1}) + \frac{1 - n_{1}}{n_{2} - n_{1}} \mathcal{H}_{j}(\xi_{2}) \right)$$

$$- \sum_{v=1}^{m} \left(\frac{1}{(v + c_{2})^{l_{2}} H_{m_{2},c_{2},l_{2}}} \right) \times \mathcal{H}_{j}((v + c_{2})^{l_{2}} H_{m_{2},c_{2},l_{2}}).$$
where \(H_{m,c1,l_1} = \frac{1}{(v+c_1)^l_1} \) and \(H_{m,c2,l_2} = \frac{1}{(v+c_2)^l_2} \).

Remark 8 Similarly, use \((p_1)_v = \frac{1}{(v+c_1)^l_1}H_{m,c1,l_1}\) and \((p_2)_v = \frac{1}{(v+c_2)^l_2}H_{m,c2,l_2}\) in (40) to obtain the relationship among Jeffreys distance \(J(p_1, p_2)\) and Mandelbrot entropy (43).

Acknowledgements

The authors wish to thank the anonymous referees for their very careful reading of the manuscript and fruitful comments and suggestions. The research of 5th author (Josip Pečarić) is supported by the Ministry of Education and Science of the Russian Federation (Agreement number 02.a03.21.0008).

Funding

There is no funding for this work.

Availability of data and materials

Data sharing is not applicable to this paper as no data sets were generated or analyzed during the current study.

Declarations

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors jointly worked on the results and they read and approved the final manuscript.

Author details

1 Department of Mathematics, University of Sargodha, Sargodha, Pakistan. 2 Government Mian Muhammad Nawaz Sharif Associate College Sargodha, Sargodha, Pakistan. 3 Department of Media and Communication, University North, Trg dr. Zarka Dolinar 1, Koprivnica, Croatia. 4 RUDN University, Miklukho-Maklaya str. 6, 117198, Moscow, Russia.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 2 September 2021 Accepted: 7 December 2021 Published online: 17 December 2021

References

1. Adeel, M., Khan, K.A., Pečarić, E., Pečarić, J.: Generalization of the Levinson inequality with applications to information theory. J. Inequal. Appl. 2019, 230 (2019)
2. Adeel, M., Khan, K.A., Pečarić, E., Pečarić, J.: Estimation of \(f \)-divergence and Shannon entropy by using Levinson type inequalities for higher order convex functions via Hermite interpolating polynomial. J. Inequal. Appl. 2020(1), 1 (2020)
3. Adeel, M., Khan, K.A., Pečarić, E., Pečarić, J.: Estimation of \(f \)-divergence and Shannon entropy by Levinson type inequalities for higher order convex functions via Taylor polynomial. J. Math. Comput. Sci. 21(4), 332–334 (2020)
4. Adil Khan, M., Husain, Z., Chu, YM.: New Estimates for Csiszár Divergence and Zipf-Mandelbrot Entropy via Jensen-Mercer’s Inequality. Complexity (2020)
5. Adil Khan, M., Ivelić Bradanović, S., Pečarić, J.: Generalizations of Sherman’s inequality by Hermite’s interpolating polynomial. Math. Inequal. Appl. 19(4), 81–92 (2016)
6. Adil Khan, M., Pecaric, D., Pecaric, J.: A new refinement of the Jensen inequality with applications in information theory. Bull. Malays. Math. Sci. Soc. 1(12) (2020)
7. Agarwal, P., Dragomir, S.S., Jleli, M., Samet, B.: Advances in Mathematical Inequalities and Applications. Springer, Singapore (2018)
8. Agarwal, R., Böhner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 7, 535–557 (2001)
9. Agarwal, R., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, London (2014)
10. Agarwal, R.P., Wong, P.J.Y.: Error Inequalities in Polynomial Interpolation and Their Applications. Kluwer Academic, Dordrecht (1983)
11. Ali, M.A., Ntouyas, S.K., Tariboon, J.: Generalization of quantum Ostrowski-type integral inequalities. Mathematics 9(10), 1155 (2021)
12. Andrica, D., Rassias, Th.,: Differential and Integral Inequalities. Springer, Berlin (2019)
13. Ansari, I., Khan, K.A., Nosheen, A., Pečarić, D., Pečarić, J.: Shannon type inequalities via time scales theory. Adv. Differ. Equ. 2020, 135 (2020)
14. Ansari, I., Khan, K.A., Nosheen, A., Pečarić, D., Pečarić, J.: Some inequalities for Csiszár divergence via theory of time scales. Adv. Differ. Equ. 2020, 698 (2020)
15. Ansari, I., Khan, K.A., Nosheen, A., Pečarić, D., Pečarić, J.: Estimation of divergence measures via weighted Jensen inequality on time scales. J. Inequal. Appl. 2021, 93 (2021)
16. Ansari, I., Khan, K.A., Nosheen, A., Pečarić, D., Pečarić, J.: Estimation of divergence measures on time scales via Taylor’s polynomial and Green’s function with applications in q-calculus. Adv. Differ. Equ. 2021, 374 (2021)
17. Beesack, P.: On the Green’s function of an N-point boundary value problem. Pac. J. Math. 12(3), 801–812 (1962)
18. Ben Makhlouf, A., Khardar, M., Hammami, M.A., Baleanu, D.: Henry-Gronwall type \(q \)-fractional integral inequalities. Math. Methods Appl. Sci. 44(2), 3–9 (2021)

39. Khan, K.A., Niaz, T., Pečarić, Đ., Pečarić, J.: Refinement of Jensen’s inequality and estimation of

58. Pečarić, J., Praljak, M.: Hermite interpolation and inequalities involving weighted averages of

38. Khan, A.R., Pečarić, J.E.: Hermite interpolation with Green functions and positivity of general linear inequalities for

57. Page, D.N.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743–3746 (1993)

19. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)

20. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

11. Ismail, M.E.H., Simeonov, P.: q-Difference operators for orthogonal polynomials. J. Comput. Appl. Math. 33, 281–300 (2009)

21. Brahim, K., Bettaibi, N., Sellemi, M.: On some Feng Qi type q-integral inequalities. J. Inequal. Pure Appl. Math. 9(2), 1–7 (2008)

22. Brigo, D., Mercurio, F.: Discrete time vs continuous time stock-price dynamics and implications for option pricing. Finance Stoch. 4, 147–159 (2000)

23. Butt, S.I., Khan, K.A., Pečarić, J.: Generalization of Popoviciu inequality for higher order convex function via Taylor’s polynomial. Acta Univ. Apulensis 42, 181–200 (2015)

24. Butt, S.I., Khan, K.A., Pečarić, J.: Popoviciu type inequalities via Hermite’s polynomial. Math. Inequal. Appl. 19(4), 1309–1318 (2016)

25. Butt, S.I., Mehmood, N., Pečarić, J.: New generalizations of Popoviciu type inequalities via new Green functions and Fink’s identity. Trans. A. Razmadze Math. Inst. 171(3), 293–303 (2017)

26. Butt, S.I., Mohapatra, R.N., Pečarić, J.: Popoviciu type inequalities via Green function and Hermite’s polynomial. J. Orissa Math. Soc. 975, 25

27. Chen, F., Yang, W.: Some new Chebyshev type quantum integral inequalities on finite intervals. J. Comput. Anal. Appl. 21, 17–26 (2016)

28. Dragomir, S.S.: Other inequalities for Csiszár divergence and applications in information theory. Math. Inequal. Appl. 12(2), 319–330 (2009)

29. Egghe, L., Rousseau, R.: Introduction to Informetrics. Quantitative Methodsin Library, Documentation and Information Science. Elsevier, New York (1990)

30. Erden, S., Ifakhar, S., Delavari, M.R., Kumam, P., Thounthong, P., Kumam, W.: On generalizations of some inequalities for positive absolutely continuous functions via fractional integrals. Acta Univ. Apulensis 42, 181–200 (2015)

31. Fink, A.M.: Uniform continuity and infinite series. Proc. Amer. Math. Soc. 97, 209–212 (1986)

32. Fisher, R.A.: Theory of statistical estimation. Proc. Camb. Philos. Soc. 22, 700–725 (1926)

33. Furuichi, S., Moradi, H.R.: Advances in Mathematical Inequalities. de Gruyter, Berlin (2020)

34. Gauchman, H.: Integral inequalities in n-Dimensions. Math. Inequal. Appl. 12(4), 979–987 (2009)

35. Ghanem, W., Pečarić, J.: Refinement of the Hermite–Hadamard inequality by using Green’s function. Math. Inequal. Appl. 12(4), 979–987 (2009)

36. Jackson, H.: On q-convex functions. Proc. Lond. Math. Soc. 22, 1–12 (1923)

37. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

38. Khan, A.R., Pečarić, J.E.: Hermite interpolation with Green functions and positivity of general linear inequalities for n-convex functions. J. Math. Anal. 11(4) (2020)

39. Khan, N.A., Darif, T., Pečarić, D., Pečarić, J.: Refinement of Jensen’s inequality and estimation of f and Rényi divergence via Montgomery identity. J. Inequal. Appl. 2018(1), 1 (2018)

40. Khan, M.A., Mohammad, N., Nwaeze, E.R., Chu, Y.M.: Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020(1), 1 (2020)

41. Kullback, S.: Information Theory and Statistics. Peter Smith, Gloucester (1978)

42. Kullback, S., Leibler, A.S.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

43. Kurt, M., Kaşmir, D., Üzeyir, H.: Quantum Hermite–Hadamard inequality for functions of two variables. Adv. Differ. Equ. 2020(1), 1 (2020)

44. Latif, N., Siddique, N., Pečarić, J.: Generalization of majorization theorem II. J. Math. Inequal. 12(3), 731–752 (2018)

45. Levin, A.Y.: Some problems bearing on the oscillation of solution of linear differential equations. Sov. Math. Dokl. 4, 121–124 (1963)

46. Li, Y.X., Ali, M.A., Budak, H., Abbas, M., Chu, Y.M.: A new generalization of some quantum integral inequalities for functions of two variables. J. Math. Inequal. 9(2), 1–7 (2015)

47. Liu, Z., Yang, W.: Some new Grüss type quantum integral inequalities on finite intervals. J. Nonlinear Sci. Appl. 9, 62–75 (2016)

48. Manaris, B., Vaughan, D., Wagner, C.S., Romero, J., Davis, R.B.: Developing fitness functions for pleasant music. In: Proceedings of 1st European Workshop on Evolutionary Music and Art (EvoMUSART2003), Essex, pp. 522–534 (2003)

49. Mehmood, N., Butt, S.I., Pečarić, D.: New bounds for Shannon, relative and Mandelbrot entropies via Hermite interpolating polynomials. Demonstr. Math. 51(2), 12–130 (2018)

50. Midya, S., Baral, R., Pečarić, J.: Some new generalizations of Popoviciu type inequalities. J. Inequal. Convex 16(1), 1–12 (2015)

51. Mohammed, P.O., Hamsah, F.K.: Twelfth degree spline with application to quadrature. SpringerPlus 5(1), 1–12 (2016)

52. Mohammed, P.O., Machado, J.A.T., Guirao, J.L., Agarwal, R.P.: Adomin decomposition and fractional power series solution of a class of nonlinear fractional differential equations. Mathematics 9(9), 1070 (2021)

53. Mouillot, D., Le Pierre, A.: Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity. Environ. Monit. Assess. 63(2), 279–295 (2000)

54. Niaz, T., Khan, K.A., Pečarić, D., Pečarić, J.: Estimation of different entropies via Taylor one point and Taylor two points interpolations using Jensen type functionals. Int. J. Anal. Appl. 17(5), 686–710 (2019)

55. Noor, M.A., Awan, M.U., Noor, K.I.: Quantum Ostrowski inequalities for n-differentiable convex functions. J. Math. Inequal. 10(4), 1015–1018 (2016)

56. Nosheen, A., Bibi, R., Pečarić, J.: Jensen–Steffensen inequality for diamond integrals, its converse and improvements via Green function and Taylor’s formula. Aequ. Math. 92(2), 289–309 (2018)

57. Page, D.N.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743–3746 (1993)

58. Pečarić, J., Praljak, M.: Hermite interpolation and inequalities involving weighted averages of n-convex functions. Math. Inequal. Appl. 19(4), 69–80 (2016)

59. Pečarić, J., Praljak, M., Witkowski, A.: Linear operators inequality for n-convex functions at a point. Math. Inequal. Appl. 18, 1–17 (2015)

60. Pečarić, J., Praljak, M., Witkowski, A.: Linear operator inequality for n-convex functions at a point. Math. Inequal. Appl. 18, 1201–1217 (2015)

61. Pečarić, J., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings, and Statistical Applications. Mathematics in Science and Engineering. Academic Press, New York (1992)
62. Rényi, A.: On measures of entropy and information. In: Proc. Fourth Berkeley Syrup. on Math. Statist. and Prob, vol. 1, pp. 547–561. University of California Press, Berkeley (1961)
63. Saker, S.H.: Some nonlinear dynamic inequalities on time scales and applications. J. Math. Inequal. 4(4), 561–579 (2010)
64. Sason, I., Verdú, S.: f-divergence inequalities. IEEE Trans. Inf. Theory 62, 5973–6006 (2016)
65. Shannon, C.E.: A mathematical theory of communications. Bell Syst. Tech. J. 27, 623–659 (1948)
66. Siddique, N., Imran, M., Khan, K.A., Pečarić, J.: Majorization inequalities via Green functions and Fink's identity with applications to Shannon entropy. J. Inequal. Appl. 2020(1), 1 (2020)
67. Silagadze, Z.K.: Citations and the Zipf-Mandelbrot law. Complex Syst. 11, 487–499 (1997)
68. Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Quantum integral inequalities for convex functions. J. Math. Inequal. 9(3), 781–793 (2015)
69. Sun, Y.G., Hassan, T.: Some nonlinear dynamic integral inequalities on time scales. Appl. Math. Comput. 220(4), 221–225 (2013)
70. Tariboon, J., Ntouyas, S.K.: Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 1 (2013)
71. Tariboon, J., Ntouyas, S.K.: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 1 (2014)
72. Tisdell, C.C., Zaidi, A.: Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling. Nonlinear Anal. 68, 3504–3524 (2008)
73. Topioe, F.: Some inequalities for information divergence and related measures of discrimination. RGMIA Res. Rep. Collect. 2(1), 85–98 (1999)
74. Tou, J.T., Gonzales, R.C.: Pattern Recognition Principle. Addison-Wesley, Reading (1974)
75. Wedrowska, E.: Application of Kullback-Leibler relative entropy for studies on the divergence of household expenditures structures. Olszt. Econ. J. 6, 133–142 (2011)
76. Youm, D.: q-deformed conformal quantum mechanics. Phys. Rev. D 62, 095009 (2000)
77. Zhu, C., Yang, W., Zhao, Q.: Some new fractional q-integral Grüss-type inequalities and other inequalities. J. Inequal. Appl. 2012(1), Article ID 299 (2012)