Asian Germplasm Influences on American Berry Crops

Kim E. Hummer¹
USDA ARS National Clonal Germplasm Repository (NCGR), 33447 Peoria Road, Corvallis, OR, 97333-2521

James R. Ballington
North Carolina State University, Horticultural Science Department, P.O. Box 7609, Raleigh, NC 27695-7609

Chad E. Finn
USDA ARS Horticultural Crops Research Unit, 3420 NW Orchard Avenue, Corvallis, OR 97330

Thomas M. Davis
University of New Hampshire, Department of Biological Sciences, Durham, NH 03824

Additional index words. adh gene, Fragaria, genomics, Lonicera, Rubus, Vaccinium

Abstract. Asian germplasm has significantly contributed to berry crops in America in several ways. The American wild octoploid species [Fragaria chiloensis (L.) Mill. and F. virginiana Mill.], and subsequently, the cultivated strawberry (F. ×ananassa Duch. ex Rozier), have benefitted from Asian heritage in the evolutionary time scale. Second, breeders have combined Asian germplasm in crosses for improved fruit cultivars. Third, Asian temperate fruit species have been collected from wild stands in their native ranges, imported, and in some cases improved and are now cultivated in the West or throughout the world. The objectives of this article were to 1) describe evolutionary contributions of Asian species to the American strawberry genome; 2) present examples of breeding Asian species (Rubus L. subgenus Idaeobatus) into cultivated raspberries; and 3) give examples of two Asian fruit species that have been recently introduced and cultivated or that could be developed for cultivation in the United States.

Berries are widely appreciated by the Western palate and have provided highly nutritive components to the human diet for millennia (Hummer and Janick, 2007). Strawberries are a noted American crop, yet they are not without influence from Asian genes. European and American raspberry (Rubus L. subgenus Idaeobatus) cultivars have benefitted greatly from Asian heritage by plant improvement through breeding. In addition, Asian berry species harvested by native peoples from wild stands have potential for cultivation in America. This article summarizes examples of Asian influence in American berry crops.

In the strawberry genus, Fragaria L., different ploidy levels are endemic in separate regions or continents (Staudt, 2009). Diploid (2n = 2x = 14) species are distributed in the northern hemisphere; tetraploids are found in Asia; hexaploids in Europe; and octoploids in the Americas (Staudt, 1999, 2009). The two known decaploid species have limited distributions: F. cascadensis Hummer in the Cascade Mountains, OR (Hummer et al., 2012), and F. iturupensis Staudt on Atsunupuri Volcano, Iturup Island, Russian Federation (Hummer et al., 2009). The principal strawberry of commerce is Fragaria ×ananassa. This species is octoploid and originated as an accidental cross between the white-fruited South American F. chiloensis subsp. chiloensis f. chiloensis and the North American F. virginiana subsp. virginiana (Hummer et al., 2011; Staudt, 1999).

Scientists have speculated about the evolutionary origins of the American octoploids (Davis et al., 2009). Octoploid taxa have complex genomes, diverse morphologies, and variable, closely related subspecies and forms. Multiple hypotheses concerning the derivation of the octoploids have been proposed, involving alloploidy and autopolyploidy (Darrow, 1966; Fedorova, 1946; Folta and Davis, 2006; Senanayake and Bringhurst 1967). Molecular genomic analyses have provided new insight of relevance to this question.

FRAGARIA GENOMICS

The polyploid Fragaria species were derived from diploid ancestors (Staudt, 1999). Species of intermediate ploidy likely played a role in the ascendency to plants with higher ploidy. Judging from known strawberry species, and the distribution of morphological characteristics, Middle or East Asia was a center of diversity from which diploid and polyploid species spread to the Americas (Staudt, 1999). The present-day Asian tetraploid and European hexaploid species have been discounted as polyploid intermediates in the octoploid ancestry (Staudt, 1999, 2009; Njuguna et al., 2013). However, molecular evidence links the genomes of F. vesca L. and the Asian diploids F. mandshurica Staudt and F. iinumae Makino with those of the octoploids.

POTENTIAL FRAGARIA DIPLOID ANCESTORS

Staudt (2009) delineates the identities and distributions of 12 diploid species. The most widely distributed diploid is F. vesca subsp. vesca, which is endemic throughout Europe to Lake Baikal, Russia (Hummer et al., 2011; Staudt, 2009). Red and white-fruited horticultural forms of F. vesca subsp. vesca were introduced into Asia, the South Pacific Islands, and South America (Hummer et al., 2011), but are not endemic there. This species has disjunct subspecies native in North America. Fragaria vesca subsp. americana (Porter) Staudt is native in eastern, and F. vesca subsp. bracteata (A. Heller) Staudt is native in western North America (Staudt, 1999).

Staudt (1999, 2009) lists nine Asian diploid strawberry species. However, judging from morphology, only a few have characters aligned with the American octoploids. Staudt (1999) suggested that F. iinumae, a Japanese diploid, might be a genome donor to the octoploids judging by its marked morphological similarity to F. virginiana subsp. glauca. Staudt (1999) also suggested a possible ancestral role for F. daltoniana J. Gay, a diploid from the Himalayan region, based on its morphological similarity to F. chiloensis (L.) Mill.

CYTOGENETIC AND MOLECULAR PHYLOGENETIC STUDIES

Authors of three classical cytogenetic studies (Bringhurst, 1990; Fedorova, 1946; Senanayake and Bringhurst, 1967) have implicated F. vesca as a likely diploid ancestor to the octoploids. Other molecular phylogenetic studies support this (DiMeglio and Davis, 2004; Folta and Davis, 2006; Rousseau-Gueutin...
et al., 2009), but have also drawn attention to two Asian diploids, *F. mandshurica* and *F. iinumae*. In the two foregoing studies, which used sequences from nuclear, protein-encoding genes, the alleles of *F. mandshurica* clustered with those of *F. vesca* and with a subset from each studied octoploid. Those from *F. iinumae* clustered closely with a second subset of octoploid-derived alleles. No support was found for an ancestral role for *R. daltoniana*.

The octoploid nuclear genomes harbor at least two distinct components: those with affinity to *F. vesca* and *F. mandshurica*, and those similar to *F. iinumae*. Fedorova’s (1946) classical octoploid genome composition model is AAABBBCC, with A, B, and C representing distinct subgenome lineages derived from separate diploid ancestors. If this model is correct, a third distinct component of the octoploid nuclear genome, in addition to those contributed by *F. iinumae* and *F. vesca*, *F. mandshurica*, is yet undiscovered. Asia might harbor this hypothetical ancestral diploid, if extant.

Molecular data from the *Fragaria* chloroplast (cpDNA) and mitochondrial (mtDNA) genomes tell complementary, if somewhat contrasting, stories. Phylogenetic analysis of chloroplast genome sequences of 21 *Fragaria* species and subspecies suggests that the octoploid cpDNA may have come from western North American populations of diploid *F. vesca* subsp. *bracteata* (Njugu na, 2010). This study provided broad representation of *F. vesca* germplasm but only one representative of *F. mandshurica*. Additional samples of *F. mandshurica* germplasm are needed before its ancestral role can be adequately assessed. Notably, gene introgression from *F. mandshurica* to western North American *F. vesca* subsp. *bracteata* may have occurred (Davis and Staudt, personal communication), explaining why *F. mandshurica* and *F. vesca* have not been resolvable through phylogenetic analysis of protein-encoding, nuclear sequence data.

In a comparative study of *Fragaria* mtDNA sequence data, Mahoney et al. (2010) reported that an 8-bp deletion was uniquely shared by *F. iinumae* and octoploid species and was absent in the other taxa examined, including *F. vesca* and *F. mandshurica*. The latter finding was surprising given that only maternal inheritance has been reported for the *Fragaria* chloroplast (Davis et al., 2010) and mitochondrial (Mahoney et al., 2010) genomes. Presumably both organelle genomes would have been transmitted along the same maternal lines from diploids to the octopoloids, but existing evidence disagrees.

In summary, molecular phylogenetic analyses of several nuclear protein coding genes and mtDNA implicate *F. iinumae* (or an ancestral form) as a nuclear and mitochondrial genome contributor. The potential role of *F. mandshurica* is suggested but is obscured by the current lack of adequate within-species diversity data and the absence of nuclear, phylogenetic resolution between it and *F. vesca*. *Fragaria mandshurica* may have been a direct genomic contributor to the octoploids or indirect through gene introgression into *F. vesca* subsp. *bracteata*, which then played a direct ancestral role. Another Asian ancestor is possible but is either historical or has not yet been discovered.

ASIAN CONTRIBUTIONS IN RASPBERRY BREEDING

Rubus L. is a diverse genus with species divided into 15 subgenera (GRIN, Germplasm Resources Information Network, 2013). The two subgenera containing the largest number of economically important species are *Idaeobatus* (raspberries) and *Rubus* (blackberries). *Idaeobatus* includes ~200 species, which are principally Asian in distribution but also occur in Europe, North America, and east and South Africa (Jennings, 1988). The most economically important subgenus *Idaeobatus* species are *Rubus idaeus* L. (European red raspberry), *R. strigosus* Michx. (North American red raspberry), and *R. occidentalis* L. (eastern North American black raspberry).

Since early in the 20th century, a wide range of Asian subgenus *Idaeobatus* species have been evaluated and used by breeders for developing red raspberry cultivars (Ballington and Fernandez, 2008; Finn et al., 2008; Jennings, 1988; Jennings et al., 1991; Williams, 1950). Some of the Asian raspberry species with useful characteristics for red raspberry improvement are summarized in Table 1. Of these species, *R. parvifolius* and *R. inominatus* var. *kuntzeanus* were incorporated through hybridization into named cultivars in North America (Dale et al., 1993). North American red raspberry cultivars with known Asian heritage are summarized in Table 2.

Asian species have been used in red raspberry improvement (Table 2) to develop tolerance to the warm temperatures and high humidity that prevail at lower latitudes in summer and fluctuating temperatures in winter (Williams, 1950). In this regard, *R. parvifolius* has been useful in interspecific hybridization with red raspberry (Ballington and Fernandez, 2008). This species produces F1- and backcross-generation seedlings with the high fertility. Fruit of *R. parvifolius* have an unpleasant aftertaste that can be eliminated.

Table 1. Characteristics of Asian raspberry (*Rubus*) species useful in red raspberry improvement.

Species	Desirable characteristics
R. biflorus Buch.-Ham. ex Sm.	Productivity; vigor; heat tolerance
R. cockbriananus Hemsl.	Increased number of flowers per inflorescence
R. coreanus Miq.	Productivity; vigor; branched canes; tip rooting/stem cutting propagation; good quality: black or yellow fruit; American raspberry aphid (*Amphorophora agathonica* Hottes) resistance; European raspberry beetle (*Byturus tomentosus* Degeer) resistance; powdery mildew (caused by *Podosphaera aphanis* (Wallr.) U. Braun & S. Takam.) resistance; cane anthracnose [caused by *Elsinoe veneta* (Burkh.) A. E. Jenk.] resistance; cane blight and spor blight [caused by *Didymella applanata* (Nissl.) Sacc.] resistance; midge blight (*Resseliella theobaldi* Barnes) resistance; cane botrytis (caused by *Botrytis cinerea*) resistance; leaf and cane spot (caused by *Elsinoe veneta*) resistance
R. crataegifolius Bunge.	Erect plant habit; bright red fruit; good quality; early and condensed ripening; heat tolerance; mech. harvesting adaptation; European raspberry beetle resistance; raspberry midge resistance; root lesion nematode resistance; cane botrytis resistance; midge blight resistance; spur blight resistance; fruit grey mold resistance
R. ellipticus Sm.	Yellow-fruited; evergreen
R. inominatus var. *kuntzeanus* (Hems.) L. H. Bailey	Vigor; productivity; high fruit number per lateral; erect plant habit; late ripening; tip rooting/stem cutting propagation; high temperature and high humidity tolerance; tolerance to fluctuating winter temperature
R. mesogaeus Focke	Cane blight resistance; dark fruit
R. niveus Thunb. (syn. *R. lasiocarpus* Sm.; *R. albenscens* Roxb.)	Good fruit quality; excellent fruit firmness; primocane fruiting; mechanical harvesting adaptation; tip rooting/stem cutting propagation; high temperature and high humidity tolerance; low chilling; fruit rot resistance; low chilling; heat-tolerant; black-fruited; spur blight and cane botrytis resistance
R. parvifolius Nutt.	Vigor; productivity; primocane fruiting; tip rooting/stem cutting propagation; high temperature and high humidity tolerance; leaf and cane spot resistance; relatively fertile to fertile F1s with red raspberry fruit quality; red or yellow fruit; tip rooting/stem cutting propagation; tolerance to fluctuating winter temperatures; powdery mildew resistance; European raspberry beetle resistance
R. phoenicolasius Max.	Good fruit quality; red or yellow fruit; tip rooting/stem cutting propagation; tolerance to fluctuating winter temperatures; powdery mildew resistance; European raspberry beetle resistance
R. pileatus Focke	Powdery mildew resistance
R. pungens Cambess	Fall fruiting, cold-hardiness
R. rosifolius Sm	Vigorous; productive; fruit red or yellow ripening, weakly flavored; ornamental flowers
R. sumatranus Miq.	Root rot resistance
with the first backcross to red raspberry. The most successful cultivars have been Southland and Nova (Finn et al., 2008; Jennings, 1988). ‘Nova’ released from Nova Scotia has been successful in California. It is adapted as far south as the Carolina Piedmont Region. ‘Dormaran’, which is largely of *R. parvifolius* parentage, has also been planted for local markets in the southeastern United States. ‘Esta’, a newer release, is a vigorous, early-fruiting, summer-bearing red raspberry resistant to rust and diseases. ‘Esta’ may become widely planted in the warmer regions of the United States. Although much of the work with *R. parvifolius* has occurred in the southeastern United States (Widlrechner and Rabeler, 1991), the species has not escaped from cultivation there. However, it has escaped in five Mideastern and Western states (Drobeny and Widlrechner, 2011).

Rhus *invomatus* is well adapted to warm humid regions with fluctuating winter temperatures (Ballington and Fernandez, 2002). Although *F* hybrids with red raspberry are low in fertility, full fertility is often restored in the first backcross to red raspberry. Fruit size of this black raspberry species is often equal to older cultivars of American black raspberry (*R. occidentalis*). The fruit quality is good and fruit firmness is superior. This species is not winter-hardy or tolerant to fluctuating winter temperatures; however, it has a tendency for priclome fruiting. Accessions of the species often appear worthy of becoming a new exotic plant.

The Japanese *R. phoenicolasius* has naturalized throughout much of the Appalachian highlands in eastern North America. It is well adapted to a southern climate. *F* hybrids with red raspberry are quite low in fertility, although, with effort, East Malling Research developed a selection that Agriculture and Agri-Food Canada used to develop the commercially important ‘Malahat’ (Daubeny, 2006). In addition to introgression into *R. idaeus* germplasm, the fruit quality may be worthy of selection. Native residents of the southern Appalachians who live at the low to mid-elevations typically harvest fruit from *R. phoenicolasius* to make jam.

Further reviews (Finn and Hancock, 2003; Finn et al., 2002; Hall et al., 2003; Jennings et al., 1991; Knight, 1993) go into greater detail of Asian *Rhus* species used in raspberry breeding.

ASIAN BERRY CROPS WITH POTENTIAL FOR AMERICAN CULTIVATION

Although eating fresh-harvested sweet berry crops has not been a long-standing activity in Asian culture, native Asian berry species have been revered, mostly for their health benefits per se is becoming more widely recognized in Asia as well as globally. Some Asian berry species have been adopted for cultivation on other continents and in other cultures. This brief article profiles two Asian berry crops with potential for expanded commercial cultivation in North America. Short descriptions of the Chinese gooseberry, also called hardy kiwifruit (*Actinidia arguta* (Siebold & Zucc.) Planch. Ex Miq.), and the blue honeysuckle, also called honeysberry or haskiap (*Lonicera caerulea* L.), are provided.

CHINESE GOOSEBERRY (*ACTINIDIA LINDL.*) FAMILY SECTION

Actinidia, commonly called the Chinese gooseberry or kiwifruit, belongs to the family *Actinidiaceae* (Ferguson et al., 1996). Classical Chinese texts describe how *Actinidia chinensis* Planch, also known as “monkey peach,” was collected in the mountains and brought down by the peasants to be sold in the markets. Historically, fruit were not cultivated but were collected from the wild in China and Japan. Commercial cultivation of *Actinidia* began ≈1930 (Ferguson et al., 1996). New Zealanders devised the common name “kiwifruit” in the 1950s to more easily market this crop. This name has now been accepted in international commerce (Ferguson et al., 1996). *Actinidia* species were first introduced to America during the late 1800s by E. H. Wilson, a plant explorer who worked for the U.S. Department of Plant Industry, fore-runner of the Department of Agriculture (Fairchild, 1938). His collected *Actinidia* came primarily from Yichang, a town on the Yangtze River. These introductions gave rise to many commercial orchards of the large-fruited species, *Actinidia delicosa* (A. Chev.) C. F. Liang et A. R. Ferguson. The area of cultivation of this fruit continues to expand annually. In 2012, the Massachusetts Audubon Society published an invasive plant alert for hardy kiwifruit; however, to date, neither state nor U.S. federal regulations restrict *Actinidia* because of invasiveness or noxious weed character.

In 2011, the total world production covered greater than 92,000 ha, which produced greater than 1,438,000 t (FAO, 2013). The main producing countries were Italy, New Zealand, Chile, Greece, France, the United States (California), Japan, Turkey, Australia, and Spain. Acreage is increasing. In 2013, ~1200 ha of kiwifruit were planted in

Table 2. North American red raspberry cultivars derived from Asian raspberry (*Rubus*) species.

Cultivar	Yr	Parentage	Origin
Van Fleet	1924	*R. paeoniflorus* × 'Chithbert'	USDA/California
Dixie	1928	*R. biflorus* × 'Latham'	North Carolina State University/USDA
Tennessee Luscious	1944	‘Lloyd George’ × (‘Van Fleet’ × ‘Viking’)	University of Tennessee
Tennessee Prolific	1948	‘Lloyd George’ × (‘Van Fleet’ × ‘Viking’)	University of Tennessee
Mandarin	1955	(‘R. parvifolius’ × ‘Taylor’) × ‘Newburgh’	North Carolina State University/USDA
Citadel	1966	‘Mandarin’ × (‘Sunrise’ × OSC 420)	University of Maryland
Fallgold	1967	NH-R7 × (‘Taylor’ × R. pungens oldhamii)	University of New Hampshire
Southland	1968	Complex cross (NC 237 × MD 5420-5)	North Carolina State University/Southern Illinois–USDA
Dormanred	1972	R. parvifolius × ‘Dorsett’ (‘Van Fleet’ × R. parvifolius)	Mississippi State University
Prestige	1979	S9 × (‘Taylor’ × ‘Dorsett’)	University of New Hampshire
Nova	1981	‘Southland’ × ‘Boyece’	Nova Scotia, Canada
Malahat	1987	Meeker × BC/SCRI 7853/16 (including *R. phoenicolasius*)	British Columbia, Canada
Ksitisalano	1998	Complex pedigree with *R. coreanus*	British Columbia, Canada
Esta	2003	SCRI 861686 × ‘Southland’	University of Maryland
southwestern California (I. Warrington, 2013, personal communication).

The smaller Chinese gooseberry, or kiwi-fruit, is classified in section Leiocarpae family Actinidiaceae. This section includes Actinidia arguta, A. kolomikta, and A. polygama (Siebold & Zucc.) Maxim. These small-fruited species are vining, cold-hardy, polygamodioecious (sometimes having unisexual and bisexual flowers, but tending to be dioecious) plants native to China, Russia, and Japan (Ferguson et al., 1996). Hardy kiwifruit (A. arguta) may also be known or marketed under alternate names including "baby kiwi-fruit," "grape kiwi," "wee-kee," and "cocktail kiwi" or "kiwiberry."

‘Ananasnaya’ is the most widely grown cultivar of hardy kiwifruit in the world. In 2002, ≈42 ha, equivalent to 100 acres, of commercial ‘Ananasnaya’ were planted in Oregon (Tiyason and Strik, 2003). Williams et al. (2003) estimated that ≈100 ha of ‘Ananasnaya’ were grown commercially worldwide, in the United States (Oregon, Pennsylvania, New York, and Washington), New Zealand, Canada (British Columbia and Ontario), Chile, Italy, France, Germany, and The Netherlands.

There is interest in this fruit crop as a nutraceutical product. Fruit have 40 to 155 mg/100 g vitamin C, depending on cultivar (Ferguson and Ferguson, 2003; Kabaluk et al., 1997) and are known for their laxative activity, but the active components have not been identified (Ferguson and Ferguson, 2003). Some hardy kiwifruit contain actinidin, a protease that can cause an allergic reaction in 2% to 3% of the population (Ferguson and Ferguson, 2003). Also, fruit can be high in calcium oxalate. In fresh fruit, although these crystals are covered with a gelatinous material and thus are usually not noticeable, they may be evident in some processed products and can be an irritant (Ferguson and Ferguson, 2003).

BLUE HONEYSUCKLE (LONICERA CAERULEA L.)

Blue honeysuckle, Lonicera caerulea L., family Caprifoliaceae, section Isika Rehd., subsection Caeruleae Rehd., is a circumpolar boreal species with several forms, species, and subspecies. The plants are deciduous shrubs, to 2 m or more in height, and are not the vine-forming Lonicera species that can be invasive. Compared with ornamental Lonicera species, flowers are inconspicuous, ≈2 cm long, tubular with flared lobes, and pale yellow to cream-colored. They are essentially self-incompatible and require bees for cross-pollination. Because blooming occurs early in spring, bumble bees are the principal pollinators. Also, blue orchard bees (Osma sp. Panzer) are used for pollination in Japanese plantings. Fruits are dark blue to purple with varying amounts of a white waxy covering. Shapes are variable ranging from oval to long and thin. The berry weight ranges from 0.3 g to rarely over 2.0 g. Flavors are unique and vary considerably from a pleasant mild taste, more sprightly tart–sweet, mildly tart, very tart, to slightly or very bitter. There is a maximum of 20, but usually fewer, very small seeds in a fruit.

Blue honeysuckle fruit have been harvested from wild plants by Ainu people in the Russian Far East and in Hokkaido, Japan, for hundreds of years. Folklore in both regions has attributed high nutritional and medicinal values to these berries and such findings were documented by phytochemical analyses (Chaovanalikit et al., 2004; Plekhanova et al., 1993; Tanaka and Tanaka, 1998).

Minor efforts to develop this crop in Russia date back to 1913–15, but it was not until the 1950–60s that a serious research program was initiated (Plekhanova, 2000) to cultivate and domesticate this crop. Extensive germplasm explorations were conducted by the Vavilov Institute for Plant Industry in St. Petersburg, and plants were distributed to the Lisavenko Research Institute for Horticulture in Siberia at Barnaul and several other research stations in the former Union of Soviet Socialist Republic for evaluations. From these studies, over 200 cultivars have been named and distributed to farmers and gardeners.

Efforts to domesticate L. caerulea from Japan increased in the late-1900s (Hummer et al., 2012). Beginning in the late 1960s and 1970s, the Hokkaido Prefectural Agriculture Experiment Station and a Farmers Co-operative in Chitose began to make selections from the nearby wild populations in the Yufutsu Plains near Tomakomai city. This region was famous for the abundance of fruiting shrubs from which people had long collected wild berries. Selections were evaluated for several years and the best few distributed to farmers, including one named cultivar, ‘Yufutsu’ (Tanaka and Tanaka, 1998). Small-scale commercial production began in the 1970s and increased to 195 ha by 1991. During this initial enthusiasm for “haskak” (the Ainu word used by the Japanese for this berry), a large array of high-quality, high-priced processed products were developed and become popular as gift items. However, as a result of the high cost of labor and the lack of mechanical harvesting, by 2005, the area under production had decreased to 85 ha with an estimated 20 t of berries, an insufficient amount to satisfy the demand that had been created (Lefol, 2007).

CONCLUSION

This report has summarized three ways Asian genes have influenced American berry crops. First, through evolutionary time, alleles or perhaps whole genomes from Asian diploid ancestors contributed to the complex genomes of the wild octoploids of North America and subsequently to the cultivated F. ×ananassa. These determinations are supported by phylogenetic analysis of three nuclear, protein-coding genes as well as mitochondrial and chloroplast genomic sequences. The issue of octoploid strawberry subgenomic composition and ancestral derivation needs further resolution.

Second, the gene pool of raspberry species accessible to small fruit breeders has been expanded greatly through the availability and use of Asian species in Rubus subgenus Idaeobatus. These Asian parental species have contributed genes for low chilling, heat and drought tolerance, and disease and pest resistance in cultivated red raspberries. More than a dozen red raspberry cultivars with Asian species heritage have been released for Western cultivation during the past century.

Third, Asian berry species have been brought to America and are now being cultivated to increase diversity for small and soft fruit production for small farmers. Other Asian crops are harvested in Asia and sold to North America for diverse nutraceutical or health supplemental foods, some of which provide Asian markets in North America with heritage flavors for recent immigrants. This kind of activity links Asia and North America through cultivation and berries and soft fruit production. From an evolutionary standpoint, and from the effect of human PIs, Asian germplasm has significantly influenced American strawberries, raspberries, and other small fruit crops.

Literature Cited

Ballington, J.R. and G.E. Fernandez. 2008. Breeding raspberries adapted to warm humid climates with fluctuating winter temperatures. Acta Hort. 777:87-90.

Bringhurst, R.S. 1990. Cytology and evolution in American Fragaria. HortScience 25:879–881.

Chaovanalikit, A., M.M. Thompson, and R.E. Wrolstad. 2004. Characterization and quantification of anthocyanins and polyphenolics in blue honeysuckle (Lonicera caerulea L.). J. Agr. Food Chem. 52:848–852.

Dale, A., P.P. Moore, R.J. McNicol, T.M. Sjulin, and L.A. Burmistrov. 1993. Genetic diversity of red raspberry varieties throughout the world. J. Amer. Hort. Soc. 118:119–129.

Darrow, G. 1966. The strawberry: History, breeding and physiology. Holt, Rinehart and Winston, New York, NY, Chicago, IL, and San Francisco, CA.

Daubeney, H.A. 2006. History of the British Columbia breeding programme. Davidsonia 17:9–22.

Davis, T.M., M.E. Shields, A.E. Reinhardt, P.A. Reavey, J. Lin, H. Zhang, and L.L. Mahoney. 2010. Chloroplast DNA inheritance, ancestry, and sequencing in Fragaria. Acta Hort. 859: 221–228.

Davis, T.M., M.E. Shields, Q. Zhang, E.G. Poulson, J.L. Bennetzen, K.M. Foltu, and P. San Miguel. 2009. The strawberry genome is coming into view. Acta Hort. 842:533–536.

DiMeglio, L.M. and T.M. Davis. 2004. Identification of putative diploid genome donors to the octoploid cultivated strawberry Fragaria xananassa. Proc. Plant and Animal Genome XII. P063, San Diego, CA, p. 221.

Dobney, P.M. and M.P. Widmlechner. 2011. Japanese raspberry (Rubus parvifolius L.): An invasive species threat in savanna and prairie, p. 148–152. In: Williams, D., B. Butler, and D. Smith (eds.). Proc. 22nd N. Amer. Prairie Conf., Cedar Falls, IA.

Eo, G., B. Chung, R. Bandopadhyay, N. Yoo, D. Choi, and S. Youn. 2008. Phylogenetic
relationships of *Rubus* species revealed by randomly amplified polymorphic DNA markers. J. Crop Sci. and Biotech. 11:39–44.

Eu, G., M. Park, S. Baek, and S. Yun. 2010. Phylogenetic relationship of *Rubus* cultivars in Korea revealed by chloroplast DNA spacers. Hanguk Yak Yong Changmul Hakhoe Chi 18:266–272.

Fairchild, D. 1938. The world was my garden. Charles Scribner’s Sons, New York, NY.

FAO. 2013. Food and Agriculture Organization of the United Nations. Statistical production database. 27 Mar. 2013. <http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor>.

Fedorova, N.J. 1946. Crossability and phylogenetic relations in the main European species of *Fragaria* C. R. (Dokl.). Acad. Sci. USSR 52:545–547.

Ferguson, A.R. and L.R. Ferguson. 2003. Are kiwifruit really good for you? Acta Hort. 610:131–137.

Ferguson, A.R., A.G. Seal, M.A. McNeilage, L.G. Fraser, C.F. Harvey, and R.A. Beaton. 1996. Kiwifruit, p. 371–417. In: Janick, J. and J. N. Moore (eds.). Fruit breeding. Vol. II. Vine and small fruits. John Wiley & Sons, Inc., New York, NY.

Finn, C., H. Swartz, P.P. Moore, J.R. Ballington, and C. Kempler. 2002. Use of 58 *Rubus* species in five North American breeding programs—Breeders notes. Acta Hort. 585:113–120.

Finn, C.E. and J.F. Hancock. 2008. Raspberries, p. 359–392. In: Hancock, J.F. (ed.). Temperate fruit crop breeding: Germplasm to genomics. Springer, New York, NY.

Finn, C.E., P.P. Moore, and C. Kempler. 2008. Raspberry cultivars: What’s new? What’s succeeding? Where are breeding programs headed? Acta Hort. 777:33–40.

Folta, K.M. and T.M. Davis. 2006. Strawberry genes and genomics. Crit. Rev. Plant Sci. 25:399–415.

GRIN, Germplasm Resources Information Network. 2013. USDA, ARS, National Genetic Resources Program. [Online Database] National Germplasm Resources Laboratory, Beltsville, Maryland. 27 Mar. 2013. <http://www.ars-grin.gov/cgi-bin/npgs/html/genus.pl?10574>.

Hall, H.K., K.E. Hummer, A.R. Jamieson, S.N. Jennings, and C.A. Weber. 2009. Raspberry breeding and genetics, p. 39–353. In: Janick, J. (ed.). Plant breeding reviews. J. Wiley, New York, NY.

Hsu, H.-Y., C. Yuh-pan, S.-J. Shen, H. Shau-shin, C.-C. Chen, and C. Hsien-chang. 1986. Oriental materia médica: A concise guide. Oriental Healing Arts Inst., Taiwan. p. 544–545.

Hummer, K.E., P. Nathewet, and T. Yanagi. 2009. Decaploidy in *Fragaria iturupensis* (Rosaceae). Amer. J. Bot. 96:713–716.

Hummer, K.E., N. Bassil, and W. Njuguna. 2011. *Fragaria*, p. 17–44. In: Kole, C. (ed.). Wild crop relatives: Genomics and breeding resources: Temperate fruits. Springer, New York, NY.

Hummer, K.E. and J. Janick. 2007. *Rubus* iconography: Antiquity to the Renaissance. Acta Hort. 759:89–106.

Hummer, K.E., K.W. Pomper, J.D. Postman, C.J. Graham, E. Stover, E.W. Mercure, M. Aradhyaa, C.H. Crisostolo, L. Ferguson, M.M. Thompson, P. Byers, and F. Zee. 2012. Emerging fruit crops, p. 97–147. In: Badenes, M.L. and D. Byrne (eds.). Fruit breeding. Springer, New York, NY.

Janick, J. and K.E. Hummer. 2012. The 1500th Anniversary (512–2012) of the Juliana Anicia Codex: An illustrated Dioscoridean recession. Chron. Horticult. 52:9–15.

Jennings, D.L. 1988. Raspberries and blackberries: Their breeding, diseases and growth. Academic Press, London, UK.

Jennings, D.L., H.A. Dauben, and J.N. Moore. 1991. Blackberries and raspberries (*Rubus*). Acta Hort. 290:331–389.

Kabaluk, J.T., C. Kempler, and P.M.A. Toivonen. 1997. *Actinidia arguta*—Characteristics relevant to commercial production. Fruit Var. J. 51:117–122.

Kim, S.H., H.G. Chung, and J. Han. 2008. Breeding of Korean black raspberry (*Rubus coreanus* Miq.) for high productivity in Korea. Acta Hort. 777:141–146.

Knight, V.H. 1993. A review of *Rubus* species used in raspberry breeding at East Malling. Acta Hort. 290:331–389.

Koide, K. and C. Hsien-chang. 1986. Orientation of *C. c. andreasii* (Rosaceae). An illustrated Dioscoridean recession. Chron. Horticult. 52:9–15.

L. (strawberry): New insights from phylogenetic analyses of low-copy nuclear genes. Mol. Phylogenet. Evol. 51:515–530.

Senanayake, Y.D.A. and R.S. Bringhurst. 1967. Origin of *Fragaria* polyploids I. Cytological analysis. Amer. J. Bot. 54:221–228.

Staudt, G. 1999. Systematics and geographic distribution of the American strawberry species: Taxonomic studies in the Genus *Fragaria* (Rosaceae: Potentilleae). Botany. Vol. 81. University of California Press, Berkeley, CA.

Staudt, G. 2009. Strawberry biogeography, genetics and systematics. Acta Hort. 862:71–83.

Tanaka, T. and A. Tanaka. 1998. Chemical composition and characteristics of hasukappu berries in various cultivars and strains. Nippon Shoku hin Kogaku Kaishi 45:129–133 [in Japanese, English summary].

Thompson, M.M. 1992. Exploration for *Rubus* germplasm in Guizhou Province, Peoples Republic of China. National Clonal Germplasm Repository, Corvallis, OR.

Tiyayon, C. and B. Strik. 2003. Flowering and fruiting morphology of hardy kiwifruit, *Actinidia arguta*. Acta Hort. 610:171–176.

Widrlechner, M.P. and R.K. Rabeler. 1991. *Rubus parvifolius* (Rosaceae) naturalized in Illinois and Iowa. Mich. Bot. 30:23–30.

Williams, C.F. 1950. Influence of parentage in species hybridization of raspberries. Proc. Amer. Soc. Hort. Sci. 56:149–156.

Williams, M.H., L.M. Boyd, M.A. McNeilage, E.A. MacRae, A.R. Ferguson, R.A. Beaton, and P.J. Martin. 2003. Development and commercialization of 'Baby Kiwi' (*Actinidia arguta*) Planch.). Acta Hort. 610:81–86.