Pöschl-Teller paradoxes

Miloslav Znojil

oddělení teoretické fyziky,
Ústav jaderné fyziky AV ČR, 250 68 Řež, Czech Republic

Abstract

In the well known Pöschl-Teller trigonometric potential well, a \mathcal{PT} symmetric regularization $x \to x - i\varepsilon$ of the “impenetrable” end-point barriers is performed. This leads to the four different solvable generalizations of the model. As a byproduct, the scheme clarifies certain apparent paradoxes encountered in the classically forbidden coupling regime.

PACS 03.65.Bz 03.65.Ca 03.65.Ge 02.60.Lj 11.30.Er

1 paradox.tex, October 29, 2018; e-mail: znojil@ujf.cas.cz
1 Introduction

Pöschl-Teller potential

\[V^{(A,B)}(x) = \frac{A(A-1)}{\cos^2 x} + \frac{B(B-1)}{\sin^2 x} \]

may be visualised as a sequence of asymmetric wells separated by impenetrable barriers (cf. Figure 1 where \(t = 2x/\pi \) and we choose \(A = 2.5 \) and \(B = 1.25 \)). Each of these wells [say, the one defined on the interval \(x \in (0, \pi/2) \)] admits the fully non-numerical treatment. Review paper lists its bound-state spectrum

\[E_n = (A + B + 2n)^2, \quad n = 0, 1, \ldots \]

(its three lowest levels are also indicated in Figure 1) as well as the corresponding wave functions which are proportional to Jacobi polynomials,

\[\psi_n(x) = \cos^A x \cdot \sin^B x \cdot P_{n}^{(B-1/2,A-1/2)}(\cos 2x). \]

It is concluded that “the requirement of \(A, B > 0 \) . . . guarantees” that each wave function \(\psi_n \) in eq. (3) “is well behaved and hence acceptable as \(x \to 0, \pi/2 \)” ([2], p. 295). Obviously, the quantized system remains stable even in the classically collapsing regime with \(A(A-1) \in (-1/4, 0) \) [a (weak) barrier re-oriented downwards at the right end \((x = \pi/2) \)] or \(B(B-1) \in (-1/4, 0) \) [same at the left end \((x = 0) \)]. This is the well known paradox [3, 4].

At \(A = B \) we discover another one. The simplified potential does not change its shape and only its strength varies with \(B \), viz., \(V^{(B,B)}(x) = g(B)/\sin^2 2x \) where \(g(B) = 4B(B-1) \). The ground state is formed at the energy \(E_0 = 4B^2 = E(B) \). Nevertheless, at the smallest positive \(B < 1/2 \) the potential well moves down while, at the same time, the ground-state energy grows. This contradicts the common sense and represents another paradox (cf. Figure 2).

An explanation of the latter puzzle is still elementary. It is sufficient to stay near \(x = 0 \) and imagine that the differential Schrödinger equation possesses the
elementary general solution,
\[\psi(x) \sim C_1 x^B + C_2 x^{1-B}, \quad x \approx 0. \] (4)

In accordance with the textbooks we would witness the collapse of the system [i.e., its unstoppable fall in the singularity \(\mathcal{O}(x^{-2}) \)] when \(\text{Re } B = 1 - \text{Re } B \) (i.e., at the point \(B = 1/2 \)). It is necessary to require that \(B > 1/2 \). This means that the domain of \(B \in (1/2, 1) \) has been counted twice in Figure 2. The corrected \(B \)-dependence is displayed in Figure 3. The decrease and growth of the energy \(E_0 = E(B) \) reflects merely the underlying downward and upward move of the potential. Unfortunately, the whole picture is not entirely satisfactory, at least for the several purely psychological reasons.

- The broken shape of the energy curve in Figure 3 is counterintuitive.
- Although our duty of discarding the well-behaved solutions as unphysical can find many different mathematical explanations, it also goes against our basic instincts [5].
- People often search for its psychologically persuasive explanations. One of the best arguments of the latter type applies, unfortunately, to the mere regular \(s \)-wave potentials [6].
- The fairly popular use of the various \textit{ad hoc} conditions can make the appropriate quantization recipe quite enigmatic [7]. The subtleties of its implementation become often forgotten in quantum chemistry or atomic physics where the strongly singular phenomenological models frequently occur [8, 9].

In what follows we intend to offer a new, unusual approach to the Pöschl-Tellerian problem, therefore.
2 Complexification

In the purely intuitive setting our problem resembles the study of the elementary algebraic equation \(x^2 + 2bx + c = 0\) where an irregularity appears along a parabola \(c = c_{\text{crit}}(b) = b^2\). Outside this curve in the real \((b, c)\) plane we always find the two real roots \(x_{1,2} = -b \pm \sqrt{b^2 - c}\). Inside, both of them suddenly disappear into the complex plane of \(x\).

We shall treat the Pöschl-Teller paradoxes in a way guided by this analogy.

2.1 \(\mathcal{PT}\) symmetric picture

In essence, the proposal we are going to describe will replace the previous pictures by a new Figure 4. Its mathematics will offer us the two smooth auxiliary curves \(E^{(\pm)}(B)\). Their user will be permitted to make his/her choice between these two alternatives, employing in addition his/her purely physical arguments and/or preferences.

The core of our proposal will lie in a certain complexification of the Pöschl-Teller differential Schrödinger equation in units \(2m = \hbar = 1\),

\[
\left(-\frac{d^2}{dx^2} + \frac{\alpha^2 - 1/4}{\cos^2 x} + \frac{\beta^2 - 1/4}{\sin^2 x} \right) \psi(x) = E \psi(x), \quad x \in (0, \pi/2),
\]

with \(\alpha = A - 1/2 > 0\) and \(\beta = B - 1/2 > 0\). We shall be inspired by the recent papers by Bender et al. [10] who replace the real (interval of) coordinates \(x\) by a suitable complex curve \(\mathcal{C}(t)\). On the basis of an extensive computational and WKB-based experience with many resulting non-Hermitian Hamiltonians they conjecture that under certain weak conditions the spectrum can still stay real. In the present context, the most natural implementation of the latter idea is based on the elementary choice of the straight line,

\[
x \to \mathcal{C}(t) = x(t) = t - i \varepsilon, \quad t \in (-\infty, \infty).
\]
The trick has been shown to work, e.g., for the shape invariant models \[11\] and for the whole Natanzon class of the exactly solvable potentials \[12\].

One can easily check that the curve (6) remains unchanged under the combined action of the parity P and of the “time-reversal” (in fact, complex-conjugation) operator T. One can speak about the specific, \mathcal{PT} symmetric quantum mechanics \[13\]. Under certain mathematical assumptions and at least in a certain domain of couplings (both specifications are, by far, not yet clear \[14\]) one can often discover that the spectrum after deformation $x \to C(t)$ remains discrete, bounded from below and real \[15\].

2.2 Wave functions

In a way guided by the original papers \[1\] let us move to the complex x, abbreviate $\sin^2 x = y$, denote $\psi[x(y)] = \varphi(y)$ and re-write our equation (5) using these new variables,

$$y(1-y)\varphi''(y) + \left(\frac{1}{2} - y\right)\varphi'(y) + \frac{1}{4} \left(E - \beta^2 - 1/4 - \frac{\alpha^2 - 1/4}{1 - y}\right)\varphi(y) = 0.$$ \hspace{1cm} (7)

The ansatz $E = k^2$ and

$$\varphi(y) = y^\mu(1-y)^\nu f(y)$$

transforms our complexified differential equation in its Gauss hypergeometric equivalent

$$y(1-y) f''(y) + \left[(2\mu + \frac{1}{2}) - (2\mu + 2\nu + 1)y\right] f'(y) + \left[\frac{1}{4}k^2 - (\mu + \nu)^2\right] f(y) = 0$$

provided only that we choose μ and ν in accord with the conditions

$$4\mu(\mu - 1) = \beta^2 - 1/4, \quad 4\nu(\nu - 1) = \alpha^2 - 1/4.$$

In terms of the two indeterminate signs these quadratic equations define the two pairs of the eligible exponents,

$$2\mu = \frac{1}{2} + \sigma \beta = \kappa(\sigma), \quad 2\nu = \frac{1}{2} + \tau \alpha = \lambda(\tau), \quad \sigma, \tau = \pm 1.$$

4
The general solution of our equation (5) acquires the \(\tau \)-dependent compact form

\[
\psi(x) = \left\{ C_1 \chi^{(\sigma, \tau)}[y(x)] \sin^{\kappa(\sigma)} x + C_2 \chi^{(-\sigma, \tau)}[y(x)] \sin^{\kappa(-\sigma)} x \right\} \cdot \cos^{\lambda(\tau)} x.
\] (8)

Here we have abbreviated

\[
\chi^{(\sigma, \tau)}(y) = \binom{1}{2} \left[\frac{1}{2} \left[\kappa(\sigma) + \lambda(\tau) + k \right], \frac{1}{2} \left[\kappa(\sigma) + \lambda(\tau) - k \right], \frac{1}{2} + \kappa(\sigma); y \right].
\] (9)

In an alternative representation using the same constants \(C_1 \) and \(C_2 \) we have

\[
\chi^{(\sigma, \tau)}[y(x)] \cdot \cos^{\lambda(\tau)} x = \rho^{(\sigma, \tau)}[y(x)] \cdot \cos^{\lambda(\tau)} x + \rho^{(\sigma, -\tau)}[y(x)] \cdot \cos^{\lambda(-\tau)} x
\] (10)

where

\[
\rho^{(\sigma, \tau)}(y) = G^{(\sigma, \tau)} \binom{1}{2} \left[\frac{1}{2} \left[\kappa(\sigma) + \lambda(\tau) + k \right], \frac{1}{2} \left[\kappa(\sigma) + \lambda(\tau) - k \right], \frac{1}{2} + \lambda(\tau); 1 - y \right].
\] (11)

with the factor

\[
G^{(\sigma, \tau)} = \frac{\Gamma(1 + \sigma \beta) \Gamma(-\tau \alpha)}{\Gamma \left[\kappa(\sigma) + \lambda(-\tau) + k \right] \Gamma \left[\kappa(\sigma) + \lambda(-\tau) - k \right]}.
\]

One of the immediate consequences of these two alternative expansions is our explicit knowledge of the related \(0 < x \ll 1 \) left-threshold leading-order approximation

\[
x^{-1/2} \psi(x) \sim C_1 x^{\sigma \beta} + C_2 x^{-\sigma \beta}
\] (12)

and of its \(0 < z = \pi/2 - x \ll 1 \) right-threshold counterpart

\[
z^{-1/2} \psi[z(x)] \sim \tilde{\mathcal{C}}^{(+)} z^{\tau \alpha} + \tilde{\mathcal{C}}^{(-)} z^{-\tau \alpha}, \quad \tilde{\mathcal{C}}^{(\pm)} = \left[C_1 G^{(\sigma, \pm \tau)} + C_2 G^{(-\sigma, \pm \tau)} \right].
\] (13)

We may summarize that the complete solution of the Pöschl-Tellerian differential Schrödinger equation is available in closed form even on any generalized, complex domain \(\mathcal{C} \) of coordinates \(x \) characterized, presumably, by a suitable form of its \(\mathcal{PT} \) symmetry, \(\mathcal{C} = \mathcal{PTCPT} \).
3 Spectra

The structure of the above general wave functions indicates that the singularities $x = 0$ and $z = \pi/2 - x = 0$ remain most suitable points where we can impose the boundary conditions. As long as they do not belong (by our assumption) to our complex curve of coordinates $C(t)$, the choice and specification of these boundary conditions is not constraint by any (usually, obligatory) conditions of regularity.

One should still be careful in the classically forbidden domain of the very small couplings $\alpha > 0$ and $\beta > 0$. The related possible difficulties are well known. They represented a good reason for the Flügge’s unnecessarily restrictive “safe” postulates $A > 1$ and $B > 1$ which he uses in his textbook ([4], p. 89).

3.1 Refined boundary conditions

Once we wish to discuss the specific ability of quantum mechanics which can protect its systems from a collapse into (sufficiently weakly) attractive singularities, we have to eliminate the superfluous solutions by all means including the brute force [3, 5, 7]. In the present context, an application of the latter rule is significantly facilitated by our explicit knowledge (12) and (13) of the independent solutions in the leading-order approximation,

$$\psi(x) \sim x^{1/2 \pm \beta}, \quad x \ll 1, \quad \psi(x) \sim (\pi/2 - x)^{1/2 \pm \alpha}, \quad x \sim \pi/2. \quad (14)$$

Obviously, at the smallest couplings, these estimates remain compatible with the current boundary conditions $\psi(0) = \psi(\pi/2) = 0$ at an (almost) arbitrary positive energy E. A new paradox is born. Even in the Hermitian case with $\varepsilon = 0$, the necessary physical re-installation of the regularity must be achieved via the more restrictive boundary conditions

$$\lim_{x \to 0} \frac{\psi(x)}{\sqrt{x}} = 0, \quad \beta \in (0, 1/2) \quad (15)$$
(plus, *mutatis mutandis*, for \(x\) near \(\pi/2\); cf. refs. [3] for another solvable illustration of this rule).

In the present regularized \(\mathcal{PT}\) symmetric generalization both the components in eq. (14) remain equally acceptable. The situation is similar to the asymmetric but regular Hermitian models where one sometimes selects between the Dirichlet and Neumann (or, in general, mixed) boundary conditions. Here, at the small couplings, any similar generalized requirements must be refined as well, working with the limits similar to eq. (13). Numerically, the situation will be badly ill-conditioned but we can still start from the fixed initial values of \(C_1\) and \(C_2\) at \(x = 0\) and determine (the discrete set of) the energies \(E_n\) from another postulate of another fixed set of parameters \(\tilde{C}^{(+)}\) and \(\tilde{C}^{(-)}\) at \(x = \pi/2\).

Similar “weakly solvable” models which do not require any termination of the hypergeometric series also do occur in applications from time to time [16]. We are not going to study them here in any detail.

3.2 Classification of the exactly solvable cases

After our present regularization, one has to contemplate the whole infinite domain of \(x(t)\) or \(t \in (-\infty, \infty)\). We shall omit here also this direction of considerations which, generically, leads to the Floquet theory and to the characteristic band spectra for the \(\mathcal{PT}\) symmetric and periodic systems [17].

In a narrower domain of applications related, e.g., to the attempts to generalize [18] or \(\mathcal{PT}\) symmetrize [19] the Calogero’s three-body model [20] we shall solely pay attention to the problems which keep using the “physical” boundary conditions imposed directly at the poles at \(x = 0\) and \(x = \pi/2\).

There exist several good practical reasons (e.g., the well known slow convergence of the infinite hypergeometric series) for the exclusive preference of the terminating, polynomial Pöschl-Teller solutions. In such a setting, our explicit knowledge of the
general solutions facilitates also the complete classification of the eligible boundary conditions.

In the first step it is important to notice that for the superposition (8), generically, the two necessary termination conditions are mutually incompatible. Fortunately, they differ just in one sign, \(\sigma \rightarrow -\sigma \). Without any loss of generality we may put \(C_2 = 0 \) and write down the general termination condition, therefore,

\[
k = k_n^{(\sigma,\tau)} = \sigma \beta + \tau \alpha + 2n + 1, \quad n = 0, 1, \ldots
\]

It reduces the infinite series (9) to the elementary Jacobi polynomial and, simultaneously, nullifies the co-factor \(G \) of the second subseries (11) in the alternative formula (10). Summarizing, we are left with the unique elementary solution \(\psi(x) = \psi_n^{(\sigma,\tau)}(x) \) with the energies \(E_n^{(\sigma,\alpha)} = \left[k_n^{(\sigma,\tau)} \right]^2 \) and wave functions

\[
\psi_n^{(\sigma,\tau)}(x) = C_1 \sin^{1/2+\sigma \beta} x \cos^{1/2+\tau \alpha} x_2 F_1 \left(-n, n + 1 + \sigma \beta + \tau \alpha, 1 + \sigma \beta; \sin^2 x \right).
\]

Only our choice of the signs \(\sigma = \pm 1 \) and \(\tau = \pm 1 \) remains variable. In all these four cases there is no freedom left for our choice of the boundary conditions. By construction our solutions simply fit the \(x \to 0 \) rule

\[
x^{-1/2} \psi_n^{(\sigma,\tau)}(x) = C_1 x^{\sigma \beta} + 0 \cdot x^{-\sigma \beta}
\]

and its \(x \to \pi/2 \) parallel

\[
z^{-1/2} \psi_n^{(\sigma,\tau)}(x) = C_1 G_n^{(\sigma,\tau)}(\pi/2 - x)^{\tau \alpha} + 0 \cdot (\pi/2 - x)^{-\tau \alpha}.
\]

At every main quantum number \(n = 0, 1, 2, \ldots \) we have a choice among the quadruplet of boundary conditions (10) + (11) giving the respective four different energy series

\[
E_n^{(\sigma,\tau)} = \alpha^2 + \beta^2 + 2\sigma \tau \alpha \beta + (4n + 2)(\sigma \beta + \tau \alpha) + (2n + 1)^2
\]

numbered by \(\sigma = \pm 1 \) and \(\tau = \pm 1 \). Two of them [cf. \(E_n^{(+,+)} = (\Sigma + 2n + 1)^2 \) and \(E^{(-,-)} = (\Sigma - 2n - 1)^2 \)] depend on the sum \(\Sigma = \alpha + \beta \) and, in this sense, resemble
strongly the Hermitian formula (2). The other two series $E_n^{(\pm,-)} = (\Delta + 2n + 1)^2$ and $E_n^{(-,\pm)} = (\Delta - 2n - 1)^2$ exhibit a dependence on the mere difference $\Delta = \beta - \alpha$ and remain, unexpectedly, coupling-independent for the symmetric wells $V^{(B,B)}(x)$. In contrast, as already mentioned (cf. Figure 4 above), an interplay or superposition of the former two series provides one of the "most natural" explanations of the paradox in Figures 2 or 3.

Acknowledgement

Partially supported by GA AS CR grant No. A 1048004.

Figure captions

Figure 1. Pöschl-Teller potential

Figure 2. Paradox of review [2]

Figure 3. Corrected picture

Figure 4. \mathcal{PT}-symmetric re-interpretation of Figure 3
References

[1] Pöschl G and Teller E 1933 Z. Physik 83 143;
 Quesne C 1999 J. Phys. A: Math. Gen. 32 6705 with further references

[2] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267

[3] Landau L D and Lifshitz E M 1960 Quantum Mechanics (London: Pergamon Press), ch. V, par. 35.

[4] Flügge S 1971 Practical quantum mechanics I (Berlin: Springer), p. 157

[5] Reed M and Simon B 1978 Methods of Modern Mathematical Physics IV (New York: Academic)

[6] Newton R G 1982 Scattering Theory of Waves and Particles (Berlin: Springer), pp. 391-392.

[7] Frank W M, Land D J and Spector R M 1971 Rev. Mod. Phys. 43 36

[8] Simsek M and Yalcin Z 1994 J. Math. Chem. 16 211;
 Znojil M 1996 J. Math. Chem. 19 205;
 Chun-Sheng Jia, Jia-Ying Wang, Su He and Linag-Tian Sun 2000 J. Phys. A: Math. Gen. 33 6993

[9] Znojil M 2000 Phys. Rev. A 61 066101

[10] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 24 5243

[11] Bagchi B and Roychoudhury R 2000 J. Phys. A: Math. Gen. 33 L1;
 Znojil M 2000 J. Phys. A: Math. Gen. 33 L61 and 4561

[12] Lévai G and Znojil M 2000 J. Phys. A: Math. Gen. 33 7165
[13] Caliceti E, Graffi S and Maioli M 1980 Commun. Math. Phys. 75 51;
 Buslaev V and Grechi V 1993 J. Phys. A: Math. Gen. 26 5541;
 Fernández F M, Guardiola R, Ros J and Znojil M 1998 J. Phys. A: Math. Gen. 31 10105;
 Andrianov A A, Ioffe M V, Cannata F and Dedonder J P 1999 Int. J. Mod. Phys. A 14 2675;
 Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 40 2201;
 Mezincescu G A 2000 J. Phys. A: Math. Gen. 33 4911;
 Bagchi B and Quesne C 2000 Phys. Lett. A 273 285

[14] Delabaere E and Pham F 1998 Phys. Letters A 250 25 and 29;
 Bender C M, Berry M, Meisinger P N, Savage V M and Simsek M 2001 J. Phys. A: Math. Gen. 34 L31

[15] Cannata F, Junker G and Trost J 1998 Phys. Lett. A 246 219;
 Znojil M, Cannata F, Bagchi B and Roychoudhury R 2000 Phys. Lett. B 483 284
 Bender C M, Boettcher S and Savage Van M 2000 J. Math. Phys. 41 6381
 Fernández F M, Guardiola R, Ros J and Znojil M 1999 J. Phys. A: Math. Gen. 32 3105;
 Bender C M, Boettcher S, Jones H F and Van Savage M 1999 J. Phys. A: Math. Gen. 32 6771;
 Bagchi B, Cannata F and Quesne C 2000 Phys. Lett. A 269 79;
 Znojil M and Levai G 2000 Phys. Lett. A 271 327;
 Lévai G, Cannata F and Ventura A 2001 J. Phys. A: Math. Gen. 34 1
[16] de Souza-Dutra A 2000 Phys. Rev. A 47 (2000) 066102;

Jiu-Xun Sun 1999 Acta Phys. Sinica 48 1992.

[17] Bender C M, Dunne G V and Meisinger P N 1999 Phys. Lett. A 252 272

[18] Khare A and Quesne C 1998 Phys. Lett. A 250 33

[19] Znojil M and Tater M 2001 J. Phys. A: Math. Gen. 34 1793

[20] Calogero F 1969 J. Math. Phys. 10 2191
Pöschl-Teller paradoxes

Miloslav Znojil

oddělení teoretické fyziky,
Ústav jaderné fyziky AV ČR, 250 68 Řež, Czech Republic

Abstract

In the well known Pöschl-Teller trigonometric potential well, a \(PT \) symmetric regularization \(x \rightarrow x - i \varepsilon \) of the “impenetrable” end-point barriers is performed. This leads to the four different solvable generalizations of the model. As a byproduct, the scheme clarifies certain apparent paradoxes encountered in the classically forbidden coupling regime.

PACS 03.65.Bz 03.65.Ca 03.65.Ge 02.60.Lj 11.30.Er

\(^1\)paradox.tex, February 28, 2001; e-mail: znojil@ujf.cas.cz
1 Introduction

Pöschl-Teller [1] potential

\[V^{(A,B)}(x) = \frac{A(A - 1)}{\cos^2 x} + \frac{B(B - 1)}{\sin^2 x} \]

may be visualised as a sequence of asymmetric wells separated by impenetrable barriers (cf. Figure 1 where \(t = 2x/\pi \) and we choose \(A = 2.5 \) and \(B = 1.25 \)).

Each of these wells [say, the one defined on the interval \(x \in (0, \pi/2) \)] admits the fully non-numerical treatment. Review paper [2] lists its bound-state spectrum

\[E_n = (A + B + 2n)^2, \quad n = 0, 1, \ldots \]

(its three lowest levels are also indicated in Figure 1) as well as the corresponding wave functions which are proportional to Jacobi polynomials,

\[\psi_n(x) = \cos^A x \cdot \sin^B x \cdot P_n^{(B-1/2, A-1/2)}(\cos 2x). \]

It is concluded that “the requirement of \(A, B > 0 \ldots \) guarantees” that each wave function \(\psi_n \) in eq. (3) “is well behaved and hence acceptable as \(x \to 0, \pi/2 \)” ([2], p. 295). Obviously, the quantized system remains stable even in the classically collapsing regime with \(A(A - 1) \in (-1/4, 0) \) [a (weak) barrier re-oriented downwards at the right end \((x = \pi/2) \)] or \(B(B - 1) \in (-1/4, 0) \) [same at the left end \((x = 0) \)]. This is the well known paradox [3, 4].

At \(A = B \) we discover another one. The simplified potential does not change its shape and only its strength varies with \(B \), viz., \(V^{(B,B)}(x) = g(B)/\sin^2 2x \) where
\[g(B) = 4B(B - 1). \] The ground state is formed at the energy \(E_0 = 4B^2 = E(B). \) Nevertheless, at the smallest positive \(B < 1/2 \) the potential well moves down while, at the same time, the ground-state energy grows. This contradicts the common sense and represents another paradox (cf. Figure 2).

An explanation of the latter puzzle is still elementary. It is sufficient to stay near \(x = 0 \) and imagine that the differential Schrödinger equation possesses the elementary general solution,

\[\psi(x) \sim C_1 x^B + C_2 x^{1-B}, \quad x \approx 0. \tag{4} \]

In accordance with the textbooks we would witness the collapse of the system [i.e., its unstoppable fall in the singularity \(\mathcal{O}(x^{-2}) \)] when \(\text{Re } B = 1 - \text{Re } B \) (i.e., at the point \(B = 1/2 \)). It is necessary to require that \(B > 1/2 \). This means that the domain of \(B \in (1/2, 1) \) has been counted twice in Figure 2. The corrected \(B \)-dependence is displayed in Figure 3.

The decrease and growth of the energy \(E_0 = E(B) \) reflects merely the underlying downward and upward move of the potential. Unfortunately, the whole picture is not entirely satisfactory, at least for the several purely psychological reasons.

- The broken shape of the energy curve in Figure 3 is counterintuitive.
- Although our duty of discarding the well-behaved solutions as unphysical can find many different mathematical explanations, it also goes against our basic instincts [5].
People often search for its psychologically persuasive explanations. One of the best arguments of the latter type applies, unfortunately, to the mere regular \(s\)-wave potentials [6].

The fairly popular use of the various \textit{ad hoc} conditions can make the appropriate quantization recipe quite enigmatic [7]. The subtleties of its implementation become often forgotten in quantum chemistry or atomic physics where the strongly singular phenomenological models frequently occur [8, 9].

In what follows we intend to offer a new, unusual approach to the Pöschl-Tellerian problem, therefore.

2 Complexification

In the purely intuitive setting our problem resembles the study of the elementary algebraic equation \(x^2 + 2bx + c = 0\) where an irregularity appears along a parabola \(c = c_{\text{crit}}(b) = b^2\). Outside this curve in the real \((b, c)\) plane we always find the two real roots \(x_{1,2} = -b \pm \sqrt{b^2 - c}\). Inside, both of them suddenly disappear into the complex plane of \(x\).

We shall treat the Pöschl-Teller paradoxes in a way guided by this analogy.
2.1 \mathcal{PT} symmetric picture

In essence, the proposal we are going to describe will replace the previous pictures by a new Figure 4. Its mathematics will offer us the two smooth auxiliary curves $E^{(\pm)}(B)$. Their user will be permitted to make his/her choice between these two alternatives, employing in addition his/her purely physical arguments and/or preferences.

The core of our proposal will lie in a certain complexification of the Pöschl-Teller differential Schrödinger equation in units $2m = \hbar = 1$,

$$\left(-\frac{d^2}{dx^2} + \frac{\alpha^2 - 1/4}{\cos^2 x} + \frac{\beta^2 - 1/4}{\sin^2 x} \right) \psi(x) = E \psi(x), \quad x \in (0, \pi/2), \quad (5)$$

with $\alpha = A - 1/2 > 0$ and $\beta = B - 1/2 > 0$. We shall be inspired by the recent papers by Bender et al [10] who replace the real (interval of) coordinates x by a suitable complex curve $C(t)$. On the basis of an extensive computational and WKB-based experience with many resulting non-Hermitian Hamiltonians they conjecture that under certain weak conditions the spectrum can still stay real. In the present context, the most natural implementation of the latter idea is based on the elementary choice of the straight line,

$$x \to C(t) = x(t) = t - i \varepsilon, \quad t \in (-\infty, \infty), \quad (6)$$

The trick has been shown to work, e.g., for the shape invariant models [11] and for the whole Natanzon class of the exactly solvable potentials [12].

Figure 4: \mathcal{PT}—symmetric re-interpretation of Figure 3
One can easily check that the curve (6) remains unchanged under the combined action of the parity \mathcal{P} and of the “time-reversal” (in fact, complex-conjugation) operator \mathcal{T}. One can speak about the specific, \mathcal{PT} symmetric quantum mechanics [13]. Under certain mathematical assumptions and at least in a certain domain of couplings (both specifications are, by far, not yet clear [14]) one can often discover that the spectrum after deformation $x \rightarrow C(t)$ remains discrete, bounded from below and real [15].

2.2 Wave functions

In a way guided by the original papers [1] let us move to the complex x, abbreviate $\sin^2 x = y$, denote $\psi[x(y)] = \varphi(y)$ and re-write our equation (5) using these new variables,

$$y(1-y)\varphi''(y) + \left(\frac{1}{2} - y \right) \varphi'(y) + \frac{1}{4} \left(E - \frac{\beta^2 - 1/4}{y} - \frac{\alpha^2 - 1/4}{1-y} \right) \varphi(y) = 0. \quad (7)$$

The ansatz $E = k^2$ and

$$\varphi(y) = y^\mu (1-y)^\nu f(y)$$

transforms our complexified differential equation in its Gauss hypergeometric equivalent

$$y(1-y) f''(y) + \left[\left(2\mu + \frac{1}{2}\right) - (2\mu + 2\nu + 1) y \right] f'(y) + \frac{1}{4} k^2 - (\mu + \nu)^2 \right] f(y) = 0$$

provided only that we choose μ and ν in accord with the conditions

$$4\mu(\mu - 1) = \beta^2 - 1/4, \quad 4\nu(\nu - 1) = \alpha^2 - 1/4.$$

In terms of the two indeterminate signs these quadratic equations define the two pairs of the eligible exponents,

$$2\mu = \frac{1}{2} + \sigma \beta = \kappa(\sigma), \quad 2\nu = \frac{1}{2} + \tau \alpha = \lambda(\tau), \quad \sigma, \tau = \pm 1.$$

The general solution of our equation (5) acquires the τ–dependent compact form

$$\psi(x) = \left\{ C_1 \chi^{(\sigma,\tau)} [y(x)] \sin^{\kappa(\sigma)} x + C_2 \chi^{(-\sigma,\tau)} [y(x)] \sin^{\kappa(-\sigma)} x \right\} \cdot \cos^{\lambda(\tau)} x. \quad (8)$$

Here we have abbreviated

$$\chi^{(\sigma,\tau)}(y) = {}_2F_1 \left\{ \frac{1}{2} [\kappa(\sigma) + \lambda(\tau) + k], \frac{1}{2} [\kappa(\sigma) + \lambda(\tau) - k]; \frac{1}{2} + \kappa(\sigma); y \right\}. \quad (9)$$
In an alternative representation using the same constants C_1 and C_2 we have

$$\chi^{(\sigma,\tau)}[y(x)] \cdot \cos^{\lambda(\tau)} x = \mathcal{g}^{(\sigma,\tau)}[y(x)] \cdot \cos^{\lambda(\tau)} x + \mathcal{g}^{(\sigma,-\tau)}[y(x)] \cdot \cos^{\lambda(-\tau)} x$$

(10)

where

$$\mathcal{g}^{(\sigma,\tau)}(y) = G^{(\sigma,\tau)}_2 F_1 \left\{ \frac{1}{2} [\kappa(\sigma) + \lambda(\tau) + k], \frac{1}{2} [\kappa(\sigma) + \lambda(\tau) - k], \frac{1}{2} + \lambda(\tau); 1 - y \right\}$$

(11)

with the factor

$$G^{(\sigma,\tau)} = \frac{\Gamma(1 + \sigma \beta) \Gamma(-\tau \alpha)}{\Gamma[\kappa(\sigma) + \lambda(-\tau) + k] \Gamma[\kappa(\sigma) + \lambda(-\tau) - k]}. $$

One of the immediate consequences of these two alternative expansions is our explicit knowledge of the related $0 < x \ll 1$ left-threshold leading-order approximation

$$x^{-1/2} \psi(x) \sim C_1 x^{\sigma \beta} + C_2 x^{-\sigma \beta}$$

(12)

and of its $0 < z = \pi/2 - x \ll 1$ right-threshold counterpart

$$z^{-1/2} \psi[x(z)] \sim \tilde{C}^{(+)} z^{\tau \alpha} + \tilde{C}^{(-)} z^{-\tau \alpha}, \quad \tilde{C}^{(\pm)} = [C_1 G^{(\sigma,\pm \tau)} + C_2 G^{(-\sigma,\pm \tau)}].$$

(13)

We may summarize that the complete solution of the Pöschl-Tellerian differential Schrödinger equation is available in closed form even on any generalized, complex domain \mathcal{C} of coordinates x characterized, presumably, by a suitable form of its \mathcal{PT} symmetry, $\mathcal{C} = \mathcal{PT}\mathcal{CP}\mathcal{T}$.

3 Spectra

The structure of the above general wave functions indicates that the singularities $x = 0$ and $z = \pi/2 - x = 0$ remain most suitable points where we can impose the boundary conditions. As long as they do not belong (by our assumption) to our complex curve of coordinates $C(t)$, the choice and specification of these boundary conditions is not constraint by any (usually, obligatory) conditions of regularity.

One should still be careful in the classically forbidden domain of the very small couplings $\alpha > 0$ and $\beta > 0$. The related possible difficulties are well known. They represented a good reason for the Flügge’s unnecessarily restrictive “safe” postulates $A > 1$ and $B > 1$ which he uses in his textbook ([4], p. 89).
3.1 Refined boundary conditions

Once we wish to discuss the specific ability of quantum mechanics which can protect its systems from a collapse into (sufficiently weakly) attractive singularities, we have to eliminate the superfluous solutions by all means including the brute force [3, 5, 7]. In the present context, an application of the latter rule is significantly facilitated by our explicit knowledge (12) and (13) of the independent solutions in the leading-order approximation,

$$
\psi(x) \sim x^{1/2 \pm \beta}, \quad x \ll 1, \quad \psi(x) \sim (\pi/2 - x)^{1/2 \pm \alpha}, \quad x \sim \pi/2.
$$

(14)

Obviously, at the smallest couplings, these estimates remain compatible with the current boundary conditions \(\psi(0) = \psi(\pi/2) = 0\) at an (almost) arbitrary positive energy \(E\). A new paradox is born. Even in the Hermitian case with \(\varepsilon = 0\), the necessary physical re-installation of the regularity must be achieved via the more restrictive boundary conditions

$$
\lim_{x \to 0} \psi(x)/\sqrt{x} = 0, \quad \beta \in (0, 1/2)
$$

(15)

(plus, \textit{mutatis mutandis}, for \(x\) near \(\pi/2\); cf. refs. [9] for another solvable illustration of this rule).

In the present regularized \(\mathcal{PT}\) symmetric generalization both the components in eq. (14) remain equally acceptable. The situation is similar to the asymmetric but regular Hermitian models where one sometimes selects between the Dirichlet and Neumann (or, in general, mixed) boundary conditions. Here, at the small couplings, any similar generalized requirements must be refined as well, working with the limits similar to eq. (15). Numerically, the situation will be badly ill-conditioned but we can still start from the fixed initial values of \(C_1\) and \(C_2\) at \(x = 0\) and determine (the discrete set of) the energies \(E_n\) from another postulate of another fixed set of parameters \(\tilde{C}^{(+)}\) and \(\tilde{C}^{(-)}\) at \(x = \pi/2\).

Similar “weakly solvable” models which do not require any termination of the hypergeometric series also do occur in applications from time to time [16]. We are not going to study them here in any detail.

3.2 Classification of the exactly solvable cases

After our present regularization, one has to contemplate the whole infinite domain of \(x(t)\) or \(t \in (-\infty, \infty)\). We shall omit here also this direction of considerations which,
generically, leads to the Floquet theory and to the characteristic band spectra for the PT symmetric and periodic systems [17].

In a narrower domain of applications related, e.g., to the attempts to generalize [18] or PT symmetrize [19] the Calogero’s three-body model [20] we shall solely pay attention to the problems which keep using the “physical” boundary conditions imposed directly at the poles at $x = 0$ and $x = \pi/2$.

There exist several good practical reasons (e.g., the well known slow convergence of the infinite hypergeometric series) for the exclusive preference of the terminating, polynomial Pöschl-Teller solutions. In such a setting, our explicit knowledge of the general solutions facilitates also the complete classification of the eligible boundary conditions.

In the first step it is important to notice that for the superposition (8), generically, the two necessary termination conditions are mutually incompatible. Fortunately, they differ just in one sign, $\sigma \rightarrow -\sigma$. Without any loss of generality we may put $C_2 = 0$ and write down the general termination condition, therefore,

$$k = k_n^{(\sigma, \tau)} = \sigma \beta + \tau \alpha + 2n + 1, \quad n = 0, 1, \ldots$$

It reduces the infinite series (9) to the elementary Jacobi polynomial and, simultaneously, nullifies the co-factor G of the second subseries (11) in the alternative formula (10). Summarizing, we are left with the unique elementary solution $\psi(x) = \psi_n^{(\sigma, \tau)}(x)$ with the energies $E_n^{(\sigma, \alpha)} = \left[k_n^{(\sigma, \tau)}\right]^2$ and wave functions

$$\psi_n^{(\sigma, \tau)}(x) = C_1 \sin^{1/2+\sigma} x \cos^{1/2+\tau} x \, {}_2F_1 \left(-n, n + 1 + \sigma \beta + \tau \alpha, 1 + \sigma \beta; \sin^2 x \right).$$

Only our choice of the signs $\sigma = \pm 1$ and $\tau = \pm 1$ remains variable. In all these four cases there is no freedom left for our choice of the boundary conditions. By construction our solutions simply fit the $x \rightarrow 0$ rule

$$x^{-1/2} \psi_n^{(\sigma, \tau)}(x) = C_1 x^{\sigma \beta} + 0 \cdot x^{-\sigma \beta}$$

and its $x \rightarrow \pi/2$ parallel

$$x^{-1/2} \psi_n^{(\sigma, \tau)}(x) = C_1 G^{(\sigma, \tau)}(\pi/2 - x)^{\tau \alpha} + 0 \cdot (\pi/2 - x)^{-\tau \alpha}.$$

At every main quantum number $n = 0, 1, 2, \ldots$ we have a choice among the quadruplet of boundary conditions (16) + (17) giving the respective four different energy series

$$E_n^{(\sigma, \tau)} = \alpha^2 + \beta^2 + 2\sigma\tau\alpha\beta + (4n + 2)(\sigma\beta + \tau\alpha) + (2n + 1)^2$$
numbered by $\sigma = \pm 1$ and $\tau = \pm 1$. Two of them [cf. $E_n^{(+,+)} = (\Sigma + 2n + 1)^2$ and $E_n^{(-,-)} = (\Sigma - 2n - 1)^2$] depend on the sum $\Sigma = \alpha + \beta$ and, in this sense, resemble strongly the Hermitian formula (2). The other two series $E_n^{(+,-)} = (\Delta + 2n + 1)^2$ and $E_n^{(-,+)} = (\Delta - 2n - 1)^2$ exhibit a dependence on the mere difference $\Delta = \beta - \alpha$ and remain, unexpectedly, coupling-independent for the symmetric wells $V^{(H,H)}(x)$. In contrast, as already mentioned (cf. Figure 4 above), an interplay or superposition of the former two series provides one of the “most natural” explanations of the paradox in Figures 2 or 3.

Acknowledgement

Partially supported by GA AS CR grant No. A1048004.
References

[1] Pöschl G and Teller E 1933 Z. Physik 83 143;
 Quesne C 1999 J. Phys. A: Math. Gen. 32 6705 with further references

[2] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267

[3] Landau L D and Lifshitz E M 1960 Quantum Mechanics (London: Pergamon Press), ch. V, par. 35.

[4] Flügge S 1971 Practical quantum mechanics I (Berlin: Springer), p. 157

[5] Reed M and Simon B 1978 Methods of Modern Mathematical Physics IV (New York: Academic)

[6] Newton R G 1982 Scattering Theory of Waves and Particles (Berlin: Springer), pp. 391-392.

[7] Frank W M, Land D J and Spector R M 1971 Rev. Mod. Phys. 43 36

[8] Simsek M and Yalcin Z 1994 J. Math. Chem. 16 211;
 Znojil M 1996 J. Math. Chem. 19 205;
 Chun-Sheng Jia, Jia-Ying Wang, Su He and Linag-Tian Sun 2000 J. Phys. A: Math. Gen. 33 6993

[9] Znojil M 2000 Phys. Rev. A 61 066101

[10] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 24 5243

[11] Bagchi B and Roychoudhury R 2000 J. Phys. A: Math. Gen. 33 L1;
 Znojil M 2000 J. Phys. A: Math. Gen. 33 L61 and 4561

[12] Lévai G and Znojil M 2000 J. Phys. A: Math. Gen. 33 7165

[13] Caliceti E, Graffi S and Maioli M 1980 Commun. Math. Phys. 75 51;
 Buslaev V and Grech V 1993 J. Phys. A: Math. Gen. 26 5541;
 Fernández F M, Guardiola R, Ros J and Znojil M 1998 J. Phys. A: Math. Gen. 31 10105;
Andrianov A A, Ioffe M V, Cannata F and Dedonder J P 1999 Int. J. Mod. Phys. A 14 2675;
Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 40 2201;
Mezincescu G A 2000 J. Phys. A: Math. Gen. 33 4911;
Bagchi B and Quesne C 2000 Phys. Lett. A 273 285

[14] Delabaere E and Pham F 1998 Phys. Letters A 250 25 and 29;
Bender C M, Berry M, Meisinger P N, Savage V M and Simsek M 2001 J. Phys. A: Math. Gen. 34 L31

[15] Cannata F, Junker G and Trost J 1998 Phys. Lett. A 246 219;
Znojil M, Cannata F, Bagchi B and Roychoudhury R 2000 Phys. Lett. B 483 284
Bender C M, Boettcher S and Savage Van M 2000 J. Math. Phys. 41 6381
Fernández F M, Guardiola R, Ros J and Znojil M 1999 J. Phys. A: Math. Gen. 32 3105;
Bender C M, Boettcher S, Jones H F and Van Savage M 1999 J. Phys. A: Math. Gen. 32 6771;
Bagchi B, Cannata F and Quesne C 2000 Phys. Lett. A 269 79;
Znojil M and Levai G 2000 Phys. Lett. A 271 327;
Lévai G, Cannata F and Ventura A 2001 J. Phys. A: Math. Gen. 34 1

[16] de Souza-Dutra A 2000 Phys. Rev. A 47 (2000) 066102;
Jiu-Xun Sun 1999 Acta Phys. Sinica 48 1992.

[17] Bender C M, Dunne G V and Meisinger P N 1999 Phys. Lett. A 252 272

[18] Khare A and Quesne C 1998 Phys. Lett. A 250 33

[19] Znojil M and Tater M 2001 J. Phys. A: Math. Gen. 34 1793

[20] Calogero F 1969 J. Math. Phys. 10 2191
Figure 1.
Figure 2.

$E(B)$

$g(B)$
Figure 4.