Fluxo transgênico: desafios para a conservação on farm de variedades crioulas de milho no Semiárido brasileiro

Transgene flow: challenges to the on farm conservation of maize landraces in the Brazilian Semi-Arid Region

Gabriel Bianconi FERNANDES, Ana Cláudia de Lima SILVA, Maitê Edite Sousa MARONHAS, Amaury da Silva dos SANTOS, Paola Hernandez Cortez LIMA

1 Grupo de Trabalho Biodiversidade da Articulação Nacional de Agroecologia (ANA), Viçosa, MG, Brasil.
2 Universidade Federal de Goiás (UFG), Goiânia, GO, Brasil.
3 Articulação Semiárido Brasileiro (ASA), Recife, PE, Brasil.
4 Empresa Brasileira de Pesquisa Agropecuária – Alimentos e Territórios (EMBRAPA Alimentos e Territórios), Maceió, AL, Brasil.

* E-mail de contato: biefernandes@gmail.com

Artigo recebido em 6 de maio de 2022, versão final aceita em 7 de junho de 2022, publicado em 5 de abril de 2023.

RESUMO:

O Brasil é um dos maiores produtores globais de cultivos geneticamente modificados e centro de origem e diversificação de espécies relevantes para a agricultura e a alimentação. As monoculturas transgênicas ocupam cerca de 50 milhões de hectares, enquanto agricultores familiares, povos indígenas e comunidades tradicionais respondem pela conservação in situ/on farm de recursos genéticos locais. Baseado na experiência de 15 anos de regulamentação dos OGMs e em projetos interinstitucionais de conservação da agrobiodiversidade, este artigo discute os desafios para a coexistência desses dois modelos de agricultura a partir da detecção de proteínas transgênicas em variedades crioulas de milho. Como parte de um amplo e inédito processo de monitoramento participativo de fluxo gênico, 1.098 amostras de milho crioulo foram coletadas no Semiárido brasileiro entre 2018 e 2021 e analisadas por meio de fitas imunocromatográficas. Os testes revelaram 34% de amostras com a presença de proteínas GM. Conclui-se que as normas de biossegurança vigentes no país não permitem assegurar a conservação on farm do milho. O ônus desse processo vem sendo assumido por setores.

Este artigo é a versão em português de “Transgene Flow: Challenges to the On-Farm Conservation of Maize Landraces in the Brazilian Semi-Arid”, publicado originalmente em fevereiro de 2022 pela revista Plants. Para maiores informações ver: Fernandes, G. B.; Silva, A. C. D. L.; Maronhas, M. E. S.; Santos, A. D. S. D.; Lima, P.H.C. Transgene Flow: Challenges to the On-Farm Conservation of Maize Landraces in the Brazilian Semi-Arid Region. Plants 2022, 11, 603. doi: 10.3390/plants11050603
que contribuem para a conservação da agrobiodiversidade e não se beneficiam da adoção de sementes GM. A contaminação transgênica pode ser reduzida pela implementação de regras de coexistência mais efetivas que considerem as áreas de cultivo de variedades crioulas de milho como áreas de produção de sementes, somada à ampla informação sobre a origem das sementes comerciais.

Palavras-chave: agricultura familiar; bancos de sementes comunitários; coexistência; OGMs; Zea mays L.

ABSTRACT: Brazil is one of the largest global producers of genetically modified crops and a center of origin and diversification of relevant species for agriculture and food. Transgenic monocultures occupy around 50 million hectares, whereas smallholder farmers, indigenous people, and traditional communities are responsible for in situ/on farm conservation of local genetic resources. Based on 15 years of expertise in regulating GMOs and in cross-institutional agrobiodiversity conservation projects, this article discusses the challenges regarding the coexistence of these two agricultural models based on transgene flow detection in maize landraces. As part of a broad and unique participatory transgene-flow-monitoring process, 1,098 samples of maize landraces were collected in the Brazilian Semi-arid Region between 2018 and 2021 and analyzed using immunochromatographic strips. The tests revealed 34% of samples with presence of GM proteins. It is concluded that the biosafety standards in force in Brazil do not allow the assurance of on-Farm conservation of maize. The sectors that contribute to agrobiodiversity conservation and do not benefit from using GM seeds are taking on the burden of this process. Transgene flow can be reduced by approving and enforcing more effective coexistence rules that consider maize landraces crop areas also as seed-producing areas added to full disclosure of commercial seeds origin.

Keywords: coexistence; GMO monitoring; Zea mays L.; community seed banks; family farming.

1. Introdução

Os riscos do fluxo gênico entre variedades transgênicas e variedades crioulas e seus parentes silvestres são discutidos desde meados dos anos 1990 com as primeiras liberações comerciais de variedades geneticamente modificadas (GM) de milho (Ellstrand, 2001; Gepts & Papa, 2003; Altieri, 2005). Essa presença não intencional de transgenes em variedades crioulas tem implicações econômicas (McAfee, 2003; Binimelis, 2008; Levidow & Boschert, 2008), sobre a conservação da diversidade da espécie (Heinemann, 2007; Vázquez-Barrios et al., 2021), os direitos dos agricultores (De Schutter, 2009; FAO, 2009) e suas dinâmicas socioculturais (Binimelis, 2008; Agapito-Tenfen et al., 2017). Ao longo desses últimos 20 anos, estudos realizados em diferentes países identificaram a presença não inten-
selecionado e adaptado a outros territórios ao longo de milênios por meio da ação humana intencional (Kistler et al., 2018). Um dos territórios dessa co-evolução é a Amazônia brasileira. A raça localmente conhecida como “entrelaçada” é endêmica da região e abriga grande diversidade de variedades crioulas (Costa et al., 2021).

Estudos em outras regiões do país revelam a presença de grande diversidade de variedades crioulas (Carvalho et al., 2004; Silva et al., 2020), de parentes silvestres e de variedades endêmicas (Costa et al., 2020; 2021), sugerindo o reconhecimento de micro centros de diversidade da espécie (Costa et al., 2017; Silva et al., 2017; Silva et al., 2020b). Essas áreas correspondem a territórios de presença marcante de agricultores familiares, povos indígenas e comunidades tradicionais (Fiore et al., 2020), fato que reforça o papel central das comunidades locais na conservação dinâmica on farm e sua importância para a evolução e adaptação da espécie, p. ex. frente às mudanças climáticas (Bellon et al., 2011; Galluzzi et al., 2020). Os estudos disponíveis sobre contaminação GM de variedades crioulas reforçam a relevância do tema para o futuro da conservação on farm. Contudo, de maneira geral, estes são realizados em poucas localidades visando medir as condições e distâncias em que ocorre o fluxo gênico entre o milho GM e o não GM, além de confirmar a presença não intencional de transgenes em plantas não GM. Uma avaliação do fenômeno em maior escala, próxima à realidade dos agricultores familiares, ainda não foi realizada.

O Semiárido brasileiro (SAB) está situado na região nordeste do país e norte do estado de Minas Gerais. Abrange área equivalente a 12% do território nacional, abrigando 28 milhões de habitantes. Seu clima predominante é do tipo BSh’ (Köppen), considerado Tropical Quente e Úmido com chuvas de outono-inverno, com precipitação média anual inferior a 800 mm marcada por irregularidade das chuvas e altas taxas de evapotranspiração. O bioma predominante é a Caatinga, constituída especialmente por leguminosas, gramíneas, euforbiáceas, bromeliáceas e cactáceas.

Nesta região, dado seu histórico, a sociedade civil se organizou para colocar na pauta nacional questões próprias da região, surgindo assim a Articulação Semiárido Brasileiro (ASA) em 1999, composta inicialmente por 61 organizações da sociedade civil e federações de entidades sindicais que denunciaram o empobrecimento intencional da população local associado às secas, fome, concentração fundiária e das águas em terras privadas e políticas públicas que historicamente fortaleceram os elementos apontados. A ASA passou então a demandar uma política adequada à realidade da região baseada no conceito de “Convivência com o Semiárido” como forma de superar a lógica politicamente dominante de combate à seca (Maronhas et al., 2020).

O Programa de Manejo da Agrobiodiversidade Sementes do Semiárido (2015-2018) resulta de ações anteriores de resgate e conservação de sementes crioulas apoiadas pelas Comunidades Eclesiais de Base da Igreja Católica. Durante a execução deste Programa foram apoiadas cerca de 1.000 bancos e casas comunitárias de sementes, nas quais agricultores familiares armazenam coletivamente suas sementes com a finalidade de uso, conservação, trocas e comercialização, mobilizando diretamente 20 mil famílias. Foram identificadas mais de 700 variedades crioulas de Phaseolus vulgaris, P. lunatus e Vigna spp. e mais de 400 de milho (Zea mays L.), entre outras.
A partir das informações e demandas geradas pelo Programa Sementes se originou outro projeto chamado Agrobiodiversidade do Semiárido, uma parceria entre a Empresa Brasileira de Pesquisa Agropecuária (Embrapa) e a ASA. O projeto teve início em 2019 com o objetivo de fortalecer e valorizar as estratégias de convivência com semiárido das famílias agricultoras com o uso, conservação e valorização da socioagrobiodiversidade a partir de ações coordenadas com redes sociotécnicas locais, subsidiando políticas públicas, promovendo o compartilhamento e a construção de conhecimentos em processos inovadores. A ação abrange mais de 2.600 famílias agricultoras e 147 bancos comunitários de sementes.

Ao longo dessas ações identificou-se a iminente contaminação transgênica das variedades crioulas de milho, o risco de erosão genética e a redução da agrobiodiversidade. Tais fatos levaram à implementação de monitoramento em larga escala da contaminação de variedades crioulas de milho nas comunidades de agricultores familiares beneficiários dos dois projetos, visando verificar a ocorrência e a frequência de contaminação por transgênicos, para orientação dos agricultores e subsidiar políticas públicas e futuros estudos. O problema identificado chama a atenção para as regras de coexistência vigentes, limitadas a estabelecer isolamento de 100 metros de distância entre cultivos GM e não-GM ou 20 m quando acrescida bordadura de 10 fileiras de milho convencional (ver Seção 3.3).

Este monitoramento foi realizado por meio de testes rápidos imunocromatográficos, popularmente conhecidos como testes de fita, com as equipes técnicas do projeto capacitadas para sua aplicação. A escolha deste método de detecção de transgênicos deveu-se a sua acessibilidade e praticidade nas condições de campo dos projetos e por se configurar como uma ferramenta didática de orientação para os agricultores familiares da região. Embora os limites de detecção destes testes sejam conhecidos e bem divulgados pelas empresas fabricantes, eles podem ser compreendidos como indicadores do risco e do grau de contaminação em curso nas comunidades e poderiam ser confirmados por outros métodos com maior sensibilidade a baixos níveis de contaminação, como PCR ou qPCR.

Considerando os elementos expostos anteriormente, destaca-se que o presente estudo originou-se de uma iniciativa educativa estruturada em decorrência da urgência identificada a partir da ação da sociedade civil organizada brasileira. Assim, os limites da metodologia são conhecidos. Entretanto, devido à amplitude da análise e diante da situação verificada, houve um esforço de divulgação desses resultados na literatura científica, com o objetivo de alertar a comunidade científica sobre o assunto e incentivar a realização de outros estudos visando permitir uma compreensão aprofundada do fenômeno identificado. Além disso, considerando os altos custos necessários para a realização de testes imunocromatográficos ou PCR, os resultados apresentados neste estudo tornam-se mais relevantes, pois são raros os estudos com tamanha amplitude. Os agricultores referem-se localmente ao fluxo de transgenes, seja por polinização cruzada ou por mistura de sementes, como “contaminação” para expressar sua compreensão de como construções genéticas exógenas e protegidas por direitos de propriedade intelectual podem impactar suas variedades e sistemas de manejo de sementes.

Este estudo teve como objetivos:
(i) documentar a ocorrência de contaminação GM em variedades crioulas de milho conservadas por agricultores familiares no SAB;
(ii) demonstrar a eficiência do teste rápido imunocromatográfico (teste de fitas) como ferramenta para o monitoramento local da contaminação GM de variedades crioulas; e
(iii) avaliar as implicações da desregulação e uso indiscriminado dos organismos geneticamente modificados (OGMs) para a conservação on farm da diversidade genética do milho.

2. Resultados

Os dados compreendem dois períodos subsequentes de coletas realizadas em diferentes localidades vinculadas a ações de dois projetos (ver Material e Métodos). Nesse período ocorreram mudanças nos testes imunocromatográficos disponíveis no mercado; assim, vale ressaltar que este estudo não pretende fazer comparações entre os dois ciclos e que, dessa forma, não seria adequado abordar o aumento ou diminuição do fluxo gênico, mas apenas verificar o fenômeno e sua amplitude ao longo dos anos.

2.1. Frequência do fluxo transgênico

O fluxo transgênico entre as variedades de milho crioulo foi de 34% em 1098 coletas avaliadas nas duas amostragens no SAB (2018–2019; 2020–2021) (Figura 1).

A amostra I consiste de 576 coletas, da quais 28% testaram positivo para OGM. A amostra II consiste de 522 coletas, das quais 41% foram positivas.
Essas trocas incluem as sementes da própria comunidade (288 coletas), outras comunidades (103 coletas), casas ou bancos comunitários de sementes (63 coletas), intercâmbios (38 coletas), doações (20 coletas), compra entre agricultores (7 coletas), feiras de sementes (14 coletas) e intercâmbio internacional (2 coletas). Essa categoria representa 49% das coletas realizadas nas duas amostras avaliadas, totalizando 535 coletas.

A categoria Dinâmica Externa compreende as sementes não originárias de outros agricultores ou outras comunidades, ou seja, aquelas provenientes de compras em lojas ou feiras de produtores rurais (24 coletas) e sementes oriundas de políticas públicas governamentais (61 coletas), totalizando 85 coletas nas duas amostras. Na Amostra I 17% das coletas testaram positivo para OGM, e na Amostra II foram observados 75% das coletas positivas para OGM.

2.3. Proteínas GM detectadas

Os resultados positivos foram organizados em três grupos de acordo com o modo de ação da proteína GM. O primeiro grupo contém sete proteínas testadas que conferem resistência a insetos (RI), e o segundo grupo compreende as proteínas que conferem tolerância a diferentes ingredientes ativos de herbicidas (TH), ou seja, tolerância ao glifosato.

Grupa de ação	Proteína Testada	Amostra I	Amostra II
Total de coletas positivas		161	213
IR	VIP3A, Bt-Cry1A, Bt-Cry3Bb, Bt-Cry1F, Bt-Cry2Ab, mCry3A, Cry1Ac	158	159
GAT	PAT	5	19
GT	CP4 EPSPS	84	131

TABELA 1 – Detecção de proteína por modo de ação: resistência a insetos (RI) e tolerância aos herbicidas glifosato (GT) e glufosinato de amônio (GAT) na Amostra I (2018–2019) e Amostra II (2020–2021).
(GT) e tolerância ao glufosinato de amônio (GAT). A presença de proteínas GM por RI foi observada na maioria das amostras positivas. As amostras positivas para as proteínas GT apareceram com mais frequência que aquelas com a proteína GAT. Dentre as proteínas para RI, aquelas contendo o Grupo Cry predominaram, proteínas estas que conferem resistência a Spodoptera frugiperda e Diabrotica speciosa, importantes organismos-praga que afetam a produção de milho no Brasil. Na Amostra I, 161 coletas foram positivas, enquanto, na amostra II, foram observados resultados positivos em 213 coletas, resultando num total de 371 coletas com pelo menos uma proteína GM detectada pelo teste de fita. Maiores detalhes sobre a detecção de proteínas GM podem ser observados na Tabela 1 e Figuras 3 e 4.

As Figuras 3 e 4 mostram a frequência das proteínas GM por modo de ação e a ocorrência de eventos sobrepostos RI+ TH.

Para ambas as amostras, observou-se que a sobreposição dos grupos RI e GT é uma situação que ocorreu com alta frequência, enquanto, na Amostra II, a RI (37%) e ao GT (24%) também apresentaram alta frequência.

3. Discussão

3.1. Expansão desregulada das lavouras GM e potenciais efeitos do fluxo transgênico em variedades crioulas de milho conservadas por agricultores familiares no SAB

As plantas GM atualmente cultivadas em escala comercial foram desenhadas predominantemente para expressão de eventos (traits) (TH e RI) que visam facilitar as operações agrícolas em grandes áreas (Fischer, 2016). No Brasil, tolerância a herbicidas e resistência a insetos somam 94% dos eventos aprovados para comercialização (CTNBio, 2021a). As principais culturas GM são soja, milho e algodão (95% do total), que ocupam mais de 50 milhões de hectares, de acordo com dados da indústria (ISAAA, 2017). No caso do milho, até 2020, 53 variedades GM estavam autorizadas para plantio comercial (CTNBio, 2020a; Pereira Filho & Borghi, 2020). Levantamento para a safra 2019/2020 indica 26 cultivares de milho com a tecnologia VT PRO3©
e 25 com a Powercore™ Ultra© presentes no mercado de sementes (Pereira Filho & Borghi, 2020). As proteínas codificadas a partir desses eventos GM foram amplamente encontradas nas amostras aqui avaliadas, coincidindo com os dados sobre a prevalência dessas tecnologias.

Conforme relatado em 2.3, combinações variáveis e em diferentes proporções desses eventos GM foram encontradas em 34% das 1098 amostras analisadas. Essa piramidação não intencional pode dar origem ao desenvolvimento de insetos-praga com resistência a uma ou mais toxinas (Heinemann, 2007). Zenner-de-Polania (2021) relata que a maior preocupação relativa ao fluxo transgênico no milho é um possível dano à diversidade de raças existentes e acumulação de DNA transgênico. Lonhe e colaboradores (2020) observaram degeneração do milho crioulo em estudo feito no estado de Santa Catarina, na região sul do Brasil, onde foi introduzida a proteína transgênica Cry1AB em variedade crioula para acompanhar a evolução da expressão e concentração do gene, assim como seus efeitos na mortalidade dos insetos Helicoverpa armigera e Spodoptera littoralis. Concluiu-se que o cruzamento não intencional entre variedades crioulas e transgênicas causa danos irreversíveis, uma vez que a transcrição de gene e a bioativação de controle dos insetos é estável e confiável.

Os agricultores, sem saber de uma possível contaminação, podem selecionar sementes com função inseticida, porque a resistência conferida a insetos, com a diminuição de danos, ocultará características importantes e interessantes que foram selecionadas previamente durante anos por estes agricultores. Duncan e colaboradores (2019) afirmam, por outro lado, que se um gene for inadvertidamente introgredido em variedades crioulas não se espera que as características da proteína VT3Pro© alterem, por exemplo, a resposta da planta a estresses bióticos ou abióticos, exceto para proteção direcionada a insetos e características de tolerância a herbicidas. Concluem, ainda, que esses genes devem segregar como qualquer gene endógeno, seguindo as leis de Mendel. Essa afirmação é contestada por estudos que concluem que a transformação das plantas é um evento complexo que depende tanto de fatores externos como internos, sendo imprevisível a maneira exata pela qual as proteínas envolvidas na replicação do DNA interagem com o DNA exógeno e o próprio genoma da planta receptora (Kohli, 2003). A expressão da nova característica pode ser influenciada pela posição de integração do transgene (Kumar & Fladung, 2001), fato que mesmo nos processos controlados de modificação das plantas é altamente aleatório (Latham et al., 2006). A natureza do genoma receptor dos transgenes em questão e das interações entre eles contribuem para a segregação não-Mendeliana dos transgenes (Yin et al., 2004). A essa situação podem estar expostas as variedades crioulas de milho.

Os efeitos adversos da inserção de transgenes podem ainda ocasionar interações entre as vias fisiológicas da planta, produzindo substâncias potencialmente nocivas que podem impactar a produtividade agrícola (Zanatta et al., 2020). O fluxo transgênico pode ainda alterar o fenótipo ou qualidades da planta contaminada (Heinemann, 2007), que são os atributos usados pelos agricultores para seleção das sementes (Bellon e Brush, 1994; Louette et al., 1997; Louette, 2000; Louette & Smale, 2000; Perales et al., 2003).

O fluxo transgênico no milho e suas consequências têm o potencial de impactar profundamente a cultura alimentar de toda a América Latina.
Em toda região, raças diversas foram identificadas, chegando a 64 no México, considerado seu centro de origem, 52 no Peru, 43 na Argentina, 40 na Bolívia e 23 no Brasil (Silva et al., 2020a). Essa diversidade se relaciona diretamente a uma grande variedade de culturas, produtos e usos. A antiga relação entre seres humanos e o milho se mostra também nos diferentes processos de beneficiamento que aumentam o valor nutricional do grão, facilitam a moagem e reduzem os níveis de antinutrientes, como o fitato, e de micotoxinas (Guzzon et al., 2021). Agricultores de Yucatán, no México, cultivam uma grande diversidade de variedades com diferentes características agronômicas com o objetivo de reduzir o risco e aumentar sua segurança alimentar e nutricional (Guzzon et al., 2021), situação similar à vivenciada por agricultores familiares no SAB.

No Paraguai, um estudo avaliou a presença de proteínas transgênicas em 18 amostras de grãos de milho comercializados para o preparo de farinha (Melgarejo et al., 2020). A partir de análises PCR, foi identificada a presença de 5 amostras positivas para o promotor P-35S-CaMv e 5 amostras para o Terminador T-nos. Nenhuma delas apresentou as duas sequências buscadas na mesma amostra, indicando que 10 de 18 amostras estavam contaminadas. Estes resultados mostram que produtos transgênicos estão disponíveis em mercados locais no Paraguai sem que os consumidores estejam informados. Este exemplo demonstra que a diversidade de culturas alimentares se encontra ameaçada diante da erosão genética de variedades de milho, que envolve fatores agronômicos, ecológicos, econômicos e sociais (Bellon, 1991).

No Brasil, decreto federal determina que todo alimento ou ingrediente alimentício que contenha, ou seja produzido a partir de OGMs, com presença acima do limite de 1% do produto, deve ter essa informação na sua embalagem (Brasil, 2003). Porém, em relação à comercialização de sementes, esta informação não é garantida. Muitos agricultores que contribuíram neste estudo afirmam ter adquirido no mercado local sementes de milho que eram “mais fortes para as lagartas” ou “aguentavam veneno” (i.e., agrotóxicos). Informaram ainda a compra de sementes de forma fracionada, ou seja, em quantidades menores do que a comercializada formalmente (sacos de 20 kg), portanto sem contato com a embalagem da semente com informações da empresa, determinadas pela legislação. Desta forma, muitos destes agricultores não tinham conhecimento se eram sementes GM, a tecnologia embutida, tampouco o risco que corriam de contaminação de suas sementes. A falta de informação sobre a semente adquirida no comércio local pode explicar os níveis de testes positivos encontrados nas Amostras I e II na categoria Dinâmica Externa, respectivamente 17% e 75%, com o aumento significativo justificado pela maior procura de sementes comerciais em razão da redução da seca.

As variedades crioulas estão associadas à segurança e autonomia para o cultivo, uma vez que suas sementes são provenientes de cultivos anteriores e são mantidas sob guarda dos sujeitos que as cultivam (Lacey, 2000). A ação coletiva dos agricultores no SAB tem permitido evitar redução da oferta de variedades de milho disponíveis para plantio como relatado na Espanha (Hilbeck et al., 2013) e em outras regiões do Brasil (Capellesso et al., 2016) em decorrência da aprovação de variedades transgênicas. Agapito-Tenfen e colaboradores (2017) analisaram duas comunidades mexicanas: a comunidade A cultivava tanto variedades crioulas quanto híbridas de milho, realizando trocas de se-
mentes externas e aquisições no mercado externo, enquanto a comunidade B cultivava apenas variedades de milho crioulo e realizava apenas trocas internas, sem aquisições no mercado externo. Na primeira, as decisões são tomadas em nível individual e na segunda em nível comunitário. Na comunidade A foi identificada presença de OGMs em 20% das amostras coletadas, enquanto em B não foi identificado fluxo transgênico. A maior parte das comunidades do SAB se encontram mais próximas das condições e práticas da comunidade A, tanto em relação a proximidade de outras áreas de cultivo de milho quanto sobre a tomada decisão e ao cultivo misto de sementes crioulas guardadas pela própria comunidade e sementes de origem externa, sobre as quais detêm menor controle e conhecimento. Como apontado nos resultados deste estudo, sementes oriundas de dinâmicas externas apresentaram maiores taxas de fluxo transgênico nas duas amostras avaliadas. Na Amostra I, a categoria Dinâmica Familiar foi a que apresentou taxa positiva mais baixa, valor que aumentou na Amostra II, possivelmente por redução do quadro de seca e maior busca por sementes de fora com origem desconhecida.

Zenner-de-Polanía (2021) comparou os benefícios e os malefícios do cultivo de variedades transgênicas na América Latina. Dentre os benefícios, o autor aponta a redução do uso de inseticidas, o que beneficia a fauna e reduz o dano ao meio ambiente. O próprio autor aponta que não foram encontrados dados estatísticos na literatura sobre a redução do uso de produtos sintéticos para o controle de *S. frugiperda*, ressaltando que os riscos e limitações são muito melhor documentados do que os benefícios. O desenvolvimento de resistência à tecnologia em insetos e plantas espontâneas foi previsto desde o início do uso comercial de sementes GM e foi observado em todo o mundo (Hilbeck et al., 2015; Ferment et al., 2017) de forma que o monitoramento da tolerância e da resistência são obrigatórios em quase todos os países que autorizaram o uso do milho Bt. No Brasil, entretanto, o desenvolvedor do OGM está autorizado a solicitar dispensa de monitoramento (cf. item 3.3). De acordo com Fatoretto e colaboradores (2017), *S. frugiperda* desenvolveu resistência à maior parte dos híbridos transgênicos Bt em um período de apenas 3 anos no Brasil. No mesmo sentido, Argentina, Cuba, Colômbia e Porto Rico também detectaram resistência à *S. frugiperda*.

Desta forma, além da perda dos recursos genéticos associados ao fluxo transgênico nas sementes crioulas, intensificando ainda mais a erosão genética, o uso de transgênicos é uma ameaça à diversidade ecológica dos insetos e impacta diretamente tanto na produtividade das plantas de milho transgênica como no cultivo e produtividade da planta de milho sem a tecnologia incorporada. Hilbeck & Schmidt (2006) apontam a necessidade de pesquisas que avaliem o efeito das toxinas Bt em organismos não-alvo, visto que alguns estudos evidenciaram seu efeito letal nesses organismos e que a permanência dessas toxinas na cadeia alimentar chega a ser encontrada em concentração três vezes maior nos insetos do que nas folhas de milho GM com as quais eles se alimentaram. Alguns estudos observaram efeitos no desenvolvimento da população de predadores dos insetos diretamente afetados pelo milho Bt devido à ausência da presa, podendo proporcionar a não sobrevivência do predador, que poderia muitas vezes ser considerado um inseto benéfico. Em outro estudo foram encontrados efeitos em predadores de presas diretamente afetadas pelo milho Bt, como uma maior duração da fase larval, o que pode beneficiar predadores destas espécies e
reduzir a quantidade de indivíduos que chegam à idade adulta (Curis & Bertolaccini, 2013). Nesse estudo também foram encontrados menores pesos na idade adulta e fecundidade mais baixa, características que são danosas para a população deste inimigo natural. Acrescenta-se ainda que a presença de OGMs no solo já é considerada uma fonte de poluição classificada como ameaça à biodiversidade do solo na mesma categoria de exploração humana intensiva, juntamente com o revolvimento excessivo do solo, fertilizantes químicos e agrotóxicos (Aksoy et al., 2017; Tibbett et al., 2020).

A deriva do herbicida amplamente pulverizado nas lavouras GM que atinge outras áreas onde seu uso não foi planejado é também fonte de danos já documentados. Eker e colaboradores (2006) relatam redução da absorção de micronutrientes e do crescimento de parte aérea e sistema radicular de girassol atingido por subdosagens de produtos à base de glifosato. Efeito similar foi observado em soja, de acordo com Cakmak e colaboradores (Cakmak et al., 2009), que identificaram redução de Ca, Mg, Fe e Mn nos grãos de soja afetados por deriva de herbicidas à base de glifosato, efeito que também afetou a qualidade das sementes. A exposição de lavouras de café a subdosagens não intencionais de glifosato pode afetar a atividade de micorrizas e absorção de P (Carvalho et al., 2014).

Zanatta e colaboradores (2020) mostraram que herbicidas à base de glifosato desencadeiam efeitos indesejados, mesmo nas variedades geneticamente modificadas para resistir a essa classe de agrotóxicos. A análise revelou que os herbicidas à base de glifosato causam efeitos adversos no metabolismo e no fluxo central do carbono, no metabolismo redox, na fotossíntese e na resposta hormonal e de defesa das plantas. Esses dados são relevantes quando se considera que o aumento da área cultivada com OGMs tem correspondido no Brasil a um aumento do uso de herbicidas, sobretudo aqueles à base de glifosato (Almeida et al., 2017). Em termos globais, o uso de glifosato aumentou quase 15 vezes desde 1996, com o advento das culturas geneticamente modificadas com a tecnologia “Roundup Ready”, correspondendo a cerca de 56% do uso global de glifosato (Benbrook, 2016). Há relatos controversos em todo o mundo sobre os benefícios e malefícios do uso de glifosato nas vertentes sociais, econômicas e ambientais, além da saúde humana (Pengue, 2005; Binimelis et al., 2009). Conforme mostrado acima nas Figuras 3 e 4, verificou-se que genes de tolerância a herbicidas à base de glifosato são os mais presentes dentre os eventos TH identificados nas amostras contaminadas. Esse quadro é agravado pela flexibilização da legislação socioambiental (Melgarejo, 2018; Souza et al., 2020; Petry et al., 2020).

3.1.1. Diminuição da seca e aumento da contaminação

A presença de GM observada nas duas amostras pode estar associada ao incremento progressivo das chuvas e consequente redução dos efeitos da seca que se iniciou em 2012, aproximando as médias pluviométricas aos níveis considerados normais para a região. A redução da intensidade da seca propicia melhores safras em geral. Para o milho, isso significa maior área plantada e, assim, maior possibilidade de cruzamentos e introgressão de GMs. Em 2018-2019 foram realizados 576 testes de fita imunocromatográfica, sendo detectadas contaminações com pelo menos uma proteína GM
em 28% das amostras de milho crioulo. Em 2020-2021 constatou-se 41% das amostras de milho crioulo com pelo menos uma proteína transgênica identificada. As amostras apresentadas pertencem a agricultores/as familiares e são variedades crioulas (Figuras 1 e 2), ou seja, altamente valiosas em termos de patrimônio genético e cultural, o que indica resultados positivos muito significativos. A Figura 5 mostra a evolução da intensidade da seca no Nordeste brasileiro entre 2014 e 2021.

A Tabela 2 apresenta a chave de leitura para a Figura 5.

FIGURA 5 – Histórico dos dados tabulares de seca.

FONTE: Monitor de Secas (2021a).

em 28% das amostras de milho crioulo. Em 2020-2021 constatou-se 41% das amostras de milho crioulo com pelo menos uma proteína transgênica identificada. As amostras apresentadas pertencem a agricultores/as familiares e são variedades crioulas (Figuras 1 e 2), ou seja, altamente valiosas em termos de patrimônio genético e cultural, o que indica resultados positivos muito significativos. A Figura 5 mostra a evolução da intensidade da seca no Nordeste brasileiro entre 2014 e 2021.

A Tabela 2 apresenta a chave de leitura para a Figura 5.

TABELA 2 – Estágios ou categorias de seca, as quais definem a intensidade de seca no mapa do Monitor.

Categoria	Percentil	Descrição	Impactos possíveis
S0	30%	Seca fraca	Entrando em seca: veranico de curto prazo diminuindo plantio, crescimento de culturas ou pastagem. Saindo de seca: alguns déficits hídricos prolongados, pastagens ou culturas não completamente recuperadas.
S1	20%	Seca moderada	Alguns danos às culturas, pastagens, córregos, reservatórios ou poços com níveis baixos, algumas faltas de água em desenvolvimento ou iminentes; restrições voluntárias de uso de água solicitadas.
S2	10%	Seca grave	Perdas de cultura ou pastagens prováveis; escassez de água comuns; restrições de água impostas.
S3	5%	Seca extrema	Grandes perdas de culturas / pastagem; escassez de água generalizada ou restrições
S4	2%	Seca excepcional	Perdas de cultura / pastagem excepcionais e generalizadas; escassez de água nos reservatórios, córregos e poços de água, criando situações de emergência

FONTE: Monitor de Secas (2021b). Adaptado de National Drought Mitigation Center, Lincoln, Nebraska, U.S.
3.2. Testes imunocromatográficos como ferramenta para monitoramento de fluxo transgênico local

Dentre as metodologias disponíveis para detecção de proteínas transgênicas em plantas, o teste de fita foi o mais viável para esse tipo de estudo. Embora mostre apenas resultados qualitativos, identificando a ausência ou presença de uma determinada proteína, desempenha um papel na rastreabilidade rápida e eficiente no local (Lipton et al., 2000). Outras metodologias de imunoensaio já se mostraram eficientes para a detecção quantitativa de OGMs (Stave, 1999). Tem ainda a vantagem de ser didático como ferramenta participativa, metodologia utilizada pelos projetos, permitindo que os testes sejam realizados em casas e bancos de sementes comunitários ou familiares, junto aos agricultores detentores de sementes. Por essas razões, testes de fita têm sido adotados em diferentes regiões do país para monitorar o fluxo de transgenes nos sistemas locais de manejo de sementes e conservação da agrobiodiversidade.

Testes de PCR digital, PCR em tempo real (q-PCR) e sequenciamento (para identificação de OGMs não autorizados) adotados por órgãos oficiais de fiscalização têm custos menores uma vez que os laboratórios estão instalados e considerando os equipamentos utilizados. Segundo levantamento realizado neste estudo, uma amostra analisada com o teste de fita custa R$ 37,00 e no laboratório com q-PCR o material custa R$ 8,00, excluindo os valores de depreciação de equipamentos, mão de obra e infraestrutura. No entanto, equipamentos como esse não são de fácil acesso para os agricultores familiares e suas organizações.

Durante a execução do Projeto de Agrobiodiversidade do Semiárido, foram realizados diversos treinamentos com a equipe executora nos territórios a fim de aprofundar seus conhecimentos teóricos sobre o tema, capacitando-os melhor para orientar os guardiões de sementes e refletir sobre estratégias territoriais para evitar fluxo transgênico. Um momento importante do treinamento da equipe foi dedicado exclusivamente ao nívelamento metodológico, com o intuito de realizar os testes de fitas com os agricultores e as agricultoras. Discutiu-se a eficácia de diferentes métodos para analisar a ocorrência de eventos transgênicos em sementes de milho, seja em laboratório ou por meio de testes de fitas e outros, e foram apresentados os protocolos e manual de campo para realização de testes imunocromatográficos. Além dessas oportunidades de reflexão sobre o fluxo de transgenes em variedades de milho, outras atividades importantes ocorreram culminando na publicação de comunicados técnicos sobre a multiplicação de variedades crioulas e sobre experimentação participativa através de testes de variedades crioulas (Curado et al., 2020; Santos et al., 2020).

3.3. Implicações da desregulação dos OGMs para a conservação on farm da diversidade genética do milho

Apesar de cultivar legalmente OGMs em escala comercial desde 2003, o Brasil nunca adotou medidas que permitissem assegurar a coexistência de variedades transgênicas com os cultivos convencionais, agroecológicos e orgânicos (Ferment, 2009; Fernandes et al., 2010; Fernandes e Marinho, 2017). A primeira
variedade de milho GM aprovada comercialmente ocorreu em 2007 sem o estabelecimento de nenhuma regra específica de isolamento por parte da autoridade brasileira de biosseguran\c{c}a, Comiss\c{a}o T\c{e}cnica Nacional de Biossegurança (CTNBio). A pedido de organiza\c{c}\~{o}es sociais, a Justiça suspendeu a decis\~{a}o at\~{e} que fossem estabelecidas normas de coexist\c{e}ncia e de monitoramento. A CTNBio definiu ent\~{a}o regras visando

Estabelecer as dist\c{a}ncias m\c{a}niminas de isolamento a serem observadas entre cultivos comerciais de milho geneticamente modificado e cultivos de milho n\~{a}o geneticamente modificado, para permitir a coexist\c{e}ncia entre os diferentes sistemas de produ\c{c}\~{a}o no campo (CTNBio, 2007).

A norma determina que

Para permitir a coexist\c{e}ncia, a dist\c{a}ncia entre uma lavoura comercial de milho geneticamente modificado e outra de milho n\~{a}o geneticamente modificado, localizada em \c{a}rea vizinha, deve ser igual ou superior a 100 (cem) metros ou, alternativamente, 20 (vinte) metros, desde que acrescida de bordadura com, no m\c{a}ximo, 10 (dez) fileiras de plantas de milho convencional de porte e ciclo vegetativo similar ao milho geneticamente modificado (Ibid.).

A inadequ\c{a}o da norma fica evidente quando comparada \`a diretriz do Ministério da Agricultura que exige dist\c{a}ncia m\c{a}nimina de 400 metros para isolamento de campos de produ\c{c}\~{a}o de sementes de milho.

Estudos realizados em condi\c{c}\~{o}es ambientais diversas identificaram fluxo transg\c{e}nico em milho a dist\c{a}ncias bastante superiores. Hofmann et al. (2014) identificaram em pa\c{c}es europeus que p\c{e}l\~{o}n do milho chega a at\~{e} 1 km e a dispers\~{a}o diminui com a dist\c{a}ncia. No Uruguai, p\c{e}l\~{o}n GM foi identificado a 330 m da fonte, com introgress\~{a}o de at\~{e} 1/40 sementes em F1 (Galeano et al., 2010). O fluxo g\c{e}nico GM em milho pode acontecer por fecund\~{a}o ou mistura de gr\~{a}os (Heinemann, 2007). Dyer e colaboradores (2009) constataram dispers\~{a}o de sementes GM vindas dos EUA, identificando 3,1\% de amostras contaminadas com genes Bt e 1,8\% com genes RR. Tam\~{b}~{e}m por processos de mistura de gr\~{a}os, pesquisadores identificaram 15\% de amostras positivas para RR e 10\% para Bt nas variedades cultivadas por agricultores locais na \c{a}frica do Sul (Iversen et al., 2014). Na Venezuela, D\~{i}az & Galindo (2014) encontraram amostras de milho local com eventos GM que n\~{a}o eram aprovados para cultivo no pa\c{c}is. No Jap\~{a}o, o fluxo de transgenes foi observado a 800 metros da fonte de p\c{e}l\~{o}n, com taxas n\~{o} homog\c{e}neas variando conforme a velocidade do vento e incid\c{e}ncia de radia\c{c}\~{a}o solar (Kawashima et al., 2011). A recomenda\c{c}\~{a}o de altera\c{c}\~{a}o da \c{a}poca de plantio poderia ser estrat\c{e}gia complementar para minimizar o fluxo transg\c{e}nico, mas estudos recentes indicam que esta medida prejudica a produ\c{c}\~{a}o e a qualidade das sementes obtidas fora de \c{a}poca (Munarini et al., 2021).

Entre 2007 e 2021 foram aprovadas comercialmente 53 variedades GM de milho (CTNBio, 2021a). Combina\c{c}\~{o}es aleat\c{o}rias e variadas desses eventos s\~{a}o cultivadas anualmente em cerca de 40 milhões de ha no Brasil. A introdu\c{c}\~{a}o repetida e em larga escala de cultivos GM pode aumentar sua presença involunt\c{a}ria no ambiente (Heinemann, 2007). Em 2020 (CTNBio, 2020b) e novamente em 2021 (CTNBio, 2021b), a CTNBio alterou suas normas internas permitindo \`as empresas requerentes
solicitarem isenção do plano de monitoramento pós-liberação comercial (CTNBio, 2011). Em 2015, com posteriores alterações em 2020 e 2021, as regras nacionais de biossegurança passaram a aceitar a aprovação automática de OGMs com eventos piramidados cujos eventos individuais tenham sido previamente aprovados para liberação comercial pela CTNBio, conforme solicitado pela requerente (CTNBio, 2015). O controle da difusão não intencional e não planejada de OGMs necessita ainda estratégias que considerem estudos sobre as dinâmicas sociais e culturais dos sistemas locais de sementes e sobre como os transgênicos entraram e se movem dentro das comunidades rurais (Binimelis, 2008; Agapito-Tenfen et al., 2017).

4. Material e métodos

4.1. Área de estudo e pontos de coletas das Amostras I e II

Este estudo analisou 1.098 amostras de sementes de milho conservadas on farm por famílias.
agricultoras em casas e bancos de sementes familiares ou comunitários (Figura 6) residentes em 138 municípios de 9 estados do Semiárido Brasileiro, representando cerca de 10% dos municípios da região (ver material suplementar).

As amostras foram coletadas e testadas em dois períodos. Na Amostra I (2018/2019), foram avaliadas 576 coletas (Figura 7), enquanto, na Amostra II (2020/2021), foram avaliadas outras 522 coletas de sementes (Figura 8).

4.2. Coletas e testes realizados

Os testes foram aplicados em sementes de milho reconhecidas como variedades crioulas, ou seja, variedades que estão sob o manejo de agricultores e guardiões há pelo menos 3 anos. De modo geral, as propriedades familiares da região do SAB são menores se comparadas ao agronegócio da região: a média é de 29,2 ha, variando de 12,2 ha no estado de Alagoas a 53,6 ha no estado de Minas Gerais (Reis, 2019), característica que dificulta ou impede a criação de barreiras físicas para impedir a dispersão de pólen GM pelo ar, bem como para garantir a distância mínima obrigatória para o isolamento de culturas GM. No Semiárido brasileiro, também é importante considerar que o plantio em diferentes épocas para evitar o fluxo transgênico não é uma opção viável devido à concentração de chuvas em períodos curtos do ano.

Deve-se levar em consideração também que a maioria dessas áreas estão próximas ou são de fácil acesso aos centros urbanos, possibilitando o acesso às sementes no mercado local, bem como o intercâmbio com outros agricultores familiares. Portanto, essas amostras foram coletadas em con-

FIGURA 8 – Indicação dos pontos de coleta das amostras de sementes em municípios do Semiárido Brasileiro, 2020–2021.

FIGURA 9 – Vista aérea de propriedades dos agricultores familiares no SAB, mostrando a grande diversidade de cultivos próximos uns dos outros em pequenas áreas.
FONTE: Flávio Costa. Remígio, Paraíba, Brasil, maio de 2021.
dições típicas de campo no contexto da agricultura familiar no Semiárido brasileiro (Figura 9).

No momento da coleta, as sementes foram devidamente identificadas com as informações referentes à sua procedência. Pelo menos 10.000 sementes foram coletadas de cada amostra para realização do teste imunocromatográfico com sensibilidade de detecção de 0,1% (1/1000 sementes). A coleta foi homogeneizada manualmente em sacos plásticos limpos e descartáveis. Após a homogeneização, 250 g de sementes de cada amostra foram trituradas. O volume restante foi armazenado para testes de contraprova conforme necessário (Figura 10).

A Amostra II foi coletada durante o Programa Inova Social, no Projeto Agrobiodiversidade do Semiárido, em 5 dos 10 estados da região do SAB, envolvendo os estados da Bahia, Sergipe, Pernambuco, Piauí e Paraíba. Foram realizados testes para as proteínas mEPSPS, Cry1A, Cry1Ab, Cry1Ac, Cry1A.105, Liberty Link, Cry3Bb, Cry1F, Cry34 e Cry2Ab, algumas encobertas pela piramidação (a piramidação ocorre quando uma proteína GM é necessariamente encontrada associada a outra proteína; assim, também é considerado identificado, embora não tenha sido realizado nenhum teste específico para essa proteína. Esse procedimento foi adotado mediante prévia consulta à equipe técnica da empresa responsável pelos testes adquiridos, pois, em alguns casos, esta foi a única alternativa dado que não havia testes disponíveis para todas as proteínas autorizadas para comercialização no país). Uma inovação para esta amostra foi a utilização do teste PMI, que é capaz de identificar a presença de um conjunto de proteínas, como mCry3A, e Cry3 e Vip3A, mas sem identificar qual delas está presente.

Em ambos os casos, a empresa que vendeu os testes foi solicitada a fornecer uma combinação de testes que pudesse oferecer a melhor cobertura das proteínas autorizadas para comercialização no país no momento.

A presença de proteínas GM foi determinada por meio de testes imunocromatográficos (fitas de fluxo lateral ou testes de fita) (Figura 11). Esses testes identificam uma ou mais proteínas que garantem a triagem de eventos transgênicos liberados comercialmente para a cultura do milho no Brasil, conforme apresentado na Tabela 3.
Vale ressaltar que entre a Amostra 1 (2018–2019) e a Amostra 2 (2020–2021), a CTNBio concedeu aprovações comerciais para nove novas variedades de milho GM (Tabela 4). As empresas de teste de fita então atualizaram os kits comercializados para cobrir esses novos eventos ou combinação de eventos (Tabela 3). A entrada dessas novas variedades no mercado provocou mudanças nos kits de testes adotados pelos projetos. Os testes de fitas para proteínas GM comercializados pela empresa consideram que os eventos contendo Cry1F aparecem piramidados com CP4, Cry1Ab, PAT e/ou PMI (Vip3a e mCry3A), enquanto os eventos contendo Cry2Ab, piramidados com CP4, Cry1Ab, Cry1a.105, PAT e/ou PMI. De acordo com os vendedores, os testes Cry1A verificam Cry1AB, Cry1AC e Cry1A.105

TABELA 3 – Testes, proteínas/traço e limites de detecção usados em cada uma das amostras avaliadas.

Empresa	Produto	Evento (trait)	Limite de Detecção (%)
2018/2019			
Romer Labs	AgraStrip© Triple Trait Bulk Grain	CP4 EPSPS	0,1
		Bt-Cry1A (Bt-Cry1Ab, Bt-Cry1Ac, Bt-Cry1Ac...Bt-Cry3Bb	9,5
	AgraStrip© PMI Bulk Grain	PMI (Vip3A, mCry3A)	0,5
	AgraStrip© RUR-HS Bulk Grain	CP4 EPSPS	0,25
	AgraStrip© Cry1Ac Bulk Grain	Cry1Ac	0,9
	AgraStrip© LL Bulk Grain	PAT	0,9
2020/2021			
Romer Labs	AgraStrip© PMI Bulk Grain	PMI (Vip3A, mCry3A)	0,5
	AgraStrip© RUR-HS Bulk Grain	CP4 EPSPS	0,25
	AgraStrip© Cry1Ac Bulk Grain	Cry1Ac	0,9
	AgraStrip© LL Bulk Grain	PAT	0,9

FONTE: RomerLabs, s/d.
As amostras foram coletadas e testadas na presença dos agricultores por técnicos de assistência técnica e extensionistas rurais que receberam treinamento específico para aplicação do protocolo para realização de testes imunocromatográficos, com base nas recomendações técnicas do fabricante, no âmbito do Projeto Sementes do Semiárido e Agrobiodiversidade do Semiárido.

Nesses projetos, os testes imunocromatográficos tiveram um papel educativo, permitindo que os agricultores visualizassem uma questão abstrata, pois é impossível identificar a presença de transgênicos em uma planta apenas por meio de análise visual (Figura 12). Assim, alguns controles positivos foram feitos com sementes transgênicas
compradas no mercado para este fim. Esses testes não estão incluídos no material analisado.

4.3. Análise dos dados

Os testes positivos e negativos foram transformados em variáveis binárias em uma tabela de dupla entrada (0,1), sendo 0 negativo e 1 positivo para a presença de proteína transgênica.

Assim, as informações foram geradas considerando os parâmetros abaixo:

a) Frequência de coletas das sementes de variedades crioulas positivas em testes imunocromatográficos realizados nos dois ciclos de coleta 2018–2019 e 2020–2021;

b) Frequência de resultados positivos das coletas de acordo com o sistema de manejo local de sementes nos dois ciclos de coleta 2018–2019 e 2020–2021;

c) Frequência de ocorrência das diferentes proteínas testadas em sementes de variedades crioulas positivas para eventos transgênicos.

5. Conclusões

Estudos anteriores comprovaram a presença de transgenes em variedades crioulas, mas sem, contudo, discutir quais estratégias os agricultores e suas organizações têm adotado para monitorar o risco de contaminação tendo em vista o papel que desempenham na conservação on farm da diversidade genética do milho crioulo. Aqui apresentamos o esforço inédito liderado por organizações da sociedade civil de monitoramento em escala da contaminação GM. Os resultados confirmam uma onipresença de eventos GM nas variedades crioulas de milho conservadas por agricultores familiares no SAB. No total, 1098 amostras foram avaliadas de forma participativa por meio de testes de fita ao longo de 4 anos, revelando resultados positivos para presença de OGMs em 34% das amostras, com até 7 diferentes eventos GM numa mesma amostra. Entre os sistemas locais de circulação de sementes avaliados, foram encontrados índices mais elevados de contaminação na categoria Dinâmica Externa. No ciclo I de avaliação, a categoria Dinâmica entre Agricultores apresentou maior taxa de amostras positivas do que a categoria Dinâmica Familiar. No ciclo II, a taxa de amostras positivas na categoria Dinâmica Familiar superou a da Dinâmica entre Agricultores. As especificações dos kits de teste mudaram entre um projeto e outro visando acompanhar a entrada de novas variedades de milho GM no mercado de sementes do país, bem como garantir a confiança na capacidade de rastreamento da ferramenta. A ocorrência da contaminação de variedades crioulas de milho pode ser ainda maior tendo em vista nossa base amostral ter estado delimitada à área de atuação de organizações ligadas à ASA e aos dois projetos executados no período. Não obstante, essa limitação reforça a relevância dos resultados encontrados e os desafios apontados para a conservação on farm.

A adoção dos testes de fita revelou-se eficiente para o monitoramento participativo da contaminação transgênica. Além da confiabilidade dos resultados, a facilidade de aplicação e rapidez de acesso aos resultados mostraram ser características da metodologia que se revestem de caráter pedagógico quando adotadas no contexto de projetos interinstitucionais voltados para a conservação da agrobiodiversidade. Os custos elevados do teste são
um gargalo para a manutenção e ampliação desse processo. Ainda não está claro como as sementes derivadas de Tecnologias Inovadoras de Melhoramento de Precisão (TIMPs), como a edição de genes, serão rastreadas a campo e se ferramentas de teste estarão disponíveis para o monitoramento participativo dessas novas sementes. São necessários projetos e políticas de apoio à sociedade civil, pesquisa e organizações dos agricultores que viabilizem o monitoramento da contaminação a longo prazo.

A aprovação comercial de variedades GM no Brasil segue ritmo mais acelerado que a capacidade do país de adotar medidas efetivas de proteção das variedades crioulas e os sistemas locais de conservação e uso dessas sementes. Esse desencontro é agravado pela acelerada tendência do órgão regulador de promover medidas de flexibilização das regras de biossegurança, a exemplo da aprovação automática de eventos piramidados e possibilidade de dispensa de monitoramento pós-liberação comercial para o desenvolvedor do OGM. Com base nos resultados encontrados, sugerimos existir relação direta entre a flexibilização das liberações comerciais de milho GM e a insuficiência das regras nacionais de controle do fluxo gênico mediado por pólen ou propágulos com a contaminação crescente de variedades crioulas na região estudada. Estudos complementares podem avaliar essa situação em outras regiões do país. São necessários estudos que avaliem os efeitos de médio e longo prazo da presença de OGMs na diversidade genética das variedades cultivadas pelos agricultores, assim como sobre as dinâmicas socioculturais e econômicas responsáveis pela conservação dinâmica das sementes crioulas. As Resoluções Normativas da CTNBio sobre isolamento do milho GM, monitoramento pós-liberação comercial e aprovação de eventos piramidados devem ser revisadas. O fluxo de transgenes pode ser reduzido implementando-se regras de coexistência que considerem as áreas de cultivo das variedades crioulas de milho também como áreas de produção de sementes, assegurando adicionalmente ampla informação sobre a origem das sementes comerciais. São necessárias medidas efetivas que confinem as sementes GM nas áreas e sistemas agrícolas para os quais elas foram desenhadas, evitando assim que os setores sociais responsáveis pela conservação on farm sigam tendo que assumir o ônus das ações de monitoramento e conviver com a ameaça de perda de seus direitos e suas sementes.

Financiamento

O Projeto Agrobiodiversidade do Semiárido (atual) é financiado pelo Banco Nacional de Desenvolvimento Econômico e Social (BNDES) em parceria com a Empresa Brasileira de Pesquisa Agropecuária (Embrapa) no Programa InovaSocial (BNDES/EMBRAPA/FEA N. 16.2. 0772.1). O Programa Sementes do Semiárido (concluído) foi financiado pelo Banco Nacional de Desenvolvimento Econômico e Social (BNDES), pela Fundação Banco do Brasil (FBB) e pelos extintos Ministério do Desenvolvimento Social (MDS) e Ministério do Desenvolvimento Agrário (MDA) (FBB N. 16.979).

Agradecimentos

Agradecemos às organizações membros da ASA que forneceram os dados de campo e à Embrapa pelo apoio financeiro para a tradução do artigo original. Agradecemos também a Raílson Duarte pela elaboração do mapa com os pontos de
amostragem e ao GT Biodiversidade da ANA pelos custos com a publicação original.

Conflito de interesses

Os autores declaram não haver conflito de interesses.

Referências

Agapito-Tenfen, S.; Lopez, F. R.; Mallah, N.; Abou-Slemaayne, G.; Trtilkova, M.; Nodari, R.; Wickson, F. Transgene flow in Mexican maize revisited: socio-biological analysis across two contrasting farmer communities and seed management systems. *Ecology and Evolution*, 7, 9461-9472, 2017. doi: 10.1002/ece3.3415

Aksoy, E.; Louwagie, G.; Gardi, C.; Gregor, M.; Schröder, C.; Löhnertz, M. Assessing soil biodiversity potentials in Europe. *Science of The Total Environment*, 589, 236-249, 2017. doi: 10.1016/j.scitotenv.2017.02.173

Altieri, M. A. The myth of coexistence: why transgenic crops are not compatible with agroecologically based systems of production. *Bulletin of Science, Technology & Society*, 25, 361-371, 2005. doi: 10.1177/0270467605277291

Almeida, V. E. S.; Friedrich, K.; Tygel, A. F.; Melgarejo, L.; Carneiro, F. F. Use of genetically modified crops and pesticides in Brazil: growing hazards. *Ciência Saúde Coletiva*, 22(10), 3333-3339, 2017. doi: 10.1590/1413-812320172210.17112017

Bellon, M. The ethnoecology of maize variety management: a case study from Mexico. *Human Ecology* 19, 389-418, 1991. Disponível em: https://link.springer.com/article/10.1007/BF00888984

Bellon, M.; Brush, S. B. Keepers of maize in Chiapas, Mexico. *Economic Botany*, 48, 196-209, 1994. Disponível em: https://link.springer.com/article/10.1007/BF02908218

Bellon, M. R.; Hodson, D.; Hellin, J. Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. *PNAS Nexus*, 108(33), 13432-13437, 2011. doi: 10.1073/pnas.1103373108

Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. *Environmental Sciences Europe*, 28, 1-15, 2016. doi: 10.1186/s12302-016-0070-0

Binimelis, R. Coexistence of plants and coexistence of farmers: is an individual choice possible? *Journal of Agricultural and Environmental Ethics*, 21(5), 437-457, 2008. doi:10.1007/s10806-008-9099-4

Binimelis, R.; Pengue, W.; Monterroso, I. “Transgenic treadmill”: responses to the emergence and spread of glyphosate-resistant johnsongrass in Argentina. *Geoforum*, 40(4), 623-633, 2009. doi: 10.1016/j.geoforum.2009.03.009

Brasil. *Decreto, n.º 680, de 24 de abril de 2003*. Regulamenta o direito à informação, assegurado pela Lei n° 8.078, de 11 de setembro de 1990, quanto aos alimentos e ingredientes alimentares destinados ao consumo humano ou animal que contenham ou sejam produzidos a partir de organismos geneticamente modificados, sem prejuízo do cumprimento das demais normas aplicáveis. Brasília: DOU de 24/04/2003.

Cakmak, I.; Yazici, A.; Tutus, Y.; Ozturk, L. Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. *European Journal of Agronomy*, 31, 114-119, 2009. doi: 10.1016/j.eja.2009.07.001

Capellesso, A. J.; Cazella, A. A.; Filho, A. L. S.; Farley, J.; Martins, D. A. Economic and environmental impacts of production intensification in agriculture: comparing transgenic, conventional, and agroecological maize crops. *Agroecology and Sustainable Food Systems*, 40(3), 215-236, 2016. doi: 10.1080/21683565.2015.1128508

Carvalho, F. P.; França, A. C.; Franco, M. H. R.; Avelar, M.; Moreira, S. D.; Alecrim, A. O.; Dos Santos, J. B. Sensibilidade de plantas de café micorrizadas a herbicidas. *Revista Brasileira de Herbicidas*, 13(2), 134-142, 2014. doi: 10.7824/rhb.v13i2.226

Carvalho, V. P.; Ruas, C. F.; Ferreira, J. M.; Moreira, R. M.; Ruas, P. M. Genetic diversity among maize (Zea mays L.) landraces assessed by RAPD markers. *Genetics and Molecular Biology*, 27(2), 228-236, 2004. doi: 10.1590/S1415-47572004000200017
Costa, F.M.; Silva, N.C.A.; Ogliari, J.B. Maize diversity in southern Brazil: indication of a microcenter of Zea mays L. *Genetic Resources and Crop Evolution*, 64, 681-700, 2017. doi: 10.1007/s10722-016-0391-2

Costa, F.M.; Silva, N.C.A.; Vidal, R.; Veasey, E.A. Micro-Centros de Diversidade Genética Do Milho Nas Terras Baixas Da América Do Sul. In: Silva, N.C.A.; Costa, F.M; Vidal, R.; Veasey, E.A. (Orgs.) Milhos das Terras Baixas da América do Sul e Conservação da Agrobiodiversidade no Brasil e no Uruguai. Ponta Grossa: Atena Editora, p. 109-123, 2020. doi: 10.22533/at.ed.73020116

Costa, F. M.; Silva, N. C. A.; Vidal, R.; Clement, C. R.; Alves, R. P.; Bianchini, P. C.; Haverroth, M.; Freitas, F. D. O.; Veasey, E. A. Entrelaçado, a rare maize race conserved in Southwestern Amazonia. *Genetic Resources and Crop Evolution*, 68, 51-58, 2021. doi: 10.1007/s10722-020-01008-0

CTNBio – Comissão Técnica Nacional de Biossegurança. *Resolução normativa n.º 4 de 16 de agosto de 2007*. Brasília: Disponível em: <http://ctnbio.mctic.gov.br/resolucoes-normativas/-/asset_publisher/OgW431Rs9dQ6/content/resolucao-normativa-n%2C2BA-4-de-16-de-agosto-de-2007?jsessionid=E1A3F6C2EBB3A8E8C1C5621F81DB416B4.columba#:~:text=Estabelecer%20dist%C3%Aancias%20m%C3%A1s%20adequadas%20nos%20sistemas%20de%20produ%C3%A7%C3%A3o%20agricola%20no%20campo>. Acesso em: abr. 2022.

CTNBio – Comissão Técnica Nacional de Biossegurança. *Resolução normativa n.º 9, de 2 de dezembro de 2011 - REVOGADA PELA RN 24*. Brasília: 2011. Disponível em: <http://ctnbio.mctic.gov.br/resolucoes-normativas/-/asset_publisher/OgW431Rs9dQ6/content/resolucao-normativa-n%2C2BA-9-de-2-de-dezembro-de-2011-revogada-pela-rn-24?jsessionid=E1A3F6C2EBB3A8E8C1C5621F81DB416B4.columba#:~:text=O%20objetivo%20do%20monitoramento%20p%C3%A9%C3%B3nica%20sua%20aplica%C3%A7%C3%A3o%20agricola%20no%20campo>. Acesso em: abr. 2022.

CTNBio – Comissão Técnica Nacional de Biossegurança. *Resolução normativa n.º 15, de 13 de fevereiro de 2015 - REVOGADA PELA RN 24*. Brasília: 2015. Disponível em: <http://ctnbio.mctic.gov.br/resolucoes-normativas/-/asset_publisher/OgW431Rs9dQ6/content/resolucao-n%2C2BA-20-de-23-de-marco-de-2018-revogada-pela-rn-24?redirect=http%3A%2F%2Fctnbio.mctic.gov.br%2Fresolucoes-normativas%3Fp%2Cid%3D3101_INSTANCE_OgW431Rs9dQ6%26p%2C_lifecycle%3D%26p%2C_state%3Dnormal%26p%2C_mode%3Dview%26p%2C_col%2Cid%3Dcolumn-2%26p%2C_col_count%3D3>. Acesso em: abr. 2022.

CTNBio – Comissão Técnica Nacional de Biossegurança. *Liberações comerciais - Milho*, 2020a. Disponível em: <http://ctnbio.mctic.gov.br/liberacao-comercial/-/document_library_display/SqhWdohU4ByVU/view/678017?_110_INSTANCE_SqhWdohU4ByVU_redirect=http%3A%2F%2Fctnbio.mctic.gov.br%2Fliberacao-comercial%2F-%2Fdocument_library_display%2FSqhWdohU4ByVU%2Fview%2F614405%3F_110_INSTANCE_SqhWdohU4ByVU_redirect%3Dhttp%253A%252F%252Fctnbio.mctic.gov.br%252Fliberacao-comercial%2523Bsessionid%2523DC2D4958FADB64CDE8FF1C019117AC0AE.columba%2523Fp%252Cid%2523D3110_INSTANCE_SqhWdohU4ByVU%2526p%2C_lifecycle%2526p%2C_state%2526p%2C_mode%2526p%2Cview%2526p%2C_col%2Cid%2523Dcolumn-2%2526p%2C_col_count%2523D#/liberacao-comercial/consultar-processo>. Acesso: abr. 2022.

Curado, F. F.; Santos, A. D. S.; Fagundes, R. C.; Silva, A.C.L.; Bianchini, P. C. *Manejo comunitário da agrobiodiversidade: produção agroecológica de sementes de variedades crioulas por agricultores familiares*. Aracaju: Embrapa, 2020. Disponível em: <https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1129395/manejo-comunitario-da-agrobiodiversidade-producao-agroecologica-de-sementes-de-variedades-crioulas-por-agricultores-familiares>
Curis, M. C.; Bertolaccini, M. A. T. I. Influência de presas criadas sobre maíces Bt sobre parâmetros biológicos de Eriopis connexa (Coleoptera: Coccinellidae). *Revista de Ciências Agrárias*, 36(2), 174-181, 2013. doi: 10.19084/rca.16295

De Schutter, O. *Seed policies and the right to food: enhancing agrobiodiversity, encouraging innovation*. 2009. Disponível em: <https://digitallibrary.un.org/record/663241>. Acesso: mar. 2022.

Díaz, L.; Galindo, I. Detección e identificación de eventos asociados a organismos vivos modificados en semillas de maíz (Zea Mays L.) en venezuela empleando métodos de inmunoensayo y análisis por PCR. *Revista de la Facultad de Agronomía, UCV*, 40, 37-49, 2014.

Duncan, B.; Leyva-Guerrero, E.; Werk, T.; Stojšin, D.; Baltazar, B. M.; Garcia-Lara, S.; Zavala-López, M.; De La Fuente-Martínez, J. M.; Meng, C. Assessment of potential impacts associated with gene flow from transgenic hybrids to Mexican maize landraces. *Transgenic Res*. 28, 509-523, 2019. doi: 10.1007/s11248-019-00160-3

Dyer, G.A.; Serratos-Hernández, J.A.; Perales, H.R.; Gepts, P.; Piñeyro-Nelson, A.; Chávez, A.; Salinas-Arreortua, N.; Yúnez-Naude, A.; Taylor, J.E.; Alvarez-Buylla, E.R. Dispersal of Transgenes through Maize Seed Systems in Mexico. *PLoS ONE*, (5)4, e5734, 2009. doi: 10.1371/journal.pone.0005734

Eker, S.; Ozturk, L.; Yazici, A.; Erenoglu, B.; Romheld, V.; Cakmak, I. Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. *Journal of Agricultural and Food Chemistry*, 54, 10019-10025, 2006. doi: 10.1021/jf0625196

Ellstrand, N. C. When transgenes wander, should we worry? *Plant Physiology*, 125, 1543-1545, 2001. doi: 10.1104/pp.125.4.1543

FAO – Organização das Nações Unidas para Alimentação e Agricultura. *International treaty on plant genetic resources for food and agriculture*, 2009. Disponível em: <https://www.fao.org/plant-treaty/en/>. Acesso: mar. 2022.

Fatoreto, J.C.; Michel, A.P.; Silva-Filho, M.; Silva, N. Adaptive Potential of Fall Armyworm (Lepidoptera: Noctuidae) Limits Bt Trait Durability in Brazil. *J. Integr. Pest Manag*, 8(1), 17, 1-10, 2017. doi: 10.1093/jipm/pmx011

Ferment, G.; Melgarejo, L.; Fernandes, G. B.; Ferraz, J. M. G. *Transgenic crops–hazards and uncertainties: more than 750 studies disregarded by the GMOs regulatory bodies*. Brasília, Ministério do Desenvolvimento Agrário, 2017. Disponível em: <http://contraosagrotoxicos.org/wp-content/uploads/2018/05/lavouras-transgenicas-en.pdf>. Acesso: mar. 2022.

Ferment, G.; Zanoni, M.; Brack, P.; Kageyama, P.; Nodari, R. O. *Coexistência: o caso do milho*: proposta de revisão da Resolução Normativa n 4 da CTNBio. Brasília, Ministério do Desenvolvimento Agrário, 2009. Disponível em: https://repositorio.iica.int/bitstream/handle/11324/19851/CDBR22038290p.pdf?sequence=1&isAllowed=y

Fernandes, G. B.; Marinho, W. O caminho da liberalização dos transgênicos no Brasil. *Agroecologia*, 12(2), 19-28, 2017.

Fiore, M. C.; Raimondo, F. M.; Mercati, F.; Di Gangi, I.; Sunseri, F.; Scialabba, A. Preserving biodiversity in marginal rural areas: assessment of morphological and genetic variability of a sicilian common bean germplasm collection. *Plants*, 9(8), 989, 2020. doi: 10.3390/plants9080989

Fischer, K. Why new crop technology is not scale-neutral - a critique of the expectations for a crop-based African green revolution. *Research Policy*, 45(6), 1185-1194, 2016. doi: 10.1016/j.respol.2016.03.007

Galeano, P.; Debat, C. M.; Ruibal, F.; Fraguas, L. F.; Galván, G. A. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay. *Environmental Biosafety Research*, 9(3), 147-154, 2010. doi: 10.1051/ebr/2011100

Galluzzi, G.; Seyoum, A.; Halewood, M.; Noriega, I. L.; Welch, E. W. The role of genetic resources in breeding for climate change: the case of public breeding programmes...
in eighteen developing countries. *Plants*, 9(9), 1129, 2020. doi: 10.3390/plants9091129

Gepts, P.; Papa, R. Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. *Environmental Biosafety Research*, 2, 89-103, 2003. doi: 10.1051/eb:2003009

Guzzon, F.; Rios, L. W. A.; Cepeda, G. M. C.; Polo, M. C.; Cabrera, A. C.; Figueroa, J. M.; Hoyos, A. E. M.; Calvo, T. W. J.; Molnar, T. L.; León, L. A. N. *et al.* Conservation and use of Latin American maize diversity: pillar of nutrition security and cultural heritage of humanity. *Agronomy*, 11(1), 172, 2021. doi: 10.3390/agronomy11010172

Heinemann, J. A. *A typology of the effects of (trans)gene flow on the conservation and sustainable use of genetic resources; background study paper*, 2007. Disponível em: <https://www.fao.org/3/k0153e/k0153e.pdf>. Acesso: mar. 2022.

Hilbeck, A.; Binimelis, R.; Defarge, N.; Steinbrecher, R.; Székács, A.; Wickson, F.; Antoniou, M.; Bereano, P.L.; Clark, E.A.; Hansen, M.; *et al.* No scientific consensus on GMO safety. *Environmental Science Europe*, 27, 1, 2015. doi: 10.1186/s12302-014-0034-1

Hilbeck, A.; Lebrecht, T.; Vogel, R.; Heinemann, J. A.; Binimelis, R. Farmer’s choice of seeds in four EU countries under different levels of GM crop adoption. *Environmental Science Europe*, 25, 12, 2013. doi: 10.1186/2190-4715-25-12

Hilbeck, A.; Schmidt, J. E. U. Another view on bt proteins–how specific are they and what else might they do? *Biopesticides International*, 2(1), 1-50, 2006. Disponível em: https://www.researchgate.net/publication/238550409_Another_View_on_Bt_Proteins_-_How_Specific_are_They_and_What_Else_Might_They_Do

Hofmann, F.; Otto, M.; Wosniok, W. Maize pollen deposition in relation to distance from the nearest pollen source under common cultivation-results of 10 years of monitoring (2001 to 2010). *Environmental Science Europe*, 26, 24, 2014. doi: 10.1186/s12302-014-0024-3

ISAAA - International Service for the Acquisition of Agri-Biotech Applications. *Global status of commercialized biotech/GM crops in 2017*: Biotech crop adoption surges as economic benefits accumulate in 22 years, 2017. Disponível em: <https://www.isaaa.org/resources/publications/briefs/53/download/isaaa-brief-53-2017.pdf>. Acesso: abr. 2022.

Iversen, M.; Grønsberg, I. M.; Berg, J. V. D.; Fischer, K.; Aheto, D. W.; Bøhn, T. Detection of transgenes in local maize varieties of small-scale farmers in Eastern cape, South Africa. *PLoS ONE*, 9, e116147, 2014. doi: 10.1371/journal.pone.0116147

Kawashima, S.; Nozaki, H.; Hamazaki, T.; Sakata, S.; Hama, T.; Matsuo, K.; Nagasawa, A. Environmental effects on long-range outcrossing rates in maize. *Agriculture, Ecosystems & Environment*, 142(3-4), 410-418, 2011. Disponível em: https://agris.fao.org/agris-search/search.do?recordID=US20140019269

Kistler, L.; Maezumi, S. Y.; de Souza, J. G.; Przelomska, N. A. S.; Costa, F. M.; Smith, O.; Loiselle, H.; Ramos-Madrigal, J.; Wales, N.; Ribeiro, E. *et al.* Multiplex evidence highlights a complex evolutionary legacy of maize in South America. *Science*, 362(6420), 1309-1313, 2018. doi: 10.1126/science.aav7358

Knispel, A. L.; McLachlan, S. M.; Van Acker, R. C.; Friesen, L. F. Gene flow and multiple herbicide resistance in escaped canola populations. *Weed Science*, 56(1), 72-80, 2008. doi: 10.1614/WS-07-097.1

Kohli, A. Transgene integration, organization and interaction in plants. *Plant Molecular Biology*, 52(2), 247-258, 2003. Disponível em: https://link.springer.com/article/10.1023/A:1023941407376

Kumar, S.; Fladung, M. Gene stability in transgenic aspen (*Populus*). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. *Planta*, 213, 731-740, 2001. doi: 10.1007/s004250100535

Lacey, H. Seeds and the knowledge they embody. *Peace Review*, 12(4), 563-569, 2000. doi: 10.1080/10402650020014654

Latham, J. R.; Wilson, A. K.; Steinbrecher, R. A. The mutational consequences of plant transformation. *J. Biomed. Biotechnol.* 2006, 025376, 1-7, 2006. doi: 10.1155/JBB/2006/25376

Levidow, L.; Boschert, K. Coexistence or contradiction?
GM crops versus alternative agricultures in Europe. *Geoforum*, 39(1), 174-190, 2008. doi: 10.1016/j.geoforum.2007.01.001

Lipton, C. R.; Dautlick, J. X.; Grothaus, G. D.; Hunst, P. L.; Magin, K. M.; Mihaliak, C. A.; Rubio, F. M.; Stave, J. W. Guidelines for the validation and use of immunoassays for determination of introduced proteins in biotechnology enhanced crops and derived food ingredients. *Food Agricultural Immunology*, (2)12, 153-164, 2000. doi: 10.1080/095401000404094

Lohn, A. F.; Trtikova, M.; Chapela, I.; Berg, J. V. D.; Du Plessis, H.; Hilbeck, A. Transgene behavior in Zea mays L. crosses across different genetic backgrounds: segregation patterns, cry1Ab transgene expression, insecticidal protein concentration and bioactivity against insect pests. *PLoS ONE* 15, e0238523, 2020. doi: 10.1371/journal.pone.0238523

Louette, D. Traditional management of seed and genetic diversity: what is a landrace? *In: Brush, S. B. Genes in the field on-farm conservation of crop diversity*. Italy: International Plant Genetic Resources Institute; Canada: International Development Research Centre; USA: Lewis Publishers, p. 109-142, 2000.

Louette, D.; Charrier, A.; Berthaud, J. In situ conservation of maize in Mexico: genetic diversity and maize seed management in a traditional community. *Economic Botany*, 51, 20-38, 1997. Disponível em: https://link.springer.com/article/10.1007/BF02910401

Louette, D.; Smale, M. Farmers’ seed selection practices and traditional maize varieties in Cuzalapa, Mexico. *Euphytica*, 113, 25-41, 2000. Disponível em: https://link.springer.com/article/10.1023/A:1003941615886

Maronhas, M. E. S.; Pinilla, N. N.; Lira, J. L. Caminos del semiárido brasileño para la gestión de la agrobiodiversidad. *Biodiversidad LA*, 105, 18-22, 2020. Disponível em: https://www.biodiversidadla.org/revista/105

McAfee, K. Corn culture and dangerous DNA: real and imagined consequences of maize transgene flow in Oaxaca. *Journal of Latin American Geography*, 2(1), 18-42, 2003. doi: 10.1177/0270467605277291

Melgarejo, L. Biosafety regulations and practices and consequences in Brazil: who wants to hide the problems? *In: Issberner, L.-R.; Lena, P. Brazil in the Anthropocene: conflicts between predatory development and environmental policies*. London: Routledge, p. 143-157, 2018.

Melgarejo, M. E. D.; Estigarribia, P. E. P.; Iehisa, J. M.; Arrua, J. M. M.; Martínez, C. C. C.; Arrua, A. A. Contamination of corn grain for human consumption with transgenic sequences in Paraguay. *Food Science Technology*, 40(3), 537-542, 2020. doi: 10.1590/fst.35718

Monitor de Secas. Disponível em: <https://monitordesecas.ana.gov.br/dados-tabulares?tipo=8&area=5>. Acesso: nov. 2021a.

Monitor de Secas. Adaptado de National Drought Mitigation Center, Lincoln, Nebraska, U.S. Disponível em: <https://monitordesecas.ana.gov.br/perguntas-frequentes>. Acesso: nov. 2021b.

Munarini, A.; Nerling, D.; Coelho, C. M. M.; Nodari, R. O. Maize landraces management to avoid transgenic contamination, decreases yield and seed quality. *Bragantia*, 80, 3921, 2021. doi: 10.1590/1678-4499.20200421

Pengue, W. A. Transgenic Crops in Argentina: The Ecological and Social Debt. *Bulletin of Science Technology & Society*, (1)25, 314–322, 2005. doi: 10.1177/0270467605277290

Perales, R. H.; Brush, S. B.; Qualset, C. O. Dynamic management of maize landraces in Central Mexico. *Economic Botany* 57, 21-34, 2003. doi: 10.1663/0013-0001(2003)057[0021:DMOMLI]2.0.CO;2

Pereira Filho, I. A.; Borghi, E. *Sementes de milho*: nova safra, novas cultivares e continua a dominância dos transgênicos, 2020. Disponível em: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/214366/1/Doc-251.pdf>. Acesso: abr. 2022.

Petry, C.; Calliari, M. R. T.; Melgarejo, L.; Fernandes, G. B.; Bittencourt, N. A.; Souza, M. M. O.; Mulini, J.; Reichert Júnior, R.; Francisco, W. Food in security, agrochemicals, new biotechnologies and democracy. *In: Mossi, A. J., Petry, C., Reichert, F. W. Agroecology: insights, experiences and perspectives*. USA: Nova Science Publishers, p. 253-288, 2020.

Piñeyro-Nelson, A.; Van Heerwaarden, J.; Perales, H. R.;
Serratos-Hernández, J. A.; Rangel, A.; Hufford, M. B.; Gepts, P.; Garay-Arroyo, A.; Rivera-Bustamante, R.; Álvarez-Buylla, E. R. Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. *Molecular Ecology*, 18(4), 750-761, 2009. doi: 10.1111/j.1365-294X.2008.03993.x

Quist, D.; Chapela, I. H. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. *Nature*, 414, 541-543 2001. doi: 10.1038/35107068

Santa-Maria, M.C.; Lajo-Morgan, G.; Guardia, L. Adventitious presence of transgenic events in the maize supply chain in Peru: a case study. *Food Control*, 41, 96-101, 2014. doi: 10.1016/j.foodcont.2014.01.006

Santos, A. D.; Curado, F. F.; Silva, A. C. L.; Bianchini, P. C.; Fagundes, R. C. *Manual de instalação de ensaios participativos para comparação de variedades crioulas*. Aracaju: Embrapa, 2020. Disponível em: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1129388/manual-de-instalacao-de-ensaios-participativos-para-comparacao-de-variedades-crioulas

Schaefer, M. G.; Ross, A. A.; Londo, J.; Burdick, C. A.; Lee, E. H.; Travers, S. E.; Van De Water, P. K.; Sagers, C. L. The establishment of genetically engineered canola populations in the U.S. *PLoS ONE*, 6(10), e25736, 2011. doi: 10.1371/journal.pone.0025736

Silva, N. C. A.; Vidal, R.; Ogliari, J. B. New popcorn races in a diversity microcenter of Zea mays L. in the far West of Santa Catarina, Southern Brazil. *Genetic Resources and Crop Evolution*, 64, 1191-1204, 2017. doi: 10.1007/s10722-016-0429-5

Silva, N. C. A.; Costa, F. M.; Vidal, R.; Veasey, E. A. Maíces de las tierras bajas de América del Sur y conservación de la agrobiodiversidad en Brasil y Uruguay. Ponta Grossa, Atena Editora, 2020a. doi: 10.22533/at.ed.942201712

Silva, N. C. A.; Costa, F. M.; Vidal, R.; Veasey, E. A. Microcentros de diversidade genética do maiz en las tierras bajas de América del Sur. In: Silva, N. C. A.; Costa, F. M; Vidal, R.; Veasey, E. A. (Orgs.). Maíces de las tierras bajas de América del Sur y conservación de la agrobiodiversidad en Brasil y Uruguay. Ponta Grossa: Atena Editora, p. 110-124, 2020b. doi: 10.22533/at.ed.9422017126

Silva, N. C. A.; Vidal, R.; Costa, F. M.; Veasey, E. A. Clasificación de las razas de maíz de Brasil y Uruguay: enfoque metodológico y principales resultados. In: Silva, N. C. A.; Costa, F. M; Vidal, R.; Veasey, E. A. (Orgs.). Maíces de las tierras bajas de América del Sur y conservación de la agrobiodiversidad en Brasil y Uruguay. Ponta Grossa: Atena Editora, p. 87-109, 2020c. doi: 10.22533/at.ed.9422017126

Souza, M. M. O.; Gurgel, A. M.; Fernandes, G. B.; Melgarejo, L.; Bittencourt, N. A.; Friedrich, K. Agrotóxicos e transgênicos: retrocessos socioambientais e avanços conservadores no governo Bolsonaro. *Revista da ANPEGE*, (16)29, 319-352, 2020. doi: 10.5418/ra2020.v16i29.12561

Stave, J. W. Detection of new or modified proteins in novel foods derived from GMO–future needs. *Food Control*, 10, 367-374, 1999. Disponível em: https://agris.fao.org/agris-search/search.do?recordID=US201302951981.

Tibbett, M.; Fraser, T. D.; Duddigan, S. Identifying potential threats to soil biodiversity. *PeerJ*, 8, e9271, 2020. doi: 10.7717/peerj.9271

Vázquez-Barrios, V.; Boege, K.; Sosa-Fuentes, T. G.; Rojas, P.; Wegier, A. Ongoing ecological and evolutionary consequences by the presence of transgenes in a wild cotton population. *Scientific Reports*, 11, 1-10, 2021. doi: 10.1038/s41598-021-81567-z

Yin, Z.; Plader, W.; Malepszy, S. Transgene inheritance in plants. *Journal of Applied Genetics*, 45(2), 127-144, 2004. Disponível em: https://pubmed.ncbi.nlm.nih.gov/15131345/

Zanatta, C. B.; Benevenuto, R. F.; Nodari, R. O.; Agapito-Tenfen, S. Z. Stacked genetically modified soybean harboring herbicide resistance and insecticide rCry1Ac shows strong defense and redox homeostasis disturbance after glyphosate-based herbicide application. *Environmental Science Europe*, 32, 104, 2020. doi: 10.1186/s12302-020-00379-6
Zenner-de-Polanía, I. Transgenic Bt maize in South-and Central America: the pros and cons. *Revista Colombiana Ciencias Hortícolas*, 15(3), 1-26, 2021. doi: 10.17584/rcch.2021v15i3.12687