Association of glutathione S-transferases (GSTT1, GSTM1 and GSTP1) genes polymorphisms with nonalcoholic fatty liver disease susceptibility
A PRISMA-compliant systematic review and meta-analysis

Yi Zhu, BAa, Jian-Hua Yang, PhDa, Jun-Ping Hu, PhDb, Ming Qiao, PhDa,**
*Correspondence: Ming Qiao, Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Avenue, Xinshi District, Urumqi, Xinjiang 830011, China (e-mail: 15325276948@qq.com).

Abstract
Background: Glutathione S-transferases (GSTs) genes single-nucleotide polymorphisms (SNPs) have been connected with the susceptibility of nonalcoholic fatty liver disease (NAFLD), but with inconsistent results across the current evidences. The present work was schemed to explore the association between GSTs genes polymorphisms and the NAFLD vulnerability via meta-analysis.

Methods: PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure and Wanfang were retrieved for eligible literatures previous to March 10, 2021. The odds ratio (OR) of the dichotomic variables and the standardized mean difference of quantitative variables with corresponding 95% confidence intervals (95%CIs) were computed to evaluate the strength of the associations. The quality of included studies were assessed via using Newcastle-Ottawa Scale (NOS).

Results: In total, 7 case-control studies encompassing 804 NAFLD patients and 1362 disease-free controls in this meta-analysis. Ultimately, this analysis included 6, 5 and 5 studies for GSTM1, GSTT1 and GSTP1 polymorphisms, respectively. The pooled data revealed that the GSTs genes SNPs had conspicuous associations with NAFLD susceptibility: for GSTM1, null versus present, OR = 1.46, 95%CI 1.20 to 1.79, \(P = .0002 \); for GSTT1, null versus present, OR = 1.34, 95%CI 1.06 to 1.68, \(P = .01 \); for GSTP1, Ile/Val or Val/Val versus Ile/Ile, OR = 1.60, 95%CI 1.23 to 2.09, \(P = .0005 \).

Conclusion: This work revealed that the GSTM1 null, GSTT1 null and GSTP1-Val genotypes might be related to increased NAFLD susceptibility.

Abbreviations: 95%CI = 95% confidence interval, GSTs = glutathione S-transferases, HWE = Hardy-Weinberg equilibrium, NAFLD = nonalcoholic fatty liver disease, NOS = Newcastle-Ottawa scale, OR = odds ratio, SNPs = single-nucleotide polymorphisms.

Keywords: glutathione-S-transferase, meta-analysis, nonalcoholic fatty liver disease, polymorphism

1. Introduction
Nonalcoholic fatty liver disease (NAFLD) is gradually considered as the liver disease component of metabolic syndrome, which a risk factor for further development of fatty liver, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma.[1] According to the present data, NAFLD affects 10% to 30% of the general population in various countries, which it has been viewed as a huge global health burden.[2] However, little is known about the latent mechanism involved in the development and pathogenesis of NAFLD. The onset of NASH on a background of fatty liver is believed to be due to an interplay between genetic and environmental factors, with a major role played by the oxidative stress.[3] As the natural course of NAFLD and its progression to NASH is highly variable even with the same risk factors, it is reasonable that single nucleotide polymorphisms (SNPs) in genes potentially involved in oxidative stress could play a role in the disease onset and progression as reported by recent studies.[4] Glutathione-S-transferases (GSTs) have a pivotal role as antioxidant defense mechanisms, and in conjunction with SULT and CYP2E1, products act by inactivating xenobiotics and products of oxidative stress.[5] Lipid peroxides formed due to oxidative stress serve as endogenous substrates for GSTs. The GSTs are phase II metabolic enzymes and play a critical role in the defense against oxidative stress products and a variety of electrophilic compounds. Moreover, the GSTs family acts a significant role in...
antioxidant defence mechanisms via accelerating detoxification of electrophilic xenobiotics and deactivating a range of endogenous byproduct of oxidative stress.5-9 So far, studies have confirmed that GST enzymes in possession of 8 classes of soluble cytoplasmic isozymes, such as α-(A), ζ-(Z), θ-(T), \(\kappa \)-(K), \(\mu \)-(M), \(\pi \)-(P), ο-(D), and ο-(O).[10] In the last few years, GSTT1, GSTM1, and GSTP1 have attracted much attention. Indeed, the GSTT1, GSTM1, and GSTP1 genes encodes the \(\theta \), \(\mu \), \(\pi \) class of GST enzymes, and they are located on chromosomes 1p13.3, 22q11.2 and 11q13, respectively.[11] In the human liver, hepatocytes contain high levels of GSTM and GSTT, whereas GSTP is predominantly expressed in the bile ducts.[12] The GSTM1 and GSTT1 null genotypes are associated with deficiencies in GSTM1 and GSTT1 enzyme activity and the GSTP1-Val (105) polymorphism is associated with altered catalytic function. Individual with GSTM1 and GSTT1 null genotypes or GSTP1-Val (105) would be expected to have decreased GST detoxification and, thus, potential increases in the levels of toxic metabolites.[10] At present, genome wide association studies have demonstrated that GSTs have been verified the crucial role in the disease onset and progression of NAFLD. A limited number of studies have evaluated the association of GST genotype profile with liver-related diseases. Several have reported a positive association between the GSTM1 and GSTT1 null genotypes and GSTP1-Val (105) polymorphisms and increased risk of alcoholic pancreatitis, alcoholic cirrhosis, hepatocellular carcinoma, hepatitis B virus infection progression, NAFLD, and cryptogenic cirrhosis development. It was reported that GSTT1/GSTM1 deletions (GSTT1/GSTM1 null) could inhibit detoxification of GSTT1/GSTM1 substrates that were either toxic or carcinogenic. Double null genotypes of GSTM1 and GSTT1 might give rise to a complete lack of enzymatic activity.[14] Moreover, GSTM1 and GSTT1 null genotypes were associated with type 2 diabetes and its complications which were closely related to NAFLD with several reports underlining the role of GSTT on liver damage.[15-17] Furthermore, the GSTP1 gene polymorphism was the outcome of a single nucleotide substitution of A to G, which resulted in valine instead of isoleucine in the binding site of GSTP1 and altered catalytic activity of enzyme.[18, 19] While the GSTP1-Val (105) variant genotype has also been associated with an increased risk for advanced liver diseases of various causes.[20]

Several studies have appraised the relationship of GSTs genes SNPs and liver-related diseases. It indicated that the null genotypes of GSTM1/GSTT1 and GSTP1-Val (105) genes SNPs were related to the risk of NAFLD.[21-23] However, these studies yielded varying and divergent results. Accordingly, a meta-analysis was carried out to supply a more accurate and synthetic assessment on the relationship of GSTM1, GSTT1, GSTP1 genes polymorphisms and the NAFLD susceptibility.

2. Materials and Methods

2.1. Literature collection

Two independent researchers searched the PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure and Wanfang databases prior to March 10, 2021. The searching strategy of PubMed was exhibited as follows: ("nonalcoholic fatty liver disease [Mesh]" OR "nonalcoholic fatty liver disease" OR "NAFLD" OR "nonalcoholic steatohepatitis" OR "NASH") AND ("GSTT1" OR "GSTM1" OR "GSTP1" OR "glutathione S-transferase [Mesh]" AND Single Nucleotide Polymorphism[Mesh] OR Variant OR SNP OR Polymorphism OR mutant OR mutation OR variation). No language restriction was set. This study depended on previously published literature and public databases. Thus, this work does not need ethical approval and patient consent.

2.2. Inclusion and exclusion criteria

Original studies were incorporated into this analysis in the light of the following inclusion criteria: case-control studies; study investigated the associations of GSTs polymorphisms and NAFLD predisposition; NAFLD is diagnosed by pathology or ultrasound; control subjects were disease-free individuals; detailed genotype data can be calculated for odds ratios (ORs) and 95% confidence intervals (95% CIs). Correspondingly, reviews, conference abstracts, commentary articles, letters to editor, animal studies, unpublished data, case reports, as well as family-based studies were excluded.

2.3. Methodological quality assessment

Two investigators evaluated the study quality based upon Newcastle-Ottawa Scale (NOS).[28] The NOS is composed of 3 aspects, namely selection, comparability and exposure. Each study could receive 0 to 9 scores. Nevertheless, studies with ≥ 6 scores were regarded as high-quality studies. Disagreement was resolved by discussion.

2.4. Data extraction

The extracted information contained the name of first author, year of publication, country, ethnicity and gender of enrolled subjects, numbers of NAFLD and control subjects, diagnostic methods of NAFLD, genotyping of enrolled subjects and Hardy-Weinberg equilibrium (HWE) results.

2.5. Statistical analysis

The control participants of incorporated studies were estimated via HWE.[29] Summary ORs with 95% CIs were computed to specifically evaluate the relationship of GSTs polymorphisms and the NAFLD susceptibility. Cochran’s \(Q \) test and \(I^2 \) test were applied to appraise the between-study heterogeneity.[30] The random-effect model was employed to calculate merged ORs if \(P < .1, I^2 > 50\% \). If not, the fixed-effect model was utilized for data synthesis.[31] Sensitivity analysis was performed as well to assess the stability of all incorporated studies via the leave-one-out method. When the included studies were more than 10, funnel plot was employed to evaluated the publication bias.[32] On the contrary, less than 10 studies are not required. All analyses were done using RevMan 5.3 software.

3. Results

3.1. Literature search

Primary search of electronic databases retrieved 41 potentially relevant publications: 17 from PubMed, 20 from Web of Science, 0 from Cochrane library, 1 from China National Knowledge Infrastructure and 3 from Wanfang. No additional records were acquired from other sources. And then 25 studies remained after removing duplicated articles. Subsequently, a total of 9 irrelevant articles were excluded on the basis of titles and abstracts screening. After applying inclusion and exclusion criteria, 7 unrelated articles, 1 conference abstract were removed and 1 full-text article was not available. Ultimately, 7 studies went into the process of meta-analysis. Overall, a flowchart summarizing the procedure of literature identification was illustrated in Figure 1.

3.2. Main characteristics

The studies were performed in Italy, Japanese, Iran and Ukraine. Four studies were conducted in the Asian population and 3 studies were in the Caucasian population. The diagnostic method for
NAFLD in these studies was ultrasonography. In total, 7 studies encompassing 804 case and 1362 control participants were analyzed in current analysis. For GSTM1, GSTT1 and GSTP1 genes SNPs, there were 6, 5 and 5 studies ultimately incorporated, respectively. They were all case-control designed and published between 2008 and 2020 (Table 1). In addition, studies with ≥ 6 scores were regarded as high-quality studies according to evaluation of methodological quality (Table 2).

3.3. GSTM1 gene polymorphism and NAFLD susceptibility
In total of 6 studies including 700 NAFLD patients and 1317 controls for GSTM1 gene polymorphism. The fixed-effects model was employed for data analysis on account of the heterogeneity in between-study was not remarkable. It revealed that GSTM1 was appreciably connected with the NAFLD vulnerability (null vs present, OR = 1.46, 95% CI: 1.20–1.79, \(P = .0002 \); Fig. 2).

3.4. GSTT1 gene polymorphism and NAFLD susceptibility
Overall, 5 researches containing 620 NAFLD and 1237 healthy subjects for GSTT1 to perform data analysis. There was no heterogeneity amidst studies for GSTT1 (\(P = .72, I^2 = 0% \)). So the fixed-effects model was performed for data analysis. The pooled data indicated there was a noticeable association between the SNP of GSTT1 and the NAFLD susceptibility (null vs present, OR = 1.34, 95% CI: 1.06–1.68, \(P = .01 \); Fig. 3).

3.5. GSTP1 gene polymorphism and NAFLD susceptibility
In total of 5 studies with 466 cases and 968 controls were used for data pooled. The fixed-effect model was carried out to estimate the association of GSTP1 gene polymorphism and the NAFLD risk by virtue of no heterogeneity among studies (\(P = .47, I^2 = 0\% \)). The results indicated a obvious association between GSTP1 gene polymorphism and NAFLD susceptibility (Ile/Val or Val/Val vs Ile/Ile, OR = 1.60, 95% CI 1.23–2.09, \(P = .0005 \); Fig. 4).

3.6. Sensitivity analysis and publication bias
After the omission of an individual study, the recalculated \(P \) value, ORs and 95% CIs did not change substantially. Therefore, the outcomes were considered to be statistically robust and reliable. The funnel plot for assessment of publication bias was not implemented on account of less than 10 researches.
4. Discussion

Despite the specific pathological mechanism of NAFLD still needs to be explored. Nevertheless, research increasingly revealed that genetic predisposition plays a crucial intrinsic role in the occurrence and development of NAFLD. In addition, SNPs in human might be one of the critical steps to disclose the genetic factor for NAFLD pathogenesis. With further research, GSTs genes as a genetic factor have obtained increasing attention over current years. So far, the present researches have been implemented concerning the relationship of GSTM1, GSTT1 and GSTP1 genes polymorphism and the NAFLD vulnerability with inconsistent conclusions. This inconsistency might be caused by factors like limited sample sizes, confounding factors, as well as clinical heterogeneity of NAFLD. Therefore, we collected the existing evidence and looked into the associations of GSTs genes SNPs and
the NAFLD vulnerability via meta-analysis, which could combine data from individual studies, examine and explain the heterogeneity, and increase the statistical power. In conclusion, the merged data suggested a significant correlation between GSTM1, GSTT1 and GSTP1 genes SNPs and the NAFLD vulnerability. Of note, the recalculated P-value, ORs and 95% CIs did not change substantially after the omission of an individual study. In this work, it demonstrated that the frequency of GSTM1 null, GSTT1 null and GSTP1-Val allele genotypes in NAFLD patients was remarkably higher than that in healthy subjects.

GSTs are enzymes in the second-stage detoxification system, which can not only catalyze reduced glutathione sulfhydryl and also neutralize lipid and DNA oxidation products, which can not only catalyze reduced glutathione sulfhydryl and have protective effects against endogenous oxidative stress and exogenous toxins. GSTs is distributed in cytosol, mitochondria and microsome. GSTs abnormalities are associated with many diseases, such as malignancies, neurodegenerative diseases, for example, Parkinsonism, immune diseases e.g. diabetes and asthma. Hence, almost half the population had GSTP1 gene polymorphism and NAFLD vulnerability. Of note, the 313th G/G polymorphic variation of the GSTP1 gene was one of the risk factors for the emergence of the urinary bladder cancer. Previous reports also suggested that GSTM1/GSTT1 null or GSTP1-Val genotypes were remarkably associated with the vulnerability of hepatitis B virus, hepatocellular carcinoma, alcoholic cirrhosis, and NAFLD. Moreover, the GSTM1 null genotype was reported to be more common in NAFLD patients than in controls, and GSTP1-Val was proved to be a hazard for NAFLD vulnerability in the Iranian population.

GST mutations were seen as a host susceptibility factor that works only in presence of a specific type of toxin and its amount. Zaki et al reported that 50% of Egyptian children with diabetes have almost 50% deletions of GSTM1, which was comparable to the general population, yet an unforeseen factor seemed to make these children develop the diabetes type 2 disease. In the same study, the children with type 2 diabetes had other detoxification defects as GSTT1 and GSTP1. Consequently, it proved that detoxification defects that conferred host susceptibility, but were not the sole determinant factor of disease pathogenesis, clinical picture, march or outcome.

Up to now, this is the first synthetical study on the relationship between GSTs polymorphisms and NAFLD vulnerability. There were several strengths in this study. First, to gather a maximum amount of relevant literature, a comprehensive search strategy was adopted to retrieve eligible studies in both English and Chinese databases. Besides, the methodological quality of studies was evaluated via NOS, which allowed for the judgment of potential risk of bias. According to the NOS, all eligible studies were of high methodological quality. Furthermore, sensitivity analyses were carried out in this study, which guaranteed the reliability of the findings.

Nevertheless, there still existed several drawbacks should be acknowledged. First, only 7 studies were included, the statistical analysis was not exhaustive.
power was limited, and subgroup analyses were not carried out because of the limited degree of freedom. Second, the absence of HWE in individual studies may lead to information bias. Third, we ignored the synergistic effect of polymorphism at other sites of NAFLD because only 3 loci in the GST gene were studied in association with susceptibility to NAFLD. Thus, interactions between these loci and genes may result in concealing or amplifying the actual function of individual loci or genes. Leave aside these drawbacks, this study is the first to provide a more accurate and powerful evidence on the association between GSTM1, GSTT1 and GSTP1 genes polymorphisms and NAFLD vulnerability.

5. Conclusion

In brief, it revealed that GSTM1 null, GSTT1 null and GSTP1-Val genotypes were appreciably associated with augmented risk of NAFLD vulnerability. Concerning limitations of this study, it is necessary to confirm the present findings by complementary studies with larger sample size.

Acknowledgments

Authors would like to thank all studies and their participants involved in this investigation.

Author contributions

Conceptualization: Yi Zhu.
Supervision: Ming Qiao.
Validation: Jianhua Yang, Junping Hu.
Writing – original draft: Yi Zhu.
Writing – review & editing: Ming Qiao, Jun-Ping Hu.

References

[1] Dai L, Zhou WJ, Zhong LD, et al. Chinese medicine formulas for non-alcoholic fatty liver disease: overview of systematic reviews. World J Clin Cases 2021;9:102–17.

[2] Alqahtani SA, Golabi P, Paik JM, et al. Performance of noninvasive liver fibrosis tests in morbidly obese patients with nonalcoholic fatty liver disease. Obes Surg. 2021;21(Suppl 1):1–9.

[3] Kolesnikova OV, Potapenko AV, Chupina VI. Influence of resistance on cardiometabolic risk in non-alcoholic fatty liver disease patients combined with subclinical hypothyroidism. Metabolism. 2021;116:154587.

[4] Hardwick RN, Ferreira DW, More VR, et al. Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2013;41:554–61.

[5] Holt HM, Thier R. Relevance of the deletion polymorphisms of the GSTT1 and GSTP1 genes with chronic myeloid leukemia. Clin Exp Haemat. 2020;6:142–9.

[6] Huang YS, Wu WJ, Huang YH, et al. Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H: quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J Hepatol. 2007;47:128–34.

[7] Ueda K, Ishitsu T, Seo T, et al. Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity. Pharmacogenomics. 2007;8:435–42.

[8] Weich N, Rosman A, Gerlani B, et al. Gene polymorphism profiles of drugs-metabolising enzymes GSTM1, GSTT1 and GSTP1 in an Argentinian population. Ann Hum Biol. 2016;12:379–83.

[9] KulepaJA, Tagoe EA, Puplampu P, et al. Homozygous deletion of both GSTM1 and GSTT1 genes is associated with higher CD4+ T cell counts in Ghanaian HIV patients. PLoS One. 2018;13:e0195954.

[10] Glubokogo SM, Yaghmaz B, Allameh A. Polymorphisms of glutathione S-transferase M1, T1, and P1 in patients with HBV-related liver cirrhosis, chronic hepatitis, and normal carriers. Clin Biochem. 2006;39:46–9.

[11] Luca M, Valentina DA, Consulo C, et al. A case-control study on the effect of metabolic gene polymorphisms, nutrition, and their interaction on the risk of non-alcoholic fatty liver disease. Genes Nutr. 2014;9:383–93.

[12] Masaharu H, Kentaro O, Takehiro N. Association between combinations of glutathione-S-transferase, M1, T1 and P1 genotypes and non-alcoholic fatty liver disease. Liver Int. 2008;29:164–8.

[13] Mohammad H, Ebrahim EN, Alakbar F, et al. Association of genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1, and GSTP1) and susceptibility to nonalcoholic fatty liver disease in Zahedan, southeast Iran. DNA Cell Biol. 2012;31:672–7.

[14] Kentaro O, Masaharu H, Junji S, et al. Interactive effects of smoking and glutathione S-transferase polymorphisms on the development of non-alcoholic fatty liver disease. Toxicol Lett. 2013;220:143–9.

[15] Singh HO, Lata S, Angadi M, et al. Impact of GSTM1, GSTT1 and GSTP1 gene polymorphism and risk of ARV-associated hepatotoxicity in HIV infected individuals and its modulation. Pharmacogenomics J. 2017;17:53–60.

[16] Vaysli P, Oleander V, Iryna P, et al. Glutathione S-transferase T1 and M1 null genotype distribution among non-alcoholic fatty liver disease patients and its association with cytokine and adipokine profiles. Clin Exp Hepatol. 2020;6:142–9.

[17] Prsyazhnyuka VP, Rossokhab ZI, Gorovenko NG. Variation in particular biochemical indicators, cytokine and adipokine profiles of the blood, and the structural and functional parameters of the liver in patients with nonalcoholic fatty liver disease and different genotypes by the polymorphic locus A313G of the GSTP1 Gene. Cytol Genet. 2017;51:455–61.

[18] Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2020. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxfordasp

[19] Ryckman K, Williams SM. Calculation and use of the Hardy-Weinberg model in association studies. Curr Protoc Hum Genet 2008; Chapter 1:Unit 1.18.

[20] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

[21] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

[22] Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ. 2007;176:1091–6.

[23] Khan AJ, Choudhuri G, Husain Q, et al. Polymorphism in glutathione S-transferase: a risk factor in alcoholic liver cirrhosis. Drug Alcohol Depen. 2009;101:183–90.

[24] Kass configs Y, Dehbi H, Quachhoun M. Association of glutathione S-transferase (GSTM1 and GSTT1) genes with chronic myeloid leukaemia. Springerplus. 2015;4:1–5.

[25] Kaltoum AB, Sellama N, Hind D, et al. Association of glutathione S-transferase genes (M1 and T1) with the risk of acute myeloid leukaemia in a moroccan population. Middle East J Cancer. 2016;8:7–12.
[36] Ghorbel R, Salah G, Ghorbel R, et al. Do GSTM1 and GSTT1 polymorphisms influence the risk of developing mitochondrial diseases in a Tunisian population. Environ Sci Pollut Res. 2018;25:1–9.

[37] Ellithy HN, Youssri S, Shahin GH. Relation between glutathione S-transferase genes (GSTM1, GSTT1, and GSTP1) polymorphisms and clinical manifestations of sickle cell disease in Egyptian patients. Hematology. 2015;20:598–606.

[38] Kassab A, Msolley A, Lakhdar R, et al. Polymorphisms of glutathione S-transferases M1, T1, P1 and susceptibility to colorectal cancer in a sample of the Tunisian population. Med Oncol. 2013;31:1–6.

[39] Polimanti R, Carboni C, Baesso I. Genetic variability of glutathione S-transferase enzymes in human populations: functional inter-ethnic differences in detoxification systems. Gene. 2013;512:102–7.

[40] Ibarrola-Villava M, Martin-Gonzalez M, Lazaro P. Role of glutathione S-transferases in melanoma susceptibility: association with GSTP1 rs1695 polymorphism. Br J Dermatol. 2012;166:1176–83.

[41] Zarebska A, Jastrzebski Z, Ahmetov II, et al. GSTP1 c.313A>G polymorphism in Russian and Polish athletes. Physiol Genomics. 2017;49:127–31.

[42] Rossini A, Rapozo DC, Amorim LM, et al. Frequencies of GSTM1, GSTT1, and GSTP1 polymorphisms in a Brazilian population. Genet Mol Res. 2002;1:233–40.

[43] Raimondi S, Paracchini V, Autrup H, et al. Meta- and pooled analysis of GSTT1 and lung cancer: a HuGE-GSEC review. Am J Epidemiol. 2006;164:1027–42.

[44] Garte S, Taioli E, Popov T, et al. Role of GSTT1 deletion in DNA oxidative damage by exposure to polycyclic aromatic hydrocarbons in humans. Int J Cancer. 2007;120:2499–303.

[45] Wu K, Wang X, Xie Z, et al. Glutathione s-transferase p1 gene polymorphism and bladder cancer susceptibility: an updated analysis. Mol. Biol. Rep 2013;40:687–95.

[46] Li T, Meng Q, Zou Z. Correlation between promoter methylation of glutathione-S-transferase P1 and oxidative stress in acute-on-chronic hepatitis B liver failure. J Viral Hepat. 2011;18:226–31.

[47] Goncharova IA, Rachkovskii MI, Beloborodova EV. Liver cirrhosis pathogenesis: polymorphism of glutation s-transferase genes. Mol Bio. 2010;44:431–8.

[48] Sharma M, Gupta S, Singh K, et al. Association of glutathione-S-transferase with patients of type 2 diabetes mellitus with and without nephropathy. Diabetes Metab Syndr Clin Res Rev. 2016;10:194–7.

[49] Rong SL, Zhou XD, Wang ZK, et al. Glutathione S-Transferase M1 and T1 polymorphisms and hypertension risk: an updated meta-analysis. J Hum Hypertens. 2018;33:454–65.

[50] Chirilă DN, Chirilă MD, Turdeanu NA, et al. The glutathione S-transferases (GSTs) gene polymorphisms in hepatocellular, pancreatic and gallbladder cancers. Hum Vet Med. 2016;8:34–40.

[51] Ma J, Zhu SL, Liu Y, et al. GSTP1 polymorphism predicts treatment outcome and toxicities for breast cancer. Oncotarget. 2017;8:72939–49.

[52] Tamandani D, Mohammad H, Elnaz B, et al. Lack of association of GSTT1 and GSTP1 genes methylation and their expression profiles with risk of NAFLD in a sample of Iranian patients. Clin Res Hepatol Gas. 2011;35:378–92.

[53] Zaki MA, Moghazy TF, El-Deeb MM, et al. Glutathione S-transferase M1, T1 and P1 gene polymorphisms and the risk of developing type 2 diabetes mellitus in Egyptian diabetic patients with and without diabetic vascular complications. Alex J Med. 2015;51:73–82.

[54] Kotb M, Hamdy M, Eid K, et al. Detoxification genomics in children with β-thalassemia major: pilot study of glutathione S transferase M1, P1 & methyltetrahydrofolate reductase gene polymorphisms combinations in β-thalassemia major. J Pediatr Sci. 2021;1:98–106.