Antimicrobial activities of herbal plants from Uzbekistan against human pathogenic microbes

Dilfuza Egamberdieva1,2 · Dilfuza Jabborova3 · Svetlana Babich4 · Sokhiba Xalmirzaeva4 · Kamaliddin Salakhiddinov4 · Madamin Madazimov4

Received: 1 August 2020 / Revised: 29 October 2020 / Accepted: 3 November 2020 / Published online: 24 November 2020 © The Author(s) 2020

Abstract
In traditional medicine of Uzbekistan, around 20% of herbal plants are used to treat various ailments, including diseases caused by pathogenic bacteria and fungi. Though conventional medicinal plants are common in Uzbekistan, many plant species potentially useful for new pharmaceuticals are less studied. They contain various biological compounds with antibacterial and antifungal activities, that could be developed into drugs. The search for novel antimicrobial compounds, especially against multidrug-resistant pathogens from aromatic and herbal plants is an essential scientific research line. However, the antimicrobial properties of several medicinally important plants from various countries are still unknown. This review aims to provide an up-to-date report on the antimicrobial activity of medicinal plants endemic to Uzbekistan widely used in traditional medicine.

Keywords Medicinal plants · Metabolites · Antibacterial activity · Antifungal activity Uzbekistan

Introduction
It is estimated that about 50,000 plant species were screened for medicinal properties and used by 80% of the world’s population to treat numerous human diseases (Saslis-Lagoudakis et al. 2014; Chen et al. 2016). Uzbekistan is known for its endemism, in which 9% of 4500 species of vascular plants are considered endemic (Mamedov et al. 2004). Though traditional medicinal plants are common in Uzbekistan, many plant species potentially useful for new pharmaceuticals are less studied. The remedies derived from natural resources are widely used to treat numerous illnesses, including respiratory and urinary problems, gastrointestinal, and skin disorders as age-old tradition (McChesney et al. 2007). Since the cost of synthetic, medicinal drugs is high, the developing countries are still using herbal plants or their derivates to treat common diseases (Abu-Irmaileh and Afifi 2000). It is known that multidrug-resistant bacterial pathogens signify a growing public health threat. Therefore, there is a continuous need for effective natural therapeutic agents (Compean and Ynalvez 2014). The investigation of aromatic and herbal plants for their biologically active constituents might lead to discovery of new drugs with antimicrobial activities (Cushnie and Lamb 2005; Shrivastava et al. 2015). The medicinal plants contain various metabolites that demonstrate antimicrobial activity in vitro and vivo (Duarte et al. 2005). Many secondary metabolites derived from herbal plants from multiple countries were screened against microbes that cause various infections (Pirbalouti et al. 2010; Verma et al. 2012; Gnat et al. 2017; Egamberdieva and da Silva 2015). For example, Indian and the Middle East’s medicinal plants are used for treating infectious diseases in traditional medicine (Duraipandiyan et al. 2011). Medicinal plants containing various phytochemical compounds, such as antimicrobials, essential oils, alkaloids, are also used to treat wound infections (Bahramsooltani et al. 2014). Wound healing is a critical biological process required to minimize potential infections (Gupta and Jain 2010). Finding novel biological agents for the treatment of
wound infections generated increased interest over time. There are many reports on medicinal plants’ antimicrobial properties against human pathogenic bacteria involved in skin and wound infections.

Moreover, medicinal plants associated with microbes, which play an essential role in plant health, synthesize various biologically active compounds due to the symbiosis (Egamberdieva et al. 2020; Rusatmova et al. 2020; Musa et al. 2020). It has been proven that medicinal plants with antimicrobial activity support more antagonistic endophytic bacteria against human pathogenic microbes. Many medicinal plants contain useful essential oils with antimicrobial properties (Nikolic et al. 2014). In an earlier study, the plant extracts of Zingiber officinale and Thymus kotschyanus suppressed the growth of human pathogenic bacteria Staphylococcus aureus and Escherichia coli Qader et al. (2013). Similar reports demonstrated an inhibitory activity of plant extracts of Z. officinale and Allium sativum against Staphylococcus aureus (Betoni et al. 2006; Ushimaru et al. 2007; Sapkota et al. 2012). The plant extracts of Boerhaavia diffusa, Tribulus terrestris, and Soymida febrifuga inhibited E. coli, Enterococcus faecalis, Klebsiella oxytoca and S. aureus (Mishra et al. 2017). In the current era, several new infectious diseases appear worldwide. Thus, there is a great need to discover new biologically active compounds from herbal plants and develop novel drugs. Few reports are available about Uzbekistan’s herbal plants and their constituents with antimicrobial activities (Kogure et al. 2004), and these endemic plants may contain pharmacologically active compounds. According to Gaipova and Kariyeva (2018), during the years 2015–2018, 46 natural products based on medicinal herbs were reported in Uzbekistan. Among them, Origanum vulgare, Ziziphora pedicellata, Aerva lanata, Calendula officinalis, and Chamomilla officinalis K.Koch based products are widely used.

Medicinal plants of Uzbekistan and their antimicrobial activity

In traditional medicine of Uzbekistan, around 20% of herbal plants are used for treating various ailments (Mamedov et al. 2004; Shurigin et al. 2018; Egamberdieva and Jabborova 2018). The plant species described in Avicenna’s book, such as Malva silvestris L., Cannabis sativa L., Ferula assafoetida L., Sesamum indicum L., Pyrus malus L., Panica granatum L., and Trachyspermum ammi L. are used till today to treat various illnesses (Buranova 2015). Many of these species are used to heal wounds (Khodzhimatov 1989; Egamberdieva et al. 2017b).

The extract of Thymus seravschanicus is known as an antimicrobial agent for handling throat ailments (Kholmatsov and Makhsumov 1993). Azizov et al. (2012) reported the commonly used plant species Arctium lappa in Uzbekistan, which was used to treat skin infections. Origanum tytran-thum, widely grown in many Uzbekistan parts, exhibited antimicrobial, hypcholesterolemic, and hypolipidemic activity (Nuraliyev and Zubaidova 1994).

The antimicrobial activity of biologically active compounds derived from medicinal plants

The medicinal plants contain many important bioactive constituents such as terpenoids, essential oils, polyphenols, and flavonoids. These compounds demonstrated numerous biological activities such as sedative, analgesic, antibacterial, and anti-inflammatory activities (Dall’Agnol et al. 2003). Antibacterial properties of biologically active compounds isolated from H. perforatum were reported by Dall’Agnol et al. (2003). The antibacterial and antifungal activities were observed in flavonoids and essential oils of Zizipora species (Sonboli et al. 2006). Tada et al. (2002) isolated several biologically active compounds such as coumarins, terpenoids, and glycosides from Prangos pabularia roots that exhibited antibacterial activity. Phytococysteryoids isolated from S. wallichiana demonstrated antimicrobial properties against various human pathogenic microbes (Mamadalieva et al. 2013). Park et al. (2000) separated the peptides shepherinin from Capsella bursa’s roots and observed the biologically active compound’s antimicrobial activity against human pathogenic microbes. Mamadalieva et al. (2011) extracted

 Springer
Plant species	Family	Part used	Chemical composition
Achillea millefolium L	COMPOSITAE	Steam, leaves, flowers	Volatile oils, lactones (achillicin, matricin), alkaloids, flavonoids, betains (Sezik et al. 2004)
Aconitum talassicum	RANUNCULACEAE	Aerial parts	Alkaloids (Aldashev 1979)
Acroptilon picris	ASTERACEAE	Aerial parts	Volatile (Norouzi-Arasi et al. 2006)
Agrimonia asiatica Juz	Rosaceae	Leaves, stem	Ursolic acid, tannins, flavonol glycosides, B-vitamins, saponins, trace alkaloids (Eisenman et al. 2013)
Ajuga turkestanica	LAMIACEAE	Root	20-hydroxy-esdysone,turkesterone, cysteine
Anethum graveolens	Apiaceae	Whole plant	Essential oil (Carvone, limonene, cis-dihydrocarvone, diplaniol, 1,2-diethoxyethane) (Yili et al. 2009)
Artemisia absinthium L	COMPOSITAE	Whole plant	Volatile oils (Sezik et al. 2004)
Artemisia dracunculus	ASTERACEAE	Whole plant	(Curini et al. 2006)
Arischrada korolkowii	LAMIACEAE	Essential oil (Baser et al. 2002)	
Artemisia absinthium L	COMPOSITAE	Whole plant	Volatile oils (Sezik et al. 2004)
Artemisia dracunculus	ASTERACEAE	Whole plant	(Curini et al. 2006)
Arischrada korolkowii	LAMIACEAE	Essential oil (Baser et al. 2002)	
Asparagus persicus	LILIACEAE	Leaves, root, stem	Saponin, volatile oil, flavonoids, tannins, steroidal and bitter glycosides, tyrosine, ecldysteroids (Mamedov and Craker 2001)
Astragalus sieversianus	FABACEAE	Aerial part	Saponins, alkaloids, coumarins, tannins, flavonoids, vitamins C, E, and P, and carotene (Eisenman et al. 2013)
Berberis integerrima	BERBERIDACEAE	Fruit	(Khodzhimatov 1989)
Bunium persicum	APIACEAE	Whole plant	(Sardari et al. 1998)
Betula verrucosa	BETULACEAE	Oil, bark leaves	Flavonoids, tannins, volatile oils, triterpen (Mamedov and Craker 2001)
Bidens tripartita L	COMPOSITAE	Whole plant	Flavonoids, volatile oils (Mamedov and Craker 2001)
Calendula officinalis L	COMPOSITAE	Flowers, oil	Triterpene, volatile oils, faradiol, lauric acid, carotinoids, (Mamedov and Craker 2001)
Capsella bursa	BRASSICACEAE	Roots	Peptides (Park et al. 2000)
Carum carvi	APIACEAE	Fruit	Essential oil, (Iacobellis et al. 2005)
Ceratocephala testiculata	RANUNCULACEAE	Whole plant	(Khalmatov 1964)
Centaurea belangeriana Sapt	COMPOSITAE	Flower	Glicoside, athocyanje, coumarine (Sezik et al. 2004)
Dianthus tetrapepis Nevski	CARYOPHYLLACEAE	Aerial part	Anthochanin, saponins, flavones, triterpen glycosides (Sezik et al. 2004)
Equisetum arvense L	EQUISETACEAE	Steam	Polyphenolic compounds, phenolic acids, tannins, flavonoids (Mamedov and Craker 2001)
Erodium Hoefititanum CAM	GERANIACEAE	Aerial part	Polyphenolic compounds, phenolic acids, tannins, flavonoids (Mamedov and Craker 2001)
Ferula kuhistanica	APIACEAE	Fruit	(Tamemoto et al. 2001)
Helichrysum arenarium L	COMPOSITAE	Flowers	Flavonoids, steroids (Mamedov and Craker 2001)
Hypericum perforatum L	HUPERICACEAE	Leaves, flowers, oil	Antracene, hypericin, tannins, flavonoids, xanthone (Mamedov and Craker 2001)
Impatiens parviflora	BALSAMINACEA	Whole plant	(Khalmatov 1964)
Juniperus turkestanica	CUPRESSACEAE	Whole plant	Essential oil (Minayeva 1991)
Leonurus turkestanicus L	LABIATAE	Whole plant	Volatile oils, diterpenes, oleic acid (Mamedov and Craker 2001)
flavonoids scutellarin and pinocembrin from *Scutellaria immaculata* and *Scutellaria ramosissima*, which showed antimicrobial activity against human pathogenic bacteria. In another study diterpene, methyl carnosate isolated from the *Salvia officinalis* leaves showed antimicrobial properties against *Bacillus cereus* (Climati et al. 2013). The coumarins, terpenoids, and glycosides from *P. pabularia* exhibited strong antibacterial properties (Tada et al. 2002). The phytoecdysteroids and iridoids of *A. turkestanica* demonstrated antimicrobial activities against human pathogenic microbes (Mamadalieva et al. 2013, 2018). The human pathogens such as *C. albicans*, *Xanthomonas maltophilia*, and *Proteus mirabilis* were inhibited by *Artemisia dracunculus* essential oil (Curini et al. 2006). The essential oils of *Artemisia absinthium* and *Artemisia vulgaris* demonstrated a wide range of antimicrobial activity (Blagojevic et al. 2006).

Table 1 (continued)

Plant species	Family	Part used	Chemical composition
Limonium otolepis (Srenck)	PLUMBAGINEACEAE	Aerial part	Flavonoids, tannin (Mamedov and Craker 2001)
Matricaria chamomilla L	COMPOSITAE	Flowers	Volatile oil, flavonoids, chrysospenol (Mamedov and Craker 2001)
Melissa officinalis L	LABIATAE	Whole plant	Volatile oils, eugenol, flavonoids, triterpene (Mamedov and Craker 2001)
Origanum vulgare L	LABIATAE	Leaves, flowers	Flavonoids, volatile oils, terpinene (Sezik et al. 2004)
Origanum tyttanthum Gontsch	LAMIACEAE	Aerial part	Essential oil, phenolic compounds, glycosides (Baser et al. 1997)
Paeonia officinalis	ROSACEAE	Aerial part	Fatty oil, fatty acids (Yuldasheva et al. 2014)
Peganum harmala L	ZYGOPHYLLACEAE	Seeds, roots	Alkaloids (Sezik et al. 2004)
Plantago ovata L	PLANTAGINACEAE	Leaves	Fatty oil, fatty acids (Plantagonol) (Mamedov and Craker 2001)
Polygonum aviculare L	POLYGONACEAE	Roots, aerial part	Flavonoids, tannins, silicic acid (Mamedov and Craker 2001)
Prangos pabularia	APIACEAE	Leaves	Coumarins, terpenoids, and glycosides (Tada 2002)
Rosa canina	ROSACEAE	Leaves	Glycosides, saponins (Mamedov and Craker 2001)
Scrophylaria striata Boiss	SCROPHYLLARIAEAE	Aerial part	Flavonoids, glucosides, lipids (Yuldasheva et al. 2014)
Scutellaria ramosissima (Lamiaceae)		Epilepsy, allergy, various inflammations, nervous disorders, hypertension, cytotoxic and antimicrobial activity	
Tanacetum vulgare L	COMPOSITAE	Whole herb	Volatile oil, flavonoids (Mamedov and Craker 2001)
Thymus vulgaris L	LABIATAE	Aerial part, oil	Volatile oil, thymol, carvacrol, terpinene, flavonoids (Mamedov and Craker 2001)
Trifolium pretense L	FABIACEAE	Flower, aerial parts	Coumarine, carotinoids (Mamedov and Craker 2001)
Tribulus terrestris	ZYGOPHYLLACEAE	Aerial parts	(Bedir et al. 2002)
Xanthium strumarium	ASTERACEAE	Aerial parts	(Murillo-Alvarez et al. 2001)
Ziziphora bungeana	LAMIACEAE	Aerial parts	Essential oil (Somboli et al. 2006)
Zygophyllum oxianum	ZYGOPHYLLACEAE	Aerial parts	(Zaidi and Crow 2005)

et al. (2006) reported inhibitory activity of the essential oil of *Acreptilon repens* L. against *Staphylococcus saprophyticus* and *Staphylococcus epidermidis*. The essential oil of *Cuminum cyminum* L. and *Carum carvi* L. showed antibacterial activity against various Gram-positive and Gram-negative bacteria (Iacobellis et al. 2005). *C. albi cans* and *S. aureus* growth in plates were inhibited by essential oils of *A. graveolens* (Yili et al. 2009). The essential oil derived from *Pyrus salicifolia* exhibited antimicrobial activity against *S. aureus*, *Bacillus subtilis*, and *E. coli* (Mamadalieva et al. 2018). In another study, the essential oil of *Origanum vulgare* sp. *vulgare* showed anti-microbial activity against ten human pathogenic bacteria (Sahin et al. 2004).

Vanitha et al. (2020) studied the medicinal plant *Plumbago zeylanica* L. for antimicrobial activity. In their study, the new bioactive molecule, namely heneicosane, showed
potent antimicrobial activity against *Streptococcus pneumoniae* and *Aspergillus fumigatus* at 10 μg/ml concentrations. In other studies, biologically active compounds from medicinal plants *Eurya acuminata* and *Croton caudatus* hexatriacontan-1-ol and henicosan-1-ol showed antimicrobial activity against *C. albicans* and *Mycobacterium smegmatis*, respectively (Neipihoi et al. 2020). Kianfe et al. (2020) studied the antimicrobial activity of extract and fractions of *Crinum glaucum* A. Chev. The compound ungeremine showed significant activity against *E. faecalis* and *P. aeruginosa*, while adenosine exhibited moderate activity against *P. mirabilis*. It is known that plant tissues are host for microbes that produce various secondary metabolites with biological activity, such as antimicrobial, anticancer agents, and antioxidants alongside the plant growth regulators (Qin et al. 2011). Endophytic bacteria residing in inner parts of plant tissue produce secondary metabolites with diverse pharmacological activities, similar to their host plants (Egamberdieva et al. 2017a; Gouda et al. 2016). Therefore, they are considered a potential source of biologically active compounds with high therapeutic potential. These findings show the potential of biologically active compounds such as alkaloids, coumarins, steroids, glycosides, flavonoids, tannins, and essential oils as candidates for developing antimicrobial drugs for the prevention/treatment of infectious diseases.

Future prospects

Considering the vital role of medicinal plants in the global population’s well-being, more of them should be researched as protection alternatives for synthetics. Demand for medicinal and aromatic plants in Uzbekistan and other developing countries should continue for the near future. The utilization of unique indigenous knowledge of using medicinal plants to heal human ailments has a great potential to create cost-effective solutions and to screen natural products for drug discovery. Since the medicinal plant-associated microbes also produce various biologically active compounds as their host plant, a more data-rich investigation of these extraordinary microbiome properties as a potential source for new antimicrobials is essential. Moreover, it will help in elucidating pathways and mechanisms of novel biologically active compounds from medicinal plants and their mutualistic microbes, which can be formulated as antimicrobial agents. Furthermore, plant tissue culture is a promising alternative for the production of biologically active compounds of medical importance and should be explored further.

Conclusion

The herbal plants grown in Uzbekistan are very diverse, endemic, and contain various biologically active compounds. Although many plant species are reported
as sources of medicine and play a key role in human health management, their phytochemical and biological properties are less studied. They contain various biologically active compounds, which could help discover novel drugs. Therefore, there is an urgent need to continue ethnobotanical research to find and document important medicinal plants endemic to the region and investigate their potential for antimicrobial drug discovery. The present report described the current status of the medicinal plants from Uzbekistan and provided insight into herbal plants’ antimicrobial properties and the justification for continuing search for novel metabolites from them. The utilization of ethnomedicinal knowledge has excellent potential to discover possible antimicrobial compounds from the medicinal plants and their associated microbes (Fig. 1).

Acknowledgements The authors are thankful to the Head of Faculty of Ecology, Dr. Rustamjon Allaberdiev for his support and cooperation in data collection. We state that this manuscript has not been published elsewhere and also is not submitted for publication elsewhere. All authors approved manuscript and agreed on content.

Funding Open Access funding enabled and organized by Projekt DEAL.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

Ethical approval This Manuscript does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aldasheva AA (1979) Aconitum: pharmacology, toxicology, and uses. Ilim, Frunze (in Russian)
Azizov UM, Khadzhieva UA, Rakhimov DA, Mezhlyumyan LG, Salikhov SA (2012) Chemical composition of dry extract of Arctium lappa roots. Chem Nat Compounds 47(6):1038–1039
Bahramsoltani R, Farzaei MH, Rahimi R (2014) Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch Dermatol Res 306(7):601–617
Baser KHC, Demircakmak B, Nuriddinov KhR, Nigamutulaev AM, Arirov KhN (1997) Composition of the essential oil of Origanum tytanthum Gontsch. from Uzbekistan. J Essent Oil Res 9:611–612
Baser KHC, Nuriddinov HR, Ozek T, Demirci B, Azcan N, Nigamutulaev AM (2002) Essential Oil of Arischrada korolkowii from the Chatkal Mountains of Uzbekistan. Chem Nat Compd 38:51–53. https://doi.org/10.1023/A:1015729731464
Bedir E, Khan IA, Walker LA (2002) Biologically active steroidal glycosides from Tribulus terrestris. Pharmazie 57(7):491–493
Betoni JEC, Mantovani RP, Barbosa LN, Di Stasi LC, Fernandes JA (2006) Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Memórias Inst Oswaldo Cruz 101(4):387–390
Blagojevic P, Radulovic N, Palic R, Stojanovic G (2006) Chemical composition of the essential oils of Serbian wild-growing Artemisia absinthium and Artemisia vulgaris. J Agricult Food Chem 54(13):4780–4789
Buranova DD (2015) The value of Avicenna’s heritage in the development of modern integrative medicine in Uzbekistan. Integr Med Res 4(4):220–224
Chen S, Yu H, Luo H, Wu Q, Li CF, Steinhart A (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11:37
Climati E, Mastrogiovanni F, Valeri M, Salvini L, Bonechi C, Mammadlieva NZ, Tiezzi A (2013) Methyl carnosase, an antibacterial diterpene isolated from Salvia officinalis leaves. Natl Product Commun 8(4):429–430
Compean KL, Ynalvez RA (2014) Antimicrobial activity of plant secondary metabolites: a review. Res J Med Plants 8(5):204–213
Curini M, Epifano F, Genovese S, Tammaro F, Menghini L (2006) Composition and antimicrobial activity of the essential oil of Artemisia dracunculus “piemontese” from italy. Chem Natural Comp 42(6):738–739
Cushnie TT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Intern J Antimicrob Agents 26(5):343–356
Dall’Agnol R, Ferraz A, Bernardi AP, Albring D, Nor C, Sarmento L, Schapoval EES (2003) Antimicrobial activity of some Hypericum species. Phytomedicine 10(6–7):511–516
Duarte MCT, Figueira GM, Sartoratto A, Rehder VLG, Delarmelina C (2005) Anti-Candida activity of Brazilian medicinal plants. J Ethnopharmac 97(2):305–311
Duraipandiyan V, Ignacimuthu S (2011) Antifungal activity of Brazilian medicinal plants. J Ethnopharmac 139(3):754–760
Egamberdieva D, Mamedov N, Ovidi E, Tiezzi A, Craker L (2017) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants, Springer, Cham, pp. 287-303
Egamberdieva D, Mamadalieva N, Khodjimatov O, Tiezzi A (2013) Medicinal plants from Chatkal Biosphere Reserve used for folk medicine in Uzbekistan. Med Aromat Plant Sci Biotechnol 4(2):59–75
Egamberdieva D, Ynalvez RA (2014) Antimicrobial activity of plant secondary metabolites: a review. Res J Med Plants 8(5):204–213
Egamberdieva D, Jabborova D (2018) Medicinal plants of Uzbekistan and their traditional uses. In: Egamberdieva et al. (Eds.) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants, Springer, Cham, pp. 287-303
Egamberdieva D, Jabborova D (2018) Medicinal plants of Uzbekistan and their traditional uses. In: Egamberdieva and Ozturk (Eds.). Vegetation of Central Asia and Environments, Springer, Cham, pp. 211–237
Egamberdieva D, Mamadalieva N, Khodjimatov O, Tiezzi A (2013) Medicinal plants from Chatkal Biosphere Reserve used for folk medicine in Uzbekistan. Med Aromat Plant Sci Biotechnol 7(1):56–64
Egamberdieva D, Mamedov N, Ovidi E, Tiezzi A, Craker L (2017) Phytochemical and pharmacological properties of medicinal plants from Uzbekistan: a review. J Medicinally Active Plants 5(2):59–75
Egamberdieva D, Wirth S, Behrendt U, Ahmad P, Berg G (2017) Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front Microbiol 8:199
Egamberdieva D, Shurigin V, Alaylar B, Birkeland NK, Wirth S, Kimura SKB (2020) Bacterial endophytes from horseradish...
(Armoracia rusticana) with antimicrobial efficacy against pathogens. Plant Soil Environ 66:309–316

Eisenman SW, Zaurov DE, Struve L (2013) Medicinal plants of Central Asia: Uzbekistan and Kyrgyzstan. Springer

Gaianova NN, Kariyeva ES (2018) The market of medicinal plant raw materials of Uzbekistan. Pharmaceutical J 4:Article 1

Gnat S, Zieba P, Majer-Dziedzic B, Nowakiewicz A, Trościańczyk A, Ziółkowska G, Dziedzic R (2017) Antimicrobial activity of some plant extracts against bacterial pathogens isolated from faeces of red deer (Cervus elaphus). Polish J Veterinary Sci 20(4):697–706

Gouda S, Das G, Sen SK et al (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

Gupta N, Jain UK (2010) Prominent wound healing properties of indigenous medicines. J Natural Pharm 1(1):2–13

Iacobellis NS, Lo Cantore P, Capasso F, Senatore F (2005) Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem 53(1):57–61

Khalmatov KhKh (1964) Dikorastushchie Lekarstvenniye Rasteniya Uzbekistana (Wild-growing medicinal plants of Uzbekistan). Meditsina, Tashkent (in Russian)

Khalmatov KhKh, Kharlamov IA, Alimbayeva PK, Karriev MO, Khakhimbaeva KK (1964) Lekarstvenniye Rasteniya Uzbekistana (Wild-growing medicinal plants of Uzbekistan). Meditsina, Tashkent (in Russian)

Khalmatov KhKh, Kharlamov IA, Alimbayeva PK, Karriev MO, Kharlamov IA, Alimbayeva PK, Karriev MO, Khae-Khakhimbaeva KK (1964) Lekarstvenniye Rasteniya Uzbekistana (Wild-growing medicinal plants of Uzbekistan). Meditsina, Tashkent (in Russian)

Kharlamov IA, Alimbayeva PK, Karriev MO, Khae-Khakhimbaeva KK (1964) Lekarstvenniye Rasteniya Uzbekistana (Wild-growing medicinal plants of Uzbekistan). Meditsina, Tashkent (in Russian)

Kharlamov KhKh, Gvetadze KE (1965) Lekarstvenniye Rasteniya Tadzhikistana (Wild-growing medicinal plants of Tadjikistan). Glavnaya nauchnaya redaktsiya Tadzhikskoi Sovetskoi Entsiklopedii, Dushanbe (in Russian)

Kholmatov Kh, Maksumov M (1993) Medicinal plants for treating colds. Ibn Sinan, Tashkent

Kianfé BY, Kühnborn J, Tchenguem TR, Tchenguem TR, Ponou BK, Kianfé BY, Kühnborn J, Tchenguem TR, Tchenguem TR, Ponou BK (2020)andler acts as an antibiotic. Curr Microbiol. https://doi.org/10.1007/s00284-020-01924-5

Kumarasamy Y, Cox PJ, Jaspears M, Nahar L, Sarker SD (2002) Screening of essential oils from plants for antibacterial activity. J Ethnopharmacol 81(1–2):73–77

Kwon DH, Kwon HY, Kim HJ, Chang EJ, Kim MB, Yoon SK, Song EY, Yoon DY, Lee YH, Choi IS, Choi YK (2005) Inhibition of Bacillus subtilis and Streptococcus mutans by essential oils of Origanum vulgare. J Med Food 8(1):45–53

Kwon DH, Kwon HY, Kim HJ, Chang EJ, Kim MB, Yoon SK, Song EY, Yoon DY, Lee YH, Choi IS, Choi YK (2005) Inhibition of hepatitis B virus by an aqueous extract of Agrimonia eupatoria L. Phytother Res 19(4):355–358

Kumarasamy Y, Cox PJ, Jaspears M, Nahar L, Sarker SD (2002) Screening of essential oils from plants for antibacterial activity. J Ethnopharmacol 81(1–2):73–77

Mamedov N, Gardner Z, Craker LE (2004) Medicinal plants used in Russia and Central Asia for the treatment of selected skin conditions. J Herbs Spices Med Plants 11(1–2):191–222

Mamedov N, Gardner Z, Craker LE (2004) Medicinal plants used in Russia and Central Asia for the treatment of selected skin conditions. J Herbs Spices Med Plants 8(2–3):91–117

Mamedov N, Craker LE (2001) Medicinal plants used for the treatment of bronchial asthma in Russia and Central Asia. J Herbs, Spices Med Plants 8(2–3):91–117

McChesney JD, Venkataraman SK, Henri JT (2007) Plant natural products: back to the future or into extinction? Phytochemistry 68(14):2015–2022

Minayeva VG (1991) Lekarstvenniye Rasteniya Sibiri, 5 izd (Medicinal plants of Siberia), 5th edn. Nauka, Novosibirsk (in Russian)

Mishra MP, Rath S, Swain SS, Ghosh G, Das D, Padhy RN (2017) In vitro antibacterial activity of crude extracts of 9 selected medicinal plants against UTI causing MDR bacteria. J King Saud Univ 29(1):84–95

Munillo-Alvarez JI, Encarnacion DR, Franzblau SG (2001) Antimicrobial and cytotoxic activity of some medicinal plants from Baja California Sur (Mexico). Pharm Biology 39(6):445–449

Musa Z, Ma J, Engamberdieva D, Mohamad O, Liu YH, Li WJ, Li L (2020) Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with medicinal plant Thymus species. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00191

Neipho NB, Saikia S, Saikia S, Tamuli KJ, Sahoo RK, Dutta D, Bordoloi M (2020) Anticancer and antimicrobial compounds from Croton caudatus Gieseler and Eurya acuminata DC. two edible plants used in the traditional medicine of the Kuki tribes. Nat Prod Res. https://doi.org/10.1080/14786419.2020.1815737

Nikolic M, Jovanovic KK, Markovic T, Markovic D, Gligorijevic N, Radulovic S, Sokovic M (2014) Chemical composition, antimicrobial, and cytotoxic properties of five Lamiales essential oils. Industrial Crops Products 61:225–232

Norouzi-Asari H, Yavari I, Chalabian F, Kiarostami V, Ghaffarzadeh F, Nasirian A (2006) Chemical constituents and antimicrobial activities of the essential oil of Aegopodium podagraria (L.). Flavour Frangrance J 21(2):247–249

Nuraliyev Y, Zubaibova T (1994) Hypocholesterinemic and hypolipidemic effects of ether oil of Origanum tytthanthum Gontsch. Khimiko-Farm Zh 28:63–64

Park CJ, Park CB, Hong SS, Lee HS, Lee SY, Kim SC (2000) Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd’s purse Capsella bursa-pastoris. Plant Mol Biol 44(2):187–197

Pirbalouti AG, Jahanbazi P, Enteshari S, Malekpoor F, Hamedi B (2020) In vitro antibacterial activity of some Iranian medicinal plants. Arch Biochem Sci 62(3):633–641

Qader MK, Khalid NS, Abdullah AM (2013) Antibacterial activity of some plant extracts against clinical pathogens. Int J Microbiol Immunol Res 1(5):53–56

Qin Sh, Xing K, Jiang JH et al (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89(3):457–473

Rustamova N, Wubulikasimus A, Gao Y, Engamberdieva D, Yili A, Aisa HA (2020) Endophytic bacteria associated with medicinal plant Baccharis halimifolia—diversity and characterization. Curr Microbiol. https://doi.org/10.1007/s00284-020-01924-5

Şahin F, Güllüce M, Daferera D, Sökmen A, Sökmen M, Polissiou M, Özer H (2004) Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 15(7):549–557

Sapkota R, Dasgupta R, Rawat DS (2012) Antimicrobial effects of some plant extracts against clinical pathogens. Int J Res Pharm Chem 2(4):926–936
Sardari S, Amin G, Micetich RG, Daneshitalab M (1998) Phytopharma-
caceuticals. Part 1. Antifungal activity of selected Iranian and
Canadian plants. Pharmaceutical Biol 36(3):180–188
Saslis-Lagoudakis CH, Hawkins JA, Greenhill SJ, Pendry CA, Watson
MF, Tuladhar-Douglas W et al (2014) The evolution of traditional
knowledge: environment shapes medicinal plant use in Nepal.
Proc Royal Soc B: Biol Sci 281(1780):20132768
Sekiz E, Yesilada E, Shadidoyatov H, Kutlivey Z, Nigmatullaev AM,
Aripo HN, Honda G (2004) Folk medicine in Uzbekistan: I. Toshkent, Djizzax, and Samarqand provinces. J Ethnopharm
92(2–3):197–207
Shrivastava S, Egamberdieva D, Varma A (2015) PGPRs and medici-
 nal plants- the state of arts. In: Egamberdieva D, Shrivastava S,
Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR)
and Medicinal Plants. Springer, Verlag, pp 1–16
Shurigin V, Davranov K, Wirth S, Egamberdieva D, Bellingrath-
Kimura SD (2018) Medicinal plants with phytotoxic activity har-
bour endophytic bacteria with plant growth inhibitory properties.
Environ Sustain 1(2):209–215
Sonboli A, Mirjalili MH, Hadian J, Ebrahimi SN, Yousefzadi M
(2006) Antibacterial activity and composition of the essential oil of
Ziziphora clinopodioides subsp. bungeana (Juz.) Rech. f. from
Iran. Zeitschrift Naturforschung C 61(9–10):677–680
Tada Y, Shikishima Y, Takaishi Y, Shibata H, Higuti T, Honda G,
Ohmoto Y (2002) Coumarins and γ-pyrone derivatives from Pran-
gos pabularia: antibacterial activity and inhibition of cytokine
release. Phytochemistry 59(6):649–654
Tamemoto K, Takaishi Y, Chen B, Kawaue K, Shibata H, Higuti T,
Ashurnetov O (2001) Sesquiterpenoids from the fruits of Ferula
kuhistanica and antibacterial activity of the constituents of F.
kuhistanica. Phytochemistry 58(5):763–767
Ushimaru PI, Silva MTND, Di Stasi LC, Barbosa L, Fernandes JA
(2007) Antibacterial activity of medicinal plant extracts. Braz J
Microbiol 38(4):717–719
Vanitha V, Vijayakumar S, Nilavukkarasi M, Punitha VN, Vidhya E,
Praseetha PK (2020) Heneicosane—a novel microbially bio-
active alkane identified from Plumbago zeylanica L. Industrial
Crops Products 154:112748
Verma V, Singh R, Tiwari RK, Srivastava N, Verma A (2012) Antibac-
terial activity of extracts of Citrus, Allium and Punica against food
borne spoilage. Asian J Plant Sci Res 2(4):503–509
Yili A, Aisa HA, Maksimov VV, Veshkurova ON, Salikhov SI (2009)
Chemical composition and antimicrobial activity of essential oil
from seeds of Anethum graveolens growing in Uzbekistan. Chem
Natl Compounds 45(2):280–281
Yuldasheva NK, Ul’chenko NT, Mamadalieva N, Glushenkova AI,
Ovidi E, Triggiani D, Tiezzi A (2014) Lipids from the aerial part
of Scutellaria ramosissima. Chem Nat Comp 50(1):68–71
Zaidi MA, Crow JSA (2005) Biologically active traditional medicinal
herbs from Balochistan. Pakistan J Ethnopharm 96(1–2):331–334

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.