Review article: Myopia - Genetically inherited or environmental influences

S E E Tjoa and S E D Putra*
Department of Biology, Faculty of Biotechnology, University of Surabaya, Jl. Raya Kalirungkut, Surabaya 60292, Indonesia

*Corresponding author: emantoko@staff.ubaya.ac.id

Abstract. Myopia or nearsightedness is a condition in which a person cannot see distant objects clearly. It is currently the most common eye disorder. It is predicted that half of the world’s population will develop myopia by 2050. Myopia has been associated with both environmental and genetic influences affecting eye growth. The mechanism by which genetics can lead to myopia is still uncertain. Much remains to be elucidated about the interplay between environmental and genetic factors that play a role in the onset of myopia. The main purpose of this article is to describe molecular (genetic and epigenetic) and environmental (lifestyle influenced) causes of myopia in order that drugs, therapies, and other treatments can be found to cure and prevent myopia. As the conclusion, a picture of interconnectivity between genetic, environment, and myopia was constructed

Keyword: Eyes, habit, hereditary, nature, nearsightedness

1. Introduction

Myopia is a condition in which a person cannot see distant objects clearly. It occurs because the eyeball is elongated or the cornea is too curved [1]. Myopia can also be defined as a state in which the eye experiences refractive error, such that light entering the eye that should be focused directly on the retina, is instead focused in front of the retina [2].

Myopia is currently the most common eye disorder diagnosed and also associated with other eye disorders that have the potential to cause blindness, such as glaucoma [3], ablasio retina (retinal detachment) [4], and cataracts [5]. According to the National Eye Institute (NEI), the percentage of patients with nearsighted eyes aged 12 yr to 54 yr in the United States grew from 25 % (1971 to 1972) to 46.1 % (1999 to 2004). In Europe, in 2010, the percentage of patients with nearsightedness reached 30.6 % [6]. In Asia, rates of nearsighted people vary. In East Asia they reach 90 % [7–11]. The summary can be seen in table 1.

Table 1. Prevalence of myopia in some countries

Country/age	Prevalence	Source
USA/12 to 54 yr	46.1 %	NEI
Europe/25 to 89 yr	30.6 %	[6]
Iran/40 to 64 yr	30.2 %	[7]
China/19 yr	95.5 %	[9]
South Korea/ 19 yr	83.3 % to 96.5 %	[8, 10]
India/ 11.6 ± 2.2 yr	13.1 %	[11]

The number of nearsighted people continue to increase every year. It is predicted that the global percentage will reach 33.9 % by 2020 and by 2050, is predicted to be 49.8 % [12]. Myopia can cause a decrease in global productivity because slow at reading, missing some important information, and
others. The current global burden caused by myopia reaches USD 121.4×10^9 [13]. The average total cost required for the treatment is USD 755×10^6 per year [14, 15].

With the increasing rate and the potential effect on the economy, this condition is a problem that needs our attention. Myopia is strongly correlated with environmental factors. Habits and lifestyle have traditionally been along with genetics have a role in the onset of myopia. This review article discusses causes of myopia, so that they may be used as a basis for prevention or treatment.

2. Environmental influences on myopia
Myopia is influenced by the environment because it involved changes and adjustments to the eye. These changes and adjustments depend on the object seen by the eye as the main signal. The eye will focus the object on the retina. The eye has several mechanisms to regulate the focus of the eyes. First, the eyeball extends by changing the sclera structure, second, retinal retraction will occur with thinning of the blood vessels (choroid), and third, there is also a retinal signal from the brain, in the form of retinoic acid which regulates eye changes and adjustments.

All of this is related to the use of the eye in daily life. If an eye adjustment occurs continuously, the change will become permanent, causing myopia, via a long eyeball structure or choroid thinning. This phenomenon was reviewed by Wallman and Winawer [16].

2.1. Myopia and lifestyle (work and education)
All habits that force the eyes to work hard increase the likelihood of developing myopia. Continuous reading, reading at close range, reading in dark conditions, playing video games too often, and watching television at close range have been shown to cause myopia [11, 17, 18].

Education level is also have a correlation. The longer the time in school and the higher the level of education, the higher the risk of suffering myopia [19]. Educational level or duration is often associated with the time used for learning and reading. Both of these activities often interfere with the work of the eye so that if it continues to be done inappropriately, the eye will experience adjustment and cause myopia.

Work or daily activities are also associated with the onset of myopia. Like indoor activities, for example staring at computer very long, sewing, weaving, etc. [20–23]. In fact, not all jobs are at risk of causing myopia. An example is outdoor activities. The longer the activity outside the room the lower the risk of having myopia [24, 25]. Higher light intensity outside the room, will stimulate dopamine production. Feldkaemper and Schaeffel have proposed a mechanism that dopamine can decrease elongation of the eyeball and decrease the risk of people to become myopia [26].

2.2. Myopia and ethnicity-geography
The prevalence of myopia also varies between ethnicities. In several studies, it was found that ethnic groups from Asia had a higher myopia prevalence than other ethnicities. New cases of the appearance of myopia are more common in Asians than in Hispanics, Native Americans, African-Americans, and Whites [27]. In the UK, the number of nearsighted people from Asia is higher than that from Africa, Caribbean, and Europe [28]. In fact, data shows that Asian children in the United States are more likely to develop myopia than children from other ethnicities [29]. In Asia alone, only certain ethnicities have high prevalence of myopia, namely those from East Asia, Chinese compared to others [7–11, 30–32]. Within China, there is no particular ethnicity with a higher prevalence rate [33].

The number of myopia in Asians is often associated with high rates of diabetics in Asia [34]. This is supported by a review by Umezurike, et al [35]. One of the data found that people with diabetes mellitus tended to be myopia compared to non-diabetic controls. This is related to the lifestyle of Asians whose staple food is rice. But it's not clear whether myopia in Asians is influenced by the lifestyle or other factors.

3. Genetic influence on myopia
Children who have two parents who suffer from myopia are at the highest risk of developing myopia compared with those who have one parent with myopia. Children with parents who do not suffer from myopia are at a lower risk of developing myopia [36–40]. Myopia is inherited between generations. This shows that in addition to environmental factors, genetics also plays a role in the onset of myopia.
In addition, genetic causes of myopia is supported by twin studies. In one study, its heritability reached 80% [41]. From these data, it is known that myopia is not completely due to environmental or genetic alone. Data on heritability among other twin pairs has also been described in a review by Dirani et al. [42].

Variation of myopia by ethnic group, population studies and twin studies illustrate the role of genetics in addition to the environment influences. To better understand this factor, research has been conducted to link myopia with certain genes. Linkage analysis has been performed on a group of families with myopia. Using linkage analysis, several genes have been mapped to their position on the chromosome. Most of the, the genes that play a role are related to eye development. If polymorphism or mutation occurs in these genes, it can cause changes in eye growth that leads to myopia. Data on the name of the locus and its location on the chromosome can be seen in Yamashiro and Yoshimura's review [43].

3.1. Genes that related with myopia

Analysis of several genes that can affect the growth of eyeballs has also been carried out. Myopia is associated with an elongated eye shape or a weak sclera. Some genes related to eye shape and sclera have been identified. Several studies have been conducted to link these genes to patients with myopia.

Collagen, type I, alpha 1 (COL1A1) is a gene that encodes the protein component of the extracellular matrix. This gene is usually expressed in the sclera. People with myopia have an increased rate of polymorphisms in these genes. This was demonstrated using the Single Nucleotide Polymorphism (SNP) markers (rs2075555 and rs2269336) [44]. Polymorphism in these genes causes weak sclera structure, so it cannot resist elongation of the eyes.

Collagen, type II, alpha 1 (COL2A1) is a gene that plays a role in the production of extracellular matrix components in the sclera. Polymorphism in the COL2A1 gene is also associated with the onset of myopia. In the study by Metlapally, et al. [45], there were five SNP markers associated with patients with myopia (rs1034762, rs1635529, rs1793933, rs3803183, and rs17122571).

Paired Box 6 (PAX6) is a regulator that responsible for eye growth and development. If there is a polymorphism or mutation in this gene, eye growth is susceptible to myopia. The 1410delC, Arg240Stop, and Glu93Stop mutations are reported to be related to myopia [46]. Polymorphism in the PAX6 gene is also claimed to cause myopia. There are seven SNP markers associated with patients with myopia (rs3026390, rs3026393, rs3026354, rs667773, rs2071754, rs644242, and rs662702) [47–49].

The transforming growth factor-beta2 (TGFB-2) is an important component of the scleral extracellular matrix. Reduction in the matrix will affect the shape of the eye. Polymorphism in this gene will affect the onset of myopia. In a study from Lin, et al. [50] it was found that SNP markers rs7550232 associated with nearsighted patients.

Insulin-like growth factor 1 (IGF-1) has a role in insulin regulation. If there is a damage to this gene, it will cause insulin resistance. High insulin concentration in the blood will affect elongation of the eye. This condition can cause myopia. There are three SNP markers associated with nearsighted patients (rs12423791, rs7956547, and rs5742632) [51].

There are still many other genes involved in eye development and have been investigated in relation to myopia. For example, **RDH8**, has a role in the production of the enzyme retinol dehydrogenase. This enzyme be responsible in the formation of retinoic acid, the retinal signal that regulates eye growth. **Matrix metalloproteinase 2 (MMP2) and Tissue inhibitors of metalloproteinase-2 and -3 (TIMP2 and TIMP3)**, play a role in the degradation of the scleral extracellular matrix. When the eye is elongated, the sclera reduces the production of the extracellular matrix and increases the production of matrix-degrading enzymes [17]. **Transforming growth factor, beta 1 (TGFB1)**, has a role in controlling scleral growth. However, the associations with myopia of **RDH8** [52], **Matrix metalloproteinase 2 (MMP2)**, **Tissue inhibitors of metalloproteinase-2 and -3 (TIMP2 and TIMP3)** [53] and **Transforming growth factor, beta 1 (TGFB1)** [54] have not been found to date.

As described before, myopia is not only caused by environmental but also genetic influences. A summary of studies that show the relationship between myopia and the environment and/or genetics can be seen in the table 2.
Study	Environment	Genetic	Resume/ Finding	Explanation	Source
Habits, Jobs, and	✓	-	Nearwork activities have a higher risk to the onset of myopia	Habits in work and learning as well as daily habits are environmental factors that cause myopia.	[12, 18–24]
Education		-	Outdoor activities decrease the risk to the onset of myopia		
			Resume/ Finding	Explanation	
Between Families	✓	✓	Risk for children who have myopic parents are higher than children who have no myopic parent	Myopia can be inherited between family members. Not only that, similarities in habits, lifestyle, and the environment in one family can cause myopia	[36–39]
Between Twins	✓	✓	Heritability estimates ranging from 0.11 to 0.94 in vary ages from 3 yr to 79 yr.	Just as between families, twin couples who live together share the same environment so that genetic is not an important factor in the onset of myopia	[40–42]
Linkage analysis	✓		In linkage analysis using microsatellites markers has identified 19 loci for myopia: MYP1 – MYP19	Genetic inheritance is proven by the relationship between genes that are not separated during meiosis and are passed down between generations.	[43]
Candidate gene	✓	- COL1A1		The genes that analyzed are related to eye development.	[44–51]
		- COL2A1		Polymorphism or gene mutation will cause myopia. This can be inherited.	
		- PAX6			
		- IGF-1			
		- TGFB2			

4. Environment and genetic interactions on myopia

An improper dietary pattern is also estimated to cause myopia. According to a study, high blood sugar levels cause high insulin levels. High insulin levels in the blood affect the growth of the eyeball. This phenomenon has been demonstrated in test animals [55]. Galvis et al. [56] have proposed a hypotheses regarding the possible of the effect of insulin on eye growth. This evidence shows that a high sugar diet will affect genetics and cause myopia. This proves that the environment and genetic interactions on myopia exist.
Dirani, et al. [57] conducted a study to determine the effect of environmental and genetic interactions on myopia. This study compared the rate of myopia from monozygotic twin and dizygotic twin with their differences in studying or education attainment. They found that not only the genetics represented by zygoty and the environment factors represented by education attainment were responsible for the onset of myopia, but also their interactions. This shows that the genotype is influenced by the environment and vice versa. Further studies on this subject began to be directed to epigenetic studies.

4.1. Epigenetic patterns in myopia

The environment also affects gene expression and lead to the onset of myopia through a genetic mechanism. This is demonstrated by recent epigenetic research. In test animals that are intentionally induced to be myopia, \(\text{COL1A1} \) expression decreases. Cells regulate this by increasing methylation in the \(\text{COL1A1} \) promoter. DNA methylation in the \(\text{COL1A1} \) promoter will cause collagen synthesis in the sclera to decrease, resulting in a weak sclera structure that cannot contain eye growth, and the eye will grow longer than normal.

Methylation of the \(\text{COL1A1} \) promoter also decreases when test animals gradually recover from myopia. This shows that the methylation in the \(\text{COL1A1} \) promoter is influenced by the environment, including feedback regarding the growth of the eye itself. If eye growth leads to myopia, \(\text{COL1A1} \) promoter methylation will increase, and vice versa [58, 59].

Overall, it is known that myopia is caused by environmental influences, genetic, and interaction of both called epigenetic. A summary scheme of factors that cause myopia can be seen in the figure 1.

![Figure 1. Factors that cause myopia](image)

5. Future prospect

Research on myopia has placed more emphasis on the influence of the environment on eye growth than on the influence of genetics. As a result of this, treatment methods for patients with myopia is currently limited to therapy or physical treatment directly on the patient's eyeball [60]. In fact, such treatment is usually temporary, because myopia is based on eye growth. If eye growth is still not normal, then myopia can reappear.

The lack of information on the specific mechanisms causing the occurrence of myopia makes it difficult to find suitable drugs and therapies to cure myopia. Current research has begun to link genetic and epigenetic patterns to the onset of myopia. Some polymorphisms and epigenetic patterns of several genes believed to be involved in the onset of myopia have been found. But this discovery only links these genes to the onset of myopia. Further research should be directed at specific molecular mechanisms leading to eye growth, including interactions between genes and the environment. This is necessary in order to find the complex mechanism for the onset of myopia.
Genetics, epigenetics, and lifestyle taken together have potential to improve predictions of a person's risk of myopia and lead to efforts to prevent myopia before it occurs. In the future, research will be focused to find a treatment of myopia at the molecular level.

6. Conclusion
The environment, lifestyle, and habits are believed to be the main factors associated with eye growth through vision as the main signals. But genetics is also an important factor in the cause of myopia. This condition is heritable and genes that play a role are usually related to eye growth and development. It is also likely that there are interactions between genes and the environment that cause myopia, as seen from epigenetic patterns in patients with myopia. Hopefully, this article can be used as a basis for prevention or treatment for patients with myopia.

References
[1] Disha Experts 2019 General Science for RRB Junior Engineer, NTPC, ALP & Group D Exams-2nd Edition (New Delhi: Disha Publication) p 36 https://www.kopykitab.com/General-Science-For-RRB-Junior-Engineer-NTPC-ALP-And-Group-D-Exam-by-Disha-Publication
[2] Weizer J S 2006 Common vision problems All About Your Eyes ed S Fekrat and J S Weizer (London: Duke University Press) p 18 https://www.dukeupress.edu/all-about-your-eyes/?viewby=title
[3] Sheng-Ju C, Peng L, Wen-Fang Z and Jian-Hua L 2012 High myopia as a risk factor in primary open angle glaucoma Int. J. Ophthalmol. 5(6) 750–53 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530820/
[4] Polkinghorne P and Craig J 2004 Northern New Zealand rhegmatogenous retinal detachment study: Epidemiology and risk factors Clin. Exp. Ophthalmol. 32(2) 159–63 https://www.ncbi.nlm.nih.gov/pubmed/15068432
[5] Praveen M, Vasavada A, Jani U, Trivedi R and Choudhary P K 2008 Prevalence of cataract type in relation to axial length in subjects with high myopia and emmetropia in an Indian population Am. J. Ophthalmol. 145(1) 176–81 https://www.ncbi.nlm.nih.gov/pubmed/17936714
[6] Williams K et al. 2015 Prevalence of refractive error in Europe: The European eye epidemiology (E3) consortium. Eur. J. Epidemiol. 30(4) 305–15 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385146/
[7] Hashemi H, Khabazkhoob M, Jafarzadehpur E, Yekta A A, Emamian M H, Shariati M and Fotouhi A 2012 High prevalence of myopia in an adult population, Shahroud, Iran Optom. Vis. Sci. 89(7) 993–99 https://www.ncbi.nlm.nih.gov/pubmed/22705774
[8] Jung S, Lee J, Kakizaki H and Jee D 2012 Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. Invest. Ophthalmol. Vis. Sci. 53(9) 5579–83 https://www.ncbi.nlm.nih.gov/pubmed/22836765
[9] Sun J et al. 2012 High prevalence of myopia and high myopia in 5060 Chinese University students in Shanghai. Invest. Ophthalmol. Vis. Sci. 53(12) 7504–09 https://www.ncbi.nlm.nih.gov/pubmed/23060137
[10] Lee J, Jee D, Kwon J and Lee W 2013 Prevalence and risk factors for myopia in a rural Korean Population. Invest. Ophthalmol. Vis. Sci. 54(8) 5466–71 https://iovs.arvojournals.org/article.aspx?articleid=2128352
[11] Rohit S, Praveen V, Radhika T, Pandey R, Amit B, Vimala M and Kalaivani M 2015 Prevalence of myopia and its risk factors in urban school children in Delhi: The North India myopia study (NIM Study) PlosOne 10(2) e0117349 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342249/
[12] Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ and Resnikoff S 2016 Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5) 1036–42 https://www.ncbi.nlm.nih.gov/pubmed/26875007
[13] Smith T, Frick K, Holden BA, Fricke T and Naidoo K 2009 Potential lost productivity resulting from the global burden of uncorrected refractive error. *Bull. World Health Organ.* 87 (6) 431–37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686211/

[14] Saw S, Zheng Y, Chay J, Pan C, Lamoureux E, Finkelstein E and Wong T 2013 The economic cost of myopia in Singapore *Invest. Ophthalmol. Vis. Sci.* 54(15) 5711
https://iovs.arvojournals.org/article.aspx?articleid=2150688

[15] Zheng Y, Pan C, Chay J, Wong T, Finkelstein E and Saw S 2013 The economic cost of myopia in adults aged over 40 years in Singapore *Invest. Ophthalmol. Vis. Sci.* 54(12) 7532–37
https://www.ncbi.nlm.nih.gov/pmid/24159089

[16] Wallman J and Winawer J 2004 Homeostasis of eye growth and the question of myopia *Neuron* 43 447–68
https://www.ncbi.nlm.nih.gov/pmid/15312645

[17] Ip J, Saw S, Rose K, Morgan I, Kifley A, Wang J and Mitchell P 2008 Role of near work in myopia: Findings in a sample of Australian school children *Invest. Ophthalmol. Vis. Sci.* 49(7) 2903–10
https://iovs.arvojournals.org/article.aspx?articleid=2125070

[18] Li S et al. 2015 Near work related parameters and myopia in chinese children: The Anyang childhood eye study *PLos One* 10(8) e0134514
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134514

[19] Mirshahi A, Ponto K A, Hoehn R, Zwiener I, Zeller T, Lackner K, Beutel M E and Pfeiffer N 2014 Myopia and level of education: Results from the Gutenberg health study. *Ophthalmology* 121(10) 2047–52
https://www.ncbi.nlm.nih.gov/pmid/24947458

[20] Gwiazda J, Deng L and Marsh-Tootle W 2011 The association of education and occupation with myopia in COMET parents *Optom. Vis. Sci.* 88(9) 1045–53
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162999/

[21] Wertley A, Hashemi H, Ostadimoghaddam H, Heravian J, Heydarian S, Mehravaran S, Abdolahi-nia T, Rezvan F, Azimi A and Derakhshan A 2011 Impact of carpet weaving on refractive errors *IrJO* 23(4) 29–36
http://irjo.org/browse.php?a_id=544&sid=1&slc_lang=en

[22] Zahmatkesh R, Khanjani N and Ghotbi R 2012 Evaluating occupational risk factors among Golzar rug Weavers, Kerman, Iran. *JOHE* 1(1) 37–43
http://hoje.rums.ac.ir/browse.php?a_code=A-10-1-6&sid=1&slc_lang=en

[23] Davari M, Gheitasi H and Davari E 2016 Comparison of rate and progression of myopia among carpet weaver and non-weaver members of the weaver’s families in Birjand *Zaheden J. Res. Med. Sci.* 18(8) e7933
http://zjrms.com/en/articles/7933.html

[24] Rose K A, Morgan I G, Ip J, Kifley A, Huynh S, Smith W and Mitchell P 2008 Outdoor activity reduces the prevalence of myopia in children *Ophthalmology* 115(8) 1279–85
https://www.ncbi.nlm.nih.gov/pmid/18294691

[25] Sherwin J C, Reacher M H, Keogh R H, Khawaja A P, Mackey D A and Foster P J 2012 The association between time spent outdoors and myopia in children and adolescents: A systematic review and meta-analysis *Ophthalmology*, 119(10) 2141–51
https://www.ncbi.nlm.nih.gov/pmid/22809757

[26] Feldkaemper M and Schaeffel F 2013 An updated view on the role of dopamine in myopia Exp. Eye Res. 114 106–19
https://www.ncbi.nlm.nih.gov/pmid/23434455

[27] Kleinstein R, Simott L, Jones-Jordan L, Sims J and Zadnik K 2012 New Cases of myopia in children *Arch. Ophthalmol.* 130(10) 1274–79
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457538/

[28] Rudnicka A, Owen C, Nightingale C, Cook D and Whincup P 2010 Ethnic differences in the prevalence of myopia and ocular biometry in 10 and 11years old children: The Child Heart and Health Study in England (CHASE) *Invest. Ophthalmol. Vis. Sci.* , 51(12) 6270–76
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055754/
[29] Wen G, Tarczy-Hornoch K, McKeen-Cowdin R, Cotter S A, Borchert M, Lin J, Kim J and Varma R; Multi-Ethnic Pediatric Eye Disease Study Group 2013 Prevalence of myopia, hyperopia, and astigmatism in non-hispanic white and asian children *Ophthalmology*, **120**(10) 2109–16
https://www.ncbi.nlm.nih.gov/pubmed/23953098

[30] Kleinstein R, Jones L A and Hultlett S 2003 Refractive error and ethnicity in children *Arch. Ophthalmol.* **121**(8) 114–17
https://www.ncbi.nlm.nih.gov/pubmed/12912692

[31] Pan CW, Wong TY, Lavanya R, Wu RY, Zheng YF, Lin XY, Mitchell P, Aung T and Saw SM 2011 Prevalence and risk factors for refractive errors in Indians: The Singapore Indian Eye Study (SINDI) *Invest. Ophthalmol. Vis. Sci.* **52**(6) 3166–73
https://www.ncbi.nlm.nih.gov/pubmed/21296814

[32] Sun J et al. 2012 High prevalence of myopia and high myopia in 5060 Chinese university student in Shanghai *Invest. Ophthalmol. Vis. Sci.* **53**(12) 7504–09
https://iovs.arvojournals.org/article.aspx?articleid=2127105

[33] Pan CW, Chen Q, Sheng X, Li J, Niu Z, Zhou H, Wei T, Yuan Y and Zhong H 2015 Ethnic variations in myopia and ocular biometry among adults in a rural community in China: The Yunnan minority eye studies *Invest. Ophthalmol. Vis. Sci.* **56**(5) 3235–41
https://iovs.arvojournals.org/article.aspx?articleid=2297913

[34] Yoon K H, Lee J H, Kim J W, Cho J H, Choi Y H, Ko S H, Zimmet P and Son H Y 2006 Epidemic obesity and type 2 diabetes in Asia. *Lancet (London)* **368**(9548) 1681–82
https://www.ncbi.nlm.nih.gov/pubmed/17098087

[35] Umezurike BC, Udeala O, Green UG, Okpechi-Agbo U and Ohaeri MU 2018 The pathogenesis of index myopia in hyperglycemia in type 2 diabetes: A review *Ophthalmology Research: An International Journal* **9**(2) 1–17
http://www.sciencedomain.org/abstract/25405

[36] Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML and Zadnik K 2007 Parental history of myopia, sports and outdoor activities, and future myopia *Invest. Ophthalmol. Vis. Sci.* **48**(8), 3524–32
https://iovs.arvojournals.org/article.aspx?articleid=21183997

[37] Xiang F, He M and Morgan IG 2012 The impact of parental myopia on myopia in Chinese children: population-based evidence *Optom. Vis. Sci.* **89**(10) 1487–96
https://www.ncbi.nlm.nih.gov/pubmed/22922777

[38] Jones-Jordan L, Sinnott L T, Manny R E, Cotter S A, Kleinstein R N, Mutti D O, Twelker J D, Zadnik K and Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study Group 2010 Early childhood refractive error and parental history of myopia as predictors of myopia *Invest. Ophthalmol. Vis. Sci.* **51**(1) 115–21
https://iovs.arvojournals.org/article.aspx?articleid=2185549

[39] Ip J M, Huynh S C, Robaei D, Rose K A, Morgan I G, Smith W, Kifley A and Mitchell P 2007 Ethnic differences in the impact of parental myopia: Findings from a population-based study of 12-year-old Australian children *Invest. Ophthalmol. Vis. Sci.* **48**(6) 2520
https://www.ncbi.nlm.nih.gov/pubmed/17525179

[40] Wilson L et al. 2010 Family history, near work, outdoor activity, and myopia in Singapore Chinese preschool children *Br. J. Ophthalmol.* **94**(8) 1012–16
https://bjo.bmj.com/content/94/8/1012.short

[41] Ramessur R, Williams K and Hammond C 2015 Risk factors for myopia in a discordant monozygotic twin study *Ophthalmic Physiol. Opt.* **35**(6) 643–51
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832275/

[42] Dirani M, Chamberlain M, Garoufalis P, Chen C, Guymer R and Baird P 2006 Refractive errors in twin studies *Twin Res. Hum. Genet.* **9**(4) 566–72
https://www.ncbi.nlm.nih.gov/pubmed/16899164

[43] Yamashiro K and Yoshimura N 2014 Genes Involved in the Development of Myopia Richard F, Spaide RF, Ohno-Matsui K and Yannuzzi LA *Pathologic Myopia*, ed Kyoko OM, Richard F S and Lawrence A Y (New York: Springer) pp 13–23
https://www.bokus.com/bok/9781461483373/pathologic-myopia/
[44] Inamori Y, Ota M, Inoko H, Okada E, Nishizaki R, Shiota T, Mok J, Oka A, Ohno S and Mizuki N 2007 The COL1A1 gene and high myopia susceptibility in Japanese. Human Genetics, 122(2) 151–7

[45] Metlapally R et al. 2009 COL1A1 and COL2A1 genes and myopia susceptibility: Evidence of association and suggestive linkage to the COL2A1 locus Invest. Ophthal. Vis. Sci. 50(9) 4080–86

[46] Hewitt A, Kearns L, Jamieson R, Williamson K, van Heyningen V and Mackey D 2007 PAX6 mutations may be associated with high myopia Ophthalmic. Genet. 28(3) 179–82

[47] Han W, Leung K, Fung W, Mak J, Li Y, Yap M and Yip S 2009 Association of PAX6 polymorphisms with high myopia in Han Chinese nuclear families. Invest. Ophthal. Vis. Sci. 50(1) 47–56

[48] Liang C, Hsi E, Chen K, Pan Y, Wang Y and Juo S 2011 A functional polymorphism at 3′UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese. Invest. Ophthal. Vis. Sci. 52(6) 3500–05

[49] Tang S, Rong S, Young A, Tam P, Pang C and Chen L 2014 PAX6 gene associated with high myopia: A meta-analysis Optom. Vis. Sci. 91(4) 419–29

[50] Lin H J, Wan L, Tsai Y, Liu S C, Chen W C, Tsai S W and Tsai W 2009 Sclera-related gene polymorphisms in high myopia. Mol. Vis. 15 1655–63

[51] Mak J, Yap M, Fung W, Ng P and Yip S 2012 Association of IGF1 gene haplotypes with high myopia in Chinese adults Arch. Ophthal. 130(2) 209–16

[52] Yu Y, Wang L, Shen Y, Yap M, Yip S and Han W 2010 Investigation of the association between all-trans-retinol dehydrogenase (RDH8) polymorphisms and high myopia in Chinese. J. Zhejiang Univ. Sci. B. 11(11) 836–41

[53] Leung K, Yiu W, Yap M, Ng P, Fung W, Sham P and Yip S 2011 Systematic investigation of the relationship between high myopia and polymorphisms of the MMP2, TIMP2, and TIMP3 genes by a DNA pooling approach. Invest. Ophthal. Vis. Sci. 52(6) 3893–900

[54] Wang P, Li S, Xiao X J, Jiao X, Guo X and Zhang Q 2009 High myopia is not associated with the SNPs in the TGIF, Lumican, TGFB1, and HGF Genes Invest. Ophthal. Vis. Sci. 50(4) 1546–51

[55] Penha A, Burkhart E, Schaeffel F and Feldkaemper M 2012 Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick Mol. Vis. 18 2608–22

[56] Galvis V, Lópex-Jaramillo P, Tello A, Castellanos-Castellanos Y A, Camacho P A, Cohen D D, Gómez-Arbeláez D and Merayo-Lloves J 2016 Is myopia another clinical manifestation of insulin resistance? Med. Hypotheses 90 32–40

[57] Dirani M, Shekar SN and Baird PN 2008 The role of education attainment in refraction: The genes in myopia (GEM) twin study Invest. Ophthal. Vis. Sci. 49(2) 534–38

[58] An J, Zhou X, Ji F, Shi F, Bai Y, Wang L and Qu J 2011 Form Deprivation-induced Myopia is Associated with DNA Methylation in the Promoter of Collagen Iα1 Gene in Sclera Invest. Ophthal. Vis. Sci. 52(14)

[59] Zhou X et al. 2012 Experimental murine myopia induces collagen type Iα1 (COL1A1) DNA
methylated and altered COL1A1 messenger RNA expression in sclera. *Mol. Vis.* **18** 1312–24.
[60] Gwiazda J 2009 Treatment options for myopia *Optom. Vis. Sci.* **86**(6) 624–28.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729053/