Protein Kinase C ζ Interacts with a Novel Binding Region of Gqα to Act as a Functional Effector

Guzmán Sánchez-Fernández‡§1, Sofia Cabezudo‡§1,2, Álvaro Caballero‡§5,2, Carlota García-Hoz‡§5, Gregory G. Tall‡, Javier Klett‡, Stephen W. Michnick**, Federico Mayor, Jr.**, and Catalina Ribas‡

From the 1Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, 2Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain, 3Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany, 4Departments of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 1462, and 5**Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7 Canada

Heterotrimeric G proteins play an essential role in the initiation of G protein-coupled receptor (GPCR) signaling through specific interactions with a variety of cellular effectors. We have recently reported that GPCR activation promotes a direct interaction between Gq and protein kinase C ζ (PKCζ), leading to the stimulation of the ERK5 pathway independent of the canonical effector PLCβ. We report here that the activation-dependent Gqα/PKCζ complex involves the basic PB1-type II domain of PKCζ and a novel interaction module in Gqα different from the classical effector-binding site. Point mutations in this Gqα region completely abrogate ERK5 phosphorylation, indicating that Gqα/PKCζ association is required for the activation of the pathway. Indeed, PKCζ was demonstrated to directly bind ERK5 thus acting as a scaffold between Gqα and ERK5 upon GPCR activation. The inhibition of these protein complexes by G protein-coupled receptor kinase 2, a known Gqα modulator, led to a complete abrogation of ERK5 stimulation. Finally, we reveal that Gqα/PKCζ complexes link Gqα to apoptotic cell death pathways. Our data suggest that the interaction between this novel region in Gqα and the effector PKCζ is a key event in Gqα signaling.

G-protein-coupled receptors (GPCRs)§ are the largest and most versatile family of transmembrane receptors (1). Particularly, Gq-coupled GPCRs mediate the action of many hormones and neurotransmitters with a paramount role in health and disease. Gqα activates phospholipase C (PLCβ) isoforms, which hydrolyze PIP2, leading to protein kinase C (PKC) activation and Ca2+ mobilization (2). However, a growing body of evidence suggests that alternative effectors underlie additional, PLCβ-independent functions of Gqα. Thus, p63RhoGEF (3) directly binds to Gq11 linking GPCRs and RhoA activation. The competition between PLCβ and p63RhoGEF for binding to Gqα indicates the existence of alternative and mutually exclusive Gqα-initiated pathways (4). Indeed, all characterized Gqα effectors have been shown to bind to the same region, which comprises the C-terminal half of the α2 helix (Switch II) together with the α3 helix and its junction with the β5 strand (5). Additionally, the GPCR receptor kinase (GRK) 2 acts as negative regulator of Gqα function by shielding this surface away from effectors (6).

Mitogen-activated protein kinases (MAPKs) are essential downstream targets in G protein pathways. MAPKs control key cellular functions, including proliferation, differentiation, migration, and apoptosis, and participate in a number of disease states including chronic inflammation and cancer (7). Recently we have described a novel signaling axis for the activation of ERK5 MAPK by Gq-coupled GPCRs in epithelial cells that is independent of PLCβ and relies on a previously unforeseen role of Gqα as an adaptor protein through direct associations with two novel binding partners, PKCζ and MEK5 (8). Subsequently, this novel activation mechanism for ERK5 was shown to be conserved in cardiac cells and the physiological relevance of the Gqα/PKCζ/ERK5 pathway in the development of cardiac hypertrophy programs was established using PKCζ-deficient mice (9). In the present work we have characterized the architecture of the Gqα/PKCζ complex in the context of the ERK5 pathway and determined that a novel interaction region underlies the ability of Gqα to trigger the PKCζ/ERK5 cascade and to promote apoptotic cell death.

Experimental Procedures

Materials—The cDNAs of Gqα, Gqα-R183C, and Gqα-R209L were kindly provided by Dr. A. Aragay (CSIC, Barce-

1 Both authors contributed equally to this work.
2 Recipients of FPU fellowships from the Spanish Ministry of Education.
3 To whom correspondence may be addressed: Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid, 28049 Madrid, Spain. Tel.: +34-91-1964626; Fax: +34-91-1964420; E-mail: fmayor@cbm.csic.es.
4 To whom correspondence may be addressed: Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid, 28049 Madrid, Spain. Tel.: +34-91-1964640; Fax: +34-91-1964420; E-mail: crivas@cbm.csic.es.
5 The abbreviations used are: GPCR, G-protein-coupled receptors; PKC, protein kinase C; PI, phosphatidylinositol; PCA, protein-fragment complementa-

Received for publication, August 28, 2015, and in revised form, February 14, 2016 Published, JBC Papers in Press, February 17, 2016, DOI 10.1074/jbc.M115.684308

© 2016 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
A Novel Binding Region in Goq

FIGURE 1. Goq and PKCz interaction in vitro and in living cells. A, PKCz preferentially binds the GTPyS loaded form of Goq. 20 nM of purified His-PKCz was incubated with purified Goq or Goq loaded with GTPyS as detailed under “Experimental Procedures.” B and C, Goq/PKCz complex selectivity in living cells. B, scheme of the Protein-fragment Complementation Assay (PCA, see “Experimental Procedures”). Fluorescence upon expression of the protein pair in living cells is a measure of the occurrence of an interaction between these proteins. The irreversible nature of fluorescent protein YFP-PCA assays allow for easy trapping and visualization of transient complexes. C. CHO-M3 cells were transfected with different pairs of PCA plasmids that express proteins fused to complementary N- and C-terminal fragments of Venus-YFP: Control (PKCz) and visualization of transient complexes. The irreversible nature of fluorescent protein YFP-PCA assays allow for easy trapping and visualization of transient complexes. C. CHO-M3 cells were transfected with different pairs of PCA plasmids that express proteins fused to complementary N- and C-terminal fragments of Venus-YFP: Control (PKCz-Venus YFP[F1] + pPCNA3), Zipper + Zipper (Zipper-Venus YFP[F1] + Zipper Venus YFP[F2]), Goq + PKCz (Goq-Venus YFP[F1] + PKCz-Venus YFP[F2]). Representative bright field and YFP images at 40× magnification are shown. Bar length, 25 μm. Fluorometric analysis was performed, and data (mean ± S.E. of three independent experiments) were normalized with respect to control (***, p < 0.001, two tailed t test).

A

B

C

lona, Spain). The constitutively active Goq mutant protein that lacks the ability to interact with PLCβ (Goq Q209L/R256A/T257A) was provided by Dr. Richard Lin (Stony Brook University, New York). The cDNAs encoding HA-PKCz, GST-MEK5, and HA-ERK5 have been previously described (8). The cDNAs encoding Goq/Goai1 chimeras (Goai-cGoq, Goai-cGoai) were a kind gift from Dr. C. H. Berlot (Weis Center for Research). GRK2 wt and GRK2-D110A were a gift from Dr. J. L. Benovic (Thomas Jefferson University, Philadelphia, PA), GRK2-Y261F and W263D were a gift from Dr. T. Kozasa (University of Illinois at Chicago), the RH domain and RGS2/4 were from Dr. A. de Blasi (University of Rome “Sapienza”, Italy), and the PKCz-PB1 domain was described previously (8). Recombinant GST-ERK5 was obtained from Sigma-Aldrich. Recombinant His6-PKCz was provided by Dr. Moscat (Sanford-Burnham Medical Research Institute, La Jolla, CA), and by Dr. James Hastie (Division of Signal Transduction Therapy, School of Life Sciences, MSI/WTB/JBC Complex, University of Dundee, Scotland). PKCz-targeting and scrambled shRNA were from Sigma-Aldrich.

CHO cells overexpressing the muscarinic M3 acetylcholine receptor, designated CHO-M3 cells, were a kind gift from Dr. A. B. Tobin (University of Leicester, UK). COS-7, HeLa, and HEK293 cells were from the American Type Culture Collection (ATCC, Manassas, VA). Culture medium and Lipopectamine were from Life Technologies Inc. (Gaithersburg, MD). The affinity-purified mouse monoclonal antibody against Goq was from Abnovo (Walnut, CA). The polyclonal antibodies against Goq (C-19), GRK2 (C-15), ERK1 and ERK2 and GST were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Monoclonal antibodies against HA tag and Glu-Glu (EE) tag were from Covance. The anti-phospho-ERK5 antibody (pThr218/p-Tyr220) was purchased from Invitrogen (Carlsbad, CA). Anti-ERK5 and anti-phospho ERK1/2 antibodies, anti-PKCz, and anti-cleaved caspase-3 (Asp175) were from Cell Signaling (Beverly, MA). Anti-α-tubulin was from Sigma. The anti-GRK2 antibody that recognizes the N terminus of GRK2 was generated in our laboratory. Protein-G Sepharose was obtained from Invitrogen. Carbocyclic was from Sigma. All other reagents were of the highest commercially available grades.

Cell Line Culture and Treatments—CHO cells were maintained in αMEM and HeLa, COS-7, and HEK293 cells were maintained in DMEM supplemented with 10% (v/v) bovine serum (Sigma-Aldrich, St. Louis, MO) at 37 °C in a humidified 5% CO2 atmosphere. The desired cell type was stimulated with carbachol at 37 °C in serum-free medium, at the specified doses and during the indicated time periods. The cells were serum-starved before ligand addition to minimize basal kinase activity. When required, cells (70–80% confluent monolayers in 60-mm dishes) were transiently transfected with the desired combinations of cDNA constructs using the Lipopectamine/Plus method (Invitrogen), following manufacturer’s instructions. Empty vector was added to keep the total amount of DNA per dish constant. Assays were performed 24 h after
transfection. Transient expression of the desired proteins was confirmed by immunoblot analysis of whole-cell lysates using specific antisera.

Cloning and Mutagenesis—Venus-YFP expression constructs for the protein complementation assay (PCA) were obtained by sub-cloning *Gnaq* (mouse, accession number NM_002072) and *Prkcq* (rat, accession number NM_022507.1) into the 5'- and 3'-ends of the Venus YFP PCA fragments, referred to here as N-terminal fragment (1–158 aa; F1) and the C-terminal fragment (159–239 aa; F2), respectively, as previously described (10). PKCζ binding-deficient mutants, Goq binding-deficient mutants and Goq constitutively active mutants were prepared using the QuickChange® site-directed mutagenesis kit (Stratagene) following manufacturer’s instructions.

Co-immunoprecipitation Assays—24–48 h after transfection, cells were scraped and washed twice with ice-cold phosphate-buffered saline, solubilized in RIPA buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 0.5% (w/v) sodium deoxycholate, 1% (w/v) Triton X-100, 0.1% SDS, protease inhibitors), and clarified by centrifugation. Immunoprecipitation was performed with agarose-conjugated anti-HA antibodies (Santa Cruz Biotechnology, F-7) or, alternatively, with 1 mg/ml bovine serum albumin and anti-Goq (Santa Cruz Biotechnology, C19) followed by re-incubation with protein G-Sepharose. All blots were developed using the chemoluminescence method and quantified by laser-scanner densitometry.

Pull-down Assays—To analyze MEK5/PKCζ binding, lysates from cells expressing GST-MEK5 (or GST alone as a negative control) were subjected to GST pull-down assays with glutathione-Sepharose 4B as previously reported (8). In the analysis of PKCζ-ERK5 binding, purified GST-ERK5 or GST were incubated overnight at 100 μM with 20 μM His-PKCζ at 4 °C in binding buffer (50 mM Tris-HCl, pH 7.9, 0.01% Lubrol, 0.6 mM, EDTA, and 70 mM NaCl) supplemented with a protease inhibitor mixture. Fusion proteins were incubated for 2 h at 4 °C with glutathione-Sepharose 4B beads and washed 8–10 times with the same buffer. To explore whether PKCζ binds to Goq in a TDF-dependent manner, 20 μM of purified His6-PKCζ was incubated with Ni-NTA resin (ProBond) for 2 h at 4 °C in His-Binding Buffer (20 mM Tris-HCl, pH 7.9, 100 mM NaCl, 10 mM imidazole). The mixture was then incubated with 50 μM of purified Goq or Goq loaded with GTPγS overnight at 4 °C in the same buffer. Recombinant protein complexes were washed 8–10 times with His-Binding Buffer supplemented with 30 mM imidazole.

Preparation of Goq-GTPγS—Recombinant Goq was purified as described (11). Goq-GDP (10 μM) was incubated in a 1 ml reaction with 20 μM purified Ric-8A (12) and 100 μM GTPγS in 20 mM Hepes, pH 8.0, 100 mM NaCl, 0.05% Genapol C-100, 10 mM MgCl2, 1 mM EDTA, 2 mM DTT for 1 h at 25 °C. The reaction was gel filtered over Superdex 75/200 columns arranged in series to separate Goq from Ric-8A. The monomeric Goq-GTPγS fractions were pooled, concentrated in a 10,000 MWCO Amicon Ultracentrifugal device, and stored as 20-μM aliquots at −80 °C.

Determination of ERK5 MAPK Stimulation—Lysates were resolved by 8% SDS-PAGE and subjected to immunoblot anal-
ysis as previously described (8). The activation state of ERK5 was measured by laser-scanner densitometry and expressed as the amount of phospho-ERK5 normalized to the amount of the total ERK5 protein. In CHO and HeLa cell lines HA-tagged ERK5 was transfected and immunoprecipitated with anti-HA agarose beads (Santa Cruz). Immunoprecipitates were washed in lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1% (w/v) Nonidet P-40, 0.25% (w/v) sodium deoxycholate, 1 mM EGTA, 1 mM NaF, supplemented with 1 mM sodium orthovanadate plus a mixture of protease and phosphatase inhibitors) at 4 °C.

Protein-fragment Complementation Assays (PCA)—Protein-protein complexes can be recapitulated in living cells, by fusing protein pairs to complementary N- and C-terminal fragments of a reporter (enzyme or fluorescent protein). If the proteins interact the fragments of the reporter protein will be brought into proximity where they can spontaneously fold together and reconstitute enzymatic activity or fluorescence (10). Venus YFP-based PCA: Cells were co-transfected with the Venus YFP PCA expression vectors coding for prey-F[1] and/or bait-F[2]. Twenty-four hours after transfection, cells were subjected to fluorometric analysis and fluorescence microscopy. For the fluorometric analysis, cells were trypsinized and resuspended in PBS, transferred to 96-well black microtiter plates (Dynex; VWR Scientific, Mississauga, Ontario), and measured in a fluorometer (integration time 10 s, excitation wavelength 470 nm, emission wavelength 528 nm) (Spectra MAX GEMINI XS; Molecular Devices, Sunnyvale, CA). Background fluorescence was subtracted from fluorometric values of all of the samples. Fluorescence microscopy was performed using a Nikon Eclipse TE2000U inverted microscope with 40× objective and YFP filter cube (41028, Chroma Technologies). Images were captured with a CoolSnap CCD camera (Photometrics) using Meta-morph software (Molecular Devices). When comparing different PCA pairs, identical microscopy settings were utilized, and the expression of each construct was assayed by Western blot to ensure that the differences observed in the fluorescence images was due to a lack of interaction and not to insufficient expression of one of the reporters.

xCELLigence Measurements—The xCELLigence system RTCA SP instrument (Roche Applied Science) monitors changes in the cell index (a measure of cell attachment to the plate), which has been shown to effectively correlate to proliferation, adhesion, and viability changes (13, 14). To assess long-term viability cells were seeded in 96-well gold electrode sensor plate (E-plates) pre-coated with fibronectin (10 μg/ml) and monitored every 15 min for at least 3 days in minimal medium (3% FBS) until an irreversible decrease (inflection point) in the cell index was recorded. Cell death was expressed as the time between the start of the experiment and the inflection point. The first 16 h after the cells were plated were excluded from each analysis as they correspond to the cell adhesion phase. In no case was cell death due to excessive confluence as confirmed by plate inspection with a microscope.

Propidium Iodide Incorporation—Cells were transiently transfected with the desired combinations of cDNA constructs and with GFP for the selection of the transfected population. Cells were cultured in 0.1% FBS DMEM for 48 h. If required, cells were treated with the PLCβ inhibitor U73122 (10 μM) or with the ERK5 inhibitor XMD8–92 (1 μM) 24 h before staining. Cells were washed twice with PBS and resuspended in Staining Buffer (PBS 1×, 1% BSA, 0.01% NaN₃, 1% FBS) with propidium iodide (PI) 1 μg/ml. Analysis was carried out in a BD FacsCalibur flow cytometer (BD-Bioscience) and GFP-positive and propidium iodide-positive cells were quantified using CellQuest Software (BD-Bioscience) and analyzed with the FlowJo Software. Within the GFP-positive population the percentage of PI-positive cells was calculated as a measure of cell death due to heterologous expression.

Annexin V/7-AAD Binding—To quantitatively measure apoptosis, the PE Annexin V Apoptosis Detection kit I (BD Bioscience) was utilized. Transfection and serum starving were carried out as in PI assays, after which cells were re-suspended in
Annexin V-binding buffer (0.1 M Hepes/NaOH (pH 7.4), 1.4 M NaCl, 25 mM CaCl2) at a final concentration of 1×10^5 cells. Samples were incubated with 2.5 μL of PE Annexin V and 5 μL of 7-AAD for 15 min at RT in the dark. Subsequently, 400 μL of binding buffer was added, and samples were analyzed by flow cytometry within 1 h on a BD FacsCalibur flow cytometer (BD-Bioscience). To determine the apoptotic stage of the different GFP-positive cell populations, 7-AAD- and Annexin V-positive cells were determined with the CellQuest Software (BD-Bioscience). To determine the apoptotic stage of the different PB1-type I domains and the β_4-α_3 loop of Gq, acidic residues in this region of Gq were mutated to alanine. B, mutations in the (228–252) region of Gq interfere with PKCq binding. COS-7 cells were transfected with HA-PKCq and the indicated Gq mutants. Cell lysates and HA-PKCq immunoprecipitates were analyzed as in previous figures. Data (mean ± S.E. of three independent experiments) were normalized with respect to PKCq wt association (*, $p < 0.05$; ***, $p < 0.001$ two tailed t test, as indicated in the figure legends.

Statistics—Statistical analysis was performed using the two-tailed Student’s t test, as indicated in the figure legends.

Results

Gaq/PKC_ζ Complex Formation in Vitro and in Living Cells—
The activation of the ERK5 pathway by Gq-GPCRs appears to correlate with the formation of a transient complex between Gq and PKC_ζ (8). Such interaction was suggested to be direct since these purified proteins are able to associate in vitro. A pull-down assay performed with purified proteins indicated that PKC_ζ preferentially binds the GTP-S-loaded form of Gq (Fig. 1A). Further, the formation of a Gq/PKC_ζ complex in living cells was assessed through a Protein-fragment Complementation Assay (PCA) (Fig. 1B). A clear association between PKC_ζ and Gq was observed, as compared with a known high-affinity interaction (GCG4 leucine “zipper” dimerization) (Fig. 1C). The Gq/PKC_ζ complex displays high specificity, since no association was detected between Gq and another member of the PKC family, PKCβ, nor between PKC_ζ and another member of the α family (Gq11) (Fig. 1C).

The PB1 Domain of PKC_ζ Is Essential for Gq Association—
PB1 domains are known protein-protein interaction domains, and this module alone accounts for the majority of the reported interactions of PKC_ζ (15). PKC_ζ-PB1 domain overexpression was shown to interfere with the formation of Gq/PKC_ζ complexes in cells, as assessed through co-immunoprecipitation assays (Fig. 2A). Indeed, the PKC_ζ-PB1 domain alone is able to co-immunoprecipitate with Gq (Fig. 2B), thus suggesting that PKC_ζ might interact with Gq through this module.

FIGURE 4. Gq interacts with PKC_ζ through a novel effector-binding region. A, cartoon of the switch II/III region in Gq showing the binding sites for RGS proteins and effectors. Important residues for Gq interaction with PLCβ, GRK2, p63RhoGEF, or RGS proteins ((22–24)) are highlighted. A region with sequence similarities to the PB1 domain type I of MEK5, was identified at the β_4 strand/β_4-α_3 loop of Gq. Acidic residues in this region of Gq were mutated to alanine. B, mutations in the (228–252) region of Gq interfere with PKCq binding. COS-7 cells were transfected with HA-PKCq and the indicated Gq mutants. Cell lysates and HA-PKCq immunoprecipitates were analyzed as in previous figures. Data (mean ± S.E. of three independent experiments) were normalized with respect to PKCq wt association (*, $p < 0.05$; ***, $p < 0.001$ two tailed t test, as indicated in the figure legends.

Statistics—Statistical analysis was performed using the two-tailed Student’s t test, as indicated in the figure legends.

Results

Gaq/PKC_ζ Complex Formation in Vitro and in Living Cells—
The activation of the ERK5 pathway by Gq-GPCRs appears to correlate with the formation of a transient complex between Gq and PKC_ζ (8). Such interaction was suggested to be direct since these purified proteins are able to associate in vitro. A pull-down assay performed with purified proteins indicated that PKC_ζ preferentially binds the GTP-S-loaded form of Gq (Fig. 1A). Further, the formation of a Gq/PKC_ζ complex in living cells was assessed through a Protein-fragment Complementation Assay (PCA) (Fig. 1B). A clear association between PKC_ζ and Gq was observed, as compared with a known high-affinity interaction (GCG4 leucine “zipper” dimerization) (Fig. 1C). The Gq/PKC_ζ complex displays high specificity, since no association was detected between Gq and another member of the PKC family, PKCβ, nor between PKC_ζ and another member of the α family (Gq11) (Fig. 1C).

The PB1 Domain of PKC_ζ Is Essential for Gq Association—
PB1 domains are known protein-protein interaction domains, and this module alone accounts for the majority of the reported interactions of PKC_ζ (15). PKC_ζ-PB1 domain overexpression was shown to interfere with the formation of Gq/PKC_ζ complexes in cells, as assessed through co-immunoprecipitation assays (Fig. 2A). Indeed, the PKC_ζ-PB1 domain alone is able to co-immunoprecipitate with Gq (Fig. 2B), thus suggesting that PKC_ζ might interact with Gq through this module.
The PB1 domain of PKCζ is composed of a PB1-type I (acidic) and a PB1-type II (basic) domain (16). Since the PB1-type II domain of PKCζ has previously been involved in ERK5 activation by the EGF receptor and in MEK5 binding (17), a strategy was designed to mutate key amino acids in this region (Fig. 2C). In particular, lysine 19 (K19) seems to be an invariably crucial residue in all PB1-PB1 interactions in combination with other predominantly basic residues located nearby within the three-dimensional structure (18, 19). Remarkably, different point mutations in the PB1-type II region and specially that in Lys-19 decreased the interaction with Gαq in co-immunoprecipitation experiments (Fig. 2D). This residue was also found to be essential for PKCζ-MEK5 binding (Fig. 2E), as predicted by other PB1-PB1 structures (19). Interestingly, another mutation within this domain (PKCζ-H21A) enhanced the ability of PKCζ to associate with Gαq (Fig. 2F). Taken together, these data indicate that the PB1 domain type II of PKCζ is crucial for binding Gαq.

FIGURE 5. The Gαq/PKCζ complex is involved in ERK5 activation. A, knockdown efficiency upon transfection of a scrambled or a specific shRNA against PKCζ in CHO-M3 cells (see “Experimental Procedures”). B, PKCζ is required for ERK5 activation by a Gq-coupled GPCR. CHO-M3 cells were transfected with HA-ERK5, Gαq-wt, and either scrambled or PKCζ-targeting shRNA, serum-starved for 24 h and stimulated with carbachol (10 μM) for 15 min. Gαq-HA was immunoprecipitated and analyzed by Western blot. Data (mean ± S.E. of three independent experiments) were normalized with total ERK5 and expressed as fold-induction of ERK5 phosphorylation over control (*, p < 0.05; two-tailed t test). C, PKCζ is not required for ERK1/2 activation by a Gq-coupled GPCR. CHO-M3 cells transfected and stimulated as in panel B were tested for ERK1/2 activation. Representative blot of three independent experiments is shown. D and E, PKCζ association-deficient Gαq mutant cannot activate ERK5 in response to carbachol. CHO-M3 cells were transfected with HA-ERK5, pcDNA3, Gαq or Gαq-E234/E245-AA (Gαq-EEAA), serum-starved for 2 h and stimulated with carbachol (10 μM). In D, Gαq-HA was immunoprecipitated and analyzed by Western blot. Data (mean ± S.E. of three independent experiments) were normalized with total ERK5 and expressed as fold-induction of ERK5 phosphorylation over control (*, p < 0.05; ***, p < 0.001, two-tailed t test). In E, ERK1/2 activation was assessed in cell lysates as in panel C. Data (mean ± S.E. of three independent experiments) were normalized to pcDNA3 transfection (*, p < 0.05, two-tailed t-Test). F and G, a constitutively active PKCζ association-deficient Gαq mutant cannot activate ERK5 whereas it fully activates ERK1/2. CHO-M3 cells were transfected with empty vector (pcDNA3) or plasmids encoding HA-ERK5 (F) and the constitutively active mutants Gαq-R183C or Gαq-R183C-E234/E245-AA (Gαq-R183C-EEAA) (both panels F and G). Samples were processed and analyzed as in D–E (**, p < 0.01, two-tailed t test; *, p < 0.05, two-tailed t test).
A Novel Region in Goq Is Required for the Interaction with PKCζ—Since members of the Goq family cannot interact with PKCζ (Fig. 1C and Ref. 8), we utilized two different chimeras in which the C terminus (aa 222–353) of either Goq or Goi1 had been substituted by that of Goi1 and Goq, respectively (20), to delineate relevant regions for PKCζ association. A Goq chimera with the C terminus of Goi1 was unable to interact with PKCζ when expressed in cells (Fig. 3A), thus suggesting that the interaction determinants are predominantly located in the C terminus of Goq. This C-terminal stretch includes the classical effector-binding region (21). To assess whether this region is responsible for binding PKCζ, we used different Goq mutants unable to interact with other effectors such as PLCβ and p63RhoGEF (Goq-R256A/T257A, (22, 23)) or GRK2 (Goq-Y261F and Goq-W263D (24)). Surprisingly, neither mutant affected PKCζ binding but on the contrary all co-immunoprecipitated with the kinase to a greater extent than wild-type Goq (Fig. 3, B and C). These data suggest that the absence of competitors on the surface of Goq favors the interaction with PKCζ. This may indicate that PKCζ is interacting with other region close to the classical effector site. We noted that the adjacent β4-α3 loop in Goq displays a relatively high sequence similarity with the PB1-type I domain of MEK5, a module known to interact with the PB1-type II domain of PKCζ (Fig. 4A). A double mutation (E234/E245-A) in the homologous residues of Goq in this potential interaction module significantly impaired its association with PKCζ (Fig. 4B). Interestingly, these amino acids were found to be homologous to highly conserved residues in several PB1-type I domain-harbor proteins as part of two major functional clusters (A1 and A2) (Fig. 4C) (18). Overall, these data indicate that a region of Goq, distinct from the classical effector-binding site, is involved in the interaction with PKCζ.

An Efficient Goq/PKCζ Association Is Required for the Activation of the ERK5 Pathway—We previously suggested that PKCζ is required for Goq-coupled GPCR activation of ERK5 (8, 9). To confirm this, we silenced PKCζ in CHO-M3 cells (Fig. 5A) and stimulated the cells with carbachol to reach maximum activation as previously reported (25). Activation of ERK5 was abolished in the absence of PKCζ (Fig. 5B), whereas ERK1/2 phosphorylation was seemingly unaffected (Fig. 5C). To establish whether this effect depends on the formation of a Goq/PKCζ complex, we assessed the activation of ERK5 by the PKCζ-binding deficient mutant (Goq-E234/E245-AA; Goq-E234/E245-EAA hereafter) in response to carbachol stimulation. Notably, overexpression of wild-type Goq clearly enhanced ERK5 activation by GPCRs as reported (25), whereas the Goq-E234/E245-AA mutant did not (Fig. 5D). In the same experimental setting the promotion of ERK1/2 activation was similar upon either wild-type Goq or Goq-E234/E245-EAA expression (Fig. 5E). Consistently, the direct activation of ERK1/2 by constitutively active Goq (R183C) was not affected by the E234/E245-AA mutation as opposed to the activation of ERK5, which was impaired (Fig. 5, F

FIGURE 6. Goq forms an activation-dependent complex with ERK5 through PKCζ. A and B, ERK5 preferentially co-immunoprecipitates active Goq. CHO-M3 cells were transfected with HA-ERK5, Goq wt, Goq-R183C, or Goq-Q209L (constitutively active mutants) as indicated. Cell lysates and HA-ERK5 immunoprecipitates were analyzed as in previous figures. Representative blot of three independent experiments are shown. C, PB1 domain of PKCζ interferes with Goq/ERK5 complexes. CHO-M3 cells were transfected with HA-ERK5, Goq-Q209L, and PKCζ-PB1 domain and ERK5 complexes analyzed as above (mean ± S.E. of three independent experiments) (Fig. 6, B). D, PKCζ silencing decreases the formation of Goq/ERK5 complexes. CHO-M3 cells were transfected with HA-ERK5, Goq Q209L, and PKCζ-targeting shRNA, and ERK5 complexes quantified as in C. Data (mean ± S.E. of three independent experiments) were normalized with total ERK and expressed as fold-induction of co-immunoprecipitated Goq over shRNA scrambled (*, p < 0.05; **, p < 0.001, two tailed t test). E, ERK5 interacts directly with PKCζ. Fusion proteins GST-ERK5 (100 nM) and purified GST (100 nM) as negative control were incubated with His-PKCζ (20 nM) and mixtures analyzed as detailed under “Experimental Procedures.” A blot representative of two independent experiments is shown.
and G). These results indicate that this mutant retains the ability to modulate the activity of other Goq effector proteins and support the specificity of the Goq/PKCζ axis in promoting ERK5 activation.

PKCζ Scaffolds an Activation-dependent Goq/ERK5 Complex—Interestingly, Goq was found to co-immunoprecipitate with the activated form of ERK5 and this was clearly decreased by the EEAA mutation (Fig. 6A). The formation of Goq/ERK5 complexes was greatly favored by activating mutations in the Ga subunit (R183C or Q209L) (Fig. 6B), which supports the formation of the complexes upon GPCR stimulation. We hypothesized that PKCζ could be organizing a multimolecular Goq/ERK5 complex upon G protein activation. Both the co-expression of the PKCζ-PB1 domain or the down-regulation of PKCζ expression led to a decreased formation of Goq/ERK5 complexes (Fig. 6, C and D). To address whether PKCζ could exert a scaffold role through a direct interaction with ERK5, we performed pull-down experiments with purified proteins and found that PKCζ and ERK5 are direct binding partners (Fig. 6E). Although other authors have suggested the occurrence of this complex (26), we provide the first concluding evidence for a direct association. Collectively, our findings suggest that PKCζ orchestrates a ternary complex with Goq and ERK5 that underlies the activation of the signaling cascade.

GRK2 Negatively Regulates the Goq/PKCζ Complex and Receptor-induced ERK5 Activation—GRK2 is a negative regulator of Goq signaling both through receptor desensitization mechanisms and direct inhibition of Goq-effector interactions (27). Consistently, we observed that overexpression of wild-type GRK2 completely abolished Goq association to PKCζ (Fig. 7A). Such effect was independent of GRK2 kinase activity and mimicked by its RH domain, a region reported to specifically interact with Goq (28). Also, a GRK2 mutant (D110A) which is unable to interact with Goq (28) barely interfered with formation of the Goq/PKCζ complex (Fig. 7B). The negative regulation exerted by GRK2 was also detected in a natural cell milieu, as assessed through the Venus-YFP PCA reporter (Fig. 7C). On the contrary, as observed for other Goq effectors (29), PKCζ was not displaced by the Goq regulators RGS2 or 4 (Fig. 7, D and E).

In agreement with the ability to inhibit Goq/PKCζ interaction, enhanced GRK2 levels in CHO-M3 cells abolished carbachol-induced ERK5 activation (Fig. 8A). ERK5 activation was reduced to ~50% upon expression of the RH domain of GRK2 (Fig. 8B), whereas a kinase-inactive GRK2-K220R mutant did not disrupt ERK1/2 signaling as compared with wild-type GRK2 (Fig. 8C). This suggests that direct Goq binding plays a role in the attenuation of ERK5 signaling by GRK2 in addition

A Novel Binding Region in Goq

FIGURE 7. **GRK2 is a negative regulator of the Goq/PKCζ complex.** A, GRK2 overexpression impedes Goq/PKCζ association through its RH domain. COS-7 cells were transfected with HA-PKCζ and Goq along with GRK2 wild-type, GRK2 K220R (kinase-inactive mutant) or the GRK2 RH domain. B, Goq association-deficient GRK2 mutant does not interfere with the Goq/PKCζ complex. COS-7 cells were transfected with HA-PKCζ, GRK2 wt, and the GRK2 D110A mutant, which has impaired ability to bind to Goq (25) and lysates and HA-PKCζ immunoprecipitates were analyzed as in previous figures. C, GRK2 overexpression impairs Goq/PKCζ association in living cells. HEK293 cells were transfected with Venus YFP PCA plasmids: Control (PKCζ-Venus YFP[F1]+pcDNA3), Goq+PKCζ+pcDNA3 (Goq-Venus YFP[F1]+PKCζ-Venus YFP[F2]+pcDNA3), Goq+PKCζ+GRK2 (Goq-Venus YFP[F1]+PKCζ-Venus YFP[F2]+GRK2). Data (mean ± S.E. of three independent experiments) were normalized with respect to control (**, p < 0.005, two tailed t test). Bar length, 25 μm. D and E, RGS2/4 overexpression does not alter the formation of the Goq/PKCζ complex. COS-7 cells were transfected with combinations of plasmids encoding HA-PKCζ, Goq, and RGS2 or RGS4. Either Goq (D) or HA-PKCζ (E) immunoprecipitates and total lysates were analyzed as above. In all panels, blots shown are representative of 2–3 independent experiments.
to kinase-dependent GPCR desensitization. Consistently, the duration and amplitude of carbachol-induced ERK5 activation (Fig. 8D), as well as the assembly of Goq/ERK5 multicomponent complexes (Fig. 8E) were markedly enhanced when expressing a GRK2 binding-deficient mutant of Goq (Goq-Y261F).

Goq Is Involved in Apoptotic Cell Death Promotion via PKCζ—The description of PKCζ as an effector protein for Goq suggested that it might underlie specific cellular functions promoted by the G protein. Since cell death promotion is a well-established Goq-initiated process ([21] and references therein), we compared cell viability in CHO cells expressing Goq wt or the Goq-EEA mutant upon long-term growth in low serum (3% FBS). Cell death took place earlier in Goq-overexpressing cells compared with control and Goq-EEA mutant (Fig. 9B). The clear increase in cell death promoted by a constitutively active Goq mutant (Goq-R183C) was attenuated when introducing the EEA A mutation (that reduces the interaction with PKCζ) and, contrarily, it was enhanced by the Y261F mutation (that potentiates the PKCζ interaction) (Fig. 9B), consistent with a role for the Goq/PKCζ signaling axis in triggering this process. Such impaired ability of the Goq-EEA mutant to promote cell death was also observed in HeLa cells (data not shown). Moreover, cell death upon constitutively active Goq overexpression in CHO cells was neither affected by a mutation that impairs PLCβ activation (R256/T257-AA Ref. 22) (Fig. 9C) nor by PLCβ pharmacological inhibition (Fig. 9D). On the other hand, either ERK5 inhibition or co-expression of the PB1 domain of PKCζ showed an inhibitory effect on Goq-induced cell death (Fig. 9D), suggesting that this Goq-initiated process is, at least in part, dependent on PKCζ-mediated activation of ERK5. The phenotype observed was determined to be apoptotic cell death, as both annexin V staining and caspase 3 cleavage were enhanced upon Goq-R183C overexpression and abrogated by the EEA A mutation (Fig. 9, E and F). Taken together, these data reveal that the novel binding region of Goq is involved in the promotion of apoptotic cell death via PKCζ.

Discussion

Emerging evidence indicates that activated Goq subunits can interact with several effector proteins to trigger signaling pathways different from the canonical PLCβ cascade. Previously, we reported a direct, activation-dependent association between Goq and PKCζ in the context of Goq-coupled GPCR-mediated activation of ERK5 [8]. These data suggested a genuine G protein-effector interaction although a causal relationship between the formation of a Goq/PKCζ complex and Goq-dependent functional outputs remained to be established. Herein we provide conclusive evidence showing that PKCζ acts as a Goq effector through the engagement of a novel binding region in the α subunit leading to ERK5 activation and apoptotic cell death.

First, we show that the basic PB1-type II domain of PKCζ, governed by the Lys-19 residue, is critical for the association with Goq. This region was found to mediate protein-protein interactions of PKCζ that are involved in NFκB activation or

FIGURE 8. **GRK2 is a negative regulator of Goq-GPCR-mediated ERK5 activation.** A, GRK2 overexpression abolishes ERK5 activation by the Goq-coupled M3 receptor. CHO-M3 cells were transfected with empty vector (pcDNA3), HA-ERK5, and GRK2, serum-starved and stimulated with carbachol (10 μM). ERK5 stimulation was assessed as in Fig. 5 (mean ± S.E. of three independent experiments) (*, p < 0.05; two tailed t test). B, GRK2 RH domain overexpression partially abolishes ERK5 activation by the Goq-coupled M3 receptor. CHO-M3 cells were transfected with HA-ERK5 and pcDNA3, GRK2 wt or the GRK2-RH domain. Samples were processed as above for ERK5 activation. Blots shown are representative of two independent experiments and display the calculated fold-induction. C, Goq-GPCR-triggered ERK1/2 activation is not affected by a kinase-deficient GRK2 mutant. CHO-M3 cells were transfected with Goq and either pcDNA3, GRK2, or GRK2-K220R, and treated as above followed by analysis of ERK1/2 activation. Data were normalized to pcDNA3 transfection. D is representative of four independent experiments and display the calculated fold-induction. D, a GRK2 association-deficient Goq mutant enhances ERK5 activation. CHO-M3 cells were transfected with HA-ERK5 and either Goq wt or Goq Y261F (deficient in GRK2 binding) and processed as in A (**, p < 0.005; *** p < 0.001, two tailed t test). E, Goq mutant with diminished GRK2-association ability shows increased co-immunoprecipitation with ERK5. CHO-M3 cells were transfected with HA-ERK5 and either Goq wt or Goq Y261F. Cell lysates and HA-ERK5 immunoprecipitates were analyzed. Data (mean ± S.E. of three independent experiments) were normalized with respect to ERK5/Goq wt co-immunoprecipitation (***, p < 0.001).
cell polarity establishment (30), and also in ERK5 activation by EGF (17). Our finding is consistent with the fact that independent expression of the PKCζ PB1 domain inhibited Gq-GPCR-mediated ERK5 stimulation (8). Second, we describe a novel binding region in Gqα driving the interaction with PKCζ which is different from the classical effector-binding region and shows surprising sequence similarities to PB1-type I domains.

Overall, the fact that the PKCζ-interaction residues in Gqα lie in the vicinity of the classical effector-binding region, supports our conclusion that PKCζ is a bona-fide effector of Gqα that associates with a subset of amino acids that are distinct from the binding determinants of other Gqα binding partners (PLCβ, GRK2, and p63RhoGEF). All effectors of Gα subunits invariably associate with the extended region comprising the C-terminal half of the α2 helix, together with the α3 helix and its junction with the β5 strand, although the subsets of crucial amino acids for these associations vary with the specific effector (31). Interestingly, residues 221–245 of Gqα have been recently identified to mediate association with the cold-activated channel TRPM8, a novel Gqα interaction partner (32). This supports the characterization of this Gqα region as a functional module capable of binding different cellular proteins.

Our data show that Gqα strictly depends on the association with PKCζ to promote ERK5 activation. Indeed, the EEAA...
mutation in Gq/mediated activation of ERK5 phosphorylation, whereas ERK1/2 activation remained unaffected. Importantly, we demonstrate that Gq/mediated activation of ERK5 are found together in an activation-dependent multimolecular complex orchestrated through PKCζ scaffolding, which directly binds ERK5 and enables the stimulation of the pathway. This scaffold role was supported by the finding that Gq-coupled GPCRs do not promote phosphorylation-dependent activation of PKCζ (8). Instead we observed (data not shown) that carbachol induces dimerization of the kinase at a coincident time-course to the Gq/PKCζ interaction. This could be relevant since dimerization not only is a common scaffold protein mechanism but, in the case of PBO-PBO associations, it has recently been shown to promote PKCζ activation independent of phosphorylation (33). Indeed, Par6 interaction with PKCζ induces its allosteric activation through the displacement of the PKCζ pseudo-substrate region from the active site (33). Interestingly, Gq-mediated activation of effectors PLCβ (34) or p63RhGEF (23) involves the allosteric relief of an auto-inhibitory loop buried within the active region. Thus, it is possible that a PBO-domain-dependent relief of pseudo-substrate auto-inhibition in PKCζ could be induced upon Gq binding or upon GPCR-induced dimerization. It is tempting to suggest that PBO-driven PKCζ scaffolding might be a cellular mechanism for imposing spatial and temporal specificity during Gq-initiated signaling.

The regulation of Gq-effector complexes by GRK2 is a well-established process for dampening downstream signaling. We show that GRK2 impedes the association of PKCζ with Gq in living cells, and abrogates ERK5 activation due to G protein sequestering and receptor desensitization, as reported for other Gq-effector complexes (35). Coincidently, we show that the impairment of the GRK2/Gq interaction with a specific association-deficient Gq mutant (Y261F) greatly enhances Gq interaction with PKCζ and its presence in ERK5 complexes, thus promoting ERK5 activation. These findings strengthen the role of PKCζ as a novel Gq effector and suggest that Gq signaling toward the PKCζ/ERK5 pathway could be effectively modified in pathophysiological contexts where GRK2 expression and/or functionality is altered (36).

Finally, we put forward the assembly of Gq/PKCζ complexes as an important process for the promotion of apoptotic cell death by Gq. The increase in cell death promoted by the presence of constitutively-active Gq was abolished by the EEAA mutation (which blocks the assembly of Gq/PKCζ complexes), so cells expressing the Gq-EEAA mutant displayed a higher viability than those expressing Gq wild-type. On the contrary, the presence of the GRK2-association deficient Gq mutation Y261F (leading to increased complex formation) potentiated cell death. This process is conserved in HeLa cells, and was characterized as apoptosis-mediated cell death, consistent with the reported role for Gq in the promotion of apoptosis (37). In line with the notion that PKCζ is as a key effector in this process, the overexpression of the PKCζ-PBO domain decreased Gq-promoted cell death, whereas neither PLCβ inhibitors nor Gq mutants that cannot activate PLCβ have an effect. These results are in agreement with previous reports showing that caspase activation and apoptosis promoted by activated Gq is not blocked by inhibitors of IP3- or PKC-dependent signaling (38). Also, the role of PKCζ as a pro-apoptotic protein appears to have a crucial effect on the repression of tumorigenesis in ovarian (39) and prostate cancer (40). Interestingly, pharmacological blockade of ERK5 partly inhibited cell death promotion downstream of the Gq/PKCζ axis. Although ERK5 is a well-known pro-survival factor in several contexts (41), it has also been shown to positively regulate apoptosis of medulloblastoma cells (42) and thymocytes (43). However, we cannot rule out that, alongside ERK5, other yet unidentified pathways downstream the Gq/PKCζ axis would play a role in this process.

In sum, we propose the following mechanistic model for the Gq/PKCζ axis (Fig. 10): Ligand binding to the receptor causes Gq activation (step 1) which, in turn, promotes the interaction between the PBO domain type II of PKCζ and the novel effector-binding region of Gq-GTP (step 2). This would lead to PKCζ allosteric activation, dimer/oligomerization and to the exposure of its kinase domain to interact with ERK5, which is recruited into a multimolecular complex together with Gq (step 3). Next, MEK5 would be attracted into an intermediate signaling complex through a direct interaction with Gq (8) which would rapidly progress into MEK5 displacing Gq from its binding site on PKCζ (step 4). Subsequently, the interaction between MEK5 and PKCζ would favor the autophosphorylation of MEK5, which will, in turn, phosphorylate and activate ERK5 (step 5) (17). Additionally, GRK2 and RGS proteins would act as negative modulators of this cascade by sequestering Gq away from PKCζ (step 2’), or by binding to Gq in complex with PKCζ to promote GTPase activity and deactivation of the Gα subunit (step 3’), respectively. Finally, we postulate that the promotion of apoptotic cell death may depend both on ERK5 and other yet uncharacterized targets downstream the Gq/PKCζ complex. This model may serve as a theoretical framework for subsequent studies of this signaling axis and contribute to revise the functional consequences of Gq activation.

A Novel Binding Region in Gαq

FIGURE 10. Mechanistic model for the activation of the Gq/PKCζ/ERK5 axis by Gq-coupled GPCRs. Proposed sequential formation of protein complexes involved in the Gq-ERK5 pathway. See text for detailed information.
A Novel Binding Region in Gαq

Author Contributions—G.S.F., S.C., C.G.H., F.M., and C.R. designed experiments. G.S.F., S.C., A.C., G.G.T., J.K., and C.G.H. performed experiments. S.W.M. designed the PCA approach. G.S.F., F.M., and C.R. wrote the manuscript.

Acknowledgments—We thank Durga Sivanesan for extraordinary help, and Susana Rojo, Almudena Santos, and Paula Ramos for helpful technical assistance.

References

1. Pierce, K. L., Premont, R. T., and Lefkowitz, R. J. (2002) Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650
2. Rhee, S. (2001) Regulation of phosphoinositide-specific phospholipase C*. Annu. Rev. Biochem. 70, 281–312
3. Lutz, S., Shankaranarayanan, A., Coco, C., Ridilla, M., Nance, M. R., Vettel, C., Baltus, D., Evelyn, C. R., Neubig, R. R., Wieland, T., and Tesmer, J. J. G. (2007) Structure of Gaq/p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science 318, 1923–1927
4. Lutz, S., Freichel-Blomquist, A., Yang, Y., Rümenapp, U., Jakobs, K. H., Schmidt, M., and Wieland, T. (2005) The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA. J. Biol. Chem. 280, 11134–11139
5. Sprang, S. R., Chen, Z., and Du, X. (2007) Structural basis of effector regulation and signal termination in heterotrimeric Gα proteins. Adv. Protein Chem. 74, 1–65
6. Sánchez-Fernández, G., Cabezudo, S., García-Hoz, C., Benincá, C., Aragay, A. M., Mayor, F., Jr., and Ribas, C. (2014) Gq signaling: The new and the old. Cell Signal. 26, 833–848
7. Turjanski, A. G., Vaqué, J. P., and Gutkind, J. S. (2007) MAP kinases and the control of nuclear events. Oncogene. 26, 3240–3253
8. García-Hoz, C., Sánchez-Fernández, G., Díaz-Meco, M. T., Moscat, J., Mayor, F., and Ribas, C. (2010) Gqα acts as an adaptor protein in protein kinase C ζ (PKCζ)-mediated ERK5 activation by G protein-coupled receptors (GPCR). J. Biol. Chem. 285, 13480–13489
9. García-Hoz, C., Sánchez-Fernández, G., García-Escudero, R., Fernández-Velasco, M., Palacios-García, J., Ruiz-Meana, M., Díaz-Meco, M. T., Leitges, M., Moscat, J., García-Dorado, D., Boscá, L., Mayor, F., Jr., and Ribas, C. (2012) Protein kinase C (PKCζ)-mediated Gq signaling stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts. J. Biol. Chem. 287, 7792–7802
10. Remy, I., and Michnick, S. W. (2004) Mapping biochemical networks with designed experiments. G. S. F., F. M., and C. R. wrote the manuscript.

18. Hirano, Y., Yoshinaga, S., Takeya, R., Suzuki, N. N., Horiuchi, M., Kohijima, M., Sumimoto, H., and Inagaki, F. (2005) Structure of a cell polarity regulator, a complex between atypical PKC and Par6 PBI domains. J. Biol. Chem. 280, 9653–9661
19. Hirano, Y., Yoshinaga, S., Ogura, K., Yokochi, M., Noda, Y., Sumimoto, H., and Inagaki, F. (2004) Solution structure of atypical protein kinase C PBI domain and its mode of interaction with ZIP/p62 and MEK5. J. Biol. Chem. 279, 31883–31890
20. Medina, R., Grishina, G., Meloni, E. G., Muth, T. R., and Berlot, C. H. (1996) Localization of the effector-specifying regions of Gi2α and Gqα. J. Biol. Chem. 271, 24720–24727
21. Sánchez-Fernández, G., Cabezudo, S., García-Hoz, C., Benincá, C., Aragay, A. M., Mayor, F., Jr., and Ribas, C. (2014) Gqα signaling: the new and the old. Cell Signal. 26, 833–848
22. Fan, G., Ballou, L. M., and Lin, R. Z. (2003) Phospholipase C-independent activation of glycogen synthase kinase-3β and C-terminal Src kinase by Gqα. J. Biol. Chem. 278, 52432–52436
23. Shankaranarayanan, A., Boguth, C. A., Lutz, S., Vettel, C., Uhlemann, F., Attaleb, M., Wieland, T., and Tesmer, J. J. G. (2010) Gqα allosterically activates and relieves autoinhibition of p63RhoGEF. Cell Signal. 22, 1114–1123
24. Tesmer, V. M., Kawano, T., Shankaranarayanan, A., Koza, T., and Tesmer, J. J. G. (2005) Snapshot of activated G protein-coupled receptors. Science 310, 1686–1690
25. Sánchez-Fernández, G., Cabezudo, S., García-Hoz, C., Tobin, A. B., Mayor, F., Jr., and Ribas, C. (2013) ERK5 Activation by Gqα-coupled muscular carinergic receptors is independent of receptor internalization and β-arrestin recruitment. PLoS ONE 8, e84174
26. Nigro, P., Abe, J., Woo, C.-H., Satoh, K., McClain, C., O’Dell, M. R., Lee, H., Lim, J.-H., Li, J., Heo, K.-S., Fujiwara, K., and Berkshire, C. M. (2010) PKCζ decreases eNOS protein stability via inhibitory phosphorylation of ERK5. Blood 116, 1971–1979
27. Ribas, C., Penela, P., Murga, C., Salcedo, A., García-Hoz, C., Jurado-Pueyo, M., Aymerich, L., and Mayor, F. (2007) The G protein-coupled receptor kinase (GRK) interactome: role of GRKS in GPCR regulation and signaling. Biochim. Biophys. Acta. 1768, 913–922
28. Sterne-Marz, R., Tesmer, J. J. G., Day, P. W., Stracquatanio, R. P., Cilente, J.-A. E., O’Connor, K. E., Pronin, A. N., Benovic, J. L., and Wedegaertner, P. B. (2003) G protein-coupled receptor kinase 2/Gαq q11 interaction. A novel surface on a regulator of G protein signaling homology domain for binding Gα subunits. J. Biol. Chem. 278, 6650–6658
29. Shankaranarayanan, A., Thal, D. M., Tesmer, V. M., Roman, D. L., Neubig, R. R., Koza, T., and Tesmer, J. J. G. (2008) Assembly of high order Gqα-effector complexes with RGS proteins. J. Biol. Chem. 283, 34923–34934
30. Díaz-Meco, M. T., and Moscat, J. (2012) The atypical PKCs in inflammation: NF-κB and beyond. ImmunoL Rev. 246, 154–167
31. Oldham, W. M., and Hamm, H. E. (2006) Structural basis of function in heterotrimeric G proteins. Q. Rev. Biophys. 39, 117–166
32. Zhang, X., Mak, S., Li, L., Parra, A., Denlinger, B., Belmonte, C., and McNaughton, P. A. (2012) Direct inhibition of the cold-activated TRPM8 ion channel by Gqα. Nat. Cell Biol. 14, 851–858
33. Graybill, C., Wee, B., Atwood, S. X., and Prehoda, K. E. (2012) Partitioning-defective protein 6 (Par-6) activates atypical protein kinase C (αPKC) by pseudosubstrate displacement. J. Biol. Chem. 287, 21003–21011
34. Waldo, G. L., Ricks, T. K., Hicks, S. N., Cheever, M. L., Kawano, T., Tsuibo, K., Wang, X., Montell, C., Koza, T., Sondek, J., and Harden, T. K. (2010) Kinetic scaffolding mediated by a phospholipase C-β and Gq signaling complex. Science 330, 974–980
35. Carman, C. V., Parent, J. L., Pronin, A. N., Sternweis, P. M., Wedegaertner, P. B., Gilman, A. G., Benovic, J. L., and Koza, T. (1999) Selective regulation of Gαq(q)11 by an RGS domain in the G protein-coupled receptor kinase, GRK2. J. Biol. Chem. 274, 34483–34492
36. Penela, P., Murga, C., Ribas, C., Lafarga, V., and Mayor, F. (2010) The complex G protein-coupled receptor kinase 2 (GRK2) interacts with new physiopathological targets. Br. J. Pharmacol. 160, 821–832
37. Adams, J. W., Pagel, A. L., Means, C. K., Oksenberg, D., Armstrong, R. C., and Brown, J. H. (2000) Cardiomyocyte apoptosis induced by Gqα signaling
A Novel Binding Region in Gαq

is mediated by permeability transition pore formation and activation of the mitochondrial death pathway. *Circ. Res.* **87**, 1180–1187

38. Peavy, R., Hubbard, K., and Lau, A., Fields, R. B., Xu, K., Lee, C. J., Lee, T. T., Gernert, K., Murphy, T. J., and Hepler, J. R. (2005) Differential effects of Gq[α], G14[α], and G15[α] on vascular smooth muscle cell survival and gene expression profiles. *Mol. Pharmacol.* **67**, 2102–2114

39. Nazarenko, I., Jenny, M., Keil, J., Gieseler, C., Weishaupt, K., Sehouli, J., Legewie, S., Herbst, L., Weichert, W., Darb-Esfahani, S., Dietel, M., Schäfer, R., Ueberall, F., and Sers, C. (2010) Atypical protein kinase C ζ exhibits a proapoptotic function in ovarian cancer. *Mol. Cancer Res.* **8**, 919–934

40. Kim, J. Y., Valencia, T., Abu-Baker, S., Linares, J., Lee, S. J., Yajima, T., Chen, J., Eroshkin, A., Castilla, E. A., Brill, L. M., Medvedovic, M., Leitges, M., Moscat, J., and Diaz-Meco, M. T. (2013) c-Myc phosphorylation by PKCζ represses prostate tumorigenesis. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 6418–6423

41. Nithiananda-Jones, G. N., Wilm, B., Goldring, C. E. P., Müller, J., and Cross, M. J. (2012) ERK5: Structure, regulation and function. *Cell Signal.* **24**, 2187–2196

42. Sturla, L.-M., Cowan, C. W., Guenther, L., Castellino, R. C., Kim, J. Y. H., and Pomeroy, S. L. (2005) A novel role for extracellular signal-regulated kinase 5 and myocyte enhancer factor 2 in medulloblastoma cell death. *Cancer Res.* **65**, 5683–5689

43. Sohn, S. J., Lewis, G. M., and Winoto, A. (2008) Non-redundant function of the MEK5-ERK5 pathway in thymocyte apoptosis. *EMBO J.* **27**, 1896–1906
Protein Kinase C ζ Interacts with a Novel Binding Region of Gαq to Act as a Functional Effector
Guzmán Sánchez-Fernández, Sofía Cabezudo, Alvaro Caballero, Carlota García-Hoz, Gregory G. Tall, Javier Klett, Stephen W. Michnick, Federico Mayor, Jr. and Catalina Ribas

J. Biol. Chem. 2016, 291:9513-9525.
doi: 10.1074/jbc.M115.684308 originally published online February 17, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M115.684308

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 43 references, 25 of which can be accessed free at http://www.jbc.org/content/291/18/9513.full.html#ref-list-1