Associations of Linear Growth and Relative Weight Gain in Early Life with Human Capital at 30 Years of Age

Bernardo Lessa Horta, PhD1, Cesar G. Victoria, PhD1, Christian Loret de Mola, PhD1, Luciana Quevedo, PhD2, Ricardo Tavares Pinheiro, PhD2, Denise P. Gigante, PhD1, Janaina Vieira dos Santos Motta, PhD2, and Fernando C. Barros, PhD1

Objective To assess the associations of birthweight, nutritional status and growth in childhood with IQ, years of schooling, and monthly income at 30 years of age.

Study design In 1982, the 5 maternity hospitals in Pelotas, Brazil, were visited daily and 5914 live births were identified. At 30 years of age, 3701 subjects were interviewed. IQ, years of schooling, and income were measured.

Results On average, their IQ was 98 points, they had 11.4 years of schooling, and the mean income was 1593 reais. After controlling for several confounders, birthweight and attained weight and length/height for age at 2 and 4 years of age were associated positively with IQ, years of schooling, and income, except for the association between length at 2 years of age and income. Conditional growth analyses were used to disentangle linear growth from relative weight gain. Conditional length at 2 years of age ≥1 SD score above the expected value, compared with ≥1 SD below the expected, was associated with an increase in IQ (4.28 points; 95% CI, 2.66-5.90), years of schooling (1.58 years; 95% CI, 1.08-2.08), and monthly income (303 Brazilian reais; 95% CI, 44-563). Relative weight gain, above what would be expected from linear growth, was not associated with the outcomes.

Conclusion In a middle-income setting, promotion of linear growth in the first 1000 days of life is likely to increase adult IQ, years of schooling, and income. Weight gain in excess of what is expected from linear growth does not seem to improve human capital. (J Pediatr 2017;182:85-91).
of schooling than weight gain, suggesting therefore that nutri-
tritional interventions in childhood should be focused in pro-
moting linear growth instead of weight gain. Moreover, growth
monitoring programs should also incorporate length/height
measurements.

The present study aimed to evaluate how birthweight, nu-
tritional status, linear growth, and relative weight gain in child-
hood are associated with performance in intelligence tests, years
of schooling, and monthly income at 30 years of age.

Methods

In 1982, the maternity hospitals in Pelotas, a southern Bra-
zilian city, were visited daily and all in-hospital births were iden-
tified. The 5914 liveborns whose families lived in the urban
area of city were examined and their mothers interviewed. In
1984 and 1986, all households located in urban areas of the
city were visited in search of cohort members; 5161 and 4979
individuals were evaluated in 1984 and 1986, respectively. From
June 2012 to February 2013, cohort members were invited to
visit the research clinic to be interviewed and examined. We
interviewed 3701 subjects, which added to the 325 known to
have died, for a follow-up rate of 68.1%. Concerning the losses
to follow-up, we were unable to locate 1055 participants from
the original cohort, 467 were living far from Pelotas, 86 refused
to take part in this follow-up, and 280 did not attend the clinic
despite repeated invitations. Further details on the study meth-
odology have been published elsewhere.28,29 The Ethical Review
Board of the Faculty of Medicine of the Federal University of
Pelotas approved the study, and written informed consent was
obtained from all participants.

Birthweight was assessed by the hospital staff using pedi-
atriic scales that were calibrated weekly by the research team.
Gestational age estimate was based on the mother’s recall of
the date of her last menstrual period. Preterm birth was defined
by a gestational age of <37 weeks. In the 1984 and 1986 visits,
children were weighed using calibrated scales and their length
and height were assessed with portable stadiometers. Weight
and height z-scores, according to age and sex, were estimated
using the 2006 World Health Organization growth standards.30
Birthweight for gestational age z-scores were calculated using
the Williams reference population.31

Outcomes

Performance in intelligence tests was evaluated in the 2012-
2013 visit, at a mean of 30.2 years of age. Four psychologists
who were unaware of participant intrauterine growth and nu-
tritional status in childhood administered the Wechsler Adult
Intelligence Scale, third version, which has been validated for
the Brazilian population.32 The following subtests were used:
arithmetic, digit symbol, similarities, and picture completion.

Subjects were asked about the highest grade completed suc-
cessfully at school, as well as their income in the previous month
in Brazilian reais.

Conditional Growth

Conditional growth modeling was used in the analyses on the
effect of weight and height gain.33 Conditional variables were
obtained by regressing current size (weight or length/height)
on birthweight and earlier measures of weight and length/
height, and standardized residuals were derived. Conditional
variables express how a child deviates from its expected height
or weight, based on its previous measures and the growth of
the studied population. At each time point, the conditional vari-
able represents growth during a time interval, and a positive
value represents a weight gain or linear growth faster than pre-
dicted in that period. For example, conditional relative weight
gain at 2 years of age represents the relative weight from birth
to 2 years of age. The conditional variable at 4 years of age rep-
resents height or relative weight gain from 2 to 4 years of age.

To estimate conditional height, current length or height was
regressed on previous weight and length. Therefore, condi-
tional length at 2 years of age was estimated by regressing
length-for-age z-scores at 2 years of age on birthweight. In con-
trast, conditional relative weight was estimated from length/
height at that age and previous measures of length/height and
weight. Therefore, conditional relative weight at 2 years of age
was derived by regressing weight at 2 years of age on birthweight
and length at 2 years of age.

Confounding Variables

Family income at birth was defined as total income earned by
the family members in the month before the interview. Ma-
ternal and paternal years of schooling at birth was defined as
years of schooling successfully completed. Household assets
index in childhood was defined as based on the ownership of
household goods and estimated using factor analysis.34 Ma-
ternal skin color was rated by the interviewer during the peri-
natal study. Maternal smoking during pregnancy was defined
as those mothers with a history of smoking in the pregnancy
being considered smokers. Breastfeeding duration was based
on information on breastfeeding duration was collected in
1984 and 1986, and we used the information closest to the age
of weaning to minimize recall bias.

Data Analyses

ANOVA was used to compare means and multiple linear re-
gression to obtain estimates that were adjusted for the follow-
ing confounders: family income at birth, maternal years of
schooling at birth, paternal years of schooling in childhood,
household assets index, maternal skin color, and maternal
smoking during pregnancy. Estimates on the effect of nutri-
tional status in childhood and conditional growth were further
adjusted to breastfeeding duration. Furthermore, for condi-
tional length gain from birth to 2 years of age, estimates were
also adjusted for birthweight according to gestational age
z-score, whereas for conditional relative weight gain from birth
to 2 years of age, analyses also controlled for conditional length
gain from 0 to 2 years of age, for conditional length gain from
2 to 4 years of age, birthweight and conditional variables from
0 to 2 years of age were also controlled for, and for relative
weight gain from 2 to 4 years of age, length gain from 2 to 4
years of age was also included in the model. Statistical com-
parisons between groups were based on tests of heterogene-
ity and linear trend in the case of ordinal variables, and the

one with the lower \(P \) value was presented. The `:test` command was used to compare regression coefficients. We tested for interaction between birthweight for gestational age \(z \)-scores and conditional growth variables.

Results

In the 2012–2013 visit, 3701 subjects were interviewed; added to the 325 known to have died, this represents a follow-up rate of 68.1%. Information on IQ at 30 years of age was available for 3611 subjects (61.1% of the original cohort), whereas complete data on IQ and nutritional status at birth and 2 and 4 years of age, were available for 2477 individuals (41.9% of the original cohort). Subjects with complete data were more likely to be female, to have been born in the intermediate socioeconomic groups, and have a birthweight of \(\geq 2500 \) grams (Table I; available at www.jpeds.com). The mean IQ of those subjects with full growth data was 98.9 points (95% CI, 98.4–99.4), compared with 96.0 (95% CI, 95.2–96.7) among those who did not have full anthropometric assessments.

About 1 of every 3 mothers had \(\leq 4 \) years of schooling, and most of the sample belonged to low-income families at birth (1 minimum wage in 1982 corresponded with US$50.00). The prevalence of low birthweight (birthweight < 2500 grams) was 7.2% and 14.2% of the studied subjects had a birthweight that was \(< 10 \)th percentile according to gestational age and sex. Concerning nutritional status in childhood, 12.8% of the subjects had a height-for-age \(z \)-score of \(\leq -2 \) SD at 2 years of age. The mean IQ at 30 years of age was 98 points and the average number of years of schooling was 11.4 (Table II; available at www.jpeds.com).

With respect to the confounding variables, socioeconomic status was associated inversely with the prevalence of low birthweight, small-for-gestational age, and low weight and height for age \(z \)-score at 2 and 4 years of age. The proportion of children whose conditional length at 2 years of age variable was \(\geq 1 \) \(z \)-score was positively associated with socioeconomic status, whereas conditional height at 4 years of age and conditional weight variables were independent of socioeconomic variables (Table III; available at www.jpeds.com). IQ, years of schooling, and income at 30 years of age were positively associated with socioeconomic status at birth and childhood. Maternal smoking during the pregnancy was associated with lower IQ, years of schooling, and income at 30 years of age (Table IV; available at www.jpeds.com).

In unadjusted analyses, birthweight was positively associated with IQ, years of schooling, and income at 30 years of age. Controlling for confounding variables reduced the strength of the association, but subjects whose birthweight was \(\geq 2500 \) grams still presented an higher IQ (2.93 points; 95% CI, 1.47–4.39) and income at 30 years of age (R$ 315; 95% CI, 91–538) than low birthweight subjects. The crude and adjusted results also show significant linear trends for years of schooling and income. Birthweight for gestational age was also positively associated with IQ and years of schooling, but not with income. In contrast, preterm birth was not associated with the outcomes (Table V).

Table VI shows that attained weight and length/height for age \(z \)-scores at 2 and 4 years of age were associated positively with the 3 outcomes. With the exception of the association between length for age at 2 years of age and family income in the adjusted model, all other associations were significant. Adjustment for confounding attenuated the magnitude of the associations, and in general weight was associated more strongly with the outcomes than length or height.

The associations with the conditional variables are shown in Table VII. Conditional length at age 2 years of age, a proxy for linear growth from birth to this age, was positively associated with IQ, years of schooling, and income at 30 years of age. The associations were stronger for linear growth than for relative weight at 2 years of age, and the latter association with income was not significant after adjustment. Neither conditional height nor weight at 4 years of age were associated with any of the outcomes in the adjusted analyses.

Table V. IQ, years of schooling, and income at 30 years, according to birth conditions

Birthweight (g)	Mean (95% CI)	Adjusted regression coefficient (95% CI)	Years of schooling	Mean (95% CI)	Adjusted regression coefficient (95% CI)	Monthly income (R$)	Mean (95% CI)	Adjusted regression coefficient (95% CI)
\(< 2500 \)	94.5 (92.8 to 96.1)	Reference (0)	10.5 (10.0 to 11.0)	Reference (0)	1190 (1009 to 1370)	Reference (0)		
\(2500-2999 \)	95.7 (94.8 to 96.5)	1.02 (−0.47 to 2.51)	10.6 (10.4 to 10.9)	0.04 (−0.43 to 0.52)	1266 (1161 to 1370)	69 (−159 to 296)		
\(3000-3499 \)	96.5 (97.8 to 99.1)	2.22 (0.79 to 3.65)	11.4 (11.2 to 11.7)	0.29 (−0.17 to 0.75)	1358 (1444 to 1632)	193 (−26 to 412)		
\(\geq 3500 \)	99.9 (99.2 to 100.6)	2.93 (1.47 to 4.39)	11.9 (11.6 to 12.1)	0.48 (0.01 to 0.95)	1709 (1597 to 1821)	315 (91 to 538)		
Preterm birth	P = .29	P = .29	P = .21	P = .18	P = .84	P = .85		
No	98.8 (98.4 to 99.3)	Reference (0)	11.6 (11.5 to 11.8)	Reference (0)	1592 (1523 to 1660)	Reference (0)		
Yes	97.8 (95.8 to 99.8)	−0.86 (−2.56 to 0.84)	11.2 (10.6 to 11.8)	−0.36 (−0.90 to 0.17)	1562 (1263 to 1861)	−12 (−283 to 259)		
Birthweight for gestational age (\(z \)-score)	P = .001*	P = .001*	P = .001*	P = .001*	P = .10*			
\(< −1.28 \)	95.7 (94.5 to 96.9)	Reference (0)	10.5 (10.2 to 10.9)	Reference (0)	1311 (1159 to 1464)	Reference (0)		
\(−1.28 \) to \(0 \)	98.1 (97.4 to 98.8)	1.26 (0.06 to 2.46)	11.3 (11.1 to 11.5)	0.35 (−0.02 to 0.72)	1558 (1461 to 1655)	138 (−53 to 328)		
\(> 0 \)	100.6 (99.9 to 101.3)	2.33 (1.10 to 3.55)	12.3 (12.0 to 12.5)	0.82 (0.44 to 1.21)	1721 (1611 to 1831)	179 (−16 to 374)		

Adjusted for family income at birth, parental years of schooling, household asset index score, maternal skin color, and maternal smoking during pregnancy.

\(*P \)-value for linear trend.

Associations of Linear Growth and Relative Weight Gain in Early Life with Human Capital at 30 Years of Age
Table VI. IQ, years of schooling, and income at 30 years, according to nutritional status in childhood

IQ (points)	Years of schooling	Monthly income (R$)	
	Adjusted regression coefficient (95% CI)	Adjusted regression coefficient (95% CI)	Adjusted regression coefficient (95% CI)
Weight-for-age			
≤2			
–1.99 to –1	88.1 (85.7 to 90.5)	7.6 (6.8 to 8.4)	624 (500 to 748)
–0.99 to 1	92.3 (91.1 to 93.6)	9.5 (9.1 to 9.9)	1055 (925 to 1185)
>1	102.8 (101.9 to 103.7)	13.0 (12.7 to 13.3)	1929 (1767 to 2090)
Height-for-age			
≤2			
–1.99 to –1	90.6 (89.4 to 91.8)	8.8 (8.4 to 9.2)	1022 (900 to 1143)
–0.99 to 1	95.4 (94.6 to 96.3)	10.4 (10.1 to 10.7)	1258 (1158 to 1357)
>1	105.2 (103.9 to 106.5)	13.8 (13.4 to 14.2)	2208 (1928 to 2489)
Weight-for-age			
≤2			
–1.99 to –1	86.1 (83.2 to 89.0)	7.7 (6.8 to 8.6)	697 (526 to 868)
–0.99 to 1	93.3 (92.1 to 94.4)	9.8 (9.5 to 10.2)	977 (867 to 1087)
>1	103.6 (102.6 to 104.6)	13.3 (12.9 to 13.6)	1968 (1783 to 2153)
Height-for-age			
≤2			
–1.99 to –1	90.7 (89.3 to 92.0)	8.8 (8.4 to 9.3)	866 (756 to 975)
–0.99 to 1	94.8 (94.0 to 95.7)	10.2 (9.9 to 10.5)	1259 (1158 to 1362)
>1	105.0 (103.6 to 106.4)	13.7 (13.2 to 14.1)	2122 (1839 to 2405)

Adjusted for family income at birth, parental years of schooling, household assets index score, maternal skin color, maternal smoking during pregnancy, breastfeeding duration, and birthweight.

*P value for linear trend.
†P value for heterogeneity.

Table VII. IQ, years of schooling, and income at 30 years, according to conditional growth in childhood

IQ (points)	Regression coefficient (95% CI)					
	Crude	Adjusted	Crude	Adjusted	Crude	Adjusted
	Adjusted regression coefficient (95% CI)			Adjusted regression coefficient (95% CI)		

Conditional length at 2 years (z-score)

≤2	Reference (0)	Reference (0)	Reference (0)	Reference (0)	Reference (0)	Reference (0)
	0.00 to 0.99	1.85 (0.45 to 3.25)	10.2 (9.9 to 10.5)	0.67 (0.23 to 1.10)	1259 (1158 to 1362)	152 (~53 to 358)
≥1	10.52 (8.79 to 12.24)	4.41 (2.79 to 6.02)	1.12 (1.21 to 1.22)	0.04 (~0.03 to 0.07)	258 (~51 to 158)	170 (~76 to 416)

Conditional relative weight at 2 years (z-score)

≤2	Reference (0)	Reference (0)	Reference (0)	Reference (0)	Reference (0)	Reference (0)
	0.00 to 0.99	1.30 (~0.17 to 2.77)	0.84 (0.37 to 1.30)	0.54 (0.14 to 0.95)	184 (~39 to 407)	91 (~120 to 301)
≥1	2.09 (~0.38 to 3.81)	1.49 (~0.04 to 3.01)	0.78 (0.24 to 1.33)	0.50 (0.03 to 0.97)	258 (~51 to 158)	170 (~76 to 416)

Conditional height at 4 years (z-score)

≤2	Reference (0)	Reference (0)	Reference (0)	Reference (0)	Reference (0)	Reference (0)
	0.00 to 0.99	3.03 (1.55 to 4.51)	0.98 (0.51 to 1.45)	0.22 (~0.19 to 0.63)	461 (237 to 686)	243 (29 to 457)
≥1	2.50 (~0.76 to 4.24)	0.74 (~0.83 to 2.31)	0.71 (0.15 to 1.26)	0.03 (~0.51 to 0.45)	376 (112 to 369)	179 (~73 to 431)

Conditional relative weight at 4 years (z-score)

≤2	Reference (0)	Reference (0)	Reference (0)	Reference (0)	Reference (0)	Reference (0)
	0.00 to 0.99	0.39 (~1.81 to 1.20)	0.06 (~0.68 to 1.95)	0.68 (0.22 to 1.15)	367 (145 to 589)	214 (~56 to 325)
≥1	1.99 (~3.80 to 0.17)	1.33 (~2.95 to 0.29)	0.57 (~1.15 to 0.01)	0.32 (~0.82 to 0.18)	159 (~48 to 366)	187 (~35 to 409)

Adjusted for family income at birth, parental years of schooling, household assets index score, maternal skin color, maternal smoking during pregnancy, breastfeeding duration, and birthweight.

*P value for linear trend.
†P value for heterogeneity.
Further indeed, most studies on the question of why head size at birth and growth in early childhood are particularly associated with later IQ than length or height has been closed. However, the lower representation of children born with low birthweight and in the poorest income group is associated with their higher mortality in infancy. In contrast, birthweight and nutritional status in childhood were not associated with follow-up rate at the 2012-2013 visit. Furthermore, the regression coefficients for nutritional status in childhood was similar among those included and not included in the conditional growth analyses (P = .31). Therefore, selection bias is unlikely.

Residual confounding should be considered, because socioeconomic conditions are associated with the exposures and the outcomes. When we controlled for several confounders measured soon after birth or in childhood in the analyses, which are positively associated with growth and with adult IQ and income, as expected, the regression coefficients were attenuated. The strongest argument against residual confounding is that the associations between conditional measures and the outcomes were specific—that is, they were higher for linear growth than for relative weight, and higher at 2 years of age than at 4 years of age. Residual confounding cannot account for such specificity in the results. Moreover, the observed association should not be considered as being owing to residual confounding by maternal intelligence and home stimulation. We controlled for several socioeconomic variables and breastfeeding, which are highly correlated with these unmeasured confounders. Therefore, a noncausal pathway has been closed.

Anthropometric assessments were carried out by trained interviewers and most of the confounding variables were measured in the perinatal study or in childhood, with a short recall. These measures, therefore, decreased measurement error and residual confounding. Furthermore, we used a standardized test to assess IQ. Similar to our findings, most studies evaluating the association of growth at different moments in the life cycle with school performance or cognition reported positive associations with early growth, whereas late growth showed no or a weak association. These findings are biologically plausible. Brain growth spurt occurs between the last trimester of pregnancy and at about 3-4 years of age, and growth velocity is higher in the first months of life. Indeed, most studies on the effect of birthweight and weight gain in childhood found

Discussion

In this population-based prospective birth cohort, we observed that attained size (birthweight, weight for age and length, or height for age) are associated with IQ, years of schooling, and income at 30 years of age after controlling for several confounding variables. Associations tended to be stronger for attained weight than for length or height, and were present at both 2 and 4 years of age. In contrast, the picture emerging from conditional analyses is more refined. Linear growth was associated more strongly with the 3 outcomes than relative weight gain, for which there was no evidence of benefit after the age of 2 years of age. Associations with IQ and years of schooling tended to be stronger than those with income. Nevertheless, income was 20% higher in the group whose conditional length was ≥1 SD above what was expected, compared with those ≥1 SD below the expected. Weaker associations with income were expected because of the longer causal chain that presumably links early growth to adult earnings. We also sought interactions between size at birth and postnatal growth. Linear growth from 2 to 4 years of age was related to increased IQ among children with lower birthweights according to gestational age, suggesting potential benefits of late catch-up among those with intrauterine growth restriction, with positive consequences on human capital.

Our analyses report upon findings based on 2 types of anthropometric variables. Attained size (as weight for age or length/height for age) indicates cumulative growth or weight gain from conception to the age of measurement. Conditional analyses, in contrast, allow investigation of the effect of growth in different time periods. Conditional variables at 2 years of age indicate growth from birth to this age, and those at 4 years of age reflect changes from 2-4 years of age. Also, attained weight for age reflects both linear growth and relative weight gain above and beyond what would have been expected from linear growth alone. These distinctions explain why the 2 sets of analyses show apparently contradictory findings.

Table VIII. Conditional growth analyses of IQ at 30 years according to birthweight for gestational age z-score

Birthweight for gestational age z-score	First tertile	Second tertile	Third tertile	P-value for interaction
Conditional length 2 years	1.51 (0.74 to 2.28)	1.02 (0.24 to 1.80)	2.35 (1.54 to 3.15)	.44
Conditional relative weight 2 years	0.26 (−0.45 to 0.98)	0.33 (−0.42 to 1.07)	0.88 (0.15 to 1.62)	.20
Conditional height 4 years	0.98 (0.25 to 1.71)	0.31 (−0.45 to 1.07)	−0.24 (−0.97 to 0.50)	.04
Conditional relative weight 4 years	−0.34 (−1.08 to 0.39)	0.00 (−0.72 to 0.73)	−0.86 (−1.58 to −0.14)	.30

Adjusted for family income at birth, parental years of schooling, household index score, maternal skin color, maternal smoking during pregnancy, and breastfeeding duration.

*Results are expressed as change in IQ (points) associated with one z-score of the conditional variable.
that school achievement or IQ was associated more strongly with growth in childhood than intrauterine growth.21-24,39

This study on adult intelligence attempted to disentangle the effect of early linear growth from that of weight gain. Weight gain is a combination of linear growth and changes in soft tissue, and conditional relative weight gain represents the weight gain that is not owing to linear growth. We observed that linear growth in early childhood has positive long-term consequences on human capital, not only by improving IQ, but also increasing years of schooling and earning ability. In contrast, relative weight gain had a small impact on IQ and no effect on income. The regression coefficients for linear growth and relative weight gain at a given age may be compared, because both conditional growth variables are expressed as SD scores. In a pooled analysis of 5 cohorts from low- and middle-income countries (including data from the 23-year follow-up visit of the 1982 Pelotas cohort), Adair et al26 reported that birthweight, conditional length, and relative conditional weight at 2 years of age were associated inversely with the odds of failing to complete high school, and that these associations were strongest for conditional length gain. Our results are consistent with these earlier findings and, by showing a link with intelligence, the plausibility of the association with years of schooling is strengthened. As mentioned, brain growth velocity is higher in the first months of life,28 which would explain the specific association of early linear growth with IQ, years of schooling, and income.

Our results support the relevance of monitoring and promoting linear growth and shows that additional weight gain, after taking into account linear growth, has a small impact on human capital. Therefore, nutrition intervention programs should aim at promoting linear growth instead of weight gain, as well as intrauterine growth. And these interventions should focus in the first 1000 days of life, because they will have long-term consequences on human capital, by increasing IQ, years of schooling, and earning ability.

26 Horta et al \textit{J Pediatr} 2016; 166:411-6.

24 Kuzawa CW, Hallal PC, Adair L, Bhargava SK, Fall CHD, Lee N, et al. Birth weight, postnatal weight gain, and adult body composition in five low and middle income countries. Am J Hum Biol 2012;24:5-13.

25 Norris SA, Osmond C, Gigante D, Kuzawa CW, Ramakrishnan L, Lee NR, et al. Size at birth, weight gain in infancy and childhood, and adult diabetes risk in five low- or middle-income country birth cohorts. Diabetes Care 2012;35:72-9.

27 Adair LS, Fall CHD, Osmond C, Stein AD, Martorell R, Ramirez-Zea M, et al. Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: findings from five birth cohort studies. Lancet 2013;382:525-34.

28 Horita BL, Gigante DP, Osmond C, Barros FC, Victora CG. Intergenerational effect of weight gain in childhood on offspring birthweight. Int J Epidemiol 2009;38:724-32.

29 Linhares Rda S, Gigante DP, de Barros FC, Horta BL. Carotid intima-media thickness at age 30, birth weight, accelerated growth during infancy and breastfeeding: a birth cohort study in Southern Brazil. PLoS ONE 2015;10:e0115166.

30 Sigman M, McDonald M, Neumann C, Bwibo N. Prediction of cognitive competence in Kenyan children from Toddler nutrition, family characteristics and abilities. J Child Psychol Psychiatry 1991;32:307-20.

31 Ivanovic DM, Leiva BP, Perez HT, Inzunza NR, Almagia AF, Toro TD, et al. Long-term effects of severe undernutrition during the first year of life on brain development and learning in Chilean high-school graduates. Nutrition 2000;16:1056-63.

32 Walker SP, Grantham-McGregor SM, Powell C, Chang SM. Effects of growth restriction in early childhood on growth, IQ, and cognition at age 11 to 12 years and the benefits of nutritional supplementation and psychosocial stimulation. J Pediatr 2000;137:36-41.

33 Daniels MC, Adair LS. Growth in young Filippino children predicts schooling trajectories through high school. J Nutr 2004;134:1439-46.

34 Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet 2008;371:340-57.

35 Sudfeld CR, McCoy DC, Danaei G, Fink G, Ezzati M, Andrews KG, et al. Linear growth and child development in low- and middle-income countries: a meta-analysis. Pediatrics 2015;135:e1266-75.

36 Casade D, Desmond C. Recovery from stunting and cognitive outcomes in young children: evidence from the South African Birth to Twenty Cohort Study. J Dev Orig Health Dis 2016;7:163-71.

37 Crookston BT, Schott W, Canto S, Dearden K, Engle P, Georgiadis A, et al. Postinfancy growth, schooling, and cognitive achievement: young lives 1-4. Am J Clin Nutr 2013;98:1555-63.

38 Hoddinott J, Behrman JR, Maluccio J, Melgar P, Quisumbing AR, Ramirez-Zea M, et al. Adult consequences of growth failure in early childhood. Am J Clin Nutr 2013;98:1170-8.

39 Hamadani JD, Tofail F, Huda SN, Alam DS, Ridout D, Attanasio O, et al. Cognitive deficit and poverty in the first 5 years of childhood in Bangladesh. Pediatrics 2014;134:e1001-8.

40 Martorell R, Horita BL, Adair LS, Stein AD, Richter L, Fall CHD, et al. Weight gain in the first two years of life is an important predictor of schooling outcomes in pooled analyses from five birth cohorts from low- and middle-income countries. J Nutr 2010;140:348-54.

41 Pongcharoen T, Ramakrishnan U, Digigolamo AM, Winchagoon P, Flores R, Singhkornard J, et al. Influence of prenatal and postnatal growth on cognitive competence in Kenyan children from Toddler nutrition, family characteristics and abilities. J Child Psychol Psychiatry 1991;32:307-20.

42 Varela MH, Moss WJ. Early growth patterns are associated with intelligence quotient scores in children born small-for-gestational age. Early Hum Dev 2015;91:491-7.
Associations of Linear Growth and Relative Weight Gain in Early Life with Human Capital at 30 Years of Age
Table I. Baseline characteristics of the cohort members according to inclusion in the conditional growth analyses

Included in the conditional growth analyses	Yes	No	P value
Sex			
Male	1199	1839	53.5
Female	1278	1598	46.5
Family income at birth (minimum wage)			<.001
≤1	414	874	16.8
1.1-3	1222	1567	45.9
3.1-6	532	559	16.4
6.1-10	165	217	6.4
>10	137	198	5.8
Maternal years of schooling			<.001
0-4	704	1256	36.6
5-8	1086	1368	39.9
9-11	290	364	10.6
≥12	395	444	12.9
Birthweight (g)			<.001
<2500	147	387	11.3
2500-2999	579	814	23.7
3000-3499	948	1272	37.1
≥3500	803	959	27.9
Total*	2477	3437	

*For some variables, the number of subjects might not sum to the subjects included or not in the conditional growth analysis because of missing information.

Table II. Characteristics of study sample

Variables measured at birth	Mean (SD)	n	%
Monthly family income (minimum wage)			
≤1	706	19.6	
1.1-3	1772	49.3	
3.1-6	707	19.7	
6.1-10	218	6.1	
>10	191	5.3	
Maternal education (y)			
0-4	1154	32.0	
5-8	1557	43.2	
9-11	394	10.9	
≥12	501	13.9	
Maternal skin color			
White	2969	82.2	
Non-white	641	17.8	
Birthweight (g)			
<2500	259	7.2	
2500-2999	862	23.9	
3000-3499	1356	37.5	
≥3500	1133	31.4	
Gestational age (wk)			
≤36	164	5.6	
37-38	645	22.1	
≥39	2106	72.3	
Birthweight for gestational age (z-score)			
<−1.28 SD	413	14.2	
−1.28-0 SD	1296	44.4	
>0 SD	1205	41.4	
Maternal smoking during pregnancy			
Yes	1262	35.0	
No	2342	65.0	

Variables measured in childhood

Household assets index score (points)	0.34 (−0.55 to 0.68)*
Paternal education (y)	98.0 (12.6)
Monthly income (R$)	1000 (530-1890)*

*Median and interquartile range.
Family income at birth (in minimum wages)	Low birthweight (%)	Preterm birth (%)	Small-for-gestational age (%)	Weight-for-age z-score at 2 years ≤−2 (%)	Height-for-age z-score at 2 years ≤−2 (%)	Weight-for-age z-score at 4 years ≤−2 (%)	Height-for-age z-score at 4 years ≤−2 (%)	Conditional length z-score at 2 years ≥1 (%)	Conditional weight z-score at 2 years ≥1 (%)	Conditional height z-score at 4 years ≥1 (%)	Conditional weight z-score at 4 years ≥1 (%)
≤1	11.8	56.1	118.8	6.6	23.9	14.8	122.0	5.6	16.2	14.3	16.0
1.1-3	6.2	5.4	15.4	2.5	13.2	1.8	9.5	13.1	13.9	14.0	12.5
3.1-6	6.1	5.9	10.9	0.5	6.2	0.5	5.3	22.4	16.8	16.6	15.8
6.1-10	6.0	6.2	8.3	0.5	4.6	1.0	5.7	23.2	15.9	14.6	13.4
≥10	4.7	4.8	9.0	0.6	2.9	0.6	1.8	27.0	19.7	19.0	13.1
Maternal years of schooling at birth											
≤12	7.8	55.3	515.5	5.1	20.7	14.6	117.0	9.8	15.8	12.4	14.5
0-4	8.0	6.1	15.7	2.3	12.3	1.0	9.6	13.3	14.9	15.7	14.7
5-8	4.3	4.7	11.0	0.3	3.6	0.6	4.0	20.1	15.2	16.3	11.8
≥12	5.6	5.6	10.0	0.2	3.7	0.4	3.1	26.6	16.0	16.2	12.7
Maternal skin color											
White	6.8	05.7	14.0	2.2	11.0	11.9	19.2	16.2	15.4	14.5	13.8
Non-white	8.5	5.3	14.9	4.8	21.5	2.4	16.0	10.4	15.1	17.1	14.9
Household assets index (quintiles)											
First	10.0	16.7	118.9	6.6	25.7	14.4	122.6	6.0	14.6	12.2	13.7
Second	7.9	5.4	17.6	2.8	17.0	3.2	11.9	11.2	14.4	14.4	12.6
Third	6.6	5.5	13.3	1.7	8.2	1.2	7.5	15.0	16.7	15.2	12.5
Fourth	4.1	3.8	10.5	1.3	7.0	0.7	4.7	23.0	17.5	17.1	16.7
Fifth	7.0	7.3	9.4	1.0	6.0	0.8	4.7	25.3	13.1	16.6	17.5
Maternal smoking in the pregnancy											
No	5.8	75.5	111.1	2.6	10.5	11.9	18.8	16.0	14.4	15.1	14.0
Yes	9.8	5.9	20.4	2.8	17.1	2.3	13.5	13.8	17.5	14.6	13.9
Table IV. IQ, years of schooling, and income at 30 years of age, according to socioeconomic, demographic, and maternal smoking variables in the pregnancy

Family income at birth (minimum wage)	IQ (points), mean (95% CI)	Years of schooling, mean (95% CI)	Monthly income (R$), mean (95% CI)
≤1	91.5 (90.7-92.4)	8.9 (8.6-9.1)	940 (855-1024)
1.1-3	96.6 (96.0-97.1)	10.7 (10.6-10.9)	1255 (1191-1320)
3.1-6	102.0 (101.2-102.9)	13.1 (12.8-13.4)	1894 (1750-2038)
6.1-10	106.7 (105.2-108.2)	14.5 (14.1-14.9)	2583 (2260-2907)
≥10	110.4 (108.9-112.0)	15.8 (15.3-16.2)	3208 (2787-3628)
Maternal years of schooling at birth			
0-4	92.2 (91.5-92.9)	9.2 (9.0-9.4)	997 (931-1062)
5-8	97.5 (97.0-98.1)	11.1 (10.9-11.3)	1356 (1281-1430)
9-11	103.2 (102.1-104.3)	13.2 (12.9-13.5)	1870 (1679-2063)
≥12	108.6 (107.7-109.5)	15.3 (15.1-15.6)	2846 (2614-3078)
Maternal skin color			
White	99.2 (98.8-99.7)	11.6 (11.5-11.8)	1616 (1548-1683)
Non-white	92.1 (91.2-93.0)	9.9 (9.6-10.2)	977 (906-1048)
Household assets index (quintiles)			
First	90.0 (89.1-91.0)	8.4 (8.1-8.7)	866 (797-933)
Second	95.2 (94.3-96.0)	10.3 (10.0-10.6)	1219 (1117-1320)
Third	100.4 (99.7-101.0)	12.1 (11.9-12.4)	1564 (1466-1662)
Fourth	101.3 (100.0-102.6)	12.7 (12.3-13.1)	1762 (1556-1967)
Fifth	104.2 (103.1-105.2)	13.7 (13.3-14.0)	2221 (2100-2342)
Maternal smoking during pregnancy			
No	99.1 (98.6-99.6)	11.7 (11.5-11.8)	1573 (1499-1648)
Yes	95.9 (95.2-96.6)	10.7 (10.5-10.9)	1371 (1282-1460)