The LDL Receptor-Related Protein 1 (LRP1) Regulates the PDGF Signaling Pathway by Binding the Protein Phosphatase SHP-2 and Modulating SHP-2-Mediated PDGF Signaling Events

Julie Craig¹, Irina Mikhailenko¹,², Nathaniel Noyes¹, Mary Migliorini¹,³, Dudley K. Strickland¹,²,³*

¹ Center for Vascular and Inflammatory Diseases and, ² Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America, ³ Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America

Abstract

Background: The PDGF signaling pathway plays a major role in several biological systems, including vascular remodeling that occurs following percutaneous transluminal coronary angioplasty. Recent studies have shown that the LDL receptor-related protein 1 (LRP1) is a physiological regulator of the PDGF signaling pathway. The underlying mechanistic details of how this regulation occurs have yet to be resolved. Activation of the PDGF receptor β (PDGFRβ) leads to tyrosine phosphorylation of the LRP1 cytoplasmic domain within endosomes and generates an LRP1 molecule with increased affinity for adaptor proteins such as SHP-2 that are involved in signaling pathways. SHP-2 is a protein tyrosine phosphatase that positively regulates the PDGFRβ pathway, and is required for PDGF-mediated chemotaxis. We investigated the possibility that LRP1 may regulate the PDGFRβ signaling pathway by binding SHP-2 and competing with the PDGFRβ for this molecule.

Methodology/Principal Findings: To quantify the interaction between SHP-2 and phosphorylated forms of the LRP1 intracellular domain, we utilized an ELISA with purified recombinant proteins. These studies revealed high affinity binding of SHP-2 to phosphorylated forms of both LRP1 intracellular domain and the PDGFRβ kinase domain. By employing the well characterized dynamin inhibitor, dynasore, we established that PDGF-induced SHP-2 phosphorylation primarily occurs within endosomal compartments, the same compartments in which LRP1 is tyrosine phosphorylated by activated PDGFRβ. Immunofluorescence studies revealed colocalization of LRP1 and phospho-SHP-2 following PDGF stimulation of fibroblasts. To define the contribution of LRP1 to SHP-2-mediated PDGF chemotaxis, we employed fibroblasts expressing LRP1 and deficient in LRP1 and a specific SHP-2 inhibitor, NSC-87877. Our results reveal that LRP1 modulates SHP-2-mediated PDGF-mediated chemotaxis.

Conclusions/Significance: Our data demonstrate that phosphorylated forms of LRP1 and PDGFRβ compete for SHP-2 binding, and that expression of LRP1 attenuates SHP-2-mediated PDGF signaling events.

Introduction

Despite significant advances in the treatment of severe coronary artery blockage, restenosis continues to represent a serious clinical problem by impeding long-term success of vascular interventions [1]. Restenosis is the process by which an artery treated for occlusion subsequently narrows due to neointimal formation. This process involves significant vascular remodeling that results from excess deposition of matrix proteins and from migration and proliferation of vascular SMC (SMC) [2] due to activation of the PDGF signaling pathway [3]. PDGF is a potent mitogen for fibroblasts and SMC, and genetic deletion of either Pdgfb or Pdgfrb in mice leads to an almost complete lack of pericytes in certain vascular beds [4,5] confirming a critical role for PDGF-B and the PDGFRβ in vascular smooth muscle cell and pericyte biology. This has been substantiated in experiments which have demonstrated a prominent role for this signaling pathway in vascular remodeling. Thus, balloon catheterization of rat carotid arteries results in increased expression of activated PDGF receptors in the vessel wall [6,7], and the intimal thickening that follows this treatment is inhibited by administration of neutralizing PDGF antibodies [8]. Further, infusion of PDGF-BB into rats after carotid injury [9], or the expression of recombinant PDGF-BB in porcine arteries [10], caused a significant increase in thickening of the vessel wall due to smooth muscle cell proliferation and matrix deposition by these cells [3].

Both in vivo and in vitro studies reveal that the LDL receptor-related protein 1 (LRP1) is a physiological modulator of the PDGF signaling pathway. LRP1 is abundantly expressed in vascular
SMC, and is a large endocytic and signaling receptor that mediates the endocytosis and subsequent degradation of several ligands including apoE-rich lipoproteins, proteases, and protease-inhibitor complexes [11,12]. A tissue-specific deletion of the Lrp1 gene in vascular SMC (smLRP1−/−) on a background of LDL receptor deficiency, causes smooth muscle cell proliferation, aneurysm formation, and a significant increase in susceptibility to cholesterol-induced atherosclerosis [13]. These effects could be inhibited by treatment of the mice with Gleevac, a known inhibitor of tyrosine kinases, including the PDGFR. Interestingly, smLRP1−/− mice expressed large amounts of activated PDGFRβ in the vessel wall when compared to control LRP1 expressing mice [13]. Overall, the experiments indicate that LRP1 plays an important role in protecting the integrity of the vascular wall and preventing atherosclerosis by suppressing PDGFR activation.

The mechanisms by which LRP1 modulates the PDGF signaling pathway are not well understood. Tight regulation of the PDGFRβ is critical, as excessive activation induces tumor formation [14] and in the vasculature contributes to the development of occlusive vascular disease, such as atherosclerosis and restenosis [2,3,6-9]. LRP1 co-immunoprecipitates with phosphorylated forms of the PDGFRβ [15] which mediates the tyrosine phosphorylation of the PDGFRβ intracellular domain (ICD) at tyrosine 4507 within its proximal NPxY motif [16]. This event occurs within endosomal compartments [17], and generates LRP1 molecules with increased affinity for adaptor proteins containing phospho-tyrosine binding (PTB) domains or Src homology 2 (SH2) domains involved in signaling pathways such as Shc [18] and SHP-2 [19,20].

SHP-2 is a ubiquitously expressed, cytoplasmic protein tyrosine phosphatase (PTP) that contains two SH2 domains [21]. The activity of SHP-2 contrasts the actions of most protein tyrosine phosphatases which negatively regulate signaling pathways by opposing the effects of protein tyrosine kinases [22]. Upon PDGF-stimulation of cells, SHP-2 is recruited to tyrosine residues 763 and 1009 within the PDGFRβ cytoplasmic tail and promotes downstream signaling [22,23]. Mutation of these two tyrosine residues to phenylalanine generates a receptor that fails to bind SHP-2 and has a significantly reduced chemotaxis response induced by PDGF-BB, revealing an important role for SHP-2 in PDGF-mediated chemotactic signaling [23].

Since phosphorylated forms of LRP1 and the PDGFRβ are both capable of binding SHP-2, we hypothesized that these two receptors may compete for SHP-2 binding, and if so, we reasoned that this may represent one mechanism by which LRP1 suppresses PDGFRβ-mediated signaling. Our results reveal that phosphorylated forms of the LRP1 cytoplasmic domain and the PDGFRβ kinase domain (KD) bind with very high affinity to SHP-2, and compete with one another for this interaction. Further, we observed that SHP-2 co-immunoprecipitates and colocalizes with LRP1 following PDGF stimulation of cells, and that LRP1 attenuates SHP-2 mediated cell migration. Taken together, the data reveal a critical role for LRP1 in modulating SHP-2-mediated PDGF signaling events.

Materials and Methods

Cells, Antibodies and Reagents

Newborn rat kidney (NRK) fibroblasts, human WI-38 fibroblasts and murine aortic smooth muscle (MOVAS) cells were purchased from ATCC. LRP1−/− (PEA-13) and B41 clones (LRP1−/− deficient cells transfected with human LRP1) have been described [24]. SHP-2 antibodies were purchased from Santa Cruz Biotechnology (sc-7384, sc-280). SHP-2 phosphotyrosine 542 and SHP-2 phosphotyrosine 580 antibodies were purchased from Cell signaling Technology (3751, 3703). Anti phosphotyrosine antibodies were purchased from BD Transduction laboratories (610000). Monoclonal antibody 8G1 against LRP1 has been previously described [25]. NSC-87877, a potent, small molecule SHP2 inhibitor [26] was obtained from Millipore. The LRP1 intracellular domain (LRP1-ICD) was prepared as a fusion protein with glutathione S-transferase as described [27]. GST:LRP1-ICD was phosphorylated using c-src kinase (Upstate, 14–117) in the presence of ATP. Phosphorylation was confirmed by immunoblot analysis using anti-phosphotyrosine antibodies. The PDGFRβ kinase domain (KD) was purchased from Millipore (14–463), and was phosphorylated by incubating the protein with 1 mM ATP and 1 mM MgCl2. Soluble PDGFRβ ectodomain (sPDGFr) was purchased from Sino Biological, Inc.

Pull Down Experiments

For pull-down experiments, NRK fibroblasts were grown to 70% confluence on 60 mm dishes. Cells were lysed in lysis buffer (1%NP40, 1:100 phosphatase inhibitor cocktail, set II (Calbiochem, 524625), 2 mM activated sodium orthovanadate, 1 mM PMSF, 0.3 μM okadaic acid, protease inhibitor cocktail tablets (Roche Diagnostics), in TBS) and cell lysates were incubated with phosphorylated or unphosphorylated GST:LRP1-ICD immobilized on Glutathione-Sepharose. Following incubation and washing, proteins were eluted and separated by SDS-PAGE and analyzed by immunoblot analysis using the indicated antibodies.

Immunoprecipitation and Immunoblot Analysis

Prior to lysis, cells were incubated for 30 minutes on ice with the cell-permeable crosslinking agent, DSP (dithiobis[succinimidylpro-pionate]) (Pierce Biotechnology, Inc.). Following incubation, cells were washed and then collected in lysis buffer (1% NP40, 1:100 phosphatase inhibitor cocktail, set II (Calbiochem, 524625), 2 mM activated sodium orthovanadate, 1 mM PMSF, 0.3 μM okadaic acid, protease inhibitor cocktail tablets (Roche Diagnostics), in TBS). Lysates were incubated with Dynabead Protein G (Invitrogen, 1007D) overnight at 4°C. Immunoprecipitates were washed, separated by SDS-PAGE on 4–12% tris-glycine precast gels (Invitrogen), and transferred to nitrocellulose membranes for immunoblot analysis. Whole cell lysates were separated by SDS-PAGE on 4–12% tris-glycine precast gels (Invitrogen) and then electrophoretically transferred to nitrocellulose membranes. Immunoblots were first incubated for 1 hour at room temperature in buffer containing 50 mM Tris, 150 mM NaCl, 0.1% Tween 20, and 5% nonfat dry milk. The membranes were then incubated overnight with specific antibodies and washed in buffer containing 50 mM Tris, 150 mM NaCl, and 0.1% Tween 20. Antibody binding to the immunoblots was detected by incubation with an appropriate IRDye® (LI-COR Biosciences) -conjugated secondary antibody. Immunoreactive bands were detected using LI-COR Odyssey Infrared Imaging System.

ELISA

Immunol 4HB microtiter plate wells were coated overnight at 4°C with SHP-2 (5 μg/mL) in TBS, pH 8 (coating buffer). The wells were then blocked with 5% BSA (EMD Millipore, 12659) in TBS, pH 8 for 1 h at room temperature. After washing the wells with TBS containing 0.05% Tween 20, the indicated concentrations of active PDGFRβ kinase domain (KD), sPDGF or GST:LRP1-ICD were added to the wells in incubation buffer (TBS containing 0.5% BSA, 0.05% tween 20 and sodium orthovanadate), and incubated overnight at 4°C. Bound proteins

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e70432
were detected by addition of anti-GST HRP-conjugated antibody (Cell Signaling Technology, 5475) or anti-PDGFRβ Rabbit mAb (28E1, Cell Signaling Technology, 3169) followed by Goat anti-rabbit HRP-conjugated (Bio-rad, 170-6515). TMB microwell peroxidase substrate (KPL, 50-76-00) was added to the wells and the amount of bound ligand was measured spectrophotometrically at 620 nm. Data were analyzed by nonlinear regression analysis using Graphpad Prism 5 software employing the equation: \( A = \frac{A_{max}}{1 + \frac{K_d}{[L]}} + B \), where \( A \) = absorbance, \( A_{max} \) = maximum absorbance, \( K_d \) = dissociation constant, \( L \) = ligand concentration and \( B \) = background absorbance.

**Malachite Green Phosphatase Assay**

The catalytic activity of SHP-2 was assessed using a malachite green phosphatase assay kit (Echelon Biosciences). Recombinant SHP-2 (400 nM) was incubated with PDGFR KD (400 nM) or sPDGFRα (400 nM) or GST:LRP1-ICD (400 nM) in the presence of 1 mM ATP and 1 mM MgCl₂. The substrate for SHP-2 was Suc pY329 (TSTEPQ-pY-QPGEL), (Upstate biotech) and was used at a concentration of 250 μM. 25 μL of each sample were transferred to a 96 well Immulon 4HB microtiter plate, in duplicate. TBS buffer with 1 mM ATP and 1 mM MgCl₂ with indicated proteins were assayed as a control. Malachite green solution (Echelon Biosciences) was added to each well and allowed to incubate for 15 minutes at room temperature. Liberated phosphate complexed with malachite green forms a colored complex. Absorbance was spectrophotometrically measured at 620 nm.

**Surface Plasmon Resonance**

Binding of GST:LRP1-ICD to recombinant human SHP-2 (R&D Systems, 1894-SH-100) was measured using a BIA 3000 optical biosensor (BIAcore AB, Uppsala, Sweden). For these studies, a CM5 BIAcore sensor chip was activated, and GST:LRP1-ICD (either phosphorylated or unphosphorylated) was coupled as described [16]. An additional flow cell, similarly pretreated for 3 hours with 30 μM dynasore at 37°C for 24 hours before adding PDGF-BB (30 ng/mL). The cells were incubated at 37°C for 10 min followed by washing in PBS and fixation in 3.7% formaldehyde, 5% sucrose in PBS for 20 minutes at room temperature. The fixed cells were permeabilized with 0.5% Triton X-100 for 5 minutes, blocked with 5% Donkey Serum for 1 hour, and then incubated with anti-phospho SHP-2 rabbit monoclonal (Santa Cruz) and mouse monoclonal 8G1 anti-LRP1 IgG (5 μg/mL) for overnight at 4°C. Slides were then washed and incubated with donkey Alexa-conjugated anti-rabbit and anti-mouse secondary antibodies (Invitrogen) for 1 h at room temperature. Stained coverslips were washed and mounted onto glass slides using FluorSave Reagent (Calbiochem) and viewed with laser scanning system Radiance 2100 (Zeiss/Bio-Rad) equipped with the argon/krypton (488/568 nm) and red diode (630 nm) lasers. The images were acquired and stored in RAW format using LaserSharp2000 software (Zeiss, Inc.). The images were exported into TIFF format and processed by Adobe Photoshop software (Adobe Systems) for publication. Adjustments of brightness and contrast were made for the entire image and were performed identically for both “single channel” and “merged” images.

**Chemotactic Assays**

Migration experiments were performed with 24-well plates containing 3-μm pore size transwell filters (Costar). PEA-13 (LRP1−/−) and B41 clones (LRP1+/−) were seeded 2×10⁴ cells per filter onto the insert membrane and grown overnight. Cells were pretreated for 3 hours with 30 μM SHP-2 inhibitor, NSC-87877 (Millipore, 565851). Either buffer or PDGF-BB (30 ng/mL) was applied to the bottom chamber and incubation was carried out for 4 hours at 37°C. The topsides of filters were cleared of cells with a cotton swab. Cells were fixed with ice-cold methanol for 5 min and nuclei were stained with Vectashield mounting medium with Dapi (Vector Laboratories). Filters were mounted onto glass slides and fluorescent images of three random fields from two independent experimental membranes for each experimental condition were acquired on a Nikon E800 Eclipse microscope and quantified using software Velocity (Improvision).

**Statistical Analysis**

Statistical analyses were performed using Graphpad Prism 5 software. Data are presented as means ± Std and were compared using a Student t-test or a one way Anova. Threshold for significance was set as p≤0.05. ELISA experiments were performed with triplicates, and each experiment was repeated twice.

**Results**

SHP-2 interacts with the Tyrosine-phosphorylated form of the LRP1 Intracellular Domain with High Affinity

LRP1 contains two NPY motifs within its ICD, one of which is preferentially phosphorylated on tyrosine (tyrosine 4507) by Src-family kinase members as well as the activated PDGFRβ [15,16,29,30]. Tyrosine phosphorylation at tyrosine 4507 in the LRP1-ICD generates a docking site for a number of adaptor proteins, including Src [18] and SHP-2 [19,20]. To confirm the interaction between phosphorylated forms of the LRP1-ICD and SHP-2, NRK fibroblasts were grown to subconfluence and cell lysates were incubated with phosphorylated or unphosphorylated GST:LRP1-ICD bound to Glutathione-Sepharose. Following washing, immunoblot analysis of the bound proteins indicated that the phosphorylated form of GST:LRP1-ICD, but not the

**Immunofluorescence Microscopy**

WI-38 fibroblasts were serum starved overnight and then stimulated with PDGF-BB (30 nm/mL). Cells were serum-starved for 24 hours before adding PDGF-BB (30 ng/mL). The cells were incubated at 37°C for 10 min followed by washing in PBS and fixation in 3.7% formaldehyde, 5% sucrose in PBS for 20 minutes at room temperature. The fixed cells were permeabilized with 0.5% Triton X-100 for 5 minutes, blocked with 5% Donkey Serum for 1 hour, and then incubated with anti-phospho SHP-2 rabbit monoclonal (Santa Cruz) and mouse monoclonal 8G1 anti-LRP1 IgG (5 μg/mL) for overnight at 4°C. Slides were then washed and incubated with donkey Alexa-conjugated anti-rabbit and anti-mouse secondary antibodies (Invitrogen) for 1 h at room temperature. Stained coverslips were washed and mounted onto glass slides using FluorSave Reagent (Calbiochem) and viewed with laser scanning system Radiance 2100 (Zeiss/Bio-Rad) equipped with the argon/krypton (488/568 nm) and red diode (630 nm) lasers. The images were acquired and stored in RAW format using LaserSharp2000 software (Zeiss, Inc.). The images were exported into TIFF format and processed by Adobe Photoshop software (Adobe Systems) for publication. Adjustments of brightness and contrast were made for the entire image and were performed identically for both “single channel” and “merged” images.

**Chemotactic Assays**

Migration experiments were performed with 24-well plates containing 3-μm pore size transwell filters (Costar). PEA-13 (LRP1−/−) and B41 clones (LRP1+/−) were seeded 2×10⁴ cells per filter onto the insert membrane and grown overnight. Cells were pretreated for 3 hours with 30 μM SHP-2 inhibitor, NSC-87877 (Millipore, 565851). Either buffer or PDGF-BB (30 ng/mL) was applied to the bottom chamber and incubation was carried out for 4 hours at 37°C. The topsides of filters were cleared of cells with a cotton swab. Cells were fixed with ice-cold methanol for 5 min and nuclei were stained with Vectashield mounting medium with Dapi (Vector Laboratories). Filters were mounted onto glass slides and fluorescent images of three random fields from two independent experimental membranes for each experimental condition were acquired on a Nikon E800 Eclipse microscope and quantified using software Velocity (Improvision).

**Statistical Analysis**

Statistical analyses were performed using Graphpad Prism 5 software. Data are presented as means ± Std and were compared using a Student t-test or a one way Anova. Threshold for significance was set as p≤0.05. ELISA experiments were performed with triplicates, and each experiment was repeated twice.

**Results**

SHP-2 interacts with the Tyrosine-phosphorylated form of the LRP1 Intracellular Domain with High Affinity

LRP1 contains two NPY motifs within its ICD, one of which is preferentially phosphorylated on tyrosine (tyrosine 4507) by Src-family kinase members as well as the activated PDGFRβ [15,16,29,30]. Tyrosine phosphorylation at tyrosine 4507 in the LRP1-ICD generates a docking site for a number of adaptor proteins, including Src [18] and SHP-2 [19,20]. To confirm the interaction between phosphorylated forms of the LRP1-ICD and SHP-2, NRK fibroblasts were grown to subconfluence and cell lysates were incubated with phosphorylated or unphosphorylated GST:LRP1-ICD bound to Glutathione-Sepharose. Following washing, immunoblot analysis of the bound proteins indicated that the phosphorylated form of GST:LRP1-ICD, but not the
unphosphorylated form, associates with endogenous SHP-2 from fibroblasts (Fig. 1a).

To quantify the interaction of SHP-2 and the LRP1-ICD and to demonstrate a direct interaction between these two molecules, we performed an ELISA in which microtiter wells were coated with phosphorylated or unphosphorylated forms of GST:LRP1-ICD. Following incubation and washing, bound GST:LRP1-ICD was detected with anti-GST antibodies. The results shown in Figure 1b, reveal that phosphorylated GST:LRP1-ICD bound to SHP-2 with a high affinity (KD = 1.8\pm 0.24 nM). In contrast, the unphosphorylated form of GST:LRP1-ICD failed to bind to SHP-2. As a control experiment, the binding of GST to SHP-2 immobilized on microtiter wells was also performed, and no binding was detected (data not shown). An additional control for this experiment measured the binding of GST:LRP1-ICD to BSA-coated wells, which confirmed no binding to BSA. Since ELISA based experiments measure high affinity interactions, to determine if unphosphorylated forms of the LRP1-ICD interacts weakly with SHP-2, we performed surface plasmon resonance experiments in which phosphorylated or unphosphorylated GST:LRP1-ICD was bound to SPR chips and SHP-2 was injected over these surfaces. The results of this study verified the interaction between SHP-2 and the phosphorylated form of GST:LRP1-ICD (Fig. 1c). In addition, the results reveal that the SHP2 fails to bind to unphosphorylated forms of LRP1-ICD (Fig. 1c).

SHP-2 also Interacts with the Phosphorylated form of PDGFR\(\beta\) Kinase Domain (KD) with High Affinity

A specific interaction between SHP-2 and phosphorylated tyrosines 763 and 1009 in the cytoplasmic domain of the activated PDGFR\(\beta\) has been demonstrated by co-immunoprecipitation analysis [22,23]. To determine the affinity of this interaction, we performed an ELISA in which increasing concentrations of phosphorylated or unphosphorylated kinase domain of PDGFR\(\beta\) (PDGFR\(\beta\) KD) were incubated with microtiter wells coated with SHP-2 and bound PDGFR\(\beta\) KD was detected with specific anti-PDGFR\(\beta\) antibody. The results of this experiment are shown in Figure 2, and reveal a high affinity interaction between pPDGFR\(\beta\) KD and SHP-2 (KD = 7.8\pm 1.21 nM). In contrast, a relatively weak interaction of non-phosphorylated forms of the PDGFR\(\beta\) KD with immobilized SHP-2 was detected (KD = 326\pm 26.8 nM).

PDGFR\(\beta\) KD Competes with LRP1 for the Binding of SHP-2

Since phosphorylated forms of LRP1 and PDGFR\(\beta\) KD both bind to SHP-2 with high affinity, we conducted experiments to determine if these two receptors compete for the binding of SHP-2. To investigate this possibility, we incubated microtiter wells with increasing concentrations of phosphorylated or unphosphorylated forms of GST:LRP1-ICD. Following incubation and washing, bound GST:LRP1-ICD was detected with anti-GST antibodies. Curve shows the best fit to a single class of sites using non-linear regression analysis. *, absorbance values for pLRP1-ICD are significantly different from those of LRP1-ICD (p < 0.0001, Students t test) (c) SPR analysis confirms binding of SHP-2 (1 \(\mu\)M) to immobilized phosphorylated GST:LRP1-ICD but not to immobilized unphosphorylated GST:LRP1-ICD. doi:10.1371/journal.pone.0070432.g001

Figure 1. Phosphorylated LRP1-ICD interacts with SHP-2 with high affinity. (a) Cell lysates from NRK fibroblasts were incubated with phosphorylated GST:LRP1-ICD (lane 1), unphosphorylated GST:LRP1-ICD (lane 3), GST and src (lane 2) or GST alone (lane 4) all bound to Glutathione-Sepharose. Following incubation and washing, eluted proteins were separated by SDS-PAGE and analyzed by immunoblot analysis for SHP-2 (upper panel), for tyrosine phosphorylation (middle panel) and for total protein by Ponseau stain (lower panel). (b) Increasing concentrations of phosphorylated (circles) or unphosphorylated (squares) GST:LRP1-ICD were incubated with microtiter wells coated with SHP-2 (closed symbols) or BSA (open symbols). Bound GST:LRP1-ICD was detected with anti-GST antibodies. Curve shows the best fit to a single class of sites using non-linear regression analysis. *, absorbance values for pLRP1-ICD are significantly different from those of LRP1-ICD (p < 0.0001, Students t test) (c) SPR analysis confirms binding of SHP-2 (1 \(\mu\)M) to immobilized phosphorylated GST:LRP1-ICD but not to immobilized unphosphorylated GST:LRP1-ICD. doi:10.1371/journal.pone.0070432.g001

Figure 2. Quantitative analysis of interaction of the PDGFR\(\beta\) kinase domain with SHP-2. Increasing concentrations of phosphorylated (closed squares) or unphosphorylated PDGFR\(\beta\) KD (closed circles) were incubated with microtiter wells coated with SHP-2. Bound PDGFR\(\beta\) KD was detected using an anti-PDGFR\(\beta\) antibody. The results of this experiment are shown in Figure 2, and reveal a high affinity interaction between pPDGFR\(\beta\) KD and SHP-2 (KD = 7.8\pm 1.21 nM). In contrast, a relatively weak interaction of non-phosphorylated forms of the PDGFR\(\beta\) KD with immobilized SHP-2 was detected (KD = 326\pm 26.8 nM). Since phosphorylated forms of LRP1 and PDGFR\(\beta\) KD both bind to SHP-2 with high affinity, we conducted experiments to determine if these two receptors compete for the binding of SHP-2. To investigate this possibility, we incubated microtiter wells with increasing concentrations of phosphorylated or unphosphorylated forms of GST:LRP1-ICD. Following incubation and washing, bound GST:LRP1-ICD was detected with anti-GST antibodies. Curve shows the best fit to a single class of sites using non-linear regression analysis. *, absorbance values for pLRP1-ICD are significantly different from those of LRP1-ICD (p < 0.0001, Students t test) (c) SPR analysis confirms binding of SHP-2 (1 \(\mu\)M) to immobilized phosphorylated GST:LRP1-ICD but not to immobilized unphosphorylated GST:LRP1-ICD. doi:10.1371/journal.pone.0070432.g001
coated with SHP-2 with increasing concentrations of phosphorylated GST:LRP1-ICD in the presence of constant amounts of phosphorylated PDGFRβ KD. The results of this experiment (Figure 3a) demonstrate that in the presence of constant and increasing amounts of phospho-PDGFRβ KD, the apparent affinity of phosphorylated GST:LRP-ICD for SHP-2 decreases. As a control for these experiments, we performed the assay in the presence of soluble forms of the PDGFRβ ectodomain, and found no effect on the interaction of LRP1-ICD with Shp-2 (Fig. 3b). To examine more directly the impact of phospho-PDGFRβ KD on the ability of pLRP-ICD to bind SHP-2, the amount of binding of 100 nM pLRP-ICD to SHP-2 was plotted versus the concentration of p-PDGFRβ KD. These results (Fig. 3c) reveal that the pPDGFRβ KD competes with pLRP-ICD for binding to SHP-2.

**PDGFRβ KD Directly Phosphorylates SHP-2**

SHP-2 has been reported to dephosphorylate the PDGFRβ at tyrosines 771, 751 and 740 [31], however it remains unclear whether activated PDGFRβ can directly mediate the phosphorylation of SHP-2. To examine this possibility, purified PDGFRβ KD was incubated with SHP-2 or the structurally related SHP-1, in the presence or absence of ATP and phosphatase inhibitors. Following incubation, proteins were separated by SDS-PAGE and the degree of protein phosphorylation was assessed by immunoblot analysis using an anti-phosphotyrosine antibody. Since autophosphorylation occurs between dimerized PDGFR receptors, we incubated PDGFRβ KD or SHP-2 are tyrosine phosphorylated. In the presence of ATP and phosphatase inhibitors the PDGFRβ KD is phosphorylated as predicted (Fig. 4, lane 3). In the presence of ATP and phosphatase inhibitors, both the PDGFRβ KD and SHP-2 are phosphorylated as a consequence of the PDGFRβ KD kinase activity (Fig. 4, lane 1). In the absence of ATP (Fig. 4, lane 2), the kinase activity of PDGFRβ KD is inactive and neither the PDGFRβ KD or SHP-2 are tyrosine phosphorylated. In the absence of phosphatase inhibitors, reduced phosphorylation of PDGFRβ KD and SHP-2 is noted (Fig. 4, lane 4). When PDGFR KD is incubated with SHP-1 in the presence of ATP and phosphatase inhibitors, the PDGFRβ KD was observed to be phosphorylated whereas SHP-1 was not (Fig. 4, lane 5). These results demonstrate that SHP-2, but not SHP-1, is directly phosphorylated by the activity of the PDGFRβ KD.

To determine the effect of SHP-2 phosphorylation by the PDGFRβ KD on the catalytic potential of SHP-2, we measured the phosphatase activity of SHP-2 after incubating with the PDGFRβ KD in the presence of ATP. As a control for this experiment, we also used the soluble ectodomain of the PDGFRβ (sPDGFr). The results (Fig. 4b) demonstrate that SHP-2 phosphorylation by the PDGFRβ KD induces the catalytic activity of SHP-2. The presence of LRPI-ICD has little effect on SHP-2 phosphatase activity. However, the presence of LRPI-ICD (at equimolar concentration) reduces the activation of SHP-2 by the kinase domain of the PDGFRβ slightly (p<0.005), suggesting that LRPI may reduce SHP-2 activation mediated by the PDGFRβ KD.

**PDGFRβ-mediated Tyrosine Phosphorylation of SHP-2 Occurs in Endosomes**

Previous studies reveal that activation of the PDGFRβ results in tyrosine phosphorylation of LRPI [16,30] which can occur in caveolae [30] or within endosomal compartments following internalization of LRPI and the PDGFRβ [17]. To explore the possibility that SHP-2 may also be activated by PDGFR-mediated phosphorylation within endosomal compartments, we examined the effects of the dynamin-dependent endocytosis inhibitor, dynasore, on PDGFRβ-mediated SHP-2 phosphorylation. These results reveal that SHP-2 phosphorylation was delayed in cells that were treated with dynasore (Fig. 5), suggesting that SHP-2 phosphorylation is enhanced when PDGFRβ is trafficked to endosomes following its activation. Similar results are noted with ERK activation (Fig. 5) consistent with our previous studies [17].

**LRPI co-immunoprecipitates and Co-localizes with Phosphorylated SHP-2 Following PGDF-BB Stimulation**

To examine the possible formation of a complex between LRPI and phospho-SHP-2, we utilized WI38 fibroblasts which express abundant levels of LRPI and SHP-2, thus making them an optimal cell system in which to investigate associations between these two molecules. Following PDGF stimulation, cells were chilled and incubated with the cell-permeable crosslinking agent, DSP (dithiobis[succinimidylpropionate]) prior to analysis. The results (Fig. 6a) reveal that very little LRPI co-immunoprecipitates with SHP-2 in resting cells. However, upon stimulation with PDGF, we note a time-dependent co-immunoprecipitation of LRPI with SHP-2. Immunofluorescence studies performed prior to stimulation confirm that LRPI is trafficked to endosomes following PDGF stimulation (Fig. 6b) and colocalization with SHP-2 is noted at these sites (Fig. 6c).

---

**Figure 3. pPDGFRβ kinase domain and pLRP1-ICD compete for SHP-2 binding.** (a,b) Increasing concentrations of GST:pLRP1-ICD were incubated with microtiter wells coated with SHP-2 in the presence of 0, 20, 60 and 180 nM pPDGFRβ KD (a) or sPDGFr (b). Bound GST:pLRP1-ICD was detected with anti-GST antibody. Curves in (a) show best fits to a single class of sites using non-linear regression analysis. The Kᵦ values at each concentration are significantly different (p = 0.0007, Students t test). (c) Percent binding, normalized to 0 nM pPDGFRβ, of GST:pLRP1-ICD (100 nM) binding to SHP-2 in the presence of 20, 60 and 180 nM pPDGFRβ KD. (*, p = 0.0024; **p<0.0001, Students t test). doi:10.1371/journal.pone.0070432.g003
to PDGFRβ activation revealed that there is virtually no co-localization between LRP1 and SHP-2 (data not shown). However, following PDGF stimulation, LRP1 co-localized with SHP-2 at the leading edge of migrating cells (Fig. 6b, box 2 and c-e), but not at the trailing edge of the migrating cell (Fig. 6b, box 1). Five sections of the image (0.2 μm apart) were used to reconstruct a three-dimensional image, and the results are shown in Fig. 7, where it is apparent that LRP1 and phospho-SHP-2 co-localize in large vesicles, most likely multi-vesicular bodies or lysosomes.

LRP1 Modulates SHP-2-dependent PDGFBB-induced Migration

SHP-2 is known to participate in PDGF-mediated chemotaxis, and to determine if LRP1 modulates the function of SHP-2 mediated chemotactic signaling, we examined the migration of LRP1-expressing (B41) and LRP1-deficient fibroblasts to PDGF-mediated chemotaxis. To examine the contribution of SHP-2 to this process, we employed the specific SHP-2 inhibitor, NSC-87877, which selectively inhibits the catalytic activity of SHP-2 [26]. The results of these experiments (Fig. 8) reveal that inhibition of SHP-2 phosphatase activity in LRP1 expressing cells has little overall impact on their chemotactic migration toward PDGF-BB. In contrast, inhibiting SHP-2 phosphatase activity in LRP1-deficient cells effectively blocks PDGF-BB chemotactic migration. These results suggest that in the absence of LRP1 expression, PDGF-mediated migration is dependent upon SHP-2. However, when LRP1 is expressed, PDGF-induced migration does not appear to depend upon SHP-2 activity.
Discussion

Excessive vascular smooth muscle cell growth and migration are hallmark features of many vascular occlusive diseases including atherosclerosis and restenosis after percutaneous transluminal angioplasty (PTCA) [32]. These pathological responses to injury represent multicellular processes involving the local production of various growth factors, including PDGF. The PDGF signaling pathway plays a fundamental role in the development of vascular disease due to its ability to directly promote the transition of SMC from a quiescent, contractile state into a synthetic state of migration and proliferation [33]. Previous studies have shown that LRP1 is a physiological regulator of this pathway and functions to suppress PDGFRβ activation and signaling properties [13,34–36]. The mechanisms by which this occurs are not at all clear. LRP1 can directly bind c-Cbl, a ubiquitin E3-ligase, that regulates turnover of receptor tyrosine kinases, such as the PDGFRβ. In fibroblasts from mice deficient in LRP1, ligand-induced PDGFRβ internalization and turnover is substantially increased [37]. However, these data do not explain the in vivo observations in SmLRP1−/− mice where increased levels of active PDGFRβ and increased PDGF-signaling are observed [13].

Activation of the PDGFRβ upon binding of its ligand leads to a transient tyrosine phosphorylation of the LRP1-ICD [16,30] which primarily occurs within endosomal compartments [17]. This event generates a docking site for adaptor molecules involved
in signaling pathways, including Shc [18] and SHP-2 [19,20]. SHP-2 is a non-receptor protein tyrosine phosphatase that functions as a positive signal transducer between receptor protein tyrosine kinases and the ERK pathway in mediating cellular responses. SHP-2 regulates the expression of PDGFRβ, and thus levels of PDGFRβ are downregulated in mutant fibroblasts lacking SHP-2 [38]. SHP-2 is also directly involved in PDGF-mediated signaling events, and PDGF-stimulated DNA synthesis and ERK activation [38] as well as PI3K activation [38,39] is severely suppressed in SHP-2 deficient cells. Activation of the PDGFRβ induces autophosphorylation of a number of tyrosine residues within the PDGFRβ cytoplasmic domain which act as docking sites for adaptor proteins. Two of these sites, located on tyrosines 763 and 1009, are responsible for binding SHP-2 [22,23]. Interestingly, mutation of these two tyrosines to phenylalanine generates a receptor that fails to bind SHP-2 and demonstrates a significantly reduced chemotaxis response induced by PDGF-BB, revealing an important role for SHP-2 in chemotactic signaling [23,40]. Together, these data reveal a critical function for SHP-2 in promoting the signaling responses of the PDGFRβ. Importantly, substantial evidence suggests an important role for SHP-2 in the vasculature. SHP-2 is abundant...
in vascular SMC [41], and its expression levels are elevated upon vascular injury [42,43]. PDGFB-mediated smooth muscle cell migration is inhibited by the SHP-2 inhibitor NSC-67877 and interestingly, oral administration of the SHP-2 inhibitor, NSC-07677 significantly suppressed neointima formation in a rat model of carotid artery injury [44].

Based on the important role of SHP-2 in facilitating PDGFB-mediated signaling events, we hypothesized that the association of SHP-2 with phosphorylated forms of LRP1 may attenuate PDGFB signaling events. To test this hypothesis, we first conducted experiment to measure the affinity of SHP-2 for phosphorylated forms of the LRP1-ICD and compared this value to its affinity for activated forms of the PDGFB. These studies confirmed high affinity interactions between SHP-2 and the phosphorylated forms of the LRP1-ICD that were comparable to those measured for its interaction with the PDGFB. Additional experiments demonstrated a competition between these two receptors for SHP-2. We conclude from these experiments that phosphorylated forms of LRP1 binds SHP-2 with an affinity that is comparable to that of the PDGFB, and is thus capable of sequestering SHP-2 and preventing its association with activated forms of the PDGFB. Interestingly, we confirmed that LRP1 co-immunoprecipitates and co-localizes with SHP-2 in fibroblasts following stimulation with PDGFB. This co-localization occurs most prominently in large vesicles, likely multivesicular bodies. It is tempting to speculate that LRP1 may bind and sequester SHP-2 in multivesicular bodies. Of interest in this regard are the recent studies of Taelman et al. [45] demonstrating that Wnt signaling involves sequestration of glycogen synthase kinase 3 inside of multivesicular endosomes.

In summary, findings in the present study demonstrate that LRP1 modulates SHP-2-mediated PDGFB signaling events. This occurs following tyrosine-phosphorylation of LRP1 that is mediated by activated PDGFB. Elucidating mechanisms which modulate PDGFB signaling will give a greater understanding of the process of vascular smooth muscle remodeling in the context of cardiovascular disease, and possibly other PDGFB signaling-driven processes such as cancer and pulmonary fibrosis.

Author Contributions

Conceived and designed the experiments: JC IM NN MM DKS. Performed the experiments: JC IM NN MM. Analyzed the data: JC IM NN MM DKS. Wrote the paper: JC DKS.

References

1. Sharma S, Christopoulos A, Kakuevi N, Gorog DA (2011) Local drug delivery for percutaneous coronary intervention. Pharmacol Ther 129: 260–266. S0163-7258(10)00218-4 [pii]. 10.1016/j.pharmthera.2010.11.003 [doi].
2. Newby AC, Zafman AB (2000) Molecular mechanisms in intimal hyperplasia. J Pathol 190: 306–309.
3. Pompili VJ, Gordon D, San H, Yang Z, Muller DWM et al. (1995) Expression and Function of a Recombinant PDGF B Gene in Porcine Arteries. Arterioscler Thromb Vasc Biol 15: 2254–2264.
4. Lindahl P, Johannson M, Leveen P, Besholtz C (1997) Pericyte loss and matrix degeneration during PDGF-B-deficient mice. Science 277: 242–245.
5. Besholtz C, Lindholm P, Bjarnagerd M, Enge M, Gerhardt H et al. (2004) Role of platelet-derived growth factor in mesangium development and vasculopathies: lessons from platelet-derived growth factor and platelet-derived growth factor receptor mutations in mice. Curr Opin Nephrol Hypertens 13: 45–52.
6. Abe J, Deguchi J, Matsumoto T, Takaoda N, Noda M et al. (1997) Stimulated Activation of Platelet-Derived Growth Factor Receptor In Vivo in Balloon-Injured Arteries: A Link Between Angiogenesis and Intimal Thickening. Circulation 96: 1906–1913.
7. Grumet FC, Zhao Y, Tsukahara KT, Olszewski BJ, Keiser JA (1997) PDGF-induced tyrosine phosphorylation of the LDL receptor-related protein (LRP). Circulation 96: 1906–1913.
8. Ferns GA, Raines EW, Sprugel KH, Motani AS, Reidy MA et al. (1991) Evidence for co-receptor function. J Biol Chem 280: 27872–27878.
9. Jawien A, Bowen-Pope DF, Lindner V, Schwartz SM, Clowes AW (1992) Platelet-derived growth factor-beta receptor. J Biol Chem 277: 15499–15506.
10. Louis SF, Zahradka P (2010) Vascular smooth muscle cell motility: From migration to invasion. Exp Clin Cardiol 15: e75–e85.
11. Boucher P, Liu P, Gozard M, Hiesberger T, Anderson RG et al. (2002) The low density lipoprotein receptor-related protein mediates fibronectin catabolism and inhibits fibronectin accumulation on cell surfaces. J Biol Chem 277: 16160–16168.
12. Strickland DK, Ashcom JD, Williams S, Burgess WH, McGilvray M et al. (1999) Sequence identity between the 92-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem 274: 17401–17404.
13. Chen L, Sung SY, Yip ML, Lawrence HR, Ren Y et al. (2006) Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol Pharmacol 70: 562–570.
14. George D (2003) Targeting PDGFB receptors in cancer–rationales and proof of concept clinical trials. Adv Exp Med Biol 532: 141–151.
15. Newton CS, Loukinova E, Mikhailenko I, Ranganathan S, Gao Y et al. (2005) PDGF-mediated tyrosine phosphorylation of the LDL receptor-related protein (LRP). Evidence for co-receptor function. J Biol Chem 280: 27872–27878.
16. Louis SF, Zahradka P, McGilvray M, Ntziachristos N, Migliorini MM et al. (2002) PDGF-induced tyrosine phosphorylation of the LDL receptor-related protein (LRP): Evidence for integrated co-receptor function between LRP and the PDGFB receptor. J Biol Chem 277: 15499–15506.
17. Morohashi SC, Mikhailenko I, McGilvray M, Strickland DK (2010) Low density lipoprotein receptor-related protein 1 (LRP1) forms a signaling complex with platelet-derived growth factor receptor-beta in endosomes and regulates activation of the MAPK pathway. J Biol Chem 285: 14308–14317.
34. Boucher P, Li WP, Matz RL, Takayama Y, Auwerx J et al. (2007) LRP1 Functions as an Atheroprotective Integrator of TGFbeta and PDGF Signals in the Vascular Wall: Implications for Marfan Syndrome. PLoS ONE 2: e448.
35. Zhou L, Takayama Y, Boucher P, Tallquist MD, Herz J (2009) LRP1 regulates architecture of the vascular wall by controlling PDGFRbeta-dependent phosphatidylinositol 3-kinase activation. PloS One 4: e6922.
36. Bauford JE, Moore ZW, Zhou L, Herz J, Hui DY (2009) Smooth muscle LDL receptor-related protein-1 inactivation reduces vascular reactivity and promotes injury-induced neointima formation. Arterioscler Thromb Vasc Biol 29: 1772–1778.
37. Takayama Y, May P, Anderson RG, Herz J (2005) Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Controls Endocytosis and c-CBL-mediated Ubiquitination of the Platelet-derived Growth Factor Receptor (beta) (PDGFR[beta]). J Biol Chem 280: 10504–10510.
38. Lu X, Qi CK, Shi ZQ, Feng GS (1998) Downregulation of platelet-derived growth factor receptor-beta in Shp-2 mutant fibroblast cell lines. Oncogene 17: 441–448. 10.1038/sj.onc.1201985 [doi].
39. Wu CJ, O'Rourke DM, Feng GS, Johnson GR, Wang Q et al. (2001) The tyrosine phosphatase SHP-2 is required for mediating phosphatidylinositol 3-kinase/Akt activation by growth factors. Oncogene 20: 6018–6025. 10.1038/sj.onc.1204699 [doi].
40. Qi JH, Ito N, Claesson-Welsh L (1999) Tyrosine phosphatase SHP-2 is involved in regulation of platelet-derived growth factor-induced migration. J Biol Chem 274: 14455–14463.
41. Adachi M, Iwaki H, Shindoh M, Akas Y, Hachiya T et al. (1997) Predominant expression of the src homology 2-containing tyrosine phosphatase protein SHP2 in vascular smooth muscle cells. Virchows Arch 430: 321–325.
42. Chang Y, Zhuang D, Zhang C, Hassid A (2004) Increase of PTP levels in vascular injury and in cultured aortic smooth muscle cells treated with specific growth factors. Am J Physiol Heart Circ Physiol 287: H2001–H2008. 10.1152/ajpheart.00520.2004 [doi].
43. Micke P, Hackbusch D, Mercan S, Stawowy P, Tsuprykov O et al. (2009) Regulation of tyrosine phosphatases in the adventitia during vascular remodelling. Biochem Biophys Res Commun 392: 678–684. S0006-291X(09)00344-0 [pii];10.1016/j.bbrc.2009.03.078 [doi].
44. Won KJ, Lee HM, Lee CK, Lin HY, Na H et al. (2011) Protein tyrosine phosphatase SHP-2 is positively involved in platelet-derived growth factor signaling in vascular neointima formation via the reactive oxygen species-related pathway. J Pharmacol Sci 115: 164–175.
45. Taehman VF, Dobrowski R, Plouhinec JL, Fuentelahia LC, Vorwald PP et al. (2010) Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Curr Biol 14: 1136–1140. S0960-9822(10)00156-5 [pii];10.1016/j.cub.2010.11.034 [doi].