ANHARMONICITY AS AN EXPLANATION FOR ANOMALOUS RESISTANCE OF HIGH-T_c SUPERCONDUCTORS

P.B. Allen,*† J.C.K. Hui,* and W.E. Pickett*‡
Department of Physics, S.U.N.Y., Stony Brook, NY 11790, U.S.A.

C.M. Varma
Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

and

Z. Fisk
Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92037, U.S.A.

(Received 9 October 1975 by A.G. Chynoweth)

Experimental evidence about the temperature dependence of phonon frequencies in V_3Si is used to demonstrate that anharmonicity is a major factor in causing the resistance anomalies recently observed in many high-T_c superconductors.

FISK and collaborators\(^1\) have recently pointed out that the electrical resistance of high temperature superconductors (generally intermetallic compounds with both s-p and d-band constituents) deviates strongly from the Bloch–Gruneisen\(^2\) behavior generally found in other metals. A typical example is V_3Si for which the data\(^3\) are shown in Fig. 1. Usually the Bloch–Gruneisen theory is interpreted to mean that the difference between the resistivity $\rho(T)$ for $T \gg \theta_S$ from the limiting (impurity dominated) resistivity for $T \to 0$ is linear in temperature, i.e.

$$\rho(T) - \rho_0 = \rho_{e-p}(T)$$

$$= (2\pi n h^2/3m)(\lambda_{tr} T)$$

for $T \gg \theta_S$, (1)

where (n/m) is the effective ratio of electron density to mass, and $\rho_{e-p}(T)$ is a complicated integral over the phonon distribution which simplifies at high temperatures to a linear power of T. The strength of the electron–phonon coupling is measured by the dimensionless number\(^4\) λ_{tr} which is closely related to the coupling constant λ of superconductivity theory.\(^5\) It is immediately clear that the data of Fig. 1 cannot satisfy equation (1) because the high temperature resistivity is not really linear. If we denote by $\rho^*(T)$ the extrapolated resistivity at zero temperature from the slope at

\star Supported in part by the National Science Foundation Grant No. DMR73-07578 A01.

† Alfred P. Sloan Fellow, 1973–75.

‡ Present address: H.H. Wills Laboratory, Royal Fort, Bristol BS8 1TL, U.K.

temperature T, $\rho^*(T) > \rho_0$ for $T \gtrsim 150K$. (For V_3Si $\theta_S \approx 300K$.) The quantity $\xi(300) \equiv [\rho^*(300) - \rho_0]/(\rho(300) - \rho_0)$ can be estimated from the data to be about 0.5. The data in Fig. 1 is taken from a published paper\(^3\) and the drawing of slopes is hazardous. We can be in error in estimating $\xi(300)$ by as much as 50% in either direction.

Many possible explanations for this discrepancy have been given.\(^6\) In this note we present evidence for a particularly simple explanation, namely that λ_{tr} in equation (1) is temperature dependent because of an anomalously strong temperature dependence of the phonon frequencies. Following McMillan,\(^5\) we write λ_{tr} as

$$\lambda_{tr} = \frac{n_{tr}}{M(\omega^2)}$$

where n_{tr} is a purely electronic factor involving the electron density of states and matrix elements averaged over the Fermi surface, M is an averaged atomic mass, and $\langle \omega^2 \rangle$ is a mean square phonon frequency calculated with a weight factor $F(\omega)/\omega$ where $F(\omega)$ is the phonon density of states. (This involves an assumption that the coupling factor $\alpha^2_{tr}(\omega)$ is roughly independent of ω, an approximation which probably only fails at small ω.) If we assume the validity of equation (1) at high temperatures, then we can write

$$\xi(T) = [\rho^*(T) - \rho_0]/[\rho(T) - \rho_0] = \frac{d \log (\omega^2)}{d \log T} - \frac{d \log (n/m)n_{tr}}{d \log T},$$

(3)

A close approximation to the phonon density of
Table 1. Experimental mean squared phonon frequencies and interpolated value of $d \log (\omega^2)/d \log T$ compared with experimental resistance $\tilde{\rho}(300) = [\rho'(300) - \rho_0]/[\rho(300) - \rho_0]$ for four A-15 structure superconducting compounds

Compound	T_c (K)	Superconductive T_c (K)	ω^2_{low} (meV2)	ω^2_{mean} (meV2)	Fractional anharmonicity $1 - c$	$d \log (\omega^2)/d \log T$	$\tilde{\rho}(300)$ Experimental
V$_3$Si	17	297	642b	642b	0.16	0.31	0.5a, 0.3f
V$_3$Ga	15	297	408c	532c	0.072	0.17	0.45e, 0.3f
V$_3$Ge	6	297	572	572	0.06	0.12	0.3f
Nb$_3$Sn	18	297	331	287d	0.072	0.21	0.6b

a Reference 7.
b $T = 4.2$ K.
c $T = 77$ K.
d $T = 5.58$ K.
e Reference 3.

Fig. 1. Experimental values of electrical resistance ρ as a function of temperature T for V$_3$Si (from reference 3). The value $\rho(296) - \rho_0 = 35 \mu \Omega \cdot \text{cm}$ found by linear extrapolation deviates significantly from the Bloch--Gruneisen value of 0.

Fig. 2. Experimental values of $\log (\omega^2)$ (calculated from the phonon densities of states of reference 7) plotted vs $\log T$. The solid line is an empirical fit using equation (6).
only about 60% of the effect we are looking for. However, as already mentioned our deduction of $F(300)$ from the data is quite uncertain. So is the deduction of $(d\log(\omega^2)/d\log T)$ at room temperature from the data which extends only to room temperature. More precise knowledge of resistivity as well as measurements of (ω^2) at higher temperatures are required to see whether mechanisms other than the one discussed here contribute significantly to the resistivity anomaly.

Reichardt and collaborators at Karlsruhe have also sent us unpublished data for $F(\omega)$ in V_3Ga, V_3Ge, and Nb_3Sn at two different temperature each. The moments $\langle \omega^2 \rangle$ are shown in Table 1. For the varadium compounds, an incoherent scattering method was used, while for Nb_3Sn, an average of several scattering angles was taken with a polycrystalline target. The interpolated values of $d\log(\omega^2)/d\log T$ are smaller than in V_3Si, but still fairly large, and tend to scale with T_v, in agreement with Fisk's observations about resistance anomalies. As can be seen from Table 1, anharmonic effects can account for 30% of the anomaly in Nb_3Sn.

Previous attempts to explain the resistivity anomaly have mainly invoked a temperature dependence of $(m/n)\rho_v$, which arises from having the electronic density of states vary rapidly with energy over a range kT. It is hard to estimate the magnitude of this effect since no reliable knowledge of the density of states near the Fermi surface to this accuracy is available.

Our mechanism is based on the experimental results on $(\omega^2(T))$ which can only be understood if the anharmonic forces in V_3Si are anomalously large. Independent evidence that this is so are provided by the extraordinary harmonic generation observed by Testardi in V_3Si. The confirmation of strong anharmonicity in other high temperature superconductors discussed in reference 1 must await determination of $(\omega^2(T))$ for them. The reason for the relatively strong anharmonicity of high temperature superconductors is that the harmonic force constants in these materials as measured, say, by the low temperature sound velocities, are relatively small. This leads to a larger mean square displacement and effectively a larger anharmonic contribution to the phonon frequencies.

In the A-15 structure extraordinary anharmonicity has earlier been inferred by Testardi and Bateman, who also speculated on its effect on the resistivity. Testardi’s heuristic model for the interatomic potential in A-15 compounds also leads to temperature dependence of phonon frequencies of the form given by equation (6).

Acknowledgements — We thank P. Schweiss and W. Reichardt for permission to quote the data of references prior to publication. P.B.A. thanks R.C. Dynes for hospitality at Bell Laboratories.

REFERENCES

1. FISK Z. & LAWSON A.C., Solid State Commun. 13, 277 (1973); FISK Z., VISWANATHAN R. & WEBB G.W., Solid State Commun. 15, 1797 (1974).
2. ZIMAN J.M., Electrons and Phonons, pp. 357ff. Oxford (1960).
3. MARCHENKO V.A., Fiz. Tverd. Tela 15, 1893 (1973); [Sov. Phys. Solid State 15, 1261 (1963)].
4. See for example, GRIMVALL G., Phys. Kond. Mat. 11, 279 (1970). The factor $(1-\cos \theta)_{el-ph}$ of that paper is γ_v of the present paper.
5. MCMILLAN W.L., Phys. Rev. 167, 331 (1968).
6. Many possible explanations are catalogued by GRIMVALL G., Phys. Kond. Mat. 17, 135 (1974).
7. SCHWEISS P., Progress Report of the Teilinstitut Nukleare Festkorporphysik, KFK2054, Sept. 1974, Kernforschungszentrum Karlsruhe, Karlsruhe, Germany; REICHARDT W. & SCHWEISS P., Private communication.
8. COHEN R.W., CODY G.D. & HALLORAN J.J., Phys. Rev. Lett. 19, 840 (1967).
9. L'VOV S.N., MAL'KO P.I. & NEMCHENKO V.F., Fiz. Metal Metalloved. 32, 485 (1971).
10. FRADIN F.Y., Phys. Rev. Lett. 33, 158 (1974).
11. TESTARDI L.R., Phys. Rev. Lett. 31, 37 (1973).
12. TESTARDI L.R. & BATEMAN T.B., Phys. Rev. 154, 402 (1967).
13. TESTARDI L.R., Phys. Rev. B5, 4342 (1972).