A hierarchical MnOx/ZSM-5 heterogeneous catalyst for the conversion of cellulose from mahogany wood to levulinic acid

D U C Rahayu, D A Nurani, L N H Rochmah, N F Antra and Y K Krisnandi

Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia

Corresponding author: yuni.krisnandi@sci.ui.ac.id

Abstract. At present, lignocellulose holds significant potential as a renewable biomass resource. Lignocellulose can be converted to levulinic acid, one of the most important platform chemicals used in several applications. The forestry of mahogany wood produces abundant waste in the urban areas of Indonesia. This waste is a source of biomass, containing the major chemical constituents of holocellulose, α-cellulose, and lignin in proportions of 53.37%, 33.05%, and 31.82%, respectively. Pretreatment processes of mahogany wood were conducted through dewatering processes followed by delignification using NaOH and NaOCl to pre-concentrate the cellulose substrate. The delignification processes using NaOH and NaOCl reduced the lignin content to 15.58% and 6.40%, respectively, from 31.82% of dewatered-mahogany wood. The cellulose conversion from mahogany wood to levulinic acid was performed using the MnOx/H \textsubscript{2}ZSM-5 heterogeneous catalyst in the presence of H \textsubscript{2}O and HPO \textsubscript{4} solutions. The parameters of cellulose conversion, including conversion time and concentration of HPO \textsubscript{4} and H \textsubscript{2}O, were also studied, and HPLC analysis revealed the highest cellulose conversion to levulinic acid to be 2.44% with 20% H \textsubscript{2}O \textsubscript{4} (v/v) and 30% HPO \textsubscript{4} (v/v) after 8 h of reaction time.

Keywords: hierarchical Mn/ZSM-5, cellulose, mahogany wood, levulinic acid

1. Introduction

The conversion of biomass into valuable chemicals or biofuel is a field that has captured the attention of many researchers [1–3]. It is of interest to discover improved uses for residual biomass and endeavour to increase its value and profitability. Levulinic acid is an excellent chemical platform and holds great potential as a product derived through biomass conversion. It has two functional groups, i.e., a ketone and a carboxylic acid, which can be used for further functionalization in synthesizing organic compounds such as 2-methyl-tetrahydrofuran, levulinic ester (biodiesel additive), and δ-aminolevulinic (herbicide) [4,5].

In Indonesia, mahogany wood (Swietenia macrophylla King) is one of the most harvested timber forest products that are currently used in industry. Based on the statistics of forestry production from Statistics Indonesia (Biro Pusat Statistik, BPS); 295,739.28 m 3 of mahogany wood was produced in Indonesia during 2015 [6]. The greater the production of mahogany wood, the greater the mahogany wood waste will be. The waste should therefore be used so as to maximize its economic value and utility. This abundance of waste and chemical composition of mahogany wood, including holocellulose, α-cellulose, and lignin, allow it to be used as feedstock in biomass conversions [7].

Biomass conversion into levulinc acid occurs in mild conditions during the acid hydrolysis of lignocellulose leading to the cleavage inter and intramolecular hydrogen bonds, activation of a Fenton-
like system, and the dehydration of glucose to yield the product [8,9]. This research intends to initiate a Fenton-like system by optimizing the concentrations of H₃PO₄ and H₂O in the cellulose conversion of mahogany wood as the biomass source into levulinic acid. The heterogenous catalyst of MnOx/ZSM-5 will be used for its pore structure and high activity. It was proven that the impregnated Mn⁺ in Hi_ZSM-5 pores lead to higher yields of levulinic acid than that observed in Fe/ZSM-5 during the conversion of glucose to levulinic acid [10]. This catalyst is also expected to exhibit good product selectivity and should allow for the conversion in a single-step reaction.

2. Materials and methods

2.1. Materials
Mahogany wood was obtained from Depok, West Java, Indonesia. The chemicals used were of technical grade. NaOCl (pro-analytical grade) and levulinic acid (standard grade) were obtained from Wako Pure Chemicals (Osaka, Japan). Glucose (standard grade), 5-HMF (standard grade), 96-97% H₂SO₄, NaOH, NaClO, glacial CH₃COOH, 89% H₃PO₄, 30% H₂O, n-hexane and 95% ethanol were obtained from Merck. Hierarchical 2% Mn/ZSM-5 (MnOx/ZSM-5) was synthesized based on the protocol by Krisnandi et al. [11].

2.2. Preparation of mahogany wood
Mahogany wood was finely ground and filtered with a particle size diameter of 315-710 μm. The feedstock was then dried overnight and stored in an airtight plastic box at 25 °C.

2.3. Chemical content analysis of mahogany wood
The chemical constitution of mahogany wood was determined according to methods AOAC 1984 [12] for the moisture and ash content; according to ASTM D 1107-56, reapproved in 1972 [13] for the extractive content; according to Dance et al. [14] and Yoshihara et al. [15] for the lignin content; according to Browning [16] for the holocellulose content and ASTM D 1103-60, reapproved in 1978 [17] for the α-cellulose content.

2.4. Pretreatment processes of mahogany wood
The pretreatment processes of mahogany wood were conducted by dewaxing and delignification processes using NaOH and NaOCl. The dewaxing process was conducted twice by Soxhlet extraction using n-hexane/ethanol (1:2) for 6 h at 80 °C. Delignification processes were conducted using a 10% NaOH solution for 1.5 h at 55 °C, followed by NaOCl at 70 °C. The reaction contents were further neutralized using glacial CH₃COOH. The remaining cellulose was then analyzed for its resulting lignin, holocellulose, and α-cellulose content.

2.5. Cellulose conversion from mahogany wood to levulinic acid
The pretreated mahogany wood (1 g) was mixed with MnOx/Hi_ZSM-5 (1 g) and H₃PO₄, (20 mL) at various concentrations ranging from 30%–60% (v/v) and 30% H₂O, (v/v) (0.5 mL) in a three-neck round-bottom flask. The mixture was heated to reflux at 100 °C for 2, 4, 6, and 8 h. A similar reaction was also conducted with a 10% and 20% concentration of H₂O (v/v).

2.6. Product analysis
An HPLC HITACH L2000 equipped with an Aminex HPX-87H column and an RI-Detector was used to analyze the conversion products. The detector and column temperatures were set to 40 °C and 60 °C, respectively, and H₂SO₄ (0.005 M) was used as the mobile phase at a flow rate of 0.55 mL min⁻¹. Equation (1) was used to calculate the yield of the cellulose conversion, where Cₗ is the concentration of levulinic acid (mg L⁻¹), V is the volume of reactant (L), and m is the mass of substrate (mg).

\[
\text{% yield} = \frac{C_L \times A \times V}{m} \times 100 \%
\]

(1)

3. Results and discussion
The chemical constituents of raw mahogany wood are tabulated in table 1. Pretreating the mahogany wood with NaOH decreased the lignin content from 51.03% to 15.58%. According to Chang et al. [11], effective pretreatment should decrease the lignin content by more than 10% from its
Table 1. The chemical constitution of raw mahogany woodsare.

Chemical Content	Content (wt. %)
Water	5.79
Ash	1.31
Extractives	2.73
Holocellulose	53.37
α-Cellulose	33.05
Lignin	31.82

Figure 1. The chromatogram of cellulose conversion from mahogany wood to levulinic acid with 40% H₃PO₄ and 30% H₂O after 8 h of reaction time.

The conversion of cellulose to levulinic acid is facilitated by the acidic pH from the H₃PO₄ addition, which causes the cleavage of hydrogen bond intra- and intermolecular bonds [8]. The conversion occurs in a Fenton-like system due to the presence of H₂O, H₂O• radicals from H₂O caused the depolymerization of cellulose into its monomer (glucose) and further decomposed glucose to 5-HMF as intermediate before producing levulinic acid as the target product [8]. The chemical reactions are shown in equations (2) and equation (3).

\[Mn^{2+} + H_2O_2 \rightarrow Mn^{3+} + HO^- + HO^+ \] \hspace{1cm} (2)
\[Mn^{3+} + H_2O_2 \rightarrow Mn^{2+} + H_2O^+ + H^+ \] \hspace{1cm} (3)

The reaction was conducted at various concentrations of H₃PO₄ ranging from 30-60% (v/v). In the early stages of the reaction, charcoal formed when using H₃PO₄ at concentrations higher than 40%, so the product could not be analyzed using HPLC. Based on figure 1, two key products were formed i.e., glucose (rt. 9.7 min) and levulinic acid (rt. 16.8 min). The absence of 5-HMF (rt. 31.2 min) indicated that 5-HMF might be further converted into levulinic acid. This analysis served to prove that MnOx/ZSM-5 had good selectivity for levulinic acid. Figure 2a shows that the highest biomass conversion to levulinic acid was after 8 h of reaction time where a 1.89% yield of levulinic acid for 40% H₃PO₄, (v/v) was obtained. The higher concentration of H₃PO₄ might dominate the reaction causing the catalytic activity of MnOx/ZSM-5 to decrease, leading to charcoal formation because of faster cellulose depolymerization into glucose. An investigation into the effect of the H₂O was therefore conducted using 30% H₃PO₄, (v/v).
To elucidate the role of H.O. in cellulose conversion, various concentrations of H.O. ranging from 10-20% (v/v) were used and the effects thereof were studied. Levulinic acid was not obtained when 10% H.O. was used in this reaction (figure 2b). This could be due to the limited formation of HO• radicals which were therefore unable to initiate the conversion of cellulose into levulinic acid. Moreover, according to figure 2b, the conversion reaction using 20% H.O. (v/v) with 30% HPO. (v/v) resulted in the highest percentage yield of levulinic acid of up to 2.44% after 8 h of reaction time. The MnOx/ZSM-5 catalyst has an inherent mesoporous and microporous character that is needed to catalyze the conversion of cellulose into levulinic acid. The active sites of MnOx/ZSM-5 and H.O. facilitated the formation of HO• radicals that could cleave glycosidic bonds in the cellulose. Furthermore, the mesoporous ZSM-5 increased the ability of cellulose to convert to levulinic acid.

4. Conclusions
In this work, the optimization reaction of cellulose conversion from mahogany wood into levulinic acid was studied using a MnOx/ZSM-5 heterogeneous catalyst. Cellulose from mahogany wood was obtained through alkali and oxidative delignification. Alkali delignification using NaOH decreased the lignin content from 31.82% to 15.58%, and further oxidative delignification using NaOCl decreased the lignin content to 6.4%. HPLC analysis showed the highest cellulose conversion to levulinic acid was 2.44% with 20% H.O. (v/v) and 30% HPO. (v/v) after 8 h of reaction time. With the absence of the 5-HMF peak in the HPLC analysis, this work demonstrated that the MnOx/ZSM-5 catalyst exhibits good selectivity for levulinic acid.

Acknowledgements
This work was supported by International Collaboration Research Grant 2014 from Universitas Indonesia and PUPIT BOPTN 2016 research grant No. 1136/UN2/R12/HKP/05.00/2016 from Ministry of Research, Technology and Higher Education (Kemenristekdikti) Republic of Indonesia. Authors would like to thank Einago (www.einago.com) for the English language review.

References
[1] Chang C, Cen P and Ma X 2007 Bioresour. Technol. 98 1448–53
[2] Peng L, Lin L, Li H and Yang Y 2011 Appl. Energ. 88 4590–6
[3] Menon V and Rao M 2012 Prog. Energ. Combust. Sci. 38 522–50
[4] Bozell J J, Moens L, Elliott D Ć, Wang Y, Neuenschwander G G, Fitzpatrick S W, Bilski R J and Jarnefeld J L 2000 Resour. Conserv. Recycl. 28 227–39
[5] Chalid M 2012 *Levulinic Acid as a Renewable Source for Novel Polymers* (Groningen: University of Groningen) p 109
[6] Statistics Indonesia 2015 *Statistics of Forestry Production* (Jakarta: Biro Pusat Statistik) p 164
[7] Kumar P, Barrett D M, Delwiche M J and Stroeve P 2009 *Ind.Eng. Chem. Res.* **48** 3713–29
[8] Chen Y, Li G, Yang F and Zhang S M 2011 *Polym. Degrad. Stab.* **96** 863–9
[9] Girisuta B, Janssen L P B M and Heeres H J 2007 *Ind. Eng. Chem. Res.* **46** 1696–1708
[10] Saskhina K A, Labko V S, Rudina N A, Parmon V N and Parkhomchuck E V 2013 *J. Catal.* **299** 44–52
[11] Krisnandi Y K, Anggraini A R, Azaria A P, Agnes A, Pertivi R, Antra F, Nurani D A, Suwardiyanto and Howe R F 2017 *Indones. J. Chem* (in review)
[12] AOAC 1984 *Official Methods of Analysis* (Arlington: Association of Official Analytical Chemists)
[13] ASTM 1972 *Standard Test Method of Test for Alcohol-toluene Solubility of Wood* (West Conshohocken: ASTM International) ASTM D 1107-56 (reapproved 1972)
[14] Lin S Y and Dance C W 1992 *Methods in Lignin Chemistry* (Berlin: Springer-Verlag)
[15] Yoshihara K, Kobayashi T, Fujii T and Akamatsu I 1984 Japan Tappi J. **38(4)** 466–75
[16] Browning B L 1967 *Methods of Wood Chemistry* (New York: Wiley & Sons)
[17] ASTM 1978 *Standard Test Method for α-Cellulose* (West Conshohocken: ASTM International) ASTM D 1103-60 (reapproved 1978)
[18] Lee Y J, Chung C H and Day D F 2009 *Bioresource. Technol.* **100** 935–41