Correlative Study on Effect of Microbial Cultures on Soil Nutrient Status and Growth of Spinach Beet in Polluted and Unpolluted Soils

*1Alavala Uma Rajashekhar, R. Subhash Reddy1, M. Chandini Patnaik2
*1Department of Agricultural Microbiology and Bioenergy, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad-500030, India
2AICRP on Micronutrients Soil and Plants, Telangana, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad-500030, India
*Corresponding author – shekharagrico34@gmail.com

ABSTRACT
In this present studied poly bag experiment was conducted following complete randomized block design with 12 treatments and three replications. Polluted Soil with supply of fresh water, Unpolluted soil with supply of fresh water, Unpolluted soil with supply of polluted water. The results of pot culture were reveals that the Nitrogen availability was highest in T3 (140.65 kgha⁻¹) and lowest in T8 (116.79 kgha⁻¹) at harvesting stage, phosphorus uptake was found in the treatment T3 (43.34 kgha⁻¹) and Increasing soil phosphorus content due to the application of inorganic fertilizers in polluted soils, increased the nutrient availability in the soil, highest potassium uptake was observed in T7 (241.26 kg ha⁻¹) in un polluted soils application of fresh water. Application of microbial cultures had significant effect on nitrogen, phosphorus potassium uptake in spinach beet in the different pot culture treatments. The treatment T8 (70.03 g plant⁻¹) comprising RDF+FYM+VAM and Pseudomonas showed highest values at 30 DAS, 60 DAS in unpolluted soils over other treatments. Among all the treatments, T8 comprising RDF, FYM, VAM and Pseudomonas was showed highest dry weight of leaf per plant at 30 DAS & 60 DAS in unpolluted soils

Keywords: Microbial culture, Pseudomonas, VAM, Polluted soils, Unpolluted soils, Nutrient status, Plant growth

INTRODUCTION
Soil contamination due to the disposal of industrial and urban wastes generated by human activities has become a major problem and an environmental concern. Controlled and uncontrolled disposal of wastes to agricultural soil are responsible for the migration of contaminants into non contaminated sites. Because of industrialization and urbanization, there is no much land is available for urban farming in and around Mumbai. Wherever the small lands are available as open space, unused lands, barren lands etc are contaminated by heavy metals which come through industrial waste disposal. Microorganisms play a unique role in the soil ecosystem, because of their contributions to soil fertility. These are responsible for mineralization of nutrients, decomposition, and degradation or transformation of toxic compounds. The biological agents i.e. yeast, fungi or bacteria are used to remove toxic waste from environment (7). Hence, microbial bioremediation is the most effective tool to manage the polluted environment and recover contaminated soil Vegetables are an important part of human’s diet. In addition to a potential source of important nutrients, vegetables constitute important functional food components by contributing protein, vitamins, iron and calcium which have marked health effects. Amongst all the vegetables, the leafy vegetables have a very high protective food value. They are rich in mineral and hence can be called as “ Mines of minerals”.

Vitamin A and C are present in abundant quantities. It is a widely grown leafy vegetable. It is rich and cheap source of vitamin A, iron, essential amino acids Ascorbic acid etc. Beside this, soft fibrous matter is specially in providing necessary roughage in diet. Vegetables, especially those of leafy vegetables grown in heavy metals contaminated soils, accumulate higher amounts of metals than those grown in uncontaminated soils because of the fact that they absorb these metals through their leaves. Majority of the land resources were found to be uncultivable, as they were heavily contaminated with heavy metals. If
the microbial bioremediation is proved to be effective, then the land resources can be preserved with good fertility, so that the farmers can be benefited by using these remediated soils for cultivation. The crop benefiting microbial inoculants generally called as bioinoculants, help in augmenting the crop productivity through effective mobilization of major plant nutrients like N, P and K and other minor nutrients needed by the crop. These beneficial microorganisms are also known to secrete plant growth promoting substances like IAA, GA, cytokinins, vitamins for the improvement of crop growth, yield and for quality produce (1). Mycorrhizal Fungi (AMF) is widespread throughout the world and found in the majority of terrestrial ecosystems (6). AMF can be integrated in soil management to achieve low-cost sustainable agricultural systems. AMF can reduce soil erosion by bringing together micro aggregates of soil particles to form macro aggregates (Miller and Jastrow, 2012)(5). They are the obligate symbionts that can improve plant growth by up taking P and help to absorb N, K, Ca, S, Cu, and Zn (3); produce glomalin (2); increasing resistance to pests and soil borne diseases.

MATERIALS AND METHODS

Soil samples and soil characteristics
Soil samples of polluted and unpolluted soils were collected before sowing and analysed for the physical(pH, EC, and particle size and chemical characters like NPK and OC parameters) and microbiological properties by adopting standard procedures at Department of Agricultural Microbiology and Bio-energy and Department of Soil Science and Agricultural Chemistry, College of Agriculture, Rajendranagar, PJTSAU, Hyderabad. Water samples were also analyzed before sowing of crop in polluted and unpolluted soils (Table 1).

Crop details
The pot culture experiment was conducted at Department of Agricultural Microbiology and Bioenergy during 2012-13. For this investigation leafy vegetable crop, spinach beet, Pusa Jyothi variety was sown in pot experiments followed completely randomized block design with four treatments and three replications. Microbial cultures (Pseudomonas, VAM) collected from our laboratory

Experiment details

Treatments
The treatments for poly bag experiment were fixed as twelve treatments each treatment with three replications was designed. All three replications were used to record observations on yield, quality parameters of spinach around 30 and 60 days after sowing. In this context of pot culture experiment having twelve treatments and followed statistical design in this treatment subdivided into three parts: polluted soil with supply of fresh water, unpolluted soil with supply of fresh water and unpolluted soil with supply of polluted water. Polluted soil with supply of fresh water have T1: SF Soil+FYM@12 t/ha, T2: SF Soil + FYM + VAM + Pseudomonas, T3: SF Soil + RDF, T4: SF Soil + RDF + FYM + VAM + Pseudomonas. Unpolluted soil with supply of fresh water, have T5: Soil + FYM, T6: Soil + FYM + VAM + Pseudomonas, T7: Soil + RDF, T8: Soil + RDF + FYM + VAM + Pseudomonas. Unpolluted soil with supply of polluted water, have T9: Soil + FYM, T10: Soil + FYM + VAM + Pseudomonas, T11: Soil + RDF, T12: Soil + RDF + FYM + VAM + Pseudomonas.

Preparation of poly bags mixture
The cleaned poly bags were filled with 8 kg soil and this soil was mixed with chemical fertilizer (0.14: 0.24: 0.37 g poly bag\(^{-1}\) NPK), farm yard manure (78.75 g poly bag\(^{-1}\)) and Vesicular Arbuscular Mycorrhizae (100 to 150 g of infected propagules poly bag\(^{-1}\)) according to the treatments which were neatly arranged in the net house.

Chemical fertilizers
Phosphorus and potassium @ 0.24 g poly bag\(^{-1}\) P\(_2\)O\(_5\) and 0.37 g poly bag\(^{-1}\) K\(_2\)O were applied through Di Ammonium Phosphate and Muriate of Potash respectively as basal application. Nitrogen was applied in the form of Urea @ 0.24 g poly bag-1 after germination and after 30 and 60 days after sowing. Farmyard manure was applied @ 78.75 g poly bag-1 which was mixed with soil according to the treatments requirement. EC and pH of FYM were 0.95 dS m\(^{-1}\) and 7.59 respectively and Ni, Co, Cd content in FYM was 0.91, 0.20, 0.01-0.02 respectively.

Seed sowing and maintenance
The poly bags were sown with Pusa Jyothi variety of spinach beet at the rate of 20 seeds per poly bag. After germination, thinning was done and routine care was taken to protect the plants from pest and diseases.

RESULTS AND DISCUSSION

N, P, K content in soil
Available nitrogen (kg ha\(^{-1}\))
Application of microbial cultures had significant effect on nitrogen uptake and presented in table 2. Nitrogen availability was highest in T3 (140.65 kg ha\(^{-1}\)) and lowest in T8 (116.79 kg ha\(^{-1}\)) at harvesting stage and these were significantly different with each other. Among all the treatments polluted soil with supply of fresh water treatments were found that significantly highest nitrogen content was observed in treatments in which 100% RDF are added.

Available phosphorous (kg ha\(^{-1}\))

Application of microbial cultures had significant effect on phosphorus uptake and presented in table 2. The data on soil phosphorus uptake showed significantly different. Among all the treatments, significantly highest phosphorus uptake was found in treatments in which 100% RDF are added.

Available potassium (kg ha\(^{-1}\))

Application of microbial cultures had significant effect on potassium uptake and presented in table 3. Among all the treatments, lowest potassium uptake was observed in T4 (195.40 kg ha\(^{-1}\)) in polluted soil with application of fresh water and highest potassium uptake was observed in T7 (241.26 kg ha\(^{-1}\)) in un-polluted soils application of fresh water.

Leaf fresh weight (g plant\(^{-1}\))

The data presented revealed that the leaf fresh weight was significantly affected by different treatments with RDF, combination of inorganic, organic manures (FYM, and biofertilizer) at 30 DAS and 60 DAS of crop (Table 3).

Leaf dry weight (g plant\(^{-1}\))

The data presented revealed that the leaf dry weight was significantly influenced by recommended dose of fertilizers, combination of inorganic, organic manures (FYM, and biofertilizers) at 30 DAS and 60 DAS. Recycling of wastes for elements; microorganisms abound in the soil and are critical to decomposing organic residues and recycling soil nutrients. Finally results.
Table 1: Physico-chemical properties of soil before sowing

S. No.	Soil properties	Polluted soil	Unpolluted soil
	Physical properties		
1	Particle size analysis		
	Sand (%)	54.2	52.3
	Silt (%)	11.0	12.3
	Clay (%)	34.8	31.7
	Textural class	Black soil	Black soil
2	Bulk density (g cm\(^{-3}\))	1.47	1.45
3	Particle density	2.64	2.63
	Chemical properties		
4	Soil reaction (pH)	7.85	7.6
5	Electrical conductivity (dSm\(^{-1}\))	1.23	1.19
6	Organic Carbon (%)	0.63	0.72
7	Available nitrogen (kg ha\(^{-1}\))	225	206
8	Available phosphorus (kg ha\(^{-1}\))	44.3	40.5
9	Available potassium (kg ha\(^{-1}\))	235	253

Table 2: Effect of microbial cultures on soil N P K (kg/ha) at harvesting stage (60 DAS) in polluted and unpolluted soils of spinach beet

Treatments	N	P	K
Polluted Soil with supply of fresh water			
T\(_1\)- SF Soil+FYM	133.05	41.76	222.72
T\(_2\)- SF Soil+FYM+VAM+Psuedomonas	128.56	39.82	205.59
T\(_3\)- SF Soil+RDF	140.65	43.34	231.57
T\(_4\)- SF Soil+RDF+FYM+VAM+Psuedomonas	120.66	38.44	195.40
Unpollotted soil with supply of fresh water			
T\(_5\)- SF Soil +FYM +Psuedomonas	120.89	38.15	229.33
T\(_6\)- SF Soil + VAM +Psuedomonas	119.67	37.63	212.56
T\(_7\)- SF Soil +RDF	123.30	38.6	241.26
T\(_8\)- SF Soil +RDF+FYM+VAM+Psuedomonas	116.79	36.31	204.85
Unpollotted soil with supply of polluted water			
T\(_9\)- Soil+FYM	128.04	39.11	237.59
T\(_10\)- Soil+FYM+VAM+Psuedomonas	121.40	37.87	215.37
T\(_11\)- Soil+RDF	123.54	38.3	230.28
T\(_12\)- Soil+RDF+FYM+VAM+Psuedomonas	118.28	37.37	201.003
SE m±	0.504	0.295	0.608
C.D at 5%	1.47	0.832	1.775
Table 3: Effect of microbial cultures on fresh weight at 30 and 60 DAS in polluted and unpolluted soils of spinach beet

Treatments	Fresh weight of leaf/plant	
	30DAS	30DAS
Polluted Soil with supply of fresh water		
T1- SF Soil+FYM	30.48	46.48
T2- SF Soil+FYM+VAM+Psuedomonas	34.02	54.05
T3- SF Soil +RDF	23.02	38.65
T4- SF Soil+RDF+FYM+VAM+Psuedomonas	39.40	60.54
Unpolluted soil with supply of fresh water		
T5- SF Soil +FYM+Psuedomonas	31.30	52.30
T6- SF Soil + FYM+ VAM+Psuedomonas	39.89	64.87
T7- SF Soil+RDF	26.61	40.32
T8- SF Soil+RDF+FYM+VAM+Psuedomonas	41.63	70.03
Unpolluted soil with supply of polluted water		
T9- Soil+FYM	26.40	38.12
T10- Soil+FYM+VAM+Psuedomonas	34.71	61.03
T11- Soil+RDF	28.82	50.37
T12- Soil+RDF+FYM+VAM+Psuedomonas	41.36	68.10
SE m±	0.176	0.167
C.D at 5%	0.513	0.488

Table 4: Effect of microbial cultures on dry weight at 30 and 60 DAS in polluted and unpolluted soils of spinach beet

Treatments	Dry weight of leaf/plant	
	30DAS	30DAS
Polluted Soil with supply of fresh water		
T1- SF Soil+FYM	4.05	2.84
T2- SF Soil+FYM+VAM+Psuedomonas	4.73	3.24
T3- SF Soil +RDF	3.16	2.22
T4- SF Soil+RDF+FYM+VAM+Psuedomonas	5.55	3.58
Unpolluted soil with supply of fresh water		
T5- SF Soil +FYM+Psuedomonas	4.62	2.93
T6- SF Soil + FYM+ VAM+Psuedomonas	5.82	3.80
T7- SF Soil+RDF	3.55	2.52
T8- SF Soil+RDF+FYM+VAM+Psuedomonas	6.62	4.17
Unpolluted soil with supply of polluted water		
T9- Soil+FYM	3.47	2.55
T10- Soil+FYM+VAM+Psuedomonas	5.45	3.38
T11- Soil+RDF	4.55	2.86
T12- Soil+RDF+FYM+VAM+Psuedomonas	5.97	3.95
SE m±	0.046	0.03
C.D at 5%	0.133	0.103
REFERENCES

1. Ajay Kumar, J., Rangaswamy, E., Shivabaskar khanagoudar and Sreeramulu, K.R.(2014). Effect of Microbial Inoculants on the Nutrient Uptake and Yield of Beetroot (Beta vulgaris L). Curr. Agri.Res., 2(2): 123-130.
2. Guo, H., X.He and Y.Li.(2012). Spatial distribution of arbuscular mycorrhiza and glomalin in the rhizosphere of Caragana korshinskii Kom in the Otindag sandy land, China. Afric. J. Microbiol. Res., 6: 5745-5753.
3. Jiang, W., G. Gou and Y. Ding.(2013). Influences of arbuscular mycorrhizal fungi on growth and mineral element absorption of chenglu hybrid bamboo seedlings. Pak. J. Bot., 45(1): 303-310.
4. Madhavi, Y., Goud, P.V., Reddy, K.M. and Saidulu, A. (2014). Effect of different levels of vermicompost, castor cake, poultry manure and biofertilizers on growth and yield of Indian spinach (Beta vulgaris var. bengalensis). Crop Res., 37(1/3): 148-151.
5. Miller, R.M. and J.D. Jastrow. (2012). Vesicular arbuscular mycorrhizae and biogeochemical cycling, pp. 109-212. In: Mycorrhizae and Plant Health(Eds.): F.L.Pfleger and R.G.Linderman. APS Press, The American Phytopathol. Soc., St. Paul, Minnesota.
6. Smith, S.E. and Read, D.J. (2008). Mycorrhizal symbiosis. 3rd ed. San Diego,CA, USA: Academic Press.
7. Vessey, J.K (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255(1): 571-586.