Differentially Private Linear Regression over Fully Decentralized Datasets

Yang Liu
Tencent Cloud Product Department
Tencent
Shenzhen 518057, China
clarkieliu@tencent.com

Xiong Zhang
Tencent Cloud Product Department
Tencent
Shenzhen 518057, China
farleyzhang@tencent.com

Shuqin Qin
Tencent Cloud Product Department
Tencent
Shenzhen 518057, China
sookieqin@tencent.com

Xiaoping Lei
Tencent Cloud Product Department
Tencent
Shenzhen 518057, China
edenlei@tencent.com

Abstract

This paper presents a differentially private algorithm for linear regression learning in a decentralized fashion. Under this algorithm, privacy budget is theoretically derived, in addition to that the solution error is shown to be bounded by $O\left(\frac{1}{t}\right)$ for $O\left(\frac{1}{\epsilon}\right)$ descent step size and $O\left(\exp\left(\frac{1}{t^e}\right)\right)$ for $O\left(\frac{1}{\epsilon}\right)$ descent step size.

1 Introduction

In recent years, optimization and learning among fully decentralized parties are drawing much attention [Nedic and Ozdaglar 2009, Nedic et al. 2010, Boyd et al. 2011]. However, privacy concerns are not taken into account in much of the work. Although Huang et al. [2015] presents a private distributed convex optimizer by incorporating the famous notion of differential privacy [Dwork 2011], too strong boundedness assumptions on the objectives must hold. In this paper, we specify the objective as the famous least squares, and provide a differentially private decentralized solver, as well as privacy and accuracy results with relaxed assumptions.

2 Problem Definition

2.1 Decentralized Datasets over Networks

Let $V = \{1, \ldots, k\}$ represent a group of decentralized parties that aim to participate in a global computational task. As a setup of this paper, the parties in V, termed as nodes, are peer-to-peer interconnected to locally establish two-way communication, described by edges in a set of unordered pair of nodes $E = \{\{i, j\} : i, j \text{ are connected}, i, j \in V\}$. Based on the edge set E, one can define the neighbor set of node i as $N_i = \{j : \{i, j\} \in E\} \cup \{i\}$. Over such a network $G = (V, E)$, which is assumed to be connected throughout this paper, nodes $i \in V$ hold mutually exclusive and homogeneous datasets $D_i \in \mathbb{R}^{n_i \times m} \times \mathbb{R}^{n_i}$, respectively, including the design matrix $X_i \in \mathbb{R}^{n_i \times m}$ and the label vector $y_i \in \mathbb{R}^{n_i}$. One of the foundational assumptions of this paper is that D_i is seen as privacy by each node i.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
2.2 Existing Decentralized Linear Regression Algorithm

Linear regression is a common model that arises in various disciplines. Consider a design matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ and a label vector $\mathbf{y} \in \mathbb{R}^n$. Then the learning goal of linear regression is to solve the following least-squares problem:

$$\min_{\mathbf{\beta} \in \mathbb{R}^m} \frac{1}{2} ||\mathbf{X}\mathbf{\beta} - \mathbf{y}||^2.$$ \hfill (1)

It is well-known that (1) yields a unique optimal estimate $\mathbf{\beta}^* = (\mathbf{X}^\top\mathbf{X})^{-1}\mathbf{X}^\top\mathbf{y}$ if \mathbf{X} has full column rank. By letting $n = \sum_{i=1}^{k} n_i$, $\mathbf{X} = [\mathbf{X}_1^\top \ldots \mathbf{X}_k^\top]^\top$ and $\mathbf{y} = [\mathbf{y}_1^\top \ldots \mathbf{y}_k^\top]^\top$, we finally obtain a decentralized linear regression modelling task (1) over network G. A fully decentralized algorithm for solving (1) is described by the following dynamics [Nedic et al. 2010]:

$$\mathbf{\beta}_i(t+1) = \sum_{j \in \mathcal{N}_i} w_{ij}\mathbf{\beta}_j(t) - \alpha(t)\nabla L_i(\mathbf{\beta}_i(t)),$$ \hfill (2)

where $t = 0, 1, 2, \ldots$ is the discretized time, $\mathbf{\beta}_i(t)$ is node i’s current estimate towards the global model, edge weight $w_{ij} > 0$ is defined over $j \in \mathcal{N}_i$ satisfying $w_{ij} = w_{ji}$ and $\sum_{j \in \mathcal{N}_i} w_{ij} = 1$ for all $i \in \mathcal{V}$, $\alpha : \mathbb{Z}^+ \to \mathbb{R}^+$ is the step size, and $L_i(\mathbf{\beta}) = \frac{1}{2}||\mathbf{X}_i\mathbf{\beta} - \mathbf{y}_i||^2$. It was proved that if $\alpha(t) = \alpha \sum_{t=0}^{\infty} \frac{1}{(t+1)^c} > 0$, then $\lim_{t \to \infty} \mathbf{\beta}_i(t) = \mathbf{\beta}^*$ for all $i \in \mathcal{V}$ [Liu et al. 2018]. Typical selections of $\alpha(t)$ include $\alpha(t) = \frac{c}{1+d^t}$ with $c, d > 0$ and $0 < e \leq 1$. Evidently, the contents shared among nodes are $\{\mathbf{\beta}_i(t)\}_{i \in \mathcal{V}, t \geq 0}$, which contain the information of ∇L_i and thereby D_i. When confronted with global adversaries capable of observing the communication contents, the algorithm (2) leads to undesirable privacy disclosure. Therefore, a privacy-preserving version of (2) is demanded.

3 Main Results

In this section, we propose a privacy-preserving version of (2), and provide corresponding differential privacy and accuracy analysis. To facilitate the presentation of our algorithm, we first introduce the following assumption.

Assumption 1. All nodes of the network G knows that the optimal estimate $\mathbf{\beta}^* \in \mathbb{R}^m$ falls into a compact and convex set $\Omega \subset \mathbb{R}^m$ with $D_\Omega = \sup_{\mathbf{\beta} \in \Omega} ||\mathbf{\beta}||$.

Note that Assumption 1 is reasonable in the sense that heuristic approaches can be applied to find Ω. For example, if rank(\mathbf{X}_i) = m, each node i can present a convex set $\Omega_i \subset \mathbb{R}^m$ containing its local optimal estimate $\mathbf{\beta}_i^* = \arg\min_{\mathbf{\beta} \in \mathbb{R}^m} L_i(\mathbf{\beta})$, and Ω can be set as a convex hull of $\bigcup_{i \in \mathcal{V}} \Omega_i$. Such methods are out of scope, and thereby not comprehensively investigated in this paper.

3.1 Privacy-Preserving Algorithm

Define $D_\Omega(\mathbf{\beta}) = \inf_{\mathbf{\beta}' \in \Omega} ||\mathbf{\beta} - \mathbf{\beta}'||$ as the projection onto Ω. Inspired by (2), we provide the following privacy-preserving linear regression algorithm that terminates in finite time $T \geq 1$.

Algorithm 1 T-step Privacy-Preserving Linear Regression

1: Set $t \leftarrow 0$ and initialize $\mathbf{\beta}_i(0)$ for all $i \in \mathcal{V}$.
2: Each node i draws $\omega_i(t) \in \mathbb{R}^m$ from the distribution $Lap_r(\mathbf{\omega}(t))$ satisfying $\lim_{t \to \infty} \mathbf{\omega}(t) = 0$.
3: Each node i computes and propagates $\mathbf{\beta}_i(t) \leftarrow \mathbf{\beta}_i(t) + \mathbf{\omega}(t)$ to its neighbors $j \in \mathcal{N}_i$.
4: Each node i computes the projected state $\mathbf{\beta}_i^2(t) \leftarrow D_\Omega(\mathbf{\beta}_i^2(t))$.
5: Each node i updates its state by $\mathbf{\beta}_i(t+1) \leftarrow \sum_{j \in \mathcal{N}_i} w_{ij}\mathbf{\beta}_j^2(t) - \alpha(t)\nabla L_i(\mathbf{\beta}_i^2(t))$.
6: Set $t \leftarrow t + 1$. Algorithm terminates if $t = T$, otherwise go to Step 2.
As can be noted, under Algorithm 1 each node injects Laplace random noise before true estimate for any i. For Algorithm 1, we provide the following theorem.

Theorem 1. Consider two network datasets $D = (X, y)$ and $D' = (X', y')$ in $\mathbb{R}^{n \times m} \times \mathbb{R}^n$ with $n = \sum_{i=1}^k n_i$. Then D and D' are said to be (δ_X, δ_y)-adjacent if there exists $i \in \{1, \ldots, k\}$ such that (i) $\|X_i\|, \|X'_i\| \leq \delta_X$ and $\|y_i\|, \|y'_i\| \leq \delta_y$; (ii) $X_j = X'_j$ and $y_j = y'_j$ for all $j \neq i$.

Clearly, the adversaries against Algorithm 1 observe all communication contents among nodes $\{\beta_i(t)\}_{i \in V, t=0,\ldots,T-1}$, based on which they aim to infer the privacy D. Such an adversarial relation can be intrinsically described by a mapping $M_T : \mathbb{R}^{n \times m} \times \mathbb{R}^n \times \mathbb{R}^{km} \to \mathbb{R}^{kmT}$ with

$$M_T(D, \{\beta_i(0)\}_{i \in V}) = \{\beta_i(t)\}_{i \in V, t=0,\ldots,T-1}.$$

Then the following definition is provided on the differential privacy of Algorithm 1.

Definition 2. Algorithm 1 in T-step preserves ϵ-differential privacy under (δ_X, δ_y)-adjacency if for all $R \subset \mathbb{R}^{kmT}$ and for all $\{\beta_i(0)\}_{i \in V}$ in \mathbb{R}^{km}, there holds

$$\Pr(M_T(D, \{\beta_i(0)\}_{i \in V}) \in R) \leq e^\epsilon \Pr(M_T(D', \{\beta'_i(0)\}_{i \in V}) \in R)$$

for all (δ_X, δ_y)-adjacent network datasets $D, D' \in \mathbb{R}^{n \times m} \times \mathbb{R}^n$.

For Algorithm 1 we provide the following theorem.

Theorem 1. Let Assumption 1 hold. Then there exists finite $\epsilon > 0$ such that Algorithm 1 in T-step preserves ϵ-differential privacy under (δ_X, δ_y)-adjacency as T goes to infinity if $\{\alpha_i(t)\}_{i=0}^\infty$ is summable. In particular, if $\alpha(t) = \frac{c_n}{(t+d_n)^a}$ and $v(t) = \frac{c_v}{(t+d_v)^\nu}$ with $c_n, a_n, c_v, \nu > 0$ and $1 < d_n + 1 \leq d_n$, then Algorithm 1 in T-step preserves ϵ-differential privacy with $n_M = \max\{n_i \colon i \in V\}$.

Proof. We will use the compact notation $\beta(t) = [\beta_1(t)^T \ldots \beta_k(t)^T] \in \mathbb{R}^{km}$ for $\beta_i(t)$, and the same form will also appear for $\beta_i'(t)$ and $\beta_i''(t)$, whose introduction will be omitted. The underlying dynamics of Algorithm 1 can be written as

$$\beta'(t+1) = (W \otimes \mathbf{I}_m)P_{\Omega}^{\dagger}(\beta(t)) - \alpha(t)G(P_{\Omega}^{\dagger}(\beta(t))) + \omega(t+1), \quad (3)$$

where the ij-th element of $W \in \mathbb{R}^{k \times k}$ equals w_{ij} if $j \in N_i$ and zero otherwise, $P_{\Omega}^{\dagger}(\beta(t)) = [P_1^{\dagger}(\beta(t))^T \ldots P_k^{\dagger}(\beta(t))^T]$, and $G(P_{\Omega}^{\dagger}(\beta(t))) = [\nabla L_1(P_1^{\dagger}(\beta(t)))^T \ldots \nabla L_k(P_k^{\dagger}(\beta(t)))^T]^T - X_{\Omega}^{\dagger}(\beta(t)) - \tilde{y}$ with $X = \text{diag}(X_1, X_2, \ldots, X_k)$ and $\tilde{y} = [y_1^T, \ldots, y_k^T]^T$. Define $M(t)(D, \beta(t)) = \beta'(t+1)$ such that $M_T(\{\beta_i(0)\}_{i \in V}) = \{M^{(\tau)} \circ \cdots \circ M^{(0)} : \tau = 0, \ldots, T-1\}$ when omitting D. Then for any D, D' differing at node i’s dataset w.l.o.g., there hold for all $t \geq 0$ based on (3)

$$Pr(M(t)(D, \beta(t)) = \beta'(t+1)) = \frac{\Pr(M(t)(D', \beta(t)) = \beta'(t+1))}{\Pr(M(t)(D', \beta(t)) = \beta'(t+1))} \leq \exp(\alpha(t)v^{-1}(t+1)(\|\tilde{X} - X'\|_1 + \|\tilde{y} - S\|_1))$$

where

$$Pr(M(t)(D, \beta(t)) = \beta'(t+1)) \leq \exp(\alpha(t)v^{-1}(t+1)(\|X_i^T X_i - X_i^T y_i + y_i^T y_i - X_i^T y_i)|_1 + \|X_i^T y_i - X_i^T y_i\|_1)),$$

(4)
where a) is from the Laplace distribution and b) is an application of norm inequalities. Based on norm inequalities and equivalence Further, based on (7), we have

\[\|X_i^T y_i^* - X_i^T y_i^\|_1 \leq 4\delta X \sqrt{mn}. \]

(5)

Similarly, we have

\[\|X_i^T, y_i^* - X_i^T y_i^\|_1 \leq 4\delta X \sqrt{mn}. \]

(6)

According to (4), (5) and (6),

\[
\Pr(M^{(t)}(D, \beta^b(t)) = \beta^b(t+1)) = \Pr(M^{(t)}(D', \beta^b(t)) = \beta^b(t+1)) \leq \exp \left(4\delta X \sqrt{mn} (\delta X B \Omega \sqrt{km} + \delta_y) a(t)v^{-1}(t+1) \right).
\]

(7)

Based on (7) and the composition property and the composition property [McSherry 2009], this proof is completed.

3.3 Accuracy Analysis

Theorem 2. Let Assumption[7] hold. Suppose \(\alpha(t) = O\left(\frac{1}{t^b}\right) \) with \(0 < e_\alpha \leq 1 \) and \(v(t) = O\left(\frac{1}{t^c}\right) \) with \(e_v > 0 \). Then under Algorithm[7] there holds

\[
\sum_{i \in V} E[\|\beta^i_0(t) - \beta^*\|] = \begin{cases}
O(t) \quad & \text{if } e_\alpha = 1; \\
O(\exp(t^{1-e_v})) \quad & \text{otherwise.}
\end{cases}
\]

Proof. We will continue to use the notations in the proof of Theorem[11] Define \(e(t) = \beta^b(t) - \mathbf{1} \otimes \beta^* \). By subtracting \(\mathbf{1} \otimes \beta^* \) on both sides of (3), one has

\[
e(t + 1) = (W \otimes I - \alpha(t) \tilde{X}) e(t) + \alpha(t)(\tilde{y} - \tilde{X}(1 \otimes \beta^*)) + \omega(t + 1).
\]

(8)

Then it follows (8)

\[
\|e(t + 1)\|^2 \leq e(t)^T (W \otimes I - \alpha(t) \tilde{X})^2 e(t) + \alpha^2(t) \|\tilde{y} - \tilde{X}(1 \otimes \beta^*)\|^2 + \|\omega(t + 1)\|^2 + \alpha(t)^2 \|\tilde{y} - \tilde{X}(1 \otimes \beta^*)\| \| W \otimes I - \alpha(t) \tilde{X} \| \| e(t) \| + g(\omega(t + 1)),
\]

(9)

where \(g : \mathbb{R}^{km} \to \mathbb{R}^{km} \) is linear. Due to the nonnegativity and irreducibility of \(W \) Further, based on (3), there holds \(-1 \leq \|W\| < 1 \) and thereby \(\|W \otimes I - \alpha(t) \tilde{X}\| \leq 1 + \alpha(t) \). Then by (2),

\[
E\|e(t + 1)\|^2 = O(\left(1 + \alpha(t)\right)^2 E\|e(t)\|^2 + \alpha(t)(1 + \alpha(t))\|e(t)\| + \alpha^2(t) + v^2(t))
\]

which further leads to

\[
E\|e(t + 1)\| = O\left(\left(1 + \alpha(t)\right)E\|e(t)\| + \alpha(t) + v(t)\right)
\]

\[
= O\left(\prod_{\tau=0}^t (1 + \alpha(\tau)) + \sum_{\tau=0}^t (\alpha(\tau) + v(\tau)) \prod_{\kappa=\tau+1}^t (1 + \alpha(\kappa))\right)
\]

\[
= O\left(\exp\left(\sum_{\tau=0}^t \alpha(\tau)\right) + \sum_{\tau=0}^t (\alpha(\tau) + v(\tau)) \exp\left(\sum_{\kappa=\tau+1}^t \alpha(\kappa)\right)\right).
\]

(10)

It is a fact \(\sum_{\tau=0}^t \frac{1}{\tau} = O\left(\int_{t'}^{-1} \frac{1}{\tau} d\tau\right) \) for all \(t' \geq 1 \). Based on (10), one has

\[
E\|e(t + 1)\| = \begin{cases}
O\left(t + t \sum_{\tau=0}^t \frac{\alpha(\tau) + v(\tau)}{\tau}\right) \quad & \text{if } e_\alpha = 1; \\
O\left(\exp(t^{1-e_v}) + \exp(t^{1-e_v}) \sum_{\tau=0}^t \frac{\alpha(\tau) + v(\tau)}{\exp(\tau^{1-e_v})}\right) \quad & \text{otherwise.}
\end{cases}
\]

(11)

Clearly, both \(\sum_{\tau=0}^\infty \frac{\alpha(\tau) + v(\tau)}{\tau} \) and \(\sum_{\tau=0}^\infty \frac{\alpha(\tau) + v(\tau)}{\exp(\tau^{1-e_v})} \) are convergent, the proof is completed by (11).
4 Conclusions

In this paper, a differentially private decentralized algorithm for linear regression was proposed. Not only a theoretic privacy budget was provided, but the precision was carefully investigated and shown to be bounded by $\mathcal{O}(t)$ or $\mathcal{O}(\exp(t^{1-c}))$. Future work includes the tradeoff analysis between efficiency and privacy, and the relaxation of the projection operation.

References

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization. *IEEE Transactions on Automatic Control*, 54(1):48, 2009.

Angelia Nedic, Asuman Ozdaglar, and Pablo A Parrilo. Constrained consensus and optimization in multi-agent networks. *IEEE Transactions on Automatic Control*, 55(4):922–938, 2010.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends® in Machine learning*, 3(1):1–122, 2011.

Zhenqi Huang, Sayan Mitra, and Nitin Vaidya. Differentially private distributed optimization. In *Proceedings of the 2015 International Conference on Distributed Computing and Networking*, page 4. ACM, 2015.

Cynthia Dwork. Differential privacy. *Encyclopedia of Cryptography and Security*, pages 338–340, 2011.

Yang Liu, Youcheng Lou, Brian Anderson, and Guodong Shi. Network flows that solve least squares for linear equations. *arXiv preprint arXiv:1808.04140*, 2018.

Roger A Horn and Charles R Johnson. *Matrix Analysis*. Cambridge university press, 2012.

Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In *Proceedings of the 2009 ACM SIGMOD International Conference on Management of data*, pages 19–30. ACM, 2009.