Letter to the Editor

Cohort studies of cardiovascular disease in the Seychelles, Tanzania and Mauritius

We read with interest the review by Kengne et al. on cohort studies of cardiovascular disease in sub-Saharan Africa.\(^1\) We agree with the authors that cohort studies are important tools to advance our knowledge of cardiovascular disease in the region and inform appropriate clinical and public health responses.

We recognise the difficult challenge of identifying all cohort studies in the region. We wish however to mention several cohort studies in the Seychelles, Tanzania and Mauritius, which were published in leading medical journals but were not included in the review, although they met inclusion criteria set by the authors of the review.

The Republic of Seychelles, which lies in the Indian Ocean around 1 000 km east of Kenya, belongs to south Saharan Africa. Seychelles is part of WHO AFRO, is a member of the South African Development Community (SADEC) and contributes epidemiological data to the Global Burden of Disease project for estimates of the east Africa region. The majority of the population of Seychelles is of African descent.

In a cohort study of 5 514 Seychelles children, there was a strong association between weight gain during the first year of life and overweight/obesity at age five to 17 years.\(^2\) Adherence to antihypertensive treatment was low in 50 hypertensive patients followed for 12 months, despite free healthcare.\(^3\) In this study adherence was measured with electronic pill containers, the gold standard for assessment of therapeutic adherence. In a cohort study of 153 smokers followed for six months, smokers who were shown pictures of their own atherosclerotic plaques in their carotid arteries (B-mode ultrasonography) had improved rates of smoking cessation.\(^4\) A cohort study among 644 Seychelles children enrolled at birth showed no overall effect of pre-natal exposure to organic mercury on blood pressure (BP) levels at age 12 and 15 years.\(^5\)

In Tanzania, 653 participants with BP \geq 160/95 mmHg and 653 with BP < 160/95 mmHg from a population survey of 9 254 subjects in Dar es Salaam had BP readings on three additional visits over an eight-week follow-up period. Their BP decreased markedly over subsequent visits, irrespective of baseline BP levels, and the prevalence of hypertension dropped by approximately 50% based on BP values on the second, third or fourth visits, compared to BP values on the first visit.\(^6\)

Am J Cardiol 1991; 67: 222.
17. Carhall CJ, Nguyen TC, Ihoh A, et al. alterations in transmural myocardial strain. Circulation 2008; 118: S256–S262.
18. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 2005; 352: 875–883.
19. Kouris N, Ikonomidis I B, Kontogianni D. Mitral valve repair versus replacement for isolated non-ischemic mitral regurgitation in patients with preoperative left ventricular dysfunction. A long-term follow-up echocardiography study. Eur J Echocardiogr 2005; 6(6): 435–442.
20. Kernis SJ, Nkomo VT, Messika-Zeitoun D, Gersh BJ, Sundt TM III, Ballman KV, et al. Atrial fibrillation after surgical correction of mitral regurgitation in sinus rhythm: incidence, outcome, and determinants. Circulation 2004; 110: 2320–2325.
21. Enriquez-Sarano M. Timing of mitral valve surgery. Heart 2002; 87: 79–85.
22. Pizaro R, Bazzino O, Oberti P, et al. Prospective validation of the prognostic usefulness of brain natriuretic peptide in asymptomatic patients with chronic severe mitral regurgitation. J Am Coll Cardiol 2009; 54(12): 1099–1106.
23. Bach DS, Awas M, Gurm HS, Kohlstamm S. Failure of guideline adherence for intervention in patients with severe MR. Am Coll Cardiol 2009; 54(9): 860–865.
24. Jung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J 2003: 24: 1231–1243.
25. Detaint D, Suijtton M, Avierinos JF, et al. B-type natriuretic peptide in organic mitral regurgitation: determinants and impact on outcome. Circulation 2005; 111: 2391–2397.
chronic obstructive pulmonary disease and postoperative atrial fibrillation remained as independent predictors for the development of postoperative pneumonia. AF particularly should be investigated in future series as a cause of pneumonia.

References
1. Segers P, de Mol BA. Prevention of ventilator-associated pneumonia after cardiac surgery: prepare and defend! *Intensive Care Med* 2009; 35: 1497–1499.
2. Cheitlin M, Ziper D. Cardiovascular disease in the elderly. In: Braunwald E, Zipes D, Libby P. (eds). *Heart Disease*. 6th edn. WB. Saunders Company, 2001: 2019–2037.
3. El Solh AA, Bhora M, Pineda L, Dhillon R. Nosocomial pneumonia in elderly patients following cardiac surgery. *Respir Med* 2006; 100: 729–736.
4. Bicer Y, Simsek S, Yapici N, Aydin O, Sogut F, Aykac Z. Risk factor analysis of pneumonias developing after open heart surgery. *Crit Care* 2005; 9: 10.
5. Kinlin LM, Kircher C, Huiling Z, Daley J, Fisman DN. Derivation and validation of a clinical prediction rule for nosocomial pneumonia after coronary artery bypass graft surgery. *Clin Infect Dis* 2010; 50: 493–501.
6. Puzio J, Kuczewicz E, Siola M, Dworniczak A, Wojarski J, Zeglen S, et al. Atypical and opportunistic pulmonary infections after cardiac surgery. *Anestesiol Intens Ter 2009; 41: 41–45.
7. Fukui T, Manabe S, Shimokawa T, Takanashi S. Incidence and outcomes of pneumonia after isolated off-pump coronary artery bypass grafting. *Heart Surg Forum* 2009; 12: 194–198.
8. Vamvakas EC, Carven JH. Exposure to allogeneic plasma and risk of postoperative pneumonia and/or wound infection in coronary artery bypass graft surgery. *Transfusion* 2002; 42: 107–113.
9. Hortal J, Giannella M, Perez MJ, Barrio JM, Desco M, Bouza E, et al. Incidence and risk factors for ventilator associated pneumonia after major heart surgery. *Intensive Care Med* 2009; 35: 1518–1525.
10. Kollef MH, Morrow LE, Niederman MS, Leeper KV, Anzueto A, Benz-Scott L, et al. Clinical characteristics and treatment patterns among patients with ventilator-associated pneumonia. *Chest* 2006; 129: 1210–1218.
11. Soo Hoo GW, Wen YE, Nguyen TV, Goetz MB. Impact of clinical guidelines in the management of severe hospital-acquired pneumonia. *Chest* 2005; 128: 2778–2787.
12. Morrow BM, Argent AC, Jeena PM, Green RJ. Guideline for the diagnosis, prevention and treatment of paediatric ventilator-associated pneumonia. *S Afr Med J* 2009; 99: 253–267.
13. Tang CW, Liu PY, Huang YF, Pan JY, Lee SSJ, Hsieh KS, et al. Ventilator-associated pneumonia after pediatric cardiac surgery in southern Taiwan. *J Microbiol Immunol Infect* 2009; 42: 413–419.
14. Thakar CV, Yared JP, Worley S, Cotman K, Paganini EP. Renal dysfunction and serious infections after open-heart surgery. *Kidney Int* 2003; 64: 239–246.