Breakup of small aggregates driven by turbulent hydrodynamic stress

Matthais U. Babler,1 Luca Biferale,2 and Alessandra S. Lanotte3

1Dept. of Chemical Engineering and Technology, Royal Institute of Technology, 10044 Stockholm, Sweden
2Dept. of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
3ISAC-CNR, Str. Prov. Lecce-Monteroni, and INFN, Sez. Lecce, 73100 Lecce, Italy

(Dated:)

PACS numbers: 47.27-i, 47.27.eb, 47.55.df

Turbulence has a distinct influence on the aggregation of colloidal and aerosol particles. It not only enhances the rate of collision among particles, i.e. by inducing high velocity differences and preferential concentration within the particle field [1][2], but also it creates hydrodynamic stress that can cause restructuring and breakup of aggregates [3], a phenomena macroscopically expressed in shear thinning in dense suspensions [4]. Breakup of small aggregates due to hydrodynamic stress in turbulence is of high relevance to various applications, e.g. processing of industrial colloids, nanomaterials, wastewaters, and sedimentation of marine snow [3][5]. In a mean field situation, aggregation-breakup dynamics are described by the Smoluchowski equation. Defining \( N(t) = N_0(t)/N_0 \), where \( N_0(t) \) is the number concentration of aggregates consisting of \( \xi \) primary particles, and \( N_0 = \int_0^\infty d\xi N_0(\xi(t), \xi(t)) \), the Smoluchowski equation reads as

\[
\dot{n}_\xi(t) = -f_\xi n_\xi(t) + \int_\xi^\infty \int_\xi^\infty d\xi' g_{\xi,\xi'} f_{\xi} n_\xi'(t) + \frac{3\phi}{4\pi} \left[ \frac{1}{2} \right] \int_0^\infty d\xi' k_{\xi,\xi'} n_\xi'(t) n_\xi(t),
\]

where \( \phi = \frac{4}{3} \pi a_p^3 N_0 \) is the solid volume fraction, \( a_p \) is the radius of the primary particle (assumed monodisperse and spherical), and \( k_{\xi,\xi'} \) is the aggregation rate. Breakup is accounted for by the fragmentation rate \( f_\xi g_{\xi,\xi'} \). Determining these functions is not easy and despite considerable efforts [6] a basic understanding of breakup dynamics is still lacking. A reason for this is the complex role of turbulence and the way it generates fluctuating stress to which an aggregate is exposed to.

The main issue we investigate in this paper is how to define and measure the fragmentation rate \( f_\xi \) in a turbulent flow. The outcomes of our analysis are manifold: i) a Lagrangian and an equivalent Eulerian definition of the fragmentation rate can be derived, that fall off to zero in the limit of small aggregate mass, while they have a power-law behavior for large masses; ii) the power-law tail description is crucial to obtain a steady-state aggregate mass distribution, while a much narrower distribution of aggregates is obtained in the laminar case.

We adopt the simplest possible framework [6], and consider a dilute suspension of aggregates in a stationary homogeneous and isotropic turbulent flow. We consider very small aggregates - much smaller than the Kolmogorov scale of the flow, in the range of 25 to 100 \( \mu m \) for typical turbulent flows, with negligible inertia. Further, we assume that aggregates concentration is such that they do not modify the flow. Hence, their evolution is identical to that of passive point-like particles (unless extreme deviations from a spherical shape are present, e.g. elongated fibers). Moreover, the aggregates are brittle and breakup occurs instantaneously once being subject to a hydrodynamic stress that exceeds a critical value [7]. For small and inertialess aggregates, the hydrodynamic stress exerted by the flow is \( \sim \mu (\varepsilon/\nu)^{1/2} \), where \( \mu \) and \( \nu \) are the dynamic and kinematic viscosity, respectively and \( \varepsilon \) is the local energy dissipation per unit mass. Thus, the key role is played by the turbulent velocity gradients across the aggregate which are known to possess strongly non-Gaussian, intermittent statistics [8].
Let $\varepsilon_{cr}(\xi)$ be the critical energy dissipation needed to break an aggregate of mass $\xi$. In the simplest case of a laminar flow, $\varepsilon_{cr}$ relates to the critical shear rate for breakup as $G_{cr} \sim (\varepsilon_{cr}/\nu)^{1/2}$. Earlier works [7, 9] support the existence of a constituent power-law relation for $\varepsilon_{cr}$ implying that larger aggregates break at a lower stress than smaller ones: $\varepsilon_{cr}(\xi) = (\varepsilon)(\xi/\xi_0)^{-1/q}$ where the exponent $q$ is related to the aggregate structure and $\xi_0$ is the characteristic aggregate mass. An equivalent relation exists for small droplets breaking at critical capillary number, $\varepsilon_{cr} \sim \sigma^2/(\mu \xi^{2/3})$ (here $\xi$ is the droplet volume, and $\sigma$ the interfacial energy). Hence, $f_\xi$ can be equally formulated in terms of a critical dissipation $\varepsilon_{cr}(\xi)$. In this contribution we propose to define the fragmentation rate $f_{\xi}$ or $f_{\varepsilon}$ in terms of a first exit-time statistics. This amounts to measure the fragmentation rate using the distribution of the time necessary to observe the first occurrence of a local hydrodynamic stress strong enough to break the aggregate. An operational formula of $f_{\varepsilon}$ reads as follows: (i) seed homogeneously a turbulent, stationary flow with a given number of aggregates of mass $\xi$; (ii) neglect those aggregates in regions where the hydrodynamic stress is too high ($\varepsilon > \varepsilon_{cr}$); (iii) from an initial time $t_0$, selected at random, follow the trajectory of each remaining aggregate until it breaks, and count the total number of breaking events in a given time interval $[\tau, \tau + d\tau]$. The time $\tau$ is the first exit-time: for an aggregate initially in a region with $\varepsilon < \varepsilon_{cr}$, $\tau$ is the time it takes to the hydrodynamic stress seen by the aggregate along its motion to cross the critical value $\varepsilon_{cr}$ at first opportunity, Fig. 1. The fragmentation rate is the inverse of the mean exit-time:

$$f_{\varepsilon} = \left[\int_0^\infty d\tau \tau P_{\varepsilon}(\tau)\right]^{-1} = \frac{1}{\langle \tau(\varepsilon) \rangle_{\varepsilon}} ,$$

where $P_{\varepsilon}(\tau)$ is the distribution of first exit-time for a threshold $\varepsilon_{cr}$ and $\langle \cdot \rangle_{\varepsilon}$ is an average over $P_{\varepsilon}(\tau)$. The definition in Eq. (2) is certainly correct but difficult to implement experimentally as it is needed to follow aggregate trajectories and record the local energy dissipation, something still at the frontier of nowadays experimental facilities [10]. The question thus arising is if we can obtain a proxy for the fragmentation rate which is easier to measure. Given a threshold for the hydrodynamic stress $\varepsilon_{cr}$, one can measure the series $T_1, T_2, \ldots$ of diving-times, namely the time lags between two consecutive events of instantaneous stress crossing the threshold $\varepsilon_{cr}$ along the aggregate motion, Fig. 1. In [11], it was proposed to estimate the fragmentation rate as the inverse of the mean diving-time, $f_{\varepsilon_{cr}} = 1/(T(\varepsilon_{cr}))$. An important result is that $T(\varepsilon_{cr})$ can be obtained using the Rice theorem for the mean number of crossing events per unit time of a differentiable stochastic process across a threshold [12]. Hence,

$$f_{\varepsilon_{cr}} = \frac{1}{\langle T(\varepsilon_{cr}) \rangle} = \frac{\int_0^\infty \int_0^{\varepsilon_{cr}} d\varepsilon \rho_2(\varepsilon_{cr}, \varepsilon)}{\int_0^{\varepsilon_{cr}} d\varepsilon \rho(\varepsilon)} .$$

Here the numerator is the Rice formula giving the mean number of crossings of $\varepsilon_{cr}$ in terms of the joint probability of dissipation and its time derivative $\rho_2(\varepsilon, \dot{\varepsilon})$; the denominator is the measure of the total time spent in the region with $\varepsilon < \varepsilon_{cr}$. Notice that the integration in the numerator goes only on positive values in order to consider only up-crossing of the threshold $\varepsilon_{cr}$ [12]. An obvious advantage of Eq. (3) is that it is quasi-Eulerian: it does not require to follow trajectories, since it depends only on the spatial distribution of dissipation and of its first time derivative in the flow. Expressions (2) and (3) are not strictly equivalent. A direct calculation of the mean exit-time in terms of the distribution of diving-times gives indeed $\langle \tau(\varepsilon_{cr}) \rangle_{\varepsilon} = 2\langle T^2(\varepsilon_{cr}) \rangle/[2\langle T(\varepsilon_{cr}) \rangle]$, which relates the mean exit-time to moments of the diving-time.

Once a definition from first principles is set-up, we proceed to measure the fragmentation rate for aggregates convected as passive point particles in a statistically homogeneous and isotropic turbulent flow, at Reynolds number $Re_\lambda \approx 400$. Details on the Direct Numerical Simulations (DNS) of Navier-Stokes equations with $2048^3$ grid points and Lagrangian particles are in [2]. The present analysis is obtained averaging over $6 \times 10^5$ trajectories, recorded every $0.05\tau_\eta$, where $\tau_\eta$ is the Kolmogorov time of the flow.

Figure 2 shows the fragmentation rate measured from the DNS data following the evolution of the velocity gradients along aggregate trajectories. The exit-time measurement [2] and its Eulerian proxy [3] show a remarkable, non-trivial behavior for small values of the critical threshold, i.e. for large aggregate mass. In this region, there is a competing effect between the easiness in breaking a large aggregate and the difficulty to observe a large aggregate existing in a region of low energy dissipation. As a result, the estimated fragmentation rate develops a quasi power-law behavior for small thresholds. On the other hand, for large thresholds the super exponential fall off is expected. It is the realm of very small aggregates that are broken only by large energy dissipation bursts. The exit-time [2] and diving time [3] measurements are very close and we therefore consider the latter

![Diagram](image-url)
Eq. (3) gives a very good proxy of the former, the real fragmentation rate. The main advantage of the estimate (3) is the very high statistical confidence that can be obtained since it is a quasi-Eulerian quantity. Moreover it gives a reliable estimate also in the region of large thresholds where the convergence of exit-time statistics, requiring very long aggregate trajectories, is difficult to obtain.

Starting from Eq. (3), simple models can be proposed for the statistics of $\dot{\varepsilon}$, whose direct measure requires a very high sampling frequency along Lagrangian paths. First, as it appears from the bottom inset of Fig. 2, the dissipation and its time derivative are significantly correlated. Scaling on dimensional grounds suggests $\dot{\varepsilon} \sim \varepsilon/\tau_\eta(\varepsilon)$ where $\tau_\eta(\varepsilon) \sim (\nu/\varepsilon)^{1/2}$ is the local Kolmogorov time. It follows that the joint PDF $p_2(\varepsilon, \dot{\varepsilon})$ can be estimated as $p_2(\varepsilon, \dot{\varepsilon}) = \frac{1}{2}p(\varepsilon)\delta(\dot{\varepsilon} - \varepsilon/\tau_\eta(\varepsilon))$ where $p(\varepsilon)$ is the probability density of energy dissipation. Prefactor 1/2 appears since for a stationary process $\dot{\varepsilon}$ is positive or negative with equal probability. Plugging this expression in Eq. (3) gives

$$f^I_{\varepsilon\varepsilon} = \frac{1}{2}\frac{\dot{\varepsilon}_\eta p(\varepsilon) / \tau_\eta(\varepsilon)}{\int_{0}^{\infty} \varepsilon \, p(\varepsilon)}.$$  (4)

We refer to it as Closure I. A different approach was proposed in [6]. It assumes that active regions in the flow where $\varepsilon > \varepsilon_{\alpha}$ engulf the aggregates at a rate $\sim 1/\tau_\eta(\varepsilon)$, which results in

$$f^{II}_{\varepsilon\varepsilon} = \frac{\int_{\varepsilon_{\alpha}}^{\infty} \varepsilon \, p(\varepsilon) / \tau_\eta(\varepsilon)}{\int_{0}^{\infty} \varepsilon \, p(\varepsilon)}.$$  (5)

We refer to it as Closure II. Both models share the advantage of being fully Eulerian and based on the spatial distribution of the energy dissipation only. In Figure 2 the fragmentation rates obtained from the closures I and II are also shown. Both of them reproduce the correct behavior for large values of the critical dissipation but deviate for small ones. The reason for such discrepancy is made clear in the top inset of Fig. 2, where the numerator of Eqs. (4) and (5) are shown. It appears that, for small values of the critical stress $\varepsilon_{\alpha}$, $f^I_{\varepsilon\varepsilon}$ overestimates the number of breakup events, while the numerator of $f^{II}_{\varepsilon\varepsilon}$ saturates to a constant value.

Since in experiments breakup a fortiori takes place together with aggregate recombination, we explore how the actual fragmentation rate Eq. (3) and the two closures, Eqs. (4) and (5), influence the time evolution of an ensemble of aggregates $n_\alpha(t)$. At this purpose, the Smoluchowski equation [1], subject to the initial condition $n_\alpha(0) = \delta(\xi - 1)$, is evolved in time. To model aggregation we use the classical Saffman-Turner expression

$$k_{\xi, \xi'} = D_0/\tau_\eta(\xi^{1/d_f} + \xi'^{1/d_f})^3,$$

where $D_0$ is an $O(1)$ constant and $d_f$ is the fractal dimension that relates the collision radius of an aggregate to its mass, $a/a_\rho = \xi^{1/d_f}$. Breakup is assumed to be binary and symmetric, $g_{\xi, \xi'} = 2\delta(\xi - \xi'/2)$, which despite its simplicity represents well the quality of the evolution. To quantify our findings we consider the second moment observed readily accessible from static light scattering [7]. Fig. 3 shows the time evolution of $I_0$ for typical values of $d_f$ and $q$ found in turbulent aggregation of colloids [8]. After an initial growth period, curves obtained with Eqs. (3) and (5) both relax to a steady state. At small solid volume fraction $\phi$, the two models nearly overlap, whereas at larger $\phi$ Closure II underestimates $I_0$. This behavior is confirmed in the inset of Fig. 3 that shows $I_0$. 

FIG. 2: The normalized fragmentation rate $f_{\xi\varepsilon}$ versus the normalized energy dissipation $\varepsilon_{\alpha}/(\varepsilon)$. Filled circles are the definition (2), measured up to thresholds where statistical convergence of exit-times is obtained; the solid line is $f^E_{\xi\varepsilon}$. Squares are $f^{II}_{\xi\varepsilon}$, while crosses are $f^{II}_{\xi\varepsilon}$. (Bottom inset) Joint distribution $p_2(\varepsilon, \dot{\varepsilon})$. The continuous line is the dimensional estimate $\dot{\varepsilon} \sim \varepsilon/\tau_\eta(\varepsilon)$. (Top inset) Numerator of Eqs. (3) – (5); curves colors are the same of the main figure.

FIG. 3: Time evolution of $I_0$ for $d_f = 2.4$ and $q = 0.36$ with breakup rates $f^E_{\xi\varepsilon}$ (squares); $f^{II}_{\xi\varepsilon}$ (circles); $f^{II}_{\xi\varepsilon}$ (triangles). Runs with different solid volume fractions $\phi$ are shifted. Inset: $I_0$ at steady state as a function of $\phi$ (same symbols). At large $\phi$, the model with fragmentation (3) relaxes to the predicted scaling curve $I_0 \sim \phi^{1/(1+q/3-d_f)}$. Given by the solid line. Here, $\xi_\phi = 10^4$ implying that $a/a_\rho \sim \xi_\phi^{1/d_f} \approx 50$ is the value of the characteristic aggregate size.
at steady state for both models and for different values of \( \phi \). Clearly, at large \( \phi \) other phenomena, i.e., modulation of the flow due to the particles, may occur which, however, is beyond the scope of the present work. Closure I shows a very different behavior. At small \( \phi \), an evolution similar to previous cases is observed. However, by increasing \( \phi \) a drastic change appears and \( I_0 \) diverges, a direct consequence of the presence of a maximum in the shape of \( f_{\xi,\eta}^I \), see Fig. 2.

The time evolution of the number concentration \( n_\xi(t) \), governed by Eq. (3), is further examined in Fig. 4. Here, we compare the steady distribution obtained in the turbulent flow with that of a laminar flow for different values of the solid volume fraction. In the turbulent case, \( n_\xi(t) \) rapidly grows and reaches a stationary state whose peak mode is controlled by the magnitude of aggregation, i.e., the solid volume fraction \( \phi \). Increasing \( \phi \) causes the mode to broaden and to shift to the right as aggregation gets more pronounced. The distribution thus gradually moves to the region where \( f_{\xi,\eta} \) assumes power-law behavior. A numerical fit of the left fragmentation tail in Fig. 2 gives \( f_\xi \propto \xi^{\chi/q} \), with \( \chi = 0.42 \pm 0.02 \) (dashed curve in Fig. 3). Using this latter expression in Eq. (1), one can derive a scaling relation for integral quantities of \( n_\xi(t) \) at steady state [14]. Such scaling is reported in the inset of Fig. 3. On the other hand, in the laminar case where a uniform shear rate governs the breakup, the steady state distribution is much narrower and shows multiple resonant modes. These are due to the sharp onset of breakup once the aggregates grow larger than the characteristic aggregate mass \( \xi_c \). These results clearly demonstrate the strong influence of turbulent fluctuations on the statistically stationary mass distribution function.

We have presented a study of the fragmentation rate of small and diluted aggregates in turbulent flows at high Reynolds number. We have introduced a novel expression for the fragmentation rate in terms of the exit-time statistics, which is a natural way of measuring first-order rate process. Also, a purely Eulerian proxy based on Eq. (3) provides a very good approximation to the actual fragmentation rate measured from our DNS. Remarkably, a steady state in the full breakup-aggregation process is crucially determined by the left tail of the fragmentation rate, i.e., by events of low energy dissipation. Our investigation puts the basis for many developments, such as the stability of the Smoluchowski evolution using the measured fragmentation rates in experiments, and the extension to the case of inertial aggregates. In such case, the correlation between the hydrodynamic shear and the Stokes drag may result in a non-trivial breakup rate dependency on the degree of inertia. Future work aims to introduce spatial fluctuations in the mass distribution caused by local breakup, a research path still poorly explored.

EU-COST action MP0806 is kindly acknowledged. L.B. and A.L. thank the DEISA Extreme Computing Initiative and CINECA (Italy) for technical support.

---

[1] G. Falkovich, A. Fouxon, and M. G. Stepanov, Nature (London) 419, 151 (2002). J. Bec, et al. J. Fluid Mech. 646, 527 (2010). J. Chun, et al. J. Fluid Mech, 536, 219 (2005).
[2] J. Bec, et al. J. Fluid Mech. 645, 497 (2010).
[3] M. Soos et al. J. Colloid Interface Sci. 319 577 (2008). A. Zacccone et al. Phys. Rev. E 79, 061401 (2009). V. Becker, et al. J. Colloid Interface Sci. 339, 362 (2009).
[4] X. Cheng, et al. Science 333, 1276 (2011) E. Brown, et al. Nature Mater. 9, 220 (2010)
[5] A. B. Burd and G. A. Jackson, Annu. Rev. Mar. Sci. 1, 65 (2009). R. Wengeler, et al. Langmuir 23, 4148 (2007). C. Selomulya, et al. Langmuir 18, 1974 (2002).
[6] M. U. Babler, et al., J. Fluid Mech. 612, 261 (2008).
[7] R. C. Sonntag and W. B. Russel, J. Colloid Interface Sci. 113, 399 (1986).
[8] R. Benzi, et al., Phys. Rev. Lett. 67, 2299 (1991).
[9] M. L. Eggersdorfer, et al. J. Colloid Interface Sci. 342, 261 (2010). Y. M. Harshe, M. Lattuada, and M. Soos, Langmuir 27, 5739 (2011).
[10] B. Luthi, A. Tsinober, and W. Kinzelbach, J. Fluid Mech. 528, 87 (2005).
[11] V. I. Logvinov, J. Applied Mech. Tech. Phys. 26, 509 (1985).
[12] G. Lindgren. Lectures on stationary stochastic processes (Lund University, 2006)
[13] F. Family, P. Meakin, and J. M. Deutch, Phys. Rev. Lett. 57, 727 (1986), C. M. Sorensen, H. X. Zhang, and T. W. Taylor, Phys. Rev. Lett. 59, 363 (1987).
[14] M. U. Babler, M. Morbidelli, J. Colloid Interface Sci. 316, 428 (2007).