Renormalized q-dependent Spin Susceptibility by inverting the Random Phase Approximation: Implications for quantitative assessment of the role of spin fluctuations in 2D Ising superconductor NbSe$_2$

Suvadip Das1 and Igor I. Mazin1,2

1Department of Physics and Astronomy and Quantum Science and Engineering Center, George Mason University - Fairfax, VA, USA
(Dated: April 28, 2021)

Accurate determination of the full momentum-dependent spin susceptibility $\chi(q)$ is very important for the description of magnetism and superconductivity. While in principle the formalism for calculating $\chi(q)$ in the linear response density functional theory (DFT) is well established, hardly any publicly available code includes this capability. Here, we describe an alternative way to calculate the static $\chi(q)$, which can be applied to most common DFT codes without additional programming. The method combined standard fixed-spin-moment calculations of $\chi(0)$ with direct calculations of the energy of spin spirals stabilized by an artificial Hubbard interaction. From these calculations, $\chi_{DFT}(q)$ can be extracted by inverting the RPA formula. We apply this recipe to the recently discovered Ising superconductivity in NbSe$_2$ monolayer, one of the most exciting findings in superconductivity in recent years. It was proposed that spin fluctuations may strongly affect the parity of the order parameter. Previous estimates suggested proximity to ferromagnetism, i.e., $\chi(q)$ peaked at $q = 0$. We find that the structure of spin fluctuations is more complicated, with the fluctuation spectrum sharply peaked at $q \approx (0,2,0)$. Such a spectrum would change the interband pairing interaction and considerably affect the superconducting state.

I. INTRODUCTION

Knowledge of the full momentum-dependent spin susceptibility $\chi(q)$ is very important in condensed-matter physics \cite{1}. In particular, it is a key parameter in the theory of spin-fluctuation induced superconductivity \cite{2,3}, which has been the subject of intensive research in the last few decades. Moreover, it was recently emphasized that spin fluctuations may play a crucial role in determining the superconducting state property and pairing symmetry even when spin-fluctuations provide a subdominant pairing interaction. This was argued to be the case \cite{4,5} in one of the most recent exciting discoveries in superconductivity, the so-called Ising superconductivity in NbSe$_2$ monolayers \cite{6,7}.

Density functional theory (DFT) provides a good starting point, even though in itinerant magnets it overestimates the tendency to magnetism \cite{1}. Unfortunately, calculation of the full spin susceptibility, while conceptually straightforward in DFT, is involved, and, most importantly, such capabilities are not included in the common DFT software packages. \cite{8,11} Relatively few publications report such calculations, \cite{12-17}, and they are all based on custom-built programs. On the other hand, essentially all popular DFT packages include the capability for fixed spin moment calculations, which provide the exact value for the uniform DFT susceptibility $\chi_{DFT}(0)$ at a low computational cost. Comparing thus calculated $\chi_{DFT}(0)$ with the unrenormalized one-electron susceptibility $\chi_{DFT}^{(0)}(0) \equiv N_F(0)$, where $N_F(0)$ is the density of states per spin at the Fermi level (here and throughout the paper we are using the atomic units convention where the Bohr magneton is chosen to be 1), one can determine the so-called Stoner factor that describes the effect of electron-electron interaction within DFT on the spin susceptibility:

$$\chi_{DFT}(0) = \frac{\chi_{DFT}^{(0)}(0)}{1 - I\chi_{DFT}^{(0)}(0)}$$ (1)

Note that, apart from the Umklapp processes this expression is exact in DFT (albeit not in the many-body theory \cite{18}).

While cases are known when the Stoner factor has a non-negligible q dependence \cite{19}, these are uncommon and usually setting I to a q-independent constant is a good approximation. Moreover, following Moriya’s Self-Consistent Renormalization Theory \cite{11} one can account for the effect of spin-fluctuations reducing the tendency to magnetism by replacing I with an effective, reduced interaction $I_{eff} = \alpha I, \alpha < 1$. This approach is sometimes called Reduced Stoner Theory (RST) \cite{20}.

On the other hand, one can go beyond DFT by adding a local Coulomb interaction, U_{eff}, through the so-called LDA+U method \cite{21}. In fact, it increases the tendency to magnetism, rather than decreasing it, as would be required for a better agreement with the experiment in itinerant magnets, but, as we will discuss below, gives us a formal tool to calculate $\chi_{DFT}(q)$ without engaging the linear response theory. It was shown that, to a good approximation, this method adds an addition contribution to I, namely κU_{eff}, where the coefficient κ is material dependent and reflects the orbital composition of the states near the Fermi level \cite{22}.

In this paper, we propose a simplified way to estimate
\(\chi_{DFT}(q) \), and, by using RST, the fluctuation-corrected \(\chi(q) \), without doing full linear response calculations. The only prerequisite is a DFT package that allows the LDA+U extension (essentially all modern tools do) and spin-spiral calculations (most popular packages such as VASP \[8\], ELK \[9\], FLEUR \[10\], WIEN2k \[11\] have this capability as well). We further illustrate this approach by calculating \(\chi_{DFT}(q) \) for the Ising superconductor NbSe\(_2\) monolayer.

The paper is organized as follows. First, we present the general theory of the spin susceptibility in the Random Phase Approximation (RPA), which is exact in both DFT and LDA+U. Second, we describe the algorithmic steps to extract \(\chi_{DFT}(q) \) for a given \(q \). Finally, we present comprehensive results and relevant discussions for our system of interest, NbSe\(_2\) monolayers.

II. GENERAL THEORY

A. Spin susceptibility in DFT and beyond

The most general definition of spin susceptibility is given in the real space

\[
\chi^{-1}(r, r') = \frac{\delta^2 E}{\delta m(r) \delta m(r')},
\]

where \(E \) is the total energy of the system. In DFT, it can be written exactly as

\[
E = E_1 + E_{xc} + E_{ns}
\]

where \(E_1 \) is the one-electron energy (sum of the DFT eigenenergies for all occupied states), \(E_{xc} \) is the exchange-correlation energy, usually computed in either the Local Density Approximation (LDA) or in the Generalized Gradient Approximation (GGA) \[23\] \[24\], and \(E_{ns} \) does not depend on the spin density. One can then introduce

\[
\chi_0^{-1}(r, r') = \frac{\delta^2 E_1}{\delta m(r) \delta m(r')},
\]

\[
I(r, r') = -\frac{\delta^2 E_{xc}}{\delta m(r) \delta m(r')}
\]

\[
\chi_{DFT}^{-1}(r, r') = \chi_0^{-1}(r, r') - I(r, r')
\]

Upon Fourier transform, neglecting the Umklapp local field effects \[18\] \[25\],

\[
\chi_{DFT}(q) = \chi_0^{-1}(q) - I
\]

where, as discussed in the Introduction, the \(q \) dependence of \(I \) is neglected. Consequently, the RPA approximation \[26\],

\[
\chi_{DFT}(q) = \frac{\chi_0(q)}{1 - I\chi_0(q)}
\]

is exact. The “fixed spin moment” (FSM) method, applicable for \(q = 0 \), utilizes Eq. \[2\] directly:

\[
\chi_{DFT}^{-1}(0) = \frac{\delta^2 E}{\delta M^2} = \chi_0^{-1}(0) - I
\]

where \(M \) is the total magnetization. Modifications described above come as additional terms in this formula

\[
\chi_{RST}^{-1}(0) = \frac{\delta^2 E}{\delta M^2} = \chi_0^{-1}(0) - \alpha I
\]

where \(\alpha \) can be determined from comparison with the experiment, and

\[
\chi_{LDA+U}^{-1}(q) = \frac{\delta^2 E}{\delta M^2} = \chi_{DFT}(q) - \kappa U_{eff},
\]

where \(U_{eff} = (U - J) \), as defined in Refs. \[21\] \[22\].

In principle, one can apply the FSM recipe to finite wave vectors, but very few codes allow frozen spin-wave calculations with fixed amplitude, and in those that do, it is cumbersome and time-consuming. Alternatively, one can use LDA+U and Eq. \[11\] to extract \(\chi_{DFT}^{-1}(q) \) from the instability condition:

\[
\chi_{DFT}(q) - \kappa U_{eff} = 0,
\]

The recipe is then to vary \(U_{eff} \) until the nonmagnetic solution becomes unstable. As mentioned, \(\kappa \) can be determined by applying Eq. \[11\] at \(q = 0 \) and comparing with standard FSM calculations.

One caveat is in place. While the above equations deal with infinitesimally small magnetic moments, in reality meta-magnetic states with two metastable solutions, at \(M = 0 \) and at a finite \(M \) may exist. The way to deal with this situation is to always start calculations from a very small moment, making sure that even if the \(M = 0 \) is not the ground state, the program does not leave this minimum as long as it remains metastable.

B. Enhancement of Stoner exchange using DFT+U in the spin susceptibility

The instability of the paramagnetic ground state is dictated by the Stoner criterion for ferromagnetism \[27\], indicative of strong electron-electron interactions in the system. The latter can be tuned, in a simple way, by including additional on-site interactions in form of the standard Hubbard model in the static mean field approximation, known as “LDA+U” (or, more correctly, DFT+U) method. While DFT underestimates the tendency to magnetism in strongly localized electronic systems, DFT+U compensates for that by incorporating the orbital-selective Hubbard interaction of the strongly localized electrons. In our study, we use the spherically averaged and rotationally invariant LDA+U methodology proposed by Dudarev.
Within the “fully localized limit” (FLL), the correction
This additional contribution is proportional to the effec-
division

\[E_{\text{LSDA}+U} = E_{\text{LSDA}} + \frac{(U - J)}{2} \sum_{\sigma} (n_{m,\sigma} - n_{m,\sigma}^2) \]

\[= \frac{(U - J)}{2} \sum_{\sigma} \text{Tr}(\rho_{\sigma}) - \text{Tr}(\rho_{\sigma}\rho_{\sigma}) \]

(13)

(14)

where \(U \) and \(J \) are the spherically averaged Hubbard repulsion and intra-atomic exchange for electrons with the given angular momentum \(l \), \(n_{m,\sigma} \) is the occupation number of the \(m \)th orbital, and \(\sigma \) is the spin index. The magnetic interactions can then be efficiently tuned by adding an effective Hubbard parameter \(U_{\text{eff}} = (U - J) \) as shown by Petukhov et al [22]. Note that the orbital selective contribution of the effective Hubbard term \(U_{\text{eff}} = (U - J) \) plays an important role in determining the Stoner factor within the Density Functional Theory framework. Utilizing DFT, the Stoner parameter \(I \) can be expressed as \(I = -2\partial^2 E_{xc}/\partial M^2 \), the second derivative of the exchange-correlation energy with respect to the total magnetic moment. The paramagnetic ground state becomes unstable when \(N_F I \geq 1 \). Upon incorporation of the orbital dependent Hubbard parameter, there is an enhancement of the Stoner factor compared to DFT. Within the “fully localized limit” (FLL), the correction to the total energy due to the DFT + \(U \) can be written as [22]

\[\Delta E_{\text{LDA}+U}^{\text{FLL}} = -\frac{(U - J)}{2} \sum_{\sigma} \text{Tr}(\rho_{\sigma}^2) - (2I + 1)n_{\sigma} \]

(15)

This results in an additional contribution to the Stoner parameter

\[\Delta I = \frac{(U - J)}{N_F^2} \text{Tr}(D \cdot D) \]

(16)

where \(D_{nm} = -\pi^{-1} \text{Im} G_{nm}(i\epsilon) \) is proportional to the imaginary part of the corresponding Green’s function. This additional contribution is proportional to the effective Hubbard term \(U_{\text{eff}} = (U - J) \), and to the factor, \(\text{Tr}(D \cdot D) \), which depends on the orbital composition of the bands at the Fermi level, usually can be safely chosen to be a \(q \)-independent constant, for a given system, thus the additional term can be simply written as \(\Delta I = \kappa U_{\text{eff}} \).

\[\phi_{nk}^{\text{SS}}(r) = \begin{pmatrix} u_{nk}^\uparrow(r)e^{i(k+q/2) \cdot r} \\
 \end{pmatrix} \]

(18)

where \(u_{nk} \) are periodic in the unit cell. This theorem allows solving for \(\phi_{nk}^{\text{SS}}(r) \) by solving two separate Bloch equations for \(k \pm q/2 \) using any standard electronic structure methodology. As mentioned in the Introduction section, Sandratskii’s method is implemented in many standard DFT packages [8, 9, 11, 31].

Two caveats are in place. First, this method is not applicable when spin-orbit coupling is important for the energetics of the material concerned (which is not the case in NbSe\(_2\)), since it couples the spin-up and the spin-down components. However, spin-orbit interaction can be added perturbatively, as it is done, for instance, in FLEUR [10]. Second, for itinerant metals the magnetic ground state (with an enhanced \(I \)) is not necessarily an ideal spiral; it may have amplitude variations periodic in \(q \). While this does not affect our methodology, which only exploits the properties near the instability, i.e., near \(M = 0 \), it might be of interest in other cases. In particular, even while in real life, NbSe\(_2\) is not magnetic, the ground state in DFT-GGA is a spin density wave (SDW) [22], the fact that is at least of some academic interest, and it was claimed that the DFT ground state is not a spiral but an amplitude-modulated SDW. If that were the case, it would have been rather unusual for weak itinerant magnetic metals (cf. Sr\(_2\)RuO\(_4\), where an amplitude SDW is nearly degenerate with the spin-spiral state, but still loses to the latter [33]). In the results section, we discuss what happens as a matter of fact, within the framework of DFT-GGA in the case of NbSe\(_2\) monolayer.

C. Spin-spiral calculations

It was pointed out about 30 years ago by L. M. Sandratskii [28, 30] that when solving a single-particle Schrödinger equation in a spiral magnetic field (not necessarily commensurate with the periodicity of the charge potential) a generalized Bloch theorem can be derived, along the following lines:

Let us assume that the spin density in a given unit cell is related to that in all other unit cells as below:

\[M(r + R) = \begin{pmatrix} M_x(r) \cos(q \cdot R) - M_y(r) \sin(q \cdot R) \\
 M_x(r) \sin(q \cdot R) + M_y(r) \cos(q \cdot R) \\
 M_z(r) \end{pmatrix} \]

(17)

The corresponding spinor wavefunction can be expressed as

\[\phi_{nk}^{\text{SS}}(r) = \begin{pmatrix} u_{nk}^\uparrow(r)e^{i(k-q/2) \cdot r} \\
 \end{pmatrix} \]

(18)
Correlated electronic phases in recently popular two-dimensional materials such as CrI$_3$ [31] and VI$_3$ [32], exhibit long-range magnetic order in spite of its suppression by thermal fluctuations by virtue of the Mermin-Wagner theorem [37, 38]. Among the prospective quantum materials [39–42], bulk 2H-NbSe$_2$ has gained significant popularity due to the simultaneous observation of superconductivity [43] and charge density wave (CDW) [44, 40]. The CDW transition in 2H-NbSe$_2$ has been addressed several times computationally [44, 46] using the fact that the commensurate charge density wave vector $q = (1/3, 0)$ a^* corresponds to a structural reconstruction within a 3×3 supercell ($a^* = 2\pi/\sqrt{3}a$ is the reciprocal lattice vector). NbSe$_2$, a layered van der Waals material, has recently inspired the study of superconductivity in its monolayer form [6, 7, 47, 49]. The proximity effect and magnetic switching at interfaces of this material with other magnetic monolayer TMDs [5, 50] such as TaS$_2$, TaSe$_2$ and CrBr$_3$ warrant detailed study of the low-energy properties in this material. The lack of inversion symmetry in monolayers of 2H-NbSe$_2$ leads to a broken Kramer’s spin degeneracy and large spin-orbit (SO) splitting of the states at the momentum K, and its inversion partner, $K’ = -K$, in the Brillouin zone. The magnitude of SO-splitting in the monolayer is much larger than the superconducting order parameter [4, 5]. The combination of SO-coupling and broken inversion symmetry results in locking of the pseudospins at the points K and $K’$ to be parallel to the c-axis of the monolayer. As a result of time-reversal symmetry, the pseudospins at the K and $K’$ points are antiparallel, with degenerate energies. The ensuing novel phenomenon was aptly named “Ising superconductivity” [6, 17, 18]. In quantum confined monolayers, screening is significantly reduced compared to bulk, leading to enhancement of electronic correlation. In DFT, this leads to a magnetic instability in the undistorted monolayer, which is remedied either by the formation of a charge density wave, or through quantum fluctuations.

In this section, we elucidate the results pertaining to interesting magnetic phases calculated for the monolayer 1H-NbSe$_2$. As shown in Fig. 1, the spin spiral calculations [28, 30] were performed for this systems for various spiral vectors q over a fine momentum grid across the entire irreducible Brillouin zone. Note that the spiral vectors are defined so that the magnetic moment associated with the atomic positions in the atomic lattice have no amplitude along the longitudinal direction of propagation of spiral [28, 30], hence excluding magnetic patterns with nonzero net magnetization. Thus this arrangement corresponds to either helical or cycloidal spin spiral (which have, in the absence of spin-orbit, the same energy). For test purposes, we have performed supercell calculations for selected spiral wave vectors. Specifically, we have generated supercell that allowed us to calculate commensurate spirals with $q = (q_1, 0)$, where $q_1 = 1/3, 1/2, 1/7$ and $1/5$. The comparison of total energies per formula unit for the different spin orientations as obtained from the calculations are presented in Table I. Apart from a constant energy shift of 32.13 meV the spin spiral calculations fully agree with those in the supercells. Either way, we recognize the DFT ground state to be a spiral with $q \approx (0.2, 0)$. A previous investigation of magnetic ordering in the monolayer NbSe$_2$ suggested [51] the lowest energy phase to be nearly collinear antiferromagnetic (without a CDW) corresponding to the 4×1 supercell. However, our calculations find this state to be still higher in energy than the ($1/5, 0$) spiral.

Table I: Comparison of the energetics from supercell calculations in monolayer NbSe$_2$ with that of the spin spiral method as implemented in VASP

q_1	E_{ssp} (meV) / f. u.	E_{ref} (meV) / f. u.
0.2	-19.818486	-19.786354
0.25	-19.817846	-19.85754
0.333	-19.816859	-19.84854
0.5 (AFM)	-19.817972	-19.78528

In Figure 2, we display the lattice structure of a single layer of NbSe$_2$ as viewed from above (along the c-direction). While various magnetic ordering of the material are explored, here we show the prototypical up and down sublattices in the antiferromagnetic configuration.
From the FSM calculations at $U_{eff} = 0$ we find $\chi_{DFT}(q = 0) = 6.87 \times 10^{-4}$ emu/mol.

Next, we perform FSM calculations for different values of U_{eff} (Fig. 4). At some values of U_{eff} (in this plot, $U_{eff} = 0.7$ eV) the curve $E(M)$ has two minima, $M = 0$ and another one at a finite moment. One of these minima corresponds to the ground state, and the other to a metastable solution \[22\]. Either way, for the purpose of determining the susceptibility, we need to know the behavior at small M.

From the full $E(M)$ curve at each U_{eff} we can find a_1, and we observe that, at the critical value $U_c = 0.918$, a_1 becomes zero and the uniform $q = 0$ state becomes unstable against ferromagnetism (Fig. 4(b)). Comparing the already known value of $\chi_{DFT}(q = 0)$ with the $U_c = 0.918$ and using Eq. \[12\] we can find the constant κ in that equation, $\kappa = 1.586 \times 10^3$ mol/emu.

Now we are ready to address the spiral states. The calculated energy and magnetic moment at a uniform k-point mesh of spiral vectors q are presented in Fig. 3. Fig. 3(a) elucidates the energy spectrum obtained from accurate spin spiral calculations presented as a color map for the entire 2-D hexagonal Brillouin zone. Note that the spin spiral calculations with spiral vectors $q = \frac{1}{2} \mathbf{a}^*$ correspond to the 5×1 supercell of monolayer NbSe$_2$. Our calculation indicates a sharp energy minimum at this spiral vector, $q = \frac{1}{2} \mathbf{a}^*$, where the spiral magnetic moment also exhibits a maximum. That is to say, even though the actual material is not magnetically ordered, it is liable to have strong spin fluctuations at and near $q_c = (0.2, 0)$. The calculated DFT magnetic moment [Fig. 3(b)] is nonzero in a narrow region near q_c. Our supercell calculations confirm the existence of magnetic instability at this particular wave vector.

FIG. 3: (a) Energies of the spin spiral states across the full Brillouin zone (BZ) of monolayer NbSe$_2$; outside of the narrow regions near $q = (0.2, 0)$ the spiral calculations collapse, so the energy difference is zero (apart from some numerical noise introduced by the plotting software). (b) Same, for the magnitude of the magnetic moment calculated for the spin spiral.

So far we have discussed unenhanced and unrenormalized DFT calculations. Next, we report energies from spin spiral calculations with an artificially enhanced Hubbard interaction.\[21\]

Available electronic structure codes \[8-10\] do not allow FSM calculations for nonzero spiral vectors. Instead, in order to find the critical values $U_c(q)$ corresponding to the onset of an instability, we start calculations from a very small initial magnetic moment of 0.01 μ_B and monitor whether the magnetization will remain on the level of computational noise, or converge to a finite magnetic moment. Starting from a sizeable M_0 for some spiral vector actually leads to a magnetic instability with a finite self-consistent M, even though the $m = 0$ state remains metastable and the susceptibility finite. Of course, such solutions are of no use for determining the susceptibility.

For spiral vectors close to $q = (0.2, 0)$ the nonmagnetic solution is unstable even for $U_{eff} = 0$. In those cases, we were adding a negative U_{eff}. While negative values of U_{eff} are nonphysical, they provide us with an instrument to extract the unrenormalized DFT susceptibility $\chi_{DFT}(q) = 1/\kappa U_c(q)$, which, in those cases, is negative. Fig. 3(a) shows U_c as a function of q in the 2D hexagonal Brillouin zone. It varies from -1.0 eV at $q = (0.2, 0)$ to 6.0 eV at the Brillouin zone edge K. We do not plot $\chi_{DFT}(q)$, since it is just inversely proportional to $U_c(q)$ plotted in Fig. 3(a).

Our next step is to renormalize the DFT spin susceptibilities in the spirit of Moriya’s theory \[1\] \[20\]. As we already know, $\chi_{DFT}(q = 0) = 6.87 \times 10^{-4}$ emu/mol., while the non-interacting susceptibility $\chi_0 = 0.872 \times 10^{-4}$ emu/mol., from the density of states at the Fermi level.
As of now, the experimental spin susceptibility has been α we use we can determine α, we introduce the fluctuation-induced Moriya factor κ. Corresponding contour plot, of U the entire Brillouin zone of monolayer NbSe$_2$ and (b) the corresponding contour plot as viewed from above.

$N(0) = 2.7$ states/f.u. and the DFT Stoner factor can be calculated to be $I = 0.646$ eV/f.u. Now, applying Eq. 12 to the magnetic instability corresponding to spiral vector $q = 0$ and critical effective Hubbard interaction $U_{eff} = 0$ yields $\kappa = 1.56 \times 10^3$ (mol/emu)/eV (Tr$(D \cdot D$))/$N_F^2 = 0.1$ in Eq. [16].

Following the formalism for Reduced Stoner Theory [22], we introduce the fluctuation-induced Moriya factor α, so that $I_{eff} = \alpha I, \alpha < 1$. Using

$$\chi_{RST}^{-1}(q) = \chi_{DFT}^{-1}(q) + (1 - \alpha)I$$

we can determine α by comparing Eq. [20] with the experimental spin susceptibility, if the latter is available. As of now, the experimental spin susceptibility has been measured only for the bulk sample of NbSe$_2$ [53]. The bulk experimental and first principles spin susceptibilities for $q = 0$ are $\chi_{expt} = 3 \times 10^{-4}$ emu/mol. and $\chi_{DFT} = 4.28 \times 10^{-4}$ emu/mol. Assuming the contribution from spin fluctuations in monolayer to be the same, we use $\alpha = 0.891$. Utilizing this α and $\chi_{DFT}(q)$, we obtain the fully renormalized q-dependent spin susceptibility for monolayer NbSe$_2$, shown in Fig. 6 as a function of the spiral vector q. Note that we observe two maxima, a weak peak around the I point and the principal set of peaks around six points equivalent to $q = (0.2, 0)$.

$\chi_{RST}^{-1}(q) = \chi_{DFT}^{-1}(q) + (1 - \alpha)I$

IV. SUMMARY AND CONCLUSIONS

In summary, we have designed a protocol to estimate both DFT [24, 54, 55] and fluctuation-renormalized [18, 20, 22] (in the spirit of Moriya’s theory) spin susceptibility, especially well suited for materials close to a magnetic instability, but not surpassing it. The protocol does not require linear-response calculations [12], nor explicit accounting for fluctuations [16, 17], as it is done, for instance, in dynamical mean field theory. It is based on the capability to tune a material’s propensity to magnetism by including a variable LDA+U correction [21] (even in a weakly correlated material), and then reverse-engineering the standard RPA formula [20].

The formalism includes two a priori unknown constants, assumed to be q-independent, one of which can be fixed by a comparison with the fixed spin moment calculations at $q = 0$, and the other by a comparison with the experimentally observed uniform spin susceptibility. The capabilities to perform FSM calculations at $q = 0$, and self-consistent spiral calculations at an arbitrary q are built-in within most standard DFT codes.

We apply this procedure to a 2D Ising superconductor, monolayer NbSe$_2$. We find very strong antiferromagnetic spin fluctuation at and near $q = (0.2, 0)$, indicating that the structure of spin fluctuations in the momentum space in this superconductor is more complicated that previously thought of. These findings have direct ramifications for the structure of the superconducting order parameter in monolayer NbSe$_2$, especially on the degree of the singlet-triplet mixing [5]. These ramifications will be discussed in a separate publication.

V. METHODS

A. Computational Methods

We have employed the generalized gradient approximation (GGA) for the exchange correlation functional and the projector augmented wave method as implemented within the Vienna Ab initio Simulation Package (VASP) Code [8, 31]. The VASP electronic structure code does not adopt any particular approximation to either the charge or magnetization density, or electronic potential, thereby allowing for interatomic as well as intra-atomic noncollinearity of the spin density. Calculations using Generalized Gradient Approximation (GGA) and Hubbard U type corrections for localized d electrons (GGA+U) were performed utilizing the Dudarev approach [21] where the difference $(U - J)$ is incorporated as an effective term U_{eff}. The Nb pseudopotential in our calculations includes the 4d and 5s electrons in the valence bands (inclusion of the latter proved to be quite important). The single-particle wave functions were evaluated using a plane-wave energy cutoff of 600 Ry. The spin susceptibility $\chi(q)$ was evaluated on the 6x6 mesh in the irreducible wedge of the Brillouin zone.
VI. DATA AVAILABILITY

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

[1] T. Moriya. Spin Fluctuations in Itinerant Electron Magnetism. Springer Series in Solid-State Sciences. Springer Berlin Heidelberg, 2012. ISBN 9783642240999. URL https://books.google.com/books?id=gZn-CAAAQBAJ

[2] N. F. Berk and J. R. Schrieffer. Effect of ferromagnetic spin correlations on superconductivity. Phys. Rev. Lett., 17:433–435, Aug 1966. doi: 10.1103/PhysRevLett.17.433. URL https://link.aps.org/doi/10.1103/PhysRevLett.17.433

[3] D. Fay and J. Appel. Coexistence of p-state Superconductivity and Itinerant Ferromagnetism. Phys. Rev. B, 22(7):3173–3182, 1980. doi: 10.1103/PhysRevB.22.3173.

[4] X. Xi, Z. Wang, W. Zhao, J.-H. Park, K. T. Law, and V. P. Antropov. Spin-density fluctuations and the fluctuation-dissipation theorem in 3d ferromagnetic metals. Phys. Rev. B, 96:184418, Nov 2017. doi: 10.1103/PhysRevB.96.184418. URL https://link.aps.org/doi/10.1103/PhysRevB.96.184418.

[5] A. Hamill, B. Heischmidt, E. Sohn, D. Shaffer, K. T. Tsai, X. Zhang, X. Xi, A. Suslov, H. Berger, L. Forró, F. J. Burnell, J. Shan, K. F. Mak, R. M. Fernandes, K. Wang, and S. P. S. R. S. SPPI. Unexpected two-fold symmetric superconductivity in few-layer NbSe2, 2020.

[6] T. Dvir, F. Massee, L. Attias, M. Khodas, M. Aprili, C. H. L. Quay, and H. Steinberg. Spectroscopy of bulk and few-layer superconducting NbSe2 atomic layers. Nat. Phys., 12(2):139+, Feb 2016. doi: 10.1038/nphys3538. URL https://doi.org/10.1038/nphys3538

[7] A. L. Wysocki, V. N. Valmispild, A. Kutepov, S. Sharma, J. K. Dewhurst, E. Koh, A. I. Lichtenstein, and V. P. Antropov. Spin-density fluctuations and the fluctuation-dissipation theorem in 3d ferromagnetic metals. Phys. Rev. B, 96:184418, Nov 2017. doi: 10.1103/PhysRevB.96.184418. URL https://link.aps.org/doi/10.1103/PhysRevB.96.184418.

[8] I. I. Mazin and R. E. Cohen. Notes on the static dielectric response function in the density functional theory. Ferroelectrics, 194(1):263–270, 1997.

[9] I. I. Mazin and D. J. Singh. Competitions in layered ruthenates: Ferromagnetism versus antiferromagnetism and triplet versus singlet pairing. Phys. Rev. Lett., 82:4324–4327, May 1999. doi: 10.1103/PhysRevLett.82.4324. URL https://link.aps.org/doi/10.1103/PhysRevLett.82.4324

[10] L. Ortenzi, I. I. Mazin, P. Blaha, and L. Boeri. Accounting for spin fluctuations beyond local spin density approximation in the density functional theory. Phys. Rev. B, 86(6), Aug 27 2012. ISSN 2469-9950. doi: 10.1103/PhysRevB.86.060412. URL https://link.aps.org/doi/10.1103/PhysRevB.86.060412

[11] M. Monni, F. Bernardini, G. Profeta, A. Sanna, S. Sharma, J. K. Dewhurst, C. Bersier, A. Continenza, E. K. U. Gross, and S. Masidda. Static and dynamical susceptibility of laox−y FeAs. Phys. Rev. B, 81:104503, Mar 2010. doi: 10.1103/PhysRevB.81.104503. URL https://link.aps.org/doi/10.1103/PhysRevB.81.104503

[12] S. Y. Savrasov. Linear response calculations of spin fluctuations. Phys. Rev. B, 67:153106, Apr 2003. doi: 10.1103/PhysRevB.67.153106. URL https://link.aps.org/doi/10.1103/PhysRevB.67.153106

[13] T. Kotani and M. V. Schilfgaarde. Spin wave dispersion based on the quasiparticle self-consistent GW method: NIO, MnO and α−MnAs. J. Phys.: Condens. Matter, 20: 295214, June 2008.

[14] A. L. Wysocki, A. Kutepov, and V. P. Antropov. Strength and scales of itinerant spin fluctuations in 3d paramagnetic metals. Phys. Rev. B, 94:140405, Oct 2016. doi: 10.1103/PhysRevB.94.140405. URL https://link.aps.org/doi/10.1103/PhysRevB.94.140405.

[15] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B, 57:1505–1509, Jan 1998. doi: 10.1103/PhysRevB.57.1505. URL https://link.aps.org/doi/10.1103/PhysRevB.57.1505.

[16] A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein. Correlated metals and the LDA + U method. Phys. Rev. B, 86(6), Aug 27 2012. ISSN 2469-9950. doi: 10.1103/PhysRevB.86.060412. URL https://link.aps.org/doi/10.1103/PhysRevB.86.060412

[17] F. Essenberger, P. Buczek, A. Ernst, L. Sandratskii, and E. K. U. Gross. Paramagnons in fse close to a magnetic quantum phase transition: Ab initio study. Phys. Rev. B, 86:060412, Aug 2012. doi: 10.1103/PhysRevB.86.060412

[18] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45:566–569, Aug 1980. doi: 10.1103/PhysRevLett.45.566. URL https://link.aps.org/doi/10.1103/PhysRevLett.45.566
gradient approximation made simple. Phys. Rev. Lett., 77(18):3865, 1996.

[25] I. I. Mazin. Local field effects in the many-body perturbation theory and in the density functional theory. Preprint ICTP, IC–88/196, Aug 1988. URL https://inis.iaea.org/search/search.aspx?orig_q=RN:20024208

[26] P. Nozières and D. Pines. Electron interaction in solids. characteristic energy loss spectrum. Phys. Rev., 113:1254–1267, Mar 1959. doi: 10.1103/PhysRev.113.1254. URL https://link.aps.org/doi/10.1103/PhysRev.113.1254

[27] S. Blundell. Magnetism in Condensed Matter. Oxford Master Series in Condensed Matter Physics 4. OUP Oxford, 2001. ISBN 9780198505921. URL https://books.google.com/books?id=Jk5yDwAAQBAJ

[28] L. M. Sandratskii. Symmetry analysis of electronic states for crystals with spiral magnetic order: I. general properties. 1. Phys.: Condens. Matter, 3:8565–8585, April 1991.

[29] K. Knöpfle, L. M. Sandratskii, and J. Kübler. Spin spiral ground state of γ-iron. Phys. Rev. B, 62:5564–5569, Sep 2000. doi: 10.1103/PhysRevB.62.5564. URL https://link.aps.org/doi/10.1103/PhysRevB.62.5564

[30] L. M. Sandratskii. Noncollinear magnetism in itinerant-electron systems: Theory and applications. Advances in Physics, 47(1):91–160, 1998. doi: 10.1080/00018739824357. URL https://doi.org/10.1080/00018739824357

[31] The VASP Code. https://www.vasp.at/

[32] F. Zheng, Z. Zhou, X. Liu, and J. Feng. First-principles study of charge and magnetic ordering in monolayer NbSe2. Phys. Rev. B, 97:081101, Feb 2018. doi: 10.1103/PhysRevB.97.081101. URL https://link.aps.org/doi/10.1103/PhysRevB.97.081101

[33] B. Kim, S. Khmelevskiy, I. I. Mazin, D. F. Agterberg, and C. Franchini. Anisotropy of magnetic interactions and symmetry of the order parameter in unconventional superconductor Sr2RuO4. npj Quantum Materials, 2, Jul 4 2017. doi: 10.1038/s41535-017-0041-8.

[34] B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. Leyler, N. Wilson, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, and X. Xu. Electrical control of 2D magnetism in bilayer CrI3. Nat. Commun., 9:2798, July 2018. doi: 10.1038/s41467-018-05153-0. URL https://doi.org/10.1038/s41467-018-05153-0

[35] S. Jiang, L. Li, Z. Wang, F. K. Mak, and J. Shan. Confinement of elastic modulations in the charge density wave ground state of 2H–NbSe2. Science, 294(5551):2518–2520, 2001. ISSN 0036-8075. doi: 10.1126/science.1065068. URL https://science.sciencemag.org/content/294/5551/2518

[36] M. Leroux, I. Errea, M. Le Taon, S.-M. Souliou, G. Garbarino, L. Cario, A. Bosak, F. Mauri, M. Calandra, and P. Rodière. Strong anharmonicity induces quantum melting of charge density wave in 2H–NbSe2 under pressure. Phys. Rev. B, 92:140303, Oct 2015. doi: 10.1103/PhysRevB.92.140303. URL https://link.aps.org/doi/10.1103/PhysRevB.92.140303

[37] B. Guster, C. Rubio-Verdú, R. Robles, J. Zulueta, P. Dreher, M. Pruneda, J. A. Silva-Guillén, D.-J. Choi, J. I. Pascual, M. M. Ugeda, P. Ordejón, and E. Canadell. Coexistence of Elastic Modulations in the Charge Density Wave State of 2H–NbSe2. Nano Letters. 19(5):3027–3032, 2019. doi: 10.1021/acs.nanolett.9b00268. URL https://doi.org/10.1021/acs.nanolett.9b00268

[38] K. Liu, and T. S. Herng, Y. Zuo, W. Johnson, W. Yu, and X. Hai, P. Lyu, H. Xu, H. Yang, C. Chen, S. J. Pennycook, J. Ding, J. Teng, A. H. Castro Neto, K. S. Novoselov, and J. Lu. Printable two-dimensional superconducting monolayers. Nat. Mat., 20:181–187, February 2021. doi: 10.1038/s41563-020-00831-1. URL https://doi.org/10.1038/s41563-020-00831-1

[39] D. Wickramaratne, M. Haim, M. Khodas, and I. I. Mazin. Proximity effects and tunneling in an ising superconductor-magnetic insulator heterostructure, 2021.

[40] J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Zeitler, K. T. Law, and J. T. Ye. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science, 350(6266):1353–1357, 2015. ISSN 0036-8075. doi: 10.1126/science.aab2277. URL https://science.sciencemag.org/content/350/6266/1353

[41] Y. S. Gani, H. Steinberg, and E. Rossi. Superconductivity in twisted graphene NbSe2 heterostructures. Phys. Rev. B, 99:235404, Jun 2019. doi: 10.1103/PhysRevB.99.235404. URL https://link.aps.org/doi/10.1103/PhysRevB.99.235404

[42] T. Yokoya, T. Kish, A. Chainani, S. Shin, M. Nohara, and H. Takagi. Fermi Surface Sheet-Dependent Superconductivity in 2H–NbSe2. Science, 294(5551):2518–2520, 2001. ISSN 0036-8075. doi: 10.1126/science.1065068. URL https://science.sciencemag.org/content/294/5551/2518

[43] M. Leroux, I. Errea, M. Le Taon, S.-M. Souliou, G. Garbarino, L. Cario, A. Bosak, F. Mauri, M. Calandra, and P. Rodière. Strong anharmonicity induces quantum melting of charge density wave in 2H–NbSe2 under pressure. Phys. Rev. B, 92:140303, Oct 2015. doi: 10.1103/PhysRevB.92.140303. URL https://link.aps.org/doi/10.1103/PhysRevB.92.140303

[44] K. Cho, M. Kończykowski, S. Teknowijoyo, M. A. Tanatar, J. Guss, P. B. Gartin, J. M. Wilde, A. Kreyssig, R. J. McQueeney, A. I. Goldman, V. Mishra, P. J. Hirschfeld, and R. Prozorov. Using controlled disorder to probe the interplay between charge order and superconductivity in NbSe2. Nat. Commun., 9:2798, July 2018. doi: 10.1038/s41467-018-05153-0. URL https://doi.org/10.1038/s41467-018-05153-0

[45] Y. Xing, K. Zhao, P. Shan, F. Zheng, Y. Zhang, H. Fu, Y. Liu, M. Tian, C. Xi, H. Liu, J. Feng, X. Lin, S. Ji, X. Chen, Q. K. Xue, and J. Wang. Ising Superconductivity and Quantum Phase Transition in Macro-Size Monolayer NbSe2. 2H–NbSe2, Nano Letters. 19(5):3027–3032, 2019. doi: 10.1021/acs.nanolett.9b00268. URL https://doi.org/10.1021/acs.nanolett.9b00268

[46] C. Wang, B. Lian, X. Guo, J. Mao, Z. Zhang, D. Zheng, B. L. Gu, and W. Xu, Y.and Duan. Type-II ising superconductivity in gated MoS2 heterostructures. Nat. Commun., 9:2798, July 2018. doi: 10.1021/acs.nanolett.9b00268. URL https://doi.org/10.1021/acs.nanolett.9b00268

[47] C.-S. Lian, C. Si, and W. Duan. Unveiling Charge-Density Wave, Superconductivity, and Their Competitive Nature in Two-Dimensional NbSe2. Nano Letters, 18(5):2924–2929, 2018. doi: 10.1021/acs.nanolett.8b00237. URL https://doi.org/10.1021/acs.nanolett.8b00237

[48] S. C. de la Barrera, M. R. Sinko, D. P. Gopolan,
N. Sivadas, K. L. Seyler, K. Watanabe, T. Taniguchi, A. W. Tsen, X. Xu, D. Xiao, and B. M. Hunt. Tuning ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun., 9(1):1427, April 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-03888-4. URL https://europepmc.org/articles/PMC5897486

Feipeng Zheng, Zhimou Zhou, Xiaoqiang Liu, and Ji Feng. First-principles study of charge and magnetic ordering in monolayer nbse$_2$. Phys. Rev. B, 97:081101, Feb 2018. doi: 10.1103/PhysRevB.97.081101. URL https://link.aps.org/doi/10.1103/PhysRevB.97.081101

Daniel I. Khomskii. Basic Aspects of the Quantum Theory of Solids: Order and Elementary Excitations. Cambridge University Press, Leiden, 2010. URL https://cds.cern.ch/record/1315420

M. Iavarone, R. Di Capua, G. Karapetrov, A. E. Koshelev, D. Rosenmann, H. Claus, C. D. Malliakas, M. G. Kanatzidis, T. Nishizaki, and N. Kobayashi. Effect of magnetic impurities on the vortex lattice properties in NbSe$_2$ single crystals. Phys. Rev. B, 78:174518, Nov 2008. doi: 10.1103/PhysRevB.78.174518. URL https://link.aps.org/doi/10.1103/PhysRevB.78.174518

D. Hobbs, G. Kresse, and J. Hafner. Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B, 62:11556–11570, Nov 2000. doi: 10.1103/PhysRevB.62.11556. URL https://link.aps.org/doi/10.1103/PhysRevB.62.11556

G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54:11169–11186, Oct 1996. doi: 10.1103/PhysRevB.54.11169. URL https://link.aps.org/doi/10.1103/PhysRevB.54.11169

Acknowledgments

The authors acknowledge financial support for their research from the Office of Naval Research through Grant N00014-20-1-2345. The authors also acknowledge the Department of Defense (DoD) Major Shared Computing Resource Center at Air Force Research Laboratory (AFRL) and the National Energy Research Scientific Computing Center (NERSC) for high-performance computing facilities for significant portion of calculations performed in this work. We thank V. P. Antropov for useful discussions.