ABSTRACT
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts.1

Wobble uridine modifications are essential in evolution
Among the plethora of chemical posttranscriptional modifications that are found on tRNA, those of wobble uridine (U34) are peculiar, because U34 is almost invariably modified in any organism.2,3 This phenomenon implies a strong evolutionary pressure to maintain wobble uridines modified and is further affirmed by the analysis of minimal genomes. In Mollicutes species that have drastically reduced their genome size during evolution, uridine thiolation (s2U) is part of an essential core module of translation.4 Furthermore, recent attempts of synthetic biologists to generate a minimal genome based on Mycoplasma mycoides found modification systems of U34 to be required for rapid growth under laboratory conditions.5 Surprisingly however, the absence of U34 modification does not cause lethality in Caenorhabditis elegans and most yeasts but is essential in some strain backgrounds of Saccharomyces cerevisiae and in mice.6–12 Furthermore, several human diseases are linked to defects in U34 modifying enzymes.13–15 This apparent discrepancy between essentiality during evolution and variable effects in different organisms makes wobble uridines even more worth exploring.

We know a lot about U34 modifications from the research of many laboratories working mainly on baker’s yeast. Theoretically, 16 anticodons carry a uridine at their wobble position. UAA and UGA, 2 codons that would require U34-containing tRNAs for decoding are nonsense codons and therefore recognized by the Eukaryotic Release Factor 1 and 3 (eRF1 and eRF3) GTPase complex.16,17 However, the modification machinery is of such broad specificity that U34 in suppressor tRNA Ser UUA is modified.6 tRNA Arg UCG does not exist in yeast and tRNA Leu UAG is unmodified.18 tRNA Leu UAA carries a pseudouridine (Ψ34).18 The remaining 11 tRNA species are decorated by 4 types of modifications: First, 5-carbamoylmethyluridine (ncm5U34), the most abundant modification, is present on tRNA Val, tRNA Arg, tRNA Pro, tRNA Thr and tRNA Gla. Second, tRNA Leu UUA is further 2-O-methylated to 5-carbamoylmethyl-2-O-methyluridine (ncm5s2U34). Third, 5-methoxycarbonylmethyluridine (mcm5U34) is found on tRNA Arg and tRNA Glu. Finally, 3 tRNAs are further decorated by a 2-thio group to form 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34): tRNA Glu, tRNA Lys and tRNA UCC (Fig. 1).20,21

The physicochemical properties of wobble uridine modifications
The multitude of modifications speaks for particular requirements in the U34 position. But what are the effects of these modifications on the chemical and structural properties of uridine? In his wobble hypothesis, Francis Crick proposed that U34 recognizes A and G in the third position of the codon.22 However, he could not account for the extent of modified nucleotides in tRNA as these modifications were not known. Later adaptations of the wobble hypothesis have attempted to integrate how modifications of U34 affect codon recognition.20,23–26

Uridines are structurally flexible and form only weak stacking interactions with neighboring nucleosides. This is because uridines—even when decorated by 5′-modifications-adopt a C(2′) endo conformation, which is relatively flexible.27,28 However, the presence of 2-thio modifications leads to the adaptation of a C(3′) endo, gauche plus [C(4′)-C(5′)], anti

CONTACT
Raffael Schaffrath scheffra@uni-kassel.de Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany; Sebastian A. Leidel sebastian.leidel@mpi-muenster.mpg.de Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany.
© 2017 Raffael Schaffrath and Sebastian A. Leidel. Published with license by Taylor & Francis Group, LLC. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
structure.27-29 This conformation is hydrophobic, more restricted and appears to be best suited for anticodon base-stacking, therefore stabilizing the anticodon stem loop (ASL) and favoring the interaction with A in the codon.27,28 The conformational stability of s2U34 is similar to U34m, which also occurs mainly in its C(3′) endo form.30,31 While, s2U34 enhances the stability of the stacking of the triplet significantly over unmodified U34,32,33 the stabilizing effect of the C(3′) endo conformation appears to be more important for the codon-anticodon interaction than an improvement of base stacking.29,34 Furthermore, 2-thio modifications do not only restrict and stabilize the conformation of the nucleoside that carries s2 but also of a 3′-adjacent unmodified uridine.35,36 Importantly, a stabilization of the interactions between 2-thiolated anticodons with their codon partners has been observed in binding models and in the context of the ribosome.36-38 While the role of s2U34 modification is to restrict codon conformation than an improvement of base stacking,39,40 the role of xm5 modifications is to open up the rigidity to stabilize U/C15 G wobble pairings.39 In general, the ribosomal grip constrains the positioning of the mRNA more than that of the ASL. Therefore, G34•U3 wobble pairs can form in unmodified anticodons, while U34•G3 pairs are much less stable, if they form at all.36,40-42

Structural studies found that near-cognate tRNAs do not necessarily take up a wobble confirmation but that non-standard base pairing can retain Watson-Crick geometry.43 This structural arrangement is supported by the presence of U34 modifications. Indeed, mcm5’s s2U34 modifications change the physicochemical behavior of the base. While s2 of mcm5’s U34 is required for proper positioning of the nucleoside, the main function of the mcm5 modification is to modify the electron structure of the ring and to shift the keto-enol equilibrium toward enol thus enabling hydrogen bonding between U34•G pairs.44 Therefore, while s2U rigidifies the ASL structure thereby favoring an interaction with A-ending codons, the xm5 modifications relax the conformation and enable pairing with G-ending codons. However, when analyzing codon-translation speed by ribosome profiling the absence of both types of modifications seems to affect translation speed similarly.45 Nevertheless, also the context of the anticodon matters. For instance, N6-threonylcarbamoyladenosine (t6A37) synergizes with U34 modifications to order the ASL such that it will bind to the correct mRNA codons. Only when U34 and A37 are fully modified, will the ASL of tRNA34UUU bind to AAA and AAG programmed ribosomes41 and fulfill the function proposed by Crick.22 Therefore, U34 modifications contribute to the pre-structuring of the anticodon loop to achieve optimal translation.42

Wobble uridine modifications require multiple pathways

Two pathways are responsible for placing the two main classes of modifications on wobble uridine: The URM1 pathway is required for 2-thiolation and the Elongator complex needed for generating xm5U34 modifications (Fig. 2). Pseudouridine Synthase (Pus1) introduces pseudouridine at U34 in tRNA34UUU.36,47 Finally, during the 2′-O-methylation of tRNA34UUU tRNA Methyltransferase (Trm7) uses S-adenosylmethionine (SAM) as a methyl donor together with its cofactor Regulator of Ty1 Transposition 10 (Rtt10).48,49 However, the absence of 2′-O-
methylation in tRNA\textsubscript{Leu_UAA} does not significantly contribute to phenotypes observed in \textit{trm7Δ} yeast since overexpression of tRNA\textsubscript{Phe_GAA} is sufficient for rescue experiments, suggesting that the physiological role of this modification in U\textsubscript{34} is minor.49 Interestingly, x\textsubscript{m}U\textsubscript{34} formation is independent of the presence of s\textsubscript{3}U\textsubscript{34} while the reverse is not true. In \textit{S. cerevisiae} s\textsubscript{3}U\textsubscript{34} levels are reduced in the absence of mcm\textsubscript{5,11,50} In humans, mice and \textit{S. pombe} mcm\textsubscript{5} is even strictly required for s\textsubscript{3}U\textsubscript{34} formation.51,52

The \textbf{URM1 pathway}:

Ubiquitin Related Modifier 1 (Urm1) is an ubiquitin like protein (Ubl) first described as a protein modifier in a process called urmylation.53-55 It was identified through its sequence homology to bacterial sulfur-carrier proteins53 and is considered to be a molecular fossil because it is the Ubl that most closely resembles the ancestors of this class of protein modifiers.56,57 Importantly, Urm1 is the only Ubl described as a protein modifier and at the same time to act in sulfur transfer, placing it at the evolutionary intersection of both pathways.50,58-67 Like every Ubl, Urm1 is activated by an E1-like enzyme Ubiquitin Activating 4 (Uba4).53 While the N-terminus of Uba4 contains an E1 domain, its C-terminal harbors a rhodanese homology domain (RHD).68,69 The RHD has been suggested to act as an E2 domain for protein conjugation of Urm1.70 However, there is no experimental support for this function and the mechanism of the domain rather points toward sulfur transfer. Two additional core members of the pathway are \textit{Needs GAA} to Survive 2 and 6 (Ncs2 and Ncs6),55,71 which form a complex in \textit{S. cerevisiae}, \textit{C. elegans} and \textit{S. pombe}.8,11 Difficulty in reconstituting the complex \textit{in vitro} has prevented its detailed analysis. It is clear that Ncs6, an iron-sulfur (Fe/S) cluster containing protein,72 and its worm homolog TUT-1 can bind to tRNA \textit{in vitro}11 and \textit{in vivo}.8 The protein carries 2 predicted zinc-finger domains and a P-loop.11,73,74 Interestingly, the number of tRNA species that bind to Ncs6 \textit{in vitro} exceeds the number of mcm\textsubscript{5}s\textsubscript{3}U\textsubscript{34} targets.11 Thus, Ncs2 may provide specificity to the complex. Alternatively, Ncs2 may stabilize or activate Ncs6. Ncs2 is the closest homolog of NCS6 in the yeast genome. However, the critical residues required for enzymatic function are mutated. The observation that only one catalytic subunit is required in \textit{S. cerevisiae} suggests a similar mechanism in enzymes that form a homo-dimer such as TuA.73 While URM1, UBA4, NCS2 and NCS6 are required for 2-thiolation, ThioUridine Modification 1 (TUM1), a gene coding for a protein with 2 RHDs, is not essential for thiolation. However, in the absence of Tum1, levels of s\textsubscript{3}U\textsubscript{34} are significantly reduced and the ratio between modified and unmodified tRNA changes.11,54,63,67

In addition to this core set of proteins, there is another group that is essential for thiolation by more generally affecting sulfur pathways. NiFS like 1 (Nfs1), a cysteine desulfurase that converts cysteine into alanine using pyridoxal phosphate as a cofactor acts upstream of several cellular sulfur pathways.76 During this reaction, Nfs1 feeds sulfane sulfur to its acceptor protein. Uba4 uses the sulfur and transfers it into the downstream cascade for 2-thiolation.62 The exact mechanism of Tum1 in this reaction is unclear. Tum1 receives sulfur from Nfs1 and appears to stimulate its activity.63 This suggests that it acts as an enhancer of the transfer reaction or as a sulfur relay. Since Tum1 is not essential for 2-thiolation, the transfer step via Tum1 can be bypassed. Therefore, Tum1 may affect 2-thiolation through an indirect mechanism by rerouting sulfur pathways. Finally, proteins required for iron-sulfur (Fe/S) cluster biogenesis and assembly are essential for 2-thiolation. These are: Cytosolic Iron-sulfur protein Assembly 1 (Cia1), Nucleotide Binding Protein 35 (Nbp35) and Cytosolic Fe/S cluster Deficient 1 (Cfd1), which are all components of the CIA complex.77,78 The CIA complex works in conjunction with IscU homologs 1 and 2 (Isu1 and Isu2), 2 proteins that reside in the mitochondrial matrix and are required for Fe/S cluster generation.79 Additional proteins required for Fe/S cluster formation are, therefore, likely to affect 2-thiolation but have not been tested specifically. Whether Fe/S cluster formation affects s\textsubscript{3}U\textsubscript{34} formation directly or indirectly via the formation of mcm\textsubscript{5}s\textsubscript{3}U\textsubscript{34}.

Figure 2. Model of the \textit{URM1} pathway and the Elongator complex. Schematic representation of the 2 pathways cooperating in mcm\textsubscript{5}s3U\textsubscript{34} formation. In the \textit{URM1} pathway (left), sulfur is mobilized by Nfs1 with the help of Tum1. Uba4 activates Urm1, leading to a thio-carboxylate at Urm1’s C-terminus, which acts as a sulfur carrier. Finally, the Ncs2•Ncs6 complex binds to and activates tRNA \textit{in the thiolation reaction and transfers the sulfur from Urm1 to uridine}. The Elongator complex consists of twice Elp1-Elp6. Elp1 dimerizes via its C-terminus and acts as a platform for Elp2 and Elp3 binding in a wing-like structure. A ring of Elp4-Elp6 binds to one of the wings (Handedness is only partially represented in this model).90,91
will need to be determined.80 Recently, a Fe/S cluster was identified in Ncs6 and its archaeal homolog TtuC.72 However, its requirement for s^2U_{34} formation remains to be demonstrated.

The Elongator complex

The Elongator complex is at the heart of mcm^5 and ncm^5 side chain formation at U_{34}. The complex has been reported to act in numerous cellular processes including transcription, DNA damage response, exocytosis, telomere gene silencing, DNA demethylation and wobble uridine modification.6,81-88 Importantly, all known phenotypes of Elongator-minus yeast, except for the defect in U_{34} modification itself, can be rescued by over-expression of tRNA that are normally $mcm^5s^2U_{34}$ modified.12,45,51,86-95 Nevertheless, the question of whether different functions exist in other species is very persistent, in part due to the fact that tRNA overexpression experiments in metazoans are more difficult to perform than in yeast.

The Elongator complex consists of 6 subunits: Elp1-Elp6.81,96,97 Each is present twice in the holo complex, which can be divided into two sub-complexes: Elp1-Elp3 and Elp4-Elp6. The latter subunits, between 30–50 kDa in size, have very similar RecA folds and assemble into a heterohexameric ring structure that resembles RecA-like ATPase complexes.98 However, the subunits lack the P-loop motif, which is characteristic for ATPases.98 Importantly, the Elp4-Elp6 complex binds tRNA in an ATP dependent manner, where high levels of ATP decrease the affinity of tRNA for the complex. The Elp1-Elp3 subcomplex contains Elp3, which is the catalytic subunit of the complex.96,99 Elp3 carries an N-terminal radical SAM binding domain and a C-terminal histone acetyltransferase (HAT) domain.96,99 Interestingly, in the archaeon *Methanocaldococcus infernus* a homolog of Elp3 is sufficient for U_{34} modification, while all other Elongator subunit genes are absent from its genome.101 Elp1 and Elp2 are both WD40 domain containing proteins. Two subunits of Elp1 dimerize via their C-terminal domains, while one subunit of Elp2 and Elp3 associates with each Elp1 subunit at either side.102,103 This generates a wing-like structure. Surprisingly, in the holo complex, a ring of Elp4-Elp6 is associated with the front of the left wing (Fig. 2) resulting in an asymmetric assembly, which is in contrast to previous models.98,102-105 The role of the asymmetry still needs to be determined as well as the position of the tRNA in the complex.

In addition to the Elongator complex, *Kluveromyces lactis* Toxin Insensitive 11–14 (Kti11-Kti14), Suppressor of Initiation of Transcription 4 (Sit4), Sit4 associated protein 185 and 190 (Sap185 and Sap190), RNA Methyltransferase 9 and 112 (Trm9 and Trm112) are required for mcm^5U_{34} and ncm^5U_{34} formation. Elp1-Elp6, Kti11, Kti12, Kti14, Sit4, Sap185 and Sap190 are essential for the formation of cm^5U_{34}, which is believed to be the precursor of mcm^5 and nmc^5.6,58,106 The lack of Kti13 leads to reduced levels of xm^5 formation.6,58 Finally, the Trm9-Trm112 complex uses SAM to synthesize mcm^5U_{34}.107 Whether cm^5U_{34} or an intermediate precursor serves as the direct methylase substrate is not clear, yet. The observation that both *trm9* and *trm112* mutants accumulate ncm^5U_{34} and $nmc^5s^2U_{34}$, however, suggests the existence of an enzyme required for formation of ncm^5U_{34} (and $nmc^5s^2U_{34}$) from cm^5U_{34}.107,108 The identity of this activity is still not known, leading to contradicting ideas of how to rationalize these later steps of the U_{34} modification pathway.106-110

Elongator regulation by phosphorylation

Strikingly, tRNAs that carry Elongator-dependent $mcm^5s^2U_{34}$ can be cleaved by zymocin between anticodons position 34 and 35.111-113 Zymocin is a trimeric (α/β/γ) tRNase toxin complex produced from *K. lactis* that kills yeasts including *S. cerevisiae*.114-116 In line with this lethal mode of tRNase action, genetic studies have shown that mutations in Elongator genes trigger zymocin resistance and additional Elongator related factors (Kti11-Kti14, Sit4, Sap185 and Sap190) were genetically identified on the basis of zymocin survivor screens.58,112,117-136 Rather than affecting the assembly or the integrity of the Elongator complex, these proteins appear to be regulatory.

![Figure 3. Phosphomodification of Elongator subunit Elp1. (A) Elp1 electrophoretic mobility shifts based on anti-HA Western blots are diagnostic for Elongator de-/phosphorylation.130,134 In the *klt12* and the kinase-dead *hrr25/klt14* mutants, hypophosphorylated forms of Elp1-HA accumulate while *sit4* phosphatase mutants induce Elp1-HA hyperphosphorylation. Wild-type (wt) cells maintain both isoforms of Elp1-HA, which mediate sensitivity (S) to growth inhibition by the tRNase toxin zymocin (killer assay; lower panel; for details see text). Zymocin resistance (R) associates with Elp1 phosphorylation defects in *klt12*, *hrr25/klt14* and *sit4* mutants. (B) Elongator phosphorylation model. *Klt12* interacts with Elongator (and kinase *Hrr25*) thereby potentially activating Elp1 phosphorylation. In support of this, Elp1 is found to be hypophosphorylated in *klt12* and *hrr25/klt14* cells (see A). PPase: protein phosphatase (Sit4); Kinase: *Hrr25*/*Klt14*.](image-url)
Consistent with this, a casein kinase 1 (CK1) isozyme (Kti14, also called: Hrr25), type-2A protein phosphatases (Sit4•Sap185; Sit4•Sap190) and an Elongator interactor (Kti12) were all shown to affect the phosphorylation state of Elp1, which through dimerization assembles holo-Elongator. Elp1 is present as a hypophosphorylated isoform in kti12 and hrr25 mutants and is hyperphosphorylated in sit4 mutants, while wild-type cells maintain both forms (Fig. 3). This suggests that Elongator function may be phosphoregulated, which is in line with reports that tRNA modifications including mcm'-s''U34 can change in response to chemical stress and cell cycle progression.

Subsequently, phosphorylation sites on Elp1 and other Elongator subunits were identified using mass spectrometry. Among those mapped on Elp1, 2 (Ser-1198, Ser-1202) appear to be directly phosphorylated by Hrr25 confirming the genetic data that the CK1 isozyme has Elongator kinase activity. The analysis of phosphosite mutations revealed that Elp1 phosphorylation largely plays a positive role for Elongator activity. Accordingly, profiling modified U34 nucleosides in tRNAs from these phosphosite mutants by LC-MS/MS showed loss of mcm'-s''U34 and mcm'-U34 formation. The finding that normal phosphoforms of Elp1 at Ser-1209 were detectable in a kinase-dead hrr25 mutant implies that at least one additional Elongator kinase ought to exist. Furthermore, altered interaction between Elongator, Hrr25 and Kti12 was seen in several Elp1 phosphosite mutants, in line with data showing that hrr25 mutants unable to phosphorylate Elp1 affect Elongator association with Kti12. The data, therefore, suggest that normal Elongator interaction with Kti12 and proper tRNA modification are facilitated by phosphorylation of Elp1.

Regulation of s''U34 formation

Whether the URM1 pathway is regulated is not clear. Most reports describing changes in mcm'-s''U34 levels in response to chemical stress do not separate the contribution of mcm'' and s'' formation. However, the analysis of 2-thiolation has shown that s''U34 levels are decreased in response to high temperatures or in growth media lacking a sulfur source. This is not a consequence of de-thiolation but depends on active transcription of tRNA by RNA polymerase III, since the use of inhibitors or temperature sensitive alleles of RNA polymerase III prevents the decrease in s''U34. Interestingly, the decrease in s''U34 is reversible when yeast is shifted back to ambient temperature, which seems like a prerequisite for active regulation. However, the kinetics for up- and downregulation of 2-thiolated tRNA are in the range of several hours.

This is in contrast to the idea that modification-specific changes to translation could provide a fast switch under stress conditions. The environmental stress response that elicits an extensive transcriptional change in response to various stress conditions peaks after 30 min. A translational rewiring by reducing 2-thiolation would therefore accompany or even follow the transcriptional response to high temperatures rather than being an active driver of such a cellular transition.

But what could be mechanisms for regulation? Different high-throughput analyses have identified phosphosites in Tum1, Ncs2 and Ncs6. However, to date none of these sites has been shown to affect s''U34 formation in vivo. Interestingly, Uba4 and Ncs6 were identified as targets for protein urmylation and similarly ATP3BP, the human Ncs6 homolog. However, these studies were performed using increased levels of Urm1 and oxidizing reagents. To show the in vivo relevance of urmylation it will be crucial to perform similar experiments under physiological conditions.

The role of phosphorylation for U34 regulation

Although the precise role for Elp1 phosphorylation is unclear, two options can be envisaged. On the one hand, phosphorylation could act as an ‘on/off’ switch for Elongator’s U34 modifying activity, for example, in response to cellular stress. If translation of some mRNAs were dependent on U34 modification and hence tunable by Elongator, this raises the possibility that Elongator is part of a translational control mechanism that functions through its role as a U34 modifier. Such role is consistent with loss-of-function phenotypes associated with Elp1 phosphosite substitutions, kinase-dead hrr25 mutations and inhibition by ATP analogs of an analog-sensitive Hrr25-ITG2 kinase variant. All Hrr25 operates in many cellular functions, which complicates the analysis of Elp1 phosphorylation signals, its kinase activity is required for full functionality of ribosomes and U34 containing tRNAs. This is congruent with a role of the kinase in the regulation of a cell’s capacity for proper mRNA translation and protein synthesis. Finally, hrr25 and Elongator mutants are sensitive to DNA damaging mutagens.

Since efficient translation of the RNR1 message coding for Ribonucleotide Reductase subunit 1, involved in the DNA damage response (DDR) requires U34-modified tRNAs, Elp1 phosphorylation may link up to the known role the Hrr25 kinase plays in expression of other DDR genes, i.e. RNR2 and RNR3.

On the other hand, Elongator might require dynamic sequential phosphorylation and dephosphorylation cycles of Elp1 to carry out its tRNA modification reaction. It was shown that phosphates mutants like sit4 or sap185sap190 trapped Elp1 in a slower-migrating, hyperphosphorylated form whereas hrr25 kinase and kti12 mutants led to the presence of a fast-migrating, hypophosphorylated Elp1 isoform (Fig. 3). Both types of mutations cause loss-of-function phenotypes, suggesting that the functionality of Elongator requires sequential de-/phosphorylation of Elp1. Thus, dynamic de-/phosphorylation may impact on the catalytic activity of Elp3, its localization or even its ability to interact with accessory factors or substrate tRNAs. Importantly, the C-terminus of Elp1, which is phosphorylated, is required for dimerization and is adjacent to a basic region that is crucial for Elongator activity and tRNA binding. Thus, Elp1 phosphorylation may affect holo-Elongator dimerization as well as interaction with partner proteins or its tRNA substrates.

The dynamic model is further supported by the observation that the right balance between hypo- and hyperphosphorylated Elp1 isoforms appears critical for Elongator activity (Fig. 3). This may explain why the presence of exclusively one of the two isoforms results in Elongator loss of function (Fig. 3) and antagonistic de-/phosphorylation of Elp1 by phosphatase/
kinase activities may indeed control its activity.121,129-131,134 Although this contradicts the idea that Epl1 phosphorylation acts as an ‘on/off’ switch, data showing that loss of U\textsubscript{34} modifications is similar in epl1, hrr25, kti12, sit4 and sap185sap190 mutants with opposite Epl1 phosphorylation states (Fig. 3) agree with the dynamic phosphorylation model.58,131 However, this would predict that mimicking constitutive phosphorylation on at least some of the Epl1 phosphosites may inhibit Elongator function. Surprisingly, all of the phosphomimetic ELP1 alleles tested in zymocin assays conferred growth arrest by the tRNase indicating proper Elongator functioning in the U\textsubscript{34} modification pathway.142 However, whether these mutations are not fully phosphomimetic and thus allowed for residual Elongator activity, has not been analyzed. Thus, although removal of phosphorylation sites provides evidence that Epl1 phosphorylation acts positively on Elongator function, a requirement for dynamic de-/phosphorylation still needs to be shown. Furthermore, it is possible that inhibitory Epl1 phosphosites exist, which were not identified by Abdel-Fattah and colleagues.142 For example, although Epl1 phosphorylation at Thr-1212 was not detected by MS/MS, a substitution of this residue caused zymocin resistance suggesting that it represents a phosphosite in vivo.142 To conclude, while there is clearly more to learn about Elongator phosphorylation, experimental evidence demonstrates that the kinase Hrr25 affects Elongator’s tRNA modification function by phosphorylating (potentially reversible) phosphoacceptor sites in the Epl1 subunit.

Elongator regulation through Kti11, Kti12 and Kti13 proteins

Although the precise role of Kti12 is unclear, the yeast protein, its plant ortholog (DRL1/ELO4) and PSTK, a tRNA binding kinase, carry N-terminal P-loop motifs typical of nucleotide binding proteins.118,163-166 Consistent with a functional role for this domain, a P-loop truncation of Kti12 triggers defects typical of Elongator mutants.124 Importantly, Kti12 supports Elp1 phosphorylation and interacts with the Hrr25 kinase in an Elongator-dependent fashion.121,124,125,167 kti12 knockout abolishes Hrr25 interaction with Elongator, cause loss of U\textsubscript{34} modification and trigger the formation of hypophosphorylated Epl1 isoforms (Fig. 3) similar to a hrr25 kinase mutant.58,127,134 This led to the proposal that Kti12, through recruitment of Hrr25 to Elongator, positively acts on Elongator function.124 Intriguingly, KTI12 overexpression triggers the accumulation of hyperphosphorylated Epl1 isoforms and suppresses zymocin sensitivity, which is typical of sit4 phosphatase mutants (Fig. 3).118,130,133 This effect, however, is likely not caused by altered Elongator interactions in contrast to Epl1 phosphorylation defects, which enhance Kti12 association.134,142 Furthermore, zymocin suppression through excess Kti12 can be rescued by overexpression of SIT4.130 These genetic interactions suggest a negative role of Kti12 for sit4 phosphatase function. In support of this idea, multi-copy KTI12 was found to suppress the rapamycin-resistance of a mutant lacking Resistant to Rapamycin Deletion 1 (Rrd1), a Sit4 activator protein and TOR pathway component, which has not been reported to directly relate to Elongator function.92 It will be interesting to study whether this additional role for Kti12 can be separated from its ability to regulate Elongator phosphorylation.

Two additional Elongator regulatory factors are Kti11/Dph3 and Kti13/Ats1. Kti11 is a metal binder and electron transfer protein that copurifies with Fe/S cluster containing complexes including Elongator and Dph1\textbullet Dph2.126,168,169 Moreover, it forms a dimer with Kti13 shown to promote U\textsubscript{34} modification by Elongator and diphthamide synthesis by Dph1\textbullet Dph2.132,136,170,171 Diphthamide is an exotic modification of translation Elongation Factor 2 (EF2)142,172 which catalyzes ribosomal translocation during translation elongation and is, therefore, essential for protein synthesis and cell viability. Diphthamide-modified EF2 can be inhibited by cytotoxic ADP ribosylases173 including diphtheria toxin (DT)172,174 As a consequence, KTI11 mutations confer resistance against DT and the zymocin tRNase.123,132,172 Thus, Kti11 and Kti13 appear to partake in U\textsubscript{34} anticond modifications by Elongator and diphthamide synthesis on EF2174-176 presumably by providing electrons170,171 to the Fe/S clusters in Elp3100 and Dph1\textbullet Dph2.177 With the recent identification of a Kti11 reductase in yeast (Cbr1) that affects Elongator activity,178 it will be important to clarify the precise roles of Kti11 and Kti13 and study their potential to modulate the electron flow required for both the tRNA and the EF2 modification pathways.

U\textsubscript{34} modification dependent tRNase ribotoxins

Zymocin inhibits yeast growth through a complex mode of action that involves chitinolysis of the cell wall, tRNase (γ-toxin) uptake, anticodon cleavage and depletion of tRNAs, eventually resulting in cell death.111,112,114,115,117 Thus, zymocinity relies on the inhibition of mRNA translation and protein biosynthesis, reminiscent of bacterial anti-phage tRNase and colicin-type anticond nucleases.12,179-181 Importantly, up-regulating tRNA repair by overproducing the 2-component system Crr4 phage (Rnl1-Pnk1) or tRNA ligase from plants (AtTTL1) suppresses anticodon cleavage and depletion of tRNA\textsubscript{Glu}\textsubscript{UUG}.116 This suggested that the incision generated at the 3’ side of the modified wobble base is compatible with sealing and healing functions of heterologous ligases, and that tRNA repair can be an efficient antidote toward lethal anticond damage by microbial tRNases.116 This principle was further supported by findings that the inability of the yeast tRNA ligase Trl1 to repair the anticond damage can be rectified by shuffling genetically engineered ligase constructs. Interestingly, when the domains from AtTTL1 and Trl1 were swapped, the plant ligase domain plus the yeast healing domain rescued S. cerevisiae cells against depletion of tRNA\textsubscript{Glu}\textsubscript{UUC}.116 Thus, differences in the ligase component of the plant versus yeast enzymes likely account for tRNase anticond functions.116 Intriguingly, PaT, a zymocin-related tRNase ribotoxin complex from Pichia acaiae, exploits a second site resulting in nucleotide excision rather than incision.111,182 Hence, tRNA damage by PaT evades reconstitution of a functional ASL by the repair system, which is why plant AtTTL1 ligase fails to suppress PaT toxicity.182,183 Other than suppressing zymocin action through direct repair, tRNA protection can also be provided by higher-than-normal levels of tRNA\textsubscript{Glu}\textsubscript{UUG}, tRNA\textsubscript{Glu}\textsubscript{UUC} and tRNA\textsubscript{Lys}\textsubscript{UUA} which are
targeted for cleavage by the ribotoxin. In fact, a screen for zymocin insensitive mutants identified several tRNA\textsubscript{Gln\text{UUC}} loci as copy-dependent suppressors of the tRNase ribotoxin.\cite{118} Interestingly, this suppression can be efficiently countered by overexpressing the catalytic subunit of U\textsubscript{34} methylase (Trm\textsubscript{9}\cdotTrm112), suggesting that it is hypomodified tRNA\textsubscript{Gln\text{UUC}}, which in excess is able to bypass zymocicity.\cite{58,113} However, full resistance to zymocin is only conferred by mutations in ELP, KTI or URM1 pathway genes that trigger the loss of mcm5s2U\textsubscript{34} modifications in tRNA.

Since the U\textsubscript{34} modification pathways are conserved and elements of the Elongator pathway can be functionally exchanged between yeast and plants,\cite{135,184} it was obvious to apply the yeast tRNase toxins to metazoans. Preliminary findings indicate that tRNase expression not only inhibits yeast growth but also affects the viability of vertebrate cells (RS & SL, data not shown). This is consistent with HeLa cell growth inhibition as well as hypersensitivity reactions in response to transient tRNase induction and tRNA cleavage \textit{in planta}.\cite{185,186} Similarly, bacterial PrrC-type anticodon nucleases were found to be lethal when expressed in yeast.\cite{187} Importantly, using cytotoxic tRNase to study the formation of microbial biofilms suggests that tRNA cleavage may also be used in cell-cell communications.\cite{181,187} Thus, it is tempting to exploit tRNase ribotoxins as anti-proliferative agents for use in biomedical interventions against infections by microbial, fungal or viral pathogens or to prevent undesired growth of tumor cells whose proliferation heavily relies on protein synthesis and therefore, proper tRNA function.\cite{181,188}

The origin of phenotypes of U\textsubscript{34} defects

Exploiting U\textsubscript{34} modifications to kill competing yeasts is a curious strategy for pathogenicity. But what are the molecular mechanisms that underlie the pleiotropic phenotypes that we observe in organisms with inappropriate levels of U\textsubscript{34} modification? The absence of wobble uridine modifications is accompanied by increased sensitivity to biotic and abiotic stresses and defects in numerous cellular processes including transcription, DDR, exocytosis, telomere gene silencing and DNA demethylation.\cite{6,81-85,87,88} In prokaryotes, s2U\textsubscript{34} deficient tRNAs are poor substrates for aminoacyl-tRNA synthetases.\cite{189} This however, does not appear to be the case in eukaryotes and can, therefore, not explain the observed phenotypes.\cite{20}

Most strikingly in yeast, except for the U\textsubscript{34} modification defects, all known phenotypes can be rescued by overexpression of tRNAs that would normally be decorated by mcm5s2U\textsubscript{34} (see above). In \textit{S. cerevisiae}, overexpression of tRNA\textsubscript{Gln\text{UUG}} and tRNA\textsubscript{Lys\text{UUC}} efficiently rescues the defects. This is in good agreement with ribosome-profiling experiments, which found that the codons CAA and AAA decoded by tRNA\textsubscript{Gln\text{UUG}} and tRNA\textsubscript{Lys\text{UUC}}, respectively, slow down during translation while a slow down at GAA (decoded by tRNA\textsubscript{Gln\text{UUG}}) was not detected consistently.\cite{35,94} Computational attempts to identify transcripts that are enriched in A-ending codons as well as several screens and proteomics studies have reported targets that are downregulated at the protein level in U\textsubscript{34} modification mutants.\cite{143,146,160,190} Interestingly, it is possible to rescue the levels of some of these target proteins by using engineered gene constructs that have AAA codons exchanged by AAG.\cite{51,191} However, in contrast to tRNA overexpression, none of these synthetic codon rescue experiments has suppressed the underlying phenotype. Failure to do so can have several reasons: First, the phenotypes may be triggered by the loss of function of a group of proteins rather than by the absence of individual proteins (Fig. 4A). Second, instead of a loss-of-function phenotype, the effects may be triggered by a cytotoxic gain-of-function (Fig. 4B). This concept is based on the recent findings that

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure4.png}
\caption{Two models to explain phenotypes of U\textsubscript{34} modification mutants. (A) Specific mRNA enriched in codons that depend on tRNA modifications are translated at lower rates. This leads to reduced levels of the protein encoded by this transcript triggering a loss-of-function phenotype. (B) Ribosomes slow down when translating codons that depend on tRNA modifications. The slowdown perturbs the optimized equilibrium between speed of protein synthesis and protein folding. The increased rate of protein stress leads to a systemic failure in protein homeostasis and the aggregation of endogenous proteins that associates with it in a toxic gain-of-function scenario. This can either affect viability of the cells directly or by changing cellular signaling (Street signs with “30” indicate slow speed of ribosomes).}
\end{figure}
U₃₄ modification mutants as well as other dysfunctional tRNA modification pathways are characterized by protein homeostasis defects. In yeast, these lead to the aggregation of endogenous metastable proteins in the cytoplasm. In mouse brains, the same modification defects induce the unfolded protein response in the endoplasmatic reticulum, which triggers differentiation defects in neuronal precursors, leading to microcephaly. Thus, proteotoxic stress provides an alternative mechanism (Fig. 4B) to explain the pleiotropic phenotypes. In this scenario, codon-specific translation defects perturb the equilibrium of mRNA-translation dynamics and peptide-chain folding that has been optimized during evolution to ensure accurate protein synthesis, folding and homeostasis. As a result, proteotoxic stress alone or in combination with the standard model that favors reduction of individual proteins (Fig. 4A), is likely the main trigger for pleiotropic defects by severely rearranging the cellular proteome or by interfering with downstream signaling of the affected cells.

Importantly, the underlying mechanism of U₃₄ defects has significant consequences for our options to remedy phenotypes, particularly in the context of human disease: The loss-of-function model suggests that the identification of undertranslated mRNAs will lead to treatment options by enhancing the activity of their encoded proteins. In contrast, the protein-homeostasis model suggests that instead of repairing individual proteins, our response rather has to focus on alleviating proteotoxicity or signaling output that is induced downstream of proteotoxic stress.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank all scientists in the field who have worked since many years to provide insights into wobble uridine modification systems and owing to space limitations, apologize for not having cited all their findings that have contributed to this review topic. We thank Drs Monica Montero-Lomeli (Universidade Federal do Rio de Janeiro, Brazil), Roland Klassen and Wael Abdel-Fattah (both Universität Kassel, Germany) and Michael J.R. Stark (University of Dundee, Scotland, UK) for thematic suggestions and/or critical reading of the manuscript. Project and cooperation support by the Deutsche Forschungsgemeinschaft (DFG) to RS (SCHA 750/15, SCHA 750/18 and SCHA 750/19) and funds through their Priority Programs SPP1784 Chemical Biology of Native Nucleic Acid Modifications to RS (SCHA 750/20) and SAL (LE 3260/2) and SPP1927 Iron-Sulfur for Life: Cooperative Function of Iron-Sulfur Centers in Assembly, Biosynthesis, Catalysis and Disease to RS (SCHA 750/21) and by the European Research Council to SAL (ERC-2012-StG 310489-tRNAmodi) are gratefully acknowledged.

ORCID

Raffael Schaffrath http://orcid.org/0000-0001-9484-5247

Sebastian A. Leidel http://orcid.org/0000-0002-0523-6325

References

1. Armengod ME, Meseguer S, Villarroya M, Prado S, Moukadiri I, Ruiz-Partida R, Garzón MJ, Navarro-González C, Martínez-Zamora A. Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes. RNA Biol 2015; 11:1495-507; https://doi.org/10.4161/rna.31572.2014.992269

2. Jackman JE, Alfonzo JD. Transfer RNA modifications: nature’s combinatorial chemistry playground. WIREs RNA 2012; 3:45-48; [PMID:23139145](https://doi.org/10.1002/wrna.1144)

3. Helm M, Alfonzo JD. Posttranscriptional RNA Modifications: playing metabolic games in a cell’s chemical Legoland. Chem Biol 2014; 21:174-85; [PMID:24315934](https://doi.org/10.1016/j.chembiol.2013.10.015)

4. Grosjean H, Breton M, Sirand-Pugnet P, Tardy F, Thiaucourt F, Citti C, Barré A, Yoshizawa S, Fourmy D, de Crécy-Lagard V, et al. Predicting the Minimal Translation Apparatus: Lessons from the Reductive Evolution of Mollicutes. PLoS Genet 2014; 10:e1004363; [PMID:24809820](https://doi.org/10.1371/journal.pgen.1004363)

5. Hutchison CA, Chuang R-Y, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, et al. Design and synthesis of a minimal bacterial genome. Science 2016; 351:aad6253; [PMID:27013737](https://doi.org/10.1126/science.aad6253)

6. Huang B, Johansson MJQ, Byström AS. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 2005; 11:424-36; [PMID:15769872](https://doi.org/10.1261/rna.7247705)

7. Bjork GR, Huang B, Persson OP, Byström AS. A conserved modified wobble nucleoside (mcm’s’U) in lsysl-tRNA is required for viability in yeast. RNA 2007; 13:1245-55; [PMID:17592039](https://doi.org/10.1261/rna.558707)

8. Dewez M, Bauer F, Dieu M, Raes M, Vandenhaute J, Hermant D. The conserved Wobble uridine tRNA thiolase Ctu1–Ctu2 is required to maintain genome integrity. Proc Natl Acad Sci USA 2008; 105:5459-64; [PMID:18391219](https://doi.org/10.1073/pnas.0709404105)

9. Chen C, Tuck S, Byström AS. Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet 2009; 5:e1000561; [PMID:19593383](https://doi.org/10.1371/journal.pgen.1000561)

10. Chen Y-T, Hims MM, Shetty RS, Mull J, Liu L, Leyne M, Slaugenhaupt SA. Loss of mouse Ikbkap, a subunit of elongator, leads to transcriptional deficits and embryonic lethality that can be rescued by human IKBKAP. Mol Cell Biol 2009; 29:736-44; [PMID:19015255](https://doi.org/10.1128/MCB.01313-08)

11. Leidel S, Pedrioli PGA, Boone C, Hofmann K, Peter M. Ubiquitin-related modifer Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 2009; 458:228-32; [PMID:19145231](https://doi.org/10.1038/nature07643)

12. Klassen R, Grunewald P, Thürling KL, Eichler C, Helm M, Schaffrath R. Loss of Anticodon Wobble Uridine Modifications Affects tRNA Function and Protein Levels in Saccharomyces cerevisiae. PLoS ONE 2015; 10:e0119261; [PMID:25471722](https://doi.org/10.1371/journal.pone.0119261)

13. Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol Med 2014; 20:306-14; [PMID:24581449](https://doi.org/10.1016/j.molmed.2014.01.008)

14. Sarin LP, Leidel SA. Modify or die? - RNA modification defects in metazoans. RNA Biol 2014; 11:1555-67; [PMID:25692999](https://doi.org/10.4161/rna.15476826.2014.992279)

15. Kojc M, Wainwright B. The Many Faces of Elongator in Neurodevelopment and Disease. Front Mol Neurosci 2016; 9:1-10; [PMID:26834556](https://doi.org/10.3389/fmoln.2016.00115)

16. Stansfeld I, Jones KM, Kushirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierars CR, Cox BS, Ter-Avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 1995; 14:4365-73; [PMID:7556078](https://doi.org/10.1093/emboj/14.22.4365)

17. Zhouravleva G, Frolova L, Le Goff X, Le Guercel R, Inge-Vechtomov S, Kisselev I, Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 1995; 14:4065-72; [PMID:7664746](https://doi.org/10.1093/emboj/14.22.4365)
Agris PF. Decoding the genome: a model nucleotide decoding system. Mol Cell Biol 2008; 28:3301-12; PMID:18332122; https://doi.org/10.1074/jbc.M804043200

Agris PF. Wobble position modified nucleosides evolve to select transfer RNA codon recognition: a modified-wobble hypothesis. Biochimie 1991; 73:1345-9; PMID:1799628; https://doi.org/10.1016/0300-9084(91)90163-U

Yokoyama S, Nishimura S. Modified Nucleosides and Codon Recognition. In: tRNA: Structure, Biosynthesis, and Function, Soll D and RajBhandary U.L (eds); American Society for Microbiology, Washington 1995; 207-223; https://doi.org/10.1128/9781555818333.ch12

Agris PF. Decoding the genome: a modified view. Nucleic Acids Res 2004; 32:223-38; PMID:14715921; https://doi.org/10.1093/nar/gkh185

Murphy FV, Ramakrishnan V, Malkiewicz A, Agris PF. The role of modifications in codon discrimination by tRNA^{UUU}. Nat Struct Mol Biol 2004; 11:1186-91; PMID:15558052; https://doi.org/10.1038/nsmb861

Sierzputowska H, Sochacka E, Malkiewicz A, Kuo KC, Gehrke CW, Agris PF. Chemistry and Structure of Modified Uridines in the Anti-codon, Wobble Position of Transfer-RNA Are Determined by Thiocholesterol. J Am Chem Soc 1987; 109:7171-7; https://doi.org/10.1021/ja00057a044

Agris PF, Sierzputowska H, Smith W, Malkiewicz A, Sochacka E, Nawrot B. Thiolation of Uridine Carbon-2 Restricts the Motional Dynamics of the Transfer-RNA Wobble Position Nucleoside. J Am Chem Soc 1992; 114:2652-6; https://doi.org/10.1021/ja00033a044

Yokoyama S, Yamaizumi Z, Nishimura S, Miyazawa T, Ichihara T. 1H NMR studies on the conformational characteristics of 2-thiopyrimidine nucleotides found in transfer RNAs. Nucleic Acids Res 1979; 6:2611-26; PMID:379825; https://doi.org/10.1093/nar/6.7.2611

Kawai G, Yamamoto Y, Kamimura T, Masegi T, Sekine M, Hata T, Limori T, Watanabe T, Miyazawa T, Yokoyama S. Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2',3'-hydroxyl group. Biochemistry 1992; 31:1040-6; PMID:1310418; https://doi.org/10.1021/bi00119a012

Testa SM, Disney MD, Turner DH, Kierzek R. Thermodynamics of RNA-RNA duplexes with 2- or 4-thiouridines: implications for antisense design and targeting a group I intron. Biochemistry 1999; 38:16655-62; PMID:10600128; https://doi.org/10.1021/bi991187d

Larsen AT, Fahrenbach AC, Sheng J, Pan J, Szostak JW. Thermodynamic insights into 2-thiouridine-enhanced RNA hybridization. Nucleic Acids Res 2015; 43:7675-87; PMID:26240387; https://doi.org/10.1093/nar/gkv761

Davis DR, Durant PC. Nucleoside modifications affect the structure and stability of the anticodon of tRNA^{UUC}. Nucleosides Nucleotides 1999; 18:1579-81; PMID:10474235; https://doi.org/10.1080/0732319908044790

Smith WS, Sierzputowska-Gracz H, Sochacka E, Malkiewicz A, Agris PF. Chemistry and Structure of Modified Uridine Dinucleosides are Determined by Thiolation. J Am Chem Soc 1992; 114:7798-97; https://doi.org/10.1021/ja00047a005

Kumar RK, Davis DR. Structure and synthesis on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Res 1997; 25:1272-80; PMID:9092639; https://doi.org/10.1093/nar/25.6.1272

Houssier C, Degeé P, Nicoghosian K, Grosjean H. Effect of uridine dethiolation in the anticodon triplet of tRNA(Glu) on its association with tRNA(Phe). J Biomol Struct Dyn 1988; 5:1259-66; PMID:2482764; https://doi.org/10.1080/07391102.1988.10506468

Asnaf SS, Sochacka E, Cain R, Guenther R, Malkiewicz A, Agris PF. Single atom modification (O->S) of tRNA confers ribosome binding. RNA 1999; 5:188-94; PMID:10024171; https://doi.org/10.1017/S135583899981529

Kurata S, Weixbaumer A, Ohtsuki T, Shimazaki T, Wada T, Kirino Y, Takai K, Watanabe K, Ramakrishnan V, Suzuki T. Modified Uridine with C5-methylene Substituents at the First Position of the tRNA Anticodon Stabilize U:G Wobble Pairing during Decoding. J Biol Chem 2008; 283:18801-11; PMID:18456657; https://doi.org/10.1074/jbc.M80223200

Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 2002; 111:721-32; PMID:12464183; https://doi.org/10.1016/S0092-8674(02)01086-3

Yarian C, Marszalek M, Sochacka E, Malkiewicz A, Guenther R, Mikiewicz A, Agris PF. Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNA^{UUC} and tRNA^{UUU} species. Biochemistry 2000; 39:13390-5; PMID:11063576; https://doi.org/10.1021/bi001302g

Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 2016; 44:8020-40; PMID:274748410; https://doi.org/10.1093/nar/gkw608

Demeshkina N, Jenner L, Westhof E. Selection of tRNA binding by the ribosome requires a transition from an open to a closed form. Cell 2002; 111:721-32; PMID:12464183; https://doi.org/10.1016/S0092-8674(02)01086-3

Vendeix FAP, Murphy FV, Cantara WA, Leszczynska G, Gustilo EM, Sproat B, Malkiewicz A, Agris PF. Human tRNA^{UUC} and tRNA^{UUU} are pre-structured by natural modifications for cognate and wobble codon binding through keto-enol tautomerism. J Mol Biol 2012; 416:467-85; PMID:22227389; https://doi.org/10.1016/j.jmb.2011.12.048

Nedalkova DD, Leidel SA. Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity. Cell 2015; 161:1606-18; PMID:26052047; https://doi.org/10.1016/j.cell.2015.05.022

Simos G, Tekotte H, Grosjean H, Segref A, Sharma K, Tollervey D, Hurt EC. Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J 1996; 15:2270-84; PMID:8641292

Morton Y, Keith G, Simon C, Foirot D, Simos G, Hurt E, Grosjean H. The yeast tRNA{Pseusuridine synthase Pus1p displays a multisite substrate specificity. RNA 1998; 4:856-69; PMID:9671058; https://doi.org/10.1093/siRNA/0803989

Pintard L, Lecointe F, Bujnicki JM, Bonnerot C, Grosjean H, Lapreye B. Trm7p catalyses the formation of two Z-2'-O-methylriboses in yeast tRNA anticodon loop. EMBO J 2002; 21:1811-20; PMID:11927555; https://doi.org/10.1093/emboj/21.7.1811

Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM. Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNA{Phe anticodon loop. RNA 2012; 18:1921-33; PMID:22912484; https://doi.org/10.1261/rna.035287.112

Nakai Y, Nakai K, Hayashi H. Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J Biol Chem 2008; 283:27469-76; PMID:18664566; https://doi.org/10.1074/jbc.M804043200
R. SCHAFFRATH AND S. A. LEIDEL

1218

51. Fernández-Vázquez J, Vargas-Pérez I, Sansó M, Buhne K, Carmona M, Paulo E, Herrand D, Rodríguez-Gabriel M, Ayté J, Leidel S, et al. Modification of tRNA^UUU^UUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genet 2013; 9:e1003647; PMID:23874237; https://doi.org/10.1371/journal.pgen.1003647

52. Laguesse C, Costa G, Nedialkova DD, Pretot P-P, Borgs I, Huysseune S, Franco B, Duyssens G, Krusy N, Lee G, et al. A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis. Dev Cell 2015; 35:553-67; PMID:26651292; https://doi.org/10.1016/j.devcel.2015.11.005

53. Huang B, Lu J, Bystr C, Peng AS. A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 2008; 14:2095-102; PMID:18046629; https://doi.org/10.1126/pnas.0705776005

54. Singh S, Tonelli M, Tyler RC, Bahrami A, Lee MS, Markley JL. Solution structure of Urm1p to the antioxidant protein Ahp1p. Eukaryotic Cell 2003; 2:930-6; PMID:14555475; https://doi.org/10.1128/EC.2.5.930-936.2003

55. Goehring AS, Rivier DM, Sprague GF. Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Mol Biol Cell 2001; 14439-41; PMID:14515258; https://doi.org/10.1091/mbc.E01-03-0027

56. Schmitz J, Chowdhury MM, Huh WK, Hannig U, Huh KM, et al. Modi нation pathway in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem 2000; 275:7462-5; PMID:10713047; https://doi.org/10.1016/j.jbcluc.2017.11.007

57. Liu Y, Vinyard DJ, Reesbeck ME, Suzuki T, Manakongtreeheep K, Holland PL, Brudvig GW, Soll D. A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proc Natl Acad Sci USA 2016; published online 24.10.2016; PMID:27791189; https://doi.org/10.1073/pnas.161573211

58. Nakagawa H, Kuratani M, Goto-Ito S, Ito T. Yeast Nfs1p is involved in thio-modification of tRNA thiolation in archaea and eukaryotes. Proc Natl Acad Sci USA 2011; 108:1763-70; PMID:21903415; https://doi.org/10.1073/pnas.1014402108

59. Nakai Y, Nakai M, Rill L, Suzuki T, Hayashi H. Thiocystolic tRNA is an iron-sulfur protein-dependent pathway. Mol Cell 2007; 27:2841-7; PMID:17283054; https://doi.org/10.1128/MCB.01321-06

60. Shigemoto K, Kudoh M, Tanaka K, Lill R. Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability. Biochim Biophys Acta 2015; 1853:1528-39; PMID:25583461; https://doi.org/10.1016/j.bbamcr.2014.12.018

61. gerber J, Neumann K, Prohl C, Mühlhoff U, Rill L. The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Mol Cell Biol 2004; 24:4848-57; PMID:15143178; https://doi.org/10.1128/MCB.24.11.4848-

62. Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, Svejstrup JQ, Elongator, a multitudesubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 1999; 3:1019-28; PMID:10107394; https://doi.org/10.1016/S1097-2765(99)01019-3

63. Inigo S, Durand AN, Ritter A, Le Gall S, Termate M, Klassen R, Tohege T, De Coninck B, Van Leeen J, De Clercq R, et al. Glutaredoxin GRXS17 Associates with the Cytosolic Iron-Sulfur Cluster Assembly Pathway. Plant Physiol 2016; 172:858-73; https://doi.org/10.1104/pp.16.00261

64. Otero G, Fellows J, Li Y, de Bizemont T, Dirac AM, Gustafsson CM, Erdjument-Bromage H, Tempst P, Svejstrup JQ, Elongator, a multitudesubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 1999; 3:1019-28; PMID:10107394; https://doi.org/10.1016/S1097-2765(99)01019-3

65. Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, Svejstrup JQ, RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes, J Biol Chem 2001; 276:1373-40; PMID:11435442; https://doi.org/10.1074/jbc.M105303200

66. Winkler GS, Krishnav J, Erdjument-Bromage H, Tempst P, Svejstrup JQ, Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl
Acad Sci USA 2002; 99:3517-22; PMID:11904415; https://doi.org/10.1073/pnas.02042899
84. Li Y, Takagi Y, Iang Y, Tokunaga M, Erdjument-Bromage H, Tempst P, Kornberg RD. A multiprotein complex that interacts with RNA polymerase II elongator. J Biol Chem 2001; 276:29628-31; PMID:11390369; https://doi.org/10.1074/jbc.C100274200
85. Rahib PB, Chen C, Collins RN, Elplp, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 2005; 17:841-53; PMID:15789040; https://doi.org/10.1016/j.molcel.2005.02.018
86. Svejstrup JQ, Elongator complex: how many roles does it play? Curr Opin Cell Biol 2007; 19:331-6; PMID:17466506; https://doi.org/10.1016/jceb.2007.04.005
87. Li Q, Fazly AM, Zhou H, Huang S, Zhang Z, Stillman B. The elongator complex interacts with PCNA and modulates transcriptional silencing and sensitivity to DNA damage agents. PLoS Genet 2009; 5:e1000684; PMID:19834596; https://doi.org/10.1371/journal.pgen.1000684
88. Chen C, Huang B, Eliasson M, Rydén P, Byström AS. Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet 2011; 7:e1002258; PMID:21912530; https://doi.org/10.1371/journal.pgen.1002258
89. Esberg A, Huang B, Johansson MJO, Byström AS. Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 2006; 24:139-48; PMID:17018299; https://doi.org/10.1016/j.molcel.2006.07.031
90. Bauer F, Hermand D. A coordinated codon-dependent regulation of the yeast Elongator complex reveals an unexpected asymmetric subunit arrangement. EMBO Rep 2016; Published online 21.11.2016; PMID:27872205; https://doi.org/10.15252/embr.201642548
91. Dauden MI, Kosinski J, Kolaj-Robin O, Desfosses A, Ori A, Faux C, Hoffmann NA, Onuma OF, Breunig KD, Beck M, et al. Architecture of the yeast Elongator complex. EMBO Rep 2016; 18: 264-279; PMID:27974378; https://doi.org/10.15252/embr.201643353
92. Glatt S, Séraphin B, Müller CW. Elongator: transcriptional or translational regulator? Transcription 2012; 3:273-6; PMID:22889844; https://doi.org/10.4161/trms.21525
93. Glatt S, Müller CW. Structural insights into Elongator function. Curr Opin Struct Biol 2013; 23:235-42; PMID:23510783; https://doi.org/10.1016/j.sbi.2013.02.009
94. Gu C, Begley TJ, Dedon PC. tRNA modifications regulate translation during cellular stress. FEBS Lett 2014; 588:4287-96; PMID:25304425; https://doi.org/10.1074/fj.feblet.2014.09.038
95. Mazauric M-H, Dirick L, Purushothaman SK, Bjork GR, Lapeyre B. TrnM112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. J Biol Chem 2010; 285:18505-15; PMID:20400505; https://doi.org/10.1074/jbc.M110113100
96. Chen C, Huang B, Anderson JT, Byström AS. Unexpected accumulation of ncmU and ncmSsU in a trm9 mutant suggests an additional step in the synthesis of ncmU and ncmSsU. PLoS ONE 2011; 6: e20783; PMID:21687733; https://doi.org/10.1371/journal.pone.0020783
97. Kalhor HR, Clarke S. Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol 2003; 23:9283-92; PMID:14645538; https://doi.org/10.1128/MCB.23.24.9283-9292.2003
98. Deng W, Babu IR, Su D, Yin S, Begley TJ, Dedon PC. Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation. PLoS Genet 2015; 11: e1005766; PMID:26670883; https://doi.org/10.1371/journal.pgen.1005766
99. Lu J, Huang B, Esberg A, Johansson MJO, Byström AS. The Kluyveromyces lactis γ-toxin targets tRNA anticodons. RNA 2005; 11:1648-54; PMID:16244131; https://doi.org/10.1261/rna.2172105
100. Jablonowski D, Schaffrath R. Zymocin, a composite chitinase and tRNase killer toxin from yeast. Biochem Soc Trans 2007; 35:1533-7; PMID:18031261; https://doi.org/10.1042/BST0351533
101. Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R. tRNA-Glu wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Mol Microbiol 2006; 59:677-88; PMID:16390459; https://doi.org/10.1111/j.1365-2958.2005.04972.x
102. Meinhardt PDF, Schaffrath DR. Extracellular Inheritance: Cytoplasmic linear double-stranded DNA killer elements of the dairy yeast Kluyveromyces lactis. In: Progress in Botany, Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds); Springer Verlag, Berlin Heidelberg New York; 62:51-70
103. Lu J, Esberg A, Huang B, Byström AS. Kluyveromyces lactis γ-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Nucleic Acids Res 2008; 36:1072-80; PMID:18096622; https://doi.org/10.1093/nar/gkn121
104. Nandakumar J, Schwer B, Schaffrath R, Shuman S. RNA repair: an antidote to cytotoxic eukaryal RNA damage. Mol Cell 2008; 31:278-86; PMID:18657509; https://doi.org/10.1016/j.molcel.2008.05.019
105. Schaffrath R, Breunig KD. Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 2000; 30:173-90; PMID:11035939; https://doi.org/10.1016/j.fgb.2000.1221
Butler AR, White JH, Folawiyo Y, Edlin A, Gardiner D, Stark MJ. Two Saccharomyces cerevisiae genes which control sensitivity to G1 arrest induced by Kluyveromyces lactis toxin. Mol Cell Biol 1994; 14:6306-16; PMID:8065362; https://doi.org/10.1128/MCB.14.9.6306

Kishida M, Tokunaga M, Katayose Y, Yajima H, Kawamura-Watabe A, Hishinuma F. Isolation and genetic characterization of pGKL killer-sensitive mutants (ski) from Saccharomyces cerevisiae. Biosci Biotechnol Biochem 1996; 60:798-801; PMID:8704309; https://doi.org/10.1271/bbb.60.798

Yajima H, Tokunaga M, Nakayama-Murayama A, Hishinuma F. Characterization of KI1 and KI3 genes conferring pGKL killer sensitivity on Saccharomyces cerevisiae. Biosci Biotechnol Biochem 1997; 61:704-9; PMID:9145530; https://doi.org/10.1271/bbb.61.704

Frohloff F, Fichtner L, Jablonowski D, Breunig KD, Schaffrath R. Subunit communication crucial for the functional integrity of the yeast RNA polymerase II elongator (γ-toxin target (TOT)) complex. J Biol Chem 2003; 278:956-61; PMID:12424236; https://doi.org/10.1074/jbc.M21006200

Frohloff F, Fichtner L, Jablonowski D, Schaffrath R. Subunit communications crucial for the functional integrity of the yeast RNA polymerase II elongator (γ-toxin target (TOT)) complex. J Biol Chem 2003; 278:956-61; PMID:12424236; https://doi.org/10.1074/jbc.M21006200

Frohloff F, Jablonowski D, Schaffrath R. Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Mol Microbiol 2009; 73:869-81; PMID:19566297; https://doi.org/10.1111/j.1365-2958.2009.06811.x

Frohloff F, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jager G, Gong Z, Byström AS, Schaffrath R, Breunig KD. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol 2010; 76:1082-94; PMID:20398216; https://doi.org/10.1111/j.1365-2958.2010.07163.x

Butler AR, White JH, Folawiyo Y, Edlin A, Gardiner D, Stark MJ. Functional analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for elongator-dependent dephosphorylation of the Sit4 holophosphatases. Mol Microbiol 2001; 39:990-1001; PMID:11296232; https://doi.org/10.1093/emboj/20.8.1993

Patil A, Chan CTY, Dyavaiab M, Demott MS, Taghizadeh K, Dedon PC, Begley TJ. A Quantitative Systems Approach Reveals Dynamic Control of tRNA Modifications during Cellular Stress. PLoS Genet 2010; 6:e1001247; PMID:21187895; https://doi.org/10.1371/journal.pgen.1001247

Abdel-Fattah W, Jablonowski D, Di Santo R, Th	 €

Chan CTY, Dyavaiab M, Rooney JP, Dedon PC, Begley TJ. Translational fidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. RNA Biol 2012; 9:990-1001; PMID:22832247; https://doi.org/10.4161/rna.20531

Alings F, Sarin LP, Fufezan C, Drexler HCA, Leidel SA. An evolutiona-
tory approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast. RNA 2015; 21:202-12; PMID:2566710; https://doi.org/10.1111/j.1365-2958.2009.06273.x

Han L, Kon Y, Phizicky EM. Functional importance of \(\Psi_{39} \) in distict tRNAs, amplified for tRNA \(\Psi_{39}^{\text{Glu/Cys}} \) by unexpected temperature sensitivity of the s\'U modification in yeast. RNA 2015; 21:188-201; PMID:25505025; https://doi.org/10.1111/j.1365-2958.2009.06273.x

Dahmen JR, Pincus D, Ploegh HL. tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:270-82; PMID:25392298; https://doi.org/10.1091/mbc.E14-06-1145

Laxman S, Sutter BM, Wu X, Kumar S, Guo X, Trudgian DC, Mirzaei H, Tu BP. Sulfur Amino Acids Regulate Translational Capacity...
and Metabolic Homeostasis through Modulation of tRNA Thiolation. Cell 2013; 154:416-29; PMID:23870129; https://doi.org/10.1016/j.cell.2013.06.043

149. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. Genomic expression programs in the response of yeast cells to environmental changes. Mol Cell Biol 2000; 20:4167-81; PMID:10939679; https://doi.org/10.1128/MCB.20.11.4167-4181.2000

150. Bodenmiller B, Campbell D, Gerrits B, Lam H, Jovanovic M, Picotti P, Schlapbach R, Aebersold R. PhosphoPep—a database of protein phosphorylation sites in model organisms. Nat Biotechnol 2008; 26:1339-40; PMID:19060867; https://doi.org/10.1038/nbt1208-1339

151. Stark C, Su T-C, Breitkreutz A, Lourenco P, Dahabieh M, Breitkreutz B-J, Tyers M, Sadowski I. PhosphoGRID: a database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae. Database (Oxford) 2010; 2010: bap026; PMID:20428315; https://doi.org/10.1093/database/bap026

152. Júde S, Ebert F, Bár C, Thüring KL, Harrer A, Klassen R, Helm M, Stark MJR. Schaffrath R. Urmylation and tRNA thiolation functions of ubiquitin-like Uba4-Urm1 systems are conserved from yeast to man. FEBS Lett 2015; 589:904-9; PMID:25747390; https://doi.org/10.1007/j.10706.2015.02024

153. Dedon PC, Begley TJ. A System of RNA Modifications and Biased Codon Use Controls Cellular Stress Response at the Level of Translation. Chem Res Toxicol 2014; 27:330-7; PMID:24422466; https://doi.org/10.1021/tx400438d

154. Klassen R, Ciuffi A, Funk J, Bruch A, butter F, Schaffrath R. tRNA anticond loop modifications ensure protein homeostasis and cell morphogenesis in yeast. Nucleic Acids Res 2016; PMID:27496282; https://doi.org/10.1038/nat/kgw705

155. Cheong JK, Virshup DM. Casein kinase I: Complexity in the family. Int J Biochem Cell Biol 2011; 43:463-95; PMID:21145983; https://doi.org/10.1016/j.biocel.2010.12.004

156. Schäfer T, Maco B, Petfalski E, Tollervey D, Aebi U, Hurt E. Hrr25p-dependent phosphorylation state regulates organization of translation initiation complexes and eukaryotic Initiation factor 4F. J Biol Chem 2007; 282:860-70; PMID:18082610; https://doi.org/10.1016/j.jbc.2006.11.017

157. Glatt S, Sapper F, Lokvenc F, Edwards G, Botstein D. Mechanistic understanding of Pyrococcus horikoshii Dph2, a bacterial ADP-ribosylating toxin on translation elongation factor 2. Structure 2015; 23:149-60; PMID:25543256; https://doi.org/10.1287/m3.2014.06.151

158. Liu S, Milne GT, Kuremsky JG, Fink GR, Leppla SH. Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol Cell Biol 2004; 24:9487-97; PMID:15485916; https://doi.org/10.1128/MCB.24.21.9487-9497.2004

159. Deng Q, Barbieri JT. Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol 2008; 62:271-88; PMID:18785389; https://doi.org/10.1146/annurev.micro.62.081307.162848

160. Schaffrath R, Abdel-Fattah W, Klassen R, Stark MJR. The diphthamide modification pathway from Saccharomyces cerevisiae - revisited. Mol Microbiol 2014; 94:1213-26; PMID:25352115; https://doi.org/10.1111/mmi.12845

161. Schaffrath R, Stark MJR. Decoding the biosynthesis and function of diphthamide, an enigmatic modification of translation elongation factor 2 (EF2). Microb Cell 2014; 1:203-5; https://doi.org/10.1098/micobi.2014.06.151

162. Su X, Lin Z, Lin H. The biosynthesis and biological function of diphthamide. Crit Rev Biochem Mol Biol 2013; 48:515-21; PMID:23971743; https://doi.org/10.3109/10409238.2013.831023

163. Zhu X, Dzikovski B, Su X, Torelli AT, Zhang Y, Ealick SE, Freed JH, Lin H. Mechanistic understanding of Pyrococcus horikoshii Dph2, a [4Fe-4S] enzyme required for diphthamide biosynthesis. Mol Biosyst 2011; 7:74-81; PMID:20931132; https://doi.org/10.1039/C0MB00076K

164. Lin Z, Dong M, Zhang Y, Lee EA, Lin H. Cbl1 is a Dph3 reductase required for the tRNA wobble uridine modification. Nat Chem Biol 2016; 12:995-7; PMID:27694803; https://doi.org/10.1038/nchembio.2190

165. Kaufmann G. Anticodon nucleases. Trends Biochem Sci 2000; 25:70-4; PMID:10664586; https://doi.org/10.1016/S0968-0004(99)01525-X
180. Satwika D, Klassen R, Meinhardt F. Anticodon nuclease encoding virus-like elements in yeast. Appl Microbiol Biotechnol 2012; 96:345-56; PMID:22899498; https://doi.org/10.1007/s00253-012-4349-9

181. Ogawa T. tRNA-targeting ribonucleases: molecular mechanisms and insights into their physiological roles. Biosci Biotechnol Biochem 2016; 80:1037-45; PMID:26967967; https://doi.org/10.1080/09168451.2016.1148579

182. Meineke B, Kast A, Schwer B, Meinhardt F, Shuman S, Klassen R. A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair. RNA 2012; 18:1716-24; PMID:22836353; https://doi.org/10.1261/rna.034132.112

183. Klassen R, Paluszynski JP, Wemhoff S, Pfeiffer A, Fricke J, Meinhardt F. The primary target of the killer toxin from Pichia acaciae is tRNAGlu. Mol Microbiol 2008; 69:681-97; PMID:18532979; https://doi.org/10.1111/j.1365-2958.2008.06319.x

184. Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Schaffrath R, Zhu J-K, Gong Z. Mutations in ABO1/ELO2, a subunit of holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol 2006; 26:6902-12; PMID:16943431; https://doi.org/10.1128/MCB.00433-06

185. Kheir E, Bär C, Jablonowski D. Cell growth control by tRNase ribotoxins from bacteria and yeast. In: Méndez-Vilas A, editor. Science against Microbial Pathogens: Communicating Current Research and Technological Advances. Vol. 2. Badajoz (Spain): FORMATEX; 2011:1321-29.

186. Bau F, Matsuyama A, Candiracci J, Dieu M, Scheliga J, Wolf DA, Yoshida M, Hermand D. Translational Control of Cell Division by Elongator. Cell Reports 2012; 1:424-33; PMID:22768388; https://doi.org/10.1016/j.celrep.2012.04.001