Assessment of Executive Function in Type 2 Diabetes Mellitus – A Case Control Study

Authors
Dr V. Mythili¹, Dr V.Sabitha², Dr M. Shanthi Maheshwari³
¹,³Assistant Professor, ²Associate Professor
Institute of Mental Health, Kilpauk, Chennai: 10
Corresponding Author
Dr V.Sabitha
Associate Professor, Institute of Mental Health, Kilpauk, Chennai: 10

ABSTRACT
There is growing evidence that adults with type 2 Diabetes mellitus exhibit deficits in executive function. Primary purpose of this study was to assess executive function in type 2 DM patients. The age group studied was between 40-50 years and it was compared with the healthy controls. This is a cross sectional case control study, where in 50 consenting patients attending diabetology outpatient department fulfilling the inclusion criteria were randomly chosen as cases and 50 consenting age, sex, education matched non diabetics were taken as controls. After screening with General Health Questionaire – 12 for psychiatric symptoms, Executive function was assessed with Digit Span Test, Verbal fluency test, Trail making test, Wisconsin Card Sorting Test and Stroop Test. In our study we found that there was no significant difference between diabetic and non-diabetic group in case digit span, verbal fluency, stroop test and WCST. There was a statistically significant difference between case and control group in Trail Making Test (p = 0.01). There was average difference of 8 seconds between diabetic and non-diabetics. The Stroop test showed a similar slowing in diabetics of 3 seconds but it was not statistically significant. Executive functioning in diabetics was comparable to that of control group. Though Trail making test, showed a statistical difference between diabetics and non-diabetic, it was still within the normative range for the particular age group.

Keywords: Executive functions, Type 2 Diabetes, Stroop test, Wisconsin Card Sorting Test.

Introduction
T2DM is a major public health problem all over the world¹. The socio-economic cost of Type 2 diabetes mellitus is exorbitant, mainly due to number of associated problems that accompany diabetes mellitus, like micro and macro vascular diseases and their increased susceptibility for cognitive impairment²,³.

Executive function is a primary domain of cognition that involves a broad set of cognitive abilities like attention, working memory, organization, and persistence that are necessary for orchestrating complex, goal-directed activities¹. Executive function appears to be orchestrated and mediated by frontal cortex along with its networks in cerebrum and sub-cortical regions of brain⁴.
Recent studies and evolving data categorically suggest that executive dysfunction is causatively associated with poor glycemic control \(^2\), i.e., it is one of the major risk factors. The effect of Type 2 diabetes mellitus on executive function is associated with inherent micro-vascular disease affecting frontal sub-cortical function \(^1\).

Executive function is a major domain of cognition that plays a pivotal role in allowing the execution of daily management tasks including exercise, blood glucose monitoring and drug intake, which are essential for glycemic control \(^1\). Executive Dysfunctions are implicated in decreased self-care capacity, poor adherence to diabetic medication, decreased levels of autonomy and a decrease in ability to make essential decision, for instrumental activities of daily living, as well as resistance to proper medical care \(^1\), \(^5\).

Suggested causes of hyperglycemia induced Executive dysfunction are

1. Diabetic vasculopathy,
2. hyper-lipidemia,
3. hypertension,
4. Insulin resistance
5. hyper-insulinemia
6. dysregulation of limbic-hypothalamic-adrenal pituitary axis (LHPA)
7. chronic hyperglycemia induced direct cytotoxicity on neuronal cells.
8. advanced glycation products
9. Inflammatory mediators like cytokines
10. oxidative stress
11. diabetes related depression

The purpose of this study is to assess executive function in patients with type 2 Diabetes mellitus in comparison to normal subjects.

**Aim**

To assess executive functioning in type 2 diabetic patients compared to normal subjects

**NULL HYPOTHESIS** There is no difference in performance, of the study and control groups, in tests of executive function.

**Ethics Committee**

The study was approved by the Institutional Ethical Committee, Madras Medical College.

All subjects (both patients and control group) gave informed consent for participation in written form.

**Materials and Methods**

**Subject Selection**

50 patients with type II DM attending Diabetology OPD in RGGGH

50 normal subjects (attenders of patients attending the OPD)

**Inclusion Criteria:** Age 40 – 50 years

Type II DM diagnosed as per American Diabetes Association Criteria

Age & gender matched Non Diabetics Cooperative for Cognitive Assessment

Exclusion Criteria:

- Intellectual Disabilities
- Co-Morbid Medical illness
- Psychiatric illness
- Neurological illness
- H/o of substance dependence

**Assessments of Parameters:**

Proforma for socio demographic data of study cases and control group

Proforma for Diabetes Status

GHQ and HAM D

Mini Mental State Examination (MMSE)

Test for Executive Function:

- Digit Span Test
- Forward Digit span
- Reverse digit span
- Verbal fluency
- Letter fluency
- Category Fluency
- Trail making test
- TMTA
- TMTB
- Wisconsin Card Sorting Test
- Stroop Test

**1. Digit Span Test**

In digit span test the subject is instructed to repeat a series of numbers in the same order as said to
them. The evaluator continues to keep on increasing the series of numericals in order of one every time and then asking the subject to repeat them back to the evaluator as a long as the answers are correct and stops when a response is incorrect. Similarly in the backward digit span task the participant needs to reverse the order of the numbers.

2. Verbal Fluency Test
The Verbal Fluency battery includes tests for Letter and Category fluency. In Verbal fluency test the subject is evaluated for maximum number of word production, within a set time frame, and within a specific constraint. In the Letter Fluency test, the subject is given three separate one-minute trials for the letters F, A, and S. The Category Fluency test is a one-minute trial for a single category like birds which can fly, four legged animals etc. For Subjects not proficient English, 3 letter of their Vernacular language is given.

3. Wisconsin card sorting test
It consists of sixty four tests cards and 4 stimulus cards. Each card is a square of dimensions 8cms by 8cms. The stimuli vary in 3 attributes: color(red, green, yellow, blue), form(triangle, star, cross, circle) and number(1,2,3,4).

4. Stroop test
This test measures the response inhibition ability. Three cards which has 20 rows and 5 columns of either color names or symbol is presented. First card has color names printed in black color, second card has x symbol printed in different colors. And last card has color names blue, green, and red printed in different colors. The time taken to read each card (t1, t2, t3) and the number of errors made is noted. The Stroop effect is calculated as: $t_3-(t_1+t_2 / 2)$.

5. Trail making test
Trail Making Test has two parts A and B. Each part consists of 25circles distributed over a sheet of paper. Time taken to complete the trail is noted.

Data Analysis
Statistical Analysis Plan
Comparison of socio demographic data of study and control groups:
Chi square test
Comparison of executive function of study and control groups:
Assessing normality of data for cases and controls Shapiro-Wilk test.
Kolmogorov-Smirnov test.
Comparison of neuropsychological scores between cases (study group) and controls.
When data distributed Normally
2 Tailed Students T test
For Non-Normative distribution of data
Wilcoxon –Mann-Whitney U test (non-parametric test).

Results
The study is a case control study, cases defined as Type2 Diabetes mellitus and controls as healthy unrelated subjects.
A. Socio-demographic data of cases and controls
With respect to study population (cases), mean age was 45.14±1.5. Sex distribution was also equal among cases, 25 males and 25 females. With respect to control group, mean age was 44.98±1.52 Sex distribution among control was 26 (52%) male and 24 (48%) female.
Comparison of socio-demographic data of cases and controls shows no significant difference. Hence the two groups are comparable with respect to age, sex distribution, education, occupation, socioeconomic status.
Table 1: Socio-Demographic Data

| Sociodemographic Data | Cases (n=50) | Controls (n=50) | \( \chi^2 \) |
|-----------------------|-------------|----------------|----------|
|                       | Number      | Percent        | Number   | Percent  |
| Age                   |             |                |          |          |
| 40 – 45               | 26          | 52             | 28       | 56       | 0.812    |
| 46 – 50               | 24          | 48             | 22       | 44       |          |
| Sex:                  |             |                |          |          |
| Male                  | 21          | 42             | 24       | 48       | 0.843    |
| Female                | 29          | 58             | 26       | 52       |          |
| Education:            |             |                |          |          |
| Secondary Degree      | 37          | 74             | 36       | 72       | 0.824    |
|                       | 13          | 26             | 14       | 28       |          |
| Occupation:           |             |                |          |          |
| Unskilled             | 31          | 62             | 28       | 56       | 0.458    |
| Semiskilled           | 19          | 38             | 20       | 40       |          |
| Skilled               | 0           | 0              | 2        | 4        |          |
| Marital status:       |             |                |          |          |
| Married               | 50          | 100            | 50       | 100      |          |
| Domicile:             |             |                |          |          |
| Rural                 | 11          | 22             | 12       | 24       | 0.814    |
| Urban                 | 39          | 78             | 38       | 76       |          |
| SES:                  |             |                |          |          |
| Low                   | 6           | 12             | 5        | 10       | 0.769    |
| Middle                | 44          | 88             | 45       | 90       |          |
| Religion:             |             |                |          |          |
| Hinduism              | 40          | 80             | 37       | 74       | 0.504    |
| Christianity          | 7           | 14             | 9        | 18       |          |
| Islam                 | 3           | 6              | 4        | 8        |          |

b. Illness characteristics of Diabetes Mellitus patients

The table 2 below shows the details regarding the illness characteristics of Diabetes Mellitus patients.

Table 2: Illness characteristics of Diabetes Mellitus patients

| Disease Characteristics | VARIABLES |
|-------------------------|-----------|
| Age Of Onset In Yrs     | <30   30–35 36–40 41–45 46–50 |
| No. Of Patients         | 2 4 8 30 6 |
| Percentage              | 4% 8% 16% 60% 12% |
| Duration Of Illness     | 0–12 months 12–24 month 24–36 months 3–5 yrs >5 yrs |
| No. Of Patients         | 2 6 12 20 10 |
| Percentage              | 4% 12% 24% 40% 20% |
| Type Of Treatemnt       | Diet / Exer D&E + OHA D&E + OHA + Insuin D&E +I |
| No. Of Patients         | 0 40 10 0 |
| Percentage              | 0 80% 20% 0 |
| Presence Of Complications| NEGATIVE |

The mean age of onset of diabetes mellitus is 41.40 years and the mean duration of illness is < 5 years. There was no major macro / micro vascular complication.

c. Assessment of normal distribution of data

Shapiro-Wilk and Kolmogorov-Smirnov test is used to assess the normal distribution of data.
Table 3: Assessing normality of data for cases and controls

| Tests of Normality | Kolmogorov-Smirnov | Shapiro-Wilk |
|--------------------|---------------------|--------------|
|                    | Statistic | Df | Sig | Statistic | Df | Sig |
| STROOP TEST        | CASE      | 0.61 | 50  | 0.15 | 0.950 | 50  | 0.114 |
|                    | CONTROL   | 0.07 | 50  | 0.027 | 0.904 | 50  | 0.002 |
| WCST ERRORS        | CASE      | 0.30 | 50  | 0.15 | 0.962 | 50  | 0.229 |
|                    | CONTROL   | 0.01 | 50  | 0.01 | 0.887 | 50  | 0.001 |
| WCST PRE           | CASE      | 0.03 | 50  | 0.01 | 0.881 | 50  | 0.001 |
|                    | CONTROL   | 0.01 | 50  | 0.01 | 0.810 | 50  | 0.001 |

d. Comparison of neuropsychological scores between cases (study group) and controls

A total of 5 neuropsychological tests (Digit span (forward, backward), Verbal Fluency (Letter and Category Fluency), Trail making test – A&B, Stroop test, and Wisconsin card sorting test, were administered to cases and controls, yielding 17 score (Table 4& 5). Higher the scores better the performance, lower the scores, poorer the performance for Digit Span and Verbal Fluency. For trail making test the time taken to complete is scored in seconds. Higher the score poorer the performance. For Stroop test, Stroop effect is calculated, higher the score poorer the performance. The standard scores from Wisconsin card sorting test manual are entered for each parameter. Higher the score better the performance.

The Wilcoxon – Mann-whitney U test (non parametric test) is used for comparison of neuropsychological test scores of cases and controls.

Table 4: comparison of neuropsychological scores

| TESTS             | CAES (n=50) | MEAN | SD  | CONTROLS (n=50) | MEAN | SD  | SIGNIFICANT 2 TAILED P value |
|-------------------|-------------|------|-----|-----------------|------|-----|-----------------------------|
| Forward digit span|             | 6.44 | 0.88| 6.64           | 1.06 |     | 0.309                      |
| Backward digit span|           | 4.36 | 0.53| 4.52           | 0.68 |     | 0.19                       |
| Letter Fluency test|            | 41.58 | 3.54| 42.22          | 2.77 |     | 0.317                      |
| Category Fluency test|         | 13.16 | 1.17| 13.48          | 1.09 |     | 0.16                       |
| TMTA              |             | 32.14 | 3.66| 30.16          | 3.79 |     | 0.009                      |
| TMTB              |             | 79.68 | 14.81| 71.18          | 10.03 |     | 0.002*                     |
| Stroop            |             | 42.78 | 7.20| 40.12          | 8.26 |     | 0.089                      |

TMT A & B : Trail making test A & B

For Forward Digit span test and Backward Digit span test, cases group reproduced less Numbers compared to controls and the test scores are statistically not significant.

In Letter Fluency test and category fluency test cases group produced less words compared to controls and the test scores are statistically not significant.
Trail making test A tests the speed of a subject. In this, cases took longer time to complete the task when compared to the control group and the test scores are not statistically significant.

Trail making test B tests the set-shifting ability of a subject. In this, cases took longer time to complete the task when compared to the control group. And the test scores are statistically significant at p – 0.002

Stroop test is used to test the response inhibition of executive functioning. It scores the time taken to complete each card and the number of errors made in each. The Stroop effect calculated using the time factor, shows cases took more time to complete the task compared to the control group. Though the errors were not used in computation of Stroop effect, cases made more errors compared to the controls in all 3 cards. the difference in their performance was not statistically significant.

Wisconsin card sorting test
Wisconsin card sorting test (WCST) is the gold standard test for executive function testing. The raw scores for each parameter were noted and their corresponding standard scores entered from test manual. The overall performance was marginally better in control group compared to cases who made more number of errors (total and perseverative) and perseverative responses. So the standardized scores were marginally low in cases compared to controls.

Wisconsin card sorting test
The tests did not show statistically significance difference between the two groups.

| Test                          | Cases (N=50) | Controls (N=50) | Mann Whitney U | Wilcoxon W | Z      | Significant 2 Tailed |
|-------------------------------|--------------|-----------------|----------------|------------|-------|---------------------|
| W Errors                      |              |                 |                |            |       |                     |
| Error                         | 118.28       | 9.272           | 119            | 9.64       | 1222  | 2497                | 0.193 | 0.849          |

Wisconsin Percentage Of Errors

| Test                          | Cases (N=50) | Controls (N=50) | Mann Whitney U | Wilcoxon W | Z      | Significant 2 Tailed |
|-------------------------------|--------------|-----------------|----------------|------------|-------|---------------------|
| Error%                        | 111.58       | 10.862          | 112.88         | 11.5       | 1177  | 2452                | 0.503 | 0.617          |

Wisconsin Presevative Response

| Test                          | Cases (N=50) | Controls(N=50) | Mann Whitney U | Wilcoxon W | Z      | Significant 2 Tailed |
|-------------------------------|--------------|-----------------|----------------|------------|-------|---------------------|
| Error                         |              |                 |                |            |       |                     |
| Tests | Cases (N=50) | Controls (N=50) | Mann Whitney U | Wilcoxon W | Z | Significant 2 Tailed |
|-------|--------------|-----------------|----------------|------------|---|---------------------|
| PR%   | 118.22       | 21.539          | 121.1          | 20.8       | 1139 | 2414 | 0.765 | 0.447 |
| PR    | 128.68       | 16.739          | 130.22         | 15.6       | 1184 | 2459 | 0.455 | 0.652 |

### Wisconsin Presevative Errors

| Tests | Cases (N=50) | Controls (N=50) | Mann Whitney U | Wilcoxon W | Z | Significant 2 Tailed |
|-------|--------------|-----------------|----------------|------------|---|---------------------|
| PE    | 128.86       | 15.616          | 130.12         | 14.7       | 1202 | 2477 | 0.331 | 0.741 |
| PE%   | 118.04       | 19.665          | 119.54         | 18.7       | 1190.5 | 2465.5 | 0.41 | 0.681 |

### Wisconsin Non-Presevative Errors

| Tests | Cases (N=50) | Controls (N=50) | Mann Whitney U | Wilcoxon W | Z | Significant 2 Tailed |
|-------|--------------|-----------------|----------------|------------|---|---------------------|
| NPE   | 116          | 11.96           | 115.42         | 10.13      | 1237 | 2512 | -0 | 0.928 |
Wisconsin Non-Preservative Error Percentage

| Tests          | Cases (N=50) | Controls (N=50) | Mann Whitney U | Wilcoxon W | Z   | Significant   |
|----------------|--------------|-----------------|----------------|------------|-----|---------------|
| NPE%           | 111          | 11.829          | 109.92         | 11         | 1212| 2487          | -0.262 | 0.794 |

Tests

| Tests | Cases (N=50) | Controls (N=50) | Mann Whitney U | Wilcoxon W | Z   | Significant   |
|-------|--------------|-----------------|----------------|------------|-----|---------------|
| CLR   | 50.5         | 5.559           | 1141           | 2416       | 0.751| 0.453         | 0.751  | 0.453 |
| CLR%  | 110          | 12.005          | 1209           | 2484       | 0.283| 0.779         | 0.283  | 0.779 |
| CC    | 5.08         | 0.695           | 1194           | 2469       | 0.386| 0.703         | 0.386  | 0.703 |

All the test were not statistically significant.

**Discussion**

In our study age group selected was between 40 to 50 years. This was mainly taken to avoid any age related cognitive deficits. Formal education of at least 8th standard was applied so that the subjects could understand the tests and perform.

The digit span test did not show much difference between case and control group. The verbal fluency was also within normal limits in diabetics compared to the non-diabetics. The Wisconsin card sorting test – (WCST) (perseveration), B: WCST (category) and C: WCST (conceptual responses) also did not vary significantly between diabetics group and non-diabetics. The deficits in executive function were observed in some studies \(^7,8,9,10\) – (Award et al., 2004; Messier, 2005; Rayn & Geckle, 2000; Stewart & Liolitsa, 1999). Nilsson (2006)\(^11\) suggested not all aspects of cognition may be equally or coincidentally affected by Type 2 diabetes, at least in relatively mild to-moderate cases. Executive Dysfunction could be attributed to diabetes mellitus severity its neurological sequelae or due to other associated multiple co-morbid conditions.

In our study there was a significant difference between case and control group in Trail Making Test, but it was still within the normative range for the particular age group. There was average difference of 8 seconds between diabetic and non-diabetics. The stroop test showed a similar slowing in diabetics of 3 seconds but not statistically significant. In diabetics it was observed that there was slowing in a number of speed based tasks in many previous studies. Those evaluating basic reaction time or perceptual speed were the most affected \(^7,8,12,13,14\) . (Arvanitakis, etal 2006; Awad etal., 2004 Fontbonne, etal 2001; Messier in 2005).

Prospective multi centric and multi-national studies like LADIS\(^15\) or randomized studies such as PROSPER\(^16\) highlighted diabetes as an independent risk factor for cognitive impairment.
in elderly individuals over 70 years. Our study group was between 40 – 50 years age group, with a duration of disease less than or equal to five years, without any vascular complications. This study group didn’t show a significant executive dysfunction compared to previous studies probably due to relatively recent onset disease and a younger population group. In elderly patients, co-morbidities are higher namely hypertension, cardio-vascular, cerebro-vascular disease, psychiatric affections and drug usage. These lead to exacerbation of the executive dysfunction in them.

Conclusion
Executive functioning in patients with Type 2 diabetes mellitus was comparable to that of control group. Though Trail making test, showed a statistical difference between the diabetic and non-diabetic, it was still within the normative range for the particular age group. Validation of this conclusion requires a larger group and prospective longitudinal study. Future follow up is essential to see how the cognitive dysfunction develop in these patients over a period of time and whether they would also develop problems in their executive functions and information processing abilities as seen in other studies.

Bibliography
1. Ha T. Nguyen, Ph.D., Joseph G. Grzywacz, Ph.D et al. Linking Glycemic Control and Executive Function in Rural Older Adults with Diabetes. J Am Geriatr Soc. Jun 2010; 58(6): 1123–1127.
2. Royall DR, Lauterbach EC, Cummings JL, et al. Executive control: a review of its promise and challenges for clinical research. J Neuropsychiatry Clin Neurosci 2002; 14: 377-405.
3. Schillerstrom JE, Horton MS, Royall DR. The impact of medical illness on executive function. Psychosomatics 2005; 46: 508-516.
4. Gregg EW, Beckles GL, Williamson DF, et al. Diabetes and physical disability among older U.S. adults. Diabetes Care. 2000;23:1272–1277.
5. Royall DR, Chiodo LK, Polk MJ. An empiric approach to level of care determinations: the importance of executive measures. J Gerontology 2005; 60: 1059-1064.
6. Sherifa A. Hamed. Diabetes Mellitus and the Brain: Special Emphasis to Cognitive Function -Review Article. International Journal of Diabetology & Vascular Disease Research(IJDVR).- 2013, Volume I Issue No.8
7. Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol. 2004 Nov;26(8):1044-80. Review.
8. Messier C. Glucose improvement of memory: a review. Eur J Pharmacol. 2004 Apr 19;490(1-3):33-57.
9. Ryan CM, Geckle MO. Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes. Diabetes Care 2000; 23: 1486 – 149
10. Stewart R, Liolitsa D. Type 2 diabetes mellitus, cognitive impairment and dementia. Diabetic Medicine 1999; 16: 93-112
11. Nilsson E. Diabetes and cognitive functioning: The role of age and comorbidity. 2006 Unpublished doctoral dissertation, Karolinska Institutet, Stockholm.
12. Bennett D. A., Schneider J. A., Arvanitakis Z., Kelly J. F., Aggarwal N. T., Shah R. C., et al. (2006a). Neuropathology of older persons without cognitive impairment from two community based studies. Neurology 66 1837–1844
13. Arvanitakis Z, Wilson RS, Bennett DA. Diabetes mellitus, dementia and cognitive function in older persons. J Nutrition, Health & Aging 2006; 10: 287-291
14. Changes in cognitive abilities over a 4-year period are unfavorably affected in elderly diabetic subjects: results of the Epidemiology of Vascular Aging Study. Fontbonne A1, Berr C, Ducimetière P, Alpérovitch A.

15. Verdelho A, Madureira S, Moleiro C, Ferro JM, Santos CO, Erkinjuntti T, Pantoni L, Fazekas F, Visser M, Waldemar G, et al: White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology 2010;75:160–167.

16. Versluis CE, van der Mast RC, van Buchem MA, Bollen EL, Blauw GJ, Eekhof JA, van der Wee NJ, de Craen AJ: Progression of cerebral white matter lesions is not associated with development of depressive symptoms in elderly subjects at risk of cardiovascular disease: the PROSPER Study. Int J Geriatr Psychiatry 2006;21:375–381.