Holomorphic Morse Inequalities on Covering Manifolds

Radu Todor, Ionuț Chiose

Abstract

The goal of this paper is to generalize Demailly’s asymptotic holomorphic Morse inequalities to the case of a covering manifold of a compact manifold. We shall obtain estimates which involve Atiyah’s “normalized dimension” of the square integrable harmonic spaces. The techniques used are those of Shubin who gave a proof for the usual Morse inequalities in the presence of a group action relying on Witten ideas. As a consequence we obtain estimates for the dimension of the square integrable holomorphic sections of the pull-back of a line bundle on the base manifold under some mild hypothesis for the curvature.

1 Introduction

To emphasize the meaning of our result let us consider a compact projective manifold X, F an ample line bundle on X, \tilde{X} the universal covering of X and \tilde{F} the pull-back of F on \tilde{X}. Then Kollár’s Theorem 6.4 from [3] shows that

$$\dim_{\pi_1(X)} H^0_{(2)}(\tilde{X}, K_{\tilde{X}} \otimes \tilde{F}) = \dim H^0(X, K_X \otimes F)$$

where we denote as usual K_N the canonical bundle of a manifold N. It follows from Theorem 0.1 in Demailly [4] that $\dim_{\pi_1(X)} H^0_{(2)}(\tilde{X}, K_{\tilde{X}} \otimes \tilde{F}^k)$ has polynomial growth of order the dimension of X as $k \to \infty$. We shall generalize this result to the case of a complex analytic manifold M on which a discrete group Γ acts freely and properly discontinuous such that $X = M/\Gamma$ is compact and carries a line bundle F satisfying Demailly’s condition:

$$\int_{X(\leq 1)} (ic(F))^n > 0$$

Let us mention that holomorphic Morse inequalities on non-compact manifolds have been obtained before on q-concave and q-convex manifolds (see Marinescu [3] and Bouche [4]).

The cohomology groups of M are usually infinite-dimensional and we cannot use the usual dimension. The dimension we shall use is the Γ-dimension introduced by Atiyah in [2]. Let us define the Γ-dimension of certain subspaces of $L^2(M, \tilde{E})$, where $E \to X$ is a hermitian vector bundle, $\tilde{E} \to M$ is the pull-back of E, X (and hence M) is endowed with a Riemannian metric and

$$L^2(M, \tilde{E}) = \{ s : M \to \tilde{E} \mid s is a measurable section, \int_M |s|^2 dV < \infty \}$$

Let G be a closed subspace in $L^2(M, \tilde{E})$ such that $L_\gamma G \subset G$ where L_γ is the action of Γ on $L^2(M, \tilde{E})$. Let U be a fundamental domain for the action of Γ and $(\varphi_m)_m$
The main theorem of this paper is:

\[\text{dim}_r G := \sum_m \int_U |\varphi_m(x)|^2 dV(x) \]

(2)

It can be shown that the definition of \(\text{dim}_r G \) does not depend on the orthonormal base \((\varphi_m)_m \) or on the fundamental domain \(U \) (see Atiyah [3]).

Let \(M \) be a complex analytic manifold of complex dimension \(n \) on which a discrete group \(\Gamma \) acts freely and properly discontinuous such that \(X = M/\Gamma \) is compact. Since \(M/\Gamma \) is compact one can easily see that the pull-back of a hermitian metric on \(X \) is a complete metric on \(M \) which we consider fixed from now on. Let \(E \) be a hermitian holomorphic vector bundle on \(X \) and \(\tilde{E} = \pi^* E \) its pull-back, where \(\pi : M \to X \) is the projection.

Let \(\bar{\partial}_q : C^\infty_0(M, \tilde{E}) \to C^\infty_0(M, \tilde{E}) \)

be the well-known Cauchy–Riemann operator and

\[\delta_q : C^\infty_0(M, \tilde{E}) \to C^\infty_0(M, \tilde{E}) \]

the formal adjoint of \(\bar{\partial}_q \). Then \(\Delta''_q = \bar{\partial}_q \delta_q + \delta_q \bar{\partial}_q \) is an elliptic differential operator.

Let \(\bar{\partial}_q : L^2_{0,q}(M, \tilde{E}) \to L^2_{0,q+1}(M, \tilde{E}) \) be the weak maximal extension of \(\bar{\partial}_q \) and likewise we denote by the same letter the weak maximal extensions of \(\delta_q \) and \(\Delta''_q \). Let us denote by \(N^q(\bar{\partial}) \) the kernel of \(\bar{\partial}_q \), by \(R^{\bar{\partial}^{-1}}(\bar{\partial}) \) the range of \(\bar{\partial}_q^{-1} \), \(N^q(\delta) \) the kernel of \(\delta_q^{-1} : L^2_{0,q}(M, \tilde{E}) \to L^2_{0,q-1}(M, \tilde{E}) \) and by \(N^q(\Delta'') \) the kernel of \(\Delta''_q : L^2_{0,q}(M, \tilde{E}) \to L^2_{0,q}(M, \tilde{E}) \).

By basic results of Andreotti and Vesentini [4] the hilbertian adjoint of \(\bar{\partial} \) coincides with \(\delta \), \(\Delta''_q \) is self-adjoint and

\[\mathcal{H}^q_{(2)}(M, \tilde{E}) := N^q(\Delta'') = N^q(\delta) \cap N^q(\bar{\partial}) \]

where the first equality is the definition of the space of \(L^2 \) harmonic forms.

Let \(E \) and \(F \) be hermitian holomorphic fibre bundles on \(X \) of rank \(1 \) and \(r \) respectively, \(\tilde{F} = \pi^* F \), \(\tilde{E} = \pi^* E \). Let us denote \(D = D' + \bar{\partial} \) the canonical connection of \(E \) and \(c(E) = D^2 = D'\bar{\partial} + \bar{\partial}D' \) its curvature form. Also, let

\[X(q) = \{ x \in X \mid ic(E) \text{ has } q \text{ negative eigenvalues and } n - q \text{ positive eigenvalues} \} \]

and

\[X(\leq q) = X(0) \cup X(1) \cup \ldots \cup X(q). \]

The main theorem of this paper is:

Theorem 1.1. As \(k \to \infty \), the following inequalities hold for every \(q = 0, 1, \ldots, n \):

i) The weak Morse inequalities:

\[\dim_r \mathcal{H}^q_{(2)}(M, \tilde{E}^k \otimes \tilde{F}) \leq r \frac{k^n}{n!} \int_{X(q)} (-1)^q \left(\frac{i}{2\pi} c(E) \right)^n + o(k^n). \]

ii) The strong Morse inequalities:

\[\sum_{j=0}^q (-1)^{q-j} \dim_r \mathcal{H}^j_{(2)}(M, \tilde{E}^k \otimes \tilde{F}) \leq r \frac{k^n}{n!} \int_{X(\leq q)} (-1)^q \left(\frac{i}{2\pi} c(E) \right)^n + o(k^n). \]
iii) The asymptotic Riemann-Roch formula:

$$\sum_{j=0}^{n} (-1)^j \dim_r H^j_{(2)}(M, \mathcal{E}^k \otimes \mathcal{F}) = r \frac{k^n}{n!} \int_X \left(\frac{i}{2\pi c(E)} \right)^n + o(k^n).$$

It follows easily

Corollary 1.2. Let E and F be as above and suppose that E satisfies (1). Then the space of L^2 holomorphic sections satisfies

$$\dim_r H^0_{(2)}(M, \mathcal{E}^k \otimes \mathcal{F}) \approx k^n$$

as $k \to \infty$. In particular the usual dimension of the space of L^2 holomorphic sections of E^k has the same cardinal as $|\Gamma|$ for large k.

This generalizes the result for the covering of a projective manifold by T. Napier [7].

We wish to express our gratitude to Professor V. Iftimie and Dr. G. Marinescu for their pertinent suggestions and for the support we have received.

2 \; \Gamma–dimension and Estimates

Let M be a real Riemann manifold of dimension n, Γ a discrete group acting freely and properly discontinuous on M such that $X = M/\Gamma$ is compact, $F \to X$ a hermitian vector bundle of rank r and $\mathcal{F} \to M$ is the pull–back of F. Let U be a fundamental domain for the action of Γ. We identify $L^2(M, \mathcal{F}) \sim = L^2(\Gamma) \otimes L^2(U, \mathcal{F}) \sim = L^2(\Gamma) \otimes L^2(X, \mathcal{F})$.

Let us consider A_{Γ} the von Neumann algebra of bounded operators on $L^2(M, \mathcal{F})$ which commute with Γ. If $A \in A_{\Gamma}$, then let $K_A \in D'(M \times M, \mathcal{F} \otimes_{M \times M} \mathcal{F})$ its kernel. As A is Γ–invariant, it follows that $K_A \in D'(M \times M/\Gamma, \mathcal{F} \otimes_{M \times M} \mathcal{F}/\Gamma)$ where the action of Γ on $M \times M$ is $(x, y) \to (\gamma x, \gamma y)$.

$A \in A_{\Gamma}$ is said to be Γ–Hilbert–Schmidt if $K_A \in L^2(M \times M/\Gamma, \mathcal{F} \otimes_{M \times M} \mathcal{F}/\Gamma)$ and of Γ–trace class if $A = A_1 A_2$ with A_1, A_2 being Γ–Hilbert–Schmidt. If $A \in A_{\Gamma}$ is of Γ–trace–class, one can define

$$\text{Tr}_\Gamma A := \text{Tr}(\varphi A \psi)$$

where $\varphi, \psi \in L^\infty_{\text{comp}}(M)$ such that $\sum_{\gamma \in \Gamma} (\varphi \psi) \circ \gamma = 1$. If $L \subset L^2(M, \mathcal{F})$ is a closed, Γ–invariant subspace, that is L is a Γ–module, and P_L is the ortogonal projection onto L, then

$$\dim_r L := \text{Tr}_\Gamma P_L \in [0, \infty]$$

This is in short the theory of Γ–traces. For more results see Atiyah [2] and Shubin [8]. We shall use the following three results; for the proofs see Shubin [8].

Proposition 2.1. Let

$$0 \to L_0 \to L_1 \to ... \to L_q \to L_{q+1} \to ... \to L_n \to 0$$

be a complex of Γ–modules (d_q commutes with the action of Γ and $d_{q+1}d_q = 0$). If $l_q = \dim_r L_q < \infty$ and $\bar{h}_q = \dim_r H_q(L)$ where

$$H_q(L) = N(d_q)/R(d_{q-1})$$

Then...
then
\[\sum_{j=1}^{q} (-1)^{q-j} h_{ij} \leq \sum_{j=1}^{q} (-1)^{q-j} l_{ij} \]
(5)

for every \(q = 0, 1, \ldots, n \) and for \(q = n \) the inequality becomes equality.

Let \(H = H^* \) be a linear operator in \(L^2(M, \tilde{F}) \) which commutes with the action of \(\Gamma \), that is \(E\lambda \in \mathcal{A} \), where \((E\lambda)\) is the spectral family of \(H \). Let us denote \(N_r(\lambda, H) = \dim_r R(E\lambda) \) and \(h \) the quadratic form of \(H \).

Proposition 2.2. If \(H \geq 0 \), then
\[
N_r(\lambda, H) = \sup \{ \dim_r L \mid L \text{ is a } \Gamma - \text{module } \subset \text{Dom}(h), \\
h(f, f) \leq \lambda((f, f)), \forall f \in L \}.
\]
(6)

Proposition 2.3. If there is \(T : L^2(M, \tilde{F}) \rightarrow L^2(M, \tilde{F}) \) a \(\Gamma \)-endomorphism (i.e. \(T \) commutes with the action of \(\Gamma \)) such that \((|H + T||f, f|) \geq \mu(|(f, f)|), f \in \text{Dom}(H) \) and \(\text{rank}_r T = \dim_r R(T) \leq p \), then
\[
N_r(\mu - \varepsilon, H) \leq p, \forall \varepsilon > 0.
\]
(7)

Let \(H \) be an elliptic differential operator, formally self-adjoint of order \(2m \) on \(\tilde{F} \), which commutes with the action of \(\Gamma \). We shall denote by the same letter \(H \) the weak maximal extension of \(H \). If \(H \) is strongly elliptic, then \(H \) is bounded from below (see Shubin [8]).

Theorem 2.4. Let \(H_0 \) be the self-adjoint operator in \(L^2(U, \tilde{F} \mid_U) \) defined by the restriction of \(H \) to \(U \) with Dirichlet boundary conditions. \((H_0 \text{ is bounded from below and has compact resolvent}) \). Then
\[
N_r(\lambda, H) \geq N(\lambda, H_0), \forall \lambda \in \mathbb{R}
\]
(8)

where \(N(\lambda, H) = \dim R(F_\lambda) \) if \((F_\lambda)\) is the spectral family of \(H_0 \).

Proof. Let \((e_i)\) be an orthonormal basis of \(L^2(U, \tilde{F}) \) which consists of eigenfunctions of \(H_0 \) corresponding to the eigenvalues \((\lambda_i)\); if we let \(e_i = 0 \) on \(M \setminus U \) and \(e_i = e_i \) on \(U \), then \(\tilde{e}_i \in \text{Dom}(h) \) and \((L, \tilde{e}_i)\) is an orthonormal basis of \(L^2(M, \tilde{F}) \) and \(\tilde{e}_i = L, e_i \in \text{Dom}(h) \). We have \(h(e_i, e_j) = \delta_{ij} \delta_{i, j}, \lambda_i \). Let \(\Phi_0^0 \) be the subspace spanned by \((\tilde{e}_i)_{\lambda_i \leq \lambda} \) and \(\Phi_\lambda \) the closed subspace spanned by \((\tilde{e}_i)_{\lambda_i \leq \lambda} \). Then
\[
\dim_r \Phi_\lambda = \sum_{\lambda_i \leq \lambda} \dim ((P\mu, \tilde{e}_i, \tilde{e}_i)) = \sum_{\lambda_i \leq \lambda} \dim \Phi_0^0 = N(\lambda, H_0).
\]

If \(f \) is a linear combination of \((e_i)_{\lambda_i \leq \lambda} \), then \(h(f, f) \leq \lambda \| f \|^2 \) and, as \(\text{Dom}(h) \) is complete, we obtain that \(\Phi_\lambda \subset \text{Dom}(h) \) and \(h(f, f) \leq \lambda \| f \|^2, f \in \Phi_\lambda \). From Proposition 2.2 it follows that \(N_r(\lambda, H) \geq N(\lambda, H_0) \).

Let \(s > 0 \), \(U_s = \{ x \in M \mid d(x, U) < s \} \) where \(d \) is the distance on \(M \) associated to the Riemann metric on \(M \) and \(U_{s, \gamma} := \gamma U_s \). Let \(\varphi(\gamma) \in C_0^\infty(M) \), \(\varphi(\gamma) \geq 0 \), \(\varphi(\gamma) = 1 \) on \(\tilde{U} \) and \(\text{supp} \varphi(\gamma) \subset U_s \), \(\varphi(\gamma) = \varphi(\gamma) \circ \gamma^{-1} \). Put
\[
C_\gamma^{(s)}(\gamma) = \frac{\varphi(\gamma)}{\left(\sum_{\gamma} \varphi(\gamma)^2 \right)^{1/22}} \in C_0^\infty(M)
\]
so that \(\sum_{\gamma \in \Gamma} (C^{(s)}_\gamma)^2 = 1 \). If \(m = 1 \) (that is \(H \) is of order 2) then

\[
H = \sum_{\gamma \in \Gamma} C^{(s)}_\gamma HC^{(s)}_\gamma - \sum_{\gamma \in \Gamma} \sigma_0(H)(dC^{(s)}_\gamma)
\]

(9)

where \(\sigma_0 \) is the principal symbol of \(H \) (see Shubin\[8\]).

Let us assume that \(X \) is a complex analytic manifold, \(\pi : M \to X \), \(E \) and \(F \) hermitian holomorphic vector bundles on \(X \), \(\bar{E} = \pi^*F \), \(\bar{F} = \pi^*E \). Let \(\Delta''_{k,q} \) be the Laplace–Beltrami operator on \(\Lambda^0 \otimes T^*M \otimes \bar{E}^k \otimes \bar{F} \). If \(s = k^{-\frac{1}{4}} \), \(H = \frac{1}{k} \Delta''_{k,q} \) in \([\]\) then it follows that there is a constant \(C \) such that

\[
\frac{1}{k} \Delta''_{k,q} \geq \frac{1}{k} \sum_{\gamma \in \Gamma} \frac{1}{k} J^{(k)}_{\gamma} \Delta''_{k,q} J^{(k)}_{\gamma} - \frac{C}{\sqrt{k}} \text{Id}
\]

(10)

where \(J^{(k)}_{\gamma} = C^{(k-\frac{1}{4})}_\gamma \), \(k \in \mathbb{N}^* \). We have used that \(\sigma_0(\Delta''_{k,q})(dJ) = |\partial J|^2 \text{Id} \) if \(J \in C^\infty(M,\mathbb{R}) \).

Let us denote by \(V = \Lambda^0 \otimes T^*M \otimes \bar{E}^k \otimes \bar{F} \), \(H = \frac{1}{k} \Delta''_{k,q} \) and \(H^{(k)}_0 = \frac{1}{k} \Delta''_{k,q} | U_{k^{-\frac{1}{4}}} \) the operator defined in \(L^2(U_{k^{-\frac{1}{4}}},V) \) by the restriction of \(\frac{1}{k} \Delta''_{k,q} \) to \(U_{k^{-\frac{1}{4}}} \) with Dirichlet boundary conditions. Let \((E^{(k)}_\lambda)_\lambda \) be the spectral family of \(H^{(k)}_0 \). In the sequel we fix \(\lambda \) and consider \(M^{(k)} \) a real number such that \(M^{(k)} \geq \lambda - \inf \text{spec}(H^{(k)}_0) \), where \(\text{spec}(H^{(k)}_0) \) is the spectrum of \(H^{(k)}_0 \) to the effect that

\[
H^{(k)}_0 + M^{(k)} E^{(k)}_\lambda \geq \lambda \text{Id}.
\]

Define

\[
G^{(k)}_\gamma : L^2(M,V) \to L^2(M,V) \quad G^{(k)}_\gamma = J^{(k)}_{\gamma} L^{-1} M^{(k)} E^{(k)}_\lambda L^{-1} J^{(k)}_{\gamma},
\]

(i.e. we trunk the section over \(U_{s,\gamma} \), transport it on \(U_s \), apply the spectral projection and then send it back to \(U_{s,\gamma} \)) and

\[
G^{(k)} = \sum_{\gamma \in \Gamma} G^{(k)}_\gamma.
\]

We have

\[
H + G^{(k)} \geq \sum_{\gamma \in \Gamma} \left(J^{(k)}_{\gamma} H J^{(k)}_{\gamma} + J^{(k)}_{\gamma} L^{-1} M^{(k)} E^{(k)}_\lambda L^{-1} J^{(k)}_{\gamma} \right) - \frac{C}{\sqrt{k}} \text{Id}
\]

\[
= \sum_{\gamma \in \Gamma} J^{(k)}_{\gamma} L^{-1} (H^{(k)}_0 + M^{(k)} E^{(k)}_\lambda) L^{-1} J^{(k)}_{\gamma} - \frac{C}{\sqrt{k}} \text{Id}
\]

\[
\geq \sum_{\gamma \in \Gamma} J^{(k)}_{\gamma} L^{-1} M^{(k)} L^{-1} J^{(k)}_{\gamma} - \frac{C}{\sqrt{k}} \text{Id}
\]

(11)

\[
= \left(\lambda - \frac{C}{\sqrt{k}} \right) \text{Id}.
\]

Lemma 2.5. \(\text{rank} H^{(k)} \leq N(\lambda, H^{(k)}_0) \).
Proof. The operator

$$L^{(1)}_{\alpha} : \bigoplus_{\gamma \in \Gamma} L^2(U_{s,\gamma}, V) \rightarrow \bigoplus_{\gamma \in \Gamma} L^2(U_{s,\gamma}, V),$$

$$L^{(1)}_{\alpha}(\gamma) = (w_{\alpha-\gamma})_{\gamma}$$

is a unitary operator for any \(\alpha \in \Gamma \). Consider \(i : L^2(M, V) \rightarrow \bigoplus_{\gamma \in \Gamma} L^2(U_{s,\gamma}, V) \), \(i(u) = (u | U_{s,\gamma})_{\gamma} \). Then \(\|u\| \leq \|i(u)\| \leq C_1 \|u\| \) and hence \(i \) is into and bounded. Moreover \(L^{(1)}_{\alpha} i = i L_{\alpha} \), for \(\alpha \in \Gamma \). Let

$$F : \bigoplus_{\gamma \in \Gamma} L^2(U_{s,\gamma}, V) \rightarrow L^2(M, V),$$

$$F((w_{\gamma})_{\gamma}) = \sum_{\gamma \in \Gamma} w_{\gamma}.$$

\(F \) is onto, bounded and \(F L^{(1)}_{\alpha} = L_{\alpha} F \), \(\alpha \in \Gamma \). We define

$$\tilde{G}^{(k)} : \bigoplus_{\gamma \in \Gamma} L^2(U_{s,\gamma}, V) \rightarrow \bigoplus_{\gamma \in \Gamma} L^2(U_{s,\gamma}, V),$$

$$\tilde{G}^{(k)}((w_{\gamma})_{\gamma}) = (j^{(k)} \lambda^{(k)} L^{-1} M^{(k)} E^{(k)}_{\lambda} L \lambda H^{(k)}_{w_{\gamma}})_{\gamma}.$$

Then \(\tilde{G}^{(k)} \) is bounded, commutes with \(L^{(1)}_{\alpha} \) and \(G^{(k)} = F \tilde{G}^{(k)} i \). We define also the operator

$$K : \bigoplus_{\gamma \in \Gamma} L^2(U_{s,e}, V) \rightarrow \bigoplus_{\gamma \in \Gamma} L^2(U_{s,\gamma}, V),$$

$$K((w_{\gamma})_{\gamma}) = (L_\gamma w_{\gamma})_{\gamma},$$

which is unitary and \(K L^{(2)}_{\alpha} = L^{(1)}_{\alpha} K \), \(\alpha \in \Gamma \) where

$$L^{(2)}_{\alpha} : \bigoplus_{\gamma \in \Gamma} L^2(U_{s,e}, V) \rightarrow \bigoplus_{\gamma \in \Gamma} L^2(U_{s,\gamma}, V),$$

$$L^{(2)}_{\alpha}(\gamma) = (w_{\alpha-\gamma})_{\gamma}.$$

Finally, let

$$\bar{G}^{(k)} : \bigoplus_{\gamma \in \Gamma} L^2(U_{s,e}, V) \rightarrow \bigoplus_{\gamma \in \Gamma} L^2(U_{s,\gamma}, V),$$

$$\bar{G}^{(k)}((w_{\gamma})_{\gamma}) = (E^{(k)}_{\lambda} M^{(k)} H^{(k)}_{w_{\gamma}})_{\gamma}.$$

Then

$$K \bar{G}^{(k)} = \bar{G}^{(k)} K.$$

As \(G^{(k)} = F \bar{G}^{(k)} i \), we have that \(\text{rank}_r G^{(k)} \leq \text{rank}_r \bar{G}^{(k)} \). The operator \(K \) being unitary it follows from (12) that \(\text{rank}_r \bar{G}^{(k)} = \text{rank}_r \tilde{G}^{(k)} \). But \(R(\tilde{G}^{(k)}) \) is closed because \(R(\bar{G}^{(k)}_{e}) \) is closed \((\bar{G}^{(k)}_{e} \) is the component of \(\tilde{G}^{(k)} \) on \(L^2(U_{s,e}, V) \) and has finite rank). If we identify \(\bigoplus_{\gamma \in \Gamma} L^2(U_{s,e}, V) \) with \(L^2 \Gamma \otimes L^2(U_{s,e}, V) \) and consider \(\tilde{G}^{(k)} \) as an operator in \(L^2 \Gamma \otimes L^2(U_{s,e}, V) \), then \(R(\tilde{G}^{(k)}) \) corresponds to \(L^2 \Gamma \otimes R(\bar{G}^{(k)}_{e}) \) and hence

$$\text{rank}_r \tilde{G}^{(k)} = \text{rank}_r \bar{G}^{(k)} \leq \text{rank}_r E^{(k)}_{\lambda} = N(\lambda, H^{(k)}_{0}).$$

Now the conclusion follows from the inequality

$$\text{rank}_r G^{(k)} \leq \text{rank}_r \bar{G}^{(k)} = \text{rank}_r \tilde{G}^{(k)}.$$

\(\square \)
Proposition 2.6. There is a constant $C \geq 0$ such that

$$N_\Gamma \left(\lambda, \frac{1}{k} \Delta''_{k,q} \right) \leq N \left(\lambda + \frac{C}{\sqrt{k}}, \frac{1}{k} \Delta''_{k,q} | U_{k^{-\frac{1}{2}}} \right) \quad \lambda \in \mathbb{R}, \ k \in \mathbb{N}^*$$

Proof. Proposition 2.2 with $\mu = \lambda - \frac{C}{\sqrt{k}}$ and $p = N \left(\lambda, \frac{1}{k} \Delta''_{k,q} | U_{k^{-\frac{1}{2}}} \right)$, (11) and Lemma 2.3 entail

$$N_\Gamma \left(\lambda - \frac{C}{\sqrt{k}} - \varepsilon, 1 \right) \leq N \left(\lambda + \frac{C}{\sqrt{k}} + \varepsilon, 1 \right)$$

Replacing λ with $\lambda + \frac{C}{\sqrt{k}} + \varepsilon$, we obtain

$$N_\Gamma \left(\lambda, \frac{1}{k} \Delta''_{k,q} \right) \leq N \left(\lambda + \frac{C}{\sqrt{k}} + \varepsilon, \frac{1}{k} \Delta''_{k,q} | U_{k^{-\frac{1}{2}}} \right)$$

When $\varepsilon \to 0$ it follows

$$N_\Gamma \left(\lambda, \frac{1}{k} \Delta''_{k,q} \right) \leq N \left(\lambda + \frac{C}{\sqrt{k}}, \frac{1}{k} \Delta''_{k,q} | U_{k^{-\frac{1}{2}}} \right)$$

\[\square\]

3 Holomorphic Morse Inequalities

Let M be a Riemannian manifold of dimension n with volume element $d\sigma$. Let E and F be hermitian vector bundles on M, rank $E = 1$, rank $F = r$, with D and ∇ the canonical connections, S a continuous section in $\Lambda^1 M \otimes \mathbb{R}$ Hom$_\mathbb{C}(F,F)$ and V a continuous section in Herm(F). Let ∇_k be the connection in $E^k \otimes F$. We denote the endomorphisms $\text{Id}_{E^k} \otimes S$ and $\text{Id}_{E^k} \otimes V$ by S and V. Given $\Omega \subset M$, let

$$Q_{\Omega,k}(u) = \int_{\Omega} \left(\frac{1}{k} | \nabla_k u + Su|^2 - (Vu, u) \right) d\sigma,$$

$$\text{Dom}(Q_{\Omega,k}) = W^1_0(\Omega, E^k \otimes F)$$

where by W^1_0 we denote the Sobolev space. Let $V_1(x) \leq ... \leq V_r(x)$ be the eigenvalues of $V(x)$. We shall use the following

Theorem 3.1 (Demailly [4]). The counting function of the eigenvalues of $Q_{\Omega,k}$ satisfies for every $\lambda \in \mathbb{R}$ the following asymptotic estimates as $k \to \infty$:

$$\sum_{j=1}^r \int_{\Omega} \nu_B(V_j + \lambda) d\sigma \leq \liminf k^{-\frac{n}{2}} N(\lambda, Q_{\Omega,k}) \leq \limsup k^{-\frac{n}{2}} N(\lambda, Q_{\Omega,k}) \leq \sum_{j=1}^r \int_{\Omega} \tilde{\nu}_B(V_j + \lambda) d\sigma$$

where B is the magnetic field of the connection D and

$$\nu_B(\lambda) = \frac{2^{s-n-\frac{n}{2}}}{\Gamma(\frac{n}{2} - s + 1)} B_1 \cdots B_s \sum_{(p_1, ..., p_n) \in \mathbb{N}^n} \left[\lambda - \sum_{j=1}^s (2p_j + 1) B_j \right]^{\frac{n}{2} - s}$$

if $B_1(x) \geq ... \geq B_s(x)$ are the absolute values of the non–zero eigenvalues of B, $[\lambda]_+^0 = 0$ for $\lambda \leq 0$, $[\lambda]_+^0 = 1$ for $\lambda > 0$ and $\tilde{\nu}_B = \lim \nu_B(\lambda + \varepsilon), \varepsilon \searrow 0$.

7
We assume now that M is a hermitian complex analytic manifold of complex dimension n, E and F hermitian holomorphic vector bundles, $F_k = E^k \otimes F$ and $\Delta''_{k,q}$ the Laplace–Beltrami operator on F_k. If $\alpha_1(x), \ldots, \alpha_n(x)$ are the eigenvalues of $ic(E)(x)$ with respect to the metric on M then, as in Demailly [4], we deduce that there is a countable set $A \subset \mathbb{R}$ such that

$$\lim k^{-n}N\left(\lambda, \frac{1}{k} \Delta''_{k,q} \mid \Omega \right) = r \sum_{|J|=q} \int_{\Omega} \nu_B(2\lambda + \alpha_{C(J)} - \alpha_J) \, d\sigma$$

(17)

for $\lambda \in \mathbb{R} \setminus A$, where $\alpha_J = \sum_{j \in J} \alpha_j$, $C(J) = \{1, \ldots, n\} \setminus J$.

Let M be an analytic complex manifold of dimension n and Γ a discrete group which acts freely and properly discontinuous on M such that $X = M/\Gamma$ is compact.

We choose a hermitian metric on X and we lift it on M. Let E and F be hermitian holomorphic vector bundles on X, rank $E = 1$, rank $F = r$ and $\bar{E} = \pi^*E$, $\bar{F} = \pi^*F$.

Let $E(\cdot, \Delta''_{k,q})$ the spectral family of the self-adjoint operator $\Delta''_{k,q}$ in $L^2_{\bar{\Delta}}(M, \bar{E}^k \otimes \bar{F})$ and $\bar{L}^\lambda_k = R\left(E \left([0, \lambda], \frac{1}{k} \Delta''_{k,q} \right)\right)$. Then

$$E([0, \lambda], \Delta''_{k,q}) \bar{\Delta}_{q-1} = \bar{\Delta}_{q-1} E([0, \lambda], \Delta''_{k,q-1})$$

on \bar{L}^λ_{q-1} and it follows that $\bar{\Delta}_{q-1} \bar{L}^\lambda_{q-1} \subset \bar{L}^\lambda_k$. If $\bar{\Delta}_{q}^\lambda$ denotes the restriction

$$\bar{\Delta}_{q} : \bar{L}^\lambda_k \to \bar{L}^\lambda_{k+1}$$

then

$$\{u \in \bar{L}^\lambda_{q-1} \mid \bar{\Delta}_{q-1}^\lambda u = 0, (\bar{\Delta}_{q-1}^\lambda)^* u = 0\} = H^q(M, \bar{E}^k \otimes \bar{F})$$

(18)

(see Shubin [8]). By definition $N_r(\lambda, \frac{1}{k} \Delta''_{k,q}) = \text{dim}_r \bar{L}^\lambda_k$. There is a complex

$$0 \to \bar{L}^{\lambda,1}_0 \to \bar{L}^{\lambda,1}_1 \to \cdots \to \bar{L}^{\lambda,1}_n \to 0$$

(19)

From Proposition 2.1 we get

$$\sum_{j=1}^q (-1)^{q-j} \text{dim}_r (N(\bar{\Delta}^\lambda_{q-j})/R(\bar{\Delta}^\lambda_{q-1})) \leq \sum_{j=1}^q (-1)^q N_r\left(\lambda, \frac{1}{k} \Delta''_{k,q} \right)$$

for $q = 0, 1, \ldots, n$ and for $q = n$ the inequality becomes equality.

From \cite{13}, $N(\bar{\Delta}^\lambda_{q-j})/R(\bar{\Delta}^\lambda_{q-1}) \simeq H^q_{\bar{\omega}}(M, \bar{E}^k \otimes \bar{F})$. From Theorem 2.4 and Proposition 2.6 it follows that there is a constant C such that

$$N(\lambda, \frac{1}{k} \Delta''_{k,q} \mid U) \leq N_r(\lambda, \frac{1}{k} \Delta''_{k,q}) \leq N\left(\lambda + \frac{C}{\sqrt{k}}, \frac{1}{k} \Delta''_{k,q} \mid U \frac{|U|}{n}\right)$$

(20)

But

$$N(\lambda, \frac{1}{k} \Delta''_{k,q} \mid U) = r k^n \sum_{|J|=q} \int_U \nu_B(2\lambda + \alpha_{C(J)} - \alpha_J) \, d\sigma + o(k^n)$$

and

$$\lim sup k^{-n} N\left(\lambda + \frac{C}{\sqrt{k}}, \frac{1}{k} \Delta''_{k,q} \mid U \frac{|U|}{n}\right) \leq \lim k^{-n} N(\lambda, \frac{1}{k} \Delta''_{k,q} \mid \bar{U}_e)$$

$$= r \sum_{|J|=q} \int_{\bar{U}_e} \nu_B(2\lambda + 2\varepsilon + \alpha_{C(J)} - \alpha_J) \, d\sigma$$

\[\text{Page 8}\]
so when $\varepsilon \to 0$ we get
\[
\lim k^{-n} N \left(\lambda + \frac{C}{k} \Delta''_{k,q} | U_{k^{-\frac{1}{2}}} \right) = r \sum_{|J|=q} \nu_B (2\lambda + \alpha_{C(J)} - \alpha_J) d\sigma
\]
for every $\lambda \in \mathbb{R} \setminus A$. As $\partial U = \tilde{U} \setminus U$ is of measure zero because U is a fundamental domain, it follows that
\[
N_r(\lambda, \frac{1}{k} \Delta''_{k,q}) = r k^n \sum_{|J|=q} \nu_B (2\lambda + \alpha_{C(J)} - \alpha_J) d\sigma + o(k^n)
\]
for $\lambda \in \mathbb{R} \setminus A$. Hence for $\lambda \to 0$, $\lambda \in \mathbb{R} \setminus A$ we obtain
\[
\sum_{j=0}^{q} (-1)^{q-j} \dim \mathcal{H}^2_j (M, \mathcal{E}^k \otimes \tilde{F}) \leq k^n \sum_{j=0}^{q} (-1)^{q-j} I^j + o(k^n) \quad (21)
\]
where
\[
I^j = \frac{r}{n!} \int_{M(j) \cap U} (-1)^j \left(\frac{i}{2\pi} c(\tilde{E}) \right)^n = \frac{r}{n!} \int_{X(j)} (-1)^j \left(\frac{i}{2\pi} c(E) \right)^n \quad (22)
\]
with $M(j) = \{ x \in M | ic(\tilde{E})(x) \text{ has } j \text{ negative eigenvalues and } n-j \text{ positive ones} \}$. We have used that $c(\tilde{E})$ is the lifting of $c(E)$. Theorem 1.1 now follows from (21) and (22).

References

[1] A. Andreotti, E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci., Publ. Math. No. 25 (1965), 81–130.

[2] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Asterisque, 32–33 (1976), 43-72.

[3] T. Bouche, Inegalités de Morse pour la d''-cohomologie sur une variété non-compacte, Ann.Sc. Ecole Norm.Sup. 22 (1989), 501–513.

[4] J. P. Demailly, Champs magnétiques et inegalités de Morse pour la d''-cohomologie, Ann. Inst. Fourier 35(4) (1985), 189–229.

[5] J. Kollár, Shafarevich maps and automorphic forms, Princeton University Press, Princeton, NJ, 1995.

[6] G. Marinescu, Asymptotic Morse Inequalities for Pseudoconcave Manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 1, 27–55.

[7] T. Napier, Convexity properties of coverings of smooth projective varieties, Math. Ann., 286 (1990), 433–479.

[8] M. Shubin, Semiclassical asymptotics on covering manifolds and Morse inequalities, Geom. Funct. Anal. 6 (1996), no. 2, 370–409.
