Strong and Simple Baselines for Multimodal Utterance Embeddings

Paul Pu Liang*, Yao Chong Lim*, Yao-Hung Hubert Tsai, Ruslan Salakhutdinov and Louis-Philippe Morency
Human Language is often multimodal

Language
- Word choice
- Syntax
- Pragmatics

Acoustic
- Tone
- Prosody
- Phrasing

Visual
- Facial expressions
- Body language
- Eye contact
- Gestures

Sentiment
- Positive/Negative
- Intensity

Emotion
- Anger
- Happiness
- Sadness
- Confusion
- Fear
- Surprise

Meaning
- Sarcasm
- Humor
Human Language is often multimodal

“This movie is great” + Neutral expression

Sentiment Intensity
Human Language is often multimodal

“This movie is great” + Neutral expression

“This movie is great” + Smile

Sentiment Intensity
Challenges in Multimodal ML
Challenges in Multimodal ML

1. Intramodal interactions

- Smile $+$ Head nod vs. Smile $+$ Head shake
Challenges in Multimodal ML

1. Intramodal interactions

 Smile + Head nod vs. Smile + Head shake

2. Crossmodal interactions

 Bimodal “This movie is great” + Smile
Challenges in Multimodal ML

1. Intramodal interactions

 Smile + Head nod vs. Smile + Head shake

2. Crossmodal interactions

 Bimodal: “This movie is great” + Smile

 Trimodal: “This movie is GREAT” + Smile + “great” is emphasized, drawn-out

 (Sarcasm)
Multimodal Language Embedding

“Incredibly unbelievable!”

Intramodal + crossmodal interactions

Downstream Tasks
- Sentiment Analysis
- Emotion Recognition
- Speaker Trait Recognition
...

“Loud”

Language
Visual
Acoustic

Utterance Embedding
Multimodal Language Embedding

“This is unbelievable!”

Intramodal + crossmodal interactions

Downstream Tasks
- Sentiment Analysis
- Emotion Recognition
- Speaker Trait Recognition
...

language

visual

acoustic

Loud
Why fast models?

• Applications
• Robots, virtual agents, intelligent personal assistants
• Processing large amounts of multimedia data
Research Question

Can we make principled but simple models for multimodal utterance embeddings that perform competitively?
Research Question

Can we make principled but simple models for multimodal utterance embeddings that perform competitively?
Research Question

Can we make principled but simple models for multimodal utterance embeddings that perform competitively?

Performance

Current SOTA

Speed

Our goal

Our models:
- Fewer parameters
- Has a closed-form solution
- Linear functions
- Competitive with SOTA!
A language-only solution

Arora et al. (2016, 2017):

Sentence embedding m_s

Word embeddings

w_1 w_2 w_3 w_4

This manual is helpful
A language-only solution

Arora et al. (2016, 2017):

\[p(w_i|m_s) \propto \exp(w_i \cdot m_s) \]

This manual is helpful
A language-only solution

Arora et al. (2016, 2017):

\[p(w_i|m_s) \propto \exp(w_i \cdot m_s) \]

Fast: No learnable parameters.
MMB1: Representing intramodal interactions
MMB1: Representing intramodal interactions

(Arora et al)

Utterance embedding m_s
MMB1: Representing intramodal interactions

Utterance embedding m_s

Utterance-level feature distributions:
- Visual
- Audio

(Arora et al)

Words
- w_1
- w_2
- w_3
- ... w_n
- It
- doesn’t
- give
- help

Gaussian parameters
- μ_v
- σ_v

Visual
- v_1
- v_2
- v_3
- ... v_n

Gaussian parameters
- μ_a
- σ_a

Audio
- a_1
- a_2
- a_3
- ... a_n
MMB1: Representing intramodal interactions

Utterance embedding m_s

Linear transformations

(Arora et al)

Words

w_1, w_2, w_3, ..., w_n

It, doesn’t, give, help

Visual

μ_v, σ_v

v_1, v_2, v_3, ..., v_n

Audio

μ_a, σ_a

a_1, a_2, a_3, ..., a_n
MMB1: Representing intramodal interactions

Utterance embedding m_s

```

(Arora et al)

Words

| $w_1$ | $w_2$ | $w_3$ | ... | $w_n$ |
|-------|-------|-------|------|-------|
| It    | doesn’t give | help |

Visual

| $v_1$ | $v_2$ | $v_3$ | ... | $v_n$ |
|-------|-------|-------|------|-------|

Audio

| $a_1$ | $a_2$ | $a_3$ | ... | $a_n$ |
|-------|-------|-------|------|-------|

Small number of additional parameters!
Crossmodal interactions

“It didn’t help” + Neutral face + Stable voice

“It didn’t help” + Sad face + Shaky voice

Emotion
Disappointment
Sadness
MMB2: Incorporating crossmodal interactions

Unimodal

Utterance embedding $m_s$

W+A

[\{w_1, a_1\}, ..., \{w_n, a_n\}]

V+A

[\{v_1, a_1\}, ..., \{v_n, a_n\}]

W+V

[\{w_1, v_1\}, ..., \{w_n, v_n\}]

W+V+A

[\{w_1, v_1, a_1\}, ..., \{w_n, v_n, a_n\}]

Concatenated inputs
MMB2: Incorporating crossmodal interactions

Unimodal

Utterance embedding $m_s$

\[ [w_1, a_1], \ldots, [w_n, a_n] \]

\[ [v_1, a_1], \ldots, [v_n, a_n] \]

\[ [w_1, v_1], \ldots, [w_n, v_n] \]

\[ [w_1, v_1, a_1], \ldots, [w_n, v_n, a_n] \]
MMB2: Incorporating crossmodal interactions

Unimodal

Utterance embedding $m_S$

Linear transformations

| W+A | V+A | W+V | W+V+A |
|-----|-----|-----|-------|
| $\mu_wa$, $\sigma_wa$ | $\mu_va$, $\sigma_va$ | $\mu_wv$, $\sigma_wv$ | $\mu_wva$, $\sigma_wva$ |
| $[w_1, a_1]$ ... $[w_n, a_n]$ | $[v_1, a_1]$ ... $[v_n, a_n]$ | $[w_1, v_1]$ ... $[w_n, v_n]$ | $[w_1, v_1, a_1]$ ... $[w_n, v_n, a_n]$ |
How do we optimize the model?

Coordinate ascent-style
How do we optimize the model?

Two steps each iteration:

- Visual
  - $\mu_3$
  - $\sigma_3$
  - $v_1$
  - $v_2$
  - $v_3$
  - $v_n$

- Audio
  - $\mu_6$
  - $\sigma_6$
  - $a_1$
  - $a_2$
  - $a_3$
  - $a_n$

Utterance embedding $m_S$

Coordinate ascent-style
How do we optimize the model?

Two steps each iteration:
1. Fix transformation parameters, solve for $m_s$

```
Utterance embedding m_s
```

Coordinate ascent-style
How do we optimize the model?

Two steps each iteration:
1. Fix transformation parameters, solve for $m_s$
2. Fix $m_s$, update transformation parameters by gradient descent

Coordinate ascent-style
Datasets

CMU-MOSI (Zadeh et al. 2016)
- Multimodal Sentiment Analysis dataset
- 2199 English opinion segments (monologues) from online videos
Datasets

POM (Park et al., 2014)

• Multimodal Speaker Traits Recognition
• 903 English videos annotated for speaker traits such as confidence, dominance, vividness, relaxed, nervousness, humor etc.
Compared Models

Deep neural models
• Early Fusion: EF-LSTM
• DF (Nojavanasghari et al., 2016)
• Multi-view Learning: MV-LSTM (Rajagopalan et al., 2016)
• Contextual LSTM: BC-LSTM (Poria et al., 2017)
• Tensor Fusion: TFN (Zadeh et al., 2017)
• Memory Fusion: MFN (Zadeh et al., 2018)
Experiments

CMU-MOSI Sentiment

| Model    | Binary Accuracy (%) |
|----------|---------------------|
| EF-LSTM  | 74.6                |
| DF       | 72.8                |
| MV-LSTM  | 74.6                |
| BC-LSTM  | 74.6                |
| TFN      | 77.4                |
| MFN      | 77.4                |
| MMB1     | 75.1                |
| MMB2     | 75.1                |

Deep neural models

Our baselines
Experiments

POM Speaker Traits Recognition

MAE

| Model   | MAE   |
|---------|-------|
| EF-LSTM | 0.774 |
| MFN     | 0.746 |
| MMB1    | 0.774 |
| MMB2    |       |

- **Deep neural models**
- **Our baselines**
Speed Comparisons

Average Inference Time (s)

- Deep neural models
- Our baselines
Conclusion

• Proposed two simple but strong baselines for learning embeddings of multimodal utterances
• Try strong baselines before working on complicated models!
The End!

CMU-MOSI Accuracy (%)

Inferences per second

- Deep neural models
- Our baselines

Github: yaochie/multimodal-baselines

Email:
pliang@cs.cmu.edu
yaochonl@cs.cmu.edu
Additional Results
| Dataset   | CMU-MOSI Sentiment | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Task Metric | A (2) | F1 |
| Majority  | 50.2 | 50.1 |
| RF        | 56.4 | 56.3 |
| THMM      | 50.7 | 45.4 |
| EF-HCRF(*) | 65.3 | 65.4 |
| MV-HCRF(*) | 65.6 | 65.7 |
| SVM-MD    | 71.6 | 72.3 |
| C-MKL     | 72.3 | 72.0 |
| DF        | 72.3 | 72.1 |
| SAL-CNN   | 73.0 | 72.6 |
| EF-LSTM(*) | 74.3 | 74.3 |
| MV-LSTM   | 73.9 | 74.0 |
| BC-LSTM   | 73.9 | 73.9 |
| TFN       | 74.6 | 74.5 |
| MFN       | **77.4** | **77.3** |
| MMB1      | 73.6 | 73.4 |
| MMB2      | **75.2** | **75.1** |
| Dataset          | Task | Con  | Voi  | Dom  | Viv  | Res  | Tru  | Rel  | Out  | Tho  | Ner  | Hum  |
|------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Majority         |      | 1.483| 1.089| 1.167| 1.158| 1.166| 0.743| 0.753| 0.872| 0.939| 1.181| 1.774|
| SVM              |      | 1.071| 0.938| 0.865| 1.043| 0.877| 0.536| 0.594| 0.702| 0.728| 0.714| 0.801|
| DF               |      | 1.033| 0.899| 0.870| 0.997| 0.884| 0.534| 0.591| 0.698| 0.732| 0.695| 0.768|
| EF-LSTM(*)       |      | 1.035| 0.911| 0.880| 0.981| 0.872| 0.556| 0.594| 0.700| 0.712| 0.706| 0.762|
| MV-LSTM          |      | 1.029| 0.971| 0.944| 0.976| 0.877| 0.523| 0.625| 0.703| 0.792| **0.687**| 0.770|
| BC-LSTM          |      | 1.016| 0.914| **0.859**| **0.905**| 0.888| 0.564| 0.630| 0.708| **0.680**| 0.705| 0.767|
| TFN              |      | 1.049| 0.927| 0.864| 1.000| 0.900| 0.572| 0.621| 0.706| 0.743| 0.727| 0.770|
| MFN              |      | **0.952**| **0.882**| **0.835**| **0.908**| **0.821**| **0.521**| **0.566**| **0.679**| **0.665**| **0.654**| **0.727**|
| MMB2             |      | **1.015**| **0.878**| 0.885| 0.967| **0.857**| **0.522**| **0.578**| **0.685**| 0.705| 0.692| **0.726**|
| Dataset | Con  | Voi  | Dom  | Viv  | Res  | Tru  | Rel  | Out  | Tho  | Ner  | Hum  |
|---------|------|------|------|------|------|------|------|------|------|------|------|
| Majority| -0.041 | -0.104 | -0.031 | -0.044 | 0.006 | -0.077 | -0.024 | -0.085 | -0.130 | 0.097 | -0.069 |
| SVM    | 0.063 | -0.004 | 0.141 | 0.076 | 0.134 | 0.168 | 0.104 | 0.066 | 0.134 | 0.068 | 0.147 |
| DF     | 0.240 | 0.017 | 0.139 | 0.173 | 0.118 | 0.143 | 0.019 | 0.093 | 0.041 | 0.136 | 0.259 |
| EF-LSTM(*) | 0.221 | 0.042 | 0.151 | 0.239 | 0.268 | 0.069 | 0.092 | 0.215 | 0.252 | 0.159 | 0.272 |
| MV-LSTM| 0.358 | 0.131 | 0.146 | 0.347 | 0.323 | 0.237 | 0.119 | 0.238 | 0.284 | 0.258 | 0.317 |
| BC-LSTM| **0.359** | 0.081 | 0.234 | 0.417 | 0.450 | 0.109 | 0.075 | 0.078 | 0.363 | 0.184 | 0.319 |
| TFN    | 0.089 | 0.030 | 0.020 | 0.204 | -0.051 | -0.064 | 0.114 | 0.060 | 0.048 | -0.002 | 0.213 |
| MFN    | **0.395** | **0.193** | **0.313** | **0.431** | **0.333** | 0.296 | **0.255** | **0.259** | **0.381** | **0.318** | **0.386** |
| MMB2   | 0.350 | 0.220 | 0.333 | 0.434 | 0.332 | 0.176 | 0.224 | 0.318 | 0.394 | 0.296 | 0.366 |
Experiments

CMU-MOSI Sentiment

- EF-LSTM
- DF
- MV-LSTM
- BC-LSTM
- TFN
- MFN
- MMB1
- MMB2

Correlation

Deep neural models
Our baselines
Experiments

CMU-MOSI Sentiment

| Model       | F1 Score |
|-------------|----------|
| EF-LSTM     | 73.4     |
| DF          | 71.8     |
| MV-LSTM     | 73.9     |
| BC-LSTM     | 72.6     |
| TFN         | 74.1     |
| MFN         | 77.3     |
| MMB1        | 74.5     |
| MMB2        | 75.9     |

Deep neural models

Our baselines
Experiments

CMU-MOSI Sentiment

- 7-class Accuracy (%)
- Deep neural models: EF-LSTM, DF, MV-LSTM, BC-LSTM, TFN, MFN
- Our baselines: MMB1, MMB2
Experiments

CMU-MOSI Sentiment

MAE

- EF-LSTM
- DF
- MV-LSTM
- BC-LSTM
- TFN
- MFN
- MMB1
- MMB2

Deep neural models
Our baselines