Optimal algorithm for computing Steiner 3-eccentricities of trees

Aleksandar Ilić
Facebook Inc, Menlo Park 94025, California, USA
e-mail: aleksandari@gmail.com

August 24, 2020

Abstract

The Steiner k-eccentricity of a vertex v of a graph G is the maximum Steiner distance over all k-subsets of $V(G)$ which contain v. In this note, we design a linear algorithm for computing the Steiner 3-eccentricities and the connective Steiner 3-eccentricity index on a tree and thus improving a quadratic algorithm presented in [G. Yu, X. Li, Connective Steiner 3-eccentricity index and network similarity measure, Appl. Math. Comput. 386 (2020), 125446.]

Key words: Linear algorithm; Steiner distance of trees; Connective Steiner 3-eccentricity index.

1 Introduction

Let $G = (V, E)$ be a simple connected and undirected graph with vertex set $V(G)$ and weighted edge set $E(G)$. The distance $d(u,v)$ between two vertices u and v in G is the length of a shortest path connecting u and v. The eccentricity $ecc(v)$ of a vertex v is the maximal distance between v and any other vertex.

The Steiner distance was introduced by Chartrand, Oellermann, Tian and Zou [2] in 1989 as a generalization of general distance. For a set $S \subseteq V(G)$ of $k \geq 2$ vertices, a Steiner tree of S is the minimum weight connected subgraph of G which contains all vertices of S. The Steiner distance $SD(S)$ among the vertices S is the minimum weight among all connected subgraphs whose vertex sets contain S. Therefore,

$$SD(S) = \min \left\{ \sum_{e \in E(T)} w(e) : T \text{ is a subtree of } G, S \subseteq V(T) \right\},$$

where T is a Steiner tree of S, and $w(e)$ represents the weight of edge e. The Steiner k-eccentricity $\epsilon_k(v)$ of a vertex v of G is defined by

$$\epsilon_k(v) = \max \{SD(S) : S \subseteq V(G), |S| = k, v \in S\}.$$

The classical eccentricity is a Steiner 2-eccentricity, as the distance also equals to the minimum size of a connected subgraph containing these two vertices.

The connective Steiner k-eccentricity index ecc^c_k of a graph G is defined by [3]:

$$ecc^c_k = \sum_{v \in V} \frac{\deg(v)}{\epsilon_k(v)} = \sum_{ij \in E} \left(\frac{1}{\epsilon_k(i)} + \frac{1}{\epsilon_k(j)} \right).$$
Yu and Li in [1] designed an $O(n^2)$ polynomial time algorithm to calculate the connective Steiner 3-eccentricity index of trees. Here we present a linear algorithm for calculating the 3-eccentricities for every vertex of weighted trees, and thus improving the above result.

2 Algorithm

Let T be a rooted weighted tree. By T_r denote the subtree rooted at vertex $r \in V$, which is a subgraph induced on vertex r and all of its descendants.

In this section we design $O(n)$ algorithm for computing 3-eccentricities for all vertices of a weighted tree T, where n is the number of vertices in T.

First we choose an arbitrary vertex as the root of T. The adjacency list adj is used to store the weights of the edges. The main idea is to run two-stage tree traversals using depth first search procedure (see [4] for details). In the first stage, for every vertex v we compute the longest paths from v in the subtree rooted at v. In the second stage we update the longest paths with the upwards path via parent node in order to compute 3-eccentricities.

In each recursive call we maintain three vectors:

- $\text{path_weight}[v]$ representing the length of the longest path from the vertex v in the subtree T_v
- $\text{path_index}[v]$ representing the neighbor of v on the longest path from the vertex v in the subtree T_v
- $\text{attached_weight}[v]$ representing the length of the longest subpath attached at the longest path in the subtree T_v strictly below v

In fact, we need to store the top three longest paths and corresponding indexes and attached paths for every vertex in order to have efficient implementation. Finally, 3-eccentricity of the vertex v can be computed as

$$
\epsilon_3(v) = \text{path_weight}[v][0] + \max\{\text{path_weight}[v][1], \text{attached_weight}[v][0]\}.
$$

We also need to store two more vectors:

- $\text{parent}[v]$ representing the unique parent of v in the DFS tree (for the root vertex, we have $\text{parent}[v] = -1$)
- $\text{mark}[v]$ representing marked nodes in dfs tree

The main helper function is $\text{update}(v, u, new_weight, new_attached_weight)$ and it serves to update the above vectors and keep the top three values for the longest paths coming from the vertex v (see Appendix for the implementation).

The first stage DFS_stage1 is composed of simple initialization of the vectors and then recursively traversing all neighbors of the vertex v (that are not the unique parent of v). After the subtree is processed with the recursive call, we update the values for the node v based on the values for each of the subtrees. Note that for leaves the downstream values for $\text{path_weight}[v]$ and $\text{attached_weight}[v]$ can be initialized to 0.

In the second stage DFS_stage2, we traverse the nodes in the pre-order phase: first we update the values for the root and then run computation for the neighbors. For updating the values for
Algorithm 1: DFS\(_{\text{stage1}}(v)\)

Input: The adjacency matrix of the tree \(T\) with the root vertex \(\text{root}\).

Output: The downwards arrays \(\text{path_weight}, \text{path_index}, \text{attached_weight}\).

\[
\text{path_weight}[v] = (0, 0, 0);
\text{path_index}[v] = (-1, -1, -1);
\text{attached_weight}[v] = (0, 0, 0);
\]

for every neighbor \(u\) of \(v\) do
 if \(\text{parent}[u] = -1\) and \(u \neq \text{root}\) then
 \(\text{parent}[u] = v;\)
 \(\text{DFS_stage1}(u);\)
 \(\text{update}(v, u, \text{adj_weight}[v][u] + \text{path_weight}[0][u], \max(\text{path_weight}[1][u], \text{attached_weight}[0][u]));\)
 end
end

Algorithm 2: DFS\(_{\text{stage2}}(v)\)

Input: The outputs of \(\text{DFS_stage1}\).

Output: The arrays \(\text{path_weight}, \text{path_index}, \text{attached_weight}\).

\(\text{mark}[v] = 1;\)
\(u = \text{parent}[v];\)
if \(u \neq -1\) then
 \(\text{up_path_weight} = 0;\)
 \(\text{up_attached_weight} = 0;\)
 if \(\text{path_index}[0][u] \neq v\) then
 \(\text{up_path_weight} = \text{adj_weight}[u][v] + \text{path_weight}[0][u];\)
 if \(\text{path_index}[1][u] \neq v\) then
 \(\text{up_attached_weight} = \max(\text{path_weight}[1][u], \text{attached_weight}[0][u]);\)
 end
 else
 \(\text{up_attached_weight} = \max(\text{path_weight}[2][u], \text{attached_weight}[0][u]);\)
 end
else
 \(\text{up_path_weight} = \text{adj_weight}[u][v] + \text{path_weight}[1][u];\)
 \(\text{up_attached_weight} = \max(\text{path_weight}[2][u], \text{attached_weight}[1][u]);\)
end
\(\text{update}(v, u, \text{up_path_weight}, \text{up_attached_weight});\)
end
for every neighbor \(u\) of \(v\) do
 if \(\text{mark}[u] = -1\) then
 \(\text{DFS_stage2}(u);\)
 end
end
the parent node u, consider three cases: if the longest path from u goes through the vertex v, if the second longest path from u goes through the vertex u, or otherwise if $\text{path_index}[u][0] \neq v$ and $\text{path_index}[u][1] \neq v$. See Appendix for the details of the implementation.

The correctness of the algorithm directly follows from the definition of 3-eccentricities and given that we traverse the vertices twice - the time and memory complexity of the algorithm is $O(n)$.

3 Appendix

```c
#include <iostream>
#include <math.h>
#include <stdlib.h>
#include <time.h>

using namespace std;
#define MAXN 1000

int n, root;
int deg[MAXN];
int adj_list[MAXN][[MAXN];
int adj_weight[MAXN][[MAXN];
int parent[MAXN];
int mark[MAXN];
int path_weight[3][MAXN];
int path_index[3][MAXN];
int attached_weight[3][MAXN];
int steiner3[MAXN];

void update (int v, int u, int new_weight, int new_attached_weight) {
    int index = -1;
    if (path_weight [0][v] <= new_weight) {
        path_weight [2][v] = path_weight [1][v];
        path_index [2][v] = path_index [1][v];
        attached_weight [2][v] = attached_weight [1][v];
        path_weight [1][v] = path_weight [0][v];
        path_index [1][v] = path_index [0][v];
        attached_weight [1][v] = attached_weight [0][v];
        index = 0;
    } else if (path_weight [1][v] <= new_weight) {
        path_weight [2][v] = path_weight [1][v];
        path_index [2][v] = path_index [1][v];
        attached_weight [2][v] = attached_weight [1][v];
        index = 1;
    } else if (path_weight [2][v] < new_weight) {
        index = 2;
    }
    if (index > -1) {
        path_weight [index][v] = new_weight;
        path_index [index][v] = u;
        attached_weight [index][v] = new_attached_weight;
    }
}

void dfs_stage1 (int v) {
    path_weight [0][v] = 0;
    path_weight [1][v] = 0;
}
for (int i = 0; i < deg[v]; i++) {
    int u = adj_list[v][i];
    int weight = adj_weight[v][u];
    if ((parent[u] == -1) && (u != root)) {
        parent[u] = v;
        dfs_stage1(u);
        update(v, u, weight + path_weight[0][u],
              max(path_weight[1][u], attached_weight[0][u]));
    }
}

void dfs_stage2(int v) {
    mark[v] = 1;
    int u = parent[v];
    if (u != -1) {
        int up_path_weight = 0;
        int up_attached_weight = 0;
        int weight = adj_weight[u][v];
        if (path_index[0][u] != v) {
            up_path_weight = weight + path_weight[0][u];
            if (path_index[1][u] != v) {
                up_attached_weight = max(path_weight[1][u], attached_weight[0][u]);
            } else {
                up_attached_weight = max(path_weight[2][u], attached_weight[0][u]);
            }
        } else {
            up_path_weight = weight + path_weight[1][u];
            up_attached_weight = max(path_weight[2][u], attached_weight[1][u]);
        }
        update(v, u, up_path_weight, up_attached_weight);
    }
    for (int i = 0; i < deg[v]; i++) {
        int u = adj_list[v][i];
        if ((mark[u] == -1) && (u != root)) {
            dfs_stage2(u);
        }
    }
}

int main() {
    construct_tree();

    for (int i = 0; i < n; i++) {
        parent[i] = -1;
        mark[i] = -1;
    }
    root = 0;
    dfs_stage1(root);
    dfs_stage2(root);
for (int i = 0; i < n; i++) {
    steiner3[i] = path_weight[0][i] + max(path_weight[1][i], attached_weight[0][i]);
}
return 0;

References

[1] G. Yu, X. Li, Connective Steiner 3-eccentricity index and network similarity measure, Appl. Math. Comput. 386 (2020), 125446.

[2] G. Chartrand, O.R. Oellermann, S. Tian, H.B. Zou, Steiner distance in graphs, Časopis pro pestování matematiky 114 (1989) 399–410.

[3] K. Xu, K. Ch. Das, H. Liu, Some extremal results on the connective eccentricity index of graphs, J. Math. Anal. Appl. 433 (2016) 803–817.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, Third Edition, MIT Press, 2009.