The taxonomy of the model filamentous fungus

Podospora anserina

S. Lorena Ament-Velásquez¹, Hanna Johannesson¹, Tatiana Giraud², Robert Debuchy³, Sven J. Saupe⁴, Alfons J.M. Debet⁵, Eric Bastiaans⁶, Fabienne Malagnac³, Pierre Grognet³, Leonardo Peraza-Reyes⁶, Pierre Gladieux⁷, Åsa Kruys⁸, Philippe Silar⁹, Sabine M. Huhndorf¹⁰, Andrew N. Miller¹¹, Aaron A. Vogan¹

¹ Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
² Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
³ Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
⁴ IBGC, UMR 5095, CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077, Bordeaux, France
⁵ Laboratory of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD, Wageningen, Netherlands
⁶ Instituto de Fisiología Celular, Departamento de Bioquímica y Biología Estructural, Universidad Nacional Autónoma de México, Mexico City, Mexico
⁷ UMR BGPI, Université de Montpellier, INRAE, CIRAD, Institut Agro, F-34398, Montpellier, France
⁸ Museum of Evolution, Botany, Uppsala University, Norbyvägen 18, 752 36, Uppsala, Sweden
⁹ Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain (LIED), F-75006, Paris, France
¹⁰ Botany Department, The Field Museum, Chicago, Illinois 60605, USA
¹¹ Illinois Natural History Survey, University of Illinois, Champaign, IL 61820, USA

Corresponding author: Aaron A. Vogan (aaron.vogan@ebc.uu.se)

Academic editor: T. Lumbsch | Received 29 June 2020 | Accepted 11 August 2020 | Published 25 November 2020

Citation: Ament-Velásquez SL, Johannesson H, Giraud T, Debuchy R, Saupe SJ, Debet AM, Bastiaans E, Malagnac F, Grognet P, Peraza-Reyes L, Gladieux P, Kruys Å, Silar P, Huhndorf SM, Miller AN, Vogan AA (2020) The taxonomy of the model filamentous fungus Podospora anserina. MycoKeys 75: 51–69. https://doi.org/10.3897/mycokeys.75.55968

Abstract

The filamentous fungus Podospora anserina has been used as a model organism for more than 100 years and has proved to be an invaluable resource in numerous areas of research. Throughout this period, P. anserina has been embroiled in a number of taxonomic controversies regarding the proper name under which it should be called. The most recent taxonomic treatment proposed to change the name of this important species to Triangularia anserina. The results of past name changes of this species indicate that the broader research community is unlikely to accept this change, which will lead to nomenclatural instability and confusion in literature. Here, we review the phylogeny of the species closely related to P. anserina and provide evidence that currently available marker information is insufficient to resolve the relationships amongst many of the lineages. We argue that it is not only premature to propose a new name for P. anserina based on current data, but also that every effort should be made to retain P. anserina.
as the current name to ensure stability and to minimise confusion in scientific literature. Therefore, we synonymise *Triangularia* with *Podospora* and suggest that either the type species of *Podospora* be moved to *P. anserina* from *P. fimiseda* or that all species within the Podosporaceae be placed in the genus *Podospora*.

Keywords
phylogenetics, *Podospora*, Podosporaceae, taxonomy

Introduction

Podospora anserina is a model filamentous fungus that has been at the forefront of molecular biology and genetics for over 100 years (Silar 2020). It has been instrumental in numerous important biological breakthroughs, such as the discovery of eukaryotic plasmids and prions and has been monumental in furthering the fields surrounding aging/senescence, meiotic drive, allorecognition (known as heterokaryon incompatibility in fungi), sexual reproduction and genome defence (Esser 1974; Saupe et al. 2000; Saupe 2007; Silar 2013, 2020; Grogran et al. 2019; Vogan et al. 2019). Along with its role in basic research, *P. anserina* has also caught the attention of industry, where it is used as a source of enzymes that play various roles in the degradation of plant material (Couturier et al. 2016). More recently, *P. anserina* has burst into the genomics era with one of the first published fungal genomes (Fitzpatrick et al. 2006), released in 2008 (Espagne et al. 2008). In the last year, 10 additional chromosome level assemblies of *P. anserina* have been released in concert with the genome of the closely-related species, *P. comata* and *P. pauciseta* (Silar et al. 2019; Vogan et al. 2019). Future projects will expand on this role even further. Wageningen University hosts a collection of strains isolated from the same locale, spanning 30 years of sampling (van der Gaag et al. 1998, 2000; Vogan et al. 2020), which have now all been sequenced and chromosome level assemblies (in preparation) have been produced for the remaining four species of the *Podospora anserina* species complex (Boucher et al. 2017). Therefore, the role of *P. anserina* will continue to be central to many fields in biology and, indeed, likely see use in new fields as new data become public.

The taxonomic history of *Podospora anserina* has been a long and complex one (reviewed in Silar 2020). *Podospora* is a member of the Sordariales and has been traditionally grouped within the family Lasiosphaeriaceae, which itself is an artificial assemblage of genera whose main diagnostic is that they do not belong to the Sordariaceae (Lundqvist 1972). Species within the Lasiosphaeriaceae were divided into genera, based primarily on ascospore morphology, but molecular phylogenies have revealed that these characters do not represent synapomorphies and that most of the genera are polyphyletic (Huhndorf et al. 2004; Miller and Huhndorf 2005). A broad phylogenetic treatment of coprophilous Lasiosphaeriaceae defined four separate clades, with species of *Podospora* represented in all clades, exemplifying the lack of informative morphology amongst these fungi (Kruys et al. 2015). Moreover, the taxon *P. anserina* itself has survived multiple attempts to rename it in the past, which were unsuccessful in part due to how deeply ingrained the name is in the genetics and molecular biology research community (Boucher et al. 2017;
Silar 2020). Recently, this taxonomic mess was stumbled upon by researchers attempting to clean up the distantly-related genus *Thielavia* (Wang et al. 2019). The authors defined the clade containing the type species of *Podospora* (*P. fimiseda*, incorrectly referred to as *P. fimicola* in Wang et al. 2019) as the Podosporaceae (formerly Lasiosphaeriaceae IV) based on a four-marker phylogeny and further divided this clade into three genera: *Podospora*, *Triangularia* and *Cladorrhinum*. As their analyses suggested that *P. anserina* is more closely related to the type species of *Triangularia* (*T. bambusae*), they proposed the new combination, *Triangularia anserina* (Wang et al. 2019).

It is the opinion of the authors here that the taxonomic change of *P. anserina* is both premature and against the ideals of the International Code of Nomenclature for algae, fungi and plants (ICN), as stated in the preamble (Turland et al. 2018). Foremost, it is unlikely that *T. anserina* will be adopted by many of the researchers that rely on it as a model organism, leading to instability of the name. Furthermore, the phylogeny upon which the change was based has a sparse sampling of the diversity of the family and used only four markers. Here, we demonstrate that there is a lack of information amongst the markers currently sequenced in this group and argue that more data are needed before formal taxonomic changes are made for *Podospora*. Ultimately, the best solution for taxonomic stability in the Podosporaceae will be to change the type species of *Podospora* from *P. fimiseda*, which was conserved in 1972 (Nicolson et al. 1984), to *P. anserina* and to only define new genera once more sequence data are available, likely in the form of whole genome sequences.

Methods

Sequences and strains

We generated sequences of 29 strains from 27 species in the Podosporaceae family for markers typically used in molecular phylogenetic studies of Sordariomycetes (including Wang et al. 2019): the ribosomal large subunit (LSU), beta-tubulin (Btub) and RNA polymerase II (rpb2) (Table 1). Sequences were generated as per Huhndorf et al. 2004 and Miller and Hundorf 2005. In brief, DNA was extracted from dried ascomata or multispore isolates of growing cultures using a DNeasy Mini Plant extraction kit (Qiagen Inc., Valencia, California), following manufacturer’s recommendations with the exception that tissues were ground in 100 ml AP1 buffer rather than liquid nitrogen. Markers were amplified with the primers listed in Suppl. material 4; Table S1 and sequenced on an Applied Biosystems 3100 automated DNA sequencer. Sequences were deposited in GenBank with accession numbers MT731502–MT731583. In addition, we collected available sequences from GenBank and the NBRC culture collection for all strains suspected to fall within the Podosporaceae for the above markers, as well as the fungal barcode ITS (Schoch et al. 2012). For Btub, two regions are often used in phylogenetic analyses. We sequenced the C-terminal domain of Btub with only a single intron (Btub2), but included sequences from databases that correspond to
Table 1. Strains and markers included in this study. Sequences generated in this study are in bold.

Strain	Species	Clade	ITS	LSU	BTub1	BTub2	RPB2		
CBS 59.89T	*Apiosordaria backnuii*	A	MK26866	MT731508	MK26966	MT731549	MT731570		
CBS 106.77	*Apiosordaria backnuii*	A	MK26867	AY780051	MK26967	AY780085	AY780149		
CBS 304.81T	*Apiosordaria effusa*	A	3086201T	3086201T					
CBS 390.84T	*Apiosordaria longicudata*	A	954801T	MT731505					
CBS 244.71T	*Apiosordaria stercoraria*	A	MH860096	968201T					
CBS 629.82T	*Apiosordaria tenuisclanata*	A	MH861532	MT731507					
CBS 363.84T	*Apiosordaria tetracora*	A		MT731506					
NBRC 30422	*Apiosordaria verruculosa*	A	3042201T	3042201T					
NBRC 30423	*Apiosordaria verruculosa*	A	3042301T	3042301T					
CBS 148.77	*Apiosordaria verruculosa*	A	MK26874	MT731510	MK26974	MT731546	MT731577		
CBS 550.66	*Apiosordaria verruculosa*	A		MT731511					
CBS 432.64	*Apiosordaria verruculosa*	A	MH85847	MH870111					
CBS 433.64	*Apiosordaria verruculosa*	A	MH85848	MH870112					
CBS 268.67	*Apiosordaria verruculosa*	A	MH85896						
NBRC 31170T	*Apiosordaria yacamentum*	A	LC146720	LC146720					
CBS 120.289	*Arnus arizoneanus*	A	KU955584	KF557671					
S 18211-c	*Arnus arizoneanus*	A		KF557668	KF557706				
UPS 724	*Arnus arizoneanus*	A		KF557669	KF557707				
E0204509	*Arnus arizoneanus*	A		KF557670	KF557708				
CBS 307.81T	*Cercophora samala*	A	MH861345	MH873104					
CBS 109.93	*Cercophora samala*	A	AY999134	AY999111	AY999140				
CBS 125293T	*Cercophora squamulosa*	A	MH863506						
JSF 06314T	*Cercophora aquatica*	A	JN673038	JN673038					
SMH 3431	*Cercophora striata*	A	AY780065			AY780108	AY780169		
SMH 4036	*Cercophora striata*	A	AY780066						
CBS 290.75T	*Cladorrhinum verruculospore*	A	FN662475	FN662476					
CBS 301.90T	*Cladorrhinum phialoboresides*	A	FM955444	FR692344	KT291718		MH876833		
ST	*Podospora aneina*	A	Genomic	Genomic	Genomic	Genomic	Genomic		
CBS 455.64	*Podospora aneina*	A	MT731521	MT731540	MT731564				
CBS 533.73	*Podospora austroamericana*	A	MT731509	MT731539	MT731582				
CBS 724.68T	*Podospora austroamericana*	A	MT731509	MT731539	MT731582				
CBS 405.72	*Podospora platensis*	A	MH860505	MT731514	MT731550	MT731571			
CBS 251.71T	*Podospora praecon*	A	MH860101	MH871877					
FMR 12787	*Podospora setosa*	A	K981441	K981569	K981624				
CBS 435.50	*Podospora setosa*	A	QG22533	MH862819					
CBS 311.58	*Podospora setosa*	A	MK26872	MK26872	MK26972	MK876834			
CBS 369.59	*Podospora setosa*	A	MK26873	MT731515	MT731551	MT731572			
CBS 265.70	*Podospora tarvisina*	A	MH859600	MT731516	MT731552	MT731573			
CBS 313.58T	*Podospora unicaudata*	A	MH857799	MT731513	MT731554	MT731575			
CBS 240.71	*Podospora unicaudata*	A	MH860093	MH871871					
CBS 165.74	*Triangularia asperula*	A	MT731517			MT731543	MT731568		
NBRC 30009	*Triangularia bambusae*	A	3000901T	3000901T					
CBS 352.33T	*Triangularia bambusae*	A	MK26868	MT731518	MK26968	MT731541	MT731578		
CBS 381.68T	*Triangularia batistae*	A	MH859162	MT731519			MT731576		
IFO 30296	*Zopfella longiscutata*	A	AY999131	AY999109					
FMR 12365	*Zopfella longiscutata*	A	K981448	K981574	K981631				
FMR 12782	*Zopfella longiscutata*	A	K981449	K981575	K981632				
CBS 252.57T	*Zopfella longiscutata*	A	MK26869	MT731503	MK26969	MT731536	MT731567		
CBS 256.71	*Zopfella longiscutata*	A	MH860106	MH871881					
CBS 257.78	*Zopfella longiscutata*	A		MT731504					
CBS 971.32	*Zopfella longiscutata*	A		MT731502					
CBS 671.82T	*Zopfella ovina*	A	MH861539	MT731512					
CBS 127120	*Zopfella erina*	A	MH864427	MH875865					
IFO 32904	*Zopfella tetraspora*	A	AY999130	AY999108	AY999139				
CBS 245.71	*Zopfella tetraspora*	A	MH860097	MT731520				MT731583	
The taxonomy of the model filamentous fungus *Podospora anserina*

Strain	Species	Clade	ITS	LSU	BTub1	BTub2	RPB2
CBS 120012	Arnium olerum*	B	MT731522	KF557718	MT731561		
SMH3253	Arnium olerum*	B	KF57690				
FMR 13412	Arnium sp.	B	KP981428	KF981555	KP981610		
S	Arnium tomentosum	B	KF57691	KF57720			
SMH 4089	Cerophora caprophila	B	AY999136	AY999112	AY999141		
IFO 32091	Cerophora caprophila	B	AY780058	AY780102	AY780162		
CBS 120013T	Cerophora grandiscula	B	MT731524	MT731530	MT731562		
ATCC 200395	Cerophora terricola	B	AY780067	AY780109	AY780170		
CBS 180.66T	Cladorrhinum focussissum*	B	MK926856	KT291717/	MK926956	MK876818	
				MK926956			
CBS 182.66	Cladorrhinum focussissum*	B	MH858768				
BCCM 6980	Cladorrhinum focussissum*	B	KT312080	KT312993	KT291721	KY883234	
CGMCC3.17921	Cladorrhinum globiporum	B	KD746680	KD746726	KD746771		
LC5415	Cladorrhinum globiporum	B	KD746680	KD746726	KD746771		
TTI-313	Podospora australis	B	KD901576	KD901576	KD901576	KD901576	
LyRS93415	Podospora australis	B	KD57696	KD57696	KD57696	KD57696	
LyRS92471	Podospora australis	B	KD57696	KD57696	KD57696	KD57696	
CBS 322.70T	Thielavia hyalocarpa	B	MK926857	MK926857	MK926857	MK876819	
CBS 102198	Thielavia hyalocarpa	B	MK926858	MK926858	MK926858	MK876820	
CBS 433.60T	Thielavia intermediocrassulata	B	MK926859	MK926859	MK926859	MK876821	
CBS 100257	Thielavia intermediocrassulata	B	MK926860	MK926860	MK926860	MK876822	
CBS 389.84	Zapfiella leucotricha	B	9828201	MT731523	MT731560		
CBS 463.61	Zapfiella leucotricha	B	MH858107	MH859684			
NBRC 30406	Apiosordaria jamaicensis	C	3040601a	3040601b			
CBS 672.70T	Apiosordaria jamaicensis	C	MH58995	MT731527	MT731534	MT731556	
FMR 6563	Apiosordaria nigriescens	C	AH58184				
CBS 713.70T	Apiosordaria sacchari	C	MH58995	KP981425	KP981552	KP981607	
CBS 259.71T	Apiosordaria spinosa	C	MH877809				
CBS 154.77	Apisordaria striatipora	C	MH61043	MT731529	MT731559		
CBS 258.71T	Apisordaria tuberculata	C	MH60107	MH871882			
SMH 4021	Cerophora costaricensis	C	AY870059	AY870103	AY870163	AY870159	
SMH 3200	Cerophora sp.	C	AY870055	AY870098	AY870159		
INTA-AR 70T	Cladorrhinum auscula	C	KT321062	KT321976	KT291700		
CBS 304.90T	Cladorrhinum bulbilocus	C	MK29661	MK29661	MK29661	MK876823	
CBS 126090T	Cladorrhinum flexuosum	C	MH864075	FN662477			
CBS 303.90	Cladorrhinum samula	C	FM955447	FR62338			
NBRC 107619	Cladorrhinum sp.	C	12744402a	12744401b			
CBS 482.64T	Podospora fimiceda	C	MK926862	MT731525	MT731531	MT731557	
CBS 990.96	Podospora fimiceda	C	AY515361	AY364269	AY780133	AY780190	
CBS 257.71	Zapfiella inermis	C	MT731526	MT731533	MT731555		
CBS 286.86T	Zapfiella macrospora	C	MH861958	MT731528	MT731532	MT731558	
CBS 643.75AT	Cladorrhinum brunnescens	C	FM955446	FR62346			

Outgroups

Strain	Species	Clade	ITS	LSU	BTub1	BTub2	RPB2
CBS 148.51	Chaetomium globosum	Out	Genomic	Genomic	Genomic	Genomic	Genomic
CBS 160.62	Chaetomium globosum	Out	KT214565	KT214596	KT214742	KT214666	
FMR 13414	Diplogelasinospora princeps	Out	KP981431	KP981559	KP981614		
SMH 1538	Lasiosphaeria avinae	Out	AF666463	AF666046	AF602087		
SMH 4106	Sordaria fimicola	Out	AY870079	AY870138	AY870194		
CBS 230.78	Zapfiella tabulata	Out	MK926854	MK926854	MK926954	MK876816	
CBS 120402	Cerophora minulisi	Out	KP981429	KP981556	KP981611		

*T Strain is the Type of the species; * Type species of genus; ^ Sequences taken from NBRC
the upstream intron-rich GTPase domain (Btub1) to maximise the number of taxa. When available sequences of markers overlapped with ones that were generated for this study exactly, but had longer flanks, those sequences were merged (two GenBank codes in Table 1). Finally, we included representative strains of the type species of the other families within the Sordariales, as well as the type species of Zopfiella and Cercophora, which have many representatives within the Podosporaceae, as outgroups. The alignment of all concatenated markers is deposited in TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S26777).

Phylogenetic analyses

Each locus was aligned using the online server of MAFFT v. 7.467 (https://mafft.cbrc.jp/alignment/server/; (Katoh et al. 2019) with default settings, followed by manual curation adjusting for the coding frame of the protein-coding markers. We concatenated all alignments and performed a Maximum Likelihood analysis using IQ-TREE v 1.6.8 (Nguyen et al. 2015; Kalyaanamoorthy et al. 2017) with an extended model selection (-m MFP) and 100 standard bootstrap pseudo-replicates. In addition, each individual marker and combinations of markers were analysed as above, but only including sequences that were at least 45% as long as the locus alignment and/or larger than 250 bp. Only strains that consistently showed membership to the Podosporaceae are presented here. The isolates Podospora brasiliensis CBS 892.96, Podospora inflatula CBS 412.78 and P. inflatula CBS 413.82 likely belong to the family, but were excluded due to inconsistent affinities of markers.

Evaluating phylogenetic signal

To evaluate the phylogenetic signal in our datasets, we followed the approach of Shen et al. (2017), which quantifies the amount of support of particular sites or entire genes for two alternative topologies with respect to a particular branch (termed T1 and T2). We set T1 as the Maximum Likelihood topology produced with the concatenated alignment of all markers and T2 as a topology inferred in the same way but constrained to maintain the Clades A and C (see Results) as sisters. To determine what topology is the most supported for each site of each marker, we calculated the site-wise log-likelihood score using RAxML v. 8.2.12 (Stamatakis 2014) with the options -f G -m GTRGAMMA. The output was processed with the scripts 1_sitewise_analyzer.pl and 2_genewise_analyzer.pl (Shen et al. 2017) and additional custom scripts available as a full Snakemake (Köster and Rahmann 2018) pipeline at https://github.com/SLament/Podosporaceae. As a result, we obtained the gene-wise log-likelihood score of each gene for either T1 or T2 and compared them by calculating their difference in likelihood (ΔGLS) following Shen et al. (2017).
Results

Our complete dataset contains 107 taxa and 5895 sites, of which 2110 are variable and 1654 are parsimony informative (Suppl. material 5: Table S2: Supplementary_Table2_Markers). However, combined datasets have a considerable amount of missing data due to the sparse availability of markers for most species. In agreement with previous studies, Maximum Likelihood analyses of all markers reveal that three well-supported clades are resolved within the family, referred to here as Clade A, Clade B and Clade C (Fig. 1; see also Suppl. material 1: Fig. S1 ITSLSU.min0.45–250, Suppl. material 2: Fig. S2 Btub1_and_2.min0.45–250 and Suppl. material 3: Fig. S3 rpb2.min0.45–250). The exception is Btub1 and Btub2, alone or combined, which tend to place members of the outgroup within the ingroup (Suppl. material 2: Fig. S2 Btub1_and_2.min0.45–250).

Figure 1. Schematic phylogenetic relationships of the main clades within the Podosporaceae based on Maximum Likelihood analyses of concatenated markers. The three main clades (A, B and C) are strongly supported (bootstrap support values next to relevant branches), but their particular relationship changes depending on the presence of the rpb2 marker. Branches proportional to the scale bar (nucleotide substitutions per site).
Figure 2. Maximum Likelihood phylogeny of the concatenated analysis of ITS, LSU, Btub and rpb2 for the Podosporaceae, with an emphasis on Clade A. Type strains are indicated with a bold T and those of the focal species *Podospora anserina* and *Triangularia bambusae* are highlighted with coloured boxes. Bootstrap support values are depicted next to their respective branches, but values corresponding to nearly identical sequences are removed for clarity. Branches are proportional to the scale bar (nucleotide substitutions per site).
Figure 3. Maximum Likelihood phylogeny of the concatenated analysis of ITS, LSU, Btub and rp2 for the Podosporaceae, with an emphasis on the clades B and C. Type strains are indicated with a bold T and that of the focal species Podospora fimiseda is highlighted with a coloured box. Bootstrap support values are depicted next to their respective branches, but values corresponding to nearly identical sequences are removed for clarity. Branches are proportional to the scale bar (nucleotide substitutions per site).

The taxon Cladorrhinum brunnescens appears to represent a distinct lineage within the family, but this finding is only based on the rDNA markers, as no other markers are available for this taxon. None of the main clades of the combined dataset shows mono-
phyly for any genera included in the analyses and, for some species, like *Arnium olerum*, representative strains appear to be highly divergent. The focal species of this paper, *P. anserina*, falls within Clade A (Fig. 2), whereas the type species of *Podospora*, *P. fimiseda*, is in Clade C (Fig. 3). While each clade itself is generally well supported for individual markers and combinations of markers, the relationships between the clades are not (Suppl. material 1: Fig. S1 ITSLSU.min0.45–250, Suppl. material 2: Fig. S2 Btub1_and_2.min0.45–250 and Suppl. material 3: Fig. S3 rpb2.min0.45–250). The combined analysis of all markers shows support for the sister relationship of Clades A and B, as reported previously by Wang et al. (2019), but this topology seems to be driven exclusively by the rpb2 marker (Fig. 1). A concatenated analysis of all markers, excluding rpb2, recovers a sister relationship between Clades A and C instead, albeit poorly supported. Except for rpb2, individual markers have generally low ΔGLS values (that is, the difference in likelihood between competing topologies is small), indicating that they have relatively low support for either potential sister relationship (AB or AC). By contrast, rpb2 is strongly biased towards the AB hypothesis (Fig. 4A). Notably, the majority of sites for most markers have higher support for the AC relationship, including rpb2 (Fig. 4B). This suggests that the AC clustering is often favoured by any given site, but only weakly (i.e. the difference in likelihood is very small). Although less frequent, the sites in rpb2 that do support the AB relationship have a large likelihood difference between topologies and likely drive the overall positive ΔGLS value of this gene. Thus, the strong degree of conflict between markers for this internode seems to be driven by a single gene with strong phylogenetic signal (rpb2) and for several other markers without sufficient phylogenetic signal.

Figure 4. Phylogenetic signal in the available molecular markers for the relationship between clade A and either clade B or C of the Podosporaceae. A differences in the gene-wise log-likelihood scores (ΔGLS) for each marker, where 0 implies equal support for either of the two alternative sister relationships (A and B or A and C), positive values mean higher support for A and B and negative values higher support for A and C. B proportion of sites that support each of the two sister relationships within each marker.
Discussion

With the widespread use of molecular markers to determine the phylogenetic relationships among species, numerous important fungal groups have faced taxonomic challenges including Cryptococcus (Hagen et al. 2015; Kwon-Chung et al. 2017), Zymoseptoria (Quaedvlieg et al. 2011), Fusarium (Geiser et al. 2013), Magnaporthe (Zhang et al. 2016) and Ustilago (McTaggart et al. 2016; Thines 2016), many of which remain unresolved. Fungi are, of course, not the only group whose phylogenetic and taxonomic concepts are in conflict; the model insect genus, Drosophila, is still embroiled in a nomenclatural controversy that has yet to be satisfactorily resolved (O’Grady and Markow 2009; Johnson 2018). In the case presented before us, the issue is, in fact, not so complex as most of these other examples. The taxonomic assignments amongst species and strains of the Sordariales has long been recognised as a difficult problem, with various authors seeking to provide some clarity (Huhndorf et al. 2004; Miller and Huhndorf 2005; Félix 2015; Kruys et al. 2015). It is clear that previous use of morphological characters to designate genera has failed to resolve monophyletic groups, as all genera represented here are not only distributed amongst the three clades within the Podosporaceae, but can also be found in the much more distantly-related clades (Lasiosphaeriaceae I–III sensu Kruys et al. (2015)). It is thus apparent that the way forward is to define the genera based on molecular phylogenies.

While previous phylogenetic analyses on the Sordariales in general have been informative, the lack of resolution remains a pervasive issue (e.g. Kruys et al. 2015). Our results suggest that the molecular markers, typically used for the study of this group, have a relatively low phylogenetic signal for a number of key internodes. Within Podosporaceae, in particular, the relationship between the clades containing P. anserina and P. fimiseda (clades A and C) is crucial to decide on an optimal naming scheme that minimises taxonomic and practical conflict. Additionally, throughout the phylogeny, there are a number of strains that have been assigned to different species and genera, but likely belong to the same species (e.g. Thielavia hyalocarpa and Zopfiella leucotrica strain CBS389.84 are identical for ITS and LSU). Additionally, there appears to be undiscovered sexual states of the anamorphic Cladorrhinum species, like C. foecundissimum with the A. olerum strain CBS120012. Taxonomic re-assignments of these groups should be undertaken; however, without a strong phylogenetic backbone, based on multiple genes and an expanded taxonomic sampling, it seems premature to propose nomenclatural changes.

In recent years, a number of authors have established the use of time-calibrated phylogenies to define ranks from genus up to class for various groups of fungi, although this approach has not been without controversy (Lücking 2019). For the Sordariomycetes, intervals of 150–250 MYA for orders and 50–150 MYA for families have been recommended (Hyde et al. 2017). Both the Sordariales and the Podosporaceae agree well with these values with estimated divergence times of 109.69 MYA and < 76.58 MYA, respectively (Lutzoni et al. 2018), although a comprehensive investigation of divergence amongst the Lasiosphaeriaceae has yet to be conducted. The use of time-calibrated trees
to define genera is less common, but a divergence time of ~30 MYA has been suggested previously (Divakar et al. 2017). In this regard, it would be appropriate to define the three clades presented herein as genera as Wang et al. (2019) have done, based on divergence times between *Lasiosphaeria ovina* and *Anopodium ampullaceum* (Hyde et al. 2017), which show similar phylogenetic distances between each other as the three clades of Podosporaceae (Félix 2015). However, time-calibrated phylogenies need not and often should not, set the standard for taxonomic delimitation. One telling example comes from the field of *Fusarium* research. When the ‘one name one fungus’ edict came into effect, it threatened to divide a cosmopolitan group of plant pathogenic fungi that are united in their vegetative morphology and pathophysiology into several genera. To combat this issue, the field pushed for the usage of *Fusarium* for the entire group, despite considerable phylogenetic distance (Geiser et al. 2013). As a result, *Fusarium* encompasses species which diverged more than ~70 MYA (Lutzoni et al. 2018), yet this move ensured the nomenclatural stability of the organisms in question.

When proposing new combinations, one should always ensure to make decisions that will cause the least amount of confusion in literature. In this case, it is clear that, for this goal, the name *P. anserina* should be preserved. Google Scholar returns ~11500 hits to the search query *Podospora anserina*, yet only ~2110 hits for *Triangularia*, the majority of which are due to the use of the word “triangularia” in Latin and have no relation to the genus. There are currently 62967 sequences in Genbank with *Podospora anserina* in the title, while only 76 contain *Triangularia* in the title and lastly, the English Wikipedia page for *Podospora anserina* has had 13897 page views from July 2015 to May 2020, while the English Wikipedia *Triangularia* page has had only 705 views over the same period. The best possible way forward to prevent the re-naming of *P. anserina* or the subsequent instability it will cause in literature is to transfer the type of *Podospora* from *P. fimiseda* to *P. anserina*, despite *P. fimiseda* having been conserved over *Schiizotheicum fimicola* Corda (Proposal 119). Unfortunately, this process can take many years of debate and the re-assignment of *P. anserina* to *Triangularia* already threatens a peaceful transition. At the very least, if *P. anserina* needs to be assigned to another genus, it should be the type species of that genus in order to prevent further potential nomenclatural changes. Thus, we propose, for the interim, to synonymise *Triangularia* with *Podospora* until a more satisfactory resolution can be made. Once more data are available, it will hopefully be possible to resolve the relationships amongst the three clades. If, in the end, Clade A and B are found to be sisters, then it would require that *Cladorrhinum* sensu Wang et al. (2019) (Clade B here) be synonymised with *Podospora* as well. Alternatively, if Clade A and C are sisters, then *Podospora* could be restricted to these two clades and fewer taxonomic changes would be required. As we ultimately aim to move the type species of *Podospora* to *P. anserina*, we will refrain from making any new combinations at the moment.

In the previous example with *Fusarium*, a divergent group of fungi were classified under one name precisely because the researchers in that field desired unity. In the case of *Podospora*, the only factor necessitating that disparate species fall under one genus is the need to operate within the confines of the ICN. The ultimate goal of the code is to provide taxonomic stability and conformity to the organisms it cov-
The taxonomy of the model filamentous fungus *Podospora anserina*

The nature of studying microscopic fungi has resulted in numerous names with dubious origins and, while obvious fixes are sometimes evident, they are not always possible to enact according to the ICN. It is understandable why the current code is as rigid as it is, but the current editions have seen it become more flexible, which has been advantageous to many fields seeking to solidify tumultuous taxonomy. In the future, we hope that additional data and a permissive code will allow us to enshrine the name *Podospora anserina* indefinitely, settling over a century of nomenclatural friction between taxonomists and other researchers.

Taxonomy

Podospora Ces., *Hedwigia* 1(15): 103 (1856)
MycoBank No: 4284

Type species. *Podospora fimiseda* (Ces. & De Not.) Niessl, *Hedwigia* 22: 156 (1883).
Syn: *Apiosordaria* Arx & W. Gams, *Nova Hedwigia* 13: 201 (1967).
Syn: *Triangularia* Boedijn, *Annls mycol.* 32(3/4): 302 (1934).
Syn: *Lacunospora* Caillex, *Cahiers de La Maboké* 6(2): 93 (1969) [1968].
Syn: *Tripterospora* Cain, *Can. J. Bot.* 34: 700 (1956).
Syn: *Philocopra* Speg., *Anal. Soc. cient. argent.* 9(4): (1880).
Syn: *Malinvernia* Rabenh., *Hedwigia* 1: 116 (1857).
Syn: *Pleurage* Fr., *Summa veg. Scand.*, Sectio Post. (Stockholm): 418 (1849).

Acknowledgements

We would like to thank Lymari Ruiz for their assistance in generating the sequence data, to Iker Irisarri for his guidance with the phylogenetic analysis, and Martin Ryberg and Mats Thulin for their advice on taxonomic issues. We would like to thank the Swedish Research Council and Formas for research funds. We would also like to acknowledge past and present researchers who have devoted much of their time to the study of *Podospora anserina* to elevate it to the status of model organism.

References

Boucher C, Nguyen T-S, Silar P (2017) Species delimitation in the *Podospora anserina*/*P. pauciseta*/*P. comata* species complex (Sordariales). Cryptogamie, Mycologie 38: 485–506. https://doi.org/10.7872/crym/v38.iss4.2017.485

Couturier M, Tangthirasunun N, Ning X, Brun S, Gautier V, Bennati-Granier C, Silar P, Berrin J-G (2016) Plant biomass degrading ability of the coprophilic ascomycete fungus *Podospora anserina*. Biotechnology Advances 34: 976–983. https://doi.org/10.1016/j.biotechadv.2016.05.010
Divakar PK, Crespo A, Kraichak E, Leavitt SD, Singh G, Schmitt I, Lumbsch HT (2017) Using a temporal phylogenetic method to harmonize family- and genus-level classification in the largest clade of lichen-forming fungi. Fungal Diversity 84: 101–117. https://doi.org/10.1007/s13225-017-0379-z

Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury J-M, Ségurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Déquard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chatenet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P (2008) The genome sequence of the model ascomycete fungus *Podospora anserina*. Genome Biology 9: R77. https://doi.org/10.1186/gb-2008-9-5-r77

Esser K (1974) *Podospora anserina*. Bacteria, Bacteriophages, and Fungi: 531–551. https://doi.org/10.1007/978-1-4899-1710-2_28

Félix YM (2015) Soil ascomycetes from different geographical regions. Universitat Rovira i Virgili, Spain.

Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology 6: 1–99. https://doi.org/10.1186/1471-2148-6-99

Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MK, Brandt ME, Brown DW, Burgess LW, Chulze S, Coleman JJ, Correll JC, Covert SF, Crous PW, Cuomo CA, De Hoog GS, Di Pietro A, Elmer WH, Epstein L, Frandsen RJN, Freeman S, Gagkaeva T, Glenn AE, Gordon TR, Gregory NF, Hammond-Kosack KE, Hanson LE, del Mar Jimenez-Gasco M, Kang S, Corby Kistler H, Kuldau GA, Leslie JF, Logrieco A, Lu G, Lysee E, Ma L-J, McCormick SP, Miglieli Q, Moretti A, Munaut F, O’Donnell K, Pfenning L, Ploetz RC, Proctor RH, Rehera SA, Vincent AR, Rooney AP, Salleh BB, Scandiani MM, Scaula J, Short DPG, Steenkamp E, Suga H, Summerell BA, Sutton DA, Thrane U, Trail F, Van Diepeningen A, VanEtten HD, Viljoen A, Waaalwijk C, Ward TJ, Wingfield MJ, Xu J-R, Yang X-B, Yli-Mattila T, Zhang N (2013) One fungus, one name: defining the genus *Fusarium* in a scientifically robust way that preserves longstanding use. Phytopathology 103: 400–408. https://doi.org/10.1094/PHYTO-07-12-0150-LE

Grognet P, Timpano H, Carlier F, Ait-Benkhali J, Berteaux-Lecellier V, Debuichy R, Bidard F, Malagnac F (2019) A RID-like putative cytosine methyltransferase homologue controls sexual development in the fungus *Podospora anserina*. PLoS genetics 15: e1008086. https://doi.org/10.1371/journal.pgen.1008086

Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T (2015) Recognition of seven species in the *Cryptococcus gattii/Cryptococcus neoformans* species complex. Fungal Genetics and Biology: FG & B 78: 16–48. https://doi.org/10.1016/j.fgb.2015.02.009

Huhndorf SM, Miller AN, Fernández FA (2004) Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined. Mycologia 96: 368–387. https://doi.org/10.1080/15572536.2005.11832982

Hyde KD, Maharachchikumbura SSN, Hongsanan S, Samarakoon MC, Lücking R, Pem D, Harishchandra D, Jeewon R, Zhao R-L, Xu J-C, Liu J-K, Al-Sadi AM, Bahkali AH, El-
gorban AM (2017) The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Diversity 84: 1–23. https://doi.org/10.1007/s13225-017-0383-3

Johnson N (2018) Phylogeny of the genus Drosophila. Genetics. 209(1): 1–25. https://doi.org/10.1534/genetics.117.300583

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermii LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285

Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108

Köster J, Rahmann S (2018) Snakemake – a scalable bioinformatics workflow engine. Bioinformatics 34: 1–3600. https://doi.org/10.1093/bioinformatics/bty350

Kruys Å, Huhndorf SM, Miller AN (2015) Coprophilous contributions to the phylogeny of Lasiosphaeriaceae and allied taxa within Sordariales (Ascomycota, Fungi). Fungal Diversity 70: 101–113. https://doi.org/10.1007/s13225-014-0296-3

Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, Bicanic TA, Castañeda E, Chang YC, Chen J, Cogliati M, Dromer F, Ellis D, Filler SG, Fisher MC, Harrison TS, Holland SM, Kohno S, Kronstad JW, Lazera M, Levitz SM, Lionakis MS, May RC, Ngaekskulrongroj P, Pappas PG, Perfect JR, Rickerts V, Sorrell TC, Walsh TJ, Williamson PR, Xu J, Zelazny AM, Casadevall A (2017) The case for adopting the “species complex” nomenclature for the etiologic agents of cryptococcosis. mSphere 2. https://doi.org/10.1128/mSphere.00357-16

Lücking R (2019) Stop the abuse of time! Strict temporal banding is not the future of rank-based classifications in Fungi (Including lichens) and other organisms. Critical Reviews in Plant Sciences 38: 199–253. https://doi.org/10.1080/07352689.2019.1650517

Lundqvist N (1972) Nordic Sordariaceae s. lat. Symbolae Botanicae Upsalienses 20: 1–374.

Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, Arnold AE, Lewis LA, Swofford DL, Hibbett D, Hilu K, James TY, Quandt D, Magallón S (2018) Contemporary radiations of fungi and plants linked to symbiosis. Nature Communications 9: 1–5451. https://doi.org/10.1038/s41467-018-07849-9

McTaggart AR, Shivas RG, Boekhout T, Oberwinkler F, Vánky K, Pennycook SR, Begerow D (2016) Mycosarcoma (Ustilaginaceae), a resurrected generic name for corn smut (Ustilago maydis) and its close relatives with hypertrophied, tubular sori. IMA Fungus 7: 309–315. https://doi.org/10.5598/imafungus.2016.07.02.10

Miller AN, Huhndorf SM (2005) Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Molecular Phylogenetics and Evolution 35: 60–75. https://doi.org/10.1016/j.ympev.2005.01.007

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300

Nicolson D, Greuter W, Demoulin V, Brummitt R (1984) On changes made in Appendix III (Sydney code). Taxon 33: 310–316. https://doi.org/10.2307/1221177
O’Grady PM, Markow TA (2009) Phylogenetic taxonomy in Drosophila: Problems and prospects. Fly 3: 10–14. https://doi.org/10.4161/fly.3.1.7748
Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M, Mirzadi Gohari A, Mehrabi R, Crous PW (2011) Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia – Molecular Phylogeny and Evolution of Fungi 26: 57–69. https://doi.org/10.3767/003158511X571841
Saupe SJ (2007) A short history of small s. Prion 1: 110–115. https://doi.org/10.4161/pri.1.2.4666
Saupe SJ, Clavé C, Bégue reret J (2000) Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Current opinion in microbiology 3: 608–612. https://doi.org/10.1016/S1369-5274(00)00148-X
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241–6246. https://doi.org/10.1073/pnas.1117018109
Shen X-X, Hittinger CT, Rokas A (2017) Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology & Evolution 1. https://doi.org/10.1038/s41559-017-0126
Silar P (2013) Podospora anserina: from laboratory to biotechnology. Soil Biology: 283–309. https://doi.org/10.1007/978-3-642-39339-6_12
Silar P (2020) Podospora anserina. 978-2-9555841-2-5. https://hal.archives-ouvertes.fr/hal-02475488
Silar P, Dauget J-M, Gautier V, Grognert P, Chablat M, Hermann-Le Denmat S, Couloux A, Wincker P, Debuchy R (2019) A gene graveyard in the genome of the fungus Podospora comata. Molecular Genetics and Genomics 294: 177–190. https://doi.org/10.1007/s00438-018-1497-3
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Thines M (2016) (2467) Proposal to conserve the name Ustilago (Basidiomycota) with a conserved type. Taxon 65: 1170–1171. https://doi.org/10.12705/655.20
Turland NJ, Greuter W, Turland NJ, Wiersema JH, Kusber W-H, Barrie FR, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Li D-Z, McNeill J, May TW, Munro AM, Prado J, Price MJ, Smith G (2018) International code of nomenclature for algae, fungi, and plants (Shenzhen code): adopted by the nineteenth international botanical congress, Shenzhen, China, July, 2017, 254 pp. https://doi.org/10.12705/Code.2018
van der Gaag M, Debets AJ, Oosterhof J, Slakhorst M, Thijsen JA, Hoekstra RF (2000) Spore-killing meiotic drive factors in a natural population of the fungus Podospora anserina. Genetics 156: 593–605.
van der Gaag M, Debets AJ, Osiewacz HD, Hoekstra RF (1998) The dynamics of pAL2-1 homologous linear plasmids in Podospora anserina. Molecular & General Genetics 258: 521–529. https://doi.org/10.1007/s004380050763
Vogan AA, Lorena Ament-Velásquez S, Bastiaans E, Wallerman O, Saupe SJ, Suh A, Johannesson H (2020) The Enterprise: A massive transposon carrying Spok meiotic drive genes. BioRxiv. https://doi.org/10.1101/2020.03.25.007153
The taxonomy of the model filamentous fungus *Podospora anserina*

Vogan AA, Lorena Ament-Velásquez S, Granger-Farbos A, Svedberg J, Bastiaans E, Debets AJM, Coustou V, Yvanne H, Clavé C, Saupe SJ, Johannesson H (2019) Combinations of *Spok* genes create multiple meiotic drivers in *Podospora*. eLife 8. https://doi.org/10.7554/eLife.46454

Wang XW, Bai FY, Bensch K, Meijer M, Sun BD, Han YF, Crous PW, Samson RA, Yang FY, Houbraken J (2019) Phylogenetic re-evaluation of *Thielavia* with the introduction of a new family Podosporaceae. Studies in Mycology 93: 155–252. https://doi.org/10.1016/j.simyco.2019.08.002

Zhang N, Luo J, Rossman AY, Aoki T, Chuma I, Crous PW, Dean R, de Vries RP, Donofrio N, Hyde KD, Lebrun M-H, Talbot NJ, Tharreau D, Tosa Y, Valent B, Wang Z, Xu J-R (2016) Generic names in Magnaporthales. IMA fungus 7: 155–159. https://doi.org/10.5598/imafungus.2016.07.01.09

Supplementary material I

Figure S1

Authors: S. Lorena Ament-Velásquez, Hanna Johannesson, Tatiana Giraud, Robert Debuchy, Sven J. Saupe, Alfons J.M. Debets, Eric Bastiaans, Fabienne Malagnac, Pierre Grognet, Leonardo Peraza-Reyes, Pierre Gladieux, Åsa Kruys, Philippe Silar, Sabine M. Huhndorf, Andrew N. Miller, Aaron A. Vogan

Data type: statistical data

Explanation note: Maximum Likelihood phylogeny of the concatenated analysis of ITS and LSU. Type strains of the focal species are highlighted with coloured boxes. Bootstrap support values are depicted next to their respective branches, but values corresponding to nearly identical sequences are removed for clarity. Branches are proportional to the scale bar (nucleotide substitutions per site). Clades are marked with lateral bars following the topology in Figure 1.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.75.55968.suppl1
Supplementary material 2

Figure S2
Authors: S. Lorena Ament-Velásquez, Hanna Johannesson, Tatiana Giraud, Robert Debuchy, Sven J. Saupe, Alfons J.M. Debets, Eric Bastiaans, Fabienne Malagnac, Pierre Grognet, Leonardo Peraza-Reyes, Pierre Gladieux, Åsa Kruys, Philippe Silar, Sabine M. Huhndorf, Andrew N. Miller, Aaron A. Vogan
Data type: statistical data
Explanation note: Maximum Likelihood phylogeny of Btub1 and Btub2 separately. The outgroup taxa are not resolved as monophyletic and, hence, the rooting was arbitrarily chosen. Type strains of the focal species are highlighted with coloured boxes. Bootstrap support values are depicted next to their respective branches, but values corresponding to nearly identical sequences are removed for clarity. Branches are proportional to the scale bar (nucleotide substitutions per site). Clades are marked with lateral bars, following the topology in Figure 1.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.75.55968.suppl2

Supplementary material 3

Figure S3
Authors: S. Lorena Ament-Velásquez, Hanna Johannesson, Tatiana Giraud, Robert Debuchy, Sven J. Saupe, Alfons J.M. Debets, Eric Bastiaans, Fabienne Malagnac, Pierre Grognet, Leonardo Peraza-Reyes, Pierre Gladieux, Åsa Kruys, Philippe Silar, Sabine M. Huhndorf, Andrew N. Miller, Aaron A. Vogan
Data type: statistical data
Explanation note: Maximum Likelihood phylogeny of rpb2. Type strains of the focal species are highlighted with coloured boxes. Bootstrap support values are depicted next to their respective branches, but values corresponding to nearly identical sequences are removed for clarity. Branches are proportional to the scale bar (nucleotide substitutions per site). Clades are marked with lateral bars, following the topology in Figure 1.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.75.55968.suppl3
Supplementary material 4

Table S1
Authors: S. Lorena Ament-Velásquez, Hanna Johannesson, Tatiana Giraud, Robert Debuchy, Sven J. Saupe, Alfons J.M. Debets, Eric Bastiaans, Fabienne Malagnac, Pierre Grognet, Leonardo Peraza-Reyes, Pierre Gladieux, Åsa Kruys, Philippe Silar, Sabine M. Huhndorf, Andrew N. Miller, Aaron A. Vogan
Data type: molecular data
Explanation note: List of primers used to generate sequence data.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.75.55968.suppl4

Supplementary material 5

Table S2
Authors: S. Lorena Ament-Velásquez, Hanna Johannesson, Tatiana Giraud, Robert Debuchy, Sven J. Saupe, Alfons J.M. Debets, Eric Bastiaans, Fabienne Malagnac, Pierre Grognet, Leonardo Peraza-Reyes, Pierre Gladieux, Åsa Kruys, Philippe Silar, Sabine M. Huhndorf, Andrew N. Miller, Aaron A. Vogan
Data type: statistical data
Explanation note: Analysed data matrices.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.75.55968.suppl5