The regression model of automated control of timely replacement of air diesel air filter

V S Aslamova, T Taiwan, E A Rush

Irkutsk State Transport University, 15 Chernyshevsky Street, Irkutsk, 664074, Russia

E-mail: irgups-journal@yandex.ru

Abstract. The article analyzes the literature sources and experience of four-year operation of the diesel locomotive of series 2TE116UM No. 016 on the Ulan-Bator railway (Mongolia). The results of the analysis show that the turbocharger does not exhaust its service life until regular preventive maintenance, due to the onset of such a phenomenon as surging, stability of its operation is disrupted. It has been established that the main causes of surge emergence are: flow stall from the diffuser walls, and/or from the guide vanes, and/or from the impeller blades and others. These deviations from the operating conditions are caused by various factors, the main among which is the contamination of the air filter. The dynamics of the onset of surging, the inspection and the replacement of the air filter are analyzed. An empirical dependence of the air flow on the degree of pressure increase in the turbocharger is obtained. In order to automate the control of the turbocharger's unattended operation in the diesel locomotive operation mode set by the controller, the dependences of the pumping distance on the ambient temperature, the degree of pressure increase and the pressure at the inlet of the turbocharger, depending on the degree of air filter contamination, were investigated. The source data from the controller was processed in the Statgraphics Plus package and adequate regression equations were obtained to determine the running period magnitude before the surge start from each parameter individually and from the combined effect of all parameters. The coefficients of determination of the regression dependencies obtained are 92-99%.

1. Introduction
The mathematical analysis of experimental data with their subsequent approximation is of great importance for the development of automated processes of controlling the functioning of complex systems. The approximation with simultaneous statistical data processing is often provided by regression analysis methods [1]. Out of the entire set of functions depending on the input variables and external influences, only the regression function has a minimum forecast error of the output variable of the object under study. For that reason, regression models are widely used in various industrial, economic and educational systems [1-8]. The development of regression models helps to avoid an exhaustive search of options in the design and selection of optimal operating modes of equipment and processing procedures through the use of information technologies. A good enough approximation to the real process requires the use of a more complex multivariate regression model, which we will consider below.
2. Turbocharger surge dynamics, inspection and filter replacement graphs

During the operation of diesel locomotives, diesel air filters are gradually contaminated. With that, their passage area decreases, which leads to a decrease in air flow through the diesel [9-10]. The discharge characteristic shifts to the lower flow zone, the temperature of the exhaust gases rises. An increase in gas temperature can not compensate for a decrease in gas air flow; therefore, the speed of the turbine and compressor is reduced. As a result of increasing the boost pressure, the air consumption decreases, and the joint operation mode of the turbo-charger and the engine moves to a point at another hydraulic characteristic located closer to the surge limit.

The change in air flow through the engine leads to a change in the indicator efficiency and engine shaft speed. With that, the efficiency of the turbocharger also changes, which affects the efficiency of the engine cycle.

If to maintain a constant frequency of rotation of the diesel shaft by increasing the fuel supply when the air filters are contaminated, this will result in an even greater increase in the temperature of the exhaust gases. In this case, the flow characteristics of the diesel engine and the line of operating modes of the turbocharger will be located closer to the surge limit [11].

Works [12-16] evaluated the impact of reducing the boost pressure on the output parameters of a diesel locomotive engine, as well as the effect of the degree of pollution of air filters on the constancy of performance of a diesel locomotive turbocharger.

The results of the operational data analysis showed that the turbocharger service life does not become exhausted until regular preventive maintenance, because stability of its operation is disrupted due to the onset of surging.

![Figure 1](image1.png)

Figure 1. The dynamics of the onset of surging during the run L_s.

![Figure 2](image2.png)

Figure 2. The dynamics of carrying out the inspection of air filter during the running period of the diesel locomotive L_i.
Figure 3. The dynamics of replacing the air filter.

It is established that the main causes of surge occurrence are: flow stall from the walls of the diffuser, and / or from the guide vanes, and / or from the vanes of the impeller; as well as instability of the flow in a vaneless space; self-oscillations of air in the "compressor - blow-off-and-boosting receiver" system. These deviations from the operating conditions are caused by various factors, the main among which is the contamination of the air filter.

As can be seen from Fig. 1, surging occurred in 0.5-3 months after the inspection of the air filter, in 4.5-6.5 months after replacing the filter.

To prevent the occurrence of surging, the workers of the Ulan-Bator Railway tried to carry out the inspection as often as possible (Fig. 2), or to replace the air filter of a locomotive, which led to heavy material expenditures.

To identify the quantitative effect of the technological parameters of a diesel locomotive’s turbocharger on the running period at which surging occurs, and to develop empirical models for the automated control of safe running period, statistical processing of the experimental data has been performed using the Statgraphics Plus package.

Let us denote the following: \(T \) is the ambient air temperature, °C; \(p_z \) is the pressure in front of the turbocharger, Pa; \(\pi_k \) is the degree of pressure increase; \(G \) is the air consumption, kg/s. With increasing running period \(L \) of the diesel locomotive, the hydraulic resistance of the air filter increases due to contamination and the value of \(p_z \) increases. To prevent surging, the filter is to be replaced or inspected, during which it is subjected to cleaning. This results in a decrease in the value of \(p_z \). Therefore, the distance of run of the locomotive \(L_{rp} \), at which surge occurred, was calculated by the formula

\[
L_{rp} = L - L_f
\]

where \(L \) - from the beginning of operation, km, \(L_f \) is the running period during which the filter was inspected or replaced.

The air flow depends on \(\pi_k \) and is described by linear regression (2), see Fig. 4. The regression validity coefficients (2): the coefficients of determination \(R^2 \) and of Darbin-Watson \(DW \), mean square \(\sigma \) and absolute \(\Delta \) errors are listed in the table.

\[
G = -0.9188 + 2.2345\pi_k
\]

Figure 5 shows a comparison of the experimental data of \(G_e \) with the calculation results of \(G_c \) by formula (2). The regression validity coefficients (2) are listed in the table.

Studying the influence of each parameter separately on the value of the safe running period, we obtained one-dimensional regressions, the reliability coefficients of which are given in the table.

The dependence of \(L_{rp} \) on \(T \) is quadratic (see Fig. 6).
Figure 4. Dependence of the air flow G on the degree of pressure increase π_k in the turbocharger.

Figure 5. Comparison of values calculated by formula (1) G_c with experimental values G_e.

Figure 6. Dependence of surge running period on air temperature.

The greatest value of L_{rp} can be found from the necessary condition for the maximum function:

$$\frac{\partial L_{rp}}{\partial T} = 1674.98 - 2 \cdot 152.46 \cdot T = 0 \rightarrow \max L_{rp}$$

At $T = \frac{1674.98}{304.92} = 5.49 \, ^\circ\text{C}$

The regression validity coefficients (3) are shown in the table. The accuracy of the regression found can be judged by Fig. 7, which compares the running period values calculated by formula (3) L_{crp} (abscissa axis) with experimental L_{rp} (ordinate axis).

$$L_{crp} = 106674.0 - 1674.98T - 152.46T^2$$

(3)

Figure 7. Comparison of the values of L_{crp} calculated by formula (3) with experimental L_{rp}.

The dependence of L_{rp} on π_k is parabolic (see Fig. 8). The regression validity coefficients (4) are
presented in the table.

\[L_{rp} = -5.130 \cdot 10^6 + 3.810 \cdot 10^6 - 693361.0 \pi_s^2 \] \hspace{1cm} (4)

\[\pi \]

Figure 8. The dependence of \(L_{rp} \) on \(\pi_s \).

From the necessary condition for the existence of an extremum of the function, we find that the greatest value of \(L_{rp} \) is achieved when \(\pi_s = 2.747 \), because

\[\frac{\partial L_{rp}}{\partial \pi_s} = 3809610.0 - 2 \cdot 693361 \cdot \pi_s = 0 \rightarrow \max L_{rp} \]

At \(\pi_s = \frac{3809610}{1386722} = 2.747 \) °C

The accuracy of the regression found can be judged by Fig. 9, which compares the running period values calculated by formula (4) \(L_{crp} \) (abscissa axis) with experimental \(L_{rp} \) (ordinate axis).

Figure 9. Comparison of the values of \(L_{crp} \) calculated by formula (4) with experimental \(L_{rp} \).

\[L_{rp} = -2.91352 \cdot 10^6 + 39.29 \cdot p_z - 0.00013 p_z^2 \] \hspace{1cm} (5)

\[\pi \]

Figure 10. Dependence of \(L_{rp} \) on \(p_z \).
The regression validity coefficients (5) are listed in the table. Fig. 11 shows a comparison of the running period values calculated by formula (5) \(L_{crp} \) (abscissa axis) with experimental data \(L_{rp} \) (ordinate axis).

The fourth compatibility condition for the valve SJ:

\[
L_{crp} = -43418.4 + 43607.8 \cdot \pi_k^2 - 1.172 p_z - 154.837 T^2
\]

Table 1. Regression validity coefficients.

Formula No.	\(R^2, \% \)	\(DW \)	\(\sigma \)	\(\Delta \)
(2)	99.99	2.74	0.0156	0.0113
(3)	92.16	1.54	11392.60	10859.30
(4)	99.67	1.45	2917.77	21744.0
(5)	98.46	1.45	6181.34	19119.70
(6)	96.99	3.26	7231.95	4331.31

The obtained equation (6) will allow controlling the amount of safe running period during operation of the locomotive, which should not exceed the value of \(L_{rp} \) obtained by formula (6) and accurately describes 99.26% of the initial data.

The accuracy of the regression found can be judged by Fig. 9, which compares the running period values calculated by formula (6) \(L_{crp} \) (abscissa axis) with experimental \(L_{rp} \) (ordinate axis).

Thus, the obtained multi-parameter linear regression was used in the development of an automated software module [17, 21-29] that monitors the running period of a diesel locomotive and prevents surging as a result of timely replacement of the air filter.
Figure 12. Comparison of the values of L_{crp} calculated by formula (6) with experimental L_{rp}.

3. Conclusion

The use of automated calculation systems can significantly reduce the time to solve the problem. The programming functions built into the system make it possible to create simple program modules necessary for repeated calculations, for example, to find the coordinate $x_{max,o}$ and the radius $r_{max,p}$, used in further calculations as the initial approximation for the $Given$ – $minimize$ computational unit.

The built-in Given block allows solving the problems of exploring functions for an extremum ($Given$ – $minimize$, – $maximize$, – $minerr$, etc.), however, it is limited by initial approximations, which in most cases leads to incorrect results. The main advantage of the Given block, in this case, is the ability to calculate rational geometric parameters of the seat (thickness) by solving an optimization problem with constraints on allowable stresses.

The presented example of solving the problem of optimizing the geometric dimensions of a thin-walled seat under dynamic and static loading in PTC MathCAD, its automation using the built-in Given block can also be supplemented with data obtained from modeling in various systems (MSC.vN4W, APM WinMachine, etc.).

References

[1] Prokofiev A B, Shakhmatov E V 2005 Using regression analysis to study complex systems management processes: method. instructions (Samara, SSAU Publ.) p 23

[2] Kolosov A D, Gozbenko V E, Shtayger M G, Kargapol'tsev S K, Balanovskiy A E, Karlina A I, Sivtsov A V, Nebogin S A 2019 Comparative evaluation of austenite grain in high-strength rail steel during welding, thermal processing and plasma surface hardening IOP Conference Series: Materials Science and Engineering 560 012185

[3] Khomenko A P, Gozbenko V E, Kargapol'tsev S K, Minaev N V, Karlina A I 2017 International Journal of Applied Engineering Research T. 12 23 pp 13773-13778

[4] Kargapol'tsev S K, Khomenko A P, Gozbenko V E, Minaev N V, Karlina A I 2017 Development of new lubricants for reducing the wear of the elements of the path and running parts of rolling stock International Journal of Applied Engineering Research Vol. 12 22 pp 12362-12368

[5] Konstantinova M V, Balanovskiy A E, Gozbenko V E, Kargapol'tsev S K, Karlina A I, Shtayger M G, Guseva E A, Kuznetsov B O 2019 Application of plasma surface quenching to reduce rail side wear IOP Conference Series: Materials Science and Engineering 560 012146

[6] Grechneva M V, Balanovskiy A E, Gozbenko V E, Kargapol'tsev S K, Karlina A I, Shtayger M G, Karlina Yu I, Govorkov A S 2019 Quality and reliability improvement of "tube-tube plate" welded joints during welding by pulse pressure IOP Conference Series: Materials Science and Engineering 560 012142

[7] Guseva E A, Kargapol'tsev S K, Balanovskiy A E, Karlina A I, Shtayger M G, Gozbenko V E, Konstantinova M V, Sivtsov A V 2019 Comparative evaluation of corrosion resistance of wheel and rail steels in various media IOP Conference Series: Materials Science and Engineering 560 012181
[8] Shtayger M G, Balanovskiy A E, Kargapol'tsev S K, Gozbenko V E, Karlina A I, Karlina Yu I, Govorkov A S, Kuznetsov B O 2019 Investigation of macro and micro structures of compounds of high-strength rails implemented by contact butt welding using burning-off IOP Conference Series: Materials Science and Engineering 560 012190

[9] Mezheritsky A D 1971 Turbochargers of marine diesel engines (Leningrad: Sudostroenie Publ.) p 192

[10] Skovorodnikov E I, Anisimov A S, Grishina Yu B 2012 Evaluation of the effect of reducing the boost pressure on the output parameters of a diesel engine The Journal of Transib Railway Studies. Omsk State Transport Un-ty 1 9 pp 39-42

[11] Rush E A, Taiwan Tungalag 2013 Evaluation of the efficiency of the air cleaning system of a diesel engine of a diesel locomotive of the 2TE116UM series in the conditions of Mongolia Transport infrastructure of the Siberian region: Materials of the IV international scientific-practical conference 1 pp 221-224

[12] Rush E A, Tungalag Taiwan 2015 Analysis of the degree of influence of air filter pollution on the stability of the turbocharger of a diesel engine 2TE116UM Transport infrastructure of the Siberian region: Materials of the IV international scientific-practical conference 1 pp 285-290

[13] Balanovskiy A E, Shtayger M G, Karlina A I, Kargapol'tsev S K, Gozbenko V E, Karlina Yu I, Govorkov A S, Kuznetsov B O 2019 Surface hardening of structural steel by cathode spot of welding arc IOP Conference Series: Materials Science and Engineering 560 012138

[14] Vdovin K N, Feoktistov N A, Sinitskii E V, Gorlenko D A, Durov N A 2015 Production of high-manganese steel in arc furnaces. Part 1 Steel in Translation Vol. 45 10 pp 729-732

[15] Vdovin K N, Gorlenko D A, Feoktistov N A 2016 Characteristics of excess phase in cast high-manganese steel Steel in Translation Vol. 46 7 pp 484-488

[16] Vdovin K N, Feoktistov N A, Gorlenko D A 2016 The effect of the cast high-manganese steel primary structure on its properties Materials Science Forum 870 pp 339-344

[17] Rush E A, Tungalag Taiwan 2015 Reliability analysis of the turbocharger of a diesel locomotive 2TE116UM Transport infrastructure of the Siberian region: Materials of the IV international scientific-practical conference 1 pp 295-300

[18] Lombardi P, Styczynski Z, Sokolnikova T, Suslov K 2014 Use of energy storage in Isolated Micro Grids Proceedings - 2014 Power Systems Computation Conference, PSCC 7038361

[19] Suslov K V, Stepanov V S, Solonina N N 2013 Smart grid: Effect of high harmonics on electricity consumers in distribution networks IEEE International Symposium on Electromagnetic Compatibility 6653416 pp 841-845

[20] Lombardi P, Sokolnikova T, Suslov K V, Styczynski Z 2012 Optimal storage capacity within an autonomous micro grid with a high penetration of Renewable Energy Sources IEEE PES Innovative Smart Grid Technologies Conference Europe 6465706

[21] Certificate of state registration of a computer program 2016 "Determining the surge distance value depending on the technological parameters of a diesel locomotive turbocompressor" No. 2016611489 was registered in the Computer Program Register on April 13, 2016

[22] Sivtsov A V, Sheshukov O Y, Tsymbalist M M, Nekrasov I V, Makhnutin A V, Egiazar’yan D K, Orlov P P 2019 Steel Semiproduct Melting Intensification in Electric Arc Furnaces Using Coordinated Control of Electric and Gas Conditions: II. On-Line Control of the State of the Charge and Melt Zones in Electric Arc Furnaces Russian Metallurgy (Metally) Vol. 2019 6 pp 565-569

[23] Sivtsov A V, Sheshukov O Y, Tsymbalist M M, Nekrasov I V, Makhnutin A V, Egiazar’yan D K, Orlov P P 2018 Steel Semiproduct Melting Intensification in Electric Arc Furnaces Using Coordinated Control of Electric and Gas Conditions: I. Heat Exchange and Structure of the Electric Arc Furnace Laboratory Russian Metallurgy (Metally) Vol. 2018 12 pp 1108-1113

[24] Nekrasov I V, Sheshukov O Y, Metelkin A A, Sivtsov A V, Tsymbolist M M 2016 Slag conditions in electrosmelting: A review Steel in Translation Vol. 46 6 pp 435-442
[25] Sivtsov A V, Sheshukov O Y, Tsymbalist M M, Nekrasov I V, Egiazar’yan D K 2015 The Valve Effect of an Electric ARC and Problems in Controlling Electric-ARC Furnaces *Metallurgist* Vol. 59 5-6 pp 380-385

[26] Nekrasov I V, Sheshukov O Y, Metelkin A A, Sivtsov A V, Tsymbalist M M, Egiazar’yan D K 2015 Ensuring Consistent Foamability in Electric-Furnace Slags *Metallurgist* Vol. 59 3-4 pp 300-304

[27] Sheshukov O Y, Nekrasov I V, Sivtsov A V, Tsymbalist M M, Egiazar’yan D K, Metelkin A A 2014 Dynamic monitoring of slag oxidation and thickness in the ladle-furnace unit *Steel in Translation* Vol. 44 1 pp 43-46

[28] Gozbenko V E, Khomenko A P, Kargapol’tsev S K, Minaev N V, Karlina A I 2017 Creating of the alternative lubricants and practice of their use *International Journal of Applied Engineering Research* Vol. 12 22 pp 12369-12372