Comparative Study of Knowledge-Based Economic Strength Between China and the USA

Jinhui Li1 · Gwang-Nam Rim1,2 · Chol-Ju An1,3

Received: 19 September 2021 / Accepted: 14 September 2022 / Published online: 24 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Entering the era of knowledge economy, knowledge is the important source of economic growth and is the basis for ensuring the sustainable development of economy even under any disadvantageous environment. This paper addresses the comparison of economic strength between China and the USA from a view of knowledge economy. To this end, based on analysis of previous studies, the authors conceptualize the knowledge-based economic strength, establish the indicators system for its comparison between China and the USA, and conduct the comparison and analysis based on them. The findings are that (1) while China gets ahead of the USA in exports of high-tech manufactures and numbers of knowledge resources, the USA gets ahead of China in GDP per capita, receipts of intellectual properties, human capital, financial expenditure, and ICT infrastructure, (2) China has mostly focused on quantitative growth of knowledge resources rather than qualitative growth, (3) China has devoted many efforts to the decrease of differences in almost all aspects of knowledge-based economic strength from the USA, and (4) for both countries, degrees of contributions of resource indicators to GDP per capita are different. Given that competition between China and the USA enters the new stage, this comparative study may serve as the policy basis in taking the technological measures for further strengthening its own economic strength for China.

Keywords Knowledge economy (KE) · Knowledge-based economic strength (KBES) · China-US comparative studies · Chinese economy · Economic strength

Introduction
Today, China and the USA form two pillars of world economy, and Chinese economy exerts its great influence on world economy. China has already emerged as the second-best economic power, and experts outlook that China will catch up
with the USA as soon as possible. However, factors such as intensification of contradiction between China and the USA, US’s continuous pressure on China, deepening of COVID-19 pandemic, political and economic instability, and risk in relation with marginal countries and the like are the obstacles for China’s influence on world economy, and in turn, these are the difficulties in strengthening economic strength for China. On the other hand, strengthening its own economic strength for China is the important condition for holding the dominant position in competition with the USA. China regards that it still has weakness in many aspects compared to the USA. In this context, many experts and international organizations compare the economics between China and the USA based on different indicators, and among them, what is noticeable is to compare based on macroeconomic indicators including GDP (gross domestic products) and trade volume (e.g., Barbieri, 1995; Oneal & Russett, 1997; United Nation; World Bank; Organisation for Economic Co-operation and Development). Besides, they evaluate the country-specific competitiveness using the indicators including global competitiveness index (GCI) and global innovation index (GII). However, it is our view that these have limitations in evaluating the economic strength in a qualitative aspect and in a view of sustainable development for today which is the era of knowledge economy (KE). In other words, these evaluations focus on external comparison and assessment. Furthermore, in a view of sustainable development of economy discussed in abstract, economic strength cannot be assessed only by abovementioned indicators, and this requires that comparative study must be conducted focusing on internal strength of economy. Economic strength is the greatly complex concept and consists of various components, and thus, it requires new consideration of comparative study on economic strength between China and the USA. In this regard, this study is motivated by following arguments. (1) What is the knowledge-based economic strength (KBES)? (2) What are the problems in evaluating KBES? (3) What are the strong and weak aspects in comparing KBES between China and the USA? (4) What are the significant factors mostly affecting the KBES among two countries? This paper aims to set the indicators for comparing and evaluating KBES, compare the economic strengths between China and the USA based on those indicators, and discuss the measures for sustainable development of economy based on knowledge. From this, this paper is organized as follows. The second section analyzes the previous studies related to assessment of the level of KE and comparison of economics between China and the USA. The third section addresses the indicators system for comparing and evaluating KBES between China and the USA. The fourth section collects the concerned data based on indicators and, after transforming the primary data into comparable values, conducts the comparison of KBES between China and the USA. And this section reveals the interrelation between indicators and their influences on economic growth by means of correlation and regression analysis methods. The last section addresses the results, discussions, conclusions, and further study. This makes it possible to newly evaluate the economic strength in a view of KE and to take the technological measures for overcoming the weakness of economy in a view of KE and strengthening its own economic strength for China.
Analysis of Previous Studies

Assessment of KE

So far, international organizations including the World Bank and many authors have set indicators related to KE. With the emergence of the term “knowledge economy,” many researchers have suggested various kinds of views and approaches regarding the KE (Ayan & Pabuccu, 2018; Drucker, 1998; Durazzi, 2019; Foray, 2004; Godin, 2006; Milewska, 2018; Sagiyeval et al., 2018; Saridogan & Kaya, 2019; Smith, 2000). According to definition of OECD (1996), knowledge-based economy refers to as those that are directly based on the production, distribution, and use of knowledge and information. Powell and Snellman (2004) define the KE as a way of creating a product based on activities dependent on knowledge and expertise that contribute to the creation of scientific and technological progress. Houghton and Sheehan (2000) focus on the driving forces of KE, that is, the increasing knowledge level of economic operations and the globalization of economic events, and Dudová (2011) stresses two prerequisites for the emergence of knowledge economies, which include the gradual increase of intangible capital and the emergence and growth of the diffusion of information and communication technologies. Other researchers focus on effective policy-making approach and strategic combination of highly specialized knowledge and skills in transforming into KE (e.g., Alnafrah & Mouselli, 2019; Lüthi et al., 2011). With the development of the KE, there have been attempts and approaches to assess and measure the KE. In this context, some authors suggested the pillars of the KE:

• Collison and Parcel (2005) showed the three pillars of the KE, that is, (a) people who are willing to learn and share knowledge, (b) the information infrastructure, and (c) processes that facilitate sharing, codification, and knowledge discovery.
• Sundac and Krmpotic (2011), four basic elements: long-term investment in education, innovative skills, the modernization of information base, and the creation of a favorable business environment.
• Chen and Dahlman (2005), four pillars suggested by the World Bank: economic incentives and the institutional system, educated and skilled human resources, an effective business innovation system, and a modern and appropriate information and communication structure.
• Barkhordari et al. (2019): institutions, human capital and research, infrastructure, and business sophistication.

Also, some authors and international organizations set the indicators relating with assessment of level of KE according to countries and regions. What is noteworthy among them is methodology suggested by World Bank (2004). This methodology includes the 109 structural and qualitative variables for 146 countries in the world to measure country-specific performance on the abovementioned
four pillars of KE and assesses the level of KE every year. According to Dutta (2011), INSEAD, a top-ranking international business school with campuses in Europe and Asia, suggests the global innovation index (GII), which includes 125 countries and provides not only the overall GII results but also scores and rankings for each of the 20 components included in the analysis. The global competitiveness index (GCI) annually published by the World Economic Forum (WEF) includes 12 pillars of competitiveness, among which three of the pillars relate most directly to the KE: higher education and training, technological readiness, and innovation (World Economic Forum, 2019). Besides, some authors suggest the indicators to measure the level of KE. For example, Roberts (2001) divided the KE indicators into four groups: indicators based on innovation and entrepreneurship, total R&D expenditure by industry, enterprise R&D (research and development) expenditure by size of enterprise, and the number of scientific and technical publications per capita; indicators based on human capital; indicators based on information and communication technologies; and indicators based on economic and social impacts. Rim et al. (2019) establish the indicators characterizing the level of KE as (a) R&D expenditure, (b) growth rate of invention and rationalization plans, (c) the degree of contribution by science and technology to economic growth and growth rate of application of inventions and patent, and (d) the proportion of knowledge-intensive industry in economic structure. Širá et al. (2020) divide the indicators of the KE into two categories: one category related to the basic characteristics of the KE, which includes the share of the KE in the whole economy of the country, and another, the performance or output indicators, which includes the production of high-tech industries, high-tech exports, GDP growth, and labor productivity growth (Arundel et al., 2008). On the other hand, there have been attempts to measure the level of KE according to regions. According to Atkinson and Andes (2010), the Information Technology and Innovation Foundation, a Washington, DC think tank, produced the new economy index (NEI), which was based on 26 individual indicators grouped according to the five primary dimensions about the new economy: knowledge jobs, globalization, economic dynamism, transformation to a digital economy, and technological innovation capacity. Milken Institute (2001) produced what was termed the knowledge-based economy index (KBEI), and this includes measures of educational attainment, R&D and patent activity, and business start-up–related activities. According to DeVol et al. (2002), another index produced by Milken Institute is the state technology and science index (STSI), which on 2010 was constructed from 79 individual indicators classified into five groups with their own composite indexes. Three of these groups relate most closely to the KE: human capital investment, R&D inputs, and technology and science workforce. As seen above, entering the era of KE, many efforts and attempts have been devoted to assessment of the level of KE. These may be the basis for comparing and evaluating the economic strength between China and the USA in a view of KE. In the next section, the authors will discuss the indicators system based on the abovementioned views, pillars, and indicators regarding the KE.
Comparison of Economics Between Countries

Before comparison of KBES between China and the USA, there are needs to reveal the concepts of economic power, competitiveness, and economic strength. This is because depending on concepts, purposes and indicators for comparison vary.

In general, power is defined as an ability to exert influence and control over other people’s thoughts and actions in the field of politics (Morgenthau & Thompson, 1997). After the end of the cold war, competition among countries also shifted from military power to economic power (Cooper, 1968). Therefore, economic impact has replaced force as the main means of national foreign policy (Luttwak, 1990). In order to maintain and strengthen dominance in bilateral relations, major powers gradually introduce economic mechanisms into interstate relations, thus enhancing their attractiveness to other countries through foreign trade and investment (Rio & Lores, 2017) and thereby influencing and controlling other countries’ decision-making (Hu et al., 2019).

Therefore, at present, economic power is manifested in the ability of a country to use its own economic strength to force other countries to change their will in the process of bilateral economic exchange activities (Kappel, 2010). In reality, the most common and influential relationship among actors is asymmetric interdependence (Gilpin, 1987). Because of asymmetric economic interdependence, one party with a low degree of dependence has the economic power to influence and control the behavior of another party in bilateral relations (Keohane & Nye, 1977); thus, asymmetric economic interdependence has increasingly become an important means for countries to exert strategic influence over others (O’Loughlin & Anselin, 1996). On the other hand, there exist different views on competitiveness. The typical ones among these are as follows; according to Wikipedia Encyclopedia, competitiveness is referred to as the ability and performance of a firm, sub-sector, or country to sell and supply goods and services in a given market, in relation to the ability and performance of other firms, sub-sectors, or countries in the same market (Lawrence, 2002); competitiveness is defined as the institutions, policies, and factors that determine the level of productivity of a country (World Economic Forum, 2019). Competitiveness has become a major topic of research for academic institutions and think tanks. The reports on competitiveness are published by think tanks from major countries and economies including the USA, the EU, Japan, and the UK. Economic competitiveness means the ability of a country to create wealth and provide for national welfare (Scott & Lodge, 1985). In a view of KE, there have been discussions on competitiveness (Atanassova et al., 2018; Brodowska-Szewczuk, 2019; Dukic et al., 2018; Gorokhova, 2018; Hadad, 2018; Lomachynska & Podgorna, 2018). According to them, the ability to generate and absorb knowledge and use it effectively helps to create innovations, achieve competitive advantages and economic efficiency, and produce human capital and in turn determines the effectiveness of economic development.

In this context, until now, there have been attempts to measure and compare the economic power or competitiveness according to countries or between China and the USA. Barbieri (1995) and Oneal and Russett (1997) first used bilateral trade data to study asymmetric interdependence between countries, using both the proportion
of bilateral trade in a country’s total foreign trade and GDP separately as indicators to measure the economic power of one country. Thereafter, scholars performed further analyses on asymmetric interdependence from the perspectives of foreign investment, finance, and exchange rate (O’Loughlin & Anselin, 1996; Lim, 2010; Fei, 2017). In recent years, there have been two main researches on China’s economic power (Lu & Du, 2013; Du et al., 2016). The first uses trade data to study the bilateral asymmetric relations between China and other countries or regions, including the USA (Yang et al., 2017), the EU (Grosse, 2014), Japan (Wang, 2009), Southeast Asian countries (Zong & Zeng, 2017), and others (Yu & Wu, 2019; Liang et al., 2019). The second constructs a comprehensive index of economic power evaluation based on the theory of compound interdependence, which studies the evolutionary trend and spatial pattern of China’s economic power (Hu & Men, 2012; Hu et al., 2015). Also, the authoritative international organizations including the UN (United Nations), World Bank, OECD (Organisation for Economic Co-operation and Development) and the like measure and compare the economic power or competitiveness of countries using different indicators such as gross domestic products (GDP) or GDP per capita, the growth rate of real GDP, the structure of GDP, inflation rate, employment, investment, saving, per capita real GDP, per capita real GDP by purchasing power parity (GDP PPP), national income, gross national income, and so on, in a view of macroeconomics.

Also, comparative studies on national competitiveness and comprehensive strengths between China and the USA have been carried out by some scholars from different dimensions (Hu et al., 2015; Chen et al., 2009; Guo, 2014; Ni & Li, 2016; Ni & Wang, 2017; Liu & Lin, 2010; Yao et al., 2020; Yin, 2015; Zhao & Feng, 2007).

As seen above, it can say that economic power or competitiveness is a concept mostly focused on external aspects of a given economy. It is our views that economic power greatly focuses on economic influence of one country to exert on other country and economic competitiveness – share of given country in world economy or market. In a view of sustainability, the economy of a given country must be evaluated in internal aspect. In other words, economic strength can be the concept reflecting the interiority of given economy. According to Rim et al. (2020), economic strength is defined in a view of capability of satisfying the need for material and cultural wealth by itself even under uncertain environments. Furthermore, entering the age of KE, knowledge is the most important resource for sustainable growth of economy, and the KBES is the basis for economic power or competitiveness. In this regard, the authors discuss the concept of KBES, indicator system for its comparison between China and the USA, and materials and methods in following sections.

Materials and Methods

Theoretical Framework

For comparative studies of KBES between China and the USA, there are needs to clarify the KE in a new perspective. In general, until now, KE have been defined as the
one that is based on the creation, distribution, and use of knowledge by international organizations and researchers. This view mostly focuses on economics of knowledge. It is our views that economics of knowledge is not the same as KE. Clearly speaking, the KE is the knowledge-based one, that is, the one developing based on the strength of knowledge as the word itself. In other words, it is the knowledge-intensive one. Under the KE, knowledge is not only the productive resource but also commodity by itself. From this, in the era of KE, knowledge industry and high-tech industry are formed. According to An et al. (2020), intellectual products can be divided into intangible and tangible ones. While intangible products include intellectual ones such as program, patent, trademark, industrial process design, scientific and technological article, and copyright, tangible ones include high-tech manufactures produced using the intellectual property, that is, information technology product, bioengineering product, pharmaceutical product, aircraft and related goods, electronic and electric product, and so on; while intangible products are created in knowledge industry including science and education, high-tech products are created in high-tech industry including information technology industry, bioengineering industry, electronic industry, air- and space-related industry, pharmaceutical industry, and so on which produce the knowledge-intensive products. Therefore, entering the era of KE, there exist inherent inputs and outputs corresponding to this era. In other words, there exist the resources for constructing the KE and results of the KE. This framework makes it possible to clarify the KBES and set the indicators system for its comparison between China and the USA.

Based on abovementioned standpoint of the KE, the KBES can be defined as the capability of ensuing the sustainable development of a given economy through creating and using the knowledge resource by itself even under uncertain environments. The process of creating the knowledge resource necessitates the corresponding human and material and financial resources. The major creators of knowledge resource are scientists and technologists, who are employed and trained in sectors of science (research and development) and education. And in turn, scientific research and education entail a great deal of money. Apart from information and communication technology (ICT) and its network, creation and application of scientific and technological knowledge are impossible. The process of creating knowledge resource is the one of researching and developing the science and technology or of renewing the exiting science and technology using ICT. In this regard, ICT infrastructure emerges as the material and technological resource for the KE. On the other hand, as a result of application of created knowledge resource, new cutting-edge industries are formed, sectors of traditional industries are equipped with high technology, and in turn, sustainable growth of economy is ensured. This shows that KBES can be characterized in following aspects:

- Resource (input) – knowledge, researcher, fund, ICT infrastructure
- Result (output) – cutting-edge industry, equipment with high technology, growth of economy

From the above revelation of KBES, the indicators system for its comparison between China and the USA can be set as follows (see Table 1).
This indicator system is the main one for comparison of KBES. It is obvious that depending on purpose of study and accessibility of data, this can be detailed. For example, indicators reflecting the human resource for the KE can be detailed into following ones: the proportion of PhDs, scientists, and engineers in the overall workforce, proportion of the population 25 years and older with at least a BA degree, and proportion of the population 25 years and older with a degree higher than a BA.

In the next subsection, the authors collect the primary data and process them based on abovementioned indicators system due to inaccessibility of data.

Collection of Primary Data

For comparison, the authors use databases of World Bank, the WTO (World Trade Organization), and the WIPO (World Intellectual Property Organization). Data for study is collected regarding the resource and result based in Table 1. To ensure the comparability of study between two countries, data is collected with not absolute but relative values. Also, while the study period for recent comparison between two countries is limited to 8 years, that is, period of 2010–2017, that for correlation and regression analysis includes 20 years, that is, period of 2000–2019. The reasons of selecting the data for period of 2000–2019 are concerned to facts that, in general, knowledge economy is relatively new concept and data relating to some indicators abovementioned is missing.

Under the above preconditions regarding data, the authors collect primary data based on following indicators (see Table 2).

As shown in Table 2, all of indicators are calculated with relative values for comparability. The authors collected data for resident with regard to knowledge resources, because data for nonresident does not reflect domestic realities of a given country. Also, the authors selected the export data regarding results. That is reason why data regarding the output or proportion of high-tech industry of a given country is not given. Thus, the authors replaced the output of high-tech industry into high-tech exports. Proportion of high-technology exports is calculated dividing the exports of high-tech manufactures by GDP. Thus, while high-technology exports (% of GDP) mean

System of Statistical Indicators	Indicators reflecting the resources for KE	Knowledge resource	Indicators reflecting the results of KE
		Patent, Trademark, Scientific and technological article, Industrial design etc	Export of cutting-edge industry
		Researcher, Science graduate	Equipment of traditional industry with hi-tech
		R&D expenditure, Expenditure for education	
		ICT infrastructure	

Source: Own elaboration

Table 1 System of statistical indicators for comparison of KBES between China and the US

System of Statistical Indicators	Indicators reflecting the resources for KE	Knowledge resource	Indicators reflecting the results of KE
		Patent, Trademark, Scientific and technological article, Industrial design etc	Export of cutting-edge industry
		Researcher, Science graduate	Equipment of traditional industry with hi-tech
		R&D expenditure, Expenditure for education	
		ICT infrastructure	
Table 2 Statistical indicators for collection of primary data

Knowledge resource	Patent applications (resident, per million people), scientific and technical journal articles (per million people), industrial design applications (resident, per million people), trademark applications (resident, per million people)
Human resource	Researchers in R&D (per million people), school enrollment (tertiary, % of gross population)
Resources	Research and development expenditure (% of GDP), education expenditure (% of GNI)
Financial resource	Individuals using the Internet (% of population), secure Internet servers (per million people), fixed broadband subscriptions (per 100 people), fixed telephone subscriptions (per 100 people), mobile cellular subscriptions (per 100 people)
Technical resource	
GDP per capita	
Results	High-technology exports (% of GDP)
	Receipts for the use of intellectual property (% of GDP)

Source: own elaboration
the tangible intellectual products, receipts for the use of intellectual property (% of GDP) – intangible ones. Primary data collected based on abovementioned procedures is the basis for comparison of KBES between China and the USA.

Methods

For comparison, first of all, there are needs to convert primary data into standardized one to compare the KBES between China and the USA. Different methods can be applied in standardizing the primary data, which include method using the mean and standard deviation, sigmoid transformation, (0, 1) transformation method, TOPSIS (technique for order preference by similarity to ideal solution) method, CV (coefficient of variance) method, MCDM (multi criteria decision-making) method, and the like. These methods are of significance in standardizing, comparing, and evaluating the primary data according to countries. However, there are certain preconditions in applying these methods; application of these methods requires many objects for study as possible. Thus, it is seen that it is inappropriate to apply these methods in this study for comparing two countries. If given that year- and indicator-specific data of two countries are given, the authors apply the method of calculating the standardized values after calculating the standard deviation and degree of variance based on primary data according to years, but it is difficult to ensure the being scientifically accurate depending on difference of period for study, that is, years included in study. On the other hand, there can be the method of standardizing the primary data using the abovementioned procedures based on year-specific data of two countries, but it seems that this method ignores the realities of a given country because influences of factors for China differ from the USA.

In this context, the authors calculate comparable standardized values by converting the primary data according to China and the USA on the basis of year- and indicator-specific world averages. These are calculated by following formulas:

\[
S_i = \frac{X_i}{W_i}, \quad S_{ij} = \frac{X_{ij}}{W_{ij}}
\]

(1)

where

- \(S_i\) – standardized value of \(i^{th}\) indicator
- \(W_i\) – world average of \(i^{th}\) indicator
- \(X_i\) – primary value of \(i^{th}\) indicator
- \(S_{ij}\) – standardized value of \(i^{th}\) indicator for \(j^{th}\) year
- \(W_{ij}\) – world average of \(i^{th}\) indicator for \(j^{th}\) year
- \(X_{ij}\) – primary value of \(i^{th}\) indicator for \(j^{th}\) year

\((i = 1, 2, \ldots, n), (j = 1, 2, \ldots, m)\)

Thus, standardized value shows at what degree primary value of each country differs from the world average. If its value is below one, it shows that level of a given indicator in a given country is below the world average level; if its value is above one, it shows that the level of a given indicator in a given country is above the
world average level. This makes it possible to understand the development level and difference of individual aspect of KBES for a given country and for a given year.

Summing up the standardized values of each indicator, it shows the total value of each indicator, which in turn, reflects the differences according to two countries. The process of summing up the standardized values can be shown by following formulas:

\[P_j = \sum_{i=0}^{n} S_{ij} = \sum_{i=0}^{n} \frac{X_{ij}}{W_{ij}} \]

(2)

where

\(P_j \) – totaled value of all indicators for \(j^{th} \) year

This formula makes it possible to compare the KBES according to results, resources, and in the whole. Also, one can understand the differences between China and the USA according to individual aspects of KBES based on values calculated by this formula.

After calculating the standardized values, year- and indicator-specific differences of country A from country B can be calculated by the following formulas:

\[d^A_B = \frac{S^A_{ij}}{S^B_{ij}} \]

(3)

\[D^A_B = \frac{\sum_{i=0}^{n} S^A_{ij}}{\sum_{i=0}^{n} S^B_{ij}} \]

(4)

where

\(d^A_B \) – difference of individual indicator for country A from country B

\(D^A_B \) – differences in sums of indicators for country A from country B in individual year

Next, there are needs to reveal the interrelations between resource and result, or between resources. Of course, the hypothesis which resources for KE affect the economic growth was proven by theory and practice in the past. However, degrees of interrelation between resources and results, or between resources are different according to countries, and only when the interrelations between indicators are revealed, can one select appropriate model. In general, degrees of interrelation are explained using the correlation matrix. For correlation analysis, GDP per capita (output indicator) is selected as the dependent variable (output indicator), and the independent variables (input indicator) include all of the resource indicators except for education expenditure (% of GNI) and secure Internet servers (per million people). This is because for two countries, education expenditure is almost same for all years and data for secure
Internet servers is missing for period of 2000–2009 with regard to primary data. Thus, it seems that these variables are excluded in correlation and then regression analysis. As a result of constructing the correlation matrix, it is revealed that correlations differ and all of resource indicators except for fixed telephone subscriptions (per 100 people) have positive correlations with result (GDP per capita) for China and the USA. However, it is seen that degrees of correlation between variables differ according to countries. Of course, these environments are conditional, because correlations differ depending on results indicators. However, this interpretation makes it possible to understand that there exist specific features in socioeconomic development according to two countries. Also, there exist the correlations between resources indicators. In other words, this shows that factors affecting the results are closely interrelated. This revelation of correlations makes it possible to select appropriate model for comparison. Correlation is significant at the 0.01 level and 0.05 level (2-tailed).

Next, linear multiple regression models are constructed and analyzed for two countries under study in order to illustrate the influences of resource indicators on GDP per capita, result indicator. This aims to analyze the impacts of KE indicators on economic growth and to discuss the measures for strengthening KBES. The authors conduct the linear multiple regression analysis using the statistical software package SPSS16. Conducting the linear multiple regression analysis is based on the assumption that GDP per capita and diverse resources are in a linear relation and these elements affect the GDP per capita diversely. Also, the degree of changes in GDP per capita according to changes of diverse resources can easily be estimated by drawing regression models. Premises on data are same as correlation analysis. Construction and analysis of regression models are conducted according to each country, considering country-specific features. The results of construction and analysis are presented in the Appendix. As a result of regression analysis, significances and validity of regression models were tested, and thus, based on them, influences of resources indicators on GDP per capita according to countries can be analyzed, and country-specific GDP per capita is estimated.

In the next section, the results obtained by the abovementioned methods are discussed.

Results and Discussions

First of all, the authors conducted the comparison and assessment between China and the USA. This aims to understand the development level of KBES for both countries. For this, the authors collected primary data from databases of the WTO, World Bank, and the WIPO based on theoretical framework discussed in previous subsection. Of course, the authors processed primary data obtained from databases as required in Table 2. For example, the authors calculated the number of knowledge resources per million people by dividing the absolute number of patents, scientific and technological articles, industrial designs, and trademarks into researchers per million people, respectively. Also, the authors calculated the high-technology exports (% of GDP) by dividing the exports of high-technology manufactures into GDP and receipts for the use of intellectual property (% of GDP) – by dividing the receipts for the use of intellectual property into GDP. Other data are from databases; thus, the authors
used themselves as primary ones for calculation. After collecting the primary data, the authors calculated the standardized values and their sums according to indicators for China and the USA, respectively, using Eqs. (1), (2), and (3).

For two countries, calculation results according to indicators are presented in Tables 3 and 4.

For intuitive comparison, the authors put calculation results into figures according to individual aspects of KBES for China and the USA.

First, for the resultant aspects of KBES, differences between China and the USA compared to world averages are described as follows (Fig. 1).

As seen from Fig. 1, one can see that for China, while the levels of GDP per capita and receipts for the use of intellectual property are below world averages, high-technology exports – above world averages for the period under study. For the USA, while the level of high-technology exports are below world averages, the level of GDP per capita and receipts for the use of intellectual property are above world averages. This shows that while China mostly focuses on tangible products (high-technology exports), the USA – intangibles (receipts for use of intellectual property) for the given period.

Second, for the knowledge resources of KBES, differences between China and the USA compared to world averages are described as follows (Fig. 2).

As seen in Fig. 2, one can see that while for China, the level of scientific and technical journals per million people is below world averages for the period of 2010–2015 and then is above world averages for the period of 2016–2017; for the USA, the level of industrial design applications per million people is below world averages for the whole period under study. In addition, while China gets ahead of the USA for the industrial design applications per million people, the USA – ahead of China for patent applications per million people and scientific and technical journals per million people.

Table 3 Standardized values according to indicators for China

Year	Indicator	Results	Knowledge resource	Human resource	Financial resource	Technical resource										
	Y1	Y2	Y3	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13
2010	0.48	2.31	0.04	1.31	0.83	2.56	1.60	0.69	0.82	0.85	0.42	1.19	0.01	1.18	1.22	0.82
2011	0.54	2.35	0.03	1.68	0.83	2.67	1.85	0.75	0.82	0.89	0.42	1.23	0.01	1.27	1.21	0.86
2012	0.60	2.34	0.03	1.94	0.82	2.80	1.98	0.79	0.88	0.94	0.43	1.24	0.01	1.35	1.21	0.91
2013	0.65	2.26	0.02	2.28	0.87	3.48	1.91	0.83	0.97	1.00	0.44	1.25	0.01	1.39	1.21	0.96
2014	0.70	2.08	0.02	2.48	0.91	3.91	2.16	0.85	1.19	0.98	0.44	1.20	0.02	1.40	1.19	0.96
2015	0.79	1.93	0.02	2.77	0.95	3.49	2.38	0.82	1.25	0.99	0.45	1.21	0.03	1.71	1.16	0.94
2016	0.79	1.79	0.02	3.03	0.99	3.06	2.57	0.85	1.28	1.00	0.45	1.19	0.04	1.84	1.08	0.96
2017	0.82	1.61	0.09	3.10	1.03	3.58	3.03	0.87	1.30	1.00	0.45	1.11	0.06	2.02	1.04	1.01

Source: own calculation

Y1 GDP per capita, Y2 high-technology exports (% of manufactured exports), Y3 charges for the use of intellectual property (% of GDP) X1 patent applications (resident, per million people), X2 scientific and technical journal articles (per million people), X3 industrial design applications (resident, per million people), X4 trademark applications (resident, per million people), X5 researchers in R&D (per million people), X6 school enrollment (tertiary, % gross), X7 research and development expenditure (% of GDP), X8 education expenditure (% of GNI), X9 Internet users (% of population), X10 Internet servers (per million people), X11 fixed broadband subscriptions (per 100 people), X12 fixed telephone subscriptions (per 100 people), X13 mobile cellular subscriptions (per 100 people)
However, for the level of trademark applications per million people, the USA gets ahead of China for period of 2010–2011 and falls behind China for period of 2012–2017.

Third, for the human resources of KBES, the differences between China and the USA compared to world averages are described as follows (Fig. 3)*.

As seen in Fig. 3, one can see that for two countries, all aspects of human resource for China fall behind those for the USA. Concretely, while the level of researchers in R&D per million people for China is behind world averages, that for the USA is above world averages for the given period. And while school enrollment (tertiary) for China is behind world averages for period of 2010–2013 and since 2014, it gets ahead of world averages, that for the USA – above world averages for the whole period.

Next, for the financial resources of KBES, differences between China and the USA compared to world averages are described as follows (Fig. 4).

As seen in Fig. 4, one can explain similarly with human resources. In other words, all aspects of financial resources for China fall behind those for the USA. However, concrete trends differ among two countries. For R&D expenditure, while China falls behind world averages for the given period except for 2017, the USA – vice versa.

Next, for the technological resources of KBES, differences between China and the USA compared to world averages are described as follows (Fig. 5).

Table 4 Standardized values according to indicators for the USA

Year	Indicator	Knowledge resource	Human resource	Financial resource	Technical resource											
	Y1	Y2	Y3	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13
2010	5.07	0.33	1.77	4.66	4.71	0.54	2.10	3.03	3.13	1.35	1.14	2.49	13.25	3.49	2.74	1.21
2011	4.76	0.36	1.88	4.31	4.66	0.49	2.00	3.14	2.99	1.38	1.19	2.24	12.50	3.16	2.69	1.14
2012	4.87	0.36	1.82	4.21	4.60	0.45	1.87	3.11	2.85	1.32	1.09	2.18	11.82	3.15	2.67	1.10
2013	4.93	0.34	1.76	4.02	4.48	0.47	1.61	3.19	2.65	1.36	1.08	1.95	11.61	3.11	2.66	1.06
2014	5.03	0.34	1.59	3.80	4.36	0.53	1.57	3.28	2.48	1.31	1.08	1.83	11.39	3.00	2.68	1.16
2015	5.55	0.32	1.39	3.54	4.29	0.62	1.47	3.03	2.41	1.30	1.10	1.79	11.09	2.77	2.74	1.22
2016	5.63	0.32	1.38	3.19	4.14	0.58	1.22	3.01	2.38	1.30	1.11	1.91	9.03	2.64	2.78	1.22
2017	5.55	0.24	1.35	3.14	4.06	0.57	1.00	3.13	2.33	1.31	1.11	1.78	8.62	2.42	2.74	1.20

Same as Table 3
Source: own calculation

Fig. 1 Differences between China and the USA according to resultant aspects of KBES. Source: own drawing
As seen in Fig. 5, one can see that all aspects of technological resources for China are behind those for the USA. However, concrete trends differ among two countries. For the levels of Internet users, fixed broadband subscriptions, and fixed telephone subscriptions, China and the USA are above the levels of world average for the whole period, but while China falls behind world averages for the Internet servers (for the whole period) and for the mobile cellular subscriptions (for the given period except for 2017), the USA – ahead of world averages for all aspects (for the whole period). In particular, the USA holds the dominant position compared to China for Internet servers.

Finally, for the whole of KBES, differences between China and the USA compared to world averages are described as follows (Fig. 6).
As seen in Fig. 6, for total volume of KBES, the USA is higher than China in 2010 as well as 2017. However, the differences for both years are different.

For detailed comparison and discussions, there are needs to calculate the change rates and differences according to countries and years. Tabulating the differences between China and the USA according to all aspects of KBES in 2010 and 2017, respectively, is as follows (see Table 5).

From Table 5, the following points can be discussed in comparison of China with the USA.

- **Resultant Aspects**

 While China gets ahead of the USA for high-technology exports, the USA – ahead of China for GDP per capita and receipts for the use of intellectual property. However, there are differences in change rates regarding resultant aspects.
China decreased the difference of GDP per capita from the USA by about 3.8 times (10.56–6.76) and the difference of receipts for the use of intellectual property from the USA by about 29.25 times (44.25–15) as of 2017. On the other hand, the USA decreased the difference of high-technology exports from China by about 0.3 times as of 2017. Accordingly, for sum of resultant indicators, the USA gets ahead of China by about 2.53 times (7.17/2.82) in 2010 and about 2.83 (7.14/2.52) in 2017. In this context, although difference of GDP per capita between two countries has largely decreased, there still exist significant differences of receipts for the use of intellectual property. Of course, it is surprising that China has decreased its difference from the USA by about 29.25 times for the given period. On the other hand, the difference of high-technology exports for the USA is not large compared to the difference of receipts for the use of intellectual property. This shows that while the creation and application of intangible intellectual products have a significant contribution in economic growth for the USA, the production and application of tangible intellectual products – for China.

Knowledge Resource

Considering the differences for all knowledge resources, there are differences in change rates. On the one hand, China decreased the differences of patent applications per million people and scientific and technical journal articles per million people from the USA by about 2.55 times (3.56–1.01) and about 1.1 times (5.67–4.57) as of 2017, respectively. On the other hand, while China increased the difference of industrial design applications per million people from the USA by about 1.54 times (6.28–4.74) as of 2017, the USA – the difference of trademark applications per million people from China by about 0.13 times (1.44–1.31) as of 2017. Accordingly, for sum of knowledge resources, the USA gets ahead of China by about 1.91 times (12.03/6.3) in 2010 and about 0.82 (8.78/10.74) in 2017. In other words, China decreased the difference regarding the knowledge resources from the USA by about 1.9 times (1.91–0.82) as of 2017. This shows that China has given a great attention to creation of intellectual properties. However, in this regard, there are some issues to discuss. It is concerned to facts that although China creates many intellectual properties, the
Table 5 Differences between China and the USA according to all aspects of KBES

Aspects	China	USA	Year-specific comparison between China and the USA	Differences (2010–2017), times					
	2010	2017	Change rate (compared to 2010)	2010	2017	Change rate (compared to 2010)	2010 (times)	2017 (times)	
Results									
GDP per capita	0.48	0.82	1.7	5.07	5.55	1.09	10.56	6.76	3.8
High-technology exports (% of manufactured exports)	2.31	1.61	0.7	0.33	0.24	0.73	7	6.7	0.3
Charges for the use of intellectual property (% of GDP)	0.04	0.09	2.25	1.77	1.35	0.76	44.25	15	29.25
Sum	2.83	2.52	0.89	7.17	7.14	0.99	2.53	2.83	-0.3
Knowledge resource									
Patent applications (resident, per million people)	1.31	3.10	2.37	4.66	3.14	0.67	3.56	1.01	-2.55
Scientific and technical journal articles (per million people)	0.83	1.03	1.24	4.71	4.06	0.86	5.67	4.57	-1.1
Industrial design applications (resident, per million people)	2.56	3.58	1.4	0.54	0.57	1.05	4.74	6.28	1.54
Trademark applications (resident, per million people)	1.60	0.69	1.89	2.10	1.00	0.48	1.31	1.44	0.13
Sum	6.30	10.74	1.7	12.03	8.78	0.72	1.91	0.82	-1.9
Human resources									
Researchers in R&D (per million people)	0.69	0.87	1.26	3.03	3.13	1.03	4.39	3.6	0.79
School enrollment (tertiary, % gross)	0.82	1.30	1.58	3.13	2.33	0.74	3.82	1.79	2.03
Sum	1.51	2.17	1.44	6.16	5.46	0.87	4.08	2.52	1.56
Table 5 (continued)

Aspects	China	USA	Year-specific comparison between China and the USA	Differences (2010–2017), times					
	2010	2017	Change rate (compared to 2010)	2010	2017	Change rate (compared to 2010)	2010 (times)	2017 (times)	
Financial resources									
Research and development expenditure (% of GDP)	0.85	1.00	1.17	1.35	1.31	0.97	1.59	1.31	0.28
Education expenditure (% of GNI)	0.42	0.45	1.07	1.14	1.11	0.97	2.71	2.47	0.24
Sum	1.27	1.45	1.14	2.49	2.42	0.97	1.96	1.67	0.29
Technological resources									
Internet users (% of population)	1.19	1.11	0.93	2.49	1.78	0.71	2.09	1.6	0.49
Internet servers (per million people)	0.01	0.06	6	13.25	8.62	0.65	1325	143.67	1181.33
Fixed broadband subscriptions (per 100 people)	1.18	2.02	1.71	3.49	2.42	0.69	2.96	1.2	1.76
Fixed telephone subscriptions (per 100 people)	1.22	1.04	0.85	2.74	2.74	1	2.25	2.63	-0.38
Mobile cellular subscriptions (per 100 people)	0.82	1.01	1.23	1.21	1.20	0.99	1.48	1.18	0.3
Sum	4.42	5.24	1.19	23.18	16.76	0.72	5.24	3.2	2.04
Total	16.32	22.11	1.35	51.03	40.56	0.79	3.13	1.83	-1.3

Source: own calculation from Tables 3 and 4
level of receipts for the use of intellectual properties is greatly lower than that of the USA (see Fig. 1). By our views, it is concerned to efficiency of research and development. For China and the USA, the authors calculated the efficiency of R&D expenditure based on primary data as follows (see Table 6).

As seen in Table 6, efficiency of R&D expenditures for the USA is greatly higher than that for China (by about 12.17 times in 2017). This shows that the USA mostly focuses on research related to core technology with high value-added. On the other hand, this shows that China must give an attention to qualitative growth of knowledge resources rather than quantitative growth in order to ensure sustainable development of own economy.

- **Human Resource**
 China falls behind the USA for all human resources. However, one can see that differences in change rates have appeared as of 2017. This shows that China has tried to decrease the differences of all aspects from the USA and has given particular attention to tertiary education. Accordingly, China has decreased the difference in sum of all aspects by about 2.52 times (5.46/2.17) as of 2017 compared to about 4.08 times (6.16/1.51) in 2010.

- **Financial Resource**
 China falls behind the USA for all financial resources. However, China has tried to decrease these differences from the USA. Accordingly, China has decreased the difference in sum of all aspects by about 1.67 times (2.43/1.45) as of 2017 compared to about 1.96 times (2.49/1.27) in 2010. In other words, China has paid more attention to R&D expenditure. This is proved by facts that while by 2017, R&D expenditure has reached the level of world average and decreased the difference of R&D expenditure (0.28 times) by more than that of education expenditure (0.25 times), the level of education expenditure has not reached the half level of world average for the whole period.

- **Technological Resource**
 China falls behind the USA for all technological resources. However, calculation results of change rates show that China has tried to decrease the differences in all technological resources (except for fixed telephone subscriptions) from the USA. The results of decreasing the differences are as follows: 0.49 (2.09–1.6) for Internet users,

Table 6	Efficiency of R&D expenditure for China and the USA (US$)					
	Efficiency of R&D expenditure (per 10,000 US$)	Difference from world average (times)				
China	USA	World	China	USA	Compared to USA	
2010	0.80	23.16	17.76	0.034	1.304	37.930
2011	0.55	24.91	18.27	0.022	1.364	61.436
2012	0.64	24.83	17.96	0.026	1.383	53.651
2013	0.46	25.03	19.32	0.019	1.295	69.901
2014	0.32	24.42	20.10	0.013	1.215	93.249
2015	0.47	22.44	21.02	0.021	1.068	50.492
2016	0.49	21.86	20.52	0.022	1.065	47.721
2017	1.82	21.48	20.85	0.085	1.031	12.172

Source: own calculation
1181.33 (1325–143.67) for Internet servers, 1.76 (2.96–1.2) for fixed broadband subscriptions, and 0.3 (1.48–1.18) for mobile cellular subscriptions, respectively. Among these, the greatest effort is devoted to decrease of difference in Internet servers. In other words, this shows that China has paid the greatest attention to construction of Internet which processes a great deal of data used in creating knowledge resources for period under study. As a result, China has decreased the difference in sum of all technological aspects by about 3.2 times as of 2017 compared to about 5.24 times in 2010.

• Total

While China’s difference from the USA is 3.13 (51.03/16.32) in 2010, that – 1.83 (40.56/22.11) in 2017. China has decreased the difference in total volume of KBES by about 1.3 times (3.13–1.83).

Next, the authors conducted the regression analysis to reveal the impacts of resources on result with regard to KBES. Another purpose of this study is in discussing the measures for strengthening KBES for China. In this context, there are needs to reveal the impacts of resource factors on economic growth within KBES. This may be possible on the basis of regression analysis. Also, regression analysis makes it possible to judge the goodness and significance of indicators in comparison and analysis between China and the USA. For regression analysis, the authors collected and calculated data for period of 2000–2019 based on premise regarding data explained in Subsection 3.3. In addition, the authors used the nonstandardized and relative values in regression analysis. The results of regression analysis are presented in Appendix. Regression equations according to countries can be described as follows (see Tables 9 and 10).

For China:

\[
Y_{China} = 1300.922 - 2.11X_1 - 4.175X_2 - 3.535X_3 \\
- 0.617X_4 + 1.5X_5 + 22.366X_6 + 286.272X_7 \\
- 156.978X_9 + 52.17X_{11} - 209.321X_{12} + 178.641X_{13}
\]

(5)

For the USA:

\[
Y_{US} = 104906.078 - 18.106X_1 - 10.849X_2 + 14.292X_3 \\
+ 15.579X_4 + 0.222X_5 - 146.298X_6 - 9735.679X_7 \\
+ 6.179X_9 + 504.549X_{11} - 396.767X_{12} + 7.576X_{13}
\]

(6)

where

\(Y_{China}\), GDP per capita for China;
\(Y_{US}\), GDP per capita for the USA;
\(X_1\), patent applications (residents, per million people); \(X_2\), scientific and technical journal articles (per million people); \(X_3\), industrial design applications (resident, per million people); \(X_4\), trademark applications (resident, per million people); \(X_5\), researchers in R&D (per million people); \(X_6\), school enrollment (tertiary, % gross); \(X_7\), research and development expenditure (% of GDP); \(X_9\), Internet users (% of population); \(X_{11}\), fixed broadband subscriptions (per 100 people); \(X_{12}\), fixed telephone subscriptions (per 100 people); and \(X_{13}\), mobile cellular subscriptions (per 100 people).
First, there is a need to test whether or not the above regression equations are statistically meaningful. In this part, hypotheses are made as follows:

Null hypothesis: \(H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = \beta_8 = \beta_9 = \beta_{11} = \beta_{12} = \beta_{13} = 0 \) (not meaningful)

Alternative hypothesis: \(H_1: \) at least \(\beta_j \neq 0 \) (meaningful) where \(\beta \) – coefficient of regression.

To test abovementioned hypotheses, the authors conducted the analysis of variance (ANOVA) (see Table 8). As a result, the following is obtained.

Significance probability \((p \text{- value}) = 0.000 < \alpha = 0.05 \)

From this result, it is concluded that these regression equations are statistically meaningful.

Second, there is a need to reveal the validity of regression analysis. For this, the authors calculated the contribution degree of independent variables, that is, coefficients of determination \((R^2) \) (see Table 7).

From Table 7, one can see that for China and the USA, coefficients of determination are 0.999 and 0.998, respectively. This shows that while for China, independent variables explain 99.9% of changes in GDP per capita and error interval of GDP per capita is in \(\pm 122.2166 \) (US$), for the USA – 99.8% and \(\pm 616.86569 \) (US$), respectively. Thus, it can be believed that regression equations are statistically significant and valid.

Third, there is a need to reveal the significance of regression coefficients to explain the contribution of resource indicators to GDP per capita. For this, one can refer to \(t \) statistic in Tables 9 and 10. In general, it says that the larger the absolute value of \(t \) statistic is, the higher the contribution of independent variable is. According to \(t \) statistic in abovementioned tables, it can say that while for China, scientific and technical journal articles, researchers in R&D, school enrollment, research and development expenditure, fixed broadband subscriptions, and mobile cellular subscriptions have relatively great contribution to GDP per capita, for the USA – industrial design applications, trademark applications, researchers in R&D, Internet users, fixed broadband subscriptions, and mobile cellular subscriptions.

Fourth, there is a need to consider the multicollinearity problem among independent variables. The most logical case in regression analysis is the absence of collinearity between independent variables. However, social phenomena are closely related, and it is common for collinearity to exist to a certain extent among independent variables. From this, it is inevitable that multicollinearity exists in a regression model that includes all independent variables. The existence of multicollinearity could increase the standard error of the estimate, confuse the effect of the predictors, increase the variance, and cause instability in the equation. This requires that multicollinearity be considered in regression analysis. Multicollinearity statistics are represented by indicators such as variance inflation factor (VIF) and tolerance, and these indicators are in reciprocal relationships. The smaller the value of VIF, the more effective the regression equation is, and the higher the accuracy of the prediction is considered. In general, the value of VIF is said to be acceptable for
multiple regression when in the range of 5–10. The multicollinearity statistics presented in Tables 9 and 10 show that regression Eqs. (5) and (6), including all variables, cannot guarantee the accuracy of prediction. In order to alleviate or eliminate the multicollinearity, it is common to write a regression equation by including only representative independent variables. From this, the authors prepared a regression model corresponding to various cases by combining various factors of knowledge resources, human resources, and financial resources and calculated multicollinearity statistics accordingly. The reason why did not include technical resources in the regression model creation is based on the fact that the technical resources mentioned in the study do not practically directly affect the GDP per capita and therefore have weak explanatory power for the dependent variable. Multicollinearity statistics corresponding to eight cases by a combination of each representative explanatory variable are presented in Tables 9 and 10. According to the collinearity statistics, valid cases in China are 1st (X1, X5, X7) and 7th (X4, X5, X7), and all cases in the USA are applicable. To choose the best case for the study, the authors selected the cases where the standard error of estimation, multicollinearity (VIF), and standard deviation of residual were relatively small in the regression equations of these valid cases (see tables in the Appendix). According to this, the most suitable case in China is 1st (X1, X5, X7), and in the USA, 3th (X2, X5, X7), 6th (X3, X6, X7), and 8th (X4, X6, X7). Therefore, the regression equations accordingly are as follows.

For China:

$$Y_{China} = -2872.854 + 4.8911X_1 + 0.098X_5 + 3611.303X_7$$

(7)

For the USA:

$$Y_{US} = 1 + 16.358X_2 + 23.173X_5 + 6656.947X_7$$

(8)

$$Y_{US} = 38945.573 + 551.681X_3 + 111.554X_6 + 17809.132X_7$$

(9)

$$Y_{US} = -25617.408 + 38.144X_4 + 305.521X_5 + 3441.104X_7$$

(10)

where Y_{China}, GDP per capita for China; Y_{US}, GDP per capita for the USA; X_1, patent applications (residents, per million people); X_2, scientific and technical journal articles (per million people); X_3, industrial design applications (resident, per million people); X_4, trademark applications (resident, per million people); X_5, researchers in R&D (per million people); X_6, school enrollment (tertiary, % gross); and X_7, research and development expenditure (% of GDP).

According to the abovementioned regression equations, it is explained that while the number of patents, researchers, and R&D expenditure in China contributes mostly to the GDP per capita, all of the knowledge resources, researchers, school enrollment, and R&D expenses, that is, all of representative resources in the USA, contribute to the GDP per capita. In addition, checking the standardized residuals makes it possible to confirm the significance of regression analysis. From Table 11, one can see that absolute values of standardized residuals are below 2.5, and thus we can conclude that regression analysis is significant.
Conclusion

From the discussions of results, the following conclusions can be drawn. First, China falls behind the USA for all aspects of KBES except for some knowledge resources and high-technology exports. As of 2017, China is about 1.83 times lower than the USA for total value of KBES. This shows that China has paid more attention to high-technology manufactures, that is, tangible intellectual products rather than intangibles. It follows from that while the share of exports of high-technology manufactures is higher than that of the USA, receipts for use of intellectual properties – lower than that of the USA. Second, China has mostly focused on quantitative growth of knowledge resources rather than qualitative growth. According to our own calculations, efficiency of R&D expenditure (which is calculated as receipts for use of intellectual properties per R&D expenditure) is about 12.17 times lower than that of the USA in 2017 (see Table 6). Third, China has devoted many efforts to the decrease of differences in almost all aspects of KBES from the USA. It follows from that differences of China in most aspects of KBES from the USA in 2017 have significantly decreased compared to 2010 (see Table 5). Fourth, for both countries, degrees of contributions of resource indicators to GDP per capita are different. It follows from the regression analysis. According to regression Eqs. (7)–(10), while for China, the number of patents, researchers, and R&D expenditure contributes mostly to the GDP per capita, all of the knowledge resources, researchers, school enrollment, and R&D expenses, that is, all of representative resources in the USA, have relatively great contributions to the GDP per capita. From these conclusions, following recommendations for China can be suggested in order to ensure the sustainable development of Chinese economy based on KBES. First of all, it is necessary for China to enhance the efficiency of R&D, that is, to ensure qualitative improvement of R&D. This shows that China must focus on research related to core technology in the future. Next, it is necessary for China to create the institutional and social environments which make it possible to promote application of knowledge resources into practice more easily and rapidly. Next, it is necessary for China to devote own efforts more and more to overcoming the differences from the USA in aspects such as human resources, financial resources, and technological resources. Next, it is necessary for China to focus on effective use of knowledge resource. From the results of comparison and regression analysis, although China gets ahead of the USA with regard to some knowledge resource, its contributions to GDP per capita are relatively less than that of the USA (see Tables 5, 9, and 10).

Of course, this study has some limitations. First limitation is about accessibility of data. Among the detailed indicators for assessing KBES, some are available or accessible, but others – not. From this, it is necessary to use the substitutable indicators accessible to databases. For example, our study used the exports of high technology manufactures instead of the output of high-technology industry due to inaccessibility of data, and it is not seen that those replacement is correct. Second limitation is about period for study. Our study includes 8 years (2010–2017) for comparison and assessment, on the one hand, and 20 years (2010–2019) for correlation and regression analysis, on the other hand, due to missing data. As a result, we compared the values for 2010 with ones for 2017 and calculated the difference.
between two years for comparison and assessment among two countries. If data for this study is ensured or accessible for a longer period, the results of analysis may vary. In addition, we conducted the regression analysis focusing on multicollinearity problem. As a result, we included the representative independent variables to alleviate or eliminate the multicollinearity, and therefore, this study did not consider all the resources in regression analysis at the same time. Thus, it is seen that our study is valid, but it is conditional.

Nevertheless, this study can contribute to comparing and assessing the development level of region-specific or country-specific KBES and taking measures to strengthen it further. From above limitations, further research ought to be conducted in the following directions: (a) development of indicators available for assessment and accessible to databases, (b) inclusion of rightful period for study to ensure the objectivity of calculations and comparison, (c) selection of typical indicators applicable for all countries, and (d) consideration of all cases in statistical analysis.

Appendix Results of regression analysis

Table 7 Contribution of independent variables to dependent variable

Model	Independent variable	R^2	Adjusted R^2	Std. error of the estimate
China	All	.999	.999	122.21660
	X1, X5, X7	.984	.981	450.41113
	X1, X6, X7	.984	.981	445.36264
	X2, X5, X7	.960	.952	708.83994
	X2, X6, X7	.973	.968	581.08009
	X3, X5, X7	.958	.950	725.22676
	X3, X6, X7	.984	.981	442.87291
	X4, X5, X7	.981	.978	479.63222
	X4, X6, X7	.982	.978	478.80145
USA	All	.998	.995	616.86569
	X1, X5, X7	.938	.927	2311.24155
	X1, X6, X7	.881	.859	3212.81860
	X2, X5, X7	.916	.900	2698.18664
	X2, X6, X7	.740	.692	4744.59295
	X3, X5, X7	.934	.922	2386.06735
	X3, X6, X7	.922	.908	2591.67370
	X4, X5, X7	.968	.962	1659.45504
	X4, X6, X7	.984	.980	1194.95590

Source: compiled by authors

*a*Predictors: (Constant), X1, patent applications (residents, per million people); X2, scientific and technical journal articles (per million people); X3, industrial design applications (resident, per million people); X4, trademark applications (resident, per million people); X5, researchers in R&D (per million people); X6, school enrollment (tertiary, % gross); X7, research and development expenditure (% of GDP); X9, Internet users (% of population); X11, fixed broadband subscriptions (per 100 people); X12, fixed telephone subscriptions (per 100 people); X13, mobile cellular subscriptions (per 100 people)

*b*Dependent variable: GDP per capita
Table 8 Test of significance

Country	Independent variable	Model	Sum of squares	df	Mean square	F	Sig
China	All	Regression 1.984E8	11	1.804E7	1.208E3	.000a	
		Residual 119495.184	8	14936.898			
		Total 1.985E8	19				
	X1, X5, X7	Regression 1.953E8	3	6.510E7	320.876	.000a	
		Residual 3245922.928	16	202870.183			
		Total 1.985E8	19				
	X1, X6, X7	Regression 1.954E8	3	6.512E7	328.313	.000a	
		Residual 3173566.148	16	198347.884			
		Total 1.985E8	19				
	X2, X5, X7	Regression 1.905E8	3	6.350E7	126.376	.000a	
		Residual 8039264.919	16	502454.057			
		Total 1.985E8	19				
	X2, X6, X7	Regression 1.931E8	3	6.438E7	190.660	.000a	
		Residual 5402465.075	16	337654.067			
		Total 1.985E8	19				
	X3, X5, X7	Regression 1.901E8	3	6.337E7	120.492	.000a	
		Residual 8415261.706	16	525953.857			
		Total 1.985E8	19				
	X3, X6, X7	Regression 1.954E8	3	6.513E7	332.075	.000a	
		Residual 3138182.699	16	196136.419			
		Total 1.985E8	19				
	X4, X5, X7	Regression 1.949E8	3	6.495E7	282.339	.000a	
		Residual 3680753.033	16	230047.065			
		Total 1.985E8	19				
	X4, X6, X7	Regression 1.949E8	3	6.496E7	283.338	.000a	
		Residual 3668013.180	16	229250.824			
		Total 1.985E8	19				
Table 8 (continued)

Country	Independent variable	Model	Sum of squares	df	Mean square	F	Sig
USA	All	Regression	1.384E9	11	1.258E8	330.543	.000³
		Residual	3044186.285	8	380523.286		
		Total	1.387E9	19	4.337E8	81.192	.000³
X1, X5, X7	Regression	1.301E9	3				
		Residual	8.547E7	16	5341837.483		
		Total	1.387E9	19			
X1, X6, X7	Regression	1.221E9	3		4.072E8	39.444	.000³
		Residual	1.652E8	16	1.032E7		
		Total	1.387E9	19			
X2, X5, X7	Regression	1.270E9	3		4.234E8	58.155	.000³
		Residual	1.165E8	16	7280211.156		
		Total	1.387E9	19			
X2, X6, X7	Regression	1.026E9	3		3.421E8	15.199	.000³
		Residual	3.602E8	16	2.251E7		
		Total	1.387E9	19			
X3, X5, X7	Regression	1.296E9	3		4.318E8	75.850	.000³
		Residual	9.109E7	16	5693317.394		
		Total	1.387E9	19			
X3, X6, X7	Regression	1.279E9	3		4.264E8	63.480	.000³
		Residual	1.075E8	16	6716772.559		
		Total	1.387E9	19			
X4, X5, X7	Regression	1.343E9	3		4.475E8	162.510	.000³
		Residual	4.406E7	16	2753791.031		
		Total	1.387E9	19			
X4, X6, X7	Regression	1.364E9	3		4.546E8	318.358	.000³
		Residual	2.285E7	16	1427919.598		
		Total	1.387E9	19			

Source: compiled by authors

³Predictors: (Constant), X1, patent applications (residents, per million people); X2, scientific and technical journal articles (per million people); X3, industrial design applications (resident, per million people); X4, trademark applications (resident, per million people); X5, researchers in R&D (per million people); X6, school enrollment (tertiary, % gross); X7, research and development expenditure (% of GDP); X9, Internet users (% of population); X11, fixed broadband subscriptions (per 100 people); X12, fixed telephone subscriptions (per 100 people); X13, mobile cellular subscriptions (per 100 people)

bDependent variable: GDP per capita
Table 9 Regression coefficients for China

Model	Unstandardized coefficients	Standardized coefficients	t	Sig	Collinearity statistics		
	B	Std. error	Beta	Tolerance	VIF		
All (Constant)	1300.922	1507.871	.863	.413			
	−2.110	1.508	−.225	−1.399	.199	.003	343.979
X1	4.175	3.551	.140	1.176	.273	.005	189.721
X2	−3.535	2.300	−.188	−1.537	.163	.005	199.300
X3	−.617	.296	−.302	−2.088	.070	.004	277.753
X4	1.500	.814	.113	1.843	.103	.020	50.110
X5	22.366	13.773	.102	1.624	.143	.019	52.312
X6	286.272	1679.393	.039	1.70	.869	.001	682.677
X7	−156.978	67.323	−1.043	−2.332	.048	.000	2.659E3
X8	52.170	49.998	.164	1.043	.327	.003	330.341
X9	−209.321	60.174	−.329	−3.479	.008	.008	118.805
X10	178.641	49.139	2.029	3.635	.007	.000	4.139E3
1 (Constant)	−2872.854	741.205	−3.876	.001			
X1	4.890	.725	.522	6.741	.000	.171	5.859
X5	.098	.940	.007	.104	.918	.203	4.919
X7	3611.303	671.627	.487	5.377	.000	.124	8.039
2 (Constant)	−2790.591	693.929	−4.021	.001			
X1	5.666	1.428	.604	3.968	.001	.043	23.218
X6	−24.459	39.890	−1.11	−.613	.548	.030	33.044
X7	3875.920	667.676	.523	5.805	.000	.123	8.126
3 (Constant)	−1340.087	2014.701	−.665	.515			
X2	27.365	9.221	.921	2.968	.009	.026	38.036
X5	−1.795	1.790	−.135	−1.002	.331	.139	7.207
X7	1371.865	1912.910	.185	.717	.484	.038	26.331
4 (Constant)	−2580.927	1266.302	−2.038	.058			
X2	11.444	7.031	.385	1.628	.123	.030	32.906
X6	89.784	29.435	.409	3.050	.008	.095	10.569
X7	1534.766	1530.570	.207	1.003	.331	.040	25.084
5 (Constant)	−2535.867	1741.344	−1.456	.165			
X3	12.201	4.398	.650	2.775	.014	.048	20.686
X5	1.796	1.495	.135	1.201	.247	.208	4.802
X7	1580.500	1961.906	.213	.806	.432	.038	26.459
6 (Constant)	−338.114	1131.568	−.299	.769			
X3	10.723	2.672	.571	4.013	.001	.049	20.479
X6	108.665	19.589	.495	5.547	.000	.124	8.058
X7	−390.916	1191.258	−.053	−.328	.747	.038	26.159
7 (Constant)	−4836.798	567.152	−8.528	.000			
X4	.659	.107	.322	6.179	.000	.426	2.349
X5	−.481	1.024	−.036	−.470	.645	.194	5.153
X7	5654.587	566.327	.763	9.985	.000	.198	5.041
Table 9 (continued)

Model	Unstandardized coefficients	Standardized coefficients	t	Sig	Collinearity statistics			
	B	Std. error	Beta		Tolerance	VIF		
8	(Constant)	-4733.269	657.743	-7.196	.000			
	X4	.574	.169	.281	3.386	.004	.168	5.945
	X6	18.468	35.080	.084	.526	.606	.045	22.110
	X7	5059.157	835.291	.683	6.057	.000	.091	11.004

Source: compiled by authors

a Dependent variable: GDP per capita

b Predictors: (Constant), X1, patent applications (residents, per million people); X2, scientific and technical journal articles (per million people); X3, industrial design applications (resident, per million people); X4, trademark applications (resident, per million people); X5, researchers in R&D (per million people); X6, school enrollment (tertiary, % gross); X7, research and development expenditure (% of GDP); X9, Internet users (% of population); X11, fixed broadband subscriptions (per 100 people); X12, fixed telephone subscriptions (per 100 people); X13, mobile cellular subscriptions (per 100 people)
Model	Unstandardized coefficients	Standardized coefficients	t	Sig	Collinearity statistics		
	B	Std. error	Beta		Tolerance	VIF	
All (Constant)	104906.078	34635.834	3.029	.016			
	X1	−18.106	9.698	−.232	−1.867	.099	56.152
	X2	−10.849	11.711	−.122	−.926	.381	62.963
	X3	14.292	76.577	.019	.187	.857	37.315
	X4	15.579	4.334	.323	3.595	.007	29.374
	X5	.222	2.187	.007	.102	.921	18.655
	X6	−146.298	79.291	−.124	−1.845	.102	16.361
	X7	−9735.679	5009.657	−.122	−1.943	.088	14.342
	X9	6.179	63.665	.009	.097	.925	29.053
	X11	504.549	348.091	.621	1.449	.185	668.060
	X12	−396.767	154.449	−.542	−2.569	.033	162.156
	X13	7.576	74.854	.026	.101	.922	234.984
1 (Constant)	−56565.174	15091.657	−3.748	.002			
	X1	31.206	9.610	.399	3.247	.005	3.927
	X5	16.770	4.315	.549	3.886	.001	5.176
	X7	5507.303	7652.032	.069	.720	.482	2.384
2 (Constant)	−48497.816	21788.537	−2.226	.041			
	X1	61.349	12.549	.785	4.889	.000	3.466
	X6	−53.093	170.748	−.045	−.311	.760	2.797
	X7	20301.655	9275.858	.254	2.189	.044	1.813
3 (Constant)	−81666.253	16585.018	−4.924	.000			
	X2	16.358	8.772	.184	1.865	.081	1.847
	X5	23.173	4.004	.758	5.787	.000	3.270
	X7	6656.947	8929.959	.083	.745	.467	2.382
4 (Constant)	−114107.156	28417.700	−4.015	.001			
	X2	41.026	27.072	.460	1.515	.149	5.688
	X6	28.570	374.471	.024	.076	.940	6.168
	X7	40502.022	12286.141	.507	3.297	.005	1.458
5 (Constant)	−47430.305	17174.258	−2.762	.014			
	X3	376.718	126.231	.498	2.984	.009	6.777
	X5	11.807	5.939	.386	1.988	.064	9.200
	X7	10636.441	8026.248	.133	1.325	.204	2.461
6 (Constant)	−38945.573	17846.698	−2.182	.044			
	X3	551.681	81.949	.729	6.732	.000	2.421
	X6	111.554	116.843	.094	.955	.354	2.013
	X7	17809.132	7500.403	.223	2.374	.030	1.821
7 (Constant)	−34622.888	12122.784	−2.856	.011			
	X4	28.663	4.811	.594	5.958	.000	5.002
	X5	12.067	3.279	.395	3.680	.002	5.799
	X7	2216.820	5534.320	.028	.401	.694	2.419
Table 10 (continued)

Modelb	Unstandardized coefficients	Standardized coefficients	t	Sig	Collinearity statistics		
	B	Std. error	Beta	Tolerance	VIF		
8	(Constant) −25617.408	8392.001	−3.053	.008			
	X4 38.144	2.311	.790	16.506	.000	.449	2.226
	X6 305.521	47.734	.258	6.401	.000	.633	1.580
	X7 3441.104	3817.954	.043	.901	.381	.450	2.220

Source: compiled by authors

Dependent variable: GDP per capita

Predictors: (Constant), X1, patent applications (residents, per million people); X2, scientific and technical journal articles (per million people); X3, industrial design applications (resident, per million people); X4, trademark applications (resident, per million people); X5, researchers in R&D (per million people); X6, school enrollment (tertiary, % gross); X7, research and development expenditure (% of GDP); X9, Internet users (% of population); X11, fixed broadband subscriptions (per 100 people); X12, fixed telephone subscriptions (per 100 people); X13, mobile cellular subscriptions (per 100 people)
Table 11 Residuals statistics\(^a\)

Case (set of independent variables)	Indicator	China	USA						
	Minimum	Maximum	Mean	Std. Deviation	Minimum	Maximum	Mean	Std. Deviation	
All	Predicted value	864.3561	1.0199E4	4.8082E3	3231.54516	3.6456E4	6.4793E4	4.9396E4	8533.43797
	Residual	-1.61843E2	1.78343E2	.00000	79.30460	-1.03818E3	6.47433E2	.00000	400.27532
	Std. predicted value	-1.220	1.668	.000	1.000	-1.516	1.804	.000	1.000
	Std. residual	-1.324	1.459	.000	.649	-1.683	1.050	.000	.649
X1, X5, X7	Predicted value	492.2199	9.8423E3	4.8082E3	3205.98340	3.4779E4	6.1172E4	4.9396E4	8275.34860
	Residual	-9.26152E2	8.40569E2	.00000	413.32560	-3.67882E3	5.16353E3	.00000	2120.94070
	Std. predicted value	-1.346	1.570	.000	1.000	-1.766	1.423	.000	1.000
	Std. residual	-2.056	1.866	.000	.918	-1.592	2.234	.000	.918
X1, X6, X7	Predicted value	587.0557	9.8963E3	4.8082E3	3206.57817	3.7126E4	5.9530E4	4.9396E4	8017.94251
	Residual	-9.46141E2	9.49500E2	.00000	408.69279	-4.56075E3	7.71601E3	.00000	2948.28454
	Std. predicted value	-1.316	1.587	.000	1.000	-1.530	1.264	.000	1.000
	Std. residual	-2.124	2.132	.000	.918	-1.420	2.402	.000	.918
X2, X5, X7	Predicted value	64.5121	9.5553E3	4.8082E3	3166.39450	3.4533E4	6.1103E4	4.9396E4	8176.12865
	Residual	-1.47223E3	8.94858E2	.00000	650.47614	-6.01931E3	4.69474E3	.00000	2476.02587
	Std. predicted value	-1.498	1.499	.000	1.000	-1.818	1.432	.000	1.000
	Std. residual	-2.077	1.262	.000	.918	-2.231	1.740	.000	.918
X2, X6, X7	Predicted value	-52.5405	9.8399E3	4.8082E3	3188.23354	3.73494E4	5.7168E4	4.9396E4	7350.03508
	Residual	-8.96000E2	1.01191E3	.00000	533.23566	-8.51367E3	9.18249E3	.00000	4353.93710
	Std. predicted value	-1.525	1.578	.000	1.000	-1.639	1.057	.000	1.000
	Std. residual	-1.542	1.741	.000	.918	-1.794	1.935	.000	.918
X3, X5, X7	Predicted value	196.9764	9.1665E3	4.8082E3	3163.26806	3.7224E4	6.2025E4	4.9396E4	8257.44581
	Residual	-1.23899E3	1.39848E3	.00000	665.51372	-4.09569E3	4.13853E3	.00000	2189.60557
	Std. predicted value	-1.458	1.378	.000	1.000	-1.474	1.529	.000	1.000
	Std. residual	-1.708	1.928	.000	.918	-1.717	1.734	.000	.918
Table 11 (continued)

Case (set of independent variables)	Indicator	China	USA						
		Minimum	Maximum	Mean	Std. Deviation	Minimum	Maximum	Mean	Std. Deviation
X3, X6, X7	Predicted value	454.2133	9.916E3	4.8082E3	3206.86854	3.7422E4	6.1792E4	4.9396E4	8.205.09320
	Residual	-8.41239E2	9.12307E2	.000000	406.40806	-3.84045E3	5.39763E3	.000000	2378.28289
	Std. predicted value	-1.358	1.593	.000000	1.000	-1.459	1.511	.000000	1.000
	Std. residual	-1.900	2.060	.000000	.918	-1.482	2.083	.000000	.918
X4, X5, X7	Predicted value	204.8397	1.0185E4	4.8082E3	3202.41308	3.7857E4	6.5071E4	4.9396E4	8.405.99797
	Residual	-7.12630E2	7.54530E2	.000000	440.14071	-3.01391E3	2.78190E3	.000000	1522.82038
	Std. predicted value	-1.437	1.679	.000000	1.000	-1.373	1.865	.000000	1.000
	Std. residual	-1.486	1.573	.000000	.918	-1.186	1.676	.000000	.918
X4, X6, X7	Predicted value	143.0885	1.01764	4.8082E3	3202.51776	3.6695E4	6.4437E4	4.9396E4	8.472.14998
	Residual	-7.64830E2	8.16282E2	.000000	439.37834	-2.13651E3	1.46540E3	.000000	1096.56674
	Std. predicted value	-1.457	1.676	.000000	1.000	-1.499	1.775	.000000	1.000
	Std. residual	-1.597	1.705	.000000	.918	-1.788	1.226	.000000	.918

*aDependent variable: GDP per capita

*b$X1$ patent applications (residents, per million people), $X2$ scientific and technical journal articles (per million people), $X3$ industrial design applications (resident, per million people), $X4$ trademark applications (resident, per million people), $X5$ researchers in R&D (per million people), $X6$ school enrollment (tertiary, % gross), $X7$ research and development expenditure (% of GDP), $X9$ Internet users (% of population), $X11$ fixed broadband subscriptions (per 100 people), $X12$ fixed telephone subscriptions (per 100 people), $X13$ mobile cellular subscriptions (per 100 people)

Source: compiled by authors
Acknowledgements We would like to thank the Chief of Center for North and South Korea Studies, Professor and Doctor Cankui Piao at Yanbian University for insightful comments and materials related to Chinese economy.

Funding This study was performed and funded by the project supported by the National Social Science Fund of China: A Study on the Structural Transformation of Geopolitical Relations and Economic Cooperation between China and DPRK [21BGJ069].

Declarations

Conflicts of Interest The authors declare no competing interests.

References

Alnafrah, I., & Mouselli, S. (2019). The knowledge society vis-a-vis the knowledge economy and their potential development impacts in Russia. Journal of the Knowledge Economy, 10, 205–220.
An, M. H., Ri, G. Y., & Rim, G. N. (2020). Intellectual product and method of assessing the competitiveness of an enterprise with it. Journal of the Knowledge Economy, 11, 1059–1085. https://doi.org/10.1007/s13132-019-00593-5
Arundel, A., Hansen, W., & Kemp, R. (2008). Knowledge economy indicators: State of the art on the knowledge-based economy. Brussels, Belgium: European Commission.
Atanassova, V., Doukovska, L., Kacprzyk, A., Sotirova, E., Radeva, I., & Vassilev, P. (2018). Inter-Criteria analysis of the global competitiveness reports: From efficiency- to innovation-driven economies. Journal of Multiple-Valued Logic & Soft Computing, 31, 469–494.
Atkinson, R., & Andes, S. (2010). The 2010 state new economy index (pp. 4–5). The Information Technology and Innovation Foundation.
Ayan, T. Y., & Pabuccu, H. (2018). The assessment of knowledge economy efficiency: Comparing Turkey with the European Union countries. Zbornik Radova Ekonomskog Fakulteta u Rijeci: Časopis Za Ekonomsku Teoriju i Praksu, 36, 443–464.
Barbieri, K. (1995). Economic Interdependence and Militarized Interstate Conflict, 1870–1985. Binghamton: Binghamton University.
Barkhordari, S., Fattahi, M., & Azimi, N. A. (2019). The impact of knowledge-based economy on growth performance: Evidence from MENA countries. Journal of the Knowledge Economy, 10, 1168–1182.
Brodowska-Szewczuk, J. (2019). Determinants of the development of enterprises’ innovativeness in the aspect of competitiveness of the economy. Entrepreneurship and Sustainability Issues, 7, 1279–1295.
Chen, D., & Dahlman, C. (2020). The knowledge economy, the KAM methodology and World Bank Operations. 2005. Retrieved January, 15, 2020, from http://siteresources.worldbank.org/KFDLP/Resources/ KAM_Paper_WP.pdf
Chen, L., Xuan, W., & Siyuan, Y. (2009). Comparison of international competitiveness in manufacturing between china and the US: An empirical analysis based on the perspective of industrial competitiveness. China Industrial Economic, (6).
Collison, C., & Parcel, G. (2005). Knowledge management. Brno, Czech Republic: CP Press.
Cooper, R. N. (1968). The economics of interdependence: Economic policy in the atlantic community. McGraw-Hill.
DeVol, R., Koepp, R., & Fogelback, F. (2002). 2002 state technology and science index: comparing and contrasting California. Santa Monica: Milken Institute.
Drucker, P. (1998). From capitalism to knowledge society. In D. Neef (Ed.), The knowledge economy. Boston: Butterworth-Heinemann.
Du, D., Duan, D., Liu, C., et al. (2016). Twenty-five years of progress in geopolitics research: Efforts from China’s geographers. Journal of Geographical Sciences, 26(8), 1223–1242. https://doi.org/10.1007/s11442-016-1323-y
Dudová, I. (2011). Ekonomía Vzdelávania. Bratislava, Slovakia: EKONÓM.
Dukic, B., Dukic, S., & Dugandzic, S. (2018). Knowledge management in the function of ensuring competitiveness of Slavonian economy. In A.M. Tonkovic, & B. Crnkovic, (Eds.), Proceedings of the 7th International Scientific Symposium Economy of the Eastern Croatia–Vision and Growth (pp. 94–102). Osijek, Croatia, 24–26 May 2018.

Durazzi, N. (2019). The political economy of high skills: Higher education in knowledge-based labour markets. Journal of European Public Policy, 26, 1799–1817.

Dutta, S. (Ed.). (2011). The Global Innovation Index 2011 - Accelerating Growth and Development. France: INSEAD. https://www.wipo.int/edocs/pubdocs/en/economics/gii/gii_2011.pdf

Fei, D. (2017). Woriding developmentalism: China’s economic zones within and beyond its border. Journal of International Development, 29(6), 825–830. https://doi.org/10.1002/jid.3277

Foray, D. (2004). The economics of knowledge (pp. 113–131). Cambridge: MIT Press.

Gilpin, R. (1987). The political economy of international relations. Princeton: Princeton University Press.

Godin, B. (2006). The knowledge-based economy: Conceptual framework or buzzword? The Journal of Technology Transfer, 31, 17–30.

Gorokhova, M. (2018). Resource potential of the knowledge economy. Upravlenets, 9, 20–25.

Grosse, T. G. (2014). Geoeconomic relations between the EU and China: The lessons from the EU weapon embargo and from Galileo. Geopolitics, 19(1), 40–65. https://doi.org/10.1080/14650045.2013.789864

Guo, L. (2014). Comparative analysis of trade competitiveness between China and the US. Journal of Foreign Trade Research, (8).

Haddad, S. (2018). The geographic distribution of Knowledge Economy (KE) within the European Union (EU). Management & Marketing: Challenges for the Knowledge Society, 13, 1089–1107.

Houghton, J., & Sheehan, P. (2000). A primer on the knowledge economy. Melbourne, Australia: Victoria University of Technology. Working Paper No. 18.

Hu, A., & Men, H. (2012). International Comparison of Comprehensive National Power among China and the US, Japan, Russia and India (1980–1998). National Status Reports.

Hu, A., Zheng, Y., & Gao, Y. (2015). Assessment of China’s and the US Comprehensive National Power (1990–2013). Journal of Tsinghua University (Philosophical and Social Science Edition), 1(1).

Hu, W., Hu, Z., & Ge, Y. (2019). Review of geo-setting research in China. Progress in Geography, 38(4), 477–488. in Chinese.

Kappel, R. (2010). On the economics of regional powers: Comparing China, India, Brazil, and South Africa. GIGA. Working Papers, No. 145.

Keohane, R. O., & Nye, J. S. (1977). Power and interdependence: World politics in transition. Little, Brown and Company.

Lawrence, R. Z. (2002). Competitiveness. In D. R. Henderson (Ed.), Concise Encyclopedia of Economics (1st ed.). Library of Economics and Liberty. OCLC 317650570, 50016270, 163149563.

Liang, Y., Chen, M. X., Lu, D. D., et al. (2019). The spatial evolution of geoeconomic pattern among China and neighboring countries since the reform and opening-up. Sustainability, 11(7), 2168. https://doi.org/10.3390/su11072168

Lim, K. F. (2010). On China’s growing geo-economic influence and the evolution of variegated capitalism. Geoforum, 41(5), 677–688. https://doi.org/10.1016/j.geoforum.2010.04.003

Liu, J., & Lin, Y. (2010). Empirical analysis on trade competitiveness between China and the US: Comparative analysis based on revealed comparative advantage index and intraindustry trade index. Journal of Productivity Research, (9).

Lomachynska, I., & Podgorna, I. (2018). Innovation potential: Impact on the national economy’s competitiveness of the EU developed countries. Baltic Journal of Economic Studies, 4, 262–270.

Lu, D., & Du, D. (2013). Some thoughts on the strengthening of geopolitical and geo-economic studies. Acta Geographica Sinica, 68(6), 723–727. in Chinese.

Lüthi, S., Thierstein, A., & Bentlage, M. (2011). Interlocking firm networks in the German knowledge economy: On local networks and global connectivity. Raumforschung Und Raumordnung, 69, 161–174.

Luttwak, E. N. (1990). From geopolitics to geo-economics: Logic of conflict, grammar of commerce. The National Interest, 20, 17–23.

Milewska, A. (2018). Knowledge based economy: Opportunities and challenges. In J. Golebiewski (Ed.), International Scientific Conference on Economic Sciences for Agribusiness and Rural Economy (pp. 313–318). Warsaw, Poland: University of Warsaw. Proceedings of the 2018 International Scientific
Conference–Economic Sciences for Agribusiness and Rural Economy, Warsaw, Poland, 7–8 June 2018.

Milken Institute. (2001). Knowledge economy index. Santa Monica: Milken Institute.

Morgenthau, H. J., & Thompson, K. W. (1997). Politics among nations: The struggle for power and peace (6th ed.). McGraw-Hill.

Ni, P., & Li, M. (2016). Structural transformation of China’s and US international competitiveness. Review of Industrial Economics, 4.

Ni, P., & Wang, H. (2017). Economic competitiveness of China and the US: Comparison, dynamic change and global position. China Economist, 12(4), 2–31. https://doi.org/10.19602/j.chinaeconomist.2017.04.01

O’Loughlin, J., & Anselin, J. O. (1996). Geo-economic competition and trade bloc formation: United States, German, and Japanese exports, 1968–1992. Economic Geography, 72(2), 131–160. https://doi.org/10.2307/144263

OECD. (1996). The knowledge-based economy (p. 9). OECD.

Oneal, J. R., & Russett, B. M. (1997). The classical liberals were right: Democracy, interdependence, and conflict, 1950–1985. International Studies Quarterly, 41(2), 267–294. https://doi.org/10.1111/1468-2478.00042

Powell, W. W., & Snellman, K. (2004). The knowledge economy. Annual Review of Sociology, 30, 199–220.

Rim, G. N., Kim, G. S., Hwang, S. H., & Ko, U. D. (2019). Some problems in statistically assessing the level of knowledge economy. Journal of the Knowledge Economy, 10, 974–996.

Rim, G. N., Jang, S. N., An, C. J., et al. (2020). State economic strength and some methodological issues on its assessment. Social Indicators Research, 152, 607–636. https://doi.org/10.1007/s11205-020-02459-9

Rio, F. D., & Lorens, F. X. (2017). Regulation and rent-seeking: The role of the distribution of political and economic power. Journal of Public Economic Theory, 19(5), 986–1008. https://doi.org/10.1111/jpet.12231

Roberts, S. (2001). Measuring the knowledge-based economy: a statistical framework for measuring knowledge in the Australian economy and society. Bangkok, Thailand: Economic and Social Commission for Asia and the Pacific, Working group of Statistical Experts.

Sagiyeval, R., Zhuparova, A., Ruzanov, R., Doszhan, R., & Askerov, A. (2018). Intellectual input of development by knowledge-based economy: Problems of measuring in countries with developing markets. Entrepreneurship and Sustainability Issues, 6, 711–728.

Saridogan, H. O., & Kaya, M. V. (2019). Knowledge Economy and Economic Performance: Comparison of Turkey and the European Union. Journal Of Mehmet Akif Ersoy University Economics And Administrative Sciences Faculty, 6, 916–935.

Scott, B. R., & Lodge, G. C. (1985). US competitiveness in the world economy. Boston, MA, USA: Harvard Business School Press.

Širá, E., Vavrek, R., Vozárová, I. K., & Kotulič, R. (2020). Knowledge economy indicators and their impact on the sustainable competitiveness of the EU countries. Sustainability, 12, 4172. https://doi.org/10.3390/su12104172

Smith, K. (2000). What is the ‘knowledge economy’? Knowledge intensive industries and distributed knowledge bases. European Commission. Prepared manuscript.

Sundac, D., & Krmpotic, I. F. (2011). Knowledge economy factors and the development of knowledge-based economy. Croatian Economic Survey, 13, 105–141, WOS:000435261900003. Retrieved January 10, 2020, from http://hrcak.srce.hr/67344

Wang, M. (2009). An analysis of the sensibility and fragility of China-Japan economic mutual dependency. Japan Studies, 4, 37–41. in Chinese.

World Bank. (2004). Benchmarking Countries in the Knowledge Economy: Presentation of the Knowledge Assessment Methodology (KAM). Washington, DC: The World Bank Institute. Retrieved August 25, 2008 from http://sitesources.worldbank.org/KFDLP/Resources/KAMBoardBriefing.pdf

World Economic Forum. (2019). The global competitiveness report 2017–2018. Retrieved November 29, 2019, from https://www.alianciapas.sk/wp-content/uploads/2017/09/TheGlobalCompetitivenessReport2017%E2%80%932018.pdf

Yang, W., Du, D., & Ma, Y. (2017). A geographical perspective on the Sino-U.S. strategic balance of economic power. Geographical Research, 36(10), 1901–1914. in Chinese.
Yao, Y., Zhang, G., Xu, Z., & Bian, Y. (2020). Spatio-temporal evolution of China’s economic power based on asymmetric theory. *Chinese Geographical Science, 30*(5), 765–775. https://doi.org/10.1007/s11769-020-1148-6

Yin, W. (2015). Comparative analysis on the international competitiveness of services between China and the United States: Study based on the perspective of global value chain. *Shanghai Economic Review*, (12).

Yu, Z., & Wu, X. (2019). Complementary reliance and an re-examination of China-Australia trade: An empirical analysis of value-added trade. *Journal of Sichuan University (Philosophy and Social Science Edition)*, 2, 56–64. in Chinese.

Zhao, F., & Feng, X. (2007). Comparative analysis on the international competitiveness of trade in services between China and the US: Structural imbalance of China’s trade in services. *Journal of World Economic Research*, (9).

Zong, H., & Zeng, L. (2017). Analysis of trade pattern between China and Southeast Asian countries under the background of ‘the Belt and Road.’ *Economic Geography, 37*(8), 1–9. in Chinese.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Jinhui Li¹ · **Gwang-Nam Rim**¹,² Ⓢ · **Chol-Ju An**¹,³

Jinhui Li
kj1027@163.com

Chol-Ju An
cholju@126.com

¹ Center for North and South Korea Studies, Yanbian University, Yanji, Jilin, China

² Statistics Department, Faculty of Economics, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea

³ Foreign Trade Department, Faculty of Economics, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea