Possible Effects of 3He Impurities and Shearing on the Formation of Locally Amorphous Supersolid 4He driven by a Pressure Gradient

Kwang-Hua Chu
School of Mathematics, Physics, and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, P.R. China
E-mail: applphys10@gmail.com

Abstract. Possible anomalous states of 4He crystal relevant to the possible onset of supersolidity in 4He crystal were reported recently. Here, by treating the 4He crystal locally as an amorphous matter and using the transition-state model together with the specific activation volume as well as activation energy, we observe a series of sudden change of the shearing stresses (which directly relates to the local transport resistance) at corresponding onset temperatures of 4He crystal for different activation volumes considering the role of 3He concentration. We found that once the pressure forcing increases for fixed concentration of 3He the transition temperature decreases which qualitatively agrees with previous results. We also investigate the possible effects of different shear strain rates as well as the pressure gradient upon the nearly frictionless transport of locally amorphous solid 4He within a confined cylindrical domain for a fixed 3He concentration. The tuning of different shear strain rates was found to play a crucial role in the formation of possible supersolidity in 4He crystal.

1. Introduction
The majority of recent experiments [1-2] search for evidence of supersolid 4He [3-4] (with a tiny 3He concentration built-in) from different microscopic points of view (say, the spin-lattice relaxation time and the spin-spin relaxation time at the temperatures corresponding to the onset of superfluidity of solid 4He considering the role of 3He impurities [1] and the microscopic excitations produced by a direct shear strain considering the rotational responses of solid 4He attributed to possible supersolidity [2]). As reported in [5]: High quality crystals show a transition from a normal stiff state below 20 mK to an anomalous soft state at higher temperature (around 100 mK) that is very sensitive to traces of 3He impurities and to very small stresses. It is yet open for the relation between the softening and the possible transition to a supersolid state of solid 4He [5].
Proposal about Bose-condensed supersolid state might exist in solid 4He at sufficiently low temperatures (as originally proposed in [6-8]) has been theoretically confirmed by describing it as a Gross-Pitaevskii fluid of delocalized quantum vacancies [9]. As remarked in [9], the superfluid is an intrinsic property of the pure crystal, which is locally enhanced by imperfections, seems to account for the low and reasonably invariant genuine superfluid transition (cf. [10]) and the large variations in the quantity of superflow (cf. [11]). Meanwhile Andreev explained the experimental results (cf. [3,4]) using atomic-scale tunneling two-level systems (presuming...
solid 4He contains a population of inertially active crystal excitations). However, Anderson still argued: *Why small concentrations of 3He produce large effects remains an open question* [9] although there are continuous studies of 3He’s role in the formation of supersolidity [13-15]. In this short paper we shall investigate possible effects of 3He impurities and shearing on the transport of locally amorphous solid 4He (driven by a pressure gradient) in a confined domain (presumed to be cylindrical). Our focus will be the onset temperature of the possible superfluidity (frictionless states) of solid 4He.

2. Formulations

With the Eyring’s transition-state model [16-18] (of stress-biased thermal activation), structural rearrangement is associated with a single energy barrier (height) E that is lowered or raised linearly by a (shear) yield stress τ. If the transition rate is proportional to the shear strain rate (with a constant ratio: $K_0 \approx 2V_a/V_m$), we can calculate the shear stress

$$\tau = E/V_a + (k_BT/V_a) \ln(\dot{\xi}/K_0\nu_0),$$

(1)

where V_a is the activation volume, $\dot{\xi}$ is the shear strain rate, ν_0 is an attempt frequency [16,18], e.g., for temperatures (T) being $O(1)$ K: $\nu_0 \approx k_B/h \sim O(10^{11})$ (1/sec) with k_B being the Boltzmann constant and h the Planck constant. Normally, the value of V_a is associated with a typical volume required for a molecular shear rearrangement. Here $V_m = A_2A_3A_1$, A_2A_3 is the cross-section of the transport unit on which the shear stress acts and A_1 is the perpendicular distance between two neighboring layers of (composite) particles sliding past each other [16]. We have (using the boundary perturbation series [17,18]), after using the forcing parameter $\Psi = -(r_2/2\tau_0)(dp/dz)$ (r_2 is the mean outer radius of the cylindrical domain, $\tau_0 = 2k_BT/V_a$, and dp/dz is the pressure gradient along the axis of the cylindrical domain or the transport direction) $\xi = \dot{\xi}_0 \sinh(\Psi) + \text{HOT}$ with the small wavy-roughness effect being the first order perturbation which is rather small and thus neglected (HOT means the higher order contributions). The (referenced) shear rate is

$$\dot{\xi}_0 = \frac{2V_a k_BT}{h} \exp\left(-\frac{E}{k_BT}\right),$$

(2)

which is a function of temperature, the activation energy (E), the activation volume, and the length scale. $K_0\nu_0$ in Eq. (1) is temperature dependent and the value could be traced in [18]. The remaining task is to fix the value of Ψ by prescribing r_2 and dp/dz with different temperatures. Once the detailed or corresponding geometric scales in experimental setup were unknown (closely relevant to our formulations), we can select $|dp/dz| = 1$ (or $r_2 = 1$) for convenience. After all these, the remaining in the equation (1) is the unique relationship between V_a and T for a fixed τ. Note that most of the mathematical derivations could be found in [17,18].

3. Numerical Results and Discussion

After intensive calculations and calibration, we firstly select an activation energy: 9.8×10^{-23} Joule (considering the binding energy [1,13,14,15] with 16 ppm of 3He) associated with $r_2 = 10^{-3}m$ and $|dp/dz| \approx 8.5 \times 10^6$ Pa/m. The data shown in Fig. 1 illustrates a sudden change of the shearing stresses (which directly relates to the local transport resistance) at $T \sim 0.35$ K (with $V_a \approx 1.94 \times 10^{-27}$ m3). The transport below $T \sim 0.3$ K ($\dot{\xi}_0 \approx 0.65$ sec$^{-1}$) is almost frictionless. We noticed that, as remarked in [19]: The strong impurity effect is likely to be caused by 3He, whose local concentration is much higher than the averaged concentration.

Note: The original text refers to Fig. 1, which is not included in the image. The description in the text assumes that the reader is familiar with the content of Fig. 1.
Figure 1. Calculated shear stresses (or resistance) using an activation energy 9.8×10^{-23} Joule (cf. the binding energy [1,13,14,15] of 3He). There is a sharp decrease of shear stress around $T \sim 0.35$ K ($V_a \sim 1.9 \times 10^{-27}$ m3). The transport below $T \sim 0.3$ K ($\xi_0 \approx 0.65$ sec$^{-1}$) is almost frictionless.

Figure 2. Calculated shear stresses (or resistance) using an activation energy 9.8×10^{-23} Joule (cf. the binding energy [1,13,14,15] of 3He). We increase $|dp/dz|$ (Pa/m) from around 8.5×10^6 (Fig. 1) to around 42.5×10^6 (here). There is a sharp decrease of shear stress around $T \sim 0.33$ K ($V_a \sim 3.6 \times 10^{-28}$ m3). The transport below $T \sim 0.28$ K ($\xi_0 \approx 0.11$ sec$^{-1}$) is almost frictionless. The shift (of possible onset of supersolidity) to lower temperatures for the increasing pressure (gradient) qualitatively resembles those in [1,10] considering the fixed 3He concentration.

To observe the increasing pressure (gradient) effects, we fix r_2 and E (the same as in Fig. 1) but set $|dp/dz| \approx 4.257 \times 10^7$ Pa/m. As shown in Fig. 2, the possible onset temperature (of supersolidity) moves to lower value : $T \approx 0.33$ K ($V_a \sim 3.6 \times 10^{-28}$ m3). The shift (of possible onset of supersolidity) to lower temperatures for the increasing pressure (gradient) qualitatively resembles those in [1,10] considering the fixed 3He concentration. The transport below $T \sim 0.28$ K ($\xi_0 \approx 0.11$ sec$^{-1}$) is almost frictionless.
Figure 3. Calculated shear stresses (or resistance) using different activation energy 5×10^{-24}, 1.2×10^{-22} Joule. We increase $|\Delta p/\Delta z|$ (Pa/m) from around 6.0817×10^7 (lower E) to around 6.0818×10^7 (higher E). There is a sharp decrease of shear stress around $T \sim 0.5$ K ($V_a \sim 7.9 \times 10^{-28}$ m3). The transport below $T \sim 0.47$ K ($\xi_0 \approx 0.38$ sec$^{-1}$ for higher E) is almost frictionless ($\xi_0 \approx 9 \times 10^9$ sec$^{-1}$ for lower E).

Finally we present the combination effect of E (cf. the lower concentration of 3He in [11]), $|\Delta p/\Delta z|$ with fixed V_a ($r_2 = 5 \times 10^{-4}$ m) in Fig. 3. The latter (trend) resembles those in [20,21]. The possible onset temperature (~ 0.5K) of supersolidity of solid 4He matches with that in [11]. The sharp onset occurs only for lower E (with higher ξ_0) even both V_a are the same.

Acknowledgments

The only author thanks the Financial Support from the LT26 LOC and the 2011-IMUST Starting Funds for Scientific Researcher.

References

[1] Kim SS, Huan C, Yin L, Xia J, Candela D and Sullivan NS 2011 *Phys. Rev. Lett.* **106** 185303
[2] Pratt EJ, Hunt B, Gadagkar V, Yamashita M, Graf MJ, Balatsky AV and Davis JC 2011 *Science* **332** 831
[3] Balibar S 2010 *Nature* **464** 176
[4] Proko'ev N 2007 *Adv. Phys.* **56** 381
[5] Rojas X, Haziot A, Bapst V, Balibar S and Maris HJ 2010 *Phys. Rev. Lett.* **105** 145302
[6] Andreev AF and Lifshitz IM 1969 *Sov. Phys. JETP* **29** 1107
[7] Leggett AJ 1970 *Phys. Rev. Lett.* **25** 1543
[8] Chester GV 1970 *Phys. Rev. A* **2** 256
[9] Anderson PW 2009 *Science* **324** 631
[10] Kim E and Chan MHW 2004 *Nature* **427** 225; Kim E and Chan MHW 2004 *Science* **305** 1941
[11] Hallock RB 2010 *Physica A* **389** 2894
[12] Andreev AP 2007 *JETP Lett.* **85** 585
[13] Ho PC, Bindloss IP and Goodkind JM 1997 *J. Low Temp. Phys.* **109** 409
[14] Day J and Beamish J 2007 *Nature* **450** 853
[15] Kim E, Xia JS, West JT, Lin X, Clark AC and Chan MHW 2008 *Phys. Rev. Lett.* **100** 065301
[16] Eyring H 1936 *J. Chem. Phys.* **4** 283
[17] Chu Z K-H 2007 Rapid transport of glassy supersolid helium in wavy-rough nanopores arXiv:0707.2828
[18] Chu K-H 2011 *Advances in Heteroreneous Material Mechanics 2011* ed Ji Fan, Qj Zhang, Hb Chen and Zh Jin (Lancaster : DESTech Publ., Inc.) pp 768-771
[19] Toda R, Gumann P, Kosaka K, Kanemoto M, Onoe W, and Sasaki Y 2010 *Phys. Rev. B* **81** 214515
[20] Rittner ASC, Choi W, Mueller EJ and Reppy JD 2009 *Phys. Rev. B* **80** 224516
[21] Reich ES 2010 *Nature* **468** 748