G PROTEIN-COUPLED ESTROGEN RECEPTOR 1 (GPER) AS A NOVEL TARGET FOR SCHIZOPHRENIA DRUG TREATMENT

Danielle S. Macêdo1,*, Lia Lira Olivier Sanders1,2, Raimunda das Candeias1, Cyntia de Freitas Montenegro1,2, David Freitas de Lucena1, Adriano José Maia Chaves Filho1, Mary V. Seeman3, Aline Santos Monte1,4

1Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
2Centro Universitário Christus-Unichristus
3Department of Psychiatry, University of Toronto, Toronto, ON, Canada
4Health Science Institute, University of International Integration of Afro-Brazilian Lusophony – UNILAB

*Corresponding author: Danielle Macedo. Drug Research and Development Center, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270 Fortaleza, CE, Brazil. danielle.macedo@ufc.br; daniellesilmacedo@gmail.com.
Abbreviations:

BDNF - brain-derived neurotrophic factor
CaV - voltage-gated calcium channel
CNS - central nervous system
CREB - transcription factor cAMP response element-binding protein
CRHR - corticotropin-releasing hormone receptor
DA – dopamine
E2 - 17β-estradiol
EGFR - epidermal growth factor receptor
ER – estrogen receptors
ERα - estrogen receptor alpha
ERβ - estrogen receptor beta
ERK - extracellular-signal-regulated kinase
GPER1 – G protein-coupled estrogen receptor
HRT - hormone replacement therapy
IDO1 - indoleamine 2,3 dioxygenase 1
IL - interleukin
MAP - mitogen-activated protein
MPO - myeloperoxidase activity
NF-kB - nuclear factor kappa B
NO – nitric oxide
NOS - nitric oxide synthase
OCD - obsessive-compulsive disorder
PANSS - Positive and Negative Syndrome Scale
PFC – prefrontal cortex
PI3K - phosphatidylinositol 3-kinase
PKA - protein kinase A
PLC - phospholipase C
poly I:C - polyinosinic:polycytidylic acid
PTSD - post-traumatic stress disorder
SERMs - selective estrogen receptor modulators
TRPC3 - transient receptor potential 3
UHR - ultrahigh risk patients

Highlights

- Schizophrenia pathophysiology involves immunoinflammatory and oxidative alterations
- GPER agonism produces anti-inflammatory and antioxidant effects
- Estrogen, SERMS, and GPER agonists reduce SCZ symptoms
- Estrogen receptors have rarely been targets of antipsychotic drug development
ABSTRACT

The observation that a person’s sex influences the onset age of schizophrenia, the course of the disease, and antipsychotic treatment response suggests a possible role for estrogen receptors in the pathophysiology of schizophrenia. Indeed, treatment with adjunctive estrogen or selective estrogen receptor modulators (SERMs) are known to reduce schizophrenia symptoms. While estrogen receptors (ERα and ERβ) have been studied, a third and more recently discovered estrogen receptor, the G protein-coupled estrogen receptor 1 (GPER), has been largely neglected. GPER is a membrane receptor that regulates non-genomic estrogen functions, such as the modulation of emotion and inflammatory response. This review discusses the possible role of GPER in brain impairments seen in schizophrenia and in its potential as a therapeutic target. We conducted a comprehensive literature search in the PubMed/MEDLINE database, using the following search terms: “Schizophrenia,” “Psychosis,” “GPER1 protein,” “Estrogen receptors,” “SERMs,” “GPER agonism,” “Behavioral symptoms,” “Brain Inflammation.” Studies involving GPER in schizophrenia, whether preclinical or human studies, have been scarce, but the results are encouraging. Agonism of the GPER receptor could prove to be an essential mechanism of action for a new class of “anti-schizophrenia” drugs.

Keywords: Schizophrenia; Estrogen; G Protein-coupled estrogen receptor 1; Estrogen receptors; Sex
Introduction

Kraepelin (1919) was the first to report sex influences in schizophrenia. He noted that the disorder was more frequent in men and that, compared to men, women showed a delay in the onset of the first cognitive symptoms and age at first hospitalization. Since then, evidence has accumulated showing that sex/gender influences the epidemiology, the symptomatic expression, the life course, and the response to antipsychotics in schizophrenia. Table 1 presents the main sex differences seen in schizophrenia.

Estrogens play a critical role in female physiology and protect against numerous diseases in premenopausal women. In addition, they regulate male reproductive and nonreproductive organs. Based on the protective effects of estrogen observed in schizophrenia, the “estrogen protective hypothesis” was formulated. The hypothesis predicted that psychotic symptoms in women worsen at times in the menstrual cycle when estrogen levels are low, i.e., around the time of menstruation. This hypothesis continues to be tested in preclinical and clinical studies because the neurobiological mechanisms that might underlie it are still poorly understood.

What is generally acknowledged is that gene × sex (G×S) interactions are implicated in schizophrenia. For instance, polymorphisms of the catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) genes, crucial to the metabolism of dopamine, the most relevant neurotransmitter in schizophrenia, are associated with schizophrenia in a sex-specific manner. A genome-wide association study (GWAS) has also found a clinical and molecular modulation by sex of the association between single nucleotide polymorphism (SNP) rs1344706 in the gene ZNF804A that encodes the Zinc finger protein 804A (related to the regulation of dendritic spine maintenance and neuron projection development), and risk of...
schizophrenia. Another study found an association between the polymorphism rs7597593 of the ZNF804A gene and quasi-psychotic experiences. Interestingly, the strength of the association was driven by female study participants. The ZNF804A gene is expressed throughout the brain, but especially in the developing hippocampus and the cortex. Another GWAS reported that the SLC30A3 gene (that encodes the protein zinc transporter 3) increases the risk of schizophrenia, but only in females.

Sex-specific effects can be mediated through the classical estrogen receptors (ERs) α and β, which are ligand-activated transcription factors that influence the function of several genes, an action referred to as genomic signaling. ERα and ERβ are also involved in rapid estrogen action (non-genomic signaling) when located in the plasma membrane of cells. For instance, in the brain, small amounts of ERα have been found in the plasma membrane of hypothalamic neurons and in the cornu ammonis (CA)1 hippocampal neurons. Both ERα and ERβ are also present in oligodendrocytes. Their presence in cellular plasma membranes, however, is relatively small, which suggests that they may not be entirely responsible for the non-genomic actions of 17-β estradiol.

In the 1990s, an orphan receptor designated as GPR30 was cloned. By 2000, it became clear that GPR30 expression is necessary for the “rapid”/“non-genomic” membrane-associated effects of estrogen. Initially believed to represent a G protein-coupled receptor for cytokines, the functions of GPR30, renamed GPER (G protein-coupled estrogen receptor) by the International Union of Basic and Clinical Pharmacology (IUPHAR) in 2007, have remained elusive until recently.

It is now known that GPER has neuroprotective properties and that it facilitates social cognition, learning, and memory. GPER modulates estrogenic actions at
synapses in the rat hippocampus, influencing neurite outgrowth, and glial cell function. Due to its presence in the hippocampus, GPER has been implicated in memory formation. With respect to biological processes, GPER modulates apoptosis, the cell cycle process, cell differentiation, immunity, the inflammatory response, innate immunity, and neurogenesis. Notably, cognitive deficit and social impairment are core behavioral complications of schizophrenia, whereas apoptotic mechanisms, and immuno-inflammatory alterations constitute important aspects of the pathophysiology of schizophrenia.

Therefore, based on the functions regulated by GPER and their close relation to schizophrenia pathophysiology, this review addresses the role of GPER as a putative target for schizophrenia treatment, with an emphasis on GPER’s modulatory effects on immune-inflammatory mechanisms. The rationale for this approach is based on what we know and are still discovering about the influence of a person’s sex on estrogen signaling pathways, and on the disease course of schizophrenia. We use the term “sex” to refer to biological differences between males and females. “Gender” which usually refers to the social roles and behaviors of men and women, is also a fundamental issue in the understanding of schizophrenia, but will not be explored in this review.
Table 1 – Summary of the main sex differences in schizophrenia

Parameter	Men	Women	Reference
Age of onset (average)	Age 18	Two peaks: age 25 and age 45	28
Response to antipsychotic treatment	Higher doses required	Lower doses required until menopause	2
Side effects of antipsychotics	More acute dystonias	More weight gain	29,30
		More osteoporosis	
		More agranulocytosis	
Social function	Impaired	Less impaired	31,32
Symptoms	More negative and cognitive symptoms	More affective and positive symptoms	30,33
Course and outcome	Worse course and outcome until middle age	More favorable course and outcome until middle age	2,34
Genetic antecedents and pre and perinatal risk factors	More vulnerable to early adversity; more “second hits”	Less vulnerable to early adversity; fewer “second hits”	35,36
Search Strategy

We conducted a comprehensive literature search using the PubMed/MEDLINE database to identify studies relevant to this review. We used the following combinations of subject headings: “Schizophrenia” (MeSH) OR “GPER1 protein” AND “Estrogen receptors” (MeSH) OR “SERMS” (MeSH) OR “GPER1 agonism” (MeSH) OR “Behavioral symptoms” (MeSH) OR “brain inflammation” (MeSH). We included papers published in the English language up to August 2020. To improve our search strategy, we also inspected the reference lists of retained articles and tracked their citations in Google Scholar. Observational, experimental studies in both animal and human subjects and relevant literature reviews were included. The methodological quality of retrieved references played a decisive role in our choice of citations.

Estrogen genomic and nongenomic receptors, their interaction and putative relevance to advances in schizophrenia research

The classical nuclear (genomic) receptors ERα and ERβ, and the transmembrane receptor GPER mediate estrogen effects. GPER is present in both the plasma membrane and the endoplasmic reticulum and activates a non-genomic signaling pathway. Genomic receptors mediate long-term effects by involving gene transcription; GPER produces rapid effects by regulating intracellular signaling cascades.

Both ERα and ERβ are expressed in brain areas related to mood regulation, namely the prefrontal cortex (PFC), hippocampus, hypothalamus, and amygdala. In female rats, ERα is predominantly expressed in brain regions implicated in controlling reproductive functions, such as the hypothalamus and preoptic area. At the same time, in primates, ERα mRNA is found in abundance in the PFC. ERβ is expressed in the same brain regions as ERα, especially in the hippocampus of rodents and humans, indicating that these ERs are also
involved in regulating non-reproductive estrogen actions, such as learning and memory \(^{41}\) (Fig. 1). All ERs located outside of the nucleus seem to be responsible for the rapid actions of estrogens \(^{42}\). ER\(\alpha\) and ER\(\beta\) have also been shown to activate nongenomic signaling through signal transduction proteins \(^{39,43,44}\).

ER\(\alpha\) and ER\(\beta\) cannot, however, explain all of estrogen’s actions. For example, the activation of ER\(\alpha\) and ER\(\beta\) by 17\(\beta\)-estradiol is unable to explain the antioxidant effects of this hormone \(^{45}\). Facts such as these call attention to the importance of a better understanding of GPER’s role in the neurobiology of mental disorders such as schizophrenia, in which oxidating mechanisms are fundamentally involved \(^{46}\).

Importantly, there is evidence that GPER modulates nuclear ERs, amplifying or diminishing a cell’s response to estrogen (Please see \(^{47,48}\), for a review on this topic). This modulation may take place in a variety of ways: i) GPER may collaborate with the nuclear ERs, mainly ER\(\alpha\) \(^{49}\); ii) GPER may antagonize signaling by ER\(\alpha\) or ER\(\beta\) either by blocking their expression or their downstream signaling pathways. This has been observed, for example, when prostate stromal cells differentiate into cancer-associated fibroblasts \(^{50}\); and iii) GPER may not interact with ER\(\alpha\) or ER\(\beta\) but, instead, may mediate 17\(\beta\)-estradiol-driven output on its own, as can be seen in cells where GPER is the sole estrogen receptor, for example, in SKBR3 breast cancer cells \(^{51}\). An example of the parallel activation of GPER and ER\(\alpha\) is the modulation of the rise in extracellular excitatory post-synaptic potentials (EPSPs) in CA3-CA1 hippocampal synapses mediated by estradiol benzoate (EB) \(^{52}\). In this latter study, both EB and the GPER agonist, G1, increased the synaptic response to a similar extent. The prior administration of G1 blocked the EB-mediated enhancement of the synaptic response. GPER1 antagonism by G15 inhibits the enhancement of the synaptic response induced by EB, suggesting that GPER is a major source of this effect \(^{52}\).

Furthermore, in the dorsal striatum, ER\(\alpha\), ER\(\beta\), and GPER have been found exclusively at extranuclear sites and have sometimes been associated with cholinergic neurons, since they were found to be localized to profiles containing vesicular ACh transporter (VACHT), a marker of cholinergic neurons, but not with dopaminergic ones. Hence, binding to cholinergic
receptors must influence neurotransmission via nongenomic mechanisms. Hence, knowledge of co-localization and estrogen receptor interactions appear to be essential to understanding estrogen effects in schizophrenia. Such knowledge clarifies which brain areas and which neurotransmitters are relevant to this condition.

It is known that variants of ERα and its mRNA contribute to the risk for schizophrenia and that ERα mRNA levels are reduced in the dentate gyrus of patients with schizophrenia compared with control subjects. It is also known that ERα single-nucleotide polymorphisms (rs2234693 and rs9340799) decreased levels of central ERα, and ERβ mRNA, in the presence of generally low overall level of estrogens, disrupt estrogen signaling in the brain of patients with schizophrenia. GPER polymorphisms associated with schizophrenia are, to date, unknown.

One important observation about GPER that is relevant to schizophrenia is that sex and age influence its expression and function. Accordingly, the GPER agonist, G1, increases EPSPs in hippocampal slices obtained from ovariectomized ERα knockout (ERαKO) and ERβ knockout (ERβKO) mice. GPER-induced potentiation of excitatory synaptic responses in CA1 hippocampal pyramidal neurons involves postsynaptic mechanisms and seems restricted to females. Furthermore, gene expression of GPER is significantly higher in the adult female hypothalamus than in the adult male hamster. In contrast, the opposite expression pattern was observed in the thalamus.

Similarly, the expression pattern of GPER mRNA displayed a contrary male/female trend in the cerebellum and amygdala of young hamsters. GPER agonism shows age-dependent protective effects in male and female rodents in animal models of cardiac diseases. This agonism protects the hearts of old mice of both sexes and young females but not young males. Our research group's previous study showed that adult female rats exposed to the two-hit model of schizophrenia (based on neonatal exposure to a viral mimetic and peripubertal unpredictable stress) showed decreased hippocampal expression of GPER, a decrease not observed in males.
With respect to humans and estrogenic effects, a second incidence peak of schizophrenia is recognized as occurring in women around the time of menopause when estrogen levels fall. Furthermore, psychotic symptoms, such as hallucinations and delusions, worsen in women as they approach menopause. They often require increased antipsychotic doses at this time. In contrast, in men of the same age, psychotic symptoms generally improve. Such observations suggest that the interaction among estrogen receptors needs to be studied in animal models of schizophrenia, both male and female and of different ages. GPER and its interaction with other ERs throughout the estrous cycle of females also needs to be investigated in order to understand the neurobiological mechanisms underlying perimenstrual susceptibility to increased levels of psychosis.

Because of the relevance of estrogen signaling to schizophrenia and knowing that other reviews have addressed the role of ERα and ERβ in schizophrenia, in the next sections, we focus on GPER in order to determine its putative role in schizophrenia neurobiology.

GPER – The Transmembrane Estrogen Receptor: Functions and Cellular Mechanisms

GPER was identified in the late 90s by multiple research groups. It was first named GPR30, an orphan receptor designation. In 2000, Filardo and his team demonstrated that GPER was required for estrogen-mediated activation of ERK1/2 and cAMP generation. Current evidence indicates that GPER promiscuously couples to both Gi/o and Gs, being this mechanism cell line and tissue-specific. GPER was found responsible for rapid non-genomic estrogen effects in the reproductive, nervous, endocrine, immune, and cardiovascular systems (although small effects on gene expression have also been shown). This receptor is present in the striatum, prefrontal cortex, hypothalamus, anterior and posterior pituitary, and brainstem of male and female rats.

Moreover, GPER has been detected in the rat forebrain (both pre- and post-synaptic sites) and the mouse hippocampus. Bruce McEwen and his group found that the receptor modulates estrogenic actions at synapses in the rat hippocampus and is partially responsible...
for neurite outgrowth and glial cell function. GPER has the ability to associate with other receptors coupled to post-synaptic G proteins, such as the corticotropin-releasing hormone receptor (CRHR) and the serotonin (5HT1a) receptor. It can also bind to a synapse-associated protein, postsynaptic density protein-95 (PSD95). This binding of GPER to PSD95 increases the plasma membrane levels of this receptor. Due to its synaptic location, GPER has been implicated in activity-dependent synaptic plasticity that is induced at appropriate synapses during memory formation in the hippocampus. Based on the brain localization of GPER and on the intracellular mechanisms regulated by this receptor, we next explore its involvement in memory and behavior regulation.

GPER in the regulation of cognition and behavior

GPER can be found in basal forebrain cholinergic neurons, important for cognitive control. The best evidence for the behavioral effects of GPER comes from animal studies indicating its involvement in spatial memory and social behavior in females. Experiments using a GPER agonist, G-1, show an improvement of spatial memory in pre-treated ovariectomized rats on the Y-maze task. By contrast, the GPER antagonist, G-15, has been shown to impair working memory in a delayed matching position task in ovariectomized rats. These effects may be mediated by the release of neurotransmitters and the growth of new dendritic spines on hippocampal neurons. G-1 post-training infusion in the hippocampus of ovariectomized mice increases object recognition and spatial memory, in contrast to G-15, which impairs spatial memory.

Social learning skills in female rodents are rapidly improved after treatment with a GPER agonist. This conclusion is based on the study by Ervin and colleagues (2015) in which they used G-1 in mice subjected to a social transmission of food preference task. In this task, a mouse observes a conspecific eating and thereby develops a preference for a particular flavor. In this study, the GPER-agonist G-1 favored social learning, while ERα, ERβ agonists did not have any effect. One proposed mechanism for social recognition regulation involves an interaction between ERβ and GPER that controls hypothalamic
oxytocin release and oxytocin receptor activation in the amygdala. Oxytocin mechanisms are the main regulators of social recognition in females, while in males, this function is primarily regulated by arginine-vasopressin \(^{72}\). In a recent study conducted by our research group in rats of both sexes, we observed working memory deficits only in female rats exposed to a two-hit model of schizophrenia induced by neonatal exposure to the viral particle polynosinic:polycytidylic acid (poly I:C) plus peripubertal unpredictable stress. The working memory deficits we found were accompanied by decreased hippocampal expression of GPER \(^{73}\).

Besides psychotic and cognitive symptoms, individuals with schizophrenia also suffer from anxiety. Anxiety symptoms are present in up to 65 % of patients with schizophrenia \(^{74}\). The role of GPER in anxiety-like behaviors in experimental animals is still not clear \(^{75}\) but a novel study conducted in GPER-deficient rats demonstrated that this receptor is widely distributed along the hypothalamic-pituitary-adrenal (HPA) axis. Genetic ablation of GPER resulted in lowering the basal serum corticosterone level but enhancing adrenocorticotropic hormone (ACTH) release in response to acute restraint stress, especially in females. Notably, both male and female GPER\(/-\) rats showed increased anxiety-like behaviors and deficits in learning and memory \(^{76}\). Taken together, these results reveal a regulation of the HPA axis and response to stress by GPER.

Depending on the dose and the timing of administration of G-1, anxiety-like behavior in rodents subjected to the elevated plus-maze and the open field test may either increase or decrease \(^{77–79}\). In human studies, Findikli and colleagues (2017) investigated GPER serum levels as a possible biomarker for major depressive disorder (MDD). They found significantly higher levels of GPER and anxiety symptoms among drug-naïve MDD patients, as well as a positive correlation between GPER1 levels and depression scores \(^{80}\). Although preliminary, this study suggests that GPER could have diagnostic value in human psychiatric disorders.
GPER in the Regulation of Cellular Mechanisms Relevant to Schizophrenia

GPER is present in microglial cells, neurons and astrocytes. It is broadly distributed in the brain, and especially highly expressed in the hypothalamus, hippocampus, substantia nigra, medulla oblongata, and pituitary, of laboratory animals. No significant differences in GPER expression have been observed between male and female rats, but functional assays have not been performed. The GPER expression pattern in the rat brain appears to be similar to that of GPER mRNA in the human brain. In humans, GPER expression is higher in the hippocampus and hypothalamic nuclei (supraoptic, paraventricular, arcuate, and suprachiasmatic nuclei) and less abundant in the cortex and caudate nucleus.

A critical cellular function of GPER that is relevant to schizophrenia is the regulation of intracellular Ca\(^{2+}\) stores. The Ca\(^{2+}\) signaling pathway plays a central role in regulating neuronal excitability, information processing, and cognition. In microglial cells, intracellular Ca\(^{2+}\) signaling is important for ramification, de-ramification, migration, phagocytosis, and the release of cytokines, nitric oxide (NO), and brain-derived neurotrophic factor (BDNF). Notably, BDNF induces a sustained intracellular Ca\(^{2+}\) elevation by upregulating canonical transient receptor potential 3 (TRPC3) channels in rodent microglia. TRPC3 may be important not only for BDNF anti-inflammatory effects but also for the synaptogenesis that is modulated by microglial phagocytic activity in the brain. Ca\(^{2+}\) in microglial cells has putative inflammatory effects that need further elucidation.

After binding to GPER, estrogen induces the transduction of signaling cascades that ultimately mobilize calcium stores. The GPER regulation of intracellular Ca\(^{2+}\) seems to depend on epidermal growth factor receptor (EGFR), which is activated by mitogen-activated protein (MAP) kinases and the extracellular-signal-regulated kinase (ERK) pathway. GPER also causes the activation of phospholipase C (PLC) and enhances inositol 1,4,5-trisphosphate production, which mobilizes intracellular Ca\(^{2+}\), leading to its release from the...
endoplasmic reticulum. There is some evidence that GPER controls Ca2+ signaling in response to estrogens in neural cells. GPER is highly expressed in spinal neurons, and its activation increases cytosolic Ca2+ and neuronal firing rates. Another target for GPER effects is the voltage-gated calcium channel (CaV) subunit α1D (Cav1.3). When estradiol binds to GPER, it activates the ERK pathway and increases Cav1.3 channels phosphorylation, which leads to a subsequent Ca2+ influx and may explain the pro-survival effects of estradiol. Of note, in a Ca2+-free medium, G-1 (GPER agonist) elevates intracellular Ca2+ much less than in a Ca2+-containing medium, which indicates that the activation of GPER mobilizes both extracellular and intracellular Ca2+ stores. In animals, the isoforms Cav1.2 and Cav1.3 are involved in hippocampus-dependent learning and memory, cognitive functions that require proper hippocampal neurogenesis and are impaired in schizophrenia.

In neurons, the GPER agonist G1 activates adenylyl cyclase with the consequent activation of protein kinase A (PKA), in a dose-dependent manner, activating the transcription factor cAMP response element-binding protein (CREB) and culminating with the transcription of several pro-survival and neurotrophic gene products, such as BDNF and Bcl-2. Also in neurons, GPER activation usually induces pro-survival pathways, such as phosphatidylinositol 3-kinase (PI3K)/Akt and ERK, and attenuates pro-apoptotic pathways. In the brain, the PI3K pathway regulates synaptic formation and plasticity. Its disruption leads to synapse dysfunction and pathological behaviors and is, thus, implicated in the pathogenesis of schizophrenia.

In addition, GPER seems to control microglial reactivity. Microglia are the immune CNS cells responsible for orchestrating the pro-inflammatory protective response against pathogens and injury. Aberrant microglial reactivity has been shown in the progression of several neuropsychiatric disorders. GPER attenuates the pro-inflammatory microglial...
phenotype by decreasing its phagocytic activity, NOS expression, and NO release. The anti-inflammatory and microglia-suppressing effects of estradiol in a rat model of stroke have been shown to depend on GPER activation. The GPER agonist G-1 acts in a similar way. This molecule attenuates microglial reactivity to bacterial endotoxin, lipopolysaccharide (LPS), as indicated by a reduction of mRNA and in levels of the pro-inflammatory cytokines, TNFα and IL-1β.

A relevant pro-inflammatory mechanism is the activation of the nuclear factor kappa B (NF-kB). It has been demonstrated that the anti-inflammatory effect of estradiol is mediated by ERα activation, which leads to the blockade of NF-kB activation and of its translocation to the nucleus. Although ERα has been held responsible for the main anti-inflammatory effects of estradiol on microglia, a recent study showed that GPER agonist G-1 also inhibits NF-kB nuclear migration and decreases the expression of the NLRP3-ASC-caspase 1 inflammasome and IL-1β activation. In line with this evidence, G1 was shown to increase the phosphorylation levels of CREB and enhance IL-1 receptor antagonism in rat hippocampus. By mechanisms dependent on NF-kB inhibition by GPER, this receptor regulates the activation of matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9. MMP-2 is detected in brain structures such as astroglia and some pyramidal neurons in the cortex and Purkinje cells in the cerebellum. MMP-9 is expressed in the hippocampus, cerebellum, and cortex, predominantly in neurons. Levels of MMP-2 and MMP-9 being significantly elevated following ischemia, brain injury, and kainate treatment, implies a role for MMP-2 and MMP-9 in the remodeling of neural circuits in response to neural activity and brain damages. MMP-9 is mainly involved in several key neurodevelopmental processes that are altered in schizophrenia, including maturation of calcium-binding protein parvalbumin inhibitory
neurons, the developmental formation of the specialized extracellular matrix structure perineuronal net, synaptic pruning, and myelination.

GPER anti-inflammatory and immunomodulatory effects seem to be markedly influenced by sex. After brain ischemia, the increase in GPER expression occurs only in male animals and exacerbates microglial reactivity and neuronal death. GPER agonist G-1 increases infarct volume in males poststroke but reduces it in ovariectomized females. By contrast, GPER activation has been shown to induce neuroprotective and anti-inflammatory effects in both male and female brains exposed to ischemia.

It deserves to be mentioned that GPER is also present in the placenta. In recent years, a link has been made between placental biology, early-life complications (preeclampsia and intrauterine growth retardation), and schizophrenia, even though the diagnosis of schizophrenia is not usually made until adult life. Placental GPER expression is reduced in women with preeclampsia as compared to women with uncomplicated pregnancies. Treatment with estradiol significantly increases the expression of GPER in HTR8/SVneo cells in both normal and hypoxia-reoxygenation conditions. Furthermore, decreased GPER expression has been detected in maternal serum and placenta and has been shown to associate with intrauterine growth retardation. Based on findings such as these, in future years, placental expression and/or maternal serum levels of GPER may emerge as biomarkers of schizophrenia risk.
GPER Agonists for Schizophrenia Drug Treatment

To date, there is no direct evidence that the pharmacological or genetic modulation of GPER would be beneficial in the treatment of schizophrenia, but this remains an interesting possibility. As previously mentioned, GPER modulates several intracellular mechanisms that are compromised in schizophrenia 94,101. There is compelling evidence of an aberrant pro-inflammatory microglial phenotype in the schizophrenia brain, which may explain the synaptic pruning disruption seen in adolescence and the progressive neurodegenerative changes that occur over time 113,114. Based on the intracellular mechanisms modulated by GPER and their relevance for schizophrenia 115, we speculate that GPER could become a useful pharmacological target for new immunomodulatory and potentially sex-specific treatment strategies.

Current antipsychotics are not effective for negative symptoms and cognitive impairments 116, but there is some evidence that estradiol’s adjunctive use can alleviate these symptoms 117,118. In preclinical models, estrogens influence social preferences and learning and memory of social stimuli 71,119. In female rats, estradiol treatment inhibits the disruption of prepulse inhibition in rodent models of schizophrenia by preventing dopamine D1/D2 receptor-mediated disruptions of sensorimotor gating 120. Although very few clinical studies using adjunctive estradiol in men with psychotic symptoms have been conducted, such studies are beginning to appear and to show positive effects 121. Hence, based on these studies 122, we speculate that a specific GPER agonist, devoid of sexual and other estrogen-associated adverse effects, may become an important therapeutic agent in schizophrenia. The following section discusses available GPER agonists and their possible benefits as safe therapeutic options in schizophrenia 123. We believe,
however, that, before performing clinical trials with GPER agonists, more evidence from preclinical models of schizophrenia on GPER expression and functions must be available and that GPER as a potential treatment target must be validated in blood and tissue samples from schizophrenia patients.

Selective Estrogen Receptor Modulators (SERMs)

SERMs, including tamoxifen and raloxifene, can act as estrogen agonists or antagonists, depending on the target tissue and the estrogen receptor involved. They affect transcriptional regulation by ERα and ERβ but lead to different effects in different tissues. Although SERMs are associated with health risks such as stroke, thromboembolism, and endometrial hyperplasia \(^{124–126}\), they are safer than standard estrogens. Raloxifene and tamoxifen are known to trigger neuroprotective mechanisms and reduce neural damage in different experimental models of neural trauma, brain inflammation, cognitive impairment, neurodegenerative and affective disorders. They represent promising therapeutic tools, capable of inducing profound brain structural remodeling following cerebral ischemia. \(^{20,68}\)

Raloxifene is the only SERM approved for long-term treatment, having been used in several clinical trials for both men and women with schizophrenia \(^{127}\). It acts as an estrogen agonist in the brain and an antagonist in mammary and uterine tissue \(^{128}\). A systematic review and meta-analysis of nine studies testing the effects of raloxifene in 561 women with schizophrenia spectrum disorders showed that raloxifene as an adjunct to antipsychotic medication is superior to placebo in improving total symptom severity, positive and negative symptoms \(^{129}\). This result holds true for trials in men and in postmenopausal women \(^{130}\). Adjunctive raloxifene treatment also improves attention/processing speed and memory of men and women with schizophrenia \(^{122,123,131}\).

Although there is substantial evidence that raloxifene significantly improves outcomes in patients with schizophrenia \(^{127,130,132}\), in some studies it only improves cognition
Some studies in severely decompensated postmenopausal women fail to show improvement. Results such as these suggest that symptom profile and severity must be considered when considering pharmacotherapy with SERMs. A recently published clinical trial showed that the ERβ agonist LY500307, used as an adjunct to antipsychotics, is selective, safe, and well-tolerated in patients with schizophrenia but fails to demonstrate any significant effects on brain targets: cognition, negative and total symptoms. Although dose and patient characteristics may explain the results, the data suggest that ERα activation may be necessary to yield positive results.

SERMs have been demonstrated to act as agonists of GPER and raloxifene has been shown to activate GPER in cells deficient for ERα. It is important to not that, at the doses used to treat schizophrenia, SERMs are relatively free of adverse events in either men and women. 17β-estradiol, SERMs, and selective estrogen receptor downregulators are all agonists of GPER, but, although estrogen and SERMs have shown promising effects in schizophrenia, it does not automatically mean that GPER will be equally effective. LNS8801 is an orally bioavailable small molecule that is a highly specific and potent agonist of GPER. A multi-center study to assess the safety, tolerability, pharmacokinetics, and preliminary anti-tumor activity of LNS8801 in patients with advanced cancer is currently underway. Other GPER agonists are under development as potential treatments for cancer. Over the next few years, therefore, we will know more about the safety and tolerability of GPER agonists in humans, paving the way for potential clinical trials in patients with schizophrenia.

Phytoestrogens

The neuroprotective effects of phytoestrogens, such as genistein and daidzein, have been recently discovered. Genistein is an estrogenic compounds naturally occurring in plants that shares structural features with 17β-estradiol. It exerts marked anti-inflammatory effects on microglial BV2 cells when
challenged with LPS. These effects are suppressed by pharmacological and genetic blockade of GPER, demonstrating the importance of GPER as an immunomodulatory target. Based on its similarity with 17β-estradiol and the results of preclinical studies, Genistein seems to be of potential clinical utility in managing psychiatric disorders. Quercetin is another phytoestrogen that has shown promising results in schizophrenia treatment. Like genistein, quercetin is a GPER agonist. A case report on two patients demonstrates that adjunctive therapy with quercetin can lead to clinical improvement in schizophrenia.

Concluding Remarks

GPER is an estrogen transmembrane receptor that mediates nongenomic estrogen actions. It is responsible for rapid estrogen anti-inflammatory and immunomodulatory effects. Based on research that demonstrates important advantages for pre-menopausal women relative to men on the course of schizophrenia, estrogens, SERMs, and phytoestrogens, which bind to GPER as well as to classical estrogen receptors, have been successfully used as adjuncts to antipsychotic medication.

The question arises whether GPER-targeted treatment can be effectively used in male and female schizophrenia patients. As mentioned above, the tissue distribution of ERα and ERβ varies across male and females; in rats, GPER mRNA expression is relatively stable across all tissues in both sexes. GPER's rapid, non-genomic actions play a central regulatory role in cardiovascular function, so that GPER agonists have been suggested as potential therapeutic agents in vascular and myocardial disease in both men and women. In rats, the GPER agonist G1 protects the heart from ischemia/reperfusion (IR) injury in both males and females. Nevertheless, things may be different in the brain where sex-differential effects are more likely. GPER is upregulated in male brain after stroke, and GPER agonist G-1 increases infarct volume in males poststroke but reduces it in...
ovariectomized females. By contrast, GPER activation seems to induce neuroprotective and anti-inflammatory effects in both male and female brains exposed to ischemia. Taken together, these results suggest that the sex-differential effects of GPER activation cannot be generalized across tissues. Nor is it clear how different GPER agonists and antagonists will act in men and women with schizophrenia.

Despite increasing interest in GPER, little is known about its potential as a therapeutic target in schizophrenia. This review suggests that it is worth investigating.
Authors Contributions

RC, CFM and ASM – performed the first selection of the articles
LLOS, AJMCF, and DSM – refined the selection of the articles and constructed the tables
DSM, DFL, CFM, ASM, and AJMCF – wrote the first draft
LLOS, MVS and DSM – organized the final version of the manuscript
Fig. 1. Graphic representation of 17β-estradiol (E$_2$) modulating CNS functions and the distribution of E$_2$ receptors in the brain and associated signaling pathways. In the figure, in the upper right corner, the 2D structure of estradiol (E$_2$) is represented as well as its main modulating functions in CNS. The numbers (blue heptagons) represent the brain regions where E$_2$ receptors are mainly expressed. Of note, 1: prefrontal cortex; 2: basal forebrain; 3: hypothalamus; 4: amygdala; 5: thalamus; 6: hippocampus; 7: raphe nucleus; 8: locus coeruleus; 9: posterior cingulate. In the lower-left corner, the E$_2$ receptors subtypes are represented: the nuclear ERα & β receptors, responsible for the main genomic effects of E$_2$ signaling, and the metabotropic GPER1 receptor, responsible for second-messenger rapid transduction of E$_2$ (non-genomic effects). Also, we built a 3D structural representation of human GPER1 protein based on the homology to the template 4n6h1.A (PDB ID), using SwissModel server. Abbreviations: E$_2$, 17β-estradiol; CNS: central nervous system; ER: estrogen nuclear receptor; GPER: G protein-coupled receptor.
Fig. 2. Pathways regulated by 17β-estradiol binding to GPER of relevance to schizophrenia neurobiology. Estradiol binding to GPER activates the ERK pathway and increases phosphorylation of Cav1.3 channels, which leads to subsequent Ca2+ influx, which may explain the pro-survival effects of estradiol. In animals, Cav1.3 channels are involved in hippocampus-dependent learning and memory, cognitive functions that require proper hippocampal neurogenesis, and are impaired in schizophrenia. In neurons, GPER activates adenylyl cyclase, with the consequent activation of protein kinase A (PKA), and the transcription factor cAMP response element-binding protein (CREB), leading to the transcription of several pro-survival and neurotrophic gene products, such as BDNF and Bcl-2. In neurons, GPER activation induces pro-survival pathways, such as phosphatidylinositol 3-kinase (PI3K)/Akt and ERK, and attenuates pro-apoptotic pathways. By mechanisms dependent on NF-kB inhibition by GPER, this receptor regulates the activation of matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, which are dysregulated in neurodegenerative disorders, including schizophrenia. In the figure, dashed lines represent inhibition while continuous lines represent stimulation.
REFERENCES

1. Kraepelin E. *Dementia Praecox and Paraphrenia*.; 1919.

2. Ochoa S, Usall J, Cobo J, Labad X, Kulkarni J, Kulkarni J. Gender Differences in Schizophrenia and First-Episode Psychosis: A Comprehensive Literature Review. *Schizophr Res Treatment*. 2012;2012:1-9. doi:10.1155/2012/916198

3. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. *Schizophr Res*. 2009;110(1-3):1-23. doi:10.1016/J.SCHRES.2009.03.005

4. Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. *Physiol Rev*. 2017;97(3):995-1043. doi:10.1152/physrev.00018.2016

5. Seeman M V. Menstrual exacerbation of schizophrenia symptoms. *Acta Psychiatric Scand*. 2012;125(5):363-371. doi:10.1111/j.1600-0447.2011.01822.x

6. Borella VM, Seeman M V., Cordeiro RC, et al. Gender and estrous cycle influences on behavioral and neurochemical alterations in adult rats neonatally administered ketamine. *Dev Neurobiol*. 2016;76(5):519-532. doi:10.1002/dneu.22329

7. Reilly TJ, Sagnay de la Bastida VC, Joyce DW, Cullen AE, McGuire P. Exacerbation of Psychosis During the Perimenstrual Phase of the Menstrual Cycle: Systematic Review and Meta-analysis. *Schizophr Bull*. 2020;46(1):78-90. doi:10.1093/schbul/sbz030

8. Godar SC, Bortolato M. Gene-sex interactions in schizophrenia: focus on dopamine neurotransmission. *Front Behav Neurosci*. 2014;8:71. doi:10.3389/fnbeh.2014.00071

9. Zhang F, Chen Q, Ye T, et al. Evidence of sex-modulated association of ZNF804A with schizophrenia. *Biol Psychiatry*. 2011;69(10):914-917. doi:10.1016/j.biopsych.2011.01.003

10. de Castro-Catala M, Mora-Solano A, Kwapil TR, et al. The genome-wide associated candidate gene ZNF804A and psychosis-proneness: Evidence of sex-modulated association. *PLoS One*. 2017;12(9):e0185072. doi:10.1371/journal.pone.0185072

11. Perez-Becerril C, Morris AG, Mortimer A, McKenna PJ, de Belleruche J. Common variants in the chromosome 2p23 region containing the SLC30A3 (ZnT3) gene are associated with schizophrenia in female but not male individuals in a large collection of European samples. *Psychiatry Res*. 2016;246:335-340. doi:10.1016/j.psychres.2016.09.052

12. Dominguez R, Micevych P. Estradiol rapidly regulates membrane estrogen receptor α levels in hypothalamic neurons. *J Neurosci*. 2010;30(38):12589-12596. doi:10.1523/JNEUROSCI.1038-10.2010

13. Hart SA, Snyder MA, Smejkalova T, Woolley CS. Estrogen mobilizes a subset of estrogen receptor-α-immunoreactive vesicles in inhibitory presynaptic boutons in
14. Hirahara Y, Matsuda K-I, Gao W, Arvanitis DN, Kawata M, Boggs JM. The localization and non-genomic function of the membrane-associated estrogen receptor in oligodendrocytes. *Glia.* 2009;57(2):153-165. doi:10.1002/glia.20742

15. Bonini JA, Anderson SM, Steiner DF. Molecular cloning and tissue expression of a novel orphan G protein-coupled receptor from rat lung. *Biochem Biophys Res Commun.* 1997;234(1):190-193. doi:10.1006/bbrc.1997.6591

16. Barton M, Filardo EJ, Lolait SJ, Thomas P, Maggiolini M, Prossnitz ER. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives. *J Steroid Biochem Mol Biol.* 2018;176:4-15. doi:10.1016/j.jsbmb.2017.03.021

17. Liu S-B, Zhang N, Guo Y-Y, et al. G-protein-coupled receptor 30 mediates rapid neuroprotective effects of estrogen via depression of NR2B-containing NMDA receptors. *J Neurosci.* 2012;32(14):4887-4900. doi:10.1523/JNEUROSCI.5828-11.2012

18. Gabor C, Lymer J, Phan A, Choleris E. Rapid effects of the G-protein coupled oestrogen receptor (GPER) on learning and dorsal hippocampus dendritic spines in female mice. *Physiol Behav.* 2015;149:53-60. doi:10.1016/j.physbeh.2015.05.017

19. Akama KT, Thompson LI, Milner TA, McEwen BS. Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines. *J Biol Chem.* 2013;288(9):6438-6450. doi:10.1074/jbc.M112.412478

20. Waters EM, Thompson LI, Patel P, et al. G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus. *J Neurosci.* 2015;35(6):2384-2397. doi:10.1523/JNEUROSCI.1298-14.2015

21. GPER1 - G-protein coupled estrogen receptor 1 - Homo sapiens (Human) - GPER1 gene & protein. https://www.uniprot.org/uniprot/Q99527. Accessed October 20, 2020.

22. Bowie CR, Harvey PD. Cognitive deficits and functional outcome in schizophrenia. *Neuropsychiatr Dis Treat.* 2006;2(4):531-536. doi:10.2147/ndt.2006.2.4.531

23. Jarskog LF, Glantz LA, Gilmore JH, Lieberman JA. Apoptotic mechanisms in the pathophysiology of schizophrenia. *Prog Neuro-Psychopharmacology Biol Psychiatry.* 2005;29(5):846-858. doi:https://doi.org/10.1016/j.pnpbp.2005.03.010

24. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. *The lancet Psychiatry.* 2015;2(3):258-270. doi:10.1016/S2215-0366(14)00122-9

25. Mendes-Oliveira J, Lopes Campos F, Videira RA, Baltazar G. GPER activation is effective in protecting against inflammation-induced nigral dopaminergic loss and motor function impairment. *Brain Behav Immun.* 2017;64:296-307.
26. Zhao TZ, Ding Q, Hu J, He SM, Shi F, Ma LT. GPER expressed on microglia mediates the anti-inflammatory effect of estradiol in ischemic stroke. *Brain Behav*. 2016;6(4):1-9. doi:10.1002/brb3.449

27. Nassar EH, Walders N, Jankins JH. The Experience of Schizophrenia: What's Gender Got To Do With It? A Critical Review of the Current Status of Research on Schizophrenia. *Schizophr Bull*. 2002;28:351-362. doi:10.1093/oxfordjournals.schbul.a006944

28. Jones PB. Adult mental health disorders and their age at onset. *Br J Psychiatry*. 2013;202(s54):s5-s10. doi:10.1192/bjp.bp.112.119164

29. Colombo D, Zagni E, Nica M, Rizzoli S, Ori A, Bellia G. Gender differences in the adverse events’ profile registered in seven observational studies of a wide gender-medicine (MetaGeM) project: the MetaGeM safety analysis. *Drug Des Devel Ther*. 2016;10:2917-2927. doi:10.2147/DDDT.S97088

30. Li R, Ma X, Wang G, Yang J, Wang C. Why sex differences in schizophrenia? *J Transl Neurosci*. 2016;1(1):37-42.

31. Vaskinn A, Sundet K, Simonsen C, Hellvin T, Melle I, Andreassen OA. Sex differences in neuropsychological performance and social functioning in schizophrenia and bipolar disorder. *Neuropsychology*. 2011;25(4):499-510. doi:10.1037/a0022677

32. Allen DN, Strauss GP, Barchard KA, Vertinski M, Carpenter WT, Buchanan RW. Differences in developmental changes in academic and social premorbid adjustment between males and females with schizophrenia. *Schizophr Res*. 2013;146(1-3):132-137. doi:10.1016/j.schres.2013.01.032

33. Brzezinski-sinai NA, Seeman M V. Women and schizophrenia: planning for the future. 2017;12:89-99.

34. Novick D, Montgomery W, Treuer T, Moneta MV, Haro JM. Sex differences in the course of schizophrenia across diverse regions of the world. *Neuropsychiatr Dis Treat*. 2016;12:2927-2939. doi:10.2147/NDT.S101151

35. Falkenburg J, Tracy DK. Sex and schizophrenia: a review of gender differences. *Psychosis*. 2014;6(1):61-69. doi:10.1080/17522439.2012.733405

36. Bersani G, Clemente R, Gherardelli S, Bersani FS, Manuali G. Obstetric complications and neurological soft signs in male patients with schizophrenia. *Acta Neuropsychiatr*. 2012;24(06):344-348. doi:10.1111/j.1601-5215.2011.00636.x

37. Ervin KSJ, Lymer JM, Matta R, Clipperton-Allen AE, Kavaliers M, Choleris E. Estrogen involvement in social behavior in rodents: Rapid and long-term actions. *Horm Behav*. 2015;74:53-76. doi:10.1016/j.yhbeh.2015.05.023

38. Almey A, Milner TA, Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. *Horm Behav*. 2015;74:125-138. doi:10.1016/J.YHBEH.2015.06.010
39. McEwen BS, Alves SE. Estrogen Actions in the Central Nervous System. *Endocr Rev*. 1999;20(3):279-307. doi:10.1210/edrv.20.3.0365

40. Micevych P, Dominguez R. Membrane estradiol signaling in the brain. *Front Neuroendocrinol*. 2009;30(3):315-327. doi:10.1016/j.yfrne.2009.04.011

41. Gogos A, Sbisa AM, Sun J, Gibbons A, Udwawela M, Dean B. A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings. *Int J Endocrinol*. 2015;2015. doi:10.1155/2015/615356

42. Watson CS, Alyea RA, Jeng Y-J, Kochukov MY. Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues. *Mol Cell Endocrinol*. 2007;274(1-2):1-7. doi:10.1016/j.mce.2007.05.011

43. Lokuge S, Frey BN, Foster JA, Soares CN, Steiner M. The rapid effects of estrogen: a mini-review. *Behav Pharmacol*. 2010;21(5-6):465-472. doi:10.1097/FBP.0b013e32833da5c3

44. Srivastava DP, Penzes P. Rapid estradiol modulation of neuronal connectivity and its implications for disease. *Front Endocrinol (Lausanne)*. 2011;2:77. doi:10.3389/fendo.2011.00077

45. Behl C, Skutella T, Lezoualch F, et al. Neuroprotection against Oxidative Stress by Estrogens: Structure-Activity Relationship. *Mol Pharmacol*. 1997;51(4):535 LP - 541. doi:10.1124/mol.51.4.535

46. BITANIHIRWE BKY, WOO TUW. Oxidative stress in schizophrenia: an integrated approach. *Neurosci Biobehav Rev*. 2011;35(3):878-893. doi:10.1016/j.neubiorev.2010.10.008

47. Hadjimarkou MM, Vasudevan N. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. *J Steroid Biochem Mol Biol*. 2018;176:57-64. doi:10.1016/j.jsmb.2017.04.012

48. Vajaria R, Vasudevan N. Is the membrane estrogen receptor, GPER1, a promiscuous receptor that modulates nuclear estrogen receptor-mediated functions in the brain? *Horm Behav*. 2018;104:165-172. doi:https://doi.org/10.1016/j.yhbeh.2018.06.012

49. Levin ER. G protein-coupled receptor 30: Estrogen receptor or collaborator? *Endocrinology*. 2009;150(4):1563-1565. doi:10.1210/en.2008-1759

50. Jia B, Gao Y, Li M, et al. GPR30 promotes prostate stromal cell activation via suppression of erα expression and its downstream signaling pathway. *Endocrinology*. 2016;157(8):3023-3035. doi:10.1210/en.2016-1035

51. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. *Science (80-).* 2005;307(5715):1625-1630. doi:10.1126/science.1106943

52. Kumar A, Bean LA, Rani A, Jackson T, Foster TC. Contribution of estrogen receptor subtypes, ERa, ERβ, and GPER1 in rapid estradiol-mediated enhancement of hippocampal synaptic transmission in mice. *Hippocampus*. 2015;25(12):1556-1566.
53. Almey A, Filardo EJ, Milner TA, Brake WG. Estrogen receptors are found in glia and at extranuclear neuronal sites in the dorsal striatum of female rats: evidence for cholinergic but not dopaminergic colocalization. *Endocrinology*. 2012;153(11):5373-5383. doi:10.1210/en.2012-1458

54. Weickert CS, Miranda-angulo AL, Wong J, et al. Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. *Hum Mol Genet*. 2008;17(15):2293-2309. doi:10.1093/hmg/ddn130

55. Perlman WR, Tomaskovic-Crook E, Montague DM, et al. Alteration in estrogen receptor α mRNA levels in frontal cortex and hippocampus of patients with major mental illness. *Biol Psychiatry*. 2005;58(10):812-824. doi:10.1016/j.biopsych.2005.04.047

56. Wang S, Li W, Zhao J, et al. Association of estrogen receptor alpha gene polymorphism with age at onset, general psychopathology symptoms, and therapeutic effect of schizophrenia. *Behav Brain Funct*. 2013;9:12. doi:10.1186/1744-9081-9-12

57. Oberlander JG, Woolley CS. 17β-Estradiol Acutely Potentiates Glutamatergic Synaptic Transmission in the Hippocampus through Distinct Mechanisms in Males and Females. *J Neurosci*. 2016;36(9):2677 LP - 2690. doi:10.1523/JNEUROSCI.4437-15.2016

58. Canonaco M, Giusi G, Madeo A, et al. A sexually dimorphic distribution pattern of the novel estrogen receptor G-protein-coupled receptor 30 in some brain areas of the hamster. *J Endocrinol*. 196(1):131-138. doi:10.1677/JOE-07-0392

59. Ghimire A, Howlett SE. An acute estrogen receptor agonist enhances protective effects of cardioplegia in hearts from aging male and female mice. *Exp Gerontol*. 2020;141:111093. doi:https://doi.org/10.1016/j.exger.2020.111093

60. Monte AS, da Silva FER, Lima CN de C, et al. Sex influences in the preventive effects of N-acetylcysteine in a two-hit animal model of schizophrenia. *J Psychopharmacol*. 2020;34(1):125-136. doi:10.1177/0269881119875979

61. Sajatovic M, Friedman SH, Schuermeyer IN, et al. Menopause Knowledge and Subjective Experience Among Peri- and Postmenopausal Women With Bipolar Disorder, Schizophrenia and Major Depression. *J Nerv Ment Dis*. 2006;194(3). https://journals.lww.com/jonmd/Fulltext/2006/03000/Menopause_Knowledge_and_Subjective_Experience.5.aspx.

62. Crider A, Pillai A. Estrogen Signaling as a Therapeutic Target in Neurodevelopmental Disorders. *J Pharmacol Exp Ther*. 2017;360(1):48 LP - 58. doi:10.1124/jpet.116.237412

63. Filardo EJ, Quinn JA, Bland KI, Frackelton AR. Estrogen-Induced Activation of Erk-1 and Erk-2 Requires the G Protein-Coupled Receptor Homolog, GPR30, and Occurs via Trans -Activation of the Epidermal Growth Factor Receptor through Release of HB-EGF. *Mol Endocrinol*. 2000;14(10):1649-1660. doi:10.1210/mend.14.10.0532
64. Filardo EJ, Quinn JA, Frackelton Jr. AR, Bland KI. Estrogen Action Via the G Protein-Coupled Receptor, GPR30: Stimulation of Adenylyl Cyclase and cAMP-Mediated Attenuation of the Epidermal Growth Factor Receptor-to-MAPK Signaling Axis. *Mol Endocrinol*. 2002;16(1):70-84. doi:10.1210/mend.16.1.0758

65. Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. *Nat Rev Endocrinol*. 2011;7(12):715-726. doi:10.1038/nrendo.2011.122

66. Brailoiu E, Dun SL, Brailoiu GC, et al. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. *J Endocrinol*. 2007;193(2):311-321. doi:10.1677/JOE-07-0017

67. Waters EM, Thompson LI, Patel P, et al. G-Protein-Coupled Estrogen Receptor 1 Is Anatomically Positioned to Modulate Synaptic Plasticity in the Mouse Hippocampus. *J Neurosci*. 2015;35(6):2384-2397. doi:10.1523/JNEUROSCI.07-0017

68. Prossnitz ER, Barton M. Estrogen Biology: New Insights into GPER Function and Clinical Opportunities. *Mol Cell Endocrinol*. 2014;389(0):71-83. doi:10.1016/j.mce.2014.02.002

69. Sheppard PAS, Koss WA, Frick KM, Choleris E. Rapid actions of oestrogens and their receptors on memory acquisition and consolidation in females. *J Neuroendocrinol*. 2018;30(2):10.1111/jne.12485. doi:10.1111/jne.12485

70. Kim J, Szinte JS, Boulware MI, Frick KM. 17-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms. *J Neurosci*. 2016;36(11):3309-3321. doi:10.1523/JNEUROSCI.0257-15.2016

71. Ervin KSJ, Mulvale E, Gallagher N, Roussel V, Choleris E. Activation of the G protein-coupled estrogen receptor, but not estrogen receptor α or β, rapidly enhances social learning. *Psychoneuroendocrinology*. 2015;58:51-66. doi:10.1016/j.psyneuen.2015.04.002

72. Dumais KM, Veenema AH. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. *Front Neuroendocrinol*. 2016;40:1-23. doi:https://doi.org/10.1016/j.yfrne.2015.04.003

73. Monte AS, Eliclécio F, Nayane C, et al. Sex influences in the preventive effects of N-acetylcysteine in a two-hit animal model of schizophrenia. 2019. doi:10.1177/0269881119875979

74. Temmingh H, Stein DJ. Anxiety in Patients with Schizophrenia: Epidemiology and Management. *CNS Drugs*. 2015;29(10):819-832. doi:10.1007/s40263-015-0282-7

75. Borrow APHRJ. Estrogen Receptors Modulation of Anxiety-Like Behavior. *Vitam Horm*. 2017;103:27-52. doi:10.1017/S0950268814002131

76. Zheng Y, Wu M, Gao T, et al. GPER-Deficient Rats Exhibit Lower Serum Corticosterone Level and Increased Anxiety-Like Behavior. Wang F, ed. *Neural Plast*. 2020;2020:8866187. doi:10.1155/2020/8866187
77. Hart D, Nilges M, Pollard K, et al. Activation of the G-protein coupled receptor 30 (GPR30) has different effects on anxiety in male and female mice. *Steroids*. 2014;81:49-56. doi:10.1016/j.steroids.2013.11.004

78. Kastenberger I, Lutsch C, Schwarzer C. Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. *Psychopharmacology (Berl)*. 2012;221(3):527-535. doi:10.1007/s00213-011-2599-3

79. Tian Z, Wang Y, Zhang N, et al. Estrogen receptor GPR30 exerts anxiolytic effects by maintaining the balance between GABAergic and glutamatergic transmission in the basolateral amygdala of ovariectomized mice after stress. *Psychoneuroendocrinology*. 2013;38(10):2218-2233. doi:10.1016/j.psyneuen.2013.04.011

80. Findikli E, Kurutas EB, Camkurt MA, et al. Increased serum G protein-coupled estrogen receptor 1 levels and its diagnostic value in drug naïve patients with major depressive disorder. *Clin Psychopharmacol Neurosci*. 2017;15(4):337-342. doi:10.9758/cpn.2017.15.4.337

81. Roque C, Mendes-Oliveira J, Baltazar G. G protein-coupled estrogen receptor activates cell type-specific signaling pathways in cortical cultures: relevance to the selective loss of astrocytes. *J Neurochem*. 2019. doi:10.1111/jnc.14648

82. Owman C, Blay P, Nilsson C, Lolait SJ. Cloning of human cDNA encoding a novel heptahelix receptor expressed in Burkitt's lymphoma and widely distributed in brain and peripheral tissues. *Biochem Biophys Res Commun*. 1996;228(2):285-292. doi:10.1006/bbrc.1996.1654

83. Feng Y, Gregor P. Cloning of a novel member of the G protein-coupled receptor family related to peptide receptors. *Biochem Biophys Res Commun*. 1997;231(3):651-654. doi:10.1006/bbrc.1997.6161

84. O'Dowd BF, Nguyen T, Marchese A, et al. Discovery of three novel G-protein-coupled receptor genes. *Genomics*. 1998;47(2):310-313. doi:10.1006/geno.1998.5095

85. Berridge MJ. Calcium signalling and psychiatric disease: Bipolar disorder and schizophrenia. *Cell Tissue Res*. 2014;357:477–492. doi:10.1007/s00441-014-1806-z

86. Mizoguchi Y, Monji A. Microglial Intracellular Ca(2+) Signaling in Syaptic Development and Its Alterations in Neurodevelopmental Disorders. *Front Cell Neurosci*. 2017;11:69. doi:10.3389/fncel.2017.00069

87. Deliu E, Brailoiu GC, Arterburn JB, et al. Mechanisms of G protein-coupled estrogen receptor-mediated spinal nociception. *J Pain*. 2012;13(8):742-754. doi:10.1016/j.jpain.2012.05.011

88. Hao J, Bao X, Jin B, et al. Ca2+ channel subunit a1D promotes proliferation and migration of endometrial cancer cells mediated by 17β-estradiol via the G protein-coupled estrogen receptor. *FASEB J*. 2015;29(7):2883-2893. doi:10.1096/fj.14-265603
89. Brailoiu E, Patel S, Dun NJ. Modulation of spontaneous transmitter release from the frog neuromuscular junction by interacting intracellular Ca2+ stores: Critical role for nicotinic acid-adenine dinucleotide phosphate (NAADP). Biochem J. 2003;373(2):313-318. doi:10.1042/BJ20030472

90. Marschallinger J, Sah A, Schmuckermair C, et al. The L-type calcium channel Cav1.3 is required for proper hippocampal neurogenesis and cognitive functions. Cell Calcium. 2015;58:606–616. doi:10.1016/j.ceca.2015.09.007

91. Andrade A, Brennecke A, Mallat S, et al. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci. 2019;20(14):3537. doi:10.3390/ijms20143537

92. Cheng Q, Meng J, Wang XS, et al. G-1 exerts neuroprotective effects through G protein-coupled estrogen receptor 1 following spinal cord injury in mice. Biosci Rep. 2016;36(4). doi:10.1042/BSR20160134

93. Roque C, Baltazar G. G protein-coupled estrogen receptor 1 (GPER) activation triggers different signaling pathways on neurons and astrocytes. Neural Regen Res. 2019;14(12):2069-2070. doi:10.4103/1673-5374.262577

94. Tang H, Zhang Q, Yang L, et al. GPR30 mediates estrogen rapid signaling and neuroprotection. Mol Cell Endocrinol. 2014;387(1-2):52-58. doi:10.1016/j.mce.2014.01.024

95. Enriquez-Barreto L, Morales M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. Mol Cell Ther. 2016;4:2. doi:10.1186/s40591-016-0047-9

96. Biesmans S, Meert TF, Bouwknecht JA, et al. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators Inflamm. 2013;2013:271359. doi:10.1155/2013/271359

97. Guan J, Yang B, Fan Y, Zhang J. GPER Agonist G1 Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in Parkinson Disease. Neuroimmunomodulation. 2017;24(1):60-66. doi:10.1159/000478908

98. Maes M. Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr Opin Psychiatry. 2009. doi:10.1097/YCO.0b013e32831a4728

99. Ghisletti S, Meda C, Maggi A, Vegeto E. 17 -Estradiol Inhibits Inflammatory Gene Expression by Controlling NF- B Intracellular Localization. Mol Cell Biol. 2005;25(8):2957-2968. doi:10.1128/mcb.25.8.2957-2968.2005

100. Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K. Steroid hormone receptor expression and function in microglia. Glia. 2008;56(6):659-674. doi:10.1002/glia.20644

101. Bai N, Zhang Q, Zhang W, et al. G-protein-coupled estrogen receptor activation upregulates interleukin-1 receptor antagonist in the hippocampus after global cerebral
ischemia: Implications for neuronal self-defense. *J Neuroinflammation*. 2020;17(1):45. doi:10.1186/s12974-020-1715-x

102. Yuliawati D, Mintaroem K, Sutrisno S. Inhibitory effect of genistein on MMP-2 and MMP-9 expression through suppressing NF-kB activity in peritoneum of murine model of endometriosis. *Asian Pacific J Reprod*. 2018;7(6):261-265. doi:10.4103/2305-0500.246344

103. Pagenstecher A, Stalder AK, Kincaid CL, Shapiro SD, Campbell IL. Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states. *Am J Pathol*. 1998;152(3):729-741. https://pubmed.ncbi.nlm.nih.gov/9502415.

104. Ethell IM, Ethell DW. Matrix metalloproteinases in brain development and remodeling: Synaptic functions and targets. *J Neurosci Res*. 2007;85(13):2813-2823. doi:10.1002/jnr.21273

105. Shigemori Y, Katayama Y, Mori T, Maeda T, Kawamata T. Matrix metalloproteinase-9 is associated with blood-brain barrier opening and brain edema formation after cortical contusion in rats. *Acta Neurochir Suppl*. 2006;96(96):130-133. doi:10.1007/3-211-30714-1_29

106. Bitanihirwe BKY, Woo T-UW. A conceptualized model linking matrix metalloproteinase-9 to schizophrenia pathogenesis. *Schizophr Res*. 2020;218:28-35. doi:https://doi.org/10.1016/j.schres.2019.12.015

107. Broughton BRS, Brait VH, Guida E, et al. Stroke increases G protein-coupled estrogen receptor expression in the brain of male but not female mice. *NeuroSignals*. 2013;21(3-4):229-239. doi:10.1159/000338019

108. Broughton BRS, Brait VH, Kim HA, et al. Sex-dependent effects of G protein-coupled estrogen receptor activity on outcome after ischemic stroke. *Stroke*. 2014;45(3):835-841. doi:10.1161/STROKEAHA.113.001499

109. Murata T, Dietrich HH, Xiang C, Dacey RG. G protein-coupled estrogen receptor agonist improves cerebral microvascular function after hypoxia/reoxygenation injury in male and female rats. *Stroke*. 2013;44(3):779-785. doi:10.1161/STROKEAHA.112.678177

110. Ozer A, Tolun F, Aslan F, Hatirnaz S, Alkan F. The role of G protein-associated estrogen receptor (GPER) 1, corin, raftlin, and estrogen in etiopathogenesis of intrauterine growth retardation. *J Matern Neonatal Med*. May 2019:1-6. doi:10.1080/14767058.2019.1615433

111. Ursini G, Punzi G, Chen Q, et al. Convergence of placenta biology and genetic risk for schizophrenia. *Nat Med*. 2018;24(6):792-801. doi:10.1038/s41591-018-0021-y

112. Feng X, Zhou L, Mao X, et al. Association of a reduction of G-protein coupled receptor 30 expression and the pathogenesis of preeclampsia. *Mol Med Rep*. 2017;16(5):5997-6003. doi:10.3892/mmr.2017.7341
113. Meyer U. Developmental neuroinflammation and schizophrenia. *Prog Neuro-Psychopharmacology Biol Psychiatry*. 2013;42:20-34. doi:10.1016/j.pnpbp.2011.11.003

114. Ribeiro BMM, do Carmo MRS, Freire RS, et al. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine. *Schizophr Res*. 2013;151(1-3):12-19. doi:10.1016/j.schres.2013.10.040

115. Villa A, Della Torre S, Maggi A. Sexual differentiation of microglia. *Front Neuroendocrinol*. 2018;52(November 2018):156-164. doi:10.1016/j.yfrne.2018.11.003

116. Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. *P T*. 2014;39(9):638-645.

117. Srivastava DP, Waters EM, Mermelstein PG, Kramár EA, Shors TJ, Liu F. Rapid estrogen signaling in the brain: implications for the fine-tuning of neuronal circuitry. *J Neurosci*. 2011;31(45):16056-16063. doi:10.1523/JNEUROSCI.4097-11.2011

118. Kulkarni J, Gavrilidis E, Wang W, et al. Estradiol for treatment-resistant schizophrenia: a large-scale randomized-controlled trial in women of child-bearing age. *Mol Psychiatry*. 2015;20(6):695-702. doi:10.1038/mp.2014.33

119. Genazzani AR, Monteleone P, Gambacciani M. Hormonal influence on the central nervous system. *Maturitas*. 2002;1:11-17.

120. Gogos A, Van den Buuse M. Comparing the effects of 17β-oestradiol and the selective oestrogen receptor modulators, raloxifene and tamoxifen, on prepulse inhibition in female rats. *Schizophr Res*. 2015;168(3):634-639. doi:10.1016/j.schres.2015.04.029

121. Riecher-Rössler A. Oestrogens, prolactin, hypothalamic-pituitary-gonadal axis, and schizophrenic psychoses. *The Lancet Psychiatry*. 2017;4(1):63-72. doi:10.1016/S2215-0366(16)30379-0

122. Weickert TW, Weinberg D, Lenroot R, et al. Adjunctive raloxifene treatment improves attention and memory in men and women with schizophrenia. *Mol Psychiatry*. 2015;20(6):685-694. doi:10.1038/mp.2015.11

123. Huerta-Ramos E, Iniesta R, Ochoa S, et al. Effects of raloxifene on cognition in postmenopausal women with schizophrenia: A double-blind, randomized, placebo-controlled trial. *Eur Neuropsychopharmacol*. 2014;24(2):223-231. doi:10.1016/j.euroneuro.2013.11.012

124. McGregor C, Riordan A, Thornton J. Estrogens and the cognitive symptoms of schizophrenia: Possible neuroprotective mechanisms. *Front Neuroendocrinol*. June 2017. doi:10.1016/j.yfrne.2017.06.003

125. Resnick SM, Espeland MA, An Y, et al. Effects of conjugated equine estrogens on cognition and affect in postmenopausal women with prior hysterectomy. *J Clin Endocrinol Metab*. 2009;94(11):4152-4161. doi:10.1210/jc.2009-1340
126. Anderson GL et al. Effects of Conjugated Equine Estrogen in Postmenopausal Women With Hysterectomy. *J Am Med Assoc.* 2004;291(14):1701-1712. doi:10.1001/jama.291.14.1701

127. Kulkarni J, Gavrilidis E, Gwini SM, et al. Effect of Adjunctive Raloxifene Therapy on Severity of Refractory Schizophrenia in Women: A Randomized Clinical Trial. *JAMA psychiatry.* 2016;73(9):947-954. doi:10.1001/jamapsychiatry.2016.1383

128. Cyr M, Calon F, Morissette M, Grandbois M, Di Paolo T, Callier S. Drugs with estrogen-like potency and brain activity: potential therapeutic application for the CNS. *Curr Pharm Des.* 2000;6:1287-1312. doi:10.2174/1381612003399725

129. de Boer J, Prikken M, Lei WU, Begemann M, Sommer I. The effect of raloxifene augmentation in men and women with a schizophrenia spectrum disorder: a systematic review and meta-analysis. *npj Schizophrenia.* 2018;4(1):1. doi:10.1038/s41537-017-0043-3

130. Usall J, Huerta-Ramos E, Iniesta R, et al. Raloxifene as an Adjunctive Treatment for Postmenopausal Women With Schizophrenia. *J Clin Psychiatry.* 2011;72(11):1552-1557. doi:10.4088/JCP.10m06610

131. Kindler J, Weickert CS, Skilleter AJ, Catts S V., Lenroot R, Weickert TW. Selective Estrogen Receptor Modulation Increases Hippocampal Activity during Probabilistic Association Learning in Schizophrenia. *Neuropsychopharmacology.* 2015;40(10):2388-2397. doi:10.1038/npp.2015.88

132. Kulkarni J, Gurvich C, Lee SJ, et al. Piloting the effective therapeutic dose of adjunctive selective estrogen receptor modulator treatment in postmenopausal women with schizophrenia. *Psychoneuroendocrinology.* 2010;35(8):1142-1147. doi:10.1016/j.psyneuen.2010.01.014

133. Weiser M, Levi L, Burshtein S, et al. Raloxifene plus antipsychotics versus placebo plus antipsychotics in severely ill decompensated postmenopausal women with schizophrenia or schizoaffective disorder: A randomized controlled trial. *J Clin Psychiatry.* 2017;78(7):e758-e765. doi:10.4088/JCP.15m10498

134. Breier A, Lifick E, Hummer T, et al. S32. ARE SELECTIVE ESTROGEN RECEPTOR BETA AGONISTS POTENTIAL THERAPEUTICS FOR SCHIZOPHRENIA? *Schizophr Bull.* 2020;46(Suppl 1):S43-4. doi:10.1093/schbul/sbaa031.098

135. Vivacqua A, Bonofiglio D, Recchia AG, et al. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. *Mol Endocrinol.* 2006;20(3):631-646. doi:10.1210/me.2005-0280

136. Petrie WK, Dennis MK, Hu C, et al. G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth. *Obstet Gynecol Int.* 2013;2013:472720. doi:10.1155/2013/472720

137. Meyer MR, Prossnitz ER, Barton M. The G protein-coupled estrogen receptor GPER/GPR30 as a regulator of cardiovascular function. *Vascul Pharmacol.*
138. Phase 1 Study to Determine the MTD, Safety, Tolerability, PK and Preliminary Anti-tumor Effects of LNS8801 alone and in Combination With Pembrolizumab - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04130516. Accessed October 28, 2020.

139. Rosenfeld CS. Effects of Phytoestrogens on the Developing Brain, Gut Microbiota, and Risk for Neurobehavioral Disorders. *Front Nutr.* 2019;6:142. doi:10.3389/fnut.2019.00142

140. Sumien N, Chaudhari K, Sidhu A, Forster MJ. Does phytoestrogen supplementation affect cognition differentially in males and females? *Brain Res.* 2013;1514:123-127. doi:10.1016/j.brainres.2013.02.013

141. Du ZR, Feng XQ, Li N, et al. G protein-coupled estrogen receptor is involved in the anti-inflammatory effects of genistein in microglia. *Phytomedicine.* 2018;43:11-20. doi:10.1016/j.phymed.2018.03.039

142. Suresh P, Raju AB. Antidopaminergic effects of leucine and genistein on schizophrenic rat models. *Neurosciences.* 2013;18:235-241.

143. Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators. *Pharmacol Rev Pharmacol Rev.* 2015;67:505-540. doi:10.1124/pr.114.009712

144. Schwartz DL. Quercetin as an augmentation agent in schizophrenia. *J Clin Psychopharmacol.* 2016;282-283. doi:10.1097/JCP.0000000000000498

145. Hutson DD, Gurrala R, Ogola BO, et al. Estrogen receptor profiles across tissues from male and female Rattus norvegicus. *Biol Sex Differ.* 2019;10(1):4. doi:10.1186/s13293-019-0219-9

146. Deschamps AM, Murphy E. Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. *Am J Physiol Heart Circ Physiol.* 2009;297(5):H1806-13. doi:10.1152/ajpheart.00283.2009