HIGHER REPRESENTATION THEORY AND QUANTUM AFFINE SCHUR-WEYL DUALITY

SEOK-JIN KANG

Abstract. In this article, we explain the main philosophy of 2-representation theory and quantum affine Schur-Weyl duality. The Khovanov-Lauda-Rouquier algebras play a central role in both themes.

Introduction

The Khovanov-Lauda-Rouquier algebras, introduced by Khovanov-Lauda [28, 29] and Rouquier [33, 34], are a family of Z-graded algebras that provide a fundamental framework for 2-representation theory and quantum affine Schur-Weyl duality.

Let \(H_k(\zeta) \) be the finite Hecke algebra with \(\zeta \) a primitive \(n \)-th root of unity and let \(U_q(A_{n-1}^{(1)}) \) be the quantum affine algebra of type \(A_{n-1}^{(1)} \). In [30], Lascoux-Leclerc-Thibon discovered a recursive algorithm of computing Kashiwara’s lower global basis (=Lusztig’s canonical basis) ([26, 31]) and conjectured that the coefficient polynomials, when evaluated at \(q = 1 \), give the composition multiplicities of simple \(H_k(\zeta) \)-modules inside Specht modules.

In [2], Ariki came up with a proof of the Lascoux-Leclerc-Thibon conjecture using the idea of categorification. More precisely, let \(\Lambda \) be a dominant integral weight associated with the affine Cartan datum of type \(A_{n-1}^{(1)} \) and let \(H_k^\Lambda(\zeta) \) be the corresponding cyclotomic Hecke algebra. Let \(\text{proj}(H_k^\Lambda(\zeta)) \) denote the category of finitely generated projective \(H_k^\Lambda(\zeta) \)-modules and let \(K(\text{proj}(H_k^\Lambda(\zeta))) \) be the Grothendieck group of \(\text{proj}(H_k^\Lambda(\zeta)) \). Then Ariki proved

\[
\bigoplus_{k=0}^\infty K(\text{proj}(H_k^\Lambda(\zeta)))_C \cong V(\Lambda),
\]

where \(V(\Lambda) \) is the integrable highest weight module over \(A_{n-1}^{(1)} \). Moreover, he showed that the isomorphism classes of projective indecomposable modules correspond to the lower global basis of \(V(\Lambda) \) at \(q = 1 \), from which the Lascoux-Leclerc-Thibon conjecture follows.

2010 Mathematics Subject Classification. 17B37, 16E99.
Key words and phrases. 2-representation theory, Schur-Weyl duality, Khovanov-Lauda-Rouquier algebra, quantum group.

This work was supported by NRF Grant #2013-035155 and NRF Grant #2013-055408.
The idea of categorification, which was originated from \cite{7}, can be explained as follows. In the classical representation theory, we study the properties of an algebra \(A \) that are reflected on various vector spaces \(V \). That is, we investigate various algebra homomorphisms \(\phi : A \to \text{End}(V) \). We identify \(A \) with a category having a single object and its elements as morphisms. Similarly, we consider \(\text{End}(V) \) as a category with \(V \) as its object and linear operators on \(V \) as morphisms. Then the classical representation theory can be understood as the study of functors from a category to another, whence the 1-representation theory.

We now categorify the classical representation theory. Let \(A = \bigoplus_{\alpha \in Q} A_{\alpha} \) be a graded algebra and let \(V = \bigoplus_{\lambda \in P} V_{\lambda} \) be a graded \(A \)-module, where \(Q \) and \(P \) are appropriate abelian groups. We construct 2-categories \(\mathfrak{A} \) and \(\mathfrak{B} \) whose objects are certain categories \(\mathcal{A}_\alpha \) \((\alpha \in Q)\) and \(\mathcal{B}_\lambda \) \((\lambda \in P)\) such that

\[
\bigoplus_{\alpha \in Q} K(\mathcal{A}_\alpha) \cong A, \quad \bigoplus_{\lambda \in P} K(\mathcal{B}_\lambda) \cong V.
\]

We now investigate the properties of 2-functors \(R : \mathfrak{A} \to \mathfrak{B} \). That is, by categorifying the classical representation theory, we obtain the 2-representation theory, the study of 2-functors from a 2-category to another.

So far, one of the most interesting developments in 2-representation theory is the one via Khovanov-Lauda-Rouquier algebras. The Khovanov-Lauda-Rouquier algebras categorify the negative half of quantum groups associated with all symmetrizable Cartan datum \cite{28, 29, 33, 34}. Moreover, the cyclotomic Khovanov-Lauda-Rouquier algebras give a categorification of all integrable highest weight modules \cite{17}. Hence Khovanov-Lauda-Rouquier’s and Kang-Kashiwara’s categorification theorems provide a vast generalization of Ariki’s categorification theorem. (See also \cite{39}.)

When the Cartan datum is symmetric, as was conjectured by Khovanov-Lauda \cite{29}, Varagnolo-Vasserot proved that the isomorphism classes of simple modules (respectively, projective indecomposable modules) correspond to upper global basis (=dual canonical basis) (respectively, lower global basis) \cite{37}. However, when the Cartan datum is not symmetric, the above statements do not hold in general. It is a very interesting problem to characterize the perfect basis and dual perfect basis that correspond to simple modules and projective indecomposable modules, respectively.

On the other hand, the Khovanov-Lauda-Rouquier algebras can be viewed as a huge generalization of affine Hecke algebras in the context of Schur-Weyl duality. The Schur-Weyl duality, established by Schur and others (see, for example, \cite{35, 36}), reveals a deep connection between the representation theories of symmetric groups and general linear Lie algebras. Let \(V = \mathbb{C}^n \) be the vector representation of the general linear Lie algebra \(gl_n \) and consider the \(k \)-fold tensor product of \(V \). Then \(gl_n \) acts on \(V^\otimes k \) by comultiplication and the symmetric group \(\Sigma_k \) acts on

\(V^{\otimes k}\) (from the right) by place permutation. Clearly, these actions commute with each other. The Schur-Weyl duality states that there exists a surjective algebra homomorphism

\[\phi_k : C\Sigma_k \longrightarrow \text{End}_{gl_n}(V^{\otimes k}), \]

where \(\text{End}_{gl_n}(V^{\otimes k})\) denotes the centralizer algebra of \(V^{\otimes k}\) under the \(gl_n\)-action. Moreover, \(\phi_k\) is an isomorphism whenever \(k \leq n\).

The Schur-Weyl duality can be rephrased as follows. There is a functor \(F\) from the category of finite dimensional \(\Sigma_k\)-modules to the category of finite dimensional polynomial representations of \(gl_n\) given by

\[M \mapsto V^{\otimes k} \otimes_{C\Sigma_k} M, \]

where \(M\) is a finite dimensional \(\Sigma_k\)-module. The functor \(F\) is called the Schur-Weyl duality functor and it defines an equivalence of categories whenever \(k \leq n\).

In [15], Jimbo extended the Schur-Weyl duality to the quantum setting: \(\Sigma_k\) is replaced by the finite Hecke algebra \(H_k\) and \(gl_n\) is replaced by the quantum group \(U_q(gl_n)\). Then he obtained the quantum Schur-Weyl duality functor from the category of finite dimensional \(H_k\)-modules to the category of finite dimensional polynomial representations of \(U_q(gl_n)\), which also defines an equivalence of categories whenever \(k \leq n\).

In [4, 5, 10], Chari-Pressley, Cherednik and Ginzburg-Reshetikhin-Vasserot constructed a quantum affine Schur-Weyl duality functor which relates the category of finite dimensional representations of affine Hecke algebra \(H_k^{\text{aff}}\) and the category of finite dimensional integrable \(U'_q(A^{(1)}_{n-1})\)-modules. The main ingredients of their constructions are (i) the fundamental representation \(V(\varpi_1)\), (ii) the \(R\)-matrices on the tensor products of \(V(\varpi_1)\) satisfying the Yang-Baxter equation, (iii) the intertwiners in \(H_k^{\text{aff}}\) satisfying the braid relations.

Using Khovanov-Lauda-Rouquier algebras, one can construct quantum affine Schur-Weyl duality functors in much more generality. In [18], Kang, Kashiwara and Kim constructed such a functor which relates the category of finite dimensional modules over symmetric Khovanov-Lauda-Rouquier algebras and the category of finite dimensional integrable modules over all quantum affine algebras. Roughly speaking, the basic idea can be explained as follows. Using a family of good modules and \(R\)-matrices, we determine a quiver \(\Gamma\) and construct a symmetric Khovanov-Lauda-Rouquier algebra \(R^\Gamma(\beta)\) \((\beta \in Q_+)\). We then construct a \((U'_q(\mathfrak{g}), R^\Gamma(\beta))\)-bimodule \(\tilde{V}^{\otimes \beta}\), a completed tensor power arising from good modules, and define the quantum affine Schur-Weyl duality functor \(F\) by

\[M \mapsto \tilde{V}^{\otimes \beta} \otimes_{R^\Gamma(\beta)} M, \]

where \(M\) is an \(R^\Gamma(\beta)\)-module.
Various choices of quantum affine algebras and good modules would give rise to various quantum affine Schur-Weyl duality functors. We believe that our general approach will generate a great deal of exciting developments in the forthcoming years.

Acknowledgements: The author is very grateful to Masaki Kashiwara, Myungho Kim and Se-jin Oh for many valuable discussions and suggestions on this paper.

1. Quantum Groups

We begin with a brief recollection of representation theory of quantum groups.

Let I be a finite index set. An integral matrix $A = (a_{ij})_{i,j \in I}$ is called a symmetrizable Cartan matrix if (i) $a_{ii} = 2$ for all $i \in I$, (ii) $a_{ij} \leq 0$ for $i \neq j$, (iii) $a_{ij} = 0$ if and only if $a_{ji} = 0$, (iv) there exists a diagonal matrix $D = \text{diag}(d_i \in \mathbb{Z}_{>0} \mid i \in I)$ such that DA is symmetric.

A Cartan datum consists of:

1. A symmetrizable Cartan matrix $A = (a_{ij})_{i,j \in I}$,
2. A free abelian group P of finite rank, the weight lattice,
3. $\Pi = \{\alpha_i \in P \mid i \in I\}$, the set of simple roots,
4. $P^\vee := \text{Hom}(P, \mathbb{Z})$, the dual weight lattice,
5. $\Pi^\vee = \{h_i \in P^\vee \mid i \in I\}$, the set of simple coroots

satisfying the following properties

(i) $\langle h_i, \alpha_j \rangle = a_{ij}$ for all $i, j \in I$,
(ii) Π is linearly independent,
(iii) for each $i \in I$, there exists an element $\Lambda_j \in P$ such that

$$\langle h_i, \Lambda_j \rangle = \delta_{ij} \quad \text{for all } i, j \in I.$$

The Λ_i’s ($i \in I$) are called the fundamental weights.

We denote by

$$P^+ := \{\Lambda \in P \mid \langle h_i, \Lambda \rangle \geq 0 \text{ for all } i \in I\}$$

the set of dominant integral weights. The free abelian group $Q := \bigoplus_{i \in I} \mathbb{Z}\alpha_i$ is called the root lattice. Set $Q_+ = \sum_{i \in I} \mathbb{Z}_{\geq 0}\alpha_i$. For $\beta = \sum k_i \alpha_i \in Q_+$, we define its height to be $|\beta| := \sum k_i$.

Since A is symmetrizable, there exists a symmetric bilinear form (\cdot, \cdot) on $\mathfrak{h}^* := Q \otimes_{\mathbb{Z}} P^\vee$ satisfying

$$(\alpha_i, \alpha_j) = a_{ij}, \quad \langle h_i, \lambda \rangle = \frac{2(\alpha_i, \lambda)}{(\alpha_i, \alpha_i)} \quad \text{for all } \lambda \in \mathfrak{h}^*, \ i, j \in I.$$
Let q be an indeterminate and set $q_i = q^{a_i} \ (i \in I)$. For $m, n \in \mathbb{Z}_{\geq 0}$, we define

$$[n]_i := \frac{q^n_i - q_i^{-n}}{q_i - q_i^{-1}}, \quad [n]_i! := \prod_{k=1}^n [k]_i.$$

We write $e_i^{(k)} := e_i^k/[k]_i!$, $f_i^{(k)} := f_i^k/[k]_i! \ (k \in \mathbb{Z}_{\geq 0}, \ i \in I)$ for the divided powers.

Definition 1.1. The quantum group $U_q(g)$ corresponding to a Cartan datum $(\Lambda, P, \Pi, P^\vee, \Pi^\vee)$ is the associative algebra over $\mathbb{Q}(q)$ generated by the elements $e_i, f_i \ (i \in I), \ q^h \ (h \in P^\vee)$ with defining relations

$$q^0 = 1, \quad q^h q^{h'} = q^{h+h'} \ (h, h' \in P^\vee),$$

$$q^h e_i q^{-h} = q^{(h,a_i)} e_i, \quad q^h f_i q^{-h} = q^{-(h,a_i)} f_i \ (h \in P^\vee, i \in I),$$

$$e_i f_j - f_j e_i = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}} \ (K_i = q^{d_i h_i}, i \in I),$$

$$\sum_{k=0}^{1-a_{ij}} (-1)^k e_i^{(1-a_{ij}-k)} e_j e_i^{(k)} = 0 \ (i \neq j),$$

$$\sum_{k=0}^{1-a_{ij}} (-1)^k f_i^{(1-a_{ij}-k)} f_j f_i^{(k)} = 0 \ (i \neq j).$$

Let $U^0_q(g)$ be the subalgebra of $U_q(g)$ generated by $q^h \ (h \in P^\vee)$ and let $U^+_{q}(g)$ (respectively, $U^-_{q}(g)$) be the subalgebra of $U_q(g)$ generated by e_i (respectively, f_i) for all $i \in I$. Then the algebra $U_q(g)$ has the triangular decomposition

$$U_q(g) \cong U^-_{q}(g) \otimes U^0_{q}(g) \otimes U^+_{q}(g).$$

Let $A = \mathbb{Z[q, q^{-1}]}$. We define the integral form $U_A(g)$ of $U_q(g)$ to be the A-subalgebra of $U_q(g)$ generated by $e_i^{(k)}, f_i^{(k)}, q^h \ (i \in I, h \in P^\vee, k \in \mathbb{Z}_{\geq 0})$. Let $U^0_A(g)$ be the A-subalgebra of $U_q(g)$ generated by $q^h \ (h \in P^\vee)$ and let $U^+_A(g)$ (respectively, $U^-_A(g)$) be the A-subalgebra of $U_q(g)$ generated by $e_i^{(k)}$ (respectively, $f_i^{(k)}$) $(i \in I, k \in \mathbb{Z}_{\geq 0})$. Then we have

$$U_A(g) \cong U^-_A(g) \otimes U^0_A(g) \otimes U^+_A(g).$$

A $U_q(g)$-module V is called a highest weight module with highest weight $\Lambda \in P$ if there exists a nonzero vector v_Λ in V, called the highest weight vector, such that

(i) $e_i v_\Lambda = 0$ for all $i \in I$,
(ii) $q^h v_\Lambda = q^{(h, \Lambda)} v_\Lambda$ for all $h \in P^\vee$,
(iii) $V = U_q(g) v_\Lambda$.

Higher Representation Theory and Schur-Weyl Duality

5
For each $\Lambda \in P$, there exists a unique irreducible highest weight module $V(\Lambda)$ with highest weight Λ. The integral form of $V(\Lambda)$ is defined to be

$$V^*_A(\Lambda) := U^*_A(g) v_\Lambda,$$

where v_Λ is the highest weight vector.

Consider the anti-involution $\phi : U_q(g) \to U_q(g)$ defined by

$$q^h \mapsto q^{-h}, \quad e_i \mapsto f_i, \quad f_i \mapsto e_i \quad (h \in P^\vee, \ i \in I).$$

Then there exists a unique non-degenerate symmetric bilinear form $(\ ,\)$ on $V(\Lambda)$ satisfying

$$(v_\Lambda, v_\Lambda) = 1, \quad (x u, v) = (u, \phi(x) v) \quad \text{for all } x \in U_q(g), \ u, v \in V(\Lambda).$$

The dual of $V^*_A(\Lambda)$ is defined to be

$$V^*_A(\Lambda)^\vee := \{ v \in V(\Lambda) \mid (u, v) \in A \quad \text{for all } u \in V^*_A(\Lambda) \}.$$

Note that $V^*_A(\Lambda)^\vee = \text{Hom}_A(V^*_A(\Lambda_\lambda, A)$ for all $\lambda \in P$.

The category \mathcal{O}_int consists of $U_q(g)$-modules M such that

(i) $M = \bigoplus_{\mu \in P} M_\mu$, where $M_\mu := \{ m \in M \mid q^h m = q^{(h,\mu)} m \text{ for all } h \in P^\vee \}$,

(ii) $e_i, f_i (i \in I)$ are locally nilpotent on M,

(iii) there exist finitely many elements $\lambda_1, \ldots, \lambda_s \in P$ such that

$$\text{wt}(M) := \{ \mu \in P \mid M_\mu \neq 0 \} \subset \bigcup_{j=1}^s (\lambda_j - Q_+).$$

The following properties of the category \mathcal{O}_int are well-known. (See, for example, [11, 16, 32].)

Proposition 1.2.

(a) The category \mathcal{O}_int is semisimple.

(b) The $U_q(g)$-module $V(\Lambda)$ with $\Lambda \in P^+$ belongs to \mathcal{O}_int.

(c) Every simple object in \mathcal{O}_int has the form $V(\Lambda)$ for some $\Lambda \in P^+$.

2. **Khovanov-Lauda-Rouquier algebras**

Let k be a field and let $(A, P, \Pi, P^\vee, \Pi^\vee)$ be a Cartan datum. For each $i \neq j$, set

$$S_{ij} := \{ (p, q) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \mid (\alpha_i, \alpha_i)p + (\alpha_j, \alpha_j)q = -2(\alpha_i, \alpha_j) \}.$$

Define a family of polynomials $Q = (Q_{ij})_{i,j \in I}$ in $k[u, v]$ by

$$(2.1) \quad Q_{ij}(u, v) := \begin{cases}
0 & \text{if } i = j, \\
\sum_{(p,q) \in S_{ij}} t_{i,j;p,q} u^p v^q & \text{if } i \neq j
\end{cases}$$
for some $t_{i,j;p,q} \in k$ such that $t_{i,j;p,q} = t_{j,i;q,p}$ and $t_{i,j; a_{i,j},0} \in k^\times$. In particular,

$$Q_{ii}(u,v) = 0, \quad Q_{ij}(u,v) = Q_{ji}(v,u) \quad (i \neq j).$$

The symmetric group $\mathfrak{S}_n = \langle s_1, s_2, \ldots, s_{n-1} \rangle$ acts on I^n by place permutation, where s_i denotes the transposition $(i, i+1)$.

Definition 2.1. The Khovanov-Lauda-Rouquier algebra $R(n)$ of degree $n \geq 0$ associated with (A,Q) is the associative algebra over k generated by the elements $e(\nu)$ ($\nu \in I^n$), x_k ($1 \leq k \leq n$), τ_l ($1 \leq l \leq n - 1$) with defining relations

$$e(\nu)e(\nu') = \delta_{\nu,\nu'}e(\nu), \quad \sum_{\nu \in I^n} e(\nu) = 1,$$

$$x_k x_l = x_l x_k, \quad x_k e(\nu) = e(\nu)x_k,$$

$$\tau_l e(\nu) = e(s_l(\nu))\tau_l, \quad \tau_l \tau_l = \tau_l \tau_l \text{ if } |k - l| > 1,$$

$$\tau_k^2 e(\nu) = Q_{\nu_k, \nu_{k+1}}(x_k, x_{k+1})e(\nu),$$

$$(\tau_k x_l - x_{s(l)}\tau_k)e(\nu) = \begin{cases} -e(\nu) & \text{if } l = k, \nu_k = \nu_{k+1}, \\ e(\nu) & \text{if } l = k + 1, \nu_k = \nu_{k+1}, \\ 0 & \text{otherwise}, \end{cases}$$

$$(\tau_{k+1} \tau_k \tau_{k+1} - \tau_k \tau_{k+1} \tau_k)e(\nu) = \begin{cases} \frac{Q_{\nu_k, \nu_{k+1}}(x_k, x_{k+1}) - Q_{\nu_k, \nu_{k+1}}(x_{k+2}, x_{k+1})}{x_k - x_{k+2}}e(\nu) & \text{if } \nu_k = \nu_{k+2}, \\ 0 & \text{otherwise}. \end{cases}$$

The algebra $R(n)$ has a \mathbb{Z}-grading by assigning the degrees as follows:

$$\deg e(\nu) = 0, \quad \deg x_k e(\nu) = (\alpha_{\nu_k}, \alpha_{\nu_k}), \quad \deg \tau_l e(\nu) = -(\alpha_{\nu_l}, \alpha_{\nu_{l+1}}).$$

We denote by q the degree-shift functor defined by

$$(qM)_k = M_{k-1},$$

where $M = \bigoplus_{k \in \mathbb{Z}} M_k$ is a graded $R(n)$-module. Also there is an algebra involution $\psi : R(n) \rightarrow R(n)$ given by

$$e(\nu) \mapsto e(\nu'), \quad x_k \mapsto x_{n-k+1},$$

$$\tau_{l} e(\nu) \mapsto \begin{cases} -\tau_{n-l} e(\nu') & \text{if } \nu_l = \nu_{l+1}, \\ \tau_{n-l} e(\nu') & \text{if } \nu_l \neq \nu_{l+1}, \end{cases}$$

where $\nu = (\nu_1, \nu_2, \ldots, \nu_n)$ and $\nu' = (\nu_n, \ldots, \nu_2, \nu_1)$.

By the embedding $R(m) \otimes R(n) \hookrightarrow R(m + n)$, we may consider $R(m) \otimes R(n)$ as a subalgebra of $R(m + n)$. For an $R(m)$-module M and an $R(n)$-module N, we
define their \textit{convolution product} $M \circ N$ by
\begin{equation}
M \circ N := R(m + n) \otimes_{R(m) \otimes R(n)} (M \otimes N).
\end{equation}

Since $R(m + n)$ is free over $R(m) \otimes R(n)$ (\cite[Proposition 2.16]{28}), the bifunctor $(M, N) \mapsto M \circ N$ is exact in M and N.

For $n \geq 0$ and $\beta \in \mathbb{Q}_+$ with $|\beta| = n$, set
\begin{align*}
I^\beta := \{ \nu = (\nu_1, \ldots, \nu_n) \mid \alpha_{\nu_1} + \cdots + \alpha_{\nu_n} = \beta \}, \\
e(\beta) := \sum_{\nu \in I^\beta} e(\nu).
\end{align*}

Then $e(\beta)$ is a central idempotent in $R(n)$. We also define
\begin{align*}
e(\beta, \alpha_i) &:= \sum_{\nu \in I^{\beta+\alpha_i}} e(\nu), \\
e(\alpha_i, \beta) &:= \sum_{\nu \in I^{\beta+\alpha_i}} e(\nu).
\end{align*}

The algebra
\begin{equation*}
R(\beta) := R(n)e(\beta)
\end{equation*}
is called the \textit{Khovanov-Lauda-Rouquier algebra at} β.

For a k-algebra R, we denote by $\text{mod}(R)$ (respectively, $\text{proj}(R)$ and $\text{rep}(R)$) the category of R-modules (respectively, the category of finitely generated projective R-modules and the category of finite dimensional R-modules).

If R is a graded k-algebra, we will use $\text{Mod}(R)$ (respectively, $\text{Proj}(R)$ and $\text{Rep}(R)$) for the category of graded R-modules (respectively, the category of finitely generated projective graded R-modules and the category of finite dimensional graded R-modules).

For each $i \in I$, define the functors
\begin{align*}
E_i &: \text{Mod}(R(\beta + \alpha_i)) \rightarrow \text{Mod}(R(\beta)), \\
F_i &: \text{Mod}(R(\beta)) \rightarrow \text{Mod}(R(\beta + \alpha_i))
\end{align*}
by
\begin{align*}
E_i(N) &= e(\beta, \alpha_i) R(\beta + \alpha_i) \otimes_{R(\beta + \alpha_i)} N, \\
F_i(M) &= R(\beta + \alpha_i) e(\beta, \alpha_i) \otimes_{R(\beta)} M
\end{align*}
for $M \in \text{Mod}(R(\beta))$, $N \in \text{Mod}(R(\beta + \alpha_i))$.

By \cite[Proposition 2.16]{28}, the functors E_i and F_i are exact and send finitely generated projective modules to finitely generated projective modules. Hence (2.5) restricts to the functors
\begin{align*}
E_i &: \text{Proj}(R(\beta + \alpha_i)) \rightarrow \text{Proj}(R(\beta)), \\
F_i &: \text{Proj}(R(\beta)) \rightarrow \text{Proj}(R(\beta + \alpha_i)).
\end{align*}
For $1 \leq k < n$, set $b_k := \tau_k x_{k+1}$ and $b'_k := x_{k+1} \tau_k$. Let $w_0 = s_{i_1} \cdots s_{i_r}$ be the longest element in S_n and set

$$b(n) := b_{i_1} \cdots b_{i_r}, \quad b'(n) := b'_{i_1} \cdots b'_{i_1}.$$

For each $n \geq 0$, we define the divided powers by

$$E^{(n)}_i := b'(n)E^n_i, \quad F^{(n)}_i := F^n_i b(n).$$

In [28] and [33], Khovanov-Lauda and Rouquier proved the following categorification theorem.

Theorem 2.2. [28, 33]

There exists an A-algebra isomorphism

$$U^{-}_A(g) \xrightarrow{\sim} K(\text{Proj}(R)) \quad \text{given by} \quad f_i^{(n)} \longmapsto [F_i^{(n)}] \quad (i \in I, \ n \geq 0),$$

where $K(\text{Proj}(R)) := \bigoplus_{\beta \in Q_+} K(\text{Proj}(R(\beta))).$

Thus we have constructed a 2-category \mathfrak{R} such that the objects are the categories $\text{Proj}(R(\beta))$ ($\beta \in Q_+$) and the categories $\mathcal{H}om(\text{Proj} R(\alpha), \text{Proj} R(\beta))$ consist of the monomials $F_{i_1} \cdots F_{i_r}$ ($i_k \in I, \ r \geq 0$) of functors satisfying

$$\alpha_{i_1} + \cdots + \alpha_{i_r} = \begin{cases} \alpha - \beta & \text{if} \ \alpha \geq \beta, \\ \beta - \alpha & \text{if} \ \beta \geq \alpha. \end{cases}$$

The morphisms in $\mathcal{H}om(\text{Proj} R(\alpha), \text{Proj} R(\beta))$ are the natural transformations generated by $x_i : F_i \to F_i, \ \tau_{ij} : F_i F_j \to F_j F_i$ ($i, j \in I$) satisfying the relations

$$\tau_{ij} \circ \tau_{ji} = Q_{ij}(F_j x_i, x_j F_i),$$

$$\tau_{jk} F_i \circ F_j \tau_{ik} \circ \tau_{ij} F_k - F_k \tau_{ij} \circ \tau_{ik} F_j \circ F_i \tau_{jk}$$

$$= \begin{cases} Q_{ij}(x_i F_j x_i, x_j F_i) x_i F_j F_i - F_i F_j x_i & \text{if} \ i = k, \\ 0 & \text{otherwise}, \end{cases}$$

$$\tau_{ij} \circ x_i F_j - F_j x_i \circ \tau_{ij} = \delta_{ij},$$

$$\tau_{ij} \circ F_i x_j - x_j F_i \circ \tau_{ij} = -\delta_{ij}.$$

It is straightforward to verify that \mathfrak{R} satisfies all the axioms for 2-categories [33, 34].

For the later use, we define a functor $\overline{T}_i : \text{Mod} (R(\beta)) \to \text{Mod} (R(\beta + \alpha_i))$ by

$$\overline{T}_i(M) := R(\beta + \alpha_i) e(\alpha_i, \beta) \otimes_{R(\beta)} M \quad \text{for} \ i \in I, \ M \in \text{Mod} (R(\beta)).$$

The properties of the functors E_i, F_i and \overline{T}_i ($i \in I$) are given in the following proposition.
Proposition 2.3. [17]
(a) We have an exact sequence in $\text{Mod } (R(\beta))$
\[0 \rightarrow \overline{F_i} E_i M \rightarrow E_i \overline{F_i} M \rightarrow q^{-(\alpha_i, \alpha_i)} M \otimes k[t_i] \rightarrow 0 \]
which is functorial in $M \in \text{Mod } (R(\beta))$.
(b) There exist natural isomorphisms
\[E_i F_j \xrightarrow{\sim} F_j E_i, \quad E_i \overline{F_j} \xrightarrow{\sim} \overline{F_j} E_i \quad \text{if } i \neq j, \]
\[E_i F_i \xrightarrow{\sim} q^{-(\alpha_i, \alpha_i)} F_i E_i \oplus 1 \otimes k[t_i] \quad \text{if } i = j, \]
where t_i is an indeterminate of degree (α_i, α_i) and
\[1 \otimes k[t_i] : \text{Mod } (R(\beta)) \rightarrow \text{Mod } (R(\beta)) \]
is the degree-shift functor sending M to $M \otimes k[t_i]$ for $M \in \text{Mod } (R(\beta))$ ($\beta \in Q_+)$.

3. Cyclotomic categorification theorem

Let $\Lambda \in P^+$ and let
\[a^\Lambda(x_1) := \sum_{\nu \in \mathfrak{t}^\beta} x_1^{(h_v+\Lambda)} e(\nu) \in R(\beta). \]
Then the cyclotomic Khovanov-Lauda-Rouquier algebra $R^\Lambda(\beta)$ ($\beta \in Q_+$) is defined to be the quotient algebra
\[R^\Lambda(\beta) := R(\beta) / R(\beta) a^\Lambda(x_1) R(\beta). \]
We would like to show that the cyclotomic Khovanov-Lauda-Rouquier algebras provide a categorification of irreducible highest weight $U_q(\mathfrak{g})$-modules in the category \mathcal{O}_{int}.

For each $i \in I$, define the functors
\[E_i^\Lambda : \text{Mod}(R^\Lambda(\beta + \alpha_i)) \rightarrow \text{Mod}(R^\Lambda(\beta)), \]
\[F_i^\Lambda : \text{Mod}(R^\Lambda(\beta)) \rightarrow \text{Mod}(R^\Lambda(\beta + \alpha_i)) \]
by
\[E_i^\Lambda(N) = e(\beta, \alpha_i) R^\Lambda(\beta + \alpha_i) \otimes_{R^\Lambda(\beta + \alpha_i)} N, \]
\[F_i^\Lambda(M) = R^\Lambda(\beta + \alpha_i) e(\beta, \alpha_i) \otimes_{R^\Lambda(\beta)} M \]
for $M \in \text{Mod}(R^\Lambda(\beta))$, $N \in \text{Mod}(R^\Lambda(\beta + \alpha_i))$. However, since $R^\Lambda(\beta + \alpha_i)$ is not free over $R^\Lambda(\beta)$, there is no guarantee that E_i^Λ and F_i^Λ send finitely generated projective modules to finitely generated projective modules. To prove this, we need to show that $R^\Lambda(\beta + \alpha_i) e(\beta, \alpha_i)$ is a projective right $R^\Lambda(\beta)$-module.
Let

$$F^\Lambda := R^\Lambda(\beta + \alpha_i) e(\beta, \alpha_i) = \frac{R(\beta + \alpha_i) e(\beta, \alpha_i)}{R(\beta + \alpha_i) a^\Lambda(x_1) R(\beta + \alpha_i) e(\beta, \alpha_i)},$$

$$K_0 := R(\beta + \alpha_i) e(\beta, \alpha_i) \otimes_{R^\beta} R^\Lambda(\beta) = \frac{R(\beta + \alpha_i) e(\beta, \alpha_i)}{R(\beta + \alpha_i) a^\Lambda(x_1) R(\beta) e(\beta, \alpha_i)},$$

$$K_1 := R(\beta + \alpha_i) e(\alpha_i, \beta) \otimes_{R^\beta} R^\Lambda(\beta) = \frac{R(\beta + \alpha_i) e(\alpha_i, \beta)}{R(\beta + \alpha_i) a^\Lambda(x_2) R^\Lambda(\beta) e(\alpha_i, \beta)},$$

where $R^1(\beta)$ is the subalgebra of $R(\beta + \alpha_i)$ generated by $e(\alpha_i, \nu) \ (\nu \in I^\beta)$, $x_k \ (2 \leq k \leq n + 1)$, $\tau_i \ (2 \leq i \leq n)$. Then F^Λ, K_0 and K_1 can be regarded as $(R(\beta + \alpha_i), R^\Lambda(\beta))$-bimodules.

Let t_i be an indeterminate of degree (α_i, α_i). Then $k[t_i]$ acts on $R(\beta + \alpha_i) e(\alpha_i, \beta)$ and K_1 from the right by $t_i = x_i e(\alpha_i, \beta)$. On the other hand, $k[t_i]$ acts on K_0 and F^Λ from the right by $t_i = x_{n+1} e(\beta, \alpha_i)$. Hence all of them have a structure of $(R(\beta + \alpha_i), R(\beta) \otimes k[t_i])$-bimodules. Moreover, F^Λ, K_0 and K_1 are in fact $(R(\beta + \alpha_i), R^\Lambda(\beta) \otimes k[t_i])$-bimodules.

In [28], it was shown that K_0 and K_1 are finitely generated projective right $(R^\Lambda(\beta) \otimes k[t_i])$-modules. Let $\pi : K_0 \to F^\Lambda$ be the canonical projection and let $P : K_1 \to K_0$ be the right multiplication by $a^\Lambda(x_1) \tau_1 \cdots \tau_n$.

The following theorem is one of the main results in [17].

Theorem 3.1. [17]

The sequence

$$0 \to K_1 \xrightarrow{P} K_0 \xrightarrow{\pi} F^\Lambda \to 0$$

is exact as $(R(\beta + \alpha_i), R^\Lambda(\beta) \otimes k[t_i])$-bimodules.

Hence we get a projective resolution of F^Λ of length 1 as a right $R^\Lambda(\beta)[t_i]$-module. By the following lemma, we conclude that F^Λ is a finitely generated projective right $R^\Lambda(\beta)$-module.

Lemma 3.2. [17] Let R be a ring and let $f(t)$ be a monic polynomial in $R[t]$ with coefficients in the center of R.

If an $R[t]$-module M is annihilated by $f(t)$ and has projective dimension ≤ 1, then M is projective as an R-module.

Thus we obtain the following important theorem.
Theorem 3.3. [17]
(a) $R^{A}(\beta + \alpha_i)e(\beta, \alpha_i)$ is a projective right $R^{A}(\beta)$-module.
(b) $e(\beta, \alpha_i)R^{A}(\beta + \alpha_i)$ is a projective left R^{A}-module.
(c) The functors E_{i}^{A} and F_{i}^{A} are exact.
(d) The functors E_{i}^{A} and F_{i}^{A} send finitely generated projective modules to finitely
generated projective modules.

Corollary 3.4. [17]
For all $i \in I$ and $\beta \in Q_{+}$, we have an exact sequence of $R(\beta + \alpha_i)$-modules
\[0 \rightarrow q^{(\alpha_i, 2\Lambda - \beta)}F_{i}^\Lambda M \rightarrow F_{i} M \rightarrow F_{i}^\Lambda M \rightarrow 0 \]
which is functorial in $M \in \text{Mod } R^{A}(\beta)$.

To complete the construction of cyclotomic categorification, it remains to show
that the adjoint pair (F_{i}^{A}, E_{i}^{A}) gives an sl_2-categorification introduced by Chuang-
Rouquier [6].

Theorem 3.5. [17]
(a) For $i \neq j$, there exists a natural isomorphism
\[q^{-(\alpha_i, \alpha_j)}F_{j}^{A}E_{i}^{A} \sim E_{i}^{A}F_{j}^{A}. \]
(b) Let $\lambda = \Lambda - \beta$ $(\beta \in Q_{+})$.
 (i) If $\langle h_i, \Lambda \rangle \geq 0$, there exists a natural isomorphism
 \[q_{i}^{-2}F_{i}^{A}E_{i}^{A} \oplus \bigoplus_{k=0}^{\langle h_i, \Lambda \rangle - 1} q_{i}^{2k}1 \sim E_{i}^{A}F_{i}^{A}. \]
 (ii) If $\langle h_i, \Lambda \rangle \leq 0$, there exists a natural isomorphism
 \[q_{i}^{-2}F_{i}^{A}E_{i}^{A} \sim E_{i}^{A}F_{i}^{A} \oplus \bigoplus_{k=0}^{-\langle h_i, \Lambda \rangle - 1} q_{i}^{2k-2}1. \]

Proof. We will give a very rough sketch of the proof. The assertion (a) can be
proved in a straightforward manner.
To prove (b), note that Theorem 3.1 and Corollary 3.4 yield the following commutative diagram.

\[
\begin{array}{ccccccc}
0 & \rightarrow & q^{(\alpha_i,\Lambda-\beta)} F_i E_i M & \rightarrow & q_i^{-2} F_i E_i M & \rightarrow & q_i^{-2} F_i E_i^\Lambda M & \rightarrow & 0 \\
0 & \rightarrow & q^{(\alpha_i,\Lambda-\beta)} E_i F_i M & \rightarrow & E_i F_i M & \rightarrow & E_i^\Lambda F_i^\Lambda M & \rightarrow & 0 \\
q^{(\alpha_i,\Lambda-2\beta)} k[t_i] \otimes M & \rightarrow & k[t_i] \otimes M & \rightarrow & 0 & \rightarrow & 0
\end{array}
\]

Let \(A : q^{2(\alpha_i,\Lambda-\beta)} k[t_i] \otimes R^\Lambda(\beta) \rightarrow k[t_i] \otimes R^\Lambda(\beta) \) be the \(R^\Lambda(\beta) \)-bilinear map given by chasing the diagram. By a detailed analysis of the above commutative diagram at the kernel level, the Snake Lemma gives the following exact sequence of \(R^\Lambda(\beta) \)-bimodules

\[
0 \rightarrow \text{Ker} A \rightarrow q_i^{-2} F_i E_i^\Lambda R^\Lambda(\beta) \rightarrow E_i^\Lambda F_i^\Lambda R^\Lambda(\beta) \rightarrow \text{Coker} A \rightarrow 0.
\]

If \(\langle h_i, \lambda \rangle \geq 0 \), we have \(\text{Ker} A = 0 \), \(\quad \bigoplus_{k=0}^{a-1} k t_i^k \otimes R^\Lambda(\beta) \rightarrow \text{Coker} A \), and if \(\langle h_i, \lambda \rangle \leq 0 \), then \(\text{Coker} A = 0 \), \(\text{Ker}(A) = q^{2(\alpha_i,\Lambda-\beta)} \bigoplus_{k=0}^{a-1} k t_i^k \otimes R^\Lambda(\beta) \), from which our assertion (b) follows.

Set

\[
K(\text{Proj}(R^\Lambda)) := \bigoplus_{\beta \in Q_+} K(\text{Proj} R^\Lambda(\beta)),
\]

\[
K(\text{Rep}(R^\Lambda)) := \bigoplus_{\beta \in Q_+} K(\text{Rep} R^\Lambda(\beta)).
\]

We define the endomorphisms \(E_i \) and \(F_i \) on \(K(\text{Proj}(R^\Lambda)) \) by

\[
E_i = [q_i^{1-(h_i,\Lambda-\beta)} E_i^\Lambda] : K(\text{Proj} R^\Lambda(\beta + \alpha_i)) \rightarrow K(\text{Proj} R^\Lambda(\beta)),
\]

\[
F_i = [F_i^\Lambda] : K(\text{Proj} R^\Lambda(\beta)) \rightarrow K(\text{Proj} R^\Lambda(\beta + \alpha_i)).
\]

On the other hand, we define \(E_i \) and \(F_i \) on \(K(\text{Rep}(R^\Lambda)) \) by

\[
E_i = [E_i^\Lambda] : K(\text{Rep} R^\Lambda(\beta + \alpha_i)) \rightarrow K(\text{Rep} R^\Lambda(\beta)),
\]

\[
F_i = [q_i^{1-(h_i,\Lambda-\beta)} F_i^\Lambda] : K(\text{Rep} R^\Lambda(\beta)) \rightarrow K(\text{Rep} R^\Lambda(\beta + \alpha_i)).
\]
Let K_i be the endomorphism on $K(\text{Proj} \ R^\lambda(\beta))$ and $K(\text{Rep} \ R^\lambda(\beta))$ given by the multiplication by $q_i^{(h_i,\Lambda^{-\beta})}$ for each $\beta \in Q_+$. Then we have

$$[E_i, F_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}} \text{ for } i, j \in I.$$

Therefore, we obtain the cyclo
tomic categrification theorem for irreducible highest weight $U_q(g)$-modules in the category O_{int}.

Theorem 3.6. [17]

For each $\Lambda \in P^+$, there exist $U_A(g)$-module isomorphisms

$$K(\text{Proj} \ R^\lambda) \xrightarrow{\sim} V_A(\Lambda) \text{ and } K(\text{Rep} \ R^\lambda) \xrightarrow{\sim} V_A(\Lambda)^\vee.$$

Therefore, for each $\Lambda \in P^+$, we have constructed a 2-category \mathcal{R}^λ consisting of $\text{Proj} (R^\lambda(\beta))$ ($\beta \in Q_+$), which gives an integrable 2-representation \mathcal{R}^λ of \mathcal{R} in the sense of [33, 34]. (See also [39].)

Remark 3.7. There are several generalizations of Khovanov-Lauda-Rouquier algebras and categorification theorems. In [20, 23, 25], the Khovanov-Lauda-Rouquier algebras associated with Borcherds-Cartan data have been defined and their properties have been investigated including geometric realization, categorification and the connection with crystal bases. In [8, 9, 14, 21, 22, 24, 38], various versions of Khovanov-Lauda-Rouquier super-algebras have been introduced and the corresponding super-categorifications have been constructed.

4. Quantum affine algebras and R-matrices

In this section, we briefly review the finite dimensional representation theory of quantum affine algebras and the properties of R-matrices (see, for example, [1, 3, 4, 27]).

Let $(A, P, \Pi, P^\vee, \Pi^\vee)$ be a Cartan datum of affine type with $I = \{0, 1, \ldots, n\}$ the index set of simple roots. Let $0 \in I$ be the leftmost vertex in the affine Dynkin diagrams given in [16, Chapter 4]. Set $I_0 = I \setminus \{0\}$. Take relatively prime positive integers c_j's and d_j's ($j \in I$) such that

$$\sum_{j \in I} c_j a_{ji} = 0, \quad \sum_{j \in I} a_{ij} d_j = 0 \quad \text{for all } i \in I.$$

Then the weight lattice can be written as

$$P = \bigoplus_{i \in I} \mathbb{Z} \Lambda_i \oplus \mathbb{Z} \delta,$$

where $\delta := \sum_{i \in I} d_i \alpha_i \in P$. We also define $c := \sum_{i \in I} c_i h_i \in P^\vee$.

We denote by \(\mathfrak{g} \) the affine Kac-Moody algebra associated with \((A, P, P^\vee, \Pi, \Pi^\vee)\) and let \(\mathfrak{g}_0 \) be the finite dimensional simple Lie algebra inside \(\mathfrak{g} \) generated by \(e_i, f_i, h_i \) \((i \in I_0)\). We will write \(W \) and \(W_0 \) for the Weyl group of \(\mathfrak{g} \) and \(\mathfrak{g}_0 \), respectively.

Let \(U_q(\mathfrak{g}) \) be the corresponding quantum group and let \(U'_q(\mathfrak{g}) \) be the subalgebra of \(U_q(\mathfrak{g}) \) generated by \(e_i, f_i, K_i^{\pm 1} \) \((i \in I)\). The algebra \(U'_q(\mathfrak{g}) \) will be called the quantum affine algebra.

Set \(P_{cl} := P/\mathbb{Z}\delta \) and let \(\text{cl} : P \to P_{cl} \) be the canonical projection. Then we have
\[
P_{cl} = \bigoplus_{i \in I} \mathbb{Z}\text{cl}(\Lambda_i) \quad \text{and} \quad P_{cl}^\vee := \text{Hom}_{\mathbb{Z}}(P_{cl}, \mathbb{Z}) = \bigoplus_{i \in I} \mathbb{Z}h_i.
\]

A \(U'_q(\mathfrak{g}) \)-module \(V \) is integrable if
\[
(i) \ V = \bigoplus_{\lambda \in P_{cl}} V_\lambda, \quad \text{where} \ V_\lambda = \{ v \in V \mid K_i v = q_i^{(h_i, \lambda)} v \ \text{for all} \ i \in I \},
\]
\[
(ii) \ e_i, f_i \ (i \in I) \text{ are locally nilpotent on } V.
\]

We denote by \(\mathcal{C}_{\text{int}} \) the category of finite dimensional integrable \(U'_q(\mathfrak{g}) \)-modules.

Let \(M \) be an integrable \(U'_q(\mathfrak{g}) \)-module. A weight vector \(v \in M_\lambda \ (\lambda \in P_{cl}) \) is called an extremal weight vector if there exists a family of nonzero vectors \(\{v_{w, \lambda} \mid w \in W\} \) such that
\[
v_{i, \lambda} = \begin{cases} f_i^{(h_i, \lambda)} v_\lambda & \text{if } \langle h_i, \lambda \rangle \geq 0, \\ e_i^{-(h_i, \lambda)} v_\lambda & \text{if } \langle h_i, \lambda \rangle \leq 0. \end{cases}
\]

Let \(P_{cl}^0 := \{ \lambda \in P_{cl} \mid \langle c, \lambda \rangle = 0 \} \) and set
\[
\varpi_i := \Lambda_i - c_i \Lambda_0 \quad \text{for} \ i \in I_0.
\]

Then there exists a unique finite dimensional integrable \(U'_q(\mathfrak{g}) \)-module \(V(\varpi_i) \) satisfying the following properties:
\[
(i) \ \text{all the weights of } V(\varpi_i) \text{ are contained in the convex hull of } W_0 \text{cl}(\varpi_i).
\]
\[
(ii) \dim V(\varpi_i)_{\text{cl}(\varpi_i)} = 1,
\]
\[
(iii) \text{for each } \mu \in W_0 \text{cl}(\varpi_i), \text{there exists an extremal weight vector of weight } \mu,
\]
\[
(iv) \ V(\varpi_i) \text{ is generated by } V(\varpi_i)_{\text{cl}(\varpi_i)} \text{ as a } U'_q(\mathfrak{g})\text{-module}.
\]

The \(U'_q(\mathfrak{g}) \)-module \(V(\varpi_i) \) is called the fundamental representation of weight \(\varpi_i \) \((i \in I_0)\).

Let \(M \) be a \(U'_q(\mathfrak{g}) \)-module. An involution on \(M \) is called a bar involution if \(\overline{a} v = \overline{a} \overline{v} \) for all \(a \in U'_q(\mathfrak{g}), v \in M \), where \(\overline{e_i} = e_i, \overline{f_i} = f_i, \overline{K_i} = K_i^{-1} \) \((i \in I)\). A finite \(U'_q(\mathfrak{g}) \)-crystal \(B \) is simple if \((i) \ wt(B) \subset P_{cl}^0, \ (ii) \text{there exists } \lambda \in wt(B) \text{ such that } \#(B_\lambda) = 1, \ (iii) \text{the weight of every extremal vector of } B \text{ is contained in } W_0 \lambda. \)

A finite dimensional integrable \(U'_q(\mathfrak{g}) \)-module \(M \) is good if
\[
(i) \ M \text{ has a bar involution},
\]
\[
(ii) \ M \text{ has a crystal basis with simple crystal},
\]
(iii) M has a lower global basis.

For example, all the fundamental representations $V(\varpi_i)$ ($i \in I_0$) are good. Every good module is irreducible. For any good module M, there exists an extremal weight vector v of weight λ such that $\text{wt}(U_q'(\mathfrak{g})v) \subset \lambda - \sum_{i \in I_0} \mathbb{Z}_{\geq 0} \mathfrak{g}(\alpha_i)$. Such λ is called a dominant extremal weight and v is called a dominant extremal weight vector.

Take $k = C(q) \subset \bigcup_{M > 0} C((q^{1/m}))$. Let $M_{\text{aff}} = k[z, z^{-1}] \otimes_k M$ be the affinization of M. For $v \in M$ and $k \in \mathbb{Z}$, the action of $U_q'(\mathfrak{g})$ on M_{aff} is given by

$$e_i(z^k \otimes v) = \begin{cases} z^{k+1} \otimes e_0 v & \text{if } i = 0, \\ z^k \otimes e_i v & \text{if } i \neq 0, \end{cases}$$

$$f_i(z^k \otimes v) = \begin{cases} z^{k-1} \otimes f_0 v & \text{if } i = 0, \\ z^k \otimes f_i v & \text{if } i \neq 0, \end{cases}$$

$$K_i^{\pm 1}(z^k \otimes v) = q_i^{\pm (h_i, v_0)} (z^k \otimes v) \quad (i \in I).$$

We define a $U_q'(\mathfrak{g})$-module automorphism $z_M : M_{\text{aff}} \to M_{\text{aff}}$ of weight δ by

$$z^k \otimes v \mapsto z^{k+1} \otimes v \quad (v \in M, k \in \mathbb{Z}).$$

Let M_1, M_2 be good $U_q'(\mathfrak{g})$-modules and let u_1, u_2 be dominant extremal weight vectors of M_1 and M_2, respectively. Set $z_1 = z_{M_1}$ and $z_2 = z_{M_2}$. Then there exists a unique $U_q'(\mathfrak{g})$-module homomorphism

$$R_{M_1, M_2}^{\text{norm}}(z_1, z_2) : (M_1)_{\text{aff}} \otimes (M_2)_{\text{aff}} \longrightarrow k[z_1, z_2] \otimes_k k[z_1^{\pm 1}, z_2^{\pm 1}] (M_2)_{\text{aff}} \otimes (M_1)_{\text{aff}}$$

satisfying

$$R_{M_1, M_2}^{\text{norm}}(u_1 \otimes u_2) = u_2 \otimes u_1,$$

$$R_{M_1, M_2}^{\text{norm}} \circ z_1 = z_1 \circ R_{M_1, M_2}^{\text{norm}},$$

$$R_{M_1, M_2}^{\text{norm}} \circ z_2 = z_2 \circ R_{M_1, M_2}^{\text{norm}}.$$

The homomorphism $R_{M_1, M_2}^{\text{norm}}$ is called the normalized R-matrix of M_1 and M_2.

Note that $\text{Im} R_{M_1, M_2}^{\text{norm}} \subset k(z_2/z_1) \otimes_k k[z_2/z_1] (M_2)_{\text{aff}} \otimes (M_1)_{\text{aff}}$. We denote by $d_{M_1, M_2}(u) \in k[u]$ the monic polynomial of the smallest degree such that

$$\text{Im} (d_{M_1, M_2}(z_2/z_1) R_{M_1, M_2}^{\text{norm}}) \subset (M_2)_{\text{aff}} \otimes (M_1)_{\text{aff}}.$$

The polynomial $d_{M_1, M_2}(u)$ is called the denominator of $R_{M_1, M_2}^{\text{norm}}$.

The normalized R-matrix satisfies the Yang-Baxter equation. That is, for $U_q'(\mathfrak{g})$-modules M_1, M_2, M_3, we have

$$(R_{M_2, M_3}^{\text{norm}} \otimes 1) \circ (1 \otimes R_{M_1, M_2}^{\text{norm}}) \circ (R_{M_1, M_2}^{\text{norm}} \otimes 1) = (1 \otimes R_{M_1, M_2}^{\text{norm}}) \circ (R_{M_1, M_3}^{\text{norm}} \otimes 1) \circ (1 \otimes R_{M_2, M_3}^{\text{norm}}).$$
5. Quantum affine Schur-Weyl duality functor

Let \(\{ V_s \mid s \in \mathcal{S}\} \) be a family of good modules and let \(v_s \) be a dominant extremal weight vector in \(V_s \) with weight \(\lambda_s \) (\(s \in \mathcal{S} \)). Take an index set \(J \) endowed with the maps \(X : J \to \mathbb{k}^x \) and \(s : J \to \mathcal{S} \). For each \(i, j \in J \), let

\[
R_{V_s(i),V_s(j)}^\text{norm}(z_i,z_j) : (V_s(i))_{\text{aff}} \otimes (V_s(j))_{\text{aff}} \to \mathbb{k}(z_i,z_j) \otimes \mathbb{k}[z_i^{\pm 1},z_j^{\pm 1}] (V_s(j))_{\text{aff}} \otimes (V_s(i))_{\text{aff}}
\]

be the normalized \(R \)-matrix sending \(v_s(i) \otimes v_s(j) \) to \(v_s(j) \otimes v_s(i) \).

Let \(d_{V_s(i), V_s(j)}(z_j/z_i) \) be the denominator of \(R_{V_s(i), V_s(j)}^\text{norm}(z_i,z_j) \). We define a quiver \(\Gamma^J \) as follows.

(i) We take \(J \) to be the set of vertices.

(ii) We put \(d_{ij} \) many arrows from \(i \) to \(j \), where \(d_{ij} \) the order of zero of \(d_{V_s(i),V_s(j)}(z_j/z_i) \) at \(z_j/z_i = X(j)/X(i) \).

Define the Cartan matrix \(A^J = (a^J_{ij})_{i,j \in J} \) by

\[
a^J_{ij} = \begin{cases} 2 & \text{if } i = j, \\ -d_{ij} - d_{ji} & \text{if } i \neq j. \end{cases}
\]

Thus we obtain a symmetric Cartan datum \((A^J, P, P^\vee, \Pi, \Pi^\vee)\) associated with \(\Gamma^J \).

Set

\[
Q^J_{ij}(u,v) := \begin{cases} 0 & \text{if } i = j, \\ (u - v)^{d_{ij}}(v - u)^{d_{ji}} & \text{if } i \neq j. \end{cases}
\]

We will denote by \(R^J(\beta) \) (\(\beta \in Q_+ \)) the Khovanov-Lauda-Rouquier algebra associated with \((A^J, Q^J)\).

For each \(\nu = (\nu_1, \ldots, \nu_n) \in J^\beta \), let \(\hat{\mathcal{O}}_{\mathfrak{t}^n,X(\nu)} = \mathbb{k}[[X_1 - X(\nu_1), \ldots, X_n - X(\nu_n)]] \) be the completion of \(\mathcal{O}_{\mathfrak{t}^n,X(\nu)} \) at \(X(\nu) := (X(\nu_1), \ldots, X(\nu_n)) \) and set

\[
V_{\nu} := (V_{s(\nu_1)})_{\text{aff}} \otimes \cdots \otimes (V_{s(\nu_n)})_{\text{aff}},
\]

where \(X_k = z_{V_{s(\nu_k)}} \) (\(k = 1, \ldots, n \)).

We define

\[
\hat{V}_{\nu} := \hat{\mathcal{O}}_{\mathfrak{t}^n,X(\nu)} \otimes \mathbb{k}[X_1^{\pm 1}, \ldots, X_n^{\pm 1}] V_{\nu} \quad \text{and} \quad \hat{V}^{\otimes \beta} := \bigoplus_{\nu \in J^\beta} \hat{V}_{\nu} e(\nu).
\]

The following proposition is one of the main results of [18].

Proposition 5.1. [18] The space \(\hat{V}^{\otimes \beta} \) is a \((U'_q(\mathfrak{g}), R^J(\beta))\)-bimodule.

Hence we obtain a functor

\[
\mathcal{F}_\beta : \text{mod } (R^J(\beta)) \to \text{mod } U'_q(\mathfrak{g})
\]
defined by
\[M \mapsto \hat{V}^\otimes \beta \otimes R^J(\beta) M \quad \text{for} \quad M \in \text{mod}(R^J(\beta)). \]

Write \(\text{mod}(R^J) := \bigoplus_{\beta \in Q_+} \text{mod}(R^J(\beta)) \) and set
\[F = \bigoplus_{\beta \in Q_+} F_\beta : \text{mod}(R^J) \rightarrow \text{mod}U_q'(\mathfrak{g}). \]

The functor \(F \) is called the \textit{quantum affine Schur-Weyl duality functor}. The basic properties of \(F \) are summarized in the following theorem.

Theorem 5.2. [18]

(a) The functor \(F \) restricts to \(F : \text{rep}(R^J) \rightarrow C_{\text{int}}, \)

where \(\text{rep}(R^J) := \bigoplus_{\beta \in Q_+} \text{rep}(R^J(\beta)) \) and \(C_{\text{int}} \) denotes the category of finite dimensional integrable \(U_q'(\mathfrak{g}) \)-modules.

(b) For each \(i \in J \), let \(S(\alpha_i) := k u(i) \) be the 1-dimensional graded simple \(R^J(1) \)-module defined by
\[e(j) u(i) = \delta_{ij} u(i), \quad x_1 u(i) = 0. \]

Then we have
\[F(S(\alpha_i)) \cong (V_{s(i)})_{X(i)}, \]

where \((V_{s(i)})_{X(i)}\) is the evaluation module of \(V_{s(i)} \) at \(z_i = X(i) \).

(c) \(F \) is a tensor functor; i.e., there exists a canonical \(U_q'(\mathfrak{g}) \)-module isomorphims
\[F(R^J(0)) \cong k, \quad F(M \circ N) \cong F(M) \otimes F(N) \]

for \(M \in \text{rep}(R^J(m)), N \in \text{rep}(R^J(n)) \).

(d) If the quiver \(\Gamma^J \) is of type \(A_n \) \((n \geq 1), D_n \) \((n \geq 4), E_6, E_7, E_8\), then \(F \) is exact.

6. **The Categories \(\mathcal{T}_N \) and \(\mathcal{C}_N \)**

Take \(k = C(q) \). Let \(\mathfrak{g} = A^{(1)}_{N-1} \) be the affine Kac-Moody algebra of type \(A^{(1)}_{N-1} \) and let \(V = V(\varpi_1) \) be the fundamental representation of \(U_q'(A^{(1)}_{N-1}) \) of weight \(\varpi_1 \).

Set \(S = \{V\}, J = Z \) and let \(X : Z \rightarrow k^\times \) be the map given by \(j \mapsto q^{2j} \) \((j \in Z)\). Then the normalized \(R \)-matrix \(R_{V,V}^{\text{norm}} : V_{z_1} \otimes V_{z_2} \rightarrow V_{z_2} \otimes V_{z_1} \) has the denominator \(d_{V,V}(z_2/z_1) = z_2/z_1 - q^2 \). Hence we have
\[d_{ij} = \begin{cases} 1 & \text{if } j = i + 1, \\ 0 & \text{otherwise}, \end{cases} \]
which yields the quiver Γ_J of type A_∞. Take $P_J = \bigoplus_{k \in \mathbb{Z}} \mathbb{Z} \varepsilon_k$ to be the weight lattice and let $Q_J = \bigoplus_{k \in \mathbb{Z}} \mathbb{Z} (\varepsilon_k - \varepsilon_{k+1})$ be the root lattice. There is a bilinear form on P_J given by $(\varepsilon_a, \varepsilon_b) = \delta_{ab}$.

For $a \leq b$, let $l = b - a + 1$ and let $L(a,b) := k u(a,b)$ be the 1-dimensional graded simple $R_J^l(\varepsilon_a - \varepsilon_{b+1})$-module defined by

\[
x_s u(a,b) = 0, \quad \tau_t u(a,b) = 0 \quad (1 \leq s \leq l, \ 1 \leq t \leq l - 1),
\]

\[
e(\nu) u(a,b) = \begin{cases} u(a,b) & \text{if } \nu = (a,a+1,\ldots,b), \\ 0 & \text{otherwise}. \end{cases}
\]

Then we have

\[
F(L(a,b)) \cong \begin{cases} V(\varepsilon_l(-q)^{a+b}) & \text{if } 0 \leq l \leq N, \\ 0 & \text{if } l > N, \end{cases}
\]

where $F : \text{mod } (R^l(l)) \to \text{mod } U'_q(g)$ is the quantum affine Schur-Weyl duality functor.

Recall that $\text{Rep } (R^l(l))$ is the category of finite dimensional graded $R^l(l)$-modules. Set $\mathcal{R} := \bigoplus_{l \geq 0} \text{Rep } (R^l(l))$ and let \mathcal{S} be the Smallest Serre subcategory of \mathcal{R} such that

(i) S contains $L(a,a+N)$ for all $a \in \mathbb{Z}$,

(ii) $X \circ Y, Y \circ X \in \mathcal{S}$ for all $X \in \mathcal{R}, Y \in \mathcal{S}$.

Take the quotient category \mathcal{R}/\mathcal{S} and let $Q : \mathcal{R} \to \mathcal{R}/\mathcal{S}$ be the canonical projection functor. Then we have:

Proposition 6.1. [18]

(a) The functor F factors through \mathcal{R}/\mathcal{S}. That is, there is a canonical functor $F_S : \mathcal{R}/\mathcal{S} \to \text{mod } U'_q(g)$ such that the following diagram is commutative.

\[
\begin{array}{ccc}
\mathcal{R} & \xrightarrow{F} & \text{mod } U'_q(g) \\
\downarrow Q & & \\
\mathcal{R}/\mathcal{S} & \xrightarrow{F_S} & \\
\end{array}
\]

(b) The functor F_S sends a simple object in \mathcal{R}/\mathcal{S} to a simple object in $\text{mod } U'_q(g)$.

Let $L_a := L(a,a+N-1)$ and $u_a := u(a,a+N-1) \in L_a (a \in \mathbb{Z})$. Then $F(L_a)$ is isomorphic to the trivial representation of $U'_q(g)$. Let $S : P_J \to P_J$ ($\varepsilon_a \mapsto \varepsilon_{a+N-1}$)
be an automorphism on P_J and let B be the bilinear form on P_J given by
\[B(x, y) := -\sum_{k>0} (S^k x, y) \text{ for all } x, y \in P_J. \]

We define a new tensor product \star on \mathcal{R}/S by
\[X \star Y := q^{B(\alpha, \beta)} X \circ Y \text{ for } X \in (\mathcal{R}/S)_\alpha, \ Y \in (\mathcal{R}/S)_\beta. \]

Then there exists an isomorphism $R(a)(X) : L_a \star X \sim X \star L_a$ which is functorial in $X \in \mathcal{R}/S$. Moreover, the isomorphisms
\[R_a(L_b) : L_a \star L_b \sim L_b \star L_a \text{ and } R_b(L_a) : L_b \star L_a \sim L_a \star L_b \]
are inverses to each other. One can verify that $\{L_a, R_a(L_b) \mid a, b \in \mathbb{Z}\}$ forms a commuting family of central objects in $(\mathcal{R}/S, \star)$ (see [18, Appendix A.6]).

Let $T'_N := (\mathcal{R}/S)[L_a^{-1} \mid a \in \mathbb{Z}]$ be the localization of \mathcal{R}/S by this commuting family and define
\[T_N := (\mathcal{R}/S)[L_a \cong 1 \mid a \in \mathbb{Z}]. \]

We denote by $\mathcal{P} : \mathcal{R}/S \to T_N$ the canonical functor.

Theorem 6.2. [18]

(a) The category T_N is a rigid tensor category; i.e., every object in T_N has a right dual and a left dual.

(b) The functor \mathcal{F}_S factors through T_N. That is, there exists a canonical functor $\mathcal{F}_N : T_N \to \text{mod} \ U'_q(\mathfrak{g})$ such that the following diagram is commutative.

(c) The functor \mathcal{F}_N is exact and sends a simple object in T_N to a simple object in $\text{mod} \ U'_q(\mathfrak{g})$.

Let C_N be the smallest full subcategory of \mathcal{C}_{int} consisting of $U'_q(\mathfrak{g})$-modules M such that every composition factor of M appears as a composition factor of a tensor product of modules of the form $V(\varpi_i)_{q^j}$ ($j \in \mathbb{Z}$). Thus C_N is an abelian category containing all $U'_q(\mathfrak{g})$-modules $V(\varpi_i)_{(-q)^{i+2a-1}}$ for $1 \leq i \leq N-1$ and $a \in \mathbb{Z}$.
Moreover, \mathcal{C}_N is stable under taking submodules, quotients, extensions and tensor products. Hence \mathcal{F}_N restricts to an exact functor

$$\mathcal{F}_N : \mathcal{T}_N \rightarrow \mathcal{C}_N.$$

Let $\text{Irr} (\mathcal{T}_N)$ (respectively, $\text{Irr} (\mathcal{C}_N)$) denote the set of isomorphism classes of simple objects in \mathcal{T}_N (respectively, in \mathcal{C}_N). Define an equivalence relation on $\text{Irr} (\mathcal{T}_N)$ by setting $X \sim Y$ if and only if $X \sim q^m Y$ for some $m \in \mathbb{Z}$. Set

$$\text{Irr} (\mathcal{T}_N)|_{q=1} := \text{Irr} (\mathcal{T}_N)/\sim.$$

Theorem 6.3. [18]

(a) The functor \mathcal{F}_N induces a bijection between $\text{Irr} (\mathcal{T}_N)|_{q=1}$ and $\text{Irr} (\mathcal{C}_N)$.

(b) The exact functor \mathcal{F}_N induces a ring isomorphism

$$\phi_N : K(\mathcal{T}_N)|_{q=1} \sim \rightarrow K(\mathcal{C}_N).$$

Therefore, the category \mathcal{T}_N provides a graded lifting of \mathcal{C}_N as a rigid tensor category.

7. The category \mathcal{C}_Q

In this section, we deal with affine Kac-Moody algebras \mathfrak{g} of type $A_n^{(1)}$ ($n \geq 1$), $D_n^{(1)}$ ($n \geq 4$), $E_6^{(1)}$, $E_7^{(1)}$, $E_8^{(1)}$. Let $I = \{0, 1, \ldots, n\}$ be the index set for the simple roots of \mathfrak{g} and set $I_0 = I \setminus \{0\}$. We denote by \mathfrak{g}_0 the finite dimensional simple Lie subalgebra of \mathfrak{g} generated by e_i, f_i, h_i ($i \in I_0$). Thus \mathfrak{g}_0 is of type A_n ($n \geq 1$), D_n ($n \geq 4$), E_6, E_7, E_8, respectively.

Let Q be the Dynkin quiver associated with \mathfrak{g}_0. A function $\xi : I_0 \rightarrow \mathbb{Z}$ is called a height function if $\xi_j = \xi_i - 1$ whenever we have an arrow $i \rightarrow j$.

Set

$$\widehat{I}_0 := \{(i, p) \in I_0 \times \mathbb{Z} \mid p - \xi_i \in 2\mathbb{Z}\}.$$

The repetition quiver \widehat{Q} is defined as follows.

(i) We take \widehat{I}_0 to be the set of vertices.

(ii) The arrows are given by

$$(i, p) \rightarrow (j, p + 1), \quad (j, q) \rightarrow (i, q + 1)$$

for all arrows $i \rightarrow j$ and $p, q \in \mathbb{Z}$ such that $p - \xi_i \in \mathbb{Z}$, $q - \xi_j \in \mathbb{Z}$.

For all $i \in I_0$, let $s_i(Q)$ be the quiver obtained from Q by reversing the arrows that touch i. A reduced expression $w = s_{i_l} \cdots s_{i_1} \in W_0$ is said to be adapted to Q if i_k is the source of $s_{i_k-1} \cdots s_{i_1}(Q)$ for all $1 \leq k \leq l$. It is known that there is a unique Coxeter element $\tau \in W_0$ which is adapted to Q.

Set $\hat{\Delta} := \Delta_+ \times \mathbb{Z}$, where Δ_+ is the set of positive roots of \mathfrak{g}_0. For each $i \in I_0$, let $B(i) := \{j \in I_0 \mid \text{there is a path from } j \text{ to } i\}$ and define $\gamma_i := \sum_{j \in B(i)} \alpha_j$. We define a bijection $\phi : \hat{I}_0 \to \hat{\Delta}$ inductively as follows.

1. We begin with $\phi(i, \xi_i) := (\gamma_i, 0)$.
2. If $\phi(i, p) = (\beta, j)$ is given, then we define
 - $\phi(i, p - 2) := (\tau(\beta), j)$ if $\tau(\beta) \in \Delta_+$,
 - $\phi(i, p - 2) := (-\tau(\beta), j - 1)$ if $\tau(\beta) \in \Delta_-$,
 - $\phi(i, p + 2) := (\tau^{-1}(\beta), j)$ if $\tau^{-1}(\beta) \in \Delta_+$,
 - $\phi(i, p + 2) := (-\tau^{-1}(\beta), j + 1)$ if $\tau^{-1}(\beta) \in \Delta_-$.

Let w_0 be the longest element of W_0 and fix a reduced expression $w_0 = s_{i_1} \cdots s_{i_l}$ which is adapted to Q. Set

$$J := \{(i, p) \in \hat{I}_0 \mid \phi(i, p) \in \Pi_0 \times \{0\}\},$$

where Π_0 denotes the set of simple roots of \mathfrak{g}_0. Take the maps $X : J \to \mathbb{K}^\times$ and $s : J \to \{V(\varpi_i) \mid i \in I_0\}$ defined by

$$X(i, p) = (-q)^{p+h}, \quad s(i, p) = V(\varpi_i) \quad \text{for } (i, p) \in J,$$

where h is the Coxeter number of \mathfrak{g}_0.

Theorem 7.1. [19]

For any $(i, p), (j, r) \in J$, assume that the normalized R-matrix $R_{\text{norm}}^{V(\varpi_i), V(\varpi_j)}(z)$ has a pole at $z = (-q)^{r-p}$ of order at most 1. Then the following statements hold.

(a) The Cartan matrix A^J associated with (J, X, s) is of type \mathfrak{g}_0.

(b) There exists a quiver isomorphism

$$Q^{\text{rev}} \xrightarrow{\sim} \Gamma^J, \quad k \mapsto \phi^{-1}(\alpha_k, 0) \quad (k \in I_0),$$

where Q^{rev} is the reverse quiver of Q.

(c) The functor $\mathcal{F} : \text{rep}(R^J) \to \mathcal{C}_{\text{int}}$ is exact and

$$\mathcal{F}(S(\alpha_k)) \cong V(\varpi_i)(-q)^{p+h},$$

where $\phi(i, p) = (\alpha_k, 0)$.

Remark 7.2. When \mathfrak{g} is of type $A_1^{(1)}$ ($n \geq 1$) or $D_1^{(1)}$ ($n \geq 4$), then the condition in Theorem 7.1 is satisfied. We conjecture that the same is true of $\mathfrak{g} = E_6^{(1)}, E_7^{(1)}, E_8^{(1)}$.

We now bring out the main subject of our interest in this section, the category \mathcal{C}_Q (cf. [13]). Let \mathcal{C}_Q be the smallest abelian full subcategory of \mathcal{C}_{int} such that

(i) \mathcal{C}_Q is stable under taking submodules, subquotients, direct sums and tensor products,

(ii) \mathcal{C}_Q contains all $U'_q(\mathfrak{g})$-modules of the form $V(\beta)z/(z-1)^lV(\beta)z$ ($\beta \in \Delta_+, l \geq 1$). Here, $V(\beta) = V(\varpi_i)(-q)^{p+h}$ such that $\phi(i, p) = (\beta, 0)$.
Let \(\text{Nilrep} (R^J(\beta)) \) be the category of finite dimensional ungraded \(R^J(\beta) \)-modules such that all \(x_k \)'s act nilpotently and set

\[
\text{Nilrep} (R^J) := \bigoplus_{\beta \in \mathbb{Q}_+} \text{Nilrep} (R^J(\beta)).
\]

Note that every module in \(\text{Nilrep} (R^J) \) can be obtained by taking submodules, subquotients, direct sums and convolution products of \(P(\alpha_k)/ (x_1^l) \) \((k \in I_0, l \geq 0)\), where \(P(\alpha_k) \) is the projective cover of \(S(\alpha_k) \). Thus we obtain a well-defined functor

\[
\mathcal{F} : \text{Nilrep} (R^J) \longrightarrow \mathcal{C}_Q,
\]

which satisfies the following properties.

Theorem 7.3. [18, 19]

(a) \(\mathcal{F} \) is an exact tensor functor.
(b) \(\mathcal{F} \) sends a simple object in \(\text{Nilrep} (R^J) \) to a simple object in \(\mathcal{C}_Q \).

It is straightforward to verify that \(\mathcal{F} \) is a faithful functor. Since \(\mathcal{C}_Q \) is the smallest abelian full subcategory of \(\mathcal{C}_{\text{int}} \) satisfying the conditions (i) and (ii) given above, we conjecture that \(\mathcal{F} \) is full and defines an equivalence of categories.

Remark 7.4. Note that our general approach to quantum affine Schur-Weyl duality applies to all quantum affine algebras and any choice of good modules. Thus we expect there are a lot more exciting developments to come. It is an interesting question whether our general construction can shed a new light on the hidden connection between quantum affine algebras and cluster algebras (cf. [12]).

References

[1] T. Akasaka, M. Kashiwara, *Finite-dimensional representations of quantum affine algebras*, Publ. RIMS. Kyoto Univ. 33 (1997), 839-867.
[2] S. Ariki, *On the decomposition numbers of the Hecke algebra of G(M,1,n)*, J. Math. Kyoto Univ. 36 (1996), 789-808.
[3] V. Chari, A. Pressley, *A guide to Quantum Groups*, Cambridge University Press, Cambridge, 1994.
[4] V. Chari, A. Pressley, *Quantum affine algebras and affine Hecke algebras*, Pacific J. Math. 174 (1996), 295-326.
[5] I. V. Cherednik, *A new interpretation of Gelfand-Tzetlin bases*, Duke Math. J. 54 (1987), 563-577.
[6] J. Chuang, R. Rouquier, *Derived equivalences for symmetric groups and sl_2-categorification*, Ann. Math. 167 (2008), 245–298.
[7] L. Crane, I. B. Frenkel, *Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases*, J. Math. Phys. 35 (1994), 5136-5154.
[8] A. Ellis, M. Khovanov, A. Lauda, *The odd nilHecke algebra and its diagrammatics*, Int. Math. Res. Notices 2014-4 (2014), 991-1062.
[9] A. Ellis, A. Lauda, *An odd categorification of quantum sl(2)*, arXiv:1307.7816.
[10] V. Ginzburg, N. Reshetikhin, E. Vasserot, *Quantum groups and flag varieties*, Contemp. Math. **175** (1994), 101-130.

[11] J. Hong, S.-J. Kang, *Introduction to Quantum Groups and Crystal Bases*, Graduate Studies in Mathematics **42**, American Mathematical Society, Providence, 2002.

[12] D. Hernandez, B. Leclerc, *Cluster algebras and quantum affine algebras*, Duke Math. J. **154** (2010), 265-341.

[13] D. Hernandez, B. Leclerc, *Quantum Grothendieck rings and derived Hall algebras*, to appear in J. reine angew. Math., DOI: 10.1515/crelle-2013-0020.

[14] D. Hill, W. Wang, *Categorification of quantum Kac-Moody superalgebras*, to appear in Trans. Amer. Math. Soc., arXiv:1202.2769.

[15] M. Jimbo, *A q-analogue of U(gl_{N+1}), Hecke algebra, and the Yang-Baxter equation*, Lett. Math. Phys. **11** (1986), 247-252.

[16] V. Kac, *Infinite Dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990.

[17] S.-J. Kang, M. Kashiwara, *Categorification of highest weight modules via Khovanov- Lauda-Rouquier algebras*, Invent. Math. **190** (2012), 699–742.

[18] S.-J. Kang, M. Kashiwara, M. Kim, *Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras*, arXiv:1304.0323.

[19] S.-J. Kang, M. Kashiwara, M. Kim, *Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II*, arXiv:1308.0651.

[20] S.-J. Kang, M. Kashiwara, S.-j. Oh, *Categorification of highest weight modules over quantum generalized Kac-Moody algebras*, Moscow Math. J. **13** (2013), 315–343.

[21] S.-J. Kang, M. Kashiwara, S.-j. Oh, *Supercategorification of quantum Kac-Moody algebras*, Adv. Math. **242** (2013), 116–162.

[22] S.-J. Kang, M. Kashiwara, S.-j. Oh, *Supercategorification of quantum Kac-Moody algebras II*, arXiv:1303.1916.

[23] S.-J. Kang, M. Kashiwara, E. Park, *Geometric realization of Khovanov-Lauda-Rouquier algebras associated with Borcherds-Cartan data*, Proc. London Math. Soc (3) **107** (2013), 907-931.

[24] S.-J. Kang, M. Kashiwara, S. Tsuchioka, *Quiver Hecke superalgebras*, to appear in J. reine angew. Math.

[25] S.-J. Kang, S.-j. Oh, E. Park, *Categorification of quantum generalized Kac-Moody algebras and crystal bases*, Int. J. Math. **23** (2012), 1250116.

[26] M. Kashiwara, *On crystal bases of the q-analogue of universal enveloping algebras*, Duke Math. J. **63** (1991), 465–516.

[27] M. Kashiwara, *On level zero representations of quantized affine algebras*, Duke. Math. J. **112** (2002), 117–175.

[28] M. Khovanov, A. Lauda, *A diagrammatic approach to categorification of quantum groups I*, Represent. Theory **13** (2009), 309–347.

[29] M. Khovanov, A. Lauda, *A diagrammatic approach to categorification of quantum groups II*, Trans. Amer. Math. Soc. **363** (2011), 2685–2700.

[30] A. Lascoux, B. Leclerc, J.-Y. Thibon, *Hecke algebras at roots of unity and crystal bases of quantum affine algebras*, Commun. Math. Phys. **181** (1996), 205–263.

[31] G. Lusztig, *Canonical bases arising from quantized enveloping algebras*, J. Amer. Math. Soc. **3** (1990), 447–498.

[32] G. Lusztig, *Introduction to Quantum Groups*, Birkhäuser, Boston, 1993.

[33] R. Rouquier, *2-Kac-Moody algebras*, arXiv:0812.5023.
[34] R. Rouquier, *Quiver Hecke algebras and 2-Lie algebras*, arXiv:1112.3619.
[35] I. Schur, *Über Eine Klasse Von Matrizen, die Sich Einer Gegeben Matrix Zuordenen Lassen*, Ph.D. thesis (1901). Reprinted in Gesamelte Abhandlungen 1, 1–70.
[36] I. Schur, *Über die rationalen Darstellungen der allgemeinen linearen Gruppe*, Sitzungsberichte der Königlich Preussischen Adademie der Wissenschaften zu Berlin (1927), 58–75. Reprinted in Gesamelte Abhandlungen 3, 68–85.
[37] M. Varagnolo, E. Vasserot, *Canonical bases and KLR algebras*, J. reine angew. Math. 659 (2011), 67–100.
[38] W. Wang, *Spin Hecke algebras of finite and affine types*, Adv. Math. 212 (2007), 723–748.
[39] Ben Webster, *Knot invariants and higher representation theory*, arXiv:1309.3796.

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, 599 Gwanak-Ro, Seoul 151-747, Korea
E-mail address: sjkang@snu.ac.kr