Supporting information for

Air quality and health impacts from updated industrial emission standards in China

Haozhe Yang¹, Wei Tao², Ying Liu³, Junfeng Liu¹*, Yuqing Wang¹, Yizhou Zhang¹, Shu Tao¹

¹Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.

²Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany.

³School of Statistics, University of International Business and Economics, Beijing 100029, China
Industry	Type	TSP	SO2	NOx	Production Mt	Category
sinter	>180 m³	24.84	2.8	0.522	756.82	Ferrous Metal
	50-180 m³	31.753	2.8	0.584	142.41	
	<50 m³	41.88	2.8	0.612	0.75	
pellet		8.92	2.8	0.5	112.42	
iron	>2000 m³	37.63	0.109	0.15	536.27	
	350-2000 m³	49	0.131	0.17	164.30	
	<350 m³	52.3	0.168	0.192	1.70	
Steel-basic oxygen furnace	>150 t	27.8	0	0	543.33	
	50-150 t	34.2	0	0	203.84	
	<50 t	40.5	0	0	3.9	
Electric arc furnace	≥50 t	17.72	0	0	1.17	
	<50 t	22.75	0	0	55.36	
Iron alloy		55.59	0.125	0	35.55	
Copper		349.4	2124	0	8.47	Nonferrous Metal
Lead		383.1	502.4	0	4.24	
Zinc		364.7	1147	0	6.27	
Nickel		977.2	5706	0	2.18	
Tin		353.7	36.1	0	1.83	
Alumina		51	3.5	0	60.91	
Aluminum		100	7.5	0	32.65	
magnesium		45	187.5	0	0.91	
Petroleum		0	0.586	0	541.03	Other
Coke	≥6 m	9.8954	1.647	0.34	125.00	Coke
	4.8-6 m	10.6825	1.751	0.389	324.08	Coke
Fertilizer		2.36	0	0	66.30	Chemical industry
Sulfuric		0	2	0	91.33	
Nitric		0	0	9	2.73	
Calcium carbide		42.1	0	0	25.64	Nonmetal
Cement	Clinker	182.471	0.198	1.584	1446.18	
	Cement	17.7	0	0	2410.31	
Lime		15.611	0.341	0.124	240	
Brick		11.618	14.834	6.874	56.77	
Glass		3.243	5.613	4.37	40.20	
Sanitary pottery		32.233	33.206	81.313	0.22	
Pottery		3751.933	919.413	513.108	1.23	
Refractory		0.36	2.21	1.88	79.45	
	Smoke	Dust	SO₂	NOₓ	Standard	
----------------	-------	------	-----	-----	-------------------	
Sinter/pellet	150	150	2860	1430	GB 9078-1996	
Iron	150	150	2860	1430	GB 9078-1996	
Steel-BOF	150	150	2860	1430	GB 9078-1996	
Steel-EAF	150	150	2860	1430	GB 9078-1996	
Iron alloy	200	1430			GB 9078-1996	
Copper	200	1430			GB 9078-1996	
Lead	200	1430			GB 9078-1996	
Zinc	200	1430			GB 9078-1996	
Nickel	200	1430			GB 9078-1996	
Tin	200	1430			GB 9078-1996	
Alumina	200	1430			GB 9078-1996	
Aluminum	200	1430			GB 9078-1996	
magnesium	200	1430			GB 9078-1996	
Petroleum	300		1200		GB 9078-1996	
Coke	250	850			GB 16171-1996	
Fertilizer	300	1200			GB 9078-1996	
Sulfuric	120		960		GB 16297-1996	
Nitric			1400		GB 16297-1996	
Calcium carbide	300		1200		GB 9078-1996	
Cement	100	200	800		GB 4915-2004	
Lime	350	850			GB 9078-1996	

Table S2. Emission limits (mg/m³) of the smoke in the Old Emission Standard.
Material	Smoke	Dust	SO₂	NOₓ	Standard
Brick	300	300	1200		GB 9078-1996
Glass	300	200	1200		GB 9078-1996
Sanitary pottery	300		1200		GB 9078-1996
Pottery	300		1200		GB 9078-1996
Refractory	300		1200		GB 9078-1996
Carbon	300	300	1200		GB 9078-1996
Casting	300	300	1200		GB 9078-1996
Boiler-coal	350		1200		GB 13271-2001
Boiler-oil	200		1200		GB 13271-2001
Boiler-natural gas	50		100		GB 13271-2001
Electricity-coal	50		400	650	GB 13223-2003
Electricity-oil	50		400	400	GB 13223-2003
Electricity-natural gas	50		400		GB 13223-2003

Table S3. Emission limits (mg/m³) of the smoke in the Temporal Emission Standard
Smoke	Dust	SO$_2$	NO$_x$	Standard
Carbon	150	150	850	GB 9078-1996
Casting	150	850	GB 9078-1996	
Boiler-coal	250	900	GB 13271-2014	
Boiler-oil	150	900	400	GB 13271-2014
Boiler-natural gas	50	100	400	GB 13271-2014
Electricity-coal	50	400	450	GB 13223-2011
Electricity-oil	50	400	200	GB 13223-2011
Electricity-natural gas	50	400	200	GB 13223-2011

Table S4. Emission limits (mg/m3) of the smoke in the New Emission Standard
	Smoke	Dust	SO₂	NOₓ	Standard
Sinter/pellet	20	20	50	100	GB 28662-2012
Iron	10	15	100	300	GB 28663-2012
Steel-BOF	50				GB 28664-2012
Steel-EAF	50				GB 28664-2012
Iron alloy	30				GB 28666-2012
Copper	10	100			GB 25467-2010
Lead	10	100			GB 25466-2010
Zinc	10	100			GB 25466-2010
Nickel	10	100			GB 25467-2010
Tin	30	400			GB 30770-2014
Alumina	10	100			GB 25467-2010
Aluminum		100			GB 25467-2010
magnesium		100			GB 25468-2010
Petroleum	20	50	100		GB 31570-2015
Coke	15	30	150	200	GB 16171-2012
Fertilizer	200	850			GB 9078-1996
Sulfuric	30	200			GB 26132-2010
Nitric		200			GB 26131-2010
Calcium carbide	200	850			GB 9078-1996
Cement	20	10	100	320	GB 4915-2013
Lime	200	850			GB 9078-1996
Brick	20	20	100	150	GB 29620-2013
Glass	20	30	100	400	GB 26453-2011
Sanitary pottery	20	30	150		GB 25464-2010
Pottery	20	30	150		GB 25464-2010
Refractory	150	850			GB 9078-1996
Carbon	150	150	850		GB 9078-1996
Casting	150	150	850		GB 9078-1996
Boiler-coal	30	200	200	200	GB 13271-2014
Boiler-oil	30	100	200	200	GB 13271-2014
Boiler-natural gas	20	50	150	200	GB 13271-2014
Electricity-coal	20	50	100	200	GB 13223-2011
Electricity-oil	20	50	100	200	GB 13223-2011
Electricity-natural gas	5	35	100	200	GB 13223-2011
Table S6. Range for the volume of smoke.

	Volume of smoke	Unit
Sinter	2900-3400	m³/ton
Pellet	1900	m³/ton
Iron	1520-1850	m³/ton
Steel-BOF	4123-5800	m³/ton
Steel-EAF	12000-2000	m³/ton
Iron alloy	27053	m³/ton
Copper	20450-25930	m³/ton
Lead	50080-51910	m³/ton
Zinc	12700	m³/ton
Nickel	92570	m³/ton
Tin	28740	m³/ton
Alumina	2200	m³/ton
Aluminum	10000-130000	m³/ton
magnesium	75000	m³/ton
Petroleum	916.32-1092.25	m³/ton
Coke	1275-4096	m³/ton
Fertilizer	10000	m³/ton
Sulfuric	2000	m³/ton
Nitric	3400	m³/ton
Calcium carbide	14000	m³/ton
Cement	3964-2069	m³/ton
Lime	3344-11737	m³/ton
Brick	42970-51040	m³/piece
Glass	3990-5629	m³/ton
Sanitary pottery	1260670-2814370	m³/piece
Pottery	1072830-1590550	m³/m²
Refractory	5134	m³/ton
Carbon	5500	m³/ton
Casting	1400-2200	m³/ton
Boiler-coal	10290	m³/ton
Boiler-oil	15366.93	m³/ton
Boiler-natural gas	136259.17	m³/m³
Electricity-coal	8178-10150	m³/ton
Electricity-oil	11152	m³/ton
Electricity-natural gas	245500	m³/m³
Table S7. Comparison of the estimated emissions with MEIC 2016 (Zheng et al., 2018), and the uncertainty level of the estimated emissions.

	SO2	NOx	TSP	PM2.5	BC	OC	
Old	(18.4-21.5)	(15.6-19.2)	(8.0-11.5)	(3.3-4.4)	(0.18-0.23)	(0.21-0.28)	
Standard	Temporal	15.4	13.1	4.5	2.1	0.14	0.10
	(14.6-17.0)	(12.3-15.0)	(4.3-6.0)	(2.0-2.2)	(0.13-0.16)	(0.09-0.13)	
New	7.9	7.3	2.5	1.0	0.039	0.039	
Standard	(7.5-8.6)	(6.8-7.7)	(2.3-3.1)	(0.9-1.2)	(0.28-0.63)	(0.28-0.071)	
Special	3.3	5.9	1.7	0.55	0.027	0.031	
Standard	(3.1-3.5)	(5.5-6.3)	(1.5-2.3)	(0.53-0.63)	(0.021-0.30)	(0.025-0.035)	
MEP,2015	15.6	11.8	12.3	5.0	0.4	0.4	
MEIC,2016	10.4	13.9	13.4	4.3	0.3	0.3	

Table S8. WRF-CHEM model configurations.

Parameter	Details
Grid size	180×150
Domain center	35°N, 105°E
Horizontal resolution	30 km × 30 km
Vertical layer	36
Microphysics	Lin et al. scheme (Lin et al., 1983)
Longwave radiation	RRTM scheme (Mlawer et al., 1997)
Shortwave radiation	Goddard shortwave (Kim and Wang, 2011)
Surface layer	Eta similarity (Janjić, 2002)
Land layer	Noah Land Surface Model (Chen, 2001)
Boundary layer	Mellor-Yamada-Janjić scheme (Janjić, 2002)
Meteorology initial and boundary conditions	GFS analysis and forecast every 6 h
Biogenic emission inventory	MEGAN model developed by Guenther et al. (2006)
Photolysis scheme	Madronich F-TUV(Guenther et al., 2006)
Spin-up period	7 days
Table S9. Geographical classification of the provinces in China.

Province	Region
Beijing	North
Tianjin	North
Hebei	North
Shanxi	North
Inner Mongolia	North
Liaoning	Northeast
Jilin	Northeast
Heilongjiang	Northeast
Shanghai	East
Jiangsu	East
Zhejiang	East
Anhui	East
Fujian	East
Jiangxi	East
Shandong	East
Henan	Central
Hubei	Central
Hunan	Central
Guangdong	South
Guangxi	South
Hainan	South
Chongqing	Southwest
Sichuan	Southwest
Guizhou	Southwest
Yunnan	Southwest
Shaanxi	West
Gansu	West
Qinghai	West
Ningxia	West
Xinjiang	West

Table S9. Change in PM$_{2.5}$-related premature deaths.

Province	Old→Temporal	Temporal→New	New→Special	Old→Special		
	Mean	95% lower	95% upper			
Beijing	-0.83	-1.19	-0.55	-2.56	-2.89	-2.25
Tianjin	-0.59	-0.77	-0.35	-1.72	-1.93	-1.52
Hebei	-3.64	-4.28	-2.04	-9.96	-11.18	-8.86
Province	Old→Temporal	Temporal→New	New→Special	Old→Special		
--------------	--------------	--------------	-------------	-------------		
	Mean	95% lower	95% upper	Mean	95% lower	95% upper
Beijing	0.26	0.16	0.04	0.46	0.20	0.60
Tianjin	0.16	0.11	0.04	0.30	0.13	0.40
Hebei	0.53	0.47	0.09	1.10	0.45	1.48
Shanxi	0.23	0.17	0.01	0.41	0.15	0.59
Inner	0.08	0.02	-0.03	0.07	0.02	0.11
Mongolia	0.12	0.01	-0.02	0.11	0.04	0.16

Table S10. Change in \(O_3\)-related premature deaths.
Province	0.00	-0.08	-0.04	-0.12	-0.19	-0.04
Jilin	0.00	-0.09	-0.03	-0.12	-0.20	-0.04
Heilongjiang	0.00	-0.09	-0.03	-0.12	-0.20	-0.04
Shanghai	0.28	-0.07	-0.07	0.14	0.07	0.16
Jiangsu	0.79	0.15	-0.17	0.76	0.38	0.91
Zhejiang	0.04	-0.44	-0.26	-0.66	-0.80	-0.32
Anhui	0.32	0.05	-0.11	0.27	0.11	0.35
Fujian	0.03	-0.12	-0.12	-0.21	-0.30	-0.08
Jiangxi	-0.18	-0.55	-0.26	-0.99	-1.32	-0.41
Shandong	0.82	0.30	-0.11	1.01	0.42	1.35
Henan	0.54	0.25	-0.05	0.74	0.31	1.00
Hubei	-0.09	-0.15	-0.05	-0.29	-0.41	-0.12
Hunan	-0.19	-0.48	-0.27	-0.93	-1.28	-0.38
Guangdong	0.15	-0.59	-0.39	-0.84	-1.20	-0.31
Guangxi	-0.23	-0.41	-0.20	-0.84	-1.21	-0.32
Hainan	-0.03	-0.06	-0.03	-0.12	-0.17	-0.05
Chongqing	-0.07	-0.15	-0.07	-0.29	-0.40	-0.12
Sichuan	-0.26	-0.48	-0.28	-1.02	-1.41	-0.40
Guizhou	-0.06	-0.24	-0.10	-0.40	-0.59	-0.15
Yunnan	-0.09	-0.18	-0.12	-0.38	-0.58	-0.13
Tibet	0.00	0.00	0.00	0.00	0.00	0.00
Shaanxi	0.11	0.00	-0.03	0.09	0.04	0.10
Gansu	-0.02	-0.08	-0.04	-0.15	-0.22	-0.05
Qinghai	0.01	0.01	0.00	0.02	0.01	0.03
Ningxia	0.02	0.02	-0.01	0.03	0.01	0.05
Xinjiang	0.00	0.02	0.00	0.03	0.01	0.04
Figure S1. Air quality measurement stations in China. The red points represent the location of the stations.

Figure S2. Validation of the simulated monthly average (a) PM$_{2.5}$ (μg/m3) and daily maximum 1-hour (b) O$_3$ (μg/m3) in January, April, July and October. We calculated the average value of
air pollutants in cities with more than 5 measurement stations. The observed value is the average value of the measurement stations in a city. The simulated value is the average value of the grids in a city. The blue lines represent that the ratio of the simulation and the observation value is 1:2 and 2:1, and the red lines represent that the ratio of the simulation and the observation value is 1:4, 1:1 and 4:1.

Figure S3. The geographical distribution of the provinces in China. This figure helps to identify the geographical location of the provinces in China.
Figure S4. (a) SO$_2$, NO$_x$ and PM$_{2.5}$ emissions (Tg) in the Old Emission Standard. (b) Relative reduction of SO$_2$, NO$_x$ and PM$_{2.5}$ emissions when shifting from the Old Emission Standard to the Temporal Emission Standard, the Temporal Emission Standard to the New Emission Standard and the New Emission Standard to the Special Emission Standard.
Figure S5. Comparison of the monthly average PM$_{2.5}$ concentrations in the (a) present-day simulations with that in the (b) Temporal Emission Standard and (c) New Emission Standard.

Figure S6. Comparison of the monthly average daily maximum 1-hour O$_3$ concentrations in the (a) present-day simulation with that in the (b) Temporal Emission Standard and (c) New Emission Standard.
Figure S7. Change in monthly average PM$_{2.5}$ concentrations in the (a) Old→Temporal scenario, (b) Temporal→New scenario and (c) New→Special scenario.

Figure S8. Change in monthly average of daily maximum 1-hour O$_3$ concentrations in the (a) Old→Temporal scenario, (b) Temporal→New scenario and (c) New→Special scenario.
Figure S9. (a) The changes in annual premature deaths per capita due to PM$_{2.5}$ and O$_3$ in the 30 provinces of China (except Tibet and Taiwan) after shifting from the Old emission standards to the Special Emission Standards and (b) the initial air pollution-related premature deaths per capita in 30 provinces following the Old Emission Standard and the provincial reduction of annual air pollution-related premature deaths per capita if the Special Emission Standard should be fully implemented.
Figure S10. Change in the number of annual PM$_{2.5}$-related premature deaths (thousands). The error bar shows the 95% confidence level of our estimation.
Figure S11. Change in annual PM$_{2.5}$-related premature deaths in (a) Old→Temporal scenario, (b) Temporal→New scenario and (c) New→Special scenario.
Figure S12. Change in the number of annual O$_3$-related premature deaths (thousands). The error bar shows the 95% confidence level of our estimation.
Figure S13. Change in annual O₃-related premature deaths in (a) Old→Temporal scenario, (b) Temporal→New scenario and (c) New→Special scenario.
CHEN, F. 2001. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model Implementation and sensitivity. *Mon. Wea. Rev.*, 129, 569-585.

GUENTHER, A., KARL, T., HARLEY, P., WIEDINMYER, C., PALMER, P. I. & GERON, C. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). *Atmospheric Chemistry & Physics*, 6, 3181-3210.

JANJIĆ, Z. I. 2002. Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso Model. *Ncep Office Note*, 436.

KIM, H. J. & WANG, B. 2011. Sensitivity of the WRF model simulation of the East Asian summer monsoon in 1993 to shortwave radiation schemes and ozone absorption. *Asia-Pacific Journal of Atmospheric Sciences*, 47, 167-180.

LIN, Y. L., FARLEY, R. D. & ORVILLE, H. D. 1983. Bulk Parameterization of the Snow Field in a Cloud Model. *Journal of Applied Meteorology*, 22, 1065-1092.

MLAWER, E. J., TAUBMAN, S. J., BROWN, P. D., IACONO, M. J. & CLOUGH, S. A. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. *Journal of Geophysical Research Atmospheres*, 102, 16663-16682.

ZHENG, B., TONG, D., LI, M., LIU, F., HONG, C., GENG, G., LI, H., LI, X., PENG, L., QI, J., YAN, L., ZHANG, Y., ZHAO, H., ZHENG, Y., HE, K. & ZHANG, Q. 2018. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. *Atmos. Chem. Phys.*, 18, 14095-14111.