How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity

Hazel Lin, Zhengmei Song, and Alberto Bianco

ABSTRACT
With wider use of graphene-based materials and other two-dimensional (2D) materials in various fields, including electronics, composites, biomedicine, etc., 2D materials can trigger undesired effects at cellular, tissue and organ level. Macrophages can be found in many organs. They are one of the most important cells in the immune system and they are relevant in the study of nanomaterials as they phagocytose them. Nanomaterials have multi-faceted effects on phagocytic immune cells like macrophages, showing signs of inflammation in the form of pro-inflammatory cytokine or reactive oxidation species production, or upregulation of activation markers due to the presence of these foreign bodies. This review is catered to researchers interested in the potential impact and toxicity of 2D materials, particularly in macrophages, focusing on few-layer graphene, graphene oxide, graphene quantum dots, as well as other promising 2D materials containing molybdenum, manganese, boron, phosphorus and tungsten. We describe applications relevant to the growing area of 2D materials research, and the possible risks of ions and molecules used in the production of these promising 2D materials, or those produced by the degradation and dissolution of 2D materials.

Introduction
The immune system comprises of mainly two groups of cells: lymphocytes and myeloid cells. Lymphocytes can be subdivided into B cells, T cells, natural killer (NK) cells, and NK-T cells. Myeloid cells can be subdivided into platelets, erythrocytes, and cells of the granulocyte lineage such as neutrophils, monocytes, macrophages, eosinophils, basophils, and mast cells. Neutrophils and monocytes are the most prominent phagocytes in the blood and are the body’s first defense against foreign organisms or materials, while macrophages are the main immune cells which process nanoparticles. These phagocytes are therefore more relevant to immune cell interaction with 2D materials. Of these, macrophages have a longer lifespan and are mostly used in in vitro studies.

Macrophages can be found in all tissues of the body and are fundamental in host defence. They phagocytose dead cells and debris, shape inflammatory response and modulate adaptive immunity. Macrophages are one of the first cells which encounter nanomaterials, and promptly produce pro-inflammatory cytokines such as IL-6 and TNF-α to initiate a down-stream immune response upon foreign particle recognition. Macrophages also secrete anti-bacterial and proteolytic enzymes, chemokines, and anti-inflammatory cytokines, such as IL-10 and TGF-β, and produce reactive oxidative species (ROS), nitrogen, and arachidonate metabolites.

Although macrophages are able to recognize and internalize nanomaterials, it is generally unknown how exactly nanoparticle recognition occurs, with respect to specific cell-surface receptors and membrane cholesterol. Nanomaterials interact with the biological molecules by coating their surface and forming the protein corona. In fact, the protein corona dictates nanoparticle interaction with macrophages through mediation of recognition and uptake into these cells. Nanoparticle–macrophage interactions are also dependent on particle properties, physico-chemical characteristics such as size, shape, charge, and colloidal stability. As a rough guide, small positively charged nanoparticles are in general more toxic than big negatively charged ones.

The nanoparticles have the potential to affect macrophage polarization, and therefore internalization. Macrophage polarization is an activation process following micro-environmental signals. At the end of this process, macrophage phenotypes can be categorized into two groups: 1) pro-inflammatory M1, and 2) anti-inflammatory M2. Polyurethane nanoparticles were found to inhibit polarization toward M1 phenotype but not M2, decreasing production of M1 cytokines TNF-α and IL-1β. Silicon nanoparticles were found to have higher uptake in M1 compared to M2. RAW 264.7 macrophages, although contradictory results were observed in another study using primary human macrophages.

The nanoparticle exposure at subtoxic concentrations can result in ROS production, increased secretion of pro-inflammatory cytokines and upregulation of activation markers in
macrophages.[14] At higher concentrations or in certain experimental conditions, nanoparticles can exert macrophage toxicity in various ways, which may or may not be indirectly linked, such as endoplasmic reticulum stress,[15] autophagic cell death,[16] mitochondrial dysfunction,[17] lysosomal dysfunction [18] or oxidative damage.[19] ROS in particular can be highly relevant in genotoxicity, which may be related to nanoparticle surface properties, presence of transition metals, intracellular iron mobilization, particle uptake, interaction and lipid peroxidation.[20]

The class of 2D nanomaterials covers many types of materials, including monolayered elements going from graphene and phosphorene (also known as black phosphorus) to dichalcogenides to layered silicate minerals.[21] Graphene safety has been extensively reviewed in many cell types, including macrophages.[22] Nitrides such as hexagonal boron nitride (hBN), an isomorph of graphene, and transition metal dichalcogenides such as molybdenum disulfide, tungsten disulfide, hold much promise in the semiconductor industry.[23] (Fig. 1) 2D nanomaterials have also vast potential for use in electronics, sensing, spintronics, photonics, thermoelectrics and energy systems.[24] They have been explored in biomedicine, for example in bioimaging, cancer theranostics, biosensing and antimicrobials, although little is still known about their toxicity.[25]

Given the potential to synergise their unique benefits in the 2D structure, there have been several combinations involving 2D nanomaterials in fields ranging from electronics to oncology. Boron has versatile bonding configurations and can intercalate with graphene despite a crystallographic lattice and symmetry mismatch.[26] Boron-doped graphene nanoribbons,[27] boron-doped nanographene and boron-doped graphene-MoS\textsubscript{2} nanohybrids [28] have also emerged in the battery and semi-conductor industry.[29] Black phosphorus-MoS\textsubscript{2} nanocomposites have been utilized in dye decomposition,[30] while black phosphorus-hBN-rhenium diselenide heterojunction diodes have found use in electronics.[31]

In biology and chemistry, tungsten-doped manganese dioxide has been reported to be exploited in formaldehyde removal,[32] while a black phosphorus-manganese dioxide nanoplatform has been used in oxygen monitoring and in photodynamic therapy.[33] MoS\textsubscript{2}-graphene oxide (GO) nanocomposites have shown efficacy in lung cancer therapy[34] and GO nanosheets decorated with copper oxide-WO\textsubscript{3} nanoparticles were used to detect cancer cells.[35]

In this review, we will focus on the impact of the most representative groups of 2D nanomaterials on macrophages. Quantum dots and nanoparticles have been included as well, as they are considered a subset of 2D materials, as seen in many recent publications reporting production methods reminiscent of 2D materials and resultant 2D properties.[36–38] We will describe the effects of graphene, as subdivided into few-layer graphene (FLG), GO and graphene quantum dots (GQDs). We will also cover MoS\textsubscript{2} and other forms of molybdenum, MnO\textsubscript{2} and other forms of manganese, hBN and other forms of boron, black phosphorus, tungsten trioxide and other forms of tungsten. The scope for upcoming and less explored non-graphene 2D materials includes other forms of the same element and non-macrophage cells to provide a clearer picture of elemental and molecular toxicity. This will hopefully enable the reader to better understand the predicted macrophage toxicity of these new materials.

Graphene

Graphene, the first true 2D crystalline material, was isolated by Geim and Novoselov in 2004.[39] Graphene consists of single layer sp2-hybridized carbon atoms arranged in a hexagonal lattice, with a carbon-carbon distance of 1.42 Å. The large π conjugation in graphene results in its exceptional electrical, thermal, optical, and mechanical properties. These properties can be altered as well by appropriate chemical modifications. The graphene family is huge and includes FLG, GO and GQDs (Fig. 2), which we will cover in this review. Due to their physicochemical properties, graphene family nanomaterials have attracted considerable attention in a myriad of fields [40] such as biomedicine,[41] electronics,[42] photonics,[43,44] composite materials,[45] sensors and metrology.[46] In view of the broad spectrum of applications and the increasing use of graphene family nanomaterials in different industrial sectors, it is crucial to understand their impact on cells and tissues, especially the interactions with the immune system and in particular in macrophages.[47] In this section, we discuss in detail the effects of FLG, GO and GQDs on macrophages.[21]

Few-layer graphene

FLG refers to graphene materials with less than 4-10 layers of nanosheets.[48] When the number of atomic layers increases, the material becomes more metallic [49] and the thermal conductivity decreases.[50] FLG is gaining importance in fields like nanomedicine, because it is much easier to obtain high quantities and its colloidal properties are still maintained in biological media.[51] In this context it is important to consider the effects of FLG on macrophages.

It has been demonstrated that FLG is able to induce cytotoxicity in RAW 264.7 macrophages by decreasing mitochondrial membrane potential (MMP), causing the accumulation of
intracellular ROS, and triggering apoptosis through activation of the mitochondrial pathway. The mitogen-associated protein kinases (MAPKs) and TGF-β-related signaling pathways may also be involved.[52] It was observed that pristine graphene nanosheets produce holes in the membranes of RAW 264.7 macrophages, reducing cell viability. This was due to strong interactions between pristine graphene and membrane phospholipid tails.[53] It was also reported that FLG could stimulate the secretion of cytokines like IL-1α, IL-6, IL-10, TNF-α and GM-CSF and chemokines such as MCP-1, MIP-1α, MIP-1β and RANTES on both primary murine macrophages and immortalized macrophages. This effect was linked to the toll-like receptor (TLR)-mediated and NF-κB pathways.[54] Our group however, showed that primary human M1 and M2 macrophage viability and activation were mainly found to be unaffected by 24 h treatment with FLG at doses up to 50 μg/mL.[55] We also found high cell viability of RAW 264.7 cells after exposure to FLG for 24 h and no in vivo hematotoxicity in Balb/c mice at 300 μg/mouse up to 30 days.[56]

Recently, Cristo et al. presented the detailed toxicity mechanism of low-dose (2.5 and 5 μg/cm²) of 265 nm FLG in RAW 264.7 macrophages. The results of this study revealed that FLG induced inflammation by oxidative stress, triggering endoplasmic reticulum stress-mediated autophagy.[57] On the contrary, our group reported that FLG of 100-1600 nm lateral size did not induce inflammatory responses nor cell toxicity in mouse primary bone marrow-derived macrophages. The cellular stress and the basal level of autophagic activity were not affected at any dose of FLG (3-100 μg/mL).[58] The study showed that the material was internalized mainly through phagocytosis and partly by passive diffusion. No significant increased secretion of inflammation-related cytokines such as IL-1β, IL-6 and TNF-α was observed. The results are in agreement with another work,[59] where pristine graphene did not induce autophagy after being phagocytosed by human primary macrophages (from peripheral blood mononuclear cells, PBMCs). Similarly, it was demonstrated that pristine graphene cannot induce immune stimulation and toxic effects in vitro.[60] In another study,[61] pristine graphene nanosheets stabilized by flavin mononucleotide of two different sizes (PG-FMN, 200-400 nm and 100-200 nm) enhanced the release of nitric oxide with metabolic alterations. Interestingly, the smaller PG-FMN increased the levels of succinate, itaconate, phosphocholine in RAW 264.7 macrophage, which was not observed in cells incubated with larger PG-FMN nanosheets.

Other studies compared the toxicity and cellular uptake of FLG and functionalized FLG.[62,63] The interaction of pristine graphene (corresponding to FLG) and carboxyl-functionalized graphene (FLG-COOH) in RAW 264.7 macrophages and PBMCs showed relatively high intracellular uptake of FLG-COOH compared to FLG, which was found to be mainly retained on the cell surface and induced stress effects above 50 μg/mL. Studies focusing on pro-inflammatory cytokine expression (e.g., IL-1β, IL-6, IL-8, IL-10, TNF-α, and IL-12p70) showed that FLG-treated PBMCs expressed relatively higher levels of IL-8 and IL-6 compared to FLG-COOH samples, thus indicating the inflammatory potential of the former.[63] These results demonstrated that highly hydrophobic pristine graphene was more toxic than hydrophilic, functionalized graphene.

Biodegradation is important during the study of biomedical applications, to ascertain eventual material safety within the

Figure 2. Categorization of graphene-based materials based on three parameters; C/O ratio, average lateral size and number of layers. Reprinted with permission.[47] Copyright 2014, John Wiley & Sons, Inc.
body. Aggregates (60 μg/mL) of phagocytosed pristine graphene (200 nm lateral size) were found in RAW 264.7 macrophages within 24 h as observed by confocal Raman spectroscopy. Macrophage-engulfed graphene was shown to result in time-dependent degraded material reiterating the role of macrophages in biodegradation. (Fig. 3) [64] The same group also compared the 3-month toxicity, organ biodistribution and immune response of FLG, FLG-COOH and FLG-PEG of 100-200 nm in Swiss albino mice at 20 mg/kg. The results showed that all the materials were mostly retained in the lung, spleen and liver, with FLG and FLG-COOH inducing significant cellular and structural damages to lungs, liver, spleen, and kidney. In contrast, FLG-PEG-administered animals showed no significant abnormalities and normal biochemical markers. In addition, FLG-PEG evidenced clear signs of biodegradation using Raman confocal imaging.[65]

Overall, FLG could decrease cell viability, damage cell membrane, induce apoptosis and increase cytokine production in macrophages, with the main mechanism of cytotoxicity related to MMP reduction and ROS increase. Addition of functional groups on the surface of FLG can modulate cytotoxicity. As FLG is easily taken up by macrophages and widely used in biomedicine, future studies could be focused on in vitro and in vivo biodegradation of FLG, a neglected area of research.

Graphene oxide

GO is the oxidized form of graphene. It is made of 2D carbon obtained from graphite sheets under strong acid conditions, which thereby introduces oxygenated groups onto carbon-carbon double bonds.[66–68] On the surface of GO we can identify mainly hydroxyl and epoxy groups, while at the edges there are few carboxylic and carbonyl functions. The presence of these groups accounts for a high hydrophilicity, a superior water dispersibility, a good colloidal stability and an easy surface functionalization. Owning to these properties, GO is currently the most widely investigated graphene family materials for biology-related applications,[69,70] including drug delivery,[71,72] cancer therapy and viral infections,[73] tissue engineering,[74] bioimaging[75] and biosensing.[76] Here, we present a summary of the research efforts to elucidate the bioeffects of GO on macrophages including cytotoxicity, cellular uptake, inflammatory effects and macrophage polarization.

Cytotoxicity studies in macrophages

Many studies revealed that GO can damage the membrane and cytoskeleton of macrophages. For instance, single-layer GO nanosheets with a lateral size ranging from 200 nm to 700 nm can reduce cell viability by producing holes in the membranes of RAW 264.7 macrophages.[53] Similarly, monolayer GO within the range of 100-300 nm provoked plasma membrane and cytoskeleton damage in J774A.1 macrophages at sublethal concentrations (20 μg/mL) without inducing significant cell death. The interactions of GO with membrane integrin was found to activate the integrin-FAK-Rho-ROCK pathway and to suppress the expression of integrin, resulting in a compromised cell membrane and cytoskeleton.[77]

Recently, lysosomal dysfunction emerged as a potential mechanism of nanomaterial toxicity.[78] Additionally, a lysosome-based process known as autophagy was recognized as an important pathway of cell death.[79] Several studies have revealed that GO could induce autophagy in macrophages. The autophagy was triggered by GO in a concentration-dependent manner, as evidenced by the appearance of autophagic vacuoles and activation of autophagic marker proteins. With a higher concentration of GO, an increase in autophagic vacuoles was observed. It was also shown that autophagy was at least partly regulated by the TLR pathway.[80] GO induced autophagosome accumulation and the conversion of LC3-I into LC3-II, inhibiting the degradation of the autophagic substrate p62 protein.[81] It was also observed that GO exerted a concentration-dependent increase in membrane rafts and the production of

![Figure 3.](image-url)
phagosomes. GO exposure induced cell necrosis, inflammatory responses, increase in the oxidative stress response and autophagy in RAW 264.7 cells. ROS was also found to induce autophagy by the ROS-Nrf2-p62 pathway.[82]

It is worth noting that the oxidation states of GO may also affect toxicity in macrophages. The reduced GO (rGO) was more toxic than GO in both bone marrow-derived macrophages and J774A.1 cells.[83] In addition, it was also found that hydrated GO, a material with high density of carbon radicals, was responsible for cell death in THP-1 cells as a consequence of lipid peroxidation of the surface membrane and membrane lysis.[84]

Cellular uptake of GO in macrophages

The majority of studies on GO-mediated cellular uptake have been carried out on macrophages. It was evident that the phagocytic capacity of macrophages can be altered after internalizing GO. GO accumulation inside cells causes significant morphological modifications and reduction of macrophage phagocytic ability.[85] In a study aimed to understand the effect of GO when macrophages encounter microbial pathogens, the uptake of GO by macrophages could modulate their capability to phagocytose yeasts. In particular, it was found that the ingestion of heat-killed yeasts was increased by murine peritoneal macrophages after GO treatment.[86] Other studies have shown that, following uptake, GO accumulates primarily in the cytoplasm[85] and the lysosomes.[84] It was found that GO nanosheets were localized on F-actin filaments inducing cell-cycle alterations, apoptosis and oxidative stress in RAW 264.7 cells.[87] In another study, GO sheets were observed within vesicles as well as in the cytoplasm of carp leukocyte cells (CLC), a surrogate cell type for carp macrophages.[88] In RAW 264.7 macrophages the mechanism of GO internalization is dependent on clathrin-coated membrane invagination.[89] Different sizes of GO with BSA functionalization culminated in different pathways. GO of 500 nm lateral size mainly penetrated the cell through clathrin-mediated endocytosis, while larger sheets (1 µm lateral size) were internalized by a combination of clathrin-mediated endocytosis and phagocytosis.[90]

A certain number of studies have shown that the size of GO plays an important role in determining the efficiency of macrophage cellular uptake, with smaller GO nanoparticles being better internalized.[61,91–94] Our group showed that small lateral size GO internalizes better and induced stronger changes in the physiological functions of human and murine primary macrophages.[95] Similar results were observed in murine peritoneal macrophages. In contrast, other researchers reported that the lateral size of GO does not affect cellular uptake.[96,97] It has been demonstrated that the cell uptake of GO of 2 µm and 350 nm penetrate in the same way and accumulate in similar amounts in murine J774.1A1 macrophages and peritoneal macrophages. This was attributed to similar antibody opsonization and active Fc\(\gamma\) receptor-mediated phagocytosis.[88] Using smaller GO (e.g., 89 nm and 277 nm),[99] the uptake into macrophages was again independent of GO size and incubation time.

Surface charge also affects the cellular uptake of GO. Luo et al.[98] synthesized ~200 nm of GO functionalized with PEG, bovine serum albumin (BSA), and poly(ethyleneimine) (PEI). The authors found that decoration with PEG and BSA inactivated endocytosis, whereas the positively charged GO-PEI facilitated endocytosis only initially. They hypothesized that after cellular internalization, GO-PEI disrupts the physiological potential and integrity of mitochondria and subsequently alters the levels of ROS and cytochrome C. Similarly, in RAW 264.7 cells,[99] PEI-functionalized GO conjugate with a positive zeta-potential was much easier internalized than GO functionalized with a 6-armed PEG with a negative zeta-potential, although the cellular uptake pathways were the same. This is probably because GO sheets with a positive potential surface were able to better attach to the cell membrane leading to cell internalization. It was indeed observed that the nanomaterials were first transferred to the cell membranes, and then underwent invagination and vesicle formation.

The other two parameters that influence the cellular uptake of macrophages are the dispersibility and functionalization of GO. Our group recently demonstrated that reducing GO agglomeration in the presence of proteins and obtaining stable GO dispersions in cell culture media allows faster and more efficient internalization in RAW 264.7 macrophages.[100] Several reports showed that the cell penetration of 1-arm PEGylated GO nanosheets was higher than GO modified with a 6-arm PEG.[101,102] The possible reason is that the latter GO needs a stronger driving force and more energy to cross the cell membrane. The polymer-GO nanosheets functionalized by either amide bond (amPEG-PEI-GO) or disulfide linkage (ssPEG-PEI-GO) could reduce the nonspecific uptake and clearance by RAW 264.7 macrophages, increasing their accumulation in targeted cells.[103] Pi et al.[104] prepared the mannosylated and PEGylated GO nanoplatform (GO-PEG-MAN), which showed significantly increased human THP-1-derived macrophages uptake through an improved mannose receptor-mediated endocytosis in vitro. GO-PEG-MAN loaded with rifampicin was reported to increase cellular uptake of the drug, extending its effect. This suggested that GO-PEG-MAN would be a good candidate for drug delivery. In addition, the oxidation states of GO may also affect macrophage uptake, with GO having greater cell membrane affinity compared to rGO. Although GO was found to induce expression of antioxidative enzymes and inflammatory factors, rGO had surprisingly higher cellular uptake and higher NF-\(\kappa\)B expression. Both GO and rGO were shown to damage F-actin cytoskeleton.[105]

Inflammation and macrophage polarization

Macrophages play an important role in pro- and anti-inflammatory and can decrease the immune reactions through the production of cytokines. Several studies have evaluated the cytokine release induced by GO in macrophages. GO (with two different sizes of ~2.4 µm and ~200 nm) enhanced the production of IL-2, IL-10, IFN-\(\gamma\) and TNF-\(\alpha\) in a dose-dependent manner. The treatment of RAW 264.7 macrophages with GO stimulated toll-like receptor (TLR) signaling and triggered cytokine responses.[80] Other studies reported that GO can induce cellular necrosis mediated by activation of TLR4 and production of autocrine tumor necrosis factor receptor (TNF-R).[83] In addition,
PEG-modified GO significantly enhanced the secretion of TNF-α by RAW 264.7 macrophages without changing the levels of IL-6 and IL-1β.[102] Several factors can affect cytokine expression including GO concentration. IL-6 expression in RAW 264.7 cells was increased with 15.6 and 31.25 μg/mL of GO, while no influence was observed at the concentration higher than 62.5 μg/mL. Similarly, low concentration of GO increased the synthesis of MIP-1α and MIP-1β, but high concentration of GO decreased their synthesis.[106] Low concentration of GO can stimulate the pro-inflammatory response in RAW 264.7 macrophages. The level of TNF-α and IL-8 increased rapidly at the GO concentration of 0.01 μg/mL and then decreased at 0.1 and 1.0 μg/mL. In addition, the content of malondialdehyde, glutathione and superoxide dismutase increased in a dose-dependent manner following treatment with GO.[107]

The lateral size of GO is also important in cytokine expression. For example, small and thin GO (lateral dimensions ranged between 50 nm and 2 μm) dose-dependently inhibited the release of IL-1β and IL-6 but not TNF-α, while NLRP3 inflammasome and caspase-1 activation were not affected. This happened because small GO had profound effects on the immunometabolism of the cells, leading to activation of the transcription factor nuclear factor-erythroid 2 related factor 2, which inhibited the expression of IL-1β and IL-6.[108] The groups of Fadeel and Kostarelos prepared the small (50-300 nm) and large (10-40 μm) GO samples of one or two layers’ thickness (1-2 nm).[109] The results showed that GO did not trigger size-dependent effects in primary human macrophages, or induce the secretion of Th1 cytokines (e.g., TNF-α, IL-6, or IL-1β) and Th2 cytokines (e.g., IL-4, IL-5, and IL-13), but significantly suppressed several LPS-induced cytokines, including the anti-inflammatory cytokine, IL-10. GO elicited also canonical NLRP3-ASC-caspase-1-dependent IL-1β secretion in LPS-primed cells.[109]

In addition, surface functionalization is another factor that can influence cytokine expression. The immune responses of branched PEI and 6-armed PEG functionalized GO conjugates were studied in RAW 264.7 macrophages. The results indicated that GO-PEG stimulated the macrophage more by improving the secretion of IL-6.[109] On the other hand, another work showed that although PEGylated GO was not internalized by peritoneal macrophages, integrin β8-related signaling and cytokine responses were still enhanced.[110] These results point to the conclusion that surface passivation does not always prevent immunological responses to GO nanomaterials.

Several studies have evaluated macrophage polarization induced by GO treatment. For example, GO treatment promoted J774A.1 macrophage polarization to the M1 phenotype, with large GO (750-1300 nm) eliciting higher M1 macrophage induction than small GO (50-350 nm) (Fig. 4).[104] Fluorescent-PEG-GO nanosheets (FITC-PEG-GO) were effectively absorbed by peritoneal macrophages, increasing yeast phagocytosis by pro-inflammatory M1 and reparative M2 macrophages. Treatments with GO enhanced M1 macrophage activation, which is important for the eradication of pathogens, and diminished alternative activation of M2 macrophages, which decreases fungal persistence and chronic infectious diseases.[111]

In addition, a macrophage-targeting/polarizing GO complex (MGC) decreased ROS in immune-stimulated macrophages to attenuate inflammatory polarization of macrophages (M1). Furthermore, it was found that GO functionalized with IL-4 plasmid DNA could polarize M1 to M2 macrophages for the synergistic treatment of myocardial infarction.[112]

In conclusion, the studies conducted in the past several years have clearly evidenced the biological effects of GO on macrophages. GO can reduce cell viability, can be taken up by macrophages and can affect cytokine expression, all these effects being influenced by several factors, such as lateral size, surface charge, dispersibility and functionalization. However, more research is required on macrophage polarization to better understand the possible inflammation risks of GO in macrophages.

Graphene quantum dots

Graphene quantum dots are small graphitic domains with lateral dimensions less than 10 nm (average 5 nm).[47,113] Owing to their high surface area, strong photoluminescent properties, excellent electrical properties, superior chemical inertness and biocompatibility,[114,115] GQDs have potential applications in photovoltaics,[116] anti-microbials,[117-119] bioimaging,[46,120,121] biosensing [122,123] and drug delivery.[124-126] With such vast potential uses of GQDs, the study of their cellular effects and toxicity is essential.
GQDs were shown to have little effect on cell viability and membrane integrity of activated THP-1-derived macrophages, while significantly increasing ROS, apoptosis, autophagy, and inflammatory responses. Furthermore, GQDs significantly increased the phosphorylation of p38 MAPK and p65, and promoted NF-κB. An increased expression of TNF-α, IL-1, and IL-8 was observed at low concentrations (10 and 50 μg/mL), whereas high concentrations (100 and 200 μg/mL) of GQDs led to opposite effects on cytokine production. It was reported that large (40 nm) GQDs were able to inhibit splenocyte IFN-γ production and to modulate MAPKs in J774.1 macrophages. Functionalization of GQDs also affected the interactions with macrophages. For instance, thiol functionalized GQDs significantly increased the efflux of oxidized-low density lipoprotein, down-regulated cell scavenger receptors, and efficiently recovered ROS levels in RAW 264.7 cells. GQDs have pure sp² carbon crystalline structure, while various oxygen functional groups were found in abundance on the surface of graphene oxide quantum dots (GOQDs), which are small fragments of water-soluble GO. Another study confirmed that folic acid-linked GOQDs were nontoxic to J774.1 macrophages even after prolonged exposure and high concentrations.

A comprehensive investigation on the uptake pathways, intracellular and nuclear localization and distribution of aminated graphene QDs (AG-QDs) in NR8383 rat alveolar macrophages showed internalization mainly by energy-dependent endocytosis, phagocytosis and caveolae-mediated endocytosis. However, the fluorescence spectrophotometry method used for testing cellular uptake is semi-quantitative, and requires supporting data from alternative methods. The internalized AG-QDs were shown to accumulate in the nucleus (Fig. 5), causing nuclear damage and DNA disruption by oxidative stress, direct contact, up-regulation of caspase genes as well as generation of ROS. AG-QDs at 100 μg/mL were also able to trigger genotoxicity. However, the induced DNA damage was not permanent and could be repaired by removing the material and re-incubating the cells in fresh medium.

Finally, N-doped GQD carriers were developed to enhance the delivery of the promising therapeutic molecule sodium 10-amino-2-methoxyundecanoate into the cells for alleviation of inflammatory diseases. The composite used at the relatively high concentration of 1 mg/mL up to 24 h showed anti-inflammatory potential in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages with improved down-regulation of COX-2, iNOS, TNF-α, NF-κB, IL-1α, IL-1β, IL-4, and IL-6, in comparison to the cells treated with the molecule alone.

In general, GQDs are less toxic in macrophages compared to other GO-based materials. Due to the excellent properties, GQDs can easily enter macrophages through different pathways. The possibility of DNA damage and inflammatory response can be mainly attributed to the uptake of GQDs. However, further systematic investigations involving long-term impact, including the study on exocytosis are necessary.

2D Materials beyond graphene

Based on their unique physical properties, 2D transition metal dichalcogenides (TMDCs) such as MoS₂, WS₂, MoSe₂ and WSe₂ have been used in various fields ranging from electronic and optoelectronic devices, batteries, sensing and catalysis. In this section, beside 2D structures we will also describe the materials in their elemental form as these can be liberated from the different 2D flakes containing them, during processes such as aging and degradation, through processes such as photochemical transformations, oxidation and reduction, dissolution, precipitation, adsorption and desorption, combustion, abrasion and biotransformation. These
different forms of elemental material can vary in toxicity. We have chosen a few up-and-coming materials that have been already investigated in electronics and energy storage in lieu of their potential applications in biology. Although few studies have been conducted on macrophages for some of these 2D materials, we have reviewed the effects on similar compounds containing these elements.

Molybdenum disulfide and other forms of molybdenum

A trace element existing in various oxidation states, molybdenum is widely used in many industries to make superalloys, nickel-based alloys, lubricants, chemicals, electronics due to its low coefficient of thermal expansion and high thermal conductivity. These properties enable it to enhance material strength, weldability, corrosion resistance and improve high-temperature creep deformation. Molybdenum can be found naturally in all plants and animals as an enzyme co-factor, and in the environment naturally in the form of molybdenite (MoS₂), or released from mining activities. Although molybdenum at high doses was found to be toxic in animals, studies in humans have found no long-term danger at doses of up to 1500 mg.\[141,142]\n
Different types of molybdenum compounds have various effects in human and rodent cells. Co-Cr-Mo alloys are commonly used in orthopedic implants and toxicological studies have been conducted to elucidate the effects of wear and corrosion. Macrophages contact the implant soon after insertion, and have been often used as a cellular model. Co-Cr-Mo alloys have been found to increase IL-6 and M-CSF, and to decrease MCP-1 secretion in mouse macrophage J774A.1 cells.\[143]\n
A more recent study showed that commercial 99.5% pure molybdenum particles dose-dependently increased IL-1β secretion in primary human macrophages. These particles were also found to increase TNF and IL-6 and activate the NLRP3 inflammasome. A well-characterized 2D molybdenum-based material, MoS₂ is the most abundant form of molybdenum and has been thoroughly investigated over the last years. Aggregated MoS₂ is commonly known to induce strong pro-inflammatory and pro-fibrogenic responses (increasing IL-8, TNF and IL-1β in THP-1 cells), so exfoliation is currently used to decrease its toxicity, although the caveat is that toxicity of MoS₂ can also increase with increasing degree of exfoliation.\[151]\n
The effects of MoS₂ can be determined to be mainly through cellular uptake as seen from RAW 264.7 cells and mice as shown in Figure 6. MoS₂ accumulates mostly

![Figure 6](https://example.com/figure6.png)
in the liver and spleen but shows no toxicity in RAW 264.7 cells. MoS2 can be oxidized into water-soluble molybdate species (Mo VI), which could explain its total excretion from the body within a month.153 MoS2 nanoflowers were shown to modulate anti-inflammatory in RAW 264.7 macrophages and human bone marrow stem cells, especially when PEGylated and loaded with the TNF-\(\alpha\) inhibitor etanercept (ET). ET-loaded MoS2\textsubscript{PEG} were nontoxic and inhibited pro-inflammatory markers TNF-\(\alpha\), CD86 and iNOS, while promoting anti-inflammatory markers Arg1, CD206 and IL-10. In fact, the addition of PEG to MoS2 was found to evoke stronger cytokine response (e.g., IL-6, TNF-\(\alpha\), IFN-\(\gamma\), MCP-1) than MoS2 alone due to a stronger membrane adsorption and a slower and prolonged membrane penetration.154

Lastly, a study in differentiated THP-1 cells found that MoS2 was internalized within 4 h and partially degraded by 72 h, leading to an increase in intracellular lipid bodies as a mechanism of defence in response to MoS2. MoS2 interaction with proteins could be detected, implying a potentially relevant direct impact to other signaling pathways.155

Proven extensively to be nontoxic when not overly-exfoliated, MoS2 evokes inflammatory response although this can be circumvented by adjusting its adjuvants in complex compounds (Table 1).

Our group has very recently found MoS2 to be minimally toxic in human macrophages with slight alterations in cell stress and inflammatory responses.155 A few years ago we also found that cytotoxicity of MoS2 only emerged after 24 h upon incubation with the products of MoS2 degradation recovered after 14 d at concentrations of 50 \(\mu\)g/mL.156

\textbf{Manganese dioxide and other forms of manganese}

Manganese is the fifth most abundant metal, with manganese dioxide the most common naturally-occurring form. Manganese is used in the manufacturing of fireworks, dry-cell batteries, fertilizer, paints, gasoline additives, medical imaging and cosmetics.157 Manganese is important in enzymes involved in cholesterol, amino acid and carbohydrate metabolism.158 Manganese is very important physiologically as it is crucial in connective tissue, bones, blood-clotting factors, and sex hormones. Manganese also plays a role in fat and carbohydrate metabolism, calcium absorption, regulation of cellular energy, and blood sugar regulation, and is required for normal brain function.159

Manganese was shown to induce \(iNOS\) expression in RAW 264.7 macrophages via activation of both MAPK and PI3K/Akt.160 \(\text{Mn}^{2+}\) ions can enter cells through the natural resistance-associated macrophage protein (Nramp) transporters,161 which are expressed at the phagosomal membrane of macrophages and neutrophils, and also mediate Fe2+ and Co2+ uptake.162 Manganese particles of 40 nm and agglomerates ranging from 200 nm to over 16 microns were reported to be internalized by rat alveolar macrophages and other cells including BRL 3 A rat liver cells and PC-12 rat neuron-like cells.163 In rat bone marrow-derived macrophages, PEGylated MnO\textsubscript{2} nanoparticles of 15 nm were nontoxic and did not trigger inflammatory cascades and down-regulated TNF-\(\alpha\) secretion when used at 5-100 \(\mu\)g/mL.164

MnO\textsubscript{2} nanoparticles were reported to almost completely enter guinea pig alveolar macrophages within an hour, compared to other particles such as TiO\textsubscript{2}. The uptake also induced chemotaxin production.165 Lastly, hyaluronic acid-coated, mannan-conjugated MnO\textsubscript{2} particles (Man-HA-MnO\textsubscript{2}) were found to prime anti-inflammatory, pro-tumor M2 RAW 264.7 macrophages to a pro-inflammatory M1 form. This enhances the ability of MnO\textsubscript{2} to modulate chemoresistance due to down-regulation of hypoxia-inducible factor-1\(\alpha\) (HIF-1\(\alpha\)) and vascular endothelial growth factor (VEGF) (Fig. 7).166 In short, manganese as an element easily enters cells, inducing cell stress responses (Table 2). With the bulk of toxicity research conducted on the brain and lung, much remains unknown about the effects of manganese on macrophages in other organs, or in other immune cells in general. Likewise, 2D MnO\textsubscript{2} has been barely studied \textit{in vitro} but its biological effects on cells has been shown to be mainly strong absorption with ssDNA and intrinsic oxidase activity167 and even antimicrobial activity.168 We would like to see more studies in future on immune cells, as this will help us better understand the impact of 2D MnO\textsubscript{2} in particular.

Compound	Average Size	Cell type	Cytokines	ROS	Duration	Dose	Other effects	Ref
MoS\textsubscript{2} (aggregated, 2D lithiation or 2D pluronic dispersed)	–	THP-1	Produced TNF-\(\alpha\) and IL-1\(\beta\)	–	24 h	6.25–50 \(\mu\)g/mL	–	152
MoS\textsubscript{2} ET-loaded	200–300 nm	RAW 264.7	Inhibited TNF-\(\alpha\), promoted IL-10	–	2 h	0–150 \(\mu\)g/mL	Inhibited iNOS, CD86, promoted Arg1, CD206	154
MoS\textsubscript{2}	120 nm	THP-1-derived macrophages	–	4, 24, 72 h	100 \(\mu\)g/mL	Increase in intracellular lipids	155	
MoS\textsubscript{2}	150 nm	Primary human macrophages*	TNF-\(\alpha\) and IL-6 (M1)	Produced ROS (M1)	24 h	5–50 \(\mu\)g/mL	Decreased CD80 (M1)	55
MoS\textsubscript{2} and f-MoS\textsubscript{2}	–	RAW 264.7	No significant TNF-\(\alpha\) and IL-6 production	–	24 h	1–75 \(\mu\)g/mL	No immune activation	156

*Primary human macrophages were differentiated into M1 and M2 phenotypes.
Hexagonal boron nitride and other forms of boron

Boron-containing compounds are predicted to have potent biological activity as boron atoms could interact with a target protein through strong hydrogen bonds and also through covalent bonds. Boron-containing compounds have current applications in biomedicine as anti-fungals, dipeptidyl peptidase-IV inhibitors, antibiotics, antivirals and in radiopharmaceuticals. Industrially, boron is used to harden steel and is used for refining non-ferrous metals. It is also an additive to enhance semiconductor control and has been used in making glass, food preservatives, cleaning products, antiseptics and agrochemicals.

Hexagonal boron nitride (hBN) is a form where boron and nitrogen atoms are covalently bound in a hexagonal structure and their layers are stacked and interact through van der Waals forces. Contrary to graphene, whose strength significantly decreases with increasing layers, the mechanical strength of boron nitride is unaffected by increasing thickness. As such, it has been used in the pharmaceutical industry as a tablet lubricant and in the electronics industry as a wide bandgap semiconductor with high thermal and chemical stability.

Table 2. Dose and time-dependent effects of different MnO2 materials on macrophages.

Compound	Average Size	Cell type	Cytokines	ROS	Duration	Dose	Other effects	Ref
PEG-MnO2 NPs	15 nm	Primary rat macrophages	Decreased TNF-α	–	24 h	5-100 μg/mL	–	[164]
MnO2 nanoparticles	–	Guinea pig alveolar	–	–	1-6 h	2.5 mg/mL	Increased neutrophil migration	[165]
Hyaluronic acid-coated, mannan-conjugated MnO2 nanoparticles	203 nm	RAW 264.7	Increased IL-12, decreased IL-10	–	24 h	0.5-5 μM	Decreased HIF-1α, VEGF, Pro-M1	[166]

Figure 7. Man-HA-MnO2 skews TAMs M2 phenotype toward M1 phenotype. (A) Representative immunofluorescence images of tumor sections stained with M1 and M2 macrophage marker (green) after Man-HA-MnO2 administration. The orange dots are Man-HA-MnO2. Magnification 100 ×; scale bar 100 μm. (B) Flow cytometric analysis of phenotype of macrophages in tumors after administration of Man-HA-MnO2 (n = 5/group). Error bars are standard error of the mean. *p < 0.05 compared to untreated control. Reprinted with permission. Copyright 2016, American Chemical Society Publications.
Given their association with bone mineral but not connective tissues,[180] boron nitride nanotubes and nanoplatelets have been used as polymeric matrix reinforcement in bone tissue engineering.[181] In oncology, controlled release boron nitride nanospheres were used in prostate cancer treatment through adjusting treatment temperature and nanosphere crystallinity.[182]

Few studies involving boron compounds have been conducted on macrophages in comparison to more deeply studied materials such as graphene and molybdenum disulfide. In C3H/HeJ mouse peritoneal macrophages, boron enhanced Fc-receptor expression and IL-6 production.[183,184] Boron derivatives such as acyclic amine-carboxyboranes were found to inhibit 5’lipoxygenase activity in J774A mouse macrophages and RPMI 1788 human leukocytes, at levels similar to conventional anti-inflammatory drugs such as indomethacin. These boron compounds were also effective enzyme inhibitors of lysosomal acid phosphatase, cathepsins and aryl sulfatase.[185]

In THP-1-derived human macrophages, boron nitride nanotubes (BNNTs) were demonstrated to cause lysosomal destabilization, pyroptosis and inflammasome activation, as seen by an increase in cathepsin B, caspase 1, IL-1β and IL-18, via the NLRP3 pathway. The macrophage phagocytic capacity was also suppressed (Fig. 8).[186] In peritoneal macrophages from BALB/c mice, boron induces lymphocyte proliferation and further stimulated secretion of TNF-α, IL-6, IL-1β, NO and expression of iNOS.[187]

Pectin-coated boron nitride nanotubes were reported to be nontoxic in RAW 264.7 macrophages at concentrations up to 50 μg/mL for 24 h and were internalized without impairing cell structures or triggering release of inflammatory cytokines (IL-6, IL-10, TNF-α), apoptosis and oxidative stress. These nanoparticles were confined within the endoplasmic compartment and failed to localize with lysosomes. Interestingly, these nanotubes were shown to down-regulate the pro-inflammatory cytokine IL-1β, although more studies from different labs need to be conducted to confirm this contrasting finding.[188]

In short, boron has shown to be nontoxic in general, possibly due to its suppression of macrophage phagocytosis, although it has been shown to induce inflammatory responses which could be indirectly linked to its inhibitory effects on cellular uptake (Table 3). As most of the studies conducted are on non-BN materials, it would be interesting to investigate the effect of 2D hBN, which is rapidly increasing in use in materials science and biomedicine, on macrophages.

Compound	Average size a	Cell type	Cytokines	DOS	Duration	Dose	Other effects	Ref
Boron nitride nanotubes	0.1–0.3 mm	THP-1-derived	Increased IL-1β, IL-18	–	24 h	0–100 µg/mL	Increased cathepsin B, caspase 1	[186]
Boron	–	Mouse	Increased TNF-α, IL-6, IL-1β, NO	–	10 d	4.6 mg/kg	Increased iNOS	[187]
Pectin-coated boron nitride nanotubes	2.0 μm	RAW 264.7	Did not release IL-6, IL-10, TNF-α, decreased IL-1β	No oxidative stress	24 h	0–50 µg/mL	–	[188]

aLength.

Figure 8. Ultrastructural evidence confirming uptake and lysosomal rupture in vitro and in vivo. (A) TEM image of a differentiated THP-1 macrophage exposed to 25 mg/mL (7.79 mg/cm²) of BNNT-M for 6 h (BNNT-M: mixture of BNNT, impurities of boron and hBN). (B) High magnification image of the circled portion from Figure (A) showing a ruptured lysosome (ruptured portion depicted with arrows). (C) Alveolar macrophage from BALF of C57BL/6 mice exposed to BNNT-M (40 mg) for 24 h. (D) High magnification image of the circled portion from Figure (C) showing a ruptured lysosome (ruptured portion highlighted with arrows). (E) Pretreatment with acridine orange followed by challenge with BNNT-M showed ~20-fold increase in green fluorescence suggesting lysosomal membrane permeabilization. Reprinted with permission.[186] Copyright 2017, Informa UK Limited.
Other 2D materials

There are other promising 2D materials such as black phosphorus and tungsten, which have not been as popular as the earlier-mentioned examples of molybdenum, manganese and boron, but have come into view as scientists explore their unique properties. These materials may not be as well-studied and more research is needed to better manipulate and produce materials with favorable stability and toxicity profiles. These can then be subsequently used for various biomedical purposes.

Black phosphorus

Thin layer black phosphorus (BP) is a versatile semiconductor, having a tunable direct bandgap and high carrier mobilities. Most 2D materials are good photodetectors in the visible range and black phosphorus is one of the few that can extend the spectral range to mid-infrared. Black phosphorus is unfortunately easily degraded under environmental conditions, reacting with oxygen in water even in the absence of light, decomposing into PO$_2$, PO$_3^-$, and PO$_4^{3-}$. This is advantageous, given that phosphorus is already a main component in DNA and RNA, the building blocks of life.

Hinging on their use as field-effect transistors, black phosphorus quantum dots have been used as chemiluminescence emitters to detect copper, or in the form of nanosheets to detect H$_2$O$_2$. Black phosphorus is also useful as a co-catalyst for photocatalytic nitrogen fixation. Relevant to biomedicine, black phosphorus quantum dots have been found to reduce the thermal stability of human serum albumin by decreasing the α-helix structure but increasing the β-sheets. Black phosphorus nanosheets were shown to bind to BSA and bovine hemoglobin (BHB), leading to the partial destruction of certain segments on BHB through alteration of tertiary structure.

Although no data in macrophages is currently available, layered black phosphorus was found to be toxic only above 50 µg/mL in A549 human lung cancer cells. This toxicity was lower than graphene oxides but higher than exfoliated transition-metal dichalcogenides such as MoS$_2$, WS$_2$, WSe$_2$. Notably, the mechanisms of toxicity of black phosphorus was linked to ROS production and disruption of cell membrane integrity. Interestingly, large layered black phosphorus (~884 nm ± 102.2 nm) was identified to have higher cytotoxicity than small ones (~208.5 nm ± 46.9 nm).

Black phosphorus quantum dots with titanium sulfonate coronas of 207 nm promoted M1 polarization of RAW 264.7 macrophages and interacted with calmodulin to facilitate Ca$^{2+}$ influx in this type of cells, which thereafter induced activation of the p38-MAPK and p65-NF-κB pathways, with no apparent involvement of JNK and ERK pathways. Black phosphorus–corona complexes of 207 nm promoted M1 polarization of RAW 264.7 macrophages and interacted with calmodulin to facilitate Ca$^{2+}$ influx in this type of cells, which thereafter induced activation of the p38-MAPK and p65-NF-κB pathways, with no apparent involvement of JNK and ERK pathways. Black phosphorus–corona complex-exposed macrophages upregulated expression of M1-related markers TNF-α, iNOS, IL-12p40 and CD16. Interestingly, the presence of the corona on the black phosphorus was sufficient to promote phagocytosis of cancer cells by macrophages, in a co-culture. mRNA levels of M2-related genes IL-10, CD206 and arginase-I were decreased in agreement with M1 polarization.

In general, black phosphorus can induce inflammatory effects and leads to pro-M1 macrophage phenotypes, with toxicity remaining cell-type-dependent (Table 4).

Tungsten nanomaterials

Naturally found in rocks and soils, tungsten is made into strong and flexible alloys that conduct electricity well. Tungsten is a component of light bulb filaments, ceramic pigments, fabric fire-retardant coatings and fade-resistant dyes, turbine blades, welding electrodes, fishing weights, golf clubs and bullets. Many tungsten compounds have been explored in various applications. Tungsten oxide (WO) mesoporous silica nanoparticles were linked to the pro-apoptotic gene Bax for cancer photothermal therapy (PTT). WO nanoparticles were incorporated into cloth as a flexible pH sensor. Tetrathiotungstate has been investigated as an anti-copper drug.

The effects of tungsten are multi-faceted and have been mostly investigated in terms of genetic changes, oxidative stress and cytokine production. WO$_3$ nanoparticles were found to increase rat liver enzymes and to cause DNA damage in peripheral blood leukocytes and liver. The same authors reported cell cycle inhibition and induced apoptotic death with WO$_3$ nanoparticles in A549 human lung cancer cells, with toxicity seen only at high concentrations above 200 µg/mL. Toxicity in macrophages can therefore be extrapolated by considering the trend in other cell types such as A549 cells.
The immune effects of tungsten are complex. Oral tungstate (NaW) up to 125 mg/kg per day for up to 70 days showed preferential uptake in rat immune organs, including the femur, spleen and thymus. In rats, tungstate was reported to decrease general cytotoxic T cell activity in one study but activate spleen cytotoxic and helper T cells, with immunosuppressive effects linked to co-exposure to immune stress. The percentage of monocytes was also found to be lower at higher tungstate concentrations.

In PBMCs, tungsten carbide-cobalt (WC-Co) particles of <1 µm, 99.5% purity, 100 µg/mL, were shown to activate p38 and stabilize HIF-1α and p53, while expressing the oxidase stress response gene HMOX1. In JB6 cell and rat lung macrophages, WC-Co nanoparticles were seen to induce apoptosis and ROS production.

Table 4. Dose and time-dependent effects of different black phosphorus materials on macrophages.

Compound	Average size	Cell type	Cytokines	ROS	Duration	Dose	Other effects	Ref
BP quantum dots with titanium sulfonate	3.3 nm	J774.1 and RAW 264.7	Increased TNF-α in BP alone, return to normality with titanium sulfonate	Low production	6, 24 h	10 µg/mL	ATP decline	[201]
BP quantum dots and nanosheets	Quantum dots (5 nm); nanosheets (300 nm)	THP-1-derived macrophages	Increased IL-1β, IL-6, IL-8, IFN-γ	–	6, 24 h	0-50 µg/mL	Corona influences uptake and toxicity	[202]
BP–corona complex	207 nm	RAW 264.7	Increased TNF-α, IL-12	–	24 h	15 µg/mL	Increased iNOS, CD16	[203]

Although few studies exclusively on macrophages have been conducted, tungsten carbide has been found to be effective bio-cargo for macrophages in photothermal therapy. A THP-1 cell and Beas-2B lung epithelium co-culture with WC-Co nanoparticles with a WC grain size of 80 nm reported increased IL-1β, IL-12 and decreased TNF-α. Toxicity was already observed from 10 µg/mL, with increased expression of CD40. The anti-inflammatory polyoxotungstate-1 (3Na2WO4·C19WO3·C1H2O) at up to 100 µM was found to prevent TNF-α and nitric oxide release from LPS-treated murine macrophages, and to decrease ATP-induced IL-1β release. In RAW 264.7 macrophages, it was reported that tungstate nanoparticles led to ROS production without leading to DNA damage nor production of IL-6, IL-8 or TNF-α. Cells engulfing these nanoparticles are as shown in Figure 10.

Tungstate (Na2WO4) reduced LPS-induced IL-10, TNF-α and IL-6 in THP-1 cells and altered cell cycle progression. An intra-tracheal rat study showed neither acute
local pulmonary inflammation nor IL-6 production with WC-Co nanoparticles. There was also no increase in alveolar macrophage or activation despite nanoparticle phagocytosis.\cite{221} In short, despite contradicting reports about its toxicity, tungsten compounds have proven to be inflammatory in some cell types without increasing TNF-α, but it is clear that they induce oxidative stress, which could culminate in compensatory intracellular stress response mechanisms (Table 5). There have been sparse in vitro data on the effects of 2D tungsten compounds in immune cells although it has been found that human skin fibroblasts preferentially adhere to tungsten compared to silicon oxide in a 2D tungsten-silicon oxide composite\cite{222} and that no histological abnormalities were reported in mouse heart, liver, spleen, lungs or kidney after 16 days of 2D tungsten nitride nanosheets.\cite{223} Another paper also reported no histological organ abnormalities after 30 days although high levels of 2D WS$_2$-PEG nanosheets were found in the liver and spleen.\cite{215} We included this element in our review as it is an emerging 2D nanomaterial. In fact, we hope there will be more studies in future on immune cells, as this will help us better understand the biological impact of 2D tungsten compounds.

Summary and future outlook

Macrophages are efficient phagocytes and their main interaction with 2D materials is related to uptake, which includes mechanisms such as phagocytosis, endocytosis and direct trans-membrane transport. Once in the cell, these materials end up in various intracellular locations such as endosomes, lysosomes or the cytosol.\cite{224,225} This heterogeneous uptake makes it contentious to pinpoint material interaction with specific mechanisms. Our review has therefore focused on the effects of macrophages after they encounter various 2D materials.

Our review has summarized macrophage studies on various 2D materials and found the bulk of the effects to be related to inflammation. Graphene family materials have in general been found to affect inflammatory cytokines in macrophages. Individually, FLG was found to induce apoptosis,
damage cell membrane and decrease viability, while GO can polarize macrophages to a pro-inflammatory form. In contrast, GQDs had little effect on viability and membrane integrity but increased ROS, inflammation and apoptosis.

TMDCs exhibited less toxicity and inflammation than graphene materials in general, with MoS2 increasing intracellular lipids and potentially interacting with proteins, and with MnO2 increasing cell stress and polarizing macrophages to a pro-inflammatory form. Other 2D materials such as boron nitride could increase inflammation despite lower toxicity due to decreased macrophage phagocytosis while black phosphorus was less toxic than GO, but more than TMDCs due to ROS- and membrane disruption-linked mechanisms. Black phosphorus also promoted macrophage polarization to pro-inflammatory subtypes. Lastly, tungsten, despite having sparse data on 2D forms, had contrasting effects on macrophage toxicity in different studies and increased inflammation and ROS without displaying genotoxicity (Fig.11).

Low-dimensional nanomaterials (0 D to 2 D) could mechanistically affect plasma and lysosomal membranes, leading to frustrated phagocytosis and cytotoxicity. In general, mechanical stress or damage occurs when cells try to pack rigid structures into spherical lysosomes.[21] Using graphene family members as an example, these materials can be classified as 0D fullerenes and carbon nanodots, 1D carbon nanotubes, 2D graphene, graphene oxides and graphene nanoribbons, and 3D nanodiamonds.[226] With fullerene as an exception for size (the smallest 0D material), toxicity may increase with material dimension in macrophages, given that 3D nanodiamonds were found to cause no immune response[227] while 0D, 1D and 2D materials were found to be taken up by macrophages and can cause cytotoxicity.[55,228] It is however important to note that the mechanisms of material toxicity are very complex, with additional factors such as lateral size and rigidity coming into play. This makes it difficult to identify a particular mechanism or interaction type that could be responsible for material toxicity.

Nanomaterial rigidity can also affect toxicity, with rigid non-functionalized CNTs found to induce more inflammation than flexible functionalized CNTs.[229,230] In the case of 2D materials, the intrinsic structure of the material and resultant physicochemical properties, such as material flexibility and ease of stacking, allow toxicity prediction. Rigidity also increases in general with thickness, which impedes completion of material phagocytosis.[231] A phenomenon of incomplete uptake of large foreign material relative to cell size, frustrated phagocytosis has been extensively reported with 1D materials such as CNTs in macrophages, with longer CNTs causing greater effects.[232] However, 2D graphene nanoplatelets have also been found to cause frustrated phagocytosis in macrophages due to their aerodynamic properties and consequent rigidity.[231,233] Unsurprisingly, frustrated phagocytosis is also affected by material lateral size. It has been reported that macrophages are at higher risk of frustrated phagocytosis in the presence of graphene materials with a lateral size of more than 20 μm.[233,234] However, with the bulk of macrophage 2D material research carried out with sub-micrometer materials, frustrated phagocytosis may not be as prominent as that observed with 1D materials.

Different 2D materials have potentially different effects in the cells of different individuals and the various methods of synthesizing 2D materials and measuring inflammation may make it difficult to compare results from different labs. Additionally, 2D materials may impact cells differently in the presence of different cell culture media, and have
different dispersion stability due to the peripheral protein corona effect.\cite{235} In some cases such as manganese and tungsten which are not as well-studied as graphene, we have covered the biological effects of non-2D forms of the same elemental material in macrophages in an attempt to provide a starting point for understanding and predicting its effect in 2D form.

Most work on 2D materials have been conducted short-term, and on specific subsets of macrophages or cell lines, and may not be fully transferable to in vivo human research which consists of much greater complexity. In a number of newer 2D materials, this research has been conducted mainly in target organs such as the brain and lung, where side effects have been predicted to occur. It is also pertinent to investigate the long-term effects of 2D materials, and to include consequent data on material biodegradation if possible.

At this point, it is unknown if material uptake is required for toxicity effects and if toxicity is an indirect effect of macrophage activation. Much also depends on various factors such as material, time-point and dose, which may differ from study to study. It is important to note that many factors impact uptake and therefore toxicity, such as surface charge,\cite{98} dispersibility \cite{100} and functionalization.\cite{103} However, it is difficult to correlate nanomaterial properties to toxicity and to complicate matters, some of these properties such as charge, inertness and colloidal stability may be linked.\cite{10} Seeing the huge range in lateral size of 2D materials used in these macrophage studies, it may be challenging to generalize trends. Despite this, it may be possible to predict increasing nanoparticle toxicity with smaller materials (<100 nm) potentially due to increased uptake.\cite{236}

Knowing which and how 2D materials affect the body is crucial to better design new materials with minimal toxicity. The roadmap ahead may include many more innovative 2D materials that have yet emerged from anonymity, which would require extensive safety testing in immune cells before widespread commercial use. We could even see the advent of up-and-coming 2D materials such as arsenene, antimonene, germanene, stanene, and silicene, which have already made inroads into electronic applications.\cite{22} This would make the current work in macrophages a solid foundation on which to better investigate future 2D materials.

Disclosure statement

No potential competing interest was reported by the authors.

Funding

The authors gratefully acknowledge the financial support from the EU Graphene Flagship project (no. 881603). This work was partly supported by the Agence Nationale de la Recherche (ANR) through the LabEx project Chemistry of Complex Systems (ANR-10-LABX-0026_CSC). We wish to acknowledge the Centre National de la Recherche Scientifique (CNRS) and the International Center for Frontier Research in Chemistry (icFRC).

ORCID

Alberto Bianco http://orcid.org/0000-0002-1090-296X

References

[1] Chaplin, D. D. Overview of the Immune Response. J. Allergy Clin. Immunol. 2010, 125, S3–S23. DOI: 10.1016/j.jaci.2009.12.980.

[2] Safari, H.; Kelley, W. J.; Saito, E.; Kaczorowski, N.; Carethers, L.; Shea, L. D.; Eniola-Adefeso, O. Neutrophils Preferentially Phagocytose Elongated particles-An Opportunity for Selective Targeting in Acute Inflammatory Diseases. Sci. Adv. 2020, 6, eaba1474 DOI: 10.1126/sciadv.aba1474.

[3] Gustafson, H. H.; Holt-Casper, D.; Grainger, D. W.; Ghandehari, H. Nanoparticle Uptake: The Phagocyte Problem. Nano Today. 2015, 10, 487–510. DOI: 10.1016/j.nantod.2015.06.006.

[4] Weissleder, R.; Nahrendorf, M.; Pittet, M. J. Imaging Macrophages with nanoparticles. Nat. Mater. 2014, 13, 125–138. DOI: 10.1038/nmat3780.

[5] Murray, P. J.; Wynn, T. A. Protective and Pathogenic Functions of Macrophage Subsets. Nat. Rev. Immunol. 2011, 11, 723–737. DOI: 10.1038/nri3073.

[6] Gordon, S.; Martinez, F. O. Alternative Activation of Macrophages: Mechanism and Functions. Immunity 2010, 32, 593–604. DOI: 10.1016/j.immuni.2010.05.007.

[7] Nakayama, M. Macrophage Recognition of Crystals and Nanoparticles. Front. Immunol. 2018, 9, 103 DOI: 10.3389/fimmu.2018.00103.

[8] Figueiredo Borgognoni, C.; Kim, J. H.; Zacolotto, V.; Fuchs, H.; Riehemann, K. Human Macrophage Responses to Metal-Oxide Nanoparticles: A Review. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 694–703. DOI: 10.1080/21691401.2018.1468767.

[9] Saha, K.; Rahimi, M.; Yazdani, M.; Kim, S. T.; Moyano, D. F.; Hou, S.; Das, R.; Mout, R.; Rezaee; F.; Mahmoudi, M.; Rotello, V. M. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. ACS Nano. 2016, 10, 4421–4430. DOI: 10.1021/acsnano.6b00053.

[10] Rivera-Gil, P.; de Aberasturi, D. J.; Wulf, V.; Pelaz, B.; del Pino, P.; Zhao, Y.; de la Fuente, J. M.; de Larramendi, I. R.; Rojo, T.; Liang, X. J.; Parak, W. J. The Challenge to Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. Acc. Chem. Res. 2013, 46, 743–749. DOI: 10.1021/ar300039j.

[11] Huang, Y.; Hung, K. C.; Hung, H. S.; Hsu, S. H. Modulation of Macrophage Phenotype by Biodegradable Polyurethane Nanoparticles: Possible Relation between Macrophage Polarization and Immune Response of Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 19436–19448. DOI: 10.1021/acsami.8b04718.

[12] Herd, H.; Bartlett, K. T.; Gustafson, J. A.; McGill, L. D.; Ghandehari, H. Macrophage Silica Nanoparticle Response is Phenotypically Dependent. Biomaterials 2015, 53, 574–582. DOI: 10.1016/j.biomaterials.2015.02.070.

[13] Hoppstädter, J.; Dembek, A.; Linnenberger, R.; Dahlem, C.; Barghash, A.; Fecher-Trost, C.; Fuhrman, G.; Koch, M.; Kraegeloh, A.; Huwer, H.; A.K, K. Toll-Like Receptor 2 Release by Macrophages: An anti-Inflammatory Program Induced by Glucocorticoids and Lipopolysaccharide. Front. Immunol. 2019, 10, 1634.

[14] Brzicova, T.; Javorkova, E.; Vrbova, K.; Zajicova, A.; Holan, V.; Pinkas, D.; Philimonenko, V.; Sikorova, J.; Klema, J.; Topinka, J.; Rossner, P. Jr. Molecular Responses in THP-1 Macrophage-like Cells Exposed to Diverse Nanoparticles. Nanomaterials 2019, 9, 687. DOI: 10.3390/nano9050687.
[225] Lesniak, A.; Fenaroli, F.; Monopoli, M. P.; Åberg, C.; Dawson, K. A.; Salvati, A. Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on cells. ACS Nano 2012, 6, 5845–5857. DOI: 10.1021/nn300223w.

[226] Panwar, N.; Soehartono, A. M.; Chan, K. K.; Zeng, S.; Xu, G.; Qu, J.; Coquet, P.; Yong, K.; Chen, X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem. Rev. 2019, 119, 9559–9656. DOI: 10.1021/acs.chemrev.9b00099.

[227] Huang, K. J.; Lee, C. Y.; Lin, Y. C.; Lin, C. Y.; Perevedentseva, E.; Hung, S. F.; Cheng, C. L. Phagocytosis and Immune Response Studies of Macrophage-Nanodiamond Interactions in Vitro and in Vivo. J. Biophotonics. 2017, 10, 1315–1326. DOI: 10.1002/jbio.201600202.

[228] Raja, I. S.; Song, S. J.; Kang, M. S.; Lee, Y. B.; Kim, B.; Hong, S. W.; Jeong, S. J.; Lee, J. C.; Han, D. W. Toxicity of Zero- and One-Dimensional Carbon Nanomaterials. Nanomaterials (Basel) 2019, 9, 1214. DOI: 10.3390/nano9091214.

[229] Rydman, E. M.; Ilves, M.; Koivisto, A. J.; Kinaret, P. A. S.; Fortino, V.; Savinko, T. S.; Lehto, M. T.; Pulkkinen, V.; Vippola, M.; Hameri, K. J.; et al. Inhalation of Rod-like Carbon Nanotubes Causes Unconventional Allergic Airway Inflammation. Part. Fibre Toxicol. 2014, 11, 48 DOI: 10.1186/s12989-014-0048-2.

[230] Ali-Boucetta, H.; Nunes, A.; Sainz, R.; Herrero, M. A.; Tian, B.; Prato, M.; Bianco, A.; Kostarelos, K. Asbestos-like Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical functionalization. Angew. Chem. Int. Ed. Engl. 2013, 52, 2274–2278. DOI: 10.1002/anie.201207664.

[231] Boyles, M. S. P.; Young, L.; Brown, D. M.; MacCalman, L.; Cowie, H.; Moisala, A.; Smail, F.; Smith, P. J. W.; Proudfoot, L.; Windle, A. H.; Stone, V. Multi-Walled Carbon Nanotube Induced Frustrated Phagocytosis, Cytotoxicity and Pro-Inflammatory Conditions in Macrophages Are Length Dependent and Greater than That of Asbestos. Toxicol. In Vitro 2015, 29, 1513–1528. DOI: 10.1016/j.tiv.2015.06.012.

[232] Schinwald, A.; Murphy, F. A.; Jones, A.; MacNee, W.; Donaldson, K. Graphene-Based Nanoplatelets: A New Risk to the Respiratory System as a Consequence of Their Unusual Aerodynamic Properties. ACS Nano 2012, 6, 736–746. DOI: 10.1021/nn204229f.

[233] Li, Y.; Yuan, H.; von Dem Bussche, A.; Creighton, M.; Hurt, R. H.; Kane, A. B.; Gao, H. Graphene Microsheets Enter Cells through Spontaneous Membrane Penetration at Edge Asperities and Corner Sites. Proc. Natl. Acad. Sci. USA 2013, 110, 12295–12300.

[234] Bussy, C.; Ali-Boucetta, H.; Kostarelos, K. Safety Considerations for Graphene: Lessons Learnt from Carbon Nanotubes. Acc. Chem. Res. 2013, 46, 692–701. DOI: 10.1021/ar300199e.

[235] Franqui, L. S.; de Farias, M. A.; Portugal, R.; Costa, C.; Domingues, R. R.; Souza Filho, A. S.; Coluci, V.; Leme, A. F. P.; Martinez, D. Interaction of Graphene Oxide with Cell Culture Medium: Evaluating the Fetal Bovine Serum Protein Corona Formation towards in Vitro Nanotoxicity Assessment and Nanobiointeractions. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 363–377. DOI: 10.1016/j.msec.2019.02.066.

[236] Kusaka, T.; Nakayama, M.; Nakamura, K.; Ishimiya, M.; Furusawa, E.; Ogasawara, K. Effect of Silica Particle Size on Macrophage Inflammatory Responses. PLoS One 2014, 9, e92634. DOI: 10.1371/journal.pone.0092634.