Availability of aqua drugs and their uses in semi intensive culture farms at Patuakhali district in Bangladesh

Jabed Hasan¹, Md. Hafijur Rahman²*, Md. Rahamat Ullah¹ and Md. Mahamudul Hasan Mredul³

¹Department of Fisheries Biology and Genetics, ²Department of Fisheries Management, ³Department of Aquaculture, Patuakhali Science and Technology University, Patuakhali - 8602, BANGLADESH

*Corresponding author’s-mail: h.rahman@pstu.ac.bd

ABSTRACT

A survey was undertaken to examine the accessibility of aqua-drugs and their applications in the semi-intensive aquaculture farms in Patuakhali district. A total of 83 stakeholders were selected and data gathered from aqua-medicine stores, representatives of different pharmaceuticals and semi-intensive aqua-farms owners via questionnaire interviews. PRA tools like focused group discussion, cross-checking, and key informant interviews were also used. Results show that 78% of farmers conduct polyculture and rest executes monoculture. Among the total fish farmer majority, 38% used lime for pond preparation and water quality management and potash used by 44% farmer as a disinfectant. For increasing dissolve-oxygen Oxy-rich (26%) was vastly used while 28% of farmers don’t use any oxygen supplier in their pond. However, 14% of farmers use commercial Megavit-Aqua growth promoters and 14% farmer used probiotics. For disease control, 52% and 14% of farmers use Renamycin and Renamox respectively due to its easy availability and affordability compared to probiotics. Several issues have been reported due to improper use of aquatic medications, such as lack of information about chemical use, sufficient dosage, form of application and indiscriminate use of antibiotics. This research result will help the policymaker to understand the requirement of fishers for healthy and sustainable aquaculture practices.

©2020 Agriculture and Environmental Science Academy

INTRODUCTION

Geographic position of Bangladesh arises with various aquatic species and provides quite diversified fisheries resources (DoF, 2018). Aquaculture plays a vital role in the national economy as well as in the fulfillment of the animal protein demand, opportunity for employment, poverty alleviation and earning foreign currency in Bangladesh (Hossain, 2015). Aquaculture production is increasing day by day through culture system diversification (Mahmud et al., 2012; Ahmed et al., 2012). Aquaculture intensification is also playing a vital role on fish production (Shamsuzzaman et al., 2017) and production heavily depends on formulated feeds input and the application of various aqua drugs in Bangladesh (GESAMP, 1997; Subasinghe et al., 1996). Aqua-medicines are used extensively in aquaculture device for different purposes, e.g. pond building, soil and water conservation management, natural aquatic enhancement productivity, live-organism transport, formulation and manipulation of feed, enhancing fertility and development promotion (Anwar, 2018).

Fish diseases are one of the main constraints for successful implementation of intensive and semi-intensive technology of fish culture (Hossain, 1995). Previous study found a wide range of diseases in farmed aquatic animals in Bangladesh (BFRI, 1999; Faruk et al., 2004). However, farmers are using a wide range of chemicals and antibiotics blindly without knowing their necessity, effectiveness, proper dose and method of application to control fish disease and other cultured aquatic animals.
Chemicals are crucial to fruitful aquaculture which has been utilized within different structures for centuries (Faruk et al., 2008). Moreover, chemist and representative of various pharmaceuticals business often persuaded the farmer to use their products. Some of the farmers indiscriminately use these chemicals without their need, efficacy, proper dosage and method of application (Kawsar, 2019). Only few studies conducted to find out the problems associated with the use of aqua chemicals in Bangladesh (Uddin and Kader, 2006; Khan et al., 2011). Due to the negative effects on the environment their application is no longer recommended (Cabello, 2006). Now concern is growing over the usage and potential misuses of some of these chemicals. Naturally-occurring microorganisms play a key role in aquatic environments like recycling nutrients, degrading organic matter and protecting fish against infections (Bentzon-Tilia et al., 2016).

In Patuakhali district the use of chemicals, antibiotics and aqua drugs are increasing tremendously along with aquaculture expansion (Sharker et al., 2014). Therefore, the present study was carried out to assess the drugs and chemicals used in aquaculture practice in Patuakhali district.

MATERIALS AND METHODS

Study area
The study was carried out in 8 upazillas namely Patuakhali Sadar, Dumki, Bauphal, Dasmina, Galachipa, Rangabali, Kalapara and Mirjagang of Patuakhali district in Bangladesh. It lies between 21°48' and 22°36' north latitudes and between 90°08' and 90°41' east longitudes. The study area is shown in Figure 1.

Duration and target groups
Data was collected from July 2019 to October 2019. To get the desired achievement from the study a total of 83 stakeholders were selected. There were 50 fish farmers, 7 technical people of different drug producing companies, 10 key informants and 16 aqua drug shops interviewed during the study period.

Preparation of questionnaire
Three questionnaires were prepared on the basis of objectives, one for the collection of data from farmers, one for data collection from retailers and another for key informant survey.

Data collection method
Before collecting the primary data, a well-structured questionnaire was developed and pre-testing in few farmers in the adjacent areas. In the pre-testing much attention was given to any useful information for the completeness of the objective. After improving the final questionnaire, primary data were collected through questionnaire interview with culture farm owner, chemical seller, and medical representative of different Pharmaceuticals Company (Anwar, 2018). Relevant secondary data were collected from district and upazilla fisheries officer as Key informant interviews, published material such as journals, textbooks, newspaper, etc.

Data analysis
Statistical Package for the Social Sciences (SPSS) software (ver. 25) has been used for data processing and analysis.
RESULTS AND DISCUSSION

At present 16 animal health companies were seen to market chemicals at field level. Moreover, these pharmaceutical companies found to have very attractive information-based leaflet to sell their products to the farmer. According to respondent most of the farmer don’t know the proper dosage and uses of these drugs. Farmer used only those products which were suggested by the chemical seller. According to the respondent a number of diseases i.e. dropsy, fin and tail rot, and Epizootic Ulcerative Syndrome (EUS) were reported in the study area which were treated using different chemicals and antibiotics. Farmers of Bangladesh commonly used chemicals in aquaculture are lime, rotenone, phostoxin, salt, dipterex, sumithion, melathion, antimicrobials, potassium permanganate, copper sulphate, formalin, etc. (Phillips, 1996; Brown and Brooks, 2002; DoF, 2002; Hasan and Ahmed, 2002; Faruk et al., 2004).

Demographic characteristics of fish farmers

The present study was investigated on 50 fish farmers where 24% young (18-32 years), 46% middle age (36-45 years) and 30% old aged (above 54 years). Among them 34%, 42% and 24% farmers had low, medium and high farming experience, respectively. Small farm like less than 2 acres was 68%, moderate farm like 2-4 acre was 20% and large farm above 4 acres was 12%. Demographic characteristic of fish farmer of Patuakhali district is shown in Table 1.

Culture system

Study shows that 78% farmer conduct polyculture and 22% farmer conduct monoculturesystem in Patuakhali district. In polyculture system Rui, Catla, Mrigal, Silver carp, Pangus, Tilapia, Kalibasu, Bighead carp, Grass carp, Sarpunti, Prawn are mostly cultured while Pangus, Tilapia, Koi, shing, Magur, Pabda, Guls are cultured in monoculture pond.

Chemicals used for pond preparation and water quality management

A variety of chemicals of different companies had been found for pond and water quality management in the local aqua chemical and medicine shops of the study area shown in Table 2. Study shows that 38%, 4%, 30% and 28% farmer use lime, zeolite, lime and zeolite, and lime and other chemicals respectively for pond preparation and water quality management shown in Figure 2A. Lime is widely used due to its easily available and low cost. Other chemicals like Pondkleen, M H Aqua powder, Aqua photo (soil probiotic), Mega zeo plus, ACME’s Zeolite, Super Fish Carp is widely used in Patuakhali district. Faruk et al. (2008) found drugs like Geotox, JV Zeolite, Mega Zeo, and Bio Aqua used for improving water quality. For health management commonly used traditional chemicals included Lime, Salt, Potassium permanganate, Sumithion, Melathion, Formalin, Bleaching powder and Malachite green. Most widely used compounds were JVzeolite, Geotox, Green zeolite, Orgavit aqua, Fish vitaplus, AQ grow-G, Oxy flow, Oxy max and O2-marine. 14 branded antibiotics were found in market of which, Renamox, Renamycin and Orgamycine were being widely used. Farmers of the Patuakhali district also use most the chemicals. Previous study shows that, 6 categories of aqua drugs and chemicals were used and lime, zeolite and rotenone were widely used for pond preparation and water quality management while 35% farmers used lime due to its low price, easy availability and effectiveness in water quality management in Patuakhali (Sharker et al., 2014). However, the present study found 11 category of aqua drugs and 38% farmer used lime due to low cost but farmer also used moderate price chemicals for better water quality management. Zeolite 4%, lime and zeolite 30% and lime and other chemicals 28% farmer used for pond preparation and water quality management in Patuakhali district.

Table 1. Demography of fish farmer at Patuakhali district in Bangladesh.

Characteristics	Scoring system	Range	Category	Respondent N(50)	Mean	Standard deviation
Age Years		26-60	Young (18-35)	12	42.78	9.25
			Middle (36-45)	23	46	
			Old aged (>45)	15	30	
Experience Years		1-25	Low (1-5)	17	9.12	5.97
			Medium (6-10)	21	42	
			High (>10)	12	24	
Farm size Acre		0.33-10	Small (<2)	34	1.96	2.24
			Moderate (2-4)	10	20	
			Large (>4)	06	12	

N= Number of respondents.
Table 2. Chemicals used for pond preparation and water quality management at Patuakhali district in Bangladesh.

S.N.	Trade name	Active ingredients	Company	Dose	Price (Tk)
1	Mega Zeo Plus	SiO₂, A₁₂O₃, Fe₂O₃, CaO, MgO, Na₂O, K₂O and Mn	ACI Animal Health Ltd.	20 kg/acre	3400Tk($4.3)/10 Kg
2	JV Zeolite	SiO₂, A₁₂O₃, Fe₂O₃, CaO, MgO, Na₂O, K₂O and Mn	Eon Animal Health Ltd.	22 kg/acre	3500Tk($4.4)/10 Kg
3	Lime	CaO, Ca(OH)₂	Chemical Seller	100 kg/acre	250Tk($0.3)/kg
4	Zeolite	SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, Na₂O	National Agricare	20 - 30 kg/acre	550Tk($6.9)/10Kg
5	Zeolite Plus	SiO₂, A₁₂O₃, Fe₂O₃, CaO, MgO, Na₂O, K₂O and Mn	Dremeiland	20 - 22 kg/acre	250Tk($3.1)/kg
6	Pondkleen	Saponins, Glycocomponents	ACI Animal Health Ltd.	70-100 ml/dec	75Tk($0.9)/100ml
7	Aqua Photo	Bacillus subtiliss and Rhodoseudomonas	ACI Animal Health Ltd.	50 - 70 ml/100	125Tk($1.6)/100ml
8	ACME’s Zeolite	Zeolite	The ACME Laboratories Ltd.	7 kg/33 dec. every 15 days	325Tk($4.1)/3kg
9	Green light	SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, Na₂O	Green Dale Ltd.	2 kg/33 dec.	110 Tk($1.4)/kg
10	M. H. Aqua Powder	CaO, A₁₂O₃, Trace elements	Genetica	2 kg/33 dec.	200 Tk($2.8)/kg
11	Super Fish Carp	Ca, Al, Na₂SO₄, Cu, K	Hiron Agro. Ltd.	500g-1kg/33 dec	400Tk($5.0)/kg
12	Fish Carp Gold	CaO, A₁₂O₃, Trace elements	Bismillah Co. Ltd.	500g/33 dec.	400 Tk($5.0)/kg

Table 3. Chemicals used as disinfectant at Patuakhali district in Bangladesh.

S.N.	Trade name	Active ingredients	Company	Dose	Price (Tk)
1	Virex	n-Alkyl dimethyl benzyl ammonium chloride 40%, stabilized urea 60%	ACI Animal Health Ltd.	20-80g/33	261Tk($3.3)/50g
2	Timsen	Potassium Peroxymono sulphate 50%	Eon Animal Health Ltd. Products Ltd.	100-200g	110Tk($1.4)/10g
3	Pathonil	Alkyl dimethylbenzyl ammonium chloride 80%, BKC 80%	ACI Animal Health Ltd.	200ml/33	265Tk($3.3)/100ml
4	Sansure	BKC-80%	Opsonin Pharma Ltd. Square Pharmaceuticals Ltd.	100ml/33	285Tk($3.6)/100ml
5	Aquakleen	Tetradecyl Trimethyl Ammonium Bromide: 6.6 g, BKC-83g, Amino Nitrogen-10000ppm	Chemical seller	1L/acre	468Tk($5.9)/L
6	Potash	KMnO₄	Chemical seller	10g/decimal	190Tk($2.4)/kg
7	Salt	NaCl	Chemical seller	500-1000g/decimal	18Tk($0.2)/kg
8	Bleaching powder	Clorine, Alkyl Dimethyl Benzyl, NH₄Cl 80%, Gluterehyde 10%, Formaldehyde 10%	Chemical Seller Rims Bd	0.1 - 1 ppm	55Tk($0.7)/kg
9	Virmax Special		Chemical Seller	600-800ml/acre	230Tk($2.9)/100ml

Chemicals used as disinfectant
Farmers use disinfectant mainly for cleaning equipment; maintain hygiene, to keep their pond free from pathogen and to treat diseased fish. Locally available disinfectants are given in Table 3. Present study shows that 44% farmer used Potash as disinfectant. Besides 20% used Timsen, 18% Sansure, 6% Bleaching powder and 12% others shown in Figure 2B. Among the others chemicals like Virex, Aquakleen, Salt, Pathonil etc. are also used by the farmers as disinfectant. Rahman et al. (2017) reported that 22% farmer use potassium permanganate as disinfectant in their culture pond in Comilla region. Rotenone 11%, bioaqua 6%, zeolite 33% and lime 50% used for pond preparation and water quality management; Bleaching 28%, EDTA 39%, formalin 11% and potash 22% used as disinfectants. Sharker et al. (2014) observed that 44% farmer used Potash as disinfectant. Besides 20% farmer used Timsen, 18% Sansure, 6% Bleaching powder and 12% others aqua drugs in patuakhali district.

Chemicals used to increase dissolved oxygen level in pond
Different types of chemicals of various companies are used for increase dissolved oxygen in aquaculture pond shown in Table 4. Oxidizing agent, hydrogen peroxide and Sodium carbonates are the major active ingredients of those chemicals. In the present investigation it was observed that 28% farmers don’t use any oxygen supplier in their pond. On the other hand, Oxy rich (26%) was vastly used followed by Oxy max (12%), ACI OX (12%), Oxy-ren (10%) and others (12%) shown in Figure 2C. Others like Oxylife, Bio-ox, Oxy flow, Oxymax, Oxym-H, M. H Ten-Oxy are also used in the study area. Rahman et al. (2017) conveyed that ACI-OX 28%, oxymax 22%, oxy more 11%, oxy flow 22% used as oxygenation into water in their culture pond in Comilla region. Ali (2008) reported that Oxyflow and Oxymax were used to remove hardness and poisonous gases.
Chemicals used as disease treatment
There are different chemicals used for the treatment of fish disease. These types of chemical are shown in Table 5. Melethion, formalin, salt, methylin blue, etc. is useful for eradication of external parasite as well as fungal diseases. Lime is also used for common fish disease. Timsen is used for treatment of various diseases and as a disinfectant. Ali (2008) observed that Timsen was effective to prevent some bacterial and fungal infections. Ali (2008) and Rahman (2011) found several aqua drugs like Lime, Salt, Potassium Permanganate, Sumithion, Melathion, Formalin and Bleaching Powder were used as disease treatment.

Chemicals used as growth promoter
Several chemicals which were found in the aqua medicine shops used as growth promoter as well as increase the production. A list of growth promoters is shown in Table 6. Present study shows that 72% farmer don’t use any growth promoter while 14% farmer use Megavit Aqua, 6% farmer use Charger gel and 8% farmer use others commercial growth promoter in their farm shown in Figure 2D. All of the growth promoters play a vital role for rapid growth of fish. According to the respondents, growth promoter support to improve growth rate, improve FCR (Food Conversion Ratio) and thus increase the yield. Rahman et al. (2017) reported that aqua boost 28%, AQ grow-G 17%, Eon fish grower 22% and vitamin premix 22% used as growth promoter in Comilla region. From there search finding of Rahman (2011), it was observed that aqua drugs used as growth promoter were ChargerGel, Aqua Boost, Bio- Grow and Grow Fast. All the growth promotors played a vital role for rapid growth of fishes.

Chemicals used as toxic gas removal
Several aqua-drugs were reported which are used to remove organic and inorganic wastes producing gas in the ponds. About 5 toxic gas removals with different trade name were found to different chemical and fish feed shops. Their name, dose and sources, companies and approximate price are given in Table 7. Rahman et al. (2017) found that ammonil 33%, bio-aqua-50 22%, gasonex plus 11% and others 17% used as toxic gas reducer in the aquaculture pond in Comilla region which were more or less similar to the current study.
Enzymes used for better digestion
Different types of enzymes are available in poultry medicine shop. There only two company’s products are used in fish farming for semi intensive culture farms given in the Table 8.

Chemicals used as stress controller
Only one branded stress controller namely Energy plus supplied by ACI Animal Health had been found in the chemical seller shops of the study area. Its active ingredients are Glucose 98%, Vitamin-C 2% and dose for application are 1-2g/L water for fry, 3-5g/L water for Table fish. Its price is 140Tk ($1.8)/0.5kg.

Chemicals used as unwanted species controller
Rotenil was found in the chemical seller shops which are supplied by SK+F where 9% rotenone is used to kill the unwanted species. Its application dose is 1kg/acre and price are 300Tk ($3.8)/0.5kg in the study area.

Probiotics for fish farming
There were two branded probiotics found in the studied area shown in Table 9. The probiotics contained different beneficial bacteria including *Bacillus subtilis, B. licheniformis, B. megaterium, B. plantarum, S. faecalis* etc. The present study shows that 78% farmer don’t use probiotics in their farm. Even they don’t know anything about probiotics. The price of probiotics is high. On the other hand, 14 % farmer used Pond Care and 8% farmer used Navio plus in the studied area shown in Figure 3A. According to fish farmer’s probiotics were used to control disease, improving water and soil quality and overall increase the yield. Rahman et al. (2017) reported that aqua profs 39%, aqua photo 28%, pH fixer 22% and other 11% used as probiotics in Comilla region.
Antibiotics used for disease treatments

In the present investigation about 11 branded antibiotics with different trade name were seen in the market shown in Table 10. The active ingredients of such antibiotics are mainly oxytetracycline, amoxicillin, sulphadiazine and sulphamethoxazole. Study shows that 52% farmer use Renamycin, 14% use Renamox, 10% use other antibiotics and 24% farmer don’t use any antibiotics in their farms shown in Figure 3B. According to the information from respondents, these antibiotics were effective against bacterial diseases. Rahman et al. (2017) reported that lime 56%, salt 11% and potash 33% used for disease treatment to fish; oxytetracycline 44%, cotrim-vet 17%, amoxicillin 28% and chlorotetraycline 11% as antibiotics for disease treatments to fish. Sharker et al. (2014) observed that 46% and 31% farmers used lime and potash to control the dactylogyrosis, gyrodectylosis and argulosis and 62% farmer use renamycin for disease treatment of fish in Patuakhali region. Sharker et al. (2014) observed that about 11 branded antibiotics with different trade name were seen in the market. Among them 52% farmer use Renamycin, 14% use Renamox, 10% use other antibiotics and 24% farmer don’t used any antibiotics in their farms in Patuakhali.

Knowledge and training of fish farmers

It was observed that 58% fish farmers had no training while 42% farmers received short term training from Department of Fisheries shown in Figure 3C. Different NGOs such as Youth Development, World fish Center were found in the study area that arranged training and sometimes provided funds to them. The fish farmers received maximum information about particular chemicals and antibiotics from technical service officer of different pharmaceutical and feed companies and local chemical seller. Sharker et al. (2014) observed that 58% fish farmers had no training while 42% farmers received short term training.

Conclusion

The study revealed the present status of aqua drugs in Patuakhali district. Though most of the farmers are experienced they don’t aware about the indiscriminate use of aqua drugs. If the training program continues all over the area then the positive view towards probiotics used among the farmer will be increased and production will be high through maintaining eco-friendly environment. It will also create the opportunity to export these fish in future if we can encourage the farmers to use probiotics against antibiotics. To addressing the issues of drugs used in aquaculture with the view to decrease the negative impacts the government policy makers, fisheries professionals, researchers and scientists should work together.

Table 7. Chemicals used as toxic gas removal at Patuakhali district in Bangladesh.

S.N.	Brand name	Active ingredients	Company	Dose	Price (Tk)
1	Gasonex plus	Na-lorileethersulphate	Fish tech. (BD) Co. Ltd.	200-400 mg/Kg Zeolite	435Tk ($5.4)/100g
2	Gasonil	Bacillus subtilis, Bacillus polymyxa, Bacillus licheniformis, Yucca 30%	Sk+F pharmaceuticals Ltd.	200-400g/acre	450Tk ($5.6)/kg
3	Eco Rich	Zeolite, Minerals, Probiotics, Yuka	Opsonin Pharma Ltd.	1-3kg/33 dec	800Tk ($10.0)/5kg
4	Yuka	Yucca schidigera extract	Opsonin Pharma Ltd.	2-3ml/decimal	315Tk ($3.9)/500ml
5	NO GAS	Yucca Plants Extracts, Bacillus subtilis, Microencapsulated Enzymes, Saponins	GreenDale BD Ltd.	2-4g/decimal	300Tk ($3.8)/100g

Table 8. Enzymes used for better digestion at Patuakhali district in Bangladesh.

S.N.	Brand name	Active Ingredients	Company	Dose	Price (Tk)
1	Polzyme	Protease, Cellulase Xylanase, Lipase, Amylase	Square Pharmaceuticals Ltd.	1-3ml/kg feed	172Tk ($2.2)/250 ml
2	Acemzyme	Cellulase, Zylanase, Protease, Amylase, Phytase, Pectinase, Hemicellulase, Lypase, α-galactosidase	ACME Laboratories Ltd.	1-3gm/kg feed	600Tk ($7.5)/500gm

Table 9. Used probiotics for fish farming.

S.N.	Brand name	Active Ingredients	Company	Dose	Price (Tk)
1	Navio plus	Bacillus subtilis, Bacillus licheniformis, Bacillus megaterium, Bacillus plantarum	ACI Animal Health	1-3g/kg feed	170Tk ($2.1)/100g
2	Pond care	S. faecalis and other bacteria	SK + F Bangladesh Ltd.	50g/acre	375Tk ($4.7)/100g
Table 10. Antibiotics used for disease treatments at Patuakhali district in Bangladesh.

S.N.	Brand name	Active ingredients	Company	Dose	Price (Tk)
1	Renamycin	Oxytetracycline	Renata pharmaceuticals ltd.	5g/kg feed for 5 days	82Tk($1.0)/100 g
2	Renamox	Amoxicillin trihydrate	Renata pharmaceuticals ltd.	28–40g/100 bd of fish, 10 days continuously	140Tk ($1.8)/100 g
3	Cipro Vet	Ciprofloxacin 10%	Eon Animal Health Ltd.	1ml/kg feed for 5-7 days	230Tk($2.9)/100ml
4	Aquamycin	Oxytetracycline	ACI Animal Health Ltd.	5 g/Kg feed for 5-7 days	70Tk($0.9)/100 g
5	EST-Vet	Erithromycin thiocyanate, Sulfadiazine, Trimethoprim	Eon Animal Health Ltd.	3-5gm/kg feed for 3-5 days	393Tk ($4.9)/100gm
6	Cotrim-vet	Sulphamethoxazole + trimethoprim	Square pharmaceuticals ltd.	0.5 mg/kg body weight	80Tk($1.0)/100 g
7	Sulprim-vet	Sulfadiazine, Trimethoprim	Square pharmaceuticals ltd.	3-5ml/kg feed for 3-5 days	170Tk($2.1)/100ml
8	Renatrim	Sulfadiazine, Trimethoprim	Renata pharmaceuticals ltd	3-5ml/kg feed for 3-5 days	200Tk ($2.5)/100ml
9	AT-vet	Sulfadiazine, Trimethoprim	ACME Laboratories Ltd	3-5ml/kg feed for 3-5 days	250Tk ($3.1)/100ml
10	Micronid	Erythromycin, Sulfadiazine, Trimethoprim	Renata pharmaceuticals ltd	5gm/kg feed for 3-5 days	362Tk ($4.5)/100g
11	Ciprocin-Vet	Ciprofloxacin	Square Pharmaceuticals Ltd	5ml/kg feed for 5 days	1000Tk ($12.5)/500ml

Figure 3. Probiotics used fish farming (3A), Antibiotics used for disease treatment (3B), Knowledge and Training of fish farmer (3C).
Open Access: This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) or sources are credited.

REFERENCES

Ahmed, S., Rahman, F.A., Mustafa, G., Hossain, M.B. and Nahar, N. (2012). Nutrient composition of indigenous and exotic fishes of rain fed waterlogged paddy fields in Lakshmipur, Bangladesh. World Journal of Zoology, 7(2): 135–140.

Ali, M.M. (2008). Study on the chemicals and antibiotics used in aquatic animal health management. An MS Thesis, Department of Aquaculture, Bangladesh Agricultural University, Mymensingh. pp. 68.

Anwar, M.A., Rashid, M.M., Kamal, M.A.H., Rahman, M.M. and Pandit, D. (2018). Aqua Drugs and Chemicals Used in Aquaculture in Jamalpur Sadar Upazilla of Bangladesh. Asian Journal of Fisheries and Aquatic Research, 2(2): 1–13. https://doi.org/10.9734/ajfar/2018/v2i226126

Bentzon-Tilia, M., Sonnenschein, E.C. and Gram, L. (2016). Monitoring and managing microbes in aquaculture - Towards a sustainable industry. Microbial Biotechnology, 9(5): 576–584. https://doi.org/10.1111/1751-7915.12392

BFRI. (1999). Fish diseases: prevention and control. Bangladesh Fisheries Research Institute, Circular leaflets no. 6. 2nd edition. 7.

Brown, D. and Brooks, A. (2002). A survey of disease impact and awareness in pond aquaculture in Bangladesh, the Fisheries and Training Extension Project-Phase 11. In: Arthur, J.R., Phillips, M.J., Subasinghe, R.P., Reantaso, M.B., MacRae, I.H. (Eds.), Primary Aquatic Animal Health Care in Rural, Small Scale and Aquaculture Development. FAO Fish Tech. Pap. No. 406. 85–93.

Cabello, F.C. (2006). Heavy use of prophylactic antibiotics in aquaculture - A growing problem for human and animal health and for the environment. Environmental Microbiology, B: 1137–1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x

DoF. (2002). Fish Fortnight Compendium. Department of Fisheries, Matsha Bhaban, Dhaka. 44–45.

DoF. (2018). Yearbook of Fisheries Statistics of Bangladesh 2017-18 Fisheries Resources Survey System (FRSS), Department of Fisheries, Ministry of Fisheries, Bangladesh.

Faruk, M.A.R., Alam, M.J., Sarker, M.M.R. and Kabir, M.B. (2004). Status of fish disease and health management practices in rural freshwater aquaculture of Bangladesh. Pakistan Journal of Biological Sciences, 7(12): 2092-2098. https://doi.org/10.3923/pjbs.2004.2092.2098

Faruk, M.A.R., Ali, M.M. and Patwary, Z.P. (2008). Evaluation of the status of use chemicals and antibiotics in freshwater aquaculture activities with special emphasis to fish health management. Journal of Bangladesh Agricultural University, 123(3): 381-390. https://doi.org/10.3329/jbau.v12i3.4838

GESAMP (Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). (1997). Towards safe and effective use of chemicals in coastal aquaculture. Rep. Stud. (IMO/ FAO/ UNESCO/ IOC// WMO/ WHO/ IAEA/ UN/ UNEP) 65:40.

Hasan, M.R. and Ahmed, G.U. (2002). Issues in carp hatcheries and nurseries in Bangladesh, with special reference to health management. In: Arthur, J.R., Phillips, M.J., Subasinghe, R.P., Reantaso, M.B., MacRae, L.H. (Eds.), Primary Aquatic Animal Health Care in Rural, Small-Scale. Aquaculture Development, FAO Fish. Tech. Pap. No. 406. 147–164.

Hossain, M.A. (1995). Common Fish Diseases in Bangladesh and their Control Souvenir, FisheriesFortnight-95, Mymensingh, Bangladesh Fisheries Research Institute. 45.

Hossain, M.A.R. (2015). An overview of Fisheries sector of Bangladesh. Research in Agriculture Livestock and Fisheries, 1(1): 109–126. https://doi.org/10.3329/jraf.v1i1.22375

Kawser, M.A., Alam, M.T., Ahamed, S. and Mou, M.H. (2019). Aqua drugs and antibiotics used in freshwater aquaculture of North Chittagong, Bangladesh. International Journal of Fisheries and Aquatic Studies, 7(1): 28–34.

Khan, M.R., Rahman, M.M., Shamsuddin, M., Islam, M.R. and Rahman, M. (2011). Present status of aqua drugs and chemicals in Mymensingh District. Journal of the Bangladesh Society for Agricultural Science and Technology, 8: 169–174.

Mahmud, A.N., Hasan, M.R., Hossain, M.B. and Minar, M.H. (2012). Proximate composition of fish feed ingredients available in Lakshmipur region, Bangladesh. American-Eurasian Journal of Agricultural & Environmental Sciences, 12(5): 556–560.

Phillips, M. (1996). The use of chemicals in carp and shrimp aquaculture in Bangladesh, Cambodia, Lao PDR, Nepal, Pakistan, Sri Lanka and Viet Nam. In: Arthur, J.R., Lavilla-Piolo, C.R., Subasinghe, R.P. (Eds.), Use of Chemicals in Aquaculture in Asia. Southeast Asian Fisheries Development Center, Aquaculture Department Tigbauan, Iloilo, Philippines. 75–842

Rahman, M.M.(2011). Status and impact of commercial aqua drugs and chemicals on fish health at farmer level.M.S. Thesis, Department of Aquaculture, Bangladeshi AGRICULTURAL UNIVERSITY, Mymensingh. pp. 43.

Rahman, M.Z., Khattun, A., Khodir, M.I. and Hossain, M.M.M. (2017). Aqua drugs and chemicals used in fish farms of Comilla regions. Journal of Entomology and Zoology Studies, 5(6): 2462-2473.

Shamsuzzaman, M.M., Islam, M.M., Tania, N.J., Abdullah Al-Mamun, M., Barman, P.P. and Xu, X. (2017). Fisheries resources of Bangladesh: Present status and future direction. Aquaculture and Fisheries, 2(4): 145–156. https://doi.org/10.1016/j.jaf.2017.03.006

Sharker, M.R., Sumi, K.R., Alam, M.J., Rahman, M.M., Ferdous, Z., Ali, M.M. and Chaklader, M.R. (2014). Drugs and Chemicals Used in Aquaculture Activities for Fish Health Management in Coastal Region. International Journal of Life sciences Biotechnology & Pharma Research, 3(4): 49–58.

Subasinghe, R.P., Barg, U. and Tacon, A. (1996). Chemicals in Asian aquaculture: need, usage, issues and challenges. Southeast Asian Fisheries Development Center, Aquaculture Department Tigbauan, Iloilo, Philippines. 1–6.

Uddin, S.A. and Kader, M.A. (2006). The use of antibiotics in shrimp hatcheries in Bangladesh. Journal of Fisheries and Aquatic Science, 1: 64–67. https://doi.org/10.3923/jfas.2006.64.67