Titanium carbide nanosheets with defect structure for photothermal-enhanced sonodynamic therapy

Guangqiang Li a,b, Xiaoyan Zhong c, Xianwen Wang b, Fei Gong b, Huali Lei b, Yangkai Zhou b, Chengfei Li a, Zhidong Xiao a,b,*, Guoxi Ren a, Liang Zhang b, Zhiqiang Dong a,b,***, Zhuang Liu b, Liang Cheng b,***

a College of Science, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
b Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
c Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
d State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
e College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China

A R T I C L E   I N F O

Keywords:
Ti3C2 MXenes
Oxygen defect
Sonosensitizers
Sonodynamic therapy
Bioafety

A B S T R A C T

Sonodynamic therapy (SDT) has attracted widespread interest in biomedicine, owing to its novel and noninvasive therapeutic method triggered by ultrasound (US). Herein, the Ti3C2 MXene nanosheets (Ti3C2 NSs) are developed as good sonosensitizers via a two-step method of chemical exfoliation and high-temperature treatment. With the high-temperature treatment, the oxygen defect of Ti3C2 MXene nanosheets (H–Ti3C2 NSs) is greatly increased. Therefore, the electron (e−) and hole (h+) generated by US can be separated faster due to the improved degree of oxidation, and then the recombination of e−–h+ can be prevented with the abundant oxygen defect under US irradiation, which induced the sonodynamic efficiency greatly to improve around 3.7-fold compared with Ti3C2 NSs without high-temperature treatment. After PEGylation, the H–Ti3C2-PEG NSs show good stability and biocompatibility. In vitro studies exhibit that the inherent property of mild photothermal effect can promote the endocytosis of H–Ti3C2-PEG NSs, which can improve the SDT efficacy. In vivo studies further display that the increased blood supply by the mild photothermal effect can significantly relieve hypoxia in the tumor microenvironment, showing photothermal therapy (PTT) enhanced SDT. Most importantly, the H–Ti3C2-PEG NSs can be biodegraded and excreted out of the body, showing no significant long-term toxicity. Our work develops the defective H–Ti3C2 NSs as high-efficiency and safe sonosensitizers for photothermal-enhanced SDT of cancer, extending the biomedical application of MXene-based nanoplatforms.

1. Introduction

Sonodynamic therapy (SDT), which can generate reactive oxygen species (ROS) by sonosensitizers under ultrasound (US) irradiation, has been rapidly developed and recognized as a novel and noninvasive therapeutic method for cancer treatment [1–4]. Compared with other cancer therapy methods, the US with highly focused property, high tissue penetration depth, and minimal damage to the normal tissues, has widely been used for diagnostic and treatment in clinics [5–10]. Therefore, compared with light excited photodynamic therapy (PDT) that is usually applied in superficial tumors, the US affords SDT with the preponderances in the therapy of deep-seated tumors [11–13]. As a major component in SDT, currently, the sonosensitizers are consisted of organic sonosensitizers and inorganic ones, and the efficiency of sonosensitizers plays an important role in ROS generation [1,14]. The organic sonosensitizers are mainly come from organic photosensitizers,
such as porphyrins [14,15] (hematoporphyrin, photofrin, etc.), Rose Bengal [16], and so on, while the inorganic sonosensitizers mainly include Ti-based nanomaterials [17–19], bimetallic oxide nanoparticles [20], black phosphorus [21], and so on. However, the organic sonosensitizers suffer from the fast obliteration and poor tumor accumulation, which severely restrict the efficacy of SDT [1]. Although these shortcomings can be overcome by the drug delivery system, the intrinsic issues such as photobleaching and phototoxicity still exist in organic sonosensitizer-based SDT. Fortunately, the inorganic sonosensitizers show advantages in high acoustic stability and good sonodynamic effect, however, the biosafety must be considered, and the conversion efficiency of ROS can’t be ignored especially [11,22]. Therefore, more efforts of developing inorganic sonosensitizers with high efficiency and good safety should be made at this stage.

From another perspective, tumor microenvironment (TME), with the special characteristics of hypoxia, ischemia, weak acidity, and high

**Scheme 1.** Schematic of the preparation of H-Ti$_3$C$_2$ nanosheets by the chemical exfoliation and high-temperature treatment methods for photothermal enhanced sonodynamic cancer therapy.
concentration of hydrogen peroxide (H$_2$O$_2$) [23,24], is the natural barrier for cancer treatment, especially for oxygen (O$_2$)-dependent cancer treatments such as PDT [25], chemodynamic therapy (CDT) [5,26], radiotherapy (RT) [27–29], and SDT [1,30–32]. For example, the ROS yield would be significantly restricted by severe hypoxia and ischemia, and the condition of tumor hypoxia would be further accentuated with the O$_2$ consumption during SDT, which causes the vicious cycle and unsatisfied outcome. Therefore, it’s meaningful to modulate TME, such as relieving hypoxia and ischemia, to improve the efficacy of SDT. Up to now, several strategies have appeared for tumor-hypoxia relief, like relieving hypoxia and ischemia, to improve the efficacy of SDT. Up to now, various potential treatments such as PDT [25], chemodynamic therapy (CDT) [5,26], and the combination of the e$^-$ and hole (h$^+$), which resulted in the improved photocatalytic activity owing to the favorable properties [39–41]. Therefore, such unique structure would be better for US-induced cancer therapy. Herein, we developed a new type of MXene-based sonosensitizer by two-step methods of chemical exfoliation and high-temperature treatment for enhanced SDT (Scheme 1). After the high-temperature treatment of Ti$_3$C$_2$ NSs (H-Ti$_3$C$_2$ NSs), the formed TiO$_x$/Ti$_3$C$_2$ structure could not only promote the separation of US generated e$^-$ and h$^+$ from the energy-band structure, but also capture electronic to prevent the recombination of e$^-$–h$^+$ by oxygen vacancy, leading to an excellent sonodynamic effect under US irradiation. Especially, the H–Ti$_3$C$_2$ NSs also had relatively high absorbance in NIR II window, which could be used for photothermal therapy (PTT). The mild photothermal effect generated by H–Ti$_3$C$_2$ NSs could prolong the blood circulation and improve the O$_2$ supply. Both in vitro and in vivo photothermal-sonodynamic synergistic therapy was achieved by H–Ti$_3$C$_2$ NSs with sequential 1064 nm laser and US irradiation. Importantly, the synthesized H–Ti$_3$C$_2$-PEG NSs showed excellent biocompatibility, without causing any long-term toxicity obviously. Collectively,

Transition metal carbides, nitrides, and carbonitrides (MXenes) are a novel type of two-dimensional (2D) nanomaterials owing to their large surface area, high near-infrared (NIR) absorbance, and substitutable components ability, which have been rapidly used in biomedicine [35]. Amongst MXenes, titanium carbides (Ti$_3$C$_2$) is one of the most popular representatives with high absorbance in the NIR II region, which has been widely applied in photo-induced cancer therapy [36–38]. Due to easier to be partly oxidized of the surface on Ti$_3$C$_2$ NSs, the formation of defect structure, that was TiO$_x$/Ti$_3$C$_2$, could promote the transformation of charge carriers and capture the electron (e$^-$) to prevent the recombination of the e$^-$ and hole (h$^+$), which resulted in the improved photocatalysis owing to the favorable properties [39–41]. Therefore, such unique structure would be better for US-induced cancer therapy. Herein, we developed a new type of MXene-based sonosensitizer by two-step methods of chemical exfoliation and high-temperature treatment for enhanced SDT (Scheme 1). After the high-temperature treatment of Ti$_3$C$_2$ NSs (H-Ti$_3$C$_2$ NSs), the formed TiO$_x$/Ti$_3$C$_2$ structure could not only promote the separation of US generated e$^-$ and h$^+$ from the energy-band structure, but also capture electronic to prevent the recombination of e$^-$–h$^+$ by oxygen vacancy, leading to an excellent sonodynamic effect under US irradiation. Especially, the H–Ti$_3$C$_2$ NSs also had relatively high absorbance in NIR II window, which could be used for photothermal therapy (PTT). The mild photothermal effect generated by H–Ti$_3$C$_2$ NSs could prolong the blood circulation and improve the O$_2$ supply. Both in vitro and in vivo photothermal-sonodynamic synergistic therapy was achieved by H–Ti$_3$C$_2$ NSs with sequential 1064 nm laser and US irradiation. Importantly, the synthesized H–Ti$_3$C$_2$-PEG NSs showed excellent biocompatibility, without causing any long-term toxicity obviously. Collectively,

![Fig. 1. Preparation and characterization of Ti$_3$C$_2$ NSs and H–Ti$_3$C$_2$ NSs prepared by high-temperature method.](image-url)
our work highlighted that the defective H-Ti3C2 NSs via the high-temperature treatment could be a promising sonosensitizer for SDT, which extended the biological application of MXene-based nanoplatforms.

2. Results and discussion

2.1. Preparation and characterization of Ti3C2 NSs and H-Ti3C2 NSs

According to the previous reports, Ti3C2 NSs were fabricated by selective etching and chemical exfoliation methods [37,38], and their morphology was mainly single-layer sheet structure revealed by transmission electron microscopy (TEM) image (Fig. 1a). Inspired by the photocatalysis application, the high-temperature method was introduced to treat the above-synthesized Ti3C2 NSs. In short, the Ti3C2 NSs were dispersed in the mixture of oleylamine (OM) and 1-octadecene (ODE), and then the solution was heated to 320 °C under nitrogen protection. In order to investigate the oxidation degree, the Ti3C2 NSs were treated with 1 h (H1-Ti3C2 NSs) and 2 h (H2-Ti3C2 NSs) at such high temperature, respectively. From the TEM images, the microstructure and morphology of Ti3C2 NSs did not change too much after high-temperature treatment (Fig. 1b and c). Next, the composition of Ti3C2 NSs before and after high-temperature treatment were carefully investigated. X-ray energy dispersive spectrometer (EDS) and element mapping firstly showed that both Ti3C2 NSs and H-Ti3C2 NSs mainly contained three elements of Ti, C, and O (Fig. S1, S2). Before the high-temperature treatment, the element O existed in the Ti3C2 NSs probably due to a certain degree of oxidation in the process of fabricating Ti3C2 NSs. With the increased time of high-temperature treatment, the content of O was gradually enhanced, demonstrating the oxidation of Ti3C2 NSs. From the X-ray powder diffraction (XRD) spectra, new peaks at 21.7° (TiO2, JCPDS. 00-049-1433) and 61.1° (TiO2, JCPDS. 01-086-2352) appeared (Fig. 1d), further claimed the oxidation of Ti3C2 NSs in the process of high-temperature treatment.

In addition, the major elements of Ti, C, and O of Ti3C2 NSs before and after high-temperature treatment were analyzed by X-ray photoelectron spectroscopy (XPS). For the Ti 2p region, the peaks at 455, 455.64, 456.52, 458.59, 461.3, 462.29, 463.45, and 464.51 eV corresponded to the Ti-C (2p3/2), TiC3+ (2p3/2), TiC5+ (2p3/2), TiO2 (2p3/2), Ti-C (2p1/2), TiC3+ (2p1/2), TiC5+ (2p1/2), and TiO2 (2p3/2), respectively (Fig. 1e-g, Fig. S3). From the spectra, we found that the peak of Ti-O band gradually increased while the Ti-C bond decreased with the high-temperature treatment. By calculating the integral area, the peak area of Ti-O band increased from ~39.6% to ~51.3% (H1-Ti3C2 NSs), and further to ~67.7% (H2-Ti3C2 NSs), while those of the Ti-C bond decreased from ~19.2% to ~18.1%, then to ~7.9%, respectively, indicating that the Ti3C2 NSs were oxidized to form TiOx by the high-temperature treatment (Fig. 1h). In addition, the C 1s region possessed two main peaks at 281.34 and 284.92 eV, which corresponded to the Ti-C and C-C bonds, respectively (Fig. S4). The intensity of Ti-C bond also decreased gradually with the prolonged time of high-temperature treatment, indicating that the Ti3C2 NSs were partly transformed into TiOx. Besides, the changes of O 1s spectra revealed that the peak intensity of TiOx increased after high-temperature treatment compared with Ti3C2 NSs without treatment, further indicating that the formation of TiOx on the surface of Ti3C2 NSs (Fig. S5). In order to further prove the change of composition, the Ti L-edge near-edge X-ray absorption fine structure (NEXAFS) was used to identify the Ti 3d electronic state changes on the surface of Ti3C2 NSs before and after high-temperature treatment. There were slight changes within 455–457 eV (Fig. 1i, Fig. S6), which was caused by the crystal-field splitting of the Ti 3d orbitals, and the formed TiOx nanostructures were sensitive to the oxidation state [42].

Raman spectrum was a significant method to analyze the surface message and the change process of nanomaterials. According to the Raman spectra, there were three characteristic peaks around 260, 400, and 600 cm⁻¹ for Ti3C2 NSs; meanwhile, a new peak around 155 cm⁻¹ appeared in the samples after the high-temperature treatment, and the intensity increased with the long-time treatment (Fig. 1j and k), which demonstrated that the TiOx was generated and accumulated on the surface of Ti3C2 NSs [39,40,43]. From the UV–vis–NIR absorbance spectra, all the samples before/after high-temperature treatment showed good NIR II absorbance, which could be used for NIR II photo-induced cancer therapy. By the high-temperature treatment, the absorbance spectra and the color of samples slightly changed (Fig. 1l), indicating such treatment did not affect the unique photo properties of Ti3C2 NSs. Collectively, it could be directly or indirectly identified that the TiOx were generated and accumulatively deposited on the surface of Ti3C2 NSs by the high-temperature treatment.

In order to improve the dispersity, stability, and promote biomedical applications, the amphiphilic polymer of DSPE-PEG (2000) was used to modify H-Ti3C2 NSs (H1-Ti3C2-PEG NSs) by noncovalent interaction. After the surface coating, the dynamic light scattering (DLS) of the H-Ti3C2-PEG NSs showed an average size of ~164 nm (Fig. S7), and the final sample showed high stability in the different physiological solutions including H2O, PBS, 0.9% NaCl, and RPMI in 4 °C (Fig. S8). Through this high-temperature treatment in the organic phase, the PE-Glylated H-Ti3C2 NSs showed excellent stability and biocompatibility, which would be used in the field of biomedicine.

2.2. Sonodynamic and photothermal performance of H-Ti3C2-PEG NSs

After high-temperature treatment for Ti3C2 NSs, the TiOx was generated on the surface of Ti3C2 NSs due to the changes of composition and structure, making the H-Ti3C2-PEG NSs to be promising effective sonosensitizers (Fig. 2a). To investigate the sonodynamic efficiency of H-Ti3C2-PEG NSs, the 1,3-diphenylisobenzofuran (DPBF) was used as the molecular probe to detect ROS under US irradiation. In the presence of ROS, the characteristic peak at 418 nm decreased. The Ti3C2 NSs, H1-Ti3C2-PEG NSs, and H2-Ti3C2-PEG NSs were irradiated by US at the same condition, respectively. Compared with Ti3C2 NSs and commercial TiO2, both H1-Ti3C2-PEG NSs and H2-Ti3C2-PEG NSs could obviously decrease the absorbance of DPBF (Fig. 2b c, Fig. S9), and the attenuation ratios were calculated to be ~18% for H2O, ~23% for Ti3C2 NSs, ~45% for the commercial TiO2, ~64% for H1-Ti3C2-PEG NSs, and ~85% for H2-Ti3C2-PEG NSs after US irradiation for 6 min (Fig. 2d), indicating that the H-Ti3C2-PEG NSs need stronger efficiency of ROS generation than that of Ti3C2 NSs and the commercial TiO2. The longer time of high-temperature treatment, the higher the sonodynamic effect of the H-Ti3C2-PEG NSs. The H2-Ti3C2-PEG NSs incubated with DBF without US irradiation showed no ROS generation (Fig. S10). In addition, we also used the probe of diphenylamine (DPA) to verify the ROS (1O2) generation, it was clear that the H2-Ti3C2-PEG NSs under US could generate enough 1O2 (Fig. S11). Afterwards, the tetramethylbenzidine (TMB) and o-phenylenediamine (OPD) probes were also used to detect other types of ROS, like hydroxyl radical (·OH), however, no obvious signal could be detected (Fig. S12), indicated no ·OH generation under US irradiation. Moreover, electron spin resonance (ESR) measurements were further conducted to further identify the ROS type generated in this process. Obviously, the typical characteristic peak of 1:1:1 occurred, indicating the 1O2 generation by US irradiated Ti3C2 NSs [44]. In addition, the H1-Ti3C2-PEG NSs showed a higher ability in producing 1O2 under US irradiation, revealing that the H1-Ti3C2-PEG NSs indeed could act as better sonosensitizers than Ti3C2 NSs (Fig. 2e). Importantly, the inorganic sonosensitizer had the advantages of good ultrasonic stability and continuous ROS generation. To evaluate ROS generation stability, the H1-Ti3C2-PEG NSs were treated with US for five cycles, and the stability performance was reflected by the decline of DPBF probe, which showed no significant change (Fig. 2f, Fig. S13). Moreover, after US irradiation for different times, the UV–vis–NIR absorbance spectra and the DLS sizes of H1-Ti3C2-PEG NSs had no obvious change. Therefore, the H1-Ti3C2-PEG NSs possessed excellent stability under US irradiation.
prove the above sonodynamic mechanism of H

G. Li et al.

treatment time (Fig. 2h), indicating that the V

the ability to capture e

According to the above results, the probable

Comparison of the sonodynamic performance of H

mechanism was confirmed as fellows (Fig. 2g). Owing to the TiO

Next, the mechanism of enhanced SDT efficiency by the H–Ti3C2 NSs was systematically investigated. As an important semiconductor photocatalyst, the formed TiO2 on the surface of Ti3C2 NSs with different oxidation degrees could promote the separation of e–h+1, which could improve the ROS generation efficiency. Meanwhile, Ti3C2 NSs treated by the high-temperature might generate a large amount of oxygen vacancy (Vo) that could capture the e– to prevent the recombination of e–h+1 pairs, thus ultra-low increasing the ROS generation effect. Therefore, to prove the above sonodynamic mechanism of H–Ti3C2-PEG NSs, the room-temperature ESR was measured, which could determine the Vo of the sample [45,46]. The Ti3C2 NSs, H2-Ti3C2-PEG NSs, and H1-Ti3C2–PEG NSs revealed the Vo signal located at g = 2.03, and the signal intensity was gradually enhanced with the prolonged high-temperature treatment time (Fig. 2h), indicating that the Vo structure could improve the ability to capture e–. Furthermore, the photoluminescence (PL) spectra of Ti3C2 NSs, H2-Ti3C2-PEG NSs, and H1-Ti3C2–PEG NSs were further measured to determine the oxygen vacancy structure. The PL spectra showed that the emission intensities of H2-Ti3C2-PEG NSs and H1-Ti3C2-PEG NSs were much lower than that of Ti3C2 NSs (Fig. S15), probably due to that most of the Vo in H2-Ti3C2-PEG NSs could capture the photo-excited electrons, then the decreased excite energy reduced the emission intensity. According to the above results, the probable mechanism was confirmed as fellows (Fig. 2g) that the TiO2 formation on the surface of Ti3C2 NSs, the electron transfer could be accelerated from the valence band (VB) to the conduction band (CB) when receiving the US irradiation. More importantly, the Vo of Ti3C2 NSs treated by high-temperature could capture e– and prevent the recombination of e–h+1 pairs. Therefore, the O2 molecules captured the e– and generated large amounts of O2, leading to the high generation efficiency of ROS (for example, 1O2) with H–Ti3C2 NSs rather than Ti3C2 NSs under US irradiation. In brief, the formation of TiO2 and oxygen vacancy of Ti3C2 NSs contributed to the improved sonodynamic effect.

The optical properties of the Ti2C2-PEG NSs were studied afterwards. Similar to the Ti3C2 NSs, both H2-Ti2C2-PEG NSs and H1-Ti2C2–PEG NSs had good absorbance in NIR I and NIR II regions (Fig. S16). Because the laser of NIR II (1000–1700 nm) has a higher tissue penetration depth than NIR I (700–1000 nm), the 1064 nm laser was selected here as the excitation source for potential PTT. The photothermal performance of Ti2C2 NSs, H3-Ti2C2-PEG NSs, and H1-Ti2C2–PEG NSs showed similar results at the concentration of 50 ppm (Ti ions) under the NIR II laser irradiation (Fig. 2i). For the comprehensive assessment, the photothermal property of Ti2C2 NSs, H3-Ti2C2-PEG NSs, and H1-Ti2C2–PEG NSs at the various concentration (0, 25, 50, 100, and 200 ppm) and various power densities (0.5, 0.75, 1, 1.25, and 1.5 W cm–2) were carefully investigated (Fig. S17), and the photothermal curves showed...
the concentration-dependent and power-dependent behavior of Ti3C2 NSs before and after high-temperature treatment. Furthermore, the photothermal conversion efficiency ($\eta$) of Ti3C2 NSs and H2Ti3C2 NSs was calculated to be $\approx 50.8\%$ and $\approx 49.6\%$, respectively, much higher than the previously reported Ti3C2-based PTT agents (Fig. 2j, Fig. S18). To evaluate the photothermal stabilities of H2Ti3C2-PEG NSs, the laser on/off through five cycles and the photothermal absorbance were not changed obviously, which showed excellent photothermal stability (Fig. 2k, Fig. S19).

2.3. In vitro Sonodynamic and photothermal performance of $\text{H-}2\text{Ti3C2}$-PEG NSs

Based on the above results, the H2Ti3C2-PEG NSs possessed great photothermal and sonodynamic efficiency. Next, the in vitro PTT and SDT properties of H2Ti3C2-PEG NSs were evaluated (Fig. 3a). Firstly, the cytotoxicity of the H2Ti3C2-PEG NSs was assessed by the standard methyl thiazolyl tetrazolium (MTT) assay, which showed that H2Ti3C2-PEG NSs had no obvious cytotoxicity even the concentration was as high as $100 \, \mu g \, mL^{-1}$ at the different incubation time (6, 12, and 24 h) (Fig. 3b). Next, the standard MTT assay was utilized to evaluate the therapeutic efficiency by the H2Ti3C2-PEG NSs (Fig. 3c). Using 1064 nm laser irradiation for 10 min ($\approx 1 \, W \, cm^{-2}$), the temperature of the cell culture medium maintained at $\approx 42 \, ^\circ C$, and the cell viability was as high as $\approx 79.5\%$. When the cells were irradiated by US only (40 KHz, 3W $\cdot$ cm$^{-1}$, 1 min per cycle, 5 cycles), the cell viability was decreased to $\approx 54.3\%$. Interestingly, the cell viability was as low as $\approx 13.4\%$ with the combined 1064 nm laser irradiation and then US treatment. It might be the reason that the mild photothermal effect promoted the endocytosis and enhanced efficiency of SDT. To verify this hypothesis, the Cy5.5-labeled H2Ti3C2-PEG NSs were incubated with 4T1 cells for different times. It could be found that the fluorescence intensity of Cy5.5 increased with time, and the group of H2Ti3C2-PEG NSs plus laser irradiation showed a higher fluorescence intensity than that in the H2Ti3C2-PEG NSs group (Fig. 3d and e). Confirmed the hypothesis that the mild photothermal effect could improve the efficiency of SDT by promoting the endocytosis of H2Ti3C2-PEG NSs.

Next, the live/dead co-staining assay was conducted and further confirmed that the mild PTT could enhance the SDT therapeutic effect (Fig. 3g). It also found that the mild photothermal effect could improve the cell membrane permeability and increase the cellular uptake of the H2Ti3C2-PEG NSs. To further demonstrate the treatment, the study of apoptosis assay based on the typical Annexin V-FITC and PI was conducted (Fig. 3f). The cell viabilities in the groups of H2Ti3C2-PEG + Laser and H2Ti3C2-PEG + US were $\approx 85.8\%$ and $\approx 74.9\%$, respectively, however, the majority of cells were killed by the H2Ti3C2-PEG + Laser + US, with only $\approx 4\%$ of cells survived. To investigate the mechanism of cell apoptosis by the H2Ti3C2-PEG NSs, the ROS staining assay was tested by using 2,7-dichlorofluorescin diacetate (DCPF-DA, green color). The strongest green signal was observed in the group of H2Ti3C2-PEG NSs + Laser + US, indicating that the enhanced uptake of H2Ti3C2-PEG NSs by the mild photothermal effect was helpful for a large amount of ROS generation under US irradiation, as compared with that of H2Ti3C2-PEG NSs + US group (Fig. 3h, Fig. S20). These results demonstrated that the mild photothermal could promote endocytosis and the H2Ti3C2-PEG NSs could generate ROS under US irradiation to kill the cancer cells.

For evaluating the synergetic effect of H2Ti3C2-PEG NSs in vivo, the blood circulation was firstly studied to monitor the biocompatibility and tumor accumulation potential. After the intravenous (i.v.) injection of H2Ti3C2-PEG NSs into the Balb/c mouse bearing 4T1 tumor, the pharmacokinetics indicated that the H2Ti3C2-PEG NSs had good biocompatibility and stability (Fig. 4a). It would be more accurate to know the concentration of H2Ti3C2-PEG NSs in the tumor site, which could help to design the optimal schedule to initiating treatment and reducing the damage to the surrounding normal tissue. Then photoacoustic (PA) imaging was used to investigate the biodistribution owing to the great absorbance in NIR windows. In vitro PA imaging showed that the higher concentration of the H2Ti3C2-PEG NSs, the stronger the PA signal (Fig. 4b, Fig. S21). In vivo PA imaging demonstrated that the PA signal located at the tumor site became stronger with the prolonged circulating time due to the enhanced permeability and retention (EPR) effect, with the highest signal appeared in the tumor site at 12 h post injection, and it could retain in the tumor site for a longer time, providing the long-term window for cancer treatment (Fig. 4c and d). Afterwards, the biodistribution of H2Ti3C2-PEG NSs in the tumor was quantitatively analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) to determine Ti ions. It could be found that the tumor uptake of the H2Ti3C2-PEG NSs was $\approx 5.8\%$ ID g$^{-1}$ after i. v. injection for 12 h, evidencing an efficient tumor accumulation of the H2Ti3C2-PEG NSs (Fig. 4e).

2.4. In vivo Sonodynamic and photothermal performance of $\text{H-}2\text{Ti3C2}$-PEG NSs

Encouraged by the excellent properties indicated by the in vitro studies, the in vivo sonodynamic and photothermal performances of H2Ti3C2-PEG NSs were investigated. First of all, the in vivo photothermal property of the H2Ti3C2-PEG NSs for the NIR II laser-induced hyperthermia was studied (Fig. 4f). 4T1 tumor-bearing mice were exposed to the 1064 nm laser irradiation after i. v. Injection for 12 h (1 W $\cdot$ cm$^{-2}$, 5 min), then the tumor temperature was quickly increased to $\approx 50.3 \, ^\circ C$, that can achieve the condition of mild photothermal. (Fig. S22). However, the temperature of the control group was less increased, mainly due to the strong NIR II absorbance and the efficient tumor accumulation of the H2Ti3C2-PEG NSs. The complex TME and abnormal blood vessels lead to severe hypoxia in the solid tumor, which greatly reduces the therapeutic effect of ROS. Based on the previous reports, the mild photothermal effect could promote blood circulation and increase the number of red blood cells, thus increasing the oxygen-carrying capacity of hemoglobin, which could reverse the hypoxic microenvironment and increase the effect of ROS-based therapies [22,47]. PA imaging of oxyhemoglobin saturation was detected in disparate points after irradiation with different times (5 min, 15 min, 25 min, T $\leq 42 \, ^\circ C$). It was obvious that the blood oxygen was time-dependent enhanced and reached the maximum at 10 min (Fig. S23). Later, an immune-fluorescence hypoxia staining assay was conducted (Fig. 4g). The hypoxia signals of the H2Ti3C2-PEG NSs + Laser group were significantly decreased compared with other control groups, which suggested that the mild photothermal effect could relieve the tumor hypoxia, so that the sonodynamic effect could be enhanced.

Then, we studied the anti-tumor effect of the H2Ti3C2-PEG NSs via the mild PTT-enhanced SDT of the 4T1 tumor-bearing mice (Fig. 5a). All the mice were randomly divided into seven group: (1) control; (2) H2Ti3C2-PEG NSs (i. v. Injection, 20 mg $\cdot$ kg$^{-1}$); (3) Laser (1064 nm, $\approx 1 \, W \cdot cm^{-2}$, 15min, T $\leq 42 \, ^\circ C$); (4) US (40 kHz, 3W $\cdot$ cm$^{-1}$, 1 min per cycle, 5 cycles); (5) H2Ti3C2-PEG NSs + Laser; (6) H2Ti3C2-PEG NSs + US; (7) H2Ti3C2-PEG NSs + Laser + US. The H2Ti3C2-PEG NSs were administrated intravenously. According to the above PA imaging results, the 1064 nm laser and US irradiation were subsequently applied to the tumors after 12 h post injection. After treatments, the tumor growth of different groups was monitored (Fig. 5b). Compared with the control group, the tumors grew rapidly in the groups of H2Ti3C2-PEG NSs, Laser, US, and H2Ti3C2-PEG NSs + Laser, but slowly in the H2Ti3C2-PEG NSs + US group, which showed a certain inhibitory effect, indicating that the H2Ti3C2-PEG NSs had a good sonodynamic effect for tumor inhibition. From the tumor inhibitory rate statistics, the groups of H2Ti3C2-PEG NSs, Laser, US, and H2Ti3C2-PEG NSs + Laser only had the extremely low inhibitory effect, while the H2Ti3C2-PEG NSs + US group possessed $\approx 54.9\%$ inhibitory rate, and yet the tumors could not achieve ablation thoroughly. When treated with H2Ti3C2-PEG NSs + Laser + US, the tumors were completely suppressed (Fig. 5c), probably
Fig. 3. *In vitro* mild PTT-enhanced SDT of H₃Ti₃C₂-PEG NSs. (a) Schematic illustrating of H₃Ti₃C₂-PEG NSs for the mild PTT-enhanced SDT. (b) Relative cell viability of 4T1 cells with the H₃Ti₃C₂-PEG NSs with various concentrations for 6, 12, and 24 h (n = 6 biologically independent samples). (c) Relative cell viability of 4T1 cells after different treatments (G 1-G 7, detailed at the end of the caption) (**P < 0.01, *P < 0.05). (d) Confocal images of 4T1 cells incubated with Cy5.5-conjugated H₃Ti₃C₂-PEG NSs for different times with/without 1064 nm laser irradiation. (e) Quantitative analysis of the fluorescence intensity in (d) (n = 6 cells examined over independent micrographs). (f) Flow-cytometry apoptosis assay of 4T1 cells after different treatments stained with Annexin-FITC and PI. (g) Confocal images of 4T1 cells after incubation H₃Ti₃C₂-PEG NSs followed by staining with Calcein AM (green, live cells) and propidium iodide (red, dead cells) after different treatments (G 1-G 7). (h) Confocal images of 4T1 cells stained with DAPI (blue, nuclei) and DCFH-DA (green, intracellular ROS) after various treatments (G 1-G 7). G 1: Control, G 2: H₃Ti₃C₂-PEG, G 3: Laser, G 4: US, G 5: H₃Ti₃C₂-PEG + Laser, G 6: H₃Ti₃C₂-PEG + US, G 7: H₃Ti₃C₂-PEG + Laser + US. H₃Ti₃C₂-PEG NSs: 50 ppm, NIR laser: 1064 nm, < 1 W cm⁻², 10 min, T < 42 °C; US irradiation: 40 kHz, 3 W cm⁻², 1 min per cycle, 5 cycles. Error bars = standard deviation (n = 6). Data are presented as mean values ± SD. A representative image of three biological replicates from each group is shown.
due to that the mild photothermal effect alleviated the hypoxic microenvironment, which further enhanced SDT efficiency. Importantly, the tumors in H_{3}Ti_{3}C_{2}-PEG NSs + Laser + US group did not recur, which significantly increased the overall survival. However, the size of tumors in the other control groups reached the death criteria gradually, revealing that the mild photothermal-enhanced SDT had an obvious synergistically therapeutic outcome with the H_{3}Ti_{3}C_{2}-PEG NSs (Fig. 5d).

To further explore the mechanism of synergistic therapy mediated by H_{3}Ti_{3}C_{2}-PEG NSs, the ROS levels in the tumors after the various treatments were evaluated via DCFH-DA staining (Fig. 5e). It was clear that the groups of control, H_{3}Ti_{3}C_{2}-PEG NSs, Laser, US, and H_{3}Ti_{3}C_{2}-PEG NSs + Laser only induced weak green fluorescence in tumor slices, while the groups of H_{3}Ti_{3}C_{2}-PEG NSs + US and H_{3}Ti_{3}C_{2}-PEG NSs + Laser + US showed enhanced green fluorescence in the tumor slices. The strongest green fluorescence intensity appeared in H_{3}Ti_{3}C_{2}-PEG NSs + Laser + US group, and the intensity was 2.8 -fold higher than that of the control group (Fig. 5f). Therefore, the mild PTT could alleviate the hypoxic tumor environment and promote the generation of ROS under US irradiation. Thereafter, the hematoxylin and eosin (H&E) staining of tumor slides was conducted after the various treatments at 24 h (Fig. 5g). In the groups of H_{3}Ti_{3}C_{2}-PEG NSs + US and H_{3}Ti_{3}C_{2}-PEG NSs + Laser + US, nearly all the tumor cells were damaged severely while the other groups had little impact on tumor cells. These results confirmed that the mild PTT could enhance the efficacy of SDT to achieve a good synergistic effect by the H_{3}Ti_{3}C_{2}-PEG NSs.

Lastly, biosafety is the most important issue to be considered for the wide biomedical application of nanomaterials, especially for inorganic nanomaterials [48,49]. Firstly, the H&E staining showed that the main organs (heart, liver, spleen, lung, kidney, and brain) of mice had no obvious morphological changes in different time (Fig. 5a). Then, we moved to study the degradation behavior of the synthesized H_{3}Ti_{3}C_{2}-PEG NSs. The H_{3}Ti_{3}C_{2}-PEG NSs were dispersed in various solutions of H_{2}O, PBS, and RPMI (10% FBS) at 37 °C for different incubation times (Fig. 6b–d). According to the UV–vis-NIR spectra, the absorbance of H_{3}Ti_{3}C_{2}-PEG NSs around 808 nm decreased after 21 days, and the photograph of H_{3}Ti_{3}C_{2}-PEG NSs showed the fading color, which evidenced the biodegradation of H_{3}Ti_{3}C_{2}-PEG NSs. However, a relatively smaller change in the 1640 cell culture medium, probably due to the reason that the cell culture medium contained 10% FBS could partially protect the degradation of Ti_{3}C_{2} nanosheets. Furthermore, TEM and XRD were used to explore the morphology and component after the biodegradation of H_{3}Ti_{3}C_{2}-PEG NSs. TEM image showed the mixture of nanosheets and nanodots, and the XRD patterns showed the amorphous structure in the process the degradation (Fig. S25). Next, we discovered the in vivo distribution profile and the metabolic pathway of H_{3}Ti_{3}C_{2}-PEG NSs (Fig. 6e and f). At 24 h after i. v. injection, the biodistribution showed the relatively high accumulation of H_{3}Ti_{3}C_{2}-PEG NSs in liver (~36.5% ± 1.8% ID g^{-1}), spleen (~38% ± 3.0% ID g^{-1}), and lung (~14% ± 4.5% ID g^{-1}). However, the content dropped to 12% ± 0.6% ID g^{-1} in liver, 13.7% ± 1.8% ID g^{-1} in spleen, and 2.2% ± 0.2% ID g^{-1} in lung at the 30th day later, respectively, showing that most of the H_{3}Ti_{3}C_{2}-PEG NSs had been metabolized out of the body. In order to investigate the metabolism pathway of the H_{3}Ti_{3}C_{2}-PEG NSs, the feces...
Bioactive Materials 8 (2022) 409–419

and urine of mice were collected to detect the content of Ti through ICP-OES. It could be found that H$_{3}$Ti$_{3}$C$_{2}$-PEG NSs were mainly excreted through the hepatic metabolism due to the high concentration of Ti ions in the feces. Moreover, there was no significant change in the body weight of mice during the treatment, indicating that the H$_{3}$Ti$_{3}$C$_{2}$-PEG NSs had no obvious toxicity at the injection dose (20 mg $\cdot$ kg$^{-1}$). (Fig. 6 g). Subsequently, the blood was collected after injection of H$_{3}$Ti$_{3}$C$_{2}$-PEG NSs for blood routine and blood biochemical tests. All these hematological indexes had no significant difference among all the groups (Fig. S26). In brief, the H$_{3}$Ti$_{3}$C$_{2}$-PEG NSs could be used as safe sonosensitizers for enhanced SDT without causing any long-term toxicity.

3. Conclusion

In summary, the oxygen-defective Ti$_{3}$C$_{2}$ NSs (H$_{3}$Ti$_{3}$C$_{2}$ NSs) were successfully established by two-step methods of chemical exfoliation and high-temperature treatment. After high-temperature treatment, the H$_{3}$Ti$_{3}$C$_{2}$ NSs displayed an excellent sonodynamic efficacy, and the efficiency was enhanced by the long-time high-temperature treatment. Importantly, the oxygen defect structure of H$_{3}$Ti$_{3}$C$_{2}$ NSs treated by the high-temperature also could prevent the recombination of e$^{-}$-h$^{+}$ pairs, which further enhanced the sonodynamic effect under US irradiation. Meanwhile, the H$_{3}$Ti$_{3}$C$_{2}$ NSs also had relatively high absorbance in the NIR II window, which could produce heat under laser irradiation. After PEGylation, the H$_{3}$Ti$_{3}$C$_{2}$-PEG NSs showed great stability and biocompatibility. The good photothermal efficacy of H$_{3}$Ti$_{3}$C$_{2}$-PEG NSs promoted the endocytosis of the H$_{3}$Ti$_{3}$C$_{2}$-PEG NSs, and further enhanced the efficacy of SDT. In vivo studies showed that the mild photothermal effect could accelerate blood circulation and alleviate the hypoxia tumor microenvironment to realize PTT enhanced SDT. Importantly, the biodegradable H$_{3}$Ti$_{3}$C$_{2}$ NSs were excreted out of the body without inducing any long-term toxicity. In brief, our work developed the H$_{3}$Ti$_{3}$C$_{2}$ NSs as a high-efficiency and safe sonosensitizer for photothermal-enhanced SDT, which highlighted the extension of the biomedical application of MXene-based nanoplatforms.

CRediT authorship contribution statement

Guangqiang Li: Writing – review & editing, Writing – original draft,
designed the experiments, synthesized the materials, performed the sonodynamic and photothermal experiments, performed the cells experiments, wrote the paper, reviewed and edited the paper. Xiaoyan Zhong: Writing – review & editing, Writing – original draft, performed animal experiments, wrote the paper, reviewed and edited the paper. Xianwen Wang: Writing – review & editing, synthesized the materials, performed the sonodynamic and photothermal experiments, reviewed and edited the paper. Fei Gong: Writing – review & editing. Huali Lei: Writing – review & editing. Yangkai Zhou: Writing – review & editing. Chengfei Li: Writing – review & editing. Zhidong Xiao: Writing – review & editing, Writing – original draft. Guoxi Ren: Writing – review & editing. Formal analysis. Liang Zhang: Writing – review & editing. Zhiqiang Dong: Writing – review & editing, Formal analysis. Zhuang Liu: Writing – review & editing, Formal analysis. Liang Cheng: Writing – review & editing, Writing – original draft.

Declaration of Competing interest

The authors declare no competing financial interest.

Acknowledgment

This article was partially supported by the National Research Programs of China (2016YFA0201200), the National Natural Science Foundation of China (U20A20254, 52072253), Collaborative Innovation Center of Suzhou Nano Science and Technology, a Jiangsu Social Development Project (BE2019658), a Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. L. Cheng was supported by the Tang Scholarship of Soochow University, and the fundamental Research Funds for Central Universities (2662019PY024). The authors thank SSRF (beamline 02B02) for the allocation of synchrotron beamtime.
