Resumo

Objetivo: Analisar a configuração acústico-articulatória das vogais em mulheres com nódulos vocais e vocalmente saudáveis. Método: Participaram do estudo 12 mulheres com nódulos vocais (GE) e 12 vocalmente saudáveis (GC). Todas as mulheres gravaram frases-veículo com as vogais /a/, /i/ e /u/ em posição tônica, sucedidas e precedidas da oclusiva /p/: “Digo p a p ia baixinho”, “Digo p i p ia baixinho” e “Digo p u p ia baixinho”. Posteriormente, foram extraídos os três primeiros formantes (F1, F2 e F3) dessas vogais. Resultados: Observou-se diferença nas medidas de F1 para as vogais /a/ e /u/ e F2 para a vogal /a/ entre os dois grupos estudados. Mulheres com nódulos vocais apresentam menor valor dessas medidas em relação às mulheres vocalmente saudáveis. Pacientes com nódulos vocais apresentaram menor intervalo nos valores de F1 e F2 entre as vogais /a/, /i/ e /u/ em relação às mulheres vocalmente saudáveis. Conclusão: Mulheres com nódulos vocais apresentam menores valores de F1 e F2, e menor amplitude de movimentação dos articuladores na produção vocálica em relação às mulheres vocalmente saudáveis.

Abstrato

Propósito: Analisar a configuração acústico-articulatória das vogais em mulheres com nódulos vocais e vocalmente saudáveis. Métodos: Participaram do estudo 12 mulheres com nódulos vocais (EG) e 12 vocalmente saudáveis (CG). Todas as mulheres gravaram frases-veículo com as vogais /a/, /i/ e /u/ em posição tônica, sucedidas e precedidas da oclusiva /p/: “Digo p a p ia baixinho”, “Digo p i p ia baixinho” e “Digo p u p ia baixinho”. Posteriormente, foram extraídos os três primeiros formantes (F1, F2 e F3) dessas vogais. Resultados: Observou-se diferença nas medidas de F1 para as vogais /a/ e /u/ e F2 para a vogal /a/ entre os dois grupos estudados. Mulheres com nódulos vocais apresentam menor valor dessas medidas em relação às mulheres vocalmente saudáveis. Pacientes com nódulos vocais apresentaram menor intervalo nos valores de F1 e F2 entre as vogais /a/, /i/ e /u/ em relação às mulheres vocalmente saudáveis. Conclusão: Mulheres com nódulos vocais apresentam menores valores de F1 e F2, e menor amplitude de movimentação dos articuladores na produção vocálica em relação às mulheres vocalmente saudáveis.
INTRODUÇÃO

Os distúrbios da voz são processos patológicos que afetam diretamente a produção vocal, manifestando-se de diferentes formas, incluindo a presença de sintomas sensoriais e auditivos, desvios da qualidade vocal e a presença de alterações funcionais e/ou estruturais da laringe1.

A avaliação dos distúrbios da voz requer uma abordagem multidisciplinar que inclui anamnese específica, avaliação perceptivo-auditiva da voz, autoavaliação, exame laringeo visual e avaliação acústica29.

Na análise acústica, pode-se investigar e inferir sobre a solidariedade entre os subsistemas respiratório, fonatório e articulatório envolvidos na produção do som. Por sua vez, indivíduos com distúrbio de voz podem implementar ajustes na movimentação e posicionamento dos articuladores, seja como mecanismo compensatório ou em co-ocorrência desse distúrbio. Tais ajustes, associados à irregularidade e ruído presente em vozes disfônicas, podem influenciar na produção dos fonemas vocálicos3,4,6 ou consonantais5,9, diminuir a inteligibilidade de fala e comprometer a transmissão da mensagem verbal9,4,7.

O posicionamento e movimentação dos articuladores são os principais responsáveis pela distintividade vocálica e podem ser indiretamente inferidos, acusticamente, a partir das medidas formácticas60. Os formantes são influenciados pelo posicionamento da mandíbula, dos lábios, da faringe, da laringe e da língua. Diferentes combinações no posicionamento desses articuladores conferem distintividade acústico-articulatório aos segmentos vocálicos9.

Acusticamente, os sons vocálicos que mais se distinguem são as vogais do triângulo vocálico /a/, /i/ e /u/, uma vez que elas ocupam as extremidades do triângulo. O primeiro formante (F1) das vogais /i/ e /u/ apresentam frequência baixa e a vogal /a/ uma frequência alta, visto que a língua se posiciona mais elevada na produção das duas primeiras vogais e mais baixa em /a/. O segundo formante (F2) tem frequência alta em /i/, baixa em /u/ e média em /a/, justificada pela posição da língua, que se encontra mais avançada para a primeira, recuada para a segunda e numa posição estável para a produção da terceira vogal10.

Nesse sentido, um estudo11 investigou as adaptações motoras da fala realizadas por sujeitos portadores de doença de Parkinson. A análise das vogais mostra redução do espaço vocálico, demonstrando tendência à centralização das vogais, para o grupo de parkinsonianos. A extensão de F1 e F2 apresenta tendência a maior redução no eixo de F2, relativo à movimentação no sentido ântero-posterior da língua. As vogais posteriores são as que apresentam maiores índices de dispersão, demonstrando maior dificuldade em realização de movimentos com o dorso da língua.

Outros estudos9,12 têm evidenciado que uma alteração vocal provoca multiplicidade de manifestações, seja em nível da fonte glótica e/ou do filtro. Observa-se um maior número de estudos investigando as medidas acústicas relacionadas à fonte glótica, como as medidas de perturbação e ruído13-15, visto que elas estão mais relacionadas com o desvio vocal percebido auditivamente. No entanto, o impacto dos distúrbios de voz sobre a distintividade vocalica e sua repercussão sobre a transmissão da mensagem verbal necessitam ser estudados, considerando-se que tal achado pode elucidar e reforçar a compreensão das limitações comunicativas desse distúrbio.

Nessa perspectiva, um estudo16 utilizou imagens de ressonância magnética para investigar os ajustes do trato vocal de mulheres disfônicas com nódulos vocais e não disfônicas, antes e após o exercício com tubo flexível na água, tanto em repouso quanto durante a fonação. Mulheres com nódulos vocais possuem menor área do vestíbulo laringeo, distância da epiglote à parede posterior da faringe (PPF) e comprimento do complexo interaritenóideo durante o repouso vocal; e durante a fonação, área do vestíbulo laringéo, ângulo entre PPF e prega vocal, epiglote para PPF e comissura anterior da laringe para PPF são menores, e maior espaço na região da língua. O exercício promoveu mudanças positivas no trato vocal de mulheres com nódulos vocais, reduzindo as diferenças entre os grupos.

Nesse contexto, considerando-se a importância da distintividade vocalica no mecanismo de transmissão da mensagem verbal, e que indivíduos com distúrbios de voz podem implementar ajustes compensatórios nos articuladores, o objetivo desta pesquisa é analisar a configuração acústico-articulatória das vogais em mulheres com nódulos vocais e vocalmente saudáveis.

MÉTODO

Desenho do estudo

Este estudo tem caráter descritivo, observacional e transversal. Foi avaliado e aprovado pelo Comitê de Ética em Pesquisa da Universidade Federal da Paraíba (UFPB), com o parecer número 2.158.960. Todos os participantes receberam explicação sobre a pesquisa e assinaram o Termo de Consentimento Livre e Esclarecido (TCLE).

Amostra

Participaram desta pesquisa, enquanto grupo experimental (GE), a população de pacientes atendidos no Laboratório Integrado de Estudos da Voz (LIEV) da UFPB, de acordo com os seguintes critérios de elegibilidade:

- Apresentar laudo otorrinolaringológico de nódulos vocais;
- Sexo feminino, pois há uma maior prevalência de distúrbios da voz nessa população, assim como pela relação existente entre essa variável e a média da frequência fundamental e das medidas formácticas, que possuem uma associação com características anatômicas das pregas vocais e do trato vocal, respectivamente, distintas entre homens e mulheres adultos17;
- Idade superior a 18 anos e inferior a 65 anos, pelas modificações na fonte glótica e no trato vocal relativas à infância, adolescência e senescência17;
- Não possuir infeções de vias áreas superiores no momento da gravação, o que geraria modificação nas cavidades de ressonância e, consequentemente, nas medidas formácticas18;
NÃO POSSUIR FRÊNULO LINGUAL ENCURTADO, DISFUNÇÃO TEMPOROMANDIBULAR, E/OU ALTERAÇÕES ESTRUTURAIS E FUNCIONAIS DOS ARTICULADORES, O QUE MODIFICARIA OS JUSTOS DO TRATO VOCAL SUPRAGLÓTICO;

NÃO POSSUIR ALTERAÇÕES COGNITIVAS OU NEUROLÓGICAS QUE IMPEÇAM A REALIZAÇÃO DOS PROCEDIMENTOS DE COLETA;

NÃO TER REALIZADO TERAPIA FONOAUDIOLÓGICA ANTERIORMENTE.

Para a composição do grupo controle (GC), foram recrutadas mulheres que se disponibilizassem para a realização da pesquisa, dentre elas estão funcionários e alunas do Departamento de Fonoaudiologia da UFPB, que se enquadrassem nos mesmos critérios de elegibilidade acima, com exceção do diagnóstico de nódulos vocais e:

• NÃO APRESENTAR QUEIXA VOCAL NA ATUALIDADE OU NOS ÚLTIMOS SEIS MESES, RESPONDE ndo NEGATIVAMENTE À PERGUNTA “VOCE APRESENTA UM PROBLEMA DE VOZ ATUALMENTE OU NOS ÚLTIMOS SEIS MESES?”

O GC foi pereado com o GE de acordo com os parâmetros de faixa etária, com variação da idade de cinco para mais ou para menos, seguindo uma proporção de um controle para cada caso (1:1). Dessa forma, a amostra foi composta por 24 mulheres, incluindo 12 mulheres no GE, com média de idade e desvio-padrão de 36,47 anos ±12,22 e 12 mulheres no GC, média de idade e desvio-padrão de 33,86 anos ±11,59. As pacientes do GE foram abordadas durante triagem fonoaudiológica do LIEV, assim como no GE.

Dessa forma, todas as pacientes que realizaram avaliação no Laboratório e possuíam diagnóstico de nódulos vocais foram abordadas sobre a possibilidade de participar da pesquisa, assinando o Termo de Consentimento Livre e Esclarecido (TCLE). Na sequência, foram submetidas à gravação das frases-veículo “Digo papa baixinho”, “Digo pipa baixinho” e “Digo papa baixinho”.

As participantes do GC foram abordadas diretamente entre as alunas e funcionárias do curso citado anteriormente. Elas receberam instrução quanto aos objetivos da pesquisa, assinaram o TCLE e foram encaminhadas para realização de exame visual laríngeo em serviço público de referência na região, apresentando o laudo por escrito posteriormente. Aquelas que apresentaram laudo de “laringe normal” submeteram-se à gravação das tarefas de fala.

Procedimentos da coleta de dados

Para a composição do GE, foi realizado o acompanhamento mensal no serviço de avaliação vocal do LIEV, com o objetivo de abordar mulheres que tinham laudo conclusivo de nódulo(s) vocal(is) e que se enquadrassem nos demais critérios de elegibilidade desta pesquisa.

As mulheres, então, foram submetidas à aquisição dos dados pessoais, tais como nome, data de nascimento, idade e profissão. Em seguida, realizou-se uma breve avaliação das estruturas do sistema estomatognático, observando a morfologia e mobilidade de lábios, língua, bochechas e palato mole; tonsicidade de lábios, língua e bochechas, e questões relacionadas à articulação temporomandibular e a presença ou ausência de infeções de vias aéreas superiores (de acordo com o autorrelato). O objetivo dessa avaliação foi descartar a presença de desordem temporomandibular, alteração no frênulo lingual, ou qualquer alteração estrutural e funcional que poderia influenciar nos resultados deste estudo, em função da interferência dessas alterações sobre os ajustes articulatórios.

Em seguida, procedeu-se à gravação das tarefas de fala. Para tanto, utilizou-se o software Fonoview, versão 4.5, da CTS Informática, desktop Dellall-in-one, microfone cardioide unidirecional, da marca Senheiser, modelo E-835, localizado em um pedestal e acoplado a um pré-amplificador Behringer, modelo U-Phoria UMC 204. As vozes foram coletadas em cabine de gravação no LIEV, com tratamento acústico e ruído inferior a 50 dB NPS, com taxa de amostragem de 44000 Hz, com 16 bits por amostra e distância de 10 cm entre o microfone e a boca do falante.

Para a coleta das vozes, as mulheres ficaram em pé, situando o pedestal a sua frente, de acordo com a distância preconizada entre a boca e o microfone, conforme descrito acima. Elas foram orientadas a respirar levemente, obetendo ar suficiente para que a produção do som não acontecesse de maneira forçada, o que alteraria a proposta de emissão normal das frases.

As participantes foram instruídas para a gravação da leitura de três frases-veículo (“Digo papa baixinho”, “Digo pipa baixinho” e “Digo papa baixinho”), separadamente, contendo os segmentos vocálicos /a/, /i/ e /u/. Cada frase foi gravada apenas uma vez por cada voluntário. Os segmentos vocálicos foram inseridos em contextos CV (consoante-vogal), em sílaba inicial de palavra, não acentuada, com vogal antecedida e sucedida do fonema oclusivo bilabial não vozeado. A escolha dessas frases justifica-se pela pouca influência que essas consoantes têm sobre os formantes das vogais vizinhas e pela necessidade de se homogeneizar o contexto para todas as vogais. Dessa forma, haverá o mínimo controle dos aspectos prosódicos, sem interferências na realização dos sons vocálicos na investigação da distintividade acústica das vogais.

A escolha das vogais /a/, /i/ e /u/ se deu porque acusticamente esses sons vocálicos são os que mais se distinguem, formando um triângulo articulatório em suas extremidades. Além disso, elas obedecem a um padrão formático de consenso entre os pesquisadores, que corresponde às características típicas de vogais que apresentam o máximo e o mínimo de abertura vocal e de movimento de recuo e de avanço, de abaixamento e levantamento da língua.

As participantes do GC foram recrutadas após a coleta com o GE. Tal procedimento foi definido para favorecer a mesma quantidade de informantes em ambos os grupos.

O recrutamento das mulheres do GC se deu a partir da observação da faixa etária de cada participante do grupo experimental. Com base na idade, elas foram contatadas pelo pesquisador e direcionadas para sessão e aos procedimentos da coleta, de acordo com a sua disponibilidade. Após o agendamento, todas as voluntárias do GC seguiram as mesmas etapas dos procedimentos do GE. Pela viabilidade da pesquisa e pelo acesso dos sujeitos ao Laboratório, participaram da pesquisa estudantes e funcionários da Instituição de Ensino Superior onde foi realizada a pesquisa.
A extração do primeiro e segundo formante das vogais /a/, /i/ e /u/ foi realizada no software Praat, versão 5.3.77h, a partir da representação da vogal em um espectrograma de banda larga. O Praat é uma ferramenta para a análise de voz, desenvolvida por Paul Boersma e David Weenink, do Institute of Phonetic Sciences, Universidade de Amsterdã.

A segmentação e, consequentemente, a duração dos sons vocálicos em contextos CV foram segmentados considerando como limite inicial da vogal o primeiro pico regular após a consoante e o período de transição entre a consoante-vogal. Como limite final, foi considerado o último pico regular antes da consoante e do período de transição entre a vogal-consoante\(^{(10)}\), estimando-se uma média de análise de duração de 0,13 segundos.

A partir da seleção e da segmentação dos sons vocálicos em contextos CV, foi possível obter a média das medidas acústicas investigadas. Para a extração da média dos formantes no Praat, selecionou-se a opção denominada de Formant, obtendo o valor numérico de F1, F2 e F3 expresso em Hertz (Hz).

Procedimento de análise de dados

Foi realizada análise estatística descritiva para todas as variáveis, considerando média e desvio-padrão.

Na comparação entre os GE e GC, as médias de F1 e F2 foram analisadas utilizando o teste U de Man-Whitney. Todas as análises foram realizadas no software R. O nível de significância considerado foi de 5%.

Com o objetivo de mostrar o quanto as vogais estão próximas ou distantes entre si no gráfico, a partir do eixo F1 ou F2, foi realizada a média da diferença/intervalo entre as vogais por meio da subtração do formante de uma vogal para outra.

RESULTADOS

As médias, o desvio-padrão e a comparação de F1 e F2 das vogais /a/, /i/ e /u/ entre os grupos GE e GC são apresentadas na Tabela 1.

Formante	Vogal	Grupo Experimental Média DP	Grupo Controle Média DP	p-valor
F1	/a/	804,40±137,39	931,28±83,31	0,0145
	/i/	353,08±47,66	377,32±41,67	0,3474
	/u/	369,01±57,37	465,06±50,97	0,0007
F2	/a/	1377,63±120,70	1471,79±83,21	0,0284
	/i/	2491,65±170,93	2578,58±137,92	0,3777
	/u/	725,32±225,65	726,55±78,93	0,4776

Tabela 1. Média, desvio-padrão e comparação entre os grupos experimental e controle

Legenda: DP: desvio-padrão; F1: primeiro formante; F2: segundo formante

Na análise comparativa dessas medidas entre os grupos, observou-se diferença na medida de F1 para as vogais /a/ (p=0,0145) e /u/ (p=0,0007) (Tabela 1). Houve menor valor de F1 para essas vogais no grupo de mulheres com nódulos vocais. Com relação a F2, observou-se diferença para a vogal /a/ (p=0,0007), com menores valores no grupo das mulheres com nódulos vocais (Tabela 1).

Na Tabela 2 podem ser observados os intervalos de F1 e F2 entre as vogais /a/, /i/ e /u/. As mulheres com nódulos vocais apresentaram menores valores nos intervalos de F1 e F2 entre as três vogais estudadas, comparando às mulheres vocalmente saudáveis. Esses intervalos podem ser visualizados por meio da comparação entre a configuração do triângulo acústico de mulheres do GE e GC, de acordo com a abscissa e ordenada do gráfico presente na Figura 1. As vogais apresentam-se mais distintas no triângulo acústico-articulatório de mulheres vocalmente saudáveis.

RESULTADOS

As médias, o desvio-padrão e a comparação de F1 e F2 das vogais /a/, /i/ e /u/ entre os grupos GE e GC são apresentadas na Tabela 1.

Formante	Vogal	Grupo Experimental Média DP	Grupo Controle Média DP	p-valor
F1	/a/-/u/	435,39±80,02	466,22±32,34	
	/a/-/i/	451,31±89,73	553,96±41,64	
	/i/-/u/	15,93±9,71	87,74±9,3	
F2	/a/-/u/	652,31±104,95	745,24±4,28	
	/a/-/i/	1114,02±50,23	1106,79±54,71	
	/i/-/u/	1766,33±54,72	1852,03±58,99	

Tabela 2. Média e desvio-padrão das diferenças entre os formantes dos grupos experimental e controle

Legenda: DP: desvio-padrão; F1: primeiro formante; F2: segundo formante

Figura 1. Triângulo acústico-articulatório das vogais /a/, /i/ e /u/ do GE e GC

França et al. CoDAS 2019;31(6):e20180241 DOI: 10.1590/2317-1782/20192018241 4/7
DISCUSSÃO

Dentro da perspectiva da análise acústica e, principalmente, da relação entre a fonte glótica e o mecanismo de produção articulatoria da fala, este experimento busca investigar os aspectos acústico-articulatoriais entre mulheres com nódulos vocais e vocalmente saudáveis.

Os principais resultados dessa pesquisa corroboram os estudos que evidenciam o acoplamento fonte-filtro e a modificação na amplitude de movimentação e postura dos articuladores devido à alteração na fonte glótica. A partir da análise dos dados da Tabela 1, observa-se que os valores dos formantes em mulheres com nódulos vocais são menores, em comparação com as mulheres vocalmente saudáveis. Esses menores valores dos formantes em relação ao GE devem-se ao fato de que, possivelmente, há modificações na postura da mandíbula e, consequentemente, na posição de língua e faringe durante a produção da fala. Dessa forma, a presença de alteração vocal mostra-se propícia a provocar manifestações nos ajustes articulatoriais e, consequentemente, na configuração acústica das vogais durante a fala.

Mulheres com nódulos vocais produziram as vogais que necessitam de uma abertura máxima (/a/) e mínima da cavidade oral (/u/) com a postura da mandíbula um pouco mais elevada, uma vez que o valor de F1 está diretamente relacionado à postura da mandíbula na qualidade vocálica de um segmento. Com relação à postura de língua, mulheres com nódulos vocais apresentaram menor valor de F2, a principal medida acústica influenciada pela forma do corpo da língua. Sendo assim, há probabilidade de modificação no trato vocal devido à redução das frequências dos formantes, e como efeito tem-se uma alteração na qualidade do som, em relação às mulheres vocalmente saudáveis.

Em contraposição, um estudo evidencia que individuos com alteração na fonte glótica (paralisia unilateral de prega vocal) possuem maior valor de F2, o que poderia estar relacionado a uma posição mais anteriorizada da língua durante a produção das vogais. No entanto, os valores da frequência de F1 são mais elevados nesses indivíduos, com possível interferência na posição inferior da língua durante a fonação.

Portanto, o menor valor de F1 para as vogais /a/ e /u/ e de F2 da vogal /a/ no grupo de mulheres com nódulos vocais (Tabela 1) sugere uma posição de mandíbula e corpo de língua mais elevada e posteriorizada. Tais ajustes dos articuladores têm um efeito mais relacionado à epilaringe e região posterior da cavidade oral.

A epilaringe é a região responsável por iniciar as concentrações de energia no trato vocal. Ela está situada na porção estreita da faringe, imediatamente superior às prega vocais. A área da epilaringe forma um tubo de resonância com uma frequência entre 2500 a 3000 Hz, que coincide com o nível de frequência do segundo e terceiro formante. Desse modo, quando há presença de lesão laringea, a configuração desse tubo, razoavelmente uniforme, pode sofrer alterações nos picos de energia e ocasionar modificações nas frequências dos formantes.

Essas modificações dos articuladores podem ter ocorrido devido à tensão em região cervical e laringea, que pode causar elevação laringea, redução da abertura de boca e constrição da epilaringe. Os nódulos vocais são lesões de massa benigna das pregas vocais que podem interferir no fechamento da prega vocal, produzir vozes com tensão e aperfeiçoamento levemente acústico, o que justificaria essas modificações no posicionamento dos articuladores encontrados no presente estudo.

Com base nos dados da Tabela 2 e na apresentação da Figura 1, observa-se que há maior valor nos intervalos das vogais para F1 e F2 em mulheres vocalmente saudáveis. O triângulo acústico-articulatori de mulheres com nódulos vocais (Figura 1) apresenta-se menor em relação às mulheres vocalmente saudáveis.

O triângulo formado pelas frequências dos formantes das vogais, representado graficamente por meio de um diagrama F1/F2 tem a finalidade de avaliar o espaço da articulação das vogais. Um triângulo extenso representa maior amplitude de movimentação dos articuladores durante a produção das vogais. Em contrapartida, a redução do triângulo indica restrição na amplitude dos movimentos dos articuladores. De modo geral, as medidas relacionadas ao triângulo vocálico constituem-se em um dos marcadores de distintividade vocálica e inteligibilidade de fala. Um maior espaço vocálico é um dos indicadores de maior distintividade vocálica e maior inteligibilidade de fala.

Deve-se ressaltar que, embora falantes com “fala clara” apresentem um espaço vocal mais amplo, a relação oposta não é direta, visto que outros marcadores, como a presença de ruido na emissão, nasalidade excessiva ou intensidade reduzida, podem ser responsáveis pela redução da inteligibilidade de fala.

Possivelmente, mulheres com nódulos vocais apresentam menor amplitude de movimentação dos articuladores em relação às mulheres vocalmente saudáveis. Uma das hipóteses é de que essa diminuição de amplitude seja consequência do ajuste hiperfuncional ocasionado pela alteração laringea. Alguns autores referem que a diminuição nos intervalos de F1 e F2 das vogais altas e baixas constitui um dos fatores para redução da inteligibilidade de fala.

Um estudo encontrou menores espaços entre vogais em crianças com paralisia cerebral, em comparação às crianças com desenvolvimento típico em ambos os contextos de palavras e frases. No entanto, as variações do segundo formante não diferiram entre grupos em contextos de palavras ou frases, porém apresentavam menores valores menores em palavras simples, com contextos fonéticos que requerem grandes mudanças na configuração do trato vocal.

Geralmente, o intervalo de F2 das vogais que se localizam na extremidades do triângulo vocálico em falantes com implante coclear é mais divergente e inferior aos de falantes com audição normal, resultando em espaço de vogais horizontalmente comprimidos. Da mesma forma, outro estudo evidenciou que o espaço das vogais é mais comprimido em grupos de indivíduos com implante coclear do que no grupo com audição normal. Em ambos os estudos, a redução do espaço vocálico diminuiu a inteligibilidade de fala dos indivíduos.

Outros autores afirmam que o impacto de um transtorno de voz pode se estender para além da laringe. Há redução de F1 e F2 das vogais de mulheres com disfonia por tensão muscular após a realização de massagem manual laringea. Esse
fato pode estar relacionado a um melhor fechamento glótico e menor compressão supraglótica(21).

Dessa forma, possivelmente, alterações nas fonte glótica contribuíram para o desenvolvimento de ajustes compensatórios em nível supraglótico, com modificação da configuração do trato vocal e, consequentemente, interferência nos padrões de frequência de formantes no trato vocal(30).

De modo geral, este estudo apresentou alguns insights exploratórios no campo da análise acústica-articulatória, no que se refere aos estudos que utilizam o acoplamento de fonte-filtro para compreender melhor os distúrbios laringeos e os ajustes supraglóticos na produção vocal.

Uma das limitações do presente estudo consiste no número de amostras avaliadas por participante (apenas uma para cada vogal). Esse número reduzido permite apenas realizar inferências sobre o comportamento da produção vocalica nos grupos estudados, mas não é suficiente para afirmar categoricamente que há redução do espaço vocalico. Para tanto, necessitariamos de um maior número de repetições por sujeito, a utilização das vogais em diferentes tarefas de fala e o monitoramento do espaço vocalico desses indivíduos pré e pós reabilitação vocal.

Os resultados desta pesquisa e essas questões metodológicas citadas acima sugerem que novos estudos sejam realizados para ampliar a compreensão da redução de amplitude de movimentação dos articuladores em indivíduos disfônicos. Deve-se considerar que o estudo foi realizado apenas com mulheres, logo se faz necessário um estudo comparativo entre homens e mulheres utilizando essas e outras medidas tradicionais e acústicas.

CONCLUSÃO

Mulheres com nódulos vocais apresentam menores valores de F1 e F2 para vogais orais /a/, /i/ e /u/, em relação a mulheres vocalmente saudáveis. Além disso, mulheres com nódulos vocais possuem menor amplitude de movimentação dos articuladores, com espaço vocalico reduzido em relação às mulheres vocalmente saudáveis.

REFERÊNCIAS

1. Marçal CC, Peres MA. Self-reported voice problems among teachers: prevalence and associated factors. Rev Saude Publica. 2011;45(3):50311. PMid:2159720.
2. Rodríguez-Parra MJ, Adrián JA, Casado JC. Comparing voice-therapy and vocal-hygiene treatments in dysphonia using a limited multidimensional evaluation protocol. J Commun Disord. 2011;44(6):615-30. http://dx.doi.org/10.1016/j.jcomdis.2011.07.003. PMid:21880326.
3. Ali Z, Elamvazuthi I, Alsulaiman M, Muhammad G. Detection of voice pathology using fractal dimension in a multiresolution analysis of normal and disordered speech signals. J Med Syst. 2016;40(1):20. http://dx.doi.org/10.1007/s10916-015-0392-2. PMid:26513753.
4. Jesus LMT, Martinez J, Hall A, Ferreira A. Acoustic correlates of compensatory adjustments to the glottic and supraglottic structures in patients with unilateral vocal fold paralysis. BioMed Res Int. 2015;2015:704121. http://dx.doi.org/10.1155/2015/704121. PMid:26557690.
5. Ishikawa K, Boyce S, Kelchner L, Powell MG, Schieve H, de Alarcon A, et al. The effect of background noise on intelligibility of dysphonic speech. Speech Lang Hear Res. 2017;60(7):1919-29. http://dx.doi.org/10.1044/2017_JSLHR-S-16-0012.
6. Evitts PM, Sturmer H, Teets K, Montgomery C, Calhoun L, Schulze A, et al. The impact of dysphonic voices on healthy listeners: listener reaction times, speech intelligibility, and listener comprehension. Am J Speech Lang Pathol. 2016;25(4):561-75. http://dx.doi.org/10.1044/2016_ASLP-14-0183. PMid:27784031.
7. Maxfield L, Palaparthi A, Titze I. New evidence that nonlinear source-filter coupling affects harmonic intensity and f0 stability during instances of harmonics crossing formants. J Voice. 2017;31(2):149-56. http://dx.doi.org/10.1016/j.jvoice.2016.04.010.
8. Pisanski K, Cartei V, Megettitcan G, Raine J, Reby D. Voice modulation: a window into the origins of human vocal control? Tendências Cogn Sci. 2016;20(4):304-18. http://dx.doi.org/10.1016/j.tics.2016.01.002. PMid:26857619.
9. Camargo ZA, Madureira S. Avaliação vocal sob a perspectiva fonética: investigação preliminar. Distúrb Comun. 2008;20(1):77-96.
10. Barbosa PA, Madureira S. Manual de fonética acústica experimental: aplicações a dados do português. São Paulo: Cortez editora; 2015.
11. Soares MFP. Estratégias de produção de vogais e fricativas: análise acústica da fala de sujeitos portadores de doença de Parkinson [tese]. Campinas (SP): Universidade Estadual de Campinas; 2009. 163 p.
12. Gonçalves MIR, Pontes PAL, Vieira VP, Pontes AAL, Curcio D, Biase NG. Função de transferência das vogais orais do Português brasileiro: análise acústica comparativa. Rev Bras Otorrinolaringol. 2018;73(4):460-472. https://doi.org/10.1016/j.jbril.2017.05.012.
13. Lu D, Chen F, Yang H, Yu R, Zhou Q, Zhang X, Ren J, Zheng Y, Zhang X, Zou J, Wang H, Liu J. Changes after voice therapy in acoustic voice analysis of chinese patients with voice disorders. J Voice. 2018;32(3):386. e1-386.e9. https://doi.org/10.1016/j.jvoice.2017.05.005.
14. Dargin TC, Searl J. Semi-occluded vocal tract exercises: aerodynamic and electroglottographic measurements in singers. J Voice. 2015;29(2):155-64. http://dx.doi.org/10.1016/j.jvoice.2014.05.009. PMid:25261954.
15. Yamasaki R, Murano EZ, Gebrim E, Hachiya A, Montagnoli A, Behlau M, et al. Vocal tract adjustments of dysphonic and non-dysphonic women pre- and post-flexible resonance tube in water exercise: a quantitative mri study. J Voice. 2016;31(4):442-54. http://dx.doi.org/10.1016/j.jvoice.2016.01.015. PMid:28017460.
16. Lopes LW, Freitas JA, Almeida AA, Silva GADS. Performance of the phonatory deviation diagram in the evaluation of rough and breathy synthesized voices. Braz J Otorhinolaryngol. 2018;84(4):460-472. https://doi.org/10.1016/j.jbril.2017.05.012.
17. Gama ACC, Behlau MS. Estudo da constância de medidas acústicas de vogais prolongadas e consecutivas em mulheres sem queixa de voz e em mulheres com disfonia. Rev Soc Bras Fonoaudiol. 2009;14(1):8-14. http://dx.doi.org/10.1590/S1516-80342009000100004.
18. Kara M, Örtürk K, Özer B. An evaluation of the effects of adenoidectomy on voice and speech function in children. Kalak Burun Bogaz Iltis Derg. 2013,23(4):225-31. http://dx.doi.org/10.5066/kbbhtisatis.2009476. PMid:23834133.
19. Suzart DD, Carvalho ARR. Alterações de falal relacionadas às alterações do frênulo linguai em escolares. Rev CEFAC. 2018;16(8):1332-9.http://dx.doi.org/10.1590/1982-0216201618621715.
20. Verhoeven J, Hide O, De Maeyer S, Gillis S, Gillis S. Hearing impairment and vowel production. A comparison between normally hearing, hearing-aided and cochlear implanted Dutch children. J Commun Disord. 2016;59:24-39. http://dx.doi.org/10.1016/j.jcomdis.2015.10.007. PMid:26629749.
21. Dromey C, Nissen SL, Roy N, Merrill RM. Articulatory changes following treatment of muscle tension dysphonia: preliminary acoustic evidence. J Speech Lang Hear Res. 2008;51(1):196-208. http://dx.doi.org/10.1044/1092-4388(2008/015). PMid:18208866.
22. Lee JW, Kang HG, Choi JY, Son YI. An investigation of vocal tract characteristics for acoustic discrimination of pathological voices. BioMed Res Int. 2013;2013:758731. http://dx.doi.org/10.1155/2013/758731. PMid:24288686.
23. Titze IR. Voice training and therapy with a semi-occluded vocal tract: rationale and scientific underpinnings. J Speech Lang Hear Res. 2006;49(2):448-59. http://dx.doi.org/10.1044/1092-4388(2006/035). PMid:16671856.
24. Nalesso KS. Efeito terapêutico do uso exclusivo do tubo deressonância flexível na região glótica e no trato vocal supraglótico [dissertação]. Campinas: Faculdade de Ciências Médicas, Universidade Estadual de Campinas; 2015. 70 p.

25. Jiang JJ, Zhang Y, Maccallum J, Sprecher A, Zhou L. Objective acoustic analysis of pathological voices from patients with vocal nodules and polyps. Folia Phoniatri Logop. 2009;61(6):342-9. http://dx.doi.org/10.1159/000252851. PMid:19864916.

26. Hocevar-boltezar I, Boltezar M, Zargi M. The influence of cochlear implantation on vowel articulation. J Acoust Soc Am. 2008;123(6):4466-81. PMid:18537397.

27. Ferguson SH, Kewley-port D. Talker differences in clear and conversational speech: acoustic characteristics of vowels. J Speech Lang Hear Res. 2007;50(5):1241-55. http://dx.doi.org/10.1044/1092-4388(2007/087). PMid:17905909.

28. Allison KM, Annear L, Policicchio M, Hustad KC. Range and precision of formant movement in pediatric dysarthria. J Speech Lang Hear Res. 2017;60(7):1864-76. http://dx.doi.org/10.1044/2017_JSLHR-S-15-0438. PMid:28655064.

29. Hung YC, Lee YJ, Tsai LC. Vowel production of mandarin-speaking hearing aid users with different types of hearing loss. PLoS One. 2017;12(6):e0178588. http://dx.doi.org/10.1371/journal.pone.0178588. PMid:28575087.

30. França FP, Evangelista DS, Lopes LW. Revisão sistemática sobre os formantes e a produção da voz e fala. Revista Prolíngua. 2017;12(1):2-16.

Contribuição dos autores

FPF, LWL e AAA ajudaram a construir e desenvolver o trabalho. Destaca-se que FPF envolveu-se particularmente na coleta, tabulação, interpretação dos dados e redação do artigo; LWL participou do delineamento do estudo, orientação e redação final do artigo; AAA participou da revisão e redação final do artigo.