Biostatistical Issues in the Design and Analysis of Animal Carcinogenicity Experiments

by Christopher J. Portier

Two-year animal carcinogenicity experiments are used to evaluate the potential carcinogenicity from exposure to chemicals. The choice of exposure levels, the allocation of animals to doses, the length of exposure, and the choice of interim sacrifice times all affect the power of statistical tests for carcinogenic effects and the variance of interpolated estimates of carcinogenic risk. In this paper, one aspect of this problem is considered: the ability of tumor incidence data to provide information on carcinogenic mechanism and the optimal choice of design parameters with which to achieve this purpose. The direct application of biochemical data to the estimation of carcinogenic risk is also discussed in detail.

Simple Stage Model

The mechanism by which chemicals induce carcinogenic response in test animals can be an important factor in estimating the potential carcinogenic risk resulting from human exposure. The primary method used by U.S. regulatory agencies has been to estimate cancer risks using data from 2-year animal experiments and conservative models for estimating low-dose risks. However, there has been increasing pressure on these agencies to use mechanistic models for the estimation of carcinogenic risks. Among the potential models for use, the multistage models of cancer (1–3) that include clonal expansion of cells in the various stages of carcinogenesis have received the most attention. Several authors have suggested the use of one specific form of this class of models, a simple two-stage model of carcinogenesis used extensively by Moolgavkar and co-workers (4,5) and Cohen and co-workers (6–8). Figure 1 illustrates this model. Basically, normal cells are transformed (via mutation) into premalignant or initiated cells. These initiated cells proliferate or die out via a simple birth–death process. They can also undergo a second transformation that results in a malignant cell and may eventually grow into a tumor.

The shape of the dose–response curve for carcinogenesis has a significant impact on low-dose estimates of carcinogenic risks. Models for which the slope of the dose–response curve is positive and finite at dose zero are referred to as “low-dose linear” models. For these models, small changes of dose in the low-dose range would result in proportional increases in the probability of cancer. Models for which the slope of the dose–response curve is zero or negative in the low-dose range are referred to as “nonlinear” models. For these models, a small increase in dose in the low-dose range will result in almost no change in the risk of cancer. It has been shown that the usual animal carcinogenicity experiment provides very little information on dose–response shape and that models that yield widely divergent low-dose risks will adequately fit most data.

Portier and Edler (9) considered the ability of tumor incidence data to differentiate between various mechanisms of carcinogenesis within the context of the two-stage model (Fig. 1). Using suggestions of others (10,11), they classified carcinogenic effects into three basic classes depending upon how the dose effect is incorporated into the model. “Initiators” are defined as those carcinogens that alter the rate at which cells move from the normal state to the initiated state (µ1 in Fig. 1). “Promoters” are thought to be chemicals that act directly on the birth rate of initiated cells (β) by clonally expanding the numbers of these cells. The final mechanistic class used by Portier and Edler was labeled “completer.” These are chemicals that affect the rate at which initiated cells are transformed into malignant cells, thus completing the carcinogenic process.

These mechanistic labels for carcinogenic action are basically derived from a type of carcinogenesis experiment known as the initiation–promotion–initiation (IPI) experiment. In these IPI experiments, a single dose of an initiator is given to the test animals at the start of the experiment. This is followed by chronic exposure to a promoter and, after some time, the application of another initiator. The order in which the chemicals are given is

National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709.

This paper was presented at the International Biostatistics Conference on the Study of Toxicology, May 13–25, 1991, in Tokyo, Japan.

FIGURE 1. A simple two-stage model of carcinogenesis.
crucial to the rate of tumor formation. That is, if the promoter is
given first, followed by the initiator, very few, if any, tumors are
formed. It is thought that the initiator interacts with the DNA of
normal cells causing mutations which somehow predispose these
mutated cells to carcinogenesis. The promoter is thought to in-
crease the clonal growth of only the initiated cell, allowing the
numbers of these cells to increase rapidly relative to the normal
cells. Finally, the second initiator (or completer) completes the
carcinogenic process by causing a second mutation in the ini-
tiated cell, which results in the formation of tumors.

In an attempt to improve the estimation of low-dose risks, it has
been proposed that mechanistic models of carcinogenesis be used
in the risk assessment process. The advantage of mechanistic
models of carcinogenesis over more empirical models is that it
is believed that different carcinogenic mechanisms will result in
different dose–response shapes. From the discussion above, if
this is true, then information on the mechanism of action of a car-
cinogenic substance will result in improved low-dose risk
estimates. For example, it is widely held that chemically induced
mutations of the type resulting from initiators and completers are
low-dose linear (10,11). The mechanisms that lead to chemically
induced promotion are thought to be nonlinear. These theories
are highly speculative (12); yet, we can look at the operating
characteristics of applying them to see if further research into
their use is warranted on statistical grounds.

In their analysis, Portier and Edler (9) were able to show that
the usual design of the animal carcinogenesis experiment provid-
ed little information that could be used to differentiate between
linear initiation/completion effects and nonlinear promotion ef-
fects. Their basic approach was as follows. Control rates for the
baseline (untreated) parameters in the two-stage model were
chosen using historical information on a large population of con-
trol animals (13). Various levels of dose effects (low tumor yield
to high tumor yield) were determined for each set of parameters
for each potential mechanism (initiation, promotion, and com-
pletion). Given one such hypothesized model, they then simu-
lated the results of an animal carcinogenicity experiment based
on a particular choice of design parameters. These design
parameters included the standard design (no interim sacrifices,
three dosed groups and a control group, 50 animals per group,
doses in the relative magnitude of 0, 0.25, 0.5 and 1) and eight
other designs that added start/stop dosing and interim sacrifices.
For each simulated data set, parameters for four two-stage
models (the four two-stage models fit to the data included a
model where the effect of dose was an initiation effect, a model
for which the effect of dose was a completion effect, a model for
which the effect of dose was a promotion effect, and a global
model which allowed for all three types of effects) were estimated
based on maximum likelihood estimation. Likelihood ratio
techniques were used to determine how often each of the three
singular-effect models (initiation only, promotion only, and com-
pletion only) described the data as well as the model that allowed
for all three effects. Under this modeling scheme, they were then
able to study the effect of changing the design of the carcino-
genic experiment on the rate of rejection of the various models.

Under the usual design of animal carcinogenicity experiments,
it was generally found that all of the models fit the data well,
regardless of the underlying model. When data were generated
assuming a linear initiation-only effect, the initiation model and
the completion model provided as good a fit as the global model
in virtually all cases (>99% of the time). All three models were
accepted in 85–95% of the cases studied (depending on the
magnitude of the assumed dose effect). When a linear comple-
tion effect was assumed, similar results were obtained. If the
completion effect was assumed to be a function of dose squared
(quadratic completion model), approximately 98% of the cases
were adequately fit by either a linear initiation model or a
quadratic completion model and 74–93% of the cases studied
were fit by all three models.

For promotion effects, Portier and Edler (13) considered dose
effects on the birth rate of initiated cells that were functions of
dose raised to the first power (linear promoter model) up through
the fourth power (quartic promoter model), resulting in four
basic models. When the assumed model was based upon a linear
promotion effect, all three models (linear initiator, linear com-
pleter, and linear promoter) fit the data in approximately 95% of
the cases studied. As the shape of the dose effect became more
nonlinear, it was possible to reject the linear initiation model and
the linear completion model with greater power. For a quartic
promotion model, the initiation and completion models could be
rejected in 15–50% of the cases studied, whereas the promotion
model was accepted in about 95% of the cases. Thus, only for a
highly nonlinear promotion effect was there any strong degree
of differentiation between these models when the usual design
of the long-term animal carcinogenicity experiment was used.

Based on these results, Portier and Edler (13) considered
several alternative designs. When the underlying model was bas-
ed on a linear initiation effect, there was a slight improvement
in the probability of rejecting the promotion model; going from 4
to 12% in the usual design to 5 to 26% in the start–stop designs.
The ability to reject the completion model did not change
noticeably when the start–stop designs were used. When the
underlying model was a linear completion model, the results
were similar to the initiation model. For an underlying quadratic
completion model, it was more difficult to reject the promotion
model and easier to reject the initiation model. However, these
differences were small. Finally, for underlying promotion
models, the use of start studies reduced the percentage of times
we could reject the initiation model or the completion model
when compared to the usual bioassay design. This is due to the
fact that fewer doses were used (in favor of equal doses over vary-
ing time spans) and that both magnitude of dose and length of
dosing play an important role in differentiating between in-
itiators/completers and promoters.

The results of this research suggest that differentiation between
initiation and completion is best accomplished with start–stop
dosing experiments; that the rejection of a promotion model
when the dose effect in the underlying model is an initiation ef-
fect or a completion effect is improved by using an early
exposure–stop exposure group in the experiment; and that if the
underlying model is a nonlinear promotion model, it is better to
use multiple doses than start–stop dosing at similar levels of ex-
posure. Finally, it was found that all the designs were generally
poor for distinguishing mechanism.

Damage-Fixation Multistage Model

After reviewing the results of these experiments, it was clear
that tumor incidence data could not be reliably used to determine
Figure 2. A two-stage model of carcinogenesis (damage-fixation multistage model) that incorporates damage and repair.

how treatment affects mutation rates and birth/death rates in multistage models of carcinogenesis. One way out of this dilemma is to use other toxicological data such as the size and number of initiated cells [14]. However, current research is focusing on the use of direct mechanistic information on the carcinogenicity of a compound to estimate the tumor incidence rate and then to use the tumorigenesis data from the animal carcinogenicity experiment to validate the model. To be able to do this, a slightly different model of carcinogenesis is needed. It has been noted that a mutation is itself the result of a process that involves at least two steps. In the first step, damage must occur. For a mutation to occur, this damage must then be fixed by replication of the damaged cell. It is also clear that this damage may not persist forever but may be repaired via numerous mechanisms in the cell. Thus, several events are competing or combining to result in a single mutation. The model presented in Figure 1 does not explicitly account for this more detailed mutation process.

The model of carcinogenesis illustrated in Figure 2 is also a two-stage model of carcinogenesis with clonal expansion of all cell types. This model is referred to [15,16] as the damage-fixation multistage model (DFM). The model has five cell types: normal cells, two types of damaged cells and two types of mutated cells in which the DNA damage has been fixed by cell replication. For a cell to become malignant, it must pass through the normal state through each of the mutational states. The dynamics of the model can be illustrated as follows. Normal cells are allowed to divide and die or differentiate. Normal cells transform into damaged cells via some type of genetic aberration (e.g., formation of DNA adducts, single-strand breaks, chromosomal translocation). The genetic aberrations in these damaged cells are assumed to pertain to a single strand and can be repaired, returning the cell to its normal state. When cell division occurs in these unrepaired cells, the DNA damage is fixed in one of the daughter cells resulting in the creation of a single mutated cell. The other daughter cell is derived from the strand of DNA without damage and is thus a normal cell. The process of damage, repair, birth, and death is repeated in the second stage.

The DFM model allows for the direct inclusion of biochemical data into an analysis of carcinogenic mechanism and the estimation of carcinogenic risk. These data include the rate of formation of DNA adducts (DNA damage), the rate of DNA repair, and the rate of cell replication and death. First consider the rate of DNA damage. For example, it has been demonstrated that administration of 3 nmole of 7,12-dimethylbenz[a]anthracene (DMBA) to Swiss mice results in a binding of 1 nmole of DMBA per mole of DNA-P 24 hr after exposure. If this damage is critical to the conversion of normal cells into first stage cells, then these data can be incorporated into the model directly by setting \(\mu_0 \) equal to the rate of binding per unit time (being certain to express this rate in the proper units of rate of damage per cell per unit of time). However, it is more likely that some specific type of damage is inducing the mutation. In this case, the relative change in the nonspecific damage as a function of dose can be used as a surrogate for the relative change in the specific binding. In the example above, a dose of DMBA of 150 nmole resulted in a binding of 14 nmole of DMBA per mole of DNA-P 24 hr after exposure (i.e., a 50-fold increase in dose of DMBA resulted in a 14-fold increase in binding). Thus, even though the specific adduct that induces the mutation is unknown, a 14-fold increase in the specific adduct which induces the mutation could be assumed when going from a dose of 3 nmole to 150 nmole of DMBA.

Estimates of the repair rates for DNA damage can be obtained in similar ways. The most obvious method is to directly measure the activity of proteins involved in the DNA repair process such as O6-alkylguanine-DNA alkyltransferase. However, like nonspecific versus specific DNA damage, the specific repair mechanism is generally unknown, and so the proteins involved in its repair are also unknown. One way to avoid this would be to obtain the DNA damage rate from biochemical experiments using simple compartment models and estimate the repair rate from data on tumor incidence or data on the size distribution of cells in each stage. This approach is likely to lead to statistical dependencies in the estimated parameters and large uncertainty in the estimated tumor damage at several different time points following exposure. In this case, the differences over time in the amount of DNA damage should yield an estimate of the repair rate. This method is preferable to using tumor incidence data or cell count data because the estimate of the repair rate would come directly from data on DNA damage and would not be dependent on the applicability of the model. A third method for estimating DNA repair would be to see how much of the damage could be fixed at different times following exposure to the compound. For example, in the two-stage experimental protocol described above, waiting varying lengths of times from initiation to the start of promotion allows for a longer period of DNA repair and the level of DNA repair can be estimated.

There are also a variety of ways in which cell replication rates can be measured in animal tissues. These methods are very direct in the sense that, in a fixed period of time, they label all cells that have undergone replication. These techniques can even be used with other cellular techniques such as staining for enzyme alteration. In this case, it is possible to directly measure the rate of cell replication in normal cells, in initiated cells (provided a probe exists for stained cells or in some other way labeling them), and in malignant cells. The technology for the direct estimation of cell death/differentiation rates are currently being developed. As these become available, they can be directly incorporated into the DFM model. Until then, information on the size distribution and number of initiated cells can be used to estimate this parameter.

The approach of estimating these parameters from data other than tumor incidence data is illustrated in Portier and Kopp-Schneider [15] and Kopp-Schneider et al. [16].

Discussion

This paper has reviewed some of the problems concerning the characterization of mechanistic models of carcinogenesis using
tumorigenesis data. On strictly statistical terms, it was shown that the usual two-year rodent carcinogenicity experiment does not provide sufficient information to be able to differentiate between some basic mechanistic models of carcinogenesis. Modification of the bioassay design to include time-varying doses did not dramatically improve this problem.

A two-stage model of carcinogenesis that allows for the direct inclusion of biochemical data into the estimation of carcinogenic risks was reviewed. This approach has the advantage that the tumor incidence data from the long-term animal carcinogenesis experiment and/or the cell-kinetic information on cells in the different stages can be used to validate the model. However, there are numerous problems with the use of this modeling approach for risk estimation. It is imperative that an attempt is made to validate the model predictions using the available toxicological data (e.g., tumor incidence data from carcinogenicity experiments, papilloma counts from skin painting studies, etc.). This validation needs to be done with extreme caution because goodness-of-fit tests that would be used in this context are generally insensitive to moderate changes in the model parameters or even slightly different models. Not only are there statistical problems with this approach, but there are inadequacies in the biological description of DNA damage and repair in the DFM model. The DNA of a cell can be damaged in many places in many different ways; it may be that cells with multiple DNA damage are more (or less) susceptible to replication and/or mutation than are cells with little DNA damage. The model presented here assumes that DNA damage is either present or not, thus using only partial information concerning the process. The rate of DNA repair in any one cell is likely to be tied to the amount of damage in that one cell, a concept that is not allowed in the current model formulation. Other issues such as strand-specific DNA repair, preferential DNA repair, and DNA hot spots will also limit the usefulness of models of this type. Cell replication rates must also be applied cautiously; if the increased cell replication only pertains to a small fraction of the total tissue, this must be accounted for. Finally, all of these rates may change with age as well as dose, thus the experiments in which these biochemical parameters are obtained must include several ages as well as several doses.

REFERENCES

1. Armitage, P., and Doll, R. The age distribution of cancer and a multistage theory of cancer. Br. J. Cancer 8: 1–12 (1954).
2. Neyman, J. and Scott, E. Statistical aspects of the problem of carcinogenesis. In: Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, 1967, pp. 745–776.
3. Whitemore, A., and Keller, J. Quantitative theories of carcinogenesis. SIAM Rev. 20: 1–20 (1978).
4. Moolgavkar, S., and Venzon, D. Two-event models for carcinogenesis: incidence curves for childhood and adult tumors. Math. Biosci. 47:55–77 (1979).
5. Moolgavkar, S., and Knudson, A. Mutation and cancer: a model for human carcinogenesis. J. Nat. Cancer Inst. 66:1037–1052 (1981).
6. Cohen, S., and Ellwein, L. Cell proliferation in carcinogenesis. Science 249: 1007–1011 (1990).
7. Elwein, L., and Cohen, S. A cellular dynamics model of experimental bladder cancer: analysis of the effect of sodium saccharin in the rat. Risk Anal. 8: 215–221 (1988).
8. Greenfield, R., Ellwein, L., and Cohen, S. A general probabilistic model of carcinogenesis: analysis of experimental urinary bladder cancer. Carcinogenesis 5:437–445 (1984).
9. Portier, C., and Elder, L. Two-stage models of carcinogenesis, classification of agents and design of experiments. Fundam. Appl. Toxicol. 14: 444–460 (1990).
10. Thorland, T., Brown, C., and Charnley, G. Biologically motivated cancer risk models. Risk Anal. 7: 109–119 (1987).
11. Moolgavkar, S. Model for human carcinogenesis: action of environmental agents. Environ. Health Perspect. 50: 285–291 (1983).
12. Barrett, J. C., and Wiseman, R. Cellular and molecular mechanisms of multistep carcinogenesis: relevance to carcinogen risk assessment. Environ. Health Perspect. 76: 65–70 (1987).
13. Portier, C., and Bailar, A. Two-stage models of carcinogenesis for historical control animals from the National Toxicology Program. J. Toxicol. Environ. Health 27: 21–45 (1989).
14. Moolgavkar, S., Luebeck, E. G., de Gunst, M., Port, R. and Schwartz, M. Quantitative analysis of enzyme-altered foci in rat hepatocarcinogenesis experiments. I: Single agent regimen. Carcinogenesis 11: 1271–1278 (1990).
15. Portier, C., and Kopp-Schneider, A. A multistage model of carcinogenesis incorporating DNA damage and repair. Risk Anal. 11: 535–543 (1991).
16. Kopp-Schneider, A., Portier, C. J., and Rippman, F. The number and size of detectable clones of initiated cells in a damage-fixation model in initiation/promotion experiments. Math. Biosci. 105: 139–166 (1991).
17. Portier, C., and Kaplan, N. The variability of safe dose estimates when using complicated models of the carcinogenic process: a case study: methylene chloride. Fundam. Appl. Toxicol. 13: 533–544 (1989).