Optimality conditions for an exhausterable function on an exhausterable set

Majid E. Abbasov

Received: 8 June 2019 / Accepted: 15 November 2019 / Published online: 21 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Exhausters are families of convex compact sets that allow one to represent directional derivative of the studied function at a point in the form of InfMax or SupMin of linear functions. Functions for which such a representation is valid we call exhausterable. This class of functions is quite wide and contains many nonsmooth ones. The set of exhausterable function is also called exhausterable. In the present paper we describe optimality conditions for an exhausterable function on an exhausterable set. These conditions can be used for solving many nondifferentiable optimization problems. An example that illustrate obtained results is provided.

Keywords
Exhausters · Nonsmooth analysis · Nondifferentiable optimization · Constrained optimization · Optimality conditions

Mathematics Subject Classification
49J52 · 90C46 · 90C47

1 Introduction
Directionally differentiable functions form a wide and important class of nonsmooth functions. It includes convex functions, maximum and minimum functions and others.

Subdifferential notion [1] can be used effectively for working with directional derivatives and therefore for solving convex nonsmooth optimization problems. Researchers tried to develop approaches also for nonconvex problems. The most known tools are subdifferentials of Clarke [2], Mordukhovich [3], Michel–Penot [4,5] and others. More details can be found in the recent book by Mordukhovich [6]. The concept of exhausters holds a special place in this series due to its constructiveness.

The idea of exhausters notion goes back to the works of Pshenichny, Rubinov and Demyanov. Pshenichny [7] introduced the definition of upper convex approximation. Demyanov and Rubinov [8,9] proposed to consider exhaustive families of upper convex and lower concave approximations, and then introduced exhauster notion [10,11].
Exhausters are families of convex compact sets that allow one to represent the directional derivative of the studied function in the form of InfMax or SupMin of linear functions. Therefore they provide the same representation for the approximation of a studied function in the neighborhood of a point. Functions for which such an expansion is valid we call exhausterable.

Calculus of exhausters was established in [11]. Formulas of this calculus allow one to build exhausters for a wide class of functions. Optimality conditions for unconstrained case in terms of these families were derived in [11–14]. Optimality conditions for constrained case for an exhausterable function were obtained in [15].

In the present work we study constrained optimality conditions for exhausterable function on a set which is defined via another exhausterable function. We get new optimality conditions in terms of exhausters of these two functions.

The paper is organized as follows. In Sect. 2 we discuss directional derivative and exhausters notions. In Sect. 3 we consider the statement of the problem and conic approximations of a feasible set. Optimality conditions for an exhausterable function on an exhausterable set are given in Sect. 4. An illustrative example is provided in Sect. 5.

2 Dini and Hadamard directional derivatives: exhausters

Let a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is given. The function \(f \) is called Dini-differentiable at a point \(x \in \mathbb{R}^n \) in a direction \(g \in \mathbb{R}^n \), if there exists the finite limit

\[
f'_D(x, g) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha g) - f(x)}{\alpha}.
\]

The function \(f \) is called Hadamard-differentiable at a point \(x \in \mathbb{R}^n \) in a direction \(g \in \mathbb{R}^n \), if there exists the finite limit

\[
f'_H(x, g) = \lim_{[\alpha, g'] \to [0, g]} \frac{f(x + \alpha g') - f(x)}{\alpha}.
\]

The value \(f'_D(x, g) \) is called the Dini derivative of the function \(f \) at the point \(x \in \mathbb{R}^n \) in the direction \(g \in \mathbb{R}^n \), and the value \(f'_H(x, g) \) is called the Hadamard derivative of the function \(f \) at the point \(x \in \mathbb{R}^n \) in the direction \(g \in \mathbb{R}^n \). The functions \(f'_D(x, g) \) and \(f'_H(x, g) \) are positively homogeneous (p.h.) as functions of direction \(g \in \mathbb{R}^n \). It is clear that differentiability in the sense of Hadamard implies differentiability in the sense of Dini. The converse is not true.

Let \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) be a directionally differentiable (in the sense of Dini or Hadamard) function and \(h(g) = f'(x, g) \) the corresponding derivative of the function \(f \) at a point \(x \) in a direction \(g \). Fix \(x \in \mathbb{R}^n \). In case when \(h(g) \) is upper semicontinuous as a function of \(g \) it can be written in the form (see [8])

\[
h(g) = \inf_{C \in E^*} \max_{v \in C} \langle v, g \rangle,
\]

where \(E^* = E^*(x) \) is a family of convex, closed and bounded sets from \(\mathbb{R}^n \).

If \(h(g) = f'(x, g) \) is lower semicontinuous as a function of \(g \), then it can be expressed as

\[
h(g) = \sup_{C \in E_*} \min_{w \in C} \langle w, g \rangle,
\]

where \(E_* = E_*(x) \) is a family of convex, closed and bounded sets from \(\mathbb{R}^n \).
The family of sets E^* is called an upper exhauster of the function f at the point x (respectively, in the sense of Dini or Hadamard), while the family E_* is called a lower exhauster of the function f at the point x (respectively, in the sense of Dini or Hadamard).

It is obvious that an exhauster of the function f at the point x is also the exhauster of the function $h(g)$ at the origin.

In case when h is continuous at g, then the both representations (1) and (2) are true. In [16] it was shown that if h is Lipschitz then this function can be written in both forms

$$h(g) = h_1(g) = \min_{C \in E^*} \max_{v \in C} \langle v, g \rangle \quad \forall g \in \mathbb{R}^n,$$

(3)

and

$$h(g) = h_2(g) = \max_{C \in E_*} \min_{w \in C} \langle v, g \rangle \quad \forall g \in \mathbb{R}^n,$$

(4)

where the families of sets E^* and E_* are totally bounded. Recall that a family of sets E is totally bounded if there exists a ball B in \mathbb{R}^n such that $C \subset B \quad \forall C \in E$.

The functions h_1 and h_2 give p.h. approximations of the increment of the function f in a neighborhood of the point x. In what follows we will deal with representations (3) and (4).

Exhausters were introduced in [10,11]. This notion brought attention of many researchers [17–23]. It turned out that unconstrained optimality conditions for the minimum most naturally can be expressed in terms of upper exhausters (see [11,24,25]). Therefore an upper exhauster was called proper for the minimization problem and adjoint for the maximization one.

Theorem 1 If a function $f(x)$ attains a local minimum at a point x^* and an upper exhauster E^* (in the sense of Dini or Hadamard) of the function $f(x)$ at the point x^* is known, then

$$h(g) = f'(x^*, g) = \min_{C \in E^*} \max_{v \in C} \langle v, g \rangle \geq 0 \quad \forall g \in \mathbb{R}^n,$$

what is equivalent to the condition

$$0_n \in C \quad \forall C \in E^*.$$

Theorem 2 If a function $f(x)$ attains a local maximum at a point x^* and an upper exhauster E^* (in the sense of Dini or Hadamard) of the function $f(x)$ at the point x^* is known, then

$$h(g) = f'(x^*, g) = \min_{C \in E^*} \max_{v \in C} \langle v, g \rangle \leq 0 \quad \forall g \in \mathbb{R}^n,$$

what is equivalent to the condition that for every $g \in \mathbb{R}^n$ there exists a set $C(g) \in E^*$ such that

$$\langle v, g \rangle \geq 0 \quad \forall v \in C(g).$$

A similar approach can be applied to lower exhausters. This family was called proper for the maximization problem and adjoint for the minimization one.

Theorem 3 If a function $f(x)$ attains a local maximum at a point x^* and a lower exhauster E_* (in the sense of Dini or Hadamard) of the function $f(x)$ at the point x^* is known, then

$$h(g) = f'(x^*, g) = \max_{C \in E_*} \min_{v \in C} \langle v, g \rangle \leq 0 \quad \forall g \in \mathbb{R}^n,$$
is equivalent to the condition

\[0_n \in C \quad \forall \ C \in E_\ast. \]

Theorem 4 If a function \(f(x) \) attains a local minimum at a point \(x_\ast \) and a lower exhauster \(E_\ast \) (in the sense of Dini or Hadamard) of the function \(f(x) \) at the point \(x_\ast \) is known, then

\[h(g) = f'(x_\ast, g) = \max_{C \in E_\ast} \min_{v \in C} \langle v, g \rangle \geq 0 \quad \forall g \in \mathbb{R}^n, \]

what is equivalent to the condition that for every \(g \in \mathbb{R}^n \) there exists a set \(C(g) \in E_\ast \) such that

\[\langle v, g \rangle \geq 0 \quad \forall v \in C(g). \quad (6) \]

3 Problem statement: conic approximations

Let functions \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) and \(u: \mathbb{R}^n \rightarrow \mathbb{R} \) be Lipschitz and directionally differentiable in the sense of Dini. Then functions \(f \) and \(u \) are differentiable in the sense of Hadamard and both representations (3) and (4) are valid (see Theorem and Proposition 3.2 of Chapter 1 in [8]) for the derivatives \(f'_H(x, g) \) and \(u'_H(x, g) \) at the studied point \(x \).

Consider the problem

\[
\begin{cases}
 f(x) \rightarrow \min \\
 x \in \Omega
\end{cases}
\]

where \(\Omega = \{ x \in \mathbb{R}^n \mid u(x) \leq 0 \} \).

We need conic approximation of the set \(\Omega \) in the neighborhood of the studied point \(x \) to derive optimality conditions for the problem (7). Remind some definitions.

\(K_p(x) \) is called cone of possible directions with respect to the set \(\Omega \) at point \(x \) if for any \(y \in K_p(x) \) there exists \(\bar{\theta} > 0 \) such that \(x + \theta y \in \Omega \) for all \(\theta \in [0, \bar{\theta}] \).

\(K_{ad}(x) \) is called cone of admissible directions (or Bouligand cone) with respect to the set \(\Omega \) at the point \(x \) if for any \(y \in K_{ad}(x) \) there exists \([\theta_k, y_k] \rightarrow [+0, y] \), where \(\theta_k \geq 0 \), such that \(x + \theta_k y_k \in \Omega \).

Also define cones

\[K_<(x) = \{ y \in \mathbb{R}^n \mid u'_H(x, g) < 0 \}, \quad K_\leq(x) = \{ y \in \mathbb{R}^n \mid u'_H(x, g) \leq 0 \}. \]

Since the derivative \(u'_H(x, g) \) is continuous as a function of direction [8], the cone \(K_<(x) \) is open (if it is not empty) and the cone \(K_\leq(x) \) is closed.

It is clear that

\[K_<(x) \subset K_p(x) \subset K_{ad}(x) \subset K_\leq(x). \]

We say that the regularity condition holds at the point \(x \) if

\[\text{cl} \{ K_<(x) \} = K_\leq(x). \]

where \(\text{cl} \{ K_<(x) \} \) is the closure of the cone \(K_<(x) \). This condition provides constructive way for building the cone \(K_{ad}(x) \) which is used in optimal conditions.
4 Optimality conditions

We will need the following results (see [8]).

Theorem 5 Let \(f \) be directionally differentiable in the sense of Hadamard at the point \(x^* \in \Omega \). For the point \(x^* \) to be a local minimizer of \(f \) on \(\Omega \), it is necessary that

\[
f'_H(x^*, g) \geq 0 \quad \forall g \in K_{ad}(x^*),
\]

where \(K_{ad}(x^*) \) is the Bouligand cone to the set \(\Omega \) at the point \(x^* \).

Theorem 6 Let \(f \) be directionally differentiable in the sense of Hadamard at the point \(x^* \in \Omega \). For the point \(x^* \) to be a local maximizer of \(f \) on \(\Omega \), it is necessary that

\[
f'_H(x^*, g) \leq 0 \quad \forall g \in K_{ad}(x^*),
\]

where \(K_{ad}(x^*) \) is the Bouligand cone to the set \(\Omega \) at the point \(x^* \).

Now we can formulate necessary optimality conditions for the problem (7). We consider in detail only conditions for the minimum, since conditions for the maximum can be derived similarly.

First state minimum conditions in terms of (proper) upper exhauster of the function \(f \).

Theorem 7 Let the regularity condition holds at the point \(x^* \in \Omega \), families of sets \(E^*(f) \) and \(E_*(u) \) be an upper and a lower exhausters in the sense of Hadamard of the functions \(f \) and \(u \) at the point \(x^* \) respectively. Then for the point \(x^* \) to be a local minimum of the function \(f \) on the set \(\Omega \) it is necessary that

\[
\bigcap_{C \in E_*(u)} \text{cl} \{ \mathbb{R}^n \setminus K^+(C) \} \subset \bigcap_{C \in E^*(f)} \text{cl} \{ \mathbb{R}^n \setminus (-K^+(C)) \},
\]

where \(K(C) = \text{cone}\{C\} \) is the conic hull of set \(C \), \(K^+(C) \) is the conjugate cone of \(K(C) \).

Proof Due to Theorem 5 if point \(x^* \) is a local minimum of the function \(f \) on \(\Omega \), then

\[
f'_H(x^*, g) \geq 0 \quad \forall g \in K_{ad}(x^*).
\]

Whence considering regularity condition we get

\[
f'_H(x^*, g) \geq 0 \quad \forall g \in K_\leq(x^*). \tag{9}
\]

Using exhauster representation for the directional derivatives in (9) we obtain that inequality

\[
\min_{C \in E^*(f)} \max_{v \in C} \langle v, g \rangle \geq 0
\]

holds for any \(g \) such that

\[
\max_{C \in E_*(u)} \min_{v \in C} \langle v, g \rangle \leq 0.
\]

This means that for any \(g \in \mathbb{R}^n \) such that

\[
\min_{v \in C} \langle v, g \rangle \leq 0 \quad \forall C \in E_*(u) \tag{10}
\]

holds the condition

\[
\max_{v \in C} \langle v, g \rangle \geq 0 \quad \forall C \in E^*(f). \tag{11}
\]

\[\text{Springer}\]
Inequality (10) is equivalent to the fact that for every $C \in E_*(u)$ there exists $v(C) \in C$ such that $\langle v(C), g \rangle \leq 0$. Consequently g does not lie in the interior of the set $(\text{cone}\{C\})^+$ for all $C \in E_*(u)$. Thus denoting $K^+(C)$ a conjugate cone of cone{C} we have $g \in \bigcap_{C \in E_*(u)} \text{cl}\left\{\mathbb{R}^n \setminus K^+(C)\right\}$. The same way we can show that any g satisfying inequality (11) belongs to the set $\bigcap_{C \in E^*(f)} \text{cl}\left\{\mathbb{R}^n \setminus (−K^+(C))\right\}$ and vice versa.

Therefore (10) and (11) implies (8).

\textbf{Corollary 1} Condition (8) can be interpreted as follows: for any hyperplane passing through the origin which nonpositive half-space contains an element from $C \in E_*(u)$ for all $C \in E_*(u)$, there exists an element from \tilde{C} which lies in the nonnegative half-space of this hyperplane for all $\tilde{C} \in E^*(f)$.

\textbf{Theorem 8} Let the regularity condition holds at the point $x_* \in \Omega$, families of sets $E^*(f)$ and $E^*(u)$ be upper exhausters in the sense of Hadamard of the functions f and u at the point x_* respectively. Then for the point x_* to be a local minimum of the function f on the set Ω it is necessary that

$$\bigcup_{C \in E^*(u)} \left[-K^+(C)\right] \subset \bigcap_{C \in E^*(f)} \text{cl}\left\{\mathbb{R}^n \setminus (−K^+(C))\right\},$$

where $K(C) = \text{cone}\{C\}$ is the conic hull of the set C, $K^+(C)$ is the conjugate cone of $K(C)$.

\textbf{Proof} As in the proof of the previous theorem it can be shown that if x_* is a local minimum of the function f on the set Ω, then

$$\min_{C \in E^*(f)} \max_{v \in C} \langle v, g \rangle \geq 0$$

holds for any g such that

$$\min_{C \in E^*(u)} \max_{v \in C} \langle v, g \rangle \leq 0.$$

Therefore for any $g \in \mathbb{R}^n$ such that

$$\exists \tilde{C} \in E^*(u): \max_{v \in \tilde{C}} \langle v, g \rangle \leq 0$$

holds the condition

$$\max_{v \in C} \langle v, g \rangle \geq 0 \quad \forall C \in E^*(f).$$

Inequality (13) is equivalent to the fact that there exists $\tilde{C} \in E^*(u)$ such that $\langle v, g \rangle \leq 0$ for all $v \in \tilde{C}$. Consequently there exists $\tilde{C} \in E^*(u)$ such that $g \in −K^+(\tilde{C})$, where $K^+(\tilde{C})$ is a conjugate cone of cone{\tilde{C}}. Whence we conclude that $g \in \bigcup_{C \in E^*(u)} \left[-K^+(C)\right]$ is equivalent to condition (13). Therefore (13) and (14) implies (12).

\textbf{Corollary 2} Condition (12) can be interpreted as follows: for any hyperplane passing through the origin which nonpositive half-space contains at least one set $C \in E^*(u)$, there exists an element from \tilde{C} which lies in the nonnegative half-space of this hyperplane for all $\tilde{C} \in E^*(f)$.
Remark 1 If \(x^* \) is an unconstrained local minimum of \(f \) then condition (5) holds. Therefore
\[
\bigcap_{C \in E^*(f)} \text{cl} \left\{ \mathbb{R}^n \setminus (-K^+(C)) \right\} = \mathbb{R}^n,
\]
which implies that inclusions (8) and (12) are always satisfied.

Now proceed to the minimum conditions in terms of (adjoint) lower exhauster of the function \(f \).

Theorem 9 Let the regularity condition holds at the point \(x^* \in \Omega \), families of sets \(E^*_u(f) \) and \(E^*(u) \) be lower exhausters in the sense of Hadamard of the functions \(f \) and \(u \) at the point \(x^* \) respectively. Then for the point \(x^* \) to be a local minimum of the function \(f \) on the set \(\Omega \) it is necessary that
\[
\bigcap_{C \in E^*_u(u)} \text{cl} \left\{ \mathbb{R}^n \setminus K^+(C) \right\} \subseteq \bigcup_{C \in E^*_u(f)} K^+(C),
\]
where \(K(C) = \text{cone}\{C\} \) is the conic hull of the set \(C \), \(K^+(C) \) is the conjugate cone of \(K(C) \).

Proof As in the proof of Theorem 7 it can be shown that if \(x^* \) is a local minimum of the function \(f \) on the set \(\Omega \), then
\[
\max_{C \in E^*_u(f)} \min_{v \in C} \langle v, g \rangle \geq 0
\]
holds for any \(g \) such that
\[
\max_{C \in E^*_u(u)} \min_{v \in C} \langle v, g \rangle \leq 0.
\]
Therefore for any \(g \in \mathbb{R}^n \) such that
\[
\min_{v \in C} \langle v, g \rangle \leq 0 \quad \forall C \in E^*_u(u)
\]
holds the condition
\[
\exists \hat{C} \in E^*_u(f) : \min_{v \in C} \langle v, g \rangle \geq 0.
\]
Inequality (17) is equivalent to the fact that \(g \in K^+(\hat{C}) \), where \(K^+(\hat{C}) \) is a conjugate cone of \(\text{cone}(\hat{C}) \). Thus (16) and (17) implies (15). \(\square \)

Corollary 3 Condition (15) can be interpreted as follows: for any hyperplane passing through the origin which nonpositive half-space contains an element from \(C \) for all \(C \in E^*_u(u) \), there exists at least one set \(C \in E^*_u(f) \) which fully lies in the nonnegative half-space of this hyperplane.

A similarly approach can be applied to prove the following result.

Theorem 10 Let the regularity condition holds at the point \(x^* \in \Omega \), families of sets \(E^*_u(f) \) and \(E^*(u) \) be a lower and an upper exhausters in the sense of Hadamard of the functions \(f \) and \(u \) at the point \(x^* \) respectively. Then for the point \(x^* \) to be a local minimum of the function \(f \) on the set \(\Omega \) it is necessary that
\[
\bigcup_{C \in E^*(u)} [-K^+(C)] \subseteq \bigcup_{C \in E^*_u(f)} K^+(C),
\]
where \(K(C) = \text{cone}\{C\} \) is the conic hull of the set \(C \), \(K^+(C) \) is the conjugate cone of \(K(C) \).
Corollary 4 Condition (18) can be interpreted as follows: for any hyperplane passing through the origin which nonpositive half-space contains at least one set $C \in E^*(u)$, there exists at least one set $C \in E^*(f)$ which fully lies in the nonnegative half-space of this hyperplane.

Remark 2 If x^* is an unconstrained local minimum of f then condition (6) holds. Therefore

$$\bigcup_{C \in E^*(f)} K^+(C) = \mathbb{R}^n,$$

which implies that inclusions (15) and (18) are always satisfied.

Similarly, using Theorem 6 we can state and prove conditions for the maximum.

Theorem 11 Let the regularity condition holds at the point $x^* \in \Omega$, families of sets $E^*(f)$ and $E^*(u)$ be lower exhausters in the sense of Hadamard of the functions f and u at the point x^* respectively. Then for the point x^* to be a local maximum of the function f on the set Ω it is necessary that

$$\bigcap_{C \in E^*(u)} \text{cl} \left\{ \mathbb{R}^n \backslash K^+(C) \right\} \subset \bigcap_{C \in E^*(f)} \text{cl} \left\{ \mathbb{R}^n \backslash K^+(C) \right\},$$

where $K(C) = \text{cone}(C)$ is the conic hull of the set C, $K^+(C)$ is the conjugate cone of $K(C)$.

Theorem 12 Let the regularity condition holds at the point $x^* \in \Omega$, families of sets $E^*(f)$ and $E^*(u)$ be a lower and an upper exhausters in the sense of Hadamard of the functions f and u at the point x^* respectively. Then for the point x^* to be a local maximum of the function f on the set Ω it is necessary that

$$\bigcup_{C \in E^*(u)} [-K^+(C)] \subset \bigcap_{C \in E^*(f)} \text{cl} \left\{ \mathbb{R}^n \backslash K^+(C) \right\},$$

where $K(C) = \text{cone}(C)$ is the conic hull of the set C, $K^+(C)$ is the conjugate cone of $K(C)$.

Theorem 13 Let the regularity condition holds at the point $x^* \in \Omega$, families of sets $E^*(f)$ and $E^*(u)$ be an upper and a lower exhausters in the sense of Hadamard of the functions f and u at the point x^* respectively. Then for the point x^* to be a local maximum of the function f on the set Ω it is necessary that

$$\bigcap_{C \in E^*(u)} \text{cl} \left\{ \mathbb{R}^n \backslash K^+(C) \right\} \subset \bigcup_{C \in E^*(f)} [-K^+(C)],$$

where $K(C) = \text{cone}(C)$ is the conic hull of the set C, $K^+(C)$ is the conjugate cone of $K(C)$.

Theorem 14 Let the regularity condition holds at the point $x^* \in \Omega$, families of sets $E^*(f)$ and $E^*(u)$ be upper exhausters in the sense of Hadamard of the functions f and u at the point x^* respectively. Then for the point x^* to be a local maximum of the function f on the set Ω it is necessary that

$$\bigcup_{C \in E^*(u)} [-K^+(C)] \subset \bigcup_{C \in E^*(f)} [-K^+(C)],$$

where $K(C) = \text{cone}(C)$ is the conic hull of the set C, $K^+(C)$ is the conjugate cone of $K(C)$.
5 An illustrative example

Consider the function \(f(x) = |x_1| - |x_2| \) on a set \(\Omega = \{ x \in \mathbb{R}^2 \mid u(x) \leq 0 \} \) at a point \(x^* = (0, 0) \), where

\[
\begin{align*}
u(x) &= \min \{ \max \{ h_1(x), h_2(x) \}, \max \{ h_3(x), h_4(x) \} \} \\
&= \max \{ \min \{ h_1(x), h_3(x) \}, \max \{ h_2(x), h_4(x) \} \}, \\
h_1(x) &= \frac{1}{2} \left[(x_1 - 1)^2 + (x_2 - 1)^2 \right] - 1, \quad h_2(x) = \frac{1}{2} \left[(x_1 - 1)^2 + (x_2 + 1)^2 \right] - 1, \\
h_3(x) &= \frac{1}{2} \left[(x_1 + 1)^2 + (x_2 - 1)^2 \right] - 1, \quad h_4(x) = \frac{1}{2} \left[(x_1 + 1)^2 + (x_2 + 1)^2 \right] - 1.
\end{align*}
\]

The functions \(f \) and \(u \) are Dini-directionally differentiable at the point \(x^* \) and Lipschitz, therefore they are directionally differentiable in the sense of Hadamard [8]. It is also obvious that regularity condition holds at the point \(x^* \) (Figs. 1, 2).

Denote

\[
C_1 = \text{co}\{(1, 1); (-1, 1)\}, \quad C_2 = \text{co}\{(1, -1); (-1, -1)\}, \\
C_3 = \text{co}\{(1, 1); (1, -1)\}, \quad C_4 = \text{co}\{(-1, 1); (-1, -1)\}.
\]

Then the following families are exhausters of the functions \(f \) and \(u \) at the point \(x^* \):

\[
E^*(f) = E^*_+(u) = \{ C_1, C_2 \}, \quad E^*_+(f) = E^*(u) = \{ C_3, C_4 \}.
\]
First check minimality conditions in terms of proper exhauster. Condition (8) from Theorem 7 is satisfied since
\[
\bigcap_{C \in E^*(u)} \text{cl} \left\{ \mathbb{R}^n \setminus K^+(C) \right\} = \bigcap_{C \in E^*(f)} \text{cl} \left\{ \mathbb{R}^n \setminus \left(-K^+(C) \right) \right\} = K(C_3) \cup K(C_4).
\]

Condition (12) from Theorem 8 also holds:
\[
\bigcup_{C \in E^*(u)} \left(-K^+(C) \right) = \bigcap_{C \in E^*(f)} \text{cl} \left\{ \mathbb{R}^n \setminus \left(-K^+(C) \right) \right\} = K(C_3) \cup K(C_4).
\]

Now pass to the minimality conditions in terms of adjoint exhauster. We have
\[
\bigcap_{C \in E^*(u)} \text{cl} \left\{ \mathbb{R}^n \setminus K^+(C) \right\} = \bigcup_{C \in E^*(f)} K^+(C) = K(C_3) \cup K(C_4),
\]
therefore condition (15) from Theorem 9 is fulfilled.

Condition (18) from Theorem 10 also holds:
\[
\bigcup_{C \in E^*(u)} \left(-K^+(C) \right) = \bigcup_{C \in E^*(f)} K^+(C) = K(C_3) \cup K(C_4).
\]

6 Conclusion

We derived new optimality conditions for an exhausterable function on an exhausterable set and showed how they can be applied to practical problems.

It should be noted that constrained optimality conditions for an exhausterable function on an abstract theoretical cone were provided in [15]. However the authors pointed out that the problem of constructing the cone remains open. In the present paper we considered the case when a feasible set is given via an exhausterable function, described Bouligand cone in terms of exhausters of this function and therefore got optimality conditions in terms of these exhausters. Obtained results can be applied to a wide class of nondifferentiable optimization problems. Moreover they can be useful for constructing nonsmooth global optimization algorithms which require search of local minimums (for example see [26]).

Acknowledgements The reported study was supported by Russian Science Foundation, Research Project No. 18-71-00006.
References

1. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
2. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
3. Mordukhovich, B.S.: Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976)
4. Michel, P., Penot, J.-P.: Calcul sous-differentiel pour les fonctions lipschitziennes et non lipschitziennes. C. R. Acad. Sci. Paris 298, 269–272 (1984)
5. Hiriart-Urruty, J.-B., Lewis, A.S.: The Clarke and Michel–Penot subdifferentials of the eigenvalues of a symmetric matrix. Comput. Optim. Appl. 13, 13–23 (1999)
6. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, New York (2018)
7. Pshenichny, B.N.: Convex Analysis and Extremal Problems. Nauka, Moscow (1980). (in Russian)
8. Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Approximation and Optimization, vol. 7, p. iv+416. Peter Lang, Frankfurt (1995)
9. Demyanov, V.F., Rubinov, A.M.: Exhaustive families of approximations revisited. In: Gilbert, R.P., Panaqiotopoulos, P.D., Pardalos, P.M. (eds.) From Convexity to Nonconvexity. Nonconvex Optimization and Its Applications, vol. 55, pp. 43–50. Kluwer Academic, Dordrecht (2001)
10. Demyanov, V.F.: Exhausters of a positively homogeneous function. Optimization 45, 13–29 (1999)
11. Demyanov, V.F.: Exhausters and convexificators—new tools in nonsmooth analysis. In: Demyanov, V., Rubinov, A. (eds.) Quasidifferentiability and Related Topics, pp. 85–137. Kluwer Academic, Dordrecht (2000)
12. Demyanov, V.F., Roshchina, V.A.: Optimality conditions in terms of upper and lower exhausters. Optimization 55, 525–540 (2006)
13. Abbasov, M.E., Demyanov, V.F.: Proper and adjoint exhausters in nonsmooth analysis: optimality conditions. J. Glob. Optim. 56, 569–585 (2013)
14. Abbasov, M.E., Demyanov, V.F.: Extremum conditions for a nonsmooth function in terms of exhausters and coexhausters. Proc. Steklov Inst. Math. 269, 6–15 (2010)
15. Demyanov, V.F., Roshchina, V.A.: Constrained optimality conditions in terms of proper and adjoint exhausters. Appl. Comput. Math. 4, 114–124 (2005)
16. Castellani, M.: A dual representation for proper positively homogeneous functions. J. Glob. Optim. 16, 393–400 (2000)
17. Roshchina, V.A.: Reducing exhausters. J. Optim. Theory Appl. 136, 261–273 (2008)
18. Küçük, M., Urbanski, R., Grzybowski, J., et al.: Reduction of weak exhausters and optimality conditions via reduced weak exhausters. J. Optim. Theory Appl. 165, 693–707 (2015)
19. Abbasov, M.E.: Geometric conditions of reduction of exhausters. J. Glob. Optim. (2018). https://doi.org/10.1007/s10898-018-0683-5
20. Abbasov, M.E.: Generalized exhausters: existence, construction, optimality conditions. J. Glob. Optim. 11, 217–230 (2015)
21. Murzabekova, G.E.: Implicit function theorem for nonsmooth systems by means of exhausters. J. Comput. Syst. Sci. Int. 48, 574–580 (2009)
22. Luderer, B., Weigelt, J.: A solution method for a special class of nondifferentiable unconstrained optimization problems. Comput. Optim. Appl. 24, 83–93 (2003)
23. Gorokhovik, V.V., Trafimovich, M.A.: On methods for converting exhausters of positively homogeneous functions. Optimization 65(3), 589–608 (2016)
24. Abbasov, M.E.: Comparison between quasidifferentials and exhausters. J. Optim. Theory Appl. 175(1), 59–75 (2017)
25. Demyanov, V.F.: Proper exhausters and coexhausters in nonsmooth analysis. Optimization 61, 1347–1368 (2012)
26. Ugray, Z., Lasdon, L., et al.: Scatter search and local NLP solvers: a multistart framework for global optimization. Inf. J. Comput. 19(3), 328–340 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.