Anaerobic Digestion of Pineapple Waste for Biogas Production and Application of Slurry as Liquid Fertilizer Carrier for Phosphate Solubilizers

Gayathri Unnikrishnan, Vijayaraghavan Ramasamy

ABSTRACT

Background: Pineapple peel wastes was seasonal which comprised of peels and rags. Their disposal posed a serious environmental pollution. Since pineapple peel was rich in cellulose, hemicellulose and other carbohydrates it was found to be a potential substrate for methane generation by anaerobic digestion.

Methods: Here pineapple peel and pulp wastes were collected. The Hydraulic Retention Time of biogas (HRT) was monitored regularly for nine days and at three days intervals in gas collection bladders (Hans Seamless latex valve bladders). The slurry collected was periodically treated with phosphate solubilizers- Providencia rettgeri, a bacterial solubilizer and Meyerozyma guilliermondii, an yeast solubilizer. The biometric parameters of Ananas comosus was tested after slurry application. The germination percent of Passiflora edulis were also calculated.

Result: The best combination of biogas slurry with maximum manorial content for phosphate solubilizers were treatment with cow dung and fruit waste in the ratio 1:2 with high amount of magnesium: 0.0037%, followed by 0.075 N and 0.00054% P which was selected for biometric observations for plants. Pineapple waste were good source for making biogas and slurry obtained could be utilized as carriers for phosphate solubilising liquid fertilizers.

Key words: Pineapple waste, Biogas, Phosphate solubilizer, Liquid fertilizer.

INTRODUCTION

Waste management in fruits and vegetable refining factories was one among the challengeable jobs around the world. Scientists had centred their attention on the utilization of pineapple waste preferably for biogas and fibre production (Upadhyay et al., 2013). Some of these wastes had been used in industrial applications like gas generations (Mbuligwe and Kassenga, 2004). Bio-methanation of fruit wastes was a simple waste treatment as it both adds energy in the form of methane and also results in a highly stabilized effluent fertilizer with almost neutral pH and odorless property (Bardiya et al., 1996). Rani and Nand (2004) reported that different treatments of pineapple peels gave biogas yields ranging from 0.41-0.67mg/kg volatile solids with methane content of 41-65%. This proved pineapple pulp could be used successfully for biogas production. The use of pulp and peel together gave higher biogas production (Pimjai et al., 2012). The performance of biogas production depends on biomass chemical composition as well as standardized conditions of feed concentration, hydraulic retention time, pH and temperature (Boe, 2006; Turovsky and Mathai, 2006; Rehm et al., 2000).

Bio-methanation of fruit wastes was the best suited waste treatment as it both adds energy in the form of methane and also results in a highly stabilized effluent with almost neutral pH and odorless property (Bardiya et al., 1996). They utilized pineapple waste for the production of methane using semi-continuous anaerobic digestion which could produce up to 1682 ml/day of biogas with methane content of 51% in maximum.

The lowest possible HRT for banana peel was 25 days, resulting in 36% substrate utilization and with maximum gas production of 0.76 vol/day, while pineapple processing digestors could be operated at 10 days HRT, with 58% substrate utilization and maximum gas production rate of 0.93 vol/day (Bardiya et al., 1996). Gas production over 3 days incubation period was found to be the highest with cow manure followed by orange rind, with the lowest value for papaya peel and banana skins (Inthapanya et al., 2013). In this experiment, we had screened the efficient treatment with cow dung and biogas slurry for maximum methane gas production. The slurry was developed as liquid fertilizer
carrier for phosphate solubilizer - Providencia rettgeri, a bacterial solubilizer and Meyerozyma guillermondii, a yeast solubilizer.

MATERIALS AND METHODS

Anaerobic digester

The biogas plant was installed at the household premises at Mannuthy, Thrissur. The work was carried out in Pineapple Research station Vazhakulam, Ernakulam and Nehru Arts and Science College, Coimbatore in year 2019 to 2020. The floating drum biogas plant of 0.5 m³ (Plate 1) capacity was used for anaerobic digestion of pineapple substrate. The substrates were added through the inlet pipe. The gas produced inside the digester was collected in gas holder and the bottom of the gas holder was dipped into the substrates to create an anaerobic condition. The gas collected in the gas holder was used daily through gas outlet. When substrates got completely digested, slurry flowed through slurry outlet. Regular feeding had done with the slurry at the rate of 1 litre per day to the biogas plant.

Inoculation of phosphate solubilizers

The phosphate solubilizers selected were Providencia rettgeri, a bacterial solubilizer and Meyerozyma guillermondii, a yeast solubilizer isolated from rhizosphere soil of pineapple plants from Vazhakulam, Ernakulam district, Kerala. The ratio of 6x1⁴ CFU/ml of slurry was the inoculum used for both organisms. The fermentation was carried out for overnight.

Regular monitoring of biogas plant

During the anaerobic digestion period, Hydraulic Retention Time (HRT) and daily temperature inside the digester, volume of gas produced and quantity of slurry generated were determined regularly. Hydraulic Retention Time (HRT) was defined as the maximum time taken by the substrates for maximum gas production. The daily temperature of the biogas unit was noted by using digital thermometer for the entire period of study.

The gas volume was recorded every day. The gas produced was measured and used for burning the stove. The increase in height of the gas holder was recorded daily and volume of gas was calculated using the formula, \(V = \pi r^2 h \), where \(V \) denotes volume, \(r \) denotes radius of gas holder and \(h \) denotes height increased after gas production. The slurry output from the digester was also measured daily for all the treatments using measuring cylinder (Enaboifo and Adadu, 2020).

Analysis of biogas and biogas slurry

The gas produced during the first three days was discarded for a stabilized biogas production. Biogas samples were collected after nine days at three days intervals in gas collection bladders (Hans Seamless latex valve bladders) and analysed. The Biogas composition in laboratory test \((CH_4, CO_2, H_2, H_2S \ and \ O_2)\) was measured using an automated gas analyser according to Brettschneider et al. (2004). The slurry generated in each treatment were tested for profiling the quantity of macronutrient and micronutrients present in it using FESEM-EDX and Elemental mapping.

Biometric observations of seedlings

Biometric observations were recorded biweekly for three months. Plant height, number of leaves per plant, plant girth was recorded. Vigour index was also calculated from the biometric observations (Kaur and Phutela, 2014).

Statistical analysis

Data were subjected to analysis of variance (ANOVA) (Panse and Sukhatme, 1985) using statistical package ‘MSTAT-C’ package (Freed, 2006). Wherever the F test was significant (at 5% level) multiple comparison among the treatments were done with Duncan’s Multiple Range test (DMRT).

RESULTS AND DISCUSSION

Composition of biogas

The optimum combination of cow dung and pineapple waste for maximum gas production was standardized using completely randomized design with five treatments and three replications for a period of 18 months. All the six treatments were done separately on all five weeks of 6 months from October 2018 to June 2020 at Mannuthy, Thrissur, Kerala. The readings were taken every week.

The highest methane content of 60.49% was recorded in T4 which was on par with T2 (63.81%) and T6 (60.29%) and was significantly higher than T1 (50.00) and T5 (46.65%). From the results it is clear that co-digestion of cow dung with fruit waste increased the methane content in 1:1.5 ratio. With the increase of pineapple fruit waste proportion with cow dung as 1:2 methane generations decreased to 50.86% (Fig 1a). It was evident that CO2 concentration varied significantly between the treatments. It was found to be highest in T2 (50.86%) and the lowest in T4 (32.00%). The recorded CO2 concentration in T6, T4, T5 were 45.37, 37.48, 37.31 and 34.47 respectively (Fig 1a). The major nutrients and heavy metal composition of biogas slurry and substrate was shown in Table 1.

Hydraulic Retention Time (HRT) and volume of gas generated

The hydraulic retention time (HRT) was minimum (15 days) in the treatment T6 (cow dung + fruit waste, 1:0.5) followed by T4 (cow dung + fruit waste, 1:1) with 17 days. The highest HRT of 28 days was observed in treatment T1 (fruit waste alone) whereas the treatments T1 (cow dung alone) and T5 (cow dung + fruit waste, 1:1:5) was recorded 23 days and 19 days. The HRT of T9 was 25 days (Fig 1b). The volume of gas was maximum (0.43 m³/day) in the treatment T4 (cow dung + fruit waste, 1:1) which was followed by T6 (cow dung + fruit waste, 1:0.5) with 0.41 m³/day. The lowest volume of 0.29 m³/day was observed in T4 (fruit waste alone) whereas the treatments T1 (cow dung alone) and T5 (cow dung + fruit
waste, 1:1.5) was recording 0.35 m3/day and 0.39 respectively and the total volume in the treatment T$_6$ was 0.36 m3/day (Fig 1b).

Total quantity of slurry

The quantity of biogas slurry generated in each treatment was analysed. The T$_6$ treatment recorded the highest quantity of slurry (96 L) followed by T$_5$ (78 L), T$_4$ (62 L), T$_3$ (57 L) and the treatments T$_1$ and T$_2$ were on par recording 40 L (Fig 1c). The nutrients present in the slurry was recorded using FESEM-EDX. The FESEM analysis and EDAX for elemental analysis of the crude extracts and its biofertilizers i.e., biogas slurry and biogas substrate were shown in Fig 2 and Fig 3.

![Graph showing the different treatment on composition of biogas](image1)

![Total quantity of slurry generated in each treatment](image2)

Fig 1: Graph showing the different treatment on composition of biogas B. Graph showing hydraulic retention time and volume of gas as influenced by different treatments. C Graph showing the quantity of slurry generated in each treatment.

![The FESEM Analysis of liquid biofertilizers and their crude extracts biogas slurry (a); biogas substrate(b).](image3)

Fig 2: The FESEM Analysis of liquid biofertilizers and their crude extracts biogas slurry (a); biogas substrate(b).

![FESEM-EDX spectra for elemental analysis of the crude extracts and its biofertilizers (a); biogas slurry BF (b); biogas substrate](image4)

Fig 3: FESEM-EDX spectra for elemental analysis of the crude extracts and its biofertilizers (a); biogas slurry BF (b); biogas substrate.
Ananas comosus (Pineapple) and **Passiflora edulis** (Passion fruit)

The germination studies of biogas slurry were done alone in passion fruit seedlings since tissue culture pineapple variety, MD$_2$ was selected to determine the biometric observations like length and leaf number of the plant and weight of the fruit. This MD$_2$ pineapple plants treated with biogas slurry at 15,30,45,60 DAP was shown in fig 4a, 4b, 120 DAP in 4c, 365 DAP in 4d. The germination percent was recorded higher for treatment, T$_3$ (49.42%) which had pre-soaking with biogas slurry having maximum manurial value (12 h) (Table 3, Fig 5a). The minimum per cent (40.20%) was observed for storage in shade. The coating treatments also followed the pre-soaking treatments but the effects were comparatively less. The passion fruit seeds pre-soaked with pineapple fruit waste slurry recorded highest vigour index (197.68). Coating with biogas slurry also showed marginal improvement (177.44) compared to gober gas slurry (Table 3, Fig 5a).

The length of pineapple plants (MD$_2$) was calculated for 365 days with different batches of different plants. The highest plant height (85.33 cm) was observed for pre-soaking treatment with biogas slurry (Table 4, Fig 5b). The lowest height was recorded for pineapple plants coated with gober gas slurry (69.33 cm). The plant stored in shade as control without any treatments recorded 82.33 cm length after 365 days.

The effect of treatments on number of leaves of pineapple plant were significant for 180 days after planting and found to be non-significant thereafter. The highest

![Fig 4a: Germination % of passion fruit seedlings b. Pineapple MD$_2$ plants treated with biogas slurry (15,30,45,60 DAP) c. Pineapple MD$_2$ plants treated with biogas slurry (120 DAP) d. Pineapple MD$_2$ plants treated with biogas slurry (365 DAP).](image)

![Fig 5a: Graph showing the germination % and vigour index of passion fruit seedlings b. Graph showing the effect of biogas slurry on the height of pineapple plant; c. Graph showing the effect of biogas slurry on the number of leaves of the pineapple plant.](image)
Table 2: Elemental analysis (EDAX) of crude extracts and its bio-fertilizer.

Samples	C (%)	H (%)	N (%)	O (%)	Na (%)	Mg (%)	Fe (%)	Mn (%)	Zn (%)	S (%)	PO_4 (ppm)	K (%)	Cr (%)	Ni (%)	Pb (%)	Cr (%)	O (%)	W%	A%
Biogas slurry	0.06	19.66	0.07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biogas slurry	0.03	8.76	0.01	ND	ND	7.98	ND	3.509	37.57	ND	ND	3.509	ND	ND	ND	5.424	ND	ND	ND

Biogas slurry: nd: Not Detected W%: Weight Percent A%: Atomic Percent C: Crude Extract B: Liquid Biofertilizer
number of leaves was recorded in T_5 at 180 and 365 days after planting (Table 5, Fig 5c). Among the treatments, the plants treated with pineapple waste biogas slurry were significant throughout and found to be the best, recording the maximum number of leaves. The lowest number of leaves was observed for control plant in shade, T_1.

The average weight of the fruits obtained were also calculated, the maximum fruits were obtained in the case of pre-soaking treatment with biogas slurry (Table 6). The average weight obtained was 1.28 kg for this treatment. The lowest value obtained was 1.02 kg.

Anaerobic production of methane from pineapple waste

Pineapple peels had been found to be promising feed for biogas generation, since they were rich in carbohydrates and proteins. Their disposal possessed a serious environmental pollution problem. Since pineapple peel was rich in cellulose, hemi-cellulose and other carbohydrates, it was found to be a potential substrate for methane generation (Rani and Nand, 2004). In a current study it showed that pre-treatment of pineapple waste and cow dung waste biogas slurry were applied to pineapple plants. The core and peel waste biogas slurry was selected for producing methane in pilot scale digester (Malik et al., 2001). The experiment was conducted for a month and the maximum amount of methane was generated in treatment with 1:1.5 composition of cow dung and pineapple fruit waste. The nutritional value (NPK) was high in slurry obtained from treatment having 1:2 ratio of cow dung and fruit waste. This slurry (1:2 treatment) generated was applied as foliar and drenching to pineapple (MD$_{-}$)-Ananas comosus var. L. plants itself to study their height, leaf number and average weight of the fruit. In recent studies, pineapple waste and cow dung were used in raw form for methane gas generation (Hamzah et al., 2020), here we had utilized cow dung slurry instead and maximum production of methane gas was achieved in 1:1 ratio of slurry application. Similar studies were done by Mugerwa., (2018) where 2:1 ratio of pineapple waste and cow dung slurry generated highest methane content of 64% whereas here highest of 63.41% of methane gas was obtained from 1:1 ratio of pineapple waste and cow dung slurry.

Effect of sustainable liquid fertilizer made from environmental waste to crops

The plant Ananas comosus (pineapple) was usually treated with chemical fertilizers like Urea, potash etc. Fungicides like Phytrax, SAAF, Bavistin and hormonal treatments like Ethephon for uniform inflorescence. Comparatively, we had designed a recyclable organic fertilizer from pineapple waste for pineapple plants. The core and peel waste biogas slurry were applied to pineapple plants. Pre-soaking with the slurry regulates the transport of water to seed which acts as water reservoir (Aswathy and Sushama, 2015). In this way slurry soaking might had improved germinating ability of seeds. In a current study it showed that pre-treatment of pineapple peel using the alkali enhanced enormous lignin reduction and enhanced biogas production (Dahunsi, 2019), similarly

Table 3: Effect of biogas slurry on germination % and vigour index of seedlings of passion fruit.

Treatments	Germination (%)	Vigour index
T_1	40.20a	160.8a
T_2	44.36b	177.44a
T_3	49.42c	197.68a
T_4	42.76b	171.04a
T_5	41.73a	166.92a
CD (0.05)	0.559	0.919

Table 4. Effect of biogas slurry on height of the Ananas comosus plant.

Treatments	15 DAP	30 DAP	45 DAP	60 DAP	75 DAP	90 DAP	180 DAP	365 DAP
T_1	5.1d	10.31d	18.03a	24.08a	30.17a	37.23a	69.76a	82.33a
T_2	8.0b	14.0c	20.06b	29.07b	32.36b	36.60b	68.56b	80.00b
T_3	10.0c	18.06c	25.80c	32.04c	36.06c	40.20c	72.00c	85.33c
T_4	7.3c	14.1c	21.00d	26.02d	34.33d	28.26d	52.66d	69.33d
T_5	8.3b	16.2c	24.00b	30.07b	28.36b	33.06b	63.87b	74.67b
CD (0.05)	0.644	0.460	0.157	0.021	0.589	0.609	1.046	1.485

Table 5. Effect of biogas slurry on number of leaves of Ananas comosus plant.

Treatments	15 DAP	30 DAP	45 DAP	60 DAP	75 DAP	90 DAP	180 DAP	365 DAP
T_1	9.97a	10.97c	12.23b	15.00c	17.66c	19.00c	45.66c	57.33c
T_2	14.31b	15.0a	16.55a	19.66b	20.66c	22.00b	52.00a	62.00a
T_3	16.46a	17.0a	16.15a	21.00a	22.66c	22.00b	58.00b	69.33a
T_4	13.33b	14.66b	16.58a	21.33ab	22.00b	23.33b	53.33a	60.00c
T_5	16.55a	16.94a	18.27a	22.66a	25.33a	29.33a	59.33a	68.00a
CD (0.05)	1.649	2.049	3.42	2.93	3.080	4.578	6.03	3.787
palm oil mill effluent containing various microbial consortium were used for anaerobic fermentation of pineapple pulp and peel waste for biogas production at a range of (40.5 to 70.1)\% (Aziz, 2017; Azouma et al., 2018). Likewise, in this research we had fermented pineapple waste using cow dung slurry and phosphate solubilizers for methane gas production and had a recovery percentage ranging from (46.65 to 63.49)\%.

CONCLUSION

Production of biogas from *Ananas comosus* waste (peel and core) were done and the treatment, T₃ with 1:1.5 ratio of cow dung and pineapple fruit waste resulted in 63.81\% methane and 34.47\% carbon dioxide which was closely followed by T₂ (60.49\%, 32.0\%) having cow dung + pineapple fruit waste in ratio 1:1. Throughout the study period the volume of gas was generated in the order T₅>T₄>T₃>T₂>T₁. The temperature inside the digester was always found to be higher compared to the atmospheric temperature. The HRT reduced from 23 days to 19 day by co digestion of pineapple fruit waste with cow dung in 1:15 ratio as compared with either of the substrate. Similarly, with biogas slurry (T₅=1:2 ratio of cow dung and fruit waste), the germination % (49.42) and vigour index (197.68) was studied with *Passiflora edulis* (Passion fruit seedlings) and were recorded highest in pre-soaking treatment, T₃ with biogas slurry having maximum manuriial value (12 h); So, the growth rate order for passion fruit seedlings in terms of germination is T₅>T₄>T₃>T₂>T₁. In addition to this, Seedling height (85.33 cm), Leaf number (69.33) of *Ananas comosus* (Pineapple) was more in presoaking treatments of both fruit waste and gober gas slurry. For leaf the growth rate order was T₅>T₄>T₃>T₂>T₁ and for height the growth was reported as T₅>T₄>T₃>T₂>T₁. This data infers the treatments of pre-soaking with fruit waste slurry or gober gas slurry with phosphate solubilizers- *Meyerozyma gullenmondi*, a yeast solubilizer and *Providencia rettgiri*, a bacterial solubilizer induces maximum growth rate to the crop.

Table 6: Effect of biogas slurry on average weight of *Ananas comosus* fruit from treatments.

Treatments	Average weight of fruit in kg
T₁	1.02²
T₂	1.21¹
T₃	1.28¹
T₄	1.22¹
T₅	1.25⁵
CD (0.05)	0.030

T₁: Storage in shade (Control).
T₂: Coating with biogas slurry having maximum manurial value.
T₃: Presoaking with gober gas slurry having maximum manurial value (12 h).
T₄: Coating with gober gas slurry from treatment 1.
T₅: Presoaking with gober gas slurry of treatment 1 (12 h).

ACKNOWLEDGEMENT

The authors acknowledge that this research was technically supported by Nanoscience department of Bharathiar University, Coimbatore and Soil Science department of Kerala Agricultural University, Thrissur. This study was financially supported by Fiber Tech Manufacturing and Trading, Ajman-United Arab Emirates.

REFERENCES

Aswathy, G. and Sushama, P.K. (2015). Production and effective utilization of biogas from fruit waste M.Sc., (Ag) thesis, Kerala Agricultural University, Thrissur, 112.
Aziz, A.B.S.N.B. (2017). Anaerobic digestion of pineapple waste using a microbial consortium (Doctoral dissertation, Universiti Teknologi Malaysia).
Azouma, Y.O., Jegla, Z., Reppli, M., Turek, V. and Weiss, M. (2018). Using agricultural waste for biogas production as a sustainable energy supply for developing countries, Chemical Engineering Transactions. 70: 445-450.
Bardiya, N., Somayaji, D. and Khanna, S. (1996). Biomethanation of banana peel and pineapple waste. Bioresource Technology. 58: 73-76.
Boe, K. (2006). Online monitoring and control of the biogas process, Ph.D. thesis, Institute of Environment and Resources, Technical University of Denmark, Lyngby, Denmark.
Brettschneider, O., Thiele, R., Faber, R., Thielert, H. and Wozny, G. (2004). Experimental Investigation and Simulation of the Chemical Absorption in a Packed Column for the System NH3–CO2–H2S– NaOH–H2O Separation and Purification Technology. 29:139.
Dahunsi, S.O. (2019). Liquefaction of pineapple peel: Pre-treatment and process optimization, Energy. 185: 1017-1031.
Enaboifo, M.A. and Adadu, C.A. (2020). Comparative study of biogas production from cocoa pod, maize husk, orange peels, pineapple peels and coconut fiber co-digested with yeast. Adan Journal of Agriculture. 1(01): 114-122.
Freed, R. (2006). MSTAT-C version 7. Department of Crop and Soil Science. Michigan State University.
Hamzah, A.F.A., Hamzah, M.H., Mazlan, F.N.A., Man, H.C., Jamali, N.S. and Siajam, S.I., (2020). Anaerobic Co-digestion of Pineapple Wastes with Cow Dung: Effect of Different Total Solid Content on Bio-methane Yield, Advances in Agricultural and Food Research Journal. 1(1): 1-12.
Inthapanya, S. and Preston, T.R. (2013). Biochar marginally increases biogas production but decreases methane content of the gas in continuous-flow biodigesters charged with cattle manure. Livestock Research for Rural Development. 25(189).
Kaur, K. and Phutela, U.G. (2014). Improving paddy straw digestibility and biogas production through different chemical-microwave pre-treatments. Agricultural Science Digest. 34(1): 8-14.
Malik, R.K., Bishnoi, R.K. and Singh, R. (2001). Development of underground solid state biogas plant of 2M3 capacity, Agricultural Science Digest. 21(2): 79-82.
Mbulgwe, S.E. and Kasenga, G.R. (2004). Feasibility and strategies for anaerobic digestion of solid wastes for energy production in Dares Salaam city, Tanzania. Resources, Conservation and Recycling. 42: 183-203.
Mugerwa, G. (2018). Evaluation of biogas generation from pineapple processing waste, undergraduate dissertation submitted to Makerere University, Uganda, Africa Portal.

Panse, V.G. and Sukhatme, P.V. (1985). Statistical methods for agricultural workers (4th Ed), Indian Council of Agricultural Research, New Delhi, India, 347.

Pimjai, N.W.S., Chureereat, P., Dudsadee, U. and Vilai, R. (2012). Anaerobic digestion of pineapple pulp and peel in a plug-flow reactor. Journal of Environmental Management. 110: 40-47.

Rani, D.S. and Nand, K. (2004). Ensilage of pineapple processing waste for methane generation, Waste Management. 24(5): 523-528.

Rehm, H.J., Reed, G., Pühler, A. and Stadler, P.J.W. (2000). Biotechnology, 11(A), Environmental processes. 1(2): Wiley, New York, USA.

Turovskiy, I.S. and Mathai, P.K. (2006). Wastewater sludge processing. John Wiley and Sons, Inc, Hoboken, New Jersey, USA.

Upadhyay, A., Lama, J.P. and Tawata, S. (2013). Utilization of Pineapple Waste: A Review. Journal of Food Science and Technology Nepal. 6: 10-18.