Bearing Capacity of Strengthened Reinforced Concrete Beams

Roman Kinasz¹, Andrii Mazurak², Ivan Kovalyk², Rostyslav Mazurak², Orest Tsap²

¹ AGH University of Science and Technology, Faculty of Mining and Geoengineering, al. Mickiewicza 30, 30-059 Krakow, Poland
² Department of Building Structures, Lviv National Agrarian University, V.Velikogo 1, 80381 Dublyany, Ukraine

rkinash@agh.edu.pl

Abstract: The need reinforcement building structures during operation arises not only during reconstruction but also because various damages. The various combination reasons for the need reinforcement, as well as the type and condition the building structures necessitates the use different ways reinforcement. Today, it is still effective to reinforce the bending elements of reinforced concrete structures with reinforced concrete and shotcrete. Therefore, the purpose of our work is to improve the calculation method, to evaluate the load-bearing capacity reinforced concrete beams, taking into account residual deformations and stresses of concrete and reinforcement. Methods for reinforcing reinforced concrete structures are described in detail in literature and are widely used in construction. The proposed experimental studies consisted 15 reinforced concrete beams with design dimensions 2300x200x80 (120; 145). Nine beams were reinforced with reinforced concrete, five beams reinforced with concrete and one beam without reinforcement. The test specimens were amplified by the extension of the lateral surfaces at different loading levels, namely 0.0; 0.3; 0.45; 0.6 from the devastating moment. To create such levels of load, a specially designed metal rig was used, transmitting its effect to the test beam in the form of two concentrated forces in thirds of the span. Before the reinforcement of the contact beams of the test beams, adhesive layers were applied, metal anchors were affixed to which the reinforcement frames were fastened. The bearing capacity of the normal cross sections of the experimental, reinforced concrete beams was evaluated according to the proposed algorithm, based on the deformation model. The algorithm is adapted to calculate reinforced concrete beam structures in various ways (extension, shirt or clip). In the calculation method, the joint work of the layers of "old" and "new" concrete was taken into account by assigning all elements of the section a single bend. Adopted structural and technological solutions in the test beams, namely the use of shotcrete concrete, adhesive priming, and glued metal anchors (Ø 8mm) protruding from the surface at 35mm, ensured the matrix and reinforcement layers work together. Based on the experimental studies, the analysis of the calculated data with the experimental results was performed. The proposed calculation method well estimates the bearing capacity of the normal cross sections reinforced with reinforced shotcrete concrete reinforced concrete beams, the difference reaches no more than 6%. However, as the analysis of the results of the studies in the cross sections of the test pieces of the main and reinforced part of the beam shows, the experimental and calculated values of concrete deformations have a greater divergence, similarly this phenomenon is observed in the results of deformation of reinforcement. The discrepancy between the calculated and experimental values of the main and reinforced part of the beam is revealed due to the delayed inclusion in the work of reinforcement of the reinforced part, which should be taken into account in the following studies.
1. Introduction
Mass application of concrete reinforced concrete in all spheres of building business resulted in damaging structures caused by time wear and some external factors. This phenomenon is rather spread. The process of damaging often starts with the partial ruin of structures through concrete carbonation, scaling of concrete layer of the body of structure, partial or full corrosion of reinforcement which, finally, finish with the complete loss of bearing capacity.

Increase of carrying capacity of reinforced elements (RE), without a change of a constructive scheme, expects increase of a cross cut of a strengthened sample and should be made with application of such material as concrete, polymer concrete, fibre-reinforced concrete, as well as reinforcement with carbon fiber-reinforced plastic stripes and bed. Strengthening of bending reinforced structures with gunned concrete, which can be put in thin layers of a structure reinforcement, is a method, being efficient and reliable in operation [1].

To secure safety of strengthened RE and improve methods of their calculations, one needs investigation of regularities of changes of sustainability, deformation ability of materials at different degrees of stress with applied reinforcement [2, 3, 4].

Investigation of reinforced structures are presented in the works of Ye.M. Babych, A.Ya.Barashykov, Z.Ya.Blkharshkyi, S.V. Bondarenko, O.I. Valovyi, O.B. Holyshiev, V.H. Kvasha, H.A. Molodchenko, L.A. Murashko, and others [2-5]. Basing on the researches, we studied effective constructive solutions on strengthening of reinforced structures and proposed methods of calculation.

On the ground of previous researches it is described [5] how concrete and gunned concrete layers of the investigated elements work jointly, secured by adhesive padding with polymer mortars and installation of pasted metal land ties [6].

Aim of the work is to make estimation of carrying capacity of strengthened reinforced elements on action of bending moments with consideration of the reinforcement technology. Task of the research is to develop methodology and make analysis of theoretical and experimental investigation of strengthened RE considering unrelied stress to reinforcement fulfillment.

2. Experimental research
Series of the carried research consisted of fifteen investigated beams of projected sizes (Lxhxh) 2300x200x80 (120:145). The beams under research are made reinforced (fcu=23.5 MPa) by common technology, beam (B-2) without reinforcement, nine beams are reinforced by lengthening with gunned concrete technology (B-2-1…eg) and five beams are reinforced by usual concreting of input frames (B-2-2…uc). Beams are reinforced at different degrees of stress: 0; 0.3; 0.45; 0.6 from a critical moment, and thus got corresponding marks. In all cases of reinforcement, we used adhesive padding Koster SB –Haftemulsion and metal joining land ties (Ø 8mm), projecting above the surface at 35mm. Class of the concrete of reinforcement layer for beams (B-2-1-1…eg, B-2-1-1.2…eg) - fcd= 28.3 MPa, for beams (B-2-1-2….eg – fcd= 23.6 MPa, and for (B-2-2-1…uc, B-2-3-1.2…uc) beams - fcd= 24.1 MPa.

On the first stage of the experiment, non-reinforced beams were tested with centered stress, when loading step was equal 0;1F from a critical one. Process of beams investigation was made according to a static scheme, i.e. a beam on two supports, with a span L=2100 mm. When fluid behavior was achieved, the examples were relieved, their critical operation stress was taken as a control one for all beam samples being reinforced.

Next stage of the work included reinforcement of the beams under experiment. The main method was to apply an reinforcing layer of concrete or gunned concrete, which was put on a side surface (on one or both sides) with a previous flat reinforced frame (figure 1).

For creation of levels of loading and carrying out of strengthening of experimental beams the installation presented in figure 2 was used. The rigid metal beam, with the help of threaded tighteners, through the sprung springs, created a level of load in the form of two concentrated forces on one third of the length of the beam. Having provided the planned level of loading, the beam was reinforced by the arrangement of the reinforcing frame and the application of concrete or a sprayed layer on its surface.
Testing of the beams under experiment was made on the 440th-676th day from a date of production and on the 45th-72nd day from a date of reinforcement by application of concentrated forces in one third of their span (figure 3).

Figure 1. Scheme of reinforcement of a side surface of experimental samples:

- a) B-2-1-1, B-2-1-2, B-2-2-1
- b) B-2-2-1.2, B-2-1-1.2

Figure 2. Location of research supplies as tested:

- 1-micro indicators of elongation of working armature
- 2-device for measuring the deflection length of the beam
- 3-micro indicators of tension and compression of concrete
- 4-load cells
- 5-portable rods of longitudinal working armature
- 6-metal frame for holding devices
- 7-experienced reinforced beam
- 8-metal beam
- 9-spring-threaded tightening
Figure 3. Appearance of the test stand

The theoretical calculation is based on the algorithm, mentioned in normative documents on the base of a deformation model, being modified according to a certain experimental research [7, 8]. The algorithm is adopted for calculation of reinforced structures by different ways (lengthening, case or hooping) and considers their joint operation.

Base of the calculation is made by formulae, presented in SBN 2.6-98 [8] on calculation of stress strain behavior of rectangular cuts in case of eccentric extrusion and bend (figure 4), describing equilibrium in a cut in the integral form:

\[
\begin{align*}
\sum M &= \frac{b f_{cd}}{N_{pr}} \left[\sum_{i=1}^{5} a_i y_i^2 + 1 \right] + \sum_{i=1}^{3} \sigma_i A_i \left(x_i - z_i \right); \\
\sum x &= \frac{b f_{cd}}{N_{pr}} \left[\sum_{i=1}^{5} a_i y_i^2 \right] \phi + \sum_{i=1}^{3} \sigma_i A_i \phi_i;
\end{align*}
\]

(1)

where \(\gamma = \frac{1}{\rho} \left(\varepsilon_{ci} - \varepsilon_{ci(2)} \right) \) is a bowing of bended gridline in a cut; \(\varepsilon_{ci(1)}, \varepsilon_{ci(2)} \) - strains of concrete of stressed and positive fiber respectively; \(\gamma = \frac{\varepsilon_{ci(1)}}{\varepsilon_{ci}} \), where \(\varepsilon_{ci} \) is a value of critical strains of concrete of stressed fiber; \(x_i = \varepsilon_{ci(1)}/\kappa \) is a height of the stressed zone; \(\kappa = \gamma / \varepsilon_{ci} \) - relative bowing; \(z_{di} \) - distance of \(i \) rod or interlayer of reinforcement from the most stressed border of a cut.
Figure 4. Stress strain behavior of a rectangular cut: a – cross cut of an element; b – strain diagram at equilibrium; c – stress diagram

A joint operation of an “old” and “new” concrete is measured by assigning of a common deflection to all elements of the cut and the deflection is calculated according to the formula:

\[f = \frac{1}{r} k_m l^2. \]

Because in the formula (2) all values, except bowing \(\frac{1}{r} \frac{\varepsilon_{c11} - \varepsilon_{c12}}{h} \), are constants, to secure an equal deflection at all stages of the beam operation, it is sufficiently that bowing growth to be the same from the moment of enforcement for all parts. This condition can be outlined in the following way:

\[\frac{(\varepsilon_{c11} - \varepsilon_{c11_0}) - (\varepsilon_{c12} - \varepsilon_{c12_0})}{h} = \frac{\varepsilon_{c21} - \varepsilon_{c22}}{h + h_1 + h_2}; \]

where \(\varepsilon_{c11_0}, \varepsilon_{c12_0} \) - is for strains at upper and down border of an old part of the beam at a moment of reinforcement; \(\varepsilon_{c11} - \varepsilon_{c11_0}, \varepsilon_{c12} - \varepsilon_{c12_0} \) - is a growth of strains at upper and down border of an old part of the beam from a moment of reinforcement respectively; \(\varepsilon_{c21}, \varepsilon_{c22} \) - strains at upper and down borders of a new part of the beam respectively, obtaining non-zero value from a moment of reinforcement.

In the equation 3 there are two unknowns: \(\varepsilon_{c21}, \varepsilon_{c22} \). To calculate them, one of them is assigned with a gradually growing value, and the other is calculated. The procedure is repeated until the found values satisfy an equilibrium equation (4).

Estimation of stress strain behavior of strengthened reinforced beams, having a joint operation of old and enforced parts as one of the principal criteria, can be presented in the equation (4), (5), general picture of which are demonstrated in the integral form.
To satisfy conditions of equilibrium we find a value of a moment \(M \), excepted by each part of a cut (figure 5):

- for a principal part of a beam

\[
M_1 = \frac{b_1 f_{cd1}}{N_{pr}^2} \int_0^{\gamma_22} \left(\sum_{i=1}^{5} a_{20} + i \cdot y_i \right) dy + \sum_{i=1}^{3} \sigma_{20} + i \cdot A_{20} + i \cdot (x_i - z_i + i)
\]

- for a reinforced part of a beam

\[
M_2 = \frac{b_1 f_{cd2}}{N_{pr}^2} \int_0^{\gamma_22} \left(\sum_{i=1}^{5} a_{20} + i \cdot y_i \right) dy + \sum_{i=1}^{3} \sigma_{20} + i \cdot A_{20} + i \cdot (x_i - z_i + i)
\]

Total value of a moment is got by addition of corresponding moments, resulted from the previous equations:

\[
M = M_1 + M_2.
\]

Figure 5. Scheme of the stress-deformed state of a rectangular cross section of the test specimens when reinforced by the extension of vertical faces: a - cross-section of the element; b - plot of deformations when finding equilibrium.
3. Results and discussions

Experimental and calculated values of bending moments, corresponding to critical conditions and destruction, as well as their comparison are presented in the table 1.

Table 1. Strength of reinforced experimental beams

№	Beam code	Geometric sizes (reinforced) bхh, mm	Degree of stress	Value of bending moments, M, kNm	\(M_{u}^{\exp} \)	\(M_{u}^{\text{SBN}} \)
1	B-2	80x200 (0)	0,0	19,04	18,853	1,01
2	B-2-1-0,0-eg	80x200 (120x200)	0,0	30,62	29,651	1,032
3	B-2-1-0,3-eg	79x200 (120x200)	0,32	30,425	29,599	1,028
4	B-2-1-0,6-eg	80x200 (120x200)	0,62	28,84	27,274	1,057
5	B-2-2-0,0-eg	77x196 (120x196)	0,0	29,155	27,893	1,045
6	B-2-2-0,3-eg	77x196 (120x196)	0,31	28,08	26,988	1,040
7	B-2-2-0,6-eg	77x196 (120x196)	0,61	26,05	24,938	1,045
8	B-2-2-1,0-uc	79x200 (120x200)	0,0	29,86	29,304	1,019
9	B-2-2-1,0-3-uc	80x200 (120x200)	0,32	29,25	29,095	1,005
10	B-2-2-1,0-6-uc	80x200 (120x200)	0,62	24,48	27,031	0,905
11	B-2-2-1,2-0,0-uc	77x203 (148x204)	0,0	37,05	35,26	1,051
12	B-2-2-1,2-0,45-uc	78x204 (148x204)	0,45	33,06	31,31	1,056
13	B-2-1-2,0-0-eg	77x203 (144x203)	0,0	34,66	33,165	1,045
14	B-2-1-2,0-3-eg	78x202 (145x202)	0,33	34,64	33,034	1,049
15	B-2-1-2,0-6-eg	78x203 (145x203)	0,63	30,75	30,541	1,01

Having got results of experimental researches and compared them with the proposed calculation (see table 1), one can make a conclusion that theoretical and experimental values coincide, and deviation is less than 6%. It proves the fact that the suggested algorithm makes qualitative estimation of the process of RE strengthening at different degrees of stress (up to 0.62 from a critical one).

Dependence of strains on stress for beams at height of a cut has the same results as (figure 6, 7), we used results of a beam B-2-1-2-0-eg to be described in the article.

Diagrams of dependence of strains on stress in the beam B-2-1-2-0-eg at height of a cut are presented in (figure 6, 7), and demonstrated distribution of strains at height of a cut (h=20, for armature 170 mm). The presented graphic dependences prove that at different cuts (h=20 and h=60) experimental and
calculated values differ. Thus, for example, at operation degree of stress of 0.7 M in a cut h=20 mm, in a principal part of the beam the difference makes 8-14% in the reinforced part 10-20%. In a cut h=60 mm close to neutral axis, the difference in two parts of the beam makes 10-14%. Diagrams of armature strains at h=170 mm show a deviation of values in the principal part of the beam 6-11% and in the reinforced part – 12-28%. We consider that such difference of calculated and experimental values of principal and reinforced parts of the beam is caused by late start of operation of armature in the reinforced part.

Figure 6. Diagram of strains dependence on stress in the beam B-2-1-2-0-eg at height (h=20 mm): a) – principal part of the beam, b) reinforced part of the beam

Figure 7. Diagram of dependence of armature strains on stress in the beam B-2-1-2-0-eg at height (h=170 mm): a) - principal part of the beam, b) – reinforced part of the beam
4. Conclusions
Analysis of the carried experimental and theoretical researches demonstrates that, according to the acting norms, methodology of calculation of carrying capacity of normal cuts of strengthened reinforced beams, made by a corresponding algorithm, gives a satisfactory result, and the deviation makes up to 6%. However, at height of a cut, value of experimental and calculated strains gives larger difference (10-20%), especially armature of reinforced parts 12-28%. Thus, in the further researches it is necessary to increase number of cuts for comparison and consider a larger range of stress degrees on reinforcement.

References
[1] F. Kaczorowski, H. Kalisz “Application of spray concrete in repairing works”, Engineering and Building, no 6, pp. 222 – 224, 1993.
[2] B.Holyshev, L.N. Tkachenko. Projecting of strengthening of reinforced structures of industrial buildings and constructions. Kyiv: Lohos, 2001. – 172 p.
[3] Z.Ya. Blikharskyi, Ya.V. Rymar, D.I.Dubizhanskyi “Experimental and theoretical researches of strength of reinforced beams, strengthened under stress”, Messenger of National University “Lvivska Polytechnics”: Theory and practice of building. – Lviv: Published by NU “LP”, vol. 600. – pp. 19-22, 2007.
[4] A.V. Mazurak, R.A. Shmyh, I.V. Kovalyk, M.V. Sadovyi “Calculation of strength of reinforced elements, being strengthened at different degrees of stress”, Scientific works in two volumes: Building constructions. Kyiv: SE SRIBC, Ed. 78 vol. 2, pp. 499 – 504, 2013.
[5] A.V. Mazurak, I.V. Kovalyk, V.O. Mykhailenko, V.M. Kalitovskyi, “Strength of a joint line while repairing or strengthening of concrete elements”, Messenger of National University “Lviv Polytechnics”: Theory and practice of building. – Lviv, vol. 755, pp. 368-375, 2013.
[6] L.V. Saliichuk L.V. “Experimental research and theoretical argumentation of strength and anchorage in concrete of pasted pin land ties at shift”, Scientific-technical problems of modern reinforcement” Interdepartmental scientific-technical collector. Edition 74 vol. 2. Kyiv: SE SRIBC, pp. 494-506, 2011.
[7] Concrete and reinforced structure of heavy concrete. Rules of projecting: SSU B V.2.6-156: 2010. – [acting since 2011-06-01], Kyiv: Minregionalbuild of Ukraine, 2011, 116 p. – (National standard of Ukraine).
[8] Concrete and reinforced structures. Fundamentals: SBN V.2.6-98: 2009. – [acting since 2011-07-01], Kyiv: Minregionalbuild of Ukraine, 2011, 71 p. – (State building norms of Ukraine).