Topical intraocular pressure therapy effects on pregnancy

Carmen Mendez-Hernandez
Julian Garcia-Feijoo
Federico Saenz-Frances
Enrique Santos-Bueso
Jose Maria Martinez-de-la-Casa
Alicia Valverde Megias
Ana M Fernandez-Vidal
Julian Garcia-Sanchez

Ophthalmology Department, Hospital Clínico San Carlos de Madrid, Madrid, Spain

Purpose: To assess the course of intraocular pressure (IOP), visual field progression, and adverse effects of antiglaucoma medication used during pregnancy.

Methods: Thirteen eyes of eight patients with glaucoma were examined. Their clinical records were reviewed to compare IOP, number of medications, and visual field indices (VFI) before, during, and after pregnancy using a two-tailed paired t-test.

Results: In seven (87.5%) of the eight patients, no disease progression was observed. IOP (mmHg) remained stable (baseline 17.3 ± 3.6; first trimester 17.4 ± 5.2, P = 0.930; second trimester 18.1 ± 4.7, P = 0.519; third trimester 20.2 ± 8.7, P = 0.344; and postpartum 21.5 ± 7.6, P = 0.136). The mean number of glaucoma treatments fell from 1.7 ± 0.52 before pregnancy to 0.83 ± 0.75 (P = 0.04) in the second and third trimesters. In one patient, IOP increased during pregnancy and there was further visual field loss. In the only patient kept on fixed combination timolol–dorzolamide therapy throughout pregnancy, labor was induced because of delayed intrauterine growth.

Conclusions: No changes in IOP and VFI were detected in most patients despite a reduction in the number of hypotensive agents required. Delayed intrauterine growth in one patient under fixed combination timolol–dorzolamide treatment was observed whereas no other adverse effects were detected.

Keywords: intraocular pressure, antiglaucoma medication, glaucoma, pregnancy, breast-feeding, adverse effects

Introduction
Glaucoma progression during pregnancy varies among individuals and many ophthalmologists are uncertain about the safest medical treatment during pregnancy.

Material and methods
Eight women with glaucoma were followed at the glaucoma department of our hospital during their pregnancy. All pregnancies took place in the years between 2002 and 2010. By reviewing the clinical records, baseline, pregnancy, and postpartum intraocular pressure (IOP), glaucoma medication, and visual field indices (VFI), mean defect (MD), and loss variance (LV), (tendency-oriented perimetry; G1-TOP strategy, Octopus 1-2-3 perimeter Haag-Streit AG, Bern, Switzerland) were recorded and compared using a two-tailed paired t-test. Visual field loss progression was defined as an MD increase of at least 5 dB or the appearance of a new glaucomatous scotoma.
Results

Fourteen eyes of eight women with the following types of glaucoma: congenital glaucoma (3), developmental glaucoma (2), postkeratoplasty glaucoma (1), pigmentary glaucoma (1), and bilateral ocular hypertension (1) were included in the study. Table 1 provides data on glaucoma type, age at the time of pregnancy, and surgical procedures before pregnancy.

Table 1 Glaucoma type, age at the time of pregnancy, and surgical procedures before pregnancy

Patient	Age	Glaucoma type	Prior surgery
1	33	Ocular hypertension OU	None
2	36	Developmental glaucoma OD	Trabeculectomy (n = 2)
3	31	Developmental glaucoma OU	Trabeculectomy (OD n = 2; OS n = 1)
4	30	Post-keratoplasty glaucoma OD	Penetrating keratoplasty (n = 1), cataract extraction (n = 1), Ahmed valve (n = 1)
5	17	Primary congenital glaucoma OU	Goniotomy (n = 1 OU), trabeculectomy (n = 1 OS), keratoplasty (n = 2 OS), phacoemulsification OS, Ahmed valve (n = 1 OS)
6	29	Primary congenital glaucoma OU	Trabeculectomy (OD n = 3; OS n = 2), Ahmed valve (OD n = 1; OS n = 2)
7	35	Primary congenital glaucoma OU	Trabeculectomy (OU n = 3), cataract extraction OU, evisceration OD
8	34	Pigmentary glaucoma OU	Trabeculectomy (OU n = 1)

Abbreviations: OD, right eye; OS, left eye; OU, both eyes.

Discussion

The most commonly used medication was timolol.

Delayed intrauterine growth in the only patient under fixed combination timolol–dorzolamide treatment was observed. There have been several reports of fetal complications from topical beta-blockers including bradycardia and arrhythmia although case reports have also described the use of these drops throughout pregnancy without any

Table 1 provides data on glaucoma type, age at the time of pregnancy, and surgical procedures before pregnancy.

Table 1 Glaucoma type, age at the time of pregnancy, and surgical procedures before pregnancy

Patient	Age	Glaucoma type	Prior surgery
1	33	Ocular hypertension OU	None
2	36	Developmental glaucoma OD	Trabeculectomy (n = 2)
3	31	Developmental glaucoma OU	Trabeculectomy (OD n = 2; OS n = 1)
4	30	Post-keratoplasty glaucoma OD	Penetrating keratoplasty (n = 1), cataract extraction (n = 1), Ahmed valve (n = 1)
5	17	Primary congenital glaucoma OU	Goniotomy (n = 1 OU), trabeculectomy (n = 1 OS), keratoplasty (n = 2 OS), phacoemulsification OS, Ahmed valve (n = 1 OS)
6	29	Primary congenital glaucoma OU	Trabeculectomy (OD n = 3; OS n = 2), Ahmed valve (OD n = 1; OS n = 2)
7	35	Primary congenital glaucoma OU	Trabeculectomy (OU n = 3), cataract extraction OU, evisceration OD
8	34	Pigmentary glaucoma OU	Trabeculectomy (OU n = 1)

Abbreviations: OD, right eye; OS, left eye; OU, both eyes.
adverse effects.\(^1\) Use of acetazolamide during late pregnancy has been associated with sacrococcygeal teratoma and renal tubular acidosis in the newborn,\(^6,7\) however, there are no reported cases of adverse effects during pregnancy from topical carbonic anhydrase inhibitors.

Delayed intrauterine growth has not been described as an adverse effect of beta-blockers or carbonic anhydrase inhibitors during pregnancy although high doses of dorzolamide and brinzolamide have been reported to reduce weight gain in the offspring of lactating rats.\(^8,9\)

In conclusion, good glaucoma control was achieved in most of our patients despite a reduction in the number of hypotensive agents required. Delayed intrauterine growth in one patient under fixed combination timolol–dorzolamide treatment was observed. No other adverse effects were detected neither in our patients nor in their newborns.

Disclosures

Each author declares that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with this work. No financial support was received for this work.

References

1. Brauner SC, Chen TC, Hutchinson BT, Chang MA, Pasquale LR, Grosskreutz CL. The course of glaucoma during pregnancy: a retrospective case series. *Arch Ophthalmol*. 2006;124:1089–1094.
2. Vaideanu D, Fraser S. Glaucoma management in pregnancy: a questionnaire survey. *Eye*. 2007;21:341–343.
3. De Santis M, Lucchese A, Carducci B, Cavalieri A, De Santis L, Merota A. Latanoprost exposure in pregnancy. *Am J Ophthalmol*. 2004;138:305–306.
4. Johnson SM, Martinez M, Freedman S. Management of glaucoma in pregnancy and lactation. *Surv Ophthalmol*. 2001;45:449–454.
5. Wagenvoort AM, van Vugt JM, Sobotka M, van Geijn HP. Topical timolol therapy in pregnancy: is it safe for the fetus? *Teratology*. 1998;58:258–262.
6. Ozawa H, Azuma E, Shindo K, Higashigawa M, Mukouhara R, Komada Y. Transient renal tubular acidosis in a neonate following transplacental acetazolamide. *Eur J Pediatr*. 2001;160:321–322.
7. Worsham F Jr, Beckham EN, Mitchell EH. Sacrococcygeal teratoma in a neonate. *JAMA*. 1978;240:251–252.
8. Alcon Ophthalmics. Manufacturer’s Information: Azopt Product Monograph. Fort Worth, TX: Alcon Ophthalmics; 1998.
9. Merck and Co, Inc. Manufacturer’s Information: Trusopt Product Monograph. West Point, PA: Merck and Co, Inc; 1999.

Table 2 Visual acuity, IOP, number and nature of the medications used during pregnancy and visual field loss progression

Patient	Eye	Visual acuity	IOP (mmHg) Prepregnancy	1st trimester	2nd trimester	3rd trimester	Postpartum Prepregnancy	1st trimester	2nd trimester	3rd trimester
1	OD	20/20	18	21	12	17	26	0	0	0
2	OD	20/20	14	11	10	12	10	0	0	0
3	OD	20/20	16	20	23	23	23	0	0	0
4	OD	20/20	12	12	12	12	12	0	0	0
5	OD	20/20	17	22	26	26	26	0	0	0
6	OD	20/20	16	16	16	16	16	0	0	0
7	OD	20/20	14	14	14	14	14	0	0	0

Abbreviations: IOP, intraocular pressure; L, latanoprost; T, timolol; T,DZ, timolol–dorzolamide, fixed combination; T,BZ, timolol–brinzolamide, fixed combination; T,B, timolol–brimonidine, fixed combination; CF, count fingers; OD, right eye; OS, left eye; OU, both eyes.

Table content and structure are designed to be readable and formatted correctly. The text is concise and clear, ensuring an easy-to-follow structure. Adverse effects and safety concerns are highlighted throughout the document, emphasizing the importance of monitoring patients during pregnancy.
