Genetic study on growth efficiency in Sirohi goats under field condition

Vishnu Kumar and RK Nagda

DOI: https://doi.org/10.22271/j.ento.2020.v8.i5j.7590

Abstract
A study was conducted to estimate the pre- and post-weaning growth efficiency (GE) in 6748 Sirohi goats born during 2005 to 2017 under field conditions. The overall least-squares mean for pre-weaning (0-3M) and post-weaning (3-12M) growth efficiencies were 4.31±0.09 and 1.10±0.031 Kg per kg, respectively. Sire, type of birth, sex of kid and cluster had highly significant (P≤0.01) effect on both pre- and post-weaning relative growth efficiencies whereas year of birth, season of birth and parity had highly significant effect (P≤0.01) only on pre-weaning growth efficiency. Heritability estimates for pre- and post-weaning growth efficiencies were 0.53±0.06 and 0.44±0.06, respectively. Genetic and phenotypic correlation between two traits was negative.

Keywords: Sirohi goat, growth efficiency, least-squares mean, heritability, genetic correlation, phenotypic correlation

Introduction
Goat plays a significant role in providing supplementary income and livelihood to millions of resource poor farmers and landless laborers of rural India. As per 19th Livestock Census, 2012, goat with a population of 135.17 million, constitutes 26.46% of total livestock population in India. Rajasthan, a leading state in goat husbandry, is endowed with 3 registered breeds i.e. Marwari, Sirohi and Jhakrana among 34 breeds of goat registered in the country [1]. Among these three registered breeds; Sirohi breed is predominant in central and southern Rajasthan covering the Arawali hilly area. The breed is also known as Parbatsari, Devgarhi and Ajmeri. Sirohi goat has the quality of disease resistance, adaptability in dry and hot climates and ability to perform under adverse climatic conditions.

To enhance the economic viability of a breed, improvement in its performance is an essential phenomenon. To achieve this aim, selection of elite animals having desirable performance regarding economic gain for future breeding is the only foundation stone for long term improvement in the whole population. Performance of a goat is determined by not only on quantity and quality of production but also on cost of production. Selection of the individuals having desirable performance at an early stage fastens the improvement and lowers the cost of rearing.

Rapid growth until slaughter weight is an important goal for increased meat production. Growth rate at different ages help to determine the right marketable age of kids’ for higher economic return and carcass quality. It facilitates better survivability and faster genetic improvement by decreasing generation interval and increasing replacement rate [2]. Growth rate is also a useful check of the system of feeding and management [3].

Growth efficiency (GE) is the weight gain during a given time interval in relation to the weight at the beginning of the time interval [4]. It expresses the proportionate weight gain in comparison to initial weight. It may also be expressed in percentage. Higher growth efficiency in pre-weaning stage indicates early selection [5].

Scanty of research was conducted on growth efficiency in Sirohi goats. Hence, the present investigation was planned to estimate the pre- and post-weaning growth efficiencies and genetic and non-genetic factors affecting them with genetic parameters in Sirohi goats under field condition to be incorporated as one of the objectives in future breeding strategies.
Materials and Methods

The data were collected from Sirohi goats of registered farmers of different clusters under ICAR sponsored All India Co-ordinated Research Project (AICRP) on goat improvement, Sirohi Field Unit, Livestock Research Station, Vallabh Nagar, Udaipur, Rajasthan during the period 2005 to 2017. The Sirohi goats are being maintained under field grazing (Extensive system) in project area. Goats remained on pasture every day six to eight hours for grazing. Kids are weaned at the age of 3 months.

For the study, sire was taken as random effect whereas year of birth, season of birth, sex of kid, type of birth, cluster and parity were taken as fixed effects. Season of birth was classified as rainy (July-October), winter (November-February) and summer (March-June). Sex was classified as male and female, type of birth as single and multiple, clusters as Vallabh Nagar, Railmagar, Deogarh, Nathdwara, Bhdrasoda, Karget, Bojunda and Salumber and Parity as 1 to 5.

The growth efficiency was calculated by following formula:

\[GE = \frac{(W_2 - W_1)}{W_1} \]

Where

\(GE \) = Growth efficiency
\(W_2 - W_1 \) = Weight gain during a given time interval (In Kg.)
\(W_1 \) = Initial body weight (In Kg.)

Since the subclass numbers were unequal and disproportionate, data were analyzed by Mixed Model Least-Squares and Maximum Likelihood method designed by Harvey [4] to estimate the least-squares means and genetic parameters.

The model used for analysis was as follows:

\[Y_{ijklmnop} = \mu + A_i + B_j + C_k + D_l + E_m + F_n + G_o + e_{ijklmnop} \]

Where

\(Y_{ijklmnop} \) = performance record of the \(p \)th progeny of \(i \)th sire belonging to \(j \)th cluster, \(k \)th season of birth, \(l \)th year of birth, \(m \)th parity, \(n \)th type of birth and \(o \)th sex.
\(\mu \) = Population mean
\(A_i \) = Random effect of sire
\(B_j \) = Fixed effect of \(j \)th cluster (\(j = 1,2,3,4,5,6,7,8 \))
\(C_k \) = Fixed effect of \(k \)th season of birth (\(k = 1,2,3 \))
\(D_l \) = Fixed effect of \(l \)th year of birth (\(l = 1,2,3,4,5,6 \))
\(E_m \) = Fixed effect of \(m \)th parity (\(m = 1,2,3,4,5 \leq 5 \))
\(F_n \) = Fixed effect of \(n \)th type of birth (\(n = 1,2 \))
\(G_o \) = Fixed effect of \(o \)th sex (\(o = 1,2 \))
\(e_{ijklmnop} \) = Residual random error associated with \(Y_{ijklmnop} \) and assumed to be identically and independently distributed with mean zero and constant variance.

Duncan’s Multiple Range Test (DMRT) as modified by Kramer [7] was used to make pair wise comparison among the least squares means.

Results and Discussion

The overall least-squares mean for pre-weaning (0-3M) and post-weaning (3-12M) growth efficiencies were 4.31±0.09 and 1.10±0.031 Kg per kg, respectively which are shown in Table no. 1. From the findings, it could be concluded that 3M body weight is about 5.31 times of birth weight and 12M body weight is 2.1 times of 3M body weight in Sirohi kids. Further, it was also observed that growth efficiency was about 4 times higher during suckling stage than post-weaning period. This might be due to effect of dam’s milk during suckling stage which serves as a complete nutritious food for kid. The finding during pre-weaning period was in close agreement as 4.26±0.16 kg/kg in Sirohi goats [3], 3.98±0.08 kg/kg in Pantja goats [5]. However, lower estimates were also reported in Chegu kids as 2.35±0.04 kg/kg [8], 3.1967±0.10 kg/kg [9] and 3.11±0.08 kg/kg in Tellicherry goats [10], 2.30±0.03 kg/kg in Black Bengal goats [11] and 3.71 kg/kg in Raeni Cashmere goats [12] which might be due to breed difference.

The mean during post-weaning period was similar to Tellicherry goats as 1.34±0.05 [10], as 0.9441±0.019 in Magra sheep [13] and 0.95±0.03 Kg/kg in Muzaffarnagar sheep [14]. However, lower estimate was also reported as 0.62 in Baluchi sheep [15].

Year of birth	Overall GE1 (0-3M)	Overall GE2 (3-12M)	Sire GE1	Sire GE2	Parity	Season of birth	Type of birth	Sex	Cluster
2005	3.55±0.15 **	1.07±0.066 (191)				**	**		
2006	3.66±0.13 *	1.05±0.054 (183)				**	NS		
2007	3.50±0.12 (467)	1.11±0.052 (305)				**	NS		
2008	3.99±0.12 (566)	1.05±0.051 (267)				**	NS		
2009	4.64±0.11 (540)	1.05±0.045 (189)				**	NS		
2010	4.39±0.11 (473)	1.12±0.047 (209)				**	NS		
2011	4.78±0.11 (528)	1.14±0.047 (203)				**	NS		
2012	4.62±0.11 (602)	1.11±0.046 (218)				**	NS		
2013	4.26±0.11 (417)	1.12±0.046 (177)				**	NS		
2014	4.32±0.12 (385)	1.08±0.052 (192)				**	NS		
2015	4.66±0.13 (757)	1.13±0.056 (348)				**	NS		
2016	4.60±0.13 (774)	1.13±0.058 (358)				**	NS		
2017	4.80±0.14 (523)	1.13±0.058 (230)				**	NS		

Effect of Sire

Sire had highly significant effect (\(P \leq 0.01 \)) on pre- and post-weaning growth efficiencies in Sirohi goats under field condition. Similar results were found by in Sirohi goats [3] and in Pantja goats [5] for GE (0-3M).

Effect of year of birth

Year of birth had highly significant effect (\(P \leq 0.01 \)) on pre-
weaning growth efficiency whereas its effect was non-
significant on post-weaning growth efficiency. Pre-weaning
growth efficiency was the maximum in year 2017 whereas it
was the minimum in year 2007. Post-weaning growth
efficiency was higher in year 2011 whereas it was the
minimum in year 2006, 2008 and 2009, though difference was
non-significant. Thus, it was clear that growth efficiency had
somewhat increasing trend from 2005 to 2017 which might be
due to continuous selection programme. The difference in
performance for GEs over the years may be due to variation
in climatic conditions and availability of fodder. Similar
results were obtained in Chegu kids [8], Sirohi goats [3],
Tellicherry goats [10] and in Raieni Cashmere goats [12].

Effect of season of birth
Season of birth had highly significant effect ($P \leq 0.01$) on pre-
weaning GE but non-significant on post-weaning GE. For 0-3M age,
GE was higher of kids born during winter or summer season and lower in rainy season which might be due to more
environmental stress and disease risk during monsoon which
negatively affects the growth rate. In southern Rajasthan,
there is plenty of grazing material having high dry monsoon
content from March to June whose grazing provides more
nutrients to animals. On other hand, being its post-harvest
time and more grazing time due to increased day length, goats
had more feed intake. As a result of all these reasons, kids had
higher growth rate during summer.
The results were in concordance with Chegu kids [8], Sirohi
goats [3] and Tellicherry goats [10]. However, non-significant
effect of season on 0-3M growth efficiency was also reported
in Tellicherry goats [9], in Black Bengal kids [11] and in Pantja
goats [5] which might be due to difference in population and
environmental conditions.

Effect of type of birth
Type of birth had highly significant ($P \leq 0.01$) effect on both
pre- and post-weaning efficiencies in Sirohi goats. For both age durations, kids born as multiples had higher growth
efficiency than single born due to compensatory growth
phenomenon. Another reason may be use of initial body
weight as denominator in calculation of GE which is usually
lower in multiple than single for same age group. Same
findings were noted in Sirohi goats [3], in Pantja goats [5] and in Raieni cashmere goats [12].
However, non-significant effect of type of birth was also
reported in Tellicherry goats [9, 10] as well as in Black Bengal
goats [11].

Effect of sex of kid
Sex of kid had highly significant ($P \leq 0.01$) effect on both pre-
and post-weaning growth efficiencies in Sirohi goats. In both
age durations, male had higher growth efficiency than females
which is due to testosterone hormone effect. The results were
in concordance with Chegu goats [8] and Pantja goats [5].
Non-significant effect of sex on growth efficiency was reported
in Sirohi goats [3], in Tellicherry goats [9, 10], in Black Bengal
goats [11] and in Raieni cashmere goats [12]. The difference may
due to variation in population under study.

Effect of Cluster
Cluster had highly significant ($P \leq 0.01$) effect on both pre-
and post-weaning growth efficiencies in Sirohi goats. For GE
(0-3M) Railmagra was first whereas Karget stood first
regarding post-weaning GE. The cause of variation among
clusters might be due to management practices and
availability of feeds. Similar finding were observed in Sirohi
goats [3] and in Pantja goats [5]. The estimate of post-weaning GE for cluster ‘Salumber’ could not be calculated due to non-
availability of data of 12M body weight.

Effect of Parity
Parity had highly significant ($P \leq 0.01$) effect on pre-weaning
GE whereas its effect was non-significant on post-weaning
RGR. Kids born in first or second parity had higher growth
efficiency than kids born in later parities which might be due
to optimum physiological stamina of dam during early age to
produce more milk. After weaning, growth rate chiefly
depends on grazing that’s why; the effect of parity in post
weaning GE was non-significant. Significant effect of parity
on pre-weaning GE was also recorded in Tellicherry goats [9]
and in Black Bengal goats [11] whereas non-significant effect
of parity on pre-weaning GE was reported in Sirohi goats [3],
Tellicherry goats [10] and Pantja goats [5] which may be due to
spatial or temporal difference in sample.

Genetic parameters
Heritability estimates of both traits were estimated from sire
component of variance by paternal half sib relationship by
Mixed Model Least-Squares and Maximum Likelihood
method [6]. Heritability estimates for pre- and post-weaning
growth efficiency were 0.53±0.06 and 0.44±0.06. The results
showed that pre- and post-weaning GEs are medium to highly
heritable traits. The heritability estimates provides a scope
that individual selection alone may be used for selection in
case of non-availability of other information.
Lower estimates for GE (0-3M) were reported in Chegu goats
as 0.03±0.044 [8], 0.315±0.117 in Sirohi goats [3], in
Tellicherry goats as 0.224±0.10 [10], as 0.24±0.08 in Pantja
goats [5] and as 0.07±0.03 in Raieni cashmere goats [12].
Heritability for post-weaning GE was also reported as
0.246±0.201 in Tellicherry goats [10]. Heritability estimates of
the growth efficiencies in the present study was found on
higher side from other references which might be due to
difference in population under study or method of estimation
or environmental variation.
The genetic correlation between two traits was -0.64±0.10
whereas phenotypic correlation was -0.38. Thus, both the
correlations were negative showing that kids having higher
GE in pre-weaning stage had lower GE during post-weaning
stage which might be due to compensatory growth effect.
Similar findings were reported by in Pantja goats [5].

Conclusion
The present investigation revealed that in Sirohi goats, pre-
weaning growth efficiency was very higher than post-weaning
growth efficiency. Multiple born kids had higher growth
efficiencies which suggest for setting of breeding plan to get
multiple births which would provide more economic gain to
farmers. Medium to high heritability of growth efficiency
offer a scope for individual selection for further genetic
improvement.

Acknowledgement
The author is thankful to Principal Investigator of All India
Co-ordinated Research Project for Goat Improvement (Sirohi
Field Unit), LRS, Vallabh Nagar, Udaipur (ICAR- Project) for
providing data and for providing me all the necessary
facilities to conduct the research.
References

1. NBAGR. National Bureau of Animal genetic Resources, India. 2020.http://www.nbagr.res.in
2. Singh MK, Rai B, Singh NP. Environmental and genetic effects on growth traits in Jamunapari kids. Indian Journal of Animal Sciences. 2009; 79(6):582-586.
3. Sharma MC. Genetic Investigation of body weight and morphometry traits in Sirohi goats in the field. Ph.D. thesis. Maharani Pratap University of Agriculture and Technology, Udaipur, 2005.
4. Sharma KP. Analysis of growth rate in Deogarhi and Parbatsari goats. M.Sc. Ag. Thesis, Rajasthan Agricultural University, Bikaner, 1994.
5. Khadda BS, Singh B, Singh DV, Singh SK, Singh CB. Factors affecting relative growth rate of Pantja kids under field conditions. Indian Journal of Small Ruminants. 2019; 25(1):37-40.
6. Harvey WR. User’s Guide for LSMLMW and MIXMDL PC-2 Version. Mixed model least-square and maximum likelihood computer program. Ohio State University, Columbus, Ohio, U.S.A. 1990.
7. Kramer CY. Extension of multiple range tests to group correlated means. Biometrics. 1957; 13:13.
8. Karna DK, Koul GL, Bisht GS. Birth weight, morphometry and relative gain in body weight of Cheghu kids. Indian Journal of Animal Sciences. 2001; 71(2):180-182.
9. Kumar KG, Thiruvenkdan AK, Karunanithi KK. Factors affecting growth traits of Tellicherry kids in different seasons. Indian Journal of Small Ruminants. 2005; 11(1):88-91.
10. Thiruvenkadan AK, Murugan M, Muralidharan J, Chinnamani K. Genetic and non-genetic factors affecting body weight in Tellicherry goats. South African Journal of Animal Science. 2009; 39:107-111.
11. Kumar N. Growth performance of Black Bengal goat under farm and village conditions of management. M.V.Sc. Thesis, LPM, Birsa Agricultural University, Ranchi, Jharkhand, 2018.
12. Mokhtari MS, Razmkabir M, Ghiasi H, Mohammadi Y. Genetic evaluation of growth rate and efficiency related traits in Raeini Cashmere goats. Iranian Journal of Applied Animal Science. 2019; 9(2):275-282.
13. Dass G, Sing VK, Ayub M. Growth performance of Magra sheep under hot arid climate. Indian Journal of Animal Sciences. 2004; 74(4):441-443.
14. Mandal A, Pant KP, Nandy DK, Rout PK, Roy R. Genetic analysis of growth traits in Muzaffarnagar sheep. Tropical Animal Health and Production. 2003; 35:271-284.
15. Kesbi FG, Gholizadeh M. Genetic and phenotypic aspects of growth rate and efficiency-related traits in sheep. Small Ruminant Research. 2017; 149:181-187