A CRITERION FOR Z-STABILITY WITH APPLICATIONS TO CROSSED PRODUCTS

JULIAN BUCK

Abstract. Building on an argument by Toms and Winter, we show that if \(A \) is a simple, separable, unital, \(Z \)-stable C*-algebra, then the crossed product of \(C(X, A) \) by an automorphism is also \(Z \)-stable, provided that the automorphism induces a minimal homeomorphism on \(X \). As a consequence, we observe that if \(A \) is nuclear and purely infinite then the crossed product is a Kirchberg algebra.

1. Introduction

In [8], Jiang and Su constructed a C*-algebra \(Z \) (now known as the Jiang-Su algebra) which is simple, separable, unital, infinite-dimensional, strongly self-absorbing (in the sense of [18]), nuclear, and has the same Elliott invariant as the complex numbers \(\mathbb{C} \). A separable C*-algebra \(A \) is said to be \(Z \)-stable if there is an isomorphism \(A \otimes Z \cong A \). The property of \(Z \)-stability appears to be intimately connected to the question of whether or not a simple, separable, nuclear C*-algebra is classified by its Elliott invariant. (See [5, 15] for example.)

In this article, we prove the following:

Theorem 1.1. Let \(X \) be an infinite compact metric space and let \(A \) be a simple, separable, unital, \(Z \)-stable C*-algebra. Let \(\beta \in \text{Aut}(C(X, A)) \), and suppose that the homeomorphism \(\phi: X \to X \) induced by \(\beta \) is minimal. Then the crossed product C*-algebra, \(C^*(\mathbb{Z}, C(X, A), \beta) \) is also \(Z \)-stable.

By “the homeomorphism induced by \(\beta \),” what is meant is the induced map on the primitive spectrum of \(C(X, A) \) (which can obviously be identified with \(X \)).

Significant progress has been made in recent years on the classification of crossed product C*-algebras arising from minimal dynamical systems. Toms and Winter ([17]) showed that crossed products of infinite, finite-dimensional metric spaces by minimal homeomorphisms have finite nuclear dimension and are \(Z \)-stable, and consequently that, when the projections in the crossed product separate traces, the crossed products are classified by ordered K-theory. More recently Elliott and Niu ([4]) have demonstrated that \(Z \)-stability holds for such crossed products even when \(X \) is infinite-dimensional, so long as the minimal dynamical system has mean dimension zero.

Not as much is known in the case for crossed products of C*-algebras of the form \(C(X, A) \). Hua ([6]) has shown that in the case where \(X \) is the Cantor set, \(A \) has
tracial rank zero, and the automorphisms in the fibre direction are K-theoretically trivial, the resulting crossed product has tracial rank zero. Our result contributes to the understanding of these crossed products, which are further studied by the first-named author in [2]. The main results there assume that A is locally subhomogeneous, and hence our Corollary 2.2, which deals with the case where A is purely infinite, is independent of the conclusions in [2].

We would like to thank Andrew Toms and Wilhelm Winter for suggesting the main technical lemma of this paper as a method to prove Theorem 1.1, and for other helpful comments.

2. The proof

The proof that certain crossed products here are \mathcal{Z}-stable is based on an argument of Toms and Winter that crossed products of $C(X)$ by minimal homeomorphisms are \mathcal{Z}-stable. This argument appeared (as Theorem 4.4) in a preprint version ([16]) of [17]. In the published version, it was replaced by an indirect proof of this fact.

We have broken apart their argument into a more general criteria for \mathcal{Z}-stability (the following theorem), followed by an application to our crossed products.

Lemma 2.1. Let A be a separable, unital C*-algebra. Define $c_0, c_{1/2}, c_1 \in C([0, 1])$ by

$$c_0(t) = \begin{cases} 0 & t \leq 3/4, \\ 1 & t = 1, \\ \text{linear} & \text{else.} \end{cases}$$

$$c_1(t) = \begin{cases} 1 & t = 0, \\ 0 & t \geq 1/4, \\ \text{linear} & \text{else.} \end{cases}$$

$$c_{1/2}(t) = \begin{cases} 0 & t = 0, \\ 1 & 1/4 \leq t \leq 3/4, \\ \text{linear} & \text{else.} \end{cases}$$

Suppose that for any finite set $F \subset A$ and any $\eta > 0$, there exist \mathcal{Z}-stable subalgebras $A_0, A_{1/2}, A_1 \subset A$ and a positive contraction $h \in A_+$ such that $A_{1/2} \subset A_0 \cap A_1$ and for every $a \in F$, there exist $a_i \in c_i(h)A_i c_i(h)$ for $i = 0, 1/2, 1$ such that

$$\|a - (a_0 + a_{1/2} + a_1)\| < \eta$$

$$\|[a_{1/2}, h]\| < \eta$$

It then follows that A is \mathcal{Z}-stable.

Proof. Using [13 Theorem 7.2.2] and a diagonal sequence argument (cf. [14 Section 4.1]), it suffices to find, for every $\varepsilon > 0$ and every pair of finite subsets $F \subset A$ and $E \subset \mathcal{Z}$, a unital $*$-homomorphism

$$\zeta: \mathcal{Z} \to A_\infty := \prod_N A / \bigoplus_N A,$$

such that $\|[\iota_A(a), \zeta(z)]\| < \varepsilon$ for all $a \in F$ and $z \in E$ (with $\iota: A \to A_\infty$ the canonical embedding).
Therefore, let $\varepsilon > 0$ and finite sets $\mathcal{F} \subset A$ and $\mathcal{E} \subset Z$ be given. Define $d_0, d_{1/2}, d_1 \in C([0, 1])$ by

$$
d_0(t) = \begin{cases} 0 & t \leq 1/2, \\
1 & t \geq 3/4,
\end{cases} \quad d_1(t) = \begin{cases} 1 & t \leq 1/4, \\
0 & t \geq 1/2,
\end{cases} \quad d_{1/2}(t) = \begin{cases} 0 & t = 0 \leq 1/4, t \geq 3/4, \\
1 & t = 1/2,
\end{cases}
$$

Then $\{c_0, c_{1/2}, c_1\}$ and $\{d_0, d_{1/2}, d_1\}$ are both partitions of unity for $[0, 1]$. We then define

$$
C = C^*(d_0 \otimes Z \otimes 1_Z \otimes 1_Z \cup d_{1/2} \otimes 1_Z \otimes 1_Z \otimes 1_Z \cup d_1 \otimes 1_Z \otimes 1_Z \otimes 1_Z) \subset C([0, 1]) \otimes Z \otimes Z \otimes Z
$$

and

$$
\tilde{C} = C^*(C([0, 1]) \otimes 1_Z \otimes Z \cup C).
$$

Identifying $C^*(d_0, d_{1/2}, d_1)$ in the obvious way with $C(Y)$ where $Y = [\frac{1}{4}, \frac{3}{4}]$, we note that \tilde{C} is a $C(Y)$-algebra, all of whose fibres are isomorphic to Z. Therefore, by \[3\], C is Z-stable, so there exists a unital $*$-homomorphism $\zeta: Z \rightarrow C \subset \tilde{C}$.

Note that

$$
\mathcal{S} := (d_0 \otimes Z \otimes 1_Z \otimes 1_Z) \cup (d_{1/2} \otimes 1_Z \otimes Z \otimes 1_Z) \cup (d_1 \otimes 1_Z \otimes 1_Z \otimes Z),
$$

generates C as a C^*-algebra. So, by approximating \mathcal{E} by $*$-polynomials in \mathcal{S}, we see that there exists $\beta > 0$ and a finite subset $\mathcal{S}' \subset \mathcal{S}$ such that, if $\psi: C \rightarrow B$ is any $*$-homomorphism between C^*-algebras and $\|\psi(s), b\| < \beta$ for all $s \in \mathcal{S}'$ then $\|\psi(\zeta(z)) - b\| < \varepsilon/2$ for all $z \in \mathcal{E}$.

Set $M = \max\{\|z\| : z \in \mathcal{E}\}$ and let $\eta \leq \varepsilon/(2M)$ be sufficiently small so that if $\|a_{i/2}, h\| < \eta$ then $\|a_{1/2}, d_1(h)\| < \beta$ for $i = 0, 1$. Use the hypothesis to find the subalgebras A_i and the positive contraction h.

Since each A_i is Z-stable, there exists unital $*$-homomorphisms $\overline{\pi}_i: Z \rightarrow (A_i)_{\infty} \cap \iota_{A_i}(A_i) \subset A_{\infty} \cap \iota_{A_i}(A_i)$. Having found $\overline{\pi}_{1/2}$ first, a speeding up argument (cf. the proof of \[19\] Proposition 4.4) shows that we can arrange that $\overline{\pi}_i(Z)$ commutes with $\overline{\pi}_{1/2}(Z)$, for $i = 0, 1$.

We may define a unital $*$-homomorphism $\gamma: \tilde{C} \rightarrow A_{\infty}$ by setting

$$
\gamma(f_1 \otimes 1_Z \otimes 1_Z) = (f_1)(h)\overline{\pi}_0(z), \quad \gamma(f_1 \otimes 1_Z \otimes 1_Z) = (f_1)(h)\overline{\pi}_{1/2}(z), \quad \gamma(f_1 \otimes 1_Z \otimes 1_Z) = (f_1)(h)\overline{\pi}_1(z),
$$

for all $f \in C([0, 1])$. (The proof that this defines a $*$-homomorphism mainly consists of checking that anything occurring on the right-hand sides of two different equations above commutes.) Finally, define $\zeta = \gamma \circ \zeta: Z \rightarrow A_{\infty}$.

For $a \in F_1$, let $a \approx_{\varepsilon} a_0 + a_{1/2} + a_1$ as in the hypothesis. In fact, we may assume that $a_i = c_i(h)a'_i(c_i(h))$ exactly, for some $a'_i \in A_i$. Then, for $z \in \mathcal{E}$,

$$
[a, \zeta(z)] \approx_{2\|z\|\varepsilon} [a_0, z] + [a_{1/2}, z] + [a_1, z].
$$

Notice that since $\overline{\zeta}(z) \in \tilde{C}$, it follows that there exists $z_0 \in Z$ such that

$$
\overline{\zeta}(z)(t) = z_0 \otimes 1_Z \otimes 1_Z
$$
for all \(t \in [0, 1/4] \). Consequently,
\[
\zeta(z)a_t = \gamma(c_1 \otimes z_0 \otimes 1_\mathcal{Z} \otimes 1_\mathcal{Z})a_t'(c_1(h))
= c_1(h)^t\pi_1(z_0)a_t'(c_1(h))
= c_1(h)a_t'(\pi_1(z_0)c_1(h))
= a_t \zeta(z).
\]
(the last step is essentially done by reversing earlier steps). Likewise, \(\zeta(z)a_0 = a_0 \zeta(z) \). Also, we have for \(z \in \mathcal{Z} \),
\[
[a_{1/2}, \gamma(d_0 \otimes z \otimes 1_\mathcal{Z} \otimes 1_\mathcal{Z})] = [a_{1/2}, d_0(h)\pi_0(z)]
= [a_{1/2}, d_0(h)]
< \beta.
\]
Likewise, we find that \(\| [a_{1/2}, \gamma(s)] \| < \beta \) for all \(s \in \mathcal{S}' \), and therefore,
\[
\|[a_{1/2}, \gamma(z)]\| < \eta/2
\]
for \(z \in \mathcal{E} \). It follows that
\[
\| [a, \zeta(z)] \| < \varepsilon/2 + \varepsilon/2 = \varepsilon,
\]
which completes the proof. \(\Box \)

Proof of Theorem 1.1 Set \(B := \mathcal{C}^*(\mathbb{Z}, \mathcal{C}(X, \mathcal{A}), \beta) \), and let \(u \in B \) denote the canonical unitary. We shall show that \(B \) satisfies the hypotheses of Lemma 2.1. Let \(\eta > 0 \) and a finite set \(\mathcal{F} \subset B \) be given. First, we may assume that
\[
\mathcal{F} \subset \{ u^j\mathcal{C}(X) : 0 \leq j \leq k - 1 \}
\]
for some \(k > 1 \), since the linear span of these elements and their adjoints is dense in \(B \). Set \(M := \max \{ \| f \| : u^j f \in \mathcal{F} \} \). Combining Propositions 1.1 and 3.2 of \([17] \), there exists \(h \in \mathcal{C}(X) \otimes 1_\mathcal{A} \) and points \(x_0, x_1 \in X \) with disjoint orbits such that \(h(x_j) = j \) (for \(j = 0, 1 \)) and such that \(h, u \) satisfy the relations
\[
\|[u, h]\| < \frac{\eta}{3M}, \quad \|[u, c_i(h)^{1/k}]\| < \frac{2\eta}{3Mk(k-1)}
\]
for \(i = 0, 1/2, 1 \) and with the \(c_i \) given as in the statement of Proposition 1.1. It then follows that, for \(a = u^j f \in \mathcal{F} \) and \(i = 0, 1/2, 1 \), we have
\[
\|c_i(h)a - c_i(h)^{(k-\ell)/k} f(c_i(h)^{1/k}u)\| \leq M\|[u, c_i(h)^{1/k}]\|(\ell + (\ell - 1) + \cdots + 1)
\leq \frac{M\ell(\ell + 1)}{2} \frac{2\eta}{3Mk(k-1)}
\leq \eta/3.
\]
Thus,
\[
a = c_0(h)a + c_{1/2}(h)a + c_1(h)a \approx_\eta a_0 + a_{1/2} + a_1,
\]
where \(a_i = c_i(h)^{(k-\ell)/k} f(c_i(h)^{1/k}u) \).

Set \(Y_i := \{ x_i \} \) for \(i = 0, 1 \) and \(Y_{1/2} := \{ x_0, x_1 \} \). For \(i = 0, 1/2, 1 \), set
\[
A_i := C^*(\mathcal{C}(X, \mathcal{A}) \cup u\mathcal{C}_0(X \setminus Y_i, \mathcal{A})) \subset B.
\]
We see that \(A_{1/2} \subseteq A_0 \cap A_1 \), and \(a_i \in c_i(h)A_i c_i(h) \). Results of [2] show that each \(A_i \) is \(Z \)-stable. Moreover, for \(i = 0, 1/2, 1 \), (and in particular, for \(i = 1/2 \)),

\[
\| [a_{1/2}, h] \| \leq \| [c_i(h)u^f, h] \| + \frac{2\eta}{3} \\
\leq M \| [u^f, h] \| + \frac{2\eta}{3} \\
\leq \frac{M\eta}{3M} + \frac{2\eta}{3} \\
= \eta.
\]

This verifies the hypotheses of Lemma 2.1, and therefore, \(B \) is \(Z \)-stable.

It is well-known (see [12]) that exact \(Z \)-stable \(C^* \)-algebras are either stably finite or purely infinite. This allows us to obtain a useful corollary in the case where \(A \) is nuclear and purely infinite.

Corollary 2.2. Adopt the hypotheses and notation of Theorem 1.1 and assume in addition that \(A \) is nuclear and purely infinite. Then \(B \) is a Kirchberg algebra. Consequently, \(B \) has nuclear dimension at most 3.

Proof. By Theorem 1.1 the algebra \(B \) is \(Z \)-stable. It is clearly infinite, since it contains the purely infinite algebra \(A \) as the subalgebra \(1_{C(X)} \otimes A \), and it is nuclear. Therefore it is purely infinite. Since \(B \) is simple (this essentially follows from [11]), it is a Kirchberg algebra. The conclusion about the nuclear dimension of \(B \) follows immediately from Theorem 7.1 of [10].

If \(A \) is in the UCT class, then so is the algebra \(B \) of Corollary 2.2, and hence such algebras are classified by their K-theory using the theorems of Kirchberg and Phillips ([7], [11]).

References

[1] R. J. Archbold and J. S. Spielberg, *Topologically free actions and ideals in discrete \(C^* \)-dynamical systems*, Proceedings of the Edinburgh Mathematical Society (Series 2), **37**(1994), 119–124.

[2] J. Buck, *Large subalgebras of certain crossed product \(C^* \)-algebras*, in preparation.

[3] M. Dadarlat and W. Winter, *Trivialization of \(C(X) \)-algebras with strongly self-absorbing fibres*, Bull. Soc. Math. France **136**(2008), no. 4, 575–606.

[4] G. A. Elliott and Z. Niu, *The \(C^* \)-algebra of a minimal homeomorphism of zero mean dimension*, preprint [arXiv:1406.2382 [math.OA]].

[5] G. A. Elliott and A. S. Toms, *Regularity properties in the classification program for separable amenable \(C^* \)-algebras*, Bull. Amer. Math. Soc. (N.S.) **45**(2008), no. 2, 229–245.

[6] J. Hua, *Crossed products by \(\alpha \)-simple automorphisms on \(C^* \)-algebras \(C(X, A) \)*, preprint [arXiv:0910.3299v2 [math.OA]].

[7] E. Kirchberg, *The classification of purely infinite \(C^* \)-algebras using Kasparov theory*, preprint, 1994.

[8] X. Jiang and H. Su, *On a simple unital projectionless \(C^* \)-algebra*, Amer. J. Math. **121**(1999), 359–413.

[9] E. Kirchberg and M. Rørdam, *Non-simple purely infinite \(C^* \)-algebras*, Amer. J. Math. **122**(2000), 637–666.

[10] H. Matui and Y. Sato, *Decomposition rank of UHF-absorbing \(C^* \)-algebras*, preprint [arXiv:1303.3217v2 [math.OA]].

[11] N. C. Phillips, *A classification theorem for nuclear purely infinite simple \(C^* \)-algebras*, Documenta Math. (5)(2000), 49–114.

[12] M. Rørdam, *The stable and the real rank of \(Z \)-absorbing \(C^* \)-algebras*, Int. J. Math. **15**(2004), 1065–1084.
[13] M. R. Rørdam and E. Størmer, *Classification of nuclear C*-algebras. Entropy in operator algebras*, volume 126 of *Encyclopaedia of Mathematical Sciences*. Springer-Verlag, Berlin, 2002. Operator Algebras and Non-commutative Geometry, 7.

[14] A. Tikuisis, *Nuclear dimension, Z-stability, and algebraic simplicity for stably projectionless C*-algebras*, Math. Ann., to appear.

[15] A. S. Toms, *On the classification problem for nuclear C*-algebras*, Ann. of Math. (2) 167 (2008), 1059–1074.

[16] A. S. Toms and W. Winter, *Minimal dynamics and K-theoretic rigidity: Elliott’s conjecture*, preprint (arXiv:math.OA/0903.4133v1).

[17] A. S. Toms and W. Winter, *Minimal dynamics and K-theoretic rigidity: Elliott’s conjecture*, Geom. and Func. Anal. (1) 23 (2013), 467–481.

[18] A. S. Toms and W. Winter, *Strongly self-absorbing C*-algebras*, Trans. Amer. Math. Soc. 359 (2007), 3999–4029.

[19] W. Winter, *Nuclear dimension and Z-stability of pure C*-algebras*, Invent. Math 187(2012) no. 2, 259–342