RESEARCH ARTICLE

PREVALENCE AND RISK FACTORS OF OBESITY AMONG CHILDREN AND ADOLESCENTS IN SAUDI ARABIA: A META-ANALYSIS

Kawthar A. Bokari¹, Anas H. Alzahrani², Abdullah J. Alghamdi³, Majed G. Alzahrani⁴, Mohammed M. Alawfi⁵, Yasser M. Al Rehaili⁶, Abdullh H. Al-Qahtani⁷, Bayan I. Alorinan⁸, Alaa M. Alajmi⁹ and Rahma M. Muzaffar¹⁰

1. Medical Intern, College of Medicine, Taif University, Saudi Arabia.
2. General Practitioner, Ministry of Health, AlBaha, Saudi Arabia.
3. Medical Intern, College of Medicine, King Khalid University, Abha, Saudi Arabia.
4. Medical Intern, College of Medicine, AlBaha University, AlBaha, Saudi Arabia.
5. Medical Intern, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
6. General Practitioner, Ministry of Health, Medina, Saudi Arabia.
7. Medical Intern, College of Medicine, Shaqra University, Riyadh, Saudi Arabia.
8. Medical Intern, College of Medicine, King Abdulaziz University, Riyadh, Saudi Arabia.
9. Medical Intern, College of Medicine, Imam Abdulrahman bin Faisal University, Riyadh, Saudi Arabia.
10. Medical Intern, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.

Background: Although there is a plethora of studies concerning obesity in Saudi Arabia, there is a lack of a systematic analytical approach of obesity prevalence among children and adolescents.

Objectives: To assess the prevalence and risk factors of obesity among children and adolescents in Saudi Arabia. The trend of obesity prevalence over the past two decades was additionally investigated.

Methods: A meta-analysis was conducted involving cross-sectional studies published between 2000 and 2020 in PubMed, Embase, and Google Scholar. Pooled logit-transformed prevalence rates were computed for all studies and for subgroups based on the used diagnostic criteria, period of data collection, and region. Personal and parental sociodemographic risk factors were collected and expressed as odds ratio and 95% confidence intervals (95% CIs). Trend analysis was performed using a chi-squared test for linear trend, and a meta-regression was applied to assess the sources of heterogeneity.

Results: Twenty-six studies met the inclusion criteria (43,187 subjects, 54.3% males). The pooled prevalence of obesity was 14.13%, and it increased significantly in 2016-2020 compared to 2000-2005 (OR=2.58, p<0.0001). Obesity was significantly associated with male sex (OR=1.36, p=0.007), performing a physical activity <3 times/week (OR=1.59, p=0.025), consuming soft drinks ≥2 times/day (OR=1.73, p=0.014), having a working mother (OR=1.20, p=0.036), and living in an urban region (OR=1.44, p=0.033). Between-study heterogeneity was significant, and it was explained by regional variation (F(2,5)=12.519, p=0.028).

Background: Although there is a plethora of studies concerning obesity in Saudi Arabia, there is a lack of a systematic analytical approach of obesity prevalence among children and adolescents.

Objectives: To assess the prevalence and risk factors of obesity among children and adolescents in Saudi Arabia. The trend of obesity prevalence over the past two decades was additionally investigated.

Methods: A meta-analysis was conducted involving cross-sectional studies published between 2000 and 2020 in PubMed, Embase, and Google Scholar. Pooled logit-transformed prevalence rates were computed for all studies and for subgroups based on the used diagnostic criteria, period of data collection, and region. Personal and parental sociodemographic risk factors were collected and expressed as odds ratio and 95% confidence intervals (95% CIs). Trend analysis was performed using a chi-squared test for linear trend, and a meta-regression was applied to assess the sources of heterogeneity.

Results: Twenty-six studies met the inclusion criteria (43,187 subjects, 54.3% males). The pooled prevalence of obesity was 14.13%, and it increased significantly in 2016-2020 compared to 2000-2005 (OR=2.58, p<0.0001). Obesity was significantly associated with male sex (OR=1.36, p=0.007), performing a physical activity <3 times/week (OR=1.59, p=0.025), consuming soft drinks ≥2 times/day (OR=1.73, p=0.014), having a working mother (OR=1.20, p=0.036), and living in an urban region (OR=1.44, p=0.033). Between-study heterogeneity was significant, and it was explained by regional variation (F(2,5)=12.519, p=0.028).

Corresponding Author:- Kawthar A. Bokari
Address:- Ar Ruddaf Street, Unite16, Taif City, Makkah Province, Saudi Arabia.
Conclusion: The high obesity prevalence among young populations in Saudi Arabia underscores the importance of implementing intensified school- and community-based preventive programs, focusing on the established risk factors.

Introduction:-
Obesity is a significant public health problem characterized by abnormal accumulation of fat in the body. In multiple regions worldwide, obesity has been associated with negative health consequences, such as coronary heart disease, diabetes, and metabolic disorders (Csige et al., 2018). Since 1975, the global prevalence of obesity has tripled, reaching up to 13% of the adult population and 18% of children and adolescents in 2016 (World Health Organization, 2020). In childhood, obesity can lead to hyperlipidemia, abnormal glucose tolerance, and hypertension as well as unfavorable neurological, gastrointestinal, and endocrine consequences (Di Bonito et al., 2017; Falkner, 2017; Turer et al., 2018). Moreover, there is an association between obesity in childhood and adolescence and future obesity in adulthood (Llewellyn et al., 2016). Obesity among children and adolescent populations is also a preventable cause for premature death (Lindberg et al., 2020). This way, childhood obesity and its consequences would ultimately represent a significant burden on patients, families, and healthcare systems (Ash et al., 2017; Hayes et al., 2016).

The clinical classification of obesity in adults relies on using the body mass index (BMI) at a cutoff point of 30 kg/m² for both sexes as defined by the World Health Organization (WHO) (World Health Organization, 1998). However, obesity cannot be defined using such a cutoff in children and adolescents because BMI is greatly influenced by the age and sex during the early stage of life (Hajian-Tilaki and Heidari, 2013). Therefore, a number of classification criteria have been officially released by the WHO (de Onis et al., 2007; World Health Organization, 2006), Center for Disease Control and Prevention (CDC) (Centres for Disease control and prevention, 2000), and the International Obesity Task Force (IOTF) (Cole et al., 2000). The variation in these definitions might have created a discrepancy in the estimated prevalence rates across different studies worldwide.

In Saudi Arabia, data regarding obesity in children and adolescents are derived from individual cross-sectional studies; therefore, prevalence estimates may be inconsistent, particularly with the variation in obesity definitions, lifestyle characteristics, and study settings. The effects of personal and social characteristics on the epidemiological patterns of obesity have not been systematically in a systematic manner so far. There is a need to get an insight into obesity prevalence to identify the current burden and to extrapolate the future status of related consequences. As such, we sought to investigate the prevalence of obesity and its associated risk factors among children and adolescents in Saudi Arabia, considering the differences in the prevalence attributable to gender, lifestyle characteristics, and region. In addition, we aimed to identify the national trend of obesity over the past two decades.

Methods:-
Eligibility Criteria
The present meta-analysis followed the guidelines of the the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) statement (Moher et al., 2009). Eligible studies included all original articles (cross-sectional studies) which have reported the prevalence of obesity among apparently healthy children and adolescents (aged less than 20 years) in Saudi Arabia during the period between 2000 and 2020. Such articles should have been published in peer-reviewed journals and written in English language. Case-control studies, systematic reviews, narrative reviews, and meta-analyses were excluded. Screening studies carried out in pediatric/primary care clinics and/or hospitals were not considered to exclude the effect of confounding diseases on the prevalence rates of obesity.

Types of outcome measures
The primary outcomes included the proportion of children and/or adolescents with obesity. The secondary outcomes included the proportion of obesity based on gender, as well as proportion of obese children/adolescents in each study group of other personal characteristics (eating and lifestyle characteristics) and demographic variables (region of residence, mother education, mother work status, etc.).
Diagnostic criteria of obesity
The primary outcomes in the included studies should have been defined according to the following official guidelines: 1) the WHO, where obesity was defined at BMI values of >3 or >2 standard deviations (SDs) above the median growth standard among children aged <5 or between 5 and 19 years, respectively (de Onis et al., 2007; World Health Organization, 2006); 2) CDC 2000, where obesity was diagnosed at > 95th BMI percentiles among children aged 2-19 years (Centres for disease control and prevention, 2000); 3) IOTF, where a set of distinct age- and sex-specific BMI cut points could be used to define obesity in the 2-18 year age category, corresponding to adult BMI values (Cole et al., 2000).

Search Strategy
A specific search strategy was developed to search for eligible studies in PubMed, Embase, and Google Scholar as of September 25, 2020. The search process was limited to studies published between 2000 and 2020. Two independent authors (KAB and AHA) performed the search process across all databases using predefined keywords and Boolean operators. An example of the used strategy in the PubMed database is shown in Appendix 1.

Study Selection and Data Collection
The obtained search results were extensively screened by two authors (AJA and MGA), and the reference lists of the screened articles were searched for potentially eligible articles. The full articles of eligible studies were downloaded and checked for the consistency with the predetermined criteria of inclusion and the suitability of the reported outcomes for further analysis. Any disagreement was resolved by discussions and consultation with a third author (MMA). Data of included articles were extracted in a Microsoft Excel spreadsheet (Microsoft Excel 2016) containing the following headers: 1) characteristics of studies: the last name of the first author, year of publication, study design, Province in Saudi Arabia, and setting (schools, household surveys, etc.) 2) the method of obesity diagnosis, 3) participants’ characteristics: sample size, number of males and females, and age range 4) obesity-related outcomes: the frequency of obese participants in the whole population, in males and females, and the frequency of obesity in various lifestyle and parental-related groups (watching TV, physical activity, maternal education and employment status, and family income).

Assessment of the methodological quality
The Joanna Briggs Institute's Critical Appraisal Checklist for Prevalence Studies (Munn et al., 2015) was used to assess the methodological quality. The appraisal tool includes the assessment of the relevance of the target population, participants’ recruitment, sampling, description of subjects, the validity of the diagnostic method and its consistency for all participants, and the appropriateness of the statistical analysis. A quality score ranging between 0 and 9 was assigned to each study based on the appraisal process, and the methodological quality was judged as “low”, “moderate” and “high” for scores ranging between 1-4, 5-7, and 8-9, respectively. Two independent authors performed the appraisal process (YMA and AHA).

Statistical Analysis
Statistical analysis was performed using the meta package in R software (R i386 version 4.0.0) (Harrer et al., 2019). The primary outcome was analyzed by pooling the proportion of obese children/adolescents in relation to sample size. The obtained proportions were transformed using a logit transformation (Warton and Hui, 2011) to compute an effect size and its respective Clopper-Pearson 95% confidence interval (95%CI) using the metaprop command. National trend of obesity prevalence was based on stratifying the following time periods of field study (rather than considering the year of publication): 2000-2005, 2006-2010, 2011-2015, and 2016-2020. A chi-squared test for linear trend in proportions was applied using the prop.trend.test function in R software. Gender-based differences in the prevalence of obesity were analyzed by computing the pooled odds ratio (OR) and 95%CI in studies presenting comparative outcomes in males and females (in the metabin command). Risk factors for obesity were extracted from each individual study using the results of univariate and multivariate correlation analyses (expressed as ORs and 95% CIs). These variables were then pooled based on the estimates of logORs and their standard errors using the generic inverse variance method (in the metagen command). Higgin’s I^2 was used to assess the between-study heterogeneity, which was substantial at I^2 > 50%. Consequently, a random-effects model was applied to estimate the effect sizes. Subgroup analyses were performed based on the province where each study was conducted in Saudi Arabia, categories of the year of publication, and the methods of BMI calculation. Variables with subgroup-based significant differences were entered in a meta-regression model to further explain the sources of between-study heterogeneity. Publication bias was assessed visually and statistically by producing a funnel plot and interpreting the outcomes of an Egger’s test, respectively. Statistical significance was considered at p < 0.05.
Results:

Results of the Search Process
Initially, 3797 titles were identified from different sources, of which 306 duplicates were omitted. The remaining records (n = 3491) were screened, and the full version of 32 articles met the eligibility criteria. Six studies were excluded owing to reporting data on participants with overweight only (Al-Muhaimeed et al., 2015), including a subgroup of students recruited from outpatient clinics (Al-Dossary et al., 2010), including participants aged > 20 years, (Farghaly et al., 2007) reporting of combined data on overweight and obesity (Mahfouz et al., 2012), reporting the results of a field study carried out before the year 2000 (El-Hazmi and Warsy, 2002), and the lack of access to a full article (Alam, 2008). Therefore, ultimately, 26 studies were included in the present study (Figure 1).

Characteristics of the Included Studies
Table 1 demonstrates the characteristics of the included studies. The studies were published between 2003 and 2019, whereas the time periods of data collection (field study) ranged between 2001 and 2018. Two studies included multiple regions of the Kingdom (Al-Hazzaa et al., 2014; El Mouzan et al., 2012), where the outcomes of each region were analyzed separately. BMI values were calculated based on the CDC 2000 guidelines in four studies, IOTF in five studies, and WHO 2007 in seven studies. Overall, 43,187 children and adolescents were included (54.26% were males). Male subjects were exclusively recruited in eight studies (Al-Rubkan, 2003; Alazzeh et al., 2018; Alenazi et al., 2015; Amin et al., 2008; Bandy et al., 2019; Fakeeh et al., 2019; Mahfouz et al., 2008; Shatoor et al., 2011), females in four studies (Abahussain, 2011; Al-Saeed et al., 2007; Bajamal et al., 2017; Fatima and Ahmad, 2018), and the remaining studies included both genders. Quality assessment indicated that the studies were of moderate to high methodological quality.

Primary outcomes and the between-study heterogeneity
Using a random-effects model, the pooled prevalence of obesity across all studies was 14.13% (95% CI, 11.90% to 16.69%) with a substantial between-study heterogeneity ($I^2 = 97.9\%$, $df = 29$, $p < 0.0001$, Figure 2). Compared to the baseline time period (2000-2005), the prevalence of obesity increased in 2006-2010 ($OR = 1.44$), in 2011-2015 (4.52), and in 2016-2020 ($OR = 2.58$), with a significant linear trend (Chi-square = 1710.17, $p < 0.0001$).

To investigate the variables which might have accounted for the heterogeneity, subgroup analysis was carried out. Residual heterogeneity remained significant for subgroups of regions, BMI calculations, and the year of study (Table 2). Notably, region-based differences were significant ($p = 0.0005$), where the highest pooled prevalence was reported in the Northern region (18.61%, 95% CI, 9.52% to 33.18%), while the lowest combined rate was in the Southern region (7.10%, 95% CI, 4.62% to 10.75%). To further confirm the sources of heterogeneity, the results of the meta-regression analysis indicated that regional groups were associated with effect size differences, $F(2,5) = 12.519$, $p = 0.028$ (Table 3). More specifically, the low prevalence rates of obesity in the Southern province have significantly accounted for the variation in effect sizes ($\beta = -0.844$, 95% CI, -1.445 to -0.244, $p = 0.006$).

Publication bias
The produced funnel plot (Figure 3) revealed an equal distribution of the weighted linear regression of prevalence rates around the mean effect estimate. The outcomes of the Egger’s test confirmed the absence of a publication bias (intercept = -2.2 [CI, -7.69 to -3.29], $t = -1.32$, $p = 0.43$).

The association between gender and the prevalence of obesity
The prevalence of obesity in both male and female children and adolescents was reported in 14 studies, which recruited 31,210 subjects (47.25% males). The pooled proportion of obese males was significantly higher than that of females ($OR = 1.36$, 95% CI, 1.10 to 1.68, $p = 0.007$), and the heterogeneity between studies was significant ($I^2 = 82.6\%$, $df = 17$, $p < 0.0001$, Figure 4). This was corroborated in the results of the regression analysis adjusted for confounding variables in the study of Al Alwan et al. (Al Alwan et al., 2013), where male gender was a significant independent risk factor of obesity. Gender-based multivariate regression analysis was not carried out in other studies.

Other associated factors with obesity
Risk factors for obesity were analyzed and pooled when the available data were reported in at least three studies (Figure 5). The analysis of personal factors revealed higher odds of obesity among children/adolescents performing physical activities less than 3 times per week ($OR = 1.59$, 95% CI, 1.06 to 2.39, $p = 0.025$) and those consuming soft drinks more frequently ($OR = 1.73$, 95% CI, 1.12 to 2.68, $p = 0.014$) compared to their peers. In addition, having a
working mother (OR = 1.20, 95% CI, 1.01 to 1.42, p = 0.036) and living in an urban region (OR = 1.44, 95% CI, 1.03 to 2.01, p = 0.033) were significantly associated with childhood obesity.

Discussion:
Investigating the prevalence of obesity among young populations is a critical aspect of public healthcare owing to the expected consequences on the health of adults and national economies in the near future. Additionally, obesity burden can be alleviated by targeting the associated risk factors via dedicated preventive programs/approaches carried out on a national level. In the present study, the pooled prevalence of obesity over two decades was 14.13% in Saudi Arabia, with a significant rise in the most recent time period compared to the reference period (14.6% in 2016-2020 versus 10.3% in 2000-2005). Obesity prevalence was associated with male gender, physical inactivity, consuming soft drinks, having a working mother, and living in an urban region.

Based on a random-effects model, the estimated prevalence in the current study was higher than the estimated regional figures in Asia (5.5% among the 5-19 age group in 2018) (Mazidi et al., 2018), and in the Middle East (11.6% among the 5-19 age group in 2016) (Di Cesare et al., 2019). These values exceed the global estimates released by the WHO in 2016 (8% and 6% in males and females aged 5-19 years, respectively) (World Health Organization, 2020). Nationally, there was also a rising trend in childhood obesity at an alarming level. Although these observations are consistent with the ten-fold increase of the number of school-age children and adolescents with obesity over the past four decades (World Health Organization, 2018), recent estimates showed that the national trends have been decreased or plateaued in high-income countries, such as France, Denmark, the United States, Australia, and Japan since the early 2000s (Abarca-Gómez et al., 2017; Rokholm et al., 2010). However, the rising trends in low- and middle-income countries in Asia are accelerating, with no clear associations with the trends among adults (Lim et al., 2020).

The present study underscored the impact of personal demographic and lifestyle factors on obesity in the young populations. For example, obesity was significantly higher in males than females. This might be attributable to sex-based differences in the levels of steroid hormones and serum leptin, which would impact the body composition, appetite, and energy utilization (Campbell, 2016; Garnett et al., 2004). Sociocultural effects may also drive a tendency of boys to consume calorie-dense foods more frequently than girls, and feeding practices by females are generally governed by “thinness” as a cultural ideal (Keller et al., 2019). However, it has been recently shown that obesity among girls remain high in many countries in the Middle East and North Africa, including Egypt, Kuwait, and Saudi Arabia, relative to worldwide estimates (Abarca-Gómez et al., 2017). Interestingly, unhealthy nutritional choices have also negative effects on the body composition irrespective of gender. As reported in the current study, the consumption of calorie-dense soft drinks was associated with higher odds of obesity among Saudi children and adolescents. It has been well-established that such practices can be associated with stunted growth and weight gain, which would increase BMI values and raise the likelihood of worse health outcomes later in the adulthood (Abarca-Gómez et al., 2017). We have also shown that low levels of physical activity were associated with obesity, and this was in agreement with the negative correlation between vigorous-intensity physical activity and total and central body fat (Farooq et al., 2020; Moliner-Urdiales et al., 2009). Farooq et al. (2020) have recently demonstrated a significant decline in the levels of moderate-to-vigorous-intensity physical activity at age 9 for both boys and girls based on the results of a systematic review, and the authors recommended promoting the physical exercise before adolescence to reduce the rates of obesity.

Indeed, sedentary practices among Saudi individuals should be the main target of future interventions aiming to reduce obesity. More specifically, causes of reduced physical activity and unhealthy nutritional choices are of primary concern. These include cultural barriers, lack of social support, lack of robust physical activity programs at schools, and increased urbanization. The latter was a significant problem as per the results of the current meta-analysis. Intriguingly, the distribution of urban settlement in Saudi Arabia might have accounted for the variation in obesity prevalence across different provinces. Cultural factors could have interacted with the effect of urbanization on the regional distribution of obesity. Nevertheless, these interactionsshould be the scope of future research to understand the main drivers of obesity and to tailor effective preventive approaches.

Based on the aforementioned observations, and considering the fact that childhood obesity is more likely to develop when the most rapid weight gain takes place between 2 and 6 years of age (Geserick et al., 2018), it is imperative to implement preventive measures that start as early as during the infancy. For instance, the WHO recommends that governments should encourage breastfeeding in the first six months along with adopting strict measures to prevent
the promotion of commercial complementary foods for infants and unhealthy food to children and adolescents (World Health Organization, 2018). However, these measures were only considered by three countries of the WHO’s Eastern Mediterranean Regional Office (out of 21) (World Health Organization, 2018). Furthermore, the consumption of sugar-sweetened beverages can be restricted by implementing various forms of taxes or levies, a matter which has recently been considered by the General Authority of Zakat and Tax in Saudi Arabia (Alsukait et al., 2020). Other recommendations include promoting physical activity, improving healthy food and drink options at schools, and regular monitoring of children’s bodyweight on a national level (World Health Organization, 2018).

The present meta-analysis was limited by a number of study-level factors. First, there was significant heterogeneity between studies, which has been partly explained by the regional variation in obesity prevalence. Second, the use of non-representative samples consisting of exclusive male or female students might have affected the direct comparison of obesity between both sexes. Third, obesity might have been under- or over-estimated due to the use of different cut-off reference standards for obesity definition despite the lack of significant effects on heterogeneity. Finally, the low number of studies investigating specific risk factors, such as the monthly family income, might have caused a lack of a significant difference in the pooled effect estimates between groups. Furthermore, other factors were scarcely investigated, and thus their results could not be effectively pooled in the meta-analytical approach. Hence, a unified protocol should be developed for future studies to assess the burden of obesity among children and adolescents based on including both boys and girls, specifying distinct definition criteria for obesity diagnosis across the kingdom, and setting up a number of sociodemographic characteristics to be assessed as potential risk factors for obesity.

In conclusion, obesity was prevalent among 14.13% of children/adolescents in Saudi Arabia, and the rate of obesity has consistently increased over the past two decades. Obesity was significantly associated with male sex, low levels of physical activity, consuming soft drinks >2 times/day, having a working mother, and living an urban region. Regional variation in obesity prevalence was significant, and it explained the heterogeneity in the estimated prevalence. There is a need to implement more intensified national actions to address obesity among children and adolescents, including promoting physical activities at schools, improving healthy nutritional choices, providing social support, and increasing the parental and personal awareness regarding obesity and its associated health risks.

References:
1. Abahussain, N. A. (2011): Was there a change in the body mass index of Saudi adolescent girls in Al-Khobar between 1997 and 2007?? J Family Community Med, 18(2), 49.
2. Abarca-Gómez, L., Abdeen, Z. A., Hamid, Z. A., Abu-Rmeileh, N. M., Acosta-Cazares, B., Acuin, C., . . . Ezati, M. (2017): Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128⋅9 million children, adolescents, and adults. Lancet, 390(10113), 2627-2642. doi:10.1016/s0140-6736(17)32129-3
3. Abdalla, S. M., Alsaif, B. A., Al Jasser, S. J., & Al Sultan, A. S. (2017): Prevalence of Obesity and Overweight among Primary School Children in Majmaah, Saudi Arabia. Majmaah J Heal Sci, 5(1), 30-40.
4. Al-Dossary, S. S., Sarkis, P. E., Hassan, A., Ezz El Regal, M., & Fouda, A. E. (2010): Obesity in Saudi children: a dangerous reality. Eastern Mediterranean health journal = La revue de sante de la Mediterraneeorientale = al-Majallah al-sihhiyah li-sharq al-mutawassit, 16(9), 1003-1008.
5. Al-Hazzaa, H. M., Abahussain, N. A., Al-Sobayel, H. I., Qahwaji, D. M., Alsulaiman, N. A., & Musaiger, A. O. (2014): Prevalence of overweight, obesity, and abdominal obesity among urban Saudi adolescents: gender and regional variations. J Health PopulNutr, 32(4), 634-645.
6. Al-Hazzaa, H. M., Al-Nakeeb, Y., Duncan, M. J., Al-Sobayel, H. I., Abahussain, N. A., Musaiger, A. O., . . . Nevill, A. (2013): A cross-cultural comparison of health behaviors between Saudi and British adolescents living in urban areas: gender by country analyses. International journal of environmental research and public health, 10(12), 6701-6720. doi:10.3390/ijerph10126701
7. Al-Hazzaa, H. M., & Al-Rasheedi, A. A. (2007): Adiposity and physical activity levels among preschool children in Jeddah, Saudi Arabia. Saudi Med J, 28(5), 766-773.
8. Al-Hussaini, A., Bashir, M. S., Khormi, M., AlTuraiq, M., AlKhamsi, W., Alrajhi, M., & Halal, T. (2019): Overweight and obesity among Saudi children and adolescents: Where do we stand today? Saudi J Gastroenterol, 25(4), 229.
9. Al-Mohaimeed, A., Ahmed, S., Dandash, K., Ismail, M. S., & Saquib, N. (2015): Concordance of obesity classification between body mass index and percent body fat among school children in Saudi Arabia. BMC Pediatr, 15(1), 1-5.
10. Al-Muhaimeed, A. A., Dandash, K., Ismail, M. S., & Saquib, N. (2015): Prevalence and correlates of overweight status among Saudi school children. Ann Saudi Med, 35(4), 275-281. doi:10.5144/0256-4947.2015.275

11. Al-Nakeeb, Y., Lyons, M., Collins, P., Al-Nuaim, A., Al-Hazzaa, H., Duncan, M. J., & Nevill, A. (2012): Obesity, physical activity and sedentary behavior amongst British and Saudi youth: a cross-cultural study. International journal of environmental research and public health, 9(4), 1490-1506. doi:10.3390/ijerph9041490

12. Al-Nuaim, A. A., Al-Nakeeb, Y., Lyons, M., Al-Hazzaa, H. M., Nevill, A., Collins, P., & Duncan, M. J. (2012): The Prevalence of Physical Activity and Sedentary Behaviours Relative to Obesity among Adolescents from Al-Ahsa, Saudi Arabia: Rural versus Urban Variations. Journal of nutrition and metabolism, 2012, 417589. doi:10.1155/2012/417589

13. Al-Rukban, M. O. (2003): Obesity among Saudi male adolescents in Riyadh, Saudi Arabia. Saudi Med J, 24(1), 27-33.

14. Al-Saeed, W. Y., Al-Dawood, K. M., Bukhari, I. A., & Bahnassy, A. (2007): Prevalence and socioeconomic risk factors of obesity among urban female students in Al-Khobar city, Eastern Saudi Arabia, 2003. Obesity reviews : an official journal of the International Association for the Study of Obesity, 8(2), 93-99. doi:10.1111/j.1467-789X.2006.00287.x

15. Al Alwan, I., Al Fattani, A., & Longford, N. (2013): The effect of parental socioeconomic class on children's body mass indices. J Clin Res Pediatr Endocrinol, 5(2), 110-115. doi:10.4274/jcrpe.898

16. Alam, A. A. (2008): Obesity among female school children in North West Riyadh in relation to affluent lifestyle. Saudi Med J, 29(8), 1139-1144.

17. Alazzeh, A. Y., AlShammari, E. M., Smadi, M. M., Azzez, F. S., AlShammari, B. T., Epuru, S., . . . Qiblawi, S. (2018): Some Socioeconomic Factors and Lifestyle Habits Influencing the Prevalence of Obesity among Adolescent Male Students in the Hail Region of Saudi Arabia. Children (Basel, Switzerland), 5(3). doi:10.3390/children5030039

18. Alenazi, S. A., Koura, H. M., Zaki, S. M., & Mohamed, A. H. (2015): Prevalence of Obesity Among Male Adolescents in Arar Saudi Arabia: Future Risk of Cardiovascular Disease. Indian journal of community medicine : official publication of Indian Association of Preventive & Social Medicine, 40(3), 182-187. doi:10.4103/0970-0218.158864

19. Alsukait, R., Bleich, S., Wilde, P., Singh, G., & Folta, S. (2020): Sugary drink excise tax policy process and implementation: Case study from Saudi Arabia. Food Policy, 90, 101789. doi:10.1016/j.foodpol.2019.101789

20. Amin, T. T., Al-Sultan, A. I., & Ali, A. (2008): Overweight and obesity and their relation to dietary habits and socio-demographic characteristics among male primary school children in Al-Hassa, Kingdom of Saudi Arabia. Eur. J. Nutr., 47(6), 310.

21. Ash, T., Agaronov, A., Young, T., Aftosmes-Tobio, A., & Davison, K. K. (2017): Family-based childhood obesity prevention interventions: a systematic review and quantitative content analysis. Int J BehavNutr Phys Act, 14(1), 113. doi:10.1186/s12966-017-0571-2

22. Bajamal, E., Robbins, L. B., Ling, J., Smith, B., Pfeiffer, K. A., & Sharma, D. (2017): Physical Activity Among Female Adolescents in Jeddah, Saudi Arabia: A Health Promotion Model-Based Path Analysis. Nursing research, 66(6), 473-482. doi:10.1097/NRN.0000000000000244

23. Bandy, A., Qarmush, M. M., Alwrilly, A. R., Albdai, A. A., Alshammari, A. T., & Aldawasri, M. M. (2019): Hypertension and its risk factors among male adolescents in intermediate and secondary schools in Sakaka City, Aljouf Region of Saudi Arabia. Nig J Clin Pract, 22(8), 1140.

24. Campbell, M. K. (2016): Biological, environmental, and social influences on childhood obesity. Pediatr Res, 79(1-2), 205-211. doi:10.1038/pr.2015.208

25. Centres for disease control and prevention. (2000). CDC clinical growth charts. Retrieved from https://www.cdc.gov/growthcharts/clinical_charts.htm

26. Cole, T. J., Bellizzi, M. C., Flegal, K. M., & Dietz, W. H. (2000): Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ, 320(7244), 1240-1243. doi:10.1136/bmj.320.7244.1240

27. Csige, I., Ujvarosy, D., Szabo, Z., Lorincz, I., Paragh, G., Harangi, M., & Somodi, S. (2018): The Impact of Obesity on the Cardiovascular System. J Diabetes Res, 2018, 3407306. doi:10.1155/2018/3407306

28. de Onis, M., Onyango, A. W., Borghi, E., Siyam, A., Nishida, C., & SIEKMAN, J. (2007): Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ, 85(9), 660-667. doi:10.2471/blt.07.043497

29. Di Bonito, P., Pacifico, L., Chiesa, C., Valerio, G., Miraglia Del Giudice, E., Maffei, C., . . . obese children in, I. S. G. (2017): Impaired fasting glucose and impaired glucose tolerance in children and adolescents with overweight/obesity. J Endocrinol Invest, 40(4), 409-416. doi:10.1007/s40618-016-0576-8
30. Di Cesare, M., Soric, M., Bovet, P., Miranda, J. J., Bhutta, Z., Stevens, G. A., . . . Bentham, J. (2019): The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med, 17(1), 212. doi:10.1186/s12916-019-1449-8

El-Hazmi, M. A., & Warsy, A. S. (2002): The prevalence of obesity and overweight in 1-18-year-old Saudi children. Ann Saudi Med, 22(5-6), 303-307. doi:10.5141/0256-4947.2002.303

31. El Mouzan, M. I., Al Herbish, A. S., Al Salloum, A. A., Al Omar, A. A., & Qurachi, M. M. (2012): Regional variation in prevalence of overweight and obesity in Saudi children and adolescents. Saudi J Gastroenterol, 18(2), 129-132. doi:10.4103/1319-3767.93818

32. Fakeeh, M. I., Shanawaz, M., Azeez, F. K., & Arar, I. A. (2019): Overweight and obesity among the boys of primary public schools of Baich City in Jazan Province, Saudi Arabia: A cross-sectional study. Indian journal of public health, 63(4), 330-333. doi:10.4103/ijph.IJPH_355_18

33. Falkner, B. (2017): Monitoring and management of hypertension with obesity in adolescents. Integr Blood Press Control, 10, 33-39. doi:10.2147/IBPC.S125094

34. Farghaly, N. F., Ghazali, B. M., Al-Wabel, H. M., Sadek, A. A., & Abbag, F. I. (2007): Life style and nutrition and their impact on health of Saudi school students in Abha, Southwestern region of Saudi Arabia. Saudi Med J, 28(3), 415-421.

35. Farooq, A., Martin, A., Janssen, X., Wilson, M. G., Gibson, A. M., Hughes, A., & Reilly, J. J. (2020): Longitudinal changes in moderate-to-vigorous-intensity physical activity in children and adolescents: A systematic review and meta-analysis. Obesity reviews : an official journal of the International Association for the Study of Obesity, 21(1), e12953. doi:10.1111/obr.12953

36. Farsi, D. J., Elkhodary, H. M., Merdad, L. A., Farsi, N. M., Alaki, S. M., Alamoudi, N. M., . . . Alolayyan, M. A. (2016): Prevalence of obesity in elementary school children and its association with dental caries. Saudi Med J, 37(12), 1387-1394. doi:10.15537/smj.2016.12.15904

37. Fatima, W., & Ahmad, L. M. (2018): Prevalence of disordered eating attitudes among adolescent girls in Arar City, Kingdom of Saudi Arabia. Health Psychol. Res., 6(1).

38. Garnett, S. P., Högler, W., Blades, B., Baur, L. A., Peat, J., Lee, J., & Cowell, C. T. (2004): Relation between hormones and body composition, including bone, in prepubertal children. Am. J. Clin. Nutr., 80(4), 966-972.

39. Geserick, M., Vogel, M., Gausche, R., Lipek, T., Spielau, U., Keller, E., . . . Korner, A. (2018): Acceleration of BMI in Early Childhood and Risk of Sustained Obesity. The New England journal of medicine, 379(14), 1303-1312. doi:10.1056/NEJMoa1803527

40. Hajian-Tilaki, K., & Heidari, B. (2013): A Comparison between International Obesity Task Force and Center for Disease Control References in Assessment of Overweight and Obesity Among Adolescents in Babol, Northern Iran. Int J Prev Med, 4(2), 226-232.

41. Harrer, M., Cuipers, P., Furukawa, T. A., & Ebert, D. D. (2019). Doing meta-analysis in R: a hands-on guide. PROTECT Lab Erlangen. Retrieved from https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/

42. Hayes, A., Chevalier, A., D’Souza, M., Baur, L., Wen, L. M., & Simpson, J. (2016): Early childhood obesity: Association with healthcare expenditure in Australia. Obesity (Silver Spring), 24(8), 1752-1758. doi:10.1002/oby.21544

43. Hothan, K. A., Alkhasim, B. A., Alkhelaiwi, O. K., Althagafi, K. M., Alkhaldi, A. A., Alfityani, A. K., . . . Kari, J. A. (2016): Prevalence of hypertension, obesity, hematuria and proteinuria amongst healthy adolescents living in Western Saudi Arabia. Saudi Med J, 37(10), 1120-1126. doi:10.5141/smj.2016.10.14784

44. Keller, K. L., Kling, S. M. R., Fuchs, B., Pearce, A. L., Reigh, N. A., Masterson, T., & Hickok, K. (2019): A biopsychosocial model of sex differences in children’s eating behaviors. Nutrients, 11(3), 682.

45. Lim, H. J., Xue, H., & Wang, Y. (2020): Global Trends in Obesity. Handbook of Eating and Drinking: Interdisciplinary Perspectives, 1217-1235.

46. Lindberg, L., Danielsson, P., Persson, M., Marcus, C., & Hagman, E. (2020): Association of childhood obesity with risk of early all-cause and cause-specific mortality: A Swedish prospective cohort study. PLoS Med, 17(3), e1003078. doi:10.1371/journal.pmed.1003078

47. Llewellyn, A., Simmonds, M., Owen, C. G., & Woolacott, N. (2016): Childhood obesity as a predictor of morbidity in adulthood: a systematic review and meta-analysis. Obes Rev, 17(1), 56-67.

48. Mahfouz, A. A., Abdelmoneim, I., Khan, M. Y., Daffalla, A. A., Diab, M. M., Al-Gelban, K. S., & Moussa, H. (2008): Obesity and related behaviors among adolescent school boys in Abha City, Southwestern Saudi Arabia. J Trop. Pediatr, 54(2), 120-124.

49. Mahfouz, A. A., Shatoor, A. S., Hassanein, M. A., Mohamed, A., & Farheen, A. (2012): Gender differences in cardiovascular risk factors among adolescents in Aseer Region, southwestern Saudi Arabia. J Saudi Heart Assoc, 24(2), 61-67.
50. Mazidi, M., Banach, M., Kengne, A. P., Lipid, & Blood Pressure Meta-analysis Collaboration, G. (2018): Prevalence of childhood and adolescent overweight and obesity in Asian countries: a systematic review and meta-analysis. Arch Med Sci, 14(6), 1185-1203. doi:10.5114/ams.2018.79001
51. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, P. (2009): Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clinical research ed.), 339, b2535-b2535. doi:10.1136/bmj.b2535
52. Moliner-Urdiales, D., Ruiz, J. R., Ortega, F. B., Rey-Lopez, J. P., Vicente-Rodriguez, G., Espana-Romero, V., . . . Group, H. S. (2009): Association of objectively assessed physical activity with total and central body fat in Spanish adolescents; the HELENA Study. Int J Obes (Lond), 33(10), 1126-1135. doi:10.1038/ijo.2009.139
53. Munn, Z., Moola, S., Lisy, K., Riitano, D., &Tufanaru, C. (2015): Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc, 13(3), 147-153. doi:10.1097/XEB.0000000000000054
54. Musaiger, A. O., Al-Mannai, M., Al-Haifi, A. R., Nabag, F., Elati, J., Abahussain, N., . . . Al-Mufty, B. (2016): Prevalence of overweight and obesity among adolescents in eight Arab countries: comparison between two international standards (ARABEAT-2). Nutricionhospitalaria, 33(5), 567. doi:10.20960/nh.567
55. Rokholm, B., Baker, J. L., & Sorensen, T. I. (2010): The levelling off of the obesity epidemic since the year 1999--a review of evidence and perspectives. Obesity reviews : an official journal of the International Association for the Study of Obesity, 11(12), 835-846. doi:10.1111/j.1467-789X.2010.00810.x
56. Shaikh, M. A., Al Sharaf, F., Shehzad, K., Shoukat, F., Naeem, Z., Al Harbi, S., . . . Al Motairi, S. (2016): Prevalence and trends of overweight and obesity amongst Saudi school children, a study done by using three noninvasive methods. Int J Health Sci (Qassim), 10(3), 381-387.
57. Shatoor, A. S., Mahfouz, A. A., Khan, M. Y., Daffalla, A. A., Mostafa, O., & Hammad, R. K. (2011): Cardiovascular risk factors among adolescent secondary school boys in AhadRufeida, southwestern Saudi Arabia. J. Trop. Pediatr, 57(5), 382-384.
58. Turer, C. B., Brady, T. M., & de Ferranti, S. D. (2018): Obesity, Hypertension, and Dyslipidemia in Childhood Are Key Modifiable Antecedents of Adult Cardiovascular Disease: A Call to Action. Circulation, 137(12), 1256-1259. doi:10.1161/CIRCULATIONAHA.118.032531
59. Warton, D. I., & Hui, F. K. C. (2011): The arcsine is asinine: the analysis of proportions in ecology. Ecology, 92(1), 3-10. doi:10.1890/10-0340.1
60. World Health Organization. (1998): Obesity. Preventing and managingg the global epidemic: report of a WHO consultation on obesity, 13-69.
61. World Health Organization. (2006). The WHO Child Growth Standards.
62. World Health Organization. (2018). Taking Action on Childhood Obesity. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/274792/WHO-NMH-PND-ECHO-18.1-eng.pdf?ua=1
63. World Health Organization. (2020). Obesity and overweight. Retrieved from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

Appendix 1:
The search strategy used in the PubMed database.
#1 "children" OR "childhood" OR "adolescent*"
#2 "Saudi" OR "Saudi Arabia"
#3 "obesity" OR "obese"
#4 "Prevalence" OR "proportion"
#5 #1 AND #2 AND #3 AND #4
Figure 1: A flowchart showing the search process used in the current study.
Figure 2: A forest plot depicting the prevalence of obesity among children and adolescents in Saudi Arabia.
Figure 3: A funnel plot showing the assessment of the publication bias.

Study	Males Events	Males Total	Females Events	Females Total	OR 95%-CI	Weight
Abdalla et al. 2017	30	170	43	217	0.87 [0.52; 1.45]	4.7%
Al Alwan et al. 2013	69	512	65	700	2.06 [1.46; 2.90]	5.8%
Al-Hazzaa et al. 2007	10	109	13	115	0.79 [0.33; 1.89]	3.0%
Al-Hazzaa et al. 2013	180	797	110	851	1.97 [1.52; 2.55]	6.2%
Al-Hazzaa et al. 2014 (C)	112	493	70	508	1.84 [1.32; 2.56]	5.8%
Al-Hazzaa et al. 2014 (E)	77	348	42	367	2.20 [1.46; 3.31]	5.4%
Al-Hazzaa et al. 2014 (W)	148	560	96	632	1.96 [1.47; 2.60]	6.1%
Al-Hussaini et al. 2019	540	2943	899	4988	1.02 [0.91; 1.15]	6.8%
Al-Mohameed et al. 2015	48	618	39	256	0.47 [0.30; 0.74]	5.1%
Al-Nakeeb et al. 2012	113	580	92	538	1.17 [0.87; 1.59]	6.0%
Al-Nuaim et al. 2012	127	663	107	607	1.11 [0.83; 1.47]	6.1%
El Mouzan et al. 2012 (C)	185	1793	144	1732	1.27 [1.01; 1.59]	6.4%
El Mouzan et al. 2012 (N)	195	2117	185	2057	1.03 [0.83; 1.27]	6.5%
El Mouzan et al. 2012 (S)	108	1715	96	1698	1.12 [0.84; 1.49]	6.1%
Farsi et al. 2016	95	482	69	433	1.29 [0.92; 1.82]	5.5%
Hothan et al. 2016	46	200	31	201	1.64 [0.99; 2.71]	4.8%
Musaiger et al. 2016	126	518	49	450	2.63 [1.84; 3.76]	5.7%
Shaikh et al. 2016	28	129	15	113	1.81 [0.91; 3.60]	3.6%

Overall effect 14747 16463 1.36 [1.10; 1.68] 100.0%

Heterogeneity: $I^2 = 83\%$ [74\%; 89\%], $p < 0.01$

Test for overall effect: $t_{r} = 3.10$ ($p < 0.01$)

Figure 4: A forest plot showing the difference in obesity prevalence among male and female children/adolescents.
Figure 5: Forest plots showing the sociodemographic risk factors of obesity among children/adolescents.

Table 1: Characteristics of the included studies.

Author and year	Year of data collection	City (province)	Setting	Diagnost ic criteria	Sample size (male, female)	Qualit y score
Al-Rukban et al. 2003	2001 and 2002	Riyadh (C)	Intermediate and secondary schools	CDC 2000	885 (885, 0)	6
Al-Hazzaa et al. 2007	2006	Jeddah (W)	Preschools	NA	244 (109, 115)	6
Al-Saeed et al. 2007	2003	Al-Khobar (E)	Primary and preparatory	CDC 2000	2239 (0, 2239)	7
Amin et al. 2008	2006	Al-Ahsa (E)	Primary	CDC 2000	1139 (1139, 0)	5
Mahfouz et al. 2005	2005	Abha (S)	Intermediate and CDC	2696 (2696, 7)	7	7
Year	Study Authors	Location	Type	Methodology	Sample Size (Minimum, Maximum)	Reference Year
--------	--------------------------------	-----------------------------------	---	--------------------------------------	-------------------------------	----------------
2008	Abahussain et al. 2011	Al-Khobar (E)	Secondary schools	CDC 2000	336 (0, 336)	7
2008	Shatooor et al. 2011	AhadRufeida (S)	Secondary schools	IOTF	1249 (1249, 0)	
2011	Al-Nakeeb et al. 2012	Al-Ahsa (E)	NA	IOTF	1118 (580, 538)	
2011	Al-Nuaim et al. 2012	Al-Ahsa (E)	Secondary schools	IOTF	1270 (663, 607)	
2004 and 2005	El Mouzan - C et al. 2012 (C)	Riyadh and Qassim (C)	House-to-house visits (based on the population census)	CDC 2000	3525 (1793, 1732)	7
2000	El Mouzan - N et al. 2012 (N)	Hail, Jouf and Northern Borders (N)	Secondary schools	IOTF	4174 (2117, 2057)	
2000	El Mouzan - S et al. 2012 (S)	Gizan and Aseer (S)	Secondary schools	IOTF	3413 (1715, 1698)	
2006	Al Alwan et al. 2013	Riyadh (C)	Schools	WHO 2007	1212 (512, 700)	6
2011	Al-Hazzaa et al. 2013	Riyadh and Al-Khobar (C and E)	Secondary schools	IOTF	1648 (797, 851)	6
2009 and 2010	Al-Hazzaa - C et al. 2014 (C)	Riyadh (C)	Secondary schools	IOTF	1001 (493, 508)	6
2014 (E)	Al-Hazzaa - E et al. 2014 (E)	Al-Khobar (E)	Secondary schools	IOTF	715 (348, 367)	
2014 (W)	Al-Hazzaa - W et al. 2014 (W)	Jeddah (W)	Secondary schools	IOTF	1192 (560, 632)	
2012	Alenazi et al. 2015	Arar (N)	Schools	CDC 2000	523 (523, 0)	8
2012	Al-Mohaimeed et al. 2015	Qassim (C)	Schools	WHO 2007	874 (618, 256)	7
2015	Farsi et al. 2016	Jeddah (W)	Elementary schools	CDC 2000	915 (482, 433)	7
2015	Hothan et al. 2016	Jeddah (W)	Intermediate schools	CDC 2000	401 (200, 201)	7
2013 and 2014	Musaiger et al. 2016	Dammam (E)	Secondary schools	IOTF	968 (518, 450)	7
2013 and 2014	Shaikh et al. 2016	Qassim (C)	Intermediate and secondary schools	WHO 2007	242 (129, 113)	6
2015	Abdalla et al. 2017	Majmaah (C)	Primary schools	WHO 2007	387 (170, 217)	5
2016	Bajamal et al. 2017	Jeddah (W)	Intermediate and secondary schools	IOTF	383 (0, 383)	6
2016	Alazzez et al. 2018	Hail (N)	Intermediate and secondary schools	WHO 2007	1495 (1495, 0)	6
2017	Fatima et al. 2018	Arar (N)	Schools	IOTF	314 (0, 314)	7
2015	Al-Hussaini et al. 2019	Riyadh (C)	Primary and intermediate schools	WHO 2007	7931 (2943, 4988)	6
2018	Bandy et al. 2019	Sakaka (N)	Intermediate and secondary schools	CDC 2000	400 (400, 0)	6
2017	Fakeeh et al. 2019	Baish (W)	Primary schools	WHO 2007	298 (298, 0)	7
C: central; CDC: Centers for Disease Control and Prevention; E: eastern; IOTF: International Obesity Task Force; N: northern; S: southern; W: western; WHO: World Health Organization

Table 2: The analysis of subgroups based the study region, diagnostic criteria, and year of data collection

Variables	No. of studies	Prevalence (95%CI)	Heterogeneity	Test for between-group differences
			I^2	Q
			DF	p
Diagnostic criteria				
CDC 2000	12	13.62 (9.57-19.01)	98.7	764.29
			3	0.316
WHO 2007	7	16.1 (12.58-20.38)	95.7	146.57
NA	1	10.66 (7.36-15.19)	NA	NA
IOTF	10	14.08 (11.4-17.26)	94.5	79.3
Year of data collection				
2000-2005	4	10.34 (6.23-16.69)	98.3	177.4
			3	0.333
2006-2010	8	13.12 (11.36-15.11)	81	44.3
			1	0.0005
2011-2015	13	16.00 (12.68-19.98)	97.9	566.14
			4	
2016-2020	5	14.58 (7.63-26.06)	97.6	141.3
Region				
Eastern	7	14.62 (12.23-17.38)	90	72.24
Central	8	15.07 (12.26-18.39)	95.4	193.21
Northern	5	18.61 (9.52-33.18)	99.1	470.71
Western	6	13.25 (10.37-16.79)	86	34.64
Central and Eastern	1	17.60 (15.83-19.51)	NA	NA
Southern	3	7.10 (4.62-10.75)	95.8	65.61

CI: confidence interval; DF: degree of freedom; NA: non-applicable

Table 3: The results of the meta-regression model of the moderating effect of study region on the effect size.

Variables	Coefficient	95% CI	p
Central	Reference		
Central and Eastern	0.183	-0.752 to 1.117	0.702
Eastern	-0.041	-0.502 to 0.421	0.863
Northern	0.282	-0.229 to 0.793	0.281
Southern	-0.844	-1.445 to -0.244	0.006
Western	-0.164	-0.654 to 0.326	0.513
Constant	-1.728	-2.043 to -1.412	<0.0001