On the difference between a D. H. Lehmer number and its inverse over short interval

Yana Niu1 \hspace{1em} Rong Ma2 \hspace{1em} Haodong Wang3

School of Mathematics and Statistics, Northwestern Polytechnical University
Xi’an, Shaanxi, 710072, People’s Republic of China

Abstract

Let $q > 2$ be an odd integer. For each integer x with $0 < x < q$ and $(q, x) = 1$, we know that there exists one and only one \overline{x} with $0 < \overline{x} < q$ such that $x\overline{x} \equiv 1 \pmod{q}$. A Lehmer number is defined to be any integer a with $2 \nmid (a + \overline{a})$. For any nonnegative integer k, Let

$$ M(x, q, k) = \sum_{a=1}^{q} \sum_{b \leq x}^{'} (a - b)^{2k}. $$

The main purpose of this paper is to study the properties of $M(x, q, k)$, and give a sharp asymptotic formula, by using estimates of Kloosterman’s sums and properties of trigonometric sums.

Key words: D. H. Lehmer problem; Dirichlet Character; short interval; inverse of integers; estimate.

1. Introduction

Let $q > 2$ be an odd integer. For each integer x with $0 < x < q$ and $(q, x) = 1$, we know that there exists one and only one \overline{x} with $0 < \overline{x} < q$ such that $x\overline{x} \equiv 1 \pmod{q}$. Let $r(q)$ be the number of cases in which x and \overline{x} are of opposite parity. For $q = p$ a prime, D. H. Lehmer [1] asks us to find $r(p)$ or at least to say something nontrivial about it. About this problem, a lot of scholars [2,3] have studied it. For the sake of simplicity, we call such a number x as a D. H. Lehmer number.

W. Zhang [4] has given an asymptotic estimate:

$$ r(p) = \frac{1}{2}p + O(p^{\frac{3}{4}} \ln^2 p). $$

1.nyn0902@mail.nwpu.edu.cn \hspace{1em} 2.marong@nwpu.edu.cn \hspace{1em} 3.2805256907@qq.com
Later, W. Zhang [5, 6] also proved that for every odd integer \(q \geq 3 \),
\[
r(q) = \frac{1}{2} \phi(q) + O(q^{\frac{3}{2}} d^2(q) \ln^2 q),
\]
where \(\phi(q) \) is the Euler function and \(d(q) \) is the divisor function.

For any nonnegative integer \(k \), let
\[
M(q, k) = \sum_{a=1}^{q} (a - \bar{a})^{2k},
\]
W. Zhang [7] gave a sharp asymptotic formula for \(M(q, k) \) as following:
\[
M(q, k) = \frac{1}{(2k + 1)(2k + 2)} \phi(q) q^{2k} + O(4^k q^{2k+\frac{1}{2}} d^2(q) \ln^2 q).
\]
where \(\sum'_{a} \) denotes the summation over all \(a \) such that \((a, q) = 1 \). Moreover, he [8] also proved
\[
\sum_{a=1}^{q} (a - \bar{a})^{2k} = \frac{1}{(2k + 1)(k + 1)} \phi(q) q^{2k} + O(4^k q^{2k+\frac{1}{2}} d^2(q) \ln^2 q).
\]

The main purpose of this paper is to study the distribution properties of D. H. Lehmer numbers and the asymptotic properties of the 2kth power mean
\[
M(x, q, k) = \sum_{a=1}^{q} \sum_{b \leq x} (a - b)^{2k}.
\]
It seems that no one has studied this problem yet. The problem is interesting because it can help us to find how large is the difference between a D. H. Lehmer number and its inverse modulo \(q \). In this paper, we use estimates of Kloostermans sums and properties of trigonometric sums to give a sharper asymptotic formula for \(M(x, q, k) \) for any fixed positive integer \(k \). That is, we shall prove the following:

Theorem. For any odd number \(q \) and integer \(k \), we have the asymptotic formula
\[
M(x, q, k) = \frac{1}{(2k + 1)(2k + 2)} x \phi(q) q^{2k} + O(q^{2k+\frac{1}{2}} \ln^2 q)
\]
where \(\phi(q) \) is the Euler function.

2. Some lemmas

In this section, we prove some elementary lemmas which are necessary in the proof of the theorems.

Lemma 1. Let \(q \) be an odd number. For any integer \(n \) and nonnegative integer \(r \), define
\[
K(n, r) = \sum_{a=1}^{\frac{q}{2}} a^r e \left(\frac{an}{q} \right), \quad H(n, r) = \sum_{a=1}^{\frac{q}{2}} (-1)^a a^r e \left(\frac{an}{q} \right),
\]
where \(e(y) = e^{2\pi iy} \). We have the estimates

\[
K(n, r) \begin{cases}
= \frac{q^{r+1}}{\sin(\pi n/q)} + O(q^r), & q|n \\
\ll \frac{q^r}{|\sin(\pi n/q)|}, & q \nmid n
\end{cases}
\]

(1)

\[
H(n, r) \ll \frac{q^r}{|\cos(\pi n/q)|}.
\]

(2)

Proof. See Ref. [7].

Lemma 2. For any integer \(K \geq 1 \) and \(0 < \alpha < 1 \), we have

\[
\left| \sum_{n=1}^{K} e(\alpha n) \right| \leq \min \left(K, \frac{1}{2\langle \alpha \rangle} \right),
\]

where \(\langle \alpha \rangle = \min(\{\alpha\}, 1 - \{\alpha\}) \), \(\{\alpha\} \) is the decimal part of \(\alpha \).

Proof. See Ref. [9].

Lemma 3. For any integer \(q \geq 3 \), \(x > \frac{1}{2} \), and any positive integer \(n \geq 1 \), we have

\[
\sum_{l=1}^{q-1} \left| \sum_{b \leq xq} \left(\frac{b(n - l)}{q} \right) \right| \ll q^{1+\epsilon}.
\]

Proof. From Lemma 2, when \(n \not\equiv 0 \pmod{q} \), for \(1 \leq l \leq q - 1 \), there must be one and only one \(l \) such that \(n - l \equiv 0 \pmod{q} \), so we get

\[
\sum_{l=1}^{q-1} \left| \sum_{b \leq xq} \left(\frac{b(n - l)}{q} \right) \right| = \sum_{l=1}^{q-1} \left| \sum_{b \leq xq/d} \mu(d) \sum_{b \equiv l \pmod{d}} e \left(\frac{b(n - l)}{q} \right) \right| = \sum_{l=1}^{q-1} \left| \sum_{d|q} \mu(d) \sum_{b \leq xq/d} e \left(\frac{b(n - l)}{q} \right) \right|
\]

\[
\leq \sum_{l=1}^{q-1} \left| \sum_{d|q} \mu(d) \sum_{b \leq xq/d} e \left(\frac{b(n - l)}{q} \right) \right| + xq \sum_{d|q} \frac{\mu(d)}{d} | \ll q^{1+\epsilon}.
\]

\[
= \sum_{l=1}^{q-1} \left| \frac{1}{2\langle \frac{n}{q} \rangle} \right| - \sum_{d|q} \left| \frac{1}{2\langle \frac{n}{q} \rangle} \right| + x\phi(q)
\]

\[
= q - \sum_{d|q} \frac{1}{d} + x\phi(q).
\]

\[\text{Page 3}\]
\[\leq 2 \sum_{1 \leq l \leq \lfloor \frac{q}{2} \rfloor} \frac{1}{d(q)} - \sum_{d(q)} \left| \frac{1}{2\left\langle \frac{n}{q} \right\rangle} \right| + x\phi(q) \]
\[= q \sum_{1 \leq l \leq \lfloor \frac{q}{2} \rfloor} \frac{1}{l} - \sum_{d(q)} \left| \frac{1}{2\left\langle \frac{n}{q} \right\rangle} \right| + x\phi(q) \]
\[= qd(q) \sum_{1 \leq l \leq \lfloor \frac{q}{2} \rfloor} \frac{1}{l} - d(q) \left| \frac{1}{2\left\langle \frac{n}{q} \right\rangle} \right| + x\phi(q) \]
\[\ll q^{1+\epsilon}. \quad (3) \]

When \(n \equiv 0(\text{mod} q) \), from Lemma 2, we also get
\[\sum_{l=1}^{q-1} \left| \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \right| \]
\[= \sum_{l=1}^{q-1} \left| \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \right| \sum_{d|(b,q)} \mu(d) \]
\[= \sum_{l=1}^{q-1} \sum_{d|q} \mu(d) \sum_{b \leq xq/d} e\left(\frac{bl}{q} \right) \]
\[\leq \sum_{l=1}^{q-1} \sum_{d|q} \left| \sum_{b \leq xq/d} e\left(\frac{bl}{q} \right) \right| \]
\[\leq \sum_{l=1}^{q-1} \sum_{d|q} \left| \frac{1}{2\left\langle \frac{l}{q} \right\rangle} \right| \]
\[\leq 2 \sum_{1 \leq l \leq \lfloor \frac{q}{2} \rfloor} \sum_{d|q} \frac{1}{2\left\langle \frac{l}{q} \right\rangle} \]
\[= q \sum_{1 \leq l \leq \lfloor \frac{q}{2} \rfloor} \frac{1}{l} \]
\[= qd(q) \sum_{1 \leq l \leq \lfloor \frac{q}{2} \rfloor} \frac{1}{l} \]
\[\ll q^{1+\epsilon}. \quad (4) \]

Therefore, combining (3) and (4), for any positive integer \(n \geq 1 \), we have the estimate
\[\sum_{l=1}^{q-1} \left| \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \right| \ll q^{1+\epsilon}. \]

This proves Lemma 3.

Lemma 4. Let \(q \geq 3 \) be an integer, and \(\chi \) denote the Dirichlet character modulo \(q \). The Gauss sum is defined by
\[G(n, \chi) = \sum_{a=1}^{q} \chi(a)e\left(\frac{na}{q} \right). \]
Then by the principal Dirichlet character \(\chi_0 \) modulo \(q \), we have the identity

\[
G(n, \chi_0) = \mu \left(\frac{q}{(n, q)} \right) \phi(q) \phi^{-1} \left(\frac{q}{(n, q)} \right),
\]

where \(\mu(n) \) is the M"obius function, \(\phi(q) \) is the Euler function, and \((n, q)\) is the greatest common divisor of \(n \) and \(q \).

Proof. See Ref. [10].

Lemma 5. For \(q > 2 \) an integer, any non-principal Dirichlet character \(\chi \) modulo \(q \) and any positive integers \(m \) and \(l \), we have the estimate

\[
\sum_{\chi \mod q} G(m, \chi) G(l, \chi) \ll (m, l, q)^{\frac{1}{2}} q^{\frac{3}{2} + \epsilon}, \tag{5}
\]

where \((m, l, q)\) is the greatest common divisor of \(m, l \) and \(q \), \(\epsilon \) is any fixed positive real number.

On the other hand, for the principal Dirichlet character \(\chi_0 \), any positive integers \(m \) and \(l \), we also have

\[
G(m, \chi_0) G(l, \chi_0) \ll (m, q)(l, q) q^\epsilon. \tag{6}
\]

Proof. First, we prove (5). According to the orthogonality of character sums, we have

\[
\sum_{\chi \mod q} \chi(n) = \begin{cases}
\phi(q), & n \equiv l \pmod{q} \\
0, & n \not\equiv l \pmod{q}
\end{cases}
\]

and hence we have

\[
\sum_{\chi \mod q} G(m, \chi) G(l, \chi)
\]

\[
= \sum_{\chi \mod q} \sum_{s=1}^{q} \chi(s) e \left(\frac{ms}{q} \right) \sum_{t=1}^{q} \chi(t) e \left(\frac{lt}{q} \right)
\]

\[
= \sum_{s=1}^{q'} \sum_{t=1}^{q'} e \left(\frac{ms + lt}{q} \right) \sum_{\chi \mod q} \chi(s) \chi(t)
\]

\[
= \phi(q) \sum_{s=1}^{q-1} \sum_{t=1}^{q-1} e \left(\frac{ms + lt}{q} \right)
\]

\[
= \phi(q) \sum_{t=1}^{q-1} e \left(\frac{m \bar{t} + lt}{q} \right)
\]

\[
\ll \phi(q)(m, l, q)^{\frac{1}{2}} q^{\frac{3}{2}}
\]

\[
\ll (m, l, q)^{\frac{1}{2}} q^{\frac{3}{2} + \epsilon}.
\]

Now we show (6). From Lemma 4 and the definition of Gauss sum, we have

\[
G(m, \chi_0) G(l, \chi_0)
\]
\[
\mu \left(\frac{q}{(m, q)} \right) \phi(q) \phi^{-1} \left(\frac{q}{(m, q)} \right) \mu \left(\frac{q}{(l, q)} \right) \phi(q) \phi^{-1} \left(\frac{q}{(l, q)} \right) \ll \phi^2(q) \frac{(m, q)(l, q) d^2(q)}{q^2} \ll (m, q)(l, q) q^\epsilon,
\]
where we have used \(\phi(q) \gg \frac{q}{d(q)} \) (see Ref. [11]), and \(d(q) \) is the divisor function.

Lemma 6. Let \(m, n \) and \(q \) be integers, and \(q > 2 \). Then we have the estimates

\[
S(x, m, n; q) = \sum_{a=1}^{q} \sum_{b \leq xq \atop ab \equiv 1 (\mod q)} e \left(\frac{am + bn}{q} \right) \ll q^{1/2 + \epsilon}
\]

Proof. From the orthogonality of character sums, we have

\[
S(x, m, n; q) = \sum_{a=1}^{q} \sum_{b \leq xq \atop ab \equiv 1 (\mod q)} e \left(\frac{am + bn}{q} \right)
\]

\[
= \frac{1}{\phi(q)} \sum_{a=1}^{q} \sum_{b \leq xq} e \left(\frac{am + bn}{q} \right) \sum_{\chi \mod q} \chi(a) \chi(b)
\]

\[
= \frac{1}{\phi(q)} \sum_{\chi \mod q} \left(\sum_{a=1}^{q} \chi(a) e \left(\frac{am}{q} \right) \right) \left(\sum_{b \leq xq} \chi(b) e \left(\frac{bn}{q} \right) \right)
\]

\[
= \frac{1}{\phi(q)} \sum_{\chi \equiv \chi_0} \left(\sum_{a=1}^{q} \chi(a) e \left(\frac{am}{q} \right) \right) \left(\sum_{b \leq xq} \chi(b) e \left(\frac{bn}{q} \right) \right)
\]

\[
+ \frac{1}{\phi(q)} \left(\sum_{a=1}^{q-1} e \left(\frac{am}{q} \right) \right) \left(\sum_{b \leq xq} e \left(\frac{bn}{q} \right) \right)
\]

\[
= S_1 + S_2.
\]

(7)

Now we will estimate both \(S_1 \) and \(S_2 \) respectively. Firstly, we shall estimate \(S_1 \). From the identity, for any Dirichlet character \(\chi \neq \chi_0 \) modulo \(q \),

\[
\chi(a) = \frac{1}{q} \sum_{k=1}^{q-1} G(k, \chi) e \left(-\frac{ak}{q} \right).
\]

Hence according to Lemma 3 and Lemma 5, we have

\[
S_1 = \frac{1}{\phi(q)} \sum_{\chi \equiv \chi_0} \left(\sum_{a=1}^{q} \frac{1}{q} \sum_{k=1}^{q-1} G(k, \chi) e \left(-\frac{ak}{q} \right) e \left(\frac{am}{q} \right) \right) \times
\]

\[
\times \left(\sum_{b \leq xq} \frac{1}{q} \sum_{l=1}^{q-1} G(l, \chi) e \left(-\frac{bl}{q} \right) e \left(\frac{bn}{q} \right) \right)
\]

\[
= \frac{1}{q^2 \phi(q)} \sum_{\chi \neq \chi_0} \left(\sum_{k=1}^{q-1} G(k, \chi) \sum_{a=1}^{q} e \left(\frac{a(m - k)}{q} \right) \right) \times
\]
\[
\times \left(\sum_{l=1}^{q-1} G(l, \chi) \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \right) \\
= \frac{1}{q^2 \phi(q)} \sum_{\chi \neq \chi_0} \left(\sum_{k=1}^{q-1} G(k, \chi) \sum_{a=1}^{q} e\left(\frac{a(m-k)}{q} \right) \sum_{d|a} \mu(d) \right) \times \\
\times \left(\sum_{l=1}^{q-1} G(l, \chi) \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \right) \\
= \frac{1}{q^2 \phi(q)} \sum_{\chi \neq \chi_0} \left(\sum_{k=1}^{q-1} G(k, \chi) \sum_{d|q} \mu(d) \sum_{a=1}^{q} e\left(\frac{a(m-k)}{q} \right) \right) \times \\
\times \left(\sum_{l=1}^{q-1} G(l, \chi) \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \right) \\
= \frac{q}{q^2 \phi(q)} \sum_{\chi \neq \chi_0} \left(\sum_{k=1}^{q-1} G(k, \chi) \sum_{d|q} \frac{\mu(d)}{d} \right) \times \\
\times \left(\sum_{l=1}^{q-1} G(l, \chi) \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \right) \\
= \frac{1}{q^2} \sum_{\chi \neq \chi_0} G(m, \chi) \left(\sum_{l=1}^{q-1} G(l, \chi) \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \right) \\
= \frac{1}{q^2} \sum_{l=1}^{q-1} \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \sum_{\chi \neq \chi_0} G(m, \chi) G(l, \chi) + \\
+ \frac{1}{q^2} \sum_{l=1}^{q-1} \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) G(m, \chi_0) G(l, \chi_0) \\
\ll \frac{1}{q^2} \sum_{l=1}^{q-1} \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \sum_{\chi \mod q} G(m, \chi) G(l, \chi) + \\
+ \frac{1}{q^2} \sum_{l=1}^{q-1} \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) G(m, \chi_0) G(l, \chi_0) \\
\ll \frac{1}{q^2} \sum_{l=1}^{q-1} \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) (m, l, q)^{\frac{1}{2}} q^{\frac{d}{2}} + \\
+ \frac{1}{q^2 \phi(q)} \sum_{l=1}^{q-1} \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) (m, q)(l, q)^{\epsilon} \\
\ll q^{\frac{1}{2} + \epsilon} \sum_{l=1}^{q-1} \sum_{b \leq xq} e\left(\frac{b(n-l)}{q} \right) \\
\ll q^{\frac{1}{2} + \epsilon}.
\] (8)
Now we estimate S_2, we have

$$|S_2| = \frac{1}{\phi(q)} \left| \sum_{a=1}^{q-1} e\left(\frac{am}{q}\right) \left(\sum_{b \leq xq} e\left(\frac{bn}{q}\right) \right) \right|$$

$$= \frac{1}{\phi(q)} \left| \sum_{a=1}^{q-1} e\left(\frac{am}{q}\right) \sum_{b \leq xq} e\left(\frac{bn}{q}\right) \right|$$

$$\leq \frac{1}{\phi(q)} \left| \sum_{b \leq xq} e\left(\frac{bn}{q}\right) \right|$$

$$\leq \frac{xq}{\phi(q)}$$

$$\leq xq^\epsilon$$

$$\ll q^{\frac{3}{2}+\epsilon}, \quad (9)$$

where $x < q^{\frac{1}{2}+\epsilon}$.

Therefore, from (7)-(9), we have

$$S(x, m, n; q) = \sum_{a=1}^{q} \sum_{b \leq xq} e\left(\frac{am + bn}{q}\right) \ll q^{\frac{1}{2}+\epsilon},$$

where ϵ is any positive real number.

Lemma 7. Let r, s and q be positive integers and $q > 2$. Then

$$\sum_{a=1}^{q} \sum_{b \leq xq} a^rb^s = \frac{x\phi(q)q^{r+s}}{(r+1)(s+1)} + O(q^{r+s+\frac{3}{2}} \ln^2 q),$$

where $\phi(q)$ is the Euler function.

Proof. From the trigonometric identity

$$\sum_{a=1}^{q} e\left(\frac{an}{q}\right) = \begin{cases} q, & q \mid n \\ 0, & q \nmid n \end{cases}$$

we get the identity

$$\sum_{a=1}^{q} \sum_{b \leq xq} a^rb^s$$

$$= \frac{1}{q^2} \sum_{a=1}^{q} \sum_{b \leq xq} \sum_{c,d=1}^{q} \sum_{m,n=1}^{q} e\left(\frac{m(a-c) + n(b-d)}{q}\right)$$

$$= \frac{1}{q^2} \sum_{m,n=1}^{q} \left(\sum_{a=1}^{q} \sum_{b \leq xq} e\left(\frac{am + bn}{q}\right) \right) \left(\sum_{c=1}^{q} c^r e\left(\frac{-mc}{q}\right) \right) \left(\sum_{d=1}^{q} d^{s-r} e\left(\frac{-nd}{q}\right) \right)$$
\[
\frac{1}{q^2} S(x, q; q) K(-q, r) K(-q, s) = \frac{1}{q^2} \sum_{m=1}^{q} \sum_{n=1}^{q} S(x, m, n; q) K(-m, r) K(-n, s) + \frac{1}{q^2} \sum_{m=1}^{q-1} S(x, m, q; q) K(-m, r) K(-q, s) + \frac{1}{q^2} S(x, m, q; q) K(-m, r) K(-q, s),
\]

where \(K(-m, r) \) is defined in Lemma 1. From (2) of Lemma 1, Lemma 6 and noting that \(2/\pi \leq (\sin x/x) \) for \(|x| \leq \pi/2 \), we get

\[
\frac{1}{q^2} S(x, q; q) K(-q, r) K(-q, s) = \frac{1}{q^2} \left(\sum_{a=1}^{q} \sum_{b \leq x_q \atop ab \equiv 1 \pmod{q}} \left(\frac{aq + bq}{q} \right) \right) \left(\frac{q^{r+1}}{r+1} + O(q^r) \right) \left(\frac{q^{s+1}}{s+1} + O(q^s) \right)
\]

\[
= \frac{1}{q^2} \left(\sum_{a=1}^{q} \sum_{b \leq x_q \atop ab \equiv 1 \pmod{q}} 1 \right) \left(\frac{q^{r+1}}{r+1} + O(q^r) \right) \left(\frac{q^{s+1}}{s+1} + O(q^s) \right)
\]

\[
= \frac{1}{q^2} \left(\sum_{b \leq x_q} \mu(d) \right) \left(\frac{q^{r+1}}{r+1} + O(q^r) \right) \left(\frac{q^{s+1}}{s+1} + O(q^s) \right)
\]

\[
= \frac{1}{q^2} \left(xq \sum_{d | q} \frac{\mu(d)}{d} \right) \left(\frac{q^{r+1}}{r+1} + O(q^r) \right) \left(\frac{q^{s+1}}{s+1} + O(q^s) \right)
\]

\[
= \frac{x \phi(q)}{q^2} \left(\frac{q^{r+1}}{r+1} + O(q^r) \right) \left(\frac{q^{s+1}}{s+1} + O(q^s) \right)
\]

\[
= \frac{x \phi(q) q^{r+s}}{(r+1)(s+1)} + O(q^{r+s}),
\]

(11)
\[
\ll \sum_{m=1}^{q-1} q^{2} q^{s+1} q^{r} \frac{q}{2m} \\
\ll q^{r+s+\frac{5}{2}} \sum_{m=1}^{q-1} \frac{1}{m} \\
\ll q^{r+s+\frac{5}{2}} \ln q. \quad (12)
\]

Similarly, we can get the estimate
\[
\sum_{n=1}^{q-1} S(x, q, n; q) K(-q, r) K(-n, s) \ll q^{r+s+\frac{5}{2}} \ln q. \quad (13)
\]
\[
\sum_{m=1}^{q-1} S(x, m, n; q) K(-m, r) K(-n, s) \ll q^{r+s+\frac{5}{2}} \sum_{m=1}^{q-1} \sum_{n=1}^{q-1} \frac{1}{mn} \\
\ll q^{r+s+\frac{5}{2}} \ln^{2} q. \quad (14)
\]

Combining (10)-(14) we immediately deduce that
\[
\ll \sum_{a=1}^{q} \sum_{b \leq xq} \alpha^{a} \beta^{b} = \frac{x \phi(q) q^{r+s}}{(r+1)(s+1)} + O(q^{r+s+\frac{5}{2}} \ln^{2} q).
\]

This is the conclusion of Lemma 7.

Lemma 8. Let \(r, s \) and \(q \) be positive integers and \(q > 2 \). Then
\[
\ll \sum_{a=1}^{q} \sum_{b \leq xq} (-1)^{a+b} q^{r} b^{s} = O(q^{r+s+\frac{5}{2}} \ln^{2} q).
\]

Proof. Similarly, we get
\[
\ll \sum_{a=1}^{q} \sum_{b \leq xq} (-1)^{a+b} q^{r} b^{s} \\
= \frac{1}{q^{2}} \sum_{a=1}^{q} \sum_{b \leq xq} (-1)^{c+d} d^{s} \sum_{m,n=1}^{q} \frac{1}{q} \left(m(a-c) + n(b-d) \right) \\
= \frac{1}{q^{2}} \sum_{m,n=1}^{q} \left(\sum_{a=1}^{q} \sum_{b \leq xq} (-1)^{c+d} e^{\left(\frac{am+bn}{q} \right)} \right) \left(\sum_{c=1}^{q} (-1)^{c} e^{\left(\frac{-mc}{q} \right)} \right) \left(\sum_{d=1}^{q} (-1)^{d} e^{\left(\frac{-nd}{q} \right)} \right)
\]
Lemma 7 and Lemma 8 we get used (2) of Lemma 1 in the proof above.

\[H \approx q^{r+s} q^2 \]

\[H \approx q^{r+s} + \frac{1}{2} \ln^2 q. \]

where \(H(-m, r) \) is defined in Lemma 1.

Noting that \(|\cos(\pi m/q)| = |\sin(\pi(q-2m)/(2q))| \) and \(q - 2m \neq 0 \), and we have used (2) of Lemma 1 in the proof above.

3. Proof of The Theorem

In this section, we shall complete the proof of the theorem. By the binomial formula, Lemma 7 and Lemma 8 we get

\[M(x, q, k) = \sum_{a=1}^{q} \sum_{1 \leq b \leq qx} (a-b)^{2k} \]

\[= \frac{1}{2} \sum_{a=1}^{q} \sum_{1 \leq b \leq qx} (1 + (-1)^{a+b})(a-b)^{2k} \]

\[= \frac{1}{2} \sum_{a=1}^{q} \sum_{1 \leq b \leq qx} (-1)^{a+b}(a-b)^{2k} \]

\[= \frac{1}{2} \sum_{i=0}^{2k} C_{2k}^{i} (-1)^{i} \left(\sum_{a=1}^{q} \sum_{1 \leq b \leq qx \mod q} (a^{2k-i}b^{i}) - \sum_{a=1}^{q} \sum_{b \equiv 1 \mod (q-2n)} (-1)^{a+b} a^{2k-i}b^{i} \right) \]

\[= \frac{1}{2} \sum_{i=0}^{2k} C_{2k}^{i} (-1)^{i} \left(\frac{x\phi(q)q^{2k}}{(i+1)(2k-i+1)} + O(q^{2k+\frac{1}{2}} \ln^2 q) \right) + \]

\[+ O \left(\sum_{i=0}^{2k} C_{2k}^{i} q^{2k+\frac{1}{2}} \ln^2 q \right) \]

\[= \frac{x\phi(q)q^{2k}}{2} \sum_{i=0}^{2k} \frac{C_{2k}^{i} (-1)^{i}}{(i+1)(2k-i+1)} + O \left(q^{2k+\frac{1}{2}} \ln^2 q \right) \]

\[= \frac{x\phi(q)q^{2k}}{2(2k+1)(2k+2)} \sum_{i=0}^{2k} (-1)^{i} C_{2k+2}^{i+1} + O \left(q^{2k+\frac{1}{2}} \ln^2 q \right) \]

\[= \frac{x\phi(q)q^{2k}}{2(2k+1)(2k+2)} \left(- \sum_{i=0}^{2k+2} (-1)^{i} C_{2k+2}^{i+2} + 2 \right) + O \left(q^{2k+\frac{1}{2}} \ln^2 q \right) \]
\[
\frac{x \phi(q) q^{2k}}{2(2k + 1)(2k + 2)} \left((-1 - 1)^{2k + 2} + 2\right) + O\left(q^{2k + \frac{1}{2} \ln^2 q}\right) = \frac{x \phi(q) q^{2k}}{2(2k + 1)(2k + 2)} + O\left(q^{2k + \frac{1}{2} \ln^2 q}\right).
\]

This is the conclusion of Theorem.

References

[1] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1981, 139-140.

[2] Z. F. Xu and W. P. Zhang, On a problem of D.H.Lehmer over short intervals[J], J Math Anal Appl, 320, 2006, 756-770.

[3] W. P. Zhang, Z. F. Xu, Y. Yi, A problem of D. H. Lehmer and its mean square value formula, Journal of Number theory, 103, 2003, 197-213.

[4] W. P. Zhang, On D. H. Lehmer problem, Chin. Sci. Bull, 21, 1992, 1765C1769.

[5] W. P. Zhang, A problem of D. H. Lehmer and its generalization (I), Compositio Mathematica, 86, 1993, 307-316.

[6] W. P. Zhang, A problem of D. H. Lehmer and its generalization (II), Compositio Mathematica, 91, 1994, 47-56.

[7] W. P. Zhang, On the difference between a D. H. Lehmer number and its inverse modulo \(q\), Acta Arithmetica, 68, 1994, 255-263.

[8] W. P. Zhang, On the difference between an integer and its inverse modulo \(n\)[J], Journal of Number Theory, 52, 1995, 1-6.

[9] T. M. Apostol, Introduction to Analytic Number Theory[M], Springer-Verlag, New York, 1976.

[10] S. H. Min and S. J. Yan, Elementary number theory, 2003.

[11] A. Ivic, The Riemann zeta-function, The theory of the Riemann zeta-funtion with application, 1985.

[12] W. P. Zhang, On the distribution of inverses modulo \(n\), Journal of Number Theory, 61, 1996, 301-310.

[13] S. R. Louboutin, J. Rivat, A. Sárközy, On a problem of D. H. Lehmer[J], Proc Amer Math Soc, 135(4), 2007, 969-975.

[14] Y. Yi and W. P. Zhang, On the generalization of a problem of D. H. Lehmer[J], Kyushu J Math, 56, 2002, 235-241.

[15] W. P. Zhang, A problem of D. H. Lehmer and its mean square value formula[J], Japan J Math, 29(1), 2003, 109-116.

[16] W. P. Zhang, On a problem of D. H. Lehmer and Kloosterman’s sums[J], Monatsh Math, 139, 2003, 247-257.
[17] R. Ma and Y. L. Zhang, On a kind of generalized Lehmer problem, Czechoslovak Mathematical Journal, 62(137), 2012, 1135-1146.

[18] R. Ma and Y. L. Zhang, A note on a kind of character sums over the short interval, Proc. Indian Acad. Sci. (Math. Sci.), 123(3), 2013, 321-329.