Genetic polymorphisms of CYP2C9/CYP2C19 in chronic obstructive pulmonary disease

Hui Lu
The First Affiliated Hospital of Hainan Medical University

Yixiu Yang
Hainan General Hospital

Dongchuan Xu
Hainan General Hospital

Qiong Feng
University of South China

Juan Sun
Hainan General Hospital

Quanni Li
Hainan General Hospital

Jie Zhao
University of South China

Xiaoli Zhou
Hainan General Hospital

Huan Niu
Hainan General Hospital

Ping He
Hainan General Hospital

Jianfang Liu
University of South China

yipeng ding
DingYP66@163.com
Hainan General Hospital
https://orcid.org/0000-0002-5429-9939

Research article

Keywords: Chronic obstructive pulmonary disease, CYP2C9, CYP2C19, Case control study

Posted Date: September 20th, 2019

DOI: https://doi.org/10.21203/rs.2.14699/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at COPD: Journal of Chronic Obstructive Pulmonary Disease on August 5th, 2020. See the published version at https://doi.org/10.1080/15412555.2020.1780577.
Abstract

Background: Chronic obstructive pulmonary disease (COPD) has a high incidence in elderly and significantly affects the quality of life. CYP2C9 and CYP2C19 have an important role in tobacco-related diseases and inflammatory reaction. Thus, in this study we aims to investigate the association between CYP2C9 / CYP2C19 polymorphisms and the risk of COPD.

Methods: A total of 821 subjects were recruited which including 313 COPD patients and 508 healthy controls. Seven SNPs of CYP2C9 / CYP2C19 were selected for genotyping. The Odds ratios (ORs) and 95% confidence interval (95% CI) were calculated using a logistic regression analysis to evaluate the association between COPD risk and CYP2C9 / CYP2C19 polymorphisms.

Results: The rs9332220 of CYP2C9 "A" allele was associated with reducing COPD risk (OR = 0.64, 95% CI = 0.43 – 0.94, p = 0.021). And rs11853758 "G" allele carrier could significantly decrease 0.35-fold COPD risk compared with T allele carrier (OR = 0.65, 95% CI = 0.45 – 0.96, p = 0.027). Furthermore, gender-based stratification analysis showed that rs9332220 and rs11853758 polymorphisms were associated with risk of COPD in males.

Conclusions: Our study firstly reported the effects of CYP2C9 and CYP2C19 genetic variants on COPD risk. We found that rs9332220 in CYP2C9 and rs11853758 in CYP2C19 were associated with a reduced susceptibility to COPD.

Background

Chronic obstructive pulmonary disease (COPD) has a high incidence in elderly people and significantly affects the quality of life. The characterized of COPD is airflow limitation. That is an incompletely reversible chronic persistent inflammatory process. Smoking is the major environmental risk factor. Only 10-15% of smokers end up with COPD. The COPD is more common in people who have a COPD family history. The COPD was also showed a high risk in identical twins than fetal twins, which means genetic factor play a key role in COPD etiology. Therefore, to identify the genetic factor about smoking and inflammatory in COPD is beneficial to early prevention and accurate diagnosis of COPD.

The cytochrome P450 family 2 subfamily C (CYP2C) is a key player in the generation of EETs, the enzymes CYP2C9 and CYP2C19 are the major CYP2C involved in epoxyeicosatrienoic acids (EETs) production. The CYP2C19 metabolize arachidonic acid (AA) to produce EETs, the EETs anti-inflammatory actions possess an established protective effect on human cardiovascular system. The CYP2C9 enzymes have been detected not only in liver-located but also in lungs, pancreas, stomach and kidneys. CYP2C9 can metabolize polycyclic aromatic hydrocarbons in tobacco smoke and thereby generate disease-causing metabolites. Genetic variation in genes coding for CYP9C9 enzymes has shown changes in enzyme activity that affect metabolite levels, resulting in a potential risk of disease, suggesting that CYP2C9 plays a key role in tobacco-related diseases.

In consideration of the CYP2C9 and CYP2C19 have an important role in tobacco-related diseases and inflammatory reaction, therefore in this study we did the association study between the CYP2C9/CYP2C19 polymorphism and the risk of COPD. A total of four SNPs (rs10509679, rs1934967, rs1234968 and rs9332220) of CYP2C9 and three SNPs (rs111853758, rs4494250 and rs75665761) of CYP2C19 were enrolled in this study. This study may provide the new marker for diagnosis of COPD.

Methods

Study population

821 participants were recruited from the Hainan general hospital for genotyping, which included 313 COPD patients and 508 healthy controls. According to the related literature report, COPD patients were diagnosed based on the multiple examinations results including the ratio of forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC ratio < 70% and FEV1 < 80% predicted). The healthy controls were collected from physical examination center of Hainan General Hospital and all of them exhibited normal pulmonary function (FEV1/FVC ratio > 70% and FEV1 > 80% predicted).

This study was approved by the ethics committee of Hainan General Hospital, and all participants signed the informed consent. The characteristic information of cases and controls were showed in Table 1.
Selection and genotyping of SNPs

Based on the database of 1000 genomes project (www.internationalgenome.org/), the SNP data of CYP2C9 and CYP2C19 were downloaded. Firstly, we chose the SNPs based on $r^2 > 0.8$, MAF > 0.05 in global population and the linkage disequilibrium of SNPs been detected by Haplovew software. Secondly, the primers of the selected SNPs were designed by Agena on-line software. Four SNPs (rs10509679, rs1934967, rs1234968 and rs9332220) of CYP2C9 and three SNPs (rs111853758, rs4494250 and rs75665761) of CYP2C19 linkage disequilibrium and well-designed primer SNPs were chosen.

Genomic DNA of all participants was extracted from peripheral blood using GoldMag-Mini whole blood genomic DNA purification kit (GoldMag Co. Ltd. Xi’an City, China). The Agena on-line software was used to design the primers (https://agenacx.com/online-tools/), and the primers of this study were listed in table 2. The genotyping of each SNP was detected by Agena MassARRAY platform (Agena Bioscience, SanDiego, CA, USA).

Statistical analysis

Age was displayed as mean ± standard deviation. The number of gender and smoking status were respectively statistics in cases and controls. Hardy-Weinberg equilibrium (HWE) of each SNP was evaluated by exact test. The p value less than 0.05 were defined statistically significant. The odds ratios (ORs) and 95% confidence interval (95% CI) were calculated using a logistic regression analysis. The Microsoft Excel and PLINK software were used analysis the relationship between the COPD risk and SNPs.

Results

313 COPD patients and 508 healthy controls were enrolled in this study. The average age of cases was 60 years old and the controls were nearly 72 years old. The average age between cases and controls have a significant difference ($p < 0.001$). In order to reduce the influence of age on the results, we adjusted the age in the later analysis. We also collected the sex, smoking status, BMI index and FEV$_1$/FVC information of cases and controls (Table 1).

The basic information of SNPs from CYP2C9 and CYP2C19 were presented in Table 3. Rs9332220 “A” allele was associated with a reduced COPD susceptibility (OR = 0.64, 95% CI = 0.43 - 0.94, $p = 0.021$), at the same time, rs11853758 “G” allele carrier with significant decreased risk 0.35-fold of COPD compared with T allele carrier (OR = 0.65, 95% CI = 0.45 - 0.96, $p = 0.027$).

The SNPs rs9332220 and rs11853758 were associated with COPD susceptibility under allele model, but the association between SNPs rs9332220 and rs11853758 and COPD risk under various genetic models were not significant (data not shown). After adjusted for age and sex, we found that the SNP loci rs1934968 AA genotype was not associated with COPD under allele model but significant associated with COPD under recessive model (OR = 0.54, 95% CI = 0.30 - 0.96, $p = 0.037$, Table 4).

As is shown in Table 5, a gender-based stratification analysis was performed. SNP loci rs9332220 of CYP2C9 “A” allele compared with “G” allele were associated with an decreased risk of COPD in the males (OR = 0.59, 95% CI = 0.37 - 0.92, $p = 0.020$), SNP loci rs111853758 of CYP2C19 “G” allele carriers were also associated with decreasing risk of COPD under allele model (OR = 0.62, 95% CI = 0.40 - 0.96, $p = 0.032$), but another two SNPs were not associated with COPD risk in females.

Discussion

In current study, we found that the rs9332220 “A” allele of CYP2C9 and rs11853758 “G” allele of CYP2C19 apparently associated with a decreased risk of COPD based on 821 participants from Hainan population. Moreover, rs9332220 and rs11853758 may influence the COPD risk of males in gender stratification analysis.

COPD is a complex disease caused by interaction of environmental and genetic factors. Several environmental risk factors for COPD have been identified 16,17. While the genetic risk factors were less well understood. The cytochrome P450 proteins were catalyzed many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids 18,19. In the genetic polymorphisms of
cytochrome P450 in COPD, Chen et al. found that CYP1A1 is an independent risk factor for very severe COPD \(^{20}\). Yang et al. also reported that CYP1A1 polymorphisms were associated with COPD susceptibility \(^{21}\), and Wang et al meta-analysis proved that CYP1A1 polymorphism might play a role in COPD risk among Asian population\(^{22}\). Seo et al. suggested that CYP3A4 may be play a role in airway injury of smokers \(^{23}\). All CYP enzymes share a common structure and similar function in the same way \(^{11}\). Thus, the association between polymorphism of CYP2C9 and CYP2C19 and COPD were assessed in this study.

CYP2C9 and CYP2C19 gene were located within a cluster of cytochrome P450 genes on chromosome 10q24. Previous studies reported the polymorphisms of CYP2C9 and CYP2C19 and risk of coronary heart disease (CHD) in Russian population\(^{24}\). In one study, bladder cancer decreased risk was associated with CYP2C9 variant loci carriers \(^{25}\). Combined with this study, CYP2C9 not only associated with tobacco-related cancers but also associated with tobacco-related COPD. Kamata et al. noted an up-regulation of CYP2C19 mRNA expressions in Alveolar epithelial type II (ATII) cells isolated from patients with COPD compared with smokers without COPD \(^{26}\). Kamata et al.’s study may have important implications for the research of COPD pathogenesis. Our findings firstly revealed that rs11853758 of CYP2C19 was obviously related to COPD susceptibility.

The CYP epoxygenases catalyze the epoxidation of the intracellular AA that gives rise to corresponding EETs \(^{27}\). EETs have anti-inflammatory, antiapoptotic, and antioxidative activities, and autophagy is believed to be involved in the pathogenesis of COPD \(^{28}\). EETs may protect the heart and liver by regulating autophagy \(^{29}\). The SNPs rs9332220 and rs11853758 polymorphisms in CYP2C9 and CYP2C19 may regulate the epoxygenases activity and influence the EETs production. It may be protective property of COPD by inhibiting autophagy.

There are some limitations in our study. The sample size is relatively small. In the future, we need to expand the sample size to verify our results. It’s necessary to study how CYP2C9 and CYP2C19 polymorphism influence the underlying pathogenesis of COPD for further study. Despite the above limitations, our present works provide the available evidence of CYP2C9 and CYP2C19 gene with COPD for the future study.

Conclusions

In conclusion, our present work indicated that rs9332220 in CYP2C9 and rs11853758 in CYP2C19 were associated with a reduced susceptibility to COPD.

Abbreviations

COPD: Chronic obstructive pulmonary disease; ORs: Odds ratios; 95% CI: 95% confidence interval; CYP2C: Cytochrome P450 family 2 subfamily C; EETs: Epoxyeicosatrienoic acids; AA: Arachidonic acid; FEV\(_1\): Forced expiratory volume in 1 second; FVC: Forced vital capacity; HWE: Hardy-Weinberg equilibrium; CHD: Coronary heart disease; ATII: Alveolar epithelial type II; BMI: Body mass index.

Declarations

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in accordance with the ethical standards of the Hainan General Hospital and with the 1964 Helsinki declaration. Informed consent was obtained from all individual participants included in the study.

Consent for publication
Not applicable.

Availability of data and materials
All the data regarding the findings are available within the manuscript. Anyone who is interested in the information should contact the corresponding author.
Competing interests

All authors declare that they have no competing interests.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81660013 and No.81860015) and 2018 Natural Science Foundation of Hainan Youth Fund Project (No.818QN315).

Authors' contributions

H L and YP: Conceived and designed the experiments. DC X, Q F, J S, QN L and J Z: Recruited and collected study samples. H N, P H and JF L: Selected the SNPs and designed primers. YX Y: Performed the data. H L: Wrote the manuscript. H L, YX Y and YP D: Contributed to data analysis and manuscript revised. All authors read and approved the final manuscript.

Acknowledgements

The authors thank all participants and volunteers in this study.

References

1. Li JX, Fu WP Zhang J, et al. A functional SNP upstream of the ADRB2 gene is associated with COPD. *International journal of chronic obstructive pulmonary disease*. 2018;13:917-925.
2. Cho MH, McDonald ML, Zhou X, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. *The Lancet Respiratory medicine*. 2014;2(3):214-225.
3. Wang Y, Zhou Q, Dong L, et al. The effects of CXCL10 polymorphisms on COPD susceptibility. *Molecular genetics and genomics : MGG*. 2018;293(3):649-655.
4. McCloskey SC, Patel BD, Hinchliffe SJ, Reid ED, Wareham NJ, Lomas DA. Siblings of patients with severe chronic obstructive pulmonary disease have a significant risk of airflow obstruction. *American journal of respiratory and critical care medicine*. 2001;164(8 Pt 1):1419-1424.
5. Ingebrigtsen T, Thomsen SF, Vestbo J, et al. Genetic influences on Chronic Obstructive Pulmonary Disease - a twin study. *Respiratory medicine*. 2010;104(12):1890-1895.
6. Ding Y, Niu H, Zhou L, et al. Association of multiple genetic variants with chronic obstructive pulmonary disease susceptibility in Hainan region. *The clinical respiratory journal*. 2017;11(6):727-732.
7. Ding Y, Yang D, Zhou L, et al. Variants in multiple genes polymorphism association analysis of COPD in the Chinese Li population. *International journal of chronic obstructive pulmonary disease*. 2015;10:1455-1463.
8. Ding Y, Niu H, Yang H, et al. EGLN2 and RNF150 genetic variants are associated with chronic obstructive pulmonary disease risk in the Chinese population. *International journal of chronic obstructive pulmonary disease*. 2015;10:145-151.
9. Bylund J, Ericsson J, Oliw EH. Analysis of cytochrome P450 metabolites of arachidonic and linoleic acids by liquid chromatography-mass spectrometry with ion trap MS. *Analytical biochemistry*. 1998;265(1):55-68.
10. Bertrand-Thiebault C, Berahmoune H, Thompson A, et al. Genetic Polymorphism of CYP2C19 gene in the Stanislas cohort. A link with inflammation. *Annals of human genetics*. 2008;72(Pt 2):178-183.
11. Shahabi P, Siest G, Meyer UA, Visvikis-Siest S. Human cytochrome P450 epoxygenases: variability in expression and role in inflammation-related disorders. *Pharmacology & therapeutics*. 2014;144(2):134-161.
12. Enayetallah AE, French RA, Thibodeau MS, Grant DF. Distribution of soluble epoxide hydrolase and of cytochrome P450 2C8, 2C9, and 2J2 in human tissues. *The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society*. 2004;52(4):447-454.
13. Office of the Surgeon G, Office on S, Health. Reports of the Surgeon General. In: The Health Consequences of Smoking: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2004.
14. Kaur-Knudsen D, Bojesen SE, Nordestgaard BG. Cytochrome P450 1B1 and 2C9 genotypes and risk of ischemic vascular disease, cancer, and chronic obstructive pulmonary disease. *Current vascular pharmacology*. 2012;10(4):512-520.
15. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. *American journal of respiratory and critical care medicine*. 2017;195(5):557-582.
16. Salvi S. Tobacco smoking and environmental risk factors for chronic obstructive pulmonary disease. *Clinics in chest medicine*. 2014;35(1):17-27.
17. Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease. *Lancet (London, England)*. 2015;385(9971):899-909.
18. Guengerich FP, Waterman MR, Egli M. Recent Structural Insights into Cytochrome P450 Function. *Trends in pharmacological sciences*. 2016;37(8):625-640.
19. Bhattacharyya S, Sinha K, Sil PC. Cytochrome P450s: mechanisms and biological implications in drug metabolism and its interaction with oxidative stress. *Current drug metabolism*. 2014;15(7):719-742.

20. Cheng SL, Yu CJ, Yang PC. Genetic polymorphisms of cytochrome p450 and matrix metalloproteinase in chronic obstructive pulmonary disease. *Biochemical genetics*. 2009;47(7-8):591-601.

21. Yang L, Li F, Yan M, Su X. Association of the CYP1A1 MspI and TNFalpha-308 polymorphisms with chronic obstructive pulmonary disease in Inner Mongolia. *Genetics and molecular research : GMR*. 2014;13(2):3209-3217.

22. Wang CD, Chen N, Huang L, et al. Impact of CYP1A1 Polymorphisms on Susceptibility to Chronic Obstructive Pulmonary Disease: A Meta-Analysis. *BioMed research international*. 2015;2015:942958.

23. Seo T, Pahwa P, McDuffie HH, et al. Association between cytochrome P450 3A5 polymorphism and the lung function in Saskatchewan grain workers. *Pharmacogenetics and genomics*. 2008;18(6):487-493.

24. Polonikov A, Kharchenko A, Bykanova M, et al. Polymorphisms of CYP2C8, CYP2C9 and CYP2C19 and risk of coronary heart disease in Russian population. *Gene*. 2017;627:451-459.

25. Fortuny J, Kogevinas M, Garcia-Closas M, et al. Use of analgesics and nonsteroidal anti-inflammatory drugs, genetic predisposition, and bladder cancer risk in Spain. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology*. 2006;15(9):1696-1702.

26. Kamata S, Fujino N, Yamada M, et al. Expression of cytochrome P450 mRNAs in Type II alveolar cells from subjects with chronic obstructive pulmonary disease. *Pharmacology research & perspectives*. 2018;6(3):e00405.

27. Spector AA, Norris AW. Action of epoxyeicosatrienoic acids on cellular function. *American journal of physiology Cell physiology*. 2007;292(3):C996-1012.

28. Li Y, Yu G, Yuan S, et al. 14,15-Epoxyeicosatrienoic acid suppresses cigarette smoke condensate-induced inflammation in lung epithelial cells by inhibiting autophagy. *American journal of physiology Lung cellular and molecular physiology*. 2016;311(5):L970-L980.

29. Li Y, Yu G, Yuan S, et al. Cigarette Smoke-Induced Pulmonary Inflammation and Autophagy Are Attenuated in Ephx2-Deficient Mice. *Inflammation*. 2017;40(2):497-510.

Tables

The basic information of cases and controls

Variables	Case (n=313)	Control (n=508)	
Age	60.05 ± 6.48	71.80 ± 10.09	<0.001*
Sex			0.003*
Male	238	337	
Female	75	171	
Smoking status			0.082
Yes	147	216	
No	164	292	
BMI	24.67 ± 4.62	24.35 ± 4.58	0.587
FEV₁ /FVC	0.56 ± 0.05	0.79 ± 0.04	

BMI: Body mass index; FEV₁: Forced expiratory volume in 1 second; FVC: Forced vital capacity

*p <0.05 indicates statistical significance

Table 2

Primers used in this study

SNP_ID	2nd-PCRPR	1st-PCRPR	UEP_DIR	UEP_SEQ
rs10509679	ACGTGATGGTGGAGTGGATCGCTTAGCTGATG	ACGTGATGGTGGGTATAAATGATGATCGCTGATG	F	tagcGAGTGAAG
rs1934967	ACGTGATGGTGGTGGACTCTCGTACTGATG	ACGTGATGGTGGTGGCTACCCCTGCCAGAAATCCACGAGA	F	TTAGTGTGCTAAGAA
rs1934968	ACGTGATGGTGGTGGACTCTCGTACTGATG	ACGTGATGGTGGTGGCTACCCCTGCCAGAAATCCACGAGA	F	TTAGTGTGCTAAGAA
rs9332220	ACGTGATGGTGGTGGACTCTCGTACTGATG	ACGTGATGGTGGTGGCTACCCCTGCCAGAAATCCACGAGA	F	TTAGTGTGCTAAGAA
rs75665761	ACGTGATGGTGGTGGACTCTCGTACTGATG	ACGTGATGGTGGTGGCTACCCCTGCCAGAAATCCACGAGA	F	TTAGTGTGCTAAGAA
rs4494250	ACGTGATGGTGGTGGACTCTCGTACTGATG	ACGTGATGGTGGTGGCTACCCCTGCCAGAAATCCACGAGA	F	TTAGTGTGCTAAGAA
rs75665761	ACGTGATGGTGGTGGACTCTCGTACTGATG	ACGTGATGGTGGTGGCTACCCCTGCCAGAAATCCACGAGA	F	TTAGTGTGCTAAGAA

* p <0.05 indicates statistical significance
Table 3

Basic information of candidate SNPs in this study

SNP	Chr	Gene	Position	Allele A/B	HWE p value	OR (95% CI)	p
rs10509679	10	CYP2C9	94948469	A/G	1.000	0.89 (0.72 - 1.12)	0.321
rs1934967	10	CYP2C9	94981669	T/C	1.000	1.16 (0.90 - 1.50)	0.250
rs1934968	10	CYP2C9	94982060	A/G	1.000	0.98 (0.80 - 1.22)	0.884
rs9332220	10	CYP2C9	94984186	A/G	0.433	0.64 (0.43 - 0.94)	0.021*
rs111853758	10	CYP2C19	94793932	G/T	0.138	0.65 (0.45 - 0.96)	0.027*
rs4494250	10	CYP2C19	94804000	A/G	0.467	1.05 (0.81 - 1.35)	0.714
rs75665761	10	CYP2C19	94806855	A/G	0.709	1.31 (0.89 - 1.93)	0.176

SNP: single nucleotide polymorphisms; Chr: Chromosome; HWE: Hardy-Weinberg equilibrium; OR: odds ratio; 95% CI: 95% confidential interval

*p <0.05 indicates statistical significance

Table 4

Genotype frequencies of the SNPs and their associations with risk of COPD

SNP	Gene	Model	Genotype	Case	Control	OR (95% CI)	p
rs1934968	CYP2C9	genotype	GG	96	186	1	
			AG	152	240	1.15 (0.77 - 1.71)	0.500
			AA	33	77	0.59 (0.31 - 1.09)	0.092
		dominant	GG	96	186	1	
			AG+AA	185	317	1.01 (0.69 - 1.47)	0.980
		recessive	GG+AG	248	426	1	
			AA	33	77	0.54 (0.30 - 0.96)	0.037*
		additive	—	—	—	0.86 (0.65 - 1.14)	0.295

OR: odds ratio; 95% CI: 95% confidential interval

*p <0.05 indicates statistical significance

Table 5

The association between SNPs and COPD under gender stratification analysis

SNP	Gene	Allele	Male Case	Male Control	Male OR (95% CI)	p	Female Case	Female Control	Female OR (95% CI)	p
rs9332220	CYP2C9	G	447	607	1		140	313	0.97 (0.37 - 1.63)	1
		A	29	67	0.59 (0.37 - 0.92)	0.020*	10	29	0.77 (0.37 - 1.63)	0.493
rs111853758	CYP2C19	T	418	602	1		136	311	1.05 (0.81 - 1.35)	0.714
		G	30	70	0.62 (0.40 - 0.96)	0.032*	10	31	0.74 (0.35 - 1.55)	0.419
OR: odds ratio; 95% CI: 95% confidential interval

*p <0.05 indicates statistical significance