Improving the efficiency of the hybrid algorithm for solving inhomogeneous minimax problem

V Kobak¹, A Zhukovskiy², V Porksheyan¹, A Kuzin¹,*

¹Don State Technical University, 1 Gagarina sq., Rostov-on-Don 344003, Russia
²North Caucasus branch of the Moscow Technical University of Communications and Informatics, Rostov-on-Don 344010, Russia

Abstract. The article deals with the problem of inhomogeneous minimax problem solution, what is typical of scheduling theory. This problem is NP-complete, and there is no exact algorithm for it, which has a polynomial time for large-scale problems. Therefore a quick algorithm that gets approximate tables is used. A possible method for solving this problem is considered a hybrid model, representing the synthesis of two genetic algorithms models, namely models Goldberg and CGS. Goldberg’s model is viewed from multiple crossovers and most promising mutation. As it is difficult to make calculations analytically and often impossible to make it in practice, the computational experiment was carried out in this article. The results of the experiment are described in the tables, which graphically show a comparison of the hybrid model effectiveness. The comparison is based on the accuracy results obtained for two types of crossovers with the basic parameters of genetic algorithm. It is proved that the use of hybrid algorithm leads to the results which are more précised to the optimal ones, despite the deterioration in the temporary search characteristics solutions.

1 Introduction

Currently the development of methods for producing suboptimal approximate solutions to NP-complete problems in scheduling theory is relevant [1]. As the part of scheduling theory the solution of many problems are described, NP-complete problems are different from others that is why it is practically impossible to find a solution for polynomial time. For suboptimal solutions a variety of algorithms, including genetic ones are used. In terms of scheduling theory distribution problem can be formulated as follows. There is a service system consisting of N independent units \(P = \{ p_1, p_2, ..., p_n \} \) Service end enters the flow of M - a plurality of independent parallel tasks (functional operators) \(T = \{ t_1, t_2, ..., t_m \} \). \(\tau(t_i p_j) \) – service duration assignment unit \(t_i \) and defined by a matrix \(\mathbf{T} \). Devices are generally not identical, an assignment \(t_i \) can be performed on any of them. One device cannot

* Corresponding author: angel_b@mail.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
simultaneously handle more than one assignment \(p_j \). It is necessary to determine a distribution of tasks on devices without interruption to make the entire set of tasks with a minimum time spending. The criterion to minimize the task execution time is the minimax criterion, which is defined as follows: \(f = \max_{1 \leq j \leq n} f_j \rightarrow \min \), where \(f_j = \sum_{t(t_i, p_j) \in T} \tau(t_i, p_j) \)

processor time shutdown \(p_j \) [2,3].

2 Materials and methods

In this article, as a basic algorithm for solving a non-uniform minimax problem, the modified Goldberg model is taken, what is a type of genetic algorithms model (hereinafter GA).

Goldberg modified model is different from a classical Holland one with the fact that the formation of a new generation uses a tournament selection, which allows to improve the algorithm results with various modification mutations by using various crossovers.

Goldberg modified model can be described as a sequence of the following steps:

Step 1. Initial generation, consisting of a predetermined number of individuals is being formed.

Step 2. Tournament selection of individuals and the use of crossover and mutation operators with a known probability of occurrence for a new generation.

Step 3. Check the conditions of the algorithm end, which usually lies in the immutability of the best solution for a given number of generations. If the test was not successful, go to the step 2.

Step 4. The best individual is chosen as the found solution [4, 5 and 6].

Graphically the functioning of Goldberg’s modified model can be represented in the Figure 1. The best individual will be selected and transferred to the next generation. The process is repeated as long as the best individual of a predetermined number of times will not be repeated in the generation.

![Graphical representation of Goldberg’s modified model](image-url)
Various modifications of mutations have been investigated from the whole spectrum which has been chosen as the most promising one, namely the simple mutation, is schematically illustrated in Figure 4:

Goldberg modified model (with the earlier found parameters) should be strengthen with the adding suitable for CGS model, which can be described by the following sequence:

In the final generation, consisting of a predetermined number of individuals, we find a suitable and memorize individual [7, 8]. If we get the best individual from the first time, the final generation is exposed to strong mutations and rerun the modified model of Goldberg. If the newly received end generation of the best individual is repeated then the number of repetitions is increased. If the number of repetitions is equal to early given ones, the resulting specimen is selected as the best solution found. If during extra runs in the final generation specimen will turn out better than the previous ones, the counter will be reset, and additional launches relaunch a modified model of Goldberg.
3 The results of study

Due to the fact that it is very difficult to solve this problem analytically or maybe it is even not possible, computational experiments to gather statistics algorithms have been made [9, 10]. Software tool was written for the realization of computing experiment in modern programming language C# in a development environment of Microsoft Visual Studio 2017.

In the course of computing experiment realization, a series of calculations were done. The study evaluated parameters such as time of search solutions, mean and minimum values obtained in the experiment. Each experiment was repeated 50 times, with 100% probability of crossover and mutation.

The experimental results with a given amount of processing devices (5) and the number of tasks equal to 53 listed in Table No1. Where the column 1 - the estimated parameters; the column 2-data obtained for single-point crossover, without the use of strong mutations; the column 3-data obtained for the two-point crossover, without the use of strong mutations; the column 4 is the number of allowable retries the best individuals with strong mutations. The results were graduated according to the average obtainable meaning.

1	2	3			
% of the individuals subjected to strong mutations	100	100	100	100	100
% of tasks is subject to severe mutations	100	50	33	50	33
% of bits subjected to strong mutation	12.5	12.5	12.5	50	50

	Single-point crossover with a strong mutation	Two-point crossover strong mutation
Min	290	286
Mid	293.9	289.08
Time	28	27

200 individuals, 200 repetitions

4	5	6	
% of the individuals subjected to strong mutations	100	100	100
% of tasks is subject to severe mutations	100	50	33
% of bits subjected to strong mutation	12.5	12.5	12.5

	Single-point crossover with a strong mutation	Two-point crossover strong mutation	
Min	287	287	287
Mid	289.48	289.44	289.6
Time	155	128	111

200 individuals, 200 repetitions

	Single-point crossover with a strong mutation	Two-point crossover strong mutation	
Min	287	286	286
Mid	289.28	289.14	289.24
Time	179	140	130

200 individuals, 200 repetitions

	Single-point crossover with a strong mutation	Two-point crossover strong mutation	
Min	287	286	286
Mid	289.12	288.8	288.68
Time	209	156	143

200 individuals, 200 repetitions

	Single-point crossover with a strong mutation	Two-point crossover strong mutation												
Min	287	286	287											
Mid	288.92	288.38	289.1											
Time	233	185	146											
Min	287	286	286	286	288	287	287	286	286	286	286	286	286	286
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
Mid	288.98	288.6	288.62	289.1	288.74	289.16	288.42	287.18	287.62	287.46	287.26	287.4	287.24	287.12
Time	245	199	171	276	242	272	252	218	179	162	236	198	248	222

400 individuals; 400 repetitions

Min	286	286	286	286	286	286	286	286	286	286	286	286	286	286
Mid	288.38	288.54	288.78	288.42	288.48	288.72	288.68	287.02	287.22	287.42	287.24	287.3	286.82	287.3
Time	354	286	279	342	326	352	316	321	275	263	321	283	349	285

Min	287	286	287	286	286	286	286	286	286	286	286	286	286	286
Mid	288.38	288.28	288.68	288.44	288.22	288.44	288.46	286.86	287.12	287.2	286.82	287.14	287.02	287.24
Time	413	334	324	404	389	453	389	391	346	341	413	380	406	357

Min	286	286	286	286	286	286	286	286	286	286	286	286	286	286
Mid	287.8	288	288.3	288.4	288.24	288.32	288.2	286.86	287.12	287.22	287.02	287.3	286.76	287.02
Time	509	396	374	515	451	536	452	458	419	399	467	398	502	432

Min	286	286	286	286	286	286	286	286	286	286	286	286	286	286
Mid	288.08	288.28	288.18	287.94	287.9	287.24	286.88	287	287.24	286.62	286.98	286.72	286.9	
Time	541	416	430	585	484	560	533	530	460	433	574	504	597	503

Min	286	286	286	286	286	286	286	286	286	286	286	286	286	286
Mid	287.68	288.1	288.28	288.12	287.98	288.02	287.64	286.8	287	286.98	286.68	287.04	286.6	286.84
Time	651	454	433	667	565	687	608	616	503	525	682	551	678	604

Min	286	286	286	286	286	286	286	286	286	286	286	286	286	286
Mid	287.74	287.86	287.98	287.96	287.78	287.84	287.96	286.52	287.04	287.24	286.5	286.92	286.44	286.9
Time	730	523	500	746	639	805	625	686	563	547	712	621	743	642

800 individuals; 800 repetitions

Min	286	286	286	286	286	286	286	286	286	286	286	286	286	286		
Mid	288.88	287.2	287.94	287.8	287.72	287.78	287.58	287.72	287.62	287.72	286.8	286.76	286.5	286.68	286.56	
Time	300	298	974	847	840	1044	960	1060	960	1075	986	970	1067	1008	1018	1024

Min	286	286	286	286	286	286	286	286	286	286	286	286	286	286	
Mid	287.52	287.36	287.9	287.4	287.96	287.68	287.84	286.56	286.32	286.2	286.9	286.62	286.8	286.56	286.7
Time	1217	1047	972	1280	1082	1281	1108	1295	1168	1138	1349	1209	1291	1231	

Min	286	286	286	286	286	286	286	286	286	286	286	286	286	286
Mid	287.56	287.62	287.84	287.56	287.46	287.52	286.6	286.78	285.78	285.64	286.86	286.42	286.78	286.78
The experimental results for a task with a given number of processing devices equal to 4 and the number of tasks equal to 101 are given in the Table No2.

Table 2. The results for an example with 4 devices and 101 tasks.

1	2	3	Single-point crossover with a strong mutation	Two-point crossover strong mutation												
% of the individuals subjected to strong mutations	4	100	100	100	100	100	100	100	100	100	100	100	100			
% of tasks is subject to severe mutations			100	50	33	50	33	50	33	50	33					
% of bits subjected to strong mutation			12.5	12.5	12.5	50	50	75	75	12.5	12.5	12.5	50	50	75	75

Min	686	680	679	680	680	679	681	679	678	678	678	678	677	679	678			
Mid	696.62	686.88	684.56	683.94	683.76	685.74	685.04	687.06	685.28	681.7	680.56	681.16	681.74	681.48	681.96	682.02		
Time	71	58	297	239	218	295	280	288	291	203	207	186	230	218	225	215		
Min	680	679	679	681	680	682	681	678	678	678	678	678	678	679	678	679	679	
Mid	684.26	682.5	682.58	685.74	684.88	685.76	684.74	680.08	680.72	680.94	681.12	680.8	682.02	680.4	680.52	680.02	680.34	681.04
Time	326	289	248	351	321	363	340	268	216	207	282	256	267					
Min	680	678	678	680	681	684	679	678	678	678	678	678	678	677	678	678	678	
Mid	683.56	682.7	682.72	685	683.56	685.78	684.28	680.4	680.64	680.52	681.02	680.34	681.04	680.4	680.52	680.02	680.34	681.04
Time	384	344	294	392	409	447	410	310	251	260	321	310	335					
Min	679	679	679	681	680	679	679	678	678	678	678	678	677	678	677	687	678	
Mid	683.18	682.16	682.08	684.58	683.58	685.42	684.1	679.92	680.26	680.48	681.02	680.56	681.26					
Time	425	368	324	478	448	537	448	368	310	270	366	348	382					
Min	679	678	678	680	678	681	679	678	678	678	678	678	677	679	677	679	679	
Mid	682.38	681.72	681.88	684.76	682.74	684.5	683.48	679.84	679.92	680.32	680.5	680.56	680.18					
Time	502	398	350	489	474	525	535	427	356	308	422	390	415					
Min	678	678	679	680	679	680	678	678	678	678	678	677	678	677	678	677	678	
Mid	682.2	681.48	681.58	683.78	682.12	684.6	682.9	679.72	679.78	679.92	680.36	679.8	680.62					
Time	558	421	367	565	583	588	544	430	359	339	474	461	519					

200 individuals, 200 repetitions

| Min | 682 | 678 | 678 | 678 | 678 | 678 | 678 | 677 | 677 | 677 | 677 | 677 | 677 | 677 | 677 | 677 | 677 |
| Mid | 682.04 | 681.88 | 682.72 | 681.84 | 682.64 | 682.48 | 679.28 | 679.42 | 679.46 | 679.44 | 679.04 | 679.52 | 679.4 |
Table 3. The results for an example with 5 devices and 101 tasks.

Time	1	2	3	4										
	% of the individuals subjected to strong mutations	% of tasks is subject to severe mutations	% of bin subjected to strong mutation	Single-point crossover with a strong mutation	Two-point crossover strong mutation									
Min	100	100	100	100	100	100	100	100	100	100	100	100		
Mid	552.1	550.38	550.1	553.8	552.2	554.8	553.02	546.84	546.24	545.46	546.88	546.02	547.12	546.96
Time	78	78	78	78	78	78	78	78	78	78	78	78	78	
Min	545	543	543	544	546	546	546	543	541	541	543	542	542	542
Mid	552.12	549.28	548.4	552.32	551.62	552.46	551.14	546.36	546.36	545.43	545.86	545.66	545.82	
Time	418	404	388	467	396	435	432	339	340	276	354	335	363	348
Min	546	543	543	544	546	545	546	542	540	541	542	542	542	543
Mid	550.44	548.7	547.2	551.76	550.52	551.8	551.24	545.38	544.54	544.32	545.6	545.26	546.4	545.56
Time	495	469	440	522	471	491	465	410	379	351	452	398	382	422
Min	544	543	543	546	546	546	542	542	540	541	542	542	542	543
Mid	550.12	547.9	546.98	551.26	550.22	551.54	550.64	544.48	544.41	543.86	543.76	544.64	545.8	545.46
Time	560	541	483	571	532	578	570	477	425	410	476	447	469	425
Min	546	542	543	546	546	544	546	541	540	540	542	542	542	542
Mid	550.56	547.78	545.92	550.92	549.68	551.36	549.56	545.04	543.62	543.98	545.26	544.98	545.88	544.82
4 Discussion and conclusion

Thus, analyzing the results shown in the Tables 1-3, we can make the following conclusions:

Basic parameters of the genetic algorithm (number of individuals and the number of the best solutions repetition) affect the quality of the solutions by using a modified Goldberg model.

Using a two-point crossover gives the best results in the overwhelming number of experiments.

In the overwhelming number of experiments a hybrid algorithm gives better results.

Results of the hybrid algorithm depend on the number of repetitions. The more repetitions, the closer to the optimum results the average and the best solutions.

The number of repetitions degrades the temporal characteristics of the hybrid algorithm.

The number of repetitions over five rarely gives improvement with a serious deterioration of temporal characteristics.

References

1. Kobak V G, Scherbinina N I, Zhukovskiy A G 2016 News of Higher Schools North Caucasus region, Technical Sciences 2
2. Konovalov I S, Kobak V G, Fatkhi V A 2016 *Vestnik of Don State Technical University* 3
3. Konovalov I S, Kobak V G, Fatkhi V A 2016 *Vestnik of Computer and Information Technologies* 4
4. Kobak V G, Rudova I Sh 2016 *Vestnik of Don State Technical University* 2
5. Kobak V G, Zolotikh O A, Zhukovskiy A G, Rostov A N 2016 *News of Higher Schools North Caucasus region, Technical Sciences* 1
6. Kobak V G, Scherbinina N I, Zhukovskiy A G 2016 *News of Higher Schools North Caucasus region, Technical Sciences* 4
7. Kobak V G, Zolotikh O A, Zhukovskiy A G, Rostov A N 2016 *News of Higher Schools North Caucasus region, Technical Sciences* 3
8. Kobak V G, Rudova I Sh 2016 *Vestnik of Computer and Information Technologies* 1
9. Kobak V G, Zhukovskiy A G, Peshkevich A A 2017 *News of Higher Schools North Caucasus region, Technical Sciences* 1
10. Konovalov I S, Kobak B G, Ostapenko S S 2017 *Vestnik of Don State Technical University* 3
11. Kobak V G, Porksheyan V M, Zhukovskiy A G, Peshkevich A A 2017 *News of Higher Schools North Caucasus region, Technical Sciences* 2
12. Kobak V G, Rudova I Sh 2017 *News of SFDU, Engineering Sciences* 3
13. Kobak V G, Zhukovskiy A G, Kuzin A P 2018 *Electronic scientific journal Vestnik of Engineering* 1
14. Kobak V G, Zhukovskiy A G, Kuzin A P 2018 *Electronic scientific journal Vestnik of Engineering* 2
15. Kobak V G, Krivosheina N I 2018 *Vestnik of Don State Technical University* 2