Emerging Options in Immune-Mediated Hearing Loss

Hitomi Sakano, MD, PhD; Jeffrey P. Harris, MD, PhD

INTRODUCTION

Autoimmune inner ear disease (AIED) typically presents with bilateral, fluctuating audiologic symptoms, and can be associated with a variety of autoimmune disorders. These include, but are not limited to, Vogt-Koyanagi-Harada syndrome, Cogan’s syndrome, Susac’s syndrome, systemic lupus erythematosus, rheumatoid arthritis, granulomatosis with polyangiitis (ie, Wegener’s granulomatosis), Behçet’s disease, systemic sclerosis, inflammatory bowel disease (eg, Crohn’s, ulcerative colitis), relapsing polychondritis, and temporal arthritis. AIED can also be suspected in patients without systemic symptoms, based on laboratory markers of autoimmune or autoimmune inflammatory processes (eg, OTOblot, Buffalo, NY, USA; erythrocyte sedimentation rate; C-reactive protein; rheumatoid factor; anti-nuclear antibody; anti-double-stranded DNA; cytoplasmic antineutrophil cytoplasmic antibodies (c-ANCA); and Complement C3, C4, and C1q) after ruling out infectious causes such as syphilis and human immunodeficiency virus (HIV). These tests can also aid in the classification of AIED.1

Cogan’s syndrome was one of the earliest defined syndromes of hearing loss described in the 1950s. He characterized several case series of nonsyphilitic progressive bilateral vestibulocauditory disorders associated with keratitis and other systemic symptoms. McCabe,5 however, was the first to link Cogan’s syndrome with an autoimmune process and to recommend treatment with a combination of cyclophosphamide and dexamethasone. Since then, the responsiveness of the hearing loss to steroids has been an important indicator for diagnosing AIED; although, as we later discuss, not all AIED is steroid responsive.

The incidence of AIED is estimated to be less than 5 in 100,0006 and represents less than 1% of all SNHL. Although it can be unilateral, it often affects both ears. Symptoms usually fluctuate over the course of weeks to months, distinguishing it from presbycusis which occurs over the course of years. The clinical presentation of AIED may overlap with that of Meniere’s disease and can be difficult to distinguish from it. Thus, the presence of additional systemic autoimmune findings, diagnosis of autoimmune disorder, or laboratory findings of autoimmune markers may aid in the diagnosis.
PATHOGENESIS

The inner ear is not an immunologically privileged site. Early electron microscopy studies by Rask-Anderson and Stahle suggest that the endolymphatic sac may be the site of immunological processing. Subsequent studies by Mogi and by Harris have shown that peripheral immunization of animals can lead to antibody concentration within the inner ear. The presence of the endolymphatic sac is necessary for the immune response. The pathway of entry into the inner ear is suspected to be via the spiral modiolar vein, with entry of inflammatory cells into the scala tympani. The cells are thought to then proliferate and release inflammatory mediators that initiate a cascade of events leading to hearing loss.

It is not known what triggers the autoimmune response. There are some studies that suggest that autoantibodies are produced against inner ear protein through molecular mimicry in response to viral or bacterial infection. For example, viral infection has been proposed to lead to autoantibodies in Cogan’s syndrome which recognize peptide sequences that are similar between REOVIRUS III core protein lambda and autoantigens DEP-1/CD148 (found on endothelium) and Connexin 26 (found in the inner ear). T-cells may also be involved in AIED. T-cells recognizing cochlin, an abundant inner ear protein has been found frequently in AIED patients.

It is known that one-third of patients with suspected AIED have circulating antibodies that recognize a 68kDa inner ear protein by Western blot. Heat shock protein 70 (HSP70) has been proposed to be one protein that corresponds to this molecular weight. It is a ubiquitously expressed housekeeping protein and, therefore, immune response to this protein is thought to be a bystander effect, not an actual cause for hearing loss. The identification of the 70kDa protein band on Western blot of inner ear proteins using patient serum antibodies had been the basis for the OTOblot test. Unfortunately, the commercialized test now uses recombinant bovine HSP70, which is less sensitive than the original test using inner ear protein extract. A recent study comparing AIED patients to controls found that the rate of OTOblot positivity was no different. These results suggest that the test in its current form is not useful. Sera from patients with progressive hearing loss also react to additional proteins from inner ear (eg, myelin protein P0, 27-30kDa, 33-35kDa, 45kDa, 50kDa, 58kDa, 80kDa).

HISTOPATHOLOGY

There are a number of histopathologic changes that can occur in the inner ear as a result of AIED. Endolymphatic hydrops (excessive fluid expansion in the scala media) is a common finding in the temporal bones of AIED patients. Consistent with this, abnormal ECoG (electrocochleography) test is observed in more than half of AIED patients. Patients with Meniere’s symptoms also have a higher rate of systemic autoimmune disease compared to what is expected in normal population. In animal models, antigen challenge either in the inner ear or with inner ear antigens consistently results in endolymphatic hydrops.
Intratympanic Steroid Injection

In animal studies, higher levels of steroids is measured in perilymph after intratympanic (IT) steroid injection compared to systemic administration. In retrospective studies, IT steroid injection has been shown to improve hearing in 54% (6 of 11) of oral steroid refractory patients and in 50% (15 of 30) of patients overall. There is currently no randomized control trial examining the effect of IT versus oral steroids in AIED, thus, there is not enough evidence to recommend that IT steroids should be administered in lieu of oral route. However, it is a relatively safe adjunctive or second line therapy.

Chemotherapy

Cyclophosphamide is an effective cytotoxic alkylating agent and immunosuppressant (see Table I). McCabe used a combination of steroids and cyclophosphamide on all of his patients and had on average 15 dB pure tone improvement and 20% speech discrimination score improvement. It cannot be determined how much the effect was attributed to cyclophosphamide versus steroids. Since then, there is very limited data aside from a few case reports. In a more recent retrospective study the results have not been as good: of 6 patients treated with cyclophosphamide, only 2 had improved or stable hearing, 2 had no response, and 2 dropped out due to side effects. Significant side effects preclude its use, including myelosuppression, nausea, alopecia, infertility, increased risk for infection, and malignancy. Close monitoring with complete blood count, liver function test and urinalysis is needed.

Metotrexate is an immunosuppressant that is better tolerated than cyclophosphamide (see Table I for mechanism of action). The drop-out rate due to toxicity is less than 10%. Toxicity includes myelosuppression, mucosal ulcerations, liver toxicity, renal failure, pneumonitis, teratogenicity, and increased lymphoma risk. With the exception of one retrospective study, which showed no hearing improvement in 83% despite treatment with methotrexate, many open-label studies had shown promising results. The drug improved hearing in 50% to 70% of steroid responsive patients and improved vestibular symptoms in 80% to 100%. However, a randomized control trial of 67 steroid responsive AIED patients showed that the addition of methotrexate at the end of steroid taper was no more effective than placebo in maintaining the hearing improvement achieved by steroids.

There are alternative drugs such as azathioprine and mycophenolate, but they are less well studied.

Plasmapharesis

Plasmapheresis is typically reserved in severe cases of autoimmune disorder that progress rapidly with vasculitis, leukopenia, thrombocytopenia or organ involvement despite immunosuppression. It has been reported to help stabilize hearing when it has been used.

TABLE I. Anti-inflammatory Mechanisms of Methotrexate and Cyclophosphamide
Inhibition of purine synthesis → elevated extracellular adenosine levels → downregulation of T-cells and inflammation (this is thought to be the major pathway)
Antagonism of folate → inhibition of DNA synthesis → apoptosis and T-cell reduction (this is the main pathway for the chemotherapeutic effects but is not thought to be the major pathway for reducing inflammation)
Cyclophosphamide
Metabolism by cytochrome-P450 into phosphoramide mustard → adds alkyl group to guanine base of DNA → inhibition of DNA replication → cell death, affecting both resting and dividing lymphocytes.
An exciting development in the last 10 to 15 years has been the introduction of biologic agents for the treatment of autoimmune disease. These are engineered antibodies that target specific molecules of the immune system. There are generally three types that are being investigated in AIED (see Fig. 2 and Table II). One group targets TNFα (eg, infliximab [Remicade], adalimumab [Humira], golimumab [Simponi], and etanercept [Enbrel]. Another targets B-cells (eg, rituximab [Rituxan]). And a third targets IL-1β (eg, anakinra [Kineret]). These biologics can suppress the immune system and there is increased risk for upper respiratory infections, neutropenia, and infusion site reactions. However, a study reviewing clinical trials of various biologics found that, although newer TNFα inhibitors have higher side effect profile, overall, there was no significant difference in the risk of infection, infusion site reaction, malignancy, or mortality between control and experimental groups. These drugs are relatively well tolerated.

TABLE II.

Agent	Structure/Target	Reference	Study Details
TNFα inhibitor			
Infliximab (Remicade)	Human-mouse chimeric monoclonal antibody targets soluble and membrane TNFα	Van Wijk et al., 2006	Prospective pilot study on transtympanic infliximab, n = 9.
Golimumab (Simponi)	Human monoclonal antibody targets soluble and membrane TNFα	Derebery et al., 2014	Open label study on transtympanic golimumab, n = 7.
Adalimumab (Humira)	Human monoclonal antibody targets soluble and membrane TNFα	Matsuoka et Harris, 2013	Retrospective review, n = 10.
Etanercept (Enbrel)	TNF receptor fused to human antibody targets soluble and membrane TNFα	Rahman et al., 2001	Cites a meeting abstract reporting a pilot study, n = 12.
		Matteson et al., 2005	Open label pilot study, n = 23.
		Cohen et al., 2005	Pilot placebo-controlled trial, n = 10 each arm.
B-cell inhibitor			
Rituximab (Rituxan)	Human-mouse chimeric monoclonal antibody targeting CD20 on B-cell membranes	Cohen et al., 2011	Open label pilot study, n = 7.
		Matsuoka et Harris 2013	Retrospective review, n = 5.
IL-1 inhibitor			
Anakinra (Kineret)	Recombinant form of IL-1 receptor antagonist (IL-1Ra) which blocks IL-1 receptor and reduces the activities of both IL-1α and IL-1β	Vambutas et al., 2014	Phase I/II open label, single-arm clinical trial, n = 10.

Note: Case reports not included. TNF (tumor necrosis factor); IL-1 (interleukin-1); CD20 (cluster differentiation 20).
TNFα Antagonists

TNFα is a pro-inflammatory cytokine and is an indicator of steroid responsiveness in AIED.63 Using an established mouse model of AIED immunized with KLH antigen, etanercept has been found to decrease the number of infiltrating cells in the cochlea in response to TNFα.64 Several open-pilot studies show variable hearing results with etanercept in steroid responsive patients. In one reported study of 12 patients, 58% had hearing improvement.65 In another with 23 patients, 30% had improved hearing and 58% had stable hearing.66 However, a pilot placebo-controlled study of steroid responsive AIED patients found no difference in the hearing improvement between etanercept and placebo.67 Yet another TNF antagonist, infliximab, delivered by local intratympanic (IT) infusion once weekly for 4 weeks has been found to stabilize hearing and allow 4 of 5 steroid-dependent patients to wean off steroids, or improve hearing loss in 3 of 4 steroid-responsive patients who relapsed after steroid cessation.68 Another study of 10 steroid-dependent AIED patients who underwent IT golimumab therapy found that 6 had stable thresholds in the injected ear and 7 patients were able to wean off steroids.69 TNFα antagonist is not useful in steroid refractory AIED. In a study of 8 patients who did not respond to steroids, systemic treatment with infliximab was not helpful in hearing improvement.70

IL-1β Antagonists

One of the challenges of AIED is the treatment of steroid nonresponders. While steroids are known to suppress IL-1β through indirect pathways, one study suggests that the IL-1β pathway is abnormally upregulated in steroid resistant patients.71 They also showed that IL-1β antagonist anakinra can decrease IL-1β in otherwise steroid-nonresponsive monocytes. This is promising for the potential use of anakinra for steroid-nonresponsive patients. A phase I/II study showed that in an intention to treat analysis, 58% response rate with anakinra injection in steroid-nonresponsive AIED.72 The drug was well tolerated, aside from a risk of injection site reaction rate of 70%.

B-Cell Antagonists

Rituximab is a B-cell inhibitor targeting CD20. A small open pilot study of 7 patients tolerated rituximab without significant side effects and 5 were able to maintain the post-steroid hearing improvement.73 There is one case report of a Cogan’s syndrome patient who did not respond to prednisone, methotrexate, cyclophosphamide, cyclosporine, and adalimumab (TNFα inhibitor), but did have hearing improvement after rituximab.74 In a retrospective study, hearing improved in only 2 of 5 treated with rituximab, but all patients improved tinnitus, aural fullness, and vertigo.75

Cochlear Implantation

For those patients whose hearing could not be salvaged, cochlear implantation is an excellent rehabilitative option.75–77 Although neo-osssification (which required drill out) and intraluminal fibrosis was seen in 50% of implanted ears, all ears were implanted and the outcomes on word and sentence scores were not significantly different between AIED and postlingually deaf control patients.72 This option is especially important for those patients unable to tolerate the side effects of immunomodulating drugs and go on to develop bilateral deafness.

DISCUSSION

Assessment of AIED treatment is difficult because of the scarcity of patients to perform large clinical trials. Currently, there is no randomized control study comparing steroids to alternative medications. Therefore, at this time, the use of alternative drugs cannot be recommended as a substitute for initial steroid trial. Currently, steroids are a consistently effective for AIED in more than half of patients. There are two problems. One is that the effects are not long lasting. In patients who relapse, the current recommendation is to resume steroids but this is not a great long-term solution given its side effects. Unfortunately, placebo controlled studies suggest that use of alternative medications such as methotrexate and etanercept do not improve upon the hearing results already attained by steroids.48,67 These results could be explained because the effects of medications could have been dampened by the steroid effects. Also, different biologics may have variable effects. Open pilot study on rituximab suggests that it may help maintain hearing achieved by steroids.73 Studies suggest that IT injection of infliximab and golimumab68,69 can help patients wean off steroid dependency. In our experience (unpublished), we have found rituximab and adalimumab therapy can be helpful in weaning steroids either completely or to low tolerable doses of 10 mg/day. It is worth considering the use of biologics as a maintenance medication in an attempt to wean steroid dependence.

The second problem is the dilemma of treating patients who are refractory to steroids. Chemotherapy is the usual next step, however, significant side effects are the primary reason many patients and providers have shied away from cyclophosphamide. Methotrexate appears to be better tolerated. We do not know how effective they are in steroid nonresponders because many large-scale studies have selected for steroid-responsive patients. IT steroid injection has been shown to be helpful in half of steroid non-responders55 and should be recommended. Can we also consider biologics? Studies suggest that the TNFα antagonists likely affect steroid pathways, and may explain why these drugs are not helpful in steroid nonresponders.70 There are some suggestions that other cellular pathways, such as IL-1β, may be abnormally regulated in steroid nonresponders and can serve as alternative therapeutic targets.71 IL-1β phase I/II study showed promising results using anakinra biologic,72 but more studies are needed before strong recommendations can be made.
Although the benefits of chemotherapy and biologics on hearing improvement have been variable, what is underappreciated is the apparent benefit of biologics on other aural symptoms of fullness, vertigo, and tinnitus. In a retrospective study, less than half of patients treated with adalimumab or rituximab had hearing improvement but >80% had improved tinnitus, aural fullness, and vertigo.46 Similarly with methotrexate, the improvement rate for vestibular symptoms can range from 80% to 100%,54,55 Thus, one should not eliminate the use of non-stereoid based treatment on lack of hearing improvement alone.

CONCLUSION

Whatever the initial insult or trigger may be, the autoimmune process leads to destructive changes in the inner ear and ultimately neural degeneration and hearing loss. Thus, the most effective treatments have been focused on modulating the immune system. Corticosteroids continue to remain the most effective and primary recommended treatment. Currently, there is not enough evidence to recommend the use of alternative medication to replace an initial steroid trial. Intratympanic steroid injection and chemotherapies remain as alternative to replace an initial steroid trial. Intratympanic steroid injection and chemotherapies remain as alternative to replace an initial steroid trial. Intratympanic steroid injection and chemotherapies remain as alternative to replace an initial steroid trial. Intratympanic steroid injection and chemotherapies remain as alternative to replace an initial steroid trial. Intratympanic steroid injection and chemotherapies remain as alternative to replace an initial steroid trial. Intratympanic steroid injection and chemotherapies remain as alternative to replace an initial steroid trial. Intratympanic steroid injection and chemotherapies remain as alternative to replace an initial steroid trial. Intratympanic steroid injection and chemotherapies remain as alternative to replace an initial steroid trial. Intratympanic steroid injection and chemotherapies remain as alternative to replace an initial steroid trial.

BIBLIOGRAPHY

1. Harris JP, Keithley EM, Gopen Q. Autoimmune ear disease and other autoimmune diseases with inner ear involvement. In: Snow JB, Ballenger JJ, eds. Ballenger’s Otorhinolaryngology: Head and Neck Surgery. Ontario: Hamilton. 2002:396–407.
2. Cogan DG, Dickerson GR. Nonsyphilitic interstitial keratitis with vestibulolauditory symptoms. A case with fatal aortic. Arch Ophthalmol 1964; 71:172–175.
3. Cogan DG, Sullivan WR, Jr. Immunologic study of nonsyphilitic interstitial keratitis with vestibulolauditory symptoms. Am J Ophthalmol 1976;80: 491–494.
4. Norton EW, Cogan DG. Syndrome of nonsyphilitic interstitial keratitis and vestibulolauditory symptoms; a long-term follow-up. AMA Arch Ophthalmol 1959;61:495–497.
5. McCabe BF. Autoimmune sensorineural hearing loss. Ann Otol Rhinol Laryngol 1979;88:565–569.
6. Vambutas A, Pathak S, AAO: autoimmune and autoinflammatory (disease) in otology: What is new in immune-mediated hearing loss. Laryngoscope Investig Otolaryngol 2016;1:110–115.
7. Bask-Andersen H, Stabile J. Immunodefence of the inner ear? Lymphocyte-macrophage interaction in the endolymphatic sac. Acta Otolaryngol 1980;89:283–294.
8. Harris JP. Immunology of the inner ear: Response of the inner ear to antigen challenge. Otolaryngol Head Neck Surg 1985;91:18–32.

9. Harris JP. Immunology of the inner ear: Evidence of local antibody production. Ann Otol Rhinol Laryngol 1984;93:157–162.
10. Harris JP, Ryan AF. Immunobiology of the inner ear. Am J Otolaryngol 1984;5:418–425.
11. Tomiyama S, Harris JP. The endolymphatic sac: its importance in inner ear immunology. Ann Otol Rhinol Laryngol 1995;104:89–95.
12. Harris JP, Fukuda S, Keithley EM. Spinal modular vein: its importance in inner ear inflammation. Acta Otolaryngol 1990;110:357–365.
13. Fukuda S, Harris JP, Keithley EM, Ishikawa K, Kocuk B, Iyima Y. Spinal modular vein: its importance in viral load of the inner ear. Ann Otol Rhinol Laryngol Suppl 1992;157:67–71.
14. Suzuki M, Harris JP. Expression of intercellular adhesion molecule-1 during inner ear inflammation. Ann Otol Rhinol Laryngol 1995;104:89–95.
15. Stearns GS, Keithley EM, Harris JP. Development of high endothelial venuelike characteristics in the spinal modular vein induced by viral labyrinthitis. Laryngoscope 1993;103:890–898.
16. Takahashi M, Harris JP. Analysis of immunocompetent cells following inner ear immunostimulation. Laryngoscope 1988;98:1133–1138.
17. Lunardi C, Basson C, Leandri M, et al. Autoantibodies to inner ear and endothelial antigens in Cogan’s syndrome. Lancet 2002;360:915–920.
18. Back MJ, Park HM, Johnson JM, et al. Increased frequencies of cochain-specific T cells in patients with autoimmune sensorineural hearing loss. J Immunol 2006;177:4203–4210.
19. Harris JP, Sharp PA. Inner ear autoantibodies in patients with rapidly progressive sensorineural hearing loss. Laryngoscope 1990;100:516–524.
20. Billings PB, Keithley EM, Harris JP. Evidence linking the 68 kilodalton antigen identified in progressive sensorineural hearing loss patient sera with heat shock protein 70. Ann Otol Rhinol Laryngol 1995;104:181–188.
21. Yeo K, Gray J, Nair TS, et al. Antibodies to HSP-70 in normal donors and some immune hearing patient sera. Laryngoscope 2003;113:1770–1779.
22. Cao MY, Gerdorff M, Deggouj N, Warby M, Tomasi JP. Detection of inner ear disease autoantibodies by immunoblotting. Mol Cell Biochem 1995; 146:157–163.
23. Veerarajan JE, Hanada T, Meeuwse F. Diagnostic and therapeutic dilemmas in rapidly progressive sensorineural hearing loss and sudden deafness. A reappraisal of immune reactivity in inner ear disorders. Acta Otolaryngol 1999;119:293–306.
24. Yamanobe S, Harris JP. Extraction of inner ear antigens for studies in inner ear autoimmunity. Ann Otol Rhinol Laryngol 1993;102:22–27.
25. Cao MY, Dupezie VJ, Wyler MH, et al. Myelin protein P0 as a potential autoantigen in autoimmune inner ear disease. FASEB J 1996;10: 1635–1640.
26. Schuknecht HF, Nadol JB Jr. Temporal bone pathology in a case of Cogan’s syndrome. Laryngoscope 1989;104:1135–1142.
27. Broughton SS, Meyerhoff WE, Cohen SB. Immune-mediated inner ear disease: 10-year experience. Semin Arthritis Rheum 2004;34:546–548.
28. Gazquez I, Soto-Varela A, Aran et al. High prevalence of systemic autoimmune inner ear diseases in patients with Meniere’s disease. PlOS One 2011;6: e26759.
29. Bouman H, Klie SF, Meeuwse F, de Groot JC, Snoerenburg GF, Veldman J. Experimental autoimmune inner ear disease: an electrocochleographic and histophysiologic study. Ann Otol Rhinol Laryngol 2000; 109:457–466.
30. You YJ, Yazzawa Y, Tomoda K, Floyd R. Type II collagen-induced autoimmune endolymphatic hydrops in guinea pig. Science 1983;222:65–67.
31. Tomiyama S. Development of endolymphatic hydrops following immune response in the endolymphatic sac of the guinea pig. Acta Otolaryngol 1992;112:470–478.
32. Santos F, Salziv M, Domond H, Nadol JB. Otopathology of vasculitis in granulomatosis with polyangitis. Otol Neurotol 2015;36:1657–1662.
33. Calzada AP, Balaker AE, Ishiyama G, Lopez IA, Ishiyama A. Temporal bone histopathology and immunoglobulin deposition in Sjogren’s syndrome. Otol Neurotol 2012;33:258–266.
34. Futamura N, Fukushima H, Caruoglu S, Schachter PA, Paparella MM. Hearing loss associated with systemic lupus erythematosus: temporal bone histopathology. Otol Neurotol 2006;27:127–128.
35. Kariya S, Kaya S, Hisli O, et al. Cochlear histopathologic findings in patients with systemic lupus erythematosus: A human temporal bone study. Otol Neurotol 2016;37:593–597.
36. Sone M, Schachter PA, Paparella MM, Morizono N. Study of systemic lupus erythematosus in temporal bones. Ann Otol Rhinol Laryngol 1999;108: 338–344.
37. Hoistad DL, Schachter PA, Paparella MM. Autoimmune sensorineural hearing loss: A human temporal bone study. Am J Otolaryngol 1998;19: 23–39.
38. Jenkins HA, Pollak AM, Fisch U. Polyarteritis nodosa as a cause of sudden deafness. A human temporal bone study. Am J Otolaryngol 1981;2:99–107.
39. Keithley EM, Chen MC, Lintzircus F. Clinical and histologic findings in temporal bone disease with histologic findings of fibrotic tissue and new bone in the inner ear. Laryngoscope 1998;108:87–91.
40. Kessel A, Vadasz Z, Toobi E. Cogan syndrome—pathogenesis, clinical variants, and treatment approaches. Am Autimmune Rev 2014;13:351–354.
41. Mathian A, Miyura M, Cohen-Aubart F, et al. Relapsing polychondritis: A 2014 update on clinical features, diagnostic tools, treatment and biological use. Best Pract Res Clin Rheumatol 2016;30:633–638.
42. Favalli EG, Raimondo MG, Beccolini A, Crotti C, Biggiogero M, Caporali R. The management of first-line biologic therapy failures in rheumatoid arthritis: Current practice and future perspectives. Autoimmun Rev 2017;16:1185–1195.
43. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. *Mol Cell Endocrinol* 2011;335:2–13.

44. Loveanu DM, de Comarmond C, Cepero R, Baldwin DM. Autoimmune sensorineural hearing loss: clinical course and treatment outcome. *Semin Arthritis Rheum* 2004;34:538–543.

45. Niparko JK, Wang NY, Rauch SD, et al. Serial audiometry in a clinical trial of AIED treatment. *Otol Neurotol* 2005;26:908–917.

46. Matsuoka AJ, Harris JP. Autoimmune inner ear disease: A retrospective review of forty-seven patients. *Audiol Neurotol* 2013;18:228–239.

47. Alexander TH, Weisman MH, Derebery JM, et al. Safety of high-dose corticosteroid therapy in the treatment of autoimmune inner ear disease. *Laryngoscope* 2002;112:1627–1634.

48. Harris JP, Weisman MH, Derebery JM, et al. Treatment of corticosteroid-responsive autoimmune inner ear disease with methotrexate: a randomized controlled trial. *JAMA* 2003;290:1875–1883.

49. Liu D, Ahmet A, Ward L, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. *Allergy Asthma Clin Immunol* 2013;9:30.

50. Parnes LS, Sun AH, Freeman DJ. Corticosteroid pharmacokinetics in the inner ear fluids: An animal study followed by clinical application. *Laryngoscope* 1999;109:1–17.

51. McCabe BF. Autoimmune inner ear disease: Therapy. *Am J Otol* 1989;10:196–197.

52. Matteson EL, Fabry DA, Facer GW, et al. Open trial of methotrexate as treatment for autoimmune hearing loss. *Arthritis Rheum* 2001;45:146–150.

53. Salley LH Jr, Grimm M, Siismanas A, Spencer RF, Wise CM. Methotrexate in the management of immune mediated cochleovestibular disorders: Clinical experience with fifty three patients. *J Rheumatol* 2001;28:1037–1040.

54. Siismanas A, Thompson T, Willis HE. Methotrexate therapy for autoimmune hearing loss: a preliminary report. *Laryngoscope* 1994;104:932–934.

55. Garcia-Berrocal JR, Ibanez A, Rodriguez A, et al. Alternatives to systemic steroid therapy for refractory immune-mediated inner ear disease: A physiopathologic approach. *Ear Arch Otorhinolaryngol* 2006;263:977–982.

56. Lasan JM, Sataloff RT, Hawkwash M, Carey TE, Lyons KM, Spiegel JR. Autoimmune inner ear disease: Steroid and cytotoxic drug therapy. *Ear Nose Throat J* 2001;80:808–811, 815–806, 818 passim.

57. Saracynlita A, Katircioglu S, Katircioglu S, Karatay MC. Azathioprine in combination with steroids in the treatment of autoimmune inner-ear disease. *J Int Med Res* 1993;21:192–196.

58. Hautefort C, Louandon N, Monchilchova M, Marlin S, Garabedian EN, Ulnak T. Mycophenolate mofetil as a treatment of steroid dependent Cogan’s syndrome in childhood. *Int J Pediatr Otorhinolaryngol* 2009;73:1477–1479.

59. Bambauer R, Latza R, Bambauer C, Burgard D, Schiel R. Therapeutic apheresis in autoimmune diseases. *Open Access Rheumatol* 2013;5:93–103.

60. Luelte CM. Theoretical and practical implications for plasmapheresis in autoimmune inner ear disease. *Laryngoscope* 1899;99:1137–1146.

61. Hughes GB, Kinney SE, Barna BP, Calabrese LH. Practical versus theoretical management of autoimmune inner ear disease. *Laryngoscope* 1984;94:558–567.

62. Tank ND, Karelia RN, Vegada BN. Biological response modifiers in rheumatoid arthritis: Systematic review and meta-analysis of safety. *J Pharmacol Pharmacother* 2017;8:92–105.

63. Svrackic M, Pathak S, Goldofsky E, et al. Diagnostic and prognostic utility of measuring tumor necrosis factor in the peripheral circulation of patients with immune-mediated sensorineural hearing loss. *Arch Otolaryngol Head Neck Surg* 2012;138:1052–1058.

64. Satoh H, Frestenstein GS, Billings PB, Harris JP, Keithley EM. Tumor necrosis factor-alpha, an initiator, and etanercept, an inhibitor of cachexin formation. *Laryngoscope* 2002;112:1627–1634.

65. Rahman MU, Poe DS, Choi HK. Etanercept therapy for immune-mediated cochleovestibular disorders: Preliminary results in a pilot study. *Otol Neurotol* 2001;22:619–624.

66. Matteson EL, Choi HK, Poe DS, et al. Etanercept therapy for immune-mediated cochleovestibular disorders: A multi-center, open-label, pilot study. *Arthritis Rheum* 2005;53:337–342.

67. Cohen S, Sheup A, Weisman MH, Harris J. Etanercept treatment for autoimmune inner ear disease: results of a pilot placebo-controlled study. *Otol Neurotol* 2005;26:903–907.

68. Van Wijk F, Staecker H, Keithley E, Lefebvre PP. Local perfusion of the tumor necrosis factor-alpha blocker infliximab to the inner ear improves autoimmune sensorineural hearing loss. *Audiol Neurotol* 2006;11:357–365.

69. Derebery MJ, Fisher LM, Voelker CC, Calazda A. An open label study to evaluate the safety and efficacy of intratympanic golimumab therapy in patients with autoimmune inner ear disease. *Otol Neurotol* 2014;35:1515–1521.

70. Liu YC, Rubin R, Sataloff RT. Treatment-refractory autoimmune sensorineural hearing loss: response to infliximab. *Ear Nose Throat J* 2011;90:23–28.

71. Pathak S, Goldofsky E, Vivas EX, Bonagura VR, Vambutas A. IL-1beta is overexpressed and aberrantly regulated in corticosteroid nonresponders with autoimmune inner ear disease. *J Immunol* 2011;186:1870–1879.

72. Vambutas A, Lesser M, Mullooy V, et al. Early efficacy trial of anakinra in corticosteroid-resistant autoimmune inner ear disease. *J Clin Invest* 2014;124:4116–4122.

73. Cohen S, Roland P, Shoup A, et al. A pilot study of rituximab in immune-mediated inner ear disease. *Audiol Neurotol* 2011;16:214–221.

74. Oronti JG, Lagana B, Rubino P, Zavota L, Bacciu S, Mora P. Rituximab ameliorated severe hearing loss in Cogan’s syndrome: a case report. *Orphanet J Rare Dis* 2010;5:18.

75. Aftab S, Semaan MT, Murray GS, Mehergan CA. Cochlear implantation outcomes in patients with autoimmune and immune-mediated inner ear disease. *Otol Neurotol* 2010;31:1367–1342.

76. Malik MU, Pandian V, Masood H, et al. Spectrum of immune-mediated inner ear disease and cochlear implant results. *Laryngoscope* 2012;122:2557–2562.

77. Quaranta N, Bartoli R, Giagnotti F, Di Cuzzo F, Quaranta A. Cochlear implants in systemic autoimmune vasculitis syndromes. *Acta Otolaryngol Suppl* 2002:44–48.