Methods to generate and evaluate zebrafish models of human kidney diseases

SANA FATMA1,2, USHARANI NAYAK1,3 and RAJEEB K. SWAIN*1

1Institute of Life Sciences, Naoco Square, Chandrasekharpur, Bhubaneswar, 2Manipal Academy of Higher Education, Manipal and 3Regional Centre for Biotechnology, Faridabad, India

ABSTRACT Kidney-related disorders affect millions of people worldwide. A survey of chronic kidney disease (CKD) patients showed that the burden of kidney diseases is increasing every year. The global burden of disease (GBD) study 2017 ranked CKD as the 12th leading cause of deaths worldwide. Hence, identification of the causes of kidney diseases, development of accurate diagnostic methods and novel therapeutics is highly relevant. Model organisms that faithfully recapitulate human diseases play important roles in understanding the disease process and provide valuable ground to find their cure. Zebrafish is an excellent model to study the development, pathophysiology and molecular aspects of human kidney diseases. In this review, we summarize various genetic and experimental manipulations that can be carried out in zebrafish to better understand the pathophysiology of human kidney diseases. We suggest that these methods will be helpful in the development of potential therapies to treat kidney diseases.

KEY WORDS: CKD, AKI, zebrafish model of human kidney diseases, pronephros, renal pathology

Introduction

Kidney is one of the vital organs in vertebrates that removes waste products and maintains pH, ion and metabolite concentration of blood within physiological range. Kidney secretes erythropoietin which regulates red blood cell production and activates vitamin D which helps bones to absorb calcium. There are about a million nephrons in each human kidney, which are the structural and functional unit of this organ. Consequently, defects in nephrons affect kidney structure and functions. Dysfunction of kidney can occur because of genetic mutations, infections, injury, medicines or exposure to toxic compounds in the environment. Chronic diseases like diabetes, cardiovascular diseases and hypertension are major contributors to kidney disease burden (Levey et al., 2010). Impaired kidney function increases the risk of complications in other organ systems as well (Thomas et al., 2008). The common types of kidney diseases and their causes are outlined in Table 1.

Kidney diseases

Kidney diseases contribute to a significant fraction of the disease burden globally. Around 750 million people worldwide are affected with kidney related disorders (Crews et al., 2019). CKD is most common among them with global prevalence of 13.4% (Hill et al., 2016). The GBD study 2010 ranked CKD as the 18th leading cause of death worldwide, which had jumped to 12th by 2017 for causing maximum number of deaths globally (Jha et al., 2013; Carney, 2020). According to the GBD study 2017, about 897.5 million cases of CKD were reported worldwide, among which 1.2 million people had died. The number of deaths due to CKD is estimated to rise to 4 million by 2040 in the worst-case scenario (Foreman et al., 2018). One third of CKD patients live in two countries, China and India (Bikbov et al., 2020). The status of CKD among Indian population is unclear due to the lack of accurate data collection systems. About 115 million cases of CKD were reported in India in 2017 (Bikbov et al., 2020). The most common diseases in Indian population are diabetes and hypertension (Geldsetzer et al., 2018). As per the Indian Council of Medical Research (ICMR) report, the prevalence of diabetes and hypertension among the urban adult population is 28% and 21.4% respectively (Varma, 2015). Between 40% to 60% of CKD cases occur because of these complications and their number is increasing rapidly (Rajapurkar et al., 2012). The International Society of Nephrology’s kidney disease data center reported a 16.8% prevalence of CKD among Indian population (Ene-Iordache et al., 2016). The causes of CKD vary throughout India. Andhra Pradesh, Odisha and Goa reported high levels of CKD of an unknown etiology known as chronic interstitial nephropathy (Varughese and Abraham, 2018). As the number of CKD patients...
TABLE 1

DIFFERENT TYPES OF KIDNEY DISEASES AND THEIR CAUSES

Kidney diseases	Causes
Acute kidney diseases	Shock, surgery, medications, infections or impaired cardiac function which causes injury to nephron epithelial cells.
Chronic kidney diseases	Complications like diabetes, high blood pressure, anemia, glomerulonephritis (inflammation in glomerulus), lupus and other autoimmune diseases, urinary tract infections, poly cystic kidney diseases, kidney stones or renal tumors which disrupt kidney functions.
Renal stones	Impaired kidney functions increase the levels of cystine, oxalate, uric acid or calcium in the urine, which form clumps.
Nephrolithiasis	Genetic mutations, medications or other disease complications can damage the blood vessels present in the glomerulus and cause loss of proteins through the urine.
Urinary tract infection	An infection in any part of the urinary system, which comprises the glomerulus, bladder, ureters and urethra.
Congenital kidney diseases:	Genetic mutations.
Duieter	
horseshoe kidney	
renal dysplasia	
ciliopathies	
ADPKD	
PKD, MCK	

is increasing worldwide at an alarming rate, there is an urgent need to carry out a thorough analysis of the root causes of common kidney diseases in order to find better ways for their prevention and cure. Model organisms which can mimic human physiology and diseased conditions can provide great avenues in addressing the above problems. Zebrafish has become a useful model to study development and diseases, and provides promising ways to identify new therapeutic targets and drugs. In this review, we have discussed various methods to recapitulate human kidney diseases in zebrafish and how these models can be used to understand disease pathogenicity and its underlying molecular mechanisms. This may result in the generation of novel therapeutic approaches for management and cure of kidney diseases.

Similarities between human and zebrafish kidney

The kidney development in mammals is unique as it takes place through three distinct structures during embryogenesis: pronephros, mesonephros and metanephros. The first two structures are transient in mammals and only the metanephros persists throughout the life (Smyth et al., 2017; Jain, 2014). Pronephros is the functional kidney during embryonic development in lower vertebrates like amphibians and fishes, which is replaced by mesonephros as the functional kidney at later stages (Tahara et al., 1993; Diep et al., 2015). Table 2 describes the time duration of different forms of kidney in human, mice, Xenopus and zebrafish.

Although the overall complexity of kidney increases as we move towards the higher forms, nephrons are the structural and functional units of all types of kidneys. Each nephron has three parts: renal corpuscle to filter blood, tubule to absorb and secrete solutes, and collecting duct to collect unwanted wastes for excretion. The tubular epithelium is patterned into different segments to carry out specific functions. Nephrons from all forms of kidney possess a similar segmentation pattern (Desgrange and Cereghini, 2015). The segmental organization of nephron of zebrafish pronephros and mesonephros is similar to mammalian metanephros, as shown in Fig. 1. The zebrafish pronephric tubule is divided into proximal convoluted tubule (PCT), proximal straight tubule (PST), and distal early (DE) and distal late (DL) tubules, which are analogous to the segmentation pattern of mammalian metanephric nephrons. Zebrafish has an endocrine gland named corpuscles of Stannius (CS), which maintains calcium homeostasis (Krishnamurthy, 1976). The CS is formed by transdifferentiation of renal epithelial cells in between DE and DL segments, which gradually separate from the tubule and form the paired CS gland that is positioned retroperitoneally at the surface of the kidney in adult fish (Roberts and Ellis, 2012; Naylor et al., 2018). One of the major differences between zebrafish and mammalian nephon is the lack of loop of Henle in zebrafish, which acts as countercurrent multiplier to generate medullary osmotic gradient for water conservation. This segment does not have any utility in zebrafish as it is a fresh water fish (Elmonem et al., 2018). Each segment possesses distinct cell types and segment specific gene expressions, which are conserved among vertebrates (Verlander, 1998; Desgrange and Cereghini, 2015). All kidney types follow similar pathways of development. The following four stages are successively involved in nephron development: A: induction of intermediate mesoderm to form renal primordium, B: epithelialization and growth of nephric duct, C: patterning of nephron into specialized segments, and D: vascularization of nephron for blood filtration (Drummond, 2003).

Methods to generate zebrafish models of human kidney diseases

Zebrafish possess one pair of pronephros which start to form after 12 hours post fertilization (hpf) and becomes fully functional by 48 hpf. Availability of whole genome sequence, 71% human genes having at least one zebrafish orthologue, ease of handling,

TABLE 2

THE DIFFERENT FORMS OF KIDNEY AND THEIR TIME DURATION IN HUMAN, MICE, XENOPUS AND ZEBRAFISH

Different form of kidney	Human	Mice	Xenopus	Zebrafish
Pronephros	Forms by the 22nd day and disappears by the 4th week of gestation 6 to 10 pairs of tubules	Begins to form at E8 3 pairs of tubules	Begins to form from stage 12.5, becomes functional by stage 36 and disappears by stage 64 3 pairs of tubules	Development starts at 12 hpf and becomes functional by 48 hpf Single pair of tubules
Mesonephros	Begins to form around the 25th day, remains present up to the 8th week of gestation and gradually degenerates thereafter 30-40 mesonephric tubules	Begins to form from E9, degeneration starts at E14.5 and all tubules disappear within 24 hr 18 pairs of tubules	Begins to form at stage 39, takes 5 days to become functional, 39 extra days to reach its full size, and remains functional throughout life =1000 pairs of tubules	Begins to form from 10 dpf, becomes functional by +14 dpf and continues to mature in later stages of development =300 tubules
Metanephros	Starts developing from the 5th week and nephrogenesis is complete by the 30th week of gestation ≈300,000 - 1 million nephrons	Starts developing from E10.5, and nephrogenesis continues after birth for two weeks	Not formed	Not formed
transparent embryos, short generation time, efficient gene manipulation techniques, methods for transgenic fish generation and its rapid screening make zebrafish the most suitable model organism to study kidney abnormalities (Howe et al., 2013; Poureetezadi and Wingert, 2016). One of the crucial features of adult zebrafish is its ability to regenerate new nephrons by the process of neонephrogenesis in response to renal injury (Chambers and Wingert, 2016). Table 3 describes the comparisons between zebrafish and other common model organisms like mice and Xenopus. Genetic manipulations in zebrafish have shown that the novel genetic components of kidney development and function can be identified by using this model organism (Poureetezadi and Wingert, 2016). There are several methods to generate zebrafish models of human kidney diseases.

Forward genetics

The forward genetics screen is used to identify genes that are associated with phenotypes of interest (Lawson and Wolfe, 2011). Both chemical and insertional mutagenesis are used in forward genetics screens (Patton and Zon, 2001). Chemical mutagenesis is a three-generation-based screening in which adult males are treated with chemical mutagens such as ethyl methane sulphonate (EMS), ethyl nitrosourea (ENU) or physical mutagens like gamma radiation to generate a number of mutations in germ cells (Varshney and Burgess, 2014). The fish carrying mutations are then crossed with wild-type females to generate F1 fishes which contain unique alleles of generated mutation. F1 fishes are out-crossed to generate F2 carriers that are then in-crossed to obtain their homozygous mutants in F3 generation. The offspring having the desired phenotypes are then isolated and used for genetic mapping and sequencing to identify the mutated gene (Patton and Zon, 2001). Other variations of this screen, such as using haploid and homozygous diploid, can help to reduce the time and effort needed to identify the phenotype and the causative genetic mutation (discussed in detail by Patton and Zon, 2001). Transgenic reporter lines expressing fluorescent proteins in the organ of interest can be combined with conventional forward genetic screening to easily screen mutants of interest. An ENU based mutagenesis screen led to the identification of lightbulb (lib) mutant zebrafish which show morphological and nephron segmentation defects similar to retinoic acid (RA) deficient zebrafish embryos. It was found that lib mutants have a C to A transition at nucleotide 174 of aldh1a2, which is predicted to synthesize a truncated protein of 58 amino acid length, thus abrogating aldh1a2 function and affecting synthesis of RA from retinaldehyde. Analysis of lib, neckless (nls) mutant having point mutation in catalytic domain of aldh1a2 and DEAB (retinoic acid synthesis inhibitor) treated embryos revealed that the levels of RA modulate nephron segmentation by changing the spatial expression of segments specific transcription factors (Wingert and Davidson, 2011; Begemann et al., 2001; Mullins et al., 1994). Another mutant called zeppelin helped to identify brac2 as a regulator of podocyte development (Kroeger et al., 2017).

Insertional mutagenesis is a transposon or lenti-virus based method that is used to insert DNA randomly at different genomic loci, and this foreign DNA then helps to identify the mutated gene...
TABLE 3
A COMPARISON BETWEEN COMMONLY USED MODEL ORGANISMS: MICE, Xenopus, and Zebrafish.

	Mice	Xenopus	Zebrafish
Human genes that have at least one ortholog	80%	79%	71%
Human disease associated genes that have at least one ortholog	90%		84%
Maintenance	High cost	Cost effective	Cost effective
Development	In-utero	Ex-utero	Ex-utero
Generation time	6-8 weeks of age	4 months for X. tropicalis and 12 months for X. aequin	3 months
Brood size	6-12 pups/month	2-3 thousand, 3 to 4 times in a year	≈200 embryos/week
Time duration to generate homozygous mutants/transgenic lines	5 months to 1 year	1-2 years	9-10 months
Mutant screening techniques	Not easy, some phenotypes take time to develop	Easy phenotype-based screening, embryos are opaque, in vivo imaging not at deep tissue level	Easy phenotype-based screening, embryos are transparent, in vivo imaging
Drug screening	Truly recapitulates human phenotype, low throughput and expensive	High throughput and cost effective	High throughput and cost effective
Difference with human metanephric nephron	Similar	Glomus project in the body cavity not directly connected with tubules	Loop of Henle is absent

(Amsterdam et al., 1999). The Hopkins’ Laboratory at MIT performed an insertional mutagenesis screen in zebrafish embryos using a retroviral vector. They identified 12 genes which were associated with defective kidney phenotypes showing cysts in the glomerulotubular region, among which four were linked with cilia formation (Sun et al., 2004). The drawbacks of the forward genetics approach are that the screening process is cumbersome and time-consuming. However, the advances in new sequencing technology have made the forward genetics approach much more efficient.

Gene knock-out using programmable nucleases

One of the major advantages of using zebrafish as a model organism is the availability of efficient genome editing techniques such as CRISPR/Cas, TALEN and ZFN (Sertori et al., 2016). CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/Cas9 is the most versatile and commonly used genome editing technology in zebrafish. A chimera of CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA) is designed as a single guide RNA (sgRNA), which along with Cas9 protein/mRNA are injected into zebrafish embryos at one cell stage (Varshney et al., 2016). The sgRNA binds to the 20bp target DNA sequence adjacent to a protospacer adjacent motif (PAM) NGG sequence in the genome, Cas9 then generates a double strand cut in the target DNA sequence. This is then preferably repaired by non-homologous end joining, which being an error-prone repair mechanism results in the generation of random insertion/deletion (indel) leading to changes in the reading frame of coding sequence, and consequently abrogates the functions of the gene of interest. Advance methodologies have been developed in recent years to increase the efficacy of the CRISPR based genome editing technique (Liu et al., 2019). It is possible to delete a large fragment of DNA using two or more sgRNAs at a time (Kim and Zhang, 2020). It is also possible to simultaneously target multiple genes efficiently in a single zebrafish embryo (Shah et al., 2016). Many studies have been conducted to generate zebrafish mutants in order to recapitulate human kidney diseases by using CRISPR/Cas9 technology. CRISPR mediated knockout of ciliary membrane protein Aril13b resulted in generation of mutants which mimic the “Joubert syndrome” (Cantagrel et al., 2008). It is reported that mutations in human ELMO1 gene contribute to diabetic nephropathy. elmo1 mutant zebrafish exhibit phenotypes seen in hyperglycaemic embryos generated by knock-down of pdx1 gene such as larger glomerulus, defective podocyte, shorter neck and hyperfiltration, thus highlighting the conserved function of this gene (Sharma et al., 2016). Mutant magi2a zebrafish exhibit steroid-resistant nephrotic syndrome which is also observed in people with mutations in MAGI2 (Jobst-Schwan et al., 2019). These observations highlight the suitability of zebrafish as an organism to model human kidney diseases.

Another method to generate zebrafish mutants is Transcription Activator-Like Effector Nucleases (TALEN) based genome editing. In this technique, the DNA binding domain TALE is made up of monomers, each monomer consisting of tandem repeats of 34 amino acid residues that bind to a particular nucleotide in the DNA sequence. These TALE sequences are derived from pathogenic bacteria Xanthomonas that alters the transcription of genes in host cells (Boch and Bonas, 2010). The TALEN targeting construct consists of a nuclear localization signal, the DNA binding domain and the FokI nuclease domain at their carboxyl termini. TALEN work in pairs with their binding sites located on opposite strands of DNA separated by a 12 to 25 bp spacer sequence. The constructs bind to the target site in the nucleus and generate a double strand break, which is then repaired by a non-homologous end joining (Liu et al., 2014). The mutant zebrafish generated by CRIPSR or TALEN can activate genes that compensate for the loss-of-gene of interest, thus making it difficult to uncover the gene function (Rossi et al., 2015). However, it is possible to identify these compensatory genes by transcriptome analysis using next-generation sequencing (NGS) methods, which can help to identify the function of the gene of interest. Identification of genes and molecular pathways that compensate for the loss-of-function of a gene can be helpful in finding novel treatment methods for gene mutations that cause serious diseases (El-Brolosy and Stainier, 2017).

Gene knock-down using morpholino antisense oligos

Morpholinos are non-anionic oligonucleotides that are relatively stable as compared to its DNA or RNA oligomers (Summerton, 1999). The morpholino antisense oligo nucleotides bind to the mRNA of a target protein at its translation initiation site and block its translation. Another type of morpholino antisense oligos can target splicing junctions and block pre-mRNA splicing (Summerton,
Morpholino-antisense oligo effect is transient and can be used to study the early developmental role of the genes of interest. Injection of morpholino-antisense oligo is done at the 1-4 cell stage of zebrafish embryos and its effect can be seen up to 3-5 days post fertilization (dpf) (Bill et al., 2009). Morpholino antisense oligo nucleotides often display off-target effects (Robu et al., 2007). Control experiments such as a rescue experiment should be performed by coinjecting morpholino along with mRNA that cannot be targeted by this antisense oligo to verify its specificity (Eisen and Smith, 2008). A photo activated morpholino has been developed, whose activity can be controlled in spatial and temporal manner by UV exposure (Tallafuss et al., 2012). Numerous studies have been carried out using morpholino antisense oligo mediated gene knock-down to understand human kidney diseases. For example, knock-down of nephrocystin-3 gene led to the formation of cysts and hydrocephaly in zebrafish embryos in a similar way to nephronphthisis type-3 disease (Zhou et al., 2010).

Drug induced kidney damage model

Aminoglycoside antibiotics generally used to treat many life-threatening infections are known for their nephrotoxic and ototoxic effect (Mingeot-Leclercq and Tulkens, 1999). Gentamicin is a commonly used antibiotic that can induce acute kidney injury (AKI) in zebrafish. Gentamicin causes flattening of the brush border epithelium, loss of tubular epithelium, deformation of glomerulus structure, lysosomal phospholipidosis and accumulation of leukocytes or cell debris in the tubular lumen, which mimics gentamicin overdose in humans (Cianciolo Cosentino et al., 2010). Zebrafish has the ability to regenerate and replace damaged nephrons. Gentamicin insult can be used to study renal regeneration in zebrafish (Kamei et al., 2015). Gentamicin injury induces a regeneration response which triggers kidney stem cells to undergo the stages of specification, proliferation and differentiation to generate new nephrons. It takes around 14 to 21 days in adult fish to regenerate nephrons (Diep et al., 2011; McCampbell et al., 2015). Cisplatin, which is used as a chemotherapeutics drug to treat tumors, also has nephrotoxic effects, as observed in zebrafish (Hentschel et al., 2005). Etimicin is another aminoglycoside that can be used while mimicking low nephrotoxicity and ototoxicity in zebrafish embryos (Shao et al., 2020). Thus, AKI and renal regeneration can be studied in zebrafish with the help of these antibiotics.

Mechanical injury to kidney

The zebrafish pronephros can be physically injured using resection, stabbing or cryoinjury. Surgical injury can be performed by using fine tweezers to stab the desired area of the pronephros in order to create an AKI model. This technique was used to damage the pronephric duct close to the cloaca, which impaired fluid flow and led to cyst formation within 30 minutes (Kramer-Zucker, 2005). It was found that the reduction in fluid flow rate in pronephros generates back pressure at the fluid entry site, causing tubule luminal expansion and cyst formation. Another group of researchers made obstruction in the pronephric tubule at 50 hpf or in mesonephric tubules of 12-month-old zebrafish by using tweezers to pinch off the area near the distal collecting tubules (Hellman et al., 2010). They discovered that the tubule scarring leads to an increase in cilia beating rate and an upregulation of the foxj1a transcription factor that regulates ciliogenic gene expression. This suggests that injury to pronephric tubules generates a cilia based mechanosensory signal to maintain nephron homeostasis.

Laser induced kidney injury

Laser mediated cell ablation is used as a tool to study renal injury and mimic AKI in zebrafish. Johnson et al., (2011) have described a method for laser mediated ablation followed by tracking of regenerating nephron. They injected 40 kDa dextran-FITC in the trunk somites of zebrafish embryos at 48-55 hpf to label the proximal tubule epithelial cells, which were then targeted for laser mediated ablation at 72 hpf. The ablated embryos were then reinjected with rhodamine dextran to trace the proximal tubule epithelial cells. They found that a fully developed proximal tubule was formed at the 7th day following laser mediated ablation (Johnson et al., 2011). Another alternative is to use a kidney specific transgenic line to identify cells for laser mediated ablation and monitor behaviors of neighboring cells. A violet laser light of 405 nm wavelength was used to target pronephric tubule of Tg(apt1a1a:4-GFP) zebrafish (Palmyre et al., 2014). As GFP excitation spectra lies in the range of blue to violet light, it absorbed 405 nm laser light, which acts as energy sink to potentially induce injury at the target epithelial cells. This experiment led to the discovery that cell migration is the primary response of injured epithelia. Collective cell migration caused mechanical stretch that provided stimuli for cell proliferations to repair the injured tubule. In order to determine the time when the pronephric tubule of zebrafish acquire the ability of regeneration, Yakulov et al., (2018) used a 2 photon laser to ablate a small part of pronephric tubules in Tg(cldn2b:lyn-GFP) embryos at different time points and followed the regeneration process. They found that the ablation of pronephric tubules of 2-day old embryos was rapidly repaired by migratory responses, whereas 1 day old embryos did not have this ability. They carried out gene expression profiling of injured zebrafish embryos and found that cxc4b and myca are involved in this repair process (Yakulov et al., 2018).

Chemical genetics

Small bioactive molecules can be used to interfere with protein function and understand their biological role. A large number of chemical libraries are commercially available or can be custom-made for probing protein function. These small molecule libraries include kinase inhibitors, protease inhibitors, nuclear receptors and ligands that can be used to identify the role of signaling pathways involved in organ development and function (Kawasumi and Nghiem, 2007). In the last few decades, zebrafish has emerged as a powerful vertebrate model organism for high-throughput chemical screening and phenotypic scoring (Kaufman et al., 2009). Cao et al., (2009) used the chemical screen approach to identify compounds that can reverse phenotypes caused by mutations in pkd2 (causal gene of PKD) and ift172 (a gene responsible for cilia formation). They uncovered that a pan-histone deacetylase (pan-HDAC) inhibitor trichostatin A (TSA) and a class-I specific HDAC inhibitor valproic acid (VPA) can suppress kidney cyst formation in pkd2 knock-out model (Cao et al., 2009). Thus, chemical genetics can be a useful tool to identify new drug candidates that can either reverse or suppress disease conditions.
Genetically inducible kidney injury models

A genetically inducible tissue ablation model can be used in zebrafish in which bacterial nitroreductase (NTR) is expressed under the control of a promoter of choice that drives expression of NTR in a particular segment of pronephros. NTR converts metronidazole into a cytotoxic metabolite that can cause death to NTR expressing cells (Curado et al., 2008). Zhou and Hildebrandt (2012) used this technique to induce injury of podocyte by expressing NTR under the control of podocin promoter in Tg(pod:NTR-mCherry) zebrafish line. They also developed a double transgenic line of VDBP-GFP (Vitamin D binding protein tagged with GFP) as a tracer of proteinuria along with Tg(pod:NTR-mCherry) line. Treatment with metronidazole caused injury of podocyte resulting in whole body edema and accumulation of VDBP-GFP in proximal tubules, mimicking the phenotype of the human nephrotic syndrome (Zhou and Hildebrandt, 2012).

Methods to evaluate pronephros development and function in zebrafish

We have described the methods to generate human kidney disease models by using zebrafish. The creation of a disease model using another organism is the initial step, which needs to be evaluated for its ability to faithfully recapitulate various aspects of a disease seen in humans. Zebrafish offers many advantages that can be used to quickly evaluate its ability to serve as a surrogate to understand human kidney diseases as discussed below.

Morphology based screening

Most often mutant zebrafish embryos show morphological differences, compared with the wild-type that can be easily judged by observations under the microscope. The transparency of zebrafish embryos and their ability to survive up to 5 days even with severe developmental defects is a major advantage in morphology-based screens. Common morphological changes observed in zebrafish embryos with defective pronephros include pericardial edema, pronephric cysts, curved body axis and hydrocephalus (Pourieezadi and Wingert, 2016; Outtandy et al., 2019). Edema is one of the common signs of a defective kidney which is also seen in other organ deficiencies such as heart development (Hanke et al., 2013). Mutants with kidney defects may develop cysts because of over-proliferation of epithelial cells, as can be easily observed under a microscope (Zhao and Malicki, 2007; Yamaguchi et al., 2006). Curved body axis is often seen in mutants having pronephric cilia defects. Mutant zebrafish such as locke (lok), shen yan2(shy), garbusm304 (grb) and zaporhid (zar) are some of the examples showing curved body axis (Zhao and Malicki, 2007). Zebrafish mutants with kidney defects show multiple morphological defects in the same embryo. The knock-down of two polycystin genes pdk1a and pdk1b led to dorsally curved body axis, hydrocephaly, cartilage and craniofacial defects with low frequency of pronephric cysts (Mangos et al., 2010). The mutants of intraflagellar transport proteins ift57, ift88 and ift172, where cilia were defective, had ventrally curved body axis (Lunt et al., 2009). Thus, the zebrafish mutants with defective kidney exhibit many morphological features that can be easily identified.

Histological analysis

The mutants may not always show sufficiently informative morphological changes. Histological analysis of these embryos or organs of the adults may be necessary to determine the difference between the mutant and wild-type animals. Histological analysis methods for both larvae and adult zebrafish are well established and can be performed in a high throughput manner (Sabaliauskas et al., 2006). Zebrafish embryos or adult tissue can be embedded in paraffin or JB-4 resin followed by microtome sectioning to study tissue architecture (Sullivan-Brown et al., 2011; Copper et al., 2018). Cryo-sectioning can also be performed with zebrafish embryos (Ferguson and Shive, 2019). These tissue sections are then used for immunofluorescence staining, immuno histochemical studies or H&E staining. H&E staining of adult kidney sections showed that the apical side of proximal tubule was stained dark pink and had a wide lumen, while the distal tubule had light pink
stain with narrow lumen, thus clearly marking the differential staining pattern between the segments (McCann et al., 2015). The periodic acid-Schiff (PAS) staining technique which detects polysaccharides in tissues has affinity for brush border epithelium of proximal tubule (McCann et al., 2015; McKee and Wingert, 2015). Methenamine silver stains the basement membranes and can be used for nephric tubules and glomeruli basement membrane staining (McCann et al., 2015). An AKI model of zebrafish by gentamicin insult showed flattening of epithelium, loss of apical brush border, tubular distention and accumulation of debris in lumen, thus highlighting the usefulness of histology in analyzing zebrafish disease models (Cianciolo Cosentino et al., 2013).

Identification of pronephros segmentation defects

The pronephros is patterned into different segments that perform distinct functions. The mechanism behind this segmentation is not clearly understood, although many transcription factors have been identified as regulators of segmentation. The differences in segmental pattern can easily be identified by WISH analysis with riboprobes that specifically mark different segments of the pronephros. The exact position of the pronephros segments can be marked by implementing double in situ hybridization of segment specific markers and an antisense riboprobe that marks the somite (such as smyhc1 and xip2a). Most common segment specific markers are slc20a1a for PCT, tpm7 for PST, slc12a1 for DE, stc1 for CS and slc12a3 for DL (Fig. 2). Mutations in human HNF1β are linked with renal abnormalities like renal dysplasia, glomerulocystic kidney, oligomeganephronia and solitary functioning kidney (Lindner, 1999; Bingham et al., 2002; Bohn et al., 2003). Naylor et al., (2013) analysed pronephros segmentation by WISH in hnf1b knock-out zebrafish embryos using segment specific marker genes and found that proximal and distal tubule markers were absent in the mutants. Using similar experiments, it was found that transcription factor empty spiracles homeobox gene 1 (emx1) promotes distal late fate and inhibits distal early fate during nephrogenesis (Morales et al., 2018). Wingert et al., (2007) carried out WISH analysis of RA and DEAB treated embryos and found that DEAB treatment resulted in a loss of the proximal segments and an expansion of the distal segments, while exogenous RA treatment reversed this phenotype. They also established a link between caudal transcription factor (cdx) and RA in regulating nephron position and segmentation (Wingert et al., 2007). We have shown that the EF-hand domain containing 2 (efhc2) knockdown results in expansion of distal early segments and reduction in CS and distal late segment. The expression of odf3, which marks multiciliated cells of pronephric tubules, was also reduced in efhc2 morphants (Barrodia et al., 2018).

Proximal tubules cilia staining and imaging

Cilia are microtubule-based organelles that are either motile or non-motile. Human disorders caused due to defects in cilia structure and function are called ciliopathies. Defects in cilia present in zebrafish pronephros often lead to body curling, cyst formation and tubule dilation (Sullivan-Brown et al., 2008). Multiciliated cells present in zebrafish pronephros can be visualized by WISH or fluorescence in situ hybridization (FISH) using antisense odf3b or rfx2 riboprobes (Liu et al., 2007; Barrodia et al., 2018). Cilia in zebrafish embryos can be stained using α-acetylated tubulin and γ-tubulin can be used to mark the basal bodies (Jaffe et al., 2010; Zaghoul and Katanski, 2011). Movement of motile cilia can be recorded using a microscope with a high speed camera by employing transgenic zebrafish such as Tg(Foxj1a:GFP) (Tavares et al., 2017). A combined technique of FISH and immune fluorescence assay was developed to mark multiciliated cells, cilia and basal bodies (Marra et al., 2017). Different zebrafish mutants with cilia defects such as locke, swt and kurly were examined in detail and it was found that they showed a range of cilia movement defects (Sullivan-Brown et al., 2008). The ciliary motion was reduced in locke mutant and cilia were immotile in swt, whereas cilia movements in kurly ranged from motionless to irregular shifts. Immunostaining with α-acetylated tubulin showed that the length of cilia was normal in swt and kurly whereas locke displayed shorter cilia (Sullivan-Brown et al., 2008). The methods described here have been used extensively to identify cilia defects in kidney diseases involving cilia.

Evaluation of glomerulus function

The main functions of the kidney is to filter blood and remove wastes and excess fluids from the body while preventing the loss of macromolecules into the urine. The glomerulus can filter out molecules of 5 kDa but do not allow excretion of larger molecules such as serum albumin (Chang et al., 1976). Diagnostic methods commonly used to evaluate kidney dysfunction in humans cannot be applied to zebrafish because of its small size. However, fluorescent dyes of different molecular weights mimicking the molecules commonly encountered by the human kidney can be injected into zebrafish, and the assessment of their clearance or retention can be used as a surrogate to determine kidney function (Christou-Savina et al., 2015). It has been proven that the injection of 10 kDa fluorescent dextran into the pericardial cavity of zebrafish embryos results in a loss of about 85% of dye through secretion from the kidney within 24 hours post-injection (hari) (Christou-Savina et al., 2015). Dyes of higher molecular weight such as 70 kDa or above need injection into vasculature and are retained within in wild-type embryos. However, 70 kDa dextran could be detected in the proximal tubule wall when injected into the vasculature of cystinosis (ctns) mutant zebrafish, indicating that the integrity of glomerulus filter slits is compromised in ctns-/- larvae (Elmonem et al., 2017). Kramer-Zucker et al., (2005) injected 500 kDa FITC-dextran into the cardinal vein of 84 hpf wild-type and nephrin and podocin morphant zebrafish embryos, and detected the dye in the pronephros indicating dysfunction of nephrons in these morphants.

Evaluation of reabsorption of metabolites

Transmembrane endocytic receptor megalin/LRP2, its adaptor disabled2 (dab2) and coreceptor cubulin play a central role in endocytosis mediated clearance of metabolites from glomerular filtrate (Anzenberger, 2006). The injection of 70 kDa fluorescently labelled dextran or fluorescently conjugated receptor-associated protein (RAP), a protein that physically associates with megalin/LRP2 in bloodstream of zebrafish embryos, leads to uptake of these molecules for reabsorption. This serves as a convenient method for evaluating the metabolite reabsorption function of the kidney. In agreement with their central role in the reabsorption of metabolites, the knock-down of either megalin/LRP2 or dab2
leads to a complete failure of receptor mediated endocytic uptake of tracers in morphants (Anzenberger, 2006).

Assessment of tubule dilation

The pronephric tubule is lined by a single layer of polarized epithelial cells. The morphology of pronephric tubule and its patterning into distinct segments are controlled by the proliferation of differentiated epithelial cells near the distal end and their migration towards the glomerulus. These events are in turn governed by the fluid flowing in the pronephros, thus providing a correlation between organ morphology and function (Vasilyev et al., 2009). The cells at the proximal end are convoluted and more columnar in shape, whereas the cells at the distal end are cuboidal (Vasilyev et al., 2009). A decrease in glomerular filtration rate, obstruction in tubule or defects in cilia development and motility inhibit this collective cell migration from posterior to anterior direction. However, cells at the distal end continue to proliferate, causing the dilation of pronephric tubules (Naylor and Davidson, 2017). Tubule dilation can be assessed either by directly observing whole embryos under microscope or histological analysis. DIC optics can be used to image and calculate the diameter of pronephric tubule of zebrafish embryos. Sullivan-Brown et al., (2008) compared the tubule dilation in wild-type and kurly mutants having defects in cilia, and found that in the wild-type the medial tubule had larger diameter compared with the posterior tubule, and that the diameter of medial tubules decreased over time. In kurly mutants the diameter of the medial and posterior tubules was similar to the wild-type at 26-30 hpf, but a constant increase in medial tubule diameter was observed in these mutants at 48 hpf onwards. It was further observed that the number of cells surrounding the medial tube also increased in mutant embryos (Sullivan-Brown et al., 2008). Mutations in the human MNX1 (motor neuron and pancreas homeobox 1) gene cause Currarino syndrome, a rare congenital disease characterized by sacral agenesis and urogenital and renal abnormalities such as horseshoe kidney, single kidney, hydronephrosis and anorectal stenosis (Currarino et al., 1981; Lee et al., 2018; Dworschak et al., 2021). Ott et al., (2016) generated mnx2b morphants in a Tg(−8clndb.1:lynEGFP)6F background to image epithelia cells in developing pronephros, and found that the morphants showed enlarged proximal tubule diameters as compared with wild-type controls at 4 dpf. Further analysis revealed that these morphants had altered kidney functions, disorganized pronephric cilia and deformed apical microvilli (Ott et al., 2016). Such analysis using zebrafish would undoubtedly help us to understand the underlying mechanism of human diseases.

Assessment of epithelial cells polarity

The epithelial cells polarity of the pronephric tubule is maintained by protein complexes that segregate the cellular membrane into apical and basolateral domains, and organize membrane subdomains for specific functions like secretion, filtration, absorption and sensory stimulation (Pieczynski and Margolis, 2011). The dislocation of a number of receptors, transporters and channels has been identified in many disease conditions like Na+/K+/2Cl− cotransporter and EGFR in PKD and H+/ATPase in Dent’s disease (Wilson, 2011). The polarity of epithelial cells can be checked by immunofluorescence staining of whole embryos using antibody against Na+/K+/ATPase, tight junction marker ZO-1 or alkaline phosphatase (AP) to identify the defects in polarization of tubule epithelia in mutants compared with wild-type embryos. Na+/K+/ATPase is one of the most abundant proteins in tubular epithelial cells which maintains sodium-potassium homeostasis and regulates the functions of other transporters present in epithelial cells (Fernández and Malnic, 1998). It is localized to the basolateral plasma membrane and is important for epithelial cell polarization and the formation and maintenance of tight junctions (Rajasekaran et al., 2001). ZO-1 and AP are used to mark the apical surfaces of the pronephric epithelial cells. Drummond et al., (1998) analyzed a group of mutants having mild to severe defect in pronephros. They checked the polarity of epithelial cells in 2.5 dpf embryos by immunofluorescence staining with anti-Na+/K−/ATPase alpha subunit monoclonal antibody (α6F) followed by tissue sectioning. This analysis showed that Na+/K−/ATPase localization was altered in most of the mutant lines compared to its normal basolateral expression. In double bubble (dbb) and fleer (flr) mutants, the Na+/K−/ATPase was expressed in the apical surface while basolateral surface showed reduced staining. Other mutants had more lateral staining, with unstained apical and basolateral surfaces (Drummond et al., 1998).

Kidney stone detection

Kidney stones are crystals of deposited salts, among which calcium stones are the most common (Evan, 2010). These are composed of calcium oxalate (CaOx) and calcium phosphate (CaP) in different ratios. Calcium stones can be expected in zebrafish mutants having altered calcium homeostasis. Vital dyes such as Alizarin red (red fluorescent) and Calcein (green fluorescent) can be used to detect calcium-containing tissues and kidney stones in zebrafish larvae. Elizondo et al., (2010) showed that 57 - 97% of trpm7 homozygous mutant embryos developed kidney stones at 5 dpf, whereas only 0-1.4% of wild-type siblings developed such stones. Imaging of alizarin red-stained trpm7 homozygous mutant embryos at different time points showed that 2-4 dpf embryos had no stones, and the stones were observed at 5 dpf in the lumen and not in the epithelium of pronephric tubule (Elizondo et al., 2010).

Conclusions and future prospects

The incidence of kidney diseases is rising at an alarming rate worldwide. There is an urgent need to identify the causes of these diseases and develop novel methods for their diagnosis and cure. The mammalian metanephric kidney is complex, making it difficult to understand the kidney disease pathology. The pronephros in zebrafish larvae is functional and has only two nephrons on either side of notochord with a shared glomerulus at the anterior and a cloaca at the posterior end. In this review, we have discussed various methods that can be used to generate zebrafish models of human kidney diseases and how to analyse the phenotype of these disease models at morphological, cellular and molecular level. Painstaking research by many groups have established these methods of disease model generation and analysis over the years. These efforts have now established that the zebrafish embryos and adults can be used as human kidney disease models that can faithfully recapitulate various aspects of kidney dysfunction seen in humans. These efforts have also generated many useful tools.
and resources, including mutant and transgenic lines. This offers an opportunity not only to understand kidney disease mechanisms using zebrafish, but to use them to discover new drugs for treating kidney diseases. Diabetes is a major contributor to kidney related complications in humans. Zebrafish offers an opportunity where the diabetes-related kidney dysfunction can also be studied (Jörgens et al., 2012). Thus, zebrafish has an excellent foundation as a disease model and offers enormous potential to find novel solutions to human diseases.

Acknowledgements
We thank Tarique Anwar and Supriya Borah for their discussions and comments. SF is a recipient of DBT (DBT/2015/LS/361) and UR is a recipient of the DST-Inspire fellowship. Research in RKS laboratory is supported by SERB-EMR (EMR/2016/003780) and intramural funds from the ILS, which is an autonomous institute of DBT, Government of India.

Author contribution
SF conceived and wrote the first manuscript. UN and RKS discussed and modified the manuscript.

References

AMSTERDAM A, BURGESS S, GOLLING G, CHEN W, SUN Z, TOWNSEND K, FARRINGTON S, HALDI M, HOPKINS N (1999). A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13: 2713–2724.

ANZENBERGER U (2006). Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros. J Cell Sci 119: 2127–2137.

BARRODIA P, PATRA C, SWAIN RK (2018). EF-hand domain containing 2 (Efn2c) is crucial for distal segmentation of pronephros in zebrafish. Cell Biochem 8: 53.

BEGEMANN G, SCHILLING TF, RAUCH G-J, GEISLER R, INGHAM PW (2001). ANZENBERGER U (2006). Elucidation of megalin/LRP2-dependent endocytic trans

AMSTERDAM A, BURGESS S, GOLLING G, CHEN W, SUN Z, TOWNSEND K, FARRINGTON S, HALDI M, HOPKINS N (1999). A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13: 2713–2724.

ANZENBERGER U (2006). Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros. J Cell Sci 119: 2127–2137.

BARRODIA P, PATRA C, SWAIN RK (2018). EF-hand domain containing 2 (Efn2c) is crucial for distal segmentation of pronephros in zebrafish. Cell Biochem 8: 53.

BEGEMANN G, SCHILLING TF, RAUCH G-J, GEISLER R, INGHAM PW (2001). ANZENBERGER U (2006). Elucidation of megalin/LRP2-dependent endocytic trans

AMSTERDAM A, BURGESS S, GOLLING G, CHEN W, SUN Z, TOWNSEND K, FARRINGTON S, HALDI M, HOPKINS N (1999). A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13: 2713–2724.

ANZENBERGER U (2006). Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros. J Cell Sci 119: 2127–2137.

BARRODIA P, PATRA C, SWAIN RK (2018). EF-hand domain containing 2 (Efn2c) is crucial for distal segmentation of pronephros in zebrafish. Cell Biochem 8: 53.

BEGEMANN G, SCHILLING TF, RAUCH G-J, GEISLER R, INGHAM PW (2001). ANZENBERGER U (2006). Elucidation of megalin/LRP2-dependent endocytic trans
FOREMANKJ, MARQUEZ, DOLGERTA, FUKUTAKIK, FULLMANN, MCGAUGHHEY M, PLETCHER MA, SMITH, TANG K, YUAN C-W, et al., (2018). Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 392: 2052–2090.

GELDSETZER P, MANNE-GOEHLER J, THEILMANN M, DAVIS JI, AWASTHI A, VOLLMER S, JAACKS LM, BÄRNGHÄUSEN T, ATUN R (2018). Diabetes and Hypertension in India. JAMA Intern Med 178: 363.

HANKE N, STAGGS L, SCHRODER P, LITTERAL J, FLEIG S, KAUFELD J, PAULI C, HALLER H, SCHIFFER M (2013). “Zebrafishing” for Novel Genes Relevant to the Glomerular Filtration Barrier. Biomed Res Int 2013: 1–12.

HELLMAN NE, LIU Y, MERKEL E, AUSTIN C, LE CORRE S, BEIER DR, SUN Z, SHARMA N, YODER BK, DRUMMOND IA (2010). The zebrafish foxj1a transcription factor regulates cilia function in response to injury and epithelial stretch. Proc Natl Acad Sci U S A 107: 18499–18504.

HENTSCHELDM, PARK KM, CILENZ, ZERVOAS, DRUMMONT DR, VON DUFROI J V. (2005). Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Physiol 288: F923–F929.

HILL NR, FATOBA ST, OKE JL, HIRST JA, O’CALLAGHAN CA, LASERSON DS, HILL NR, FATOBA ST, OKE JL, HIRST JA, O’CALLAGHAN CA, LASSERSON DS, WINGERT RA (2017). The zebrafish kidney mutant zeppelin reveals that brca2/fancd1 is essential for pronephros development. Kidney Int 89: 77–87.

KAWASUMI M, NGHIEM P (2007). Chemical Genetics: Elucidating Biological Systems. In Pathobiology of Acute Kidney Injury Ed. AJ Kabla.

JOHNSON CS, HOLZERMER NF, WINGERT RA (2010). Laser Ablation of the Zebrafish Pronephros to the Glomerular Filtration Barrier. Biomed Res Int 2010: 1–19.

JOHNSON CS, HOLZERMER NF, WINGERT RA (2010). Laser Ablation of the Zebrafish Pronephros to the Glomerular Filtration Barrier. Biomed Res Int 2010: 1–19.

JHA V, GARCIA-GARCIA G, ISEKI K, LI Z, NAICKER S, PLATTNER B, SARAN R, JAIN S (2014). Kidney Development and Related Anomalies. In Pathobiology of Acute Kidney Injury Ed. AJ Kabla.

JEAN S (2014). Kidney Development and Related Anomalies. In Pathobiology of Human Disease Elsevier, pp. 2701–2715.

JHA V, GARCIA-GARCIA G, ISEKI K, LI Z, NAICKER S, PLATTNER B, SARAN R, WANG AYM, YANG CW (2013). Chronic kidney disease: Global dimension and perspectives. Lancet 392: 2052–2090.

JIAO Q, ZHANG GJ (2020). Generating stable knockout zebrafish lines by deleting intragenic gRNAs. J Vis Exp 2020: 1–19.

KIM BH, Zhang J, YANG CW (2013). Chronic kidney disease: Global dimension and perspectives. Lancet 392: 2052–2090.

KIM BH, ZHANG GJ (2020). Generating stable knockout zebrafish lines by deleting intragenic gRNAs. J Vis Exp 2020: 1–19.

KIM BH, ZHANG GJ (2020). Generating stable knockout zebrafish lines by deleting intragenic gRNAs. J Vis Exp 2020: 1–19.

KIM BH, ZHANG GJ (2020). Generating stable knockout zebrafish lines by deleting intragenic gRNAs. J Vis Exp 2020: 1–19.

KIM BH, ZHANG GJ (2020). Generating stable knockout zebrafish lines by deleting intragenic gRNAs. J Vis Exp 2020: 1–19.
Further Related Reading, published previously in the *Int. J. Dev. Biol.*

Zebrafish embryo, a tool to study tumor angiogenesis
Chiara Tobia, Giulia De Sena and Marco Presta
Int. J. Dev. Biol. (2011) 55: 505-509
https://doi.org/10.1387/ijdb.103238ct

Hematopoietic development in the zebrafish
Elizabeth J. Paik and Leonard I. Zon
Int. J. Dev. Biol. (2010) 54: 1127-1137
https://doi.org/10.1387/ijdb.093042ep

Linking wound response and inflammation to regeneration in the zebrafish larval fin
Henry Hamilton Roehl
Int. J. Dev. Biol. (2018) 62: 473-477
https://doi.org/10.1387/ijdb.170331hr

Zebrafish development and regeneration: new tools for biomedical research
Sebastiaan A. Brittijn, Suzanne J. Duivesteijn, Mounia Belmamoune, Laura F.M. Bertens, Wilbert Bitter, Joost D. de Brujin, Danielle L. Champagne, Edwin Cuppen, Gert Flik, Christina M. Vandenbroucke-Grauls et al.
Int. J. Dev. Biol. (2009) 53: 835-850
https://doi.org/10.1387/ijdb.082615sb

Rapid quantification of neutral lipids and triglycerides during zebrafish embryogenesis
Prusothman Yoganantharjah, Avinesh R. Byreddy, Daniel Fraher, Munish Puri and Yann Gibert
Int. J. Dev. Biol. (2017) 61: 105-111
https://doi.org/10.1387/ijdb.160209yg

Developmental biology of zebrafish myeloid cells
Meredith O Crowhurst, Judith E Layton and Graham J Lieschke
Int. J. Dev. Biol. (2002) 46: 483-492
http://www.intjdevbiol.com/web/paper/12141435