Design and analysis of RC corbel based on SNI 2847:2019 and analysed using computer aided strut-and-tie model

M Aswin*, Sonny, and Tonny

Department of Civil Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155

*Email: muhammad.aswin@usu.ac.id

Abstract. In this study, the corbel has been reviewed by considering its design and analysis based on Strut-and-Tie Model (STM). Many studies on corbels had been carried out in order to obtain an effective design approach. SNI 2847-2019 is one code that regulate to design and analyse corbel using STM. For initial stage, dimensions and steel reinforcements of corbel are designed using SNI 2847-2019 based on the empirical formulas. Afterward, design and analysis corbel were conducted using two different truss models. Aside from that, the Computer Aided Strut and Tie (CAST) software was applied on last analysis stage. Each analysis was required to generate the force ratio (FR), so it can be determined reliability of the used truss models. The design results based on the used models exhibited that the steel reinforcements of corbel are quite similar. In addition, the average force ratio for Model-1 and Model-2 are gained of 0.6204 and 0.6147, respectively. Meanwhile, the CAST analysis results also provided similar force ratio, namely 0.5805 and 0.5985 for each Model-1 and Model-2. Accordingly, STM and CAST can be used to design and analyse corbels.

1. Introduction

Corbel is a structural element that functions to transfer the loads of beam and slab to the columns or walls [1]. In addition, Mattock et al [2] explained that corbel is usually made and placed on the front side of the column, and is often used in precast concrete construction to carry the main beam. Meantime, El-Maaddawy and El-Sayed [3] stated that corbel is widely used in the construction of precast buildings such as parking buildings, factories (workshops), warehouses, houses, offices, bridges, etc.

Due to the shape and its function, corbels always fail in the shear failure mode. This condition is quite dangerous. Accordingly, needs to provide the corbel design formula. Then, the shear capacity of the corbel can be generated [4]. Russo, et al. [4] also explained that failure modes that might occur in consoles without stirrups can cause shear failure or flexural failure, as well the strut concrete cracking or diagonal concrete separation. In addition, Dipohusodo [5] states that the shear strength of a corbel cannot be completely equated with a deep beam.

Corbels can be categorized as the structural element that having discontinuous or disturbance area. This is because the actual strain distribution that occurs in the corbel was already non-linear. The strut-and-tie model (STM) method that was first introduced by Ritter (1899) and Morsch (1902) can be applied. This method is very useful in describing the strength in the discontinuity or disturbed region.

Al-Bayati [6] explains that currently the use of the strut-and-tie model method is quite extensive in its use, however in analytical applications, it takes a lot of time in the design and analysis process. Therefore, various software is needed to overcome this problem. In addition, Johnson [7] asserts that the simulation and modeling of structural elements, both in terms of design and analysis, is greatly helped by the existence of finite element modeling (FEM) software. Thus, main objective of this study is presenting a guide for designing corbel by using SNI 2847:2019 [8] approach. The design and analysis stage were also done by using other Truss Models based STM, and then analyzed completely using the CAST software.
2. Design of Corbel

2.1 Design Specification

In order to design a corbel, shear span-to-depth ratio \((a/d)\) has to be less than 1. The section 16.5.1.1 of SNI 2847:2019 [8] provides the design steps for corbel using empirical method. As well, the corbel must be proportioned, so that \(V_u\) is less than or equal to \((0.2 \times f'_c \times b_w \times d); ((3.3 + 0.08 \times f'_c) \times b_w \times d); (11 \times b_w \times d)\). Aside from that, if the corbel was designed using STM, the shear span-to-depth ratio \((a/d)\) has to be less than 2. This provision is included in the section 23.2.9 of SNI 2847-2019.

2.2. Design of Corbel Based on the Empirical Method

Reinforced concrete corbel is designed with height \(H\) of 500 mm, loading and support plate width is \(l_b\) of 150 mm. Concrete cover, \(C_c\) of 50 mm. Corbel width, \(b_w\) of 350 mm. Vertical load \((V_u)\) of 300 kN and Horizontal load \((N_u)\) of 60 kN were applied at shear span \((a = 200\) mm). According to the code, effective depth is equal to \(H-C_c\) or 450 mm. The compressive strength of concrete was assumed to be 30 MPa. The yield stress of both longitudinal steel and stirrup steel of 400 MPa was specified. The corbel and the steel reinforcements are presented in Figure 1.

2.3. Design of Corbel Based on STM

To attain the most appropriate model, we have to see the stress flows in the corbel. Figure 2 shows the stress flow in the corbel analyzed by using finite element modeling called LUSAS14. Based on these stress flows, the Truss Model-1 can be illustrated as shown in Figure 3 (a). Meantime, Figure 3(b) shows Truss Model-2 which adopted from the previous research [9].
The procedure of corbel design based on SNI 2847: 2019 [8] as per guidelines are as follows:

1. Define the geometry of truss model
 To obtain effective height \(d\), the height of the node zones must first be assumed. Then determine the \(\theta\). The angle \(\theta\) must not be taken at less than 25\(^\circ\).

2. Resolving the assumed truss model to define member forces
 The truss model that has been designed is analyzed using SAP2000 program to find the member forces. Figure 4 shows the Truss Model-1 with member forces and width of struts-ties. Meanwhile, Figure 5 exhibits member forces, as well width of struts and ties of the Truss Model-2.

3. Checking the Bearing Capacity
 The applied stress on bearing plates at loading locations must not exceed the node strength.

4. Designing and Verifying Struts and Ties Capacities
 The diagonal strut, vertical and horizontal strut was assumed as prismatic shape. The strut capacities then were checked against the forces in specified member.

Figure 2. The Stress Flows in Corbel analyzed using LUSAS14

Figure 3. (a) Truss Model-1; (b) Truss Model-2 [9]
5. Checking the strength of nodal zone and anchorage
The nodal capacity of struts and tie is checked for all nodal. the designed nodal capacity must meet
the permissible limit. To check the anchorage of the tie, Section 25.4.2.3 SNI 2847:2019 [8] provides
an equation to calculate the length of anchorage is
\[l_d = \left(\frac{f_y}{1.1 \lambda} \right) \left(\frac{\psi_c \psi_t \psi_y}{\psi_{c_t}} \right) d_b \]
and must be at least 300 mm. Section 23 specifically for design with strut-and-tie method, it is stipulated also that the
minimum reinforcement installed must also meet the requirements equation
\[\sum \frac{A_{s_i}}{b_w s_i} \sin (\alpha_i) \geq 0.003 \]
The final details of corbel were shown in Figure 6 and Figure 7.

![Figure 4. Truss Model-1 with Member Forces and Struts-ties](image1)

![Figure 5. Truss Model-2 with Member Forces and Tuts-ties](image2)
3. Analysis

3.1 Analysis by Using STM

Analysis was carried out on both truss model. The corbel which had been designed by SNI 2847:2019 steps analysed to obtain the force ratio. Force ratio is the quotient of the force acting with the section capacity. If the force ratio obtained is less than 1, it means that the STM model can be applied to the corbel which was designed by using SNI provisions previously. The analysis results of each model are presented in Table 1 and 2.

Figure 6. Detail of corbel for Model-1

Figure 7. Detail of Corbel for Model-2
Table 1. STM Analysis Result for Model-1

Member	Type	F_{ns} (kN)	ΦF_{ns} (kN)	F_u (kN)	Force Ratio
2-1	Tie	680.469	510.352	433.330	0.849
5-7	Tie	226.823	170.117	146.215	0.659
2-3	Tie	680.469	510.352	433.330	0.849
3-4	Tie	453.646	340.234	259.970	0.764
4-5	Strut	669.375	502.031	360.550	0.718
5-4	Strut	1294.125	970.594	360.550	0.371
3-5	Strut	1160.250	870.188	505.220	0.581
5-3	Strut	1338.750	1004.063	505.220	0.503
5-6	Strut	1472.625	1104.469	866.668	0.785
6-5	Strut	1963.500	1472.625	360.550	0.305
4-8	Strut	535.500	401.625	305.940	0.762
8-4	Strut	1338.750	1004.063	305.940	0.305
	Average result				0.661

Table 2. STM Analysis Result for Model-2

Member	Type	F_{nt} (kN)	ΦF_{nt} (kN)	F_u (kN)	Force Ratio
2-1	Tie	453.646	340.234	279.500	0.821
3-4	Tie	226.823	170.117	106.030	0.623
2-3	Strut	133.875	100.406	72.530	0.722
3-2	Strut	133.875	100.406	72.530	0.722
2-8	Strut	580.125	435.094	305.940	0.703
8-2	Strut	1338.750	1004.063	305.940	0.305
2-4	Strut	714.000	535.500	128.460	0.240
4-2	Strut	223.125	167.344	128.460	0.768
2-5	Strut	714.000	535.500	192.030	0.359
5-2	Strut	535.500	401.625	192.030	0.478
4-5	Strut	133.875	100.406	72.510	0.722
5-4	Strut	133.875	100.406	72.510	0.722
3-5	Strut	223.125	167.344	128.500	0.768
5-3	Strut	535.500	401.625	128.500	0.320
5-6	Strut	357.000	267.750	219.490	0.820
6-5	Strut	490.875	368.156	219.490	0.596
5-7	Strut	490.875	368.156	300.000	0.815
7-5	Strut	714.000	535.500	300.000	0.560
	Average Result				0.615

3.2 Analysis by Using CAST

Analysis was also performed using the CAST program. CAST is a program developed by University of Illinois to facilitate design on the basis of the strut-and-tie model. Creation or modification of strut-and-tie models, truss analysis, selection of reinforcing steel, and capacity checks of the struts and nodes were
utilized by CAST. The use of CAST is also not difficult and quite user friendly. By using CAST, we can easily measure the efficiency of our design results. In brief, analysis of deep beam using CAST can be summarized into five steps as below:

1. Setting Up the Workspace
 In the beginning, user will be asked to fill in the project description. After filling in the project description, fill in the D-region thickness and material strength to be used. D-region thickness is the transverse structure thickness to be analyzed. Before drawing the model correctly, first determine the guidelines and grid points. These guidelines and grid points will be very helpful in drawing the whole structure. Grid points are important coordinate points which can then be used to draw lines later.

2. Constructing the Model
 After the guideline is created, now construct the model according to our design. Specify the outer line, the pre-made strut-and-tie models, bearing plates, and loading and supports.

3. Obtaining Strut-and-Tie Model Forces
 To determine whether the strut-and-tie model that we created is correct, we must run the truss analysis. If an error occurs, then the model we use is invalid so we need to change the strut-and-tie model first. But if the analysis of the program is successful, the results will show compression and tension members and their values.

4. Defining and Assigning Properties
 After the compression and tension values appear, now determine the dimensions of the struts and tie that will be used. All the properties used in this design are in accordance with previous corbel design calculations. In the CAST analysis program, we cannot define two dimensions of width on one strut.

5. Checking Stresses
 Struts and tie characteristics that have been defined in the program are then analyzed again with “Run Truss Analysis” command. The results will show the efficiency of the stresses in the strut and tie sections. It is also possible to check stresses on each nodal face. Efficiency that is stated to be safe is not more than 1. If the efficiency value shows more than 1, it means that the width of the strut or tie is not suitable for use. Then, modify the strut or tie width and run the analysis again.

![Figure 8](image)

Figure 8. (a). Analysis Result of Model-1; (b). Analysis Result of Model-2 using CAST

4. Results and Discussion
 Table 3 shows the force ratio of each Truss Model by using STM and CAST. The results show that the average force ratio less than 1 (one), meaning that all truss models are applicable to design and analyse the corbel based on the SNI 2847-2019 provisions. The analysis results between STM and CAST has no significant difference. It indicates that CAST is quite effective to be used to assist in analysing the RC deep beam.
Table 3. Comparison Result between STM and CAST

Type Model	Force Ratio rata-rata STM	Force Ratio rata-rata CAST
Model-1	0.661	0.688
Model-2	0.615	0.708

5. Conclusions
1. The truss model can be constructed by using FEM approach.
2. SNI 2847-2019 is one code STM based which can be used to design and analyse the RC corbel.
3. CAST is quite effective to be used to assist in analysing the RC deep beam.

Acknowledgments
The authors gratefully acknowledge that the present research is supported by Ministry of Research and Technology and Higher Education Republic of Indonesia. The support is under the research grant BP-PTN USU of Year 2016 Contract Number XXX/XXX.

References
[1] Kurtoglu A E, Gulsan M E, Abdi H A, Kamil M A and Cevik A 2017 Fiber reinforced concrete corbels: Modeling shear strength viasymbolic regression Computers and Concrete 20 65–75.
[2] Mattock A H, Chen K C and Soongswang K 1976 Behavior of Reinforced Concrete Corbels. J Prestressed Concr Inst 21 52–77.
[3] El-Maaddawy T A and Sherif E S I 2014 Response of concrete corbels reinforced with internal steel rebars and external composite sheets: Experimental testing and finite element modeling Journal of Composites for Construction 18 1–11.
[4] Russo G, Venir R, Pauletta M, Somma G, Lu W Y, Lin I J and Muñez P R 2006 Reinforced concrete corbels-Shear strength model and design formula ACI Structural Journal 103 904–6.
[5] Dipohusodo I 1993 Struktur Beton Bertulang ed I S Danoedjo (Jakarta).
[6] A-M Al-Bayati N, Al-Nimer N S, Sarsam K F and S Al-Shaaraf I A 2014 Computer Aided Strut-and-Tie Model (CASTM) for the Analysis of RC Deep Beams Journal of Engineering Sciences 21 53–62.
[7] Johnson S 2006 Comparison of Nonlinear Finite Element Modeling Tools for Structural Concrete 1–58.
[8] Nasional B S 2019 SNI 03-2847:2019 Persyaratan Beton Struktural Untuk Bangunan Gedung Dan Penjelasan Sebagai Revisi Dari Standar Nasional Indonesia 2847 : 2013.
[9] Yun Y M and Chae H S 2019 An optimum indeterminate strut-and-tie model for reinforced concrete corbels Advances in Structural Engineering 22 2557–71.