Exploring NK Fitness Landscapes Using an Imitative Learning Search

José F. Fontanari
Instituto de Física de São Carlos, Universidade de São Paulo,
Caixa Postal 369, 13560-970 São Carlos, São Paulo, Brazil

The idea that a group of cooperating agents can solve problems more efficiently than when those agents work independently is hardly controversial, despite the little quantitative groundwork to support it. Here we investigate the performance of a group of agents in locating the global maxima of NK fitness landscapes with varying degrees of ruggedness. Cooperation is taken into account through imitative learning and the broadcasting of messages informing on the fitness of each agent. We find a trade-off between the group size and the frequency of imitation: for rugged landscapes, too much imitation or too large a group yield a performance poorer than that of independent agents. By decreasing the diversity of the group, imitative learning may lead to duplication of work and hence to a decrease of its effective size. However, when the parameters are set to optimal values the cooperative group substantially outperforms the independent agents.

I. INTRODUCTION

The benefits of cooperative work were explored by nature well before the advent of the human species as attested by the collective structures built by slime molds and social insects [1]. In the human context, the socio-cognitive niche hypothesis purports that hominin evolution relies so heavily on social elements to the point of viewing a band of hunter-gatherers as a ‘group-level predator’ [2]. Whether physical or social, those structures and organizations may be thought of as the organisms’ solutions to the problems that endanger their existence (see, e.g., [3]) and have motivated the introduction of the concept of social intelligence in the scientific milieu [4]. In the computer science circle, that concept prompted the proposal of optimization heuristics based on social interaction, such as the popular particle swarm optimization algorithm [5] [6] and the perhaps lesser-known adaptive culture heuristic [7] [8].

Despite the prevalence of the notion that cooperation can aid a group of agents to solve problems more efficiently than if those agents worked in isolation, and of the success of the social interaction heuristics in producing near optimal solutions to a variety of combinatorial optimization problems, we know little about the mechanisms that make cooperation efficient. In particular, we note that since cooperation (or communication, in general) reduces the diversity or heterogeneity of the group of agents, it may actually end up reducing the efficiency of group work [9]. Efficiency here means that the time to solve a problem scales superlinearly with the number of individuals or resources employed in the task.

In this contribution we study the performance of a group of cooperative agents following a first-principle research strategy to study cooperative problem solving set forth by Huberman in the 1990s that consists of tackling easy tasks, endowing the agents with simple random trial-and-test search tools, and using plain protocols of collaboration [10] [11]. Here the task is to find the global maxima of three realizations of the NK-fitness landscape characterized by different degrees of ruggedness (i.e., values of the parameter K). We use a group of M agents which, in addition to the ability to perform individual trial-and-test searches, can imitate a model agent – the best performing agent at the trial – with a probability p. Hence our model exhibits the two critical ingredients of a collective brain according to Bloom: imitative learning and a dynamic hierarchy among the agents [3]. The model exhibits also the key feature of distributed cooperative problem solving systems, namely, the exchange of messages between agents informing each other on their partial success (i.e., their fitness at the current trial) towards the completion of the goal [10].

We find that the presence of local maxima in the fitness landscape introduces a complex trade-off between the group size M and the computational cost to solve the task. In particular, for a fixed frequency of imitation p, there is an optimal value of M at which the computational cost is minimized. This finding leads to the conjecture that the efficacy of imitative learning could be a factor determinant of the group size of social animals [12].

The rest of the paper is organized as follows. In Section II we offer a brief overview of the NK model of rugged fitness landscapes. In Section III we present a detailed account of the imitative learning search strategy and in Section IV we study its performance on the task of finding the global maxima of three realizations of the NK landscape with $N = 12$ and ruggedness parameters $K = 0$, $K = 2$ and $K = 4$. The rather small size of the solution space ($2^{12} = 4096$ binary strings of length 12) allows the full exploration of the space of parameters and, in particular, the study of the regime where the group size is much greater than the solution space size. Finally, Section V is reserved to our concluding remarks.

II. NK MODEL OF RUGGED FITNESS LANDSCAPES

The NK model of rugged fitness landscapes introduced by Kauffman [13] [14] offers the ideal framework to test the potential of imitative learning in solving optimization
problems of varied degrees of difficulty, since the ruggedness of the landscape can be tuned by changing the two integer parameters—\(N\) and \(K\)—of the model. Roughly speaking, the parameter \(N\) determines the size of the solution space whereas the value of \(K = 0, \ldots, N - 1\) influences the number of local maxima and minima on the landscape.

The solution space consists of the \(2^N\) distinct binary strings of length \(N\), \(x = (x_1, x_2, \ldots, x_N)\) with \(x_i = 0, 1\). To each string we associate a fitness value \(\Phi(x)\) which is an average of the contributions from each component \(i\) in the string, i.e.,

\[
\Phi(x) = \frac{1}{N} \sum_{i=1}^{N} \phi_i(x),
\]

where \(\phi_i\) is the contribution of component \(i\) to the fitness of string \(x\). It is assumed that \(\phi_i\) depends on the state \(x_i\) as well as on the states of the \(K\) right neighbors of \(i\), i.e., \(\phi_i = \phi_i(x_i, x_{i+1}, \ldots, x_{i+K})\) with the arithmetic in the subscripts done modulo \(N\). In addition, the functions \(\phi_i\) are \(N\) distinct real-valued functions on \([0, 1]\). As usual, we assign to each \(\phi_i\) a uniformly distributed random number in the unit interval. Hence \(\Phi \in (0, 1)\) has a unique global maximum.

For \(K = 0\) there are no local maxima and the sole maximum of \(\Phi\) is easily located by picking for each component \(i\) the state \(x_i = 0\) if \(\phi_i(0) > \phi_i(1)\) or the state \(x_i = 1\), otherwise. For \(K > 0\), finding the global maximum of the NK model is a NP-complete problem [15], which essentially means that the time required to solve the problem using any currently known deterministic algorithm increases exponentially fast as the size \(N\) of the problem grows [16]. The increase of the parameter \(K\) from 0 to \(N - 1\) decreases the correlation between the fitness of neighboring configurations (i.e., configurations that differ at a single component) in the solution space and for \(K = N - 1\) those fitness are completely uncorrelated so the NK model reduces to the Random Energy model [17, 18]. To illustrate the effect of varying \(K\) on the ruggedness of the fitness landscape, in Fig. 1 we show the relative fitness with respect to the fitness of the global maximum \(\Phi/\Phi_g\) as a function of the Hamming distance \(d\) to that maximum for \(N = 25\) and different values of \(K\).

For each \(K\), the figure shows the results for a single realization of the fitness landscape and for a single trajectory in the solution space that begins at the maximum \((d = 0)\) and changes the state components sequentially until all \(N\) states are reversed \((d = N)\).

III. IMITATIVE LEARNING SEARCH

We assume a group or system composed of \(M\) agents or processors. Each agent operates in an initial binary string drawn at random with equal probability for the digits 0 and 1. In the typical situation that the size of the solution space is much greater than the group size \(2^N \gg M\) we can consider those initial strings as distinct binary strings, but here we will consider the case that \(M \gg 2^N\) as well, so that many copies of a same string are likely to appear in this initial stage of the simulation. In addition, we assume that the agents operate in parallel.

At any trial \(t\), each agent can choose with a certain probability between two distinct processes to operate on the strings. The first process, which happens with probability \(1 - p\), is the elementary or minimal move in the solution space, which consists of picking a bit \(i = 1, \ldots, N\) at random with equal probability and then flipping it. The repeated application of this operation is capable of generating all the \(2^N\) binary strings starting from any arbitrary string. The second process, which happens with probability \(p\), is the imitation of a model string. We choose the model string as the highest fitness string in the group at trial \(t\). The string to be updated (target string) is compared with the model string and the different bits are singled out. Then the agent selects at random one of the distinct bits and flips it so that the target string becomes now more similar to the model string. The parameter \(p \in [0, 1]\) is the imitation probability and the case \(p = 0\) corresponds to the baseline situation in which the \(M\) agents explore the solution space independently.

The specific imitation procedure proposed here was inspired by the mechanism used to model the influence of an external media [19, 20] in the celebrated agent-based model proposed by Axelrod to study the process of culture dissemination [21]. It is important to note that in the case the target string is identical to the model string, and this situation is not uncommon since the imitation process reduces the diversity of the group, the agent executes the elementary move with probability one. This procedure is different from that used in [12], in which strings identical to the model string are not updated within the imitation process. Both procedures, however, yield qualitatively similar results, except in the regime...
where imitation is extremely frequent, i.e., for $p \approx 1$. In particular, in the present implementation, a small group can find the global maximum in the case $p = 1$ since the model string can explore the solution space through the elementary move whereas the other strings are simply followers.

The collective search ends when one of the agents finds the global maximum and we denote by t^* the number of trials made by the agent that found the solution. Of course, t^* stands also for the number of trials made by any one of the M agents, since they operate in parallel and the search halts simultaneously for all agents. In other words, the trial number t is updated, or more specifically, incremented by one unit, when the M agents have executed one of the two processes on its associated string. We note that except for the case $p = 0$, the update of the M agents is not strictly a parallel process since the model strings may change several times within a given trial. Nonetheless, since in a single trial all agents are updated, the total number of agent updates at trial t is given by the product Mt^*.

The efficiency of the search strategy is measured by the total number of agent updates necessary to find the global maximum (i.e., Mt^*) which can then be interpreted as the computational cost of the search. In addition, since we expect that the typical number of trials to success t^* scales with the size of the solution space 2^N, we will present the results in terms of the rescaled computational cost, denoted by $C \equiv Mt^*/2^N$.

IV. RESULTS

Here we report the results of extensive Monte Carlo simulations of groups of agents that use imitative learning to search for the global maxima of three representative realizations of the NK fitness landscapes. For fixed N and K we generate a single realization of the fitness landscape and carry out 10^5 searches in order to determine the dependence of the mean rescaled computational cost $\langle C \rangle$ on the imitation probability p and on the group size M.

A. Search on a Smooth Landscape ($K = 0$)

We begin our analysis with the simplest NK fitness landscape that exhibits a single global maximum and no local maxima. The results of the performance of the imitative search for a landscape with $N = 12$ and $K = 0$ are summarized in Fig. 2. As expected, the mean computational cost in the case of non-interacting agents ($p = 0$) is a constant $\langle C \rangle \approx 1.1$ provided the group size is not too large compared to the size of the solution space, which in this case is $2^{12} = 4096$. The reason that $\langle C \rangle$ does not equal 1 is that in our elementary move it is not too unlikely to reverse a change in a subsequent move (the probability is simply $1/N$).

These reversions decrease the efficiency of our elementary move to explore the solution space. In fact, if we replace it by a global move in which the entire string is generated randomly at each update then we find $\langle C \rangle = 1$, as expected. In the case the group size M is very large, the agents begin to duplicate each other’s work leading to a linear increase of $\langle C \rangle$ with increasing M. More pointedly, in this regime we find $\langle C \rangle = M/2^N$ (see the straight line in Fig. 2). We stress that a constant computational cost means that the time t^* the group requires to find the global maximum decreases with the inverse of the group size (i.e., the time to solve the problem decreases linearly with the number of individuals), whereas a computational cost that grows linearly with the group size means that t^* does not change as more agents are added to the group.

Allowing the agents to imitate the best performer (model) at each trial leads to a rapid reduction of the computational cost provided the group size remains small. The best performance is achieved for $M = 5$ and $p = 1$ and corresponds to a fiftyfold decrease of the computational cost with respect to the independent search ($p = 0$). The fact that the best performance is obtained when the imitation probability is maximum is due to the absence of local maxima in the landscape for $K = 0$. We recall that for $p = 1$ only the model string, which is likely to be represented by several copies in the group, can perform the elementary move; all other strings must imitate the model. As a result, the effective size of the search space is greatly reduced, i.e., the strings are concentrated in the vicinity of the model string which cannot accommodate many more than $M = 8$ strings without duplication of work. This is the reason we observe the degradation of the performance when the group size in-
creases beyond its optimal value. Note that for $K = 0$ the imitative learning search always performs better than the independent search.

B. Search on a Slightly Rugged Landscape ($K = 2$)

Now we consider a somewhat more complex NK fitness landscape by setting $N = 12$ and $K = 2$. In the particular realization of the landscape studied here there are 5 maxima in total, among which 4 are local maxima. The relative fitness of those maxima (Φ/Φ_g), as well as their Hamming distances to the global maximum (d), is presented in Table I.

Maximum	Φ/Φ_g	d
1	0.7681	5
2	0.9114	5
3	0.9204	3
4	0.9801	3

The results of the imitative learning search are summarized in Fig. 3 where the mean rescaled computational cost is plotted against the group size for different values of the imitation probability. The performance of the independent search ($p = 0$) is identical to that shown in Fig. 2 for $K = 0$, since that search strategy is not affected by the complexity of the landscape. The results for the cooperative search ($p > 0$), however, reveal a complex trade-off between the group size M and the imitation probability p. In particular, for $p > 0.8$ we observe a steep increase of the computational cost for intermediate values of M. This happens because the group can be trapped near one of the local maxima. For large groups ($M > 100$ in this case), chances are that some of the initial strings are close to the global maximum and end up attracting the rest of the group to its neighborhood, thus attenuating the effect of the local maxima. The robust finding is that for any $p > 0$ there is an optimal group size, which depends on the value of p, that minimizes the computational cost of the search.

A better understanding of the dynamics of the search is offered in Fig. 4 which shows the relative fitness of the model string as function of the number of trials for $M = 3$ agents and probability of imitation $p = 0.99$. The thin horizontal lines indicate the relative fitness of the 4 local maxima given in Table I. The parameters of the NK landscape are $N = 12$ and $K = 2$.

C. Search on a Rugged Landscape ($K = 4$)

The particular realization of the NK fitness landscape with $N = 12$ and $K = 4$ that we consider now has 53 maxima, including the global maximum, which poses a substantial challenge to any hill-climbing type of search strategy. As in the previous case, we observe in Fig. 5 a complex trade-off between M and p, but now the search the solution space much more efficiently than a large one in the case imitation is very frequent.
the global maximum with groups of size \(M > 12 \) in the case of \(p = 0 \).

The parameters of the NK landscape are \(N = 12 \) and \(K = 4 \). The landscape exhibits 52 local maxima and a single global maximum.

![Graph 1](image1.png)

FIG. 5. (Color online) Mean rescaled computational cost \(\langle C \rangle \) as function of the group size \(M \) for the imitation probability \(p = 0.1 \) (circles), \(p = 0.3 \) (squares), \(p = 0.5 \) (triangles) and \(p = 0.8 \) (inverted triangles). For \(p = 0.8 \) we find \(\langle C \rangle > 50 \) for \(M > 12 \). The solid line is the linear function \(\langle C \rangle = M/2^N \).

The landscape exhibits 52 local maxima and a single global maximum.

![Graph 2](image2.png)

FIG. 6. (Color online) Mean rescaled computational cost \(\langle C \rangle \) as function of the probability of imitation \(p \) for the group size \(M = 5, M = 10 \) and \(M = 100 \). The parameters of the NK landscape are \(N = 12 \) and \(K = 4 \). The landscape exhibits 52 local maxima and a single global maximum.

Results reveal how imitative learning may produce disastrous performances on rugged landscapes for certain ranges of those parameters. The strategy of following or imitating a model string can backfire if the fitness landscape exhibits high fitness local maxima that are distant from the global maximum. A large group may never escape from those maxima due to the attractive effect of the clones of the model string. This is what we observed in the case of \(p = 0.8 \) for which we were unable to find the global maximum with groups of size \(M > 12 \).

We note, however, that for a fixed group size \(M \) it is always possible to tune the imitation probability \(p \) so that the imitative learning strategy performs better than (or, in a worst-case scenario, equal to) the independent search. This point is illustrated in Fig. 5 that shows the computational cost as function of \(p \). For any fixed value of \(M \), the computational cost exhibits a well-defined minimum that determines the value of the optimal imitation frequency. As hinted in the previous figures, this optimal value decreases with increasing group size.

V. DISCUSSION

The aim of this paper is to study quantitatively the problem solving performance of a group of agents capable to learn by imitation. The performance measure we consider is the computational cost to find the global maximum of three specific realizations of the NK fitness landscape. The computational cost is defined as the product of the number of agents in the group and the number of attempted trials till some agent finds the global maximum. Our main conclusion, namely, that for a fixed probability of imitation \(p \) there is a value of group size that minimizes the computational cost corroborates the findings of a similar study in which the task was to solve a particular cryptarithmetical problem [12]. Hence our conjecture that the efficacy of imitative learning could be a factor determinant of the group size of social animals (see [1] [22], for a discussion on the standard selective pressures on group size in nature). We note that in the case the connectivity between agents is variable, i.e., each agent interacts with \(L = 1, \ldots , M - 1 \) distinct randomly picked agent (here we have focused on the fully connected network \(L = M - 1 \) only) then there is an optimal connectivity value that minimizes the computational cost [12]. It would be most interesting to understand how the network topology influences the performance of the group of imitative agents and how the optimal network topology correlates with the known animal social networks [23].

We do not purport to offer here any novel method to explore efficiently rugged landscapes, but the finding that for small group sizes imitative learning decreases considerably the computational cost of the search, even in a very rugged landscape (see data for \(p = 0.8 \) in Fig. 5) motivates us to address the question whether in such landscapes that strategy could achieve a better-than-random performance for all group sizes. This is achieved automatically for smooth landscapes (see Figs. 2 and 3) but not for rugged ones (see Figs. 5 and 12). Clearly, the way to accomplish this aim is to decrease the probability of imitation \(p \) as the group size \(M \) increases, following the location of the minima shown in Fig. 5. It is interesting to note that the finding that too frequent interactions between agents may harm the performance of the group (see Fig. 6) may offer a theoretical justification for Henry Ford’s factory design in which the communication between workers was minimized in order to maintain the established efficiency and maximal productivity [24].
This research was partially supported by grant 2013/17131-0, São Paulo Research Foundation (FAPESP) and by grant 303979/2013-5, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

[1] Wilson, E.: Sociobiology. Harvard University Press, Cambridge, MA (1975)
[2] Whiten, A, Erdal, D.: The human socio-cognitive niche and its evolutionary origins. Phil. Trans. R. Soc. B 367, 2119–2129 (2012)
[3] Bloom, H.: Global Brain: The Evolution of Mass Mind from the Big Bang to the 21st Century. Wiley, New York (2001)
[4] Nehaniv C.L., Dautenhah, K.: Introduction: the constructive interdisciplinary viewpoint for understanding mechanisms and models of imitation and social learning. In: Nehaniv, C.L., Dautenhah, K. (eds) Imitation and Social Learning in Robots, Humans and Animals, pp. 1–18. Cambridge University Press, Cambridge, UK (2007)
[5] Kennedy, J.: Minds and cultures: Particle swarm implications for beings in sociocognitive space. Adapt. Behav. 7, 269–288 (1999)
[6] Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford, UK (1999)
[7] Kennedy, J.: Thinking is social: Experiments with the adaptive culture model. J. Conflict Res. 42, 56–76 (1998)
[8] Fontanari, J.F.: Social interaction as a heuristic for combinatorial optimization problems. Phys. Rev. E 82, 056118 (2010)
[9] Hong, L., Page, S.E.: Problem Solving by Heterogeneous Agents. J. Econ. Theory 97, 123–163 (2001)
[10] Huberman, B.A.: The performance of cooperative processes. Physica D 42, 38–47 (1990)
[11] Clearwater, S.H., Huberman, B.A., Hogg, T.: Cooperative Solution of Constraint Satisfaction Problems. Science 254, 1181–1183 (1991)
[12] Fontanari, J.F.: Imitative Learning as a Connector of Collective Brains. PLoS ONE 9, e110517 (2014)
[13] Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987)
[14] Kauffman, S., Weinberger, E.: The NK Model of rugged fitness landscapes and its application to the maturation of the immune response. J. Theor. Biol. 141, 211–245 (1989)
[15] Solow, D., Burnetas, A., Tsai, M., Greenspan, N.S.: On the Expected Performance of Systems with Complex Interactions Among Components. Complex Systems 12, 423–456 (2000)
[16] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA (1979)
[17] Derrida, B.: Random-energy Model: An Exactly Solvable Model of Disordered Systems. Phys. Rev. B 24, 2613–2626 (1981)
[18] Saakian, D.B., Fontanari, J.F.: Evolutionary dynamics on rugged fitness landscapes: Exact dynamics and information theoretical aspects. Phys. Rev. E 80, 041903 (2009)
[19] Shibani, Y., Yasuno, S., Ishiguro, I.: Effects of Global Information Feedback on Diversity. J. Conflict Res. 45, 80–96 (2001)
[20] Peres, L.R., Fontanari, J.F.: The media effect in Axelrod’s model explained. Europhys. Lett. 96, 38004 (2011)
[21] Axelrod, R.: The Dissemination of Culture: A Model with Local Convergence and Global Polarization. J. Conflict Res. 41, 203–226 (1997)
[22] Dunbar, R.I.M.: Neocortex size as a constraint on group size in primates. J. Human Evol. 22, 469–493 (1992)
[23] Pasquaretta, C., et al.: Social networks in primates: smart and tolerant species have more efficient networks. Sci. Rep. 4, 7600 (2014)
[24] Watts, S.: The People’s Tycoon: Henry Ford and the American Century. Vintage, New York (2006)