A Closed-Form Method for LRU Replacement under Generalized Power-Law Demand*

Nikolaos Laoutaris
nlaout@eecs.harvard.edu

Division of Engineering and Applied Sciences, Harvard University
33 Oxford Street, Cambridge, MA 02138

Abstract

We consider the well known Least Recently Used (LRU) replacement algorithm and analyze it under the independent reference model and generalized power-law demand. For this extensive family of demand distributions we derive a closed-form expression for the per object steady-state hit ratio. To the best of our knowledge, this is the first analytic derivation of the per object hit ratio of LRU that can be obtained in constant time without requiring laborious numeric computations or simulation. Since most applications of replacement algorithms include (at least) some scenarios under i.i.d. requests, our method has substantial practical value, especially when having to analyze multiple caches, where existing numeric methods and simulation become too time consuming.

1 Introduction

Although very simple in both conception and implementation, the LRU replacement algorithm is notoriously hard in terms of analysis. Attempts to obtain the per object steady-state hit ratio in an LRU operated cache under the independent reference model (IRM) [1] date back to the early 70’s and have continued appearing in the literature until very recently [2, 3, 4]. As elaborated later on in this article, such attempts yield either (1) intractable numeric methods for obtaining the exact hit probabilities [5, 1, 6], (2) tractable numeric methods for obtaining approximate hit probabilities [4, 5, 2, 6, 4], or (3) asymptotic results under infinite number of objects and infinite storage capacity [9, 10]. In this article we derive for the first time a closed-form formula that can be used for obtaining approximate hit probabilities in constant time, i.e., without numeric computation that depends on input parameters like the number of objects and the storage capacity. Although previous approximate numeric methods are fast (linear complexity), being able to compute the hit probabilities in constant time gives a significant advantage, especially when the object universe is large or when there are more than one caches to be analyzed. Examples include networks of interconnected cooperative caches [11, 12, 13], peer-to-peer caching systems [14], semantic caching and query processing [15].

*Work conducted at Boston University with support from a Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230).
We achieve the aforementioned result for generalized power-law demand distributions \cite{16,17}. Our interest on this family is based on the fact that such popularity profiles have been observed in many real-world measurement studies related to replacement algorithms, including \cite{18,19}. It is also quite a versatile family as it includes a wide range of profiles, from uniform (having skewness parameter $a = 0$) to Zipf (having skewness parameter $a = 1$). Most new applications that include a cache that operates under LRU replacement, typically include among others, experimental results under power-law popularity; in these cases our closed-form method can be used instead of laborious numeric methods or simulation.

2 Related Work

The problem of analyzing the hit ratio of LRU can be traced back to the 70’s. King \cite{5} was the first to derive the steady-state behavior of LRU under IRM. Initial attempts employed a Markov chain to model the contents of a cache operating under LRU. Unfortunately, such attempts give rise to huge Markov chains, having $C! \binom{N}{C}$ states (where N denotes the total number of distinct objects, and C denotes the capacity of the cache in unit-sized objects); numerical results for such chains can only be derived for very small N and C. More efficient steady-state formulas have been derived by avoiding the use of Markov chains, and instead making combinatorial arguments; see Koffman and Denning \cite{1}, and Starobinski and Tse \cite{6}. However, such approaches still incur a computational complexity that is exponential in N and C. Flajolet et al. \cite{7} have presented integral expressions for the hit ratio, which can be approximated using numerical integration at complexity $O(NC)$. Dan and Towsley \cite{8} have derived an $O(NC)$ iterative method for the approximation of the hit ratio. Jalenković \cite{9} has provided a closed form expression for the particular case of generalized power-law demand with skewness parameter $\alpha > 1$, for the asymptotic case, $N, C \to \infty$. The same author has shown that the hit ratio of LRU under such demand is asymptotically insensitive for large caches, i.e., $C \to \infty$, to temporal correlations of the request arrival process \cite{10}. The most recent attempts on the analysis of LRU can be found in \cite{2,3,4}. These works build on the notion of characteristic time, which is also used in our work. More details on these works and the concept of the characteristic time are given in the following sections.

3 Background and Scope

Consider an object set $O = \{o_1, \ldots, o_N\}$, where o_i denotes the ith unit-sized object. Assume that requests are issued for the objects of O and that successive requests are independent and identically distributed. A caching system involves many more design choices other than the particular replacement algorithm (there are issues of associativity, multi-level hierarchical structure, and others). The current article is about analyzing a particular replacement algorithm and does not make any claims about the more general problem of designing cache memories.

\footnote{We would like at this point to emphasize the distinction between caching systems and replacement algorithms. A caching system involves many more design choices other than the particular replacement algorithm (there are issues of associativity, multi-level hierarchical structure, and others). The current article is about analyzing a particular replacement algorithm and does not make any claims about the more general problem of designing cache memories.}

\footnote{The independent reference model \cite{1} is commonly used to characterize cache access patterns \cite{20,21}. The impact of temporal correlations was shown in \cite{21,22} to be minuscule, especially under typical, Zipf-like object popularity profiles. These works showed that temporal correlations decrease rapidly with the distance between any two samples so, as long as the cache size is not minuscule, they do not impact fundamentally on the i.i.d. assumption. The unit assumption regarding the size of objects is a standard one in all previous works \cite{1,11} and stems from the desire to avoid adding 0/1-knapsack type complexities to a problem that is already combinatorial. Practically, it is justified on the basis that in many caching systems the objects are much smaller than the available cache size. Similarly, all previous works assume stationarity of demand over some time horizon. This is supported by many of the practical measurements that have been performed.}

The independent reference model \cite{1} is commonly used to characterize cache access patterns \cite{20,21}. The impact of temporal correlations was shown in \cite{21,22} to be minuscule, especially under typical, Zipf-like object popularity profiles. These works showed that temporal correlations decrease rapidly with the distance between any two samples so, as long as the cache size is not minuscule, they do not impact fundamentally on the i.i.d. assumption. The unit assumption regarding the size of objects is a standard one in all previous works \cite{1,11} and stems from the desire to avoid adding 0/1-knapsack type complexities to a problem that is already combinatorial. Practically, it is justified on the basis that in many caching systems the objects are much smaller than the available cache size. Similarly, all previous works assume stationarity of demand over some time horizon. This is supported by many of the practical measurements that have been performed.
distributed according to a common probability distribution $\vec{p} = \{p_1, \ldots, p_N\}$, where p_i denotes the request probability for the ith most popular object of O (hereafter assumed to be object o_i without loss of generality). The aggregate stream of requests is assumed to be arriving to a cache according to a Poisson arrival process of rate λ requests/unit of time (meaning that the stream of request for any given object is also Poisson with rate $\lambda \cdot p_i$, $1 \leq i \leq N$). In Laoutaris et al. \cite{3} we showed that under the above mentioned request model, an LRU operated cache with capacity for C unit-sized objects reaches a steady-state in which the probability of finding object o_i in the cache is given by:

$$\pi_i = 1 - e^{-p_i r_i} \tag{1}$$

In the above equation, r_i denotes the maximum inter-arrival time between two adjacent request for object o_i, both of which lead to hits. This quantity is referred to as the characteristic time of object o_i and is due to Che et al. \cite{2}. In essence, r_i is a random variable, but it can be approximated by a constant in order to carry-out a tractable analysis. This is characterized as a mean field approximation in \cite{2} and the rationale behind it is that when the object set is large enough, r_i fluctuates closely around its mean value, so it can be effectively approximated by it. The characteristic time r_i of object o_i, $1 \leq i \leq N$, was obtained in \cite{2,3} by solving the following equation numerically:

$$\sum_{j=1}^{N} 1 - e^{-p_j r_i} = C \Rightarrow \sum_{j=1}^{N} e^{-p_j r_i} = N - 1 - C \tag{2}$$

This equation gives the time interval that is required for the $N - 1$ other objects to generate C distinct requests and thus evict o_i, granted that o_i is not re-requested in this interval. However, solving N such equations, one for each object, is cumbersome, especially for large N. This can be partially alleviated by considering a single characteristic time r for all the objects and thus solving only one equation. Such an approximation is justifiable on the basis that the characteristic times r_i of different objects do not differ substantially, even under skewed popularity distributions. Figure 1 supports this claim by illustrating the characteristic times of objects in an LRU cache with capacity for $C = 100$ objects that is driven by requests over an object universe of $N = 1000$ objects, whose popularities follow a generalized power-law with skewness $a = 0.8$ (the request rate for this and all subsequent examples is normalized to $\lambda = 1$ request/unit of time). The characteristic times are obtained by solving Eq. (2) numerically. One can observe that although \vec{p} is skewed, the difference between the characteristic times of different objects is very small (thus $r_{1}/r_{1000} = 1.011$ despite that $p_1/p_{1000} = 251$, i.e., two orders of magnitude apart). The plot essentially says that request inter-arrivals for the same object that are longer than $134-135$ time units lead to misses.

The approach of using a common characteristic time r for all objects was recently employed by Panagakis et al. in \cite{4}. In the same work it was observed that the most natural way of finding the common characteristic time is by solving the following normalization equation which simply

\begin{itemize}
 \item the aforementioned measurement works, over multiple time scales. Obviously, if the demand is non stationary and radically changing over small time scales, no analysis can be carried out.
 \item We can alternatively obtain similar results by assuming a Bernoulli arrival process and carrying-out a discrete time analysis. We choose to remain on the continuous time domain so as to be aligned with the preceding body of work in \cite{2,3,4}.
 \item Observe that the quantity within the summation is the CDF of the exponential request inter-arrival time for object o_i calculated at point r_i.
\end{itemize}
requires that all the steady-state object hit probabilities sum up to the capacity of the cache, i.e.:

\[
\sum_{i=1}^{N} \pi_i = C \Rightarrow \sum_{i=1}^{N} 1 - e^{-p_ir} = C \Rightarrow \sum_{i=1}^{N} e^{-p_ir} = N - C \tag{3}
\]

The above equation was solved numerically in [4], similarly to the case of [2, 3] and Eq. (2). In the following section, we utilize the notion of characteristic time as developed in [2, 3, 4] and present an analysis that leads to the derivation of a closed-form formula for the behavior of LRU caching. This is, to the best of our knowledge, the first, non-asymptotic, closed-form approximate formula for LRU (the closed-form expression of Jalenković in [9] covers only the asymptotic case \(N, C \to \infty \) and is only for \(a > 1 \)). Our method can be used for the study of LRU caching, whether in stand-alone mode (a single LRU cache), or, more interestingly, in hierarchical [2, 3] or distributed [13] inter-connections of caches, without requiring laborious numeric computations.

4 Analysis of LRU under Generalized Power-Law Demand

We assume that \(\bar{p} \) follows a generalized power-law distribution, in which the \(i \)th most popular object has request probability \(p_i = \Lambda / i^a \), where \(\Lambda = \left(\sum_{i'=1}^{N} \frac{1}{i'^a} \right)^{-1} \) is a normalization constant, and \(a \) is a skewness parameter. Under such demand, we show how to obtain an approximate closed-form formula for the common characteristic time \(r \) of Eq. (3). This gives directly a closed-form expression for the hit ratio of each object through Eq. (1). Our analysis can be easily adapted to handling per object characteristic times \(r_i \). The only difference in this case would be that we would start from Eq. (2) instead of Eq. (3).

First we take the Taylor series expansion of the exponential form \(e^{-p_ir} \) in terms of the variable \(r \) around point \(C \):

\[
e^{-p_ir} = e^{-p_iC} \sum_{k=0}^{\infty} \frac{(-p_i \cdot (r - C))^k}{k!} \tag{4}
\]
The exponential form $e^{-p_i C}$ of Eq. (4) can be similarly expanded in terms of the variable p_i around point 0 as follows:

$$e^{-p_i C} = \sum_{k=0}^{\infty} \frac{(-p_i C)^k}{k!}$$ \hspace{1cm} (5)

Using Eqs (4), (5) in Eq. (3) we can write:

$$\sum_{i=1}^{N} e^{-p_i r} = N - C \Rightarrow \sum_{i=1}^{N} \left(\sum_{k=0}^{\infty} \frac{(-p_i C)^k}{k!} \right) \cdot \left(\sum_{k=0}^{\infty} \frac{(-p_i \cdot (r-C))^k}{k!} \right) = N - C$$ \hspace{1cm} (6)

Denoting $a_k = (-C)^k/k!$ and $b_k = (-r-C)^k/k!$, and limiting k to $0 \leq k < K$ instead of letting it run to ∞, we can approximate Eq. (6) as follows:

$$\sum_{i=1}^{N} \left(\sum_{k=0}^{K} p_i^k \cdot a_k \right) \cdot \left(\sum_{k=0}^{K} p_i^k \cdot b_k \right) = N - C \Rightarrow$$

$$\sum_{i=1}^{N} \left(\sum_{m=0}^{2K} p_i^m \cdot \sum_{m_1 \leq K, m_2 \leq K} a_{m_1} \cdot b_{m_2} \right) = N - C \Rightarrow$$

$$\sum_{m=0}^{2K} \left(\sum_{m_1 \leq K, m_2 \leq K} a_{m_1} \cdot b_{m_2} \right) \cdot \left(\sum_{i=1}^{N} p_i^m \right) = N - C$$ \hspace{1cm} (7)

As will be shown later through numeric examples, the truncation to K has a small effect on the accuracy as compared to solving Eq. (7) for $K \to \infty$. This owes to the fact that the remainder for $k > K$ of the previous exponential forms (4), (5) can be bounded by $O(1/K)$.

We continue the analysis by putting into use our assumption that p_i follows a power-law distribution, and so we can write:

$$\sum_{i=1}^{N} p_i^m = \sum_{i=1}^{N} \left(\frac{\Lambda}{r^a} \right)^m = \Lambda^m \cdot \sum_{i=1}^{N} \frac{1}{r^a} = \Lambda^m \cdot H_N^{(am)},$$ \hspace{1cm} (8)

where $H_N^{(am)} \equiv \sum_{i=1}^{N} 1/r^a$ denotes the Nth Harmonic number of order a. $H_N^{(a)}$ can be approximated by its integral expression $H_N^{(a)} = \int_{1-a}^{1} x^{1-a} dx$ (see also [23]). Substituting from Eq. (8) into Eq. (7) we obtain our master equation:

$$\sum_{m=0}^{2K} \left(\sum_{m_1 \leq K, m_2 \leq K} a_{m_1} \cdot b_{m_2} \right) \cdot \Lambda^m \cdot H_N^{(am)} = N - C$$ \hspace{1cm} (9)

The master equation is a K-order polynomial equation of r (corresponding to an approximate version of Eq. (3) that retains only $K + 1$ first terms from the Taylor series expansions of the exponential forms of Eqs (4), (5)). One can solve the master equation in arbitrary accuracy by increasing K. This, of course, presumes a numerical solution and, thus, does not differ fundamentally from the previous numerical approaches in [2, 3, 4]. Where the master equation is essentially different, is in that it has a form that can be utilized for setting up a closed-form solution. This can be accomplished by selecting appropriately small K that give rise to such results. Such flexibility is not provided by Eqs. (2), (3).
Consider the case of \(K = 2 \). Substituting \(a_m, b_m \) and doing some algebraic manipulation reduces the master equation into the following quadratic equation (\(K = 2 \) amounts to retaining the first three terms of the Taylor series expansions of Eqs (4), (5)):

\[
\alpha_2 r^2 + \alpha_1 r + \alpha_0 = 0 \quad \text{where:} \quad \alpha_2 = \frac{\Lambda^2}{2} H_N^{(2a)} - \frac{\Lambda^3 C}{2} H_N^{(3a)} + \frac{\Lambda^4 C^2}{4} H_N^{(4a)} \\
\alpha_1 = -\Lambda H_N^{(a)} + \frac{\Lambda^3 C^2}{2} H_N^{(3a)} - \frac{\Lambda^4 C^3}{2} H_N^{(4a)} \\
\alpha_0 = C + \frac{\Lambda^4 C^4}{4} H_N^{(4a)}
\]

(10)

The characteristic time can then be taken by selecting an appropriate real solution (assuming that one exists, more on this in the sequel) from the quadratic formula: \(r = \frac{-\alpha_1 \pm \sqrt{\alpha_1^2 - 4\alpha_2 \alpha_0}}{2\alpha_2} \).

We can go a step further and consider the case of \(K = 3 \) which yields the following cubic equation:

\[
\alpha_3 r^3 + \alpha_2 r^2 + \alpha_1 r + \alpha_0 = 0 \quad \text{where:} \quad \alpha_3 = -\frac{\Lambda^3}{6} H_N^{(3a)} + \frac{\Lambda^4 C}{6} H_N^{(4a)} - \frac{\Lambda^5 C^2}{12} H_N^{(5a)} + \frac{\Lambda^6 C^3}{36} H_N^{(6a)} \\
\alpha_2 = \frac{\Lambda^2}{2} H_N^{(2a)} - \frac{\Lambda^4 C^2}{4} H_N^{(4a)} + \frac{\Lambda^5 C^3}{6} H_N^{(5a)} - \frac{\Lambda^6 C^4}{12} H_N^{(6a)} \\
\alpha_1 = -\Lambda H_N^{(a)} + \frac{\Lambda^4 C^3}{6} H_N^{(4a)} - \frac{\Lambda^5 C^4}{12} H_N^{(5a)} + \frac{\Lambda^6 C^5}{12} H_N^{(6a)} \\
\alpha_0 = C - \frac{\Lambda^4 C^4}{12} H_N^{(4a)} - \frac{\Lambda^6 C^6}{36} H_N^{(6a)}
\]

(11)

The cubic formula \([24]\) (we do not repeat it here due to space considerations) returns the three solutions to the above cubic equation expressed as analytic functions of the coefficients \(\alpha_3, \alpha_2, \alpha_1, \alpha_0 \) (which, in turn, are analytic functions \(^5\) of the input parameters \(C, N, a \)); at least one the three solutions is always guaranteed to be in the domain of real numbers (such a guarantee does not exist for the quadratic equation, for which, both solutions can be complex). Due to this guarantee, and also to the fact that it provides a closer approximation by considering an additional term from the Taylor expansion, we focus on the \(K = 3 \) case\(^6\). Let \(r_A, r_B, r_C \) be the three roots of Eq. (11) returned by the cubic formula. We select as characteristic time the smallest real solution \(r_X, X \in \{ A, B, C \} \) that exceeds \(C \), i.e.:

\[
r = \min_{X \in \{A, B, C\}} (r_X) : r_X \in \mathbb{R}, r_X \geq C
\]

(12)

The rationale behind this choice is that it takes at least \(C \) requests to evict a newly inserted object so the characteristic time has to be larger than \(C \) (the characteristic time is in units of time or alternatively in number of requests, since we have normalized the request rate \(\lambda \) into 1 req./time slot). In the next section we show that the above approximation yields accurate \(r \) and \(\pi_i \) across a wide range of parameters \(C, N, a \).

\(^5\)For the generalized Harmonic number we use its integral approximation as stated earlier on.

\(^6\)Theoretically we could go even further and consider the quartic equation (\(K = 4 \)). This, however, involves very cumbersome formulas for the roots and is marginally valuable since the cubic equation already provides close approximation as will be demonstrated in Sect.\(^5\). The quintic and all higher order equations (\(K \geq 5 \)) do not possess a general solution over the rationals in terms of radicals (the “Abel-Ruffini” theorem).
Table 1: Evaluation of the accuracy of our approximate closed-form formula for the characteristic time on a set of $N = 1000$ objects, under varying cache size C and demand skewness a. The top value of each cell gives the exact characteristic time from solving Eq. (3) numerically while the bottom value gives the approximate characteristic time from Eq. (12).

$a \backslash C$	50	100	150	200
0.4	51.8	107.5	167.5	232.2
	52	107.9	167.8	232.1
0.6	53.6	114.3	181.9	256.7
	54	113.9	178.6	248.9
0.8	59.6	133.8	220.2	318.6
	59.1	128.9	167.5	225.2

Table 5 Numeric Results

In this section we first compare the accuracy of the approximate characteristic time that we obtain from Eq. (12), with the exact characteristic time that we obtain from solving Eq. (3) numerically. Table 1 provides such a comparison drawn from a universe of $N = 1000$ objects and for varying a and C. Each cell of the table corresponds to an (a, C) pair and contains two numeric values: the top one is the exact characteristic time while the bottom one is the approximate one that we compute through our method. These values correspond to units of time, or equivalently, number of requests.

One may observe that our approximation tracks closely the actual characteristic time. Deviations appear only under very skewed demand (e.g., $a \geq 0.8$) and large relative storage capacities (e.g., $C/N \geq 20\%$). These cases, however, are neither typical, nor really interesting, for the following reasons. First, cache memories rarely operate under such much storage. Typical values for the ratio C/N are well below 10% in most applications (this is after all the main reason for employing caches – lack of memory space for all the objects). Second, a high availability of storage, combined with a high skewness, leads to a fairly expected cache hit ratio that approaches 1, and, thus, there is not much practical purpose for studying such a case analytically. We note, however, that our method can be tweaked in order to provide useful results for these cases also. We show how to do this later in this section.

The next set of results compares the analytic per object steady-state hit probabilities obtained by plugging the characteristic time r of Eq. (12) into Eq. (1), with corresponding hit probabilities obtained by simulating LRU for 10 million requests. The three graphs of Fig. 2 correspond to skewness $a = 0.4, 0.6$ and 0.8. Each graph includes 8 curves corresponding to results obtained from simulation and analysis under different ratios $C/N = 5\%, 10\%, 15\%$ and 20%. One may observe that for low ($a = 0.4$) and medium ($a = 0.6$) skewness, the analytically computed hit ratios match almost perfectly with the simulated ones, across all storage availabilities. For high skewness ($a = 0.8$), our results are very accurate up to a storage availability of 10% and then start to deviate (some deviation for $C/N = 15\%$ and a larger one for $C/N = 20\%$). In other words, the method becomes less accurate under very skewed demand and large availability of storage. The reason for this deviation is that under such settings, the omission of higher order terms of the Taylor series expansion of the previously mentioned exponential forms, disrupts significantly the balance of the (normalization) Eq. (3), thus leading to π_i’s that do not sum up to C. As we commented earlier, a storage availability higher than 10% is not realistic under most caching applications. Nevertheless,
Algorithm 1 ProportionalNormalization(π: $1 \times N$ vector, N, C scalars)

1: for $i = 1$ to N do
2: \hspace{1em} $m_{\text{mass}} = C - \sum_{j=1}^{N} \pi_j$;
3: \hspace{1em} $\delta = m_{\text{mass}} \cdot \pi_i / \sum_{j=i}^{N} \pi_j$;
4: \hspace{1em} $\pi_i = \min\{\pi_i + \delta, 1\}$;

in the following paragraph we will describe proportional normalization, a method for fixing this problem by reshaping the π_i’s and, actually, achieving a high accuracy even under high storage availability and skewed demand.

Proportional normalization: In this section we describe a simple normalization method for fixing the missing probability mass problem that occurs under combined high C/N and a. This is achieved through a proportional normalization method that distributes the missing probability mass among the different objects in such a way that each object’s hit probability is incremented proportionally to its hit probability as derived by our base-line closed-form method. In Algorithm 1 we describe the proportional normalization method. The algorithm takes as input the vector of hit probabilities derived from Eq. (1) after plugging in the analytically computer characteristic time r and returns a normalized vector of hit probabilities that sum up to C. In Fig. 3 we compare the normalized hit probabilities with the corresponding ones from simulation under a storage availability $C/N = 20\%$ (under such availability, and for high skewness, there was a substantial disagreement between simulation and analysis, as shown in the third graph of Fig. 2). From Fig. 3 it is clear that after the normalization there is almost perfect agreement between the simulation and the analytic results. Thus by combining our analytic method with proportional normalization, one can obtain accurate hit ratios even under combined high storage availability and skewed demand.

6 Conclusions

In this work we have presented a closed-form approximate method for obtaining the per object hit ratio under LRU replacement and independent generalized power-law requests. Our method obtains accurate results for a wide range of parameters. It becomes less accurate only when combining a very high storage availability (which is not typical under most caching applications) with skewed demand. To accommodate this case, we describe a simple proportional normalization procedure that, when combined with our baseline closed-form method, corrects its accuracy. To the best of our knowledge, our method is the first one to produce non asymptotic closed-form results for LRU. Due to the complete lack of any kind of numeric computation our method can be used for the analysis of large networks of LRU caches in which existing numeric methods and simulation become impractical from a computational point of view.

References

[1] E. G. Coffman and P. J. Denning, Operating systems theory, Prentice-Hall, 1973.
[2] Hao Che, Ye Tung, and Zhijun Wang, “Hierarchical web caching systems: Modeling, design and experimental results,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 7, Sept. 2002.

[3] Nikolaos Laoutaris, Hao Che, and Ioannis Stavrakakis, “The LCD interconnection of LRU caches and its analysis,” Performance Evaluation, vol. 63, no. 7, pp. 609–634, 2006.

[4] Antonis Panagakis, Athanasios Vaios, and Ioannis Stavrakakis, “Approximate analysis of some variants of LRU,” submitted in Performance Evaluation, 2005.

[5] W.C. King, “Analysis of paging algorithms,” in Proceedings of the IFIP 1971 Congress, Ljubljana, 1971, pp. 485–490.

[6] David Starobinski and David N. C. Tse, “Probabilistic methods for web caching,” Performance Evaluation, vol. 46, no. 2-3, pp. 125–137, 2001.

[7] Philippe Flajolet, Danièle Gardy, and Loys Thimonier, “Birthday paradox, coupon collectors, caching algorithms and self-organizing search,” Discrete Applied Mathematics, vol. 39, pp. 207–229, 1992.

[8] Asit Dan and Dan Towsley, “An approximate analysis of the LRU and FIFO buffer replacement schemes,” in Proceedings of ACM SIGMETRICS, 1990, pp. 143–152.

[9] Predrag R. Jalenković, “Asymptotic approximation of the move-to-front search cost distribution and least-recently-used caching fault probabilities,” Annals of Applied Probability, vol. 9, no. 2, pp. 430 – 464, 1999.

[10] Predrag R. Jalenković and Ana Radovanović, “Asymptotic insensitivity of least-recently-used caching to statistical dependency,” in Proceedings of the Conference on Computer Communications (IEEE Infocom), San Francisco, CA, Apr. 2003.

[11] Pablo Rodriguez, Christian Spanner, and Ernst W. Biersack, “Analysis of web caching architectures: Hierarchical and distributed caching,” IEEE/ACM Transactions on Networking, vol. 9, no. 4, Aug. 2001.

[12] Madhukar R. Korupolu and Michael Dahlin, “Coordinated placement and replacement for large-scale distributed caches,” IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 6, pp. 1317–1329, 2002.

[13] Nikolaos Laoutaris, Georgios Smaragdakis, Azer Bestavros, and Ioannis Stavrakakis, “Mistreatment in distributed caching groups: Causes and implications,” in Proceedings of the Conference on Computer Communications (IEEE Infocom), Barcelona, Spain, Apr. 2006.

[14] Li Xiao, Xiaodong Zhang, Artur Andrzejak, and Songqing Chen, “Building a large and efficient hybrid peer-to-peer internet caching system,” IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 6, pp. 754–769, 2004.

[15] Qun Ren, Margaret H. Dunham, and Vijay Kumar, “Semantic caching and query processing,” IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 1, pp. 192–210, 2003.
[16] Michael Mitzenmacher, “A brief history of generative models for power law and lognormal distributions,” *Internet Mathematics*, vol. 1, no. 2, pp. 226–251, 2003.

[17] Christos Faloutsos, Yossi Matias, and Abraham Silberschatz, “Modeling skewed distribution using multifractals and the ‘80-20’ law,” in *Proceedings of VLDB ’96*, San Francisco, CA, USA, 1996, pp. 307–317, Morgan Kaufmann Publishers Inc.

[18] Lee Breslau, Pei Cao, Li Fan, Graham Philips, and Scott Shenker, “Web caching and Zipf-like distributions: Evidence and implications,” in *Proceedings of the Conference on Computer Communications (IEEE Infocom)*, New York, Mar. 1999.

[19] Anirban Mahanti, Carey Williamson, and Derek Eager, “Traffic analysis of a web proxy caching hierarchy,” *IEEE Network*, vol. 14, no. 3, pp. 16–23, May 2000.

[20] Martin F. Arlitt and Carey L. Williamson, “Web server workload characterization: the search for invariants,” in *Proceedings of the 1996 ACM SIGMETRICS international conference on Measurement and modeling of computer systems*, 1996, pp. 126–137.

[21] Shudong Jin and Azer Bestavros, “Sources and Characteristics of Web Temporal Locality,” in *Proceedings of Mascots’2000: The IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems*, San Francisco, CA, August 2000.

[22] Konstantinos Psounis, An Zhu, Balaji Prabhakar, and Rajeev Motwani, “Modeling correlations in web traces and implications for designing replacement policies,” *Computer Networks*, vol. 45, July 2004.

[23] Xueyan Tang and Samuel T. Chanson, “Adaptive hash routing for a cluster of client-side web proxies,” *Journal of Parallel and Distributed Computing*, vol. 64, no. 10, pp. 1168–1184, Oct. 2004.

[24] R.W.D. Nickalls, “A new approach to solving the cubic: Cardan’s solution revealed,” *The Mathematical Gazette*, vol. 77, pp. 354–359, 1993.
Figure 2: Comparison of simulated and analytic per object hit probabilities (π_i's) on a universe of $N = 1000$ objects for different storage capacities ($C = 50, 100, 150, 200$) and skewness parameters ($\alpha = 0.4, 0.6, 0.8$) for the input generalized power-law demand. A word of caution: in the third graph ($\alpha = 0.8$) the analytic line for $C = 200$ overlaps coincidentally with the simulation line for $C = 150$.
Figure 3: Comparison of simulated and proportionally normalized analytic per object hit probabilities (π_i's) on a universe of $N = 1000$ objects for a storage capacity $C = 200$ and different skewness parameters ($a = 0.4, 0.6, 0.8$) for the input generalized power-law demand.
A Closed-Form Method for LRU Replacement under Generalized Power-Law Demand*

Nikolaos Laoutaris
nlaout@eecs.harvard.edu
Division of Engineering and Applied Sciences, Harvard University
33 Oxford Street, Cambridge, MA 02138

Abstract

We consider the well known Least Recently Used (LRU) replacement algorithm and analyze it under the independent reference model and generalized power-law demand. For this extensive family of demand distributions we derive a closed-form expression for the per object steady-state hit ratio. To the best of our knowledge, this is the first analytic derivation of the per object hit ratio of LRU that can be obtained in constant time without requiring laborious numeric computations or simulation. Since most applications of replacement algorithms include (at least) some scenarios under i.i.d. requests, our method has substantial practical value, especially when having to analyze multiple caches, where existing numeric methods and simulation become too time consuming.

1 Introduction

Although very simple in both conception and implementation, the LRU replacement algorithm is notoriously hard in terms of analysis. Attempts to obtain the per object steady-state hit ratio in an LRU operated cache under the independent reference model (IRM) [?] date back to the early 70’s and have continued appearing in the literature until very recently [?, ?, ?]. As elaborated later on in this article, such attempts yield either (1) intractable numeric methods for obtaining the exact hit probabilities [?, ?, ?], (2) tractable numeric methods for obtaining approximate hit probabilities [?, ?, ?, ?], or (3) asymptotic results under infinite number

*Work conducted at Boston University with support from a Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230).
of objects and infinite storage capacity [?, ?]. In this article we derive for the first time a closed-form formula that can be used for obtaining approximate hit probabilities in constant time, i.e., without numeric computation that depends on input parameters like the number of objects and the storage capacity. Although previous approximate numeric methods are fast (linear complexity), being able to compute the hit probabilities in constant time gives a significant advantage, especially when the object universe is large or when there are more than one caches to be analyzed. Examples include networks of inter-connected cooperative caches [?, ?, ?], peer-to-peer caching systems [?], semantic caching and query processing [?].

We achieve the aforementioned result for generalized power-law demand distributions [?, ?]. Our interest on this family is based on the fact that such popularity profiles have been observed in many real-world measurement studies related to replacement algorithms, including [?, ?]. It is also quite a versatile family as it includes a wide range of profiles, from uniform (having skewness parameter \(a = 0 \)) to Zipf (having skewness parameter \(a = 1 \)). Most new applications that include a cache \(^1\) that operates under LRU replacement, typically include among others, experimental results under power-law popularity; in these cases our closed-form method can be used instead of laborious numeric methods or simulation.

2 Related Work

The problem of analyzing the hit ratio of LRU can be traced back to the 70's. King [?] was the first to derive the steady-state behavior of LRU under IRM. Initial attempts employed a Markov chain to model the contents of a cache operating under LRU. Unfortunately, such attempts give rise to huge Markov chains, having \(C! \binom{N}{C} \) states (where \(N \) denotes the total number of distinct objects, and \(C \) denotes the capacity of the cache in unit-sized objects); numerical results for such chains can only be derived for very small \(N \) and \(C \). More efficient steady-state formulas have been derived by avoiding the use of Markov chains, and instead making combinatorial arguments; see Koffman and Denning [?], and Starobinski and Tse [?]. However, such approaches still incur a computational complexity that is exponential in \(N \) and \(C \). Flajolet et al. [?] have presented integral expressions for the hit ratio, which can be

\(^1\) We would like at this point to emphasize the distinction between caching systems and replacement algorithms. A caching system involves many more design choices other than the particular replacement algorithm (there are issues of associativity, multi-level hierarchical structure, and others). The current article is about analyzing a particular replacement algorithm and does not make any claims about the more general problem of designing cache memories.
approximated using numerical integration at complexity $O(NC)$. Dan and Towsley [?] have derived an $O(NC)$ iterative method for the approximation of the hit ratio. Jalenković [?] has provided a closed form expression for the particular case of generalized power-law demand with skewness parameter $\alpha > 1$, for the asymptotic case, $N, C \to \infty$. The same author has shown that the hit ratio of LRU under such demand is asymptotically insensitive for large caches, i.e., $C \to \infty$, to temporal correlations of the request arrival process [?]. The most recent attempts on the analysis of LRU can be found in [?, ?, ?]. These works build on the notion of characteristic time, which is also used in our work. More details on these works and the concept of the characteristic time are given in the following sections.

3 Background and Scope

Consider an object set $O = \{o_1, \ldots, o_N\}$, where o_i denotes the ith unit-sized object. Assume that requests are issued for the objects of O and that successive requests are independent and identically distributed according to a common probability distribution $\vec{p} = \{p_1, \ldots, p_N\}$, where p_i denotes the request probability for the ith most popular object of O (hereafter assumed to be object o_i without loss of generality). The aggregate stream of requests is assumed to be arriving to a cache according to a Poisson arrival process [?] of rate λ requests/unit of time (meaning that the stream of request for any given object is also Poisson with rate $\lambda \cdot p_i$, $1 \leq i \leq N$). In Laoutaris et al. [?] we showed that under the above mentioned request model, an LRU operated cache with capacity for C unit-sized objects reaches a steady-state in which the probability of

\footnote{The independent reference model [?] is commonly used to characterize cache access patterns [?, ?]. The impact of temporal correlations was shown in [?, ?] to be minuscule, especially under typical, Zipf-like object popularity profiles. These works showed that temporal correlations decrease rapidly with the distance between any two samples so, as long as the cache size is not minuscule, they do not impact fundamentally on the i.i.d. assumption. The unit assumption regarding the size of objects is a standard one in all previous works [?]–[?] and stems from the desire to avoid adding 0/1-knapsack type complexities to a problem that is already combinatorial. Practically, it is justified on the basis that in many caching systems the objects are much smaller than the available cache size. Similarly, all previous works assume stationarity of demand over some time horizon. This is supported by many of the aforementioned measurement works, over multiple time scales. Obviously, if the demand is non stationary and radically changing over small time scales, no analysis can be carried out.}

\footnote{We can alternatively obtain similar results by assuming a Bernoulli arrival process and carrying-out a discrete time analysis. We choose to remain on the continuous time domain so as to be aligned with the preceding body of work in [?, ?, ?].}
finding object \(o_i \) in the cache is given by:

\[
\pi_i = 1 - e^{-p_ir_i}
\]

(1)

In the above equation, \(r_i \) denotes the maximum inter-arrival time between two adjacent request for object \(o_i \), both of which lead to hits. This quantity is referred to as the \emph{characteristic time} of object \(o_i \) and is due to Che et al. [7]. In essence, \(r_i \) is a random variable, but it can be approximated by a constant in order to carry-out a tractable analysis. This is characterized as a \emph{mean field approximation} in [7] and the rationale behind it is that when the object set is large enough, \(r_i \) fluctuates closely around its mean value, so it can be effectively approximated by it. The characteristic time \(r_i \) of object \(o_i, 1 \leq i \leq N \), was obtained in [7, 8] by solving the following equation numerically:

\[
\sum_{j=1}^{N} \frac{1 - e^{-p_j r_i}}{j \neq i} = C \Rightarrow \sum_{j=1}^{N} e^{-p_j r_i} = N - 1 - C
\]

(2)

This equation gives the time interval that is required for the \(N - 1 \) other objects to generate \(C \) distinct requests\(^4\) and thus evict \(o_i \), granted that \(o_i \) is not re-requested in this interval. However, solving \(N \) such equations, one for each object, is cumbersome, especially for large \(N \). This can be partially alleviated by considering a single characteristic time \(r \) for all the objects and thus solving only one equation. Such an approximation is justifiable on the basis that the characteristic times \(r_i \) of different objects do not differ substantially, even under skewed popularity distributions. Figure 1 supports this claim by illustrating the characteristic times of objects in an LRU cache with capacity for \(C = 100 \) objects that is driven by requests over an object universe of \(N = 1000 \) objects, whose popularities follow a generalized power-law with skewness \(a = 0.8 \) (the request rate for this and all subsequent examples is normalized to \(\lambda = 1 \) request/unit of time). The characteristic times are obtained by solving Eq. (2) numerically. One can observe that although \(\vec{p} \) is skewed, the difference between the characteristic times of different objects is very small (thus \(r_1/r_{1000} = 1.011 \) despite that \(p_1/p_{1000} = 251 \), i.e., two orders of magnitude apart). The plot essentially says that request inter-arrivals for the same object that are longer than 134-135 time units lead to misses.

The approach of using a common characteristic time \(r \) for all objects was recently employed by Panagakis et al. in [7]. In the same work it was observed that the most natural way of

\(^4\) Observe that the quantity within the summation is the CDF of the exponential request inter-arrival time for object \(o_i \) calculated at point \(r_i \).
finding the common characteristic time is by solving the following normalization equation which simply requires that all the steady-state object hit probabilities sum up to the capacity of the cache, i.e.:

\[
\sum_{i=1}^{N} \pi_i = C \Rightarrow \sum_{i=1}^{N} 1 - e^{-p_i r} = C \Rightarrow \sum_{i=1}^{N} e^{-p_i r} = N - C
\]

The above equation was solved numerically in [2], similarly to the case of [3, 4] and Eq. (2). In the following section, we utilize the notion of characteristic time as developed in [5, 6, 7] and present an analysis that leads to the derivation of a closed-form formula for the behavior of LRU caching. This is, to the best of our knowledge, the first, non-asymptotic, closed-form approximate formula for LRU (the closed-form expression of Jalenković in [8] covers only the asymptotic case \(N, C \to \infty \) and is only for \(a > 1 \)). Our method can be used for the study of LRU caching, whether in stand-alone mode (a single LRU cache), or, more interestingly, in hierarchical [9, 10] or distributed [11] inter-connections of caches, without requiring laborious numeric computations.

4 Analysis of LRU under Generalized Power-Law Demand

We assume that \(\bar{p} \) follows a generalized power-law distribution, in which the \(i \)th most popular object has request probability \(p_i = \Lambda / i^a \), where \(\Lambda = (\sum_{i=1}^{N} i^{-a})^{-1} \) is a normalization constant, and \(a \) is a skewness parameter. Under such demand, we show how to obtain an approximate
closed-form formula for the common characteristic time \(r \) of Eq. (3). This gives directly a
closed-form expression for the hit ratio of each object through Eq. (1). Our analysis can be
easily adapted to handling per object characteristic times \(r_i \). The only difference in this case
would be that we would start from Eq. (2) instead of Eq. (3).

First we take the Taylor series expansion of the exponential form \(e^{-p_ir} \) in terms of the
variable \(r \) around point \(C \):

\[
e^{-p_ir} = e^{-p_iC} \cdot \sum_{k=0}^{\infty} \frac{(-p_i \cdot (r - C))^k}{k!}
\]

The exponential form \(e^{-p_iC} \) of Eq. (4) can be similarly expanded in terms of the variable \(p_i \)
around point 0 as follows:

\[
e^{-p_iC} = \sum_{k=0}^{\infty} \frac{(-p_iC)^k}{k!}
\]

Using Eqs (4), (5) in Eq. (3) we can write:

\[
\sum_{i=1}^{N} e^{-p_ir} = N - C \Rightarrow \sum_{i=1}^{N} \left(\sum_{k=0}^{\infty} \frac{(-p_iC)^k}{k!} \cdot \left(\sum_{k=0}^{\infty} \frac{(-p_i \cdot (r - C))^k}{k!} \right) \right) = N - C
\]

Denoting \(a_k = (-C)^k/k! \) and \(b_k = (- (r - C))^k/k! \), and limiting \(k \) to \(0 \leq k < K \) instead of
letting it run to \(\infty \), we can approximate Eq. (6) as follows:

\[
\sum_{i=1}^{N} \left(\sum_{k=0}^{K} p_i^k \cdot a_k \right) \cdot \left(\sum_{k=0}^{K} p_i^k \cdot b_k \right) = N - C \Rightarrow
\]

\[
\sum_{i=1}^{N} \left(\sum_{m=0}^{2K} \sum_{m_1,m_2} p_i^m \cdot a_{m_1} \cdot b_{m_2} \right) = N - C \Rightarrow
\]

\[
\sum_{i=1}^{N} \left(\sum_{m=0}^{2K} \sum_{m_1,m_2} a_{m_1} \cdot b_{m_2} \right) = N - C
\]

As will be shown later through numeric examples, the truncation to \(K \) has a small effect on
the accuracy as compared to solving Eq. (7) for \(K \to \infty \). This owes to the fact that the
remainder for \(k > K \) of the previous exponential forms (4), (5) can be bounded by \(O(1/K!) \).

We continue the analysis by putting into use our assumption that \(p_i \) follows a power-law
distribution, and so we can write:

\[
\sum_{i=1}^{N} p_i^m = \sum_{i=1}^{N} \left(\frac{\Lambda}{i^a} \right)^m = \Lambda^m \cdot \sum_{i=1}^{N} \frac{1}{i^{am}} = \Lambda^m \cdot H_N^{(am)}
\]
where \(H_N^{(a)} = \sum_{i=1}^{N} 1/i^a \) denotes the \(N \)th Harmonic number of order \(a \). \(H_N^{(a)} \) can be approximated by its integral expression \(H_N^{(a)} \approx \frac{N^{1-a} - 1}{1-a} \) (see also \([?]\)). Substituting from Eq. (8) into Eq. (7) we obtain our master equation:

\[
\sum_{m=0}^{2K} \left(\sum_{m_1:m_2 \leq K, m_1 + m_2 = m} a_{m_1} \cdot b_{m_2} \right) \cdot \Lambda^m \cdot H_N^{(am)} = N - C \tag{9}
\]

The master equation is a \(K \)-order polynomial equation of \(r \) (corresponding to an approximate version of Eq. (6) that retains only \(K + 1 \) first terms from the Taylor series expansions of the exponential forms of Eqs (4), (5)). One can solve the master equation in arbitrary accuracy by increasing \(K \). This, of course, presumes a numerical solution and, thus, does not differ fundamentally from the previous numerical approaches in \([?]\), \([?]\), \([?]\). Where the master equation is essentially different, is in that it has a form that can be utilized for setting up a closed-form solution. This can be accomplished by selecting appropriately small \(K \) that give rise to such results. Such flexibility is not provided by Eqs. (2), (3).

Consider the case of \(K = 2 \). Substituting \(a_m, b_m \) and doing some algebraic manipulation reduces the master equation into the following quadratic equation (\(K = 2 \) amounts to retaining the first three terms of the Taylor series expansions of Eqs (4), (5)):

\[
\alpha_2 r^2 + \alpha_1 r + \alpha_0 = 0 \quad \text{where:} \quad \alpha_2 = \frac{\Lambda^2}{2} H_N^{(2a)} - \frac{\Lambda^3 C}{2} H_N^{(3a)} + \frac{\Lambda^4 C^2}{4} H_N^{(4a)}
\]

\[
\alpha_1 = -\Lambda H_N^{(a)} + \frac{\Lambda^3 C^2}{2} H_N^{(3a)} - \frac{\Lambda^4 C^3}{2} H_N^{(4a)}
\]

\[
\alpha_0 = C + \frac{\Lambda^4 C^4}{4} H_N^{(4a)} \tag{10}
\]

The characteristic time can then be taken by selecting an appropriate real solution (assuming that one exists, more on this in the sequel) from the quadratic formula: \(r = \frac{-\alpha_1 \pm \sqrt{\alpha_1^2 - 4\alpha_2\alpha_0}}{2\alpha_2} \).

We can go a step further and consider the case of \(K = 3 \) which yields the following cubic
equation:
\[\alpha_3 r^3 + \alpha_2 r^2 + \alpha_1 r + \alpha_0 = 0 \]
where:
\[\alpha_3 = \frac{-\Lambda^3}{6} H_N^{(3a)} + \frac{\Lambda^4 C}{6} H_N^{(4a)} - \frac{\Lambda^5 C^2}{12} H_N^{(5a)} + \frac{\Lambda^6 C^3}{36} H_N^{(6a)} \]
\[\alpha_2 = \frac{\Lambda^2}{2} H_N^{(2a)} - \frac{\Lambda^4 C^2}{4} H_N^{(4a)} + \frac{\Lambda^5 C^3}{6} H_N^{(5a)} - \frac{\Lambda^6 C^4}{12} H_N^{(6a)} \]
\[\alpha_1 = -\Lambda H_N^{(a)} + \frac{\Lambda^4 C^3}{6} H_N^{(4a)} - \frac{\Lambda^5 C^4}{12} H_N^{(5a)} + \frac{\Lambda^6 C^5}{12} H_N^{(6a)} \]
\[\alpha_0 = C - \frac{\Lambda^4 C^4}{12} H_N^{(4a)} - \frac{\Lambda^6 C^6}{36} H_N^{(6a)} \]

(11)

The cubic formula [?](we do not repeat it here due to space considerations) returns the three solutions to the above cubic equation expressed as analytic functions of the coefficients \(\alpha_3, \alpha_2, \alpha_1, \alpha_0\) (which, in turn, are analytic functions of the input parameters \(C, N, a\)); at least one the three solutions is always guaranteed to be in the domain of real numbers (such a guarantee does not exist for the quadratic equation, for which, both solutions can be complex). Due to this guarantee, and also to the fact that it provides a closer approximation by considering an additional term from the Taylor expansion, we focus on the \(K = 3\) case. Let \(r_A, r_B, r_\Gamma\) be the three roots of Eq. (11) returned by the cubic formula. We select as characteristic time the smallest real solution \(r_X, X \in \{A, B, \Gamma\}\) that exceeds \(C\), i.e.:
\[r = \min_{X \in \{A, B, \Gamma\}} (r_X) : r_X \in \mathbb{R}, r_X \geq C \]

(12)

The rationale behind this choice is that it takes at least \(C\) requests to evict a newly inserted object so the characteristic time has to be larger than \(C\) (the characteristic time is in units of time or alternatively in number of requests, since we have normalized the request rate \(\lambda\) into 1 req./time slot). In the next section we show that the above approximation yields accurate \(r\) and \(\pi_i\) across a wide range of parameters \(C, N, a\).

5 Numeric Results

In this section we first compare the accuracy of the approximate characteristic time that we obtain from Eq. (12) with the exact characteristic time that we obtain from solving Eq. (3)

\footnote{For the generalized Harmonic number we use its integral approximation as stated earlier on.}

\footnote{Theoretically we could go even further and consider the quartic equation \((K = 4)\). This, however, involves very cumbersome formulas for the roots and is marginally valuable since the cubic equation already provides close approximation as will be demonstrated in Sect. 5. The quintic and all higher order equations \((K \geq 5)\) do not possess a general solution over the rationals in terms of radicals (the “Abel-Ruffini” theorem).}
Table 1: Evaluation of the accuracy of our approximate closed-form formula for the characteristic time on a set of $N = 1000$ objects, under varying cache size C and demand skewness a. The top value of each cell gives the exact characteristic time from solving Eq. (3) numerically while the bottom value gives the approximate characteristic time from Eq. (12).

$a \backslash C$	50	100	150	200
0.4	51.8	107.5	167.5	232.2
	52	107.9	167.8	232.1
0.6	53.6	114.3	181.9	256.7
	54	113.9	178.6	248.9
0.8	59.6	133.8	220.2	318.6
	59.1	128.9	167.5	225.2

Numerically. Table 1 provides such a comparison drawn from a universe of $N = 1000$ objects and for varying a and C. Each cell of the table corresponds to an (a, C) pair and contains two numeric values: the top one is the exact characteristic time while the bottom one is the approximate one that we compute through our method. These values correspond to units of time, or equivalently, number of requests.

One may observe that our approximation tracks closely the actual characteristic time. Deviations appear only under very skewed demand (e.g., $a \geq 0.8$) and large relative storage capacities (e.g., $C/N \geq 20\%$). These cases, however, are neither typical, nor really interesting, for the following reasons. First, cache memories rarely operate under so much storage. Typical values for the ratio C/N are well below 10\% in most applications (this is after all the main reason for employing caches – lack of memory space for all the objects). Second, a high availability of storage, combined with a high skewness, leads to a fairly expected cache hit ratio that approaches 1 and, thus, there is not much practical purpose for studying such a case analytically. We note, however, that our method can be twicked in order to provide useful results for these cases also. We show how to do this later in this section.

The next set of results compares the analytic per object steady-state hit probabilities obtained by plugging the characteristic time r of Eq. (12) into Eq. (1), with corresponding hit probabilities obtained by simulating LRU for 10 million requests. The three graphs of Fig. 2 correspond to skewness $a = 0.4$, 0.6 and 0.8. Each graph includes 8 curves corresponding to results obtained from simulation and analysis under different ratios $C/N = 5\%$, 10\%, 15\% and 20\%. One may observe that for low ($a = 0.4$) and medium ($a = 0.6$) skewness, the analyti-
Algorithm 1 ProportionalNormalization(\(\pi\): 1 \(\times\) \(N\) vector, \(N, C\) scalars)

1: \textbf{for} \(i = 1\) to \(N\) \textbf{do}
2: \hspace{1em} \(m_{mass} = C - \sum_{j=1}^{N} \pi_j;\)
3: \hspace{1em} \(\delta = m_{mass} \cdot \pi_i/\sum_{j=1}^{N} \pi_j;\)
4: \hspace{1em} \(\pi_i = \min\{\pi_i + \delta, 1\};\)

Cally computed hit ratios match almost perfectly with the simulated ones, across all storage availabilities. For high skewness \((a = 0.8)\), our results are very accurate up to a storage availability of 10% and then start to deviate (some deviation for \(C/N = 15\%\) and a larger one for \(C/N = 20\%\)). In other words, the method becomes less accurate under very skewed demand and large availability of storage. The reason for this deviation is that under such settings, the omission of higher order terms of the Taylor series expansion of the previously mentioned exponential forms, disrupts significantly the balance of the (normalization) Eq. (3), thus leading to \(\pi_i\)’s that do not sum up to \(C\). As we commented earlier, a storage availability higher than 10% is not realistic under most caching applications. Nevertheless, in the following paragraph we will describe proportional normalization, a method for fixing this problem by reshaping the \(\pi_i\)’s and, actually, achieving a high accuracy even under high storage availability and skewed demand.

Proportional normalization: In this section we describe a simple normalization method for fixing the missing probability mass problem that occurs under combined high \(C/N\) and \(a\). This is achieved through a proportional normalization method that distributes the missing probability mass among the different objects in such a way that each object’s hit probability is incremented proportionally to its hit probability as derived by our base-line closed-form method. In Algorithm 1 we describe the proportional normalization method. The algorithm takes as input the vector of hit probabilities derived from Eq. (1) after plugging in the analytically computer characteristic time \(r\) and returns a normalized vector of hit probabilities that sum up to \(C\). In Fig. 3 we compare the normalized hit probabilities with the corresponding ones from simulation under a storage availability \(C/N = 20\%\) (under such availability, and for high skewness, there was a substantial disagreement between simulation and analysis, as shown in the third graph of Fig. 2). From Fig. 3 it is clear that after the normalization there is almost perfect agreement between the simulation and the analytic results. Thus by combining our analytic method with proportional normalization, one can obtain accurate hit ratios even under combined high storage availability and skewed demand.
6 Conclusions

In this work we have presented a closed-form approximate method for obtaining the per object hit ratio under LRU replacement and independent generalized power-law requests. Our method obtains accurate results for a wide range of parameters. It becomes less accurate only when combining a very high storage availability (which is not typical under most caching applications) with skewed demand. To accommodate this case, we describe a simple proportional normalization procedure that, when combined with our baseline closed-form method, corrects its accuracy. To the best of our knowledge, our method is the first one to produce non asymptotic closed-form results for LRU. Due to the complete lack of any kind of numeric computation our method can be used for the analysis of large networks of LRU caches in which existing numeric methods and simulation become impractical from a computational point of view.
Figure 2: Comparison of simulated and analytic per object hit probabilities (π_i's) on a universe of $N = 1000$ objects for different storage capacities ($C = 50, 100, 150, 200$) and skewness parameters ($\alpha = 0.4, 0.6, 0.8$) for the input generalized power-law demand. A word of caution: in the third graph ($\alpha = 0.8$) the analytic line for $C = 200$ overlaps coincidentally with the simulation line for $C = 150$.
Figure 3: Comparison of simulated and proportionally normalized analytic per object hit probabilities (πᵢ’s) on a universe of N = 1000 objects for a storage capacity C = 200 and different skewness parameters (a = 0.4, 0.6, 0.8) for the input generalized power-law demand.