Mean oscillation gradient estimates for elliptic systems in divergence form with VMO coefficients

Luc Nguyen *

Dedicated to Professor Duong Minh Duc on the occasion of his 70th birthday

Abstract

We consider gradient estimates for \(H^1 \) solutions of linear elliptic systems in divergence form \(\partial_\alpha (A_{ij}^{\alpha\beta} \partial_\beta u^j) = 0 \). It is known that the Dini continuity of coefficient matrix \(A = (A_{ij}^{\alpha\beta}) \) is essential for the differentiability of solutions. We prove the following results:

(a) If \(A \) satisfies a condition slightly weaker than Dini continuity but stronger than belonging to VMO, namely that the \(L^2 \) mean oscillation \(\omega_{A,2} \) of \(A \) satisfies

\[
X_{A,2} := \limsup_{r \to 0} r \int_r^2 \frac{\omega_{A,2}(t)}{t^2} \exp \left(C_* \int_t^R \frac{\omega_{A,2}(s)}{s} ds \right) dt < \infty,
\]

where \(C_* \) is a positive constant depending only on the dimensions and the ellipticity, then \(\nabla u \in BMO \).

(b) If \(X_{A,2} = 0 \), then \(\nabla u \in VMO \).

(c) If \(A \in VMO \) and if \(\nabla u \in L^\infty \), then \(\nabla u \in VMO \).

(d) Finally, examples satisfying \(X_{A,2} = 0 \) are given showing that it is not possible to prove the boundedness of \(\nabla u \) in statement (b), nor the continuity of \(\nabla u \) in statement (c).

1 Introduction

Let \(n \geq 2, N \geq 1 \) and consider the elliptic system for \(u = (u^1, \ldots, u^N) \)

\[
\partial_\alpha (A_{ij}^{\alpha\beta} \partial_\beta u^j) = 0 \quad \text{in } B_4, \quad i = 1, \ldots, N,
\]

\footnote{Mathematical Institute and St Edmund Hall, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK. Email: luc.nguyen@maths.ox.ac.uk.}
where B_4 is the ball in \mathbb{R}^n of radius four and centered at the origin, and the coefficient matrix $A = (A_{ij}^{\alpha\beta})$ is assumed to be bounded and measurable in B_4 and to satisfy, for some positive constants λ and Λ,

$$|A(x)| \leq \Lambda \text{ for a.e. } x \in B_4,$$

$$\int_{B_2} A_{ij}^{\alpha\beta} \partial_{\beta} \varphi^j \partial_{\alpha} \varphi^i \, dx \geq \lambda \|
abla \varphi\|_{L^2(B_4)}^2 \text{ for all } \varphi \in H^1_0(B_4).$$

It is well known that if the coefficient matrix A belongs to $C^{0,\alpha}_{\text{loc}}(B_4)$ then every solution $u \in H^1(B_4)$ of (1.1) belongs to $C^{1,\alpha}_{\text{loc}}(B_2)$; see e.g. Giaquinta [13, Theorem 3.2] where the result is attributed to Campanato [7] and Morrey [23]. It was conjectured by Serrin [24] that the assumption $u \in H^1(B_4)$ can be relaxed to $u \in W^{1,1}(B_4)$. This has been settled in the affirmative by Brezis [2,3]. (See Hager and Ross [14] for the relaxation from $u \in H^1(B_4)$ to $u \in W^{1,p}(B_4)$ for some $1 < p < 2$.) Moreover, in [2,3], it was shown that if A satisfies the Dini condition

$$\int_0^2 \overline{\phi}_A(t) \, dt < \infty \quad \text{where } \overline{\phi}_A(r) := \sup_{x,y \in B_2, |x-y| < r} |A(x) - A(y)|,$$

then every solution $u \in W^{1,1}(B_4)$ of (1.1) belongs to $C^1(B_2)$. For related works on the differentiability of weak solutions under suitable conditions on $\overline{\phi}_A$, see also [15,21,22].

Differentiability of weak solutions under weaker Dini conditions involving integral mean oscillation of A has also been studied. For $0 < r \leq 2$, let

$$\bar{\varphi}_A(r) := \sup_{x \in B_2} \left\{ \frac{1}{|B_r(x)|} \int_{B_r(x)} |A(y) - A(x)|^2 \, dy \right\}^{1/2},$$

$$\omega_A(r) := \sup_{x \in B_2} \frac{1}{|B_r(x)|} \int_{B_r(x)} |A(y) - (A)_{B_r(x)}| \, dy,$$

$$(A)_{B_r(x)} := \frac{1}{|B_r(x)|} \int_{B_r(x)} A(y) \, dy, \quad 0 < r \leq 2.$$

In Li [20] it was shown that if

$$\int_0^2 \frac{\bar{\varphi}_A(t)}{t} \, dt < \infty,$$

then every solution $u \in H^1(B_4)$ of (1.1) belongs to $C^1(B_2)$. In Dong and Kim [12] (see also [9]), this conclusion was shown to remain valid under the weaker condition that

$$\int_0^2 \frac{\omega_A(t)}{t} \, dt < \infty.$$
(Note that the finiteness of \(\int_0^2 \omega_A(t) \, dt \) or \(\int_0^2 \bar{\omega}_A(t) \, dt \) implies that \(A \) is continuous.)

The Dini condition \((1.4)\) and its integral variants \((1.5), (1.6)\) are phenomenologically sharp for the differentiability of weak solutions of \((1.1)\). In Jin, Maz'ya and van Schaftingen \([17]\), examples of continuous coefficient matrices \(A \) with moduli of continuity \(\bar{\omega}_A(t) \sim \frac{1}{\ln t} \) as \(t \to 0 \) were given showing the following phenomena:

- there exists a solution \(u \in W^{1,1}(B_4) \) of \((1.1)\) such that \(u \in W^{1,p}(B_4) \) for all \(p \in [1, \infty) \), and \(\nabla u \in BMO_{\text{loc}}(B_4) \) but \(\nabla u \notin L^\infty_{\text{loc}}(B_2) \) and \(\nabla u \notin VMO_{\text{loc}}(B_2) \);
- there exists a solution \(u \in W^{1,1}(B_4) \) of \((1.1)\) such that \(u \in W^{1,p}(B_4) \) for all \(p \in [1, \infty) \) but \(\nabla u \notin BMO_{\text{loc}}(B_2) \).

In this paper, we consider mean oscillation estimates for \(\nabla u \) when \(A \) slightly fails the Dini conditions \((1.4), (1.5)\) and \((1.6)\). For \(1 \leq p < \infty \), let \(\omega_{A,p} : (0, 2] \to [0, \infty) \) denote the \(L^p \) mean oscillation of \(A \):

\[
\omega_{A,p}(r) = \sup_{x \in B_2} \left\{ \frac{1}{|B_r(x)|} \int_{B_r(x)} |A(y) - (A)_{B_r(x)}|^p \, dy \right\}^{1/p}.
\]

It is clear that \(\omega_{A,1} = \omega_A \), \(\omega_{A,2} \leq \bar{\omega}_A \), \(\omega_{A,p} \) is non-decreasing in \(p \), and \(\omega_{A,p} \leq \bar{\omega}_A \) for all \(p \in [1, \infty) \).

We now state our first result.

Theorem 1.1. Let \(A = (A_{ij}^{\alpha\beta}) \) satisfy \((1.2)\) and \((1.3)\). There exists a constant \(C_* > 0 \), depending only on \(n, N, \Lambda \) and \(\lambda \) such that if

\[
X_{A,2} := \limsup_{r \to 0} r \int_r^2 \frac{\omega_{A,2}(t)}{t^2} \exp \left(C_* \int_t^2 \frac{\omega_{A,2}(s)}{s} \, ds \right) \, dt < \infty,
\]

then every solution \(u \in H^1(B_4) \) of \((1.1)\) satisfies \(\nabla u \in BMO_{\text{loc}}(B_2) \). Moreover, if

\[
X_{A,2} = 0,
\]

then every solution \(u \in H^1(B_4) \) of \((1.1)\) satisfies \(\nabla u \in VMO_{\text{loc}}(B_2) \).

Note that condition \((1.7)\) implies that \(\omega_{A,2}(t) \to 0 \) as \(t \to 0 \) i.e. \(A \in VMO_{\text{loc}}(B_2) \).

Remark 1.2. Let \(1 < p < \infty \). Theorem \((1.1)\) remains valid if \(\omega_{A,2} \) is replaced by \(\omega_{A,p} \) and the regularity assumption \(u \in H^1(B_4) \) is replaced by \(u \in W^{1,p}(B_4) \), where the constant \(C_* \) is now allowed to depend also on \(p \). For \(p \geq 2 \), this follows from the inequality \(\omega_{A,2} \leq \omega_{A,p} \) for those \(p \). For \(1 < p < 2 \), see Proposition \((2.3)\).

\(^1\)The statement that \(\nabla u \notin VMO_{\text{loc}}(B_2) \) is not explicitly stated in \([17]\), but can be seen from the proof of Proposition 1.5 therein.
It is clear that if $\omega_{A,2}$ satisfies (1.5), then it satisfies (1.8) (and hence (1.7)). The following lemma gives examples which satisfy (1.8) but not necessarily (1.5).

Lemma 1.3. If $\limsup_{t \to 0} \omega_{A,2}(t) \ln \frac{1}{t} < \frac{1}{C_*}$, then $X_{A,2} = 0$. If $\liminf_{t \to 0} \omega_{A,2}(t) \ln \frac{1}{t} > \frac{1}{C_*}$, then $X_{A,2} = \infty$.

We note that, in case $\omega_{A,2}(t) \ln \frac{1}{t} \to 0$ as $t \to 0$, the BMO regularity of ∇u was proved by Acquistapace [1]. (See also [16].)

By Lemma 1.3, an explicit example of $\omega_{A,2}$ satisfying (1.8) (for any constant C_*) but not (1.5) is

$$\omega_{A,2}(t) \sim \frac{1}{\ln \frac{64}{|x|} \ln \ln \frac{64}{|x|} \beta}, \quad \beta \in (0, 1].$$

In addition, unlike (1.5) or (1.6), (1.8) does not imply that A is continuous, e.g.

$$A_{ij}^{\alpha\beta}(x) = (2 + \sin \ln \ln \frac{64}{|x|}) \delta_{ij} \delta^{\alpha\beta}.$$

(This can be checked using the fact that the function $s \mapsto \sin s$ is Lipschitz on \mathbb{R} and the fact that the function $x \mapsto \ell(x) := \ln \ln \ln \frac{64}{|x|}$ has L^2 mean oscillation $\omega_{\ell,2}(t) \sim \frac{1}{\ln \frac{64}{|x|} \ln \ln \frac{64}{|x|}}$.)

When A is merely of vanishing mean oscillation, we have the following result.

Theorem 1.4. Let $A = (A_{ij}^{\alpha\beta})$ belong to $VMO(B_4)$ and satisfy (1.2) and (1.3). Then every solution $u \in W^{1,\infty}(B_4)$ of (1.1) satisfies $\nabla u \in VMO(B_4)$.

The obtained regularity in the above theorems appears sharp. As in [17], counterexamples can be produced to show that, under (1.8),

- solutions of (1.1) may not have bounded gradients (though their gradients are of vanishing mean oscillation by Theorem 1.1),
- $W^{1,\infty}$ solutions of (1.1) may not be differentiable (though their gradients are of vanishing mean oscillation by Theorem 1.4).

Proposition 1.5. There exist a coefficient matrix $A = (A_{ij}^{\alpha\beta}) \in C(B_4)$ satisfying (1.2), (1.3) and (1.8) and a solution $u \in H^1(B_4)$ of (1.1) such that $\nabla u \in VMO(B_4)$ but $\nabla u \notin L^\infty_{loc}(B_2)$.

Proposition 1.6. There exist a coefficient matrix $A = (A_{ij}^{\alpha\beta}) \in C(B_4)$ satisfying (1.2), (1.3) and (1.8) and a solution $u \in H^1(B_4)$ of (1.1) such that $\nabla u \in L^\infty(B_4) \cap VMO(B_4)$ but $\nabla u \notin C(B_2)$.

4
Theorem 1.1 and Theorem 1.4 are consequences of the following proposition on the mean oscillation of the gradient ∇u in terms of the L^2 mean oscillation $\omega_{A,2}$ of A.

Proposition 1.7. Let $A = (A_{ij}^{\alpha\beta})$ satisfy (1.2) and (1.3). Then there exists a constant $C_0 > 0$, depending only on n, N, Λ and λ such that for every $u \in H^1(B_4)$ satisfying (1.1) and for $0 < r \leq R/4 \leq 1/2$, there hold

$$\int_{B_r} |\nabla u|^2 \, dx \leq \frac{C_0 r^n}{R^n} \exp \left(2C_0 \int_{2r}^R \frac{\omega_{A,2}(t)}{t} \, dt \right) \int_{B_R} |\nabla u|^2 \, dx,$$

(1.9)

and

$$\int_{B_r} |\nabla u - (\nabla u)_r|^2 \, dx \leq \frac{C_0 r^{n+2}}{R^n} \int_{B_R} |\nabla u|^2 \, dx \times$$

$$\times \left\{ \int_{2r}^R \frac{\omega_{A,2}(t)}{t^2} \exp \left(C_0 \int_{t}^R \frac{\omega_{A,2}(s)}{s} \, ds \right) \, dt \right\}^2,$$

(1.10)

where $(\nabla u)_r = \frac{1}{|B_r|} \int_{B_r} \nabla u \, dx$ for $0 < r \leq 2$.

Moreover, if $u \in W^{1,\infty}(B_4)$, then, for $0 < r \leq R/4 \leq 1/2$,

$$\int_{B_r} |\nabla u - (\nabla u)_r|^2 \, dx \leq \frac{C_0 r^{n+2}}{R^n} \left\{ \int_{2r}^R \frac{\omega_{A,2}(t)}{t^2} \, dt \right\}^2 \sup_{B_R} |\nabla u|^2.$$

(1.11)

Remark 1.8. Let $1 < p < 2$. Under an additional assumption that $[A]_{BMO(B_4)}$ is sufficiently small, the estimates in Proposition 1.7 hold if $\omega_{A,2}$ is replaced by $\omega_{A,p}$ and the regularity assumption $u \in H^1(B_4)$ is replaced by $u \in W^{1,p}(B_4)$. We do not know if this smallness assumption can be dropped except for p close to 2. See Proposition 2.3.

Acknowledgment. The author would like to thank Professor Yanyan Li for drawing his attention to the problem.

2 Proof of the main results

Proof of Lemma 1.3. We claim: For $\delta \in (0, 1)$ and $a \in (0, \infty)$, the limit

$$L_a = \lim_{r \to 0} \sup_r \int_{r}^{\delta} \frac{1}{t^2} (\ln \frac{1}{t})^{a-1} \, dt$$

satisfies $L_a = \infty$ if $a > 1$, $L_a = 1$ if $a = 1$ and $L_a \leq (\ln \frac{1}{\delta})^{a-1}$ if $a < 1$.
When $a = 1$, the claim is clear. By integrating by parts, we have
\[
\int_r^\delta \frac{1}{t^2} (\ln \frac{1}{t})^{a-1} dt = -\frac{1}{t} (\ln \frac{1}{t})^{a-1}\right|_r^\delta - (a-1) \int_r^\delta \frac{1}{t^2} (\ln \frac{1}{t})^{a-2} dt.
\] (2.1)

If $a < 1$, we see from (2.1) that
\[
L_a = |a - 1| \limsup_{r \to 0} r \int_r^\delta \frac{1}{t^2} (\ln \frac{1}{t})^{a-2} dt \leq |a - 1| \limsup_{r \to 0} r \int_r^\delta \frac{1}{t} (\ln \frac{1}{t})^{a-2} dt
\]
\[
= \limsup_{r \to 0} (\ln \frac{1}{r})^{a-1}\right|_r^\delta = (\ln \frac{1}{2})^{a-1}.
\]

To prove the claim in the case $a > 1$, we may assume without loss of generality that $a < 2$. Note that (2.1) implies
\[
L_a + (a-1)L_{a-1} = \limsup_{r \to 0} r \left\{ -\frac{1}{t} (\ln \frac{1}{t})^{a-1}\right|_r^\delta \right\} = \infty.
\]

As L_{a-1} is finite (as $1 < a < 2$), we thus have that $L_a = \infty$. The claim is proved.

We now apply the claim to obtain the desired conclusions. Consider first the case that $\limsup_{r \to 0} \omega_{A,2}(t) \ln \frac{1}{t} < \frac{1}{C_*}$. Then there exist $\varepsilon \in (0, \frac{1}{C_*})$ and $\delta \in (0,1)$ so that $\omega_{A,2}(t) \leq \varepsilon (\ln \frac{1}{t})^{-1}$ in $(0, \delta)$. For $\delta \in (0, \delta)$, we compute
\[
X_{A,2} = \limsup_{r \to 0} r \int_r^\delta \frac{\omega_{A,2}(t)}{t^2} \exp \left(C_* \int_t^2 \frac{\omega_{A,2}(s)}{s} ds\right) dt
\]
\[
\leq \varepsilon (\ln \frac{1}{\delta})^{-C_* \varepsilon} \exp \left(C_* \int_\delta^2 \frac{\omega_{A,2}(s)}{s} ds\right) \limsup_{r \to 0} r \int_r^\delta \frac{1}{t^2} (\ln \frac{1}{t})^{C_* \varepsilon-1} dt.
\]

As $C_* \varepsilon < 1$, we can apply the claim to obtain
\[
X_{A,2} \leq \varepsilon (\ln \frac{1}{\delta})^{-1} \exp \left(C_* \int_\delta^2 \frac{\omega_{A,2}(s)}{s} ds\right)
\]
\[
\leq \varepsilon \exp \left(C_* \int_\delta^2 \frac{\omega_{A,2}(s)}{s} ds\right).
\]

Sending $\delta \to 0$, we obtain that $X_{A,2} = 0$.

Consider next the case that $\liminf_{t \to 0} \omega_{A,2}(t) \ln \frac{1}{t} > \frac{1}{C_*}$. Then there exist $b > \frac{1}{C_*}$ and $\delta \in (0,1)$ so that $\omega_{A,2}(t) \geq b (\ln \frac{1}{t})^{-1}$ in $(0, \delta)$. We then have
\[
X_{A,2} = \limsup_{r \to 0} r \int_r^\delta \frac{\omega_{A,2}(t)}{t^2} \exp \left(C_* \int_t^2 \frac{\omega_{A,2}(s)}{s} ds\right) dt
\]
\[
\geq b (\ln \frac{1}{\delta})^{-C_* b} \exp \left(C_* \int_\delta^2 \frac{\omega_{A,2}(s)}{s} ds\right) \limsup_{r \to 0} r \int_r^\delta \frac{1}{t^2} (\ln \frac{1}{t})^{C_* b-1} dt.
\]

As $C_* b > 1$, we deduce from the claim that $X_{A,2} = \infty$ as desired. \qed
Proof of Theorem 1.1 and Theorem 1.4. The results follow immediately from Proposition 1.7. □

In order to prove Proposition 1.7, we need the following estimate for harmonic replacements. (Compare [5, Lemma 3.5], [19, Lemma 3.1].)

Lemma 2.1. Let A, \tilde{A} satisfy (1.2) and (1.3) with \tilde{A} being constant in B_4 and $f = (f_\alpha^i) \in L^2(B_4)$. Let $R \in (0, 2)$ and suppose $u, h \in H^1(B_{2R})$ satisfy

$$
\begin{align*}
&\partial_\alpha (A_{ij}^{\alpha\beta} \partial_\beta u^j) = \partial_\alpha f^\alpha_i \quad \text{in } B_{2R}, \quad i = 1, \ldots, N, \\
&\partial_\alpha (\tilde{A}_{ij}^{\alpha\beta} \partial_\beta h^j) = 0 \quad \text{in } B_{2R}, \quad i = 1, \ldots, N, \\
&u = h \quad \text{on } \partial B_{2R}.
\end{align*}
$$

Then there exists a constant $C > 0$ depending only on n, N, Λ and λ such that

$$
\|\nabla(u - h)\|_{L^2(B_{3R}/2)} \leq C \left[\|f\|_{L^2(B_{2R})} + R^{-n/2}\|A - \tilde{A}\|_{L^2(B_{2R})}\|\nabla u\|_{L^2(B_{2R})} \right].
$$

Proof. In the proof, C denotes a generic positive constant which depends only on n, N, Λ and λ. Using that \tilde{A} is constant, we have by standard elliptic estimates that

$$
\|\nabla h\|_{L^\infty(B_{7R}/4)} \leq CR^{-n/2}\|\nabla h\|_{L^2(B_{2R})} \leq CR^{-n/2}\|\nabla u\|_{L^2(B_{2R})}.
$$

Observing that

$$
\partial_\alpha (A_{ij}^{\alpha\beta} \partial_\beta(u - h)^j) = \partial_\alpha (f_\alpha^i + (A - \tilde{A})_{ij}^{\alpha\beta} \partial_\beta h^j) \quad \text{in } B_{2R}, \quad i = 1, \ldots, N,
$$

we deduce that

$$
\begin{align*}
\|\nabla(u - h)\|_{L^2(B_{3R}/2)} &\leq C \left[\|f\|_{L^2(B_{7R}/4)} + \|A - \tilde{A}\|_{L^2(B_{7R}/4)}\|\nabla h\|_{L^\infty(B_{7R}/4)} \\
&\quad + R^{-(n+2)/2}\|u - h\|_{L^1(B_{7R}/4)} \right] \\
&\leq C \left[\|f\|_{L^2(B_{2R})} + R^{-n/2}\|A - \tilde{A}\|_{L^2(B_{2R})}\|\nabla u\|_{L^2(B_{2R})} \\
&\quad + R^{-(n+2)/2}\|u - h\|_{L^1(B_{2R})} \right].
\end{align*}
$$

(2.2)

To estimate $\|u - h\|_{L^1(B_{2R})}$, fix some $t > 0$ and consider an auxiliary equation

$$
\begin{align*}
\partial_\beta (\tilde{A}_{ij}^{\alpha\beta} \partial_\alpha \phi^i) &= \frac{(u - h)^j}{\sqrt{|u - h|^2 + t^2}} \quad \text{in } B_{2R}, \quad j = 1, \ldots, N, \\
\phi &= 0 \quad \text{on } \partial B_{2R}.
\end{align*}
$$
Testing the above against $u - h$, we obtain
\[
\int_{B_{2R}} \frac{|u - h|^2}{\sqrt{|u - h|^2 + t^2}} \, dx = \int_{B_{2R}} \bar{A}^{\alpha\beta}_{ij} \partial_\alpha \phi^i \partial_\beta (u - h)^j \, dx. \tag{2.3}
\]
As $u - h$ satisfies
\[
\partial_\alpha (\bar{A}^{\alpha\beta}_{ij} \partial_\beta (u - h)^j) = \partial_\alpha (f^\alpha_i + (\bar{A} - A)^{\alpha\beta}_{ij} \partial_\beta u^j) \quad \text{in} \quad B_{2R}, \quad i = 1, \ldots, N,
\]
we have
\[
\int_{B_{2R}} \bar{A}^{\alpha\beta}_{ij} \partial_\beta (u - h)^j \partial_\alpha \phi^i \, dx = \int_{B_{2R}} (f^\alpha_i + (\bar{A} - A)^{\alpha\beta}_{ij} \partial_\beta u^j) \partial_\alpha \phi^i \, dx. \tag{2.4}
\]
Inserting (2.4) into (2.3) and noting that $\|\nabla \phi\|_{L^\infty(B_2)} \leq CR$ (as $|\partial_\beta (\bar{A}^{\alpha\beta}_{ij} \partial_\alpha \phi^i)| \leq 1$), we arrive at
\[
\int_{B_{2R}} \frac{|u - h|^2}{\sqrt{|u - h|^2 + t^2}} \, dx \leq C \left[R^{(n+2)/2} \|f\|_{L^2(B_{2R})} + R \|A - \bar{A}\|_{L^2(B_{2R})} \|\nabla u\|_{L^2(B_{2R})} \right].
\]
Noting that the constant C is independent of t, we may send $t \to 0$ to obtain
\[
\|u - h\|_{L^1(B_{2R})} \leq C R^{(n+2)/2} \left[\|f\|_{L^2(B_{2R})} + R^{-n/2} \|A - \bar{A}\|_{L^2(B_{2R})} \|\nabla u\|_{L^2(B_{2R})} \right]. \tag{2.5}
\]
The conclusion follows from (2.2) and (2.3). \hfill \square

Proof of Proposition 1.7. We only need to give the proof for a fixed R, say $R = 2$. Our proof is inspired by that of [20].

In the proof, C denotes a generic positive constant which depends only on n, N, Λ and λ. In particular it is independent of the parameter k which will appear below. Also, we will simply write ω instead of $\omega_{A,2}$.

Proof of (1.9): For $k \geq 0$, let $R_k = 4^{-k}$, $\bar{A}_k = (A)_{B_{2R_k}}$ and $h_k \in H^1(B_{2R_k})$ be the solution to
\[
\partial_\alpha ((\bar{A}_k)^{\alpha\beta}_{ij} \partial_\beta h_k^j) = 0 \quad \text{in} \quad B_{2R_k}, \quad i = 1, \ldots, N,

h_k = u \quad \text{on} \quad \partial B_{2R_k}.
\]
Let $a_k = R_k^{-n/2} \|\nabla (u - h_k)\|_{L^2(B_{R_k})}$ and $b_k = \|\nabla h_k\|_{L^\infty(B_{R_k})}$.

Note that, by triangle inequality, we have
\[
\|\nabla u\|_{L^2(B_{R_k})} \leq R_k^{n/2} (a_k + b_k). \tag{2.6}
\]
By elliptic estimates for h_k, we have
\begin{align}
\|\nabla h_k\|_{L^2(B_{2R_k})} & \leq C\|\nabla u\|_{L^2(B_{2R_k})}, \\
\|\nabla h_k\|_{L^\infty(B_{3R_k/2})} & \leq CR_k^{-n/2}\|\nabla u\|_{L^2(B_{2R_k})}, \\
\|\nabla^2 h_k\|_{L^\infty(B_{3R_k/2})} + R_k\|\nabla^3 h_k\|_{L^\infty(B_{3R_k/2})} & \leq CR_k^{-(n+2)/2}\|\nabla u\|_{L^2(B_{2R_k})}.
\end{align}

By Lemma 2.1,
\begin{align}
\|\nabla (u - h_k)\|_{L^2(B_{3R_k/2})} & \leq C\omega(2R_k)\|\nabla u\|_{L^2(B_{2R_k})}.
\end{align}

By (2.7) and (2.10),
\begin{align}
R_k^{n/2}(a_k + b_k) & \leq C\|\nabla u\|_{L^2(B_{2R_k})}.
\end{align}

By (2.6) and (2.10), we have
\begin{align}
\|\nabla (u - h_{k+1})\|_{L^2(B_{R_k+1})} & \leq C\omega(2R_k)\|\nabla u\|_{L^2(B_{R_k})} \\
& \leq C\omega(2R_k)R_k^{n/2}(a_k + b_k).
\end{align}

Hence
\begin{align}
a_{k+1} & \leq C\omega(2R_k)(a_k + b_k).
\end{align}

Next, we have by (2.10) that
\begin{align}
\|\nabla (h_{k+1} - h_k)\|_{L^2(B_{3R_{k+1}/2})} & \leq \|\nabla (u - h_{k+1})\|_{L^2(B_{3R_{k+1}/2})} + \|\nabla (u - h_k)\|_{L^2(B_{3R_{k+1}/2})} \\
& \leq C\omega(2R_k)\|\nabla u\|_{L^2(B_{R_k})} \\
& \leq C\omega(2R_k)R_k^{n/2}(a_k + b_k).
\end{align}

Noting that $h_{k+1} - h_k$ satisfies
\begin{align}
\partial_\alpha((\bar{A}_k)_{ij}^{\alpha\beta}\partial_\beta(h_{k+1} - h_k)^j) = \partial_\alpha((\bar{A}_k - \bar{A}_{k+1})_{ij}^{\alpha\beta}\partial_\beta h_{k+1}^j) \quad \text{in } B_{2R_k+1}, \quad i = 1, \ldots, N,
\end{align}
we thus have by elliptic estimates and (2.8) and (2.9) (applied to h_{k+1}) that
\begin{align}
\|\nabla (h_{k+1} - h_k)\|_{L^\infty(B_{R_k+1})} & \leq C\omega(2R_k)(a_k + b_k), \\
R_{k+1}\|\nabla^2 (h_{k+1} - h_k)\|_{L^\infty(B_{R_k+1})} & \leq C\omega(2R_k)(a_k + b_k).
\end{align}

By (2.12),
\begin{align}
b_{k+1} & \leq b_k + C\omega(2R_k)(a_k + b_k).
\end{align}

By (2.11) and (2.14), we have
\begin{align}
a_{k+1} + b_{k+1} & \leq (1 + C\omega(2R_k))(a_k + b_k).
\end{align}
We deduce that
\[a_k + b_k \leq \prod_{j=0}^{k} (1 + C\omega(2R_j))(a_0 + b_0) \leq C \exp \left(C \sum_{j=0}^{k} \omega(2R_j) \right) \|\nabla u\|_{L^2(B_2)} \]
\[\leq C \exp \left(C \int_{2R_k}^{2} \frac{\omega(t)}{t} \, dt \right) \|\nabla u\|_{L^2(B_2)}, \]
(2.15)
where we have used the fact that \(\omega(t) \leq C\omega(s) \) whenever \(0 < t \leq s \leq 4t \). We have thus shown that
\[\int_{B_{Rk}} |\nabla u|^2 \, dx \leq CR_k^n \exp \left(C \int_{2R_k}^{2} \frac{\omega(t)}{t} \, dt \right) \int_{B_{Rk}} |\nabla u|^2 \, dx \text{ for } k \geq 0. \]
Estimate (1.9) is readily seen.
Proof of (1.10): We write
\[h_{R_k} = \sum_{j=0}^{k} w_j \text{ where } w_0 = h_{R_0} \text{ and } w_j = h_{R_j} - h_{R_{j-1}} \text{ for } j \geq 1. \]
Using the estimate \(\|\nabla^2 h_{R_0}\|_{L^\infty(B_1)} \leq C\|\nabla u\|_{L^2(B_2)} \) together with (2.13) and (2.15), we have
\[|\nabla h_{R_k}(x) - \nabla h_{R_k}(0)| \leq C|x| \sum_{j=0}^{k} \frac{\omega(2R_j)}{R_j} \exp \left(C \int_{2R_j}^{2} \frac{\omega(t)}{t} \, dt \right) \|\nabla u\|_{L^2(B_2)} \]
\[\leq C|x| \int_{2R_k}^{2} \frac{\omega(t)}{t^2} \exp \left(C \int_{t}^{2} \frac{\omega(s)}{s} \, ds \right) \, dt \|\nabla u\|_{L^2(B_2)}, \]
(2.16)
where we have again used the fact that \(\omega(t) \leq C\omega(s) \) whenever \(0 < t \leq s \leq 4t \). This implies
\[\|\nabla h_{R_k} - \nabla h_{R_k}(0)\|_{L^2(B_{R_k})} \]
\[\leq CR_k^{(n+2)/2} \int_{2R_k}^{2} \frac{\omega(t)}{t^2} \exp \left(C \int_{t}^{2} \frac{\omega(s)}{s} \, ds \right) \, dt \|\nabla u\|_{L^2(B_2)}. \]
(2.17)
Combining (2.17) with (2.10) and (2.15), we get
\[\|\nabla u - (\nabla u)_{R_k}\|_{L^2(B_{R_k})} \leq \|\nabla u - \nabla h_{R_k}(0)\|_{L^2(B_{R_k})} \]
\[\leq \|\nabla (u - \nabla h_{R_k})\|_{L^2(B_{R_k})} + \|\nabla u - \nabla h_{R_k}(0)\|_{L^2(B_{R_k})} \]
\[\leq CR_k^{(n+2)/2} \int_{2R_k}^{2} \frac{\omega(t)}{t^2} \exp \left(C \int_{t}^{2} \frac{\omega(s)}{s} \, ds \right) \, dt \|\nabla u\|_{L^2(B_2)} \]
\[+ CR_k^{n/2} \omega(2R_k) \exp \left(C \int_{2R_k}^{2} \frac{\omega(t)}{t} \, dt \right) \|\nabla u\|_{L^2(B_2)}. \]
(2.18)
As $\omega(2R_k) \leq C\omega(t)$ whenever $2R_k \leq t \leq 4R_k$, we have

$$\int_{2R_k}^{4R_k} \frac{\omega(t)}{t^2} \exp\left(C \int_t^{2R_k} \frac{\omega(s)}{s} \, ds \right) \, dt \geq \frac{\omega(2R_k)}{CR_k} \exp\left(C \int_{2R_k}^{2} \frac{\omega(s)}{s} \, ds \right).$$

Using this in (2.18), we deduce that for $k \geq 1$ that

$$\|\nabla u - (\nabla u)_{R_k}\|_{L^2(B_{R_k})} \leq CR_k^{2(n+2)/2} \int_{2R_k}^{2} \frac{\omega(t)}{t^2} \exp\left(C \int_t^{2R_k} \frac{\omega(s)}{s} \, ds \right) \, dt \|\nabla u\|_{L^2(B_2)}.$$

Estimate (1.10) follows.

Proof of (1.11): We adjust the proof of (1.10) exploiting the fact that $\nabla u \in L^\infty(B_2)$. First, using the fact that $a_k + b_k \leq CR_k^{n/2}\|\nabla u\|_{L^\infty(B_2)}$ in (2.13) we get instead of (2.16) the stronger estimate

$$|\nabla h_{R_k}(x) - \nabla h_{R_k}(0)| \leq C|x| \int_{2R_k}^{2} \frac{\omega(t)}{t^2} \, dt \|\nabla u\|_{L^\infty(B_2)}, \quad (2.19)$$

and so

$$\|\nabla h_{R_k} - \nabla h_{R_k}(0)\|_{L^2(B_{R_k})} \leq CR_k^{2(n+2)/2} \int_{2R_k}^{2} \frac{\omega(t)}{t^2} \, dt \|\nabla u\|_{L^\infty(B_2)}. \quad (2.20)$$

Combining (2.20) with (2.10), we get for $k \geq 1$ that

$$\|\nabla u - (\nabla u)_{R_k}\|_{L^2(B_{R_k})} \leq \|\nabla u - \nabla h_{R_k}(0)\|_{L^2(B_{R_k})}$$

$$\leq \|\nabla (u - \nabla h_{R_k})\|_{L^2(B_{R_k})} + \|\nabla u - \nabla h_{R_k}(0)\|_{L^2(B_{R_k})}$$

$$\leq CR_k^{2(n+2)/2} \int_{2R_k}^{2} \frac{\omega(t)}{t^2} \, dt \|\nabla u\|_{L^\infty(B_2)}$$

$$+ CR_k^{n/2}\omega(2R_k)\|\nabla u\|_{L^\infty(B_2)}$$

$$\leq CR_k^{2(n+2)/2} \int_{2R_k}^{2} \frac{\omega(t)}{t^2} \, dt \|\nabla u\|_{L^\infty(B_2)}. \quad (2.21)$$

Estimate (1.11) follows.

Remark 2.2. If the Dini condition (1.4) or (1.5) holds, it can be seen from (2.12) that $\{\nabla h_k(0)\}$ converges to some $P \in \mathbb{R}^{N \times n}$, from which it follows that

$$\lim_{r \to 0} r^{-n/2}\|\nabla u - P\|_{L^2(B_r)} = 0,$$

yielding the continuity of ∇u at the origin. We have thus recovered the results on the differentiability of H^1 solutions of Brezis [2, 3] and Li [20].
Proof of Proposition 1.5. We take \(N = 1 \) and drop the indices \(i, j \) in the expression of \(A \) (so that \(A = (A^{\alpha\beta}) \)). Following [17, Lemma 2.1], we make the ansatz that

\[
A^{\alpha\beta}(x) = \delta^{\alpha\beta} + a(|x|) \left(\delta^{\alpha\beta} - \frac{x^{\alpha} x^{\beta}}{|x|^2} \right),
\]

\[u(x) = x^1 v(|x|).\]

Then

\[
\partial_\alpha(A^{\alpha\beta} \partial_\beta u) = x^1 \left(v''(|x|) + \frac{n + 1}{|x|} v'(|x|) - \frac{n - 1}{|x|^2} a(|x|) v(|x|) \right).
\]

Selecting now

\[
a(r) = -\frac{1 + n \ln \frac{64}{r}}{(n - 1)(\ln \frac{64}{r})^2 \ln \ln \frac{64}{r}},
\]

\[v(r) = \ln \ln \frac{64}{r},\]

we see that \(A \) is continuous in \(\bar{B}_4 \), satisfies (1.2), (1.3) and \(u \) is an \(H^1 \) solution of (1.1). The matrix \(A \) admits a modulus of continuity \(\bar{\omega} A(t) \sim \frac{1}{\ln \frac{64}{t} \ln \ln \frac{64}{t}} \) as \(t \to 0 \) and so (1.8) holds. It is readily seen that \(u \in W^{1,p}(B_4) \) for all \(p \in [1, \infty) \), \(\nabla u \in VMO(B_4) \) but \(\nabla u \not\in L^{\infty}_{\text{loc}}(B_2) \).

Proof of Proposition 1.6. Instead of the choice in the proof of Proposition 1.5, we now choose

\[
a(r) = -\frac{\sin \ln \ln \frac{64}{r} + \cos \ln \ln \frac{64}{r} (1 + \ln \frac{64}{r} + n \ln \frac{64}{r} \ln \ln \frac{64}{r})}{(n - 1)(\ln \frac{64}{r})^2 (\ln \ln \frac{64}{r})^2 (2 + \sin \ln \ln \frac{64}{r})},
\]

\[v(r) = 2 + \sin \ln \ln \ln \frac{64}{r} - \frac{1}{\ln \frac{64}{r} \ln \ln \frac{64}{r}}\]

It is readily checked that \(A \) is continuous in \(\bar{B}_4 \), satisfies (1.2), (1.3), (1.8) and \(u \) is an \(H^1 \) solution of (1.1), \(\nabla u \in L^{\infty}(B_4) \cap VMO(B_4) \) but \(\nabla u \not\in C(B_2) \).

Finally, we briefly touch on the validity of Theorem 1.1 when \(\omega_{A,2} \) is replaced by \(\omega_{A,p} \) for \(1 < p < 2 \). For this, we only need the following \(L^p \) version of Proposition 2.3.

Proposition 2.3. Let \(A = (A^{\alpha\beta}_{ij}) \) satisfy (1.2) and (1.3). Let \(1 < p < 2 \). Then there exist constants \(\gamma > 0 \) and \(C_* > 0 \) depending only on \(n, N, p, \Lambda \) and \(\lambda \) such that, provided \([A]_{\text{BMO}}(B_4) < \gamma \), there hold for every \(u \in W^{1,p}(B_4) \) satisfying (1.1) and for \(0 < r \leq R/4 \leq 1/2 \) that

\[
\int_{B_r} |\nabla u|^p \, dx \leq \frac{C_* n^2}{R^n} \exp \left(2C_* \int_{2r}^R \frac{\omega_{A,p}(t)}{t} \, dt \right) \int_{B_R} |\nabla u|^p \, dx,
\]

(2.22)
and
\[
\int_{B_r} |\nabla u - (\nabla u)_r|^p \, dx \leq \frac{C r^{n+2}}{R^n} \int_{B_R} |\nabla u|^p \, dx \times \left\{ \int_{2r}^R \frac{\omega_{A,p}(t)}{t^2} \exp \left(C_1 \int_{t}^{R} \frac{\omega_{A,p}(s)}{s} \, ds \right) \, dt \right\}^2, \tag{2.23}
\]

where \((\nabla u)_r = \frac{1}{|B_r|} \int_{B_r} \nabla u \, dx\) for \(0 < r \leq 2\).

Moreover, if \(u \in W^{1,\infty}(B_4)\), then, for \(0 < r \leq R/4 \leq 1/2\),
\[
\int_{B_r} |\nabla u - (\nabla u)_r|^p \, dx \leq \frac{C r^{n+2}}{R^n} \left\{ \int_{2r}^R \frac{\omega_{A,p}(t)}{t^2} \, dt \right\}^2 \sup_{B_R} |\nabla u|^p. \tag{2.24}
\]

The proof of Proposition 2.3 is the same as that of Proposition 1.7 but now using the following harmonic replacement estimate:

Lemma 2.4. Let \(1 < p < 2\). Let \(A, \bar{A}\) satisfy (1.2) and (1.3) with \(\bar{A}\) being constant in \(B_4\) and \(f = (f_i^{A}) \in L^p(B_4)\). Let \(R \in (0, 1)\) and suppose \(u, h \in W^{1,p}(B_{4R})\) satisfy
\[
\begin{aligned}
\partial_\alpha \left(A_{ij}^{\alpha \beta} \partial_\beta u^j \right) &= \partial_\alpha f_i \quad \text{in } B_{3R}, \quad i = 1, \ldots, N, \\
\partial_\alpha \left(\bar{A}_{ij}^{\alpha \beta} \partial_\beta h^j \right) &= 0 \quad \text{in } B_{2R}, \quad i = 1, \ldots, N, \\
u &= h \quad \text{on } \partial B_{2R}.
\end{aligned}
\]

Then there exist constants \(\gamma > 0\) and \(C > 0\) depending only on \(n, N, p, \Lambda\) and \(\lambda\) such that, provided \([A]_{BMO(B_{4R})} \leq \gamma\),
\[
\|\nabla (u - h)\|_{L^p(B_{3R}/2)} \leq C \left[R^{n(1/p - 1/p')} \|f\|_{L^{p'}(B_{3R})} + R^{-n/p} \|A - \bar{A}\|_{L^p(B_{3R})} \|\nabla u\|_{L^p(B_{3R})} \right].
\]

Proof. We amend the proof of Lemma 2.1 using \(L^p\) theories for elliptic systems whose leading coefficients have small \(BMO\) semi-norm.\(^2\) In the proof, \(C\) denotes a generic positive constant which depends only on \(n, N, p, \Lambda\) and \(\lambda\).

It is known that (see e.g. Dong and Kim \([10, 11]\))\(^3\) provided \([A]_{BMO(B_{4R})} \leq \gamma\) for some small enough \(\gamma\) depending only on \(n, N, p, \Lambda\) and \(\lambda\), one has
\[
\|\nabla u\|_{L^{p'}(B_{2R})} \leq C \left[\|f\|_{L^{p'}(B_{3R})} + R^{n(1/p' - 1/p')} \|\nabla u\|_{L^p(B_{3R})} \right]. \tag{2.25}
\]

Using that \(\bar{A}\) is constant, we have by standard elliptic estimates that
\[
\|\nabla h\|_{L^\infty(B_{7R}/4)} \leq C R^{-n/p} \|\nabla h\|_{L^p(B_{2R})} \leq C R^{-n/p} \|\nabla u\|_{L^p(B_{2R})}.
\]

\(^2\)When \(p\) is close to 2 such smallness assumption is not needed, see e.g. \([6, 25]\).

\(^3\)For further references, see \([4, 5, 8, 18, 25]\).
Using
\[\partial_\alpha (A^\alpha_{ij} \partial_j (u - h)^j) = \partial_\alpha (f^\alpha_i + (\bar{A} - A)^\alpha_{ij} \partial_j h^j) \quad \text{in } B_{2R}, \quad i = 1, \ldots, N, \]
and once again the fact that \([A]_{BMO(B_{4R})} \leq \gamma\), we have
\[\| \nabla (u - h) \|_{L^p(B_{3R/2})} \leq C \left[\| f \|_{L^p(B_{7R/4})} + \| A - \bar{A} \|_{L^p(B_{7R/4})} \| \nabla h \|_{L^\infty(B_{7R/4})} + R^{-(n+p')/p'} \| u - h \|_{L^1(B_{7R/4})} \right]. \] (2.26)

To estimate \(\| u - h \|_{L^1(B_{2R})} \), recall from the proof of Lemma 2.1 the chain of identities
\[\int_{B_{2R}} \frac{|u - h|^2}{\sqrt{|u - h|^2 + t^2}} \, dx = \int_{B_{2R}} \bar{A}^\alpha_{ij} \partial_\alpha \phi^i \partial_j (u - h)^j \, dx = \int_{B_{2R}} (f^\alpha_i + (\bar{A} - A)^\alpha_{ij} \partial_j u^j) \partial_\alpha \phi^i \, dx, \]
which imply
\[\int_{B_{2R}} \frac{|u - h|^2}{\sqrt{|u - h|^2 + t^2}} \, dx \leq C \left[R^{(n+p')/p'} \| f \|_{L^{p'}(B_{2R})} + R \| A - \bar{A} \|_{L^p(B_{2R})} \| \nabla u \|_{L^{p'}(B_{2R})} \right]. \]

Noting that the constant \(C \) is independent of \(t \), we may send \(t \to 0 \) to obtain
\[\| u - h \|_{L^1(B_{2R})} \leq C R^{(n+p')/p'} \left[\| f \|_{L^{p'}(B_{2R})} + R^{-n/p} \| A - \bar{A} \|_{L^p(B_{2R})} \| \nabla u \|_{L^{p'}(B_{2R})} \right]. \] (2.27)

The conclusion follows from (2.25), (2.26) and (2.27). \(\square \)

References

[1] P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl. (4), 161 (1992), pp. 231–269.

[2] H. Brezis, On a conjecture of J. Serrin, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 19 (2008), pp. 335–338.
[3] H. Brezis, *Solution of a conjecture by J. Serrin* in A. Ancona, *Elliptic operators, conormal derivatives and positive parts of functions*, J. Funct. Anal., 257 (2009), pp. 2124–2158.

[4] S.-S. Byun, *Elliptic equations with BMO coefficients in Lipschitz domains*, Trans. Amer. Math. Soc., 357 (2005), pp. 1025–1046.

[5] S.-S. Byun and L. Wang, *Elliptic equations with BMO coefficients in Reifenberg domains*, Comm. Pure Appl. Math., 57 (2004), pp. 1283–1310.

[6] L. A. Caffarelli and I. Peral, *On $W^{1,p}$ estimates for elliptic equations in divergence form*, Comm. Pure Appl. Math., 51 (1998), pp. 1–21.

[7] S. Campanato, *Equazioni ellittiche del II° ordine e spazi $L^{(2,\lambda)}$*, Ann. Mat. Pura Appl. (4), 69 (1965), pp. 321–381.

[8] G. Di Fazio, *L^p estimates for divergence form elliptic equations with discontinuous coefficients*, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 409–420.

[9] H. Dong, L. Escauriaza, and S. Kim, *On C^1, C^2, and weak type-(1,1) estimates for linear elliptic operators: part II*, Math. Ann., 370 (2018), pp. 447–489.

[10] H. Dong and D. Kim, *Parabolic and elliptic systems with VMO coefficients*, Methods Appl. Anal., 16 (2009), pp. 365–388.

[11] ———, *Elliptic equations in divergence form with partially BMO coefficients*, Arch. Ration. Mech. Anal., 196 (2010), pp. 25–70.

[12] H. Dong and S. Kim, *On C^1, C^2, and weak type-(1,1) estimates for linear elliptic operators*, Comm. Partial Differential Equations, 42 (2017), pp. 417–435.

[13] M. Giaquinta, *Multiple integrals in the calculus of variations and nonlinear elliptic systems*, vol. 105 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1983.

[14] R. A. Hager and J. Ross, *A regularity theorem for linear second order elliptic divergence equations*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 26 (1972), pp. 283–290.

[15] P. Hartman and A. Wintner, *On uniform Dini conditions in the theory of linear partial differential equations of elliptic type*, Amer. J. Math., 77 (1955), pp. 329–354.
[16] Q. Huang, Estimates on the generalized Morrey spaces $L^{2,\lambda}_\phi$ and BMO_ψ for linear elliptic systems, Indiana Univ. Math. J., 45 (1996), pp. 397–439.

[17] T. Jin, V. Maz’ya, and J. Van Schaftingen, Pathological solutions to elliptic problems in divergence form with continuous coefficients, C. R. Math. Acad. Sci. Paris, 347 (2009), pp. 773–778.

[18] N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations, 32 (2007), pp. 453–475.

[19] Y. Li and L. Nirenberg, Estimates for elliptic systems from composite material, vol. 56, 2003, pp. 892–925. Dedicated to the memory of Jürgen K. Moser.

[20] Y. Y. Li, On the C^1 regularity of solutions to divergence form elliptic systems with Dini-continuous coefficients, Chinese Ann. Math. Ser. B, 38 (2017), pp. 489–496.

[21] G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl. (4), 148 (1987), pp. 77–99.

[22] V. Maz’ya and R. McOwen, Differentiability of solutions to second-order elliptic equations via dynamical systems, J. Differential Equations, 250 (2011), pp. 1137–1168.

[23] C. B. Morrey, Jr., Second-order elliptic systems of differential equations, in Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, Princeton University Press, Princeton, N.J., 1954, pp. 101–159.

[24] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 18 (1964), pp. 385–387.

[25] B. Stroffolini, Elliptic systems of PDE with BMO-coefficients, Potential Anal., 15 (2001), pp. 285–299.