The key to a diagnosis lies in taking a good medical history. This rule especially applies to allergic rhinitis and asthma, which are both often underdiagnosed and lack proper treatment.

Allergic rhinitis and asthma frequently occur together. Almost 40% of allergic rhinitis patients have lower airways involvement, whereas >80% of allergic asthma patients have concomitant rhinitis symptoms. The latter percentage approaches 95% when a careful nasal history is taken and a physical examination is performed. Patients with allergic rhinitis have a three times higher risk of developing asthma than healthy people, suggesting that rhinitis is an important risk factor for the development of asthma.

Several specialists are involved in the treatment of allergic diseases, i.e. ophthalmologists, dermatologists, otorhinolaryngologists, pulmonologists, paediatricians, allergologists and general practitioners. The differentiation between allergic specialists often results in attention being focused on the primary affected organ alone. Disregarding the interaction between the organs involved in allergic disease leads to treatment strategies lacking a combined approach.

Educational aims

- To introduce the factors involved in the expression of allergic phenotypes.
- To define the mechanisms that may play a role in nasobronchial cross-talk.
- To identify current and future therapies for combined asthma and rhinitis.

Summary

The condition of the nose affects the bronchi and vice versa. Local allergen exposure leads to a generalised airway response in atopic individuals, involving the systemic circulation. Therefore, upper and lower airways need to be regarded as one functional entity. This also has implications for rhinitis and asthma therapy, providing a rationale for combined treatment of both upper and lower airways. The systemic link between the upper and lower airways may provide new opportunities for systemic treatment.

The key to a diagnosis lies in taking a good medical history. This rule especially applies to allergic rhinitis and asthma, which are both often underdiagnosed and lack proper treatment.

Allergic rhinitis and asthma frequently occur together. Almost 40% of allergic rhinitis patients have lower airways involvement, whereas >80% of allergic asthma patients have concomitant rhinitis symptoms. The latter percentage approaches 95% when a careful nasal history is taken and a physical examination is performed. Patients with allergic rhinitis have a three times higher risk of developing asthma than healthy people, suggesting that rhinitis is an important risk factor for the development of asthma.

Several specialists are involved in the treatment of allergic diseases, i.e. ophthalmologists, dermatologists, otorhinolaryngologists, pulmonologists, paediatricians, allergologists and general practitioners. The differentiation between allergic specialists often results in attention being focused on the primary affected organ alone. Disregarding the interaction between the organs involved in allergic disease leads to treatment strategies lacking a combined approach.

Educational aims

- To introduce the factors involved in the expression of allergic phenotypes.
- To define the mechanisms that may play a role in nasobronchial cross-talk.
- To identify current and future therapies for combined asthma and rhinitis.

Summary

The condition of the nose affects the bronchi and vice versa. Local allergen exposure leads to a generalised airway response in atopic individuals, involving the systemic circulation. Therefore, upper and lower airways need to be regarded as one functional entity. This also has implications for rhinitis and asthma therapy, providing a rationale for combined treatment of both upper and lower airways. The systemic link between the upper and lower airways may provide new opportunities for systemic treatment.

The key to a diagnosis lies in taking a good medical history. This rule especially applies to allergic rhinitis and asthma, which are both often underdiagnosed and lack proper treatment.

Allergic rhinitis and asthma frequently occur together. Almost 40% of allergic rhinitis patients have lower airways involvement, whereas >80% of allergic asthma patients have concomitant rhinitis symptoms. The latter percentage approaches 95% when a careful nasal history is taken and a physical examination is performed. Patients with allergic rhinitis have a three times higher risk of developing asthma than healthy people, suggesting that rhinitis is an important risk factor for the development of asthma.

Several specialists are involved in the treatment of allergic diseases, i.e. ophthalmologists, dermatologists, otorhinolaryngologists, pulmonologists, paediatricians, allergologists and general practitioners. The differentiation between allergic specialists often results in attention being focused on the primary affected organ alone. Disregarding the interaction between the organs involved in allergic disease leads to treatment strategies lacking a combined approach.
Allergic phenotypes

Genetic and environmental factors largely contribute to the clinical expression in allergic disease. Atopic diathesis requires appropriate allergen exposure in order to result in the production of specific immunoglobulin (Ig)E in a genetically susceptible host. The initial sensitisation typically occurs in childhood and depends on lifestyle influences, such as indoor allergen exposure, viral infections and maternal smoking. The clinical manifestations of the atopic syndrome may vary during a lifetime and depend on complex interaction mechanisms between the nose, lung, skin and gastrointestinal tract. The specific structure and function of the mucosal tissue involved could also be contributing factors to the development of allergic airway disease (figure 1).

Nasobronchial interaction

Pathophysiologically, the relationship between nasal malfunction and subsequent bronchial airway involvement is obvious. The nose protects the lower airways through filtering and air conditioning of the inhaled air. In allergic rhinitis, the nose can be blocked and mouth breathing is favoured. The reduced filter and air-conditioning function of the nose leads to increased exposure of the lower airways to allergens. In susceptible persons, this may lead to inflammatory changes and an increase in bronchial hyperresponsiveness (BHR).

Several mechanisms have been held responsible for the interaction between the nose and lungs. Aspiration may play a role in patients with depressed consciousness and impaired cough reflex, such as mechanically ventilated patients. The neural reflex mechanism certainly contributes to immediate bronchoconstriction and BHR in asthmatic patients after nasal exposure to cold air. Studies in patients with allergic rhinitis, asthma and other atopic diseases have also shown a consequent rise in circulating inflammatory cells and progenitors after allergen inhalation, followed by recruitment to sites of allergic inflammation (figure 2). The systemic allergic response is further characterised by increased expression of adhesion molecules, such as vascular cell adhesion molecule (VCAM)-1 and E-selectin, on nasal and bronchial endothelium, which facilitates the migration of inflammatory cells into the tissue.

Figure 1
Concept of chronic airway disease. Factors involved in the expression of the allergic phenotype.

Figure 2
Nasobronchial cross-talk. The systemic circulation as an important pathway in the interaction between upper and lower airways. IL: interleukin.
Therapeutic implications

Accumulating evidence underlines the influence of allergic rhinitis on the control of asthma. A clear relationship has been found between the severity of allergic rhinitis and lower airway symptoms (figure 3). Treatment of allergic rhinitis in patients with concomitant asthma significantly reduces the risk of severe asthma exacerbations and hospitalisation (figure 4). An overview of current asthma and rhinitis therapy is given in table 1.

Topical treatment

Few studies have investigated the effect of nasal treatment on asthma. Topical treatment with intranasal corticosteroids reduces lower airway symptoms and decreases BHR in allergic rhinitis patients with seasonal asthma. In one study, delivery of beclomethasone to the nose had an even greater effect on BHR than delivery of the same dose via the oral route. Another report demonstrated a reversed response, i.e. bronchial treatment with inhaled corticosteroids had a beneficial effect on nasal symptoms and inflammation.

Systemic treatment

Despite the benefit of antihistamines and cromolynates in seasonal allergic rhinitis, their effects on lower airways are still doubtful. However, second-generation antihistamines seem to exert some beneficial effect on lower airway inflammation, possibly through their anti-inflammatory properties. Leukotriene receptor antagonists (LTRAs) have proved to have an additional therapeutic effect on asthma. Recent data have also shown that leukotrienes may also be of importance in inflammatory upper airways disease, which emphasises a role for LTRAs in the treatment of allergic rhinitis.

Immunomodulating therapy

Immunotherapy may be effective for both asthma and rhinitis on a long-term basis. A 3-year course of specific immunotherapy (SIT) in children with seasonal allergic rhinitis significantly reduced the risk of developing asthma (figure 5). In a comparative study between nasal steroids (NS) and short preseason SIT in patients with allergic rhinitis and asthma, NS appeared to be more effective in local disease control than SIT. However, SIT had a positive influence on systemic and bronchial parameters in these patients, whereas NS had no apparent effect on the lower airways.

Novel therapies

Increases in eosinophils and circulatory mediators, such as interleukin (IL)-5, are associated with impaired lung function parameters and enhanced mucosal inflammation in asthmatics, as well as in non-asthmatic rhinitis patients. Efforts to translate this concept into

Table 1 An overview of current asthma and rhinitis therapy
Asthma
β2-agonists
α-agonists
Anticholinergic agonists
Antihistamines
Antileukotrienes
Corticosteroids
Anti-IgE
Immunotherapy

*: positive effect; -: negative effect. Modified from Mygind 1997.
clinical practice have been disappointing, since depletion of eosinophils by anti-IL-5 therapy has not shown a significant effect on lung function in mild asthmatic patients. Recently, phosphodiesterase (PDE)4 inhibitors, which exert an anti-inflammatory effect by blocking IL-13 production, have shown some potential for therapy. However, these drugs are still in development and need to be proved as safe and effective in both asthma and rhinitis. Anti-IgE antibodies are promising tools in asthma and rhinitis therapy. They prevent IgE from binding to receptors on mast cells and basophils, thereby eliminating allergic inflammation at the initial step of the inflammatory cascade. Anti-IgE treatment has proved to be effective in asthma, since it reduces symptoms, asthma exacerbations and the need for steroids. Its usefulness in allergic rhinitis, particularly as a steroid-sparing agent, has yet to be determined.

Conclusion

The relationship between allergic rhinitis and asthma has been well established in epidemiological studies and clinical trials. However, little is known about the immunopathological mechanisms that underlie the interaction between upper and lower airways. The condition of the upper airways can influence the lower airways and vice versa. Local allergen exposure at one end of the respiratory system induces mucosal inflammation at the other end. Therefore, upper and lower airways need to be regarded as one functional entity. Although physiological mechanisms may also contribute to nasobronchial cross-talk, the most recently published data are in favour of a systemic pathway, involving bloodstream and bone marrow. This also has implications for rhinitis and asthma therapy, providing a rationale for systemic treatment.
Suggested further reading
Togias A. Mechanisms of nose-lung interaction. Allergy 1999; 54: Suppl. 57, 94–105.

Crystal-Peters J, Neslusan C, Crown WH, Torres A. Treating allergic rhinitis in patients with comorbid asthma: the risk of asthma-related hospitalisations and emergency department visits. J Allergy Clin Immunol 2002; 109: 57–62.

Hygien N. Rhinitis and asthma: treatment options. Eur Respir Rev 1997; 7: 296–299.

Moller C, Drews J, Fesdouzi NA, et al. Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAN-study). J Allergy Clin Immunol 2002; 109: 251–258.

Neumeier M, van Brinke A, Khan J, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000; 356: 2144–2148.

Larsenberg A, Harnek-Velican N, Foslund L, Madson E, Birkan A, Jorgensen T. The link between allergic rhinitis and allergic asthma: a prospective population-based study. The Copenhagen Allergy Study. Allergy 2002; 57: 3048–3052.

Guarna S, Sherrill DL, Martinez FD, Barbee RA. Rhinitis as an independent risk factor for adult-onset asthma. J Allergy Clin Immunol 2002; 109: 419–425.

Bardin PG, Van Haerden BB, Soubert JF. Absence of pulmonary aspiration of sinus contents in patients with asthma and sinusitis. J Allergy Clin Immunol 1990; 86: 82–88.

Fontanini P, Burnet H, Zatta-Hartmann NC, Jammez Y. Changes in airway resistance induced by nasal inhalation of cold dry, dry or moist air in normal individuals. J Appl Physiol 1996; 81: 1793–1798.

Dentburg J, Iman MD, Selman R, Lio M, O'Byrne PM. Hemopoietic mechanisms in allergic airway inflammation. Int Arch Allergy Immunol 1998; 117: 155–159.

Bousquet J, Brouchez HA, Busse WE, et al. Characteristics of patients with seasonal allergic rhinitis and concomitant asthma. Clin Exp Allergy 2004; 34: 897–903.

Carren J, Adroff AB, Buchmeier AD, Irving CG. Nasal beclomethasone prevents the seasonal increase in bronchial responsiveness in patients with allergic rhinitis and asthma. J Allergy Clin Immunol 1992; 90: 250–256.

Denburg JA, Inman MD, Sehmi R, Uno M, O'Byrne PM. Hemopoietic mechanisms in allergic airway inflammation. Int Arch Allergy Immunol 1998; 117: 155–159.

Bousquet J, Godard P, Michel FB. Antihistamines in the treatment of asthma. Eur Respir J 1992; 5: 1137–1142.

Barnes L. The role of leukotrienes in upper and lower airway inflammation and the implications for treatment. Ann Allergy Asthma Immunol 2002; 88: 16–22.

An excellent review on the pathophysiological role of leukotrienes in allergic rhinitis and asthma and the therapeutic implications.

Schmitt BM, Kuzma M, Feuring M, et al. The phosphodiesterase 4 inhibitor rufinamide is effective in the treatment of allergic rhinitis. J Allergy Clin Immunol 2002; 108: 921–928.

Bousquet J, Godard P, Michel FB. Antihistamines in the treatment of asthma. Eur Respir J 1992; 5: 1137–1142.

Barnes L. The role of leukotrienes in upper and lower airway inflammation and the implications for treatment. Ann Allergy Asthma Immunol 2002; 88: 16–22.

An excellent review on the pathophysiological role of leukotrienes in allergic rhinitis and asthma and the therapeutic implications.

Schmitt BM, Kuzma M, Feuring M, et al. The phosphodiesterase 4 inhibitor rufinamide is effective in the treatment of allergic rhinitis. J Allergy Clin Immunol 2002; 108: 921–928.

Holgers S, Bousquet J, Wenzel S, Han H, Liu Z, Castellsague J. Efficacy of omalizumab, an anti-immunoglobulin E antibody, in patients with allergic asthma at high risk of serious asthma-related morbidity and mortality. Curr Med Res Opin 2001; 17: 233–240.

Meta-analysis based on three randomised trials investigating the efficacy and public health impact of omalizumab as an add-on therapy in severe allergic asthma.

Suggested answers
1. Genetics, lifestyle influences, local mucosa factors and tissue remodelling.
2. Mouth breathing, aspiration of nasal contents, nasobronchial reflex and systemic circulation.
3. Systemic circulation.
4. Yes, they have an effect on bronchial symptoms and BHR.
5. New generation antihistamines have some effect on asthma symptoms through anti-inflammatory properties.
6. Immunotherapy.
7. Novel therapies are targeting systemic elements of allergic disease providing a more global approach for the allergy problem.