Comparative assessment of long-read error-correction software applied to RNA-sequencing data

Leandro Lima\(^1,2,3,\ast\), Camille Marchet\(^4\), Ségolène Caboche\(^5\), Corinne Da Silva\(^6\), Benjamin Istace\(^6\), Jean-Marc Aury\(^6\), Hélène Touzet\(^4\) and Rayan Chikhi\(^4,7\)

\(^1\)Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France
\(^2\)EPI ERABLE - Inria Grenoble, Rhône-Alpes, France
\(^3\)Università di Roma "Tor Vergata", Roma, Italy
\(^4\)CNRS, Université de Lille, CRIStAL UMR 9189, Lille, France
\(^5\)Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille, Lille, France
\(^6\)Genoscope, Institut de biologie Francois-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
\(^7\)Institut Pasteur, C3BI - USR 3756, 25-28 rue du Docteur Roux, 75015 Paris, France

Abstract

Motivation: Long-read sequencing technologies offer promising alternatives to high-throughput short read sequencing, especially in the context of RNA-sequencing. However, these technologies are currently hindered by high error rates in the output data that affect analyses such as the identification of isoforms, exon boundaries, open reading frames, and the creation of gene catalogues. Due to the novelty of such data, computational methods are still actively being developed and options for the error-correction of RNA-sequencing long reads remain limited.

Results: In this article, we evaluate the extent to which existing long-read DNA error correction methods are capable of correcting cDNA Nanopore reads. We provide an automatic and extensive benchmark tool that not only reports classical error-correction metrics but also the effect of correction on gene families, isoform diversity, bias towards the major isoform, and splice site detection. We find that long read error-correction tools that were originally developed for DNA are also suitable for the correction of RNA-sequencing data, especially in terms of increasing base-pair accuracy. Yet investigators should be warned that the correction process perturbs gene family sizes and isoform diversity. This work provides guidelines on which (or whether) error-correction tools should be used, depending on the application type.

Benchmarking software: https://gitlab.com/leoisl/LR_EC_analyser

Key words: Long reads, RNA-sequencing, Nanopore, Error correction, Benchmark
1 INTRODUCTION

The most commonly used technique to study transcriptomes is through RNA sequencing. As such, many tools were developed to process Illumina or short RNA-seq reads. Assembling a transcriptome from short reads is a central task for which many methods are available. When a reference genome or reference transcriptome is available, reference-based assemblers can be used (such as Cufflinks Trapnell et al. [2010], Scallop Shao and Kingsford [2017], Scripture Kuffman et al. [2010], and StringTie Pertea et al. [2015]). When no references are available, de novo transcriptome assembly can be performed (using tools such as Oases Schulz et al. [2012], SOAPdenovo-Trans Xie et al. [2014], Trans-AbysS Robertson et al. [2010] and Trinity Grabherr et al. [2011]). Potential disadvantages of reference-based strategies include: i) the resulting assemblies might be biased towards the used reference, and true variations might be discarded in favour of known isoforms; ii) they are unsuitable for samples with a partial or missing reference genome [Grabherr et al. [2011]]; iii) such methods depend on correct read-to-reference alignment, a task that is complicated by splicing, sequencing errors, polymorphism, multiple read mapping, mismatches caused by genome variation, and the lack or incompleteness of many reference genomes [Grabherr et al. [2011], Robertson et al. [2010]; iv) sometimes, the model being studied is sufficiently different from the reference because it comes from a different strain or line such that the mappings are not altogether reliable [Schulz et al. [2012]]. On the other hand, some of the shortcomings of de novo transcriptome assemblers are: i) low-abundance transcripts are likely to not be fully assembled [Haas and Zody [2010]]; ii) reconstruction heuristics are usually employed, which may lead to missing alternative transcripts, and highly similar transcripts are likely to be assembled into a single transcript [Martin and Wang [2011]]; iii) homologous or repetitive regions may result in incomplete assemblies [Fu et al. [2018]]; iv) accuracy of transcript assembly is called into question when a gene exhibits complex isoform expression [Fu et al. [2018]].

Recent advances in long-read sequencing technology have enabled longer, up to full-length sequencing of RNA molecules. This new approach has the potential to eliminate the need for transcriptome assembly, and thus also eliminate from transcriptome assembly the biases caused by the assembly step. Long read sequencing can be done using either cDNA-based or direct RNA protocols from Oxford Nanopore (referred to as ONT or Nanopore) and Pacific Biosciences (PacBio). The Iso-Seq protocol from PacBio consists in a size selection step, sequencing of cDNAs, and finally a set of computational steps that produce sequences of full-length transcripts. ONT has three different experimental protocols for sequencing RNA molecules: cDNA transformation with amplification, direct cDNA (with or without amplification), and direct RNA.

Long-read sequencing is increasingly used in transcriptome studies, not just to prevent problems caused by short-read transcriptome assembly, but also for several of the following reasons. Mainly, long reads can better describe exon/intron combinations [Sedlacek et al. [2018]]. The Iso-seq protocol has been used for isoform identification, including transcripts identification [Wang et al. [2016]] and fusion transcript detection [Weirather et al. [2015]].

Nanopore has recently been used for isoform identification [Byrne et al. [2017]] and quantification [Dokomomopoulos et al. [2016]]. The sequencing throughput of long-read technologies is significantly increasing over the years. It is now conceivable to sequence a full eukaryote transcriptome using either only long reads, or a combination of high-coverage long and short (Illumina) reads. Unlike the Iso-Seq protocol that requires extensive in silico processing prior to primary analysis [Sahlin et al. [2019]], raw Nanopore reads can in principle be readily analyzed. Direct RNA reads also permit the analysis of base modifications [Workman et al. [2018]], unlike all other cDNA-based sequencing technologies. There also exist circular sequencing techniques for Nanopore such as INC-Seq [Li et al. [2016]] which aim at reducing error rates, at the expense of a special library preparation. With raw long reads, it is up to the primary analysis software (typically a mapping algorithm) to deal with sequences that have significant per-base error rate, currently around 13% [Weirather et al. [2017]].

In principle, a high error rate in the data complicates the analysis of transcriptomes especially for the accurate detection of exon boundaries, or the quantification of similar isoforms and paralogous genes. Reads need to be aligned unambiguously and with high base-pair accuracy to either a reference genome or transcriptome. Inels (i.e. insertions/deletions) are the main type of errors produced by long-read technologies, and they confuse aligners more than substitution errors [Sovic et al. [2016]]. Many methods have been developed to correct errors in RNA-seq reads, mainly in the short-read era [Long et al. [2016], Song and Florens [2015]]. They no longer apply to long reads because they were developed to deal with low error rates, and principally substitutions. However, a new set of methods have been proposed to correct genomic long reads. There exist two types of long-read error-correction algorithms, those using information from long reads only (self or non-hybrid correction), and those using short reads to correct long reads (hybrid correction). In this article, we will report on the extent to which state-of-the-art tools enable to correct long noisy RNA-seq reads produced by Nanopore sequencers.

Several tools exist for error-correcting long reads, including ONT reads. Even if the error profiles of Nanopore and PacBio reads are different, the error rate is quite similar and it is reasonable to expect that tools originally designed for PacBio data to also perform well on recent Nanopore data. There is, to the best of our knowledge, very little prior work that specifically addresses error-correction of RNA-seq long reads. Notable exceptions include: a) LSC [Au et al. [2012]], which is designed to error correct PacBio RNA-seq long reads using Illumina RNA-seq short reads; b) PB-R Koren et al. [2012] and c) HALC [Bao and Lan [2017]], which are mainly designed for genomes but are also evaluated on transcriptomic data. Here we will take the standpoint of evaluating long-read error-correction tools on RNA-seq data, most of which were designed to process DNA sequencing data only.

We evaluate the following DNA hybrid correction tools: HALC [Bao and Lan [2017]], LoRDEC Salmela and Rivals [2014], NaS Madoui et al. [2015], PBcR Koren et al. [2012], proovread Hackl et al. [2014], and the following DNA self-correction tools: Canu Koren et al. [2017], daccord Tischler and Myers [2017], LoRMA Salmela et al. [2016], MECAT Xie et al. [2017], pbdagcon Chin et al. [2013]. We also evaluate an additional hybrid tool, LSC [Au et al. [2012]], the only one specifically designed to error correct (PacBio) RNA-seq long reads.
A majority of hybrid correction methods employ mapping strategies to place short fragments on long reads and correct long read regions using the related short read sequences. But some of them rely on graphs to create a consensus that is used for correction. These graphs are either k-mer graphs (de Bruijn graphs), or nucleotide graphs resulting from multiple alignments of sequences (partial order alignment). For self-correction methods, strategies using the aforementioned graphs are the most common. We have also considered evaluating nanocorrect [Loman et al. 2015], Falcon-sense [Chin et al. 2016], and LSChPlus [Hu et al. 2016], but some tools were deprecated, not suitable for read correction, or unavailable. Our detailed justifications can be found in Section S1.12 of the Supplementary Material. We have selected what we believe is a representative set of tools but there also exist other tools that were not considered in this study, e.g. HG-Color [Morrise et al. 2015], HECIL [Choudhury et al. 2017], MiRCA [Keboua and Elloumi 2016], Jaba [Miellet et al. 2016], nanopan Goodwin et al. [2015], and Racon [Vaser et al. 2016].

Other works have evaluated error correction tools in the context of DNA sequencing. LRCstats [La et al. 2017], and more recently ELECTOR [Marchet et al. 2019], provide automated evaluations of genomic long read correction using a simulated framework. A technical report from [Bouin and Lavrenier 2017] provides an extensive evaluation of PacBio/Nanopore error-correction tools, in the context of de novo assembly. This analysis is completed with more recent results in [Fu et al. 2019] on hybrid correction methods. Perhaps the closest work to ours is the AlignQC software [Weirather et al. 2017], which provides a set of metrics for the evaluation of RNA-sequencing long-read dataset quality. In [Weirather et al. 2017] a comparison is provided between Nanopore and PacBio RNA-sequencing datasets in terms of error patterns, isoform identification and quantification. While [Weirather et al. 2017] did not compare error-correction tools, we will use and extend AlignQC metrics for that purpose.

In this article, we will focus on the qualitative and quantitative measurements of error-corrected long reads, with transcriptomic features in mind. First we examine basic metrics of error-correction, e.g. mean length, base accuracy, homopolymers errors, and performance (running time, memory) of the tools. Then we ask several questions that are specific to transcriptome applications: (i) how is the number of detected genes, and more precisely the number of genes within a gene family, impacted by read error correction? (ii) can error correction significantly change the number of reads to a tool name to denote its trimmed and split outputs, respectively. We further add the suffix (s) to NaS, as a reminder that it is based on a micro-assembly strategy. Outputs that have no suffixes are considered full-length corrections. For example, HALC denotes the HALC full-length error-corrected reads, HALC(t), the HALC trimmed output, and HALC(s), the HALC split output. As we will see, there is no type of output that outperforms all the others in all metrics. Choosing the appropriate type of output is heavily dependent on the application.

2 RESULTS

2.1 Error-correction tools

Table 1 presents the main characteristics of the hybrid and non-hybrid error-correction tools that were considered in this study. For the sake of reproducibility, in the Supplementary Material Section S1 are described all the versions, dependencies, and parameters. Note that these error-correction tools were all tailored for DNA-seq data except for LSC.

The output of each error correction method can be classified into on of the four following types: full-length, trimmed, split, and micro-assembly. Usually, due to methodological reasons, extremities of long reads are harder to correct. As an example, hybrid correcters based on mapping short to long reads, and calling a consensus from the mapping, have difficulties aligning short reads to the extremities of long reads. As such, some methods output trimmed error-corrected reads, i.e. error-corrected reads such that their uncorrected ends are removed. Examples of methods producing this type of output considered in this study are HALC, LoRDEC, LSC, proovread, daccord, and pbdeagon. Sometimes, internal parts of long reads can also be hard to correct, due to a lack of coverage of short reads, or a drop of sequencing quality, or due to mapping issues. Some algorithms thus output split error-corrected reads, splitting one long read into several well-corrected fragments, such as HALC, LoRDEC, PBr, and LoRNA. Finally, some tools decide to not trim nor split the original reads, outputting full-length error-corrected reads. Examples include HALC, LoRDEC, LSC, proovread, canu, daccord, MECAT, and pbdeagon. NaS does not fit the previous three categories, as it uses a micro-assembly strategy, instead of a classical polishing of the consensus, in which the long read is used as a template to recruit Illumina reads and, by performing a local assembly, build a high-quality synthetic read. As can be noted, some tools produce more than one type of output, sometimes three types. In the following sections, we add the suffixes (t) and (s) to a tool name to denote its trimmed and split outputs, respectively. We further add the suffix (s) to NaS, as a reminder that it is based on a micro-assembly strategy. Outputs that have no suffixes are considered full-length corrections. For example, HALC denotes the HALC full-length error-corrected reads, HALC(t), the HALC trimmed output, and HALC(s), the HALC split output. As we will see, there is no type of output that outperforms all the others in all metrics. Choosing the appropriate type of output is heavily dependent on the application.

2.2 Evaluation datasets

Our main evaluation dataset consists of a single 1D Nanopore run using the cDNA preparation kit of RNA material taken from a mouse brain, containing 740,776 long reads. An additional Illumina dataset containing 58 million paired-end 151 bp reads was generated on the same sample but using a different cDNA protocol. For more details on the sequencing protocol, see Section 4. The Nanopore and Illumina reads from the mouse RNA sample are in the ENA repository under the following study: PRJEB25574. In this paper, we provide a detailed analysis of this dataset, from Section 2.3 to Section 2.10. In order to obtain a more comprehensive understanding of the evaluated tools, we further analysed the correction of the methods on one human Nanopore direct RNA sequencing data from the Nanopore-WGS-Consortium (dataset from centre Bham, run#:1, sample type RNA, kit SQK-RNA001, pore R9.4, available at [https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_].
Table 1. Main characteristics of the error correction tools considered in this study

(A) Hybrid tools

Tool	Reference	Context	Technology	Main algorithmic idea
HALC	Bao and Lan (2017)	RNA or DNA	PacBio	Aligns short reads contigs to long reads. HALC implements a strategy to desambiguity multiple alignments instead of avoiding them. It uses a short reads contig graph in order to select the best set of contigs to correct a long read region.
LoRDEC	Salmela and Rivals (2014)	RNA or DNA	PacBio or ONT	Construction of short read de Bruijn graph (dBG), path search between k-mers in long reads. Regions between k-mers are corrected with the optimal path.
LSC	Au et al. (2012)	DNA	PacBio	Operate a homopolymer compression of short and long reads to increase alignment recall. Recruits short reads on long reads sequences. Corrects errors from short reads sequences and uses homopolymers from short reads to replace those in long reads.
NaS	Madou et al. (2015)	DNA	ONT	Long reads are used as templates to recruit short (seed) reads through alignment. The set of seeds is extended by searching, using shared k-mers, for similar reads in the initial read set. A micro-assembly of the reads is performed. Resulting contigs are aligned back to the input long reads, and a path in the contig graph is used as the corrected read.
PBCr	Koren et al. (2012)	RNA or DNA	PacBio or ONT	Alignment of short reads to long reads, and multi-alignment of the short reads recruited to one region. A consensus is derived from the multiple alignment.
Proovead	Hackl et al. (2014)	DNA	PacBio	Alignment of short reads to long reads and consensus. Uses a specific scoring system to adapt the mapping to the high error rates.

(B) Non-hybrid tools

Tool	Reference	Context	Technology	Main algorithmic idea
Canu	Koren et al. (2017)	DNA	PacBio or ONT	First, all-versus-all read overlap and alignment filtering. Directed acyclic graph is built from the alignments, that produce quasi-multiple alignments. Highest-weight path search in these graph yield consensus sequences that are used for correction.
daccord	Tischler and Myers (2017)	DNA	PacBio	Reads are compared pairwise to obtain alignment piles. Several overlapping windows of hundreds of nucleotides are derived from these piles, on which micro-assembly (DBG) with very small k-mers is performed. A heaviest path in each DBG is heuristically selected as the consensus to correct the given window.
LoRMA	Salmela et al. (2016)	DNA	PacBio or ONT	Path search in dBG built from long reads. Multi-iterations over k-mer size for graph construction. The same framework than LoRDEC is used to correct read regions.
MECAT	Xiao et al. (2017)	DNA	PacBio or ONT	k-mer based read matching, pairwise alignment between matched reads, alignment-based consensus calling on 'easy' regions, local consensus calling (partial order graph) otherwise.
pbdagcon	Chin et al. (2013)	DNA	PacBio	Align long reads to “backbone” sequences, correction by iterative directed acyclic graph consensus calling from the multiple sequence alignments.
2.3 Error-correction improves base accuracy and splits, trims, or entirely removes reads

Table 2 shows an evaluation of error-correction based on AlignQC results, for the hybrid and non-hybrid tools. The error rate is 13.72% in raw reads, 0.33-5.45% for reads corrected using hybrid methods and 2.91-6.43% with self-correctors. Notably, the hybrid tools NaS(µ), Proovread(t), and HALC(s) output micro-assembly, trimmed and split error-corrected reads, respectively, with the lowest error rates (0.5%). We observe that HALC produced the full-length error-corrected reads with the lowest error rate (1.85%), but that is still significantly higher than the error-rate of the three aforementioned methods. This is expected, as micro-assembling, trimming or splitting reads usually do not retain badly corrected regions of the reads, lowering the error rate. LoRMA(s), which is the only split self-correction tool, was the one that decreased the error-rate the most among non-hybrid tools, but still just managed to reach 2.91%, one order of magnitude higher than the best hybrid correctors. If we look at non-split outputs among the self-correctors, MECAT and daccord(t) obtained the lowest error rates for full-length and trimmed error-corrected reads, respectively, but still presenting an error-rate higher that 4%. It is not a surprise that the best error correctors are hybrid when looking at the error rates, given their usage of additional high-quality Illumina reads. As expected, trimming and splitting error-corrected reads reduces a lot the error-rate, e.g. LoRDEC reduced the error rate from 4.5% to 3.73% by trimming, and to 1.59% by splitting. As such, the split output consistently outperformed trimmed and full-length outputs, regarding the error-rate. A detailed error-rate analysis will be carried in Section 2.4.7.

In terms of throughput after the correction step, tools that do not trim nor split reads tend to return a number of reads similar to that of the uncorrected (raw) reads. Notably, HALC and LoRDEC returned exactly the same number of reads, and Proovread returned just 3k less reads. On the other hand, Canu and MECAT decreased a lot the number of output reads, probably due to post-filtering procedures. Moreover, many of full-length outputs (HALC, LoRDEC, LSC, Proovread, and daccord) increased the mean length of the raw reads while also increasing the number of output bases, showing that they tend to further extend the information contained in the long reads. Trimming almost always decreased the number of output reads, like in HALC(t), LoRDEC(t), Proovread(t), and pbdagcon(t), probably due to post-filtering procedures. However, in LSC(t), trimming has no effect on the number of reads, and in daccord(t), trimming actually increased the number of reads. In half of the trimmed outputs (HALC(t), LoRDEC(t), and LSC(t)), the mean length of the reads was usually preserved, decreasing only around 100bps. However, in the other half (Proovread(t), daccord(t), and pbdagcon(t)), read lengths were, on average, reduced by 200-500bps.

Splitting reads significantly decreased the number of output reads, as expected. LoRDEC(s), PbR(s), and LoRMAS(s) tend to split reads into two or more shorter reads during the correction step, as they return ~2x more reads after correction that are also shorter (mean length of respectively 816bp, 776bp and 497bp, versus 2011bp in raw reads) and overall have significantly less bases in total (loss of respectively 207Mbp, 293Mbp and 553Mbp). HALC(s), on the other hand, managed to increase the number of reads only by 23%, with no significant loss of bases, but still with a significant reduction on the mean length (1378bp). We observe that NaS(µ), based on micro-assembly, obtained a mean length similar to the trimmed outputs (HALC(t), LoRDEC(t), and LSC(t)). This suggests that NaS(µ) has trouble either getting seed short reads or recruiting short reads mapping to the ends of long reads, or assembling the reads mapped to the ends.

These observations indicate that care should be taken when considering which type of output should be used. For example, all split and half of the trimmed outputs should not be used in applications trying to describe the full transcript structure, or distant exons coupling, as the long read connectivity is lost in many cases in these types of outputs.

Overall, no correction tool outperforms all the others across the metrics analysed in this section. However, hybrid correctors are systematically better than self-correctors at decreasing the error-rate (and preserving the transcriptome diversity, as we will discuss in the next Section). Trimming and splitting usually increase the read accuracy (and also mapping rate, as we see next), but decrease the total amount of bases in the read set and the mean read length, which can lead to loss of long-range information that was present in the raw reads.

2.4 Error-correction facilitates mapping yet generally lowers the number of detected genes

Apart from HALC, LoRDEC, Proovread, and daccord, for which only 85-92% of reads were mapped, corrected reads from all the other tools were mapped at a rate of 94-99%, showing a significant improvement over raw reads (mapping rate of 83.5%). We observe that these four tools with the lowest percentages of mapped reads had high mean read length, indicating that trimming, splitting or discarding reads seems necessary in order to obtain shorter but overall less error-prone reads. In general in all tools (except pbdagcon), trimming and splitting increased the proportion of mapped reads and bases, sometimes significantly (e.g. Proovread). However some tools which do not offer the option to trim or split reads, such as Canu and MECAT, showed very high mapping rate with high mean read length and error-rate. This is related to their aggressive post-filtering measure, which removed a significant portion of the reads (29-33%).

On verifying if error-correctors are able to preserve transcriptome diversity, we can see a striking difference between hybrid and self-correctors: in general, hybrid correctors present a far higher number of detected genes than the self ones. Interestingly, HALC was able to even increase the number of detected genes by 221 with regard to the raw reads, indicating that some genes were maybe not detected before due to imperfect mapping caused by the high error rate. We also found that 72 genes were detected in the raw reads but not in any of the error-corrected outputs. Furthermore, 354 genes are absent from the results of nearly all correction methods (≥ 16 out of 19).

Overall, all hybrid tools presented a satisfactory amount of detected genes, except for NaS(µ), PbR(s) and Proovread(t), while self-correctors did not present any satisfactory results, with Canu, LoRMAS(s) and MECAT reducing by 35%-59% the number of detected genes reported in raw reads. We can also note that trimming
Table 2. Statistics of error correction tools on the 1D run RNA-seq dataset. To facilitate the readability of this table and the next ones, we highlighted values that we deemed satisfactory in green colour, borderline in brown, and unsatisfactory in red, noting that such classification is somewhat arbitrary.

(A) Hybrid tools

Tool	nb reads	mapped reads	mean length	mapped bases	error rate	nb detected genes
Raw	741k	83.5%	2011	1313M	13.72%	16.8k
HALC	741k	88.1%	2174	1469M	1.85%	17.0k
HALC(t)	709k	95.6%	1926	1334M	1.32%	16.8k
HALC(s)	914k	98.8%	1378	1245M	4.5%	16.6k
LoRDEC	677k	85.5%	2097	1289M	3.73%	16.6k
LoRDEC(t)	1388k	95.5%	1953	1106M	1.59%	16.5k
LoRDEC(s)	619k	97.5%	816	1132M	5.45%	16.2k
LSC	619k	97.1%	2212	1179M	4.36%	15.0k
LSC(t)	619k	97.6%	1901	1015M	0.38%	15.6k
NaS(µ)	1321k	98.7%	1931	1400M	0.68%	15.6k
PBcR(s)	738k	99.2%	776	1112M	2.65%	15.6k
Proovread	626k	85.5%	2117	1112M	0.33%	14.6k
Proovread(t)			1796			

(B) Non-hybrid tools

Tool	nb reads	mapped reads	mean length	mapped bases	error rate	nb detected genes
Raw	741k	83.5%	2011	1313M	13.72%	16.8k
Canu	519k	99.1%	2192	1125M	6.43%	12.4k
daccord	675k	92.5%	2102	1350M	5.2%	15.5k
daccord(t)	840k	94.0%	1476	1212M	4.12%	13.9k
LoRMA(s)	1540k	99.4%	497	760M	2.91%	6.8k
MECAT	495k	99.4%	1992	980M	4.57%	10.4k
pbdagcon	778k	98.2%	1473	1136M	5.65%	13.2k
pbdagcon(t)	775k	97.9%	1484	1141M	5.71%	13.2k

As reported by AlignQC. Percentage of bases aligned among mapped reads, taken by counting the M parts of CIGAR strings in the BAM file. Bases in unmapped reads are not counted.

As reported by AlignQC, using a sample of 1 million bases from aligned reads segments.

and splitting systematically resulted in a loss of the sensitivity to detect new genes. Moreover, except for HALC(s), tools with very high percentage of mapped reads (NaS(µ), PBcR(s), Proovread(t)), Canu, LoRMA(s), MECAT, pbdagcon, pbdagcon(t)) had the largest losses in number of detected genes, hinting that error correction can reduce gene diversity in favor of lower error-rate, and/or that clusters of similar genes (e.g. paralogous) are corrected towards a single gene. Therefore, if preserving the transcriptome diversity is required for the downstream application, self-correctors should be avoided altogether, along with some hybrid correctors (NaS(µ), PBcR(s), and Proovread(t)).
2.5 Detailed error-rate analysis

The high error-rate of transcriptomic long reads significantly complicates their primary analysis [Krizanovic et al. 2018]. While Section 2 presented a general per-base error rate, this section breaks down sequencing errors into several types and examines how each error-correction tool deals with them. A general, and expected, trend that we find in all tools and in all types of errors is that trimming and splitting the reads result in less substitutions, deletions and insertion errors. We will therefore focus in other aspects in this analysis. The data presented here is a compilation of AlignQC results. Note that AlignQC computed the following metrics only on reads that could be aligned, thus unaligned reads are not counted, yet they may possibly be the most erroneous ones. AlignQC also subsampled aligned reads to around 1 million bases to calculate the presented values.

2.5.1 Deletions are the most problematic sequencing errors

Table 3 shows the error rate in the raw reads and in the corrected reads for each tool. In raw reads, deletions are the most prevalent type of errors (7.41% of bases), closely followed by substitutions (5.11%), then insertions (1.2%). LoRDEC, LSC and LSC(t) are the least capable of correcting mismatches (≤2% of them remaining), even though they are all hybrid tools. For LoRDEC, we were able to verify that this is related to the large amount of uncorrected reads in its output (90% totally uncorrected reads out of 741k - 12%), as computed by exactly matching raw reads to its corrected output. For LSC and LSC(t), we were unable to pinpoint a reason. The majority of other hybrid tools (HALC, HALC(t), HALC(s), NaS(µ), PBcR(s), Proovread, Proovread(t)) result in less than 1% of substitution errors. Surprisingly, the non-hybrid tools also presented very low mismatches rates: all of them showed rates lower than 1%, except for Canu (1.33%) and daccord (1.1%). This suggests that the rate of systematic substitution errors in ONT data is low, as self-correctors were able to achieve results comparable to the hybrid ones, even without access to Illumina data. Still, the three best performing tools were all hybrid (NaS(µ), PBcR(s), and Proovread(t)), which should therefore be preferred for applications that require very low mismatch rates.

The contrast between self and hybrid tools is more visible on deletion errors. In general, all hybrid tools outperformed the non-hybrid ones (the only exception is LSC (2.64%), with higher deletion error rate than LoRMA(s) (2.51%). Although in the hybrid ones, LoRDEC (2.15%), LSC (2.64%), LSC(t) (1.94%) and Proovread (1.51%) still showed moderate rates of deletions, all the other seven corrected outputs were able to lower the deletion error rate from 7.4% to less than 1%. Notably, HALC(s) and Proovread(t) to less than 0.2%, and NaS(µ) to less than 0.1%. All non-hybrid tools presented a high rate (3% or more) of deletion errors, except LoRMA(s) (2.51%). This comparison suggests that ONT reads exhibit systematic deletions, that cannot be well corrected without the help of Illumina data. The contribution of homopolymer errors will be specifically analyzed in Section 2.5.2.

Considering insertion errors, all tools performed equally well. It is worth noting that several hybrid (HALC(s), LoRDEC(s), NaS(µ), and Proovread(t) and non-hybrid tools (LoRMA(s), MECAT, pbdagcon, and pbdagcon(t)) achieved sub-0.1% insertion rate errors.

Overall, hybrid tools outperformed non-hybrid ones in terms of error-rate reduction. However, the similar results obtained by both types of tools when correcting mismatches and insertions, and the contrast in correcting deletions, seem to indicate that the main advantage of hybrid correctors over self-correctors is the removal of systematic errors using Illumina data.
Table 3. Error rate in the raw reads and in the corrected reads for each tool, on the 1D run RNA-seq dataset, computed from 1M random aligned bases.

(A) Hybrid tools

Raw	HALC	HALC(t)	HALC(s)	LoRDEC	LoRDEC(t)	LoRDEC(s)	LSC	LSC(t)	NaS(µ)	PBcR(s)	Proovread	Proovread(t)	
Error rate	13.72	1.85%	1.32%	0.44%	4.5%	3.73%	1.59%	5.45%	4.36%	0.38%	0.68%	2.65%	0.33%
Mismatch	5.11%	0.79%	0.54%	0.22%	2.04%	1.76%	1.13%	2.35%	2.01%	0.2%	0.18%	0.93%	0.13%
Deletion	7.41%	0.85%	0.64%	0.17%	2.15%	1.73%	0.39%	2.64%	1.94%	0.09%	0.3%	1.51%	0.18%
Insertion	1.2%	0.21%	0.14%	0.05%	0.32%	0.24%	0.07%	0.47%	0.4%	0.08%	0.19%	0.22%	0.03%

(B) Non-hybrid tools

Raw	Canu	daccord	daccord(t)	LoRMA(s)	MECAT	pbdagcon	pbdagcon(t)	
Error rate	13.72	6.43%	5.2%	4.12%	2.91%	4.57%	5.65%	5.71%
Mismatch	5.11%	1.33%	1.1%	0.67%	0.37%	0.33%	0.49%	0.49%
Deletion	7.40%	4.82%	3.82%	3.27%	2.51%	4.18%	5.06%	5.17%
Insertion	1.20%	0.28%	0.28%	0.19%	0.04%	0.06%	0.09%	0.05%

Table 4. Homopolymer error rate in the raw reads and in the corrected reads for each tool, on the 1D run RNA-seq dataset, computed from 1M random aligned bases.

(A) Hybrid tools

Raw	HALC	HALC(t)	HALC(s)	LoRDEC	LoRDEC(t)	LoRDEC(s)	LSC	LSC(t)	NaS(µ)	PBcR(s)	Proovread	Proovread(t)	
Homop. deletion	2.96%	0.28%	0.19%	0.05%	0.77%	0.63%	0.19%	0.62%	0.42%	0.02%	0.1%	0.46%	0.04%
Homop. insertion	0.38%	0.05%	0.03%	0.01%	0.09%	0.07%	0.02%	0.11%	0.09%	0.01%	0.02%	0.06%	0.01%

(B) Non-hybrid tools

Raw	Canu	daccord	daccord(t)	LoRMA(s)	MECAT	pbdagcon	pbdagcon(t)	
Homop. deletion	2.96%	2.46%	2.14%	2.05%	1.82%	2.09%	2.26%	2.27%
Homop. insertion	0.38%	0.08%	0.06%	0.03%	0.01%	0.01%	0.02%	0.01%

and the expected slight increase in C_G due to better mapping, except for MECAT, which presented the lowest correlation and a significant drop in C_G. All tools systematically presented a similar trend and lower correlation values on C_T compared to C_G, except for MECAT, which presented the lowest correlation and a significant drop in C_G. The behaviour of the tools in the isoform level are in coherence with their behaviour in the gene level (C_G): split outputs inflate C_T; MECAT deflates it; and all the others present a slight increase.

2.7 Error-correction perturbs gene family sizes

Table 2 indicates that error correction generally results in a lower number of detected genes. In this section we explore the impact of error-correction on paralogous genes. By paralogous gene family, we denote a set of paralogs computed from Ensembl (see Section 4.3). Figure 2 represents the changes in sizes of paralogous gene families before and after correction for each tool, in terms of number of genes expressed within a given family. Overall, error-correctors do not strictly preserve the sizes of gene families.

“output” — 2019/3/14 — 15:16 — page 8 — #8
Comparative assessment of long-read error-correction software applied to RNA-sequencing data

![Comparison of read mapping to genes](image)

Fig. 1. Number of reads mapping to genes (C\textsubscript{G}) before and after correction for each tool. The genes taken into account here were expressed in either the raw dataset or after the correction by the given tool.
Correction more often shrinks families of paralogous genes than it expands them, likely due to erroneous correction in locations that are different between paralogs. In summary, 36-87% of gene families are kept of the same size by correctors, 1-17% are expanded and 6-61% are shrunk. Supplementary Material Figure S2 shows the magnitude of expansion/shrinkage for each gene family.

2.8 Error-correction perturbs isoform diversity

We further investigated whether error-correction introduces a bias towards the major isoform of each gene. Note that AlignQC does not directly address this question. To answer it, we computed the following metrics: number of isoforms detected in each gene before and after correction by alignment of reads to genes, coverage of lost isoforms in genes having at least 2 expressed isoforms, and coverage of the major isoform before and after correction.

2.8.1 The number of isoforms varies before and after correction

Figure 2 shows the number of genes that have the same number of isoforms after correction, or a different number of isoforms (~3, -2, -1, +1, +2, +3). In this Figure, only the genes that are expressed in both the raw and the corrected reads (for each tool) are taken into consideration. The negative (resp. positive) values indicate that isoforms were lost (resp. gained). We observe that a considerable number of genes (~1.9k for LoRDEC(s), LSC and PBcR(s), and ~5.4k for MECAT) lose at least one isoform in all tools, which suggests that current methods reduce isoform diversity during correction. NaS(µ), Proovread(t), Canu, and MECAT tend to lose isoforms the most, and HALC(s), LoRDEC(s), and PBcR(s) identify the highest number of new isoforms after correction. It is however unclear whether these lost and new isoforms are real (present in the sample) or due to mapping ambiguity, as these three latter tools split corrected reads into shorter sequences that may map better to other isoforms. We observe that the effect of trimming, on the other hand, is generally slight. Overall, the number of isoforms is mostly unchanged in LoRDEC, LoRDEC(t), and LSC.

2.8.2 Multi-isoform genes tend to lose lowly-expressed isoforms after correction

Figure 2 explores the relative coverage of isoforms that were possibly lost after correction, in genes having two or more expressed isoforms. The relative coverage of a transcript is the number of raw reads mapping to it over the number of raw reads mapping to its gene in total. Only the genes that are expressed in both the raw and the error-corrected reads (for each tool) are taken into consideration here. We anticipated that raw reads that map to a minor isoform are typically either discarded by the corrector, or modified in such a way that they now map to a different isoform, possibly the major one. The effect is indeed relatively similar across all correctors, except for MECAT, that tends to remove a higher fraction of minor isoforms, and LoRDEC and LSC, that tend to be the most conservatives. We can also note that trimming and splitting reads increase even further isoform losses in all tools, except for phdagger. This can be explained by the fact that lowly-expressed isoforms possibly share regions (e.g. common exons) with highly-expressed isoforms, and these shared regions are usually better corrected than regions that are unique to the lowly-expressed isoforms. If read splitting then takes places, such unique regions will then be removed from the output. Even if there are variations between a highly-expressed isoform \(I \) and a lowly-expressed isoform \(i \), if these variations are relatively small (e.g. a small exon skipping) and are flanked by long shared regions, it is probable that the methods will truncate the variation, correcting the unique fragment of \(i \) into \(I \), and potentially losing the signal that \(i \) is expressed (this is explored in details in Section 2.8.3). This result suggests that current error-correction tools overall do not conservatively handle reads that belong to low-expression isoforms.

2.8.3 Minor isoforms are corrected towards major isoforms

We define a major isoform of a gene as the isoform with the highest coverage of that gene in the raw dataset, all other isoforms are considered to be minor. To follow-up on the previous subsection, we investigate whether correctors tend to correct minor isoforms towards major isoforms. We do so by comparing the difference...
Comparative assessment of long-read error-correction software applied to RNA-sequencing data

![Comparison of error-correction software](https://example.com/comparison.png)

Fig. 3. Histogram of genes having more or less isoforms after error-correction.

Fig. 4. Histogram of isoforms that are lost after correction, in relation to their relative transcript coverage, in genes that have 2 or more isoforms. The y axis reflects the percentage of isoforms lost in each bin. Absolute values can be found in the Supplementary Material Figure S3.

of coverage of the major and the minor isoforms before and after correction. In Figure 3, we observe that the coverage of the major isoform generally slightly increases after correction. The exceptions are tools that split reads (HALC(s), LoRDEC(s), PBcR(s), and LoRMA(s)), where the coverage is increased significantly, and MECAT, where the coverage decreases significantly, likely due to a feature of MECAT's own correction algorithm. Since these 5 tools seem to heavily distort the coverage of isoforms due to aggressive splitting or filtering steps, we will focus now on the 14 other results. The slight increase of a transcript coverage after correction is expected, as already discussed in Section 2.6: unmapped uncorrected reads that were unmapped can become mappable after correction. Therefore, the effect presented in Figure 3 could be simply due to reads being corrected to their original respective isoforms, instead of correction inducing a switch from a minor isoform to the major isoform. To verify this hypothesis, Supplementary Material Figure S4 shows that the coverage of the minor isoforms usually decreases after correction ($R^2 \in [0.5, 0.8]$), except for: i) tools that split reads (HALC(s), LoRDEC(s), PBcR(s), LoRMA(s)), which skew even more the coverage of minor isoforms, and ii) both HALC and HALC(t). This indicates that error-correction tools tend to correct reads towards the major isoforms. It is worth noting that the increase of the coverage of the major isoform is not pronounced. This is expected, as the sum of the expression of the minor isoforms is, by nature, a small fraction of the total gene expression. On the other hand, the correlation of the coverage of the minor isoforms before
and after correction are far more spurious, suggesting a stronger effect. It is noteworthy that correction biases with respect to the major isoform do not appear to be specific to self-correctors nor to hybrid correctors, but an effect that happens in both types of correctors.

2.8.4 Correction towards the major isoform is more prevalent when the alternative exon is small
In order to observe if particular features of alternative splicing have an impact on error-correction methods, we designed a simulation over two controlled parameters: skipped exon length and isoform relative expression ratio. Using a single gene, we created a mixture of two simulated alternative transcripts: one constitutive, one exon-skipping. Several simulated read datasets were created with various relative abundances between major and minor isoform (in order to model a local differential in splicing isoform expression), and sizes of the skipped exon. Due to the artificial nature and small size of the datasets, many of the error-correction methods could not be used. We thus tested these scenarios on a subset of the correction methods.

In Figure 8, we distinguish results from hybrid and self-correctors, presented with respectively 100x coverage of short reads and 100x coverage of long reads, and only 100x coverage of long reads. Results on more shallow coverage (10x) and impact of simulation parameters on corrected reads sizes are presented in Supplementary Material Sections S7 and S8. Overall, hybrid correctors are less impacted by isoform collapsing than self-correctors. LoRDEC shows the best capacity to preserve isoforms in presence of alternatively skipped exons. Thus, regardless of the abundance of inclusion reads in the dataset to be corrected, 99% of reads from inclusion are corrected to inclusion form for an exon size of 10, and 100% of reads from inclusion are corrected to inclusion form for exon sizes of 50 and 100. However with less coverage, e.g. due to low-expressed genes and rare transcripts, all tools tend to mis-estimate the expression of isoforms (see Supplementary Material Sections S7 and S8). Self-correctors generally have a minimum coverage threshold (only daccord could be run on the 10x coverage dataset of long reads, with rather erratic results, see Supplementary Material Section S8). Even with higher coverage, not all correctors achieve to correct this simple instance. Among all correctors, only LoRDEC seems to report the expected number of each isoforms consistently in all scenarios. We could not derive any clear trend concerning the relative isoform ratios, even if the 90% ratio seems consistently in all scenarii. We could not derive any clear trend concerning the relative isoform ratios, even if the 90% ratio seems to favor overcorrection towards the major isoform. Skipped exon length seems to impact both hybrid and self-correctors, small exons being a harder challenge for correctors.

2.9 Error-correction affects splice site detection
The identification of splice sites from RNA-seq data is an important but challenging task. When mapping reads to a reference genome, mapping algorithms typically guide spliced alignments using either a custom scoring function that takes into account common splices sites patterns (e.g. GT-AG), and/or a database of known junctions. With long reads, the high error rate makes precise splice site detection even more challenging, as indels (see Section 2.3) confuse aligners, shifting predicted spliced alignments away from the true splice sites.

In this section, we evaluate how well splice sites are detected before and after error-correction. Figure 7 shows the number of correctly and incorrectly mapped splice sites for the raw and corrected reads, as computed by AlignQC. One would expect that a splice site is correctly detected when little to no errors are present in reads mapping around it. Thus, as expected, the hybrid error correction tools present a clear advantage over the non-hybrid ones, as they better decrease the per-base error rate. In the uncorrected reads, 27% of the splice sites were incorrectly mapped, which is brought down to less than 1.2% in 8 hybrid corrected outputs: HALC, HALCl(), HALC(s), LoRDEC(s). Name shown to a (possibly annotated) reference genome, mapping algorithms usually guide spliced alignments using either a custom scoring function that takes into account common splices sites patterns (e.g. GT-AG), and/or a database of known junctions. With long reads, the high error rate makes precise splice site detection even more challenging, as indels (see Section 2.3) confuse aligners, shifting predicted spliced alignments away from the true splice sites.

In this section, we evaluate how well splice sites are detected before and after error-correction. Figure 7 shows the number of correctly and incorrectly mapped splice sites for the raw and corrected reads, as computed by AlignQC. One would expect that a splice site is correctly detected when little to no errors are present in reads mapping around it. Thus, as expected, the hybrid error correction tools present a clear advantage over the non-hybrid ones, as they better decrease the per-base error rate. In the uncorrected reads, 27% of the splice sites were incorrectly mapped, which is brought down to less than 1.2% in 8 hybrid corrected outputs: HALC, HALCl(), HALC(s), LoRDEC(s). Name shown to a (possibly annotated) reference genome, mapping algorithms usually guide spliced alignments using either a custom scoring function that takes into account common splices sites patterns (e.g. GT-AG), and/or a database of known junctions. With long reads, the high error rate makes precise splice site detection even more challenging, as indels (see Section 2.3) confuse aligners, shifting predicted spliced alignments away from the true splice sites.

2.10 Running time and memory usage of error-correction tools
Table 5 shows the running time and memory usage of all evaluated tools, measured using 2011 time. The running time is the elapsed wall clock time (in hours) and the memory usage is the maximum resident set size (in gigabytes). All tools were run with 32 threads. Overall, all tools were able to correct the dataset within 7 hours, except for LSC, NaS, PBcR, Proovread, and Proovread, which took 63-116 hours, but also achieved some of the lowest post-correction error rates in Table 4 (except for LSC). In the uncorrected reads, 27% of the splice sites were incorrectly mapped, which is brought down to less than 1.2% in 8 hybrid corrected outputs: HALC, HALCl(), HALC(s), LoRDEC(s). Name shown to a (possibly annotated) reference genome, mapping algorithms usually guide spliced alignments using either a custom scoring function that takes into account common splices sites patterns (e.g. GT-AG), and/or a database of known junctions. With long reads, the high error rate makes precise splice site detection even more challenging, as indels (see Section 2.3) confuse aligners, shifting predicted spliced alignments away from the true splice sites.

In this section, we evaluate how well splice sites are detected before and after error-correction. Figure 7 shows the number of correctly and incorrectly mapped splice sites for the raw and corrected reads, as computed by AlignQC. One would expect that a splice site is correctly detected when little to no errors are present in reads mapping around it. Thus, as expected, the hybrid error correction tools present a clear advantage over the non-hybrid ones, as they better decrease the per-base error rate. In the uncorrected reads, 27% of the splice sites were incorrectly mapped, which is brought down to less than 1.2% in 8 hybrid corrected outputs: HALC, HALCl(), HALC(s), LoRDEC(s). Name shown to a (possibly annotated) reference genome, mapping algorithms usually guide spliced alignments using either a custom scoring function that takes into account common splices sites patterns (e.g. GT-AG), and/or a database of known junctions. With long reads, the high error rate makes precise splice site detection even more challenging, as indels (see Section 2.3) confuse aligners, shifting predicted spliced alignments away from the true splice sites.

In this section, we evaluate how well splice sites are detected before and after error-correction. Figure 7 shows the number of correctly and incorrectly mapped splice sites for the raw and corrected reads, as computed by AlignQC. One would expect that a splice site is correctly detected when little to no errors are present in reads mapping around it. Thus, as expected, the hybrid error correction tools present a clear advantage over the non-hybrid ones, as they better decrease the per-base error rate. In the uncorrected reads, 27% of the splice sites were incorrectly mapped, which is brought down to less than 1.2% in 8 hybrid corrected outputs: HALC, HALCl(), HALC(s), LoRDEC(s). Name shown to a (possibly annotated) reference genome, mapping algorithms usually guide spliced alignments using either a custom scoring function that takes into account common splices sites patterns (e.g. GT-AG), and/or a database of known junctions. With long reads, the high error rate makes precise splice site detection even more challenging, as indels (see Section 2.3) confuse aligners, shifting predicted spliced alignments away from the true splice sites.
Comparative assessment of long-read error-correction software applied to RNA-sequencing data

Fig. 5. Coverage of the major isoform of each gene before and after error-correction. The x-axis reflects the number of reads mapping to the major isoform of a gene before correction, and the y-axis is after correction. Blue line: regression, black line: x=y.
Fig. 6. Mapping of simulated raw and error-corrected reads to two simulated isoforms, and measurements of the percentage of reads mapping to the major isoform. The two isoforms represent an alternatively skipped exon of variable size: 10 bp, 50 bp, 100 bp. Left: isoform structure conservation using 100X short reads coverage and 10X long reads, using three error-correction programs, one per row: LoRDEC, PBcR, and proovread. Right: same with three self-correctors and 100X long reads: daccord, LoRMA and pbdagcon. Columns are alternative exon sizes. Bars are plots for each isoform ratio (50%; 75% and 90%) on the x-axis. On the y-axis, the closer a bar is to its corresponding ratio value on the x, the better. For instance, the bottom left light blue bar corresponds to a 50% isoform ratio with an exon of size 10, and we do not retrieve a 50% ratio after correction with Proovread (the bar does not go up to 50% on the vertical axis, but around 75% instead). The same layout applies to the right plot, where self-correctors are presented.

Fig. 7. Statistics on the correctly and incorrectly mapped splice sites (abbreviated SSs) for the uncorrected (raw) and corrected reads. Measures presented in the previous analysis (made with GMAP). We thus further mapped with Minimap2 (version 2.14-r883 with parameters -ax splice) the following read datasets: i) raw reads; ii) LoRDEC, the corrector with the least proportion of mapped reads, but which preserves well the transcriptome diversity; iii) LoRMA(s), the tool with the highest ratio of mapped reads and number of reads, but with the lowest mean reads length, number of detected genes, and number of bases; iv) Proovread(t), the method with the lowest error rate, and highest rate of correctly mapped
Table 5. Running time and memory usage of error-correction tools on the 1D run RNA-seq dataset

Tool	Running time (h)	Memory usage (GB)
HALC	3.6h	60GB
LoRDEC	2.4h	5.6GB
LSC	99.5h	2.7GB
NbS	63.2h	3GB
PB-R	116h	166.5GB
Proovread	0.7h	53.6GB
Canu	6.9h	2.2GB
daccord	daccord trimmed	6.9GB (27.2GB)
MECAT	daccord trimmed	79GB (27.2GB)
pbdecon	pbdecon trimmed	9.9GB (27.2GB)
pbdecon trimmed		6.4GB (27.2GB)

1NbS was ran in batches on a different system (TGCC cluster) than other tools, total running time was estimated based on subset of batches.
2PB-R was ran on a machine different from the others.
3daccord and pbdecon need DAZZ2J and DALIGNER to be ran before performing their correction. DAZZ2J execution time and memory usage was disregarded due to being negligible. DALIGNER, however, took 0.5h and 27.2Gb of RAM.
4The runtime in parenthesis denotes the runtime of the tool plus DALIGNER. The memory usage in parenthesis denotes the maximum memory usage between the tool and DALIGNER.
5LoRMA was using more than its allocated 32 cores in some (short) periods of time during the run.

The data shown and discussed in this section suggest that the main takeaway points from the results presented in the previous sections should not change when GMAP is replaced by Minimap2. The full report of the analysis of both mappers, containing further details, can be found in the support page of our method: https://leelisa.github.io/LK_EC_analyser-support/

2.12 Analysing human Nanopore direct RNA-seq data

We further analysed a human Nanopore direct RNA-seq dataset from the Nanopore-WGS-Consortium (see Section 3.4 and 3.5 for details). Since there was no corresponding Illumina sequencing for this dataset, we were able to evaluate only the non-hybrid error correction tools. Moreover, although LoRMA could be successfully executed, AlignQC could not process its output so we removed LoRMA from the evaluation. Table 7 presents some main statistics of non-hybrid error correction tools on the aforementioned dataset. In the rest of this section, we highlight the major differences and similarities between cDNA and direct RNA datasets, keeping in mind that they were performed on two different species (human and mouse, respectively).

In general, self-correctors discarded more reads on the direct RNA dataset than on the 1D cDNA dataset. Daccord(t) discarded the least number of reads (102k), while Canu and MECAT discarded a considerable amount of reads (361k and 670k, respectively), due to post-correction filtering. Due to our choice of parameters, the shortest reads in Canu and MECAT outputs were of lengths 101 and 100 bases, respectively. However, the removal of shorter reads explains only a fraction of the read losses, as the raw dataset contained only 59k reads smaller than 101 bases. GMAP mapped a considerably better than GMAP on mapping splice sites correctly. The difference between both mappers when they performed well, mapping more than 96.9% of the splice sites, was not significant (<1.15%). The largest discrepancies can be seen on mapping the splice sites of the raw and Canu reads, with Minimap2 correctly aligning 18.49% and 6.64% more splice sites than GMAP.

We can thus conclude that Minimap2 was slightly better on mapping reads and bases, and significantly better at correctly mapping splice sites. On the other hand, GMAP was considerably better at detecting genes. The error rate of the reads mapped by both tools are very similar, with GMAP reporting slightly more mismatches, and Minimap2 reporting slightly more deletions and insertions. However, these differences are mainly concentrated on the raw reads dataset, which is the less accurate.

The data shown and discussed in this section suggest that the main takeaway points from the results presented in the previous sections should not change when GMAP is replaced by Minimap2. The full report of the analysis of both mappers, containing further details, can be found in the support page of our method: https://leelisa.github.io/LK_EC_analyser-support/
higher than on the 1D cDNA dataset. The distribution of errors in the direct RNA dataset was more balanced, with mismatches and deletions having almost the same representation (around 5.85%), but insertions still being less represented (2.87%). The correction behaviour of the tools is similar across both datasets: insertion is the best corrected type of error, followed by mismatches, with satisfactory results, and deletions, in which the methods overall did a poor job. In particular, pbdagcon and pbdagcon(t) even increased the deletion error rate by 0.84% and 0.99%, respectively.

The behaviour was similar on correcting homopolymer errors: homopolymer deletions were poorly corrected, with MECAT, pbdagcon and pbdagcon(t) not reducing the homopolymer deletion error rate at all, while homopolymer insertions were well corrected. The number of detected genes in the raw direct RNA dataset (14.1k) is less than in the raw 1D cDNA dataset (16.8k), although this is consistent with the difference in human/mouse genes count. Moreover, the tools also lose more genes in the direct RNA dataset. In particular, MECAT loses 6.4k genes in the 1D cDNA dataset, and 7.8k in the direct RNA dataset. The rate of correctly mapped splice sites was slightly higher in the raw direct RNA reads (76.95% vs 72.94%), but in the error corrected reads, this rate was highly similar (the largest difference was 0.44% in the daccord(t) correction).

As a result of our evaluation, and in accordance with the cDNA analysis, care should be taken when applying self-correctors to remove errors from Nanopore direct RNA-seq data. For example, Canu and MECAT present the undesirable side effect of discarding a lot of input reads, thus reducing the amount of information in the long reads, and decreasing considerably the number of detected genes. Although the tools perform well at correcting mismatches and insertions, they have trouble correcting deletions. In particular, MECAT, pbdagcon, and pbdagcon(t) perform rather poorly, with the last two even increasing the deletion error rate. Nonetheless, all tools manage to decrease the error rate so that the large majority of reads are mappable, increasing the proportion of mapping from 76% in the raw reads to at least 97.5%. If very low error-rate (1%) must be achieved due to requirements of a downstream application, then it seems that using hybrid correction tools is a must.

The full report of the analysis output by our method on this dataset, containing further details, can be found at https://leosti.gitlab.io/LR_EC_analyser_support/.

3 DISCUSSION

This work shed light on the versatility of long-read DNA error-correction methods, which can be successfully applied to error-correction of RNA-sequencing data as well. In our tests, error rates can be reduced from 13.7% in the original reads down to as low as 0.3% in the corrected reads. This is perhaps an unsurprising realization as the error-correction of RNA-sequencing data presents similarities with DNA-sequencing, however a collection of caveats are described in the Results section. Most importantly, the number of genes detected by alignment of corrected reads to the genome was reduced significantly by several error-correction methods, mainly the non-hybrid ones. Furthermore, depending on the method, error-correction results have a more or less pronounced bias towards correction to the major isoform for each gene, jointly with a loss of the most lowly-expressed isoforms. We provided a software that enables automatic benchmarking of long-read RNA-sequencing error-correction software, in the hope that future error-correction methods will take advantage of it to avoid biases.

Detailed error-rate analysis showed that while hybrid correctors have lower error rates than self-correctors, the latter achieved comparable performance to the former in correcting substitutions and insertions. Deletions appear to be caused by systematic sequencing errors, making them fundamentally hard (or even

Table 6. GMAP and Minimap2 results across a selection of metrics for the raw, LoRDEC, LoRMA(s), Proovread(t), and Canu reads. (G) indicates GMAP results, and (M2) Minimap2 results.

Metric	raw(G)	raw(M2)	LoRDEC(G)	LoRDEC(M2)	LoRMA(s)(G)	LoRMA(s)(M2)	Proovread(t)(G)	Proovread(t)(M2)	Canu(G)	Canu(M2)
mapped reads	83.5%	86.8%	85.5%	87.4%	99.9%	99.8%	99.4%	99.4%	99.1%	99.1%
mapped bases	89.0%	91.0%	90.6%	92.6%	99.5%	99.3%	99.2%	99.3%	92.0%	93.2%
error rate	14.11%	13.79%	4.67%	4.65%	0.33%	0.31%	2.9%	2.73%	6.2%	5.97%
mismatches	5.26%	3.98%	2.15%	1.39%	0.15%	0.11%	0.37%	0.22%	1.22%	0.85%
deletions	7.58%	8.09%	2.17%	2.29%	0.14%	0.17%	2.51%	2.46%	4.72%	4.79%
insertions	1.26%	1.73%	0.34%	0.47%	0.04%	0.03%	0.05%	0.05%	0.26%	0.32%
ab detected bases	16.8k	16.2k	16.8k	16.0k	14.6k	14.2k	6.8k	6.3k	12.4k	11.7k
correctly mapped reads	72.97%	91.46%	97.56%	98.69%	99.71%	99.58%	96.92%	98.07%	88.03%	94.67%

a As reported by AlignQC. Percentage of bases aligned among mapped reads, taken by counting the M parts of CIGAR strings in the BAM file. Bases in unmapped reads are not counted.

b As reported by AlignQC, using a sample of 1 million bases from aligned reads segments.

c as stands for splice sites.

d 100.0% is obtained due to rounding. A more precise mapped reads rate is 99.988%.
Table 7. Statistics of non-hybrid error correction tools on one human Nanopore direct RNA-sequencing data from the Nanopore-WGS-Consortium.

Tool	Raw	Canu	daccord	daccord(t)	MECAT	pbdagcon	pbdagcon(t)
nb reads	894k	533k	744k	792k	224k	772k	771k
mapped reads							
mean length	739	917	849	755	1095	666	675
nb of bases	587M	484M	620M	591M	243M	510M	516M
error rate\(a\)	14.61%	7.61%	6.03%	5.47%	6.36%	8.1%	8.26%
mismatches	5.79%	2.12%	1.56%	1.3%	0.7%	1.19%	1.18%
deletions	5.95%	4.77%	4.13%	3.9%	5.5%	6.79%	6.84%
insertions	2.87%	0.72%	0.34%	0.27%	0.17%	0.12%	0.14%
homop. deletions	2.18%	2.01%	1.84%	1.81%	2.24%	2.18%	2.22%
homop. insertions	1.13%	0.3%	0.14%	0.11%	0.09%	0.06%	0.07%
nb detected genes	14.1k	8.8k	12.3k	10.8k	6.3k	10.8k	10.1k
correctly mapped ss\(b\)	76.95%	87.97%	92.52%	93.84%	92.86%	91.16%	91.14%

\(a\) As reported by AlignQC, using a sample of 1 million bases from aligned reads segments.

\(b\) ss stands for splice sites.

As a result, we conclude that no evaluated corrector outperforms all the others across all metrics and is the most suited in all situations, and the choice should be guided by the downstream analysis, yet hybrid correction tools generally outperformed the self-correctors. For quantification, we have shown that error-correction introduces undesirable coverage biases, as per Section 2.6, therefore we would recommend avoiding this step altogether. For isoform detection, HALC, LoRDDEC, LSC, and Proovread (only in full-length mode) appear to be the methods of choice as they result in the highest number of detected genes in Table 2 and also preserve the number of detected isoforms as per Section 2.8. If Illumina reads are not available, then daccord (only in full-length mode) seems to be the best choice. For splice site detection, we recommend using hybrid correctors, preferably HALC, NaS, PBcR or Proovread, as per Section 2.9. The same four tools (however, HALC should be in split mode, and Proovread, in trimmed mode) are also recommended if downstream analyses require very low general error rate. Finally for all other applications, we make some general recommendations. A reasonable balance appears to be achieved by tools with no unsatisfactory values in Table 2: HALC(t), NaS(µ), and Proovread(t). If Illumina reads are unavailable, then the best overall self correctors seem to be daccord(t), pbdagcon and pbdagcon(t). Moreover, trimming and splitting usually increase the mapping rate and the read accuracy, but can lead to loss of information that was present in the raw reads, complicating the correct identification of genes.
Our analyses relied on a single mapping software (GMAP [20] and Watanabe [2005]) to align raw and error-corrected reads, as in previous benchmarks [Weiraether et al. [2017], Križanović et al. [2018]]. However, we were also able to verify that Minimap2 [Li et al. 2018], another widely used mapper, produces similar results than GMAP (see Section 2.11), and thus the main messages of the analyses presented in this paper should not change by replacing GMAP by Minimap2.

As a side note, AlignQC reports that raw reads contained 1% of chimeric reads, i.e., either portions of reads that align to different loci, or to overlapping loci. The number of chimeric reads after error-correction remains in the 0.7%-1.3% range except for LoRD2(S)(0.2%), PB2R(U)(0.1%), Proovead1(0.1%), LoRMA(s)(0.04%), and MECAT(0.2%), which either correctly split reads or discarded chimeric ones. We observe that HALC(4.2%), HALC(3.9%), and daccord(1.7%) increased considerably the proportion of chimeric reads in the output.

Furthermore, we focused our evaluation on a single technology: Nanopore long reads. We sequenced cDNA from 4 aliquots (250 ng total RNA) using 1D reads representing around 2 Gbp of data with an average size of 1650 bp. These reads were then filtered in silico to remove mRNAs and rRNAs using Bacterial Genomes (BGI). The output of this process was used as input for the alignment and correction tools. The BALR analyser, available at https://gitlab.com/leoisl/LR_EC_analyser, was developed using the Python language to analyze the output of long reads error correctors. The required arguments are the BAM files of the raw and corrected reads aligned to a reference annotated genome, as well as the reference genome in FASTA file format and the reference annotation in GTF file format. A file specifying the paralogous gene families can also be provided if plots on gene families should be created. In our main analysis, gene families were computed by selecting all paralogous from Ensembl e7 mouse genes with 80%+ identity. Note that paralogs from the same family may have significantly different lengths, and no threshold was applied with respect to coverage. The complete selection procedure is reported here: https://gitlab.com/leoisl/LR_EC_analyser/blob/master/GettingParalogs.txt. The main processing of our method involves running the AlignQC software [Weiraether et al. 2017] on the input BAMs and parsing its output to create custom plots. It then aggregates information into a HTML report. For example, Tables 4-10 were compiled from AlignQC results, as well as Tables 2 and 11. Figures 1-10 were created processing text files built by AlignQC called "Raw data" in their output. In addition, an in-depth gene and transcript analysis can be performed using the IGV.js library https://github.com/igvteam/igv.js on the input BAMs and parsing its output to create custom plots. It then aggregates information into a HTML report. For example, Tables 4-10 were compiled from AlignQC results, as well as Tables 2 and 11. Figures 1-10 were created processing text files built by AlignQC called "Raw data" in their output. In addition, an in-depth gene and transcript analysis can be performed using the IGV.js library https://github.com/igvteam/igv.js.

4 METHODS

4.1 Nanopore library preparation and sequencing

RNA MinION sequencing cDNA were prepared from 4 aliquots (250 ng each) of mouse commercial total RNA (brain, Clontech, Curt 366001), according to the Oxford Nanopore Technologies Ltd. Oxford Nanopore Technologies Ltd. (Oxford Nanopore Technologies Ltd. Oxford, UK) protocol "1D cDNA by ligation (SQK-LSK108)". The data generated by MinION software (MinKNOW 1.2.1, Metrichor 2.43) were stored and organized using a Horstal Data Format. FASTA reads were extracted from MinION HDF files using poretools [Loman and Quinlan 2014]. We obtained 1,256,967 Nanopore 1D reads representing around 2 Gbp of data with an average size of 1650 bp and a N50 of 1885 bp. These reads were then filtered in silico to remove mRNAs and rRNAs using Bacterial Genomes (BGI) and obtaining 740,776 long reads.

4.2 Illumina library preparation and sequencing

RNA-Seq library preparations were carried out from 500 ng total RNA using the TruSeq Stranded mRNA kit (Illumina, San Diego, CA, USA), which allows mRNA strand orientation (sequence reads occur in the same orientation as anti-sense RNA). After quantification by qPCR, each library was sequenced using 151 bp paired end reads chemistry on a HiSeq4000 Illumina sequencer.
“output” — 2019/3/14 — 15:16 — page 19 — #19

KEY POINTS

- Long-read transcriptome sequencing is hindered by high error rates that affect analyses such as the identification of isoforms, exon boundaries, open reading frames, and the creation of gene catalogues.
- This review evaluates the extent to which existing long-read DNA error correction methods are capable of correcting cDNA Nanopore reads.
- Existing tools significantly lower the error rate, but they also significantly perturb gene family sizes and isoform diversity.

ACKNOWLEDGEMENTS

The authors thank the ASTER consortium, in particular Camille Sessegolo and Vincent Lacroix, for fruitful discussions. LL acknowledges CNPq/Brazil for the support. This work was performed using the computing facilities of the CC LBBE/PRABI and the France Génomique e-infrastructure (ANR-10-INBS-09-08).

FUNDING

This work was supported by the French National Research Agency [ANR ASTER, ANR-16-CE23-0001]; the INCEPTION project [PIA/ANR-16-CONV-0005]; and the Brazilian Ministry of Science, Technology and Innovation (in portuguese, Ministério da Ciência, Tecnologia e Inovação - MCTI) through the National Counsel of Technological and Scientific Development (in portuguese, Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq), under the Science Without Borders (in portuguese, Ciências Sem Fronteiras) scholarship grant [process number 203362/2014-4 to LL].

COMPETING INTERESTS

JMA is one of the authors of the NaS error-correction tool [Madouri et al. 2015]. However, this study was designed and performed with no bias towards this particular tool. JMA is part of the MinION Access Programme (MAP) and received travel and accommodation expenses to speak at Oxford Nanopore Technologies conferences.

BIOGRAPHICAL NOTE

All authors are part of the ASTER project (ANR ASTER) with the purpose of developing algorithms and software for analyzing third-generation sequencing data.

REFERENCES

Trapnell, C., Williams, B.A., Pertea, G. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nature Biotechnology*, 28(5):511–515, may 2010.

Shao, M. and Kingsford, C. Accurate assembly of transcripts through phase-preserving graph decomposition. *Nature Biotechnology*, 35(12):1167–1169, nov 2017.

Guttman, M., Garber, M., Levin, J.Z. et al. Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. *Nature Biotechnology*, 28(5):503–510, may 2010.

Pertea, M., Pertea, G.M., Antonescu, C.M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nature Biotechnology*, 33(3):290–295, feb 2015.

Schulz, M.H., Zerbino, D.R., Vingron, M. et al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. *Bioinformatics*, 28(8):1086–1092, feb 2012.

Xie, Y., Wu, G., Tang, J. et al. SOAPdenovo- transcript assembly with short RNA-seq reads. *Bioinformatics*, 30(12):1660–1666, feb 2014.

Robertson, G., Schein, J., Chiu, R. et al. De novo assembly and analysis of RNA-seq data. *Nature Methods*, 7(11):909–912, oct 2010.

Grabherr, M.G., Haas, B.J., Yassour, M. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. *Nature Biotechnology*, 29(7):644–652, may 2011.

Haas, B.J. and Zody, M.C. Advancing RNA-seq analysis. *Nature Biotechnology*, 28(5):421–423, may 2010.

Martin, J.A. and Wang, Z. Next-generation transcriptome assembly. *Nature Reviews Genetics*, 12(10):671–682, sep 2011.

Fu, S., Ma, Y., Yao, H. et al. IDP-denoovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing. *Bioinformatics*, 34(13):2168–2176, feb 2018.

Sedlazeck, F.J., Lee, H., Darby, C.A. et al. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. *Nature Reviews Genetics*, 19(6):329–346, 6 2018.

Wang, B., Tseng, E., Regulski, M. et al. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. *Nature Communications*, 7:11708, 6 2016.

Li, J., Harata-Lee, Y., Denton, M.D. et al. Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membraneus reveals transcript variants involved in bioactive compound biosynthesis. *Cell Discovery*, 3:17031, 8 2017.

Weirather, J.L., Afshar, P.T., Clark, T.A. et al. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing. *Nucleic Acids Research*, 43(18):e116–e116, 10 2015.

Byrne, A., Beaudin, A.E., Olsen, H.E. et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. *Nature Communications*, 8:16027, 7 2017.

Oikonomopoulos, S., Wang, Y.C., Djambazian, H. et al. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. *Scientific Reports*, 6(1):31602, 10 2016.

Hahlin, K., Tomaszkiewicz, M., Makova, K.D. et al. Deciphering highly similar multigene family transcripts from Iso-Seq data with IsoCon. *Nature Communications*, 9(1):4601, 12 2018.

Workman, R.E., Tang, A., Tang, P.S. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. *bioRxiv*, page 459529, 11 2018.

Li, C., Chng, K.R., Boey, E.J.H. et al. INC-Seq: accurate single molecule reads using nanopore sequencing. *GigaScience*, 5(1):34, 12 2016.

Weirather, J.L., de Cesare, M., Wang, Y. et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis.
Comparative assessment of long-read error-correction software applied to RNA-sequencing data

FIGURE LEGENDS

Fig. 1. Number of reads mapping to genes (C_G) before and after correction for each tool. The genes taken into account here were expressed in either the raw dataset or after the correction by the given tool.

Fig. 2. Summary of gene family size changes across error-correction tools.

Fig. 3. Histogram of genes having more or less isoforms after error-correction.

Fig. 4. Histogram of isoforms that are lost after correction, in relation to their relative transcript coverage, in genes that have 2 or more isoforms. The y axis reflects the percentage of isoforms lost in each bin. Absolute values can be found in the Supplementary Material Figure S3.

Fig. 5. Coverage of the major isoform of each gene before and after error-correction. The x-axis reflects the number of reads mapping to the major isoform of a gene before correction, and the y-axis is after correction. Blue line: regression, black line: $x=y$.

Fig. 6. Mapping of simulated raw and error-corrected reads to two simulated isoforms, and measurements of the percentage of reads mapping to the major isoform. The two isoforms represent an alternatively skipped exon of variable size: 10 bp, 50 bp, 100bp. Left: isoform structure conservation using 100X short reads coverage and 10X long reads, using three error-correction programs, one per row: LoRDEC, PBCr, and proovread. Right: same with three self-correctors and 100X long reads: daccord, LorMA and pbdagcon. Columns are alternative exon sizes. Bars are plots for each isoform ratio (50%; 75% and 90%) on the x-axis. On the y-axis, the closer a bar is to its corresponding ratio value on the x, the better. For instance, the bottom left light blue bar corresponds to a 50% isoform ratio with an exon of size 10, and we do not retrieve a 50% ratio after correction with Proovread (the bar does not go up to 50% on the vertical axis, but around 75% instead). The same layout applies to the right plot, where self-correctors are presented.

Fig. 7. Statistics on the correctly and incorrectly mapped splice sites (abbreviated SSs) for the uncorrected (raw) and corrected reads.