From Scourge to Cure: Tumour-Selective Viral Pathogenesis as a New Strategy against Cancer

Carolina S. Ilkow¹, Stephanie L. Swift², John C. Bell¹,³,⁷, Jean-Simon Diallo¹,³,⁷

1 Centre for Innovative Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada, 2 Swift Science Writing, Hamilton, Ontario, Canada, 3 Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada

Abstract: Tumour mutations corrupt cellular pathways, and accumulate to disrupt, dysregulate, and ultimately avoid mechanisms of cellular control. Yet the very changes that tumour cells undergo to secure their own growth success also render them susceptible to viral infection. Enhanced availability of surface receptors, disruption of antiviral sensing, elevated metabolic activity, disengagement of cell cycle controls, hyperactivation of mitogenic pathways, and apoptotic avoidance all render the malignant cell environment highly supportive to viral replication. The therapeutic use of oncolytic viruses (OVs) with a natural tropism for infecting and subsequently lysing tumour cells is a rapidly progressing area of cancer research. While many OVs exhibit an inherent degree of tropism for transformed cells, this can be further promoted through pharmacological interventions and/or the introduction of viral mutations that generate recombinant oncolytic viruses adapted to successfully replicate only in a malignant cellular environment. Such adaptations that augment OV tumour selectivity are already improving the therapeutic outlook for cancer, and there remains tremendous untapped potential for further innovation.

The Tumour: A Unique Niche for Virus Growth

Tumour progression is generally considered a stochastic process, but is nevertheless associated with a series of hallmark changes that include, among others, resistance to apoptosis, metabolic deregulation, immune escape, growth independence, and enhanced angiogenic capacity [1] (Figure 1). Either taking certain pathways offline, or boosting their activity, disrupts cellular homeostasis and creates a supportive environment that facilitates exponential cancer cell growth. While such changes allow the malignant cell a competitive survival and growth advantage over “normal” cells, they also render it susceptible to infection, since many of the pathways subverted by the tumour are also necessary for effective antiviral responses.

Once a virus penetrates a tumour cell, the malignant metabolic infrastructure provides abundant support for viral replication. Since the same pathways that are already boosted during cancer cell transformation are also engaged by viral replication, tumour cells are attractive targets for OVs, a class of cancer biotherapeutics that includes such diverse virus families as rhabdoviridae (e.g., vesicular stomatitis virus [VSV], Maraba virus), poxviridae (e.g., vaccinia [VV], myxoma [MYXV], adenoviridae (e.g., adenovirus serotype 5 [Ad5], Colo-Ad1), paramyxoviridae (e.g., Newcastle disease virus [NDV], measles virus [MV]), togaviridae (e.g., Sindbis virus [SV]), herpesviridae (e.g., herpes simplex virus-1 [HSV-1]), reoviridae (e.g., reovirus type III), picornaviridae (e.g., poliovirus, coxsackievirus), and parvoviridae (e.g., H1-parvovirus).

The current status of clinical trials for such therapeutic OVs has recently been reviewed by Russell and colleagues [2].

In this review, we highlight the similarities between the requirements for optimal cancer cell growth and successful viral replication, and the mounting evidence that tumours with altered metabolic and signaling networks provide a unique niche for OV propagation. While some viruses are inherently oncophilic, it is also possible to direct selective growth in cancer cells by inactivating or deleting certain viral virulence genes whose lost functions are complemented by mechanisms that drive malignancies and distinguish tumours from normal healthy tissues. The application of such genetic interventions and/or the potential for coadministering pharmacological compounds to enhance OV activity specifically in tumours will be discussed.

Overexpressed Tumour Antigens: Entangling Viruses

Host cell entry is one of the first challenges that viruses must overcome to access intracellular replication sites, and the availability of cell surface receptors for viral attachment and uptake is of paramount importance. Malignant cells undergo tremendous changes in the profile of cell surface receptors they display, and the tumour specificity of many oncolytic viruses often begins with engaging these overexpressed antigens at the cell surface (Figure 2). For example, poliovirus binds the cell surface receptor, nectin-like molecule 5 (NECL-5) [3], which is expressed at very low levels in normal tissues, but is broadly overexpressed in several solid tumours and in the proliferating vasculature that supports them, including glioblastoma multiforme and ovarian, prostate, colorectal, and lung carcinomas [4–8]. This natural biological observation has been exploited to create a potent

Citation: Ilkow Cs, Swift Sl, Bell Jc, Diallo Js (2014) From Scourge to Cure: Tumour-Selective Viral Pathogenesis as a New Strategy against Cancer. PLoS Pathog 10(1): e1003836. doi:10.1371/journal.ppat.1003836

Editor: Tom C. Hobman, University of Alberta, Canada

Published: January 16, 2014

Copyright: © 2014 Ilkow et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: CSI is supported by a fellowship from Alberta Innovate Health Solutions. JSD and JCB are supported by the Canadian Institute for Health Research and the Terry Fox Research Institute. JCB is supported by the Ontario Institute for Cancer Research and the Ottawa Regional Cancer Foundation. JSD is supported by the Canadian Cancer Research Society and the Ottawa Hospital Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jbell@ohri.ca

These authors contributed equally to this work.
chimeric OV that selectively targets a variety of tumours of neuroectodermal origin [9]. Similarly, measles virus (MV) and the chimeric adenovirus ColoAd1 both bind the cell surface receptor, CD46, which is commonly upregulated by cancer cells [10,11]. MV gene expression, cytopathic effect, and oncolysis have all been correlated with density of CD46 on the cell surface [12]. Nectin-4 can also be exploited for MV entry [13], and is highly expressed in lung, breast, colon, and ovarian carcinomas [14-16]. The natural oncolytic capacity of coxsackievirus A21 (CVA21) is based on high expression of intracellular adhesion molecule 1 (ICAM-1) and/or decay acceleration factor (DAF) on the surface of malignant cells [17], while the uptake of coxsackievirus B3 (CVB3) and certain oncolytic adenoviruses is particularly enhanced in medulloblastoma, neuroblastoma, and endometrial carcinomas overexpressing the host cell coxsackievirus-adenovirus receptor (CAR) [18,19]. Oncolytic Sindbis virus (SV) binds the Laminin receptor (LamR) [20], which is modestly expressed in almost every mammalian cell, but highly upregulated in many solid tumours [21-24]. In normal cells, LamRs are occupied by the laminin ligand and SV attachment is outcompeted, while in cancer cells, the overexpression of LamRs exposes a significant number of unoccupied SV target sites [25].

OVs have also been reprogrammed to bind specific tumour surface antigens through the display of single-chain antibodies or polypeptide-binding ligands on the virion surface, or by fusing scaffolding moieties within viral surface proteins [reviewed in [26]]. For example, several ligands have been successfully displayed on the surface of MV particles, including single-chain antibodies against EGFR [27,28], CD20 [29], CD38 [27], and the folate receptor alpha [30]. Similarly, herpes simplex virus (HSV) and various adenoviruses have been genetically redirected toward tumours through the incorporation of cancer-specific receptor binding ligands into viral surface proteins [31-35]. Finally, increased oncotropism of VV has been achieved by fusing targeting moieties against the Human Epidermal Growth Factor Receptor 2 or Mucin-1 to virus envelope resident proteins [36,37].

A Dysfunctional Cellular Antiviral Defense: The Achilles’ Heel of Cancer

An estimated 65–70% of cancer cell lines have defective interferon (IFN) responses [38]. However, both the cancerous and stromal compartments of a tumour integrate antiviral signals to establish a scale of IFN responsiveness, which is different for each malignancy. The biological drivers of cancer evolution that lead to the loss of interferon responsiveness are not completely understood, but it is thought that physiological processes that favour antiviral activity are incompatible with efficient tumour growth. For instance, interferon and interferon-responsive genes are anti-angiogenic [39], and are known to induce apoptosis [40], cell growth arrest [41], and immune stimulation [42], all of which cancer cells strive to evade. Not surprisingly, one of the most common genetic changes in the tumour as it transitions to a stealth phenotype is the loss of expression of genes from the interferon pathway, and the establishment of further rounds of immune editing that allow the cancer to become invisible to the host immune system.
system [43]. As tumours evolve to full malignancy, this elimination or inactivation of certain interferon gene products may allow a growth advantage, but also compromises cellular antiviral responses to varying degrees.

The IFN pathway is part of the innate immune response triggered upon pathogen entry by a limited number of cellular immune receptors recognizing broadly conserved pathogen-associated molecular patterns (PAMPs). Most wild-type viruses encode gene products that antagonize interferon response signaling, and can robustly infect tumour and normal cells alike. Some “natural” OVs have evolved to infect nonmammalian organisms (e.g., Newcastle disease virus (NDV) in avian hosts) and thereby lack virulence genes that can effectively antagonize mammalian antiviral responses; such viruses only prosper in tumour cells that acquire mutations in interferon response genes [44]. For other viruses, it is necessary to engineer defects in virulence gene products that normally antagonize interferon responses to confer a robust growth response in cancer cells but an inability to productively infect normal tissues [45–47] (Figure 2).

The recognition that interferon signaling is in large part critical to OV selectivity made it clear that manipulation of this cellular response could be a target for therapeutic intervention. Tumour cells that have completely lost their interferon response provide an ideal substrate for OV replication. Such tumours can easily be cured with a “single shot” of virus [48]. However, most human tumours are genetically and architecturally heterogeneous, and thus the extent of their antiviral responsiveness can be variable and provide a significant barrier to OV therapy [49]. This problem can be biologically addressed by enhancing the potency of existing OVs [50,51], selecting inherently more potent virus backbones (such as Maraba, which outperforms several related OVs [e.g. VSV] in terms of replication speed, viral productivity, and lytic...
capacity across multiple cancer cell lines [52], or coinfecting tumours with distinct attenuated OVs that can complement each other’s growth in a hostile tumour environment [53]. Coinfection of tumours with an oncolytic vaccinia virus (VV) that expresses the IFN-scavenging protein, B18R, can significantly enhance the ability of attenuated, interferon-sensitive vesicular stomatitis virus (VSV) to spread through tumours exhibiting partial defects in their antiviral defenses, resulting in improved oncolytic activity compared to either virus alone [53].

Several pharmacological strategies have aimed to improve OV therapy by disrupting IFN responses in resistant tumour cells. Our group, and others, have previously shown that histone deacetylase inhibitors (HDIs) can improve the oncolytic activity of OVs both in vitro and in vivo, including VSVΔ51, several strains of VV, and herpes simplex virus (HSV) [54–56]. HDIs profoundly impact cellular epigenetics, and inhibit the IFN response by blocking the transcriptional upregulation of IFN-stimulated genes following viral infection or IFN signalling [57,58]. A related strategy has been to coadminister small molecules, selected on the basis of their antiviral defenses, resulting in improved oncolytic activity compared to either virus alone [53].

Taking Over the Protein Synthesis Machine

While enhancing metabolic activity, suppressing antiviral signaling, and increasing nucleotide levels are all necessary and potentially rate-limiting steps for optimizing cancer growth or viral infection, the translation of proteins ultimately represents the final hurdle that ensures either cellular growth/division or the production of viral particle components. Dysregulation of translational control is one of the key events that promotes cellular transformation, and enhanced ribosome biogenesis, elevated levels of initiation factors, and changes in transcriptional repressors are found in a broad spectrum of cancers [69]. Since all eukaryotic viruses are fully dependent on host cell translational machinery to synthesize viral proteins, virus-host cell interactions that regulate translation, both globally and for specific mRNAs, contribute to the oncotropism of certain OVs (Figure 2). Generally, changes in the expression or availability of translational machinery components in cancer cells increase the overall rate of protein production (including viral polypeptides) [70,71], and therefore enhance OV replication in tumours compared to normal tissues [72,73].

Translation of most viral mRNA depends on the cellular cap-dependent program, where the rate-limiting initiation step represents a prime target for viral control. Viral dsRNA activates cellular protein kinase R (PKR), which inactivates the translation initiation factor eIF2 to limit host growth and initiate antiviral responses. As eIF2 phosphorylation dramatically reduces the efficiency and rate of viral translation, several viruses directly or indirectly prevent PKR activation. For example, HSV-1 encodes a PKR-binding protein (E3L) and a PKR pseudo-substrate (K3L) [74,75]. There is evidence that eIF2 phosphorylation is dysregulated during tumourigenesis and, as a result, the inactivation of viral gene products involved in modulating PKR responses can generate an oncotropic virus. Most notably, a version of VSV expressing a catalytically inactive version of eIF2B-epsilon has a reduced ability to grow in benign cells compared to the parental VSV, but retains the ability to grow in malignant cells [76].

The mammalian target of rapamycin signalling complex 1 (mTORC1) is a master regulator of cell growth and metabolism; as such its activation promotes various anabolic processes in the cell, including protein biosynthesis. Notably, mTORC1 stimulates protein translation by inhibiting the translational
Riding the Tumour Cell Cycle

Disregulation of the cell cycle to allow unchecked proliferation is a critically important step in tumourigenesis. Many of the key checkpoint proteins that normally regulate and restrict cell cycle progression, such as p53, RB, and myc, are actively disengaged, destabilising cells and priming them for further genetic mutations [95]. The successful replication of many wild-type viruses, including adenovirus, HSV, VV, MYXV, and reovirus, also requires effective targeting of central hubs of the proliferative signaling circuitry (Figure 2). While many viruses are capable of entering into and even initiating virus transcription in quiescent and terminally differentiated cells, the host cell must often enter the cell cycle to complete the viral replication cycle [96–99]. Viral proteins have therefore evolved to induce cell cycling, ensuring the activation of cellular biosynthetic machinery and mobilization of substrates necessary for the production of viral progeny. For example, the adenovirus E1A protein plays a key role in activating proliferation and cell cycle progression by binding and abrogating the activity of the retinoblastoma (RB) protein family [100,101].

Since cancer cells almost uniformly downregulate such tumour suppressive proteins to release proliferation control, partial deletion of the EIA viral gene generates a specific oncolytic adenovirus [102]. MYXV and reovirus are also able to efficiently replicate and lyse a wide variety of human tumour cell lines with dysfunctional tumour suppressor genes, such as RB and TP53 [103].

Increases in the frequency of mitogenic signals received through receptors such as epidermal growth factor receptor (EGFR) and its main downstream signaling transduction partners, PI3K/AKT and RAS/Mitogen-Activated Protein Kinase Kinase/Mitogen-Activated Protein Kinase (RA/MEK/MAPK), also drive transformed or infected cell proliferation. Both herpes- and poxviruses activate the EGFR during their replication cycle [104,105]. For example, VV encodes vaccinia growth factor (VGF), an early secreted protein that binds EGFR and conditions surrounding cells for subsequent viral infection [106]. Since EGFR is often constitutively activated in gliomas and carcinomas of the lung, colon, head and neck, pancreas, and breast [107], such tumours are rendered hypersensitive to VV replication. Numerous OVs, including MYXV, VV, coxsackievirus B3, and HSV-1, target the PI3K/AKT signal transduction pathway [85,108–110]. For example, MYXV encodes the M-T5 host range factor, which induces the phosphorylation of cellular AKT and creates a growth-favourable environment for virus replication [111]. While mutant MYXV viruses lacking M-T5 replicate poorly in most cells, tumour cells where AKT is constitutively activated are permissive to these viruses [112]. Several viruses also target the Ras signaling cascade. Replication of HSV-2 is facilitated by the viral ICP10 gene-encoded serine/threonine protein kinase (PK) domain, which activates the Ras/MEK/MAPK pathway. Deletion of this PK domain converts HSV-2 into a potent oncolytic agent, exhibiting preferential replication in and lysis of tumour cells with a constitutively activated Ras signaling pathway [113]. Exploitation of the Ras cascade is also a critical step for reovirus particle coating, infectivity, and release, and Ras transformation is necessary to realize potent oncolytic effects [114,115]. Activation of the Ras pathway has also been linked to repression of the antiviral response by interfering with PKR, Retinoic Inducible Gene I (RIG-I), and IFN signaling [46,115].

To Kill or Not to Kill: Balancing Apoptosis

The activation of the apoptotic pathway is a potent homeostatic tool for the early suppression of malignant cell outgrowth, while in infected cells, it represents a highly effective host response to curtail the infection cycle. Cellular changes that allow the avoidance of programmed cell death are essential for both tumour cell and virus host cell survival. Cancer cells employ multiple and diverse strategies to bypass the apoptotic death pathway normally induced by various stressors, and this evasion ability likely contributes to the survival and prolonged replication of naturally occurring or recombinant OVs. Yet while malignant apoptotic resistance supports optimal oncolytic virus growth, it can also compromise therapeutic efficacy, particularly given the importance of cytotoxic T cell-mediated killing of both infected and noninfected cancer cells for eliciting therapeutic responses following OV administration [116–119]. As such, a significant number of genetic strategies have aimed to improve direct and indirect cell killing upon OV infection. Multiple viruses encode viral proteins that target and regulate key steps in apoptotic pathways, balancing the maximum output of viral progeny with the necessity of keeping infected cells alive until successful transmission is achieved (Figure 2). For example, VV encodes
several genes that modulate apoptosis, including \textit{FIL} and \textit{SPI-1} (B22R), which directly inhibit pro-apoptotic Bcl-2-like proteins and caspase activation, respectively. Deletion of these viral genes enhances tumour selectivity compared with wild-type VV [120]. The adenoviral \textit{E1B-19K} gene product performs a similar function, blocking apoptosis by sequestering and inhibiting numerous pro-apoptotic Bcl-2-like proteins. Multiple lines of evidence indicate that \textit{E1B-19K}-deficient adenoviruses selectively replicate and kill tumour cells \textit{in vitro} and \textit{in vivo}, with no effects in normal cells [121].

The loading of OVs with suicide transgenes has also been employed by several groups to enhance killing of both infected and uninfected tumour cells. Successful virally encoded suicide payloads include TNF-related apoptosis-inducing ligand (TRAIL) [122], Fas ligand (FasL) [123], yeast cytosine deaminase (in combination with 5-FC) [124], HSV thymidine kinase (in combination with gancyclovir) [125], \textit{Drosophila melanogaster} multi-substrate deoxycytidinucleoside kinase [126], uracil phosphoribosyltransferase (in combination with 5-FU) [127], carboxypeptidase G2 (in combination with ZD2767P) [128], and carboxylesterase (in combination with irinotecan) [129].

Drugs can also be used to increase virus-induced tumour cell death. For example, while HDI impacts the cellular IFN response (as discussed above), they also increase virus-induced apoptosis [58]. Another example comes from an elegant study by Mahoney \textit{et al.}, who identified that knockdown of several proteins involved in the unfolded protein response significantly increased oncolytic Maraba virus-induced cell death following a genome-wide siRNA screen [130]. Knockdown of one of these genes, \textit{IRE-1}, hampered the ability of cancer cells to cope with unfolded protein overload within the ER, effectively priming cancer but not benign cells to undergo virally induced apoptosis. A salicylaldehyde-based drug inhibitor of \textit{IRE-1} was subsequently synthesized and used to improve oncolytic Maraba efficacy in a resistant tumour model.

Future Perspectives

With OV cancer therapeutics entering advanced-stage trials and showing clinical efficacy, strategies that further broaden OV targeting and replication capacity to address the heterogeneous nature of tumours and their associated vascular and stromal architecture will be extremely useful. Since such heterogeneity not only exists between patients but also within a given tumour/patient, where the metabolism, signal transduction, and antiviral states of cancer cells can be variably abnormal and, therefore, variably support OV replication, combinatorial strategies will be essential to promoting reliable tumour control and regression. Finally, continued efforts to identify components innate to the complex tumour microenvironment that promote OV replication will be critical to further improving OVs and developing new engineering strategies.

References

1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70.
2. Russell SJ, Peng KW, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30: 650–670.
3. Mendelsohn CL, Wimmer E, Racaniello VR (1989) Cellular receptor for poxviruses: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56: 835–865.
4. Carlsten M, Norell H, Bryceson YT, Poschke I, Schedvins K, et al. (2009) Primary human tumour cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J Immunol 183: 4921–4930.
5. Enoto BM, Jay DG (2011) Inhibition of Nect-5 (CD155/PVR) reduces glioblastoma dispersal and decreases MMP-2 expression and activity. J Neurooncol 102: 225–235.
6. Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, et al. (2004) Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49: 236–240.
7. Nakai R, Maniwa Y, Tanaka Y, Nishio W, Yoshimura M, et al. (2010) Overexpression of Nect-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci 101: 1328–1330.
8. Suzuki K, Nakamura K, Kato K, Hamada H, Tsukamoto T (2007) Exploration of target molecules for prostate cancer gene therapy. Prostate 67: 1163–1173.
9. Goetz C, Dobrikova E, Shveygert M, Dobrikov M, Groeser M (2011) Oncolytic poxvirus against malignant glioma. Future Virol 6: 1045–1058.
10. Gaggar A, Shakhaymvetov DM, Lieber A (2003) CD46 is a cellular receptor for group B adenoviruses. Nat Med 9: 1408–1412.
11. Segerman A, Atkinson JP, Marttila M, Dennerquist V, Wadell G, et al. (2003) Adenovirus type 11 uses CD46 as a cellular receptor. J Virol 77: 9185–9191.
12. Anderson BD, Nakamura T, Russell SJ, Peng KW (2004) High CD46 receptor density determines preferential killing of tumour cells by oncolytic measles virus. Cancer Res 64: 4919–4928.
13. Mullbach-ME, Mateo M, Sinn PL, Prufer S, Uhlig KM, et al. (2011) Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480: 530–533.
14. Derycke MS, Pumbucsean SE, Gills CB, Kalogor SE, Glubouche A, et al. (2010) Nectin-4 overexpression in cancer tissues and serum: potential role as a serum biomarker. Am J Clin Pathol 134: 835–845.
15. Fabre-Lafay S, Garrido-Urbani S, Reynold N, Goncaves A, Dubreuil P, et al. (2005) Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor alpha-converting enzyme (TACE)/ADAM-17. J Biol Chem 280: 19543–19550.
16. Takano A, Ishikawa N, Nishino R, Masuda K, Yasui W, et al. (2009) Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res 69: 6694–6703.
17. Skellding KA, Barry RD, Shafren DR (2009) Systemic targeting of metastatic human breast tumor xenografts by Coxsackievirus A21. Breast Cancer Res Treat 113: 21–30.
32. Gupta V, Wang S, Sounowski BA, Hofman FM, Chen TC (2006) Fibroblast growth factor-2-retargeted adenoviral vector for selective transduction of primary glioblastoma multiforme endothelial cells. Neurosurg Focus 20: 232.

33. Harvey TJ, Burdon D, Steele L, Ingrain N, Hall GD, et al. (2010) Retargeted adenoviral gene therapy for tumour cells overexpressing epidermal growth factor receptor or uronkine-type plasminogen activator receptor. Gene Ther 17: 1000–1010.

34. Wang W, Zhu NL, Chua J, Swenson S, Costa FK, et al. (2005) Retargeting of adenoviral vector using basic fibroblast growth factor ligand for malignant glioma gene therapy. J Neurosurg 103: 1058–1066.

35. Shmulevitz M, Pan LZ, Garant K, Pan D, Lee PW (2010) Oncogenic Ras inhibitor protein 2i2 renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci U S A 107: 1576–1581.

36. Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, et al. (2005) A viral model for human tumor-specific defects in the interferon pathway with a previously unknown viral factor. J Virol 80: 5145–5155.

37. Indraccolo S (2010) Interferon-alpha as angiogenesis inhibitor: learning from in vivo. Mol Ther 18: 3088–3095.

38. Oh IK, Mok H, Park TG (2006) Folate immobilized and PEGylated virus infection in normal and tumor cell lines. J Virol 80: 3191–3199.

39. Alain T, Lun X, Martineau Y, Sean P, Pulendran B, et al. (2010) Vesicular stomatitis virus oncolysis. Cancer Cell 5: 51–65.

40. Garcia MA, Meurs EF, Eitchanin M (2007) The dsRNA protein kinase PKR: a novel biologic weapon in the war against cancer. Expert Opin Biol Ther 7: 1415–1425.

41. Ruggero D (2013) Control of the innate immune response through IRF-7. Nature 442: 323–328.

42. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by mTORC1. Nat Rev Cancer 6: 729–734.

43. Stanford MM, McFadden G (2007) Myxoma virus and oncolytic virotherapy: a new biologic weapon in the war against cancer. Trends Biotechnol 25: 323–328.

44. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cancer cell proliferation. Science 324: 1024–1029.

45. Wang S,el J, Beesow F, Lai F, Cox J, Vahs-Kokela M, et al. (2010) A high-throughput pharmacoviral approach identifies novel oncolytic virus sensitizers. Mol Ther 18: 1123–1129.

46. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1024–1029.

47. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, et al. (2000) Exploiting adenoviral vector using basic fibroblast growth factor ligand for malignant glioma gene therapy. J Neurosurg 103: 1058–1066.

48. Le Boeuf F, Batenchuk C, Vaha-Koskela M, Breton S, Roy D, et al. (2013) Vaccinia virus-encoded ribonucleotide reductase subunits are differentially regulated for replication and oncolysis. PLoS Pathog 9: e1003836.

49. Kornel C, Gossler R, Dose FF, Bode H, Fuchs M, et al. (2005) Viral type I IFN production. Proc Natl Acad Sci U S A 102: 15716–15721.

50. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by mTORC1. Nat Rev Cancer 6: 729–734.

51. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by mTORC1. Nat Rev Cancer 6: 729–734.

52. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by mTORC1. Nat Rev Cancer 6: 729–734.

53. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by mTORC1. Nat Rev Cancer 6: 729–734.

54. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by mTORC1. Nat Rev Cancer 6: 729–734.

55. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by mTORC1. Nat Rev Cancer 6: 729–734.

56. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by mTORC1. Nat Rev Cancer 6: 729–734.

57. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by mTORC1. Nat Rev Cancer 6: 729–734.
101. Zamanian M, La Thangue NB (1992) Adenovirus E1a prevents the cell cycle alteration involves inactivation of tumour suppressors associated with Ras transformation: a viral IRES to the host cell translation factor. Nature 351: 494–497.

102. Feltmate DC, Houghton PJ, Kelloff GJ (1992) Adenovirus armament for cancer therapy. Cancer Res 52: 1883–1890.

103. Guo ZS, Naik A, O'Malley ME, Popovic P, Demarco R, et al. (2005) The reovirus-mediated apoptosis blockage and viral gene expression in oral epithelial cells which is not caspase dependent. J Virol 78: 4289–4298.

104. Sunamura M, Oonuma M, Motoi F, Abe H, Saitoh Y, et al. (2002) Gene therapy for pancreatic cancer targeting the genomic alterations of tumor suppressor genes using replication-selective oncolytic adenovirus. Hum Cell 15: 139–150.

105. Schepelmann S, Ogilvie LM, Hedley D, Friedlos F, Martin J, et al. (2007) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19: 1883–1890.

106. Chen DY, Song X, Niu D, Lee LM, et al. (2005) Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1. Exp Cell Res 303: 240–249.

107. Holbro T, Civenni G, Hynes NE (2003) The ErbB receptors and their role in cancer progression. Exp Cell Res 284: 93–102.

108. Esfandihari M, Liao H, Yanagawa B, Suarez A, Dabiri D, et al. (2004) Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. J Virol 78: 6289–6296.

109. Debord DR, Brown JP, Ranchals JE, Todaro GJ, Moss B (1985) Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. Proc Natl Acad Sci U S A 82: 5300–5304.

110. Soares JA, Leite FG, Andrade LG, Torres AA, De Sousa LP, et al. (2009) Activation of the PI3K/Akt pathway early during vaccinia and cowpox virus infections is required for both host survival and viral replication. J Virol 83: 6813–6829.

111. Werden SJ, Lanchbury J, Shattuck D, Neff C, Dufford M, et al. (2009) The myxoma virus m-t5 ankyrin repeat host range protein is a novel adaptor that coordinates links the cellular signaling pathways mediated by Akt and Skp1 in virus-infected cells. J Virol 83: 12068–12083.

112. Sypula J, Wang F, Ma Y, Bell J, McFadden G (2004) Myxoma virus tropism in human tumor cells. Gene Ther Mol Biol 8: 103–114.

113. Fu X, Tao L, Cai R, Prigge J, Zhang X (2006) A mutant type 2 herpes simplex virus deleted for the protein kinase domain of the ICP10 gene is a potent oncolytic orthomyxovirus. Mol Ther 13: 882–890.

114. Marcado P, Shmulevitz M, Pan D, Stolz D, Lee PW (2007) Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol Ther 15: 1522–1530.

115. Strong JE, Colley MC, Tang D, Sahin U, Lee PW (1996) The molecular basis of viral oncolytic usurpation of the Ras signaling pathway by reovirus. EMBO J 17: 3351–3362.

116. Prestwich RJ, Ben EJ, Errington F, Diaz KM, Steele LP, et al. (2009) Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res 15: 4374–4381.

117. Sugiyama S, Otsuka T, Fujii Y, Nishio S, Yamauchi E, et al. (2005) Suicide gene therapy of human colon carcinoma xenografts using an armed oncolytic adenovirus expressing TRAIL: in vitro and in vivo evaluation. Mol Cancer Ther 8: 1387–1397.

118. Sathaiah M, Thirunavukkarasu P, O’Malley ME, Kavanagh MA, Ravindranathan R, et al. (2012) Oncolytic poxvirus armed with Fas ligand leads to induction of cellular Fas receptor and selective viral replication in FasR-negative cancer. Cancer Gene Ther 19: 192–201.

119. Chiou YL, Lee YC, Lin PC, Hsu CF, Su CT, et al. (2006) Oncolytic virotherapy for ovarian carcinomas using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther 13: 113–125.

120. Tsuji F, Nishiyama K, Hasegawa M, Kohda K, Itoh H, et al. (2003) Oncolytic adenovirus expressing carboxypeptidase G2. Cancer Res 67: 4949–4955.

121. Stubdal H, Perin N, Lemmon M, Holman P, Bauzon M, et al. (2003) A prodrg strategy using OXNY-015-based replicating adenoviruses to deliver rabbit carboxylesterase to tumor cells for conversion of CPT-11 to SN-38. Cancer Res 63: 6900–6908.

122. Maloney DJ, LeFebvre C, Allan K, Brun J, Sanaei CA, et al. (2011) Virus–tumor interactions screen reveals ER stress response can reprogram resistant cancers for oncolytic virus-triggered caspase-2 cell death. Cancer Cell 20: 443–456.

123. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 66–74.