The effects of a 2-hour physical exercise session using the oriental dance training mechanism on changes in selected indices of blood morphology

Wpływ 2-godzinnego wysiłku fizycznego w mechanizmie treningu tańca orientalnego na zmiany wybranych wskaźników morfologii krwi

Alicja Zawadzka 1 (ABDF), Bartłomiej Ptaszek 2,3 (DEF), Andrzej Mikuśkiewicz 4 (DF), Aneta Teległów 5 (ABDF)

Keywords
blood morphology, oriental dance

Abstract
Introduction: Movement in combination with music, i.e. dance, is one of the most popular types of physical activity at all ages. Dance is a form of activity that differs in style and technique, and thus, energy consumptions during training are different. Under the name of oriental dance one can find: folklore, religious, ritual and popular dances that are associated with everyday life. In Polish and international literature on the subject, there are no studies in which changes in blood morphological properties of dancers practicing oriental style dance would be demonstrated. The results of laboratory tests published so far rarely describe the effect of dance on morphological blood indices, in addition, they are results for styles other than oriental dance.

Study aim: The objective of the study was to demonstrate the effects of 2-hour physical exercise using the mechanism of oriental dance training on changes in selected quantitative indices of blood morphology in a group of young women.

Materials and methodology: The study group consisted of 12 young women between the age of 20 and 35, with the average of 26.4±0.52 years, training oriental dance. Blood tests were performed twice: before and after the 2-hour workout. The dancers practiced a variation of oriental dance called shabi, a high-intensity dance with a lot of jumping figures.

Results: Analysing the average values of morphological indices before and after oriental dance training showed a statistically significant increase in WBC [10⁹/L] by 23.28% and a decrease in RBC [10¹²/L] by 1.29%, HGB [g/L] by 1.00% and HCT [L/L] by 1.22% in the study group after the 2-hour oriental dance training session.

Conclusions: The applied training influenced the results of blood indices in dancers participating in the study. Physical activity carried out in the form of dance causes quantitative changes in morphological blood indices.

Stowki kluczowe
morfologia krwi, taniec orientalny

Streszczenie
Wprowadzenie: Ruch w połączeniu z muzyką, czyli tańiec jest jednym z najbardziej popularnych rodzajów aktywności fizycznej w każdym wieku. Taniec jest formą aktywności, która różni się pod względem stylu i techniki, a co za tym idzie inne jest zużycie energii podczas treningu. Pod nazwą tańca orientalnego kryją się zarówno tańce folklorystyczne, religijne, obrzędowe jak i popularne, które są związane z codziennym życiem. W piśmiennictwie polskim i międzynarodowym nie ma badań wykazujących zmiany we właściwościach morfologicznych krwi u tancerek ćwiczących styl orientalny. Dotychczas opublikowane wyniki badań laboratoryjnych rzadko opisują wpływ tańca na wskaźniki morfotyczne krwi, w dodatku są to wyniki dotyczące innych stylów tanecznych niż taniec orientalny.
INTRODUCTION

Oriental dance does not have an unambiguous history. It can be rooted in North Africa and Middle Eastern countries: the United Arab Emirates, Saudi Arabia, Yemen, Oman, Iran, Iraq, Jordan, as well as Egypt, Turkey and Morocco. In Arabic, this dance is called raqs al-sharqi, which means “eastern dance”. Under the name of oriental dance, one may also find: folklore, religious, ritual and popular dances that are associated with everyday life. There are several stories related to the birth of oriental dance. Some of them come from ancient times, others date back to the 18th century. Nowadays, it is danced in many countries around the world. Various events and competitions are organised at which dancers can improve their knowledge and expand their range of dance skills, as this dance is constantly evolving and developing.

The blood is full of liquid connective tissue travelling through the blood vessels. It has an intense red colour due to haemoglobin contained in erythrocytes. The intensity of the blood colouring depends on its oxygen saturation. Blood constitutes 7% of the total human body mass and has a huge nutritional effect on the human body. It performs a variety of functions, among others, it is responsible for coagulation, transportation, thermoregulation and immunity. Blood consists of plasma and blood cells suspended in it. Water accounts for a significant portion of the plasma volume, and the remainder comprises nutrients, primarily proteins. In contrast, the morphological elements of the blood are composed of: red and white blood cells as well as platelets.

Red blood cells, or erythrocytes, are the most numerous group among the morphological indices of the blood. These are nuclear-like cells in the shape of a double concave disc. Their primary task is transportation of oxygen and carbon dioxide, which occurs with the help of haemoglobin responsible for the red colour of the blood cells. White blood cells, or leukocytes, together with erythrocytes and thrombocytes, are the most important blood components. Leukocytes have a cell nucleus and the ability to move. They are a smaller group than erythrocytes, although their cells are larger. The task of leukocytes is primarily to combat pathogenic microorganisms that have entered the human body. Among white blood cells, granulocytes (neutrophils, basophils and eosinophils) and agranulocytes (lymphocytes and monocytes) can be distinguished. Thrombocytes (the smallest of the components of blood morphology) form in the bone marrow as a result of a process called thrombopoiesis. Platelets are variable and devoid of a cell nucleus. The most important task of thrombocytes is to participate in the process of blood clotting.

STUDY AIM

The aim of the study was to demonstrate the effects of 2-hour physical exercise using the mechanism of oriental dance training on changes in selected morphological blood indices, and above all, to answer the following question:

1. Does a 2-hour oriental dance training session implemented in the form of general fitness exercises change the following morphological properties of the blood (RBC, WBC, PLT, HGB, HCT, MCV, MCH, MCHC) in young women?

MATERIALS AND METHODOLOGY

The study group consisted of 12 young women between the age of 20-35 years (26.4±0.52), performing oriental-style dance at the Sihir dance studio in Krakow. The dancers practice 1-2 times a week for 2 hours. The dance season lasts from September to the end of June, on the day of the dancers’ examinations, it was the month before the end of the season. Blood was collected from the subjects twice: in fasting state in the morning before training and after the morning training sessions; in the amount of 4 ml from the ulnar vein and was put into test tubes with EDTAK.

Blood was collected by a qualified nurse, under medical supervision and in accordance with applicable standards at the Laboratory of Blood Physiology of the University of Physical Education in Krakow. The study was approved by the Bioethical Commission at the Regional Medical Chamber in Krakow.

The dance training consisted of a warm-up (preparing muscles for work), learning basic figures, practicing the choreography (interspersed with short intervals for resting), and ended with relaxation and breathing exercises. The choreography was arranged according to the applicable guidelines, i.e. having a beginning, middle and end. The danc-
ers practiced a variation of oriental dance called *shaabi*, a dance characterised by fast pace and a large number of jumping figures. The intensity of the effort was additionally regulated by the number of repetitions of individual parts of the choreography. Due to the specifics of the training, it was carried out in fasting state, and the dancers did not intake fluids during the session.

Measurements were performed using the ABX MICROs 60 hematology analyzer (USA). The following indices were marked:
1. Red blood cells – RBC [10¹²/L],
2. Haematocrit – Hct [L/L],
3. Haemoglobin – Hgb [g/L],
4. Mean corpuscular haemoglobin – MCH [fmol],
5. Mean corpuscular volume – MCV [fL],
6. Mean corpuscular haemoglobin concentration – MCHC [mmol/L],
7. White blood cells – WBC [10⁹/L],
8. Platelet count – PLT [10⁹/L].

Statistical analysis

The test results were analysed using the Statistica 13.1, StatSoft (USA) programme. Quantitative variables are represented by mean and standard deviation. In order to analyse parameter changes in the study group, the Student’s *t*-test was used for dependent variables. The following level of significance level was assumed: *α* = 0.05.

RESULTS

After 2 hours of oriental dance training, statistically significant changes were found for WBC, RBC, HGB, HCT morphological indices, while no changes were found for other morphological blood indices, i.e. PLT, MCV, MCH, MCHC (Table 1).

Analysing the average values of morphological indices before and after the oriental dance training session, a statistically significant increase in WBC [10⁹/L] by 23.28% and a decrease in RBC [10¹²/L] by 1.29%, HGB [g/L] by 1.00% and HCT [L/L] by 1.22% were found in the study group after 2 hours of oriental dance training (Table 1, Figures 1-4).

DISCUSSION

In Polish and international literature on the subject, there are no studies demonstrating changes in morphological blood properties among dancers practicing oriental-style dance. The results of laboratory tests published so far rarely describe the effects of dance on morphological blood indices, in addition, these are results for other styles than oriental dance. Physical activity, regardless of the level of intensity, affects the morphological indices of the blood. During training, blood volume decreases even by 15% already within 15 minutes of initiating exercise, while along with the duration of training, this val-
ue does not radically change15. During exercise, there is also an increase in blood pressure, which decreases only after its completion. During the workout, there is also a change in the amount of water in the body, which affects the results of blood tests in those exercising16.

Haematology is a field of medicine dealing with blood and haematopoietic research. Thanks to this field, it is known that the content of haematocrit during physical exercise can change by up to 8\% depending on hydration of the body17. This is important information if tests are carried out among athletes who are exposed to water loss during the performance of sports18. Stability of blood morphological indices is one of the most important components of maintaining a proper and optimal physical fitness level of the human body19. Therefore, biochemical research is commonly used to determine the state of health and physical condition of the human body.

Movement combined with music, i.e. dance, is one of the most popular types of physical activity among representatives of all ages20. Dance training achieves a positive outcome in the research results of studies conducted among people suffering from various dysfunctions and diseases, including, hypertension, cardiovascular fitness or obesity21-23. In their research, Conceiç\~{a}o et al.21 describe the effects of dance therapy on blood pressure. Dance training sessions took place 2-3 times a week and lasted about 60 minutes. The authors observed changes in blood pressure. Both systolic and diastolic pressure decreased21. In turn, Petrofsky et al.22 conducted research in which, in addition to dance training, diet monitoring was also used. It turned out that after 7 days of training, there was a difference in heart and blood pressure rates. As in the above-mentioned studies, systolic and diastolic blood pressure decreased as well as heart rate22.

In research, it is shown that not only dance training, but also listening to music itself, affects changes in the human body24,25. In their research, Trappe et al.25 showed that listening to classical music, e.g. the symphonies by Mozart or Vivaldi, can lower blood pressure, reduce heart rate and affect heart rate variability25.

Dance is a form of activity that varies in style and technique, and therefore, the usage of energy during training is different. Maciejczyk and Fec20 conducted research on folk dancers. The purpose of this study was to measure the body’s aerobic fitness level. The exercise intensity of the analysed dance was close to the threshold of decompensated metabolic acidosis20. The occurrence of metabolic acidosis may be associated with a sudden change in p\text{H} under

![Figure 2](image1.png)
Figure 2
Average RBC [1012/L] values in the tested group before and after the 2-hour oriental dance training session

![Figure 3](image2.png)
Figure 3
Average HGB [g/L] values in the tested group before and after the 2-hour oriental dance training session
prolonged exercise. The chance for it to occur in a person with good physical fitness appears at 60% of maximum load, and in less well-trained people, acidosis can already occur with a load half as high. In his study, Szygula emphasizes that human physical fitness is determined by many factors, and one of them is the ability to transport oxygen through the blood. This component is mainly determined by haemoglobin concentration and the number of red blood cells, as well as their ability to perform their functions. In addition, the author believes that a single effort or repetition of activities can contribute to changes in blood counts, as well as affect the process of erythropoiesis in the bone marrow.

Erythrocytes are responsible for oxygenating the entire human body. The observed increase in haemoglobin concentration in the blood improves oxygen transportation in the body, and thus, also increases blood buffer capacity. In the research conducted by Ostojic et al., it is demonstrated that a decrease in haematocrit may also result from intense effort after prolonged period of staticity. This has been observed in athletes preparing for competitions.

A decrease in haemoglobin may occur under the influence of a phenomenon called haemolysis, i.e. destruction of erythrocytes during and after physical training. Kargotich and Neumayr also argue that the decrease in haemoglobin may be due to haemodilution, which occurs in athletes because of an increase in plasma volume.

Haemoglobin has a significant association with VO₂ max, its optimal level is required to maintain adequate performance in athletes. The research conducted by Baldari and Guidetti was carried out in three groups: dancers, gymnasts and a control group. It was observed that the physical fitness index is higher in gymnasts than in dancers.

Post-exercise haemolysis can also be caused by transient hypoglycaemia, i.e. too low blood sugar level. A decrease in blood glucose may affect the osmotic resistance of erythrocytes, which also facilitates the process of erythrocyte destruction.

Carrot et al. conducted research regarding the impact of physical rehabilitation in the form of music and movement exercises on the rheological and haematological properties of the blood in senior women. The study group consisted of 30 women aged 60-89. The women performed music and movement exercises for 5 months, 3 times a week for 30 minutes. Blood was collected for testing both before and after the tests. In this study, it was shown that there was an increase in the red blood cell count and haematocrit of seniors following exercise.

Based on the authors’ research, statistically significant changes were found in the level of the following morphological indices after 2-hour oriental dance training: RBC, HGB and HCT. All of the above-mentioned indices have decreased their value compared to the results before the beginning of training. The research results obtained by the authors of this study are confirmed in the work by Okdan et al. In this research, the main objective was to assess the effect of 12-week folk dance training on blood oxidative stress levels. In the study, there were 38 healthy dancers within the 21-28 age group. All measurements were carried out twice - before and after the testing period. The training sessions lasted 2 hours a day and the dances were practiced in a different order. Based on the results of the research, it was found that the level of haemoglobin decreased (probably due to haemolysis) and the total antioxidant capacity of the dancers (TAC and OSI) was almost completely deferred.

Silva et al. also conducted research among ballet dancers. The aim of the study was to show changes in physiological and biochemical markers. The study participants were 24 dancers within the 12-15 age group. The total training time was 10 hours per week. Analysis of research analysis shows a slight decrease in the number of erythrocytes.

Leukocytes have a protective function in the body. They are responsible for defending the system against viruses and bacteria. Under the influence of intensive training, an increase in the amount of leukocytes...
in the blood is observed. As a result of physical exercise, the number of granulocytes as well as lymphocytes and monocytes may increase\(^4\).\(^4\). In the case of short-term but intense physical exercise, the number of neutrophils increases after about 30 minutes after the completion of training. Then, there is another increase, but it is much slower than the first. Repeated neutrophil growth is associated with the effect of endogenous cortisol on the bone marrow\(^4\).\(^4\). Based on the results obtained by Younesian et al.\(^4\), it can be concluded that the process of continuous “exchange” of leukocytes may depend on physical exercise. The authors of the study also note that fluctuations in the number of white blood cells may depend on many aspects, including large pre-workout meal, past infections, taken medication, as well as training and stress. According to researchers, an increase in the number of white blood cells improves acquired immunity\(^4\)-\(^4\). In the research conducted by Silva et al.\(^4\), statistically significant changes in leukocyte index among dancers were not demonstrated. Training lasted 17 weeks, at least 10 hours per week. Young girls practicing ballet took part in the study\(^4\).

In the authors’ research, an increase in leukocyte count was observed after the 2-hour oriental dance training session. In a study conducted by Akar et al.\(^4\), it was also found that physical effort increases the number of leukocytes in the blood compared to results from before training. The authors explain this phenomenon by the loss of plasma during exercise\(^4\).\(^4\). Further investigation regarding issues associated with demonstrating changes in the blood morphological properties of oriental dancers requires more extensive research that would accurately explain this phenomenon and allow to learn the body’s response in these conditions.

CONCLUSIONS

The obtained results allow to formulate the following conclusion:

1. The 2-hour oriental dance training session implemented in the form of general fitness exercises causes beneficial changes in selected blood counts among young women.

Pismienictwo / References

1. Coluccia P., Patrarah F., Pütz J. Taniec brzuźcio. Eliksir życia z krainy Orientu. Wydawnictwo Projekt 2007: 1-160.
2. De Leon N. Belly dance as a Means of Dance Therapy for Survivors of Sexual Assault. Western Kentucky University 2006: 4-12.
3. Dąbrowski Z. Fizjologia krwi. Wybrane zagadnienia. część I. Wydawnictwo Naukowe PWN. Warszawa 1998: 114-143.
4. Srivastava N. Analysis of Flow Characteristics of the Blood Flowing through an Inclined Tapered Porous Artery with Mild Stenosis under the Influence of an Inclined Magnetic Field. Biohyph J 2014; 794712: 1-9.
5. Stasiuk M., Kijanka G., Kozubek A. Zmiany naczyń krwionośnych przy treningu na wybrane parametry hematologiczne. cz. 2. Wydawnictwo Naukowe PWN. Warszawa 1999: 55-64.
6. Stasiuk M., Kijanka G., Kozubek A. Zmiany naczyń krwionośnych przy treningu na wybrane parametry hematologiczne. cz. 3. Wydawnictwo Naukowe PWN. Warszawa 1999: 133-135.
7. Dąbrowski Z. Z. Fizjologia krwi. Wybrane zagadnienia. część II. Wydawnictwo Naukowe PWN. Warszawa 2000: 299-315.
8. Dąbrowski Z. Hemorheology. Diagn Lab 2010; 46(6): 365-369.
9. Dean L. Blood Groups and Red Cell Anti gens. NCBI. Bethesda 2005: 1-89.
10. Lang F., Lang E., Föller M. Physiologial and Pathophysiology of Erytrosin. Transfus Med Hemother 2012; 39(5): 308-315.
11. Saluk J., Bija J., Pociak M., Wachowicz B. The formation, metabolism and the evolution of blood platelets. Postep Hig Med Dosw 2014; 68: 384-389.
12. Wijk R., Wouter W.S. The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood 2005; 106: 4034-4042.
13. Kozowski S., Nazar K. Fizjologia wypadków fizycznych [In] Kozowski S., Nazar K. Wprowadzenie do Fizjologii klinicznej. PZWL Warszawa 1984: 240-245.
14. Nikolaidis M.G., Protosygellou M.D., Petridou A., et al. Hematologic and Biochemical Profile of Juvenile and Adult Athletes of Both Sexes: Implications for Clinical Evaluation. Int J Sports Med 2003; 24: 506-511.
15. Zodko E. Podstawy fiziologii człowieka. Oficyna Wydawnicza PWSZ. Warszawa 2006: 29-44.
16. Baltaci A.K., Mogulczk R., Ustundag B. et al. Certain Hematologic Parameters and Plasma Proteins and Serum Zinc, Calcium, Phosphor, Levels of Sporter Female Children. J Sports Sci 1999; 3: 21-30.
17. Balla G., Doli A., Freschi M., Verdia C. Immature reticulocyte fraction (IRF) monitored in elite athletes during a whole season. Clin Lab Haem 2005; 27(3): 213-214.
18. Maciejczuk M., Fea A. Evaluation of aerobic capacity and energy expenditure in folk dancers. Hum Mov Sci 2013; 14(1): 76-81.
19. Concejó L.A.R., Neto M.G., Soares do Amaro A.M.A., Martins-Filho P.R., Oliveira Carval ho V. Effect of dance therapy on blood pressure and exercise capacity of individuals with hypertension: A systematic review and me ta-analysis. Int J Cardiol 2016; 220: 553-557.
20. Petrofsky J., Batt J., Berk L., Collins K., Yang T.N., LeMoine B., Mains G. et al. The Effect of an Aerobic Dance and Diet Program on Cardiovascular Fitness, Body Composition and Weight Loss in Women. J Appl Res 2008; 8(3): 179-188.
21. Maruf F.A., Akinpelu A.O., Salakalo B.L. Effects of aerobic exercise and drug therapy on blood pressure and antihypertensive drugs: a randomized controlled trial. Afr Health Sci 2013; 1: 1-9.
22. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
23. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
24. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
25. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
26. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
27. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
28. Neuberg H., Geringer de Oedenberg H. The Effect of an Aerobic Dance and Diet Program on Cardiovascular Fitness, Body Composition and Weight Loss in Women. J Appl Res 2008; 8(3): 179-188.
29. Maruf F.A., Akinpelu A.O., Salakalo B.L. Effects of aerobic exercise and drug therapy on blood pressure and antihypertensive drugs: a randomized controlled trial. Afr Health Sci 2013; 1: 1-9.
30. Maciejczuk M., Fea A. Evaluation of aerobic capacity and energy expenditure in folk dancers. Hum Mov Sci 2013; 14(1): 76-81.
31. Concejó L.A.R., Neto M.G., Soares do Amaro A.M.A., Martins-Filho P.R., Oliveira Carval ho V. Effect of dance therapy on blood pressure and exercise capacity of individuals with hypertension: A systematic review and me ta-analysis. Int J Cardiol 2016; 220: 553-557.
32. Petrofsky J., Batt J., Berk L., Collins K., Yang T.N., LeMoine B., Mains G. et al. The Effect of an Aerobic Dance and Diet Program on Cardiovascular Fitness, Body Composition and Weight Loss in Women. J Appl Res 2008; 8(3): 179-188.
33. Maruf F.A., Akinpelu A.O., Salakalo B.L. Effects of aerobic exercise and drug therapy on blood pressure and antihypertensive drugs: a randomized controlled trial. Afr Health Sci 2013; 1: 1-9.
34. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
35. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
36. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
37. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
38. Banerjee A., Sanyal S., Sengupta R., Ghosh S. The White Blood Cell and Hematologic passport for athletes competing in the Sports World. Warsaw 2006: 250-251.
33. Pialoux V., Mounier R., Ponsot E. Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance. Eur J Clin Nutr 2006; 60: 1345-1354.
34. Suhr F., Porten S., Hertrich T., Broix K., Schmidt A., Platen P., et al. Intensive exercise induces changes of endothelial nitric oxide synthase pattern in human erythrocytes. Nitric Oxide 2009; 20(3): 95-103.
35. Kargotich S., Keast D., Goodman C., Bhagat C., Joske D.J., Dawson B., et al. Monitoring 6 weeks of progressive endurance training with plasma glutamine. Int J Sports Med 2007; 28(3): 211-216.
36. Neumayr G., Pfister R., Hoertnagl H., Mitterbauer G., Prokop W., Joannidis M. Renal function and plasma volume following ultramarathon cycling. Int J Sports Med 2005; 26(1): 2-8.
37. Baldar C., Guidetti L. VO2max, ventilatory and anaerobic thresholds in rhythmic gymnasts and young female dancers. J Sports Med Phys Fitness 2001; 41(2): 177-182.
38. Marchewka A., Filar-Mierzka K., Dąbrowski Z., Telełogow A. Effects of rhythmic exercise performed to music on the rheological properties of blood in women over 60 years of age. Clin Hemorheol Microcirc 2015; 60(4): 363-373.
39. Okdan B., Nalcakan G.R., Onur E., Oran A., Nalcakan M. Effect of folk dance training on blood oxidative stress level, lipids and lipoproteins. Pol J Sport Tourism 2016; 23: 133-139.
40. da Silva C.C., Goldberg T.B.L., Soares-Calderia L.F., Dos Santos Oliveira R, d. Pauila Ramos S., Nakamura F. The Effects of 17 Weeks of Ballet Training on the Autonomic Modulation, Hormonal and General Biochemical Profile of Female Adolescents. J Hum Kinet 2015; 45: 127-135.
41. Borkowski J. Bioenergetyka i biochemia tlenowego wysiłku fizycznego. AWF Wrocław. Wrocław 2009: 66-77.
42. Hubner-Woźniak E., Łutostawska G. Podstawy biochemii wysiłku fizycznego. Centralny Ośrodek Sportu 2000: 1-76.
43. Peake J. Exercise-induced alterations in neutrophil degranulation and respiratory burst activity: possible mechanisms of action. Exerc Immunol Rev 2002; 8: 49-100.
44. Kurowski M., Kowalski M.L. Wpływ wysiłku fizycznego na odpowiedź immunologiczną – wybrane zagadnienia. Alerg Astma Immunol 2014; 19(3): 144-149.
45. Maron B.J., Carney K.P., Lever H.M., Lewis J.F., Barac I., Casey S.A., et al. Relationship of race to sudden cardiac death in competitive athletes with hypertrophic cardiomyopathy. J Am Coll Cardiol 2003; 41: 974-980.
46. Younesian A., Mohammadion M., Rahnama N. Haematology of professional soccer players before and after 90 min match. Cell Mol Biol Lett 2004; 9(2): 132-136.
47. Walsh N., Gleeson M., Shephard R. Position statement. Part one: Immune function and exercise. Exerc Immunol Rev 2011; 17: 6-63.
48. Akar S., Beydağı H., Temocin S., Erenmemişoglu A. Effect of exercise on certain blood parameters. Sports Med 1992; 27(3): 93-99.

Author for correspondence
Bartłomiej Ptaszek
bartlomiej.ptaszek@awf.krakow.pl