Acute modulation of calcium currents and synaptic transmission by gabapentinoids

Osvaldo D. Uchitel,* Mariano N. Di Guilmi, Francisco J. Urbano and Carlota Gonzalez Inchauspe

Instituto de Fisiología; Biología molecular y Neurociencias (iFiBYNe); UBA-CONICET; Departamento de Fisiología, Biología Molecular y Celular; Universidad de Buenos Aires; Buenos Aires, Argentina

Key words: gabapentin, pregabalin, calcium channels, synaptic transmission, neuromuscular junction, calyx of Held, mice

Abbreviations: GBPs, gabapentinoids; MNTB, medial nucleus of the trapezoid body; mEPPs, miniature endplate potentials; EPPs, endplate potentials; EPSC, excitatory post synaptic currents; VGCC, voltage-gated calcium channels; Ik,Ca, presynaptic calcium currents; EPSCs, excitatory postsynaptic currents; DRG, dorsal root ganglion

Gabapentin and pregabalin are anticonvulsant drugs that are extensively used for the treatment of several neurological and psychiatric disorders. Gabapentinoids (GBPs) are known to have a high affinity binding to α,δ-1 and α,δ-2 auxiliary subunit of specific voltage-gated calcium channels. Despite the confusing effects reported on Ca\(^{2+}\) currents, most of the studies showed that GBPs reduced release of various neurotransmitters from synapses in several neuronal tissues. We showed that acute in vitro application of pregabalin could reduce in a dose dependent manner synaptic transmission in both neuromuscular junctions and calyx of Held-MNTB excitatory synapses. Furthermore presynaptic Ca\(^{2+}\) currents treated with pregabalin are reduced in amplitude, do not show inactivation at a clinically relevant low concentration of 100 μM and activate and deactivate faster. These results suggest novel modulatory role of acute pregabalin that might contribute to better understanding its anticonvulsant/analgesic clinical effects.

Introduction

Gabapentin (brand name Neurontin, (1-aminomethyl-cyclohexyl)-acetic acid), a substituted γ-aminoc acid, and its more potent successor Pregabalin (brand name Lyrica, S, -3-(aminomethyl)-5-methylhexanoic acid) are anticonvulsant drugs used in several neurological and psychiatric disorders including fibromyalgia, generalized anxiety disorder and as an adjunctive therapy in adults with partial seizures.1 Both compounds are part of a family of GABA analog drugs generically called Gabapentinoids (GBPs). They were synthesized to mimic the chemical structure of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) with the goal of increasing its lipophilicity to improve its penetration into the central nervous system while retaining a similar pharmacology. However, it is accepted that they do not act on the GABA receptors. They are not converted to GABA or a GABA agonist and they are not an inhibitors of GABA uptake or degradation.2,3 Both compounds also differ from GABA because they readily cross membrane barriers via L-amino acid transporters.4 Additional substances, identified by their inhibitory potencies in [\(^{3}\)H]-GBP-binding assays, have also been described in the literature.5

Multiple mechanisms of action have been proposed to account for the effects of these drugs.2,6 However, the mechanisms of action of the antiepileptic and antinociceptive drugs of the gabapentinoid family have remained poorly understood. In this review, we summarize and discuss the recent findings that help to better understand the mechanisms of action of the acute application of GBPs on synaptic transmission in peripheral and central nervous system.

Ligand Binding Site

Research conducted over the last decades has shown that GBPs exert their pharmacological effects through their high-affinity binding to the α,δ auxiliary subunit of specific voltage-gated calcium channels (VGCC).5,7-9

The pharmacological target of gabapentin was initially found by studying the binding of [\(^{3}\)H]-gabapentin in rat brain membranes at (K\(_d\)~40 nM) and the autoradiographic labeling of brain tissue.11 In addition to the brain, [\(^{3}\)H]-gabapentin binds to skeletal muscle tissue although no skeletal or cardiac muscle function is altered by GBPs.7,12 Fractionation of solubilized brain membranes identified the [\(^{3}\)H]-gabapentin receptor as the α,δ subunit of calcium channels.7

VGCC are transmembrane proteins that play key roles throughout the body in controlling muscle contraction, neurotransmitter and hormone release, gene expression and cellular differentiation. Calcium channels comprise a series of polypeptides including the principal α1 subunit, as well as β and α,δ auxiliary subunits in a 1:1:1 stoichiometry.13 Mammalian genes encoding ten α1 subunits, four α,δ subunits and four β subunits have been identified (reviewed in ref. 14). Calcium channel heterogeneity is generated by distinct assembly profiles between these subunits and/or by alternatively spliced variants.15 The
skeletal muscle calcium channel complex identified from initial purification studies is also composed by the γ subunit but this subunit does not appear to be part of the brain calcium channel complex.16,17

The α2 subunit contains 24 transmembrane domains, where the voltage sensor and ion channel are located. This subunit determines the main biophysical and pharmacological properties of the channel. The β subunit is a peripheral membrane protein that interacts with a cytoplasmic loop from the α1 subunit (reviewed in ref. 18). The α2δ polypeptide is post-translationally cleaved to form α2 and δ subunits which are both heavily glycosylated and are linked together by a disulfide bond. It was considered that the δ subunit spans the membrane once and binds to the extracellular α2 subunit.19 However there is new evidence that the δ subunit may in fact be a glycosylphosphatidylinositol (GPI)-anchored extracellular protein.20

The auxiliary α2δ and β subunits dramatically enhance trafficking of the principal α subunit to the cell surface.21 Also, these auxiliary subunits modify calcium channel gating.22 The α2δ subunit accelerates channel activation and inactivation and exerts a hyperpolarizing shift in the current-voltage relationship.21,24

Of the four known subtypes of α2δ, only α2δ-1 and α2δ-2, but not α2δ-3 or α2δ-4, bind pregabalin and gabapentin.7,25,26 A structural domain in the α2 subunits was identified by sequence homology as a von Willebrand factor type A domain, a site known to mediate a divalent cation dependent interaction with extracellular matrix proteins.27 The α2δ-3 or α2δ-4 subunits do not contain the motif that is the key to gabapentin binding.25,26

The binding affinity of [3H]-gabapentin for α2δ is enhanced several folds in lipid rafts28 and after removing endogenous small molecules ligands such as L-leucine or L-isoleucine which might normally occupy the site to which gabapentin binds.29,30

Further proof that α2δ mediates the effects of gabapentin was derived from targeted point mutations in the α2δ subunit. A single amino acid substitution of the arginine residue at position 217 with alanine (R217A) on the α2δ-1 protein reduced [3H]-gabapentin binding in-vitro25 and in a strain of genetically modified mice homozygous for the mutation.31 Saturation binding and autoradiography studies in R217A mice demonstrated a pronounced decrease in [3H]-gabapentin binding to areas where α2δ-1 is preferentially expressed (neocortex, hippocampus, basolateral amygdala and spinal cord), but little change occurs in binding to cerebellum and brainstem, which are dominated by α2δ-2.32 Additionally, analgesia from pregabalin, but not from opiates or tricyclic antidepressants, was abolished in the R217A knock in mice indicating that binding to the α2δ-1 subtype is required to achieve pain relief.31

Competition with the Gabapentinoid Binding Site: L-Isoleucine

Given the close structural resemblance between some endogenous amino acids (i.e., L-leucine, L-isoleucine) and α2δ drugs (i.e., GBP), these amino acids might be considered as key tools to analyze the specificity of action of GBP. L-Isoleucine and pregabalin have approximately equal affinity to the same binding site (the α2δ subunit of VGCCs)30 and both are substrates for the L-amino acid transporter system. Several in-vitro studies have used this aminoacid to revert the effect of GBP and when L-isoleucine is applied together with gabapentin or pregabalin, it reduces the activity of both compounds.33 Some examples of these studies are the following: (1) L-isoleucine blocks gabapentin-mediated decrease of evoked and miniature excitatory postsynaptic potentials in rat entorhinal cortex slices;34 (2) L-isoleucine blocks the action of pregabalin on vesicle release35 at cultured hippocampal neurons; (3) L-Isoleucine but not D-Isoleucine, blocked the inhibitions of K(+)‐evoked [3H]‐noradrenaline on the release of neurotransmitters in human neocortical slices;36 (4) L-isoleucine antagonized K(+)‐evoked release of [3H]‐GABA and [3H]‐glutamate from superfused human neocortical synaptosomes;37 (5) the presynaptic calcium current inhibited by PGB at the calyx of Held was partially recovered by L-Isoleucine.38 Furthermore, these amino acids are present in human cerebrospinal fluid and could consequently modulate presynaptic function or alter activities that would otherwise occur with α2δ drugs, including direct competition with GBP and a reduction of their potency.30

GBP Interaction with Other Sites

Although compelling evidence indicates that α2δ subunits are major binding proteins for pregabalin in spinal cord and other brain areas it remains to be determined whether an interaction with high-voltage-activated calcium channels is sufficient to account for the broad-spectrum of activities of gabapentin and pregabalin.

L-amino acid transporter. An intracellular action of pregabalin mediated by the L-amino acid transporter has been suggested, which would be responsible for the drug absorption through the gastrointestinal tract and for its distribution after crossing the brain blood barrier.39 However L-Leucine did not affect the antinociceptive effects of intrathecal administration of gabapentin in a pain model.40 The fact that some gabapentin analogues that did not bind to the L-amino acid transporter had an anticonvulsant effect in-vivo via intraventricular application (but not orally) indicates that the L-amino acid transporter may be important to activate the transport of GBPs through the blood brain barrier.41

Neurotransmitter receptors. The effects of GBP on inhibitory (GABA and glycine) and excitatory (N-methyl-D-aspartate (NMDA) and non-NMDA) amino acid neurotransmitter receptors were studied in cultured rodent neurons using intracellular, whole cell or single channel recording techniques. Gabapentin did not have a significant effect in any condition when tested at or above therapeutic concentrations for humans.42 However, more recent patch-clamp studies revealed that gabapentin significantly inhibited the NMDA receptor-activated ion current in dissociated hippocampal CA1 neurons. These results show that gabapentin may exert protective effects against glutamate-induced neuronal injury at least in part by inhibiting the NMDA receptor-activated ion current.43 It has also been proposed that gabapentin acts as an agonist on a subtype of GABA (B) receptors.44,45 However this was not
confirmed using binding assays and searching for agonist effects on hippocampal slices. Furthermore, it has been reported that the effect of gabapentin persists in the presence of the GABA (B) antagonist, saclofen.

Na+ channels. It has been shown that neither the binding of \[^{[H]}\text{b}a\text{trachotoxin}\] to rat brain membranes nor the Na+ currents in transfected ovary nor the Ca2+ influx into brain synaptosomes induced by veratridine, are affected by GBP. After acute exposure to these compounds, no effect was observed on the repetitive firing of Na+ dependent action potentials of cultured spinal cord and neocortical neurons. GBP were found to have no effect on neuronal Na+ channels in a variety of neurons. However, in neuropathic rats these drugs suppressed ectopic discharges from injuries sciatic nerves and decreased the number of action potentials during depolarization in injured dorsal root ganglion (DRG) neurons. These results suggest that GBP might partly exert its analgesic effect by affecting the Na+ channels of injured nerves. This difference in the efficiency of GBP's might be related to changes of Na+ channels type expression associated to nerve injury.

K+ channels. Controversial data have been reported on the effect of GBP on ATP sensitive potassium channels. An enhancement of voltage activated potassium current in DRG neurons via protein kinase A was suggested. In addition to the effect on potassium channels GBP has also been shown to modulate the hyperpolarization-activated cation current (Ih). Surges reported that gabapentin increased Ih in rat CA1 pyramidal cells through a cAMP-independent mechanism resulting in a several millivolts depolarization of membrane potential. This effect was proposed to contribute to the antiepileptic effect of GBP by decreasing the sensitivity to excitatory inputs. However, Cheng published that gabapentin did not produce any depolarization in ventro lateral neurons of rat periaqueductal gray slices.

Acute Modulation of Ca2+ Channels

Ca2+ channel \(\alpha_2\delta-1\) and \(\alpha_2\delta-2\) subunits were proposed to be the main site of action of GBP. Since individual \(\alpha\delta\) subtype may associate (or form complexes) with different \(\alpha\) VGCC, it is expected that GBP should affect various types of Ca2+ channels depending on the tissue and/or cell studied. In fact the expression of \(\alpha\delta\) subunit mRNA containing cells mapped by in situ hybridization method shows that specific labeling of the different \(\alpha\delta\) subunits type was widely, although differentially, distributed in neurons in the brain, the spinal cord and the DRG. Therefore it is not surprising that gabapentin effect is not similar in all cell preparations a finding which may reflect a biovariability in the target binding interactions of GBPs.

Several reports indicate that GBP's reduced the cellular influx of Ca2+ via VGCC in synaptosome fractions prepared from brain tissue. GBP application results in acute inhibition of Ca2+ currents, particularly L-type Ca2+. However, in most studies, acute inhibition by GBP's is either minor or absent. Similarly studies with recombinant VGCC have failed to show any acute effects of gabapentin on channel function. In fact Kang showed, through neuronal recombinant P/Q-type Ca2+ channels expressed in Xenopus oocytes, that Ba2+ currents are not affected by acute treatment with 30 \(\mu\text{M}\) of gabapentin, although it slows down the kinetics of inactivation in a dose-dependent manner after chronic exposure to the drug. The failure to show an effect on these calcium currents could be caused by the fact that recombinant channels lack several interacting proteins (e.g., syntaxin, synaptotagmin and \(\beta\) subunits), which are found at synapses. Alternatively, the use of Ba2+ instead of Ca2+ as an ion carrier could have masked the effect of the GBP on a Ca2+-dependent inactivation.

Electrophysiological recordings have failed to detect any acute gabapentin-mediated change in Ca2+ channel currents recorded from hippocampal neurons taken from patients with temporal lobe epilepsy. Also, there was no effect of GBP's on Ba2+ currents from Purkinje cells, despite the fact that these cells are known to express \(\alpha_2\delta-2\) as their predominant \(\alpha\delta\) subunit. Similarly, negligible inhibition of Ca2+ channel activity was observed in PC12 cells after acute treatment, but a significant decrease in Ca2+ current amplitude was promoted by chronic exposure to GBP's.

On the other hand, there are many reports with direct and indirect evidence showing that GBP's do affect Ca2+. Acute application of GBP's has been demonstrated to inhibit L-type Ca2+ currents in isolated rat neurons, but these studies have not yet been confirmed on rat dentate gyrus, mouse skeletal myotubes, and neuronal N-type currents of cultured rat dorsal root ganglion neurons.

It was reported that the sensitivity of Ca2+ currents to gabapentin is greatly influenced by the relative amount of \(\alpha\delta\) messenger RNA (mRNA) present in cells, presumably as a result of an increased incorporation of specific subunits in the expressed Ca2+ channel complexes. The physiological state of the cells also influences the effects of GBP's on Ca2+ currents from DRG cells. GBP's significantly reduced whole cell Ca2+ current amplitude at positive membrane potentials when a pulse preceded the test pulses or when cells were stimulated with a train of pulses. In control cells, neither pre-pulse depolarization nor pulse trains reduced Ca2+ currents at positive potentials. GBP's, administered at clinically relevant concentrations, resulted in significant reduction of Ca2+ currents in both sham and neuropathic DRG primary afferent neurons, while in non-operated rats reduced Ca2+ current to a smaller degree. Some of these differences among different studies may be explained by the changes in the expression and sensitivity to pharmacological blockades observed in genetically modified mouse that overexpress \(\alpha_2\delta\) type-1.

Acute Modulation of Neurotransmitter Release

Despite the puzzling effects of GBP's on Ca2+ currents most of the studies where the effect of these compounds on transmitter release were analyzed showed a reduced release of various neurotransmitters from synapses in several neuronal tissues. Pregabalin has been previously used in a broad range of concentrations (0.25 \(\mu\text{M}\) to 1 mM, 34,60,77). Pharmacokinetics showed that single in vivo pregabalin dose administration to patients reached clinical plasma concentrations to 120 \(\mu\text{M}\),
while higher concentrations such as 500 \(\mu \text{M} \) were expected after multiple doses (plasma half-life \(\sim 6 \) hours\(^7 \)). Furthermore, gabapentin was suggested to be 4- to 8-fold more concentrated in the brain than in blood plasma.\(^2,79 \) Finally, different effective concentrations of GBPs might be observed in different synaptic preparations (hippocampus, trigeminal nucleus, neuromuscular junctions, etc.), according to their differential interaction with \(\alpha_\delta \) auxiliary subunit and synaptic proteins. Both, P/Q type (\(\text{Ca}_{2,1} \)) and N-type (\(\text{Ca}_{2,2} \)) channels are implicated in transmitter release early during development. However, in more mature cells, the P/Q-type \(\text{Ca}_{2,1} \) channels become predominant, as shown at peripheral and central nervous system synapses.\(^80-83 \) P/Q type channels have been implicated in the effect of GBPs on K\(^+\)-evoked release of noradrenaline and glutamate in rodent spinal cord and cortical slices.\(^33,68,84 \) N-type channels mediating excitatory postsynaptic potentials in rat hippocampal slices are sensitive to GBPs.\(^85 \) By contrast, L-type channels, not typically involved in neurotransmission, are not sensitive to GBPs even in conditions where they mediate K\(^+\)-evoked \([\text{H}]\)-noradrenaline release by L-type activators.\(^48 \) Whether \(\alpha_\delta \) ligands differentially target these VGCC to modulate the release process requires further investigation.

Neurochemical experiments provided the first evidence to suggest that GBPs can alter neurotransmitter release by measuring electrically evoked, Ca\(^{2+}\)-dependent \([\text{H}]\)-monoamine release from rat neocortical slices or rabbit striatal slices.\(^86,87 \) More recently GBPs were tested on veratridine-, electrical- and K\(^+\)-evoked stimulation using rat neocortical slices pre-labeled with \([\text{H}]\)-norepinephrine. The inhibition by these drugs was most pronounced with the \(\kappa \) stimulus and absent with veratridine-evoked release.\(^48 \)

The GBP effect on K\(^+\)-evoked release of pre-labeled neurotransmitters was also studied in human neocortical slices. A significant inhibition of K\(^+\)-evoked \([\text{H}]\)-acetylcholine, \([\text{H}]\)-noradrenaline and \([\text{H}]\)-serotonin release (between 22% and 56%) was observed without affecting \([\text{H}]\)-Dopamine release. The GBPs were ineffective in the presence of the putative \(\alpha_\delta \) antagonist L-isoleucine but not with the D-enantiomer.\(^86 \)

Capsaicin-evoked substance P and calcitonin gene-related peptide (CGRP) release from rat spinal cord slices were also not altered by GBPs in non-inflamed animals.\(^88 \) Gabapentin was shown to increase the ratio between background synaptic inhibition to excitation and to decrease neuronal excitability in neurons of the rat entorhinal cortex in vitro.\(^89 \) In agreement with a small effect of GBPs, K\(^+\)-evoked glutamate release from rat neocortical and hippocampal slices has been reported (11–26%).\(^90 \) However, GBPs had no effect on exocytotic \([\text{H}]\)-glutamate release from human neocortical synaptosomes but were capable of substantially reduced K\(^+\)-evoked \([\text{H}]\)-GABA release.\(^96 \) Thus these experiments do not support the hypothesis that the anticonvulsant action of GBPs is exerted via inhibition of glutamate release.

In contrast, electrophysiological studies using gabapentin and pregabalin substantiated reductions in glutamate and glycine release in neocortical, hippocampal and spinal cord slices.\(^33,68,84,85 \) Furthermore, several reports showed that asynchronous release which occurs without presynaptic action potentials is reduced by GBPs suggesting that these drugs might affect a Ca\(^{2+}\) independent release mechanism.\(^33,34,91 \)

Pregabalin Modulation of Neuromuscular Transmitter Release: A Model of Synaptic Transmission Mediated by P/Q-type Calcium Channels

The \(\alpha_\delta-1 \) subunit is the neuronal Thrombospondin (TSP) receptor that is required for central nervous system synapse formation.\(^92 \) Muscle cells are rich in Thrombospondin-4 (TSP-4)\(^93 \) and \(\alpha_\delta-1.9 \) Both TSP-4 and \(\alpha_\delta-1 \) proteins appear to accumulate in the postsynaptic area of neuromuscular junctions (NMJ) or muscle, respectively. There is an absence of detectable levels of TSP-4 mRNA in spinal motoneurons\(^93 \) and only mRNA \(\alpha_\delta-3 \) is densely expressed in the cell bodies located at the ventral horn of spinal cord.\(^45 \) Since, the proteins \(\alpha_\delta-3 \) and 4 are known to not bind gabapentin,\(^23,94 \) the role of TSP-4-\(\alpha_\delta \) interactions is unclear. In addition, an acute gabapentin dose of 300 \(\mu \text{M} \) did not affect basic electrophysiological parameters at either adult wild-type or ducky (\(\delta \u2013 \)) neuromuscular transmission.\(^95 \)

According to these results, adult motor nerve terminals should be insensitive to gabapentinoids. However, preliminary data from our group showed clear effects of pregabalin, affecting presynaptic parameters during neuromuscular transmission. We used intracellular recordings to study neuromuscular transmission, as previously described in reference 80 and 96. The miniature Endplate Potentials (mEPPs) did not show any change in amplitude after acute bath application of 1 mM pregabalin. Mean mEPPs frequency was significantly increased (2 ± 0.5 and 4.3 ± 1.2 Hz, in control and pregabalin conditions, respectively; Student’s-t-test, \(p < 0.05 \), \(n > 7 \) NMJ). Thus, suggesting that pregabalin did have a presynaptic, but not postsynaptic action at mice neuromuscular junctions. Further indications of a presynaptic pregabalin action were obtained during nerve stimulation at high frequency (100 Hz, 30 stimuli). Indeed, the 100 Hz-induced depression of endplate potentials that normally follows a single exponential decaying time course, was changed by pregabalin (500 \(\mu \text{M} \)) to a biphasic facilitation-depression time course. Moreover, both increment in spontaneous mEPPs frequencies and initial facilitation during 100 Hz trains of nerve stimulation suggest a pregabalin-mediated effect on calcium channels influx at presynaptic neuromuscular terminals.

Pregabalin Modulation of Neurotransmitter Release and P/Q-type Calcium Channels at the Central Nervous System Synapse

In order to determine the action of pregabalin in a preparation where presynaptic Ca\(^{2+}\) currents as well as transmitter release could be investigated in detail we studied the effect of pregabalin on the calyx of Held-Medial Nucleus of the Trapezoid Body (MNTB) synapse. As we shown at the NMJ, at the calyx—MNTB synapse the amplitude of the miniature excitatory postsynaptic currents (EPSCs) were not affected while the amplitudes of EPSCs were reduced in a dose dependent manner with a maximal effect of 30% inhibition at 500 \(\mu \text{M} \) of pregabalin.
We studied the presynaptic action of pregabalin on Ca\textsubscript{2.1} (P/Q-type) calcium channels under whole cell voltage clamp conditions at the presynaptic calyx of Held8 nerve terminal. A clinical high-concentration dose of pregabalin (e.g., 500 μM) blocked Ca\textsubscript{2.1} channel-mediated currents evoked by both depolarizing voltage square pulses and ramp protocols, without changing their voltage-dependent activation. Most interestingly, pregabalin at both 100 μM and after 500 μM was able to reduce inactivation of presynaptic calcium, but not barium-mediated presynaptic currents. On the other hand, pregabalin increased the activation speed of Ca2+ currents. These data together with the lower inactivation observed in Ca\textsubscript{2.1} channels might justify the observed decrease of presynaptic short-term facilitation. Our ongoing results suggest that pregabalin affects presynaptic Ca2+ currents in three ways: (1) by blocking presynaptic P/Q-type mediated calcium currents, thus reducing synaptic transmission, (2) by increasing activation speed which will counteract a substantial reduction of the action potential elicited calcium influx and 3) by reducing the inactivation of P/Q channels, which would allow a fast recovery of Ca2+ currents during high frequency synaptic stimulation.

Concluding Remarks

The direct action of GBP\textsubscript{s} on VDCC\textsubscript{s} appears to be essential for their modulatory effects on the release of multiple types of neurotransmitters. Moreover, such modulation is highly dependent upon the interaction between these Ca\textsubscript{2+} channels and their environment, the state of the Ca2+ channels and the levels of expression and type of their auxiliary subunits.

Drastic changes on neuronal environment appeared to have an impact on GBP effects. Indeed, PGB-mediated alterations were enhanced by conditions like prolonged depolarization, inflammation, hyperexcitability or activation of protein kinase C and adenylylcyclase.45,88,91,95,98

Thus, the apparent lack of acute effects of GBP\textsubscript{s} might be easily challenged by characterizing their effects on animal models of different diseases. Synaptic transmission under pathological states of α\textsubscript{2}δ subunits expression should be more reactive to GBP\textsubscript{s} than under baseline, control conditions.

In conclusion, future directions to understand GBP\textsubscript{s} effects should consider the existence of a novel mechanism whereby GBP\textsubscript{s} have a less effect on physiological transmitter release but significantly affect ‘sensitized’ or ‘abnormal’ neuronal transmitter release.

Acknowledgements

This work was supported by the following grants: UBACYT X-223; PICT 1728 OC.AR.PICT 2005 N 32113; FONCYT (ANPCyT) PICT BID 1728 OC.AR.PICT 2006 N 199 and Wellcome Trust #084656. (to Osvaldo D. Uchitel); FONCYT (ANPCyT) PICT 2007–1009, PICT 2008–2019 and PIDRI-PRH 2007 (to Francisco J. Urbano). We thank J.V. for reading this manuscript. Pregabalin was kindly donated by Gador S.A., Argentina.

References

1. Striano P, Striano S. Gabapentin: a Ca2+ channel α\textsubscript{2}δ ligand for beyond epilepsy therapy. Drugs Today (Barc) 2008; 44:353-68; PMID: 18548137.
2. Taylor CP, Gee NS, Su TZ, Kocsis JD, Welty DF, Brown JP et al. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 1998; 29:233-49; PMID: 9551785.
3. Maneu PF, Gonzalez MI, Sutton KS, Chung FZ, Pinnock RD, Lee K. Cellular and molecular action of the putative GABA-aminergic, gabapentin. Cell Mol Life Sci 2003; 60:742-50; PMID: 12785720.
4. Su TZ, Feng MR, Weber ML. Mediation of highly concentration uptake of pregabalin by L-type amino acid transport in Chinese hamster ovary and Caco-2 cells. J Pharmacol Exp Ther 2005; 313:1406-16; PMID: 15769862.
5. Bellotti TR, Capiris T, Elkhari IV, Kinsora JJ, Field MJ, Heffner TG et al. Structure-activity relationships of pregabalin and analogues that target the α(2)δ protein. J Med Chem 2005; 48:2294-307; PMID: 15801823.
6. Bryant JS, Wustrow DJ. 3-substituted GABA analog with central nervous system activity: a review. Med Res Rev 1999; 19:149-77; PMID: 10189176.
7. Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel. J Biol Chem 1996; 271:5768-76; PMID: 8621444.
8. Taylor CP, Angelotti T, Fauman E. Pharmacology and mechanism of action of pregabalin: the calcium channel alpha2-delta (α\textsubscript{2}δ) subunit as a target for antiepileptic drug discovery. Epilepsy Res 2007; 73:137-50; PMID: 17126531.
9. Taylor CP, Garrido R. Immunostaining of rat brain, spinal cord, sensory neurons and skeletal muscle for calcium channel alpha2-delta (α\textsubscript{2}δ) type 1 protein. Neuroscience 2008; 155:510-21; PMID: 18616987.
10. Suman-Chauhan N, Weidale L, Hill DR, Woodruff GN. Characterisation of [1H]gabapentin binding to a novel site in rat brain: homogenate binding studies. Eur J Pharmacol 1993; 244:293-301; PMID: 8384570.
11. Hill DR, Suman-Chauhan N, Woodruff GN. Localization of [1H]gabapentin to a novel site in rat brain: autoradiographic studies. Eur J Pharmacol 1993; 244:303-9; PMID: 8384571.
12. Joshi I, Taylor CP. Pregabalin action at a model synapse: binding to presynaptic calcium channel α\textsubscript{2}δ subunit reduces neurotransmitter in mice. Eur J Pharmacol 2006; 553:82-8; PMID: 17064682.
13. Catterall WA. Structure and regulation of voltage-gated Ca\textsubscript{2+} channels. Annu Rev Cell Dev Biol 2006; 12:521-55; PMID: 11031246.
14. Gray AC, Raingo J, Lipscombe D. Neuronal calcium channels: splicing for optimal performance. Cell Calcium 2007; 42:409-17; PMID: 17512586.
15. Catterall WA, Few AR. Calcium channel regulation and presynaptic plasticity. Neuron 2008; 59:882-901; PMID: 18817729.
16. Dolfin AC. Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 2009; 19:237-44; PMID: 19559957.
17. Muller CS, Haupt A, Bidd W, Schindler J, Knaus HG, Meissner M et al. Quantitative proteomics of the Ca\textsubscript{2} channel nano-environments in the mammalian brain. Proc Natl Acad Sci USA 2010; 107:14950-7; PMID: 20668256.
18. Dolfin AC. B subunits of voltage-gated calcium channels. J Bioenerg Biomembr 2003; 35:599-620; PMID: 15009522.
19. Davies A, Hendrich J, Van Minn AF, Wran F, Van Minh VM, Foucault I et al. The calcium channel α\textsubscript{2}δ-2 subunit partitions with Ca\textsubscript{V}2.1 into lipid rafts in cerebellum: implications for localization and function. J Neurosci 2006; 26:8748-57; PMID: 16928663.
20. Dissanayake VU, Gee NS, Brown JP, Woodruff GN. Spermicidal action of specific [3H]-gabapentin binding to the detergent-solubilized porcine cerebrospinal vertebral α\textsubscript{2}δ calcium channel subunit. Br J Pharmacol 1997; 120:833-40; PMID: 9136869.
30. Brown JP, Dissanayake VU, Brigg AR, Milic MR, Gee NS. Isolation of the [1H]gabapentin-binding protein/αδδ Ca2+ channel subunit from porcine brain: development of a radioligand binding assay for α δ subunits using [1H]escin. Anal Biochem 1998; 258:236-43.

31. Field MJ, Cox PJ, Stort E, Melrose H, Offord J, Su TZ, et al. Identification of the αδ-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the actions of pregabalin. Pain 2004; 104:1-7; PMID: 15195157.

32. Bian F, Li Z, Offord J, Davis MD, McCormick J, Taylor CP, et al. Calcium channel αδ-1 type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdala and spinal cord: an ex vivo autoradiographic study in αδ-1 type 1 genetically modified mice. Brain Res 2006; 1075:68-80; PMID: 16460711.

33. Taylor CP, Angelotti T, Fauman E. Pharmacology and mechanism of action of pregabalin: the calcium channel αδ-1 subunit as a target for antiepileptic drug discovery. Epilepsy Res 2007; 73:137-50; PMID: 17126531.

34. Cunningham MO, Woodhall GL, Thompson SE, Dooley DJ, Jones RS. Dual effects of gabapentin and pregabalin on glutamate release at rat entorhinal cortex synapses in vitro. Eur J Neurosci 2004; 20:1566-76; PMID: 15355323.

35. Miechva KD, Taylor CP, Smith SJ. Pregabalin reduces the release of synaptic vesicles from cultured hippocampal neurons. Mol Pharmacol 2006; 70:467-76; PMID: 16641316.

36. Brawek B, Loffler M, Dooley DJ, Weyerbrock A, Feuerstein TJ. Differential modulation of K+-evoked 3H-neurotransmitter release from cultured hippocampal neurons. Mol Pharmacol 2006; 70:467-76; PMID: 15355323.

37. Brawek B, Loffler M, Weyerbrock A, Feuerstein TJ. Differential modulation of K+-evoked 3H-neurotransmitter release from cultured hippocampal neurons. Mol Pharmacol 2006; 70:467-76; PMID: 15355323.

38. Brown JP, Dissanayake VU, Briggs AR, Milic MR, Gee NS. Isolation of the [1H]gabapentin-binding protein/αδδ Ca2+ channel subunit from porcine brain: development of a radioligand binding assay for α δ subunits using [1H]escin. Anal Biochem 1998; 258:236-43.

39. Field MJ, Cox PJ, Stort E, Melrose H, Offord J, Su TZ, et al. Identification of the αδ-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the actions of pregabalin. Pain 2004; 104:1-7; PMID: 15195157.

40. Bian F, Li Z, Offord J, Davis MD, McCormick J, Taylor CP, et al. Calcium channel αδ-1 type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdala and spinal cord: an ex vivo autoradiographic study in αδ-1 type 1 genetically modified mice. Brain Res 2006; 1075:68-80; PMID: 16460711.

41. Taylor CP, Angelotti T, Fauman E. Pharmacology and mechanism of action of pregabalin: the calcium channel αδ-1 subunit as a target for antiepileptic drug discovery. Epilepsy Res 2007; 73:137-50; PMID: 17126531.

42. Cunningham MO, Woodhall GL, Thompson SE, Dooley DJ, Jones RS. Dual effects of gabapentin and pregabalin on glutamate release at rat entorhinal cortex synapses in vitro. Eur J Neurosci 2004; 20:1566-76; PMID: 15355323.

43. Miechva KD, Taylor CP, Smith SJ. Pregabalin reduces the release of synaptic vesicles from cultured hippocampal neurons. Mol Pharmacol 2006; 70:467-76; PMID: 16641316.

44. Brawek B, Loffler M, Dooley DJ, Weyerbrock A, Feuerstein TJ. Differential modulation of K+-evoked 3H-neurotransmitter release from cultured hippocampal neurons. Mol Pharmacol 2006; 70:467-76; PMID: 15355323.

45. Brawek B, Loffler M, Weyerbrock A, Feuerstein TJ. Differential modulation of K+-evoked 3H-neurotransmitter release from cultured hippocampal neurons. Mol Pharmacol 2006; 70:467-76; PMID: 15355323.
93. Arber S, Caroni P. Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol 1995; 131:1083-94; PMID: 7490284.

94. Qin N, Yagel S, Momplaisir ML, Codd EE, D’Andrea MR. Molecular cloning and characterization of the human voltage-gated calcium channel α2δ4 subunit. Mol Pharmacol 2002; 62:485-96; PMID: 12181424.

95. Kaja S, van de Ven RC, Broos LA, Frants RR, Ferrari MD, van den Maagdenberg AM, et al. Characterization of acetylcholine release and the compensatory contribution of non- CaV2.1 channels at motor nerve terminals of leaner CaV2.1-mutant mice. Neuroscience 2007; 144:1278-87; PMID: 17161543.

96. Rosato-Siri MD, Piriz J, Tropper BA, Uchitel OD. Differential Ca2+-dependence of transmitter release mediated by P/Q- and N-type calcium channels at neonatal rat neuromuscular junctions. Eur J Neurosci 2002; 15:1874-80; PMID: 12099893.

97. Maneuf YP, Hughes J, McKnight AT. Gabapentin inhibits the substance P-facilitated K+-evoked release of [3H]glutamate from rat caudal trigeminal nucleus slices. Pain 2001; 93:191-6; PMID: 11427331.

98. Maneuf YP, McKnight AT. Block by gabapentin of the facilitation of glutamate release from rat trigeminal nucleus following activation of protein kinase C or adenyl cyclase. Br J Pharmacol 2001; 134:237-40; PMID: 11564640.