Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? — A Neural Tangent Kernel Perspective

Kaixuan Huang, Yuqing Wang, Molei Tao, Tuo Zhao†

February 18, 2020

Abstract

Deep residual networks (ResNets) have demonstrated better generalization performance than deep feedforward networks (FFNets). However, the theory behind such a phenomenon is still largely unknown. This paper studies this fundamental problem in deep learning from a so-called “neural tangent kernel” perspective. Specifically, we first show that under proper conditions, as the width goes to infinity, training deep ResNets can be viewed as learning reproducing kernel functions with some kernel function. We then compare the kernel of deep ResNets with that of deep FFNets and discover that the class of functions induced by the kernel of FFNets is asymptotically not learnable, as the depth goes to infinity. In contrast, the class of functions induced by the kernel of ResNets does not exhibit such degeneracy. Our discovery partially justifies the advantages of deep ResNets over deep FFNets in generalization abilities. Numerical results are provided to support our claim.

1 Introduction

Deep Neural Networks (DNNs) have made significant progress in a variety of real-world applications, such as computer vision (Krizhevsky et al., 2012; Goodfellow et al., 2014; Long et al., 2015), speech recognition, natural language processing (Graves et al., 2013; Bahdanau et al., 2014; Young et al., 2018), recommendation systems, etc. Among various network architectures, Residual Networks (ResNets, He et al. (2016a)) are undoubtedly a breakthrough. Residual Networks are equipped with residual connections, which skip layers in the forward step. Similar ideas based on gating mechanism are also adopted in Highway Networks (Srivastava et al., 2015), and further inspire many follow-up works such as Densely Connected Networks (Huang et al., 2017).

Compared with conventional Feedforward Networks (FFNets), residual networks demonstrate surprising generalization abilities. Existing literature rarely considers deep feedforward networks...
with more than 30 layers. This is because many experimental results have suggested that very deep feedforward networks yield worse generalization performance than their shallow counterparts (He et al., 2016a). In contrast, we can train residual networks with hundreds of layers, and achieve better generalization performance than that of feedforward networks. For example, ResNet-152 (He et al., 2016a), achieving a 19.38% top-1 error on the ImageNet data set, consists of 152 layers; ResNet-1001 (He et al., 2016b), achieving a 4.92% error on the CIFAR-10 data set, consists of 1000 layers.

Despite the great success and popularity of the residual networks, the reason why they generalize so well is still largely unknown. There have been several lines of research attempting to demystify this phenomenon.

One line of research focuses on empirical studies of residual networks, and provides intriguing observations. For example, Veit et al. (2016) show that residual networks behave like an ensemble of weakly dependent networks of much smaller sizes, and meanwhile, they also show that the gradient vanishing issue is also significantly mitigated due to these smaller networks. Balduzzi et al. (2017) further provide a more refined elaboration on the gradient vanishing issue. They demonstrate that the gradient magnitude in residual networks only shows sublinear decay (with respect to the layer), which is much slower than the exponential decay of gradient magnitude in feedforward neural networks. Li et al. (2018) propose a visualization approach for analyzing the landscape of neural networks, and further demonstrate that residual networks have smoother optimization landscape due to the skip-layer connections.

Another line of research focuses on theoretical investigations of residual networks under simplified network architectures. For example, Hardt and Ma (2016) study the optimization landscape of residual networks with linear activation; Li and Yuan (2017) study using Stochastic Gradient Descent (SGD) to train a two-layer residual network with only one unknown layer. Liu et al. (2019) study using Gradient Descent (GD) to train a two-layer non-overlapping residual network. These results, however, are only loosely related to the generalization abilities of residual networks, and often considered to be overoptimistic, due to the oversimplified assumptions.

Some more recent works provide a new theoretical framework for analyzing overparameterized neural networks (Jacot et al., 2018; Du et al., 2018; Arora et al., 2019a,b; Allen-Zhu and Li, 2019a; Allen-Zhu et al., 2018b,a; Li and Liang, 2018). They focus on connecting two- or three-layer overparameterized (sufficiently wide) neural networks to reproducing kernel Hilbert spaces. Specifically, they show that under proper conditions, the weight matrices of a well trained overparameterized neural network (achieving any given small training error) are actually very close to their initialization. Accordingly, the training process can be described as searching within some class of reproducing kernel functions, where the associated kernel is called the “neural tangent kernel” (NTK, Jacot et al. (2018)) and only depends on the initialization of the weights. Accordingly, the generalization properties of the overparameterized neural network are equivalent to those of the associated NTK function class. Based on such a framework, Allen-Zhu and Li (2019b) further investigate the advantages of three-layer residual networks over two-layer feedforward networks under certain realizable settings. The theories above, however, only investigate shallow networks and do not necessarily provide justification for practical deep residual networks with more layers.
To better understand generalization abilities of deep feedforward and residual networks, we propose to investigate the NTKs associated with these networks, where both widths and depths go to infinity\(^1\). Specifically, we prove that similar to what have been shown for feedforward networks (Jacot et al., 2018), as the width of deep residual networks increases to infinity, training residual networks can be viewed as learning reproducing kernel functions with some NTK under some proper regime. However, such an NTK associated with the residual networks exhibits a very different behavior from that of feedforward networks.

To demonstrate such a difference, we further consider the regime, where the depths of both feedforward and residual networks are allowed to increase to infinity. Accordingly, both NTKs associated with deep feedforward and residual networks converge to their limiting forms sublinearly (in terms of the depth). For notational simplicity, we refer to the limiting form of the NTKs as the limiting NTK. Besides asymptotic analysis, we also provide nonasymptotic bounds, which demonstrate equivalence between limiting NTKs and neural networks with sufficient depth and width.

When comparing their limiting NTKs, we find that the class of functions induced by the limiting NTKs associated with deep feedforward networks is essentially not learnable. Such a class of functions is sufficient to overfit training data. Given any finite sample size, however, the learned function cannot generalize. In contrast, the class of functions induced by the limiting NTKs associated with deep residual networks does not exhibit such degeneracy. Our discovery partially justifies the advantages of deep residual networks over deep feedforward networks in terms of generalization abilities. Numerical results are provided to support our claim.

Our work is closely related to Daniely et al. (2016). They also investigate the so-called “Gaussian Process” kernel induced by feedforward networks under the regime where the depth is allowed to increase to infinity. However, their studied neural networks are essentially some specific implementations of the reproducing kernels using random features, since the training process only updates the last layer of the neural networks, and keeps other layers unchanged. In contrast, we assume the training process updates all layers except for the last layer.

The rest of this paper is organized as follows: Section 2 reviews feedforward networks, residual networks and dual kernels associated with neural networks; Section 3 establishes both asymptotic and nonasymptotic results for equivalence between residual networks and the associated neural tangent kernel under proper conditions; Section 4 further investigates the NTKs associated with both feedforward networks and residual networks, as their depths go to infinity; Section 5 presents numerical results to support our theory; Section 6 discusses the implication and limitation of our results.

Notations: We use \(\sigma_0(z) = \max(0, z)\) to denote the ReLU activation function in neural networks. We use \(\sigma(z)\) to denote the normalized ReLU function \(\sigma(z) = \sqrt{2} \max(0, z)\). The derivative \(^2\) of ReLU function (step function) is \(\sigma_0'(z) = \mathbb{I}_{[z \geq 0]}\). Then \(\sigma'(z) = \sqrt{2} \mathbb{I}_{[z \geq 0]}\) is the normalized step function. We use \(D\) to denote the input dimension and \(S^{D-1}\) to denote the unit sphere in \(\mathbb{R}^D\). We use \(m\)

\(^1\)More precisely, our analysis considers the regime, where the widths go to infinity first, and then the depths go to infinity. See more details in Section 4.

\(^2\)Although the ReLU function \(\sigma_0\) is not differentiable at 0, we call \(\sigma_0'\) derivative for notational convenience.
to denote the network width (the number of neurons at each layer) and \(L\) to denote the depth.

Let \(M_2\) be the set of all \(2 \times 2\) positive semi-definite matrices. We use \(F\) to denote the set of all symmetric and positive semi-definite functions from \(\mathbb{R}^D \times \mathbb{R}^D\) to \(\mathbb{R}\). We use \(\| \cdot \|_\infty\) to denote the entry-wise \(\ell_\infty\) norm for matrices and use \(\| \cdot \|\) to denote the \(\ell_2\) norm for vectors and the spectral norm for matrices. We use \(\text{diag}(\cdot)\) to denote the diagonal matrix. We use \(I_n\) to denote the \(n \times n\) identity matrix. We use \(x\) and \(\tilde{x}\) to denote a pair of inputs. We use \(x_\ell\) and \(\tilde{x}_\ell\) to denote the output of the \(\ell\)-th layer of a network for the input \(x\) and \(\tilde{x}\), respectively. We use \(f\) and \(\tilde{f}\) to denote the final output of the network for \(x\) and \(\tilde{x}\), respectively. We use \(\nabla_\theta f = \nabla_\theta f_\theta(x)\) to denote the derivative of parametrized model \(f_\theta\) w.r.t. \(\theta\) at the input \(x\), and \(\nabla_\theta \tilde{f}\) to denote the counterpart at the input \(\tilde{x}\).

2 Background

For self-containedness, we first briefly review feedforward networks, residual networks and dual kernels associated with neural networks.

2.1 Feedforward Networks

We define an \(L\)-layer feedforward network (FFNet) \(f(x)\) with ReLU activation in a recursive manner as follows,

\[
\begin{align*}
x_0 &= x, \quad x_\ell = \sqrt{\frac{2}{m}}\sigma_0(W_\ell x_{\ell-1}), \quad \ell = 1, \ldots, L, \quad f(x) = v^\top x_L, \\
\end{align*}
\]

where \(W_1 \in \mathbb{R}^{m \times D}\) and \(W_2, \ldots, W_L \in \mathbb{R}^{m \times m}\) are weight matrices, and \(v \in \mathbb{R}^m\) is the output weight vector. For simplicity, we only consider feedforward networks with scalar outputs.

2.2 Residual Networks

We define an \(L\)-layer residual network (ResNet) \(f(x)\) in a recursive manner as follows,

\[
\begin{align*}
x_0 &= \sqrt{\frac{1}{m}}Ax, \quad x_\ell = x_{\ell-1} + \alpha \sqrt{\frac{1}{m}}V_\ell \sigma_0\left(\sqrt{\frac{2}{m}}W_\ell x_{\ell-1}\right), \quad \ell = 1, \ldots, L, \quad f(x) = v^\top x_L, \\
\end{align*}
\]

where \(W_\ell, V_\ell \in \mathbb{R}^{m \times m}\) for \(\ell = 1, \ldots, L\), \(A \in \mathbb{R}^{m \times D}\), \(v \in \mathbb{R}^m\), and \(\alpha = L^{-\gamma}\) is the scaling factor of the bottleneck layers.

The network architecture in (2) is similar to the “pre-activation” shortcuts in He et al. (2016b), except that each bottleneck layer only contains one activation - between \(W_\ell\) and \(V_\ell\). We remove the activation of the input due to some technical issues (See more details in Section 3).

2.3 Dual and Normalized Kernels

The dual kernel technique was first proposed in Cho and Saul (2009) and motivated several follow-up works such as Daniely et al. (2016); Mairal et al. (2014). Here we adopt the description in Daniely et al. (2016). We use \(K\) to denote a kernel function on the input space \(\mathbb{R}^D\), i.e.,
$K : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$. We denote
$$
\Sigma(x, \tilde{x}) = \begin{pmatrix} K(x, x) & K(x, \tilde{x}) \\ K(\tilde{x}, x) & K(\tilde{x}, \tilde{x}) \end{pmatrix}
$$
and
$$
N_\rho = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix},
$$
where $K \in \mathcal{F}$, $\rho \in \mathbb{R}$. Given an activation function $\phi : \mathbb{R} \to \mathbb{R}$, its dual activation function $\hat{\phi} : [-1, 1] \to [-1, 1]$ is defined as follows
$$
\hat{\phi}(\rho) = \mathbb{E}_{(X, \tilde{X}) \sim \mathcal{N}(0, N_\rho)} \phi(X) \phi(\tilde{X}).
$$
We then define the dual kernel as follows.

Definition 1. We say that $\Gamma_\phi(K) : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ is the dual kernel of K with respect to the activation ϕ, if we have
$$
\Gamma_\phi(K)(x, \tilde{x}) = \mathbb{E}_{(X, \tilde{X}) \sim \mathcal{N}(0, \Sigma(x, \tilde{x}))} \phi(X) \phi(\tilde{X}).
$$
Note that $\Gamma_\phi(K)$ is also positive semi-definite. We also define the normalized kernel.

Definition 2. We say that a kernel $K \in \mathcal{F}$ is normalized, if $K(x, x) = 1$ for all $x \in \mathbb{R}^D$. For a general kernel $K \in \mathcal{F}$, we define its normalized kernel by \overline{K} as
$$
\overline{K}(x, \tilde{x}) = \frac{K(x, \tilde{x})}{\sqrt{K(x, x) K(\tilde{x}, \tilde{x})}}.
$$
For normalized ReLU function $\sigma(z) = \sqrt{2} \max(0, z)$, Daniely et al. (2016) show
$$
\tilde{\sigma}(\rho) = \sqrt{1 - \rho^2} + \left(\frac{\pi - \cos^{-1}(\rho)}{\pi}\right) \rho.
$$
Since $\sigma(z)$ is positive homogeneous, we have
$$
\Gamma_\sigma(K)(x, \tilde{x}) = \sqrt{K(x, x) K(\tilde{x}, \tilde{x})} \tilde{\sigma}(\overline{K}(x, \tilde{x})).
$$
For derivative of normalized ReLU function $\sigma'(z) = \sqrt{2} 1_{[z \geq 0]}$, Daniely et al. (2016) show that
$$
\tilde{\sigma}'(\rho) = \frac{\pi - \cos^{-1}(\rho)}{\pi}.
$$
Since $\sigma'(z)$ is zeroth-order positive homogeneous, we have
$$
\Gamma_{\sigma'}(K)(x, \tilde{x}) = \tilde{\sigma}'(\overline{K}(x, \tilde{x})).
$$

3 Neural Tangent Kernels of Deep Networks

There are two approaches to connect neural networks to kernels: one is Gaussian Process Kernel (GP Kernel); the other is Neural Tangent Kernel (NTK). GP Kernel corresponds to the regime where the first L layers are fixed after random initialization, and only the last layer is trained. Therefore, the first L layers are essentially random feature mapping Rahimi and Recht (2008). This is inconsistent with the practice, as the first L layers should also be trained. In contrast, NTK corresponds to the regime where the first L layers are also trained. For both GP Kernel and NTK, we consider the case when the width of the neural network goes to infinity. Due to space limit, we only provide some proof sketches for our theory, and all technical details are deferred to the appendix.
3.1 Feedforward Networks

We consider the Feedforward Network (FFNet) in (1), where $W_1 \in \mathbb{R}^{m \times D}$, $W_2, \cdots, W_L \in \mathbb{R}^{m \times m}$ and $v \in \mathbb{R}^m$ are all initialized as i.i.d. $\mathcal{N}(0, 1)$ variables. Given such random initialization, the outputs converge to a Gaussian process, as the width goes to infinity (Lee et al., 2017; Jacot et al., 2018). Accordingly, the GP kernel is defined as follows.

Proposition 1 (Daniely et al. (2016); Jacot et al. (2018)). The GP kernel of the L-layer FFNet defined in (1) is

$$K_0(x, \tilde{x}) = x^\top \tilde{x}, \quad K_\ell(x, \tilde{x}) = \Gamma_\sigma(K_{\ell-1})(x, \tilde{x}), \quad \ell = 1, \cdots, L.$$ \hspace{1cm} (3)

Theorem 1 (Daniely et al. (2016)). For the FFNet defined in (1), there exists an absolute constant C, given the width

$$m \geq C e^{-2L^2 \log \frac{8L}{\delta}},$$

with probability at least $1 - \delta$ over the randomness of the initialization, for input x, \tilde{x} on the unit sphere, the inner product of the outputs of the ℓ-th layer can be approximated by $K_\ell(x, \tilde{x})$, i.e.,

$$|\langle x_\ell, \tilde{x}_\ell \rangle - K_\ell(x, \tilde{x})| \leq \epsilon, \quad \text{for all } \ell = 1, \cdots, L.$$

We next derive the NTK of this FFNet. Different from the GP kernel, we assume that $\theta = (W_1, \cdots, W_L)$ are trained.

Proposition 2 (Jacot et al. (2018)). The NTK of the FFNet can be derived in terms of the GP kernels as follows,

$$\Omega_L(x, \tilde{x}) = \sum_{\ell=1}^L \left[K_{\ell-1}(x, \tilde{x}) \prod_{i=\ell}^L \Gamma_\sigma(K_{i-1})(x, \tilde{x}) \right].$$ \hspace{1cm} (4)

Proposition 2 implies that the infinitely-wide FFNet trained by gradient flow is equivalent to the kernel regression predictor with its NTK. For more detailed on gradient flow and kernel ridge regression, please refer to Jacot et al. (2018). Besides the asymptotic result, Arora et al. (2019a) further provide a nonasymptotic bound as follows.

Theorem 2 (Arora et al. (2019a)). For the FFNet defined in (1), when the network width

$$m \geq CL^6 e^{-4 \log \frac{L}{\delta}},$$

where C is a constant, with probability at least $1 - \delta$ over the initialization, for input x, \tilde{x} on the unit sphere, the Neural Tangent Kernel can be approximated by $\Omega_L(x, \tilde{x})$, i.e.,

$$\left| \langle \nabla_\theta f, \nabla_\theta \tilde{f} \rangle - \Omega_L(x, \tilde{x}) \right| \leq L \epsilon.$$

Theorem 2 implies that a sufficiently wide FFNet trained by gradient flow is similar to the kernel regression predictor via its NTK.

Remark 1. For self-containment, we directly adopt the results from existing literature in this subsection. For more technical details, we refer the readers to Daniely et al. (2016); Jacot et al. (2018); Arora et al. (2019a).

3In general, the weight matrices do not need to be square matrices, nor do they need to be of the same size.
3.2 Residual Networks

We consider the Residual Network (ResNet) in (2), where all parameters \((A, v, W_1, \cdots, W_L, V_1, \cdots, V_L)\) are independently initialized from the standard Gaussian distribution. For simplicity, we only train \(\theta = (W_1, \cdots, W_L, V_1, \cdots, V_L)\), but not \(A\) or \(v\), and the NTK of the ResNet is computed accordingly. Note that our theory can be naturally generalized to the setting where all parameters including \(A\) and \(v\) are trained, but the analysis will be much more involved. Our next proposition derives the GP kernel of the ResNet.

Proposition 3. The GP kernel of the ResNet is

\[
K_0(x, \tilde{x}) = x^T \tilde{x}, \quad K_\ell(x, \tilde{x}) = K_{\ell-1}(x, \tilde{x}) + \alpha^2 \Gamma_\sigma(K_{\ell-1})(x, \tilde{x}),
\]

where \(\ell = 1, \cdots, L\), and \(\alpha = L^{-\gamma}\) for \(0.5 \leq \gamma \leq 1\).

Proposition 3 demonstrates that each layer of the ResNet recursively “contributes” to the kernel in an incremental manner, which is quite different from that of the FFNet (shown in Proposition 1). Proposition 3 essentially provides a rigorous justification for the intuition discussed by Garriga-Alonso et al. (2018). Besides the above asymptotic result, we also derive a nonasymptotic bound as follows.

Theorem 3. For the ResNet defined in (2), given two inputs on the unit sphere \(x, \tilde{x} \in S^{D-1}\), \(\epsilon < 0.5\), and

\[
m \geq C \epsilon^{-2} L^{2-2\gamma} \log \frac{36(L + 1)}{\delta},
\]

where \(C\) is a constant and \(0.5 \leq \gamma \leq 1\), with probability at least \(1 - \delta\) over the randomness of the initialization, for all layers \(\ell = 0, \cdots, L\) and \((x^{(1)}, x^{(2)}) \in \{(x, x), (x, \tilde{x}), (\tilde{x}, \tilde{x})\}\), we have

\[
|\langle x^{(1)}_\ell, x^{(2)}_\ell \rangle - K_\ell(x^{(1)}_\ell, x^{(2)}_\ell)\rangle | \leq \epsilon,
\]

where \(K_\ell\) is recursively defined in Proposition 3.

Theorem 3 implies that sufficiently wide residual networks are mimicking the GP kernel under proper conditions. The proof can be found in Appendix A.

Next we present the NTK of the ResNet defined in (2) in the following proposition.

Proposition 4. The NTK of the ResNet is

\[
\Omega_L(x, \tilde{x}) = \alpha^2 \sum_{\ell=1}^{L} \left[B_{\ell+1}(x, \tilde{x}) \Gamma_\sigma(K_{\ell-1})(x, \tilde{x}) + K_{\ell-1}(x, \tilde{x}) B_{\ell+1}(x, \tilde{x}) \Gamma_\sigma(K_{\ell-1})(x, \tilde{x}) \right],
\]

where \(K_\ell\)’s are defined in Proposition 3; \(B_{L+1}(x, \tilde{x}) = 1\), and for \(\ell = 1, \cdots, L\), \(B_\ell\)’s are defined as

\[
B_{\ell+1}(x, \tilde{x}) = B_{\ell+2}(x, \tilde{x}) + \alpha^2 B_{\ell+2}(x, \tilde{x}) \Gamma_\sigma(K_\ell)(x, \tilde{x}).
\]

Proposition 4 implies that similar to what has been proved for the FFNet, the ResNet trained by gradient flow is also equivalent to the kernel regression predictor with some NTK. Note that Proposition 4 is an asymptotic result. We defer the proof, as it can be straightforwardly derived from the nonasymptotic bound as follows.
Theorem 4. For the ResNet defined in (2), given two inputs on the unit sphere \(x, \tilde{x} \in S^{D-1} \), \(\epsilon < 0.5 \), and

\[
m \geq C e^{-4 L^2 - 2 \gamma} \left(\log \frac{320 (L^2 + 1)}{\delta} + 1 \right),
\]

where \(C \) is a constant, with probability at least \(1 - \delta \) over the randomness of the initialization, we have

\[
\left| \langle \nabla \theta f, \nabla \theta \tilde{f} \rangle - \Omega_L(x, \tilde{x}) \right| \leq 2 L \alpha^2 \epsilon,
\]

where \(\alpha = L^{-\gamma} \) with \(\gamma \in [0.5, 1] \), \(\Omega_L(x, \tilde{x}) \) is defined in Proposition 4.

Proof Sketch of Proposition 4 and Theorem 4. For simplicity, we use \(\phi_W : \mathbb{R}^m \to \mathbb{R}^m \) to denote

\[
\phi_W(z) = \sqrt{\frac{2}{m}} \sigma_0(Wz).
\]

Then its derivative w.r.t. \(z \) is as follows,

\[
\phi'_W(z) = \sqrt{\frac{2}{m}} D(Wz) W,
\]

where \(D(Wz) \) is an operator defined as

\[
D(Wz) \equiv \text{diag}(\sigma'_0(Wz)) = \text{diag}([\mathbb{I}_{[W_1, z_0 > 0]}, \cdots, \mathbb{I}_{[W_m, z_0 > 0]}]^{\top}).
\]

For simplicity, we denote \(D_\ell = D(W_\ell x_{\ell-1}) \), where \(\ell = 1, 2, \cdots, L \). Note that \(D_\ell \) is essentially the activation pattern of the \(\ell \)-th bottleneck layer on the input \(x \). We denote \(\tilde{D}_\ell \) for \(\tilde{x} \) in a similar notion. Then we have

\[
\frac{\partial x_\ell}{\partial x_{\ell-1}} = I_m + \sqrt{\frac{1}{m}} V_\ell \sqrt{\frac{2}{m}} D_\ell W_\ell.
\]

For \(\ell = 1, \cdots, L \), we denote \(b_{\ell+1} = \nabla x_\ell f \). Then we have

\[
b_{\ell+1} = \left(v^{\top} \frac{\partial x_L}{\partial x_{L-1}} \ldots \frac{\partial x_1}{\partial x_{\ell}} \right)^{\top}.
\]

Combining all above derivations, we have

\[
\nabla_{V_\ell} f = \frac{\alpha}{\sqrt{m}} b_{\ell+1} : (\phi_W(x_{\ell-1}))^{\top}, \quad \nabla_{W_\ell} f = \frac{\alpha}{\sqrt{m}} \sqrt{\frac{2}{m}} D_\ell V_\ell^{\top} b_{\ell+1} : x_{\ell-1}^{\top}.
\]

Then we can derive the kernel

\[
\sum_{\ell=1}^L \left\langle \nabla_{W_\ell} f, \nabla_{W_\ell} f \right\rangle + \sum_{\ell=1}^L \left\langle \nabla_{V_\ell} f, \nabla_{V_\ell} f \right\rangle,
\]

where

\[
\left\langle \nabla_{V_\ell} f, \nabla_{V_\ell} f \right\rangle = \alpha^2 \frac{1}{m} (b_{\ell+1}, \tilde{b}_{\ell+1}) (\phi_W(x_{\ell-1}), \phi_W(\tilde{x}_{\ell-1})),
\]

\[
\left\langle \nabla_{W_\ell} f, \nabla_{W_\ell} f \right\rangle = \alpha^2 (x_{\ell-1}, \tilde{x}_{\ell-1}) \frac{2}{m^2} \tilde{b}_{\ell+1}^{\top} V_\ell \tilde{D}_\ell D_\ell V_\ell^{\top} b_{\ell+1}.
\]
Note that the concentration of $T_{\ell,3}$ can be shown by Theorem 3. We then show the concentration of $T_{\ell,1}$, $T_{\ell,2}$ and $T_{\ell,4}$, respectively.

For simplicity, we define two matrices for each layer,
\[
\tilde{\Sigma}_\ell(x, \bar{x}) = \begin{bmatrix} \langle x_\ell, x_\ell \rangle & \langle x_\ell, \bar{x}_\ell \rangle \\ \langle \bar{x}_\ell, x_\ell \rangle & \langle \bar{x}_\ell, \bar{x}_\ell \rangle \end{bmatrix}, \quad \Sigma_\ell(x, \bar{x}) = \begin{bmatrix} K_\ell(x, x) & K_\ell(x, \bar{x}) \\ K_\ell(\bar{x}, x) & K_\ell(\bar{x}, \bar{x}) \end{bmatrix}.
\]

We define $\psi_\sigma : \mathcal{M}_+^2 \to \mathbb{R}$ and $\psi_\sigma' : \mathcal{M}_+^2 \to \mathbb{R}$ as follows,
\[
\psi_\sigma(\Sigma) = \mathbb{E}_{(X, \bar{X}) \sim N(0, \Sigma)} \sigma(X)\sigma(\bar{X}), \quad \psi_\sigma'(\Sigma) = \mathbb{E}_{(X, \bar{X}) \sim N(0, \Sigma)} \sigma'(X)\sigma'(\bar{X}).
\]

Note that $\Gamma_\sigma(K_{\ell-1}) = \psi_\sigma'(\Sigma_{\ell-1})$ and $\Gamma_\sigma'(K_{\ell-1}) = \psi_\sigma'(\Sigma_{\ell-1})$.

The following lemmas are technical results and very involved. Please refer to Appendix B for more details.

Lemma 1. Suppose that for $\ell = 1, \cdots, L$,
\[
\|\tilde{\Sigma}_{\ell-1}(x, \bar{x}) - \Sigma_{\ell-1}(x, \bar{x})\|_{\text{max}} \leq c\epsilon^2, \tag{5}
\]
\[
m \geq C_1 \epsilon^{-2}L^{2-2\gamma}\left(\log \frac{80L^2}{\delta} + 1 \right), \tag{6}
\]
with probability at least $1 - 3\delta$, we have for $\ell = 1, \cdots, L$,
\[
|T_{\ell,1} - B_{\ell+1}(x, \bar{x})| \leq c_1 \epsilon,
\]
where C_1, c_1, and c are constants.

Lemma 2. Suppose that (5) holds for $\ell = 1, \cdots, L$. With probability at least $1 - \delta$, we have for $\ell = 1, \cdots, L$,
\[
|T_{\ell,2} - \Gamma_\sigma(K_{\ell-1})(x, \bar{x})| \leq c_2 \epsilon,
\]
where C_2 and c_2 are constants, given
\[
m \geq C_2 \epsilon^{-2}\log \frac{2L}{\delta}.
\]

Lemma 3. Suppose that (5) and (6) hold for $\ell = 1, \cdots, L$. With probability at least $1 - 3\delta$, we have for $\ell = 1, \cdots, L$,
\[
|T_{\ell,4} - B_{\ell+1}(x, \bar{x})\Gamma_\sigma'(K_{\ell-1})(x, \bar{x})| \leq c_3 \epsilon.
\]
where c_3 is a constant.

We remark: (1) Lemma 1 is proved by reverse induction; (2) Lemma 2 exploits the concentration properties of W_ℓ and local Lipschitz properties of ψ_σ; (3) We prove Lemma 3 and Lemma 1 simultaneously with the Hölder continuity of ψ_σ'. Combining all results above, we complete Theorem 4. Moreover, taking $m \to \infty$, we have Proposition 4.

\[\square\]

4 Deep Feedforward v.s. Residual Networks

To compare the NTKs associated with deep feedforward networks and residual networks, we need to consider proper normalization, which avoids the kernel function blowing up or vanishing as the depth L goes to infinity.
4.1 The Limiting NTK of the Feedforward Networks

Recall that the NTK of the L-layer FFNet defined in (1) is

$$\Omega_L(x, \tilde{x}) = \sum_{\ell=1}^{L} \left[K_{\ell-1}(x, \tilde{x}) \cdot \prod_{i=\ell}^{L} \Gamma_{\sigma}(K_{i-1})(x, \tilde{x}) \right].$$

One can check that $\Omega_L(x, x) = L$ for all $x \in S^{D-1}$. To avoid $\Omega_L(x, x) \to \infty$ as $L \to \infty$, we consider a normalized version as

$$\overline{\Omega}_L(x, \tilde{x}) = \frac{1}{L} \Omega_L(x, \tilde{x}).$$

We characterize the impact of the depth L on the NTK in the following theorem.

Theorem 5. For the NTK of the FFNet, as $L \to \infty$, given $x, \tilde{x} \in S^{D-1}$ and

$$|1 - x^\top \tilde{x}| \geq \delta > 0,$

where δ is a constant and does not scale with L, we have

$$\left| \overline{\Omega}_L(x, \tilde{x}) - 1/4 \right| = O\left(\frac{\text{polylog}(L)}{L} \right).$$

When $x = \tilde{x}$, we have $\overline{\Omega}_L(x, \tilde{x}) = 1, \forall L$.

Proof Sketch of Theorem 5. The main challenge comes from the sophisticated recursion of the kernel. To handle the recursion, we employ the following bound.

Lemma 4. When L is large enough, we have

$$\cos\left(n \left(1 - \left(\frac{n}{n+1} \right)^{3 + \frac{\log(L)^2}{L}} \right) \right) \leq K_n(x, \tilde{x}) \leq \cos\left(n \left(1 - \left(\frac{n + \log(L)^p}{n + \log(L)^p + 1} \right)^{3 - \frac{\log(L)^2}{L}} \right) \right),$$

where p is a positive constant depending on δ.

By Lemma 4, we can further bound $\prod_{i=\ell}^{L} \Gamma_{\sigma}(K_{i-1})(x, \tilde{x})$ by

$$\left(\frac{\ell - 1}{L} \right)^{3 + \frac{\log(L)^2}{L}} \leq \prod_{i=\ell}^{L} \Gamma_{\sigma}(K_{i-1})(x, \tilde{x}) \leq \left(\frac{\ell + \log(L)^p - 1}{L + \log(L)^p} \right)^{3 - \frac{\log(L)^2}{L}}. \tag{7}$$

Hence we can measure the rate of convergence. The detailed proof is much involved. Please see Appendix D for more details.

As can be seen from Theorem 5, the NTK of the FFNet converges to a limiting form, i.e.,

$$\overline{\Omega}_\infty(x, \tilde{x}) = \lim_{L \to \infty} \overline{\Omega}_L(x, \tilde{x}) = \begin{cases} 1/4, & x \neq \tilde{x} \\ 1, & x = \tilde{x}. \end{cases}$$

For simplicity, we refer to $\overline{\Omega}_\infty$ as the limiting NTK of the FFNets.
The limiting NTK of the FFNets is actually a non-informative kernel. For example, we consider a kernel regression problem with \(n \) independent observations \(\{(x_i, y_i)\}_{i=1}^n \), where \(x_i \in \mathbb{R}^D \) is the feature vector, and \(y_i \in \mathbb{R} \) is the response. Without loss of generality, we assume that the training samples have been properly processed such that \(x_i \neq x_j \) for \(i \neq j \), and

\[
\sum_{i=1}^n y_i = 0.
\]

By Representer theorem (Friedman et al., 2001), we know that the kernel regression function can be represented by

\[
f(\cdot) = \sum_{i=1}^n \beta_i \Omega_{\text{inf}}(x_i, \cdot).
\]

We then minimize the regularized empirical risk as follows.

\[
\hat{\beta} = \min_{\beta} \| y - \tilde{\Omega} \beta \|^2 + \lambda \beta^T \tilde{\Omega} \beta,
\]

where \(\beta = (\beta_1, \ldots, \beta_n)^T \in \mathbb{R}^n \), \(y = (y_1, \ldots, y_n)^T \in \mathbb{R}^n \), \(\tilde{\Omega} \in \mathbb{R}^{n \times n} \) with \(\tilde{\Omega}_{ij} = \Omega_{\text{inf}}(x_i, x_j) \), and \(\lambda \) is the regularization parameter and usually very small for large \(n \). One can check that (8) admits a closed form solution

\[
\hat{\beta} = (\tilde{\Omega} + \lambda I_n)^{-1} y.
\]

Note that we have

\[
\tilde{\Omega} + \lambda I_n = \begin{pmatrix}
1 & 1/4 & \cdots & 1/4 \\
1/4 & 1 & \cdots & 1/4 \\
\vdots & \vdots & \ddots & \vdots \\
1/4 & 1/4 & \cdots & 1
\end{pmatrix} + \begin{pmatrix}
\lambda & & & \\
& \lambda & & \\
& & \ddots & \\
& & & \lambda
\end{pmatrix} + \begin{pmatrix}
\lambda + 3/4 \\
& \ddots & \\
& & \lambda + 3/4
\end{pmatrix},
\]

which is the sum of a diagonal matrix and a rank-one matrix. By Sherman – Morrison formula

\[
(A + uv^T)^{-1} = A^{-1} - A^{-1}uv^T A^{-1} \left(1 + v^T A^{-1} u \right)^{-1},
\]

we have

\[
\hat{\beta} = \frac{1}{\lambda + 3/4} \left(I_n - \frac{1}{n + 4\lambda + 3} J_n \right) y,
\]

where \(J_n \) is \(n \times n \) all-ones matrix. Then we further have

\[
f(x_j) = \sum_{i=1}^n \hat{\beta}_i \Omega_{\text{inf}}(x_i, x_j) = \frac{3}{4\lambda + 3} y_j.
\]
As can be seen, for sufficiently large \(n \) and sufficiently small \(\lambda \), we have \(f(x_j) \approx y_j \), which means that we can fit the training data well. However, for an unseen data point \(x^* \), where \(x^* \neq x_1, \ldots, x_n \), the regression function \(f \) always gives an output 0, i.e.,
\[
f(x^*) = \sum_{i=1}^{n} \hat{\beta}_i \Omega_\infty(x_i, x^*) = \frac{1}{4} \sum_{i=1}^{n} \hat{\beta}_i = 0.
\]
This indicates that the function class induced by the limiting NTK of the feedforward networks \(\Omega_\infty \) is not learnable.

4.2 The Limiting NTK of the Residual Networks

Recall that the infinite-width NTK of the \(L \)-layer ResNet is
\[
\Omega_L(x, \tilde{x}) = \alpha^2 \sum_{\ell=1}^{L} \left[B_{\ell+1}(x, \tilde{x}) \Gamma_\sigma(K_{\ell-1})(x, \tilde{x}) + K_{\ell-1}(x, \tilde{x}) B_{\ell+1}(x, \tilde{x}) \Gamma_{\sigma'}(K_{\ell-1})(x, \tilde{x}) \right],
\]
where \(B_{L+1}(x, \tilde{x}) = 1 \) and for \(\ell = 1, \ldots, L-1, \)
\[
B_{\ell+1}(x, \tilde{x}) = \prod_{i=\ell}^{L-1} (1 + \alpha^2 \Gamma_{\sigma}(K_i)(x, \tilde{x})).
\]

One can check that for \(x \in S^{D-1}, \)
\[
\Omega_L(x, x) = 2L\alpha^2 (1 + \alpha^2)^{L-1}.
\]

Different from the NTK of the FFNet, \(\Omega_L(x, x) \to 0 \) as \(L \to \infty \). Therefore, we also consider the normalized NTK for the ResNet to prevent the kernel from vanishing. Specifically, the normalized NTK of the ResNet on \(S^{D-1} \times S^{D-1} \) is defined as follows,
\[
\widetilde{\Omega}_L(x, \tilde{x}) = \frac{1}{2L(1 + \alpha^2)^{L-1}} \sum_{\ell=1}^{L} \left[B_{\ell+1}(x, \tilde{x}) \Gamma_\sigma(K_{\ell-1})(x, \tilde{x}) + K_{\ell-1}(x, \tilde{x}) B_{\ell+1}(x, \tilde{x}) \Gamma_{\sigma'}(K_{\ell-1})(x, \tilde{x}) \right]. \tag{9}
\]

We then analyze the limiting NTK of the ResNets. Recall that \(\alpha = L^{-\gamma} \). Our next theorem only considers \(\gamma = 1 \), i.e., \(\alpha = 1/L \).

Theorem 6. For the NTK of the ResNet, as \(L \to \infty \), given \(\alpha = \frac{1}{L} \) and \(x, \tilde{x} \in S^{D-1} \) such that
\[
|1 - x^\top \tilde{x}| \geq \delta > 0,
\]
where \(\delta \) is a constant and does not scale with \(L \), we have
\[
\left| \widetilde{\Omega}_L(x, \tilde{x}) - \Omega_1(x, \tilde{x}) \right| = O\left(\frac{1}{L} \right),
\]
where \(\Omega_1(x, \tilde{x}) = \frac{1}{2} \left(\sigma(x^\top \tilde{x}) + x^\top \sigma'(x^\top \tilde{x}) \right) \).
Proof Sketch of Theorem 6. The main technical challenge here is also handling the recursion. Specifically, we denote $K_{\ell,L}$ to be the ℓ-th layer of the GP kernel when the depth is L, which is originally denoted by $K_\ell(x,\tilde{x})$. Let $S_0 = K_0(x,\tilde{x})$ and

$$S_{\ell,L} = \frac{K_{\ell,L}}{(1 + \alpha^2)^\ell} = \frac{K_{\ell,L}}{(1 + 1/L^2)^\ell}.$$

We have $\Gamma_\sigma(K_{\ell,L}) = (1 + \alpha^2)^\ell \hat{\sigma}(S_{\ell,L})$ and $\Gamma_\sigma'(K_{\ell,L}) = \hat{\sigma}'(S_{\ell,L})$. We rewrite the recursion of $K_{\ell,L}$ as

$$S_{\ell,L} = S_{\ell-1,L} + \frac{\alpha^2 \hat{\sigma}(S_{\ell-1,L})}{1 + \alpha^2} \geq S_{\ell-1,L},$$

(10)

which eases the technical difficulty. However, the proof is still highly involved, and more details can be found in Appendix E.

Note that we do not consider $\gamma = 0.5$ for technical concerns, as $\Omega_L(x,\tilde{x})$ in (9) becomes very complicated to compute, as $L \to \infty$. Also we find that considering $\gamma = 1$ is sufficient to provide us new theoretical insights on ResNets (See more details in Section 5).

![Figure 1](image-url)

Figure 1: Normalized Neural Tangent Kernels Associated with Different Deep Networks.

Different from FFNets, the class of functions induced by the NTKs of the ResNets does not significantly change, as the depth L increases. Surprisingly, we actually have $\Omega_\infty = \Omega_1$ for $\alpha = 1/L$, i.e., infinitely deep and 1-layer ResNets induce the same NTK. To further visualize such a difference, we plot the NTKs of the ResNets in Figures 1(b) and 1(c) for $\alpha = 1/L$ and $\alpha = 1/\sqrt{L}$, respectively. As can be seen, the increase of the depth only yields very small changes to the NTKs of the ResNets. This partially explains why increasing the depth of the ResNet does not significantly deteriorate the generalization.

Moreover, as long as $x \neq \tilde{x}$, i.e., $\langle x,\tilde{x} \rangle \neq 1$, the limiting NTK of the FFNets always yields 1/4 regardless how different x is from \tilde{x}. In contrast, the residual networks do not suffer from this drawback. The limiting NTK of the ResNets can greatly distinguish the difference between x and \tilde{x}, e.g., $\langle x,\tilde{x} \rangle = -0.5$, 0, and 0.5 yield different values. Therefore, for an unseen data point, the corresponding regression model does not always output 0, which is in sharp contrast to that of the limiting NTK of the FFNets.
5 Experiments

We demonstrate the generalization properties of the kernel regression based on the NTKs of the FFNets and the ResNets with varying depths. Our experiments follow similar settings to Arora et al. (2019a,b). We adopt two widely used data sets – MNIST (LeCun, 1998) and CIFAR10 (Krizhevsky et al., 2009), which are popular in existing literature. Note that both MNIST and CIFAR10 contains 10 classes of images. For simplicity, we select 2 classes out of 10 (digits “0” and “8” for MNIST, categories “airplane” and “ship” for CIFAR10), respectively, which results in two binary classification problems, denoted by MNIST2 and CIFAR2.

Similar to Arora et al. (2019a,b), we use the kernel regression model for classification. Specifically, given the training data \((x_1, y_1), \ldots, (x_n, y_n)\), where \(x_i \in \mathbb{R}^D\) and \(y_i \in \{-1, +1\}\) for \(i = 1, \ldots, n\), we compute the kernel matrix \(\tilde{K} = [\tilde{K}_{ij}]_{i,j=1}^n\) using the NTKs associated with the FFNets and the ResNets, where \(\tilde{K}_{ij} = \overline{O}_L(x_i, x_j)\). Then we compute the kernel regression function as follows

\[
 f(x) = \sum_{i=1}^{n} \alpha_i \overline{O}_L(x, x_i),
\]

where \([\alpha_1, \ldots, \alpha_n]^\top = (\tilde{K} + \lambda I)^{-1} y\), \(y = [y_1, \ldots, y_n]^\top\) and \(\lambda = 0.1/n\) is a very small constant. We predict the label of \(x\) to be \(\text{sign}(f(x))\).

Our experiments adopt the NTKs associated with three network architectures: (1) FFNets, (2) ResNets \((\gamma = 0.5)\) and (3) ResNets \((\gamma = 1)\). We set \(n = 200\) and \(n = 2000\). For each data set, we randomly select \(n\) training data points \((n/2\) for each class) and 2000 testing data points \((1000\) for each class\). When training the kernel regression models, we normalize all training data points to have zero mean and unit norm. We repeat the procedure for 20 simulations. We find that the training errors of all simulations \((L\) varies from 1 to 2000) are 0.0, which means that all NTK-based models are sufficient to overfit the training data, regardless \(n = 200\) or \(n = 2000\). The test accuracies of the kernel regression models with different kernels and depths are shown in Figure 2.

As can be seen, the test accuracies of the kernel regression models of ResNets (both \(\gamma = 0.5\) and \(\gamma = 1\)) are not sensitive to the depth. In contrast, the test accuracies of the kernel regression models of the FFNets significantly decrease, as the depth \(L\) increases. Especially when the sample size is small \((n = 200)\), the kernel regression models behave like random guess for both MNIST2 and CIFAR2 when \(L \geq 1000\). This is consistent with our analysis.

6 Discussion

We discuss the NTK of the ResNet in more details. We remark that unless specified, the NTK mentioned below indicates the normalized NTK.

Our theory shows that the function class induced by the NTK of the deep ResNet asymptotically converges to that by the NTK of the 1-layer ResNet, as the depth increases. This indicates that the complexity of such a function class is not significantly different from that by the NTK of the 1-layer ResNet, for large enough \(L\). Therefore, the generalization gap does not significantly increase, as \(L\) increases.
Figure 2: Test accuracies of the kernel regression models evaluated on MNIST2 and CIFAR102.

On the other hand, our experiments suggest that, as illustrated in Figure 3, the NTK of the ResNet with $\gamma = 1$ actually achieves the best testing accuracy for CIFAR2 when $L = 2$. The accuracy slightly decreases as L increases, and becomes stable when $L \geq 9$. For the NTK of the ResNet with $\gamma = 0.5$, the accuracy achieves the best when $L \approx 15$, and becomes stable for $L \geq 15$. Such evidence suggests that the function class induced by the NTKs of the ResNets with large L and large γ are possibly not as flexible as those by the NTKs of the deep ResNets with small L and small γ.

Figure 3: Test accuracies of the kernel regression models evaluated on CIFAR2.

Existing literature connects overparameterized neural networks to NTKs only under some very specific regime. Practical neural networks, however, are trained under more complicated regimes. Therefore, there still exists a significant theoretical gap between NTKs and practical neural net-
works. For example, Theorem 6 shows that the NTK of the infinitely deep ResNet is identical to
that of the 1-layer ResNet, while practical ResNets often show better generalization performance,
as the depth increases. We will leave these challenges for future investigation.
References

Allen-Zhu, Z. and Li, Y. (2019a). Can sgd learn recurrent neural networks with provable generalization? *arXiv preprint arXiv:1902.01028*.

Allen-Zhu, Z. and Li, Y. (2019b). What can resnet learn efficiently, going beyond kernels? *arXiv preprint arXiv:1905.10337*.

Allen-Zhu, Z., Li, Y. and Liang, Y. (2018a). Learning and generalization in overparameterized neural networks, going beyond two layers. *arXiv preprint arXiv:1811.04918*.

Allen-Zhu, Z., Li, Y. and Song, Z. (2018b). A convergence theory for deep learning via overparameterization. *arXiv preprint arXiv:1811.03962*.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. and Wang, R. (2019a). On exact computation with an infinitely wide neural net. *arXiv preprint arXiv:1904.11955*.

Arora, S., Du, S. S., Hu, W., Li, Z. and Wang, R. (2019b). Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. *arXiv preprint arXiv:1901.08584*.

Bahdanau, D., Cho, K. and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. *arXiv preprint arXiv:1409.0473*.

Balduzzi, D., Frean, M., Leary, L., Lewis, J., Ma, K. W.-D. and McWilliams, B. (2017). The shattered gradients problem: If resnets are the answer, then what is the question? *arXiv preprint arXiv:1702.08591*.

Boucheron, S., Lugosi, G. and Massart, P. (2013). *Concentration inequalities: A nonasymptotic theory of independence*. Oxford University Press.

Cho, Y. and Saul, L. K. (2009). Kernel methods for deep learning. In *Advances in Neural Information Processing Systems 22* (Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams and A. Curcillo, eds.). Curran Associates, Inc., 342–350.
http://papers.nips.cc/paper/3628-kernel-methods-for-deep-learning.pdf

Daniely, A., Frostig, R. and Singer, Y. (2016). Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity. In *Advances In Neural Information Processing Systems*.

Du, S. S., Zhai, X., Poczos, B. and Singh, A. (2018). Gradient descent provably optimizes overparameterized neural networks. *arXiv preprint arXiv:1810.02054*.

Friedman, J., Hastie, T. and Tibshirani, R. (2001). *The elements of statistical learning*, vol. 1. Springer series in statistics New York.

Garriga-Alonso, A., Rasmussen, C. E. and Aitchison, L. (2018). Deep convolutional networks as shallow gaussian processes. *arXiv preprint arXiv:1808.05587*.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems.

Graves, A., Mohamed, A.-r. and Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing. IEEE.

Hardt, M. and Ma, T. (2016). Identity matters in deep learning. arXiv preprint arXiv:1611.04231.

He, K., Zhang, X., Ren, S. and Sun, J. (2016a). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition.

He, K., Zhang, X., Ren, S. and Sun, J. (2016b). Identity mappings in deep residual networks. In European conference on computer vision. Springer.

Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition.

Jacot, A., Gabriel, F. and Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in neural networks. In Advances in Neural Information Processing Systems.

Krizhevsky, A., Nair, V. and Hinton, G. (2009). Cifar-10 and cifar-100 datasets. URL: https://www.cs.toronto.edu/kriz/cifar.html (visited on Mar. 1, 2016).

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems.

LeCun, Y. (1998). The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J. and Sohl-Dickstein, J. (2017). Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165.

Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T. (2018). Visualizing the loss landscape of neural nets. In Advances in Neural Information Processing Systems.

Li, Y. and Liang, Y. (2018). Learning overparameterized neural networks via stochastic gradient descent on structured data. In Advances in Neural Information Processing Systems.

Li, Y. and Yuan, Y. (2017). Convergence analysis of two-layer neural networks with relu activation. In Advances in neural information processing systems.

Liu, T., Chen, M., Zhou, M., Du, S. S., Zhou, E. and Zhao, T. (2019). Towards understanding the importance of shortcut connections in residual networks. In Advances in Neural Information Processing Systems.

Long, J., Shelhamer, E. and Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
A Proof of GP Kernels of ResNets

A.1 Notation and Main Idea

For a fixed pair of inputs \(x \) and \(\bar{x} \), we introduce two matrices for each layer

\[
\hat{\Sigma}_\ell(x, \bar{x}) = \begin{bmatrix}
\langle x, x \rangle & \langle x, \bar{x} \rangle \\
\langle \bar{x}, x \rangle & \langle \bar{x}, \bar{x} \rangle
\end{bmatrix},
\]

and

\[
\Sigma_\ell(x, \bar{x}) = \begin{bmatrix}
K_\ell(x, x) & K_\ell(x, \bar{x}) \\
K_\ell(\bar{x}, x) & K_\ell(\bar{x}, \bar{x})
\end{bmatrix}.
\]

\(\hat{\Sigma}_\ell(x, \bar{x}) \) is the empirical Gram matrix of the outputs of the \(\ell \)-th layer, while \(\Sigma_\ell(x, \bar{x}) \) is the infinite-width version. Theorem 3 says that with high probability, for each layer \(\ell \), the difference of these two matrices measured by the entry-wise \(L_\infty \) norm (denoted by \(\| \cdot \|_{\text{max}} \)) is small.

The idea is to bound how much the \(\ell \)-th layer magnifies the input error to the output. Specifically, if the outputs of \((\ell - 1)\)-th layer satisfy

\[
\| \hat{\Sigma}_{\ell-1}(x, \bar{x}) - \Sigma_{\ell-1}(x, \bar{x}) \|_{\text{max}} \leq \tau,
\]

we hope to prove that with high probability over the randomness of \(W_\ell \) and \(V_\ell \), we have

\[
\| \hat{\Sigma}_\ell(x, \bar{x}) - \Sigma_\ell(x, \bar{x}) \|_{\text{max}} \leq \left(1 + O(L) \right) \tau.
\]

Then the theorem is proved by first showing that w.h.p.

\[
\| \hat{\Sigma}_\ell(x, \bar{x}) - \Sigma_\ell(x, \bar{x}) \|_{\text{max}} \leq (1 + O(1/L))^{-L} \epsilon
\]

and then applying the result above for each layer.
A.2 Lemmas

We introduce the following lemmas. The first lemma shows the boundedness of $K_\ell(x,\bar{x})$.

Lemma 5. For the ResNet defined in Eqn. (2), $K_\ell(x,x) = (1 + \alpha^2)\ell$ for all $x \in \mathbb{S}^{D-1}$, $\ell = 0, 1, \ldots, L$. Also $K_\ell(x,x)$ is bounded uniformly when $0.5 \leq \gamma \leq 1$.

Recall that $\phi(W_\ell(z) = \sqrt{\frac{2}{m}}\sigma_0(W_\ell)z)$. Since W_ℓ is Gaussian, we know that $\phi(W_\ell(x_{\ell-1})$ and $\phi(W_\ell(\bar{x}_{\ell-1})$ are both sub-Gaussian random vectors over the randomness of W_ℓ. Then their inner product enjoys sub-exponential property.

Lemma 6 (Sub-exponential concentration). With probability at least $1 - \delta'$ over the randomness of $W_\ell \sim \mathcal{N}(0, I)$, when $m \geq c'\log(6/\delta')$, the following hold simultaneously

\[
\left| \left\langle \phi(W_\ell(x_{\ell-1}), \phi(W_\ell(\bar{x}_{\ell-1})) - \psi_\sigma(\Sigma_{\ell-1}(x, \bar{x})) \right\rangle \leq \sqrt{\frac{c' \log(6/\delta')}{m}} \|x_{\ell-1}\|\|\bar{x}_{\ell-1}\|, \right.
\]

\[
\left| \left\| \phi(W_\ell(x_{\ell-1}))^2 - \|x_{\ell-1}\| \right\| \leq \sqrt{\frac{c' \log(6/\delta')}{m}} \|x_{\ell-1}\|^2, \right.
\]

\[
\left| \left\| \phi(W_\ell(\bar{x}_{\ell-1}))^2 - \|\bar{x}_{\ell-1}\| \right\| \leq \sqrt{\frac{c' \log(6/\delta')}{m}} \|\bar{x}_{\ell-1}\|^2. \right.
\]

Lemma 7 (Locally Lipschitzness, based on (Daniely et al., 2016)). ψ_σ is $(1 + \frac{1}{\pi}(\frac{\tau}{\mu})^2)$-Lipschitz w.r.t. max norm in

\[
\mathcal{M}_{\mu, r} = \left\{ \begin{array}{ccc} a & b & c \\ a, c \in [\mu - r, \mu + r]; & ac - b^2 > 0 \end{array} \right\}
\]

for all $\mu > 0$, $0 < r \leq \mu/2$. That means, if

(i) $\|\Sigma_{\ell-1}(x, \bar{x}) - \Sigma_{\ell-1}(x, \bar{x})\|_{\max} \leq \tau$ and (ii) $K_{\ell-1}(x, x) = K_{\ell-1}(\bar{x}, \bar{x}) = \mu$ for $\tau \leq \mu/2$,

we have

\[
\left| \psi_\sigma(\Sigma_{\ell-1}(x, \bar{x})) - \psi_\sigma(\Sigma_{\ell-1}(x, \bar{x})) \right| \leq \left(1 + \frac{1}{\pi} \left(\frac{\tau}{\mu} \right)^2 \right) \tau.
\]

A.3 Proof of Theorem 3

Proof. In this proof, we also show the following hold with the same probability.

1. For $\ell = 0, 1, \ldots, L$, $\|x_\ell\|$ and $\|\bar{x}_\ell\|$ are bounded by an absolute constant C_1 ($C_1 = 4$).

2. For $\ell = 1, \ldots, L$, $\|\phi(W_\ell(x_{\ell-1}))\|$ and $\|\phi(W_\ell(\bar{x}_{\ell-1}))\|$ are bounded by an absolute constant C_2 ($C_2 = 8$).

3. $\left| \left\langle \phi(W_\ell(x_{\ell-1}^{(1)}), \phi(W_\ell(x_{\ell-1}^{(2)})) \right\rangle - \Gamma_\sigma(K_{\ell-1})(x^{(1)}, x^{(2)}) \right| \leq \epsilon f$ for all $\ell = 1, \ldots, L$ and $(x^{(1)}, x^{(2)}) \in \{(x, x), (x, \bar{x}), (\bar{x}, \bar{x})\}$.

We focus on the ℓ-th layer. Let $\tau = \|\Sigma_{\ell-1}(x, \bar{x}) - \Sigma_{\ell-1}(x, \bar{x})\|_{\max}$. Recall that

\[
\Gamma_\sigma(K_{\ell-1})(x, \bar{x}) = \psi_\sigma(\Sigma_{\ell-1}(x, \bar{x})) = \mathbb{E}_{(X, \bar{X}) \sim \mathcal{N}(0, \Sigma_{\ell-1}(x, \bar{x}))} \sigma(X)\sigma(\bar{X}).
\]

Then we have

\[
K_\ell(x, \bar{x}) = K_{\ell-1}(x, \bar{x}) + \alpha^2 \psi_\sigma(\Sigma_{\ell-1}(x, \bar{x})).
\]
Since \(x_\ell = x_{\ell-1} + \frac{\alpha}{\sqrt{m}} V_\ell \phi_{W_\ell}(x_{\ell-1}) \), we have

\[
\langle x_\ell, \bar{x}_\ell \rangle = \langle x_{\ell-1}, \bar{x}_{\ell-1} \rangle + \frac{\alpha^2}{m} \langle V_\ell \phi_{W_\ell}(x_{\ell-1}), V_\ell \phi_{W_\ell}(\bar{x}_{\ell-1}) \rangle
+ \alpha \frac{1}{\sqrt{m}} \left(\langle V_\ell \phi_{W_\ell}(x_{\ell-1}), \bar{x}_{\ell-1} \rangle + \langle V_\ell \phi_{W_\ell}(\bar{x}_{\ell-1}), x_{\ell-1} \rangle \right)
\]
\[
= \langle x_{\ell-1}, \bar{x}_{\ell-1} \rangle + \alpha^2 P + \alpha (Q + R),
\]
where

\[
P = \frac{1}{m} \langle V_\ell \phi_{W_\ell}(x_{\ell-1}), V_\ell \phi_{W_\ell}(\bar{x}_{\ell-1}) \rangle,
Q = \frac{1}{\sqrt{m}} \left(\langle V_\ell \phi_{W_\ell}(x_{\ell-1}), \bar{x}_{\ell-1} \rangle \right),
R = \frac{1}{\sqrt{m}} \left(\langle V_\ell \phi_{W_\ell}(\bar{x}_{\ell-1}), x_{\ell-1} \rangle \right).
\]

Under the randomness of \(V_\ell \), \(P \) is sub-exponential, and \(Q \) and \(R \) are Gaussian random variables. Therefore, for a given \(\delta_0 \), if \(m \geq c_0 \log(2/\delta_0) \), with probability at least \(1 - \delta_0 \) over the randomness of \(V_\ell \), we have

\[
\left| P - \langle \phi_{W_\ell}(x_{\ell-1}), \phi_{W_\ell}(\bar{x}_{\ell-1}) \rangle \right| \leq \| \phi_{W_\ell}(x_{\ell-1}) \| \| \phi_{W_\ell}(\bar{x}_{\ell-1}) \| \sqrt{\frac{c_0 \log(2/\delta_0)}{m}}; \tag{14}
\]

for a given \(\tilde{\delta} \), with probability at least \(1 - 2\tilde{\delta} \) over the randomness of \(V_\ell \), we have

\[
|Q| \leq \| \phi_{W_\ell}(x_{\ell-1}) \| \| \bar{x}_{\ell-1} \| \sqrt{\frac{\tilde{c} \log(2/\tilde{\delta})}{m}}, \tag{15}
\]

and

\[
|R| \leq \| \phi_{W_\ell}(\bar{x}_{\ell-1}) \| \| x_{\ell-1} \| \sqrt{\frac{\tilde{c} \log(2/\tilde{\delta})}{m}}, \tag{16}
\]

where \(c_0, \tilde{c} > 0 \) are absolute constants.

Using the above result and Lemma 6 and setting \(\delta_0 = \tilde{\delta} = \frac{\delta}{18(L+1)}, \delta' = \frac{\delta}{6(L+1)} \), when

\[
m \geq C \log(36(L + 1)/\delta),
\]

we have (14), (15), (16), (11), (12), and (13) hold with probability at least \(1 - \frac{\delta}{3(L+1)} \).

Recall that \(\tau = \| \bar{\Sigma}_{\ell-1}(x, \bar{x}) - \Sigma_{\ell-1}(x, \bar{x}) \|_{\max} \). Conditioned on \(\tau < 0.5 \), we have

\[
\| x_{\ell-1} \|^2 \leq K_{\ell-1}(x, x) + \tau \leq (1 + \alpha^2)l + \tau \leq e + \tau.
\]

Similarly we can show \(\| \bar{x}_{\ell-1} \|^2 \) is bounded by \(e + \tau \). By (12) and (13), we have

\[
\| \phi_{W_\ell}(x_{\ell-1}) \|^2 \leq 2 \| x_{\ell-1} \|^2 \quad \mathrm{and} \quad \| \phi_{W_\ell}(\bar{x}_{\ell-1}) \|^2 \leq 2 \| \bar{x}_{\ell-1} \|^2,
\]

which are both bounded.
Then

\[
\left| \langle x_\ell, \tilde{x}_\ell \rangle - \left(\alpha^2 \psi_\sigma(\Sigma_{\ell-1}(x, \tilde{x})) + K_{\ell-1}(x, \tilde{x}) \right) \right|
\leq \tau + \alpha^2 \left| P - \psi_\sigma(\Sigma_{\ell-1}(x, \tilde{x})) \right| + \alpha (|Q| + |R|)
\leq \tau + \alpha^2 \left| P - \langle \phi_{W_\ell}(x_{\ell-1}), \phi_{W_\ell}(\tilde{x}_{\ell-1}) \rangle \right| + \alpha \sqrt{\frac{2\log(2/\delta)}{m}} \left(\| \phi_{W_\ell}(\tilde{x}_{\ell-1}) \| \| x_{\ell-1} \| + \| \phi_{W_\ell}(x_{\ell-1}) \| \| \tilde{x}_{\ell-1} \| \right)
+ \alpha^2 \left| \psi_\sigma(\Sigma_{\ell-1}(x, \tilde{x})) - \psi_\sigma(\Sigma_{\ell-1}(x, \tilde{x})) \right|
+ \alpha^2 \left| \langle \phi_{W_\ell}(x_{\ell-1}), \phi_{W_\ell}(\tilde{x}_{\ell-1}) \rangle - \psi_\sigma(\Sigma_{\ell-1}(x, \tilde{x})) \right|
\leq \tau + (\alpha^2 + \alpha) \sqrt{\frac{C_3 \log(36(L + 1)/\delta)}{m}} + \alpha^2 \tau \left(1 + \frac{1}{4\pi} \right)
\leq \tau + (\alpha^2 + \alpha) \sqrt{\frac{C_3 \log(36(L + 1)/\delta)}{m}} + \alpha^2 \tau \left(1 + \frac{1}{4\pi} \right).
\]

When \(\alpha = \frac{1}{\ell^2} \), \(\gamma \in [0.5, 1] \), we have \(\alpha^2 \leq 1/L \). Then when

\[
m \geq \frac{C_3 L^{2(1-\gamma)} \log(36(L + 1)/\delta)}{\tau^2},
\]

we have

\[
\left| \langle x_\ell, \tilde{x}_\ell \rangle - K_\ell(x, \tilde{x}) \right| \leq \tau + \frac{4}{L} \tau.
\]

As a byproduct, we have

\[
\left| \left\langle \phi_{W_\ell}(x_{\ell-1}), \phi_{W_\ell}(\tilde{x}_{\ell-1}) \right\rangle - \psi_\sigma(\Sigma_{\ell-1}(x, \tilde{x})) \right|
\leq \sqrt{\frac{C_4 \log(36(L + 1)/\delta)}{m}} + \left(1 + \frac{1}{4\pi} \right) \tau \leq 2\tau.
\]

Repeat the above for \((x_{\ell-1}, x_{\ell-1})\) and \((\tilde{x}_{\ell-1}, \tilde{x}_{\ell-1})\), we have with probability at least \(1 - \delta/(L + 1)\) over the randomness of \(V_\ell\) and \(W_\ell\),

\[
\left\| \tilde{\Sigma}_{\ell-1}(x, \tilde{x}) - \Sigma_{\ell-1}(x, \tilde{x}) \right\|_{\max} \leq \tau \Rightarrow \left\| \tilde{\Sigma}_\ell(x, \tilde{x}) - \Sigma_\ell(x, \tilde{x}) \right\|_{\max} \leq (1 + 4/L) \tau.
\]

Finally, when \(m \geq \frac{C_4 \log(6(L + 1)/\delta)}{(\epsilon/e^4)^2} \), with probability at least \(1 - \delta/(L + 1)\) over the randomness of \(A\), we have

\[
\left\| \tilde{\Sigma}_0(x, \tilde{x}) - \Sigma_0(x, \tilde{x}) \right\|_{\max} \leq \epsilon/e^4.
\]

Then the result follows by successively using (17).

\[\square \]

A.4 proof of lemma 7

Proof. Daniely et al. (2016) showed that

\[
\left\| \nabla \psi_\sigma \begin{bmatrix} a & b \\ b & c \end{bmatrix} \right\|_1 = \frac{1}{2} \frac{a + c}{\sqrt{ac}} \left| \sigma' \left(\frac{b}{\sqrt{ac}} \right) - \frac{b}{\sqrt{ac}} \sigma' \left(\frac{b}{\sqrt{ac}} \right) \right| + \sigma' \left(\frac{b}{\sqrt{ac}} \right).
\]

When $a, c \in [\mu - r, \mu + r]$, we have
\[
\frac{1}{2} \left(\frac{a}{c} + \frac{c}{a} \right) \leq \frac{1}{2} \left(\frac{\mu + r}{\mu - r} - \frac{\mu - r}{\mu + r} \right) = \left(1 - \left(\frac{\mu}{r} \right)^2 \right)^{-1/2} \leq 1 + \left(\frac{r}{\mu} \right)^2.
\]

The last inequality holds when $r < \frac{\mu}{2}$.

Define $\rho = \frac{b}{\sqrt{ac}}$, we have $\rho \in [-1, 1]$. Then
\[
\|\nabla \phi_{\sigma}\|_1 \leq \left(1 + \left(\frac{r}{\mu} \right)^2 \right) \left| \overline{\sigma}(\rho) - \rho \overline{\sigma}'(\rho) \right| + \overline{\sigma}'(\rho)
\]
\[
= \left(1 + \left(\frac{r}{\mu} \right)^2 \right) \left| \frac{\sqrt{1 - \rho^2}}{\pi} + 1 - \frac{\cos^{-1} \rho}{\pi} \right|
\]
\[
\leq \frac{\sqrt{1 - \rho^2}}{\pi} + 1 - \frac{\cos^{-1} \rho}{\pi} + \frac{1}{\pi} \left(\frac{r}{\mu} \right)^2
\]
\[
\leq 1 + \frac{1}{\pi} \left(\frac{r}{\mu} \right)^2.
\]

\[\square\]

B Proof of Theorem 4

B.1 Notation and Main Idea

We already know that when the network width m is large enough, $\langle x_{\ell-1}, \tilde{x}_{\ell-1} \rangle \approx K_{\ell-1}(x, \tilde{x})$, and $\langle \phi_{W_{\ell}}(x_{\ell-1}), \phi_{W_{\ell}}(\tilde{x}_{\ell-1}) \rangle \approx \Gamma_{\sigma}(K_{\ell-1})(x, \tilde{x})$.

Next we need to show the concentration of the inner product of $\frac{b_{\ell}}{\sqrt{m}}$ and $\frac{\tilde{b}_{\ell}}{\sqrt{m}}$. We define two matrices for each layer
\[
\tilde{\Theta}_{\ell}(x, \tilde{x}) = \frac{1}{m} \begin{bmatrix}
\langle b_{\ell}, b_{\ell} \rangle & \langle b_{\ell}, \tilde{b}_{\ell} \rangle \\
\langle \tilde{b}_{\ell}, b_{\ell} \rangle & \langle \tilde{b}_{\ell}, \tilde{b}_{\ell} \rangle
\end{bmatrix},
\]
and
\[
\Theta_{\ell}(x, \tilde{x}) = \begin{bmatrix}
B_{\ell}(x, x) & B_{\ell}(x, \tilde{x}) \\
B_{\ell}(\tilde{x}, x) & B_{\ell}(\tilde{x}, \tilde{x})
\end{bmatrix}.
\]

Recall that
\[
b_{\ell} = \alpha \sqrt{\frac{1}{m}} \sqrt{\frac{2}{m}} W_{\ell}^\top D_{\ell} V_{\ell}^\top b_{\ell+1} + b_{\ell+1}.
\]

We aim to show that when $\|\tilde{\Theta}_{\ell+1}(x, \tilde{x}) - \Theta_{\ell+1}(x, \tilde{x})\|_{\max} \leq \tau$, with high probability over the randomness of W_ℓ and V_ℓ, we have $\|\tilde{\Theta}_{\ell}(x, \tilde{x}) - \Theta_{\ell}(x, \tilde{x})\|_{\max} \leq (1 + O(1/L))\tau$. Notice that $b_{\ell+1}$ and $\tilde{b}_{\ell+1}$ contain the information of W_ℓ and V_ℓ; they are not independent. Nevertheless we can decompose the randomness of W_ℓ and V_ℓ to show the concentration. This technique is also used in Arora et al. (2019a).
B.2 Lemmas

In this part we introduce some useful lemmas. The first one shows the property of the step activation function.

Lemma 8 (Property of σ'). *(Arora et al., 2019a)*

1. **Sub-Gaussian concentration.** With probability at least $1 - \delta$ over the randomness of W_ℓ, we have

$$\left| \frac{2}{m} \text{Tr}(D_\ell \tilde{D}_\ell) - \psi_{\sigma'}(\tilde{\Sigma}_{\ell-1}(x, \tilde{x})) \right| \leq \sqrt{\frac{c \log(2/\delta)}{m}}.$$

2. **Hölder continuity.** Fix $\mu > 0, 0 < r \leq \mu$. For all $A, B \in M_{\mu,r} = \left\{ \left[\begin{array}{cc} a & b \\ b & c \end{array} \right] : a, c \in [\mu-r, \mu+r]; ac-b^2 > 0 \right\}$, if $\|A - B\|_{\text{max}} \leq (\mu - r)e^2$, then

$$|\psi_{\sigma'}(A) - \psi_{\sigma'}(B)| \leq \epsilon.$$

The following lemma shows that regardless the fact that $b_{\ell+1}$ and $\tilde{b}_{\ell+1}$ depend on V_ℓ, we can treat V_ℓ as a Gaussian matrix independent of $b_{\ell+1}$ and $\tilde{b}_{\ell+1}$ when the network width is large enough.

Lemma 9. Assume the following inequality hold simultaneously for all $\ell = 1, 2, \cdots, L$

$$\left\| \frac{1}{\sqrt{m}} W_\ell \right\| \leq C, \quad \left\| \frac{1}{\sqrt{m}} V_\ell \right\| \leq C.$$

Fix an ℓ. Further assume that

$$\|\Theta_{\ell+1}(x, \tilde{x}) - \Theta_{\ell+1}(x, \tilde{x})\|_{\text{max}} \leq 1.$$

When

$$m \geq \max\left\{ \frac{C}{e^2} (1 + \log \frac{6}{\delta}), \frac{C}{e^2} \log \frac{8L}{\delta'}, cL^{2-2\gamma} \log \frac{8L}{\delta'} \right\},$$

the following holds for all $(x^{(1)}, x^{(2)}) \in \{(x, x), (x, \tilde{x}), (\tilde{x}, \tilde{x})\}$ with probability at least $1 - \delta - \delta'$

$$\left| \frac{2}{m} b^{(1) \top}_{\ell+1} \frac{b^{(2) \top}_{\ell+1}}{\sqrt{m}} V_\ell D^{(1)}_\ell V^{\top}_\ell V^{\top}_{\ell+1} b^{(2)}_{\ell+1} \frac{b^{(1)}_{\ell+1}}{\sqrt{m}} - \frac{2}{m} \text{Tr}(D^{(1)}_\ell D^{(2)}_\ell) \right| \leq \epsilon.$$

The following lemma shows the same thing for W_ℓ as V_ℓ in Lemma 9.

Lemma 10. Assume the conditions and the results of Lemma 9 hold.

1. When

$$m \geq \max\left\{ \frac{C}{e^2} (1 + \log \frac{6}{\delta}), \frac{C}{e^2} \log \frac{8L}{\delta'}, cL^{2-2\gamma} \log \frac{8L}{\delta'} \right\},$$

the following holds for all $(x^{(1)}, x^{(2)}) \in \{(x, x), (x, \tilde{x}), (\tilde{x}, \tilde{x})\}$ with probability at least $1 - \delta - \delta'$

$$\left| \frac{1}{m} \left(W^{\top}_\ell D^{(1)}_\ell V^{\top}_\ell b^{(1) \top}_{\ell+1} \frac{b^{(2) \top}_{\ell+1}}{\sqrt{m}} V^{\top}_{\ell+1} b^{(2)}_{\ell+1} \frac{b^{(1)}_{\ell+1}}{\sqrt{m}} \right) - \frac{2}{m} \left(D^{(1)}_\ell V^{\top}_\ell b^{(1) \top}_{\ell+1} \frac{b^{(2) \top}_{\ell+1}}{\sqrt{m}} V^{\top}_{\ell+1} b^{(2)}_{\ell+1} \frac{b^{(1)}_{\ell+1}}{\sqrt{m}} \right) \right| \leq \epsilon.$$

2. When

$$m \geq \max\left\{ \frac{C}{e^2} \log \frac{16L}{\delta'}, cL^{2-2\gamma} \log \frac{16L}{\delta'} \right\},$$

for all $(x^{(1)}, x^{(2)}) \in \{(x, x), (x, \tilde{x}), (\tilde{x}, \tilde{x})\}$, the following holds with probability at least $1 - \delta$

$$\left| \frac{1}{m} \sqrt{\frac{1}{m}} \left(W^{\top}_\ell D^{(1)}_\ell V^{\top}_\ell b^{(1) \top}_{\ell+1} b^{(2)}_{\ell+1} \frac{b^{(1)}_{\ell+1}}{\sqrt{m}} \right) \right| \leq \epsilon.$$
B.3 Proof of Theorem 4

Proof. In this proof we are going to prove that when \(m \) satisfies the assumption, with probability at least \(1 - \delta_0 \), the following hold for \(\ell = 1, \cdots, L \).

\[
\left| \frac{1}{\alpha^2} \langle \nabla V_\ell f, \nabla V_\ell f \rangle - B_{\ell+1}(x, \hat{x}) \Gamma_{\sigma}(K_{\ell-1})(x, \hat{x}) \right| \leq \epsilon_0,
\]

\[
\left| \frac{1}{\alpha^2} \langle \nabla W_\ell f, \nabla W_\ell f \rangle - K_{\ell-1}(x, \hat{x}) B_{\ell+1}(x, \hat{x}) \Gamma_{\sigma}(K_{\ell-1})(x, \hat{x}) \right| \leq \epsilon_0.
\]

We break the proof into several steps. Each step is based on the result of the previous steps. Note that the absolute constants \(c \) and \(C \) may vary throughout the proof.

Step 1. Norm Control of the Gaussian Matrices

With probability at least \(1 - \delta_1 \), when \(m > c \log \frac{4L}{\delta_1} \), one can show that the following hold simultaneously for all \(\ell = 1, 2, \cdots, L \) (Vershynin, 2010)

\[
\left\| \frac{1}{\sqrt{m}} W_\ell \right\| \leq C, \quad \left\| \frac{1}{\sqrt{m}} V_\ell \right\| \leq C.
\]

Step 2. Concentration of the GP kernels

By Theorem 3, with probability at least \(1 - \delta_2 \), when

\[
m \geq \frac{C}{\epsilon_2^2} L^{2-2\gamma} \log \frac{36(L+1)}{\delta_2},
\]

we have

1. For \(\ell = 0, \cdots, L, \left\| \Sigma_{\ell}(x, \hat{x}) - \hat{\Sigma}_{\ell}(x, \hat{x}) \right\|_{\max} \leq c \epsilon_2^2 \);

2. For \(\ell = 0, 1, \cdots, L, \|x_{\ell}\| \) and \(\|\hat{x}_\ell\| \) are bounded by an absolute constant \(C_1 \) (\(C_1 = 4 \));

3. For \(\ell = 1, \cdots, L, \left\| \phi W_\ell(x_{\ell-1}) \right\| \) and \(\left\| \phi W_\ell(\hat{x}_{\ell-1}) \right\| \) are bounded by an absolute constant \(C_2 \) (\(C_2 = 8 \));

4. \(\left| \langle \phi W_\ell(x_{\ell-1}^{(1)}), \phi W_\ell(x_{\ell-1}^{(2)}) \rangle - \Gamma_{\sigma}(K_{\ell-1})(x^{(1)}, x^{(2)}) \right| \leq 2c \epsilon_2^2 \) for all \(\ell = 1, \cdots, L \) and \((x^{(1)}, x^{(2)}) \in \{(x, x), (x, \hat{x}), (\hat{x}, \hat{x})\} \).

Step 3. Concentration of \(\sigma' \)

By Lemma 8, when

\[
m \geq \frac{C}{\epsilon_2^2} \log \frac{6L}{\delta_3},
\]

with probability at least \(1 - \delta_3 \), for all \(\ell = 1, 2, \cdots, L \) and \((x^{(1)}, x^{(2)}) \in \{(x, x), (x, \hat{x}), (\hat{x}, \hat{x})\} \), we have

\[
\left| \frac{2}{m} \text{Tr}(D_\ell^{(1)} D_\ell^{(2)}) - \Gamma_{\sigma'}(K_{\ell-1})(x^{(1)}, x^{(2)}) \right| \leq \sqrt{\frac{c \log(6L/\delta_3)}{m}} + \sqrt{2 \left\| \hat{\Sigma}_{\ell-1}(x, \hat{x}) - \Sigma_{\ell-1}(x, x) \right\|_{\max}} \leq \epsilon_2.
\]

Step 4. Concentration of \(B_\ell \)

Recall that

\[
b_{\ell+1} = \left(\nu^T \frac{\partial x_L}{\partial x_{\ell-1}} \frac{\partial x_{L-1}}{\partial x_{\ell-2}} \cdots \frac{\partial x_{\ell+1}}{\partial x_{\ell}} \right)^T.
\]
We have
\[b_{L+1} = v, \]
and for \(\ell = 1, 2, \cdots, L - 1, \)
\[b_{\ell+1} = \frac{\partial x_{\ell+1}}{\partial x_\ell}^\top b_{\ell+2} = \alpha \sqrt{\frac{1}{m}} \sqrt{\frac{2}{m}} W_{\ell+1}^\top D_{\ell+1} V_{\ell+1}^\top b_{\ell+2} + b_{\ell+2}. \]

Following the same idea in Thm 3, we prove by induction. First of all, for \(b_{L+1}, \) we have
\[
\Theta_{L+1}(x, \bar{x}) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad \hat{\Theta}_{L+1}(x, \bar{x}) = \frac{\|v\|^2}{m} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.
\]

Then by Bernstein inequality (Mohri et al., 2018), with probability at least \(1 - \frac{\delta_4}{L} \), when
\[m \geq \frac{C}{\epsilon^2} \log \frac{2L}{\delta_4}, \]
we have
\[\left| \frac{\|v\|^2}{m} - 1 \right| \leq \epsilon_4. \]

Fix \(\ell \in \{2, 3, \cdots, L\} \). Assume that
\[\|\hat{\Theta}_{\ell+1}(x, \bar{x}) - \Theta_{\ell+1}(x, \bar{x})\|_{\max} \leq \tau \leq 1, \]
we hope to prove with high probability,
\[\|\hat{\Theta}_{\ell}(x, \bar{x}) - \Theta_{\ell}(x, \bar{x})\|_{\max} \leq (1 + O(1/L))\tau. \]

First write
\[\frac{1}{m} \left(b^{(1)}_\ell, b^{(2)}_\ell \right) = \frac{1}{m} \left(b^{(1)}_{\ell+1}, b^{(2)}_{\ell+1} \right) + \alpha^2 P + \alpha (Q + R), \]
where
\[
P = \frac{1}{m} \frac{2}{m} \left(W_{\ell}^\top D_{\ell}^{(1)} V_{\ell}^\top b^{(1)}_{\ell+1} / \sqrt{m}, W_{\ell}^\top D_{\ell}^{(2)} V_{\ell}^\top b^{(2)}_{\ell+1} / \sqrt{m} \right),
\]
\[
Q = \frac{1}{m} \sqrt{ \frac{1}{m} } \sqrt{ \frac{2}{m} } \left(W_{\ell}^\top D_{\ell}^{(1)} V_{\ell}^\top b^{(1)}_{\ell+1}, b^{(2)}_{\ell+1} \right),
\]
\[
R = \frac{1}{m} \sqrt{ \frac{1}{m} } \sqrt{ \frac{2}{m} } \left(W_{\ell}^\top D_{\ell}^{(2)} V_{\ell}^\top b^{(2)}_{\ell+1}, b^{(1)}_{\ell+1} \right).
\]
Then
\begin{align*}
\left| \frac{1}{m} \left(b_{\ell+1}^{(1)} b_{\ell}^{(2)} - (B_{\ell+1} (x^{(1)}, x^{(2)}) + \alpha^2 B_{\ell+1} (x^{(1)}, x^{(2)}) \Gamma_{\sigma'} (K_{\ell-1}) (x^{(1)}, x^{(2)}) \right) \right| \\
\leq \frac{1}{m} \left| b_{\ell+1}^{(1)} b_{\ell+1}^{(2)} - B_{\ell+1} (x^{(1)}, x^{(2)}) \right| + \alpha^2 \left| P - B_{\ell+1} (x^{(1)}, x^{(2)}) \Gamma_{\sigma'} (K_{\ell-1}) (x^{(1)}, x^{(2)}) \right| + \alpha |Q| + \alpha |R| \\
\leq \tau + \alpha^2 \left| P - \frac{2}{m} \left(D_{\ell}^{(1)} V_{\ell}^{\top} \frac{b_{\ell+1}^{(1)}}{\sqrt{m}} , D_{\ell}^{(2)} V_{\ell}^{\top} \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right) \right| \\
+ \alpha^2 \left| \frac{2}{m} \left(D_{\ell}^{(1)} V_{\ell}^{\top} \frac{b_{\ell+1}^{(1)}}{\sqrt{m}} , D_{\ell}^{(2)} V_{\ell}^{\top} \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right) - \left(\frac{b_{\ell+1}^{(1)}}{\sqrt{m}} , \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right) \right| \frac{2}{m} \text{Tr} (D_{\ell}^{(1)} D_{\ell}^{(2)}) \\
+ \alpha^2 \left| b_{\ell+1}^{(1)} b_{\ell+1}^{(2)} \right| 2 \frac{\text{Tr} (D_{\ell}^{(1)} D_{\ell}^{(2)}) - \Gamma_{\sigma'} (K_{\ell-1}) (x^{(1)}, x^{(2)}) | \right| \\
+ \alpha |Q| + \alpha |R|.
\end{align*}

In Lemma 9 and Lemma 10, set
\[\bar{e} = cL\gamma^{-1} \tau, \quad \epsilon = c \tau, \quad \delta = \Delta = \delta_4 / 5L. \]

When
\[m \geq \max \left\{ \frac{C}{\tau^2 (1 + \log \frac{30L}{\delta_4})} , \frac{C}{\tau^2 \log \frac{40L^2}{\delta_4}} , \frac{C}{\tau^2} L^{2 - 2\gamma} \log \frac{80L^2}{\delta_4} , cL^{2 - 2\gamma} \log \frac{80L^2}{\delta_4} \right\}, \]

with probability at least \(1 - \frac{\delta_4}{\ell} \), the results of Lemma 9 and Lemma 10 hold. Then for all \((x^{(1)}, x^{(2)}) \in \{(x, x), (x, \bar{x}), (\bar{x}, x), (\bar{x}, \bar{x})\}\),
\[\left| \frac{1}{m} \left(b_{\ell+1}^{(1)} b_{\ell}^{(2)} \right) - B_{\ell} (x^{(1)}, x^{(2)}) \right| \leq \tau + \alpha^2 c \tau + \alpha^2 \tau + \alpha^2 2 \tau + \alpha^2 cL^{\alpha - 1} \tau \leq \tau (1 + O(1/L)). \]
(\text{Set } \epsilon_2 \leq c \tau.)

By taking union bound, with probability at least \(1 - \delta_4 \), we have for all \(\ell = 1, 2, \ldots, L \),
\[\| \tilde{\Theta}_{\ell+1} (x, \bar{x}) - \Theta_{\ell+1} (x, \bar{x}) \|_{\text{max}} \leq (1 + O(1/L)) \epsilon_4 \leq C \epsilon_4. \]

Meanwhile, we have for all \((x^{(1)}, x^{(2)}) \in \{(x, x), (x, \bar{x}), (\bar{x}, x), (\bar{x}, \bar{x})\}\) and \(\ell = 1, \ldots, L \),
\[\left| \frac{2}{m} \left(D_{\ell}^{(1)} V_{\ell}^{\top} \frac{b_{\ell+1}^{(1)}}{\sqrt{m}} , D_{\ell}^{(2)} V_{\ell}^{\top} \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right) - B_{\ell+1} (x^{(1)}, x^{(2)}) \Gamma_{\sigma'} (K_{\ell-1}) (x^{(1)}, x^{(2)}) \right| \leq (2 + c) \tau + e \epsilon_2 \leq C \epsilon_4. \]

Step 5. Summary

Using previous results, for all \(\ell \), we have
\begin{align*}
\left| \frac{1}{\alpha^2} \langle V_{\ell} f, V_{\ell} \tilde{f} \rangle - B_{\ell+1} \Gamma_{\sigma'} (K_{\ell-1}) \right| \\
\leq \left| \frac{1}{m} \left(b_{\ell+1} , \tilde{b}_{\ell+1} \right) - B_{\ell+1} \right| \left| \left(\phi_{W_{\ell}}, \phi_{W_{\ell}} (x_{\ell+1}) \right) \right| + \left| B_{\ell+1} \right| \left| \left(\phi_{W_{\ell}}, \phi_{W_{\ell}} (x_{\ell+1}) \right) - \Gamma_{\sigma'} (K_{\ell-1}) \right| \\
\leq C \epsilon_4 + C \epsilon_2^2,
\end{align*}

27
and
\[
\left| \frac{1}{a^2} \langle \nabla_W f, \nabla_W \tilde{f} \rangle - K_{\ell-1} B_{\ell+1} \Gamma_\ell (K_{\ell-1}) \right| \\
\leq \left| \frac{1}{m} \langle \phi_{\ell-1}, \phi_{\ell-1} \rangle - K_{\ell-1} \right| \left| \frac{2}{m} b_{\ell+1}^T V_{\ell} \tilde{D}_\ell D_\ell^T b_{\ell+1} \right| + |K_{\ell-1}| \left| \frac{2}{m} b_{\ell+1}^T V_{\ell} \tilde{D}_\ell D_\ell^T b_{\ell+1} - B_{\ell+1} \Gamma_\ell (K_{\ell-1}) \right| \\
\leq C \epsilon_2^2 + C \epsilon_4.
\]

To sum up, by choosing \(\epsilon_4 = c \epsilon_0, \) \(\epsilon_2 = c \epsilon_4, \) and \(\delta_1 = \delta_2 = \delta_3 = \delta_4 = \delta_0/4, \) then with probability at least \(1 - \delta_0, \) when
\[
m \geq C \frac{\epsilon_4^4 L^{2-2\gamma}}{\epsilon_0^2} \left(\log \frac{320(L^2 + 1)}{\delta_0} + 1 \right)
\]
\[
\geq \max \left\{ c \log \frac{16L}{\delta_0}, \frac{C \epsilon_4^4 L^{2-2\gamma}}{\epsilon_0^2} \log \frac{144(L + 1)}{\delta_0}, \frac{C \epsilon_4^4 L^{2-2\gamma}}{\epsilon_0^2} \log \frac{16L}{\delta_0}, \frac{C \epsilon_4^4 L^{2-2\gamma}}{\epsilon_0^2} \log \frac{320L^2}{\delta_0}, \frac{C \epsilon_4^4 L^{2-2\gamma}}{\epsilon_0^2} \log \frac{320L^2}{\delta_0}, \frac{C \epsilon_4^4 L^{2-2\gamma}}{\epsilon_0^2} \log \frac{320L^2}{\delta_0}, \right. \]
\[
\left. \frac{C \epsilon_4^4 L^{2-2\gamma}}{\epsilon_0^2} \log \frac{320L^2}{\delta_0} \right\},
\]
the desired results hold.

\[\square\]

C Proofs of the Lemmas

C.1 Supporting lemmas

Lemma 11. Define \(G = [\phi_{W}(x_{\ell-1}), \phi_{W}(\tilde{x}_{\ell-1})], \) and \(\Pi_G^\perp \) as the orthogonal projection onto the orthogonal complement of the column space of \(G. \) when \(m \geq 1 + \log \frac{6}{\delta}, \) the following holds with probability at least \(1 - \delta \) for all \((x^{(1)}, x^{(2)}) \in \{(x, x), (x, \tilde{x}), (\tilde{x}, \tilde{x})\}, \)
\[
\left| \frac{2}{m} b_{\ell+1}^T D_\ell \Pi_G^\perp V_{\ell} \langle b_{\ell+1}, b_{\ell+1} \rangle \left(\frac{1}{\sqrt{m}} \frac{b_{\ell+1}}{\sqrt{m}} \right)^2 \right| \leq (4 + 4 \sqrt{2}) M \sqrt{\frac{1 + \log \frac{6}{\delta}}{m}},
\]

where
\[
M = \max \left\{ \frac{\|b_{\ell+1}\|^2}{m}, \frac{\|\tilde{b}_{\ell+1}\|^2}{m} \right\}.
\]

proof of Lemma 11. We prove the lemma on any realization of \((A, W_1, V_1, \cdots, W_{\ell-1}, V_{\ell-1}, W_\ell, W_{\ell+1}, V_{\ell+1}, \cdots, W_L, V_L, v), \) \(V_{\ell} \phi_{W}(x_{\ell-1})\) and \(V_{\ell} \phi_{W}(\tilde{x}_{\ell-1}),\) and consider the remaining randomness of \(V_{\ell}. \) In this case, \(D_\ell, \tilde{D}_\ell, \)
\[
b_{\ell+1} \) and \(\tilde{b}_{\ell+1} \) are fixed.

One can show that conditioned on the realization of \(V_{\ell} G \) (whose “degree of freedom” is \(2m \)), \(V_{\ell} \Pi_G^\perp \) is identically distributed as \(\tilde{V}_{\ell} \Pi_G^\perp, \) where \(\tilde{V}_{\ell} \) is an i.i.d. copy of \(V_{\ell}. \) The remaining \(m^2 - 2m \) “degree of freedom” is enough for a good concentration. For the proof of this result, we refer the readers to Lemma E.3 in Arora et al. (2019a).
Denote $T = \Pi_G^\perp D^{(1)}_\ell D^{(2)}_\ell \Pi_G^\perp$,

$$S = \begin{bmatrix} \sqrt{m} b^{(1)}_{\ell+1} \\ \sqrt{m} b^{(2)}_{\ell+1} \end{bmatrix}.$$

We know that S is a $2m$-dimensional Gaussian random vector, and

$$S \sim \mathcal{N}\left(0, \begin{bmatrix} \begin{pmatrix} b^{(1)}_{\ell+1} & b^{(1)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m & \begin{pmatrix} b^{(1)}_{\ell+1} & b^{(2)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m \\ \begin{pmatrix} b^{(2)}_{\ell+1} & b^{(1)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m & \begin{pmatrix} b^{(2)}_{\ell+1} & b^{(2)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m \end{bmatrix}\right)\right).$$

Then there exists a matrix $P \in \mathbb{R}^{2m \times 2m}$, such that

$$PP^\top = \begin{bmatrix} \begin{pmatrix} b^{(1)}_{\ell+1} & b^{(1)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m & \begin{pmatrix} b^{(1)}_{\ell+1} & b^{(2)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m \\ \begin{pmatrix} b^{(2)}_{\ell+1} & b^{(1)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m & \begin{pmatrix} b^{(2)}_{\ell+1} & b^{(2)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m \end{bmatrix},$$

and $S \overset{d}{=} P \xi$, $\xi \sim \mathcal{N}(0, I_{2m})$. Thus

$$\frac{b^{(1)}_{\ell+1}}{\sqrt{m}} \bar{V}_\ell \Pi_G^\perp D^{(1)}_\ell D^{(2)}_\ell \Pi_G^\perp \bar{V}_\ell \frac{b^{(2)}_{\ell+1}}{\sqrt{m}} \overset{d}{=} \xi^T P^\top \begin{bmatrix} I_m & 0 \\ 0 & I_m \end{bmatrix} P \xi = \frac{1}{2} \xi^T P^\top \begin{bmatrix} 0 & T \\ T & 0 \end{bmatrix} P \xi.$$

We have

$$\left\| \frac{1}{2} P^\top \begin{bmatrix} 0 & T \\ T & 0 \end{bmatrix} P \right\| \leq \frac{1}{2} \left\| PP^\top \right\| \cdot \left\| P \right\| \cdot \left\| PP^\top \right\| \leq \frac{1}{2} \left\| PP^\top \right\| \cdot \left\| T \right\|$$

$$\leq \frac{1}{2} \left\| \begin{bmatrix} \begin{pmatrix} b^{(1)}_{\ell+1} & b^{(1)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m & \begin{pmatrix} b^{(1)}_{\ell+1} & b^{(2)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m \\ \begin{pmatrix} b^{(2)}_{\ell+1} & b^{(1)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m & \begin{pmatrix} b^{(2)}_{\ell+1} & b^{(2)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m \end{bmatrix} \right\| \left\| \Pi_G^\perp D^{(1)}_\ell \Pi_G^\perp D^{(2)}_\ell \right\| \left\| \Pi_G^\perp \right\| \left\| \Pi_G^\perp \right\|$$

$$\leq \frac{1}{2} \left\{ \left\| \begin{pmatrix} b^{(1)}_{\ell+1} & b^{(1)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m \right\| + \left\| \begin{pmatrix} b^{(2)}_{\ell+1} & b^{(2)}_{\ell+1} \\ \sqrt{m} & \sqrt{m} \end{pmatrix} I_m \right\| \right\} \leq \frac{1}{2} \leq M.$$

And

$$\left\| \frac{1}{2} P^\top \begin{bmatrix} 0 & T \\ T & 0 \end{bmatrix} P \right\| \leq \sqrt{2mM}.$$

Then by the Hanson-Wright Inequality for Gaussian chaos (Boucheron et al., 2013), we have with probability at least $1 - \delta/3$,

$$\frac{2}{m} \left| \frac{b^{(1)}_{\ell+1}}{\sqrt{m}} \bar{V}_\ell \Pi_G^\perp D^{(1)}_\ell D^{(2)}_\ell \Pi_G^\perp \frac{b^{(2)}_{\ell+1}}{\sqrt{m}} \bar{V}_\ell - \mathbb{E} \bar{V}_\ell \left[\frac{b^{(1)}_{\ell+1}}{\sqrt{m}} \bar{V}_\ell \Pi_G^\perp D^{(1)}_\ell D^{(2)}_\ell \Pi_G^\perp \frac{b^{(2)}_{\ell+1}}{\sqrt{m}} \bar{V}_\ell \right] \right|$$

$$\leq \frac{4}{m} \left(\sqrt{2mM} \sqrt{\log \frac{6}{\delta}} + M \log \frac{6}{\delta} \right).$$
Furthermore, we have
\[
\mathbb{E}_{\tilde{V}_\ell} \left[\frac{b_{\ell+1}^{(1)}}{\sqrt{m}} \tilde{V}_\ell \Pi_G D_\ell^{(1)} D_\ell^{(2)} \Pi_G \tilde{V}_\ell^T \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right] = \left\langle \frac{b_{\ell+1}^{(1)}}{\sqrt{m}}, \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right\rangle \text{Tr}(\Pi_G D_\ell^{(1)} D_\ell^{(2)}).
\]

Thus
\[
\left| \frac{2}{m} \mathbb{E}_{\tilde{V}_\ell} \left[\frac{b_{\ell+1}^{(1)}}{\sqrt{m}} \tilde{V}_\ell \Pi_G D_\ell^{(1)} D_\ell^{(2)} \Pi_G \tilde{V}_\ell^T \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right] - \left\langle \frac{b_{\ell+1}^{(1)}}{\sqrt{m}}, \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right\rangle \frac{2}{m} \text{Tr}(D_\ell^{(1)} D_\ell^{(2)}) \right|
\]
\[
\leq \frac{2}{m} m \text{Tr}(\Pi_G D_\ell^{(1)} D_\ell^{(2)} \Pi_G)
\leq \frac{4}{m} M.
\]

By taking union bound, we have with probability at least \(1 - \delta\), for all \((x^{(1)}, x^{(2)}) \in \{(x, x), (x, \bar{x}), (\bar{x}, \bar{x})\}\),
\[
\left| \frac{2}{m} \frac{b_{\ell+1}^{(1)}}{\sqrt{m}} V_\ell \Pi_G D_\ell^{(1)} D_\ell^{(2)} \Pi_G V_\ell^T \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right| - \left\langle \frac{b_{\ell+1}^{(1)}}{\sqrt{m}}, \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right\rangle \frac{2}{m} \text{Tr}(D_\ell^{(1)} D_\ell^{(2)})
\]
\[
\leq \frac{4}{m} \left(\sqrt{2m} \sqrt{\log \frac{6}{\delta} + M \log \frac{6}{\delta}} \right) + \frac{4}{m} M
\leq (4 + 4\sqrt{2}) M \sqrt{\frac{1 + \log \frac{6}{\delta}}{m}},
\]
where the last inequality holds when \(m \geq 1 + \log \frac{6}{\delta}\).

\[\square\]

Lemma 12 (Norm controls of \(b_{\ell+1}\)). Assume the following inequalities hold simultaneously for all \(\ell = 1, 2, \ldots, L\)
\[
\left\| \frac{1}{\sqrt{m}} W_\ell \right\| \leq C, \quad \left\| \frac{1}{\sqrt{m}} V_\ell \right\| \leq C.
\]

Then for any fixed input \(x\), \(1 \leq \ell \leq L\) and \(u \in \mathbb{R}^m\), when
\[
m \geq c L^{2-2\gamma} \log \frac{2L}{\delta'},
\]
with probability at least \(1 - \delta'\) over the randomness of \(W_{\ell+1}, V_{\ell+1}, \ldots, W_L, V_L, v\), we have
\[
|\langle u, b_{\ell+1} \rangle| \leq C \left\| u \right\| \sqrt{\log \frac{2L}{\delta'}}.
\]

proof of Lemma 12. Denote \(u_\ell = u\), and
\[
u_{i+1} = \alpha \sqrt{\frac{1}{m}} \sqrt{\frac{2}{m} V_{i+1} D_{i+1} W_{i+1} u_i + u_i}, \quad i = \ell, \ell + 1, \ldots, L - 1.
\]
One can show that $\langle u, b_{\ell+1}\rangle = \langle v, u_{\ell}\rangle$. Next we show that $\|u_{i+1}\| = (1 + O(\frac{1}{\ell}))\|u_i\|$ with high probability. First write

$$\|u_{i+1}\|^2 = \|u_i\|^2 + \alpha^2 \|\frac{1}{m} \sqrt{\frac{2}{m}} V_{i+1} D_{i+1} W_{i+1} u_i \|^2 + 2\alpha \langle u_i, \sqrt{\frac{1}{m} \sqrt{\frac{2}{m}} V_{i+1} D_{i+1} W_{i+1} u_i} \rangle.$$

By the assumption we have

$$\|\sqrt{\frac{2}{m}} D_{i+1} W_{i+1} u_i \| \leq \sqrt{2} C \|u_i\|,$$

$$\|\sqrt{\frac{1}{m} \sqrt{\frac{2}{m}} V_{i+1} D_{i+1} W_{i+1} u_i} \| \leq \sqrt{2} C \|u_i\|.$$

With probability at least $1 - \delta'/L$ over the randomness of V_{i+1}, we have

$$\left\| \left(\frac{1}{m} \sqrt{\frac{2}{m}} V_{i+1} D_{i+1} W_{i+1} u_i \right) \right\| \leq \|u_i\| \cdot \sqrt{\frac{2}{m}} \|D_{i+1} W_{i+1} u_i\| \sqrt{\frac{c \log 2L}{m}}.$$

Then when

$$m \geq c L^{2-2\gamma} \log \frac{2L}{\delta'},$$

we have

$$\|u_{i+1}\|^2 = \|u_i\|^2 + \alpha^2 \|\frac{1}{m} \sqrt{\frac{2}{m}} V_{i+1} D_{i+1} W_{i+1} u_i \|^2 + 2\alpha \langle u_i, \sqrt{\frac{1}{m} \sqrt{\frac{2}{m}} V_{i+1} D_{i+1} W_{i+1} u_i} \rangle$$

$$\leq (1 + 2C^4/L)\|u_i\|^2 + 2\alpha \sqrt{2} C \|u_i\|^2 \sqrt{\frac{c \log 2L}{m}}$$

$$\leq (1 + 2C^4/L + 2\sqrt{2} C/L)\|u_i\|^2 = (1 + O(1/L))\|u_i\|^2.$$

Then with probability at least $1 - \delta'(L - 1)/L$ we have $\|u_{\ell}\| \leq C\|u_i\|$. Finally the result holds from the standard concentration bound for Gaussian random variables (Mohri et al., 2018).

\[
C.2 \text{ Proofs of Lemma 9}
\]

\textit{proof of Lemma 9.} By the assumption, we have

$$\frac{1}{m} \|b_{\ell+1}\|^2 \leq B_{\ell+1}(x, x) + 1 \leq 4.$$

Similarly, $\frac{1}{m} \|b_{\ell+1}\|^2 \leq 4$. Then by Lemma 11, when $m \geq \frac{c}{\gamma'}(1 + \log \frac{6}{\delta'})$, we have for all $(x^{(1)}, x^{(2)}) \in \{(x, x), (x, \bar{x}), (\bar{x}, \bar{x})\}$,

$$\left| \frac{2}{m} \frac{b_{\ell+1}^{(1)}}{\sqrt{m}} V_{\ell} \Pi_{b_{\ell+1}}^{\top} D_{\ell}^{(1)} D_{\ell}^{(2)} \Pi_{D_{\ell}} V_{\ell} \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} - \left(\frac{b_{\ell+1}^{(1)}}{\sqrt{m}}, \frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right) \frac{2}{m} \text{Tr}(D_{\ell}^{(1)} D_{\ell}^{(2)}) \right| \leq \epsilon \epsilon'.$$

Specifically, we have

$$\left\| \frac{2}{m} \frac{b_{\ell+1}}{\sqrt{m}} V_{\ell} \Pi_{b_{\ell+1}}^{\top} D_{\ell} \right\| \leq \sqrt{\epsilon \epsilon' + \frac{2}{m} \text{Tr}(D_{\ell})} \frac{1}{m} \|b_{\ell+1}\|^2 \leq O(1).$$
and similarly
\[\left\| \sqrt{\frac{2}{m}} b_{\ell+1}^T V_{\ell} \Pi_G D_{\ell} \right\| \leq O(1). \]

Next we bound
\[\left\| \sqrt{\frac{b_{\ell+1}^T}{m}} V_{\ell} \Pi_G \right\|. \]

Notice that \(\Pi_G \) is a orthogonal projection onto the column space of \(G \), which is at most 2-dimension. One can write \(\Pi_G = u_1 u_1^T + u_2 u_2^T \), where \(\|u_i\| = 1 \) or 0. By Lemma 12, fixing \(u_1, u_2 \) and \(V_{\ell} \), w.p greater than \(1 - \delta' \) over the randomness of \(W_{\ell+1}, V_{\ell+1}, \cdots, W_L, V_L, v \), we have
\[\left| b_{\ell+1}^T \frac{1}{\sqrt{m}} V_{\ell} u_i \right| \leq C'' \sqrt{\frac{8L}{\delta'}}, \]

and
\[\left| \tilde{b}_{\ell+1}^T \frac{1}{\sqrt{m}} V_{\ell} u_i \right| \leq C'' \sqrt{\frac{8L}{\delta'}}, \]

for both \(i = 1, 2 \) when
\[m \geq cL^{2-2\gamma} \log \frac{8L}{\delta'}. \]

Therefore
\[\left\| \sqrt{\frac{b_{\ell+1}^T}{m}} V_{\ell} \Pi_G \right\|, \left\| \sqrt{\frac{\tilde{b}_{\ell+1}^T}{m}} V_{\ell} \Pi_G \right\| \leq O \left(\sqrt{\frac{8L}{\delta'}} \right). \]

Finally, using \(I_m = \Pi_G + \Pi_G^\perp \), we have
\[
\begin{align*}
& \left| \frac{2}{m} b_{\ell+1}^{(1)}^T V_{\ell} D_{\ell}^{(1)} D_{\ell}^{(2)} V_{\ell}^T b_{\ell+1}^{(2)} - \left(\frac{b_{\ell+1}^{(1)}}{\sqrt{m}} \right)^T \left(\frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right) \frac{2}{m} \text{Tr}(D_{\ell}^{(1)} D_{\ell}^{(2)}) \right| \\
& \leq \left| \frac{2}{m} b_{\ell+1}^{(1)}^T V_{\ell} \Pi_G D_{\ell}^{(1)} D_{\ell}^{(2)} \Pi_G^\perp V_{\ell}^T b_{\ell+1}^{(2)} - \left(\frac{b_{\ell+1}^{(1)}}{\sqrt{m}} \right)^T \left(\frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right) \frac{2}{m} \text{Tr}(D_{\ell}^{(1)} D_{\ell}^{(2)}) \right| \\
& + \sqrt{\frac{2}{m}} \left| \frac{b_{\ell+1}^{(1)}}{\sqrt{m}} V_{\ell} \Pi_G D_{\ell}^{(1)} D_{\ell}^{(2)} \Pi_G^\perp V_{\ell} b_{\ell+1}^{(2)} \frac{2}{m} \right| \\
& + \sqrt{\frac{2}{m}} \left| \frac{b_{\ell+1}^{(1)}}{\sqrt{m}} V_{\ell} \Pi_G^\perp D_{\ell}^{(1)} D_{\ell}^{(2)} V_{\ell} \left(\frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right) \frac{2}{m} \right| \\
& + \sqrt{\frac{2}{m}} \left| \frac{b_{\ell+1}^{(1)}}{\sqrt{m}} V_{\ell} \Pi_G D_{\ell}^{(1)} D_{\ell}^{(2)} V_{\ell} \left(\frac{b_{\ell+1}^{(2)}}{\sqrt{m}} \right) \frac{2}{m} \right| \\
& \leq c\epsilon + \sqrt{\frac{2}{m}} O \left(\sqrt{\frac{8L}{\delta'}} \right) + \frac{2}{m} O \left(\log \frac{8L}{\delta'} \right) \leq \epsilon.
\end{align*}
\]

The last inequality holds when \(m \geq \frac{c}{\epsilon^2} \log \frac{8L}{\delta'}. \) \(\square \)
C.3 Proof of Lemma 10

proof of Lemma 10. The first part of the proof is essentially the same as Lemma 9. Define
\[d_{\ell+1} = D_{\ell} \frac{1}{\sqrt{m}} V_{\ell}^\top b_{\ell+1}, \quad \tilde{d}_{\ell+1} = \overline{D}_{\ell} \frac{1}{\sqrt{m}} V_{\ell}^\top \tilde{b}_{\ell+1}. \]

We know that \(d_{\ell+1} \) and \(\tilde{d}_{\ell+1} \) depend on \(W_{\ell} \) only through \(W_{\ell}x_{\ell-1} \) and \(W_{\ell}\tilde{x}_{\ell-1} \). Let \(H = [x_{\ell-1}, \tilde{x}_{\ell-1}] \).

Then the same result of Lemma 9 holds.

Using the same argument as in the proof of Lemma 9, we decompose \(\Pi_H \) into two vectors \(w_1 \) and \(w_2 \), whose randomness comes from \(W_1, V_1, \cdots, W_{\ell-1}, V_{\ell-1} \). By writing
\[w_i^\top W_{\ell}^\top d_{\ell+1}^{(i)} = \left(b_{\ell+1}^{(i)}, \frac{1}{\sqrt{m}} V_{\ell} D_{\ell}^{(i)} \frac{1}{\sqrt{m}} W_{\ell} w_i \right), \]
we can also apply Lemma 12. Then we conclude that w.p. greater than \(1 - \delta' \) over the randomness of \(v \), we have
\[\|\Pi_H W_{\ell}^\top d_{\ell+1}\|, \|\Pi_H W_{\ell}^\top \tilde{d}_{\ell+1}\| = O\left(\sqrt{\log \frac{8L}{\delta'}} \right), \]
when
\[m \geq cL^{2-2\gamma} \log \frac{8L}{\delta'}. \]
Then exactly the same result of Lemma 9 holds.

For the second part, notice that
\[
\frac{1}{m} \sqrt{\frac{1}{m}} \sqrt{\frac{2}{m}} \left(W_{\ell}^\top D_{\ell}^{(1)} V_{\ell}^\top b_{\ell+1}^{(1)}, b_{\ell+1}^{(2)} \right) = \sqrt{\frac{2}{m}} \left(W_{\ell}^\top D_{\ell}^{(1)} \frac{1}{\sqrt{m}} V_{\ell}^\top b_{\ell+1}^{(1)}, b_{\ell+1}^{(2)} \right)
\]
\[
= \sqrt{\frac{2}{m}} \left(W_{\ell}^\top d_{\ell+1}^{(1)}, b_{\ell+1}^{(2)} \right)
\]
\[
= \sqrt{\frac{2}{m}} \left(\Pi_H^\top W_{\ell}^\top d_{\ell+1}^{(1)}, b_{\ell+1}^{(2)} \right) + \sqrt{\frac{2}{m}} \left(\Pi_H \frac{1}{\sqrt{m}} W_{\ell}^\top d_{\ell+1}^{(1)}, b_{\ell+1}^{(2)} \right).
\]
Conditioned on \(x_{\ell-1}, \bar{x}_{\ell-1}, W_{\ell}x_{\ell-1}\), and \(W_{\ell}\bar{x}_{\ell-1}, W_{\ell}\) is independent of \(b_{\ell+1}, \bar{b}_{\ell+1}, d_{\ell+1}\), and \(\bar{d}_{\ell+1}\). Furthermore, we have
\[
\Pi_H^\top W_{\ell}^\top = d \Pi_H^\top \hat{W}_{\ell}^\top,
\]
where \(\hat{W}_{\ell}\) is an i.i.d. copy of \(W_{\ell}\). Then for the first term, with probability at least \(1 - \delta/2\), we have for all \((x^{(1)}, x^{(2)}) \in [(x, x), (x, \bar{x}), (\bar{x}, x), (\bar{x}, \bar{x})]\),
\[
\left| \sqrt{\frac{2}{m}} \left(\Pi_H^\top W_{\ell}^\top d_{\ell+1}^{(1)} \cdot \hat{b}_{\ell+1}^{(2)} \right) \right| \leq \left\| \Pi_H^\top \hat{b}_{\ell+1}^{(2)} \right\| \left\| d_{\ell+1}^{(1)} \right\| \sqrt{\frac{2c \log \frac{16}{\delta}}{m}} \leq O \left(\sqrt{\frac{\log \frac{16}{\delta}}{m}} \right).
\]

For the second term, we write
\[
\Pi_H = w_1 w_1^\top + w_2 w_2^\top,
\]
where \(\|w_i\| = 1\) or 0. Then by Lemma 12, with probability at least \(1 - \delta/2\), for all \((x^{(1)}, x^{(2)}) \in [(x, x), (x, \bar{x}), (\bar{x}, x), (\bar{x}, \bar{x})]\), when
\[
m \geq cL^{2-2\gamma} \log \frac{16L}{\delta},
\]
we have
\[
\left| \sqrt{\frac{2}{m}} \left(w_i w_i^\top \frac{1}{\sqrt{m}} W_{\ell}^\top d_{\ell+1}^{(1)}, b_{\ell+1}^{(2)} \right) \right| = \left| \sqrt{\frac{2}{m}} w_i^\top \frac{1}{\sqrt{m}} W_{\ell}^\top d_{\ell+1}^{(1)} \left(w_i, b_{\ell+1}^{(2)} \right) \right| \leq \sqrt{\frac{2}{m}} \|w_i\| \left\| \frac{1}{\sqrt{m}} W_{\ell}^\top \right\| \left\| d_{\ell+1}^{(1)} \right\| \left(w_i, b_{\ell+1}^{(2)} \right) \right| \leq O \left(\sqrt{\frac{\log \frac{16L}{\delta}}{m}} \right).
\]

\(\square\)

D Proof of Theorem 5

Proof. For \(x, \bar{x} \in S^{D-1}\), we have \(K_{\ell}(x, x) = K_{\ell}(\bar{x}, \bar{x}) = 1\) for all \(\ell\). Hence we only need to study when \(x \neq \bar{x}\). Note we have
\[
K_{\ell}(x, \bar{x}) = \Gamma_0(K_{\ell-1})(x, \bar{x}) = \tilde{\sigma}(K_{\ell-1}(x, \bar{x})), \text{ and } \Gamma_0(K_{\ell})(x, \bar{x}) = \tilde{\sigma}'(K_{\ell}(x, \bar{x})).
\]

For simplicity, we use \(K_{\ell}\) to denote \(K_{\ell}(x, \bar{x})\), where \(x \neq \bar{x}\) and \(x, \bar{x} \in S^{D-1}\).

Recall that
\[
\tilde{\sigma}(\rho) = \sqrt{1 - \rho^2 + \left(\frac{\pi - \cos^{-1}(\rho)}{\pi} \right) \rho}, \text{ and } \tilde{\sigma}'(\rho) = \frac{\pi - \cos^{-1}(\rho)}{\pi}.
\]

Hence we have \(\tilde{\sigma}(1) = 1, K_{\ell-1} \leq \tilde{\sigma}(K_{\ell-1}) = K_{\ell}, (\tilde{\sigma}')'(\rho) = \tilde{\sigma}'(\rho) \in [0, 1], \text{ and } (\tilde{\sigma}')'(\rho) \geq 0\). Then \(\tilde{\sigma}\) is a convex function.
Since $\{K_\ell\}$ is an increasing sequence and $|K_\ell| \leq 1$, we have K_ℓ converges as $\ell \to \infty$. Taking the limit of both sides of $\hat{\sigma}(K_{\ell-1}) = K_\ell$, we have $K_\ell \to 1$ as $\ell \to \infty$.

For K_ℓ, we also have

$$K_\ell = \hat{\sigma}(K_{\ell-1}) = \frac{\sqrt{1 - K_{\ell-1}^2 + (\pi - \cos^{-1}(K_{\ell-1}))K_{\ell-1}}}{\pi} = K_{\ell-1} + \frac{\sqrt{1 - K_{\ell-1}^2 - \cos^{-1}(K_{\ell-1})K_{\ell-1}}}{\pi}.$$

Let $e_\ell = 1 - K_\ell$, we can easily check that

$$e_{\ell-1} - \frac{e_{\ell-1}^{3/2}}{\pi} \leq e_\ell \leq e_{\ell-1} - \frac{2\sqrt{2}e_{\ell-1}^{3/2}}{3\pi}. \quad (18)$$

Hence as $e_\ell \to 0$, we have $\frac{e_\ell}{e_{\ell-1}} \to 1$, which implies $\{K_\ell\}$ converges sublinearly.

Assume $e_\ell = \frac{C}{\ell^p} + O(\ell^{-p+1})$. By taking the assumption into (18) and comparing the highest order of both sides, we have $p = 2$.

Thus $\exists C$, s.t. $|1 - K_\ell| \leq \frac{C}{\ell^2}$, i.e. the convergence rate of K_ℓ is $O(\frac{1}{\ell^2})$.

Lemma 13. For each $K_0 < 1$, there exists $p > 0$ and $n_0 = n_0(\delta) > 0$, such that $K_n \leq 1 - \frac{9\pi^2}{2(n+n_0)^2 + \log(L)p}$,

$\forall n = 0, \ldots, L$, when L is large.

Proof. First, solve $K_0 \leq 1 - \frac{9\pi^2}{2n^2 + L}$. Then we can choose

$$n_0 \geq \sqrt{\frac{9\pi^2}{2\delta}} \geq \sqrt{\frac{9\pi^2}{2(1 - K_0)}},$$

which is independent of L and n. For the rest of the proof, without loss of generality, we just use n instead of $n + n_0$. Also for small δ (when δ is not small enough we can pick a small $\delta_0 < \delta$ and let $n_0 \geq \sqrt{\frac{9\pi^2}{2\delta_0}}$), we have

$$\frac{9\pi^2}{2(n+n_0)^2 + \log(L)p} \leq \delta(\text{or } \delta_0),$$

which is also small.

Let $K_n = 1 - e$. Then, when e is small, we have

$$K_{n+1} - K_n = \hat{\sigma}(K_n) - K_n = O(e^{3/2}).$$

Also, we have

$$\left(1 - \frac{9\pi^2}{2(n+1)^2 + \log(L)p}\right) - \left(1 - \frac{9\pi^2}{2n^2 + \log(L)p}\right) = O\left(\frac{1}{n^{3 + \frac{\log(L)p}{2}}}\right) \geq O\left(\frac{1}{n^{2 + \frac{\log(L)p}{2}}}\right).$$

Overall, we want an upper bound for K_n and from the above we only know that K_n is of order $1 - O(n^{-2})$ but this order may hide some terms of logarithmic order. Hence we use the order $1 - O(n^{-2+\epsilon})$ to provide an upper bound of K_n. Here $\frac{\log(L)p}{L}$ is constructed for the convenience of the rest of the proof.

\[\square\]
Let \(N_0 = N_0(L) \) be the solution of

\[
\cos \left(\pi \left(1 - \left(\frac{n + 1}{n + 2} \right)^{\frac{3}{l} \log(\pi^2)} \right) \right) = \sigma \left(\cos \left(\pi \left(1 - \left(\frac{n}{n + 1} \right)^{\frac{3}{l} \log(\pi^2)} \right) \right) \right),
\]

where for \(N_0 < n < N_L \) with some \(N_L \), we have

\[
\cos \left(\pi \left(1 - \left(\frac{n + 1}{n + 2} \right)^{\frac{3}{l} \log(\pi^2)} \right) \right) \geq \sigma \left(\cos \left(\pi \left(1 - \left(\frac{n}{n + 1} \right)^{\frac{3}{l} \log(\pi^2)} \right) \right) \right).
\]

One can check by series expansion that \(N_0 = N_0(L) \leq 5 \frac{L}{\log(L)^q} \).

Next we would like to find \(n \) such that

\[
K_n = \cos \left(\pi \left(1 - \left(\frac{5 \frac{L}{\log(L)^2}}{5 \frac{L}{\log(L)^2} + 1} \right)^{\frac{3}{l} \log(\pi^2)} \right) \right).
\]

By series expansion, we know

\[
\cos \left(\pi \left(1 - \left(\frac{5 \frac{L}{\log(L)^2}}{5 \frac{L}{\log(L)^2} + 1} \right)^{\frac{3}{l} \log(\pi^2)} \right) \right) \geq 1 - \frac{9\pi^2}{2 \left(\frac{5L}{\log(L)^2} \right)^2}.
\]

Then it suffices to solve

\[
1 - \frac{9\pi^2}{2 \left(\frac{5L}{\log(L)^2} \right)^2} \geq 1 - \frac{9\pi^2}{2 \left(\frac{5L}{\log(L)^2} \right)^q} \geq K_n, \text{ i.e., } n^{\frac{\log(\pi^p)}{2L}} \leq \left(\frac{5L}{\log(L)^q} \right)^q.
\]

Lemma 14. When \(q > p - 1 \), we have \(n \leq \frac{5L}{\log(L)^q} \) - \(\log(L)^q \) satisfying (19).

Proof. If the condition above holds, we have

\[
n^{\frac{\log(\pi^p)}{2L}} \leq \left(\frac{5L}{\log(L)^q} - \log(L)^q \right)^q,
\]

which is

\[
n^{\frac{\log(\pi^p)}{2L}} \leq \left(\frac{5L}{\log(L)^q} - \log(L)^q \right)^q \leq \left(\frac{5L}{\log(L)^q} - \log(L)^q \right)^q \left(1 + \frac{\log(L)^p \log \left(\frac{5L}{\log(L)^q} \right)}{2L} \right)
\]

\[
= \frac{5L}{\log(L)^q} - \log(L)^q + \frac{5}{2} \log(L)^{p-2} \log \left(\frac{5L}{\log(L)^q} \right) - \frac{1}{2L} \log(L)^{p+q} \log \left(\frac{5L}{\log(L)^q} \right),
\]

where \(\left(\frac{5L}{\log(L)^q} - \log(L)^q \right)^\frac{\log(\pi^p)}{2L} \to 1 \) as \(L \to \infty \).

Thus we have \(q > p - 1 \). \(\square \)
Just pick $q = p$. Then we have $n^{1 + \frac{\log(L)^p}{2}} \leq \frac{5L}{\log(L)^2}$ and $n \leq \frac{5L}{\log(L)^2} - \log(L)^p$.

Lemma 15. When L is large enough, we have

$$\cos\left(\pi \left(1 - \left(\frac{n}{n+1}\right)^{3 + \frac{\log(L)^2}{L}}\right)\right) \leq K_n \leq \cos\left(\pi \left(1 - \left(\frac{n + \log(L)^p}{n + \log(L)^p + 1}\right)^{3 - \frac{\log(L)^2}{L}}\right)\right).$$

Proof. Let $F(n) = \cos\left(\pi \left(1 - \left(\frac{n + \log(L)^p}{n + \log(L)^p + 1}\right)^{3 - \frac{\log(L)^2}{L}}\right)\right)$.

For the right hand side, when $n \geq \frac{5L}{\log(L)^2} - \log(L)^p$, we have, by series expansion, $F(n + 1) \geq \sigma(F(n))$. Also, when $n \sim aL$, where $0 < a \leq 1$, we have

$$F(n + 1) - \sigma(F(n)) = \mathcal{O}\left(\frac{3(2\pi^2a\log^{10}(L) + \pi^2\log^8(L))}{2L^4(a\log^2(L) + 5^4}\right) > 0.$$

Then for $\frac{5L}{\log(L)^2} - \log(L)^p \leq n \leq L$, we have $F(n + 1) \geq \sigma(F(n))$ and thus $K_n \leq F(n)$.

When $n \leq \frac{5L}{\log(L)^2} - \log(L)^p$, we have $F(n + 1) \leq \sigma(F(n))$. Hence $K_n \leq F(n)$.

For the left hand side,

$$\cos\left(\pi \left(1 - \left(\frac{n + 1}{n + 2}\right)^{3 + \frac{\log(L)^2}{L}}\right)\right) - \sigma\left(\cos\left(\pi \left(1 - \left(\frac{n}{n + 1}\right)^{3 + \frac{\log(L)^2}{L}}\right)\right)\right) \sim -\frac{27\pi^2}{2n^4} - \frac{3\pi^2\log(L)^2}{n^3L}, \quad \forall n = 1, ..., L.$$

Hence we have the left hand side. \hfill \Box

From Lemma 15, by series expansion, we have

$$|1 - K_n| \leq \frac{\left(3\pi + \frac{\pi\log(L)^2}{L}\right)^2}{2n^2} \sim \frac{9\pi^2}{2n^2},$$

when L is large.

Moreover, we can get

$$\left(\frac{n}{n+1}\right)^{3 + \frac{\log(L)^2}{L}} \leq \Gamma_{\sigma}(K_n) \leq \left(\frac{n + \log(L)^p}{n + \log(L)^p + 1}\right)^{3 - \frac{\log(L)^2}{L}}.$$

Then

$$\left(\frac{\ell - 1}{L}\right)^{3 + \frac{\log(L)^2}{L}} \leq \prod_{i=\ell}^{L} \Gamma_{\sigma}(K_{i-1}) \leq \left(\frac{\ell + \log(L)^p - 1}{L + \log(L)^p}\right)^{3 - \frac{\log(L)^2}{L}}.$$
Let $N = \log(L)^p$. For the right hand side, if we sum over ℓ, we have
\[
\frac{1}{L} \sum_{\ell=1}^{L} \left(\frac{\ell + N - 1}{L + N} \right)^{3 - \frac{\log(L)^2}{L}} \leq \frac{1}{L} \int_{1}^{L+1} \left(\frac{x + N - 1}{L + N} \right)^{3 - \frac{\log(L)^2}{L}} \, dx
\]
\[
= \frac{(L + N)^{4 - \frac{\log(L)^2}{L}} - (N)^{4 - \frac{\log(L)^2}{L}}}{L(L + N)^{3 - \frac{\log(L)^2}{L}} \left(4 - \frac{\log(L)^2}{L} \right)}.
\]
Taking the limit of both sides, we have
\[
\lim_{L \to \infty} \frac{1}{L} \sum_{\ell=1}^{L} \left(\frac{\ell + N - 1}{L + N} \right)^{3 - \frac{\log(L)^2}{L}} \leq \frac{1}{4}.
\]
Similarly, by
\[
\frac{1}{L} \sum_{i=1}^{L} \left(\frac{\ell - 1}{L} \right)^{3 + \frac{\log(L)^2}{L}} \geq \frac{1}{L} \int_{1}^{L} \left(\frac{x - 1}{L} \right)^{3 + \frac{\log(L)^2}{L}} \, dx = \frac{(L - 1)^{4 + \frac{\log(L)^2}{L}}}{(4 + \frac{\log(L)^2}{L})^{4 + \frac{\log(L)^2}{L}}},
\]
we have
\[
\lim_{L \to \infty} \frac{1}{L} \sum_{i=1}^{L} \left(\frac{\ell - 1}{L} \right)^{3 + \frac{\log(L)^2}{L}} \geq \frac{1}{4}.
\]
Hence,
\[
\lim_{L \to \infty} \frac{1}{L} \sum_{\ell=1}^{L} \left(\frac{\ell + N - 1}{L + N} \right)^{3 - \frac{\log(L)^2}{L}} = \lim_{L \to \infty} \frac{1}{L} \sum_{\ell=1}^{L} \left(\frac{\ell - 1}{L} \right)^{3 + \frac{\log(L)^2}{L}}
\]
\[
= \lim_{L \to \infty} \frac{1}{L} \sum_{\ell=1}^{L} \prod_{i=1}^{L} \Gamma'(K_{i-1}) = \frac{1}{4}.
\]
Recall from previous discussion, $K_{\ell} = 1 - O\left(\frac{1}{\ell^2} \right)$. Therefore,
\[
\lim_{L \to \infty} \frac{1}{L} \sum_{\ell=1}^{L} K_{\ell-1} \prod_{i=\ell}^{L} \Gamma'(K_{i-1}) = \frac{1}{4}.
\]
Also, when L is large, we have
\[
\frac{(L + N)^{4 - \frac{\log(L)^2}{L}} - (N)^{4 - \frac{\log(L)^2}{L}}}{L(L + N)^{3 - \frac{\log(L)^2}{L}} \left(4 - \frac{\log(L)^2}{L} \right)} > \frac{1}{4} \geq \frac{(L - 1)^{4 + \frac{\log(L)^2}{L}}}{(4 + \frac{\log(L)^2}{L})^{4 + \frac{\log(L)^2}{L}}}.
\]
Hence we can estimate the convergence rate of the normalized kernel
\[
\left| \frac{1}{L} \sum_{\ell=1}^{L} K_{\ell-1} \prod_{i=\ell}^{L} \Gamma'(K_{i-1}) - \frac{1}{4} \right| = \left| \frac{1}{L} \sum_{\ell=1}^{L} \left(K_{\ell-1} \left(\prod_{i=\ell}^{L} \Gamma'(K_{i-1}) \right) - \frac{1}{4} + \frac{1}{4} (K_{\ell-1} - 1) \right) \right|
\]
Proof. We denote $K_{\ell,L}$ to be the ℓ-th layer of K when the depth is L, which is originally denoted by K_ℓ.

Let $S_{\ell,L} = \frac{K_{\ell,L}}{(1 + \alpha^2)\ell} = \frac{K_{\ell,L}}{(1 + 1/L)^\ell}$ and $S_0 = K_0$, then $\Gamma_\sigma(K_{\ell,L}) = (1 + \alpha^2)\ell \hat{\sigma}(S_{\ell,L})$ and $\Gamma_\sigma'(K_{\ell,L}) = \hat{\sigma}'(S_{\ell,L})$. Hence we can rewrite the recursion to be

$$S_{\ell,L} = \frac{S_{\ell-1,L} + \alpha^2 \hat{\sigma}(S_{\ell-1,L})}{(1 + \alpha^2)} \geq S_{\ell-1,L}. \quad (20)$$

Moreover, since $S_{\ell,L} - S_{\ell-1,L} = \frac{\alpha^2}{1 + \alpha^2} \hat{\sigma}(S_{\ell-1,L}) - S_{\ell-1,L}$ and $(\hat{\sigma}(S_{\ell-1,L}) - S_{\ell-1,L})$ is decreasing, we can have

$$S_{\ell,L} \leq S_0 + \frac{(\hat{\sigma}(S_0) - S_0)\ell}{L^2}. \quad (21)$$

Denote $P_{\ell+1,L} = B_{\ell+1,L}(1 + \alpha^2)^{-(L-\ell)} = \prod_{i=\ell}^{L-1} \frac{1 + \alpha^2 \hat{\sigma}'(S_i,L)}{1 + \alpha^2}$. Since

$$1 - \frac{1 + \alpha^2 \hat{\sigma}'(S_i,L)}{1 + \alpha^2} = \frac{\alpha^2(1 - \hat{\sigma}'(S_i,L))}{1 + \alpha^2} = \frac{1 - \hat{\sigma}'(S_i,L)}{L^2 + 1},$$

we have

$$1 - P_{\ell+1,L} = 1 - \prod_{i=\ell}^{L-1} \left(1 - \frac{1 - \hat{\sigma}'(S_i,L)}{L^2 + 1}\right) \leq \sum_{i=\ell}^{L-1} \frac{1 - \hat{\sigma}'(S_i,L)}{L^2 + 1} = \frac{L - \ell - \sum_{i=\ell}^{L-1} \hat{\sigma}'(S_i,L)}{L^2 + 1},$$

where $\ell = 1, \ldots, L - 1$. For $P_{L+1,L}$, we have $1 - P_{L+1,L} = 0$.

Then we can rewrite the normalized kernel to be

$$\Omega_L = \frac{1}{2L} \sum_{\ell=1}^{L} P_{\ell+1,L}(\hat{\sigma}(S_{\ell-1,L}) + S_{\ell-1,L} \hat{\sigma}'(S_{\ell-1,L})).$$

Hence we have the bound for each layer

$$\left| P_{\ell+1,L}(\hat{\sigma}(S_{\ell-1,L}) + S_{\ell-1,L} \hat{\sigma}'(S_{\ell-1,L})) - (\hat{\sigma}(S_0) + S_0 \hat{\sigma}'(S_0))\right|$$

\[\leq \frac{4 \log(L)^2 + \log(L)^2}{16L} = O\left(\frac{\text{polylog}(L)}{L}\right). \]
\[
\begin{align*}
\leq & \left| P_{\ell+1,L} \cdot (\tilde{\sigma}(S_{\ell-1,L}) + S_{\ell-1,L} \tilde{\sigma}'(S_{\ell-1,L})) - (\bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0)) \right| + \left| \bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0) \right| \cdot \left| 1 - P_{\ell+1,L} \right| \\
\leq & \left| \tilde{\sigma}'(S_{\ell-1,L})(S_{\ell-1,L} - S_0) \right| + \left| \tilde{\sigma}'(S_{\ell-1,L})S_{\ell-1,L} - \bar{\sigma}'(S_0)S_0 \right| + \left| \bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0) \right| \cdot \left| 1 - P_{\ell+1,L} \right| \\
= & \frac{2}{\pi L} \tilde{\sigma}'(S_{\ell-1,L})(S_{\ell-1,L} - S_0) + \left| S_0(\tilde{\sigma}(S_0) - S_0)(\ell - 1) \right| + \left| \bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0) \right| \left| L - \ell - \sum_{i=\ell}^{L-1} \tilde{\sigma}'(S_{i,L}) \right| \\
\leq & \frac{2}{\pi L} \tilde{\sigma}'(S_{\ell-1,L})(\tilde{\sigma}(S_0) - S_0)\ell + \frac{|S_0(\tilde{\sigma}(S_0) - S_0)(\ell - 1)|}{\pi L^2 \sqrt{1 - S_{\ell-1,L}^2}} + \left| \bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0) \right| \left| \frac{L - \ell - (L - \ell) \bar{\sigma}'(S_0)}{L^2 + 1} \right| \\
\leq & \frac{2}{\pi L} \tilde{\sigma}'(S_{\ell-1,L})(\tilde{\sigma}(S_0) - S_0)\ell + \frac{|S_0(\tilde{\sigma}(S_0) - S_0)(\ell - 1)|}{\pi L^2 \sqrt{1 - S_{\ell-1,L}^2}} + \left| \bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0) \right| \left| \frac{L - \ell - (L - \ell) \bar{\sigma}'(S_0)}{L^2 + 1} \right| \\
\end{align*}
\]

Therefore we have the bound for the normalized kernel
\[
\left| \Omega_L - \frac{1}{2} (\bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0)) \right|
\]
\[
= \frac{1}{2L} \sum_{\ell=1}^{L} \left(P_{\ell+1,L}(\tilde{\sigma}(S_{\ell-1,L}) + S_{\ell-1,L} \tilde{\sigma}'(S_{\ell-1,L})) - \frac{1}{2} (\bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0)) \right) \\
\leq \frac{1}{2L} \sum_{\ell=1}^{L} \left(\frac{2 \tilde{\sigma}'(S_{\ell-1,L})(\tilde{\sigma}(S_0) - S_0)\ell}{L^2} + \frac{|S_0(\tilde{\sigma}(S_0) - S_0)(\ell - 1)|}{\pi L^2 \sqrt{1 - S_{\ell-1,L}^2}} \right) \\
\quad + \frac{1}{2L} \sum_{\ell=1}^{L} \left(\left| \bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0) \right| \left| \frac{L - \ell - (L - \ell) \bar{\sigma}'(S_0)}{L^2 + 1} \right| \right) \\
\leq \frac{1}{2L} \left(\frac{L + 1}{L} (\bar{\sigma}(S_0) - S_0) + \frac{|S_0(\tilde{\sigma}(S_0) - S_0)L(L - 1)|}{2\pi L^2 C} + \left| \bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0) \right| \frac{L(L-1)(1 - \bar{\sigma}'(S_0))}{L^2 + 1} \right) \\
\sim \left(\frac{(\bar{\sigma}(S_0) - S_0)}{2} \right) \left(1 + \frac{|S_0|}{2\pi C} \right) + \frac{1}{2} \left| \bar{\sigma}(S_0) + S_0 \bar{\sigma}'(S_0) \right| \left| (1 - \bar{\sigma}'(S_0)) \right| \frac{1}{L}
\]

where \(C = C(\delta) = \sqrt{1 - (1 - \delta)^2} \) and \(S_0 = K_0. \)