A CIRCUMCENTERED-REFLECTION METHOD FOR FINDING COMMON FIXED POINTS OF FIRMLY NONEXPANSIVE OPERATORS

R. AREFIDAMGHANI1 R. BEHLING2, A.N. IUSEM3,*, L.-R. SANTOS4

1Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, CEP 22460-320, Rio de Janeiro, RJ, Brazil
2School of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
3Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, CEP 22460-320, Rio de Janeiro, RJ Brazil
4Department of Mathematics, Federal University of Santa Catarina, Blumenau, SC, Brazil

Honoring Prof. Yair Censor in his 80th birthday

Abstract. The circumcentered-reflection method (CRM) has been recently proposed as a methodology for accelerating several algorithms for solving the Convex Feasibility Problem (CFP), equivalent to finding a common fixed-point of the orthogonal projections onto a finite number of closed and convex sets. In this paper, we apply CRM to the more general Fixed Point Problem (denoted as FPP), consisting of finding a common fixed-point of operators belonging to a larger family of operators, namely firmly nonexpansive operators. We prove than in this setting, CRM is globally convergent to a common fixed-point (supposing at least one exists). We also establish linear convergence of the sequence generated by CRM applied to FPP, under a not too demanding error bound assumption, and provide an estimate of the asymptotic constant. We provide solid numerical evidence of the superiority of CRM when compared to the classical Parallel Projections Method (PPM). Additionally, we present certain results of convex combination of orthogonal projections, of some interest on its own.

Keywords: Common fixed points, Firmly nonexpansive operators, Circumcentered-reflection method, Alternating projections, Convergence rate, Error bound.

1. Introduction

We start by recalling the Convex Feasibility Problem (CFP), which consists of finding a point in the intersection of a finite number of closed convex subsets of \mathbb{R}^n. CFP is clearly equivalent to solving a finite system of convex inequalities in \mathbb{R}^n, and it can be also rephrased as the problem of finding a common fixed-point of the orthogonal projections onto such subsets. A natural extension of CFP is the problem of finding a common fixed-point of a finite set of operators other than orthogonal projections, but sharing some of their properties. A vast literature on the subject has been developed; we cite just a few references, namely [15], [27], [32] and [33]. In this paper we will consider a particular generalization of orthogonal projections, namely firmly nonexpansive operators.

We define next this family of operators, together with two related families.

*Corresponding author.

E-mail addresses: reza.arefidamghani@impa.br (R. Arefidamghani), rogerbehling@gmail.com (R. Behling), iusp@impa.br (A.N. Iusem), l.r.santos@ufsc.br (L.-R. Santos).

Received ; Accepted
Definition 1. An operator $T: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is said to be:

i) nonexpansive when $\|T(x) - T(y)\| \leq \|x - y\|$ for all $x, y \in \mathbb{R}^n$.

ii) nonexpansive plus when it is nonexpansive, and whenever $\|T(x) - T(y)\| = \|x - y\|$ it holds that $T(x) = T(y) = x - y$.

iii) firmly nonexpansive when

$$\|T(x) - T(y)\|^2 \leq \|x - y\|^2 - \|(T(x) - T(y)) - (x - y)\|^2$$

for all $x, y \in \mathbb{R}^n$.

It is immediate that firmly nonexpansive operators are nonexpansive plus, and nonexpansive plus operators are nonexpansive. It is well known and easy to prove that orthogonal projections onto closed and convex sets are firmly nonexpansive. The notation nonexpansive plus is not standard; we adopt it because of the analogy with copositive plus matrices.

Let $T_1, \ldots, T_m : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be firmly nonexpansive operators. The problem of finding a common fixed-point of T_1, \ldots, T_m (i.e., a point $\bar{x} \in \mathbb{R}^n$ such that $T_i(\bar{x}) = \bar{x}$ for all $i \in \{1, \ldots, m\}$) will be denoted as FPP. The set of common fixed-points of the T_i’s will be denoted as $\text{Fix}(T_1, \ldots, T_m)$. Two classical methods for FPP are the Sequential Projection Method (SPM) and the Parallel Projection Method (PPM), which can be traced back to [25], [17] respectively, and are defined as follows. Consider the operators $\hat{T}, \tilde{T} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ given by $\hat{T} = T_m \circ \cdots \circ T_1, \tilde{T} = \frac{1}{m} \sum_{i=1}^{m} T_i$. Starting from an arbitrary $x^0 \in \mathbb{R}^n$, SPM and PPM generate sequences \{x^k\} given by $x^{k+1} = \hat{T}(x^k), x^{k+1} = \tilde{T}(x^k)$ respectively. When $\text{Fix}(T_1, \ldots, T_m) \neq \emptyset$ the sequences generated by both methods are known to be globally convergent to points belonging to a point in $\text{Fix}(T_1, \ldots, T_m)$, i.e., to solve FPP. See [16] for an in-depth study of these and other projections methods for FPP.

An interesting relation between SPM and PPM was found in [29]. Given firmly nonexpansive operators $T_1, \ldots, T_m : \mathbb{R}^n \rightarrow \mathbb{R}^n$, define the operator $\hat{T} : \mathbb{R}^m \rightarrow \mathbb{R}^m$ as $\hat{T}(x^1, \ldots, x^m) = (T_1(x^1), \ldots, T_m(x^m))$, with $x^i \in \mathbb{R}^n$ ($1 \leq i \leq m$). It is rather immediate to check that \hat{T} is firmly nonexpansive. Consider the set $\bar{U} = \{(x, x) : x \in \mathbb{R}^n\} \subset \mathbb{R}^{nm}$, and let $P_{\bar{U}} : \mathbb{R}^{nm} \rightarrow \bar{U}$ be the orthogonal projection onto \bar{U}. Define $\{\bar{x}^k\} \subset \mathbb{R}^{nm}$ as the sequence resulting from applying SPM, as defined above, to the operators $\hat{T}, P_{\bar{U}}$, starting from a point $\bar{x}^0 = (x^0, \cdots, x^0) \in \bar{U}$, i.e., take $\bar{x}^{k+1} = P_{\bar{U}}(\hat{T}(\bar{x}^k))$. Clearly, \bar{x}^k belongs to \bar{U} for all k, so that we may write $\bar{x}^k = (x^k, \ldots, x^k)$ with $x^k \in \mathbb{R}^n$. It was proved in [29] that $x^{k+1} = T(x^k)$, i.e., a step of SPM applied to two specific firmly nonexpansive operators in the product space \mathbb{R}^{nm} is equivalent to a step of PPM in the original space \mathbb{R}^n. Thus, SPM with just two operators plays a sort of special role, and deserves a name of its own. We will call it the Method of Alternating Projections (MAP from now on). Observe that in the equivalence above one of the two sets in the product space, namely \bar{U}, is a linear subspace. This fact will be essential for the convergence of the Circumcentered-Reflection Method (CRM from now on), applied for solving FPP.

We reckon that the use of the word “projections” in the names of SPM, PPM and MAP applied to FPP is an abuse of notation, since in general there are no projections involved in FPP. Indeed, they correspond to these methods applied to CFP, a particular case of FPP. We keep them because the structure of the methods applied to either CFP and FPP is basically the same.

We proceed to describe CRM. Take three non-collinear points $x, y, z \in \mathbb{R}^n$, and let M be their affine hull. The circumcenter $\text{circ}(x, y, z)$ is the center of the circle in M passing through x, y, z (or, equivalently, the point in M equidistant from x, y, z). It is easy to check that $\text{circ}(x, y, z)$ is well defined. Now we take two firmly nonexpansive operators $A, B : \mathbb{R}^n \rightarrow \mathbb{R}^n$ and define $Q = A \circ B$. Under adequate assumptions, the sequence $\{x^k\} \subset \mathbb{R}^n$ defined by

$$x^{k+1} = Q(x^k) = A(B(x^k))$$

is expected to converge to a common fixed-point of A and B. Note that, if A, B are orthogonal projections onto convex sets K_1, K_2, then MAP turns out to be a special case of this iteration, and $\text{Fix}(A, B) = K_1 \cap K_2$. CRM can be seen as an acceleration technique for the sequence defined by (1.2). Define the reflection
operators $A^R, B^R : \mathbb{R}^n \to \mathbb{R}^n$ as $A^R = 2A - I, B^R = 2B - I$, where I stands for the identity operator in \mathbb{R}^n. The CRM operator $C : \mathbb{R}^n \to \mathbb{R}^n$ is defined as $C(x) = \text{circ}(x, B^R(x), A^R(B^R(x)))$, i.e., the circumcenter of the points $x, B^R(x), A^R(B^R(x))$. The CRM sequence $\{x^k\} \subset \mathbb{R}^n$, starting at some $x^0 \in \mathbb{R}^n$, is then defined as $x^{k+1} = C(x^k)$.

CRM was introduced in [9], [10] and has been successfully applied for accelerating several methods for solving CFP, like MAP, PPM and the Douglas-Rachford Method (DRM), outperforming all of them. It was further enhanced in [2], [3], [4], [5], [6], [7], [8], [11], [12], [19], [20], [12], [19], [20] and [28]. CRM was shown in [10] to converge to a solution of CFP. In [3] it was proved that, under a not too demanding error bound condition, the sequences generated by MAP and CRM for solving CFP converge linearly, but the asymptotic constant for CRM is better than the one for MAP. This superiority was widely confirmed in the numerical experiences exhibited in [2].

Here, we will apply CRM for solving FPP with firmly nonexpansive operators $T_1, \ldots, T_m : \mathbb{R}^n \to \mathbb{R}^n$ in the following way. We will apply it to two operators in \mathbb{R}^{nm}, namely \tilde{T} and $P_{\tilde{U}}$ as defined above, starting from a point in \tilde{U}. Note that, since \tilde{U} is a linear subspace, the operator $P_{\tilde{U}}$ is affine.

The main purpose of this paper consists of establishing that CRM, when applied to FPP, is globally convergent, that linear convergence is achieved by both CRM and MAP under an error bound condition, and that CRM is computationally much faster than MAP, as corroborated by solid numerical evidence. We were not able to prove the superiority of CRM in terms of the asymptotic constant of linear convergence, but our numerical experiments suggest that a theoretical superiority is likely to hold. This issue is left as a subject for future research.

The paper is organized as follows. In Section 2 we present certain results, of some interest on its own, on convex combinations of orthogonal projections, which we take as a prototypical family of firmly nonexpansive operators (beyond orthogonal projections themselves). In Section 3 we prove global convergence of CRM applied for solving FPP. We prove in Section 4 that, under a reasonable error bound assumption, convergence of CRM applied for solving FPP is linear, and we provide as well an estimate of the asymptotic constant, which holds also for MAP. In Section 5 we present our numerical experiments which show that CRM categorically outperforms PPM. In these experiments, we use the family of firmly nonexpansive operators studied in Section 2.

2. SOME PROPERTIES OF FIRMLY NONEXPANSIVE OPERATORS

We start with some elementary properties of nonexpansive plus and firmly nonexpansive operators (see Definition 1).

Proposition 2.1.

i) Compositions of nonexpansive plus operators are nonexpansive plus.

ii) Convex combinations of firmly nonexpansive operators are firmly nonexpansive.

Proof.

i) Suppose that S, T are nonexpansive plus operators. Then

$$\| S(T(x)) - S(T(y)) \| \leq \| T(x) - T(y) \| \leq \| x - y \|, \quad (2.1)$$

by nonexpansiveness of S, T, and if $\| S(T(x)) - S(T(y)) \| = \| x - y \|$, then equality holds throughout (2.1), so that, using the “plus” property of S, T, we have $S(T(x)) - S(T(y)) = T(x) - T(y) = x - y$, establishing the result.

ii) Take firmly nonexpansive operators T_1, \ldots, T_m and nonnegative scalars $\alpha_1, \ldots, \alpha_m$ such that $\sum_{i=1}^{m} \alpha_i = 1$. Let $\tilde{T} = \sum_{i=1}^{m} \alpha_i T_i$. We prove next that \tilde{T} is firmly nonexpansive.

Note that (1.1) is equivalent to

$$\| T(x) - T(y) \|^2 \leq \langle T(x) - T(y), x - y \rangle. \quad (2.2)$$
It suffices to check that T satisfies (2.2), and we proceed to do so.

$$\|T(x) - T(y)\|^2 = \left\| \sum_{i=1}^{m} \alpha_i(T_i(x) - T_i(y)) \right\|^2 \leq \sum_{i=1}^{m} \alpha_i \|T_i(x) - T_i(y)\|^2$$

$$\leq \sum_{i=1}^{m} \alpha_i \langle T_i(x) - T_i(y), x - y \rangle = \left\langle \sum_{i=1}^{m} \alpha_i (T_i(x) - T_i(y)), x - y \right\rangle = \langle T(x) - T(y), x - y \rangle,$$

using the convexity of $\|\cdot\|^2$ in the first inequality and the fact that the T_i’s satisfy (2.2) in the second one.

For an operator $T : \mathbb{R}^n \to \mathbb{R}^n$, we denote as $F(T)$ the set of its fixed points, i.e., $F(T) = \{ x \in \mathbb{R}^n : T(x) = x \}$ (we comment that $\text{Fix}(\cdot, \cdot)$ denotes the set of common fixed points of two or more operators). We will also need the following “acute angle” property of firmly nonexpansive operators.

Proposition 2.2. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a firmly nonexpansive operator. Then $0 \geq \langle T(x) - y, T(x) - x \rangle$ for all $x \in \mathbb{R}^n$ and all $y \in F(T)$.

Proof. Immediate from (1.1).

We continue by stating, for future reference, some elementary and well known properties of orthogonal projections onto closed and convex sets.

Let $C \subset \mathbb{R}^n$ be closed and convex. The orthogonal projection $P_C : \mathbb{R}^n \to C$ is defined as $P_C(x) = \arg\min_{y \in C} \| x - y \|.

Proposition 2.3. If $C \subset \mathbb{R}^n$ is closed and convex, then

i) $z = P_C(x)$ if and only if $\langle x - z, y - z \rangle \leq 0$ for all $x \in \mathbb{R}^n$ and all $y \in C$.

ii) P_C is firmly nonexpansive.

iii) $F(P_C) = C$.

iv) Take $x \in \mathbb{R}^n$ and let $z = P_C(x)$. Then, $P_C(z + \alpha(x - z)) = P_C(x)$ for all $\alpha \geq 0$.

v) Define $h : \mathbb{R}^n \to \mathbb{R}$ as $h(x) = \| x - P_C(x) \|^2$. Then h is continuously differentiable and $\nabla h(x) = 2(x - P_C(x))$.

Proof. Elementary.

It is worthwhile to comment at this point that the composition of two firmly nonexpansive operators may fail to be firmly nonexpansive; consider $A = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = 0\}$, $B = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = x_1\}$. P_A and P_B are firmly nonexpansive by Proposition 2.3(ii), but its composition $P_A \circ P_B$ fails to satisfy (2.2) with $x = (0, 0)$ and $y = (2, -1)$.

We present next some properties of the set of fixed points of combinations of orthogonal projections. They have been proved, e.g., in [18], [23], but we include the proofs for the sake of completeness. From now on, for $C \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$, $\text{dist}(x, C)$ will denote the Euclidean distance between x and C.

Proposition 2.4. Consider closed and convex sets $C_1, \ldots, C_m \subset \mathbb{R}^n$ and nonnegative scalars $\alpha_1, \ldots, \alpha_m$ such that $\sum_{i=1}^{m} \alpha_i = 1$. Denote $P_i = P_{C_i}$ and let $P = \sum_{i=1}^{m} \alpha_i P_i$. Define $g : \mathbb{R}^n \to \mathbb{R}$ as $g(x) = \sum_{i=1}^{m} \alpha_i \| x - P_i(x) \|^2 = \sum_{i=1}^{m} \alpha_i \text{dist}(x, C_i)^2$ and let $C = \cap_{i=1}^{m} C_i$. Then,

i) $F(P) = \{ x \in \mathbb{R}^n : \nabla g(x) = 0 \}$, i.e., since g is convex, the set of fixed points of P (if nonempty) is precisely the set of minimizers of g.

ii) If $C \neq \emptyset$, then $F(P) = C$.

Proof.

i) By Proposition 2.3(v),

$$\nabla g(x) = 2 \sum_{i=1}^{m} \alpha_i (x - P_i(x)) = 2 \left(x - \sum_{i=1}^{m} \alpha_i P_i(x) \right) = 2(x - P(x)),$$
so that \(\nabla g(x) = 0 \) iff \(x = \mathcal{P}(x) \) iff \(x \in F(\mathcal{P}) \).

ii) Clearly, \(A \subset F(\mathcal{P}) \). For the converse inclusion note that when \(C \neq \emptyset \), we have \(g(x) = 0 \) for all \(x \in C \), so that the minimum value of \(g \) is indeed 0, and the set of minimizers of \(g \) coincides with the set of its zeroes, which is \(C \), because \(g(x) > 0 \) whenever \(x \notin C \). The result follows then from item (i).

\(\square \)

The next result provides a more accurate description of the set \(F(\mathcal{P}) \) when \(m = 2 \), i.e., for the case of a convex combination of the orthogonal projections onto two closed and convex sets.

Let \(A, B \subset \mathbb{R}^n \) be two closed sets. Take \(\alpha \in (0, 1), \mathcal{P} = (1 - \alpha)P_A + \alpha P_B \). Define \(D \subset A \times B \) as \(D = \{(x, y) \in A \times B : ||x - y|| = \text{dist}(A, B)\} \). \(S_A, S_B \) will denote the projections of \(D \) onto \(A, B \) respectively, i.e., \(S_A = \{x \in A : \exists y \in B \text{ with } (x, y) \in D\}, S_B = \{y \in B : \exists x \in A \text{ with } (x, y) \in D\} \). In other words, \(D \) consist of the pairs in \(A \times B \) which realize the distance between \(A \) and \(B \), \(S_A \) is the set of points in \(A \) which realize the distance to \(B \), and \(S_B \) is the set of points in \(B \) which realize the distance to \(A \). We remark that \(D \) may be empty; take for instance \(A = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \leq 0\}, B = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \geq e^{x_1}\} \).

Proposition 2.5. With the notation above,

i) For all \((x, y), (x', y') \in D \), it holds that \(x - y = x' - y' \).

ii) Take \((x, y) \in D, \alpha \in (0, 1) \) and define \(w = (1 - \alpha)x + \alpha y \). Then \(P_A(w) = x, P_B(w) = y \).

iii) \(F(\mathcal{P}) = \{w = (1 - \alpha)x + \alpha y : (x, y) \in D\} \).

Proof:

i) Since, for any \((x, y) \in D \) the pair \((x, y)\) realizes the distance between \(A \) and \(B \), it follows that \(P_B(x) = y, P_A(y) = x \) for all \((x, y) \in D \), and hence \(P_A(P_B(x)) = x \) for all \(x \in S_A \). So, for all \((x, y), (x', y') \in D \), we have

\[
||x - x'|| = ||P_A(P_B(x)) - P_A(P_B(x'))|| \leq ||P_B(x) - P_B(x')|| \leq ||x - x'||,
\]

(2.3)

using Proposition 2.3(ii). It follows that equality holds throughout 2.3, and since \(P_A \circ P_B \) is nonexpansive plus by Proposition 2.1(i), because both \(P_A \) and \(P_B \) are firmly nonexpansive (and so nonexpansive plus) by Proposition 2.3(ii), we conclude from Definition 1(ii) that \(x = x' = P_B(x) - P_B(x') = y - y' \) which implies that \(x - y = x' - y' \).

ii) Take \((x, y) \in D \), so that \(x \in A \). Then \(w = y + (1 - \alpha)(x - y) = P_B(x) + (1 - \alpha)(x - P_B(x)) \). Since \(1 - \alpha > 0 \), it follows from Proposition 2.4(iv) that \(P_B(w) = y \). A similar argument establishes that \(P_A(w) = x \).

iii) Take \(w = (1 - \alpha)x + \alpha y \) with \((x, y) \in D \). Then, by (ii), \(w = (1 - \alpha)P_A(w) + \alpha P_B(w) = \mathcal{P}(w) \), and hence \(w \in F(\mathcal{P}) \), so that \(\{w = (1 - \alpha)x + \alpha y : (x, y) \in D\} \subset F(\mathcal{P}) \). For the converse inclusion, consider any \(x \in F(\mathcal{P}) \), i.e.,

\[
x = (1 - \alpha)P_A(x) + \alpha P_B(x).
\]

(2.4)

Let \(\delta = \text{dist}(A, B), \eta = ||P_A(x) - P_B(x)|| \). It suffices to check that \((P_A(x), P_B(x)) \in D \), i.e., that

\[
\eta = \delta.
\]

(2.5)

From (2.4), we get

\[
||x - P_A(x)|| = \alpha ||P_B(x) - P_A(x)|| = \alpha \eta,
\]

\[
||x - P_B(x)|| = (1 - \alpha) ||P_B(x) - P_A(x)|| = (1 - \alpha) \eta,
\]

implying that

\[
g(x) = (1 - \alpha) ||x - P_A(x)||^2 + \alpha ||x - P_B(x)||^2 = [(1 - \alpha) \alpha^2 + \alpha(1 - \alpha)^2] \eta^2 = (1 - \alpha) \alpha \eta^2.
\]

(2.6)

Take now any pair \((u, v) \in D \), so that \(||u - v|| = \delta \), and let \(w = (1 - \alpha)u + \alpha v \). By item(ii), \(u = P_A(w), v = P_B(w) \), so that

\[
||w - P_A(w)|| = \alpha ||P_B(w) - P_A(w)|| = \alpha ||u - v|| = \alpha \delta,
\]
\[\|w - P_B(w)\| = (1 - \alpha)\|P_B(w) - P_A(w)\| = (1 - \alpha)\|u - v\| = (1 - \alpha)\alpha \delta, \]

and hence,
\[g(w) = (1 - \alpha)\|w - P_A(w)\|^2 + \alpha\|w - P_B(w)\|^2 = [(1 - \alpha)\alpha^2 + \alpha(1 - \alpha)^2] \delta^2 = (1 - \alpha)\alpha \delta^2. \tag{2.7} \]

By Proposition 2.4(i), \(x \) is a minimizer of \(g \), so that \(g(x) \leq g(w) \), which implies, in view of (2.6), (2.7), and the fact that \(\alpha \in (0, 1) \), that \(\eta \leq \delta \). On the other hand, \(\eta = \|P_A(x) - P_B(x)\| \) with \(P_A(x) \in A, P_B(x) \in B \), so that \(\eta \geq \text{dist}(A, B) = \delta \). We conclude that (2.5) holds, and the result is established.

\[\square \]

We deal now with the main result of this section, which we describe next. The prototypical examples of firmly nonexpansive operators are the orthogonal projections onto closed and convex sets. Proposition 2.1(ii) provides a larger class of firmly nonexpansive operators, namely convex combinations of orthogonal projections. It is therefore relevant to check that the second class is indeed larger, i.e., that, generically, convex combinations of orthogonal projections are not orthogonal projections themselves. We will prove that this is indeed the case when the intersection of the convex sets is nonempty. However, when this intersection is empty, a convex combination of orthogonal projections may be itself an orthogonal projection.

We will establish a necessary and sufficient condition for this situation to occur, for the case of two convex sets.

Proposition 2.6. Consider closed and convex sets \(C_1, \ldots, C_m \subset \mathbb{R}^n \) and nonnegative scalars \(\alpha_1, \ldots, \alpha_m \) such that \(\sum_{i=1}^m \alpha_i = 1 \). Denote \(C = \bigcap_{i=1}^m C_i \), \(P_i = P_{C_i} \) and let \(\overline{P} = \sum_{i=1}^m \alpha_i P_i \). Assume that \(C \neq \emptyset \). If there exists \(E \subset \mathbb{R}^n \) such that \(\overline{P} = P_E \) then \(E = C_1 = \cdots = C_m \).

Proof. By Propositions 2.4(ii) and 2.3(iii),
\[C = F(\overline{P}) = F(P_E) = E. \tag{2.8} \]

Take \(x \in C_i \). Let \(\ell = \arg\max_{1 \leq j \leq m} \{\|x - P_j(x)\|\} \), \(w = \sum_{j=1}^m \alpha_j P_j(x) = \overline{P}(x) = P_E(x) \), so that \(w \in \text{Im}(P_E) = E = C \), using (2.8), and hence \(w \in C_\ell \). It follows that
\[\|x - P_\ell(x)\| \leq \|x - w\| = \left\| \sum_{j=1}^m \alpha_j (x - P_j(x)) \right\| \leq \sum_{j=1}^m \alpha_j \|x - P_j(x)\| = \sum_{j=1, j \neq \ell}^m \alpha_j \|x - P_j(x)\| = \left(\sum_{j=1, j \neq \ell}^m \alpha_j \right) \|x - P_\ell(x)\| = (1 - \alpha_\ell) \|x - P_\ell(x)\|, \tag{2.9} \]

using the convexity of \(\|\cdot\| \) in the first inequality, the fact that \(x \in C_i \) in the second equality and the definition of \(\ell \) in the second inequality. It follows from (2.9) that \(\alpha_\ell \|x - P_\ell(x)\| \leq 0 \), so that \(\|x - P_\ell(x)\| = 0 \). Since \(0 \leq \|x - P_j(x)\| \leq \|x - P_\ell(x)\| \) for all \(j \) by definition of \(\ell \), we conclude that \(\|x - P_j(x)\| = 0 \) for all \(j \), i.e. \(x \in C_j \). Since \(x \) is an arbitrary point in \(C_i \), we get that that \(C_i \subset C_j \) for all \(i, j \), i.e., \(C_1 = \cdots = C_m \), and the result follows immediately from (2.8).

\[\square \]

Next, we fully characterize the situation for the case of 2 convex sets. For \(A \subset \mathbb{R}^n \), we denote the affine hull of \(A \) as \(\text{aff}(A) \).

Proposition 2.7. Take closed and convex sets \(A, B \subset \mathbb{R}^n \) and \(\alpha \in (0, 1) \). Define \(\overline{P} = (1 - \alpha)P_A + \alpha P_B \). Then, there exists a nonempty, closed and convex set \(E \subset \mathbb{R}^n \) such that \(\overline{P} = P_E \) if and only if there exists \(c \in \text{aff}(A)^\perp \) such that \(B = A + c \).
Proof. We start with the “only if” statement. We claim that the result holds with \(E = A + \alpha c \). First we prove that \(P_B(x) = P_A(x) + c \) for all \(x \in \mathbb{R}^n \). Let \(z = P_A(x) + c \). By Proposition 2.3(i), it suffices to prove that \(\langle x - z, y - z \rangle \leq 0 \) for all \(y \in B = A + c \), i.e., that for all \(y \in A \) we have

\[
0 \geq \langle x - z, y + c - z \rangle = \langle x - P_A(x) - c, y + c - P_A(x) \rangle - \langle c, y - P_A(x) \rangle = \langle x - P_A(x), y - P_A(x) \rangle - \langle c, y - P_A(x) \rangle,
\]

using in the last equality the facts that \(c \in \text{aff}(A) \) and \(y, P_A(x) \in A \), so that \(y - P(A) \in \text{aff}(A) \), and hence \(\langle c, y - P_A(x) \rangle = 0 \). Note that \(0 \leq \langle x - P_A(x), y - P_A(x) \rangle \) by Proposition 2.3(i), so that the inequality in (2.10) holds, and hence we have proved that \(P_B(x) = P_A(x) + c \) for all \(x \in \mathbb{R}^n \). It follows that \(\overline{P} = (1 - \alpha)P_A + \alpha P_B = (1 - \alpha)P_A + \alpha P_A + \alpha c = P_A + \alpha c \).

Now, the same argument used to prove that \(P_{A+c} = P_A + c \), allow us to conclude that \(P_A + \alpha c = P_{A+c} \), so that \((1 - \alpha)P_A + \alpha P_B = P_E \) with \(E = A + \alpha c \).

Now we prove the “if” statement. First we must identify the appropriate vector \(c \). By assumption, \(\overline{P} = P_E \), so that \(F(\overline{P}) = E \neq \emptyset \) by Proposition 2.3(iii). It follows that \(D \), as defined in Proposition 2.5, is nonempty. We take any pair \((u, v) \in D \) and take \(c = v - u \). By Proposition 2.5(i), \(c \) does not depend on the chosen pair \((u, v) \). We must prove that \(B = A + c \), and we first claim that

\[
S_B = S_A + c,
\]

with \(S_A, S_B \) as in Proposition 2.5. Take \(u \in S_B \), so that there exists \(v \in S_A \) such that \((u, v) \in D \) and hence \(v = u + (v - u) = x + c \), showing that \(v \in S_A + c \), and therefore \(S_B \subseteq S_A + c \). Reversing the roles of \(A, B \) we get the reverse inclusion, and then (2.11) holds.

We show next that the assumption \(\overline{P} = P_E \) implies that \(A = S_A, B = S_B \). Take any \(x \in A \). We must prove that \(x \) realizes the distance to \(B \). Let \(z = \overline{P}(x) = (1 - \alpha)P_A(x) + \alpha P_B(x) = (1 - \alpha)x + \alpha P_B(x) \). It follows from Proposition 2.3(iv) that \(P_B(z) = P_B(x) \). Note that

\[
(1 - \alpha)(x - P_B(x)) = z - P_B(x) = z - P_B(z).
\]

Now \(z = \overline{P}(x) = P_E(x) \), so that \(z \in E = F(P_E) = F(\overline{P}) \). By Proposition 2.5(ii) and (iii), \(z = (1 - \alpha)P_A(z) + \alpha P_B(z) \), with \((P_A(z), P_B(z)) \in D \). It follows that

\[
z - P_B(z) = (1 - \alpha)(P_A(z) - P_B(z)).
\]

Since \(\alpha \in (0, 1) \), we conclude from (2.12), (2.13) that \(x - P_B(x) = P_A(z) - P_B(z) \), so that, in view of the fact that \((P_A(z), P_B(z)) \in D \),

\[
\text{dist}(x, B) = \|x - P_B(x)\| = \|P_A(z) - P_B(z)\| = \text{dist}(A, B).
\]

We have proved that \(x \) realizes the distance between \(A \) and \(B \), i.e., that \(x \in S_A \). Since \(x \) is an arbitrary point in \(A \), we have \(A \subseteq S_A \subseteq A \), so that \(A = S_A \). By the same token, \(B = S_B \). In view of (2.11), we have that \(B = A + c \).

It only remains to be verified that \(c \in \text{aff}(A) \). Let relint\((A)\) be the relative interior of \(A \) (i.e., the interior of \(A \) with respect to \(\text{aff}(A) \)). Take any \(x \in \text{relint}(A) \) and any \(z \in \text{aff}(A) \). Since \(x \in \text{relint}(A) \), there exists \(\varepsilon > 0 \) such that both \(x + \varepsilon(z - x) \) and \(x - \varepsilon(z - x) \) belong to \(A \). Since \(x \in A = S_A \), we obtain from Proposition 2.5(ii) that \(x = P_A(v) \) for some \(v \in S_B \), and \(c = v - P_B(v) = v - x \), so that, by Proposition 2.3(i), \(\langle c, y - x \rangle = \langle v - P_B(v), y - P_B(v) \rangle \leq 0 \) for all \(y \in A \). Taking first \(y = x + \varepsilon(z - x) \) and then \(y = x - \varepsilon(z - x) \), we conclude that \(\varepsilon \langle c, z - x \rangle \leq 0, -\varepsilon \langle c, z - x \rangle \leq 0 \), implying that \(\langle c, z - y \rangle = 0 \) for all \(z \in \text{aff}(A) \), and hence \(c \in \text{aff}(A) \), completing the proof.

Corollary 1. Assume that any of the equivalent statements in Proposition 2.7 hold and that \(A \neq B \). Then \(A \) has empty interior and \(A \cap B = \emptyset \).
Proof. Since $B = A + c$ and $A \neq B$, we have $c \neq 0$. Since $c \in \text{aff}(A)^\perp$, we obtain that $\text{aff}(A) \neq \mathbb{R}^n$, i.e. $\text{aff}(A)$ is not full dimensional and hence A has empty interior.

For the second statement, assume that $A \cap B \neq \emptyset$ and take $x \in A \cap B$. Since $B = A + c$, we have $x = x' + c$ with $x' \in A$, so that $\|c\|^2 = \langle c, x - x' \rangle = 0$, because $c \in \text{aff}(A)^\perp$ and $x, x' \in A$, so that $x - x' \in \text{aff}(A)$. It follows that $c = 0$, and the resulting contradiction entails the result.

We mention that the second statement of the corollary follows also from Proposition 2.6. The “only if” statement of Proposition 2.7 can be easily generalized to the case of convex sets; unfortunately we do not have at this point a proof for the much more interesting generalization of the “if” statement. The following corollary contains the generalization of the “only if” statement.

Corollary 2. Consider closed and convex sets $C_1, \ldots, C_m \subset \mathbb{R}^n$ and nonnegative scalars $\alpha_1, \ldots, \alpha_m$ such that $\sum_{i=1}^m \alpha_i = 1$. Denote $P_i = P_{C_i}$ and let $\overline{P} = \sum_{i=1}^m \alpha_i P_i$. Take $\beta_2, \ldots, \beta_m \in \mathbb{R}, c \in \text{aff}(C_1)^\perp$, and assume that $C_i = C_1 + \beta_i c$ for $i = 2, \ldots, m$. Define $\beta = \sum_{i=2}^m \alpha_i \beta_i, E = C_1 + \beta c$. Then $\overline{P} = P_E$.

Proof. The argument used in the proof of Proposition 2.7 shows that $P_i(x) = P_1(x) + \beta_ic$ for $i = 2, \ldots, m$, and all $x \in \mathbb{R}^n$, so that $\overline{P}(x) = P_1(x) + \beta c$ for all $x \in \mathbb{R}^n$. The same argument then shows that $P_1 + \beta c = P_E$. □

3. Convergence of CRM Applied to FPP

In this section, we establish convergence of CRM applied to finding a point in $\text{Fix}(T, P_U)$, where $T : \mathbb{R}^n \to \mathbb{R}^n$ is firmly nonexpansive and $P_U : \mathbb{R}^n \to \mathbb{R}^n$ is the orthogonal projection onto an affine manifold $U \subset \mathbb{R}^n$. As explained in Section 1, through Pierra’s formalism in the product space \mathbb{R}^m, this result entails convergence of CRM applied to finding a point in $\text{Fix}(T_1, \ldots, T_m)$, where $T_i : \mathbb{R}^n \to \mathbb{R}^n$ is firmly nonexpansive for $1 \leq i \leq m$.

Our convergence analysis for CRM requires comparing the CRM and the MAP sequences, so that we start by proving convergence of the second one, defined as

$$z^{k+1} = P_U(T(z^k)),$$

starting at some $z^0 \in \mathbb{R}^n$. This is a classical result, but we include it for the sake of self-containment. We start with the following intermediate result.

Proposition 3.1. For all $x \in \mathbb{R}^n$ and all $y \in \text{Fix}(T, P_U)$ it holds that

$$\|P_U(T(x)) - y\|^2 \leq \|x - y\|^2 - \|P_U(x) - x\|^2 - \|P_U(T(x)) - T(x)\|^2. \quad (3.2)$$

Proof. By firm nonexpansiveness of P_U, we have

$$\|P_U(x) - y\|^2 \leq \|x - y\|^2 - \|P_U(x) - x\|^2 \quad (3.3)$$

for all $x \in \mathbb{R}^n$, using the fact that $u \in U$. Substituting $T(x)$ for x in (3.3), we obtain

$$\|P_U(T(x)) - y\|^2 \leq \|T(x) - y\|^2 - \|P_U(T(x)) - T(x)\|^2. \quad (3.4)$$

Since T is firmly nonexpansive,

$$\|T(x) - y\|^2 \leq \|x - y\|^2 - \|T(x) - x\|^2. \quad (3.5)$$

Now combining (3.4) with (3.5), we get

$$\|P_U(T(x)) - y\|^2 \leq \|x - y\|^2 - \|T(x) - x\|^2 - \|P_U(T(x)) - T(x)\|^2 \quad (3.6)$$

which implies the result. □

Using Proposition 3.1 we get convergence of $\{z^k\}$ using the classical argument for MAP applied to CFP, as we show next:
Proposition 3.2. If $\text{Fix}(T, P_U) \neq \emptyset$, then the sequence $\{z_k\}$ defined by (3.1) converges to a point $\bar{z} \in \text{Fix}(T, P_U)$.

Proof. Take any $y \in \text{Fix}(T, P_U)$. By (3.1), $z^{k+1} = PU(T(z^k))$. Using (3.3), we get

$$\|z^{k+1} - y\|^2 \leq \|z^k - y\|^2 - \|P_U(T(z^k)) - T(z^k)\|^2 - \|T(z^k) - z^k\|^2 \leq \|z^k - y\|^2. \tag{3.7}$$

It follows from (3.7) that $\|z^{k+1} - y\|^2 \leq \|z^k - y\|^2$ for all $k \in \mathbb{N}$, so that $\{z^k\}$ is bounded and $\{\|z^k - y\|\}$ is nonincreasing and nonnegative, therefore convergent.

Hence, rewriting (3.7) as

$$\|P_U(T(z^k)) - T(z^k)\|^2 + \|T(z^k) - z^k\|^2 \leq \|z^k - y\|^2 - \|z^{k+1} - y\|^2,$$

we conclude that

$$\lim_{k \to \infty} \|T(z^k) - z^k\| = 0. \tag{3.8}$$

Let \bar{z} be a cluster point of the bounded sequence $\{z^k\}$. Taking limits in (3.8) along a subsequence converging to \bar{z}, and using the continuity of T, resulting from its nonexpansiveness, we get that $T(\bar{z}) = \bar{z}$. Since $z^k \in U$ for all $k \in \mathbb{N}$ by (3.1), we have that $\bar{z} \in U$, so that $\bar{z} \in \text{Fix}(T, P_U)$. Taking now $y = \bar{z}$ in (3.7), we conclude that $\{\|z^k - \bar{z}\|\}$ is convergent, and since a subsequence of this sequence converges to 0, the whole sequence $\{\|z^k - \bar{z}\|\}$ converges to 0, i.e., $\lim_{k \to \infty} z^k = \bar{z} \in \text{Fix}(T, P_U)$.

□

Now we proceed to the convergence analysis of CRM applied to FPP. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a firmly nonexpansive operator, $U \subset \mathbb{R}^n$ an affine manifold, and $P_U : \mathbb{R}^n \to \mathbb{R}^n$ the orthogonal projection onto U. We assume that $\text{Fix}(T, P_U) \neq \emptyset$. We denote as R, R_U the reflection operators related to T, P_U respectively, i.e., $R(x) = 2T(x) - x, R_U(x) = 2P_U(x) - x$. We define $C : \mathbb{R}^n \to \mathbb{R}^n$ as the the CRM operator, i.e., $C(z) = \text{circ}\{z, R(z), R_U(R(z))\}$, where “circ” denotes the circumcenter of three points, as defined in Section 1. We also define $S : \mathbb{R}^n \to \mathbb{R}^n$ as $S(x) = P_U(T(x))$, so that S can be seen the MAP operator.

We will prove that, starting from any initial point $x^0 \in U$, the sequence $\{x^k\}$ generated by CRM, defined as $x^{k+1} = C(x^k)$, converges to a point in $\text{Fix}(T, P_U)$.

Our convergence analysis is close to the one in [3] for CRM applied to CFP, but with several differences, resulting from the fact that now T is an arbitrary firmly nonexpansive operator, rather than the orthogonal projection onto a convex set. One of differences is the use of the next property of circumcenters, which will substitute for a specific property of orthogonal projections.

Proposition 3.3. For all $x \in \mathbb{R}^n$, $(x - T(x), C(x) - T(x)) = 0$.

Proof. By the definition of the reflection, for all $x \in \mathbb{R}^n$,

$$T(x) = \frac{1}{2}(R(x) + x). \tag{3.9}$$

By the definition of circumcenter, for all $x \in \mathbb{R}^n$,

$$\|C(x) - x\|^2 = \|C(x) - R(x)\|^2. \tag{3.10}$$

Expanding (3.10) and rearranging, we get

$$2\langle x - R(x), C(x) \rangle = \|x\|^2 - \|R(x)\|^2. \tag{3.11}$$

Substracting $2\langle x - R(x), T(x) \rangle$ from both sides of (3.11) and using (3.9), we obtain

$$4\langle x - T(x), C(x) - T(x) \rangle = 2\langle x - R(x), C(x) - T(x) \rangle = \|x\|^2 - \|R(x)\|^2 - 2\langle x - R(x), T(x) \rangle$$

$$= \|x\|^2 - \|R(x)\|^2 - \langle x - R(x), x + R(x) \rangle = 0,$$

which implies the result. □
Next we establish a basic property of the circumcenter, which ensures that the CRM sequence, starting at a point in \(U \), remains in \(U \).

Proposition 3.4. If \(z \in U \) then \(C(z) \in U \).

Proof. We consider three cases. If \(R(z) \in U \) then \(R_U(R(z)) = R(z) \), in which case \(z, R(z), R_U(R(z)) \in U \), so that the affine hull of these three points is contained in \(U \). Since by definition \(C(z) \) belongs to this affine hull, the result holds.

If \(z = P_U(R(z)) \) then the affine hull of \(\{ z, R(z), R_U(R(z)) \} \) is the line determined by \(z \) and \(R(z) \) and \(C(z) = \text{circ}\{ z, R(z), R_U(R(z)) \} \) is \(P_U(R(z)) = z \in U \), so that the result holds.

Assume that \(z \neq P_U(R(z)) \) and that \(R(z) \notin U \). We claim that \(C(z) \) belongs to the line passing through \(z \) and \(P_U(R(z)) \). Observe that, since \(\|C(z) - R(z)\| = \|C(z) - R_U(R(z))\| \), \(C(z) \) belongs to the hyperplane orthogonal to \(R(z) - R_U(R(z)) \) passing through \(\frac{1}{2}(R(z), R_U(R(z))) = P_U(R(z)) \), say \(H \). On the other hand, by definition, \(C(z) \) belongs to the affine manifold \(E \) spanned by \(z, R(z), R_U(z) \). So, \(C(z) \in E \cap U \). Since \(R(z) \notin U \), \(\dim(E \cap U) < \dim(E) \leq 2 \). Note that \(P_U(z) = \frac{1}{2}(R(z) + R_U(R(z))) = P_U(R(z)) \) belongs to \(E \). Hence the line through \(z, P_U(R(z)) \), say \(L \), is contained in \(E \), and by a dimensionality argument we conclude that \(L = E \). Since \(C(z) \in E \), we get that \(C(z) \in L \). Since \(z, P_U(R(z)) \) belong to \(U \), we have that \(C(z) \in L \subset U \), completing the proof. \(\square \)

We continue with an important intermediate result.

Proposition 3.5. Consider the operators \(C, S : \mathbb{R}^n \rightarrow \mathbb{R}^n \) defined above. Then \(S(x) \) belongs to the segment between \(x \) and \(C(x) \) for all \(x \in U \).

Proof. Let \(E \) denote the affine manifold spanned by \(x, R(x) \) and \(R_U(R(x)) \). By definition, the circumcenter of these three points, namely \(C(x) \), belongs to \(E \). We claim that \(S(x) \) also belongs to \(E \). We proceed to prove the claim. Since \(U \) is an affine manifold, \(P_U \) is an affine operator, so that \(P_U((\alpha x + (1 - \alpha)x') = \alpha P_U(x) + (1 - \alpha)P_U(x') \) for all \(\alpha \in \mathbb{R} \) and all \(x, x' \in \mathbb{R}^n \). Thus \(R_U(R(x)) = 2P_U(R(x)) - R(x) \), so that

\[
P_U(R(x)) = \frac{1}{2} (R_U(R(x)) + R(x)). \tag{3.12}
\]

On the other hand, using the affinity of \(P_U \), the definition of \(S \) and the assumption that \(x \in U \), we have

\[
P_U(R(x)) = P_U(2T(x) - x) = 2P_U(T(x)) - P_U(x) = 2S(x) - x, \tag{3.13}
\]

so that

\[
S(x) = \frac{1}{2} (P_U(R(x)) + x). \tag{3.14}
\]

Combining (3.12) and (3.14),

\[
S(x) = \frac{1}{2} x + \frac{1}{4} R_U(R(x)) + \frac{1}{4} R(x),
\]

i.e., \(S(x) \) is a convex combination of \(x, R_U(R(x)) \) and \(R(x) \). Since these three points belong to \(E \), the same holds for \(S(x) \) and the claim holds.

We observe now that \(x \in U \) by assumption, \(S(x) \in U \) by definition, and \(C(x) \in U \) by Proposition 3.4. Now we consider three cases: if \(\dim(E \cap U) = 0 \) then \(x, S(x) \) and \(C(x) \) coincide and the result holds trivially. If \(\dim(E \cap U) = 2 \) then \(E \subset U \), so that \(R(x) \in U \) and hence \(R_U(R(x)) = R(x) \), in which case \(C(x) \) is the midpoint between \(x \) and \(R(x) \), which is precisely \(T(x) \). Hence, \(T(x) \in U \), so that \(S(x) = P_U(T(x)) = B(x) = C(x) \), implying that \(S(x) \) and \(C(x) \) coincide, and the result holds trivially. The interesting case is the remaining one, i.e., \(\dim(E \cap U) = 1 \). In this case \(x, S(x) \) and \(C(x) \) lie in a line, so that we can write \(C(x) = x + \eta(S(x) - x) \) with \(\eta \in \mathbb{R} \), and it suffices to prove that \(\eta \geq 1 \).

By the definition of \(\eta \),

\[
\|C(x) - x\| = |\eta| \|T(x) - x\|. \tag{3.15}
\]
Since $C(x) \in U$, nonexpansiveness of P_U implies that
\[\|C(x) - R(x)\| \geq \|C(x) - P_U(R(x))\|. \] (3.16)

Then
\[\|C(x) - x\| = \|C(x) - R(x)\| \geq \|C(x) - P_U(R(x))\| = \|(C(x) - x) - (P_U(R(x)) - x)\| = \|\eta (S(x) - x) - 2(S(x) - x)\| = |\eta - 2| \|S(x) - x\|, \] (3.17)

using the definition of the circumcenter in the first equality, (3.16) in the inequality, and the definition of η and S in the third equality. Combining (3.15) and (3.17), we get
\[|\eta| \|S(x) - x\| \geq |\eta - 2| \|S(x) - x\|, \]

implying that $|\eta| \geq 2 - \eta$, which holds only when $\eta \geq 1$, completing the proof. \hfill \Box

We continue with a key result for the convergence analysis of CRM, comparing the behavior of the CRM and the MAP operators. Again the argument in this proof differs from the case of CRM applied to MAP, presented in [3].

Proposition 3.6. With the notation of Proposition 3.5, for all $y \in \text{Fix}(T, P_U)$ and all $z \in U$, it holds that

i) $\|C(z) - y\| \leq \|S(z) - y\|$.

ii) $\text{dist}(C(z), \text{Fix}(T, P_U)) \leq \text{dist}(S(z), \text{Fix}(T, P_U))$.

Proof.

i) Take $z \in U, y \in \text{Fix}(T, P_U)$. If $z \in F(T)$, then the result follows trivially, because then $P_U(T(z)) = z = C(z)$ and there is nothing to prove. So, assume that $z \in U \setminus F(T)$. We claim that
\[\|P_U(T(z)) - z\| \leq \|T(z) - z\| \leq \|C(z) - z\|. \] (3.18)

For proving the first inequality in (3.18), we conclude, from the fact that $z \in U$ and an elementary property of orthogonal projections, that
\[\|P_U(T(z)) - z\| \leq \|T(z) - z\|. \] (3.19)

Since $R(z) = 2T(z) - z$, we get that
\[\|R(z) - z\| = 2 \|T(z) - z\|. \] (3.20)

Using (3.19) and (3.20),
\[\|T(z) - z\| = \frac{1}{2} \|R(z) - z\| = \frac{1}{2} \|(R(z) - C(z) + C(z) - z)\|
\leq \frac{1}{2} (\|R(z) - C(z)\| + \|C(z) - z\|) \leq \frac{1}{2} (\|z - C(z)\| + \|C(z) - z\|) = \|C(z) - z\|. \] (3.21)

where the third equality holds because $C(z)$ is equidistant from $z, R(z)$, and $R_U(R(z))$. The claim follows then from (3.18) and (3.21).

By Proposition 3.5, $T(z)$ belongs to the segment between z and $C(z)$, i.e., there exists $\alpha \in [0, 1]$ such that $S(z) = \alpha C(z) + (1 - \alpha)z$ and $\alpha < 1$ because $z \not\in F(T)$, so that
\[S(z) - C(z) = \frac{1 - \alpha}{\alpha} (z - S(z)). \] (3.22)

Note that
\[(z - S(z), C(z) - y) = (z - T(z), C(z) - T(z)) + (z - T(z), T(z) - y) + (T(z) - S(z), C(z) - y). \] (3.23)

Now we look at the three terms in the right hand side of (3.23). The first one vanishes as a consequence of Proposition 3.3. The third one vanishes because $S(z) = P_U(T(z))$, and U is an affine manifold, so that $T(z) - S(z)$ is orthogonal to any vector in U, as is the case for $C(z) - y$, since $y \in U$.
by assumption and $C(z) \in U$ by Proposition 3.4. The second term is nonnegative by Proposition 2.2. It follows hence from (3.23) that

$$\langle z - S(z), C(z) - y \rangle \geq 0. \quad (3.24)$$

Now, (3.24) together with (3.22) gives us

$$\langle S(z) - C(z), y - C(z) \rangle = \frac{1 - \alpha}{\alpha} \langle z - S(z), y - C(z) \rangle \leq 0. \quad (3.25)$$

It follows from (3.25) that $\|C(z) - y\| \leq \|S(z) - y\|$ for all $y \in \text{Fix}(T, P_U)$ and all $z \in U$, establishing (i).

ii) Let $\tilde{x}, \hat{x} \in \text{Fix}(T, P_U)$ realize the distance from $C(z), S(z)$ to $\text{Fix}(T, P_U)$ respectively. Then, in view of (i),

$$\text{dist}(C(z), \text{Fix}(T, P_U)) = \|C(z) - \tilde{x}\| \leq \|C(z) - \hat{x}\| \leq \|S(z) - \hat{x}\| = \text{dist}(S(z), \text{Fix}(T, P_U))$$

proving (ii).

□

Next we complete the convergence analysis of CRM applied to FPP. Here again, the proofline differs from the one in [3], where a specific property of orthogonal projections was used to characterize $C(z)$ as the projection onto a certain set, which does not work when T is an arbitrary firmly nonexpansive operator.

Theorem 1. Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a firmly nonexpansive operator and $U \subset \mathbb{R}^n$ an affine manifold. Assume that $\text{Fix}(T, P_U) \neq \emptyset$. Let $\{x^k\}$ be the sequence generated by CRM for solving FPP(T, P_U), i.e., $x^{k+1} = C(x^k)$. If $x^0 \in U$, then $\{x^k\}$ is contained in U and converges to a point in $\text{Fix}(T, P_U)$.

Proof. The fact that $\{x^k\} \subset U$ results from invoking Proposition 3.4 in an inductive way, starting with the assumption that $x^0 \in U$.

Take any $y \in \text{Fix}(T, P_U)$. Then,

$$\|x^{k+1} - y\|^2 = \|C(x^k) - y\|^2 \leq \|S(x^k) - y\|^2 \leq \|x^k - y\|^2 - \|S(x^k) - x^k\|^2 \quad (3.26)$$

where the first inequality follows from Proposition 3.6(i), and the second one follows from Proposition 3.1, since $P_U(x^k) = x^k$ by Proposition 3.4 and $S = P_U \circ T$.

(3.26) says that $\{x^k\}$ is Fejér monotone with respect to $\text{Fix}(T, P_U)$, and the remainder of the proof is standard. By (3.26), $\{x^k\}$ is bounded and $\{\|x^k - y\|\}$ is nonincreasing and nonnegative, hence convergent, for all $y \in \text{Fix}(T, P_U)$. It follows also from (3.26) that

$$\lim_{k \to \infty} S(x^k) - x^k = 0. \quad (3.27)$$

Let \bar{x} be any cluster point of $\{x^k\}$. Taking limits in (3.27) along a subsequence converging to \bar{x}, we conclude that $S(\bar{x}) = \bar{x}$, i.e., $\bar{x} \in F(S) = \text{Fix}(T, P_U)$, so that all cluster points of $\{x^k\}$ belong to $\text{Fix}(T, P_U)$. Looking now (3.26) with \bar{x} substituting for y, we get that $\{\|x^k - \bar{x}\|\}$ is a nonincreasing sequence with a subsequence converging to 0, so that the whole sequence $\{\|x^k - \bar{x}\|\}$ converges to 0. It follows that \bar{x} is the unique cluster point of $\{x^k\}$, so that $\lim_{k \to \infty} x^k = \bar{x} \in \text{Fix}(T, P_U)$.

□

For future reference, we state the Fejér monotonicity of $\{x^k\}$ with respect to $\text{Fix}(T, P_U)$ as a corollary.

Corollary 3. With the notation of Theorem 1, $\|x^{k+1} - y\|^2 \leq \|x^k - y\|^2 - \|S(x^k) - x^k\|^2$ for all $y \in \text{Fix}(T, P_U)$ and all $k \in \mathbb{N}$.

Proof. The result follows from (3.26). □
4. Linear convergence of CRM applied to FPP under an error bound condition

In [3], when dealing with CFP with two convex sets, namely K,U, the following global error bound, which we will call **EB1**, was considered:

EB1: There exists $\omega > 0$ such that $\text{dist}(x,K) \geq \omega \text{dist}(K \cap U)$ for all $x \in U$.

Let us comment on the connection between **EB1** and other notions of error bounds which have been introduced in the past, all of them related to regularity assumptions imposed on the solutions of certain problems. If the problem at hand consists of solving $H(x) = 0$ with a smooth $H : \mathbb{R}^n \to \mathbb{R}^m$, a classical regularity condition demands that $m = n$ and the Jacobian matrix of H be nonsingular at a solution x^*, in which case, Newton’s method, for instance, is known to enjoy superlinear or quadratic convergence. This condition implies local uniqueness of the solution x^*. For problems with nonsoluted solutions, a less demanding assumption is the notion of calmness (see [31], Chapter 8, Section F), which requires that

$$\frac{\|H(x)\|}{\text{dist}(x,S^*)} \geq \omega$$

(4.1)

for all $x \in \mathbb{R}^n \setminus S^*$ and some $\omega > 0$, where S^* is the solution set, i.e., the set of zeros of H. Calmness, also called upper-Lipschitz continuity (see [30]), is a classical example of error bound, and it holds in many situations, e.g., when H is affine, by virtue of Hoffman’s Lemma, (see [22]). It implies that the solution set is locally a Riemannian manifold (see [13]), and it has been used for establishing superlinear convergence of Levenberg-Marquardt methods in [26].

When dealing with convex feasibility problems, it seems reasonable to replace the numerator of (4.1) by the distance from x to some of the convex sets, as was done for instance, in [3], giving rise to **EB1**. In [3], it was proved that under **EB1**, MAP converges linearly, with asymptotic constant bounded above by $\sqrt{1 - \omega^2}$, and that CRM also converges linearly, with a better upper bound for the asymptotic constant, namely $\sqrt{(1 - \omega^2)/(1 + \omega^2)}$. In this section we will prove that in the FPP case both sequences converge linearly, with asymptotic constant bounded by $\sqrt{1 - \omega^2}$.

In the case of FPP, dealing with a firmly nonexpansive $T : \mathbb{R}^n \to \mathbb{R}^n$, and an affine manifold $U \subset \mathbb{R}^n$, the appropriate error bound turns out to be:

EB: There exists $\omega > 0$ such that $\|x - T(x)\| \geq \omega \text{dist}(x,\text{Fix}(T,P_U))$ for all $x \in U$.

We mention here that it suffices to consider an error bound less demanding than **EB**, namely a local one, where the inequality above is requested to hold only for points in $U \cap V$, where V is a given set, e.g., a ball around the limit of the sequence generated by the algorithm, assumed to be convergent. An error bound of this type was used in [2]. We refrain to do so just for the sake of a simpler exposition.

Proposition 4.1. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a firmly nonexpansive operator, $U \subset \mathbb{R}^n$ an affine manifold and $C,S : \mathbb{R}^n \to \mathbb{R}^n$ the CRM and the MAP operators respectively. Assume that $\text{Fix}(T,P_U) \neq \emptyset$ and that **EB** holds. Then

$$\text{dist}(C(x),\text{Fix}(T,P_U))^2 \leq \text{dist}(S(x),\text{Fix}(T,P_U))^2 \leq (1 - \omega^2)\text{dist}(x,\text{Fix}(T,P_U))^2,$$

(4.2)

for all $x \in U$, with ω as in **EB**.

Proof. First note that if $x \in F(T)$, then (4.2) holds trivially, so that we assume from now on that $T(x) \neq x$. Take any $y \in \text{Fix}(T,P_U)$. Since T is firmly nonexpansive and $y \in F(T)$, we have

$$\|x - y\|^2 \geq \|T(x) - T(y)\|^2 + \|(x - y) - (T(x) - T(y))\|^2 = \|T(x) - y\|^2 + \|x - T(x)\|^2,$$

(4.3)

We take now a specific point in $\text{Fix}(T,P_U)$, namely $\tilde{y} = P_{\text{Fix}(T,P_U)}(x)$, and rewrite **EB** as

$$\|x - T(x)\|^2 \geq \omega^2 \|x - \tilde{y}\|^2.$$
Combining (4.3) and (4.4), we get
\[\|x - \bar{y}\|^2 \geq \|x - T(x)\|^2 + \|T(x) - \bar{y}\|^2 \geq \omega^2 \|x - \bar{y}\|^2 + \|T(x) - \bar{y}\|^2. \] (4.5)
Rearranging (4.5), we conclude that
\[(1 - \omega^2) \|x - \bar{y}\|^2 \geq \|T(x) - \bar{y}\|^2. \] (4.6)
Note that \(\langle T(x) - S(x), \bar{y} - T(x) \rangle = \langle T(x) - P_U(T(x)), \bar{y} - T(x) \rangle \leq 0, \) by an elementary property of orthogonal projections, since \(\bar{y} \in U. \) Hence,
\[\|T(x) - \bar{y}\|^2 \geq \|T(x) - S(x)\|^2 + \|S(x) - \bar{y}\|^2. \] (4.7)
Let \(\hat{y} = P_{\text{Fix}(T, P_U)}(S(x)) \). From (4.6) and (4.7) we obtain
\[(1 - \omega^2) \|x - \bar{y}\|^2 \geq \|T(x) - S(x)\|^2 + \|S(x) - \bar{y}\|^2 \geq \|S(x) - \bar{y}\|^2, \] (4.8)
where the second inequality holds by (4.7) and the last one follows from the definition of orthogonal projection. From (4.8) we conclude, recalling the definitions of \(\bar{y}, \hat{y} \), that
\[\text{dist}(S(x), \text{Fix}(T, P_U))^2 \leq (1 - \omega^2) \text{dist}(x, \text{Fix}(T, P_U))^2, \] (4.9)
which shows that the second inequality in (4.2) holds. Next we look at the first one. Let \(\hat{y} = P_{\text{Fix}(T, P_U)}(C(x)) \). We have that
\[\|C(x) - \hat{y}\|^2 \leq \|C(x) - \bar{y}\|^2 \leq \|S(x) - \hat{y}\|^2 \leq \|S(x) - \bar{y}\|^2 \leq (1 - \omega^2) \|x - \bar{y}\|^2, \] (4.10)
where the first and the third inequality hold by the definition of orthogonal projection, the second one from Proposition 3.6(i) and the last one holds by (4.8). Note that the first inequality in (4.2) follows immediately from (4.10), in view of the definitions of \(\bar{y}, \hat{y} \).

Corollary 4. Under the assumptions of Proposition 4.1, let \(\{z^k\}, \{x^k\} \) be the sequences generated by MAP and CRM respectively, for solving FPP(\(T, P_U \)), i.e., \(\bar{z}^{k+1} = S(z^k) \), and \(x^{k+1} = C(x^k) \), starting from some \(z^0 \in \mathbb{R}^n \) and \(x^0 \in U \). Then the scalar sequences \(\{a^k\}, \{b^k\} \), defined as \(a^k = \text{dist}(z^k, \text{Fix}(T, P_U)) \) and \(b^k = \text{dist}(x^k, \text{Fix}(T, P_U)) \), converge Q-linearly to zero with asymptotic constants bounded above by \(\sqrt{1 - \omega^2} \), with \(\omega \) as in EB.

Proof. It follows from (4.2) that, for all \(x \in U, \)
\[\text{dist}(S(x), \text{Fix}(T, P_U))^2 \leq (1 - \omega^2) \text{dist}(x, \text{Fix}(T, P_U))^2, \] (4.11)
and that, for all \(z \in U, \)
\[\text{dist}(C(x), \text{Fix}(T, P_U))^2 \leq (1 - \omega^2) \text{dist}(x, \text{Fix}(T, P_U))^2, \] (4.12)
In view of the definitions of \(\{x^k\}, \{z^k\}, \) and remembering that both sequences are contained in \(U \), by Proposition 3.4 in the case of \(\{x^k\} \) and by definition of \(S \) in the case of \(\{z^k\} \), we get from (4.11), (4.12),
\[\frac{\text{dist}(z^{k+1}, \text{Fix}(T, P_U))}{\text{dist}(z^k, \text{Fix}(T, P_U))} \leq \sqrt{1 - \omega^2}, \] (4.13)
\[\frac{\text{dist}(x^{k+1}, \text{Fix}(T, P_U))}{\text{dist}(x^k, \text{Fix}(T, P_U))} \leq \sqrt{1 - \omega^2}. \] (4.14)
The result follows immediately from (4.13), (4.14).

Note that the results of Corollary 4 do not entail immediately that the sequences \(\{x^k\}, \{z^k\} \) themselves converge linearly; a sequence \(\{y^k\} \) may converge to a point \(y \in M \subset \mathbb{R}^n \), in such a way that \(\{\text{dist}(y^k, M)\} \) converges linearly to 0 but \(\{y^k\} \) itself converges sublinearly. Take for instance \(M = \{(s,0) \in \mathbb{R}^2\}, \) \(y^k = (1/k, 2^{-k}). \) This sequence converges to 0 in \(M, \) \(\text{dist}(y^k, M) = 2^{-k} \) converges linearly to 0 with asymptotic constant equal to 1/2, but the first component of \(y^k \) converges to 0 sublinearly, and hence the same holds.
for the sequence \(\{y^k\} \). The next well known lemma establishes that this situation cannot occur when \(\{y^k\} \) is Fejér monotone with respect to \(M \), i.e., \(\|y^{k+1} - y\| \leq \|y^k - y\| \) for all \(y \in M \).

Lemma 1. Consider \(M \subset \mathbb{R}^n \), \(\{y^k\} \subset \mathbb{R}^n \). Assume that \(\{y^k\} \) is Fejér monotone with respect to \(M \), and that \(\text{dist}(y^k, M) \) converges \(R \)-linearly to 0. Then \(\{y^k\} \) converges \(R \)-linearly to some point \(y^* \in M \), with asymptotic constant bounded above by the asymptotic constant of \(\{\text{dist}(y^k, M)\} \).

Proof. See, e.g., Lemma 1 in [3].

We show next that the sequences \(\{x^k\} \) and \(\{z^k\} \) are \(R \)-linearly convergent under Assumption \(\text{EB} \), with asymptotic constants bounded by \(\sqrt{1 - \alpha^2} \), where \(\alpha \) is the \(\text{EB} \) parameter.

Theorem 2. Let \(T : \mathbb{R}^n \to \mathbb{R}^n \) be a firmly nonexpansive operator and \(U \subset \mathbb{R}^n \) is an affine manifold. Assume that \(\text{Fix}(T, P_U) \neq \emptyset \) and that condition \(\text{EB} \) holds. Consider the sequences \(\{z^k\} \), \(\{x^k\} \) generated by MAP and CRM respectively, for solving \(\text{Fix}(T, P_U) \), i.e., \(x^{k+1} = S(x^k) \) and \(z^{k+1} = C(z^k) \), starting from some \(z^0 \in \mathbb{R}^n \) and some \(x^0 \in U \). Then both sequences converge \(R \)-linearly to points in \(\text{Fix}(T, P_U) \), with asymptotic constants bounded above by \(\sqrt{1 - \alpha^2} \), with \(\alpha \) as in assumption \(\text{EB} \).

Proof. By Corollary 4, both scalar sequences \(a^k = \text{dist}(x^k, \text{Fix}(T, P_U)) \) and \(b^k = \text{dist}(x^k, \text{Fix}(T, P_U)) \) are \(Q \)-linearly convergent to 0 with asymptotic constant bounded above by \(\frac{1}{\sqrt{1 - \alpha^2}} < 1 \), and hence \(R \)-linearly convergent to 0, with the same asymptotic constant. By Corollary 3, the sequence \(\{x^k\} \) is Fejér monotone with respect to \(\text{Fix}(T, P_U) \), and the same holds for the sequence \(\{z^k\} \), in view of (3.7). By Theorem 1, both sequences converge to points in \(\text{Fix}(T, P_U) \). Finally, by Lemma 1, both sequences converge \(R \)-linearly convergent to their limit points in the intersection, with asymptotic constants bounded by \(\sqrt{1 - \alpha^2} \).

We mention that in [3] we showed that for CFP under \(\text{EB} \), CRM achieves an asymptotic constant of linear convergence better than MAP. We have not been able to prove such superiority in the case of FPP. However, the numerical results exhibited in Section 5 strongly suggest that the asymptotic constant of CRM is indeed better than the MAP one. The task of establishing such theoretical superiority is left as an open problem.

5. Numerical Experiments

We report here numerical comparisons between CRM and PPM for solving FPP with \(p \) firmly nonexpansive operators.

All operators in this section belong to the family studied in Section 2, i.e., they are convex combinations of orthogonal projections onto a finite number of closed and convex sets with nonempty intersection. In view of Proposition 2.4(ii), these operators are ensured to have fixed points. Hence, in view of Proposition 2.6 they are not orthogonal projections themselves.

The construction of the problems is as follows: for each instance we choose randomly a number \(r \in \{3,4,5\} \) (\(r \) is the number of convex sets in the convex combination). Then we sample values \(\lambda_1, \ldots, \lambda_r \in (0,1) \) with uniform distribution. We define \(\mu_i = \lambda_i / (\sum_{i=1}^r \lambda_i) \), and we take the firmly nonexpansive operator \(T \) as \(T = \sum_{i=1}^r \mu_i P_{E_i} \), where \(E_i \) is an ellipsoid and \(P_{E_i} \) is the orthogonal projection onto it.

The ellipsoid \(E_i \) is of the form \(E_i := \{ x \in \mathbb{R}^n : g_i(x) \leq 0 \} \), where \(g_i : \mathbb{R}^n \to \mathbb{R} \) is given as \(g_i(x) = x' A_i x + 2(b' x - \alpha_i) \), with \(A_i \in \mathbb{R}^{n \times n} \) symmetric positive definite, \(b' \in \mathbb{R}^n \) and \(0 < \alpha_i \in \mathbb{R} \). Each matrix \(A_i \) is of the form \(A_i = \gamma I + B_i^T B_i \), with \(B_i \in \mathbb{R}^{n \times n} \), \(\gamma \in \mathbb{R}_{++} \), where \(I \) stands for the identity matrix. The matrix \(B_i \) is a sparse matrix sampled from the standard normal distribution with sparsity density \(p = 2n^{-1} \) and each vector \(b' \) is sampled from the uniform distribution between \([0,1] \). We then choose each \(\alpha_i \) so that \(\alpha_i > (b')^T A b' \), which ensures that 0 belongs to every \(E_i \), so that the intersection of the ellipsoids is nonempty. As explained above, this ensures that each instance of FPP has solutions.

In order to compute the projection onto the ellipsoids we use a version of the Alternating Direction Method of Multipliers (ADMM) suited for this purpose; see [24]. The stopping criterion for ADMM is
as follows: we stop the ADMM iterative process when the norm of the difference between 2 consecutive ADMM iterates is less than 10^{-8}. We also fix a maximum number of 10000 ADMM iterations.

For CRM, we use Pierra’s product space reformulation, as explained in Section 1. We implement PPM directly from its definition (see Section 1). The stopping criterion for both CRM and PPM is similar to the one for the ADMM subroutine, but with a different tolerance: the iterative process stops when the norm of the difference between 2 consecutive CRM or PPM iterates is less than 10^{-6}. The maximum number of iterations is fixed at 50000 for both algorithms.

The experiments consists of solving, with CRM and PPM, 250 instances of FPP selected as follows. We consider the following values for the dimension n: $\{10,30,50,100,200\}$, and for each n we take p firmly nonexpansive operators with $p \in \{10,25,50,100,200\}$. For each of these 25 pairs (n,p), we randomly generate 10 instances of FPP with the above explained procedure.

The initial point x^0 is of the form $(\eta, \ldots, \eta) \in \mathbb{R}^n$, with $\eta < 0$ and $|\eta|$ sufficiently large so as to guarantee that x^0 is far from all the ellipsoids.

The computational experiments were carried out on an Intel Xeon W-2133 3.60GHz with 32GB of RAM running Ubuntu 20.04. We implemented all experiments in Julia programming language v1.6 (see [14]). The codes of our experiments are fully available at: https://github.com/Mirza-Reza/FPP

We report in Table 1 the following descriptive statistics for CRM and PPM: mean, maximum (max), minimum (min) and standard deviation (std) for iteration count (it) and CPU time in seconds (CPU (s)). In particular, the ratio of the CPU time (in average for all instances) of PPM with respect to CRM is 7.69, meaning that CRM is, on the average, almost eight times faster that PPM.

Method	mean	max	min	std	
CRM	it	144.288	554	23	95.2581
	CPU(s)	14.6048	120.3020	0.2729	22.4890
PPM	it	5977.352	25000	209	6385.9388
	CPU(s)	112.3315	1085.9685	1.2483	190.3078

We report next similar statistics, but separately for each dimension n. Looking at Table 2, we observe that the CPU time for PPM grows linearly with the dimension n, while the growth of the CRM CPU time is somewhat higher than linear. As a consequence, the superiority of CRM over PPM, measured in terms of the quotient between the PPM CPU time and the CRP CPU time, is slightly decreasing with n: it goes from a ratio of 9.17 for $n = 10$ to a ratio of 7.56 for $n = 200$. This said, it is clear that CRM vastly outperforms PPM in terms of CPU time for all the values of n tested in our experiments.
Table 2. Statistics for instances of each dimension n, reporting number of iterations and CPU time

Method	mean	max	min	std
CRM $n=10$	141.84	512	28	99.10284758774593
CPU(s)	2.3247	6.8150	0.2729	1.9756
CRM $n=10$	6024.54	19163	209	6425.574393655403
CPU(s)	21.3369	92.19569	1.2483	22.4132
CRM $n=30$	153.5	526	46	92.21502046846815
CPU(s)	4.6989	16.6523	0.7607	4.1754
CRM $n=30$	5608.44	18353	500	5956.758800421585
CPU(s)	42.9296	174.9737	2.9861	46.2969
CRM $n=50$	129.5	469	23	91.70523431080693
CPU(s)	6.8152	17.1668	1.0480	5.0391
CRM $n=50$	5288.52	24680	423	5548.505204971876
CPU(s)	53.3709	222.7307	3.5744	55.7054
CRM $n=100$	152.04	399	28	84.19238920472563
CPU(s)	15.5937	41.2581	1.9661	12.4246
CRM $n=100$	7224.42	21978	540	7663.860453035403
CPU(s)	114.4037	428.8247	6.3108	108.4765
CRM $n=200$	144.56	554	42	105.72438886084895
CPU(s)	43.5915	120.3019	5.0157	34.3053
CRM $n=200$	5740.84	22378	370	5948.570740472034
CPU(s)	329.6167	1085.9685	19.0842	315.8783

Next, we report in the next table similar statistics, but separately for problems involving p firmly nonexpansive operators, for each value of p. Table 3 indicates that both the CRM and the PPM CPU time grow slightly less that linearly in p, the number of firmly nonexpansive operators in each instance of FPP, but the growth in both cases seems to become linear for $p \geq 50$. Consistently with this behavior, the ratio between the PPM CPU time and the CRM CPU time is about 3 for $p = 10, 25$ and about 8 for $p = 50, 100, 200$. Again, for all values of p, CRM turns out to be highly better than PPM in terms of CPU time.
Finally, we exhibit the performance profile, in the sense of [21], for all the instances. Again, the superiority of CRM with respect to PPM is fully corroborated.
FIGURE 1. Performance profile of experiments with ellipsoidal feasibility – CRM vs PPM

REFERENCES

[1] Aragón Artacho, F.J., Campoy, R., Tam, M.K. The Douglas-Rachford algorithm for convex and nonconvex feasibility problems. *Mathematical Methods of Operations Research* 91 (2020) 201-240.

[2] Araújo, G, Areﬁdamghani, R., Behling, R., Bello Cruz, Y., Iusem, A.N., Santos, L.-R. Circumcentering approximate reflections for solving the convex feasibility problem. *Fixed Point Theory and Algorithms in Science and Engineering* (2022) Article no. 1.

[3] Areﬁdamghani, R., Behling, R., Bello Cruz, J.Y., Iusem, A.N., Santos, L.R. The circumcentered-projection method achieves better rates than alternating projections. *Computational Optimization and Applications* 79 (2021) 507-530.

[4] Bauschke, H.H., Ouyang, H., Wang, X. On circumcenters of finite sets in Hilbert spaces. *Linear and Nonlinear Analysis* 4 (2018) 271–295.

[5] Bauschke, H.H., Ouyang, H., Wang, X. Circumcentered methods induced by isometries. *Vietnam Journal of Mathematics* 48 (2020).

[6] Bauschke, H.H., Ouyang, H., Wang, X. On circumcenter mappings induced by nonexpansive operators. *Pure and Applied Functional Analysis* 6 (2021) 257-288.

[7] Bauschke, H.H., Ouyang, H., Wang, X. On the linear convergence of circumcentered isometry methods. *Numerical Algorithms* 87 (2021) 268-297.

[8] Bauschke, H.H., Ouyang, H., Wang, X. Best Approximation mappings in Hilbert spaces. To be published in *Mathematical Programming*. arXiv:2007.02644 (2020).

[9] Behling, R., Bello Cruz, J.Y., Santos, L.R. On the linear convergence of the circumcentered-reflection method. *Operations Research Letters* 46 (2018) 159–162.

[10] Behling, R., Bello Cruz, J.Y., Santos, L.R. Circumcentering the Douglas-Rachford method. *Numerical Algorithms* 78 (2018) 759–776.

[11] Behling, R., Bello Cruz, J.Y., Santos, L.R. The block-wise circumcentered-reflection method. *Computational Optimization and Applications* 76 (2020) 675–699.
[12] Behling, R., Bello Cruz, J.Y., Santos, L.R. On the Circumcentered-Reflection Method for the Convex Feasibility Problem. *Numerical Algorithms* (2020).

[13] Behling, R., Iusem, A.N. The effect of calmness on the solution of systems of nonlinear equations. *Mathematical Programming* 137 155-165 (2013).

[14] Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B. Julia: A fresh approach to numerical computing. *SIAM Review* 59 (2017) 65–98.

[15] Censor, Y., Segal, A. The split common fixed point problem for directed operators. *Journal of Convex Analysis* 16 (2009) 587-600.

[16] Censor, Y., Zenios, S. *Parallel Optimization: Theory, Algorithms and Applications*. Oxford University Press, New York (1998).

[17] Cimmino, G. Calcolo approssimato per le soluzione dei sistemi di equazioni lineari. *La Ricerca Scientifica* II-16 (1938) 326-333.

[18] De Pierro, A.R., Iusem, A.N. A parallel projections method for finding a common point of a family of convex sets. *Pesquisa Operacional* 5 (1985) 1-20.

[19] Dizon, N., Hogan, J., Lindstrom, S.B. Circumcentering reflection methods for nonconvex feasibility problems. arXiv 1910.04384 (2019).

[20] Dizon, N., Hogan, J., Lindstrom, S.B. Centering projection methods for wavelet feasibility problem. arXiv: 2005.05687 (2020)

[21] Dolan, E.D., Moré, J.J. Benchmarking optimization software with performance profiles. *Mathematical Programming* 91 (2002) 201–213.

[22] Hoffman, A.J. On approximate solutions of systems of linear equations. *Journal of Research of the National Bureau of Standards* 49 (1952) 263-265.

[23] Iusem, A.N., De Pierro, A.R. On the set of weighted least squares solutions of systems of linear inequalities. *Commentationes Mathematicae Universitatis Carolinae* 25 (1984) 667-678.

[24] Jia, Z., Cai, X., Han, D. Comparison of several fast algorithms for projection onto an ellipsoid. *Journal of Computational and Applied Mathematics* 319 (2017) 320–337.

[25] Kaczmarz, S. Angenaherte Auflösung von Systemen linearer Gleichungen. *Bulletin de l’Académie Polonaise des Sciences et Lettres* A-35 (1937) 355-357.

[26] Kanzow, C., Yamashita, N., Fukushima, M. Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. *Journal of Computational and Applied Mathematics* 172 (2004) 375-397.

[27] Moudafi, A. A note on the split common fixed-point problem for quasi nonexpansive operators. *Nonlinear Analysis* 74 (2011) 4083-4087.

[28] Ouyang, H. Finite convergence of locally proper circumcentered methods. arXiv: 2011.13521 [math] (2020).

[29] Pierra, G. Decomposition through formalization in a product space. *Mathematical Programming* 28 (1983) 96–115.

[30] Robinson, S.M. Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems. *SIAM Journal on Numerical Analysis* 13 (1976) 497-513.

[31] Rockafellar, R.T., Wets, R.J-B. *Variational Analysis*. Springer, Berlin (1998).

[32] Yao, Y., Liou, Y.-C., Yao, J.-C. Split common fixed point problem for two quasi-pseudo contractive operators and its algorithm construction. *Fixed Point Theory and Applications* (2015) Article no. 127.

[33] Zhao, J., He, S. Alternating Mann iterative algorithms for the split common fixed-point problem of quasi-nonexpansive maps. *Fixed Point Theory and Applications* (2013) Article no. 288.