Gastrointestinal insights during the COVID-19 epidemic

Kai Nie, Yuan-Yuan Yang, Min-Zi Deng, Xiao-Yan Wang

ORCID number: Kai Nie 0000-0003-1536-6550; Yuan-Yuan Yang 0000-0001-9668-5355; Min-Zi Deng 0000-0003-0464-4578; Xiao-Yan Wang 0000-0002-7281-1078.

Author contributions: Nie K reviewed the literature and wrote the manuscript; Yang YY and Deng MZ collected the literature and data; Wang XY gave precious advice in writing.

Supported by National Natural Science Foundation of China, No. 81970494.

Conflict-of-interest statement: We declare no conflicts of interests in the manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Kai Nie, Yuan-Yuan Yang, Min-Zi Deng, Xiao-Yan Wang, Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China

Corresponding author: Xiao-Yan Wang, MD, Chief Doctor, Department of Gastroenterology, The Third Xiangya Hospital of Central South University, No. 138 Tongzi Road, Yuelu District, Changsha 410013, Hunan Province, China. wxy220011@163.com

Abstract

Coronavirus disease-2019 (COVID-19) has so far caused hundreds of mortalities worldwide. Although respiratory symptoms are the main complication in COVID-19 patients, the disease is also associated with gastrointestinal problems, with diarrhea, nausea, and vomiting being primary COVID-19 symptoms. Thus, cancer and inflammatory bowel disease (IBD) management, stool viral tests, and virus exposure are major concerns in the context of COVID-19 epidemic. In patients with colorectal cancer and IBD, the colonic mucosa exhibits elevated angiotensin-converting enzyme 2 receptor levels, enhancing COVID-19 susceptibility. In some cases, positive viral stool tests may be the only indicator of infection at admission or after leaving quarantine. Without supplemental stool tests, the risk of undetected COVID-19 transmission is high. Moreover, viral exposure during the regular or emergency endoscopic examination should be avoided. We carefully discuss key gastrointestinal concerns with regard to COVID-19 and call for more attention to such problems.

Key Words: COVID-19; SARS-CoV-2; Diarrhea; Colorectal cancer; Inflammatory bowel disease; Stool tests

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Severe acute respiratory syndrome coronavirus 2 has an affinity to angiotensin-converting enzyme 2 (ACE2), which is abundantly expressed in the intestinal epithelium. Increased intestinal expression of ACE2 in colorectal cancer and inflammatory bowel disease underlies the high coronavirus disease-2019 (COVID-19) risk among these patients. Besides, the stool viral test should not be ignored among COVID-19 management. Strict prevention reduces viral exposure during endoscopy. The earlier we discern, the more we consider, and the more human we protect!

Citation: Nie K, Yang YY, Deng MZ, Wang XY. Gastrointestinal insights during the COVID-19 epidemic. World J Clin Cases 2020; 8(18): 3934-3941
INTRODUCTION

Coronavirus disease-2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has so far killed hundreds of thousands worldwide. Like SARS-CoV (severe acute respiratory syndrome coronavirus), SARS-CoV-2 enters host cells via the interaction of viral spike (S) protein with the human angiotensin-converting enzyme 2 (ACE2) receptor. Clinically, COVID-19 patients frequently present with gastrointetinal symptoms, including diarrhea, nausea, and vomiting. Additionally, a significant number of patients are positive for stool viral RNA. A study revealed that ACE2 is abundantly expressed in the small intestine, lung epithelium, and vascular endothelium, indicating multiple human infection routes1. ACE2 normally localizes on the luminal epithelial cells and may perform its enzymatic activity isolated from the cell membrane2-4. ACE2 localization offers efficient infection routes through the airway and gastrointestinal tract. Single-cell sequencing analysis indicates that ACE2 is abundant in enterocytes of the mouse small intestine, especially in proximal and distal enterocytes5. Moreover, COVID-19 patients’ mucosal biopsies revealed viral nucleocapsid protein (NP) in gastric, duodenal, and rectum glandular epithelial cells, but not in the esophagus. Together, such evidence suggests that the gastrointestinal epithelium is a coronavirus infection route6.

After reviewing reported COVID-19 studies, we formatted several concepts. Gastrointestinal problems may contribute to the complexity and infectivity of COVID-19. Patients with COVID-19 may exhibit uncharacteristic symptoms like diarrhea. Patients with digestive disease bear a relatively high risk of SARS-CoV-2 infection. Stool viral test could help us screen out atypical infectors. Viable virus detected in stool brings a fecal transmission risk. Thus, it is important to discuss several essential gastrointestinal topics about COVID-19.

GASTROINTESTINAL SYMPTOMS IN COVID-19

Holshue made the earliest report of virus nucleic acid detection in a COVID-19 patient stool5. The risk of gastrointestinal infection by SARS-CoV-2 has attracted attention from gastroenterologists. Here, we conducted an overall COVID-19 case collection study to establish digestive involvement in COVID-19 patients and found 39 studies that included detailed symptom descriptions3-8, excluding case reports and small cohorts. Diarrhea is the most common digestive symptom, with its incidence ranging from 1.2-35%. The overall diarrhea incidence rate in our collection is 6.34%, while in the largest cohort, the diarrhea incidence rate was 3.8%. The cohorts with a patient number > 80 revealed an about 5% incidence. The second most common gastrointestinal symptom is nausea/vomiting, which affected 5.17% of assessed COVID-19 patients. Other gastrointestinal symptoms, including anorexia, belching, abdominal pain, and gastrointestinal bleeding, affected < 1% of the patients. Most critically ill COVID-19 patients experience coagulation disorders, which carry a high risk of gastrointestinal bleeding. Diarrhea diagnosis may differ across centers. Due to a lack of awareness, clinicians may underestimate the value of gastrointestinal symptoms in COVID-19 diagnosis and clinical management. An exhaustive description of COVID-19 gastrointestinal symptoms has been made in two cohorts by Zhang et al48 and Mo et al49. While respiratory symptoms are the main feature of COVID-19, more attention should be paid to gastroenterology. In some cases, gastrointestinal symptoms, including diarrhea and vomiting, may be the first and sometimes the only signs of COVID-1948. Thus, physicians should consider COVID-19 infection in patients presenting with digestive symptoms in high transmission areas.

RISK TO GASTROINTESTINAL CANCER PATIENTS

A recent study recruited 18 COVID-19 cases with a history of cancer from 575 Chinese
Table 1 Incidence of gastrointestinal symptoms in coronavirus disease-2019 patients

Ref.	Nation	District	Number	Digestive comorbidity	Diarrhea	Nausea or vomiting	Anorexia	Belching	Abdominal pain	GI bleeding	Detail
Holshue et al [6]	United States	Washington	1	1	1	1	0	0	0	0	
Morales et al [7]	Brazil	São Paulo	1	0	0	0	0	0	0	0	
Song et al [8]	China	Weihai	1	0	1	0	0	0	0	0	
Kim et al [9]	South Korea	Korea	1	0	1	0	0	0	0	0	
Shrestha et al [10]	Nepal	Lalitpur	1	0	0	0	0	0	0	0	
Pongsiral et al [11]	Thailand	Bangkok	1	0	0	0	0	0	0	0	
Senécal et al [12]	Canada	Toronto	2	0	0	0	0	0	0	0	
Takeshi et al [13]	Japan	Chiba	2	0	0	0	0	0	0	0	
Lillie et al [14]	United Kingdom	Hull	2	0	0	0	0	1	0	0	
Stoecklin et al [15]	France	Nationwide	3	0	0	0	0	0	0	0	
Cuong et al [16]	Vietnam	Thanh Hoa	3	0	0	0	0	0	0	0	
Chen et al [17]	China	HongKong	6	0	2	0	0	0	0	0	
Chen et al [18]	China	Anhui	9	2	0	0	0	0	0	0	
Cai et al [19]	China	Shanghai	10	0	0	0	0	0	0	0	
Liu et al [20]	China	Nationwide	13	0	0	0	0	0	0	0	
De et al [21]	China	Beijing	13	0	1	0	0	0	0	0	
Young et al [22]	Singapore	Singapore	18	0	3	0	0	0	0	0	
KCDC [23]	South Korea	Korea	28	0	2	0	0	0	0	0	
Liu et al [24]	China	Wuhan	30	0	9	9	0	0	0	0	Infection doctors
Wang et al [25]	China	Northern China	31	0	3	2	0	0	0	0	Diarrhea; vomiting is the initial symptom
Huang et al [26]	China	Wuhan	34	1	5	0	0	0	0	0	Pregnant patients
Wu et al [27]	China	Tianjin	40	0	6	5	0	0	0	0	
Huang et al [28]	China	Wuhan	41	1	1	0	0	0	0	0	
Spiteri et al [29]	Euro European	47	0	1	1	0	0	0	0		
Xu et al [30]	China	Baoding	50	0	0	0	0	0	0	1	
Song et al [31]	China	Shanghai	51	1	5	3	0	0	0	0	
hospitals. Of these, three had a history of colorectal cancer (one colonic tubular adenocarcinoma, one rectal carcinoma, and one colorectal carcinoma). That study observed an increased COVID-19 risk to cancer patients, who deteriorated more rapidly than patients without cancer\(^44\). However, other factors, including age, may confound conclusions as older people have a higher cancer and COVID-19 risk\(^45,46\). However, an RNA analysis involving two cohorts of healthy adults and gastrointestinal cancer patients, found elevated ACE2 expression in colorectal cancer patients relative to healthy controls. This finding suggests that gastrointestinal cancer patients may be more susceptible to SARS-CoV-2 infection\(^47\). Thus, there is a concern about greater COVID-19 risk in advanced stage cancer patients or those on immunosuppressants. However, more rigorous studies are required to draw definite conclusions and patients with gastrointestinal cancers should be cautiously managed. To this end, several approaches have been recommended, including multidisciplinary therapy (MDT) involving respiratory physicians, postponement of elective operations with neoadjuvant therapy, and minimizing endoscopic interventions\(^48,49\).

Study	Country	Region	Total	Critically ill adult patients
Yang et al\(^40\)	China	Wuhan	52	0
Xu et al\(^30\)	China	Zhejiang	62	7
Xiao et al\(^3\)	China	Guangdong	73	0
Wu et al\(^31\)	China	Jiangsu	80	3
Xu et al\(^32\)	China	Zhejiang	90	0
Chen et al\(^33\)	China	Wuhan	99	11
Zhao et al\(^34\)	China	Hunan	101	6
Wang et al\(^35\)	China	Wuhan	138	4
Zhang et al\(^36\)	China	Wuhan	140	15
Yang et al\(^37\)	China	Wenzhou	149	8
Mo et al\(^38\)	China	Wuhan	155	7
Zhou et al\(^39\)	China	Wuhan	191	0
Guan et al\(^40\)	China	Nationwide	1099	23
Total			2877	91

RISK TO INFLAMMATORY BOWEL DISEASE PATIENTS

Inflammatory bowel disease (IBD) is characterized by impaired mucosal permeability and sustained immune disorder. To date, several cases of SARS-CoV-2 infection in IBD patients have been reported. However, IBD patients on immunosuppressants should be cautious in COVID-19 prevention. Experimental induction of colitis elevated colonic ACE2 expression\(^50\), and plasma ACE2 concentration is reported to be elevated in IBD patients relative to healthy controls\(^51\). Proteomic analysis showed a significant colonic ACE2 elevation in Crohn’s disease relative to ulcerative colitis\(^52\). Thus, IBD may increase susceptibility to SARS-CoV-2. Colonic fibrosis is inversely correlated with mucosal ACE2 expression. IBD patients on RAS inhibitors are less likely to undergo surgery and hospitalization. Taken together, ACE inhibitors should be taken into consideration as a means of decreasing ACE2 levels and improving colonic fibrosis. During the COVID-19 pandemic, IBD patients with hypertension, diabetes, or chronic kidney disease may benefit from ACE inhibitors. Additionally, clinical
management of IBD should avoid unnecessarily raising immunosuppressant dosage and optimize treatment with biologics[53].

STOOL VIRAL TEST DURING COVID-19 MANAGEMENT

The positive rate for fecal viral RNA varies from 29%-55%[54,55]. In some cases, stool viral RNA may be the only indicator of COVID-19 at admission. Zhang et al[56] reported two COVID-19 cases positive for fecal RNA, but with negative pharyngeal swabs at admission. Additionally, four patients exhibited delayed positive results for stool RNA and persistent negative results in pharyngeal specimens. Additionally, symptomatic and asymptomatic infections may be fecal virus-positive but pharyngeal virus-negative[52,53]. A recent case report described a patient with a history of gastrectomy for gastric cancer and diarrhea, who was positive for fecal RNA but negative for pharyngeal RNA[59]. Importantly, patients may be stool virus-positive but virus-negative after treatment. Previous retrospective cohorts reported a mean fecal viral shedding duration of 27.9 d after symptom onset, compared to 16.7 d in respiratory samples[59]. The longest reported fecal viral shedding duration is 49 d[58]. This phenomenon has been attributed to SARS-CoV-2’s affinity for gastrointestinal ACE2, which is abundantly expressed in the small intestines[51]. Additionally, COVID-19 patients’ mucosal biopsies revealed viral nucleocapsid protein (NP) in gastric, duodenal, and rectum glandular epithelial cells. Furthermore, the co-existence of ACE2 and SARS-CoV-2 in the enteric epithelium underlies colonic viral shedding[51].

Given that false-negatives occur in respiratory viral tests, these stool positive cases highlight the risk of undetected COVID-19 when relying solely on respiratory viral detection in clinical practice. The prolonged stool virus shedding may result from a longer duration of gastrointestinal viral infection. Importantly, the presence of viable virus in stool emphasizes the risk of fecal transmission, and need for stool tests in the population[51]. Chinese researchers have independently observed viable SARS-CoV-2 in COVID-19 patients’ stool (unpublished data). The absence of gastric acid might facilitate gastrointestinal virus infection and induce COVID-19 associated enteritis. Thus, the release from quarantine based on negative respiratory results alone may carry the risk of continued community spread.

RISK OF GASTROINTESTINAL DAMAGE AND VIRAL EXPOSURE

Although evidence on COVID-19 gastrointestinal mucosa damage is limited, a recent endoscopic study on COVID-19 patients did not observe damage in the esophagus, stomach, duodenum, and rectum[51]. However, concerns over gastrointestinal bleeding in critically ill COVID-19 patients should be considered as they often have coagulation disorders. Preventive proton pump inhibitors may be considered for specific cases. Gastroenterologists and endoscopists face exposure to the virus during endoscopic operations[61]. Thus, regular endoscopic interventions should not be suggested during the pandemic, and emergency bleeding interventions should be performed with sufficient precautions.

CONCLUSION

Physicians should be aware of the COVID-19 risk in patients with gastrointestinal disorders, especially those with colorectal cancer and IBD. Preventions and domiciliary quarantine should be progressed under equal medical advice. Here, we highlight the need for stool viral tests as a supplement to conventional screening tests for COVID-19 in patients with gastrointestinal disorders and people leaving quarantine. In addition to regular respiratory sampling, stool viral tests should be carried out in populations with histories of exposure and travel to epidemic areas, advanced age, obesity, cancer, and cardiopulmonary comorbidities, as well as in pregnant women and children.
REFERENCES

1. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631-637 [PMID: 15141377 DOI: 10.1002/path.1570]

2. Li Y, You Y, Lu W, Yang X, Chen X, Song L, Zhu B, Khamin Z, Jiang W, Zhong N, Wang W. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2005; 79: 14614-14621 [PMID: 16282461 DOI: 10.1128/JVI.79.23.14614-14621.2005]

3. Ren X, Glende J, Al-Falah M, de Vries V, Schwemwagen-Wessels C, Qiu X, Tan L, Tscheming T, Deng H, Naim HY, Herrler G. Analysis of ACE2 in polarized epithelial cells: surface expression and function as receptor for severe acute respiratory syndrome-associated coronavirus. J Gen Virol 2006; 87: 1691-1695 [PMID: 16699332 DOI: 10.1099/vir.0.81749-0]

4. Liang W, Feng Z, Rao S, Xiao C, Xue X, Lin Z, Zhang Q, Qi W. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut 2020; 69: 1141-1143 [PMID: 32109282 DOI: 10.1136/gutjnl-2020-320832]

5. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020; 158: 1831-1833.e3 [PMID: 32142773 DOI: 10.1053/j.gastro.2020.02.055]

6. Holshue ML, DeBolt C, Lindquist S, LoFY, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diao G, Colin A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu A, Lindstrom S, Pallsamch MA, Weldon WC, Biggs HM, Uyeki TM, Pilla SK, Washington State 2019-nCoV Case Investigation Team. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med 2020; 382: 929-936 [PMID: 32004427 DOI: 10.1056/NEJMoa2001191]

7. Rodriguez-Morales AJ, Gallego V, Escalera-Antezana JP, Méndez CA, Zambrano LF, Franco-Paredes C, Suárez JA, Rodríguez-Enciso HD, Balbin-Ramon GJ, Savio-Larriera E, Risquez A, Cimerman S. COVID-19 in Latin America: The implications of the first confirmed case in Brazil. Travel Med Infect Dis 2020; 35: 101613 [PMID: 32126292 DOI: 10.1016/j.tmaid.2020.101613]

8. Song Y, Liu P, Shi XL, Chu YL, Zhang J, Xia J, Gao XZ, Qu T, Wang MY. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut 2020; 69: 1143-1144 [PMID: 32139552 DOI: 10.1136/gutjnl-2020-320891]

9. Kim YJ, Choe PG, Oh Y, Oh KJ, Kim J, Park SJ, Park JH, Na HK, Oh MD. The First Case of 2019 Novel Coronavirus Pneumonia Imported into Korea from Wuhan, China: Implication for Infection Prevention and Control Measures. J Korean Med Sci 2020; 35: e61 [PMID: 32030925 DOI: 10.3346/jkms.2020.35.e61]

10. He J, Zhaung X, Zhou J, Sun L, Wan H, Li H, Lyu D. Exogenous melanotin alleviates cadmium uptake and toxicity in apple rootstocks. Tree Physiol 2020; 40: 746-761 [PMID: 32159805 DOI: 10.1039/d0ph002014]

11. Pongpirul K, Kongprasert S, Phanuak P, Bungman S, Ranon R, Aungkongkam P, Premkum M, Prasert S. Gastrointestinal insights during the COVID-19 epidemic. Clin Infect Dis 2020; 62: 10.3346/jkms.2020.35.e61 DOI: 10.1093/cid/ciaa227

12. Arashiro T, Furukawa N, Nakamura A. COVID-19 in 2 Persons with Mild Upper Respiratory Tract Symptoms on a Cruise Ship, Japan. Emerg Infect Dis 2020; 26: 1345-1348 [PMID: 32118533 DOI: 10.3201/eid2606.200452]

13. Lilley PJ, Samson A, Li A, Adams K, Capstick R, Barlow GD, Easom N, Hamilton E, Moss PJ, Evans A, Ivan M, Phe Incident Team, Taha Y, Duncan CJA, Schmid ML, The Airborne Hcid Network. Novel Coronavirus. J Gen Virol 2020; 10.1093/jgv/jzaa024 DOI: 10.1093/teephys/paa021

14. Nishii M, Kino T, Mikami Y, Kato T, Miyazawa K, Ohishi N, Ezaki T, Kondo M, Nakamura Y, Otsuka T, et al. First assessment of COVID-19 in Japan: a report from the Japaneseач National Center for Global Health and Medicine. J Clin Virol 2020; 10.3201/eid2606.200452 DOI: 10.1002/jmv.25755

15. Chan JF, Yuan S, Kok KH, To K, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsui HW, Lo SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395: 514-523 [PMID: 31986261 DOI: 10.1016/S0140-6736(20)31543-9]

16. Chen Q, Quan B, Li X, Gao G, Zheng W, Zhang J, Zhang Z, Liu C, Li L, Wang C, Zhang G, Li D, Dai Y, Yang J, Han W. A report of clinical diagnosis and treatment of nine cases of coronavirus disease 2019. J Med Virol 2020; 92: 683-687 [PMID: 32162699 DOI: 10.1002/jmv.25755]

17. Cai J, Xu J, Lin D, Yang Z, Xu L, Qu Z, Zhang Y, Zhang H, Ju R, Liu P, Wang X, Ge Y, Xia A, Tian H, Chang H, Wang C, Li J, Wang J, Zeng M. A Case Series of Children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis 2020; Online ahead of print [PMID: 32112072 DOI: 10.1093/cid/ciaa198]

18. Liu Y, Chen H, Tang K, Guo Y. Clinical manifestations and outcome of SARS-CoV-2 infection during pregnancy. J Infect 2020; Online ahead of print [PMID: 32145216 DOI: 10.1016/j.jinf.2020.02.028]

19. Zhang, Lin M, Wei L, Xie L, Zhu G, Dela Cruz CS, Sharma L. Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan, China. JAMA 2020; 323: 1092-1093 [PMID: 32031568 DOI: 10.1001/jama.2020.1623]

20. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, Ng OT, Marimuthu K, Ang LW, Mak TM,
Nie K et al. Gastrointestinal insights during the COVID-19 epidemic

Lau SK, Anderson DE, Chan KS, Tan TY, Ng TY, Cui L, Said Z, Kurupatham L, Chen MI, Chan M, Vasoo S, Wang LF, Tan BH, Lin RTP, Lee VJM, Leo YS, Lye DC. Singapore 2019 Novel Coronavirus Outbreak Research Team. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA 2020; 323: 1488-1494 DOI: 10.1001/jama.2020.3204

23 COVID-19 National Emergency Response Center. Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention. Early Epidemiologic and Clinical Characteristics of 28 Cases of Coronavirus Disease in South Korea. Osong Public Health Res Perspect 2020; 11: 8-14 [PMID: 32149037 DOI: 10.24171/j.phrp.2020.11.1.03]

24 Liu M, He P, Liu HG, Wang XJ, Li FJ, Chen S, Lin J, Chen P, Liu JH, Li CH. [Clinical characteristics of 30 medical workers infected with new coronavirus pneumonia]. Zhonghua Jie He He Xi Za Zhi 2020; 43: 209-214 [PMID: 32164090 DOI: 10.3760/cma.j.issn.1000-9983.2020.03.014]

25 Yang D, Ju XL, Xie F, Lu Y, Li FY, Huang HH, Fang XL, Li YJ, Wang JY, Yi B, Yue JX, Wang J, Wang LX, Li B, Wang Y, Qiu BP, Zhou ZY, Li KL, Sun JH, Lie XG, Li GD, Wang YJ, Cao AH, Chen YN. [Clinical analysis of 31 cases of 2019 novel coronavirus pneumonia in children from six provinces (autonomous region) of northern China]. Zhonghua Er Ke Za Zhi 2020; 58: 269-274 [PMID: 32118389 DOI: 10.3760/cma.j.cn121140-20200225-00138]

26 Huang Y, Tu M, Wang S, Chen S, Zhou W, Chen D, Zhou L, Wang M, Zhao Y, Zeng W, Huang Q, Xu H, Liu Z, Guo L. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis 2020; 101606 [PMID: 32114074 DOI: 10.1016/j.tmaid.2020.10.066]

27 Wu WS, Li YG, Wei ZF, Zhou PH, Lyu LK, Zhang GF, Zhao Y, He HY, Li XY, Gao L, Zhang XM, Liu H, Zhou N, Guo Y, Zhang XM, Zhang D, Liu J, Zhang Y. [Investigation and analysis on characteristics of a cluster of COVID-19 associated with exposure in a department store in Tianjin]. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41: 489-493 [PMID: 32133830 DOI: 10.3760/cma.j.issn.12338-20200221-00139]

28 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Li J, Gu X, Cheng Z, Yu T, Xie J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Gao L, Xie J, Wang G, Jiang R, Gao Z, Qin J, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506 [PMID: 31891823 DOI: 10.1016/S0140-6736(20)30318-5]

29 Speriti G, Fielding J, Diercke M, Campese C, Enoiu V, Gaymard A, Bello A, Sognamiglio P, Sierra Moros MJ, Riutort AN, Demina YV, Mairouche R, Braos M, Bengnér M, Buda S, Schilling J, Filleul L, Lepoutre A, Saura C, Maillé A, Levy-Bruhl D, Coignard B, Bernard-Stoecklin S, Behillil S, van der Werf S, Valette M, Lina B, Riccardo N, Nicastri E, Casas I, Larrauri A, Salom Castell M, Pozo F, Makusytov RA, Marin C, Van Ranst M, Bossuyt N, Siira L, Sané J, Tegmark-Wisell K, Palmerus M, Broberg EK, Beauté J, Jorgensen P, Bündle N, Peryevasov D, Adilchou C, Pukillja J, Pehobu R, Olsen S, Ciancio BC. First cases of coronavirus disease 2019 (COVID-19) in the WHO European Region, 24 January to 21 February 2020. Euro Surveill 2020; 25: 2000178 [PMID: 3215637 DOI: 10.2807/1560-7917.ES.2020.25.9.2000178]

30 Xu YH, Dong JH, An WM, Lv XY, Yin XP, Zhang JZ, Dong L, Ma X, Zhang HJ, Gao BL. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Infect 2020; 80: 394-400 [PMID: 32109443 DOI: 10.1016/j.jinf.2020.02.017]

31 Song F, Shi N, Shan F, Zhang Z, Shen J, Lu H, Ling Y, Jiang Y, Shi Y. Emerging 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology 2020; 295: 210-217 [PMID: 32027753 DOI: 10.1148/radiol.2020200274]

32 Yang X, Yu Y, Xu J, Shu H, Xin J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8: 475-481 [PMID: 32105632 DOI: 10.1016/S2213-2600(20)30079-3]

33 Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, Li SB, Wang HY, Zhang S, Gao HN, Sheng JF, Cai HL, Quo YQ, Li LJ. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ 2020; 368: m606 [PMID: 32075786 DOI: 10.1136/bmj.m606]

34 Wu J, Liu J, Zhao X, Liu C, Wang W, Wang D, Xu W, Zhang C, Yu J, Jiang B, Cao H, Li L. Clinical Characteristics of Imported Cases of Coronavirus Disease 2019 (COVID-19) in Jiangsu Province: A Multicenter Descriptive Study. Clin Infect Dis 2020; 71: 706-712 [PMID: 32109279 DOI: 10.1093/cid/ciaa199]

35 Xu X, Yu C, Qu J, Zhang L, Jiang S, Huang B, Chen B, Zhang Z, Guan W, Ling Z, Jiang R, Hu T, Ding Y, Lin L, Gan Q, Luo L, Tang X, Liu J. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging 2020; 47: 1275-1280 [PMID: 32107577 DOI: 10.1007/s00259-020-04735-9]

36 Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-513 [PMID: 32007143 DOI: 10.1016/S0140-6736(19)32021-7]

37 Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. AJR Am J Roentgenol 2020; 214: 1072-1077 [PMID: 32125873 DOI: 10.2214/AJR.20.22976]

38 Wang D, Hu B, Hu C, Zou F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020; 323: 1061-1069 [PMID: 32031570 DOI: 10.1001/jama.2020.1585]

39 Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020; 75: 1730-1741 [PMID: 32077115 DOI: 10.1111/all.14278]

40 Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, Dai J, Sun Q, Zhao F, Qu J, Fan Y. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multicenter study in Wenzhou city, Zhejiang, China. J Infect 2020; 80: 388-393 [PMID: 32112884 DOI: 10.3760/cma.j.cn112338-20200221-00139]
WJCC https://www.wjnet.com

September 26, 2020 Volume 8 Issue 18

Nie K et al. Gastrointestinal insights during the COVID-19 epidemic

10.1016/j.jinf.2020.02.016

41 Mo P, Xiong Y, Xiao Y, Deng L, Zhao Q, Wang H, Xiong Y, Cheng Z, Gao S, Liang K, Luo M, Chen T, Song S, Ma Z, Chen X, Zheng R, Cao Q, Wang F, Zhang Y. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Cln Infect Dis 2020; Online ahead of print [PMID: 32117325] DOI: 10.1093/cid/ciaa270

42 Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054-1062 [PMID: 32110766] DOI: 10.1016/S0140-6736(20)30556-3

43 Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng XY, Wei L, Liu L, Yu YH, Peng F, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382: 1708-1720 [PMID: 32109013] DOI: 10.1056/NEJMoa2002302

44 Liang W, Guan W, Chen R, Wang W, Li J, Xu K, Li C, Ai Q, Lu W, Liang H, Li S, He J. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020; 21: 335-337 [PMID: 32666541] DOI: 10.1016/S1470-2045(20)30096-6

45 Wang H, Zhang L. Risk of COVID-19 for patients with cancer. Lancet Oncol 2020; 21: e181 [PMID: 32142621] DOI: 10.1016/S1470-2045(20)30149-2

46 Xia Y, Jin R, Zhao J, Li W, Shen H. Risk of COVID-19 for patients with cancer. Lancet Oncol 2020; 21: e180 [PMID: 32142622] DOI: 10.1016/S1470-2045(20)30150-9

47 Chen H, Xuan B, Yan Y, Zhu X, Shen C, Zhao G, Ji L, Xu D, Xiong H, Yu T, Li X, Liu Q, Chen Y, Cui Y, Hong J, Fang YJ. Profiling ACE2 expression in colon tissue of healthy adults and colorectal cancer patients by single-cell transcriptome analysis. medRxiv 2020; 2020.02.15.20023457 [DOI: 10.1101/2020.02.15.20023457]

48 Chen YH, Peng JS. [Treatment strategy for gastrointestinal tumor under the outbreak of novel coronavirus pneumonia in China]. Zhonghua Wei Chang Wai Ke Za Zhi 2020; 23: 1-1V [PMID: 32074786] DOI: 10.3760/cma.j.issn.1671-0274.2020.02.001

49 Luo Y, Zhong M. [Standardized diagnosis and treatment of colorectal cancer during the outbreak of novel coronavirus pneumonia in Renji hospital]. Zhonghua Wei Chang Wai Ke Za Zhi 2020; 23: e003 [PMID: 32084676] DOI: 10.3760/cma.j.cjou.20200217-00057

50 Khajah MA, Fateel MM, Ananthalakshmi KV, Lugmani YA. Anti-Inflammatory Action of Angiotensin 1-7 on Experimental Colitis. PLoS One 2016; 11: e150861 [PMID: 26963721] DOI: 10.1371/journal.pone.0150861

51 Garg M, Burrell LM, Velkoska E, Griggs K, Angus PW, Gibson PR, Lubel JS. Upregulation of circulating components of the alternative renin-angiotensin system in inflammatory bowel disease: A pilot study. J Renin Angiotensin Aldosterone Syst 2015; 16: 559-569 [PMID: 24505094] DOI: 10.1177/14704251521086

52 Niang L, Shan G, Sun Z, Zhang F, Xu C, Lou X, Li S, Su H, Chen H, Xu G. Quantitative Proteomic Analysis Reveals the Deregression of Nicotinamide Adenine Dinucleotide Metabolism and CD38 in Inflammatory Bowel Disease. Biomed Res Int 2019; 2019: 3950628 [PMID: 31179321] DOI: 10.1155/2019/3950628

53 Mao R, Liang J, Shen J, Ghosh S, Zhu LR, Yang H, Wu KC, Chen MH; Chinese Society of IBD, Chinese Elite IBD Union; Chinese IBD Quality Care Evaluation Center Committee. Implications of COVID-19 for patients with pre-existing digestive diseases. Lancet Gastroenterol Hepatol 2020; 5: 425-427 [PMID: 32171057] DOI: 10.1016/S2468-1253(20)30076-5

54 Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, Yin H, Xiao Q, Tang Y, Qu X, Kuang L, Fang X, Mishra N, Lu J, Shan H, Jiang G, Huang X. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol 2020; 5: 434-435 [PMID: 32199469] DOI: 10.1016/S2468-1253(20)30083-2

55 Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020; 323: 1843-1844 [PMID: 32159775] DOI: 10.1001/jama.2020.3786

56 Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, Wang YY, Xiao GF, Yan B, Shi ZL, Zhou P. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect 2020; 9: 386-389 [PMID: 32065057] DOI: 10.1080/22221751.2020.1729071

57 Chen L, Lou J, Bai Y, Wang M. COVID-19 Disease With Positive Fecal and Negative Pharyngeal and Sputum Viral Tests. Am J Gastroenterol 2020; 115: 790 [PMID: 32026044] DOI: 10.14309/ajg.0000000000000610

58 Tang A, Tong ZD, Wang HL, Dai YX, Li KF, Liu JN, Wu WJ, Yuan C, Yu ML, Li P, Yan JB. Detection of Novel Coronavirus by RT-PCR in Stool Specimen from Asymptomatic Child, China. Emerg Infect Dis 2020; 26: 1337-1339 [PMID: 32150527] DOI: 10.3201/eid2607.200301

59 Hosoda T, Sakamoto M, Shimizu H, Okabe N. SARS-CoV-2 enterocolitis with persisting to excrete the virus for approximately two weeks after recovering from diarrhea: A case report. Infect Control Hosp Epidemiol 2020; 41: 753-754 [PMID: 32188528] DOI: 10.1017/ice.2020.87

60 Tan L, Kang X, Zhang B, Zheng S, Liu B, Yu Y, Yang F, Wang Q, Mao H. A special case of COVID-19 with long duration of viral shedding for 49 days. medRxiv 2020; 2020.03.22.20040071 [DOI: 10.1101/2020.03.22.20040071]

61 Johnston ER, Habib-Bein N, Duiker JM, Quirao B, Corsaro E, Ambrogio M, Kingsley M, Papachristou GI, Kreiss C, Khalid A. Risk of bacterial exposure to the endoscopist's face during endoscopy. Gastrointest Endosc 2019; 89: 818-824 [PMID: 30391253] DOI: 10.1016/j.gie.2018.10.034
