Structure–function relationships are a fundamental principle of many naturally occurring systems. However, network neuroscience research suggests that there is an imperfect link between structural connectivity and functional connectivity in the brain. Here, we synthesize the current state of knowledge linking structure and function in macroscale brain networks and discuss the different types of models used to assess this relationship. We argue that current models do not include the requisite biological detail to completely predict function. Structural network reconstructions enriched with local molecular and cellular metadata, in concert with more nuanced representations of functions and properties, hold great potential for a truly multiscale understanding of the structure–function relationship.

Structure and Function of Brain Networks
The relationship between structure and function is a central concept in natural sciences and engineering. Consider how the conformation of a protein determines its chemical properties and, ultimately, its biological function. The folding of the protein into a 3D structure promotes interactions among amino acids, allowing the protein to chemically interact with other molecules and endowing it with function. Conversely, disruption of the protein’s structure results in loss of function. Tellingly, the protein is said to be denatured, highlighting the idea that changing its structure has fundamentally altered its natural function.

The function of the nervous system is analogously shaped by the structure and arrangement of neurons and neuronal populations. The complex network of synaptic projections forms a

hierarchy
(see Glossary) of nested and increasingly polyfunctional neural circuits that support perception, cognition, and action. Modern imaging technology permits high-throughput reconstruction of neural circuits across spatiotemporal scales and across species (Box 1). Through extensive international data sharing efforts, increasingly detailed reconstructions of the nervous system’s connection patterns are available in humans and in multiple model organisms, including invertebrate [1], avian [2], rodent [3,4], and primate species [5,6]. These comprehensive wiring diagrams of the nervous system, termed structural connectivity (SC) networks or connectomes, represent the physical connections between neural elements [7].

The emergence of network neuroscience offers an opportunity to quantify and articulate the link between the organizational features of neuronal networks and the spectrum of cortical functions. SC networks possess distinctive and nonrandom attributes, including high local clustering and short path length, characteristic features of a small-world architecture [8]. Populations with similar functional properties tend to cluster together, forming specialized modules crosslinked by hub nodes with diverse connectional fingerprints [9,10]. The hubs of the networks are disproportionately interconnected with each other, forming a putative core [11] or ‘rich club’ [12], an architectural feature that potentially allows signals to be sampled and integrated from specialized modules [13]. Finally, brain networks are spatially embedded, with finite metabolic and material...
Box 1. Measuring Structural Connectivity (SC) and Functional Connectivity (FC)

Modern imaging and tracing technology allows reconstruction of brain connectomes at multiple spatial and temporal scales (Figure I). Depending on the acquisition technique, network nodes may represent neurons, neuronal populations, or brain regions. Network edges represent either SC or FC, and their definition and interpretation depends on the imaging modality.

Diffusion-weighted MRI is the most extensively used noninvasive in vivo imaging method to measure macroscale SC between brain regions. Applying tractography algorithms on an individual’s diffusion-weighted imaging data, SC can be defined as either the connection probability, the number of reconstructed streamlines, or the mean fractional anisotropy across two brain regions. This family of techniques is subject to several important limitations, most notably systematic false positives and false negatives [131–133]. Reconstructions are also sensitive to methodological choices, such as the location of the initial seed points and tracking algorithm employed [134]. Tracing technologies, applied to postmortem samples, offer greater fidelity, finer spatial detail, and information about directionality of anatomical projections. Mesoscale methods reconstruct cellular connectivity by combining light microscopy with conventional or viral tracers. Microscale methods reconstruct individual synaptic contacts using electron microscopy.

MRI-based measures are also used to derive macroscale FC networks. FC is typically quantified by computing statistical associations between regional hemodynamic time courses recorded using resting state or task based fMRI. FC may primarily capture stable functional configurations, potentially limiting inferences about time-dependent functional interactions [135] (but see [136]). Other technologies, focusing on electromagnetic neural activity at the macroscale, offer greater potential to resolve time-dependent functional interactions, including electroencephalography, magnetoencephalography, and electrocorticography. At the microscale, numerous microelectrode recording techniques allow measurement of extracellular and intracellular electrical activity. Recent advances in calcium imaging with fluorescent indicators permits comprehensive in vivo measurement of action potentials across the entire brain in animal models [137].

Altogether, exciting technological advances yield estimates of anatomical projections and functional interactions over multiple levels of description. Many of the key insights from human MRI (imperfect correspondence between structure and function, relation with spatial proximity, etc.) can be replicated by tracing studies in animal models [138] and by electrophysiological methods [72]. At the same time, recent studies suggest that tracer-based structural networks do provide better overall predictive power compared with diffusion-based structural networks, primarily because they contain information about projection directionality [139,140]. How the structure–function relationship depends on measurement scale and technology is still not fully understood and more research is necessary to consolidate knowledge across subfields.

Figure I. Measuring Structural and Functional Connectivity. At the macroscale level, structural and functional networks are derived by first parcellating the brain into grey matter nodes. For structural connectivity networks, edges are defined by reconstructing white matter projections between network nodes. For functional networks, edges are defined by estimating statistical associations between node time courses.

resources [14], resulting in increased prevalence of shorter, low-cost connections [15,16]. These organizational attributes have been replicated across a range of species and tracing techniques, suggesting common organizational principles across phylogeny [17].

The architecture of SC networks imparts a distinct signature on neuronal coactivation patterns. Inter-regional projections promote signaling and synchrony among distant neuronal populations,

Glossary

Annotated graphs: also known as ‘colored graphs’, these are networks in which nodes are assigned one or more labels. In the case of the brain, these labels can be any local property and can be either discrete (e.g., cell type) or continuous (e.g., activity level).

Connectome: the complete set of neural elements and their physical connections. This object can be represented as a graph of nodes interconnected by edges.

Functional connectivity (FC): statistical associations between time courses of electromagnetic or hemodynamic neural activity. Associations may be estimated either across time or across individuals.

Hierarchy: the organization of the brain from primary sensorimotor to polysensory association areas. Increasing specialization of function along the hierarchy is thought to be supported by microcircuit properties, manifesting as topographic gradients of cytoarchitecture, gene expression, myelination, and connectivity.

Higher-order interactions: in a complex network, two nodes may interact directly via a shared connection, but also indirectly via common neighbors. These higher-order interactions, shaped by the topology of the network, preclude a simple one-to-one mapping between structural and functional connectivity.

Multiplexing: a family of methods by which multiple signals are transmitted over a shared medium. Thus, multiple modes of communication may simultaneously take place over the same network.

Neuromodulation: the influence exerted over neural dynamics by the ascending arousal system originating from the brainstem, subcortex and basal forebrain. By adjusting neural gain, the neuromodulatory system allows multiple types of functional interactions (i.e., functional connectivity patterns) to play out on the same underlying structural network.

Neuronal ensemble: a population of neurons so frequently involved in coordinated activity that they can be summarized as a single unit. Often used to represent discrete regions in biophysical, dynamical models of the brain.

Structural connectivity (SC): physical, material connections between
giving rise to coherent neural dynamics, measured as regional time series of electromagnetic or hemodynamic neural activity. Systematic coactivation among pairs of regions can be used to map functional connectivity (FC) networks. Over the past decade, these dynamics are increasingly recorded without task instruction or stimulation; the resulting ‘intrinsic’ or ‘resting-state’ FC is thought to reflect spontaneous neural activity [18]. Intrinsic FC patterns are highly organized [19–21], reproducible [22,23], and comparable with task-driven coactivation patterns [24,25]. The persistent and reproducible nature of brain activity during rest makes resting-state FC an ideal starting point to study structure–function relationships [26,27].

Here we synthesize the current state of knowledge linking structure and function in macroscale brain networks. We first show that direct one-to-one links between structure and function are limited and inherently obscured by the networked nature of the brain. We survey modern quantitative methods that move away from direct correlations between structure and function by conceptualizing function as emerging from higher-order interactions among multiple neuronal populations, with a focus on strengths, limitations, and commonalities. We posit that the next steps in understanding network-level structure–function relationships must take into account regional heterogeneity by enriching network reconstructions with microscale attributes, including transcriptomic, cytoarchitectonic, and neuromodulatory information. We close by highlighting emerging theories that macroscale structure–function relationships are not uniform across the brain, but vary in parallel with cytoarchitectonic and representational hierarchies.

Figure 1. Imperfect Correspondence between Structural and Functional Connectivity. Despite considerable overlap, structure and function diverge both locally and globally. (A) Due to the sparse nature of structural connectivity, most functional connections are not supported by an underlying structural connection. Models of higher-order interactions are therefore necessary to make predictions about most functional connections. (B) In cases where a corresponding structural connection exists, there is a correlation between structural and functional connection weights, but these correlations are typically between $R = 0.3$ and $R = 0.7$. This means that even for this small class of connections, direct structural connectivity optimistically explains no more than 50% of the variance in functional connectivity. (C) Structure and function continue to diverge at the mesoscopic scale. Community detection for structural and functional networks typically yields different solutions; functional communities (resting state networks) tend to encompass spatially distributed systems with perceptual, cognitive, and affective relevance, while structural networks tend to be more spatially constrained.
An Imperfect Correspondence

Early studies emphasized correlations between structural and functional connection weights. Structural weights are correlated with functional weights [28], and nodes that are central to structural networks also tend to be central in functional networks [28]. Furthermore, structurally connected pairs of neural elements display greater FC than structurally unconnected pairs [28,29] (Figure 1A). More globally, many intrinsic functional networks, particularly the visual and somatomotor networks, are circumscribed by patterns of dense anatomical connectivity [29–31].

While SC and FC are significantly correlated, the correspondence is not perfect. Even the best-case estimates place the correlation at $R^2 \approx 0.5$ [28], which means that considerable variance (at least half) in functional connection weights is unexplained by a simple 1:1 correspondence with structure. The discrepancy widens in the case of functional connections between regions that are not structurally connected (Figure 1B). A particularly salient example is the case of homotopic functional connections between corresponding structures in the two hemispheres. These are typically the strongest subset of functional connections [32], but not all homotopic functional connections are supported by a direct underlying callosal projection [33], and strong homotopic functional connections may be observed even in individuals with no callosal connections [34–36]. These examples illustrate the simple point that sustained communication via indirect anatomical connections may manifest as strong FC.

The discordance between structure and function is particularly pronounced at the mesoscopic scale. Intrinsic networks commonly observed in resting-state FC and meta-analytic coactivation cannot be recovered from structural networks [37,38] (Figure 1C). While intrinsic networks can be reproducibly defined using independent component analysis [19], community detection [39], or data-driven clustering [20,21], both in resting state recordings and in meta-analytic coactivation [24], application of comparable methods to diffusion-weighted SC or anatomical covariance networks yields networks that are more spatially contiguous [37,40]. For example, clustering or community detection methods typically fail to identify a default mode-like structural network, perhaps because not all parts of the network are anatomically inter-connected [26].

Structural and functional networks also show global organizational differences. For example, structural networks show evidence of extensive assortative mixing, whereby nodes with similar properties (e.g., degrees) are more likely to be connected, whereas the same is not true of functional networks [50]. At the mesoscopic scale, communities or modules recovered from structural networks are assortative, while communities recovered from functional networks are disassortative [38]. In other words, in functional networks there is a pronounced affinity among nodes with dissimilar attributes. As a result, tuning community detection algorithms to be sensitive to disassortative structures improves the match between structural and functional modules [38]. Altogether, a rich body of work demonstrates discordance between SC and FC that spans multiple scales, from the embedding of individual nodes and edges to their global arrangement.

Why the discrepancy between SC and FC? Functional interactions may arise via indirect structural connections, resulting in coherent time courses among regions that are two or more synapses removed from each other. In other words, the propensity of two regional time courses to correlate is driven not only by direct signaling between them, but also by the common inputs they receive from sensory organs and from the entire network [27,51]. A corollary is that functional interactions are much less distance-dependent than structural connections. Anatomical wiring is subject to material, spatial, and metabolic constraints [14]; these pressures manifest in reduced connection probability and connection weight with increasing spatial separation [15,16]. Although similar distance-dependence is observed for FC, its effect is weaker, ensuring systematic
differences between structural and functional configurations. In the next section we consider models that translate structure to function by conceptualizing function as an emergent property of multiple structural links.

Models of Higher-Order Interactions

As we have seen so far, there exists a nontrivial link between SC and FC, but the two are not perfectly aligned. A number of models have emerged that embody this link, including statistical models [41,42], communication models [37,43–45] and biophysical models [46–49]. Though different in their implementation and assumptions, the common idea is to emphasize collective, higher-order interactions among neural elements that transcends the strong local clustering and geometric dependence of dyadic structural relationships. Here we briefly review each of these analytic strategies, with a focus on their biological interpretation and predictive utility, and most importantly, what they teach us about the nature of the structure–function relationship in the brain.

Perhaps the simplest way to link structure and function is statistically. Varying forms of reduced rank regression have emerged as particularly useful, including canonical correlation [52] and partial least squares [41]. In these data-driven models the objective is to simultaneously identify weighted combinations of structural and functional connections that are maximally correlated across individuals [53] (Figure 2). An appealing feature of such models is that they embody multiple structure–function modes. In other words, a particular structural configuration or subnetwork...
may give rise to distinct patterns of functional interactions [41]. Taking this idea further, artificial neural networks can be used to learn functional networks from structural networks. For example, a recent study used a variant of the word2vec algorithm to build a low-dimensional embedding representation of the connectome and used it to train a deep neural network to predict edge-wise FC [54]. Altogether, statistical models offer a data-driven way to associate combinations of structural and functional connections without assuming a specific mode of interaction among neuronal populations.

Communication models emerging from network science and telecommunication engineering conceptualize functional interactions as the superposition of elementary signaling events on the underlying anatomical network [43,55] (Figure 2). By explicitly formulating a model of inter-regional signaling, these models open two important questions, namely: how biologically realistic is the model, and how well does the model fit the attributes of the functional network? Early studies focused on centralized forms of communication, such as shortest path routing, whereby discrete signals travel via the shortest contiguous set of edges from a source node to a prespecified target node. More recently, attention has shifted to decentralized mechanisms where signals diffuse through the network [56,57], often broadcast on multiple fronts [37,51,58,59]. Others have considered mechanisms that are neither fully centralized nor decentralized, including communication via path ensembles [45,60] or multiplexed strategies involving multiple mechanisms [44,61–63]. An emerging consensus is that, given the strong relationship between geometric and topological proximity in the brain, it is possible for decentralized mechanisms to utilize the shortest path structure of the network, either by diffusion [44] or navigation [64]. A common methodological thread in these implementations is that pairwise FC is operationalized either as a transmission event [44] or as coactivation [37].

The most biologically detailed and well-studied models are biophysical dynamical systems [47,65,66]. Here the collective dynamics of a neuronal ensemble are assumed to be sufficiently low-dimensional such that they can be described by their mean firing rate. Ensembles are coupled by empirically determined anatomical connectivity into a spatially discretized network or into a spatially continuous sheet. Parameters such as conductances may be theoretically derived or empirically informed, and models may be extended to include stochastic fluctuations [67], time delays [65], and external stimulation [68]. Regional time courses are described by a system of coupled differential equations that capture both local fluctuations and influence from other connected regions, exhibiting a rich repertoire of oscillations, synchrony, and waves [69] (Figure 2). As a result, these models output realistic temporal waveforms [70,71], power spectra [72], and covariance patterns [28,49].

How can we compare these models and how well do they actually predict function from structure? A formal meta-analysis is challenging, as there is little consensus on important analytical choices. For instance, model fit may be reported as variance explained [28] or some form of squared error [42] and may be assessed in-sample [41] or out-of-sample [73]. Some studies focus on individual-participant estimates [28,74,75], while others focus on ‘consensus’ networks compiled from multiple individuals [37]. Among studies that focus on individuals, some report accuracies across participants (i.e., per edge) [76], while others report accuracies across edges (i.e., per participant) [75]. Due to inaccuracies in computational tractography, many studies report single-hemisphere predictions [44], while others report whole-brain predictions [63]. Finally, investigators utilize a range of parcellation schemes with differing numbers of nodes and edges (i.e., variables), making it challenging to directly compare model fits across studies. Lack of standardized reporting is not a problem specific to structure–function questions, but a more general concern in network neuroscience [77]. To our knowledge, out-of-sample predictions of FC are typically reported to be between $R = 0.3$ and $R = 0.5$, with the largest approximately $R = 0.6$ [54].
Individual Differences in Structure–Function Coupling

Although a consensus is emerging about the relationship between structural and functional networks at the group level, much less is known about the alignment between structural and functional configurations in individuals. *A priori*, strong alignment between structure and function appears desirable to ensure communication fidelity; a straightforward prediction would be that the correspondence between SC and FC should have behavioral consequences. Indeed, a recent study demonstrated that the extent of alignment between structure and function correlated with individual differences in cognitive flexibility [83]. Intriguingly, and reinforcing the idea of an imperfect match between structure and function, a recent study showed that SC and FC show distinct patterns of intersubject variance and therefore map onto cognitive function in distinct ways [84].

More broadly, individual differences in structure–function coupling provide a new opportunity to quantify the effects of manipulations and perturbations, such as cognitive tasks [83,85], development and aging [81,86,87], neurological and psychiatric diseases [70,88], and lesions [54,89,90]. An important question that can be answered with this approach is whether structure and function align to the same extent in domain-general versus domain-specific tasks, or in task versus rest. Given the prominent relationship between functional configurations in task and rest [25], it seems likely they would display a similar relationship with structure. Two recent studies support this notion, showing that regional differences in structure–function coupling observed in rest (discussed in more detail in the next section) can be recapitulated using task-based FC [81] and patterns of regional activation [85].

The challenge of studying individual differences in structure–function coupling may be compounded by individual variation in functional boundaries (see Outstanding Questions). Applying a uniform parcellation to all participants facilitates comparisons between individuals, but entails the assumption that areas can be mapped to identical spatial locations in every participant. Recent evidence from precision mapping studies using repeated measurements in single individuals suggests that functional boundaries can systematically vary across individuals [22,91–93], as well as within individuals but across sessions [94]. It is not difficult to imagine that structure–function relationships may not be perfectly captured if areas are misaligned across individuals. How to reconstruct networks while respecting individual differences in topographic organization remains a major question for future studies of structure–function relationships.

Regional Heterogeneity: Annotating Brain Graphs

Direct SC accounts for much of the variance observed in FC, while incorporating higher-order interactions and individual-subject variation bring the two even closer. And yet a sizable portion of variance in FC remains elusive. An emerging possibility is that macroscopic graph representations do not embody the requisite biological detail to completely predict function. The graph model deliberately abstracts away local attributes that we know to be important for neural activity and functional interactions, including transcription profiles, cytoarchitecture, receptor densities, laminar differentiation, and temporal dynamics. It is easy to envision how these attributes may influence how signals are generated, routed, transformed, and integrated by neuronal populations as they traverse the network, shaping the resulting functional connection patterns. In the following section we argue that the graph representation with uniform nodes leaves out important information, naturally limiting the extent to which FC can be predicted using only SC.

Multiple studies have related local molecular, microstructural, morphometric, and temporal measurements to macroscale network embedding. For example, transcriptional signatures...
tend to covary more prominently among structurally and functionally connected regions [95–97], and prediction of function from structure is enhanced by information about gene coexpression [62]. Microstructural profile covariance is also correlated with FC, including morphometric similarity [98], intracortical myelination [99], and laminar differentiation [100]. Recent evidence from high-resolution MRI demonstrates that activity during cognitive tasks is layer-dependent [101], suggesting that structure–function relationships may also be layer-dependent. Likewise, neurotransmitter receptor distributions fundamentally shape the range and expression of functional interactions [102]. Finally, the intrinsic temporal dynamics of individual regions systematically vary across neocortex [103–106], promoting synchrony among some neuronal populations but also restricting synchrony among others. Altogether, how local properties relate to macroscale network connectivity remains an exciting open question [107,108]. Increasing focus on annotated graphs, in which nodes are labeled with additional metadata, may ultimately enrich our understanding of how local circuitry contributes to global functional patterns [109,110].

If global structure–function relationships depend on microscale properties, we are presented with an intriguing possibility: the relationship between structure and function may itself be heterogeneous across the brain (Figure 3). In other words, structure may be more tightly coupled to function in some areas compared with others. Indeed, several recent studies, independently conducted and using different methods, have found converging evidence that structure–function
relationships are organized around a hierarchical gradient spanning unimodal to transmodal cortex [78,111]. Specifically, structure and function appear to be tightly coupled in unimodal sensory areas, but systematically decouple towards transmodal cortex at the apex of the hierarchy [63,81,82,100]. This decoupling is observed over the course of normative development [81] and is observed not only for FC, but for task activation patterns as well [85]. A prominent account posits that rapid evolutionary expansion of association cortices effectively untethers polysensory regions from molecular signaling gradients and canonical sensory-motor activity cascades, resulting in fundamentally different structure–function relationships along the unimodal-transmodal hierarchy [79].

The gradual decoupling of structure and function may reflect systematic hierarchical variation in laminar differentiation [100] and cytoarchitecture [63]. Two recent computational modeling studies support this idea. In the first, microscale-related parameters of a biophysical model were allowed to differ between brain regions [73]. The best-fitting model was characterized by strong recurrent connections and excitatory subcortical input in sensorimotor regions; conversely, default network regions had weak recurrent connections and excitatory subcortical inputs [73]. A complementary study found that biophysical models could be fitted to FC significantly better if they were informed by hierarchical heterogeneity estimated from T1w/T2w ratios [80]. This regional heterogeneity may reflect spatial variation in cytoarchitecture; for instance, dendritic arborization patterns support distinct algorithmic transformations of converging inputs, including selecting, routing, and multiplexing information [112]. Altogether, multiple lines of evidence suggest that the present graph model with uniform nodes obscures important biological detail; an important question for future research is how to integrate node annotations in models of structure–function relationships [110].

Modulating Structure–Function Relationships

Perhaps the most important annotations missing from current macroscale wiring diagrams are the neurotransmitter receptor fingerprints of each node. Modulation via ascending projections from the brainstem and subcortical nuclei alters neuronal firing rate, making neurons more or less responsive to incoming signals. The resulting adjustments in neural gain fundamentally alter how signals are routed through the network, how they are transformed, and ultimately, how they are integrated [113,114].

Zooming out and considering the network as a whole, it is easy to see that **neuromodulation** provides a mechanism by which a static structural network can support distinct propagation patterns [113,114] (Figure 4). This phenomenon is observed across a variety of generic and real-world networked systems, where a single network can support distinct spatiotemporal propagation regimes depending on the interaction patterns unfolding on the network [115]. An intuitive example is road traffic: depending on conditions (time of day, day of the week, weather, construction), the same road network may feature distinct traffic loads and patterns. In an analogous manner, the system of ascending neuromodulatory projections confers the capacity to translate the static anatomical network into multiple functional configurations and flexibly switch between such configurations. Moreover, each receptor type has a specific distribution, affinity, and effect on neural gain, meaning that modulation can be either targeted or diffuse and can be exerted over a range of time scales.

Recent evidence from pharmacological modulation supports the notion that the ascending arousal system promotes distinct functional configurations [113,114,116]. Functional network reconfiguration has been associated with perturbations of noradrenergic [117,118], dopaminergic [104,119], and serotonergic signaling [120,121]. In computational models, due to the complex
nonlinear dynamics playing out over the connectome, even small local modulation of the excitation-inhibition equilibrium can substantially change the organization of functional interactions, promoting dynamic switching between topologically integrated and segregated states [121,122]. Unfortunately, state-of-the-art computational models rarely take neuromodulation into account, while the brainstem and subcortex are often left out of network reconstructions due to challenges in fiber tracking and parcellating some nuclei. Understanding how neuromodulation fits into the structure–function relationship is a key frontier in the field (see Outstanding Questions).

Function or Property?

In the previous two sections we considered the possibility that network structure could be enriched by additional local information. Here we ask whether we are correctly defining network function in terms of FC. We begin by drawing the distinction between structure–function and structure–property relationships. In a complex system marked by a specific size, shape, arrangement, and orientation, a property may be any measurable feature, but this is different from their purpose or function. For instance, the mass and charge of a protein are features, but the function of the protein is to bind and interact with another molecule. Although resting correlation patterns display many intuitively appealing and methodologically convenient attributes, they are likely not the primary purpose of inter-regional signaling, but rather a manifestation of that process.

This idea has already gained a footing in the field, with multiple efforts under way to understand how the structural organization of the brain can influence properties other than resting state FC. One straightforward extension is to link structure and time-varying or dynamic FC [96,123]. Another is to operationalize higher-order interactions among pairwise functional connections, either by constructing hypergraphs that describe functional interactions among three or more nodes simultaneously [124] or temporal networks that capture interactions among nodes in successive time frames [125,126]. Given the degenerate nature of functional networks [127], there is also increasing effort to project functional dynamics to lower-dimensional spaces or manifolds that compactly summarize time-varying interactions [102].
Taking this notion further, we envision increasing focus on properties more directly linked to internal representations and behavior [128]. For example, SC may influence the participation of individual regions in intrinsic functional networks [129]. The anatomical connectional fingerprint or embedding of some areas may predispose them to frequently switch affiliation among large-scale cognitive systems, while others may display stable or invariant affiliation with one system [123]. Other approaches may focus directly on relating SC to task activation [85]. Particularly exciting are advances in artificial intelligence, such as reservoir computing, that make it possible to implement connectomes as artificial neural networks [130]. These ‘neuromorphic’ or ‘biomimetic’ networks, endowed with realistic connection patterns and biophysical dynamics, can process time-varying signals and be trained on a range of tasks, including speech recognition and spatial navigation, allowing researchers to directly assess the relation between anatomical connectivity and functional repertoire.

Concluding Remarks

Although the modern theory of structure–function relationships in the brain is still in its infancy, several of its intellectual arcs are now coming into focus. Structure leaves an indelible mark on function, but a rich literature supports the notion that the link between SC and FC is complex, precluding a simple one-to-one mapping. Emerging models emphasize higher-order interactions via anatomical links that transcend dyadic relationships, opening fundamentally new opportunities to ask how the wiring of the brain supports function. Structural network reconstructions enriched with cellular and molecular metadata, in concert with more nuanced representations of functions and properties, hold great potential for a refined and truly multiscale understanding of the structure–function relationship. Altogether, the confluence of technological, analytic, and theoretical advances opens fundamentally new opportunities to discover physical laws that translate structure to function in brain networks.

Acknowledgments

We thank Vincent Bazinet, Golia Shafei, Bertha Vazquez-Rodriguez, Zhen-Qi Liu, and Justine Hansen for their valuable input. This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains for Healthy Lives initiative. B.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN #017-04265), from the Canadian Institutes for Health Research (CIHR Project Grant PJT-155920), and from the Canada Research Chairs Program.

References

1. Chiang, A-S. et al. (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11
2. Shanks, M. et al. (2013) Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7, 89
3. Oh, S.W. et al. (2014) A mesoscale connectome of the mouse brain. Nature 509, 207
4. Bota, M. et al. (2015) Architecture of the cerebral cortical association connectome underlying cognition. Proc. Natl. Acad. Sci. U.S.A. 112, E2093–E2101
5. Marlow, N.T. et al. (2012) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–38
6. Majka, P. et al. (2016) Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template. J. Comp. Neurol. 524, 2161–2181
7. Sporns, O. et al. (2000) The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42
8. Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of small-world networks. Nature 393, 440
9. Young, M.P. (1993) The organization of neural circuits in the primate cerebral cortex. J. Roy. Soc. Lond. B 252, 13–19
10. Köter, R. et al. (2001) Connectional characteristics of areas in Walker’s map of primate prefrontal cortex. Neurocomputing 38, 741–746
11. Hagmann, P. et al. (2008) Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159
12. van den Heuvel, M.P. et al. (2012) High-cost, high-capacity backbone for global brain communication. Proc. Natl. Acad. Sci. U.S.A. 109, 11372–11377
13. Zamora-López, G. et al. (2013) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front. Neuroinform. 4, 1
14. Bullmore, E. and Sporns, O. (2012) The economy of brain network organization. Nat. Rev. Neurosci. 13, 336
15. Horvat, S. et al. (2016) Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol. 14, e1002512
16. Roberts, J.A. et al. (2018) The contribution of geometry to the human connectome. Neuroimage 124, 379–393
17. Van den Heuvel, M.P. et al. (2016) Comparative connectomics. Trends. Cogn. Sci. 20, 345–361
18. Biswal, B. et al. (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541

Outstanding Questions

Do different regions and subnetworks utilize specialized signaling mechanisms or protocols? For instance, do unimodal regions send, receive, and transform signals in a fundamentally different way from transmodal regions?

How can we incorporate individualized parcellations to understand structure–function coupling? Could regional differences in structure–function coupling be due to greater interindividual variability of structural and functional organization in transmodal cortex compared with unimodal cortex?

Does the structure–function relationship vary across individuals? How is structure–function coupling related to individual differences in cognition and behavior, or to disease state?

Much of the literature on structure–function coupling focuses on resting-state recordings, but how does this relationship depend on external stimulation, cognitive engagement, and affective state? Do some tasks elicit more or less alignment between structural and functional connectivity?

The sequence of neurons and neuronal populations that a signal passes through presumably changes the nature of the signal and its downstream effect. How do local microscale properties (e.g., molecular, cytoarchitectonic, laminar, and receptor distributions) transform signals as they propagate through neuronal networks?

How does the ascending arousal system modulate the link between structure and function? Incorporating receptor profiles, as well as subcortical (e.g., striatal, thalamic) projections into statistical and computational models is a key challenge for future studies.

Much of the present review focuses on noninvasive, MRI-based measurements of structural and functional connectivity. Do the same findings hold for networks reconstructed at finer spatial scales, for instance, at the neuronal and laminar resolutions? Do the same findings hold for functional networks reconstructed using calcium imaging or electrophysiology?
19. Damoiseaux, J. et al. (2006) Consistent resting state networks across healthy subjects. Proc. Natl. Acad. Sci. U.S.A. 103, 13848–13853.
20. Bellec, P. et al. (2010) Multi-level bootstrap analysis of stable clusters in resting-state fMRI. NeuroImage 51, 1129–1139.
21. Thomas Yeo, B. et al. (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.
22. Gondran, E.M. et al. (2017) Precision functional mapping of individual human brains. Neuron 95, 791–807.
23. Noble, S. et al. (2019) A decade of test-retest reliability of functional connectivity: a systematic review and meta-analysis. NeuroImage 116:157.
24. Smith, S.M. et al. (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040–13045.
25. Cole, M.W. et al. (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251.
26. Honey, C.J. et al. (2013) Can structure predict function in the human brain? NeuroImage 52, 766–776.
27. Torre, M.S. and Greicius, M.D. (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct. Funct. 213, 525–533.
28. Honey, C.J. et al. (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040.
29. Shen, K. et al. (2012) Information processing architecture of functionally defined clusters in the macaque cortex. J. Neurosci. 32, 17468–17476.
30. Van Den Heuvel, M.P. et al. (2008) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 30, 3127–3141.
31. Alves, P.N. et al. (2019) An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Commun. Biol. 2, 1–14.
32. Mišić, B. et al. (2014) The functional connectivity landscape of the human brain. PLoS One 9, e111007.
33. Shen, K. et al. (2015) Stable long-range interhemispheric coordination is supported by direct anatomical projections. Proc. Natl. Acad. Sci. U.S.A. 112, 6473–6478.
34. Uddin, L.O. et al. (2008) Residual functional connectivity in the split-brain revealed with resting-state fMRI. Neuronreport 19, 703.
35. O’Reilly, J.X. et al. (2013) Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proc. Natl. Acad. Sci. U.S.A. 110, 139862–139867.
36. Layden, E.A. et al. (2019) Interhemispheric functional connectivity in the zebra finch brain: absent the corpus callosum in normal ontogeny. NeuroImage.
37. Mišić, B. et al. (2015) Cooperative and competitive spreading dynamics on the human connectome. Neuron 88, 1518–1529.
38. Betzel, R.F. et al. (2018) Diversity of meso-scale architecture in human and non-human connectomes. Nat. Commun. 9, 346.
39. Power, J.D. et al. (2011) Functional network organization of the human brain. Neuro 72, 655–671.
40. Betzel, R.F. et al. (2017) The modular organization of human anatomical brain networks: accounting for the cost of wiring. Nat. Neurosci. 1, 42–68.
41. Mišić, B. et al. (2016) Network-level structure-function relationships in human neocortex. Cereb. Cortex 26, 5285–5306.
42. Mesel, A. et al. (2014) Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Comput. Biol. 10, e1003250.
43. Graham, D. and Rockmore, D. (2011) The packet switching brain. J. Cogn. Neurosci. 23, 267–276.
44. Golgi, J. et al. (2014) Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl. Acad. Sci. U.S.A. 111, 833–838.
45. Crofts, J.J. and Higham, D.J. (2009) A weighted communicability measure applied to complex brain networks. J. Roy. Soc. Interface 6, 411–414.
46. Honey, C.J. et al. (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. U.S.A. 104, 10240–10245.
47. Breakspear, M. (2017) Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340.
48. Szar-Leon, P. et al. (2015) Mathematical framework for large-scale brain network modeling in The Virtual Brain. NeuroImage 111, 385–430.
49. Deoo, G. et al. (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. U.S.A. 106, 10302–10307.
50. Lim, S. et al. (2019) Discordant attributes of structural and functional brain connectivity in a two-layer multiplex network. Sci. Rep. 9, 2895.
51. Bettinardi, R.G. et al. (2017) How structure sculpts function: unveiling the contribution of anatomical connectivity to the brain’s spontaneous correlation structure. Chaos 27, 047409.
52. Delignières, F. et al. (2016) NODEX and tensor-based microstructural indices as predictors of functional connectivity. PLoS One 11, e0153404.
53. McIntosh, A.R. and Mišić, B. (2013) Multivariate statistical analyses for neuroimaging data. Annu. Rev. Psychol. 64, 499–525.
54. Rosenthal, G. et al. (2018) Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes. Nat. Commun. 9, 2173.
55. Avena-Koenigsberger, A. et al. (2018) Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 19, 17.
56. Mišić, B. et al. (2014) A network convergence zone in the hippocampus. PLoS Comput. Biol. 10, e1003982.
57. Atasoy, S. et al. (2016) Human brain networks function in connectome-specific harmonic waves. Nat. Commun. 7, 10340.
58. Aldehouri, F. et al. (2014) Network diffusion accurately models the relationship between structural and functional brain connective networks. NeuroImage 90, 335–347.
59. Worrell, J.C. et al. (2017) Optimized connectome architecture for sensory-motor integration. Nat. Neurosci. 1, 415–430.
60. Avena-Koenigsberger, A. et al. (2017) Path ensembles and a tradeoff between communication efficiency and resilience in the human connectome. Brain Struct. Funct. 222, 603–618.
61. Avena-Koenigsberger, A. et al. (2019) A spectrum of routing strategies for brain networks. PLoS Comput. Biol. 15, e1006833.
62. Betzel, R.F. et al. (2019) Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography. Nat. Biomed. Eng. 1.
63. Vazquez-Rodriguez, B. et al. (2019) Gradient of structure-function tethering across neocortex. Proc. Natl. Acad. Sci. U.S.A. 116, 21219–21227.
64. Seguin, C. et al. (2018) Navigation of brain networks. Proc. Natl. Acad. Sci. U.S.A. 115, 6297–6302.
65. Deoo, G. et al. (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43.
66. Cabral, J. et al. (2017) Functional connectivity dynamically evolves on multiple timescales over a static structural connectome: models and mechanisms. NeuroImage 160, 84–96.
67. Ghosh, A. et al. (2008) Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput. Biol. 4, e1000196.
68. Speigler, A. et al. (2016) Selective activation of resting-state networks following focal stimulation in a connectome-based network model of the human brain, eNeuro 3.
69. Roberts, J.A. et al. (2019) Metastable brain waves. Nat. Commun. 10, 1056.
70. Jirsa, V.K. et al. (2017) The virtual epileptic patient: individualized whole-brain models of epilepsy spread. NeuroImage 145, 377–388.
71. Hansen, E.C. et al. (2015) Functional connectivity dynamics: modeling the switching behavior of the resting state. NeuroImage 105, 525–535.
72. Schirmer, M. et al. (2018) Inferred multi-scale neural mechanisms with brain network modeling. eCell 7, e20807.
Trends in Cognitive Sciences

73. Wang, P. et al. (2019) Invasion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Sci. Adv. 5, eaat7854

74. Proix, T. et al. (2017) Individual brain structure and modelling predict seizure propagation. Brain 140, 641–654

75. Abedonze, F. et al. (2019) Functional brain connectivity is predictable from anatomic network's Laplacian eigen-structure. Neuronage 172, 728–739

76. Molink, J. et al. (2016) The spatial correspondence and genetic influence of inter-hemispheric connectivity with white matter microstructure. Nat. Neurosci. 22, 809–819

77. Hallquist, M.N. and Hillary, F.G. (2018) Graph theory approaches to functional network organization in brain disorders: a critique for a brave new world. Nat. Neurosci. 3, 1–26

78. Margulies, D.S. et al. (2016) Structuring the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. U.S.A. 113, 12574–12579

79. Buckner, R.L. and Krienen, F.M. (2013) The evolution of distributed association networks in the human brain. Trends. Cogn. Sci. 17, 648–665

80. Demirtas, M. et al. (2016) Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics. Neuron 341966

81. Baum, G.L. et al. (2019) Development of structure-function coupling in human brain networks during youth. Proc. Natl. Acad. Sci. U.S.A.

82. Preti, M.G. and Van De Ville, D. (2019) Decoupling of brain function from structure reveals regional behavioral specialization in humans. Nat. Commun.

83. Medaglia, J.D. (2016) Functional alignment with anatomical networks is associated with cognitive flexibility. Nat. Hum. Behav. 2, 156

84. Zimmermann, J., et al. (2018) Unique mapping of structural and functional connectivity in Cereb. Cortex 29, 4659–4669

85. Wu, D. et al. (2019) Hierarchy of connectivity-function relationship of the human cortex revealed through predicting activity across functional domains. bioRxiv 591776

86. Spreker, K. et al. (2019) Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52, 290–301

87. Uddin, L.Q. et al. (2011) Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J. Neurosci. 31, 18578–18589

88. Cocci, L. et al. (2014) Disruption of structure-function coupling in the schizophrenia connectome. Neuroimage: Clinical 4, 779–787

89. Grayson, D.S. et al. (2016) The rhesus monkey connectome predicts disrupted functional networks resulting from pharmacogenetic inactivation of the amygdala. Neuroimage 91, 453–469

90. Roland, L.J., et al. (2017) On the role of the corpus callosum in interhemispheric functional connectivity in humans. Proc. Natl. Acad. Sci. U.S.A. 114, 12578–12583

91. Mueller, K. et al. (2013) Individual variability in functional connectivity architecture of the human brain. Neuroimage 77, 586–606

92. Wang, D. et al. (2015) Parcelling cortical functional networks in individuals. Nat. Neurosci. 18, 1535

93. Laumann, T.O. et al. (2015) Functional system and area organization of a highly sampled individual human brain. Neuroimage 97, 657–670

94. Salehi, M. et al. (2020) There is no single functional atlas even for a single individual: parcellation of the human brain is more dependent. Neuroimage 208, 116360

95. Richardi, J. et al. (2019) Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241–1244

96. Fuller, B.D. and Fornito, A. (2016) A transcriptional signature of hub connectivity in the mouse connectome. Proc. Natl. Acad. Sci. U.S.A. 113, 14350–14440

97. AmatkevinKöhl, A. et al. (2016) Hub connectivity, neuronal diversity, and gene expression in the Cerebralcortex eukaryotes connectome. PLoS Comput. Biol. 14, e1004989

98. Seidt, J. et al. (2018) Morphometric similarity networks detect microscale cerebral microcircuitry and predict inter-individual cognitive variation. Neuron 97, 251–267

99. Hunterburg, J.M. et al. (2017) A systematic relationship between functional connectivity and intracortical myelin in the human cerebral cortex. Cereb Cortex 27, 981–997

100. Parkula, C. et al. (2019) Microstructural and functional gradients are increasingly dissociated in transmodal cortex. PLoS Biol. 17, e3000254

101. Finn, E.S. (2019) Layer-dependent activity in human prefrontal cortex during working memory. Nat Neurosci 22, 1687–1688

102. Shine, J.M. et al. (2018) Human cognition involves the dynamic integration of neural activity and neurovascular systems. Nat. Neurosci. 22, 289

103. Keitel, A. and Gross, J. (2016) Individual brain areas can be identified from their characteristic spectral activation fingerprints. PLoS Biol. 14, e1002489

104. Shafiei, G. et al. (2018) Dopamine signaling modulates the stability and integration of intrinsic brain networks. Cereb. Cortex 28, 690–704

105. Gollo, L.L. et al. (2015) Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations. Phil. Trans. Roy. Soc. B 370, 20140265

106. van den Heuvel, M.P. and Yeo, B.T. (2017) A spotlight on bridging microscale and macroscale human brain architecture. Neuron 93, 1248–1251

107. Lariviere, S. et al. (2018) Microstructure-informed connectomics: enriching large-scale descriptions of healthy and diseased brains. Brain Connect. 9, 113–127

108. Murphy, A.C. et al. (2018) Explicitly linking regional activation and function connectivity: community structure of weighted networks with continuous annotation. arXiv, p. 1611.07962

109. Khambhati, A.N. et al. (2018) Modeling and interpreting mesoscale network dynamics. Neuroimage 180, 337–349

110. Mesulam, M.-M. (1998) From sensation to cognition. Brain 121, 1013–1052

111. Payeur, A. et al. (2019) Classes of dendritic information processing. Curr. Opin. Neurobiol. 58, 78–85

112. Bell, P.T. and Shine, J.M. (2016) Subcortical contributions to large-scale network communication. Neurosci. Biobehav. Rev. 71, 313–322

113. Shine, J.M. (2019) Neurovascular Influences on Integration and Segregation in the Brain. Trends Cogn. Sci. 23, 572–583

114. Hens, C. et al. (2019) Spatiotemporal signal propagation in complex networks. Nat. Phys. 15, 403

115. van den Brink, R.L. et al. (2019) Braintem modulation of large-scale intrinsic cortical activity correlations. Front. Hum. Neurosci. 13, 340

116. van den Brink, R.L. et al. (2016) Catecholaminergic neuroadaptations shapes intrinsic MTR functional connectivity in the human brain. J. Neurosci. 36, 7865–7876

117. Shine, J.M. et al. (2018) Catecholaminergic manipulation alters dynamic network topology across cognitive states. Nat. Neurosci. 2, 381–386

118. Alavash, M. et al. (2018) Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance. Neuroimage 172, 341–356

119. Tagliazucchi, E. et al. (2016) Increased global functional connectivity correlates with LSD-induced ego-dissolution. Curr. Biol. 26, 1034–1050

120. Deco, G. et al. (2018) Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD. Curr. Biol. 28, 3065–3074

121. Shine, J.M. et al. (2018) The modulation of neural gain facilitates a transition between functional segregation and integration in the brain. eLife 7, e31130

122. Fukushima, M. et al. (2018) Structure-function relationships during segregated and integrated network states of human brain functional connectivity. Brain Struct. Funct. 223, 1059–1104

123. Gu, S. et al. (2017) Functional hypergraph uncovers novel covariant structures over neurodevelopment. Hum. Brain Mapp. 38, 3823–3835

124. Mina, A. et al. (2015) Lag threads organize the brain’s intrinsic activity. Proc. Natl. Acad. Sci. U.S.A. 112, E2255-E2244
126. Griffa, A. et al. (2017) Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems. *Neuroimage* 155, 490–502

127. Marratec, G. et al. (2016) Functional connectivity’s degenerate view of brain computation. *PLoS Comput. Biol.* 12, e1005031

128. Brown, A.E. and De Bivort, B. (2018) Ethology as a physical science. *Nat. Phys.* 14, 653–657

129. Zhang, J. et al. (2016) Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. *Brain* 139, 2307–2321

130. Kawai, Y. et al. (2019) A small-world topology enhances the echo state property and signal propagation in reservoir computing. *Neural Net.* 112, 15–23

131. Peus, M.A. de and van den Heuvel, M.P. (2013) Estimating false positives and negatives in brain networks. *Neuroimage* 70, 402–409

132. Thomas, C. et al. (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. *Proc. Natl. Acad. Sci. U.S.A.* 111, 16574–16579

133. Maier-Hein, K.H. et al. (2017) The challenge of mapping the human connectome based on diffusion tractography. *Nat. Commun.* 8, 1549

134. Schilling, K.G. et al. (2019) Challenges in diffusion MRI tractography: Lessons learned from international benchmark competitions. *Magn. Reson. Imaging* 57, 194–209

135. Gratton, C. et al. (2018) Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. *Neuron* 98, 439–452

136. Lurie, D.J. et al. (2019) Questions and controversies in the study of time-varying functional connectivity in resting fMRI. *Net. Neurosci.* Published online December 2. https://doi.org/10.1162/netn_a_00116

137. Yang, W. and Yuste, R. (2017) In vivo imaging of neural activity. *Nat. Meth.* 14, 349

138. Hori, Y. et al. (2020) Comparison of resting-state functional connectivity in macaques with tracer-based cellular connectivity. *Neuroimage* 204, 116241

139. Knock, S. et al. (2009) The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models. *J. Neurosci. Meth.* 183, 86–94

140. Melozzi, F. et al. (2019) Individual structural features constrain the functional connectome. *Proc. Natl. Acad. Sci. U.S.A.* 116, 26961–26969