MicroRNA-mediated regulation of *KRAS* in cancer

Minlee Kim¹,² and Frank J Slack²*

Abstract

While microRNAs (miRNAs) and the *KRAS* oncogene are known to be dysregulated in various cancers, little is known about the role of miRNAs in the regulation of *KRAS* in cancer. Here we review a selection of studies published in 2014 that have contributed to our understanding of the molecular mechanisms of *KRAS* regulation by miRNAs and the clinical relevance of sequence variants that may interfere with functional miRNA-mediated *KRAS* regulation.

Keywords: microRNA (miRNA), *KRAS*, Cancer, Sequence variant, Single nucleotide polymorphism (SNP), *KRAS*-variant, rs61764370, rs712

Background

Since their discovery about two decades ago, the profound role of microRNAs (miRNAs) in various aspects of cancer is being uncovered including in cancer therapy [1,2]. MiRNAs modulate a wide range of biological processes, such as cellular proliferation, differentiation and apoptosis, canonically by binding to the 3′ UTR of mRNAs by partial complementarity and inhibiting mRNA stability and translation. Since oncogenic *KRAS* is frequently found in many cancers, including colon, pancreatic, and lung cancer, and different cancer types and stages exhibit distinctive miRNA profiles, the regulation of *KRAS* by miRNAs has drawn attention in the field. The *KRAS* oncogene, which encodes a GTPase signaling protein, is a key driver of complex, multistep tumorigenesis, as alteration and activation of the gene and its pathway lead to acquisition of cancerous properties [3].

Here we review the studies published in 2014 that explored miRNA-mediated regulation of *KRAS* in different cancers. We briefly discuss the tumor-suppressive role of miRNAs that target and regulate *KRAS* and the regulation of those miRNAs (Table 1). In addition, the clinical potential of sequence variants in the 3′ UTR of *KRAS* (Table 2) as a cancer biomarker by altering the function of miRNAs is discussed.

MiRNAs that target and regulate *KRAS* act as tumor suppressors

The seminal study by Johnson *et al.* identified the let-7 family of miRNAs as the first tumor-suppressive miRNA known to target and regulate *KRAS* [4]. Subsequently, other tumor-suppressive miRNAs, including miR-96, miR-30c and miR-181a, have shown to regulate *KRAS* in various cancers [5-7]. More recently, Gastaldi *et al.* have utilized a large scale profiling technology, small RNA sequencing, to profile miRNAs in cutaneous squamous cell carcinomas (cSCCs) and identified the miR-193b/365a cluster as one of the most prominently down-regulated miRNAs in murine skin tumor progression [8]. Their role as a tumor suppressor was confirmed in both mouse and human epidermis, as these two miRNAs modulated cellular proliferation, migration and clonogenic potential. Functional assays that showed an inverse relationship between the miRNAs and *KRAS* protein levels validated that the two miRNAs functioned through targeting *KRAS*. Additionally, the effects of the miRNAs were recapitulated with *KRAS* knockdown in squamous carcinoma cells [8].

While several miRNA expression profiles report deregulation of numerous miRNAs in various cancers, only a few miRNAs have been characterized. Liao *et al.* further investigated the role of miR-30b, one of the known down-regulated miRNAs in colorectal cancer (CRC) [9]. The clinical relevance of miR-30b was shown in a cohort of 91 CRC cases, in which the level of miR-30b was correlated with poor progression and survival. Ectopic expression and inhibition of miR-30b affected cellular proliferation in CRC cell lines and tumor growth in a xenograft mouse model as miR-30b promotes G1 cell-cycle arrest and apoptosis. The effect of miR-30b in tumor growth was mediated through targeting many genes including *KRAS* [9].
Table 1 MiRNAs that regulate KRAS cited in this Research Highlight

miRNA	Cancer type	Reference
let-7	Lung cancer	[4]
miR-96	Pancreatic cancer	[5]
miR-30c	Hereditary breast cancer	[6]
miR-181a	Oral squamous cell carcinoma	[7]
miR-193b/365a	Cutaneous squamous cell carcinoma (cSCC)	[8]
miR-30b	Colorectal cancer (CRC)	[9]
miR-96	Pancreatic ductal adenocarcinoma (PDAC)	[10]
miR-134	Glioblastoma (GBM)	[11]

Regulation of tumor-suppressive miRNAs that modulate KRAS signaling
As shown in the two above-mentioned studies, as well as many others, many miRNAs have shown to target and regulate KRAS in cancer. However, the mechanisms by which those miRNAs are regulated may lead to a better understanding of cancer development and an opening of new therapeutic approaches. Two recent studies revealed how two KRAS targeting miRNAs are regulated transcriptionally and by other factors in the signaling pathway.

In a cohort of 224 human pancreatic neoplasms, Tanaka et al. reported a widespread overexpression of EV1 oncogenic transcriptional factor in pancreatic ductal adenocarcinoma (PDAC) precursors and PDAC [10]. The group also uncovered that EV1 functioned in proliferation and migration in pancreatic cancer cells and can modulate KRAS protein levels and KRAS-ERK pathway by transcriptionally regulating miR-96 and miR-181. Ectopic introduction of miR-96, but not miR-181, decreased KRAS protein expression and resulted in cell cycle arrest in cells, suggesting miR-96 as a tumor suppressor in EV1-mediated KRAS regulation [10].

Using miRNA microarrays, Zhang et al. found that the MET receptor tyrosine kinase regulated miR-134 in glioblastoma (GBM) cells and glioblastoma stem cells (GSCs) [11]. Additionally, while miR-134 was down-regulated, multiple receptor tyrosine kinases (RTKs), MET, EGFR and PDGFR, were activated in GBM cells, GSCs and human tumors. The tumor-suppressive property of miR-134 was confirmed when overexpression of miR-134 inhibited proliferation in GBM cell and tumor growth in GSC-derived xenografts by targeting KRAS and STAT5B. MiR-134 regulation by RTK was mediated by MAPK and KLF4 transcription factor [11].

Sequence variants as potential effectors in miRNA-mediated regulation of KRAS
In addition to dysregulation of miRNAs, sequence variants in the 3′ UTR of target mRNAs can affect their gene regulation. By sequencing the regions of the 3′ UTR of KRAS in multiple non-small cell lung cancer (NSCLC) cases, rs61764370 (also known as the KRAS-variant) was identified as the first single nucleotide polymorphism (SNP) within a let-7 complementary site to be a biomarker for NSCLC risk [12]. The KRAS-variant has shown to function as a biomarker for risk of certain cancer types [13-16] and endometriosis [17], as well as a predictor for drug response [18,19]. However, the universality of this marker remains to be further investigated as some studies failed to show an association between the KRAS-variant and cancer risk [20,21] and drug response [22]. In addition, two recent studies on the patients enrolled in clinical trials found no association between stage 3 colon cancer and the variant in a large cohort [23], and no significant association between endometrial cancer and the variant due to a limited sample size [24].

Additional sequence variants in the 3′ UTR of KRAS have been actively searched for and tested for their potential as biomarkers. While not as extensively validated as the KRAS-variant, another SNP in the 3′ UTR of KRAS, the rs712 variant, is being assayed as a biomarker for risk of oral squamous cell carcinoma, gastric, colorectal and papillary thyroid cancer [25-28]. Although no novel NSCLC-associated variant was identified from a recent effort by Kim et al. due to a small sample size [29], this study, as well as a study by Sabarinathan et al. [30] suggested that some SNPs can disrupt proper miRNA-mediated KRAS regulation by destroying miRNA complementary sites and changing the secondary structures of the RNA.

Table 2 SNPs in the 3′ UTR of KRAS associated with cancer

SNP ID	Association with cancer	Reference
rs61764370 (KRAS-variant)	Risk of non small-cell lung cancer, epithelial ovarian cancer, triple-negative breast cancer, colorectal cancer. Drug response in metastatic colorectal cancer	[12-16,18,19]
rs712	Risk of oral squamous cell carcinoma, gastric cancer, colorectal cancer, papillary thyroid cancer	[25-28]

Conclusions and future directions
Understanding the molecular mechanism of miRNA-mediated regulation of KRAS by characterizing tumor suppressive miRNAs and oncoproteins that regulate tumor suppressive miRNAs in the KRAS signaling pathway would be beneficial for developing treatments in the clinic. In addition, the discovery of a validated sequence variant as a cancer biomarker for prognosis, diagnosis and treatment response would provide a valuable clinical tool. For example, many studies are examining the potential of the KRAS-variant as a cancer biomarker. However, the universal clinical relevance of the KRAS-variant remains uncertain. Since cancer is a very heterogeneous
disease, and many confounding factors such as population, age and external factors can affect the outcome, rigorous case-control studies are warranted to confirm the clinical application of variants as biomarkers for specific cancers.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MK and FJS participated in writing and revising of the manuscript. All authors read and approved the final manuscript.

Author details
1Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06511, USA. 2Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA.

Received: 26 September 2014 Accepted: 6 November 2014
Published online: 30 November 2014

References
1. Kim M, Karinski AL, Slack FJ: MicroRNA therapeutics in preclinical cancer models. Lancet Oncol 2011, 12:319–321.
2. Karinski AL, Slack FJ: Epigenetics and genetics: microRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nature Publishing Group 2011, 11:849–864.
3. Kamoube AB, Weinberg RA: Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008, 9:517–531.
4. Johnson SM, Goldhans H, Shingaraya J, Byrom M, Jarvis R, Cheng A, Laboulour E, Reinert KL, Brown D, Slack FJ: Ras is regulated by the let-7 microRNA family. Cell 2005, 120:635–647.
5. Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W, Liu J, Yu J, Chen J: miR-96 suppresses KRAS and functions as a tumour suppressor gene in pancreatic cancer. Cancer Res 2010, 70:6015–6025.
6. Tanic M, Yanowski K, Rodriguez-Antona C, Andrés R, Márquez-Rodas I, Ocioia A, Benitez J, Martinez-Delgado B: Derepressed miRNAs in hereditary breast cancer revealed a role for miR-30c in regulating KRAS oncogene. PLoS One 2012, 7:e38847.
7. Shin KH, Bae SD, Hong HS, Kim RH, Kang MK, Park NH: miR-181a shows tumor suppressive effect against oral squamous cell carcinoma by downregulating K-Ras. Biochem Biophys Res Commun 2011, 404:916–920.
8. Gustafdi C, Berteto T, Xu N, Bourget-Ponzo L, Lebrigand K, Fouine S, Popa A, Cardot-Deccia N, Meneguzzi G, Sonkonly E, Pavicic A, Mani B, Barby P, Ponzo G, Rezonzona R: miR-193b/365a cluster controls progression of epidermal squamous cell carcinoma. Carcinogenesis 2014, 35:1110–1120.
9. Liao W-T, Ye Y-P, Zhang N-J, Li T-T, Wang S-Y, Cui Y-M, Qi L, Wu P, Jiao H-L, Xie Y-J, Zhang C, Wang J-X, Ding Y-Q: MicroRNA-30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS. PloS KIPKCD and BCL2. J Pathol 2014, 232:415–427.
10. Tanaka M, Suzuki H, Shibahara J, Kunita A, Isagawa T, Yoshimi A, Kurakawa M, Miyazono K, Aburatani H, Ishikawa S, Fukayama M: EV1 oncoene promotes KRAS pathway through suppression of microRNA-96 in pancreatic cancer. Oncogene 2013, 32:2454–2463.
11. Zhang Y, Kim J, Mueller AC, Dey B, Yang Y, Lee D-H, Hachmann J, Finderle S, Park DM, Christensen J, Schott D, Purwot, Dutta A, Abounader R: Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma. Cell Death Differ 2014, 21:70–734.
12. Chin LL, Ramer E, Leng S, Zhai R, Nairr S, Babar I, Muller R-U, Straka E, Su L, Burki EA, Crowell RE, Patel R, Kulkarni T, Homer R, Zelterman D, Kidd KK, Zhu Y, Christian DC, Belinsky SA, Slack FJ, Weidhaas JB: A SNP in a let-7 microRNA complementary site in the KRAS 3′-untranslated region increases non-small cell lung cancer risk. Cancer Res 2008, 68:8535–8540.
13. Cerne J-Z, Stegel V, Gersak K, Novakovic S: KRAS rs61674370 is associated with HER2-overexpressed and poorly-differentiated breast cancer patients in hormone replacement therapy users: a case control study. BMC Cancer 2012, 12:105.
of the KRAS gene in lung and ovarian cancer cases. Cell Cycle 2014, 13:1030–1040.

30. Sabarinathan R, Wenzel A, Novotny P, Tang X, Kalari KR, Gorodkin J. Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites. PLoS One 2014, 9:e82699.

doi:10.1186/s13045-014-0084-2

Cite this article as: Kim and Slack. MicroRNA-mediated regulation of KRAS in cancer. Journal of Hematology & Oncology 2014 7:84.