The systematic documentation of calcite fabrics in stalagmites and flowstones provides robustness to palaeoclimate interpretation based on geochemical proxies, but it has been neglected because it is difficult to transform crystal morphologies into numerical values, and construct fabric time series. Here, general criteria that allow for coding fabrics of calcite composing stalagmites and flowstones is provided. Being based on known models of fabric development, the coding ascribes sequential numbers to each fabric, which reflect climate-related parameters, such as changes in drip rate variability, bio-mediation or diagenetic modifications. Acronyms are proposed for Columnar types, Dendritic, Micrite, Microsparite and Mosaic fabrics, whose use could then render possible comparison of calcite fabrics in stalagmites and flowstones from diverse latitudinal and altitudinal settings. The climatic and environmental significance of similarities in the geochemical signals and trends analysed in coeval stalagmites and flowstones (or differences in the signals and trends) will be more robust when compared with fabric time series. This is particularly true where, such as in the Holocene, changes in geochemical values may be subtle, yet fabrics may show changes related to variations in supersaturation, drip rate or input of detrital particles or organic compounds. The proposed microstratigraphic logging allows recognition of changes in stable isotope ratio or trace element values that can be ascribed to hydrology and diagenesis, with considerable improvement of reconstructions based on the chemical proxies of stalagmites and flowstones composed of calcite.

Abstract: The systematic documentation of calcite fabrics in stalagmites and flowstones provides robustness to palaeoclimate interpretation based on geochemical proxies, but it has been neglected because it is difficult to transform crystal morphologies into numerical values, and construct fabric time series. Here, general criteria that allow for coding fabrics of calcite composing stalagmites and flowstones is provided. Being based on known models of fabric development, the coding ascribes sequential numbers to each fabric, which reflect climate-related parameters, such as changes in drip rate variability, bio-mediation or diagenetic modifications. Acronyms are proposed for Columnar types, Dendritic, Micrite, Microsparite and Mosaic fabrics, whose use could then render possible comparison of calcite fabrics in stalagmites and flowstones from diverse latitudinal and altitudinal settings. The climatic and environmental significance of similarities in the geochemical signals and trends analysed in coeval stalagmites and flowstones (or differences in the signals and trends) will be more robust when compared with fabric time series. This is particularly true where, such as in the Holocene, changes in geochemical values may be subtle, yet fabrics may show changes related to variations in supersaturation, drip rate or input of detrital particles or organic compounds. The proposed microstratigraphic logging allows recognition of changes in stable isotope ratio or trace element values that can be ascribed to hydrology and diagenesis, with considerable improvement of reconstructions based on the chemical proxies of stalagmites and flowstones composed of calcite.

Keywords: speleothems; fabrics; calcite; aragonite; diagenesis; microstratigraphy

Citation: Frisia S., 2015. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimatic studies. International Journal of Speleology, 44 (1), 1-16, Tampa FL (USA), ISSN 0392-6672 http://dx.doi.org/10.5038/1827-806X.44.1.1

INTRODUCTION

Documentation of speleothem fabrics is fundamental for a robust interpretation of speleothem time series where stable isotopes and trace elements are used as proxy (Fairchild & Baker, 2012). Fabrics provide valuable information on post-depositional phenomena (diagenesis), such as phase transformations (aragonite to calcite), aggrading neomorphism (Frisia, 1996), dissolution and re-precipitation processes, which may alter the original geochemical signal. Petrographic observations should not be confined to the sole identification of diagenesis, particularly when U-series dating is problematic (Ortega et al., 2005; Hoffmann et al., 2009; Lachniet et al., 2012). For example, by observing changes in columnar calcite types, high-frequency variability of δ13C values in stalagmites could be explained as related to changes in drip rate and degassing (Boch et al., 2011).

A comprehensive classification of fabrics which accounts for growth mechanisms and relates morphologies to hydrology and drip-water properties (chemistry, presence of organic compounds, particulate etc.) was compiled by Frisia & Borsato (2010). Yet, there has been little advance in the use of fabrics as a complement to palaeo-proxy datasets since Frisia et al. (2000). Although it has been demonstrated that speleothem fabrics record hydrology, bio-influenced and post-depositional processes that influence the way geochemical proxy data are captured by cave minerals (Fairchild & Baker, 2012) their use is limited by the absence of a system that allows to construct a fabric time series comparable with geochemical time series.

Here, a speleothem microstratigraphic log is proposed as a logic system of creating fabric time series. The log is based on the hierarchical coding of fabrics typical of stalagmites and flowstones and builds upon accepted models for their development. The microstratigraphic log relies on the attribution of a progressive number to fabrics observed by Plane Polarized (PPL) and Cross Polarized Light (XPL) at the optical microscope, which reflects a hierarchic system.
that gives the lowest numbers to fabrics developed under conditions of constant drip of waters at low supersaturation with respect to calcite and low Mg/Ca ratio and/or negligible presence of impurities, and the highest to post-depositional (diagenetic) fabrics. The coded fabrics are thus plotted against age model, thus allowing comparison with geochemical time series. The microstratigraphic log is an inexpensive tool that requires a microscope and thin sections and some practice. It is recommended to use more sophisticated techniques, such as electron backscattered diffraction and TEM techniques need to be used (Fairchild & Baker, 2012) only when there is the need to know processes of crystal nucleation and growth processes and/or complex phase transformation.

The documentation of fabrics in a petrographic log was pioneered in a speleothem-based European Holocene palaeoclimate reconstruction (McDermott et al., 1999). The log highlighted for the first time that certain fabrics, such as a scaffold-like dendritic fabric, coincided with systematic shifts to 13C-enriched calcite. More recently, Luetscher et al. (2011) used microstratigraphic logs to reconstruct glacier mass balance fluctuations in the Swiss Alps. Belli et al. (2013) compared microstratigraphic logs, growth rates and stable isotope time series of two speleothems from the same cave in NE Italy to recognize how “site-specific” processes drove stable isotope ratios variations which allowed for the distinction of the hydrologic vs. hydroclimatic component to the isotope signal.

The coding of fabrics in the construction of the microstratigraphic log must be conceptually connected to parameters related to climate, which influence speleothem crystal growth. Only in such conceptual framework, the log becomes useful to provide robustness to the geochemical data or test the overall accuracy of the speleothem record. It becomes, thus, apparent that the most critical issue in its development is the appropriate coding of fabrics, which are significant for the type of speleothem-based study that is being conducted. Given that fabrics are recognized and defined by microscopy observation, coding is a somehow a subjective evaluation. It is, therefore, proposed here that coding shall be rooted on a general knowledge of how fabric relate to their environment of formation. Critically, there are uncertainties in recognizing the origin of fabrics whose development can be primary or the result of post depositional (diagenetic) processes. The study of speleothem diagenesis is still in its infancy, therefore, examples are here provided for fabrics that are accepted as being the result of diagenesis. It is then proposed that some fabrics, such as mosaic calcite and microsparite, are unequivocally of diagenetic origin. The basis of the hierarchy for coding fabrics as proposed here is provided in the following section.

MODELS OF FABRIC DEVELOPMENT: BASELINE FOR CODING

The logic underneath ranking stalagmite and flowstones calcite fabrics as proposed in Table 1 is based on our current understanding of the parameters that result in their development. Fabrics develop under certain environmental parameters, most important fluid flow and presence of impurities, which influence a certain spatial arrangement of crystals with a dominant form (or a few dominant forms). Calcite shows a large variety of morphologies, but known speleothem fabrics can be grouped in a few broad categories: columnar types, dendritic, micrite, microsparite and mosaic calcite (cf. Frisia & Borsato, 2010). The proposed order, from the columnar types to mosaic calcite, is a plausible hierarchic system that takes into consideration changes in drip rate (flow), progressive increase in calcite saturation index (where known) and Mg/Ca ratio and, finally, diagenetic transformation.

Columnar Fabrics

Columnar compact and open

Columnar calcite proper (C in Table 1) consists of crystals with the c axis commonly at 90 to 60° to the substrate, unit extinction, length fast, with a length to width ratio < 6:1 (Frisia et al., 2000). The acute and equant rhombohedra are the predominant individual crystal forms (Dickson, 1993). Columnar fabrics are characterized by competitive growth, or geometric selection, whereby crystals compete growing away from an interface. Crystals whose greatest growth vector is perpendicular to the substrate will be favoured, those with greatest growth vector orientated in different directions will be outcompeted. Above the interface, thus, small crystals with “random” growth directions are observed, as testimony of a nucleation episode (Fig. 1C). A crystal fabric with preferred orientation than develop in the “maturation stage” (Dickson, 1993) and the elongation can be with the slow (length slow) or the fast (length fast) optic ray parallel to crystal length. Commonly, columnar fabric consists of length-fast crystals, and Transmission Electron Microscope diffraction patterns have shown that the cleavage rhombohedron (10.4) is a common form (Frisia et al., 2000). Thus, both the cleavage and the acute rhombohedron (40.1) potentially create aggregates of crystals with straight to serrated boundaries with the elongation parallel to the fast optic ray and perpendicular to the substrate (cf. Dickson, 1993). Geometric selection should occur when growth of a stalagmite or flowstone is interrupted by an interface that requires re-nucleation.

When the crystals form a compact aggregate, with welded crystal boundaries, where inter-crystalline porosity is not discernible at the optical microscope, the fabric is columnar compact (C in Table 1). When intercrystalline boundaries are marked by the presence of linear inclusions, or pores, then the fabric is columnar open (Co in Table 1 and Fig. 1A-B).

The established general model for the development of compact (complete coalescence of crystallite) and open (incomplete coalescence) columnar calcite was established by Kendall & Broughton (1978), whereby the first type forms from a thin film of fluid, under relatively slow drip rate and enhanced degassing conditions (enhanced cave ventilation) and the latter forms from a thicker film of fluid, under higher drip
rate and less efficient degassing. Frisia & Borsato (2010) observed that, in temperate climate settings, C fabric forms under relatively constant discharge, low (up to 0.35) calcite supersaturation state ($\left(\frac{SI_{cc}}{SI_{cc}}\right)$), low Mg concentration in the dripwater (Mg/Ca ratio < 0.3) and negligible presence of particulate and/or organic colloids. Boch et al. (2011) illustrated that lamina couplets of compact and open columnar calcite in stalagnites from Katerloch cave in Austria developed from drip waters characterized by low Mg/Ca ratio (mean 0.01). The complete

Table 1. Calcite Fabrics, types and acronyms, code numbers and acronym of special features, which may provide additional information.

Fabrics	Type	Acronym	Progression in coding	Acronym for additional features
Columnar	Compact	C	1	\(C_{rt}, C_{lf}\)
Columnar	Open	Co	2	\(Co_{rt}, Co_{lf}\)
Columnar	Elongated	Ce	3	
Columnar	With lateral overgrowths	Ceo	4	
Columnar “spherulitic type growth”	Fascicular Optic	Cfo	5	
Columnar	Radiaxial fibrous	Crf	5.5	
Columnar	Microcrystalline	Cm	6	
Dendritic		D	7	\(D_{o}\) (Dendritic open)
Micrite		M	8	\(Hm =\) hiatus with micrite layer
Diagenetic	Microsparite	Ms	9	
Diagenetic	Mimetic replacement of aragonite fabrics by microsparite	Ms ara	10	
Diagenetic (?)	Mosaic calcite	Mc	11	
Diagenetic	Mosaic calcite with visible aragonite needle relics	Mc ara	12	

Fig. 1. Columnar Types. A) Elongated columnar, XPL, stalagmite from Liang Luar Cave, Flores Indonesia; B) Protruding crystal terminations in a stalagmitic flowstone, PPL, from Cave 370 in the Nullarbor, Australia; C) Columnar fabric showing lateral overgrowths marked by red arrows, XPL, Conturines Cave, N Italy. Note that the lateral overgrowths are not the same as randomly oriented crystals that, after nucleation, do not survive for the law of geometric selection. The lateral overgrowth “stem” from the stepped faces of a columnar individual, which survived thanks to geometric selection. D) Fascicular Optic Calcite (FOC), XPL, from a stalagmitic flowstone collected in Cave 370 Nullarbor, Australia. E) Map showing average Mg concentrations in FOC calcites in the same sample illustrated in D. Average Mg concentration in FOC is ca. 20,000 ppm. The FOC nucleated on a micrite/microsparite layer with Mg concentration up to 30,000 ppm. coalescence of “crystallites” in the Katerloch stalagnites was attained under low drip rates, high rate of degassing and water pH of ca 8.4, and a low HCO$_3$/CO$_3$ ratio, which favoured horizontal linear growth rate. By contrast, the open columnar type resulted from incomplete coalescence of “crystallites” in laminae produced by high drip rates, low rate of degassing, pH from 7.4 to 8 and, consequently, high HCO$_3$/CO$_3$ ratios, which promoted vertical linear growth rates. More positive C isotope ratios values in the compact columnar laminae then should reflect enhanced degassing, typical of low drip rates combined with intense cave ventilation (Boch et al., 2011). Within the open and compact columnar calcite fabrics, it is common to observe growth surfaces characterized by well-developed rhombohedra terminations, and/or flat terminations. Rhombohedra terminations are more common in the open columnar type. Flat terminations have been observed in association with dark, organic-rich laminae.
Elongated Columnar type

Elongated columnar (Ce) is composed of crystals with a length to width ratio of 6:1, most commonly 2 up to 60 mm long, and 0.2 up to 5 mm wide. These figures can be, in certain cases, exceeded, particularly where stalagmites do not show visible interfaces and re-nucleation phenomena. According to Dickson (1993), the elongated columnar fabric is the result of the preferential growth of the acute rhombohedron (40.4). Gonzalez et al. (1992) observed that development of acute rhombohedra in speleothems from Indiana, Kentucky, New Mexico and Puerto Rico resulted from the combination of supersaturation state, Mg/Ca ratio in the parent water and flow. Elongated arrays of crystals required fluid flow over the surface of the speleothem, a Mg/Ca ratio in the parent fluid ranging from 0.85 up to 2.8 and Si ranging from 0.1 to 0.4. Frisia et al (2000) reported that elongated columnar fabric in speleothems from temperate settings in Europe developed under constant drips, Si ranging from 0.1 to 0.35 and Mg/Ca ratio higher than 0.3.

Gonzalez et al. (1992) further proposed that elongated columnar fabrics develop from relatively fast flow that accelerates crystal growth perpendicular to the substrate and high nucleation rate (Gonzalez et al., 1992). This interpretation was then contrasted by Kendall (1993), who demonstrated that the formation of elongated columnar fabrics neither imply fast flow, nor high nucleation rates. Thus, it seems plausible to hypothesize that elongated columnar type forms from constant drip (water flowing at the speleothem surface as inferred by Gonzalez et al., 1992), similar Si but higher Mg/Ca ratios (>0.3) than for columnar compact and open.

Elongated columnar calcite fabric is common in flowstones developed from parent waters whose catchment intersected dolomitic or Mg-rich rocks. Turgeon & Lundberg (2001) observed elongated columnar type in flowstones from a cave in the Klamath Mountains (Oregon, USA) where the host rocks consist of marble, argillite and basalt. The elongated columnar fabric they described is characterized by large, acute crystal terminations, exceeding 750 μm, which have been interpreted as indicative of high flow in interglacial periods (Turgeon & Lundberg, 2001). The protruding terminations should favour a relatively turbulent flow, which would prompt degassing, increase the precipitation rate and promote incomplete coalescence of crystals and development of linear inclusions. Flat terminations, or rhombohedra terminations <200 μm then, should be interpreted as documenting low flow (Turgeon & Lundberg, 2001).

Elongated crystals may show lateral overgrowths (Ce in Table 1), in particular when micrite-rich layers are present in flowstones (cf. Frisia, 1996) (Fig. 1C). The formation of this type of elongated columnar calcite has not yet been fully explained. A plausible model of formation would be growth under relatively fast flow, similarly to the open columnar calcite, where intercrystalline spaces are occluded by organic colloidal particles that subsequently become the nucleation sites for micrite (cf. Frisia, 1999). Freytet & Verrecchia (1999) also documented diagenetic replacement of micrite by elongated calcite crystals with overgrowths in freshwater stromatolites. When “clots” of micrite are observed in sinters (flowstones) consisting of elongated columnar fabric with lateral overgrowths, thus, diagenesis may have occurred. Thus, the interpretation of elongated columnar calcite with lateral overgrowths and relics of micrite clots may imply diagenesis in flowstone layers, which were once porous and rich in organic particulate. This interpretative model does not disagree with the mechanism of formation of elongated columnar calcite proposed by Kendall (1993), although, it may imply post-depositional changes (Frisia, 1996). In such case, it is expected that some chemical properties were re-set and caution should be taken when interpreting stable isotope ratio values variability (or lack of it) recorded in flowstones consisting of Ce associated with relict micrite.

Spherulitic type growth in columnar fabrics: Fascicular Optic, Radi axial.

These fabrics consist of columnar polycrystals (length to width ratio > 6:1, commonly > 10:1) characterized by undulatory extinction due to the systematic variations of the orientation of the c-axes with respect to the substrate of “fibre-like” individuals that compose each polycrystal. If the c-axes of the crystal units that compose the polycrystal diverge from the centre outward, these are similar to the Fascicular Optic Fibrous Calcite (FOFC) described in Kendall (1985), (Fig. 1D). This fabric can then be labelled Columnar Fascicular Optic (Cfo) and its overall appearance is that of a sector of a spherulite, or a fan, consisting of bundles of elongated crystals bending outward. If the polycrystals possess a pattern of converging fast vibration directions, that is undulatory extinction converge away from the
substrate, then they are similar to radiaxial calcite (Kendall & Tucker, 1973; Kendall and Broughton, 1978; Kendall, 1985). Fabrics consisting of polycrystals showing brush extinction converging away from substrate when the rotating table is turned clockwise should then be labelled Columnar radiaxial fibrous (Crf). Both Cfo and Crf columnar types are characterized by curved cleavage, with upper concave curvature in the case of Crf and downward concave curvature in the case of Cfo. The extinction characteristics of Radiaxial calcite and Fascicular optic calcite are thoroughly described and illustrated for polycrystals in Neuser & Richter (2007).

These two fabrics are here grouped together because they form through a mechanism typical of spherulitic growth (cf. Sunagawa, 2005). This implies splitting of a crystal into a number of units with slightly diverging lattice orientation. When split growth is systematic, it is manifested as an “extinction brush”, or sweeping (undulatory) extinction on a polarizing microscope. Kendall (1993) proposed that the generation of fascicular optic and radiaxial calcites was related to crystal splitting caused either by high supersaturation or by the presence of ions (or colloids) that poisoned crystal surfaces. The formation of polycrystalline aggregates with spherulitic-type growth has been documented through experimental settings that used organic compounds and Magnesium (Mg) as additives. Magnesium typically affected crystal morphologies by altering the calcite nucleation sites and eventually caused crystal splitting (Meldrum & Hide, 2001).

In stalagmites from St. Michaels Cave in Gibraltar, low-Mg calcite polycrystals with sweeping, fascicular optic type extinction, formed under low drip rates (0.04 to 0.06 litres/day), from parent water with Mg/Ca ratio > 1.5 and SIcc of 0.5 (Mattey et al., 2010). Radiaxial Fibrous Calcites were documented in speleothems sampled in caves cut in dolomitic rocks (Neuser & Richter, 2007), which confirms an important role for Mg in driving the formation of spherulitic-type fabrics. The occurrence of Cfo and Crf seem to be typical in stalagmites and flowstones whose calcite Mg content is high (cf. Folk & Assereto, 1976), but still within the range of Low-Mg calcite, typically from >10,000 to <30,000 ppm (this study, Fig. 1E). Yet, the boundary conditions that shift the system from one that favours the development of elongated low-Mg calcites, to one that favours that of spherulitic-type fabrics (and finally the precipitation of aragonite) depend on a series of variables factors, including: temperature, the SIcc and Mg/Ca ratio, the carbonate ion concentration and the presence of organic compounds in the parent waters (Meldrum & Hide, 2001). Because all these factors interfere with each other, it becomes difficult to set precise Mg/Ca ratio and SIcc values for cave waters at which the transition from elongated to fascicular optic or radiaxial fabric occur. It is reasonable, however, to infer that Mg/Ca ratio of the parent water needs to exceed 0.35.

In terms of environmental and/or climate significance, an increase in Mg concentration in speleothems is commonly related to dry periods, when drip rate is low, transport of colloid from the soil should be reduced, Mg, Sr, Ba concentration should increase and δ18O values of the drips should become more positive (Orland et al., 2014). It is reasonable to assume, then, that Cfo or Crf are indicative of Prior Calcite Precipitation (PCP) and/or prolonged water-rock interaction (WRI) in dolomitized aquifers during dry episodes. The observation that Cfo is common in flowstones from caves cut in dolomite, however, also suggests that flow may influence crystal splitting, as already inferred by Gonzalez et al. (1992). For spherulitic growth, in fact, it is necessary that the growth front receives a continuous supply of “building material” from the solution, in order for the “platelets” originating from a nucleus to keep growing in the fastest direction (Sand et al., 2011). Thus, it is here proposed that the presence of Cfo in a speleothem implies an increase in Mg concentration in the parent water and laminar flow. In the case of the stalagmitic flowstone from a Nullarbor cave illustrated in Fig. 1D and E, the highest concentration of magnesium, up to 30,000ppm, is recorded in micrite layers capping the Cfo fabric and marking surfaces above which re-nucleation and geometric selection occurred. Hence, it is likely that the Cfo fabrics formed only when the speleothem surface was continuously wetted by the regular flow of a thin film of fluid. Under conditions of strong cave breathing in the Nullarbor caves PCP increased the Mg/Ca ratio in the parent waters (Wong et al., 2011). When fluid was not regularly flowing at the surface, than micrite rich in magnesium, rather than Cfo, developed.

Overall, the presence of Cfo and/or Crf indicates that speleothems formed under conditions of at least constant flow, and suggest that cave breathing or ventilation may result in kinetic modifications of the geochemical signals encoded in the two fabrics. From the available literature data, and this study, it is reasonable to assume that the columnar fabrics with spherulitic type growth most likely develop from dripwaters with Mg/Ca ≥ ~0.4 and ≤ ~3 and SIcc ≥ ~0.3 and ≤ ~0.5, that is, higher than those required for the development of elongated, compact or open columnar fabrics.

Columnar Microcrystalline type

The columnar microcrystalline type (Cm in Table 1) has been observed in stalagmites, not in flowstones and distinguished as a distinct type of columnar fabric in specimens from Italian Alpine settings. The Cm fabric is characterized by polycrystals with length to width ratio < 6:1, highly irregular intercrystalline boundaries, uniform extinction, punctuated by inter- and intra-crystalline microporosity (Frisia et al., 2000). The Cm is typical in speleothems showing laminae rich in organic colloidal particles (Fig. 2 A, B) (cf. Frisia et al., 2000). The notable difference with the typical columnar fabric is in the highly irregular crystal boundaries, which developed because of the presence of foreign particles that favoured the formation of crystal defects (see the examples illustrated in Fig. 7.18c in Fairchild & Baker, 2012) visible at the Transmission Electron Microscope (TEM). At the TEM, Cm polycrystals are clearly defect-ridden, with dislocations, lamellae and subgrain boundaries.
Fig. 2. Microcrystalline, dendritic and associated fabrics. Note how subtle changes in the arrangement of crystals distinguish open columnar, where the single composite crystals are mostly elongated along the c axis, from dendritic, where crystals branch in a scaffold-like texture. A) and B) Microcrystalline fabric at XPL, in a stalagmite from Grotta di Ernesto (N Italy) showing irregular boundaries, porosity, and domains of uniform extinction with irregular boundaries. These domains consist of polycrystalline aggregate. C) and D) Co fabrics at XPL in a stalagmite from Grotta di Carburangeli (S Italy) characterized by strong seasonal contrast in drip rate. In C) the composing crystals are > 50 μm long and single crystals, thus the fabric is not microcrystalline. Crystals do not branch, thus the fabric is not dendritic. D) shows incipient branching crystals with interfingering boundaries. The branching fabric inside the circle can be considered dendritic, because the composing crystals form an angle and show diverse extinction patterns. Nevertheless, the distinction is very subtle and, for the sake of simplicity, the overall fabric can still be classified Co. E) Real dendritic fabric, with scaffold-like morphology clearly visible in PPL in a stalagmite from Tham Doun May, Laos. F) The SEM image of the same specimen highlights the presence of semi-spheres attached to the calcite crystal surfaces, which consist of amorphous SiO$_2$, a likely by-product of microbial metabolism. This observation suggests both hydrologic instability and presence of microbial populations at the stalagmite surfaces as possible necessary component in a genetic model for the development of dendritic fabric.

(Frisia et al., 2000). This results in high intracrystalline microporosity that distinguishes Cm from the Co type, which is characterized by intercrystalline porosity. When comparing Cm and Co in thin section (Fig. 2A-C), the open columnar type shows relatively large, linear pores between each crystals, whereas the microcrystalline type has serrated boundaries, and because of the composite nature of each individual with uniform extinction, some of the “crystallites” of adjacent polycrystals cross-cut each-other, creating areas where the extinction is different from that of cross-cut individual. The presence of intracrystalline porosity and impurity-rich layers results in the opaque and milky appearance of Cm type in the polished hand specimen with visible “flame-like” polycrystals. Co type is also opaque and milky at the naked eye, but shows regular arrangement of parallel columnar crystals, similar to an open palisade.

The distinction between Co and Cm is useful when logging the microstratigraphy of a speleothem. Although they both form from parent fluid at low supersaturation with respect to calcite (SI$_c$ 0.1 to 0.35, Frisia et al., 2000) and variable drip rate, Cm formation implies input through the feeding system of organic colloids and particulate “in excess” when compared to the conditions of formation of Co. The “foreign” particles form a regular layer at the growing surface when the combination of low degassing and high drip rate results in an undersaturated (or barely at saturation) state for the film of fluid wetting the speleothem. Colloidal particles are most probably adsorbed at defect sites on the rugged surface of calcite crystals, and subsequently incorporated in the speleothem, possibly between single “crystallites” composing any of the polycrystal (see Fig. 5F in Frisia et al., 2000). The adsorption of foreign particles or organic molecules triggers development of crystal defects (Cölfen, 2003) typical of the Cm fabric.

In stalagmites from Alpine settings, the combination of low supersaturation, low degassing and increase in flushing of colloidal particles occurs in autumn, when soil efficiency diminishes because plants become dormant (Frisia et al., 2005). It is, thus, reasonable to hypothesize that the development of Cm is typical in stalagmites from temperate regions characterized by marked seasonal contrast in temperature, vegetation activity and autumnal rainfall. Its development requires also seasonal changes in cave ventilation, with a less efficient exchange between cave and atmospheric air occurring when the inflow of colloidal particle from the soil is greater. To date, available information about the vegetation cover suggests that Cm forms in Alpine caves developed below mixed conifers and deciduous forest (Frisia et al., 2000).
Dendritic Fabric

The Dendritic (D in Table 1) fabric is composed of branching polycrystals, with each branch consisting of stacked (10.4) rhombohedra. Under the optical microscope, two branches form an angle of ca. 90º, and are inclined of ca. 45º relative to the substrate. This V-shaped aspect of the fabric, which is particularly visible in cross polarized light, distinguishes D from Co, and its overall appearance resembles a scaffold, or warp and waft in a woven cloth, defining rounded to elongated pervasive porosity, rather than series of linear pores as in Co (Fig. 2D). The well-defined, rod-like crystal boundaries, branching into the adjacent crystal and the high intercrystalline, rather than intracrystalline, porosity distinguishes D from Cm. In the hand specimen, D fabric is characterized by milky, opaque appearance due to high intercrystalline porosity, related to the voids between the “warp and waft” which may then be sites where particles, impurities or fluid inclusions are trapped. Figures 2E and F illustrate dendritic fabric characterizing a stalagmite from cave Tam Doun May, in Laos. The dendritic fabric did not develop in all the stalagmites from the cave, but only in those with relatively fast drip, where a portion of the dripwater infiltrated within the speleothems, rather than flowing at their surfaces. Scanning Electron Microscopy observations show that the fabric is indeed very porous, where voids are defined by the arrangements of rods in a scaffold-like structure. The flanks of each rod are characterized by macrosteps that accommodate hemispheric particles. The hemispheres entirely consist of Si, most probably an amorphous phase, and it is reasonable to assume that they are indicative of bio-influenced precipitation (Frisia et al., 2012). Preliminary culture data on swabs taken at the tip of stalagmites in Tam Doun May cave reveal the presence of diverse microbial species, some derived from the soil zone, but others endemic (Evans, pers. comm., 2014). This supports growing evidence for bio-influenced calcium carbonate precipitation in caves (Banks et al., 2010) and suggests that some speleothem fabrics, such as D, may be the result of bio-influenced mineralization. McDermott et al. (1999) documented for the first time the dendritic fabric in stalagmites from Crag Cave, and reported that the layers consisting of D fabric were characterized by more positive δ13C values relative to C fabric layers in the same specimen. This phenomenon was attributed to more enhanced CO2 degassing during D fabric formation. Subsequently, Frisia et al. (2000) documented that the development of D fabrics required variable discharge, and a slightly higher Si/SO4 (up to 0.4) than the C fabrics formed in the same Alpine regional settings. The Tam Doun May D fabric reported in the present study suggests that bio-influenced precipitation should be included in its model of development in addition to degassing and hydrological instability. If microbial influence in carbonate precipitation plays the most important role in the formation of the scaffold-like structure typical of D fabric, then it becomes possible that a stalagmite consisting (or having layer) of D-fabric should not be discarded on the assumption that degassing influences the C isotope ratio. More specifically, if the D fabric is still porous in a sample, that is, if there has not been syndepositional occlusion of the pores by cementation, then the fabric may preserve geochemical signals that record rainfall and soil efficiency at the time of formation. To test the accuracy of D fabric in recording climate and environmental signal, it is recommended to run a few stable isotope ratio analyses in sectors of the stalagmites to be used for palaeoclimate reconstructions that are characterized by more and less porous D fabrics, and compare the results with C fabrics from the same sample (if present). If the C isotope ratios of D have more negative values than in the compact C, one could infer that kinetic processes did not modify the signal in D. In palaeoclimate studies, the best strategy of sampling when speleothems show D fabric is to compare geochemical time series in two coeval specimens from the same cave with diverse stalagmite morphologies.

Micrite fabric

By micrite fabric (M in Table 1) it is here intended a fabric consisting of crystals whose max dimension is 2 µm, which commonly appears dark in PPL (Fig. 3A) and dark brown in XPL (Fig. 3B). Micrite is one of the most intriguing speleothem fabrics, because the precipitation of micrite in experimental studies commonly requires an exceptionally high number of pre-existing nuclei, high supersaturation and/or the presence of organic compounds (Morse et al., 2003). In seawater, which has a calcite saturation index that greatly exceeds that of cave waters, abiotic formation of micrite appears to require nucleation on “old” sediment and is clearly favoured by organic molecules (Kaźmierczak et al., 1996; Morse et al., 2003). In continental environments, mechanisms of micrite formation in laminar calcretes and tufas implies a biotic intervention, such as precipitation mediated by cyanobacteria (Kaźmierczak et al., 1996; Alonso-Zarza & Wright, 2010). Micrite fabric has been observed associated with bio-influenced calcite moonmilk fibres and in calcareous tufa (Borsato et al., 2000; Frisia & Borsato, 2010). Similarly, micrite fabrics characterizes stromatolite-like structures in speleothems from the Swiss Alps grown under a glacier, where these structures mark periods of glacier retreat, highlighting that micrite is a palaeoglaciological proxy (Luetscher et al., 2011). Stromatolite-like micrite layers were observed in Holocene stalagmites from a mid altitude cave in the Dolomites and in Pliocene stalagmitic flowstones from the Nullarbor, where they coincide with reduction or cessation of the common abiotic speleothem growth processes (Frisia & Borsato, 2010; Frisia et al., 2012). Epifluorescence (UV) observations support the hypothesis that micrite fabric in stromatolitic-like structures is related to organic compounds and, most likely, to microbial laminae (Fig. 3C-D). Studies on Ca-homeostasis of cave bacteria suggest that cave microbes influence the formation of micrite (Banks et al., 2010). Thus, it appears plausible that the presence of micrite fabric is indicative of bio-influenced processes, which has important implications for palaeoclimate studies as micrite layers may be associated with shifts to more
Because of the high surface to volume ratio of micrite, one would expect that the small crystals were converted to a microsparite mosaic when aragonite rays were transformed into low-Mg calcite, as observed by Folk & Assereto (1976). It is, therefore, unclear whether micrite fabric is a diagenetic product of condensation-corrosion or a primary fabric. Most probably, micrite associated with stromatolite-like structures is a primary fabric, whereas micrite associated with aragonite can be diagenetic or not. To date, a general model for the genesis of micrite in stalagmites and flowstones does not exist because all occurrences of micrite reported in the literature pertain to fossil specimens. From the analogy with stromatolitic structures and experimental data, it is plausible to infer that micrite development in speleothems consisting of calcite is favoured by bio-mediation in a regime of relatively low discharge (Frisia et al., 2012).

Microsparite and Mosaic calcite

Microsparite (Ms in Table 1) consists of crystals >2 μm and < 30 μm in diameter arranged in a mosaic of anhedral to sub-euhedral crystals. Its origin is still uncertain, but a model for the genesis of microsparite needs to be proposed to assist in the logics behind the construction of a petrographic and microstratigraphic log that bears palaeoclimate significance. In the Nullarbor sample illustrated in Fig. 1E, for example, the δ13C values shift from -10.5‰ in Cfo to -4.0‰ in stromatolitic-like micrite (M) layers. This phenomenon was interpreted as a possible result of microbial colonization of the speleothem surface during a relatively dry period (Frisia et al., 2012).

Micrite may be also a “destructive” fabric (Cañaveras et al., 2001). Etching, biomechanical “micritization”, and condensation-corrosion may all create micrite (Cañaveras et al., 2001). Micrite associated with aragonite relics has been considered a “destructive” fabric, formed through condensation-corrosion (Martin-Garcia et al., 2009; Martin-Pérez et al., 2012). However, aragonite needles in many speleothems are replaced by microsparite (> 2 μm < 30 μm), rather than by micrite (Folk & Assereto, 1976; Frisia et al., 2002). Furthermore, in Antro del Corchia cave speleothems, micrite associated with aragonite forms layered “clots” that are not converted to microsparite (Fig. 3E).

The diagenetic fabrics: Microsparite and Mosaic calcite

Microsparite (Ms in Table 1) consists of crystals > 2 μm and < 30 μm in diameter arranged in a mosaic of anhedral to sub-euhedral crystals. Its origin is still uncertain, but a model for the genesis of microsparite needs to be proposed to assist in the logics behind the construction of a petrographic and microstratigraphic log that bears palaeoclimate significance. Microsparite is inferred to be the product of aggrading neomorphism of micrite (Folk, 1965; Folk & Assereto, 1976). The process of neomorphism implies the **in-situ** transformations of a mineral in itself (replacement of calcite by calcite) or by a polymorph (replacement of aragonite by calcite) (Armenteros,
Neomorphism is believed to take place through dissolution of the “precursor” on one side of a film of fluid and precipitation of the neomorphic phase on the other side of the film. The replacement of micrite by low Mg-calcite microsparite is most probably a process of aggrading neomorphism (Frisia, 1996). This is driven by the instability of very small crystals with high surface to volume ratio. But in order to occur at the low temperatures under which speleothems commonly form, the crystal size must be very small, which is the case of micrite (cf. Fairchild et al., 1994). Aggradation would occur when a flow of saturated solutions enters in contact with micrite (Fairchild et al., 1994), thus, the replacement of micrite by microsparite should imply a partial (or complete) opening of the system.

Microsparite is commonly observed in association with micrite in stromatolite-like layers within stalagmites (Fig. 3C, D) and in dark, organic-rich laminae (Frisia, 1996). In these cases, organic matter oxidation may have promoted sin-depositional dissolution-re-precipitation, with little consequence on the preservation of original geochemical signals, including the mobilization of U. The Microsparite fabric is also typical as a replacement phase in aragonite needles (Fig. 3E), in the form of mosaics of calcite crystals that mimic single aragonite crystals morphologies (Frisia et al., 2002). In speleothems, the process of neomorphism with replacement of a precursor by calcite microsparite may be favoured when discharge resumes after a dry period, where either aragonite or micrite had previously formed.

The process of microsparitization may also be influenced by the presence of inorganic or organic additives, which may control both the morphology of the precipitates and polymorphism (Sand et al., 2011; Rodriguez-Navarro & Benning, 2013). In speleothem-forming environments, the presence of organic compound and microbes is bound to be ubiquitous, and speleothem formation may not be dictated by sole inorganic processes (cf. De Choudens-Sánchez & González, 2009). For example, in some phreatic speleothems from the Nullarbor, calcite microsparite crystals growing on aragonite needles show at their nuclei UV fluorescence, which also marks growth stages of the rhombohedra (Fig. 3F). It is, thus, reasonable to infer that the development of microsparite is facilitated by the presence of organic compounds. It is plausible to infer that a bio-influenced mechanism favour the mimetic replacement of speleothem aragonite fabrics into microsparite (cf. Frisia et al., 2002). In summary, it is here proposed that occurrence of microsparite fabric in speleothems is indicative of diagenetic processes and it is suggested to consider Ms as a diagenetic fabric.

The Mosaic fabric (M in Table 1) consists of eu-edral to sub-euhedral low-Mg calcite crystals > 30 µm and < 1 cm in diameter, commonly showing triple junctions (angle between faces of three adjacent crystals = 120°). Each crystal in the Ms fabric typically includes ghosts of dark, needles, which are a distinguishing characteristic of calcite replacing aragonite (Frisia et al., 2002; Fairchild & Baker, 2012). The occurrence of Ms fabric has been, to date, mostly related to speleothem aragonite transformed into calcite (Fig. 4 A-C). Mosaic calcite, however, has been reported also as the product of dissolution and re-precipitation of former low-Mg calcite (cf. Fairchild & Baker, 2012). It is unclear, as yet, if mosaic calcite is the final product of neomorphism in a micrite -> microsparite -> sparite series in continental carbonates (Armenteros, 2010) or a product of dissolution of columnar calcite and re-precipitation of mosaic calcite driven by influx of undersaturated waters causing dissolution of a pre-existing fabric, and re-precipitation of sub-euhedral crystals. The latter case would be expected, as an example, when glacial meltwaters invaded cave systems during deglaciations.

Fig. 4. Diagenetic fabrics and Aragonite. A) Mosaic fabric. General appearance of mosaic calcite (Mc) replacing aragonite. Photo taken in PPL, stalagmite from Liang Luar cave, Flores, Indonesia; B) The same as A but seen at XPL; C) Relic aragonite clearly visible within the sub-euhedral to euhedral mosaic of calcite spar, same speleothem as in A and B; D) Micrite (M) associated with aragonite needles in a stalagmite from Antro del Corchia, Italy. Note the dark appearance in PPL of the micrite, due to its fine grained size. Microsparite (Ms) appears lighter, has crystals larger than micrite and replaces aragonite needles, but there is no clear replacement of micrite. The mosaic calcite (Mc) almost completely blurs the original aragonite fabric.; E) Elongated columnar calcite capped by acicular fabric radiating from a micrite layer. The needle-like crystals entirely consist of calcite, although their terminations may appear commonly square. There is no indication that the calcite needles replaced aragonite needles in the form of relic aragonite. Rather, it seems as if the crystals grew constrained by impurity-rich micrite. Flowstone from Grotta di Collalto, Italy, PPL.
Given that most speleothems formed at relatively low temperature, and that microsparite is more stable than micrite, it seems plausible that sparite mosaic is not the product of ripening of microspar (cf. Fairchild et al., 1994). Then, mosaic fabric consisting of sparite, without evidences of former aragonite needles within any euhedral or sub-euhedral individual, should be considered a diagenetic product of dissolution and re-precipitation of any of the primary calcite fabrics, most probably of the most porous, such as dendritic or microcrystalline or columnar open.

Aragonite transformation into Calcite as documented by the diagenetic fabrics

Microsparite and Mosaic calcite are considered, in the present study, diagenetic fabrics, which, in most cases, document aragonite to calcite transformation. Diagenetic mosaic calcite destroys the original aragonite fabrics, be it rays or needles (see Figs. 4C, D), and the preservation of metastable polymorphs “ghosts” (Fig. 4C) depends on the flow (cf. Armenteros, 2010), whereby “diagenetic” fluids may (or may not) be in contact with a “metastable” phase depending on the original porosity. The unequivocal presence of relic aragonite must be identified by X-Ray diffraction (XRD) with a diffractometer or by Electron Backscattered diffraction on a polished section. Quantification of the percentage of relic aragonite within the calcite is recommended to correctly interpret the chemical data.

In some cases, the transformation process preserves, at least partially, the fabric of the precursor aragonite. It is common to observe “transformed” aragonite speleothems characterized by an arrangement of mosaics of calcite crystals outlining columnar aragonite crystals with quadratic terminations (see Kendall & Broughton, 1978). Columnar aragonite crystals are pseudo-hexagonal individuals formed by twinning, and commonly radiate from the substrate forming rays (Folk & Assereto, 1976; Frisia et al., 2002; Frisia & Borsato, 2010). Replacement has been observed to occur preferentially at crystal defects (Frisia & Wenk, 1985), such as twin planes, and, in this case, transformation results in the partial preservation of the aragonite speleothem fabric (Fig. 4A). Aragonite in speleothems commonly shows acicular or elongated crystals (Railsback et al., 1997; Railsback et al., 2011; Wassenburg et al., 2012), and these morphologies may still be visible after transformation into calcite as illustrated in Fig. 4C and D.

Mimetic replacement is a possible candidate to explain occurrence of highly elongated columnar calcite crystals, very similar to acicular aragonite crystals, as the product of transformation. The case illustrated in Fig. 4E is that of an ancient flowstone, whose age is ca. 120,000 years (unpublished data, analyses performed by John Hellstrom), which formed in Collalto Cave in NE Italy cut in dolomite rock. The age implies the possibility that the flowstone underwent dissolution and re-precipitation when the cave was invaded by glacial meltwater during the deglaciation. Because the host rock is dolomite, it is reasonable to assume that the flowstone may have originally consisted of aragonite. However, petrographic observations of crystal tips show most common rhombohedra termination, rather than square terminations. In addition, the highly elongated columnar crystals and “needles” consist of single individuals, not of a mosaic of calcite microsparite as would be expected as a product of mimetic transformation. Finally, the crystals do not show any clear evidence, such as micro-inclusions, of the presence of aragonite. Therefore, the fabric illustrated in Fig. 4E is most probably primary, not diagenetic, or should be considered primary in the microstratigraphic log.

It is here suggested to consider the presence of aragonite relics in speleothem calcite “mimicking” aragonite as the unequivocal evidence for diagenetic transformation. Relicts of former primary or secondary aragonite are less frequent when aragonite is replaced by columnar calcite rather than by mosaic calcite (Perrin et al., 2014), yet relics of aragonite still attest to the diagenetic origin of columnar calcite encasing them. Samples similar to that illustrated in Fig. 4E consist exclusively of calcite as documented by XRD analyses, whereby an aragonite precursor should not be hypothesized on the basis of morphologic similarity.

To summarize, the presence of acicular fabric or of very elongated columnar individuals is not, by itself, indicative of aragonite transformation. Not even the presence of square terminations is unequivocal. Thus, if in doubt, XRD analyses and Transmission Electron Microscopy observations remain the best options to investigate diagenetic transformations in speleothem fabrics (Frisia et al., 2002; Wassenburg et al., 2012).

CODES AND MICROSTRATIGRAPHIC LOGGING

The microstratigraphic log is constructed by ascribing a progressive code, which is the same as a progressive number, to fabrics observed in thin section, in PPL and XPL, at the optical microscope. For each fabric, an acronym, or symbol, is provided in Table 1 as well as the hierarchic code. The construction of the microstratigraphic log in the basis for the fabric time series, and relies on a logic progression in the coding, from fabrics which are related to the most stable hydrological conditions to those which formed through diagenetic processes. Fabric recognition and coding is a subjective operation, because it relies on a human operator, but, if based on accepted models for fabric development as proposed in Section 2, it has the potential to become a common tool shared by speleothem-based palaeoclimate researchers.

The coding of fabrics proposed here to produce follows that already used by McDermott et al. (1999) and ascribes the lowest numbers to primary fabrics whose accepted model of formation implies relatively constant drips (hydrologic stability), and parent waters characterized by relatively low supersaturation state with respect to calcite and with low concentration of inorganic and/or organic “additives” to the solution. These are the columnar proper (C) and Columnar open (Co) fabrics (Table 1). The highest numbers should then be ascribed to the diagenetic fabrics, such as microsparite (Ms) and mosaic calcite (Mc), because
It is recommended to mark major features, such as hiatuses, and mark also the thin section outlines each section in labelled progressively from the top. A scanned picture of the whole specimen with the thin sections increments in mm where a specific fabric is observed, to its fabric acronym (Table 1). Then, sequential cells hierarchically in a legend, where each code is assigned to fabrics present in the thin sections before starting the actual microstratigraphic logging. In this first section, the operator should bear in mind that it is essential to keep precise track of distances from the top where changes in fabric occur.

To build the microstratigraphic log in a spreadsheet one column is labelled the “distance from top” and a second column “fabric code”, following the progression in coding given in Table 1. It is recommended to perform a first rapid check of the fabrics present in the thin sections before starting the actual microstratigraphic logging. In this first screening, the fabrics are recognized and organized hierarchically in a legend, where each code is assigned to its fabric acronym (Table 1). Then, sequential cells in the “distance from top” column report the spatial increments in mm where a specific fabric is observed, and the cells in the “fabric code” column report the code ascribed to the fabric.

In Fig. 6 a large thin section is illustrated with its microstratigraphic log overlain to show the correspondence between codes and actual fabrics. From Fig. 6 it becomes evident that coding is a subjective operation, because each observer may privilege one fabric over another where subtle differences are present. Yet, in the thin section shown in Fig. 6, the most important information is the occurrence of compact, open and elongated columnal calcite, and of micrite layers. According to the models of development for each of these fabrics, the stalagmite portion logged in Fig. 6 suggests changes in hydrology through time from constant (compact) to variable (open), with periods when particulate and foreign ions are transported by dripwater to the surface of the speleothem (elongated). The presence of micrite indicates that the system experienced periods of reduced flow, when microbial films could have colonized the speleothem surface. Critically, the fabrics in the speleothem illustrated in Fig. 6 have been found to record rainfall amount variability, and support the δ18O interpretation in terms of monsoon intensity changes in the Holocene (Griffiths et al., 2009).

The selection of the spatial resolution of the microstratigraphic log should be optimized for the research question. The highest resolution used to date in a microstratigraphic log was 20 to 50 µm, which was the resolution required to reconstruct hydrological variability in the Younger Dryas from a speleothem portion characterized by very slow growth rate (cf. Belli et al., 2013).

The progression in the coding system proposed in Fig. 6, follows the models of fabric development discussed in section 2 and summarized in Table 1, where 12 calcite fabrics are listed with their respective acronyms. Table 1 also supplies in the “Notes” column, acronyms that supplement the general information encoded in the number.

In any single speleothem, commonly only a few fabrics (three or four) are present. Thus, once the codes are replaced by the acronym for each fabric, the microstratigraphic log will appear as a relatively simple curve that shifts from the fabrics to the left hand side (lower code numbers), which identify relatively “regular” flow of water at low supersaturation and transporting few impurities, to fabrics on the right hand side of the graph, which mark dry events and/or diagenetic processes (higher values).

In the example shown in Fig. 7, there are four columnar calcite types present, and the order is: C, Co, Ce and C0. This progressive order follows the criteria provided in section 1, where the lowest code of C indicates development of the stalagmite from waters at low supersaturation state for calcite and little Mg or organic molecules.

![Fig. 5. Suggested sampling strategy to obtain a continuous thin section microstratigraphic sequence.](image-url)
as “additives”, and the highest code for Cfo indicates higher supersaturation and most likely the relatively highest Mg/Ca ratio reached by the feeding drip waters throughout the formation of the specimen. There are other two fabrics, micrite and microsparite, which suggest, respectively, a prolonged period of dryness and aggrading neomorphism. The association of micrite and microsparite in the same layers testifies to the ripening of micrite when its conditions of formation changed, possibly through the recovery of flow. The rationale for constructing the microstratigraphic log of the sample is hierarchizing the fabrics according to the progression provided in Table 1. Then, in the “Fabric code” column of the spreadsheet, depths from top when fabric changes occur are reported. For example: from 0 to 1 mm from top the fabric code is 1, or C, from 1 to 2 mm from top the code is 8 (or M), from 2 to 3 mm from top the code is 9 (or Ms), from 3 to 4 mm from top the code is 8 (M), from 4 to 5 mm from top the code is 1 (or C), ... from 9 to 13 mm the code is 1 (or C) and so on and so forth. Once all the sequence of fabrics from top to bottom has been rendered in numerical form through the codes, and the log constructed, the numbers are replaced by the fabric acronyms. It is, therefore, important to use the acronyms provided in Table 1 for the speleothem calcite fabrics, so that researchers can compare fabric datasets that use a common reference.

The issue of a common “reference” for transforming fabric changes in a curve becomes critical when fabrics are plotted against geochemical curves. In Fig. 7 it is clear that the shift of C isotope ratio values at ca. 25 cm from top occurs at a layer characterized by M, and the most positive C isotope ratio values in the series pertain to M and Ms. For example, if different speleothem records from the same region show coeval M layers associated with similar shifts to more positive δ^{13}C values, then it would be reasonable to infer that the occurrence of M reflects a regional history of hydrological stress when stalagmite tops became almost dry. The sole coeval shift to more positive δ^{13}C values without support of the microstratigraphic log would be more equivocal, as the shift could be ascribed to different processes, such as more intense degassing, a change in vegetation or prior calcite precipitation (cf. Fairchild & Baker, 2012).

If hiatuses are present, because they identify depositional gaps, it is here suggested not to code them. Rather, features characterizing the hiatus can be provided as notes or a red line mark a fabric boundary believed to be a hiatus.

BENEFITS OF THE FABRIC LOG IN SPELEOTHEM RESEARCH

The construction of microstratigraphic log of fabrics in speleothems allows for the recognition of changes through time (vertical dimension) of depositional models (or environments of deposition). Changes in the succession of fabrics are here given a simple, graphic form, which allows direct comparison with the series of geochemical data (Fig. 7). In the conceptual framework proposed here, the hierarchy of fabrics is operated through criteria of: a) progressive “hydrological stress”; b) progressive increase in supersaturation state of the dripwater; c) progressive increase in Mg and impurities; d) diagenesis. (Fig. 7)

In the microstratigraphic log a shift to highest fabric codes from bottom to top, then, suggests that a regime of relatively constant drip rate, although with some variability (Co) was punctuated by periods of lower discharge, when dripwaters were characterized by higher Mg concentration (Cfo), up to a point when the supersaturation of the water was very high, or a microbial coating formed (M). The development of Ce following C or Co, according to the proposed model of development, signifies that the supersaturation state and the Mg/Ca ratio of the parent water changes, but not necessarily the drip rate, which should have been relatively constant.

In Fig. 8, the coded fabrics are plotted against their relative stable isotope values to produce the IsoFab plot (Isotopes + Fabrics). All columnar fabric types seem to have similar δ^{13}C and δ^{18}O values, which are more negative with respect to the δ^{13}C and δ^{18}O of micrite and microsparite. The good correlation Fig. 6. Microstratigraphic log of a thin section from a stalagmite predominantly consisting of columnar, columnar open and columnar elongated fabrics. A thick micrite layer occurs at 2mm from top. Thinner micrite layers are outlined in the log: Columnar fabric showing rhombohedra terminations is also highlighted by the acronym Crt, but not reported as different fabric in the log (see text for details).
Microstratigraphic logging of calcite fabrics in speleothem

The content of Mg of Ce calcite in the specimen is up to 20,000 ppm (see Fig. 1E), thus, in the analysed specimen, the high concentration of Mg has no (or little) kinetic effect on stable isotope fractionation. The δ¹³C and δ¹⁸O values more negative than in C and Co suggest that the drip rate may have been higher during the deposition of the elongated crystals, which opens questions about the provenance of Mg (associated with particulate in addition to incorporation in the lattice) and the significance of the δ¹³C values. The Cainozoic rock hosting the aquifer that fed the speleothem illustrated in Fig. 7 has δ¹³C values as negative as ca. -12‰ (Miller et al., 2012), which hints at the possibility that Ce recorded wetter periods characterized by the efficient (rapid?) dissolution of Mg-rich clasts in the host rock (Frisia et al., 2012).

In synthesis, hierarchizing fabrics, microstratigraphic logging and the construction of a IsoFab plot provide information about potential disequilibrium precipitation, with all the implications for stable isotope fractionation and/or trace element partitioning. For example, the IsoFab plot for the sample illustrated in Fig. 7 highlighted that C and Co fabrics may be affected by some degassing and evaporation relative to Ce, which modified the C and O isotope ratios.

There is, thus, the potential to use the IsoFab plot in conjunction with a correlation between coded fabrics and stable isotope ratio values to act as test for “equilibrium” incorporation similar
to the Hendy test (Hendy, 1971), with the difference that this test was based on "bulk" fabrics, rather than on the co-variance (or lack of it) of δ13C and δ18O values along single growth layers.

In addition, the IsoFab plot undoubtedly provides an immediate visualization of those changes in stable isotope ratio values that may be related to diagenetic changes, and in particular aggradation, with considerable improvement in palaeoclimate reconstruction from geochemical proxies.

In conclusion, it is here demonstrated that the construction of speleothem microstratigraphic log and of the combined Isotope-Fabric cross correlation diagram (IsoFab plot) are indeed necessary tools to provide robustness to the interpretation of the geochemical data. In Appendix 1 a schematic representation of each fabric, name, acronym, code, characteristics and significance are provided to facilitate both the construction of the microstratigraphic log and the interpretation of fabrics in terms of environment.

ACKNOWLEDGEMENTS

The Author wishes to thank B. Railsback, for his constructive criticism and review, and the suggestion to produce a summary figure to be “hung on petrographers’ wall”. Russell Drysdale and Petra Bajo provided access to thin sections from Antro del Corchia. Russell provided the Tommy Graham and the Liang Luar thin sections, as well as help with mass spectrometry results.

Nullarbor samples were studied within the framework of ARC Discovery Project DP0985214. Bence Paul performed the Mg map of the Nullarbor speleothem from cave 370 with much appreciated precision and skill. Rebeca Martin-García put together the micrographs for Fig. 8. Thanks to Giovanni Gattolin who introduced me to the fascinating issue of the genesis of dolotted peloidal micrite and to microbialite fabrics. Kathleen Johnson agreed to show the samples from Tham Doun May, and allowed me to use the SEM micrograph in Fig. 2D.

Christoph Spötl and the project “Speláotheme der Conturines Höle: Ein potentiel einmaliges Paläoumwelt-Archiv in den Dolomiten” are acknowledged for access to speleothems from Conturines cave.

Last, but not least, my profound thank goes to Andrea Borsato, who always supports me, through light and darkness. He also helped with editing the figures.

REFERENCES

Alonso-Zarza A.M. & Wright V., 2010 - Calcrete. Developments in Sedimentology, 61: 225-267. http://dx.doi.org/10.1016/S0070-4571(09)06105-6

Armenteros I., 2010 - Diagenesis of carbonates in continental settings. Developments in Sedimentology, 62: 61-151. http://dx.doi.org/10.1016/S0070-4571(09)06202-5

Banks E.D., Taylor N.M., Gulley J., Lubbers B.R., Giarrizzo J.G., Bullen H.A., Hoehler T.M. & Barton H.A., 2010 - Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiology Journal, 27: 444-454. http://dx.doi.org/10.1080/01490450903485136

Belli R., Frisia S., Borsato A., Drysdale R., Hellstrom J., Zhao J.X. & Spötl C., 2013 - Regional climate variability and ecosystem responses to the last deglaciation in the northern hemisphere from stable isotope data and calcite fabrics in two northern Adriatic stalagmites. Quaternary Science Reviews, 72: 146-158. http://dx.doi.org/10.1016/j.quascirev.2013.04.014

Boch R., Spötl C. & Frisia S., 2011 - Origin and palaeoenvironmental significance of lamination in stalagmites from Karerloch Cave, Austria. Sedimentology, 58: 508-531. http://dx.doi.org/10.1111/j.1365-3091.2010.01173.x

Borsato A., Frisia S., Jones B. & van der Borg K., 2000 - Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps. Journal of Sedimentary Research, 70: 1179-1190.

Cañaveras J., Sanchez-Moral S., Soler V. & Saiz-Jiménez C., 2001 - Microorganisms and microbially induced fabrics in cave walls. Geomicrobiological Journal, 18: Cölfen H., 2003 - Precipitation of carbonates: recent progress in controlled production of complex shapes. Current Opinion in Colloid & Interface Science, 8: 23-31. http://dx.doi.org/10.1016/S1359-0294(03)00012-8

De Choudens-Sánchez V. & González L.A., 2009 - Calcite and aragonite precipitation under controlled instantaneous supersaturation: elucidating the role of CaCO3 saturation state and Mg/Ca ratio on calcium carbonate polymorphism. Journal of Sedimentary Research, 79: 363-376. http://dx.doi.org/10.2110/jsr.2009.043

Fairchild I.J. & Baker A., 2012 - Speleothem science: from process to past environments. John Wiley & Sons. Oxford, UK. http://dx.doi.org/10.1002/9781444361094

Folk R.L., 1965 - Some aspects of recrystallization in ancient limestones. Society of Economic Paleontologists and Mineralogists, Special Publications, 13: 14-48.

Folk R.L. & Assereto R., 1976 - Comparative fabrics of length-slow and length-fast calcite and calcitized aragonite in a Holocene speleothem, Carlbas Caverns, New Mexico. Journal of Sedimentary Research, 46: 486-496. http://dx.doi.org/10.1306/212F6FCD-2B24-11D7-8648000102C1865D

Freytet P. & Verrecchia E., 1999 - Calcite radial palisadic fabric in freshwater stromatolites: diagenetic and recrystallized feature or physicochemical sinter crust? Sedimentary Geology, 126: 97-102. http://dx.doi.org/10.1016/S0037-0738(99)00034-2

Frisia S., 1996 - Petrographic evidences of diagenesis in speleothems: some examples. Speleochronolog, 7: 21-30.

Frisia S. & Borsato A., 2010 - Chapter 6 Karst. Developments in Sedimentology, 61: 269-318. http://dx.doi.org/10.1016/S0070-4571(09)06106-8

Frisia S. & Wenk H.-R., 1985 - Replacement of aragonite by calcite in sediments from the San Cassiano Formation (Italy). Journal of Sedimentary Petrology, 55: 159-170.

Frisia S., Borsato A., Drysdale R., Paul B., Greig A. & Cotte M., 2012 - A re-evaluation of the palaeoclimatic significance of Phosphorus variability in speleothems revealed by high-resolution synchrotron micro XRF mapping. Climate of the Past, 8: 2039–2051.

Frisia S., Borsato A., Fairchild I.J. & McDermott F., 2000 - Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and Southwestern Ireland. Journal of Sedimentary Research, 70: 1183-1196.
Microstratigraphic logging of calcite fabrics in speleothem

Frisia S., Borsato A., Fairchild I.J., McDermott F. & Selmo E.M., 2002 - Aragonite-calcite relationships in speleothems (Grotte De Clamouse, France): environment, fabrics, and carbonate geochemistry. Journal of Sedimentary Research, 72: 687-699. http://dx.doi.org/10.1306/020702720687

Gonzalez L.A., Carpenter S.J. & Lohmann K.C., 1992 - Inorganic calcite morphology: roles of fluid chemistry and fluid flow. Journal of Sedimentary Petrology, 62: 382-399.

Griffiths M.L., Drysdale R.N., Gagan M.K., Zhao J.-S., Ayliffe L.K., Hellstrom J.C., Hantoro W.S., Frisia S., Feng Y.-x., Cartwright I., St. Pierre E., Fischer M.J. & Suwargadi B.W., 2009 - Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nature Geoscience, 2 (9): 636-639. http://dx.doi.org/10.1038/ngeo6065

Hendy C.H., 1971 - The isotopic geochemistry of speleothems. I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta, 35: 801-824. http://dx.doi.org/10.1016/0016-7037(71)90127-X

Hoffmann D.L., Spötl C. & Mangini A., 2009 - Micromill and in situ laser ablation sampling techniques for high spatial resolution MC-ICPMS U-Th dating of carbonates. Chemical Geology, 259: 253-261. http://dx.doi.org/10.1016/j.chemgeo.2008.11.015

Kazmierczak J., Coleman M.L., Gruszczynski M. & Kempe S., 1996 - Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas. Acta Palaeontologica Polonica, 41: 319-338.

Kendall A.C., 1993 - Columnar calcite in speleothems. Discussion. Journal of Sedimentary Research, 63: 550-553. http://dx.doi.org/10.1306/D4267B54-2B26-11D7-8648000102C1865D

Kendall A.C. & Broughton P.L., 1978 - Origin of fabrics in speleothems composed of columnar calcite crystals. Journal of Sedimentary Research, 48: 519-538. http://dx.doi.org/10.1306/212F7C4C-2B24-11D7-8648000102C1865D

Lachniet M.S., Bernal J.P., Asmerom Y. & Polyak V., 2012 - Uranium loss and aragonite–calcite age discordance in a calcitized aragonite stalagmite. Quaternary Geochronology, 14: 26-37. http://dx.doi.org/10.1016/j.quageo.2012.08.003

Luetscher M., Hoffmann D.L., Frisia S. & Spötl C., 2011 - Holocene glacier history from alpine speleothems, Milchbach cave, Switzerland. Earth and Planetary Science Letters, 302: 95-106. http://dx.doi.org/10.1016/j.epsl.2010.11.042

Martin-Garcia R., Alonso-Zarza A.M. & Martin-Pérez A., 2009 - Loss of primary texture and geochemical signatures in speleothems due to diagenesis: Evidences from Castañar Cave, Spain. Sedimentary Geology, 221: 141-149. http://dx.doi.org/10.1016/j.sedgeo.2009.09.007

Martin-Pérez A., Martin-Garcia R. & Alonso-Zarza A.M., 2012 - Diagenesis of a drapery speleothem from Castañar Cave: from dissolution to dolomitization. International Journal of Speleology, 41: 251-266. http://dx.doi.org/10.1007/s10010-012-0252-8

McDermott F., Frisia S., Huang Y., Longinelli A., Spiro B., Heaton T.H.E., Hawksworth C.J., Borsato A., Keppens E., Fairchild I.J., Van der Borg K., Verheyden S. & Selmo E., 1999 - Holocene climate variability in Europe: Evidence from δ¹⁸O, textural and extension-rate variations in three speleothems. Quaternary Science Reviews, 18: 1021-1038. http://dx.doi.org/10.1016/S0277-3791(98)00107-3

Miller C.R., James N.P. & Bone Y., 2012 - Prolonged carbonate diagenesis under an evolving late cenozoic climate: Nullarbor Plain, southern Australia. Sedimentary Geology, 261-262: 33-49. http://dx.doi.org/10.1016/j.sedgeo.2012.03.002

Morse J.W., Gledhill D.K. & Miller F.J., 2003 - CaCO₃ precipitation kinetics in waters from the great Bahama bank: Implications for the relationship between bank hydrochemistry and whittings. Geochimica et Cosmochimica Acta, 67: 2819-2826. http://dx.doi.org/10.1016/S0016-7037(03)00103-0

Neuser R.D. & Richter D.K., 2007 - Non-marine radiolarian fibrous calcites—examples of speleothems proved by electron backscatter diffraction. Sedimentary Geology, 194: 149-154. http://dx.doi.org/10.1016/j.sedgeo.2006.05.015

Orland I.J., Burstyn Y., Bar-Matthews M., Kozdon R., Ayalon A., Matthews A. & Valley J.W., 2014 - Seasonal climate signals (1990–2008) in a modern Soreq Cave stalagmite as revealed by high-resolution geochemical analysis. Chemical Geology, 363: 322-333. http://dx.doi.org/10.1016/j.chemgeo.2013.11.011

Ortega R., Mairé R., Devés G. & Quinié Y., 2005 - High-resolution mapping of uranium and other trace elements in recrystallised aragonite-calcite speleothems from caves in the Pyrenees (France): Implication for U-series dating. Earth and Planetary Science Letters, 237: 911-923. http://dx.doi.org/10.1016/j.epsl.2005.06.045

Railsback L.B., Liang F., Vidal Romani J.R., Grandal-d’Anglade A., Vaquero Rodriguez M., Santos Fidalgo L., Fernandez Mosquera D., Cheng H. & Edwards R.L., 2011 - Petrographic and isotopic evidence for Holocene long-term climate change and shorter-term environmental shifts from a stalagmite from the Serra do Courel of northwestern Spain, and implications for climatic history across Europe and the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 305: 172-184. http://dx.doi.org/10.1016/j.palaeo.2011.02.030

Railsback L.B., Sheen S.-W., Rafter M.A., Brook G.A. & Kelloes C., 1997 - Diagenetic replacement of aragonite by aragonite in speleothems: criteria for its recognition from Botswana and Madagascar. Speleochronos, 8: 3-11.

Rodriguez-Navarro C. & Benning L.G., 2013 - Control of crystal nucleation and growth by additives. Elements, 9: 203-209.

Sand K.K., Rodriguez-Blanco J.D., Makovicky E., Benning L. & Stipp S.L.S., 2011 - Crystallization of CaCO₃ in water–alcohol mixtures: spherulitic growth, polymorph stabilization, and morphology change. Crystal Growth & Design, 12: 842-853. http://dx.doi.org/10.1021/cg2012342

Sunagawa I., 2005 - Crystals: growth, morphology, & perfection. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511610349

Turgeon S. & Lundberg J., 2001 - Chronology of discontinuities and petrology of speleothems as paleoclimatic indicators of the Klamath Mountains, Southwest Oregon, USA. Carbonates and Evaporites, 16: 153-167.

Wassenburg J.A., Immenhauser A., Richter D.K., Jochum K.P., Fietzke J., Deininger M., Goos M., Scholz D. & Sabaoui A., 2012 - Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence. Geochimica et Cosmochimica Acta, 92: 23-47. http://dx.doi.org/10.1016/j.gca.2012.06.002
Appendix 1

Type	Symbol (code)	Characteristics	Environment of formation
Columnar	C (1)	I/w ratio < 6:1; competitive growth at interfaces; straight to serrated boundaries; uniform extinction; common “rat” terminations or protruding rhombohedra terminations (≈ 2μm high)	Relatively slow and constant drip; Sicc < 0.35; Mg/Ca < 0.3; pH up to 8.4; low impurity content
Columnar open	Co (2)	I/w ratio < 6:1; competitive growth at interfaces; incomplete coalescence of crystals; high intercrystalline porosity, commonly linear; uniform extinction.	Drip rate > than in C; Sicc up to 0.35; Mg/Ca <<0.3; pH 7.5 up to 8.
Columnar elongated	Ce (3)	I/w ratio > 6:1; competitive growth at interfaces; preferential growth of acute rhombohedron; incomplete coalescence of crystals; protruding terminations common; uniform extinction. May show lateral overgrowths, in particular in the presence of impurity-rich layers.	Drip rate constant; Sicc 0.1 to 0.4; Mg/Ca > 0.3. C_n; relatively fast flow; presence of particulate. Diagenesis?
Ce with lateral overgrowth	Ce_n (4)	Polycrystals I/w ratio > 6:1; undulatory extinction diverge away from substrate when rotating table is turned CCW; split crystal growth (spherulitic type); downward concave curvature.	Low drip rate or laminar flow; Sicc 0.5; Mg/Ca > 1.5; typical in stalagmites & flowstones formed in caves cut in dolomite
Columnar fascicular optic	Cfo (5)	Polycrystals I/w ratio > 6:1; undulatory extinction converge away from substrate when rotating table turned CW; split crystal growth; upward concave curvature.	Low drip rate or laminar flow; Sicc 0.5; Mg/Ca > 1.5; typical in stalagmites & flowstones formed in caves cut in dolomite
Columnar radialic	Crf (5.5)	Polycrystals I/w ratio > 6:1; undulatory extinction converge away from substrate when rotating table turned CW; split crystal growth; upward concave curvature.	Low drip rate or laminar flow; Sicc 0.5; Mg/Ca > 1.5; typical in stalagmites & flowstones formed in caves cut in dolomite
Columnar microcrystalline	Cm (6)	Polycrystals I/w ratio > 6:1; Irregular intercrystalline boundaries; uniform extinction with “patches” due to cross-cutting by adjacent crystals; high intercrystalline microcrystalinity; typical of laminated speleothems.	Variable drip rate (seasonal); Sicc up to 0.35; Mg/Ca < 0.3; drip/flow carrying colloidal particles.
Dendritic	D (7)	Branching polycrystals; scaffold-like appearance “warp and waltz”; irregular intercrystalline boundaries; high intercrystalline porosity.	Variable drip rate; Sicc up to 0.4. Mg/Ca possibly similar to Cm; strong degassing; presence of particulate/ foreign ions. Bio-influenced precipitation
Micrite	M (8)	Crystals < 2μm; stromatolitic-like structure; clotted structure. Common geometric selection above micrite layers.	Bio-influenced. Low flow/dry. Condensation/corrosion?
Microsparite	Ms (9)	I/w ratio ~ 1:1; crystal size > 2μm < 30μm; commonly associated with micrite. Fabric-destructive replacement.	Diagenesis. Aggrading neomorphism (micrite to microsparite)
Replacive microsparite	Ms_replacement (10)	I/w ratio ~ 1:1; Crystal size > 2μm < 30μm; retention of aragonite fabric.	Diagenesis. Mimetic replacement
Mosaic calcite	Mc (11)	I/w ratio ~ 1:1; crystal size > 30μm. Fabric destructive.	Diagenesis. If replacing calcite, no relics of a former unstable phase are visible.
Mosaic calcite with aragonite needles	Mc_an (12)	I/w ratio ~ 1:1; Crystal size > 30μm; Fabric destructive; preserves relics of aragonite, commonly needles.	Diagenesis. Commonly related to the transformation of speleothem aragonite into calcite

Appendix 1. Summary of calcite speleothem fabrics, their symbols, codes, characteristics and known environmental parameters underpinning their development.