Vanishing refuge? Testing the forest refuge hypothesis in coastal East Africa using genome-wide sequence data for seven amphibians

Christopher D. Barratt¹,² | Beryl A. Bwong¹,³ | Robert Jehle⁴ | H. Christoph Liedtke¹,⁵ | Peter Nagel¹ | Renske E. Onstein² | Daniel M. Portik⁶,⁷ | Jeffrey W. Streicher⁸ | Simon P. Loader¹,⁸

¹Department of Environmental Sciences, University of Basel, Basel, Switzerland
²German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
³Herpetology Section, National Museums of Kenya, Nairobi, Kenya
⁴School of Environment and Life Sciences, University of Salford, Salford, UK
⁵Ecology, Evolution and Developmental Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC), Sevilla, Spain
⁶Department of Biology, The University of Texas at Arlington, Arlington, Texas
⁷Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
⁸Department of Life Sciences, Natural History Museum, London, UK

Correspondence
Christopher D. Barratt and Simon P. Loader, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
Emails: c.d.barratt@gmail.com (CDB); simon.loader@nhm.ac.uk (SPL)

Funding information
Humer Foundation for Academic Talent; Freiwillige Akademische Gesellschaft Basel

Abstract
High-throughput sequencing data have greatly improved our ability to understand the processes that contribute to current biodiversity patterns. The “vanishing refuge” diversification model is speculated for the coastal forests of eastern Africa, whereby some taxa have persisted and diversified between forest refugia, while others have switched to becoming generalists also present in non-forest habitats. Complex arrangements of geographical barriers (hydrology and topography) and ecological gradients between forest and non-forest habitats may have further influenced the region’s biodiversity, but elucidation of general diversification processes has been limited by lack of suitable data. Here, we explicitly test alternative diversification modes in the coastal forests using genome-wide single nucleotide polymorphisms, mtDNA, spatial and environmental data for three forest (Arthroleptis xenodactyloides, Leptopelis flavomaculatus and Afrixalus sylvaticus) and four generalist (Afrixalus fornasini, A. delicatus, Leptopelis concolor and Leptopelis argenteus) amphibians. Multiple analyses provide insight about divergence times, spatial population structure, dispersal barriers, environmental stability and demographic history. We reveal highly congruent intra-specific diversity and population structure across taxa, with most divergences occurring during the late Pliocene and Pleistocene. Although stability models support the existence of some forest refugia, dispersal barriers and demographic models point towards idiosyncratic diversification modes across taxa. We identify a consistent role for riverine barriers in the diversification of generalist taxa, but mechanisms of diversification are more complex for forest taxa and potentially include topographical barriers, forest refugia and ecological gradients. Our work demonstrates the complexity of diversification processes in this region, which vary between forest and generalist taxa, but also for ecologically similar species with shared population boundaries.

KEYWORDS
demographic inference, diversification, niche modelling, phylogeography, population dynamics, RAD-seq
1 | INTRODUCTION

Biodiversity is unequally distributed across the earth, with the greatest concentration occurring in tropical regions (Gaston, 2000). Understanding the processes that have generated and maintained this pattern has been a major question in biology for the best part of a century (Brown, 2013). Landscape changes are hypothesized to have driven vicariant evolution by fragmenting species distributions that were formerly continuous, generating congruent spatial and temporal patterns of genetic differentiation across co-distributed taxa (Rosenzweig, 1995; Smith et al., 2014). Vicariance may occur due to a number of different processes, including the formation of dispersal barriers by rivers (the riverine barrier hypothesis; Gascon et al., 2000; Haffer, 1997; Moritz, Patton, Schneider, & Smith, 2000; Plana, 2004; Voelker et al., 2013; Wallace, 1852), by mountains (Fjeldså & Lovett, 1997) or by areas of unsuitable habitat (Kirschel et al., 2011; Schneider, Smith, Larison, & Moritz, 1999). In some regions, landscape changes over time may have been so severe that particular areas would have functioned as refugia, while diversity in surrounding areas was entirely lost (e.g., the forest refuge hypothesis: Endler, 1982; Haffer, 1969, 1997; Mayr & O’Hara, 1986; Moreau, 1954; Moritz et al., 2000; Plana, 2004). In some cases, diversification may have been triggered by climate change, with taxa making an ecological switch from forest to non-forest habitats in order to persist (the vanishing refuge hypothesis, Vanzolini & Williams, 1981). Finally, ecotones can facilitate disruptive selection on phenotypes despite the presence of gene flow, which may lead to dispersal with incomplete genetic barriers (e.g., range expansion), ultimately driving parapatric divergence (Moritz et al., 2000; Smith, Wayne, Girman, & Bruford, 1997). To understand how and why biodiversity accumulates in tropical regions, the underlying diversification processes need to be tested (e.g., Charles et al., 2018; Ntie et al., 2017; Portik et al., 2017). However, this has remained difficult for most tropical biodiversity hotspots due to a lack of thorough taxonomic, geographic and molecular (genome-wide) sampling.

The Coastal Forests of Eastern Africa (CFEA) are one of Africa’s foremost centres of diversity and a designated global biodiversity hotspot (Burgess, D’Amico Hales, Underwood, Dinerstein, & Ecoregion, 2004). Along with the adjacent Eastern Arc Mountains, the CFEA form an important area of endemicity highly threatened by anthropogenic impacts (Barratt et al., 2014; Burgess & Clarke, 2000; Burgess, Clarke, & Rodgers, 1998; Burgess, Mwasumbi, Hawthorne, Dickinson, & Doggett, 1992). Distributional data from plants, vertebrates and invertebrates demonstrate a high number of narrow-ranged endemics and a pronounced north–south biogeographic divide caused by the rain shadow of Madagascar (Burgess & Clarke, 2000; Burgess et al., 1998). Diverse communities of taxa, many endemic, are found in the remaining forest fragments of Kenya (Tana River, Kwale, Arabuko-Sokoke), Tanzania (East Usambara, Pembia island, Uluguru, Udzungwa, Pugu hills and Lindi), Mozambique (Bazaruto archipelago), Malawi (Mulanje massif) and Chimanimani and Haroni–Rusitu in Zimbabwe (Burgess et al., 1998; Figure 1a). Historical environmental change across tropical East Africa has been frequent since the Miocene, and the current CFEA are considered to be the remnants of a once continuous forest that has expanded and contracted for the past 40 million years (Axelrod & Raven, 1978; Demenocal, 1995; Maslin et al., 2014; Mumbi, Marchant, Hooghmiestra, & Wooter, 2008). Combined knowledge of endemism patterns and environmental change have led to the assumption that current CFEA biodiversity mainly originated from the isolation and persistence of ancient lineages in forest refugia, with local extinctions and in some cases adaptation to non-forest habitats across the rest of the region (Azeria, Sanmartín, Ås, Carlson, & Burgess, 2007; Barratt et al., 2017a; Burgess et al., 1998). The coastal forests have thus been described as a “vanishing refuge” (Burgess et al., 1998), although to date forest refugial processes have not been thoroughly tested against alternative modes of diversification (Damasceno, Strangas, Carnaval, Rodrigues, & Moritz, 2014; Kirschel et al., 2011; Schneider et al., 1999; Zhen et al., 2017).

To test competing hypotheses of ecological association over long time periods (i.e., millions of years), it is helpful to use taxa that retain ancestral variation at small spatial scales. Amphibians are ideal candidates due to their poor dispersal abilities and highly deme-structured species in East Africa (Bittencourt-Silva et al., 2017; Blackburn & Measey, 2009; Lawson, 2013; Zimkus et al., 2017). Here, we use nuclear DNA (nucDNA) single nucleotide polymorphism (SNP) data acquired from restriction site-associated DNA sequencing (RAD-seq), mitochondrial DNA (mtDNA) and georeferenced occurrences for seven widespread amphibians found in forest and non-forest habitats across the CFEA. Although these seven taxa represent only a small proportion of the 55 known amphibians in this region (Barratt et al., 2017a), they cover a variety of life histories and ecological associations (from generalists to forest specialists), which should reflect the evolutionary processes that have occurred in this region. Our sampling represents almost the complete range of each of the study taxa, allowing us to test the forest refuge hypothesis against alternative modes of diversification, including allopatric divergence across landscape barriers (rivers and topographic) and parapatric divergence across ecological gradients. Using our analytical framework, we make an important first step towards understanding fine-scale diversification patterns and processes in this highly threatened biodiversity hotspot which is a suitable model for similar studies in other tropical regions. For each focal taxon, we assess (a) How many distinct populations are there, and how are they related? (b) Do population boundaries coincide with geographic features and dispersal barriers, and are these boundaries shared across taxa? (c) Which demographic mechanisms have played a role in population diversity and divergence?

For forest taxa which may be older in terms of their evolutionary history, we predict concordant population structure across taxa (Burgess et al., 1998), with distributions that have remained locally stable over multiple time periods (i.e., refugia), and demographic signals of allopatric divergence and size expansion/secondary contact which would represent forest contraction and expansions. Generalist taxa present in non-forest habitats such as Miombo woodland and
savannah, on the other hand, should demonstrate signals of migration between populations and incomplete dispersal barriers, indicating the potential role of ecological gradients in line with the vanishing refuge hypothesis. Given the large number of major rivers, mountains and raised plateaus intersecting our CFEA sampling, we additionally investigate the role of landscape barriers, which would

FIGURE 1 Study region in East Africa, encompassing the Coastal Forests of Eastern Africa and surrounding areas, with sampling locations marked (forest and generalist taxa). (a) Major hydrological and topographical features, including forest refugia demarcated by red polygons based on data from Burgess et al. (1998). (b) Terrestrial ecoregions indicating the location of known biogeographic realms, associated with climate gradients, and sampling localities used in this study (black dots) [Colour figure can be viewed at wileyonlinelibrary.com]
result in clear population structure without subsequent migration, size changes or secondary contact. We make a distinction between forest and non-forest (Miombo woodland and savannah) to aid interpretation of results with regard to the long-term (pre-Pleistocene) environmental stability of these areas and to the ecological preferences of the study taxa.

2 | MATERIALS AND METHODS

2.1 | Study system and conceptual framework

The leaf-folding frogs, *Afrixalus fornasini* (Bianconi, 1849), *Afrixalus delicatus* (Pickersgill, 1984), and *Afrixalus sylvaticus* (Schlaet, 1794), the tree frogs, *Leptopelis argenteus* (Pfeffer, 1893), *Leptopelis concolor* (Ahl, 1929) and *Leptopelis flavomaculatus* (Günther, 1864), and the forest leaf-litter frog, *Arthroleptis xenodactyloides* (Hewitt, 1933), have large geographic ranges distributed throughout the CFEA and surrounding areas. *Afrixalus fornasini*, *A. delicatus*, *L. argenteus* and *L. concolor* are generalist taxa, inhabiting forest edges, woodlands and savannah, whereas *A. xenodactyloides*, *L. flavomaculatus* and *A. sylvaticus* are considered forest-restricted (IUCN, 2017; Poynton, 2006), which we attempt to elucidate in this study. Due to their wide distributional ranges, these taxa should harbour diversity that reflects population expansion, contraction and persistence, events caused by past environmental changes in the region.

We firstly investigate population structure within taxa to define putative geographic boundaries of populations. We then use explicit demographic model selection to reach a conclusion on whether refugial models of diversification are applicable for forest and generalist taxa. We support demographic results by modelling evolutionary relationships, geographic distributions, effective migration and diversity, and long-term environmental stability based on ecological niche models (ENMs). This approach allows us to assess the congruence of patterns across taxa and evaluate their consistency with putative forest refugia, geographic features (river and topographic barriers) and known biogeographic regions caused by ecological (rainfall) gradients.

2.2 | Sample collection

Tissue samples (leg muscle, liver or toe clips, n = 191) stored in 100% ethanol or RNase Later to preserve DNA were collected across the study region in 2013–2015. Geographic coordinates for all samples were recorded with a handheld GPS device. Additional samples (n = 40) held in collections at the University of Basel, University of Jena, Natural History Museum, London, Science Museum of Trento, Museum of Comparative Zoology, Harvard and Museum of Vertebrate Zoology, Berkeley (collected between 2001 and 2012), were used to complement recently collected field data (Supporting Information Table S1).

2.3 | DNA sequencing and data filtering

Genomic DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen) following manufacturer’s instructions. A partial fragment of the mitochondrial 16S gene was amplified via polymerase chain reaction to verify species identity using the NCBI BLAST tool against our own barcoding database of amphibians across the region (full details can be found in Barratt et al., 2017a; GenBank Accession nos included in Supporting Information Table S1). DNA was quantified prior to RAD-seq library preparation using a Qubit fluorometer (Invitrogen). We followed the Etter, Bassham, Hohenlohe, Johnson, and Cresko (2011) laboratory protocol to prepare RAD-seq libraries using the SbfI restriction enzyme (Supporting Information Appendix S1).

Final RAD-seq libraries included 43 *A. fornasini* from 30 sites, 49 *A. delicatus/A. sylvaticus* from 35 sites (comprising of 22 *A. delicatus* from 15 sites and 27 *A. sylvaticus* from 20 sites), 59 *L. flavomaculatus* from 24 sites, 27 *L. argenteus/L. concolor* from 18 sites (comprising of 12 *L. argenteus* from 8 sites and 15 *L. concolor* from 10 sites) and 53

| TABLE 1 | Summary of taxa studied including information on taxonomy and currently recognized species according to the IUCN red list |
Species group	Recognized species (including recently synonymised)	Type locality	Habitat
Afrixalus fornasini	*Afrixalus fornasini* (Bianconi, 1849)	Mozambique	Generalist
	Afrixalus unicolor (Boettger, 1913)* (A. fornasini)	Tanzania	Generalist
Afrixalus stuhlmanni	*Afrixalus stuhlmanni* (Pfeffer, 1894)	Zanzibar, Tanzania	Generalist
	Afrixalus brachycnemis (Boulenger, 1896)	Malawi	Generalist
	Afrixalus sylvaticus (Schlaet, 1794)	Kwaile, Kenya	Forest
	Afrixalus delicatus (Pickersgill, 2005)	St. Lucia, South Africa	Generalist
Arthroleptis xenodactyloides	*Arthroleptis xenodactyloides* (Hewitt, 1933)	Chimanimani, Zimbabwe	Forest
	Arthroleptis stridens (Pickersgill, 2007)*	East Usambara, Tanzania	Forest
Leptopelis argenteus	*Leptopelis argenteus* (Pfeffer, 1893)	Bagamoyo, Tanzania	Generalist
	Leptopelis concolor (Ahl, 1929)	Witu, Kenya	Generalist
	Leptopelis broadlei (Poynton, 1985)* (L. argenteus)	Mozambique	Generalist
Leptopelis flavomaculatus	*Leptopelis flavomaculatus* (Günther, 1864)	Ruvuma bay, Tanzania	Forest

Notes. Habitat: Forest = species is primarily forest associated; Generalist = species is a generalist, not confined to forest. *Species synonymized with conspecific (in brackets).* **Recognized by IUCN red list but taxonomic status is uncertain.**
A. xenodactyloides from 35 sites (Supporting Information Table S1). We sequenced individuals across five RAD-seq libraries (45–51 samples each), with a unique barcode adapter per individual in each library to demultiplex sequences bioinformatically. The final eluted products were sequenced in a single run on an Illumina Hi-seq 2500 (100-bp single-end reads) at the D-BSSE sequencing facility in Basel, Switzerland (Supporting Information Table S2).

We used STACKS 1.41 (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013) to process RAD-seq data and produce single nucleotide polymorphism (SNP) data sets. We used the process_radtags module to filter out low-quality reads, demultiplexing individuals into their own fastq file. The standard workflow of ustacks, cstacks and sstacks modules was used to align reads into stacks, to build a catalogue of consensus loci by merging alleles across individuals and to match individuals to the catalogue, respectively (data sets summarized in Supporting Information Table S3). Catalogues of loci were built separately for A. fomasini, A. xenodactyloides and L. flavomaculatus. For A. delicatus/A. sylvaticus and L. argenteus/L. concolor, the catalogues included the combined individuals in each species pair due to possible admixture between them given their overlapping distributions. We wished to capture all possible loci in the catalogue and then filter data, so for all downstream analyses, we subsequently separated each of these taxa based on population structure results, resulting in seven separate data sets. As sampling bias is inherent in RAD-seq data sets, we acknowledge that our results could potentially be affected by allelic dropout and null alleles, PCR duplicates and genotyping errors, and variance in depth of coverage amongst loci (Andrews, Good, Miller, Luikart, & Hohenlohe, 2016), which we mitigated against as described in each relevant section. Our final catalogues of loci used a minimum depth of sequencing coverage of 5x, and a maximum of 2 bp mismatches between the fragments, with only loci present in at least half of the individuals in each catalogue retained. Data matrices were then generated using the populations module, retaining only a single random SNP per RAD locus to avoid linkage disequilibrium (Andrews et al., 2016).

2.4 | Population structure

We filtered STACKS “haplotype” files to remove loci that were invariant between samples, loci with at least one individual with more than two alleles (i.e., potentially paralogous loci), and loci that were not bi-allelic. We investigated population structure per taxon using discriminant analysis of principal components (DAPC) in the adegenet R package (Jombart & Ahmed, 2011), after converting STACKS output files into Fstat format using piedspider 2.1.0.3 (Lisch & Excoffier, 2012). Unlike model-based clustering methods, the DAPC method is free of assumptions regarding Hardy–Weinberg equilibrium (Jeffries et al., 2015; Jombart & Ahmed, 2011) and less sensitive to minor allele frequency thresholds (Linck & Battey, 2017). We defined values of k between 1 (i.e., a single panmictic population) and 8, using Bayesian information criterion (BIC, Schwarz, 1978) scores across tested k values to infer the number of populations. Due to the taxonomic uncertainty of some samples of A. delicatus/A. sylvaticus and L. argenteus/L. concolor, we conducted an initial analysis of the full data set to confirm species memberships, followed by analyses of each taxon separately. To complement our DAPC analyses, we also ran ADMIXTURE (Alexander, Novembre, & Lange, 2009) with formatted bed files converted using plink 1.07 (Purcell et al., 2007). As with DAPC analyses, k ranged between 1 and 8, and we used the 10-fold cross-validation procedure to estimate the number of population clusters. Population membership of each individual for chosen k values was verified by inspecting the clustering analysis plots in DAPC and ancestry coefficients in admixture barplots (Supporting Information Tables S4 and S5). DAPC clustering for multiple values of k is shown in Supporting Information Figure S1.

2.5 | Demographic model selection

To evaluate the likelihoods of alternative demographic models within each taxon based on RAD-seq data, we used the diffusion approximation method implemented in sqaaii (Gutenkunst, Hernandez, Williamson, & Bustamante, 2009) to analyse two- and three-dimensional Joint Site Frequency Spectra (JSFS). The number of dimensions used in models (2D or 3D) refers to the number of populations being compared (based on population structure results), using folded JSFS because we lacked out-group information. For L. flavomaculatus we excluded the Mozambique populations, which only contained two individuals after data filtering. Following Portik et al. (2017), included parameters in models allowed for the broad categorization of models into three competing diversification modes. Landscape (i.e., riverine or topographic) barriers fall under a general allopatric model of population splitting with no gene flow, and no assumptions of migration or secondary contact. Forest refugia models follow a similar model of allopatric divergence, but expect initial population isolation followed by size change and/or secondary contact. Parapatric models expect gene flow accompanying divergence and subsequent isolation and represent divergence due to ecological gradients. Although these broad categorizations are simplistic, they enable comparisons across taxa to be more readily made, although it should be noted that other processes which are not explicitly captured by our model parameters may also contribute to the demographic patterns observed (e.g., range expansion, local adaptation, recent anthropogenic impacts). We ran a total of 15 alternative 2D models that differed in parameters for migration rates, periods of isolation and population size changes (visually represented in Supporting Information Figure S2), including a null model of no divergence between populations. A set of 15 models was run for 3D population comparisons (visually represented in Supporting Information Figure S3), including several models that account for the simultaneous divergence of populations based on potential polytomies in dating analyses for each of A. delicatus, A. sylvaticus and L. flavomaculatus. Because the SFS cannot be constructed using an incomplete data matrix, it is necessary to first down-project the data to smaller sample sizes of alleles. We did this by exploring a range of values per population (between 2 and 30), choosing the configuration per data set with the largest number of segregating sites. We ran three sets of increasingly focused experiments.
optimizations for each model before performing the final model selection. We did not transform obtained parameters into absolute migration rates and divergence times because our primary aim was to perform model selection, and these parameter values should ideally be estimated using an accurate mutation rate which we lack for our study taxa (Gutenkunst et al., 2009). We therefore compare the relative time intervals of population divergences obtained from \(\delta \) with those obtained from a Bayesian coalescent-based approach using bi-allelic SNPs as described in the next section. To determine the best fitting models, the AIC and log likelihoods were inspected, and \(\Delta \log \text{likelihood} \) scores were used to calculate relative likelihoods and Akaike weights (\(\omega \)). The model with the highest Akaike weight was selected as the most likely for each divergence event (Burnham & Anderson, 2002). To explore the possible influence of recent anthropogenic impacts, we ensured that a variation in the top-ranked model per taxon was also tested that included a size change step. Two-dimensional models already had these models within the original fifteen tested, and we built an additional three 3D models to test for each of \(A. \text{fornasini} \), \(L. \text{flavomaculatus} \) and \(A. \text{xenodactyloides} \). To verify that our models were reasonable explanations of the JSFS, we performed goodness of fit tests. For each taxon, we fit the top-ranked model using our optimized parameters, scaled the resulting model spectrum by the inferred theta value and used the model spectrum to generate 100 Poisson-sampled frequency spectra. We then optimized each simulated frequency spectrum to obtain a distribution of log-likelihood scores and Pearson's chi-squared test statistic and subsequently determined whether our empirical values were contained within these distributions. A more detailed description of demographic model selection and goodness of fit tests is shown in Supporting Information Appendix S1. To support our demographic model selection, we also estimated evolutionary relationships, effective migration and diversity, and the long-term stability of taxa using \(\text{ENMS} \), as described below.

2.6 Evolutionary relationships

We explored evolutionary relationships with mtDNA and RAD-seq data separately. Sequences of 16S mtDNA for all samples included in RAD-seq libraries were edited in \(\text{GENIOUS} \) 6 (Kearse et al., 2012) and aligned with the RAxML tree estimator using a GTRCAT model in \(\text{SATé-II} \) (Liu et al., 2012) before analyses in \(\text{BEAST} \) 2.4.8 (Bouckaert et al., 2014). We used \(\text{MODELTREE} \) (Bouckaert & Drummond, 2017) to average over all possible substitution models instead of selecting a single model. We used a strict clock with a log-normal prior distribution to estimate divergence times in millions of years. Estimated mitochondrial substitution rates for 16S in amphibians range from 0.16% to 1.98% pairwise divergence per million years (Jongsma et al., 2017), and the prior mean was set to the mid-point of this range (1.07%, set as 0.00535 substitutions/site/MYR) with a standard deviation of 0.3 for the interquartile range to reach the approximate lower and upper range limits. A birth–death tree prior was used, running the \(\text{MCMC} \) for 20,000,000 generations, sampling every 1,000 trees.

We reconstructed phylogenomic relationships using \(\text{SNAPP} \) 1.3 (Bryant, Bouckaert, Felsenstein, Rosenberg, & Roychoudhury, 2012) implemented in \(\text{BEAST} \) 2.4.8 (Bouckaert et al., 2014). \(\text{SNAPP} \) is a package that infers species or population trees from unlinked markers such as bi-allelic SNPs, implementing a coalescent model with an algorithm to integrate all possible gene trees rather than explicitly sampling them. To reduce computational requirements and run times, we selected 2–6 representative individuals per population (based on population structure results) with at least 50% complete data matrices. Backwards (u) and forwards (v) mutation rates (expected mutations per site per generation) were estimated from the data in \(\text{SNAPP} \), with the birth rate (\(\lambda \)) of the Yule prior (indicating the rate at which populations diverge from one another) based on the number of samples used (Supporting Information Table S6). The run for each data set used a chain length of 1,000,000 generations, sampling every 1,000 trees. We inspected final log files and created maximum clade credibility trees (median node heights) by combining two independent runs per taxon in \(\text{TREANNOTATOR} \) 2.4.6 after discarding 10% as burn-in. To verify that the selected individuals did not severely bias \(\text{SNAPP} \) results, we repeated each analysis using a different random selection of individuals per population (non-overlapping where possible, Supporting Information Table S6).

Given that an accurate mutation rate for amphibians is unavailable, we refrained from inferring the absolute timing of divergence events based on bi-allelic SNP data. Furthermore, as the \(\text{SNAPP} \) model is coalescent-based, it can account for incomplete lineage sorting, but the presence of high gene flow can cause underestimates of node ages (Leaché, Harris, Rannala, & Yang, 2014a). Additionally, the assembly and filtering of our RAD-seq data sets may also adversely affect dating estimates due to high numbers of retained loci being under selection or linked, which would potentially reduce calculated genetic diversity (Huang & Knowles, 2016). Despite the uncertainties of absolute dating, our \(\text{SNAPP} \) and \(\delta \alpha \) analyses enabled a relative comparison of the divergence time intervals between populations of each species. We investigated divergence estimates for each of these analyses alongside mtDNA estimates and conducted Pearson’s correlation tests between the relative divergence time intervals to aid our discussion of forest and generalist taxa.

2.7 Effective migration and diversity surfaces

We visualized effective migration and diversity surfaces (i.e., gene flow and barriers) using the \(\text{ESTIMATED EFFECTIVE MIGRATION SURFACES (ENMS)} \) program 0.0.0.9000 (Petkova, Novembre, & Stephens, 2016). This program identifies geographic areas where genetic similarity is greater than expected under isolation by distance using spatial and SNP data, without the need for environmental and topographic information. The effective migration and effective diversity estimates are interpolated across geographic space and provide a visual representation of observed genetic dissimilarities, including regions with higher or lower gene flow (i.e., barriers) and effective (i.e., genetic) diversity than expected. We converted filtered \(\text{STACKS} \) “haplotype” files into \(\text{PLINK} \) format (.bed files, Purcell et al., 2007) and used the
Ecological niche and stability models

To evaluate the geographic distributions over time per taxon (i.e., stability), we first used ENMS to define the realized macroecological niche of each taxon based on current environmental conditions. We then used this model to determine whether similar environmental conditions were found at a specific past epoch. Finally, we summed models over multiple time periods to visualize the potential spatio-temporal distributions of each taxon. We collected all available local information per taxon using the Global Biodiversity Information Facility (GBIF), published data (Barratt et al., 2017a; Burgess & Clarke, 2000; Ohler & Frétey, 2015) and our own and collaborator’s fieldwork. Data were filtered to remove any imprecise or ambiguous localities, or points that could not be accurately matched to each taxon with certainty. This resulted in 59–144 unique records per taxon (Supporting Information Table S7). To ensure that georeferenced data were not spatially autocorrelated, we rarified all points to be a minimum of 10 km apart, resulting in 20–112 unique localities per taxon (n = 112, 86, 36, 62, 38, 20, 32, for A. xenodactyloides, L. flavomaculatus, A. sylvaticus, A. fornasini, A. delicatus, L. argenteus and L. concolor, respectively). We built ENMS in MAXENT per taxon using elevation data derived from the USGS (http://csgtm.isgcm.org/dataset/gtopo30) and six bioclim variables (mean diurnal temperature range, temperature seasonality, maximum temperature of warmest month, annual precipitation, precipitation of driest month and precipitation of warmest quarter), at 30 arc-second resolution (approximately 1 km² grid cells). These variables were obtained from the WorldClim Database, based on the Community Climate System Model (CCSM) global circulation model (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), and selected based on low between-variable correlations (Pearson’s r < 0.7), to minimize model overfitting. Background data from 10,000 random points were sampled from a minimum convex polygon defined by a 150 km buffer around each occurrence record. To select optimal parameters for models, we tested a range of feature classes (hinge, quadratic, linear, product and threshold), each with a regularization multiplier between 1 and 3 in increments of 1. To project models into the past, this procedure was repeated for three different palaeoclimatic epochs (the mid-Holocene ca. 6 kybp, the Last Glacial Maximum ca. 21 kybp and the Last Interglacial ca. 120 kybp). We selected the best models for each taxon (Supporting Information Table S8) based on the lowest test omission and highest AUC scores (Brown, 2014). To create stability models, we calculated the mean of the negative log suitability per epoch, using the exponent of this value to create continuous stability models per taxon ranging between 0 (absent) and 1 (present, Rosauer, Catullo, Vanderwal, & Moussalli, 2015). As the Last Glacial Maximum data were only available at 2.5 arc-seconds (approximately 5 km²), continuous stability models are resampled to this resolution. The palaeoclimatic data we used for the ENM projection only cover the period until the Last Interglacial (120 kybp). We therefore use the stability models to reflect recent major climatic events, and as a proxy for deeper time in the absence of accurate palaeoclimate data further back to the Miocene.

RESULTS

Illumina reads and filtered loci

We obtained single-end Illumina reads for 43 A. fornasini (182,663,928 reads in total), 49 Afirakus sylvaticus/Afriakus delicatus (243,690,376 reads), 27 Leptopelis argenteus/Leptopelis concolor (154,933,766 reads), 59 Leptopelis flavomaculatus (299,581,783 reads) and 53 Arthroleptis xenodactyloides individuals (199,514,898 reads, Supporting Information Table S2). STACKS output haplotype files contained between 1,930 (A. delicatus/A. sylvaticus) and 9,867 (L. flavomaculatus) loci. After excluding invariant, paralogous and non-bi-allelic loci, and individuals with high amounts of missing data (>90%), final numbers of SNPs per taxon used for subsequent analyses (Supporting Information Table S3) were as follows; 3,753 (A. fornasini), 1,646 (A. delicatus and A. sylvaticus), 3,371 (L. argenteus and L. concolor), 1,505 (A. xenodactyloides) and 8,598 (L. flavomaculatus).

Population structure

DAPC and ADMIXTURE analyses produced congruent results for the number of inferred populations (L. flavomaculatus: k = 4; A. delicatus: k = 3; A. sylvaticus: k = 3; L. argenteus: k = 2; L. concolor: k = 2; Figure 2, Supporting Information Tables S4 and S5). In two taxa (A. fornasini and A. xenodactyloides), there was discordance across analyses, and for A. fornasini, the DAPC analysis suggested a tripartition (k = 3), while ADMIXTURE suggested a single panmictic population (k = 1). For A. xenodactyloides, DAPC and ADMIXTURE results were also incongruent (k = 4 and k = 8, respectively). As DAPC is known to be less sensitive to minor allele frequency thresholds than other model-based clustering methods (Linck & Battey, 2017), we based subsequent A. fornasini analyses on the DAPC results given their congruence with phylogenetic and phylogenomic inferences. Similarly, for A. xenodactyloides, subsequent analyses were based on k = 3 following consistently lowest BIC and CV scores in DAPC and ADMIXTURE analyses (Supporting Information Table S4), and consistency with phylogenetic clustering. Results for other values of k are shown in Supporting Information Figure S1. Population structure analyses across all taxa revealed that thirteen of the twenty populations were restricted to six allopatric areas which are non-overlapping. The remaining seven populations exhibited wider ranges associated with either the northern or southern parts of the CFEA region (Figure 3).
FIGURE 2 Population structure for each of the seven amphibian taxa including ADMIXTURE plots detailing ancestry coefficients and discriminant analyses of principal components (DAPC) showing the most likely numbers of population clusters based on BIC scores (line graph). (a–c) Forest taxa (Arthroleptis xenodactyloides, Leptopelis flavomaculatus, Arthroleptis sylvaticus). (d–g) Generalist taxa (Africulus fornasini, Africulus delicatus, Leptopelis concolor, Leptopelis argenteus). Populations are coloured corresponding to their spatial distributions on accompanying maps [Colour figure can be viewed at wileyonlinelibrary.com]
3.3 Demographic model selection

The consistency of log likelihoods and parameters across replicates of each model increased after the first, second and third optimization rounds and indicated convergence for the best-ranked models across replicates (Supporting Information Table S9, Figure S4). Null models (no divergences) were consistently lowest ranked for 2D models, supporting the genetic distinctiveness of populations. For forest taxa, demographic model selection was inconsistent across taxa (Table 2; Figure 4a), with the best-ranked model selected as historical gene flow for *A. xenodactyloides*, and allopatric divergence models selected for *L. flavomaculatus* (historical isolation followed by secondary contact) and *A. sylvaticus* (divergence and isolation). For all generalist taxa, allopatric models were consistently found as the best-ranked (Table 2; Figure 4b), with diversification without subsequent migration and/or size change. Based on Akaike weights (Supporting Information Table S10), best-ranked models were significantly better than the next best alternative models for all taxa ($\omega_i > 0.99$) with the exception of *L. argenteus* ($\omega_i = 0.74$) and *L. concolor* ($\omega_i = 0.65$), for which the second-best model was only characterized by the addition (*L. argenteus*) or the absence of a size change (*L. concolor*). The amended top-ranked models that included a size change step over multiple epochs implied that human impacts could potentially have played a role for *L. concolor*, and, to a lesser extent, *L. argenteus*, which were characterized by high Akaike weights for size change models and a recent time interval since the change occurred.

FIGURE 3 (a) Cumulative summary of major population breaks shown in 13 of the 20 discovered populations, with nearby river systems (i–iv) and forest refugia (1–10) labelled. (b) Latitudinal range of each population grouped into forest and generalist taxa. Colours correspond to populations identified in Figure 2 [Colour figure can be viewed at wileyonlinelibrary.com]
TABLE 2 Demographic model selection using δa_θ for each species group

Habitat	Species	Population comparison	JSFS model type	Proj. sample size	Best model	General model	In-L	AIC	Akaike weight (ω)
Forest	Arthroleptis xenoctactyloloides	Montane—south-north	3D	9,9.10	Ancient migration 2 (shorter isolation)	Ecological gradient	−266.22	546.44	0.999
Forest	Leptopelis flavomaculatus	Taratibu—south-north	3D	15,29,36	Simultaneous split in refugia, symmetrical migration (adjacent)	Forest refugia	−641.51	1297.02	0.999
Forest	Afrixalus sylvaticus	North-central—montane_south	3D	4,10,13	Simultaneous split, no migration	Landscape barrier	−203.2	414.4	0.999
Generalist	Afrixalus fonsinini	Central—south-moz	3D	6.8.10	Split, no migration	Landscape barrier	−605.56	1223.12	1
Generalist	Afrixalus delicatus	South—central—north	3D	9.8.6	Simultaneous split, no migration	Landscape barrier	−96.02	200.04	0.999
Generalist	Leptopelis argenteus	South—north	2D	5.6	Split, no migration	Landscape barrier	−50.13	106.26	0.739
Generalist	Leptopelis concolor	South—north	2D	6.6	Split, no migration, size change	Landscape barrier/Anthropogenic	−69.45	150.9	0.65

Note. Model type is shown (2D or 3D-JSFS) along with sample projection size. Best model from all tested models is listed along with its final log likelihood, AIC score and Akaike weight (ω).

Goodness of fit tests showed that most models were within reasonable expectations of the simulated data, with the exception of L. concolor for which the empirical result lay outside of the simulated data distributions of log likelihoods and log-transformed Pearson’s chi-squared test statistics (Figure 4). Visualizations of the data, models and residuals are shown in Supporting Information Figure S4, along with likelihood plots of the best model to demonstrate convergence across each of the three rounds of replicates. Parameters and full results of best scoring replicates for all models across taxa are shown in Supporting Information Table S10, and full goodness of fit results are shown in Supporting Information Table S11.

3.4 Evolutionary relationships

Mitochondrial DNA-inferred relationships (Figure 5a) were mostly congruent with those inferred using bi-allelic SNPs from RAD-seq data, despite some discordance in population membership and the evolutionary relationships between populations, which we suspect is due to incomplete lineage sorting of the 16S mtDNA locus. For A. fonsinini, L. flavomaculatus and L. xenoctactyloloides, mtDNA haplotype clades were consistent with the RAD-seq inferred population clusters, but in A. delicatus, and L. argenteus/L. concolor, population clusters did not always form monophyletic haplotype groups. According to mtDNA data, the earliest divergences within taxa are during the Pliocene (3.67 mya, 95% HPD 1.59–6.89 mya for A. sylvaticus and 3.44 mya, 95% HPD 1.55–6.30 mya for A. xenoctactyloloides). The large confidence intervals indicate that the earliest divergences in A. fonsinini and A. delicatus could have also occurred around the late Pliocene (as early as 2.37 and 3.68 mya, respectively). The remainder of later population divergences in these taxa and all divergences within L. flavomaculatus, L. argenteus and L. concolor occurred at different stages throughout the Pleistocene.

Evolutionary relationships reconstructed from bi-allelic SNPs in snapp (Figure 5b) showed that divergences between taxa occurred at broadly comparable timescales. Contrary to our expectations that forest taxa diverged earlier than generalists, we found similar timescales for most generalists and forest taxa except for the much more recently diverged generalist populations of L. argenteus and L. concolor. Analyses based on different random representatives of individuals per population showed similar results in terms of relationships and divergence rates, with one exception (the south Taratibu population divergence for L. flavomaculatus) indicating that results may potentially be sensitive to the population sets used in some cases (Supporting Information Table S6). Our comparison of time interval parameter estimates between snapp and δa_θ (Supporting Information Table S6) yielded remarkably similar results (Pearson’s $r > 0.88$ for forest taxa and $r > 0.93$ for generalist taxa across replicates), indicating that the divergence times obtained are congruent in relative terms in spite of the aforementioned problems of absolute dating. Mitochondrial DNA divergence dates were more closely correlated with δa_θ and snapp estimates across replicates for generalist taxa ($r > 0.87$) than for forest taxa due to the handful of incongruent relationships between mtDNA and SNP data ($r = 0.43$).

Cumulatively, population structure, phylogenetic and phylogenomic results indicate a strong north-south pattern of differentiation between populations, in addition to at least four major breaks that segregate populations across multiple taxa (Figure 3). Divergences between southern populations in Mozambique, Zimbabwe and Malawi, and the remaining CFEA regions in Tanzania and Kenya are approximately located around major river barriers (Figure 3, labels i–iv). In Tanzania and Kenya, populations are regularly separated from each other in the Lindi region (evident in A. xenoctactyloloides, L. flavomaculatus, L. argenteus and A. delicatus). The Usambara-Kwale region
spanning across the Tanzania–Kenya border also divides unique populations within *A. xenodactyloides*, *L. concolor* and *A. delicatus*.

3.5 Effective migration and diversity surfaces

The EEMS analyses based on smaller deme sizes (250, 500, not shown) merged numerous localities that we consider important to keep separate, particularly around the border of Tanzania and Kenya, and within southern Tanzania. Therefore, we only present results from deme sizes of 700 (Figure 6). The analyses revealed several barriers to migration mostly matching with the population breaks shown in Figure 3. For the forest taxa *A. xenodactyloides* and *L. flavomaculatus*, at least three major barriers in Tanzania and one in Mozambique were found, also approximately coinciding with the

![FIGURE 4](Image)

Visual representation of the best-ranked demographic models selected by δα̅δ to a choice of 15 alternative 2D JSFS demographic models and 15 alternative 3D JSFS models. Next to each model are goodness of fit test results, showing the location of the empirical (blue lines) value within the distribution of simulation values (grey bars) for log likelihood and Pearson’s log-transformed chi-squared test statistic. Empirical values occurring within distributions indicate good fits, with poorer fits indicated by a lower log likelihood (left of distribution) or a higher log-transformed chi-squared test statistic (right of distribution). (a) Forest taxa 3D best models (population divergences in *Arthroleptis xenodactyloides*, *Leptopelis flavomaculatus* and *Afrixalus sylvaticus*), (b) generalist taxa best 2D and 3D models (*A. fornasini*, *Afrixalus delicatus*, *Leptopelis concolor*, *Leptopelis argenteus*). Populations are colour coded matching Figures 2 and 5. Comparisons of the pairwise joint site frequency spectra for the data, the model and resulting residuals can be found in Supporting Information Figure S4, along with likelihood estimates across optimization rounds to indicate convergence. Parameter values and results for all models are shown in Supporting Information Table S9 [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 5 (a) Dated phylogenies per species in BEAST based on 16S mtDNA sequence data. Node labels between populations indicate divergence time in millions of years. (b) Population trees per species from SNAPP based on bi-allelic SNPs from RAD-seq data. Node labels indicate node ages in SNAPP (numbers after the slash are time intervals in δaδi). Error bars represent SNAPP 95% HPD (Highest Posterior Density) intervals [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Maps representing posterior means of effective migration and diversity surfaces for all seven taxa. Size of sampling dots represents the number of samples merged into a locality. (a) Forest taxa. (b) Generalist taxa. Upper panel: Effective migration surfaces (m); blue colours represent areas of gene flow, orange colours represent genetic barriers, and rivers are shown in blue. Lower panel: Effective diversity surfaces (q); blue colours represent areas of higher than expected diversity (green circles correspond to approximate location of refugia shown in Figure 1; A—Usambara-Kwale, B—Pugu/inland to Udzungwa, C—Lindi/Maçondes plateau, D—Mt. Mulanje, Mt. Mabu and surrounding lowlands), and orange colours represent areas of lower diversity
location of major rivers (Figure 3; i: Pangani, ii: Rufiji-Great Ruaha-Kilombero, iii: Lukuledi/Ruvuma. iv: Lúrio). For A. sylvaticus, only the Pangani and Lúrio rivers represented barriers. For the generalist taxa A. fornasini and L. argenteus, we identified a single barrier around the Ruvuma/Lúrio rivers in Mozambique; A. delicatus and L. concolor showed low migration around the Pangani River, however, extending across a wider area of coastal Tanzania for A. delicatus. Despite population barriers across taxa coinciding closely with rivers, we caution that they do not consistently structure all populations, and other features such as topography, ecological gradients and forest refugia may have played a role in shaping the observed patterns.

FIGURE 7 Stability models representing areas of persistent suitable habitat across from the Last Interglacial period (120 kya) until the present. (a) Forest taxa. (b) Generalist taxa. Black and white colours represent topography (white = higher elevation, black = lower elevation), and yellow-red colours represent highest stability (ranging between 0 and 1). Rivers are also shown, along with refugia identified by Burgess et al. (1998) shown as red polygons, matching the labelled refugia in Figure 1a [Colour figure can be viewed at wileyonlinelibrary.com]
We identified at least three main areas of high effective diversity (Figure 6), which correspond to the refugia areas outlined in Figure 1a as well as contact areas where genetically distinct populations meet. High effective diversity is found in a large area surrounding the Usambara-Kwale refuge for *L. flavomaculatus, A. sylvaticus, A. fomasi*, and *L. concolor*, extending southwards to southern Tanzania for the latter two, generalist taxa. A second large area of high effective diversity is found in southern Tanzania and northern Mozambique, including the Lindi and Maconde plateau refugia (for the forest-restricted *A. xenodactyloides* and *L. flavomaculatus* and the generalists *A. delicatus* and *L. argenteus*). The Afrotomata regions of Mozambique close to the Mt. Mulanje massif, Mt. Mabu and surrounding lowlands further support high effective diversity for *A. xenodactyloides, A. fornasini, A. sylvaticus* and *A. delicatus*. However, patterns are idiosyncratic across taxa, and some of these same areas demonstrate lower effective diversity for *A. xenodactyloides* and *A. delicatus* (Usambara-Kwale), *A. fornasini, A. sylvaticus* and *L. argenteus*. Inhambane coastal forest ecoregions (Azeria et al., 2007; Burgess et al., 1992, 1998, 2004). Together, our analyses across taxa lend support to this division, with congruent divergences between southern populations in Mozambique, Zimbabwe and Malawi, and the remaining CFEA regions in Tanzania and Kenya. The patterns shown by our data closely match numerous other phylogeographic studies in vertebrates, notably between Tanzania and Mozambique (Bertola et al., 2016; Bryja et al., 2017; Levinsky et al., 2013; Lorenzen, Heller, & Siegismund, 2012). Analyses of effective migration and diversity surfaces confirm these patterns, but show that the location of the major Tanzania-Mozambique barrier across different sampled taxa varies, being present in a similar location for some (*L. flavomaculatus, A. sylvaticus, A. fornasini*), geographically shifted (*Arthroplepis xenodactyloides*), smaller (*Leptopolis argenteus* or absent (*Leptopolis concolor, Afriktalus delicatus*)) for others. These differences may reflect true variation across taxa but are most likely explained by variations in geographic sampling, which may have influenced results. Further targeted sampling in underrepresented areas would help to address issues concerning robustness of our spatial estimations, especially in northern and central Mozambique and around the other major phylogeographic barriers revealed by our analyses (e.g., through Tanzania and Mozambique in the vicinity of the Pangani, Rufiji-Great Ruaha-Kilombero, Luwuledi-Ruvuma and Lúrio rivers, which also occur between refugial areas). The presence of range-restricted diversity in these areas has been documented for several taxonomic groups (Burgess & Clarke, 2000; Burgess et al., 1998), including amphibian populations (Barratt, 2017; Barratt et al., 2017a, 2017b; Bwong et al., 2017). In East Africa, such patterns are often associated with vicariant diversification through a forest refuge model of speciation (Endler, 1982; Haffer, 1969, 1997; Mayr & O’Hara, 1986; Moreau, 1954; Moritz et al., 2000; Plana, 2004) or attributed to ecological change (Lorenzen et al., 2012).

4 | DISCUSSION

At present, our understanding of diversification in the CFEA is far from complete. We used analyses of population structure, demographic model selection, evolutionary relationships and stability models to evaluate diversification patterns and processes with genome-wide data for the first time within this highly threatened biodiversity hotspot. Utilizing such data for multiple co-distributed taxa provides insight into the spatial distribution of biodiversity and the underlying diversification processes (e.g., Bell et al., 2017), which smaller spatial and genetic data sets have previously been unable to address in detail (see Davey & Blaxter, 2010; Lexer et al., 2013). Using a multi-faceted analytical strategy, our findings suggest that, although biodiversity patterns across the CFEA appear consistent with a forest refugia-driven model of diversification, this hypothesis alone is insufficient to fully explain the region’s biological diversity even for forest taxa. We show that multi-taxon approaches can help to develop a more comprehensive understanding of the biotic history of the region.

4.1 | Broad-scale phylogeographic patterns

Previous species richness and endemism studies in the CFEA have recognized the existence of a biogeographic division situated between the northern (Zanzibar) and southern (Inhambane) Zanzibar-Inhambane ecoregions (Azeria et al., 2007; Burgess et al., 1992, 1998, 2004). Together, our analyses across taxa lend support to this division, with congruent divergences between southern populations in Mozambique, Zimbabwe and Malawi, and the remaining CFEA regions in Tanzania and Kenya. The patterns shown by our data closely match numerous other phylogeographic studies in vertebrates, notably between Tanzania and Mozambique (Bertola et al., 2016; Bryja et al., 2017; Levinsky et al., 2013; Lorenzen, Heller, & Siegismund, 2012). Analyses of effective migration and diversity surfaces confirm these patterns, but show that the location of the major Tanzania-Mozambique barrier across different sampled taxa varies, being present in a similar location for some (*L. flavomaculatus, A. sylvaticus, A. fornasini*), geographically shifted (*Arthroplepis xenodactyloides*), smaller (*Leptopolis argenteus* or absent (*Leptopolis concolor, Afriktalus delicatus*)) for others. These differences may reflect true variation across taxa but are most likely explained by variations in geographic sampling, which may have influenced results. Further targeted sampling in underrepresented areas would help to address issues concerning robustness of our spatial estimations, especially in northern and central Mozambique and around the other major phylogeographic barriers revealed by our analyses (e.g., through Tanzania and Mozambique in the vicinity of the Pangani, Rufiji-Great Ruaha-Kilombero, Luwuledi-Ruvuma and Lúrio rivers, which also occur between refugial areas). The presence of range-restricted diversity in these areas has been documented for several taxonomic groups (Burgess & Clarke, 2000; Burgess et al., 1998), including amphibian populations (Barratt, 2017; Barratt et al., 2017a, 2017b; Bwong et al., 2017). In East Africa, such patterns are often associated with vicariant diversification through a forest refuge model of speciation (Endler, 1982; Haffer, 1969, 1997; Mayr & O’Hara, 1986; Moreau, 1954; Moritz et al., 2000; Plana, 2004) or attributed to ecological change (Lorenzen et al., 2012).
in topologies with SNP data and difficulties in inferring absolute dates without an accurate mutation rate for amphibians make direct comparisons of node ages across these data sets difficult. Despite this, we note that almost all divergences are temporally consistent between \textsc{snap} and \textsc{basi}, with time interval parameters (in genetic units) being highly correlated. Although gene flow can have adverse effects on divergence date estimates using Bayesian coalescent models (Leaché, Fujita, Minin, & Bouckaert, 2014b), we found evidence for a lack of gene flow in six of our seven population comparisons, indicating age estimates are not likely to be underestimated from this cause. However, we do note that divergence times may be over-estimated when dealing with closely related lineages due to inappropriate models of nucleotide evolution using genome-wide data (Lischer, Excoffier, & Heckel, 2014). The Plio-Pleistocene divergences observed in our focal taxa for both forest and generalist taxa are particularly interesting as they provide further evidence of older diversification events across the CFEA, in addition to the more recent divergences likely due to Pleistocene forest refugia. Together, evolutionary relationships and demographic analyses lend support to the high complexity of temporal and spatial diversification processes that have occurred across the CFEA, which have resulted in idiosyncratic responses across forest and generalist taxa.

4.2 Diversification processes in forest vs. generalist taxa

For the forest taxa (\textit{A. xenodactyloides}, \textit{L. flavomaculatus}, and \textit{A. sylvaticus}), geographic distributions of populations were well defined, divergences between populations were in general early, and stability models showed more fragmented distributions of stable habitats since at least the Last Interglacial than for generalist taxa. Effective migration and diversity surfaces highlighted more numerous but geographically smaller dispersal barriers than detected for the generalist taxa, which encompass areas of low elevation and arid habitat (e.g., north of the Rufiji and Lukulele rivers and south of the Ruvuma). Although these lines of evidence are in general accordance with the forest refuge hypothesis, more detailed analyses through demographic models revealed mixed results. For \textit{L. flavomaculatus}, simultaneous divergence followed by secondary contact is consistent with forest refugial processes. Conversely, we found evidence of allopatric divergence (ancient migration followed by size change) in \textit{A. xenodactyloides} and a simple model of allopatric divergence (no gene flow or size changes) for \textit{A. sylvaticus}, indicating other processes have driven divergence in forest taxa. Taken together, our molecular results and the spatial location of forest taxa populations only partially support a previous assertion that some CFEA taxa may have evolved from isolated forest refugial taxa since the Miocene, with predicted population divergence and periods of re-connectivity during the cyclical expansion and contraction of forests during the Pliocene and Pleistocene (Blackburn & Measey, 2009; Pickersgill, 2005). However, landscape barriers (\textit{A. sylvaticus}) and ecological gradients (\textit{A. xenodactyloides}) may have also contributed to the divergence of forest taxa, with no strong evidence for recent size changes caused by human influence. The overall patterns of generalist taxa (\textit{A. fornasini}, \textit{L. argenteus}, \textit{L. concolor} and \textit{A. delicatus}) demonstrated earlier than expected divergences for all taxa except \textit{L. argenteus} and \textit{L. concolor}, and limited gene flow between populations despite fewer dispersal barriers shown by \textsc{eems} analyses. Demographic model selection results are highly congruent across generalist taxa, with all four patterns consistent with allopatric divergence without subsequent migration. As for forest taxa, the geographic distribution of populations is highly structured and appears to correspond more closely to river barriers (Pangani, Rufiji, Great Ruaha, Kilombero, Lukulele, Ruvuma and Lúrio) than topographic barriers, in line with previous results for amphibian populations in sub-Saharan Africa (Lawson, 2013; Measey, Galbusera, Breyne, & Matthysen, 2007; Portik et al., 2017). Stability models for these taxa highlight several areas that could be considered as potential refugia (e.g., Usambara-Kwale, Pugu hills, Lindi), although the large sizes of these are likely due to the broader niche of generalists compared to those of forest taxa. However, generalists may facultatively occupy forest habitats, being sympatric with forest taxa in some cases (e.g., see \textit{A. delicatus} and \textit{A. sylvaticus} distributions in Figure 2c,e). In summary, the diversity patterns shown by generalist taxa are best interpreted as the result of vicariance due to landscape barriers (most likely rivers) rather than ecological gradients or forest refugia, and our goodness of fit tests indicate that our best-ranked models are good explanations of the JSFS in all taxa except \textit{L. concolor}, which should be interpreted with caution, although human impacts could potentially have played an additional role.

4.3 Understanding tropical diversification using multiple taxa

Taxa found across the CFEA, as in other heterogeneous tropical biodiversity hotspots, are a rich mixture of old and young taxa, each with unique ecological characteristics. Inferring diversification processes in tropical biodiversity hotspots is therefore challenging, as even congruent biodiversity patterns are likely to be generated by highly complex processes that vary both temporally and spatially. With this study, we managed to capture some of these complex processes for forest and generalist taxa and were able to evaluate potential diversification processes at work across taxa using several high-throughput data sets. In doing so, we were able to explicitly test existing hypotheses against alternative diversification modes for the first time in this region and make a broad evaluation of the forest refuge model. Forest refugial processes appear to be only partially responsible for the current diversity in the CFEA, and a range of other diversification mechanisms support the idiosyncrasy of these processes across taxa. Although we found some clear differences between forest specialists and generalist taxa, counter to our predictions the forest specialists were less consistent in diversification mechanisms than generalists.

While the conceptual framework we employ is by no means the only available option to address such hypotheses, approaches such as ours can help to reveal the nuances of diversification which lie
ACKNOWLEDGEMENTS

CDB was funded by a PhD scholarship from the Humr Foundation via the Centre for African Studies Basel. Fieldwork in Tanzania was carried out by CDB under COSTECH permit 2013-341-NA-2013-121, and Kenyan fieldwork was conducted by BAB under Kenya Wildlife Service (KWS/BRM/5001) and Kenya Forest service (MUS/1/ KFS/VOLII/4) permits, funded by Freiwillige Akademische Gesellschaft Basel. Sequencing costs were partially contributed to by Universität Basel Fonds zur Förderung des akademischen Nachwuchses DUW2100 awarded to HCL, and we acknowledge a grant from the European Science Foundation ConGenomics program (6720 to KFS). This project has been partially supported by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—FZT 118. This project has been partially conducted in the framework of the iDiv-Flexpool—the internal funding mechanism of iDiv. We are indebted to Walter Salzburger and Marius Roesti at the University of Basel for their advice on RAD-seq sampling design and to Zuzana Musilova and Bernd Egger for guidance on library preparation. Sequencing was conducted at the D-BSSE facility in Basel, Switzerland, and calculations were performed at scicore (http://scicore.unibas.ch/) scientific computing centre at University of Basel. Finally, we thank Veit Arlt (Centre for African Studies Basel), Tim Littlewood (NHM London) and the iDiv Open Science Publication Fund for supporting Open Access publication of this article.

DATA ACCESSIBILITY

All raw, unprocessed sequences are deposited in NCBI GenBank (Accession nos MG871749–MG871982 for 16S mtDNA) and the Sequence Read Archive (Accession no. SRP150605 for RAD-seq). We provide a large package on DRYAD (https://doi.org/10.5061/dryad.315k7m76) that includes our final RAD-seq filtered “haplotype” files, input files for analyses, including mtDNA (also submitted to GenBank). We include data and results for our analyses in this package (admixture, dafc, beast, snap, eems, δαοί, stacks and enms). All newly created 3D demographic models, along with scripts for performing goodness of fit tests, are freely available in an updated version of the δαοί analysis pipeline found at https://github.com/dportik/dadi_pipeline.

AUTHOR CONTRIBUTIONS

The research project was designed by C.D.B. and S.P.L., with guidance on analyses from D.M.P., R.J., R.E.O., H.C.L. and J.W.S. Fieldwork was conducted and molecular data were collected by C.D.B., B.A.B., H.C.L., S.P.L. All data processing and analyses were performed by C.D.B., with assistance from D.M.P., R.J., R.E.O., H.C.L. and J.W.S. Fieldwork was conducted and molecular data were collected by C.D.B., B.A.B., H.C.L., S.P.L. The research project was designed by C.D.B. and S.P.L., with guidance on analyses from D.M.P., R.J., R.E.O., H.C.L. and J.W.S. Fieldwork was conducted and molecular data were collected by C.D.B., B.A.B., H.C.L., S.P.L. All data processing and analyses were performed by C.D.B., with assistance from D.M.P. The manuscript was written by C.D.B. and S.P.L., with contributions from all authors.

ORCID

Christopher D. Barratt http://orcid.org/0000-0003-3267-8855
Robert Jehe http://orcid.org/0000-0003-564-1750
H. Christoph Liedtke http://orcid.org/0000-0002-122-8043
Renske E. Onste http://orcid.org/0000-0002-295-3510
Daniel M. Portik http://orcid.org/0000-0003-318-7277
Jeffrey W. Streicher http://orcid.org/0000-0002-3738-4162
Simon P. Loader http://orcid.org/0000-0002-462-0575

REFERENCES

Ahl, E. (1929). Zur Kenntnis der afrikanischen Baumfrosch-Gattung Leptopelis. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, 1929, 185–222.
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655–1664. https://doi.org/10.1101/gr.094052.109
Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17, 81–92. https://doi.org/10.1038/nrg.2015.28
Petkova, D., Novembre, J., & Stephens, M. (2016). Visualizing spatial population structure with estimated effective migration surfaces. *Nature Genetics*, 48, 94–100. https://doi.org/10.1038/ng.3464

Pfeffer, G. (1893). Ostafrikanische Reptilien und Amphibien, gesammelt von Herrn Dr. F. Stuhmann im Jahre 1888 und 1889. *Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten*, 10, 69–105.

Pickersgill, M. (1984). Three new *Afrixalus* (Anura: Hyperoliidae) from South-Eastern Africa. *Durban Museum Novitates*, 13, 203–220.

Pickersgill, M. (2005). The taxonomy and ethology of the *Afrixalus stuhmanni* complex (Anura: Hyperoliidae). *Steenstrupia*, 29, 1–38.

Plana, V. (2004). Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 359, 1585–1594. https://doi.org/10.1098/rstb.2004.1535

Portik, D. M., Leaché, A. D., Rivera, D., Barej, M. F., Burger, M., Hirschfeld, M., … Fujita, M. K. (2017). Evaluating mechanisms of diversification in a Guineo-Congolian tropical forest frog using demographic model selection. *Molecular Ecology*, 26, 5245–5263. https://doi.org/10.1111/mec.14266

Poynton, J. C. (2006). On dwarf spiny reedfrogs in Tanzanian Eastern lowlands (Anura: *Afrixalus*). *African Journal of Herpetology*, 55, 167–169. https://doi.org/10.1080/21564574.2006.9635548

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. *The American Journal of Human Genetics*, 81, 559–575. https://doi.org/10.1086/519795

Rosauer, D. F., Catullo, R. A., Vanderwal, J., & Moussalli, A. (2015). Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. *PLoS ONE*, 10, e0126274. https://doi.org/10.1371/journal.pone.0126274

Rosenzweig, M. (1995). Species diversity in space and time. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511623387

Schiøtz, A. (1974). Revision of the genus *Afrixalus* (Anura) in eastern Africa. *Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i København*, 55, 9–18.

Schneider, C. J., Smith, T. B., Larison, B., & Moritz, C. (1999). A test of alternative models of diversification in tropical rainforests: Ecological gradients vs. rainforest refugia. *Proceedings of the National Academy of Sciences of the United States of America*, 96, 13869–13873. https://doi.org/10.1073/pnas.96.24.13869

Schwarz, G. (1978). Estimating the dimension of a model. *The Annals of Statistics*, 6, 461–464. https://doi.org/10.1214/aos/1176344136

Smith, T. B., Wayne, R. K., Girman, D. J., & Bruford, M. W. (1997). A role for ecotones in generating rainforest biodiversity. *Science*, 276, 1855–1857. https://doi.org/10.1126/science.276.5320.1855

Smith, M. L., Ruffley, M., Espindola, A., Tank, D. C., Sullivan, J., & Carstens, B. C. (2017). Demographic model selection using random forests and the site frequency spectrum. *Molecular Ecology*, 26, 4562–4573.

Vanzolini, P. E., & Williams, E. F. (1981). The vanishing refuge: A mechanism for ecogeographic speciation. *Papéis Afulvos de Zoologia*, 34, 251–255.

Voelker, G., Marks, B. D., Kahindo, C., Agenonga, U., Bapeamoni, F., Duffie, L. E., … Light, J. E. (2013). River barriers and cryptic biodiversity in an evolutionary museum. *Ecology and Evolution*, 3, 536–545. https://doi.org/10.1002/ece3.482

Wallace, A. R. (1852). On the monkeys of the Amazon. *Proceedings of the Zoological Society London*, 20, 107–110.

Xue, A. T., & Hickerson, M. J. (2017). Multi-DICE: R package for comparative population genomic inference under hierarchical co-demographic models of independent single-population size changes. *Molecular Ecology Resources*, 17, e212–e224.

Zhen, Y., Harrigan, R. J., Ruegg, K. C., Anderson, E. C., Ng, T. C., Lao, S., … Smith, T. B. (2017). Genomic divergence across ecological gradients in the Central African rainforest songbird (Andropadus vires). *Molecular Ecology*, 26, 4966–4977. https://doi.org/10.1111/mec.14270

Zimkus, B., Lawson, L., Barej, M., Barratt, C. D., Channing, A., Dehling, J. M., … Lötters, S. (2017). Leapfrogging into new territory: How Mascarine ridged frogs have diversified across Africa. *Molecular Phylogenetics and Evolution*, 106, 254–269. https://doi.org/10.1016/j.ympev.2016.09.018

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Barratt CD, Bwong BA, Jehle R, et al. Vanishing refuge? Testing the forest refuge hypothesis in coastal East Africa using genome-wide sequence data for seven amphibians. *Mol Ecol*. 2018;27:4289–4308. https://doi.org/10.1111/mec.14862