Probability & Computing

Concentration
Expectation Management

What does it mean?
- “QuickSort has an expected running time of $O(n \log(n))$.”
- “The vertex has an expected degree of c.”
- “In expectation there is one hair in my soup.”

Expectation
- The average of infinitely many trials
- How useful is that information in practice?
- Does not tell us much about the shape of the distribution
- Does not come with a level of certainty

Concentration
- In practice, expectation is often a good start
- But for meaningful statements, we need to know how likely we are close to the expectation

Definition: A concentration inequality bounds the probability of a random variable to deviate from a given value (typically its expectation) by a certain amount.
Markov’s Inequality

About Markov

- Andrei “The Furious” Andreyevich Markov (Russian mathematician)
- Unhappy with the state of living at the time (1921)
- Informed St. Petersburg Academy of Sciences that he could not attend meetings due to not having shoes
- After getting shoes from the Communist Party he replied:

 Finally, I received footwear. However, it is stupidly stitched together and does not accord with my measurements. Thus I cannot attend the meetings. I propose placing the footwear in a museum, as an example of the material culture of the current time.

“Shape, The hidden geometry of absolutely everything”, Jordan Ellenberg
Markov’s Inequality

Theorem (Markov’s inequality): Let X be a non-negative random variable and let $a > 0$. Then, $\Pr[X \geq a] \leq \mathbb{E}[X]/a$.

Visual Proof

![Graph showing the visual proof of Markov's inequality]

Proof

$$\mathbb{E}[X] = \sum_x x \cdot \Pr[X = x] \geq a \cdot \Pr[X \geq a]$$

Corollary: Let X be a non-negative random variable and $a > 0$. Then, $\Pr[X \geq a \cdot \mathbb{E}[X]] \leq 1/a$.

- "In expectation there is one hair in my soup.”
 - How likely is it that I get at least 10? \(\Pr[X \geq 10] \leq 1/10 \)
 - How likely is it that I get less than 2? \(\Pr[X < 2] = 1 - \Pr[X \geq 2] \geq 1 - 1/2 = 1/2 \) Oh no...
Application: Unfair Coins

- The sum of 20 unfair \{0, 1\}-coin tosses: $X \sim \text{Bin}(20, \frac{1}{5})$
- What is the probability of getting at least 16 ones?

\[
\Pr[X \geq 16] \leq \frac{\mathbb{E}[X]}{16} = 0.25
\]

20 \cdot \frac{1}{5} = 4

- How tight is that bound? Not very?

\[
\Pr[X \geq 16] = \sum_{k=16}^{20} \binom{20}{k} \left(\frac{1}{5}\right)^k \cdot \left(1 - \frac{1}{5}\right)^{20-k} \approx 0.0000000138
\]

Markov: X non-negative, $a > 0$:
\[
\Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a}.
\]

Fair Coin
- A single \{0, 1\}-coin toss: $Y \sim \text{Ber}(\frac{1}{2})$
- What is the probability of getting at least 1?

\[
\begin{align*}
\Pr[Y \geq 1] &= \Pr[Y = 1] = \frac{1}{2} \\
\Pr[Y \geq 1] &\leq \frac{\mathbb{E}[Y]}{1} = \mathbb{E}[Y] = \frac{1}{2}
\end{align*}
\]

\Rightarrow There is no better bound (that relies only on the expected value)

There exists a random variable and an $a > 0$ such that Markov’s inequality is exact.

We need more information about the shape of the distribution!
Characterizing the Shape of a Distribution

- How much information do we need to characterize the shape of a distribution?

Example
- \(X, Y\) independent fair die-rolls, \(D = X - Y\)
- \(U\) uniform distribution over \(\{-5, -4, \ldots, 5\}\)
- Consider all probabilities individually. Tedious... We need to aggregate!

Expectation?
\[
\mathbb{E}[D] = \sum_k \Pr[D = k] \cdot k = 0
\]
Same value, different shapes
\[
\mathbb{E}[U] = \sum_k \Pr[U = k] \cdot k = 0
\]
(also just seen with Markov: \(\mathbb{E}\) not enough)

Problem: + & − terms cancel
⇒ Fix: absolute value \(f(k) = |k|\)
\[
\mathbb{E}[|D|] = \sum_k \Pr[D = k] \cdot |k| \approx 1.945
\]
\[
\mathbb{E}[|U|] = \sum_k \Pr[U = k] \cdot |k| \approx 2.727
\]
Distance to \(\mathbb{E}\)

Problem: Nobody likes absolute value
⇒ Fix: square instead \(f(k) = k^2\)
\[
\mathbb{E}[D^2] = \sum_k \Pr[D = k] \cdot k^2 \approx 5.833
\]
\[
\mathbb{E}[U^2] = \sum_k \Pr[U = k] \cdot k^2 = 10.0
\]
Squared distance to \(\mathbb{E}\)

These are just expectations of functions of random variables!
Do you have a Moment?

Expectation and Functions

- Random variable X taking values in a set S
- A function f, e.g. $f(X) = X^1$, $f(X) = |X|$, $f(X) = X^2$, $f(X) = \sqrt{X}$, $f(X) = X^3$, $f(X) = e^X$
- $E[f(X)] = \sum_{x \in S} Pr[X = x] \cdot f(x)$

These turn out to be particularly useful!

Moments

Definition: For random variable X and $n \in \mathbb{N}$ the n-th raw moment is $E[X^n]$.

Just seen: For $E[X] = 0$, this captures distances to $E[X]$.

Definition: For random variable X and $n \in \mathbb{N}$ the n-th central moment is $E[(X - E[X])^n]$.

Just seen: the 2nd central moment captures squared distances to the expected value

$$E[(X - E[X])^2] = \text{Var}[X]$$

The smaller the variance, the more concentrated the random variable.

... and with Markov’s help, we can turn that insight into a concentration inequality!
Chebychev’s Inequality

Theorem (Chebychev’s inequality): Let X be a random variable with finite variance and let $b > 0$. Then, $\Pr[|X - \mathbb{E}[X]| \geq b] \leq \frac{\text{Var}[X]}{b^2}$.

Proof

$$\Pr[|X - \mathbb{E}[X]| \geq b] = \Pr[(X - \mathbb{E}[X])^2 \geq b^2] \leq \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{b^2} = \frac{\text{Var}[X]}{b^2}$$

Application: Unfair Coins

- $X \sim \text{Bin}(20, \frac{1}{5})$, $\Pr[X \geq 16]$?
 - $\mathbb{E}[X] = 20 \cdot \frac{1}{5} = 4$
 - $\text{Var}[X] = 20 \cdot \frac{1}{5} \cdot (1 - \frac{1}{5}) = \frac{16}{5}$

 $$Pr[X \geq 16] = \sum_{k=16}^{20} \binom{20}{k} \left(\frac{1}{5}\right)^k \left(1 - \frac{1}{5}\right)^{20-k} \approx 0.000000138$$

- Markov: $\Rightarrow \Pr[X \geq 16] \leq \frac{\mathbb{E}[X]}{16} = 0.25$

- Chebychev:

 $$\Pr[X \geq 16] \leq \Pr[X \geq 16 \vee X \leq -8] = \Pr[|X - \mathbb{E}[X]| \geq 12] \leq \frac{\text{Var}[X]}{12^2} = \frac{16}{5 \cdot 144} \approx 0.022$$

 Order of magnitude better than Markov!
Application: ER – Degree Distribution

Recap

- $G(n, p)$: Start with n nodes, connect any two with fixed probability p, independently.
- Probability distribution of the degree of a single node v: $\text{deg}(v) \sim \text{Bin}(n - 1, p)$
- For $p = \frac{c}{n}$ with $c \in \Theta(1)$ the degree of a vertex is approximately Poisson-distributed
- Total variation distance of X, Y taking values in a set S:
 \[
 d_{TV}(X, Y) = \frac{1}{2} \sum_{x \in S} |\Pr[X = x] - \Pr[Y = x]| \]
- For $\lambda = -n \log(1 - p) = c + O(1/n)$ and $X \sim \text{Pois}(\lambda)$ we have $d_{TV}(\text{deg}(v), X) = o(1)$
- Empirical distribution of the degrees of all vertices in a graph $G = (V, E)$

\[
\hat{N_d} = \sum_{v \in V} \mathbb{1}_{\{\text{deg}(v) = d\}} \quad \text{(normalized: } \frac{1}{n} \hat{N_d}, \text{ for } n = |V|)\]

- $n = 100$
- $n = 1000$
- $n = 10000$
Application: ER – Degree Distribution

Theorem: Consider a $G(n, p)$ with $p = c/n$ for constant $c > 0$. For $\lambda = -n \log(1 - p)$, let $X \sim \text{Pois}(\lambda)$. Then for all $d > 0$ and every $\varepsilon > 0$ we have

$$\lim_{n \to \infty} \Pr \left[\left| \Pr[X = d] - \frac{1}{n} N_d \right| \geq \varepsilon \right] = 0.$$

Proof

- **Step 1**: $\Pr[X = d]$ is close to the expectation of $\frac{1}{n} N_d$

 $$\lim_{n \to \infty} \left| \Pr[X = d] - \mathbb{E} \left[\frac{1}{n} N_d \right] \right| = 0 \checkmark$$

 $$\left| \Pr[X = d] - \mathbb{E} \left[\frac{1}{n} N_d \right] \right| = |\Pr[X = d] - \Pr[\text{deg}(v) = d]| \leq \sum_{d \geq 0} |\Pr[X = d] - \Pr[\text{deg}(v) = d]|$$

 $$= 2 \cdot d_{TV}(X, \text{deg}(v)) \checkmark$$

 Already shown last time!

- **Step 2**: $\frac{1}{n} N_d$ is concentrated

 $$\lim_{n \to \infty} \Pr \left[\left| \mathbb{E} \left[\frac{1}{n} N_d \right] - \frac{1}{n} N_d \right| \geq \varepsilon \right] = 0$$
Step 2: Concentration of $\frac{1}{n} N_d$

$$\Pr \left[\left| \mathbb{E} \left[\frac{1}{n} N_d \right] - \frac{1}{n} N_d \right| \geq \varepsilon \right] \leq \frac{\text{Var} \left[\frac{1}{n} N_d \right]}{\varepsilon^2}$$

$$\text{Var} \left[\frac{1}{n} N_d \right] = \mathbb{E} \left[\left(\frac{1}{n} N_d \right)^2 \right] - \left[\mathbb{E} \left[\frac{1}{n} N_d \right] \right]^2$$

$$= \frac{1}{n^2} \left(\mathbb{E} \left[(N_d)^2 \right] - \mathbb{E} \left[N_d \right]^2 \right)$$

$$= \left(n \Pr[\deg(v) = d] \right)^2 \quad \text{(see Step 1)}$$

$$N_d = \sum_{v \in V} 1_{\{\deg(v) = d\}}$$

Indicator RV X: $X^2 = X$.

Lin. of Exp.

$$= \mathbb{E} \left[\left(\sum_{v \in V} 1_{\{\deg(v) = d\}} \right)^2 \right]$$

$$= \mathbb{E} \left[\sum_{v \in V} 1_{\{\deg(v) = d\}}^2 \right] + \sum_{v \in V} \sum_{u \neq v} 1_{\{\deg(v) = d\}} \cdot 1_{\{\deg(u) = d\}}$$

$$= \mathbb{E} \left[\sum_{v \in V} 1_{\{\deg(v) = d\}} \right] + \mathbb{E} \left[\sum_{v \in V} \sum_{u \neq v} 1_{\{\deg(v) = d\}} \cdot 1_{\{\deg(u) = d\}} \right]$$

$$= \Pr[\deg(v) = d]$$

$$= \Pr[\deg(v) = d] + n(n - 1) \cdot \Pr[\deg(v) = d \land \deg(u) = d]$$

Chebychev: X finite variance, $b > 0$

$$\Pr[|X - \mathbb{E}[X]| \geq b] \leq \frac{\text{Var}[X]}{b^2}$$

$$(\sum_i a_i)^2 = \sum_i a_i^2 + \sum_i \sum_{j \neq i} a_i a_j$$

$$\lim_{n \to \infty} \Pr \left[\left| \mathbb{E} \left[\frac{1}{n} N_d \right] - \frac{1}{n} N_d \right| \geq \varepsilon \right] = 0$$
Step 2: Concentration of $\frac{1}{n}N_d$

$$\Pr\left[\left|\mathbb{E}\left[\frac{1}{n}N_d\right] - \frac{1}{n}N_d\right| \geq \varepsilon\right] \leq \frac{\text{Var}\left[\frac{1}{n}N_d\right]}{\varepsilon^2}$$

$$\text{Var}\left[\frac{1}{n}N_d\right] = \mathbb{E}\left[\left(\frac{1}{n}N_d\right)^2\right] - \mathbb{E}\left[\frac{1}{n}N_d\right]^2$$

$$= \frac{1}{n^2} \left(\mathbb{E}\left[(N_d)^2\right] - \mathbb{E}\left[N_d\right]^2\right)$$

$$= \frac{1}{n^2} \left(n \Pr[\text{deg}(v) = d]\right.$$

$$+ n(n-1) \Pr[\text{deg}(v) = d \wedge \text{deg}(u) = d]$$

$$- \left(n \Pr[\text{deg}(v) = d]\right)^2\left.)\right)$$

$$= \frac{1}{n} \Pr[\text{deg}(v) = d]$$

$$\leq 1$$

$$+ \frac{n-1}{n} \Pr[\text{deg}(v) = d \wedge \text{deg}(u) = d] \leq 1$$

$$- \Pr[\text{deg}(v) = d]^2$$

$$\leq \frac{1}{n} + \Pr[\text{deg}(v) = d \wedge \text{deg}(u) = d]$$

$$- \Pr[\text{deg}(v) = d]^2$$

Chebychev: X finite variance, $b > 0$

$$\Pr[|X - \mathbb{E}[X]| \geq b] \leq \frac{\text{Var}[X]}{b^2}$$

$$(\sum_i a_i)^2 = \sum_i a_i^2 + \sum_i \sum_{j \neq i} a_i a_j$$

$$\lim_{n \to \infty} \Pr\left[\left|\mathbb{E}\left[\frac{1}{n}N_d\right] - \frac{1}{n}N_d\right| \geq \varepsilon\right] = 0$$
Step 2: Concentration of $\frac{1}{n} N_d$

$$\Pr \left[\left| \mathbb{E} \left[\frac{1}{n} N_d \right] - \frac{1}{n} N_d \right| \geq \varepsilon \right] \leq \frac{\text{Var} \left[\frac{1}{n} N_d \right]}{\varepsilon^2}$$

$$\text{Var} \left[\frac{1}{n} N_d \right] = \mathbb{E} \left[\left(\frac{1}{n} N_d \right)^2 \right] - \mathbb{E} \left[\frac{1}{n} N_d \right]^2$$

$$= \frac{1}{n^2} \left(\mathbb{E} \left[(N_d)^2 \right] - \mathbb{E} \left[N_d \right]^2 \right)$$

$$\leq \frac{1}{n} + \Pr[\deg(v) = d \land \deg(u) = d]$$

$$- \Pr[\deg(v) = d] \Pr[\deg(u) = d]$$

$$= \frac{1}{n} + \Pr[X_1 + Y_1 = d \land X_1 + Y_2 = d]$$

$$- \Pr[X_1 + Y_1 = d] \Pr[X_2 + Y_2 = d]$$

$$\leq \frac{1}{n} + \Pr[X_1 + Y_1 = d \land X_1 + Y_2 = d]$$

$$\land (X_1 + Y_1 \neq d \lor X_2 + Y_2 \neq d)]$$

Chebychev: X finite variance, $b > 0$

$$\Pr[|X - \mathbb{E}[X]| \geq b] \leq \frac{\text{Var}[X]}{b^2}$$

Fréchet: $\Pr[A] - \Pr[B] \leq \Pr[A \land \bar{B}]$

$$\lim_{n \to \infty} \Pr \left[\left| \mathbb{E} \left[\frac{1}{n} N_d \right] - \frac{1}{n} N_d \right| \geq \varepsilon \right] = 0$$

Couplings

- Consider $\deg(u)$ and $\deg(v)$
- $Y_1, Y_2 \sim \text{Bin}(n - 2, p)$
- $X_1, X_2 \sim \text{Ber}(p)$
- $(\deg(v), \deg(u)) \overset{d}{=} (X_1 + Y_1, X_1 + Y_2)$

For the whole event to occur, this needs to happen
Which excludes this from happening

\[\lim_{n \to \infty} \Pr \left[\left| \mathbb{E} \left[\frac{1}{n} N_d \right] - \frac{1}{n} N_d \right| \geq \varepsilon \right] = 0 \]
Step 2: Concentration of $\frac{1}{n} N_d$

$$\Pr \left[\left| \sum \frac{1}{n} N_d \right| - \frac{1}{n} N_d \geq \varepsilon \right] \leq \frac{\text{Var} \left[\frac{1}{n} N_d \right]}{\varepsilon^2}$$

$$\text{Var} \left[\frac{1}{n} N_d \right] = \mathbb{E} \left[\left(\frac{1}{n} N_d \right)^2 \right] - \mathbb{E} \left[\frac{1}{n} N_d \right]^2$$

$$= \frac{1}{n^2} \left(\mathbb{E} \left[(N_d)^2 \right] - \mathbb{E} [N_d]^2 \right)$$

$$\leq \frac{1}{n} + \Pr[\deg(v) = d \land \deg(u) = d]$$

$$- \Pr[\deg(v) = d] \Pr[\deg(u) = d]$$

$$= \frac{1}{n} + \Pr[\sum X_1 + Y_1 = d \land X_1 + Y_2 = d]$$

$$- \Pr[\sum X_1 + Y_1 = d] \Pr[\sum X_2 + Y_2 = d]$$

$$= \frac{1}{n} + \Pr[\sum X_1 + Y_1 = d \land X_1 + Y_2 = d]$$

$$- \Pr[\sum X_1 + Y_1 = d \land X_2 + Y_2 = d]$$

$$\leq \frac{1}{n} + \Pr[\sum X_1 + Y_1 = d \land X_1 + Y_2 = d \land (X_1 + Y_1 \neq d \lor X_2 + Y_2 \neq d)] = \frac{1}{n} + \Pr[\sum X_1 + Y_1 = d \land X_1 + Y_2 = d \land X_2 + Y_2 \neq d]$$

\[\lim_{n \to \infty} \Pr \left[\left| \sum \frac{1}{n} N_d \right| - \frac{1}{n} N_d \geq \varepsilon \right] = 0\]

Chebychev: X finite variance, $b > 0$

$$\Pr[|X - \mathbb{E}[X]| \geq b] \leq \frac{\text{Var}[X]}{b^2}$$

$$\left(\sum_i a_i \right)^2 = \sum_i a_i^2 + \sum_i \sum_{j \neq i} a_i a_j$$

Fréchet: $\Pr[A] - \Pr[B] \leq \Pr[A \land \overline{B}]$
Step 2: Concentration of $\frac{1}{n} N_d$

$$\Pr \left[\left| \mathbb{E} \left[\frac{1}{n} N_d \right] - \frac{1}{n} N_d \right| \geq \varepsilon \right] \leq \frac{\text{Var} \left[\frac{1}{n} N_d \right]}{\varepsilon^2} \xrightarrow{n \to \infty} 0$$

$$\text{Var} \left[\frac{1}{n} N_d \right] = \mathbb{E} \left[\left(\frac{1}{n} N_d \right)^2 \right] - \mathbb{E} \left[\frac{1}{n} N_d \right]^2 \leq \frac{1}{n} + 2p = \frac{1}{n} + 2 \frac{\varepsilon}{n} \xrightarrow{n \to \infty} 0$$

Chebychev: X finite variance, $b > 0$
$$\Pr \left[\left| X - \mathbb{E}[X] \right| \geq b \right] \leq \frac{\text{Var}[X]}{b^2}$$

$$\left(\sum_i a_i \right)^2 = \sum_i a_i^2 + \sum_i \sum_{j \neq i} a_i a_j$$

Fréchet: $\Pr[A] - \Pr[B] \leq \Pr[A \land \overline{B}]$

$$\lim_{n \to \infty} \Pr \left[\left| \mathbb{E} \left[\frac{1}{n} N_d \right] - \frac{1}{n} N_d \right| \geq \varepsilon \right] = 0$$

Law of total probability

$$\Pr[Y_1 = d \land Y_2 = d \land X_2 + Y_2 \neq d | X_1 = 0] \leq 1$$

independent

$$Y_1, Y_2 \sim \text{Bin}(n - 2, p)$$

$$X_1, X_2 \sim \text{Ber}(p)$$
Application: ER – Degree Distribution

Theorem: Consider a $G(n, p)$ with $p = c/n$ for constant $c > 0$. For $\lambda = -n \log(1 - p)$, let $X \sim \text{Pois}(\lambda)$. Then for all $d > 0$ and every $\varepsilon > 0$ we have
\[
\lim_{n \to \infty} \Pr \left[\left| \Pr[X = d] - \frac{1}{n} N_d \right| \geq \varepsilon \right] = 0.
\]

Proof

- **Step 1**: $\Pr[X = d]$ is close to the expectation of $\frac{1}{n} N_d$
 \[
 \lim_{n \to \infty} \left| \Pr[X = d] - \mathbb{E} \left[\frac{1}{n} N_d \right] \right| = 0 \checkmark
 \]

- **Step 2**: $\frac{1}{n} N_d$ is concentrated (via Chebychev)
 \[
 \lim_{n \to \infty} \Pr \left[\left| \mathbb{E} \left[\frac{1}{n} N_d \right] - \frac{1}{n} N_d \right| \geq \varepsilon \right] = 0 \checkmark
 \]
Concentration Bounds So Far

Definition: A concentration inequality bounds the probability of a random variable to deviate from a given value (typically its expectation) by a certain amount.

Markov
- based on expectation (first moment)
- X non-negative random variable and $a > 0$
 \[\Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a} \]
- tight

Chebychev
- based on variance (second moment)
- X random variable with finite variance and $b > 0$
 \[\Pr[|X - \mathbb{E}[X]| \geq b] \leq \frac{\text{Var}[X]}{b^2} \]
- tight (stated without proof)

Can we utilize higher-order moments for even stronger bounds?
Another Moment Please

- The n-th raw moment of a random variable X is $\mathbb{E}[X^n]$
- We can capture all moments of X using a single function

Definition: For a random variable X the **moment generating function** is $M_X(t) = \mathbb{E}[e^{tX}]$

- Where the name comes from: For the n-th derivative $M_X^{(n)}(t)$ we have $M_X^{(n)}(0) = \mathbb{E}[X^n]$ (assuming the function exists in a neighborhood around 0)

Theorem: For independent random variables X, Y: $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$.

Proof $M_{X+Y}(t) = \mathbb{E}[e^{t(X+Y)}] = \mathbb{E}[e^{tX} \cdot e^{tY}] = \mathbb{E}[e^{tX}] \cdot \mathbb{E}[e^{tY}] = M_X(t) \cdot M_Y(t)$ ✓

Concentration Inequality

Theorem (Chernoff Bounds): Let X be a random variable and $a > 0$.
Then, $\Pr[X \geq a] \leq \min_{t > 0} \mathbb{E}[e^{tX}]/e^{ta}$ and $\Pr[X \leq a] \leq \min_{t < 0} \mathbb{E}[e^{tX}]/e^{ta}$.

Proof for all $t > 0$: $\Pr[X \geq a] = \Pr[e^{tX} \geq e^{ta}] \leq \mathbb{E}[e^{tX}]/e^{ta} \leq \min_{t > 0} \mathbb{E}[e^{tX}]/e^{ta}$ ✓
for all $t < 0$: analogous. ✓

Get bounds for specific random variables by finding a good t!

Person: Had his 100th birthday in 2023! Thought the bound (now named after him) to be so trivial that he didn’t mention that it actually came from Herman Rubin.

“A conversation with Herman Chernoff”, John Bather, Statist. Sci. 1996

Markov: X non-negative, $b > 0$: $\Pr[X \geq b] \leq \mathbb{E}[X]/b$. Looks scary, but is again just $\mathbb{E}[f(X)]$ for $f(X) = e^{tX}$
Application: Binomial Distribution

Theorem: Let $X \sim \text{Bin}(n,p)$. Then for any $\varepsilon > 0$

$$\Pr[X \geq (1 + \varepsilon)\mathbb{E}[X]] \leq \left(\frac{e^\varepsilon}{(1 + \varepsilon)^{1+\varepsilon}} \right)^{\mathbb{E}[X]}.$$

Proof Consider X as the sum of independent $X_i \sim \text{Ber}(p)$

$$M_{X_i}(t) = \mathbb{E}[e^{tX_i}] = \Pr[X_i = 0] \cdot e^{t \cdot 0} + \Pr[X_i = 1] \cdot e^{t \cdot 1} = (1 - p) + pe^t = 1 + (e^t - 1)p \leq e^{(e^t - 1)p}.$$

$$M_X(t) = M_{\sum X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t) \leq \prod_{i=1}^{n} e^{(e^t - 1)p} = (1 + x)^n \leq e^x \leq e^{(e^t - 1)p} \mathbb{E}[X].$$

$$\Pr[X \geq (1 + \varepsilon)\mathbb{E}[X]] \leq \min_{t>0} \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\varepsilon)\mathbb{E}[X]}} \leq \min_{t>0} \frac{e^{(e^t - 1)p \mathbb{E}[X]}}{e^{t(1+\varepsilon)\mathbb{E}[X]}} = \min_{t>0} \left(\frac{e^{(e^t - 1)p}}{e^{t(1+\varepsilon)}} \right)^{\mathbb{E}[X]} \leq \left(\frac{e^\varepsilon}{(1+\varepsilon)^{1+\varepsilon}} \right)^{\mathbb{E}[X]}.$$

Example

- Sum of 20 unfair $\{0,1\}$-coin tosses: $X \sim \text{Bin}(20, \frac{1}{5})$, $\mathbb{E}[X] = 4$
- $\Pr[X \geq 16] = \Pr[X \geq (1+3)\mathbb{E}[X]] \leq \left(\frac{e^3}{(1+3)^{1+3}} \right)^{4} = \frac{e^{12}}{4^{4}} \approx 0.00003789$

Chernoff: Random variable X and $a > 0$:

$$\Pr[X \geq a] \leq \min_{t>0} \mathbb{E}[e^{tX}]/e^{ta}.$$

Mom. Gen. Function: $M_X(t) = \mathbb{E}[e^{tX}]$

Moment Addition: Independent X, Y:

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t).$$

- Markov: $\Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a}$
- Chebychev: $\Pr[X \geq a] \approx \frac{\mathbb{E}[X]}{a^2}$
- Actual: ≈ 0.000000138
Chernoff – Simpler Versions

Theorem: Let $X \sim \text{Bin}(n, p)$. Then for any $\epsilon > 0$
\[
\Pr[X \geq (1 + \epsilon)\mathbb{E}[X]] \leq \left(\frac{e^{\epsilon}}{(1 + \epsilon)^{1+\epsilon}}\right)^{\mathbb{E}[X]}.
\]

Chernoff: Random variable X and $a > 0$: \[
\Pr[X \geq a] \leq \min_{t > 0} \mathbb{E}[e^{tX}] / e^{ta}.
\]

Corollary: Let $X \sim \text{Bin}(n, p)$. Then for any $t \geq 6\mathbb{E}[X]$, $\Pr[X \geq t] \leq 2^{-t}$.

Corollary: Let $X \sim \text{Bin}(n, p)$. Then for any $\epsilon \in (0, 1]$, $\Pr[X \geq (1 + \epsilon)\mathbb{E}[X]] \leq e^{-\epsilon^2 / 3 \cdot \mathbb{E}[X]}$.

Corollary: Let $X \sim \text{Bin}(n, p)$. Then for any $\epsilon \in (0, 1)$, $\Pr[X \leq (1 - \epsilon)\mathbb{E}[X]] \leq e^{-\epsilon^2 / 2 \cdot \mathbb{E}[X]}$.

- In fact, these also work when the X_i are Bernoulli random variables with different success probabilities.
Conclusion

Concentration
- Is a random variable likely to yield values close to the expectation?
- Concentration inequalities bound the probability for a random variable to deviate from its expectation

Moments
- Used to characterize the shape of a distribution
- First moment: expected value
- Second moment: variance
- Moment generating functions to determine higher-order moments

Concentration Inequalities
- Markov: Based on first moment
- Chebychev: Squaring within Markov (utilizing second moment)
- Chernoff: Exponentiating within Markov (utilizing moment generating functions)
- Examples: Sum of coin flips, empirical degree distribution of ER graphs