Research Paper
Frequency of TEM and PER Beta-Lactamase Genes in Urinary Isolates of Escherichia coli Producing Extended-Spectrum Beta-Lactamases

*Maryam Ghane1, Fariba Adham1

1. Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.

ABSTRACT
Background and Aim: In recent years, increase in extended-spectrum β-lactamases (ESBLs) producing Escherichia coli has led to limitations of treatment options. This study aimed to find the frequency of blaTEM and blaPER genes among ESBL producing urinary isolates of E. coli and detect their resistance pattern.

Methods & Materials: From January 2016 to February 2017, 972 urine samples from patients suspected of having urinary tract infections in three main hospitals and laboratories in Karaj were collected. Bacterial identification, antimicrobial susceptibility and ESBL production were performed according to the standard guidelines. Polymerase chain reaction was used for the detection of TEM and PER β-lactamases.

Ethical Considerations: This study was approved by the Research Ethics Committee of Islamic Azad University of Tehran Medical Branch (Code: IR.IAU.TMU.REC.1396.274).

Results: Out of 972 samples, 500 cases were culture-positive for E. coli. Thirty-six percent (n = 180) of the isolates were determined as ESBL-producer. Among ESBL positive isolates, the most susceptibility was observed in amikacin and imipenem (80 and 60% respectively). Resistance to trimethoprim/sulfamethoxazole, ciprofloxacin, tetracycline and gentamicin was 92.7%, 78.9%, 66.1% and 57.8%, respectively. All ESBL producers exhibited multidrug resistance. Among the ESBL-positive isolates, blaTEM gene was detected in 44.72% (n = 85) of the isolates, but the blaPER gene was not found in any of the isolates.

Conclusion: The prevalence of multidrug resistant ESBLs producing uropathogenic E. coli is high. Continues monitoring of ESBL producers and their resistance patterns can help to reduce the spread of such resistant strains in the community.

Key words: Escherichia coli, drug resistance, β-lactamases

Extended Abstract
Introduction
Urinary tract infection (UTI) is one of the most important infectious diseases in society and also in hospitals and Escherichia coli is one of the most important causes of UTI. Among antibiotics, β-lactam antibiotics are the most widely used chemotherapeutic drugs due to its non-toxicity [4]. Unfortunately due to the overuse of antibiotics, today we are seeing an increase in strains resistant to these antibiotics. Production of β-lactamase enzymes is one of the most important mechanisms of resistance to this class of antibiotics. Extended-spectrum β-lactamases (ESBLs) are enzymes that cause resistance to broad-spectrum cephalosporins, and as these enzymes are
encoded by the plasmid, bacterial resistance is rapidly spread because of these enzymes. These plasmids often carry genes resistant to other antibiotics such as aminoglycosides, fluoroquinolones, tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole [5]. TEM-type ESBLs are one of the most important plasmid β-lactamases belonged to enterobacteriaceae family and one of the important causes of multidrug resistance in nosocomial infections [6]. PER enzymes are another type of ESBLs identified first in Pseudomonas aeruginosa but have also been identified in other organisms, especially in Acinetobacter isolates [7]. Treatment of UTI often begins experimentally based on the reports of antibiotic resistance patterns of urinary pathogens. Continuous presentation of antibiotic resistance patterns in each region can prevent the spread of resistant strains in addition to treating UTIs. In this regard, the purpose of this study was to determine the prevalence of Escherichia coli producing ESBLs isolated from the urine of patients with UTI, to determine their susceptibility to common antibiotics used in UTI treatment, and to evaluate the frequency of bla_{TEM} and bla_{PER} β-lactamase genes.

Methods and Materials

This study was conducted on 972 urine samples from January 2016 to February 2017. The samples were collected from outpatients suspected of urinary tract infection referred to hospitals of Imam Khomeini, Qaem, and Shahid Rajaei, and laboratories in Karaj, Iran. Urine samples were inoculated on blood agar and eosin methylene blue agar (Merck, Germany). After incubation at 37° C for 24 h, plates with remarkable growth (10⁵ cfu/ml) were selected for subsequent experiments. Bacteria were identified based on their morphological and biochemical properties [8]. Screening of Escherichia coli strains producing ESBLs were performed using disk diffusion method and two pairs of disc including cefotaxime (30 µg) and cefotaxime/ clavulanic acid (30/10 µg) disks as well as ceftazidime (30 µg) and ceftazidime/Clavulanic acid (30/10 µg) disks (Rosco Company, Denmark) and in accordance with the recommendations of the Clinical and Laboratory Standard Institute (CLSI). Antibiotic susceptibility assessment of strains producing ESBLs was carried out using gentamicin (10 µg), tetracycline (30 µg), trimethoprim sulfamethoxazole (25 µg), imipenem (10 µg), amikacin (30 µg) and ciprofloxacin (5 µg) antibiotics (Rosco, Denmark). For molecular identification of bla_{TEM} and bla_{PER} genes, after genomic DNA extraction, polymerase chain reaction (PCR) experiments were performed using specific primers [10, 11]. Statistical analysis were conducted in SPSS V. 20 software using chi-square test considering a significance level of P<0.05.

Results

Out of 972 suspected samples, 780 infectious samples were diagnosed of which 500 Escherichia coli isolates were isolated. Mean age of patients was 45±16 years. Of these, 169 (33.8%) were male and 331 (66.2%) were female. Out of 500 Escherichia coli isolates, 180 (36%) were positive for β-lactamase production. The number of ESBL strains was higher in females (73.33%; n=132) than in males (26.67%, n=48) (p = 0.007). The results of antibiotic susceptibility testing showed that the strains producing ESBLs were highly resistant to co-trimoxazole and ciprofloxacin (Table 1). The results of TEM β-lactamase gene analysis using
specific primers (Figure 1) showed that \(bla_{\text{TEM}}\) gene was present in 85 (44.72%) of isolates whereas \(bla_{\text{PER}}\) gene were not present in any of the isolates.

Discussion

Over the past decades, gram-negative bacilli producing ESBLs have emerged as important pathogens in nosocomial and community-acquired infections worldwide. Knowing the antibiotic resistance of these strains and their prevalence in each region can help control these microorganisms and prevent them from spreading. The study was performed on 972 urine samples. Of the tested samples, 780 were diagnosed as infectious, and *Escherichia coli* was the most common bacteria (64.1%) isolated from patients with UTI. Similar results have been reported in other studies conducted in Iran and other countries [13, 14].

The results of this study showed that the prevalence of UTI in women was significantly higher than in men. These results are consistent with other studies in Iran and other countries [14, 16]. Women are more susceptible to colonization with enteric bacteria due to the proximity of urethra to the anus. The majority of ESBL-producing strains were also found among women (P=0.007).

The prevalence of ESBL-positive strains in our study was 36%. Its prevalence rate has been reported different in different countries and even in different hospitals. This is due to differences in treatment regimen applied in different regions. Overuse of antibiotics, especially cephalosporins, is one of the most important causes of the high prevalence of ESBL-producing strains.

In this study, ESBL-producing strains showed high resistance to ciprofloxacin. Studies in Iran have shown that ciprofloxacin is prescribed more than other antibiotics to treat UTI. This may contribute to an increase in the prevalence of antibiotic-resistant isolates. The results of this study indicate that this drug as an experimental antibacterial drug, cannot have the appropriate effect. High resistance to aminoglycosides, carbapenems and cotrimoxazole was observed in our study, which was higher compared to other studies in Iran and other countries. ESBL production is usually associated with resistance to several antibiotics. Since ESBL genes are encoded by plasmids, they usually carry genes resistant to other antibiotics as well. One worrying outcome of this study was the high resistance to carbapenems. Although most studies have indicated imipenem as a suitable drug to treat infections caused by ESBL-producing strains, the isolates in our study showed high resistance to imipenem. In this study, 47.2% of isolates had TEM gene. Similarly, in studies conducted in India, 47.93% of ESBL-producing isolates had TEM gene, while prevalence of TEM genes in Thailand was 31.93%. Antibiotics used in a hospital or region can affect the distribution of resistance genotypes.

Escherichia coli was isolated as the most common cause of UTI. The majority of ESBL-producing strains were resistant to most of the antibiotics used to treat UTI. A high percentage of these strains were resistant to imipenem and hence, imipenem has no effect on treatment. The findings of this study raise concerns about the release of ESBL-producing *Escherichia coli* strains and emphasize their detection in medical diagnostic laboratories and careful monitoring of their resistance patterns.
Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics Committee of Islamic Azad University of Tehran Medical Branch (Code: IR.IAU.TMU.REC.1396.274).

Funding

This study was derived from an MSc. thesis of Fariba Adham funded by the Islamic Azad University, Islamshahr branch, Islamshahr, Iran.

Authors' contributions

Conceptualization, methodology, validation, supervision, data analysis, initial draft preparation, editing and review: Maryam Ghane; Investigation, resources, experiments and analysis: Fariba Adham.

Conflicts of interest

The authors declare no conflict of interest.
 Maraem Ghanefarha*
Department of Botany, Islamic Azad University, Esfahan, Iran.

اشرف خاکی
Department of Botany, Islamic Azad University, Esfahan, Iran.

مقدمه
عفونت های دستگاه ادراری یکی از مهم ترین عفونت های دستگاه احیاء در جامعه و تأثیر ناگفته ای از این عفونت در افزایش مرگ و میر و افزایش نیاز به خدمات درمانی و اقامت طولانی مدت در بیمارستان و همچنین کاهش رضایت از خدمات درمانی و کاهش کیفیت زندگی است. در میان داروهای شیمی درمانی که به عنوان اولویت در انتخاب درمانهای عفونت ادراری در هر سال میلادی قرار می‌گیرند، ویاکبیوتیک‌ها برتری حاصل می‌کنند. این داروهای اولویت بالا در درمان عفونت‌های ادراری و مرگ‌بارهای صورت تعدادی از بیماران را به خاطر مقاومت استقلالی بیمارانی که به دنبال درمان نیستند.

کلیدواژه‌ها
اشرشیاکلی، مقاومت دارویی، بتالاکتامازها

ملاحظات اخلاقی
این مطالعه با کد IR.IAU.TMU.REC.1396.274 ملاحظات اخلاقی تهران رسیده است.
شانزده و این آنکه کلیت خالص نیازه شده، شباهت بالاتری با استفاده از مورفولوژی، واگیری آزمون‌های باکتری‌شناسی، از این است که نیازی به آزمون‌هایی که با استفاده از میکروسبیوم، محيط بیولوژیک روش پوس کور، SIM و صرف تست‌های وانز. از 177 مخلوط آزمایشی شکوفه به طوفان آزمایش‌های باکتری‌شناسی در محیط نوترینت آگار برداشته و در سرم فیزیولوژی. برای این منظور چند کلنی از کشت شبانه لقویاکسیم / سفتاکسیم / سافتازیدیم و سفتازیدیم / کلاولانیک اسید می‌گرفته و با استفاده از روش دیسک ترکیبی و با استفاده از دو جفت دیسک سفتاکسیم (10 و 30 µg) و سافتازیدیم / کلاولانیک اسید (10 و 30 µg) تست باکتری‌شناسی در برابر دیسک دوم‌پوشی کرده شد. برای این منظور از دو جفت دیسک سفتازیدیم و سفتازیدیم / کلاولانیک اسید (20/40 µg) و سفتازیدیم / کلاولانیک اسید (30/60 µg) استفاده شد.

1. Clinical and Laboratory Standard Institute (CLSI)
پیش‌بینی نتایج حاصل از بررسی ژن‌های بتالاکتاماز در هر منطقه می‌تواند به کنترل این میکرولیترها پرداخته شود. آگاهی از مقاومت‌های بی‌انتی‌بیوتیکی این سویه‌ها و میزان بیمارستانی و نیز عفونت‌های کسب شده از جامعه در سرتاسر جهان باید با توجه به بروز بیماری‌های وسیع‌الطبیعه در دریای در حال کاهش باشد. با این حال، تعدادی از این بیماری‌ها حتی در مناطقی که به پیش‌بینی صورت نگرفته بودند، مثبت بودند. تعداد نمونه عفونی تشخیص داده شد و آزمایشگاه‌های شهرستان کرج ارجاع داده بودند، صورت گرفت.

در حالی که درک مناسب نمونه‌های مورد فایل‌افزار می‌تواند در کنترل این میکرولیترها به کار بروده شود. باید به‌نظر بگیریم که در صورتی که درک مناسب نمونه‌های مورد فایل‌افزار می‌تواند به کنترل این میکرولیترها پرداخته شود.

جدول 1	تاکلیف و طول قطعه (bp)	میزان
bla_{TEM}	TCCGCGAGATACAGGCTTCGAGAATGAA	1000
bla_{PER}	ATGAATGTCATTATAAACG	1100
چند روز میزان حساسیت سویه‌های مولد ESBL به آنتی‌بیوتیک‌های مختلف با روش دیسک دیفیوژن (#17)

آنتی‌بیوتیک	حساس	نیمه‌حساس	مقاوم
جنتامایسین	85/0	47/2	57/8
تتراسایکلین	52/9	28/9	5/5
کوتریماکسازول	11/1	6/1	1/1
ایمی پنم	108/10	60/10	10/10
آمیکاسین	144/20	80/20	20/20
سیپروفلوکساسین	36/20	20/20	20/20

مشابه پدید آمدن از ایزوله‌های مولد در مقایسه با آتروژن‌های کلونی‌ساز بر اساس فرآیند ESBL کار می‌کند. نتایج مشابهی در مطالعات انجام شده در ایران و سایر کشورها به دست آمده. نتایج حاصل از این تحقیق نشان داد که شیوع عفونت ادراری در زنان به طور معنی‌داری بالاتر از مردان است. این نتایج با مطالعات انجام شده در ایران و سایر کشورها مطابقت دارد. زنان به دلیل کلونی‌سازی جنسی و مراقبت از زنان آلوده به زنان ادرار با باکتری‌های گرم منفی که به دلیل تانسیس معقد و مجاری اولیه صورت می‌گیرد، بیشتر از مردان بیشتر به عفونت ESBL مادری می‌باشند. نتایج مواد در مطالعه ما #14 نیز مثبت در مطالعه ما #15/4 مثبت در مطالعه ما #18/5 مثبت در مطالعه ما #19/4 مثبت در مطالعه ما #20/4 مثبت در مطالعه ما #21/4 مثبت در مطالعه ما #22/4 مثبت. نتایج حاصل از این تحقیق نشان داد که شیوع عفونت ادراری در

#17 پدید آمدن از ایزوله‌های مولد در مقایسه با آتروژن‌های کلونی‌ساز بر اساس فرآیند ESBL کار می‌کند. نتایج مشابهی در مطالعات انجام شده در ایران و سایر کشورها به دست آمده. نتایج حاصل از این تحقیق نشان داد که شیوع عفونت ادراری در زنان به طور معنی‌داری بالاتر از مردان است. این نتایج با مطالعات انجام شده در ایران و سایر کشورها مطابقت دارد. زنان به دلیل کلونی‌سازی جنسی و مراقبت از زنان آلوده به زنان ادرار با باکتری‌های گرم منفی که به دلیل تانسیس معقد و مجاری اولیه صورت می‌گیرد، بیشتر از مردان بیشتر به عفونت ESBL مادری می‌باشند. نتایج مواد در مطالعه ما #14 نیز مثبت در مطالعه ما #15/4 مثبت در مطالعه ما #18/5 مثبت در مطالعه ما #19/4 مثبت در مطالعه ما #20/4 مثبت در مطالعه ما #21/4 مثبت در مطالعه ما #22/4 مثبت. نتایج حاصل از این تحقیق نشان داد که شیوع عفونت ادراری در زنان به طور معنی‌داری بالاتر از مردان است. این نتایج با مطالعات انجام شده در ایران و سایر کشورها مطابقت دارد. زنان به دلیل کلونی‌سازی جنسی و مراقبت از زنان آلوده به زنان ادرار با باکتری‌های گرم منفی که به دلیل تانسیس معقد و مجاری اولیه صورت می‌گیرد، بیشتر از مردان بیشتر به عفونت ESBL مادری می‌باشند. نتایج مواد در مطالعه ما #14 نیز مثبت در مطالعه ما #15/4 مثبت در مطالعه ما #18/5 مثبت در مطالعه ما #19/4 مثبت در مطالعه ما #20/4 مثبت در مطالعه ما #21/4 مثبت در مطالعه ما #22/4 مثبت.
به‌کار یک حضور زن تاریخی، تاریخ مادی و تاریخ زنانی از ایزوله‌ها می‌باشد. در بعضی موارد این ایزوله‌ها می‌توانند به‌صورت مولتی‌پرمین و تسانده شوند. به‌طور کلی این ایزوله‌ها می‌توانند به‌صورت ترکیبی از تعدادی از ژن‌های مختلف به‌صورت مولتی‌پرمین و تسانده شوند. به‌طور کلی این ایزوله‌ها می‌توانند به‌صورت ترکیبی از تعدادی از ژن‌های مختلف به‌صورت مولتی‌پرمین و تسانده شوند. به‌طور کلی این ایزوله‌ها می‌توانند به‌صورت ترکیبی از تعدادی از ژن‌های مختلف به‌صورت مولتی‌پرمین و تسانده شوند. به‌طور کلی این ایزوله‌ها می‌توانند به‌صورت ترکیبی از تعدادی از ژن‌های مختلف به‌صورت مولتی‌پرمین و تسانده شوند. به‌طور کلی این ایزوله‌ها می‌توانند به‌صورت ترکیبی از تعدادی از ژن‌های مختلف به‌صورت مولتی‌پرمین و تسانده شوند. به‌طور کلی این ایزوله‌ها می‌توانند به‌صورت ترکیبی از تعدادی از ژن‌های مختلف به‌صورت مولتی‌پرمین و تسانده شوند. به‌طور کلی این ایزوله‌ها می‌توانند به‌صورت ترکیبی از تعدادی از ژن‌های مختلف به‌صورت مولتی‌پرمین و تSANده شوند.
References

[1] Jena J, Debata N K, Subudhi E. Prevalence of extended-spectrum-beta-lactamase and metallo-beta-lactamase producing multi drug resistance gram-negative bacteria from urinary isolates. Indian J Med Microbiol. 2013; 31(3):420-1. [DOI:10.4103/0255-0857.118890] [PMID] [PMCID]

[2] Gonzalez CM, Schaeffer AJ. Treatment of urinary tract infection: What’s old, what’s new, and what works. World J Urol. 1999; 17(6):372-82. [DOI:10.1007/s003450050163] [PMID] [PMCID]

[3] Pitout JD, Sanders CC, Sanders WE. Antimicrobial resistance with focus on beta-lactam resistance in gram-negative bacilli. Am J Med. 1997; 103:51-9. [DOI:10.1016/S0002-9343(97)00044-2] [PMID] [PMCID]

[4] Worthington RJ, Melander C. Overcoming resistance to beta-lactam antibiotics. J Org Chem. 2013; 78(9):4207-13. [DOI:10.1021/jo400236f] [PMID] [PMCID]

[5] Bagattini M, Crivaro V, Di Popolo A, Gentile F, Scarcella A, Triassi M, et al. Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. J Antimicrob Chemother. 2006; 57(5):979-82. [DOI:10.1093/jac/dkl077] [PMID] [PMCID]

[6] Tenover FC, Raney PM, Williams PP, Rasheed JW, Biddle JW, Oliver A, et al. Evaluation of the NCCLS extended-spectrum beta-lactamase confirmation methods for Escherichia coli with isolates collected during project ICARE. J Clin Microbiol. 2003; 41(7):3142-6. [DOI:10.1128/JCM.41.7.3142-3146.2003] [PMID] [PMCID]

[7] Tad T, Shresta S, Shimada K, Obara H, Shcherzhb JD, Pokhrel BM, et al. PER-8, a novel extended-spectrum beta-lactamase per variant, from an Acinetobacter baumannii clinical isolate in Nepal. Antimicrob Agents Chemother. 2017; 23:613(3). [DOI:10.1128/AAC.02300-16] [PMID] [PMCID]

[8] Versalovic J, Carroll KC, Funkie G, Jorgensen JH, Landry ML, Warnock DW. Manual of clinical microbiology. 10th ed. Washington D.C. American Society of Microbiology; 2011. [DOI:10.1128/9781555816728] [PMID] [PMCID]

[9] Wayne P. M100 Performance standards for antimicrobial susceptibility testing 27th ed. Wayne: Clinical and Laboratory Standards Institute (CLSI); 2017. [PMID] [PMCID]

[10] Monstain JH, Ostholm- Balkhed A, Nilsson MV, Nilsson M, Dornbusch K, Nilsson LE. Multiplex amplification assay for detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS. 2007; 115(12):1400-8. [DOI:10.1111/j.1600-0463.2007.00722.x] [PMID] [PMCID]

[11] Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum beta-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother. 2003; 47(8):2385-92. [DOI:10.1128/AAC.47.8.2385-2392.2003] [PMID] [PMCID]

[12] Jabrodnik A, Heidari F, Taghavi SF, Shokouh MR. [The investigation of frequency and antibiotic resistance pattern of Escherichia coli and Klebsiella pneumoniae isolated from urinary tract infection in outpatients referred to Amiralmomenin Ali hospital in Gerash city in 2017: A hospital based study. Open Microbiol J. 2017; 11:23-30. [DOI:10.2174/1874285801711010023] [PMID] [PMCID]

[15] Khawcharoenporn T, Vasoo S, Singh K. Urinary tract infections due to multidrug-resistant enterobacteriaceae: Prevalence and risk factors in a Chicago emergency department. Emerg Med Int. 2013; 2013:258517. [DOI:10.1155/2013/258517] [PMID] [PMCID]

[16] Molazade A, Gholami MS, Shahi A, Najafipour S, Mobasheri F, Ashraf Mansuri JF, et al. [Evaluation of antibiotic resistance pattern of isolated gram-negative bacteria from urine culture of hospitalized patients in different wards of val asr hospital in Fasa during the years 2012 and 2013 [Persian]]. J Fasa Univ Med Sci. 2014; 4(2):275-83. [PMID] [PMCID]

[17] Forbes BA, Sahm DF, Weissfeld BA & Scott’s Diagnostic Microbiology. 13th ed. Maryland Heights: Mosby Elsevier; 2007. [PMID] [PMCID]

[18] Baziboroun M, Bayani M, Poormontaseri Z, Shokri M, Tahmineh Biazar T. Prevalence and antibiotic susceptibility pattern of extended spectrum beta lactamases producing Escherichia coli isolated from outpatients with urinary tract infections in Babol, northern of Iran. Curr Issues Pharm Med Sci. 2018; 31(2):61-4. [DOI:10.1515/cipms-2018-0013] [PMID] [PMCID]

[19] Singh N, Pattnaik D, Neogi DK, Jena J, Mallick B. Prevalence of ESBL in Escherichia coli isolates among ICU patients in a tertiary care hospital. J Clin Diagn Res. 2016; 10(9):19-22. [DOI:10.7860/CDDR/2016/21260.8544] [PMID] [PMCID] [PMCID]

[20] Moayedynia R, Shokri D, Mobasherizadeh S, Baradaran A, Fatemi SM, Mehrishi A. Frequency assessment of beta-lactamase enzymes in Escherichia coli and Klebsiella isolates in patients with urinary tract infection. J Res Med Sci. 2014; 19(Suppl. 1):S41-5. [PMID] [PMCID] [PMCID]

[21] Eslami G, Rezaie MS, Salehi Far E, Rafiei A, Langiae T, Rafati M, et al. [Epidemiology of extended spectrum beta lactamases producing E. coli genes in strains isolated from children with urinary tract infection in north of Iran [Persian]]. J Mazandaran Univ Med Sci. 2016; 25(127):36-70. [PMID] [PMCID] [PMCID]

[22] Martin D, Fougnot S, Grobst F, Thibaut-Jovelin S, Balleau F, Gueudet T, et al. Prevalence of extended-spectrum beta-lactamase producing Escherichia coli in community-onset urinary tract infections in France in 2013. J Infect. 2016; 72(2):201-6. [DOI:10.1016/j.jinf.2015.11.009] [PMID] [PMCID] [PMCID]

[23] Doosti Mohajer M, Pajavand H, Abiri R, Alvand A. [Phenotypic and Genotypic Efflux pumps in resistance to Fluoroquinolones E.coli isolated from inpatientins Kermanshah hospitals in 2013 [Persian]]. Arab Med Uni J. 2017; 50(12):26-32. [PMID] [PMCID] [PMCID]

[24] Azap OK, Arslan H, Serefhanoglu K, Colakoglu S, Erdogah H, Timurkaynak F, et al. Risk factors for extended-spectrum beta-lactamase positivity in uropathogenic Escherichia coli isolated from outpatients with community-acquired urinary tract infections in France. J Clin Microbiol. 2010; 48(2):697-78. [DOI:10.1128/JCM.01493-09] [PMID] [PMCID] [PMCID]

[25] Hashemi S, Nasrollah A, Rajabi M. Irrational antibiotic prescribing: A local issue or global concern? EXCLI J. 2013; 12:384-95. [PMID] [PMCID] [PMCID]

[26] Babaei Hemmati T, Mehdipour Moghaddam MJ, Salehi Z, Habibzadeh SM. Prevalence of CTX-M-Type beta-lactamases in multi-drug resistant Escherichia coli isolates from north of Iran. J Fasa Univ Med Sci. 2014; 4(2):275-83. [PMID] [PMCID] [PMCID]
[28] Rezai MS, Salehifar E, Rafiei A, Langaee T, Rafati M, Shafahi K, et al. Characterization of multidrug resistant extended-spectrum beta-lactamase-producing Escherichia coli among uropathogens of pediatrics in north of Iran. Biomed Res Int. 2015; 2015:309478 [DOI:10.1155/2015/309478] [PMID] [PMCID]

[29] Jena J, Sahoo RK, Debata NK, Subudhi E. Prevalence of TEM, SHV, and CTX-M genes of extended-spectrum β-lactamase-producing Escherichia coli strains isolated from urinary tract infections in adults. 3 Biotech. 2017; 7(4):244. [DOI:10.1007/s13205-017-0879-2] [PMID] [PMCID]

[30] Bubpamala J, Khuntayaporn P, Thirapanmethee K, Montakantikul P, Santanirand P, Chormnawang MT. Phenotypic and genotypic characterizations of extended-spectrum beta-lactamase-producing Escherichia coli in Thailand. Infect Drug Resist. 2018; 11: 2151-7. [DOI:10.2147/IDR.S174506] [PMID] [PMCID]