Synthesis and characterization of new compounds derived from 2-hydrazinobenzothiazole and evaluated their antibacterial activity

M I Khalil* and Q Z Khalal1

1Iraqi University, Collage of Education, Chemistry Department, Baghdad, Iraq
*Corresponding: marwaibrahim2007@outlook.com

Abstract: A series of new benzothiazole hydrazide derivatives starting from 2-mercaptobenzothiazole have been synthesized. 2-hydrazinobenzothiazole [M1] was prepared by refluxing of a mixture of hydrazine hydrate, H2O (80%) with 2-mercaptobenzothiazole. The reaction of the compound [M1] with the synthesized esters and amino esters [M2-M7 afforded benzothiazole hydrazide derivatives [M8-M13]. Compounds [M2-M7] were prepared from the reaction of different amino acids and carboxylic acids with absolute ethanol in presence of concentrated sulfuric acid. The structures of all synthesized compounds were established on the basis of FT-IR and some of them by 1H-NMR. The synthesized compounds have been evaluated for antimicrobial activity against Gram-positive and Gram-negative bacteria. Among thirteen synthesized compounds, in which four compounds (M8-M12) exhibited promising antibacterial activity.

Keywords: 2-hydrazinobenzothiazole, Amino acid, Carboxylic acid, hydrazine hydrate, biological activity.

1. Introduction

2-Hydrazine benzothiazole is a bicyclic ring system [1,2] bonded to the hydrazide group. Benzothiazole derivatives have been studied overall and take much interest. Its consider a core structure for the synthesis of new benzothiazole derivatives [3], this due to their several chemical reactivities and the potent broad spectrum of biological activity [4,5,6] such as anti-nociceptive [7], antitumor agents [8], antimicrobial [9], anti-inflammatory [10], anticancer [11,12], antibacterial [13,14], antifungal [15] and anti-HIV [16] and effective animal growth stimulators [17]. Furthermore, many of the benzothiazole derivatives and their metal complexes showed significant antibacterial and antifungal activity [18]. It was found that the action of many drugs increasing when managed as metal complexes than are free ligands [19].

2. Experimental:

2.1. Materials and measurements

2.1.1. Chemicals: All the chemicals and solvents used in this study were purchased from commercial sources (Merck, Fluka, and BDH-Chemical) Companies.
2.1.2. *Instruments:* The 1H-NMR spectra were recorded using CDCl3 and (DMSO-D6) as a solvent and TMS as internal standard at 298 K on Bruker 400 MHz Ultra-shied TM FT-NMR spectrometry in the laboratories of Al-Bayt University, Chemistry Department, Jordan. Chemical shifts are in parts per million (ppm).

2.1.3. *Microbial test:* All equipment required and strains of bacteria *S. aureus* and *E. Coli* and DMSO (solvent) were supplied from the Baghdad University, College of Science for Women, Biology Department.

2.2. *Preparation of compounds [1-13]:*

2.2.1. **Synthesis of Benzothiazole-2-yl-hydrazine [M1] [20]:** A mixture of 2-Mercaptobenzothiazole (0.0119 moles, 2 gram) and (8 ml) of hydrazine hydrate H₂O (80%) was refluxed for 4 hours. The mixture cooled at room temperature, then (5 ml) of ethanol was added. The separated precipitate was filtered and washed with cold water. The green crystals obtained, P. yield 92%, M.P. (202 °C).

2.2.2. **Synthesis of ester derivatives [M2-M7]:** A mixture of (1 mole) of various carboxylic acids dissolved in (5 ml) of absolute ethanol and (2.5 ml) of the concentrated sulfuric acid, was refluxed for 4 hours. After the reaction was completed it neutralized by addition of bicarbonate, then (5 ml) of ether was added until the precipitate formed. The precipitate was filtered and dried. The physical properties of compounds [M2-M7] respectively: P. yield %: 85, 86, 64, 89, 77, and 78. Color: yellow, pink, black, white, orange, and white crystals respectively, Melting point: (112-114°C), (96-98°C), (113-115°C), (124-126°C), (133-135°C) and (90-92°C) respectively.

2.2.3. **Synthesis of benzothiazole hydrazide (amide) derivatives compounds [M8-M13]:** 1mole or 2 moles) of ester derivatives [M2-M7] was mixed with (1 mole) of 2-hydrazinobenzothiazole [M1] in (5ml) of absolute ethanol. The mixture was refluxed for 4 hours, cooled by ice-bath, the precipitate was filtered and recrystallized by ethanol. The physical properties of compounds [M8-M13] respectively P. yields %: 77, 74, 81, 75, 67 and 83, Color: orange, yellow, pale black, green, black, and white. M.P.: (150-152°C), (144-146°C), (205-207°C), (187-189°C), (109-111°C) and (178-180°C) respectively.

2.3. *Antimicrobial Activity test:* The synthesized derivatives [M2, M6, M8, and M12] have been screened in vitro for their antibacterial activity against gram positive bacteria (*Staphylococcus aureus*) and gram negative bacteria (*Escherichia coli*) using the disk diffusion method [21] and DMSO as a solvent. The bacterial strains incubated at 37 °C for 24 hours. A standard 6mm diameter sterilizing filter paper impregnates with the above compounds were placed on agar with the tested microorganisms. The concentration of the tested compounds used was: 50, 100, 150, and 200 µL. The inhibition zone was measured in mm. The obtained results are listed in Tables 2a and 2b.

3. **Result and Discussion:**

The present work included the synthesis of new benzothiazole hydrazide derivatives, 2-hydrazinobenzothiazole prepared from the reaction of 2-mercaptobenzothiazole (MBT) with hydrazine hydrate under refluxing conditions. The synthesis of the desire compounds was accomplished according to the representation in scheme 1.
Scheme 1. The synthesis steps of 2-Hydrizinobenzothiazole derivatives starting from 2-mercapto benzothiazole.

3.1. Preparation of compounds:

3.1.1. Synthesis of 2-hydrizinobenzothiazole [M1]: 2-hydrizinobenzothiazole [M1] was synthesized by the nucleophilic substitution reactions of (2-mercapto benzothiazole) with hydrazine hydrate 80% and hydrogen sulfide displacement as a byproduct [22]. The FT-IR spectrum of 2-hydrizinobenzothiazole [M1] figure 1 shown bands at 3342 as, 3232 sym cm⁻¹ for \(\nu(C=O) \) (NH₂ str.) [23] and absorptions at 3101 which characterized for \(\nu(C=O) \) (NH str.), strong absorption at 1590 cm⁻¹ for \(\nu(C=O) \) (N-H bending), absorption at 1622 cm⁻¹ was due to \(\nu(C=S) \) (C=N str.). The sharp bands at 1417 cm⁻¹ due to the \(\nu(C=S) \) (C=C str.), stretching band at 3062 cm⁻¹ refer to \(\nu(C-H) \) aromatic, and 711 cm⁻¹ for \(\nu(C-S) \) [24].

![Figure 1](image1.png)

Figure 1. FT-IR spectrum of the compound (M1).

3.1.2. Synthesis of Ester derivatives [M2-M7]: FT-IR of compounds [M2-M7] figures (2-7) shown stretching bands at (1680-1733) Cm⁻¹ due to \(\nu(C=O) \) (O=C-Ostr.) The evidence for formation of ester is the disappearance of a significant band as a broad which could be attributed to the stretching of OH in a carboxylic acid group. [25]. The FTIR absorption bands of synthesized compounds shown in Table (1a). The 1HNMR DMSO-d6 δ Spectra for compound [M2] figure 8 showed the following data: 1.27 ppm (t, 3H, CH₃), 2.10 ppm (s, 1H, CH₃), 2.5-2.7 ppm (q, 2H, CH₂), 2.87 ppm (t, 2H, CH₂), 3.4 ppm (t, 1H, CH), 5.0-5.16 ppm (q, 2H, CH₂), 5.3 ppm (bs, 1H, NH₂). For compound [M6] figure 9: δ 1.26-1.28 ppm (t, 3H, CH₃), 3.2 ppm (t, 2H, CH₂), 4.1-4.4 ppm (q, 2H, CH₂), 5.3 ppm (bs, 2H, NH₂), 7.14-8.0 ppm (m, 4H, aromatic).
Figure 2. FT-IR spectrum of the compound (M2).

Figure 3. ¹H- NMR spectrum of the compound (M2).

Figure 4: FT-IR spectrum of the compound (M3).
Figure 5. FT-IR spectrum of the compound (M4).

Figure 6. FT-IR spectrum of the compound (M5).

Figure 7. FT-IR spectrum of the compound (M6).
3.2.3. Synthesis of Benzothiazole hydrazide derivatives compounds [M8-M13]: FT-IR for compounds [M8-M13] figures (10-15) were showed disappearance band of (C=O) carbonyl group of ester and appearance a new stratching band for (C=O) of amid group, appearance bands for (NHNH str.) group at about (31100-3200) Cm^{-1} Other bands shown in Table (1b). 1HNMR DMSO-d6 δ Spectra for compound [M10] figur 16 exhibits signals at: δ 2.83 ppm (bs, 1H, OH), 4.3 ppm (bs, 1H, NH), 4.6 ppm (s, 1H, CH), 7.5 ppm (s, 1H, NH), 7.8-8.6 ppm (m, 4H, aromatic). 1HNMR δ Spectra for compound [M11] figure 17 revealed the following signals: δ 2.4 ppm (t, 2H, CH₂), 4.2 ppm (bs, 1H, NH), 7.8 ppm (s, 1H, NH), 8.1-8.6 ppm (m, 4H, aromatic).
Figure 10. FT-IR spectrum of the compound (M8).

Figure 11. FT-IR spectrum of the compound (M9).

Figure 12. FT-IR spectrum of the compound (M10).
Figure 13. 1H-NMR spectrum of the compound (M10).

Figure 14. FT-IR spectrum of the compound (M11).

Figure 15. 1H-NMR spectrum of the compound (M11).
3.2. Antimicrobial activities:

The synthesized compounds [M2, M6, M8, and M12] were evaluated for their antimicrobial activity against *Escherichia coli* and *Staphylococcus aureus* bacteria's figure 18. The antibacterial activity of the synthesized compounds [M2, M6, M8, and M12] are summarized in Diagrams 1 and 2. The results reveals that compounds [M8 and M12] showed high inhibitory growth in the case of *E. coli* and *Staphylococcus aureus* in (150 and 200 µL), as compared to compounds (M2 and M6). The professional antibacterial activity of compounds M8 and M12 we can attribute may be to the presence of benzothiazole fragment in the structure of these compounds. Eventually, we can conclude that the compounds with benzothiazole hydrazide groups (M8 and M12) can inhibit the growth of the tested bacterial more than the compounds (M2 and M6).
Figure (18). Effect of compounds [M2, M6, M8 and M12] on *E. coli* and *S. aureus*.

Table 1a. Antibacterial activity of the synthesis compounds [M2, M6, M8 and M12] against E. coli.

Compounds	50 µg	100 µg	150 µg	200 µg
M2	+	+	+	++
M6	+	+	+	++
M8	-	++	++	+++
M12	+			

Table 1b. Antibacterial activity of the synthesis compounds [M2, M6, M8 and M12] against Staphylococcus aureus

Compounds	50 µg	100 µg	150 µg	200 µg
M2	+	+	+	++
M6	+	+	+	++
M8	+	+	++	+++
M12	+	+	++	+++

Key the symbols: (-) = no inhibition, (+) = (5-10) mm slightly active, (++) = (11-20) mm= moderately active, (+++) =more than 20mm= high active.

Diagram1: Antibacterial Activities (*Escherichia coli*) of Compounds [M2, M6, M8, M12],
Diagram2: Antibacterial Activities (*staphylococcus aureus*) of Compounds [M2, M6, M8, M12]
Table 2a. The FTIR spectrums of compounds [M2-M7].

Structure	νC=O cm$^{-1}$	νNH2 cm$^{-1}$	νC-H cm$^{-1}$	νC-N cm$^{-1}$	νN-H cm$^{-1}$	Other cm$^{-1}$
M2	1680	3342-3228assy. symm	2824-2954	1076-1269	---	C=O 1100-1220
						C=O 1109-1176
						C=O 1109-1176
						C=O 1109-1176
M3	1726.76	guanine 3406-3332	2843-2858	1573-1597	---	CO 1138-1230
		NH2 (3255-3232)				NH rocking 882-941
						NH rocking 882-941
						NH rocking 882-941
M4	1701	2844-2854	2854-2950	1573-1597	---	CO 1138-1461
						CH3 rocking 873-710
						CH3 rocking 873-710
						CH3 rocking 873-710
M5	1706	2852-2950	1573-1597	1516-1548	---	CO 1138-1461
						CH3 rocking 873-710
						CH3 rocking 873-710
M6	1732	3340-3280	2854-2939	1516-1548	3170-3172	CO 1161-1211
						CHa 1020
						CHa 1020
M7	1733	2929-2979	1516-1548	3170-3172	3095-3095	CO 1161-1211
						CHa 1020
						CHa 1020

Table 2b. The FTIR spectrums of compounds [M8-M13].

Structure	νC=O cm$^{-1}$	νC=C cm$^{-1}$	νNH2 cm$^{-1}$	νNH cm$^{-1}$	νC-H arcm cm$^{-1}$	νC-S cm$^{-1}$	Other cm$^{-1}$
M8	1639	1512	3261-3272	3201	3074	628	C=S 1564
							CH aliph. 2868-2954
							CH aliph. 2868-2954
							CH aliph. 2868-2954
M9	1473	3375-3276	3166-3176	3028-3095			C=S 1564
							CH aliph. 2850-2920
							CH aliph. 2850-2920
							CH aliph. 2850-2920
M10	1647	1558	3174-3219	3024			C=S 1561
							CH aliph. 2966-2873
							CH aliph. 2966-2873
							CH aliph. 2966-2873
							CH aliph. 2966-2873

11
4. Conclusion:

In conclusion, we developed a convenient and high yielding methodology for the synthesis of novel 2-hydrazinobenzothiazole derivatives. All synthesized compounds were confirmed by FT-IR, and the structures of compounds [M2, M6, M12, M11, and M13] were established by 1H-NMR. Some of these compounds evaluated for in vitro antibacterial activity against E. coli (+ve gram) and S. aureus (-ve gram) strains and the results showed that compounds M8 and M12 possess a potent activity as compared to M2 and M6. The presence of benzothiazole fragment may be play a main role of their antimicrobial activity. This study may be e useful for the development of potential antibacterial candidates derived from benzothiazole hydrazide.

Acknowledgment:

We appreciate the support and encouragement of the chemistry department / College of Education – Iraqi University represented by the head of the department and all the staff. My gratitude is also express to the Ibn-Sina State / Ministry of Industry and Materials for the completion of the FT-IR spectra. Also, our appreciation goes to Al-albyt University to complete the 1H-NMR spectrum.

5. References:

[1] Wang Z, Shi X and Wang J 2011 Synthesis, structure-activity relationships and preliminary antitumor evaluation of benzothiazole-2-thiol derivatives as novel apoptosis inducers J. Bioorganic and Medicinal Chemistry Letters 21(4) 1097-10.

[2] Lucille L B and Christopher J M 2009 Naturally Occurring Nitrogen–Sulfur Compounds. The Benzothiazole Alkaloids Australian J. of Chemistry 62 (7) 639–647. https://doi.org/10.1071/CH09126.

[3] Padalkar V S, Borse B N, Gupta V D, Phatangare K R, Patil V S, Umapa P G and Sekar N 2016 Arab. J. Chem. 9 1125-1128. https://doi.org/10.1016/j.arabjc.2011.12.006.

[4] El-Mossalamy E H, Al-Thabati S A, Al-Nomaiser F M 2005 Solvent effect on the electronic absorption spectra and dissociation constant of some sulfa Drugs Commune Fac. Sci. Univ. Ank. Series B 51(2) 21-30.

[5] Selvana A Y 2013 Synthesis of substituted (oxazepine, diazepine, tetrazed) Via Schiff Bases for 2-Aminobenzo Thiazole Derivatives J. Baghdad for Sci. 10(3) 736-784.
Wadher S J, Puranik M P, Karande N A, and Yele P G 2009 Synthesis and Biological Evaluation of Schiff bases of Depsone and their derivatives as Antimicrobial Agents J. Ph. T. R., 1(1) 22-33.

Abbas E M, Amin K M, El-Hamouly W S, Dina W S, Dawood H and Abdalla M M 2015 Res. Chem. Intermed. 41 2537–2555. https://doi.org/10.1007/s11164-013-1367-x

Srivatsava S D and Sen J P 2008 Synthesis and biological evaluation of 2 – amino benzothiazole derivatives. Indian J. chem. 47 B 1583-1586.

Suresh M, Sridevi G, Nuthangi S, Palakondu L and Sreekanth J B 2016 Synthesis, antibacterial and antifungal activity of novel benzothiazole pyrimidine derivatives. Arabian J. Chem. 9 681-687 https://doi.org/10.1016/j.arabjc.2013.04.003

Dhahir S A, Al-Sahib S A, Al-Razaq W A and Kadhim N J 2010 Synthesis of some bioactive 4-thiazolidinone derivatives in incorporating benzoazole moiety B. Sci. J. 7(1) 614-620.

Racane L, Pavelic S K, Nhili R, Depauw S, Paul-Constant C, Ratkaj I, David-Cordonnier M H, Pavelic K, Tralic-Kulenovic V and Karinski-Zamola G 2013 Eur. J. Med. Chem. 63 882 https://doi.org/10.1016/j.ejmech.2013.02.026.

Kumbhare R M, Dadmal T L, Pamanji R, Kosurkar U B, Velatooru L R, Appalanaidu K, Khageswara Rao Y and Venkateswara Rao J 2014 J. V. Med. Chem. Res. 23 4404 : https://doi.org/10.1007/s00044-014-1006-0.

Sahu P K, Sahu P K and Agarwal D D, 2015 Design synthesis and synergistic antioxidant, antibacterial, antifungal activity of nitrogen heterocycles J. Indian Chem. Soc. 92 169.

Sharma P C, Jain A, Yar M S, Pahwa R, Singh J and Goel S 2015 Synthesis and antibacterial evaluation of novel analogs of fluoroquinolones annulated with 6-substituted-2-aminobenzothiazoles Arab. J. Chem. 8 671-677 https://doi.org/10.1016/j.arabjc.2011.04.008

Catalano A, Carocci A, Defrenza I, Muraglia M, Carrieri A, Van Bambeke F, Rosato A, Corbo F and Franchini C 2013 2-Aminobenzothiazole derivatives: Search for new antifungal agents Eur. J. Med. Chem. 64 357-364 https://doi.org/10.1016/j.ejmech.2013.03.064.

Nagarajan S R, De Crescenzo G A, Getman D P, Lu H F, Sikorski J A, Walker J L, McDonald J J, Houseman K A, Kocan G P, Kishore N, Mehta P P, Funkes-Shippy C L and Blystone L 2003 Bioorg. Med. Chem. Lett. 11 4769 https://doi.org/10.1016/j.bmcl.2003.07.001

Holobova E and Perjessy A 1986 synthesis and properties of 2-hydrizinobenzothiazole derivatives Chem. Papers 40(6) 791-796.

Dash D C, Mahapatra R K, Mohapatra S and Naik P 2008 Synthesis and characterization of UO_{2}(VI), Th(IV), ZrO(IV) and VO(IV) complexes with 1,11-di hydroxy-1,4,5,7,8,11-hexaaza-2,3,9,10-tetramethyl-1,3,8,10-decatetraene-6-thione and their derivatives with choloacetic acid Indian J. Chem. 47A 1009-1013.

Yaseen A, Haitham H, Bahjat S, Ilshin H, Mohammad O, et al. 2008 Synthesis and in vitro anti proliferative activity of new benzothiazole derivatives ARKIVOC 15 225-38. [Google Scholar]

Suaad M H 2014 Synthesis of some new 4-oxo-thiazolidines, tetrazole and triazole derived from 2-SH-benzothiazole and antimicrobial screening of some synthesized J. of Saudi Chem. Soc. 18 893-901.
[21] Brown D F and Selkon J B 1974 Antibiotic discs active against resistant organisms *Br. Med. J.* 23(1) 573.

[22] Paul M D 2006 *Essentials of Organic Chemistry*, for Students of Pharmacy, Medicinal Chemistry and Biological Chemistry vol 1 (England: John Wiley and Sons Ltd) p 183–214.

[23] Nakanaga T, Ito F, Miyawaki J, Sugawara K, Takeo 1996 Observation of the infrared spectra of the NH$_2$-stretching vibration modes of aniline Ar$_n$ ($n = 1, 2$) clusters in a supersonic jet using REMPI *Chemical Physics Letters*, 261 414-420.

[24] Bellariy L J 1954 *The Infrared Spectra of Complex Molecules* vol 1 (London: Methuen & Co., Ltd) https://10.1002/ANGE.19540662219Corpus

[25] Firas A S, Ayad S H, Noori M A 2017 Synthesis, characterization and biochemical study of novel ester prodrugs containing aspirin and ibuprofen *Tikrit J. of Pharma. Sci.* 12(2) 1817-2716.