Data Mining and Expression Analysis of Differential IncRNA ADAMTS9-AS1 in Prostate Cancer

Jiahui Wan1, Shijun Jiang2,3, Ying Jiang2, Wei Ma2, Xiuli Wang2,4, Zikang He2, Xiaojin Wang2 and Rongjun Cui2*

1 Department of Clinical Laboratory, Harbin Public Security Hospital, Harbin, China, 2 Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China, 3 Department of Clinical Laboratory, Daqing Medical College, Daqing, China, 4 Department of Clinical Laboratory, The Seventh Hospital in Qiqihar, Qiqihar, China

Long noncoding RNAs (lncRNAs) play important roles in the regulation of gene expression by acting as competing endogenous RNAs (ceRNAs). However, the roles of lncRNA-associated ceRNAs in oncogenesis are not fully understood. The present study aims to determine whether a ceRNA network can serve as a prognostic marker in human prostate cancer (PCa). In order to identify a ceRNA network and the key lncRNAs in PCa, we constructed a differentially expressed lncRNAs (DELs)–differentially expressed miRNAs (DEMis)–differentially expressed mRNAs (DEMs) regulatory network based on the ceRNA theory using data from the Cancer Genome Atlas (TCGA). We found that the DELs–DEMis–DEMs network was composed of 27 DELs nodes, seven DEMis nodes, and three DEMs nodes. The 27 DELs were further analyzed with several public databases to provide meaningful information for understanding the functional roles of lncRNAs in regulatory networks in PCa. We selected ADAMTS9-AS1 to determine its role in PCa and found that ADAMTS9-AS1 significantly influences tumor cell growth and proliferation, suggesting that it plays a tumor suppressive role. In addition, ADAMTS9-AS1 functioned as ceRNA, effectively becoming a sponge for hsa-mir-96 and modulating the expression of PRDM16. These results suggest that ceRNAs could accelerate biomarker discovery and therapeutic strategies for PCa.

Keywords: prostate cancer, ADAMTS9-AS1, ceRNA, Hsa-miR-96, PRDM16

INTRODUCTION

Prostate cancer (PCa) is a common malignancy of the urinary and reproductive systems. Since the late 1980s and early 1990s, the incidence and mortality of PCAs have soared worldwide (Bray et al., 2013; Smith et al., 2017). The Cancer Statistics report has revealed an expected 174,650 new cases of PCAs and 31,620 deaths in the United States (Siegel et al., 2019). In China, poor dietary habits including excessive consumption of animal fat and reduced fiber intake have led to an increasing number of PCa patients. PCa ranks 7th in incidence and 10th in mortality among malignant tumors in China (Zhang et al., 2017). Due to the lack of obvious symptoms during early-stage PCAs, it is often overlooked, which results in reduced treatment success. Unfortunately, the molecular mechanisms underlying PCa metastasis are not known and thus relevant targets to effectively
predict PCa progression are lacking. Therefore, investigating the molecular mechanisms of PCa has gained much attention.

Long noncoding RNAs (lncRNAs) are longer than 200 nucleotides in length and are of much recent interest (Ling et al., 2015). LncRNAs play important roles in cancer, such as chromatin remodeling and transcriptional and post-transcriptional regulation (Fatima et al., 2015; Yarmishyn and Kurochkin, 2015; Wu and Hann, 2018). The most recognized molecular mechanism of lncRNA is to act as a microRNA “sponge” that regulates the activity of miRNAs, and thus lncRNAs are also referred to as competing endogenous RNAs (ceRNAs) (Salmena et al., 2011; Karreth et al., 2015). ceRNAs are involved in the pathology of various tumors, including colorectal cancer (Chen et al., 2017), breast cancer (Wang et al., 2017), and non-small cell lung cancer (Qu et al., 2017). However, the role of ceRNAs in PCa remains unclear.

MATERIALS AND METHODS

Raw Data

To investigate the significance of lncRNAs, miRNAs, and mRNAs in PCa, we downloaded gene expression data from the TCGA project webpage (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga), including 499 PCa samples and 52 matched normal samples up to April 9th, 2018.

Screening Differentially Expressed lncRNAs, miRNAs, and mRNAs

TCGA RNA-Seq raw data was performed with package edgeR. The P-value was set at 0.01 and the log2 fold change was set at 2. The data was presented as a heatmap plot and volcano map. Based on the analysis of DELs, DEMis, and DEMs, a correlation analysis was conducted on each significant DELs, DEMis, and DEMs.

DELs–DEMis–DEM Network

Based on the relationship between DELs, DEMis, and DEMs, the ceRNA network was constructed in three steps: 1) PCA-specific RNA (DEls, DEMis, and DEMs) filtration: to maximize data reliability, gene matrix was converted to gene ID by Ensembl (http://asia.ensembl.org/index.html); 2) DELs–DEMis interactions were predicted using miRcode (http://www.mircode.org/); 3) miRDB (http://www.mirdb.org/), miRTarBase (http://mihtarbase.mbc.nctu.edu.tw/), and Targetscan (http://www.targetscan.org/) were used to predict the DEMs targeted by DEMis. Furthermore, DEMis that regulated the expression of both DELs and DEMs were selected for construction of the ceRNA network. The ceRNA relationships were integrated using an in-house Perl script and R package. Cytoscape v3.0 was used to construct and visualize the ceRNA network.

Database and Functional Enrichment Analysis

The online database GEPIA (http://gepia.cancer-pku.cn) is an interactive web server for analyzing RNA sequencing expression based on TCGA and GTEx projects. We obtained the significant lncRNA ADAMTS9-AS1 in PCa via the database. The gene ontology (GO) analysis was performed for the functional annotation of ADAMTS9-AS1. The pathways that ADAMTS9-AS1 mainly participated in were investigated by KEGG pathway analysis. GO terms and pathways with a P value < 0.01 were considered significant. Both GO and KEGG pathway analyses were carried out in the Database for circlncRNA.net (http://app.cgu.edu.tw/circlnc/).

Cell Culture

The human PCa cell line DU145 was obtained from the Cell Bank of the Chinese Academy of Science (Shanghai, China). The cell lines were cultured in RPMI1640 medium supplemented with 10% fetal bovine serum (Gibco), 100 U/ml penicillin, and 100 mg/ml streptomycin (Gibco) at 37°C in humidified air containing 5% of CO₂.

RNA Extraction and Quantitative PCR

Total RNA was isolated using Trizol reagent (Invitrogen). First strand cDNA was generated using the Reverse EasyScript One Step gDNA Removal and cDNA Synthesis SuperMix (Trangene). qRT-PCR was performed using SYBR Green Master Mix (Roche) reagent in an ABI7500 real-time PCR instrument. GAPDH was used as an internal control. The relative levels of gene expression were calculated by the 2^{-ΔΔCt} method. qRT-PCR primers were as follows: ADAMTS9-AS1 forward 5’-CTCAGACCACAATCTCCACCTTG-3’, reverse 5’-CAGATGCTGCCCTGCTGATGG-3’; PRDM16 forward: 5’-ATGTATGAGCCCAACCGGA-3’, reverse 5’-AGCTGGAAGCTGGTGATGGAT’; GAPDH forward 5’-GAAGGTCGGAGTCAACGGATT-3’, reverse 5’-CGCTCCTGGAAGATGGTGAT-3’. All experiments were performed in triplicate.

Cell Transfection

Small interfering siRNAs specifically targeting ADAMTS9-AS1 were synthesized by Shanghai Gene Pharma Co, Ltd. siRNA sequences for ADAMTS9-AS1: siRNA 1, 5’-GGAATTCAAGCTTCTACAA-3’; siRNA 2, 5’-CCACTGAAACACATAAACAT-3’; siRNA 3, 5’-GGACTTGCAACTGTGACTT-3’. All experiments were performed in triplicate and repeated three times.
Dual Luciferase Reporter Assay
To verify the binding site of ADAMTS9-AS1-hsa-mir-96-RDM16, the fragment of ADAMTS9-AS1 containing the predicted hsa-mir-96 binding site and the 3′UTR of RDM16 were amplified from human cell genomic DNA and then cloned into psi-CHECK-2 vector (Promega, Madison, WI). Mutant plasmids were generated by deleting the predicted binding site. The appropriate plasmid and hsa-mir-96 mimic or negative control were co-transfected into HEK293T cells (1.0 × 10⁵). Renilla luciferase activity was used as a control.

Statistical Analysis
Data are presented as mean ± standard deviation (SD). T-tests were used to measure statistically significant differences. The Pearson’s correlation coefficient was used to analyze the correlation between ADAMTS9-AS1 in cancer tissues. Survival plots were generated by Kaplan–Meier analysis, and the log-rank test was used to assess statistical significance. P < 0.05 was considered statistically significant. All statistical analyses were performed using GraphPad Prism 5.0 (GraphPad Software, Inc., La Jolla, CA). Each experiment was performed three times.

RESULTS
Identification of Significant DELs, DEMis, and DEMs
In 499 PCa patients from the TCGA database, we initially performed differential expression analysis by comparing the expression of 14,447 lncRNAs in PCa and adjacent normal prostate tissue. The edgeR package (fold change >2, P < 0.01) identified 381 DELs (215 upregulated and 166 downregulated) (Supplementary Table 1) in PCa and adjacent normal prostate tissue. A total of 500 miRNAs and 19,676 mRNAs were identified and 35 miRNAs (24 upregulated and 11 downregulated) and 689 mRNAs (333 upregulated and 556 downregulated) were found to be differentially expressed between PCa and adjacent normal prostate tissue (fold change >2, P < 0.01) (Supplementary Tables 2 and 3). The distribution of all the significant DELs, DEMis, and DEMs is shown in a volcano map in Figure 1 and a heat map is shown in Supplementary Figure S1.

DEMis Targeted by DELs
As we found 381 DELs, miRcode and Perl were used to predict DELs-targeted DEMis in the 381 DELs and indicated that 27 DELs might target seven DEMis (Table 1).

DEMs Targeted by DEMis
The 7 DEMis discovered included hsa-mir-96, hsa-mir-184, hsa-mir-122, hsa-mir-506, hsa-mir-137, hsa-mir-372, and hsa-mir-187. Perl was used to modify DEMis 3p and 5p by starBase (Table 2). Subsequently, miRDB, miRTarBases, and TargetScan were used to predict DEMis-targeted DEMs (Table 3). Then, the edgeR package identified three DEMis-targeted DEMs and differentially expressed mRNA, including PRDM16, PTGS2, and DUSP2 (Figure 2A).

DELs–DEMis–DEMs Network
To better understand the functions of lncRNAs acting as miRNA targets, a network among DELs, DEMis, and DEMs was first constructed and then visualized. The DELs–DEMis–DEMs network was composed of 27 DELs, seven DEMis, and three DEMs (Figure 2B). To explore the pathway analysis of lncRNA, the mRNAs of the ceRNA network in PCa were analyzed by KEGG pathways and GO terms. Next, the top 12 most significant KEGG pathways and the 12 most significantly enriched GO terms were selected (Figures 2C, D). Several of these pathways are reported to be involved in the pathogenesis of cancers, including positive regulation of peptide hormone (Liu et al., 2018), sequence-specific DNA binding (Nardini et al., 2013), salivary secretion (Pedersen et al., 2018), and chemical carcinogenesis (Poirier, 2016).

ADAMTS9-AS1 Is a Potential Prognostic Biomarker of PCa
To find a potential prognostic lncRNA, the 27 DELs obtained from TCGA were used for further analysis with the database GEPIA. Only three DELs exhibited significant prognostic value for PCa, including ADAMTS9-AS1, PCA3, and PCAT1 (Figure 3). Moreover, recent accumulating evidence has demonstrated that PCAT1 and PCA3 play important roles in the regulation of gene expression by acting as ceRNAs in PCa (Prensner et al., 2014; Jeske et al., 2017). Significant ceRNA correlations were observed between ADAMTS9-AS1, PRDM16, and hsa-mir-96. Original data on ADAMTS9-AS1, PRDM16, and hsa-mir-96 was extracted from the TCGA platform (Figures 4A, B). ADAMTS9-AS1 exhibited high diagnostic value for distinguishing PCa from non-cancer prostate tissues with an AUC of 0.9063 (Figure 4C). More interestingly, disease-free survival analysis of ADAMTS9-AS1 with a low TPM exhibited poorer survival compared to ADAMTS9-AS1 with a high TPM (P = 0.0025, Figure 4D). These results suggest that ADAMTS9-AS1 may be a potential biomarker for PCa.

Functional Assessment of ADAMTS9-AS1
GO enrichment and KEGG pathway analyses of ADAMTS9-AS1 were conducted using circRNAANet. GO enrichment may directly reflect the distribution of ADAMTS9-AS1 for each enriched GO term of a significant biological process (BP), cellular component (CC), molecular function (MF), or transcription factor (TF) (Table 4). The most significant results of the KEGG pathway enrichment analysis show that ADAMTS9-AS1 is mainly involved in the cGMP-PKG signaling pathway, calcium signaling pathway, and Ras signaling pathway (Table 5). GO enrichment and KEGG pathway analyses were closely related to the mechanism of cancer.
ADAMTS9-AS1 Functions as a Sponge for hsa-mir-96 in PC Cells

Bioinformatics methods were used to predict the binding sequence between ADAMTS9-AS1, hsa-mir-96, and PRDM16 (Figure 5A). To investigate the biological functions of ADAMTS9-AS1 in PCa cells, we knocked down ADAMTS9-AS1 in DU145 cells by transfecting with specific siRNA. ADAMTS9-AS1 expression was significantly downregulated (P < 0.001) in the si-ADAMTS9-AS1 transfected cells compared to control cells. siRNA1 exhibited the largest downregulation and was thus selected for subsequent experiments (Figure 5B).

Growth curves from CCK8 proliferation assays showed that ADAMTS9-AS1 knockdown significantly promoted DU145 cell proliferation (Figure 5C). These findings suggest that ADAMTS9-AS1 behaves as a tumor suppressor gene that influences PCa cell proliferation. To investigate the molecular mechanism of the ceRNA network between ADAMTS9-AS1, hsa-mir-96, and its targets in PCa, we detected the mRNA level of hsa-mir-96 and PRDM16 in si-ADAMTS9-AS1 PCa cells. We found that knockdown of ADAMTS9-AS1 also significantly reduced PRDM16 mRNA levels; however, hsa-mir-96 expression was increased in DU145 cells (Figures 5D, E). These results suggest that ADAMTS9-AS1 functions as a ceRNA for hsa-mir-96, thereby leading to the regulation of its endogenous target PRDM16.

ADAMTS9-AS1 Regulated PRDM16 Expression Indirectly by Sponging hsa-mir-96

To elucidate the ceRNA network among ADAMTS9-AS1, hsa-mir-96, and its targets in PCa, we conducted luciferase reporter assays. The ADAMTS9-AS1 sequence containing the predicted hsa-mir-96 binding site was cloned downstream of the luciferase gene and named ADAMTS9-AS1 wild-type (WT). The hsa-mir-96 binding site was deleted, resulting in the ADAMTS9-AS1 mutant (MUT). Both WT and MUT were transfected together with hsa-mir-96 mimic. Overexpression of hsa-mir-96 reduced
the luciferase activity of the ADAMTS9-AS1 WT reporter vector, but not the ADAMTS9-AS1 MUT vector (Figure 6A). In addition, the WT 3'UTR sequence of PRDM16 (containing the predicted hsa-mir-96 binding site) or mutant constructs (containing a deletion in the hsa-mir-96 binding sites) were cloned downstream of the luciferase gene. These plasmids were transfected into HEK293T cells together with control miRNA, hsa-mir-96 mimic. Transfection with hsa-mir-96 mimic reduced the luciferase activity of the PRDM16 reporter vector, but not the mutated vector, indicating that hsa-mir-96 regulates PRDM16 expression in PCa cells by directly binding to the predicted site in the 3'UTR of PRDM16 (Figure 6B). Collectively, these data

miRNA	Gene
hsa-mir-122-5p	RBM43 HECTD3 P4HA PKM SLC7A1 ALDOA G6PC3 PKRRA RBL1 CLIC4 NTSC3A NPEPPS AKT3 GALNT3 ANKRD13C CCNG1 TGFBRAP1 GYS1 FAM117B ORC2 PP4K2A SLC9A1 SLC52A2 BROX NFX1 DUSP2 PIFH14 TNRC6A FUND2 HECW2 GNPNPA2 CCO43
hsa-mir-137	GLO1 PRRE1B CTPB1 ZNF326 SFT2D3 AGO4 KDM1A LIMCH1 MITF YB1 X1 E2F6 KIT PTGS2 PAPD7 EOGT DR1 YTHDF3 RORA ESRRM FMNL2 NCOA3 CSE1L SLC1A5 G6YF1 NCOA2 PKN GLPR1 HNRNPD SNRK
hsa-mir-184	LPRC8A
hsa-mir-187-3p	DYRK2
hsa-mir-372-3p	SERF1A ZFVE26 TNKS2 MED17 WEE1 ULK1 TAOK1 LIMA1 CLIP4 REST NR2C2 BGTG1 ZNF532 GALNT3 HABP4 TMEM100 TNFAIP1 MINK1 FAM102B MXL1 CPT1A DUSP2 TMEM19 MP55 SUCO PSD3 KPN2 CREBFRF RAB11F1P1 DFPP RHOC PAK2 SAR1B NFB TRPS1 SNBO1 LEFTY1 SH3GLB1 SLC7A1 ZNF385A PLA2G12A Sik1 UNK FXL1L CADM2 IGF1R MBL2 SLZ12 MKNK2 GNB5 TFAP4 FEM1C FOXJ2 ELAVL2 TIMM17A PRKP TGFB2 HBP1 KREEMEN1 ATAD2 CCSAP RAB22A KLF3 LAT32 CUL3 IND80D IRF2 HMBOX1 SLC22A3 ELK4 OSTM1 YOD1 SLAIN2 SERF1B IRAK4 TXNIP TTPDC1 ARID4B DAZAP2
hsa-mir-506-3p	TMEM41A CREBFIB SCAP4 CD151 LRRC58 CH5Y1 PTBP3 NEK9 NUFIP2 AMOTL1 LRRC1 SFT2D3 PTBP1 SNA2I VIM MYO10 SNX18 P4K2B GXYLT1 PARP16 PRR14L ZWINT SLC16A1
hsa-mir-96-5p	CNNM3 EDEM1 SCARB1 PRDM16 ZEB1 PRK2 APFL1 NHRC3 SLC39A1 TSKU MED1 CASP2 MBD4 CCNG1 ADCC6 TMEM17OB PPP1R8B DDIT3 PRKCE MAP3K3 E1F4 EB2 REV1 DDAH1 ALK AB3D1 SNO5B SLC1A1 TRIB3 PRKAR1A SNX16 SLC25A25 STK17B MORF4L1 FR32 SNX7 ASH1L JAZF1 KRAS FOXO1

FIGURE 2 | Distribution of differentially expressed genes. (A) 686 DEMs, 196 DEMs-targeted DEMs, and three DELs that intersect with DEMs and DEMIs-targeted DEMs were found. (B) The DELs–DEMIs–DEMs regulator network in PCa contains 27 DELs nodes, seven DEMIs nodes, and three DEMs nodes. Down DELs (green rhombus), up DELs (red rhombus), up DEMs (yellow triangle), up DEMIs (purple square), down DEMIs (blue square). (C, D) The KEGG pathway and GO enrichment analyses with the 12 most significant p-values. The x-axis denotes the number of DEMRNAs involved in the pathway.
FIGURE 3 | Box plots of three DELs. The cases were divided into a high and low expression group by mean DEL level (*P < 0.05). (A) ADAMTS9-AS1, (B) PCA3, (C) PCAT1.

FIGURE 4 | Clinical significance of ADAMTS9-AS1. (A) The expression of ADAMTS9-AS1 was negatively correlated with hsa-miR-96 in PCa based on the TCGA dataset. (B) The expression of ADAMTS9-AS1 was positively correlated with PRDM16 in PCa based on the TCGA dataset. (C) ROC curves of ADAMTS9-AS1 sorted by AUC in PCa; sensitive curve (solid line) and identity curve (dotted line). The X axis denotes the false positive rate: “1-Specificity”. The Y axis denotes the true positive rate: “Sensitivity”. These curves were provided by GraphPad Prism6. (D) Disease-free survival analysis of ADAMTS9-AS1 with low and high ADAMTS9-AS1 TPM. The X axis denotes disease-free survival time (months) and the Y axis denotes the survival rate. These curves were generated by GEPIA.
suggest that ADAMTS9-AS1 modulates the expression of PRDM16 by post-transcriptional regulation of hsa-mir-96.

DISCUSSION

Recently, many studies have supported a novel regulatory mechanism of lncRNA in human cancers, mainly represented by the interaction between lncRNA and miRNA. LncRNA can act as a ceRNA or molecular sponge to regulate miRNA expression and regulate the occurrence and progression of many cancers (Tu et al., 2019; Ao et al., 2019; Yu et al., 2019). For example, lncRNA Unigene 56159 promotes the epithelial-mesenchymal transition of hepatoma cells by acting as a ceRNA of miR-140-5p (Lv et al., 2016). MEG3 inhibits the invasion of bladder cancer cells by competing with PHLPP2 to bind to miR-27a and negatively regulates c-Myc as a ceRNA (Huang et al., 2019). PVT1 regulates

TABLE 4 | GO terms analyses with the correlative genes of ADAMTS9-AS1.

Category	Term	No. of genes	p-value
go_bp	regulation of system process	86	1.01E−13
	multicellular organismal signaling	40	9.32E−10
	developmental growth	79	1.93E−08
	chromosome segregation	50	3.90E−07
	cell-cell signaling	161	8.10E−07
	calcium-mediated signaling	29	1.05E−06
	second-messenger-mediated signaling	39	1.94E−06
	regulation of calcium-mediated signaling	19	1.98E−06
go_cc	cell-substrate junction	76	7.90E−15
	cell-substrate adherens junction	73	1.33E−13
	focal adhesion	72	2.69E−13
	plasma membrane region	125	6.04E−12
	cytoskeleton	225	3.72E−11
	actin cytoskeleton	74	4.08E−11
	integral component of plasma membrane	182	1.26E−09
	proteinaceous extracellular matrix	60	1.97E−09
	intrinsic component of plasma membrane	196	3.57E−09
go_mf	cytoskeletal protein binding	116	2.08E−11
	calcium ion binding	89	1.89E−07
	substrate-specific channel activity	63	2.66E−07
	passive transmembrane transporter activity	66	3.70E−07
	ion channel activity	61	3.74E−07
	channel activity	65	7.28E−07
	actin binding	55	3.0E−06
	glycosaminoglycan binding	35	5.9E−06
	calcium ion binding	89	1.89E−07
go_tf	VSSRF_Q6	73	5.98E−24
	VSSRF_Q5_01	66	1.66E−21
	VSSRF_C	64	3.55E−21
	VSSRF_Q4	65	1.10E−20
	CAAGCTG_VSAPM_Q5	210	1.33E−15
	AACCTTT_UNKNOWN	236	1.40E−12
	CCAWNNAAAGG_VSSRF_Q4	30	2.66E−12
	TGAAA_VSNFAT_Q4_01	230	5.22E−11
hm	MYOGENESIS	62	5.61E−18
	EPITHELIAL_MESENCHYMAL_TRANSITION	43	2.84E−07
	UV RESPONSE_DN	32	4.90E−06
	G2M_CHECKPOINT	39	1.02E−05
	APICAL_JUNCTION	34	6.19E−04
	E2F_TARGETS	34	7.48E−04

TABLE 5 | KEGG pathways analyses with the correlative genes of ADAMTS9-AS1.

KEGG pathways	No. of genes	p-value
cGMP-PKG signaling pathway	33	4.58E−08
Calcium signaling pathway	34	1.98E−07
Ras signaling pathway	37	5.91E−06
Adrenergic signaling in cardiomyocytes	25	3.35E−05
cAMP signaling pathway	31	3.44E−05
Rap1 signaling pathway	32	4.49E−05
Proteoglycans in cancer	59	5.64E−05
Pathways in cancer	59	5.67E−04
Wnt signaling pathway	59	1.42E−03
MAPK signaling pathway	20	2.15E−03
Hippo signaling pathway - multiple species	35	2.48E−03
Oxytocin signaling pathway	7	3.28E−03
PI3K-Akt signaling pathway	21	3.33E−03
Hedgehog signaling pathway	9	5.34E−03
the expression of HK2 in gallbladder cancer cells by competitive binding to miR-143, and controls aerobic glucose metabolism to promote cell proliferation and metastasis (Chen et al., 2019).

Although there have been great advances in therapeutic strategies for PCa, almost all patients develop castration-resistant PCa (Cheng et al., 2018). According to the ceRNA hypothesis, lncRNAs can act as miRNA sponges to construct a complex ceRNA network with miRNAs and mRNAs (Zhou et al., 2014). LncRNA has received extensive attention in recent years, however, miRNAs and mRNAs also deserve more attention. As few studies have reported the role of PRDM16 in PCa, the molecular mechanism of PRDM16 in PCa was the focus of our study. We found that PRDM16 expression was significant for the survival curves of PCa patients with different Gleason scores from FIGURE 5

FIGURE 5 | The functions of ADAMTS9-AS1 as ceRNA in PCa cells. (A) Complementary binding site of ADAMTS9-AS1, hsa-mir-96, and PRDM16. (B) qRT-PCR results of ADAMTS9-AS1 expression levels in DU145 cells transfected with ADAMTS9-AS1-specific siRNA (**P < 0.01). (C) CCK-8 assays show that ADAMTS9-AS1 knockdown promoted the proliferation of DU145 cells (**P < 0.01). (D) The expression of PRDM16 in DU145 cells following the knockdown of ADAMTS9-AS1 (**P < 0.01). (E) hsa-mir-96 expression varied with ADAMTS9-AS1 expression (**P < 0.05).

FIGURE 6 | PRDM16 is an hsa-mir-96 target gene and is indirectly regulated by ADAMTS9-AS1. (A) The luciferase reporter plasmid containing wild type (AC-WT) or mutant (AC-MUT) ADAMTS9-AS1 was co-transfected into HEK-293T cells with hsa-mir-96 mimic or NC. (B) The luciferase reporter plasmid containing wild type (PRDM16-WT) or mutant (PRDM16-MUT) 3’UTR of PRDM16 was co-transfected into HEK-293T cells with hsa-mir-96 mimic or NC.
To identify novel diagnostic markers for PCa, ADAMTS9-AS1 was selected for further functional assessment with circRNAnetwork. In the present study, GO analysis revealed that a number of GO terms were significant with $P < 0.05$. These significant GO terms involved biological process (BP), cellular component (CC), molecular function (MF), transcription factor (TF), and HM. The pathway analysis revealed the cGMP-PKG signaling pathway, calcium signaling pathway, ras signaling pathway, adrenergic signaling in cardiomyocytes, CAMP signaling pathway, Rap1 signaling pathway, and proteoglycans in cancer. In addition, our data demonstrated that si-ADAMTS9-AS1 promotes cell growth and proliferation. ADAMTS9-AS1 acts as an anti-oncogene ceRNA by binding and sequestering hsa-mir-96 to regulate PRDM16. Moreover, we performed dual luciferase reporter assay to confirm that ADAMTS9-AS1 functions as a ceRNA and competitively binds to hsa-mir-96, thus regulating PRDM16. The main cause of death due to malignant tumors is distant metastases. Competitive endogenous RNAs regulate gene expression and play an important role in the occurrence and development of malignant tumors. LncRNA, as a ceRNA, regulates target genes by competitively binding microRNA, thereby affecting the invasion and metastasis of malignant tumors. Thus, ADAMTS9-AS1 may not only serve as a biomarker, but also as a potential therapeutic target.

In summary, this study revealed the PCa ceRNA expression profile and demonstrated that ADAMTS9-AS1 may serve as a candidate diagnostic biomarker or potential therapeutic target in PCa. Our results may provide a better understanding of the role that the lncRNA–miRNA–mRNA ceRNA network plays during PCa development. This study has provided insight regarding molecular therapeutic strategies for PCa. Nevertheless, our results are preliminary and further studies are needed to explore the biological functions and molecular mechanisms of the ADAMTS9-AS1-hsa-mir-96-PRDM16 ceRNA network in PCa.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, to any qualified researcher.

AUTHOR CONTRIBUTIONS

JW, RC, and SJ wrote the main manuscript text. WM and XjW prepared all figures. XIW and ZH designed the experiments, YJ provided funding for the subject, and all authors reviewed the manuscript.

FUNDING

This work was supported by grants from Postgraduate Innovation Research Project of Mudanjiang Medical University (No.2018YJSCX-02MY) and Operation Expenses Research Project for Universities’ basic Scientific Research of Heilongjiang Provincial (No.2018KYYWFMY-0034).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2019.01377/full#supplementary-material
Zhou, X., Liu, J., and Wang, W. (2014). Construction and investigation of breast-cancer-specific ceRNA network based on the mRNA and miRNA expression data. IET Syst. Biol. 3, 96–103. doi: 10.1049/iet-syb.2013.0025

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.