Genome-Wide Analysis of The ID Family of Bhlh TF’s In Glial Tumours

Shouhartha Choudhury (shouharthac@gmail.com)
Assam University

Research Article

Keywords: ID genes, ID proteins, bHLH TF’s, Glial Tumours and Development

Posted Date: October 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-798749/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The inhibitor of differentiation (ID) family of TF’s accumulated the result of development. This subgroup of bHLH TF’s is an inverse regulator that acquires to constrain segregation and stimulate proliferation. The ID family of bHLH TF’s control the reactions of homodimer and heterodimer by motions of E proteins (Class A) and tissue-specific (Class B) bHLH domain. A recent report suggested ID genes act to enhance the proliferative potential of tumour astrocytes. Those reports supported ID genes are mighty regulators in tumour-angiogenesis and govern the malignant response of glial tumours. So, I performed bioinformatics and computational application to the current knowledge of the ID family in two different genomes.

Results: My finding supported the number of ID1-ID4 genes and their encoded proteins present in two isolated organisms. Therefore, I documented the molecular functions and mechanisms linked with the ID family of TF’s in mammals. Those mechanisms assume the ID1-ID4 of bHLH domains reveals an inherent role during differentiation, cell-cycle regulation, and cellular growth.

Conclusion: My finding data provided the foundation of ID1-ID4 genes in glial tumours. Also, the numerous molecular mechanisms described the hallmark of glial development.

Highlights:

- The P53 is a repressor of ID1/ID2 functions and cellular proliferation.
- ID2 with RB differentially repress G1/S and G2/M associated genes after P53 activations.
- CDKIs are suppressors of p53 and pRB, and E2F-1, all degrade by ubiquitin/proteasome.
- ID2 activate by the enlightenment of chimeric proteins.
- ID2/ID4 inhibits OLG1/OLG2 are robust in oligodendrocyte development.
- ID2/ID3 initiation is powerful during B cells development.
- ID3 captivate immune checkpoints during T cell development.

Introduction:

The feature of neuroglia originates from the potentiality of genes to segregate the postpartum period. Glial growth characterized encephalon to respond gliosis and malignant fluctuation of neuroglia. The primary tumours in the encephalon represent astrocytic derived tumours. Astrocytes tend to the malignant transformation that differentiates cells in CNS [1–4]. The astrocytic tumour accord ubiquitous characteristic of effective astrocyte enhances genes and proteins function. Those genes and their encoded proteins oscillation induce at developmental stages of astrocytic differentiation. Known studies exhibit the viability of effective state imparts by astrocytes under the reaction of neoplastic activity. The molecular mechanisms described the salient improvement and stimulating of neuroglia also glial pathology remains unclear. But the neuroglia activation and malignant variation of astrocytes depend on
the process of ID genes and proteins [5]. The inhibitor differentiation (ID) genes that act in encephalon are optimum and limited to recover the strength of astrocytes. Despite, likelihood glial cell differentiates by the robust accumulation of ID gene and their encoded proteins in glial tumours [6]. An earlier study suggested the ID genes expressed at variable levels in cells acquire from glial tumours such as neuroblastoma, glioblastoma and glioma [1]. Recent experimental evidence supported the glial tumours obtains from the CNS also express the high degree of ID1-ID4. The vector of inhibitor differentiation examines depend on the pathological classification of the malignancy. Also, the unstable expression of ID genes suggested aggressive growth of glioblastoma multiform and astrocytoma [7]. ID genes exhibit in malignant cells and blood vessels during the enhancement of astrocytic tumours. The malformed function of ID1-ID3 in astrocytic tumours appears in blood vessels correlated by an intensity of endothelial proliferation. Abnormal function of ID1-ID3 suggested glioma, medulloblastoma and neuroblastoma. During angiogenesis, tumours specific ID1/ID3 in model organisms fail to develop and metastasize. Under these circumstances, neovascularization cruelly damages substantial regions on haemorrhage and necrosis [7–11]. Since the characteristic of tumour progression in NS is an equilibrium between anti-angiogenic and pro-angiogenic (angiogenic switch) molecules. Those molecules lead to the tumour neovascularization associated with brain tumours [12, 13]. The aggressive gliomas generally coordinated with eminent vascular proliferation required oxygen even nutrients to enhance tumour mass. Thus, neo-angiogenesis in tumours drive ID genes and proteins in the tumour endothelium. The degree of ID1-ID4 functions supported anti-angiogenic and targets against highly vascularized brain tumours. The growth of PNS/CNS reveals the interaction of E proteins (E2A, E2-2/ITF2, and HEB/HTF4) and tissue-specific (MyoD, NeuroD, MASH, TAL, and MYOG) bHLH TF’s promoting a strategy of cell-fate differentiation [14, 15]. In neurogenesis, bHLH domains are key regulators that develop neuronal differentiation required OLIG1-OLIG3, NEUROG1-NEUROG3, NEUROD1, NEUROD2, NEUROD4, NEUROD6, ATOH1, ATOH7, ATOH8, and ASCL1 [16–21]. The proneural nuclear genes stimulate lineage-specific differentiation through neurogenesis and determine patterns of cellular differentiation during development [22–25]. The neurogenic factor of HES1 binds and resists the functions of the bHLH domain, which inhibits transcription and prevents neural differentiation and specification [26]. HES1 restrains neurogenic differentiation strategy and exhaust the pool of neural precursors [27–30]. The ID’s binds and inhabits HES1 during the growth of the NS (nervous system). Both are inhibitors of neurogenesis and control the response of negative regulation to allow transcription of specific proneural bHLH TF’s [31]. An earlier report suggested the elevated levels of ID functions rapidly induced in cells and survive through the S phase. Those studies proposed the G1 progression requires functions of E2A and ID genes in specific targets [32]. The signalling of ID1-ID4 intersects with bHLH, ETS, E2A, HEB, E2-2, PAX’s, E2F and other TF’s to form complex differentiation for the viability of organisms [33–36]. The ID family of bHLH TF’s prevent DNA binding and control interactions of other factors. But it’s unclear the inhibitor differentiation (ID) factors have a positive role in cell proliferation. A recent report supported the molecular checkpoint control proliferation by pocket proteins family or RB family (Rb, p107, and p130). Especially, ID2 bind with Rb, p107, p130 in a cell cycle when massive abundance inhibits their anti-proliferative functions [37–40]. This appearance characterized neuroectodermal tumours when ID2 molar redundancy over active hypophosphorlated RB [41]. Furthermore, the E2F family are vital for RB function,
but the functional inhabitation between the cellular RB-ID2 and RB-E2F functions are unclear. However, ID2/E2F participate RB binding, while ID2 revealed by the mobility of the RB family (pocket proteins) family depend on E2F transcription. The enormous RB-ID2 and RBL1 (p107)-ID2 complexes establish S phase quench the signal of ID2 in natural target since the comparison disputed the ID2 activity characterized G1 progression. The negative obligation of the RB family restrains ID2 activity is fundamental for the S phase and cell viability [42, 43]. Since the negative factor in growth-promoting controlled by tumour suppressor protein is vital for sustain tissue-homeostasis [1]. The inverse role of the RB family with inhibitor differentiation is necessary to quench inhibitory firing of anti-proliferation and differentiation. Also, most recent reports suggested the ID1 inhabits ETS (ETS1/ETS2) mediated transcription of p16 as a tumour suppressor factor that has a function uniform to the pocket proteins family [42]. Those factors elicit the activity of inhibitor differentiations inactivate the mobility of pocket proteins. The anti-apoptotic ability of the ID family might assign a counterforce to support full immortalization. Thus, it is striking the apoptosis promotes by elements of BCL-2/BCL-XL (anti-apoptotic) precisely enhance ID-mediated immortalization by accessing dual ability to lead cell outgrowth and death [44–46]. Inhibitor differentiations (ID1-ID4) associated with polypeptides that combine with a genus of bona fide growth-promoting proteins such as MYC and E2F1 are robust activators of apoptosis. The oncogenic action is strongly affected by the survival genes of the BCL-2/BCL-XL in the BCL-2 family [47–50]. In this work, an intense glimmer of hope and evidence justify the inclusion of the inhibitor differentiations (IDs) family of nuclear oncogenes and their encoded proteins in glial tumours.

Results:

Structural analysis: The primary structure determined the composition of nucleotides and peptides. The target structure arranges by 468 nucleotides and 155 peptides with 56 peptides tied to DNA (Table 1). A three dimensional (3D) structure stated that the 56 polypeptides make a bHLH residue is a negative regulator recognized by two alpha-helix linked through a loop. The variability of the loop allows dimerization through folding and filling in the case of other helices. Those amphipathic alpha-helices have separated by a linker region of length (Fig. 1a). The Ramachandran diagram (φ, ψ plot) described the polypeptides locates in parallel and anti-parallel beta sheets (Fig. 1b).

Genome-wide analysis: The genome-wide analysis of both organisms by the HMMER algorithm obtained 72, 62 of bHLH domain in Homo sapiens and Mus musculus, respectively (Table 2). Standalone BLAST2 output represents 12, 13 homologs of inhibitor differentiation genes in Homo sapiens and Mus musculus, respectively (Table 2). The gene ontology annotation confirmed sequence accuracy of ID1-ID4 in the ID Family of bHLH TF's in Homo sapiens and Mus musculus (Table 3 & 4).

Domain, motifs, and phylogeny analysis: The highest hits of ID1 (target gene) listed from both organisms for sequence aligning, MSA results demonstrated conserved bHLH domain. The high consensus (90%) confirmed that the extended bHLH residue (Fig. 2a) and their specific motifs (Fig. 3). Further observation of the negatively regulated domain concluded that the ID1-ID4 conserved in evolution (Fig. 2b). The
experiment of the phylogenetic tree suggested the molecular evolutionary relationship of the ID Family of bHLH TF’s in-between Homo sapiens and Mus musculus (Fig. 4).

Chromosome location, gene network, and expression analysis: Chromosome location study confirmed that the ID1 located band 20q11.21. Started 31,605,283 bp and, end 31,606,515 bp in humans (Fig. 5). The gene network study determined that the ID1 interacts with other molecules such as TCF3, TCF4, TCF12, RAP1A, ASCL3, THBS1, ETS2, ASCL1 also BMP2. Those molecular interactions govern the outcome of the ID1 gene in particular cells (Fig. 6). The disease state study in humans suggested the ID1-ID4 genes highly expressed in the neoplasm of the eye, brain, CNS, astrocytoma, glioblastoma, oligodendroglioma (Fig. 7) (Table 5). Therefore, the bHLH TF’s data analysis concluded the total number of ID genes, peptide structure, conserved domain, motifs, phylogeny, chromosome location, gene network, and gene expression in isolated organisms.

Discussion:

The genomics study suggested the dominant outcome of the ID family of bHLH TF’s revealed numerous hallmarks of development such as stem cell defence, cellular growth, differentiation, lineage determination, cell-cycle regulation, angiogenesis, vasculogenesis, migration, proliferation, tumorigenesis, immune response, and energy metabolism [1, 42, 51–58]. In the inhibitor differentiation (ID) family, ID1-ID4 share conserved domain and their sequence motif mediated dimerization through the sequestering of bHLH TF’s such as E2A (TCF3), HEB (TCF12), and E2-2 (TCF4) are primarily the groups of E protein. The ID proteins have a negative DNA binding region (amino acids residues). But, ID proteins serve natural occurring dominant negative inhibitor of E proteins by the reaction of non-functional heterodimers. The ID1-ID4 has similar functions to suppress the DNA-binding activity of E proteins. The sequestering of E proteins suggested inhibitor differentiation proteins decrease reactions of heterodimers via tissue-specific bHLH polypeptides [59]. The stability of inhibitor differentiation proteins for the E proteins is complex and has discharge functions during sequestering by the motion of their structure. Hence, we can consider that the E proteins activity in the cells determines by the total concentration of E proteins subtracted by inhibitor differentiation proteins. The functional study supported inhibitor differentiation proteins engaged as an effective approach to delineate the collective activity of E proteins [60–62]. Precisely, the combination of inhibitor differentiation proteins, artificial molecule (recombination), and ET2 is supported and exploited. ET2 contains N-terminal polypeptides of E47 with two transcriptional residues and C-terminal polypeptides of SCL/TAL1 composed of the basic helix-loop-helix domain. Since the residues of SCL and TAL1 do not have to dimerize via ID proteins but has good stability for E protein [63]. But ET2 interact with E proteins greedily and bind to DNA sequences (E box) since ET2 contains transcriptional arouse domains of E47, which is heterodimers between ET2 and E proteins that raise transcription of target associated genes. Consequently, the ET2 compete with the ID family to coordinate the other proteins and neutralize the inhibitory impact of inhibitor differentiation proteins. Also, ID proteins resist the functions of E proteins through the interaction of various proteins without the bHLH domain. Such as ID2 associated with RB proteins that differentially repress G1/S and G2/M associated genes after P53 activations. That leads to an antagonistic relationship between ID2-RB [47, 40]. Indifference, the ID1 bind
to membrane-associated molecules regulates integrin signals (CAV1) [41, 64]. ID3 implicated to coimmunoprecipitate with the PAX5 protein and inhibit its transcriptional mobility [35]. Even the ID1/ID3 regulates in cell cycle process and transcribes the G1 phase by a reaction of serum stimulation. ID1 function promotes the outgrowth of NIH3T3 fibroblast during the adaption of the G1 to S phase. Besides, an elevated level of E47 suggested the E proteins arrest cell cycles through adaptation in NIH3T3 cells. These results are constant for E proteins implicated during transcriptional catalysts of the p16/p21 are inhibitors of the cycling-dependent kinase. The link between inhibitor differentiation proteins and E proteins in cell cycle-regulated fashion suggested the E2A (E12 or E47) as homodimer initiate transcription of CDKIs. So, antagonize ID proteins to E protein-initiated transcriptional catalysts of p16/p21 recognized as cell-cycle controllers. Other mechanisms suggested the resistance of ETS1 by inhibitor differentiation proteins controls the reaction of p16, a leading switch of the cycling-D-dependent kinase [65–69]. Also, ID1/ID3 stimulates the response of genes complex in proliferation, invasion, and survival outside the E proteins [52]. In some circumstances, the ID1 attach to the p65 subunit of NF-kB and enhance the NF-kB targets genes. The formation of NF-kB activity and the anti-apoptotic effector’s genes is BCL-XL and ICAM-1 (CD54). Therefore, ID proteins can either function as pro-apoptotic or as anti-apoptotic molecules. ID1-transfected cells resistance by tumour necrosis factor (TNF) through the inactivation of BAX and CASPASE 3 [61, 70–72]. The ID1/ID3 in angiogenesis suggested function in the blood vessels of integrins (α6, β4, and αvβ3 integrins), FGFR1, and MMP2 by the response TSP-1. The above initiations are important for regulating bone-marrow-derived endothelial-cell attack and relocation. The recovery of angiogenesis impaired ID-deficient of HSP90 inhibitor, 17-allylamino-17 demethoxygeldanamycin or Tanespimycin suppresses HER2-neu-dependent manner [7, 74–76]. In fibroblasts, ID proteins promote the initiation of new blood vessels through the repression of TSP-1, a robust inhibitor during angiogenesis [74]. Additionally, ID proteins boost the function of VEGF. ID proteins prefer endothelial cells proficient for mobilization and proliferation of VEGF [10, 77, 78]. A shed light of BMP-dependent repression of ID1 through TGFβ-specific SMAD2/SMAD3 requires synthesis via ATF (ATF3)/CREB family. The anomaly of ATF/CREB site for TGFβ-initiated repression of promoter elements is fundamental for BMP signalling. Adhesion of ATF3 induces by the process of TGFβ and cooperate naturally with TGFβ-responsive SMAD3 but no BMP-specific SMAD1, enabling cells to distinguish between BMP and TGFβ [79]. TGFβ act as an inhibitor or activator of endothelial cells depends on two different TGF-β receptors: (a) ALK5 signalling via TGFβ-sensitive SMAD2 and (b) ALK1, which produces and activates SMAD5 through BMP response. The aggregation of TGFβ suggested ALK1 signalling via SMAD5 that accumulate migration and proliferation of endothelial cells by the function of ID1. Also, ALK5 suggested a high quantity of TGFβ that inhibit endothelial cell proliferation and regeneration through induction of PAI [80]. Besides, TGFβ and ID2 induce diverse cell lineages in the immune system. The trafficking of dendritic cells occupied by the TGFβ directly initiates transcription of ID2. Precisely, early B-cell progenitors revealed TGFβ1 induced by the process of ID2/ID3. Also, ID3 adoption is prominent at the pro-and pre-B-cell stages, whereas ID2 initiation is powerful in mature B cells. Therefore, TGFβ-mediated activity of ID2 function leads to IgE associated gene transcription and class switch recombination (CSR) [81–83]. In estimation, the ID2 function regulated by GFI-1 is zinc-fingering proteins that act as a repressor. GFI-1 plays a dominant role in hematopoietic stem cells that maintenance even
binds to the ID2 promoter and inhibits transcription. Also, ID2 accord a preface in erythroid differentiation and promote the growth of erythroid lineage cells [84–86]. In a variation, the lipopolysaccharides (LPS) stimulate ID1 function in HSC. The effect of LPS potential attributes to transient functions of TNFα and IL-10 (inflammatory cytokines) increase turnover of HSC. These findings reveal the ID1 function initiate the HSC by process of LPS that promote TLR signalling [87]. Furthermore, the ID1 to an immunoglobulin enhancer component found at the 3′-end of gene negotiates transcriptional catalyst by responses of STAT5 and C/EBPβ. ID1 function in myeloid tissue revealed CCAAT enhancer-binding proteins that play vital roles by cytokines such as IL-3 and GM-CSF activated STAT5. Another inflammatory cytokine of IL-6 also stimulates ID1 functions. Also, the ID2 function conveys to be initiated by C/EBPβ. Invariance, ID3 inflicts RAS/MAPK initiation by responses of the EGR TF’s [88–93, 63]. ID3 function in humoral immunity correlated with a low degree of IgG1 and IgG2 challenged the T-cell-dependent or T-cell-independent antigens that block thymocytes during the transition from single to double-positive cells. This functional mechanism suggested TCR (T-cell receptor) signalling enables ID3 to captivate several immune checkpoints during T cell maturation [7, 55, 94, 95]. In cancer biology, the ID family of bHLH TF’s well characterized in diverse cancers such as glioblastoma, medulloblastoma, neuroblastoma, seminoma, prostate cancer, epithelial ovarian cancer, cervical cancer, endometrial cancer, breast carcinoma, melanoma, pancreatic carcinoma, head & neck cancer, medullary thyroid carcinoma, gastric cancer, T-cell lymphoma, B-cell leukaemia, colon carcinoma, and Ewing sarcoma [51–58]. ID genes function proposed as a prognostic signature in various cancers. In some conditions, it is adequate to render cells immortal or induce oncogenic mutation. Genomic stability of the ID family of bHLH TF’s in molecular cancer therapy originates from the hypothesis that accumulates blocking of cellular differentiation and ability to drives proliferation. The ID family of bHLH TF’s has negative functions to govern cellular differentiation and cell cycle regulation. Overwhelming evidence supported the resolution of ID genes act to enhance proliferative factors in different neural cell types. Also, the ID genes are a supreme regulator of proliferation in the NS. The functions of ID genes in neural growth suggested the encoded ID proteins control impulsive segregation and ultimately cell cycle block. These mobilities recognize by ID proteins to irritate bHLH TF’s and tumour suppressor proteins (RB family). It is supported the ID1-ID4 proteins in post-natal tissues abnormally expressed in tumour endothelial cells attained from CNS and PNS [1]. During development, ID genes set the timing of differentiation in various neural cells includes neurons and oligodendrocytes. Deregulation and malformed expressions of ID genes are associated with neo-angiogenesis, relentless proliferation, and lack of differentiation, a landmark of neural tumour progression [1]. ID2 play a key role in cell fate judgment and oncogenesis. The process of ID2 initiated the aliment of a neural crest [96]. ID2 function is increase by the robustness of N-MYC, a well-characterized regulator of segregation and proliferation in neural crest [41, 97]. ID2 activate by the enlightenment of chimeric proteins (N-MYC and EWS–ETS). The top degree of ID2 functions influence by the processes of EWS–ETS (fusion oncoproteins) and C-MYC. The targets of EWS–ETS are co-express with ID2/N-MYC that restrains the result of ID2 in the cellular process. Interestingly, ID2 function increase by the reaction of insulin growth factor (IGF) in pediatric neuroectodermal tumours [98–100]. Indifference, the NSCs revealed the self-renewal ability to originate all the major cells type in the NS. ID proteins maintain NSCs by regulating lineage commitment and prevent NSCs from premature differentiation. Precisely, ID2/ID4
blocks oligodendrocyte vow by inhibiting OLIG1/OLIG2 are bHLH TF’s robust during oligodendrocyte growth [101]. Surprisingly, ID4 as a BRCA1-regulating gene and expression decreases BRCA1 and enhances tumorigenicity via HSP90 inhibitor in cancer cells. In addition, ID1-ID3 blocks premature differentiation by a function of HES1 that inhibits the expression of proneural genes. Also, the inhibitor differentiation proteins inhibit neuronal differentiation by binding with NeuroD and E47 complex to E-boxes. ID proteins emerge to sustain self-renewal ability in NSC for differentiation and stimulate proliferation. Notably, the p53 activity as a repressor of ID1/ID2 and p53 of NSCs raised ID functions and proliferation. This breakthrough is a vital phenomenon for treatments of cancer since p53 is necessary for a majority of glioblastoma [52, 76, 102–106]. Furthermore, ID1-ID4 proteins are illiberal with a short-life (<30 min) even the substrates of ubiquitin 26S proteasome system is a proteolytic molecule of eukaryotic cells [107, 108]. UB is an 8-kDa protein driven to ubiquitin-initiative enzyme E1 in ATP-dependent fashion and then to the ubiquitin-implicate enzyme E2. Generally, the ubiquitin covalently linked to the target protein by E3 ubiquitin ligase deploys to derive a polyubiquitin chain. The polyubiquitinated protein is rewarded by 26S proteasome and dehydrated in ATP dependent manner [53]. The E3 ubiquitin ligases are categorizing into four superior classes: (1) RING-finger-type, (2) U-box-type, (3) HECT-type, and (4) PHD-finger-type. The RING-finger-type subdivides into (a) Cullin E3 ligase and (b) Aanaphasepromoting complex/cyclosome (APC/C). The E3 ubiquitin ligase of APC/C needed either CDC20 or CDH1 co-activators that bind the substrate via specific destruction box domains [53]. The ubiquitin/proteasome machinery includes two variable steps: (a) ubiquitination and (b) degradation. Ubiquitination mediated protein is tagged by abundant ubiquitin molecules recognized by proteasome complex from other proteins. Degradation of such multi-ubiquitinated proteins prevails on a massive 26S proteasome aggregation. Those mechanisms exposed that the cyclin-B synthesis is a regulated factor for the cells to drive mitosis. Even cyclin-B degradation is the central component that governs egress from mitosis and drives into the G1 phase of the next cell cycle. The cell cycle-dominated control of cyclin B-initiates catalyzes by ubiquitin/proteasome-dependent fashion. Similarly, cycling E synthesis controls the late G1 progression and breakdown of cycling by the ubiquitin/proteasome for cells to move in the S phase. Invariance, the CDK inhibitors (p21 and p27) are suppressors of p53 and pRB, and E2F-1 all degrade via ubiquitin/proteasome mechanism. In contrast, the accuracy negotiated by E3 ubiquitin ligase retains a high degree of specificity for the substrate [109–111]. The ubiquitin ligase is the pre-dominance of inhibitor differentiation proteins for proteasomal-initiated degradation through the cell-cycle regulator of APC/C. The APC/C and their co-activator of CDH1 (CD324) recognize ID1/ID2 and ID4 via conserved D-box motif situated C-terminus to the helix-loop-helix domain. Indeed, variations of the D-box of ID2 outcome accounted through a remarkable equilibrium of the substances. During the cellular process, APC6/CDC16, APC8/CDC23, and APC3/CDC27 are core components of APC/C are fundamental for the ubiquitination substrates. The ID1-ID4 proteins are essentially for targets of APC/C for the control of axonal growth in post-mitotic neurons via the signal of NOTCH1, NOGO receptor, SEMA3F, UNC5A, and JAG2 [3, 53, 112]. The degradation-resistant variation of ID2 acquired through mutations of a recognition site of APC/C (D-box) is sufficient to enhance axonal maturation and control inhibitory effects on axonal elongation imposed by myelin components. Besides, myelin of CNS inhibit neurite growth and stimulate the collapse of outgrowth cones through NOGO receptor, NOGO66, MAG, and OMPG molecules initiate
axon-repulsive signals by UNC5A and SEMA3F both participate in the regulation of myelination through the single of NOTCH and JAGGED. Therefore, ID1-ID4 proteins in post-mitotic neurons establish a novel loop among cancer and axonal regeneration. Also, dominant-negative antagonists prefer to induce cytoplasmic relocation of inhibitor differentiation proteins are the interferon-inducible protein p204. Interestingly, p204 promote the ubiquitin-initiated degradation of ID3 and probably remaining ID proteins activation required for ubiquitin ligase(s) [53, 113]. Therefore, the ubiquitin/proteasome executes a core function in the degradation of these regulatory proteins. Future work will require to achieve the targets in clinical cohorts. Ergo, the molecular functions even classical mechanisms epitomize the ID family of bHLH TF's is a novel regulator in tumour biology.

Materials And Methods:

Target Sequence and Database

The target sequence retrieves from the different specific databases (UniProt, KEGG, GenBank, EMBL, DDBJ and NCBI) and performs web-based application SMART for identification of the particular residue in the suspected sequence (query sequence). SWISS-MODEL performs for prediction of the protein structure is bioinformatics web-server for remodelling of the structure of molecules. This method is useful for generating molecular structure and utilizes it in many practical applications. The SWISS-MODEL is an updated database of remodelling of organism proteome for medical research.

Genome

Two organism's genome sequences downloaded from various exclusive databases (Ensemble and NCBI).

Standalone Tools

HMMER executes through MSA of the target domain as a profile search. HMMER is statistical algorithms that build by MSA of the suspected region for profile search. Is implemented probabilistic model is well-known as the profile Hidden Markov Model (HMM). Standalone BLAST2 executed for homologs gene in both organisms.

Gene Annotation

The BLAST2GO initialized for GO annotation. BLAST2GO is a computational and bioinformatics application for high-throughput GO annotation of particular sequences. The functional property of genes rectify via GO (Gene Ontology) annotation is a popular tool for practical work.

Domain

For observation of the conserved residue in the target sequence, we perform the MSA method to calculate unique tests of the homologs also streak them up, so we can observe the identity, differences and
similarities. MSA of highest hits sequences analysis conducted using web-based application MultAlin for examination of sustain domain.

Motifs

MEME suite application performs for the resolution of sequence motifs is a bioinformatics web-based tool for analysis and discovery of the specific motifs.

Phylogeny

For experimentation of the molecular evolutionary relationship of the particular gene in both organisms, we can perform MEGA-X for constructing a phylogenetic tree using Neighbor-Joining Methods.

Gene Expression

The gene expression analysis can carry out by GENEVESTIGATOR. GENEVESTIGATOR is an excessive-performance search engine for gene expression of different organisms. That application performs to determine and validate novel targets.

Chromosome Location

Chromosome location can retrieve using a web-based application that is well-known as a gene card. The gene card database provides information on all known and predicted genes. This database is currently available for biomedical research such as predictions of genes, encoded proteins and associated diseases.

Gene Networks

The genetic matrix (gene network) is a group of molecules that regulates and interact with one another in the cells to control the expression volume of mRNA or proteins. Many proteins serve to activate genes are the TF’s that bind to the pioneer area and initiate the function of other proteins is called regulatory cascades. We can retrieve the STRING database for the prediction of protein-protein interaction. STRING database contains various resources like experimental data and computational prediction of proteins and nucleic acids.

Declarations:

Ethical approval:

Not applicable

Consent for Publication:

Not applicable
Availability of data and materials:

The data and materials are not deposits in the database.

Competing of interests:

The author declared that the work has no conflict of interest.

Funding:

The author did not avail financial assistance from any source in undertaking the present study.

Author Contributions:

The author proposed the idea, experimented, analyzed data and also prepared the manuscript.

Acknowledgements:

The author is grateful to Assam University, Silchar, Assam, India, for providing the lab facilities in carrying out this research work.

References:

1. Antonio Iavarone and Anna Lasorella. Id proteins in neural cancer. Cancer Letter. Feb 2004; 204(2):189–196
2. M.A. Israel, M.C. Hernandez, M. Florio, P.J. Andres-Barquin, A. Mantani, J.H. Carter, C.M. Julin, Id gene expression as a key mediator of tumor cell biology. Cancer Res. Apr 1999; 59(7):1726–1730
3. J.D. Norton, R.W. Deed, G. Craggs, F. Sablitzky. Id helix–loop–helix proteins in cell growth and differentiation. Trends Cell. Biol. Feb 1998; 8(2):58–65
4. J.D. Norton. ID helix–loop–helix proteins in cell growth, differentiation and tumorigenesis. J. Cell. Sci. Nov 2000; 113(22):3897–3905
5. R. Benezra, R.L. Davis, D. Lockshon, D.L. Turner, H. Weintraub. The protein Id: a negative regulator of helix–loop–helix DNA binding proteins. Cell. Apr 1990; 61(1):49–59
6. R. Benezra. Preface: regulation by Id. Oncogene. Dec 2001; 20(58):8288–8289.
7. D. Lyden, A.Z. Young, D. Zagzag, W. Yan, W. Gerald, R. O’Reilly, B.L. Bader, R.O. Hynes, Y. Zhuang, K. Manova, R. Benezra. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature. Oct 1999; 401(6754):670–677.
8. W. Zhu, J. Dahmen, A. Bulfone, M. Rigolet, M.C. Hernandez, W.L. Kuo, L. Puelles, J.L. Rubenstein, M.A. Israel. Id gene expression during development and molecular cloning of the human Id-1 gene. Brain Res. Mol. Brain Res. Jun 1995; 30(2):312–326
9. P.J. Andres-Barquin, M.C. Hernandez, T.E. Hayes, R.D. McKay, M.A. Israel. Id genes encoding inhibitors of transcription are expressed during in vitro astrocyte differentiation and in cell lines derived from
10. D.A. Vandeputte, D. Troost, S. Leenstra, H. Ijlst-Keizers, M. Ramkema, D.A. Bosch, F. Baas, N.K. Das, E. Aronica. Expression and distribution of Id helix–loop–helix proteins in human astrocytic tumors. Glia. Jun 2002; 38 (4):329–338.

11. J. Biggs, E.V. Murphy, M.A. Israel. A human Id-like helix–loop–helix protein expressed during early development. Proc. Natl Acad. Sci. USA. Feb 1992; 89 (4):1512–1516.

12. E.A. Maher, F.B. Furnari, R.M. Bachoo, D.H. Rowitch, D.N. Louis, W.K. Cavenee and R.A. DePinho. Malignant glioma: genetics and biology of a grave matter. Genes Dev. Jun 2001; 15 (11):1311–1333.

13. M.R. Machein and K.H. Plate. VEGF in brain tumors. J. Neurooncol. Oct-Nov 2000; 50 (1–2):109–120.

14. Noriuki Takai, Tami Miyazaki, Kayo Fujisawa, Kaei Nasu, and Isao Miyakawa. Id1 expression is associated with histological grade and invasive behavior in endometrial carcinoma. Cancer Letters. Apr 2001; 165 (2):185–193.

15. M.E. Massari and C. Murre. Helix–loop–helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. Jan 2000; 20 (2):429–440.

16. F. Guillemot, L.C. Lo, J.E. Johnson, A. Auerbach, D.J. Anderson and A.L. Joyner. Mammalian achaete–scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell. Nov 1993; 75 (3):463–476.

17. G. Gradwohl, C. Fode and F. Guillemot. Restricted expression of a novel murine atonal-related bHLH protein in undifferentiated neural precursors. Dev. Biol. Nov 1996; 180 (1):227–241.

18. J.E. Johnson, S.J. Birren and D.J. Anderson. Two rat homologues of Drosophila achaete–scute specifically expressed in neuronal precursors. Nature. Aug 1990; 346 (6287):858–861.

19. Q. Ma, C. Kintner and D.J. Anderson. Identification of neurogenin, a vertebrate neuronal determination gene. Cell. Oct 1996; 87 (1):43–52.

20. N. Ben-Arie, H.J. Bellen, D.L. Armstrong, A.E. McCall, P.R. Gordadze, Q. Guo, M.M. Matzuk and H.Y. Zoghbi. Math1 is essential for genesis of cerebellar granule neurons. Nature. Nov 1997; 390 (6656):169–172.

21. M.H. Schwab, A. Bartholomae, B. Heimrich, D. Feldmeyer, S. Druffel-Augustin, S. Goebbels, F.J. Naya, S. Zhao, M. Frotscher, M.J. Tsai and K.A. Nave. Neuronal basic helix–loop–helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. J. Neurosci. May 2000; 20 (10):3714–3724.

22. Y. Sun, M. Nadal-Vicens, S. Misono, M.Z. Lin, A. Zubiaga, X. Hua, G. Fan and M.E. Greenberg. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell. Feb 2001; 104 (3):365–376.

23. L. Lo, M.C. Tiveron and D.J. Anderson. MASH1 activates expression of the paired homeodomain transcription factor Phox2a and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development. Feb 1998; 125 (4):609–620.
24. M.H. Farah, J.M. Olson, H.B. Sucic, R.I. Hume, S.J. Tapscott and D.L. Turner. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development. Feb 2000; 127 (4):693–702.
25. P. Blader, N. Fischer, G. Gradwohl, F. Guillemont, U. Strahle. The activity of neurogenin1 is controlled by local cues in the zebrafish embryo. Development. Nov 1997; 124 (22):4557–4569.
26. A. Fisher and M. Caudy. The function of hairy-related bHLH repressor proteins in cell fate decisions. Bioessays. Apr 1998; 20 (4):298–306.
27. N. Oellers, M. Dehio and E. Knust. bHLH Proteins encoded by the Enhancer of split complex of Drosophila negatively interfere with transcriptional activation mediated by proneural genes. Mol. Gen. Genet. Apr 1994; 244 (5):465–473.
28. S. Ohsako, J. Hyer, G. Panganiban, I. Oliver and M. Caudy. Hairy function as a DNA-binding helix–loop–helix repressor of Drosophila sensory organ formation. Genes Dev. Nov 1994; 8 (22):2743–2755.
29. H. Chen, A. Thiagalingam, H. Chopra, M.W. Borges, J.N. Feder, B.D. Nelkin, S.B. Baylin and D.W. Ball. Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete–scute homolog-1 expression. Proc. Natl Acad. Sci. USA. May 1997; 94 (10):5355–5360.
30. M. Ishibashi, S.L. Ang, K. Shiota, S. Nakanishi, R. Kageyama, and F. Guillemot. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix–loop–helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. Dec 1995; 9 (24):3136–3148.
31. A. Jogi, P. Persson, A. Grynfeld, S. Pahlman and H. Axelson. Modulation of basic helix–loop–helix transcription complex formation by Id proteins during neuronal differentiation. J. Biol. Chem. Mar 2002; 277 (11):9118–9126.
32. F.A. Peverali, T. Ramqvist, R. Saffrich, R. Pepperkok, M.V. Barone and L. Philipson. Regulation of G1 progression by E2A and Id helix–loop–helix proteins. EMBO J. Sep 1994; 13 (18):4291–4301.
33. R Benezra, R L Davis, D Lockshon, D L Turner, H Weintraub. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. Apr 1990; 61(1): 49–59
34. J D Norton. Id helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J. Cell Sci. Nov 2000; 113(22): 3897–3905.
35. E C Roberts, R W Deed, T Inoue, J D Norton, A D Sharrocks.Id helix-loop-helix proteins antagonize pax transcription factor activity by inhibiting DNA binding. Mol. Cell. Biol. Jan 2001; 21(2): 524–533.
36. P R Yates, G T Atherton, R W Deed, J D Norton, and A D Sharrocks. Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J. Feb 1999; 18(4):968–976
37. C J Sherr. Cancer cell cycles. Science. Dec 1996; 274(5293): 1672–1677
38. R A Weinberg. The retinoblastoma protein and cell cycle control. Cell. May 1995; 81(3): 323–330
39. A. Iavarone, P. Garg, A. Lasorella, J. Hsu, M.A. Israel, The helix–loop–helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev 1994; 8(11): 1270–1284.
40. A. Lasorella, A. Iavarone, M.A. Israel, Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins, Mol. Cell. Biol. Jun 1996; 16(6):2570–2578.
41. A. Lasorella, M. Noseda, M. Beyna, Y. Yokota, A. Iavarone. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature. Oct 2000; 407 (6804):592–598.
42. Anna Lasorella, Takuma Uo, and Antonio Iavarone. Id proteins at the cross-road of development and cancer. Oncogene. Dec 2001; 20(58):8326–8333
43. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. Aug 1998; 12(15):2245–2262.
44. Nickolo BJ, Chaturvedi V, Bacon P, Qin JZ, Denning MF, and Diaz MO. Id-1 delays senescence but does not immortalize keratinocytes. J. Biol. Chem. 275(36):27501:27504.
45. Florio M, Hernandez MC, Yang H, Shu HK, Cleveland JL and Israel MA. Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix-loop-helix factors. Mol. Cell. Biol. Sep 1998; 18 (9):5435–5444.
46. Norton JD and Atherton GT. Coupling of cell growth control and apoptosis functions of Id proteins. Mol. Cell. Biol. 1998; 18 (4):2371–2381.
47. Anna Lasorella. Id2 is critical for cellular proliferation and is the oncogenic effector of N-myc in human neuroblastoma. Cancer Res. Jan 2002; 62(1): 301–306
48. A. Lasorella, M. Noseda, M. Beyna, Y. Yokota, A. Iavarone. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature. Oct 2000; 407 (6804):592–598.
49. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. Aug 1998; 12(15):2245–2262.
50. Grandori C, Cowley SM, James LP and Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell. Dev. Biol. 2000; 16:653–699.
51. Robert Benezra, Shahin Raffi, and David Lyden. The Id proteins and angiogenesis. Oncogene. Dec 2001. 20 (58):8334–8341
52. Sylvia Fong, Robert J. Debs, and Pierre-Yves Desprez. Id genes and proteins as promising targets in cancer therapy. Trends Mol Med. Aug 2004;10(8):387–392
53. Antonio Iavarone and Anna Lasorella. ID proteins as targets in cancer and tools in neurobiology. Trends in Molecular Medicine. Dec 2006; 12(12): 588–594
54. Jens Hasskarl & Karl Munger. Id Proteins - Tumor Markers or Oncogenes?. Cancer Biology and Therapy. Apr 2002; 1(2):91–96
55. Marianna B. Ruzinova and Robert Benezra. Id proteins in development, cell cycle and cancer. Trends in Cell Biology. Aug. 2003; 13(8): 410–418
56. Lan-Hsin Wang and Nicholas E. Baker. E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. Nov 2015; 35(3):269–280
57. Yoshifumi Yokota. Id and development. Oncogene. 2001. 20(58):8290–8298
58. Flora Ling, Bin Kang, and Xiao-Hong Sun. Id Proteins: Small Molecules, Mighty Regulators. Curr Top Dev Biol. 2014; 110:189–216

59. Massari M. E. & Murre C. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Molecular and Cellular Biology. Jan 2000; 20(2):429–440.

60. Kim D, Peng X C, and Sun X. H. Massive apoptosis of thymocytes in T-cell deficient Id1 transgenic mice. Molecular and Cellular Biology. 1999; 19(12):8240–8253

61. Kim D, Xu M, Nie L, Peng X. C, Jimi E, and Voll R. E et al. Helix-loop-helix proteins regulate pre-TCR and TCR signaling through modulation of Rel/NF-kappaB activities. Immunity. Jan 2002; 16(1):9–21.

62. Morrow M A, Mayer E. W, Perez C A, Adlam M, and Siu G. Overexpression of the helix-loop-helix protein Id2 blocks T cell development at multiple stages. Molecular Immunology. 1999; 36 (8):491–503.

63. Cochrane S W, Zhao Y, Welner R S, and Sun X H. Balance between Id and E proteins regulates myeloid-versus-lymphoid lineage decisions. Blood. Jan 2009; 113(5): 1016–1026.

64. Zhang X, Ling M T, Wang Q, Lau C K, Leung S C, Lee T K et al. Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells. Journal of Biological Chemistry. Nov 2007; 282(46):33284–33294.

65. Barone M V, Pepperkok R, Peverali F A, and Philipson L. Id proteins control growth induction in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. May 1994; 91(11):4985–4988.

66. Deed R W, Hara E, Atherton G T, Peters G, and Norton J D. Regulation of Id3 cell cycle function by Cdk2-dependent phosphorylation. Molecular and Cellular Biology. Dec 1997; 17(12): 6815–6821.

67. Prabhu S, Ignatova A, Park S T, and Sun X H. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and ID proteins. Molecular and Cellular Biology. Oct 1997; 17(10):5888–5896.

68. Ruzinova M B and Benezra R. Id proteins in development, cell cycle and cancer. Trends in Cell Biology. Aug 2003; 13(8):410–418.

69. Christy B A, Sanders L K, Lau L F, Copeland N G, Jenkins N A, and Nathans D. An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proceedings of the National Academy of Sciences of the United States of America. Mar 1991; 88(5):1815–1819.

70. Peng X, Wang Y, Kolli S, Deng J, Li L, Wang Z et al. Physical and functional interaction between the ID1 and p65 for activation of NF-kappaB. American Journal of Physiology-Cell Physiology. Aug 2012; 303(3):267-C277.

71. Lin J, Guan Z, Wang C, Feng L, Zheng Y, Caicedo E et al. Inhibitor of differentiation 1 contributes to head and neck squamous cell carcinoma survival via the NF-kappaB/survivin and phosphoinositide 3-kinase/Akt signaling pathways. Clinical Cancer Research. Jan 2010; 16(1): 77–87.

72. Yang Y, Liou H C, and Sun X H. Id1 potentiates NF-kappaB activation upon T cell receptor signaling. Journal of Biological Chemistry. Nov 2006; 281(46):34989–34996.
73. Ling M T et al. Id-1 expression promotes cell survival through activation of NF-kB signalling pathway in prostate cancer cells. Oncogene. July 2003; 22(29):4498–4508
74. Volpert O V et al. Id-1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell. Dec 2002; 2(6):473–483
75. Ruzinova M B et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell. Oct 2003; 4(4):277–289
76. de Candia P et al. Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc. Natl. Acad. Sci. U. S. A. Oct 2003; 100(21): 12337-12342
77. Lasorella A et al. Id2 mediates tumor initiation, proliferation and angiogenesis in rb mutant mice. Mol. Cell. Biol. May 2005; 25(9):3563–3574
78. Ling M T et al. Overexpression of Id-1 in prostate cancer cells promotes angiogenesis through the activation of vascular endothelial growth factor (VEGF). Carcinogenesis. Oct 2005; 26(10):1668–1676
79. Kang Y et al. A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell. Apr 2003; 11(4):915–926
80. Goumans M J et al. Balancing the activation state of the endothelium via two distinct TGF-b type I receptors. EMBO J. Apr 2002; 21(7):1743–1753
81. Hacker C et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. Apr 2003; 4(4):380–386
82. Sugai M et al. Essential role of Id2 in negative regulation of IgE class switching. Nat. Immunol. Jan 2003; 4(1):25–30
83. Kee BL, Rivera RR and Murre C. Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-beta. Nat. Immunol. Mar 2001; 2(3):242–247.
84. Li H, Ji M, Klarmann K D, and Keller J R. Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development. Blood. Aug 2010; 116(7):1060–1069.
85. Zeng, H, Yucel R, Kosan C, Klein-Hitpass L, and Moroy T. Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO Journal. Oct 2004; 23(20):4116–4125.
86. Ji M, Li H, Suh H C, Klarmann K D, Yokota Y, and Keller J R. Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood. Aug 2008; 112(4):1068–1077.
87. Zhao Y, Ling F, Wang H C, and Sun X. H. Chronic TLR signaling impairs the long-term repopulating potential of hematopoietic stem cells of wild type but not Id1 deficient mice. PLoS One. 2013; 8(2):e55552.
88. Saisanit S, and Sun X H. A novel enhancer, the pro-B enhancer, regulates Id1 gene expression in progenitor B cells. Molecular and Cellular Biology. Mar 1995; 15(3):1513–1521.
89. Saisanit S and Sun X H. Regulation of the pro-B-cell-specific enhancer of the Id1 gene involves the C/EBP family of proteins. Molecular and Cellular Biology. Feb 1997; 17(2):844–850.

90. Xu M, Nie L, Kim S H, and Sun X H. STAT5-induced Id-1 transcription involves recruitment of HDAC1 and deacetylation of C/EBPbeta. EMBO Journal. Feb 2003; 22(4):893–904.

91. Maeda K, Malykhin A, Teague-Weber B N, Sun X H, Farris A D, and Coggeshall K M. Interleukin-6 aborts lymphopoiesis and elevates production of myeloid cells in systemic lupus erythematosus-prone B6.Sle1.Yaa animals. Blood. May 2009; 113(19):4534–4540.

92. Karaya K, Mori S, Kimoto H, Shima Y, Tsuji Y, and Kurooka H et al. Regulation of Id2 expression by CCAAT/enhancer binding protein beta. Nucleic Acids Research. Apr 2005; 33(6):1924–1934.

93. Bain G, Cravatt C B, Loomans C, Alberola-Ila J, Hedrick S M, and Murre C. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nature Immunology. Feb 2001; 2(2):165–171.

94. Pan L et al. Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene. Mol. Cell. Biol. Sep 1999; 19(9):5969–5980.

95. Rivera R R et al. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity. Jan 2000; 12(1):17–26.

96. B.J. Martinsons and M. Bronner-Fraser. Neural crest specification regulated by the helix-loop-helix repressor Id2. Science. Aug 1998; 281(5379):988–991.

97. K Wartiovaara, F Barnabe-Heider, F D Miller, and D R Kaplan. N-myc promotes survival and induces S-phase entry of postmitotic sympathetic neurons, J. Neurosci. Feb 2002; 22(3):815–824.

98. B. Belletti, M. Prisco, A. Morrione, B. Valentinis, M. Navarro, R. Baserga, Regulation of Id2 gene expression by the insulinlike growth factor I receptor requires signaling by phosphatidylinositol 3-kinase. J. Biol. Chem. Apr 2001; 276(17):13867–13874.

99. M Prisco, F Peruzzi, B Belletti, and R Baserga. Regulation of Id2 gene expression by the insulin-like growth factor I receptor requires signaling by phosphatidylinositol 3-kinase. Mol. Cell. Biol. Aug 2001; 21(16):5447–5458.

100. M Navarro, B Valentinis, B Belletti, G Romano, K Reiss, and R Baserga. Regulation of Id2 gene expression by the type 1 IGF receptor and the insulin receptor substrate-1. Endocrinology. 2001; 142(12):5149–5157.

101. Choudhury S, Genomics of the OLIG family of a bHLH transcription factor associated with oligodendrogenesis. Bioinformation. Jun 2019; 15(6): 430–438.

102. Samanta J and Kessler J A. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development. Sep 2004; 131(17):4131–4142.

103. Bai G, Sheng N, Xie Z, Bian W, Yokota Y, Benezra R et al. Id sustains Hes1 expression to inhibit precocious neurogenesis by releasing negative autoregulation of Hes1. Developmental. Cell. Aug 2007; 13(2):283–297.
104. Jung S, Park R H, Kim S, Jeon Y J, Ham D S, and Jung M Y et al. Id proteins facilitate self-renewal and proliferation of neural stem cells. Stem Cells and Development. Jun 2010; 19(6):831–841.

105. Liu H, Jia D, Li A, Chau J, He D, Ruan X, et al. p53 regulates neural stem cell proliferation and differentiation via BMP-Smad1 signaling and Id1. Stem Cells and Development. 2013; 22(6): 913–927.

106. Paolella, B. R., Havrda, M. C., Mantani, A., Wray, C. M., Zhang, Z., & Israel, M. A. p53 directly represses Id2 to inhibit the proliferation of neural progenitor cells. Stem Cells. Mar 2011; 29(6):1090–1101.

107. Bounpheng M A et al. Degradation of Id proteins by the ubiquitin–proteasome pathway. FASEB J. Dec 1999; 13(15):2257–2264

108. Fajerman I et al. Degradation of the Id2 developmental regulator: targeting via N-terminal ubiquitination. Biochem. Biophys. Res. Commun. Feb 2004; 314(2):505–512

109. Scheffner M et al. Protein ubiquitination involving an E1-E2–E3 enzyme ubiquitin thioester cascade. Nature. Jan 1995; 373(6509):81–83

110. Glickman M H and Ciechanover A. The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. Apr 2002; 82(2):373–428

111. Perk J et al. Id family of helix-loop-helix proteins in cancer. Nat. Rev. Cancer. Aug 2005; 5(8): 603–614

112. Ding B et al. p204 protein overcomes the inhibition of the differentiation of P19 murine embryonal carcinoma cells to beating cardiac myocytes by Id proteins. J. Biol. Chem. May 2006: 281(21):14893–14906

113. Anna Lasorella, Judith Stegmuller, Daniele Guardavaccaro, Guangchao Liu1, Maria S. Carro,Gerson Rothschild, Luis de la Torre-Ubieta, Michele Pagano, Azad Bonni & Antonio Iavarone. Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature. July 2006; 442(7101):471–474

Tables:

Table 1: Target Sequence (Query Sequence)
Table 2: Summary of the bHLH domain and homologs

Organisms	HMMER	BLAST2	BLAST2GO
Homo sapiens	72	11	2
Mus musculus	62	13	2
Total	134	24	4

Table 3: Summary of the ID family of bHLH TF's

Gene	Homo sapiens	Mus musculus
ID1	2	2
ID2	3	3
ID3	2	1
ID4	1	1
Total	8	7
Table 4: Summary of the Gene Ontology annotation

(a) Homo sapiens

Gene Id	Gene	Protein
ENSP00000365280.3	ID-1	DNA-binding inhibitor ID-1
ENSP00000365273.3	ID-1	DNA-binding inhibitor ID-1
ENSP00000379585.1	ID-2	DNA-binding inhibitor ID-2
ENSP00000385465.2	ID-2	DNA-binding inhibitor ID-2
ENSP00000234091.4	ID-2	DNA-binding inhibitor ID-2
ENSP00000489102.1	ID-3	DNA-binding inhibitor ID-3
ENSP00000363689.5	ID-3	DNA-binding inhibitor ID-3
ENSP00000367972.3	ID-4	DNA-binding inhibitor ID-4

(b) Mus musculus

Gene Id	Gene	Protein
ENSMUSP00000092019.4	ID-1	DNA-binding protein inhibitor ID-1
ENSMUSP00000105449.1	ID-1	DNA-binding protein inhibitor ID-1
ENSMUSP0000020974.6	ID-2	DNA-binding protein inhibitor ID-2
ENSMUSP00000152052.1	ID-2	DNA-binding protein inhibitor ID-2
ENSMUSP00000152069.1	ID-2	DNA-binding protein inhibitor ID-2
ENSMUSP0000008016.2	ID-3	DNA-binding protein inhibitor ID-3
ENSMUSP0000021810.1	ID-4	DNA-binding protein inhibitor ID-4

Table 5: ID family of bHLH TF’s in Primary Human Tumors
Gene	Tumor Type	Reference
ID1, ID3	Glioblastoma	Lyden et al., 1999
ID1, ID3	Medulloblastoma	Lyden et al., 1999
ID1, ID3	Neuroblastoma	Lyden et al., 1999
ID1, ID2, ID3	Astrocytic tumor	Vandeputte, D.A. et al., 2002
ID1, ID2, ID3	Pancreatic cancer	Maruyama et al., 1999
ID1, ID2, ID3	Head and Neck cancer	Langlands, K. et al., 2000
ID1, ID2, ID3	Colorectal adenocarcinoma	Wilson, J.W. et al., 2001
ID1, ID2, ID3, ID4	Seminoma	Sablitzky et al., 1998
ID1, ID2	Pancreatic cancer	Maruyama, H. et al., 1999
ID1, ID2	Pancreatic cancer	Lee, K.T. et al., 2004
ID1, ID2	T-cell lymphoma	Kim, D. et al., 1999
ID1, ID2	T-cell lymphoma	Morrow, M.A. et al., 1999
ID1	Medullary thyroid cancer	Kebebew et al., 2000
ID1, ID2, ID3	Squamous cell cancer	Langlands et al., 2000
ID1	Breast cancer	Lin et al., 2000
ID1	Breast cancer	Fong, S. et al., 2003
ID1	Breast cancer	Schoppmann, S.F. et al., 2003
ID2	Breast cancer	Itahana, Y. et al., 2003
ID3	Breast cancer	de Candia, P. et al., 2003
ID4	Breast cancer	Beger et al., 2001
ID1	Endometrial cancer	Takai et al., 2001
ID1	Cervical cancer	Schindl et al., 2001
ID1	Melanoma	Polsky et al., 2001
ID2	Neuroblastoma	Lasorella et al., 2002
ID2	Ewing's sarcoma	Fukuma, M. et al., 2003
ID2	Ewing's sarcoma	Nishimori, H. et al., 2002
ID1	Ovarian tumors	Schindl, M. et al., 2003
ID3	Ovarian tumors	Arnold, J.M. et al., 2001
ID	Cancer Type	Authors, Year
----	------------------------------	---------------------
ID1	Prostate cancer	Ouyang, X.S. et al., 2002
ID1	Prostate cancer	Coppe, J.P. et al., 2004
ID1	Esophageal cancer	Maruyama, H. et al., 1999
ID1	Oral cancer	Nishimine, M. et al., 2003
ID1	Melanoma	Polsky, D. et al., 2001
ID1	Hepatocellular cancer	Lee, T.K. et al., 2003
ID4	Acute lymphoblastic leukemia	Bellido, M. et al., 2003

Figures

(a) Tertiary Structure of ID1 (Target/Query Sequence) (b) ID1 polypeptides position in Ramachandran Plot (Ramachandran Diagram)

Figure 1

(a) Tertiary Structure of ID1 (Target/Query Sequence) (b) ID1 polypeptides position in Ramachandran Plot (Ramachandran Diagram)
Figure 2

(a) ID1 conserved in both organisms (b) ID1-ID4 conserved in two organisms (Multiple Sequence Alignment)
Figure 3

Sequence motifs of ID1 (Motifs)
Figure 4

The evolutionary link between the ID family of bHLH TF’s in two different organisms. (Phylogenetic Tree)
Figure 5

(b) ID1 expression in Human Brain, (d) ID2 expression in Human Brain, (f) ID3 expression in Human Brain, (h) ID4 expression in Human Brain (Gene Expression of ID1-ID4 in Human)

Figure 6

ID1 in humans located at chromosome 20 (Chromosome location)
Figure 7

ID1 interact with various TF’s (Gene network)