Inhibition of Viral Replication by Nitric Oxide and Its Reversal by Ferrous Sulfate and Tricarboxylic Acid Cycle Metabolites

By Gunasegaran Karupiah and Nicholas Harris

From the Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892

Summary

IFN-γ-induced nitric oxide (NO) in the murine macrophage-derived cell line RAW 264.7 was previously shown to inhibit replication of the poxviruses ectromelia and vaccinia (VV) and HSV-1. In the current study we demonstrate that murine macrophages activated as a consequence of VV infection express inducible nitric oxide synthase. These activated macrophages were resistant to infection with VV and efficiently blocked the replication of VV and HSV-1 in infected bystander cells of epithelial and fibroblast origin. This inhibition was arginine dependent, correlated with nitrite production in cultures, and reversible by the NOS inhibitor N'~-monomethyl-L-arginine. NO-mediated inhibition of VV replication was studied by treatment of virus-infected human 293 cells with the NO donor S-nitroso-N-acetyl-penicillamine. Using a VV-specific DNA probe, antibodies specific for temporally expressed viral proteins, and transmission electron microscopy, we have shown that NO inhibited viral late gene protein synthesis, DNA replication, and virus particle formation, but not expression of the early proteins that were analyzed. Putative enzymatic targets of NO were identified by reversing the NO-mediated inhibition of VV replication in the 293 cells with exogenous ferrous sulfate and l-cysteine. Reversal of inhibition may derive from the capacity of these reagents to protect or regenerate nonheme iron or thiol groups, respectively, which are essential for the catalytic activities of enzymes susceptible to inactivation by NO.

The successful elimination of viral infection is dependent on both innate and acquired immunity. Macrophages, strategically placed in various body compartments, play a key role in the orchestration of both innate and antigen-specific immune responses. Apart from their role as phagocytic scavengers of infectious agents, macrophages can stimulate the antiviral activities of NK and T cells. Together, these effector cells and the cytokines they produce act to limit virus multiplication before the induction of antigen-specific T cell-mediated immunity and antibody responses. By their capacity to produce IFNs and other cytokines, NK and T cells are responsible for a reciprocal activation of macrophages. Of the IFNs, IFN-γ is the most potent macrophage-activating factor and the only known cytokine with the capacity to induce nitric oxide synthase (iNOS) in macrophages by itself (1).

This is an inducible isoform of the enzyme that catalyzes the synthesis of large amounts of nitric oxide (NO) from the guanidino nitrogen of l-arginine (l-A) (1-6).

IFN-γ-induced high output NO is known to have potent antimicrobial activity against several classes of pathogens (2). Although IFN-γ alone is sufficient to induce iNOS (1, 7, 8), it can synergize with TNF-α and -β to stimulate iNOS induction (2). These cytokines by themselves are not able to induce the enzyme (1). It was recently demonstrated that IFN-γ-induced iNOS inhibited progeny production of the poxviruses ectromelia virus (EV), vaccinia virus (VV), and HSV-1 in the murine macrophage cell line RAW 264.7 and in murine peritoneal macrophages (9-11). Thus, in addition to the direct lysis of virus-infected cells, NK and T cells can inhibit viral replication indirectly by stimulating the IFN-γ-induced synthesis of NO in macrophages.

NO has a short half-life and can diffuse easily across cell membranes with no requirement for receptors. As a ubiquitous intracellular and intercellular second messenger, it is an important mediator of physiologic and pathophysiologic functions (2, 3, 5, 12, 13). At the molecular level, NO is known to inhibit enzymes that require iron and sulfur prosthetic groups for their catalytic activity by forming nitrosyl-iron-sulfur complexes (2, 14, 15). Enzymes that are targets for
NO inactivation include cis-aconitase of the tricarboxylic acid (TCA) cycle (16), NADH:ubiquinone oxidoreductase (complex I), and succinate:ubiquinone oxidoreductase (complex II) of the mitochondrial electron transport chain (METC) (5, 17-19). NO can also inhibit ribonucleotide reductase (RR), the rate-limiting enzyme in DNA synthesis (20, 21).

Recently, in a study of the macrophage-derived cell line RAW 264.7, biochemical analyses of virus-infected cells revealed that viral DNA synthesis and late gene expression were blocked by IFN-γ-induced NO (11). These results defined the developmental stage in the viral life cycle targeted by NO. The current study was performed to elucidate the mechanism(s) of NO-mediated inhibition of viral replication in vivo. At the cellular level, virus-elicited NO-producing peritoneal macrophages were tested for their capacity to impair viral replication in infected bystander cells. This mode of NO action could be important in vivo to limit viral replication in contiguous cells before the action of antiviral T cells and antibodies. At the molecular level, biochemical analyses were done to determine how viral protein synthesis was affected in infected cells by chemically generated NO, and to identify enzymatic targets of inactivation by NO.

Materials and Methods

Mice. Female specific pathogen-free, BALB/c NCR (H-2d) mice (Charles River Laboratories, Wilmington, MA) were used at 6-12 wk of age.

Viruses. A sucrose density gradient-purified WR strain of VV (VV-WR and ATCC VR1354; American Type Culture Collection, Rockville, MD) was used for inoculation of mice. A crude stock of VV-WR propagated in BS-C-1 cells was used for infection of cell cultures in vitro. The inocula, diluted in PBS to contain 10^6 pfu/ml (purified stock) or 10^5 pfu/ml (crude stock), had no detectable endotoxin (<10 pg/ml) by a chromogenic limulus amoebocyte lysate assay (BioWhittaker Inc., Walkersville, MD). The KOS strain of HSV-1, a gift from Dr. M. Challberg (Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD) was propagated in BS-C-1 cells.

Cells. BS-C-1, an African green monkey kidney cell line, and 293, a human renal epithelial line, were maintained in Eagle's MEM (EMEM; BioWhittaker Inc.) supplemented with t-glutamine, antibiotics, and 10% FCS (complete EMEM). The preparation of primary murine ovarian cell cultures has been described elsewhere (22). Primary murine uterine cells were prepared similarly, and both cultures were used after two or three serial passages.

Reagents. t-A, d-arginine (t-A), l-NMA, N°-monomethyl-d-arginine (o-NMA), N-acetyl-arginine (NAP), d-cysteine, isocitric acid, and or-ketoglutaric acid were obtained from Sigma Biochemicals (St. Louis, MO). S-Nitroso-N-acetyl-penicillamine (SNAP) was obtained from Biomol Research Laboratories (Plymouth Meeting, PA). FeSO₄ was purchased from Mallinkrodt (St. Louis, MO).

Transmission Electron Microscopy. Medium was removed from cultures, and cells were fixed for 30 min with 2.5% gluteraldehyde in Millonig's sodium phosphate buffer, pH 7.9, at 4°C, after which cells were scraped and centrifuged at 500 g. Fixation of the cell pellet was continued for an additional 90 min at 4°C, after which the fixative was aspirated and replaced with sodium phosphate buffer lacking glutaraldehyde. Samples were stored at 4°C until processed for transmission electron microscopy.

Determination of Progeny Virus Titers. Virus infectivity in infected cell cultures was determined as described elsewhere (10, 23).

Coculture of VV-Elicited Peritoneal Macrophages with VV-Infected Transform (Human 293) or Primary (Murine Ovarian, Uterus) Cells. Virus-elicited peritoneal macrophages were harvested 5 d after i.p. inoculation of BALB/c mice with 10^6 pfu of VV-WR. Approximately 25% of these cells are macrophages based on adherence to plastic and cell surface expression of both Mac-1 and F4/80 antigens as determined by flow cytometry. Thioglycollate broth (TGB)-elicited peritoneal macrophages were obtained from BALB/c mice 3-4 d after i.p. injection with 2 ml of sterile broth (<10 pg of endotoxin per ml). Wells of 24-cluster plates were seeded with an appropriate number of peritoneal cells in complete RPMI such that about 10^6 adherent cells remained after nonadherent cells were removed after incubation at 37°C for 1 h. Nonadherent cells were removed by vigorous washing with cold PBS three times, and they were enumerated to obtain a fairly accurate number of adherent cells that remained in the wells. These macrophages were cocultured with infected target cells at a ratio of 5:1 in the presence of various reagents.

Nitrite and NOS Assays. NO synthesis in cultures was determined by measurement of nitrite (NO_2^−), a stable product of NO, as described elsewhere (1). For the determination of NOS activity, crude cytosolic fractions (30 mg) prepared from TGB- and VV-elicited peritoneal macrophages were used in an assay described elsewhere (24).

Metabolic Labeling of Viral Proteins. Cells were grown to subconfluency (10^5 cells per well) in 12-well cluster plates (Costar Corp., Cambridge, MA). The medium was aspirated, and the cells were washed with PBS. 1 ml of methionine-free EMEM supplemented with 5% dialyzed FCS and 30 μCi of [35S]methionine (>1,000 Ci/mmol; Amersham Corp., Arlington Heights, IL) was added to each well. After labeling, medium was aspirated, and the cells were washed with PBS, harvested in 1 ml of PBS, and centrifuged in a bench-top centrifuge. After PBS was aspirated, cells were lysed in 200 μl of lysis buffer (2% Triton X-100, 50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 1 mM EDTA, pH 7.4). Incorporation of [35S]methionine was determined by TCA precipitation of labeled proteins onto nitrocellulose membrane and measurement with a β scintillation counter. Metabolically labeled proteins were analyzed by SDS-PAGE (10% acrylamide) and fluorography (Amplify; Amersham Corp.).

Quantification of Viral DNA. At the end of culture period, medium was aspirated from wells of 293 cell monolayers, and cells were scraped and resuspended in 200 μl of PBS. The cells were lysed by three cycles of freeze (-70°C) and thaw (37°C) and sonicated (two 60-s pulses, W-385 sonicator; Heat-Systems-Ultrasonics, Inc., Farmingdale, NY). The DNA was denatured with 0.25 M NaOH for 10 min at room temperature, and the lysates were then kept on ice, diluted to 0.2 M NaOH, 0.1 × SSC, and sonicated as previously described. A 100-μl volume of each sample was blotted onto a nylon membrane (Genescreen Plus; Dupont-NEN, MA) using a slot blower (Minifold II; Schleicher & Schuell, Inc., Keene, NH). The membrane was incubated in prehybridization buffer (1% SDS, 1 M NaCl, 200 μg/ml hering sperm DNA) for 15 min at 65°C. Denatured, radiolabeled VV DNA probe (Random Primer DNA Labeling Kit; Boehringer Mannheim, Indianapolis, IN) was added to the prehybridization medium, and the blot was incubated overnight at 65°C. The hybridized blot was washed twice with 2× SSC (5 min, room temperature) and then with 2× SSC, 1% SDS (30 min at 65°C). The radiolabeled DNA probe hybridized.
Immunoprecipitation. The VV early gene products, E3L and K1L, were immunoprecipitated using mAb TW2.3 (gift from Dr. J. Cox, SRA Technologies Inc., Rockville, MD) and a rabbit polyclonal antibody (gift from Dr. K. Drillien, INSERM, Strasbourg, France), respectively. Rabbit polyclonal antibodies were used to immunoprecipitate the viral late gene products of 65 kD (26) and 70 kD (also known as 4b; reference 27). Antibodies (1–5 μl) were incubated with 50 μl of protein A-Sepharose (PAS; 20% [vol/vol]; Sigma Immunochemicals) for 1 h at 4°C with agitation. The PAS suspension was centrifuged briefly, the supernatant was aspirated, and the PAS pellet was washed with PBS before being resuspended with pre cleared cell lysate. Cell lysates were pre cleared by incubation with 2 μl of preimmune serum, 4% PAS, and PBS in a final volume of 250 μl for 1 h at 4°C, with agitation. This pre cleared lysate was used to resuspend the pellet of antibody-bound PAS. The lysate and antibody-bound PAS suspension were incubated for 4 h at 4°C with agitation. After centrifugation, the lysate was aspirated, and the PAS was washed twice with PBS. Protein was eluted from the PAS with 20 μl of PAGE sample buffer (62.5 mM Tris-HCl, pH 6.8, containing 2% SDS, 10% glycerol, 0.0025% bromophenol blue, and 5% 2-ME). The samples were heated at 100°C for 5 min, centrifuged briefly, and analyzed by PAGE and fluorography.

Detection of iNOS by Immunoblotting. Cell lysates (30 μg of protein; Bradford method; Bio Rad Laboratories, Richmond, CA) (for lysate preparation see Metabolic Labeling of Viral Proteins) were resolved by SDS-PAGE on a 4–20% gradient gel (Daiichi Pure Chemicals, Tokyo, Japan) and probed with a rabbit polyclonal antibody (anti-iNOS) (gift from Dr. C. Nathan, Cornell University Medical College, New York) to the COOH-terminal peptide (Cys-Nle-Glu-Glu-Pro-Lys-Ala-Thr-Arg-Leu-COOH; synthesized by Drs. J. Weidner and R. Mumford, Merck Research Laboratories, Rahway, NJ), derived from the long form of mouse macrophage iNOS (28). The protein was detected by chemiluminescence (Amersham Corp.) and autoradiography.

Results

VV Infection of Mice Induces iNOS in Peritoneal Macrophages. Previous work (10) indicated that a NO-mediated antiviral mechanism(s) may be operative in poxvirus-infected mice. To establish that iNOS is induced in macrophages in vivo after infection, we analyzed lysates of peritoneal macrophages obtained from mice infected i.p. with VV. Using an antipeptide antibody to murine macrophage iNOS in Western blot analysis, iNOS was detected in the VV-elicited macrophages (Fig. 1). The antibody reacted with a protein of ~130 kD, the molecular mass of macrophage-expressed iNOS. Although the antibody cross-reacted with other cellular proteins, no specific reactivity was seen in lysates of TGB-elicited macrophages. The macrophage iNOS was biologically active with a specific enzyme activity of 220 pmol-min⁻¹·mg⁻¹ of cell lysate protein. No activity was detected in the control lysate.

VV-elicited Peritoneal Macrophages Inhibit VV Replication in Cocultured Contiguous Cells. Peritoneal macrophages from mice infected i.p. with VV did not harbor VV particles (Karupiah, G., and N. Harris, unpublished observations), nor did they support viral replication in vitro (data not shown). To test whether such virus-elicited, iNOS-expressing macrophages could inhibit VV replication in neighboring cells, VV-infected 293 cells were cocultured with peritoneal macrophages obtained from mice 5 d after i.p. infection with VV. As controls, TGB-elicited macrophages were cocultured with infected cells. VV- but not TGB-elicited macrophages reduced progeny virus titers by fivefold over 16 h (Fig. 2, A and B). The modest degree of inhibition could have been caused by increased arginine metabolism in these activated macrophages (29-31), the metabolite being the limiting factor in the cultures. Addition of 0.5 mM t-A, but not d-A, reduced progeny virus titers by >50-fold. t-NMA, an analogue of t-A and competitive inhibitor of NOS, almost completely reversed the inhibition of VV replication observed in these co-culture systems. VV-infected 293 cells were cocultured with peritoneal macrophages obtained from mice infected i.p. with VV for 4 h. As controls, TGB-elicited macrophages were cocultured with infected cells. VV- but not TGB-elicited macrophages reduced progeny virus titers by fivefold over 16 h (Fig. 2, A and B). The modest degree of inhibition could have been caused by increased arginine metabolism in these activated macrophages (29-31), the metabolite being the limiting factor in the cultures. Addition of 0.5 mM t-A, but not d-A, reduced progeny virus titers by >50-fold. t-NMA, an analogue of t-A and competitive inhibitor of NOS, almost completely reversed the inhibition of VV replication observed in these co-culture systems. VV-infected 293 cells were cocultured with peritoneal macrophages obtained from mice infected i.p. with VV for 4 h. As controls, TGB-elicited macrophages were cocultured with infected cells. VV- but not TGB-elicited macrophages reduced progeny virus titers by fivefold over 16 h (Fig. 2, A and B). The modest degree of inhibition could have been caused by increased arginine metabolism in these activated macrophages (29-31), the metabolite being the limiting factor in the cultures. Addition of 0.5 mM t-A, but not d-A, reduced progeny virus titers by >50-fold. t-NMA, an analogue of t-A and competitive inhibitor of NOS, almost completely reversed the inhibition of VV replication observed in these co-culture systems.
inhibition of viral replication. D-NMA had no effect. The inhibition of progeny virus production and its reversal by L-NMA correlated with levels of nitrite detected in cultures (Fig. 2 C). In contrast, nitrite was barely detectable in cultures containing TGB-elicited macrophages (Fig. 2 D).

Coculture of 3HCr-labeled, VV-infected 293 cells with VV-elicited macrophages indicated that the reduction in progeny virus titers was not caused by macrophage-mediated cytotoxicity, as the levels of radioactivity detected in the culture medium in the presence or absence of macrophages were comparable (data not shown). Treatment of the adherent peritoneal cells with C' plus mAbs to CD4, CD8, or both antigens had virtually no effect on virus titers (data not shown), indicating that the reduction in virus titers was not caused by the antiviral action of conventional T cells. Furthermore, when VV-elicited macrophages were separated from the infected 293 cells by a semipermeable membrane, no inhibition of viral replication was noted (data not shown).

All 293 cells examined in coculture with TGB-elicited macrophages contained large numbers of virus particles (Fig. 3 A). In contrast, >30% of 293 cells cultured with VV-elicited macrophages contained no virus particles (Fig. 3 B), and those that did harbor significantly fewer particles. This reduction in virus particles was nearly completely reversed in cultures supplemented with 1 mM L-NMA (Fig. 3 C), consistent with virus progeny titers (Fig. 2, A and B).

VV-elicited Peritoneal Macrophages Inhibit VV and HSV-1 Replication in Transformed Cells and Primary Murine Tissue Cultures. VV replicates most efficiently in murine ovarian and uterine cells (22, 32). It was found that VV-elicited peritoneal macrophages blocked VV replication in both primary murine ovarian (Fig. 4 A) and uterine (Fig. 4 B) cells, and the inhibition correlated closely with levels of nitrite production (data not shown), similar to levels shown in Fig 2 C. The replication of HSV-1 in 293 cells was also completely abolished when coincubated with VV-elicited macrophages (Fig. 4 C), and addition of 1 mM L-NMA to cultures partially reversed the inhibition. The results of both experiments attested to the nonspecific nature of macrophage antiviral activity.

Reversal of NO-mediated Inhibition of VV Replication with Exogenous FeSO₄, Isocitrate, and α-Ketoglutarate. NO is known to inhibit the catalytic activities of enzymes in the TCA cycle, the METC, and RR, an enzyme critical for DNA metabolism. The radical gas nitrosylates and inactivates iron–sulfur centers in the prosthetic groups of these enzymes (2). We attempted to reverse, or at least relieve, the inhibition of putative viral targets of NO by providing exogenous ferrous ions and thiol groups in cocultures of NO-producing macrophages with virus-infected target cells. The efficacy of these measures, however, could not be determined because the addition of thiol groups alone was without effect whereas FeSO₄ was toxic to the macrophages. To circumvent the problem of macrophage toxicity, we used the chemically synthesized compound SNAP as a source of NO. Treatment of VV-infected 293 cells with the NO-producing compound, but not the control compound (NAP), was shown previously to block progeny virus production (10). In a recapitulation of experi-

![Figure 3](image-url) Detection of VV particles in human 293 cells cocultivated with VV-elicited murine peritoneal macrophages by transmission electron microscopy. VV-infected 293 cells (1 pfu per cell) cocultivated with (A) TGB-elicited macrophages (x5,000), (B) VV-elicited macrophages (x5,000), and (C) VV-elicited macrophages in the presence of 1 mM L-NMA (x4,000). In B, the examined section shown here contained no virus particles.
Macrophages

L-Arginine

NMA

Figure 4. NO-mediated inhibition of viral replication is neither restricted by host cell type, nor is it virus specific. VV-elicited macrophages, harvested 5 d after i.p. inoculation, were cocultivated with (A) VV-infected murine ovarian cells (OV), (B) VV-infected murine uterine cells (UT), and (C) HSV-1-infected 293 cells (293-HSV1). At 16 h p.i., progeny virus titers and nitrite levels in cultures were determined. Cocultures were supplemented with 0.5 mM t-A, 0.5 mM v-A, 1 mM t-NMA, or 1 mM d-NMA.

Figure 5. Inhibition of VV protein synthesis by chemically generated NO. Cell lysates were made from metabolically labeled ([35S]methionine) uninfected (U) and VV-infected (V) human 293 cells (1 pfu per cell) 16 h p.i. and analyzed by PAGE and fluorography. Virus-infected cell cultures were treated with 400 μM NAP (VN) or SNAP (VS). Control, uninfected cells were similarly cultured in the presence of 400 μM NAP (N) or SNAP (S). Protein molecular mass markers (M) are in kilodaltons.

Discussion

Macrophage-mediated cytotoxic and cytostatic activities toward tumor cells and infectious agents have been attributed, at least in part, to NO and its reactive intermediates (2, 4, 17). Recent findings that NO can inhibit the replication of a number of viruses (9–11, 33) have extended the range of microbial pathogens targeted by the molecule. In experiments designed to test the antiviral properties of NO under physiologic conditions, we demonstrated that VV-elicited macrophages blocked viral replication in cocultured virus-infected bystander cells. VV and HSV-1 replication in transformed (human 293 epithelial) and nontransformed (primary ovarian and uterine) cells was inhibited by NO generated by the activated peritoneal macrophages. NO-mediated inhibition of viral replication therefore was neither host cell nor virus specific.
The antiviral activity of the virus-elicited macrophages corroborated results obtained with the macrophage-like RAW 264.7 cells treated with IFN-γ (11). In both instances, the effector populations, with measurable iNOS activity, blocked viral replication in contiguous cells through an i-A-dependent, NO-mediated pathway. Although IFN-γ may not be the only factor responsible for the induction of iNOS in peritoneal macrophages during VV infection in vivo, several in vitro and in vivo studies strongly suggest that it plays a critical role (1, 6–8).

Although VV-elicited macrophages can lyse certain tumor targets (34), the inhibition of viral replication in both transformed and nontransformed primary cell cultures through an i-A-dependent, NO-mediated pathway. Although IFN-γ may not be the only factor responsible for the induction of iNOS in peritoneal macrophages during VV infection in vivo, several in vitro and in vivo studies strongly suggest that it plays a critical role (1, 6–8).

Although VV-elicited macrophages can lyse certain tumor targets (34), the inhibition of viral replication in both transformed and nontransformed primary cell cultures through an i-A-dependent, NO-mediated pathway. Although IFN-γ may not be the only factor responsible for the induction of iNOS in peritoneal macrophages during VV infection in vivo, several in vitro and in vivo studies strongly suggest that it plays a critical role (1, 6–8).

Although VV-elicited macrophages can lyse certain tumor targets (34), the inhibition of viral replication in both transformed and nontransformed primary cell cultures through an i-A-dependent, NO-mediated pathway. Although IFN-γ may not be the only factor responsible for the induction of iNOS in peritoneal macrophages during VV infection in vivo, several in vitro and in vivo studies strongly suggest that it plays a critical role (1, 6–8).

The antiviral activity of the virus-elicited macrophages corroborated results obtained with the macrophage-like RAW 264.7 cells treated with IFN-γ (11). In both instances, the effector populations, with measurable iNOS activity, blocked viral replication in contiguous cells through an i-A-dependent, NO-mediated pathway. Although IFN-γ may not be the only factor responsible for the induction of iNOS in peritoneal macrophages during VV infection in vivo, several in vitro and in vivo studies strongly suggest that it plays a critical role (1, 6–8).

Although VV-elicited macrophages can lyse certain tumor targets (34), the inhibition of viral replication in both transformed and nontransformed primary cell cultures through an i-A-dependent, NO-mediated pathway. Although IFN-γ may not be the only factor responsible for the induction of iNOS in peritoneal macrophages during VV infection in vivo, several in vitro and in vivo studies strongly suggest that it plays a critical role (1, 6–8).

Although VV-elicited macrophages can lyse certain tumor targets (34), the inhibition of viral replication in both transformed and nontransformed primary cell cultures through an i-A-dependent, NO-mediated pathway. Although IFN-γ may not be the only factor responsible for the induction of iNOS in peritoneal macrophages during VV infection in vivo, several in vitro and in vivo studies strongly suggest that it plays a critical role (1, 6–8).

Although VV-elicited macrophages can lyse certain tumor targets (34), the inhibition of viral replication in both transformed and nontransformed primary cell cultures through an i-A-dependent, NO-mediated pathway. Although IFN-γ may not be the only factor responsible for the induction of iNOS in peritoneal macrophages during VV infection in vivo, several in vitro and in vivo studies strongly suggest that it plays a critical role (1, 6–8).

Although VV-elicited macrophages can lyse certain tumor targets (34), the inhibition of viral replication in both transformed and nontransformed primary cell cultures through an i-A-dependent, NO-mediated pathway. Although IFN-γ may not be the only factor responsible for the induction of iNOS in peritoneal macrophages during VV infection in vivo, several in vitro and in vivo studies strongly suggest that it plays a critical role (1, 6–8).

Although VV-elicited macrophages can lyse certain tumor targets (34), the inhibition of viral replication in both transformed and nontransformed primary cell cultures through an i-A-dependent, NO-mediated pathway. Although IFN-γ may not be the only factor responsible for the induction of iNOS in peritoneal macrophages during VV infection in vivo, several in vitro and in vivo studies strongly suggest that it plays a critical role (1, 6–8).
enzymes to nitrosylation to inform the experimental design of a mechanistic study of NO-mediated inhibition of viral replication. We aimed to protect, or repair iron-sulfur centers in putative target enzymes with exogenous ferrous ions and thiol groups. Studies to date on NO-mediated inhibition of enzyme activities have been performed with permeabilized cells, cell lysates, and purified cell fractions (15, 16, 18-21). Pursuant to a physiologically relevant approach to the study of NO activity, we used intact, functionally active cells to study the inhibition of viral replication and its reversal. Exogenous FeSO₄ alone was found to be toxic to the activated macrophages, possibly reflecting documented ferrous ion cytotoxicity (37). FeSO₄ (50 μM) and L-cysteine (2 μM), however, were found to reverse the chemically generated NO-mediated inhibition of viral replication (40%). Addition of the TCA metabolites, α-ketoglutarate and isocitrate, further augmented the reversal (67%).

A regulatory loop has been elucidated between the steady-state levels of intracellular iron and NO (38), which could account for NO-mediated inhibition of viral replication and its reversal by exogenous FeSO₄. Although the rectification of iron homeostasis by exogenous FeSO₄ could therefore provide an explanation for the reversal of inhibition of viral replication, the experimental evidence suggests a specific effect of exogenous ferrous ions and thiol groups on targets of nitrosylation. The concentration of FeSO₄ at which reversal was achieved (50 μM) may have been limiting relative to that of the inhibitor SNAP (400 μM). In addition, we have determined that the reversal of inhibition was not a consequence of FeSO₄ scavenging of NO. The level of nitrite in cultures (measured before and after reduction of nitrate to nitrite with bacterial nitrate reductase) was not diminished by FeSO₄, even when it was added in molar excess (500 μM; data not shown). The limiting effective concentration of FeSO₄ and the absence of NO scavenging suggest strongly the specificity of FeSO₄ for targets of nitrosylation, but these were not sufficient to elucidate the nature of these targets.

The partial reversal of inhibition suggests that NO is acting on multiple cellular and viral pathways, only some of which are responsive to the protective action of exogenous ferrous ions and thiol groups. It has been noted, for example, that potentially deleterious nitrosylation can occur at nucleophilic centers other than iron-sulfur centers, such as DNA and tyrosine residues (36). In addition to transition metals, NO reacts with oxygen and superoxide to generate a second line of reactive molecules that can attack an extended range of nucleophilic targets. The biological activities of NO and their modulation must therefore be considered in terms of the reactivities of the gas and its reactive products with many and disparate targets.

Antiviral CTLs are important for viral elimination; however, they can only halt further spread of the virus and cannot reduce the number of infectious particles already present (39). The beneficial effect of CTL-mediated lysis is apparent only if infected cells are lysed before assembly of progeny virus. If infectious virus was released from infected cells in solid tissues before the generation of neutralizing antibody or at sites where antibody did not readily penetrate, then recruitment of mononuclear phagocytes, which phagocytose and destroy infectious material and/or become nonproductively infected, would help control viral dissemination (40). In this context, iNOS induction in macrophages may be an important antiviral strategy. In addition, the inhibition of viral replication in infected contiguous cells by iNOS-expressing macrophages at infectious foci would prevent release of mature virus particles after lysis by NK cells and CTLs. Since viral early proteins are expressed in such infected cells, their recognition and lysis by CTLs will not be hindered.
The authors thank Drs. Carl Nathan, Bernard Moss, and members of their respective laboratories, as well as Drs. Herbert C. Morse III and Jack Bennink for helpful comments and suggestions on the manuscript. We are grateful to John MacMicking for assistance in performing the nitrite assays, Drs. Robert Drillien, Josephine Cox, Carl Nathan, and Qiao-wen Xie for the antibodies, and Dr. Christina Cassetti for assistance in the presentation of Fig. 1.

Address correspondence to Dr. Gunasegaran Karupiah, Division of Immunology and Cell Biology, The John Curtin School of Medical Research, The Australian National University, PO Box 334, Canberra ACT 2601, Australia.

Received for publication 11 November 1994 and in revised form 3 February 1995.

References

1. Ding, A.H., C.F. Nathan, and D.J. Stuehr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J. Immunol. 141:2407–2412.

2. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells.
 PASEB (Fed. Am. Soc. Exp. Biol.) J. 6:3051–3064.

3. Moncada, S., R.M.J. Palmer, and E.A. Higgs. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43:109–142.

4. Nathan, C.F., and J.B. Hibbs, Jr. 1991. Role of nitric oxide synthesis in macrophage antimicrobial activity.
 Curr. Opin. Immunol. 3:65–70.

5. Hibbs, J.B., Jr., R.R. Taintor, Z. Vavrin, D.L. Granger, J.-C. Drapier, I.J. Amber, and J.R. Lancaster. 1990. Synthesis of nitric oxide from a terminal guanidino nitrogen atom of t-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. In Nitric Oxide from t-Arginine: A Bioregulatory System. S. Moncada and E.A. Higgs, editors. Elsevier Science Publishers, B.V., Amsterdam. pp. 189–223.

6. Stuehr, D.J., and M.A. Marletta. 1987. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-γ. J. Immunol. 139:518–525.

7. Dalton, D.K., S. Pitts-Meek, S. Keshav, I.S. Figari, A. Bradley, and T.A. Stewart. 1993. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science (Wash. DC). 259:1739–1742.

8. Huang, S., W. Hendriks, A. Althage, S. Hemmi, H. Blumenthal, R. Kamijo, J. Vilcek, R.M. Zinkerangel, and M. Aguet. 1993. Immune response in mice that lack the interferon-γ receptor. Science (Wash. DC). 259:1742–1745.

9. Croen, K.D. 1993. Evidence for an antiviral effect of nitric oxide. J. Clin. Invest. 91:2446–2452.

10. Karupiah, G., Q.-w. Xie, R.M.L. Buller, C. Nathan, C. Duarte, and J.D. MacMicking. 1993. Inhibition of viral replication by interferon-γ-induced nitric oxide synthase. Science (Wash. DC). 261:1445–1448.

11. Harris, N., R.M.L. Buller, and G. Karupiah. 1995. Interferon-gamma induced, nitric oxide mediated inhibition of vaccinia viral replication. J. Virol. 69:910–915.

12. Lowenstein, C.J., and S.H. Snyder. 1992. Nitric oxide, a novel biological messenger. Cell. 70:705–707.

13. Lancaster, J.R., Jr. 1994. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc. Natl. Acad. Sci. USA. 91:8137–8141.

14. Lancaster, J.R., Jr., and J.B. Hibbs, Jr. 1990. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. USA. 87:1223–1227.

15. Pellat, C., Y. Henry, and J.-C. Drapier. 1990. IFN-γ-activated macrophages: detection by electron paramagnetic resonance of complexes between t-arginine-derived nitric oxide and non-heme iron proteins. Biochem. Biophys. Res. Commun. 166:119–125.

16. Drapier, J.-C., and J.B. Hibbs, Jr. 1986. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. J. Clin. Invest. 78:790–797.

17. Stuehr, D.J., and C.F. Nathan. 1989. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169:1543–1555.

18. Granger, D.L., R.R. Taintor, J.L. Cook, and J.B. Hibbs, Jr. 1980. Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. J. Exp. Med. 65:357–370.

19. Granger, D.L., and A.L. Lehninger. 1982. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells. J. Cell Biol. 95:527–535.

20. Lepoivre, M., F. Fieschi, J. Coves, L. Thelander, and M. Fontecave. 1991. Inactivation of ribonucleotide reductase by nitric oxide. Biochem. Biophys. Res. Commun. 179:442–448.

21. Kwon, N.S., D.J. Stuehr, and C.F. Nathan. 1991. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J. Exp. Med. 174:761–767.

22. Karupiah, G., and R.V. Blanden. 1990. Anti-asialo-GM1 inhibits vaccinia virus infection of murine ovaries: asialo-GM1 as an additional virus receptor? Immunol. Cell Biol. 68:343–346.

23. Karupiah, G., T.N. Fredrickson, K.L. Holmes, L.H. Khairallah, and R.M.L. Buller. 1993. Importance of interferons in recovery from mousepox. J. Virol. 67:4214–4226.

24. Stuehr, D.J., H. Cho, N.S. Kwon, M.F. Weise, and C.F. Nathan. 1991. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc. Natl. Acad. Sci. USA. 88:7775–7777.

25. Xie, Q.w., H.J. Cox, J.W. Yewdell, J.R. Bennink, and B. Moss. 1994. Assembly of vaccinia virus: effects of rifampin on the intracellular distribution of viral protein p65. J. Virol. 68:1103–1114.

26. Yuen, H., J.H. Cox, J.W. Yewdell, J.R. Bennink, and B. Moss. 1993. Nuclear localization of a double-stranded RNA-binding protein encoded by the vaccinia virus E3L gene. Virology. 195:732–744.

27. Zhang, Y., B.-Y. Ahn, and B. Moss. 1994. Targeting of a multicomponent transcription apparatus into assembling vaccinia virus particles requires RAP94, an RNA polymerase-associated protein. J. Virol. 68:1360–1370.

28. Sodeik, B., G. Griffiths, M. Ericsson, B. Moss, and R.W. Doms. 1994. Assembly of vaccinia virus: effects of rifampin on the intracellular distribution of viral protein p65. J. Virol. 68:1103–1114.
Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science (Wash. DC). 256:225–228.

29. Bogel, R.G., A.R. Baydoun, J.D. Pearson, S. Moncada, and G.E. Mann. 1992. t-Arginine transport is increased in macrophages generating nitric oxide. Biochem. J. 284:15–18.

30. Vodovotz, Y., N.S. Kwon, M. Pospischil, J. Manning, J. Paik, and C. Nathan. 1994. Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophages with IFN-γ and bacterial lipopolysaccharide. J. Immunol. 152:4110–4118.

31. Granger, D.L., J.B. Hibbs, Jr., F.R. Perfect, and D.T. Durack. 1990. Metabolic fate of t-arginine in relation to microbicidal capability of murine macrophages. J. Clin. Invest. 85:264–273.

32. Karupiah, G., B.E.H. Coupar, M.E. Andrew, D.B. Boyle, S.M. Phillips, A. Müllbacher, R.V. Blanden, and I.A. Ramshaw. 1990. Elevated NK cell responses in mice infected with recombinant vaccinia virus encoding murine IL-2. J. Immunol. 144:290–298.

33. Melkova, Z., and M. Esteban. 1994. Interferon-γ severely inhibits DNA synthesis of vaccinia virus in a macrophage cell line. Virology. 198:731–735.

34. Natuk, R.J., J.A. Byrne, and J.A. Holowczak. 1986. Infection of DBA/2 or C3H/HeJ mice by intraperitoneal injection of vaccinia virus elicits activated macrophages, cytolytic and cytostatic for S91-melanoma tumour cells. Cancer Immunol. Immunother. 22:197–203.

35. Vodovotz, Y., C. Bogdan, J. Paik, Q. Xie, and C. Nathan. 1993. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor β. J. Exp. Med. 178:605–613.

36. Stamler, J.S. 1994. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 78:931–936.

37. Gutteridge, J.M., and B. Halliwell. 1989. Iron toxicity and oxygen radicals. Bailliere’s Clin. Haematol. 2:195–256.

38. Weiss, G., G. Werner-Felmayer, E.R. Werner, K. Grunewald, H. Wachter, and M.W. Hentze. 1994. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J. Exp. Med. 180:969–976.

39. Blanden, R.V. 1974. T cell responses to viral and bacterial infection. Transplant. Rev. 19:56–88.

40. Blanden, R.V., A.J. Hapel, P.C. Doherty, and R.M. Zinkernagel. 1976. Lymphocyte-macrophage interactions and macrophage activation in the expression of antimicrobial immunity in vivo. In Immunology of the Macrophage. D.S. Nelson, editor. Academic Press, New York. pp. 367–401.