Toxicity of airborne particles—established evidence, knowledge gaps and emerging areas of importance

Frank J. Kelly and Julia C. Fussell

NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, Sir Michael Uren Building, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK

Epidemiological research has taught us a great deal about the health effects of airborne particulate matter (PM), particularly cardiorespiratory effects of combustion-related particles. This has been matched by toxicological research to define underlying mechanistic pathways. To keep abreast of the substantial challenges that air pollution continues to throw at us requires yet more strides to be achieved. For example, being aware of the most toxic components/sources and having a definitive idea of the range of associated disease outcomes. This review discusses approaches designed to close some of these knowledge gaps. These include a focus on particles arising from non-exhaust PM at the roadside and microplastics—both of which are becoming more relevant in the light of a shift in PM composition in response to global pressure to reduce combustion emissions. The application of hypothesis-free approaches in both mechanistic studies and epidemiology in unveiling unexpected relationships and generating novel insights is also discussed. Previous work, strengthening the evidence for both the adverse effects and benefits of intervention tell us that the sooner we act to close knowledge gaps, increase awareness and develop creative solutions, the sooner we can...
reduce the public health burden attributable to these complex and insidious environmental pollutants.
This article is part of a discussion meeting issue ‘Air quality, past present and future’.

1. Introduction—established evidence

(a) Epidemiology

Particulate air pollution has been the focus of a global research effort for several decades. The aims have been not only to understand and describe associations between exposure and capability to adversely affect human health, but also to identify the plausible biological mechanisms that could explain and support these associations. The exceptional achievements began with the seminal epidemiological studies in the 1990s showing a clear association between increased respiratory and cardiovascular mortality and acute and chronic exposures to ambient particulate air pollution [1,2]. These findings have subsequently been substantiated in epidemiological studies conducted outside of the USA [3] and numerous attempts have followed to quantify the global annual burden of mortality due to particulate matter (PM) less than 2.5 µm in diameter (PM$_{2.5}$). The current estimates approach 9 million [4]. Epidemiological investigations have also successfully delineated associations of particulate air pollution exposure with increases in respiratory and cardiovascular morbidity [5]. Evidence is particularly strong for reduced lung function, heightened severity of symptoms in individuals with asthma and chronic obstructive pulmonary disease [6] and ischaemic heart disease [6,7] and, in 2012, particulates in diesel fumes were classified as carcinogenic [8]. Data also link exposure with atherosclerosis [9] and a host of childhood respiratory conditions including an increased susceptibility to infection [10] and symptoms of low lung function [11].

(b) Toxicology

The epidemiological work has been matched by a considerable toxicological research effort to define the underlying mechanistic pathways of toxicity elicited by airborne PM, and again the lungs and cardiovascular system have been particularly well studied. One such successful approach to investigate effects on the airways exposed human volunteers (healthy and/or mildly asthmatic) for 1–2 h to whole diesel exhaust (DE; particulates plus the associated gas phase) from an idling engine at concentrations ranging from environmentally relevant (PM with a diameter less than 10 µm [PM$_{10}$] 100 µg m$^{-3}$, nitrogen dioxide [NO$_2$] 0.7 ppm) to those occasionally experienced in exceptionally busy diesel-dominated traffic environments (PM$_{10}$ 300 µg m$^{-2}$, NO$_2$ 1.6 ppm). By performing blood, bronchoalveolar lavage and bronchial mucosal biopsy sampling after exposure, these studies have been instrumental in uncovering systemic and pulmonary inflammatory cascades following the stimulation of antioxidant defences and redox-sensitive signalling pathways [12–18]. Exposure to NO$_2$ alone, at similar or higher concentrations for a longer duration, failed to elicit adhesion molecule upregulation or significant changes in inflammatory cells in the bronchial mucosa sampled, suggesting that the PM content of DE was the responsible pollutant [19]. In addition to the large number of studies on the inflammatory effects on airway epithelium and immune cells, a capacity of DE particles (DEP) to directly interact with airway nerve fibres responsible for respiratory symptoms has also been demonstrated [20].

In 2010, Brook and colleagues presented persuasive evidence that oxidative stress is also a critically important cause and consequence of PM-mediated cardiovascular effects. The latter are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulant changes, alterations in autonomic nervous system balance and changes in blood pressure [7]. At the molecular level, principal pathways
include (i) the instigation of pulmonary and systemic inflammation [21], (ii) the translocation of ultrafine and nanosize particles and/or particle constituents (organic compounds, metals) across the alveolar membrane into the systemic circulation possibly enabling interaction and localized toxicity within the vascular endothelium and/or cardiac tissue [22], and (iii) the activation of airway-sensitive receptors or nerves and subsequent autonomic nervous system imbalance [23]. At numerous points within each of these functional and molecular pathways there is potential for cellular oxidative imbalances to occur, as has been demonstrated in human experimental studies, healthy and diseased animal models, isolated organs and cell cultures [24].

(c) Knowledge gaps

The past decades of epidemiological and toxicological research have taught us a great deal about the health effects of PM and particularly, the cardiorespiratory effects of roadside PM (primarily DEPs). Knowledge is, however, still lacking in many areas, two of which are discussed in this brief review. First, the differential toxicity of airborne PM, particularly in the light of the likely shift in composition in response to global pressure to reduce combustion emissions, and second what appears to be a growing range of disease outcomes that may ultimately be associated with exposure to airborne particulates.

2. Differential toxicity of ambient PM

(a) The relevance

Health studies describing robust associations between ambient PM and ill health have contributed to the World Health Organization Air Quality Guidelines (WHO AQG) and national air quality standards that, owing to the technical limitations and costs of stationary monitoring networks, use the mass concentration of PM$_{2.5}$ or PM$_{10}$ as the metric. As a consequence, all particles are treated as equally toxic, without regard to their source and chemical composition. It is unlikely, however, that every component within the overall ambient PM mix is equally harmful to the exposed population. There has, therefore, been an enormous drive to identify which component(s)/source(s) of ambient PM, and/or which of their physical and chemical characteristic(s) are most harmful to health to facilitate reappraisal of air quality guidelines/standards and prioritize targeted PM control strategies to more effectively protect public health. Epidemiological and toxicological research findings have indeed shown that PM mass comprises fractions and sources with varying types and degrees of health effects but, despite this, the question of differential PM toxicity represents one of the most challenging areas of environmental health research [25].

(b) The challenge

Rather than constituting a single entity, ambient particulate pollution is a complex, heterogeneous mixture that can exist in the atmosphere as solids or liquids. Primary PM is directly emitted from source, while secondary particles are formed following chemical reactions with other pollutants. The mix includes emissions from man-made activities as well as natural sources.

The organic particulate mix is particularly complex and constitutes around 10^4–10^5 different compounds in today’s atmosphere [26]. These materials can be classified in several different ways: with respect to volatility, i.e. volatile organic compounds, semi-volatile organic compounds or condensed-phase compounds; primary or secondary condensed-phase organic compounds; carbonaceous particulate materials existing in the elemental carbon or organic carbon fraction. Since the latter is comprised of a very large number of individual compounds, observations of epidemiological associations unfortunately do not tell us about the identity and source(s) of the individual compound(s) that may be driving health effects. The major anthropogenic sources of organic materials in the atmosphere include internal combustion engines, wood and biomass
burning, fuel oil combustion, natural gas combustion, biogenic emissions, resuspended road dust, tyre and brake wear and cooking emissions.

Airborne particles vary in chemical composition (and hence solubility and reactivity), mass, size, number, shape and surface area depending upon source and atmospheric processing. All of these properties have the potential to influence health effects. For example, with respect to size, particles can vary from a few nanometres to tens of micrometres. Particles with an aerodynamic diameter smaller than 0.1 µm (PM_{0.1}), PM_{2.5} and between 2.5 and 10 µm (PM_{10−2.5}) are termed ultrafine (UFPs), fine and coarse particles, respectively. The smaller particles, particularly UFPs, have a greater capacity to (i) penetrate the lung and probably translocate to extrapulmonary sites and (ii) adsorb toxic chemicals owing to a larger surface area to volume ratio. UFPs are, however, challenging to study in epidemiological settings that rely on central site measurements owing to their high spatial variability and high correlation with other combustion-related pollutants. Toxicological studies can also be challenging because of the rapid agglomeration of such particles. Attempts to identify specific effects of components/sources are complicated further since PM can vary in space and time as a consequence of atmospheric chemistry and weather conditions, as well as complex interactions with gaseous air pollutants (e.g. ozone and NO_{2}) that share biologically plausible associations with various health endpoints.

(c) The overall consensus

Unsurprising, the current database of experimental and epidemiological studies does not allow individual PM characteristics or sources to be definitely identified as being closely related to specific health effects [5,27,28]. It appears that the strengths of associations between effects and individual chemical components of the ambient aerosol vary from effect to effect and that the situation is further complicated by components being associated with certain effects in some locations, but not in others. The ambitious US NPACT studies—that used coordinated toxicology, epidemiology and exposure research to examine and compare the toxicity of PM components, gases and sources—concluded that ‘the studies do not provide compelling evidence that any specific source, component or size class of PM may be excluded as a possible contributor to PM toxicity’ [28]. In the context of organic PM, the findings of other large, multi-year large toxicological and epidemiological research programmes including SPHERES (Secondary Particle Health Effects Research), NERC (National Environmental Respiratory Center), ACES (Advanced Collaborative Emissions Study) and TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) have recently been reviewed [29]. Despite clear health impacts from emissions containing carbon-containing PM, difficulty remains in apportioning responses to certain groupings of carbonaceous materials, such as organic and elemental carbon, condensed and gas phases, and primary and secondary material. Another illustration of the variety of results reported in the literature is a systematic review of the findings of epidemiology, controlled human exposure and toxicology studies that used apportionment methods to relate sources of PM with human health outcomes [30]. Among the 29 studies reviewed, soil, sea salt, secondary sulphate, motor vehicle emissions, coal burning, wood smoke, biomass combustion, Cu smelter emissions, residual oil combustion and incinerator emissions were found to be associated with health outcomes. Another noteworthy quote on the subject from Krall and colleagues states ‘Associations with a given PM_{2.5} chemical component should be considered as potentially indicative of associations with another component or set of components with similar sources’ [31]. It is in fact a belief of various commentators in the field that the literature suggests that various complex mixtures may be involved, and that the capability of PM to induce disease may be the result of multiple components acting through different physiological mechanisms [32,33]. Efforts continue to tease out which components and sources of PM are most harmful since to identify regulation targets can better protect human health. Epidemiological studies of sources are, however, challenging since source-specific exposures (e.g. PM from road transport) often are not directly measured and must be estimated by applying source apportionment models [34–36]. Using data from the Atlanta Commuting Exposure studies, Krall et al. found that exposures
related to crustal and secondary pollution were associated with decreased lung function among asthmatic commuters [37]. Findings from another recent study that adopted source-apportioned PM$_{2.5}$ concentrations suggest a role for emissions from spark ignition, and diesel vehicles, tyre and brake wear, residual oil combustion emissions from large building heating and nitrate particles in the triggering of acute cardiovascular events [38].

3. Particles of increasing interest and importance

(a) Non-exhaust PM from road transport

A recent toxicological study incorporating comparative data from different road traffic sources focused on brake abrasion dust (BAD) and DEPs [39]. This is highly relevant in that while there is an extensive literature on the health effects of engine emissions [40], the toxicity of non-exhaust PM—from brake wear, tyre wear, road surface wear and resuspended road dust—has not been extensively studied despite becoming a significant component of urban air pollution. Furthermore, this currently unregulated component of traffic emissions is expected to become proportionately more important, as vehicle exhaust PM emissions from road transport are expected to decrease over the coming years. The *in vitro* study by Selley and co-workers compared the relative toxicity that BAD and DEPs exert on airway macrophages to investigate whether the marked compositional difference between these particle species is reflected in their ability to perturb cell function [39]. Although BAD contained considerably more metals/metalloids than DEP, similar toxicological profiles were observed in U937 monocyte-derived macrophages at minimally cytotoxic doses (4–25 µg ml$^{-1}$; 24 h). Responses to the particles included transient, dose- and metal-dependent increases in secretion of IL-8, IL-10 and TNF-α and decreased phagocytosis of *Staphylococcus aureus* and, for both particles, the metal chelation restored bacterial uptake to levels comparable with the particle-free control (figure 1).

(b) Microplastics

Microplastics (less than or equal to 5 µm particles and fibres produced from the breakdown of larger items such as clothing, car tyres and mismanaged urban waste) are another particulate pollutant of increasing environmental concern owing to the astonishing global mass production of plastic plus its persistent nature in the environment [41] and synthetic physiological fluids [42]. While occurrence, sources and fate of airborne microplastics are still poorly documented, in part owing to the technological challenge associated with detection and identification, progress is being made in assessing atmospheric deposition in both indoor [43] and outdoor [44–47] environments. Of the latter, airborne microplastics have been measured in the major population centres of Paris [44], Dongguan [45] and London [47] as well as at a remote and pristine site in the French Pyrenees [46]. In central London, microplastics of various shapes, but primarily fibrous, were detected in all samples tested, with deposition rates ranging from 575 to 1008 per m2 per day. Across all samples, 15 different petrochemical-based polymers were identified (figure 2).

Evidence of a novel component of air pollution is, therefore, emerging while complementary existing fields indicate potential hazards. For example, evidence exists that people working in the textile industry experience respiratory symptoms and develop interstitial lung disease following exposure to nylon flock [48] and similar symptoms have been described among workers in facilities manufacturing polyethylene and polypropylene flock [49,50]. Although the toxicology of microplastics is an emerging field, several potential mechanisms exist through which harm to human health could occur. These may include the activation of pathways in response to the particle/fibre *per se* and/or leaching of adhered chemicals (owing to the surface area:volume ratio of microplastics, plus their surface hydrophobicity), from both additives incorporated during manufacture and contaminants accumulated from the environment. For example, an acute inflammatory response has been demonstrated in the lungs of rats after intratracheal instillation of nylon fibres of a respirable size (2 µm diameter, 14 µm length
Figure 1. Quantities of *S. aureus* ingested by U937 cells over a 2 h period subsequent to 24 h incubation with (a) BAD, (b) DEP (SRM-2975), (c) BAD (± METAL CHELATOR DFO) and (d) DEP (SRM-2975) (± DFO). BAD, brake abrasion dust; CFU, colony-forming units; DFO, desferoxamine mesylate; SRM-2975, standard reference material 2975. [39]. Published by The Royal Society of Chemistry.

on average) [51]. Furthermore, inflammation induced by granular and spherical particles (polyethylene/polyethylene terephthalate) from abraded plastic prosthetic implants has also been reported [52,53]. With respect to the leaching of plastic-derived chemicals, potentially with reproductive, carcinogenic and mutagenic effects, there is no information on human tissues but transfer of plastic-derived chemicals from ingested waste to the tissues of marine-based organisms has been described [54].

4. Applications of omics approaches to explore mechanisms of toxicity

Much of our understanding of the mechanisms by which particulate air pollution elicits ill health has been gleaned from traditional, hypothesis-driven approaches that focus on *a priori* defined clinical parameters employing a limited number of endpoint assays [55,56]. These have been fundamental to epidemiologists in providing the means to support causal inference by providing associations between physiological endpoints (e.g. respiratory or cardiovascular symptoms) and underlying molecular events. The limitation lies in the inability to uncover the multiple molecular targets and novel pathways that are undoubtedly behind the toxicological response to complex environmental exposures.

Current and more informative mechanistic studies, which heavily focus on questions rather than hypotheses, have a greater likelihood of unveiling unexpected relationships and generating novel insights that in turn can lead to hypothesis generation [57,58]. Advances in analytical technology, in the form of metabolomics, involves the simultaneous measurement, by mass spectrometry or nuclear magnetic resonance, of multiple small metabolites (less than 1 kDa) arising from specific cellular processes, such as energy production and storage, signal transduction and apoptosis [59]. Since metabolites are the terminal products of gene expression,
i.e. the final consequence of biological function, their profiles in biological samples report on actual functional status. The staggeringly large amounts of information of such global analyses should not, however, be underestimated and gaining biologically relevant conclusions from a given metabolomics dataset requires a specialized data analysis. Notwithstanding such challenges, identifying metabolite perturbations caused by air pollution exposure is a particularly relevant and promising approach in characterizing the interactions of living organisms with their environment by identifying disregulated molecular pathways and predicting health endpoints [60]. It is not surprising, therefore, that to address issues such as differential toxicity, workers have adopted such an approach in both toxicological and epidemiological studies [61–67]. Experimental studies have investigated shifts in the metabolite profiles of bronchial wash (BW) and bronchoalveolar lavage (BAL) of healthy volunteers following exposure to biodiesel exhaust (BDE) compared with filtered air [61,62]. This approach greatly enhanced the number of metabolites that were detected and, in turn, novel pathways including alterations in energy metabolism and degradation of cell membrane lipids associated with BDE exposure. Notably, BDE-induced shifts in metabolite profiles of the BW versus BAL fluids differed appreciably, and a stronger response was detectable for peripheral regions of the lungs. Incorporation into epidemiological research has also been demonstrated to sensitively detect internal metabolic perturbations in healthy subjects, pregnant women and people with asthma following
Figure 3. Potential molecular mechanisms underlying the effects of TRAP toxicity on individuals with asthma elucidated using untargeted high resolution metabolomics on the study participants. IL-4, interleukin 4; IL-10, interleukin 10; NOS, nitric oxide synthase; ROS, reactive oxygen species; TNF-α, tumour necrosis factor alpha; TRAP, traffic-related air pollution; XOR, xanthine oxidoreductase [68]. (Online version in colour.)

complicated exposures such as those present in urban environments [63,64,66–68]. A key finding from these studies has been the identification of several oxidative stress and inflammation-related pathways (including leukotriene, cytochrome P450, vitamin E, tyrosine, methionine and tryptophan metabolism) that were consistently associated with elevated pollution exposures. For example, in an analysis of healthy college students living close to a major urban highway, leukotriene, vitamin E, cytochrome P450 and methionine metabolic pathways were linked to longer-term (over 3 months) exposure to elevated traffic-related air pollution (TRAP), including black carbon (BC) and PM2.5 [64]. As illustrated in figure 3, Liang et al. [68] detected numerous significant metabolic perturbations associated with in-vehicle exposures during commuting, validated metabolites that were closely linked to several inflammatory and redox pathways and collectively implicated these mechanisms as part of the impact of TRAP toxicity in asthmatic individuals.

5. The wider threat to human health

Emerging epidemiological and experimental data from a growing number of studies suggest that particle exposure may exert a wider threat to human health, beyond the cardiorespiratory systems, by negatively influencing a broader number of diseases including adverse birth outcomes [69–71], slower rates of cognitive development in children [72,73] and accelerated cognitive decline in adults [74,75]. There remain substantial gaps in our knowledge as to possible causal pathways for these relatively new scientific observations. This could, however, be due to the translocation of the smallest particles in the overall mix into the target organs as well as more indirect pathways acting through inflammatory mediators produced in response to the particles.

Animal studies have documented the ability of small inhaled particles to reach the brain, with evidence suggesting that this occurs following deposition in either the nasal epithelium (via the olfactory nerve) or the alveolar epithelium by entering into the systemic circulation and eventually crossing the blood-brain barrier [76]. Importantly, the translocation of airborne
particles to the brain is potentially supported by human evidence as Maher et al. reported the presence in postmortem brain samples of magnetite nanoparticles, consistent with those formed by combustion and/or friction-derived heating [77].

The numerous investigations into whether nanoparticles can cross the placenta show a dependency on size, shape and surface charge [78], while Valentino et al. [79] demonstrated ‘nanoparticle-like’ aggregates in the cytoplasm of placental trophoblastic cells of rabbits following exposure to aerosolized DEPs. These experimental data are also supported by human evidence with Bove et al. [80] reporting the presence of BC particles in placenta at both the maternal and fetal side. Such findings confirm the translocation of ambient PM directly to the fetus and represent a potentially novel mechanism to explain adverse health effects from early life onwards.

(a) Hypothesis-free analysis

The quest to uncover associations between ambient PM and all possible diseases, including prevalent but rarely studied ones, has recently been tackled by using a hypothesis-free analysis of a large dataset [81]. This study analysed more than 95 million hospital admissions of Medicare beneficiaries plus PM$_{2.5}$ concentrations on the day before presentation over 13 years. In addition to confirming previously established associations between short-term PM$_{2.5}$ concentration and cardiorespiratory disease, diabetes mellitus and Parkinson’s disease, the researchers found that each 1 µg m$^{-3}$ increase in PM$_{2.5}$ was associated with 2050 extra hospital admissions as a consequence of previously unassociated diseases (figure 4). The latter included fluid and electrolyte disorders, acute and unspecified renal failure, sepsicaemia, intestinal obstruction without hernia and urinary tract infections. Moreover, associations remained consistent when restricted to days when daily PM$_{2.5}$ concentrations fell below the WHO 24 h AQG.

6. Discussion

Recent decades of epidemiological and toxicological research have taught us a great deal about the health effects and underlying toxicology of PM, particularly the cardiorespiratory effects of roadside, combustion-related particles. To keep abreast of the substantial challenges that air pollution continues to throw at us requires yet more strides to be achieved. The multi-disciplinary efforts to identify the most toxic components/sources and the range of associated disease outcomes must continue. Closure of some of today’s knowledge gaps will be fundamental to inform the revision of air quality guidelines and standards, set effective mitigation strategies and assist their ultimate remit of protecting human health.

This is particularly relevant owing to predicted shifts in PM composition in response to global pressure to reduce combustion emissions. Particles arising from the non-exhaust component of traffic emissions are prime examples of current challenges on which to focus on. These have become a significant component of traffic-related PM and are projected to become a more dominant source. Added to this, particle characteristics with respect to both (small) size and (metallic) composition suggest that this currently unregulated source that is concentrated in highly populous urban environments may be a particularly hazardous one. While recent research suggests that the capacity of BAD to harm pulmonary cells is equivalent to that of DEP [39], unambiguous toxicological data are currently lacking. For example, for the most part, toxicological studies of tyre wear have employed pulverized or size-fractionated material, rather than that formed from ‘real world’ friction between tyres and roadways. In addition no direct epidemiological studies on non-exhaust PM at the roadside have been undertaken. New epidemiological and toxicological research, incorporating future trends (e.g. potential benefits of regenerative braking versus added risks associated with increased tyre and road wear from heavier electric/self-driving vehicles), should be undertaken to further understand the potential health risk of this aspect of vehicular pollution. Without such research, policy changes to control emission sources and benefit human health will be difficult.
The contribution of microplastics to the risks that airborne PM inflicts on human health is another timely research field that has emerged. Early work presenting evidence of airborne plastics in indoor air [43] and outdoors, in populous urban environments [44,45,47], raises concern for public health, especially with a predicted increase in plastic use, particularly in the textile sector, pointing to a proportional increment in airborne microplastic concentrations. A robust evidence base characterizing population exposure is, therefore, required. We also need to establish the toxic characteristics of microplastics, their behaviour in the body, and what, if any, constitutes a safe threshold for exposure when plastics are inhaled.

Environmental metabolomics has emerged as a means to provide a broad-spectrum of measurements of human metabolism that may reveal biological effects and associated toxicological mechanisms associated with an exposure to particulate air pollution. Detecting and monitoring markers of adverse outcomes following exposure to different air pollutants in large human cohorts is limited at present [82,83], but could divulge differential toxicities and thereby help to target regulatory efforts to those pollutants that pose the greatest risk to public health. Continued development of this field, in combination with complementary ‘omics’ technologies such as genomics and proteomics, as well as traditional hypothesis-led research will be crucial to help strengthen the causal basis for the epidemiological findings that associate air pollution
with an ever growing number of diseases. Indeed, research that has used hypothesis-free analysis and predicted epidemiology via toxicology suggests that current figures for PM$_{2.5}$-associated morbidity, which focus on established disease associations, might be considerable underestimates [81,84]. This again calls upon more epidemiological research to investigate newly reported associations, and particle toxicology to provide plausible biological mechanisms that could explain and support these associations.

As the burden of disease associated with particulate air pollution becomes more apparent, it is ever more clear that there is much still to learn. Previous work, strengthening the evidence for both the adverse effects and benefits of intervention [11,85,86] tell us that the sooner we act to close knowledge gaps, increase awareness and develop creative solutions, the sooner we can reduce the public health burden attributable to this complex and insidious environmental pollutant.

Data accessibility. Data presented in this review can be accessed through previously published articles, a list of which is provided.

Authors’ contributions. F.J.K. and J.C.F. conceived the review. J.C.F. wrote the text to which F.J.K. contributed. F.J.K. and J.C.F. gave final approval for publication and agree to be held accountable for the work performed therein.

Competing interests. We declare we have no competing interests.

Funding. This work was funded by the National Institute for Health Research (NIHR 200 880) Health Protection Research Unit in Environmental Exposures and Health, a partnership between Public Health England and Imperial College London. The views expressed are those of the author(s) and not necessarily those of the NIHR, Public Health England or the Department of Health and Social Care.

References

1. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE. 1993 An association between air pollution and mortality in six U.S. cities. *N. Engl. J. Med.* **329**, 1753–1759. (doi:10.1056/NEJM199312093292401)

2. Schwartz J, Dockery DW. 1992 Increased mortality in Philadelphia associated with daily air pollution concentrations. *Am. Rev. Respir. Dis.* **145**, 600–604. (doi:10.1164/ajrccm/145.3.600)

3. Katsouyanni K et al. 2001 Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. *Epidemiology* **12**, 521–531. (doi:10.1097/00001648-200109000-00011)

4. Burnett R et al. 2018 Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. *Proc. Natl Acad. Sci. USA* **115**, 9592–9597. (doi:10.1073/pnas.1803221115)

5. WHO. 2013 Review of evidence on health aspects of air pollution—REVIHAAP project, technical report 2013 See http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf?ua=1.

6. Kelly FJ, Fussell JC. 2011 Air pollution and airway disease. *Clin. Exp. Allergy* **41**, 1059–1071. (doi:10.1111/j.1365-2222.2011.03776.x)

7. Brook RD et al. 2010 Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. *Circulation* **121**, 2331–2378. (doi:10.1161/CIR.0b013e3181d8bce1)

8. (IARC) IafRoC. 2012 Diesel engine exhaust carcinogenic 2012 See https://www.iarc.fr/wp-content/uploads/2018/07/pr213_E.pdf.

9. Bauer M et al. 2010 Urban particulate matter air pollution is associated with subclinical atherosclerosis: results from the HNR (Heinz Nixdorf Recall) study. *J. Am. Coll. Cardiol.* **56**, 1803–1808. (doi:10.1016/j.jacc.2010.04.065)

10. MacIntyre EA et al. 2014 Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project. *Environ. Health Perspect.* **122**, 107–113. (doi:10.1289/ehp.1306755)

11. Gauderman WJ et al. 2007 Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. *Lancet* **369**, 571–577. (doi:10.1016/S0140-6736(07)60037-3)

12. Salvi S, Blomberg A, Rudell B, Kelly F, Sandstrom T, Holgate ST, Frew A. 1999 Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. *Am. J. Respir. Crit. Care Med.* **159**, 702–709. (doi:10.1164/ajrccm.159.3.9709083)
13. Salvi SS et al. 2000 Acute exposure to diesel exhaust increases IL-8 and GRO-alpha production in healthy human airways. *Am. J. Respir. Crit. Care Med.* **161**, 550–557. (doi:10.1164/ajrccm.161.2.9905052)
14. Pourazar J, Frew AJ, Blomberg A, Hellday R, Kelly FJ, Wilson S, Sandström T. 2004 Diesel exhaust exposure enhances the expression of IL-13 in the bronchial epithelium of healthy subjects. *Respir. Med.* **98**, 821–825. (doi:10.1016/j.rmed.2004.02.025)
15. Pourazar J, Mudway IS, Samet JM, Hellday R, Blomberg A, Wilson SJ, Frew AJ, Kelly FJ, Sandström T. 2005 Diesel exhaust activates redox-sensitive transcription factors and kinases in human airways. *Am. J. Physiol. Lung Cell. Mol. Physiol.* **289**, L724–L730. (doi:10.1152/ajplung.00055.2005)
16. Mudway IS et al. 2004 An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid oxidants. *Arch. Biochem. Biophys.* **423**, 200–212. (doi:10.1016/j.abb.2003.12.018)
17. Stenfors N et al. 2004 Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel. *Eur. Respir. J.* **23**, 82–86. (doi:10.1183/09031936.03.00004603)
18. Behndig AF et al. 2006 Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans. *Eur. Respir. J.* **27**, 359–365. (doi:10.1183/09031936.06.00136904)
19. Blomberg A et al. 1997 The inflammatory effects of 2 ppm NO2 on the airways of healthy subjects. *Am. J. Respir. Crit. Care Med.* **156**, 418–424. (doi:10.1164/ajrccm.156.2.9612042)
20. Robinson RK et al. 2018 Mechanistic link between diesel exhaust particles and respiratory reflexes. *Cardiovasc. Toxicol.* **15**, 69–78. (doi:10.1007/s12012-014-9272-0)
21. Kelly FJ, Fussell JC. 2017 Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. *Environ. Health Perspect.* **117**, 611–616. (doi:10.1289/ehp.0800235)
22. Miller MR et al. 2017 Inhaled nanoparticles accumulate at sites of vascular disease. *Environ. Health Perspect.* **117**, 95–125. (doi:10.1289/ehp.070476p)
23. Goldstein AH, Galbally IE. 2007 Known and unknown organic constituents in the Earth’s atmosphere. *Atmos. Environ.* **41**, 1514–1521. (doi:10.1016/j.atmosenv.2007.11.004)
24. Krall JR, Anderson GB, Dominici F, Bell ML, Peng RD. 2013 Short-term exposure to particulate matter constituents and mortality in a national study of U.S. urban communities. *Environ Health Perspect.* **121**, 1148–1153. (doi:10.1289/ehp.1206185)
25. Schlesinger RB, Kunzli N, Hidy GM, Gotschi T, Jerrett M. 2006 The health relevance of ambient particulate matter characteristics: coherence of toxicological and epidemiological inferences. *Inhal. Toxicol.* **18**, 95–125. (doi:10.1080/0895837050306016)
26. Harrison RM, Yin J. 2008 Sources and processes affecting carbonaceous aerosol in central England. *Atmos. Environ.* **42**, 1413–1423. (doi:10.1016/j.atmosenv.2007.11.004)
34. Sarnat JA, Marmur A, Klein M, Kim E, Russell AG, Sarnat SE, Mulholland JA, Hopke PK, Tolbert PE. 2008 Fine particle sources and cardiorespiratory morbidity: an application of chemical mass balance and factor analytical source-apportionment methods. *Environ. Health Perspect.* **116**, 459–466. (doi:10.1289/ehp.10873)

35. Bell ML, Belanger K, Ebisu K, Gent JF, Lee HJ, Koutrakis P, Leaderer BP. 2010 Prenatal exposure to fine particulate matter and birth weight: variations by particulate constituents and sources. *Epidemiology* **21**, 884–891. (doi:10.1097/ede.0b013e3181f2f405)

36. Ostro B, Tobias A, Querol X, Alastuey A, Amato F, Pey J, Pérez N, Sunyer J. 2011 The effects of particulate matter sources on daily mortality: a case-crossover study of Barcelona, Spain. *Environ. Health Perspect.* **119**, 1781–1787. (doi:10.1289/ehp.1103618)

37. Krall JR et al. 2018 Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies. *J. Expo. Sci. Environ. Epidemiol.* **28**, 337–347. (doi:10.1038/s41370-017-0016-7)

38. Rich DQ, Zhang W, Lin S, Squizzato S, Thurston SW, van Wijngaarden E, Croft D, Masiol M, Hopke PK. 2019 Triggering of cardiovascular hospital admissions by source specific fine particle concentrations in urban centers of New York State. *Environ. Int.* **126**, 387–394. (doi:10.1016/j.envint.2019.02.018)

39. Selley L et al. 2019 Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages. *Metallomics* **12**, 371–386. (doi:10.1039/c9mt00253g)

40. HEI. 2010 Special Report 17: Traffic-related air pollution: a critical review of the literature on emissions, exposure and health effects 2010. See https://www.healtheffects.org/publication/traffic-related-air-pollution-critical-review-literature-emissions-exposure-and-health.

41. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, Mcgonigle D, Russell AE. 2004 Lost at sea: where is all the plastic? *Science* **304**, 838. (doi:10.1126/science.1094559)

42. Law BD, Bunn WB, Hesterberg TW. 2008 Solubility of polymeric organic fibers and manmade vitreous fibers in gambles solution. *Inhal. Toxicol.* **2**, 321–339.

43. Vianello A, Jensen RL, Liu L, Vollertsen J. 2019 Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. *Sci. Rep.* **9**, 1-1. (doi:10.1038/s41598-019-45054-w)

44. Dris R, Gasperi J, Saad M, Mirande C, Tassin B. 2016 Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? *Mar. Pollut. Bull.* **104**, 290–293. (doi:10.1016/j.marpolbul.2016.01.006)

45. Cai L, Wang J, Peng J, Tan Z, Zhan Z, Tan X, Chen Q. 2017 Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. *Environ. Sci. Pollut. Res. Int.* **24**, 24928–24935. (doi:10.1007/s11356-017-0116-x)

46. Allen S, Allen D, Phoenix VR, Le Roux G, Durández Jiménez P, Simonneau A, Binet S, Galop D. 2019 Atmospheric transport and deposition of microplastics in a remote mountain catchment. *Nat. Geosci.* **12**, 339–344. (doi:10.1038/s41561-019-0335-5)

47. Wright SL, Ulke J, Font A, Chan KLA, Kelly FJ. 2019 Atmospheric microplastic deposition in an urban environment and an evaluation of transport. *Environ. Int.* **136**, 105411. (doi:10.1016/j.envint.2019.105411)

48. Eschenbacher WL, Kreiss K, Lougheed MD, Pransky GS, Day B, Castellan RM. 1999 Nylon flock-associated interstitial lung disease. *Am. J. Respir. Crit. Care Med.* **159**, 2003–2008. (doi:10.1164/ajrccm.159.6.9808002)

49. Atis S et al. 2005 The respiratory effects of occupational polypropylene flock exposure. *Eur. Respir. J.* **25**, 110–117. (doi:10.1183/09031936.04.00138403)

50. Barroso E, Ibanez MD, Aranda FI, Romero S. 2002 Polyethylene flock-associated interstitial lung disease in a Spanish female. *Eur. Respir. J.* **20**, 1610–1612. (doi:10.1183/09031936.02.00030102)

51. Porter DW et al. 1999 Acute inflammatory reaction in rats after intratracheal instillation of material collected from a nylon flocking plant. *J. Toxicol. Environ. Health A* **57**, 25–45. (doi:10.1080/009841099157845)

52. Willert HG, Semlitsch M. 1996 Tissue reactions to plastic and metallic wear products of joint endoprostheses. *Clin. Orthop. Relat. Res.* **333**, 4–14.
53. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h MJ. 2000 Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. Bone Joint Surg. 82, 457–476. (doi:10.2106/00004623-200004000-00002)

54. Tanaka K, Takada H, Yamashita R, Mizukawa K, Fukuwaka MA, Watanuki Y. 2013 Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar. Pollut. Bull. 69, 219–222. (doi:10.1016/j.marpolbul.2012.12.010)

55. Tsai DH et al. 2012 Effects of particulate matter on inflammatory markers in the general adult population. Part. Fibre Toxicol. 9, 24. (doi:10.1186/1743-8977-9-24)

56. Chuang KJ, Chan CC, Su TC, Lee CT, Tang CS. 2007 The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am. J. Respir. Crit. Care Med. 176, 370–376. (doi:10.1164/rccm.200611-1627OC)

57. Glass DJ, Hall N. 2008 A brief history of the hypothesis. Cell 134, 378–381. (doi:10.1016/j.cell.2008.07.033)

58. Kell DB, Oliver SG. 2004 Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26, 99–105. (doi:10.1002/bies.10385)

59. Rochfort S. 2005 Metabolomics reviewed: a new ‘Omics’ platform technology for Systems Biology and implications for natural products research. J. Natl Prod. 68, 1813–1820. (doi:10.1021/np050255w)

60. Lankadurai BP, Nagato EG, Simpson MJ. 2013 Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ. Rev. 21, 180–205. (doi:10.1139/er-2013-0011)

61. Surowiec I et al. 2016 Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study. Anal. Bioanal. Chem. 408, 4751–4764. (doi:10.1007/s00216-016-9566-0)

62. Gouveia-Figueira S et al. 2017 Mass spectrometry profiling of oxylipins, endocannabinoids, and N-acylethanolamines in human lung lavage fluids reveals responsiveness of prostaglandin E2 and associated lipid metabolites to biodiesel exhaust exposure. Anal. Bioanal. Chem. 409, 2967–2980. (doi:10.1007/s00216-017-0243-8)

63. Ladva CN et al. 2018 Particulate metal exposures induce plasma metabolome changes in a commuter panel study. PLoS ONE 13, e0203468. (doi:10.1371/journal.pone.0203468)

64. Liang D et al. 2018 Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution. Environ. Int. 120, 145–154. (doi:10.1016/j.envint.2018.07.044)

65. Liang Z, Yang Y, Qian Z, Ruan Z, Chang J, Vaughan MG, Zhao Q, Lin H. 2019 Ambient PM2.5 and birth outcomes: Estimating the association and attributable risk using a birth cohort study in nine Chinese cities. Environ. Int. 126, 329–335. (doi:10.1016/j.envint.2019.02.017)

66. Walker DI, Lane KJ, Liu K, Uppal K, Patton AP, Durant JL, Jones DP, Brugge D, Pennell KD. 2018 Metabolomic assessment of exposure to near-highway ultrafine particles. J. Expo. Sci. Environ. Epidemiol. 29, 469–483. (doi:10.1038/s41370-018-0102-5)

67. Yan Q et al. 2019 Maternal serum metabolome and traffic-related air pollution exposure in pregnancy. Environ. Int. 130, 104872. (doi:10.1016/j.envint.2019.05.066)

68. Liang D et al. 2019 Perturbations of the arginine metabolome following exposures to traffic-related air pollution in a panel of commuters with and without asthma. Environ. Int. 127, 503–513. (doi:10.1016/j.envint.2019.04.003)

69. Klepac P, Locatelli I, Korosec S, Kunzli N, Kukec A. 2018 Ambient air pollution and pregnancy outcomes: a comprehensive review and identification of environmental public health challenges. Environ. Res. 167, 144–159. (doi:10.1016/j.envres.2018.07.008)

70. Stieb DM, Chen L, Eshoul M, Judek S. 2012 Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ. Res. 117, 100–111. (doi:10.1016/j.envres.2012.05.007)

71. Li X et al. 2017 Association between ambient fine particulate matter and preterm birth or term low birth weight: an updated systematic review and meta-analysis. Environ. Pollut. 227, 596–605. (doi:10.1016/j.envpol.2017.03.055)

72. Sunyer J et al. 2015 Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med. 12, e1001792. (doi:10.1371/journal.pmed.1001792)
73. Zhang X, Chen X, Zhang X. 2018 The impact of exposure to air pollution on cognitive performance. *Proc. Natl Acad. Sci. USA* **115**, 9193–9197. (doi:10.1073/pnas.1804974115)

74. Carey IM, Anderson HR, Atkinson RW, Beevers SD, Cook DG, Strachan DP, Dajnak D, Gulliver J, Kelly FJ. 2018 Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. *BMJ Open* **8**, e022404. (doi:10.1136/bmjopen-2018-022404)

75. Chen H *et al.* 2017 Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. *Environ. Int.* **108**, 271–277. (doi:10.1016/j.envint.2017.08.020)

76. Heusinkveld HJ, Wahle T, Campbell A, Westerink RHS, Tran L, Johnston H, Stone V, Cassee FR, Schins RPF. 2016 Neurodegenerative and neurological disorders by small inhaled particles. *Neurotoxicology* **56**, 94–106. (doi:10.1016/j.neuro.2016.07.007)

77. Maher BA, Ahmed IA, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, Mann DMA, Torres-Jardón R, Calderon-Garciduenas L. 2016 Magnetite pollution nanoparticles in the human brain. *Proc. Natl Acad. Sci. USA* **113**, 10797–10801. (doi:10.1073/pnas.1605941113)

78. Muoth C, Aengenheister L, Kucki M, Wick P, Buerki-Thurnherr T. 2016 Nanoparticle transport across the placental barrier: pushing the field forward!. *Nanomedicine (Lond)* **11**, 941–957. (doi:10.2217/nnm-2015-0012)

79. Valentino SA *et al.* 2016 Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits. *Part. Fibre Toxicol.* **13**, 39. (doi:10.1186/s12989-016-0151-7)

80. Bove H *et al.* 2019 Ambient black carbon particles reach the fetal side of human placenta. *Nat. Commun.* **10**, 3866. (doi:10.1038/s41467-019-11654-3)

81. Wei Y, Wang Y, Di Q, Choiat C, Wang Y, Koutrakis P, Zanobetti A, Dominici F, Schwartz JD. 2019 Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: time stratified, case crossover study. *Br. Med. J.* **367**, l6258. (doi:10.1136/bmj.l6258)

82. Breitner S *et al.* 2016 Associations among plasma metabolite levels and short-term exposure to PM2.5 and ozone in a cardiac catheterization cohort. *Environ. Int.* **97**, 76–84. (doi:10.1016/j.envint.2016.10.012)

83. Ward-Caviness CK, Breitner S, Wolf K, Cyrys J, Kastenmuller G, Wang-Sattler R, Schneider A, Peters A. 2016 Short-term NO2 exposure is associated with long-chain fatty acids in prospective cohorts from Augsburg, Germany: results from an analysis of 138 metabolites and three exposures. *Int. J. Epidemiol.* **45**, 1528–1538. (doi:10.1093/ije/dyw247)

84. Ghio AJ, Soukup JM, Madden MC. 2018 The toxicology of air pollution predicts its epidemiology. *Inhal. Toxicol.* **30**, 327–334. (doi:10.1080/08958378.2018.1530316)

85. Gauderman WJ, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, Chang R, Lurmann F, Gilliland F. 2015 Association of improved air quality with lung development in children. *N. Engl. J. Med.* **372**, 905–913. (doi:10.1056/NEJMoa1414123)

86. Li Y, Wang W, Kan H, Xu X, Chen B. 2010 Air quality and outpatient visits for asthma in adults during the 2008 Summer Olympic Games in Beijing. *Sci. Total Environ.* **408**, 1226–1227. (doi:10.1016/j.scitotenv.2009.11.035)