DNA barcoding and a new taxonomic status of the *Triaenodes ochreellus lefkas* Malicky, 1974 (Insecta, Trichoptera) with new distribution data

MLADEN KUČINIĆ¹, ANDELA ĆUKUŠIĆ², HALIL IBRAHIMI³, MLADEN PLANTAK⁴, MARIJANA VUKOVIĆ⁵, VIŠNJA BUKVIĆ⁶ & IVAN VUČKOVIĆ⁴

¹Faculty of Science, Department of Biology (Laboratory for Entomology), University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
²Croatian Ministry of Protection of Nature and Energetic, Radnička cesta 80/7, 10000 Zagreb, Croatia
³Department of Biology, Faculty of Mathematics and Natural Sciences, University of Prishtina “Hasan Prishtina”, “Mother Theresa” p.n., 10000 Prishtina, Republic of Kosovo
⁴Elektroprojekt d.d., Civil and Architectural Engineering Department, Water Resources, Nature and Environmental protection, Alexandra von Humboldt a 4, 10000 Zagreb, Croatia
⁵Croatian Natural History Museum, Demetrova 1, 10000 Zagreb, Croatia
⁶University Hercegovina, Blajburških žrtava 100, 88000 Mostar, Bosnia and Herzegovina

Received 14 November 2020 | Accepted by V. Pešić: 11 December 2020 | Published online 19 December 2020

Abstract

In this paper new data on distribution and new taxonomic status of the caddisfly *Triaenodes ochreellus lefkas* are given. DNA barcoding data are also included into defining new status of the species *Triaenodes lefkas* stat. nov. Data from DNA barcoding analyses of 60 specimens from the genus *Triaenodes* from the BOLD database show certain taxonomic peculiarities in specimens of *T. unanimis* from Japan.

Key words: South Europe, *Triaenodes, T. unanimis*, molecular analyses.

Introduction

The Leptoceridae family (long-horned) is one of the largest families of Trichoptera, with more than 1800 known species (Holzenthal et al. 2007; Morse 2020; Oláh 2016). It is cosmopolitan although its greatest biodiversity is in Asia (Morse 2020; Holzenthal et al. 2007). One of the most numerous genera within the family Leptoceridae is the genus *Triaenodes* McLachlan, 1865, with more than 230 described species (Malicky 2004, 2005a; Morse 2020). This genus is widespread and diverse on all continents, including Europe. Only three species of the genus *Triaenodes* have been found in Europe (Malicky 2004): *T. bicolor* (Curtis, 1834), *T. ochreellus* McLachlan, 1877 and *T. unanimis* McLachlan 1877 (Malicky 2004; Morse 2020). Only the species *T. ochreellus* has two subspecies: *T. ochreellus ochreellus* and *T. ochreellus lefkas* Malicky, 1974 (Ibrahimi et al. 2017; Malicky 2004, 2005b; Morse
The adult has a thin body of small to medium size, with long antennae (Holzenthal et al. 2007). Larvae of *Triaenodes* species live in different types of habitats, especially in lentic aquatic biotopes, usually with aquatic vegetation (Ibrahimi et al. 2017; Wiggins 1978). They have elongated posterior legs with long setae, known as swimming paddles (Wiggins 1978). This morphological structure helps them to make rapid movements and swim among the aquatic plants that grow in lentic waters (Wiggins 1978).

In this study we present results of the DNA barcoding of the genus *Triaenodes* in Croatia, a review of some taxonomic points of this genus, new data on the distribution and taxonomic status of the taxon *Triaenodes ochreellus lefkas*.

Material and methods

Sampling and research area

In Croatia, 7 adult specimens of *T. o. lefkas* were collected from three Mediterranean rivers: Cetina River, a locality near the town of Omiš, N 43°23´11,5˝, E 16°46´15,1˝, 1 m asl, 1 female, 26.07.2005, 1 female, 1 male, 27.08.2005 (leg. M. Kučinić, I. Vučković); Neretva River, near the town of Opuzen (Fig 1 A-B), 1 m asl, 1 female, 1 male, 4.09.2015 (leg. H. Plavec, M. Landeka); and Mislina River, locality Mlinište, 1 m asl, 1 male 23.05.2015, 1 female 5.09.2015 (leg. S. Žalac, M. Kučinić). The sites on the rivers Cetina and Neretva are located a few kilometers from their estuaries at the Adriatic Sea. At these localities waters have a brackish character. Three specimens collected from the Cetina river have been deposited in the Vučković Trichoptera Collection, two samples (male and female collected from the rivers Neretva and Mislina) have been deposited in the NIP Trichoptera Collection in the Croatian Natural History Museum in Zagreb, and the other two (one male from the Opuzen locality on the Neretva and one female from Mlinište on the Mislina) are kept as vouchers in the Trichoptera DNA Barcode collection in the Croatian Natural History Museum in Zagreb. One specimen of *T. o. lefkas* was collected from a locality in Montenegro: Tuz Municipality, a side spring of Skadar (Shkodër) Lake near the Vitoja Restaurant, 42.325399N, 19.362963E, 30 m asl, 1 male, 13.10.2019 (leg. H. Ibrahimi); 6 specimens were collected from two localities in Albania: 5 males on 21.05.2017 from Shkodër Lake near Shkodër town, 42.054708N, 19.476790E, 15 m asl, 21.05.2017 and 1 male from the Shkumbin River, Rogozhinë, 41.063686N, 19.681378E, 34 m asl, 19.05.2017 (leg. H. Ibrahim). The samples collected in Montenegro and Albania have been deposited in the Ibrahimi Trichoptera Collection. The samples are stored in absolute ethyl alcohol.

Laboratory methods

Whole genomic DNA was extracted from legs using GenElute Mammalian Genomic DNA Miniprep kit (Sigma-Aldrich, Germany) according to the manufacturer’s specifications and eluted in 60 µl of elution buffer. Full-length mtCOI DNA barcode regions were amplified using LCO1490/HCO2198 (Folmer et al. 1994) primer sets. The 50 µl polymerase chain reactions (PCR) mixture contained 1 x
Go Taq® Reaction Buffer (containing 1.5 mM MgCl₂, Promega), 0.2 mM of each dNTP, 0.4 μM of each primer, 1.25 units of Go Taq® DNA Polymerase (Promega) and 5 μl of DNA eluate. PCR cycling conditions comprised an initial denaturation step (94°C for 2 min) followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 50°C for 30 s and elongation at 72°C for 90 s and a final extension step of 72°C for 7 min. Product purification and bidirectional sequencing was performed by Macrogen Inc. sequencing service (Seoul, South Korea) using amplification primers. Sequences were edited manually and aligned using the program BioEdit (Hall 1999). DNA sequences were submitted to Barcode of Life Data Systems (BOLD, Ratnasingham and Hebert 2007). BOLD ID and accession number of all specimens used in analyses are given in Table 1. Specimens from which DNA was extracted within this study are marked in bold in column Specimen ID in Table 1. To compare our mtCOI DNA barcode region with those species from the genus *Triaenodes* that occur in Europe, selected DNA barcode sequences from BOLD database (accessed on July 2017) were employed.

Table 1. Details for specimens used in analyses with assigned taxonomic name, geographic origin, Specimen ID, BOLD Sequence ID number and haplotype.

Taxonomic designation according to identifier	Sex	Life Stage	Specimen morphological identification by:	Country	Location	Specimen ID	BOLD Sequence ID	Haplotype name
T. ochreellus lefkas	male	adult	Mladen Kučinić	Croatia	River Neretva, near Opuzen	TTOCL_1	NIPTR001-17	1. HP
T. ochreellus	male	adult	Juha Salokannel	Spain	Galicia	09MNKK0409	KKUMN417-10	2. HP
T. ochreellus	male	adult	Aki Rinne	Spain	Galicia	09MNKK0410	KKUMN418-10	3. HP
T. bicolor	male	adult	Hans Malicky	Finland	Lapland	JSlk-20090076	TRIFI181-10	4. HP
T. bicolor	/	larva	Stanislaw Czchorowski	Finland	Uusimaa	ARin-20100174	TRIFI319-11	5. HP
T. bicolor	?	?	Sophie C. Gombeer	Norway		NIVA_TER_39	BARCO039-14	6. HP
T. bicolor	?	?	Tor ERIK Eriksen	Austria		07HMCAD-0237	HMCAD237-08	7. HP
T. bicolor	?	?	Jon K. Skei	Austria		07HMCAD-0238	HMCAD238-08	8. HP
T. bicolor	male	adult	Juha Salokannel	Poland		NZCAD909-86	KKCAD701-09	9. HP
T. bicolor	male	adult	Juha Salokannel	Poland		NZCAD909-86	KKCAD702-09	10. HP
T. bicolor	male	adult	Juha Salokannel	Poland		NZCAD909-93	KKCAD709-09	11. HP
T. bicolor	male	adult	Aki Rinne	Norway	Nord-Trøndelag	TRD-TRI76	ODTRI094-14	12. HP
T. bicolor	female	adult	Juha Salokannel	Norway	Nord-Trøndelag	TRD-TRI77	ODTRI095-14	13. HP
T. bicolor	/	larva	Stanislaw Czchorowski	Finland	Southern Savonia	ARin-20100170	TRIFI317-11	14. HP
T. bicolor	/	larva	Stanislaw Czchorowski	Finland	Kymenlaakso	JSlk-20090080	TRIFI185-10	15. HP
T. bicolor	/	larva	Hans Malicky	Finland	Kymenlaakso	JSlk-20090078	TRIFI183-10	16. HP
T. bicolor	/	larva	Jon K. Skei	Finland	Kymenlaakso	JSlk-20090079	TRIFI184-10	17. HP
T. bicolor	/	larva	Stanislaw Czchorowski	Finland	Southern Savonia	ARin-20100171	TRIFI318-11	18. HP
T. bicolor	/	larva	Stanislaw Czchorowski	Finland	Southern Savonia	ARin-20100168	TRIFI342-11	19. HP
T. bicolor	/	larva	Aki Rinne	Finland	Kymenlaakso	JSlk-20100093	TRIFI271-10;	20. HP
T. bicolor	/	larva	Sophie C. Gombeer	Belgium	Mol, Antwerpen (Antwerp)	UA-AG-TRICH-C50	TFLAN117-11	21. HP
T. bicolor	/	larva	Aki Rinne	Finland	Vanhankaupunginkoski	ARin-20111F165	TRIFIT05-12	22. HP
T. bicolor	/	larva	Aki Rinne	Finland	Tavastia australis, Taimionvirta	ARin-2011F170	TRIFIT05-12	23. HP
T. detruncatus	male	adult	Juha Salokannel	Finland	Kajaani, Niusjaervi	JSlk-20100206	TRIFI332-11	24. HP
T. detruncatus	?	?	?	Russia	Vinogradovka River, under bridge, Khasanskiy Kuchelino, Maksimov's Campground, Pond, Primorye,	NV600955	GBMIN35594-13	25. HP
T. pellucens	male	adult	Ralph W. Holzenthal	Russia		TVTRI0036	RUSSTI07-12	26. HP

174
Taxonomic designation according to identifier	Sex	Life Stage	Specimen morphological identification by:	Country	Location	Specimen ID	BOLD Sequence ID	Haplotype name
28. T. pellucida ? adult Oliver S. Flint, Jr.	Japan	Shkotovskiy Dist. L. Akan-panke, Hokkaido	10OFSI-0238	OFTRI237-10	24.HP			
29. T. pellucida ? adult Hans Malicky	hailand	Muang Pui Resort Sawai Bridge, Eniwa, Hokkaido	09HMCD-0245	HMCAD610-09	25.HP			
30. T. pellucida ? adult Oliver S. Flint, Jr.	Japan	Shkotovskiy Dist. L. Akan-panke, Hokkaido	10OFSI-0236	OFTRI235-10	26.HP			
31. T. reuteri female adult Juha Salokannel	Estonia	Autor, Saaremaa Primorje, Nakhodka Dist., Volchanets Lake	JSil-20110157	TRIF505-11	27.HP			
32. T. rufescens male adult Oliver S. Flint, Jr.	Russia	Hamedoara, SW 2am, NE Salciva, am Mores, Transylvania Lasseokoski, Itae-Suomi, Savonia australis	11TVCD-169	KJTR665-13	28.HP			
33. T. simulans male adult Juha Salokannel	Latvia	rive G ана	JSil-20110158	TRIF506-11	29.HP			
34. T. simulans ? ? adult Reinhard Mueller	Germany	Spree bei Doebbrick Waidhofen an der Ybbs	GBOL06252	GBEPT1017-14	30.HP			
35. T. simulans male adult Hans Malicky	Austria	Hamedoara, SW 2am, NE Salciva, am Mores, Transylvania Lasseokoski, Itae-Suomi, Savonia australis	HMCAD0111-35	HMKKT852-11	30.HP			
36. T. simulans ? adult Hans Malicky	Romania	Hamedoara, SW 2am, NE Salciva, am Mores, Transylvania Lasseokoski, Itae-Suomi, Savonia australis	10HMCD-036	HMKKT036-10	31.HP			
37. T. simulans ? adult Aki Rinne	Finland	Ilomantsi Delger Moron Gol, 12.0 km km W of Moron, Hovsgol Egiin gol 12.7 km SW of Teshig	ARin-2014F043	TRIFI061-14	32.HP			
38. T. simulans / larva Aki Rinne	Finland	Ilomantsi Delger Moron Gol, 12.0 km km W of Moron, Hovsgol Egiin gol 12.7 km SW of Teshig	ARin-20100180	TRIFI322-11	33.HP			
39. T. simulans male adult Suvdtsseteg Chulaanbat	Mongolia	ID-05004	MGCAD266-08	34.HP				
40. T. simulans female adult Suvdtsseteg Chulaanbat	Mongolia	ID-04603	MGCAD238-08	35.HP				
41. T. simulans female adult Suvdtsseteg Chulaanbat	Mongolia	ID-05003	MGCAD265-08	36.HP				
42. T. simulans male adult Suvdtsseteg Chulaanbat	Mongolia	ID-05005	MGCAD267-08	37.HP				
43. T. simulans male adult Suvdtsseteg Chulaanbat	Mongolia	ID-05006	MGCAD268-08	38.HP				
44. T. simulans male adult Suvdtsseteg Chulaanbat	Mongolia	ID-05007	MGCAD269-08	39.HP				
45. T. simulans female adult Suvdtsseteg Chulaanbat	Mongolia	ID-05008	MGCAD270-08	40.HP				
46. T. unanimitis ? adult Oliver S. Flint, Jr.	Sweden	10km W Bollistbruk Lotos lake in Khasan Utinyye Lake at	100OFSI-0240	OFTRI239-10	41.HP			
47. T. unanimitis male adult Oliver S. Flint, Jr.	Russia	11TVCD-001-12	RUSST012-12	42.HP				
48. T. unanimitis male adult Ralph W. Holzenthal	Russia	Utinyye Lake at Andreevka Village Perevoznaya wet meadow & small stream marshes of	TVTRI0025	RUSST096-12	43.HP			
49. T. unanimitis male adult Oliver S. Flint, Jr.	Russia	Utinyye Lake at Andreevka Village Perevoznaya wet meadow & small stream marshes of	TVTRI0025	RUSST096-12	43.HP			
50. T. unanimitis male adult T.S. Vishivkova	Russia	Utinyye Lake at Andreevka Village Perevoznaya wet meadow & small stream marshes of	TVTRI0126	TVTRI098-12	43.HP			
51. T. unanimitis ? adult Oliver S. Flint, Jr.	Sweden	Utinyye Lake at Andreevka Village Perevoznaya wet meadow & small stream marshes of	100OFSI-0241	OFTRI240-10	44.HP			
52. T. unanimitis male adult Ralph W. Holzenthal	Russia	Lotos Lake	TVTRI0072	RUSST147-12	44.HP			
53. T. unanimitis male adult Ralph W. Holzenthal	Russia	Lotos Lake	TVTRI0088	RUSST156-12	45.HP			
54. T. unanimitis male adult T.S. Vishivkova	Russia	Lotos Lake	TVTRI0145	RUSST219-12	46.HP			
55. T. unanimitis female adult T.S. Vishivkova	Russia	Lotos Lake	TVTRI0227	RUSST301-12	47.HP			
According to our investigation and literature data: Chvojka 1977; Olympus SP-500 UZ digital camera, and was processed with the computer programme Olympus Quick Photo Camera 2.2. For determination of the collected specimens we used Malicky (2004). Systematic presentation follows Morse (2020). Distribution map was made according to our investigation and literature data: Chvojka 1977; Karaouzas 2019; Malicky 2005b; Marinković-Gospodnetić 1981; Oláh & Kovács 2014; Stanić-Koštroman et al. 2015; Wallace, 2016.

Taxonomic designation according to identifier	Sex	Life Stage	Specimen morphological identification by:	Country	Location	Specimen ID	BOLD Sequence ID	Haplotype name
56. *T. unanimis* female adult	Juha Salokannel	Finland	Osmanakajaervi	50.00908081	TRIFI186-10	48.HP		
57. *T. unanimis* male adult	Juha Salokannel	Finland	Osmanakajaervi	50.00908082	TRIFI187-10	49.HP		
58. *T. unanimis* female adult	Oliver S. Flint, Jr.	Japan	Chitose Lake, Hokkaido	100FSI-0242	OFTRI241-10	50.HP		
59. *T. unanimis* male adult	Oliver S. Flint, Jr.	Japan	W Asajino, Hokkaido	100FSI-0243	OFTRI242-10	51.HP		
60. *T. unanimis* female adult	Oliver S. Flint, Jr.	Japan	Daiichi-usakuma Bridge, Hokkaido	100FSI-0244	OFTRI243-10	52.HP		
61. *Mystacides longicornis* female adult	Mladen Kučinić	Croatia	River Drava – Gornji Hraščan	TMYS_1	outgroup			

A neighbor-joining and maximum likelihood gene tree was produced in MEGA 6 (Tamura et al. 2013), using the Kimura 2-parameter. Intraspecific and interspecific genetic distances, as uncorrected p-distances, were calculated using MEGA 6 (Tamura et al. 2013), using pairwise deletion. The number of hypothetical species within the data set was estimated according to the barcode gap (difference between inter- and intraspecific genetic distances) with the use of Automatic Barcode Gap Discovery, ABGD (Puillandre et al. 2012).

Macrophotography was performed with a Leica Wild MZ8 stereomicroscope and an Olympus SP-500 UZ digital camera, and was processed with the computer programme Olympus Quick Photo Camera 2.2. For determination of the collected specimens we used Malicky (2004). Systematic presentation follows Morse (2020). Distribution map was made according to our investigation and literature data: Chvojka 1977; Karaouzas 2019; Malicky 2005b; Marinković-Gospodnetić 1981; Oláh & Kovács 2014; Stanić-Koštroman et al. 2015; Wallace, 2016.

Results

In figure 3 we are showing the relationships among the species of the genus *Triaenodes*, based on the 658 bp long fragment of the DNA barcode region. In this analysis we included 60 specimens from the genus *Triaenodes* from Europe and Asia (Tab. 1). Identical sequences were collapsed into unique haplotypes (Tab. 1, Fig. 3). In analysis of the genetic distance of barcode mtCOI within species, we eliminate p–distance value 0.0 of sequences that are not of the same length. Minimum intraspecific genetic distance between all *Triaenodes* species used in analysis is 0.002 (0.2%) recorded within *T. unanimis* (Tab. 2).

The most interesting results of our analyses relate to the species *T. unanimis* and *T. ochreellus* (Fig. 1). A specimen of *T. unanimis* (sample ID: RUSST219-12) and one of *T. rufescens* (sample ID: KJTRI165-13), both from Russia, have only 0.2% nucleotide sites different. Both of these specimens, presented as two different species in the BOLD database, group together (Fig. 1) with 100% certainty. *Triaenodes unaniims* with sample ID OFTRI242-10 and OFTRI243-10 from Japan shows 8% difference as compared to the other specimens of *T. unanimis*, forming thus a separate branch in the phylogenetic tree (Fig. 3).

In analysis of species *T. ochreellus* two barcode sequences were available in databases and they represent same haplotype, which explains the p–distance value of zero. DNA barcode of *T. ochreellus lefkas* from Croatia (Fig. 2 A-D) (Sample ID: TTOCL_1) was analysed using the BOLD identification engine by a comparison with the full reference database of the DNA barcodes.

The identifying DNA barcode of *T. ochreellus lefkas* from Croatia (sample ID: TTOCL_1) turns out to have 90.48% similarity with the sequence obtained from the closest available reference sequences of *T. ochreellus*, which is from Spain (sample ID 09MNKK0409). The maximum intraspecific distance among *Triaenodes* species used in the analysis is 0.017 (1.7%) (Tab. 2). The discrepancy in the value of the maximum intraspecific genetic distance appears within *T. ochreellus* and it is 0.102 (10%) (Tab. 2). According to ABGD analyses, the resulting phylogenetic tree of the species *T. ochreellus* shows two branches, traditionally placed under subspecies: one as *T. o. lefkas* and one as *T. o. ochreellus* (Fig. 1). These two taxa have a disjunct distribution, *T. ochreellus ochreellus* is distributed in the west and *T. ochreellus lefkas* in south-east part of Europe (Fig. 4).

176
Table 2. Values of the p-distance between groups of *Triaenodes* species and outgroup species for the barcode mtCOI region.

	T. ochreellus	*T. bicolor*	*T. detruncatus*	*T. pellcetus*	*T. reuteri*	*T. rufescens*	*T. simulans*	*T. unanimis*	*Mystacides longicornis*
T. ochreellus	0.0-0.102								
T. bicolor	0.146-0.165	0.002-0.017							
T. detruncatus	0.154-0.181	0.147-0.167	0.002-0.017						
T. pellcetus	0.142-0.159	0.127-0.149	0.137-0.161	0.002-0.017					
T. reuteri	0.157-0.174	0.145-0.158	0.106-0.121	0.147-0.153	0				
T. rufescens	0.159-0.186	0.161-0.197	0.192-0.197	0.182-0.189	0.194	0			
T. simulans	0.165-0.204	0.157-0.184	0.110-0.134	0.149-0.165	0.114-0.124	0.187-0.206	0.002-0.033		
T. unanimis	0.106-0.186	0.133-0.177	0.156-0.195	0.138-0.189	0.151-0.196	0.002-0.187	0.161-0.204	0.002-0.187	
Mystacides longicornis	0.0174-0.182	0.152-0.167	0.185-0.194	0.176-0.182	0.178	0.208	0.192-0.206	0.162-0.208	0
In addition to this, during our study we found five new localities of *T. ochreellus lefkas*, two in Albania, Shkodër (Skadar) Lake and Shkumbin River, one in Montenegro, Skadar (Shkodër) Lake, and two in Croatia, the rivers Mislina and Cetina (Fig. 4).

Figure 2 A-D. *Triaenodes ochreellus lefkas* Malicky, 1974. A Male adult from Opuzen, the River Neretva, 4.09.2015 (Croatia); B Male genitalia (lateral view), Mlinište, the River Mislina 23.05.2015; C Male genitalia (ventral view), Opuzen, the River Neretva, 4.09.2015; D Female genitalia (lateral view), Mlinište, the River Mislina, 5.09.2015.

Discussion

A new tool in the old practice of molecular taxonomy is DNA barcoding, proposed in 2003 (Hebert *et al*. 2003a, 2003b). This method, which in the case of animals uses a standard 648 bp long fragment of cytochrome c oxidase subunit 1 mitochondrial gene (mtCOI), along with the establishment of the Barcode of Life Data Systems (BOLD) (Ratnasingham & Hebert 2007) resulted in a new approach to species diversity. DNA barcoding is a very useful method in the study of biodiversity, taxonomy, phylogeny and phylogeography of different groups of organisms (e.g. Brehm *et al*. 2019; Cárdenas *et al*. 2013; Elias-Gutiérrez *et al*. 2008; Guo *et al*. 2016; Huemer *et al*. 2020; Léger *et al*. 2020; Tyagi *et al*. 2017; Yang *et al*. 2016), including Trichoptera (Kučinić *et al*. 2016, 2017, 2019a; Szivák *et al*. 2017; Santos *et al*. 2016; Valladolid *et al*. 2018, 2019; Vitecek *et al*. 2020). In many studies, DNA barcoding has aided morphological identification of different taxa (Čukušić *et al*. 2017; Kučinić *et al*. 2019b, 2020), but also enabled the discovery of new species (Brehm *et al*. 2019; Dela Cruz *et al*. 2016; Graf *et al*. 2012; Kučinić et al. 2013; Léger *et al*. 2020; Tyagi *et al*. 2017; Vaglia *et al*. 2008).
Figure 3. Maximum likelihood (MI) phylogram based on the 658 bp long fragment of the DNA barcode region showing the relationships among the species of the genus *Triaenodes*. Numbers above the branches represent bootstrap support (bs) for Neighbor-Joining (NJ) and MI analysis (NJ/MI). BS values less than 70 are not shown. The groups delineated by Automatic Barcode Gap Discovery (ABGD) approach are shown on the right side of the tree.
Although there are no generally accepted values for genetic differences within DNA barcode region among various species, for animals it is considered that an intraspecific genetic distance of more than 2% between populations is high intraspecific variability within the same species (Hebert et al. 2003b). So, the genetic distance of more than 2% within Trichoptera species indicates a possibility of a different species, however, several studies on DNA barcode region show that this difference can be even over 8% (Graf et al. 2015; Zhou et al. 2007).

In this study specimen of *T. unanimis* (sample ID: RUSST219-12) and *T. rufescens* (sample ID: KJTRI665-13) both from Russia have only 0.2% nucleotide sites different, which is a value common within the same species. Also, in Fig. 3 we can see that they are grouping together with 100% certainty, indicating that they belong to the same species, *T. rufescens*.

We can assume a set of explanations: e.g. that the *T. unanimis* sequence (sample ID: RUSST219-12) is the product of contamination with the *T. rufescens* species, or that morphological identification of the specimen of *T. unanimis* is incorrect, or mislabeled.

Results of the ABGD analysis of *T. unanimis* support the separation of this species into 5 groups, possibly new species. In Fig. 3 we can notice that species *T. unanimis* shows a branching pattern with high values of nodes (minimum value is 90) indicating that this widespread species is formed of different taxa. For example, samples of *T. unanimis* shows with samples ID: OFTRI242-10 and ID: OFTRI243-10 from Japan show an 8% difference from other specimens of *T. unanimis*, forming a separate branch in the phylogenetic tree (Fig. 3). In future, taxonomic research into *T. unanimis* detailed morphological analyses of adult forms of all species potentially new to science should be included - from Russia, Sweden, Finland, Japan and other areas where *T. unanimis* is distributed.

DNA barcoded results of *T. ochreellus lefkas* from Croatia show high difference of about 10% from the *T. ochreellus* from Spain. This genetic difference between analyzed specimens and the populations to which they belong shows their interspecific relations, i.e. the state of a taxonomically separate species. This is supported by the fact that such a genetic distance is reported from various Trichoptera species (8.06-15.65, [Figure 4.] Distribution of *Triaenodes ochreellus ochreellus* (green field) and *Triaenodes ochreellus lefkas* (blue field) with new data in Albania, Croatia and Montenegro (red points).
Based on the phylogenetic species concept (PSC), developed independently by Eldredge & Cracraft (1980) and Nelson & Platnick (1981) and integrative taxonomy (e.g. Brehm et al. 2019; Cárdenas et al. 2013; Graf et al. 2012, Dela Cruz et al. 2016; Léger et al. 2020; Valladolid et al. 2018; Vitecek et al. 2015a, 2015b, 2017) which includes molecular data, morphology data and distribution data, we elevate subspecies T. o. lefkas to the species level T. lefkas stat. nov.

These two taxa have distinctly disjunct ranges with a distance more than 700 kilometers, without any contact zones between them (Fig. 4). The taxon T. lefkas is distributed only in the southeastern part of Europe, in the areas of southern Italy (only the province of Puglia), Greece, Albania, Montenegro, Croatia and Bosnia and Herzegovina (Karaouzas et al. 2019; Malicky 2005b; Oláh & Kovács 2014; Stanić-Koštroman et al. 2015) (Fig. 4), the finding in the River Cetina in Croatia being the north–westernmost instance of its distribution range (Fig. 4). Sipahiler for west Anatolia region in the Asian part of Turkey lists T. ochreellus (Sipahiler 2005) (Fig. 4), which we can assume applies to the then subspecies, and now species T. lefkas. In this study the distribution range of T. lefkas is expanded with new records from Croatia, Montenegro and Albania (Fig. 4). Before this study, in this area T. lefkas was found at one locality in Croatia (at the River Neretva, Kučinić et al. 2015; Malicky 2005b), one in Albania (Oláh & Kovács 2014) and two localities in Montenegro (Marinković-Gospodnetić 1981; Karaouzas et al. 2019). The nominate taxon Triaenodes ochreellus McLachlan, 1877 is distributed in Spain, France and Portugal (Gonzales & Menédez 2011; Malicky 2005b; Terra 1994) (Fig. 4).

It is also very interesting to find this species at one locality (Old Weston, Huntingdonshire) in Great Britain (Wallace 2016). The species was identified twice there, in 2010 and 2013, and it is considered that it was possibly introduced into Great Britain (Wallace 2016) (Fig. 4). Now T. ochreellus is a member of the fauna of Great Britain.

According to Malicky (2005b) T. lefkas has two generations, one in spring and summer and the other one in autumn which complies with our findings. The emergence of adults begins in April for first generation and the specimens of second generation were found in September and October (Malicky 2005b). This species also inhabits brackish aquatic habitats, as found in Italy (Corallini Sorcetti & Moretti 1984) and in Croatia (Kučinić et al. 2015; Malicky 2005b). These biological features have not been established for the species T. ochreellus (Malicky 2005b).

Conclusion

This study contributes to the knowledge on the distribution of rare taxa of the genus Triaenodes in Southeastern Europe and at the same time to the integration of molecular analyses with ecological data and morphology for the validation of the taxonomic status of caddisfly species.

Acknowledgments

This research is a part of the scientific project “DNA barcoding of Croatian faunal biodiversity” (IP-06-2016-9988) funded by the Croatian Science Foundation and financial support of the University of Zagreb. We are very grateful to the Department of Forest Protection and Wildlife Management at the Faculty of Forestry, University of Zagreb for photographing done in their laboratory.

References

Brehm, G., Murillo-Ramos, L., Sihvonen, P., Hausmann, A., Schmidt, C.B., Ôunap, E., Moser, A., Mörtter, R., Bolt, D., Bodner, F., Lindt, A., Parra, L.E. & Wahlberg, N. (2019) New World geometrid moths (Lepidoptera: Geometridae): Molecular phylogeny, biogeography, taxonomic updates and description of 11 new tribes. Arthropod Systematic and Phylogeny, 77 (3), 457–486. DOI: 10.26049/ASP77-3-2019-5

Cárdenas, P., Rapp, H. T., Klitgaard, B. A., Best, M., Thollesson, M. & Tendal, O. S. (2013) Taxonomy, biogeography and DNA barcodes of Geodia species (Porifera, Demospongiae, Tetractinellida) in the
Atlantic boreo-arctic region. *Zoological Journal of the Linnean Society*, 169, 251–311. https://doi.org/10.1111/zoj.12056

Chvojka, P. (1977) Contribution to the knowledge of the caddisly fauna (Trichoptera, Insecta) of Albania. *Casopis Národního muzea Řada přírodoùvedná*, 166 (1-4), 27–38.

Corallini Sorcetti, C. & Moretti, G.P. (1984) Habitat et biologie d’un Triaenodes halophile dans quelques petits ocurs d’eau de la Méditerranee orientale. *Proceedings of 4th International Symposium of Trichoptera*, 89–97.

Čukušić, A., Ćuk, R., Previšić, A., Podnar, M., Delić, A. & Kučinić, M. (2017) DNA barcoding and first records of two rare *Adicella* species (Trichoptera: Leptoceridae) in Croatia. *Biologia*, 72 (7), 796–806.

Dela Cruz, J. N. B., Nuñez, O. M. & Lin, C. (2016) Description of a new Oriental stonefly species, *Phanoperla constanspina* (Plecoptera: Perlidae) from Mindanao, Philippines and association of life stages using DNA barcoding. *Zootaxa*, 4193 (1), 102–116.

Eldredge, N. & Cracraft, J. (1980) *Phylogenetic Patterns and the Evolutionary Process. Method and Theory in Comparative Biology*. Columbia University Press, New York, 349 pp.

Elias-Gutiérrez, M., Jerónimo, F.M., Ivanova, N.V., Valdez-Moreno, M. & Hebert, P.D.N. (2008) DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. *Zootaxa*, 1839, 1–42.

Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Molecular marine biology and biotechnology*, 3, 294–299.

Gonzales, A. M. & Menédez, J. M. (2011) Checklist of the caddisflies of the Iberian Peninsula and Balearic Islands (Trichoptera). *Zoosymposia*, 5, 115–135.

Graf, W., Popijač, A., Previšić, A., Gamboa, M. & Kučinić, M. (2012) Contribution to the knowledge of *Siphonoperla* in Europe (Plecoptera: Chloroperlidae): *Siphonoperla korab* sp. n. *Zootaxa*, 3164, 41–48.

Graf, W., Vitecek, S., Previšić, A. & Malicky, H. (2015) New species of Limnephilidae (Insecta: Trichoptera) from Europe: Alps and Pyrenees as harbours of unknown biodiversity. *Zootaxa*, 3911 (3), 381–395.

Guo, H.-F., Guan, B., Shi, F-M. & Zhou, Z-J. (2016) DNA Barcoding of genus *Hexacentrus* in China reveals cryptic diversity within *Hexacentrus japonicus* (Orthoptera, Tettigoniidae). *ZooKeys*, 596, 53–63. DOI: 10.3897/zookeys.596.8669

Hall, T.A. (1999) BioEdit. A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series*, 41, 95–98.

Hebert, P.D.N., Cywinska, A., Ball, S. L. & de Waard, J. R. (2003a) Biological identifications through DNA barcodes. *Proceedings of the Royal Society B*, 270, 313–321. https://DOI:10.1098/rspb.2002.2218

Hebert, P.D.N., Ratnasingham, S. & de Waard, J.R. (2003b) Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings of the Royal Society B: Biology letters*, 270 (Supp. 1), pp. S96–S99. DOI: 10.1098/rsbl.2003.0025

Holzenthal, R.W., Blahnik, R.J., Prather, A.L. & Kjer, K.M. (2007) Order Trichoptera Kirby, 1813 (Insecta), Caddisflies. *Zootaxa*, 1668, 69–698.

Huemar, P., Karsholt, O., Aarvik, L., Berggren, K., Bidzilya, O., Junnilainen, J., Landry, J-F., Mutanen, M., Nupponen, M., Segerer, K., Šumpich, A., Wieser, J., Wiesmair, C. & Hebert, D.N.P. (2020) DNA barcode library for European Gelechiidae (Lepidoptera) suggests greatly underestimated species diversity. *Zootaxa*, 921, 141–157. DOI: 10.3897/zootaxa.921.49199

Ibrahim, H., Kuçi, R., Bilalli, A. & Gashi, E. (2017) First record of *Triaenodes bicolor* (Curtis, 1834) (Insecta: Trichoptera) from the Ecoregion Hellenic Western Balkans. *Natura Croatica*, 26 (2), 197–204.

Johansson, K. A. (2007) Association and description of males, females and larvae of two New Caledonian *Xanthonchorea* species (Trichoptera: Hydrobiosidae) based on mitochondrial 16S and COI sekvencas. *Entomological Science*, 10 (2), 179–199.

Karaouzas, I., Zawal, A., Mićoški, G. & Pešić, V. (2019) Contribution to the knowledge of the caddisfly fauna of Montenegro – New data and records from the karstic springs of Lake Skadar basin. *Ecologica Montenegrina*, 22, 34–39.
Kučinić, M., Szigvák, I., Pauls, S. U., Bálint, M., Delić, A. & Vučković, I. (2013) Chaetopteryx bucari sp. n., a new species from the Chaetopteryx rugulosa group from Croatia (Insecta, Trichoptera, Limnephilidae) with molecular, taxonomic and ecological notes on the group. ZooKeys, 320, 1–28. DOI: 10.3897/zookeys.320.4565

Kučinić, M., Cerjanec, D., Vučković, I., Mihoci, I., Perović, F., Kutanjak, H., Ibrahimí, H., Pelić Fixa, D., Žalac, S., Mrnjavčić Vojvoda, A. & Plantak, M. (2015) Some new and interesting species of caddisflies (Insecta, Trichoptera) found in Croatia. Natura Croatica, 24 (2), 293–310.

Kučinić, M., Ćukušić, A., Podnar, M., Landeka, M., Plavec, H., Plantak, M., Akimbekova, N. & Žalac, S. (2016) The first record of Tinodes antonii Botosaneanu & Taticchi-Viganò, 1974 (Insecta, Trichoptera) in Croatia with DNA barcoding and ecological data and notice of biodiversity and distribution of the genus Tinodes in Croatia. Natura Croatica, 25 (1), 131–149.

Kučinić, M., Ćukušić, A., Žalac, S., Podnar, M., Kamberovich Akhmetov, K., Akimbekova, N., Moldazhanovna Zhumadina, S. & Vučković, I. (2017) First DNA barcoding and new records of the Mediterranean caddisfly species Micropterna wagneri Mal. (Trichoptera, Limnephilidae) in Croatia with note on DNA barcoding and diversity of genus Micropterna in Croatia. Natura Croatica, 26 (1), 81–98.

Kučinić, M., Ćukušić, A., Cerjanec, D., Podnar, M., Plantak, M., Žalac, S., Ćuk, R., Vučković, I., Ibrahimí, H. & Delić, A. (2019a) DNA barcoding of the family Phryganeidae (Insecta, Trichoptera) in Croatia with particular reference to phylogeny, distribution and conservation biology. Natura Croatica, 28 (2), 305–323.

Kučinić, M., Ćukušić, A., Plavec, H., Landeka, M., Plantak, M., Vučković, M., Bukvić, V., Franjević, M., Žalac, S. & Lukać, G. (2019b) Limnephilidae) with molecular, taxonomic and ecological notes on the group. Natura Croatica, 28 (1), 73–98.

Léger, T., Kehlmaier, C., Charles S. Vairappan, S. C. & Matthias Nuss, M. (2020) Twenty-six new species of Hoploscopia (Lepidoptera, Crambidae) from South-East Asia revealed by morphology and DNA barcoding. ZooKeys, 907, 1–99. DOI: 10.3897/zookeys.907.36563

Malicky, H. (2004) Atlas of European Trichoptera. Springer, Dordrecht, 384 pp.

Malicky, H. (2005a) Beiträge zur Kenntnis asiatischer Triaenodes McLachlan, 1865 (Trichoptera, Leptoceridae). Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen, 57, 33–46.

Malicky, H. (2005b) Die Köcherfliegen Griechenlands. Denisia, 17, 1–240.

Marinković-Gospodnetić, M. (1981) Trichoptera of the Morača and Plavnica river drainages. In: Beeton, A.M. & Karaman, G.S. (Eds.), The biota and limnology of Lake Skadar. University Veljko Vlahović, Institute of Biological and Medicine Research Titograd, Titograd, pp. 307–309.

Morse, J.C. (2020) Trichoptera World Checklist. http://entweb.clemson.edu/database/trichopt/index.htm (access 4 November 2020)

Nelson, G. & Platnick, N. (1981) Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York, 567 pp.

Oláh, J. (2016) New Australasian and Oriental Triaenodes species (Trichoptera: Leptoceridae). Opuscula Zoologica, 47 (1), 31–63.

Oláh, J. & Kovács, T. (2014) New species and records of Balkan Trichoptera III. Folia Historico-Naturalia Musei Matraensis, 38, 97–131.

Pauls, S. U., Blahnik, R. J., Zhou, X., Wardwell, C.T. & Holzenthal, R. W. (2010) DNA barcode data confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (Trichoptera: Hydropsychidae). Journal of North American Benthological Society, 29 (3), 1058–1074.

Puillandre, N., Lambert, A., Brouillet, S. & Anciaux, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21 (8), 1864–1877.

Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364. doi: 10.1111/j.1471-8266.2006.01678.x
Santos, A.P.M., Nessimian, J.L. & Takiya, D.M. (2016) Revised classification and evolution of leucotrichine microcaddisflies (Trichoptera: Hydroptilidae) based on morphological and molecular. Systematic Entomology, 41, 458–480. DOI: 10.1111/syen.12168

Sipahiler, F. (2005) A checklist of the caddisflies of Turkey (Trichoptera). Proceeding of the 11th International Symposium of Trichoptera (Eds. K. Tanida & Rossiter, A.), 393–405.

Stanić-Koštroman, S., Previšić, A., Planinić, A., Kućinić, M., Škobić, D., Dedić, A. & Durbešić, P. (2015) Environmental determinants of contrasting caddisfly (Insecta, Trichoptera) biodiversity in the Neretva and Bosna river basins (Bosnia and Herzegovina) under temperate and mediterranean climates. International Review of Hydrobiology, 100, 79–95. DOI:10.1002/iroh.201301631

Szivák, I., Mikes, T., Szalontai, B., Kućinić, M., Vučković, I., Vadkerti, E., Kifáli, P., Pauls, S. U. & Bálint, M. (2017) Ecological divergence of Chaetopteryx rugulosa species complex (Insecta, Trichoptera) linked to climatic niche diversification. Hydrobiologia, 794, 31–47. DOI:10.1007/s10750-016-3068-0

Tamura, K., Stecher G., Peterson D., Filipski A. & Kumar, S. (2013) MEGA 6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Evolutionary Genetics Analysis, 30 (12), 2725–2729. doi: 10.1093/molbev/mst197

Terra, L. S. W. (1994) Atlas provisório dos Trichópoteros (Insecta, Trichoptera) de Portugal Continental. Instituto Florestal, Estudos e Informação, 306. Vila do Code, 102 pp.

Tyagi, K., Kumar, V., Singh, D., Chandra, K., Laskar, B.A., Kundu, S., Chakraborty R. & Chatterjee, S. A. (2017) Barcoding studies on Thrips in India: Cryptic species and Species complexes. Scientific Reports, 7, Article number 4898. https://doi.org/10.1038/s41598-017-05112-7

Vaglia, T., Haxaire, J., Kitching, I. J., Meusnier, I. & Rougerie, R. (2008) Morphology and DNA barcoding reveal three cryptic species within the Xylophanes neoptolemus and loelia species-groups (Lepidoptera: Sphingidae). Zootaxa, 1923, 18–36.

Valladolid, M., Arauzo, M., Basaguren, A., Dordá, B.A. & Rey, I. (2018) The Rhyncophila fasciata Group in Western Europe: Confirmation of Rhyncophila denticulata McLachlan 1879 (stat. prom.) and Rhyncophila sociata Navás 1916 (stat. res.), based on morphological and molecular genetic evidence (Trichoptera: Rhyncophilidae). Zootaxa, 4418 (6), 526–544. https://doi.org/10.11646/zootaxa.4418.6.2

Valladolid, M., Karaouzas, I., Arauzo, M., Dordá, A. B. & Rey, I. (2019) The Rhyncophila fasciata Group in Greece: Rhyncophila kykladica Malicky & Sipahiler 1993 (stat. prom.) (Trichoptera: Rhyncophilidae). Morphological description, genetic and ecological features. Zootaxa, 4657 (3), 503–522. DOI: http://dx.doi.org/10.11646/zootaxa.4657.3.5

Vitecek, S., Graf, W., Previšić, A., Kućinić, M., Oláh, J., Bálint, M., Keresztes, L., Paulus, S. U. & Waringer, J. (2015a) A hairy case: The evolution of filtering carnivorous Drusinae (Limnephilidae, Trichoptera). Molecular Phylogenetic and Evolution, 93, 249–260.

Vitecek, S., Previšić, A., Kućinić, M., Bálint, M., Keresztes, L., Waringer, J., Paulus, S. U., Malicky, H. & Graf, W. (2015b) Description of a new species of Wormaldia from Sardinia and a new Drusus species from the western Balkans (Trichoptera, Philopotamidae, Limnephilidae). ZooKeys, 496, 85–103.

Vitecek, S., Kućinić, M., Previšić, A., Živić, I., Stojanović, K., Keresztes, L., Bálint, M., Hoppeler, F., Waringer, J., Graf, W. & Paulus, U. S. (2017) Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae microendemics. BMC Evolutionary Biology, DOI 10.1186/s12862-017-0972-5

Vitecek, S., Martini, J., Zittra, C., Kuhlmann, H., Vieira, A. & Waringer, J. (2020) The larva of Drusus dudor Oláh, 2017, including an updated key to larval Drusinae Banks, 1916 (Insecta, Trichoptera, Limnephilidae). ZooKeys, 908, 137–155. doi: 10.3897/zookeys.908.

Wallace, I. D. (2016) A review of the status of the caddis flies (Trichoptera) of Great Britain – Species Status No.27. Natural England Commissioned Reports, Number191. Oakham, pp. 127.

Wiggins, G. B. (1978) Larvae of the North American Caddisfly Genera (Trichoptera). University of Toronto Press, Toronto, 401 pp.

Yang, M., Zhai, Q., Yang, Z. & Zhang, Y. (2016) DNA barcoding Satyrine butterflies (Lepidoptera: Nymphalidae) in China. Mitochondrial DNA A DNA Mapp Seq Anal, 27 (4), 2523–8. DOI: 10.3109/19401736.2015.1038788
Zhou, X., Kjer, K. & Morse, J. (2007) Associating larvae and adults of Chinese Hydropsychidae caddisflies (Insecta: Trichoptera) using DNA sequences. *Journal of the North American Benthological Society*, 26 (4), 719–742.