Individual-specific functional connectome biomarkers predict schizophrenia positive symptoms during adolescent brain maturation

Yun-Shuang Fan | Liang Li | Yue Peng | Haoru Li | Jing Guo | Meiling Li | Siqi Yang | Meng Yao | Jingping Zhao | Hesheng Liu | Wei Liao | Xiaonian Guo | Shaoqiang Han | Qian Cui | Xujun Duan | Yong Xu | Yan Zhang | Huafu Chen

1The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
2Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
3Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
4Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
5Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China

Correspondence
Huafu Chen, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China. Email: chenhf@uestc.edu.cn
Yan Zhang, Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China. Email: zhangyan800102@126.com
Yong Xu, Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China. Email: xuyongsmu@vip.163.com

Abstract
Even with an overarching functional dysconnectivity model of adolescent-onset schizophrenia (AOS), there have been no functional connectome (FC) biomarkers identified for predicting patients' specific symptom domains. Adolescence is a period of dramatic brain maturation, with substantial interindividual variability in brain anatomy. However, existing group-level hypotheses of AOS lack precision in terms of neuroanatomical boundaries. This study aimed to identify individual-specific FC biomarkers associated with schizophrenic symptom manifestation during adolescent brain maturation. We used a reliable individual-level cortical parcellation approach to map functional brain regions in each subject, that were then used to identify FC biomarkers for predicting dimension-specific psychotic symptoms in 30 antipsychotic-naïve first-episode AOS patients (recruited sample of 39). Age-related changes in biomarker expression were compared between these patients and 31 healthy controls. Moreover, 29 antipsychotic-naïve first-episode AOS patients (analyzed sample of 25) were recruited from another center to test the generalizability of the prediction model. Individual-specific FC biomarkers could significantly and better predict AOS positive-dimension symptoms with a relatively stronger generalizability than at the group level. Specifically, positive symptom domains were estimated based on connections between the frontoparietal control network (FPN) and salience network and within FPN. Consistent with the neurodevelopmental hypothesis of schizophrenia,
Schizophrenia is a devastating psychiatric disorder with a typical onset in early adulthood. Adolescent-onset schizophrenia (AOS), a relatively rare form, has more pronounced clinical symptomatology (Frazier et al., 2007) and tends to be more resistant to antipsychotic treatment, with worse prognosis (Hollis, 2000). Moreover, AOS is also characterized by more extensive neuropathological changes (Douaud et al., 2007). According to the overarching dysconnectivity hypothesis, the large-scale organization of the brain—that is, the functional connectome (FC) plays an important role in the pathophysiology of schizophrenia (Li et al., 2018; Narr & Leaver, 2015; Woodward & Cascio, 2015). Patients with AOS have been reported to show FC abnormalities across widespread brain networks, including the default mode network (DMN) (Tang et al., 2013), limbic network (LMB) (White et al., 2008), frontoparietal control network (FPN) (Kyriakopoulos et al., 2012), and frontotemporal network (Yang et al., 2014). Dysconnectivity of these networks may scale with the severity of psychotic symptoms in patients (Tang et al., 2013; White et al., 2008). For example, aberrant LMB (White et al., 2008) and cortico-striatal (Zheng et al., 2018) FC were separately reported to have implications for positive symptoms in AOS. Abnormally increased FC in DMN was also reported to be associated with positive symptoms (Tang et al., 2013). However, these dimensional findings have not cohered into a categorical set of brain-based biomarkers that can be reproducibly used to predict AOS symptom burden.

To date, no reliable brain-based biomarker that links neuroanatomical substrates to disease-related behaviors has been identified for schizophrenic symptoms in adolescent patients. Brain-based biomarker, as an indicator of neuronal function, can facilitate current diagnosis, prognosis, and treatment of psychotic illnesses (Tregellas, 2014; Yamada et al., 2017). Biomarkers for schizophrenic symptoms, which were supposed to be involved in patient’s pathology, may be used to determine if therapeutic candidates evoke their targeted biological effects (Tregellas, 2014). Connectome-based biomarkers are promising candidates for this purpose with recent advances in functional neuroimaging (Fan et al., 2020; Xiaonan Guo et al., 2020; Shaoqiang Han et al., 2020; Yamada et al., 2017). For instance, FC biomarkers have been identified to monitor social cognitive and neurocognitive performance in schizophrenia, which can further inform the treatment of cognitive deficits (Viviano et al., 2018). The lack of connectome-based biomarkers for psychotic symptoms in AOS has thus far prevented progress in the diagnosis and treatment of this disorder.

Previous group-level studies on AOS have been hampered by low precision in the mapping of functional cortical networks. Specifically, the brain undergoes dramatic alterations during adolescence, including cortical network reorganization and refinement (Cao, Huang, Peng, Dong, & He, 2016). Moreover, the brains of adolescents show greater inter-individual variability than that of adults (Foulkes & Blakemore, 2018); this is especially true of the association cortex, which has been implicated in AOS pathology (Mueller et al., 2013). Inaccurate and indistinct neuroanatomical boundaries determined from group-based approaches can prevent the delineation of brain connectome, and may obscure biologically important signals that can reveal brain–behavior associations in AOS (Gordon et al., 2017). Thus, accounting for the neuroanatomical variability among individuals is essential for establishing brain connectome and its relationship to symptomatology in AOS.

Recently, a reliable and reproducible cortical parcellation approach that account for individual heterogeneity in cortical functional anatomy has been developed by Wang et al. (Li et al., 2019; Wang et al., 2015). Based on an iterative functional network parcellation procedure, this individual-level strategy maps cortical functional networks by localizing functional regions of interest (ROIs) in individual subjects. Dysconnectivities among these individual-specific functional networks were reported in various psychiatric disorders including obsessive–compulsive disorder (Brennan et al., 2019), depression and AOS (Wang et al., 2018). Compared with group-level analyses, FC based on individual-level strategies had more robust predictive performance for whether cognitive abilities in healthy individuals (Li et al., 2019) or clinical symptoms in psychiatric illnesses (Brennan et al., 2019; Wang et al., 2018). Thus, using the individual-specific parcellation approach may facilitate the discovery of FC biomarkers for psychotic symptoms in AOS.

To this end, the present study recruited 68 antipsychotic-naïve first-episode AOS patients including two independent replication cohorts. We employed functional connectivity analyses on resting-state functional magnetic resonance imaging (MRI) signals of individual-specific regions identified by the novel cortical functional network parcellation method, and applied a data-driven prediction model to examine brain–behavior relationships. We speculated that the individual-based strategy would increase statistical power by improving the specificity of functional signals in brain regions compared with the traditional group-level approach. Specifically, we assumed that individual-specific FC biomarkers could reproducibly and better predict specific schizophrenic symptom domains in the maturing adolescent brain than group atlas-based biomarkers. According to the neurodevelopmental hypothesis of schizophrenia (Douaud et al., 2009), we also assumed that the predictive FC would

KEYWORDS

adolescent, biomarker, functional connectome, individual level, schizophrenia
show aberrant age-related alterations in AOS compared with 31 healthy control (HC) subjects.

2 | MATERIALS AND METHODS

2.1 | Subjects

Thirty-nine antipsychotic-naïve first-episode AOS patients and 31 sex- and age- matched HC subjects were recruited from outpatient treatment centers of the Second Affiliated Hospital of Xinxiang Medical University. Patients were diagnosed based on the consensus by two senior psychiatrists with more than 10 years of experience (Y. Z., and J. Z.) using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, and the diagnosis was confirmed after a follow-up of at least 6 months. Controls were recruited through media advertisements. Exclusion criteria for all subjects were as follows: neurological or other psychiatric diseases; current (within the last 12 months) substance use; neurological MRI anomalies; or any electronic or metal implants. The Positive and Negative Syndrome Scale (PANSS) was performed by the consensus of abovementioned two psychiatrists, which was used to assess the severity of psychotic symptoms in AOS patients. All participants were right-handed, Han Chinese ethnicity, and aged from 12 to 18 years old. These subjects have previously participated in three hypothesis-driven studies (Wang et al., 2017; Zheng et al., 2016; Zheng et al., 2018), which revealed disrupted frontoparietal functions in AOS. Our recent group-level study examined the global efficiency of whole-brain FC and reported disrupted large-scale integration function (Li et al., 2018). However, previous group-level studies were not enough to provide unbiased whole-brain functional biomarkers for AOS symptoms. In the current study, three patients were excluded due to incomplete scanning, one patient due to excessive head motion (mean frame-wise displacement, [FD] >0.2 mm), and five patients due to poor quality of intrasubject brain registration (cost >0.5). Ultimately, data for 30 AOS patients were used in the analysis. The demographic and clinical information is summarized in Table 1.

This study was reviewed and approved by the Ethics Committee of the Department of Psychiatry at the Second Affiliated Hospital of Xinxiang Medical University and the Second Xiangya Hospital of Central South University, and written consent was obtained from all participants and their parents.

2.2 | Data acquisition

Imaging data were collected using a 3 T MRI scanner (MAGNETOM Verio; Siemens, Germany). Patients were scanned before they were ever treated with antipsychotics. Specifically, they were scanned immediately after the first diagnosis was confirmed. Participants were instructed to stay awake with their eyes closed during the scan, and were asked if they had fallen asleep during the scanning at the end. Functional images were acquired as an echo-planar imaging sequence with the following parameters: repetition time (TR) = 2,000 ms; echo time (TE) = 30 ms; matrix = 64 × 64, 33 axial slices; slice thickness = 4 mm, 0.6 mm gap; flip angle = 90°; field of view = 220 × 220 mm²; voxel size = 3.4375 × 3.4375 × 4 mm³; and 240 volumes. T1-weighted anatomical images were acquired as a three-dimensional fast-spoiled gradient-echo sequence with the following parameters: TR = 2,530 ms; TE = 2.43 ms; matrix = 256 × 256, 158 axial slices; slice thickness = 1.2 mm, no gap; flip angle = 7°; field of view = 256 × 256 mm²; and voxel size = 1 × 1 × 1 mm³.

2.3 | Data preprocessing

Resting-state functional images were preprocessed as previously described (Yeo et al., 2011). Briefly, the first four volumes were discarded; slice-time and head motion (cut-off <2 mm) were corrected with the

TABLE 1	Demographic and Clinical Characteristics			
Characteristic	**AOSs (n = 30)**	**HCs (n = 31)**	**Group comparisons**	
Sex (male/female)	15/15	13/18	0.40*	.53
Age (years)	15.10 ± 0.32	15.35 ± 0.28	0.59b	.55
Mean FD (mm)	0.02 ± 0.001	0.03 ± 0.004	383c	.11
PANSS scores				
Total scores	75.17 ± 2.00	—	—	—
General scores	34.13 ± 1.25	—	—	—
Positive scores	20.33 ± 1.08	—	—	—
Negative scores	20.70 ± 1.68	—	—	—

Note: Mean ± SEM.
Abbreviations: AOSs, adolescent-onset schizophrenia patients; FD, frame-wise displacement; HCs, healthy control subjects; PANSS, Positive and Negative Symptom Scale.
*The χ² value for gender distribution was obtained by chi-square test.
bThe T values were obtained by two-sample t test.
cThe U values were obtained by Mann–Whitney tests.
FSL package; global mean signal intensity was normalized; a 0.01–0.08 Hz band-pass temporal filter was applied; and head motion, ventricular, white matter, and cerebrospinal fluid signals were regressed out along with whole brain signal to improve the correction of motion-related artifacts (Fan et al., 2019; Han et al., 2019; Yan et al., 2013). The mean FD was calculated for each participant. Subjects with the mean FD value exceeding the 0.2 mm were excluded from the analysis. Motion-confounded time points were not censored as data scrubbing can increase connectivity estimates in specific regions (Guo et al., 2019; Zeng et al., 2014). However, head motion-related functional connections (p < .01) among homologous individual-specific ROIs were excluded in the subsequent prediction analysis (Wang et al., 2018). The contribution of head motion to the prediction results was further estimated by correlating mean FD and predicted scores for each subject. No correlation between mean FD and predicted scores (r = -.15, p = .44; See Figure S3 in Supplementary Data) indicated that head motion had no contribution to the results.

T1-weighted anatomical images were preprocessed using the FreeSurfer v5.3.0 software package (https://surfer.nmr.mgh.harvard.edu/). A validation analysis was added by normalizing the anatomical images into an adolescent template (http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj1) to exclude the influence of normalization template (see Supplementary 3) indicated that head motion had no contribution to the results.

2.4 Identifying individual-specific functional regions

The analytical procedure that was implemented for identification of individual-specific functional ROIs has been previously described (Wang et al., 2018). Briefly, we used the iterative parcellation algorithm (Wang et al., 2015) to map 18 individual-level cortical networks based on a group-level functional network atlas (Wang et al., 2015), which was adapted from the original 17-network atlas derived from 1,000 healthy subjects (Yeo et al., 2011). Specifically, individual-level network boundaries were iteratively adjusted using the interindividual variability and signal-to-noise distributions. Based on the assumption that a group-level ROI might roughly represent the center of the homologous ROIs across different individuals (Li et al., 2019), we used the group-level ROI as the common reference. Thus, individual-level cortical networks were segmented into discrete patches, and were matched to the 116 cortical ROIs extracted from the group-level functional network atlas by using a clustering approach in FreeSurfer (mri_surfcluster). If a patch overlapped with a single or multiple ROIs in the atlas, it was labeled as the same ROI or split into multiple matched patches; however, if there was no overlap with an ROI, the patch was assigned to the nearest one (or labeled as “unrecognized”) if the mean distance between them was within a certain threshold (or exceed the threshold), which was selected as the mean distance between any two vertices in the nearest ROI. Finally, patches that matched the group-level atlas-based ROIs were labeled as the homologous ROIs in the individual. Functional connectivity analyses were performed on homologous ROIs across individuals to generate individual-specific FC.

2.5 Predicting AOS symptoms

Based on FC among individual-specific ROIs, the L2-regularized and L2-loss support vector machine for regression (SVR; using the default parameter C = 1) in the Library for Support Vector Machines toolbox was trained to predict the severity of AOS symptoms including positive and negative symptom scores, separately. Sex and head motion (mean FD) were included in the model as covariates. Age was not regressed out so that age-related FC changes could be examined. The 10-fold cross-validation (CV) approach was applied to avoid biased estimates (Varoquaux et al., 2017). Specifically, the model was trained using randomly splitting 90% of the subjects and was used to estimate the symptom severity of the remaining subjects. Given the redundant feature sets, connections that were significantly correlated with symptoms (p < .01) were manually selected as training features in each CV to reduce redundancy and prevent over-fitting. After repeating the procedure 10 times, predicted symptom scores were obtained for all subjects. The correlation coefficient between observed and predicted scores was calculated, which was used to evaluate the prediction performance. A permutation test (5,000 permutations) was performed by randomly reshuffling the observed clinical scores among the subjects to determine whether the correlation was simply due to chance. The entire SVR steps including the feature selection were rerun in each permutation.

The weight score of each feature in the SVR model was calculated to quantify the contribution of each cortical connection. Specifically, the score was computed by summing the times that the feature is not zero across all folds. If a connection was not selected out in one fold, then its contribution to this fold was set to zero. To summarize current results, these ROI-ROI features were further grouped into network-level connections according to seven well-studied canonical networks, including visual network (VIS), sensorimotor network (MOT), attention network (ATN), salience network (SAL), FPN, LMB, and DMN. Statistical significance of the contribution of each between- or within-network connection was estimated by comparing the weight values for each network-level feature with the corresponding null distribution established by permutation tests. The Bonferroni-corrected significance level was p < .05 divided by the number of network-level connections (including 21 between-network connections and seven within-network connections).

2.6 Exploring age-related alterations in predictive FC biomarkers

The neurodevelopmental hypothesis of schizophrenia (Douaud et al., 2009) posits that delayed and altered maturation of brain...
networks contributes to this disorder (Li et al., 2018; Zalesky et al., 2015). We therefore compared age-related changes in predictive FC biomarkers between AOS patients and HC subjects. Specifically, we separately calculated correlations between age and connectivity values within the seven-network model, which were obtained by averaging connectivity values (z values) of belonging ROI-level connections, in the two groups. We used Shepherd's pi correlation to account for potential outliers and increase statistical power. The Bonferroni-corrected significance level was \(p < .05 \) divided by the number of network-level connections (including 21 between-network connections and seven within-network connections). The Fisher's z test was used to compare correlation coefficients of the two groups.

2.7 | Validation analyses

To test the generalizability of the prediction model (Varoquaux et al., 2017), we recruited an independent replication cohort (29 age-, sex-, and psychotic symptom severity-matched right-handed antipsychotic-naïve AOS patients) from outpatient treatment settings at the First Hospital of ShanXi Medical University (see Supplementary 2 for detailed participants' information and data acquisition). Data preprocessing of the replication cohort was identical with abovementioned preprocessing pipeline of the primary cohort. Two patients were excluded due to excessive head motion (mean FD > 0.2 mm) and two due to poor quality of intrasubject brain registration (cost > 0.5). Ultimately, data for 25 AOS patients were used as a test set to compute predictive power of the model trained by all the primary data. Specifically, the SVR model used in the primary sample was applied without modification to the replication cohort, thus suggesting that the training features in the replication model were identified completely independently of the replication sample.

3 | RESULTS

We identified 79 homologous ROIs for each subject, which were extracted from 18 individual-specific cortical functional networks using an iterative parcellation algorithm. These ROIs were further grouped according to seven well-studied canonical functional networks, including VIS, MOT, ATN, SAL, FPN, LMB, and DMN. From a visual perspective, the sizes and locations of the ROIs varied among individuals (Figure 1). Substantial interindividual variability in ROI size and position was demonstrated in Supplementary 4. Individual-specific connectomes across these ROIs were evaluated and used to predict AOS symptoms in order to identify FC biomarkers based on the relationship between neuronal connectivity and behavior.
selection in order to avoid biases in favor of the individualized analysis. The group-level atlas-based FC was unable to predict PANSS positive scores in AOS patients (\(r = .22, p = .12\); permutation test) (Figure 2c). Moreover, the correlation coefficient of individualized atlas-based prediction model was significantly stronger (\(z = 2.72, p = .003\); Steiger’s z test) than that of group-level model, indicating a better prediction power of the individual-based strategy compared with group-level approach. PANSS negative scores could not be predicted by either individual or group-level atlas-based FC. Additional exploratory analyses based on two PANSS five-factor models (Lindenmayer, Bernstein-Hyman, & Grochowski, 1994; Marder, Davis, & Chouinard, 1997; Wallwork, Fortgang, Hashimoto, Weinberger, & Dickinson, 2012) were performed, results of which supported our main results (see Supplementary 5 for detailed information).

3.2 Predictive FC biomarker of AOS shows aberrant age-related alterations

To validate the neurodevelopmental hypothesis of schizophrenia, we separately calculated correlations between network-level connectivity values and age in AOS patients and HC subjects. In network-level connections that predicted positive scores, the significantly weighted FPN–SAL connection showed age-related increases in the HC group (\(\rho = 0.69, p = .002\); Bonferroni-corrected) (Figure 3A), while no such changes were observed in AOS patients (\(\rho = 0.19, P_{\text{unc}} = 0.66\)). Moreover, the significantly different correlation coefficients between the two groups (\(z = 2.43, p = .02\); Fisher’s z test) indicated abnormal FC alterations as age increased in AOS. The predictive FPN–SAL connection mainly consisted of positive connections between SAL and a frontoparietal subnetwork—that is, the central executive network (CEN) (Figure 3b), which includes the dorsolateral prefrontal cortex (dIPFC), medial and lateral prefrontal cortices and some parts of the intraparietal sulcus and posterior temporal gyrus (Vincent, Kahn, Snyder, Raichle, & Buckner, 2008).

3.3 Predictive power of these FC biomarkers in another independent cohort

These FPN-based Individual-level FC biomarkers, which were trained by the primary data, could approximately predict PANSS positive scores of the replicated cohort (\(r = .31, p = .06\); permutation test) (Figure 4a). On the contrary, the group-level atlas-based FC was unable to predict the scores entirely (\(r = -.0005, p = .51\); permutation test) (Figure 4b). Moreover, the prediction power of the individualized prediction model tended to be better than that of the group-level model (\(z = 1.49, p = .06\); Steiger’s z test). Thus, the replication results approximately supported the individualized ROI-based prediction
model, and indicated relatively better generalizability of the prediction model by using individual-based strategy compared with group-level approach.

4 | DISCUSSION

In this study, we identified reproducible FC biomarkers among individual-specific functional regions that could predict positive symptom domain in antipsychotic-naïve first-episode AOS. However, connectome based on group-level atlas could not estimate AOS clinical symptoms in any specific dimensions. More robust predictive performance has been observed for individual as compared to group-level strategies in multiple psychiatric disorders, including depression, AOS (Wang et al., 2018), and obsessive–compulsive disorder (Brennan et al., 2019). Moreover, recent study of AOS consistently indicated close relation between positive symptoms and FPN-associated between-network or within-network connectivities, supporting the neurobiological continuity between AOS and its adult counterpart in terms of individual-level biomarkers. A meta-analysis showed that interindividual behavioral variability was primarily related to the connectome of the association cortex that had larger anatomical differences across individuals (Mueller et al., 2013). Therefore, it is possible to underestimate the correspondence between the connectome and behavior using the group-level atlas-based FC (Li et al., 2019). The present findings highlight the importance of accounting for the variability in cortical functional region boundaries in adolescents when screening for FC biomarkers of AOS symptom...
burden. Connectome-based biomarkers can reveal AOS positive symptom-related circuits; moreover, individual-specific FC biomarkers map symptom-related circuits onto the individual brain, providing a basis for more precise diagnosis and treatment in AOS.

The severity of AOS positive symptoms was linked to FPN-based connections. The FPN is responsible for high-order executive control functions in working memory (Coull, Frith, Frackowiak, & Grasby, 1996), object orientation (Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000), and attention (Corbetta & Shulman, 2002; Kanwisher & Wojciulik, 2000; Kastner & Ungerleider, 2000), and continuously updates and maintains changes to attended stimuli in order to adapt to the environment (Duncan, 2010). During adolescence, frontoparietal regions undergo structural fine-tuning and maturation (Gogtay et al., 2004; Lenroot & Giedd, 2006). However, dysregulation of these processes can lead to frontoparietal gray matter abnormal loss (Burke, Androutsos, Jogia, Byrne, & Frangou, 2008) and disruption of FC (Kyriakopoulos et al., 2012; White, Schmidt, Kim, & Calhoun, 2011). Impaired inhibitory control of the FPN may underlie the positive symptoms of schizophrenia—for example, disordered self-monitoring of internal speech (Rubio Gomez et al., 2010). Our findings revealed an association between the FPN dysconnectivity and AOS positive symptoms, suggesting the critical role of FPN in AOS positive symptom manifestation. Moreover, the novel individual-level findings indicate the possibility to develop personalized target-therapy schemes of AOS positive symptoms in terms of FPN-based FC biomarkers.

In support of the neurodevelopmental hypothesis of schizophrenia (Murray & Lewis, 1987), we observed that AOS patients showed atypical age-related alterations of FPN–SAL connection, which made significant contribution to the prediction of AOS positive symptoms. In accordance with evidence for aberrant development of frontoparietal regions in AOS (White et al., 2011), the current findings further reveal its association with the manifestation positive symptoms of AOS. Specifically, positive connections between dlPFC-based frontoparietal sub-network (i.e., CEN) and SAL increased with age in HC subjects, but not in AOS patients. The dlPFC is one of the last regions to fully mature at the end of adolescence, with synaptic pruning and myelination occurring in parallel (Gogtay et al., 2004). Abnormal age-related maturation has been reported in the dIPFC-based network connectivity of AOS (Kyriakopoulos et al., 2012). Furthermore, during adolescence, reinforcement of network-level connectivity between CEN and SAL may reflect an increased capacity for high-order cognitive control, which governs appropriate responses to salient external stimuli and internal events (Duan et al., 2019; Menon, 2011). Accordingly, altered maturation of CEN–SAL connectivity during adolescence could underlie the delusions and hallucinations experienced by in AOS patients (Sommer et al., 2008), which might shed some new insights into early diagnosis or treatment of schizophrenia.

This study had several limitations. First, the sample size was relatively small, which may have limited the statistical power of the prediction model of the brain–behavior relationship; therefore, our model requires validation in a larger sample size of antipsychotic-naïve, first-episode AOS patients. Second, the reliability of our findings on age-related development was limited by the lack of a longitudinal study, as cross-sectional developmental trajectories could be due to interindividual differences rather than the effects of age. Third, our model could not estimate negative symptoms for two possible reasons: some ROIs were excluded if they were absent in any participant so that we could identify consensus ROIs across all participants; this may have discounted potentially important functional information associated with negative symptoms. However, the influence of such an omission was reduced by the fact that the remaining 79 consensus ROIs (covered area ratio = 76.89 ± 1.39%) included all 18 cortical functional networks. Alternatively, subcortical connectivity was not included in our prediction model due to the lack of a reliable technique for mapping individual-level subcortical regions. Adapting a method of individual-level functional parcellation to subcortical regions is recommended in view of their involvement in psychiatric disorders. Finally, the group-level functional network atlas which we used in the iterative parcellation algorithm was based on the adult population, which may disturb individual-specific cortical parcellation results of adolescent subjects. For example, this limitation may partly account for lower covered area ratio of homologous ROIs compared with previously studies (Brennan et al., 2019; Wang et al., 2018). Future studies based on a pediatric-based functional parcellation atlas are needed to validate current results.

5 | CONCLUSION

Using a novel individual-specific cortical parcellation approach, we identified reproducible FPN-based cortical network connection biomarkers underlying positive AOS symptoms, which reflected aberrant age-related alterations consistent with the neurodevelopmental hypothesis of schizophrenia. Our findings provide insight into the neural correlates of AOS positive symptom manifestation and suggest that individual-level FC biomarkers can lead to more precise diagnosis and personalized target-therapy schemes for this disorders.

ACKNOWLEDGMENTS

The authors are grateful to all the participants and their guardians in this study. This work was supported by the Key Project of Research and Development of Ministry of Science and Technology (2018AAA0100705); National Natural Science Foundation of China (62073058, 62036003, and U1808204); Medical Science and Technology Research Project of Henan Province (HJ20190479); Natural Science Foundation of Henan Province (202300410318). This is an original manuscript and no parts of this manuscript are being considered for publication elsewhere.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Yun-Shuang Fan, Huafu Chen, and Hesheng Liu: Contributed to the conception and design of the work. Yong Xu, Jingping Zhao, Peng Yue and Yan Zhang: Contributed to the acquisition and interpretation of data for the work. Yun-Shuang Fan, Liang Li, Haoru Li, Jing Guo,
and Melling Li: Contributed to the analysis of data. Yun-Shuang Fan, Xiaonan Guo, Shaqiang Han, and Siqi Yang: Drafted the work. Wei Liao, Qian Cui, and Xujun Duan: Revised it critically for important intellectual content. All authors performed final approval of the version to be published, and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors have approved this manuscript.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

REFERENCES
Brennan, B. P., Wang, D., Li, M., Perriello, C., Ren, J., Elias, J. A., ... Liu, H. (2019). Use of an individual-level approach to identify cortical connectivity biomarkers in obsessive-compulsive disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(1), 27–38. https://doi.org/10.1016/j.bpsc.2018.07.014

Burke, L., Androutsos, C., Cogia, J., Byrne, P., & Frangou, S. (2008). The Maudsley early onset schizophrenia study: The effect of age of onset and illness duration on fronto-parietal grey matter. European Psychiatry, 23(4), 233–236. https://doi.org/10.1016/j.eurpsy.2008.03.007

Cao, M., Huang, H., Peng, Y., Tong, Q., & He, Y. (2016). Toward developmental connectomics of the human brain. Frontiers in Neuroanatomy, 10, 25. https://doi.org/10.3389/fnana.2016.00025

Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3(3), 292–297. https://doi.org/10.1038/73009

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3 (3), 201–215. https://doi.org/10.1038/nrn755

Coull, J. T., Frith, C. D., Frackowiak, R. S., & Grasby, P. M. (1996). A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia, 34(11), 1085–1095.

Douaud, G., Mackay, C., Andersson, J., James, S., Quested, D., Ray, M. K., ... James, A. (2009). Schizophrenia delays and alters maturation of the brain in adolescence. Brain, 132(Pt 9), 2437–2448. https://doi.org/10.1093/brain/awp126

Douaud, G., Smith, S., Jenkinson, M., Behrens, T., Johansen-Berg, H., Vickers, J., ... James, A. (2007). Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain, 130(Pt 9), 2375–2386. https://doi.org/10.1093/brain/awm184

Duan, X., Hu, M., Huang, X., Su, C., Zong, X., Dong, X., ... Chen, H. (2019). Effect of risperidone monotherapy on dynamic functional connectivity of insular subdivisions in treatment-naive, first-episode schizophrenia. Schizophrenia Bulletin, 46, 650–660. https://doi.org/10.1093/schbul/sbz087

Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172–179. https://doi.org/10.1016/j.tics.2010.01.004

Fan, Y.-S., Li, Z., Duan, X., Xiao, J., Guo, X., Han, S., ... Chen, H. (2019). Impaired interactions among white-matter functional networks in antipsychotic-naïve first-episode schizophrenia. Human Brain Mapping, 41(1), 230–240. https://doi.org/10.1002/hbm.24801

Fan, Y.-S., Yang, S., Li, Z., Li, J., Guo, X., Shaoqiang, H., ... Chen, H. (2020). A temporal connectomic framework: Cigarette smoking preserved the prefrontal dysfunction in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 99, 109860. https://doi.org/10.1016/j.pnpbp.2020.109860

Foulkes, L., & Blakemore, S. J. (2018). Studying individual differences in human adolescent brain development. Nature Neuroscience, 21(3), 315–323. https://doi.org/10.1038/s41593-018-0078-4

Frazier, J. A., McClellan, J., Findling, R. L., Vitello, B., Anderson, R., Zablotsky, B., ... Sikich, L. (2007). Treatment of early-onset schizophrenia spectrum disorders (TEOSS): Demographic and clinical characteristics. Journal of the American Academy of Child and Adolescent Psychiatry, 46(8), 979–988. https://doi.org/10.1097/chi.0b013e3187083fd

Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., ... Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179. https://doi.org/10.1073/pnas.0402680101

Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., ... Dosenbach, N. U. F. (2017). Precision functional mapping of individual human brains. Neuron, 95(4), 791–807 e797. https://doi.org/10.1016/j.neuron.2017.07.011

Guo, X., Duan, X., Chen, H., He, C., Xiao, J., Han, S., ... Chen, H. (2020). Altered inter-and intrahemispheric functional connectivity dynamics in autistic children. Human Brain Mapping, 41(2), 419–428.

Guo, X., Duan, X., Suckling, J., Chen, H., Liao, W., Cui, Q., & Chen, H. (2019). Partially impaired functional connectivity states between right anterior insula and default mode network in autism spectrum disorder. Human Brain Mapping, 40(4), 1264–1275. https://doi.org/10.1002/hbm.24447

Han, S., Cui, Q., Wang, X., Li, L., D., He, Z., ... Sheng, W. (2020). Resting state functional network switching rate is differently altered in bipolar disorder and major depressive disorder. Human Brain Mapping, 41, 3295–3304.

Han, S., Wang, X., He, Z., Sheng, W., Zou, Q., Li, L., ... Chen, H. (2019). Decreased static and increased dynamic global signal topography in major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 94, 109665. https://doi.org/10.1016/j.pnpbp.2019.109665

Hollis, C. (2000). Adult outcomes of child- and adolescent-onset schizophrenia: Diagnostic stability and predictive validity. The American Journal of Psychiatry, 157(10), 1652–1659. https://doi.org/10.1176/appi.ajp.157.10.1652

Kanwisher, N., & Wojciulik, E. (2000). Visual attention: Insights from brain imaging. Nature Reviews. Neuroscience, 1(2), 91–100. https://doi.org/10.1038/35039043

Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341. https://doi.org/10.1146/annurev.neuro.23.1.315

Kyriakopoulos, M., Dima, D., Roiser, J. P., Corrigall, R., Barker, G. J., & Frangou, S. (2012). Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. Journal of the American Academy of Child and Adolescent Psychiatry, 51(9), 911–920 e912. https://doi.org/10.1016/j.jaac.2012.06.020

Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 30(6), 718–729. https://doi.org/10.1016/j.neubiorev.2006.06.001

Li, M., Becker, B., Zheng, J., Zhang, Y., Chen, H., Liao, W., ... Chen, H. (2018). Dysregulated maturation of the functional connectome in antipsychotic-naïve, first-episode patients with adolescent-onset schizophrenia. Schizophrenia Bulletin, 45, 689–697. https://doi.org/10.1093/schbul/sby063

Li, M., Wang, D., Ren, J., Langs, G., Stoecklein, S., Brennan, B. P., ... Liu, H. (2019). Performing group-level functional image analyses based on homologous functional regions mapped in individuals. PLoS Biology, 17(3), e2007032. https://doi.org/10.1371/journal.pbio.2007032

Lindenmayer, J.-P., Bernstein-Hyman, R., & Grochowski, S. (1994). Five-factor model of schizophrenia initial validation. The Journal of Nervous and Mental Disease, 182(11), 631–638.
Marder, S. R., Davis, J. M., & Chouinard, G. (1997). The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: Combined results of the North American trials. The Journal of Clinical Psychiatry, 58(12), 538–546. https://doi.org/10.4088/JCP.v58n1205

Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003

Mueller, S., Wang, D., Fox, M. D., Yeo, B. T., Sepulcre, J., Sabuncu, M. R., ... Liu, H. (2013). Individual variability in functional connectivity architecture of the human brain. Neuron, 77(3), 586–595. https://doi.org/10.1016/j.neuron.2012.12.028

Murray, R. M., & Lewis, S. W. (1987). Is schizophrenia a neurodevelopmental disorder? British Medical Journal (Clinical Research Ed.), 295(6600), 681–682. https://doi.org/10.1136/bmj.295.6600.681

Narr, K. L., & Leaver, A. M. (2015). Connectome and schizophrenia. Current Opinion in Psychiatry, 28(3), 229–235. https://doi.org/10.1097/YCO.0000000000000157

Rubio Gomez, J. L., Hernandez Bellido, L., Ruiz Veguilla, M., Ferrin Erodzain, M., Pereda Banos, A., & Gomez Milan, E. (2010). Attentional network task performance in schizophrenic patients. Psicothema, 22(4), 664–668.

Sommer, I. E., Diederen, K. M., Blom, J. D., Willems, A., Kushan, L., Slotema, K., ... Kahn, R. S. (2008). Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain, 131(Pt 12), 3169–3177. https://doi.org/10.1093/brain/awn251

Tang, J., Liao, Y., Song, M., Gao, J. H., Zhou, B., Tan, C., ... Chen, X. (2013). Aberrant default mode functional connectivity in early onset schizophrenia. PLoS One, 8(7), e71061. https://doi.org/10.1371/journal.pone.0071061

Tregellas, J. R. (2014). Neuroimaging biomarkers for early drug development in schizophrenia. Biological Psychiatry, 76(2), 111–119. https://doi.org/10.1016/j.biopsych.2013.08.025

Varoquaux, G., Raamana, P. R., Engemann, D. A., Hoyos-Idrobo, A., Schwartz, Y., & Thirion, B. (2017). Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines. Neuron, 94(5), 668–674. https://doi.org/10.1016/j.neuron.2017.03.013

Wallwork, R. S., Fortgang, R., Hashimoto, R., Weinberger, D. R., & Dickinson, D. (2012). Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophrenia Research, 137(1–3), 246–250. https://doi.org/10.1016/j.schres.2012.01.031

Wang, D., Buckner, R. L., Fox, M. D., Holt, D. J., Holmes, A. J., Stoecklein, S., ... Liu, H. (2015). Parcellating cortical functional networks in individuals. Nature Neuroscience, 18(12), 1853–1860. https://doi.org/10.1038/nn.4164

Wang, D., Li, M., Wang, M., Schoeppe, F., Ren, J., Chen, H., ... Liu, H. (2018). Individual-specific functional connectivity markers track dimensional and categorical features of psychotic illness. Molecular Psychiatry, 25, 2119–2129. https://doi.org/10.1038/s41380-018-0276-1

Wang, X., Zhang, Y., Long, Z., Zheng, J., Zhang, Y., Han, S., ... Chen, H. (2017). Frequency-specific alteration of functional connectivity density in antipsychotic-naive adolescents with early-onset schizophrenia. Journal of Psychiatric Research, 95, 68–75. https://doi.org/10.1016/j.jpsychires.2017.07.014

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Fan Y-S, Li L, Peng Y, et al. Individual-specific functional connectome biomarkers predict schizophrenia positive symptoms during adolescent brain maturation. Hum Brain Mapp. 2021;42:1475–1484. https://doi.org/10.1002/hbm.25307

White, T., Cullen, K., Rokhrer, L. M., Karatekin, C., Luciana, M., Schmidt, M., ... Lin, K. O. (2008). Limbic structures and networks in children and adolescents with schizophrenia. Schizophrenia Bulletin, 34(1), 18–29. https://doi.org/10.1093/schbul/sbn110

White, T., Schmidt, M., Kim, D. I., & Calhoun, V. D. (2011). Disrupted functional brain connectivity during verbal working memory in children and adolescents with schizophrenia. Cerebral Cortex, 21(3), 510–518. https://doi.org/10.1093/cercor/bhq114

Woodward, N. D., & Cascio, C. J. (2015). Resting-state functional connectivity in psychotic disorders. JAMA Psychiatry, 72(8), 743–744. https://doi.org/10.1001/jamapsychiatry.2015.0484

Yamada, T., Hashimoto, R. I., Yahata, N., Ichikawa, N., Yoshihara, Y., Okamoto, Y., ... Kawato, M. (2017). Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric disorders: A challenge for developing theranostic biomarkers. The International Journal of Neuropsychopharmacology, 20(10), 769–781. https://doi.org/10.1093/ijnp/pyx059

Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., di Martino, A., ... Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183–201. https://doi.org/10.1016/j.neuroimage.2013.03.004

Yang, Z., Xu, Y., Xu, T., Hoy, C. W., Handwerker, D. A., Chen, G., ... Bandettini, P. A. (2014). Brain network informed subject community detection in early-onset schizophrenia. Scientific Reports, 4, 5549. https://doi.org/10.1038/srep05549

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., ... Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 105(3), 1125–1165. https://doi.org/10.1152/jn.00338.2011

Zalesky, A., Pantelis, C., Crockley, V., Fornito, A., Cocchi, L., McAdams, H., ... Gogtay, N. (2015). Delayed development of brain connectivity in adolescents with schizophrenia and their unaffected siblings. JAMA Psychiatry, 72(9), 900–908. https://doi.org/10.1001/jamapsychiatry.2015.0226

Zeng, L. L., Wang, D., Fox, M. D., Sabuncu, M., Hu, D., Ge, M., ... Liu, H. (2014). Neurobiological basis of head motion in brain imaging. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 6058–6062. https://doi.org/10.1073/pnas.1317424111

Zhang, J., Zhang, Y., Guo, X., Duan, X., Zhang, J., Zhao, J., & Chen, H. (2016). Disrupted amplitude of low-frequency fluctuations in antipsychotic-naive adolescents with early-onset schizophrenia. Psychiatry Research: Neuroimaging, 249, 20–26. https://doi.org/10.1016/j.psr.2015.11.006

Zheng, J., Zhang, Y., Li, M., Liao, W., Duan, X., Zhao, J., & Chen, H. (2018). Aberrant corticostriatal connectivity predict positive symptoms of antipsychotic-naive patients with adolescent-onset schizophrenia during brain maturation. Schizophrenia Research, 195, 564–566. https://doi.org/10.1016/j.schres.2017.10.025