Effect of the plant growth stimulant zeatin on regeneration capacity of some *Physalis* species in vitro culture

O.M. Yaroshko, D.B. Rakhmetov, M.V. Kuchuk

The aim of the study was to find an efficient culture medium for regeneration of *Physalis species in vitro* to provide their further propagation *ex vitro* and obtain fructiferous plants from the regenerants. *Physalis peruviana* L., *P. ixocarpa* Broth. (cv. Likhtaryk), and *P. pubescens* L. (cv. Zarynka) were taken as plant material for the research. Plant introduction into culture and regenerant production were carried out *in vitro*; the rooting of mature plants and obtaining plants with ripe fruits took place in a greenhouse and in open ground (*ex vitro*). To obtain regenerants, we used Murashige and Skoog (MC30) medium supplemented with the growth stimulant zeatin (Zea) at a concentration of 0.5–3 mg/l. The growth stimulant 6-benzylaminopurine (BAP) was used to elongate the regenerant stalks, and the growth stimulator α-naphthylacetic acid (NAA) was used to initiate root formation. Plant regeneration frequency and the number of regenerants per explant served as indicators of the efficiency of various zeatin concentrations on the *physalis* regenerative capacity. The most effective media for the shoot regeneration from cotyledonous leaf explants were MC30 + 1 mg/l Zea and MC30 + 2 mg/l Zea. Regeneration frequency on these media was 48.15 % and 53.84 % for *P. ixocarpa* (cv. Likhtaryk), 38.46 % and 45 % for *P. peruviana*, and 27 % and 34 % for *P. pubescens* (cv. Zarynka) respectively. The emerged regenerants were separated from explants and transferred to MC30 medium supplemented with 1 mg/l of BAP + 0.1 mg/l of NAA for stalk growth and rooting. After a month of cultivation, juvenile plants were obtained. They were transferred to a greenhouse for adaptation, and later to open ground at the experimental plot. Three months after the regenerant emergence, we obtained fertile plants, which bloomed and bore fruit. The regenerants for domestic varieties of *P. ixocarpa* (cv. Likhtaryk) and *P. pubescens* (cv. Zarynka) were obtained for the first time. We established a direct relationship between the concentration of zeatin and both the frequency of plant regeneration and the number of regenerants per explant.

Key words: *Physalis peruviana*, *Physalis ixocarpa*, *Physalis pubescens*, in vitro, regeneration, zeatin.

About the authors:
O.M. Yaroshko – Institute of Cell Biology and Genetic Engineering, NAS of Ukraine, Akademika Zabolotnoho St., 148, Kyiv, Ukraine, 03143, 90tigeryaroshko90@gmail.com, https://orcid.org/0000-0003-2517-4472
D.B. Rakhmetov – M.M. Gryshko National Botanical Garden, NAS of Ukraine, Tymiriazevska St., 1, Kyiv, Ukraine, 01014, rjb2000.16@gmail.com, https://orcid.org/0000-0001-7260-3263
M.V. Kuchuk – Institute of Cell Biology and Genetic Engineering, NAS of Ukraine, Akademika Zabolotnoho St., 148, Kyiv, Ukraine, 03143, nkuchuk@icbge.org.ua, https://orcid.org/0000-0001-7365-7474

Introduction

Physalis peruviana L., *P. ixocarpa* Broth., and *P. pubescens* L. are cultivated mainly in tropical and subtropical countries. One of the main useful component of various *Physalis* species is betulin, which has antitumor properties.

In Ukraine, the above-mentioned species are grown in botanical gardens and private collections. *Physalis* is a promising plant for obtaining recombinant proteins for pharmaceutical use. Materials dedicated to the editing of the *P. pruinosa* genome by the CRISPR-Cas method have recently been published (Lemmon et al., 2018). *Physalis* can be used as a model object to study the functioning of heterologous genes in its tissues and organs. Currently, sufficient amount of works on obtaining callus tissue and regeneration of various *Physalis* species have been conducted. A study of regenerative capacity was performed by a group headed by Rao (Rao et al., 2004), which resulted in obtaining regenerants for *P. pubescens*. Initially, callus tissue was grown from leaves and internodes, and then, the regenerants on a medium MS30 + 2 mg/l BAP + 0.5 mg/l NAA and on MS30 + 2.5 mg/l BAP + 0.5 mg/l NAA were obtained from it. K. Ramar and V. Ayyadurai investigated *Physalis maxima* regeneration capacity (Ramar, Ayyadurai, 2014). H. Sandhya and R. Srinath obtained regenerants from nodal segments of *Physalis minima* (Sandhya, Srinath, 2015). K. Ramar with a group of scientists investigated regeneration capacity of *Physalis peruviana*. They obtained positive results of nodal segments and internode regeneration on the medium MS30 + 1.5 mg/l BAP + 0.5 mg/l gibberellic acid (GA3) + 0.5 mg/l 2,4-D; MS30 + 2 mg/l BAP + 1 mg/l GA3 + 1 mg/l 2,4-D, and that of leaf explants on MS30 + 2.5 mg/l BAP +
1 mg/l GA₃ + 0.5 mg/l 2,4-D; MS₃₀ + 3 mg/l BAP + 1 mg/l GA₃ + 1 mg/l 2,4-D (Ramar et al., 2014). K. Bergier with colleagues obtained Physalis ixocarpa regenerants from the "hairy root’s culture" on the medium MS₃₀ + 5 μm Kin + 1 μm BAP (Bergier et al., 2012). O. Kumar with a group obtained regenerants of Physalis angulata from meristems (Kumar et al., 2015). K. Swartwood and J. Van Eck received regenerants of Physalis pruinosa from hypocotyls explants (Swartwood, Van Eck, 2019). N. Assad-García obtained regenerants from the cotyledons of the 12-day-old seedlings of Physalis ixocarpa cv. Rendidora on the MS₃₀ medium + 1 μM NAA + 12.5 μM BAP (Assad-García et al., 1992). P. Singh and colleagues received regenerants of Physalis angulata from meristems (Kumar et al., 2015). K. Swartwood and J. Van Eck received regenerants of Physalis pruinosa from hypocotyls explants (Swartwood, Van Eck, 2019). N. Assad-García obtained regenerants from the cotyledons of the 12-day-old seedlings of Physalis ixocarpa cv. Rendidora on the MS₃₀ medium + 1 μM NAA + 12.5 μM BAP (Assad-García et al., 1992). P. Singh and colleagues received regenerants from nodal segments of P. peruviana on the MS₃₀ medium + 2.5 mg/l BAP + 0.05 mg/l indolylbutyric acid (IBA) (Singh et al., 2016). A group of researchers headed by Otroshy received regenerants of P. peruviana on the MS₃₀ medium + 4 mg/l BAP; MS₃₀ + 1 mg/l Kin + 3 mg/l BAP from leaf explants and on the MS₃₀ medium + 2 mg/l Kin + 2 mg/l BAP; MS₃₀ + 4 mg/l BAP + 1 mg/l Kin + 0.5 mg/l indolylbutyric acid (IBA) from nodular explants (Otroshy et al., 2013). Our objective was to find an efficient culture medium for the P. peruviana, P. ixocarpa, and P. pubescens regeneration in vitro in order to future obtaining adult plants from the regenerants ex vitro.

Materials and methods

The following species were used as plant material for investigations: Physalis peruviana, Physalis ixocarpa (cv. Likhtar yk), and P. pubescens (cv. Zarynka). The originator of Likhtar yk and Zarynka varieties is M.M. Gryshko National Botanical Garden of the National Academy of Sciences of Ukraine. The source material was taken from the collection fund of the department of cultural flora of the above-mentioned institution (Rakhmetov et al., 2015).

Seeds of the three investigated species germinated on the sterile nutrient agar medium Murashige and Skoog (MS₃₀) (Murashige, Skoog, 1962) with 30 g/l sucrose under conditions of 22–26°C, 14-hour light period, and illumination of 3000–4500 lx.

For regeneration, we used leaf cotyledons from the seven-day seedlings. The explants were cultivated horizontally one month on the MS₃₀ medium, containing 30 g/l sucrose (pH 5.7–5.9) with the addition of zeatin (Zea) (assay > 98 %, Duchefa Biochemie B.V.: Netherlands) in different concentrations (0.5, 1.0, 2.0, and 3.0 mg/l).

The obtained shortened shoots were separated and transferred to the MS₃₀ medium with 1 mg/l of BAP (assay > 99 %, Duchefa Biochemie B.V.: Netherlands) + 0.1 mg/l NAA (assay > 98 %, Duchefa Biochemie B.V.: Netherlands) for a month for elongating and rooting.

Data collection and Statistical analysis.

The efficacy of the used concentrations of growth stimulants for obtaining regenerants of species and varieties of the genus Physalis was determined by the following indicators: the number of regenerants obtained per one explant and the percentage of regeneration (regeneration frequency).

The number of regenerants was defined as a number of new young plants emerged from one explant. The regeneration frequency was calculated as a proportion (%) of the number of regenerated explants out of the total number of explants at the beginning of the experiment. The higher the percentage of regeneration was and the more regenerants were obtained from one explant, the more effective the concentration of growth stimulants used is considered.

Ten explants were used in each variant of experiments that was conducted in three replications. The data were analyzed using the general procedure in the Software Package STATISTICA Version 12. Spearman’s test and standard error were used for statistical processing of the obtained data; the procedure was described in detail in our previous work (Yaroshko, Kuchuk, 2019). In this work, the effect of different concentrations of growth regulator zeatin was compared with the appearance of different numbers of regenerants per one explant.

Results and discussion

After cultivation of the explants on the MS₃₀ medium with different Zea concentrations regenerants were obtained (Fig. 1, 2). The most effective medium for regeneration from leaf cotyledons was MS₃₀ supplemented with 2mg/l Zea (Fig. 2, Table 1). Quite promising results of shoot regeneration were...
obtained on the medium MS$_{30}$ + 1mg/l Zea (Fig. 1, 2, Table 1). Three months after receiving regenerants, we obtained adult fertile plants, which bloomed and fruited (Fig. 3).

The regeneration of *Physalis ixocarpa* (cv. Likhtaryk) on the medium MS$_{30}$ + 2mg/l Zea was successful, 53.84 %, while on the medium MS$_{30}$ + 1mg/l Zea it declined to 46.15 % (Fig. 2). The regeneration of *Physalis peruviana* was lower, 45 % and 38.46 %, respectively (Fig. 2).

![Fig. 1. Shoot induction from cotyledon leaves on the MS$_{30}$ medium with 1mg/l Zea after one month of cultivation (A – *Physalis ixocarpa* (cv. Likhtaryk); B – *P. peruviana*; C – *P. pubescens* (cv. Zarynka))]
Table 1. Influence of growth regulator on the number of regenerated shoots from the cotyledon leaves of *Physalis peruviana*, *P. ixocarpa*, and *P. pubescens* on the MS medium supplemented with different Zea concentrations (number of shoots per one explant, pc., M±SE)

Plant species, variety	Concentration of Zea growth stimulant				
	0 mg/l	0.5 mg/l	1 mg/l	2 mg/l	3 mg/l
P. peruviana	-	5±0.92*	11±0.95**	14±0.96**	6±0.86*
P. ixocarpa cv. Likhtaryk	-	7±0.84*	12±1.1*	15±1.3**	10±0.83*
P. pubescens cv. Zarynka	-	3±0.63*	6±0.56**	8±0.62**	3±0.54*

* null hypothesis is rejected with significant (*P*≤0.05) levels of averages differences;
** null hypothesis is rejected with highly significant (*P*≤0.01) levels of averages differences.

Fig. 3. General view of adult plants in the open ground with unripe fruits (A – *Physalis ixocarpa* (cv. Likhtaryk), B – *P. peruviana*, C – *P. pubescens* (cv. Zarynka)) and general view of ripe fruits in comparison (D, from left to right: *P. ixocarpa* (cv. Likhtaryk), *P. peruviana*, *P. pubescens* (cv. Zarynka))
Effect of the plant growth stimulant zeatin on regeneration capacity of some Physalis species

Our data are consistent with other studies on the Physalis regenerative capacity. The majority of works were conducted with the use of BAP and kin growth regulators and an addition of a third component (Ramar, Ayyadurai, 2014; Ramar et al., 2014; Kumar et al., 2015; Gupta, 1986). We used only one regulator, zeatin, and received positive results.

In our previous work, we obtained regenerants for P. peruviana on the media MS30 + 1 mg/l kinetin (Kin) + 3 mg/l BAP and MS30 + 2 mg/l Kin + 1 mg/l BAP (33.33 % of regeneration on both) (Yaroshko, Kuchuk, 2019). In the current work, we got higher percentages of regeneration of the same species on the media MS30 + 1mg/l Zea and MS30 + 2mg/l Zea (38.46 % and 45 %). Thus, we can state that the MS30 media with Zea are more effective for obtaining Physalis regeneration than that with Kin or BAP.

According to the works of other researchers, the highest frequency of P. peruviana regeneration was obtained on the media with addition of BAP (concentration 1–3 mg/l) or Kin (1 mg/l) (Ramar, Ayyadurai, 2014; Bergier et al., 2012; Gupta, 1986). A number of regenerated plants averaged to 11 or 13 per one explant on the media with BAP or Kin, respectively. In our current work, we have achieved similar results on the media with 1 mg/l Zea (11 pc.) and 2 mg/l Zea (14 pc.)

In the world literature, there is one published work on the regeneration of Physalis pubescens (Rao et al., 2004) and two works on the agrobacterial transformation and regeneration of Physalis ixocarpa (Bergier et al., 2012; Assad-García et al., 1992). Unfortunately, the regeneration percentage obtained in both species is not indicated in these papers. Therefore, we cannot compare the results of our study with those of other research groups.

In the course of our investigation, we found out that Physalis ixocarpa (cv. Likhtaryk) has the highest regeneration capacity among the three species studied (53.84 %). Such a regeneration percentage is sufficient to carry out genetic transformation of experimental plants. Thus, in the further research on Agrobacterium-mediated genetic transformation of Physalis plants, we will use Physalis ixocarpa (cv. Likhtaryk) as the most promising candidate.

Conclusions

Our experiments resulted in definition of the most efficient culture media for regeneration of Physalis peruviana, P. ixocarpa (cv. Likhtaryk), and P. pubescens (cv. Zarynka): a percentage of shoot regeneration from cotyledon leaves was the highest on MS30 + 2mg/l of Zea and MS30 + 1mg/l of Zea. Then, the obtained regenerants were grown on the medium MS30 with 1 mg/l of BAP and 0.1 mg/l of NAA for elongating and rooting and, in a month, we got adult plants. Three month after the emergence of regenerants, the mature plants started blooming and bearing fruits.

References

Afroz F., Sayeed Hassan A.K.M., Shamroze Bari L. et al. (2009). In vitro shoot proliferation and plant regeneration of Physalis minima L. – a perennial medicinal herb. Bangladesh J. Sci. Ind. Res., 44(4), 453–456. https://doi.org/10.3329/bjsir.v44i4.4597
Assad-García N., Ochoa-Alejo N., García-Hernández E. et al. (1992). Agrobacterium-mediated transformation of tomatillo (Physalis ixocarpa) and tissue specific and developmental expression of the CaMV 35S promoter in transgenic tomatillo plants. Plant Cell Reports, 11, 558–562. https://doi.org/10.1007/BF00233092
Bergier K., Kuźniak E., Skłodowska M. (2012). Antioxidant potential of Agrobacterium-transformed and non-transformed Physalis ixocarpa plants grown in vitro and ex vitro. Postepy higieny i medycyny doswiadczalnej (Online), 66, 976–982. https://doi.org/10.5604/17322693.1023086
Gupta P.P. (1986). Regeneration of plants from mesophyll protoplasts of ground berry (Physalis minima L.). Plant Sci., 43, 151–154.
Kumar O., Ramesh S., Tata S. (2015). Establishment of a rapid plant regeneration system in Physalis angulata L. through axillary meristems. Notulae Scientia Biologicae, 7(4), 471–474. https://doi.org/10.15835/nsb749707
Lemmon Z.H., Reem N.T., Dalrymple J. et al. (2018). Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants, 4, 766–770. https://doi.org/10.1038/s41477-018-0259-x
Mungole A.J., Doifode V.D., Kamble R.B. et al. (2011). In vitro callus induction and shoot regeneration in Physalis minima L. Annals of Biological Research, 2(2), 79–85.
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plantarum, 15, 473–497. https://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
Вплив стимулятора росту зеатину на регенераційну здатність рослин деяких видів роду Physalis в культурі in vitro

О.М. Ярошко, Д.Б. Рахметов, М.В. Кучук

Метою роботи було виявлення ефективного культурального середовища для регенерації видів роду Physalis в умовах ex vitro. Розроблено дослідні серії експериментів для виявлення найефективніших концентрацій стимулятора росту зеатину (α-нафтиламінокарбоновий кислота, НОК) для утримання нафтилового кислоти (НОК) у культурних дослідженнях Physalis peruviana (L.).

Матеріали та методи:

Для дослідження використовували Physalis peruviana (L.) – рослину з високим традиційним кореневиробничим потенціалом. Для отримання регенерантів використовували стимулятор росту зеатину (1 мг/л) для ініціації коренеутворення.

Результати:

У результаті досліджень виявлено, що найефективнішими середовищами для регенерації Physalis peruviana є MС30 + 0,1 мг/л НОК + 0,1 мг/л НЯК.

Заключення:

Отримано новий способ утримання Physalis peruviana in vitro, який дає можливість використовувати рослину в цілях регенерації та отримання фітоактивних речовин.

Ключові слова: Physalis peruviana, Physalis ixocarpa, Physalis pubescens, in vitro, регенерація, зеатин.
Влияние стимулятора роста зеатина на регенерационную способность растений некоторых видов рода Physalis в культуре in vitro

О.Н. Ярошко, Д.Б. Рахметов, Н.В. Кучук

Целью работы было выявление эффективной культуральной среды для регенерации видов рода Physalis в условиях in vitro для их дальнейшего размножения и получения плодоносящих растений из регенерантов в условиях ex vitro. Растительным материалом для исследования были такие виды растений: Physalis peruviana L., Physalis ixocarpa Broth. (cv. Likhtaryk), Physalis pubescens L. (cv. Zarynka). Введение растений в культуру и получение регенерантов проводились в условиях in vitro; укоренение взрослых растений и получение растений со зрелыми плодами проводили в условиях теплицы и открытого грунта (ex vitro). Для получения регенерантов использовали среду Мурасиге и Скуга (МС30), дополненную стимулятором роста зеатином в концентрации 0,5–3 мг/л. Для удлинения стеблей регенерантов использовали стимулятор роста 6-бензиламинопурин (БАП), а для инициации корнеобразования – стимулятор роста α-нафтилуксусную кислоту (НУК). В качестве показателей эффекта различных концентраций стимулятора роста зеатина на регенерационную способность физалисов использовали такие критерии: частоту регенерации растений и количество регенерантов на один эксплант. После проведения серии экспериментов были подобраны эффективные питательные среды для регенерации P. peruviana, P. ixocarpa (cv. Likhtaryk), P. pubescens (cv. Zarynka). Наиболее эффективными средами для регенерации побегов из семядольных листовых эксплантов были МС30 + 1 мг/л зеатина (Зеа) и МС30 + 2 мг/л Зеа. Регенерация на этих средах составила для P. ixocarpa (cv. Likhtaryk) – 46,15 % и 53,84 %, для P. peruviana – 38,46 % и 45 %, для P. pubescens (cv. Zarynka) – 27 % и 34 % соответственно. Полученные регенеранты отделяли от эксплантов и переносили на среду МС30, дополненную 1 мг/л БАП + 0,1 мг/л НУК для роста стебля и укоренения. Через месяц культивирования на среде МС30 + 1 мг/л БАП + 0,1 мг/л НУК были получены ювенильные растения, которые были перенесены в тепличные условия для прохождения адаптации, а позже – в открытый грунт на экспериментальном участке. Через три месяца (с момента получения регенерантов) были получены фертильные растения, которые цвели и плодоносили. Нами впервые были получены регенеранты для отечественных сортов P. ixocarpa (cv. Likhtaryk), P. pubescens (cv. Zarynka). Обнаружена прямая зависимость между концентрацией зеатина и частотой регенерации растений, а также между концентрацией зеатина и количеством регенерантов, полученных от одного эксплантата.

Ключевые слова: Physalis peruviana, Physalis ixocarpa, Physalis pubescens, in vitro, регенерация, зеатин.

Об авторах:
О.Н. Ярошко – Институт клеточной биологии и генетической инженерии НАН Украины, ул. Академика Заболотного, 148, Киев, Украина, 03143, 90tigeryaroshko90@gmail.com, https://orcid.org/0000-0003-2517-4472
Д.Б. Рахметов – Научный ботанический сад имени Н.Н. Гришко НАН Украины, ул. Тимирязевская, 1, Киев, Украина, 01014, rjb2000.16@gmail.com, https://orcid.org/0000-0001-7260-3263
Н.В. Кучук – Институт клеточной биологии и генетической инженерии НАН Украины, ул. Академика Заболотного, 148, Киев, Украина, 03143, nkuchuk@icbge.org.ua, https://orcid.org/0000-0001-7365-7474

Подано до редакції / Received: 07.08.2020