Pre-procedural fasting in emergency sedation

Rebecca J Thorpe, Jonathan Benger

ABSTRACT
Emergency physicians frequently undertake emergency procedural sedation in non-fasted patients. At present, no UK guidelines exist for pre-procedural fasting in emergency sedation, and guidelines from the North American Association of Anesthesiologists (ASA) designed for general anaesthesia (GA) are extrapolated to emergency care. A systematic review of the literature was conducted with the aim of evaluating the evidence for risk of pulmonary aspiration during emergency procedural sedation in adults. All abstracts were read and relevant articles identified. Further literature was identified by hand-searching reference sections. Papers were objectively evaluated for relevance against pre-determined criteria. The risk of aspiration in emergency procedural sedation is low, and no evidence exists to support pre-procedural fasting. In several large case series of adult and paediatric emergency procedural sedation, non-fasted patients have not been shown to be at increased risk of pulmonary aspiration. There is only one reported case of pulmonary aspiration during emergency procedural sedation, among 4657 adult cases and 17 672 paediatric cases reviewed. Furthermore, ASA guidelines for fasting prior to GA are based on questionable evidence, and there is high-level evidence that demonstrates no link between pulmonary aspiration and non-fasted patients. There is no reason to recommend routine fasting prior to procedural sedation in the majority of patients at the Emergency Department. However, selected patients believed to be significantly more prone to aspiration may benefit from risk:benefit assessment prior to sedation.

INTRODUCTION
Synopsis
Emergency physicians frequently undertake emergency procedural sedation in non-fasted patients. At present, no UK guidelines exist for pre-procedural fasting in emergency sedation, and guidelines from the American Association of Anesthesiologists (ASA) designed for general anaesthesia (GA) are extrapolated. The literature shows that the risk of aspiration in emergency procedural sedation is low, and no evidence exists to support pre-procedural fasting. Furthermore, ASA guidelines for fasting prior to GA are based on questionable evidence, and there is high-level evidence that demonstrates no link between pulmonary aspiration and non-fasted patients.

Background to procedural sedation
The administration of procedural sedation has become widespread practice in UK Emergency Departments (ED). It allows potentially painful and distressing procedures to be undertaken in a timely fashion with minimal distress to the patient. Emergency physicians now increasingly possess the necessary skills to safely manage procedural sedation and its possible complications. Potentially life-threatening complications include apnoea, hypoxia, hypotension and pulmonary aspiration. To date, there has been only one published case report of pulmonary aspiration occurring during ED procedural sedation. The aim of this study was to evaluate the evidence for risk of pulmonary aspiration during emergency sedation in adults.

Pathophysiology of pulmonary aspiration
Pulmonary aspiration can be defined as ‘the inhalation of oropharyngeal or gastric contents into the larynx and lower respiratory tract’. The consequences of pulmonary aspiration exist on a continuum from asymptomatic to fatal aspiration pneumonitis. The syndrome of aspiration pneumonitis describes a collection of features including cough, dyspnoea, hypoxia and bronchospasm, from which the majority of patients recover completely, and mortality is extremely rare.

Changing theories in risk of aspiration
Mendelson was the first to describe the pathophysiology of aspiration of gastric contents as a consequence of general anaesthesia in 1946. Mendelson described a series of 44 016 obstetric patients undergoing general anaesthesia between 1932 and 1945. He reported 45 cases of aspiration, resulting in two deaths. He went on to instil a variety of solutions into rabbit lungs and observed the consequences, and concluded that the severity of pulmonary damage in humans and animals is worse in large-volume, low-pH aspirate. He advocated the introduction of preoperative fasting to prevent aspiration of gastric acid, and subsequent studies aimed to determine the characteristic of stomach contents that were likely to produce aspiration pneumonitis. An oft-quoted study by Roberts in 1974 concluded that the risk of aspiration pneumonitis is increased if the patient has gastric volumes exceeding 25 millilitres, with a pH less than 2.5. These values were extrapolated from work done on monkeys. It has been historically taught that the degree of pulmonary injury from aspiration is directly related to volume and acidity of gastric contents, a theory that has since been disproved. Similarly, there is insufficient evidence to show that a decreased preoperative fasting time is associated with an increased risk of pulmonary aspiration.

Over the years, many theories have been proposed, and much research has focused on identification of risk factors for aspiration during general anaesthesia. The first studies on animals showed that lungs exposed to stomach acid demonstrated histological changes of chemical
pneumonitis. Consequently, the use of antacid therapies began, in order to reduce the likelihood of pneumonitis occurring should pulmonary aspiration of gastric contents occur. However, although antacid medications have been shown to lower gastric pH, there is no evidence that therapeutic prophylaxis lowers aspiration risk or improves outcomes and it is not recommended by the ASA in healthy patients. In obstetric anaesthesia, ASA guidelines advise anaesthetists to consider prophylaxis before caesarean delivery.

Another relevant theory is that a minimum volume of fluid needs to be aspirated into the lungs before a pneumonitis occurs, and that the gastric volume at the time of anaesthesia impacts on the volume aspirated. This has been superseded by more recent evidence, demonstrating that clear liquids ingested up to 2 h prior to surgery do not increase gastric volume or decrease gastric pH. Significantly, aspiration of clear fluids is associated with a low risk of pneumonitis, and it is now recognised that asymptomatic aspiration of gastric contents occurs physiologically during normal sleep. Research on intubated patients has also been reported in patients with no risk factors, and it is, therefore, the risk of particulate matter aspiration that should be the priority in the development of a guideline for procedural sedation.

Other factors have been implicated in the past such as pregnancy, obesity and opioid use, but these do not seem to be independent risk factors. Confirmed risk factors for pulmonary aspiration include airway difficulties (eg, laryngospasm, technically difficult intubation), old age and conditions predisposing to gastro-oesophageal reflux (eg, hiatus hernia, bowel obstruction, raised intracranial pressure). Significantly, pulmonary aspiration has also been reported in patients with no risk factors, and may still occur when the precaution of rapid sequence of induction has been employed. One theory of particular interest to emergency physicians, is that acutely stressful experiences can cause a delay in gastric emptying. However, this theory remains controversial, and although distress is often quoted as a risk factor for pulmonary aspiration secondary to delayed gastric emptying, several studies have failed to show an association.

Regarding general anaesthesia, a Cochrane review in 2003 concluded that ‘there is no evidence to suggest a shortened fluid fast results in an increased risk of aspiration, regurgitation or related morbidity compared with the standard’. However, despite the myriad literature there are relatively few trials that specifically investigate the relationship between preoperative fasting and the risk of pulmonary aspiration. Several randomised controlled trials (RCTs) indicate that despite deviation from ASA fasting guidelines there is no increased risk of pulmonary aspiration. It is difficult to apply this evidence to sedation in the emergency department for a number of reasons:

1. During general anaesthesia protective airway reflexes are lost, and airway manipulations are common. This is very different to sedated patients who do not usually undergo airway manipulations, and are presumed to maintain their airway reflexes in most cases.

2. The anaesthetic literature relates to elective procedures. Patients being sedated in emergency departments are, by definition, unplanned.

3. The alternative oral intake regimens trialled by these studies included small volumes of clear fluids (maximum of 400 millilitres), which is very different to patients undergoing sedation in the ED, who have usually had unlimited fluid and solid intake prior to attendance.

However, it is clear from up to date evidence, that the ASA guidelines for fasting are not based on recent clinical trials, and that the evidence that historically led to the development of fasting guidelines, which remain in place today, has minimal scientific support.

Pulmonary aspiration in emergency procedural sedation

Preoperative fasting guidelines have been extrapolated to procedural sedation. The ASA guidelines require at least 2 h of fasting for clear liquids and 6 h for solids, and indicate that this should also apply to ‘light pre-procedural sedation’. These guidelines are now in widespread use in the UK, and have been incorporated into ED sedation protocols.

For clarity, the following definitions for sedation level will be used throughout this review:

Table 1 Categories of sedation
Minimal sedation
Responsiveness
Airway reflexes
Breathing
Cardiovascular

*Reflex withdrawal from painful stimulus is NOT considered a purposeful response.
2. Airway manipulation: During procedural sedation, airway manipulation does not routinely take place, unless there has been a complication. It is reported that two-thirds of aspirations during general anaesthesia occur during intubation. However, improving the sedation techniques could provide evidence regarding fasting in adults undergoing emergency sedation. However, it was expected that there would be little evidence available. If this was the case, the literature search would be expanded to identify relevant topics such as paediatric emergency sedation.

In the preliminary literature search, an electronic search was carried out, using the terms: [exp EMERGENCY] or [exp EMERGENCY TREATMENT] or [emergency.mp] AND [exp CONSCIOUS SEDATION/OR exp DEEP SEDATION/] or [sedation.mp] AND [procedur$.mp]. Limit to Humans and (Age Groups All Adult 19 plus years) and English Language. Searches were made of the following databases via Athens: MEDLINE (1950 to 2008 187 titles), EMBASE (1974 to 2008, 415 titles). All abstracts were read and relevant articles identified. Further literature was identified by hand-searching reference sections. Papers were assessed for relevance by applying the following inclusion criteria: (1) Design: case series, trials, cohorts. (2) Population: studies recruiting adult patients undergoing sedation for emergency procedures. (3) Interventions: Sedation for urgent procedures carried out in ED. (4) Outcome measures: adverse effects reported. Exclusion criteria: studies that did not document fasting status, and whose authors, when contacted, could not provide information on fasting status in the study population.

Due to the lack of conclusive evidence in the published literature regarding fasting in adult procedural sedation, a search was also conducted for evidence in paediatric emergency medicine. An electronic search was carried out, using the same terms as above, but also limited to ‘paediatric’. Searches were made of the following databases using the NHS library via Athens: MEDLINE (1950-2008, 226 titles), EMBASE (1974-2008, 425 titles). All abstracts were read and relevant articles identified. Further literature was identified by hand-searching reference sections. The same inclusion and exclusion criteria were applied. The results of the two literature searches will be discussed in two separate parts.

ADULT PROCEDURAL SEDATION

Results

One case report of pulmonary aspiration associated with sedation has been published to date, summarised in table 2.

Several large series were identified in the literature search. None of these papers specifically addressed the risk of pulmonary aspiration in procedural sedation. However, all the papers listed in table 3 specifically reported any adverse events occurring procedural sedation, of which vomiting and pulmonary aspiration were specifically included.

Comment

With the exception of one case report, there are no reports of pulmonary aspiration associated with emergency procedural sedation in the literature. However, cases of vomiting during sedation are described. In total 4657 cases of emergency sedation appear in table 3, all of which describe adults requiring emergency procedures, using a variety of sedative drugs, who had not been fasted according to ASA guidelines. In total, 17 cases of vomiting were reported during sedation, but none of the patients who vomited showed evidence of pulmonary aspiration. Of the cases that vomited during procedural sedation, one was being intubated for decreased level of consciousness, and was later found to have had a hypertensive intracranial haemorrhage prior to sedation. Another patient vomited after a period of apnoea for which they received bag-valve-mask ventilation (but no airway manipulation). The other cases had no specific additional cause for vomiting reported.

Table 2 Case report

Reference	Subjects	Study design	Findings	Comments
Cheung 2007	Single patient, fasted for 5 h undergoing manipulation of a fractured ankle	Case report	Pulmonary aspiration occurred	Alcohol consumed. Sedated on two occasions. Sedation administered by orthopaedic team
In summary, there is no high-level evidence that specifically addresses the risk of pulmonary aspiration associated with sedation for emergency procedures. However, large numbers of patients are described in these studies, and there remains only one case report of pulmonary aspiration in the literature to date.

PAEDIATRIC PROCEDURAL SEDATION

Paediatric emergency physicians, like their counterparts in the adult ED, are increasingly undertaking sedation for painful and unpleasant procedures such as suturing and joint/fracture manipulations. Similar to adult emergency sedation, there are no guidelines that specifically relate to sedation for paediatric emergency procedures. Again, the ASA guidelines are frequently applied to this group of patients, despite general acceptance that most procedural sedation is not likely to result in loss of protective airway reflexes. For emergency procedures, the ASA believes that the same fasting rules should apply as for elective procedures, that is, 2 h for clear liquids, 4 h after breast milk and 6 h after food or formula milk. The ASA states that if the patient is not starved and requires an emergency procedure, sedation should be modified to be lighter.
Reference	Subject	Study Design	Findings	Comments
Bassett KE32	393 children sedated using propofol	Prospective observational study	No vomits during procedure, no cases of aspiration reported	Patients fasted for 3 h
Newman DH32	1351 children sedated using various agents	Prospective observational study	Three cases of vomiting during sedation, no cases of aspiration reported	Patients fasted for 3 h
Agrawal D38	1014 children sedated using various agents	Prospective observational study	15 cases of vomiting during procedure. No cases of aspiration reported	56% subjects not fasted according to ASA guidelines
Roback MG30	2085 sedated using various agents	Cohort study	156 children vomited, no cases of pulmonary aspiration reported. No difference in vomiting between fasted and non-fasted groups	1/3 of 2085 patients not fasted according to ASA guidelines
Pena BMG35	1180 children sedated using various agents	Prospective observational study	Two cases of vomiting during procedure. No cases of aspiration reported	Patients not fasted
Sachetti A33	341 children sedated with various agents	Prospective multicentre observational study	No cases of vomiting or aspiration reported	Patients not fasted
Pitetti RB34	1244 children sedated using midazolam and/or ketamine	Prospective observational study	Vomiting occurred in 13 patients, no cases of aspiration reported	Patients fasted for >3 h
Dickinson R35	53 children sedated using etomidate	Retrospective chart review	No cases of vomiting or aspiration reported	Patients kept nil by mouth from arrival at ED
Bell A31	400 children sedated for using propofol	Prospective observational study	One patient vomited during sedation, no cases of aspiration reported	70% cases not fasted according to ASA guidelines
Skokan EG36	40 children sedated using propofol	Prospective observational study	No cases of vomiting or aspiration reported	Patients fasted for >4 h
Woolard D37	759 children sedated using various agents	Retrospective chart review	18 cases of vomiting, no cases of aspiration reported	Patients not fasted
Kennedy RM38	260 children sedated using midazolam or ketamine	Prospective partially blinded trial	18 cases of vomiting, no cases of aspiration reported	Patients not fasted
Godambe SA39	113 children sedated using various agents	Prospective partially blinded trial	Two cases of vomiting, no cases of aspiration reported	Patients fasted for >4 h
Pohlgheers AP40	133 children sedated using fentanyl and diazepam	Retrospective chart review	One case of vomiting, no cases of aspiration reported	Patients kept nil by mouth from time of arrival to ED
Holloway VJ41	100 children sedated using ketamine	Retrospective chart review	No cases of vomiting or aspiration reported	Patients fasted for 3 h
Younge PA42	59 children sedated for using oral ketamine and midazolam	Prospective randomised double blind trial	Five cases vomited, no cases of aspiration reported	Patients not fasted
Treston G43	272 children sedated using ketamine	Prospective observational study	No vomits during procedure, no cases of aspiration reported	Patients not fasted
Luhmann JD44	55 children sedated using ketamine	Randomised comparison	Two children vomited, no cases of aspiration reported	Patients fasted for 2 h
Kim G45	20 children sedated using ketamine	Prospective observational study	No cases of vomiting or aspiration reported	No full meal within 3 h
Ng KC46	500 children sedated using ketamine	Retrospective observational study	No reports of aspiration. Vomiting not reported	Patients fasted for 3 h
Heinz P47	83 children sedated using ketamine	Prospective randomised double blind study	No reports of aspiration. No vomits during procedure reported	Patients fasted for minimum of 3 h
McGlone R48	87 children sedated using ketamine and midazolam	Prospective comparative study	One report of vomiting, no cases of aspiration reported	Patients fasted for 3 h
McGlone RG49	501 children sedated using ketamine	Prospective observational study	No vomits during sedation, no cases of aspiration reported	Patients fasted for 3 h
Ellis D40	89 children sedated using ketamine	Prospective observational study	One case of vomiting during procedure. No cases of aspiration reported	Patients fasted for 4 h
Roback MG51	2500 children sedated using various agents	Prospective observational study	No cases of aspiration.	Patients fasted for 3 h
Green SM52	181 patients vomited, not clear if during procedure or recovery	Retrospective chart review	No cases of aspiration. One case of vomiting reported	No full meals within 3 h
Langston WJ53	268 children sedated using ketamine	Double blind RCT	No cases of aspiration. 22 cases of vomiting in the ED or after discharge	>-50% of patients not fasted to ASA guidelines
Table 4 Continued

Reference	Subject	Study Design	Findings	Comments
Pruitt JW26	37 children sedated using ketamine and midazolam	Prospective observational series	No cases of aspiration reported, one case of vomiting during recovery phase	No full meals within 3 h of procedure
Green SM25	108 children sedated using ketamine	Prospective uncontrolled trial	No cases of aspiration. One case of vomiting during sedation	No full meal within 3 h of procedure
McCarty EC16	114 children sedated using ketamine	Prospective case series	No cases of aspiration reported. No cases of vomiting during procedure	No full meal within 3 h of procedure
Dachs RJ57	30 children sedated using ketamine	Prospective observational study	No cases of aspiration or vomiting during procedure. Two cases of post procedural vomiting	Patients fasted for 3 h for solids.
Green SM26	1022 children sedated using ketamine	Prospective consecutive case series	No cases of aspiration reported. 6.7% of cases vomited	No full meal within 3 h of procedure
Sherwin TS29	104 children sedated using ketamine and midazolam	RCT	No cases of aspiration reported. No cases of vomiting during procedure	No full meal within 3 h of procedure
Waterman GD46	266 children sedated using ketamine and midazolam	RCT	No cases of aspiration reported. No cases of vomiting during procedure	Length of fast varied between 3.6 and 8.1 h of procedure
Priestley SJ61	28 children sedated using ketamine and midazolam	Prospective observational study	No cases of aspiration reported. No cases of vomiting during procedure	Patients fasted for 4 h for solids
Luhmann JD62	42 children sedated using various agents	Consecutive prospective case series	No cases of aspiration reported. One patient vomited.	Fasting times between 1.6 and 8.8 h of procedure
Losek JD63	116 children sedated using ketamine and midazolam	Retrospective chart review	No cases of aspiration or vomiting reported.	Patients not fasted
Waterman GD46	858 children sedated using ketamine	Retrospective chart review	No cases of aspiration reported. 10 cases of vomiting	Patients fasted for 4 h of procedure
Sharieff GD35	20 children sedated with ketamine and propofol	Prospective observational study	No cases of aspiration or vomiting reported during procedure	Patients fasted for 6 h for solids and 4 h for liquids
McKee MR46	471 children sedated with ketamine	Retrospective chart review	No cases of aspiration reported. 17 patients vomited	Patients fasted for 4 h for solids and 2 h for liquids
Langston WT53	255 children sedated with ketamine	Double blind RCT	No cases of aspiration reported. 25 patients vomited.	>50% of patients not fasted according to ASA guidelines
Acworth JP67	53 children sedated with ketamine and/or midazolam	Randomised trial	No cases of aspiration reported. One case of vomiting during procedure	Patients not fasted
Connors K68	58 children sedated with midazolam	Double blind, randomised trial	No cases of aspiration or vomiting reported	Patients not fasted
Shane SA69	34 children sedated with midazolam or placebo	Double blind randomised trial	No cases of aspiration or vomiting reported	Patients fasted for 2 h of procedure

ASA, American Society of Anesthesiologists; ED, emergency department; RCT, randomised controlled trial.

Results

Three studies were found that specifically investigated the relationship between pre-procedural fasting and adverse effects. All three studies show no association between the two. Agrawal et al28 report a consecutive series of 1014 children undergoing procedural sedation, of whom 56% were not fasted in accordance with ASA guidelines. There were no reported cases of pulmonary aspiration, and 15 reported cases of vomiting. There were no differences in airway complications, vomiting or any other adverse events between fasted and non-fasted groups. Roback et al29 in a study of 2085 children undergoing emergency procedural sedation, found no association between pre-procedural fasting and incidence of adverse events. Although 156 (7.5%) patients vomited there were no cases of pulmonary aspiration, and when the fasting time was divided into 2-h groups (0-2, 2-4, 4-6, 6-8 and >8 h) no association was found. The higher rates of vomiting in this study compared to others may be explained by a higher percentage of cases sedated using ketamine. An observational study by Bell et al31 reports 400 cases of paediatric sedation using propofol for emergency procedures. Seventy per cent of cases had eaten between 2 and 6 h prior to the procedure. No adverse outcomes were reported. In this study two patients vomited, the first during sedation and the other after recovering to the extent of being able to talk. Neither case showed evidence of aspiration.

A number of other paediatric sedation papers are listed in table 4, describing 17672 cases of paediatric procedural sedation. There are no reports of pulmonary aspiration among them.

Comment

There are several important considerations when applying the evidence from paediatric emergency sedation to adults. Ketamine is generally used more commonly in children, although its use has been widely reported in all ages. Ketamine is known to produce a dissociative state, rather than true sedation or anaesthesia,55 and is therefore believed to be less likely to suppress protective airway reflexes. It is also thought to be more emetic than other drugs.70 The paediatric population as a whole
are also believed to have a higher incidence of vomiting than adults. Nevertheless, there are no reports of pulmonary aspiration in children undergoing emergency procedural sedation, the majority of whom were not fasted in line with ASA guidelines.

CONCLUSION

The risk of aspiration during emergency procedural sedation is very low, and no evidence exists to support pre-procedural fasting. In several large case series of adult and paediatric emergency procedural sedation, there have been no published reports of pulmonary aspiration. Evidence to support ASA guidelines for fasting prior to general anaesthesia, which have been extrapolated for use in emergency sedation, has minimal scientific support. Indeed, several randomised trials have failed to show any link between non-fasted patients and pulmonary aspiration. Therefore, there is no reason to recommend fasting patients prior to procedural sedation in the ED.

However, selected patients believed to be significantly more prone to aspiration may benefit from a risk:benefit assessment prior to sedation. This assessment should consider the relative risks and benefits of the proposed procedure and sedation technique, including factors that may increase the risk of aspiration such as old age and conditions predisposing to gastro-oesophageal reflux.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

1. Cheung KW, Watson ML, Field S. Aspiration pneumonitis requiring intubation after procedural sedation and analgesia: a case report. Ann Emerg Med 2007;49:62–4.
2. Markie PE. Aspiration pneumonitis and aspiration pneumonia. N Engl J Med 2001;344:865–71.
3. Warner MA, Weber JG. Clinical significance of pulmonary aspiration in the perioperative period. Anesthesiology 1993;78:56–62.
4. Olsson GL, Hallen B, Hambraeus-Jonson K. Aspiration during anaesthesia—a computer-aided study in 185,358 anaesthetics. Acta Anaesthesiol Scand 1998;30:84–92.
5. Mendelson CL. The aspiration of stomach contents into the lungs during obstetric anaesthesia. Am J Obstet Gynecol 1946;52:191–204.
6. Roberts RB, Shirley MA. Reducing the risk of acid aspiration during caesarean section. Anaesth Analg 1974;53:859–68.
7. American Society of Anaesthesiologists. Practice guidelines for preoperative fasting and the use of pharmacological agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures. Anesthesiology 1999;90:898–905.
8. Brady M, Kim S, Stuart P. Preoperative fasting for adults to prevent perioperative complications (Review). Cochrane Database Syst Rev 2003;(4):CD004423.
9. Soreide E, Holst Larson H, Reite K, et al. The effects of giving 25-45ml of water with diazepam premedication 1-2 hours before general anaesthesia. Br J Anaesth 1993;71:503–6.
10. Goodwin AP, Rowe VL, Ogg TW, et al. Oral fluids prior to day surgery. The effect of shortening the pre-operative fluid fast on postoperative morbidity. Anaesthesia 1991;46:1066–8.
11. Brossel J, Nygren J, Lagerkranz M, et al. A carbohydrate-rich drink reduces preoperative discomfort in elective surgery patients. Anaesth Analg 2001;93:1344–50.
12. Phillips S, Hutchinson S, Davidson T. Preoperative drinking does not affect gastric contents. Br J Anaesth 1993;70:6–9.
13. Gilbert SS, Essy MR, Frich WW. The effect of per-operative oral fluids on morbidity following anaesthesia for minor surgery. Anaesthesia 1995;50:79–81.
14. Yagci G, Can MF, Ozturk E. Effects of preoperative carbohydrate loading on glucose metabolism and gastric contents in patients undergoing moderate surgery: a randomized, controlled trial. Nutrition 2008;24:212–16.
15. Engelhardt T, Webster NR. Pulmonary aspiration of gastric contents in anaesthesia. Br J Anaesth 1999;83:453–60.
16. Ljungqvist O, Soreide E. Preoperative fasting. Br J Surg 2003;90 400–6.
17. Green SM. Pulmonary aspiration risk during ED procedural sedation: an examination of the role of fasting and sedation depth. Acad Emerg Med 2002;9:35–42.
18. Glesson K, Eggli DF, Maxwell SL. Quantitative aspiration during sleep in normal subjects. Chest 1997;111:1266–72.
19. Blitt CD, Gutman HL, Cohen DD, et al. Silent regurgitation and aspiration during general anaesthesia. Anaesth Analg 1970;49:707–13.
20. Culver GA, Makel HP, Beecher HK. Frequency of aspiration of gastric contents by the lungs during general anesthesia and surgery. Ann Surg 1951;133:289–92.
21. Kallar SK, Everett LL. Potential risks and preventive measures for pulmonary aspiration—new concepts in preoperative fasting guidelines. Anesth Analg 1993;77:171–82.
22. Cote CJ, Goudsouzian NG, Litvan LM, et al. Assessment of risk factors related to acid aspiration syndrome in pediatric patients—gastric pH and residual volume. Anesthesiology 1982;56:70–2.
23. Lydon A, McGinley J, Cooke T, et al. Effects of anxiety on the rate of gastric emptying of liquids. Br J Anaesth 1989;61:522–5.
24. Madsen DM, Payne MR, McRae JH, et al. Gastric emptying following Colles’ fracture. Arch Emerg Med 1991;8:165–8.
25. Pena BMG, Krauss B. Adverse events of procedural sedation and analgesia in a paediatric emergency department. Ann Emerg Med 1999;34:483–91.
26. Kovac AL. Prevention and treatment of postoperative nausea and vomiting. Drugs 2000;59:213–43.
27. Green SM. Fasting is a consideration—not a necessity for emergency department procedural sedation and analgesia. Ann Emerg Med 2003;42:467–50.
28. Agrawal D, Manz SF, Gupta R, et al. Preprocedural fasting state and adverse events in children undergoing procedural sedation and analgesia in a paediatric emergency department. Ann Emerg Med 2003;42:638–46.
29. Bassett KE, Anderson JL, Pibble CG, et al. Propofol for procedural sedation in children in the emergency department. Ann Emerg Med 2003;42:773–81.
30. Roback MG, Bajaj L, Watten JE, et al. Preprocedural fasting and adverse events in procedural sedation and analgesia in a pediatric emergency department: are they related? Ann Emerg Med 2004;44:454–9.
31. Bell A, Treston G, McNabb C. Profiling adverse respiratory events and vomiting when using propofol for emergency department procedural sedation. Emerg Med Australas 2007;19:605–10.
32. Newman DH, Azer MM, Pitetti RD. When is a patient safe for discharge after procedural sedation? The timing of adverse effect events in 1,367 pediatric procedural sedations. Ann Emerg Med 2003;42:627–35.
33. Sachetti A, Stander E, Ferguson N. Pediatric procedural sedation in the community emergency department: Results from the proSCGd registry. Pediatr Emerg Care 2007;23:216–22.
34. Pitetti RD, Singh S, Pierce MC. Safe and efficacious use of procedural sedation and analgesia by non-anesthesiologists in a pediatric emergency department. Arch Pediatr Adolesc Med 2003;157:1090–6.
35. Dickinson R, Singel AJ, Carmon W. EtoMidate for pediatric sedation prior to fracture reduction. Acad Emerg Med 2001;8:747–7.
36. Stokan EG, Pibble C, Bassett KE. Use of propofol sedation in a pediatric emergency department: a prospective study. Clin Pediatr 2001;40:663–71.
37. Woolard DJ, Tenbrook T. Sedative-analgesic agent administration in children: analysis of use and complications in the emergency department. J Emerg Med 1994;12:653–61.
38. Kennedy KM, Porter FL, Miller JP. Comparison of fentanyl/midazolam with ketamine/ midazolam for pediatric orthopedic emergencies. Pediatrics 1998;102:956–63.
39. Godambe SA, Elliot V, Murthy D. Comparison of propofol/fentanyl versus ketamine/ midazolam for brief orthopaedic procedural sedation in a pediatric emergency department. Pediatrics 2002;112:116–23.
40. Pohlgeers AP, Frielind LR, Keegan-Jones L. Combination fentanyl and diazepam for pediatric conscious sedation. Acad Emerg Med 1995;2:879–83.
41. Holloway VJ, Husain HM, Gautam V. Accident and emergency department led implementation of ketamine sedation in paediatric practice and parental response. J Accid Emerg Med 2000;17:25–8.
42. Younge PA, Kendall JM. Sedation for children requiring wound repair: a randomised controlled double blind comparison of oral midazolam and oral ketamine. Emerg Med J 2001;18:30–3.
43. Treston G. Prolonged pre-procedural fasting time is unnecessary when using titrated intravenous ketamine for paediatric procedural sedation. Emerg Med Australas 2004;16:145–50.
44. Luhmann JD, Schootman M, Luhmann SJ, et al. A randomized comparison of nitrous oxide plus haemorrhage block versus ketamine plus midazolam for emergency department forearm fracture reduction in children. Pediatrics 2008;121:1078–86.
45. Kim G, Green SM, Denmark TK, et al. Ventilatory response during dissociative sedation in children—a pilot study. Acad Emerg Med 2003;10:140–5.
46. Ng KC, Ang SY. Sedation with ketamine for paediatric procedures in the emergency department—a review for 500 cases. Singapore Med J 2002;43:300–4.
47. Heinz P, Geehoed GC, Wise C, et al. Is atracurium needed with ketamine sedation? A prospective, randomised, double blind study Emerg Med J 2006;23:206–9.
48. McGlone R, Fleet T, Durham S, et al. A comparison of intramuscular ketamine with high dose intramuscular midazolam with and without intranasal flumazenil in children before suturing. Emerg Med J 2001;18:34–8.
49. McGlone RG, Howes MC, Joshi M. The Lancaster experience of 2.0 to 2.5mg/kg intramuscular ketamine for paediatric sedation: 501 cases and analysis. Emerg Med J 2004;21:290–5.
50. Ellis DY, Husain HM, Saattra JP, et al. Procedural sedation in paediatric emergency procedures: a prospective audit on ketamine use in the emergency department. Emerg Med J 2004;21:286–9.
Intravenous ketamine sedation of pediatric patients in the emergency department: safety profile in 1,022 cases. Ann Emerg Med 1999;34:694–8.

Sherin KS, Green SM, Khan A, et al. Does adjunctive midazolam reduce recovery agitation after ketamine sedation for procedural procedures? A randomized, double-blind, placebo-controlled trial. Ann Emerg Med 2007;49:194–201.

Wathen JE, Claridge E, Ahmed S, et al. Adverse events associated with ketamine sedation in children: a double-blind, randomized, placebo-controlled trial. J Emerg Med 2009;37:642–9.

Luhmann JD, Kennedy RM, McAllister JD, et al. Ketamine-propofol combination for procedural sedation and analgesia in the emergency department. EMJ 2007;5:315–20.

Taylor J, McAdam CM, Kennedy RM, et al. Ketamine-propofol combination for procedural sedation and analgesia in the emergency department. EMJ 2007;5:315–20.

Miner JR, Bartusch TC, Coates SP, et al. Safety of etomidate administration for procedural sedation in elderly emergency department patients. Pharmacol Ther 2007;115:23–30.

Wacek JA, Blum J, et al. Ketamine for procedural sedation in the pediatric emergency department. Ann Emerg Med 2007;49:468–74.

Metzger TA, Winfield JA, et al. Ketamine for procedural sedation in the pediatric emergency department. Ann Emerg Med 2007;49:468–74.

Chudnofsky CR, Weber JE, Stoyanoff PJ, et al. A combination of midazolam and ketamine for procedural sedation and analgesia in adult emergency department patients. Ann Emerg Med 2000;36:579–88.

Lerman B, Yoshida D, Levitt MA. A prospective evaluation of safety and efficacy of ketamine in the pediatric emergency department. J Emerg Med 2003;25:291–7.

Miner JR, Biros M, Krieg S, et al. Randomised clinical trial of propofol versus methohexital for procedural sedation during fracture and dislocation reduction in the emergency department. EMJ 2003;10:931–7.

Fuchs SM, Khine H. Efficacy of rectal midazolam for the sedation of anxious children requiring laceration repair. Ann Emerg Med 1994;23:611. [Abstract].

Shane SA, Fuchs SM, Khine H. Efficacy of rectal midazolam for the sedation of preschool children undergoing laceration repair. Ann Emerg Med 1994;24:1065–73.

Saccometti A, Senula G, Strickland J. Procedural sedation in the community emergency department: Initial results of the proSCED registry. Acad Emerg Med 2007;14:41–6.

Frazee BW, Park RJ, Lovery D, et al. Propofol for deep procedural sedation in the emergency department. Ann Emerg Med 2005;45:190–5.

Campbell SG, Mapek K, Kovacs G, et al. Procedural sedation and analgesia in a Canadian adult tertiary care emergency department: a case series. Can J Emerg Med 2006;8:85–93.

Miner JR, Martel M, Meyer M. Procedural sedation of critically ill patients in the emergency department. Acad Emerg Med 2005;12:124–8.

Swanson ER, Seaberg D, Mathias S. The use of propofol for sedation in the pediatric emergency department. Acad Emerg Med 1998;5:294–8.

Chudnofsky CR, Weber JE, Stoyanoff PJ, et al. A combination of midazolam and ketamine for procedural sedation and analgesia in adult emergency department patients. Ann Emerg Med 2000;36:579–88.

Lerman B, Yoshida D, Levitt MA. A prospective evaluation of safety and efficacy of ketamine in the pediatric emergency department. J Emerg Med 2003;25:291–7.

Miner JR, Biros M, Krieg S, et al. Randomised clinical trial of propofol versus methohexital for procedural sedation during fracture and dislocation reduction in the emergency department. EMJ 2003;10:931–7.

Burton JR, Miner JR, Shipley ER, et al. Propofol for emergency department procedural sedation and analgesia: a tale of three centers. Acad Emerg Med 2006;13:24–30.

Coll-Vinent B, Sala X, Fernandez M. Sedation for cardioversion in the emergency department: analysis of effectiveness in four protocols. Ann Emerg Med 2003;42:767–72.

Miner JR, Biros M, Heegaard W, et al. Bispectral electroencephalographic analysis of patients undergoing procedural sedation in the emergency department. Acad Emerg Med 2003;10:638–43.

Sokolowski J, Niewinska K, Niewinski P, et al. Safety of etomidate administration for procedural sedation in elderly emergency department patients. Pharmacol Ther 2007;115:315–20.

Waxman GD Jr., emergency department trial. of intravenous ketamine sedation in children? A double-blind, randomized, controlled, placebo-controlled trial. EMJ 2000;32:19–26.

Vinson DR, Bradbury DR, Emtiad et al. Adverse events associated with procedural sedation during fracture and dislocation reduction in the emergency department. EMJ 2000;39:592–8.

Ruth WJ, Burton JH, Bock AJ. Intravenous etomidate for procedural sedation in the emergency department patients. Acad Emerg Med 2001;8:13–18.

Burton JR, Miner JR, Shipley ER, et al. Propofol for emergency department procedural sedation and analgesia: a tale of three centers. Acad Emerg Med 2006;13:24–30.

Coll-Vinent B, Sala X, Fernandez M. Sedation for cardioversion in the emergency department: analysis of effectiveness in four protocols. Ann Emerg Med 2003;42:767–72.

Miner JR, Biros M, Heegaard W, et al. Bispectral electroencephalographic analysis of patients undergoing procedural sedation in the emergency department. Acad Emerg Med 2003;10:638–43.

Sokolowski J, Niewinska K, Niewinski P, et al. Safety of etomidate administration for procedural sedation in elderly emergency department patients. Pharmacol Ther 2007;115:315–20.

Willman EV, Andolfatto G. A prospective evaluation of “ketofol” (ketamine/propofol combination) for procedural sedation and analgesia in the emergency department. Ann Emerg Med 2007;49:1916–44.

Chan KLL, Emtiad and midazolam for procedural sedation in the emergency department of Queen Elizabeth Hospital: a randomised controlled trial. Am J Emerg Med 2008;26:438–9.

Engel J, Coyer M, Charles J. Propofol for procedural sedation in a rural emergency department [abstract]. Ann Emerg Med 2007;50:3122–3.

Dunn T, Mossop D, Newton A, et al. Procedural sedation in the emergency department. EMJ 2007;24:459–61.

Miner JR, Danahy M, Moch A, et al. Randomised clinical trial of etomidate versus propofol for procedural sedation in the emergency department. Ann Emerg Med 2007;49:16–22.

Newton A, Fitton L. Intravenous ketamine for adult procedural sedation in the emergency department: a prospective cohort study. EMJ 2008;28:498–501.

Vardy JM, Dignon N, Mukherjee N, et al. Audit of safety and effectiveness of ketamine for procedural sedation in the emergency department. Emerg Med 2008;28:397–9.

Sim BS, Seet CM. To study the effectiveness and safety of ketamine and midazolam procedural sedation in the incision and drainage of abscesses in the adult emergency department. Eur J Emerg Med 2008;15:689–72.

Messenger DW, Murray HE, Dunpey PE, et al. Sub dissociative-dose ketamine versus fentanal for analgesia during propofol procedural sedation: a randomized clinical trial. Acad Emerg Med 2008;15:877–86.

Wright SW, Chudnofsky CR, Dronen SC, et al. Comparison of midazolam and diazepam for conscious sedation in the emergency department. Ann Emerg Med 1993;22:101–5.

Green SM, Sherwin TS. Incidence and severity of recovery agitation after ketamine sedation in young adults. J Am Emerg Med 2005;23:142–4.