Aidi injection combined with chemotherapy in the treatment of cancer patients: a systematic review of systematic reviews and meta-analyses
Dehua Zhao, Xiaolei Long, Jing Chen and Jisheng Wang

The objective of the study was to evaluate and summarize the evidence from systematic reviews and meta-analyses regarding the efficacy and safety of Aidi injection combined with chemotherapy in the treatment of cancer patients. PubMed, EMBASE, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Chong qing VIP databases, and Wanfang databases were searched for systematic reviews/meta-analyses on the topic of Aidi treating cancer patients published from inception to 20 December 2020. Google Scholar and OpenGrey were searched for grey literature and International Prospective Register of Systematic Reviews for ongoing reviews. Two investigators independently selected eligible studies, extracted data, and assessed the methodological quality of included systematic reviews/meta-analyses using the measurement tool to assess systematic reviews 2 (AMSTAR-2) tool, and the strength of evidence was assessed with the grade of recommendation, assessment, development, and evaluation (GRADE) system. Twenty-seven systematic reviews/meta-analyses were identified in the study. The methodological quality of all 27 systematic reviews/meta-analyses were critically low when evaluated by AMSTAR-2, and the evidence quality of all outcomes rated as either low or very low based on the GRADE system. The available evidence is currently insufficient to support or refute the use of Aidi in the treatment of cancer patients, thus high-quality trials with large sample sizes are needed to explore its efficacy and safety in cancer patients. Anti-Cancer Drugs 2021, 32:991–1002 Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

Keywords: Aidi injection, AMSTAR-2 tool, chemotherapy, cancer patients, GRADE system

Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
Correspondence to Jisheng Wang, PhD, Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Jiannan Dong Street 190, Mianyang, Sichuan 86-621000, China
E-mail: wangjishengyaoshi@163.com
Received 25 March 2021 Revised form accepted 30 May 2021

Introduction
Cancer is a serious public health problem and has emerged as a leading cause of death globally [1]. Patients with advanced stage usually lose the opportunity for surgical therapy, and chemotherapy is then a major treatment option for disease control [2]. Chemotherapy drugs not only kill tumor cells, but also kill normal tissue cells, thereby they can lead to series of toxic side effects, such as hepatotoxicities and gastrointestinal toxicities [3]. Chemotherapy-induced toxicities can decrease the medication adherence, result in poor quality of life (QOL), and increase the risk of chemotherapeutic failure [4]. Therefore, how to improve the efficacy and safety of chemotherapy has become an important issue for clinicians.

In China, there has been a long history of using traditional Chinese medicine (TCM) as one kind of adjuvant medicine, combined with chemotherapy in practice for the treatment of cancer patients [5]. Aidi injection, a TCM, is an extraction obtained from astragalus, ginseng, cantharis, and acanthopanax, with many pharmacological activities, including anti-tumor activity, enhancement of immunity, and relief of chemotherapy-related toxicities [6]. In recent years, the application of Aidi combined with chemotherapy has been widely used in the treatment of lung cancer, primary liver cancer, gastric carcinoma, and colorectal cancer, and there have been a number of systematic reviews and meta-analyses on the effect of Aidi combined with chemotherapy for cancer patients [7–33]. However, the treatment benefits of Aidi combined with chemotherapy for cancer patients are still unclear due to the differences of methods, and quality of systematic reviews/meta-analyses. Thus, we conduct an overview to evaluate the methodological quality of the systematic reviews/meta-analyses and describe the quality of evidence on their outcomes [7–33], in order to identify the effect of Aidi in cancer treatment and to provide advices for future research.
Methods

Inclusion criteria
Type of studies. Studies were systematic reviews or meta-analyses written in English or Chinese.

Population. Cancer patients.

Intervention. Patients in the intervention group were given Aidi combined with chemotherapy.

Comparison. Patients in the control group were given chemotherapy alone.

Outcomes. The outcomes investigated included tumor response, survival, QOL, and adverse events. Tumor response was evaluated according to response evaluation criteria in solid tumors or WHO. Indicators used were complete response (CR), partial response (PR), stable disease, and progressive disease. The objective response rate (ORR) was equal to CR plus PR, and the disease control rate (DCR) was equal to CR plus PR and stable disease. The survival was assessed using 1-year overall survival rate (one-year overall survival rate). According to Karnofsky Performance Status (KPS) scale, QOL was considered to be improved if KPS score increased 10 points or higher after treatment. Adverse events were including leukopenia, thrombocytopenia, anemia, gastrointestinal reaction, hepatotoxicity, and nephrotoxicity according to the WHO or common terminology criteria for adverse events version.

Exclusion criteria
We excluded literature reviews (non-systematic reviews/meta-analyses), case reports, animal studies, data, or the full text are unavailable.

Literature search strategy
We searched PubMed, EMBASE, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Chong qing VIP databases, and Wanfang databases for all systematic reviews/meta-analyses on the topic of Aidi combined with chemotherapy in treating cancer patients from inception to 20 December 2020. The following search terms included Aidi injection, Aidi, cancer, malignancies, transcatheter arterial chemoembolization, and chemotherapy. We also investigated google scholar, OpenGrey, International Prospective Register of Systematic Reviews, and the reference lists of primary included systematic reviews/meta-analyses to find the other eligible studies. The search was limited to articles published in English and Chinese. Two investigators performed the literature search independently, and any discrepancies were resolved with the third investigator.

Study selection
Two investigators independently selected the eligible studies based on the inclusion and exclusion criteria. Any disagreements were resolved through discussion and consultation with a third investigator.

Data extraction
Two investigators, respectively, extracted data from the eligible studies. The items extracted from each study included first author, publication year, tumor types, numbers of included trials and participants, number and design of included primary studies, quality assessment methods, intervention and comparator summary, and outcomes of each included reviews.

Quality assessment
Two investigators separately evaluated the methodological quality of included systematic reviews/meta-analyses by using the measurement tool to assess systematic reviews 2 (AMSTAR-2) assessment [34], which contains 16 items. From 16 items, 7 of them were critical items (items: 2, 4, 7, 9, 11, 13, and 15). The situation of each item should be fully considered and categorized into four levels, namely, high, moderate, low, and critically low. Any disagreements were resolved by discussion and adjudication by a third investigator.

Quality evaluation of evidence
Two investigators independently use the grade of recommendation, assessment, development, and evaluation (GRADE) system (pro 3.2 Software) to assess the evidence quality of related outcomes and classifies evidence quality into four levels: high, moderate, low, and very low [35]. Randomized Controlled Trial (RCT) was set as the high quality, but five factors could reduce the quality of evidence, including risk of bias (RoB), inconsistency, indirectness, imprecision, and other considerations. Any disagreements were resolved by discussion and consultation with a third investigator.

Results

Study selection
A total of 173 studies were identified through database searching, and 61 duplicated studies were identified and removed. After screening the titles and abstracts of the remaining 112 records, 55 records were excluded because of irrelevant topic. Thus, 57 potentially studies were selected for full-text screening. Of these, 30 articles were excluded for the following reasons: studies were not systematic reviews/meta-analyses (n = 3) [36–38]; studies did not evaluate clinical outcomes (n = 7) [39–45]; Aidi combined with radiotherapy or targeted therapy (n = 8) [46–53]; data unavailable (n = 6) [54–59]; and studies included other TCM (n = 6) [60–65]. Finally, a total of 27 systematic reviews/meta-analyses were included in this overview [7–33]. The study selection process is presented in Fig. 1.

Characteristics of included studies
The 27 systematic reviews/meta-analyses included in our study were published between 2009 and 2020. Of these, 12 of them were published in English language [7–18], and the remaining 15 were published in Chinese language [19–33]. The tumor types including lung cancer,
colorectal cancer, malignant lymphoma, hepatic carcinoma, gastric carcinoma, and ovarian cancer. The number of RCTs included in each review ranged from 7 to 80, and the total participants ranged from 453 to 6279. The outcomes investigated included tumor response, survival, QOL, and adverse effects. Regarding the quality assessment tool, a total of 21 systematic reviews/meta-analyses used Cochrane RoB tool [7,8,10–13,15–20,22–26,28–30,33], 3 systematic reviews/meta-analyses used the Jadad score [21,27,32], 1 study used both Cochrane RoB tool and Jadad score [31], and 1 meta-analysis used both Cochrane RoB and methodological section of CONSORT statement to evaluate the quality of the included RCTs [14]. But one meta-analysis have not presented the details of quality assessment [9]. The main characteristics of included reviews are listed in Table 1.

Quality of included studies

According to AMSTAR-2 classification, the overall quality of the systematic reviews/meta-analyses was critically low with all studies identified as having more than one critical flaw with or without noncritical weakness. All systematic
Systematic reviews’ meta-analyses (Refs.)	Tumor types	No. patients	No. included studies	Quality evaluation tool	intervention group	Control group	Outcomes	Meta-analysis conducted?
Xiao et al. (2020a) [7]	Lung cancer	6279	80 RCTs	Cochrane RoB	Aidi + Chemotherapy	Chemotherapy alone	①②③④⑤⑥	Yes
Xiao et al. (2020) [8]	NSCLC	4053	54 RCTs	Cochrane RoB	Aidi + NP	NP alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Wang et al. (2016) [9]	Malignant lymphoma	513	8 RCTs	NA	Aidi + CHOP	CHOP alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Zhao et al. (2016) [10]	NSCLC	1012	12 RCTs	Cochrane RoB	Aidi + NP	NP alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Chen et al. (2018) [11]	Hepatic carcinoma	1611	20 RCTs	Cochrane RoB	Aidi + TACE	TACE alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Xiao et al. (2018a) [12]	NSCLC	2837	36 RCTs	Cochrane RoB	Aidi + Docetaxel-based chemotherapy	Docetaxel-based chemotherapy	①②③④⑤⑥⑦⑧⑨⑩	Yes
Dai et al. (2018) [13]	Hepatocellular carcinoma	1927	32 RCTs	Cochrane RoB + CONSORT statement	Aidi + Chemotherapy	Chemotherapy alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Xiao et al. (2016) [15]	NSCLC	1390	17 RCTs	Cochrane RoB	Aidi + Platinum-based chemotherapy	Platinum-based Chemotherapy alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Xiao et al. (2017) [16]	NSCLC	2582	36 RCTs	Cochrane RoB	Aidi + GP	GP alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Wang et al. (2018) [17]	NSCLC	4081	42 RCTs	Cochrane RoB	Aidi + Platinum-based chemotherapy	Platinum-based chemotherapy alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Xiao et al. (2018) [18]	NSCLC	2058	31 RCTs	Cochrane RoB	Aidi + Paclitaxel-based chemotherapy	Paclitaxel-based chemotherapy alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Wang et al. (2010) [19]	NSCLC	800	11 RCTs	Cochrane RoB	Aidi + TP	TP alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Yang and Ding (2012) [20]	NSCLC	1104	15 RCTs	Cochrane RoB	Aidi + GP	GP alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Liu (2019) [21]	Gastric cancer	851	11 RCTs	Jadad system	Aidi + S-1	S-1 alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Han et al. (2016) [22]	NSCLC	1153	15 RCTs	Cochrane RoB	Aidi + GP	GP alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Zheng et al. (2017) [23]	Hepatic carcinoma	2306	33 RCTs	Cochrane RoB	Aidi + TACE	TACE alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Zhang et al. (2014) [24]	Malignant lymphoma	453	7 RCTs	Cochrane RoB	Aidi + CHOP	CHOP alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Li et al. (2018) [25]	Colorectal cancer	653	8 RCTs	Cochrane RoB	Aidi + FOLFIRI	FOLFIRI alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Qiu et al. (2019) [26]	Ovarian cancer	1323	21 RCTs	Cochrane RoB	Aidi + Chemotherapy	Chemotherapy alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Nian et al. (2015) [27]	Breast cancer	759	11 RCTs	Jadad system	Aidi + Chemotherapy	Chemotherapy alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Li and Ning (2011) [28]	Gastric cancer	962	15 RCTs	Cochrane RoB	Aidi + Chemotherapy	Chemotherapy alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Yuan et al. (2010) [29]	Hepatocellular carcinoma	1065	16 RCTs	Cochrane RoB	Aidi + Chemotherapy	Chemotherapy alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Li and Lin (2016) [30]	Colorectal cancer	1062	14 RCTs	Cochrane RoB	Aidi + Chemotherapy	Chemotherapy alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Gong et al. (2013) [31]	Hepatic carcinoma	1598	21 RCTs	Cochrane RoB + Jadad system	Aidi + TACE	TACE alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Wu et al. (2017) [32]	NSCLC	1207	9 RCTs	Jadad system	Aidi + Chemotherapy	Chemotherapy alone	①②③④⑤⑥⑦⑧⑨⑩	Yes
Zhao et al. (2018) [33]	NSCLC	1055	16 RCTs	Cochrane RoB	Aidi + TP	TP alone	①②③④⑤⑥⑦⑧⑨⑩	Yes

① ORR; ② DCR; ③ QOL; ④ one-year overall survival rate; ⑤ Leukopenia; ⑥ Thrombocytopenia; ⑦ Anemia; ⑧ Gastrointestinal reaction; ⑨ Hepatotoxicity; ⑩ Nephrotoxicity.
CHOP, cyclophosphamide + doxorubicin + vincristine + prednisone; FOLFIRI, fluorouracil + folinic acid + irinotecan; GP, gemcitabine + cisplatin; NP, vinorelbine + cisplatin; RCT, Randomized Controlled Trial; RoB, risk of bias; S-1, tegafur/gimeracil/oteracil; TACE, transcatheter arterial chemoembolization; TP, paclitaxel + cisplatin.
Study (Ref.)	1	2*	3	4*	5	6	7*	8	9*	10	11*	12	13*	14	15*	Overall quality
Xiao et al. (2020a) [7]	Yes	No	No	PY	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	CL
Xiao et al. (2020b) [8]	Yes	No	No	PY	Yes	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	CL
Wang et al. (2016) [9]	Yes	No	No	PY	No	Yes	No	No	No	No	No	Yes	Yes	Yes	Yes	CL
Zhao et al. (2016) [10]	Yes	No	No	PY	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	CL
Chen 2018 [11]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	No	Yes	Yes	Yes	CL
Xiao et al. (2018) [12]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	No	Yes	Yes	Yes	CL
Dai (2016) [13]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	No	No	Yes	Yes	CL
Wang et al. (2015) [14]	Yes	No	No	Yes	No	No	No	PY	Yes	No	No	No	No	No	Yes	No
Xiao et al. (2016) [15]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	No	No	Yes	Yes	CL
Xiao et al. (2017) [16]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	No	No	Yes	Yes	CL
Wang et al. (2018) [17]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	No	No	Yes	Yes	CL
Xiao et al. (2018) [18]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	Yes	Yes	Yes	Yes	CL
Wang et al. (2010) [19]	Yes	No	No	Yes	No	Yes	No	PY	Yes	No	Yes	No	Yes	No	Yes	No
Yang and Ding (2012) [20]	Yes	No	No	PY	No	No	No	PY	PY	Yes	No	No	No	Yes	No	CL
Liu (2019) [21]	Yes	No	No	PY	Yes	Yes	No	No	No	No	No	Yes	Yes	No	No	CL
Han et al. (2016) [22]	Yes	No	No	PY	No	No	No	PY	PY	No	Yes	No	No	No	No	CL
Zhang et al. (2017) [23]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	No	No	Yes	No	CL
Zheng et al. (2014) [24]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	No	No	Yes	No	CL
Li et al. (2019) [25]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	No	No	Yes	No	CL
Qu et al. (2019) [26]	Yes	No	No	PY	Yes	No	No	PY	Yes	No	No	No	Yes	No	No	CL
Nian et al. (2018) [27]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	Yes	No	Yes	No	No	CL
Li and Ning (2011) [28]	Yes	No	No	PY	No	No	No	PY	PY	No	Yes	No	No	No	Yes	CL
Yuan et al. (2010) [29]	Yes	No	No	PY	No	Yes	No	No	CL							
Li and Lin (2016) [30]	Yes	No	No	PY	Yes	Yes	No	PY	Yes	No	No	No	No	No	No	CL
Gong et al. (2013) [31]	Yes	No	No	PY	Yes	Yes	No	PY	PY	No	No	No	Yes	No	No	CL
Wu et al. (2017) [32]	Yes	No	No	PY	No	No	No	PY	PY	No	No	No	Yes	No	Yes	No
Zhao et al. (2016) [33]	Yes	No	No	PY	Yes	Yes	No	No	No	Yes	Yes	No	Yes	No	Yes	No

1. Did the research questions and inclusion criteria for the review include the components of PICO? 2. Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and, did the report justify any significant deviations from the protocol? 3. Did the review authors explain their selection of the study designs for inclusion in the review? 4. Did the review authors use a comprehensive literature search strategy? 5. Did the review authors perform study selection in duplicate? 6. Did the review authors perform data extraction in duplicate? 7. Did the review authors provide a list of excluded studies and justify the exclusions? 8. Did the review authors describe the included studies in adequate detail? 9. Did the review authors use a satisfactory technique for assessing the RoB in individual studies that were included in the review? 10. Did the review authors report the sources of funding for the studies included in the review? 11. If meta-analysis was performed, did the review authors use appropriate methods for the statistical combination of results? 12. If meta-analysis was performed, did the review authors assess the potential impact of RoB in individual studies on the results of the meta-analysis or other evidence synthesis? 13. Did the review authors account for RoB in primary studies when interpreting/discussing the results of the review? 14. Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review? 15. If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review? 16. Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review? AMSTAR-2, a measurement tool to assess systematic reviews; CL, critical low; RCT, randomized controlled trial; RoB, risk of bias.

*Critical items.
Study (Ref.)	Outcomes (no. studies)	RoB	Inconsistency	Indirectness	Imprecision	Other considerations	Intervention	Control	Effect Relative (95% CI)	Quality	Importance
Xiao et al. (2020a) [7]	Hepatotoxicity (78)	Serious	No serious	No serious	No serious	Strongly suspected	39/23112 (12.6%)	630/3049 (20.7%)	RR 0.61 (0.55–0.69)	Low	Important
Nephrototoxicity (58)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	235/2259 (10.4%)	378/2210 (17.1%)	RR 0.62 (0.53–0.72)	Low	Important
ORR (76)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	154/2949 (52.4%)	114/2889 (39.6%)	RR 1.32 (1.25–1.40)	Low	Critical
DCR (75)	No serious	Serious	No serious	No serious	No serious	Strongly suspected	256/2004 (12.8%)	2143/2859 (75.6%)	OR 0.42 (0.33–0.53)	Low	Important
ORR (51)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	933/1933 (48.3%)	693/1986 (36.6%)	RR 1.65 (1.45–1.88)	Low	Critical
Xiao et al. (2020b) [8]	Hepatotoxicity (78)	Serious	No serious	No serious	No serious	Strongly suspected	202/831 (24.3%)	317/816 (38.8%)	OR 0.42 (0.33–0.53)	Low	Important
ORR (76)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	176/635 (27.7%)	249/622 (40%)	RR 1.32 (1.25–1.40)	Low	Critical
DCR (75)	No serious	Serious	No serious	No serious	No serious	Strongly suspected	2503/2919 (85.7%)	2143/2859 (75.6%)	OR 0.42 (0.33–0.53)	Low	Important
ORR (51)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	18/246 (7.3%)	38/247 (15.4%)	OR 0.35 (0.27–0.47)	Low	Important
Leukopenia (35)	No serious	Strongly suspected	828/1338 (61.9%)	1025/1322 (77.5%)	OR 0.32 (0.26–0.40)	Low	Important				
Anemia (17)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	60/184 (32.8%)	106/114 (91.4%)	OR 0.32 (0.26–0.40)	Low	Important
Gastrointestinal reaction (40)	No serious	Strongly suspected	803/1542 (52.1%)	1006/1514 (66.4%)	OR 0.42 (0.36–0.51)	Low	Important				
Hematotoxicity (8)	No serious	Strongly suspected	18/248 (7.3%)	38/247 (15.4%)	OR 0.41 (0.23–0.75)	Low	Important				
Wang et al. (2016) [9]	ORR (51)	No serious	No serious	No serious	No serious	Strongly suspected	933/1933 (48.3%)	693/1986 (36.6%)	OR 1.32 (1.25–1.40)	Low	Critical
QOL (36)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	730/1539 (49.8%)	394/1288 (30.6%)	RR 1.32 (1.25–1.40)	Low	Critical
ORR (10)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	256/2004 (12.8%)	2143/2859 (75.6%)	OR 0.42 (0.33–0.53)	Low	Important
Leukopenia (35)	No serious	Strongly suspected	828/1338 (61.9%)	1025/1322 (77.5%)	OR 0.32 (0.26–0.40)	Low	Important				
Anemia (17)	No serious	Strongly suspected	60/184 (32.8%)	106/114 (91.4%)	OR 0.32 (0.26–0.40)	Low	Important				
Gastrointestinal reaction (40)	No serious	Strongly suspected	803/1542 (52.1%)	1006/1514 (66.4%)	OR 0.42 (0.36–0.51)	Low	Important				
Hematotoxicity (8)	No serious	Strongly suspected	18/248 (7.3%)	38/247 (15.4%)	OR 0.41 (0.23–0.75)	Low	Important				
ORR (10)	No serious	Strongly suspected	256/2004 (12.8%)	2143/2859 (75.6%)	OR 0.42 (0.33–0.53)	Low	Important				
Study (Ref.)	Outcomes (no. studies)	RoB	Inconsistency	Indirectness	Impression	Other considerations	Intervention	Control	Effect Relative (95% CI)	Quality	Importance
----------------------	------------------------	---------	---------------	--------------	------------	---------------------	--------------	---------	----------------------------	---------	------------
Xiao et al. (2016)	ORR (17)	Serious	No serious	No serious	Strongly suspected	Intervention	Control	RR 0.75 (0.58–0.98)	Very low	Important	
Xiao et al. (2017)	ORR (34)	Serious	No serious	No serious	No serious	Strongly suspected	Intervention	Control	RR 0.75 (0.58–0.98)	Very low	Important
DCR (32)	No patients										
QOL (22)	No patients										
Leukopenia (13)	No patients										
Thrombocytopenia (11)	No patients										
Gastrointestinal reaction (15)	No patients										
Hepatotoxicity (7)	No patients										
Nephrotoxicity (5)	No patients										
Wang et al. (2018)	ORR (41)	Serious	No serious	No serious	No serious	Strongly suspected	Intervention	Control	RR 1.28 (1.17–1.39)	Low	Critical
DCR (41)	No patients										
QOL (21)	No patients										
Leukopenia (18)	No patients										
Thrombocytopenia (12)	No patients										
Anemia (8)	No patients										
Gastrointestinal reaction (16)	No patients										
Hepatotoxicity (4)	No patients										
Nephrotoxicity (2)	No patients										
Xiao et al. (2018)	ORR (29)	Serious	No serious	No serious	No serious	Strongly suspected	Intervention	Control	RR 1.26 (1.18–1.36)	Low	Critical
DCR (28)	No patients										
QOL (19)	No patients										
Leukopenia (22)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	Intervention	Control	RR 1.28 (1.17–1.39)	Low	Critical
Thrombocytopenia (12)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	Intervention	Control	RR 1.26 (1.18–1.36)	Low	Critical
Anemia (4)	No patients										
Gastrointestinal reaction (23)	No patients										
Hepatotoxicity (10)	No patients										
Nephrotoxicity (9)	No patients										
Wang et al. (2019)	ORR (5)	Serious	No serious	No serious	No serious	Strongly suspected	Intervention	Control	RR 1.26 (1.18–1.36)	Low	Critical
DCR (4)	No patients										
QOL (9)	No patients										
Leukopenia (11)	Serious	No serious	No serious	No serious	No serious	Strongly suspected	Intervention	Control	RR 1.26 (1.18–1.36)	Low	Critical
Thrombocytopenia (6)	No patients										
Anemia (6)	No patients										
Gastrointestinal reaction (8)	No patients										
Hepatotoxicity (4)	No patients										
Nephrotoxicity (4)	No patients										
Yang and Ding (2012)	ORR (15)	Serious	No serious	No serious	No serious	Strongly suspected	Intervention	Control	RR 1.26 (1.18–1.36)	Low	Critical
DCR (15)	No patients										
QOL (9)	No patients										
Leukopenia (11)	No patients										
Thrombocytopenia (8)	No patients										
Gastrointestinal reaction (10)	No patients										
Liu (2019)	ORR (14)	Serious	No serious	No serious	No serious	Strongly suspected	Intervention	Control	RR 1.26 (1.18–1.36)	Low	Critical
DCR (14)	No patients										
QOL (11)	No patients										
Leukopenia (6)	No patients										
Thrombocytopenia (8)	No patients										
Anemia (3)	No patients										
Gastrointestinal reaction (13)	No patients										
Hepatotoxicity (6)	No patients										
Nephrotoxicity (5)	No patients										
(Continued)											
Study (Ref.)	Outcomes (no. studies)	RoB	Inconsistency	Indirectness	Impression	Other considerations	Intervention	Control	Effect	Relative (95% CI)	Quality
-------------	------------------------	-----	---------------	--------------	------------	---------------------	--------------	---------	--------	-----------------	---------
Zheng et al. (2017) [23]	ORR (30)	Serious	No serious	No serious	Strongly suspected	582/1086 (53.6%)	426/1040 (41%)	RR 1.31 (1.20–1.43)	Low	Critical	
Zheng et al. (2014) [24]	ORR (5)	Serious	No serious	No serious	Strongly suspected	9/148 (69.9%)	78/142 (54.9%)	OR 1.67 (1.04–2.69)	Low	Critical	
Li et al. (2019) [25]	ORR (7)	Serious	No serious	No serious	Strongly suspected	134/226 (78.3%)	15/26 (5.1%)	RR 1.14 (1.01–1.28)	Low	Critical	
Li et al. (2017) [26]	ORR (5)	Serious	No serious	No serious	Strongly suspected	99/148 (66.9%)	78/142 (54.9%)	OR 1.67 (1.04–2.69)	Low	Critical	
Nan et al. (2015) [27]	ORR (1)	Serious	No serious	No serious	Strongly suspected	315/403 (78.2%)	336/420 (80.6%)	OR 1.15 (1.05–1.26)	Low	Critical	
Li and Ning (2011) [28]	ORR (14)	Serious	No serious	No serious	Strongly suspected	67/120 (55.8%)	67/119 (56.3%)	OR 0.90 (0.74–1.09)	Low	Important	
Qiu et al. (2019) [29]	ORR (21)	Serious	No serious	No serious	Strongly suspected	63/202 (31.2%)	109/206 (53.2%)	OR 2.53 (1.78–3.61)	Low	Critical	
Nian et al. (2013) [30]	ORR (10)	Serious	No serious	No serious	Strongly suspected	325/471 (68.9%)	335/392 (85.3%)	OR 1.85 (1.52–2.25)	Low	Critical	
Gong et al. (2013) [31]	ORR (21)	Serious	No serious	No serious	Strongly suspected	497/833 (59.7%)	350/675 (52.8%)	OR 1.77 (1.43–2.18)	Low	Critical	
Wu et al. (2017) [32]	ORR (9)	Serious	No serious	No serious	Strongly suspected	20/39 (51.3%)	32/64 (50.0%)	OR 1.48 (0.89–2.46)	Low	Important	
Leukopenia (5)	Serious	No serious	No serious	Strongly suspected	NA	NA	NA	NA	RA	0.73 (0.43–1.24)	Low
Gastrointestinal reaction (3)	Serious	No serious	No serious	Strongly suspected	39/160 (24.4%)	46/152 (30.3%)	OR 0.73 (0.43–1.24)	Low	Important		
Hepatotoxicity (5)	Serious	No serious	No serious	Strongly suspected	3/11 (2.7%)	9/11 (8.1%)	RR 0.43 (0.15–1.29)	Very low	Important		
Leukopenia (5)	Serious	No serious	No serious	Strongly suspected	234/511 (45.8%)	334/496 (67.3%)	RR 0.31 (0.23–0.42)	Low	Important		

(Continued)
Aidi injection combined with chemotherapy in the treatment of cancer patients

Zhao et al. 999

Reviews/meta-analyses reported the components of population, intervention, control group, and outcome (item 1), but no systematic reviews/meta-analyses mentioned the predefined protocol (item 2) and reasons for including only RCTs (item 3). Two studies used a comprehensive literature search strategy, while the remaining 25 systematic reviews/meta-analyses just achieved the partial searching on databases (item 4). Twenty systematic reviews/meta-analyses performed study selection in duplicate (item 5) and 20 systematic reviews/meta-analyses performed data extraction in duplicate (item 6). There were no systematic reviews/meta-analyses provided a list of excluded studies (item 7). Only 2 systematic reviews/meta-analyses described the included studies in adequate detail (item 8), while 4 systematic reviews/meta-analyses did not describe the details of included studies, and other 21 systematic reviews/meta-analyses just describe a part of information for the included studies. As for assessing the RoB, 19 systematic reviews/meta-analyses assessed the RoB and 7 systematic reviews/meta-analyses partially assessed the RoB (item 9). None of the systematic reviews/meta-analyses reported the source of funding (item 10). All systematic reviews/meta-analyses conducted meta-analyses, but only 14 systematic reviews/meta-analyses used appropriate statistical methods to combine the study findings (item 11), and 6 systematic reviews/meta-analyses assessed the potential impact of RoB of individual studies on the results of the data synthesis (item 12). Just six systematic reviews/meta-analyses took the RoB into consideration when discussing the results of the review (item 13). Nineteen systematic reviews/meta-analyses provided a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of review (item 14). All systematic reviews/meta-analyses performed quantitative synthesis, and 24 of them examined the publication bias and discuss its likely impact on the results of the reviews (item 15). Twelve systematic reviews/meta-analyses reported the conflict of interest (item 16). The details of AMSTAR-2 results are listed in Table 2.

Quality of evidence in concerned outcomes

The evidence level of all concerned outcomes assessed by the GRADE system was low or very low due to the RoB within the original studies, inconsistency, imprecision, and other considerations. The detail of GRADE system evaluation is shown in Table 3.

Objective response rate

Twenty-six systematic reviews/meta-analyses reported the ORR, 25 systematic reviews/meta-analyses showed that Aidi combined with chemotherapy significantly demonstrated an improvement in the ORR, but 1 meta-analysis showed no difference in improving ORR between the two groups. According to GRADE system, the quality of evidence for ORR was low reported in 25 systematic reviews/meta-analyses, and was very low reported in 1 meta-analysis.
Disease control rate
The DCR was reported in nine systematic reviews/meta-analyses, and all nine systematic reviews/meta-analyses indicated that Aidi plus chemotherapy could significantly improve the ORR. The quality of evidence for DCR was low.

Quality of life
Twenty-two systematic reviews/meta-analyses used KPS scores to assessed the QOL. Aidi plus chemotherapy was associated with a clinically significant increase in QOL in 21 systematic reviews/meta-analyses, but 1 meta-analysis showed that Aidi plus chemotherapy was not superior to the control group. The quality of evidence for QOL was low reported in 19 systematic reviews/meta-analyses, and was very low reported in 3 systematic reviews/meta-analyses.

One-year systematic review
Eight systematic reviews/meta-analyses assessed the one-year overall survival rate, five of them reported that combining the Aidi with chemotherapy significantly increased the one-year overall survival rate, but three systematic reviews/meta-analyses showed no significant difference between the two groups. The quality of evidence for one-year overall survival rate was low reported in five systematic reviews/meta-analyses, and was very low reported in three systematic reviews/meta-analyses.

Leukopenia
Twenty-three systematic reviews/meta-analyses investigated the leukopenia, these systematic reviews/meta-analyses indicated that Aidi with chemotherapy could significantly decrease the risk of developing leukopenia. The quality of evidence for leukopenia was low reported in 18 systematic reviews/meta-analyses, and was very low reported in 5 systematic reviews/meta-analyses.

Thrombocytopenia
Seventeen systematic reviews/meta-analyses reported the data of thrombocytopenia, 16 systematic reviews/meta-analyses showed that Aidi plus chemotherapy resulted in a lower risk of thrombocytopenia than that of chemotherapy alone, while 1 systematic reviews/meta-analyses showed no significant difference between the two groups. The quality of evidence for thrombocytopenia was low reported in 14 systematic reviews/meta-analyses, and was very low reported in 3 systematic reviews/meta-analyses.

Anemia
Twelve systematic reviews/meta-analyses estimated the anemia, six of them indicated that Aidi with chemotherapy could significantly decreased incidence of anemia, while other six systematic reviews/meta-analyses showed no significant difference between the two groups. The quality of evidence for anemia was low reported in four systematic reviews/meta-analyses, and was very low reported in eight systematic reviews/meta-analyses.

Gastrointestinal reaction
Twenty-three systematic reviews/meta-analyses reported the gastrointestinal reaction, the results of 21 systematic reviews/meta-analyses demonstrated that Aidi in combination with chemotherapy could reduce the incidence of gastrointestinal reaction, while the results of the other 2 systematic reviews/meta-analyses were not statistically significant. The quality of evidence for gastrointestinal reaction was low reported in 18 systematic reviews/meta-analyses, and was very low reported in 5 systematic reviews/meta-analyses.

Hepatotoxicity
Fourteen systematic reviews/meta-analyses evaluated the liver injury, 11 of them showed that, compared with control group, the number of patients with liver injury decreased significantly in Aidi plus chemotherapy group, but the remaining 3 systematic reviews/meta-analyses communicated no statistically significant differences regarding liver injury. The quality of evidence for liver injury was low reported in eight systematic reviews/meta-analyses, and was very low reported in six systematic reviews/meta-analyses.

Nephrotoxicity
Ten systematic reviews/meta-analyses measured the renal injury, three systematic reviews/meta-analyses showed that Aidi combined with chemotherapy had lower risk of renal injury, but reported data from other seven systematic reviews/meta-analyses showed no significant reduction in favor of the Aidi plus chemotherapy group. The quality of evidence for renal injury was low reported in one systematic reviews/meta-analyses, and was very low reported in nine systematic reviews/meta-analyses.

Discussion
The combination of Aidi and chemotherapy is a common strategy for cancer patients [66]. There is some evidence that it can improve the clinical efficacy and reduce adverse events in cancer patients, but still there is lack of widely agreed evidence for its effect [7–33]. This overview included 27 systematic reviews/meta-analyses to evaluate the role of Aidi in combination with chemotherapy. All the included systematic reviews/meta-analyses were regarded as critically low to low quality according to the AMSTAR-2 evaluation, mainly due to failure to provide a developed priori protocol, reasons for including only RCTs, a list of excluded studies, and the source of funding. These may lead to selection bias and reduce the reliability of the results to some extent.

Most systematic reviews/meta-analyses showed that Aidi plus chemotherapy were are associated with significantly improved clinical outcomes and reduced treatment-associated toxicity when compared to chemotherapy alone [7–33]. However, according to the GRADE system, the evidence quality of ORR, DCR, QOL, one-year overall
survival rate, leukopenia, thrombocytopenia, anemia, gastrointestinal reaction, hepatotoxicity, and nephrotoxicity were low or very low. The most frequent downgrading factors were: study limitations, inconsistency of results, imprecision, and reporting bias. Therefore, it is difficult to draw any definitive conclusions about the use of Aidi.

To the best of our knowledge, this is the first overview of systematic reviews/meta-analyses that specifically focus on the efficacy and safety of Aidi combined with chemotherapy for the treatment of cancer patients. Two independent reviewers systematically reviewed the literature, evaluated the methodological quality of systematic reviews/meta-analyses by using AMSTAR-2, and assessed the quality evidence of outcomes by using GRADE system. However, this review also has some limitations. First, using AMSTAR-2 tool and GRADE system to assess the methodological quality and evidence quality, respectively, is a subjective process. Although included systematic reviews/meta-analyses have been evaluated independently by two reviewers and examined by a third reviewer, there may still be some bias. Second, since all the included systematic reviews/meta-analyses were conducted in China among Chinese populations, it is uncertain whether the effects may change when Aidi is used in other ethnicity populations. Third, we did not retrieve data from initial trials and thereby were limited to the information and judgments of the reviewers who wrote the systematic reviews/meta-analyses. Fourth, search strategies, selection criteria, primary outcomes were varied between the included systematic reviews/meta-analyses, which lead a high heterogeneity among the 27 included systematic reviews/meta-analyses.

Conclusion
The current systematic reviews/meta-analyses revealed that Aidi plus chemotherapy might improve the clinical efficacy and reduce chemotherapy-induced toxicities, but according to AMSTAR-2 assessment and GRADE assessment, the methodological quality of included systematic reviews/meta-analyses was critical low, and the evidence quality of outcomes was low to very low. Therefore, more rigorously designed, randomized, multicenter, large sample trials are needed to further explore the efficacy, and safety of Aidi plus chemotherapy for the treatment of cancer patients.

Acknowledgements
All data generated or analyzed during the present study are included in this published article. D.Z. and J.W. designed the study and revised the article. D.Z., X.L. and J.C. searched and selected the literature, extracted data, and assessed systematic reviews/meta-analyses. All the authors have read and approved the final version of this article.

Conflicts of interest
There are no conflicts of interest.

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394–424.
2. Denduluri N, Chavez-MacGregor M, Telli ML, Eisen A, Graff SL, Hassett MJ, et al. Selection of optimal adjuvant chemotherapy and targeted therapy for early breast cancer: ASCO clinical practice guideline focused update. J Clin Oncol 2018; 36:2433–2443.
3. Schirmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol 2019; 54:407–419.
4. Tralongo AC, Antonuzzo A, Pronzato P, Sbrana A, Turrini M, Zoratto F, Danova M. Management of chemotherapy-induced neutropenia in patients with cancer: 2019 guidelines of the Italian Medical Oncology Association (AIOM). Tumori 2020; 106:273–280.
5. Leng J, Lei LF, Zhu Z, Ocampo A, Gany F. Use of traditional Chinese herbal medicine concurrently with conventional cancer treatment among Chinese cancer patients. J Immigr Minor Health 2020; 22:1240–1247.
6. Shi Q, Diao Y, Jin F, Ding Z. Anti-metastatic effects of Aidi on human esophageal squamous cell carcinoma by inhibiting epithelial-mesenchymal transition and angiogenesis. Mol Med Rep 2018; 18:131–138.
7. Xiao Z, Jiang Y, Chen XF, Wang CO, Xu WH, Liu Y, et al. The hepatorenal toxicity and tumor response of chemotherapy with or without Aidi injection in advanced lung cancer: a meta-analysis of 80 randomized controlled trials. Clin Ther 2020a; 42:515–543.e31.
8. Xiao Z, Jiang Y, Wang CO, Hu SS, Huang XR, Chen XF, et al. Clinical efficacy and safety of Aidi injection combination with vinoreline and cisplatin for advanced non-small-cell lung carcinoma: a systematic review and meta-analysis of 54 randomized controlled trials. Pharmacol Res 2020b; 153:104637.
9. Wang X, Jin W, Fang B, Jiang J, Liu M, Lan Y, et al. Aidi injection combined with CHOP chemotherapy regimen in the treatment of malignant lymphoma: a meta-analysis based on randomized controlled trials. J Cancer Res Ther 2016; 12:11–14.
10. Zhao HY, Zhou HY, Wang YT, Chen W, Qi SY, Cao JL, Li GH. Assessment on the efficacy and safety of Aidi injection combined with vinoreline and cisplatin for treatment of advanced non-small cell lung cancer. Chin Med J 2016; 129:723–730.
11. Chen W, Wang Y, Liang Q, Cai Y, Chen X, Zhang Y, et al. Efficacy and safety of Aidi injection combined with transcatheter arterial chemoembolization on primary hepatic carcinoma: a systematic review and meta-analysis. Evid Based Complement Alternat Med 2018; 2018:6376429.
12. Xiao Z, Wang C, Li L, Tang X, Li N, Li J, et al. Clinical efficacy and safety of Aidi injection plus docetaxel-based chemotherapy in advanced non-small cell lung cancer: a meta-analysis of 36 randomized controlled trials. Evid Based Complement Alternat Med 2018a; 2018:7918258.
13. Dai Y, Gao S, Liu X, Gao Q, Zhang L, Fan X, Zhu J. Effect of Aidi injection plus TACE on hepatocellular carcinoma: a meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med 2018b; 2018:9196409.
14. Jiangcheng W, Long Q, Ye Z, Jingsong L, Pan Z, Lei M,ymeng. Effect of Aidi injection plus chemotherapy on gastric carcinoma: a meta-analysis of randomized controlled trials. J Tradit Chin Med 2018; 35:361–374.
15. Xiao Z, Wang C, Sun Y, Li N, Li J, Chen L, et al. Can Aidi injection restore cellular immunity and improve clinical efficacy in non-small-cell lung cancer patients treated with platinum-based chemotherapy? A meta-analysis of 17 randomized controlled trials following the PRISMA guidelines. Medicine (Baltimore) 2016; 95:e5210.
16. Xiao Z, Wang C, Chen L, Tang X, Li L, Ni, et al. Has Aidi injection the attenuation and synergistic efficacy to gemcitabine and cisplatin in non-small cell lung cancer? A meta-analysis of 36 randomized controlled trials. Oncotarget 2017; 8:1329–1342.
17. Wang L, Li G, Yu L, Mo T, Wu Q, Zhou Z. Aidi injection plus platinum-based chemotherapy for stage IIIb/IV non-small cell lung cancer: a meta-analysis of 42 RCTs following the PRISMA guidelines. J Ethnopharmacol 2018; 221:137–150.
18. Xiaozhi Z, Wang C, Zhou M, Hu S, Jiang Y, Huang X, et al. Clinical efficacy and safety of Aidi injection plus paclitaxel-based chemotherapy for advanced non-small cell lung cancer: a meta-analysis of 31 randomized controlled trials following the PRISMA guidelines. J Ethnopharmacol 2019; 228:110–122.
19. Wang Q, He X, Tian J, Wang X, Ru P, Ruan Z, Yang K. A meta-analysis of Aidi injection plus taxotere and cisplatin in the treatment of non-small cell lung cancer. Chin J Lung Cancer 2010; 13:1027–1033.
20 Yang J, Ding M. Eddie combined with gemcitabine and cisplatin for advanced non-small cell lung cancer: meta-analysis. Chin General Practice 2012; 15(8C): 2794–9.

21 Liu S. A meta-analysis of efficacy of the Aidi injection on adverse reactions from S-1. Chin J Clin Med 2019; 11:5–9.

22 Han Y, Jie K, Zhang H. Systematic review of Aidi injection auxiliary GP regimen for non-small cell lung cancer. Chin J Exp Traditional Med Formulae 2016; 22:186–193.

23 Zheng J, Zhang D, Wu J, et al. Meta-analysis on the randomized controlled trials of Aidi injection treating for liver carcinoma. Chin J Pharmacopoei 2017; 26:540–546.

24 Zhang Y, Li Q, Sun F, et al. Meta-analysis of Aidi injection treatment combining CHOP chemotherapy in treatment of malignant lymphoma. Chin J New Drugs Clin Res 2014; 11:807–812.

25 Li W, Hou E, Zheng J, et al. Aidi injection plus transfascial arterial chemoembolization or chemotherapy for hepatocellular carcinoma: a systematic review and meta-analysis. West China Med J 2010; 25:144–148.

26 Li D, Lin F. Efficacy and safety of Aidi injection combined with chemotherapy in the treatment of advanced colorectal cancer: a meta-analysis. Strait Pharmaceutical Journal 2016; 28:113–115.

27 Geng X, Yang Q, Wang X, et al. Aidi injection plus TACE for primary liver cancer: a meta-analysis of randomized controlled trials. CJTCM 2013; 28:1627–1631.

28 Wu J, Wang J, Lin L, et al. Meta-analysis of clinical efficacy of Aidi injection combined with first-line chemotherapy in the treatment of non-small cell lung cancer. Chin J Tradit Chin Med 2019; 33:3045–3050.

29 Zhao H, Li G, Qi Z, et al. Efficacy and safety of Aidi injection combined with paclitaxel and cisplatin in the treatment of advanced Non-small cell lung cancer: a meta-analysis. China Pharmacy 2016; 27:1210–1213.

30 Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Morris J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomized studies of healthcare interventions, or both. BMJ 2017; 358:j4008.

31 Brozek JL, Aki EA, Alonso-Coello P, Lang D, Jaeschke R, Williams JW, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 1 of 3. An overview of the GRADE approach and grading quality of evidence about interventions. Allergol Immunol 2017; 46:669–677.

32 Luo G, Zhu X, Chen H, Tan JP. Aidi injection assisted R-CHOP chemotherapy for the treatment of diffuse large B-cell lymphoma. J Exp Hematol 2016; 24:733–737.

33 Xie G, Cui Z, Peng K, Zhou X, Xia Q, Xu D. Aidi injection, a traditional Chinese medicine injection, could be used as an adjuvant drug to improve quality of life and survival in patients with advanced colorectal cancer. World J Gastroenterol 2012; 18:1547535411810789.

34 Wang T, Nan H, Zhang C, Wang Y, Zhang X, Li Y; Mulati. Aidi injection combined with FOLFOX4 chemotherapy regimen in the treatment of advanced colorectal cancer. J Cancer Res Ther 2014; 10 (Suppl 1):52–55.

35 Xiao Z, Wang C, Sun Y, et al. Effect of Aidi injection on T lymphocytes in peripheral blood of NSCLC patients with chemotherapy: a systematic review. Anhui Med J 2017; 38:1250–1255.

36 Wang H, Zhu Y, Wu N, et al. Evidence-based drug use evaluation of Aidi injection in super indications. Chin Hosp Pharm J 2019; 39:606–611.

37 Xie M, Cui Z, Xu C. Systematic evaluation of intrapleural injection of Aidi injection combined with chemotherapy in treating malignant pleural effusion. China Pharm 2015; 24:29–31.

38 Zhang RX, Wang JC, Han H, et al. Efficacy and safety of Aidi injection versus cisplatin in the treatment of malignant pleural effusion: a meta-analysis. Gansu Sci Technol 2015; 31:134–137.

39 Zhang RX, Wang JC, Han H, et al. Efficacy and safety of Aidi injection combined with platinum in the treatment of malignant pleural effusion: a meta-analysis. Gansu Sci Technol 2015; 31:113–117.

40 Zhang X, Zhou H, Yang J, et al. Assessment on the effectiveness and safety on carcinogenic pleural effusion treated with Aidi injection plus cisplatin. World J Clin Cases 2015; 3:144–148.

41 Tian X, Wang W, Jia L. Meta-analysis of TCM injection in the treatment of malignant pleural effusion. China Med Herald 2010; 7:6–8.

42 Zhang H, Jiang H, Hu X, et al. Aidi injection combined with radiation in the treatment of non-small cell lung cancer: a meta-analysis evaluation the efficacy and side effects. J Cancer Res Ther 2015; 11:C118–C121.

43 Shen Z, Cheng H, Shen W, Tao L, Zeng Y, Wu M, et al. Effect of Aidi injection plus transarterial chemoembolization on primary hepatic carcinoma: a systematic review and meta-analysis. J Tradit Chin Med 2017; 37:567–587.

44 Liu L, Liang J, Deng X. Effects of Aidi injection with western medical therapies on quality of life for patients with primary liver cancer: a systematic review and meta-analysis. Chin J Integr Med 2019; 25:785–790.

45 Xiao Z, Liang R, Wang QQ, Xu B, Liu M, He Y, et al. Can Aidi injection alleviate the toxicity and improve the clinical efficacy of radiotherapy in lung cancer? A meta-analysis of 16 randomized controlled trials following the PRISMA guidelines. Medicine (Baltimore) 2016; 95:e4571.

46 Xiao Z, Wang C, Zhou R, Hu S, Y, N, Feng J, et al. Can Aidi injection improve overall survival in patients with non-small cell lung cancer? A systematic review and meta-analysis of 28 randomized controlled trials. Complement Ther Med 2018b; 37:50–60.

47 Ma WH, Duan KN, Feng M, She B, Chen Y, Zhang RM. Aidi injection as an adjunct therapy for non-small cell lung cancer: a systematic review. J Chin Integr Med 2009; 7:315–324.

48 Xu R, He H, Tang J, et al. Meta-analysis on treatment of non-small cell lung cancer with Aidi injection in combination with radiotherapy. Chin J Exp Tradit Med Formulae 2015; 21:204–209.

49 Dong H, Cui X, Hu J, et al. Aidi combined with radiotherapy versus radiotherapy monotherapy for esophageal carcinoma: a systematic review. J Nongken Med 2014; 36:1–6.

50 Wang H, Ma L, Zhong J, et al. Systematic review of TACE combined with Aidi injection on advanced hepatocellular carcinoma. Modern Journal of Integrated Traditional Chinese and Western Medicine 2013; 22:1255–1259.

51 Wang X, Wu Q, Luo C, et al. Aidi injection combined with chemotherapy in treatment of ovarian cancer: a systematic review. Canc Res Prev Treat 2009; 38:1063–1066.

52 Wu B, Xu L, Chen M. Meta-analysis of Aidi injection combined with NP regimen in the treatment of advanced non-small cell lung cancer. Zhejiang JITCWM 2009; 19:448–447.

53 Ji B, Yuan J. Meta-analysis of the clinical efficacy and safety about Aidi injection in the treatment of colorectal cancer. China Pharmacy 2011; 22:3797–3799.

54 Wang Y, He X, Wen J, et al. Meta-analysis on Aidi injection combined with transcatheter arterial chemoembolization in treatment of primary liver cancer. Evaluation and Analysis of Drug-Use in Hospitals of China 2016; 16:1588–1593.

55 Zhang D, Wu J, Duan X, et al. Network meta-analysis of Chinese herbal injections plus the FOLFLOX regimen for the treatment of colorectal cancer in China. Integr Cancer Ther 2015; 14:5347535410827058.

56 Zhang D, Wu J, Wang K, Duan X, Liu S, Zhang B. Which are the best Chinese herbal injections combined with XELOX regimen for gastric cancer? A PRISMA-compliant network meta-analysis. Medicine (Baltimore) 2018; 97:e0127.

57 Zhang D, Zheng J, Ni M, Wu J, Wang K, Duan X, et al. Comparative efficacy and safety of Chinese herbal injections combined with the FOLFOX regimen for treating gastric cancer in China: a network meta-analysis. Oncotarget 2017; 8:68873–68889.

58 Ge L, Mao L, Tian J, Shi FY, Lou L, Qi X, et al. Network meta-analysis on selecting Chinese medical injections in radiotherapy for esophageal cancer. China J Chin Materia Med 2015; 40:3674–3681.

59 Ge L, Wang YF, Tian JH, Mao L, Zhang J, Zhang JH, et al. Network meta-analysis of Chinese herb injections combined with FOLFLOX chemotherapy in the treatment of advanced colorectal cancer. J Clin Pharm Ther 2016; 41:383–391.

60 Zhang D, Wu J, Liu S, Zhang X, Zhang B. Network meta-analysis of Chinese herbal injections combined with the chemotherapy for the treatment of pancreatic cancer. Medicine (Baltimore) 2017; 96:7005.

61 Yang J, Zhu L, Wu Z, Wang Y. Chinese herbal medicines for induction of remission in advanced or late gastric cancer. Cochrane Database Syst Rev 2013; 30:CD005996.

62 Hu XK, Huang X, Li Y, Li CG, Tang JH. A clinical study on safety and efficacy of Aidi injection combined with chemotherapy. Asian Pac J Cancer Prev 2011; 12:2233–2236.