Interval observers design for continuous-time linear switched systems
Haifa Ethabet, Tarek Raissi, Messaoud Amairi, Mohamed Aoun

To cite this version:
Haifa Ethabet, Tarek Raissi, Messaoud Amairi, Mohamed Aoun. Interval observers design for continuous-time linear switched systems. 20th IFAC World Congress, Jul 2017, Toulouse, France. pp.6259 - 6264, 10.1016/j.ifacol.2017.08.853 . hal-02470345

HAL Id: hal-02470345
https://hal.archives-ouvertes.fr/hal-02470345
Submitted on 7 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Interval observers design for continuous-time linear switched systems

Haifa Ethabet *, Tarek Raïssi **, Messaoud Amairi *, Mohamed Aoun *

* Research Laboratory Modeling, Analysis and Control of Systems (MACS) LR16ES22, National Engineering School of Gabes (ENIG), University of Gabes 6029 Gabes, Tunisia (e-mail: ethabethaifa@gmail.com, amairi.messaoud@ieee.org, mohamed.aoun@gmail.com)

** Conservatoire National des Arts et Métiers (CNAM), Cédric lab 292, Rue St-Martin, 75141 Paris Cedex 03, France (e-mail: tarek.raissi@cnam.fr)

Abstract: This paper is devoted to investigate interval observers design for linear switched systems. The considered systems are subject to disturbances which are assumed to be unknown but bounded. First, observer gains are computed to ensure the stability of the estimation error. Then, under some changes of coordinates an interval observer is designed. Efficiency of the proposed method is demonstrated through a numerical example.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Interval observer, stability, continuous-time switched systems, hybrid systems, cooperativity

1. INTRODUCTION

Switched systems are one of the most important classes of Hybrid Dynamical Systems (HDS). They consist of continuous or discrete-time subsystems where only one subsystem is active at each time. A switching rule orchestrating among them. Several works treated switched systems such as (Djemai and Defoort (2015); Liberzon (2012); Branicky (1998)). Among these studies, control and state estimation were crucial and fundamental problems.

In order to study the stability of switched systems, specific results have been developed. For example, in (Hu et al. (2002)) a common Lyapunov function yields sufficient conditions for the global asymptotic stability. However, it may not always be possible to get this common function. Therefore, multiple Lyapunov functions were proposed for instance in (Liberzon and Morse (1999)). Approaches based on average dwell time have also been studied to ensure the stability of switched systems (see Hetel (2007); Serres et al. (2011) and the references therein).

As far as the stability problem is widely concerned, it is worth pointing out that the state is not always directly measured but may be estimated from the input and the output of the process. State estimation for switched systems remains a challenging problem by reason of the combined discrete and continuous states (see Hocine et al. (2005); Tian et al. (2009); Birouche et al. (2006); Arichi et al. (2015)).

In practice, measurements are usually subject to noises. To compute robust estimates, interval observers assume that noises and disturbances are bounded without any stochas-
turbance are unknown but bounded with known bounds. State estimation conditions are given in terms of Linear Matrix Inequalities (LMIs). The suggested methodology allows one to overcome the strong limitations in (He and Xie (2016, 2015)). It will be shown that the constructive methodology can be applied for a large class of linear switched systems.

This paper is structured as follows. Some preliminaries are described in Section 2. Interval state estimation for switched linear systems is stated in Section 3. Section 4 is dedicated to show efficiency of the proposed method via a numerical example. Section 5 concludes the paper.

2. PRELIMINARIES

The sets of real and natural numbers are denoted by \(\mathbb{R} \) and \(\mathbb{N} \) respectively. \(|x|\) is the elementwise absolute value of a vector \(x \in \mathbb{R}^n \). The sequence of integers \(1, \ldots, N \) is denoted by \(1, N, E_p \) is a \((p \times 1)\) vector whose elements are equal to 1. \(I \) is the identity matrix of proper dimension. For a matrix \(P = PT, P < 0 (P > 0) \) means that the matrix \(P \in \mathbb{R}^{n \times n} \) is positive (negative) definite. Lower and upper bounds \(z \) and \(\bar{z} \) of \(x \) satisfy \(z \leq x \leq \bar{z} \), where the relation \(\leq \) is interpreted elementwise for vectors and matrices. For a matrix \(A \in \mathbb{R}^{n \times n} \), let \(A^+ = \max \{0, A\} \) and \(A^- = A^+ - A \).

Lemma 1. (Chebotarev et al. (2015)) Let \(x \in \mathbb{R}^n \) be a vector satisfying \(z \leq x \leq \bar{z} \) and \(A \in \mathbb{R}^{n \times n} \) be a constant matrix, then

\[
A^+ z - A^- \bar{z} \leq Ax \leq A^+ \bar{z} - A^- z. \quad (1)
\]

A matrix \(A = \{a_{ij}\} \in \mathbb{R}^{n \times n} \) is called Metzler if all its off-diagonal elements are nonnegative, i.e. \(a_{ij} \geq 0 \), \(\forall i \neq j \).

Lemma 2. (Gouzé et al. (2000)) Let

\[
\dot{x}(t) = Ax + u, \quad x(0) = x_0
\]

where \(A \) is a Metzler matrix and \(u \geq 0 \). If \(x_0 \geq 0 \), then

\[
x(t) \geq 0, \quad \forall t \geq 0. \quad (2)
\]

A continuous-time linear system \(\dot{x}(t) = Ax \) is said to be cooperative if \(A \) is a Metzler matrix.

Lemma 3. (Jiang et al. (2002)) Let \(\delta > 0 \) be a scalar and \(P \in \mathbb{R}^n \) be a symmetric positive definite matrix, then

\[
2x^T y \leq \frac{1}{\delta} x^T P x + \delta y^T P^{-1} y \quad x, y \in \mathbb{R}^n. \quad (3)
\]

Consider the system described by:

\[
\begin{cases}
\dot{x} = Ax + \phi(t) \\
y = Cx
\end{cases} \quad (4)
\]

where \(\phi \) is a continuous function and assume that there exist two known functions \(\bar{\theta} \) and \(\underline{\theta} : \mathbb{R} \to \mathbb{R}^n \) Lipschitz continuous such that \(\underline{\theta}(t) \leq \phi(t) \leq \bar{\theta}(t) \) for all \(t \geq 0 \).

Theorem 1. (Gouzé et al. (2000)) If there exists a gain \(K \) such that \((A - KC)\) is Metzler and if \(\underline{\theta}_0 \leq x(t) \leq \bar{\theta}_0 \), then the system

\[
\begin{cases}
\dot{\bar{x}} = A\bar{x} + \bar{\theta} + K(y - C\bar{x}) \\
\dot{\underline{x}} = A\underline{x} + \underline{\theta} + K(y - C\underline{x})
\end{cases} \quad (5)
\]

is a framer for the system (4) such that \(\underline{x}(t) \leq x(t) \leq \bar{x}(t), \quad \forall t \geq 0 \).

Theorem 2. (Gouzé et al. (2000)) The system (5) is called an interval observer for system (4) if the lower \((x - \underline{x})\) and upper \((\bar{x} - x)\) estimation errors are asymptotically stable.

3. INTERVAL STATE ESTIMATION FOR SWITCHED LINEAR SYSTEMS

Consider a Switched Linear System (SLS) described by:

\[
\begin{cases}
\dot{x}(t) = A_q x(t) + B_q u(t) + w(t) \\
y_m(t) = C_q x(t) + v(t)
\end{cases}, \quad q \in \{1, N\}, N \in \mathbb{N} \quad (6)
\]

where \(x \in \mathbb{R}^n, u \in \mathbb{R}^m, y_m \in \mathbb{R}^p, w \in \mathbb{R}^n, v \in \mathbb{R}^p \) are respectively the state vector, the input, the output, the disturbance and the measurement noise. \(A_q, B_q \) and \(C_q \) are constant matrices of proper dimensions. \(q \) is the index of the active subsystem and \(N \) is the number of subsystems. The measurement noise and the state disturbance are assumed to be unknown but bounded with \(a \) priori known bounds such that

\[
|w(t)| \leq \underbar{w}, \quad |v(t)| \leq \overbar{v} \quad (7)
\]

where \(\underbar{w} \in \mathbb{R}^n \) and \(\overbar{v} \) is a scalar.

The aim is to derive two trajectories \(\underline{x}(t) \) and \(\bar{x}(t) \) where \(\underline{x}(t) \leq x(t) \leq \bar{x}(t), \quad \forall t \geq 0 \), despite the disturbances, starting from the initial condition \(x_0 \) which is assumed to be bounded by two known bounds \(\underline{x}_0 \leq x_0 \leq \bar{x}_0 \).

To design an interval observer for (6), a necessary condition is given in the following assumption.

Assumption 1. There exist gains \(L_q \) such that the matrices \((A_q - L_q C_q)\) are Metzler for \(q \in \{1, N\} \).

The matrices \(L_q \) \((q \in \{1, N\})\) denote the observer gains associated with each subsystem \(q \).

A candidate interval observer structure for the estimation of \(\underline{x}, \bar{x} \) is described by:

\[
\begin{cases}
\dot{\underline{x}} = (A_q - L_q C_q) \underline{x} + B_q u + w + L_q y_m + |L_q| \overbar{v} \quad (8)
\end{cases}
\]

Similarly to Theorem 1, the following theorem gives the conditions for achieving partially the desired design goal.

Theorem 3. Consider the system described by (6). Let \(Assumption 1 \) be satisfied. For any initial condition \(\underline{x}_0 \leq x_0 \leq \bar{x}_0 \), if there exist observer gains \(L_q \) such that \((A_q - L_q C_q)\) are Metzler, \(\forall q \in \{1, N\} \), then the system (8) is a framer for the system (6) with \(\underline{x}(t) \leq x(t) \leq \bar{x}(t), \quad \forall t \geq 0 \).

Proof. Let \(\overbar{x}(t) = \bar{x} - x \) be the upper observation error and \(\underline{x}(t) = x - \underline{x} \) be the lower observation error. Let us show that \(\overbar{x} \) and \(\underline{x} \) are positive.

From (6) and (8) the dynamics of the interval estimation errors are given by:

\[
\dot{\underline{x}}(t) = \underline{x} - \dot{x} = (A_q - L_q C_q) \underline{x}(t) + \Gamma_q \quad (11)
\]

and

\[
\dot{\overbar{x}}(t) = \overbar{x} - \dot{x} = (A_q - L_q C_q) \overbar{x}(t) + \overline{\Gamma}_q \quad (12)
\]

where

\[
\Gamma_q = w - w + L_q v + |L_q| \overbar{v} \quad (13)
\]

\[
\overline{\Gamma}_q = w - w - L_q v + |L_q| \overbar{v} \quad (14)
\]
As \(|v(t)| \leq \|E_p\|, \forall t \geq 0\) and by construction \(\|w + w\) and \((w + w + w)\) are positive then \(\Gamma_q\) and \(\Gamma_g\) are positive for all \(q \in \overline{1, N}\). In addition, since \(L_q\) are computed to verify (9) and \(\tilde{z}_0\) and \(\bar{z}_0\) are chosen such that
\[
\begin{align*}
\bar{z}(0) &= \tilde{z}_0 - x_0 \geq 0 \\
\bar{z}_0(0) &= x_0 - \tilde{z}_0 \geq 0
\end{align*}
\]
then, according to Lemma 2, \(\tilde{z}(t)\) and \(\bar{z}(t)\) are positive \(\forall t \geq 0\). Thus, \(\bar{z}(t) \leq x(t) \leq \tilde{z}(t)\) for all \(t \geq 0\).

Remark 1. The framer (8) is initialized with the initial conditions \(x_0\) and \(\tilde{z}_0\) for the active subsystem \((q = 1)\). At the switching time instant, the output of the previous active subsystem \((q = i)\) is used to initialize (8) with the subsystem \((q = i + 1)\).

In addition, Theorem 3 ensures only the inclusion relation \(\bar{z}(t) \leq x(t) \leq \tilde{z}(t)\). However, the errors \((x - \bar{z})\) and \((\tilde{z} - x)\) are not guaranteed to be bounded.

For the stability analysis of (11) and (12), let us introduce the following lemma.

Lemma 4. (Liberzon and Morse (1999)) Let
\[
\dot{x}(t) = A_q x(t), \quad q \in \overline{1, N}
\]
The switched system (15) is globally asymptotically stable if there exists a matrix \(S = S^T > 0\) such that
\[
\dot{V}(x) = x^T (A_q S + S A_q) x < 0, \quad q \in \overline{1, N}
\]
where \(V(x)\) is the common Lyapunov function given by:
\[
V(x) = x^T S x.
\]

Theorem 4. Let Assumption 1 be satisfied. Given scalars \(\beta_q > 0\), if there exists a symmetric positive definite matrix \(S \in \mathbb{R}^n\) for all \(q \in \overline{1, N}\) such that
\[
A_q S + S A_q - C_q W_q T - W_q C_q + \alpha_q S < 0
\]
where \(\alpha_q = \frac{1}{\beta_q}\) and \(W_q = S L_q\), then the framer (8) is an asymptotically stable interval observer for (6).

Proof. As mentioned in Theorem 2, the global asymptotic stability of the interval observer is guaranteed by applying a common Lyapunov function to the estimation errors. Consider the following Lyapunov function:
\[
V(\bar{z}) = \bar{z}(t)^T S \bar{z}(t), \quad S > 0.
\]

\[
\dot{V}(\bar{z}) = \bar{z}^T \dot{S} \bar{z} + \bar{z}^T S \dot{\bar{z}} = \bar{z}^T \left[(A_q - L_q C_q)^T S + S (A_q - L_q C_q) \right] \bar{z} - 2 \bar{z}^T S w
\]
\[
+ 2 \bar{z}^T S \bar{z}_0 + 2 \bar{z}^T S \bar{z} + 2 \bar{z}^T S |L_q| \nabla E_p
\]
\[
\dot{\bar{z}}(t) \leq \bar{z}^T B_1 \bar{z} + C_1
\]
where
\[
B_1 = A_q^T S + S A_q - C_q^T W_q T - W_q C_q + \frac{2}{\delta_q} S
\]
and
\[
C_1 = w^T [-\delta_q S] w + \bar{w}^T [\delta_q S] \bar{w} + v^T [\delta_q L_q S L_q] v
\]
\[
+ E_p^T [\delta_q L_q S L_q \nabla E_p] E_p
\]
From (18), it is assumed that \(B_1 < 0\). In addition, the noises and disturbances are bounded it follows that \(C_1\) is bounded. Therefore the error \(\bar{z}\) is bounded. The same arguments show that the error \(\bar{z}\) is also bounded.

The methodology described above, although simple, is not always constructive. Indeed, it is not always possible to find gains \(L_q\) such that Assumption 1 is satisfied. Hence, the key point of the idea is to find a change of coordinates that transforms the observation errors into cooperative forms. The changes of coordinates proposed for instance in (Raïssi et al. (2012); Mazenc and Bernard (2011)) for continuous systems can be used to transform the matrices \((A_q - L_q C_q)\) into a Metzler form.

Let us assume that there exists a non singular transformation matrix \(P\) such that, with the new coordinates \(z = P x\), the system (6) is transformed into the form
\[
\dot{z} = PA_q P^{-1} z + PB_q u + P w
\]
\[
\dot{v} = Cq P^{-1} z + v
\]
A Luenberger based candidate observer for the system (24) can be written in the new coordinates \(z\) as:
\[
\dot{\hat{z}} = P (A_q - L_q C_q) P^{-1} z + PB_q u + P^+ \bar{w} - P^- \bar{w}
\]
\[
+ PL_q y_m + |P L_q| \nabla E_p
\]
\[
\forall q \in \overline{1, N}
\]
where
\[
\bar{z}(0) = P^+ \bar{z}_0 - P^- \bar{z}_0
\]
\[
\bar{z}(0) = P^+ \bar{z}_0 - P^- \bar{z}_0
\]
\[
P is the solution of the Sylvester equation given by
\[
PA_q - R_q P = Q_q C_q, \quad Q_q = PL_q
\]
and
\[
R_q = P (A_q - L_q C_q) P^{-1}
\]
Let \(\bar{z}(t) = \bar{z} - z\) be the upper observation error and \(\bar{z}_0(t) = z - \bar{z}\) be the lower one.

From systems (24) and (25), the dynamics of the interval estimation errors are given by:
\[
\dot{\bar{z}}(t) = \hat{z} - \bar{z} = [(P^+ \bar{w} - P^- \bar{w}) - P w] + |P L_q| \nabla E_p
\]
\[
+ P (A_q - L_q C_q) P^{-1} \bar{z}_0 + PL_q v = R_q \bar{z}_0 + \bar{Y}_q(29)
\]
\[
\dot{\bar{z}}(t) = \hat{z} - \bar{z} = [(P^+ \bar{w} - P^- \bar{w}) - P w] + |P L_q| \nabla E_p
\]
\[
+ P (A_q - L_q C_q) P^{-1} \bar{z}_0 + PL_q v = R_q \bar{z}_0 + \bar{Y}_q(29)
\]
\[
\bar{z}(t) + \bar{z}(t) = \bar{w} - (P^+ \bar{w} - P^- \bar{w}) + |P L_q| \nabla E_p + PL_q v
\]
\[
\bar{Y}_q = \bar{w} - (P^+ \bar{w} - P^- \bar{w}) + |P L_q| \nabla E_p + PL_q v
\]
Similarly to the proof of Theorem 4, the asymptotic stability of the observer (25) is ensured by applying a common Lyapunov function to the observation errors as follows:
\[
V(\bar{z}) = \bar{z}^T M \bar{z}, \ V(\bar{z}) = \bar{z}^T M \bar{z}
\]
In the following, only the dynamics of the upper observation error are considered. The derivative of \(V(\bar{z})\) is:
\[\dot{V}(\pi) = \pi^T C_2 \pi + \pi^T M \dot{\pi} \leq \pi^T B_2 \pi + C_3 \]

(34)

where

\[C_3 = \bar{w}^T \left[\delta_3 P^T M P^+ \right] \bar{w} - \bar{w}^T \left[\delta_3 P^T M P^- \right] \bar{w} - \left(\delta_3 L_T^P M P L_Pq \right) v \\
+ E_p^T \left[\delta_3 \nabla^T \right] \left(M \left[PL_q \nabla \right] E_p \right) \]

(35)

and

\[B_2 = P \left(A_q - L_q C_q \right) P^{-1} T \]

\[= \frac{1}{\delta_2} M - P^{-1} A_q T P^T M + M P A_q P^{-1} + \frac{1}{\delta_4} M \]

\[- P^{-1} C_q T L_q^T P^T M - M P L_q C_q P^{-1} \leq 0 \]

(36)

The existence of a common transformation matrix \(P \) such that \(P \left(A_q - L_q C_q \right) P^{-1} \) for all \(q \in \bar{T, N} \) are Metzler is difficult since (36) is a nonlinear inequality. Therefore, the stability of the observer (25) can not be easily ensured.

However, it is rare, even impossible, to determine a non singular transformation matrix \(P \) to transform the system (6) into a cooperative form such that \(P \left(A_q - L_q C_q \right) P^{-1} \) \((q \in \bar{T, N}) \) are Metzler. As a solution to this problem, a second method is proposed. The main idea consists in redesigning two conventional observers in the original base \(\pi^+ \).

Then, stability conditions will be given in terms of LMIs by applying a common Lyapunov function to the estimation errors. Consider the SLS (6) and two point observers described by

\[\begin{aligned}
\dot{x}^+ &= (A_q - L_q C_q) x^+ + B_q u + P^{-1} \left(P^+ w + P^- w \right) \\
&+ L_q y_m + P^{-1} \left[M_\bar{q} L_q \nabla \right] E_p
\end{aligned} \]

\[\dot{x}^- = (A_q - L_q C_q) x^- + B_q u + P^{-1} \left(-P^+ w - P^- w \right) \\
+ L_q y_m - P^{-1} \left[M_\bar{q} L_q \nabla \right] E_p \]

with \(P_q, q \in \bar{T} \), are chosen as in the following theorem and

\[\begin{aligned}
\dot{x}^+_0 &= Q_0 \left(P^+_q \pi_0 - P^-_q \pi_0 \right) \\
\dot{x}^-_0 &= Q_0 \left(P^+_q \pi_0 - P^-_q \pi_0 \right)
\end{aligned} \]

(37)

with

\[Q_q = P^{-1}_q \]

The observer (37) is not an interval observer for (6) and its structure is similar to the one proposed in Dinh et al. (2014) for the case of non switched systems. However, the estimates computed by (37) are used in Theorem 5 to deduce an interval estimation.

Theorem 5. Consider matrices \(P_q \) \((q \in \bar{T}) \) such that \(F_q = Q_p \left(A_q - L_q C_q \right) P^{-1}_q \) are Metzler. If the initial condition \(x_0 \) verifies \(x_0(t) \leq x_0(t) \leq \pi_0 \), then an interval estimation for (6) is given by:

\[\begin{aligned}
\bar{x} &= Q_q + P_q \pi^- - Q_q P_q \pi^+ \\
\bar{\pi} &= Q_q + P_q \pi^- - Q_q P_q \pi^+
\end{aligned} \]

(39)

satisfying

\[\bar{x}(t) \leq x(t) \leq \bar{\pi}(t) \]

(40)

In addition, if there exists a symmetric definite positive matrix \(M \) such that

\[A_q^T M + M A_q - C_q T W_q T - W_q C_q + \sigma_q M < 0 \]

(41)

then (37) is asymptotically stable and \(\pi, \bar{\pi} \) are bounded.

Proof. Consider the errors \(E_q^+ = P_q \dot{x}^+ - P_q x \) and \(E_q^- = P_q x - P_q \dot{x}^- \).

Let us show that \(\pi - x \geq 0 \) and \(x - \bar{\pi} \geq 0 \) where \(\pi \) and \(\bar{\pi} \) are computed by (39).

From (6) and (37) the dynamics of the errors \(E_q^+ \) and \(E_q^- \) are given by:

\[\begin{aligned}
\dot{E}_q^+ &= P_q \dot{x}^+ - P_q x = P_q \left(A_q - L_q C_q \right) \dot{x}^+ + \left[P_l L_q \nabla \right] E_p - P_q \left(A_q - L_q C_q \right) x + \left[\left(P^+ w + P^- w \right) - P_q w \right] + P_q L_q v \\
&= P_q \left(A_q - L_q C_q \right) P_q^{-1} \left(P_q \dot{x}^+ - P_q x \right) + \gamma_q^+ \\
&= F_q E_q^+ + \gamma_q^+
\end{aligned} \]

(42)

where

\[\gamma_q^+ = \left[\left(P^+ w + P^- w \right) - P_q w \right] + P_q L_q v + \left[P_l L_q \nabla \right] E_p \]

Similarly to \(E_q^- \), the dynamics of \(E_q^- \) are given by:

\[\begin{aligned}
\dot{E}_q^- &= P_q \dot{x}^- - P_q \dot{x}^- = R_q E_q^- + \gamma_q^- \\
&= P_q \left(A_q - L_q C_q \right) P_q^{-1} \left(P_q \dot{x}^- - P_q \dot{x}^- \right) + \gamma_q^-
\end{aligned} \]

(43)

where

\[\gamma_q^- = \left[\left(P^+ w + P^- w \right) - P_q w \right] + \left[P_l L_q \nabla \right] E_p - P_q L_q v \]

According to Lemma 1 we have

\[-P^+_q \bar{w} - P^-_q \bar{w} \leq P^-_q w \leq P^+_q \bar{w} + P^-_q \bar{w} \]

Since \(P_q \left(A_q - L_q C_q \right) P_q^{-1} \) are assumed to be Metzler, and by construction \(\gamma_q^+ \) and \(\gamma_q^- \) are positive for all \(t \geq 0 \). Then, if \(\pi_0 \) and \(\bar{\pi}_0 \) are chosen such that \(E_q^+ (0) \) and \(E_q^- (0) \) are positive, then the errors \(E_q^+ (t) \) and \(E_q^- (t) \) stay positive \(\forall t \geq 0 \) such that

\[P_q \dot{x}_q \leq \dot{x} q \leq P_q \dot{x} \]

As \(Q_q = P_q^{-1} \), then \(x \leq x \leq \bar{\pi} \) where

\[\begin{aligned}
\bar{x} &= Q_q + P_q \pi^- - Q_q P_q \pi^+ \\
\bar{\pi} &= Q_q + P_q \pi^- - Q_q P_q \pi^+
\end{aligned} \]

(38)

For the stability analysis, Let us now show that \(E_q^+ \) and \(E_q^- \) are asymptotically stable or simply show that \(\dot{x}^+ \) and \(x^- \) are asymptotically stable.

Let \(e^+ = (\dot{x}^+ - x) \) and \(e^- = (x - \dot{x}^-) \) be the observation errors and consider the following Lyapunov function:

\[V(e^+) = e^T M e^+ \]

(44)

where \(M \) is a symmetric positive definite matrix. As in proof of Theorem 4, the derivative of the Lyapunov function can be given as follows:

\[\dot{V}(e^+) = e^T M \dot{e}^+ + e^T M \dot{e}^+ \]

\[= e^T \left(A_q - L_q C_q \right) T M + M \left(A_q - L_q C_q \right) e^+ \\
+ 2e^T M P_q^{-1} \left(P^+_q w + P^-_q w \right) - 2e^T M w \\
+ 2e^T M L_q v + 2e^T M \left[L_q \nabla \right] E_p \]

(45)

According to Lemma 3, we have

\[\dot{V}(e^+) \leq e^T B_3 e^+ + C_3 \]

where
\begin{align*}
B_3 &= \left(A_q - L_q C_q\right)^T M + M \left(A_q - L_q C_q\right) + \frac{3}{\delta_q} M \\
&= A_q^T M + MA_q - C_q^T W_q^T - W_q C_q + \frac{3}{\delta_q} M \ (46)
\end{align*}

\begin{align*}
C_5 &= \overline{\mu}^T \left[\delta_q \hat{P}_q + P_q^{-1T} M P_q^{-1} P_q^{-1T} \right] \overline{\mu} + \overline{\nu}^T \left[\delta_q L_q^T M L_q \right] \overline{\nu} \\
&+ \overline{\mu}^T \left[\delta_q P_q - P_q^{-1T} M P_q^{-1} P_q^{-1T} \right] \overline{\mu} - \overline{\nu}^T \left[\delta_q M \right] \overline{\nu} \\
&+ E_p^T \left[\delta_q \left| L_q \right|^T M \left| L_q \right| \right] P E_p \ (47)
\end{align*}

The noise \(\nu \) and disturbance \(\omega \) are bounded, it follows that \(C_5 \) is bounded. Therefore, if \(B_3 < 0 \), the observation error \(e^+ \) is bounded. The same arguments allow one to show that the observation error \(e^- \) is also bounded. In addition, since \(P_q \) and \(Q_q \) are bounded for all \(q \in \mathbb{N} \) then \(E_q^+ \) and \(E_q^- \) are bounded.

In the next section, the performance of the suggested method is shown through a numerical example.

4. NUMERICAL EXAMPLE

Consider the linear switched system subject to disturbances described by:

\[
\begin{align*}
\dot{x}(t) &= A_q x(t) + B_q u(t) + w(t), \quad \forall q \in \mathbb{T} \\
y(t) &= C_q x(t) + v(t)
\end{align*}
\]

(48)

where

\[
A_1 = \begin{bmatrix} -1.5 & 0.262 \\ 0 & -1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -0.5 & 2 \\ 0 & -1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} -0.6 & 1.5 \\ 0 & -1 \end{bmatrix}
\]

\[B_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

\[C_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad C_3 = \begin{bmatrix} 1 \\ 1.5 \end{bmatrix}
\]

\(w(t) \) and \(v(t) \) are uniformly distributed bounded signals such that \(-\overline{\nu} \leq \nu(t) \leq \overline{\nu} \) with \(\overline{\nu} = [0.03 \ 0.03]^T \) and \(-\overline{\nu} E_p \leq \nu(t) \leq \overline{\nu} E_p \) with \(\overline{\nu} = 0.3 \).

To verify the cooperativity property, a transformation of coordinates must be used such that \(P \left(A_q - L_q C_q \right) P^{-1} \) are Metzler. However, it is not possible to compute this common transformation matrix \(P \). Hence, non singular transformation matrices \(P_q \) are computed. Consequently, a conventional observer (37) is constructed for the system (48).

Now, using the Matlab LMI toolbox, one can solve the LMI defined by (41). One feasible solution is given by:

\[
L_1 = \begin{bmatrix} -0.6555 \\ -0.1011 \end{bmatrix}, \quad L_2 = \begin{bmatrix} 0.9397 \\ -0.2497 \end{bmatrix}, \quad L_3 = \begin{bmatrix} 0.5734 \\ -0.2512 \end{bmatrix}
\]

\[
M = \begin{bmatrix} 81.6804 & 21.7133 \\ 21.7133 & 55.5904 \end{bmatrix}, \quad \delta_q = 84.5699, \quad \forall q \in \mathbb{T}
\]

Note that \(P_q \) are computed to verify that \(P_q \left(A_q - L_q C_q \right) P_q^{-1} \) are Metzler for all \(q \in \mathbb{T} \) and given by:

\[
P_1 = \begin{bmatrix} 0.2845 & -0.7262 \\ 0.4770 & 0.4841 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0.7776 & -0.8577 \\ 0.1483 & 0.5718 \end{bmatrix}
\]

\[
P_3 = \begin{bmatrix} 0.7829 & -0.6580 \\ 0.2171 & 0.6580 \end{bmatrix}
\]

All conditions of Theorem 5 are satisfied; it follows that the system (37) is asymptotically stable verifying \(\overline{x}(t) \leq x(t) \leq \underline{x}(t) \) \(\forall t \geq 0 \), \(\forall q \in \mathbb{T} \), with

\[
\overline{x} = Q_q^+ P_q \dot{x} - Q_q^- P_q \dot{x}^+
\]

and

\[
\underline{x} = Q_q^+ P_q \dot{x} - Q_q^- P_q \dot{x}^-
\]

where \(Q_q = P_q^{-1} \) are given by:

\[
Q_1 = \begin{bmatrix} 1.0000 & 1.5000 \\ -0.9853 & 0.5876 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 1.0000 & 1.5000 \\ -0.2593 & 1.3599 \end{bmatrix}
\]

\[
Q_3 = \begin{bmatrix} 1.0000 & 1.0000 \\ -0.3299 & 1.8999 \end{bmatrix}
\]

The results of simulation of the obtained observer are depicted in Fig. 1(a) for both coordinates where solid lines present the state and dashed lines present the estimated bounds.

The switching between the three subsystems is governed by theswitching signal plotted in Fig. 1(b).

The initial state \(x_0 \) is assumed to be bounded such that

\[
\underline{x}_0 \leq x_0 \leq \overline{x}_0
\]

where \(\overline{x}_0 = [1.5 \ 1.5]^T, \ \underline{x}_0 = [-1.5 \ -1.5]^T \)

Fig. 1. Interval state estimation for the switched system with disturbances.

The results show that, despite the disturbances, the state is always inside the upper and the lower trajectories. The interval observer has exhibited approved stability properties. The inclusion

\[
\underline{x}(t) \leq x(t) \leq \overline{x}(t), \quad \text{for all } t \geq t_0
\]

is always verified.

As shown in Fig. 1(a), the interval is quite large at the beginning, although its width decreases despite the uncertainties on the measurements. Finally, the interval observer remains stable despite the switching instants.
5. CONCLUSION
This paper investigates state estimation for switched linear systems subject to disturbances. An interval observer is designed under some transformations where two conventional observers are reformulated in the base “z”. The stability and the cooperativity conditions are represented in terms of LMIs. Effectiveness of the proposed methodology is illustrated through a numerical example. In this work, the switching instants are assumed to be known nonetheless it is not the case for the most of switched systems. This concern will be the subject of further contributions.

REFERENCES
Fayssal Arichi, Mohamed Djemai, Brahim Cherki, and Nouredinne Manamanni. Continuous and discrete state estimation for a class of nonlinear switched systems. IEEE Trans. on Circuits and Systems II, 62(7):691–695, 2015.
Abderazik Birouche, Jamal Daafouz, and Claude Iung. Observer design for a class of discrete time piecewise-linear systems. IFAC Proceedings Volumes, 39(5):12–17, 2006.
Michael S Branicky. Multiple lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on automatic control, 43(4):475–482, 1998.
Stanimlav Chebotarev, Denis Efimov, Tarek Raïssi, and Ali Zolghadri. Interval observers for continuous-time lpv systems with l1/l2 performance. Automatica, 58:82–89, 2015.
T. N. Dinh, F. Mazenc, and S. I. Niculescu. Interval observer composed of observers for nonlinear systems. In European Control Conference, pages 660–665, 2014.
Mohamed Djemai and Michael Defoort. Hybrid Dynamical Systems. Springer, 2015.
Jean-Luc Gouzé, A Rapaport, and Mohamed Zakaria Hadj-Sadok. Interval observers for uncertain biological systems. Ecological modelling, 133(1):45–56, 2000.
Zhongwei He and Wei Xie. Interval state observer for nonlinear switched systems with average dwell time. In 34th IEEE Chinese Control Conference (CCC), pages 2285–2288, 2015.
Zhongwei He and Wei Xie. Control of non-linear switched systems with average dwell time: interval observer-based framework. IET Control Theory & Applications, 10(1):10–16, 2016.
Laurentin Hetal. Robust stability and control of switched linear systems. PhD thesis, Nancy University, 2007.
Abdeljelitah Hocine, Didier Maquin, and José Ragot. Finite memory observer for switching systems: Application to diagnosis. IFAC Proceedings Volumes, 38(1):406–411, 2005.
Bo Hu, Guisheng Zhai, and Anthony N Michel. Common quadratic lyapunov-like functions with associated switching regions for two unstable second-order lti systems. International Journal of Control, 75(14):1127–1135, 2002.
Bin Jiang, Jian Liang Wang, and Yeng Chai Soh. An adaptive technique for robust diagnosis of faults with independent effects on system outputs. International Journal of Control, 75(11):792–802, 2002.
Rihab Lamouchi, Messaoud Amairi, Tarek Raïssi, and Mohamed Aoun. Interval observer design for linear parameter-varying systems subject to component faults. In 24th IEEE Mediterranean Conference on Control and Automation (MED), pages 707–712, 2016.
Daniel Liberzon. Switching in systems and control. Springer Science & Business Media, 2012.
Daniel Liberzon and A Stephen Morse. Basic problems in stability and design of switched systems. IEEE Control systems, 19(5):59–70, 1999.
Frédéric Mazenc and Olivier Bernard. Asymptotically stable interval observers for planar systems with complex poles. IEEE Transactions on Automatic Control, 55(2):523–527, 2010.
Frédéric Mazenc and Olivier Bernard. Interval observers for linear time-invariant systems with disturbances. Automatica, 47(1):140–147, 2011.
Tarek Raïssi, Gaëtan Videau, and Ali Zolghadri. Interval observer design for consistency checks of nonlinear continuous-time systems. Automatica, 46(3):518–527, 2010.
Tarek Raïssi, Denis Efimov, and Ali Zolghadri. Interval state estimation for a class of nonlinear systems. IEEE Transactions on Automatic Control, 57(1):260–265, 2012.
Ulysse Serres, Jean-Claude Vivalda, and Pierre Riedinger. On the convergence of linear switched systems. IEEE Transactions on Automatic Control, 56(2):320–332, 2011.
Yang Tian, Thierry Floquet, Lotfi Belkoura, and Wilfried Perruquetti. Switching time estimation for linear switched systems: an algebraic approach. In Proceedings of the 48th IEEE Conference on Decision and Control, held jointly with the 28th Chinese Control Conference. CDC/CDC 2009., pages 3909–3913, 2009.
Gaëtan Videau, Tarek Raïssi, and Ali Zolghadri. Guaranteed state estimation for nonlinear continuous-time systems based on qlpv approximations. In IEEE European Control Conference (ECC), 2009, pages 904–909.
Basma Yousfi, Tarek Raïssi, Messaoud Amairi, and Mohamed Aoun. Robust state estimation for singularly perturbed systems. International Journal of Control, pages 1–14, 2016a.
Basma Yousfi, Tarek Raïssi, Messaoud Amairi, and Mohamed Aoun. Set-membership methodology for model-based prognosis. ISA Transactions, 2016b.