Supporting Information for

Highly efficient absorption of CO$_2$ by protic ionic liquids-amine blends at high temperature

Cheng Li, Tianxiang Zhao,* Anjie Yang, and Fei Liu*

Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China

*Corresponding author: txzhao3@gzu.edu.cn (T.X. Zhao) and ce.feiliu@gzu.edu.cn (F. Liu)
[DMAPAH][OAc] : 1H NMR (400 MHz, CDCl$_3$, 298.15 K) \(\delta 8.26 \text{ (s, 3H), 2.82 (t, } J = 6.7 \text{ Hz, 2H), 2.32 (t, } J = 6.5 \text{ Hz, 2H), 2.12 (s, 6H), 1.80 (s, 3H), 1.68 (p, } J = 6.6 \text{ Hz, 2H).} \ ^{13}$C NMR (101 MHz, CDCl$_3$, 298.15 K) \(\delta 178.27 \text{ (s), 57.82 (s), 45.06 (s), 39.27 (s), 24.99 (s), 24.52 (s).} \) IR: \(\nu = 567, 617, 650, 733, 883, 969, 1078, 1158, 1272, 1335, 1394, 1450, 1636, 1706, 1786, 1834, 1940, 2180, 3434 \text{ cm}^{-1}. \)

Figure S1. The 1H NMR and 13C NMR spectra of [DMAPAH][OAc].
[DMAPAH][LA]

1H NMR (400 MHz, D$_2$O, 298.15 K) δ 8.26 (s, 3H), 2.82 (t, $J = 6.7$ Hz, 2H), 2.32 (t, $J = 6.5$ Hz, 2H), 2.12 (s, 6H), 1.80 (s, 3H), 1.68 (p, $J = 6.6$ Hz, 2H). 13C NMR (101 MHz, D$_2$O, 298.15 K) δ 182.30 (s), 68.35 (s), 55.26 (s), 43.37 (s), 37.73 (s), 24.91 (s), 20.10 (s). IR: $\tilde{\nu}$ = 532, 668, 777, 848, 923, 957, 1041, 1082, 1122, 1185, 1219, 1256, 1646, 2160, 3520 cm$^{-1}$.

Figure S2. The 1H NMR and 13C NMR spectra of [DMAPAH][LA].
Figure S3. FTIR spectra of [DMAPAH][OAc] and [DMAPAH][LA].

Figure S4. TGA of the [DMAPAH][OAc] and [DMAPAH][LA].

Figure S5. (a): physical picture of CO₂ absorption tube; liquid state of [DMAPAH][OAc]-EDA after CO₂ absorption at different temperatures for 20 min. (b): 40°C; (c): 60°C.
Table S1. The water contained in PILs.

Entry	Sample	Water (wt%)
1	[DMAPAH][OAc]	0.11
2	[DMAPAH][LA]	0.17

Table S2. Experimental densities of the proton ionic liquid-amine blends.*

Absorbents	Density (g/cm³)				
	30°C	40°C	50°C	60°C	70°C
[DMAPAH][OAc]-EDA	0.943	0.940	0.934	0.929	0.920
[DMAPAH][OAc]-DETA	0.970	0.967	0.961	0.957	0.950
[DMAPAH][LA]-EDA	0.970	0.974	0.966	0.961	0.955
[DMAPAH][LA]-DETA	1.008	1.005	0.999	0.992	0.985
[DMAPAH][OAc]:EDA=1:0.5	0.960	0.957	0.949	0.944	0.941
[DMAPAH][OAc]:EDA=0.5:1	0.927	0.923	0.915	0.908	0.904

*The standard uncertainties Ur are Ur(T) = ±0.02 K, Ur(m) = ±0.001 g and the relative expanded uncertainty Ur(ρ) is ±0.001 (level of confidence = 0.95).

Table S3. Experimental viscosities of the proton ionic liquid-amine blends.*

Absorbents	Viscosity (mPa·s)				
	30°C	40°C	50°C	60°C	70°C
[DMAPAH][OAc]-EDA	9.34	7.96	7.10	6.41	5.76
[DMAPAH][OAc]-DETA	35.06	26.90	21.18	17.25	14.30
[DMAPAH][LA]-EDA	12.19	10.11	8.62	7.43	7.05
[DMAPAH][LA]-DETA	56.27	39.51	29.07	22.11	16.68
[DMAPAH][OAc]:EDA=1:0.5	25.67	17.01	12.43	9.31	7.21
[DMAPAH][OAc]:EDA=0.5:1	3.79	3.10	2.52	2.08	1.74

*The standard uncertainties Ur are Ur(T) = ±0.02 K, Ur(m) = ±0.001 g and the relative expanded uncertainty Ur(η) is ±0.02 (level of confidence = 0.95).