Accuracy benchmark of the GeneMind GenoLab M sequencing platform for WGS and WES analysis

Chaoyang Li1†, Xue Fan2†, Xin Guo3, Yongfeng Liu1, Miao Wang1, Xiao Chao Zhao1, Ping Wu1, Qin Yan1 and Lei Sun1*

Abstract
Background: GenoLab M is a recently developed next-generation sequencing (NGS) platform from GeneMind Biosciences. To establish the performance of GenoLab M, we present the first report to benchmark and compare the WGS and WES sequencing data of the GenoLab M sequencer to NovaSeq 6000 and NextSeq 550 platform in various types of analysis. For WGS, thirty-fold sequencing from Illumina NovaSeq platform and processed by GATK pipeline is currently considered as the golden standard. Thus this dataset is generated as a benchmark reference in this study.

Results: GenoLab M showed an average of 94.62% of Q20 percentage for base quality, while the NovaSeq was slightly higher at 96.97%. However, GenoLab M outperformed NovaSeq or NextSeq at a duplication rate, suggesting more usable data after deduplication. For WGS short variant calling, GenoLab M showed significant accuracy improvement over the same depth dataset from NovaSeq, and reached similar accuracy to NovaSeq 33X dataset with 22x depth. For 100X WES, the F-score and Precision in GenoLab M were higher than NovaSeq or NextSeq, especially for InDel calling.

Conclusions: GenoLab M is a promising NGS platform for high-performance WGS and WES applications. For WGS, 22X depth in the GenoLab M sequencing platform offers a cost-effective alternative to the current mainstream 33X depth on Illumina.

Keywords: GenoLab M, NovaSeq 6000, Nextseq 550, WGS, WES, NA12878

Background
The past 15 years have witnessed a new era in DNA sequencing technologies [1], starting from the release of the Roche 454 sequencer, which opened the door to next-generation sequencing (NGS) [2]. Compared to Sanger sequencing technology [3], NGS has remarkably higher throughput and reduced costs [1]. As technology upgrades and iterates, NGS technologies have dramatically decreased the cost of human whole genome sequencing (WGS) and whole-exome sequencing (WES). As a result, the rapid development of technology leads to brilliant achievements in WGS projects such as the 1000 genome project [4], the HapMap project [5], and extensive cohort studies worldwide. WGS and WES have been and are being widely performed to discover disease-associated genes and identify driver mutations in hereditary tumors [6–8]. It lays the foundations for the understanding of how mutated genes affect disease phenotype and the further interpretation of pathogenic mechanisms [6–8].
Since the completion of the Human Genome Project in 2003, various sequencing platforms have been developed: Roche 454, Illumina series (GA, HiSeq, Miseq, NextSeq, NovaSeq, etc.) [9], MGI (BGISEQ-500, MGISEQ2000, DNBSEQ-T7) [10], Ion Torrent [11], and GenapSys [12]. Benefiting from continued technology development and product commercialization, Illumina’s sequencing by synthesis (SBS) based sequencers have dominated the sequencing market for a long time. In 2016, NextSeq 550 was released as mid-throughput desktop sequencing instrument, which can be applied in many fields, including transcriptome sequencing, targeted sequencing, WES, metagenomics sequencing, and genotyping. In June 2017, NovaSeq 6000 was launched, which incorporates Illumina’s SBS chemistry and two-color optics. Combined with patterned flow cell technology and reversible terminator-based method [10], it can produce 6 TB of sequencing data in a single run at a cost of approximately 10 USD/GB [13]. As NGS applications expand in various research areas and clinical settings, there is an unmet demand to develop a novel NGS platform that is accurate, flexible, and cost-efficient for applications.

In October 2020, GeneMind Biosciences Company Limited (GeneMind) launched a new sequencing instrument (GenoLab M) based on their previous work on single molecule sequencer GenoCare™ [14]. The GenoLab M sequencer employs SBS techniques and reversible termination approaches [15]. In 2021, the first study using GenoLab M was published [15], revealing that the GenoLab M is a promising sequencing platform for transcriptomics and LncRNA studies in animal, plant, and human with comparable performance but a lower cost compared to NovaSeq 6000. However, the performance of the GenoLab M platform in other application areas has not yet been released, especially in WGS and WES.

In 2014, Genome in a Bottle (GIAB) published A golden standard genotype dataset (including reference sample NA12878), providing a resource for comparison of variants calling pipelines [16]. Recently, several studies used the GIAB variant dataset for comparisons among different variants callers or sequencing platforms [17–20]. Generally, data depth of WGS and WES were above 30 fold and 100 fold [13, 18, 21–23]. Early in the history of WGS, the field converged around the concept that 30-fold represents a “high quality” genome with the ideal trade-off of accuracy and cost. Together with Genome Analysis Tool kit (GATK) [24] as the best practice analysis pipeline [25], this depth concept has become deeply ingrained in the community mindset, even when the sequencing and analysis fields have evolved rapidly. It is well recognized that GATK works well with dominated Illumina data, but is not yet proven on other sequencing platforms. Also, 30-fold data in WGS is potentially redundant, not only on the cost of sequencing but also the analysis computation and storage costs. There are quite a few previously published lower depth WGS studies, such as a large group WGS project of Icelanders in 2015 with a median sequencing depth was 20X [26]. In 2018, Anna Supernat et al., have compared three variant callers (DeepVariant [27], GATK, and SpeedSeq [27]) for WGS reference sample sequenced at different depths (10X, 15X, and 30X). It was observed that the F-Scores obtained by DeepVariant at 15X were comparable to SpeedSeq and GATK at 30X. Yifan Jiang et al., found that the optimal sequencing depth for whole genome re-sequencing in pigs was 10X, an ideal practical depth for achieving plateau coverage and discovering accurate variants with greater than 99% genome coverage [28]. With all these preliminary supporting studies and the emerging sequencing and analysis technologies with improved accuracy, a lower sequencing depth than 30X may be considered as the current best practice.

This study obtained both WES and WGS datasets of the NA12878 standard sample generated from multiple sequencing platforms, including NextSeq 550, NovaSeq 6000, and GenoLab M. On the analysis part, two pipelines were chosen: Sentieon DNAscope pipeline, a machine learning (ML) based variant calling workflow (https://github.com/Sentieon/sentieon-dnascpe-ml), and DNAseq workflow, which is an accelerated GATK re-implementation [29]. We compared WGS performance in GenoLab M with 22X data and NovaSeq 6000 with 33X data.

Method
Samples preparation and sequencing
We ordered 50 μg NA12878 cell line genomic DNA from Sequanta Technologies Co., Ltd. After quality control, in brief, the genomic DNA was constructed as Illumina WES via SureSelect Human All Exon V8 kit (Agilent Technologies Inc.) and WGS library via TruSeq Nano DNA library kit (Illumina, Inc.). Subsequently, one ug DNA to was fragmented by Covaris E220 to 100–250bp for WES, and to 350–450bp for WGS. Then, end of each DNA fragment was repaired and an A base was added to the 3’end to form a sticky end, and then the Illumina adapter was ligated to both ends of DNA fragments. PCR amplification was applied to each sample after ligation. While WGS libraries were completed, the WES libraries went through additional steps, including SureSelect Human All Exon V8 capture, PCR amplification and purification.

WES library was split and loaded into GenoLab M and NextSeq 550 or NovaSeq 6000 for 150bp paired-end sequencing. And WGS library was sequenced on
GenoLab M and Novaseq. For GenoLab M, the sequence process was referred to reference 15. Briefly, the library is denatured to single-stranded and surface-based amplified on the flow cell. Then, the amplified DNA colonies are hybridized to a sequencing primer. Next, Fluorescence-dye labeled nucleotides and a polymerase are added to start the sequencing cycle. In each cycle, the nucleotides’ terminator structure ensures only one nucleotide is incorporated. Four-color fluorescence signals from the labels are collected by a scanning optical system, and then the terminator structure is cleaved. Finally, the fluorescence image data are then combined and color-corrected, sequencing quality score are assigned to each base to produce the final fastq file.

Reads mapping and bam processing
Secondary analysis was performed via Sentieon software v 202,112.01 [30], a complete suite of tools that can be used to process raw reads to variant calling result. Raw reads were aligned to the hg38 (https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/references/GRCh38/) by “Sentieon BWA” and sorting was done by the “sort” utility tool. BAM files were then adjusted by Samtools v1.10 to the desired depth for later analysis and comparison, specifically 22X and 33X for the WGS dataset, and 100X for the WES dataset. Quality metrics were generated from these BAM files by Sentieon QC tools. Next, “LocusCollector” and “Dedup” tools were used to mark duplicate reads, to prepare the BAM files for variant calling step.

Running DNaseq (GATK re-implementation) and DNAscope
The Sentieon DNaseq pipeline is a re-implementation of the GATK best practice pipeline, returning identical results at a much higher speed [29]. DNaseq is typically five to ten fold faster than GATK pipeline on the same generic CPU platform. Therefore here in this study, we ran DNaseq pipeline and treated the result the same as the data from GATK pipeline. Deduped BAM files were firstly processed by “QualCal” tool to conduct base quality score recalibration, and variants were called by “Haplotyper” tool to provide the matching result of GATK. VQSR was not performed because we do not believe this extra step will improve overall variant calling accuracy [31].

Deduped BAM files were directly input into DNascope pipeline, as BQSR step is not needed here. DNascope variant caller first generated candidate variants, filtered in the next step. GenoLab M ML model was applied on both variant generation and filtering steps. DNascope is designed as a successor to GATK HaplotypeCaller, as it uniquely combines the well-validated methods from haplotype-based variant callers with ML to achieve improved accuracy. The candidate variants calling comprises three parts: active region detection, local haplotype assembly, and read-likelihood calculation (Pair-HMM). Later the variant candidates with rich annotations are passed to a ML model for variant genotyping, leading to improvements in both variant calling and genotyping accuracy.

The GenoLab M model for DNascope was constructed during this project using several WGS and WES datasets sequenced from reference samples. Due to the limited training dataset, separated WGS and WES models were trained. The training was performed across all chromosomes with the exception of chromosome 20. It should be noted that none of the evaluated datasets was used during training.

Variant accuracy evaluation
All VCF files generated from DNaseq or DNascope pipelines were taken as input for accuracy evaluation. They were compared against the NIST truth set v4.2.1 using hap.py v0.3.14 with RTGtools vcfEval v3.10.1 as the variant comparison engine [32] to calculate an F-score as a representation of accuracy. Stratification region files v2.0 were downloaded from GIAB project and used for stratification analysis [33]. We calculate Precision, Recall and F-score referred to [17], and the details were as follows:

(1). True Positive (TP): variants called by a variant caller in high confident regions as the same genotype as the gold standard data.
(2). True Negative (TN): reference alleles in high confident regions other than gold standard variants.
(3). False Positive (FP): variants called by a variant caller in high confident regions but not as the same genotype as the gold standard data.
(4). False Negative (FN): gold standard variants in high confident that were not called by a variant caller.
(5). Precision: TP/(TP+FP), meaning positive predictive value, is the fraction of relevant instances among the retrieved instances.
(6). Recall: TP/(TP+FN), meaning sensitivity, is the fraction of relevant instances that were retrieved.
(7). F-score: 2*Precision*Recall/(Precision+Recall), is the harmonic mean of the precision and recall.

Results
NGS datasets summary
To avoid biased results by different sample prep and library construction processes, we used the same WGS or WES library. In total, there are three WES and two WGS datasets obtained from GenoLab M, and NovaSeq 6000
or NextSeq 550 (Fig. 1), and the dataset were subsampled to an average of 100X in whole exome for WES and an average of 22X in whole genome for WGS to generate additional datasets for comparison. FASTQ and BAM quality statistics were calculated, as shown in Table 1. For the base quality (over Q20) base percentages, the GenoLab M showed an average of 94.62%, slightly lower than NovaSeq’s performance at 96.97%. While the duplication rate of GenoLab M outperformed NovaSeq or NextSeq, which was only half of NovaSeq’s duplication rate at the same sequencing depth. A lower duplication rate usually leads to higher data usage and less waste.

The performance of 22X WGS data in GenoLab M

Subsequently, we compared the WGS SNP&InDel calling accuracy of GenoLab M and NovaSeq with analysis algorithms adapted to each sequencer at 22X and 33X depth. As shown in Fig. 2A&B, the F-score, Recall, and Precision
Table 1 Statistics of the multiple sequencing datasets in our study

Samples	Library Type	Sequencing Platform	Read (M)	Bases (Gb)	Duplication rate (%)	>Q20	>Q30	Alignment rate (%)	Mean coverage (X)	%_bases_above_15x
GL_WGS_22	WGS	GenoLab M	44.27	66.42	1.73%	95.35%	88.26%	99.88%	22.39	81.30%
GL_WGS_33	WGS	GenoLab M	662.66	99.40	1.93%	95.22%	87.99%	99.88%	33.50	93.90%
NA_WGS_22	WGS	NovaSeq 6000	4249	63.73	3.57%	95.92%	90.05%	99.64%	21.37	87.30%
NA_WGS_33	WGS	NovaSeq 6000	655.83	98.38	5.32%	95.92%	90.05%	99.64%	32.99	97.70%
GL_WES_100	WES Agilent V8	GenoLab M	41.87	6.28	6.00%	93.95%	84.71%	99.95%	112.42	98.00%
GL_WES_raw	WES Agilent V8	GenoLab M	70.36	10.55	9.71%	93.95%	84.71%	99.95%	188.90	99.00%
NA_WES_100	WES Agilent V8	NovaSeq 6000	39.35	5.90	14.85%	98.01%	94.05%	99.95%	107.72	99.30%
NA_WES_raw	WES Agilent V8	NovaSeq 6000	81.16	12.17	26.78%	98.01%	94.05%	99.95%	222.19	99.60%
NT_WES_100	WES Agilent V8	NextSeq 550	37.54	5.56	5.67%	86.62%	79.06%	99.83%	101.13	99.30%
NT_WES_raw	WES Agilent V8	NextSeq 550	131.76	19.50	17.54%	86.61%	79.06%	99.83%	354.92	99.60%
of SNP and InDel from 33X WGS were higher than 22X WGS from the same sequencing platform. At the same depth, GenoLab M showed higher recall and precision in SNP and InDel calling than NovaSeq. Interestingly, 22X WGS from GenoLab M had similar performance in SNP, and a slight advantage in InDel, compared to 33X WGS from NovaSeq. GenoLab M’s analysis ML model could be part of the reason. The characteristics of the sequencing data are also likely to contribute to the difference. In addition, stratification comparison was performed including Chromosome 20 (chr20), which was not included in any of DNAscope’s model training dataset; Segmental duplications region (SDR); and “Not in all Difficult Regions” (NIADR). As displayed in Fig. 2C&D, stratification comparison was similar to the whole genome, especially in SDR, 22X GenoLab M dataset reached better performance (F-score of 0.941 and 0.923, respectively) in SNP and InDel calling compared to 33X NovaSeq dataset (F-scores 0.884 and 0.870, respectively).

The variant calling results of two platforms at 22X or 33X depth were filtered using GIAB NA12878 truth vcf file. The distribution of the after-filter variants representing concordance of each dataset was shown in Venn diagrams (SNP, Fig. 3A and InDel, Fig. 3B). For common sets of variants, the proportion of SNP (96.27%, 3,133,010) was significantly higher than that of InDel (85.45%, 399,648). Besides, 22X WGS from GenoLab M (98.24 and 92.75%) showed indistinguishable SNP detection and slightly inferior InDel, compared with 33X data from NovaSeq (98.70 and 95.15%).

Variants calling performance in WES datasets
Three WES datasets at their raw sequencing depth and three more datasets subsampled to 100X were generated for WES performance assessment. As expected, SNP and InDel F-score, Recall, and Precision of the subsampled datasets dropped from their original depth (Fig. 4). At 100X, the F-score and Precision in GenoLab M were higher than NovaSeq or NextSeq, while the Recall in GenoLab M was slightly lower.

Same as with WGS concordance analysis, the variant calling results of six WES datasets were filtered by
reference truth, and concordance was shown in Fig. 5. All six datasets jointly identified 20,707 SNPs and 425 InDels, which were more than 97% of the truth variants’ amount, with the majority shared among all six datasets. For InDel, 100X depth in all platforms has no specific number, compared with raw data, while, for SNP, GenoLab M and NovaSeq have a small number of mutation detection. Overall, at 100X depth, GenoLab M (20,371) displayed comparable recall in SNP detection compared with NovaSeq (20,490) or NextSeq (20,388), and slightly inferior in InDel detection.

Discussion
In the past 10 years, with the development of NGS sequencers by companies such as Illumina, MGI, and Ion Torrent, the application of WES or WGS to identify variants of the human genome became accessible for the public and even individuals. To further expand the accessibility, various variants calling pipelines have been developed to adapt each of these sequencing platforms, introduced by published benchmark studies. For WGS, 30-fold represents a “high quality” genome, and GATK is one popular bioinformatics analysis tool.
In this study, WES and WGS datasets of the NA12878 standard sample were generated from NextSeq 550, NovaSeq 6000, and GenoLab M. We measured the base quality (Q20&Q30), duplication rate, and the average sequencing depth of each dataset. Since GenoLab M is a new sequencing platform, GenoLab M’s ML model for DNAscope was constructed using several WGS and WES datasets generated from reference samples. For Illumina platforms, GATK pipeline analysis was performed. For Q20 percentages, the GenoLab M showed an average of 94.62%, and the NovaSeq 6000 was 96.97%, with a slight preponderance towards better result. At the same time, the duplication rate of GenoLab M was only half of NovaSeq 6000 under the same sequencing depth (Table 1).

Analysis observed that 22X GenoLab M WGS showed higher accuracy than 22X NovaSeq accuracy and reached a similar performance of 33X NovaSeq (Fig. 2A&B). Both low duplication sequencing and GenoLab M analysis ML model contribute to the variant calling accuracy. Here we believe GenoLab M offers a cost-effective alternative to the NovaSeq 6000 platform with less depth (22X) and similar data quality for human resequencing applications.

GenoLab M’s lower duplication rate may lead to better data efficiency. The human genome shows a complex pattern of highly identical, interspersed segmental duplication, also known as SDR [34, 35]. This region poses particular challenges for gene annotation because:

1. Enriched in assembly gaps [36];
2. More prone to copy number polymorphism among individuals [37];
3. Different paralogs are difficult to distinguish because of their high sequence identity [38].

The existence of SDR predisposes humans to large-scale rearrangements due to unequal crossing-over leading to genomic instability associated with neurodevelopmental delay and autism [39]. The demonstrated accuracy advantages of GenoLab M sequencing platform in the SDR of the human genome may be suitable to NGS projects on neurodegeneration disease and autism.

In WES analysis, recall of GenoLab M was still lower than NovaSeq or NextSeq at the same sequencing depth, which serves as a development target for us. To improve overall variant calling accuracy, more GenoLab M

Fig. 4 Comparison of variants calling performances in six WES datasets. A SNP and B InDel. Precision, positive predictive value, is the fraction of relevant instances among the retrieved instances; Recall, sensitivity is the fraction of relevant instances that were retrieved. F-score is the harmonic mean of the precision and recall.
Fig. 5 Upset diagram of variant Calling results of all combinations in WES datasets. A SNP and B InDel
reference datasets are required to assemble a larger training set for future DNAscpe model training. Also, the collection and sequencing of more clinical or scientific samples will further help GeneMind R&D to improve sequencing instruments' performance, such as increasing the Quality value (Q20&Q30) and throughput.

Conclusions

For WGS, 22X in GeneMind sequencing platform showed a similar performance to 33X depth in Illumina NovaSeq 6000, which offers an effective alternative. And 100X WES of GenoLab M showed similar or superior performance to Illumina platforms at the same depth, which also has application prospects in WES.

Acknowledgements

We would like to thank all current and past members of the GeneMind team who contributed to the development of the sequencing technology.

Authors’ contributions

Lei Sun conceived and designed the research, reviewed and revised the manuscript. Qin Yan and XiaoChao Zhao reviewed and revised the manuscript. Chaoyang Li and Xin Le Sun performed sample prepared and sequencing. Miao Wang and Ping Wu supported data mining and figure drawing. All authors read and approved the final version of the manuscript.

Funding

Not applicable.

Availability of data and materials

The bam files of WGS and WES are available in CNGB Sequence Archive (https://db.cngb.org/cnsa/) under project accession number CNP0002694.

Declarations

Ethics approval and consent to participate

This study was approved by the Ethics Committee of GeneMind Biosciences Company Limited. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Competing interests

The authors from GeneMind declare that they have no competing interests. All other authors declare that they have no competing interests.

Author details

1GeneMind Biosciences Company Limited, Shenzhen, China. 2The Third People’s Hospital of Longgang District, Shenzhen, China. 3The department of Pedi- atric, Longgang District Maternity&Child Healthcare Hospital of Shenzhen City, Shenzhen, China.

Received: 28 February 2022 Accepted: 18 July 2022 Published online: 22 July 2022

References

1. Zheng J, Zhang H, Banerjee S, Li Y, Zhou J, Yang Q, et al. A comprehensive assessment of next-generation sequencing variants validation using a secondary technology. Mol Genet Genomic Med. 2019;7(7):e00748.

2. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bember LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):31–5.

3. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. 1977;74(12):5463–7.

4. Consortium GP. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–61.

5. Consortium IH. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–6.

6. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;153(1):27–38.

7. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9.

8. Kumar KR, Cowley MJ, Davis RL. Next-generation sequencing and emerging technologies. Semin Thromb Hemost. 2019;45(7):661–73.

9. Rothenberg JM, Hinz W, Rearick TM, Schultz J, Milioti W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;473(7356):348–52.

10. Esfandyarpour H, Parizi KB, Barni MR, Rategh H, Wang L, Palival S, et al. High accuracy DNA sequencing on a small, scalable platform via electrical detection of single base incorporations. Bioxriv. 2020;604553.

11. Chen J, Li X, Zhong H, Meng Y, Du H. Systematic comparison of germline SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246–51.

12. Esfandyarpour H, Parizi KB, Barmi MR, Rategh H, Wang L, Palival S, et al. High accuracy DNA sequencing on a small, scalable platform via electrical detection of single base incorporations. Bioxriv. 2020;604553.

13. Fengg X, Shen S. Comparison of variant calling pipelines using gold standard personal exome variants. Sci Rep. 2015;5(1):1–8.

14. Chen J, Li X, Zhong H, Meng Y, Du H. Systematic comparison of germline variant calling pipelines using low-coverage sequencing data. BMC Bioinformatics. 2013;14(1):1–15.

15. Esfandyarpour H, Parizi KB, Barmi MR, Rategh H, Wang L, Palival S, et al. High accuracy DNA sequencing on a small, scalable platform via electrical detection of single base incorporations. Bioxriv. 2020;604553.

16. Korostin D, Kulemin N, Naumov M, Belov I, Kwon Y, Gorbachev A. Comparative analysis of novel MGISEQ-2000 sequencing platform vs Illumina HiSeq 2500 for whole-genome sequencing. Plos One. 2020;15(3):e0230281.

17. Kim H-M, Jeon S, Chung O, Jun JH, Kim H-S, Blazyte A, et al. Comparative analysis of 7 short-read sequencing platforms using the Korean reference genome: MGI and Illumina sequencing platforms for whole-genome sequencing. Genes. Genomics. 2021;43(7):713–24.

18. Zhao L, Deng L, Li G, Jin H, Cai J, Shang H, et al. Single molecule sequencing of the M13 virus genome without amplification. Plos One. 2017;12(12):e0188181.

19. Liu Y, Han R, Zhou L, Luo M, Zeng L, Zhao X, et al. Comparative performance of the GenoLab M and NovaSeq 6000 sequencing platforms for transcriptome and LncRNA analysis. BMC Genomics. 2021;12(1):1–12.

20. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246–51.

21. Wang S, Kim E, Lee I, Marcotte EM. Systematic comparison of variant calling pipelines using gold standard personal exome variants. Sci Rep. 2015;5(1):1–8.

22. Chen J, Li X, Zhong H, Meng Y, Du H. Systematic comparison of germline variant calling pipelines across multiple next-generation sequencers. Sci Rep. 2019;9(1):1–13.

23. Comish A, Guda C. A comparison of variant calling pipelines using genome in a bottle as a reference. Biomed Res Int. 2015;2015(1):1–11.

24. Xu Y, Sun S, Comparing a few SNP calling algorithms using low-coverage sequencing data. BMC Bioinformatics. 2013;14(1):1–15.

25. Fard K, Tajhe SC, Noble C, Zook JM, Blasyte A, et al. Comparative analysis of 7 short-read sequencing platforms using the Korean reference genome: MGI and Illumina sequencing platforms for whole-genome sequencing. GigaScience. 2021;10(3):giab014.

26. Foox J, Tighme SW, Nicot D, Zook JM, Byrskda M, Clarke WE, et al. Performance assessment of DNA sequencing platforms in the ABRF next-generation sequencing study. Nat Biotechnol. 2021;39(9):1129–40.

27. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

28. Franke KR, Crowgley E. Accelerating next generation sequencing data analysis: an evaluation of optimized best practices for genome analysis toolkit algorithms. Genomics Inform. 2020;18(1):e160.
26. Gudbjartsson DF, Sulem P, Helgason H, Gylfason A, Gudjonsson SA, Zink F, et al. Sequence variants from whole genome sequencing a large group of Icelanders. Sci Data. 2015;2(1):1–11.
27. Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat Methods. 2015;12(10):966–8.
28. Jiang Y, Jiang Y, Wang S, Zhang Q, Ding X. Optimal sequencing depth design for whole genome re-sequencing in pigs. BMC Bioinformatics. 2019;20(1):1–12.
29. Kendig K, Baheti S, Bockol MA, Drucker TM, Hart SN, Heldenbrand JR, et al. Sentieon DNASeq variant calling workflow demonstrates strong computational performance and accuracy. Front Genet. 2019;10:736.
30. Freed D, Aldana R, Weber JA, Edwards JS. The Sentieon genomics tools—a fast and accurate solution to variant calling from next-generation sequence data. BioRxiv. 2017;115717.
31. Zhao S, Agafonov O, Azab A, Stokowy T, Hovig E. Accuracy and efficiency of germline variant calling pipelines for human genome data. Sci Rep. 2020;10(1):1–12.
32. Cleary JG, Braithwaite R, Gaastra K, Hilbush BS, Inglis S, Irvine SA, et al. Comparing variant call files for performance benchmarking of next-generation sequencing variant calling pipelines. BioRxiv. 2015;023754.
33. Kruiske P, Tingg L, Boutros PC, Mason CE, De La Vega FM, Moore BL, et al. Best practices for benchmarking germline small-variant calls in human genomes. Nat Biotechnol. 2019;37(5):555–60.
34. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, et al. Recent segmental duplications in the human genome. Science. 2002;297(5583):1003–7.
35. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 2001;11(6):1005–17.
36. Alkan C, Sajjadian S, Eichler EE. Limitations of next-generation genome sequence assembly. Nat Methods. 2011;8(1):61–5.
37. Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, et al. Global diversity, population stratification, and selection of human copy-number variation. Science. 2015;349(6253):aab3761.
38. Dougherty ML, Underwood JD, Nelson BJ, Tseng E, Munson KM, Penn O, et al. Transcriptional fates of human-specific segmental duplications in brain. Genome Res. 2018;28(10):1566–76.
39. Cantilieris S, Sunkin SM, Johnson ME, Anaclerio F, Huddleston J, Baker C, et al. An evolutionary driver of interspersed segmental duplications in primates. Genome Biol. 2020;21(1):1–35.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.