CURVATURE EVOLUTION OF NONCONVEX LENS-SHAPED DOMAINS

GIOVANNI BELLETTINI AND MATTEO NOVAGA

ABSTRACT. We study the curvature flow of planar nonconvex lens-shaped domains, considered as special symmetric networks with two triple junctions. We show that the evolving domain becomes convex in finite time; then it shrinks homothetically to a point, as proved in [22]. Our theorem is the analog of the result of Grayson [13] for curvature flow of closed planar embedded curves.

1. INTRODUCTION

Mean curvature flow of partitions, in particular of planar networks, has been considered by various authors, see for instance [20], [5], [6], [8], [19], [10], [21]. Such a geometric flow is a generalization of mean curvature flow, when more than two phases are present. The main difficulties are due to the presence of multiple junctions, typically triple points in the planar case.

In this paper we consider the curvature flow of a lens-shaped network, that is, of a particular planar network symmetric with respect to the first coordinate axis, and having there two triple junctions. If the bounded region enclosed by the network is convex, it is proved in [22] that the evolution remains convex and shrinks to a point in finite time, while its shape approaches a unique profile γ_h, corresponding to a homothetically shrinking solution (see [22, Fig. 1]). This is the precise analog of the well-known result of Gage and Hamilton [11], which shows that a closed convex planar curve evolving by curvature shrinks to a point in finite time, approaching a circle. This result has been generalized by Grayson [13] who showed that a closed nonconvex initial embedded curve has no singularities before the extinction, it becomes convex and eventually shrinks to a point. A different proof of Grayson’s theorem was given by Huisken in [17].

Our aim is to study the long time curvature evolution of a general (not necessarily convex) lens-shaped network. We will show that such a network becomes convex in finite time and eventually shrinks homothetically to a point, as described in [22]. Our result is, therefore, the analog of the result of Grayson, but in the context of curvature flow of networks. Our proof is based on the classification of all possible singularities, in analogy to the proof given in [17] for curvature flow of curves. We point out that in the evolution considered here we are able to overcome the technical difficulties which prevented in [19] the complete analysis of type II singularities.

The main result of the present paper, which is a consequence of Theorems 3.1, 4.2 and 5.1, reads as follows.

1991 Mathematics Subject Classification. Primary 53C44; Secondary 35B40, 53A04.
Key words and phrases. Curvature flow, blow-up singularities, triple junctions.
Finally, a suitable rescaled and translated version of \(\gamma \) as \(t \to T^- \): \[L(\gamma(t)) \leq C \sqrt{2(T-t)}, \quad t \in [0, T), \]
\[\|\kappa_{\gamma(t)}\|_{L^\infty([0,1])} \leq \frac{C}{\sqrt{2(T-t)}}, \quad t \in [0, T), \]
where \(L(\gamma(t)) \) and \(\kappa_{\gamma(t)} \) denote the length and the curvature of \(\gamma(t) \) respectively, and \(C \) is an absolute positive constant. Moreover, there exists \(\bar{T} \in [0, T) \) such that the region \(E(\gamma(t)) \) enclosed by the corresponding network is uniformly convex for all \(t \in [\bar{T}, T) \), and \(T \) is the extinction time of the evolution, i.e.
\[\lim_{t \to T-} L(\gamma(t)) = \lim_{t \to T-} |E(\gamma(t))| = 0. \]

Finally, a suitable rescaled and translated version of \(\gamma(t) \) converges in \(C^2([0, 1]; \mathbb{R}^2) \) to \(\gamma^h \) as \(t \to T^- \).

We note that to prove Theorem 1.1 the only result needed from [22] is the uniqueness of \(\gamma^h \).

In the last section of the paper we exhibit two examples of singularities appearing before the extinction time. In Example 1 we show the formation of a singularity, starting from a suitable immersed initial datum \(\overline{\gamma} \) (see Fig. 5); in this case the \(L^\infty \)-norm of the curvature of \(\gamma(t) \) blows up at \(t = T \), and \(T \) is smaller than the extinction time. In Example 2, starting from an embedded double-bubble shaped \(\overline{\gamma} \) as in Fig. 6 (hence with different Neumann boundary conditions with respect to the ones in Theorem 1.1) we show that the singularity appears at \(t = T \) before the extinction time, due to the collision of the two triple junctions.

We conclude this introduction by mentioning that a general analysis of curvature flow of planar networks has been recently announced to the second author by Tom Ilmanen [18].

2. Notation

Given \(T > 0 \) and a map \(\gamma = (\gamma_1, \gamma_2) : [0, 1] \times [0, T) \to \mathbb{R}^2 \), for \(t \in [0, T) \) we set \(\gamma(t) : [0, 1] \to \mathbb{R}^2 \), \(\gamma(t)(x) := \gamma(x, t) \). If \(\gamma \in C^{2,1}([0, 1] \times [0, T); \mathbb{R}^2) \), we introduce the following notation:

- \(L(\gamma(t)) := \int_0^1 |\gamma_x(x,t)| \, dx \) is the length of \(\gamma(t) \), where \(\gamma_x \) denotes the derivative with respect to \(x \);
- \(s \in I(t) := [0, L(\gamma(t))] \) is the (time dependent) arclength parameter of \(\gamma(t) \), and \(\partial_s := \frac{\partial_x}{|\gamma_x|} \) denotes the derivative with respect to \(s \);
- \(\tau_{\gamma(t)} = \tau(t) = (\tau_1(t), \tau_2(t)) := \gamma_s(t) \) is the unit tangent vector to \(\gamma(t) \), and \(\tau(t)(x) := \tau(x, t) \);
and the compatibility conditions using (2.5) we have at \((0, t)\) Formally differentiating in time the boundary conditions in (2.1) (second equation) and where the initial curve denotes the derivative of \(\gamma\) with respect to \(t\).

We denote by \(|E|\) the Lebesgue measure of a measurable set \(E \subseteq \mathbb{R}^2\).

2.1. The geometric evolution equation. We are concerned with the following geometric evolution problem:

\[
\begin{align*}
\gamma_t &= \frac{\gamma_{xx}}{|\gamma_x|^2} \quad \text{in } (0, 1) \times (0, T), \\
\gamma_2(0, t) &= \gamma_2(1, t) = 0 \quad t \in (0, T), \\
\tau(0, t) &= \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \quad t \in (0, T), \\
\tau(1, t) &= \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) \quad t \in (0, T), \\
\gamma(0) &= \tilde{\gamma} \quad \text{in } (0, 1),
\end{align*}
\]

where the initial curve \(\tilde{\gamma} = (\tilde{\gamma}_1, \tilde{\gamma}_2) \in C^2([0, 1]; \mathbb{R}^2)\) satisfies

\[
|\tilde{\gamma}_x(x)| \neq 0, \quad x \in [0, 1],
\]

and the compatibility conditions

\[
\tilde{\gamma}_2(0) = \tilde{\gamma}_2(1) = 0, \quad \frac{\tilde{\gamma}_x(0)}{|\tilde{\gamma}_x(0)|} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad \frac{\tilde{\gamma}_x(1)}{|\tilde{\gamma}_x(1)|} = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right).
\]

System (2.1) corresponds to motion by curvature (first equation) of a planar curve with the extremal points \(\gamma(0, t), \gamma(1, t)\) sliding on the first coordinate axis (second equation), and satisfying the following Neumann boundary conditions (third and fourth equation):

\[
\text{angle between } e_1 \text{ and } \tau(t) = \left\{ \begin{array}{ll}
\pi/3 \text{ at } \gamma(0, t) = (\gamma_1(0, t), 0), \\
-\pi/3 \text{ at } \gamma(1, t) = (\gamma_1(1, t), 0),
\end{array} \right.
\]

where \(e_1 := (1, 0)\).

2.2. Definitions of \(\gamma^{sp}\) and \(\lambda\). For \(t \in [0, T)\) we define the “specular” curve \(\gamma^{sp} := (\gamma_1, -\gamma_2).\) The corresponding network mentioned in the Introduction is the one formed by \(\gamma([0, 1], t) \cup \gamma^{sp}([0, 1], t)\) and by the two horizontal half lines \((-\infty, \gamma_1(0, t))\) and \((\gamma_1(1, t), +\infty)\) lying on the first coordinate axis.

In the following, we let the function \(\lambda_\gamma = \lambda : [0, 1] \times [0, T) \to \mathbb{R}\) be such that

\[
\gamma_t = \lambda \tau + \kappa \nu.
\]

Note that

\[
\lambda = \langle \gamma_t, \tau \rangle = \left(\frac{\gamma_{xx}}{|\gamma_x|^2}\right, \tau).
\]

Formally differentiating in time the boundary conditions in (2.1) (second equation) and using (2.5) we have at \((0, t)\) and \((1, t)\) the relation \(\partial_t \gamma_2 = \lambda \gamma_2 + \kappa \gamma \nu_2\), which gives

\[
\kappa_\gamma(0, t) = -\sqrt{3} \lambda(0, t), \quad \kappa_\gamma(1, t) = \sqrt{3} \lambda(1, t),
\]

\[
(2.7)
\]
where we make use of the third and fourth equations in (2.1). Moreover, recalling from [19] formula (2.4) that
\[\tau_t = (\partial_s \kappa \gamma + \lambda \kappa \gamma) \nu, \]
we find
\[
\partial_s \kappa \gamma(0, t) + \lambda(0, t) \kappa \gamma(0, t) = \partial_s \kappa \gamma(1, t) + \lambda(1, t) \kappa \gamma(1, t) = 0. \tag{2.8}
\]
Notice that (2.8) and (2.7) imply
\[
\partial_s \kappa \gamma(0, t) = -\lambda(0, t) \kappa \gamma(0, t) = \kappa \gamma(0, t) \geq 0,
\quad \partial_s \kappa \gamma(1, t) = -\lambda(1, t) \kappa \gamma(1, t) = -\kappa \gamma(1, t) \geq 0 \tag{2.9}
\]
for all \(t \in (0, T) \). In particular, the function \(\kappa_\gamma(t) \) can never attain its maximum at \(x = 0 \) unless \(\kappa_\gamma(0, t) = \partial_s \kappa \gamma(0, t) = 0 \); similarly \(\kappa_\gamma(t) \) can never attain its maximum at \(x = 1 \) unless \(\kappa_\gamma(1, t) = \partial_s \kappa \gamma(1, t) = 0 \).

From now on we will always make the following assumption (A) on \(\gamma \):
(A) \(\gamma \in C^2([0, 1]; \mathbb{R}^2) \) satisfies (2.2), (2.3) and the second order compatibility conditions
\[
\langle \gamma_{xx}(0), \nu(0) \rangle = -\sqrt{3} \langle \gamma_{xx}(0), \tau(0) \rangle, \quad \langle \gamma_{xx}(1), \nu(1) \rangle = -\sqrt{3} \langle \gamma_{xx}(1), \tau(1) \rangle, \tag{2.10}
\]
where \(\nu = \frac{\gamma_1}{\| \gamma_1 \|} = (\tau_1, \tau_2) \) and \(\tau := (-\tau_2, \tau_1) \).

Note that under the sole assumption (A) the set \(\gamma([0, 1], t) \) may have self-intersections, see Fig. 1.

Definition 2.1. We will refer to the embedded case, provided
\[
\gamma \text{ is injective and } \gamma_2(x) > 0 \text{ for all } x \in (0, 1). \tag{2.11}
\]
In the embedded case \(\gamma([0, 1]) \) is not necessarily a graph with respect to the first coordinate axis. However, we can speak of the connected bounded plane region \(E(\gamma) \) in between \(\gamma([0, 1], t) \) and \(\gamma_{sp}([0, 1], t) \), see Fig. 2.

We will refer to the convex case, provided
\[
\gamma((0, 1)) \text{ is the graph of a positive concave function.}
\]

The convex case is in particular embedded, and has been studied in [22], where it is proven that \(\gamma(t) \) remains concave. Therefore, the plane region \(E(\gamma(t)) \) between \(\gamma([0, 1], t) \) and \(\gamma_{sp}([0, 1], t) \) is still well defined, it is a convex lens-shaped domain evolving by curvature, and having the two singular points \(\gamma(0, t), \gamma(1, t) \) in its boundary.
Remark 2.2. With our convention, in the convex case \(\kappa_{\gamma(t)} \) is negative, since \(\gamma(t) \) is parametrized in such a way that \(E(\gamma(t)) \) lies locally on the right of \(\gamma(t) \).

2.3. The homotetically shrinking solution \(\gamma^h \). In [4, 22] it is proven that there exists a unique embedding \(\gamma^h \in C^\infty([0, 1]; \mathbb{R}^2) \) which satisfies \(\gamma^h(0) = \gamma^h(1) = 0, \frac{\gamma^h(0)}{|\gamma^h(0)|} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \),
\[
\frac{\gamma^h(t)}{|\gamma^h(t)|} = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2} \right),
\]
which gives raise to a homothetically shrinking curvature evolution, namely
\[
\kappa_{\gamma^h} + \langle \gamma^h, \nu_{\gamma^h} \rangle = 0 \quad \text{in } (0, 1). \tag{2.12}
\]
Moreover
\[
\inf_{x \in (0, 1)} \kappa_{\gamma^h}(x) > 0.
\]

3. Immersed initial data

In the next theorem \(\gamma([0, 1], t) \) is allowed to have self-intersections.

Theorem 3.1. Assume that \(\overline{\gamma} \) satisfies (A). Then problem (2.1) has a unique solution
\[
\gamma \in C^\infty([0, 1] \times (0, T); \mathbb{R}^2) \cap C^{2,1}(0, 1] \times [0, T); \mathbb{R}^2),
\]
defined on a maximal time interval \([0, T)\), and \(T < +\infty \). Moreover
\[
\limsup_{t \to T^-} \| \kappa_{\gamma(t)} \|_{L^2([0,1])} = +\infty. \tag{3.1}
\]
Proof. All assertions but \(T < +\infty \) follow from [19] Theorems 3.1, 3.18 and Remark 3.24]. Let us show that \(T < +\infty \). Take an initial open convex bounded lens-shaped domain \(E(\overline{\gamma}) \) with
\[
E(\overline{\gamma}) \supset \overline{\gamma}([0, 1]),
\]
whose boundary is given by \(\overline{\gamma}([0, 1]) \cup \overline{\eta}^P([0, 1]), \) where \(\overline{\eta} : [0, 1] \to \mathbb{R}^2 \) gives raise to a homothetically shrinking curvature evolution \(\eta : [0, 1] \times [0, t^*) \to \mathbb{R}^2, t^* < +\infty, \) with the
would decrease when q

It is well known (see for instance [14]) that

and we set

Let K be the set of solutions of (2.1) and (3.2), the distance between ∂E and $\eta_x(t)$ is

where

see Fig. 3 and Section 2.3.

For any (t_1, t_2)

Given $t \in (0, t^\#)$

We now distinguish two cases.

Case 1. $p^t \notin \{\gamma(0,t), \gamma(1,t)\}$, see Fig. 3. In this case, thanks to (3.5), we are reduced to the standard situation of curvature flow (see for instance [3]), and (3.4) follows.

Case 2. $p^t \in \{\gamma(0,t), \gamma(1,t)\}$. Without loss of generality, we can assume that $p^t = \gamma(1,t)$, and that the second component of q^t is positive. Let $n^t := \frac{q^t - p^t}{|q^t - p^t|}$. Then it is not difficult to see that n^t equals the unit normal to $\partial E(\eta(t))$ at q^t pointing out of $E(\eta(t))$. Let $K := \{(\cos \theta, \sin \theta) : \theta \in [0, \pi/6]\}$. If $n^t \in \partial K$ then again (3.4) follows in a standard
Figure 3. The inner curve is $\gamma(t)$, the outer curve is $\eta(t) \cup \eta^p(t)$, bounding the self-similar shrinking convex set $E(\eta(t))$.

way. On the other hand, we cannot have $n^t = (\cos \theta^t, \sin \theta^t) : \theta^t \in [0, \pi/6)$, since this contradicts the Neumann boundary conditions in (3.2) and the convexity of $\eta(t)$.

The proof of (3.3) is concluded, and in particular $T \leq t^*$. □

Note that the smoothness of γ implies that $\|\kappa_\gamma(t)\|_{L^\infty([0,1])}$ is finite for all $t \in [0,T)$. On the other hand, from (3.1) we deduce that

$$\limsup_{t \to T^-} \|\kappa_\gamma(t)\|_{L^\infty([0,1])} = +\infty.$$ (3.6)

Proposition 3.2. There exists a constant $c > 0$ independent of γ such that

$$L(\gamma(t)) \leq cL(\overline{\gamma}), \quad t \in [0,T).$$ (3.7)

Proof. Since $\gamma(0,t)$ and $\gamma(1,t)$ are horizontal, it follows from (2.6) that $\lambda(0,t) = \partial_t \gamma_1(0,t)/2$, and $\lambda(1,t) = \partial_t \gamma_1(1,t)/2$. Observing (see [19, Proposition 3.2]) that the time-derivative of the measure ds is given by

$$(\lambda_s - \kappa_\gamma^2) \, ds,$$ (3.8)

we have

$$\frac{d}{dt} L(\gamma(t)) = \lambda \bigg|_{x=0}^{x=1} - \int_{I(t)} \kappa_\gamma^2(t) \, ds = \frac{1}{2} (\partial_t \gamma(1,t) - \partial_t \gamma(0,t)) - \int_{I(t)} \kappa_\gamma^2(t) \, ds$$ (3.9)

$$\leq \frac{1}{2} (\partial_t \gamma(1,t) - \partial_t \gamma(0,t)).$$

Hence

$$L(\gamma(t)) \leq L(\overline{\gamma}) - \frac{1}{2} (\gamma(1,0) - \gamma(0,0)) + \frac{1}{2} (\gamma(1,t) - \gamma(0,t)).$$ (3.10)

Therefore, to conclude the proof it is enough to show that $\gamma(1,t) - \gamma(0,t)$ is bounded by $cL(\overline{\gamma})$, where $c > 0$ is an absolute constant independent of γ. This assertion can be proved by a comparison argument as in the proof of Theorem 3.1 taking a lens-shaped convex domain as in Theorem 3.1 it follows that the horizontal length $\gamma(1,t) - \gamma(0,t)$ cannot be larger than the corresponding horizontal length of $E(\eta(t))$, which can be bounded by an absolute constant times $L(\overline{\gamma})$. □

Following [16] and recalling (3.6), we say that:
• \(\gamma \) develops a type I singularity at \(t = T \) if there exists \(C > 0 \) such that
\[
\| \kappa_\gamma(t) \|_{L^\infty([0,1])} \leq \frac{C}{\sqrt{2(T-t)}}, \quad t \in [0,T).
\] (3.11)

• \(\gamma \) develops a type II singularity at \(t = T \) if
\[
\limsup_{t \to T^-} \sqrt{2(T-t)} \| \kappa_\gamma(t) \|_{L^\infty([0,1])} = +\infty.
\]

Before passing to the next result, we recall from [19, Eq. (2.6)] that the evolution equation for \(\kappa \) reads as follows:
\[
\partial_t \kappa_\gamma = \partial_{ss} \kappa_\gamma + \lambda \partial_s \kappa_\gamma + \kappa_\gamma^3.
\] (3.12)

Note that this equation, being local, is valid under the sole assumption (A).

The next observation is used to prove Proposition 3.4, which in turn will be used to prove Theorem 5.1.

Remark 3.3. The solution \(\gamma \) of (2.1) is analytic in \((0,1) \times (0,T) \); in particular, for a given \(t \in (0,T) \), the set
\[
z(t) := \{ x \in [0,1] : \kappa_\gamma(t)(x) = 0 \}
\]
is finite.

Proposition 3.4. For any \(t \in [0,T) \) we have
\[
\frac{d}{dt} \int_{I(t)} |\kappa_\gamma(t)| \, ds = -2 \sum_{x \in z(t)} |\partial_s \kappa_\gamma(x,t)| \leq 0.
\] (3.13)

Proof. Using Remark 3.3, (3.8) and (3.12) we compute
\[
\frac{d}{dt} \int_{I(t)} |\kappa_\gamma(t)| \, ds = \int_{I(t)} \left[\frac{\kappa_\gamma}{|\kappa_\gamma|} \partial_t \kappa_\gamma + (\lambda_s - \kappa_\gamma^2)|\kappa_\gamma| \right] \, ds
\]
\[
= \int_{I(t)} \left[\frac{\kappa_\gamma}{|\kappa_\gamma|} \partial_{ss} \kappa_\gamma + (\lambda|\kappa_\gamma|)_s \right] \, ds.
\] (3.14)

Integrating by parts we have
\[
\int_{I(t)} \frac{\kappa_\gamma}{|\kappa_\gamma|} \partial_{ss} \kappa_\gamma \, ds = \frac{\kappa_\gamma}{|\kappa_\gamma|} \partial_{ss} \kappa_\gamma \Big|_{x=1}^{x=0} + \int_{I(t)} \left(\frac{\kappa_\gamma}{|\kappa_\gamma|} \right)_s \partial_s \kappa_\gamma \, ds.
\] (3.15)

Moreover
\[
\int_{I(t)} \left(\frac{\kappa_\gamma}{|\kappa_\gamma|} \right)_s \partial_s \kappa_\gamma \, ds = 2 \sum_{x \in z(t)} |\partial_s \kappa_\gamma(x,t)|.
\] (3.16)

Hence from (3.14), (3.15) and (3.16) we deduce
\[
\frac{d}{dt} \int_{I(t)} |\kappa_\gamma(t)| \, ds = -2 \sum_{x \in z(t)} |\partial_s \kappa_\gamma(x,t)| + \frac{\kappa_\gamma}{|\kappa_\gamma|} (\partial_s \kappa_\gamma + \lambda \kappa_\gamma)
\]
\[
= -2 \sum_{x \in z(t)} |\partial_s \kappa_\gamma(x,t)| \leq 0.
\] (3.17)
4. Embedded nonconvex initial data: Type I singularities

In this section, as well as in Section 5, we consider the embedded case. We begin to show that embeddedness is a property which is preserved by the evolution.

Proposition 4.1. Assume that γ satisfies (A) and (2.11). Then

(i) for any $t \in [0, T)$

$$\gamma(t)$$ is injective and $\gamma_2(x, t) > 0$ for all $x \in (0, 1)$;

(ii) for any $t \in [0, T)$

$$|E(\gamma(t))| = -\frac{4\pi}{3} t + |E(\gamma)|.$$

\[(4.2) \]

Proof. Let $\delta := \sup\{t \in [0, T) : \gamma(t) \text{ is injective for } t \in [0, \delta]\}$. By (2.11) and the smoothness of the evolution it follows that $\delta > 0$. Given $(x, y, t) \in [0, 1]^2 \times [0, \delta)$ with $x < y$, let $S(x, y, t)$ be the relatively open segment connecting $\gamma(x, t)$ with $\gamma(y, t)$. Provided $S(x, y, t) \cap \gamma([x, y], t)) = \emptyset$, we let $A^c(x, y, t)$ be the subset of \mathbb{R}^2 bounded by $\gamma([x, y], t)$ and $S(x, y, t)$.

Given $x, y \in [0, 1]$ and $t \in [0, \delta)$, let also $\Sigma(x, y, t)$ be the relatively open segment connecting $\gamma(x, t)$ with $\gamma^{sp}(y, t)$. Provided $\Sigma(x, y, t) \cap \partial E(\gamma(t)) = \emptyset$, we have that either $E(\gamma(t)) \setminus \Sigma(x, y, t)$ is the union of two connected regions, or $(\mathbb{R}^2 \setminus E(\gamma(t))) \setminus \Sigma(x, y, t)$ is the union of two connected regions. We denote by $A^\gamma_{\min}(x, y, t)$ the region of minimal area among these two regions.

We define the function $g_\gamma : [0, \delta) \to [0, +\infty)$ as follows: for $t \in [0, \delta)$,

$$g_\gamma(t) := \min\left(Q^1_\gamma(t), Q^2_\gamma(t)\right),$$

where

$$Q^1_\gamma(t) := \inf_{x, y \in [0, 1], x < y, \Sigma(x, y, t) \cap \gamma([x, y], t) = \emptyset} \frac{|\gamma(x, t) - \gamma(y, t)|^2}{|A^\gamma_j(x, y, t)|},$$

$$Q^2_\gamma(t) := \inf_{x, y \in [0, 1], x < y, S(x, y, t) \cap \partial E(\gamma(t)) = \emptyset} \frac{|\gamma^{sp}(x, t) - \gamma(y, t)|^2}{|A^\gamma_{\min}(x, y, t)|}.$$

\[(4.4) \]

\[(4.5) \]

Note that g_γ is invariant under rescalings of γ, i.e.,

$$\vartheta > 0 \Rightarrow g_{\vartheta \gamma}(t) = g_\gamma(t), \quad t \in [0, \delta).$$

\[(4.6) \]

By assumption (2.11) it follows that

$$g_\gamma(0) > 0.$$

\[(4.7) \]

From [19, Prop. 4.4] it follows that g_γ is increasing in every time subinterval of $[0, \delta)$ where it is strictly less than $4\sqrt{3}$. In particular (4.7) implies

$$g_\gamma(t) \geq \min\left(g_\gamma(0), 4\sqrt{3}\right), \quad t \in [0, \delta).$$

\[(4.8) \]

From (1.8) it follows that $\delta = T$, and (i) is proved.

Finally

$$\frac{1}{2} \frac{d}{dt} |E(\gamma(t))| = \int_{I(t)} \kappa_{\gamma(t)} ds = -\frac{2}{3} \pi,$$

which gives (4.2). \square
4.1. Type I singularities. As usual in the blow-up analysis of type I singularities, let us define the parameter \(t \) as

\[
t(t) := T - e^{-2t}, \quad t \in \left[-\frac{1}{2} \log T, +\infty \right).
\]

Given a point \(p = (p_1, p_2) \in \mathbb{R}^2 \) set also

\[
\overline{\gamma}(t) := \frac{\gamma(t) - p}{\sqrt{2(T - t(t))}}, \quad t \in \left[-\frac{1}{2} \log T, +\infty \right).
\]

We let \(\overline{I}(t) := [0, L(\overline{\gamma}(t))] \),

\[
\overline{\gamma}(t) := \gamma_s(t), \quad \overline{\nu}(t) := (-\overline{\gamma}(t), \overline{\nu}(t)) = \nu(\gamma_t), \quad \kappa(\overline{\gamma}(t)) := \left(\frac{\overline{\gamma}_{xx}(t)}{|\overline{\gamma}_x(t)|^2}, \overline{\nu}(t) \right), \tag{4.10}
\]

\(\overline{\kappa}(x, t) = \kappa(\gamma_t)(x) \), and

\[
\overline{\lambda}(t) := \left(\frac{\overline{\gamma}_{xx}(t)}{|\overline{\gamma}_x(t)|^2}, \overline{\gamma}(t) \right). \tag{4.11}
\]

Notice that \(\overline{\gamma} \) satisfies the forced curvature flow equation

\[
\overline{\gamma}_t = \sqrt{2(T - t(t))} \gamma + \overline{\gamma} = \overline{\kappa} \overline{\nu} + \overline{\lambda} \overline{\gamma} + \overline{\gamma}, \tag{4.12}
\]
coupled with the boundary conditions \(\overline{\gamma}_2(0) = \overline{\gamma}_2(1) = \overline{\gamma}(T) = \frac{-p_2}{\sqrt{2(T - t(t))}} \), and the usual Neumann boundary conditions

\[
\frac{\overline{\gamma}_x(0)}{|\overline{\gamma}_x(0)|} = \left(\frac{1}{2 \sqrt{2}}, \frac{\sqrt{3}}{2} \right), \quad \frac{\overline{\gamma}_x(1)}{|\overline{\gamma}_x(1)|} = \left(\frac{1}{2 \sqrt{2}}, -\frac{\sqrt{3}}{2} \right). \tag{4.13}
\]

As a consequence by a direct computation (see [19] formulae (2.7), (65), (66)) and using (4.12) we get

\[
\overline{\kappa}_t = \overline{\kappa}_{ss} + \overline{\lambda} \overline{\kappa}_s + (\overline{\kappa}^2 - 1) \overline{\kappa}, \quad \overline{\lambda}_t = \overline{\lambda}_s - \overline{\lambda} \overline{\kappa}_s - 2 \overline{\kappa} \overline{\kappa}_s + (\overline{\kappa}^2 - 1) \overline{\lambda}, \tag{4.14}
\]

Therefore, letting \(\overline{w} := \overline{\kappa}^2 + \overline{\lambda}^2 \), we find

\[
\overline{w}_t = \overline{w}_{ss} - \overline{\lambda} \overline{w}_s + 2 (\overline{\kappa}^2 - 1) \overline{w} - 2 \left(\overline{\kappa}_s^2 + \overline{\lambda}_s^2 \right) \leq \overline{w}_{ss} - \overline{\lambda} \overline{w}_s + 2 (\overline{\kappa}^2 - 1) \overline{w}. \tag{4.15}
\]

In this section we prove the following result, whose mainly follows the lines in [19] (given for one triple junction only), except for the arguments in step 8.

Theorem 4.2. Assume that \(\overline{\gamma} \) satisfies (A) and (2.11). If \(\gamma \) develops a type I singularity at \(t = T \), then

\[
T = \frac{3|E(\overline{\gamma})|}{4\pi}, \quad \lim_{t \to T^-} |E(\gamma(t))| = 0, \tag{4.16}
\]

and

\[
\lim_{t \to T^-} L(\gamma(t)) = 0, \tag{4.17}
\]

so that \(T \) is the extinction time of the evolution. Moreover

- there exists \(t_c \in (0, T) \) such that \(\gamma(t) \) is uniformly convex in \([0, 1]\) for any \(t \in [t_c, T) \);
- there exists \(p \in \mathbb{R}^2 \) such that
\[
\lim_{t \to +\infty} \| \tilde{\gamma}^p(t) - \gamma^h \|_{C^2([0,1]; \mathbb{R}^2)} = 0.
\] (4.18)

Proof. Let us assume that (3.11) holds. From [19, Th. 6.23] it follows that, if we assume (2.11) and if in addition \(\inf_{t \in [0,T)} L(\gamma(t)) > 0 \), then \(\gamma \) cannot develop type I singularities at \(t = T \). Therefore
\[
\liminf_{t \to T^-} L(\gamma(t)) = 0.
\] (4.19)

Using (4.19) and the fact that \(t \) and the fact that \(t \in [0, T) \to |E(\gamma(t))| \) is decreasing (see Proposition 4.1 (ii)) it follows that \(\lim_{t \to T^-} |E(\gamma(t))| = 0 \). In particular, from (4.2) we have \(T \leq \frac{3|E(\gamma)|}{4\pi} \), and the equality holds if and only if \(\lim_{t \to T^-} |E(\gamma(t))| = 0 \). To prove (4.17), we observe that, as in the proof of Proposition 3.2 and since the constant \(c \) in that statement is independent of \(\gamma \), given \(a, b \in (0, T) \) with \(a < b \), we have \(L(\gamma(b)) \leq cL(\gamma(a)) \), with \(c > 0 \) independent of \(a \) and \(b \). This observation, coupled with (4.19), proves (4.17).

From (4.17) and recalling the comparison argument used in the proof of Theorem 3.1, we deduce that for any \(x \in [0, 1] \) there exists the limit \(\lim_{t \to T^-} \gamma(x, t) \in \mathbb{R}^2 \). Moreover, by (4.17) such a limit is independent of \(x \). We can therefore define
\[
p := \lim_{t \to T^-} \gamma(x, t) \in \mathbb{R}^2.
\] (4.20)

Set
\[
\tilde{\gamma} := \tilde{\gamma}^p.
\]
Recalling the notation in (4.10), thanks to (3.11)
\[
|\tilde{\kappa}(x, t)| = \sqrt{2(T - t(t))} |\kappa_\gamma(x, t(t))| \leq C, \quad t \in \left[-\frac{1}{2} \log T, +\infty \right), \quad x \in [0, 1].
\] (4.21)

We now divide the proof of the theorem into seven steps.

Step 1. We have
\[
\tilde{\gamma}(0, t), \tilde{\gamma}(1, t) \in B_{2C/\sqrt{3}}(p), \quad t \in \left[-\frac{1}{2} \log T, +\infty \right),
\] (4.22)
where \(B_{2C/\sqrt{3}}(p) \) is the ball of radius \(2C/\sqrt{3} \) centered at \(p \).

Indeed, since \(-\kappa_\gamma(0, \sigma) = \frac{\sqrt{3}}{2} |\gamma_t(0, \sigma)| \) for any \(\sigma \in (0, T) \), using (4.21) we have
\[
|\tilde{\gamma}(0, t)| = \frac{1}{\sqrt{2(T - t(t))}} \left| \int_{t(t)}^{T} \gamma_\gamma(0, \sigma) \, d\sigma \right| \\
\leq \frac{2}{\sqrt{3} \sqrt{2(T - t(t))}} \int_{t(t)}^{T} |\kappa_\gamma(0, \sigma)| \, d\sigma \\
\leq \frac{2C}{\sqrt{3} \sqrt{2(T - t(t))}} \int_{t(t)}^{T} \frac{1}{\sqrt{2(T - \sigma)}} \, d\sigma = \frac{2C}{\sqrt{3}}.
\]
Since the same estimate holds for \(|\tilde{\gamma}(1, t)| \), step 1 is proved.

Step 2. We have
\[
|E(\tilde{\gamma}(t))| = \frac{4\pi}{3}, \quad t \in \left[-\frac{1}{2} \log T, +\infty \right).
\] (4.23)
Indeed, from (1.2) and (4.16) it follows that $|E(\gamma(t))| = \frac{2\pi}{3}(T-t)$, and therefore (4.23) follows from the definition of $\tilde{\gamma}$.

Without loss of generality, from now on we assume $p = (0,0)$. We recall the so-called rescaled monotonicity formula (see [10], [19, Prop. 6.7]):

$$\frac{d}{dt} \int_{I(t)} e^{-\frac{|x|^2}{2}} ds = -\int_{I(t)} e^{-\frac{|x|^2}{2}} |\kappa_{\tilde{\gamma}}(t) + \langle \tilde{\gamma}(t), \nu_{\tilde{\gamma}}(t) \rangle|^2 ds = - f(t) \leq 0. \quad (4.24)$$

Integrating (4.24) on $[-\frac{1}{2} \log T, +\infty)$ we get

$$\int_{-\frac{1}{2} \log T}^{+\infty} f(t) \, dt = \int_{I(-\frac{1}{2} \log T)} e^{-\frac{|x|^2}{2}} \left|\frac{\sqrt{2}}{2} \cdot \frac{\kappa_{\tilde{\gamma}}(t)}{\sqrt{2}} \right|^2 ds = \frac{1}{\sqrt{2T}} \int_{I(0)} e^{-\frac{|x|^2}{4T}} ds < +\infty.$$

As a consequence, the nonnegative function f belongs to $L^1([-\frac{1}{2} \log T, +\infty))$. Since $\sum_{j=1}^{+\infty} \frac{1}{j} = +\infty$, we then have that for any sequence $\{t_n\} \subset (-\frac{1}{2} \log T, +\infty)$ converging to $+\infty$, there exist a subsequence $\{t_{n_j}\}$ and times $r_j \in [t_{n_j}, t_{n_j} + 1/j]$ such that

$$\lim_{j \to +\infty} f(r_j) = 0. \quad (4.25)$$

Assume now that

$$\sup_{t \in [-\frac{1}{2} \log T, +\infty)} L(\gamma(t)) < +\infty. \quad (4.26)$$

Step 3. Weak convergence to γ^∞ in $W^{2,\infty}$ along a subsequence $\{r_{j_k}\}$.

From (4.24) and assumption (4.26) we have that

$$\sup_j \left[L(\gamma(r_{j_k})) + \|\kappa_{\gamma(r_{j_k})}\|_{L^\infty([0,1])} \right] < +\infty.$$

It follows that there exist a subsequence $\{r_{j_k}\}$ and a map

$$\gamma^\infty \in W^{2,\infty}([0,1]; \mathbb{R}^2), \quad (4.27)$$

such that $\gamma(r_{j_k})$ converges to γ^∞ weakly in $W^{2,\infty}([0,1]; \mathbb{R}^2)$ as $k \to +\infty$. In particular

$$\lim_{k \to +\infty} \|\gamma^\infty - \gamma(r_{j_k})\|_{W^1([0,1]; \mathbb{R}^2)} = 0, \quad (4.28)$$

and

$$\lim_{k \to +\infty} \gamma^\infty_x(r_{j_k}) = \gamma^\infty_x \quad \text{weakly in } L^2([0,1]; \mathbb{R}^2). \quad (4.29)$$

Hence from steps 1,2,3 and (4.26) it follows that

(i) $\gamma^{\infty}(0), \gamma^{\infty}(1) \in B_{\frac{2\pi}{3}}(0)$, and $\gamma^{\infty}(0), \gamma^{\infty}(1)$ belong to the first coordinate axis;

(ii) $\frac{\gamma^{\infty}(0)}{|\gamma^{\infty}(0)|} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, $\frac{\gamma^{\infty}(1)}{|\gamma^{\infty}(1)|} = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$;

(iii) $|E(\gamma^{\infty})| = \frac{2\pi}{3}$;

(iv) $L(\gamma^{\infty}) < +\infty$.

Moreover, as a consequence of (iii), and respectively of (ii), (iv) and (4.27), we have
(v) \(L(\gamma^\infty) > 0; \)
(vi) \(\kappa_{\gamma^\infty} \) is not identically zero.

Step 4. We have

(vii) \(\gamma_2^\infty(x) > 0 \) for any \(x \in (0, 1); \)
(viii) \(\gamma^\infty \) is injective.

Indeed, from (4.6) and (4.8) we have

\[
g_\gamma(t) = g_{\gamma}(t) \geq \min(g_\gamma(0), 4\sqrt{3}), \quad t \in \left[-\frac{1}{2} \log T, +\infty\right).
\] (4.30)

Moreover, since \(g_\gamma(t) \) is defined as an infimum, it is upper semicontinuous, in the sense that

\[
\lim_{k \to +\infty} \|\tilde{\gamma}(r_{jk}) - \gamma^\infty\|_{\mathbb{C}^1([0,1];\mathbb{R}^2)} = 0 \Rightarrow g_{\gamma^\infty} = \limsup_{k \to +\infty} g_{\gamma}(r_{jk}),
\] (4.31)

where \(g_{\gamma^\infty} \) (the constant) defined as in (4.3), where we substitute \(\gamma(\cdot, t) \) with \(\gamma^\infty(\cdot) \) on the right hand side of (4.4). From (4.30) and (4.31) it follows that \(g_{\gamma^\infty} \geq \min(g_{\gamma}(0), 4\sqrt{3}) \), and this implies (vii) and (viii).

As a consequence of (ii) and (viii) we have:

(ix) \(\gamma^\infty(0) \neq \gamma^\infty(1). \)

Step 5. We have

\[
\kappa_{\gamma^\infty} + \langle \gamma^\infty, \nu_{\gamma^\infty} \rangle = 0 \quad \text{a.e. in } [0,1].
\] (4.32)

Indeed, from Fatou’s Lemma and (4.25) we have

\[
\int_0^1 \liminf_{j \to +\infty} \left[e^{-\frac{1}{2} |\gamma(r_j)|^2} \left| \kappa_{\gamma(r_j)} + \langle \gamma(r_j), \nu_{\gamma(r_j)} \rangle \right|^2 |\gamma_x(r_j)| \right] dx \leq \lim_{j \to +\infty} f(r_j) = 0.
\] (4.33)

On the other hand, by (4.28) and (4.29), the left hand side of (4.33) equals

\[
\int_0^L e^{-\frac{1}{2} |\gamma^\infty|^2} \left| \kappa_{\gamma^\infty} + \langle \gamma^\infty, \nu_{\gamma^\infty} \rangle \right|^2 ds,
\] (4.34)

and (4.32) follows.

By elliptic regularity [12] it follows that \(\kappa_{\gamma^\infty} \in \mathcal{C}^0([0,1]), \) hence \(\gamma^\infty \in \mathcal{C}^2([0,1];\mathbb{R}^2), \) and (4.32) is valid everywhere in classical sense in \([0,1].\) Recalling Section 2.3 we deduce by uniqueness that

\[
\gamma^\infty = \gamma^h.
\] (4.35)

Note that from (4.35) it follows that \(\gamma^\infty \) is independent of the subsequence \(\{j_k\}, \) hence (4.28) is valid for the whole sequence \(\{r_j\}, \) i.e.

\[
\lim_{j \to +\infty} \|\tilde{\gamma}(r_j) - \gamma^\infty\|_{\mathbb{C}^1([0,1];\mathbb{R}^2)} = 0.
\] (4.36)

Step 6. We have

\[
\lim_{j \to +\infty} \|\tilde{\gamma}(t_{nj}) - \gamma^h\|_{\mathbb{C}^1([0,1];\mathbb{R}^2)} = 0.
\] (4.37)
From step 3 applied to the sequence \(\{ \tilde{\gamma}(t_{n_j}) \} \) in place of \(\{ \tilde{\gamma}(r_j) \} \), it follows that there exist a map
\[
\tilde{\gamma}^\infty \in W^{2,\infty}([0, 1]; \mathbb{R}^2)
\]
and a subsequence \(\{ n_{j_h} \} \) such that
\[
\lim_{h \to +\infty} \| \tilde{\gamma}(t_{n_{j_h}}) - \tilde{\gamma}^\infty \|_{C^1([0, 1]; \mathbb{R}^2)} = 0,
\]
and such that \(\tilde{\gamma}^\infty \) satisfies properties (i)-(ix) listed in steps 3,4.

In order to show (4.37), it is enough to prove that
\[
\tilde{\gamma}^\infty = \gamma^h.
\]

Using (4.38), (4.36) and the inequality
\[
\| \tilde{\gamma}^\infty - \gamma^h \|_{C^0([0, 1]; \mathbb{R}^2)} \leq \| \tilde{\gamma}^\infty - \tilde{\gamma}(t_{n_j}) \|_{C^0([0, 1]; \mathbb{R}^2)} + \| \tilde{\gamma}(t_{n_{j_h}}) - \tilde{\gamma}(r_{j_h}) \|_{C^0([0, 1]; \mathbb{R}^2)}
\]
\[
+ \| \tilde{\gamma}(r_{j_h}) - \gamma^h \|_{C^0([0, 1]; \mathbb{R}^2)},
\]
to prove (4.39) it is sufficient to show that
\[
\lim_{j \to +\infty} \| \tilde{\gamma}(r_{j_{h_j}}) - \tilde{\gamma}(t_{n_j}) \|_{C^0([0, 1]; \mathbb{R}^2)} = 0.
\]

In order to prove (4.40), we recall that \(\tilde{\kappa}(x, t) \) is uniformly bounded for all \((x, t)\) by (4.21) and, as a consequence, \(\tilde{\lambda}(x, t) \) is also uniformly bounded by (4.14) and (4.15) as in [19, p. 264]. Hence, using also (4.12) and (4.24),
\[
\| \tilde{\gamma}(r_{j}) - \tilde{\gamma}(t_{n_j}) \|_{C^0([0, 1]; \mathbb{R}^2)} \leq \int_{t_{n_j}}^{r_j} \int_0^1 |\tilde{\gamma}_t| dx \leq \int_{t_{n_j}}^{r_j} \int_0^1 \left(|\tilde{\kappa}| + |\tilde{\lambda}| + |\tilde{\gamma}| \right) dx
\]
\[
\leq C |r_j - t_{n_j}| \leq C \frac{r_j}{j},
\]
which gives (4.40) and proves step 6.

From (4.37) and [19, Prop. 6.16] we have the improved convergence
\[
\lim_{j \to +\infty} \| \tilde{\gamma}(t_{n_j}) - \gamma^h \|_{C^2([0, 1]; \mathbb{R}^2)} = 0.
\]

Since the sequence \(\{ t_n \} \) is arbitrary we deduce
\[
\lim_{t \to +\infty} \| \tilde{\gamma}(t) - \gamma^h \|_{C^2([0, 1]; \mathbb{R}^2)} = 0.
\]

Eventually, we observe that, since \(\gamma^2_\infty \) is uniformly concave in \([0, 1]\) (see Section 2.3), from (4.41) we deduce that \(\gamma(t_c) \) becomes uniformly convex for some \(t_c \in (0, T) \). From the results proved in [22] Lemma 3.3 it follows that \(\gamma(t) \) remains uniformly convex in \([t_c, T)\) (this last assertion also follows from (3.12) and (2.8) using the maximum principle).

Step 7. Assume now that (4.26) does not hold, that is, there exists a sequence \(\{ t_n \} \) converging to \(+\infty \) such that
\[
\lim_{n \to +\infty} L(\tilde{\gamma}(t_n)) = +\infty.
\]
Resoning as in step 1, there exist a subsequence \(\{t_{n_j}\} \) and times \(r_j \in [t_{n_j}, t_{n_j} + 1/j] \) such that (4.25) holds. Moreover from (4.21) and \(r_j - t_{n_j} \leq 1/j \), and from (3.9) and (4.43) we obtain
\[
\lim_{j \to +\infty} L(\tilde{\gamma}(r_j)) = +\infty. \tag{4.44}
\]
If we parametrize \(\tilde{\gamma}(r_j) \) by arclength on \([0, L(\tilde{\gamma}(r_j))]\), and we pass to the limit as in step 3 as \(j \to +\infty \), we get that there exists a subsequence \(\{r_{j_k}\} \) such that \(\{\tilde{\gamma}(r_{j_k})\} \) converges weakly in \(W_{\text{loc}}^{2,2}([0, +\infty); \mathbb{R}^2) \) (so that (4.28) and (4.29) hold with \(C_{\text{loc}}^1([0, +\infty); \mathbb{R}^2) \) and \(L_{\text{loc}}^2([0, +\infty); \mathbb{R}^2) \) in place of \(C^1([0, 1]; \mathbb{R}^2) \) and \(L^2([0, 1]; \mathbb{R}^2) \) respectively) to a curve \(\gamma^\infty \) of infinite length which, arguing as in steps 4,5, has the following properties:

(a) \(\gamma^\infty_2(0) = 0, \gamma^\infty_2(s) > 0 \) for any \(s \in (0, +\infty) \);

(b) \(\gamma^\infty_1(0) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \);

(c) \(\gamma^\infty \) is injective (by using (4.30));

(d) \(\gamma^\infty \) solves (4.32) almost everywhere in \([0, +\infty)\).

By elliptic regularity \(\gamma^\infty \in C^\infty((0, +\infty); \mathbb{R}^2) \) and solves (4.32) in classical sense. Then by the results in [7] and [22] it follows that \(\gamma^\infty([0, +\infty)) \) is contained in a curve of Abresch-Langer \([1]\).

In view of the Neumann condition (b) and the properties of the curves of Abresch-Langer, it then follows that
\[
\gamma^\infty(s) = \left(\frac{s}{2}, \frac{\sqrt{3}s}{2} \right), \quad s \in [0, +\infty).
\]

Similarly, if we parametrize \(\tilde{\gamma}(r_j) \) by arclength on \([-L(\tilde{\gamma}(r_j)), 0]\), we find a subsequence \(\{\tilde{\gamma}(r_{j_k})\} \) of \(\{\tilde{\gamma}(r_{j_k})\} \) converging to a curve \(\gamma^\infty \in C^\infty((-\infty, 0]; \mathbb{R}^2) \) of infinite length satisfying (a), (c), (d), \(\gamma^\infty_1(0) = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2} \right) \), and contained in a curve of Abresch-Langer. Hence necessarily
\[
\gamma^\infty(s) = \left(\frac{s}{2}, -\frac{\sqrt{3}s}{2} \right), \quad s \in (-\infty, 0].
\]

We now reach a contradiction since, being the convergence of \(\{\tilde{\gamma}(r_{j_k})\} \) in \(C_{\text{loc}}^1 \), it follows that \(\tilde{\gamma}(r_{j_k}) \) is not injective for \(\ell \) sufficiently large. Indeed, provided \(\ell \in \mathbb{N} \) is such that
\[
\|\tilde{\gamma}(s, r_{j_k}) - \gamma^\infty(s)\|_{C^1([0,1];\mathbb{R}^2)} + \|\tilde{\gamma} \left(L(\tilde{\gamma}(r_{j_k})) - s, r_{j_k} \right) - \gamma^\infty(-s)\|_{C^1([0,1];\mathbb{R}^2)} \leq \frac{1}{2},
\]
recalling the boundary conditions in (4.13), we have that there exist \(s_1, s_2 \in [0, 1] \) such that
\[
\tilde{\gamma}(s_1, r_{j_k}) = \tilde{\gamma} \left(L(\tilde{\gamma}(r_{j_k})) - s_2, r_{j_k} \right).
\]
Hence (4.26) necessarily holds, and the proof of the theorem is complete. \(\square \)

5. Embedded nonconvex initial data: type II singularities

This section is devoted to the proof of the following result.

Theorem 5.1. Assume that \(\overline{\gamma} \) satisfies (A) and (2.11). Then \(\gamma \) cannot develop type II singularities at \(t = T \).
Proof. Let us assume by contradiction that γ develops a type II singularity at $t = T$. We employ a rescaling procedure originally due to R. Hamilton (see [2]). Let us choose as in [19] Section 7.1 a sequence $\{(x_n, t_n)\} \subset [0, 1] \times [0, T]$ satisfying the following properties:

- $t_n \in [0, T - 1/n)$ and $t_n < t_{n+1}$ for any $n \in \mathbb{N}$;
- letting
 \[\mu_n := |\kappa_n(x_n, t_n)|, \quad n \in \mathbb{N}, \]
 we have $0 < \mu_n < \mu_{n+1}$ and $\lim_{n \to +\infty} \mu_n = +\infty$;
-
 \[\lim_{n \to +\infty} \mu_n \sqrt{T - 1/n - t_n} = +\infty, \quad (5.1) \]
 and for any $n \in \mathbb{N}$
 \[\mu_n \sqrt{T - 1/n - t_n} = \max_{t \in [0, T - 1/n]} \left(\|\kappa_n(t)\|_{L^\infty([0,1])} \sqrt{T - 1/n - t} \right). \quad (5.2) \]

Note that the maximum in (5.2) is attained in $[0, T - 1/n)$ by (5.1). Note also that

\[\lim_{n \to +\infty} -\mu_n^2 t_n = -\infty, \quad \lim_{n \to +\infty} \mu_n^2 (T - t_n) = +\infty. \quad (5.3) \]

Let us define the parameter t as

\[t(t) := t_n + t/\mu_n^2, \quad t \in [-\mu_n^2 t_n, \mu_n^2 (T - t_n)], \]

and the curves γ_n as

\[\gamma_n(x, t) := \mu_n \left(\gamma(x, t(t)) - \gamma(x, t_n) \right), \quad x \in [0, 1], \ t \in [-\mu_n^2 t_n, \mu_n^2 (T - t_n)]. \]

We have

\[\gamma_n(x_n, 0) = (0, 0), \quad |\kappa_n(x_n, 0)| = 1, \quad n \in \mathbb{N}. \quad (5.4) \]

From (5.2) it follows as in [19] Sec. 7 that for every $\varepsilon, \omega > 0$ there exists $\bar{\pi} \in \mathbb{N}$ such that

\[\|\kappa_n(t)\|_{L^\infty([0,1])} \leq 1 + \varepsilon, \quad n \geq \bar{\pi}, \ t \in [-\mu_n^2 t_n, \omega]. \quad (5.5) \]

We now divide the proof of the theorem into nine steps.

Step 1. We have

\[\lim_{n \to +\infty} L(\gamma_n(t)) = +\infty, \quad t \in \mathbb{R}. \quad (5.6) \]

Indeed, this is obvious if T is not the extinction time, since in that case $\inf_{t \in [0,T]} L(\gamma(t)) > 0$. If T is the extinction time, namely $0 = \lim_{t \to T^-} L(\gamma(t)) = \lim_{t \to T^-} |E(\gamma(t))|$, by the isoperimetric inequality and taking into account that γ satisfies (2.3), it follows that there exists an absolute constant $c > 0$ such that $L(\gamma(t)) \geq c\sqrt{|E(\gamma(t))|}$ for all $t \in [0, T)$. Hence, to prove (5.6) it is enough to show that

\[\lim_{n \to +\infty} |E(\gamma_n(t))| = +\infty, \quad t \in \mathbb{R}. \quad (5.7) \]

Recalling (4.2), we have

\[|E(\gamma_n(t))| = \mu_n^2 |E(\gamma(t(t)))| = \frac{4}{3} \pi \mu_n^2 (T - t(t)), \quad t \in [-\mu_n^2 t_n, \mu_n^2 (T - t_n)]. \]

In particular $|E(\gamma_n(0))| = \frac{4}{3} \pi \mu_n^2 (T - t_n)$, hence $\lim_{n \to +\infty} |E(\gamma_n(0))| = +\infty$ by (5.3). Then step 1 follows, since $|E(\gamma_n(t))| = |E(\gamma_n(0))| - \frac{4}{3} \pi t$ for any $t \in [-\mu_n^2 t_n, \mu_n^2 (T - t_n)]$.

Before passing to the next step we need some preparation. Given \(t \in [-\mu_2^2 T, \mu_2^2 (T - t_n)] \), we now reparametrize the curves \(\gamma_n(t) \) by arclength and, performing a suitable translation in the parameter space, we obtain curves

\[
\tilde{\gamma}_n(t) : [a_n(t), b_n(t)] \to \mathbb{R}^2,
\]

with \(a_n(t) \leq 0 \leq b_n(t) \), and \(b_n(t) - a_n(t) = L(\gamma_n(t)) \).

Thanks to (5.6), we have

\[
\lim_{n \to +\infty} \left(b_n(t) - a_n(t) \right) = +\infty, \quad t \in \mathbb{R}. \tag{5.8}
\]

Without loss of generality we assume

\[
\tilde{\gamma}_n(0, 0) = \gamma_n(x_n, 0) = (0, 0). \tag{5.9}
\]

We can also assume that there exists a subsequence \(\{n_j\} \) such that

\[
\lim_{j \to +\infty} a_{n_j}(0) =: a_{\infty} \in [-\infty, 0], \quad \lim_{j \to +\infty} b_{n_j}(0) =: b_{\infty} \in [0, +\infty]. \tag{5.10}
\]

Note that by (5.8) we have that if \(a_{\infty} \in (-\infty, 0] \) (resp. \(b_{\infty} \in [0, +\infty) \)) then \(b_{\infty} = +\infty \) (resp. \(a_{\infty} = -\infty \)).

We now choose the starting point of the reparametrization (still keeping the notation \(\tilde{\gamma}_n \)) as follows. If \(b_\infty = +\infty \) we set \(a_{n_j}(t) := a_{n_j}(0) \) for any \(t \in \mathbb{R} \); if \(b_\infty \in [0, +\infty) \) we set \(b_{n_j}(t) := b_{n_j}(0) \) for any \(t \in \mathbb{R} \). Hence in both cases

\[
\lim_{j \to +\infty} a_{n_j}(t) =: a_\infty, \quad \lim_{j \to +\infty} b_{n_j}(t) =: b_\infty, \quad t \in \mathbb{R}. \tag{5.11}
\]

If \(a_\infty \in (-\infty, 0] \) (resp. \(b_\infty \in [0, +\infty) \)) we set \(I_\infty := [a_\infty, +\infty) \) (resp. \(I_\infty := (-\infty, b_\infty] \)); if \(|a_\infty| = b_\infty = +\infty \) we set \(I_\infty := \mathbb{R} \). Observe that \(0 \in I_\infty \).

Exploiting also (5.9), the proof of the next step is the same as in [19, Prop. 7.1], using also (5.8), (5.5) and (5.4).

Step 2. The sequence \(\{\tilde{\gamma}_{n_j}\} \) admits a subsequence \(\{\tilde{\gamma}_{n_{j_k}}\} \) converging in \(\mathcal{C}^2_{I_\infty}(I_\infty \times \mathbb{R}; \mathbb{R}^2) \) to an embedded curvature evolution \(\gamma_\infty \in \mathcal{C}^\infty(I_\infty \times \mathbb{R}; \mathbb{R}^2) \) with

\[
L(\gamma_\infty(t)) = +\infty, \quad t \in \mathbb{R},
\]

\[
\gamma_\infty(0, 0) = (0, 0),
\]

\[
\|k_{\gamma_\infty}\|_{L^\infty(I_\infty \times \mathbb{R})} = 1 = |\kappa_{\gamma_\infty}(0, 0)|. \tag{5.12}
\]

Moreover

- if \(I_\infty = [a_\infty, +\infty) \) then \(\gamma_{\infty,s}(a_\infty, t) = (1/2, \sqrt{3}/2) \) for all \(t \in \mathbb{R} \), and

\[
\gamma_{\infty,2}(s, t) \geq \gamma_{\infty,2}(a_\infty, t), \quad s \in I_\infty, \quad t \in \mathbb{R};
\]

- if \(I_\infty = (-\infty, b_\infty] \) then \(\gamma_{\infty,s}(b_\infty, t) = (1/2, -\sqrt{3}/2) \) for all \(t \in \mathbb{R} \), and

\[
\gamma_{\infty,2}(s, t) \geq \gamma_{\infty,2}(b_\infty, t), \quad s \in I_\infty, \quad t \in \mathbb{R}.
\]

Note that the \(\mathcal{C}^2_{I_\infty}(I_\infty \times \mathbb{R}; \mathbb{R}^2) \)-convergence can be improved to \(\mathcal{C}^\infty(I_\infty \times \mathbb{R}; \mathbb{R}^2) \) [11], since the curves \(\tilde{\gamma}_n \) evolve by curvature and have a uniform \(L^\infty \)-bound on their curvature.

Step 3. For all \(t \in \mathbb{R} \) we have \(k_{\gamma_\infty}(s, t) \neq 0 \) for all \(s \in I_\infty \).
We follow [2, Th. 7.7]. Write for simplicity
\[J_h(t) := [a_{n_jh}(t), b_{n_jh}(t)], \quad \tilde{\kappa}_h(s, t) = \kappa_{\gamma_{n_jh}}(s, t), \quad z_h(t) := \{ s \in J_h(t) : \tilde{\kappa}_h(s, t) = 0 \} . \]

For all \(M > 0 \), recalling (5.13), we have
\[
-2 \int_{-M}^M \sum_{s \in z_h(t)} |\partial_s \tilde{\kappa}_h| dt = \int_{-M}^M \frac{d}{dt} \int_{J_h(t)} |\tilde{\kappa}_h| ds dt = \int_{J_h(M)} |\tilde{\kappa}_h(s, M)| ds - \int_{J_h(-M)} |\tilde{\kappa}_h(s, -M)| ds. \tag{5.13}
\]

Using the invariance of \(\int_{I(t)} |\kappa_\gamma(\cdot, t)| ds \) under rescalings and writing
\[\gamma_h := \gamma_{n_jh}, \quad t_h := t_{n_jh}, \quad \mu_h := \mu_{n_jh}, \]
from (5.13) we then obtain
\[
-2 \int_{-M}^M \sum_{s \in z_h(t)} |\partial_s \tilde{\kappa}_h| dt = \int_{I(t_h + M \mu_h \hat{\kappa})} |\kappa_{\gamma_h}(s, t_h + M/\mu_h^2)| ds - \int_{I(t_h - M \mu_h \hat{\kappa})} |\kappa_{\gamma_h}(s, t_h - M/\mu_h^2)| ds. \tag{5.14}
\]

In view of Proposition 3.4, the function \(t \to \int_{I(t)} |\kappa_\gamma(t)| ds \) is nonincreasing, hence it admits a finite limit as \(t \to T^- \). In particular,
\[
\lim_{h \to +\infty} \int_{I(t_h + M \mu_h \hat{\kappa})} |\kappa_{\gamma_h}(s, t_h + M/\mu_h^2)| ds = \lim_{h \to +\infty} \int_{I(t_h - M \mu_h \hat{\kappa})} |\kappa_{\gamma_h}(s, t_h - M/\mu_h^2)| ds.
\]

It then follows from (5.14) that
\[
\lim_{h \to +\infty} \int_{-M}^M \sum_{s \in z_h(t)} |\partial_s \tilde{\kappa}_h| dt = 0. \tag{5.15}
\]

From (5.15) and Fatou’s Lemma we deduce that
\[
0 = \liminf_{h \to +\infty} \sum_{s \in z_h(t)} |\partial_s \tilde{\kappa}_h(s, t)| \quad \text{for a.e. } t \in [-M, M]. \tag{5.16}
\]

Since (5.16) holds for any \(M > 0 \), and all quantities involved are continuous with respect to \(t \), we obtain
\[
0 = \liminf_{h \to +\infty} \sum_{s \in z_h(t)} |\partial_s \tilde{\kappa}_h(s, t)|, \quad t \in \mathbb{R}. \tag{5.17}
\]

On the other hand, the \(C^2_{\text{loc}}(I_\infty \times \mathbb{R}; \mathbb{R}^2) \)-convergence of \(\tilde{\gamma}_h \) to \(\gamma_\infty \) given in step 2 implies that
\[
\liminf_{h \to +\infty} \sum_{s \in z_h(t)} |\partial_s \tilde{\kappa}_h(s, t)| \geq \sum_{s \in I_\infty \setminus \kappa_{\gamma_\infty}(s, t) = 0} |\partial_s \kappa_{\gamma_\infty}(s, t)|, \quad t \in \mathbb{R}. \tag{5.18}
\]
Since the right hand side of (5.18) is nonnegative, from (5.17) we deduce

$$0 = \sum_{s \in I_\infty: \kappa_{\gamma_\infty}(s, t) = 0} |\partial_s \kappa_{\gamma_\infty}(s, t)|, \quad t \in \mathbb{R}. $$

It follows that for any $t \in \mathbb{R}$ we have

$$\left\{ s \in I_\infty : \kappa_{\gamma_\infty}(s, t) = 0, \partial_s \kappa_{\gamma_\infty}(s, t) \neq 0 \right\} = \emptyset.$$

On the other hand, γ_∞ evolves by curvature (see step 2), and therefore, from the results of [2], if there exists $(s, t) \in I_\infty \times \mathbb{R}$ such that $\kappa_{\gamma_\infty}(s, t) = 0$ and $\partial_s \kappa_{\gamma_\infty}(s, t) = 0$, then $\gamma_\infty(\cdot, t)$ is linear, hence $\gamma_\infty(\cdot, t)$ is linear. Since this is in contradiction with (5.12), the proof of step 3 is concluded.

Step 4. $I_\infty \neq \mathbb{R}$. Indeed, assume by contradiction that $I_\infty = \mathbb{R}$. From step 3, reasoning as in [2, pp. 512-513] it follows that γ_∞ is the so-called grim reaper. For the grim reaper the function $Q_1^{\gamma_\infty}: \mathbb{R} \to (0, +\infty)$ defined on the right hand side of (4.4) (with $[0, 1]$ replaced by I_∞) is identically zero. On the other hand, from (4.6) and arguing as in step 4 of the proof of Theorem [2.2] we have that $g_{\tilde{\gamma}_h} : [-\mu_2^2 t_h, \mu_2^2(T - t_h)) \to (0, +\infty)$ is bounded from below by a positive constant uniformly with respect to $h \in \mathbb{N}$. Recall now that the sequence $\{\tilde{\gamma}_h\}$ converges in $C^2_{\text{loc}}(I_\infty \times \mathbb{R}; \mathbb{R}^2)$ to γ_∞ and that we have (similarly to the inequality in (4.31))

$$Q_1^{\gamma_\infty}(t) \geq \limsup_{h \to +\infty} Q_1^{\tilde{\gamma}_h}(t) \geq \limsup_{h \to +\infty} g_{\tilde{\gamma}_h}(t), \quad t \in \mathbb{R}. $$

Then (5.19) is in contradiction with $Q_1^{\gamma_\infty} \equiv 0$, and the proof of step 4 is concluded.

Thanks to step 3 we can consider only two cases: either $\kappa_{\gamma_\infty}(s, t) < 0$ for any $(s, t) \in I_\infty \times \mathbb{R}$, or $\kappa_{\gamma_\infty}(s, t) > 0$ for any $(s, t) \in I_\infty \times \mathbb{R}$. Let us first assume

$$\kappa_{\gamma_\infty}(s, t) < 0, \quad (s, t) \in I_\infty \times \mathbb{R}. $$

Recalling our conventions (see Remark 2.2), inequality (5.20) implies that $\gamma_\infty(\cdot, t)$ is a convex curve.

From step 4 we have that either a_∞ is finite or b_∞ is finite. We assume that $a_\infty \in (-\infty, 0]$, the case $b_\infty \in [0, +\infty)$ being analogous. Therefore we have

$$I_\infty = [a_\infty, +\infty).$$

Observe that from (5.11) we have

$$\gamma_{\infty 2}(a_\infty, t) = \gamma_{\infty 2}(a_\infty, 0), \quad t \in \mathbb{R}. $$

Recall also (see step 2) that

$$\partial_s \gamma_{\infty}(a_\infty, t) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad t \in \mathbb{R}. $$

Step 5. We have

$$\int_{I_\infty} \kappa_{\gamma_\infty}(s, t) \, ds \in [-\pi/3, 0), \quad t \in \mathbb{R}. $$

Indeed, if by contradiction there exists \(t \in \mathbb{R} \) such that the left hand side of (5.23) is less than \(-\pi/3\), then thanks to (5.20) and the Neumann boundary condition (5.22), the curve \(\gamma_\infty(\cdot,t) \) has another intersection (different from \(\gamma_\infty(a_\infty,0) \)) with the horizontal axis \(\ell \) passing from \(\gamma_\infty(a_\infty,0) \). This implies \(Q_2^{\gamma_\infty} \equiv 0 \), where \(Q_2^{\gamma_\infty} \) is defined as in (4.4) (with \([0,1]\) replaced by \(I_\infty \), and \(\gamma_\infty^{sp} \) is now the specular of \(\gamma_\infty \) with respect to \(\ell \)). This leads to a contradiction, as in step 4.

In particular, the convex curve \(\gamma_\infty(\cdot,t) \) can be written as the graph of a strictly concave smooth function \(y = y(x,t) \), where \((x,t) \in [\gamma_\infty^{1}(a_\infty,t),+\infty) \times \mathbb{R} \).

Let \(\theta(x,t) := \tan^{-1}(y_x(x,t)) \in (0,\pi/3] \) be the angle that the tangent vector to \(\gamma_\infty(\cdot,t) \) makes with the first coordinate axis.

Step 6. We have
\[
\partial_t \kappa_{\gamma_\infty}(s,t) \leq 0, \quad (s,t) \in I_\infty \times \mathbb{R}.
\] Write for simplicity
\[
\kappa_{\gamma_\infty} = \kappa.
\] (5.24)

Recalling that \(\gamma_\infty \) evolves by curvature, the evolution of \(\kappa \) in the \((\theta,t)\)-coordinates reads as follows (see [11]):
\[
\partial_t \kappa = \kappa^2 \kappa_{\theta\theta} + \kappa^3.
\] (5.25)

Let \(t_1 \in \mathbb{R} \) and define \(h := \kappa + 2(t-t_1)\partial_t \kappa \). We have \(h(\theta,t_1) < 0 \) for any \(\theta \in (0,\pi/3] \), and
\[
h_t = \kappa^2 h_{\theta\theta} + \left(\kappa^2 + \frac{2\partial_t \kappa}{\kappa} \right) h.
\] (5.26)

Moreover, from \(\partial_s = \kappa \partial_\theta \) and (2.3) we have that \(h \) satisfies the boundary condition
\[
h_\theta \left(\frac{\pi}{3},t \right) = \frac{1}{\sqrt{3}} h \left(\frac{\pi}{3},t \right), \quad t \in \mathbb{R}.
\] (5.27)

We now observe that the remaining Dirichlet boundary condition for \(h \) reads as
\[
h(0,t) = 0, \quad t \in \mathbb{R}.
\] (5.28)

Indeed, from (5.20) and (5.23) and the Lipschitz continuity of \(\kappa \) in \(s \), which is uniform with respect to \(t \) (this follows from (5.12) and the interior regularity estimates in [9]), we have
\[
\lim_{\theta \to 0^+} \kappa(\theta,t) = 0, \quad t \in \mathbb{R}.
\] (5.29)

Using again [9] we deduce
\[
\lim_{\theta \to 0^+} \kappa_{\theta}(\theta,t) = \lim_{\theta \to 0^+} \kappa_{\theta\theta}(\theta,t) = 0, \quad t \in \mathbb{R}.
\] (5.30)

Then (5.29) follows from (5.30) and (5.31).

By (5.27), (5.28), (5.29) and the maximum principle it then follows \(h(\theta,t) \leq 0 \) for all \(\theta \in (0,\pi/3] \) and \(t \geq t_1 \), hence
\[
\partial_t \kappa \leq -\frac{\kappa}{2(t-t_1)}, \quad t > t_1,
\] which implies (5.24), by letting \(t_1 \to -\infty \).

Step 7. We have
\[
\partial_t \kappa_{\gamma_\infty}(s,t) = 0, \quad (s,t) \in I_\infty \times \mathbb{R}.
\] (5.32)
Let us adopt the notation in (5.25), and define $Z(t) := \int_{0}^{\pi/3} \partial_t \log(-\kappa) d\theta$. Notice that $Z \geq 0$ since $\partial_t \kappa \leq 0$ by step 6 and $\kappa < 0$ by (5.20). Step 7 will be proved if we show that $Z \equiv 0$. (5.33)

Following [2, Section 8] we compute

$$\kappa_t = (\kappa^2 \kappa_{\phi\theta} + \kappa^3) t = \kappa^2 (\kappa_{\phi\theta} + \kappa_t) + \frac{2 (\kappa_\theta)^2}{\kappa}. \quad (5.34)$$

Using (5.34) and integrating by parts we get

$$Z'(t) = \int_{0}^{\pi/3} \partial_t \left(\frac{\kappa_t}{\kappa} \right) d\theta = \int_{0}^{\pi/3} \kappa_t - \int_{0}^{\pi/3} \kappa (\kappa_{\phi\theta} + \kappa_t) + \frac{2 (\kappa_\theta)^2}{\kappa} d\theta = \int_{0}^{\pi/3} \kappa (\kappa_{\phi\theta} + \kappa_t) + \frac{2 (\kappa_\theta)^2}{\kappa} d\theta = \frac{\kappa (\pi/3, t) \kappa_\theta (\pi/3, t) - \kappa_\theta (\pi/3, t) \kappa_t (\pi/3, t) + 2 \int_{0}^{\pi/3} \kappa_\theta (\pi/3, t) d\theta. \quad (5.35)$$

We now observe that from $\kappa_s = \kappa \kappa_\theta$ and from (2.9) we have

$$\kappa_\theta (\pi/3, t) = \frac{\kappa (\pi/3, t)}{\sqrt{3}}, \quad t \in \mathbb{R}. \quad (5.36)$$

Differentiating this relation with respect to t we obtain

$$\kappa (\pi/3, t) \kappa_\theta (\pi/3, t) = \kappa_\theta (\pi/3, t) \kappa_t (\pi/3, t), \quad t \in \mathbb{R}. \quad (5.36)$$

From (5.35), (5.36) and the Schwarz’s inequality we deduce

$$Z'(t) = 2 \int_{0}^{\pi/3} \frac{(\kappa_\theta)^2}{\kappa^2} d\theta = \int_{0}^{\pi/3} \partial_t \log(-\kappa)^2 d\theta \geq \frac{6 \kappa_\theta^2 (t)}{\pi}.$$

Assume now that $Z(t_1) > 0$ for some $t_1 \in \mathbb{R}$. It follows that $Z(t) \geq Z(t_1) > 0$ for all $t \geq t_1$, which implies

$$Z(t_1) \leq \frac{1}{\frac{1}{Z(t_2)} + \frac{6}{\pi} (t_2 - t_1)} \leq \frac{\pi}{6(t_2 - t_1)}$$

for all $t_2 \geq t_1$. Letting $t_2 \to +\infty$ we get $Z(t_1) \leq 0$, a contradiction. Hence (5.33) follows, and the proof of step 7 is concluded.

Step 8. Assume now that

$$\kappa_{s\infty}(s, t) > 0, \quad (s, t) \in I_\infty \times \mathbb{R}. \quad (5.37)$$

Reasoning as in step 5 we have

$$\int_{I_\infty} \kappa_{s\infty}(s, t) ds \in (0, 2\pi/3], \quad t \in \mathbb{R}. \quad (5.38)$$
Note that in this case the image of $\gamma_\infty(\cdot,t)$ is not necessarily a graph, but still the function θ is well-defined, thanks to (5.37), and takes values in $[\pi/3, \pi)$. Reasoning as in steps 6 and 7, using the boundary conditions (5.28) and $h(0, t) = \pi, t \in \mathbb{R}$, and the choice $Z(t) := \int_{\pi/3}^{\pi} \partial_t(\log \kappa) d\theta$, we deduce that (5.32) is still valid.

Step 9. γ_∞ is one of the two specific pieces of the grim reaper depicted in Fig. 4. From step 7 and (5.26) we have $\partial_\theta \kappa \gamma_\infty + \kappa \gamma_\infty = 0$. By direct integration and using (5.22), it follows that γ_∞ is a one-parameter family of pieces of grim reapers (the parameter being for instance the horizontal velocity of translation), see Fig. 4. As in step 5, we have $Q_{\infty}^2 \equiv 0$, which gives a contradiction. This shows that γ cannot develop type II singularities, and concludes the proof of the theorem. \hfill \square

6. Examples

In the first example we show a graph-like initial datum γ which develops a type II singularity: differently from Section 5 (see (2.11)), in this case γ_2 changes sign.

Example 1. For $x \in [0, 1]$ let $\gamma(x) := (x, f(x))$ where f is a smooth function the graph of which satisfies the Neumann boundary conditions (2.4) at $x = 0$ and $x = 1$, with the property that there exist $x_1, x_2 \in (0, 1), x_1 < x_2$, such that $f > 0$ on $(0, x_1) \cup (x_2, 1)$, and $f < 0$ on (x_1, x_2) (see Fig. 5). Set

$$
\int_0^{x_1} f(x) \, dx =: \varepsilon > 0, \quad \int_{x_1}^{x_2} f(x) \, dx =: -c < 0.
$$

Then the image of $\gamma(t)$ can be written as the graph, over a smoothly variable interval...
[\alpha(t), \beta(t)]$, of a smooth function $f(\cdot, t) : [\alpha(t), \beta(t)] \rightarrow \mathbb{R}$, for $t \in [0, T)$, which solves the problem

$$
\begin{aligned}
\begin{cases}
 f_t &= \frac{f_{xx}}{1 + (f_x)^2} \quad &\text{in } (\alpha(t), \beta(t)) \times (0, T), \\
 f(\alpha(t), t) &= f(\beta(t), t) = 0 \quad &t \in (0, T), \\
 f_x(\alpha(t), t) &= \sqrt{3} \quad &t \in (0, T), \\
 f_x(\beta(t), t) &= -\sqrt{3} \quad &t \in (0, T), \\
 a(0) &= 0 \\
 b(0) &= 1 \\
 f(\cdot, 0) &= \mathcal{T}(\cdot) \quad &\text{in } (0, 1),
\end{cases}
\end{aligned}
$$

(6.1)

where, for notational simplicity, we still denote by x the first variable in \mathbb{R}^2.

By the maximum principle for f_x (see [22]) the functions $f(\cdot, t)$ are Lipschitz continuous, with a Lipschitz constant which is uniform with respect to $t \in [0, T)$. By the smoothness of the flow, there exist $t_s \in (0, T]$ and two continuous functions $x_1, x_2 : [0, t_s) \rightarrow \mathbb{R}$, with $a(t) < x_1(t) < x_2(t) < 1$ for any $t \in [0, t_s)$, such that $x_i(0) = x_i, i = 1, 2$, $f(\cdot, t) > 0$ on $(a(t), x_1(t)) \cup (x_2(t), 1)$, and $f(\cdot, t) < 0$ on $(x_1(t), x_2(t))$. Define, for any $t \in (0, t_s)$, the nonnegative functions

$$
V^+(t) := \int_{a(t)}^{x_1(t)} f(x, t) \, dx, \quad V^-(t) := -\int_{x_1(t)}^{x_2(t)} f(x, t) \, dx.
$$

By a direct computation, we get

$$
\frac{d}{dt} V^+(t) \leq -\frac{\pi}{3}, \quad \frac{d}{dt} V^-(t) \geq -\pi,
$$

so that

$$
V^+(t) \leq \varepsilon - \frac{\pi}{3} t, \quad V^-(t) \geq c - \pi t, \quad t \in (0, t_s).
$$

(6.2)

Observe that if there exists $\bar{t} \in (0, t_s)$ such that $V^+ > 0$ in $[0, \bar{t})$, $V^+(\bar{t}) = 0$ (hence $a(\bar{t}) = x_1(\bar{t})$) and $V^- > 0$ in $[0, \bar{t})$, then \bar{t} is a singularity time due to the boundary conditions (and \bar{t} is not the extinction time). Hence, from (6.2) it follows that if ε is small enough, i.e. $c - 3\varepsilon > 0$, a singularity occurs before the extinction of the evolution. It follows that $t_s = T \leq 3\varepsilon/\pi$.

Reasoning as in Theorem 4.2 we can exclude that $\gamma(t)$ develops type I singularities at $t = T$: indeed, developing a type I singularity at $t = T$ would imply a nontrivial homotetic solution obtained as a blow up, which (thanks to the boundary conditions) is unique, and would correspond to the extinction at $t = T$, which contradicts $\liminf_{t \to T^-} V^-(t) > 0$. It follows that $\gamma(t)$ develops a type II singularity at $t = T$. Arguing as in the proof of Theorem 5.1, a suitable rescaled and translated version of $\gamma(t)$ converges either to a grim reaper or to a piece of the grim reaper with a boundary point. In fact, we can rule out the first possibility, since the grim reaper cannot be written as the graph of a Lipschitz function. We conclude that if $\varepsilon < c/3$ a type II singularity (the blow-up of which is as in Fig. 4) must occur before the extinction time.

In the next example we show a singularity due to collision of the boundary points, happening before the extinction time.
6.2. **Example 2.** Let us consider an evolution similar to (2.1), where we substitute the boundary conditions on $\tau(0, t)$ and $\tau(1, t)$ with

$$
\tau(0, t) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad \tau(1, t) = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right),
$$

so that the angle between e_1 and $\tau(t)$ equals $2\pi/3$ at $\gamma(0, t) = (\gamma_1(0, t), 0)$, and equals $-2\pi/3$ at $\gamma(1, t) = (\gamma_1(1, t), 0)$.

We still assume that γ is smooth and embedded, with $\gamma_2 > 0$ in $(0, 1)$ as in Sections 4, 5 (see Fig. 6). At the singular time $t = T$ either (3.1) holds or the curvature stays bounded but there is a collision of the boundary points, i.e.

$$
\lim_{t \to T^-} |\gamma_1(1, t) - \gamma_1(0, t)| = 0.
$$

Notice that this is impossible for the solutions of (2.1), due to the boundary conditions.

Since Theorem 4.2 applies also to this situation, we can exclude the formation of type I singularities before the extinction time. Moreover, since γ is embedded and γ_2 is positive in $(0, 1)$, we can also exclude type II singularities, reasoning exactly as in Section 5.

Assume now that T is the extinction time of the evolution, and that the evolution develops a type I singularity at $t = T$. By the analysis in Section 4 it follows that the evolution converges, after rescaling, to a homothetic solution. However there are no such solutions compatible with the boundary conditions (6.3), see [7], [15]. Hence T is not the extinction time of the evolution and (6.4) necessarily holds. A collision of the boundary points occurs as $t \to T^-$, while the curvature remains bounded.

References

[1] U. Abresch and J. Langer, Renormalized curve shortening flow and homothetic solutions. *J. Differential Geom.*, 23:175–196, 1986.

[2] S. Altschuler, Singularities of the curve shrinking flow for space curves. *J. Differential Geom.*, 34:491–514, 1991.

[3] S. Angenent, Parabolic equations for curves on surfaces Part I. Curves with p-integrable curvature Intersections, blow-up and generalized solutions. *Ann. of Math.*, 132:451–483, 1990.

[4] S. Angenent, Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions. *Ann. of Math.*, 133:171–215, 1991.

[5] K. Brakke, *The Motion of a Surface by Its Mean Curvature*. Princeton Univ. Press, 1978.

[6] L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector valued Ginzburg-Landau equation. *Arch. Ration. Mech. Anal.*, 124:355–379, 1993.

[7] X. Chen and J.S. Guo, Self-similar solutions of a 2-D multiple-phase curvature flow. *Physica D*, 229:22–34, 2007.
[8] E. De Giorgi. Motions of partitions. In: Variational methods for discontinuous structures, vol. 25, Birkhäuser, Basel 1996, 1-5.
[9] K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., 103 (1991), 547–569.
[10] A. Freire. Mean curvature motion of graphs with constant contact angle at a free boundary, e-print arXiv:0812.1573 (2008).
[11] M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves. J. Differential Geom. 23 (1986), 69–95.
[12] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
[13] M. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differential Geom. 26 (1987), 285–314.
[14] R. Hamilton, Four-manifolds with positive curvature operator. J. Differential Geom. 24 (1986), 153–179.
[15] J. Hättenschweiler, Mean curvature flow of networks with triple junctions in the plane. Diplomarbeit, Zürich: ETH Zürich, Dep. Math., 2007.
[16] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow. J. Differential Geom., 31:285–299, 1990.
[17] G. Huisken, A distance comparison principle for evolving curves. Asian J. Math., 2:127–133, 1998.
[18] T. Ilmanen and O. Schnürrer. Private communication.
[19] C. Mantegazza, M. Novaga and V. Tortorelli, Motion by curvature of planar networks. Ann. Sc. Norm. Super. Pisa Cl. Sci., 3(2):235-324, 2004.
[20] W. Mullins, Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27, 900-905, 1956.
[21] M. Sáez Trumper, Relaxation of the flow of triods via the vector-valued parabolic Ginzburg-Landau equation. Submitted (2007).
[22] O. Schnürrer, A. Azouani, M. Georgi, J. Hell, N. Jangle, A. Köller, T. Marxen, S. Ritthaler, M. Sáez, F. Schulze and B. Smith, Evolution of convex lens-shaped networks under curve shortening flow. Trans. Amer. Math. Soc., to appear.

(Giovanni Bellettini) Dipartimento di Matematica, Univ. Roma Tor Vergata, via della Ricerca Scientifica, 00133 Roma, Italy, and INFN Laboratori Nazionali di Frascati, via E. Fermi 40, Frascati (Roma), Italy
E-mail address, G. Bellettini: Giovanni.Bellettini@lnf.infn.it

(Matteo Novaga) Dipartimento di Matematica, Univ. Padova, via Trieste 63, 35121 Padova, Italy
E-mail address, M. Novaga: novaga@math.unipd.it
