Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Distress in the time of COVID-19: Understanding the distinction between COVID-19 specific mental distress and depression among United States adults

Kristin E. Schneider a,*, Lauren Dayton b, Deborah Wilson c, Paul S. Nestadt a, d, Carl A. Latkin b

a Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 2213 McElderry Street, 2nd Floor, 624 N. Broadway, Baltimore, MD 21205, USA
b Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD 21205, USA
c School of Nursing, Johns Hopkins University, 525 N Wolfe St, Baltimore, MD 21205, USA
d Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA

ABSTRACT

Background: During the COVID-19 pandemic, many Americans have experienced mental distress, which may be partially characterized by a rise in mental illnesses. However, COVID-19 specific psychological distress may also be separate from diagnosable conditions, a distinction that has not been well established in the context of the pandemic.

Methods: Data came from an online survey of US adults collected in March 2020. We used factor analysis to assess the relationship between COVID-19 related mental distress and depressive symptoms. Using four questions on psychological distress modified for COVID-19 and eight depressive symptoms, we conducted an exploratory factor analysis (EFA) to identify the factor structure and then estimated a confirmatory factor analysis (CFA).

Results: The EFA model indicated a two-factor solution, where the COVID-19 distress items loaded onto the first factor and depression items loaded onto the second. Only two items cross-loaded between factors: feeling fearful and being bothered by things that do not usually bother the participant. The CFA indicated that this factor structure fit the data adequately (RMSEA = 0.106, SRMR = 0.046, CFI = 0.915, TLI = 0.890).

Limitations: It is possible that there are additional important symptoms of COVID-19 distress that were not included. Depression symptoms were measured via the CES-D-10, which while validated is not equivalent to a clinician diagnosis.

Conclusions: As COVID-19 related mental distress appears to be distinct from, though related to, depression, public health responses must consider what aspects of depression treatment may apply to this phenomenon. For COVID-related distress, it may be more appropriate to treat symptomatically and with supportive psychotherapy.

1. Introduction

The COVID-19 pandemic has had significant consequences for the mental health and wellness of adults in the United States. COVID-19 has created many stressors which can negatively impact mental health such as social isolation, fears of death and illness, as well as disruptions of normal routines (i.e., school, work) (Talevi et al., 2020; Torales et al., 2020). One common impact of the pandemic has been psychological distress, which is defined as emotional suffering that is not a result of a specific mental health disorder and can involve a range of somatic, mood, and anxiety symptoms (Drapeau et al., 2012). Economic stress due to lost income and unemployment can further compound the psychological impact of the pandemic (Talevi et al., 2020). Grief at the loss of family or friends and difficult family dynamics and relationship breakdown are further examples of stressors that deeply impact people’s mental health (Holmes et al., 2020). Furthermore, evidence suggests that those with pre-existing mental health issues face greater struggles with social isolation and loneliness, increasing anxiety disorders, Major Depressive Disorder (MDD), and the risk of self-harm; additionally, pre-existing mental health issues can be further exacerbated by difficulty accessing mental health services due to pandemic restrictions (Elovainio et al., 2017; Holmes et al., 2020).

The mental health impact due to stress related to the COVID-19 pandemic requires a strong understanding of the nature of this distress. While there is substantial literature on the difference and overlap of psychological distress, depression, and anxiety (Eysenck and Fajkowska, 2018; Kendall and Watson, 1989), to date, little research has specifically differentiated mental health disorders from normative mental distress as a reaction to the COVID-19 pandemic. Most studies of the mental health response to COVID-19 have focused on anxiety and

* Corresponding author.
E-mail address: kschnel@jhu.edu (K.E. Schneider).

https://doi.org/10.1016/j.jad.2021.07.095
Received 11 February 2021; Received in revised form 15 July 2021; Accepted 21 July 2021
Available online 30 July 2021
0165-0327/© 2021 Elsevier B.V. All rights reserved.
depressive disorders specifically, including post-traumatic stress disorder (PTSD), while fewer have addressed more generalized and non-pathological distress (i.e., distress that does not meet criteria for a specific disorder) (Vindegaard and Benros, 2020; Xiong et al., 2020). Across studies, rates of anxiety disorders, MDD, PTSD, and distress have been alarmingly high during the pandemic, with estimates as high as one-half of the general population experiencing symptoms of anxiety or depression (Xiong et al., 2020).

It is essential for the public mental health response to the pandemic to distinguish between mental health disorders and more normative experiential distress related to COVID-19, as these different phenomena may require distinct screening tools, treatments, and support services. MDD is a psychiatric disorder that is treated with psychological and pharmacological supports that often draw from cognitive behavioral principle and the monoamine hypothesis, respectively (Guiljriers et al., 2008; Dale et al., 2015; Hirschfeld, 2000). Alternatively, psychological distress can be a normative response to a stressor when it is a transient phenomenon and can lead to problem solving and other adaptive coping mechanisms (Drapeau et al., 2012). However, it can be deleterious when a person exhibits maladaptive coping strategies like alcohol and drug use or develops psychiatric symptoms as a result of this distress. Treatment for psychological distress often draws from the stress-distress model and works to address the symptoms of distress and the stressors (Drapeau et al., 2012).

While there are studies that have included both measures of disorders and pandemic related psychological distress (Qiu et al., 2020; Zhang et al., 2020), there have not been any studies, to our knowledge, that explore the interrelationships and distinctions between these constructs among the general US adult population. In the present study, we explore how COVID-19 specific psychological distress and depression are distinct yet related in a sample of US adults.

2. Methods

2.1. Data Source

Data for this study were from an online survey conducted via Amazon Mechanical Turk (MTurk) between March 24 and 27, 2020. This survey coincided with the point of the COVID-19 pandemic where states were beginning to issue their first round of shutdown orders. Existing research on disaster mental health indicates that distress typically peaks early on during such an event (often referred to as peritraumatic distress) (Vance, et al., 2018). Though this finding has yet to be replicated in the context of the COVID-19 pandemic (Daly and Robinson, 2021), the existing disaster mental health research suggests that this survey is well timed to capture peak levels of mental distress.

MTurk sample are generally more representative of the population than convenience samples, though still not nationally representative (Berinsky et al., 2012; Follmer et al., 2017; Huff and Tingley, 2015). Participants had to be at least 18 years of age, live in the United States, be able to speak/read English, and have heard of the coronavirus (COVID-19). The analytic sample included 806 surveys from respondents who passed all attention and validity checks (two transgender participants also removed due to small sample size). This study was approved by the Johns Hopkins Bloomberg School of Public Health Institutional Review Board.

2.2. Measures

COVID-19 Related Psychological Distress. We asked participants five questions about mental health symptoms they were experiencing specifically related to the COVID-19 pandemic, rated on a 5-point scale (strongly disagree, disagree, neither agree nor disagree, agree, strongly agree). The questions were as follows: “I have had a hard time sleeping because of the coronavirus;” “I have had difficulties concentrating because of the coronavirus;” “Thinking about the coronavirus makes me anxious;” “I am feeling overwhelmed by the coronavirus;” and “I am using drugs, alcohol, or medications more because I am worried about the coronavirus.” The survey items were selected with care based on some of the most common symptoms that occur in the wake of a disaster based on existing literature. The distress symptoms included in this study have been documented in a variety of populations (Morganstein and Ursano, 2020; Vindegaard and Benros, 2020). Our approach of asking participants to self-identify causes of distress is consistent with other measures of distress in the field that have been utilized in a range of populations such as the Impact of Event Scale-Revised (IES-R).

Depression. Depression was measured using the Center for Epidemiological Studies Depression Scale (CES-D-10) (Andreasen et al., 1994). The CES-D-10 is a ten-item instrument where respondents rate how frequently in the past week they experienced each symptom on a four-point scale (rarely/none of the time, some or a little of the time, occasionally/ a moderate amount of the time, all of the time). The symptoms measured by the CES-D include being bothered by things that usually do not bother the participant, trouble concentrating, feeling depressed, feeling like everything was an effort, feeling hopeful about the future, feeling fearful, having restless sleep, anhedonia, loneliness, and being unable to get going. We also created a binary indicator for probable MDD using a cutoff score of 15, as it is the most balanced combination of sensitivity and specificity (Björvjinsonsson et al., 2013).

Sociodemographic Characteristics. Participants reported their age (in years), sex (male/female), education level (categorized as high school equivalent or less/some college/Bachelor’s degree or higher), race (categorized as white/Black/other), income level (<$15,000, $15-35,000, $35-60,000, $60-90,000, $90,000 or more), whether anyone over the age of 70 lived in their household (yes/no), and if any children live in their household (yes/no). We asked participants what size community they currently live in and created a binary variable to indicate living in an urban area with a population of 100,000 or more. We also asked participants about their political ideology (liberal/moderate/conservative).

COVID-19 Attitudes and Impacts. We created a COVID-19 Skepticism score based on the response to three items where participants indicated how much they agreed with the following statements on a 5-item scale (1=strongly disagree, 2=disagree, 3=neither, 4=agree, 5=strongly agree): “The coronavirus isn’t any worse than the flu,” “The health risks from the coronavirus have been exaggerated,” and “The coronavirus is a hoax.” We averaged participant responses (range: 1–5) creating a score where higher values indicate more skepticism. Participants also reported how frequently they watched the news (once per day or less, multiple times a day, hourly or more), if their income had been reduced due to COVID-19 (not at all, a little, a lot), and if they were required to work outside the home (yes/no).

Health. We asked participants to rate their own health status (excellent, good, fair, poor). Participants also reported if they had a respiratory condition (yes/no) and if they had health insurance (yes/no). We also asked participants if they believed that they could get excellent medical care if they were to become infected with COVID-19 (strongly agree, agree, neither, disagree, strongly disagree).

2.3. Analysis

We first explored the associations between COVID-19 psychological distress symptoms using polychoric correlations. We then used exploratory factor analysis (iterative principal factor method, promax rotation) to understand the relationships of the COVID-19 psychological distress and depressive symptoms. As the COVID-19 psychological distress item about alcohol and drugs had low associations with other variables, it was removed from the factor analysis procedure. We also removed two CES-D-10 items (sleep and concentration) as they violated the conditional independence assumption of factor analysis due to their shared definitions with the COVID-19 psychological distress symptoms. We then used confirmatory factor analysis to assess if the structure...
suggested by the exploratory factor analysis fit the data well. Finally, we used linear regression to assess the association between sociodemographic characteristics, COVID-19 attitudes/impacts, and health variables and the COVID-19 psychological distress factor scores. Variables that had significant associations with factors scores in bivariable models were retained in the multivariable model. Analyses were conducted using Stata 14 and Mplus8 (Muthén and Muthén, 1998–2017; StataCorp, 2015).

3. Results

The average participant age was 38.2 (SD = 11.5; Table 1). Slightly more than half were female (55.5%) and had a bachelor’s degree or higher (55.0%). Most participants were white (78.2%). Income levels varied, with $35–60,000 being the most prevalent (27.9%). Just over half (54.3%) lived in an urban area. Few had people over 70 living in their household (7.6%) and about one third (37.7%) had children in their household. About half identified as politically liberal (52.3%) and one quarter (27.7%) were conservative. The average COVID-19 skepticism score was 1.71 (SD = 0.77). Most watched the news either multiple times a day (45.8%) or hourly or more (37.6%). Half (49.3%) had not had their income reduced by COVID-19, while one third (32.8%) had it reduced a little and 18.0% had it reduced a lot. About one quarter (27.7%) were required to work outside their home. Most had health insurance (82.4%). The majority rated their health as good (61.5%). One tenth (9.4%) had a respiratory condition. Beliefs about the availability of excellent medical care varied.

The distribution of COVID-19 related psychological distress symptoms varied by item (Table 2). Using alcohol and drugs was the rarest symptom, with only 7.1% agreeing and 2.4% strongly agreeing. Anxiety was the most common symptom, with 40.8% and 16.6% agreeing and strongly agreeing, respectively. All items, except using alcohol and drugs, correlated highly with each other (0.69 or higher). Using alcohol and drugs had low correlations with other COVID-19 related psychological distress symptoms (0.36 or lower). A minority the sample met the CES-D-10 threshold for MDD (17.9%). The distribution of CES-D-10 item responses varied (Table 3), though most items had moderate to strong correlations with each other.

The exploratory factor analysis procedure (Appendix 1) indicated that the items had a two-factor structure where the COVID-19 psychological distress questions loaded onto one factor and the CES-D-10 items loaded onto the other, the factors were correlated, and two CES-D-10 items cross-loaded onto the COVID-19 psychological distress factor (feeling fearful and being bothered by things that do not usually bother the participant). We then estimated a confirmatory factor analysis model with this structure (Fig. 1). The model fit the data adequately well based on the following fit statistics: RMSEA = 0.11, CFI = 0.915, TFI = 0.890, SRMR = 0.046.

In adjusted analyses (Table 4), COVID-19 psychological distress factor scores were higher among female participants than males (β = 0.26, 95% CI: 0.15, 0.36). Participants who met CES-D-10 criteria for MDD had higher levels of psychological distress than those who did not (β = 1.01, 95% CI: 0.86, 1.15). COVID-19 skepticism was inversely associated with psychological distress (β = 0.21, 95% CI: -0.28, -0.14).

Table 1
Sample characteristics.

Sociodemographic Characteristics	N (%)	N (%)
Sociodemographic Characteristics		
Age, M(SD)	38.2 (11.5)	
Sex		
Female	447 (55.5)	
Male	359 (44.5)	
Education		
High school or less	96 (11.9)	
Some college	267 (33.1)	
Bachelor’s Degree or higher	443 (55.0)	
Race		
White	630 (78.2)	
Black	59 (7.3)	
Other	117 (14.5)	
Income		
Less than $15,000	67 (8.3)	
$15–35,000	157 (19.5)	
$35–60,000	225 (27.9)	
$60–90,000	194 (24.1)	
$90,000 or more	163 (20.2)	
Live in an Urban Area	438 (54.3)	
People over 70 in household	61 (7.6)	
Children in household	304 (37.7)	
Political Alignment		
Liberal	418 (52.3)	
Moderate	160 (20.0)	
Conservative	221 (27.7)	
COVID-19 Attitudes and Impacts		
COVID-19 Skepticism, M (SD)	1.71 (0.77)	
Frequency of Watching the News		
Once a day or less	134 (16.6)	
Multiple times a day	369 (45.8)	
Hourly or more	303 (37.6)	
Income reduced due to COVID		
Not at all	397 (49.3)	
A little	264 (32.8)	
A lot	145 (18.0)	
Required to work outside the home	223 (27.7)	
Health		
Has health insurance	664 (82.4)	
Self-rated health status		
Excellent	146 (18.1)	
Good	496 (61.5)	
Fair	146 (18.1)	
Poor	18 (2.2)	
Has a respiratory condition	76 (9.4)	
Able to get excellent medical care		
Strongly Agree	67 (8.3)	
Agree	277 (34.4)	
Neither	270 (33.5)	
Disagree	127 (15.8)	
Strongly Disagree	65 (8.1)	

Table 2
COVID-19 related mental distress.

Mental distress	N (%)	Correlations 1 2 3 4
1. Sleep		
Strongly Disagree	202 (25.1)	– – – –
Disagree	278 (34.5)	– – – –
Neither	134 (16.6)	– – – –
Agree	128 (15.9)	– – – –
Strongly Agree	64 (7.9)	– – – –
2. Concentration		
Strongly Disagree	179 (22.2)	0.81 – – –
Disagree	265 (32.9)	– – – –
Neither	115 (14.3)	– – – –
Agree	196 (24.3)	– – – –
Strongly Agree	51 (6.3)	– – – –
3. Anxiety		
Strongly Disagree	81 (10.1)	0.71 0.73 – –
Disagree	136 (16.9)	– – – –
Neither	126 (15.6)	– – – –
Agree	329 (40.8)	– – – –
Strongly Agree	134 (16.6)	– – – –
4. Overwhelmed		
Strongly Disagree	117 (14.5)	0.69 0.72 0.84 –
Disagree	206 (25.6)	– – – –
Neither	150 (18.6)	– – – –
Agree	231 (28.7)	– – – –
Strongly Agree	102 (12.7)	– – – –
5. Alcohol/Drugs		
Strongly Disagree	455 (56.5)	0.33 0.36 0.29 0.34
Disagree	233 (28.9)	– – – –
Neither	42 (5.2)	– – – –
Agree	57 (7.1)	– – – –
Strongly Agree	19 (2.4)	– – – –
Watching the news a couple of times a day ($\beta = 0.22$, 95% CI: 0.07, 0.38) or hourly ($\beta = 0.56$, 95% CI: 0.40, 0.72), compared to infrequently, was associated with more psychological distress. Having one’s income reduced a little ($\beta = 0.16$, 95% CI: 0.04, 0.28) or a lot ($\beta = 0.29$, 95% CI: 0.14, 0.44) was also associated with increased psychological distress, relative to not having lost income. Some levels of the availability of medical care were associated with factor scores, but the pattern across all levels was not consistent, suggesting that the associations may be spurious.

4. Discussion

In this study, we explored the structural relationship between symptoms of COVID-19 related psychological distress and depression. We found that COVID-19 psychological distress and depression are distinct but related constructs. The COVID-19 psychological distress factor did share some characteristics with depression, like sleep and concentration disturbances, feeling fearful, and being bothered by things that do not usually bother the participant, but was distinct in its lack of associated mood symptoms.

Key correlates of COVID-19 psychological distress included frequency of watching the news, having one’s income reduced, and beliefs about COVID-19 (i.e. skepticism). These correlates point to macro and individual level interventions that could make meaningful impacts on distress. Increased governmental support through unemployment and underemployment benefits and direct stimulus payments could potentially reduce psychological distress among those who had lost income due to the pandemic. Individual behavior change related to news and media consumption could also be beneficial, as those who watched the news most frequently had the most psychological distress. Reducing constant negative media consumption, or so called “doomscrolling,” could have benefits for mental health. Behavioral interventions which encourage people struggling with psychological distress to limit media consumption or help patients to engage in behaviors that may increase their sense of empowerment when feeling helpless (e.g., sewing or distributing masks to help others) could mitigate distress (Pinals et al., 2020; Sanderson et al., 2020).

Understanding COVID-19 related psychological distress as a construct that can be viewed as distinct from existing clinically diagnosable conditions like MDD has implications for how these symptoms should be approached and treated by mental health professionals. For psychological distress related specifically to the pandemic that does not constitute a specific disorder, it may be most appropriate to treat in non-clinical settings like community sites. Clinical psychological distress related specifically to the pandemic is likely to require more intensive care through mental health services.

Table 3

CES-D-10 depression symptomology.	N (%)	Correlations
1. Being bothered by things		
Rarely/none of the time	295 (36.6)	
Some/a little of the time	329 (40.8)	
Occasionally/a moderate amount of time	137 (17.0)	
All of the time	45 (5.6)	
2. Feeling depressed		
Rarely/none of the time	363 (45.0)	0.62
Some/a little of the time	259 (32.1)	
Occasionally/a moderate amount of time	125 (15.5)	
All of the time	59 (7.3)	
3. Everything was an effort		
Rarely/none of the time	398 (49.4)	0.57
Some/a little of the time	234 (29.0)	0.77
Occasionally/a moderate amount of time	117 (14.5)	
All of the time	57 (7.1)	
4. Hopeful		
Rarely/none of the time	204 (25.3)	-0.38
Some/a little of the time	256 (31.8)	-0.57
Occasionally/a moderate amount of time	242 (30.0)	-0.43
All of the time	104 (12.9)	
5. Fearful		
Rarely/none of the time	264 (32.8)	0.63
Some/a little of the time	286 (35.5)	0.59
Occasionally/a moderate amount of time	173 (21.5)	0.48
All of the time	83 (10.3)	-0.40
6. Happy		
Rarely/none of the time	116 (14.4)	-0.46
Some/a little of the time	256 (31.8)	-0.66
Occasionally/a moderate amount of time	295 (36.7)	-0.54
All of the time	138 (17.1)	0.69
7. Lonely		
Rarely/none of the time	410 (50.9)	0.47
Some/a little of the time	211 (26.2)	0.64
Occasionally/a moderate amount of time	124 (15.4)	0.57
All of the time	61 (7.6)	-0.41
8. Unable to get going		
Rarely/none of the time	379 (47.0)	0.52
Some/a little of the time	253 (31.4)	0.70
Occasionally/a moderate amount of time	127 (15.8)	0.79
All of the time	47 (5.8)	-0.47

Understanding COVID-19 related psychological distress as a construct that can be viewed as distinct from existing clinically diagnosable conditions like MDD has implications for how these symptoms should be approached and treated by mental health professionals. For psychological distress related specifically to the pandemic that does not constitute a specific disorder, it may be most appropriate to treat individuals’ complaints symptomatically. Psychological distress, demoralization, adjustment difficulties and other forms of subclinical dysthymia are unlikely to respond to the interventions used to treat MDD. Antidepressant medications and cognitive behavioral therapy, first line treatment strategies for MDD, lack evidence for use in subclinical psychological distress. Instead, focusing on lifestyle interventions, such as attending to sleep hygiene, diet, regular exercise, mindfulness, avoiding alcohol and illicit substance use, and supplementing with supportive psychotherapies may prove most beneficial. Medications may most useful when targeted symptomatically, such as sleep aids or stress related headache relief, for individuals experiencing...
distress but not a diagnosable condition. To be clear, while our results suggest that COVID-19 related distress is largely distinct from psychopathology, there are undoubtedly cases where such distress does reflect an underlying psychopathology. When the etiology of distress is MDD or another diagnosable disorder, the use of SSRIs, manualized therapies, and escalation to a higher level of care may be warranted. In the presence of MDD, increased attention and screening for suicidality or an escalating crisis may be appropriate.

It is also important to avoid pathologizing all distress responses to the pandemic. Labeling someone who is experiencing normative stress as being depressed or suffering from a mental illness can itself be demoralizing for the sufferer. Adding a medical diagnosis to an already burdened person can be further distressing and may lead them to anticipate worsening symptoms rather than general improvement once the stressor passes. Such pathologizing may also discourage support seeking, especially in communities where mental illness remains highly stigmatized.

It is critical to note that, while relatively rare, more extreme behaviors like alcohol and drug use that participants attributed to the pandemic were still present in our sample. Unlike the psychological distress symptoms included in the factor model, using alcohol and drugs and other similarly maladaptive coping strategies may reflect pathological conditions that require formal diagnosis and more intensive treatment. Less than 10% of our sample endorsed using alcohol and drugs more due to COVID-19, which is still a substantial population at risk for associated adverse health effects. The relatively low associations between this symptom and the other COVID-19 psychological distress items included in this study highlights the importance of distinguishing between harmful psychological responses to a pandemic that require intervention and levels of psychological distress that are more normative.

Interventions implemented during COVID-19 must also not place individuals at greater risk of contracting the virus. To address both pathological and subclinical psychological distress responses to the COVID-19 pandemic, telehealth and telepsychiatry visits and online peer support can be effective (Pinals et al., 2020). Several avenues of non-psychiatric mental health support can help in addressing mental health concerns during pandemics such as providing opportunities to created virtual social networks as well as online family support (Moreno et al., 2020; Soklaridis et al., 2020). In addition, community-based approaches such as providing emotional and material support for those who may be at high risk for COVID-19 due to age or health impairments may enhance the mental health of both the receiver and giver of support.

Limitations. This study does have limitations to consider. First, data

Fig. 1. Confirmatory factor analysis of COVID-19 related mental distress and depression. Note. Estimates are STDYX standardized coefficients.
Correlates of COVID-19 distress factor scores.

Variable	Bivariable Beta	95% CI	p	Multivariable Beta	95% CI	p	
Age							
-0.00	-0.01	0.46	–	–	–	–	
Female Gender	0.48	0.35	<0.001	0.26	0.15	<0.001	38
Education							
Required to work	0.55	0.37	–	–	–	–	
A lot	0.31	0.17	<0.001	0.16	0.04	0.009	38
Required to work	-0.05	-0.19	0.538	–	–	–	
A little	0.55	0.37	<0.001	0.29	0.14	<0.001	38
Income Reduced							
Income							
Less than $15,000	-0.08	0.36	0.55	–	–	–	
$15-35,000	-0.11	-0.15	0.42	–	–	–	
$35-60,000	-0.07	-0.33	0.63	–	–	–	
$60-90,000	-0.07	-0.33	0.63	–	–	–	
$90,000 or more	-0.10	0.17	-0.47	–	–	–	
Live in an urban area	0.01	0.12	0.87	–	–	–	
People over 70 in household	0.05	-0.29	0.69	–	–	–	
Children in household	0.08	-0.06	0.25	–	–	–	
Has insurance	0.07	-0.10	0.41	–	–	–	
Self-rated health status							
Excellent	0.28	0.11	0.001	0.14	-0.00	0.051	38
Good	0.47	0.25	<0.001	0.07	-0.12	0.470	38
Fair	0.62	0.16	0.009	-0.22	-0.41	0.279	38
Political alignment							
Liberal	-0.33	-0.50	<0.001	-0.12	-0.26	0.096	38
Moderate	-0.36	-0.51	<0.001	-0.08	-0.21	0.226	38
Conservative	0.25	0.02	0.03	0.01	-0.18	0.934	38
Has a respiratory condition	1.17	1.02	<0.001	1.01	0.86	<0.001	38
COVID-19							
Skepticism	-0.35	-0.43	<0.001	-0.21	-0.28	<0.001	38
Frequency of watching the news							
Once a day or less	0.40	0.22	<0.001	0.22	0.07	0.004	38
Multiple times a day	0.84	0.66	<0.001	0.56	0.40	<0.001	38
Income Reduced due to COVID							
Not at all	0.31	0.17	<0.001	0.16	0.04	0.009	38
A little	0.55	0.37	<0.001	0.29	0.14	<0.001	38
A lot	0.55	0.37	<0.001	0.29	0.14	<0.001	38
Required to work outside the home	-0.05	-0.19	0.538	–	–	–	

Table 4 (continued)

Variable	Bivariable Beta	95% CI	p	Multivariable Beta	95% CI	p	
Able to get excellent medical care							
Strongly Agree	0.24	-0.02	0.07	0.11	-0.10	0.306	38
Agree	0.04	0.20	0.001	0.24	0.03	0.023	38
Disagree	0.43	0.15	0.003	0.14	0.01	0.041	38
Strongly Disagree	0.32	-0.00	0.05	-0.02	-0.29	0.893	38

for this study come from relatively early in the pandemic’s timeline. While existing literature would indicate that this is an important time to measure psychological distress in response to such a crisis, more research is still needed to understand how these constructs may have changed as the pandemic progressed. Second, we included four symptoms of pandemic related distress that seemed most relevant based on existing literature and author expectations. However, it is possible that there are other important symptoms or experiences that have not been included. Moreover, symptoms such as problems with sleeping may have been due to schedule disruption rather than distress. The sample had a limited number of racial minority respondents, who have been disproportionately negatively impacted by the pandemic. Future research should study such vulnerable populations. Finally, the CES-D-10, while a validated measure of MDD symptomology, is not equivalent to a clinician diagnosis. This study also has several strengths to highlight. First, we were able to explicitly explore the interrelationship between COVID-19 psychological distress and depression symptomology, which can inform screening and interventions. We were also further able to identify correlates of COVID-19 related psychological distress specifically that can meaningfully inform both individual and population level interventions.

These findings help clarify the nature of psychological distress during the COVID-19 pandemic among adults in the United States. COVID-19 related psychological distress is not simply MDD and may represent a subclinical stress response to a pandemic rather than a specific pathology, though clinically diagnosable presentations of COVID-19 related distress certainly exist. Clinical responses to symptoms of COVID-19 psychological distress should account for the likely time-bound and non-pathological nature of symptoms for many individuals. This is not to say that symptoms should be discounted because they will resolve. Some, such as problems sleeping, can have substantial impact on well-being. Moreover, such symptoms can be due to stress, stressful, and amplify stress. Understanding that COVID-19 related psychological distress is not simply mental illnesses such as depression and anxiety is essential for mounting an effective public mental health response.

Author statement

Contributions: KES conceptualized the study and conducted the analysis. LD and CAL designed the survey used to collect data for this analysis. All authors contributed to the interpretation of the results and drafting of the manuscript.

Funding: This study was supported by the Alliance for a Healthier World and the National Institute on Drug Abuse (NIDA; R01DA040488). KES was supported by a NIDA training grant (5T32DA007292). PSN is supported by the James Wah Foundation for Mood Disorders and the American Foundation for Suicide Prevention (YIG-0-093-18). The funding organization had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
Declaration of Competing Interest

The authors have no conflicts to disclose.

Acknowledgments

None.

Appendix 1. Exploratory Factor Analysis

We conducted a principal components analysis and associated parallel analysis with the COVID-19 distress and CES-D-10 items.

Component	Eigenvalue	Difference	Proportion	Cumulative
Comp1	5.0488	4.21877	0.4087	0.4087
Comp2	1.6784	0.702876	0.1391	0.5478
Comp3	0.85059	0.200038	0.0674	0.6153
Comp4	0.513921	0.107457	0.0451	0.6604
Comp5	0.560855	0.062308	0.0470	0.7074
Comp6	0.541615	0.0921752	0.0413	0.7487
Comp7	0.40044	0.020827	0.0336	0.7824
Comp8	0.381487	0.000432	0.0331	0.8155
Comp9	0.340326	0.000816	0.0330	0.8485
Comp10	0.277272	0.0041884	0.0231	0.8716
Comp11	0.223615	0.0001646	0.0186	0.8902
Comp12	0.215089	-	0.0170	1.0000

The results of these suggested that a two-factor solution is likely the most appropriate. We then conducted the exploratory factor analysis for two factors using the iterated principal-factor method, as the maximum likelihood method is only appropriate when items are measured continuously.

Number of obs	805
Method: iterated principal factors	Retained Factors = 2
Rotation: unrotated	Number of params = 23

Factor	Eigenvalue	Difference	Proportion	Cumulative
Factor1	5.472581	4.28462	0.6468	0.6468
Factor2	1.677058	0.59719	0.2102	0.8570
Factor3	0.345550	0.27600	0.0452	0.9022
Factor4	0.169582	0.06852	0.0251	0.9273
Factor5	0.166572	0.06776	0.0254	0.9277
Factor6	0.082078	0.00000	0.0000	0.9277
Factor7	0.082897	0.00000	0.0000	0.9277
Factor8	0.082912	0.00000	0.0000	0.9277
Factor9	0.082936	0.00000	0.0000	0.9277
Factor10	0.082936	0.00000	0.0000	0.9277
Factor11	0.082936	0.00000	0.0000	0.9277
Factor12	0.082936	0.00000	0.0000	0.9277

We used promax rotation as we expected the factors to have an oblique structure (i.e. be correlated).
The results of this analysis suggested that the COVID-19 distress questions loaded onto one factor while the CES-D-10 items loaded onto the other. There were two substantial cross loadings, where the CES-D-10 items about feeling fearful and being bothered by things also loaded onto the COVID-19 distress factor. We then used this factor structure for the confirmatory factor analyzes.

References

Andresen, E.M., Malmgren, J.A., Carter, W.B., Patrick, D.L., 1994. Screening for depression in well older adults: evaluation of a short form of the CES-D. Am. J. Prev. Med. 10, 77–84.

Berinsky, Adam, Huber, Greg, Lenz, Gabriel, 2012. Using mechanical turk as a subject recruitment tool for experimental research. Polit. Anal. 20, 351–68.

Bjorgvinsson, T., Kertz, S.J., Bigda-Peyton, J.S., McCoy, K.L., Aderka, I.M., 2013. 1. Characteristics and political preferences of MTurk survey respondents. Res. Polit. 2, 1.

Cuijpers, P., van Straten, A., Warmerdam, L., Andersson, G., 2008. Psychological distress treatment and prevention. Lancet Psychiatry 8, 1.

Daly, M., Robinson, E., 2021. Psychological distress and adaptation to the COVID-19 pandemic: a call for action for mental health science. Lancet Psychiatry 7, 813–824.

K.E. Schneider et al.

Journal of Affective Disorders 294 (2021) 949–956

Kendall, P.C., Watson, D.E., 1989. Anxiety and Depression: Distinctive and Overlapping Features. Academic Press.

Moreno, C., Wykes, T., Galderisi, S., Nordestoft, M., Cronos, N., Jones, N., 2020. How mental health care should change as a consequence of the COVID-19 pandemic. Lancet Psychiatry 7 (9), 813–824.

Morganstein, J.C., Ursano, R.J., 2020. Ecological disasters and mental health: causes, consequences, and interventions. Front. Psychiatry 11, 1.

Muthén, L.K., Muthén, B.O., 1998. Mplus User’s Guide. Muthén & Muthén, 2017. Los Angeles, CA.

Pinalis, D.A., Hepburn, B., Parks, J., Stephenson, A.H., 2020. The behavioral health system and its response to COVID-19: a snapshot perspective. Psychiatric Serv. 71, 1070–1074.

Qiu, J., Shen, B., Zhao, M., Wang, Z., Xie, B., Xu, Y., 2020. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: implications and policy recommendations. Gen. Psychiatry 33.

Sanderson, W.C., Arunagiri, V., Funk, A.P., Ginsburg, K.L., Krychiw, J.K., Limowski, A.R., Olesencky, O.S., Stout, Z., 2020. The nature and treatment of pandemic-related psychological distress. J. Contemp. Psychother. 50, 251–263.

Soklaridis, S., Lin, E., Lalani, Y., Rodak, T., Stockalingam, S., 2020. Mental health interventions and supports during COVID-19 and other medical pandemics: a rapid systematic review of the evidence. Gen. Hosp. Psychiatry 66, 133–146.

StataCorp, L., 2015. Stata Statistical Software (Version Release 14). StataCorp LP, College Station, TX.

Talevi, D., Facetti, F., Soci, V., Renzi, G., Alessandrini, M.C., Trebbi, E., Rossi, R., 2020. The COVID-19 outbreak: impact on mental health and intervention strategies. J. Psychophatol. 26, 162–170.

Tortales, J., Higgins, M., Cestaliddi-Maia, J.M., Ventriglia, A., 2020. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int. J. Soc. Psychiatry, 20200764020915212.

Vance, M.C., Kovachy, B., Dong, M., Bui, E., 2018. Peritraumatic distress: A review and synthesis of 15 years of research. J. Clin. Psychol. 74 (9), 1457–1464.

Vindevogel, N., Benros, M.E., 2020. COVID-19 pandemic and mental health consequences: systematic review of the current evidence. Brain Behav. Immun. 89, 531–542.

Wang, X., Xie, J., Li, Z., Li, C., Yi, J., Zhang, F., 2020. The differential psychological distress of populations affected by the COVID-19 pandemic. Virus Evol. 6, 1–11.

Xiong, J., Lipsitz, O., Nauri, F., Lui, L.M., Gill, H., Phan, L., Chen-Li, D., Iacobucci, M., Ho, R., Majeed, A., 2020. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J. Affect. Disord. 277, 55–64.