A Statistical Method for Corrupt Agents Detection

Yury A. Pichugin\(^{2,b)}\), Oleg A. Malafeyev\(^{1,c)}\) and Denis Rylow\(^{1,a)}\)

\(^1\)St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
\(^2\)St. Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaia str, St. Petersburg, Russian Federation

\(^a\)Corresponding author: denisrylow@gmail.com
\(^b\)yury-pichugin@mail.ru
\(^c\)malafeyevoa@mail.ru

Abstract. The statistical method is used to identify the hidden leaders of the corruption structure. The method is based on principal component analysis (PCA), linear regression, and Shannon information. It is applied to study the time series data of corrupt financial activity. Shannon’s quantity of information is specified as a function of two arguments: a vector of hidden corruption factors and a subset of corrupt agents. Several optimization problems are solved to determine the contribution of corresponding corrupt agents to the total illegal behavior. An illustrative example is given. A convenient algorithm for computing the covariance matrix with missing data is proposed.

INTRODUCTION

This paper demonstrates new application of principal component analysis (PCA) which was originally proposed by K. Pearson \cite{1}. This method is also known as Karhunen-Loeve Transform (see for example \cite{2, 3}). Transition to the independent variables (principal components) allows to reduce the dimension of matrices associated with the problem and to simplify computations when maintaining sufficient precision and relevancy of the results. This property has made the method particularly popular in time series analysis, where it is known as singular spectrum analysis (ASS). This method has been extensively used in visualization and graphical representation of multidimensional data \cite{4, 5, 6}. In this paper the method is used to formalize a regression model and select relevant data \cite{7, 8}.

The problem of relevant data selection is formalized and solved as an optimization problem of regression analysis. The most well-known criteria of optimality are D-criterion \cite{9, 10}, A-criterion, and G-criterion. A-criterion is iterative one and so quite appealing to the researcher as it allows to easily solve the optimization problem although G. Seber has criticized its usage \cite{11}. In this paper the estimated parameters of regression are principal components that are stochastic in nature. So Shannon’s quantity of information in vector form is used as an optimality criterion. This approach is similar to D-criterion but, unlike it, is iterative, so the computations can be performed as easily as in the case of A-criterion. Other optimization and relevant numerical techniques could also be potentially used \cite{12, 13, 14, 15, 16, 17, 18, 19}.

The problem of corruption has been extensively studied mainly in game-theoretic context \cite{20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}. In this paper the time series of corrupt financial activity data is studied with principal component analysis. The covariant matrix of biased estimators \(C\) is calculated with missing data. The matrix \(C\) is then used to find the matrix \(P\) which is utilized in a linear regression model. Shannon’s quantity of information is written as a function of two arguments: a vector of hidden corruption factors and a subset of corrupt agents. Shannon’s quantity of information is calculated with biased estimators (matrix \(P\)) \cite{31}. Quantity of information maximization problems are formalized for every successive natural number \(1, 2, 3, \ldots, m - 1, m\). Solutions to these optimization problems allow us to estimate contributions of corrupt agents to the total illegal behavior. A numerical illustrative example is given.
FIGURE 1. Increments in Shannon’s quantities of information reflecting contribution of each additional agent to the illegal behavior (hidden corruption factors).

FORMAL MODEL

Let \(M = \{1, 2, \ldots, m\} \) be an ordered set of \(m \) corrupt agents. Divide the observed time interval into equal periods of time of the length \(\tau \). Denote the number of these intervals by \(J \), so that the intervals are numbered accordingly by \(1, 2, \ldots, J \). Each corrupt agent \(i, i = 1, 2, \ldots, m \), is engaged in some financial transactions at each time interval \(j, j = 1, 2, \ldots, J \). Let \(x_{ij} \) be a total net value of all financial transaction of the agent \(i \) during the time period \(j \). As agents’ illegal and corrupt behavior is studied, assume that \(x_{ij} = 0 \) if no transactions have signs of being illegal. Let \(N \) be an integer matrix such that \(n_{ij} = 1 \) if \(x_{ij} \neq 0 \) and \(n_{ij} = 0 \) otherwise.

Denote by \(Y = \{y_{i,j}\} \) a matrix of deviations from mean values. Let \(n_{i,*} = \sum_{j=1}^{J} n_{i,j} \). If \(n_{i,*} = 0 \) for some \(i \), then \(y_{i,j} = 0 \) for all possible \(j \) and this index \(i \). Both matrices \(Y \) and \(N \) are \(m \times J \) dimensional. Assume that matrices \(N \) and \(Y \) do not contain any zero rows. Then it is possible to compute a \(m \times m \) matrix \(C = c_{ij} \) as follows: if \([NN^T]_{i,j} \neq 0 \), then

\[
y_{i,j} = x_{i,j} - \frac{\sum_{j=1}^{J} x_{i,j}}{n_{i,*}}.
\]

otherwise \(c_{i,j} = 0 \). Here \(T \) is the transpose operator and \([\cdot]_{i,j} \) denotes the element of the corresponding matrix with indices \(i, j \). The matrix \(C \) obtained in this manner is a matrix of biased covariance estimates of vectors \(x_j = (x_{1,j}, x_{2,j}, \ldots, x_{m,j}), j = 1, 2, \ldots, J \). Let \(R \) be an orthogonal \(m \times m \) matrix such that \(R^T C R = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_m) = \Lambda \) and \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \).

Choose \(k \leq m \) values \(\lambda_i \). Assume that the relative dispersion \(\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{m} \lambda_i} \) is large. Then matrix \(P \) is \(m \times k \) matrix such that \(P^T C P = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_k) = \Lambda_k \). The matrix \(P \) contains the first \(k \) columns of \(R \). Let \(y \) be some column of the matrix \(Y \). Consider a simple regression model

\[
y = P \cdot z + \varepsilon
\]

where \(z \) is a \(k \)-dimensional vector and \(\varepsilon \) is a \(m \)-dimensional vector of regression errors. The vector \(z \) is a well-known vector of principal components. In our case it can be interpreted as a vector of hidden corruption factors. Assume that components of \(\varepsilon \) do not correlate and the covariance matrix of the vector \(\varepsilon \) is \(\sigma^2 I \), where \(I \) is the identity matrix.
Note however that biased estimators should be used to compute Shannon’s quantity of information. So deviation is calculated as: $c^2 = \frac{\sum_{i=1}^{m} (y_i - \bar{y})^2}{m}$. Let $q \subseteq \{1, 2, \ldots, m\}$. Denote by y_q a $|q|$-dimensional vector such that $y_q = (y_i)_{i \in q}$, where y_i is a component of the vector y with index i; the order of components is preserved. Let P_q be a $|q| \times m$-dimensional matrix that is obtained from the matrix P by deleting all rows whose indices are not in q. The quantity of information the vector y_q contains relative to the vector z can be written as:

$$I(y_q; z) = 0.5 \cdot \log_2(det(I + \sigma^{-2} P_q P_q^T)).$$

(4)

Matrix $\sigma^{-2} P_q P_q^T$ is a Fisher information matrix. So $I(y_q; z)$ can be considered as a function of only one argument q. Select several subsets q of vector y components (elements with numbers $\{1, 2, 3, \ldots, m\}$) by incrementally increasing $|q|$ from 0 to m. Maximize $I(y_q; z)$ for each such subset. The result is a sequence of values $I(y_q; z)$, i.e. $I_1 \leq I_2 \leq \cdots \leq I_m$. Values $\Delta I_1 = I_1, \Delta I_2 = I_2 - I_1, \ldots, \Delta I_m = I_m - I_{m-1}$ are increments in Shannon’s quantity of information. Note that $\Delta I_1 \geq \Delta I_2 \geq \cdots \geq \Delta I_m$. The logarithm base e in (4) can be chosen arbitrarily if relative values $\frac{P}{I_1}$ and $\frac{\Delta I_1}{I_1}$ are considered. Here $I_m = I(y, z)$ is the full quantity of information in the model (3).

If $k << m$ and $j = j$, is relatively small, then the fraction $\frac{I_j}{I_m}$ can become quite large (for example 0.8–0.9) or the value $\frac{\Delta I_j}{I_m}$ can become quite small (for example 0.1). The subset q with the corresponding $j = |q|$ is the subset of corrupt agents that constitute the core of the corruption structure. The choice of the subset q is equivalent to the choice of agents that should be closely monitored for possible corrupt behavior.

Remark. The requirement of absence of zero rows in matrices Y and N can be relaxed. Presence of zero rows in these matrices leads to the presence of zero rows in P, but the indices of these rows and the corresponding agents are the last in the successive data selection process.

NUMERICAL EXAMPLE

Consider an illustrative example. Table 1 contains observed values (x_{ij}). The number of agents $m = 33$, the number of time periods $J = 7$. By replacing all non-zero values with 1 we get the matrix N. Then matrices Y and C can be found using (1) and (2). Note that $\sum_{i=1}^{m} A_i = tr(C)$. So the relative dispersion of the k components is $\frac{\sum_{i=1}^{m} l_i}{\sum_{i=1}^{m} A_i}$. We use von Mises iteration to calculate the values l_i and columns of the matrix P. For a example, if $k = 3$, then $\sum_{i=1}^{3} A_i / \sum_{i=1}^{m} A_i = 0.98$ and $tr(C)^{-1} A_i = diag(0.65, 0.21, 0.12)$. So the matrix P is of size 33×3.

The figure 1 contains the sequence of values $\frac{P}{I}$. The first third of all agents gives almost 90% of all information about hidden corruption factors. Indices of those agents are 30, 31, 33, 22, 6, 23, 18, 4, 28, 21, 27. Unexpectedly, agent 30 contributes the most to the corrupt behavior. This is completely counter intuitive if only raw data in the table 1 is considered.
CONCLUSION

Method of statistical analysis is applied to the problem of corrupt behavior detection. Principal component analysis, linear regression, Shannon’s information are used to identify the hidden leaders of the corruption structure. Shannon’s quantities of information are maximized to determine the contribution of corrupt agents to the total illegal behavior. A numerical example is provided. A convenient algorithm for computation of covariant matrix is proposed.

REFERENCES

[1] Pearson K. On lines and planes of closest fit to systems of points in space // Philosophical Magazine. — 1901. — Vol. 2. — P. 559–572.

[2] Karhunen Kari. Uber lineare Methoden in der Wahrscheinlichkeitsrechnung // Annales Academiae scientiarum Fennicae. Series A. 1, Mathematica-physica. — 1947. — Vol. 37. — P. 1–79.

[3] Loeve M. Probability Theory. — 4 edition. — Springer-Verlag New York, 1978. — Vol. 2 of Graduate Texts in Mathematics.

[4] Broomhead D.S., King G.P. Extracting qualitative dynamics from experimental data // Physica D. — 1986. — Vol. 20. — P. 21–236.

[5] Broomhead D.S., King G.P. On the qualitative analysis of experimental dynamical systems // Nonlinear Phenomena and Chaos / Ed. by S. Sarkar. — Adam Hilger, Bristol, 1986. — Vol. 20. — P. 113–144.

[6] Ghil M., Vautard R. Interdecadal oscillations and the warming trend in global temperature time series // Nature. — 1991. — Vol. 350. — P. 324–327.

[7] Muresan D. D., Parks T. W. Adaptive principal components and image denoising // Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429). — Vol. 1. — 2003. — P. I–101–4 vol.1.

[8] Rao Kamisetty Ramam, Yip Patrick C. The Transform and Data Compression Handbook. — CRC Press, 2000.

[9] Mitchell Toby J. An Algorithm for the construction of "D-Optimal" Experimental Designs // Technometrics. — 1974. — Vol. 16, no. 2. — P. 203–210.

[10] Mitchell Toby J. Computer Construction of "D-Optimal" First-Order Designs // Technometrics. — 1974. — Vol. 16, no. 2. — P. 211–220.

[11] Seber George A. F., Lee Alan J. Linear Regression Analysis. — 2 edition. — John Wiley & Sons, 2003.

[12] Alexandridis Alex, Famelis Ioannis Th., Tsitouras Charalambos. Particle swarm optimization for complex nonlinear optimization problems // AIP Conference Proceedings. — 2016. — Vol. 1738, no. 40120.

[13] e Silva Eliana Costa, Correia Aldina, Lopes Isabel Cristina. Optimization in generalized linear models: A case study // AIP Conference Proceedings. — 2016. — Vol. 1738, no. 300002.

[14] Kvitko Alexander. A method for solving a local boundary problem for nonlinear controlled system // AIP Conference Proceedings. — 2015. — Vol. 1648, no. 40002.

[15] Kvitko Alexander. Syntheses of terminal control for nonlinear stationary controlled system under incomplete information // AIP Conference Proceedings. — 2016. — Vol. 1738, no. 16002.

[16] An optimized two-step hybrid block method for solving general second order initial-value problems of the form $y = f(x, y, y)$ / Higinio Ramos, Z. Kalogiratou, Th. Monovasilis, T.E. Simos // AIP Conference Proceedings. — 2015. — Vol. 1648, no. 810006.

[17] A trigonometrically fitted optimized two-step hybrid block method for solving initial-value problems of the form $y = f(x, y, y)$ with oscillatory solutions / Higinio Ramos, Z. Kalogiratou, Th. Monovasilis, T.E. Simos // AIP Conference Proceedings. — 2015. — Vol. 1648, no. 810007.

[18] Kabrits S.A., Kolpak E.P. Finding bifurcation branches in nonlinear problems of statics of shells numerically // 2015 International Conference on "Stability and Control Processes" in Memory of V.I. Zubov, SCP 2015 - Proceedings. — 2015. — P. 389–391.

[19] Application in practice and optimization of industrial information systems / L.A. Bondarenko, A.V. Zubov, V.B. Orlov et al. // Journal of Theoretical and Applied Information Technology. — 2016. — Vol. 85, no. 3. — P. 305–308.

[20] Cooperation in two-stage games on undirected networks / H. Gao, L. Petrosyan, H. Qiao, A. Sedakov // Journal of Systems Science and Complexity. — 2017. — Vol. 30, no. 3. — P. 680–693.
[21] Meirong Wu, Shaochen Cao, Huazhen Zhu. On axiomatizations of the Shapley value for bi-cooperative games // AIP Conference Proceedings. — 2016. — Vol. 1738, no. 080002.

[22] Malafeyev O.A., Kolokoltsov V.N. Understanding game theory: Introduction to the analysis of many agent systems with competition and cooperation. — New Jersey : World Scientific Publishing Co., 2010.

[23] Malafeyev O., Pichugin Y., Alferov G. Parameters estimation in mechanism design // Contemporary Engineering Sciences. — 2016. — Vol. 9, no. 1-4. — P. 175–185.

[24] Malafeyev O.A., Alferov G.V., Maltseva A.S. Game-theoretic model of inspection by anti-corruption group // AIP Conference Proceedings. — 2015. — Vol. 1648, no. 45009.

[25] Neverova E.G., Malafeyef O.A. A model of interaction between anticorruption authority and corruption groups // AIP Conference Proceedings. — 2015. — Vol. 1648, no. 450012.

[26] Malafeyev O.A., Redinskikh N.D. Stochastic analysis of the dynamics of corrupt hybrid networks // Proceedings of 2016 International Conference “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy’s Conference), STAB 2016. — No. 123354. — New Jersey : Institute of Electrical and Electronics Engineers Inc., 2016. — P. 1–4.

[27] Malafeyev O.A., Redinskikh N.D., Alferov G.V. Electric circuits analogies in economics modeling: Corruption networks // 2014 2nd International Conference on Emission Electronics, ICEE 2014. — New Jersey : Institute of Electrical and Electronics Engineers Inc., 2014. — P. 28–32.

[28] Malafeyev O.A., Redinskikh N.D., Alferov G.V. Electric circuits analogies in economics modeling: Corruption networks // 2014 2nd International Conference on Emission Electronics, ICEE 2014. — New Jersey : Institute of Electrical and Electronics Engineers Inc., 2014. — P. 28–32.

[29] Pichugin Y.A., Malafeyev O.A. Statistical estimation of corruption indicators in the firm // Applied Mathematical Sciences. — 2016. — Vol. 10, no. 41-44. — P. 2065–2073.

[30] Gelyofand I. M., Yaglom A. M. Computation of the amount of information about a stochastic function contained in another such function // Uspehi Mat. Nauk (N.S.). — 1957. — Vol. 12, no. 1(73). — P. 352.

[31] Malafeev O. A., Kolokol’czov V. N. Dinamicheskie konkurentny’e sistemy’ mnogoagentnogo vzaimodejstviya i ix asimptoticheskoj povedenije (chast’ I) // Vestnik grazhdanskix inzhenerov. — 2010. — no. 4. — P. 144–153.

[32] Malafeev O. A., Kolokol’czov V. N. Dinamicheskie konkurentny’e sistemy’ mnogoagentnogo vzaimodejstviya i ix asimptoticheskoj povedenije (chast’ II) // Vestnik grazhdanskix inzhenerov. — 2011. — no. 1. — P. 134–145.

[33] Malafeev O. A., Sosnina V. V. Model’ upravleniya procssom kooperativnogo trexagentnogo vzaimodejstviya // Problemy’ mexaniki i upravleniya: Nelinejn’ye dinamicheskie sistemy’. — 2007. — no. 39. — P. 131–144.

[34] Malafeev O. A., Zubova A. F. Matematicheskie i komp’yuternoe modelirovanie sozial’nogo ekonomicheskix sistem na ursosne mnogoagentnogo vzaimodejstviya (vvedenie v problemy’ ravnovesiya, ustojchivosti, nadezhnosti). — Sankt-Peterburg : Mobil’nost’-plyus, 2006.

[35] Malafeev O. A., Grigor’eva K. V. Dinamicheskij process kooperativnogo vzaimodejstviya v mnokriterial’noj (mnogoagentnoj) zadache pochtal’ona // Vestnik grazhdanskix inzhenerov. — 2011. — no. 1. — P. 150–156.

[36] Malafeev O. A. Upravlyaemye konfliktye sistemy’. — Sankt-Peterburg : SPbGU, 2000.

[37] Malafeev O. A., Zenovich O. S., Sevek V. K. Mnogoagentnoe vzaimodejstvie v dinamicheskoj zadache upravleniya venchurny’mi stroitel’nymi proektami // E’konomicheskoj vozrozhdenie Rossii. — 2012. — no. 1. — P. 124–131.

[38] Malafeev O. A., Drozdova I. V., Parshina L. G. E’fektivnost’ variantov rekonstrukczii gorodskoj zhiloj zastrjoki // E’konomicheskoj vozrozhdenie Rossii. — 2008. — no. 3. — P. 63–67.

[39] Malafeev O. A., Paxar O. V. Dinamicheskaia nestaczionarnaya zadacha investirovania proektov v uslovix konkurencii // Problemy’ mexaniki i upravleniya: Nelinejn’ye dinamicheskie sistemy’. — 2009. — no. 41. — P. 103–108.

[40] Malafeev O. A., Gordeev D. A., Titova N. D. Probabilistic and deterministic model of the influence factors on the activities of the organization to innovate // E’konomicheskoj vozrozhdenie Rossii. — 2011. — no. 1. — P. 73–82.
Малафеев О. А., Григор’ева К. В., Иванов А. С. Статистическая коалиционная модель инвестирования инновационных проектов // Экономическое возрождение России. — 2011. — № 4. — С. 90–98.

Малафеев О. А., Черынь К. С. Математическое моделирование развития компаний // Экономическое возрождение России. — 2004. — № 1. — С. 60–66.

Малафеев О. А., Гордеев Д. А., Титова Н. Д. Стохастическая модель принятия решения о выводе на рынок инновационного продукта // Vestnik grahdanskix inzhenerov. — 2011. — № 2. — С. 161–166.

Малафеев О. А., Колокольцев В. Н. Математическое моделирование многоагентной системы конкуренции и кооперации (теория игр дылякс) // — Санкт-Петербург : Лан”, 2012.

Малафеев О. А., Грицаж К. Н. Задача конкурентного управленчии в модели многоагентного взаимодействия аукционного типа // Проблемы междисциплинарного взаимодействия и управленчии: Нелинейные динамические системы. — 2007. — № 39. — С. 36–45.

Малафеев О. А., Акуленкова И. В., Дроzdов Г. Д. Проблемы конкуренции в сети доминантного продавца // Проблемы механики и управления: Нелинейные динамические системы. — 2004. — № 36. — С. 74–82.

Малафеев О. А., Ершова Т. А. Конфликтные взаимодействия в модели взаимодействия на рынке // Проблемы междисциплинарного взаимодействия и управленчии: Нелинейные динамические системы. — 2004. — № 36. — С. 19–27.

Малафеев О. А., Григор’ева К. В. Методы решения динамических многокритериальных задач при обработке почтовых заказов // Vestnik grahdanskix inzhenerov. — 2011. — № 4. — С. 156–161.

Малафеев О. А., Троева М. С. Устойчивость и некоторые численные методы в конфликтно управляемых системах. — Санкт-Петербург : Санкт-Петербургский государственный университет сервиса и э’кономики, 2007.

Малафеев О. А., Парфенов А. П. Проблемы и компромисное уравнение в сетевых моделях многоагентного взаимодействия // Проблемы междисциплинарного взаимодействия и управленчии: Нелинейные динамические системы. — 2007. — № 39. — С. 154–167.

Малафеев О. А., Троева М. С. А слабое решение уравнения Хамильтона-Якоби для дифференциальной двухперсонан взаимодействующей игры // Preprints of the Eighth International Symposium on Differential Games and Applications. — Maastricht : Rijksuniversiteit te Utrecht, Universiteit Maastricht, Rijksuniversiteit te Groningen, 1998. — С. 366–369.

Малафеев О. А., Дроzdova И. В., Дроzdов Г. Д. Моделирование процессов в системе управления городским строительством. — Санкт-Петербург : Санкт-Петербургский государственный университет сервиса и э’кономики, 2001. — Т. 1.

Малафеев О. А., Дроzdов Г. Д. Моделирование процессов в системе управления городским строительством. — Санкт-Петербург : Санкт-Петербургский государственный университет сервиса и э’кономики, 2000. — Т. 2.

Малафеев О. А., Королева О. А. Модели коррупции при заключении контрактов // Проблемы социально-экономического развития // Trudy XXXIX mezhdunarodnoj nauchnoj konferenczii aspirantov i studentov pod redakcziej N. V. Smirnova, G. SH. Tamasyana. — Санкт-Петербург : Санкт-Петербургский государственный университет, 2008. — С. 446–449.
[63] Malafeev O. A., Murav’ev A. I. Modelirovanie konfliktnyx’ situacij v soczial’no-e’konomichestkix sistemax. — Sankt-Peterburg : Sankt-Peterburgskij gosudarstvennyj universitet e’konomiki i finansov, 1998.

[64] Malafeev O. A., Drozdov G. D. Modelirovanie mnoogoagentnogo vzaimodejstviya proccessov straxovaniya. — Sankt-Peterburg : Sankt-Peterburgskij gosudarstvennyj universitet servisa i e’konomiki, 2010.

[65] Malafeev O. A., Zubova A. F. Ustoichivost’ po Lyapunovu i kolebatel’nyst’ v e’konomichestkix modelyax. — Sankt-Peterburg : Sankt-Peterburgskij gosudarstvennyj universitet, 2001.

[66] Malafeev O. A., Bure V. M. Soglasovannaya strategiya v povtoryayushhixs’ proccesax // Vestnik Sankt-Peterburgskogo universiteta. Seriya 1. Matematika. Mexanika. Astronomiya. — 1995. — no. 1. — P. 120–122.

[67] Malafeev O. A. O sushhestvovanii znacheniya igry’ presledovaniya // Sibirskij zhurnal issledovaniya operacij. — 1970. — no. 5. — P. 25–36.

[68] Malafeev O. A. Konfliktno upravlyaemye’ proccessy so mnogimi uchastnikami : Dissertacziya na soiskanie uchenoj stepeni doktora fiziko-matematicheskix nauk / O. A. Malafeev ; Leningradskij gosudarstvennyj universitet. — Leningrad, 1987.

[69] Malafeev O. A. Ustojchivost’ reshenij zadach mnogokriterial’noj optimizaczii i konfliktno upravlyaemye’ dinamicheskie proccessy’ // Sankt-Peterburg : Sankt-Peterburgskij gosudarstvennyj universitet, 1990.

[70] Korrupziya v modelyax aukcziona pervoj czeny’ / O. A. Malafeev, N. D. Redinskix, G. V. Alfyorov, T. E. Smirnova // Upravlenie v morskiix i ae’rokosmicheskix sistemax (UMAS-2014) 7-ya Rossijskaya mult’ikonferencziya po problemam upravleniya: materialy’ konferenczii. GNCR RF OAO “C’entral’n’yj nauchno-issledovatel’skij institut “E’lektropribor”. — Sankt-Peterburg : Konczern “C’entral’n’yj nauchno-issledovatel’skij institut “E’lektropribor”, 2014. — P. 141–146.

[71] Malafeev O. A., Redinskix N. D., Smirnova T. E. Setevaya model’ investirovaniya proektov s korrupcije// Proccessy’ upravleniya i ustojchivost’ Trudy’ XLVI mezhdunarodnoj nauchnoj konferenczii aspirantov i studentov. — Sankt-Peterburg : Sankt-Peterburgskij gosudarstvennyj universitet, 2015. — P. 659–664.

[72] Malafeev O. A., Pichugin YU. A. Ob oценke riska bankrotnosti firmy’ // Tezisy’ dokladov VI mezhdunar. konf. “Dinamicheskie sistemy’: ustojchivost’, upravlenie, optimizaczii” (DSSCO13). — Minsk : Belorussskij gosudarstvennyj universitet, 2013. — P. 204–206.

[73] Malafeev O. A., Redinskix N. D., Gerchiu A. L. Optimizaczionnaya model’ razmeshheniya korruptionerov v seti // Stroitel’stvo i e’nergoe’kfffektivny’x zdanij (teoriya i praktika s uchetom korrupcijonogo faktora) / L. M. Kolchedanczev, I. N. Legalov, G. M. Bad’in et al. — Borovichi : NP “NTO strojindustrii Sankt-Peterburga”, 2015. — P. 128–140.

[74] Malafeev O. A., Koroleva O. A., Vasil’ev YU. G. Kompromissnoe reshenie v aukcione pervoj czeny’ s korrumpirovanny’m aukczionistom // Stroitel’stvo i e’kspluatatsiya e’nergoe’ffektivny’x zdanij (teoriya i praktika s uchetom korrupcionnogo faktora) / L. M. Kolchedanczev, I. N. Legalov, G. M. Bad’in et al. — Borovichi : NP “NTO strojindustrii Sankt-Peterburga”, 2015. — P. 119–127.

[75] Malafeev O. A., Redinskix N. D., Smirnova T. E. Model’ investirovaniya proektov s vozmozhnoj korrupcije// Stroitel’stvo i e’kspluatatsiya e’nergoe’ffektivny’x zdanij (teoriya i praktika s uchetom korrupcionnogo faktora) / L. M. Kolchedanczev, I. N. Legalov, G. M. Bad’in et al. — Borovichi : NP “NTO strojindustrii Sankt-Peterburga”, 2015. — P. 140–146.

[76] Malafeev O. A., Axmady’shina A. R., Demidova D. A. Model’ tendera na ry’ne rie’l’sterskix uslug s uchetom korrupcii // Stroitel’stvo i e’kspluatatsiya e’nergoe’ffektivny’x zdanij (teoriya i praktika s uchetom korrupcionnogo faktora) / L. M. Kolchedanczev, I. N. Legalov, G. M. Bad’in et al. — Borovichi : NP “NTO strojindustrii Sankt-Peterburga”, 2015. — P. 161–168.

[77] Malafeev O. A., Kefeli I. F. Matematicheskix nachala global’noj geopolitiki. — Sankt-Peterburg : Sankt-Peterburgskij gosudarstvennyj universitet, 2013.

[78] Malafeev O. A., Maraxov V. G. E’volyuczionny’yj mexanizm dejstviya istochnikov i dvizhushhixsya sil grazhdanskogo obshestva v sfere finansovoy i e’konomicheskoj komponenty’ XXI veka // K. Marks i budushhee filosofii Rossii / S. V. Busov, S. I. Dudnik, K. YU. Zhirkov et al. — Sankt-Peterburg : OOO “Izdatel’stvo VVM”, 2016. — P. 112–135.

[79] Malafeev O. A., Nemnyugin S. A. Stoxasticheskaya model’ soczial’no-e’konomichestkix dinamiki // Ustoichivost’ i proccessy’ upravleniya Materialy’ III mezhdunarodnoj konferenczii. — Sankt-Peterburg : Izdatel’skij dom Fedorovoj G. V., 2015. — P. 433–434.
Часть 1

Малафеев О. А., Рединских Н. Д. Стохастическое оценивание и прогноз эффективности стратегии развития фирмы в условиях коррупционного воздействия // Устойчивость и процессы управленческой информационной деятельности: международная научная конференция. — Санкт-Петербург: Издательский дом Федоров, 2015. — С. 437–438.

Часть 2

Философские стратегии социальных предпринимательств XXI века / О. А. Малафеев, В. Н. Волович, Т. А. Делиева и др. — Санкт-Петербург: Санкт-Петербургский государственный университет, 2014.

Часть 3

Малафеев О. А., Деженга Л. А., Андреева М. А. Модель взаимодействия коррупционного предприятия и федерального органа по борьбе с коррупцией // Молодой ученый. — 2015. — № 12 (92). — С. 15–20.
[101] Malafeev O.A. The existence of situations of yo-equilibrium in dynamic games with dependent movements // USSR Computational Mathematics and Mathematical Physics. — 1974. — Vol. 14, no. 1. — P. 88–99.

[102] Malafeev O.A. Stationary strategies in differential games // USSR Computational Mathematics and Mathematical Physics. — 1977. — Vol. 17, no. 1. — P. 37–46.

[103] Malafeev O.A. Equilibrium situations in dynamic games // Cybernetics. — 1974. — Vol. 10, no. 3. — P. 504–513.

[104] Malafeyev O.A., Troeva M.S. A weak equilibrium solution for multicriteria optimization problem // Control Applications of Optimization 2000: Proceedings of the 11th Ifac Workshop. — Amsterdam : Elsevier science & technology, 2000. — P. 363–368.

[105] Numerical integration of Chaplain and stuart model / L. Petrakis, Z. Kalogiratou, Th. Monovasilis, T. E. Simos // AIP Conference Proceedings. — 2016. — Vol. 1738, no. 480131.

[106] Kolpak E.P., Ivanov S.E. On the three-dimensional Klein-Gordon equation with a cubic nonlinearity // International Journal of Mathematical Analysis. — 2016. — Vol. 10, no. 13-16. — P. 611–622.

[107] Yeung D.W.K., Petrosyan L.A. Subgame consistent cooperative solution for NTU dynamic games via variable weights // Automatica. — 2015. — Vol. 59. — P. 84–89.