Reversibility of apoptosis in cancer cells

HL Tang¹, KL Yuen¹, HM Tang² and MC Fung*,¹

¹Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; ²Department of Biology, Iowa State University of Science and Technology, Ames, IA 50011, USA

Apoptosis is a cell suicide programme characterised by unique cellular events such as mitochondrial fragmentation and dysfunction, nuclear condensation, cytoplasmic shrinkage and activation of apoptotic protease caspases, and these serve as the noticeable apoptotic markers for the commitment of cell demise. Here, we show that, however, the characterised apoptotic dying cancer cells can regain their normal morphology and proliferate after removal of apoptotic inducers. In addition, we demonstrate that reversibility of apoptosis occurs in various cancer cell lines, and in different apoptotic stimuli. Our findings show that cancer cells can survive after initiation of apoptosis, thereby revealing an unexpected potential escape mechanism of cancer cells from chemotherapy. British Journal of Cancer (2009) 100, 118–122. doi:10.1038/sj.bjc.6604802 www.bjcancer.com

Keywords: apoptosis; death; reversibility; survive; tumour

Chemotherapy is one of the major cancer treatments by promoting cancer cells into different types of cell death including apoptosis (Johnstone et al, 2002; Perona and Sánchez-Pérez, 2004; Brown and Attardi, 2005; Li et al, 2008). Accumulating studies reported that cancers initially retreated in response to chemotherapy, but returned during repeated courses of treatment (Norton and Simon, 1977; Stephens and Peacock, 1977; Davis and Tannock, 2000; Wu and Tannock, 2003; Kim and Tannock, 2005). Although the mechanisms of the cancer recurrence are not well understood, it is generally believed that repopulation of surviving cancer cells during the intervals between treatments is an important cause of the treatment failure (Kim and Tannock, 2005). The survival of cancer cells during treatments has been mainly attributed into the deficiency of apoptotic pathways in cancer cells (Letai, 2008), anticancer drug resistance of tumorigenic stem cells (Dean et al, 2005), and inefficiency of drug penetration into solid tumours for achieving a therapeutic effect (Minchinton and Tannock, 2006). In this study, we found that cancer cells could survive even after initiation of apoptosis, and this was observed in various cancer cell lines and in different apoptotic stimuli. Our findings reveal another possibility that may contribute into the cancer cell survival during therapy, reversibility of apoptosis in cancer cells.

MATERIALS AND METHODS

Cell culture

Human cervical cancer HeLa cells, skin cancer A375, liver cancer HepG2, breast cancer MCF7 cells (from American Type Culture Collection) were cultured in DMEM (Dulbecco’s minimum essential medium) supplemented with 10% heat-inactivated FBS (fetal bovine serum), 100 U ml⁻¹ penicillin and 100 μg ml⁻¹ streptomycin (Gibco, Carlsbad, CA, USA), at 37 °C under an atmosphere of 5% CO₂/95% air. Human prostate cancer PC3 cells were cultured in the same condition with RPMI-1640 medium. Cells were seeded on tissue culture plates until the cell density reached 70% confluency before being subjected to each experiment. Apoptotic stimuli jasplakinolide (Invitrogen, Carlsbad, CA, USA), staurosporine (Sigma, St Louis, MO, USA) and ethanol (Scharlau, Barcelona, Spain) were applied to the cells.

Living cell staining

Cells were grown to 70% confluence on a glass coverslip (Marienfeld, Lauda-Königshofen, Germany). Mitochondria and nucleuses were stained with 50 nM MitoTracker Red CMXRos (Invitrogen) and 250 ng ml⁻¹ Hoechst 33342 (Invitrogen), respectively for 20 min, and the cells were washed two times with PBS and then cultured in suitable fresh medium (Invitrogen).

Real-time living cell microscopy

Cells were cultured in CO₂-independent medium (Invitrogen) on a thermo-cell culture FCS2 chamber (Bioptechs, Butler, PA, USA) mounted onto the adapter in the stage of an inverted fluorescence microscope Cell Observer (Carl Zeiss, Jena, Germany). Cell morphology was visualised by differential interference contrast (DIC) microscope device, and the mitochondria and nucleuses were by fluorescence with excitation 561 and 405 nm, respectively. Drugs and culture medium were introduced to the cell culture chamber through the perfusion tubes (Bioptechs) connected to the cell chamber. Cell images were captured with a monochromatic CoolSNAP FX camera (Roper Scientific, Pleasanton, CA, USA) using a ×63 numerical aperture (NA) 1.4 Plan-Apochromat objective (Carl Zeiss), and analysed by using AxioVision 4.2 software (Carl Zeiss).

Confocal microscopy

Confocal cell images were captured with an inverted laser-scanning microscope LSM 5 LIVE (Carl Zeiss), with 1 μm interval between each focal plane. The images were analysed by using LSM image examiner software (Carl Zeiss).
Biochemical and cell proliferation assays

One thousand cells were grown in a 96-well plate for 24 h, and then treated with different conditions. At each designed time point, cells were subjected to the corresponding assays according to the manufacturer’s instructions. The activity of effector caspases was measured by using the homogeneous caspase assay kit (Roche, Mannheim, Germany). The activity of mitochondria was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5 -diphenyltetrazolium bromide (MTT) assay (Sigma). The cell survival was detected by the cell proliferation ELISA BrdU assay kit (Roche). Results of assays were measured by SpectraMax 250 microplate reader (Molecular Devices Corp, Concord, ON, Canada).

Cell counting

The morphology of the cells was observed by DIC, whereas mitochondria and nucleuses were visualised by fluorescence microscopy. At least 100 cells were examined in at least three independent cell counting.

For cell proliferation, at each indicated time point, the cells were harvested by trypsinisation and thoroughly resuspended. The cells were

Figure 1 Time-lapse living cell microscopy of HeLa cells under and after jasplakinolide induction. Real-time imaging of the same cells before 0.5 μM jasplakinolide induction (Untreated, i), induced for 3 h (Induced, ii–viii), and then washed and further incubated with fresh culture medium for another 14.5 h (Washed, ix–xii). Merged images: mitochondria (red) and nucleuses (blue) were visualised by fluorescence, and cell morphology was by DIC. Time presented as hr:min. Scale bar: 10 μm. A corresponding movie is available as the Supplementary Information (Video 1).
stained with trypan-blue and counted in triplicate under a microscope with hemocytometer. Total cell number is calculated by multiplying the determined cell density with the total volume of suspension.

Western blot analysis

Approximately 3 μg protein per lane was separated on a 10% SDS-PAGE gel and transferred onto a Hybond ECL® membrane (Amersham Biosciences, Chalfont St Giles, UK). After blocking, the membrane was incubated overnight at 4°C with 1:1000 anti-caspase-3 antibody (Cell Signaling, Danvers, MA, USA) followed by another hour of incubation in the corresponding horseradish peroxidase-conjugated secondary antibody (Bio-Rad, Hercules, CA, USA) at 1:5000 dilutions, and the signal was detected with the ECL western blotting detection system (Amersham Biosciences).

RESULTS

Survival of HeLa cells from jasplakinolide-induced apoptosis

Our aim was to induce cancer cells undergoing apoptosis, and investigate whether the apoptotic dying cancer cells could survive after the removal of apoptotic reagents. We initially exposed stained with trypan-blue and counted in triplicate under a microscope with hemocytometer. Total cell number is calculated by multiplying the determined cell density with the total volume of suspension.

Western blot analysis

Approximately 3 μg protein per lane was separated on a 10% SDS-PAGE gel and transferred onto a Hybond ECL® membrane (Amersham Biosciences, Chalfont St Giles, UK). After blocking, the membrane was incubated overnight at 4°C with 1:1000 anti-caspase-3 antibody (Cell Signaling, Danvers, MA, USA) followed by another hour of incubation in the corresponding horseradish peroxidase-conjugated secondary antibody (Bio-Rad, Hercules, CA, USA) at 1:5000 dilutions, and the signal was detected with the ECL western blotting detection system (Amersham Biosciences).
Reversibility of apoptosis in different inducers and in various cancer cell lines

Our discovery on reversibility of jasplakinolide-induced apoptosis in HeLa cells evoked a novel phenomenon that cancer cells could survive after initiation of apoptosis, and therefore prompted us to investigate whether this was a general phenomenon in different apoptotic inductions and in various cancer cell lines. Our results on other apoptotic stimuli to HeLa cells showed that, in response to the induction of apoptotic inducers ethanol and staurosporine (Bertrand et al., 1994; Young et al., 2003), HeLa cells underwent apoptosis characterised by excessive mitochondrial fragmentation, nuclear condensation and cell shrinkage (Figure 4). After removal of the inducers, the indicated cells regained their normal morphology in 24 h in the culture of a fresh medium. In further experiments, jasplakinolide was applied to various cancer cell lines, which are widely used in cancer research including human skin cancer A375, liver cancer HepG2, breast cancer MCF7 and
prostate cancer PC3 cells, and all of them displayed the morphological features of apoptosis (Figure 6). Consistently, after removal of jasplakinolide, the morphological recovery was observed in 24 h in all the cell lines (Figure 6). These results suggest that the reversibility of apoptosis is a general phenomenon in cancer cells.

DISCUSSION

In this study, we have shown that cancer cells could survive after initiation of apoptosis induced by different stimuli, and the reversibility of apoptosis was observed in various cancer cell lines. We provided evidence that cancer cells could escape from demise even after the cells undergoing critical apoptotic events such as mitochondrial fragmentation and dysfunction, nuclear condensation, cell shrinkage and activation of caspases. Importantly, the reversibility of apoptosis was abolished when the cells reached the apoptotic event of nuclear fragmentation, suggesting that this is an important cellular event indicating the point-of-no-return in apoptosis.

Our discovery on the reversibility of apoptosis in cancer cells lead to several unanswered key questions: what are the components of the machinery driving the reversibility of apoptosis, and how are they linked to the regulation of apoptosis in cancer cells as a whole? To what extent does the reversibility of apoptosis contribute to the survival and repopulation of cancer cells during the cycles of anticancer treatment? Intriguingly, can inhibition on the reversibility of apoptosis in cancer cells suppress cancer relapse? Providing answers to these questions will be critical in understanding the mechanism for regulation on the reversibility of apoptosis, and provide us new potential targets for therapeutic advancement to our war of cancer. A more in-depth analysis will be required to clarify these points.

ACKNOWLEDGEMENTS

This work described in this paper was supported by a grant from the University Grants Committee of the Hong Kong Special Administrative Region, China (Project No. AoE/B-07/99). We thank Hoi Yan LAW and Tony WOO (Carl Zeiss Far East Co. Ltd) for their excellent support in confocal microscopy.

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)

REFERENCES

Bertrand R, Solary E, O’Connor P, Kohn KW, Pommier Y (1994) Induction of a common pathway of apoptosis by staurosporine. *Exp Cell Res* 211: 314 – 321

Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. *Nat Rev Cancer* 5: 231 – 237

Davis AJ, Tannock JF (2000) Repopulation of tumour cells between cycles of chemotherapy: a neglected factor. *Lancet Oncol* 1: 86 – 93

Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. *Nat Rev Cancer* 5: 275 – 284

Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. *Science* 305: 626 – 629

Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. *Cell* 88: 347 – 354

Johnstone RW, Ruelli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. *Cell* 106: 153 – 164

Kerr JF, Willie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. *Br J Cancer* 26: 239 – 257

Kim JJ, Tannock IF (2005) Repopulation of cancer cells during therapy: an important cause of treatment failure. *Nat Rev Cancer* 5: 516 – 525

Letai AG (2008) Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. *Nat Rev Cancer* 8: 121 – 132

Li QX, Yu DH, Liu G, Ke N, McKelvy J, Wong-Staal F (2008) Selective anticancer strategies via intervention of the death pathways relevant to cell transformation. *Cell Death Differ* 15: 1197 – 1210

Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. *Nat Rev Cancer* 6: 583 – 592

Norton L, Simon R (1977) Tumour size, sensitivity to therapy, and design of treatment schedules. *Cancer Treat Rep* 61: 1307 – 1317

Odaka C, Sanders ML, Crews P (2000) Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. *Clin Diagn Lab Immunol* 7: 947 – 952

Perona R, Sánchez-Pérez I (2004) Control of oncogenesis and cancer therapy resistance. *Br J Cancer* 90: 573 – 577

Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. *Nat Rev Mol Cell Biol* 5: 897 – 907

Stephens TC, Peacock JH (1977) Tumour volume response, initial cell kill and cellular repopulation in B16 melanoma treated with cyclophosphamide and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea. *Br J Cancer* 36: 313 – 321

Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. *Nat Rev Mol Cell Biol* 9: 231 – 241

Wang X (2001) The expanding role of mitochondria in apoptosis. *Genes Dev* 15: 2922 – 2933

Wu L, Tannock IF (2003) Repopulation in murine breast tumours during and after sequential treatments with cyclophosphamide and 5-fluorouracil. *Cancer Res* 63: 2134 – 2138

Young C, Klocke BJ, Tenkova T, Choi J, Labruyere J, Qin YQ, Holtzman DM, Roth KA, Olney JW (2003) Ethanol-induced neuronal apoptosis in vivo requires BAX in the developing mouse brain. *Cell Death Differ* 10: 1148 – 1155

Figure 6 Reversibility of jasplakinolide-induced apoptosis in various cancer cell lines. Percentage of cells showing mitochondrial fragmentation (Mito. Fragment), nuclear condensation (Nuc. Condense), and cell shrinkage (Cell Shrink) of the control A375, HepG2, MCF7 and PC3 cells (Untreated), the corresponding cells treated with 0.5 μM jasplakinolide for 3 h (Jasp.), and washed and cultured with fresh medium for 24 h (Washed). (Mean ± s.d.; *P* < 0.02; *n* = 3).