Maximal q-Subharmonicity in \mathbb{C}^n

Le Mau Hai · Nguyen Xuan Hong

Received: 3 October 2011 / Accepted: 22 April 2012 / Published online: 19 March 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract In this paper, we study maximal q-subharmonic functions in \mathbb{C}^n. We prove that maximality of q-subharmonic functions is a local notion and give a condition to check the maximality of C^2 q-subharmonic functions.

Keywords q-Subharmonic functions · Maximal q-subharmonic functions

Mathematics Subject Classification (2010) 32U05

1 Introduction

Let Ω be an open set in \mathbb{C}^n. An upper semi-continuous function $u : \Omega \to [-\infty, +\infty)$ is called plurisubharmonic on Ω if for every complex line ℓ of \mathbb{C}^n, $u|_{\ell \cap \Omega}$ is a subharmonic function on $\ell \cap \Omega$.

The set of plurisubharmonic functions on Ω is denoted by $PSH(\Omega)$.

Now as in [2] and [7], there is a class of plurisubharmonic functions playing an important role in pluripotential theory. This is a class of maximal plurisubharmonic functions. We recall the following definition given in [2].

Definition 1 A plurisubharmonic function u on Ω is called maximal plurisubharmonic (briefly, $u \in MPSH(\Omega)$) if for every $v \in PSH(\Omega)$, $v \leq u$ outside a compact subset of Ω implies $v \leq u$ on Ω.

As in [2] and [7], a locally bounded plurisubharmonic function u is in $MPSH(\Omega)$ if and only if it satisfies the homogeneous complex Monge–Ampère equation $(dd^c u)^n = 0$.

L.M. Hai (✉) · N.X. Hong
Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy street, Cau Giay District, Hanoi, Vietnam
e-mail: mauhai@fpt.vn

N.X. Hong
e-mail: xuanhongdhsp@yahoo.com
Moreover, a recent result in [3] claimed that maximality is a local notion for locally bounded plurisubharmonic functions (see Corollary 1 in [3]). Also in [3], Blocki extended the above result for the class $E(\Omega)$ introduced and investigated by Cegrell in [4] recently.

The aim of this paper is to extend the class of maximal plurisubharmonic functions to the class of maximal q-subharmonic functions, where q is an integer with $1 \leq q \leq n$ and to give some results about maximal q-subharmonic functions. Notice that for studying maximality of plurisubharmonic functions one often approaches by using the complex Monge–Ampère operator. But defining the complex Monge–Ampère operator for q-subharmonic functions is impossible. Hence one needs to find another approach for studying maximal q-subharmonic functions. In this paper, by using a new method, we prove that the maximality of q-subharmonic functions is equivalent to a local notion. We also provide a condition to check when a $C^2 q$-subharmonic function u is maximal q-subharmonic.

The note is organized as follows. Besides the introduction, the note has two sections. Section 2 is devoted to study q-subharmonic functions and to establish some results concerning this class. Section 3 deals with maximal q-subharmonic functions and proves the local property of this class.

2 q-Subharmonic Functions in \mathbb{C}^n

First, we recall the following definition of q-subharmonic functions which has been introduced by H. Ahn and N.Q. Dieu in [1] (also see [5]).

Definition. Let Ω be an open set in \mathbb{C}^n. An upper semicontinuous function $u : \Omega \rightarrow [-\infty, \infty)$, $u \neq -\infty$ is called q-subharmonic if for every q-dimensional complex plane L in \mathbb{C}^n, $u|_L$ is a subharmonic function on $L \cap \Omega$. This means that for every compact subset $K \subseteq L \cap \Omega$ and every continuous harmonic function h on K such that $u \leq h$ on ∂K it follows that $u \leq h$ on K.

The set of q-subharmonic functions on Ω is denoted by $SH_q(\Omega)$.

Compared with subharmonic and plurisubharmonic functions in potential theory and pluripotential theory, it is easy to see that 1-subharmonic functions are plurisubharmonic and n-subharmonic functions are subharmonic.

The following basic properties of q-subharmonic functions can be proved in the same way as for subharmonic functions.

Proposition 1. Let Ω be an open set in \mathbb{C}^n and $1 \leq q \leq n$. Then the following hold:

1. $SH_q(\Omega)$ is a convex cone.
2. If $\{u_\alpha\}$, $\alpha \in A$ is a family of q-subharmonic functions and $u = \sup_{\alpha \in A} u_\alpha < +\infty$, u is upper semi-continuous then u is a q-subharmonic function.
3. If $\{u_j\}_{j=1}^\infty$ is a decreasing sequence of q-subharmonic functions then so is $u = \lim_{j \rightarrow +\infty} u_j$.
4. If u is a q-subharmonic function in Ω then $u_\varepsilon := u \ast \varrho_\varepsilon$ is smooth q-subharmonic in Ω_ε, where $\Omega_\varepsilon = \{z \in \Omega : d(z, \partial \Omega) > \varepsilon\}$ and $\varrho_\varepsilon = \varrho(z/\varepsilon)/|\varepsilon|^{2n}$, ϱ is a nonnegative smooth function in \mathbb{C}^n vanishing outside the unit ball and satisfying $\int_{\mathbb{C}^n} \varrho \, dV_n = 1$. Moreover, $u \ast \varrho_\varepsilon$ decreasingly tends to u when $\varepsilon \downarrow 0$.
5. If χ is a convex increasing function in \mathbb{R} and u is q-subharmonic in Ω then so is $\chi \circ u$.
6. If u is a q-subharmonic function then for any unitary change of coordinates $\varphi : \mathbb{C}^n \rightarrow \mathbb{C}^n$, the function $u \circ \varphi \in SH_q(\Omega)$.

Springer
Let \(u \) be a \(q \)-subharmonic function in \(\Omega \) and \(v \in SH_q(G) \) satisfying \(\lim_{G \ni \xi \to z \in \partial G} v(\xi) \leq u(z) \) for all \(z \in \partial G \). Then the function

\[
w(z) = \begin{cases} \max(u(z), v(z)), & z \in G, \\ u(z), & z \in \Omega \setminus G \end{cases}
\]
is \(q \)-subharmonic on \(\Omega \).

Now we give the following.

Proposition 2 Let \(u \) be an upper-semicontinuous function on \(\Omega \subset \mathbb{C}^n \) and \(u \in L^1(\Omega, \text{loc}) \), where \(L^1(\Omega, \text{loc}) \) denotes the set of locally integrable functions on \(\Omega \). Then the following statements are equivalent:

(a) \(u \) is a \(q \)-subharmonic function in \(\Omega \).

(b) \(i \partial u \wedge \omega^{q-1} \geq 0 \) in the sense of currents, where \(\omega := i \partial \bar{\partial} \mid z \mid^2 \).

In particular, if \(u \in C^2(\Omega) \) then \(u \in SH_q(\Omega) \) if and only if its complex Hessian has the sum of \(q \) smallest eigenvalues nonnegative at each point.

Proof First, we assume that \(u \in C^2(\Omega) \). Let \(L \subset \mathbb{C}^n \) be a \(q \)-dimensional complex plane of \(\mathbb{C}^n \) with \(z_0 \in L \). Then by the hypothesis \(u \vert_{\Omega \cap L} \) is subharmonic on \(\Omega \cap L \) and so \(\sum_{k \in K} \frac{\partial^2 u}{\partial z_j \partial \bar{z}_k}(z_0) \geq 0 \) for all \(K = \{k_1, k_2, \ldots, k_q\} \subset \{1, 2, \ldots, n\} \). It follows that \(i \partial \bar{\partial} u(z_0) \wedge \omega^{q-1} \geq 0 \). Hence, \(i \partial \bar{\partial} u(z) \wedge \omega^{q-1} \geq 0 \) for all \(z \in \Omega \).

Conversely, assume that \(i \partial \bar{\partial} u(z) \wedge \omega^{q-1} \geq 0 \) for all \(z \in \Omega \). Let \(L \) be a \(q \)-dimensional subspace of \(\mathbb{C}^n \). Since \(i \partial \bar{\partial} u(z) \wedge \omega^{q-1} \geq 0 \), \(z \in \Omega \) it follows that \(u \in SH(\Omega \cap L) \). Hence, \(u \in SH_q(\Omega) \). Thus the conclusion is true in the case \(u \in C^2(\Omega) \).

Assume that \(u \) is as in the statement of the proposition. By putting \(u_\varepsilon = u \ast \varrho_\varepsilon \) and applying the above results to \(u_\varepsilon \), we obtain the desired conclusion.

Example 1 We give an example of a \(q \)-subharmonic function which is not plurisubharmonic. Let \(d > 1 \) and \(1 < q \leq d \). Consider the function

\[
\varphi(z) = |z|^2 - q |z_1|^2 = \sum_{j=1}^d |z_j|^2 - q |z_1|^2, \quad z \in \mathbb{C}^d.
\]

It is easy to see that \(\sum_{j=1}^q \frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_j}(z) = 0 \) and by (b) of Proposition 2 it follows that \(\varphi \) is \(q \)-subharmonic. However, \(\varphi \) is not plurisubharmonic. Indeed, let \(\ell = \{(z_1, 0, \ldots, 0)\} \subset \mathbb{C}^d \) be a complex line. Then \(\varphi \vert_\ell = (1 - q) |z_1|^2 \) is not subharmonic, and the desired conclusion follows.

3 Maximal \(q \)-Subharmonic Functions

The following definition is similar as in the situation of maximal plurisubharmonic functions presented in [2] and [7].
Definition 3 A function $u \in SH_q(\Omega)$ is said to be maximal q-subharmonic if for every $v \in SH_q(\Omega)$, $v \leq u$ outside a compact subset of Ω implies that $v \leq u$ in Ω.

The set of all maximal q-subharmonic functions in Ω is denoted by $MSH_q(\Omega)$.

We give the following.

Proposition 3 Let Ω be an open subset in \mathbb{C}^n and let $u \in SH_q(\Omega) \cap L_{loc}^\infty(\Omega)$. Then the following conditions are equivalent:

(a) $u \in MSH_q(\Omega)$.
(b) $u + g \in MSH_q(\Omega)$ for all pluriharmonic functions g in Ω.
(c) For every open subset $G \Subset \Omega$ and every $v \in SH_q(G)$ such that $\limsup_{G \ni w \to z \in \partial G}(v - u)(w) \leq 0$ it follows that $v \leq u$ in G.
(d) For every open subset $G \Subset \Omega$ and every $v \in SH_q(\Omega)$ we have

$$\sup_{G}(v - u) \leq \sup_{\Omega \setminus G}(v - u).$$

Proof From Definition 3, we infer that (a) \iff (b) \iff (c) is obvious. We prove that (a) \iff (d).

Assume that $u \in MSH_q(\Omega)$. Let $G \Subset \Omega$ and $v \in SH_q(\Omega)$. Put $M = \sup_{\Omega \setminus G}(v - u)$. If $M = +\infty$ then (1) holds. Now assume that $M < +\infty$. Then $v - M \in SH_q(\Omega)$ and $v - M \leq u$ on $\Omega \setminus G$. Hence, by (a), we get $v - M \leq u$ on Ω and (1) follows.

Conversely, let $v \in SH_q(\Omega)$ and $G \Subset \Omega$ such that $v \leq u$ on $\Omega \setminus G$. Take an open subset G_1 such that $G \Subset G_1 \Subset \Omega$. We have $v \in SH_q(G_1)$. By (d), we have

$$\sup_{G}(v - u) \leq \sup_{G_1 \setminus G}(v - u) \leq 0,$$

and the desired conclusion follows. \hfill \square

Now we are in a position to prove the local property of maximal q-subharmonic functions. Namely, we have the following.

Theorem 1 Let $\Omega \subset \mathbb{C}^n$ be an open set, q be an integer with $1 \leq q \leq n$ and $u \in SH_q(\Omega) \cap L_{loc}^\infty(\Omega)$. Then u is maximal q-subharmonic if and only if u is local maximal q-subharmonic in Ω (i.e., for every $z \in \Omega$ there is an open neighborhood $V_z \subset \Omega$ of z such that $u|_{V_z}$ is maximal q-subharmonic on V_z).

Proof The proof of the necessity is obvious. Now we give the proof of the sufficiency. Assume that $G \Subset \Omega$ and v is a q-subharmonic function on Ω such that $v \leq u$ on $\Omega \setminus G$.

We have to prove that $v \leq u$ on G. Choose $z^j \in \Omega$, $j = 1, \ldots, m$ and open subsets $K_j \Subset V_{z^j} \Subset \Omega$, $j = 1, \ldots, m$ such that $z^j \in V_{z^j}$, $G \subset \bigcup_{j=1}^m K_{z^j}$ and u is maximal q-subharmonic on V_{z^j} for all $j = 1, \ldots, m$.

We split the proof into two steps.

Step 1. We prove that if K_j, $j = 1, \ldots, m$ are open subsets in Ω and \overline{K}_j, $j = 1, \ldots, m$ are relatively compact open subsets such that $K_j \Subset \overline{K}_j \Subset V_j \Subset \Omega$, $j = 1, \ldots, m$ then the following inequality holds

$$\sup_{\bigcup_{j=1}^m K_j}(v - u) \leq \sup_{\bigcup_{j=1}^m \overline{K}_j}(v - u) \leq \sup_{\bigcup_{j=1}^m V_j \setminus \bigcup_{j=1}^m K_j}(v - u).$$

\hfill \square
It suffices to prove that (2) holds for $m = 2$. Let $V = V_1 \cup V_2$. To get a contradiction, without loss of generality we may assume that

$$\sup_{V \setminus K_1 \cup K_2} (v - u) < 0 < \sup_{\tilde{K}_1 \cup \tilde{K}_2} (v - u) < +\infty.$$

For $\varepsilon > 0$, put $u_{(\varepsilon)}(z) = u(z) - \varepsilon |z|^2$, $z \in V$ and choose ε sufficiently small such that

$$\sup_{V \setminus K_1 \cup K_2} (v - u_{(\varepsilon)}) < 0 < \sup_{\tilde{K}_1 \cup \tilde{K}_2} (v - u_{(\varepsilon)}) < +\infty.$$

Then there exists a sequence $\{p_j\} \subset \tilde{K}_1 \cup \tilde{K}_2$, $p_j \rightarrow p \in \tilde{K}_1 \cup \tilde{K}_2$ such that

$$\sup_{\tilde{K}_1 \cup \tilde{K}_2} (v - u_{(\varepsilon)}) = \lim_{j \rightarrow \infty} (v - u_{(\varepsilon)})(p_j).$$

Now we consider the following two cases.

Case 1. $p \notin \tilde{K}_1 \cup \tilde{K}_2$. Then $p \in (V \setminus \tilde{K}_1) \cap (V \setminus \tilde{K}_2)$. Hence there exists j_0 such that $p_j \in (V \setminus \tilde{K}_1) \cap (V \setminus \tilde{K}_2)$ for every $j \geq j_0$. It follows that

$$0 < \sup_{\tilde{K}_1 \cup \tilde{K}_2} (v - u_{(\varepsilon)}) = \lim_{j \rightarrow \infty} (v - u_{(\varepsilon)})(p_j) \leq \sup_{(V \setminus \tilde{K}_1) \cap (V \setminus \tilde{K}_2)} (v - u_{(\varepsilon)})$$

$$\leq \sup_{(V \setminus \tilde{K}_1) \cap (V \setminus \tilde{K}_2)} (v - u_{(\varepsilon)}) = \sup_{V \setminus (K_1 \cup K_2)} (v - u_{(\varepsilon)}) < 0,$$

and we get a contradiction.

Case 2. $p \in \tilde{K}_1 \cup \tilde{K}_2$. We may assume that $p \in \tilde{K}_1 \subseteq \tilde{K}_2$. We choose balls $\tilde{B} = B(p, \frac{\varepsilon}{4}) \subset B_0 = B(p, r) \subseteq B_1 = B(p, r_1) \subseteq B_2 = B(p, r_2) \subseteq \tilde{K}_1$. Moreover, we may assume that $p_j \in \tilde{B}$ for all $j \geq 1$. For all j we can write

$$u_{(\varepsilon)}(z) = u(z) - \varepsilon |z|^2 = u(z) + \varepsilon |p_j|^2 - 2\varepsilon \Re \langle z, p_j \rangle - \varepsilon |z - p_j|^2.$$

Note that since $\Re \langle z, p_j \rangle$ is plurisubharmonic and u is a maximal q-subharmonic function in V_1, hence, by (b) of Proposition 3, $u_{(\varepsilon)}(z) + \varepsilon |z - p_j|^2 = u(z) + \varepsilon |p_j|^2 - 2\varepsilon \Re \langle z, p_j \rangle$ is maximal q-subharmonic in V_1. From (d) of Proposition 3 we get

$$(v - u_{(\varepsilon)})(p_j) \leq \sup_{z \in B_2 \setminus \overline{B}_1} (v(z) - u_{(\varepsilon)}(z) - \varepsilon |z - p_j|^2).$$

On the other hand, because $z \in B_2 \setminus \overline{B}_1$, it follows that $|z - p_j|^2 \geq \frac{r^2}{4}$ for all $j \geq 1$. Hence

$$-u_{(\varepsilon)}(z) - \varepsilon |z - p_j|^2 \leq -u_{(\varepsilon)}(z) - \varepsilon \frac{r^2}{4}$$

for all $z \in B_2 \setminus \overline{B}_1$ and for all $j \geq 1$. It follows that

$$(v - u_{(\varepsilon)})(p_j) \leq \sup_{z \in B_2 \setminus \overline{B}_1} (v(z) - u_{(\varepsilon)}(z) - \varepsilon |z - p_j|^2) \leq \sup_{z \in B_2 \setminus \overline{B}_1} (v - u_{(\varepsilon)})(z) - \varepsilon \frac{r^2}{4}$$

$$\leq \sup_{K_1} (v - u_{(\varepsilon)}) - \varepsilon \frac{r^2}{4} \leq \sup_{K_1 \cup K_2} (v - u_{(\varepsilon)}) - \varepsilon \frac{r^2}{4}.$$

Letting $j \rightarrow \infty$, we infer that

$$\sup_{K_1 \cup K_2} (v - u_{(\varepsilon)}) \leq \sup_{K_1 \cup K_2} (v - u_{(\varepsilon)}) - \varepsilon \frac{r^2}{4},$$
and we get a contradiction. Hence, (2) is proved.

\textit{Step 2.} Let $x_0 \in G$. We need to prove

\begin{equation}
 v(x_0) \leq u(x_0).
\end{equation}

By Step 1, we get

\begin{align*}
 (v - u)(x_0) &\leq \sup_{G}(v - u) \\
 &\leq \sup_{\bigcup_{j=1}^{m} K_j}(v - u) \\
 &\leq \sup_{\Omega \setminus G}(v - u) \\
 &\leq 0.
\end{align*}

This shows that (3) is true and the proof is complete. \hfill \Box

From the above theorem we get the following useful corollary.

\textbf{Corollary 1} Assume that $u \in C(\Omega)$. Then $u \in MSH_q(\Omega)$ if and only if for every open subset $G \subseteq \Omega$ and every $v \in SH_q(G) \cap C^2(G)$ the following holds

\begin{equation}
 \sup_{K}(v - u) \leq \sup_{G \setminus K}(v - u),
\end{equation}

where $K \subseteq G$ is an arbitrary relatively compact open subset of G.

\textbf{Proof} From Theorem 1 and (d) of Proposition 3, it follows that the necessity is clear. Thus it suffices to prove that if (4) holds then $u \in MSH_q(\Omega)$. Let $v \in SH_q(\Omega)$, $G \subseteq \Omega$. By (d) of Proposition 3, we have to prove

\begin{equation}
 \sup_{G}(v - u) \leq \sup_{\Omega \setminus G}(v - u).
\end{equation}

To get a contradiction, we assume that

\begin{equation}
 \sup_{\Omega \setminus G}(v - u) < \delta < \sup_{G}(v - u).
\end{equation}

Choose open subsets G_1, G_2 of Ω such that $G \subseteq G_1 \subseteq G_2 \subseteq \Omega$. Since $u \in C(\Omega)$ so we have $\sup_{G_2}|u_{\varepsilon} - u| < \delta$ for all ε sufficiently small, where $u_{\varepsilon} = u \ast \varrho_{\varepsilon}$. Moreover, because $v - u < 0$ on $\Omega \setminus G$, so we have

$$v_{\varepsilon} < u_{\varepsilon} < u + \delta \quad \text{on} \quad G_2 \setminus G_1$$

for all ε sufficiently small. Hence by (4) we have

\begin{align*}
 \sup_{G}(v - u) &\leq \sup_{G_1}(v_{\varepsilon} - u) \\
 &\leq \sup_{G_2 \setminus G_1}(v_{\varepsilon} - u) \\
 &\leq \sup_{G_2}(v_{\varepsilon} - u) < \delta < \sup_{G}(v - u),
\end{align*}

and we get a contradiction. Thus,

\begin{equation}
 \sup_{G}(v - u) \leq \sup_{\Omega \setminus G}(v - u),
\end{equation}
and Proposition 3 implies that \(u \in MSH_q(\Omega) \). The proof is complete.

Compared to Proposition 1.4.9 in [2] we have the following.

Corollary 2 Assume that \(\{u_j\}_{j=1}^\infty \) is a decreasing sequence of maximal \(q \)-subharmonic functions in \(\Omega \). Then \(u = \lim_{j \to \infty} u_j \) either is a maximal \(q \)-subharmonic function or \(\equiv -\infty \) on \(\Omega \).

Proof Assume that \(u \not\equiv -\infty \). By (d) of Proposition 3, it is enough to prove that for every open subset \(G \subseteq \Omega \) and every \(v \in SH_q(\Omega) \) we have

\[
\sup_G (v - u) \leq \sup_{\Omega \setminus G} (v - u) \tag{5}
\]

Let \(\{b_k\}_{k=1}^\infty \subset G \) be such that \(\sup_G (v - u) = \lim_{k \to \infty} (v - u)(b_k) \). Fix a \(k \). Since \(u_j \in MSH_q(\Omega) \) so by (d) of Proposition 3 we have

\[
(v - u_j)(b_k) \leq \sup_G (v - u_j) \leq \sup_{\Omega \setminus G} (v - u_j) \leq \sup_{\Omega \setminus G} (v - u)
\]

for every \(j = 1, 2, \ldots \). Letting \(j \to \infty \), we get

\[
(v - u)(b_k) \leq \sup_{\Omega \setminus G} (v - u).
\]

Hence we have

\[
\sup_G (v - u) = \lim_{k \to \infty} (v - u)(b_k) \leq \sup_{\Omega \setminus G} (v - u).
\]

Thus (5) is proved and the desired conclusion follows.

The following fact is well known.

Lemma 1 Assume that \(A = (a_{jk})_{j,k=1}^n \) is a complex \(n \times n \)-matrix such that \(A = \overline{A}^t \). Put \(B = (a_{jk})_{j,k=1}^{n-1} \). Let \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \) be the eigenvalues of \(A \) and \(\mu_1 \leq \mu_2 \leq \cdots \leq \mu_{n-1} \) the eigenvalues of \(B \). Then

\[
\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \mu_{n-1} \leq \lambda_n.
\]

In particular, if the matrix \(B \) has one nonnegative eigenvalue then so does the matrix \(A \).

Proof Without loss of generality, we may assume that \(B = \text{diag}(\mu_1, \ldots, \mu_{n-1}) \) and

\[
A = \begin{bmatrix}
\mu_1 & 0 & \cdots & 0 & \overline{x_1} \\
0 & \mu_2 & \cdots & 0 & \overline{x_2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \mu_{n-1} & \overline{x_{n-1}} \\
x_1 & x_2 & \cdots & x_{n-1} & b
\end{bmatrix}
\]

First, we prove that

\[
\det A = \mu_1 \mu_2 \cdots \mu_{n-1} b - \sum_{j=1}^{n-1} \mu_1 \cdots \widehat{\mu_j} \cdots \mu_{n-1} |x_j|^2. \tag{6}
\]
Indeed, we have

$$\det A = \mu_1 \pmatrix{\mu_2 & \ldots & 0 & \bar{x}_2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \ldots & \mu_{n-1} & \bar{x}_{n-1} \\ x_2 & \ldots & x_{n-1} & b} + (-1)^n x_1 \pmatrix{\mu_2 & \ldots & 0 & \bar{x}_2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \ldots & \mu_{n-1} & \bar{x}_{n-1}}\pmatrix{0 & \ldots & 0 & \bar{x}_1}$$

$$= \mu_1 \pmatrix{\mu_2 & \ldots & 0 & \bar{x}_2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \ldots & \mu_{n-1} & \bar{x}_{n-1} \\ x_2 & \ldots & x_{n-1} & b} - |x_1|^2 \mu_2 \cdots \mu_{n-1}.$$

Hence by induction we get

$$\det A = \mu_1 \mu_2 \cdots \mu_{n-1} b - \sum_{j=1}^{n-1} \mu_1 \cdots \hat{\mu}_j \cdots \mu_{n-1} |x_j|^2.$$

Thus, (6) follows.

Now consider the equation $f(\lambda) = \det(A - \lambda I) = 0$. By (6), we get

$$f(\lambda) = \prod_{j=1}^{n-1} (\mu_j - \lambda)(b - \lambda) - \sum_{j=1}^{n-1} (\mu_1 - \lambda) \cdots \hat{\mu}_j \cdots (\mu_{n-1} - \lambda) |x_j|^2.$$

Since $f(\mu_j) \cdot f(\mu_{j+1}) \leq 0$ for all $j = 1, 2, \ldots, n - 2$, and moreover $f(-\infty) \cdot f(\mu_1) \leq 0$, $f(\mu_{n-1}) \cdot f(+\infty) \leq 0$, hence there exist n solutions λ_j, $j = 1, 2, \ldots, n$ of the equation $f(\lambda) = 0$ such that

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \mu_{n-1} \leq \lambda_n.$$

The proof is complete.

We need the following fact.

Lemma 2 Let $u \in C^2(\Omega)$ and assume that its complex Hessian has least one nonnegative eigenvalue at each point. Then for every open subset $G \Subset G_1 \Subset \Omega$ we have

$$\sup_G u \leq \sup_{G_1 \setminus G} u.$$

Proof From the hypothesis and Lemma 2.6 in [6], it follows that u is an $(n-1)$-plurisubharmonic function in Ω. The desired conclusion of the lemma follows from Lemma 2.7 in [6].

Next we give a condition under which a C^2 q-subharmonic function is maximal q-subharmonic.

Theorem 2 Let Ω be an open set in \mathbb{C}^n and let q be an integer with $1 \leq q \leq n - 1$. Assume that $u \in C^2(\Omega)$. Then $u \in \text{MSH}_q(\Omega)$ if and only if its complex Hessian has the sum of q smallest eigenvalues equal to 0 at each point.
Maximal q-Subharmonicity in \mathbb{C}^n

Proof Suppose that we arrange the eigenvalues of $\left(\frac{\partial^2 u}{\partial z_j \partial \overline{z}_k} (z) \right)_{j,k=1,...,n}$ as follows: $\lambda_1(z) \leq \lambda_2(z) \leq \cdots \leq \lambda_n(z)$. We have to prove that $u \in MSH_q(\Omega)$ if and only if $\lambda_1(z) + \lambda_2(z) + \cdots + \lambda_q(z) = 0$ for all $z \in \Omega$.

Necessity. Assume that $u \in MSH_q(\Omega)$. Then by Proposition 2 it follows that $\lambda_1(z) + \lambda_2(z) + \cdots + \lambda_q(z) \geq 0$ for all $z \in \Omega$. To get a contradiction, we assume that there exists $a \in \Omega$ such that $\lambda_1(a) + \lambda_2(a) + \cdots + \lambda_q(a) > 0$. Choose $\varepsilon > 0$ such that

$$
\lambda_1(a) + \lambda_2(a) + \cdots + \lambda_q(a) > \varepsilon q > 0.
$$

Hence there exists $r_\varepsilon > 0$ such that $u - \varepsilon(|z - a|^2 - r_\varepsilon^2) \in SH_q(\mathbb{B}(a, r_\varepsilon))$. It is clear that

$$
u - \varepsilon(|z - a|^2 - r_\varepsilon^2) \leq u \quad \text{in } \Omega \setminus \mathbb{B}(a, r_\varepsilon).
$$

Since $u \in MSH_q(\Omega)$ so it follows that

$$
u - \varepsilon(|z - a|^2 - r_\varepsilon^2) \leq u \quad \text{in } \mathbb{B}(a, r_\varepsilon),
$$

and we get a contradiction. Hence $\lambda_1(z) + \lambda_2(z) + \cdots + \lambda_q(z) = 0$ for all $z \in \Omega$.

Sufficiency. Assume that $\lambda_1(z) + \lambda_2(z) + \cdots + \lambda_q(z) = 0$ for all $z \in \Omega$. By Corollary 1, it is enough to prove that for every open subset $G \subset \Omega$ and every $v \in SH_q(G) \cap C^2(G)$ we have

$$
sup_{K \subset G} (v - u) \leq sup_{G \setminus K} (v - u)
$$

for all open subsets $K \subset G$. Moreover, by Lemma 2, it suffices to check that the matrix

$$
\left(\frac{\partial^2 v}{\partial z_j \partial \overline{z}_k} (z) - \frac{\partial^2 u}{\partial z_j \partial \overline{z}_k} (z) \right)_{j,k=1}^{n}
$$

has at least one nonnegative eigenvalue at each $z \in G$.

Let $a \in G$ and fix a. By a unitary change of coordinates, we can assume that $\lambda_j(a) = \frac{\partial^2 u}{\partial z_j \partial \overline{z}_j} (a)$ and $\frac{\partial^2 u}{\partial z_j \partial \overline{z}_k} (a) = 0$ for all $j \neq k$. Let $L = a + \mathbb{C}^q \times (0, \ldots, 0) \subset \mathbb{C}^n$. Then L is a q-dimensional complex subspace in \mathbb{C}^n containing a. By the hypothesis, we have $v|_{L \cap G} \in SH(L \cap G)$. Since $\Delta u|_{L \cap G} (a) = \sum_{j=1}^q \lambda_j(a) = 0$ it follows that

$$
\Delta (v - u)|_{L \cap G} (a) = \Delta v|_{L \cap G} (a) \geq 0.
$$

Hence the matrix $\left(\frac{\partial^2 v}{\partial z_j \partial \overline{z}_k} (a) - \frac{\partial^2 u}{\partial z_j \partial \overline{z}_k} (a) \right)_{j,k=1}^{n}$ has at least one nonnegative eigenvalue. Thus, by Lemma 1, the matrix $\left(\frac{\partial^2 v}{\partial z_j \partial \overline{z}_k} (a) - \frac{\partial^2 u}{\partial z_j \partial \overline{z}_k} (a) \right)_{j,k=1}^{n}$ has at least one nonnegative eigenvalue, and the desired conclusion follows. \hfill \Box

Acknowledgements The authors express many thanks to referees for useful remarks which led to the improvement of the exposition of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Ahn, H., Dieu, N.Q.: The Donnelly–Fefferman theorem on q-pseudoconvex domains. Osaka J. Math. 46, 599–610 (2009)
2. Blocki, Z.: The complex Monge–Ampère Operator in Pluripotential Theory. Lecture Notes (1998). (unpublished). http://gamma.im.uj.edu.pl/~blocki

 Springer
3. Blocki, Z.: A note on maximal plurisubharmonic functions. Uzbek. Math. J. 1, 28–32 (2009)
4. Cegrell, U.: The general definition of the complex Monge–Ampère operator. Ann. Inst. Fourier (Grenoble) 54, 159–179 (2004)
5. Ho, L.H.: $\overline{\partial}$-problem on weakly q-convex domains. Math. Ann. 290, 3–18 (1991)
6. Hunt, L.R., Murray, J.J.: q-plurisubharmonic functions and a generalized Dirichlet problem. Mich. Math. J. 25(3), 171–184 (1978)
7. Klimek, M.: Pluripotential Theory. Clarendon, New York (1991)