Indications that paraoxonase-1 contributes to plasma high density lipoprotein levels in familial hypercholesterolemia

Thomas M. van Himbergen,1,*† Mark Roest, * Jacqueline de Graaf, † Eugène H. J. M. Jansen, ‡ Hiroaki Hattori,** John J. P. Kastelein, †† Hieronymus A. M. Voorbij, * Anton F. H. Stalenhoef, † and Lambertus J. H. van Tits††

Research Laboratory of the Department of Clinical Chemistry,* University Medical Center Utrecht, Utrecht, The Netherlands; Department of Medicine, † Division of General Internal Medicine, University Medical Center Nijmegen, Nijmegen, The Netherlands; Laboratory for Toxicology, Pathology, and Genetics, ‡ National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Department of Advanced Medical Technology and Development, ‡‡ BML, Inc., Saitama 350-1101, Japan; and Department of Vascular Medicine, †† Academic Medical Center, Amsterdam, The Netherlands

Abstract HDL-associated paraoxonase type 1 (PON1) can protect LDL and HDL against oxidative modification in vitro and therefore may protect against cardiovascular disease. We investigated the effects of PON1 levels, activity, and genetic variation on high density lipoprotein-cholesterol (HDL-C) levels, circulating oxidized LDL (OxLDL), subclinical inflammation [high-sensitive C-reactive protein (Hs-CRP)], and carotid atherosclerosis. PON1 genotypes (L55M, Q192R, −107C/T, −162A/G, −824G/A, and −907G/C) were determined in 302 patients with familial hypercholesterolemia. PON1 activity was monitored by the hydrolysis rate of paraoxon, diazoxon, and phenyl acetate. PON1 levels, OxLDL, and Hs-CRP were determined using an immunoassay. The genetic variants of PON1 that were associated with high levels and activity of the enzyme were associated with higher HDL-C levels (P values for trend: 0.008, 0.020, 0.042, and 0.037 for L55M, Q192R, −107C/T, and −907G/C, respectively). In addition to the PON1 genotype, there was also a positive correlation between PON1 levels and activity and HDL-C (PON1 levels: r = 0.37, P < 0.001; paraoxonase activity: r = 0.23, P < 0.01; diazoxonase activity: r = 0.29, P < 0.001; arylesterase activity: r = 0.19, P = 0.03). Our observations support the hypothesis that both PON1 levels and activity preserve HDL-C in plasma.—van Himbergen, T. M., M. Roest, J. de Graaf, E. H. J. M. Jansen, H. Hattori, J. J. P. Kastelein, H. A. M. Voorbij, A. F. H. Stalenhoef, and L. J. H. van Tits. Indications that paraoxonase-1 contributes to plasma high density lipoprotein levels in familial hypercholesterolemia. J. Lipid Res. 2005. 46: 445–451.

Supplementary key words atherosclerosis • antioxidants • polymorphisms

Serum paraoxonase type 1 (PON1) is a HDL-associated enzyme capable of hydrolyzing lipid peroxides in LDL (1). Because oxidized low density lipoprotein (OxLDL) has atherogenic and proinflammatory properties (2), PON1 may protect against atherosclerosis. This hypothesis is supported by observations in PON1-deficient mice, which are more prone to develop atherosclerosis than wild-type mice when fed a high-fat/high-cholesterol diet (3). An additional antiatherogenic property of PON1 is the inhibition of the oxidative modification of HDL and hence the preservation of HDL function (4). HDL protects against cardiovascular disease (CVD) by means of reverse cholesterol transport (5). Even though the physiological role of PON1 in vivo remains to be clarified, the inhibition of both LDL and HDL oxidation may contribute to protection against CVD.

PON1 expression is partly controlled by its molecular variation at the gene locus (6). Two polymorphic sites have been described in the coding region: a leucine (L)-to-methionine (M) transition at position 55 (L55M) and a glutamine (Q)-to-arginine (R) transition at position 192 (Q192R). The L55M polymorphism affects the enzyme concentration, whereas the Q192R polymorphism affects the catalytic efficiency, but not the concentration (7, 8). Four polymorphisms in the promoter sequence of the PON1 gene (−107C/T, −162A/G, −824G/A, −907G/C) also contribute to the variability in protein expression. During an earlier study, our group found a relation between the PON1 genotype combination LLQQ and increased intima-media thickness (IMT), a surrogate marker of CVD.

Abbreviations: CCA-IMT, common carotid artery intima-media thickness; CVD, cardiovascular disease; FH, familial hypercholesterolemia; HDL-C, high density lipoprotein-cholesterol; Hs-CRP, high-sensitive C-reactive protein; LDL-C, low density lipoprotein-cholesterol; OxLDL, oxidized low density lipoprotein; PON1, paraoxonase type 1.

† To whom correspondence should be addressed.

Copyright © 2005 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org
in high-risk subjects with familial hypercholesterolemia (FH) (9). However, there is no consensus on the contribution of these genetic variants to the risk of CVD (10).

In addition to genetic influences, PON1 levels and activity could be modified by lifestyle determinants such as smoking (11, 12), vitamin C and E consumption (13), and alcohol intake (14). Therefore, studying PON1 levels and activity, in conjunction with variation at the gene level, gives a more complete view of the role of PON1 in the development of atherosclerosis.

The beneficial effects of PON1 on the inhibition of atherosclerosis might be more pronounced in a population that is prone to develop atherosclerosis than the general population. For this reason, we studied the role of PON1 in patients with FH. These patients are characterized by substantially increased serum low density lipoprotein-cholesterol (LDL-C) concentrations and sharply increased CVD risk. Our aim was to investigate the influence of PON1 genotypes and PON1 levels and activity on high density lipoprotein-cholesterol (HDLC) levels, circulating OxLDL, inflammation markers [high-sensitive C-reactive protein (Hs-CRP)], and common carotid artery intima-media thickness (CCA-IMT) in patients with FH.

METHODS

Subjects

The study population consisted of 325 men and women with FH who participated in a prospective, randomized, double-blind, two-center trial as described elsewhere (15). Of the 325 participants, 23 were excluded because there was no DNA available for PON1 genotyping. After an 8 week placebo run-in (in which all lipid-lowering drugs were discontinued), baseline height, weight, and serum samples were stored at −80°C until analysis. Studies have shown that PON1 levels and activity can only be measured correctly in serum samples (16, 17). Because only one trial center collected additional serum for the determination of PON1 levels and activity, these measurements could be performed for only 134 of the 302 participants. All participants gave written informed consent, and the ethics committees of both trial centers approved the study.

Lipids and lipoproteins

Total cholesterol, LDL-C, HDL-C, and triglycerides were analyzed as described previously (18).

Ultrasound measurement of the carotid IMT

Ultrasound scanning of the common carotid arteries (CCAs) was performed using a Biosound Phase-Two real-time scanner (BiosoundEsaote, Indianapolis, IN) equipped with a 10 MHz transducer, as described in detail elsewhere (19). The IMT was measured in both the anterior and posterior walls of the distal 1.0 cm straight part of both CCAs. Images were analyzed using a semiautomatic software program (Eurequa; TSA Co., Meudon, France). A complete set of measurements was available for 288 participants. The CCA-IMT was expressed as the mean of both the anterior and posterior walls of the left and right CCAs.

PON1 genotype

The L55M and Q192R mutations were determined by means of the polymerase chain reaction followed by restriction frag-

ment length polymorphism using primers and restriction enzymes as described by Humbert et al. (8). DNA fragments were separated on a 2% agarose gel and visualized with ethidium bromide. The 55L allele corresponded to the presence of a nondigested 170 bp fragment, the 55M allele to a 44 bp and a 126 bp fragment, the 192Q allele to a nondigested 99 bp fragment, and the 192R allele to a 33 bp and a 66 bp fragment. A PCR product was obtained successfully for 299 (L55M) and 298 (Q192R) DNA samples.

PCR followed by hybridization with allele-specific oligonucleotides was used to analyze the promoter polymorphisms −107C/T, −162A/G, −824G/A, and −907G/C. Primers for the amplification of a 156 bp fragment coding for the polymorphisms at positions −107 and −162 were 5′-GAAATGTCGAGCTCTTCGCG-3′ and 5′-CTAGAAGGCTCTGCTGCGT-3′. Primers for the amplification of a 170 bp fragment coding for the polymorphisms at positions −824 and −907 were 5′-ACATGGAGCAAATCCATTCA- CAG-3′ and 5′-ACACATAAAGCAAGAAGGGGA-3′. The PCR products for polymorphisms −107 and −162 and for polymorphisms −824 and −907 were obtained successfully in 301 and 299 DNA samples, respectively. The fragments were transferred onto Hybond N+ membranes (Amersham Pharmacia Biotech, Buckinghamshire, UK) and hybridized with the allele-specific oligonucleotides. The allele-specific oligonucleotides for the −162 and −907 polymorphisms were as follows: 5′-GCAAGGCCAAGGCTTCTGTTG-3′ (−162A), 5′-GCAAGGCCAAGGCTTCTGCGT-3′ (−162G), 5′-AGAAGAGAGAGATTTGGTTG-3′ (−907G), and 5′-AGAAGAGAGAGAGATTTGGTTG-3′ (−907C). For positions −107 and −824, we used the same allele-specific oligonucleotides as described by Leviev and James (20). All of the oligonucleotides were hybridized at 42°C, followed by two washes at room temperature and an allele-specific temperature wash.

Analysis of PON1 levels

PON1 levels were determined at the Department of Advanced Medical Technology and Development, BML, Inc. (Saitama, Japan) using an ELISA. This procedure has been described in detail elsewhere (21). PON1 levels were successfully measured in 131 serum samples. The intra-assay and interassay coefficients of variation were 5.5% and 5.1%, respectively.

Analysis of PON1 enzymatic activity

Paraoxonase and diazoxonase activities were analyzed spectrophotometrically at the Laboratory for Toxicology, Pathology, and Genetics of the National Institute for Public Health and the Environment (Bilthoven, The Netherlands) using paraoxon and diazoxon as substrates in a Tris buffer (0.1 M, pH 8.5) containing 2 M NaCl and 2 mM CaCl2 (22). After the addition of the serum sample (diluted 10-fold for paraoxonase and 20-fold for diazoxonase activity), the reaction was monitored on a microtiter plate for 5 min at 25°C. PON1 activity and diazoxonase activities are expressed as units per liter of serum, where 1 unit equals 1 μmol of substrate hydrolyzed per minute.

 Arylesterase activity was measured at the Research Laboratory of the Department of Clinical Chemistry, UMC Utrecht (Utrecht, The Netherlands) as the rate of hydrolysis of phenyl acetate into phenol. This process can be detected spectrophotometrically (23). Serum samples were prepared in sample buffer consisting of 20 mM Tris and 0.9 mM CaCl2 (pH 8.0) in a 40-fold dilution. Five microliters of diluted serum was then added to 200 μl of freshly made substrate buffer containing 1 mM phenyl acetate, 20 mM Tris, and 0.9 mM CaCl2 (pH 8.0). The reaction was monitored on a microtiter plate at 260 nm in a Fluostar microplate reader (BMG Labtech GmbH, Offenburg, Germany) at 37°C. The nonenzymatic hydrolysis of phenyl acetate, based on the hydrolysis rate in the absence of serum, was subtracted from the to-
TABLE 1. Baseline characteristics of the FH population (n = 302)

Characteristics	Values
Sex (male/female)	121/181
Smoking (current/past/non)	98/87/117
Body mass index (kg/m²)	25.7 ± 9.5
Systolic blood pressure (mm Hg)	130.7 ± 15.9
Diastolic blood pressure (mm Hg)	79.0 ± 7.9
Total cholesterol (mmol/l)	10.14 ± 1.99
HDL-C (mmol/l)	1.16 ± 0.31
LDL-C (mmol/l)	8.19 ± 1.95
Triglycerides (mmol/l)	1.86 ± 1.22

FH, familial hypercholesterolemia; HDL-C, high density lipoprotein-cholesterol; LDL-C, low density lipoprotein-cholesterol. Values are means ± SD, except for sex, which represents the number of males and females, and smoking, which represents the number of current smokers, past smokers, and nonsmokers.

Results
The study population consisted of 121 men and 181 women with FH (Table 1). The mean age was 48 years; 98 of the participants were current smokers, 87 were past smokers, and 117 were nonsmokers. The subjects were slightly overweight but had normal blood pressure. Levels of triglycerides and HDL-C were normal. The average LDL-C level was higher than 8 mmol/l, which is characteristic for FH.

Table 2 shows the relationships between the PON1 genotypes (L55M, Q192R, −107C/T, −162A/G, −824G/A, and −907G/C) and PON1 levels and activities. All PON1 genotype distributions were in Hardy-Weinberg equilibrium. The 55L variant of the L55M polymorphism contributed to increased PON1 levels (P < 0.001) and increased paraoxonase, diazoxonase, and arylesterase activities (P < 0.001, P = 0.018, and P = 0.029, respectively). The 192R isoform of the Q192R polymorphism hydrolyzed paraoxon at a greater rate.

PON1 Genotype	PON1 Levels n	µg/ml	Paraoxonase Activity n	U/l	P	Diazoxonase Activity n	U/l	P	Arylesterase Activity n	U/ml	P			
L55M	LL	87.3 ± 22.4	58	792.6 ± 351.8	59	7.561 ± 2.173	59	<0.001	6.840 ± 1.630	57	0.018	96.0 ± 25.2	57	0.029
	LM	72.1 ± 18.6	57	<0.001	536.2 ± 288.2	57	6.563 ± 1.253	17	0.001	58.9 ± 32.8	17	0.001		
	MM	61.9 ± 16.8	15	190.5 ± 44.4	17	7.957 ± 1.881	52	0.001	70.5 ± 29.4	52	0.001			
Q192R	QQ	74.2 ± 23.7	50	246.5 ± 79.0	52	6.902 ± 1.643	66	<0.001	72.3 ± 30.6	66	0.001	86.7 ± 0.001		
	QR	79.3 ± 21.1	66	0.130	764.5 ± 206.9	66	5.083 ± 1.088	15	0.001	70.7 ± 28.6	14	0.001		
	RR	82.9 ± 20.1	13	1,184.9 ± 245.1	14	8.267 ± 1.854	38	0.001	85.9 ± 31.3	38	0.001			
−107C/T	CC	92.1 ± 21.6	38	771.7 ± 398.4	38	6.912 ± 1.582	63	<0.001	66.5 ± 25.0	63	0.001			
	CT	75.7 ± 17.1	61	<0.001	594.6 ± 320.9	63	6.004 ± 1.404	32	0.001	66.5 ± 29.0	32	0.001		
−162A/G	AA	101.8 ± 20.8	7	791.0 ± 483.4	7	8.657 ± 1.444	2	0.001	103.5 ± 29.7	7	0.001			
	GA	84.7 ± 20.9	46	<0.001	595.8 ± 349.0	46	8.151 ± 1.736	46	<0.001	74.3 ± 31.3	46	0.002		
	GG	70.2 ± 18.1	77	591.4 ± 355.2	80	6.327 ± 1.481	2	0.001	66.1 ± 26.3	80	0.002			
−824G/A	GG	68.9 ± 18.4	57	554.7 ± 367.9	60	6.256 ± 1.388	80	0.001	64.4 ± 28.5	80	0.001			
	GA	81.1 ± 20.9	60	<0.001	626.5 ± 342.9	60	7.567 ± 1.926	60	<0.001	72.9 ± 28.4	60	0.001		
−907G/C	AA	93.9 ± 19.6	13	722.1 ± 390.3	13	8.641 ± 1.206	13	0.001	95.9 ± 25.4	13	0.001			
	GG	91.6 ± 20.8	30	750.8 ± 398.0	30	8.072 ± 1.991	30	0.001	85.9 ± 29.5	30	0.001			
	CG	77.3 ± 17.9	63	<0.001	605.3 ± 321.9	65	7.324 ± 1.608	38	<0.001	70.1 ± 29.5	65	<0.001		
	CC	64.9 ± 19.3	37	484.1 ± 356.3	38	5.881 ± 1.161	38	0.001	60.3 ± 28.5	38	0.001			

PON1, paraoxonase type 1. Values represent means ± SD, followed by the number of observations (n). P values are based on linear regression.

Statistical analysis
The relations between PON1 genotype, PON1 levels, PON1 activity, HDL-C levels, OxLDL, Hs-CRP, and CCA-IMT were tested in a linear regression model in which PON1 genotype served as the independent variable and the PON1 levels, PON1 activity, HDL-C levels, OxLDL, Hs-CRP, and CCA-IMT served as the dependent variables. The influence of age and gender on this relationship was investigated in a multivariate regression analysis. The Pearson correlation coefficient (r) was used to test the relationship between the variables displayed in Tables 4, 5, and 7. Hs-CRP had a skewed distribution, so the presentation in the tables and statistical analysis were based on log-transformed data. All of the analyses were performed using SPSS version 11.5.
more efficiently, whereas the 192Q isoform hydrolyzed diazoxon more efficiently (P < 0.001 for both relations). The ratio of paraoxon and diazoxon hydrolyzation segregates with the Q192R polymorphism: there was 99.2% concordance between the paraoxon/diazoxon ratio and the Q192R genotypes. The Q192R polymorphism was not associated with PON1 levels or with arylesterase activity.

The −107C, −162A, −824A, and −907G variants of the −107C/T, −162A/G, −824G/A, and −907G/C polymorphisms in the promoter sequence expressed higher PON1 levels, diazoxonase activity, and arylesterase activity than the −107T, −162G, −824G, and −907C variants (P < 0.001 for all relations except arylesterase activity; the latter has P = 0.001 for −107C/T and −824G/A and P = 0.002 for −162A/G). The hydrolysis rate of paraoxon was significantly higher for the −107CC and −907GG homozygotes than for the other genetic variants at positions −107 and −907 (P < 0.001 and P = 0.002, respectively). The ratio of paraoxon/PON1 levels did not differ among the variants of these polymorphisms (data not shown). Furthermore, the −162A/G and −824G/A polymorphisms were not associated with paraoxonase activity. Finally, there was a strong correlation between PON1 levels and PON1 arylesterase (r = 0.52, P < 0.001) and PON1 diazoxonase (r = 0.69, P < 0.001) activities.

The contribution of PON1 genotypes to HDL-C levels is presented in Table 3. The 55L, 192R, −107C, and −907G variants of the L55M, Q192R, −107C/T, and −907G/C polymorphisms predicted increased HDL-C levels (P = 0.008, P = 0.020, P = 0.042, and P = 0.037, respectively). After adjustment for age and gender, the relation between PON1 genotypes and HDL-C levels remained significant. The −162A/G and −824G/A polymorphisms were not associated with HDL-C levels.

Like the PON1 genotypes, PON1 levels and paraoxonase, diazoxonase, and arylesterase activities also contributed to increased HDL-C levels (r = 0.37, P < 0.001; r = 0.23, P = 0.008; r = 0.29, P = 0.001; and r = 0.19, P = 0.031, respectively; Table 4).

Thus, we have demonstrated an association of PON1 genotypes and intermediate phenotypes with plasma HDL cholesterol. Next, we investigated the relation with circulating OxLDL and with Hs-CRP. We observed no significant association of PON1 genotypes with OxLDL or with Hs-CRP (data not shown). As presented in Table 5, PON1 levels and activity also did not correlate with OxLDL levels. Furthermore, we observed only weak but significant correlations of diazoxonase and arylesterase activities with Hs-CRP (Table 5).

Hence, we found remarkable associations of PON1 genotypes, PON1 levels, and PON1 activity with HDL-C levels but not with circulating OxLDL and Hs-CRP. We also investigated the relation of PON1 genotypes and intermediate phenotypes with CCA-IMT. We found no significant relation between PON1 genotypes and CCA-IMT (Table 6) and no correlation of PON1 levels and PON1 activities with CCA-IMT (Table 7). Moreover, HDL-C, OxLDL, and Hs-CRP did not correlate with CCA-IMT.

DISCUSSION

Previous investigations have demonstrated that high PON1 levels and high PON1 activity contribute to in-

TABLE 3. HDL-C levels according to PON1 genotypes

PON1 Genotype	HDL-C Levels (mmol/l)	n	PCrude	PAdjusted
L55M				
LL	1.20 ± 0.31	137	0.008	0.001
LM	1.15 ± 0.30	133		
MM	1.03 ± 0.25	29		
Q192R				
QQ	1.11 ± 0.27	129	0.020	0.033
QR	1.18 ± 0.31	149		
RR	1.24 ± 0.38	29		
−107C/T				
CC	1.21 ± 0.31	88	0.042	0.056
CT	1.15 ± 0.30	147		
TT	1.11 ± 0.30	66		
−162A/G				
AA	1.11 ± 0.31	16		
AG	1.20 ± 0.30	101	0.482	0.354
GG	1.14 ± 0.31	184		
−824G/A				
GG	1.13 ± 0.31	144		
GA	1.19 ± 0.31	123	0.103	0.087
AA	1.19 ± 0.29	32		
−907G/C				
GG	1.19 ± 0.30	73	0.037	0.024
GC	1.18 ± 0.30	142		
CC	1.09 ± 0.31	84		

Values represent means ± SD, followed by the number of observations (n). Crude P-values are based on linear regression. Adjusted P-values are based on linear regression and are adjusted for age and gender.

TABLE 4. HDL-C levels with regard to PON1 levels and activity

Variable	r	P	n
PON1 levels (µg/ml)	0.37	<0.001	131
Paraoxonase activity (U/l)	0.23	0.008	134
Diazoxonase activity (U/l)	0.29	0.001	134
Arylesterase activity (U/ml)	0.19	0.031	134

Values represent Pearson correlation coefficient (r), followed by the P value and the number of observations (n).

TABLE 5. OxLDL levels and Hs-CRP with regard to PON1 levels and activities

Variable	r	P	n
OxLDL			
PON1 levels (µg/ml)	0.002	0.98	107
Paraoxonase activity (U/l)	0.054	0.58	110
Diazoxonase activity (U/l)	−0.020	0.83	110
Arylesterase activity (U/ml)	−0.028	0.77	110

Hs-CRP, high-sensitive C-reactive protein; OxLDL, oxidized low density lipoprotein. Values represent Pearson correlation coefficient (r), followed by the P value and the number of observations (n).
A sample text from a research paper discussing the role of PON1 in cardiovascular disease (CVD) and its relation to high-density lipoprotein (HDL) cholesterol levels. The text includes tables and data regarding CCA-IMT (common carotid artery intima-media thickness) and PON1 genotypes. The study aims to elucidate the role of PON1 in atherothrombosis and its potential implications for prevention strategies.

Table 6. CCA-IMT according to PON1 genotype

PON1 Genotype	CCA-IMT	n	P Trend
L55M	0.86 ± 0.16	132	0.38
LM	0.87 ± 0.17	126	
MM	0.89 ± 0.23	28	
Q192R	0.88 ± 0.19	110	
QR	0.85 ± 0.16	146	0.35
RR	0.90 ± 0.17	29	
−107C/T	0.85 ± 0.14	85	
CC	0.86 ± 0.18	139	0.13
CT	0.89 ± 0.18	63	
−162A/G	0.85 ± 0.14	15	
AA	0.87 ± 0.16	96	0.99
−824G/A	0.87 ± 0.18	137	
GG	0.88 ± 0.18	118	0.44
−907G/C	0.85 ± 0.17	30	
GG	0.85 ± 0.15	70	
GC	0.86 ± 0.16	134	0.11
CC	0.90 ± 0.20	81	

CCA-IMT, common carotid artery intima-media thickness. Values represent means ± SD, followed by the number of observations (n). Trend P values are based on linear regression analysis and adjusted for age.

Table 7. CCA-IMT with regard to PON1 levels, PON1 activities, HDL-C, OxLDL, and Hs-CRP

Variable	Correlation	P	n
PON1 levels (μg/ml)	−0.04	0.67	130
Paraoxonase activity (U/l)	−0.03	0.75	129
Diazoxonase activity (U/l)	−0.06	0.49	129
Arylesterase activity (U/ml)	−0.10	0.28	129
HDL-C (mmol/l)	−0.09	0.11	288
OxLDL (U/l)	−0.03	0.79	110
Hs-CRP (mg/l)	0.04	0.62	152

Values represent Pearson correlation coefficient (r), followed by the P value and the number of observations (n).
ward phenyl acetate (47). Both the activity measurements and the Q192R genotyping were reliable, because there was 99.2% agreement between PON1 phenotyping and the ratio between the hydrolysis rate of paraoxon and diazoxon and Q192R genotyping. However, the physiological substrate of PON1 is unknown, and measurements of PON1 activity by monitoring the rates of hydrolysis of phenyl acetate, paraoxon, and diazoxon may not quantify the degree of antiatherogenic potential of PON1 and should be regarded as surrogate markers of PON1 protective activity. In this study, PON1 levels and PON1 activities were measured independently at three different laboratories. There was still a strong correlation among the PON1 levels assessed directly with ELISA and the PON1 activity measurements. Therefore, PON1 activity measurements qualify as suitable surrogate markers for PON1 levels in serum.

We believe that the chance of finding effects of PON1 on CVD increased in a population at high risk for developing atherosclerosis and CVD. For this reason, we investigated the effects of PON1 in a population of patients with FH. These patients have increased lipid levels and present a lipid environment that is different from that of the population at large. Results obtained from such a population may not be extrapolated to the general population.

In summary, PON1 is involved in the preservation of HDL-C in plasma and therefore may protect against CVD. The genetic variants associated with high PON1 levels and activity and the high plasma levels and increased activity of PON1 predicted the highest levels of HDL-C. Neither PON1 nor HDL-C was associated with CCA-IMT. Further studies are required to assess the relevance of the HDL-C-PON1 nor HDL-C was associated with CCA-IMT. Further studies are required to assess the relevance of the HDL-C-PON1 activity polymorphism. Atherosclerosis.

REFERENCES

1. Mackness, M. I., S. Arrol, and P. N. Durrington. 1991. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett. 286: 152–154.

2. Mertens, A., and P. Holvoet. 2001. Oxidized LDL and HDL-antagonists in atherosclerosis. FASEB J. 15: 2073–2084.

3. Shih, D. M., L. Gu, Y. R. Xia, M. Navab, W. F. Li, S. Hama, L. W. Castellani, C. E. Furlong, L. G. Costa, A. M. Fogelman, and A. J. Luis. 1998. Mice lacking serum paraoxonase are susceptible to atherosclerosis. Nature. 394: 284–287.

4. Aviram, M., M. Rosenblat, C. L. Biggier, R. S. Newton, S. L. Primoparmo, and B. N. La Du. 1998. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J. Clin. Invest. 101: 1581–1590.

5. Miller, G. J., and E. Miller. 1975. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1: 16–19.

6. Simpson, N. E. 1971. Serum arylesterase levels of activity in twins and their parents. Am. J. Hum. Genet. 23: 375–382.

7. Garin, M. C., R. W. James, P. Dussoux, H. Blanche, P. Passa, P. Froguel, and J. Ruiz. 1997. Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J. Clin. Invest. 99: 62–66.

8. Humblet, D., R. A. Adler, C. M. Distelhe, C. Hassett, C. J. Omalecinkski, and C. E. Furlong. 1993. The molecular basis of the human serum paraoxonase activity polymorphism. Nat. Genet. 3: 75–76.

9. Leus, F. R., M. E. Wittekoeck, J. Prijs, J. J. Kastelein, and H. A. Voorbij. 2000. Paraoxonase gene polymorphisms are associated with carotid arterial wall thickness in subjects with familial hypercholesterolemia. Atherosclerosis. 149: 571–577.

10. Wheelhouse, J. G., B. D. Keaveny, H. Watkins, R. Collins, and J. Danesh. 2004. Four paraoxonase gene polymorphisms in 11212 cases of coronary heart disease and 12786 controls: meta-analysis of 43 studies. Lancet. 363: 689–699.

11. James, R. W., I. Leiv, and A. Righetti. 2000. Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation. 101: 2252–2257.

12. Nishio, F., and Y. Watanabe. 1997. Cigarette smoke extract inhibits plasma paraoxonase activity by modification of the enzyme’s free thiols. Biochem. Biophys. Res. Commun. 236: 289–293.

13. Jarvik, G. P., N. T. Tsai, L. A. McKinstry, R. Wani, V. H. Brophy, R. J. Richter, G. D. Schellenberg, P. J. Heagerty, T. S. Hatuskami, and C. E. Furlong. 2002. Vitamin C and E intake is associated with increased paraoxonase activity. Arterioscler. Thromb. Vasc. Biol. 22: 1329–1333.

14. van der Gaag, M. S., A. van Tol, L. M. Scheck, R. W. James, R. Urgert, G. Schaafsma, and H. F. Hendriks. 1999. Daily moderate alcohol consumption increases serum paraoxonase activity: a diet-controlled, randomised intervention study in middle-aged men. Atherosclerosis. 147: 405–410.

15. Smilde, T. J., S. Van Wissen, H. Wollersheim, M. D. Trip, J. J. Kastelein, and A. F. Stalenhoef. 2001. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet. 357: 577–581.

16. Mackness, B., R. Hunt, P. N. Durrington, and M. I. Mackness. 1997. Increased immunolocalization of paraoxonase, clusterin, and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 17: 1233–1238.

17. Blatter Garin, M. C., C. Abbott, S. Messmer, M. Mackness, P. Durrington, D. Pometta, and R. W. James. 1994. Quantification of human serum paraoxonase by enzyme-linked immunosay: population differences in protein concentrations. Biochem. J. 304: 549–554.

18. Smilde, T. J., M. D. Trip, H. Wollersheim, S. Van Wissen, J. J. P. Kastelein, and A. F. Stalenhoef. 2000. Rational, design and baseline characteristics of a clinical trial comparing the effects of robust vs conventional cholesterol lowering and intima media thickness in patients with familial hypercholesterolaemia: the Atorvastatin versus Simvastatin on Atherosclerosis Progression (ASAP) Study. Clin. Drug Invest. 20: 67–79.

19. Smilde, T. J., H. Wollersheim, H. Van Langen, and A. F. Stalenhoef. 1997. Reproducibility of ultrasonographic measurements of different carotid and femoral artery segments in healthy subjects and in patients with increased intima-media thickness. Clin. Sci. (Lond.). 93: 317–324.

20. Levis, I., and R. W. James. 2000. Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler. Thromb. Vasc. Biol. 20: 516–521.

21. Kijaraoka, T., T. Oka, M. Ishihara, T. Egashira, T. Fujioka, E. Saito, S. Saito, N. E. Miller, and H. Hattori. 2000. A sandwich enzyme-linked immunosorbent assay for human serum paraoxonase activity polymorphism. J. Lipid Res. 41: 1358–1363.

22. Richter, R. J., and C. E. Furlong. 1999. Determination of paraoxonase (PON1) status requires more than genotyping. Pharmacogenetics. 9: 745–753.

23. Eckerson, H. W., C. M. Wyte, and B. N. La Du. 1983. The human serum paraoxonase/arylesterase polymorphism. Am. J. Hum. Genet. 35: 1126–1138.

24. Saha, N., A. C. Roy, S. H. Teo, J. S. Tay, and S. S. Ratnam. 1991. Influence of serum paraoxonase polymorphism on serum lipids and apolipoproteins. Clin. Genet. 40: 277–282.

25. Richter, R. J., and C. E. Furlong. 1999. Determination of paraoxonase (PON1) status requires more than genotyping. Pharmacogenetics. 9: 745–753.

26. Oda, M. N., J. K. Bielicki, T. T. Ho, T. Berger, E. M. Rubin, and T. M.
35. Malin, R., A. Loimaala, A. Nenonen, M. Mercuri, I. Vuori, M. Pasanen, P. Oja, G. Bond, T. Koivula, and T. Lehtimaki. 2001. Relationship between high-density lipoprotein paraoxonase gene M/L55 polymorphism and carotid atherosclerosis differs in smoking and nonsmoking men. Metabolism, 50:1095–1101.

36. Cao, H., A. Girard-Globa, A. Serusclat, S. Bernard, P. Bondon, S. Picard, F. Berthezene, and P. Moulin. 1998. Lack of association between carotid intima-media thickness and paraoxonase gene polymorphism in non-insulin dependent diabetes mellitus. Artherosclerosis, 138:361–366.

37. Markus, H., Z. Kapozsta, R. Ditrich, C. Wolfe, N. Ali, J. Powell, M. Mendell, and M. Cullinane. 2001. Increased common carotid intima-media thickness in UK African Caribbeans and its relation to chronic inflammation and vascular candidate gene polymorphisms. Stroke, 32:2463–2471.

38. Valabhji, J., A. J. McColl, M. Schachter, S. Dhanjil, W. Richmond, and R. S. Elkeles. 2001. High-density lipoprotein composition and paraoxonase activity in type 1 diabetes. Clin. Sci. (Lond.), 101:659–670.

39. Mackness, M. I., S. Arrol, and P. N. Durrington. 1991. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett. 286:152–154.

40. Mackness, M. I., S. Arrol, C. Abbott, and P. N. Durrington. 1993. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis, 104:129–135.

41. Watson, A. D., J. A. Berliner, S. Y. Hama, B. N. La Du, K. F. Faull, A. M. Fogelman, and M. Navab. 1995. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J. Clin. Invest, 96:2882–2891.

42. Luis, A. J. 2000. Atherosclerosis. Nature, 407:233–241.

43. Ross, R. 1999. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340:115–126.

44. Holvoet, P., J. Vanhaecke, S. Janssens, F. Van de Werf, and D. Collins, 1998. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation, 98:1487–1494.

45. Ridker, P. M., N. Rifai, L. Rose, J. E. Buring, and N. R. Cook. 2002. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 347:1557–1565.

46. Brophy, V. H., R. L. Jamps, J. B. Clendenning, L. A. McKinsy, G. P. Jarvik, and C. E. Furlong. 2001. Effects of 5’ regulatory-region polymorphisms on paraoxonase-gene (PON1) expression. Am. J. Hum. Genet. 68:1428–1436.

47. Davies, H. G., R. J. Richter, M. Keifer, C. A. Broomfield, J. Sowalla, and C. E. Furlong. 1996. The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat. Genet. 14:334–336.