Donor-doped ZnO thin films on mica for fully-inorganic flexible thermoelectrics

Biplab Paul, Volodymyr Khranovskyy, Rositsa Yakimova & Per Eklund

To cite this article: Biplab Paul, Volodymyr Khranovskyy, Rositsa Yakimova & Per Eklund (2019) Donor-doped ZnO thin films on mica for fully-inorganic flexible thermoelectrics, Materials Research Letters, 7:6, 239-243, DOI: 10.1080/21663831.2019.1594427

To link to this article: https://doi.org/10.1080/21663831.2019.1594427

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 24 Mar 2019.

Submit your article to this journal

Article views: 502

View related articles

View Crossmark data

Citing articles: 3 View citing articles
Donor-doped ZnO thin films on mica for fully-inorganic flexible thermoelectrics

Biplab Paul, Volodymyr Khranovskyy, Rositsa Yakimova and Per Eklund

ABSTRACT

The development of fully-inorganic thin flexible materials is important for flexible thermoelectric applications in a wide temperature range, such as harvesting power from hot curved surfaces (e.g. hot pipes). Here, we investigate the thermoelectric properties of a series of ZnO:Ga,Al thin films with varying dopant concentration deposited on flexible mica substrate by atmospheric pressure metalorganic chemical vapor deposition. The films are bendable, while sustaining the high power factor, above $1 \times 10^{-4} \text{Wm}^{-1} \text{K}^{-2}$ for singly doped Zn$_{0.99}$Ga$_{0.01}$O film in a wide temperature range, from room temperature to 400°C.

IMPACT STATEMENT

For the first time we demonstrate here that ZnO-film-on-mica can be a promising n-type candidate for fully-inorganic flexible thermoelectrics, especially, for applications at elevated temperatures.

1. Introduction

With the emergence of flexible electronics, conducting oxides have attracted attention [1–3] because their constituent raw materials are nontoxic, abundant and low-cost. In contrast, for thermoelectric applications, oxide materials are conventionally considered to be suitable for high-temperature ranges, where the active materials are subjected to a large temperature gradient (ΔT), say couple of hundred degrees Celsius. For applications near room temperature up to a few hundred degrees, they have received less attention because of the low-temperature value of thermoelectric figure of merit $ZT (= S^2 T / \rho \kappa)$, where S, ρ, κ, and T are the Seebeck coefficient, electrical resistivity, thermal conductivity, and absolute temperature, respectively) of conventional oxide materials. However, our recent investigations [4–6] show that fully-inorganic p-type Ca$_3$Co$_4$O$_9$ thin films can retain a high power factor (S^2/ρ) near room temperature and thus be useful both for near-room-temperature flexible thermoelectrics, e.g. wearable applications (harvesting electrical power from body heat) and at higher temperature for harvesting heat from hot curved surface (e.g. hot pipes) for power generation. For high output power, achieving high power factor is more important than high ZT [7].

There have been extensive investigations in the area of flexible thermoelectrics based on organic [8–12] and organic–inorganic hybrid materials [13–16]. The drawback of organic materials is that they cannot sustain high temperature, typically above 200°C, and easily degrade over time [17,18]. For applications at somewhat elevated temperatures (e.g. harvesting power from hot pipes), fully inorganic flexible films would be required [16]. Despite the recent success in the growth of fully-inorganic flexible p-type thin films [4,5,19] the progress in n-type oxide materials for fully-inorganic flexible thermoelectric applications is still elusive. Zinc oxide (ZnO) is a wide band gap semiconductor, which is well known as n-type material for transparent conducting coatings, upon doping by Al, Ga, In, etc. [20]. A high power factor of $20 \times 10^{-4} \text{Wm}^{-1} \text{K}^{-2}$ near room temperature is reported for...
bulk ZnO [21]. Thus, thin films of ZnO can be promising as n-type counterpart for fully-inorganic flexible thermoelectric applications, if they can be made mechanically flexible and the high power factor is retained.

Here, we investigate a series of single- and dual-doped ZnO:Al,Ga thin films grown on flexible and high-temperature stable muscovite mica substrates. Muscovite mica a layered structure, where aluminosilicate layers of muscovite mica are weakly bonded by van der Waals forces, leading to the easy cleavage along the (001) planes. Due to this weak interlayer bonding, muscovite mica is easily bendable and allow flexible applications [22,23].

2. Experimental section

ZnO films were deposited by atmospheric pressure metalorganic chemical vapor deposition (APMOCVD) using Zn acetylacetonate (ZnAA) as a solid-state single source precursor. Doping was realized by adding a corresponding amount of Ga(AA) and Al(AA) to the precursors mixture. Growth was performed at a substrate temperature of 550°C and Ar buffer gas flow rate 50 sccm, which was earlier reported as optimal conditions for the growth of high-quality ZnO films [24]. Four samples, namely Zn$_{0.99}$Ga$_{0.01}$O, Zn$_{0.97}$Al$_{0.02}$Ga$_{0.01}$O, Zn$_{0.96}$Al$_{0.03}$Ga$_{0.01}$O, Zn$_{0.96}$Al$_{0.02}$Ga$_{0.02}$O, were prepared following the films growth procedure described elsewhere [24,25].

The crystal structure and morphology of the films were characterized by $\theta - 2\theta$ X-ray diffraction (XRD) analyses using monochromatic Cu Kα radiation ($\lambda = 1.5406$ Å), and scanning electron microscopy (SEM, LEO 1550 Gemini). $\theta - 2\theta$ XRD scans were performed with a Philips PW 1820 diffractometer. The composition of the films was determined by EDS in SEM, with an accuracy $\pm 5\%$. The temperature-dependent in-plane electrical resistivity and Seebeck coefficient were simultaneously measured using an ULVAC-RIKO ZEM3 system.

3. Results and discussion

Figure 1(a) shows optical images of the films Zn$_{0.99}$Ga$_{0.01}$O, Zn$_{0.97}$Al$_{0.02}$Ga$_{0.01}$O, Zn$_{0.96}$Al$_{0.03}$Ga$_{0.01}$O, Zn$_{0.96}$Al$_{0.02}$Ga$_{0.02}$O. The transparency of the films visibly varies for different films with varying Al and Ga-content. The films are bendable as due to the flexible nature of the mica substrate, but with no deterioration of thermoelectric performance of the films. Figure 2(b) shows the bended Zn$_{0.97}$Al$_{0.02}$Ga$_{0.01}$O film of thickness 1.4 μm with mica substrate of thickness 60 μm, showing its mechanical flexibility. The film is bendable to the bending radius of 14 mm without developing cracks in the film, as confirmed by an optical microscope.

Figure 2 shows $\theta - 2\theta$ XRD patterns of a bare mica substrate and the films Zn$_{0.99}$Ga$_{0.01}$O, Zn$_{0.97}$Al$_{0.02}$Ga$_{0.01}$O, Zn$_{0.96}$Al$_{0.03}$Ga$_{0.01}$O, Zn$_{0.96}$Al$_{0.02}$Ga$_{0.02}$O. XRD peaks at 2θ angles 23.68, 34.45, 56.52, 62.79, 72.4° are reflections from (100), (002), (110), (004) planes of ZnO, respectively. The films were found to be polycrystalline, however, with preferential orientation along [0001] directions. The presence of a secondary (100) orientation in the films Zn$_{0.97}$Al$_{0.02}$Ga$_{0.01}$O, Zn$_{0.96}$Al$_{0.03}$Ga$_{0.01}$O is evident, as seen by the presence of a (100) peak in the θ-2θ XRD patterns. The 002 peaks of the films
Figure 3. SEM images of the films (a) Zn_{0.99}Ga_{0.01}O, (b) Zn_{0.97}Al_{0.02}Ga_{0.01}O, (c) Zn_{0.96}Al_{0.03}Ga_{0.01}O, (d) Zn_{0.96}Al_{0.02}Ga_{0.02}O.

Figure 4. Temperature-dependent (a) electrical resistivity, (b) Seebeck coefficient, and (c) power factor of all films from room temperature to 400°C.

Zn_{0.97}Al_{0.02}Ga_{0.01}O and Zn_{0.96}Al_{0.03}Ga_{0.01}O are relatively broader than the other films, which is attributed to the reduced grain size of the films.

This microstructure is a result of a self-textured competitive growth of polycrystalline material [26]. The nucleation results in initial growth of grains with different
orientation, forming the first layers of the film. Later, the grains which have their (002) plane up—the lowest surface energy crystal plane—are growing faster, thus occupying the volume and forming the c-axis textured film, with c-axis perpendicular to the substrate plane. Figure 3(a–d) shows the top-view SEM images of the films Zn_{0.99}Ga_{0.01}O, Zn_{0.97}Al_{0.02}Ga_{0.01}O, Zn_{0.96}Al_{0.03}Ga_{0.01}O, Zn_{0.96}Al_{0.02}Ga_{0.02}O, respectively. The insets of the figures show magnified images of small portions of the respective films. Varying surface morphology of the films is apparent from Figure 3.

Figure 4(a) shows the temperature-dependent electrical resistivity of the deposited films. The electrical resistivity of the film Zn_{0.99}Ga_{0.01}O is the lowest throughout the temperature range measured. Earlier, we have reported that 1 wt. % of Ga precursor results in the lowest resistivity of ZnO films [25]. This can be explained as due to efficient providing of donors upon Ga substitution of Zn in the crystal lattice. Further increase of Ga content results in increased resistivity, which is apparently due to incorporation of Ga atoms as interstitials.

The electrical resistivity increases in Zn_{0.97}Al_{0.02}Ga_{0.01}O due to the additional incorporation of Al to Zn_{0.99}Ga_{0.01}O, with subsequent change from Zn:Ga system to Zn:Al,Ga system. With further increase in Al-content of the film Zn_{0.95}Al_{0.03}Ga_{0.01}O its electrical resistivity increased to the highest value throughout the temperature range measured. This increase in electrical resistivity is consistent with the observation reported elsewhere [27], and may be related to the formation of Al-rich secondary phases acting as scattering center for charge carriers. With the increase in Ga-doping in Zn_{0.96}Al_{0.02}Ga_{0.02}O the electrical resistivity is slightly decreased as compared to Zn_{0.97}Al_{0.02}Ga_{0.01}O. This indicates that Ga goes to lattice site, contributing additional electrons to take part in transport process.

Figure 4(b) shows the temperature-dependent Seebeck coefficient of all the films. The film Zn_{0.97}Al_{0.02}Ga_{0.01}O exhibits the highest absolute value of the (negative) Seebeck coefficient throughout the temperature range measured. The Seebeck coefficient of all the films varies with temperature following a similar trend as electrical resistivity.

Figure 4(c) shows the temperature dependent power factor of the films. The film Zn_{0.99}Ga_{0.01}O exhibits the highest power factor, above 1×10^{-4} W m$^{-1}$ K$^{-2}$, throughout the temperature range measured. Although the room temperature value of the power factor of the film Zn_{0.99}Ga_{0.01}O is somewhat lower than the value for ZnO thin films on rigid Si substrates reported by Lee et al. [28], it is comparable to the value reported elsewhere [29,30,31], and can be suitable as n-type candidate for fully-inorganic flexible thermoelectric applications in a wide temperature range.

4. Conclusions

Thermoelectric properties of a series of ZnO-films on flexible mica substrates with varying dopant concentration, grown by APMOCVD method, have been investigated. Dual doping by Al and Ga at Zn-site is found to increase the electrical resistivity of the films, yielding reduced power factor throughout the temperature range measured. The singly doped Zn_{0.99}Ga_{0.01}O film is found to exhibit the lowest electrical resistivity, yielding the highest power factor with room temperature value $\sim 1 \times 10^{-4}$ W m$^{-1}$ K$^{-2}$. With this high power factor the singly doped ZnO:Ga film is a promising n-type candidate for flexible thermoelectric applications.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The research leading to these results has received funding from the European Research Council (ERC) under the European Community’s Seventh Framework Programme (FP/2007-2013)/ERC Grant 335383, the Swedish Research Council (VR) under Project 2016-03365, the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU 200900971), the Knut and Alice Wallenberg foundation through the Academy Fellow program, and the Swedish Foundation for Strategic Research (SSF) through the Future Research Leaders 5 program. Dr. V. Khramovskyy acknowledges Swedish Research Council (VR) Marie Skłodowska Curie International Career Grant #2015-00679”GREEN 2D FOX” and ÅForsk (Grant 14-517).

ORCID

Biplab Paul http://orcid.org/0000-0003-0858-3792

Per Eklund http://orcid.org/0000-0003-1785-0864

References

[1] Lorenz M, Ramachandra Rao MS, Venkatesan T, et al. The 2016 oxide electronic materials and oxide interfaces roadmap. J. Phys. D: Appl. Phys. 2016;49:433001–433053.
[2] Dixon SC, Scanlon DO, Carmalt CJ, Parkin IP. n-type doped transparent conducting binary oxides: an overview. J Mater Chem C. 2016;4:6946–6961.

[3] Zhang KHL, Xi K, Blamire MG, et al. P-type transparent conducting oxides. J Phys: Condens Matter. 2016;28:383002.

[4] Paul B, Lu J, Eklund P. Nanostructural tailoring to induce flexibility in thermoelectric Ca₃Co₄O₉ thin films. ACS Appl Mater Interfaces. 2018;1:12261–12268.

[5] Liu W, Kim HS, Jie Q, et al. Importance of high power factor in thermoelectric materials for power generation application: A perspective. Scr Mater. 2016;111:3–9.

[6] Zhang Q, Sun YM, Xu W, et al. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater. 2018;1:1400022–1400028.

[7] Vitoratos E, Sakkopoulos S, Dalas E, et al. Thermal degradation mechanisms of PEDOT:PSS. Org. Electron. 2009;10:61–66.

[8] Hokazono M, Anno H, Toshima N. Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices. J Electron. Mater. 2014;43:2196–2201.

[9] Gordon RG. Criteria for choosing transparent conductors. MRS Bull. 2000;25:52–57.

[10] ochtaki M, Araki K, Yamamoto K. High thermoelectric performance of dually doped ZnO ceramics. J Electron. Mater. 2009;38:1234–1238.

[11] Petrov I. Microstructural evolution during film growth. J. Vac. Sci. Technol. A. 2003;21:S117–S128.

[12] Yokga N, Naeenkiengb D, Kidkhunthodc P, et al. Thermoelectric properties of Al and Mn double substituted ZnO. Ceram. Int. 2017;43:1695–1702.

[13] Lee S-H, Lee J-H, Choi S-J, et al. Studies of thermoelectric transport properties of atomic layer deposited gallium-doped ZnO. Ceram. Int. 2017;43:7784–7788.

[14] Li L, Fang L, Zhou XJ. X-ray photoelectron spectroscopy study and thermoelectric properties of Al-doped ZnO thin films. J Electron Spectrosc. Relat. Phenom. 2009;173:7–11.

[15] Mele P, Saini S, Honda H. Effect of substrate on thermoelectric properties of Al-doped ZnO thin films. Appl. Phys. Lett. 2013;102:253903–4.