A Framework for Risk-Based Assessment of Urban Floods in Coastal Cities

M. Dinesh Kumar
Institute for Resource Analysis and Policy

Shubham Tandon
United Nations Development Program

Nitin Bassi (✉ nitinbassi@irapindia.org)
Institute for Resource Analysis and Policy https://orcid.org/0000-0002-3908-3697

Pradipta Kumar Mohanty
United Nations Development Program

Saurabh Kumar
Institute for Resource Analysis and Policy

Manish Mohandas
United Nations Development Program

Research Article

Keywords: Eastern India, coastal cities, climate induced disasters, urban flood risk index, flood management

DOI: https://doi.org/10.21203/rs.3.rs-547336/v1

License: ☺️ ⓘ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
A Framework for Risk-based Assessment of Urban Floods in Coastal Cities

M. Dinesh Kumar, Shubham Tandon, Nitin Bassi, Pradipta Kumar Mohanty, Saurabh Kumar, and Manish Mohandas

Authors:
1] M. Dinesh Kumar
 Executive Director
 Institute for Resource Analysis and Policy (IRAP)
 Hyderabad-500082, Telangana, India
 Email: dineshcgiar@gmail.com

2] Shubham Tandon
 Project Officer, Disaster Risk Reduction and Climate Change Adaptation
 United Nations Development Programme (UNDP)
 New Delhi-110003, India
 Email: shubham.tandon@undp.org

3] Nitin Bassi (Corresponding Author)
 Principal Researcher
 Institute for Resource Analysis and Policy (IRAP)
 Liaison Office, Delhi-110085, India
 Email: nitinbassi@irapindia.org
 Mobile: +91 9999629934
 ORCID iD: https://orcid.org/0000-0002-3908-3697

4] Pradipta Kumar Mohanty
 City Project Coordinator
 United Nations Development Programme (UNDP)
 Cuttack City-753001, Odisha, India
 Email: pradipta.mohanty@undp.org

5] Saurabh Kumar
 Researcher
 Institute for Resource Analysis and Policy (IRAP)
 Hyderabad-500082, Telangana, India
 Email: saurabhfri9@gmail.com

6] Manish Mohandas
 Programme Officer, Resilience
 United Nations Development Programme (UNDP)
 New Delhi-110003, India
 Email: manish.mohandas@undp.org
A Framework for Risk-based Assessment of Urban Floods in Coastal Cities

Abstract

Many coastal cities in developing countries are at the risk of flooding due to a progressive increase in the built-up areas and poor management of stormwater. The flooding situation in coastal cities gets accentuated further due to climate induced natural disasters such as cyclones and climate change induced sea-level rise that adversely impact the city’s natural drainage potential. This study developed a composite urban flood risk index consisting of three sub-indices and 20 key natural, physical, social, and economic influencing variables for a coastal city (i.e. Cuttack) in eastern India, the intensity of storm runoff being one among the many. The intensity-duration-frequency curve developed shows that the city can experience floods with a peak discharge of 1,320 cubic metre per second every alternate year for a rainfall intensity of 2-hour duration. The urban flood risk index computed for all the city wards shows that out of the 59 wards, only one ward has low flood risk (index value < 0.40) and 20 wards are at high risk (index value 0.55 and above) from the urban flood. Thereafter, factors leading to high risk due to urban floods were identified and the institutional capacities available with the urban utility for fighting floods analyzed.

Key Words: Eastern India, coastal cities, climate induced disasters, urban flood risk index, flood management

1 Introduction

Coastal cities play an important role in a country’s economy through their contribution to marine output and the tourism sector (Samonte-Tan et al. 2007; Papageorgiou 2016). However, owing to their unique geographic location, i.e. within the flood plains of large rivers, low elevation areas, and proximity to the coastline, they experience floods on a frequent basis. Flooding is regarded as among the most damaging of all natural disasters as it leads to loss of human life, livestock, property, and infrastructure (Douben 2006). As per the estimates, the total population exposed to coastal flooding would increase to 120 million by 2070 (Hanson et al. 2011), and the global economic exposure to river and coastal flooding on account of increase in population density is projected to be USD 158 trillion by 2050 (Jongman et al. 2012). Much of this impact will be in the coastal cities of Asia and Africa that continue to experience substantial inward migration (Tibbets 2002; Brecht et al. 2012).

As is the case worldwide, most of the large coastal cities in India are at the risk of flooding due to a progressive increase in the population, built-up areas, and inadequate or poorly designed stormwater drainage systems (Patankar 2015; Kumar et al. 2020). Most of the mega coastal cities in India, for example Mumbai and Chennai, have suffered major flood related-disasters during the last decade. In such cities, on one hand, the urbanisation leading to land use change is resulting in catchments losing their infiltration capacity that increases the magnitude of peak floods by up to eight times, and flood volumes by up to six times in comparison to flooding in rural areas or the riparian zones (NDMA 2010). Thus, the magnitude of storm runoff is high and it occurs very quickly due to a very short flow duration. On the other hand, the natural drainage potential of coastal cities is adversely impacted due to developments on reclaimed land (Daniela and Marco 2017) and climate change induced sea-level rise (Marfai and King 2008; Kumar et al. 2020). While, the former lead to changes in land use and increase in built up area, the latter cause inundation of land, both further complicating the flood management in coastal cities.

Floods pose serious challenges to growth and socio-economic development in urban areas (Hammond et al. 2005; Kumar et al. 2020). It disrupts urban transport; power supply and public...
water supply services, and the functioning of sewerage systems. While it hits the economic activities, the public health impact of urban floods can also be serious (Shoaf and Rotiman 2000; Kumar et al. 2020). The ‘poor localities’ are generally the worst affected, as the quality of services (water supply, sewerage, drainage facilities) available to them is often very poor, and their ability to cope up with emergencies is poor. The people living in low-lying areas also get affected badly by urban floods due to poor natural drainage.

Within flood research, it has been widely accepted that absolute flood protection cannot be achieved (Schanze 2006). Instead, growing attention has been given to the new paradigm of flood risk management based on the effective establishment of both risk mitigation (structural technical flood defence measures such as dams, dikes, or polders) and adaptation (non-structural, “soft” measures such as preparation of the local people, flood insurances, information management, social networks) measures (Krysanova et al. 2008; Li et al. 2016).

In the past, attempts have been made in India to assess flood risk through flood hazard mapping (Sanyal and Lu 2006; Saxena et al. 2013) and vulnerability assessment of flood hazard (Saini and Kaushik 2012; Rani et al. 2015; Singh et al. 2018). However, to prepare for the risk posed by climate-induced disasters (urban flooding in this case), it is important to assess the hazard, exposure, and vulnerability that risk is composed of (Messner and Meyer 2006; Mauro 2014).

The objective of this research study is to develop an analytical framework for assessing urban flood risks in coastal cities that can support the design of strategies for climate resilience of coastal cities. Section 2 of the paper presents the methodology specifically the framework for the development of the urban flood risk index and its computation. Section 3 discuss results obtained from the analysis of daily rainfall data of the selected coastal city (Cuttack) in eastern India, intensity-duration-frequency of the storm event, peak flood flow volume, developed urban flood risk index, and computed value of the index for various administrative units (referred to as wards) of Cuttack city. Section 4 discusses various natural, physical, economic, social, and institutional factors that increase the flood risk in Cuttack, the institutional capability available with the city municipal corporation to fight floods, and the usefulness of the risk-based assessment approach in better management of floods in coastal cities. The last section presents the study conclusion.

2 Methodology

2.1 Description of the study area

Cuttack city is located at latitude 20°31’23” and 20°52’30” North and longitude 85°47’17” and 85°78’80” East in the coastal plains region of Odisha in eastern India. It lies in the delta formed by the river Mahanadi and its distributary river Kathajodi. As per the Census of India 2011, the city has a geographical area of 192.5 sq. km and an overall population of 6.1 lakh that is distributed among 59 administrative units referred to as wards (GoI 2011) (Figure 1). The city experiences a tropical wet and dry climate and receives an average annual rainfall of about 1800 mm.

The city has a total drainage network of about 1,280 km, out of which only 1.5 percent is natural and the remaining is the constructed one. The city core area is drained by Main Drain 1 and 2 which empties into river Kathajodi and river Mahanadi, respectively. However, due to the inadequate sewerage infrastructure and poor maintenance of the existing drainage network, large parts of the city face problem of waterlogging during the rainy season.

Further, the city is highly prone to natural disasters such as floods and cyclones due to its topography and geographical location. It is saucer-shaped, has highly fertile deltaic land that is densely populated (3100 people per sq. km), crisscrossed by hundreds of rivers and rivulets, and a short distance (about 80 km) from the Bay of Bengal. Also, a large portion of the city has low lying areas with an average elevation of only about 36 meters above mean sea level and thus gets
submerged easily during floods. As per the flood hazard atlas of Odisha, the city falls in ‘high’ (inundated 7-9 times during 2001-2018) to ‘very high’ (inundated 10-14 times during 2001-2018) flood hazard categories (NRSC 2019).

![Map showing ward wise land use land cover of the Cuttack city](image)

Fig.1 Map showing ward wise land use land cover of the Cuttack city
(Source: Developed by authors)

2.2 Development of intensity-duration-frequency curve and estimation of peak flood flow

The intensity of flood-causing rains and the peak flood volume in the study area were estimated using the historical data on rainfall. For this, the intensity-duration-frequency (IDF) curve of rainfall was developed using the daily rainfall data from 1901 to 2019 for Cuttack city. Out of the 119 years that were considered, the rainfall data was not available for 18 years (1970-1987). For estimating the missing rainfall data, the linear regression method was used to establish a correlation between the daily rainfall data of the Cuttack and Bhubaneswar (which is at an aerial distance of 19km from Cuttack city) cities. Then the missing data for Cuttack were estimated using a linear regression equation. Nevertheless, even for the city of Bhubaneswar, daily rainfall data was missing for five years (1970, 1971, 1972, 1975, and 1976).

Using the available 114 years data set on daily rainfall, the maximum daily precipitation that occurred in a particular year was identified for all the years. From the daily (24 hours) precipitation data, hourly rainfall depth corresponding to 1, 2, 6, and 12 hours was estimated using the Indian Meteorological Department’s empirical reduction formula that is presented in equation (1). The
method is widely used for estimating the short duration rainfall values, especially in areas where
the data is scarce or is limited in extent (Rathnam et al. 2001; Chowdhury et al. 2007; Andimuthu
et al. 2019; Namitha and Vinothkumar 2019).

\[P_t = P_{24}^{\frac{3}{24}} \sqrt{\frac{t}{24}} \] \hspace{1cm} (1)

Where, where \(P_t \) is required rainfall depth in mm at t-h duration, \(P_{24} \) is daily rainfall in mm, \(t \) is the
duration of rainfall in h.

To determine the return period (frequency) of storms of different intensities and duration,
Gumbel’s probability distribution was used (Chow et al. 2013). As a first step, the frequency
factors \(K_T \) for the desired return periods \(T \) was computed using the equation (2). For this
purpose, the return period of 2, 5, 10, 25, and 50 years were considered.

\[K_T = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{T}{T-1} \right) \right] \right\} \] \hspace{1cm} (2)

In the second step, the rainfall intensity corresponding to the different durations and their return
period was estimated using equation (3) which is based on Chow et al. (2013).

\[X_T = \Box X + K_T S \] \hspace{1cm} (3)

Where, \(X_T \) is rainfall intensity at a given return period, \(\Box X \) is the mean of a particular time, \(S \) is the
standard deviation, and \(K_T \) is a frequency factor.

From the estimated rainfall intensity of different duration and frequency, the peak flood flow for
the city was estimated using equation (4) based on Rodriguez-Iturbe et al. (1979).

\[Q_T = 0.278 \times I_T \times A \] \hspace{1cm} (4)

Where, \(Q_T \) is the design peak discharge in m³/s, with a return period of T years; \(I_T \) is the average
rainfall intensity of design rainfall in mm/h, with a return period of T years and with rainfall
duration being equal to the time of concentration, and \(A \) is the catchment area in km². The time of
concentration \((T_C) \) was estimated using equation (5) which is based on Kirpich (1940).

\[T_C = 0.02L^{0.77} S^{-0.385} \] \hspace{1cm} (5)

Where, \(T_C \) is a time of concentration (min), \(L \) is the maximum length of travel (m), and \(S \) is a
slope, that is equal to \(H/L \), where \(H \) is the difference in elevation between the most remote point in
the watershed/basin and the outlet.

2.3 Urban flood risk index development: A framework

Risk comprises three components, hazards, exposure, and vulnerability. A framework for assessing
the urban flood risk index, including the three components of flood hazard, exposure of the city to
flood hazard, and vulnerability of the community to disruptions caused by flood hazards was
mainly developed based on research undertaken by the authors on assessing the climate induced
risk in water, sanitation and hygiene (WASH) (IRAP and UNICEF 2017a, b; Kumar et al. 2020;
Kumar et al. 2021), and vulnerability of rural households to the problem of water supply for
multiple uses due to climate variability (IRAP, GSDA, and UNICEF 2013; Kabir et al. 2016).
The degree of risks induced by intense storms and floods depends on a variety of natural, physical, social, economic, cultural, environmental, and institutional factors. Many of these factors can change from one locality to another with a region. Hence the degree of risk posed by urban floods can vary within the same city limits (Kumar et al. 2020).

The magnitude of climate-induced flood hazards is determined mainly by natural and physical factors. These include the probable rainfall intensities, surface morphological condition, groundwater levels, terrain slopes soil infiltration rates, the proportion of impervious cover, the occurrence of high tide (relevant for coastal cities), etc. (Kumar et al. 2020; Kumar et al. 2021).

The degree of exposure of the assets, services, and properties to urban flood hazards is determined by a whole range of natural, physical, socio-economic, and institutional factors. The exposure can be in the form of accumulation of flood waters in a locality; reduced supply of water from the public system for domestic water needs or reduced access to water supply from the public systems; resulting from the breakage/damage to water supply pipelines due to heavy storms, cyclones and floods or flooding of the localities where standposts are located; extent of damage to raw water treatment, and sewerage infrastructure (including drains, sewage treatment plants, etc.) ; the extent to which access to water sources and sanitation facilities by the households is affected; chances of contamination of drinking water during collection and conveyance, contamination of water supply lines from sewage due to pipeline breakage; contamination of water in drinking water wells with biological matter and pathogens; and precautions taken by the water utilities and disaster mitigation agencies to prevent flooding of low-lying areas, or prevent water contamination (IRAP and UNICEF 2017a, b; Kumar et al. 2020).

Similarly, the degree of vulnerability of the urban population to the disruptions in the services and damage to assets caused by flood hazards is determined by a whole range of natural, social, cultural, economic, and institutional factors (Kumar et al. 2020). This vulnerability can be due to lack of alternate sources of freshwater for drinking and domestic uses at the household level in the wake of the area getting inundated; population congestion, favourable climatic conditions/weather for the spread of disease, lack of social cohesion and ingenuity; and lack of facilities to treat contaminated water or financial resources to buy bottled drinking water or get medical treatment in the case of water-borne or water-based or water-related diseases (IRAP, UNICEF, and GSDA 2013; Kabir et al. 2016; Kumar et al. 2021).

Based on the urban flood risk assessment framework discussed above, a composite index was developed to assess the overall ‘climate-induced flood risk of urban areas’, which captures the degrees of hazard, exposure, and vulnerability.

2.4 Computation of the urban flood risk index

For the computation of the urban flood risk index, the data pertaining to the identified natural, physical, social, and economic conditions, and the overall cultural and institutional factors of different wards were collected. These included: the natural drainage pattern; overall topographical conditions; the water supply, sewerage, and stormwater drainage; power distribution and road network; the social profile; economic conditions of the wards; the conditions with regard to nature and degree of access to water supply and sanitation systems; population density; and climatic conditions.

The composite urban flood risk index (\mathcal{RI}_U) was estimated for various wards of the Cuttack city by separately computing the values of three sub-indices, viz., hazard sub-index (\mathcal{H}_i), exposure sub-index (\mathcal{E}_i), and vulnerability sub-index (\mathcal{V}_i) as:

$$
\mathcal{RI}_U = \mathcal{H}_i \times \mathcal{E}_i \times \mathcal{V}_i
$$

(6)
The value of each sub-index was computed by adding up the numerical values (score) assigned for each one of the factors and normalizing it, by considering equal weightage for each sub-index. This means the total computed value of each sub-index was divided by the number of factors considered for computing it. Hence, the maximum value possible for each sub-index and also for the risk index is 1.0 (indicating the highest level of risk). The computed urban flood risk index was used categorizing the city wards at high risk, moderate risk, and low risk. For this, the ward-wise computed index values were arranged in increasing order, and the average value of the first 20 wards (1st group) and the last 19 wards (the 3rd group) were taken as the benchmarks. The overall urban flood risk was considered to be low for the wards with index value up to 0.40, moderate for the wards having index value from 0.41 to 0.54, and high for the wards with index value 0.55 and above.

3 Results

3.1 IDF curve for the Cuttack city

The analysis of the daily rainfall data of Cuttack city shows that rainfall exhibits high inter-annual variability. Between 1901 and 2019, the maximum daily precipitation varied from 35 millimetres (mm) to 330 mm (Figure 2). The variability in maximum daily precipitation as indicated by the coefficient of variation in rainfall was estimated to be 48%.

Table 1 Mean and standard deviation of rainfall intensity of different durations

Rainfall Duration (hr)	1	2	6	12	24
Mean (mm/hr)	42.5	26.8	12.9	8.1	5.1
Standard Deviation	20.3	12.8	6.2	3.9	2.4

(Source: Authors own analysis)
Table 2 K_T values for different return periods

Return Period (years)	2	5	10	25	50
K_T	-0.16	0.72	1.31	2.04	2.59

(Source: Authors own analysis)

The overall results using the estimates of rainfall intensity, duration, and frequency are presented in an IDF curve (Figure 3). The analysis shows that every alternate year, a rainfall intensity of 39.2 mm/hr (considering rainfall of one-hour duration) can be expected. Every fifth year the rainfall intensity increases to 57.1 mm/hr, and every tenth year to 69 mm/hr. The high one-hour rainfall intensity of 84 mm/hr and 95.2 mm/hr is expected after every 25 and 50 years respectively.

![Fig.3 Intensity-Duration-Frequency curve for the Cuttack city](source)

(Source: Authors own analysis)

3.2 Estimated peak flood flow for the Cuttack city

The time of concentration (T_C), using equation (5), was estimated at 155 minutes or 2.6 hours. Since, T_C represents the time needed for water to flow from the most remote point in a watershed to its outlet, rainfall intensity corresponding to a duration of 2 hours and return period of 2, 5, 10, 25, and 50 years was considered for estimating the peak flood flow from the total catchment. The entire city of Cuttack was considered as one watershed for the estimation.

The estimated peak flood flow for the entire city of Cuttack is presented in Figure 4. Every alternate year a peak discharge of 1,320 cubic metres per second (cu m/s) is expected, while a very high peak discharge of 3,209 cu m/s can be expected after every 50 years. This means that every alternate year, a discharge of 7 cu m/s/km² and every 50 years 17 cu m/s/km² of the catchment area is expected in the city.
3.3 Urban flood risk index

An index for assessing the urban flood risk, including the three components of flood hazard, exposure of the city to flood hazard, and vulnerability of the community to disruptions caused by flood hazards are presented in Table 3. Overall 20 factors that influence risk associated with urban floods were considered based on the framework discussed in section 2.3. Out of these, four factors influence hazard, 10 factors influence exposure, and six factors influence vulnerability. Table 3 also provides the rationale for the selection of all the factors, and criteria used for assigning value to them.

Table 3 Urban flood risk index for coastal cities

Key influencing factors	Rationale for selection	Criteria for assigning value to factors
Flood hazard		
1] Magnitude of annual rainfall of the area	Greater the frequency of occurrence of rainfalls of high magnitudes, higher the chances of occurrence of floods	A coefficient: ratio of no. of years in which rainfall exceeds 1,000mm, out of 10 years, divided by 10
2] Frequency of occurrence daily rainfall with magnitude exceeding 100mm	Greater the frequency of occurrence of rainy events of high magnitude (above 100mm), higher the chances of occurrence of floods	1 incident in 20 years = 0.10; 1 in 10 years = 0.25; 1 in 5 year=0.50; 1 in 3 years =0.60; once in two years=0.80; one or more than once in a year =1.0
3] Characteristics of land use	Higher the proportion of built-up area, the higher will be the runoff	A coefficient: ranging from ‘0’ for all pervious area to ‘1’ for fully built up area
4] Elevation with reference to the mean sea level (MSL)	If the area is located above MSL or HFL of the river, then surface drainage will not be problematic; if below, then the danger of flooding is very high	A coefficient: ‘0’ if above MSL or HFL, and ‘1’ if below MSL or HFL
Exposure of the city to flood hazards		
1] The presence of storm water drainage system in	The stormwater drainage systems can reduce the exposure of the	Binary coefficient: Yes='0'; No='1’

Fig.4 Peak discharge with the return period for the Cuttack city
(Source: Authors own analysis)
the locality	locality to the urban flood hazard to an extent	A coefficient: ‘0’ if in good condition, otherwise ‘1’
2] Presence of natural drainage system in good condition	Presence of natural drainage system will also help evacuate the flood water from the locality	A coefficient: Ratio of the design rainfall intensity and the rainfall intensity with a return period of 50 years, subtracted from ‘1’. If the ratio is more than ‘1’, the value of the coefficient should be considered ‘0’
3] Rainfall intensity for which the stormwater drainage system was designed against the intensity of rainfall of the standard return period for the area	If the rainfall intensity for the drainage system designed is less than the design storm, then the system will not be in a position to evacuate floodwaters that occur from rare events	A coefficient: Open sewer= high exposure='1'; Sewer pipes = no exposure= ‘0’.
4] Type of sewerage systems in the locality	If the sewers are closed, then overflowing of sewers due to mixing of sewage with stormwater which contaminates the latter can be avoided	A coefficient: Open sewer= high exposure='1'; Sewer pipes = no exposure= ‘0’.
5] Proportion of people who are dependent on common water points for municipal water supply	Exposure of drinking water to contaminants will be more in the case of common water points (standposts)	A coefficient: ratio of people dependent on common water points to total population having access to water sources
6] Proportion of people dependent on common toilets outside the premises or open defecation	During floods, access to common toilets located outside the dwelling premises will be restricted	A coefficient: ratio of people dependent on common toilets to total population having access to sanitation facilities
7] Proportion of people living in temporary structures in the locality	Temporary structures are likely to get damaged during floods and living in such buildings can expose people to hazards	A coefficient: ratio of people living in temporary structures to the total population
8] Presence of dilapidated buildings in the locality	Presence of dilapidated buildings will increase the overall exposure to hazards	A coefficient: ratio of dilapidated building to total number of building
9] Presence of high-risk power installations	Will increase the disruptions in movements of people, and vehicles due to the danger of electrocution	Binary coefficient: Yes=’1’; No=’0’
10] Level of transformers & sub-stations w. r. to High Flood Level (HFL)	If located below the HFL, it will increase the chances of disruptions in power supply to the locality	A coefficient: ‘0’ If well above, ‘1’ if below.

Vulnerability of the community to disruptions caused by flood hazards

1] Proportion of people in the ward, living below poverty line	Poor people generally are more vulnerable to disruptions in life caused by natural hazards like floods	Coefficient: if there are no poor people, then the value of coefficient will be zero.
2] Provision for alternative power supply in case of ‘power blackouts’ due to floods	Access to alternate source of power supply will reduce the vulnerability to disruptions in power supply due to floods	Binary coefficient: Yes=’0’; No= ‘1’
3] Proportion of people having access to individualized sources of	Access to private and individual sources of water supply will reduce the vulnerability to	A coefficient: if no one, the value becomes ‘1’; if all households have, then the value will be taken
domestic water supply | disruptions in public water supply | as ‘0’
---|---|---
4] Ability of the Disaster Response Force (DRF) to reach the locality on time to undertake flood-fighting operations | Experience shows that the DRF’s ability to reach the affected areas for flood-fighting will reduce the impacts on life and properties | A coefficient: ‘0’ if DRF is present and is able to access the locality; ‘1’ if not present and also if present but unable to access
5] Availability of pumping machinery in the locality (ward) and boats | Availability of pumping machinery will increase the ability to fight localized flooding phenomena | A coefficient: ‘0’ if adequate availability of boats and pumping machinery; ‘1’ if completely absent
6] Population Density | Increase in population density will increase the chances of spreading of water-related diseases and vector borne diseases | A coefficient: ratio of the difference between population density of an administrative unit in the city (X) and the unit with the lowest population density (X_{MIN}), and the difference between the units with highest X_{MAX} and lowest population densities (X_{MIN})

(Source: Developed by Authors)

3.4 Urban flood risk in Cuttack city

The average sub-index value of flood hazard is 0.57 for the Cuttack city, highest for ward number (no.) 24 (0.813), and lowest for ward no. 57 (0.39) (refer Figure 5). Since for two of the four parameters influencing the hazards, i.e., magnitude of the annual rainfall of the area and frequency of occurrence of daily rainfall with a magnitude exceeding 100 mm, all the wards are assigned the same value, the major difference is due to the characteristics of land use (extent of impervious area) and the elevation with reference to high flood level (HFL) of the river. For all the wards, the average annual rainfall was above 1000 mm in eight out of the last 10 years (2010-2019), and the daily rainfall exceeding 100 mm occurs after every 2.5 years (refer Figure 2).

The extent of built-up area is highest in ward no. 12, 13, 14, 17, 18, 22, 23, 24, 26, 27, 29, 32, 34, 35, and 39 (refer Figure 1). Out of these, ward no. 24, 27, 32, 35, and 39 are also the ones with low lying areas (w.r.t. to the HFL). Thus, the hazard sub-index value is among the highest for these wards. It was 0.804 for ward no. 27, 0.811 for both ward no. 35 and for 39, 0.812 for ward no. 32, and 0.813 for ward no. 24. Thus, these five wards are the ones that are expected to generate surplus runoff and to be worst affected during an intense storm. Overall, 4 wards are categorised under low, 26 wards under moderate, and 29 wards under high flood hazard (Figure 6).
Fig. 5 Hazard sub-index value of different wards in Cuttack city
(Source: Authors’ computation)

Fig. 6 Categorisation of CMC wards as per the urban flood hazard sub-index
The sub-index for exposure has an average value of 0.44 for the city, with ward no. 6 having the highest (0.59) and wards no. 11 and 14 having the lowest values (each having 0.34) (refer Figure 7). Out of the 10 key parameters influencing the exposure of the city to flood, for three parameters, all wards have the same score. These parameters are: the condition of the natural drainage system that is poor in all the wards; the high risk power installations (high tension power line) that are present in all the wards; and, the stormwater drainage system that is designed for 8 mm rainfall for all the wards. However, the stormwater drainage system was absent in 11 wards, these include ward no. 1, 2, 5, 6, 48, 49, 50, 56, 57, 58, and 59.

In 45 wards, more than 50% of the existing sewerage system is open. It is more than 75% in 12 wards that include wards no. 7, 28, 48, 49, 51, 53, 54, 55, 56, 57, 58, and 59 (most of the wards in city fringes). Out of these, in ward no. 56, 57, 58, and 59 (all in city fringe area) more than 40% of the population access community toilets and/or practice open defecation. Also, in these four wards, more than 30% of the population access water from the common water supply points. Further, the proportion of people living in temporary structures varies from only 0.36% in ward no. 9 and 34.4% in ward no. 38. Also, ward no. 38 is the one with the highest percentage of dilapidated buildings (20.2%).

The sub-index value is above 0.55 for the eight wards, i.e., ward no. 58 (0.553), 48 (0.557), 57 (0.562), 59 (0.576), 56 (0.577), 2 (0.583), 49 (0.585), and 6 (0.594). All these wards are with no stormwater drainage system and have a substantial open sewerage system, increasing exposure of the locality in these wards to the urban flood hazard. Further, in ward no. 56, 57, 58, and 59, a high proportion of the people do not have access to improved water and latrine facilities that increase their exposure to poor quality water, leading to adverse impacts on health. Overall, 27 wards are categorised under low, 24 wards under moderate, and 8 wards under high exposure in case of the flood hazard (Figure 8).
Fig. 8 Categorisation of CMC wards as per the urban flood exposure sub-index
(Source: Map developed by Authors)

The vulnerability sub-index average value for the city is 0.46, highest for ward no. 20 (0.65) and lowest for ward no. 59 (0.30) (refer Figure 9). Out of the six parameters that were considered, two variables had the same score. These include provision for alternative power supply during floods (that was not there in any of the wards) and the ability of the district response force to reach the wards on time to undertake flood fighting operations. Further, the pumping machinery to drain flood water was available on almost all the wards (except for wards no. 2, 4, 5, 6, 20, and 32). However, the provision of boats to evacuate people stuck during floods was not available with any of the wards.
The other main factors influencing the vulnerability of the community to flood hazard are the proportion of poor people, i.e., people living below the poverty line (estimated by considering the slum population), and the population density of the wards. The population density was high in the wards falling in city core areas (no. 17, 19, 20, 23, 26, 27, and 30) and low in the wards towards the city fringes (no. 3, 48, 49, 50, 51, 55, 56, 57, 58, and 59). However, ward no. 17, 25, 38, 55, 56, 57, and 58 (a mix of those in core and city fringes) are the ones with more than 40% of the population living in slums.

A high population density and a large proportion of the population living in slums increase the chances of spreading of water-related diseases and vector-borne diseases. Considering the scores on these variables, the vulnerability of five wards, i.e., no. 17 (0.555), 19 (0.556), 23 (0.579), 26 (0.585), and 20 (0.652), is among the highest. Overall, 11 wards are categorised under low, 41 wards under moderate, and only 7 wards under high vulnerability (Figure 10).
The city level average value for the urban flood risk index is 0.49, with the highest value for ward no. 20 (0.63) and lowest for ward no. 55 (0.39) (refer Figure 11). Overall, risk index is high (value 0.55 and above) for 15 wards, i.e., no. 2, 4, 6, 15, 19, 20, 24, 27, 30, 32, 33, 35, 39, 41 and 42, most of them in the city core area (refer Figure 1). These are the wards with high urban flood hazard and where the vulnerability of the community to disruptions in urban services caused by flood hazards is also high (refer Figure 6 and 10). Only ward no. 55 has low risk (index value up to 0.40). Though a large number of wards (43 in total) fall in the moderate risk category, some of these wards in the city fringes (especially wards no. 48, 49, 56, 57, 58, and 59) have a high degree of exposure to flood hazards (Figure 12).
Fig. 11 Overall flood risk index of different wards in Cuttack city
(Source: Authors’ computation)

Fig. 12 Categorisation of CMC wards as per the flood hazard risk index
4 Discussions

4.1 Factors responsible for high urban flood risk in different wards of Cuttack city

Concerning the hazard component, all the wards with greater frequency of occurrence of rainfall (annual and daily) of high magnitude, high proportion of impervious area, and presence of low lying areas are expected to receive floods more frequently than the other wards. The built-up area is more than 70% in wards in the core of the city (refer Figure 1).

For the exposure component, the wards that lack stormwater drainage systems, have a substantial proportion of open sewerage systems, and have a high proportion of the people without any access to improved water and latrine facilities are at greater exposure to the urban flood hazard. Even the wards that have a stormwater drainage system, the design capacity (8 mm) is inadequate to capture the peak flood flow (60 mm for rainfall with a return period of 50 years). Further, none of the wards have a natural drainage system in good condition that increases exposure to floods.

Regarding the vulnerability component, high population density and a large proportion of the population living in slums (poor people) were the two major factors identified for increasing the vulnerability of the community to flood hazards as they increase the chances of spreading water-related diseases and vector-borne diseases. The ward-level highest population density was 69,051 persons/sq. km (based on data presented in GoI 2011 and CMC 2020) and it is expected to increase further in all the wards. Further, about 21% of the total population lives in slums at present (CMC 2020).

Thus, the risk-based assessment of floods in Cuttack city highlights that the stormwater drainage system is unable to handle severe floods that occur once in 20 or 50 years. Further, with major developments happening in the city with the growth of urban infrastructure, and the city becoming densely populated, the current capacity of the stormwater drainage system becomes inadequate. However, replacing the existing stormwater drainage system with a new one with higher capacity or strengthening the existing stormwater drainage network in areas where nothing existed may not be feasible. So, options to reduce the stormwater runoff generation need to be explored. Further, the city, being located in the delta of two rivers, poses challenges when it comes to draining out the collected stormwater. So there have to be specific interventions to drain out the water, along with strengthening the natural drainage system.

4.2 Institutional capacity available for fighting urban floods in Cuttack city

At the state (province) level, Odisha State Disaster Mitigation Authority (OSDMA) prepares response to various natural disasters including cyclones and floods. Also, there is a State Emergency Operations Centre (SEOC) that coordinates with OSDMA and provides support to other key disaster management agencies (identified by the OSDMA) in the event of a major disaster. At the district level, the Collector/District Magistrate (DM) is the head of the district disaster management cell and is in-charge of disseminating warnings and coordinating disaster events for the whole district. At the city level (like Cuttack), the Municipal Commissioner (MC) is a supervising authority for preparing response during a natural disaster. In Cuttack city, the office of the MC is assisted by the officers from other line departments in the city, including water resources, power, transport, Public Health Engineering Organisation (PHEO). For preparing an effective response and ensure coordination with all the agencies involved, a Control Room is set up in the MC’s office. All the complaints during a disaster, for instance on water logging, choking of drains, fallen trees, road culvert damages, etc. are received and registered by the Control Room. The Deputy Municipal Commissioner’s office is responsible for checking the complaints registered
daily and disseminate the information to the relevant agencies for them to undertake corrective
measures.

Further, the Cuttack Municipal Corporation (CMC) has prepared a City Disaster Management Plan
(CDMA) under a project on ‘Developing Resilient Cities through Risk Reduction in the context of
Disaster & Climate Change’. It acts as a guidebook for the city administration and concerned
stakeholders to prepare, plan, and prevent disasters along with the relief, rehabilitation, and
reconstruction post-disaster. Also, there is an ongoing Japan International Cooperation Agency
(JICA) assisted ‘Odisha Integrated Sanitation Improvement Project’ under which two main water
drains in the city are being renovated and rehabilitated. The objective is to modify the existing two
main drains to reduce the volume and duration of flooding for the two year design storm. However,
the progress in certain specific stretches is slow as the areas around the main drains (especially
main drain 1 that passes through the city core) are encroached and densely populated.

However, the CMC has not explored new methods of stormwater management that apply the
emerging concepts in integrated stormwater management, particularly the structural and non-
structural measures aimed at controlling floods. As a result, all the city wards (except one) are in
the moderate to a high flood risk category (refer Figure 12). In this context, the risk-based approach
to flood assessment as developed and discussed in this research study can be of major support to
the CMC.

4.3 How a risk-based approach can improve flood management in coastal cities

The coastal cities present a unique challenge to the design of stormwater drainage systems. Such
areas are vulnerable to the effects of tides, have high groundwater table, and relatively flat terrain
conditions that presents little scope for swift drainage or natural storage of flood waters. While
during high tides, low lying areas get inundated making disposal of stormwater difficult, during
intense storms, the discharge of stormwater through drains is ineffective (due to backflow of water
from the river/sea) resulting in water logging and flooding.

Risk-based assessment framework for urban floods, as demonstrated for a coastal city, help
identify the areas that need priority action, and also provide insights into the key physical, social,
economic, and institutional factors, which need to be altered through various interventions in
regions/zones identified as having ‘high risk’, to reduce the three different dimensions of climate
induced risk and to improve the climate-resilience of the coastal cities. The framework will help
guide the preparation of the Integrated Stormwater Management Plan focusing on the approaches
that would help reduce the flood risk; exposure of the assets, services, and properties to the flood;
and to an extent the steps that would reduce the vulnerability of the population.

As per the results from the computation of the urban flood risk index, both structural and non-
structural measures can be prioritised to manage stormwater. The structural measures are both
conveyance-oriented and storage-oriented. While the objective of the conveyance approaches is to
collect runoff generated by storm and its rapid conveyance to the point of discharge (river or sea)
thus minimising damage, the storage approaches focus on providing temporary storage of
stormwater runoff and subsequently slow release to the receiving water body (detention), or
infiltration into the surrounding soil (retention) (Figure 13). Non-structural measures usually focus
on capacity building at the institutional level, e.g., setting or strengthening early warning flood
systems; implementing land use regulations; designing and building climate-resilient water supply
infrastructure; and educating the masses about precautions to be exercised during disasters.

As demonstrated through the risk-based assessment approach, the integrated stormwater
management solutions that work for an area, however, would be dependent on a range of natural
(climatic, rainfall, soils, and geohydrology), physical factors (natural drainage system, the drainage
infrastructure and extent of built-up area in the city) and the institutional capacity available for planning, designing, and managing stormwater management systems.

Fig. 13 Various structural approaches to stormwater management
(Source: Based on the Government of Malaysia 2011)

5 Conclusions and Policy Implications

Given the frequent occurrence of climate related disasters such as floods in many of the coastal cities in the developing world, an index for assessing urban flood risk was developed and computed for the city of Cuttack in eastern India. The developed urban flood risk index consists of 20 key natural, physical, social, and economic influencing variables that are organised into three sub-indices (hazard, exposure, and vulnerability). The flood risk assessment for Cuttack city shows that 15 wards (25% of the total wards in the city) are at high risk from the urban flood and 43 (73%) are at moderate risk. Only one ward, i.e., 55, is at low risk. The flood hazard is moderate to high for 93% wards, exposure to flood hazard is moderate to high for 54% wards, and the vulnerability of the community is ‘moderate to high’ in 81% of the wards.

Further, the institutional capacity in terms of human resources and infrastructure to manage urban floods is inadequate in the city. Also, the design capacity of the secondary and tertiary stormwater drainage system is insufficient (8 mm against a 2 hourly rainfall intensity of about 60 mm for a 50-year return period), the natural drainage system is in the poor condition due to encroachments and a high proportion of the built-up area in the city core area. Also, replacing the existing stormwater drainage system with a new one with higher capacity, or strengthening the existing stormwater drainage network in areas where nothing existed may not be feasible, as has been experienced under the ongoing JICA assisted drains renovation project.

The developed urban flood risk index can be used for other coastal cities for mapping urban flood risk. The approach will allow for the ranking of cities or pockets within cities in the order of risk posed by urban floods, thereby identifying priority areas where stormwater management measures are required.
Declarations

Funding: This paper is based on a research study that received financial support under the USAID, the Ministry of Home Affairs (Government of India), and the UNDP partnership ‘Developing Resilient Cities through Risk Reduction in the context of Disaster and Climate Change’.

Conflicts of interest/Competing interests: There is no conflict of interest.

Availability of data and material: Not applicable

Code availability: Not applicable

Authors’ contributions: The research was conceptualized by Dr. M. Dinesh Kumar and Mr. Manish Mohandas. Dr. M. Dinesh Kumar and Mr. Nitin Bassi developed the methodology for the study. Data collection was undertaken by Dr. Saurabh Kumar and coordinated by Mr. Pradipta Kumar Mohanty. Data were analyzed by Mr. Nitin Bassi. All authors contributed equally to the writing of the paper.

References

Andimuthu R, Kandasamy P, Mudgal BV, Jeganathan A, Balu A, Sankar G (2019) Performance of urban storm drainage network under changing climate scenarios: Flood mitigation in Indian coastal city. Scientific Reports 9(1):1-10.

Brecht H, Dasgupta S, Laplante B, Murray S, Wheeler D (2012) Sea-level rise and storm surges: High stakes for a small number of developing countries. The Journal of Environment & Development 21(1):120-138.

Chow VT, Maidment DR, Mays LW (2013) Applied Hydrology, Seventh Edition. Tata McGraw-Hill Education, India.

Chowdhury RK, Alam MJ, Das P, Alam MA (2007) Short duration rainfall estimation of Sylhet: IMD and USWB method. Journal of the Indian Water Works Association 39(4):285-292.

Cuttack Municipal Corporation (CMC) (2020) City disaster management plan, Cuttack city 2019-20. CMC, Government of Odisha, India.

Daniela R, Marco V (2017) Land use and landscape pattern changes driven by land reclamation in a coastal area: the case of Volturno delta plain, Campania Region, southern Italy. Environmental Earth Sciences 76(20):1-19.

Douben KJ (2006) Characteristics of river floods and flooding: a global overview, 1985–2003. Irrigation and Drainage 55(S1):S9-S21.

Government of India (GoI) (2011) Census of India. Office of the Registrar General & Census Commissioner, Ministry of Home Affairs, Delhi, India.

Government of Malaysia (2011) Urban stormwater management manual for Malaysia, MSMA 2nd Edition. Department of Irrigation and Drainage, Government of Malaysia.

Hammond MJ, Chen AS, Djordjević S, Butler D, Mark O (2015) Urban flood impact assessment: A state-of-the-art review. Urban Water Journal 12(1):14-29.
Hanson S, Nicholls R, Ranger N, Hallegatte S, Corfee-Morlot J, Herweijer C, Chateau J (2011) A global ranking of port cities with high exposure to climate extremes. Climatic Change 104(1):89-111.

IRAP and UNICEF (2017a) Capacity building for planning of climate-resilient WASH services in rural Maharashtra. Final Report Submitted to UNICEF Field office, Mumbai. Institute for Resource Analysis and Policy, Hyderabad, India.

IRAP and UNICEF (2017b) Mapping of climate risk in the WASH sector of Rajasthan. Final Report Submitted to UNICEF Field office, Jaipur. Institute for Resource Analysis and Policy, Hyderabad, India.

IRAP, GSDA, & UNICEF (2013) Multiple-Use water services to reduce poverty and vulnerability to climate variability and change-A collaborative action research project in Maharashtra, India. Final Report Submitted to UNICEF Field office, Mumbai. Institute for Resource Analysis and Policy, Hyderabad, India.

Jongman B, Ward PJ, Aerts JC (2012) Global exposure to river and coastal flooding: Long term trends and changes. Global Environmental Change 22(4):823-835.

Kabir Y, Bassi N, Kumar MD, Niranjan V (2016) Multiple-Use water systems for reducing household vulnerability to water supply problems. In: Kumar MD, James AJ, Kabir Y (eds) Rural water systems for multiple uses and livelihood security. Elsevier, Netherlands, pp 69-78.

Kirpich ZP (1940) Time of concentration of small agricultural watersheds. Civil Engineering 10(6):362.

Krysanova V, Buiteveld H, Haase D, Hattermann FF, Van Niekerk K, Roest K, Martínez-Santos P, Schluter M (2008). Practices and Lessons Learned in Coping with Climatic Hazards at the River-Basin Scale: Floods and Droughts. Ecology and Society 13(2):32.

Kumar MD, Bassi N, Kumar S, Kar D (2020) Storm water management plan of Cuttack city, Odisha. Report prepared for the USAID-MHA-UNDP Partnership on Developing Resilient Cities through Risk Reduction in the context of Disaster and Climate Change. Institute for Resource Analysis and Policy, Hyderabad, India.

Kumar MD, Ganguly A, Kabir Y, Khare O (2021) A framework for assessing climate-induced risk for water supply, sanitation and hygiene. In: Kumar MD, Kabir Y, Hemani R, Bassi N (eds), Management of Irrigation and Water Supply Under Climatic Extremes: Empirical Analysis and Policy Lessons from India. Springer Nature, Switzerland, pp 179-207.

Li C, Cheng X, Li N, Du X, Yu Q, Kan G (2016) A framework for flood risk analysis and benefit assessment of flood control measures in urban areas. International Journal of Environmental Research and Public Health 13(8):787.

Marfai MA, King L (2008) Potential vulnerability implications of coastal inundation due to sea level rise for the coastal zone of Semarang city, Indonesia. Environmental Geology 54(6):1235-1245.

Mauro MD (2014) Quantifying risk before disasters occur: hazard information for probabilistic risk assessment, Bulletin Vol 63 (2). Risk Knowledge Section, United Nations Office for Disaster Risk Reduction (UNISDR), Geneva, Switzerland.
Messner F, Meyer V (2006). Flood damage, vulnerability and risk perception—challenges for flood damage research. In: Flood risk management: hazards, vulnerability and mitigation measures. Springer, Dordrecht, pp 149-167.

Namitha MR, Vinothkumar V (2019) Derivation of the Intensity-Duration-Frequency curve for annual maxima rainfall using generalised extreme value distribution. International Journal of Current Microbiology Appl Sci 8(1):2626-2632.

National Disaster Management Authority (NDMA) (2010) National disaster management guidelines: management of urban flooding. NDMA, Government of India, Delhi.

National Remote Sensing Centre (NRSC) (2019) Flood hazard zonation atlas, Odisha: A geospatial approach. NRSC, Indian Space Research Organisation, Department of Space, Government of India.

Papageorgiou M (2016) Coastal and marine tourism: A challenging factor in Marine Spatial Planning. Ocean & Coastal Management 129:44-48.

Patankar AM (2015) The exposure, vulnerability, and ability to respond of poor households to recurrent floods in Mumbai, Policy Research Working Paper no. 7481. World Bank, Washington, DC.

Rani NS, Satyanarayana ANV, Bhaskaran PK (2015) Coastal vulnerability assessment studies over India: a review. Natural Hazards 77(1):405-428.

Rathnam EV, Jayakumar KV, Cunnane C (2001) Runoff computation in a data scarce environment for urban stormwater management—a case study. In: Proceedings of the Congress of the International Association for Hydraulic Research. Beijing, China, pp 446-454.

Rodríguez‐Iturbe I, Devoto G, Valdés JB (1979) Discharge response analysis and hydrologic similarity: the interrelation between the geomorphologic IUH and the storm characteristics. Water Resources Research 15(6):1435-1444.

Saini SS, Kaushik SP (2012) Risk and vulnerability assessment of flood hazard in part of Ghaggar Basin: A case study of Guhla block, Kaithal, Haryana, India. International Journal of Geomatics and Geosciences 3(1):42-54.

Samonte-Tan GP, White AT, Tercero MA, Diviva J, Tabara E, Caballes C (2007) Economic valuation of coastal and marine resources: Bohol Marine Triangle, Philippines. Coastal Management 35(2-3):319-338.

Sanyal J, Lu XX (2006) GIS-based flood hazard mapping at different administrative scales: A case study in Gangetic West Bengal, India. Singapore Journal of Tropical Geography 27(2):207-220.

Saxena S, Purvaja R, Suganya GMD, Ramesh R (2013) Coastal hazard mapping in the Cuddalore region, South India. Natural Hazards 66(3):1519-1536.

Schanze J (2006) Flood risk management—a basic framework. In: Schanze J, Zeman E, Marsalek J (eds) Flood risk management: Hazards, vulnerability and mitigation measures. Springer, Dordrecht, Netherlands, pp 1-20.

Shoaf KL, Rotman SJ (2000) Public health impact of disasters. Australian Journal of Emergency Management 15(3):58-63.
Singh P, Sinha VSP, Vijhani A, Pahuja N (2018) Vulnerability assessment of urban road network from urban flood. International Journal of Disaster Risk Reduction 28:237-250.

Tibbetts J (2002) Coastal cities: living on the edge. Environmental Health Perspectives 110(11):A674-A681.
Figures

Figure 1

Map showing ward wise land use land cover of the Cuttack city (Source: Developed by authors) Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country,
Figure 2

Variation in daily maximum precipitation, Cuttack City (Source: Authors analysis using data set from the Indian Meteorological Department and the website of Special Relief Commissioner, Govt. of Odisha)

Figure 3
Intensity-Duration-Frequency curve for the Cuttack city (Source: Authors own analysis)

Figure 4

Peak discharge with the return period for the Cuttack city (Source: Authors own analysis)

Figure 5

Hazard sub-index value of different wards in Cuttack city (Source: Authors’ computation)
Categorisation of CMC wards as per the urban flood hazard sub-index (Source: Map developed by Authors) Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 7

Exposure sub-index value of different wards in Cuttack city (Source: Authors’ computation)
Figure 8

Categorisation of CMC wards as per the urban flood exposure sub-index (Source: Map developed by Authors) Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 9

Vulnerability sub-index value of different wards in Cuttack city (Source: Authors’ computation)
Figure 10

Categorisation of CMC wards as per the flood hazard vulnerability sub-index (Source: Map developed by Authors) Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 11

Overall flood risk index of different wards in Cuttack city (Source: Authors' computation)
Figure 12

Categorisation of CMC wards as per the flood hazard risk index (Source: Map developed by Authors)
Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 13

Various structural approaches to stormwater management (Source: Based on the Government of Malaysia 2011)