The hadron resonance gas model: thermodynamics of QCD and Polyakov loop

E. Megías*, E. Ruiz Arriola, L.L. Salcedo

aGrup de Física Teórica and IFAE, Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193 Barcelona, Spain
bDepartamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada, Spain.

Abstract

We study the hadron resonance gas model and describe the equation of state of QCD and the vacuum expectation value of the Polyakov loop in the confined phase, in terms of hadronic states with light quarks in the first case, and with exactly one heavy quark in the second case. Comparison with lattice simulations is made.

Keywords: finite temperature, QCD thermodynamics, heavy quarks, chiral quark models, Polyakov loop

1. Introduction

Two symmetries are relevant in the study of the thermodynamics of QCD [1]. On the one hand the chiral symmetry is broken at low temperatures, while it becomes restored above a certain temperature T_c. In the limit of massless quarks, the order parameter for this transition is the quark condensate $\langle \bar{q}q \rangle$. On the other hand, the center symmetry $Z(N_c)$ of the gauge group SU(N_c) is broken at high temperatures and it is restored below T_c, known as deconfinement temperature. This symmetry controls the confinement/deconfinement of color charges [2]. In the limit of infinitely heavy quark masses (gluodynamics), the order parameter for this transition is the Polyakov loop $L_T = \langle \text{tr}_c P e^{i A_0/dm_0} \rangle$, where A_0 is the gluon field and P denotes path ordering. It is accepted nowadays that both transition temperatures are very close to each other, $T_\chi \approx T_c$, at least at zero chemical potential [3–6].

While in the deconfined phase of QCD the quarks and gluons are liberated to form a plasma, in the confined/chiral symmetry broken phase the relevant degrees of freedom are bound states of quarks and gluons, i.e. hadrons and possibly glueballs. This means that it should be expected that physical quantities in this phase admit a representation in terms of hadronic states. This is the idea of the hadron resonance gas model (HRGM) which describes the equation of state of QCD in terms of a free gas of hadrons [7–14],

$$\frac{1}{V} \log Z = - \int \frac{d^3 p}{(2\pi)^3} \sum_\alpha \zeta_\alpha g_\alpha \log \left(1 - \zeta_\alpha e^{-\frac{\sqrt{p^2 + M_\alpha^2}}{T}} \right),$$

(1)

with g_α the degeneracy factor, $\zeta_\alpha = \pm 1$ for bosons and fermions respectively, and M_α the hadron mass. It has been presented in [15, 16] a similar model to describe the Polyakov loop in terms of hadronic resonances with exactly one heavy quark. In this communication we will elaborate on these models, and perform a comparison with recent lattice simulations.

2. The hadron resonance gas model and the Polyakov loop

An effective approach to the physics of the phase transition is provided by chiral quark models coupled to gluon fields in the form of a Polyakov loop [4, 17–23]. Most of these works remain within a mean field approximation and assume a global Polyakov loop. Based on QCD arguments we have shown in [15] that a hadronic representation of the Polyakov loop is given by

$$L_T = \langle \text{tr}_c P e^{i A_0/dm_0} \rangle \approx \frac{1}{2} \sum_\alpha \zeta_\alpha g_\alpha e^{-\Delta_\alpha T} ,$$

(2)

where g_α are the degeneracies and $\Delta_\alpha = M_\alpha - m_\alpha$ are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself m_h being subtracted). We have shown in [16] that Eq. (2) is fulfilled in chiral quark...
models coupled to the Polyakov, when one goes beyond mean field and advocate the local and quantum nature of the Polyakov loop. The need of these corrections was already stressed in Ref.

A natural step is to check to what extent the hadronic sum rule is fulfilled by experimental states compiled in the PDG. The relation (2) follows in the limit $m_b \to \infty$, but the heavy quarks in nature have a finite mass. Hadrons with a bottom quark would be optimal, due to the large quark mass compared to Λ_{QCD}, but the available data are scarce, so we turn to charmed hadrons. Specifically, we consider the lowest-lying single-charmed mesons and baryons with $u, d,$ and s as the dynamical flavors, with quarks in relative s wave inside the hadron. For mesons, these are usually identified with the states (spin-isospin multiplets) $D, D_{s}, D_{s}^{*}(2010)$ and D_{s}^{*}, and for baryons, with $\Lambda_{c}, \Sigma_{c}(2455), \Xi_{c}, \Omega_{c}(2520), \Xi_{c}(2645),$ and $\Omega_{c}(2770)$. A total of 12 meson states and 42 baryon states.

The plot in Fig. 1 shows that the lowest-lying states fall short to saturate the sum rule, regardless of the choice of mass of the charmed quark, m_c. This is not surprising as any model predicts many excited states on top of the lowest-lying ones, as is also the case for light-quark hadrons. Adding more states from the PDG does not seem practical due to the fragmentary information available. Instead we turn in what follows to hadronic models. The aim is not so much to have a detailed description of the various states but to give a sufficiently good overall description of the whole spectrum.

3. The relativized quark model: trace anomaly and Polyakov loop

Several models in the past have been proposed to describe the hadron spectrum and give a prediction for excited states not yet included in the PDG. One of them is the relativized quark model (RQM) [28, 29]; it is a soft QCD model based on a one-gluon exchange at short distances and a phenomenological implementation of confinement by a flavor-independent Lorentz-scalar interaction. We will use the spectrum predicted with this model to saturate the sum rules.

3.1. Thermodynamics of QCD

From the standard thermodynamic relations, the free energy, the pressure, and the energy density are given by

$$F = -pV = -T \log Z, \quad \frac{\epsilon}{V} = \frac{E}{V} = \frac{T^2}{V} \frac{\partial \log Z}{\partial T},$$

as well as the relation for the trace anomaly

$$\mathcal{A}(T) = \frac{\epsilon - 3p}{T^4} = T \frac{\partial}{\partial T} \left(\frac{\rho}{T^2} \right).$$

The Hagedorn formula for the trace anomaly follows from Eq. (1) and the relations given above. It writes

$$\frac{\epsilon - 3p}{T^4} = \sum_{k=1}^{\infty} \int dM \left(\frac{\partial n_{m}(M)}{\partial M} \right) + (-1)^{k+1} \frac{\partial n_{b}(M)}{\partial M} \times \frac{1}{2k^2} \left(\frac{M}{k} \right)^3 K_1 \left(\frac{kM}{T} \right),$$

where $K_1(z)$ refers to the first order Bessel function. n_{m} and n_{b} are the cumulative numbers of mesons and baryons (including antibaryons), defined as

$$n(M) = \sum_{a} g_{a} \Theta(M - M_{a}).$$

Θ is the step function. $n(M)$ represents the number of hadrons with mass less than M. Hagedorn proposed that the cumulative number of hadrons in QCD is approximately given by

$$n(M) = A e^{M/T_H},$$

where A is a constant and T_H is the so-called Hagedorn temperature. We show in Fig. 2 the cumulative number of hadrons with u, d and s quarks computed in the RQM. The curves increase up to a cutoff $M \approx 2300$ MeV.
above which they become approximately flat. The total cumulative number can be approximated to the form of eq. (7), with \(A = 0.80, T_H = 260 \) MeV and \(\chi^2/\text{dof} = 0.031 \), in the regime \(500 \text{ MeV} < M < 2300 \text{ MeV} \).

As a cross-check of the RQM we can use the spectrum obtained with this model to compute the trace anomaly using the HRGM given by Eq. (5). The result and its comparison with lattice data is shown in Fig. 3.

The RQM gives a good description of the trace anomaly for \(T < 180 \text{ MeV} \).

3.2. Polyakov loop

The next step is to use the spectrum of hadrons with one heavy quark at rest predicted by the RQM to compute the Polyakov loop using the HRGM of Eq. (2). The total number of hadron states computed in [28, 29] with one \(c \) quark is 117 for mesons and 660 for baryons, corresponding to a maximum value of \(\Delta = M - m_c \) about 1700 MeV. For hadrons with one \(b \) quark, 87 mesonic and 776 baryonic states, with a similar upper bound for \(\Delta \). In these papers there are some missing states corresponding to baryons of the type \(c_s u \) and \(b_s u \), in particular \(\Xi_{c b}, \Xi_{b b}^c \) and \(\Omega_{c b} \) baryons. In order to give a prediction for these states we have used the equal spacing rule [31], which is based on the approximate relations

\[
M_{\Xi_c} - M_{\Lambda_c} \approx m_s, \quad M_{\Xi_b} - M_{\Xi_c} \approx m_s, \quad M_{\Omega_b} - M_{\Xi_c} \approx 2m_s.
\]

They follow from the replacement of a light quark (\(u \) or \(d \) quark) in \(\Lambda_c \) by a \(s \) quark to get \(\Xi_c \), and assuming \(m_s \gg m_u, m_d \). The same replacement in \(\Sigma_c \) with one \(s \) quark allows to get \(\Xi_c^\prime \), and with two \(s \) quarks to get \(\Omega_c \). These relations are valid also for baryons with one \(b \) quark, and they preserve the degeneracy of states. After including these missing states, the total number of baryons states we consider with one \(c \) quark is 1470, and with one \(b \) quark is 1740. We use an \(s \) quark mass of 109 MeV (extracted from the lowest-lying hadrons).

The prediction based on these hadronic states is displayed in Fig. 4. The RQM result is closer to the lattice data than the naive estimation from the lowest-lying hadrons in PDG, but still tend to stay below it, a consequence of the truncation of states to \(\Delta < 1700 \text{ MeV} \). In order to remove any ambiguities coming from the renormalization prescription used for the Polyakov loop, we plot in Fig. 4 the derivative of \(T \log(L(T)) \) with respect to \(T \). It is noteworthy that the bottom sum rule gives a better value than the charm one, as it would be expected due to the larger mass of the \(b \) quark.

In order to avoid the cut-off problem in the spectrum, we have assumed a raising of cumulative numbers of the form \(n(\Delta) = A \Delta^a \) in the regime \(1700 \text{ MeV} < \Delta < 5500 \text{ MeV} \), with values \(A = 5.92 \times 10^{-9}, a = 3.16 \) for \(b \) mesons, and \(A = 1.76 \times 10^{-22}, a = 8.23 \) for \(b \)-baryons.\(^\dagger\)

\(^\dagger\)In order to get a good agreement with lattice data from [30], a temperature shift of \(T_\Delta = 15 \text{ MeV} \) is required; \(\Delta = \Delta_{\text{lat}}(T_\Delta + T_0) \). The need of this shift in lattice data was also observed in [30], and it has been attributed to systematic errors in lattice coming from extrapolations to the physical light quark masses and the continuum limit.

\(^\ddagger\)The yellow strip in Fig. 4 is the uncertainty from a combined analysis of lattice data from continuum extrapolated stout [27], HISQ/tree action \(N_f = 12 \) scale sets \(r_1 \) and \(f_1 \), and asqtad scale \(f_3 \) [33].

\(^\ast\)These numbers follow from a fit of \(n(\Delta) \) below 1700 MeV.
The analytic formula to be applied in this regime is

\[L(T) = \frac{1}{2} \int d\Delta \frac{\partial n(\Delta)}{\partial \Delta} e^{-\Delta/T}, \tag{9} \]

which gives a contribution to be added to the numerical one below 1700 MeV. The result is displayed in Fig. 4 with a dashed (green) line. The estimated effect of adding the states up to \(\Delta = 5500 \) MeV in the RQM leads to a result quite consistent with the one obtained with the MIT bag model discussed in Ref. [15], with the same cut-off. We have also checked that this result is numerically indistinguishable from that obtained by extending the analytic raising up to \(\Delta \to \infty \) (no cut-off).

4. Conclusions

The hadron resonance gas model was proposed as a simple model to describe the confined phase of QCD in terms of a free gas of hadronic states (mesons and baryons). Using the hadronic spectrum obtained by the relativized quark model of Ref. [28, 29], we get a good description of lattice data for the trace anomaly up to \(T = 180 \) MeV. A different version of the hadron resonance gas model has been proposed in Ref. [15, 16] to describe the vacuum expectation value of the Polyakov loop in terms of hadronic states with exactly one heavy quark at rest and several dynamical quarks. The lowest-lying charmed mesons and baryons included in the PDG gives for the Polyakov loop a value well below lattice data, and this suggest the need for inclusion of more states. When using the spectrum predicted by the relativized quark model and the MIT bag models up to a cut-off \(\Delta = 5500 \) MeV, we get a good description of lattice data for the Polyakov loop in the confined phase.

This work opens the possibility of a Polyakov loop spectroscopy, i.e. using the Polyakov loop in fundamental and higher representations to deduce multiquark states, glueballs, etc, containing one or several heavy quark states.

Acknowledgements

This work has been supported by DGI (FIS2011-24149 and FPA2011-25948) and Junta de Andalucía grant FQM-225. The research of E. Megias is supported by the Juan de la Cierva Program of the Spanish MICINN.

References

[1] K. Fukushima, J. Phys. G G39 (2012) 013101.
[2] B. Svetitsky, Phys. Rept. 132 (1986) 1–53.
[3] S. R. Coleman, E. Witten, Phys. Rev. Lett. 45 (1980) 100.
[4] P. N. Meisinger, M. C. Ogilvie, Phys. Lett. B379 (1996) 163–168.
[5] Y. Sakai, T. Sasaki, H. Kouno, M. Yahiho, Phys. Rev. D82 (2010) 076003.
[6] J. Braun, A. Janot, Phys. Rev. D84 (2011) 114022.
[7] R. Hagedorn, Lect. Notes Phys. 221 (1985) 53–76.
[8] V. Yukalov, E. Yukalova, Phys. Part. Nucl. 28 (1997) 37–65.
[9] N. O. Agasian, Phys. Lett. B519 (2001) 71–77.
[10] A. Tawfik, Phys. Rev. D71 (2005) 054502.
[11] E. Megias, E. Ruiz Arriola, L. Salcedo, Phys. Rev. D80 (2009) 056005.
[12] P. Huovinen, P. Petreczky, Nucl. Phys. A837 (2010) 26–53.
[13] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, et al., JHEP 1011 (2010) 077.
[14] A. Bazavov, et al., Phys. Rev. D85 (2012) 054503.
[15] E. Megias, E. R. Arriola, L. Salcedo, (2012), 1204.2424.
[16] E. R. Arriola, E. Megias, L. Salcedo, (2012), 1207.4875.
[17] K. Fukushima, Phys. Lett. B591 (2004) 277–284.
[18] E. Megias, E. Ruiz Arriola, L. Salcedo, Phys. Rev. D74 (2006) 065005.
[19] E. Megias, E. Ruiz Arriola, L. Salcedo, Phys. Rev. D74 (2006) 114014.
[20] C. Ratti, M. A. Thaler, W. Weise, Phys. Rev. D73 (2006) 014019.
[21] B.-J. Schaefer, J. M. Pawlowski, J. Wambach, Phys. Rev. D76 (2007) 074023.
[22] G. A. Contrera, D. Gomez Dumm, N. N. Scoccola, Phys. Lett. B661 (2008) 113–117.
[23] O. Lourenco, M. Dutra, A. Delfino, M. Malheiro, Phys. Rev. D84 (2011) 125034.
[24] E. Megias, E. Ruiz Arriola, L. Salcedo, PoS JHW2005 (2006) 025.
[25] E. Megias, E. Ruiz Arriola, L. Salcedo, AIP Conf. Proc. 892 (2007) 444–447.
[26] K. Nakamura, et al., J. Phys. G37 (2010) 075021.
[27] S. Borsanyi, et al., JHEP 1009 (2010) 073.
[28] S. Godfrey, N. Isgur, Phys. Rev. D32 (1985) 189–231.
[29] S. Capstick, N. Isgur, Phys. Rev. D34 (1986) 2809.
[30] A. Bazavov, T. Bhattacharya, M. Cheng, N. Christ, C. DeTar, et al., Phys. Rev. D80 (2009) 014504.
[31] M. J. Savage, Phys. Lett. B359 (1995) 189–193.