Insulin/Foxo1 Pathway Regulates Expression Levels of Adiponectin Receptors and Adiponectin Sensitivity

Received for publication, March 2, 2004, and in revised form, April 27, 2004
Published, JBC Papers in Press, April 29, 2004, DOI 10.1074/jbc.M402367200

Atsushi Tsuchida‡§, Toshimasa Yamauchi‡¶¶, Yusuke Ito†, Yusuke Hada‡, Toshiyuki Makī‡,
Sato Takekawa‡, Junji Ramon‡, Masaki Kobayashi‡, Ryo Suzuki†, Kazuo Harai‡,
Naoto Kubota†, Yasuo Terauchit, Philippe Frugueli, Jun Nakae‡*, Masato Kasugaa‡,
Domenico Accili‡‡, Kazuyuki Tobé†, Kohjiro Ueki†, Ryozo Nagaiz, and Takashi Kadowakii††††††t
§§ To whom correspondence should be addressed: Dept. of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan, ¶¶¶Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, ‡‡‡Center for Genomic and Molecular Medicine, Diabetes Institute, California Institute of Technology, Pasadena, California 91125, ††††††Ecole Normale Superieure, Laboratoire d’Ingenierie Cellulaire et Moléculaire, INSERM 6086, 75231 Paris, France, **Department of Internal Medicine, School of Medicine, University of Tokyo, Tokyo 160-8941, Japan, and ‡§§Institute of Biology-CNRS 8090, Pasteur Institute of Lille, 59000 Lille, France.

From the ‡§Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan, ¶¶Core Research for Evolutional Science and Technology of Japan Science and Technology Agency, Kawaguchi 332-0012, Japan, ¶¶¶Department of Biology, Graduate School of Science, University of Tokyo, Tokyo 113-8654, ¶¶¶Department of Life and Environmental Sciences, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, ‡‡‡Department of Molecular Medicine, Division of Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan, ¶¶¶¶Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032, and ¶¶¶¶National Institute of Health and Nutrition, Tokyo 162-8636, Japan

Adiponectin/Acrp30 is a hormone secreted by adipocytes, which acts as an anti-diabetic and antiatherogenic adipokine. We reported previously that AdipoR1 and -R2 serve as receptors for adiponectin and mediate increased fatty acid oxidation and glucose uptake by adipocytes. In the present study, we examined the expression levels and roles of AdipoR1/R2 in several physiological and pathophysiological states such as fasting/refeeding, obesity, and insulin resistance. Here we show that the expression of AdipoR1/R2 in insulin target organs, such as skeletal muscle and liver, is significantly increased in fasted mice and decreased in refed mice. Insulin deficiency induced by streptozotocin increased and insulin replenishment reduced the expression of AdipoR1/R2 in vivo. Thus, the expression of AdipoR1/R2 appears to be inversely correlated with plasma insulin levels in vivo. Interestingly, the incubation of hepatocytes or myocytes with insulin reduced the expression of AdipoR1/R2 via the phosphoinositide 3-kinase/Foxo1-dependent pathway in vitro. Moreover, the expressions of AdipoR1/R2 in ob/ob mice were significantly decreased in skeletal muscle and decreased AMP kinase activation by adiponectin. This adiponectin resistance in turn may play a role in worsening insulin resistance in ob/ob mice. In conclusion, the expression of AdipoR1/R2 appears to be inversely regulated by insulin in physiological and pathophysiological states such as fasting/refeeding, insulin deficiency, and hyperinsulinemia models via the insulin/phosphoinositide 3-kinase/Foxo1 pathway and is correlated with adiponectin sensitivity.

Adiponectin/Acrp30 (1–4) is a hormone secreted by adipocytes, which acts as an anti-diabetic (5–12) and anti-atherogenic (8, 12, 13) adipokine. This insulin-sensitizing effect of adiponectin appears to be mediated by an increase in fatty acid oxidation via activation of the 5′-AMP-activated protein kinase (AMPK) (10, 11) and peroxisome proliferator-activated receptor-α (5, 6, 12). Very recently, we have reported the cloning of complementary DNAs encoding adiponectin receptors AdipoR1 and -R2 by expression cloning (14). AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. AdipoR1 and -R2 are predicted to contain seven transmembrane domains (14) but to be structurally and functionally distinct from G-protein-coupled receptors (15–17). AdipoR1 and -R2 serve as receptors for globular and full-length adiponectin and mediate increased AMPK (10, 11), peroxisome proliferator-activated receptor-α ligand activities (12), and fatty acid oxidation and glucose uptake by adiponectin (14).

It has not yet been determined whether the expressions of AdipoR1 and -R2 are altered in physiological and pathophysiological states. To address these questions, we first studied the expressions of AdipoR1 and -R2 during fasting and refeeding. We also analyzed the expressions of AdipoR1/R2 in an insulin deficiency model by streptozotocin (STZ) treatment (18). Moreover, we studied these expressions in a hyperinsulinemia model because of obesity-linked insulin resistance. The results of these studies reveal that insulin negatively regulates the expression levels of adiponectin receptors and adiponectin sensitivity and that obesity-linked insulin resistance/hyperinsulinemia can cause down-regulation of adiponectin receptors and adiponectin resistance. We have also demonstrated that down-regulation of adiponectin receptors by insulin may be mediated via the phosphoinositide 3-kinase (PI3-kinase)/Foxo1 dependent pathway.

* This work was supported by the Program for Promotion of Fundamental Studies in Health Sciences of the Organization for Pharmaceutical Safety and Research of Japan, a grant from the Human Science Foundation (to T. K.), a grant-in-aid for the Development of Innovative Technology from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to T. K.), a grant-in-aid for Creative Scientific Research (10NP0201) from the Japan Society for the Promotion of Science (to T. K.), and by health science research grants (Research on Human Genome and Gene Therapy) from the Ministry of Health, Labor, and Welfare of Japan (to T. K.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† These authors contributed equally to this work.

‡‡‡ To whom correspondence should be addressed: Dept. of Internal Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. Tel.: 81-3-5800-8818; Fax: 81-3-5689-7209; E-mail: kadowaki-3im@h.u-tokyo.ac.jp.

The abbreviations used are: AMPK, 5′-AMP-activated protein kinase; AdipoR, adiponectin receptor; PI3-kinase, phosphoinositide 3-kinase; EDL, extensor digitorum longus; WAT, white adipose tissue; BAT, brown adipose tissue; STZ, streptozotocin.
EXPERIMENTAL PROCEDURES

Chimneys—All materials were obtained from the sources given in Refs. 6, 10, 14, and 19.

Animals—Fifteen-week-old ob/ob mice and their wild-type C57BL/6 mice were obtained from Charles River Breeding Laboratories (Wilmington, MA). Male mice were housed in colony cages and maintained on a 12-h light/12-h dark cycle. Our high fat diet contains oil (1152 g of safflower oil high oleic type containing 46% oleic acid (18:1n-9) and 45% linoleic acid (18:2n-6) from Benihana, Tokyo, Japan), casein (1191.6 g of No. 19 from Oriental Yeast, Tokyo, Japan), sucrose (636.3 g of No. 12 from Oriental Yeast), vitamin mix (50.4 g of No. 20 from Oriental Yeast (AIN76)), mineral mix (352.8 g of No. 25 from Oriental Yeast (AIN76)), cellulose powder (201.6 g of No. 19 from Oriental Yeast), DL-methionine (18 g from Wako Pure Chemicals, Osaka, Japan), and water 360 ml; total, 3600 g (19). Plasma insulin was measured by an insulin immunoassay (Shibayagi, Gunma, Japan). The animal care and procedures were approved by the Animal Care Committee of the University of Tokyo.

STZ Treatments—Diabetes was induced by a double intraperitoneal injection of 0.2–0.3 ml of 50 mM sodium citrate solution (pH 4.5) containing STZ (200 mg/kg body weight). Control (non-STZ) mice were treated with 5% (v/v) fetal calf serum, 10 nM dexamethasone, 1 nM insulin, 100 μg/ml penicillin, and 100 μg/ml streptomycin. After incubation at 37 °C in 5% CO2 for 5 h, the cells were washed twice with phosphate-buffered saline and incubated with Williams medium E supplemented with 1% bovine serum albumin for 6 h. The cells were then switched to a low serum differentiation medium, 10% (v/v) fetal bovine serum. When the cells differentiated into multinucleated contracting myotubes, the reverse primer, 5'-cctgcttggtgagcaggaatg-3', the probe, 5'-ctcggatcctagcgcctt-3', and the reverse primer for mAdipoR1 was 5'-aagctggagcttcagcagtt-3', the reverse primer, 5'-cctgcttggtgagcaggaatg-3', and the probe, 5'-cctcggatcctagcgcctt-3'. The particular hormone or nutrients responsible for this response to fasting and feeding are of considerable interest. Because insulin is the classic hormone of the fed state, we next measured plasma insulin levels under the ad libitum fed, fasted, and refed conditions at the start of the night cycle (9:00 p.m.), the animals were either provided with food or deprived of food for 48 h. A third group of mice was refed for 6 h after the 48-h fast. As can be seen in Fig. 1, A and B, the levels of AdipoR1 and AdipoR2 mRNA expression in the liver increased dramatically after the 48-h fast, and refeeding rapidly restored these to a level equal to the original fed state. We observed similar regulation of AdipoR1 and AdipoR2 mRNA by fasting and refed in skeletal muscle (Fig. 1, C and D).

Plasma Insulin Levels Appear to Be Inversely Correlated with Expression Levels of the AdipoR1/R2 Gene—The particular hormones or nutrients responsible for this response to fasting and feeding are of considerable interest. Because insulin is the classic hormone of the fed state, we next measured plasma insulin levels under the ad libitum fed, fasted, and refed states. As expected, fasting decreased the plasma insulin levels (Fig. 1F), whereas they were increased by refeeding in a parallel fashion with the plasma glucose levels (Fig. 1E). These findings suggested that plasma insulin levels may appear to be inversely correlated with the expression levels of the AdipoR1/R2 gene and raised the possibility that insulin may control AdipoR1/R2 expression.

STZ Treatment Increased, but Insulin Decreased AdipoR1/R2 Expression—To address this issue, we next studied the effects of insulin on AdipoR1/R2 expression in mice treated with STZ. To eliminate the effects of insulin on food intake, we withdrew food from all of the mice and killed the animals 6 h later. STZ treatment abolished plasma insulin (Fig. 2A) and, at the same time, caused a significantly marked increase in plasma glucose (Fig. 2B, lanes 1 and 2). The animals treated with STZ plus insulin exhibited reduced plasma glucose levels compared with the animals treated with STZ alone (Fig. 2B, lanes 2 and 3).

We next measured the amounts of mRNA for AdipoR1 and -R2 in skeletal muscle and liver extracts. The results revealed...
103 and 38% increases in AdipoR1 and AdipoR2 mRNA, respectively, in skeletal muscle of the STZ-treated mice, which was almost completely restored by insulin treatment (Fig. 2, C and D). These observations further support the possibility that insulin would reduce AdipoR1/R2 mRNA levels. STZ treatment had little effect on AdipoR1/R2 mRNA levels in the liver, whereas insulin significantly decreased the AdipoR1/R2 mRNA levels in the liver of STZ-treated mice (data not shown). These results may be explained by the observations that inflammation may decrease AdipoR1/R2 mRNA levels2 and that STZ treatment may induce inflammation in the liver (23).

Insulin Decreased AdipoR1/R2 mRNA Levels in Vitro—To determine whether insulin has a direct effect on AdipoR1/R2 expression in hepatocytes, we isolated hepatocytes from the C57BL/6 mice and incubated them for 6 h with or without 10 nM insulin. The hepatocytes were harvested, and then we measured the amounts of total AdipoR1 and -R2 mRNA. Insulin produced a decrease in the total amount of AdipoR1/R2 mRNA (Fig. 3, A and B).

To further address the possibility that insulin may reduce AdipoR1/R2 mRNA levels, we next studied whether insulin would reduce AdipoR1/R2 mRNA levels in C2C12 myocytes in vitro. Insulin treatment at 10 nM did indeed decrease AdipoR1/R2 expression after 6 h (Fig. 3, C and D).

Insulin-mediated Reduction in AdipoR1/R2 mRNA Is Suppressed by Inhibitors of PI3-kinase—The level of AdipoR1/R2 mRNA in C2C12 myocytes was investigated 6 h after the addition of insulin to myocytes incubated with various inhibitors of insulin signaling pathways (Fig. 3, C and D). The PI3-kinase inhibitor LY294002 abolished the decreased effect of insulin. In contrast, the response to insulin was essentially unaffected by PD98059, an inhibitor of mitogen-activated protein kinase activation. The inhibitory effects shown in Fig. 3, C and D, were maximal for all of the drugs tested, a point that was verified by dose-response experiments (results not shown).

Fox1 Increased AdipoR1/R2 mRNA Levels and Blocked Insulin-induced Reduction of the Levels—Insulin-dependent repression of the genes, which harbor a cis-acting element capable of binding Fox1 in their promoter, might depend, at least in part, on PI3-kinase/Akt-mediated phosphorylation and inactivation of this forkhead transactivator (21, 22). Expression of the constitutively active form of Fox1 (Fox1-T24A/S253D/S316A) caused a marked increase in AdipoR1/R2 mRNA levels. Insulin could not reverse the effect of Fox1 on AdipoR1/R2 mRNA levels (Fig. 3, E and F). These findings suggest that Fox1 increased the expression levels of AdipoR1/R2 and that insulin repressed AdipoR1/R2 mRNA expressions via inactivation of Fox1.

AdipoR1/R2 Expression Levels Were Down-regulated in ob/ob Mice—We studied the expression of AdipoR1 and -R2 in insulin-sensitive tissues (such as liver), skeletal muscle (such as the soleus muscle and extensor digitorum longus (EDL)), and adipose tissues (such as white adipose tissue (WAT) and brown adipose tissue (BAT)) in control C57BL/6 mice and insulin-resistant ob/ob mice. As shown in Fig. 4, A and B, in control C57BL/6 mice, AdipoR1 was most abundantly expressed in skeletal muscle, whereas AdipoR2 was most abundantly ex-

2 A. Tsuchida, T. Yamauchi, and T. Kadowaki, manuscript in preparation.
pressed in the liver. Interestingly, both AdipoR1 and -R2 were more abundantly expressed in the EDL than in the soleus muscle. Moreover, both WAT and BAT expressed AdipoR1 and -R2.

The expressions of both AdipoR1 and -R2 were significantly decreased in most of the insulin-sensitive tissues examined, except the liver, in ob/ob mice as compared with control C57BL/6 mice (Fig. 4, A and B). The expressions of AdipoR1 in the liver, soleus, EDL, WAT, and BAT from ob/ob mice were 79.4, 54.5, 50.5, 31.9, and 29.4% of those from the wild-type mice, respectively (Fig. 4, A). The expressions of AdipoR2 in these tissues from wild-type (C57BL/6) or ob/ob mice were 79.4, 54.5, 50.5, 31.9, and 28.1% of those from the wild-type mice (Fig. 4, B). These observations suggested that the numbers of both AdipoR1 and AdipoR2 were reduced (Fig. 5, A and B) (14). Moreover, adiponectin was unable to activate AMPK in skeletal muscles of ob/ob mice (Fig. 5, C and D). These observations suggested that the expression levels of AdipoR1/R2 might regulate adiponectin binding and AMPK activation by adiponectin referred to as adiponectin sensitivity. DISCUSSION

We have recently cloned the adiponectin receptors AdipoR1 and AdipoR2, which appear to mediate the insulin-sensitizing actions of adiponectin (14). In the present study, we examined the expression levels of AdipoR1 and -R2 to explore the potential role of altered expression of adiponectin receptors in the

Fig. 3. Amounts of mRNAs for AdipoR1 (A, C, and E) and AdipoR2 (B, D, and F) in mouse hepatocytes (A and B) or C2C12 myocytes (C–F) treated with or without insulin incubated with or without LY294002 or PD98059 (C and D) or transfected with an adenovirus containing LacZ or Foxo1 (E and F). Hepatocytes were isolated from mouse livers and incubated as described under "Experimental Procedures." The cells were then incubated for 6 h with or without the indicated concentrations of insulin. The preparation of total RNA and quantification of AdipoR mRNAs were performed as described in the legend to Fig. 1. The results are expressed as the ratio of the value of AdipoR1 in the vehicle control. Each bar represents the mean ± S.E. (n = 3); *, p < 0.05; **, p < 0.01 (compared with the cells treated with vehicle). M, molar concentration; n.s., not significant; ADA, multiple mutant T24A/S253D/S316A.

Fig. 4. Expressions of AdipoR1 (A) and AdipoR2 (B) mRNAs in liver, soleus and EDL muscle, WAT and BAT, blood glucose (C), and plasma insulin (D) of wild-type (C57BL/6) and ob/ob mice. The preparation of total RNA and quantification of AdipoR mRNAs were conducted as described in the legend to Fig. 1. The results are expressed as the ratio of the value of AdipoR1 in the livers of wild-type mice. Each bar represents the mean ± S.E. (n = 3); *, p < 0.05; **, p < 0.01 (between wild-type and ob/ob mice).

Fig. 5. Binding of globular (gAd) (A) or full-length adiponectin (Ad) (B) to the membrane fractions of skeletal muscles and AMPK activation by adiponectin in skeletal muscles (C and D) of wild-type (C57BL/6) and ob/ob mice. Scatchard plot analysis of globular or full-length adiponectin binding to the membrane fractions of skeletal muscles from wild-type (C57BL/6) or ob/ob mice is shown (A and B). Phosphorylation of the α-subunit of AMPK (C) in skeletal muscles from wild-type (C57BL/6) or ob/ob mice treated with full-length adiponectin (Ad, 50 µg/10 g of body weight) or vehicle (V) for 5 min. Immunoblot analyses were performed using anti-pAMPK and anti-AMPK. The amount of phosphorylated AMPK was normalized by the amount of AMPK from the same sample. The results are expressed as the ratio of the value of vehicle-treated wild-type mice (D). Each bar represents the mean ± S.E. (n = 6–7); *, p < 0.05; **, p < 0.01 (compared with wild-type mice).

discussion

We have recently cloned the adiponectin receptors AdipoR1 and AdipoR2, which appear to mediate the insulin-sensitizing actions of adiponectin (14). In the present study, we examined the expression levels of AdipoR1 and -R2 to explore the potential role of altered expression of adiponectin receptors in the
regulation of insulin and/or adiponectin sensitivity. Interestingly, we showed for the first time in this study that fasting increased, whereas refeeding decreased, the expression levels of AdipoR1 and -R2.

During fasting, increased plasma catecholamines and glucagon can raise cAMP levels, resulting in the activation of the transcription factor cAMP response element-binding protein through protein kinase A (24). This factor then functions in a variety of fasting-sensitive genes through a canonical cAMP response element-binding protein binding site. Fasting also leads to an elevation of glucocorticoids, which control gene expression mainly if not exclusively through the glucocorticoid receptor and its well-defined cognate sequence (25). However, neither cAMP nor glucocorticoids appear to have marked effects on the expression levels of AdipoR1/R2.3

Plasma insulin levels are decreased by fasting and increased by refeeding. Thus, we hypothesized that insulin can negatively regulate the expression levels of AdipoR1/R2. To test this hypothesis, we employed another animal model, STZ-induced insulin deficiency. Interestingly, STZ treatment diminished plasma insulin and at the same time caused a marked increase in AdipoR1/R2 mRNA levels, and replenishment of insulin into STZ-treated mice reduced the levels to those observed in mice without STZ treatment, indicating that insulin reversed the effect of STZ on AdipoR1/R2 mRNA levels. Insulin greatly decreased AdipoR1/R2 expressions at the mRNA level and did so at doses of insulin consistent with those functioning through the insulin receptor. Of course, it is entirely possible that other hormones or nutrients in addition to insulin participate in the regulation of AdipoR1/R2 in this in vivo context.

Most, if not all, of the known actions of insulin can be attributed to the receptor-mediated tyrosine phosphorylation of insulin receptor substrates 1 and 2, which in turn triggers kinase cascades involving the PI3-kinase/Akt pathway and the mitogen-activated protein kinase pathway (26–28). With respect to AdipoR1/R2 gene expression, insulin signaling via several possibly redundant pathways remains an intriguing possibility. The insulin effect on AdipoR1/R2 gene expression was virtually unaffected by the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, PD98059, and thus does not appear to require activation of the mitogen-activated protein kinase cascade. By contrast, results with LY294002 clearly implicated the PI3-kinase signaling pathway. These results of experiments using an inhibitor of PI3-kinase lead us to propose that the induction of AdipoR1/R2 gene expression is most likely mediated via the PI3-kinase branch of the insulin signaling pathways.

The PI3-kinase signaling pathway is thought to be involved in the regulation of several genes by insulin, notably the gene for the insulin-like growth factor-binding protein 1 (29). Recently, Akt, which is the downstream effector of PI3-kinase, was shown to phosphorylate several transcriptional activators of the forkhead family, including Foxo1, in vitro and in intact cells. The phosphorylation of specific residues in these factors inhibited their ability to activate the transcription of target genes as a result of the sequestration of the phosphorylated factors in the cytoplasm (30–32). Thus, the insulin-dependent repression of the insulin-like growth factor-binding protein 1 gene, which harbors a cis-acting element capable of binding Foxo1 in its promoter, is thought to depend (at least in part) on Akt-mediated phosphorylation and inactivation of this forkhead transactivator (29).

The DNA-binding characteristics are noteworthy because several (but not all) identified insulin response elements appear to be recognized by Foxo1. Visual and computer-assisted examination reveals many potential responsive sites (a sequence such as an insulin response element) in the AdipoR1/R2 promoter. Thus, we next examined whether Foxo1 would regulate the AdipoR1/R2 expressions. Interestingly, Foxo1 increased the AdipoR1/R2 expressions, and insulin was unable to reduce them, suggesting that Foxo1 increased and insulin reduced the AdipoR1/R2 expressions via down-regulation of Foxo1 activity. To date, there are no data indicating that ectopic expression of other factors can regulate AdipoR1/R2 expression. Further studies will be required to clarify this point.

Finally, we found that the expressions of AdipoR1 and AdipoR2 were down-regulated in ob/ob mice, a model of insulin resistance linked to obesity. We have shown previously that plasma adiponectin levels were decreased in ob/ob mice (12) and that these alterations in plasma adiponectin levels may play causal roles in the regulation of insulin sensitivity. These in combination raise the interesting possibility that altered expressions of AdipoR1/R2 in addition to plasma adiponectin levels may play a causal role in the regulation of insulin sensitivity. This is consistent with our previous observation that decreased expressions of AdipoR1 or AdipoR2 by their respective small interfering RNA were associated with the reduced insulin-sensitizing effects of adiponectin (14). We provided the first evidence that the decreased expressions of AdipoR1 or AdipoR2 in these mouse models are associated with reductions in the insulin-sensitizing effects of adiponectin in vivo.

Chronic overfeeding and its attending elevation of insulin would be expected to result in the decreased expression of AdipoR1/R2. This is likely to cause both adiponectin resistance and hence insulin resistance. The decrease in AdipoR1/R2 mRNA leads to a decrease in adiponectin binding, and this in turn leads to a decrease in the adiponectin effects, termed adiponectin resistance, the so-called vicious cycle. These findings may provide a novel molecular mechanism for the well-known ability of insulin to induce insulin resistance, down-regulation of adiponectin receptors, in addition to the previously recognized down-regulation of insulin receptors.

In conclusion, the expressions of AdipoR1/R2 in insulin target tissues appear to be inversely correlated with plasma insulin levels. The present study is the first to demonstrate that insulin negatively regulates the expression levels of adiponectin receptors via the PI3-kinase/Foxo1 pathway. Our data also suggest that not only agonism of AdipoR1/R2 but also strategies to increase AdipoR1/R2 may be logical approaches to provide a novel treatment modality for insulin resistance and type 2 diabetes.

Acknowledgments—We thank S. Uchida, S. Kita, and Dr. H. Waki for helpful suggestions. We are grateful to A. Itoh, A. Okano, L. Yao, and K. Kiri for excellent technical assistance.

REFERENCES
1. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G., and Lodish, H. F. (1995) J. Biol. Chem. 270, 26743–26749
2. Hu, E., Liang, P., and Spiegelman, B. M. (1996) J. Biol. Chem. 271, 10697–10703
3. Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y., and Matsubara, K. (1996) Biochem. Biophys. Res. Commun. 221, 286–291
4. Nakano, Y., Tobe, T., Cho-Miura, N. H., Mazda, T., and Tomita, M. (1996) J. Biochem. (Tokyo) 120, 802–812
5. Fruebis, J., Taeo, T. S., Javorechi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., Bihain, B. E., and Lodish, H. F. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 2005–2010
6. Yamashita, T., Kamon, J., Waki, H., Terasaki, Y., Kubota, N., Haraz, K., Moria, Y., Ito, T., Murakami, K., Tsukiyama-Kasai, N., Eaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yokotani, M., Nakano, Y., Tobe, K., Nagai, R., Kimura, S., Tomita, M., Froegel, P., and Kadokawa, T. (2001) Nat. Med. 7, 941–946
7. Berg, A. H., Combs, T. P., Du, X., Brownlee, M., and Scherer, P. E. (2001) Nat. Med. 7, 847–853
8. Kubota, N., Terasaki, Y., Yamashita, T., Kubota, M., Moria, M., Matsui, J., Kito, K., Yamashita, T., Kamon, J., Satoh, H., Yano, W., Froegel, P., Nagai, R., Kimura, S., Kadokawa, T., and Noda, T. (2002) J. Biol. Chem. 277, 30821–30827

3 A. Tsuchida, T. Yamauchi, and T. Kadowaki, unpublished data.
Regulation of Adiponectin Receptor Expression by Insulin

18. Rakieten, N., Rakieten, M. L., and Nadkarni, M. R. (1963) Cancer Chemother. Rep. 29, 91–98
19. Yamauchi, T., Waki, H., Kamon, J., Murakami, K., Motujima, K., Komeda, K., Miki, H., Kubota, N., Terauchi, Y., Tsu- chida, A., Tsuboyama-Kasaoka, N., Yamauchi, N., Ide, T., Hori, W., Kato, S., Fukayama, M., Akanuma, Y., Ezaki, O., Imai, A., Nagai, R., Kimura, S., Kihara, S., Tochino, Y., Ouchi, N., Kihara, S., Arita, Y., Komuro, R., Ouchi, N., Kis- hida, K., Nishizawa, H., Matsuda, M., Nagaretani, H., Furuyama, N., Kondo, H., Takahashi, M., Arita, Y., Komuro, R., Ouchi, N., Kihara, S., Tochino, Y., Okutomi, K., Horie, M., Takeda, S., Aoyama, T., Funahashi, T., and Matsuzawa, Y. (2002) Nat. Med. 8, 731–737
10. Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B. B., and Kadowaki, T. (2002) Nat. Med. 8, 1288–1295
11. Tomas, E., Tsao, T. S., Saha, A. K., Murrey, H. E., Zhang, C. C., Itani, S. I., Lodish, H. F., and Ruderman, N. B. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 16309–16313
12. Yamauchi, T., Kamon, J., Waki, H., Imai, Y., Shimozawa, N., Ishi- ki, K., Uchida, S., Ito, Y., Takakawa, K., Matsui, J., Takata, M., Eto, K., Terauchi, Y., Komeda, K., Tsu- nomi, M., Murakami, K., Ohishi, Y., Naito, T., Yamanaka, K., Ueyama, Y., Froguel, P., Kiryu, S., Nagai, R., and Kad- owaki, T. (2003) J. Biol. Chem. 278, 2461–2468
13. Ouchi, N., Kihara, S., Arita, Y., Nishida, M., Matsuyama, A., Okamoto, Y., Ishigami, M., Kuriyama, H., Kishida, K., Nishizawa, H., Hotta, K., Mura- guchi, M., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Toke, K., Koyama, S., Tsuchida, A., Tsuboyama-Kasaoka, N., Yamauchi, N., Ide, T., Hori, W., Kato, S., Fukayama, M., Akanuma, Y., Ezaki, O., Imai, A., Nagai, R., Kimura, S., Kihara, S., Tochino, Y., Ouchi, N., Kihara, S., Arita, Y., Komuro, R., Ouchi, N., Kihara, S., Tochino, Y., Okutomi, K., Horie, M., Takeda, S., Aoyama, T., Funahashi, T., and Matsuzawa, Y. (2002) Nat. Med. 8, 731–737
14. Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Obie, T., Uchida, S., Tatekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Toke, K., Koyama, S., Tsuchida, A., Tsuboyama-Kasaoka, N., Yamauchi, N., Ide, T., Hori, W., Kato, S., Fukayama, M., Akanuma, Y., Ezaki, O., Imai, A., Nagai, R., Kimura, S., Kihara, S., Tochino, Y., Ouchi, N., Kihara, S., Arita, Y., Komuro, R., Ouchi, N., Kihara, S., Tochino, Y., Okutomi, K., Horie, M., Takeda, S., Aoyama, T., Funahashi, T., and Matsuzawa, Y. (2002) Nat. Med. 8, 731–737
15. Wess, J. (1997) FASEB J. 11, 346–354
16. Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997) Nature 387, 620–624
17. Scheer, A., Funelli, P., Costa, T., De Benedetti, P. G., and Cotechii, S. (1996) EMBO J. 15, 3566–3578
18. Rakieten, N., Rakieten, M. L., and Nadkarni, M. R. (1963) Cancer Chemother. Rep. 29, 91–98
19. Yamauchi, T., Waki, H., Kamon, J., Murakami, K., Motujima, K., Komeda, K., Miki, H., Kubota, N., Terauchi, Y., Tsuchida, A., Tsuboyama-Kasaoka, N., Yamauchi, N., Ide, T., Hori, W., Kato, S., Fukayama, M., Akanuma, Y., Ezaki, O., Imai, A., Nagai, R., Kimura, S., Kihara, S., Tochino, Y., Ouchi, N., Kihara, S., Arita, Y., Komuro, R., Ouchi, N., Kihara, S., Tochino, Y., Okutomi, K., Horie, M., Takeda, S., Aoyama, T., Funahashi, T., and Matsuzawa, Y. (2002) Nat. Med. 8, 731–737
20. Seglen, P. O. (1976) Methods Cell Biol. 13, 29–83
21. Nakae, J., Kitamura, T., Siliver, D. L., and Accili, D. (2001) J. Clin. Invest. 108, 1001–1013
22. Scheer, A., Fanelli, F., Costa, T., De Benedetti, P. G., and Coteci- chii, S. (1996) EMBO J. 15, 3566–3578
23. Levine, B. S., Henry, M. C., Port, C. D., and Rosen, E. (1980) Drug Chem. Toxicol. 3, 201–212
24. Herzig, S., Long, F., Jalal, U. S., Hedrick, S., Quinn, R., Bauer, A., Rudolph, M., Mayor, M., Drucker, D., Schutz, G., Yoon, C., Puigserver, P., Spiegelman, B., and Mostoslavsky, R. (2001) Nature 414, 179–183
25. Friedman, J. E., Sun, Y., Iizhizuka, T., Farrell, C. J., McCormack, S. E., Herron, I. M., Hakami, P., Lechner, P., and Yu, J. S. (1997) J. Biol. Chem. 272, 31475–31481
26. Sheeped, P. R., Withers, D. J., and Siddle, K. (1998) Biochem. J. 333, 471–490
27. Kadowaki, T. (2000) J. Clin. Invest. 106, 459–465
28. Vilkamaki, A., Ueki, K., and Kahn, C. R. (1999) J. Clin. Invest. 103, 931–943
29. Guo, S., Rena, G., Cichy, S., He, X., Cohen, P., and Untrman, T. (1999) J. Biol. Chem. 274, 17184–17192
30. Biggs, W. H., Meisenhelder, J., Hunter, T., Caveness, W. K., and Arden, K. C. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 7421–7426
31. Takaiishi, K., Konishi, H., Matsuzaki, H., Ono, Y., Shirai, Y., Sai- to, N., Kitamura, T., Ogawa, W., Kasuga, M., Kikkawa, U., and Nishizuka, Y. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11836–11841
32. Brunet, A., Bonni, A., Zimonjic, D. B., Lin, M. Z., Joo, P., Chu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E. (1999) Cell 96, 857–868