Group II metabotropic glutamate receptor (mGlu₂ and mGlu₃) roles in thalamic processing

Caroline S. Copeland¹,² | Stuart A. Neale³ | Eric S. Nisenbaum⁴
Thomas E. Salt²,³

¹Institute of Pharmaceutical Sciences, King’s College London, London, UK
²Institute of Ophthalmology, University College London, London, UK
³Neurexpert Limited, The Core, Newcastle upon Tyne, UK
⁴Pain/Migraine Research Group, Eli Lilly and Company, Indianapolis, Indiana, USA

Correspondence
Caroline S. Copeland, Institute of Pharmaceutical Sciences, King’s College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, UK. Email: caroline.copeland@kcl.ac.uk

Funding Information
Biotechnology and Biological Sciences Research Council, Grant/Award Number: BB/H530570/1; Eli Lilly and Company, Grant/Award Number: N/A

Background and Purpose: As the thalamus underpins almost all aspects of behaviour, it is important to understand how the thalamus operates. Group II metabotropic glutamate (mGlu₂/mGlu₃) receptor activation reduces inhibition in thalamic nuclei originating from the surrounding thalamic reticular nucleus (TRN). Whilst an mGlu₂ component to this effect has been reported, in this study, we demonstrate that it is likely, largely mediated via mGlu₃.

Experimental Approach: The somatosensory ventrobasal thalamus (VB) is an established model for probing fundamental principles of thalamic function. In vitro slices conserving VB–TRN circuitry from wild-type and mGlu₃ knockout mouse brains were used to record IPSPs and mIPSCs. In vivo extracellular recordings were made from VB neurons in anaesthetised rats. A range of selective pharmacological agents were used to probe Group II mGlu receptor function (agonist, LY354740; antagonist, LY341495; mGlu2 positive allosteric modulator, LY487379 and mixed mGlu2 agonist/mGlu3 antagonist LY395756).

Key Results: The in vitro and in vivo data are complementary and suggest that mGlu₃ receptor activation is largely responsible for potentiating responses to somatosensory stimulation by reducing inhibition from the TRN.

Conclusions and Implications: mGlu₃ receptor activation in the VB likely enables important somatosensory information to be discerned from background activity. These mGlu₃ receptors are likely to be endogenously activated via ‘glutamate spill-over’. In cognitive thalamic nuclei, this mechanism may be of importance in governing attentional processes. Positive allosteric modulation of endogenous mGlu₃ receptor activation may therefore enhance cognitive function in pathophysiological disease states, such as schizophrenia, thus representing a highly specific therapeutic target.

LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc

Abbreviations: CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione; DL-APV, DL-2-amino-5-phosphono pentanoic acid; mGlu, metabotropic glutamate receptor; mIPSC, miniature inhibitory postsynaptic current; NIH, National Institutes of Health; TRN, thalamic reticular nucleus; TTX, tetrodotoxin; VB, ventrobasal thalamus.
KEYWORDS
electrophysiology, metabotropic glutamate receptors, schizophrenia, sensory processing, thalamic reticular nucleus, ventrobasal thalamus

INTRODUCTION

With over 30 distinct nuclear groups, the thalamus co-ordinates the transfer of information to facilitate many aspects of behaviour, from sensation and movement, to cognition and attention (Sherman & Guillery, 2001). It composes of highly organised circuits in conjunction with the neocortex to process and filter incoming and outgoing information. The somatosensory thalamic nucleus of rodents, the ventrobasal thalamus (VB), is a central tool in the study of structure–function relationships of these thalamocortical circuits due to the highly conserved somatotopic representation of each individual facial vibrissae as a single barreloid (see review: Diamond et al., 2008). Identifying the structure and function of somatosensory VB microcircuits enables identification of basic principles of thalamic function, which is essential for understanding how the rest of the thalamus operates.

The VB receives excitatory inputs exclusively from the principal sensory trigeminal nucleus via the lemniscal pathway (see review: Diamond et al., 2008). Common to all thalamic nuclei, VB thalamocortical afferents project to layer IV of the cortex and also receive reciprocal modulatory corticothalamic inputs from layer VI, which modulate how driver inputs are transmitted (see review: Jones, 2009). Both thalamocortical and corticothalamic afferents also innervate the associated thalamic reticular nucleus (TRN), which serves to provide both feedback and feedforward inhibition to thalamic nuclei upon thalamocortical and corticothalamic innervation, respectively (Jones, 2009) (Figure 1). It is important to understand how this inhibition is controlled, as its maladaptation has been implicated in several neurophysiological disease states, including schizophrenia (Ferrarelli & Tononi, 2017; Steullet et al., 2018; Young & Wimmer, 2017).

It has been extensively documented that Group II metabotropic glutamate (mGlu) receptors within this circuitry play a pivotal role in controlling this inhibition from the TRN to the VB. Electrophysiological studies have shown that activation of Group II mGlu receptors disinhibits sensory-evoked responses in the VB (Copeland et al., 2012, 2017; Cox & Sherman, 1999; Salt & Eaton, 1995a, 1995b; Salt & Turner, 1998; Turner & Salt, 2003), with ultrastructural studies indicating the presence of Group II mGlu receptors on TRN terminals and surrounding glial processes (Liu et al., 1998; Mineff & Valtschanoff, 1999; Tamaru et al., 2001). The similarity in sequence homology and subsequent pharmacology of the mGlu3 and mGlu4 receptors (Conn & Pin, 1997) has made it difficult to discern the relative contributions of each subtype to the overall Group II mGlu receptor effect on inhibition from the TRN to the VB. However, with careful use and application of selective pharmacological compounds in a series of electrophysiological experiments, we have previously been able to demonstrate mGlu2 receptor-mediated disinhibition of sensory-evoked responses in the VB (Copeland et al., 2012, 2017) and, as presented in this study, we are now able to demonstrate contribution of mGlu3 receptors to this same effect.

METHODS

2.1 Ethics statement

All experimental conditions and procedures were either in accordance with the National Institutes of Health (NIH) regulations of animal care covered in the Principles of Laboratory Animal Care, NIH publication 85-23, revised 1985, and were approved by the Eli Lilly and Company Institutional Animal Care and Use Committee, or were approved by the Home Office (UK) and were in accordance with the UK Animals (Scientific Procedures) Act 1986 and the ARRIVE guidelines (Percie du Sert et al., 2020) and with the recommendations made by the British Journal of Pharmacology (Lilley et al., 2020).

2.2 In vitro electrophysiology

2.2.1 Animals

Male mGlu3 receptor knockout, Grm3 gene, (18-23 days old; n = 6; from Jackson Laboratories, USA, on a C57BL6/J background) and...
2.2.2 | Slice preparation and recording

Mouse brains were quickly removed and placed in an oxygenated, ice cold beaker of slicing solution that contained (in mM) 110 NaCl; 10 MgCl$_2$; 2 KCl; 26 NaHCO$_3$; 1.25 NaH$_2$PO$_4$; 0.5 CaCl$_2$; 10 HEPES; and 15 glucose (pH adjusted to 7.45 with NaOH, osmolarity was 308 to 312 mOsm). After cooling in slicing solution for 2 to 3 min, the whole brains were blocked (portions of anterior and posterior tissue removed) using a razor blade and then glued to the microslicer (DTK Zero 1, DSK) tray using cyanoacrylate. The tray containing the blocked and mounted brain was filled with oxygenated, ice-cold slicing solution, and serial, coronal sections containing the TRN and VB were cut at a thickness of 300–400 μm. Slices were then placed in a larger recovery chamber containing oxygenated slicing solution at room temperature (18°C to 20°C). The recovery chamber was in a large water bath at room temperature. Slices for IPSP and mini-inhibitory postsynaptic current (mIPSC) recordings were processed as follows.

IPSP recordings

After 1 h in the recovery chamber, medium was replaced by a continuously oxygenated Krebs medium containing (in mM) 124 NaCl, 3 KCl, 1.25 KH$_2$PO$_4$, 1 MgSO$_4$, 2 CaCl$_2$, 26 NaHCO$_3$, and 10 glucose. After a further hour, slices were then transferred to an interface recording chamber mounted on a Nikon Eclipse FN-1 microscope where they were perfused with the same continuously oxygenated Krebs medium. Using the current clamp technique, intracellular recordings were made from neurons in the VB with sharp standard-walled glass microelectrodes, filled with 1-M potassium acetate (final tip resistance: 80–120 MΩ). To generate synaptic events of cortical and/or TRN origin, a bipolar stimulating electrode was placed on the border of the VB and TRN. The slice was then superfused with recording solution containing 10-μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 50-μM DL-2-amino-5-phosphonopentanoic acid (DL-APV; AP5) and 0.5-μM tetrodotoxin (TTX) to block the AMPA and NMDA receptor-evoked miniature and large amplitude events due to direct action potential firing of inhibitory neurons, respectively, leaving only the GABA-mediated synaptic events (confirmed in preliminary experiments by complete blockade of remaining synaptic events with 10-μM bicuculline).

Stimulation of the TRN at low frequency (0.1 Hz) using 100-μs square wave pulses of current (30–500 μA) evoked an IPSP. Input resistance was determined by measuring the voltage drop due to passing a ~0.05- or ~0.1-nA current pulse through the electrode. After several baseline response cycles displaying consistent neuronal responses had been recorded, compound-containing solutions were applied unblinded to the slice via whole chamber superfusion. After cessation of compound application, recordings were continued until neuronal responses had returned to their respective baseline response levels. (15S,25S,5R,6S)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740) and (25S)-2-amino-2-[(15S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) stocks were made in 100% DMSO at 1000× the desired working concentration. Compound was diluted into the recording solution containing CNQX, APV and TTX immediately before application to the brain slice. All solutions applied to the brain slices contained 0.1% to 0.2% DMSO. DMSO content was matched between solutions for each experimental protocol and in the vehicle controls. Compound treatment periods were from 10 to 12 min in duration.

mIPSC recordings

After a 10-min period in the recovery chamber, 500 μl of 0.5-M CaCl$_2$ solution was slowly added (500-ml volume) to increase the calcium concentration to 1 mM. The water bath was then turned on, and the temperature was monitored inside the recovery chamber. The recovery chamber temperature was allowed to reach 33°C to 34°C for a period of approximately 30 min, after which the water bath was turned off and the recovery chamber was allowed to slowly return to room temperature (18°C to 20°C). Slices were used for recording after at least 1 h of recovery time.

Slices were placed in a superfusion chamber mounted on a Nikon Eclipse FN-1 microscope. Neurons within the VB area of
the thalamus were visualised using IR/DIC water immersion optics. The recording solution was composed of (in mM) 115 NaCl; 1.5 MgCl₂; 5 KCl; 26 NaHCO₃; 1.25 NaH₂PO₄; 10 HEPES; 2 CaCl₂; and 15 glucose at pH 7.45, oxygenated with carbogen gas (95% O₂/5% CO₂) and osmolarity of 300 to 305 mM. The brain slice in the chamber was continually superfused at a rate of 3 ml·min⁻¹ with oxygenated recording solution (18°C to 20°C) containing 10-μM CNQX. DL-APV and 0.5-μM TTX to block the AMPA- and NMDA-evoked miniature and large amplitude events due to direct action potential firing of inhibitory neurons, respectively, leaving only the GABA-mediated synaptic events. Compound-containing solutions were applied to the slice via whole chamber superfusion. Glass recording electrodes were filled with (in mM) 140 CsCl; 1 MgCl₂; 10 HEPES; 3 NaATP; 0.3 NaGTP; and 1 Cs-EGTA at pH 7.2 and osmolality adjusted to 294 to 300 mOsm and had a resistance of 2–4 MΩ.

Visualised neurons were patch clamped in whole cell configuration (Multiclamp 700B, MDS), and access resistance (Ra) was evaluated in voltage clamp mode. A gapfree protocol (Clampex V10, MDS) with a holding potential of −70 mV was used to record miniature synaptic events until the access resistance and holding current were stable in recording solution only. LY354740 and LY341495 stocks contained one of the following substances: LY354740, (1S,4R,6R,7S)-rel-2-amino-4-methylbicyclo[3.1.0]hex-2,6-dicarboxylic acid (LY395756) as Na⁺ salts (each 5 mM, pH 8.0 in 75-mM NaCl), ejected as anions, with 2,2,2-trifluoro-N-[4-(2-methoxyphenoxy)phenyl]-N-[3-pyridinylmethyl]ethanesulfonamide hydrochloride (LY487379; 1 mM, pH 6.0, in 1% DMSO, 75-mM NaCl) ejected as cations and a 1% DMSO vehicle control. All compounds were prevented from diffusing out of the pipette by using a retaining current (10–20 nA) of opposite polarity to that of the ejection current. Compounds were ejected within a current range ensured to produce a submaximal effect on sensory inhibition (LY354740 6–50 nA; LY341495 12–40 nA; LY395756 10–50 nA; LY487379 50–100 nA).

2.3 | In vivo single neuron recording and iontophoresis

2.3.1 | Animals

All experiments were conducted using adult male Wistar rats (380–450 g, n = 14, Harlan, UK) housed on a 12-h light/dark cycle with food and water ad libitum. There are no evident gender differences in rat acute electrophysiological responses (Becker et al., 2016). Power calculations were performed to determine animal numbers required for each experimental protocol based on an estimated signal-to-noise ratio of 2 [mean: SD].

2.3.2 | Surgery

Animals were anaesthetised with urethane (1.2 g·kg⁻¹; i.p. injection) and were prepared for recording as previously described (Salt, 1987). Throughout the experiments, EEG and ECG were monitored. Additional urethane anaesthetic was administered i.p. as required and the experiment was terminated with an overdose of the same anaesthetic.

A tracheostomy tube was used to facilitate spontaneous breathing. Body temperature was monitored and maintained using a heat probe and mat. A stereotaxic frame was used to fix the head in a flat skull position.

2.3.3 | Recording and iontophoresis

Seven-barrel recording and iontophoretic glass pipettes were advanced into the VB. Extracellular recordings were made from single VB neurons responsive to somatosensory input through the central barrel (filled with 4-M sodium chloride [NaCl]). Iontophoretic drug applications were performed unblinded using the outer barrels (Salt, 1987). On each occasion, one of the outer barrels was filled with 1-M NaCl for current balancing. The remaining outer barrels each contained one of the following substances: LY354740, LY341495, (1S,2S,5S)-2-amino-5-(1-methyl-1H-benzimidazol-2-yl)pentanoate hydrochloride (LY395756), (15S,25S,4R,5R,6S)-rel-2-amino-4-methylbicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY395756) as Na⁺ salts (each 5 mM, pH 8.0 in 75-mM NaCl, ejected as anions, with 2,2,2-trifluoro-N-[4-(2-methoxyphenoxy)phenyl]-N-[3-pyridinylmethyl]ethanesulfonamide hydrochloride (LY487379; 1 mM, pH 6.0, in 1% DMSO, 75-mM NaCl) ejected as cations and a 1% DMSO vehicle control. All compounds were prevented from diffusing out of the pipette by using a retaining current (10–20 nA) of opposite polarity to that of the ejection current. Compounds were ejected within a current range ensured to produce a submaximal effect on sensory inhibition (LY354740 6–50 nA; LY341495 12–40 nA; LY395756 10–50 nA; LY487379 50–100 nA).

2.3.4 | Stimulation protocol

Neurons were identified as VB neurons on the basis of stereotaxic location (Paxinos & Watson, 1986) and responses to vibrissa deflection. Vibrissa deflection was performed using fine air-jets directed through 23 gauge needles mounted on micromanipulators positioned and orientated close to the vibrissa to ensure deflection of a single vibrissa was achieved. Air-jets were electronically gated with solenoid valves that produced a rising air pulse at the vibrissa location (Paxinos & Watson, 1986) and responses to vibrissa stimulation (10 s long) were established and repeated continuously whilst recording from neurons. Cycles contained one type of stimulus consisting of 500- to 1000-ms duration trains (5–10 Hz) of air-jets directed at the principal vibrissa. After
several baseline response cycles displaying consistent neuronal responses had been recorded, LY354740, LY341495, LY487379 and/or LY395756 were iontophoretically ejected for 2–15 min as required. After cessation of compound ejection, sensory stimulation cycles were continued until VB neuronal responses had returned to their respective baseline response levels.

2.4 | Data collection and statistical analysis

2.4.1 | In vitro electrophysiology protocols

mIPSC signals were amplified, low-pass filtered at 5 kHz, digitised with an analog-to-digital converter and collected onto a computer hard drive and analysed with the MiniAnalysis program (V6.0.4, Synaptosoft). Quantitative results are expressed in the text and figures as mean ± SEM. MATLAB (Mathworks, Version R2018a) was used to perform paired t-tests to assess statistical significance (P < 0.05). The frequency of the mIPSC events was determined during the final 5 min of each treatment period (baseline, 30-nM LY354740, 30-nM LY354740 + 100-nM LY341495) using the MiniAnalysis program (V6.0.4, Synaptosoft). Interevent intervals were calculated and plotted as cumulative fraction histograms for each treatment group. MATLAB (Mathworks, Version R2018a) was used to perform Kolmogorov–Smirnov tests on the interevent interval cumulative fractions and Wilcoxon matched pairs tests on mIPSC frequencies to determine statistical significance (P < 0.05).

2.4.2 | In vivo electrophysiology protocols

Throughout the study, extracellular single neuron action potentials were gated, timed and counted using a window discriminator, a CED1401 interface and Spike2 software (Cambridge Electronic Design, Cambridge, UK), which recorded the output from the iontophoresis unit and also triggered the sensory stimuli sequence. Data were analysed by plotting post-stimulus time histograms (PSTHs) from these recordings by counting the spikes evoked by sensory stimulation. We used conventional criteria to divide neuronal responses into burst and tonic activity (Lu et al., 1992). Any action potentials with interspike intervals of ≤4 ms were considered to be part of a burst. All other spikes were regarded as tonic. We computed a burst–tonic firing ratio (the proportion of burst spikes normalised with respect to the total number of recorded spikes). Data are expressed as a percentage of baseline responses prior to compound application to mitigate variability in neuronal responses between cells and aid in interpretation (±SEM). Statistical analysis was performed using MATLAB (Mathworks, Version R2018a), with comparisons made using Wilcoxon matched pairs test (P < 0.05).

The data and statistical analysis comply with the recommendations of the British Journal of Pharmacology on experimental design and analysis in pharmacology (Curtis et al., 2018).

2.5 | Materials

2.5.1 | In vitro electrophysiology protocols

Slice preparation and recording solution components (NaCl, MgCl₂, KCl, NaHCO₃, NaH₂PO₄, CaCl₂, HEPES, KH₂PO₄, MgSO₄, glucose, NaOH, CH₃COOK, CsCl, NaATP, NaGTP, Cs-EGTA) and DMSO were obtained from Sigma-Aldrich. CNQX and DL-APV were obtained from Tocris, with TTX and bicuculline obtained from Abcam. LY354740 and LY341495 stocks were made in-house.

2.5.2 | In vivo electrophysiology protocols

NaCl and DMSO were obtained from Sigma Aldrich. LY354740, LY341495 and LY487379 were obtained from Tocris. LY395756 was obtained from Dr James Monn, Eli Lilly and Company.

3 | RESULTS

The interpretation of the results in this study clearly rely upon careful and appropriate use of the electrophysiological preparations in conjunction with the Group II mGlu receptor selective pharmacological compounds.

The rodent ventrobasal thalamus (VB) comprises one major cell type, thalamocortical relay neurons, and is otherwise largely devoid of intrinsic inhibitory interneurons, receiving its inhibitory input almost exclusively from the adjacent thalamic reticular nucleus (TRN) (Diamond et al., 2008). This VB circuitry is homologous between rat and mouse species (Diamond et al., 2008). In this study, in vitro electrophysiology was performed with mouse brain slices to take advantage of the genetic manipulations possible in this species to generate mGlu₃ knockout animals (Linden et al., 2005). Rats were used for the in vivo components to take advantage of their larger vibrissal pad size (Haidarliu et al., 2010), which increases feasibility of individual vibrissa deflections.

The Group II orthosteric agonist LY354740 (Monn et al., 1997; Schoepp et al., 2003) has been widely employed to investigate Group II mGlu receptor function in both in vitro and in vivo neurophysiological assays in both animal and human CNS studies (Copeland et al., 2012, 2015, 2017; Moldrich et al., 2003; Nordquist et al., 2008; Schoepp et al., 2003). The Group II orthosteric antagonist LY341495 possesses high selectivity with nanomolar potencies for the Group II mGlu receptors. Whilst LY341495 also has submicromolar potencies at other mGlu receptor subtypes (Kingston et al., 1998), its use in this study follows the parameters previously demonstrated to produce selective antagonism for the Group II mGlu receptors only (Kingston et al., 1998). The mGlu₂ selective positive allosteric modulator LY487379, which possesses no intrinsic agonist activity at mGlu₂ receptors, acts to enhance responses to submaximal mGlu₂ receptor agonist without activity at other receptors or ion channels (Johnson et al., 2003). The use of LY487379 in rodent in vitro and in vivo neurophysiological studies is
The Group II mGlu receptor agonist effect on evoked and spontaneous presynaptic quantal release events is nullified in mGlu3 receptor knockout (Grm3^{−/−}) mice. (ai) Traces of the effects of the Group II mGlu receptor agonist LY354740 (30 nM) alone and in conjunction with increasing concentrations of the Group II mGlu receptor antagonist LY341495 (10, 30 and 300 nM) on IPSP amplitude in wild-type mouse brain slices. (aii) Traces of the effects of the Group II mGlu receptor agonist LY354740 (30 and 300 nM) on IPSP amplitude in mGlu3 receptor knockout mouse brain slices. (bi) Overall effects on IPSP amplitude in wild-type mouse brain slices of the same compound application combinations as described in (ai). * indicates significance at the $P < 0.05$ threshold of responses under drug conditions in comparison with baseline. (bii) Overall effects on IPSP amplitude in mGlu3 receptor knockout mouse brain slices of the same compound application combinations as described in (aii). (ci) Traces from individual neurons illustrating the effects of the Group II mGlu receptor agonist LY354740 (30 nM) alone or in conjunction with the Group II mGlu receptor antagonist LY341495 (100 nM) on the number of spontaneous mIPSC events in the ventrobasal thalamus (VB) in wild-type mouse brain slices. (cii) Traces from individual neurons illustrating the effects of the Group II mGlu receptor agonist LY354740 (30 nM) on the number of spontaneous mIPSC events in the VB in mGlu3 receptor knockout mouse brain slices. (di) Effects of the same compound application combinations on the cumulative fraction of the calculated interevent intervals of the spontaneous mIPSCs in the VB in wild-type mouse brain slices as described in (ci). (dii) Effects of the same compound application combinations on the cumulative fraction of the calculated interevent intervals of the spontaneous mIPSCs in the VB in mGlu3 receptor knockout mouse brain slices as described in (cii).
well documented (Cieslik et al., 2020; Copeland et al., 2012, 2015, 2017; Galici et al., 2005; Mango et al., 2019). LY395756 is a mixed compound in that it possesses opposite activity at each of the Group II mGlu receptor subtypes. It is an agonist at mGlu2 receptors (EC50 0.40 μM) and an antagonist of mGlu3 receptors (IC50 2.94 μM; see compound 13, Dominguez et al., 2005). Whilst the mGlu2 partial agonist activity of LY395756 has been debated to account for some of its observed pharmacological responses (Johnson et al., 2017; Sanger et al., 2013), under physiological conditions in native systems relevant to the experimental preparations used here, the majority of studies where LY395756 (and/or LY541850, its active enantiomer) has been used demonstrate it acts as a full agonist at mGlu2 receptors, as the acute (depression) effects are comparable with that of other widely used Group II mGlu receptor agonists (Ceolin et al., 2011; Hanna et al., 2013; Lucas et al., 2013).

3.1 Synaptic transmission at the TRN–VB synapse can be modulated by mGlu3 receptor activation

It has been previously demonstrated that IPSPs evoked in vitro in the VB upon TRN stimulation in rat brain slices can be suppressed by Group II mGlu receptor activation (Turner & Salt, 2003) and that there is an mGlu2 component to this overall Group II mGlu effect (Copeland et al., 2012, 2017). Therefore, we wanted to determine if there was a complementary mGlu3 component to this same effect. Whilst the reversible Group II agonist LY354740 effect on evoked IPSP amplitude in the VB was reproducible in wild-type mouse brain slices (Copeland et al., 2017; Turner & Salt, 2003) where the circuitry connecting the VB and TRN is preserved (LY354740 30 nM reduced baseline evoked IPSP amplitude by 29% ± 2%; n = 6 cell recordings from 6 slices; Figure 2ai,bi), this was completely ablated in the mGlu3 receptor knockout (Grm3−/−) mouse brain slices (LY354740 30 and 300 nM reduced baseline evoked IPSP amplitude by 2% ± 1% and 1% ± 1%, respectively; n = 6 cell recordings from 6 slices; Figure 2aii,bii). Interestingly, upon application of the highest concentration of the Group II antagonist LY341495 in combination with the Group II agonist LY354740 in the wild-type preparation, an increase in evoked IPSP amplitude when compared with baseline was observed (LY354740 30 nM and LY341495 100 nM increased evoked IPSP amplitude by 13% ± 2%; Figure 2ai,bi). Application of vehicle controls had no effect in comparison with baseline responses (data not shown).

One component that contributes to IPSP amplitude suppression is direct inhibition of GABAergic vesicle fusion with the presynaptic TRN membrane (Turner & Salt, 2003). In vitro recording of mIPSCs

FIGURE 3 The mixed compound LY395756 (mGlu2 agonist, mGlu3 antagonist) reveals an mGlu2 component to the overall Group II mGlu receptor effect on sensory-evoked inhibition. (a) Top: Timeline of a representative neuron response under baseline conditions (1), upon application of the mixed compound LY395756 alone (2), recovery (3), application of the mixed compound LY395756 together with the mGlu2 positive allosteric modulator (PAM) LY487379 (4) and a second recovery (5). Bottom: PSTHs of responses of a ventrobasal thalamus (VB) neuron (CVB122c1) to train stimulation of a single vibrissa (40-ms bins, 6 trials) under the conditions described in the above timeline. (b) Bars representing the % baseline response (±SEM) under baseline conditions (100%), in the presence of the mixed compound LY395756 alone and the mixed compound LY395756 in conjunction with the mGlu2 positive allosteric modulator LY487379 and during recovery. * indicates significance at the P < 0.05 threshold of responses under drug conditions in comparison with baseline, unless otherwise indicated.
from VB neurons enables quantification of the frequency of such spontaneous presynaptic quantal release events. Whilst the Group II agonist LY354740 effect on mIPSC frequency was reproducible (Copeland et al., 2017) and reversible in wild-type mouse brain slices (Figure 2ci,di), again, this was not evident in the mGlu3 receptor knockout mouse brain slice preparations (Figure 2cii,dii). The frequency of mIPSCs between wild-type and mGlu3 knockout preparations were comparable (4.1 ± 1.9 Hz vs. 3.8 ± 1.8 Hz, respectively; each n = 6 cell recordings from 6 slices; Wilcoxon matched pairs test P > 0.05). Application of vehicle controls had no effect in comparison with baseline responses (data not shown).

Taken together, these in vitro data indicate that there is a considerable mGlu3 receptor-mediated component to the overall Group II mGlu receptor effect on TRN-induced GABAergic inhibition evoked in the VB. We therefore sought to confirm this effect in vivo.

3.2 | mGlu3 activation contributes to the gating of neuronal responses to somatosensory stimulation

Ventrlobasal thalamus (VB) neuronal responses to short- and long-duration vibrissal stimulation can be potentiated by Group II mGlu receptor activation leading to somatosensory disinhibition, which comprises an mGlu2 component (Copeland et al., 2012, 2017; Salt & Eaton, 1995a, 1995b; Salt & Turner, 1998). We used iontophoretic application of the mixed compound LY395756 (mGlu2 agonist, mGlu3 antagonist) onto VB neurons in vivo to confirm functional contribution of an mGlu3 component to this overall Group II effect, as suggested by the in vitro experiments. Application of the mixed compound LY395756 alone inhibited total VB neuronal responses to long-duration vibrissal stimulation (83% ± 3% of baseline; n = 11 cell recordings from 9 rats; Figure 3), an effect similar to that observed upon application of the Group II mGlu antagonist LY341495 (81% ± 5% of baseline; n = 6 cell recordings from 3 rats Figure 4b). As the mixed compound is an mGlu3 antagonist, this has revealed an mGlu3 component to the overall Group II mGlu effect on sensory disinhibition. Upon co-application of the mixed compound LY395756 with the mGlu2 positive allosteric modulator LY487379, the reverse was seen, with a potentiation of VB neuronal responses to long-duration vibrissal stimulation (146% ± 10% of baseline; n = 6 cell recordings from 5 rats); an effect similar to that observed upon application of the Group II mGlu agonist LY354740 (177% ± 24% of baseline; n = 6 cell recordings from 6 rats; Figure 4b). As the mixed compound is an mGlu2 agonist, this confirms the mGlu2 component to the overall

![Figure 4](https://example.com/figure4.png)

Figure 4 The mixed compound LY395756 when applied alone exerts effects similar to that of the Group II mGlu receptor antagonist LY341495. (ai) PSTHs delineating tonic (black) and burst (grey) responses of a ventrobasal thalamus (VB) neuron (CVB127b2) to train stimulation of a single vibrissa (50-ms bins, 18 trials) under baseline conditions, upon application of the mixed compound LY395756 and during recovery. (a(ii)) LHS: Bars representing the total % baseline response (±SEM) under the same conditions as described in (ai). RHS: Bars representing the % of the response exhibited as burst firing (±SEM) under the same conditions as described in (ai). (b) PSTHs delineating tonic (black) and burst (grey) responses of a VB neuron (CVB087b1) to train stimulation of a single vibrissa (50-ms bins, 18 trials) under baseline conditions, upon application of the Group II mGlu receptor antagonist LY341495 and during recovery. (bii) LHS: Bars representing the total % baseline response (±SEM) under the same conditions as described in (bi). RHS: Bars representing the % of the response exhibited as burst firing (±SEM) under the same conditions as described in (bi). * indicates significance at the P < 0.05 threshold of responses under drug conditions in comparison with baseline.
Group II mGlu effect on sensory disinhibition that has been previously described (Copeland et al., 2012, 2017). Furthermore, this action of the mGlu2 positive allosteric modulator confirms that the Harlan Wistar rats used in this study express functional mGlu2 receptors (Ceolin et al., 2011). Application of vehicle controls had no effect in comparison with baseline responses (data not shown).

To further investigate the agonist/antagonist activity of the mixed compound LY395756, we performed further subanalysis of its effects on burst firing of VB thalamic neurons, which exhibit two distinct response patterns, tonic and burst-mode responses (Copeland et al., 2015; Ramcharan et al., 2000; Rivadulla et al., 2003). Tonic responses are associated with a linear transmission of information and occur when thalamic neurones have been depolarised from resting potential following the inactivation of a voltage- and time-dependent calcium current (I\textsubscript{T}), whilst burst-mode firing occurs following hyperpolarisation of thalamic neurones where I\textsubscript{T} is de-inactivated (Jahnsen & Llinás, 1984; Llinás & Jahnsen, 1982). As such, during tonic firing, synaptic transmission through the thalamus is faithfully relayed, whereas during burst firing, transmission through the thalamus is less reliable with impulses occurring at low and irregular rates punctuated by high-frequency bursts. Iontophoretic application of the mixed compound LY395756 alone increased burst firing (baseline burst firing: 65% ± 7%; +LY395756 burst firing 75% ± 6%; n = 11 cell recordings from 9 rats; Figure 4a), an effect similar to that observed upon application of the Group II mGlu antagonist LY341495 (baseline burst firing: 49% ± 6%; +LY341495 burst firing 65% ± 4%; n = 6 cell recordings from 3 rats; Figure 4b). Iontophoretic application of the mixed compound LY395756 in combination with the mGlu2 positive allosteric modulator LY487379 decreased burst firing (baseline burst firing: 66% ± 6%; +LY395756 and LY487379 burst firing 53% ± 6%; n = 6 cell recordings from 5 rats; Figure 5a), an effect similar to that observed upon application of the Group II mGlu agonist LY354740 (baseline burst firing: 74% ± 5%; +LY354740 burst firing 62% ± 4%; n = 6 cell recordings from 6 rats; Figure 5b). Application of vehicle controls had no effect in comparison with baseline responses (data not shown).

4 | DISCUSSION AND CONCLUSIONS

Thalamic nuclei can be classed as either first-order or higher order nuclei based upon the source of their driver inputs of information: first-order nuclei receive driver inputs from the periphery (e.g. auditory, visual and somatosensory), whereas higher order nuclei receive driver inputs from cortical layer V (Jones, 2009). By understanding basic principles of thalamic function in a first-order nucleus, such as the ventrobasal thalamus (VB), it is then possible to extend this basic knowledge to understand the function of more complex

FIGURE 5 The mixed compound LY395756 when applied in conjunction with the mGlu2 positive allosteric modulator LY487379 exerts effects similar to that of the Group II mGlu receptor agonist LY354740. (ai) PSTHs delineating tonic (black) and burst (grey) responses of a ventrobasal thalamus (VB) neuron (CVB130a2) to train stimulation of a single vibrissa (50-ms bins, 18 trials) under baseline conditions, upon application of the mixed compound LY395756 and the mGlu2 positive allosteric modulator (PAM) LY487379 and during recovery. (aii) LHS: Bars representing the total % baseline response (±SEM) under the same conditions as described in (ai). RHS: Bars representing the % of the response exhibited as burst firing (±SEM) under the same conditions as described in (ai). (bi) PSTHs delineating tonic (black) and burst (grey) responses of a VB neuron (CVB030a2) to train stimulation of a single vibrissa (50-ms bins, 18 trials) under baseline conditions, upon application of the Group II mGlu receptor agonist LY354740 and during recovery, (bii) LHS: Bars representing the total % baseline response (±SEM) under the same conditions as described in (bi). RHS: Bars representing the % of the response exhibited as burst firing (±SEM) under the same conditions as described in (bi). * indicates significance at the P < 0.05 threshold of responses under drug conditions in comparison with baseline.
thalamic circuitries, such as those of the higher order thalamic nuclei that serve to support cognitive processes (see Jones, 2009, for review). As the rodent VB composes only of excitatory VB neurons (i.e. no interneurons) (Barbaresi et al., 1986; Harris & Hendrickson, 1987; Ohara & Lieberman, 1993; Ralston, 1983), which when coupled with our in-depth understanding of its simple circuitry (Sherman & Guillery, 2001) (Figure 1), makes it an ideal candidate with which to understand the basic principles of thalamic function.

There is substantial evidence from in vitro and in vivo electrophysiological studies that upon driver afferent stimulation, the Group II mGlu receptors reduce inhibition in thalamic nuclei, likely via a reduction in GABAergic transmission from the TRN (Alexander & Godwin, 2005; Copeland et al., 2012, 2015, 2017; Salt & Eaton, 1995; Salt & Turner, 1998; Turner & Salt, 2003). In the VB, it has been previously demonstrated that this mechanism comprises an mGlu2 component (Copeland et al., 2012, 2017) and, in this study, we are able to provide further evidence to support this and also additional evidence for co-contribution from mGlu3 receptor activation to this effect. In fact, these data suggest that the overall Group II mGlu receptor effect is mainly mediated via mGlu2. The mixed compound LY395756 is a more than sevenfold more potent mGlu2 receptor agonist (EC\textsubscript{50} 0.40 μM) than it is an mGlu3 receptor antagonist (IC\textsubscript{50} 2.94 μM; Dominguez et al., 2005), yet the overriding effect of the mixed compound when applied alone in this study was that of antagonism. Indeed, the mGlu2 positive allosteric modulator used to reveal the mGlu2 component is in itself very effective. As application of sub-maximal glutamate (1 μM) to produce a ~3% of maximal glutamate response can be potentiated upon co-application of LY487479 up to ~75% of maximal glutamate response, a 2,500% increase (Johnson et al., 2003), meaning that even low levels of mGlu2 activation can be revealed. Therefore, the mGlu2 effect revealed by the potent mGlu2 positive allosteric modulator in this study and our previous work (Copeland et al., 2012, 2017) on reducing inhibition in the VB from the TRN may, under normal physiological conditions, minimally contribute to the overall Group II mGlu effect. Evidence from ultrastructural studies support this theory, as mGlu2 receptors are heavily localised within GABAergic terminals of the TRN (Lourenço Neto et al., 2000; Ohishi et al., 1993a, 1993b; Tamaru et al., 2001). Taken together, the electrophysiological and ultrastructural studies suggest that mGlu2 receptors localised on TRN axon terminals, likely the majority, mediate the reduction in inhibition in thalamic nuclei from the TRN, with any Group II mGlu receptor subtypes present on surrounding glial processes likely contributing a smaller modular role to the same effect.

The location of Group II mGlu receptors on TRN terminals and surrounding astrocytic processes indicates that they play a pivotal role in modulating inhibition in the thalamus. As TRN terminals are not directly targeted by synaptically released glutamate, these receptors may be activated by endogenous ‘glutamate spillover’ (Kullmann, 2000) from synapses formed between excitatory driver afferents and thalamocortical neurons upon normal sensory processing (Copeland et al., 2012) or under conditions of intense synaptic activation (Alexander & Godwin, 2006). This is further evidenced by the in vitro IPSP experiments conducted in this study, as application of the highest concentration of the Group II mGlu receptor antagonist LY341495 was able to increase IPSP amplitude above that seen under baseline conditions. As the mGlu2 knockout data indicate that reductions in IPSP amplitude and mIPSC frequency are majority mediated via mGlu2, taken together, these data suggest that it is basal mGlu2 receptor activation that is likely occurring upon driver afferent stimulation via ‘glutamate spillover’ to reduce inhibition in the VB from the TRN. Ultrastructural studies support such a mechanism as they have evidenced close association of sensory afferent terminals with TRN GABAergic terminals, upon which mGlu2 receptors are heavily localised (Lourenço Neto et al., 2000; Ohishi et al., 1993a, 1993b; Tamaru et al., 2001), on the soma and proximal dendrites of neurons in the rodent VB (Ohara & Lieberman, 1993; Ralston, 1983).

This study contributes to the growing evidence demonstrating that GABAergic transmission from the TRN can be reduced through activation of Group II mGlu receptors, resulting in a reduction in sensory-evoked inhibition (Copeland et al., 2012, 2017). Such a mechanism could play an important role in discriminating relevant sensory information from background activity to enhance sensory perception. In higher order nuclei, this mechanism could be of importance in attentional and cognitive processes, and there is evidence to suggest that it is the mGlu2 receptor subtype that plays a role in reducing inhibition from the TRN in such nuclei (Copeland et al., 2015).

As increased inhibition in the higher order mediodorsal thalamic nucleus has been associated with onset of cognitive deficits and impairments in working memory, such as is seen in schizophrenia (DeNicola et al., 2020; Parnaudeau et al., 2013; Peräkylä et al., 2017). Targeting of the Group II mGlu receptors and, specifically the mGlu2 receptor subtype, may be of therapeutic importance for this disease state. As antagonism of mGlu2 receptors increases evoked inhibition from the TRN, as evidenced in this study by a decrease in tonic firing but an increase in burst firing upon application of the mixed compound LY395756 alone. Thus, activation of mGlu2 receptors to reduce inhibition may be an appropriate target-specific treatment for schizophrenia. This mechanism of mGlu2-mediated reduction in inhibition is further supported by the IPSP and mIPSC data presented in this study. It has been previously demonstrated that activation of mGlu2 receptors in the mediodorsal thalamus is able to reduce inhibition from the TRN (Copeland et al., 2015). Thus the present study suggests that mGlu2 receptor activation will decrease the unreliable and irregular synaptic transmission associated with burst firing and increase the proportion of tonic firing where synaptic transmission through the thalamus is faithfully relayed. Indeed, the mGlu2 receptor has been implicated in the aetiological, pathophysiological and pharmacotherapeutic aspects of schizophrenia, with polymorphisms in the mGlu2 receptor gene and protein, but not the mGlu2 receptor, detected in patients with schizophrenia (see review: Stanisly & Conn, 2018). The design of future novel therapies targeted to treat deficits in cognitive function may therefore achieve greater success if selectivity and higher efficacy for mGlu2 receptors were achieved.
4.1 | Conclusions

The Group II mGlu receptor effect in reducing evoked inhibition from the TRN to the VB is likely to mainly u3-mediated via mGlu3 receptors. This mechanism may be of importance when identifying important sensory information in an environment with background activity and may be an overarching principle applicable to higher order thalamic nuclei function in the control of cognitive and attentional processes. As the mGlu3 receptor subtype appears to be activated by endogenous ‘glutamate spillover’ upon afferent stimulation, it may be advantageous to develop mGlu3 positive allosteric modulators, as opposed to direct agonists, to alleviate instances of increased thalamic inhibition, as is believed to occur in schizophrenia. Indeed, there is emerging evidence to suggest that mGlu3 positive allosteric modulators could act to enhance performance in cognitive tasks (Walker & Conn, 2015).

4.2 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al., 2018), and are permanently archived in the Concise Guide to PHARMACOLOGY 2019/20 (Alexander et al., 2019).

ACKNOWLEDGEMENTS

This study is supported by a Biotechnology and Biological Sciences Research Council (BBSRC) grant (BB/H530570/1 to TES) and Eli Lilly and Company.

AUTHOR CONTRIBUTIONS

All authors conceived and planned the experiments. CSC and EN carried out the experiments. All authors contributed to the interpretation of the results. CSC took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

CONFLICT OF INTEREST

The authors have no conflicts of interest to disclose.

DECLARATION OF TRANSPARENCY AND SCIENTIFIC RIGOUR

This Declaration acknowledges that this paper adheres to the principles for transparent reporting and scientific rigour of preclinical research as stated in the BIP guidelines for Design and Analysis and Animal Experimentation, and as recommended by funding agencies, publishers and other organisations engaged with supporting research.

DATA AVAILABILITY STATEMENT

Data are available on request from the corresponding author.

ORCID

Caroline S. Copeland https://orcid.org/0000-0002-4462-1402
Eric S. Nisenbaum https://orcid.org/0000-0002-0744-2712
Thomas E. Salt https://orcid.org/0000-0002-6077-6666

REFERENCES

Alexander, G. M., & Godwin, D. W. (2005). Presynaptic inhibition of corticothalamic feedback by metabotropic glutamate receptors. Journal of Neurophysiology, 94, 163–175. https://doi.org/10.1152/jn.01198.2004
Alexander, G. M., & Godwin, D. W. (2006). Unique presynaptic and postsynaptic roles of Group II metabotropic glutamate receptors in the modulation of thalamic network activity. Neuroscience, 141, 501–513. https://doi.org/10.1016/j.neuroscience.2006.03.060
Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., & Pawson, A. J. (2019). The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology, 176(Suppl 1), S21–S141.
Barbaresi, P., Sprefaco, R., Frassoni, C., & Rustioni, A. (1986). GABAergic neurons are present in the dorsal column nuclei but not in the ventroposterior complex of rats. Brain Research, 382, 305–326. https://doi.org/10.1016/0006-8993(86)91340-5
Becker, J. B., Prendergast, B. J., & Liang, J. W. (2016). Female rats are not more variable than male rats: A meta-analysis of neuroscience studies. Biology of Sex Differences, 7, 34. https://doi.org/10.1186/s13293-016-0087-5
Ceolin, L., Kantamneni, S., Barker, G. R., Hanna, L., Murray, L., Warburton, E. C., Robinson, E. S., Monn, J. A., Fitzjohn, S. M., Collingridge, G. L., Bortolotto, Z. A., & Lodge, D. (2011). Study of novel selective mGlu2 agonist in the temporo-ammonic input to CA1 neurons reveals reduced mGlu2 receptor expression in a Wistar sub-strain with an anxiety-like phenotype. The Journal of Neuroscience, 31, 6721–6731. https://doi.org/10.1523/JNEUROSCI.0418-11.2011
Cieslik, P., Domin, H., Chocyk, A., Guca, P., Litwa, E., Ploska, A., Radulska, A., Pelikant-Małek, I., Branski, P., Kalinowski, L., & Wieronska, J. M. (2020). Simultaneous activation of mGlu2 and muscarinic receptors reverses MK-801-induced cognitive decline in rodents. Neuropharmacology, 174, 107866. https://doi.org/10.1016/j.neuropharm.2019.107866
Conn, P. J., & Pin, J. P. (1997). Pharmacology and functions of metabotropic glutamate receptors. Annual Review of Pharmacology and Toxicology, 37, 205–237. https://doi.org/10.1146/annurev.pharmtox.37.1.205
Copeland, C. S., Neale, S. A., & Salt, T. E. (2012). Positive allosteric modulation reveals a specific role for mGlu2 receptors in sensory processing in the thalamus. The Journal of Physiology, 590, 937–951. https://doi.org/10.1113/jphysiol.2011.218065
Copeland, C. S., Neale, S. A., & Salt, T. E. (2015). Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors. Neuropharmacology, 92, 16–24. https://doi.org/10.1016/j.neuropharm.2014.12.031
Copeland, C. S., Wall, T. M., Sims, R. E., Neale, S. A., Nisenbaum, E., Parri, H. R., & Salt, T. E. (2017). Astrocytes modulate thalamic sensory processing via mGlu2 receptor activation. Neuropharmacology, 121, 100–110. https://doi.org/10.1016/j.neuropharm.2017.04.019
Cox, C. L., & Sherman, S. M. (1999). Glutamate inhibits thalamic reticular neurons. The Journal of Neuroscience, 19, 6694–6699. https://doi.org/10.1523/JNEUROSCI.19-15-06694.1999
Curtis, M. J., Alexander, S., Cirino, G., Doherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors
Johnson, M. P., Baez, M., Jagdmann, G. E. Jr., Britton, T. C., Large, T. H., Harding, S. D., Sharman, J. L., Faccenda, E., Southan, C., Pawson, A. J., Haidarliu, S., Simony, E., Golomb, D., & Ahissar, E. (2010). Muscle architecture: Where and what in the whizzer sensormotor system. Nature Reviews. Neuroscience, 9, 601–612. https://doi.org/10.1038/nrn2411

Dominguez, C., Prieto, L., Valli, M. J., Massey, S. M., Bures, M., Wright, R. A., Johnson, B. G., Andis, S. L., Kingston, A., Schoepf, D. D., & Monn, J. A. (2005). Methyl substitution of 2-aminobicyclo[3.1.0]hex-2-ene-6,2-dicarboxylate (LY354740) determines functional activity at metabotropic glutamate receptors: Identification of a subtype selective mGlu2 receptor agonist. Journal of Medicinal Chemistry, 48, 3605–3612. https://doi.org/10.1021/jm040222y

Ferrarelli, F., & Tononi, G. (2017). Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia. Schizophrenia Research, 180, 36–43. https://doi.org/10.1016/j.schres.2016.05.023

Galici, R., Echemendia, N. G., Rodriguez, A. L., & Conn, P. J. (2005). A selective allosteric potentiator of metabotropic glutamate (mGlu2) receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. The Journal of Pharmacology and Experimental Therapeutics, 315, 1181–1187. https://doi.org/10.1124/jpet.105.091074

Haidarliu, S., Simony, E., Golomb, D., & Ahissar, E. (2010). Muscle architecture in the mystacial pad of the rat. The Anatomical Record (Hoboken), 293, 1192–1206. https://doi.org/10.1002/ar.21156

Hanna, L., Celino, L., Lucas, S., Monn, J., Johnson, B., Collingridge, G., Bortolotto, Z., & Lodge, D. (2013). Differentiating the roles of mGlu2 and mGlu3 receptors using LY541850, an mGlu2 agonist/mGlu3 antagonist. Neuropharmacology, 66, 114–121. https://doi.org/10.1016/j.neuropharm.2012.02.023

Harding, S. D., Sharman, J. L., Facenda, E., Southan, C., Pawson, A. J., Ireland, S., Gray, A. J. G., Bruce, L., Alexander, S. P. H., Anderton, S., Bryant, C., Davenport, A. P., Doerig, C., Fabbro, D., Levi-Schaffer, F., Spedding, M., Davies, J. A., & NC-IUPHAR. (2018). The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 46, D1091–D1106. https://doi.org/10.1093/nar/gkx1121

Harris, R. M., & Hendrickson, A. E. (1987). Local circuit neurons in the rat ventrobasal thalamus—A GABA immunochemical study. Neuroscience, 21, 229–236. https://doi.org/10.1016/0306-4522(87)90335-6

Jahnsen, H., & Llinás, R. (1984). Voltage-dependent burst-to-tonic switching of thalamic cell activity: An in vitro study. Archives Italiennes de Biologie, 122, 73–82.

Johnson, K. A., Mateo, Y., & Lovinger, D. M. (2017). Metabotropic glutamate receptor 2 inhibits thalamically-driven glutamate and dopamine release in the dorsal striatum. Neuropharmacology, 117, 114–123. https://doi.org/10.1016/j.neuropharm.2017.01.038

Johnson, M. P., Baez, M., Jagdmann, G. E. Jr., Britton, T. C., Large, T. H., Callagaro, D. O., Tizzano, J. P., Monn, J. A., & Schoepf, D. D. (2003). Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: Synthesis and subtype selectivity of N-[(2-methoxyphenoxy)phenyl]-N-(2,2,2-trifluoroethanesulfon)(3-yl)methyamine. Journal of Medicinal Chemistry, 46, 3189–3192. https://doi.org/10.1021/jm030410s

Jones, E. G. (2009). Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Annals of the New York Academy of Sciences, 1157, 10–23. https://doi.org/10.1111/j.1749-6632.2009.04534.x
