A VARIATION ON THE DONSKER-VARADHAN INEQUALITY FOR THE PRINCIPAL EIGENVALUE

JIANFENG LU AND STEFAN STEINERBERGER

Abstract. The purpose of this short paper is to give a variation on the classical Donsker-Varadhan inequality, which bounds the first eigenvalue of a second-order elliptic operator on a bounded domain \(\Omega \) by the largest mean first exit time of the associated drift-diffusion process via

\[
\lambda_1 \geq \frac{1}{\sup_{x \in \Omega} \mathbb{E}_x \tau_{\Omega^c}}.
\]

Instead of looking at the mean of the first exit time, we study quantiles: let \(d_{p,\partial \Omega} : \Omega \to \mathbb{R}_+ \) be the smallest time \(t \) such that the likelihood of exiting within that time is \(p \), then

\[
\lambda_1 \geq \frac{\log (1/p)}{\sup_{x \in \Omega} d_{p,\partial \Omega}(x)}.
\]

Moreover, as \(p \to 0 \), this lower bound converges to \(\lambda_1 \).

1. Introduction

We consider, for open and bounded \(\Omega \subset \mathbb{R}^n \), solutions of the equation

\[
-\text{div}(a(x)\nabla u(x)) + \nabla V \cdot \nabla u = \lambda u \quad \text{in } \Omega
\]
\[
u = 0 \quad \text{on } \partial \Omega
\]

Estimating the smallest possible value of \(\lambda_1 \) for which the equation has a solution is a problem of fundamental importance. Finding upper bounds is, in many instances, rather straightforward by testing with a family of functions – finding lower bounds is substantially more difficult. An important conceptual leap is due to Donsker & Varadhan, who take

\[
L = -\text{div}(a(x)\nabla u(x)) + \nabla V \cdot \nabla u
\]

and take \(-L\) as the infinitesimal generator of a drift-diffusion process (here and in all subsequent steps we always assume sufficient regularity on both the operator and the domain). The maximum mean exit time then serves as a lower bound of the first eigenvalue \(\lambda_1 \) (we use the formulation from [1]).

Theorem (Donsker-Varadhan [5, 6], CPAM 1976).

\[
\lambda_1 \geq \frac{1}{\sup_{x \in \Omega} \mathbb{E}_x \tau_{\Omega^c}}.
\]
Proof. The proof is simple: note that \(w(x) = \mathbb{E}_x \tau_{\Omega^c} \) solves the equation
\[
- \text{div}(a(x) \nabla w(x)) + \nabla V \cdot \nabla w = 1 \quad \text{in} \quad \Omega \\
w = 0 \quad \text{on} \quad \partial \Omega.
\]
We also observe that, by definition, the first eigenfunction \(u(x) \) solves
\[
- \text{div}(a(x) \nabla u(x)) + \nabla V \cdot \nabla u = \lambda_1 u \quad \text{in} \quad \Omega \\
u = 0 \quad \text{on} \quad \partial \Omega.
\]
This implies, by linearity,
\[
- \text{div} \left(a(x) \nabla \left[\lambda_1 w(x) \max_{x \in \Omega} |u(x)| - u(x) \right] \right) + \nabla V \cdot \nabla \left(\lambda_1 w(x) \max_{x \in \Omega} |u(x)| - u(x) \right) \geq 0.
\]
The maximum principle then implies
\[
\lambda_1 w(x) \max_{x \in \Omega} |u(x)| - u(x) \geq 0,
\]
which yields
\[
\lambda_1 w(x) \geq \frac{u(x)}{\max_{x \in \Omega} |u(x)|}
\]
from which we obtain, by setting \(x \) so that \(|u| \) assumes its maximum,
\[
\lambda_1 \max_{x \in \Omega} w(x) \geq 1.
\]
\[\square\]

The result can be interpreted in two ways: if, perhaps by symmetry considerations, it is possible to roughly predict the location that maximizes the mean first exit time, then the result allows for lower bounds on the eigenvalue \(\lambda_1 \) and, conversely, knowledge about the eigenvalue \(\lambda_1 \) guarantees the existence of points in the domain for which the mean first exit time is ‘large’. Among other applications, the Donsker-Varadhan estimate is crucially used in the potential theoretic analysis of metastability in [1, 2, 3] (see Lemma 2.1 in [3] where the Lemma is quoted and an improvement in Lemma 2.2 in the same paper) and in Markov state models (see e.g., [8] and references therein). We shall not focus too much on the minimal regularity of \(L \): the reader may assume that \(a(x) \) is uniformly elliptic and both \(a(x) \) and \(V(x) \) are smooth; in practice, the results will hold in much rougher situations and only relies on the Feynman-Kac formula being applicable (which even allows moderate singularities in \(V \)). Moreover, the arguments are versatile enough to be applicable to Graph Laplacian on Markov chain; the changes are completely obvious changes of symbols and will not be detailed in this paper.

2. The Result

The Donsker-Varadhan inequality is based on the mean value of the first exit time. We will work with quantiles of that distribution instead: for fixed \(0 < p < 1 \), we define the diffusion distance to the boundary \(d_{p,\partial \Omega} : \Omega \to \mathbb{R}_+ \) implicitly as the smallest number
\[
P (\text{first exit time} \geq d_{p,\partial \Omega}(x_0)) \leq p,
\]

where the probability is taken over drift-diffusion processes generated by $-L$ and started in x_0. Our main result is that there is a natural relation between that quantity and the smallest eigenvalue λ_1 of the differential operator.

Theorem. We have

\[
d_{p,\partial\Omega}(x) \geq \frac{1}{\lambda} \log \left(\frac{1}{p} \frac{|u(x)|}{\|u\|_{L^\infty(\Omega)}} \right).
\]

We are not aware of this result being in the literature. Related statements seem to have first appeared in [7, 9], a discrete analogue was given by Cheng, Rachh and the second author in [4]. In most cases, the definition may be simplified as $P(\text{first exit time} \geq d_{p,\partial\Omega}(x_0)) = p$, however, the definition above also covers time-discrete processes on Markov chains with absorbing states where a similar estimate can be easily obtained (we leave the details to the reader).

Corollary (Donsker-Varadhan for Quantiles).

\[
\lambda_1 \geq \log(1/p) \sup_{x \in \Omega} d_{p,\partial\Omega}(x).
\]

Moreover, the right-hand side converges to λ_1 as $p \to 0$.

We observe two major differences that become relevant when estimating $d_{p,\partial\Omega}(x)$ with a Monte Carlo method:

1. Instead of having to compute a mean (which, especially for heavy-tail distributions, can be difficult), it suffices to estimate the likelihood of exiting within a fixed time t. The desired outcome is a Bernoulli variable with likelihood p – the problem thus reduces to estimating the parameter in a $\{0,1\}$ Bernoulli distribution and adjusting time t, which is more stable.

2. By decreasing the value of p, the result can be arbitrarily refined – the difficulty being that estimating the parameter becomes more computationally costly as $p \to 0$, as one needs more simulations to ensure that there are enough samples in the $p-$th quantile to give a stable estimation of the Bernoulli parameter. In practice, the available amount of computation will impose a restriction on the value of p that can be reasonably estimated with a certain degree of confidence.

3. **Proofs**

3.1. Proof of the Theorem.

Proof. We assume w.l.o.g. that $u(x) > 0$ and define the parameter $0 < \delta < 1$ implicitly via $\delta\|u\|_{L^\infty} = u(x)$. We use $\omega(t)$ to denote drift-diffusion process (associated to the Feynman-Kac formula) started in x and running up to time t.

Since

\[
- \text{div}(a(x) \nabla u(x)) + \nabla V \cdot \nabla u = \lambda_1 u,
\]

we have that

\[
u(x) = e^{\lambda t} E_x (u(\omega(t)))
\]

with the convention that $u(\omega(t))$ is 0 if the drift-diffusion processes leaves Ω at some point in the interval $[0,t]$. Let now $t = d_{p,\partial\Omega}(x)$, in which case we see that

\[
E_x (u(\omega(t))) \leq p\|u\|_{L^\infty} + (1-p)0.
\]
Altogether, we obtain
\begin{equation}
\delta \|u\|_{L^\infty} = u(x) = e^{\lambda d_{p,\partial\Omega}(x)} E_x \langle u(\omega(t)) \rangle \leq e^{\lambda d_{p,\partial\Omega}(x)} p \|u\|_{L^\infty}
\end{equation}
from which the statement follows. \qed

3.2. Proof of the Corollary.

Proof. It remains to show that the lower bound is asymptotically sharp as \(p \to 0^+ \). Let \(x \in \Omega \) be arbitrary and let \(\delta_x \) be the Dirac distribution centered at \(x \). We are interested in the long-time behavior of applying the drift-diffusion process to these initial conditions; denoting the eigenpairs of the differential operator by \((\lambda_k, \phi_k) \), we can use the spectral theorem (see e.g. \cite{10}) to estimate
\begin{equation}
\int_{\Omega} e^{(\text{div}(a(x)\nabla\cdot x) - \nabla\cdot x) t} \delta_x dz = \int_{\Omega} \sum_{k=1}^{\infty} e^{-\lambda_k t} \langle \delta_x, \phi_k \rangle \phi_k(z) dz.
\end{equation}
The spectral gap implies that, as \(t \to \infty \),
\begin{equation}
\int_{\Omega} \sum_{k=1}^{\infty} e^{-\lambda_k t} \langle \delta_x, \phi_k \rangle \phi_k(z) dz = \phi_1(x) e^{-\lambda_1 t} \int_{\Omega} \phi_1(z) dz + o(e^{-\lambda_1 t}).
\end{equation}
This means that, asymptotically as \(t \to \infty \), the survival probability is maximized by starting in the point in which the first eigenfunction assumes a global maximum. Conversely, the case \(p \to 0 \) is equivalent to the case \(t \to \infty \) and by locating \(x \) in the point \(x_0 \in \Omega \), where the ground state assumes its maximum, we get that
\begin{equation}
\sup_{x \in \Omega} d_{p,\partial\Omega}(x) = (1 + o(1)) d_{p,\partial\Omega}(x_0).
\end{equation}
The computation above shows, as \(p \to 0 \) and \(t \to \infty \)
\begin{equation}
e^{-\text{div}(a(x)\nabla\cdot x) + \nabla\cdot x) t} \delta_{x_0} = (1 + o(1)) \| \phi_1 \|_{L^\infty} e^{-\lambda_1 t} \int_{\Omega} \phi_1(x) dx.
\end{equation}
This implies nontrivial bounds on the logarithm of the survival probability
\begin{equation}
\log P(\text{first exit time} \geq t) = -(\lambda_1 + o(1)) t.
\end{equation}
Then, by definition,
\begin{equation}
\log p = \log P(\text{first exit time} \geq d_{p,\partial\Omega}(x_0)) = -(\lambda_1 + o(1)) d_{p,\partial\Omega}(x_0)
\end{equation}
and this then implies
\begin{equation}
(1 + o(1)) \lambda_1 \sup_{x \in \Omega} d_{p,\partial\Omega}(x) = \log (1/p).
\end{equation}
\qed

The main idea of the argument is that \(p \to 0 \) naturally corresponds to \(t \to \infty \). The spectral theorem implies that long-time asymptotics is essentially given by the first eigenvalue and the first eigenfunction via
\begin{equation}
e^{-t L} f \sim e^{-\lambda_1 t} \langle f, \phi_1 \rangle \phi_1
\end{equation}
and this is how we indirectly obtain estimates on \(\lambda_1 \). This also suggests that it might perhaps be possible to obtain estimates on the convergence speed depending on the spectral gap.
4. Numerical Examples

4.1. Unit interval. A toy example is given by

\begin{equation}
-\Delta u = \lambda u \quad \text{in } [0, 1]
\end{equation}

\begin{align*}
u(0) &= 0 = u(1).
\end{align*}

The ground state is \(u(x) = \sin \pi x \) and \(\lambda_1 = \pi^2 \sim 9.86 \). – the Donsker-Varadhan estimate requires us to solve \(-\Delta w = 1\), which easily gives \(w(x) = x/2 - x^2/2 \) and from which we get the lower bound \(\lambda \geq 8 \). In comparison, our bound for various values of \(p \) are

\(p \)	1/2	1/4	10^{-1}	10^{-2}	10^{-8}
lower bound	7.28	8.40	8.92	9.39	9.74

Donsker-Varadhan | 8

4.2. Unit interval with a quadratic potential. Let us consider a 1D example with a quadratic potential \(V = \frac{1}{2}x^2 \) on \([-1, 1] \):

\begin{equation}
-\Delta u + x \nabla u = \lambda u \quad \text{in } [-1, 1]
\end{equation}

\begin{align*}
u(-1) &= 0 = u(1).
\end{align*}

The ground state is \(u(x) = 1 - x^2 \) with \(\lambda = 2 \). The mean first exit time \(w \) solves

\begin{equation}
-\Delta w + x \nabla w = 1 \quad \text{in } [-1, 1]
\end{equation}

with Dirichlet boundary condition. Solving the equation by central difference scheme with mesh size \(h = 10^{-4} \) yields the Donsker-Varadhan estimate \(\lambda \geq 1.678 \). To use our bound for various values of \(p \), we simulate \(10^4 \) paths using an Euler-Maruyama scheme with time step size \(t = 10^{-4} \) starting at the origin (thanks to the symmetry), the following lower bounds are obtained.

\(p \)	0.5	0.3	0.2	0.1	0.05
lower bound	1.522	1.675	1.740	1.799	1.834

Donsker-Varadhan | 1.678

4.3. Unit disk. Finally, we estimate the ground state of the Laplacian on the unit disk in \(\mathbb{R}^2 \), which is given by the first nontrivial zero of the Bessel function \(\lambda_1 \sim 2.40 \ldots \) while the Donsker-Varadhan estimate gives

\begin{equation}
w(x) = 1/2 - (x^2 + y^2)/2 \quad \text{and thus } \lambda_1 \geq 2.
\end{equation}

Suppose we could not solve any of these equations in closed form (as is usually the case): using the symmetry of the domain, it suffices to take Brownian motion started in the origin. Discrete Brownian motion with step size (in time) \(t = 10^{-4} \) and \(10^4 \) paths give the following estimates for a lower bound on \(\lambda_1 \)

\(p \)	0.5	0.4	0.3	0.2	0.1
lower bound	1.68	1.85	2.04	2.19	2.37

Donsker-Varadhan | 1.96
REFERENCES

[1] A. Bovier, F. den Hollander, Metastability: a Potential-Theoretic Approach. Springer, 2015.
[2] A. Bovier, M. Eckhoff, V. Gayrard and M. Klein, Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6 (2004) 399–424.
[3] A. Bovier, V. Gayrard and M. Klein, Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. 7 (2005), 69–99.
[4] X. Cheng, M. Rachh and S. Steinerberger, On the Diffusion Geometry of the Graph Laplacian and Applications, arXiv:1611.03033
[5] M. Donsker and S.R.S. Varadhan, On a variational formula for the principal eigenvalue for operators with maximum principle, Proc. Natl. Acad. Sci. USA 72 (1975), 780–783.
[6] M. Donsker and S.R.S. Varadhan, On the principal eigenvalue of second-order elliptic differential operators. Comm. Pure Appl. Math. 29 (1976), no. 6, 595–621.
[7] M. Rachh and S. Steinerberger, On the location of Maxima of Solutions of Schrödinger’s equation, arXiv:1608.06604 to appear in Comm. Pure Appl. Math.
[8] C. Schütte, F. Noé, J. Lu, M. Sarich and E. Vanden-Eijnden, Markov state models based on milestoning, J. Chem. Phys. 134 (2011), no. 20, 204105.
[9] S. Steinerberger, Lower bounds on nodal sets of eigenfunctions via the heat flow. Comm. Partial Differential Equations 39 (2014), 2240–2261.
[10] D. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes. Grundlehren der Mathematischen Wissenschaften 233. Springer-Verlag, Berlin-New York, 1979.

(Jianfeng Lu) DEPARTMENT OF MATHEMATICS, DEPARTMENT OF PHYSICS, AND DEPARTMENT OF CHEMISTRY, DUKE UNIVERSITY, BOX 90320, DURHAM NC 27708, USA
E-mail address: jianfeng@math.duke.edu

(Stefan Steinerberger) DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CT 06510, USA
E-mail address: stefan.steinerberger@yale.edu