The Mass of the b Quark from Lattice NRQCD

S. Collins

The Department of Physics and Astronomy, The University of Glasgow, Scotland, G12 8QQ

We present results for the mass of the b quark in the \overline{MS} scheme obtained by calculating the binding energy of the B meson in the static limit. The self energy of a static quark, E_0^∞, needed for this purpose, is now known to $O(\alpha^3)$ in the quenched approximation. We find a preliminary value of $m_b(\overline{m}_b) = 4.34(7)$ GeV at $n_f = 0$. The error is dominated by the remaining uncertainty in E_0^∞. In addition, using E_0^∞ at $O(\alpha^2)$, we estimate that the quark mass is reduced by approximately 70 MeV when two flavours of dynamical quarks are introduced.

1 Introduction

The mass of the b quark in the \overline{MS} scheme (m_b) can be extracted on the lattice using NRQCD, via the pole mass, M_{pole}, by calculating the binding energy of the B meson, Λ_{bind}:

$$M_{pole} = M_{expt} - \Lambda_{bind}$$

where M_{expt} is the spin-average of the experimental B and B^* masses and $\Lambda_{bind} = E_{sim} - E_0$. E_{sim} is the energy of the B meson (at rest) in NRQCD and E_0 is the b quark self energy. The pole mass is then converted to m_b at some scale μ using the continuum perturbative factor Z_{cont}:

$$m_b(\mu) = Z_{cont}(\mu)M_{pole}.$$

While M_{pole} has an $O(\Lambda_{QCD})$ renormalon ambiguity, this is cancelled by similar effects in Z_{cont}: m_b is well defined.

At present, E_0 is only known to $O(\alpha)$ for the b quark. However, in the limit of the b quark mass becoming infinite, E_0 is known to $O(\alpha^3)$ if internal quark loops are neglected (the quenched approximation). The tadpole-improved formula can be expressed as

$$E_0^\infty = 1.070\alpha_p + 0.118\alpha^2_p - 0.3(1.4)\alpha^3_p : \alpha_p = \alpha_p^{(n_f=0)}(0.84/a). \quad (1)$$

The α_p^3 coefficient has been determined by Lepage et. al. The error on the coefficient is numerical and quite large. However, it provides a realistic estimate of the uncertainty in E_0, compared to using $2-loop$ perturbation theory and assuming the contribution of higher order terms is $1\alpha_p^3$.

In Eq. 1, E_0 is expressed in terms of a coupling constant defined on the lattice from the plaquette, α_p, evaluated at a characteristic gluon momenta, $q^* = 0.84/a$, calculated using the BLM procedure. In addition, the lattice calculation of E_{sim} has been tadpole improved, whereby all gauge fields on the lattice are divided by a ‘mean-field’ approximation to the gluon field, u_0,

1
to obtain more continuum-like operators. The corresponding tadpole improvement of E_0 leads to the addition of the perturbative series for $\ln u_0$. These ingredients result in a well behaved perturbative series for E_0. This is certainly not the case if the bare lattice coupling, $\alpha_L = g_0^2/(4\pi)$ is used:

$$E_0^\infty = 2.1173\alpha_L + 11.152\alpha_L^2 + 82.7(1.4)\alpha_L^3$$

(2)

Di Renzo et. al. have also determined the $O(\alpha^3)$ coefficient. They obtain $86.2(6)$, when α_L is used. Encouragingly, the two determinations, which have very different systematic errors, agree within 3σ.

Z_{cont} has been calculated to α^3 by Melnikov and van Ritbergen:

$$Z_{cont} = 1 - 0.4244\alpha_p - 0.4771\alpha_p^2 - 1.814\alpha_p^3 : \alpha_p = \alpha_p^{(0)}(0.62m_b).$$

(3)

The series is well-behaved and we estimate the uncertainty in Z_{cont} to be $3\alpha_p^4$.

The error introduced by working in the static limit, i.e. ignoring $O(\Lambda_{QCD}/M)$ contributions to Λ_{bind}, leads to $\approx 1\%$ uncertainty in m_b. The error arising from working in the quenched approximation is also likely to be around 1% (assuming a $10-20\%$ shift in E_{sim} when sea quarks are included). These effects are the same size as the error arising from the numerical error in E_0.

We obtained E_{sim}^∞ by extrapolating the simulation energy calculated at finite heavy quark mass. The latter was obtained as part of a high statistics study of the B meson spectrum in the quenched approximation at three lattice spacings (a), with $a^{-1} = 1.0-2.5$ GeV. For details of the simulations see reference 7. Note that we use the spin-average of the experimental masses for the B and B^* mesons in the expression for M_{pole} in order to reduce the error in using E_{sim}^∞. In addition, we performed a study of sea quark effects using results obtained from a simulation including two flavours of sea quarks ($n_f = 2$) with $a^{-1} \sim 2$ GeV. Only the $O(\alpha_p^2)$ coefficient for $n_f = 2$ has been computed and hence the comparison with m_b at $n_f = 0$ is performed using E_0 and Z_{cont} to this order.

2 Results

Tables 1 and 2 summarize our results. Within the combined statistical and systematic errors we see that this is the case and we take the result at $\beta = 6.0$ as our best determination of $m_b(0) = 4.34(7)$ GeV at $n_f = 0$. Note that the numerical error in E_0 dominates the uncertainty in m_b.

In addition, using the results at $\beta = 6.0$ at $n_f = 0$ from the B_s meson and those obtained at $n_f = 2$ we see that the b quark mass decreases by 70 MeV at $O(\alpha_p^2)$ when sea quarks are introduced. Assuming the systematic (perturbative) errors for the two simulations are correlated this is $\sim 2\sigma$ in
Table 1: $\Lambda_{\text{bind}}^\infty$ and $m_b(m_b)$ in GeV from the B meson at $n_f = 0$. The statistical and main systematic errors are estimated, including those due to determining the inverse lattice spacing (a^{-1}) and residual discretisation effects in $E_{\text{sim}} \sim O((\Lambda_{\text{QCD}}a)^2)$.

β	stat.	E_0^∞	a^{-1}	disc.	E_{cont}^∞	a^{-1}	disc.				
5.7	.24	(1)	(11)	(1)	(9)	4.43	(3)	(1)	(10)	(1)	(8)
6.0	.35	(2)	(6)	(1)	(4)	4.34	(3)	(2)	(5)	(1)	(3)
6.2	.36	(8)	(5)	(2)	(2)	4.32	(3)	(7)	(4)	(2)	(2)

Table 2: The change in $m_b(m_b)$ from $n_f = 0$ to 2, where 2-loop perturbation theory is used.

n_f	$m_b(m_b)$	stat. error
0	4.45	.01
2	4.38	.02

the (remaining) statistical errors and the same size as the error in $m_b(m_b)$ at $O(\alpha_s^3)$. Further work is necessary to reduce the error in E_0, in order for sea quark and $O(\Lambda_{\text{QCD}}/M)$ effects to be significant.

Acknowledgements

The author acknowledges support from the Royal Society of Edinburgh.

References

1. H. Trottier, private communication and G. P. Lepage et al., *Nucl. Phys. Proc. Suppl.* **83-84**, 866 (2000).
2. C. T. H. Davies et al., *Phys. Lett.* B **345**, 42 (1995).
3. G. P. Lepage and P. Mackenzie, *Phys. Rev.* D **48**, 2250 (1993).
4. S. J. Brodsky et al., *Phys. Rev.* D **28**, 228 (1983).
5. F. Di Renzo, private communication and G. Burgio et al., *Nucl. Phys. Proc. Suppl.* **83-84**, 935 (2000).
6. K. Melnikov and T. van Ritbergen, *Phys.Lett.* B **482**, 99 (2000).
7. J. Hein et al., *Phys. Rev.* D **62**, 074503 (2000).
8. S. Collins et al., *Phys. Rev.* D **60**, 074504 (1999).
9. J. Shigemitsu, private communication.