Relativistic Effects in the Electronic Structure of Atoms

Hiroshi Tatewaki,*‡ Shigeyoshi Yamamoto,*§ and Yasuyo Hatano†

*School of International Liberal Studies, Chukyo University, 101-2 Yagoto-Honmachi, Showa-ku, Nagoya 466-8666, Japan
‡Institute for Advanced Studies in Artificial Intelligence, Chukyo University, Toyota 470-0393, Japan
§School of International Liberal Studies, Chukyo University, Toyota 470-0393, Japan

ABSTRACT: Periodic trends in relativistic effects are investigated from 1H through 103Lr using Dirac–Hartree–Fock and nonrelativistic Hartree–Fock calculations. Except for 46Pd (4d10) (5s0), all atoms have as outermost shell the ns or np spinors/orbitals. We have compared the relativistic spinor energies with the corresponding nonrelativistic orbital energies. Except from 47Cr (3d5) (4s1), 41Nb (4d10) (5s0), and 50Mo (4d10) (5s0), the ns spinor energies are lower than the corresponding ns orbital energies for all atoms having ns spinor (ns) as the outermost shell, as some preceding workers suggested. This indicates that kinematical effects are larger than indirect relativistic effects (the shielding effects of the ionic core plus those due to electron–electron interactions among the valence electrons). For all atoms having np spinors as their outermost shell, in contrast, the np spinor energies are higher than the corresponding np orbital energies as again the preceding workers suggested. This implies that indirect relativistic effects are greater than kinematical effects. In the neutral light atoms, the np spinor energies are close to the np spinor energies, but for the neutral heavy atoms, the np spinor energies are considerably lower than the np spinor energies (similarly, the np spinors are considerably tighter than the np spinors), indicating the importance of the direct relativistic effects in np... In the valence nd and nf shells, the spinor energies are always higher than the corresponding orbital energies, except for 46Pd (4d10) (5s0). Correspondingly, the nd and nf spinors are more diffuse than the nd and nf orbitals, except for 46Pd.

1. INTRODUCTION

In this work, periodic trends are investigated in the relativistic effects occurring in 1H through 103Lr, using Dirac–Hartree–Fock and nonrelativistic Hartree–Fock calculations. Application of the Dirac theory to many-electron atomic systems began with the work of Swires,1 who used the Hartree–Fock formalism in conjunction with the Dirac equation. The equations of the relativistic self-consistent field have been discussed using the algebra of tensor operators by Grant.2 Compared to numerical methods, expansion methods are more effective because of their wide applicability to molecular electronic structure and solid-state structure. Kim3 set out the relativistic Hartree–Fock equation using the expansion method. Desclaux4 calculated numerical Dirac–Fock spinor energies, total energies, and other properties, such as ⟨r⟩ for neutral atoms from Z = 1 to 120 (Z: nuclear charge). Many papers have since been written on relativistic atomic and molecular theories. Work published up to January 2016 has been summarized by Pyykkö in the database “RTAM”.5 Many reviews exist of relativistic effects in atomic and molecular electronic structures. Desclaux4 compared spinor energies and other properties with nonrelativistic values, but gave very little discussion. Rose, Grant, and Pyper (RGP)6 discussed the relativistic effects on the 71Lu (4f14) (5d1) (6s0), 79Au (5d10) (6s1), and 81Tl (5d10) (6s1) (6p1) states, which involve a single d, s, or p electron. Here, we cite their statement, “the relativistic orbital is normally more tightly bound than corresponding one for s and p electrons, while for p electrons the effect of relativity is normally small. ... For d and d electrons, the relativistic orbital is more loosely bound than the nonrelativistic orbital”. To give a clear explanation, RGP introduced the terms “direct and indirect relativistic effects”, which would be also used in the present article. Pyykkö and Desclaux7 stressed the importance of relativistic effects in heavy atoms, especially in giving rise to the color of 79Au, gold yellow. Pyykkö8,9 also discussed relativistic effects involving s, p, d, and f electrons and pointed out the importance of these effects in heavy atoms. Reiner and Hess10 and Ilias, Kellö, and Urban11 summarized the four-component relativistic theory, as well as approximations, such as the Douglas–Kroll12 transformation. Finally, Dyall and Faegri (DF)13 summarized relativistic effects in atoms and closely discussed 71Lu (4f14) (5d1) (6s0), 79Au...
(sd^{10})(6s^1), and s_{1/2}Tl (sd^{10})(6s^2)(6p^1) states using the results of RGP, and they further discussed relativistic effects on the 6s orbital energies.

In the present study, we call the one-electron orbital wave function a spinor in the relativistic domain and an orbital in the nonrelativistic domain. We discuss relativistic effects in atoms from H to \text{103}Lr by comparing the spinor energies with the orbital energies and by comparing the relativistically calculated radial expectation values \langle r \rangle with the nonrelativistic values. All of the neutral atoms have ns or np spinors/orbitals as their outermost shell except for \text{46}Pd, which has the electronic configuration (5s^8)(4d^{10}). Below, it will be shown that almost all of the outermost s spinors given by the Dirac–Fock calculations are contracted compared to those predicted by nonrelativistic Hartree–Fock calculations and that the spinor energies are more deeply negative than the corresponding orbital energies. In atoms in which np is the outermost shell, in contrast, the outermost np spinors are more diffuse than the corresponding np orbitals, and all have higher spinor energies than the corresponding orbital energies, as suggested by RGP. The outermost d_\pm and f_\pm spinors behave in the same manner as the outermost p_\pm spinors.

In Section 3.1, the relativistic and nonrelativistic solutions of the hydrogenic ions are discussed. In this case, the solutions are exact. Sections 3.2–3.7 are devoted to relativistic effects arising in the atomic electronic structure of neutral atoms. The spinors and orbitals involved are all calculated by expansion methods with Gaussian-type functions (GTFs).

2. METHOD OF CALCULATIONS

To discuss the nonrelativistic total energy (TE) and the orbital energies, we used the nonrelativistic Hartree–Fock–Roothaan (HFR) method. The relativistic TE and spinor energies are given by the Dirac–Fock–Roothaan (DFR) method. The Hamiltonian for the relativistic calculation is composed of a one-electron Dirac term + a nuclear attraction term + an electron–electron interaction term. This is called the Dirac–Coulomb Hamiltonian. In HFR and DFR, the spinors and orbitals are expanded with GTFs. The nonrelativistic calculations were performed by Koga, Tatewaki, and Shimazaki, and the relativistic calculations by Koga, Tatewaki, and Matsuoka, in which the average-of-configuration (AOC) approximation, the uniform nuclear charge distribution model, and strict kinetic balance were used.

3. RESULTS AND DISCUSSION

3.1. Relativistic Effects in the Hydrogenic Ions. Exact relativistic solutions for the hydrogen atom were given analytically by Gordon and Darwin in 1928. Exact nonrelativistic solutions for the hydrogenic wave functions are also known analytically and are summarized by, for example, Pauling and Wilson.

In Figure 1, we show the relativistic correction as a proportion of the nonrelativistic total energy (TE) for hydrogenic ions from H to \text{103}Lr; in Figure 2, we do the same for the expectation value of r (defined below). Because the hydrogenic ions are composed of a single electron, these results act as a reference for judging the magnitude of electron–electron interaction effects in relativistic effects.

Figure 1. Ratio(TE_{exact})(=\frac{(\text{TE(exact Dirac)})−(\text{TE(exact Schrödinger)})}{\text{TE(exact Schrödinger)}} × 100/\text{TE(exact Schrödinger)})) for the s, p, d, and f shells of the hydrogenic ions.

Figure 2. Ratio(r_{exact})(=\frac{(r(\text{exact Dirac})−r(\text{exact Schrödinger}))}{r(\text{exact Schrödinger})}) × 100/\text{r(exact Schrödinger)}) for the s, p, d, and f shells of the hydrogenic ions.

If ratio(TE_{exact}) is negative, the TE value given by the exact solution of the Dirac equation is lower than that given by the exact solution of the Schrödinger equation. We use henceforth symbols j and n to denote the electronic total angular momentum quantum number and the principal quantum number, respectively.

From Figure 1, we observe that (1) the energies given by the Dirac equation are lower than the corresponding energies given by the Schrödinger equation; (2) states with the same values of j and n from the Dirac equation are degenerate; (3) ratio(TE_{exact}) decreases monotonically as the nuclear charge (Z) increases, indicating that relativistic effects increase as Z increases; and (4) relativistic effects decrease as j increases. In
Figure 2, we see a trend in ratio(\(r_{exact}\)) similar to that in ratio(\(\text{TE}_{\text{exact}}\)). The degeneracy in ratio(\(\text{TE}_{\text{exact}}\)) disappears; however, in ratio(\(r_{exact}\)), the difference in ratio(\(r\)) between 2s and 2p is large. We shall see that, in the ionic core of the neutral atoms, ratio(\(r\)) defined by eq 6 for (2s\(_s\), 2p\(_s\)), ..., (5s\(_s\), 5p\(_s\)) in Figure 2.

3.2. Relativistic Effects in 1s and TEs of Neutral Atoms. We now discuss the values of TE and the 1s spinor/orbital energies for the neutral atoms obtained using the expansion methods. In Figure 3, we show the total energy (TE) ratios and the 1s orbital energy ratios for neutral atoms from \(^1\)H to \(^{103}\)Lr.

\[
\text{ratio}(\text{TE}) = \left(\frac{\text{TE}_{\text{HFR}} - \text{TE}_{\text{DFR}}}{{\text{TE}_{\text{HFR}}}} \right) \times 100
\]

\[
\text{ratio}(\epsilon) = \left(\frac{\epsilon_{\text{HFR}} - \epsilon_{\text{DFR}}}{{\epsilon_{\text{HFR}}}} \right) \times 100
\]

From Figure 3, we see that the ratios for 1s, of the neutral atoms are close to those of hydrogenic ions in Figure 1, indicating that the behavior of ratio(\(\epsilon\)) for 1s in the neutral atoms is similar to that for the hydrogenic ions. No anomalies in the ratio(\(\epsilon\)) for 1s, are observed. It is safe to say that in the 1s spinor direct relativistic effects (see below) overcome shielding effects from the outer electrons and the other 1s electron. The value of ratio(\(\text{TE}\)) also decreases monotonically from \(^1\)H to \(^{103}\)Lr as does ratio(\(\epsilon\)) of 1s. Finally, we used the electron configuration (6d\(^3\) \(7s^2\)) for \(^{103}\)Lr instead of (7p\(^3\) \(7s^2\)),26,27 because we used the HFR and DFR results given by refs 16–19, where (6d\(^3\) \(7s^2\)) was employed.

3.3. Relativistic Effects in the Outermost s and p Shells of Neutral Atoms. Except for \(^{46}\)Pd (4d\(^{10}\)\(5s^2\)), all atoms have ns or np orbitals/spinors as their outermost shell so far as the diffuseness is concerned. In this study, we classify atoms into three categories by the diffuseness of their spinors. The group 13–18 atoms except for \(^4\)He (1s\(^2\)) have the electron configuration \((n^2)_s\) \((np^m; m = 1–6)\), where \(np^m\) is the outermost spinor. The remaining atoms have an ns spinor as their outermost shell except for \(^{46}\)Pd. We may call the group 13–18 atoms p atoms, and the remaining atoms s atoms except for \(^{46}\)Pd, which we refer to as a d atom. The values of ratio(\(\epsilon\)) mark the ratio(\(\epsilon\)) for \(^{46}\)Pd with a closed blue square. The value of ratio(\(\epsilon\)) for the outermost ns is negative for all s atoms except for \(^{32}\)Cr (3d\(^3\) \(4s^1\)), \(^{41}\)Nb (4d\(^4\) \(5s^1\)), and \(^{42}\)Mo (4d\(^5\) \(5s^1\)). Relativistic effects lower the ns spinor energy in comparison to the corresponding ns orbital energy.

According to RGP\(^6\) and DF,\(^{13}\) relativistic effects in the Dirac–Coulomb Hamiltonian are divided into two parts, direct relativistic effects and indirect relativistic effects. Direct relativistic effects arise from the Dirac term plus nuclear attraction term, which is roughly divided into the spin–orbit interaction term and the so-called kinematical term.\(^{10}\) The kinematical term is expressed approximately as the sum of the mass–velocity term and the Darwin term, and it is due to electrons moving at high velocity in the vicinity of the nucleus.

For the valence electrons, indirect relativistic effects appear as differences between relativistic and nonrelativistic electron–electron interactions among the valence–core and valence–valence shells. (Likewise, for the core electrons, indirect effects appear as differences between relativistic and nonrelativistic electron–electron interactions among the core–core and core–valence shells.) Indirect relativistic effects can be interpreted also as differences between relativistic and nonrelativistic electron shielding effects due to electron–electron interactions among the core–valence and valence–valence shell electrons. Kinematical effects cause the spinor energy to be lower than the orbital energy, whereas indirect relativistic effects cause the spinor energy to be lower or higher than the orbital energy, depending on the electronic structure. If the shielding effects in the relativistic calculation are larger than those in the nonrelativistic one, the indirect relativistic effects make the spinor energy higher. Conversely, if the shielding effects in the relativistic calculation are smaller than those in the nonrelativistic calculation, indirect relativistic effects reinforce the kinematical effects; the spinor energy becomes deeper.

The negative value of ratio(\(\epsilon\)) for the s atoms shows that the effects of the kinematical term surpass the indirect relativistic effects, even if the indirect relativistic effects are oppositely oriented. The role of indirect effects in the s atoms will be discussed below. In the p atoms, ratio(\(\epsilon\)) is positive for all of
the outermost np. This tells us that indirect relativistic effects, which cause the spinor energy to be shallow, surpass the direct relativistic effects; the inner closed shells and valence shells shield the nuclear charge more efficiently when relativity is taken into account. We also expect that relativistic effects cause p, to be more diffuse than the nonrelativistic p. This tendency illustrated in Figure 5 is seen parallelly in ref 6.

![Figure 5. Ratio(ε) = ((r(HFR)) - (r(DFR))) / 100(r(HFR))) for the outermost shells (H to Lu).](image)

We now discuss relativistic effects in the valence shells in more detail. Relativistic effects are negligibly small for H, He, Li, Be, Na, Mg, Al, Si, P; then, they increase gradually for the series K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, and I, respectively, the value of ratio(ε) for 6s, of 64Gd (4f7) (5d1) (6s2) is given by

\[
\text{ratio}(\epsilon) = \left(\frac{\epsilon'(\text{HFR})_{6s} + \delta\epsilon'_{\text{nonrel},6s}}{\epsilon'(\text{DFR})_{6s}}\right)
\]

Figure 4 is thus mainly brought by the direct effects. Finally, Dyall and Faegri showed the anomalies of 6s, spinor energies at 72W, 73Pt, and 74Au. These are due to the electron configuration (5d41)(6s1). We have anomalies at 73Pt and 74Au, but not at 72W in the present work, 72Pt and 74Au have (5d41)(6s1), but 73W does (5d4; n = 4) (6s3). We summarize the relativistic corrections for the s atoms as follows: (1) the kinematical effect10 mainly lowers the outermost ns, energies compared to the ns orbital energies and (2) the smaller shielding effects of the electrons in the d and f orbitals (part of the indirect relativistic effects10) than those of electrons in the d and f orbitals further support the lowering in energy of ns.

Dr. Creates the text.

ACS Omega 2017, 2, 6072–6080 DOI: 10.1021/acsomega.7b00802

6075
use of AOC in the DFR calculations. Finally, RGP60 estimated the magnitude of the direct and indirect relativistic effects for $\text{Sr}_{\text{Tl}}^6p_\text{s}$ and $6p_\text{s}$. For $6p_\text{s}$, the direct relativistic effect is 0.057 au and the indirect one is 0.028 au. For $6p_\text{s}$, they are 0.014 and 0.028 au, respectively. Totally, the relativistic effects decrease the $6p_\text{s}$ spinor energy and increase the $6p_\text{s}$ spinor energy. $\text{Ratio}(\epsilon)$'s for $\text{Sr}_{\text{Tl}}^6p_\text{s}$ by the use of their estimated values are 0.028 au, and 0.028 au, respectively. Totally, the relativistic effects are fairly large.

In Figure 5, the ratio

$$\text{ratio}(r) = \frac{\langle r(\text{DFR}) \rangle - \langle r(\text{HFR}) \rangle}{100}$$

(6)

is shown for the outermost ns_s for the s atoms, and np_s for the p atoms. The results for ratio(r) are similar to those for ϵ in Figure 4, although the absolute values of ratio(r) are smaller than ratio(ϵ). The explanation given for Figure 4 holds also for Figure 5. It is well known that for heavy atoms, such as the lanthanoid atoms, the size of $\langle r \rangle$ of $6s$ contracts as Z increases. In fact, both in the relativistic and nonrelativistic calculations, the $6s$ $\langle r \rangle$ value decreases as Z increases. As shown in Figure 5, the lanthanoid contraction (Sr_{Tl} and Yb) and the actinoid contraction (Bi_{Tl} and Au) are strengthened by relativistic effects. In Tl_{Tl}, the third transition-metal atoms (Sr_{Sr} and Au), and Bi_{Tl}, the relativistic effects are fairly large.

Spinor/orbital energies of the outermost shells and inner shells and the mean distances of r for spinors/orbitals are given in the Supporting Information.

3.4. Relativistic Effects in the Inner s and p Shells of Neutral Atoms. In the case of the hydrogenic ions described in Section 2, the spinors specified by j with the same principal quantum number n are energetically degenerate, and their values of ratio(ϵ) take the same value. As shown in Figure 6, even for the neutral atoms, these ratios for the $(ns_\text{s}, np_\text{s})$ pair of $j = 0$ in the ion cores behave like those of the hydrogenic ions. In this figure, solid lines show ratio(ϵ) for ns_s or np_s and dotted lines show ratio(ϵ) for np_s. We discuss these pairs in detail.

The value of ratio(ϵ) for $2p_\text{p}$ (black dotted line) is close to that (upper black solid line) for $2p_\text{p}$ of the neutral atoms from B to O, but for those from F ($2s_\text{p}$: -0.22%, $2p_\text{p}$: -0.18%) to Lr ($2s_\text{p}$: -32.66%, $2p_\text{p}$: -32.31%), its value is close to that (lower black solid line) of $2s_\text{p}$. Values of ratio(ϵ) for $2p_\text{p}$ of F and Lr are $+0.19$ and -1.50%, respectively. Values of ratio(ϵ) for $2p_\text{p}$ of F and Lr are far from the corresponding ratio(ϵ) for $2p_\text{p}$. Values of ratio(ϵ) for $2s_\text{p}$, $2p_\text{p}$, and $2p_\text{p}$ of atoms beyond O decrease monotonically as Z increases. The valence shell electronic structure is not reflected in the value of ratio(ϵ) after F; the influence of the valence shell structure is observed in, for instance, the rapid decrease of ratio(ϵ) for $4s_\text{p}$, $4p_\text{p}$, $5s_\text{p}$, and $5p_\text{p}$ and the local minimum at Au. It can be stated with reasonable confidence that after Na, the $2s$ and $2p$ spinor/orbital energies are stable, meaning that they are not influenced by the electronic structures of the outer shells.

A similar discussion to that given above holds for the $3s$--$3p$ and $4s$--$4p$ shells. The value of ratio(ϵ) for $3p_\text{p}$ (purple dotted line in Figure 6) is near to that of $3p_\text{p}$ (upper purple solid line) in the case of the neutral atoms from J_{J} to S, but it is close to that of $3s_\text{p}$ (lower purple solid line) from F ($3s_\text{p}$: -0.62%, $3p_\text{p}$: -0.56%) to Lr ($3s_\text{p}$: -32.42%, $3p_\text{p}$: -32.43%). The values of ratio(ϵ) for $3p_\text{p}$ of Cl and Lr are $+0.47$ and -3.83%, respectively. Relativistic effects are large for the $(3s_\text{p}, 3p_\text{p})$ pair compared to $3p_\text{p}$, especially for the heavy atoms. The difference in the outer-shell electronic structure is not reflected in the values of ratio(ϵ) for the inner $3s$ and $3p$ shells after Cl. Beyond K, the spinor/orbital energies appear to be stable, meaning that they are not influenced by the electronic structures of the outer shells. The value of ratio(ϵ) for $4p_\text{p}$ (blue dotted line) is close to that for $4p_\text{p}$ (upper blue solid line) of the neutral atoms from S to Se, but close to that for $4s_\text{p}$ (lower blue solid line) from Br to Kr ($4s_\text{p}$: -2.84%, $4p_\text{p}$: -2.79%) to Lr ($4s_\text{p}$: -34.02%, $4p_\text{p}$: -34.66%). The values of ratio(ϵ) for $4p_\text{p}$ of Br and Lr are $+1.72$ and -4.21%, respectively. Kinematical effects are large for the $(4s_\text{p}, 4p_\text{p})$ pair compared to $4p_\text{p}$, especially for the heavy atoms, as also for the $(3s_\text{p}, 3p_\text{p})$ pair compared to $3p_\text{p}$. The outer-shell electronic structures have some influence on the $(4s_\text{p}, 4p_\text{p})$ pair as far as roughly Rn; they have scarcely any influence on the $(4s_\text{p}, 4p_\text{p})$ pair beyond Fr.

Values of ratio(ϵ) for $5s_\text{p}$, $5p_\text{p}$, and $6s_\text{p}$--$6p_\text{p}$ inner shells are quite different from the $3s_\text{p}$--$3p_\text{p}$ and $4s_\text{p}$--$4p_\text{p}$ inner shells referred to above. Ratio(ϵ) for $5s_\text{p}$ (lower green solid) begins at Rb and that for $5p_\text{p}$ (green dotted) begins at In. However, ratio(ϵ) for $5p_\text{p}$ is different from that for $5p_\text{p}$ (upper green solid) at In ($5p_\text{p}$: -1.83%, $5p_\text{p}$: -2.91%). The value of ratio(ϵ) for $5p_\text{p}$ is the same as for $5s_\text{p}$ at I (-6.76%). Beyond I, ratio(ϵ) is similar for $5s_\text{p}$ and $5p_\text{p}$, but does not decrease monotonically as Z increases; see the local minimum at Au. The solid red line shows ratio(ϵ) for $6s_\text{p}$, beginning at Cs. The red dotted line showing $6p_\text{p}$ begins at Tl. From Cs to Hg, the outermost shell is $6s_\text{p}$. As shown in Figures 4 and 6, the value of ratio(ϵ) for the $6s$ shell changes dramatically as Z decreases. Ratio(ϵ) for $6p_\text{p}$ begins at Tl and takes a very different value from that for $6p_\text{p}$ ($6p_\text{p}$: -9.49%, $6p_\text{p}$: 8.26%); the $6p_\text{p}$ spinor energy is considerably lower than the $6p_\text{p}$ orbital energy, and the $6p_\text{p}$ spinor energy is considerably higher than...
the 6p orbital energy; $\epsilon(6p_{\uparrow}) = -0.2105$ au, $\epsilon(6p_{\downarrow}) = -0.1923$ au, and $\epsilon(6p_{\uparrow}) = -0.1764$ au at γTl. The values of ratio(ϵ) for $6s_\uparrow$ and $6p_{\downarrow}$ of γSc are comparable ($6s_\uparrow$: -22.52%, $6p_{\downarrow}$: -23.67%), but are different at ηRn ($6s_\uparrow$: -22.54%, $6p_{\downarrow}$: -26.09%). For $6p_{\downarrow}$ of γAt, ratio(ϵ) is $+9.88\%$. After ηFr, for which ratio(ϵ) is $6s_\uparrow$: -19.82% and $6p_{\downarrow}$: -20.82%, values for $6s_\uparrow$ and $6p_{\downarrow}$ behave similarly. Although beyond ηFr $6s_\uparrow$, $6p_{\downarrow}$ and $6p_{\uparrow}$ are inner shells, the values of ratio(ϵ) for these shells vary considerably. Kinematical effects and indirect relativistic effects are both important for $6s_\uparrow$ and $6p_{\downarrow}$. For $6p_{\downarrow}$, on the other hand, the indirect relativistic effects are important.

Figure 7 shows ratio(r) for the inner ns and np spinors together with the valence spinors. The results for $2s_\uparrow$, ... $5p_{\downarrow}$ of the heavy atoms run parallel to ratio(r) in Figure 2; this indicates the importance of the kinematical effects for these spinors.

3.5. Relativistic Effects in the Outermost d Shells of the Neutral Atoms. We now discuss relativistic effects in the outermost d shell. The 3d shell is a valence shell, together with 4s from γSc to αZn. Figure 8 shows ratio(ϵ) for the d and f shells. We observe that $3d_\uparrow$ and $3d_{\downarrow}$ are more unstable than 3d from γSc to αZn. Ratio(ϵ) for $3d_{\uparrow}$ takes a maximum value of $+15.7\%$ at γCr ($3d^1$) ($4s^1$), although this may be an overestimate because of the AOC used in the relativistic calculations; the 3d spinor energy and the 3d orbital energy of γCr are -0.3148 and -0.3734 au, respectively. Because ratio(ϵ) begins at 2.5% of γSc and ends at 3.6% of γZn, we are in no doubt that the indirect relativistic effects cause the 3d spinor energies to be more unstable than the corresponding orbital energies. Figure 9 shows ratio(r) for the d and f shells. The Z-dependence of ratio(r) is similar to that of ratio(ϵ) for the atoms γSc-γZn. The relativistic calculation gives larger (r) values for 3d than the nonrelativistic. This is consistent with the fact that ϵ is shallower for the former than for the latter.

The second transition-metal atoms run from γY to γAg. All 4d, and 4d_{\downarrow} have positive ratio(ϵ) except for 4d_{\downarrow} of αPd, for which the electronic configuration is $(4d^{10}) (5s^6)$. Ratio(ϵ) for 4d, has a maximum value of $+17.9\%$ at γMo ($4d^5$) ($5s^1$); again, this value may be an overestimate because of the AOC used in the relativistic calculations; the 4d spinor and 4d orbital energies of γMo are -0.2937 and -0.3577 au, respectively. Because high-spin and low-spin states are included in AOC, the resulting TE is higher than the lowest state with the proper symmetry. Again, we are in no doubt that indirect relativistic effects help to make the 4d spinors to be more unstable than those of the corresponding 4f orbitals. The Z-dependence of ratio(r) in Figure 9 runs parallel to that of ratio(ϵ) in Figure 8 for the atoms γY-αCd. For the d atom (αPd), ratio(ϵ) is positive for the outermost 4d, but negative for the outermost 4d_{\downarrow}.

In γLu, in the third transition-metal atoms (γHf-γAu) and in αHg, the $5d$ and $5d_{\downarrow}$ all have positive ratio(ϵ)’s; these ratios are twice as large as the corresponding ratios in the first and second transition-metal atoms. This implies larger indirect relativistic effects in γLu and the third transition-metal atoms (γHf-γAu) and αHg. For $5d_{\uparrow}$, ratio(ϵ) reaches a maximum value of $+28.9\%$ at γRe ($5d^5$) ($6s^2$). The $5d$ spinor energy and the 5d orbital energy of γRe are -0.3655 and -0.5141 au,
respectively. The difference between ratio(ε)’s for 5d and 5d₁ is the largest among nd and nd₂. (n = 3, 4, and 5), suggesting that the effect of the spin–orbit interaction is greatest for atoms having 5d shells. As we say above, the indirect relativistic effects cause the 5d spinors to be more unstable than the corresponding 5d orbital. RGP gave approximate values for the indirect and direct relativistic effects in 7₁Lu (5d(⁶) (6s²); 5d, the indirect and direct relativistic effects are 0.069 and −0.025 au, respectively, whereas for 5d₁, the corresponding values are 0.067 and −0.010 au. Using these values given by RGP, we obtained ratio(ε)’s of 18 and 23% for 5d and 5d₁, which are consistent with the present values of 22 and 24% for 5d and 5d₁, respectively, shown in Figure 8.

Ratio(ε) has minima at 7₁Pr and 7₁Au. The electronic configuration of 7₁Au is (5d₁⁰) (6s²), and the 5d₁ spinor and the 5d orbital energies are, respectively, −0.4281 and −0.5207 au. The large instability in 5d and the strong stability exhibited by 6s (6s, ε: −0.2912 au; 6s ε: −0.2206 au) of 7₁Au due to relativistic effects are responsible for the gold yellow color, as discussed by Pyykö and Desclaux.

3.6. Relativistic Effects in the Outermost f Shells of Neutral Atoms

Consider now the lanthanoid atoms from 5₇La to 7₁₀₁Yb, excluding 7₁₁Lu. The electronic configuration of 5₇La is (4f²) (5d¹) (6s²) and that of 5₈Ce is (4f²) (5d¹) (6s²). The others have configurations (4f²; n = 3−14) (5d²) (6s²), except for 6₄Gd (4f²) (5d¹) (6s²). The relativistic 4f shells without a 5d electron are more destabilized than shells with a 5d electron. For 4f, ratio(ε) takes a maximum value of +41.3% at 5₉Pr (4f²) (5d²) (6s²). The 4f₁ spinor energy and the 4f orbital energy of 5₉Pr are −0.3224 and −0.5491 au, respectively. For 4f₂, ratio(ε) has a local minimum at 6₄Gd (4f²) (5d¹) (6s²). Because 5d in the relativistic and nonrelativistic wave functions is more diffuse than 4f’s, the shielding effects are smaller for 4f’s in 6₄Gd (4f²) (5d¹) (6s²) than in 6₄Gd (4f²) (6s²). Consequently, the effective nuclear charge for 4f’s in 6₄Gd (4f²) (5d¹) (6s²) is larger than in 6₄Gd (4f²) (6s²). In the relativistic and nonrelativistic calculations, therefore, states with 5d have deeper 4f spinor/orbital energies than states without 5d. We write the 4f spinor and orbital energies of 6₄Gd (4f²) (6s²) as ε(DFR)₄f and ε(DFR)₄f and write the corresponding energy lowering in the 4f’s in 6₄Gd (4f²) (5d¹) (6s²) as δε₄f and δε₄f. The value of ratio(ε) for 4f, of (4f²) (5d¹) (6s²) may be expressed as

\[
\text{ratio}(\epsilon) = \left((\epsilon'(HFR))_{4f} + \delta\epsilon'_{\text{nonrel,}4f} \right) - \left((\epsilon'(DFR))_{4f^+} + \delta\epsilon'_{\text{rel,}4f^+} \right) \times 100 / (\epsilon'(HFR))_{4f} + \delta\epsilon'_{\text{nonrel,}4f}
\]

(7)

The 10% drop in ratio(ε) at 6₄Gd can be explained by the magnitudes of δε₄f (nonrel) to be less than about 30% of ε(DFR)₄f. From the spin/orbital energies of 6₄Eu (4f²) (6s²) and 6₄Tb (4f²) (6s²), we have estimated the spin/orbital energies and values of δ for 6₄Gd (4f²) (6s²); in particular, ε(DFR)₄f = −0.437 au and ε(DFR)₄f = −0.703 au. The values of ε for 4f₁ and 4f₂ of 6₄Gd (4f²) (5d¹) (6s²) are −0.7106 and −1.0433 au, respectively. We then find that δε₄f (rel) = −0.274 au and δε₄f (nonrel) = −0.340 au.

The two δs in the numerator largely cancel each other, and the absolute value of the denominator is 50% greater than the value without δε₄f (nonrel). From these values, we find that ratio(ε) = 31.8%, which is much lower than the value of 37.8% for (4f²) (6s²). The large orbital energy lowering in the 4f orbital of 6₄Gd (4f²) (5d¹) (6s²) compared to that of (4f²) (6s²) might be responsible for the local minimum ratio(ε) of 6₄Gd. In the lanthanoid and actinoid atoms, the 4f and 5f spinors are significantly destabilized by the indirect relativistic effects.

Figure 9 shows that the shape of ratio(ε) plotted versus Z is similar to that for ratio(ε). The value of ratio(ε) for 4f is considerably lower compared to the ratio(ε) in Figure 8. Let us consider why ratio(ε) for 4f is low, taking 6₄Gd as an example. The 4f electron cloud is in the narrow space sandwiched between the (4s, 4p, 4d) shell and the (5s, 5p) shell, whereas the 5d electron cloud is in the extensive space between the (5s, 5p) shell and the 6s shell. Because of this narrow space, the difference ((r(DFR) − r(HFR)) = 0.8389 − 0.7890 au = 0.0499 au for the 4f, 5s is 5 times smaller than that for ((r(DFR) − r(HFR)) = 2.7330 − 2.4600 au = 0.2730 au for 5d, shell. Consequently, ratio(ε)’s for 4f, and 5d, are 6.32 and 11.10%, respectively, as shown in Figure 9. The restriction on the space causes the differences ((r(DFR) − r(HFR))) in 4f to be smaller than for 5d.

Let us discuss the actinoid atoms from 8₉ₙ₃Ac to 1₀₃ₜₙ₃Lr. The 5f and 6d shells are both occupied in the ground-state configurations of the following six atoms: 8₉ₙ₃Pa (5f²) (6d³) (7s²), 9₂U (5f²) (6d¹) (7s²), 9₃Ng (5f²) (6d¹) (7s²), 9₄Cm (5f²) (6d¹) (7s²), 9₅Bk (5f²) (6d¹) (7s²), and 1₀₃ₜₙ₃Lr (5f²) (6d¹) (7s²). Ratio(ε) has local minima at 9₃Ng and 9₅Bk, as shown in Figure 8. These local minima would be explicable in the same manner as that for 6₄Gd (4f²) (5d¹) (6s²). The values of ε for 5f, 6f, and 5f of 9₅Bk, for instance, are −0.5795, −0.5214, and −0.9884 au, respectively. Figure 9 shows that the shape of ratio(ε) for 5f versus Z resembles the shape of ratio(ε) for the relativistic 5f. However, ratio(ε) for 5f examined in relation to that for 6d is unusually low compared to ratio(ε) for 5f examined in relation to that for 6d. The 5f electron cloud is located in the narrow space sandwiched between the (5s, 5p, 6d) shell and the (6s, 6p) shell, whereas the 6d electron cloud is in the extensive space between the (6s, 6p) shell and the 7s shell. This restriction in volume causes the variation of (r(DFR) − r(HFR)) of 5f to be smaller than that of 6d. Accordingly, the ratio(ε) for 5f₁ is smaller than that for 6d₁.

3.7. Relativistic Effects in the Inner d and f Shells of Neutral Atoms

The 3d, 4d, and 5d shells begin to form an ion core at 8₃ₙ₃Ga, 8₄ₙ₃In, and 8₅ₙ₃Tl, respectively, and the 4f shell, at 7₁₁Lu. For 5₇ₙ₃Ga−5₈ₙ₃Ce 3d₄, 5₉ₙ₃Pr−6₀ₙ₃Nd 4d₄, and 8₁ₙ₃Tl−8₁ₚₙ₃Pu 5d₄, the value of ratio(ε) is positive, indicating that the 3d, 4d, and 5d spinors are less stable than the corresponding nonrelativistic orbitals; indirect relativistic effects strongly influence the characteristics of the spinor energies. Although ratio(ε) for 4f is positive after 7₁₁Lu, it decreases sharply. This suggests that the importance of the direct relativistic effects increases.

For 5₉ₙ₃Pr−1₀₃ₜₙ₃Lr 3d₄, 6₁ₙ₃Pm−1₁₀ₙ₃Lr 4d₄, and 9₃ₙ₃Am−1ₐ₀₃ₙₙ₃Lr 5d₄, the value of ratio(ε) is negative and kinematical effects are important, as in the hydrogenic ions. Values of ratio(ε) for 3p, 3d, and 3d, at 7₁₁Lu, for 5₇ₙ₃Ga−5₈ₙ₃Ce 3d₄, 5₉ₙ₃Pr−6₀ₙ₃Nd 4d₄, and 8₁ₙ₃Tl−8₁ₚₙ₃Pu 5d₄, the value of ratio(ε) is positive, indicating that the 3d, 4d, and 5d spinors are less stable than the corresponding nonrelativistic orbitals; indirect relativistic effects strongly influence the characteristics of the spinor energies. Although ratio(ε) for 4f is positive after 7₁₁Lu, it decreases sharply. This suggests that the importance of the direct relativistic effects increases.
The plot in Figure 9 has a similar shape to that in Figure 8, but differences emerge upon closer examination. Figure 9 reveals that ratio(\(r\)) for 3d\(_L\) becomes negative (~0.01\%) at \(33\)As, suggesting that kinematical effects surpass the indirect effects for \(33\)As. Figure 8 indicates that the kinematical effects surpass the indirect relativistic effects for \(89\)Pr, however. We believe that ratio(\(e\)) reflects the characteristics of the atomic shell structure more realistically than ratio(\(r\)) because ratio(\(e\)) is derived directly from comparison of the eigenvalues of the DFR and HFR equations.

4. CONCLUSIONS

We have discussed relativistic effects in atoms from \(1\)H to \(103\)Lr. Except for \(46\)Pd (4d\(^0\)) (5s\(^0\)), all atoms have, as their outermost shell, their ns or np spinors/orbitals. It is the case that for all of the atoms having the ns spinor (ns\(_r\)) as their outermost shell, the ns spinor energies are lower than the corresponding ns orbital energies. This result indicates that kinematical effects are more important than indirect relativistic effects for the ns shell. In contrast, in all atoms having np spinors as the outermost shell, the np spinor energies are higher than the corresponding np orbital energies (similarly, the np spinors are more diffuse than the np orbitals). This indicates that the indirect relativistic effects are stronger than the kinematical effects. Specifically, in the valence p\(_r\) spinors, the shielding effects provided by the ionic core and the valence electrons surpass the kinematical effects. The same is true for p\(_s\) of light atoms, but for heavy atoms, the importance of the kinematical effects increases. The p\(_r\) spinors take considerably lower spinor energies than the corresponding p orbitals. This is especially remarkable for the 5th group 13–18 atoms. In the nd and nf shells, the indirect relativistic effects are strengthened, and the instability of the spinor energies compared to the corresponding orbital energies increases further. The enhancement of contractions of the outermost s orbitals by the relativistic effects in the lanthanoid atoms, the third transition-metal atoms, and the actinoid atoms have also been discussed. Diffuseness of the nd and nf spinors compared to the corresponding nonrelativistic orbitals was also investigated.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.7b00802.

Table S1, spinor energies and orbital energies for \(1\)H to \(103\)Lr (XLSX)

Table S2, mean values of \(r\) of spinors and orbitals for \(1\)H to \(103\)Lr (XLSX)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: htatewak@nsc.nagoya-cu.ac.jp. Phone: +81-45-514-7503 (H.T.).

*E-mail: syamamoto@lets.chukyo-u.ac.jp. Phone: +81-52-835-7111 (S.Y.).

ORCID
Shigeyoshi Yamamoto: 0000-0003-3780-534X

Notes
The authors declare no competing financial interest.

REFERENCES

(1) Swieres, B. The Relativistic Self-Consistent Field. Proc. R. Soc. London, Ser. A 1935, 152, 625–649.

(2) Grant, I. P. Relativistic Self-Consistent Fields. Proc. R. Soc. London, Ser. A 1961, 262, 555–576.

(3) Kim, Y.-K. Relativistic Self-Consistent-Field Theory for Closed-Shell Atoms. Phys. Rev. 1967, 154, 17–39.

(4) Desclaux, J. P. Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. At. Data Nucl. Data Tables 1973, 12, 311–406.

(5) Pyykkö, P. The RTAM electronic bibliography, version 17.0, on relativistic theory of atoms and molecules. J. Comput. Chem. 2013, 34, 2667. (b) See http://rtam.cscl.se Database ‘RTAM’ version 20.0 (January 4, 2017).

(6) Rose, S. J.; Grant, I. P.; Pye, N. C. The direct and indirect effects in the relativistic modification of atomic valence orbitals. J. Phys. B: At. Mol. Phys. 1978, 11, 1171–1176.

(7) Pyykkö, P.; Desclaux, J.-P. Relativity and the Periodic System of Elements. Acc. Chem. Res. 1979, 12, 276–281.

(8) Pyykkö, P. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988, 88, 563–594.

(9) Pyykkö, P. Relativistic Effects in Chemistry: More Common Than You Thought. Annu. Rev. Phys. Chem. 2012, 63, 45–64.

(10) Reiher, M.; Hess, B. In Modern Methods and Algorithms of Quantum Chemistry. Proceedings, 2nd ed.; Grotendorst, J., Ed.; John von Neumann Institute for Computing: Jülich, 2000; Vol. 3, pp 479–505.

(11) Ilia, M.; Kello, V.; Urban, M. Relativistic effects in atomic and molecular properties. Acta Phys. Slovaca 2010, 60, 259–391.

(12) Douglas, M.; Kroll, N. M. Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. 1974, 82, 89–154.

(13) Dyall, K. G.; Faegri, K., Jr. Introduction to Relativistic Quantum Chemistry; Oxford University Press: New York, 2007; pp 453–456.

(14) Roothaan, C. C. J.; Bagus, P. S. Methods in Computational Physics; Academic Press Inc.: New York, 1963; Vol. 2, pp 47–94.

(15) Matsuoka, O.; Watanabe, Y. An atomic Dirac-Fock-Roothaan program. Comput. Phys. Commun. 2001, 139, 218–234.

(16) Koga, T.; Tatetawki, H.; Shimazaki, T. Chemically reliable uncontracted Gaussian-type basis sets for atoms H to Lr. Chem. Phys. Lett. 2000, 328, 473–482.

(17) Koga, T.; Tatetawki, H.; Matsuoka, O. Relativistic Gaussian basis sets for molecular calculations: H–Xe. J. Chem. Phys. 2001, 115, 3561–3565.

(18) Koga, T.; Tatetawki, H.; Matsuoka, O. Relativistic Gaussian basis sets for molecular calculations: Cs–Hg. J. Chem. Phys. 2002, 117, 7813–7814.

(19) Koga, T.; Tatetawki, H.; Matsuoka, O. Relativistic Gaussian basis sets for molecular calculations: TI–Lr. J. Chem. Phys. 2003, 119, 1279–1280.

(20) Lee, Y. S.; McLean, A. D. Relativistic effects on R\(_b\) and D\(_b\) in AgH and AuH from all-electron Dirac-Hartree-Fock calculations. J. Chem. Phys. 1982, 76, 735–736.

(21) Stanton, R. E.; Havrilliak, S. Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations. J. Chem. Phys. 1984, 81, 1910–1918.

(22) Gordon, W. Die Energieneive des Wasserstoffatomes nach der Diracschen Quantentheorie des Elektrons. Z. Phys. 1928, 48, 11–14.

(23) Darwin, C. G. The Wave Equations of the Electron. Proc. R. Soc. London, Ser. A 1928, 118, 654–680.

(24) Pauling, L.; Wilson, E. B. Introduction to Quantum Mechanics; Dover Publ. Inc.: Mineola, NY, 1985; pp 113–150.

(25) Hatano, Y.; Yamamoto, S.; Tatetawki, H. Visualization of the Exact Solution of Dirac Equation. J. Comput. Chem. Jpn. 2016, 15, 105–117 (mainly in Japanese).

(26) WebElements: the periodic table on the WWW. http://www.webelements.com/ (July 24, 2017).

(27) Sato, T. K.; Asai, M.; Borschovsky, A.; Stora, T.; Sato, N.; Kaneya, Y.; Tsukada, K.; Dillmann, Ch. E.; Eberhardt, K.; Elav, E.;
Ichikawa, S.; Kaldor, U.; Kratz, J. V.; Miyashita, S.; Nagame, Y.; Ooe, K.; Osa, A.; Renisch, D.; Runke, J.; Schädel, M.; Thöle-Pospiech, P.; Toyoshima, A.; Trautmann, N. Measurement of the first ionization potential of lawrencium, element 103. *Nature* **2015**, *520*, 209–212.