The mechanism of the polarization dependence of the optical transmission in subwavelength metal hole arrays

Qian Zhao\(^1\), Chao Li\(^1\), Yun-Song Zhou\(^1\) and Huai-Yu Wang\(^2\)

\(^1\) Center of Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048, People’s Republic of China
\(^2\) Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China

E-mail: 263zys@263.net and whaiyu@mail.tsinghua.edu.cn

Received 11 August 2010, in final form 24 September 2010
Published 6 December 2010
Online at stacks.iop.org/JPhysCM/23/015005

Abstract

We investigate the mechanism of extraordinary optical transmission in subwavelength metal hole arrays. Experimental results for the arrays consisting of square or rectangular holes are well explained by the dependence of transmission strength on the polarization direction of the incident light. This polarization dependence occurs in each single hole. For a hole array, there is in addition an interplay between the adjacent holes which is caused by the transverse magnetic field of surface plasmon polaritons on the metal film surfaces. Based on the detailed study of a single-hole and two-hole structures, a simple method to calculate the total transmissivity of hole arrays is proposed.

1. Introduction

The extraordinary optical transmission (EOT) \([1, 2]\) in a subwavelength metal hole array is an interesting topic \([3–12]\) because its mechanism is still being explored and it shows abundant features. One of the features is that the transmissivity may depend on the polarization direction of the incident light. Disclosing clearly the reason behind the dependence is helpful to adjusting the EOT strength, as well as in applying the EOT in optical devices. Lots of experiments have been done for light in the visible \([3–7, 13–17]\), infrared \([8–10]\) and terahertz \([11, 12, 18, 19]\) regions to observe the dependence of EOT on polarization of the incident light. We here sort both the arrays and holes into three kinds, respectively, as summarized in table 1. It is seen from table 1 that, among nine structures, five have been fabricated to observe the dependence of the EOT on the light polarization. In the second column, a square lattice consisting of rectangular holes shows polarization dependence while that consisting of square holes does not. In order to disclose the reason behind the discrepancy, a theoretical investigation is desirable.

A lot of theoretical works about EOT in hole arrays have been reported \([20]\); they are mainly focused on the mechanism or factors that cause or influence EOT in hole arrays. A few of them investigate the polarization dependence of EOT in hole arrays or single holes \([21, 5, 22–24]\). Garcia et al \([21]\) carried out a rigorous solution of Maxwell’s equations so as to obtain the transmission of circular holes perforated in a thin perfect-conductor screen for s and p polarization. Gordon et al \([5]\) explained the polarization dependence in an array of elliptic holes in terms of the interaction between SPP and the periodic lattice grating. Notwithstanding the approaches used, a systematic investigation on the polarization dependence is still desirable.

In our opinion, when considering the EOT in an array consisting of holes (or slits), there are basically the single-hole (slit) effect and the inter-hole (slit) effect \([25]\). The former reflects the transmissivity behavior of the light going through single subwavelength holes, and the latter means the possible modulation of transmissivity arising from the influence of neighboring holes. Supposing that the polarization dependence does exist, then one should know if the dependence is caused by the single-hole or inter-hole effect or both.

In this paper we investigate the mechanism of the polarization dependence of the EOT in a hole array consisting of square or rectangular holes. Based on our simulation results by the finite-difference time-domain (FDTD) method \([26]\), we reveal the mechanism of the polarization dependence and explain the experimental results. Furthermore, we find that it is possible to get a simple way to calculate the transmissivity...
of the hole array, which may avoid the burdensome simulation work in hole arrays.

This paper is arranged as follows. In section 2 the hole-array model is established. Before studying the EOT of the array, we study in detail the EOT of a single-hole and double-hole structures in sections 3 and 4, respectively, so as to clearly show the single-hole and double-hole effects. Then the EOT in a hole array is researched in section 5. In doing so, a simple method is proposed to calculate the transmissivity of the hole array. In section 6 the simple method proposed in section 5 is applied to some arrays. It appears that the application is satisfactory. Section 7 gives our summary.

2. The array model

Our model is sketched in figure 1. Rectangular holes drilled on a metal film form a two-dimensional lattice, consisting of rectangular cells, in the xy plane. The lengths of two sides of each hole are a and b, and the lattice constants are A and B, respectively. A linearly polarized TM wave illuminates this structure along the z direction. Before impinging on the structure, the magnetic and electric components are H_0 and E_0, respectively. In simulation we always use

$$E_0 = H_0 = 0.31.$$ (1)

The angle between the y axis and E_0 direction is θ. Hereafter the light is termed as ‘0-polarized’. From figure 1 the x and y components of electric and magnetic fields are

$$E_{0x} = E_0 \sin \theta \quad E_{0y} = E_0 \cos \theta,$$ (2a)

$$H_{0x} = -H_0 \cos \theta \quad H_{0y} = H_0 \sin \theta.$$ (2b)

The metal film with thickness $h = 2 \mu m$ is made of silver. The incident wavelength is $\lambda_0 = 0.6 \mu m$. The dielectric constant of silver versus wavelength can be expressed as $\epsilon_{Ag} = 3.57 - 54.33\lambda_0^2 + i(-0.083\lambda_0 + 0.921\lambda_0^3)$ [25, 27]. Thus, as $\lambda_0 = 0.6 \mu m$, $\epsilon_{Ag} = -15.989 + i0.1491$.

When light goes through the array, the surface plasmon polariton (SPP) will be excited in every hole and the metal surfaces. Since it is a TM wave, after entering the holes, the electric field may have a z component, while the magnetic field does not. In each hole there is a strong power, denoted as P. In simulation, this power value P is measured by a monitor M placed at the exit of the hole labeled by ‘0’. If the whole structure is removed, the power measured by this monitor at the same place is denoted as P_0 [25, 27]. The transmissivity of this hole is defined as $T = P/P_0$.

Our simulated result is the transmissivity T. Since T is simply linearly proportional to the Poynting vector S, we will analyze the construction of S to explain the expression of T obtained by simulation.

Since the array consists of holes, the light behavior in any one hole and the correlation between holes is essential in realizing the light behavior when light going through the whole array. Therefore, before studying the whole array, we explore the light behavior when it goes through only a one-hole and a two-hole structure.

3. The single-hole structures

Letting all the holes in the array except the one labeled by ‘0’ in figure 1 be closed, we set up a one-hole structure. We will study the cases where the hole is a square and a rectangle, respectively.

Suppose that the amplitudes of the components of electromagnetic field in the hole are E_{hole}^x, E_{hole}^y, H_{hole}^x and H_{hole}^y, respectively. It is found from the simulated results that these amplitudes as functions of angle θ can be expressed in the following way:

$$E_{hole}^x = E_{hole}^x \sin \theta \quad E_{hole}^y = E_{hole}^y \cos \theta,$$ (3a)

$$H_{hole}^x = -H_{hole}^x \cos \theta \quad H_{hole}^y = H_{hole}^y \sin \theta.$$ (3b)

Equations (3) tells us that, when studying a single rectangular hole, one merely needs to measure the field components at an arbitrary polarization angle θ so as to get the amplitudes E_{hole}^x, E_{hole}^y, H_{hole}^x and H_{hole}^y in the hole by equations 3. Then the field components at any other angle θ can be easily calculated in terms of equations (3).

It is noticed that the angular dependence of the left-hand side of equations (3) is identical to that of equations (2). Based on this fact, we introduce a concept of SPP polarization.

| Table 1. The experimental results of whether EOT is dependent on the polarization of the incident light or not. The names in parentheses are used in section 5. |
|---------------------------------|---------------------------------|---------------------------------|
| Square lattice | Rectangular lattice | Single hole |
| Square hole | Independent [11, 16] (S-S array)| Unreported (S-R array) |
| Rectangular hole | Dependent [11, 15–19] (R-S array)| Unreported (R-R array) |
| Circular hole | Independent [3–5, 13] | Dependent [5–7, 11, 13] |

Figure 1. Sketch of a metal hole array consisting of subwavelength rectangular holes.
that, as the θ of the polarization.
transmissivity is regarded as unchanged, i.e. it is independent
fitted by curves in terms of equation (3). Here, we have
figure 2 by square and circular symbols. The results are easily
values are plotted in figure 2 by crosses. Figure 2 shows
respectively, and expressed as follows:

\[\eta_{Ex} = \frac{E_{x}^{\text{hole}}}{E_{0x}} = \frac{E_{0x}^{\text{hole}}}{E_{0}} \]
(4a)

\[\eta_{Ey} = \frac{E_{y}^{\text{hole}}}{E_{0y}} = \frac{E_{0y}^{\text{hole}}}{E_{0}} \]
(4b)

\[\eta_{Hx} = \frac{H_{x}^{\text{hole}}}{H_{0x}} = \frac{H_{0x}^{\text{hole}}}{H_{0}} \]
(4c)

\[\eta_{Hy} = \frac{H_{y}^{\text{hole}}}{H_{0y}} = \frac{H_{0y}^{\text{hole}}}{H_{0}}. \]
(4d)

For example, \(\eta_{Ex} \) is called the x component SPP electric field PER. Since the SPP electromagnetic field PERs are independent of angle, they are used to describe the basic property of the hole.

As long as the field amplitudes in the hole are measured, the total curve of the transmission power or transmissivity can be obtained. To explain the transmissivity, one needs to calculate the Poynting vector \(\mathbf{S} = \mathbf{E} \times \mathbf{H} \).

In the hole, the averaged value in a time period of the z component of the Poynting vector is

\[S_{z}^{\text{hole}} = (E_{x}^{\text{hole}}H_{y}^{\text{hole}} - E_{y}^{\text{hole}}H_{x}^{\text{hole}})/2, \]
(5a)

\[S_{z}^{\text{hole}} = (E_{0x}^{\text{hole}}H_{0y}^{\text{hole}} \sin^{2} \theta + E_{0y}^{\text{hole}}H_{0x}^{\text{hole}} \cos^{2} \theta)/2. \]
(5b)

Let us first investigate the case of a square hole. The parameters are taken as \(a = b = 0.2 \mu m \). The power measured in this hole is denoted as \(P^{\text{hole}} \) and the transmissivity of the hole is defined as \(T_{0} = P^{\text{hole}}/P_{0} \). The simulated transmissivity values are plotted in figure 2 by crosses. Figure 2 shows that, as the θ angle changes, \(T_{0} \) varies between 19.31 and 19.38. Since the variation scope is within calculation error, the transmissivity is regarded as unchanged, i.e. it is independent of the polarization.

The calculated amplitude values of x and y components of electromagnetic fields of SPP in the hole are presented in figure 2 by square and circular symbols. The results are easily fitted by curves in terms of equation (3). Here, we have

\[E_{0x}^{\text{hole}} = E_{0y}^{\text{hole}} = 1.88, \]
(6a)

Equations (6) exhibits two features. One is that the dimensions of the field component amplitudes \(E_{0x}, E_{0y}, H_{0x}, \) and \(H_{0y} \) in the hole are larger than those outside the hole \(E_{0x}, E_{0y}, H_{0x}, \) and \(H_{0y} \), respectively. This reflects the EOT character, i.e. the transmissivity \(T_{0} \) is greater than 1, as a subwavelength should have. The other is that the electromagnetic fields in a square hole behave as isotropic. This is an important feature of a square hole, which has been discovered by experiments, as shown in table 1. Later we will see that for a rectangular hole it is not so.

For a square hole, substituting equations (6) into equation (5b), one obtains

\[S_{z}^{\text{hole}} = E_{0x}^{\text{hole}}H_{0y}^{\text{hole}}/2 = E_{0y}^{\text{hole}}H_{0x}^{\text{hole}}/2, \]
(7)

Here \(S_{z}^{\text{hole}} \) is independent of angle θ, which is the reason why the transmissivity \(T_{0} \) is independent of angle θ as shown in figure 2.

Equations (6) lead to

\[\eta_{Ex} = \eta_{Ey}, \quad \eta_{Hx} = \eta_{Hy}. \]
(8)

In other words, along the two sides of the square hole, the SPP PERs are equal. Equations (8) is the physical reason that the transmission power is independent of the polarization direction in a square hole.

Equations (8) manifest the π/2 rotation symmetry of a square hole. It is probably that, if the π/2 rotation symmetry is broken, equations (8) will not be valid. Consequently the transmission power should change with the polarization angle.

Next we investigate the case of a rectangular hole. Experiments showed the polarization dependence of transmission in a rectangular hole, see table 1. Let us see our simulated results.

The simulation results of a rectangular hole are plotted in figure 3 where the two sides of the hole are \(a = 0.2 \mu m \) and \(b = 0.1 \mu m \), respectively. The crosses in figure 3(a) show the transmissivity \(T_{0} \). It changes with the polarization angle. The
symbols in figure 3(b) denote the field amplitudes in the hole, which can be fitted with equation (3) but $E_{\text{hole}}^x = 0.69 \times 10^{-2}$, $E_{\text{hole}}^y = 2.89$, $H_{\text{hole}}^x = 1.21$ and $H_{\text{hole}}^y = 0.53 \times 10^{-2}$. With these data we obtained $\eta_{Ex} = 0.022$, $\eta_{Ey} = 9.32$, $\eta_{Hx} = 3.90$ and $\eta_{Hy} = 0.017$. That is to say

$$\eta_{Ex} \neq \eta_{Ey}, \quad \eta_{Hx} \neq \eta_{Hy}. \quad (9)$$

The SPP PERs in x and y directions for either electric or magnetic field differ from each other. This feature is different from that of a square hole. In each direction, when the electric field is strong, then the magnetic field is weak, or vice versa.

The above discussions demonstrate that the SPP polarization excitation ratios are the key roles to exhibit the properties of the transmission with the polarization angle.

As has been mentioned above, one can choose an arbitrary polarization angle θ to get the amplitudes $E_{\text{hole}}^x, E_{\text{hole}}^y, H_{\text{hole}}^x$ and H_{hole}^y. In this way, one saves a lot of time and workload to avoid measuring the whole angular region as shown by solid and open symbols in figures 2 and 3.

Since for a square hole, the SPP PERs in two axis directions are the same, while for a rectangular one it is not, when changing the ratio b/a, the SPP PERs should vary. We keep $a = 0.2 \, \mu m$ and change b from 0.1 to 0.3 μm. The simulated SPP PERs are displayed in figure 4 by symbols. The lines in figure 4 are just to guide the eyes. When the ratio b/a is small, say for $b = 0.1 \, \mu m$, one of η_x and η_y is negligible compared to the other. It seems that in this case the field components E_{hole}^x and H_{hole}^y are totally depressed. This implies that the SPP wave is mainly polarized with the magnetic field along the longer side of the rectangular hole. In other word, with respect to the polarization properties, the rectangular hole is somehow equivalent to a slit when the ratio b/a of the hole is small. For convenience we refer to this kind of hole as a slit-hole. The character of a slit-hole is that the electric or magnetic field component along one side direction is negligible compared to the other side. According to our simulation results, there exists a critical size for b beyond which the PERs η_x and η_y are comparable to each other. For instance, when $a = 0.2 \, \mu m$, it is found from figure 4 that the critical size for b is $b_c = 0.18 \, \mu m$. When $b > b_c$, the corresponding SPP PERs rise suddenly so the character of a slit-hole disappears. In other words, the SPP mode of an electric field in the x direction begins to excite. As the size of b approaches that of a, η_x and η_y become closer. At $b = 0.2 \, \mu m$, the square hole, the two solid lines meet at the value $\eta_{Ex} = \eta_{Ey} = 6.06$ and the two dashed lines meet at the value $\eta_{Hx} = \eta_{Hy} = 3.89$.

4. The double-hole structures

Now we turn to investigate the inter-hole effect. For this purpose we set up a two-hole structure by closing all the holes in the array except the two labeled by ‘0’ and ‘1’, hereafter referred to as a 0–1 structure.

Before starting the investigation of the two-hole structure, let us briefly remember the EOT of a double-slit structure [20]. The SPP wave excited in one slit will interfere with that coming from the other slit. The interference varies with the inter-slit distance D. This interference is the so-called inter-slit effect. As a consequence, the total power passing through the structure oscillates with the inter-slit distance D. Each peak of the power curve corresponds to the in-phase interference between the two slits.

A double-hole structure resembles a double-slit structure in that there is an interference between SPPs excited in the two holes as the SPP waves travel along the metal film surfaces, and the interference varies with the inter-hole distance. Therefore, at appropriate inter-hole distances, the interference will generate largest transmission power. In simulation, we find that one such distance is $A = 0.4 \, \mu m$ when $a = b = 0.2 \times 0.2 \, \mu m^2$ and the polarization of the incident wave is $\theta = 90^\circ$.

The transmissivity measured in this structure is denoted as T_{01}. When fixing $A = 0.4 \, \mu m$, the variation of T_{01} as a function of the polarization angle θ is displayed by the solid circles in figure 5(a). The data are well fitted with the equations

$$T_{01}(\theta) = T_0 + \Delta T_{01}(\theta), \quad (10)$$

where

$$\Delta T_{01}(\theta) = 6.64 \sin^2 \theta, \quad (11)$$

and $T_0 = 19.36$. It should be noticed that T_0 is just the transmissivity of a single-square-hole structure, see figure 2. Equation (10) clearly demonstrates that the total transmissivity comprises two parts coming from the single-hole and inter-hole effects, respectively. The contribution from the inter-hole effect on the transmissivity is expressed by equation (11). When $\theta = 0$, the inter-hole effect vanishes.

Here we intend to disclose which factors the coefficient 6.64 of the interference term involves. To do so we analyze the behaviors of the SPPs traveling from one hole to the other along the x direction. That is to say, we should evaluate the Poynting vector S^{SPP} between the two holes. For this purpose we choose the mid-point between the centers of the two holes on the exit surface of the film as an observation point to measure S^{SPP}. Now we close hole ‘1’. Thus the system degenerates to a single-hole structure. In this case the SPPs at the observation point comes from the open hole.
The observed S_{y}^{SPP} is $S_{y}^{\text{SPP}} = E_{y}^{\text{SPP}}H_{x}^{\text{SPP}} - E_{x}^{\text{SPP}}H_{y}^{\text{SPP}}$. Our simulated results reveal that the absolute values of E_{y}^{SPP} and H_{y}^{SPP} are negligible compared to E_{x}^{SPP} and H_{x}^{SPP}. Thus we have $S_{y}^{\text{SPP}} = -E_{x}^{\text{SPP}}H_{y}^{\text{SPP}}$. Consequently, in the following, we merely take into account the contribution of E_{x}^{SPP} and H_{x}^{SPP}, omitting those of E_{y}^{SPP} and H_{y}^{SPP}. The simulated amplitudes of E_{x}^{SPP} and H_{x}^{SPP} at the observation point are displayed in figure 5(b) by solid and open circles, respectively. The solid curves in figure 5(b) are plotted by

$$E_{z} = E_{0z}^{\text{SPP}} \sin \theta \quad H_{y}^{\text{SPP}} = H_{0y}^{\text{SPP}} \sin \theta$$

where $E_{0z}^{\text{SPP}} = 1.12$ and $H_{0y}^{\text{SPP}} = 0.82$. Comparing equations (12) and (3), we find that the ratio $H_{y}^{\text{hole}}/H_{y}^{\text{SPP}} = H_{0y}^{\text{hole}}/H_{0y}^{\text{SPP}}$ is independent of angle θ, so we define this ratio as γ_{01}:

$$\gamma_{01} = \begin{cases} \frac{H_{y}^{\text{SPP}}}{H_{y}^{\text{hole}}} = \frac{H_{0y}^{\text{SPP}}}{H_{0y}^{\text{hole}}}, & \text{when } H_{y}^{\text{hole}} \neq 0, \\ 0, & \text{when } H_{y}^{\text{hole}} = 0. \end{cases}$$

(13)

This ratio is regarded as the conversion of the transverse magnetic field on a surface excited by the magnetic field in the hole. It is determined by the geometry and physical parameters of the single-hole structure. The subscript ‘01’ in γ_{01} means the SPP traveling from holes 0 to 1. In the present case, $\gamma_{01} = 0.82/1.21 = 0.68$. When $H_{y}^{\text{hole}} = 0$, the H_{y}^{SPP} cannot be excited, so we define $\gamma_{01} = 0$. In this case the inter-hole effect vanishes.

Now we are ready to disclose which factors the coefficient of the $\sin^{2} \theta$ term in equation (11) comprises. Let both holes in the structure open. The SPP wave from hole 0 will arrive at hole 1, it will interfere with the SPP excited in hole 1. The same process will also occur at hole 0. In this case the total magnetic field at the exit of hole ‘0’ includes two parts: one is H_{y}^{hole} contributed from ‘0’ itself as an isolated hole, and the other is H_{y}^{SPP} contributed from ‘1’. Thus the y component of the magnetic field becomes $H_{y}^{\text{hole}} + H_{y}^{\text{SPP}}$. Consequently, the Poynting vector in the z direction is

$$S_{z}^{\text{hole}} = E_{x}^{\text{hole}}(H_{y}^{\text{hole}} + H_{y}^{\text{SPP}}) = E_{x}^{\text{hole}}H_{y}^{\text{hole}}$$

$$= \Delta S_{z}^{\text{hole}} = S_{z}^{\text{hole}} + \Delta S_{z}^{\text{hole}},$$

(14)

Here S_{z}^{hole} is just equation (5a), the Poynting vector without the contribution of H_{y}^{SPP}. Substituting equations (3), (12) and (13) into equation (14) we get

$$S_{z}^{\text{hole}} = E_{x}^{\text{hole}}\gamma_{01} \sin^{2} \theta,$$

(15)

The Poynting vector of the 0–1 structure S_{01}^{hole} comprises two parts: a term of a single-hole structure and a term reflecting the inter-hole effect between the two holes. The latter in turn is related to γ_{01} itself. Therefore, although an angular factor $\sin^{2} \theta$ is separated, the coefficient of $\sin^{2} \theta$ in equation (15) should generally still contain functions of angle θ. Equations (15) are linearly proportional to equation (10). Therefore, we can reasonably rewrite equation (11) in the following form:

$$\Delta T_{01}(\theta) = T_{01}(\theta)C_{01}(\theta) \sin^{2} \theta,$$

(16)

$C_{01}(\theta)$ is the coupling coefficient that reveals the strength of the inter-hole effect generated by total transmission power. Combining equations (10) and (16) one achieves

$$T_{01}(\theta) = T_{0} + T_{01}(\theta)C_{01}(\theta) \sin^{2} \theta,$$

(17)

We emphasize that equation (17) is applicable to the double-hole structure consisting of identical rectangular holes.

In the case of square holes, we have, from equation (11), $T_{01}(\theta)C_{01}(\theta) = 6.64$. Thus the two expression of the two factors $T_{01}(\theta)$ and $C_{01}(\theta)$ are easily solved:

$$C_{01}(\theta) = 6.64/(T_{0} + 6.64 \sin^{2} \theta),$$

(18)

and

$$T_{01}(\theta) = T_{0}/[1 - C_{01}(\theta) \sin^{2} \theta].$$

(19)

Please note that, since $T_{0} = 19.36$, much larger than the term $6.64 \sin^{2} \theta$, $C_{01}(\theta)$ in equation (18) is approximately a constant. Indeed, if we select $\theta = \pi/2$, then $C_{01}(\theta) = 0.255$ and the calculated $T_{01}(\theta)$ is plotted in figure 5(a) by a dashed line. Apparently, this is quite a good approximation.

It is worth pointing out that the inter-hole effect involves the contributions from SPP waves of both surfaces of the metal film. Equations (10), (17) and (19) have included the contribution from both surfaces.

When the nearest-neighbor (nnn) inter-hole effect. The array constants μ_{1} and μ_{2} are 0.4 mm and 0.2×0.2 mm2. The simulated transmissivity as a function of the polarization angle

![Figure 5.](image-url)
is plotted in figure 6 by solid points. The data are well fitted by solid curves in terms of the following expressions:

\[T_{05} = T_0 + \Delta T_{05}, \]
\[\Delta T_{05} = T_{05} C_{05}(\theta) \sin^2 (\theta + 45^\circ), \]
\[C_{05}(\theta) = -2.55 / [T_0 - 2.55 \sin^2 (\theta + 45^\circ)]. \]

Compared to the 0–1 structure, the 0–5 structure shows differences in two ways. One is that the phase shift comes from the fact that hole ‘5’ is located at azimuth angle 45°. Correspondingly, there is the same phase shift in the \(H_y^{\text{SPP}} \) compared to equations (12): \(H_y^{\text{SPP}} = H_y^{\text{SPP}} \sin(\theta + 45^\circ) \). Therefore when \(\theta = 135^\circ \), there will be no propagation of \(H_y^{\text{SPP}} \) between holes ‘0’ and ‘5’, i.e., the inter-hole effect vanishes at this angle. Indeed, from equation (21) the interference term is zero at this angle. The other is that the figure –2.55 in equation (22) is in place of 6.64 in equation (18).

The discussion about the interference in the two-hole structures above only concerns the azimuth. Another factor affecting the interference is the distance between the two holes. Let the distance between the two holes be \(r \). Then the transmissivity oscillates with \(r \). This oscillation is embodied in the value of \(C \). Our simulation results show that for the present square lattice of \(A = B = 0.4 \mu m \), as \(r = A, T_{01}(\theta) C_{01}(\theta) = 6.64, \) which just corresponds to the interference in phase; and when \(r = \sqrt{2} A \), this distance makes the interference out of phase so that the transmission is suppressed, thus \(T_{05} C_{05}(\theta) = -2.55 \) is minus. From equation (21) we see that as \(\theta = 45^\circ \) the inter-hole effect term is maximum, so that the transmissivity curve in figure 6 shows a valley.

We have mentioned that, in the 0–1 structure, calculated \(T_{01}(\theta) \) using a constant \(C(\theta) = 0.255 \) approximates the exact results quite well, as shown in figure 5. Here we again set a constant \(C(\theta) = -0.152 \) to compute \(T_{05}(\theta) \) and the results are plotted in figure 6 by a dashed line, which is almost identical to the solid line.

5. The hole arrays

To simulate the transmission of a hole array is quite difficult, as a very large memory size is needed. However, the discussion about the two-hole structures in section 4 prompts us that an array can be regarded as a combination of two-hole structures. Here we propose a simpler method to treat the hole array.

As an example, we first consider a three-hole structure consisting of the open holes labeled by ‘1’, ‘0’ and ‘3’ with other holes being closed in the array depicted in figure 1, referred to as a 1–0–3 structure. In such a structure, the transmissivity of hole ‘0’, denoted as \(T_{01} \), is measured, one has to consider inter-hole effects between hole ‘0’ and its two neighbors. Thus a reasonable expression should be

\[T_{103}(\theta) = T_0 + \Delta T_{01} + \Delta T_{03} = T_0 + T_{103}(\theta) C_{01} \sin^2 \theta + T_{103}(\theta) C_{03} \sin^2 (\theta + 180^\circ). \]

Note that, similar to the cases of the 0–1 structure and 0–3 structures, the coefficients of the two interference terms should include a factor of the total transmissivity \(T_{103}(\theta) \). Since holes ‘1’ and ‘3’ are symmetric with respect to hole ‘0’, we have \(C_{01} = C_{03} \). The difference of \(T_{103}(\theta) \) between results of the calculation with equation (23) and simulation by the FDTD method is about 1%.

From the example of the 1–0–3 structure it is concluded that, for each additional nn hole, one merely simply adds a term to embody the inter-hole effect, although the coefficient should be proportional to the total transmissivity of hole ‘0’. This conclusion can be extended into the whole array.

Now let all holes in the array open. We calculate the transmissivity of hole ‘0’. There are four nn and four nnn neighbors around this hole, labeled by ‘1’ to ‘8’, respectively. The influence of the holes further than the nn ones is merged into the inter-hole effect between hole ‘0’ and the eight neighbors, so that it need not be considered. Thus, the transmissivity of hole ‘0’ is

\[T_{\text{array}} = T_0 + \sum_{i=1}^{8} \Delta T_{0i}. \]

The second term in equation (24) includes the contribution from all eight neighboring holes.

When the hole array composes a square lattice with \(A = B \), first we study the case where all holes in the lattice are square, referred to as the S-S array. The transmissivity in hole ‘0’ is denoted as \(T_{S-S} \).

The 0–1 and 0–5 structures have been studied in detail in section 4. According to the conclusions of the two structures, we easily put down the terms of inter-hole effects contributed from all eight neighboring holes as follows:

\[\Delta T_{01} = T_{S-S} C_{01} \sin^2 \theta, \]
\[\Delta T_{02} = T_{S-S} C_{02} \sin^2 (\theta - 90^\circ) = T_{S-S} C_{02} \cos^2 \theta, \]
\[\Delta T_{03} = T_{S-S} C_{03} \sin^2 (\theta - 180^\circ) = T_{S-S} C_{03} \sin^2 \theta, \]
\[\Delta T_{04} = T_{S-S} C_{04} \sin^2 (\theta - 270^\circ) = T_{S-S} C_{04} \cos^2 \theta, \]
\[\Delta T_{05} = T_{S-S} C_{05} \sin^2 (\theta + 45^\circ), \]
\[\Delta T_{06} = T_{S-S} C_{06} \sin^2 (\theta - 45^\circ), \]
\[\Delta T_{07} = T_{S-S} C_{07} \sin^2 (\theta - 135^\circ). \]
\[\Delta T_{08} = T_{S-S} C_{08} \sin^2(\theta - 225^\circ). \]
\[(26d) \]

Here the azimuth of each neighboring hole is taken into account. Since the four holes '1' to '4' have the same distance away from '0', and the other four on the vertexes do so too, one naturally gets

\[C_{01} = C_{02} = C_{03} = C_{04}, \]
\[(27a) \]
\[C_{05} = C_{06} = C_{07} = C_{08}. \]
\[(27b) \]

Inserting equations (25)–(31) into (24), we obtain

\[T_{S-S} = T_0 + 2T_{S-S}(C_{01} + C_{05}). \]
\[(28) \]

Obviously, the transmission is independent of the \(\theta \) angle. This explains the experimental result of the S-S array listed in table 1.

If the parameters of the holes and lattice are the same as those in section 4, we have \(C_{01} + C_{05} = 0.103, T_0 = 19.35, \) thus \(T_{S-S} = 24.37. \)

Next we study the case where the holes are square and the lattice is rectangular, referred to as the S-R array. The distance between hole '0' and any one of these four holes away from '0', and the other four on the vertexes do so too, one

\[\alpha = \arctan(B/A). \]
\[(29) \]

The angular dependences of \(\Delta T_{0i}, i = 1–4 \) are the same as those in equations (25). One merely needs to replace \(T_{S-S} \) in equations (25) by \(T_{S-R} \) to get the expression of \(\Delta T_{0i}, i = 1–4. \) However, since \(B \neq A, \) equation (27a) is not valid any more. We have the following relationship:

\[C_{01} = C_{03} \neq C_{02} = C_{04}. \]
\[(30) \]

As for the neighbors '5' to '8', the angular dependence of interference terms is written as

\[\Delta T_{05} = T_{S-R} C_{05} \sin^2(\theta + \alpha), \]
\[(31a) \]
\[\Delta T_{06} = T_{S-R} C_{06} \sin^2(\theta - \alpha), \]
\[(31b) \]
\[\Delta T_{07} = T_{S-R} C_{07} \sin^2[\theta - (180^\circ - \alpha)] = T_{S-R} C_{07} \sin^2(\theta + \alpha), \]
\[(31c) \]
\[\Delta T_{08} = T_{S-R} C_{08} \sin^2[\theta - (180^\circ + \alpha)] = T_{S-R} C_{08} \sin^2(\theta - \alpha). \]
\[(31d) \]

The distance between hole '0' and any one of these four holes is the same as the others. Hence equation (27b) is still valid. Inserting equations (30) and (31) into \(T_{S-R} = T_0 + \sum_{i=1}^{3} \Delta T_{0i}, \) we have

\[T_{S-R} = T_0 + 2T_{S-R}[(C_{01} \sin^2 \theta + C_{02} \cos^2 \theta] + C_{05} \sin^2(\theta - \alpha) + \sin^2(\theta + \alpha)]. \]
\[(32) \]

It is seen that the transmissivity of the S-T array depends on the polarization angle \(\theta. \)

Thirdly we discuss the case where the holes are rectangular, \(a \times b = 0.2 \times 0.1 \mu m^2 \) and the lattice is square, \(A = B = 0.4 \mu m, \) the so-called R-S array. Since the transmission in each rectangular hole is dependent on \(\theta, \) as manifested in figure 3(a), the single-hole effect is enough to cause the dependence of transmissivity \(T_{R-S} \) on the polarization angle. Besides, the inter-hole effect also influences \(T_{R-S}. \) Apparently, in this case we again have the relationship equation (30). In the case of \(a \times b = 0.2 \times 0.1 \mu m^2, \) the hole is regarded as a slit-hole, as has been mentioned in the last paragraph of section 3 in explaining figure 4. Considering equations (15) and (13), for a slit-hole, we have \(\Delta T_{01} = 2 \Delta T_{01} \sin^2 \theta = 0, \) so \(\Delta T_{01}(\theta) = T_{01}(\theta)C_{01}(\theta) \sin^2 \theta = 0. \) Consequently \(C_{01} = 0. \) Following the method as above, the expression of the transmission is obtained as follows:

\[T_{R-S} = T_0(\theta) + 2T_{R-S}[C_{03}(\theta) \cos^2 \theta + 2C_{05}(\theta) \sin^2(25^\circ \cos^2 \theta)]. \]

By our simulation, it is approximately that \(C_{03}(\theta) = 0.07/\cos^2 \theta \) and \(C_{05}(\theta) = 0.12/\cos^2 \theta. \) Thus we get \(T_{R-S} = 39.2\cos^2 \theta. \) The feature of \(T_{R-S} \) curve is the same as the experimental result [17]. This result confirms the validity of our calculation method.

Finally, for the case of a rectangular lattice comprising rectangular holes, the R-R array, we can use the same method to discuss the transmission \(T_{R-R}. \) But we do not put down the formula. A qualitative conclusion is obvious. Since both the single holes and lattice are rectangular, it is sure that \(T_{R-R} \) depends on the polarization angle.

6. Applications

Up to now we have discussed the six cases in table 1. The two kinds of single holes are studied in detail in section 3 and the four kinds of arrays are investigated in section 5. The mechanism of the polarization dependence of the transmission of each case is explicitly disclosed. A simple method is proposed to evaluate the transmissivity of the arrays. The physical meaning of this method is that it shows the transmission is mainly from two parts: the single-hole and inter-hole effects. The obvious advantage of this method is that it reduces the workload greatly compared to the simulation of the whole array.

Among the four kinds of arrays in table 1, two, the S-S and R-S arrays, have been investigated experimentally, while the other two, the S-R and R-R arrays, have not. Here we employ our method to calculate the transmissivity \(T_{S-S} \) and \(T_{R-R} \) of the S-R and R-R arrays. The numerical results are provided for someone to test.

For an S-R array, we chose \(A = 0.4 \mu m, B = 0.3 \mu m \) and \(a \times b = 0.2 \times 0.2 \mu m^2. \) In this structure, \(C_{01} = 0.255 \) is unchanged, and \(C_{02} \) and \(C_{05} \) have to be estimated. The transmissivities of 0–2 and 2–5 structures are simulated and fitted by \(T_{02} = T_0 + 0.12T_0 \cos^2 \theta \) and \(T_{05} = T_0 - 0.08T_0 \sin^2(\theta - \arctan(0.3/0.4)), \) so we get \(C_{02} = 0.12 \) and \(C_{05} = -0.08. \) Then the transmissivity is expressed by

\[T_{S-R} = 19.36/[1 - 2(0.255 \sin^2 \theta + 0.12 \sin^2 \theta) + 2 \times 0.08(\sin^2(\theta - 36.9^\circ) + \sin^2(\theta + 36.9^\circ))]. \]

The calculated curve is displayed in figure 7(a).

For an R-R array, we take \(A = 0.4 \mu m, B = 0.3 \mu m \) and \(a = 0.2 \mu m, b = 0.1 \mu m. \) For such a slit-hole, \(C_{01} = 0. \) In 0–2 and 0–5 structures, the simulation results are
Comparing figures 7(a) and (b), we see that the expressed in figure 3(a) with the formula

\[T_{02} = T_0(\theta) + 6 \cos^2 \theta \]

and

\[T_{05} = T_0(\theta) + 6.1 \sin^2(36.9^\circ) \cos^2 \theta, \] respectively. Here \(T_0(\theta) \) is the single-hole transmissivity expressed in figure 3(a) with the formula

\[T_0(\theta) = 24.3 \cos^2 \theta. \]

When writing formulae in the coupling form,

\[T_{02} = T_0(\theta) + C_{02} T_0 \cos^2 \theta \]

and

\[T_{05} = T_0(\theta) + C_{05} T_0 \sin^2(36.9^\circ) \cos^2 \theta, \]

we obtain

\[C_{02}(\theta) = 0.2 / \cos^2 \theta \]

and

\[C_{05}(\theta) = 0.023 / \cos^2 \theta. \]

It is found that \(C_{02} \) and \(C_{05} \) vary with \(\theta \) and cannot be regarded as constants now. This arises from that \(T_0(\theta) \) varies with \(\theta \) in this structure. Equation (27b) still holds in this lattice.

\[C_{06}(\theta) = 0.023 / \cos^2 \theta = C_{07}(\theta) = C_{08}(\theta). \]

Thus the coupling equation is

\[T_{R-R} = T_0(\theta) + 2 T_{R-R}[C_{02}(\theta) \cos^2 \theta + 2 C_{05}(\theta) \sin^2(36.9^\circ) \cos^2 \theta]. \]

The calculated \(T_{R-R} \) is plotted in figure 7(b). Comparing figures 7(a) and (b), we see that the variational scope of \(T_{R-R} \) is larger than that of \(T_{S-S} \), since the R-R array has a stronger anisotropy than the S-R array. In particular, \(T_{R-R} \) can be zero at \(\theta = 90^\circ \).

7. Summary

We have investigated the polarization dependences of the transmission in square and rectangular lattices consisting of different subwavelength holes. The field components and transmissivities of single-hole and double-hole structures are computed by use of the FDTD simulation method. The behaviors of the transmission are explored and the corresponding mechanisms are disclosed. Our basic point of view is that the total transmissivity of a hole array is determined by two basic factors: the single-hole effect and inter-hole effects. Based on the results of these structures, a compact method is suggested and applied to investigate the hole arrays. Our conclusions are summarized as follows.

1. The SPP PERs are key roles in a single hole. In a square hole the SPP PERs along the two sides of the hole are equal, which leads to two consequences. One is that the SPP wave in the square hole is along the polarization direction of the incident light, and the other is that the amplitude of the SPP wave is in proportion to that of the incident light at any polarization angle. In contrast, in a rectangular hole, the SPP PERs are not isotropic, which results in that the amplitude of the SPP in a rectangular hole cannot reserve a fixed proportion to that of incident light with different polarization angle.

Therefore the transmissivity depends on the polarization angle.

2. The transverse magnetic field of the SPP wave on the metal film surface plays a key role in the inter-hole effect.

3. The total transmissivity of the hole array can be expressed by the single-hole transmissivity plus the terms reflecting inter-hole effects between the hole and its nn and nnn neighbors.

4. Conclusion (3) provides a simple method to calculate the transmissivity of the hole arrays. By this method we calculated the polarization dependence of the transmissivity for the S-R and S-S arrays that are not reported in the literature.

Acknowledgments

This work is supported by the 973 Program of China (grant no. 2011CB301801), the National Natural Science Foundation of China (grant no. 10874124) and the Natural Science Foundation of Beijing (no. 1102012).

References

[1] Ebbesen T W et al 1998 Extraordinary optical transmission through sub-wavelength hole arrays Nature 391 667

[2] Lezec H J et al 2002 Beaming light from a subwavelength aperture Science 297 820

[3] Altewischer E et al 2002 Plasmon-assisted transmission of entangled photons Nature 418 304

[4] Altewischer E et al 2005 Polarization tomography of metallic nanohole arrays Opt. Lett. 30 90

[5] Gordon R et al 2004 Strong polarization in the optical transmission through elliptical nanohole arrays Phys. Rev. Lett. 92 037401

[6] Altewischer E, van Exter M P and Woerdman J P 2003 Polarization analysis of propagating surface plasmons in a subwavelength hole array J. Opt. Soc. Am. B 20 1927

[7] Genet C et al 2005 Optical depolarization induced by arrays of subwavelength metal holes Phys. Rev. B 71 033409

[8] Sarrazin M and Vigneron J P 2004 Polarization effects in metallic films perforated with a bidimensional array of subwavelength rectangular holes Opt. Commun. 240 89

[9] Yanik A A et al 2008 Mid-infrared subwavelength polarization optics with plasmonic nanostructures Lasers and Electro-Optics Society, LEOS 2008: The 21st Annual Mtg of the IEEE pp 490–1

[10] Roth R M et al 2006 Polarization-sensitive extraordinary transmission through periodic arrays of crossed nano-slits mediated by local surface plasmons OSANANSO, NFA4

[11] Lee J W et al 2006 Shape resonance omni-directional terahertz filters with near-unity transmittance Opt. Express 14 1253

[12] Zhao G Z et al 2007 Polarization dependence of transmission of terahertz radiation through periodic array of subwavelength rectangular holes IEEE:IRMMW-THz: 2007 pp 821–2

[13] Ren X F et al 2007 Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes Appl. Phys. Lett. 90 161112

[14] Degiron A et al 2004 Optical transmission properties of a single subwavelength aperture in a real metal Opt. Commun. 239 61

[15] Degiron A and Ebbesen T W 2005 The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures J. Opt. A: Pure Appl. Opt. 7 S90

[16] Ren X F et al 2008 Polarization properties of subwavelength hole arrays consisting of rectangular holes Appl. Phys. B 91 601
[17] Jeffrey R DiMaio and John Ballato 2006 Polarization-dependent transmission through subwavelength anisotropic aperture arrays Opt. Express 14 2380
[18] Hu D et al 2009 Surface plasmons based transmission enhancement of terahertz through metal aperture arrays Proc. SPIE 7385 73850Z-1
[19] Hu D et al 2010 Localized surface plasmons-based transmission enhancement of terahertz radiation through metal aperture arrays Int. J. Light Electron Opt. 121 1423
[20] The theoretical works are reviewed by Konstantin Y B et al 2008 Unusual resonators: plasmonics, metamaterials, and random media Rev. Mod. Phys. 80 1201
[21] Garcia de Abajo F J et al 2005 Full transmission through perfect-conductor subwavelength hole arrays Senz Phys. Rev. E 72 016608
[22] Gomez-Medina R et al 2006 Extraordinary optical reflection from sub-wavelength cylinder arrays Opt. Express 14 3730
[23] Elliott J et al 2004 Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film Opt. Lett. 29 1414
[24] Martin-Moreno L et al 2001 Theory of extraordinary optical transmission through subwavelength hole arrays Phys. Rev. Lett. 86 1114
[25] Zhou Y S et al 2008 Time-domain analysis of mechanism of plasmon-assisted extraordinary transmission Phys. Rev. B 78 081404(R)
[26] The commercially available software developed by Rsoft Design Group http://www.rsoftdesign.com is used for the numerical simulations
[27] Zhou Y S et al 2009 Multi-reflection process of extraordinary optical transmission in a single subwavelength metal slit Europhys. Lett. 85 24005