Delayed combination therapy of local brain hypothermia and decompressive craniectomy on acute stroke outcome in rat

Mohammad Allahtavakoli 1, Mohammadamin Hosseini Kahouei 1*, Hossein Rezazadeh 1, Ali Roohbakhsh 2, Mohammad Hossein Mahmoodi 1, Amir Moghadam-Ahmadi 3, Mohammadreza Zarisi 1

1 Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
2 Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
3 Department of Neurology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

ARTICLE INFO

Article type: Original article
Article history: Received: Sep 16, 2013 Accepted: Jul 12, 2014
Keywords: Decompressive craniectomy Local hypothermia Stroke

ABSTRACT

Objective(s): Hypothermia and decompressive craniectomy (DC) have been shown to be neuroprotective. This study was designed to evaluate neuroprotective effects of delayed singular or combination of DC and local hypothermia on stroke.

Materials and Methods: Cerebral ischemia was induced in 48 Wistar rats assigned to 4 groups: control, decompressive craniectomy (DC), local hypothermia (LH), combination of hypothermia and craniectomy (HC). Infarct size and BBB disruption were measured 48 hr after ischemia insult. Neurological deficits were assessed at 24 and 48 hr after stroke by using sticky tape test, hanging wire test and Bederson’s scoring system. BBB disruption was measured by Evans blue dye leakage.

Results: Although infarct size was significantly reduced in LH, DC and HC groups (P<0.001), combination therapy was more neuroprotective compared to craniectomy alone (P<0.01). BBB disruption was significantly reduced in DC (P<0.05) and LH and HC (P<0.01). While sticky tape test (P>0.05 at 24 hr; P<0.001 at 48 hr) and hanging wire test (P<0.05) showed better behavioral performance only in HC, Bederson test showed improved behavioral functions of both LH (P<0.05 at 24 hr and P<0.01 at 48 hr) and HC animals (P<0.01). Neurological deficits were also decreased in LH (P<0.05) or HC (P<0.05 at 24 hr; P<0.01 at 48 hr) groups compared to the DC group at the same time.

Conclusion: Based on our data, although both delayed local hypothermia and craniectomy are protective after stroke, combination therapy of them is more neuroprotective than given alone.

Please cite this paper as: Allahtavakoli M, Hosseini Kahouei MA, Rezazadeh HA, Roohbakhsh A, Mahmoodi MH, Zarisi MR. Delayed combination therapy of local brain hypothermia and decompressive craniectomy on acute stroke outcome in rat. Iran J Basic Med Sci 2014; 17:476-482.

Introduction

Ischemic stroke is the third leading cause of death and the first leading cause of disability in adults around the globe. Stroke is accompanied by a robust inflammatory response, glutamate mediated excitotoxicity, release of reactive oxygen species and the initiation of apoptosis(1). Malignant middle cerebral artery infarction is the most common cause of death during the first week after an ischemic stroke (2). It is defined as a brain infarction affecting most or all of the MCA territory, accompanied within days by a massive brain edema causing increased intracranial pressure (ICP), clinical deterioration and transtentorial herniation. The therapeutic window of acute ischemic stroke for thrombolysis drug usage is short and has side effects including higher risk of intracranial hemorrhage (ICH) (3). Because of this and other complications, use of thrombolysis drug like recombinant tissue plasminogen activator (rt-PA) is limited.

Some experimental research and clinical works have reported the neuroprotective effect of mild hypothermia (MH) and moderate hypothermia (4-6). There are some mechanisms that prove the neuroprotective effect of MH. Stabilization of the blood brain barrier, down regulation of cerebral metabolism, decrease of excitatory transmitter release and decrease generation of free radicals are some of these protective mechanisms of hypothermia (7, 8). Several excellent articles have reviewed the protective effects of hypothermia as function of onset time, duration, and depth of hypothermia, as well as its underlying

*Corresponding author: Mohammadamin Hosseini Kahouei. Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. Tel: +98-391-5229171; email: m_allhtavakoli@sums.ac.ir
protective mechanisms (9-11). Systemic hypothermia is used in most of adult patients. This procedure is induced by different methods including surface-cooling blankets and adhesive pads, the use of an endovascular cooling system and sometimes cold intravenous fluids. Prolonged systemic hypothermia however has some side effects including myocardial arrhythmia, dehydration and blood hypercoagulability (12).

There are some experimental and clinical studies indicate that decompressive craniectomy (DC) significantly reduced mortality and improved clinical outcomes (13-16). As an alternative therapy, surgical decompression techniques (large hemicraniectomy with durotomy) have been proposed to relieve the high intracranial pressure (17-19). On the other hand, combination therapies of hypothermia with some strategies and drugs have been evaluated. Combined general hypothermia and DC yield significant additional benefit including infarct size and neurological scores compared with singular effect of them (20). The combination of MH and minocycline had a small but not significantly additional effect over the single treatments after focal cerebral ischemia in the rat (21).

Although it has been shown that selective brain hypothermia was neuroprotective in experimental stroke (22) but, to our knowledge, there are no data available indicating therapeutic effect of direct local cerebral hypothermia with craniectomy in acute ischemic stroke. Therefore, we investigated whether a combination of DC with the local hypothermia, may provide more neuroprotection during the permanent MCAO (middle cerebral artery occlusion) model of stroke in rats.

Material and Methods
Surgical preparation, animals and experimental groups

Experimental protocols were approved by animal ethic committee of Rafsanjan University of Medical Sciences. Rats had free access to food and water during the experiments.

Male Wistar rats were anesthetized with halothane 1% to 1.2% under spontaneous respiration in an air-oxygen mixture. Rectal temperature was maintained between 37°C and 37.5°C with a thermostat-controlled heating pad. The right femoral artery was cannulated and physiological parameters including rectal temperature, mean blood pressure, pH, PO2, and pCO2 were monitored.

Forty eight male Wistar rats (weighing 220 to 300 g) were allocated to 4 treatment groups of 12 animals each (8 for infarct volume and neurological outcomes and 4 for Evans blue) as following: control, decompressive craniectomy (DC), local hypothermia (LH), hypothermia combined with craniectomy (HC).

Measurement of infarct volume

At 48 hr after stroke, rats were decapitated; brains removed and cut in to 2 mm coronal sections using a rat brain matrix. Infarct volume was quantified in sections stained with 2% 2,3,5-triphenyltetrazolium chloride using image J analyzer (NIH Image, version 1.61) (25). The total volume of...
Combination therapy of acute stroke

Allahtavakoli et al

Table 1. Physiological parameters of rats male wister in different group

	Control	DC	LH	HC
Glucose (mg/dl)	223±13	208±26	218±20	219±21
pH	7.38±0.016	7.37±0.005	7.40±0.021	7.37±0.008
pO₂ (mmHg)	176±9	174±7	175±6	169±9
pCO₂ (mmHg)	35.5±1.5	33.5±1.7	33.9±1.3	34.0±1.6
*MAP (mmHg)	92±4	93±4	94±3	92±4
Heart rate (beats/min.)	369±36	379±29	381±33	359±28

Data are presented as mean±SEM. n = 4 in each group. Differences between the groups were not significant (P>0.05). *MAP, mean arterial pressure

Behavioral testing

Rats were trained on the adhesive removal test of sensorimotor function (27), daily for 3 days before stroke. Animals were then tested before surgery and at 24 and 48 hr post-stroke. Time taken to touch and remove each stimulus from the limb was recorded during 3 trials and averaged. Behavioral tests were carried out by an observer blind to the experimental groups.

Neurological deficits were recorded at 24 and 48 hr after stroke and determined with a modified 6-point scoring system of Bederson and coworkers (28) as follows: 0, no observable deficit; 1, forelimb flexion; 2, forelimb flexion plus decreased resistance to lateral push; 3, unidirectional circling; 4, unidirectional circling plus decreased level of consciousness; and 5, death. Endurance in the wire-hanging test was measured on a horizontal steel wire (1 mm) stretched horizontally 50 cm above a foam pad. For the pole test, the rat was placed head upward on the top of a vertical wooden rough-surfaced pole (diameter 1 cm, height 50 cm). Each rat was habituated on the day before testing then allowed to descend 5 times on a single session. The total time needed to turn completely head downward (“time-to-turn”) and the time until the animal reached the floor with its 4 paws (“time-to-come-down”) was recorded. Results were expressed as the mean of the 5 trials (29).

Determination of BBB permeability

BBB permeability was determined using Evans blue dye (EB) extravasation technique, as described earlier (30, 31). Briefly, a catheter was placed into the jugular vein through which 4 ml/kg of EB solution (2% Evans blue in normal saline, Sigma, Germany) was infused into the animal during 5 min period. Then, the animal was allowed to completely recover for at least 30 min. After killing the animal with an overdose of sodium thiopental and opening the chest, a catheter was placed into the left ventricle to infuse 300 ml of warm normal saline (37°C) for 15 min in order to washout the remains of EB from general circulation. Following decapitation, the brain was gently excised, its cerebellum and olfactory bulb were separated, and the rest was divided into the right and left hemispheres with a brain matrix. Each hemisphere was carefully weighed and absorption was measured by a spectrophotometer (UV7500, Spectro Lab, England) at 620 nm.

Statistical analysis

Data are expressed as mean ± S.E.M. Physiological parameters and behavioral tests were compared by two-way ANOVA and individual differences determined by Tukey’s test. Infarct volume and BBB permeability were compared by one-way ANOVA followed by Tukey’s test. A value of P < 0.05 was considered to be significant.

Results

There were no statistically significant differences between groups for intra operative physiological indices (Table 1).
Infarct volume
Infarct volumes were calculated using TTC-Stained brain sections. Infarct volume in control group was $307.34 \pm 18.09 \text{ mm}^3$ and the difference between control and hypothermia ($82.05 \pm 12.86 \text{ mm}^3$), craniectomy ($137.88 \pm 30.38 \text{ mm}^3$) and HC ($27.40 \pm 17.61 \text{ mm}^3$) groups were statistically significant ($P<0.001$; Figure 1). Combination therapy with LH and DC were more neuroprotective than DC alone ($P<0.01$; Figure 1).

Neurological tests
Data of hanging test showed that only HC significantly increased endurance time at 24 or 48 hr after ischemia ($P<0.01$), but neither LH nor DC showed any significant difference (Figure 2). While compared to the control group, sticky tape test ($P<0.05$ at 24 hr; $P<0.001$ at 48 hr; Figure 3) showed better behavioral performance only in HC, Bederson test showed improved behavioral functions of both LH ($P<0.05$ at 24 hr and $P<0.01$ at 48 hr) and HC animals ($P<0.01$). Neurological deficits were also decreased in LH ($P<0.05$) or HC ($P<0.05$ at 24 hr; $P<0.01$ at 48 hr) groups compared to the DC group at the same times (Figure 4).

Blood brain barrier disruption
EB penetration through BBB measured using absorption value in spectrophotometry. Absorption values in control, DC, LH and HC were 0.42 ± 0.11, 0.11 ± 0.01, 0.10 ± 0.02 and 0.05 ± 0.01, respectively.

Contralateral temporal muscle temperature
Contralateral temporal muscle temperatures were measured by a temporal probe. As expected, there was no significant difference in brain temperature between the control and DC groups. In both LH ($P<0.01$) and HC ($P<0.001$) groups, brain temperature decreased compared to the control group. Compared to the DC group, LH and HC also significantly decreased the brain temperature ($P<0.01$; Figure 6).

Discussion
To the best of our knowledge, there are no available data for the effect of directly local brain hypothermia through craniectomy on stroke in rodents. Thus, the novelty of the current study is that we investigated delayed effect of direct brain hypothermia, by opening the scalp, on permanent focal cerebral ischemia in rat. Our data showed that this method is more effective in cerebral ischemia therapies. We observed that both late decompressive craniectomy and local hypothermia decrease infarct volume but combination of them has more neuropro-
Different neuroprotective mechanisms for hypothermia have been postulated including: stabilization of the blood brain barrier, down regulation of cerebral metabolism, elimination of excitatory transmitter release and reduction of free radical generation (7, 8, 35). It has been suggested that the attenuation of oxidative DNA damage and DNA damage triggered pro-death signaling events can be an important mechanism for neuroprotective effect of mild hypothermia in cerebral ischemia (36). Protection of basal lamina, reduction in infarct volume and hemorrhage, and reduction in proteolytic enzymes are some of other neuroprotective mechanisms of hypothermia (37). Reduction of neuronal inflammation was also mentioned as a main contributor in neuroprotective effects of post-ischemic mild hypothermia (38). Despite of these advantages of general hypothermia, some adverse effects have been limited its using such as myocardial arrhythmia, hypotension, blood hypercoagulability, and hemodynamic instability (12, 39).

A comparison between different methods of hypothermia including intracarotid cold saline infusion, ice cap, and systemic cooling was investigated showing that the former was more effective than other methods (40). Hence, these findings suggest that methods like intracarotid cold saline infusion and our current method of directly exposed brain cooling are strategies that not only reveal more neuroprotective effects of hypothermia but also prevent the side effects of general hypothermia.

Combinations of hypothermia with other methods have been evaluated in some studies. One study reported that combination therapy of hypothermia with MgSO4 reduced infarct volumes at 2 hr and 4 hr after permanent MCAO but there was no therapeutic effect at 6 hr or in hypothermia and MgSO4 groups singularly (41). Another study showed that combination of citicoline with hypothermia suppressed apoptotic processes that are more effective than using each of them alone (42). Jieyong et al showed that the combination between craniectomy and mild hypothermia reduce the infarction size (43). Doerfler et al (2001) showed that combination of decompressive craniectomy at 4 hr after MCAO with mild hypothermia have diminished the infarct volume and improved neurological outcomes (20). We increased the therapeutic window of cerebral ischemia to 6 hr by directly local cerebral hypothermia through combination of craniectomy and using of cold saline.

In contrast with the above, we used direct local cerebral hypothermia for 15 min in our experiment. The brain temperature was decreased to 31.5°C in local hypothermia group and 28.5°C in combination therapy group, while body temperature was maintained at normal range by warm pad (36.5-37°C). This temperature is lesser than the mild treatment is often used in combination with other therapies to improve recovery.
hypothermia which used in most studies (33°C) (20, 39). Therefore, we decreased the complication of general hypothermia whereas we increased the depth of hypothermia. Our study has some limitations. The end point of our study was 48 hr because the animals were become sick and they loosed weight. This end point time was not enough for more evaluation of delayed outcomes.

Conclusion

Our findings reveal that although late decompressive craniectomy and local hypothermia decrease infarct volume, delayed directly brain hypothermia, by opening the scalp, is more neuroprotective in stroke therapy. Conversely, only combination of craniectomy and local hypothermia could improve behavioral functions. Further studies are needed to evaluate the best starting time of hypothermia, durations as well as its exact neuroprotective mechanisms.

Acknowledgment

This study was supported by the financial aid of Rafsanjan University of Medical Sciences, Rafsanjan, Iran.

References

1. Allahtavakoli M, Shahanzadeh AP, Sadr SS, Parviz M, Djahangirui B. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma ligand, reduces infarction volume and neurological deficits in an embolic model of stroke. Clin Exp Pharmacol Physiol 2006; 33:1052-1058.

2. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet 1998; 352:1245-1251.

3. Tissie plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995; 333:1581-1588.

4. Hamann GF, Burggraf D, Martens HK, Liebetrau M, Jager G, Wunderlich N, et al. Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke 2004; 35:764-769.

5. Kollmar R, Blank T, Han J, Georgiadis D, Schwab S. Different degrees of hypothermia after experimental stroke: short- and long-term outcome. Stroke 2007; 38:1580-1589.

6. Saini M, Saquar M, Kamruzzaman A, Lees KR, Shuaib A. Effect of hyperthermia on prognosis after acute ischemic stroke. Stroke 2009; 40:3051-3059.

7. Colbourne F, Sutherland G, Corbett D. Postischemic hypothermia. A critical appraisal with implications for clinical treatment. Mol Neurobiol 1997; 14:171-201.

8. Schwab S, Schwarz S, Spranger M, Keller E, Bertram M, Hacke W. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke 1998; 29:2461-2466.

9. Lyden TMHaP-D. Hypothermia after acute ischemic stroke.” J Neurotrauma 2009; 26:387-391.

10. van der Worp HB, Macleod MRM, Kollmar R. Therapeutic hypothermia for acute ischemic stroke: ready to start large randomized trials. J Cereb Blood Flow Metab 2010; 30:1079-1093.

11. Hemmen MAKaTM. Therapeutic hypothermia for brain ischemia: where have we come and where do we go? Stroke 2010; 41:S72-S74.

12. Karihe H, Zarov GJ, Graham SH, Weinstein PR. Mild intraischemic hypothermia reduces postischemic hyperperfusion, delayed postischemic hypoperfusion, blood-brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1994; 14:620-627.

13. Doerfler A, Forsting M, Reith W, Staff C, Heiland S, Schabitz WR, et al. Decompressive craniectomy in a rat model of ‘malignant’ cerebral hemispheric stroke: experimental support for an aggressive therapeutic approach. J Neurosurg 1996; 85:853-859.

14. Forsting M, Reith W, Schabitz WR, Heiland S, von Kummer R, Hacke W, et al. Decompressive craniectomy for cerebral infarction. An experimental study in rats. Stroke 1995; 26:259-264.

15. Flechsenhar J, Woitzik J, Zweckberger K, Amiri H, Hacke W, Juttler E. Hemicraniectomy in the management of space-occupying ischemic stroke. J Clin Neurosci 2013; 20:6-12.

16. Els T, Oehm E, Voigt S, Klisch J, Hetzel A, Kassubek J. Safety and therapeutic benefit of hemicraniectomy combined with mild hypothermia in comparison with hemicraniectomy alone in patients with malignant ischemic stroke. Cerebrovasc Dis 2006; 21:79-85.

17. Delashaw JB, Broadwus CC, Kassell NF, Haley EC, Pendleton GA, Vollmer DG, et al. Treatment of right hemispheric cerebral infarction by hemicraniectomy. Stroke 1990; 21:874-881.

18. Foerch C, Lang JM, Krause J, Raabe A, Sitzer M, Seifert V, et al. Functional impairment, disability, and quality of life outcome after decompressive craniectomy in malignant middle cerebral artery infarction. J Neurosurg 2004; 101:248-254.

19. Vahedi K, Vicaut E, Mateo J, Kurtz A, Orabi M, Guichard JP, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke 2007; 38:2506-2517.

20. Doerfler A, Schwab S, Hoffmann TT, Engelhorn T, Forsting M. Combination of decompressive craniectomy and mild hypothermia ameliorates infarction volume after permanent focal ischemia in rats. Stroke 2001; 32:2675-2681.

21. Nagel S, Su Y, Horstmann S, Heiland S, Gardner H, Koziol J, et al. Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res 2008; 1188:198-206.

22. Schwartz AE, Finck AD, Stone JG, Connolly ES, Edwards NM, Mongero L. Delayed selective cerebral hypothermia decreases infarct volume after
23. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20:84-91.
24. Onesti ST, Baker CJ, Sun PP, Solomon RA. Transient hypothermia reduces focal ischemic brain injury in the rat. Neurosurgery 1991; 29:369-373.
25. Allahtavakoli RM, Arababadi NK, Shamsizadeh A, Javanmardi K. Delayed post ischemic treatment with Rosiglitazone attenuates infarct volume, neurological deficits and neutrophilia after embolic stroke in rat. Brain Res 2009; 1271:121-127.
26. Rezazadeh H, Hoseini Kahnuee M, Roohbakhsh A, Shamsizadeh A, Rahmani MR, Bidaki R, et al. Neuroprotective consequences of postconditioning on embolic model of cerebral ischemia in rat. Iran J Basic Med Sci 2013; 16:144-149.
27. Whishaw IQ, Kolb B. The Behavior of the Laboratory Rat. 1st Ed. New York: Oxford University Press; 2005.
28. Bederson JB, Pitts LH, Tsuj M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986; 17:472-476.
29. Prinz V, Laufs U, Gertz K, Kronenberg G, Balkaya M, Leithner C, et al. Intravenous rosuvastatin for acute stroke treatment: an animal study. Stroke 2008; 39:433-438.
30. Awad AS. Role of AT1 receptors in permeability of the blood-brain barrier in diabetic hypertensive rats. Vascul Pharmacol 2006; 45:141-147.
31. Mohammadi MT, Shid-Moosavi SM, Dehghan GA. Contribution of nitric oxide synthase (NOS) in blood-brain barrier disruption during acute focal cerebral ischemia in normal rat. Pathophysiology 2012; 19: 13-20.
32. Cho DY, Chen TC, Lee HC. Ultra-early decompressive craniotomy for malignant middle cerebral artery infarction. Surg Neurol 2003; 60:227-232.
33. Clark DL, Colbourne F. A simple method to induce focal brain hypothermia in rats. J Cereb Blood Flow Metab 2007; 27:115-122.
34. Kollmar R, Schabitz WR, Heiland S, Georgiadis D, Schellinger PD, Bardutzky J, et al. Neuroprotective effect of delayed moderate hypothermia after focal cerebral ischemia: an MRI study. Stroke 2002; 33:1899-1904.
35. Baker CJ, Fiore AJ, Frazzini VI, Choudri TF, Zubay GP, Solomon RA. Intraischemic hypothermia decreases the release of glutamate in the cores of permanent focal cerebral infarcts. Neurosurgery 1995; 36:994-1001.
36. Ji X, Luo Y, Ling F, Stetler RA, Lan J, Cao G, et al. Mild hypothermia diminishes oxidative DNA damage and pro-death signaling events after cerebral ischemia: a mechanism for neuroprotection. Front Biosci 2007; 12:1737-1747.
37. Burj K, Burggraf D, Vosko M, Dichgans M, Hamann GF. Protection of cerebral microvasculature after moderate hypothermia following experimental focal cerebral ischemia in mice. Brain Res 2008; 1226:248-255.
38. Ohta H, Terao Y, Shintani Y, Kiyota Y. Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia. Neurosci Res 2007; 57:424-433.
39. Goto Y, Kassell NF, Hiramatsu K, Salew SW, Lee KS. Effects of intraischemic hypothermia on cerebral damage in a model of reversible focal ischemia. Neurosurgery 1993; 32:980-984.
40. Ji Y, Wu Y, Ji Z, Song W, Xu S, Wang Y, et al. [Comparison of neuroprotective effects of hypothermia induced by different methods in rats with early cerebral ischemia]. Nan Fang Yi Ke Da Xue Xue Bao 2012; 32:89-92.
41. Campbell K, Meloni BP, Knuckey NW. Combined magnesium and mild hypothermia (35 degrees C) treatment reduces infarct volumes after permanent middle cerebral artery occlusion in the rat at 2 and 4, but not 6 h. Brain Res 2008; 1230:258-264.
42. Sahin S, Alkan T, Temel SG, Tureyen K, Tolunay S, Korfali E. Effects of citicoline used alone and in combination with mild hypothermia on apoptosis induced by focal cerebral ischemia in rats. J Clin Neurosci 2010; 17:227-231.
43. Jieyong B, Zhong W, Shiming Z, Dai Z, Kato Y, Kanno T, et al. Decompressive craniectomy and mild hypothermia reduces infarct size and counterregulates Bax and Bcl-2 expression after permanent focal ischemia in rats. Neurosurg Rev 2006; 29:168-172.