One-step synthesis of OH-TiO$_2$/TiOF$_2$ nanohybrids and their enhanced solar light photocatalytic performance

Chentao Hou and Wenli Liu

College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, People’s Republic of China

CH, 0000-0002-3295-3012

TiO$_2$/TiOF$_2$ nanohybrids were quickly synthesized through a hydrothermal process using titanium n-butoxide (TBOT), ethanol (C$_2$H$_5$OH) and hydrofluoric acid as precursors. The prepared nanohybrids underwent additional NaOH treatment (OH-TiO$_2$/TiOF$_2$) to enhance their photocatalytic performance. In this paper, the mechanism of NaOH affecting the pathway of transformation from TBOT (Ti precursor) to TiO$_2$ nanosheets was discussed. The synthesized TiO$_2$/TiOF$_2$ and OH-TiO$_2$/TiOF$_2$ were characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction pattern (XRD), Fourier infrared spectroscopic analysis (FT-IR), Photoluminescence (PL) emission spectra and UV–visible diffuse reflection spectra (UV–vis DRS). The photocatalytic activity and stability of synthesized samples were evaluated by degradation of methylene blue (MB) under the simulated solar light. The results showed that a larger ratio of TiO$_2$ to TiOF$_2$ in TiO$_2$/TiOF$_2$ and OH-TiO$_2$/TiOF$_2$ nanohybrids could allow for even higher MB conversion compared with only TiO$_2$ nanosheets. NaOH treatment can wash off the F ions from TiOF$_2$ and induce this larger ratio. The highest efficiency of MB removal was just above 90% in 1 h. Lower electron–hole pairs recombination rate is the dominant factor that induces the photocatalytic performance enhancement of TiO$_2$/TiOF$_2$ nanohybrids. The synthesized OH-TiO$_2$/TiOF$_2$ nanohybrids exhibit great potential in the abatement of organic pollutants.

1. Introduction

As one of the most important materials, TiO$_2$ has been widely used as a promising catalyst due to its lack of toxicity, high stability and easy preparation. However, it has intrinsic...
faults of a wide energy band gap (3.1–3.2 eV, meaning it only responds to UV light) and high electron–hole recombination, which hinders its use under solar or visible light [1–4]. Many studies examining TiO₂ has been devoted to reducing its energy band gap or photoelectron–hole separation [5–11].

Recently, Wen et al. [12] proposed a new visible light-driven TiOF₂ photocatalyst for H₂ evolution. Furthermore, Wang et al. [13] discovered a type of TiOF₂ photocatalyst that possesses proper activity and strong durability in photocatalytic degradation of rhodamine B and 4-chlorophenol under visible light, although its photocatalytic performance is not ideal. Heterostructured photocatalysts have attracted increasing attention during the past few years. The electronic assembling of different nanomaterials possessing dissimilar crystal structure and band edge positions allows the complete utilization of incident photons, while in-built electric fields at the interface assist effective charge carrier separation and induce excellent performance in terms of photocatalytic activity [5–11]. However, only a few investigations on the TiO₂/TiOF₂ nanocomposites with heterostructures have been performed so far. Zhao et al. [14] reported on a Pd@TiO₂/TiOF₂ photocatalyst made of TiO₂ shell and TiOF₂ core (labelled as TiO₂/TiOF₂) and further improved its performance by loading Pd nanoparticles onto the surfaces of TiO₂/TiOF₂ heterostructure, although its synthesis process is complex.

Among the typical synthesis methods, titanium (IV) butoxide and hydrofluoric acid (HF) are the most common precursors to provide anatase TiO₂ nanosheets with exposed facets [15–22]. In these papers, TiOF₂ was sometimes characterized by X-ray diffraction with a peak at 2θ = 23.9°, which occurs independently of the main (101) peak of anatase TiO₂ [17–22]. Almost all of these studies noted that TiOF₂ is the intermediate compound during the transformation of Ti⁴⁺ to titanium nanosheets (TiO₂) and aimed to suppress its appearance to obtain pure TiO₂ nanosheets [17–22]. A few of these studies paid attention to the photocatalytic activity of TiOF₂ or TiO₂/TiOF₂ systems, which performed more poorly when compared with (001)TiO₂ under UV or solar light [20–22]. For example, Lv et al. found that when TiOF₂ was calcined at 300°C, anatase TiO₂ and TiOF₂ were both observed, although the TiOF₂ and TiO₂/TiOF₂ samples showed poor photocatalytic activity compared with (001) TiO₂ under UV light for reactive brilliant red X3B [20]. Huang et al. also found that TiOF₂ has poor photocatalytic performance, although the performances of TiO₂/TiOF₂ systems were enhanced with an increased proportion of TiO₂ [21]. Yua et al. discussed the appearance of TiOF₂ and TiO₂ under different F/Ti atomic molar ratios, although they aimed to find the optimal ratios of exposed (101) and (001) facets of TiO₂. However, they did not mention the role of TiOF₂ in the TiO₂/TiOF₂ system [22]. Zhang et al. found that the mixture of (001)TiO₂ and TiOF₂ showed better photocatalytic activity for Rhodamine B (RhB) under simulated sunlight when they studied the reaction products of titanium butoxide and hydrogen fluoride. However, this did not show such good performance on MB for a reaction time as long as 10 h [23].

Alkali modification of catalysts has also been proven to be an effective way to enhance the photoactivity with methane dehydroaromatization, cumene cracking and CO oxidation [23–27]. For example, Han et al. found that alkali modification could form more hydroxyl groups on Au catalysts to enhance their catalytic activity [24]. Alkali-modified ZSM-5 zeolite also showed enhanced catalytic performance due to the formation of additional mesopores and the improvement in mass transfer and reaction kinetics [25,26]. NaOH-modified Pt/TiO₂ also showed enhanced performance in terms of the oxidation of formaldehyde under room temperature [27]. These studies have encouraged the modification of TiO₂/TiOF₂ by NaOH to enhance its catalytic performance.

In this study, TiO₂/TiOF₂ nanohybrids were synthesized and (001) TiO₂ was obtained through NaOH washing to remove the surface fluorine ions. NaOH was also used to modify the TiO₂/TiOF₂ nanohybrids to enhance their performance. This has not been investigated before. TiO₂/TiOF₂ nanohybrids even showed superior catalytic photoactivity towards methylene blue (MB) degradation under simulated sunlight for the first time. The possible mechanism of the TiO₂/TiOF₂ system in enhancing photocatalytic performance was also discussed.

2. Material and methods

2.1. Materials

Tetrabutyl titanate (TBOT) was purchased from Fu Chen Chemical Reagent Factory, Tianjin, China. HF was purchased from Xilong Chemical Industry Co Ltd, Sichuan, China. Sodium hydroxide (NaOH) and ethanol (C₂H₅OH) were purchased from Fuyu Fine Chemical Co., Ltd. Tianjin, China. Terephthalic acid, potassium iodide and p-benzoquinone were purchased from Shanghai Macklin Biochemical Co., Ltd.,
Shanghai, China. All reagents were A.R. grade and used without further purification. Ultra-pure water (18.2 MΩ•cm) was used as the water in all experiments.

2.2. Synthesis of TiO2/TiOF2 nanohybrids

A total of 15.2 ml of ethanol was added into 17.6 ml of TBOT, which was named solution A. Another 15.2 ml of ethanol and 5 ml of HF were added into 90 ml of ultra-pure water, which was named solution B. Solution A was dropped into solution B under medium-speed magnetic stirring at room temperature for 1.5 h to obtain a faint yellow sol. After this, the sol was transferred into a 200-ml Teflon-lined stainless steel autoclave. The autoclave was placed into an oven, which was maintained at 100°C for 0.5, 1, 1.5 and 2 h before being cooled to room temperature naturally to obtain a white precipitate. Ultra-pure water and C2H5OH were used to wash the precipitates several times to reach a pH of 7, before the precipitates were dried at a temperature of 100°C. The prepared samples were denoted as S0.5, S1, S1.5 and S2. The samples were then dispersed in 80 ml of 5 M NaOH solution for 30 min, before being washed with ultra-pure water and C2H5OH to reach a pH of 7. Finally, these samples were dried at 100°C for 12 h. The prepared samples were denoted as OH-S0.5, OH-S1, OH-S1.5 and OH-S2.

2.3. Characterization

The crystal structure was analysed by a XD-2 X-ray diffractometer (Beijing Purkinje, China) with Cu-Kα radiation. The morphology was examined by FE-SEM (JEOL JSM6700, Japan) equipped with EDS to probe elemental analysis and high-resolution transmission electron microscopy (HRTEM; Tecnai G2 F20, FEI, USA) using an accelerating voltage of 200 kV. Specific surface area and porosimetry were measured using Micromeritic TriStar II 3020 micrometrics (Micromeritics, USA), and the Brunauer–Emmett–Teller (BET) method was used to calculate the surface area (S BET). Fourier transform infrared (FT-IR) spectra were recorded using a TENSOR27 (Bruker, Germany). The optical properties were determined by UV–vis diffuse reflectance spectroscopy (UV–vis DRS; Shimadzu 2600, Japan). Photoluminescence (PL) emission spectra were measured at room temperature with a fluorescence spectrophotometer (Hitachi F-2700, Japan) using a 325-nm line with an Xe lamp. X-ray photoelectron spectroscopy (XPS) took place under an ultra-high vacuum (10 Pa) at a pass energy of 100 eV on a Escalab 250 Xi system (ThermoFisher, USA) equipped with a dual X-ray source by using a Al K Alpha anode and a hemispherical energy analyser. All binding energies were calibrated with contaminant carbon (C1 s = 284.6 eV) as a reference.

2.4. Photocatalytic experiments

Photocatalytic activity was measured by degradation of MB. A total of 0.015 g of the catalyst was dispersed in a 150-ml double-layered quartz reactor containing 100 ml of a 10.0 mg l−1 MB solution. Cooling water was introduced into the interlayer of the quartz reactor to maintain the solution at room temperature. A Jiguang-300 W Xe lamp (simulating solar light) was located 30 cm away from the MB solution. A JB-420 cutoff filter was chosen to filter off light less than 420 nm to simulate visible light. The solution was magnetically stirred for 0.5 h in the dark to obtain the adsorption–desorption equilibrium, before the Xe lamp was turned on to start the degradation. At time intervals of 0.5 h, about 4.0 ml of the solution was extracted and centrifuged at a speed of 10 000 r.p.m. to remove catalysts. After this, the MB concentration was analysed with a Purkinje UV1901 UV–vis spectrophotometer at 665 nm. The photocatalyst was separated from the MB solution, before another run was started to investigate the durability of catalysts.

2.5. Radical-scavenging experiments

Radical-scavenging experiments were performed to ascertain the main active species in the photocatalytic process. Terephthalic acid (3 mmol l−1), potassium iodide (3 mmol l−1) and p-benzoquinone (3 mmol l−1) were added to a mixed solution containing 15 mg of OH-TiO2 and 100 ml of 10 mg l−1 of MB solution, respectively, while MB was degraded as a control.
3. Results

3.1. The formation mechanism of TiOF$_2$, TiO$_2$/TiOF$_2$ and TiO$_2$

The XRD patterns of the prepared samples were obtained under different experimental conditions (figure 1). All S0.5, S1, S1.5 and S2 samples showed diffraction peaks at 23.42° for TiOF$_2$ (100) facet and at 25.3° for TiO$_2$ (101) facet, indicating that the TiOF$_2$ (JCPDS No. 01–0049) and anatase TiO$_2$ (JCPDS No. 21–1272) phases coexist. Therefore, the S0.5, S1 and S1.5 samples are TiO$_2$/TiOF$_2$ nanohybrids. It also can be seen that with a longer reaction time, the ratio of peak height of (100) for TiOF$_2$ and TiO$_2$ (101) changed from 0.44 to 4.4–4.5 and then to 0.55. This indicates that TiO$_2$ existed at the beginning, before the level decreased and was dominated by other compounds, then appeared and dominated again. This result is consistent with previous research [22]. After being washed with NaOH, the peak at 23.42° for (100) facet of TiOF$_2$ decreased and the peak at 25.3° for TiO$_2$ (101) facet increased, indicating an increase in the TiO$_2$/TiOF$_2$ ratio with a longer reaction time. For OH-S1.5 and OH-S2, the peak at 25.3° for TiO$_2$ (101) facet increased, indicating an increase in TiO$_2$/TiOF$_2$ ratio with a longer reaction time. For OH-S1.5 and OH-S2, the TiOF$_2$ complex disappeared. The (004) facet of TiO$_2$ even emerged, which was named the (001)-faceted TiO$_2$ existence. It seems that OH in NaOH can exchange with F ions in the crystal lattice of TiOF$_2$, converting it into (001)-faceted TiO$_2$ nanosheets [14,18,22].

In summary, the chemical reactions of the formation of titanium nanosheets can be proposed. The first step is the hydrolysis reaction. The reaction of TBOT to form Ti(OH)$_4$ is shown in equation (3.1). Secondly, in equation (3.2), Ti(OH)$_4$ can react with HF to produce TiOF$_2$ through water condensation [28,29]. Finally, TiOF$_2$ can react with NaOH to form TiO$_2$, as shown in equation (3.3) [30].

\[
\text{Ti(OC}_4\text{H}_9)\text{O}_4 + \text{H}_2\text{O} \rightarrow \text{Ti(OH)}_4 + 4(\text{C}_4\text{H}_9\text{OH}) \quad \text{(hydrolysis), (3.1)}
\]

\[
\text{Ti(OH)}_4 + 2\text{HF} \rightarrow \text{TiOF}_2 + 3\text{H}_2\text{O} \quad \text{(water condensation) (3.2)}
\]

and

\[
\text{TiOF}_2 + 2\text{NaOH} \rightarrow \text{TiO}_2(\text{anatase}) + 2\text{NaF} + \text{H}_2\text{O} \quad \text{(in situ transformation). (3.3)}
\]

This study provides a simple conversion method of TiOF$_2$ to TiO$_2$ in addition to the calcination of TiOF$_2$ [20,21].

3.2. Morphology analysis

The morphology of the prepared samples was characterized by FE-SEM and high-resolution transmission electron microscope (HRTEM) in figures 2 and 3. The SEM and HRTEM images shown in figure 2 and figure 3a,b, respectively, were used to obtain the morphology of photocatalysts. The S0.5, S1 and S1.5 samples exhibit mixtures of two types of crystals connected together, which correspond to TiOF$_2$ and TiO$_2$ according to the XRD results in figure 1. By contrast, S2 shows a nano-network look,
Figure 2. SEM of (a) S0.5, (b) OH-S0.5, (c) S1, (d) OH-S1, (e) S1.5, (f) OH-S1.5, (g) S2 and (h) OH-S2.

corresponding to TiO\textsubscript{2}. The OH-S0.5, OH-S1 and OH-S1.5 samples exhibited a nano-network look after reaction with NaOH, permitting light scattering inside the catalyst and enhancing its absorption in light.

As also can be seen in figure 3c,d, the lattice fringes of 0.19 nm, 0.235 nm and 0.352 nm were assigned to the (200) (001) and (101) planes of TiO\textsubscript{2}, respectively [18,22,30]. The lattice fringes of 0.38 nm were assigned to the (100) planes of TiOF\textsubscript{2} [12,13]. This also indicates that the S0.5 and OH-S0.5 samples are nanohybrids of TiO\textsubscript{2} and TiOF\textsubscript{2}, which is consistent with the XRD and SEM results. The EDS spectrum (figure 3e) shows that OH-S0.5 consists of Ti, O and F elements. The uniform distribution of Ti, O and F can be seen from the EDS elemental mapping (figure 3f–h), which suggests the successful formation of a heterojunction.
Figure 3. HRTEM and EDS spectra of S0.5 and OH-S0.5 samples: (a) TEM of S0.5, (b) TEM of OH-S0.5, (c) HRTEM of S0.5, (d) HRTEM of OH-S0.5, (e) EDS of OH-S0.5, and (f–h) EDS elemental mapping of OH-S0.5.

3.3. S_{BET} and pore-size distribution

Figure 4 shows the nitrogen adsorption–desorption isotherms and the corresponding pore-size distribution curves of prepared samples. Considering the BET data in electronic supplementary material,
Figure 4. (a) Nitrogen adsorption–desorption isotherms and (b) the corresponding pore-size distribution curves of S0.5, OH-S0.5 and OH-S2.

Figure 5. FT-IR spectra of S0.5, S1, S1.5, S2, OH-S0.5, OH-S1, OH-S1.5 and OH-S2.

table S1, the S_{BET} and pore volume of S2 can reach as high as 59.3 m2·g$^{-1}$ with a pore size of 62.5 nm, while the S_{BET} of S0.5 and OH-S0.5 are significantly lower with values of 23.6 and 27.21 m2·g$^{-1}$, respectively, and pore sizes of 122.6 and 14.49 nm, respectively. After NaOH washing, the S_{BET} of OH-S0.5 was a bit lower than that of S0.5, but the pore size was dramatically decreased.

3.4. FT-IR analysis

As shown in figure 5, broad absorptions centered around 3418 and 2920 cm$^{-1}$ as well as the weak sharp absorption band centred around 1624 cm$^{-1}$ were attributed to the hydroxyl free radicals, associated hydrogen bonds and absorption water. The OH and water in all NaOH-reacted samples are all stronger than those modified before, with the exception of OH-S2. For the OH-S2 sample, the OH from the broad absorptions centred around 3418, 2920 and 1624 cm$^{-1}$ sharply decreased. According to XRD results, the S2 and NaOH-reacted samples are all TiO$_2$/TiOF$_2$ nanohybrids, except OH-S2. It was concluded that TiO$_2$/TiOF$_2$ nanohybrids can adsorb more OH to enhance photocatalytic performance [31–37].

3.5. XPS analysis

In figure 6, XPS survey spectra of the prepared samples of S0.5 and OH-S0.5 are presented. As observed in figure 6a, all the samples have sharp photoelectron peaks at binding energies of Ti 2p, O 1s and F 1s. Another sharp photoelectron peak appears in all samples at the binding energy (BE) of 285 eV (C 1s) due
to the contamination of the XPS instrument itself [23, 38–41]. The F 1s BE of 684.8 eV in this spectrum (figure 6b) corresponds to that of F adsorbed on TiO₂, while there was no sign of F ions in the lattice (BE = 688.5 eV) [38, 39]. The measured binding energies of Ti 2p 3/2 and Ti 2p 1/2 (figure 6c) for S0.5 were 459.3 and 465.2 eV, respectively. The main sharp peaks of Ti 2p 3/2 were assigned to Ti⁴⁺ in TiO₂ [23, 39–41]. As compared to S0.5, the binding energies of OH-S0.5 shifted to 459.16 and 464.9 eV, respectively. One possible explanation is that TiO₂ is partially reduced into Ti³⁺ in TiO₂ [23, 41]. As Ti³⁺ is more hydrophilic than Ti⁴⁺, oxygen and water molecules are easily adsorbed on the surface of TiO₂, which consequently facilitates the formation of surface OH groups. The measured BE of O 1s (figure 6d) was 530.42 eV, while this shifted to 530.36 eV in OH-S0.5. This can be explained by OH-S0.5 possibly having many oxygen vacancies that are generated at the interface of TiO₂/TiOF₂. Oxygen from the gas phase could dissociate and become adsorbed on such defects, thus resulting in a decrease in binding energies of O 1s to TiO₂ lattice oxygen (Ti−O−Ti) [23]. So it can be concluded that NaOH treatment can induce more surface OH groups and oxygen vacancies at the interface of TiO₂/TiOF₂, which would enhance the photocatalytic performance of TiO₂/TiOF₂ nanohybrids.

3.6. UV–vis DRS analysis

Figure 7 shows the UV–vis absorption spectroscopy and band gap of the prepared TiO₂/TiOF₂ nanohybrids and TiO₂ samples. It can be seen that S2 and OH-S0.5 have a greater increase in adsorption in both the range of UV and visible light compared with other samples. By contrast, they contain more TiO₂ compared to S0.5, which corresponds to the XRD results. While the OH-S2 sample has weaker adsorption than S2, it becomes TiO₂ after NaOH washing. Therefore, a larger ratio of TiO₂/TiOF₂ causes the stronger light adsorption. The band gaps of S2, OH-S2 and OH-S0.5 are 2.77, 3.05 and 3.12 eV, respectively, which are lower than that of P25 (3.2 eV). This indicates that they are more easily excited by visible light.
3.7. PL analysis

PL emission spectra were used to investigate the efficiency of charge carrier trapping, immigration and transfer as well as to understand the fate of electron hole pairs in catalysts (figure 8). Six peaks were observed in the spectra. The broad emission bands centred at 385.3 nm (peak 1), 399.0 nm (peak 2) and 412.4 nm (peak 3) were ascribed to form the boundaries of exciton emission due to the trapping of free excitons by titanite groups near defects [42]. The long wavelength range of 452.5–468.7 nm (peaks 4 and 5) is attributed to the oxygen vacancy with two trapped electrons. Oxygen vacancy sites are important for the formation of superoxide (O$_2$•$^{-}$) and hydroxyl (•OH) radicals for photocatalytic degradation. A lower PL intensity also indicates a lower recombination rate of electron–hole pairs and higher separation efficiency, thus representing higher photocatalytic activity [43].

3.8. Catalytic activities of TiO$_2$/TiOF$_2$ and TiO$_2$ photocatalysts

Figure 9a shows the solar light photocatalytic properties of the prepared samples and P25. Figures 9a and S1 showed that with 0.015 g/100 ml of catalysts, the decrease in MB was very small in the first 0.5 h in dark and in light without a catalyst, indicating that this decrease in MB was a photocatalytic process with all samples being activated in solar or visible light. It also shows that the S2 and OH-S0.5 samples can cause almost complete decomposition of MB in about 1.5 h with better photocatalytic performance than all of the other samples. By contrast, P25 performed poorly compared to TiO$_2$/TiOF$_2$ and (001) TiO$_2$. All NaOH-treated nanohybrids showed higher performance than untreated ones except the pure (001)-facet TiO$_2$ from S2.

The activity arrangement order was consistent with the TiO$_2$/TiOF$_2$ ratio. A larger ratio of TiO$_2$/TiOF$_2$ resulted in better photocatalytic activity. This result is consistent with Yua et al.’s research.
Figure 9. Solar light photocatalytic properties of the prepared samples, P25 and UV–vis spectra of MB with irradiation time: (a) comparison of solar light-sensitized degradation of MB in the suspension of samples; (b) the reaction rate of all samples; (c) the effect of different amounts of catalysts on the solar light photocatalytic properties of the prepared OH-S0.5 samples; and (d) UV–vis absorption spectral changes of MB with solar light irradiation time by OH-S0.5.

[22]. It can be explained by the better charge separation capability of the TiOF$_2$–TiO$_2$ mixed phase, which reduces the recombination rate of electron–hole pairs. However, a high amount of TiOF$_2$ phase in the TiO$_2$ nanosheets would decrease the photoactivity due to poor photoactivity of TiOF$_2$.

The reaction rate of all of the samples is shown in figure 9b. The data were fitted with the first-order reaction equation as follows:

$$\ln \left(\frac{C_0}{C} \right) = -kt,$$

where t is the reaction time, C_0 is the concentration of RhB at time 0, C is the concentration of RhB at time t, and k is the reaction rate constant. Figure 9b shows that P25 had a rate constant of only 0.07 h$^{-1}$, indicating poor photocatalytic performance. The calculated rate constants are 1.4 and 2.3 h$^{-1}$ for S2 and OH-S0.5, respectively. The OH-S0.5 sample shows the best performance among all the photocatalysts, with a degradation rate that is much higher than that of the P25, TiO$_2$/TiOF$_2$ and TiO$_2$ samples. This excellent performance could be mainly attributed to its stronger light adsorption and TiO$_2$/TiOF$_2$ combination.

The catalytic abilities of 0.006 g/100 ml, 0.030 g/100 ml and 0.050 g/100 ml (OH-S0.5) are also shown in figure 9c. For the catalytic amount of 0.015 g/100 ml, the photocatalytic degradation rate of MB was the strongest and had the best degradation effect (figure 9c). When the content of OH-S0.5 was increased, its adsorptive capacity increased but photocatalytic degradation performance decreased (figure 9c).

Figure 9d shows the UV–vis absorption spectral changes of the MB solution. According to previous research, the discoloration of MB can be caused in two ways: the oxidative degradation and the two-electron reduction to leuco-MB, which can be detected by the UV–vis absorption at 256 nm [44,45]. Figure 9d shows that there is a blue-shift from 665 to 625 nm with an absorbent peak emerging at 256 nm after the spectral change of MB with the irradiation time by OH-S0.5. This means that a reductive conversion to leuco-MB exists in the degradation path of MB.
3.9. Radical-scavenging experiments

Radical-scavenging experiments were performed to complete an in-depth study of the photocatalytic degradation mechanism. The reactive species were detected through trapping experiments of hydroxyl radicals (•OH), holes (h\(^+\)) and superoxide radical anions (O\(_2\)•--) by introducing terephthalic acid [46], potassium iodide [46] and p-benzoquinone [47]. Terephthalic acid can combine with the hydroxyl radicals (•OH), potassium iodide can combine with holes (h\(^+\)), and p-benzoquinone can combine with the superoxide radical (O\(_2\)•--), to decrease the activity of the catalyst [46,47]. The effects of a series of scavengers on the photocatalytic oxidation towards the MB dye over the photocatalysts are shown in figure 10. Under simulated sunlight illumination, the percentage of MB loss decreased most rapidly after the addition of potassium iodide, indicating h\(^+\) was the main active species in the photocatalytic process. When terephthalic acid and p-benzoquinone were added, this also reduced activity, which implied that •OH and O\(_2\)•-- radicals also played a role in the photooxidation of MB. The order of importance of the active species is h\(^+\), •OH and O\(_2\)•--.

4. Discussion

TiOF\(_2\) photoactivity was quite low, nearly 150 times lower than P25 in the X3B dye degradation experiment [36]. Lv et al. reported that surface fluorination can greatly enhance the photocatalytic activity of TiO\(_2\) due to the formation of free •OH radicals, which are highly reactive [37]. In this research, a combination of TiO\(_2\) and TiOF\(_2\) demonstrated even higher photoactivity performance in MB degradation compared with the pure TiO\(_2\) nanosheets. In order to further understand the reason for the enhanced photocatalytic performance, a possible mechanism of charge separation and transfer on the surface of TiO\(_2\)/TiOF\(_2\) nanohybrids is proposed. The conduction band \((E_c)\) and valence band \((E_v)\) potentials of TiO\(_2\) and TiOF\(_2\) at the point of zero charge can be calculated by the following empirical equation [11,14,44]:

\[E_c = \chi - E_0 - 0.5 E_g, \]

where \(E_c\) is the energy of the conduction band, \(\chi\) is the bulk Mulliken electronegativity of the compound, \(E_0\) is the energy of free electrons on the hydrogen scale (about 4.5 eV), and \(E_g\) is the band gap energy of the semiconductor. The \(\chi\)-values for TiO\(_2\) and TiOF\(_2\) are approximately 5.8 and 7.3 eV, respectively. The energy gap \((E_g)\) was estimated from the intercept of the tangent in the plots of \((\alpha h\nu)^{1/2}\) versus photon energy \((h\nu)\), which is shown in figure 7b. The \(E_g\) of TiO\(_2\) and TiOF\(_2\) were evaluated to be 3.2 eV and 2.94 eV, respectively.

The position of the valence band edge \((E_v)\) is determined by the following equation:

\[E_v = E_c + E_g. \] (4.1)

The calculated \(E_c\) and \(E_v\) of TiO\(_2\) and TiOF\(_2\) are shown in the electronic supplementary material, table S2. The \(E_c\) edge potential of TiO\(_2\) (−0.3 eV) is more active than that of TiOF\(_2\) (1.5 eV). Hence, the photogenerated electrons on the TiO\(_2\) surface have a strong capability for moving onto the surfaces of TiOF\(_2\) via the interface transfer pathway. Similarly, photogenerated holes on the TiOF\(_2\) surface migrate to TiO\(_2\) under the driving force of the \(E_v\) edge potentials (figure 11). As a result, the electron–hole
recombination is reduced, which is consistent with PL analysis. Thus, under simulated solar light irradiation, more h^+ radicals can react with H_2O or OH^- to produce •OH, while more electrons can react with the dissolved oxygen molecules to yield superoxide radical anions ($\text{O}_2^-\bullet$) [48,49]. MB can also be decomposed by the holes directly [50]. Because the photocatalytic activity of TiO$_2$ is better than that of TiOF$_2$, a larger ratio of TiO$_2$ /TiOF$_2$ (S2 and OH-S0.5) results in better photocatalytic activity. NaOH treatment can induce more F ions being disconnected from the surface of TiOF$_2$, which means a larger ratio of TiO$_2$/TiOF$_2$ (XRD results). Furthermore, the presence of OH bonds on the surface of the photocatalyst (FT-IR analysis) and more oxygen vacancies (XPS and PL analysis) also induce the production of more •OH with enhancement of the photocatalytic performance. This can explain why NaOH-treated nanohybrids showed greater performance than untreated ones. OH-S0.5 showed the best photocatalytic activity, even better than S2; this may be attributed to its lower recombination rate of electron–hole pairs introducing more h^+, and more Ti$^{4+}$ being reduced into Ti$^{3+}$, because its OH, S_{SET} and absorption of light are not the largest according to FT-IR and UV–vis DRS analysis. So a lower electron–hole pairs recombination rate is the dominant factor that induces the photocatalytic performance enhancement of TiO$_2$/TiOF$_2$ nanohybrids. This was in accord with the radical-scavenging experiments.

5. Conclusion

In summary, an easy one-step hydrothermal route to synthesize TiO$_2$/TiOF$_2$ and OH-TiO$_2$/TiOF$_2$ hybrids has been demonstrated. The introduction of NaOH facilitated the conversion from TiOF$_2$/TiO$_2$ and induced a network structure. The prepared TiO$_2$/TiOF$_2$, especially the OH-TiO$_2$/TiOF$_2$ nanocomposite, exhibited excellent activity towards the degradation of MB under simulated sunlight irradiation. A larger ratio of TiO$_2$/TiOF$_2$ in TiO$_2$/TiOF$_2$ and OH-TiO$_2$/TiOF$_2$ nanohybrids could enable better performance. NaOH treatment can wash off the F ions from TiOF$_2$ and induce this larger ratio. The highest efficiency of MB removal was just above 90% in 1 h. A lower electron–hole pairs recombination rate is the dominant factor that induces the photocatalytic performance enhancement of TiO$_2$/TiOF$_2$ nanohybrids.

Therefore, this work opens an avenue to efficiently synthesize TiO$_2$/TiOF$_2$ through a one-step nanocomposite for the removal of organic pollutants.

Data accessibility. The datasets supporting this article have been uploaded as part of the electronic supplementary material.

Authors’ contributions. H.C. designed the experiments, analysed and interpreted the data and wrote the article. L.W. carried out the experiments, helped analyse and interpret the data and drew the figures. Both authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Both authors also approved the article to be published.
Competing interests. We have no competing interests.

Funding. Financial support was provided by Shaanxi Key Industrial Projects (2014GY-07) and the Shaanxi Province Education Department Science and Technology Research Plan (15JK1460).

References

1. Chen X, Mao SS. 2007 Titanium dioxide nanomaterials: synthesis; properties; modifications; and applications. Chem. Rev. 107, 2819–2959. (doi:10.1021/cr065055s)

2. Nunes D, Pimentel A, Santos L, Barquinha P, Fortunato E, Martins R. 2017 Photocatalytic TiO2 nanorod spheres and arrays compatible with flexible applications. Catal. Today 275, 70–80. (doi:10.1016/j.cattod.2016.09.060)

3. Li H, Bian Z, Zhu J, Hua Y, Li H, Yu Y. 2007 Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 129, 4538–4539. (doi:10.1021/ja061151n)

4. Rashed MN, Eltaher MA, Abdou ANA. 2017 Synthesis and photocatalytic activity of nano-catalysts for coupled pollutant removal in a nanomaterials: synthesis; properties; modifications; and applications. Mater. Lett. 280, 377–343. (doi:10.1016/j.materlet.2016.04.010)

5. Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H. 2015 Ultrarange single-crystal TiO2 nanofibres with mesoporous structure; high activity and durability in visible light driven photocatalysis. Nano Lett. 15, 897–902. (doi:10.1021/acs.nanolett.5b01228)

6. Zhao X, Wei G, Liu J, Wang Z, An C, Zhang J. 2016 Synthesis of heterostructured Poli/TiO2/TiO2 nanohybrids with enhanced photocatalytic activity. Mater. Res. Bull. 80, 377–343. (doi:10.1016/j.materresbull.2016.04.010)

7. Zhu S, Liang J, Gu D, Xie M, Wang J, Deng Z, Liu P. 2017 Effect of Au supported TiO2 with dominant exposed (001) facets on the visible-light photocatalytic activity. Appl. Catal. B 199, 119–120, 146–155. (doi:10.1016/j.apcatb.2016.02.020)

8. Xu H, Li Z, Liu J, Xing J, Sun C, Yang HG, Li C. 2011 Ultra-thin anatase TiO2 nanosheets dominated with (001) facets: thickness-controlled synthesis, growth mechanism and water-splitting properties. CrystEngComm 13, 1378–1381. (doi:10.1039/c0ce00233j)

9. Wang Y, Huang B, Dai Y, Yang X, Qin X, Li Z, Zheng Z, Cheng H, Guo L. 2012 Topotactic transformation of single-crystalline TiO2 nanocubes to ordered 3D hierarchical TiO2 nanobioes. CrystEngComm 14, 4578–4681. (doi:10.1039/c3ce02727f)

10. He Z, Wen L, Wang D, Xue J, Lu Q, Wu C, Chen J, Song S. 2014 Photocatalytic reduction of CO2 in aqueous solution on surface-fluorinated anatase TiO2 nanosheets with exposed (001) facets. Energy Fuels 28, 3982–3993. (doi:10.1021/ef500648k)

11. Peng JD, Lin H-H, Lee C-T, Tseng C-M, Chien Y-C, Yoldas BE. 1986 Hydrolysis of titanium alkoxide and effect of hydrolytic polycondensation parameters. J. Mater. Sci. 21, 1087–1092. (doi:10.1007/BF0117399)

12. Nie L, Yu J, Li X, Cheng B, Liu G, Jaroniec M. 2013 Enhanced performance of NaOH-Modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ. Sci. Technol. 47, 2777–2783. (doi:10.1021/es305049a)

13. Mahshid S, Askari M, Ghamarsi MS. 2007 Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J. Mater. Process. Technol. 189, 296–300. (doi:10.1016/j.jmatprotec.2007.01.040)

14. Yoldas BE. 1996 Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J. Mater. Sci. 21, 1087–1092. (doi:10.1007/BF0117399)

15. Nieuwboer-Goates J, Woodfield BF. 2005 High lithium intercalation properties. J. Solid State Chem. 143, 457–4581. (doi:10.1016/j.jssc.2004.09.007)

16. Wang Y, Huang B, Dai Y, Yang X, Qin X, Li Z, Zheng Z, Cheng H, Guo L. 2012 Topotactic transformation of single-crystalline TiO2 nanocubes to ordered 3D hierarchical TiO2 nanobioes. CrystEngComm 14, 4578–4681. (doi:10.1039/c3ce02727f)

17. Liu K, Yu J, Cui L, Chen S, Li M. 2011 Preparation of thermally stable anatase TiO2 photocatalyst from TiO2 precursor and its photocatalytic activity. J. Alloys Compd. 509, 4535–4562. (doi:10.1016/j.jallcom.2011.01.033)

18. Hu Z, Wang D, Xue J, Lu Q, Wu C, Chen J, Song S. 2014 Photocatalytic reduction of CO2 in aqueous solution on surface-fluorinated anatase TiO2 nanosheets with exposed (001) facets. Energy Fuels 28, 3982–3993. (doi:10.1021/ef500648k)

19. Peng JD, Lin H-H, Lee C-T, Tseng C-M, Chien Y-C, Yoldas BE. 1986 Hydrolysis of titanium alkoxide and effect of hydrolytic polycondensation parameters. J. Mater. Sci. 21, 1087–1092. (doi:10.1007/BF0117399)

20. Hou C, Liu J, Qiu J, Zhu X. 2016 TiO2 nanoparticles embedded in hollow cube with highly exposed (001) facets: facile synthesis and photocatalytic properties. J. Alloys Compd. 656, 863–870. (doi:10.1016/j.jallcom.2015.10.039)

21. Hou C, Liu J, Qiu J, Zhu X. 2017 Synthesis of NaOH-Modified TiO2 and its enhanced visible light photocatalytic performance on RhB. Catalysts 7, 243. (doi:10.3390/catal7020243)

22. Hou C, Zhu J, Song Q. 2018 Low temperature synthesis of nano-like microparticle with exposed (001) facets and its enhanced photocatalytic performance by NaOH alkalinization. Catalysts 8, 70. (doi:10.3390/catal8020043)

23. Li G, Li L, Boero-Guares J, Woodfield BF. 2005 Low purity anatase TiO2 Nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 127, 8665–8666. (doi:10.1021/ja049537y)

24. Li W, Boddy C, Dambournet D. 2017 Identify OH groups in TiO2, and their impact on the lithium intercalation properties. J. Solid State Chem. 246, 113–118. (doi:10.1016/j.jssc.2016.11.010)

25. Iwata T, Watanabe A, Iseki M, Watanabe K, Mardon H. 2011 Strong donation of the hydrogen bond of tyrosine during photoactivation of the BLUF domain. J. Phys. Chem. Lett. 2, 1015–1019. (doi:10.1021/jz203974u)
36. Yongcheng N. 2000 Structural identification of organic compounds and organic spectroscopy. Science Press. (http://as.wiley.com/WileyCDA/WileyTitle/productCd-3527312404.html)
37. Lv K, Xiang Q, Yu J. 2011 Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO₂ nanosheets with exposed (001) facets. Appl. Catal. B Environ. 104, 275–281. (doi:10.1016/j.apcata.2010.03.019)
38. Park H, Choi W. 2004 Effects of TiO₂ surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J. Phys. Chem. B 108, 4086–4093. (doi:10.1021/jp036735i)
39. Zhao J, Li W, Li X, Zhang X. 2017 Low temperature synthesis of water dispersible F-doped TiO₂ nanorods with enhanced photocatalytic activity. RSC Adv. 7, 21 547–21 555. (doi:10.1039/c7ra00850c)
40. Cao X, Luo S, Liu C, Chen J. 2017 Synthesis of bentonite-supported Fe₂O₃-Doped TiO₂ superstructures for highly promoted photocatalytic activity and Ti recrystallization. Adv. Powder Technol. 28, 993–999. (doi:10.1016/j.apt.2017.01.003)
41. Wang B, Qi H, Liu Z, Jin Y, Wang H, Yuan J, Zhao J, Shao J. 2017 Structure, chemical state and photocatalytic activity of TiO₂-x nanostructured thin films by glancing angle deposition technique. J. Alloys Compd. 716, 299–305. (doi:10.1016/j.jallcom.2017.05.041)
42. Wang H, Yi G, Tan M, Zu X, Luo H, Jiang X. 2015 Initial reactant controlled synthesis of double layered TiO₂ nanostructures and characterization of its spectra of absorption and photoluminescence. Mater. Lett. 148, 5–8. (doi:10.1016/j.matlet.2015.02.011)
43. Yuan L, Weng B, Colmenares JC, Sun Y, Xu Y-J. 2017 Multichannel charge transfer and mechanistic insight in metal decorated 2D–2D Bi₂WO₆-TiO₂ cascade with enhanced photocatalytic performance. Small 13, 1702253. (doi:10.1002/small.201702253)
44. Hu Y, Li D, Zheng Y, Chen W, He Y, Shao Y, Fu X, Xiao G. 2011 BiVO₄/TiO₂ nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal. B 104, 30–36. (doi:10.1016/j.apcata.2011.02.031)
45. Park H, Choi W. 2005 Photocatalytic reactivities of nafion-coated TiO₂ for the degradation of charged organic compounds under UV or visible light. J. Phys. Chem. B 109, 11 667–11 674. (doi:10.1021/jp050225s)
46. Bera S, Rawal SB, Kim HJ, Lee WJ. 2014 Novel coupled structures of FeWO₄/TiO₂ and FeWO₄/TiO₂/CdS designed for highly efficient visible-light photocatalysis. ACS Appl. Mater. Interfaces 6, 9654–9663. (doi:10.1021/am502079x)
47. Yang C, Yu J, Li Q, Yu Y. 2017 Facile synthesis of monodisperse porous ZnO nanospheres for organic pollutant degradation under simulated sunlight irradiation: the effect of operational parameters. Mater. Res. Bull. 87, 72–83. (doi:10.1016/j.materresbull.2016.11.024)
48. Yang C, Li Q, Tang L, Xin K, Bai A, Yu Y. 2015 Synthesis, photocatalytic activity, and photogenerated hydroxylradicals of monodisperse colloidal ZnO nanoparticles. Appl. Surf. Sci. 357, 1928–1938. (doi:10.1016/j.apysci.2015.09.140)
49. Yuan L, Yang M-Q, Xu Y-J. 2014 Tuning the surface charge of graphene for self-assembly synthesis of a SnNb₂O₆-nanosheet–graphene (2D–2D) nanocomposite with enhanced visible light photocactivity. Nanoscale 6, 6335–6345. (doi:10.1039/C4NR00196H)
50. Lin L, Huang M, Long L, Sun Z, Zheng W, Chen D. 2014 Fabrication of a threedimensional BiOBr/BiOI photocatalyst with enhanced visible light photocatalytic performance. Ceram. Int. 40, 11 493–11 501. (doi:10.1016/j.ceramint.2014.03.039)