THE HYPERBOLIC AX-LINDEMANN-WEIERSTRASS CONJECTURE

B. KLINGLER, E. ULLMO, A. YAFAEV

1. Introduction.

1.1. The hyperbolic Ax-Lindemann-Weierstraß conjecture. Around 1885 Lindemann and Weierstraß proved that if $\alpha_1, \ldots, \alpha_n$ are \mathbb{Q}-linearly independent algebraic numbers then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are algebraically independent over \mathbb{Q} ([12], [32]). This classical transcendence result has the following functional “flat” analogue, which is a particular case of a result of Ax [2]: Define $\pi = (\exp, \ldots, \exp) : \mathbb{C}^n \rightarrow (\mathbb{C}^*)^n$. Let $V \subset (\mathbb{C}^*)^n$ be an algebraic subvariety. Any maximal complex irreducible algebraic subvariety $Y \subset \pi^{-1}(V)$ is a translate of a rational linear subspace. Another “flat” Ax-Lindemann-Weierstraß theorem is obtained when studying the uniformizing map of an abelian variety: Let $\pi : \mathbb{C}^n \rightarrow A$ be the uniformizing map of a complex abelian variety of dimension n. Let $V \subset A$ be an algebraic subvariety. Any maximal complex irreducible algebraic subvariety $Y \subset \pi^{-1}(V)$ is the preimage of a translate of an abelian subvariety contained in V.

The main result of this paper is a proof of a similar statement, the hyperbolic Ax-Lindemann-Weierstraß conjecture, for any arithmetic variety $S := \Gamma \backslash X$. Here X denotes a Hermitian symmetric domain and Γ is any arithmetic subgroup of the real adjoint Lie group G of biholomorphisms of X. This means that there exists a semisimple \mathbb{Q}-algebraic group G and a surjective morphism with compact kernel $p : G(\mathbb{R}) \rightarrow G$ such that Γ is commensurable with the projection $p(G(\mathbb{Z}))$ (cf. section 2.1 for the definition of $G(\mathbb{Z})$ and [13] for a general reference on arithmetic lattices).

While X is not a complex algebraic variety it admits a canonical realisation as a bounded symmetric domain $\mathcal{D} \subset \mathbb{C}^N$ (with $N = \dim_{\mathbb{C}} X$) (cf. [27] §II.4]). We will say that a subset $Y \subset \mathcal{D}$ is an irreducible algebraic subvariety of \mathcal{D} if Y is an irreducible component of the analytic set $\mathcal{D} \cap \bar{Y}$ where \bar{Y} is an algebraic subset of \mathbb{C}^N. An algebraic subvariety of \mathcal{D} is then defined as a finite union of irreducible algebraic subvarieties. On the other hand the arithmetic variety S admits a natural structure of complex quasi-projective variety via the Baily-Borel embedding \mathbb{B}. Recall that an irreducible algebraic subvariety of S is said weakly special if its smooth locus is totally geodesic in S endowed with its canonical Hermitian metric.

The uniformization map $\pi : \mathcal{D} \rightarrow S = \Gamma \backslash \mathcal{D}$ is highly transcendental with respect to these algebraic structures (in the simplest case where \mathcal{D} is the Poincaré disk and S is the modular curve, the map $\pi : \mathcal{D} \rightarrow S$ is the usual j-invariant seen on the disk). The hyperbolic Ax-Lindemann-Weierstraß conjecture is the following statement:
Theorem 1.1. (The hyperbolic Ax-Lindemann-Weierstraß conjecture.) Let $S = \Gamma \backslash \mathcal{D}$ be an arithmetic variety with uniformising map $\pi : \mathcal{D} \rightarrow S$. Let V be an algebraic subvariety of S. Maximal irreducible algebraic subvarieties of $\pi^{-1}V$ are precisely the irreducible components of the preimages of maximal weakly special subvarieties contained in V.

Remarks 1.1. (a) In [31] Ullmo and Yafaev proved the theorem 1.1 in the special case where S is compact. In [25] Pila and Tsimerman proved theorem 1.1 in the special case $S = \mathcal{A}_g$, the moduli space of principally polarised abelian varieties of dimension g.

(b) Mok has a very nice, entirely complex-analytic, approach to the hyperbolic Ax-Lindemann-Weierstraß conjecture. In the rank 1 case his approach should extend some of the results of this text to the non-arithmetic case. We refer to [15], [16] for partial results.

(c) We defined algebraic subvarieties of X using the Harish-Chandra realisation \mathcal{D} of X but we could have used as well any other realisation of X in the sense of [29, section 2.1]. Indeed morphisms of realisations are necessarily semi-algebraic, thus X admits a canonical semi-algebraic structure and a canonical notion of algebraic subvarieties (cf. appendix B for details). Hence one can replace \mathcal{D} in theorem 1.1 by any other realisation of X, for example the Borel realisation (cf. [14, p.52]).

1.2. Motivation: the André-Oort conjecture. Let (G,X_G) be a Shimura datum. Let X be a connected component of X_G (hence X is a Hermitian symmetric domain). We denote by $G(\mathbb{Q})_+$ the stabiliser of X in $G(\mathbb{Q})$. Let K_f be a compact open subgroup of $G(\mathbb{A}_f)$, where \mathbb{A}_f denotes the finite adèles of \mathbb{Q} and let $\Gamma := G(\mathbb{Q})_+ \cap K_f$ be the corresponding congruence arithmetic lattice of $G(\mathbb{Q})$.

Then the arithmetic variety $S := \Gamma \backslash X$ is a component of the complex quasi-projective Shimura variety

$$\text{Sh}_K(G,X) := G(\mathbb{Q})_+ \backslash X \times G(\mathbb{A}_f)/K_f.$$

The variety S contains the so-called special points and special subvarieties (these are the weakly special subvarieties of S containing one special point, we refer to [5] or [17] for the detailed definitions). One of the main motivations for studying the Ax-Lindemann-Weierstraß conjecture is the André-Oort conjecture predicting that irreducible subvarieties of S containing Zariski dense sets of special points are precisely the special subvarieties. The André-Oort conjecture has been proved under the assumption of the Generalised Riemann Hypothesis (GRH) by the authors of this paper ([30], [11]). Recently Pila and Zannier [26] came up with a new proof of the Manin-Mumford conjecture for abelian varieties using the flat Ax-Lindemann-Weierstraß theorem. This gave hope to prove the André-Oort conjecture unconditionally with the same strategy. In [22] Pila succeeded in applying this strategy to the case where S is a product of modular curves. Roughly speaking, the strategy consists of two main ingredients: the first is the problem of bounding
below the sizes of Galois orbits of special points and the second is the hyperbolic Ax-Lindemann-Weierstraß conjecture (cf. [28]).

We refer to [29] for details on how the hyperbolic Ax-Lindemann-Weierstraß conjecture and a good lower bound on the sizes of Galois orbits of special points imply the André-Oort conjecture. As a direct corollary of theorem 1.1 and the proof of [29, theor.5.1] one obtains:

Corollary 1.2. The André-Oort conjecture holds for A^n_k for any positive integer n.

A new proof of the André-Oort conjecture under the GRH is a consequence of theorem 1.1 and an upper bound for the height of special points in Siegel sets. This last step is currently studied by C.Daw and M.Orr.

1.3. **Strategy of the proof of theorem 1.1.** Our strategy for proving theorem 1.1 is as follows:

(i) Let $S := \Gamma \setminus X$ and $\pi: X \to S$ be the uniformising map. Even though the map π is transcendental, it still enables us to relate the semi-algebraic structures on X and S through a larger o-minimal structure. We refer to [31, section 3], [3], [7] for details on o-minimal structures. Recall that a fundamental set for the action of Γ on X is a connected open subset \mathcal{F} of X such that $1\mathcal{F} = X$ and such that the set $\{\gamma \in \Gamma : \gamma \mathcal{F} \cap \mathcal{F} \neq \emptyset\}$ is finite. We prove in section 4 the following result:

Theorem 1.2. There exists a semi-algebraic fundamental set \mathcal{F} for the action of Γ on X such that the restriction $\pi|_{\mathcal{F}}: \mathcal{F} \to S$ is definable in the o-minimal structure $\mathbb{R}_{an,exp}$.

Remarks 1.3.

(a) The special case of theorem 1.2 when S is compact is much easier and was proven in [31], Proposition 4.2. In this case, the map $\pi|_{\mathcal{F}}$ is even definable in \mathbb{R}_{an}. Theorem 1.2 in the case where $X = \mathcal{H}_g$ is the Siegel upper half plane of genus g was proven by Peterzil and Starchenko (see [21] and [20]) and is a crucial ingredient in [25]. Notice that this particular case implies theorem 1.2 for any special subvariety S of A_g (see Proposition 2.5 of [29]).

(b) Our proof of theorem 1.2 does not use [21] or [20] but relies on the general theory of compactifications of arithmetic varieties (cf. [1]).

(ii) Choose a semi-algebraic fundamental set \mathcal{F} for the action of Γ as in the theorem 1.2 above. The choice of a reasonable representation $\rho: G \to GL(E)$ (cf. section 2.1) allows us to define a *height function* $H: \Gamma \to \mathbb{R}$ (cf. definition 2.2). In section 5 we show the following result:

Theorem 1.3. Let Y be a positive dimensional irreducible algebraic subvariety of X. Define

$$N_Y(T) = |\{\gamma \in \Gamma : H(\gamma) \leq T, Y \cap \gamma \mathcal{F} \neq \emptyset\}|.$$

Then there exists a positive constant c_1 such that for all T large enough:

$$N_Y(T) \geq T^{c_1}.$$
Remark 1.4. When S is compact Ullmo and Yafaev proved (cf. [31]) that the length function grows exponentially and theorem 1.3 follows in this case. We were not able to obtain such a result on the length in the general case.

(iii) In section 6, applying the counting result above and some strong form of Pila-Wilkie’s theorem [23], we prove:

Theorem 1.4. Let V be an algebraic subvariety of S and Y a maximal irreducible algebraic subvariety of $\pi^{-1}V$. Let Θ_Y denote the stabiliser of Y in $G(\mathbb{R})$ and define H_Y as the connected component of the identity of the Zariski closure of $G(\mathbb{Z}) \cap \Theta_Y$. Then H_Y is a non-trivial \mathbb{Q}-subgroup of G, such that $H_Y(\mathbb{R})$ is non-compact.

(iv) Without loss of generality one can assume that V is the smallest algebraic subvariety of S containing $\pi(Y)$. With this assumption we show in section 7 that \tilde{V} is invariant under $H_Y(\mathbb{Q})$, where \tilde{V} is an analytic irreducible component of $\pi^{-1}V$ containing Y, and then conclude that $\pi(Y) = V$ is weakly special using monodromy arguments.

2. Preliminaries

2.1. Notations. In the rest of the text:

- X denotes a Hermitian symmetric domain (not necessarily irreducible).
- G is the adjoint semi-simple real algebraic group, whose set of real points, also denoted by G, is the group of biholomorphisms of X; hence $X = G/K$ where K is a maximal compact subgroup of G.
- $\Gamma \subset G$ is an arithmetic lattice. This means (cf. [13]) that there exists a semi-simple linear algebraic group G over \mathbb{Q} and $p : G(\mathbb{R}) \rightarrow G$ a surjective morphism with compact kernel such that Γ is commensurable with $p(G(\mathbb{Z}))$. Here we recall that two subgroups of a group are commensurable if their intersection is of finite index in both of them; moreover $G(\mathbb{Z})$ denotes $G(\mathbb{Q}) \cap \rho^{-1}(\text{GL}(E_\mathbb{Z}))$ for some faithful representation $\rho : G \rightarrow \text{GL}(E)$, where E is a finite-dimensional \mathbb{Q}-vector space and $E_\mathbb{Z}$ is a \mathbb{Z}-lattice in E; the commensurability of Γ and $p(G(\mathbb{Z}))$ is independant of the choice of ρ and $E_\mathbb{Z}$.
- One easily checks that theorem [14] holds for Γ if and only if it holds for any Γ' commensurable with Γ. In particular without loss of generality one can and will assume that the group $G(\mathbb{Z})$ is neat (meaning that for any $\gamma \in G(\mathbb{Z})$ the group generated by the eigenvalues of $\rho(\gamma)$ is torsion-free) and the group Γ coincides with $p(G(\mathbb{Z}))$ and is torsion-free.
- Without loss of generality we can and will assume that the group G is of adjoint type. Indeed let $\lambda : G \rightarrow G^{\text{ad}}$ denotes the natural algebraic morphism to the adjoint group G^{ad} of G (quotient by the centre). As the Lie group G is adjoint
the morphism \(p : G(\mathbb{R}) \rightarrow G \) factorises through

\[
\begin{array}{ccc}
G(\mathbb{R}) & \xrightarrow{\lambda} & G^{\text{ad}}(\mathbb{R}) \\
p \downarrow & & \downarrow p^{\text{ad}} \\
G & & G
\end{array}
\]

and \(\Gamma \) is commensurable with \(p^{\text{ad}}(G^{\text{ad}}(\mathbb{Z})) \).

- Without loss of generality we can and will assume that each \(\mathbb{Q} \)-simple factor of \(G \) is \(\mathbb{R} \)-isotropic. Indeed let \(H \) be the quotient of \(G \) by its \(\mathbb{R} \)-anisotropic \(\mathbb{Q} \)-factors. Again, the morphism \(p : G(\mathbb{R}) \rightarrow G \) factorises through \(H(\mathbb{R}) \) and \(\Gamma \) is commensurable with the projection of \(H(\mathbb{Z}) \).

- \(K_\infty = p^{-1}K \) is a maximal compact subgroup of \(G(\mathbb{R}) \). Hence \(X = G(\mathbb{R})/K_\infty \).

- We denote by \(\mathcal{P} \) the set of all places of \(\mathbb{Q} \).

- We denote by \(\mathcal{X} \) any realization of \(X \) (cf. appendix B).

2.2. **Norm, distance, height.** Let * be the adjunction on \(E_\mathbb{R} \) associated to the Hilbert structure \(\| \cdot \|_\infty \) on \(E_\mathbb{R} \). The restriction of the bilinear form \((u,v) \mapsto \text{tr}(u^*v) \) to the Lie algebra \(\text{Lie}(G(\mathbb{R})) \) defines a \(G(\mathbb{R}) \)-invariant K\"ahler metric \(g_X \) on \(X \). We denote by \(d : X \times X \rightarrow \mathbb{R} \) the associated distance and by \(\omega \) the associated K\"ahler form.

For each place \(v \) of \(\mathbb{Q} \) we still denote by \(\| \cdot \|_v \) the operator norm on \(\text{End} E_v \) associated to \(\| \cdot \|_v \) on \(E_v \):

\[
\forall \varphi \in \text{End} E_v, \quad \| \varphi \|_v = \sup_{\| x \|_v \leq 1} \| \varphi(x) \|_v .
\]

By restriction we also denote by \(\| \cdot \|_v : G(\mathbb{Q}_v) \rightarrow \mathbb{R} \) the function \(\| \cdot \|_v \circ \rho \).

Remark 2.1. As \(K_\infty \) preserves the norm \(\| \cdot \|_\infty \) on \(E_\mathbb{R} \), the function \(\| \cdot \|_\infty : G(\mathbb{R}) \rightarrow \mathbb{R} \) is \(K_\infty \)-bi-invariant, in particular descends to a function \(\| \cdot \|_\infty : X \rightarrow \mathbb{R} \).

Definition 2.2. We define the (multiplicative) height function \(H : \text{End} E \rightarrow \mathbb{R} \) as

\[
\forall \varphi \in \text{End} E, \quad H(\varphi) = \prod_{v \in \mathcal{P}} \max(1, \| \varphi \|_v) .
\]

Remark 2.3. When \(\dim_{\mathbb{Q}} E = 1 \), this height function coincides with the usual multiplicative height function on rational numbers.
By restriction, we also denote by $H : \mathbf{G}(\mathbb{Q}) \to \mathbb{R}$ the function $H \circ \rho$. As usual the height is particularly simple on $\mathbf{G}(\mathbb{Z})$:

$$\forall \varphi \in \mathbf{G}(\mathbb{Z}), \quad H(\varphi) = \max(1, \|\varphi\|_\infty).$$

Notice that $\|\varphi\|_\infty$ is the square root of the largest eigenvalue of the positive definite matrix $\varphi^* \varphi$. As φ is integral it follows that $\|\varphi\|_\infty$ is at least 1, hence

$$\forall \varphi \in \mathbf{G}(\mathbb{Z}), \quad H(\varphi) = \|\varphi\|_\infty.$$

It follows from remark 2.1 that the height function on $\mathbf{G}(\mathbb{Z})$ factorizes through $H : \Gamma \to \mathbb{R}$.

3. Compactification of arithmetic varieties

3.1. Siegel sets. First we recall the definition of Siegel sets for Γ. We refer to [4, § 12] for details. We follow Borel’s conventions, except that for us the group G acts on X on the left.

Let P be a minimal \mathbb{Q}-parabolic subgroup of G such that $K_\infty \cap P(\mathbb{R})$ is a maximal compact subgroup of $P(\mathbb{R})$. Let U be the unipotent radical of P and let A be a maximal split torus of P. We denote by S a maximal split torus of $\text{GL}(E)$ containing $\rho(A)$. We denote by M the maximal anisotropic subgroup of the connected centralizer $Z(A)^0$ of A in P and by Δ the set of simple roots of G with respect to A and P. We denote by $A \subset S(\mathbb{R})$ the real torus $A(\mathbb{R})$. For any real number $t > 0$ we let

$$A_t := \{a \in A \mid a^\alpha \geq t \text{ for any } \alpha \in \Delta\}.$$

A Siegel set for $\mathbf{G}(\mathbb{R})$ for the data (K_∞, P, A) is a product:

$$\Sigma'_t, \Omega := \Omega \cdot A_t \cdot K_\infty \subset \mathbf{G}(\mathbb{R})$$

where Ω is a compact neighborhood of e in $M^0(\mathbb{R}) \cdot U(\mathbb{R})$.

The image

$$\Sigma_{t, \Omega} := \Omega \cdot A_t \cdot x_o \subset \mathcal{X}$$

of $\Sigma'_{t, \Omega}$ in \mathcal{X} is called a Siegel set in \mathcal{X}.

Theorem 3.1. [4, theor.13.1] Let X, G, \mathbf{G}, Γ, P, A, K_∞, and \mathcal{X} be as above. Then for any Siegel set $\Sigma_{t, \Omega}$, the set $\{\gamma \in \Gamma \mid \gamma \Sigma_{t, \Omega} \cap \Sigma_{t, \Omega} \neq \emptyset\}$ is finite. There exist a Siegel set (called a Siegel set for Γ) $\Sigma_{t_0, \Omega}$ and a finite subset J of $\mathbf{G}(\mathbb{Q})$ such that $\mathcal{F} := J \cdot \Sigma_{t_0, \Omega}$ is a fundamental set for the action of Γ on \mathcal{X}.

When Ω is chosen to be semi-algebraic the Siegel set $\Sigma_{t, \Omega}$ and the fundamental set \mathcal{F} are semi-algebraic as by definition of a complex realisation (cf. appendix [3]) the action of $\mathbf{G}(\mathbb{R})$ on \mathcal{X} is semi-algebraic and the subset $\Omega \cdot A_t$ of $\mathbf{G}(\mathbb{R})$ is semi-algebraic.

We will only consider semi-algebraic Siegel sets in the rest of the text.
3.2. Boundary components. General references for this section and the next one are [18] and [1].

Let $\mathcal{D} \hookrightarrow \mathbb{C}^N$ be the Harish-Chandra realisation of X as a bounded symmetric domain. The action of G extends to the closure $\overline{\mathcal{D}}$ of \mathcal{D} in \mathbb{C}^N. The boundary $\partial \mathcal{D} := \overline{\mathcal{D}} \setminus \mathcal{D}$ is a smooth manifold which decomposes into a (continuous) union of boundary components, which are defined as maximal complex analytic submanifolds of $\partial \mathcal{D}$ (or alternatively as holomorphic path components of $\partial \mathcal{D}$). Explicitly, let us say that a real affine hyperplane $H \subset \mathbb{C}^N$ is a supporting hyperplane if $H \cap \mathcal{D}$ is nonempty but $H \cap \overline{\mathcal{D}}$ is empty. Let H be a supporting hyperplane and let $\mathcal{F} = H \cap \mathcal{D} = H \cap \partial \mathcal{D}$. Let L be the smallest affine subspace of \mathbb{C}^N which contains \mathcal{F}. Then \mathcal{F} is the closure of a nonempty open subset $\mathcal{F} \subset L$ which is then a single boundary component of \mathcal{D} (cf. [27, §III.8.11]). The boundary component \mathcal{F} turns out to be a bounded symmetric domain in L.

Fix a boundary component \mathcal{F}. The normaliser $N(\mathcal{F}) := \{ g \in G \mid g \mathcal{F} = \mathcal{F} \}$ turns out to be a proper parabolic subgroup of G. The Levi decomposition $N(\mathcal{F}) = R(\mathcal{F}) \cdot W(\mathcal{F})$ (where $W(\mathcal{F})$ denotes the unipotent radical of $N(\mathcal{F})$ and $R(\mathcal{F})$ is the unique reductive Levi factor stable under the Cartan involution corresponding to K) can be refined into

$$N(\mathcal{F}) = (G_h(\mathcal{F}) \cdot G_l(\mathcal{F}) \cdot M(\mathcal{F})) \cdot V(\mathcal{F}) \cdot U(\mathcal{F}),$$

where:
- $U(\mathcal{F})$ is the centre of $W(\mathcal{F})$. It is a real vector space;
- $V(\mathcal{F}) = W(\mathcal{F})/U(\mathcal{F})$ turns out to be abelian. It is a real vector space of even dimension $2l$, and we get a decomposition $W(\mathcal{F}) = V(\mathcal{F}) \cdot U(\mathcal{F})$ using “exp”;
- $G_l(\mathcal{F}) \cdot M(\mathcal{F}) \cdot V(\mathcal{F}) \cdot U(\mathcal{F})$ acts trivially on \mathcal{F} and $G_h(\mathcal{F})$ modulo a finite center is $\text{Aut}^0(\mathcal{F})$;
- $G_h(\mathcal{F}) \cdot M(\mathcal{F}) \cdot V(\mathcal{F}) \cdot U(\mathcal{F})$ commutes with $U(\mathcal{F})$ and $G_l(\mathcal{F})$ modulo a finite central group acts faithfully on $U(\mathcal{F})$ by inner automorphisms;
- $M(\mathcal{F})$ is compact.

The boundary component \mathcal{F} is said to be rational if $\Gamma_\mathcal{F} := \Gamma \cap N(\mathcal{F})$ is an arithmetic subgroup of $N(\mathcal{F})$. There are only finitely many Γ-orbits of rational boundary components, we choose representatives $\mathcal{F}_1, \ldots, \mathcal{F}_r$ for these Γ-orbits. Then the Baily-Borel compactification of S is

$$\overline{S}^{BB} = S \cup \bigcup_{i=1}^r (\Gamma_{\mathcal{F}_i} \setminus \mathcal{F}_i)$$

with a suitable analytic structure.

3.3. Toroidal compactifications and local coordinates. Let X^\vee be the compact dual of X and $\mathcal{D} \hookrightarrow X^\vee$ be the Borel embedding. Recall that X^\vee has an algebraic action by $G_{\mathbb{C}}$. Given a boundary component \mathcal{F} of \mathcal{D} we define, following [18, section 3], an open subset $\mathcal{D}_\mathcal{F}$ of X^\vee containing \mathcal{D} as follows:

$$\mathcal{D}_\mathcal{F} = \bigcup_{g \in U(\mathcal{F})_{\mathbb{C}}} g \cdot \mathcal{D}. $$
The embedding of D in D_F is Piatetskii-Shapiro’s realisation of D as Siegel Domain of the third kind. In fact there is a canonical holomorphic isomorphism (we refer to the proof of lemma 4.2 for a precise description of this isomorphism):

$$D_F \overset{j}{\cong} U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F .$$

This biholomorphism defines complex coordinates (x,y,t) on D_F, such that

$$D \overset{j}{\cong} \{(x,y,t) \in U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F \mid \text{Im}(x) + l_t(y,y) \in C(F)\} \subset D_F$$

where $\text{Im}(x)$ is the imaginary part of x, $C(F) \subset U(F)$ is a self-adjoint convex cone homogeneous under the $G_t(F)$-action on $U(F)$ and $l_t : \mathbb{C}^l \times \mathbb{C}^l \to U(F)$ is a symmetric \mathbb{R}-bilinear form varying real-analytically with $t \in F$. The group $U(F)_{\mathbb{C}}$ acts on D_F and in these coordinates the action of $a \in U(F)(\mathbb{C})$ is given by:

$$(x,y,t) \mapsto (x + a, y, t).$$

From now on we fix a Γ-admissible collection of polyhedra $\sigma = (\sigma_\alpha)$ (cf. [1, definition 5.1]) such that the associated toroidal compactification $\overline{S} = \overline{S}_\sigma$ constructed in [1] is smooth projective and the complement $\overline{S} \setminus S$ is a divisor with normal crossings. We refer to [1] for details and we just recall what is needed for our purposes.

The compactification \overline{S} is covered by a finite set of coordinates charts constructed as follows (cf. [18] p.255-256):

(a) Take a rational boundary component F of D;

(b) We may choose some complex coordinates $x = (x_1, \ldots, x_k)$ on $U(F)_{\mathbb{C}}$ (depending on the choice of Σ) such that the following diagram commutes:

$$\begin{array}{ccc}
D^c & \overset{j}{\cong} & U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F \\
\downarrow \exp_F & & \downarrow \exp_F \\
\pi_F \quad \pi_F & & \quad \pi_F \\
S & \subset & \mathbb{C}^k \times \mathbb{C}^l \times F \\
\end{array}$$

where $\exp_F : U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F \to \mathbb{C}^k \times \mathbb{C}^l \times F$ is given by

$$(x,y,t) \mapsto (\exp(2i\pi x), y, t), \quad \text{where} \quad \exp(2i\pi x) = (\exp(2i\pi x_1), \ldots, \exp(2i\pi x_k)).$$

(c) Define the “partial compactification of $\exp_F(D)$ in the direction F” to be the set $\exp_F(D)^\vee$ of points P in $\mathbb{C}^k \times \mathbb{C}^l \times F$ having a neighborhood Θ such that

$$\Theta \cap \mathbb{C}^k \times \mathbb{C}^l \times F \subset \exp_F(D)^\vee .$$

Then there exists an integer m, $1 \leq m \leq k$, such that $\exp_F(D)^\vee$ contains

$$S(F, \sigma) = \bigcup_{i=1}^m \{(z,y,t) \mid z = (z_1, \ldots, z_k), z_i = 0\}.$$
(d) The basic property of S is that the covering map $\pi_F : \exp_F(D) \to S$ extends to a local homeomorphism $\pi_F : \exp_F(D) \to S$ making the diagram

\[
\begin{array}{ccc}
D & \xrightarrow{\exp_F} & \exp_F(D) \\
\pi & \downarrow & \downarrow \pi_F \\
S & \xrightarrow{\exp_F} & S
\end{array}
\]

commutative. Moreover every point P of $S - S$ is of the form $\pi_F((z, y, t))$ with $z_i = 0$ for some $i \leq m$, for some F.

The following proposition summarizes what we will need:

Proposition 3.2. Let $\Sigma = \Sigma_{t, \Omega} \subset D$ be a Siegel set for the action of Γ. Then Σ is covered by a finite number of open subsets Θ having the following properties. For each Θ there is a rational boundary component F, a simplicial cone $\sigma \subset C(F)$, a point $a \in C(F)$, relatively compact subsets U', Y' and F' of $U(F)$, C_l and F respectively such that the set Θ is of the form

\[
\Theta \cong \{ (x, y, t) \in U(F)_C \times C_l \times F, \Re(x) \in U', y \in Y', t \in F' \mid \Im(x) + l_t(y, y) \in \sigma + a \}
\]

where $E \subset F$ and $\omega_W \subset W(F)$ are compact, $C_0 \subset C(F)$ is a rational core and σ_0^F is one of the polyhedra in our decomposition of $C(F)$.

Considering $C(F)$ as a cone in $\sqrt{-1} \cdot U(F)$ and decomposing $W(F)$ as $U(F) \cdot V(F)$, the isomorphism Ψ extends to the real-analytic isomorphism $D_F \cong U(F)_C \times V(F) \times F$ constructed in [11, p.235]. Hence the Siegel set Σ is covered by a finite number of sets Θ of the form

\[
\Theta \cong \Psi(D) \cap \{ (x, s, t) \in U(F)_C \times V(F) \times F \mid \Re(x) \in U', s \in S', t \in F' \}
\]

where $F' \subset F$, $U' \subset U(F)$ and $S' \subset V(F)$ are relatively compact.

Using the definition of j given in [33, §7] and recalled in the proof of lemma [42] below, it follows, as stated in [11, p.238], that the diffeomorphism $j \circ \Psi^{-1} : U(F)_C \times V(F) \times F \cong
$U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F$ is a change of trivialisation of the real-analytic bundle

\[
\begin{array}{c}
\xymatrix{
\mathcal{D}_F
\ar@{->}[d]_{\pi_F'}
\ar@{->}[rr]_{\pi_F}
\ar@{->}[ddr]_{p_F}
\ar@{->}[d]_{\pi_F}
\ar@{->}[ddr]_{p_F}
\ar@{->}[ddr]_{p_F}

&
\mathcal{D}_F'
\ar@{->}[d]_{\pi_F'}
\ar@{->}[rr]_{\pi_F}
\ar@{->}[ddr]_{p_F}
\ar@{->}[ddr]_{p_F}
\ar@{->}[ddr]_{p_F}

&
F
\end{array}
\]

studied in \cite[p.237]{1}. Here the map π_F' is a $U(F)_{\mathbb{C}}$-principal homogeneous space, the map p_F is a $V(F)$-principal homogeneous space, and the map $j \circ \Psi^{-1}$ is $U(F)_{\mathbb{C}}$-equivariant and respects the fibrations over F. These two properties ensure that $j \circ \Psi^{-1}$ identifies the set $\Psi(\Theta)$ of \eqref{3.5} to a set of the required form

\[
\Theta \xrightarrow{j} \{ (x,y,t) \in U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F, \, \text{Re}(x) \in U', \, y \in Y', \, t \in F' \mid \text{Im}(x) + l_t(y,y) \in \sigma + a \}
\subset U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F.
\]

□

4. Definability of the uniformisation map: proof of theorem \ref{1.2}

First notice that, although the variety S does not canonically embed into some \mathbb{R}^n, the statement of theorem \ref{1.2} makes sense as S has a canonical structure of real algebraic manifold, hence of $\mathbb{R}_{\text{an,exp}}$-manifold: cf. appendix \ref{A}.

By theorem \ref{3.1} there exist a semi-algebraic Siegel set Σ and a finite subset J of $G(\mathbb{Q})$ such that $\mathcal{F} := J \cdot \Sigma$ is a (semi-algebraic) fundamental set for the action of Γ on \mathcal{D}. Hence theorem \ref{1.2} follows from the following more precise result.

Theorem 4.1. The restriction $\pi|_{\Sigma} : \Sigma \to S$ of the uniformising map $\pi : \mathcal{D} \to S$ is definable in $\mathbb{R}_{\text{an,exp}}$.

Proof. By the proposition \ref{3.2} we know that Σ is covered by a finite union of open subsets Θ with the following properties. For each Θ there is a rational boundary component F, a simplicial cone $\sigma \in \mathfrak{c}$ with $\sigma \subset C(F)$, a point $a \in C(F)$, relatively compact subsets U', Y' and F' of $U(F)$, \mathbb{C}^l and F respectively such that the set Θ is of the form

\[
\Theta \xrightarrow{j} \{ (x,y,t) \in U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F, \, \text{Re}(x) \in U', \, y \in Y', \, t \in F' \mid \text{Im}(x) + l_t(y,y) \in \sigma + a \}
\subset U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F.
\]

We first prove that the holomorphic coordinates we introduced on \mathcal{D}_F are definable:

Lemma 4.2. The canonical isomorphism $j : \mathcal{D}_F \simeq U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F$ is semi-algebraic.

Proof. The isomorphism j was studied in \cite{21} and in full generality in \cite[§7]{33} (cf. \cite[§1.6]{3} for a survey). To keep the amount of definitions at a reasonable level we follow in this
the composition of the semi-algebraic holomorphic maps F associated to a rational boundary component p bounded symmetric domain of πp is proven in \[33, \text{theorem 6.8}\]. In particular it follows that $\exp(4.2)$

\[\alpha \in \{33, \text{p.901}\}. \] For any form of the complexified group $G\alpha$ to θ partial Cayley transform associated with U subsets respectively of p algebraic: indeed in restriction to p algebraic: indeed

\[\xi \in \{33, \text{remark 3 p.932}\} \]

Following \[33, \text{§4.1}\]) the map $j : D \longrightarrow U(F)\subset \mathbb{C}^l \times F \subset U(F)\subset \mathbb{C}^l \times p^- \leftarrow$ is the composition of the semi-algebraic holomorphic maps

\[D \xrightarrow{\xi^{-1}c_{\Delta-\theta}} p^- = p_{\Delta-\theta,1} \oplus p_{2}^{-} \oplus p_{\theta}^{-} \xrightarrow{\exp \circ \ad c_{\Delta-\theta}} U(F)\subset \mathbb{C}^l \times p_{\theta}^{-} \]

which finishes the proof of lemma 4.2

The previous lemma enables us to forget about the definable biholomorphism j. From now on and for simplicity of notations we simply write $D_F = U(F)\subset \mathbb{C}^l \times F$.

In the description (4.1) we may and do assume that U', Y' and F' are semi-algebraic subsets respectively of $U(F)\subset \mathbb{C}^l$ and F. Then the set Θ is definable in \mathbb{R}_{an}, because:

- the function $\psi : \ Y' \times F' \to U(F)$ defined by $\psi(y,t) = l_t(y,y)$ is analytic and defined on a compact semi-algebraic set.
- the cone σ is polyhedral, hence semi-algebraic.

Hence the restriction $\pi|_{\Sigma} : \Sigma \to S$ is definable in $\mathbb{R}_{\text{an,exp}}$ if and only if the restriction $\pi|_{\Theta} : \Theta \to S$ to any set Θ appearing in the proposition 3.2 is definable in $\mathbb{R}_{\text{an,exp}}$.

Fix such a set

\[\Theta = \{(x,y,t), y \in Y', t \in F', \text{Re}(x) \in U'^l | \text{Im}(x) + l_t(y,y) \in \sigma + a\} \]

associated to a rational boundary component $F \in \{F_1, \ldots, F_r\}$.
Consider the left-hand side of the diagram (3.4):

\[
\begin{array}{c}
D \xrightarrow{\exp_F} F \\
\downarrow \quad \downarrow \\
\pi_F \quad \pi_F \\
\exp_F(D) \xleftarrow{\pi} S \\
\end{array}
\]

Recall that \(\exp_F : F \to \mathbb{C}^* \times \mathbb{C}^l \times F \) is given by

\[
(x, y, t) \mapsto (\exp(2i\pi x, y, t), \ldots, \exp(2i\pi x_k))
\]

The function \(\Re(x_i), 1 \leq i \leq k \), is bounded on \(\Theta \) hence the restriction to \(\Theta \) of the map \(x \mapsto \exp(2i\pi \Re(x)) \) is definable in \(\mathbb{R}_{\text{an}}. \) On the other hand the restriction to \(\Theta \) of the function \(x \mapsto \exp(-2\pi \Im(x)) \) is definable in \(\mathbb{R}_{\exp} \) by definition of \(\mathbb{R}_{\exp}. \) Thus the restriction to \(\Theta \) of the map \(\pi_F : \exp_F(\Theta) \to S \) is definable in \(\mathbb{R}_{\text{an}, \exp}. \)

Consider the lower part of the diagram (3.4):

\[
\begin{array}{c}
\exp_F(D) \xleftarrow{\pi_F} \exp_F(D) \\
\downarrow \quad \downarrow \\
\pi_F \quad \pi_F \\
S \xrightarrow{\exp_F} S
\end{array}
\]

As \(U', V', F' \) are relatively compact and the imaginary part of \(x \) has a lower bound on \(\Theta, \) the closure \(\overline{\exp_F(\Theta)} \) of \(\exp_F(\Theta) \) is compact in \(\exp_F(D) \). Hence \(\pi_F : \exp_F(\Theta) \to S, \) which is the restriction of the analytic map \(\overline{\pi_F} : \exp_F(D) \to S \) to the relatively compact subset \(\overline{\exp_F(\Theta)} \) of \(\exp_F(D) \), is definable in \(\mathbb{R}_{\text{an}}. \)

\[\square \]

5. Growth of the height: proof of theorem 1.3

In this section we prove theorem 1.3.

5.1. Comparing norm and distance.

Lemma 5.1. For any \(g \in G(\mathbb{R}) \) the following inequality holds:

\[
\log \|g\|_\infty \leq d(g \cdot x_0, x_0)
\]

Proof. Let \(G(\mathbb{R}) = K_\infty \cdot A_\infty \cdot K_\infty \) be a Cartan decomposition of \(G(\mathbb{R}) \) associated to \(K_\infty, \)

where \(A_\infty \) is a maximal split real torus of \(G \) containing \(A. \) Let \(g \in G(\mathbb{R}) \) and write

\[g = k_1 \cdot a \cdot k_2 \]

its Cartan decomposition, with \(k_1, k_2 \in K_\infty \) and \(a \in A_\infty. \) As \(\| \cdot \|_\infty \)

is \(K_\infty \)-bi-invariant and \(d \) is \(G(\mathbb{R}) \)-equivariant the equalities \(\log \|g\|_\infty = \log \|a\|_\infty \) and

\[d(g \cdot x_0, x_0) = d(a \cdot x_0, x_0) \]

do hold.
The torus A_∞ is diagonalisable in an orthonormal basis (f_1, \ldots, f_n) of $E_\mathbb{R}$. Write $a = \text{diag}(a_1, \ldots, a_n)$ in this basis, then:

$$\log \|a\|_\infty = \max_i \log |a_i| \quad \text{and} \quad d(a \cdot x_0, x_0) = \sqrt{\sum_{i=1}^{n} (\log |a_i|)^2}$$

hence the result.

5.2. Comparing norm and height.

Lemma 5.2. There exists a constant $B > 0$ such that the following holds. Let $\gamma \in G(\mathbb{Z})$ and $u \in \gamma \mathcal{F}$. Then

$$H(\gamma) \leq B \cdot \|u\|_\infty .$$

Proof. Write $u = \gamma \cdot j \cdot x$ with $j \in J$ and $x = \omega \cdot a \cdot k \in \Sigma_{t_0, \Omega} = \Omega \cdot A_{t_0} \cdot K_\infty$. Hence $\gamma = u \cdot k^{-1} \cdot a^{-1} \cdot \omega^{-1} \cdot j^{-1}$. As the operator norm $\| \cdot \|$ is sub-multiplicative, one obtains:

$$H(\gamma) = \|\gamma\|_\infty \leq \|u\|_\infty \cdot \|a^{-1}\|_\infty \cdot \|\omega^{-1} \cdot j^{-1}\|_\infty ,$$

where we used that $\| \cdot \|_\infty$ is constant equal to 1 on K_∞. As Ω is compact and J is finite, the norm of $\omega^{-1} \cdot j^{-1}$ is bounded by a constant independant of γ. As a belongs to $A_{t_0} \subset A(\mathbb{R})$ the inequality $(a^{-1})^\alpha \leq \max(1, 1/t_0)$ holds for any simple root α of $\text{GL}(E)$ associated to A and a Borel subgroup of $\text{GL}(E)$ containing P. Hence $\|a^{-1}\|_\infty$, which is the maximal absolute value of an eigenvalue of a^{-1}, is bounded independently of γ. The result follows.

5.3. **Lower bound for the volume of an algebraic curve.** In [10, Corollary 3 p.1227], Hwang and To prove the following lower bound for the area of any complex analytic curve in \mathcal{D}:

Theorem 5.1 (Hwang and To). Let C be a complex analytic curve in \mathcal{D}. For any point $x_0 \in C$ there exist positive constants a_1, c_1 such that for any positive real number R one has:

$$\text{Vol}_C(C \cap B(x_0, R)) \geq a_1 \exp(c_1 \cdot R) .$$

Here Vol_C denotes the area for the Riemannian metric on C restriction of the metric g_X on \mathcal{D} and $B(x_0, R)$ denotes the geodesic ball of \mathcal{D} with center x_0 and radius R.

5.4. **Upper bound for the volume of algebraic curves on Siegel sets.**

Lemma 5.3. (i) There exists a constant $A_0 > 0$ such that for any algebraic curve $C \subset \mathcal{D}$ of degree d we have the bound

$$\text{Vol}_C(C \cap \Sigma) \leq A_0 \cdot d .$$
(ii) There exists a constant $A > 0$ such that for any algebraic curve $C \subset D$ of degree d we have the bound
\[\text{Vol}_C(C \cap \mathcal{F}) \leq A \cdot d. \]

Proof. We first prove (i). Recall that Σ is covered by a finite union of open subsets Θ described in proposition 3.2: there is a rational boundary component F, a simplicial cone $\sigma \in \Sigma$ with $\sigma \subset C(F)$, a point $a \in C(F)$, relatively compact subsets U', Y' and F' of $U(F)$, \mathbb{C} and F respectively such that the set Θ is of the form
\[\Theta = \{(x,y,t) \in D_F, y \in Y', t \in F', \Re(x) \in U', \Im(x) + l_t(y, y) \in \sigma + a\} \subset D_F = U(F) \times \mathbb{C} \times F'. \]
Recall that ω denotes the natural Kähler form on X. As $C \subset X$ is a complex analytic curve, one has:
\[\text{Vol}_C(C \cap \Theta) = \int_{C \cap \Theta} \omega. \]
On the other hand let ω_{D_F} be the Poincaré metric on D_F defined in the Siegel coordinates by:
\[\omega_{D_F} = \sum \frac{dx_i \wedge d\overline{x}_i}{\Im(x_i)^2} + \sum dy_j \wedge d\overline{y}_j + \sum df_k \wedge d\overline{f}_k. \]
Mumford [18, Theor.3.1] proved that there exists a positive constant c such that on D:
\[\omega \leq c \cdot \omega_{D_F}. \]
Hence:
\[\text{Vol}_C(C \cap \Theta) \leq c \int_{C \cap \Theta} \omega_{D_F}. \]
Let p_{x_i}, p_{y_j} and p_{f_k} be the projections on D_F to the coordinates x_i, y_j and f_k.
As the curve C has degree d the restriction of these maps to $C \cap \Theta$ are either constant or at most d to 1, hence
\[\text{Vol}_C(C \cap \Theta) \leq c \cdot d \cdot (\sum \int_{p_{x_i}(\Theta)} \frac{dx_i \wedge d\overline{x}_i}{\Im(x_i)^2} + \sum \int_{p_{y_j}(\Theta)} dy_j \wedge d\overline{y}_j + \sum \int_{p_{f_k}(\Theta)} df_k \wedge d\overline{f}_k). \]
Let i be such that the map p_{x_i} is not constant. In view of the description of Θ the projection $p_{x_i}(\Theta)$ is contained in a usual fundamental set of the upper-half plane, of finite hyperbolic area.
Let w be a coordinate y_j, f_k and p_w be the associated projection on the w axis. By the definition of Θ the projection $p_w(\Theta)$ is a relatively compact open set of the plane, hence of finite Euclidean area.
This finishes the proof of (i).

Let us prove (ii). As $C \cap \mathcal{F} = C \cap J \cdot \Sigma$, one has the inequality:
\[\text{Vol}_C(C \cap \mathcal{F}) \leq \sum_{j \in J} \text{Vol}_C(C \cap j \cdot \Sigma) = \sum_{j \in J} \text{Vol}_{j^{-1}C}(j^{-1}C \cap \Sigma) \leq |J| \cdot A_0 \cdot d \]
where we used part (i) applied to the algebraic curves $j^{-1}C$ of D, $j \in J$, which are of degree d.
This finishes the proof of lemma 5.3. \qed
5.5. Proof of theorem 1.3. Choose $C \subseteq Y$ an irreducible algebraic curve. To prove theorem 1.3 for Y it is enough to prove it for C.

Consider the set
\[C(T) := \{ z \in C \text{ and } \|z\|_\infty \leq T \} \]
As F is a fundamental domain for the action of Γ one has on the one hand:
\[C(T) = \bigcup_{\gamma \in \Gamma} \{ u \in \gamma F \cap C \text{ and } \|u\|_\infty \leq T \} \]
\[\subseteq \bigcup_{\gamma \in \Gamma} \{ u \in \gamma F \cap C \} \text{ by lemma 5.2} \]
Taking volumes:
\[\text{Vol}_C(C(T)) \leq \sum_{\gamma \in \Gamma} \text{Vol}_C(\gamma^{-1}C) \]
hence
\[(5.2) \quad \text{Vol}_C(C(T)) \leq (A \cdot d) \cdot N_C(B \cdot T) \]
where we applied lemma 5.3(ii) to the algebraic curves $\gamma^{-1}C$, $\gamma \in \Gamma$, which are all of degree d.

On the other hand if follows from lemma 5.1 that
\[C \cap B(x_0, \log T) \subseteq C(T) \]
hence
\[(5.3) \quad \text{Vol}_C(C \cap B(x_0, \log T)) \leq \text{Vol}_C(C(T)) \]
The result now follows from inequalities (5.2), (5.3) and theorem 6.1.

6. Stabilisers of a maximal algebraic subset: proof of theorem 1.4.

6.1. Pila-Wilkie theorem.

Definition 6.1. The classical height $H_{\text{class}}(x)$ of a point $x = (x_1, \ldots, x_m) \in \mathbb{Q}^m$ is defined as
\[H_{\text{class}}(x) = \max(H(x_1), \ldots, H(x_m)) \]
where H is the usual multiplicative height of a rational number.

Let $Z \subseteq \mathbb{R}^m$ be a subset and $T \geq 0$ a real number, we define:
\[\Psi_{\text{class}}(Z, T) := \{ x \in Z \cap \mathbb{Q}^m : H(x) \leq T \} \]
and
\[N_{\text{class}}(Z, T) := |\Psi(Z, T)| \]
For $Z \subset \mathbb{R}^m$ a definable set in a o-minimal structure we define the algebraic part Z^{alg} of Z to be the union of all positive dimensional semi-algebraic subsets of Z.

Recall (cf. definition 3.3 of [31]), that a semi-algebraic block of dimension w in \mathbb{R}^m is a connected definable set $W \subset \mathbb{R}^m$ of dimension w, regular at every point, such that there exists a semi-algebraic set $A \subset \mathbb{R}^m$ of dimension w, regular at every point with $W \subset A$.

The following result is a strong form, proven by Pila [22, theorem 3.6], of the original theorem of Pila and Wilkie [23]:

Theorem 6.1 (Pila-Wilkie). Let $Z \subset \mathbb{R}^m$ be a definable set in a o-minimal structure. For every $\varepsilon > 0$, there exists a constant $C_\varepsilon > 0$ such that

$$N_{\text{class}}(Z \setminus Z^{\text{alg}}, T) < C_\varepsilon T^\varepsilon$$

and the set $\Psi_{\text{class}}(Z, T)$ is contained in the union of at most $C_\varepsilon T^\varepsilon$ semi-algebraic blocks.

6.2. Comparison of heights.

Lemma 6.2. Let H_{class} be the classical height defined on $\text{End } E$ using the basis $(e_i^* \otimes e_j)_{i,j}$. There exists a constant $C > 1$ such that, if H is the height on $\text{End } E$ as in definition 2.2, then:

$$\forall \varphi \in \text{End } E, \quad \frac{1}{C} \cdot H_{\text{class}}(\varphi) \leq H(\varphi) \leq C \cdot H_{\text{class}}(\varphi).$$

Proof. Let $v \in \mathcal{P}$ and define the classical norm $|\cdot|_v$ on $\text{End } E_v$ as follows. Given $\varphi \in \text{End } E_v$ and $(\varphi)_{i,j}$ its matrix in the \mathbb{Q}_v-basis (e_1, \ldots, e_r) or E_v, one defines $|\varphi|_v := \max_{i,j} |\varphi_{i,j}|_v$.

The lemma follows immediately from the classical fact that for any finite $v \in \mathcal{P}$ and any $\varphi \in \text{End } E_v$ one has:

$$|\varphi|_v \leq \|\varphi\|_v \leq (\dim_{\mathbb{Q}} E) \cdot |\varphi|_v.$$

□

As a corollary, theorem 6.1 still holds if one replaces H_{class} by H:

Corollary 6.2. Let $Z \subset \text{End } E_\mathbb{R}$ be a definable set in a o-minimal structure. Define $\Psi(Z, T) := \{ x \in Z \cap \text{End } E : H(x) \leq T \}$ and $N(Z, T) := |\Psi(Z, T)|$. For every $\varepsilon > 0$, there exists a constant $C_\varepsilon > 0$ such that

$$N(Z \setminus Z^{\text{alg}}, T) < C_\varepsilon T^\varepsilon$$

and the set $\Psi(Z, T)$ is contained in the union of at most $C_\varepsilon T^\varepsilon$ semi-algebraic blocks.

6.3. **Proof of theorem 1.4.** Let V be an algebraic subvariety of S and Y a maximal irreducible algebraic subvariety of $\pi^{-1}V$. Let Θ_Y be the stabiliser of Y in $G(\mathbb{R})$ and H_Y be the neutral component of the Zariski-closure of $G(\mathbb{Z}) \cap \Theta_Y$ in G. We want to show that H_Y is a non-trivial subgroup of G, acting non-trivially on X.

Via $\rho : G \rightarrow \text{GL}(E)$, we view $G(\mathbb{R})$ as a semi-algebraic (and hence definable) subset of $\text{End } E_\mathbb{R}$. As $\pi|_\mathcal{F} : \mathcal{F} \rightarrow S$ is definable by theorem 1.2 lemmas 5.1 and 5.2 of [31] show the following:
Proposition 6.3. Let us define
\[\Sigma(Y) = \{ g \in G(\mathbb{R}) : \dim(gY \cap \pi^{-1}V \cap F) = \dim(Y) \} \]
and \[\Sigma'(Y) = \{ g \in G(\mathbb{R}) : g^{-1}F \cap Y \neq \emptyset \}. \]

The following properties hold:
1. The set \(\Sigma(Y) \) is definable and for all \(g \in \Sigma(Y) \), \(gY \subset \pi^{-1}V \).
2. For all \(\gamma \in \Sigma(Y) \cap G(\mathbb{Z}) \), \(\gamma Y \) is a maximal algebraic subset of \(\pi^{-1}V \).
3. The following equality holds:
\[\Sigma(Y) \cap G(\mathbb{Z}) = \Sigma'(Y) \cap G(\mathbb{Z}) . \]

It follows that the number \(N_Y(T) \) defined in theorem \ref{thm:1.3} coincide with \(|\Theta(Y, T)| \), where
\[\Theta(Y, T) := G(\mathbb{Z}) \cap \Psi(\Sigma(Y), T) . \]

We can now finish the proof of the theorem \ref{thm:1.4} in exactly the same way as the proof
of theorem 5.4 of \cite{31}. For the sake of completeness, we reproduce it here. As \(\Theta(Y, T) \subset \Psi(\Sigma(Y), T) \) it follows from the version \ref{thm:6.2} of Pila-Wilkie’s theorem, that for \(T \) large
enough, the set \(\Theta(Y, T^{1/N}) \) is contained in at most \(T^{1/N} \) semi-algebraic blocks. As \(|\Theta(Y, T^{1/N})| = N_Y(T^{1/N}) \geq T^{1/N} \) by theorem \ref{thm:1.3} we see that there is a semi-algebraic block \(W \) in \(\Sigma(Y) \)
containing at least \(T^{1/N} \) elements \(\gamma \in \Sigma(Y) \cap G(\mathbb{Z}) \) such that \(H(\gamma) \leq T^{1/N} \).

Using lemma 5.5 of \cite{30} which applies verbatim in our case, we see that there exists an
element \(\sigma \) in \(\Sigma(Y) \) such that \(\sigma \Theta_Y \) contains at least \(T^{1/N} \) elements \(\gamma \in \Sigma(Y) \cap G(\mathbb{Z}) \) such that \(H(\gamma) \leq T^{1/N} \).

Let \(\gamma_1 \) and \(\gamma_2 \) be two elements of \(\sigma \Theta_Y \cap G(\mathbb{Z}) \) such that \(H(\gamma) \leq T^{1/N} \).

Let \(\gamma := \gamma_2^{-1} \gamma_1 \in G(\mathbb{Z}) \cap \Theta_Y \). Using elementary properties of heights, we see that
\(H(\gamma) \leq c_n T^{1/2} \) where \(c_n \) is a constant depending on \(n \) only. It follows that for all \(T \)
large enough, \(\Theta_Y \) contains at least \(T^{1/N} \) elements \(\gamma \in G(\mathbb{Z}) \) with \(H(\gamma) \leq T \). Hence the
connected component of the identity \(H_Y \) of the Zariski closure of \(G(\mathbb{Z}) \cap \Theta_Y \) in \(G \) is a
positive dimensional algebraic subgroup of \(G \) contained in \(\Theta_Y \). This finishes the proof of
the theorem \ref{thm:1.4}.

7. End of the proof of theorem \ref{thm:1.1}

Let \(V \) be an algebraic subvariety of \(S \). Our aim is to show that maximal irreducible
algebraic subvarieties \(Y \) of \(\pi^{-1}V \) are precisely the irreducible components of the preimages
of maximal weakly special subvarieties contained in \(V \).

Using Deligne’s interpretation of Hermitian symmetric spaces in terms of Hodge theory
the representation \(\rho : G \hookrightarrow GL(E) \) defines a polarized \(\mathbb{Z} \)-variation of Hodge structure on
\(S \). We refer to \cite{17} section 2] for the definition of the Hodge locus of \(X \) and \(S \). Recall
that an irreducible analytic subvariety \(M \) of \(X \) or \(S \) is said to be Hodge generic if it is not
contained in the Hodge locus. If \(M \) is not irreducible we say that \(M \) is Hodge generic if
all the irreducible components of \(M \) are Hodge generic.
Let \(V' \subset V \) be the Zariski closure of \(\pi(Y) \), as \(Y \) is analytically irreducible it easily follows that \(V' \) is irreducible. Replacing \(V \) by \(V' \) we can without loss of generality assume that \(\pi(Y) \) is not contained in a proper algebraic subvariety of \(V \). We now have to show that \(\pi(Y) = V \) and \(V \) is an arithmetic subvariety of \(S \).

Since the group \(G \) is adjoint, it is a direct product \(G = G_1 \times \cdots \times G_r \) where the \(G_i \)'s are the \(\mathbb{Q} \)-simple factors of \(G \). This induces decompositions

\[
G = \prod_{i=1}^r G_i, \quad X = \prod_{i=1}^r X_i, \quad G(\mathbb{Z}) = \prod_{i=1}^r G_i(\mathbb{Z}), \quad \Gamma = \prod_{i=1}^r \Gamma_i, \quad S = \prod_{i=1}^r S_i,
\]

where \(G_i \) is a group of Hermitian type, \(X_i \) its associated Hermitian symmetric domain, \(\Gamma_i \) is an arithmetic lattice in \(G_i \), \(S_i := \Gamma_i \setminus X_i \) is the associated arithmetic variety and \(\pi_i : X_i \to S_i \) the associated uniformization map.

Our main theorem 1.1 is then a consequence of the following:

Theorem 7.1. Let \(\tilde{V} \) be the an analytic irreducible component of \(\pi^{-1}V \) containing \(Y \). In the situation described above, after, if necessary, reordering the factors, one has

\[
\tilde{V} = X_1 \times \cdots \times X_t \times \tilde{V}_{>t}
\]

where \(\tilde{V}_{>t} \) is an analytic subvariety of \(X_{t+1} \times \cdots \times X_r \) (in particular if \(r = 1 \) then \(\tilde{V} = X_1 = X \)).

We first show:

Proposition 7.1. Theorem 7.1 implies the main theorem 1.1.

Proof. Let \(t, 1 \leq t \leq r \), be the largest integer such that, after reordering the factors if necessary, we have:

\[
\tilde{V} = X_1 \times \cdots \times X_t \times \tilde{V}_{>t}
\]

with \(\tilde{V}_{>t} \) an analytic irreducible subvariety of \(X_{t+1} \times \cdots \times X_r \) which does not (after reordering the factors if necessary) decompose into a product \(X_{t+1} \times \tilde{V}_{>t+1} \).

In this case necessarily one has:

\[
Y = X_1 \times \cdots \times X_t \times Y_{>t}
\]

where \(Y_{>t} \) is a maximal algebraic subset of \(\tilde{V}_{>t} \).

Suppose that \(\dim_{\mathbb{C}}(\tilde{V}_{>t}) > 0 \). Let \(x_{\leq t} \) be a special point on \(X_1 \times \cdots \times X_t \) and \(x_{>t} \) be a Hodge generic point of \(Y_{>t} \). Let \(H \subset G \) be the Mumford-Tate group of the point \((x_{\leq t}, x_{>t}) \) of \(X \) and let \(X_H \subset X \) be the \(H(\mathbb{R}) \)-orbit of \(x \). Replace \(G \) by \(H \) the group of biholomorphisms of \(X_H \), \(X \) by \(X_H \), \(G \) by \(\text{H} \text{ad} \), \(\Gamma \) by \(\Gamma_H \) the projection of \(H(\mathbb{Z}) \) on \(H \), \(S \) by \(S_H := \Gamma_H \setminus X_H \), \(\pi : X \to S \) by \(\pi_H : X_H \to S_H \), \(V \) by \(V_H := \pi_H(x_{\leq t} \times \tilde{V}_{>t}) \) and \(Y \) by \(x_{\leq t} \times Y_{>t} \) and apply theorem 7.1 for these new data: this shows that there exists \(t' > t + 1 \) such that \(\tilde{V}_{>t'} = X_{t+1} \times \cdots \times X_{t'} \times \tilde{V}_{>t'} \). This contradicts the maximality of \(t \).
Hence $\tilde{V}_{>t}$ is a point (x_{t+1}, \ldots, x_r). Thus

$$\tilde{V} = X_1 \times \cdots \times X_t \times (x_{t+1}, \ldots, x_r)$$

is weakly special, in particular algebraic, hence by maximality

$$Y = \tilde{V} = X_1 \times \cdots \times X_t \times (x_{t+1}, \ldots, x_r)$$

and Y is weakly special.

Let us prove theorem 7.1. Let H_Y be the maximal connected \mathbb{Q}-subgroup in the stabiliser of Y in $G(\mathbb{R})$. By theorem 1.4 the group H_Y is a non-trivial algebraic subgroup of G.

Lemma 7.2. The group $H_Y(\mathbb{Q})$ stabilises \tilde{V}.

Proof. Suppose there exists $h \in H_Y(\mathbb{Q})$ such that

$$\tilde{V} \neq h\tilde{V}.$$ As Y is contained in $\tilde{V} \cap h\tilde{V}$ and Y is irreducible, we can choose an analytic irreducible component \tilde{V}' of $\tilde{V} \cap h\tilde{V}$ containing Y. Notice that $\pi(\tilde{V}')$ is an irreducible component, say V', of $V \cap T_h(V)$. As $\dim_{\mathbb{C}}(\tilde{V}') < \dim_{\mathbb{C}}(\tilde{V})$, we have that $\dim_{\mathbb{C}}(V') < \dim_{\mathbb{C}}(V)$.

As $\pi(Y) \subset V'$, this contradicts the assumption that $\pi(Y)$ is Zariski dense in V. □

Choose a Hodge generic point z of V^{sm} (smooth locus of V) and a point \tilde{z} of \tilde{V} lying over z. Let

$$\rho^{\text{mon}}: \pi_1(V^{\text{sm}}, z) \longrightarrow \text{GL}(E_\mathbb{Z})$$

be the corresponding monodromy representation. We let $\Gamma_V \subset G(\mathbb{Z})$ be the image of ρ. By usual topological Galois theory the group Γ_V is the subgroup of $G(\mathbb{Z})$ stabilising \tilde{V} (cf. section 3 of [17]), in particular Γ_V contains $H_Y(\mathbb{Z})$.

By Deligne’s monodromy theorem (see Theorem 1.4 of [17]), the connected component of the identity H_{mon} of the Zariski closure $\Gamma_V^{\text{Zar}, \mathbb{Q}}$ of Γ_V in G is a normal subgroup of G. As G is semi-simple of adjoint type, after reordering the factors we may assume that H_{mon} coincides with $G_1 \times \cdots \times G_t \times \{1\}$ for some integer $t \geq 1$. In particular $H_Y \subset G_1 \times \cdots \times G_t \times \{1\}$.

We claim that Γ_V normalises H_Y. Let $\gamma \in \Gamma_V$. Consider the \mathbb{Q}-algebraic group F generated by H_Y and $\gamma H_Y \gamma^{-1}$. Then $F(\mathbb{R})^+ \cdot \tilde{V} = \tilde{V}$, where $F(\mathbb{R})^+$ denotes the connected component of the identity of $F(\mathbb{R})$. Hence $F(\mathbb{R})^+ \cdot Y \subset \tilde{V}$. By lemma 7.2 there exists an irreducible (complex) algebraic subvariety \tilde{Y} of \tilde{V} containing U, hence Y. By maximality of Y one has $\tilde{Y} = Y$ hence

$$F(\mathbb{R})^+ \cdot Y = Y.$$ By maximality of H_Y, we have $F = H_Y$. This proves the claim.

As H_Y is normalised by Γ_V, it is normalised by $H_{\text{mon}} = G_1 \times \cdots \times G_t \times \{1\}$. It follows that (after possibly reordering factors) H_Y contains $G_1 \times \{1\}$.

The fact that $H_Y(\mathbb{R})$ stabilises \tilde{V} shows (by taking the $H_Y(\mathbb{R})$-orbit of any point of \tilde{V}) that $\tilde{V} = X_1 \times \tilde{V}_{\geq 1}$. This concludes the proof of theorem 7.1 and hence of theorem 1.1.

Appendix A. Definability

A.1. About theorem 1.2 Let \mathcal{R} be any fixed o-minimal expansion of \mathbb{R} (in our case $\mathcal{R} = \mathbb{R}_{\text{an,exp}}$). Recall [6, chap.10] that a *definable manifold* of dimension n is an equivalence class (for the usual relation) of triple $(X, X_i, \phi_i)_{i \in I}$ where $\{X_i : i \in I\}$ is a finite cover of the set X and for each $i \in I$:

(i) we have injective maps $\phi_i : X_i \longrightarrow \mathbb{R}^n$ such that $\phi_i(X_i)$ is an open, definably connected, definable set.

(ii) each $\phi(X_i \cap X_j)$ is an open definable subset of $\phi_i(X_i)$.

(iii) the map $\phi_{ij} : \phi_i(X_i \cap X_j) \longrightarrow \phi_j(X_i \cap X_j)$ given by $\phi_{ij} = \phi_j \circ \phi_i^{-1}$ is a definable homeomorphism for all $j \in I$ such that $X_i \cap X_j \neq \emptyset$.

We say that a subset $Z \subset X$ is definable (resp. open or closed) if $\phi_i(Z \cap X_i)$ is a definable (resp. open or closed) subset of $\phi_i(X_i)$ for all $i \in I$. A definable map between abstract definable manifolds is a map whose graph is a definable subset of the definable product manifold.

Notice in particular that $X = \mathbb{P}^n \mathbb{C}$ has a canonical structure of a definable manifold (for any \mathcal{R}): take $X_i = \mathbb{C}^n = \{[z_0, \ldots, z_{i-1}, 1, z_{i+1}, \ldots, z_n] \in \mathbb{P}^n \mathbb{C}, 0 \leq i \leq n$ where we identify \mathbb{C}^n with \mathbb{R}^{2n}. As a corollary any complex quasi-projective variety is canonically a definable manifold. This apply in particular to S. In particular the statement of theorem 1.2 has an intrinsic meaning.

Appendix B. Algebraic subvarieties of X

Recall from [29, section 2.1] that a realisation \mathcal{X} of X for G is any analytic subset of a complex quasi-projective variety \tilde{X}, with a transitive holomorphic action of $G(\mathbb{R})$ on \mathcal{X} such that for any $x_0 \in \mathcal{X}$ the orbit map $\psi_{x_0} : G(\mathbb{R}) \longrightarrow \mathcal{X}$ mapping g to $g \cdot x_0$ is semi-algebraic and identifies $G(\mathbb{R})/K_\infty$ with X. A morphism of realisations is a $G(\mathbb{R})$-equivariant biholomorphism. By [29, lemma 2.1] any realisation of X has a canonical semi-algebraic structure and any morphism of realisations is semi-algebraic. Hence X has a canonical semi-algebraic structure.

Let \mathcal{X} be a realisation of X for G. A subset $Y \subset \mathcal{X}$ is called an *irreducible algebraic subvariety* of \mathcal{X} if Y is an irreducible component of the analytic set $\mathcal{X} \cap \tilde{Y}$ where \tilde{Y} is an algebraic subset of \tilde{X}. By [9, section 2] the set Y has only finitely many analytic irreducible components and these components are semi-algebraic. An algebraic subvariety of \mathcal{X} is defined to be a finite union of irreducible algebraic subvarieties of \mathcal{X}.

Lemma B.1. A subset Y of \mathcal{X} is algebraic if and only if Y is a closed complex analytic subvariety of \mathcal{X} and semi-algebraic in \mathcal{X}.

Proof. Let $Y \subset X$ be a closed complex analytic subvariety of X, semi-algebraic in X. Without loss of generality we can assume that Y is irreducible as an analytic subvariety, of dimension d. Consider the real Zariski-closure \tilde{Y} of Y in the real algebraic variety $\text{Res}_{\mathbb{C}/\mathbb{R}}\tilde{X}$, where $\text{Res}_{\mathbb{C}/\mathbb{R}}\tilde{X}$ denotes the Weil restriction of scalars from \mathbb{C} to \mathbb{R}. Let us show that \tilde{Y} has a canonical structure of a complex subvariety of \tilde{X}. Choose an affine open cover $(\tilde{X}_i)_{i \in I} \subset \mathbb{A}^n_i$ of \tilde{X} and denote by \tilde{Y}_i the intersection $\tilde{Y} \cap \tilde{X}_i$. Let $i \in I$ such that \tilde{Y}_i is non-empty. As Y is semi-algebraic, Y is open in \tilde{Y} for the Hausdorff topology, hence $Y_i := Y \cap \tilde{X}_i$ is non-empty and open in \tilde{Y}_i for the Hausdorff topology. Consider the Gauss map φ_i from the smooth part \tilde{Y}_i^{sm} of \tilde{Y}_i to the real Grassmannian $\text{Gr}^{2d,2n_i}$ of real $2d$-planes of $\text{Res}_{\mathbb{C}/\mathbb{R}}\mathbb{A}^n_i$ associating to a point its tangent space. The map φ_i is real analytic and its restriction to the open subset Y_i^{sm} of \tilde{Y}_i^{sm} takes values in the closed real analytic subvariety $\text{Gr}^{d,n_i}_{\mathbb{C}} \subset \text{Gr}^{2d,2n_i}$. By analytic continuation φ_i takes values in $\text{Gr}^{d,n_i}_{\mathbb{C}}$. Hence \tilde{Y}_i is a complex algebraic subvariety of \mathbb{A}^n_i. As this is true for all $i \in I$, \tilde{Y} is a complex algebraic subvariety of \tilde{X}. As $Y \subset \tilde{Y}$ is open and Y is closed analytically irreducible in X, it follows that Y is an irreducible component of $X \cap \tilde{Y}$, hence algebraic.

The other implication is clear. \hfill \Box

As any morphism of realisations is an analytic biholomorphism and semi-algebraic the previous lemma implies immediately:

Corollary B.1. Let $\varphi : X_1 \longrightarrow X_2$ be a morphism of realisations of X. A subset Y_1 of X_1 is algebraic if and only if its image $Y_2 := \varphi(Y_1) \subset X_2$ is algebraic.

This defines the notion of algebraic subsets of X.

Lemma B.2. Let X be a realisation of a Hermitian symmetric domain X. Let $Z \subset X \subset \mathbb{C}^n$ be a complex analytic subvariety and $W \subset Z$ a semi-algebraic set. There exists an irreducible complex algebraic subvariety $Y \subset \mathbb{C}^n$ such that

$$W \subset Y \cap X \subset Z$$

Proof. This is a consequence of the proof of [24, lemma 4.1]. \hfill \Box

References

[1] A. Ash, D. Mumford, M. Rapoport, Y. Tai, Smooth Compactification of Locally Symmetric varieties, Lie Groups: History Frontiers and applications vol. 4. Math Sci Press. (1975).

[2] J. Ax, On Schanuel’s conjecture, Annals of Math. 93 (1971), 1-24

[3] W.L. Baily, A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Annals of Math., 84 (1966), 442-528

[4] A. Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341 Hermann, Paris (1969)

[5] P. Deligne, Variétés de Shimura: interprétation modulaire et techniques de construction de modèles canoniques, dans Automorphic Forms, Representations, and L-functions part. 2; Editeurs: A. Borel et W Casselman; Proc. of Symp. in Pure Math. 33, American Mathematical Society (1979) p. 247-290.
[6] L. van den Dries, *Tame Topology and o-minimal structures*. LMS lecture note series, 248. Cambridge University Press, 1998.
[7] L. van den Dries, C. Miller *On the real exponential field with restricted analytic functions*, Israel J. Math. **85** (1994), 19–56.
[8] B. Edixhoven, A. Yafaev, *Subvarieties of Shimura varieties*, Annals of Mathematics (2) **157** (2003) 621-645.
[9] E. Fortuna, S. Lojasiewicz, *Sur l’algébricité des ensembles analytiques complexes*, J. Reine Angew. Math. **329** (1981) 215-220.
[10] J.M. Hwang, W.K. To, *Volumes of complex analytic subvarieties of Hermitian symmetric spaces*, Amer. J. Math., **124** (2002), 1221-1246.
[11] B. Klingler, A. Yafaev, *The André-Oort conjecture*, preprint, available on first author’s web-page.
[12] F. Lindemann, *Über di Zahl π*, Math. Ann. **20** (1882), 213-225.
[13] Margulis G.A, *Discrete subgroups of semisimple Lie groups*, Ergebnisse der Mathematik und ihrer Grengebiete 17, Springer-Verlag (1991).
[14] N. Mok, *Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds*, Series in Pure Math. **6**, World Scientific (1989).
[15] N. Mok, *On the Zariski closure of a germ of totally geodesic complex submanifold on a subvariety of a complex hyperbolic space form of finite volume*, Complex Analysis, 2-79-300, Trends Math., Birkhäuser Springer (2010).
[16] N. Mok, *Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric*, J. Eur. Math. Soc. **14** (2012), 1617-1656.
[17] B. Moonen, *Linearity properties of Shimura varieties. I*, J. Algebraic Geom. **7** (1998), 539-567.
[18] J. Pila, *O-minimality as an approach to the André-Oort conjecture*, preprint 2012. Available on author’s web-page.
[19] I.I. Pyateskii-Shapiro, *Automorphic functions and the geometry of classical domains*, translated from the Russian, Mathematics and its Applications, Vol. 8, Gordon and Breach Science Publishers (1969).
[20] J. Pila, A. Wilkie, *The rational points on a definable set*, Duke Math. Journal **133**, (2006) 591-616.
[21] J. Pila, J. Tsimerman, *The André-Oort conjecture for the moduli space of abelian surfaces*, preprint, 2011, available on ArXiv.
[22] J. Pila, J. Tsimerman, *Az-Lindemann for A_n*, Preprint 2012.
[23] J. Pila, U. Zannier, *Rational points in periodic analytic sets and the Manin-Mumford conjecture*. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. **19** (2008), no. 2, 149-162.
[24] I. Satake, *Algebraic structures of symmetric domains*, Kanu Memorial Lectures 4, Iwanami Shoten and Princeton University Press (1980).
[25] T. Scanlon, *O-minimality as an approach to the André-Oort conjecture*, preprint 2012. Available on author’s web-page.
[26] E. Ullmo, *Quelques applications du théorème d’Az-Lindemann hyperbolique*, preprint 2012. Available on author’s web-page.
[27] E. Ullmo, A. Yafaev, *Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture*, preprint, Available on author’s web-page.
[28] K. Weierstraß, *Zu Lindemann’s Abhandlung: “Über die Ludolph’sche Zahl”*, Berl. Ber. (1885) 1067-86.
[33] J.A. Wolf, A. Korányi, *Generalized Cailey transformations of bounded symmetric domains*, Amer.J.Math. 87 (1965), 899-939

Bruno Klingler : Université Paris-Diderot (Institut de Mathématiques de Jussieu-PRG, Paris) and IUF.
email : klingler@math.jussieu.fr.

Emmanuel Ullmo : Université Paris-Sud.
email: ullmo@math.u-psud.fr

Andrei Yafaev : University College London, Department of Mathematics.
email : yafaev@math.ucl.ac.uk