Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Complement activation in COVID-19 and targeted therapeutic options: A scoping review

Endry Hartono Taslim Lima,b,c,d, Rombout Benjamin Ezra van Amstela,b, Vieve Victoria de Boera, Lonneke Alette van Vughta,e, Sanne de Bruina,b, Matthijs Christian Brouwerc,d, Alexander Petrus Johannes Vlaara,b,*, Diederik van de Beekc,d

a Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands
b Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
c Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands
d Amsterdam Neuroscience, Amsterdam, the Netherlands
e Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands

ARTICLE INFO

Keywords:
SARS-CoV-2
COVID-19
Complement cascade
Complement inhibition
Review

ABSTRACT

Increasing evidence suggests that activation of the complement system plays a key role in the pathogenesis and disease severity of Coronavirus disease 2019 (COVID-19). We used a systematic approach to create an overview of complement activation in COVID-19 based on histopathological, preclinical, multiomics, observational and clinical interventional studies. A total of 1801 articles from PubMed, EMBASE and Cochrane was screened of which 157 articles were included in this scoping review. Histopathological, preclinical, multiomics and observational studies showed apparent complement activation through all three complement pathways and a correlation with disease severity and mortality. The complement system was targeted at different levels in COVID-19, of which C5 and C5a inhibition seem most promising. Adequately powered, double blind RCTs are necessary in order to further investigate the effect of targeting the complement system in COVID-19.

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to another epidemic caused by a coronavirus. Coronavirus disease 2019 (COVID-19) has resulted in over six million deaths globally and has led to substantial morbidity [1,2]. Clinical manifestation ranges from asymptomatic to severe, with development of acute respiratory distress syndrome (ARDS) and multiorgan failure [1,3,4]. Mortality rates in severe COVID-19 remain high due to multiorgan failure inflicted by uncontrolled inflammation [5,6], even with SARS-CoV-2 vaccinations [7,8]. The complement system plays an important role in the innate immune response by marking pathogens, mediating lysis and attracting inflammatory cells to the infection site [9]. Increasing evidence suggests a key role for activation of the complement system in the pathogenesis and disease severity of COVID-19 [10–16].

1.1. Complement system

The complement system can be activated through three different pathways; the classical pathway, the lectin pathway, also known as the mannose-binding lectin (MBL) pathway, and the alternative pathway (Fig. 1) [17]. Via the classical pathway, foreign microorganisms are marked by binding of antibodies to antigens, which leads to further complement activation, production of potent anaphylatoxins and formation of the membrane attack complex (MAC) [18]. The MAC plays a crucial role in host defense through cell lysis [19,20]. The lectin pathway employs receptors which have the ability to recognize pathogens and distinguish them from host cells, whereas the alternative pathway is able to recognize and eliminate pathogens without requiring antibodies or prior contact with a pathogen. Furthermore, inhibitory proteins of the alternative pathway prevent aberrant complement activation [18,21].

Activation of the classical pathway begins when C1q, a

* Corresponding author at: Department of Intensive Care Medicine, Room C3-421, Amsterdam UMC, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
E-mail address: a.p.vlaar@amsterdamumc.nl (A.P.J. Vlaar).

https://doi.org/10.1016/j.blre.2022.100995

Available online 30 July 2022

0268-960X/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
subcomponent of C1, binds to immune complexes \([17,19]\). Complement proteins from the alternative pathway are called factors and are followed by a capital letter, such as factor B and factor D. The MBL pathway consists of MBL itself, two MBL-associated serum proteases 1 and 2 (MASP-1 and -2) and recognition molecules ficolin-1, –2 and –3, which are involved in the activation of the MBL pathway \([22]\). The MBL and alternative pathway can be activated by the binding of C3b, MBL, ficolins or properdin with carbohydrate structures on injured cells or microorganism-associated molecular patterns \([19]\). The terminal part of the complement pathway is the MAC, consisting of activated protein C5 and complement components C6-C9 (C5b-9) \([19]\). Activation of one or more pathways by pathogens eventually leads to the activation of C3 and C5 convertases that cleaves key components C3 and C5 into bioactive components C3a, C3b, C5a and C5b. These components modulate the formation of the MAC \([23]\). Furthermore, C3b is able to bind to the pathogen and continues, or even amplifies, the complement cascade. The formation of the anaphylatoxins C3a and C5a leads to the release of cytokines and causes inflammation at the infection site resulting in tissue injury. In addition, C3a and C5a cause activation of the coagulation system through expression of tissue factor by neutrophils and endothelial cells \([24–29]\). Not only can C5a be generated through the conventional complement pathways, but also through direct cleavage of C5 by various enzymes such as thrombin, trypsin, and plasmin \([30,31]\). On the one hand, the role of the complement system in the host defense against invading microorganisms is vital, but on the other hand the harmful effects that come with its hyperactivation stresses the importance of its tight regulation \([17]\).

1.2. Complement in COVID-19

In COVID-19, the complement system can be activated through all three complement pathways \([13,32,33]\). However, given the ongoing thrombotic events in COVID-19, complement activation can also occur by enzymes such as thrombin, trypsin and plasmin \([30,31]\). It has been shown that complement is directly activated by SARS-CoV-2 through the MBL pathway via MASP-1 and MASP-2 and that the SARS-CoV-2 spike protein directly activates the alternative pathway \([34,35]\). A multicenter biomarker study found that enhanced activation of the alternative pathway was most prevalent in patients with severe COVID-19 and that this was associated with markers of hypercoagulability such as von Willebrand factor, and markers of endothelial injury such as thrombomodulin and angiopoietin-2, which are characteristic features of severe COVID-19 \([12,13,32]\). Furthermore, thromboinflammation by neutrophil extracellular traps (NETs) in COVID-19 has been shown to be C5a/C5aR1 dependent \([36]\).

It has been demonstrated in vitro and in vivo that complement activation is highly present in patients with ARDS and that C5a is associated with the lung injury caused by inflammatory cell influx \([13,37–41]\). In a small in vivo model, C3 knock-out mice infected with SARS-CoV-1 exhibited significantly less respiratory dysfunction and pathology compared with control mice, thereby identifying complement as an important mediator \([42]\). High levels of C5a and C5b-9 have been reported in patients with severe COVID-19 and are associated with disease severity and mortality \([12,14,29,36,43]\). C5b-9 levels were higher in COVID-19 patients with respiratory failure compared with non-COVID-19 respiratory failure \([12]\). Several autopsy studies with cases of severe COVID-19 infection showed significant deposits of terminal complement components and MASP-2 in the microvasculature of lung and kidney tissue, further strengthening the role of complement activation \([23,44–46]\).

Currently, emerging treatment strategies targeting complement on different targets have been initiated in COVID-19 patients \([13]\). In this case, additional treatment targets are shown in the figure below.
scoping review, we aim to systematically create an overview of complement activation in COVID-19 based on histopathological, preclinical, multiomics, observational and clinical intervention studies.

2. Methods

The Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) statement was used as guideline [47]. The review protocol was determined before writing this review, but not published elsewhere.

2.1. Information sources, search strategy and selection process

PubMed/Medline, Embase (Ovid) and Cochrane Library were accessed for articles until May 30, 2022. Search terms included COVID-19, SARS-CoV-2 and complement. The complete search strategy can be found in the Search strategy Box A in the supplementary materials. Language was restricted to English articles. Three independent reviewers (EL, VdB and RvA) screened the articles by title and abstract using Rayyan [48]. When deemed eligible, the articles were selected for the full text stage by EL and RvA. Reference lists of included studies were manually screened for eligible articles to ensure a comprehensive search. In case of conflict, a fourth reviewer (LvV) was consulted.

2.2. Eligibility criteria

The inclusion criteria for human studies were an age of 16 years or older, presumed SARS-CoV-2 infection or diagnosed with SARS-CoV-2 by means of a real time polymerase chain reaction (RT-PCR) or nucleic acid amplification test (NAAT) and available complement measurements or studies targeting the complement system. Case reports or case studies with less than four patients, preprints and abstracts or articles of which the full-text was not available were excluded. Language was restricted to English articles only. Observational and clinical intervention studies in specific subpopulations were limited to disease severity only. Eligible articles were divided into the following categories: 1) histopathological studies 2) preclinical studies 3) omics 4) observational and 5) clinical interventional studies. Articles could be included in multiple categories.

2.3. Data collection process

Data was extracted into pre-defined extraction forms by EL and RvA. For each study category a separate table was used describing the characteristics of each study, study design or methods, outcomes and if applicable various clinical outcomes or key findings. Patients were classified as asymptomatic, mild, moderate or severe. Patients on non-mechanical or mechanical ventilation and patient admitted to the intensive care unit (ICU) were considered as severe.

3. Results

The search resulted in a total of 2594 eligible articles (Search strategy Box A in the supplementary materials). After removal of duplicates, 1801 articles were screened. Full-text screening resulted in 260 articles which were assessed for eligibility (Fig. 2). In total, 16 histological and/or autopsy studies, 23 preclinical studies, 36 omics studies, 81 observational studies and 13 clinical interventional studies were identified. Twelve studies were included in multiple categories. The characteristics and observations of the studies are described in the corresponding (supplementary) tables (Table 1-2, S1–4).

3.1. Histopathological studies

Several studies involved skin biopsies of COVID-19 patients (Table S1) [49–53]. The majority of studies revealed complement depositions, including C3d, C4d and notably C5b-9, in the vascular system throughout the skin [50,51,53]. Moreover, increased C4d deposition was also seen in and around vessels where fibrin thrombi were located [54]. However, one study reported no complement depositions in the majority of skin lesions [49]. Specific skin lesions, such as chilblain-like skin lesions, also revealed complement activation [52].

Autopsy studies identified complement depositions of all three pathways (C1q, C4, C5b-9, C3, C3d, factor B, Factor D, factor H, MASP-2) in the lungs [45,55,56]. Two studies showed activation of the lectin pathway in the lungs [56,57], however depositions of the lectin pathway were hardly detectable in another study [45]. In parenchyma of lung tissues of critically ill patients, increased T helper (Th)2-biased adaptive immune response was observed with apparent activation of the complement system (C3b and C5b-9) [58]. In the kidneys, cleavage products of C3 were heavily present in renal and glomerular arteries. C5b-9 was observed on the tubules, peritubular capillaries and renal arterioles [44,46]. Components of the lectin and alternative pathway were activated in the kidneys of COVID-19 patients [46]. Deposits of the classical and alternative pathway were found in liver tissue of deceased COVID-19 patients [45,59], albeit C4d deposition was limited and C5d absent in one study measuring only these two components [59]. One study examined heart tissue of deceased COVID-19 patients, in which more C5b-9 was seen compared to non-COVID-19 controls [60].

Overall, histopathological studies showed widespread complement activation in the vascular system throughout the skin, lungs and kidneys.

3.2. Preclinical studies

Most preclinical studies concerned cell experiments (Table 1). SARS-
Table 1
Summary characteristics of preclinical studies.

Author & year	Study design	Study population	Model	Methods	Intervention/ complement factors measured	Severity	Key findings
Lage [62], 2022	Experimental monocytes	Isolated monocytes from COVID-19 patients incubated with complement antibodies	Flow cytometry	C1q, C3	Mild-severe	Increase in C1q and C3 on monocytes from COVID-19 patients compared to healthy controls, which remained elevated even after a short recovery period. No difference between disease severity.	
Stravalaci [63], 2022	Experimental	N.A.	SARS-CoV-2 spike protein-coated plates incubated with (complement depleted) serum	Complement deposition assay	C1q, C4- or C3-depletion	–	SARS-CoV-2 spike protein, by interacting with MBL, activates the complement lectin pathway.
Georg [65], 2022	Experimental cell	T cells	Mechanistic studies on T cells exposed to COVID-19 serum	Flow cytometry, specific T cell cultures/assays	Anti-C3a antibody	Severe	SARS-CoV-2 triggers complement activation (C3a) and drives differentiation of T cells with high immunopathogenic potential. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Normal human bronchial and small airway epithelial cells respond to infection by local C1 mobilization, intracellular complement activation, destruction of the epithelial integrity and secrete high levels of C3a. Targeting C3aR and C5aR can prevent intrinsic lung inflammation and tissue damage from SARS-CoV-2.
Posch [64], 2021	Experimental cell	Human airway epithelial cells	HAE or Vero/TMPRSS2 infected with SARS-CoV-2	–	C3aR and C5aR antagonists	–	Normal human bronchial and small airway epithelial cells respond to infection by local C1 mobilization, intracellular complement activation, destruction of the epithelial integrity and secrete high levels of C3a. Targeting C3aR and C5aR can prevent intrinsic lung inflammation and tissue damage from SARS-CoV-2.
Kovacs-Kasa [69], 2022	Experimental cell	HLMVEC	Endothelial permeability measurement of HLMVEC exposed to plasma from SARS-CoV-2 patients	ECIS	C3aR and C5aR antagonists	Non-severe, severe	SARS-CoV-2 induced permeability is not affected by C3a or C5a inhibitors.
Perico [68], 2022	Experimental	HMEC-1	Endothelial cells exposed to SARS-CoV-2 derived spike protein 1	Immunofluorescence	C3aR and C5aR antagonists	Severe	Endothelial dysfunction induced by SARS-CoV-2 derived S1 protein triggers exuberant complement deposition on activated microvascular endothelial cells C3a and, to a lesser extent, C5a, further amplify complement activation that fuels inflammation in response to S1.
Zhang [66], 2021	Experimental cell	Neutrophils and HUVECs	Neutrophils exposed to plasma from HCs or COVID-19 patients and HUVECs exposed to supernatant of neutrophils cultured with COVID-19 plasma	MPO-DNA, cell viability assay	Anti-C3a and anti-C5a antibodies	Mild or severe	Anaphylatoxins C3a and C5a in the plasma of COVID-19 patients strongly induced NET formation, which could be relieved by CPB. Cell viability of HUVEC is reduced after exposure to plasma from mild and severe COVID-19 patients compared to HCs, which could be reduced by CPB or anti-C3a antibody plus anti-C5a antibody.
Apostolidis [67], 2022	Experimental platelets	Platelets from COVID-19 patients, activation, neutralization and inhibition assays	Flow cytometry	Anti-C3a and anti-C5a antibodies	Hospitalized		
	Experimental cell	Neutrophils and monocytes	C3aR measured in neutrophils and monocytes	–	–	–	C3aR is highly expressed on myeloid cells and (continued on next page)
Table 1 (continued)

Author & year	Study design	Study population	Model	Methods	Intervention/complement factors measured	Severity COVID-19	Key findings
Carvelli [14], 2020	Experimental cell	Neutrophils and HAEs	monocytes in peripheral blood from COVID-19 patients and HCs	Neutrophils stimulated with PRP from patients with COVID-19 and HAEs exposed to either COVID-19 derived PRP or NETS (generated in vitro by exposure to PRP from patients with COVID-19)	MPO-DNA, TAT complex, immunofluorescent staining	C5aR1-antagonist	Moderate-severe
Skendros [36], 2020	Experimental cell	Neutrophils and HAEC	Neutrophils in peripheral blood from COVID-19 patients and HCs	Neutrophils stimulated with PRP from patients with COVID-19 and HAEs exposed to either COVID-19 derived PRP or NETS (generated in vitro by exposure to PRP from patients with COVID-19)	C5aR1-antagonist	Moderate-severe	
Aiello [70], 2022	Experimental cell	HMEC-1	HMEC-1 exposed to COVID-19 serum	HMEC-1 exposed to COVID-19 serum	Immunofluorescence	C5aR1-antagonist	Severe
Yu [16], 2021	Experimental cell	TF1PIGAnull cells	TF1PIGAnull cells exposed to serum of COVID-19 patients	TF1PIGAnull cells exposed to serum of COVID-19 patients	Modified Ham test, flow cytometry	Anti-CS antibody or factor D inhibitor	Moderate-severe
Yu [35], 2020	Experimental cell	TF1PIGAnull cells	TF1PIGAnull cells exposed to serum of healthy patients with spike protein S1 and S2 subunits from SARS-CoV-2	TF1PIGAnull cells exposed to serum of healthy patients with spike protein S1 and S2 subunits from SARS-CoV-2	Modified Ham test, flow cytometry	Anti-CS antibody or factor D inhibitor	–
Lam [72], 2021	Experimental red blood cell isolation	Red blood cells	Red blood cells from patients incubated with complement antibodies	Red blood cells from patients incubated with complement antibodies	Flow cytometry, ELISA	(Anti-) C3b/C4b and C4d antibodies	Severe
Ali [34], 2021	Experimental cell	Transfected HEK-293 cells expressing SARS-CoV-2 S protein	HEK-293 cells transfected with SARS-CoV-2 proteins and SARS-CoV-2 proteins incubated with complement antibodies	HEK-293 cells transfected with SARS-CoV-2 proteins and SARS-CoV-2 proteins incubated with complement antibodies	FACS, ELISA	Anti-C3c, anti-C3b, anti-C4b, anti-C4c and MASP-2 inhibitor	–
Savitt [61], 2021	Experimental SARS-CoV-2 proteins	SARS-CoV-2 proteins incubated with complement or healthy serum	SARS-CoV-2 proteins incubated with complement or healthy serum	SARS-CoV-2 proteins incubated with complement or healthy serum	ELISA	Anti-C1q, anti-C4d antibodies	–

Promotes inflammation in COVID-19 patients. C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro. C3 inhibition disrupted tissue factor expression in neutrophils. HMEC-1 exposed to COVID-19 serum exhibited significantly higher C5b-9 formation on the cell surface than control serum. Perfusion with whole blood on HMEC-1 pre-exposed to COVID-19 serum resulted in platelet adhesion and aggregation, addition of C5a receptor antagonist fully prevented it. Serum from COVID-19 patients can induce complement-mediated cell death and increase C5b-9 deposition on the cell surface, which can be mitigated by C5 and factor D inhibition. SARS-CoV-2 spike proteins block complement factor H from binding to heparin. Increased APC activation is associated with COVID-19 disease severity. SARS-CoV-2 spike protein (subunit 1 and 2) directly activates APC. C5 inhibition prevents accumulation of C5b-9 in vitro in response to SARS-CoV-2 spike proteins. SARS-CoV-2 infection leads to complement activation in vivo. Enhanced C3b and C4d depositions on erythrocytes in COVID-19 sepsis patients compared with healthy controls increased further on day 7, supporting the role of complement in sepsis-associated organ injury. Erythrocytes could help in identifying patients who may benefit from complement targeted therapies. SARS-CoV-2 proteins bind to recognition molecules of the LP with subsequent activation of C3b and C4b. MASP-2 inhibitor blocks LP-mediated complement activation. SARS-CoV-2 proteins bind C1q and activates the classical pathway of complement, bind to gC1qR which in turn could serve as (continued on next page)
Table 1 (continued)

Author & year	Study design	Study population	Model	Methods	Intervention/ complement factors measured	Severity COVID-19	Key findings
Freda [158], 2021	Experimental cell	Human aortic adventitial fibroblasts	Incubation of AFs with SARS-CoV-2 proteins	ELISA	Anti-gC1qR antibody	–	a platform for the activation of the complement system. After incubation, the expression of gC1qR, ICAM-1, tissue factor, RAGE and GLUT-4 was significantly upregulated. In general, the extent of expression was different for each SARS-CoV-2 protein, suggesting that SARS-CoV-2 proteins interact with cells through different mechanisms.
Kisserli [73], 2021	Experimental red blood cell	Red blood cells	Assessing CR1 density and levels of C3b/C3bi and C4d deposits on erythrocytes	Flow cytometry and PCR amplification	CR1, C3b/C3bi and C4d antibodies	Severe	Decrease in CR1/E and presence of C4d/E deposits confirms the role of complement. Elevated C4d/E depositions might be an early signal of vascular damage. Complement regulatory molecules could be useful in the treatment of COVID-19.
Fernández [71], 2022	Experimental cell	Human microvascular endothelial cells (HMEC-1)	HMEC-1 incubated with healthy donor, critical COVID-19 or septic shock plasma	Immunofluorescent staining	Anti-C5b-9 antibody	Severe	COVID-19 patient plasma results in similar C5b-9 deposits on endothelial cells as septic shock patient plasma.
Becker [74], 2021	Experimental animal	Hamster	Hamsters intranasally infected with 10^3 plaque forming units SARS-CoV-2	Immunohistochemistry	Anti-C3c antibody	–	Vascular lesions included endothelialitis and vasculitis at 3 and 6 days post infection, and were almost nearly resolved at 14 dpi. Importantly, virus antigen was present in pulmonary lesions, but lacking in vascular alterations. In good correlation to these data, NETs were detected in the lungs of infected animals at 3 and 6 days post infection. Strong C3c signals are present in inflamed lung tissue 3 and 6 days after infection. Endothelial cell damage with increased C5b-9 (caspase-3, ACE2, IL6, TNFa) expression was seen in the microvessels of the skins and brain in the group with co-localization with the S1 spike protein. Unvaccinated hamsters showed significant upregulation of complement activation, mainly in C3, C7 and C2. Vaccinated hamsters showed significant downregulation of complement activation.
Nuovo [75], 2020	Experimental animal	Mice	Mice intravenous injected with spike peptides of SARS-CoV-2 (without infectious virus)	Immunohistochemistry	C5b-9 antibody	–	Endothelial cell damage with increased C5b-9 (caspase-3, ACE2, IL6, TNFa) expression was seen in the microvessels of the skins and brain in the group with co-localization with the S1 spike protein. Unvaccinated hamsters showed significant upregulation of complement activation, mainly in C3, C7 and C2. Vaccinated hamsters showed significant downregulation of complement activation.
Aid [76], 2022	Experimental animal	Hamster	Hamsters receiving vaccination or sham and challenged intranasally with SARS-CoV-2	Immunohistochemistry, transcriptomic profiling (RNA-seq)	SARS-CoV-2 vaccination (Ad26.COV2.S)	–	Markers of the complement cascade (C6, C2, C3, CFB) were increased in sham unvaccinated compared to vaccinated macaques.
Aid [76], 2022	Experimental animal	Macaque	Macaques receiving vaccination or sham and challenged intranasally with SARS-CoV-2	Immunohistochemistry, proteomic profiling	SARS-CoV-2 vaccination (Ad26.COV2.S)	–	

Abbreviations: ACE = angiotensin-converting enzyme; AF = human aortic adventitial fibroblast; APC = alternative pathway of complement; CPB = carboxypeptidase B; EGCS = electric cell-substrate impedance sensing; ELISA = enzyme-linked immunosorbent assay; FACS = fluorescence-activated single cell sorting; HAE = human airway epithelia; HAECE = human aortic endothelial cell; HC = healthy control; HD = healthy donor; HFNO = high flow nasal oxygen; HLMVEC = human lung microvascular endothelial cells; HMEC-1 = human microvascular endothelial cells-1; HUVEC = human umbilical vein endothelial cells; ICU = intensive care unit; IL = interleukin; LP = lectin pathway; MASP = mannose-binding protein-associated serine protease; MPO = myeloperoxidase; NETs = Neutrophil extracellular traps; PCR = polymerase chain reaction; PRP = platelet-rich plasma; seq = sequencing; TAT = thrombin-antithrombin; TMPRSS2 = transmembrane serine protease 2; TNFa = tumor necrosis factor alpha.
CoV-2 proteins were shown to bind C1q in an experimental study with SARS-CoV-2 proteins, as well as recognize molecules of the lectin pathway with activation of C3b and C4b in cell studies [34,61]. In monocytes of COVID-19 patients, an increase was seen in C1q and C3 compared to healthy controls [62]. Other cell studies showed that the alternative pathway was directly activated by SARS-CoV-2 proteins and was associated with disease severity [16,35,63]. Inhibition of MASP-2 by using an inhibitory monoclonal antibody was shown to block complement activation mediated by the lectin pathway in experimental cells [34]. Normal human bronchial and small airway epithelial cells reacted to SARS-CoV-2 infection with local mobilization of C3, intracellular complement activation, destruction of epithelial structure and secretion of high levels of C3a [64]. Inhibition of C3 with compstatin Cp40 hindered expression of tissue factor in neutrophils [36]. An experimental study in T cells showed that C3a activation was triggered by SARS-CoV-2 and led to differentiation of T cells with high immunopathogenic characteristics [65]. C3a and C5a in plasma of COVID-19 patients led to the induction of NET formation and recombiant carboxypeptidase B was shown to alleviate damage of vascular cells by decreasing C5a- and C5a-induced NET production [66]. One experimental cell study in neutrophils and monocytes showed that C5aR1 is abundantly expressed on myeloid cells leading to inflammation in COVID-19 patients [14], and another experimental cell study in neutrophils and human aortic endothelial cells showed that blockade of C5aR1 with C5aR1 antagonist C5aRa/PMX-53 impairs platelet-mediated NET-driven thrombogenicity [36]. In platelets from COVID-19 patients, the C5a-C5aR pathway mediates hyperactivity driven by COVID-19 plasma [67]. Inhibition of C3aR (SB 290157) and C5aR (mix of W-54011 and DF2593) in human airway epithelial cells led to mitigation of viral infection and a decrease of the inflammatory response in airways, whereas inhibition of C5aR also maintained the epithelial integrity of human airway epithilia infected with SARS-CoV-2 [64]. One experimental study in human microvascular endothelial cells (HMEC-1) showed that endothelial dysfunction induced by SARS-CoV-2 derived S1 protein triggered complement deposition on activated microvascular endothelial cells [68]. In particular C5a further amplification of activation of the complement system, which contributed to inflammation in response to S1 [68]. However, in one experimental cell study, pulmonary microvascular endothelial cell permeability induced by SARS-CoV-2 was not affected by C3aR (SB290157) and C5aR (W54011) antagonists [69]. HMEC-1 exposed to COVID-19 serum showed significantly higher C5b-9 formation of the cell surface compared with control serum [70]. C5aR1 antagonist (CCX168) completely prevented platelet adhesion and aggregation, which arose when perfusion with whole blood on HMEC-1 pre-exposed to COVID-19 serum was performed [70]. An increase in C5b-9 deposits on human microvascular endothelial cells was associated with COVID-19 severity, but did not differ from septic shock patients [71]. C5 and factor D inhibition with anti-C5 monoclonal antibody (anti-CSAb) and factor D inhibitor (ACH145951) respectively, was shown to hamper accumulation of C5b-9 induced by SARS-CoV-2 proteins in two experimental cell studies [16,35]. Two experimental red blood cell studies showed complement depositions of C3, C4 and a decrease of complement receptor 1 (CR1) on erythrocytes, indicating a role of complement activation in COVID-19 [72,73].

We identified a few animal studies on the complement system and COVID-19. Hamsters infected with SARS-CoV-2 showed vascular lesions including endothelialitis and vasculitis, NETs and immunohistochemistry showed strong C5b-9 staining in inflamed lung tissue compared with controls [74]. Mice injected with the SARS-CoV-2 S1 spike protein showed endothelial cell damage with increase of immunohistochemical C5b-9 expression in the microvessels of the skin and brain compared with mice injected with the S2 subunit [75]. Complement activation was significantly increased in hamsters and macaques vaccinated with Ad26.COV2.S compared with unvaccinated hamsters and macaques [76].

Taken together, preclinical studies showed evidence of extensive complement activation of SARS-CoV-2 through all three pathways. These studies investigated potential targets of the complement system in COVID-19 and showed the implications of targeting these targets.

3.3. Omics

Transcriptomic studies identified that genes functioning in the complement pathways are significantly upregulated in COVID-19, notably in severe disease and endures over time (Table S2) [77–81]. A transcriptomic study determined RNA levels of 28 complement genes of previously analyzed whole-blood transcriptomic data from 32 patients with different severity of COVID-19 [78]. A variety of genes involved in the complement pathways were expressed, where expression of classical pathway genes was increased in patients with moderate disease, while expression of increased lectin and alternative pathway genes was increased in patients with severe disease and correlated with biomarkers of inflammation and coagulopathy. In particular, C3 was upregulated in several studies and was associated with ICU hospitalization or severity [78,79,82–85]. Most proteomic studies identified complement proteins and regulatory factors as a key component in the immunologic reaction in response to COVID-19 [86–91]. A proteomic study identified the interaction of complement system proteins with the SARS-CoV-2 spike glycoprotein in plasma from 123 COVID-19 patients with different severities [88]. The classical and alternative pathway were an essential component in the overreaction of the immune system in response to COVID-19. MBL and pentraxin-3, which are activators of the complement pathway, were associated with mortality. Multomics confirmed the upregulation of complement activation on both proteomic and transcriptomic level and the association with disease severity [92–96]. Bioinformatic studies showed upregulation of complement activation [97–99].

In conclusion, multomics showed upregulation of the complement pathways and associations with disease severity and mortality.

3.4. Observational studies

Most observational studies were cohort studies (Table S3). 67 of 81 (83%) studies showed increased complement activation in COVID-19 patients. C3 and C4 were most often measured and were generally either decreased in severe patients or non-survivors [100–105], or did not differ compared with non-severe patients or survivors [106–118]. Anaphylatoxins C3a and notably C5a were elevated and correlated with disease severity, ICU admission and mortality [12,14,65,68,85,119–128]. Soluble C5b-9 levels were also increased and correlated with C5a, markers of inflammation and coagulation [12,33,36,68,70,71,78,120,125,129–134]. C5 was only elevated in three studies measuring C5 levels [66,135,136]. MBL levels in plasma were in general higher in COVID-19 patients compared with healthy controls [134,137,138]. Overactivation of the alternative pathway was observed as well, especially in critically ill COVID-19 patients [12,16,43,122,139]. In a prospective cohort study of 219 hospitalized COVID-19 patients, including those admitted to the ICU, increase in concentrations over time of C3a, C5a and factor Bb were associated with death [43].

Summarized, the majority of observational studies showed complement activation in COVID-19 patients. C3a and notably C5a and C5b-9 were increased and correlated with disease severity.

3.5. Clinical interventional studies

We identified 13 studies on clinical interventions in the complement system (Table 2, Table S4a and S4b). Six (46%) were case series, three (23%) were cohort studies and four (30%) were clinical trials. Only two (15%) of these trials were randomized clinical trials (RCTs) and both were phase 2, open-label RCTs. The majority of clinical studies targeted C5, of which four were small case series. Other targets of the
Table 2
Summary characteristics of clinical interventional studies.

Author & year	Study design	Setting	Follow-up duration	Study population & sample size	Control group & sample size	Severity COVID-19	Therapy, dosage, interval	Concomitant medication	Targeting at what complement level	Main outcomes
Rambaldi [140], 2020	Case series	ICU	Until discharge	COVID-19 patients with ARDS (n = 6)	Healthy controls (n = 5), COVID-19 controls (n = 33)	Severe	Naroplimab 4 mg/kg intravenously twice weekly for 2–4 weeks	Azithromycin prophylaxis (100%), heparin, hydroxychloroquine, darunavir/ritonavir, methylprednisolone	MASP-2	Naroplimab treatment was associated with rapid and sustained reduction of circulating endothelial cell count and concurrent reduction of serum IL-6, CRP and LDH. No deaths were deemed likely study related.
Urwyler [141], 2020	Case series	Ward	Until discharge	COVID-19 patients with progressive disease after 24 h, CRP >30 mg/L, saturation <93% (n = 5)	COVID-19 controls during the same period (n = 15)	Moderate-severe	Conestat alfa 4800 IU followed by 3 additional doses of 4200 IU in 12 h intervals over 48 h	Hydroxychloroquine (100%), lopinavir/ritonavir (100%), tocilizumab, amoxicillin/clavulanic acid	C1-esterase	Conestat alfa over 48 h was well tolerated and associated with improvement in the clinical condition of 4 patients. No significant difference in length of stay in days, intubation, death, both intubation or death. C4d and C5a decreased within 5 days in most patients.
Mansour [142], 2021	Open-label, phase 2 RCT	Ward, ICU	28-days	COVID-19 pneumonia, SpO2 ≤ 94% or P/F ratio ≤ 300 mmHg (iC1e/K, n = 10; icatibant, n = 10)	Randomized controls (n = 10)	Severe	iC1e/k group: Berinert dosage of 20 IU/kg body weight on days 1 and 4, icatibant group: icatibant dosage 30 mg 8 h intervals for 4 days	Antibiotics, anti thrombotic therapy, C1-esterase inhibitors corticosteroids		Neither icatibant nor inhibitor of C1 esterase/kallikrein resulted in changes in time to clinical improvement. However, both compounds were safe and promoted the significant improvement of lung computed tomography scores and increased blood eosinophil.
Mastellos [143], 2020	Cohort study	Ward, ICU	After discharge	Severe COVID-19 patients (AMY-101, n = 3; eculizumab, n = 10)	–	Severe	AMY-101 group: AMY-101 5 mg/kg/daily IV for 9, 12 or 14 days. Eculizumab group: eculizumab 900 mg IV once a week (1–3 doses in total)	Antibiotics (100%), penicillin & corticosteroids (all eculizumab patients), anticoagulants	C3 & C5	C3 and C5 inhibition elicit an anti-inflammatory response. Mortality in the AMY-101 group was 0/3 (0%) and in the eculizumab group 2/10 (20%). C3a and C5b-9 decreased at day 7 in the AMY-101 group. In the eculizumab group, C5b-9 was increased on day 7. Factor B was decreased at day 7 in the eculizumab group.
Diurno [159], 2020	Case series	Sub-ICU	Until discharge	COVID-19 patients with severe pneumonia or ARDS (n = 4)	–	Severe	Up to 4 weekly infusions of eculizumab 900 mg	Heparin, lopinavir/ritonavir, hydroxychloroquine, ceftriaxone		All four patients successfully recovered after treatment with eculizumab. Mean CRP levels dropped from 14.6 to 3.5 mg/dl and the mean duration of the disease was 12.8 days. 60% mortality rate in patients receiving eculizumab therapy. No deaths were deemed likely study related.
Pitts [160], 2021	Case series	ICU	Until discharge	COVID-19 patients requiring mechanical ventilation due to ARDS (n = 5)	–	Severe	Eculizumab IV 900 mg	Prophylactic antibiotics (100%), hydroxychloroquine, steroids		All four patients successfully recovered after treatment with eculizumab. Mean CRP levels dropped from 14.6 to 3.5 mg/dl and the mean duration of the disease was 12.8 days. 60% mortality rate in patients receiving eculizumab therapy. No deaths were deemed likely study related.
Zelek [132], 2020	Case series	ICU	Until discharge	COVID-19 patients requiring intensive care and ventilation support (n = 5)	–	Severe	Single 1500 mg IV dose of LFG316 (tesidolumab)	Hydrocortisone, antibiotic prophylaxis (phenoxymethylpenicillin or clarithromycin)		Mortality of 20% (n = 1). In four of five patients, there was sustained improvement in clinical state. In all patients, CP hemolytic activity was completely suppressed up to day 4 after treatment with
Author & year	Study design	Setting	Follow-up duration	Study population & sample size	Control group & sample size	Severity	COVID-19 Therapy, dosage, interval	Concomitant medication	Converting at what complement level	Main outcomes
--------------	-------------	---------	--------------------	--------------------------------	-----------------------------	---------	-----------------------------	---------------------	-----------------------------	-----------------
De Latour \[131\], 2020	Case series	Ward, ICU	Until discharge	Patients with severe pneumonia requiring oxygen (≥ 5 L/min) or mechanical ventilation (n = 8)	–	Severe	Eculizumab injection dosage varied from 900 to 1200 mg every 4 or 7 days (1–5 doses)	Heparin, dexamethasone, prophylactic antibiotics (100%)	C5	partial recovery at day 7; C5b-9 and C5a levels fell within the normal range and remained low through day 7. C5 levels did not decrease. All eight patients were particularly severe at the time of eculizumab initiation and six improved significantly. C5b-9 decreased significantly in the patients treated with eculizumab. Eculizumab was associated with a significant reduction in respiratory rate at one (and two) weeks. Four of the ten eculizumab-treated patients (40%) died or were discharged with chronic complications as compared to 52 of the 65 controls (80%). Event rate was significantly lower in eculizumab-treated patients than in controls. C5b-9 levels significantly decreased after the first dose versus baseline, but not compared with the control group. In all patients and at all individual time points after the first dose was administered, ravulizumab concentrations remained >175 μg/mL and free C5 concentrations remained <0.5 μg/mL. Complement plasma level of C5 decreased in all patients treated with ravulizumab. On day 7, patients on eculizumab and ruxolitinib displayed a significant improvement in PaO₂ and P/F ratio compared to the control group, while no differences were observed for FiO₂. In addition, subjects on ruxolitinib and eculizumab showed a significant increase in platelet count compared to control group at day 7. At day 15, estimated survival was 83% (95% CI: 70%–95%) (continued on next page)
Ruggenenti \[144\], 2021	Retrospective cohort	Not specified	Until discharge	COVID-19 patients CPAP ventilator support from ≤24 h (n = 10)	Contemporary controls (n = 65)	Severe	900 mg eculizumab IV <24 h of CPAP ventilator support and 7–10 days after the first dose	Hydroxychloroquine, darunavir/cobicistat, low dose steroids, heparin, ceftriaxone and azithromycin	C5	
McEneny-King \[145\], 2021	Cohort study	Not specified	29-days	COVID-19 patients requiring ventilation (invasive or non-invasive) (n = 22)	–	Severe	Ravulizumab dosage weight based (900–3900 mg) on days 1, 5, 10 and 15	Not reported	C5	
Giudice \[146\], 2020	Non-randomized controlled trial	ICU	Until discharge	COVID-19 pneumonia or ARDS (n = 7)	Non-randomized controls (n = 10)	Severe	Ruxolitinib 10 mg/BID for 14 days, eculizumab 900 mg IV at day 0, day 7 and when needed day 14	Azithromycin (100%), heparin, hydroxychloroquine, antivirals (darunavir/cobicistat or lopinavir/ritonavir), low-dose steroids	C5 (and JAK1/2)	
	Non-randomized controlled trial	ICU	28-days	Severe COVID-19 patients with symptomatic bilateral (n = 45)	Non-randomized controls (n = 45)	Severe	Eculizumab 900 mg IV on days 1, 8, 15 and 22.	Heparin, hydroxychloroquine, antivirals (lopinavir-ritonavir,	C5	
Author, year	Study design, Setting	Follow-up duration	Study population & sample size	Control group & sample size	Severity COVID-19	Therapy, dosage, interval	Concomitant medication	Targeting at what complement level	Main outcomes	
--------------	----------------------	-------------------	-------------------------------	-----------------------------	------------------	--------------------------	------------------------	--------------------------	------------------	
Annane [147,148], 2020	Pulmonary infiltrates confirmed by CT or chest X-ray ≤7 days and severe pneumonia, acute lung injury, or ARDS requiring supplemental oxygen at ICU (n = 35)	Amendment: 1200 mg on days 1, 4, and 8 and 900 mg on days 15 and 22. Optional doses of 900 or 1200 mg on infection days 12 and 18 per investigator decision.	Remdesivir, corticosteroids, vaccination and prophylactic cefotaxime against meningococcal infection	With eculizumab and 62% (95% CI: 48%–76%) without eculizumab, which differed significantly. TESAE of an infectious complication at day 28 was significantly greater with versus without eculizumab (57% vs 27%, respectively). Serum C5b-9 levels decreased over time at day 15, whereas C3 and C4 levels remained stable. CSa did not statistically differ between eculizumab treated and eculizumab-free patients at days 1 and 7.	Vilobelimab appears to be safe in patients with severe COVID-19. At day 5 after randomization, the mean P/F ratio showed no differences between treatment groups. Mortality at day 28 did not differ significantly. The frequency of SAEs were similar between groups and no deaths were considered related to treatment assignment. The secondary outcome results in favor of vilobelimab are preliminary. CSa concentrations were suppressed in the vilobelimab group as compared with the control group, which was maintained on day 8.					

Vlaar [3], 2020 | Open-label, phase 2 RCT ICU, intermediate care unit, COVID-19 ward | 28-days Severe COVID-19 pneumonia (pulmonary infiltrates consistent with pneumonia, a clinical history of severe shortness of breath <14 days, or need for noninvasive or MV; P/F ratio 100–250 mmHg (n = 15)) | Randomized controls (n = 15) | Chloroquine, ganciclovir, azithromycin, heparin | CSa |

Abbreviations: ARDS = acute respiratory distress syndrome; BID = bis in die (twice a day); CI = confidence interval; CP = classical pathway; CPAP = continuous positive airway pressure; CRP = c-reactive protein; CT = computed tomography; FiO₂ = fractional inspired oxygen; h = hour; iC1e/K = C1-esterase/kallikrein inhibitor; ICU = intensive care unit; IL-6 = interleukin-6; IL-8 = interleukin-8; IU = international unit; IV = intravenous; LDH = lactate dehydrogenase; kg = kilogram; L = liter; mg = milligram; min = minute; mL = milliliter; mmHg = millimeter of mercury; P/F = PaO₂/FiO₂; PaCO₂ = arterial partial pressure of carbon dioxide; PaO₂ = arterial partial pressure of oxygen; PK/PD = pharmacokinetics/pharmacodynamics; SAE = serious adverse event; TESAE = treatment emergent serious adverse event; μg = microgram.
complement system included MASP-2, C1-esterase, C3 and C5a. MASP-2 was targeted with narsoplimab in a small case series with six COVID-19 patients with ARDS [140]. Narsoplimab was well tolerated and all patients survived, resulting in a significantly lower mortality compared with two retrospective control groups. C1-esterase was targeted with conestat alfa and Berinert in a small case series and open-label RCT, respectively [141,142]. Both treatments were well tolerated but did not show significant differences in clinical outcomes, compared with the control group. Only one study targeted C3 with AMY-101 in three patients, with no treatment related severe adverse events (SAEs) [143]. One retrospective cohort study of ten patients treated with C5 inhibitor eculizumab showed a significant decrease in the combined endpoint of mortality and discharge with chronic complications compared with the control group [144]. Another cohort study assessing the pharmacokinetics/pharmacodynamics (PK/PD) of C5 inhibitor ravulizumab showed decreased plasma levels of C5 in all treated patients [145]. Two non-randomized controlled trials with eculizumab treatment in severe COVID-19 patients showed a significant improvement in PaO₂/FiO₂ (P/F) ratio in the treatment group [146,147], although one trial combined eculizumab with JAK1/2 inhibitor ruxolitinib.

The other trial inhibiting C5 with eculizumab observed a significant improvement in estimated survival at day 15 in patients treated with eculizumab solely. However, the proportion of patients treated with eculizumab experiencing a treatment-emergent serious adverse event (TESAE) of an infectious complication was significantly higher than the control group, despite all eculizumab patients were treated with prophylactic antibiotics against meningococcal infection. Ventilator-associated pneumonia (VAP) was significantly higher as well in the group treated with eculizumab. 50% hemolytic complement (CH50) activity of C5 was decreased at day one after infusion of eculizumab [147], however C5a concentrations at day one and day seven did not differ between the two groups [148]. An open-label, phase RCT targeted C5a with vilobelimab [31]. The primary endpoint of mean P/F ratio five days after randomization showed no significant difference between both groups. Although preliminary and not significant, secondary endpoints of mortality at day 28, estimated glomerular filtration rate, lymphocyte count and lactate dehydrogenase, seemed to be in favor of patients treated with vilobelimab. The incidence of SAEs and infectious complications was similar between the two groups without additional anti-biotic prophylaxis. Infections classified as serious were reported in three (20%) of the patients treated with vilobelimab compared with five (33%) patients in the control group. C5a concentrations were suppressed in the vilobelimab group after the first dose compared to the control group, which was maintained on day eight [149].

To summarize, the complement system was targeted at different levels in COVID-19 patients. However, only two RCTs were identified, inhibiting C1-esterase and C5a. C5 inhibition was associated with increased bacterial infections.

4. Discussion

To the best of our knowledge, this is the first scoping review with a systematical search of complement activation studies in COVID-19. Histopathological, preclinical studies, multomics and observational studies have identified complement activation in COVID-19 through all three pathways. Complement activation was associated with disease severity, ICU admission and mortality. Our results stress the important role of the complement system in the pathophysiology leading to organ damage and death in COVID-19.

Histopathological studies showed widespread complement activation in the vascular system throughout the skin, lungs and kidneys. Increased activation product C4d was observed in and around vessels where fibrin thrombi were located [54], in line with complement and NET driven immunothrombosis in COVID-19 [36]. Th2-biased adaptive immune responses, accompanying overt complement activation were observed in lung parenchyma of critically ill patients [58]. Complement deposits in the lungs are evidence for local complement activation and substantiate the role of complement activation the development of SARS-CoV-2 induced ARDS [37,41]. Complement depositions found in kidneys are consistent with kidney injury observed in COVID-19 [10,31,44,150].

Upregulation of complement pathways and their association with disease severity was shown in transcriptomic, proteomic, multomics and bioinformatic studies. Transcriptomic studies identified upregulation of C3 in particular, which was associated with ICU hospitalization or disease severity [78,79,82-84]. The majority of observational studies measured C3 and C4, and generally, both were either decreased in severe patients or non-survivors [100-105], or did not differ between non-severe patients or survivors [106-118]. This was in line with a meta-analysis that showed lower concentrations of both C3 and C4 in patients with high disease severity or non-survivors, compared with patients with low severity or survivors, indicating complement activation and product consumption [151]. Anaphylatoxins C3a and especially C5a were elevated and correlated with disease severity, ICU admission and mortality [13,14,65,68,85-128]. Soluble levels of C5b-9 were also increased and correlated with C5a, markers of inflammation and coagulation [12,33,36,68,70,71,78,120,125,129-132,134]. C5 was only elevated in three observational studies investigating C5 [66,135,136].

Potential targets of the complement system in COVID-19 were investigated in preclinical studies. Inhibition of MASP-2 led to blockade of complement activation mediated by the lectin pathway [34]. C3 inhibition hampered expression of tissue factor in neutrophils [36], whereas recombinant carboxypeptidase B alleviated damage of vascular cells by decreasing NET production induced by C3a and C5a [66]. Targeting C3aR and C5aR, the anaphylatoxin receptors of C3a and C5a, in nonimmune respiratory cells reduced an inflammatory response and subsequent tissue damage [64]. However, in another experimental cell study pulmonary microvascular endothelial cell permeability induced by SARS-CoV-2 was not affected by targeting these receptors [69]. Furthermore, blockade of C5aR1 impaired platelet-mediated (NET-driven) thrombogenicity in experimental cell studies [36,70]. Lastly, inhibition of C5 and factor D hampered accumulation of C5b-9 induced by SARS-CoV-2 proteins [16,35].

Although several clinical studies targeting the complement system in COVID-19 were identified, most had major limitations, including a small sample size, lack of randomization, blinding and a proper control group. Most studies included prophylactic antibiotics in patients treated with complement inhibitors. MASP-2 was only targeted in a small case series with six patients [140]. Targeting C1-esterase in a small case-series and small open-label RCT appeared to be safe, however it did not result in improved clinical outcomes compared with the control group [141,142]. C3 was only inhibited in three patients in a non-controlled study [143]. Two non-randomized controlled trials with eculizumab showed significant improvement in P/F ratio in the treatment group [146,147], although one of these trials combined eculizumab with JAK1/2 inhibitor ruxolitinib thus the effect of eculizumab alone cannot be determined. The other trial observed a significant improvement in estimated survival at day 15 in patients treated with eculizumab solely, though infectious complications and VAPs were seen more often with eculizumab treatment despite additional antibiotic prophylaxis against meningococcal infection [147]. Besides, preliminary serum free eculizumab concentrations, CH50 and serum C5b-9 levels led to a protocol amendment in order to increase dosage CH50 frequency of eculizumab treatment during the study. PK/PD analysis of C5 inhibitor ravulizumab showed decreased plasma levels of C5 [148] and CH50 activity of C5 was decreased in patients treated with eculizumab [147]. Only one study targeted C5a in an open-label, phase 2 RCT [31]. No difference was shown in the primary endpoint of mean P/F ratio five days after randomization was observed, but secondary endpoints including mortality at day 28 seemed to be in favor of vilobelimab treatment, albeit considered preliminary. Baseline C5a concentrations were elevated in...
all patients and C5a was suppressed in the vilobelimab group compared with the control group, which was maintained on day eight [149]. The development of avadomilamab, a C5aR1-specific monoclonal antibody, was terminated after disappointing results of a phase 2 RCT performed in patients with different severities of COVID-19 (NCT04371367) [13]. An explanation could be that the proinflammatory effects of C5a are still mediated via the other receptor C5aR2, which binds C5a and its des-arginine form [152].

The evidence of this review points towards a critical role of C5a in severe COVID-19. C5 was elevated in only three observational studies investigating C5 [66,135,136]. An advantage of inhibiting C5a specifically compared with upstream inhibition such as C3 or C5 inhibition, is that the formation of the MAC complex is not affected, which plays an important role in bacterial lysis [20,127]. As was seen in C5 inhibition with eculizumab, the incidence of infectious complications and VAPs were significantly higher with eculizumab treatment despite prophylactic antibiotics against meningococcal disease [147], which was not the case with vilobelimab even without additional antibiotic prophylaxis [31]. A previous study showed that inhibition of C5a requires a specifically targeted inhibition [153], and C5a levels were shown not to be different between eculizumab treated patients and controls at day one and day seven [148]. Additionally, C5a can be generated through direct cleavage of C5 in the absence of C3 by various enzymes such as thrombin, trypsin and plasmin, which could be of substantial importance given the thrombotic complications seen in COVID-19 [30,31].

As mentioned earlier, specifically inhibiting upstream components of the complement pathway may increase the risk of bacterial infections [20,127,147,154]. Recent results of a phase 3 RCT comparing ravulizumab plus best supportive care (BSC) versus BSC only (NCT04369469) show 54 SAEs of infections and infestations in patients treated with ravulizumab compared with only 8 SAEs in the BSC group, while C5a inhibition is not associated with an increased risk of infection [31].

Strengths of this review include the systematic search and comprehensive inclusion of histopathological, preclinical, omics, observational and clinical interventional studies. Since the aim of this review was to create an overview of complement activation in COVID-19 and also taking into account the emerging evidence in COVID-19, a scoping review was deemed most appropriate and thus risk of bias assessment was not performed [47,155]. Most included studies were observational cohort studies and often lacking a control group. Clinical studies were scarce, and the majority were case series of a small group of patients. A proper control group and blinding was often lacking in the clinical studies, which could have led to confounding and bias, and only two randomized trials were performed.

Although in particular downstream inhibition of the complement system seems promising, adequately powered, double blind RCTs are needed to further investigate the effects. However, with the dominance of the Omicron variant and population immunity, less severe COVID-19 disease is seen compared with previous waves, which will make sufficient inclusion of severe COVID-19 patients in large trials more challenging. International collaborations and platforms can be the solution for this. Thereby, conducting clinical trials with the aim of showing superiority of treatment will be difficult due to the use of already proven effective therapies in severely ill COVID-19 patients, such as steroids and anti-interleukin-6 treatment [156,157].

5. Conclusions and future directions

In this scoping review, histopathological, preclinical, multimics and observational studies showed apparent complement activation through all three complement pathways in COVID-19. Complement activation in COVID-19 is correlated with disease severity and mortality. Different drugs targeting the complement system have been studied in COVID-19, of which C5 and C5a inhibition seem most promising. Advantages of inhibiting C5a over C5 are the ability to inhibit C5a specifically as C5a can be generated indirectly and requires a specifically targeted inhibition, the absence of an association with increased bacterial infections, and lastly, C5a seems to be a key driver in severe COVID-19 disease. However, adequately powered, double blind RCTs are necessary in order to further substantiate these findings.

Practice points

- Histopathological, preclinical, multiomics and observational studies showed apparent complement activation through all three complement pathways in COVID-19.
- Complement activation in COVID-19 is correlated with disease severity and mortality.
- Different drugs targeting the complement system have been studied in COVID-19, of which those blocking the final common pathway seem most promising.

Research agenda

- Adequately powered, double blind RCTs are necessary in order to further investigate the effect of targeting the complement system in COVID-19.

Funding

This research was not funded.

Declaration of Competing Interest

Prof. Vlaar reports personal fees from InflaRx paid to Amsterdam UMC, outside the submitted work. All other authors declare no competing interests.

Acknowledgements

We thank Faridi van Etten-Jamaludin for her advice and help with the literature search and Esmeralda Lynn Hady for graphic design.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.blre.2022.100995.

References

[1] Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA - J Am Med Assoc 2020. https://doi.org/10.1001/jama.2020.12839.
[2] Dong E, Hu H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020. https://doi.org/10.1016/S1473-3099(20)30120-1.
[3] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020. https://doi.org/10.1016/S0140-6736(20)30566-3.
[4] Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020. https://doi.org/10.1056 NEJMoa2002032.
[5] Tay MZ, Peh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020. https://doi.org/10.1038/s41577-020-0311-4.
[6] Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020. https://doi.org/10.1016/S0140-6736(20)30920-X.
[7] Agrawal U, Katiirkeddi SV, McCowan C, Mulholland RH, Azcoaga-Lorenzo A, Anelle S, et al. COVID-19 hospital admissions and deaths after BNT162b2 and ChAdOx1 nCoV-19 vaccinations in 2.57 million people in Scotland (EAVE II): a prospective cohort study. Lancet Respir Med 2021. https://doi.org/10.1016/s2213-2600(21)00385-0.
[8] Hilty MP, Keiser S, Wendel Garcia PD, Moser A, Schuepbach RA, Hilty MP, et al. mRNA-based SARS-CoV-2 vaccination is associated with reduced ICU admission rate and disease severity in critically ill COVID-19 patients treated in Switzerland.
extracellular traps are key drivers in COVID-19 immunomodulosis. J Clin Invest 2020. https://doi.org/10.1172/JCI141374.

Robbins RA, Rus WD, de Lemos J, Kleinman M. Activation of the complement system in the adult respiratory distress syndrome. Am Rev Respir Dis 1987. https://doi.org/10.1164/arrd.1987.135.3.651.

Steven JH, O’Hanley P, Shapiro JM, Mihan FG, Satch D, Collins JA, et al. Effects of anti-C5a antibodies on the adult respiratory distress syndrome. Clin Immunol 1998. https://doi.org/10.1016/j.clim.2018.10.007.

Hammerschmidt DE, Hudson LD, Weaver LJ, Cadrack PR, Jacob HS. Association of complement activation and elevated PLASMA-C5a with adult respiratory distress syndrome. Pathophysiological Relevance and Possible Prognostic Value. Lancet 1980. https://doi.org/10.1016/S0140-6736(80)91403-8.

Hosea S, Brown E, Hammer C. Role of complement activation in model of adult respiratory distress syndrome. J Clin Invest 1980. https://doi.org/10.1172/JCI109866.

Farrar CA, Greenlaw R, Wallis R, et al. The Rationale for targeting complement in COVID-19. EMBO Mol Med 2020. https://doi.org/10.15252/emmm.202012642.

Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19. Kidney Int 2020. https://doi.org/10.1016/j.kint.2020.05.013.

Java A, Apicelli AJ, Kathryn Liszewski M, Coler-Reilly A, Atkinson JP, Kim AHJ, et al. The complement system in COVID-19: friend and foe? JCI Insight 2020. https://doi.org/10.1172/jci.insight.140711.

Ma L, Sahu SK, Cano M, Kuppusswamy V, Bajwa J, McPhatter J, et al. Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection. Sci Immunol 2021. https://doi.org/10.1126/sciadv.abc8068.

Afzalí F, Noris M, Lambertch BN, Kemper C. The state of complement in COVID-19. Nat Rev Immunol 2021. https://doi.org/10.1038/s41577-021-00665-2.

Carvalji J, Demaria O, Velý B, Batista L, Chouaki Benmansour N, Fares J, et al. Association of COVID-19 inflammation with activation of the C5a-C5aR axis. Nature 2020:588:146-50. https://doi.org/10.1038/s41586-020-660-6.

Yan B, Freiwalde T, Chaus D, Wang L, West E, Mirabelli C, et al. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Sci Immunol 2021. https://doi.org/10.1126/sciadv.abc8068.

Yu J, Gerber GF, Chen H, Yuan X, Chaturvedi S, Braunstein EM, et al. Complement dysregulation is associated with severe COVID-19 illness. Haematologica 2021. https://doi.org/10.3324/haematol.2021.279155.

Wallport MJ. Complement. N Engl J Med 2001;344:1058-9. https://doi.org/10.1056/NEJM200104053441406.

Dunklerger JB, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res 2010. https://doi.org/10.1038/cr.2009.139.

Reis ES, Masterson T, Mølgaard G, Lambiris JD. New insights into the immune functions of complement. Nat Rev Immunol 2019. https://doi.org/10.1038/s41577-019-0168-x.

Heesteerberk DA, Bardoule BW, Parsons ES, Bennett I, Ruyken M, Doorzijn DJ, et al. Bacterial killing by complement component C5a and membrane attack complex formation via surface-bound C5 convertases. EMBO J 2019. https://doi.org/10.15252/embj.20189852.

Thuurner MJ, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol 2006. https://doi.org/10.4049/jimmunol.176.3.1305.

Medische immunologie. 2016. https://doi.org/10.1007/978-90-368-1631-7.

Magro C, Mulvey J, Berlin D, Nuovo G, Salvatore S, Hjarp, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Trans Res 2020. https://doi.org/10.1016/j.ijtransres.2019.10.007.

Ram Kumar Pandian S, Manchachal S, Deepak V, Kunijappan S, Sundar K. Targeting complement cascade: an alternative strategy for COVID-19. J Biotech 2020. https://doi.org/10.1016/j.sajb.2020.02.064-2.

Samra VJ, Huber-Lang M, Ward PA. Complement in lung disease. Autoimmunity 2006. https://doi.org/10.1080/08916930600697456.

Ritis K, Doumas M, Mastellos D, Michelis A, Giglišis S, Maigost P, et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol 2006. https://doi.org/10.4049/jimmunol.176.3.1305.

Kambas K, Markiewski MM, Pneumatois IA, Raissi SS, Theodorou V, Konstantidou D, et al. C5a and TNF-α up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome. J Immunol 2008. https://doi.org/10.4049/jimmunol.180.11.7360.

Markiewski MM, Nilsson B, Nilsson Ekklad K, Mollnes TE, Lambris JD. Complement and coagulation: strangers or partners in crime? Trends Immunol 2007. https://doi.org/10.1016/j.it.2007.02.006.

Cagno M, Meroni PL, Guaderriti R, Grifini S, Grovetti E, Torri A, et al. Complement activation in patients with COVID-19: a novel therapeutic target. J Allergy Clin Immunol 2020. https://doi.org/10.1016/j.jaci.2020.05.006.

Huber-Lang M, Samra JV, Zeteou F, Rittirsch D, Neff TA, McGuire SR, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 2006. https://doi.org/10.1038/nm1419.

Vlaar APA, van der Bruijn S, Busch M, Timmermans SAMEG, van Zeggeren IE, Koning R, et al. Generation of C5a in the absence of C3: a new complement activation pathway. J Immunol 2020. https://doi.org/10.4049/jimmunol.2002651.

Holter JC, Pichkhe SE, de Boer E, Lind A, Jenum P, Holten AR, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci U S A 2020. https://doi.org/10.1073/pnas.2004107117.

Ali YM, Ferrali M, Lynch NJ, Yaseen S, Duttler T, Gragorov S, et al. Lectin pathway mediates complement activation by SARS-CoV-2 proteins. Front Immunol 2021. https://doi.org/10.3389/fimmu.2021.711011.

Yu J, Yuan X, Chen H, Chaturvedi S, Braunstein EM, Brooks RA. Direct activation of the alternative complement pathway by SARS-CoV-2 spike protein is blocked by factor D inhibition. Blood 2020. https://doi.org/10.1182/blood.2020102328.

Skindros P, Mitsios A, Chrysanthoupolou A, Mastellos DC, Metalidis S, Rafailidis P, et al. Complement and tissue factor–enriched neutrophil
Kaneko N, Satta S, Komuro Y, Muthukrishnan SD, Kakarla V, Guo L, et al. Flow-mediated susceptibility and molecular response of cerebral endothelia to SARS-CoV-2 infection. Stroke 2021. https://doi.org/10.1161/strokeaha.120.030852.

Perico L, Morigi M, Galbusera M, Ruggenenti P, Portalupi V, Rota S, et al. C5a receptor activation in patients with severe COVID-19. Front Immunol 2021. https://doi.org/10.3389/fimmu.2021.666163.

Lage SL, Rocco JM, Laidlaw E, Rupert A, Galindo F, Kellogg A, et al. Activation of the alternative complement pathway in severe COVID-19 patients admitted to intensive care. Nat Commun 2021. https://doi.org/10.1038/s41467-021-23494-1.

Xie L, Wu Q, Lin Q, Liu W, Hao S, et al. Dysfunction of adaptive immunity is related to severity of COVID-19 infection through an adaptive pathway. J Allergy Clin Immunol 2021. https://doi.org/10.1016/j.jaci.2021.03.038.

Wu YH, Yeh IJ, Phan NN, Yen MC, Liu HL, Wang CY, et al. Severe acute respiratory syndrome coronavirus (SARS-cov-2) infection induces dysregulation of immunity: In silico gene expression analysis. Int J Med Sci 2021. https://doi.org/10.7150/ijms.2021.17487.

Madugundu AK, et al. Mass spectrometric analysis of urine from COVID-19 patients for detection of SARS-CoV-2 viral antigen and to study host response. J Proteome Res 2021. https://doi.org/10.1021/acs.jproteome.1c00391.

Tiwari SK, Wang S, Smith D, Carlin AF, Rana TM. Revealing tissue-specific SARS-CoV-2 RNAemia and proteomic trajectories inform diagnostics in COVID-19 patients. J Proteome Res 2021. https://doi.org/10.1021/acs.jproteome.1c00215.

Yuan X, Huang W, Ye B, Chen C, Huang R, Wu F, et al. Changes of hematological profiles of COVID-2019 patients in Wuhan, China. Cell Med 2020. https://doi.org/10.1186/s40249-020-00723-1.

Talukdar SK, Wang S, Li J, Yuan X, Li J, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 2021. https://doi.org/10.1016/j.cell.2021.05.032.

Askari N, Hadizadeh M, Rashidifar M. A new insight into sex-specific non-coding RNAs and networks in response to SARS-CoV-2. BMC Genomic Data 2021. https://doi.org/10.1186/s12863-021-01001-0.

Messner CB, Demichev M, Wendisch D, Michalik L, White M, Freiwald A, et al. Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 severity. Cell Syst 2022. https://doi.org/10.1016/j.cels.2022.05.012.

Appelberg S, Gupta S, Svensson Akusjarvi A, Ambikat AN, Mikoelfof F, Saad E, et al. Dysregulation in Akt/mTOR/HIF-1α signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect 2020:9:1748-60. https://doi.org/10.1080/22133128.2020.1793404.

Vogel MB, Shen B, Yi X, Sun Y, Bi X, et al. Proteomic and metabolic characterization of COVID-19 patient sera. Cell 2021. https://doi.org/10.1016/j.cell.2021.05.032.

Shen Z, Yang S, Xi Y, Bai Y, Guo J, et al. Clinical and biological features of COVID-19 patients with diabetes. J Diabetes Investig 2021. https://doi.org/10.1111/jdi.13252.

Wu Y, Chen X, Zhang X, Shi J, et al. Clinical characteristics of COVID-19 patients with diabetes: a single center retrospective case-control study. Front Immunol 2021;12.

Zhou Q, Li J, Zhang Y, Wu F, Gao Y, Zhang Z, et al. Clinical characteristics and risk factors for disease severity and death in patients with coronavirus disease 2019 in Wuhan, China. Front Med. 2020. https://doi.org/10.1007/s11684-020-20532-2.

Zhang J, Wang Z, Wang X, Hu Z, Yang C, Lei P. Risk factors for mortality of critical COVID-19 based on clinical course: a single center retrospective case-control study. Front Immunol 2021;12.

Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 1135 patients with severe COVID-19 in Shanghai, China. Int J Infect Dis 2020. https://doi.org/10.1016/j.ijid.2020.05.061.

Zhang J, Wang Z, Wang X, Hu Z, Yang C, Lei P. Risk factors for mortality of critical COVID-19 patient based on clinical course: a single center retrospective case-control study. Front Immunol 2021;12.

Zhang J, Wang Z, Wang X, Hu Z, Yang C, Lei P. Risk factors for mortality of critical COVID-19 based on clinical course: a single center retrospective case-control study. Front Immunol 2021;12.
García-Gasalla M, Ferrer JM, Fraile-Ribot PA, Rodríguez A, Martínez-Pomar N, et al. Predictive immunological, virological, and routine laboratory markers for critical COVID-19 in Italy. Can J Infect Dis Med Microbiol. 2021. https://doi.org/10.1155/2021/956855.

Qin W, Bai W, Liu K, Liu Y, Meng X, Zhang K, et al. Clinical course and risk factors of disease deterioration in critically patients with COVID-19. Hum Gene Ther 2020. https://doi.org/10.1089/hum.2020.0281.

Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020. https://doi.org/10.1093/cid/ciaa156.

Liu SL, Wang SY, Sun YF, Yang CY, Chang L, Cai PJ, et al. Expressions of SAA, CRP, and FERR in different severities of COVID-19. Eur Rev Med Pharmacol Sci 2020. https://doi.org/10.26355/erm2020.11.2361.

Hai Y, Zhang H, Wang Y, Wei W, Yan C, Tong N, et al. Lactate dehydrogenase, an independent risk factor of severe COVID-19 patients: a retrospective and observational study. Aging (Albany NY). 2020. https://doi.org/10.18632/aging.103572.

Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020. https://doi.org/10.1016/j.ebiom.2020.102796.

Paparella D, Colucci M, Squicciarino E, Raimondo P, De Palma F, Ranieri P, et al. Clotting abnormalities in critically ill COVID-19 patients are inconsistent with overt disseminated intravascular coagulation. Thorax Res 2020. https://doi.org/10.1016/j.thres.2020.09.015.

Wang ZH, Shu C, Ran X, Xie CH, Zhang L. Critically Ill patients with coronavirus disease 2019 in a designated ICU: clinical features and predictors for mortality. Risk Manag Healthc Policy 2020. https://doi.org/10.2147/RMHP.S63095.

Guo W, Ran LY, Zhu JH, Ge QG, Du Z, Wang FL, et al. Identifying critically ill patients at risk of death from coronavirus pneumonia. J Emerg Med 2021. https://doi.org/10.5847/JEM.J.1920-8642.2021.01.003.

Bobakcova A, Petrikova J, Vychsradsky R, Kocan I, Kapustova L, Barnova M, et al. Immune profile in patients with COVID-19: lymphocytes exhaustion markers in relation to clinical outcome. Front Cell Infect Microbiol 2021. https://doi.org/10.3389/fcimb.2021.664688.

Alosaini B, Mubarak A, Hamed ME, Almutairi AZ, Alrashed AA, AlJuyany A, et al. Complement anaphylatoxins and inflammatory cytokines as prognostic markers for COVID-19 severity and in-hospital mortality. Front Immunol 2021. https://doi.org/10.3389/fimmu.2021.686725.

De Nooijer AH, Grondman I, Janssen NAF, Netea MG, Willems L, Van De Veerdonk FL, et al. Complement activation in the disease course of coronavirus disease 2019 and its effects on clinical outcomes. J Infect Dis 2021. https://doi.org/10.1093/infdis/jiaa466.

Lafon E, Diem G, Witting C, Zaderer V, Bellmann-Weiler RM, Reindl M, et al. Complement alternative and mannose-binding lectin pathway activation is correlated with mild disease progression in COVID-19 patients. Front Immunol 2021. https://doi.org/10.3389/fimmu.2021.664014.

Lim EHT, Vlaar APJ, de Bruin S, Rückinger S, Pilz K, Brouwer MC, et al. The anti-C5a pathway inhibitor narsoplimab. Immunobiology 2020. https://doi.org/10.1016/j.imbio.2020.08.007.

Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med 2021. https://doi.org/10.1056/nejmoa2100433.

Front Immunol 2021. https://doi.org/10.3389/fimmu.2021.627579.

Lafon E, Diem G, Witting C, Zaderer V, Bellmann-Weiler RM, Reindl M, et al. Complement alternative and mannose-binding lectin pathway activation is associated with COVID-19 mortality. Front Immunol 2021. https://doi.org/10.3389/fimmu.2021.696085.

Castanha PM, Tuttile DJ, Kitisos GD, Jacobs JL, Braga-Neto U, Duespohl M, et al. Contribution of coronavirus-specific immunoglobulin G responses to complement overactivation in patients with severe coronavirus disease 2019. J Infect Dis 2022. https://doi.org/10.1093/infdis/jiac091.

Eriksson O, Huulstrøm M, Persson B, Lipshey M, Ekdahl KN, Nilsson B, et al. Mannose-binding lectin is associated with thrombosis and coagulopathy in critically COVID-19 patients. Thromb Haemost 2020. https://doi.org/10.1055/a-0550-1471.

Nossent EJ, Schuurman AR, Reinders TDY, Saris A, Jongertius B, Blok SG, et al. Pulmonary procoagulant and innate immune responses in critically ill COVID-19 patients. Front Immunol 2021. https://doi.org/10.3389/fimmu.2021.664209.

Charitos P, Heijnen IAFM, Egli A, Raiteri S, Trendelenburg M, Osthoff M. Functional activity of the complement system in hospitalized COVID-19 patients: a prospective cohort study. Front Immunol 2021. https://doi.org/10.3389/fimmu.2021.765330.

Rambaldi A, Griti M, Micco MD, Frigenti M, Bottleri G, Salvi A, et al. Endothelial injury and thrombotic microangiopathy in COVID-19: treatment with the ligation pathway inhibitor ruxolitinib. Immunobiology 2020. https://doi.org/10.1016/j.imbio.2020.152001.

Lewyler P, Moer S, Charitos P, Heijnen IAFM, Rudin M, Sommer G, et al. Treatment of COVID-19 with Conestat Alfa, a regulator of contact activation and kallikrein-kinin system. Front Immunol 2020. https://doi.org/10.3389/fimmu.2020.02073.

Manouss E, Palma AC, Ribeiro LC, Bernardes AF, Nunes TA, et al. Safety and outcomes associated with the pharmacological inhibition of the kinin-kinin system in severe COVID-19. Viruses 2021. https://doi.org/10.3390/v130200309.

Mastello DC, Pires da Silva BGP, Fonseca BAL, Fonseca NP, Auxiliadora-Martins M, Mastaglio S, et al. Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clin Immunol 2021. https://doi.org/10.1016/j.clim.2021.108598.

Ruggenenti P, Di Marco F, Cortinovis M, Lottini L, Sala S, Novelli L, et al. Eculizumab in patients with severe coronavirus disease 2019 (COVID-19) requiring continuous positive airway pressure ventilator support: retrospective cohort study. PLoS One 2021. https://doi.org/10.1371/journal.pone.0261113.

McEneny-King AC, Monteleone JPR, Kazani SD, Ortis SR. Pharmacokinetic and pharmacodynamic evaluation of ruzolitinib in adults with severe coronavirus disease 2019. Infect Dis Ther 2021. https://doi.org/10.1007/s41212-021-00425-7.

Giudice Y, Pagliano P, Vatrella A, Masullo A, Poto S, Polverino BM, et al. Combination of ruxolitinib and eculizumab for treatment of severe SARS-CoV-2-related acute respiratory distress syndrome: a controlled study. Front Pharmacol 2021. https://doi.org/10.3389/fphar.2021.010256.

Annan D, Heming N, Grimaldi-Bensouda L, Frémeaux-Bacch V, Vigam M, Roux AL, et al. Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: a proof-of-concept study. Front Pharmacol 2021. https://doi.org/10.3389/fphar.2021.00857.

McEneny-King AC, Monteleone JPR, Kazani SD, Ortis SR. Pharmacokinetic and pharmacodynamic evaluation of ruzolitinib in adults with severe coronavirus disease 2019. Infect Dis Ther 2021. https://doi.org/10.1007/s41212-021-00425-7.

Vlaar APJ, Lim EHT, de Bruin S, Rückerig S, Pitz K, Brouwer MC, et al. The anti-C5a antibody vebivolimab efficiently inhibits C5a in patients with severe COVID-19. Clin Transl Sci 2022. https://doi.org/10.1111/cts.13213.
Freda CT, Yin W, Ghebrehiwet B, Rubenstein DA. SARS-CoV-2 proteins regulate inflammatory, thrombotic and diabetic responses in human arterial fibroblasts. Clin Immunol 2021. https://doi.org/10.1016/j.clim.2021.108733.

Diurno F, Numis FG, Porta G, Cirillo F, Maddaluno S, Ragozzino A, et al. Eculizumab treatment in patients with COVID-19: Preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci 2020. https://doi.org/10.26355/EURREV_202004_20875.

Pitts TC. Soliris to stop immune-mediated death in COVID-19 (SOLID-C19) – a compassionate-use study of terminal complement blockade in critically ill patients with COVID-19-related adult respiratory distress syndrome. Viruses 2021;13. https://doi.org/10.3390/v13122429.