The renoprotective effect of concomitant fosfomycin in the treatment of pulmonary exacerbations in cystic fibrosis

Mohamed Al-Aloul¹,², Dilip Nazareth³,⁴ and Martin Walshaw³,⁴

¹Manchester University NHS Foundation Trust, Wythenshawe, UK, ²School of Biological Sciences, University of Manchester, Manchester, UK, ³Adult CF Unit, Liverpool Heart and Chest Hospital NHS Trust, Liverpool, UK and ⁴Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection and Global Health, Liverpool, UK

Correspondence and offprint requests to: Dilip Nazareth; E-mail: Dilip.Nazareth@lhch.nhs.uk

ABSTRACT

Background. Fosfomycin, effective in Cystic Fibrosis (CF), competes with aminoglycosides at renal binding sites and may therefore afford a renoprotective effect when used in combination therapy. We explored this by using markers of acute renal tubular damage [N-acetyl-β-D-glucose-aminidase (NAG), alanine amino-peptidase (AAP) and β2-microglobulin].

Methods. Using a prospective randomized crossover trial design, at an acute pulmonary exacerbation, 18 adult CF patients received either 14 days of intravenous (IV) tobramycin or IV tobramycin and IV fosfomycin, both in combination with a second IV antibiotic (colomycin).

Results. Urinary NAG (P = 0.003) and AAP (P = 0.03) following treatment with concomitant fosfomycin were lower than after treatment with tobramycin and colomycin alone. Fosfomycin attenuated the total 24-h urinary protein leak (P = 0.0001). The 14-day improvements in all surrogate markers of exacerbation resolution (FEV1% predicted, FVC, white cell count and C-reactive protein) were similar for both treatment regimens.

Conclusions. The addition of fosfomycin reduces acute renal injury caused by IV aminoglycoside therapy in CF pulmonary exacerbations.

Keywords: acute tubular necrosis, cystic fibrosis, fosfomycin, pulmonary exacerbations, renoprotection

INTRODUCTION

Effective antibiotic therapy is critical in CF, where pulmonary exacerbations typically caused by bacteria such as Pseudomonas aeruginosa (Psa) are associated with clinical decline and increased morbidity.

Multiresistant isolates of Psa are an increasing problem. The most effective treatment regimen in CF pulmonary Psa exacerbations is still uncertain. It is recommended that respiratory exacerbations are treated with two intravenous (IV) antibiotics to minimize the risk of antibiotic resistance developing [1, 2].
Combined therapy may have an additive or synergistic effect. The initial choice of antibiotic still depends on in vitro bacterial sensitivity patterns and often includes an aminoglycoside. Although aminoglycosides are powerful anti-pseudomonal agents and their use in CF is widespread and unavoidable, they are resorbed by the proximal renal tubule and have the potential for nephrotoxicity. Indeed, acute renal injury is common and we have previously shown a link between repeated IV aminoglycoside use in CF patients and cumulative nephrotoxicity [3]. The continuing use of IV aminoglycosides in CF necessitates the development of strategies to reduce their negative renal impact.

Fosfomycin (1, 2-epoxy-propyl-phosphonic acid), originally isolated from Streptomyces fradiae [4], is now produced synthetically. It competes for the same renal binding sites as aminoglycosides. Animal models suggest that it might attenuate the nephro- [5, 6] and oto- [7] toxicity of aminoglycosides when co-administered. Furthermore, it has useful activity against Psa [8] and good lung tissue and biofilm penetration following IV administration [9].

We have previously demonstrated the efficacy of fosfomycin in CF pulmonary Psa exacerbations [10]. However, its potential renoprotective properties have not been evaluated in CF and to investigate this further, we conducted a prospective randomized crossover study of its use in combination with tobramycin and a second antibiotic (colomycin) in the treatment of Psa exacerbations.

MATERIALS AND METHODS

Study population

People with CF chronically infected with Psa experiencing two or more pulmonary exacerbations in the preceding 12 months and requiring admission to hospital formed the study population. Chronic Psa infection was defined as three or more positive sputum cultures within the previous 12 months [11]. An exacerbation was defined as the need for additional antibiotic treatment as indicated by a recent change in sputum volume or colour; increased cough; increased malaise, fatigue or lethargy; anorexia or weight loss; or radiographic changes or increased dyspnoea [12] associated with a decrease in FEV1% from stable outpatient clinic baseline. Those with known intolerance to aminoglycosides, colomycin or fosfomycin had Psa isolates resistant to tobramycin or colomycin, a history of Burkholderia cepacia (B. cepacia) isolation in the preceding 12 months, significant haemoptysis or new radiographic changes, had received any aminoglycoside (IV or nebulized) therapy during the previous 3 months or any additional anti-pseudomonal antibiotic in the 2 weeks prior to admission, or did not experience a second exacerbation within 1 year were excluded (Figure 1). All refrained from vigorous physical exercise for 2 days prior to the study. Eighteen CF patients [mean (SD) age 21.8 (3.4) years, FEV1 59.3 (15.1) % predicted, body mass index (BMI) 21.2 (2.4) kg/m2, 10 males] completed the study.

Four had CFRD at enrolment and no new cases of diabetes were diagnosed in the remainder over the study period.

Written informed consent was obtained, and the study was approved by the local research ethics committee at the Liverpool Heart and Chest Hospital, UK.

Study design

At the first exacerbation, patients were randomized to receive 14 days of either IV tobramycin/colomycin (in line with the standard practice of using a minimum of two anti-pseudomonal antibiotics to treat pulmonary exacerbations in CF) or IV tobramycin/colomycin/fosfomycin. At the second exacerbation, patients received the alternative antibiotic combination.

IV tobramycin (80 mg/2 mL, Mayne Pharma Plc, UK) was given in two to three divided doses to achieve a trough level of <2.0 mg/L and a peak level of 6–10 mg/L (in keeping with recommended protocols). Levels were subsequently measured as needed to ensure therapeutic serum concentrations [mean (SD) daily dose of 7.6 (SD 0.8) mg/kg in the tobramycin/colomycin arm and 7.9 (0.9) mg/kg in the tobramycin/colomycin/fosfomycin arm; P = 0.82]. IV colistimethate sodium (ColomycinR injection, Forest Laboratories Ltd, UK) was given at a fixed dose of 2 MU three times a day (tid), and IV fosfomycin disodium (5 g powder for reconstitution, Idiss Pharma, UK) at a fixed dose of 5 g tid.

Outcome measures

The primary efficacy endpoint was the antibiotic-related change from baseline to Day 14 in urinary levels of the proximal tubular enzymes N-acetyl-β-D-glucose-aminidase (NAG), alanine amino-peptidase (AAP) and the tubular protein β2-microglobulin (β2M). Renal indices also included serum creatinine (SCR) and magnesium (Mg2+) assays, 24-h urine collection for...
measurement of creatinine clearance (CCI) and total proteinuria/albuminuria.

Secondary efficacy endpoints were changes in spirometry (FEV₁, FVC), peripheral blood white cell count, C-reactive protein levels and the time to next exacerbation. Safety endpoints included adverse events (AEs) and toxic serum tobramycin concentrations.

Laboratory methods

Sputa at the beginning and end of the treatment were collected and processed using standard microbiological methods. Serum tobramycin concentrations were measured using TDxFLx assay (Abbott Laboratories). Serum and urine creatinine were measured using a solid immune-radiometric assay (Euro/DPC, Llanberis, UK). NAG was measured using a commercial assay kit (PRR Diagnostics, London, UK) with the change in absorbance at 410 nm calibrated by reference to a standard curve of known concentration of N-acetyl-β-D-glucosaminide. After buffering to a pH of 7.0, β₂M (μg/mmol creatinine) was measured using a solid immune-radiometric assay (Euro/DPC, Llanberis, UK).

Statistical analysis

Based on published mean (SD) improvements in FEV₁ after IV antibiotic therapy of CF pulmonary exacerbations and our centre data of antibiotic-related changes in renal function, 130 patients would have been required to adequately power a study to detect a superior or non-inferior effect from the addition of fosfomycin comparing different antibiotic regimens. This number would have been more appropriate for a multicentre trial, which was not feasible; hence, we undertook a pragmatic single-centre pilot study, based on the available resources.

Baseline demographics were compared using a paired t-test or Chi-squared test. Pulmonary function, blood, sputum and urine test results on Days 0 and 14 are presented graphically as median and IQR. Within-group Days 0–14 changes were assessed using a paired t-test (parametric data) or the Wilcoxon signed rank test (non-parametric data). Treatment effects are presented as the mean [95% confidence interval (CI)] or median (IQR) difference between treatment-induced changes and analysed using a paired t-test or Wilcoxon signed rank test as appropriate. D’Agostino and Pearson’s normality tests were used to assess data distribution throughout. Comparison of time to next exacerbation was conducted with Kaplan–Meier survival curves and a log-rank test. Results are presented as means (SD) unless otherwise stated.

RESULTS

All 18 patients completed both arms of the study (i.e. 36 treatment episodes). Table 1 shows baseline parameters at the start of each treatment. The mean (SD) interval between admissions was 4.6 months (2.9; range 1–11). Allowing for age change and baseline patient characteristics, the remainder of their therapy was otherwise identical in the two inpatient episodes.

Changes in renal function

Urinary levels of the proximal tubular enzymes NAG and AAP after 14 days treatment with tobramycin/colomycin/fosfomycin were significantly lower than those recorded after treatment with tobramycin/colomycin alone. There were lower β₂M levels on triple therapy (Table 2 and Figure 2) although the difference did not reach statistical significance. The addition of fosfomycin to tobramycin/colomycin also attenuated the antibiotic-induced total urinary protein leak in a 24-h collection (P < 0.0001), but urinary albumin did not alter from baseline and did not differ between the two treatments.

Except for comparable improvements in CCI, none of the other renal indices changed significantly with either treatment. There were no instances of AKI by the KDIGO definition in either arm of the study.

Recovery from exacerbation

The mean 14-day improvements in all surrogate markers of exacerbation resolution were not statistically different between both treatments (Table 3).

Time to next exacerbation

The addition of fosfomycin did not impact on the time to next exacerbation requiring hospitalization. The interval between two consecutive hospital admissions was 4.2 (2.9) and 5.0 (1.3) months for patients treated initially with tobramycin/colomycin and tobramycin/colomycin/fosfomycin, respectively (χ² test = 0.89; HR = 1.52, 95% CI 0.59–4.41; P = 0.35).

Sputum microbiology

Thirty-one (86%) sputa were collected prior to treatment: all harboured Psa susceptible to tobramycin and colistin in vitro on standard disc diffusion testing. Psa eradication was not

Table 1. Baseline characteristics of lung function (FEV₁%, FVC), BMI, renal indices and renal markers at the start of each treatment

	TOB + COL (n = 18)	TOB + COL + FOM (n = 18)
FEV₁ % (predicted)	48.3 (13.1)	47.2 (13.8)
FVC % (predicted)	67.9 (10.0)	65.4 (8.1)
BMI (kg/m²)	21.9 (2.6)	21.6 (2.7)
Blood urea (mmol/L)	4.4 (0.9)	4.2 (0.8)
SCr (μmol/L)	81.6 (10.1)	82.0 (11.8)
Serum Mg²⁺ (mmol/L)	0.90 (0.15)	0.83 (0.17)
CCI (mL/min)	84.3 (21.2)	81.4 (19.7)
24-h urine protein excretion (g)	0.08 (0.05)	0.07 (0.05)
Urinary albumin (mg/mmol)	1.6 (0.7)	1.8 (0.6)
Urinary NAG (IU/mmol)	0.28 (0.12–0.45)	0.26 (0.10–0.61)
Urinary AAP (IU/mmol)	0.95 (0.52)	0.84 (0.54)
Urinary β₂M (μg/mmol)	20.76 (11.90–30.25)	18.58 (12.00–28.50)
TOB daily dose (mg/kg)	7.6 (0.8)	7.9 (0.9)
COL daily dose (MU)	6 (–)	6 (–)
FOM daily dose (g)	N/A	15 (–)

Data are presented as mean (SD) or median (IQR) as appropriate.

COL, colomycin (colistimethate sodium); FOM, fosfomycin disodium; TOB, tobramycin; N/A, not applicable.
Table 2. Renal and urinary markers for each treatment group

Test	TOB + COL	TOB + COL + FOM	Difference between treatments (95% CI for difference)	P-value
Urea	0.68 (1.64)	0.62 (1.59)	−0.06 (−1.154 to 1.034)	0.91
Creatinine	4.33 (10.22)	2.17 (9.78)	−2.16 (−8.936 to 4.616)	0.52
CCl	17.28 (17.13)	19.89 (14.64)	2.61 (−8.128 to 13.348)	0.64
Mg²⁺	−0.05 (0.02)	0.05 (0.19)	0.1 (−0.032 to 0.232)	0.13
Total proteinuria	0.27 (0.20)	0.04 (0.07)	−0.23 (−0.331 to −0.129)	0.0001
Albuminuria	0.19 (0.47)	0.25 (0.60)	0.06 (−0.313 to 0.417)	0.77
NAG	1.38 (0.63–4.38)	0.53 (0.24–1.36)	−1.24 (−3.333 to −0.447)	0.0028
AAP	30.1 (33.4)	11.8 (11.04)	−18.3 (−35.15 to −1.45)	0.03
β₂M	111.9 (19.0–179.80)	14.3 (0.16–118.8)	−97.5 (−0.1806 to 0.0126)	0.1297

Data are presented as mean (SD) or median (IQR) as appropriate. Unadjusted P-values are presented throughout. Change in renal indices and renal markers from the start of each treatment to Day 14 and comparison between treatments tobramycin/colomycin and tobramycin/colomycin/fosfomycin.

COL, colomycin (colistimethate sodium); FOM, fosfomycin disodium; TOB, tobramycin.

FIGURE 2: Change in renal markers from the start of (Day 0) to end (Day 14) of each treatment and comparison between treatments tobramycin/colomycin (TOB + COL) and tobramycin/colomycin/fosfomycin (TOB + COL + FOM).
observed and treatment-emergent super-infection with new CF pathogens such as Burkholderia species, Stenotrophomonas maltophilia or other resistant Gram-negative bacteria was not recorded in any treatment episode.

Safety

AEs. There were no AEs warranting withdrawal of therapy. The incidence of AEs was comparable during both treatments (Table 4).

Serum tobramycin levels. Serum tobramycin assays were not statistically different throughout both treatments, and no toxic drug levels were recorded in either treatment arm.

DISCUSSION

Improving survival in CF has brought new complications as a consequence of a lifetime of necessarily aggressive treatment regimens. Renal disease in people with CF is becoming increasingly recognized as they accumulate exposure to nephrotoxic therapy, including aminoglycosides, which are a mainstay of treatment for Psa. Alternative strategies that spare aminoglycoside renal side-effects are necessary. For the first time, we have shown that fosfomycin may be useful in reducing the acute renal injury caused by aminoglycosides.

Scr on its own is a poor marker of renal function in CF. Due to their nutritional challenges, poor muscle mass and recurrent infections, many CF patients do not have normal or stable Scr levels, further complicating the use of readily available surrogate markers of renal function such as measured or estimated GFR. Hence, more accurate indices of renal disease are necessary in CF. Since the primary nephrotoxic effect of aminoglycosides is on the proximal tubular epithelium, the release of cell-bound enzymes can then serve as sensitive markers of acute renal injury before conventional laboratory assays become deranged, and we therefore used these in our study. Indeed, these urine biomarkers have already been employed to study nephrotoxicity caused by immunosuppressive drugs and antibiotics. We used NAG, AAP and \(\beta_2 \)M for this purpose, where elevated urinary levels indicate the site of primary tubular cell damage (AAP: brush border, NAG: tubular lysosomes).

NAG is present in high concentrations in the proximal tubular cells, and its molecular weight (140 kDa) does not permit glomerular filtration. Raised urinary levels reflect proximal renal tubular dysfunction, and elevated urinary NAG excretion during IV aminoglycoside use in people with CF is well described.

Elevated urinary AAP precedes increase in Scr in patients with renal toxicity. The assay can detect differences in enzymuria between various treatment regimens and different severity groups of non-drug-related renal disease. We chose AAP as a marker in this study because of its specificity to the proximal tubule cell, and changes in urinary AAP should therefore mirror those in NAG.

\(\beta_2 \)M, a low molecular weight (12 kDa) plasma protein, is normally filtered at the glomerulus and completely reabsorbed by the proximal tubules where it is catabolized. Increased urinary \(\beta_2 \)M leak has been found to correlate with altered renal function secondary to aminoglycoside exposure.

Other markers including neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 are thought to be better associated with acute kidney insult. However, NGAL is also produced in response to damaged epithelial cells in the lung, confounding its utility in the CF condition. Another marker tissue inhibitor of metalloproteinase 2 (TIMP-2):IGFBP7, which is a combination of urine TIMP-2 and insulin-like growth factor (IGF) binding protein 7, has been identified as a potential biomarker of AKI. Its urinary levels rise early after first antibiotic administration. However, given the significant heterogeneity among studies, caution has to be exercised about the utility and limitations of this biomarker in clinical practice, especially as there are no prior clinical studies validating its application in CF. Hence, we did not include these markers in our study.

In our study, although significant differences between the two regimens were shown with NAG and AAP, the impact of fosfomycin on \(\beta_2 \)M levels was less dramatic.

Table 3. Surrogate markers of exacerbation resolution

Test	TOB + COL	TOB + COL + FOM	Mean difference between treatments (95% CI for difference)	P-value
FEV₁% (predicted)	+12.6 (8.0)	+11.8 (5.9)	-0.8 (-5.6 to 4.0)	0.73
FVC% (predicted)	+14.1 (7.7)	+15.9 (6.9)	1.8 (-3.15 to 6.75)	0.46
WCC	-2.9 (6.3)	-3.3 (4.1)	-0.4 (-4.0 to 3.2)	0.82
CRP	-27 (26.8)	-34 (30.0)	-7 (-26.3 to 12.3)	0.47

Data are presented as mean (SD). Change in lung function and inflammatory markers from the start of each treatment to Day 14 and comparison between treatments tobramycin/colomycin and tobramycin/colomycin/fosfomycin.

COL, colomycin; FOM, fosfomycin disodium; TOB, tobramycin; WCC, white cell count.

Table 4. Number (%) of patients reporting treatment emergent AE

AE	TOB + COL	TOB + COL + FOM
Aggravated cough	3 (17)	3 (17)
Increased sputum	3 (17)	4 (22)
Acute bronchospasm/chest tightness	2 (11)	0 (0)
Sore throat/hoarseness	2 (11)	2 (11)
Reduced hearing	2 (11)	1 (11)
Tinnitus	2 (11)	0 (0)
Dizziness	3 (17)	1 (17)
Paraesthesia	1 (6)	1 (6)
Nausea	2 (11)	3 (17)
Diarrhoea	2 (11)	3 (17)
Treatment episodes with any reported AE	8 (44)	9 (50)

COL, colomycin, FOM, fosfomycin, TOB, tobramycin.
There are several possible explanations for this. First, although NAG and AAP reflect tubular structural integrity, β₂M only acts as a surrogate marker of tubular competency of the proximal tubular epithelium [26], but has traditionally been used in clinical practice to detect renal tubular damage [27]. It may well be that, unlike shorter drug challenges in animal studies [5, 6], continued exposure to tobramycin may have caused a functional change despite the relative structural preservation afforded in the fosfomycin arm. Secondly, β₂M degrades very rapidly at 37°C in the acidic (pH < 5.5) environment of the urinary bladder [28], and despite adjusting all samples to pH = 7 immediately after collection, it is possible that some degradation may have occurred thus confounding the urinary yield of β₂M and diluting any true protective effect with fosfomycin.

Nevertheless, there were lower urinary β₂M levels in the fosfomycin arm, and this is in keeping with the significantly lower total protein leak that was also noted. Since urine albumin levels were not different in both arms, this could not have been simply due to glomerular-related proteinuria.

Using these assays, we have demonstrated that incorporating fosfomycin into the antibiotic treatment of CF pulmonary exacerbations offers some protection against the immediate proximal tubular injury caused by tobramycin. Previously only described in animal models [5, 6], this is the first report to reproduce the nephroprotective properties of fosfomycin against aminoglycoside-induced tubulotoxicity in people with CF.

Furthermore, a number of studies have shown the utility of fosfomycin as an anti-Psa antibiotic in people with CF [10, 29, 30]. It is actively taken up by bacterial cells through two nutrient transport systems and inhibits the initial step in cell wall synthesis [31] present in various bacteria (including Psa). However, in vitro susceptibility testing for fosfomycin against Psa requires the presence of glucose-6-phosphate, which is not routinely included. This study formed part of an MD Thesis (2015OLA) submitted in February 2010 by the first author (M.A-A), at the University of Liverpool and is available within the repository.

ACKNOWLEDGEMENTS

This study formed part of an MD Thesis (2015OLA) submitted in February 2010 by the first author (M.A-A), at the University of Liverpool and is available within the repository.

REFERENCES

1. Cheng K, Smyth RL, Govan JRW et al. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996; 348: 639–642
2. Denton M, Littlewood JM, Brownlee KG et al. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis unit. Lancet 1996; 348: 1596–1597
3. Al-Aloul M, Miller H, Alapati S et al. Renal impairment in cystic fibrosis patients due to repeated intravenous aminoglycoside use. Pediatr Pulmonol 2005; 39: 15–20
4. Hendlin D, Frost BM, Thiele E et al. Phosphonomycin. 3. Evaluation in vitro. Antimicrob Agents Chemother 1969; 9: 297–302
5. Morin JP, Olier B, Viotte G et al. [Can fosfomycin reduce the nephrotoxicity of aminoglycosides?]. Pathol Biol 1984; 32: 338–342
6. Fujita K. An effect of fosfomycin on the pharmacokinetics of amikacin. J Antibiot 1984; 37: 408–412
7. Obata I, Ohnaka K, Aikawa T et al. Reduction of cisplatin ototoxicity by fosfomycin in animal model. J Otorhinolaryngol Relat Spec 1985; 47: 229–235
8. Reeves DS. Fosfomycin trometamol. J Antimicrob Chemother 1994; 34: 853–858
9. Falagas ME, Vouloumanou EK, Samonis G et al. Fosfomycin. Clin Microbiol Rev 2016; 29: 321–347
10. Mirakhor A, Gallagher MJ, Ledson MJ et al. Fosfomycin therapy for multiresistant Pseudomonas aeruginosa in cystic fibrosis. J Cyst Fibros 2003; 2: 19–24
11. Hoo ZH, Coates E, Maguire C et al. Pragmatic criteria to define chronic Pseudomonas aeruginosa infection among adults with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2018; 37: 2219–2222
12. Flume PA, Mogayzel PJ, Robinson KA et al. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med 2009; 180: 802–808
13. Jung K, Scholz D. An optimized assay of alanine aminopeptidase activity in urine. Clin Chem 1980; 26: 1251–1254
14. Nazareth D, Walshaw M. A review of renal disease in cystic fibrosis. J Cyst Fibros 2013; 12: 309–317
15. Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 1999; 43: 1003–1012
16. Diener U, Knoll E, Langer B et al. Urinary excretion of N-acetyl-beta-D-glucosaminidase and alanine aminopeptidase in patients receiving amikacin or cis-platinum. Clin Chem Acta 1981; 112: 149–157
17. Rybak MJ, Frankowski JJ, Edwards DJ et al. Alanine aminopeptidase and beta 2-microglobulin excretion in patients receiving vancomycin and gentamicin. Antimicrob Agents Chemother 1987; 31: 1461–1464

CONFLICT OF INTEREST STATEMENT

None declared.

FUNDING

This study was funded using internal research funds.
18. Mondorf AW. [Urinary enzymes. Characterization and diagnostic use]. MMW Munch Med Wochenschr 1982; 124: 230
19. Al-Aloul M, Nazareth D, Walshaw M. Nebulized tobramycin in the treatment of adult CF pulmonary exacerbations. J Aerosol Med Pulm Drug Deliv 2014; 27: 299–305
20. Holdt-Lehmann B, Lehmann A, Korten G et al. Diagnostic value of urinary alanine aminopeptidase and N-acetyl-beta-D-glucosaminidase in comparison to alpha 1-microglobulin as a marker in evaluating tubular dysfunction in glomerulonephritis patients. Clin Chim Acta 2000; 297: 93–102
21. Gibey R, Dupond JL, Alber D et al. Predictive value of urinary N-acetyl-beta-D-glucosaminidase (NAG), alanineaminopeptidase (AAP) and beta-2-microglobulin (beta 2M) in evaluating nephrotoxicity of gentamicin. Clin Chim Acta 1981; 116: 25–34
22. Devarajan P. Emerging biomarkers of acute kidney injury. Contrib Nephrol 2007; 156: 203–212
23. Han WK, Bailly V, Abichandani R et al. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 2002; 62: 237–244
24. Soni SS, Cruz D, Bobek I et al. NGAL: a biomarker of acute kidney injury and other systemic conditions. Int Urol Nephrol 2010; 42: 141–150
25. Liu C, Lu X, Mao Z et al. The diagnostic accuracy of urinary [TIMP-2][IGFBP7] for acute kidney injury in adults: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2017; 96: e7484
26. Viau C, Bernard A, Ouled A et al. Determination of rat beta 2-microglobulin in urine and in serum. II. Application of its urinary measurement to selected nephrotoxicity models. J Appl Toxicol 1986; 6: 191–195
27. Ikeda A, Konta T, Takasaki S et al. In a non-diabetic Japanese population, the combination of macroalbuminuria and increased urine beta 2-microglobulin predicts a decline of renal function: the Takahata study. Nephrol Dial Transplant 2009; 24: 841–847
28. Blumsohn A, Morris BW, Griffiths H et al. Stability of beta 2-microglobulin and retinol binding protein at different values of pH and temperature in normal and pathological urine. Clin Chim Acta 1991; 195: 133–137
29. Faruqi S, McCreanor J, Moon T et al. Fosfomycin for Pseudomonas-related exacerbations of cystic fibrosis. Int J Antimicrob Agents 2008; 32: 461–463
30. Katznelson D, Yahav Y, Rubinstein E. Fosfomycin in the treatment of cystic fibrosis. Eur J Clin Microbiol 1984; 3: 213
31. Kahan FM, Kahan JS, Cassidy P et al. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci 1974; 235: 364–386
32. Forsgren A, Walder M. Antimicrobial activity of fosfomycin in vitro. J Antimicrob Chemother 1983; 11: 467–471
33. Kuman H, Ono N, Iida M et al. Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Antimicrob Agents Chemother 1995; 39: 1038–1044
34. Figueredo VM, Neu HC. Synergy of ciprofloxacin with fosfomycin in vitro against Pseudomonas isolates from patients with cystic fibrosis. J Antimicrob Chemother 1988; 22: 41–50
35. Perea EJ, Daza RM, Mendaza MP. Genetic localization of the resistance to fosfomycin. Chemotherapy 1977; 23 (Suppl 1): 127–132
36. Woodruff HB, Mata JM, Hernández S et al. Fosfomycin: Laboratory studies. Chemotherapy 1977; 23 (Suppl 1): 1–22