Evolution of magnetic states in frustrated diamond lattice antiferromagnetic Co(Al1-xCox)(2)O-4 spinels

Zaharko, O.; Cervellino, A.; Tsurkan, V.; Christensen, Niels Bech; Loidl, A

Published in:
Physical Review B Condensed Matter

Link to article, DOI:
10.1103/PhysRevB.81.064416

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Zaharko, O., Cervellino, A., Tsurkan, V., Christensen, N. B., & Loidl, A. (2010). Evolution of magnetic states in frustrated diamond lattice antiferromagnetic Co(Al1-xCox)(2)O-4 spinels. Physical Review B Condensed Matter, 81(6), 064416. DOI: 10.1103/PhysRevB.81.064416

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
I. INTRODUCTION

Magnetic systems with frustration induced by competing exchange interactions quite often manifest unconventional ground states, the most intriguing of which are spin liquids. Recently one such exotic state, a “spiral spin liquid,” was discovered theoretically in a classical treatment of diamond-lattice Heisenberg antiferromagnets (AFM) by Bergman et al., who showed that competition between nearest and next-nearest-neighbor exchange couplings J_1 and J_2 creates—for $J_2/J_1 > 1/8$—a highly degenerate ground state consisting of a set of coplanar spirals, whose propagation vectors form a continuous surface in momentum space. The frustration results in a rich phase diagram as a function of the ratio J_2/J_1. The degeneracy of these ground states can be lifted by thermal or quantum fluctuations leading to an “order-by-disorder” phase transition from a spiral spin-liquid regime to an ordered state.

Among the diamond-lattice AFM compounds with the spinel structure recently attracted much attention. In particular, Co-Al oxides were considered as promising candidates for study of order-by-disorder physics. In these compounds of general stoichiometry AB_2O_4 the tetrahedral A sites are occupied by high-spin ($S=3/2$) magnetic Co$^{3+}$ ions which form a diamond lattice consisting of two interpenetrating face-centered cubic sublattices coupled antiferromagnetically. The octahedral B sites can be filled either by nonmagnetic Al$^{3+}$ ions and/or by low-spin ($S=0$) nonmagnetic Co$^{3+}$ ions.

Existing experiments on Co-Al oxide spinels do not provide a clear picture. An early neutron-diffraction study on Co$_3$O$_4$ showed that the magnetic moments of the Co$^{2+}$ ions thermal or quantum fluctuations leading to an “order-by-disorder” phase transition from a spiral spin-liquid regime to an ordered state.

Using neutron powder diffraction and Monte Carlo simulations we show that a spin-liquid regime emerges at all compositions in the diamond-lattice antiferromagnets Co(Al$_{1-x}$Co$_x$)$_2$O$_4$. This spin-liquid regime induced by frustration due to the second-neighbor exchange coupling J_2 is gradually superseded by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of Al$^{3+}$ by Co$^{3+}$ in the octahedral B site the temperature range occupied by the spin-liquid regime narrows and T_N increases. To explain the experimental observations we considered magnetic anisotropy D or third-neighbor exchange coupling J_3 as degeneracy-breaking perturbations. We conclude that Co(Al$_{1-x}$Co$_x$)$_2$O$_4$ is below the theoretical critical point $J_2/J_1 = 1/8$, and that magnetic anisotropy assists in selecting a collinear long-range ordered ground state, which becomes more stable with increasing x due to a higher efficiency of O-Co$^{3+}$-O as an interaction path compared to O-Al$^{3+}$-O.

DOI: 10.1103/PhysRevB.81.064416

PACS number(s): 75.50.Mm, 61.05.F-
ZAHARKO et al. concluded that the Co\(^{3+}\) ions are homogeneously and randomly distributed over the B sites. This follows because the Curie-Weiss temperature reflecting short-range magnetic order start to develop below the Néel temperature, all samples show magnetic Bragg peaks at low temperatures. The ordering temperature \(T_N\) and the static ordered magnetic moment decrease from Co\(_3\)O\(_4\) to CoAl\(_2\)O\(_4\) (see Table I and inset of Fig. 1) for all compositions. It should be noted that the \(x=0\) diffraction pattern does not correspond to a conventional long-range ordered state: diffuse scattering clearly dominates and the (200) peak is so broad and weak that the ordered moment cannot be determined with high accuracy. Nevertheless, the magnetic Bragg pattern is the same for all compositions and is consistent with the collinear two-sublattice model proposed by Roth.

II. EXPERIMENTAL

Polycrystalline Co(Al\(_{1-x}\)Co\(_x\))\(_2\)O\(_4\) samples with \(x=0, 0.35, 0.75,\) and 1 have been prepared as reported in Ref. 11. Through structural characterizations by high-resolution x-ray synchrotron diffraction (on the Materials Science beamline at Swiss Light Source, \(\lambda=0.41414\) Å) and neutron diffraction (on the HRPT diffractometer at the Swiss Neutron Spallation Source SINQ, \(\lambda=1.1545\) Å) indicated the absence of inversion in all samples excepting CoAl\(_2\)O\(_4\). For the latter compound the inversion is 17% and this might influence \(T_N\). Analyzing the lattice constants and x-ray peak profiles we concluded that the Co\(^{3+}\) ions are homogeneously and randomly distributed over the B sites. This follows because (i) the lattice constants obey Vegard’s law as the function of \(x\) and (ii) there is no peak asymmetry, which would have been present in the high-resolution data if any significant degree of inhomogeneity was present.

Medium-resolution neutron powder diffraction patterns for four compositions have been collected in the temperature range 1.5–150 K on the DMC instrument at SINQ with a neutron wavelength \(\lambda=2.4526\) Å. For all compositions, broad bumps resembling a liquidlike structure factor and reflecting short-range magnetic order start to develop below the Curie-Weiss temperature \(|\theta_{\text{CW}}|\approx110\) K\(^{10}\) they narrow and shift to higher sin \(\theta/\lambda\) with cooling (Fig. 1). Approaching \(T_N\), the diffuse scattering localizes near the \(\langle 111 \rangle\) and \(\langle 200 \rangle\) positions. Below \(T_N\) the liquidlike features remain but gradually lose spectral weight as magnetic Bragg peaks due to long-range order develop. The spectral weight of the diffuse scattering component continuously increases from Co\(_3\)O\(_4\) to CoAl\(_2\)O\(_4\) (Fig. 2) as the frustration parameter \(|\theta_{\text{CW}}|/T_N\) grows. We can quantify it by the area of a Lorentzian fitted to the first diffuse bump. As shown in the inset of Fig. 2 this area is largest roughly at \(T/T_N=1\) for all compositions, but for \(x=0\) and 0.35 diffuse scattering develops far above and remains significantly below this value. For \(x=1\) the \(T/T_N\) interval revealing diffuse scattering is narrower but still much too large to be interpreted as classical critical scattering of a three-dimensional long-range ordered magnet.

Regarding the long-range order, all samples show magnetic Bragg peaks at low temperatures. The ordering temperature \(T_N\) and the static ordered magnetic moment decrease from Co\(_3\)O\(_4\) to CoAl\(_2\)O\(_4\) (see Table I and inset of Fig. 1). It should be noted that the \(x=0\) diffraction pattern does not correspond to a conventional long-range ordered state: diffuse scattering clearly dominates and the (200) peak is so broad and weak that the ordered moment cannot be determined with high accuracy. Nevertheless, the magnetic Bragg pattern is the same for all compositions and is consistent with the collinear two-sublattice model proposed by Roth.

III. MODELING

To model the observed magnetic diffuse scattering we used the quasistatic approximation,\(^{15}\) which assumes that the

\[
T_N = a + b x
\]

where \(a\) and \(b\) are constants. The values of \(a\) and \(b\) are determined from the fit to the experimental data.

TABLE I. The Néel temperature, \(T_N\), and the ordered magnetic moment, \(M\), determined at 1.6 K from the DMC patterns.

\(x\)	\(T_N\) (K)	\(M\) (\(\mu_B\))
1.0	29	3.53(3)
0.75	16.5	2.59(3)
0.35	9	1.31(4)
0.0	5	0.25(7)
We found that for the range 0 < \(J_2/J_1 \) ≤ 1, the minimal energy curve for a collinear antiferromagnet (AF, red) and for the best Monte Carlo ground state (MCGS, black).

The correlation function is given by

\[
CF(d) = \frac{2}{3} \sum_{ij} S_i \cdot S_j \delta(|r_i - r_j| - d),
\]

where \(d \) is the distance between spins at positions \(r_i \) and \(r_j \). We found that for the range 0 < \(J_2/J_1 < 1/8 \) the collinear AFM is the ground state, in agreement with Ref. 2. Remarkably, the MCGS was always configurationally different from a collinear AFM state even if the energy difference was negligible (order of 1 mK or less). Analytical calculations (Fig. 3 inset), similar to Ref. 2, support this result. In fact, the energy minimum corresponding to the ground state for \(J_2/J_1 < 1/8 \) is extremely flat around the \(q=0 \) point of the first Brillouin zone, and therefore, very many states are in the range of thermal excitation at any accessible temperature.

The MCGS starts closely related to the collinear AFM state, but progressively departs from it with increasing \(J_2/J_1 \). This is clearly seen in the decay of spin correlations, which can be quantified by the ratio \(CF_{\text{MCGS}}/CF_{\text{AFM}} \). In Fig. 3 we plot log\([CF_{\text{MCGS}}/CF_{\text{AFM}}] \) versus squared distance \(d^2 \) between spins.

AFM is the ground state, in agreement with Ref. 2. Remarkably, the MCGS was always configurationally different from a collinear AFM state even if the energy difference was negligible (order of 1 mK or less). Analytical calculations (Fig. 3 inset), similar to Ref. 2, support this result. In fact, the energy minimum corresponding to the ground state for \(J_2/J_1 < 1/8 \) is extremely flat around the \(q=0 \) point of the first Brillouin zone, and therefore, very many states are in the range of thermal excitation at any accessible temperature.

The MCGS starts closely related to the collinear AFM state, but progressively departs from it with increasing \(J_2/J_1 \). This is clearly seen in the decay of spin correlations, which can be quantified by the ratio \(CF_{\text{MCGS}}/CF_{\text{AFM}} \). In Fig. 3 we plot log\([CF_{\text{MCGS}}/CF_{\text{AFM}}] \) versus squared distance \(d^2 \) between spins. Near \(J_2/J_1 = 1/8 \) the decay changes from predominantly Gaussian \(e^{-q^2/(2d^2)} \) (a straight line in this choice of axes) to a mixed Gaussian-exponential form \(e^{-q^2/(2d^2)} \cdot e^{-1/2(d \cdot w)^2} \) (a curve bending downwards for \(200 < d^2 < 400 \text{ Å}^2 \)). This behavior can be attributed to the incipient spiral surface. In the calculated diffraction patterns (Fig. 4, top) these changes are evidenced as progressive broadening and distortion of Bragg peaks. Pure Gaussian correlation decay yields a Gaussian peak broadening, whereas Gaussian-exponential decay yields Voigtian point spread (that is, with a sizable Lorentzian convolution component). For \(J_2/J_1 > 0.5 \) the correlations are completely changed and features of the collinear AFM state fade out.

We now compare the experimental and calculated diffuse scattering. The patterns shown in Fig. 2 were obtained as differences between data measured at \(T=6, 15, 19, \) and 45 K (for \(x=0, 0.35, 0.75, \) and 1, respectively) and 150 K. In the calculated patterns in order to obtain the ordered AFM state at \(T<T_N \) we needed to perturb the simple Heisenberg Hamiltonian so that the AFM minimum would be deeper and the AFM configuration more stable. For this we considered separately two possible degeneracy-breaking perturbations: magnetic anisotropy and finite \(J_3 \) coupling. To retain a simple
model we described anisotropy as a single-ion parameter D. The MC procedure was now changed, allowing for system equilibrations at different temperatures. All moves that would decrease the energy or that would increase it with probability $\propto e^{-\Delta E/T}$ were accepted. When the average and fluctuations of the energy of a large number of the last accepted states were sufficiently stable the temperature was changed. Fixing $J_1=1$ as a convenient energy scale, J_2, J_3, D, or T were varied, each in several steps.

Equally good fits were obtained with J_1 and magnetic anisotropy D as perturbations, signifying that the available diffraction data are not sufficient to determine which of these terms stabilizes the ordered ground state. However, we give preference to the magnetic anisotropy following the theoretical study of Ref. 17. The best fits presented in Fig. 4 (bottom) suggest the ratio $J_2/J_1=0.125$ for CoAl$_2$O$_4$ and $J_2/J_1=0.05$ for Co$_3$O$_4$. The change in the exchange energy with substitution apparently originates from the peculiarities of the electronic structure. Band-structure analysis18 shows that near the Fermi level in Co$_3$O$_4$ there are Co$^{3+}$ d and oxygen p states, while in CoAl$_2$O$_4$ the Al p states are absent from the Fermi level and the weight of O p is diminished. This implies that the interaction path O-Co$^{3+}$-O is more effective and the corresponding exchange integrals are larger in Co$_3$O$_4$.

Our findings give a natural explanation of the μSR results8 on Co$_3$O$_4$ as due to spin-liquid physics rather than incommensurate magnetic order. Also, based on the position of CoAl$_2$O$_4$ in the J_2/J_1 phase diagram, we suggest that even in an ideal sample, with no inversion or other perturbation, the ground state would be a collinear AFM, though one might need very low temperatures to reach it. As the ground state is the collinear AFM the general term “spin liquid” and not “chiral spin liquid” is appropriate for the high-temperature regime above T_N in the title system.

A single-crystal inelastic neutron-scattering experiment would allow to extract the absolute values of J_1,J_2 and to validate our conclusions. We remark that the elaborated approach to fit measured diffuse magnetic neutron scattering to Monte Carlo simulations can be easily adapted to other frustrated systems and would be useful in justification of an anticipated Hamiltonian.

IV. SUMMARY

In summary we studied the evolution of magnetic states in Co(Al$_{1-x}$Co$_x$)$_2$O$_4$ polycrystalline samples with temperature and substitution in the B site. We observed short-range and long-range orders for all compositions. Employing Monte Carlo simulations we found that for $x=0$ the system is in the vicinity of the critical point $J_2/J_1=1/8$, where the spiral spin liquid develops2 but stays in the weakly frustrated limit for $x>0$. We also found that replacement in the nonmagnetic B site changes the strength of exchange interactions which, in turn, leads to significant differences in the ordering temperatures and in the extent of the spin-liquid regime.

ACKNOWLEDGMENTS

We thank the expert experimental assistance of L. Keller and D. Sheptyakov. The work was performed at SINQ and SLS, Paul Scherrer Institute, Villigen, Switzerland. The support of PSI via the collaborative, Grant No. MOP1-33010-CH-08, of the GAP of the U.S. CRDF is gratefully acknowledged. N.B.C. acknowledges the support by the Danish Natural Science Research Council under DANSCATT.

8oksana.zaharko@psi.ch
1Spin liquid is characterized by rapid (at least exponential) decay of spin-spin correlations and the correlation length does not exceed the interatomic distance (Ref. 19), which result in a spin liquidlike structure factor.
2D. Bergman, J. Aliche, E. Gull, S. Trebst, and L. Balents, Nat. Phys. 3, 487 (2007).
3J.-S. Bernier, M. J. Lawler, and Y. B. Kim, Phys. Rev. Lett. 101, 047201 (2008).
4V. Fritsch, J. Hemberger, N. Büttgen, E.-W. Scheidt, H.-A. Krug von Nidda, A. Krimmel, H. A. Krug von Nidda, A. Loidl, and V. Tsurkan, Phys. Rev. Lett. 92, 116401 (2004).
5A. Krimmel, M. Mücksch, V. Tsurkan, M. M. Koza, H. Mutka, C. Ritter, D. V. Sheptyakov, S. Horn, and A. Loidl, Phys. Rev. B 73, 014413 (2006).
6A. Krimmel, H. Mutka, M. M. Koza, V. Tsurkan, and A. Loidl, Phys. Rev. B 79, 134406 (2009).
7W. L. Roth, J. Phys. Chem. Solids 25, 1 (1964).
8Y. Ikedo, J. Sugiyama, H. Nozaki, H. Itahara, J. H. Brewer, E. J. Ansaldo, G. D. Morris, D. Andreica, and A. Amato, Phys. Rev. B 75, 054424 (2007).
9W. L. Roth, J. Phys. (France) 25, 507 (1964).
10A. Krimmel, V. Tsurkan, D. Sheptyakov, and A. Loidl, Physica B 378-380, 583 (2006).
11N. Tristan, J. Hemberger, A. Krimmel, H. A. Krug von Nidda, V. Tsurkan, and A. Loidl, Phys. Rev. B 72, 174404 (2005).
12T. Suzuki, N. Nagai, M. Nohara, and H. Takagi, J. Phys.: Condens. Matter 19, 145265 (2007).
13N. Tristan, V. Zestrea, G. Behr, R. Klingeler, B. Büchner, H. A. Krug von Nidda, A. Loidl, and V. Tsurkan, Phys. Rev. B 77, 094412 (2008).
14N. Metropolis and S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949).
15L. van Hove, Phys. Rev. 95, 1374 (1954).
16$\Delta E = E_{\text{last trial}} - E_{\text{last accepted}}$
17S. B. Lee and L. Balents, Phys. Rev. B 78, 144417 (2008).
18A. Walsh, S.-H. Wei, Y. Yan, M. M. Al-Jassim, J. A. Turner, M. Woodhouse, and B. A. Parkinson, Phys. Rev. B 76, 165119 (2007).
19B. Canals and C. Lacroix, Phys. Rev. Lett. 80, 2933 (1998).