West Sumatera brown rice resistance to brown planthopper

M Busniah, M Kasim, and W Winarto

Faculty of Agriculture, Andalas University, Padang, West Sumatera, Indonesia
E-mail: bmunzir@yahoo.co.id

Abstract. Rice is the main staple food for half of the world's global population. One of the superior rice variety indicators is resistance to brown planthopper. The study was aimed to analyze several West Sumatera rice varieties against brown planthopper. The research was conducted in the screen house, Faculty of Agriculture, Andalas University, Padang, Indonesia from April to October 2018. A completely randomized design was used in this study. Nine rice genotypes and one control variety were used in this assay. The treatment was replicated three times. The result showed that Batang Sungkai was the best genotype in resistance based on the attack intensity.

1. Introduction

Rice [Oryza sativa L.] is the main staple food for Asian people and also consumed by people in other countries such as America and Europe [1]. Ninety percent of Indonesian people consume rice as the main dietary food [2]. The demand for rice also increases in Indonesia every year along with the increasing Indonesian population but it is not supported by the increase in total production. In Indonesia, the demand for rice is 32 million tons/year and national production is just 31.5 million tones [3]. Many efforts have been done so far to increase national rice production such as releasing superior varieties. One of the newly released rice varieties is brown rice.

Brown rice is favorite rice among the urban community. Brown rice is nutritious but has a lower calory compared to the common rice [4]. One hundred grams of brown rice contains about 7.5 g protein, 0.9 g fat, 77.6 g carbohydrates, 16 mg calcium, 163 mg phosphorus, 0.3 g iron, 0.21 mg vitamin B1, and anthocyanin [5]. The awareness of people, especially the urban community on healthy lifestyle results in an increase in the demand for brown rice annually [6]. Indonesia is no exception, the increase is observed nationwide including in the Province of West Sumatra.

West Sumatera is a region in Indonesia that lies in the equator line. The position makes this region is rich with exotic genetic diversity. One of the germplasms from West Sumatera is brown rice. Several data reported that many potential rice germplasms are originated from this region. Ten local brown and black rice genotypes are from West Sumatra. Other data reported 9 brown rice cultivars from Solok District, West Sumatra [7]. These reports indicate that West Sumatra possesses plenty of brown rice genotypes which is the potential to be developed into superior rice varieties. One of the main problems in cultivating rice is the pest attack that could reduce yield significantly is brown planthopper.

Brown planthopper [Nilaparvata lugens [Stal.] is one of the most important pests devastating rice crops, causing a significant yield loss. In West Sumatra, brown planthopper attack caused an almost 100% reduction in the rice yield [8]. Not only damage the plant, but the brown planthopper is also a vector of rice viruses such as rice grassy stunt virus and rice ragged stand virus [9]. One of the plant breeding goals is to obtain resistant variety to biotic factors such as brown planthopper. Current
studies and exploration of rice varieties from West Sumatera barely give us a clear insight on rice resistance to brown planthopper. The study was aimed to analyze the West Sumatera brown rice resistance to brown planthopper.

2. Materials and methods

2.1. Place and time of the experiment
The research was conducted in the greenhouse, Faculty of Agriculture, Andalas University, Padang, West Sumatera, Indonesia from April to October 2018.

2.2. Brown rice resistance assay
A completely randomized design was used in this treatment. Nine brown rice genotypes namely: Sibandung, Padi Gogo, Air Dingin, Batu Kangkung, Siarang, Perbatasan, Sitiung II, PG, and Pido Manggih and one control genotype IR-42 were used as a treatment in this study. The treatments were replicated 3 times. The assay was started from the propagation of brown planthopper. IR-42 rice seeds [a hopper-susceptible rice variety] were germinated on a seedbed [30 x 20 x 5 cm]. Fifteen days after planting [DAP], rice plants were transferred to plastic pots [diameter 15 cm; height 18 cm] with 4 plants per pot. Urea fertilizer [0.35 g/pot] was applied to 21 DAP-plant. At 30 DAP, rice plants were placed in an insect shield container made of wood covered with plastics materials. The base of the insect shield was covered with a sheet of plywood, and the top of the shield was covered with a gauze sheet. There were 5 insect shields [60 x 60 x 60 cm] and each shield contained 6 pots. Ten pairs of adult brown planthopper biotype 3 were placed inside the shield. The IR-42 rice plants were replaced weekly during the experiment. All rice plants were grown in the screen house [10]. Rice seeds were germinated on a seedbed [30 x 40 x 5 cm]. Fourteen DAP plants were transferred to pots [diameter 15 cm; height 18 cm], each pot was planted with 1 plant. Urea fertilizer [0.35 g/pot] was applied to 21 DAP-plant. Rice resistant level was determined and classified based on the extent of plant damage as shown in Table 1.

Score	Symptoms	Range	Resistance level
0	No damage	-	Highly resistant
1	Mild damage, yellow lines appears on the first leaf	≥ 1-3	Resistant
3	The first and second leaves yellow	≥ 3-5	Moderately resistant
5	The leaves yellow, growth inhibited, wilted, and half of the plants are dead	≥ 5-7	Moderately susceptible
7	More than 50% of the plants are dead, and the rest are alive but the growth is stunted	≥ 7-9	Susceptible
9	All plants are dead	≥ 9	Highly susceptible

Source: International Rice Research Institute (IRRI) [1988] [8]

2.3. Data analysis
Data were analyzed using Duncan’s New Multiple Range Test (DNMRT) at a significance level of 5%.

3. Results and discussion
The result showed that 1 resistant genotype to brown planthopper was obtained, designated as genotype Sibandung. Five slightly genotypes were obtained in the assay [Table 2]. The resistant and slightly resistant genotypes were potential to be developed as superior genotypes against brown
planthopper. The symptom could be seen by the discoloration of the plant into brown and the wilt leaves and finally died. Brown planthopper sucks plant sap and finally caused the death of plants [11]. The brown planthopper sucks the plant sap and reduce chlorophyll and leaf protein content and finally also reduce photosynthetic rates in plant [12]. Nymph and adult of brown planthopper suck the plant sap and cause stunting, yellow leaf, wilt and finally the plant died. This symptom was called hopper burn [13] [Figure 1].

![Figure 1. Hopper burn symptom of brown rice: a] Batu Kangkung, b] Sitiung II, c] PG](image)

The different responses of brown rice to brown planthopper varied. Resistant and slightly resistant genotypes have a rather hard stem and coarse leaf surface. The hard and coarse plant structure makes the brown planthopper difficult to suck the plant sap, which eventually leads to nymph death due to starvation. Potassium, calcium, and silicone are elements that contribute to the toughness of the plant cell wall structure [lignin and cellulose] [10][14].

Table 2. West Sumatera brown rice resistance to brown planthopper

Genotype	Score	Criteria
BM Sibandung	1	Resistant
BM Perbatasan	3	Slightly resistant
Padi Gogo	3	Slightly resistant
BM Pido Manggih	5	Slightly resistant
BM Air Dingin	5	Slightly resistant
BM Siarang	5	Slightly resistant
BM Batu Kangkung	7	Susceptible
BM PG	7	Susceptible
BM Sitiung II	7	Susceptible
IR-42 [Control genotype]	7	Susceptible

Table 2 shows that there were also susceptible genotypes. The three susceptible genotypes are, Batu Kangkung, PG and Sitiung II. There are three mechanisms of plant resistance: antixenosis [preference and non-preference], antibiosis, and tolerance [15]. We argue that the susceptible
genotypes to the hopper attack have low antibiosis compounds. Besides, the genetic factor plays an important role in rice resistance to brown planthopper. A rice gene called $Bph14$ can activate salicylic acid activity, induce callose deposition and boost the trypsin inhibitor production. Altogether these responses suppress the hopper’s appetite, inhibit their growth and decrease the hopper’s lifespan [16]. Another gene $Bph15$ is believed to contribute to the resistance of rice to brown planthopper. Based on genetic analyses, six miRNAs profile of this gene regulate rice development and defense response to brown planthopper [17].

4. Conclusion
Brown rice variety Sibandung was the only resistant genotype in the study. Five slightly resistant genotypes were also obtained from the study. These genotypes were Perbatasan, Padi Gogo, Pido Manggih, Air Dingin, Siarang, and Batu Kangkung.

References
[1] Rohman A, S Helmiyati, M Hapsari, and DL Setyaningrum 2014 Rice in health and nutrition. International Food Research Journal 21 13-24
[2] Mariyono J 2014 Rice production in Indonesia: Policy and performance Asian Pacific Journal of Public Administration 36 123-34
[3] Statistics Indonesia 2018 Indonesian rice production Statistics Indonesia-Jakarta
[4] Varshini VPA, SK Azhagu, and PP Vijay 2013 Brown rice: Hidden nutrients Bioschi Technol. 4 503-07
[5] Pletsch EA and BR Hamaker 2018 Brown rice compared to white rice slows gastric emptying in humans Eur J. Clin Nutr. 72 367-372
[6] Babu P D, Subasree, R Bhakayaraj, and Vidyahlakshmi 2009 Brown rice beyond the color reviving a lost health food Amer Euras J Agron. 2 67-72
[7] Dwipa I, A Syarif, I Suliansyah, and E Swasti 2018 West Sumatera brown rice to brown planthopper and blast disease Biodiversitas 19 893-898
[8] Taurislina E, Trizelia, Yaherwandi, and H Hamid 2015 Diversity analysis of brown planthopper Nilaparvata lugens natural rod enemies in paddy rice ecosystem in West Sumatra natural enemies in paddy rice ecosystem. Proceeding of National Seminary and Workshop on Biodiversity Management, Conserve, and Enrich the Resources and its Utilization. Gadjah Mada University, Yogyakarta, 21 March 2015
[9] Cabacautan PQ, RC Cabunagan, and IR Choi 2009 Rice viruses transmitted by brown planthopper Nilaparvata lugens Stal. INGER Genetic Resources Center IRRRI, Los Banos, the Philippines
[10] Yaherwandi, Reflinaldon, and A Rahmadani 2013 Biology of Nilaparvata lugens Stall (Homoptera: Delphacidae) of four varieties of rice plant (Oryza sativa L.) Educat Biol. 1 9-17
[11] IRRRI 1988 Description for Mile Oryza sativa L. IRRRI, Los Banos, the Philippines
[12] Ghaffar MBAB, J Pritchard, BF Lloyd 2011 Brown Planthopper [N. lugens Stal] Feeding Behaviour on Rice Germplasm as an Indicator of Resistance. Plos One. 6 1-13
[13] Prasad GSV, MVS Sastry, JRK Rao, and A Ghosh 2009 Relationships of brown planthopper resistance to tungro virus and grain characteristics in rice The Journal of Agricultural Science 109 609-10
[14] Zheng YL, L Xu, JC Wu, JL Liu, and HLD Mu 2007 Time of occurrence of hopper burn symptom on rice following root and leaf-cutting and fertilizer application with brown planthopper, Nilaparvata lugens [stål] infestation Crop Production 26 66-72
[15] Sarao PS and JS Bentur 2016 Antixenosis and tolerance of rice genotypes against brown planthopper Rice Sci 23 96-103
[16] Du B, W Zhang, B Liu, J Hu, Z Wei, Z Shi, R He, L Zhu, R Chen, B Han, and H Guangchun Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Agric Sci 106 (22) 163-68

[17] Wu Y, W Lu, L Hu, W Rao, Y Zeng, L Zhu, Y He, and G He 2017 Identification and analysis of brown planthopper-responsive microRNAs in resistant and susceptible rice plants Sci Rep 7 1-15