A case of postpartum thyroiditis following SARS-CoV-2 infection

Shinsuke Mizuno1) *, Hidefumi Inaba2) *, Ken-ichiro Kobayashi1), Kenji Kubo1), Saya Ito2), Tomonao Hirobata2), Gen Inoue2), Takashi Akamizu3) and Nobuhiro Komiya1)

1) Department of Infectious Disease, Japanese Red Cross Wakayama Medical Center, Wakayama 640-8558, Japan
2) Department of Diabetes, Endocrinology, and Metabolism, Japanese Red Cross Wakayama Medical Center, Wakayama 640-8558, Japan
3) The First Department of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan

Abstract. Postpartum thyroiditis (PPT) is characterized by mild thyrotoxicosis occurring within one year of parturition commonly followed by transient hypothyroidism. Having genetic background of autoimmune thyroid disorders is a risk factor for it because the immune reactivation during postpartum period is a trigger for PPT. Pandemic of COVID-19: caused by SARS-CoV-2 infection is a global health problem, and occurrence of Graves’ disease and Hashimoto’s thyroiditis after the viral infection have been reported but occurrence of PPT with COVID-19 has never been reported. A 29-year-old woman developed general fatigue four and a half months after parturition, and was diagnosed as having PPT: one month before, she had COVID-19. Hereafter, we define the date of delivery as Day 0 to make timeline clear. SARS-CoV-2 infection was diagnosed by PCR on Day 103, its disappearance from the upper airway confirmed on Day 124, and the thyroiditis diagnosed on Day 136. She had been euthyroid on Day 0 and 95, but thyrotoxic on Day 136. Serum thyroglobulin (Tg) concentration was normal in the presence of anti-Tg antibody, other thyroid-related autoantibodies were negative, and by ultrasonography, the thyroid gland was normal in size and no evidence of increased vascularity. Thyroid function returned to normal by Day 172 without any specific drug therapy. In conclusion, although a clear causal relationship could not be found, we documented the world’s first case of PPT developed following COVID-19.

Key words: COVID-19, SARS-CoV-2, Postpartum thyroiditis, Thyrotoxicosis, Hashimoto’s thyroiditis

CORONAVIRUS DISEASE 2019 (COVID-19): caused by SARS-CoV-2 infection, which results in serious respiratory and other systemic complications, has spread worldwide since December 2019 [1]. In the patients with the infection, many organ systems can be damaged, including respiratory, cardiovascular and coagulation systems, with potentially fatal results, for which robust, disorganized systematic immune activation is responsible [2]. Thyroidal complication, meanwhile, has been reported only scarcely [3-6]. To our knowledge, there have been no single case report of postpartum thyroiditis (PPT) occurred after COVID-19.

Case Presentation

A 29-year-old woman presented with general fatigue four and a half months after giving birth: this was just nine days after discharge from a hospital where she had been admitted for 4 weeks for the treatment of COVID-19. She had painless thyroiditis (PT) under the background of Hashimoto’s thyroiditis (HT) five years ago: anti-thyroglobulin autoantibody (TgAb) was 167.4 IU/mL (reference range was <28.0 in the assay) at that time. For the sake of clarity, Table 1 was created in which the day of the current delivery was designated as Day 0 (Table 1).

On Day 0 and 95, i.e., before the SARS-CoV-2 infection, the patient had been euthyroid. Before and during the pregnancy, the white blood cell (WBC) count and its fraction were normal. After close contact with an individual infected with SARS-CoV-2, she was confirmed to
be positive for SARS-CoV-2 in the samples of nasopharyngeal and oropharyngeal swabs by real-time polymerase chain reaction test on Day 136. Other thyroidal autoantibodies including anti-TSH receptor autoantibodies were all negative (Table 1). The thyroid gland was normal in size (the right lobe: 14.2 mm, 12.8 mm, and 46.2 mm in width, depth, and height, respectively; the left lobe: 14.5 mm, 12.5 mm, and 48.3 mm in width, depth, and height, respectively) with coarse echotexture. No focal hypochoegenic areas suggesting inflammation were observed. The ultrasonographic findings were similar to those when she developed PT 5 years before. No increase of the blood flow was observed. Thyroid scintigram was avoided because she was breastfeeding. Under the most possible diagnosis of PPT, she was observed without specific treatment. Her symptoms disappeared, and she regained euthyroidism by Day 172. The titer of TgAb increased on Day 205 (Table 1). HLA-typing test revealed that she had HLA-A*24:02, B*51:01/52:01, C*12:02/14:02, DRB1*12:01/15:02, DRB3*01:01/02, DRB5*01:02, DQA1*01:03/05:08, DQB1*03:01/06:01, DPA1*02:02, and DPB1*03:01/05:01.

Discussion

PPT is painless thyroiditis seen in the postpartum period [7]. It typically develops within six months of...
parturition with the prevalence ranges being 3% to 8% of all pregnancies [8]. PPT is characterized by the initial thyrotoxicosis followed by hypothyroidism, and then recovery. It may occur in patients with positive thyroid autoantibodies. Diagnosis is based on clinical manifestations, thyroid function tests, and thyroid scintigrams. Most women with PPT have only mild symptoms during the thyrotoxic phase, and the disease usually requires no treatment. The etiology of PPT is not completely understood, but it occurs on background of autoimmune thyroid disorders and is histologically characterized by focal or diffuse chronic thyroiditis [9]. An immune rebound is a proposed mechanism for its development. COVID-19, in its severe form, is associated with hyperinflammatory syndrome characterized by a fulminant and fatal hypercytokinemia with multiorgan failure, in which interleukin (IL)-2, IL-6, IL-7, granulocyte-colony stimulating factor, interferon-gamma inducible protein 10, monocyte chemoattractant protein-1, and tumor necrosis factor-alpha in the serum are elevated [2]. Elevation of those cytokines, such as IL-2, can possibly be related to the development of HT [10]. Various forms of thyroid dysfunction, such as central hypothyroidism, primary hypothyroidism, and thyrotoxicosis were clinically recognized. Additionally, damage of the thyocytes was demonstrated in autopsy material of patients with SARS-CoV during the 2002 outbreak [11]. Considering that cytokine storm is also a shared feature for SARS-CoV, absence of SARS-CoV per se in the damaged thyocytes was strongly indicative of autoimmune reactivation rather than direct viral infection being causal for the thyroidal diseases during human coronavirus infections at large [12]. It is reasonable to assume the activation of thyroid autoimmunity in our patient who had TgAb. She possessed HLA-B51 and HLA-DP5 which are the alleles with increased susceptibility to HT and Graves’ disease (GD) in Japanese, respectively [13, 14]. Accordingly, we hypothesize that infection of SARS-CoV-2 might reactivate thyroid autoimmune in the postpartum period through cytokine overproduction. In comparison to the regular patients with PPT who do not have SARS-CoV-2 infection, the degree of thyroidal immune reactivation may have been relatively strong in those having passed the viral infection like ours. Elefthiniotis et al. reported that 4 of 16 chronic hepatitis C virus (HCV)-infected women developed PPT, proposing “viral-triggered PPT” as a subtype of the thyroiditis [15]. The two patients exhibited thyrotoxicosis on third and sixth months after delivery, respectively. The other two woman developed hypothyroidism. Remarkably, none of 64 chronic hepatitis B virus (HBV)-infected woman developed PPT. Considering that SARS-CoV-2 and HCV are RNA virus, and HBV is a DNA virus, a clear-cut difference in the incidence of PPT after the HBV infection. Differently from the general viral infection, lymphopenia has been observed in 85% patients with severe COVID-19 [1], which was also the case in the current patient. Occurrence of PPT kept pace with the increment of lymphocytes in the circulation, suggesting link between the infection with SARS-CoV-2, the increase of lymphocytes and the development of PPT.

Two cases of Graves’ disease [3], and a case of HT [4] after COVID-19 were reported. In those patients with the background of autoimmune thyroid disorders like ours, upon the viral infection, the thyroid gland may have been affected by the activated thyroid autoimmunity. It has been reported that the prevalence of PPT is increased in those who have HLA-A1, HLA-B8, HLA-DR3 or ‘HLA-B8 and HLA-DR3’ in combination in the case of Caucasians [16]. Whereas PPT-susceptible HLA alleles or haplotypes if any has not been established in Japanese subjects. It has been reported that both intrathyroidal helper-T-cell numbers and HLADR antigen expression in the thyroid follicular cells had increased in PPT than those in HT [8]. Therefore, the molecular mimicry of the viral and thyroid epitope relating to the presentation on HLA molecule might be a possible mechanism for post COVID-19-PPT in our patient.

Recently, 4 case of subacute thyroiditis (SAT) developed after COVID-19 infection was reported [5]. Muller, et al. also reported cases of atypical SAT after infection with SARS-CoV-2 [6]. Considering that SAT [5, 6] and PPT (current case) both belong to self-limiting inflammatory disorder, inflammatory and/or autoimmune thyroid disorders related to SARS-CoV-2 infection may be not so uncommon but often overlooked. In cases of SAT, the angiotensin-converting enzyme 2 (ACE2) has been thought to be a receptor of SARS-CoV2 and direct cell damage in the thyroid gland may occur [6]. Typically, absence of pre-existing thyroid autoimmunity, serum elevated levels of CRP, neck pain, and focal hypoechoic areas in thyroid glands have been considered as characteristics of SAT [5]. Neck pain is often not recognized in cases of atypical SAT [6]. In PPT like our patient, neither elevation of serum CRP level nor focal hypoechoic areas in the thyroid is found. Prednisone is used for treatment of SAT, but PPT can be observed. Recently, Lania, et al. reported that 20.2% of patients with COVID-19 infection developed thyrotoxicosis possibly based on systemic immune activation induced by the SARS-CoV-2 infection [17].

Further investigations including thyroid cytology in a large number of patients is apparently needed to better understand thyroid illnesses including PPT after SARS-CoV-2 infection.

There are limitations in our study. Above all, histological
endocrine Journal Advance Publication

by-stander.
causally related to occurrence of painless thyroiditis. At hypothesize that SARS-CoV-2 infection may have been first case of PPT occurred shortly after SARS-CoV-2 infection. The close chronological association let us hypothesize that SARS-CoV-2 infection may have been causally related to occurrence of painless thyroiditis. At least we believe there exists a theoretical background for the link between the viral infection and PPT. Clinicians should not overlook possible SARS-CoV-2 infection-activated thyroid abnormalities.

Acknowledgements

The authors would like to thank the Wakayama City Health Center and Wakayama City Institute of Public Health for SARS-CoV-2 PCR tests. We acknowledge editing and proofreading by Dr. Toru Aizawa at Aizawa Hospital, and Benjamin Phillis from the Clinical Study Support Center at Wakayama Medical University. We thank Dr. Hidetoshi Inoko (Tokai University) and Yuko Okudaira (GenoDive Pharma Inc.) for technical advice.

Authorship

All authors designed the study, and participated in treatment of the patient, collected data, interpreted the data, and wrote the manuscript. All authors read and approved the final manuscript.

Conflict of Interest Statement

The authors have no conflict of interests to disclose.

References

1. Yang X, Yu Y, Xu J, Shu H, Xia J, et al. (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir Med* 8: 475–481.
2. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, et al. (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet* 395: 1033–1034.
3. Mateu-Salat M, Urgell E, Chico A (2020) SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. *J Endocrinol Invest* 43: 1527–1528.
4. Tee LY, Hajanto S, Rosario BH (2020) COVID-19 complicated by Hashimoto’s thyroiditis. *Singapore Med J* Jul 16. doi: org/10.11622/smedj.2020106. Online ahead of print.
5. Brancatella A, Ricci D, Cappellani D, Viola N, Sgrò D, et al. (2020) Is subacute thyroiditis an underestimated manifestation of SARS-CoV-2 infection? Insights from a case series. *J Clin Endocrinol Metab* 105: dga537.
6. Muller I, Cannavaro D, Dazzi D, Covelli D, Mantovani G, et al. (2020) SARS-CoV-2-related atypical thyroiditis. *Lancet Diabetes Endocrinol* 8: 739–741.
7. Amino N, Mori H, Iwatani Y, Tanizawa O, Kawashima M, et al. (1982) High prevalence of transient post-partum thyrotoxicosis and hypothyroidism. *N Engl J Med* 306: 849–852.
8. Inaba H, Akamizu T (2018) Postpartum thyroiditis. In: Feingold KR, Awalt B, Boyce A, et al. (eds) *Endotext [Internet]* South Dartmouth (MA): MDText.com, Inc.; 2000--.PMID: 25905230
9. Mizukami Y, Michigishi T, Nonomura A, Hashimoto T, Nakamura S, et al. (1993) Postpartum thyroiditis. A clinical, histologic, and immunopathologic study of 15 cases. *Am J Clin Pathol* 100: 200–205.
10. Torino F, Barnabei A, Paragliola R, Baldelli R, Appetecchia M, et al. (2013) Thyroid dysfunction as an unintended side effect of anticancer drugs. *Thyroid* 23: 1345–1366.
11. Wei L, Sun S, Xu C-H, Zhang J, Xu Y, et al. (2007) Pathology of the thyroid in severe acute respiratory syndrome. *Hum Pathol* 38: 95–102.
12. Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. *Semin Immunopathol* 39: 529–539.
13. Ito M, Tamimoto M, Kamura H, Yoneda M, Morishima Y, et al. (1989) Association of HLA antigen and restriction fragment length polymorphism of T cell receptor beta-chain gene with Graves’ disease and Hashimoto’s thyroiditis. *J Clin Endocrinol Metab* 69: 100–104.
14. Inaba H, De Groot LJ, Akamizu T (2016) Thyrotropin receptor epitope and human leukocyte antigen in Graves’ disease. *Front Endocrinol (Lausanne)* 7: 120.
15. Elefsiniotis IS, Vezali E, Pantazis KD, Saroglou G (2008) Postpartum thyroiditis in women with chronic viral hepatitis. *J Clin Virol* 41: 318–319.
16. Kologlu M, Fung H, Darke C, Richards CJ, Hall R, et al. (1990) Postpartum thyroid dysfunction and HLA status. *Eur J Clin Invest* 20: 56–60.
17. Lania A, Sandri MT, Cellini M, Mirani M, Lavezzi E, et al. (2020) Thyrotoxicosis in patients with COVID-19: the THYRCOV study. *Eur J Endocrinol* 183: 381–387.