Receptor-mediated Endocytosis in Rat Liver: Purification and Enzymic Characterization of Low Density Organelles Involved in Uptake of Galactose-exposing Proteins

JOËL QUINTART, PIERRE J. COURTOY, and PIERRE BAUDHUIN
Laboratoire de Chimie Physiologique, University of Louvain and International Institute of Cellular and Molecular Pathology, B-1200 Brussels, Belgium

ABSTRACT Rat liver organelles involved in receptor-mediated endocytosis were labeled with a conjugate of galactosylated BSA to horseradish peroxidase (\[^{3}H\]galBSA-HRP), injected 10 min before sacrifice. These organelles were recovered at low density (1.11–1.13 g/ml) in sucrose gradients (Quintart, J., P. J. Courtoy, J. N. Limet, and P. Baudhuin, 1983, Eur. J. Biochem., 131:105–112). Upon incubation of such low density fractions in 3,3′-diaminobenzidine (DAB) and H\(_2\)O\(_2\) and equilibration in a second sucrose gradient, galBSA-HRP–containing particles selectively shifted towards heavier densities (Courtoy, P. J., J. Quintart, and P. Baudhuin, 1984, J. Cell Biol., 98:870–876, companion paper), resulting in up to 250- to 300-fold purification with respect to the homogenate. The most purified preparations, wherein DAB-stained structures represented ~85% of the total volume of particles, contained only trace activities of enzymes usually regarded as markers for other subcellular entities. These minor activities could reflect either contamination or true enzyme association to the ligand-containing structures. Considering the latter hypothesis, at most 1.0% of alkaline phosphodiesterase I and 2.6% of 5′-nucleotidase (markers for plasma membrane), 3.6% of N-acetyl-β-glucosaminidase (lysosomes), and 6.0% of galactosyltransferase (Golgicomplex) from the homogenate would be associated with the whole population of ligand-containing organelles. After DAB cytochemistry on liver fixed 10 min after galBSA-HRP injection, ligand-containing structures accounted for 0.78–0.89% of the fractional volume of the hepatocytes and displayed a membrane area of 2,100 cm\(^2\)/Cm\(^3\), compared with 6,700 cm\(^2\)/Cm\(^3\) for the pericellular membrane. Altogether, our data support the hypothesis that these ligand-containing organelles are structurally distinct from plasma membrane, lysosomes, and Golgi complex.

Rapidly after interiorization, numerous ligands taken up by receptor-mediated endocytosis (7, 31, 44) are found associated with structures equilibrating at low density (15, 21–23, 26, 30, 35, 40, 41, 48). Electron microscopy shows that ligands are concentrated in clathrin-coated pits or vesicles, and rapidly transferred into electron-lucent, smooth surfaced organelles (35, 45, 47). These structures have received several names including receptosomes (52), endosomes (16), endocytic vesicles (1), compartment of uncoupling of receptor and ligand, or CURL (13), and ligandosomes (41).

Using galactosylated BSA conjugated to horseradish peroxidase (galBSA-HRP), we have recently been able to identify in rat liver fractions numerous smooth vesicles or tubules labeled with HRP reaction product. These fractions were, however, still largely contaminated (35). We report here on the use of a 3,3′-diaminobenzidine (DAB)-induced density shift (8) for further purification of galBSA-HRP-containing structures. The contribution of ligand-containing structures

\(^{1}\)Abbreviations used in this paper: DAB, 3,3′-diaminobenzidine; galBSA, galactosylated BSA; galBSA-HRP, galBSA conjugated to horseradish peroxidase (HRP); Lp pool, L-derived light pool; LP pool, LP-derived light pool; RSA, relative specific activity.
to liver protein has been estimated from the relative specific activity (RSA) of ligand in purified preparations and has been correlated to the fractional volume of these structures in intact liver, as evaluated by morphometry. Marker enzymes for other subcellular entities were found in trace amounts in the highly purified fractions. The significance of these observations will be discussed within the framework of current concepts on membrane recycling, subcellular compartment individuality, and sorting processes. Part of this work has been published in abstract form (33, 36).

MATERIALS AND METHODS

Protein Determination and Enzyme Assays: Since DAB interferes with the colorimetric protein determination of Lowry et al. (27), male Wistar rats (200-250 g) were injected intraperitoneally with a pulse of [14C]leucine or [35S]methionine (125-250 μCi), 40 h before sacrifice, as so to label liver protein. The percentage of [14C] or [35S] label, with respect to the homogenate, was used to assess the protein content of the subcellular fractions.

Activities of the following marker enzymes were determined: N-acetyl-b-glucosaminidase (24), 5'-nucleotidase (3), alkaline phosphodiesterase I, galactosyltransferase, esterase, and glucose 6-phosphatase (4).

Cell Fractionation: To label the organelles involved in the galactose specific pathway, rats were injected intravenously with 1 μg/g body wt of galactosylated BSA ([14C]galBSA, 7 Ci/mg) or of its conjugate to horseradish peroxidase ([125I]galBSA-HRP, 126 μCi/mg) prepared as described in the companion paper (8). 10 min after injection, the liver was perfused by the portal vein with tissue culture medium, removed, and homogenized in 3 vol of 0.25 M sucrose buffered with 3 mM imidazole/HCl, pH 7.

For differential centrifugation, the procedure described by de Duve et al. (9) was adopted with some modifications. The nuclear (N) fraction (10,000 g min) and the heavy mitochondrial (M) fraction (33,000 g min) were sedimented either separately or in a combined NM fraction. The N and NM pellets were resuspended in buffered sucrose, using a tissue grinder, model C (Arthur H. Thomas Co., Philadelphia, PA.). The supernatant of this last centrifugation was further fractionated in two ways. In a first procedure, the light mitochondrial (L) fraction (250,000 g min) and the microsomal (P) fraction (3,000,000 g min) were successively pelleted as described by de Duve et al. (9), except that the L fraction was washed once and the P fraction was not. In the second procedure, a combined LP fraction was directly obtained by omitting prior isolation of the L fraction. This LP fraction was not washed. The L, P, and LP pellets were resuspended using a Dounce homogenizer with a loose pestle (Kontes Glass Co., Vineland, NJ).

For isopycnic centrifugation, L or LP fractions were equilibrated in sucrose gradients as described previously (35). In a first series of experiments, fractions were collected by pumping the gradient starting from the bottom of the tube. The boundaries of low density fractions, denoted LP or L, depending on the starting material, corresponded to fractions spanning the range of 1.11-1.13 g/ml in density. The biochemical composition of these preparations is illustrated in Fig. 1. Later, in order to minimize contamination of low density fractions by the organelles equilibrating at higher density, we collected the L1 pool using a tube slider adapted for 2.5-cm-diam tubes, from the device originally described by de Duve et al. (10).

A density shift of the galBSA-HRP-containing structures was then induced by incubation of either LP, or L1 pools in the presence of 5.5 mM DAB and 11 mM H2O2, followed by reequilibration in a linear sucrose gradient as described in the companion paper (8). In some experiments, after the cytochemical procedure, the preparations were layered on discontinuous sucrose gradients. The latter was made of three layers of 21, 11, and 2 ml with densities of 1.18, 1.24, and 1.34 g/ml, respectively.

Electron Microscopy: Subcellular fractions obtained after the DAB-induced density shift were processed as described previously (8) except that ∼10 μg of protein was applied over 0.04 cm², 100-nm nominal pore size filter (Millipore Corp., Bedford, MA.).

On intact tissue, peroxidase cytochemistry (14) was performed on slices from glutaraldehyde-perfused liver as described previously (35). Briefly, after 20-min preincubation of liver slices in 0.05 M Tris buffer, pH 7.0, containing 1 mg/ml DAB/4 HCl, peroxidase cytochemistry was started by addition of H2O2 (0.01% final concentration) and allowed to develop for 30 min in the dark at room temperature. Ultrathin sections were examined without counterstaining. For stereological analysis, each section photograph was taken from a different ribbon, cut at a distance of at least 20 μm (more than the cellular diameter) in order to analyze different cells.

The magnification was determined by using a grating replica (E. F. Fullam Inc., Schenectady, NY). A multipurpose test grid similar to that described by Weibel et al. (49) was used for the determination of volume fraction or membrane area. For the recording and processing of morphometrical data, an Apple II plus (Apple Computer Inc., Cupertino, CA) was used.

RESULTS

Subfractionation of LP Fractions

When an LP1 pool was incubated in the presence of DAB and H2O2 and submitted again to equilibration in sucrose gradient, the distribution of galBSA-HRP-containing structures was largely shifted (∼0.06 g/ml) towards heavier density (Fig. 2). By contrast, the bulk of [14C]leucine, N-acetyl-b-glucosaminidase (marker for lysosomes), galactosyltransferase (Golgicomplex), and 5'-nucleotidase and alkaline phosphodiesterase I (plasma membrane) still equilibrated at low density. Their median equilibrium density was only slightly increased (∼0.01 g/ml) when compared with controls incubated in the presence of DAB alone. The small amounts of glucose 6-phosphatase and esterase present in the pools did not allow reliable determinations for these enzymes.

After DAB-induced density shift, 13.2% of the ligand present in the homogenate, but <0.1% of the aforementioned marker enzymes, were recovered in the most enriched fraction (Table I). When compared with the LP1 pool, the density equilibration after incubation in DAB and H2O2 resulted in a further sixfold purification of the ligand-HRP-containing

![Figure 1](https://example.com/figure1.png) Composition of LP1 and L1 pools. Rats were injected with [14C]leucine and [125I]galBSA-HRP 40 h and 10 min, respectively, before sacrifice. LP1 (solid rectangles) and L1 pools (hashed rectangles) were prepared as described in Materials and Methods. Values are average percentages ± SD, with respect to the homogenate. Number of experiments is given in parentheses.
structures, based on $[^{14}C]$leucine-labeled protein content (Table II). The value of 84 evaluated for the final RSA of galBSA-HRP is most probably underestimated. Indeed, the ratio of the protein content measured by $[^{14}C]$leucine incorporation and that determined with the assay of Lowry et al. (27) was on average 1.18 in LP fractions and 1.68 in LP$_p$ pools.

Subfractionation of L Fractions

Since a higher RSA for galBSA-HRP-containing structures can be obtained in the low density pool isolated from an L rather than from an LP fraction (35, and Fig. 1), the DAB procedure was next applied to L pools (Fig. 3). As can be seen, the shift of galBSA-HRP was similar to that observed with the LP$_i$ pool, but with the L$_p$ pool used here, ~45% of the $[^{14}C]$leucine-labeled protein migrated with the ligand. For 5'-nucleotidase, alkaline phosphodiesterase I, and galactosyltransferase, the displacement of density distribution was more noticeable than with the LP$_i$-derived preparations presented in Fig. 2. The displacement was smallest for N-acetyl-β-glucosaminidase. Nevertheless, the peak of displaced $[^{14}C]$-leucine and enzymes did not coincide with the peak of the shifted ligand. Average data obtained on DAB-induced density shifts performed on LP$_i$ pools are presented in Table III.

Comparison of the enzymic content of the preparations of Tables III and I shows that the higher value of RSA for galBSA-HRP-containing structures in the shifted material isolated from the L$_i$ pool did not correspond to a decrease in the amount of galactosyltransferase, 5'-nucleotidase, alkaline phosphodiesterase and N-acetyl-β-glucosaminidase. Hence, the subcellular entities bearing these markers are not the

Table I: Composition of Shifted Material from LP$_p$ Pools

Marker	% of the homogenate	RSA
$[^{14}C]$leucine	0.157 ± 0.036	—
[3H]galBSA-HRP	13.2 ± 2.0	84.0 ± 28.9
Galactosyltransferase	0.083 ± 0.013	0.54 ± 0.10
5'-Nucleotidase	0.059 ± 0.017	0.41 ± 0.21
Alkaline phosphodiesterase I	0.085 ± 0.078	0.49 ± 0.46
N-Acetyl-β-glucosaminidase	0.037 ± 0.029	0.21 ± 0.16

LP$_p$ pools from three different rats were incubated in DAB and H$_2$O$_2$ and equilibrated again in linear sucrose gradients. Values are means ± SD for the fraction with the highest galBSA-HRP specific activity in each experiment. These fractions were recovered between densities of 1.211 ± 0.013 and 1.225 ± 0.013 g/ml. $[^{14}C]$leucine incorporation was used to assess the protein content. RSA corresponds to the ratio between the percentage of marker enzyme and that of $[^{14}C]$leucine, with respect to the homogenate.
major source of contamination in these preparations (see Discussion).

The experimental procedure for the isolation of galBSA-HRP-containing structures was next modified in an attempt to improve purification. First, the initial L fraction was washed more extensively; secondly, a tube slicer was systematically used to isolate the L1 pool in view of lowering contamination during the collection procedure. To simplify the isolation procedure, the equilibration of the preparation incubated in the presence of DAB and H2O2 was performed on a discontinuous sucrose gradient and the material was collected at the 1.18–1.24 g/ml density interface.

As indicated in Table IV, the major difference from the results presented in Table III lies in an apparent 2.5-fold increase in the RSA of galBSA-HRP. This increase stems partly from an improvement of the yield and is partly due to the use of [35S]methionine for assessing the protein content.

As already observed for LP-derived material (see Table II), the use of [14C]leucine as protein index resulted in a significant overestimate of the protein content. The ratio between the protein content based on [14C]leucine incorporation and the colorimetric assay of Lowry et al. (27) was indeed 1.2 and 1.84 in the L fraction and L1 pool, respectively. By contrast, the corresponding ratios using [35S]methionine for protein determination were 1.00 and 1.04, respectively (Table IV).

Before assessing the enzyme composition of highly purified preparations of ligand-containing structures, the possibility of enzyme inactivation after incubation in DAB and H2O2 was investigated. Data of Table V show that some enzymes are indeed affected, the effect being largest for 5'-nucleotidase. The loss of activity calculated for the L1 pool represents the maximal correction that could affect marker enzymes in the purified preparations, assuming that the inhibition occurs exclusively in the ligand-containing structures.
Two estimates of the enzymic composition of the ligand-containing structures have been made (Table VI). Both rest on the hypothesis that all enzymes are exclusively associated to ligand-containing structures, considering contamination by other organelles as negligible. The first estimate is not corrected for enzyme inactivation, while the second one introduces a correction assuming that the loss of activity in the L1 preparation occurs exclusively in the ligand-containing structures.

Morphological Analysis of Purified Fractions

The preparations most enriched in gaIBSA-HRP containing structures were analyzed by electron microscopy (Fig. 4). For optimal identification of DAB-stained organelles, sections were first examined unstained. Of the total volume of structures recovered on the pellicle, DAB-stained organelles represented 83.4 ± 5.3% (mean ± SD), as estimated by morphometry. Contaminants were next analyzed in stained sections: they included rough and smooth vesicles, open membrane sheets, ferritin-loaded dense bodies (i.e., lysosomes), and mitochondria.

Stereological Analysis of gaIBSA-HRP-containing Structures on Intact Liver

The volume fraction and the membrane area of gaIBSA-HRP-containing structures in intact liver was measured by morphometry, 10 min after intravenous injection of 1 µg HRP-containing structures in intact liver was measured by
detection and quantification of DAB-stained organelles, sections were first examined unstained. Of the total volume of structures recovered on the pellicle, DAB-stained organelles represented 83.4 ± 5.3% (mean ± SD), as estimated by morphometry. Contaminants were next analyzed in stained sections: they included rough and smooth vesicles, open membrane sheets, ferritin-loaded dense bodies (i.e., lysosomes), and mitochondria.

Composition of Shifted Material from L1 Pools

Marker	% of homogenate	RSA
L-[C]leucine	0.070 ± 0.028	—
L-[H]gaIBSA-HRP	7.73 ± 2.68	118 ± 40
Galactosyltransferase	0.304 ± 0.247	3.86 ± 2.10
5'-Nucleotidase	0.069 ± 0.027	1.05 ± 0.40
Alkaline phosphodiesterase I	0.066 ± 0.063	0.73 ± 0.38
N-Acetyl-β-glucosaminidase	0.037 ± 0.009	0.60 ± 0.29

L1 pools from three different rats were incubated in DAB and H2O2 and equilibrated again in linear sucrose gradients. Values are means ± SD for the fraction with the highest gaIBSA-HRP specific activity in each experiment. These fractions were recovered between densities of 1.208 ± 0.005 and 1.221 ± 0.006 g/ml. [C]leucine incorporation was used to assess the protein content.

Effect of Cytochemistry and Equilibration in Sucrose Gradients on the Activity of Markers in the L1 Pools

Marker	Content of L1 pool	Recovery	Activity lost
% of homogenate	% of pool	% of homogenate	
[H]gaIBSA-HRP	13.38 ± 2.70	101.8 ± 25.0	—
Galactosyltransferase	2.24 ± 1.19	84.0 ± 23.0	0.342
5'-Nucleotidase	0.51 ± 0.21	56.9 ± 18.2	0.194
Alkaline phosphodiesterase I	0.76 ± 0.18	103.4 ± 35.4	-0.017
N-Acetyl-β-glucosaminidase	1.18 ± 0.65	78.1 ± 8.4	0.280

L1 pools were incubated in DAB and H2O2 and equilibrated again in sucrose gradients. The recovery of marker activities in the gradient is used to evaluate the possible inactivation of enzymes after cytochemistry. The activity lost is the product of the yield in the L1 pool, by 100 minus the recovery. Negative value indicates recovery above 100%. Values are means ± SD for three experiments.

Effect of Cytochemistry and Equilibration in Sucrose Gradients on the Activity of Markers in the L1 Pools

When applied to L1 pools, the DAB-induced density shift procedure resulted in a 2.5- to 5.5-fold further purification of gaIBSA-HRP-containing structures, as compared with our previous results (35). When protein content was evaluated by the [35S]methionine incorporation, which was in close agreement with determinations by the colorimetric procedure of Lowry et al. (27), an average RSA value of 267 was found for the purest preparations. Morphometry performed on one of these preparations showed that ~85% of the material could be identified as ligand-containing structures.

Our protocol was designed to optimize the purification of low density organelles involved in receptor-mediated endocytosis and may have selected a subpopulation of these structures. This possibility has to be seriously considered since these organelles are heterogenous in morphology (45, 47), topology (18), and physical properties (22, 30). Prior to delivery to lysosomes, gaIBSA is successively associated to two distinct types of organelles which are respectively recovered.
Calculations are based on the most enriched preparations (267 for the RSA in galBSA-HRP and 0.039% of protein as evaluated by methionine incorporation).

The estimate of enzymic content is obtained by taking the yield in galBSA-HRP into account and assuming an exclusive association of markers to ligand-containing structures in the preparation. Evaluations are presented with and without correction for enzyme inactivation, based on Table V.

FIGURE 4 Purified preparation of ligand-containing structures. Unfixed L pools were incubated in DAB and H₂O₂ and equilibrated again in sucrose gradients. Purified ['H]galBSA-HRP-containing organelles were recovered at high density after the DAB-induced density shift. This preparation was fixed, filtered on Millipore®, and examined at the electron microscope without further incubation in DAB and H₂O₂ or counterstaining with lead. Hence, electron-opaque profiles are nearly all ligand-containing organelles filled with DAB-osmium complexes (see asterisk for typical example). Contaminants include small clustered vesicles (small arrowheads), membrane fragments (large arrowheads), and ferritin-containing lysosomes (arrow). Average composition of similar preparations is described in Table VI. Bar, 0.5 μm. × 40,000.

in the P fraction, at densities ~1.13 g/ml in sucrose gradient, and in the L fraction, at densities ~1.11 g/ml (34, and J. Limet, personal communication). However, preliminary results in our laboratory indicate that the composition of these two populations are not substantially different (37).

Depending on whether or not slightly stained structures are included, the volume fraction of galBSA-HRP-positive structures evaluated in the liver (Table VII) would correspond to a RSA of only 110–130. Even if the nonhepatocytic compartment is taken into account, the corrected value would still be about half that found experimentally for the RSA of galBSA-HRP-containing structures. This is compatible with a low protein concentration in the newly formed endocytic structures, although other factors related to fixation and embedding, or differences in protein turnover, could be here at play.

Composition of Purified Preparations

Owing to the small amounts of enzymes present in the purified preparations of ligand-containing structures, it is clear that the concept of marker enzymes becomes particularly critical in our study. Two interpretations can be proposed: either the small amounts of marker enzymes result from a minor contamination of the preparation by structures other than those bearing galBSA-HRP, or these enzymes are truly associated to ligand-containing structures.

TABLE VI

Marker	Without correction for enzyme inactivation	With correction for enzyme inactivation			
	% of homogenate	% Contribution to the activity of the homogenate	Yield	% of homogenate	% Contribution to the activity of the homogenate
['H]galBSA-HRP	10.444 ± 2.550	100.00	-	100.00	
Galactosyltransferase	0.281 ± 0.008	2.69	0.623	5.97	
5'-Nucleotidase	0.079 ± 0.009	0.76	0.273	2.61	
Alkaline phosphodiesterase I	0.122 ± 0.052	1.17	0.105	1.01	
N-Acetyl-β-glucosaminidase	0.098 ± 0.063	0.94	0.378	3.62	

Calculations are based on the most enriched preparations (267 for the RSA in galBSA-HRP and 0.039% of protein as evaluated by methionine incorporation). The estimate of enzymic content is obtained by taking the yield in galBSA-HRP into account and assuming an exclusive association of markers to ligand-containing structures in the preparation. Evaluations are presented with and without correction for enzyme inactivation, based on Table V.
Electron microscopic examination showed that the main differences between our purest preparations derived from L1 pools, and those obtained from LP, pools (see Fig. 7 of reference 8) lies in a lower contamination by endoplasmic reticulum.

The alternative hypothesis implies the true association to ligand-containing structures of small quantities of classical markers for Golgi complex, plasma membrane, and lysosomes (summarized in Table VI), in the same way as small amounts of marker enzymes for the endoplasmic reticulum may be associated to Golgi stacks (20). Assuming no contamination by plasma membrane, lysosomes, and Golgi, at most 3% of plasma membrane markers, 3.5% of lysosomal markers, and 6% of Golgi markers could be associated to the structures that contain galBSA-HRP in our experimental protocol. In this hypothesis, the density shift of the marker enzymes (Fig. 3) would be concomitant with that of galBSA-HRP, as has been observed for “passive” constituents (8). The available data do not allow us to exclude any of the two hypotheses mentioned above, which are moreover not mutually exclusive.

Physiological Implications

The RSA of 5'-nucleotidase and alkaline phosphodiesterase I obtained in purified preparations of ligand-containing structures is much lower than in purified preparations of plasma membranes (19, 50), showing that only small amounts of plasma membrane markers may be present in the membrane of the ligand-containing structures, as compared with the pericellular membrane. Similarly, Merion and Sly (30) have recently reported that ligand-containing structures from human fibroblasts are largely dissociated from lactoperoxidase-iodinated cell surface proteins. Moreover, whereas at most 3% of plasma membrane markers can be attributed to structures that contain ligands in our experimental protocol, the membrane area of these structures corresponds to roughly a third of that of the pericellular membrane. For 5'-nucleotidase, the enzyme has been localized by cytochemistry along the entire pericellular membrane (12), where ~50% of the total cell activity is present (42). These results are not compatible with an identical marker enzyme composition of the plasmalemma and the membrane of ligand-containing structures. This conclusion is not necessarily in conflict with the numerous reports suggesting that the plasma membrane and the membrane of phagocytic or pinocytic origin are similar in polypeptide composition and marker enzyme activities (17, 29, 44, 51), since it is not established that pinocytosis, phagocytosis, and receptor-mediated endocytosis involve the same organelles. Recently, Dickson et al. (11) have also reported that the polypeptide composition of receptosomes is different from that of plasma membrane and lysosomes.

As the membrane of ligand-containing structures is presumably derived from the pericellular membrane, the lower content of membrane marker enzyme per unit surface implies some sorting mechanism. Membrane components could be prevented from entering the ligand-containing structures (“a priori” sorting) or could alternatively be rapidly and efficiently returned to the cell surface after entry (“a posteriori” sorting). An a priori sorting would imply that the specialized plasma membrane domains involved in receptor-mediated endocytosis are largely devoid of plasma membrane markers. Coated pits occupy only ~2% of the whole plasma membrane (2, 32), and selective exclusion of some plasma membrane components from coated pits has been documented (32). By double immunofluorescence localization, Stanley et al. (43) have recently reported that the localization of 5'-nucleotidase at the cell surface does not correspond to that of clathrin-coated pits.

Alternatively, the lower content of plasma membrane marker enzymes in the galBSA-HRP-containing structures, observed 10 min after ligand injection, could be explained by an a posteriori sorting. In this hypothesis, plasma membrane components, internalized with ligand-receptor complexes, would have already been returned to the cell surface, as is the asialoglycoprotein receptor (15, 38). Recycling of 5'-nucleotidase could occur through the tiny vesicles recently isolated by Luzio and Stanley (28). Preliminary results (37) indicate that 5 min after injection, the content in plasma membrane markers of galBSA-HRP-containing structures sedimenting in the LP fraction is already reduced.

The possible association of trace amounts of N-acetyl-β-glucosaminidase with ligand-containing structures can be easily explained. In our experiments, the ligand uptake was limited to 10 min in order to avoid significant transfer into lysosomes (35); nevertheless, we cannot exclude that some ligand-containing structures have already fused with lysosomes. In addition, lysosomal hydrolase activity partially arise by receptor-mediated endocytosis of serum components (39).

The Golgi marker enzyme, galactosyltransferase, is present...
in our purified preparations in larger proportion than marker enzymes for other structures. As to the origin and significance of galactosyltransferase in ligand-containing structures, this enzyme can be secreted (46) and endocytosed as discussed above for lysosomal hydrolases. Alternatively, ligands (5) including galactose-exposing proteins (8, 45, 47) have been found associated to lipoprotein-containing vesicles that could directly derive from the Golgi apparatus.

In conclusion, our data demonstrate that, after receptor-mediated internalization, galactose-exposing proteins are transferred into a unique subcellular compartment that appears structurally distinct from plasma membrane, lysosomes, and Golgi complex.

The excellent technical help of C. Mali-Heremans, F. N’Kali-Pyrhron, and N. Dellafesse, and the typing assistance of R. De Wulf-Barbé are gratefully acknowledged.

This work was supported by grants of the Belgian Fonds de la Recherche Fondamentale Collective (2.4540.80) and Fonds de la Recherche Scientifique Médicale (3.4547.79).

Received for publication 26 July 1983, and in revised form 14 November 1983.

REFERENCES

1. Abrahamson, D. R., and R. Rodewald. 1981. Evidence for the sorting of endocytic vesicle contents during the receptor-mediated transport of IgG across the newborn rat intestine. J. Cell Biol. 91:270-280.

2. Anderson, R. G. W., M. S. Brown, and J. L. Goldstein. 1977. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 10:351-364.

3. Avrech, J., and D. F. H. Wallach. 1971. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim. Biophys. Acta. 233:334-347.

4. Beauvillain, H., A. Agram-Costeque, E. Feyrnan, D. Thines-Sempoux, M. Wibo, M. Robbi, and J. Berthet. 1974. Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J. Cell Biol. 61:188-200.

5. Bergeron, J. M., L. Relaix, R. Chabuknica, B. A. Patel, and B. I. Posner. 1983. Effect of colchicine on internalization of prolactin in female rat liver: an in vivo autoradiographic study. J. Cell Biol. 96:875-886.

6. Bloin, A., R. P. Bolender, and E. R. Weibel. 1977. Distribution of enzymes and membranes between hepatocytes and nonhepatocytes in the rat hepatocyte parenchyma: a stereological study. J. Cell Biol. 72:841-855.

7. Brown, M. S., R. G. W. Anderson, and J. L. Goldstein. 1983. Recycling receptors: the round-trip itinerary of migratory membrane proteins. Cell. 26:656-667.

8. Courtois, P. J. J. Quinart, and P. Bauduin. Shift of equilibration density induced by 3,3'-diiodobenzidine cytochemistry: a new procedure for the analysis and purification of peroxidase-containing organelles. J. Cell Biol. 94:467-477.

9. de Duve, C., P. Verheugen, M. R. de Smet, M. R. de Smet, J. A. Hanover, N. D. Richtig, M. C. Willingham, and I. Pastan. 1983. Isolation and characterization of a highly enriched preparation of receptor-endosomes (from a human cell line) Proc. Natl. Acad. Sci. USA. 80:5353-5359.

10. Farquhar, M. G., J. M. Berenger, and G. E. Palade. 1974. Cytochemistry of Golgi fractions prepared from rat liver. J. Cell Biol. 60:25-78.

11. Geuze, H., J. W. de Smet, J. A. Hanover, N. D. Richtig, M. C. Willingham, and I. Pastan. 1983. In vivo cytochemistry of the Golgi apparatus. J. Cell Biol. 89:217-229.

12. Helman, J. M., and G. E. Palade. 1974. Appearance of NADDPH cytochrome c reductase in rat liver Golgi membranes: evidence obtained by immunodiffusion method. J. Cell Biol. 79:590-597.

13. Herskowitz, M. M., and C. Cooper. 1982. Endocytosis of very low density lipoprotein remnants by liver of fasted rats. J. Cell Biol. 57:1193-1195.

14. Hubbard, A. L., B. I. Posner, J. R. Khan, and J. M. Berenger. 1982. Internalization of internalized evidence of Golgi elements in intercellular heterogeneity and the path of intracellular processing. J. Cell Biol. 95:5095-5097.

15. Hubbell, D. H., and P. G. Walker. 1961. Studies on glucosaminidase. IV. The fluorometric assay of N-Acetyl-O-glucosaminidase. Biochem. 78:151-156.

16. Helman, J. M., and Z. A. Cohn. 1975. Cytoplasmic catalytase in rat liver (lysosomal digestion of oxidized catalytic subunit). J. Cell Biol. 69:248-91.

17. Leaback, D. H., and P. G. Walker. 1961. Studies on glucosaminidase. IV. The fluorometric assay of N-Acetyl-O-glucosaminidase. Biochem. 78:151-156.

18. Leaback, D. H., and P. G. Walker. 1961. Studies on glucosaminidase. IV. The fluorometric assay of N-Acetyl-O-glucosaminidase. Biochem. 78:151-156.

19. Leaback, D. H., and P. G. Walker. 1961. Studies on glucosaminidase. IV. The fluorometric assay of N-Acetyl-O-glucosaminidase. Biochem. 78:151-156.