Commutativity of first-order discrete-time linear

time-varying systems

Mehmet Emir Koksal

After introducing the concept of commutativity for continuous-time linear
time-varying systems, the related literature and the results obtained so far are
presented. For a simple introduction of the commutativity of discrete-time
linear time-varying systems, the problem is formulated for first-order systems.
Finally, explicit necessary and sufficient conditions for the commutativity of
first-order discrete-time linear time-varying systems are derived, and their
advantageous use in digital system design is illustrated, which are the main
objectives of the paper. The results are verified by examples which include
an application in amplitude modulation for digital telecommunication.

KEYWORDS
difference equations, digital control, equivalent circuits, feedback, linear control systems, robust
control

1 | INTRODUCTION

Many engineering systems are in consecutive form structurally so that the output of one section is the input of the next.
Especially in electrical and electronics engineering, many circuits such as electrical filters are designed in this form
which is known to be cascade or chain connection. The order of the connection of subsystems in the chain may be
compatible with the physical system model or may depend on the special synthesis method in a design problem. In
cases where sensitivity, stability, linearity, noise disturbance, and robustness effects are of concern, a certain ordering
may be preferable over the other although they both yield the same main functioning. Hence, the commutativity
becomes apparently important for such cases in practice.

In particular, cascade connection of electrical circuits is important at least as series and parallel connections in elec-
trical and electronics engineering. Furthermore, time-varying linear circuits are the corner stones of modulating cir-
cuits in modern communication theory. Hence, the commutativity of time-varying systems is not only important
from the theoretical point of view but equally attractive for electronic engineering applications.

There are many advantages of using digital systems comparing to the analog systems. For example, digital systems
can be tuned by software to achieve different applications without necessitating any changes in the hardware. In fact,
sophisticated and highly cost hardware is eliminated by using digital technology due to grate advances in IC technology
where now highly grate number of components can be placed in a given chip area, which helps further cost reduction.
Further, many processing techniques have been developed for digital signals so that high speed of operation is possible
even for very fast online operations. Another advantage of digital systems is their reliability due to possibility of using
error correcting codes. They use Boolean algebra and other digital techniques which simplify the design methods as
compared with analog system design. Moreover, digital systems are less affected to environmental conditions such as
humidity, temperature, and noise, and this results with higher reproducibility when compared with analog systems.
Digital communication is one of the widest application areas of digital systems. It is based on coding and encoding signals so digital devices used are mostly similar. Therefore, digital communication carries all general advantages of digital systems such as more immunity to external disturbances, cheapness, simple design, tunability, compactness, error detection and correction, and high speed. It provides added security to information signal which can be saved and retrieved easily, and this is not always possible in analog systems.

Commutativity of linear time-invariant systems has hardly been handled in the literature. For example, Richard G. Lyons in his book12 which is devoted fully to discrete-time (digital) systems, after defining commutativity as the property “swapping the order of two cascaded systems does not alter the final output,” has pointed out that two linear time-invariant systems obey this useful commutative property; although this fact is simple to show for time invariant systems either by using transfer function approach or unit impulse response, it is not always valid for time-invariant systems with nonzero initial conditions and time-varying systems with or without initial conditions as it will be shown in this paper. But the following points indicated by R. G. Lyons about commutativity of cascaded discrete-time systems are important: Although different sequences of commutative systems have identical output values for the same input, their intermediate data will usually not be equal. This commutative characteristic comes in handy for designers of digital filters, as shown in Chapters 5 and 6.12 Namely, He has shown how infinite impulse response (IIR) filters with cascaded structures can be improved: IIR filter stability and quantization noise problems by building high-performance filters by implementing combinations of cascaded lower performance filters. As a rule of thumb in the design of cascaded filters, it is prudent to specify their individual passband ripple values to be roughly half of the desired ripple specification for the combined filter.

Experienced filter designers routinely partition high-order IIR digital filters into a string of second or first-order filters arranged in cascade. This is because these lower order filters are easier to design and are less susceptible to coefficient quantization errors and stability problems. Further, this implementation allows easier data word scaling to reduce the potential overflow effects of data word size growth. Although optimization of the partitioning of a high-order filter into multiple second or first-order filter sections is a challenging task even for time invariant case, one simple method for arranging cascaded subsections has been proposed in Oppenheim and Schafer13 for time-invariant digital filters. Regarding partitioning high-order linear time-varying digital filters into cascade connections of first-order subsections, commutativity conditions outlined in this paper will be advantageous to achieve some or all of the benefits indicated in the references cited so far.

Due to the abovementioned advantages, not only the modern communication systems, almost the whole current technology is sliding rapidly towards the digital area from its classical analog state and digital communication is now in the foreground.14,15

Digital systems are modeled as discrete-time systems. In the last decade, there is a great number of papers published in the famous journals, on the theory and applications of discrete-time linear time-varying systems.16-29 Therefore, it is very important to investigate the commutativity property for time-varying discrete-time systems as well. The paper emphasizes this importance and is aimed to be the first attempt to carry the theory developed for commutativity of analog systems6 into discrete-time domain.

For introducing the concept of commutativity and the related literature for analog systems, consider the time-varying linear systems A and B described by the n-th order and m-th order differential equations

\begin{align}
A: & \quad \sum_{i=0}^{n} a_i(t) \frac{d^i}{dt^i} y_A(t) = x_A(t), \quad a_n(t) \neq 0, \quad (1a) \\
B: & \quad \sum_{i=0}^{m} b_i(t) \frac{d^i}{dt^i} y_B(t) = x_B(t), \quad b_m(t) \neq 0 \quad (1b)
\end{align}

for $t \geq t_0$, where $a_i(\cdot)$ and $b_i(\cdot)$ are piecewise continuous functions from R into R; $x_A(x_B)$ and $y_A(y_B)$ are the input and output of the system A (B). It is assumed that $x_A(\cdot)$ and $x_B(\cdot): R \rightarrow R$ are also piecewise continuous. A is a system of order $n \geq 1$, the order of B is $m \leq n$; hence, $a_\ell(t) \neq 0, b_\ell(t) \neq 0$. The initial time t_0 could be assumed 0 without spoiling the generality since the transformation $t \rightarrow t - t_0$ achieves this property. It is well known that with the mentioned input and coefficient function spaces both systems have unique solutions for any given set of initial conditions.30

The cascade connection AB of the systems A and B is defined as the combined system obtained by feeding the input x_B of B by the output y_A of A, that is $y_A = x_B$; hence, for AB, the input is $x = x_A$, and the output is $y = y_B$. Therefore, the system AB is described by the $(n + m)$-th order linear differential equation
\[
AB: \sum_{k=0}^{n} a_k(t) \sum_{i=0}^{m} \frac{d^i}{dt^i} \left[b_i(t) \frac{d^k}{dt^k} y(t) \right] = x(t).
\]

For the cascade connection of BA, a similar approach with \(y_B = x_A, x = x_B, y = y_A \) yields

\[
BA: \sum_{i=0}^{m} b_i(t) \sum_{k=0}^{n} \frac{d^k}{dt^k} \left[a_k(t) \frac{d^i}{dt^i} y(t) \right] = x(t).
\]

The systems \(A \) and \(B \) are said to be (zero-state) commutative if \(AB \) and \(BA \) yield the same solution \(y(t) \) for any input \(x(t) \); that is, they have the same input-output pairs.

The first paper about the commutativity of continuous-time linear time-varying systems is due to E. Marshall and appeared in 1977.\(^{31}\) In that paper and in all that are cited thereafter, the commutativity of continuous-time linear time-varying systems are investigated on the base of the abovementioned definition. E. Marshall has shown the necessary and sufficient conditions for the commutativity of first-order systems and proven that for the commutativity of two linear systems, it is required that either both systems are time-invariant (scalar constant gain systems are excluded) or both systems are time-varying. After Marshall’s work, there had been several publications confined to special cases\(^{32-35}\) until the first exhaustive study of commutativity of continuous-time linear time-varying systems appeared in 1988.\(^{36}\)

In Marshall,\(^{31}\) Koksal,\(^{32}\) and Koksal,\(^{33}\) the commutativity results for second-order systems are presented with the contribution of S.V. Saleh.\(^{34}\) Explicit commutativity conditions for the third and fourth-order systems are derived in Koksal.\(^{35}\) The general commutativity conditions for linear time-varying systems presented in\(^{36}\) not only covered all the previous works as special cases, but it also forecasted open questions on commutativity conditions with non-zero initial values, role of the performance concerning sensitivity, disturbance, and noise, which are all important from engineering point of view. Later, the concept of commutativity has not been studied about 20 years until the work\(^{6}\) in 2011. This work is not only a tutorial paper on the commutativity of linear time-varying systems covering the results of Koksal\(^{36}\) and those of published thereafter; it also includes the explicit conditions for the commutativity of fifth-order linear time-varying systems.

Although the commutativity of continuous-time linear time-varying systems have been studied in many papers scattered in the literature on time since 1978, most of the work on this area can be found in a single reference.\(^{6}\)

On the other hand, literature on commutativity of discrete-time linear time-varying systems hardly exist, and as far as the author knowledge, there has appeared a single reference in 2015.\(^7\) It is true that continuous-time linear time-varying systems and discrete-time linear time-varying systems are quite different in nature; the first is modeled by differential equation and the second by difference equation. The theory of these two different areas is hardly similar; for example, Laplace transform and Green functions are some of the tools for differential equations, while z-transform is used for studying the discrete-time linear time-varying systems.

In that Koksal and Koksal,\(^7\) after introducing the commutativity concept for discrete-time linear time-varying systems, some open questions have been stated, such as

i. Is a discrete time-varying system commutative with its feedback control version?
ii. Are the relation between the coefficients of commutative pairs similar to those of the analog systems that is, can they be related by a matrix equation?
iii. Can the commutativity property be used to design more robust and less sensitive discrete time-varying systems?
iv. Is commutativity property an entity for the system itself or does it also depend on the specific input applied?
v. What are the additional conditions for commutativity under nonzero initial conditions?

By considering the second-order discrete-time linear time-varying systems only, some of the above questions (for example, iii, iv, v) have been answered in Koksal and Koksal.\(^7\) However, the first and second questions have not been answered. In fact, considering the commutativity of second-order discrete-time linear time-varying systems, comparing the results for analog systems in Koksal and Koksal\(^6\) and discrete-time systems in Koksal and Koksal,\(^7\) it is seen that the commutativity conditions for analog and digital systems are completely in different forms, for example a matrix equation for the coefficients of the commutative pairs cannot be obtained in the case of discrete-time systems.

The main objective of the present paper is focused on the commutativity of first-order discrete-time linear time-varying systems. For such systems, it is shown that i. the feedback conjugate of a first-order discrete-time linear
time-varying system is always commutative with the system itself, and ii. The relation between the commutative pairs is expressed by a matrix equation.

It is satisfied with the introductory knowledge given in this section which will be closed by describing the content of the rest of the paper. Section 2 is devoted to the equivalence of two discrete-time linear time-varying systems. Section 3 defines and formulates the commutativity problem for discrete-time linear time-varying systems. In Section 4, the explicit commutativity conditions for first-order discrete-time linear time-varying systems are derived. Section 5 includes some examples validating the results of the previous section; one possible merit of commutativity is also included for discrete-time linear time-varying systems. Finally, the paper finishes with Section 5 that deals with conclusions and the suggested future work.

2 | EQUIVALENCE OF DISCRETE-TIME LINEAR SYSTEMS

Before studying commutativity, some preliminaries concerning definitions of equivalence and the related lemmas about the discrete-time linear time-varying systems are considered. Let such a system of order \(n \) be described by the difference equation

\[
\sum_{i=0}^{n} a_i(k)y(k+i) = x(k), \quad a_n(k) \neq 0: k = 0, 1, 2, \ldots,
\]

(3a)

where the coefficients \(a_i(\cdot) \) and the input \(x(\cdot) \) are bounded functions from the discrete-time space \(Z^+ = \{0, 1, 2, \ldots\} \) to \(R \), which is denoted by \(B[Z^+] \). Let the initial conditions be represented by the initial state vector

\[
[y_0 \ y_1 \ y_2 \ \cdots \ y_{n-1}] \in \mathbb{R}^n; \quad y(k) = y_k, \ \ k = 0, 1, 2, \ldots, n-1.
\]

(3b)

It is obviously true that the solution of the system Equation 3 is uniquely obtained by successive applications of the formula

\[
y(n + k) = \frac{1}{a_n(k)} \left[x(k) - \sum_{i=0}^{n-1} a_i(k)y(k+i) \right], \ \forall k \geq 0.
\]

(4)

Hence, the condition \(a_n(k) \neq 0, \ \forall k \geq 0 \) is a sufficient condition for the existence and uniqueness of the solution \(y(n + k), \ \forall k \geq 0 \) for any given set of initial conditions \(y_0, y_1, \ldots, y_{n-1} \) and the input sequence \(x(0), x(1), \ldots \); moreover, \(y(n + k) \) can be set to any desired value by a proper choice of \(x(k), \ \forall k \geq 0 \). This condition is also necessary for the existence of a unique solution for the mentioned initial conditions and the input sequence. Because, otherwise any \(m \geq 0 \) for which \(a_n(m) = 0 \) will impose a restriction on \(x(m) \) depending on its previous values and/or the initial conditions.

For the definition of the commutativity under zero initial conditions, zero-state equivalence of two linear discrete-time systems of the same order is defined.

Definition 1. Two discrete-time linear time-varying systems of the same order \(n \) described by the difference equations of type 3 are said to be zero-state equivalent if they produce the same solution for all \(k \geq 0 \) for any input \(x \in B[Z^+] \) when their initial states are zero. Note that zero-state equivalent systems have the same input-output pairs under relaxed conditions.

For the formulation of the conditions of commutativity, the following lemma is needed:

Lemma 1. For the zero-state equivalence of two systems of the same type, Equations 3 and 5

\[
\sum_{i=0}^{n} \overline{a}_i(k)\overline{y}(k+i) = \overline{x}(k), \quad \overline{a}_n(k) \neq 0: k = 0, 1, 2, \ldots,
\]

(5a)

\[
[\overline{y}_0 \overline{y}_1 \overline{y}_2 \cdots \overline{y}_{n-1}] \in \mathbb{R}^n; \quad \overline{y}(h) = \overline{y}_h, \ \ h = 0, 1, 2, \ldots, n-1,
\]

(5b)

it is necessary and sufficient that

\[
\overline{a}_i(k) = a_i(k), \quad \forall k \geq n - i, \quad i = 0, 1, 2, \ldots, n.
\]

(6)
The proof follows directly from Equation 4 and similar equation written for the solution of Equation 5 by considering the zero-states \(y_k = \bar{y}_k = 0 \) for \(k = 0, 1, 2, \ldots, n - 1 \) and requiring identical solutions \(y(k) = \bar{y}(k) \) for all \(k \geq n \) for arbitrary equal inputs \(x(k) = \bar{x}(k) \).

Proof of Lemma 1. Solution of Equation 5 can be written by a similar equation to Equation 4, that is

\[
\bar{y}(n + k) = \frac{1}{\bar{a}_n(k)} \left[\bar{x}(k) - \sum_{i=0}^{n-1} \bar{a}_i(k) \bar{y}(k + i) \right]; \forall k \geq 0. \tag{7}
\]

Consider the sequence of arbitrary input values \(\bar{x}(k) = x(k), \forall k \geq 0 \) for the systems 3 and 5. Since for the zero-state response the initial values \(y(i) = \bar{y}(i) \) are all zero for \(i = 0, 1, 2, \ldots, n - 1, \) for \(k = 0 \), Equations 4 and 7 yield

\[
y(n) = \frac{1}{a_n(0)} x(0), \quad \bar{y}(n) = \frac{1}{\bar{a}_n(0)} x(0); \quad \text{respectively; the zero-state equivalence requires} \quad \bar{y}(n) = y(n), \quad \text{that is}
\]

\[
\bar{y}(n) - y(n) = \left[\frac{1}{\bar{a}_n(0)} - \frac{1}{a_n(0)} \right] x(0) = 0
\]

For all arbitrary \(x(0) \). This is satisfied if and only the coefficient of \(x(0) \) is zero, that is

\[
\bar{a}_n(0) = a_n(0). \tag{8a}
\]

Furthermore \(\bar{y}(n) = y(n) \) can be set to any value since \(x(0) \) is arbitrary.

Having \(\bar{y}(i) = y(i) \) for \(i = 0, 1, \ldots, n; \) whilst \(\bar{y}(i) = y(i) = 0 \) for \(i = 0, 1, \ldots, n - 1, \) and \(\bar{y}(n) = y(n) \), \(\bar{y}(n + 1) = y(n + 1) \) can be set to any arbitrary value by \(x(0) \), now consider the solutions 4 and 7 for \(k = 1 \).

\[
y(n + 1) = \frac{1}{a_n(1)} \left[x(1) - \sum_{i=0}^{n-1} a_i(1) y(1 + i) \right] \\
= \frac{1}{a_n(1)} \left[x(1) - \sum_{i=0}^{n-1} a_i(1) y(1 + i) \right] = \frac{1}{a_n(1)} x(1) - \frac{a_{n-1}(1)}{a_n(1)} y(n),
\]

\[
y(n + k) = \frac{1}{a_n(1)} \left[x(1) - \sum_{i=0}^{n-1} a_i(1) y(1 + i) \right] \\
= \frac{1}{a_n(1)} \left[x(1) - \sum_{i=0}^{n-1} a_i(1) y(1 + i) \right] = \frac{1}{a_n(1)} x(1) - \frac{a_{n-1}(1)}{a_n(1)} y(n).
\]

The zero-state equivalence requires \(\bar{y}(n + 1) = y(n + 1) \), that is

\[
\bar{y}(n + 1) - y(n + 1) = \left[\frac{1}{\bar{a}_n(1)} - \frac{1}{a_n(1)} \right] x(1) - \left[\frac{\bar{a}_{n-1}(1)}{\bar{a}_n(1)} - \frac{a_{n-1}(1)}{a_n(1)} \right] y(n) = 0.
\]

This equation is valid for all arbitrarily chosen \(x(1) \) and arbitrary values \(y(n) \) set by \(x(0) \). Therefore, it is satisfied if and only if the coefficients of \(x(1) \) and \(y(n) \) are zero. This requires

\[
\bar{a}_n(1) = a_n(1), \quad \bar{a}_{n-1}(1) = a_{n-1}(1). \tag{8b}
\]

Further, \(\bar{y}(n + 1) = y(n + 1) \) can be set to any value independent from their previous values since \(x(1) \) is arbitrary.

Having \(\bar{y}(i) = y(i) \) for \(i = 0, 1, \ldots, n, n - 1, \) whilst \(\bar{y}(i) = y(i) = 0 \) for \(i = 0, 1, \ldots, n - 1, \) and \(\bar{y}(n) = y(n), \ \bar{y}(n + 1) = y(n + 1) \) can be set to any arbitrary values by \(x(0) \) and \(x(1) \), consider now the solutions 4 and 7 for \(k = 2 \).
Following similar procedure to above and using the zero-state equivalence condition, $\bar{y}(n + 2) = y(n + 2)$ yields

$$\bar{y}(n + 2) - y(n + 2) = \left[\frac{1}{a_n(2)} - \frac{1}{a_n(2)} \right] x(2) - \left[\frac{\bar{a}_{n-1}(2)}{a_n(2)} - \frac{\bar{a}_{n-1}(2)}{a_n(2)} \right] y(n)$$

$$- \left[\frac{\bar{a}_{n-2}(2)}{a_n(2)} - \frac{\bar{a}_{n-2}(2)}{a_n(2)} \right] y(n + 1) = 0$$

for all arbitrary values of $x(2)$, arbitrarily and independently set values of $y(n + 1)$ and $y(n)$.

The validity of this equation is possible if and only if the coefficients of $x(2)$, $y(n + 1)$, and $y(n)$ are zero. Hence, it is straightforward to drive

$$\bar{a}_n(2) = a_n(2), \quad \bar{a}_{n-1}(2) = a_{n-1}(2), \quad \bar{a}_{n-2}(2) = a_{n-2}(2). \quad (8c)$$

Continuing this way for $k = 3, 4, \cdots, n$, the process yields

$$\bar{a}_n(k) = a_n(k), \quad \bar{a}_{n-1}(k) = a_{n-1}(k), \quad \cdots, \quad \bar{a}_{n-k}(k) = a_{n-k}(k) \quad (8d)$$

for $k = 0, 1, \cdots, n$; and for $k \geq n + 1$

$$\bar{a}_n(k) = a_n(k), \quad \bar{a}_{n-1}(k) = a_{n-1}(k), \quad \cdots, \quad \bar{a}_0(k) = a_0(k). \quad (9)$$

Thus, combining the results in Equations 8 and 9, we arrive the result in Equation 6. So, the lemma has been proved.

Note that the equivalence of $a_i(k)$ and $a_i(k)$ is not necessary for $k = 0, 1, \cdots, n - i - 1$. Since these are the coefficients coupling the initial values $\bar{y}(0), \bar{y}(1), \cdots, \bar{y}(n - 1)$ and $y(0), y(1), \cdots, y(n - 1)$ to $\bar{y}(k)$ and $y(k)$, respectively, and these initial conditions are zero for the zero-state response; therefore, the mentioned coefficients may not be equal.

Zero-input equivalence of systems 3 and 5 can be defined similarly by considering $x(k) = \bar{x}(k) \equiv 0, \forall k \geq 0$ as follows:

Definition 2. Two discrete-time linear time-varying systems of the same order n described by the difference equations 3 and 5 are said to be zero-input equivalent if they produce the same outputs for the same set of arbitrarily chosen initial conditions; that is

$$\bar{y}(k) = y(k), \quad \forall k \geq 0 \quad (10a)$$

for zero-inputs

$$\bar{x}(k) = x(k) \equiv 0, \quad \forall k \geq 0 \quad (10b)$$

and for all arbitrarily chosen initial states

$$\bar{y}_k = y_k, \quad k = 0, 1, 2, \cdots, n - 1. \quad (10c)$$

Lemma 2. For the zero-input equivalence of the systems 3 and 5, it is sufficient but not necessary that one system is an algebraic multiple of the other, that is

$$a_i(k) = a_i(k), \quad i = 0, 1, 2, \cdots, n; \quad \forall k \geq 0, \quad (11a)$$

where the non-zero finite constants α_i are given by

$$\alpha_i = \frac{\bar{a}_n(k)}{a_n(k)}, \quad i = 0, 1, 2, \cdots. \quad (11b)$$

The proof of the lemma directly follows from Equations 4 and 7 with $x(k) = \bar{x}(k) \equiv 0$. The equivalence of these zero-input solutions with the same arbitrary set of initial states for the systems 3 and 5 for $k = 0, 1, 2, \cdots$ follows with the conditions in Equation 11; thus, the sufficiency proof ends. In fact, with Equation 11a, both systems 3a and 5a with
\(\bar{x}(k) = x(k) \equiv 0\) could be made identical by multiplying all the coefficients of Equation 3a by \(\alpha_k\), or dividing all the coefficients of Equation 5a by \(\alpha_k\), \(k \geq 0\).

The non-necessity could be shown by a counter example; let the two systems be defined as

\[
a_1(k)y(k + 1) + a_0(k)y(k) = x(k); \quad y(0) = y_0, \tag{12a}
\]

\[
\bar{a}_1(k)y(k + 1) + \bar{a}_0(k)y(k) = x(k); \quad y(0) = \bar{y}_0
\]

for \(k \geq 0\). Assuming \(x(k) = \bar{x}(k) = 0, \forall k \geq 0\) and arbitrary equal initial condition \(y_0 = \bar{y}_0\), both systems yield equal solutions \(\forall k \geq 0\) which are identically equal to zero if \(a_0(0) = \bar{a}_0(0) = 0\). Hence, the condition 11a is not necessary for all \(k \geq 1\).

We are now ready to define the equivalence of the systems 3 and 5 in general.

Definition 3. Two discrete-time linear time-varying systems of order \(n\) described by Equations 3 and 5 are equivalent if they produce the same solutions for all \(k \geq 0\) for all equal input functions and equal initial conditions; hence, equivalent systems have the same input-output pairs.

Lemma 3. For the equivalence of systems 3 and 5, it is necessary and sufficient that

\[
a_i(k) = \bar{a}_i(k), \text{ for } i = 0, 1, 2, \ldots, n; \forall k \geq 0, \tag{13a}
\]

\[
y_k = \bar{y}_k, \text{ for } k = 0, 1, 2, \ldots, n-1, \tag{13b}
\]

that is both systems are identical.

The proof of this lemma follows from the results of Lemmas 1 and 2. In fact, from the linearity, the complete solution is the summation of the zero-state and zero-input solutions, which are independently found from each other. Therefore, Lemma 1 requires \(\bar{a}_i(k) = a_i(k)\) for \(i = n, k = 0, 1, 2, \cdots\); which implies \(\alpha_k = 1\) in Equation 11b \(\forall k \geq 0\). This result in turn implies Equation 13a from Equation 11a. It is obviously true that the condition of Lemma 1 is also satisfied with Equation 13a. Equation 13b follows directly from the definition of the zero-input equivalence.

Remark 1. In spite of the fact that the condition of Lemma 2 is not necessary, the necessity of the condition of Lemma 3 is required due to the necessity condition of Lemma 1; this is an expected result because Lemma 3 reduces to Lemma 1 for the case of zero initial conditions.

3 | COMMUTATIVITY OF FIRST-ORDER SYSTEMS

In this section, the definition of commutativity and the formulation of the commutativity problem for first-order discrete-time linear time-varying systems are presented. Consider the systems \(A\) and \(B\) described by

\[
A: \quad a_1(k)y_A(k + 1) + a_0(k)y_A(k) = x_A(k); \quad y_A(0) = y_{A0}, \tag{14a}
\]

\[
B: \quad b_1(k)y_B(k + 1) + b_0(k)y_B(k) = x_B(k); \quad y_B(0) = y_{B0} \tag{14b}
\]

for \(k \geq 0\); where \(a_i(k) \neq 0, b_i(k) \neq 0\). When these systems are connected in cascade as shown in Figure 1 to form a single system with input \(x(k)\) and output \(y(k)\), the constraint equations

\[
x(k) = x_A(k), \tag{15a}
\]

\[
y_A(k) = x_B(k), \tag{15b}
\]

\[
y_B(k) = y(k) \tag{15c}
\]
follow. Taking Equation 14b for \(k \) and \(k+1 \) and using Equation 15b, Equation 14a can be written as

\[
a_1(k)b_1(k+1)y_B(k+2) + [a_1(k)b_0(k+1) + a_0(k)b_1(k)]y_B(k+1)
+ a_0(k)b_0(k)y_B(k) = x_A(k).
\]

(16)

Since \(x_A(k) = x(k) \) and \(y_B(k) = y(k) \), for the connection \(AB \) the following difference equation is obtained:

\[
a_1(k)b_1(k+1)y(k+2) + [a_1(k)b_0(k+1) + a_0(k)b_1(k)]y(k+1) + a_0(k)b_0(k)y(k) = x(k)
\]

(17)

for \(k \geq 0 \). The initial values \(y(0) \) and \(y(1) \) are obtained similarly

\[
y(0) = y_B(0) = y_{0B},
\]

(18a)

\[
y(1) = \frac{y_A(0) - b_0(0)y_B(0)}{b_1(0)} = \frac{1}{b_1(0)}y_{0A} - \frac{b_0(0)}{b_1(0)}y_{0B}.
\]

(18b)

For the interconnection \(BA \) as shown in Figure 1C, the constraint equations \(x = x_B, y = y_A \), together with Equations 14 and 15 yield

\[
a_1(k+1)b_1(k)y(k+2) + [a_0(k+1)b_1(k) + a_1(k)b_0(k)]y(k+1) + a_0(k)b_0(k)y(k) = x(k),
\]

(19)

\[
y(0) = y_A(0) = y_{0A},
\]

(20a)

\[
y(1) = \frac{y_B(0) - a_0(0)y_A(0)}{a_1(0)} = \frac{1}{a_1(0)}y_{0B} - \frac{a_0(0)}{a_1(0)}y_{0A}.
\]

(20b)

Naturally, Equations 19 and 20 could also be obtained from the corresponding Equations 17 and 18 by interchanging \(a_i, b_i \) and \(A, B \).

Definition 4. The systems \(A \) and \(B \) are said to be commutative if their interconnections \(AB \) and \(BA \) are equivalent systems.

Since there are a few definitions for the equivalence (Definitions 1, 2, 3) considering the zero-state, zero-input, and the general equivalence, respectively, the commutativity problem will be formulated accordingly.
For the commutativity of A and B with zero initial conditions, that is $y_{0\beta} = 0$, $y_{0\alpha} = 0$ in Equations 14a and 14b, respectively, the initial conditions of the interconnection AB (Equation 18) and those of BA (Equation 20) will be zero. Hence, the zero-state equivalence of the systems AB and BA is of the case. The coefficient conditions of Lemma 1 state the necessary and sufficient conditions as

$$a_1(k)b_1(k+1) = b_1(k)a_1(k+1); \ k \geq 0, \quad (21a)$$

$$a_1(k)b_0(k+1) + a_0(k)b_1(k) = b_1(k)a_0(k+1) + b_0(k)a_1(k); \ k \geq 1, \quad (21b)$$

$$a_0(k)b_0(k) = b_0(k)a_0(k); \ k \geq 2. \quad (21c)$$

When the commutativity of A and B is considered due to the initial conditions only, that is without any input to the interconnections AB and BA, the zero-input equivalence of AB and BA is of concern. Hence, the sufficient condition of Lemma 2 sets

$$b_0(k)a_0(k) = \alpha_k a_0(k)b_0(k), \quad (22a)$$

$$b_1(k)a_0(k+1) + b_0(k)a_1(k) = \alpha_k[a_1(k)b_0(k+1) + a_0(k)b_1(k)], \quad (22b)$$

$$b_1(k)a_1(k+1) = \alpha_k b_1(k+1)a_1(k), \quad (22c)$$

$$\alpha_k = \frac{b_1(k)a_1(k+1)}{a_1(k)b_1(k+1)}; \ \forall k \geq 0. \quad (22d)$$

For the commutativity of A and B under general conditions, the systems AB and BA are required to be equivalent; hence, Lemma 3 sets

$$a_1(k)b_1(k+1) = b_1(k)a_1(k+1), \quad (23a)$$

$$a_1(k)b_0(k+1) + a_0(k)b_1(k) = b_1(k)a_0(k+1) + b_0(k)a_1(k), \quad (23b)$$

$$a_0(k)b_0(k) = b_0(k)a_0(k), \quad (23c)$$

for all $k \geq 0$. Furthermore, the equality of the initial conditions requires

$$y_{0\beta} = y_{0\alpha}, \quad (24a)$$

$$\frac{1}{b_1(0)^{y_{0\beta}}} - \frac{b_0(0)}{b_1(0)^{y_{0\beta}}} = \frac{1}{a_1(0)^{y_{0\beta}}} - \frac{a_0(0)}{a_1(0)^{y_{0\beta}}}. \quad (24b)$$

4 | ALTERNATE COMMUTATIVITY CONDITIONS

In light of the definitions of commutativity and the formulation of the various commutativity problems considered in the previous sections, the alternate commutativity conditions and some special forms of commutativity are considered in this section. The new conditions which are equivalent to the explicit conditions obtained in the previous sections are more useful to obtain all the commutative pairs (B) of a given system A. Further, they are expressed in the matrix form as in the commutativity conditions for the analog systems of any order. Note that the commutativity conditions for the second-order discrete-time systems cannot be written in the matrix form. Moreover, the new conditions set explicitly the relation between the arbitrary constants (c_1, c_2) used in matrix form and $a_0(k)$ coefficient of A; they are also favorable to prove Theorems I and II and the related Corollaries of this Section.
Let the purpose be to find the commutative pairs of the system \(A \). In this respect, Equation 21c is an identity and always satisfied. Equation 21a implies

\[
b_1(k + 1) = \frac{a_1(k + 1)}{a_1(k)} b_1(k), \quad \forall k \geq 0.
\]

(25a)

The solution of this difference equation for \(b_1(k) \) is simply

\[
b_1(k) = \frac{a_1(k)}{a_1(0)} b_1(0), \quad \forall k \geq 0.
\]

(25b)

With this solution for \(b_1(k) \), Equation 21b yields the following difference equation for \(b_0(k) \);

\[
b_0(k + 1) = \frac{b_1(0)}{a_1(0)} [a_0(k + 1) - a_0(k)] + b_0(k), \quad \forall k \geq 0.
\]

(26c)

The solution of this first-order difference equation for \(b_0(k) \) is

\[
b_0(k) = \frac{b_1(0)}{a_1(0)} [a_0(k) - a_0(0)] + b_0(0), \quad \forall k \geq 0.
\]

(26d)

Since \(b_0(0) \) and \(b_1(0) \) can be chosen arbitrarily except \(b_1(0) \neq 0 \), assigning \(b_0(0) = c_0 \), and \(\frac{b_1(0)}{a_1(0)} = c_1 \neq 0 \) as arbitrary constants, Equations 25b and 26b can be written as

\[
\begin{bmatrix}
b_1(k) \\
b_0(k)
\end{bmatrix} = \begin{bmatrix}
a_1(k) & 0 \\
a_0(k) - a_0(0) & 1
\end{bmatrix} \begin{bmatrix}
c_1 \\
c_0
\end{bmatrix}, \quad \forall k \geq 0.
\]

(27)

where \(c_0 \) and \(c_1 \) are arbitrary constants except \(c_1 \neq 0 \).

When the initial conditions are zero, Equations 24a and 24b are satisfied. However, with nonzero initial conditions \(y_{0B} = y_{0A} \neq 0 \), Equation 24b requires

\[
c_0 = 1 - c_1 + c_1 a_0(0).
\]

(28)

The results that have been obtained so far in this section can be expressed by a theorem.

Theorem I (Commutativity of first-order systems): For the commutativity of first-order discrete-time linear time-varying systems described by Equations 14a and 14b, it is necessary and sufficient that the coefficients of \(B \) are expressed in terms of those in \(A \) as in Equation 27 where \(c_0 \) and \(c_1 \neq 0 \) are arbitrary constants and both systems have equal initial conditions \(y_{0B} = y_{0A} \neq 0 \); furthermore, \(c_0 = 1 - c_1 + c_1 a_0(0) \) in the case of nonzero initial conditions.

A few results of the above theorem are stated as corollaries.

Corollary 1. Any first-order commutative pair of a first-order discrete-time linear time-varying system is also time-varying.

The proof is apparent from Equation 27.

Corollary 2. A first-order discrete-time linear time-varying system is always commutative with its pair which is feedback controlled by arbitrary constant feedback and feed forward path gains (\(\beta \) and \(\alpha \), respectively); it is necessary that both of the feed-gains should be constant for commutativity, that is no commutative pairs exist with variable feed gains. Conversely, all the commutative pairs of a first-order discrete-time linear time-varying system can be obtained by using the constant feed forward and feedback gains applied to it. Moreover, if the initial conditions exist, these gains should satisfy \(\beta = 1 - 1/\alpha \).

Proof. Consider the original system \(A \) and its feedback-controlled version as shown in Figure 2. It is obvious that

\[
x_A(k) = \alpha [x_B(k) - \beta y_A(k)],
\]

(29a)
\[y_A(k) = y_B(k), \quad (29b) \]
\[y_{OA} = y_{OB}. \quad (29c) \]

Inserting these equations in Equation 14a and arranging, we obtain

\[\frac{a_1(k)}{\alpha} y_B(k + 1) + \left(\frac{a_0(k)}{\alpha} + \beta \right) y_B(k) = x_B(k), \quad (30a) \]
\[y_{OB} = y_{OA}. \quad (30b) \]

Comparing with Equation 27, the coefficients of this system can be written as

\[\begin{bmatrix} \frac{a_1(k)}{\alpha} \\ \frac{a_0(k)}{\alpha} + \beta \end{bmatrix} = \begin{bmatrix} a_1(k) & 0 \\ a_0(k) - a_0(0) & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\alpha} \\ a_0(0) + \beta \end{bmatrix}. \quad (31) \]

Hence, with the arbitrary constants

\[c_1 = \frac{1}{\alpha} \neq 0, \quad (32a) \]
\[c_0 = \frac{a_0(0)}{\alpha} + \beta, \quad (32b) \]

the conditions of Theorem I are satisfied. Furthermore, since \(y_{OB} = y_{OA} \) is always the case and for nonzero initial conditions, the constraint 28 yields

\[\beta = 1 - \frac{1}{\alpha} \quad (33) \]

for the feedback gain. Although Equations 29a and 30a are valid for variable \(\alpha \) and \(\beta \) as well, Equations 32a and 32b necessitate \(\alpha \) and \(\beta \) being constants. This completes the first part of the proof.

The proof of the converse case follows from Equations 32a and 32b; in fact, for any \(c_1 \neq 0, c_0 \), the feed forward and feedback gains can be chosen as

\[\alpha = \frac{1}{c_1}, \quad (34a) \]
\[\hat{\beta} = c_0 - c_1 a_0(0), \]
\[(34b) \]

which naturally satisfy Equation 33 for the equal nonzero initial conditions due to Equation 28.

We now consider commutativity conditions of a first-order system with a zero-order one. First, we state the theorem and then give the proof.

Theorem 2. A first-order discrete-time linear time-varying system is commutative with a zero-order discrete-time linear system if and only if the zero-order system is time-invariant, and moreover, if the first-order system has a nonzero initial condition, then the zero-order system is an identity.

Proof. Let the first and zero-order systems denoted by \(A \) and \(B \), respectively, and connected as in Figure 1B, C. Let the system \(A \) be represented as in Equation 14a, and \(B \) as

\[b_0(k) y_B(k) = x_B(k); \quad k \geq 0, \quad b_0 \neq 0, \]
\[(35a) \]

\[y_{0B} = \frac{x_B(0)}{b_0(0)}. \]
\[(35a) \]

For the connection \(AB \), the constraints \(x_A = x, y_A = x_B, y_B = y \) yield

\[a_1(k) b_0(k + 1) y(k + 1) + a_0(k) b_0(k) y(k) = x(k); \quad y(0) = y_{0B} = \frac{y_A(0)}{b_0(0)}. \]
\[(36A) \]

For the connection \(BA \), \(x_B = x, y_B = x_A, y_A = y \) yield

\[a_1(k) b_0(k) y(k + 1) + a_0(k) b_0(k) y(k) = x(k); \quad y(0) = y_{0A}. \]
\[(36b) \]

Using the conditions of Lemma I for the equivalence \(AB \) and \(BA \), \(a_1(k) b_0(k + 1) = a_1(k) b_0(k) \) which implies

\[b_0(k + 1) = b_0(k), \quad \forall k \geq 0 \]
\[(37) \]

since \(a_1(k) \neq 0 \). Hence, the zero-order system must be time-invariant. Furthermore, the equality of the initial conditions is satisfied if and only if \(y_A(0) = \frac{y_A(0)}{b_0(0)} \). This means \(b_0(0) = 1 \); hence, if \(A \) has a nonzero initial condition, then it has no zero-order commutative pair except identity, that is \(b_0(k) \equiv 1, \quad \forall k \geq 0 \) and \(y_{0B}(k) = x_B(k), \quad \forall k \geq 0 \).

5 | EXAMPLES

5.1 | Example 1

This example mainly validates the theoretical results and proves the possible use of commutativity to reduce disturbance in cascade connected systems.

Let the system \(A \) be described by

\[e^k y_A(k + 1) + (k + 1)^2 y_A(k) = x_A(k); \quad y_{0A} = y_A(0) = 2, \quad k \geq 0. \]
\[(38) \]

With \(c_1 = 2 \) and \(c_0 = 1 \), Equation 27 yields the following commutative pair as system \(B \):

\[2 e^k y_B(k + 1) + (2k^2 + 4k + 1) y_B(k) = x_B(k); \quad y_{0B} = y_B(0) = 2, \quad k \geq 0. \]
\[(39) \]

Note that both systems \(A \) and \(B \) have the same initial conditions \(y_{0A} = y_{0B} = 2 \) as implied by Equation 24a, and due to nonzero value of the initial conditions \(c_1 \) and \(c_0 \) are chosen so that Equation 28 is satisfied.

The simulation of the interconnected systems \(AB \) and \(BA \) is worked by Simulink for an input of unit sample sequence and seen that both systems yield the same output solution as shown in Figure 3.
For the case $c_1 = 2$ and $c_0 = 3$ and with the same nonzero initial conditions, system B becomes

$$2e^ky_B(k + 1) + (2k^2 + 4k + 3)y_B(k) = x_B(k); \ y_{0B} = y_B(0) = 2, \ k \geq 0.$$ \hspace{1cm} (40)

For this case, although the form of B is obtained from Equation 27 and the same nonzero initial condition $y_{0A} = y_{0B} = 2$ exists, it is expected that the systems A and B are not commutative; this is because Equation 28 is not satisfied. In fact, the interconnections AB and BA yield different output responses as shown in Figure 4. When the initial conditions are zero, Equation 28 is not necessary for the commutativity, therefore, both systems AB and BA yield the same output shown in Figure 5 ($AB = BA$). Note that the same input of unit sample sequence used in obtaining Figure 3 is applied when obtaining Figures 4 and 5 as well.
To show the effect of disturbance on the system performance, a noise \(0.04^{-k}\) is added between the interconnection of \(A\) and \(B\) for the case considered in Figure 5 \((AB = BA)\); that is \(c_1 = 2\) and \(c_0 = 3\) and zero initial conditions are chosen. The outputs of \(AB\) and \(BA\) are shown in the same figure \((AB + \text{Noise} \text{ and } BA + \text{Noise}, \text{respectively})\). Comparing these curves in Figure 5, it is seen that the interconnection \(AB\) is more robust than \(BA\). In fact, it is recorded that the disturbance due to noise in the response of \(BA\) remains in the limits \([-0.0656, 0.0534]\), while that of \(AB\) remains in \([-0.0395, 0.0324]\) which is much smaller than that of \(BA\).

Note that this result is not particular for the applied disturbance \(0.04^{-k}\), but it is valid for all kinds of disturbances. To prove this, consider a unit sample disturbance \(\delta(k - l)\) defined by

\[
\delta(k - l) = \begin{cases}
1, & \text{for } k = l \geq 0 \\
0, & \text{for } k \neq l
\end{cases}
\]

applied to the interconnection point of \(BA\). This disturbance is in fact an additive input to the system \(B\) defined by Equation 40. The repetitive solution of this equation for \(y_B(k)\) with \(x_B(k) = \delta(k - l)\) will be

\[
h_B(k, l) = \begin{cases}
0, & \text{for } k = 0, 1, \ldots, l, \\
\frac{1}{2e^l}, & \text{for } k = l + 1, \\
\frac{(-1)^{k-l-1}}{2^{k-l-1}e^{(k^2-l^2+l-k)/2}} \prod_{i=1}^{k-l-1} (k-i+1)^2 + 0.5, & \text{for } k \geq l + 2.
\end{cases}
\]

(41)

In fact, this is the unit sample response of \(B\) (unit sample stimulus occurring at \(l \geq 0\)). Due to linearity, the response of \(B\) for any input \(x(k)\) which can be expressed by

\[
x(k) = \sum_{l=0}^{\infty} x(l)\delta(k - l)
\]

is given by the superposition and the result is

\[
y_B(k) = \sum_{l=0}^{\infty} x(l)h_B(k, l)
\]

(43)

which is known as convolution summation. Hence, the effect of the value of any \(x(k)\) at any \(k = l\) on \(y_B(k)\) is proportional with \(h_B(k, l)\).
On the other hand, for any noise \(x(k) \) applied at the interconnection of \(AB \) will produce

\[
y_A(k) = \sum_{l=0}^{\infty} x(l) h_A(k, l)
\]

(44)

where \(h_A(k, l) \) is the response of \(A \) to the unit sample \(\delta(k - l) \), and \(h_A(k, l) \) is computed as the repetitive solution of Equation 38 for \(y_A(k) \) as

\[
h_A(k, l) = \begin{cases}
0, & \text{for } k = l \geq 0, \\
\frac{1}{2^l}, & \text{for } k = l + 1, \\
\frac{(-1)^{k-l-1}}{2^l} \prod_{i=1}^{k-l-1} (k-i+1)^2, & \text{for } k \geq l + 2.
\end{cases}
\]

(45)

Since the effect of the value of \(x(k) \) at any \(k = l \) on \(y_A(k) \) is proportional with \(h_A(k, l) \) due to Equation 44, it is sufficient to compare \(h_B(k, l) \) and \(h_A(k, l) \) to investigate the general effect of \(x(k) \) on the outputs of the interconnections \(BA \) and \(AB \), respectively.

In fact, Equations 45 and 41 yield

\[
\frac{h_A(k, l)}{h_B(k, l)} = \begin{cases}
2, & \text{for } k = l + 1, \\
\frac{2}{\prod_{i=1}^{k-l-1} (k-l+1)^2}, & \text{for } k \geq l + 2.
\end{cases}
\]

(46)

Obviously, the effect of \(x(l) \) on the output of \(BA \) will be twice its effect on the output \(AB \) for \(k = l + 1 \). For all \(k \geq l + 2 \) it is true that Equation 46 yields \(h_A(k, l) > h_B(k, l) \). Hence, due to Equations 43 and 44, the individual value of the noise \(x(k) \) at \(l \) is affecting the output of system \(A \) more than that of \(B \) for all instants greater than \(l \). Therefore, considering the overall effects of \(x(k) \) for \(k \geq l \) and the summations in Equations 43 and 44, the connection \(AB \) where the output is taken from \(B \) is more robust than \(BA \) for any sequence of \(x(k) \) applied at the interconnection. That is, this conclusion is general for the given example, and it is not due to the particularly chosen noise 0.04\(^{-k}\).

As the final simulation to validate Corollary 2, let the system \(A \) in Figure 2 be defined by Equation 38 with the forward and backward feedback gains \(\alpha = 2, \beta = 0.5 \) which is a choice satisfying Equation 33. Hence, the system \(A \) and its feedback connected version \(B \) defined in Figure 2 are supposed to be commutative with nonzero initial conditions as well. For a step input and with the initial condition 2, the simulation results shown in Figure 6 (\(AB = BA \)) confirm this

![FIGURE 6](wileyonlinelibrary.com)
fact. On the contrary, if β is changed to 1 whilst $\alpha = 2$, which is a case Equation 33 is not satisfied, the commutativity is spoiled as shown in Figure 6 (AB, BA).

5.2 | Example 2

In this example, the commutativity concepts are illustrated by a second-order low pass filter which is used as an amplitude modulator in telecommunication circuits.\(^{37}\) Let the subsystems A and B be defined by

\[
A: \quad 10y_A(k + 1) + [9 + 3 \sin(0.1\pi k)]y_A(k) = x_A(k),
\]

\[
B: \quad 30y_B(k + 1) + [8 + 9 \sin(0.1\pi k)]y_B(k) = x_B(k).
\]

The coefficients of A and B satisfy Equation 27 with $c_1 = 3$ and $c_0 = 8$; hence, A and B are commutative. AB and BA are equivalent systems which perform an amplitude modulation with a carrier frequency of 0.05. In fact, with a sinusoidal input of amplitude 100 and frequency of 0.0025, the typical output of the modulators AB and BA is shown in Figure 7 after adding the combination of carrier and input signals $0.2 \sin (0.1\pi k) - 0.155 \sin (0.005\pi k)$ to obtain a modulation index of 27.9%.

To test the disturbance effects of the noise to the modulators AB and BA, a 50% pulse width pulse sequence with amplitude 0.1 and period 2 is added at the interconnection between A and B. The output of the modulators AB and BA with and without noise are shown in Figure 8. To see the effects of noise better, the outputs are redrawn in Figure 9 for the time interval [400 440]. It is obvious from this figure that the modulator AB is less sensitive to noise interfered than the modulator BA. Hence, although AB and BA give the same modulated signals shown in Figures 7–9 in the ideal case because A and B are commutative, the sequence of connection AB is much better in performance when an interference is present at the interconnection.

With regard to decreasing the abovementioned disturbance effects, when a given system is to be synthesized as the cascade connection of two commutative subsystems A and B, the way of dividing the given system into A and B gains importance.

The synthesis of a complete network in the form of cascade (chain) connected subsystems is an important subject in electrical network theory.\(^{38-40}\) Some orders of connections are dominant and have preferable performance considering parameter sensitivity, stability, robustness, and other effects such as noise and disturbance. In such cases, the order of connection of subsystems A and B in the form whether AB or BA to yield the same input output relation due to the commutativity gains importance practically.
6 | CONCLUSIONS

After introducing the commutativity and commutativity conditions about the continuous-time linear time-varying systems, the commutativity concept for discrete-time systems is presented for the first time, as far as the author’s knowledge, in this paper. Explicit commutativity conditions are derived and proven for the first-order discrete-time linear time-varying systems. The results are presented in a format similar to those of continuous-time systems although they are quite different from them. In this respect, the validity of the commutativity of a system with its feedback-controlled version is also verified.

An example is given to show the validity of the results and the possible use of the commutativity in applications for decreasing the disturbance effects. This example covers also the validity of the results obtained for feedback systems. Although many applications of discrete time systems are considered in various digital systems,\(^7,37,41-43\) the second example is chosen from communication area and how the benefit of commutativity for reducing noise in an amplitude modulation circuit is illustrated.

Future work for the commutativity of higher order systems and further advantages of the commutativity properties would provide original results on the subject.
REFERENCES

1. Holt AGJ, Reineck KM. Transfer function synthesis for a cascade connection network. *IEEE Trans Circuit Theory*. 1968;15(2):162-163.
2. Aimbund MR, Maslenkov IP. Improving the characteristics of microchannel plates in cascade connection. *Instrum Exp Techn*. 1983;26(3):650-652.
3. Gohberg I, Kaashoek MA, Ran ACM. Partial role and zero displacement by cascade connection. *SIAM J Matrix Anal Appl*. 1989;10(3):316-325.
4. Polyak BT, Vishnyakov AN. Multiplying disks: robust stability of a cascade connection. *Europ J Contr*. 1996;2(2):101-111.
5. Walczak J, Piwowar A. Cascade connection of a parametric sections and its properties. *Przegląd Elektrotechniczny*. 2010;86(1):56-58.
6. Koksal M, Koksal ME. Commutativity of linear time-varying differential systems with non-zero initial conditions: a review and some new extensions. *Math Probl Eng*. 2011;2011:1-25.
7. Koksal M, Koksal ME. Commutativity of cascade connected discrete-time linear time-varying systems. *Trans Instit Measure Contr*. 2015;37(5):615-622.
8. Boylestad RL, Nashelsky L. *Electronic Devices and Circuit Theory*. Prentice Hall; 2002.
9. Dorf RC, Svadova JA. *Introduction to Electric Circuits*. Wiley International Edition; 2004.
10. Miller GM, Beasley JS. *Modern Electronic Communication*. Prentice Hall; 2002.
11. Young PH. *Electronic Communication Techniques*. Engle Wood Cliffs; 1994.
12. Lyons RG. “*Understanding Digital Signal Processing*, Prentice Hall. 3rd ed.; 2011.
13. Oppenheim AV, Schafer RW. *Discrete-Time Signal Processing*. Engle-Wood Cliffs, New Jersey: Prentice-Hall; 1989:406.
14. Skalar B. *Digital Communications: Fundamentals and Applications*. Prentice Hall; 2001.
15. Hykin S. *Digital Communication*. Wiley International Edition; 1988.
16. Ebihara Y, Peaucelle D, Arzelier D. Periodically time-varying memory state-feedback controller synthesis for discrete-time linear systems. *Automatica*. 2011;47(1):14-25.
17. Zhong M, Ding SX, Ding EL. Optimal fault detection for linear discrete time-varying systems. *Automatica*. 2010;46(8):1395-1400.
18. Oliveira RCLF, Peres PLD. Time-varying discrete-time linear systems with bounded rates of variation: stability analysis and control design. *Automatica*. 2009;45(11):2620-2626.
19. Li Y, Liu S, Wang Z. Fault detection for linear discrete time-varying systems with intermittent observations and quantization errors. *Asian J Contr*. 2016;18(1):377-389.
20. Willigenburg LGV, Koning WLD. Temporal stabilizability and compensatability of time-varying linear discrete-time systems with white stochastic parameters. *Europ J Contr*. 2015;23:36-47.
21. Zhang Z, Zhang Z, Zhang H, Zheng B, Karimi HR. Finite-time stability analysis and stabilization for linear discrete-time system with time-varying delay. *J Franklin Inst*. 2014;351(6):3457-3476.
22. Nguyen HN, Olaru S, Gutman PO, Hovd YM. Constrained control of uncertain, time-varying linear discrete-time systems subject to bounded disturbances. *IEEE Trans Autom Contr*. 2015;60(3):831-836.
23. Shen B, Ding SX, Wang Z. Finite-horizon H∞ fault estimation for uncertain linear discrete time-varying systems with known inputs. *IEEE Trans Circuits Syst*. 2013;60(12):902-906.
24. Tahatabaeipour SM. Active fault detection and isolation of discrete-time linear time-varying systems: a set-membership approach. *Int J Syst Sci*. 2013;1:1-18.
25. Li Y, Zhong M. Fault detection filter design for linear discrete time-varying systems with multiplicative noise. *J Syst Eng Electron*. 2011;22(6):982-990.
26. Lu Y, Xu X. The stabilization problem for discrete time-varying linear systems. *Syst Contr Lett*. 2008;57(11):936-939.
27. Arnoldy M, Begunz N, Gurevich P, Kwamey E, Lamba H, Rachinskii D. Dynamics of discrete time systems with a hysteresis stop operator. *SIAM J Appl Dynamic Syst*. 2017;16(1):91-119.
28. Levine HA, Ha YJ. Discrete dynamical systems in multiple target and alternate SELEX. *SIAM J Appl Dynamic Syst*. 2015;14(2):1048-1101.
29. Borges RA, Oliveira RCLF, Abdallah CT, Peres PLD. filtering for discrete-time linear systems with bounded time-varying parameters. *Signal Proc*. 2010;90:282-291.
30. Desoer CA. *Notes for a Second Course on Linear Systems*. New York: Van Nostrand Rheinhold; 1970.
31. Marshall E. Commutativity of time varying systems. *Electro Lett.* 1977;13(18):539-540.
32. Koksal M. Commutativity of second-order time-varying systems. *Int J Contr.* 1982;36(3):541-544.
33. Koksal M. Corrections on ‘commutativity of second-order time-varying systems’. *Int J Contr.* 1983;38(1):273-274.
34. Saleh SV. Comments on ‘commutativity of second-order time-varying systems’. *Int J Contr.* 1983;37(5):1195-1196.
35. Koksal M. “A survey on the commutativity of time-varying systems”, METU, Technical Report no: GEEE CAS-85/1, 1985.
36. Koksal M. An exhaustive study on the commutativity of time varying systems. *Int J Contr.* 1988;5:1521-1537.
37. Jiao D, Kim J, He J. Efficient full-wave characterization of discrete high-density multiterminal decoupling capacitors for high-speed digital systems. *IEEE Trans Adv Pack.* 2008;31(1):154-162.
38. Dillon C, Lind L. Cascade synthesis of polylithic crystal filters containing double-resonator monolithic crystal filter (MCF) elements. *IEEE Trans Circuits Syst.* 1976;23(3):146-154.
39. Zabalawi I. Cascade synthesis of linear phase selective filters. *IEEE Trans Circuits Syst.* 1981;28(8):843-846.
40. Yildirim N, Sen A, Sen Y, Karaaslan M, Pelz D. A revision of cascade synthesis theory covering cross-coupled filters. *IEEE Trans Microwave Theory Techn.* 2002;50(6):1536-1543.
41. Avci E, Avci D. The performance comparison of discrete wavelet neural network and discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition. *Expert Syst Appl.* 2008;35(1-2):90-101.
42. Klein A, Tsividis Y. Externally linear discrete-time systems with application to instantaneously companding digital signal processors. *IEEE Trans Circ Syst I.* 2011;58(11):2718-2728.
43. Jin F, Zhao G, Liu Q. Networked control of discrete-time linear systems over lossy digital communication channels. *Int J Syst Sci.* 2013;22(12):2328-2337.

How to cite this article: Koksal ME. Commutativity of first-order discrete-time linear time-varying systems. *Math Meth Appl Sci.* 2019;42:5274–5292. https://doi.org/10.1002/mma.5310