Supporting Information

for Global Challenges, DOI: 10.1002/gch2.202100091

ZnO Nanomaterials and Ionic Zn Partition within Wastewater Sludge Investigated by Isotopic Labeling

Miguel A. Gomez-Gonzalez, Mark Rehkämper, Zexiang Han, Mary P. Ryan, Adam Laycock, and Alexandra E. Porter*
Supporting Information

ZnO Nanomaterials and Ionic Zn Partition Within Wastewater Sludge Investigated by Isotopic Labeling

Miguel A. Gomez-Gonzalez, Mark Rehkämper, Zexiang Han, Mary P. Ryan, Adam Laycock, Alexandra E. Porter*

Table S1. Summary of past literature on the behavior of ZnO nanomaterials in wastewater media, compared to this work.

Wastewater media and their characteristics	ZnO ENM characteristics a)	Spiking concentration [µg g⁻¹]	Incubation period	References
Primary sludge, Anglian Water, UK (pH = 5.2)	NPs: 7.6 nm in diameter	10.2	4 h	This work
Activated sludge from California, USA	Three types of NPs	2, 10	7 days	Smeraldi et al.¹¹
Simulated influent (pH = 7)	Highly heterogeneous in size (10−130 nm) and shape	5, 10, 20	21 days	Chaüque et al.²²
Real sewage from South Australia, Australia	NPs: 22.9 nm in diameter	700	3 days	Brunetti et al.³¹
Simulated sludge (humic acid; pH = 4.5)	Nanorods: 139 nm in diameter and ~5.3 in aspect ratio	1000	3 h	Gomez-Gonzalez et al.⁴⁴
A mixture of primary and activated sludge from South Australia, Australia (pH = 7.2)	Three types of NPs: a. 30−40 nm in diameter	1000	10 days	Lombi et al.⁵⁵
	c. Co-doped ZnO with hydrodynamic size d = 35 nm			

a) Unless otherwise specified, NP size/diameter refers to bare size as measured by transmission or scanning electron microscopy.
Standard operating procedure for the synthesis of 68ZnO nanoparticles

1) 35 mL acetic acid are heated to 89°C under stirring and with use of a reflux condenser.

2) 390 mg 68Zn metal are added to the acetic acid and the reaction is left to run for 72 hours.

3) After cooling, the 68Zn acetate present in the bottom of the vessel is removed, transferred to a petri dish and dried in an oven at 60°C overnight.

4) 100 mg 68Zn acetate is dispersed in 50 mL diethylene glycol (DEG) by stirring for 15 min. The glass beaker with this mixture is then placed in oven at 60°C for 72 hours.

5) Silicone oil is heated in a metal or glass bath to 177°C. Once a stable temperature has been reached, the glass beaker with the DEG-68Zn acetate mixture (covered with a foil lid with pierced holes) is placed in the silicone oil bath.

6) When the DEG-68Zn acetate mixture reaches 170°C, 100 μL ultrapure water is added to hydrolyze the 68Zn acetate and the mixture is then stirred at 350 rpm.

7) The DEG starts to turn yellow after about 30 minutes; at this point the glass beaker is removed from the silicone oil bath and left to cool.
Figure S1. Procedure followed for sieving the sludge samples and general view.
Table S2. Summary of the primary sludge samples studied with and without enriched Zn addition.

Samples	Added species	Incubation time	Characteristics	
1	Solid	-	Solid sludge (>500 µm) with no added ZnO NPs	
2	Solid	68ZnO 64ZnCl$_2$	30 min	Solid sludge (>500 µm) with labeled Zn added, and incubated during 30 min under orbital shaking
3	Solid	68ZnO 64ZnCl$_2$	4 h	Solid sludge (>500 µm) with labeled Zn added, and incubated during 4 hours under orbital shaking
4	Liquid	-	Liquid sludge with no added ZnO NPs	
5	Liquid	68ZnO 64ZnCl$_2$	30 min	Liquid sludge with labeled Zn added, and incubated during 30 min under orbital shaking
6	Liquid	68ZnO 64ZnCl$_2$	4 h	Liquid sludge with labeled Zn added, and incubated during 4 hours under orbital shaking
7	UF fraction	-	Ultrafiltered fraction (< 2-3 nm) with no added ZnO NPs	
8	UF fraction	68ZnO 64ZnCl$_2$	30 min	Ultrafiltered fraction (< 2-3 nm) with labeled Zn added, incubated during 30 min under orbital shaking
9	UF fraction	68ZnO 64ZnCl$_2$	4 h	Ultrafiltered fraction (< 2-3 nm) with labeled Zn added, incubated during 4 hours under orbital shaking
Table S3. Summary of the concentrations and masses of natural and the two enriched Zn species measured by MC-ICP-MS for the experimental systems.

Sample	Concentration of Zn species [µg g⁻¹]	Mass of Zn species µg for 10 g sludge sample b)				
	Natural Zn	⁶⁸Zn-en	⁶⁴Zn-en	Natural Zn	⁶⁸Zn-en	⁶⁴Zn-en
Solid (no Zn added)	45.5	0.00	0.01	18.7	0.00	0.00
Solid 30 min	50.9	30.5	14.9	21.0	12.6	6.14
Solid 4 h	44.6	24.1	11.4	18.4	9.91	4.69
Liquid (no Zn added)	6.26	0.0	0.0	60.1	0.00	0.00
Liquid 30 min	2.02	2.31	1.15	19.4	22.2	11.0
Liquid 4 h	2.96	2.65	1.25	28.4	25.4	12.0
UF (no Zn added)	0.89	0.00	0.00	8.52	0.00	0.00
UF 30 min	1.35	2.67	1.33	12.9	25.6	12.7
UF 4 h	1.90	3.01	1.43	18.2	28.9	13.7

a) The unit µg g⁻¹ denotes µg of detected Zn species per gram of a given phase (solid, liquid, or UF = ultrafiltrate) of the primary sludge.

b) Mass of Zn present in the three phases of the experimental system with 10 g of sludge; 10 g of sludge encompass 0.412 g solid and 9.588 g liquid. The Zn mass amounts and concentrations have a bias of less than 8%.
Figure S2. Zn mass budget, showing re-equilibration of Zn species within sludge samples over time. Slight variations observed from 30 min to 4 h reflect slow re-equilibration of Zn within the experimental system, including the surfaces of the polyethylene bottles (see text for details). The Zn mass amounts have a repeatability and bias of less than 1 and 8%, respectively.
Table S4. Calculated solid-liquid partition coefficients for the added 68Zn-en and 64Zn-en.

	68ZnO NPs		64ZnCl$_2$ salt			
	Concentration of 68Zn in the solid [µg g$^{-1}$]	Concentration of 68Zn in the liquid [µg g$^{-1}$]	Solid-liquid partition coefficient D_{SL}	Concentration of 64Zn in the solid [µg g$^{-1}$]	Concentration of 64Zn in the liquid [µg g$^{-1}$]	Solid-liquid partition coefficient D_{SL}
30 min	30.5	2.31	13.2	14.9	1.33	12.9
4 h	24.1	2.65	9.1	11.4	1.43	9.1
References

[1] J. Smeraldi, R. Ganesh, T. Hosseini, L. Khatib, B. H. Olson, D. Rosso, *Water Environ. Res.* **2017**, 89, 880.

[2] E. F. C. Chaüque, J. N. Zvimba, J. C. Ngila, N. Musee, *Water SA* **2016**, 42, 72.

[3] G. Brunetti, E. Donner, G. Laera, R. Sekine, K. G. Scheckel, M. Khaksar, K. Vasilev, G. De Mastro, E Lombi, *Water Res.* **2015**, 77, 72.

[4] M. A. Gomez-Gonzalez, M. A. Koronfel, A. E. Goode, M. Al-Ejji, N. Voulvoulis, J. E. Parker, P. D. Quinn, T. B. Scott, F. Xie, M. L. Yallop, A. E. Porter, M. P. Ryan, *ACS Nano* **2019**, 13, 11049.

[5] E. Lombi, E. Donner, E. Tavakkoli, T. W. Turney, R. Naidu, B. W. Miller, K. G. Scheckel, *Environ. Sci. Technol.* **2012**, 46, 9089.

[6] M. A. Gomez-Gonzalez, M. A. Koronfel, H. Pullin, J. E. Parker, P. D. Quinn, M. D. Inverno, T. B. Scott, F. Xie, N. Voulvoulis, M. L. Yallop, M. P. Ryan, A. E. Porter, *Adv. Sustain. Syst.* **2021**, 5, 2100023.

[7] A. L. Fabricius, L. Duester, B. Meermann, T. A. Ternes, *Anal. Bioanal. Chem.* **2014**, 406, 467.