Sec6 modulates PP2A phosphatase activity through alteration of the binding affinity of PP2A in A and C subunits

Toshiaki Tanaka (ttanaka@med.id.yamagata-u.ac.jp)
Yamagata Daigaku Igakubu https://orcid.org/0000-0003-1329-838X

Mitsuyoshi Iino
Yamagata University Faculty of Medicine: Yamagata Daigaku Igakubu Daigakuin Igakukei Kenkyuka

Kaoru Goto
Yamagata University Faculty of Medicine: Yamagata Daigaku Igakubu Daigakuin Igakukei Kenkyuka

Research Article

Keywords: PP2A, ERK1/2, p90RSK, Sec6, Cul3, signalosomes

Posted Date: August 27th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-849519/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Dephosphorylation of the activated regulator of a-fetoprotein (Raf)-MAP/ERK kinase (MEK)-the extracellular signal-regulated protein kinase (ERK)-p90 ribosomal protein 6 kinase (RSK) cascade plays an essential role in regulating the magnitude and duration of kinase activation and the nature of the physiological response. The protein phosphatase 2A (PP2A), which is one of the major serine/threonine phosphatases, plays a pivotal role in various signaling pathways including cell cycle, metabolism, migration, and cell death. The impairment of PP2A activity is associated with various diseases including neurodegenerative disorders, autoimmune diseases, type II diabetes, and tumors. However, little is known about how cells control the assembly of PP2A subunits and stabilize PP2A phosphatase activity. In the present study, we demonstrate that Sec6 regulates PP2A phosphatase activity by modulating the binding affinity of the A and C subunits of PP2A, thereby modulating the phosphorylation of p90RSK at Thr359 and Ser380, glycogen synthase kinase 3b (GSK3b) at Ser9, and the expression of zinc finger E-box binding homeobox 1 (ZEB1), vimentin, and zonula occludens 3 (ZO-3).

Background

Protein phosphorylation, which is a major regulatory mechanism of enzyme activity and stability, is the most widespread class of post-translational modification and involves the addition of a phosphate group onto serine, threonine, or tyrosine [1]. The extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) are members of the mitogen-activated protein kinase (MAPK) intracellular signaling pathway and are ubiquitously expressed as hydrophilic serine/threonine kinases that participate in the regulation of a-fetoprotein (Raf)-MAP/ERK kinase (MEK)-ERK-p90 ribosomal protein 6 kinase (RSK) signal transduction cascade [2]. Although the Raf-MEK-ERK-p90RSK cascade is associated with the regulation of various intracellular events including adhesion, cell cycle, migration, metabolism, proliferation, and transcription, the aberration of Raf-MEK-ERK-p90RSK signaling occurs in approximately one-third of all human tumors [2]. The dephosphorylation of activated Raf-MEK-ERK-p90RSK plays an essential role in regulating the magnitude and duration of kinase activation and the nature of the physiological response [3]. Because many proteins in the Raf-MEK-ERK-p90RSK cascade contain phosphoserine and phosphothreonine, protein phosphatase 2A (PP2A), which is a major serine/threonine phosphatase, has the potential to regulate several steps in the overall pathway.

PP2A is responsible for up to 90% of the serine/threonine phosphatase activity together with protein phosphatase 1 (PP1) in various cell types [4–7]. Because PP2A plays a pivotal role in many signaling pathways, such as cell cycle [8], metabolism [9], migration [10], and cell death [11], the impairment of PP2A is associated with various diseases including neurodegenerative disorders [12], autoimmune diseases [13], type II diabetes [14], and tumors [15]. PP2A consists of a structural subunit A, a regulatory/variable subunit B, and a catalytic subunit C. The C subunit of PP2A binds directly to the A subunit, which acts as scaffolding to form the so-called PP2A dimeric core [16]. The PP2A dimeric core serves as a platform for the association of the regulatory B subunit to generate a trimeric complex, which is important for substrate recruitment and subcellular targeting. Although the specificity of PP2A
phosphatase activity requires a trimeric complex, the manner in which cells control the assembly of the PP2A subunits and the stability of PP2A phosphatase activity remains largely unknown.

Sec6 is one of the subunits of the exocyst, an evolutionarily conserved eight-protein complex consisting of Sec3 (EXOC1), Sec5 (EXOC2), Sec6 (EXOC3), Sec8 (EXOC4), Sec10 (EXOC5), Sec15 (EXOC6), Exo70 (EXOC7), and Exo84 (EXOC8) subunits [17]. Recently, several studies have demonstrated that Sec6 is associated with various cellular mechanisms including neurotransmission [18, 19], neurite growth [20], cell adhesion [21], Ca\(^{2+}\) signaling [22], cell polarity [23], insulin secretion [24], glucose transporter type 4 (Glut4) trafficking [25], cell migration [26], cytokinesis [27], ciliogenesis [28], amylase release [29], cell cycle [30], nuclear factor-κB (NF-κB) signaling [31], and apoptosis [32]. These functions may be dependent or independent on Sec6 during exocytosis.

However, the relationship between Sec6 and PP2A in the Raf-MEK-ERK-p90RSK signaling cascade is unclear. In this study, we demonstrate that Sec6 regulates PP2A phosphatase activity by modulating the binding affinity of the A and C subunits, thereby modulating the phosphorylation of p90RSK at Thr359 and Ser380, glycogen synthase kinase 3β (GSK3b) at Ser9, and attenuating the expression of zinc finger E-box binding homeobox 1 (ZEB1), vimentin, and zonula occludens 3 (ZO-3).

Materials And Methods

Cell culture

The A549 human lung adenocarcinoma epithelial cell line and the Saos2 human osteosarcoma cell line were maintained in Dulbecco’s modified Eagle’s medium (Wako, Osaka, Japan) supplemented with 10% heat-inactivated fetal bovine serum and 100 U/ml penicillin and streptomycin. Cells were routinely cultured at 37°C in a humidified atmosphere of 5% CO\(_2\).

RNA interference

Two sets of small interfering RNA (siRNA) duplexes for human Sec6 were prepared as previously described [31]. AllStars Negative Control siRNA (Qiagen, Hilden, Germany) was used as the control. Cells were transfected with RNAi duplexes using Lipofectamine RNAiMAX (Invitrogen). Experiments were performed 48 h after transfection.

Plasmid construction

The full-length human Sec6 cDNA from HSC3 cells was cloned into the HindIII and KpnI sites of the pEGFP-C3 vector (Clontech, Mountain View, CA). GFP-Sec6 was mutated using the Quick Change Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA) to be resistant to siSec6-2 (GFP-Sec6 pm #2) or siSec6-3 (GFP-Sec6 pm #3). The following primers were used: 5’-CACCATCTTGGAGAGGACTGTCACGACCAGAATTGAGGGCAC-3’ and 5’-GTGCCCTCAATTCTGGTCGTGACAGTCCTCTCCAAGATGGTG-3’ for point mutation of GFP-Sec6#2 or 5’-GTGCCCTCAATTCTGGTCGTGACAGTCCTCTCCAAGATGGTG-3’ for point mutation of GFP-Sec6#2 or 5’-
CGTACATGTCCACGCTCACTCATTCTAAGATGATGCATTACGCGTGCGGAAACG-3’ and 5’-
CGCTTTCCGACCCAGCGATGATGTAGAAGTGAGCGTGACATGTACG-3’ for point mutation of GFP-
Sec6#3. Constructs were confirmed by performing restriction enzyme analysis and sequencing.

Immunoblot analysis

Transfected cells were lysed in a lysis buffer (20 mM Tris-HCl, pH 7.4, 50 mM NaCl, 1 mM Na₃VO₄, 50 mM NaF, 1% Triton X-100, and protease inhibitor cocktail). Protein concentration was determined using the BCA Protein Assay Reagent (Pierce, Rockford, IL, USA) according to the manufacturer's instructions. The samples were boiled for 10 min in an SDS sample buffer (New England Biolabs, Inc., Beverly, MA, USA). Equal amounts of protein lysate were separated using SDS-PAGE and electrophoretically transferred onto PVDF membranes (Millipore, Billerica, MA, USA). The PVDF membranes were then blocked with 5% skim milk in PBS containing Tween 20. The PVDF membranes were immunoblotted using primary antibodies against Sec6 (1:1,000; ab156568; abcam), ERK1/2 (1:1,000; 4695; Cell Signaling Technology), phospho-ERK1/2 (Thr202/Tyr204) (1:1,000; 4370; Cell Signaling Technology), protein kinase d (PKCd) (1:1,000; 9616; Cell Signaling Technology), phospho-PKCd (Thr505) (1:1,000; 9255; Cell Signaling Technology), phospho-PKCd (Thr634) (1:1,000; 9376; Cell Signaling Technology), b-actin (1:1,000; 3700; Cell Signaling Technology), phospho-MEK1/2 (Ser217/221) (1:1,000; 9154; Cell Signaling Technology), MEK1 (1:1,000; 9146; Cell Signaling Technology), MEK2 (1:1,000; 9147; Cell Signaling Technology), PP2A in the A subunit (1:1,000; 2041; Cell Signaling Technology), PP2A in the B subunit (1:1,000; 2290; Cell Signaling Technology), PP2A in the C subunit (1:1,000; 2259; Cell Signaling Technology), dual specificity phosphatase 6 (DUSP6) (1:1,000; 3058; Cell Signaling Technology), ubiquitin (Ub) (1:1,000; 3936; Cell Signaling Technology), cullin3 (Cul3) (1:1,000; 2759; Cell Signaling Technology), ubiquitin protein ligase E3 component N-recognin 5 (UBR5) (1:1,000; 65344; Cell Signaling Technology), target of rapamycin signaling pathway regulator-like 1 (TIPRL1) (1:1,000; ab70795; abcam), GFP (1:1,000; 2956; Cell Signaling Technology), p90RSK (1:1,000; 9355; Cell Signaling Technology), phospho-p90RSK (Thr359) (1:1,000; 8735; Cell Signaling Technology), phospho-p90RSK (Ser380) (1:1,000; 11989; Cell Signaling Technology), phospho-p90RSK (Thr573) (1:1,000; 9346; Cell Signaling Technology), GSK3b (1:1,000; 9315; Cell Signaling Technology), phospho-GSK3b (Ser9) (1:1,000; 9336; Cell Signaling Technology), liver kinase B1 (LKB1) (1:1,000; 3050; Cell Signaling Technology), phospho-LKB1 (Ser428) (1:1,000; 3482; Cell Signaling Technology), vimentin (1:1,000; 5741; Cell Signaling Technology), ZEB1 (1:1,000; 3396; Cell Signaling Technology), Snail (1:1,000; 3879; Cell Signaling Technology), ZO-1 (1:1,000; 13663; Cell Signaling Technology), ZO-2 (1:1,000; 2847; Cell Signaling Technology), ZO-3 (1:1,000; 3704; Cell Signaling Technology). Immunoreactive complexes were visualized using the chemiluminescent HRP Substrate Immobilon™ Western (Millipore).

Immunofluorescence microscopy

Cells were cultured on a micro-cover glass and rinsed with PBS. They were then fixed with 4% paraformaldehyde, washed with PBS three times, and permeabilized using 0.1% Triton/PBS. The cells were incubated in 10% normal donkey serum for blocking and incubated with the anti-PP2A in the C
subunit (1:100; 2038; Cell Signaling Technology) or anti-PP2A in the A subunit (1:100; 2041; Cell Signaling Technology) overnight at room temperature in a humidified chamber. For immunofluorescence analysis, the cells were washed with PBS three times and incubated with secondary antibodies for 1 h. 4',6-diamidino-2-phenylindole (DAPI) was used as a nuclear stain. Images were obtained using a confocal laser-scanning microscope (LSM-700, Carl Zeiss, Jena, Germany).

Immunoprecipitation analysis

Cells were lysed in a lysis buffer. Cell lysates (20,000 mg) were pre-cleaned with protein A sepharose beads (GE health care) for 2 h at 4 °C and incubated with 4 mg PP2A in the C subunit (1:1,000; 2259; Cell Signaling Technology) or alpha4 (1:1,000; 5699; Cell Signaling Technology) antibody overnight at 4 °C and reacted to protein A sepharose beads for 5 h. After being washed four times using the lysis buffer, the immunoprecipitated complex was boiled for 10 min in the SDS sample buffer (New England Biolabs). It was then separated using SDS-PAGE and transferred onto a PVDF membrane (Millipore) and subjected to an immunoblot analysis.

Cell migration assay

A cell migration assay was performed as previously described [33]. After 48 h of transfection with siRNAs, cell migration was assessed using Thincert™ cell culture chambers (Greiner Bio-one, Frickenhausen, Germany). The underside of a polycarbonate membrane insert (8 μm pores) was coated with 20 μg/ml of fibronectin at 4°C overnight. A total of 20,000 cells in serum-free media were added to the insert of each well, and the cells were incubated for 12 h. The cells were fixed with methanol for 10 min and stained with Giemsa (Muto Pure Chemicals, Tokyo, Japan). The number of cells that had migrated to the lower surface of the filters was determined microscopically. The experiments were performed in triplicate and repeated at least three times.

Quantitative real-time reverse transcription-PCR

Quantitative real-time reverse transcription PCR was performed as previously described [32]. The primers used for RT-PCR were: 5'-GCCAACCGCGAGAAGATGA-3' and 5'-CATCACGATGCCAGTGGTA-3' for b-actin [34], 5'-TCGTTGTGGTAACCAAGCTG-3' and 5'-AACATGTGGCTCGCCTCTAC-3' for the PP2A in the C subunit [35].

PP2A immunoprecipitation phosphatase assay

The PP2A phosphatase assay was performed using a PP2A immunoprecipitation phosphatase assay kit (Millipore) according to the manufacturer's instructions.

Statistical analysis

Data are expressed as means ± standard deviations from three or more independent experiments. Statistical analyzes were performed using Student's t test at a significance level of $P < 0.001 (***)$, $P < $
Results

We previously demonstrated that Sec8 knockdown significantly decreased phosphorylation of ERK [33] and that knockdown of Sec8 decreased the levels of Sec6 protein [21]. Thus, we first investigated whether the phosphorylation status of ERK1/2 changed in response to Sec6 knockdown. Depletion of Sec6 by siRNA resulted in reduced phosphorylation of ERK1/2 compared with A549 or Saos2 cells transfected with a negative control siRNA [upper band: ERK1 (p44), Figs. 1a, b, d and e; lower band: ERK2 (p42), Figs. 1a, c, d, and f)]. However, total expression of ERK did not change in response to Sec6 knockdown in A549 (Fig. 1a and Suppl Figs. 1a, b) or Saos2 (Fig. 1d, Suppl Figs. 2a, b) cells. Because activation of PKCδ promotes the activation of ERK [36], we determined whether the phosphorylation status or total expression of PKCδ was altered in response to Sec6 knockdown. Immunoblot analysis revealed that the phosphorylation status of PKCδ and the total expression of PKCδ did not change in response to Sec6 knockdown in A549 (Fig. 1a, Suppl Figs. 1c-e) or Saos2 (Fig. 1d, Suppl Figs. 2c-e) cells. These results indicated that Sec6 is associated with ERK phosphorylation.

Because Sec6 knockdown suppressed the phosphorylation of ERK1/2 (Fig. 1), and the phosphorylation of MEK1/2 promotes the phosphorylation of tyrosine and threonine in ERK1 (p44) and ERK2 (p42) [37], we next examined whether Sec6 knockdown may influence the phosphorylation status of MEK1/2. Figure 2 illustrates that the phosphorylation of MEK1/2 decreased in A549 and Saos2 cells transfected with Sec6 siRNAs compared with cells transfected with the negative control siRNA (Figs. 2a-f). However, total expression of MEK1/2 did not change in response to Sec6 knockdown (Supp Figs. 3a, b, and Suppl Figs. 4a, b).

PP2A, which is the major serine/threonine phosphatase, consists of the structural subunit (A), regulatory subunit (B), and catalytic subunit (C) [4] and is involved in ERK inactivation [38, 39]. Therefore, we investigated whether the expression of PP2A in each subunit changed in response to Sec6 knockdown. Immunoblot analysis revealed that Sec6 knockdown did not alter the expression of the A and B subunits (Figs. 3a, c, Suppl Figs. 3c, d, and Suppl Figs. 4c, d). However, the expression of the C subunit increased in A549 or Saos2 cells transfected with Sec6 siRNAs compared with cells transfected with the negative control siRNA (Figs. 3a-d). Moreover, we performed an immunofluorescence analysis to confirm the increase in PP2A C subunit expression in cells transfected with Sec6 siRNAs. We found that the PP2A C subunit was markedly increased in cells transfected with Sec6 siRNAs compared to that in cells transfected with the negative control siRNAs (Fig. 3e). By contrast, the expression of the PP2A C subunit did not change in A549 or Saos2 cells transfected with Sec6 siRNAs at the mRNA level (Suppl Fig. 5). Furthermore, the immunofluorescence analysis revealed that Sec6 knockdown did not change the expression of the PP2A A subunit (Suppl Fig. 6). Previous studies demonstrated that DUSP6 is a cytoplasmic MAP kinase phosphatase (MKP) that can inactivate ERKs [40]. We next determined whether the expression of DUSP6 changed in response to Sec6 knockdown. The immunoblot analysis indicated that Sec6 knockdown did not alter the expression of DUSP6 compared with A549 or Saos2 cells
transfected with the negative control siRNA (Figs. 3a, c, Suppl Fig. 3e and Suppl. Figure 4e). To determine whether the quantity of Sec6 affects the PP2A C subunit, we examined the expression of the PP2A C subunit, which changed concomitantly with the quantity of Sec6. As illustrated in Fig. 3f, although the PP2A C subunit was unchanged in cells transfected with a GFP vector, the C subunit of PP2A gradually decreased and was dependent on the quantity of GFP-Sec6 (Fig. 3f). These results indicated that Sec6 is associated with the phosphorylation of ERK and MEK1/2 by controlling PP2A C subunit expression.

The PP2A C subunit needs to be stabilized as a free C subunit, but it may be unstable and quickly degraded [41, 42]. Therefore, we examined whether the association of PP2A subunits C and A changes in response to Sec6 knockdown. Interestingly, immunoprecipitation analysis revealed that Sec6 knockdown increased the binding affinity of the C and A subunits (Fig. 4a). Furthermore, although there was an accumulation of a poly-ubiquitinated C subunit in cells transfected with the negative control siRNA, the poly-ubiquitinated C subunit was suppressed in response to Sec6 knockdown (Fig. 4a). Previous studies revealed that Cul3 [43] and UBR5 [44] were identified as E3 ligases that interact with the C subunit. As illustrated in Fig. 4a, the binding affinity of the C subunit and Cul3 decreased in cells transfected with Sec6 siRNAs. However, the binding affinity the C subunit and UBR5 did not change in cells transfected with Sec6 siRNAs compared to that in cells transfected with negative control siRNAs (Fig. 4a). Moreover, overexpression of Sec6 decreased the binding affinity of the PP2A A and C subunits. Furthermore, the binding affinity of the PP2A C subunit and Cul3 was strongly dependent on the quantity of Sec6 (Fig. 4b). Previous studies revealed that alpha4 functions as a potential modulator of the PP2A C subunit stability, folding, and translation [45, 46] and that TIPRL1 is part of the trimolecular alpha4-PP2A C subunit complex and controls the assembly of active alpha4-PP2A complexes [47]. Therefore, we determined whether the association of alpha4, PP2A C subunit, and TIPRL1 changed in response to Sec6 knockdown. The immunoprecipitation analysis revealed that Sec6 knockdown did not affect the binding affinity of the three proteins (Suppl Fig. 7). These data indicate that Sec6 promotes poly-ubiquitination and degradation of the PP2A C subunit via Cul3 by inhibiting the binding of the C and A subunits. Next, we investigated whether the phosphatase activity of PP2A changed in response to Sec6 knockdown. As illustrated in Figs. 4c, d, Sec6 knockdown increased the phosphatase activity of PP2A. Furthermore, we investigated when restoration was made using the GFP-Sec6 point mutant (pm) #2 and #3, which mutant was resistant to siSec6-2 or siSec6-3, altered the phosphatase activity of PP2A. Figure 4e demonstrated that the phosphatase activity of PP2A decreased by adding back the GFP-Sec6 point mutants (Fig. 4e).

Sec6 knockdown decreased the phosphorylation of ERK (Fig. 1), which phosphorylates p90RSK [48]. Next, we determined whether the phosphorylation status of p90RSK changed in response to Sec6 knockdown. As illustrated in Fig. 5, depletion of Sec6 by siRNA resulted in reduced phosphorylation of p90RSK at Thr359 (Figs. 5a, b, d, and e) and Ser380 (Fig. 5a, c, d, and f), compared to that in A549 or Saos2 cells transfected with the negative control siRNA. However, total expression of p90RSK and phosphorylation of p90RSK at Thr573 did not change in response to Sec6 knockdown in A549 cells (Fig. 5a, Suppl Figs. 8a, b) or Saos2 cells (Fig. 5d, Suppl Figs. 8c, d).
Previous studies revealed that p90RSK regulates protein synthesis by phosphorylating GSK3b [49] and LKB1 [50]. Thus, we investigated whether the phosphorylation status of GSK3b and LKB1 changed in response to Sec6 knockdown. The immunoblot analysis revealed that although Sec6 knockdown did not change the expression of total GSK3b and LKB1 (Figs. 6a, c, Suppl Figs. 9a–d), Sec6 knockdown decreased the phosphorylation of GSK3b at Ser9 compared with that in cells transfected with the negative control siRNA (Figs. 6a–d). By contrast, the phosphorylation status of LKB1 at Ser428 did not change in response to Sec6 knockdown (Figs. 6a, c, Suppl Figs. 9e, f).

Because our previous studies demonstrated that Sec6 knockdown suppressed cell migration [21, 51] and the suppression of phosphorylated GSK3b at Ser9 inhibited epithelial mesenchymal transition (EMT) but promoted mesenchymal epithelial transition (MET) [52, 53], we performed an immunoblot analysis to determine whether EMT (ZEB1, vimentin, and Snail) or MET (ZO-1, ZO-2, and ZO-3) markers are altered following transfection with Sec6 siRNA compared with the negative control siRNA. As illustrated in Fig. 7, Sec6 knockdown suppressed the expression of ZEB1 and vimentin compared with that in cells transfected with the negative control siRNA (Figs. 7a–f). However, we confirmed that Sec6 knockdown did not affect the expression of Snail protein levels compared with that in cells transfected with the negative control siRNA (Figs. 7a, d, Suppl Fig. 10). By contrast, Sec6 knockdown increased the expression of ZO-3 compared with that in cells transfected with the negative control siRNA (Figs. 8a–d); however, Sec6 knockdown did not change the expression of ZO-1 and ZO-2 compared with that in cells transfected with the negative control siRNA (Figs. 8a, c, Suppl Fig. 11). Taken together, these data indicate that Sec6 modulates the expression of ZEB1, vimentin, and ZO-3 via the GSK3b-p90RSK-MEK1/2-ERK axis by regulating PP2A phosphatase activity.

Because downregulation of ZEB1 and vimentin decrease cell migration [54], we performed cell migration assays to determine whether cell migration was decreased under Sec6 knockdown conditions. Predictably, cell migration was decreased in cells transfected with Sec6 siRNAs (Fig. 9). Next, we investigated whether adding back the GFP-Sec6 point mutant (pm) #2 or #3, which is resistant to siSec6-2 or siSec6-3, respectively, restored cell migration. As illustrated in Fig. 9, cell migration was restored by adding back the GFP-Sec6 point mutant both in A549 cells (Figs. 9a, c) and Saos2 cells (Figs. 9b, d).

Discussion

In the present study, we observed that Sec6 regulated the phosphorylation of ERK1/2 and MEK1/2 and the phosphatase activity of PP2A through degradation of the PP2A C subunit via Cul3 by inhibiting the binding of the PP2A C and A subunits. Moreover, Sec6 knockdown suppressed the expression of ZEB1 and vimentin but up-regulated the expression of ZO-3 through the phosphorylation of p90RSK at Thr359 and Ser380 and GSK3b at Ser9. The schema for the present study is presented in Fig. 10.

PP2A has an essential role in maintaining homoeostasis in cells by acting as a phosphatase that regulates most protein kinase-related intracellular signaling. Because functional inactivation and alteration of the assembly of the PP2A holoenzyme are required for cancer development, PP2A is
considered to be a tumor suppressor [55]. The PP2A A subunit, which exhibits a scaffolding function with the PP2A B and C subunits, is mutated in high-grade endometrial tumors [56], type I ovarian tumors [57], type I uterine carcinomas [57], primary gliomas [57], lung cancer, breast cancer, and melanoma [4]. Mutation of the PP2A A subunit results in decreased binding to the PP2A B and C subunits [58, 59]. We found that Sec6 promoted the poly-ubiquitination and degradation of the C subunit via Cul3 by inhibiting the binding of the C and A subunits, thereby modulating the phosphatase activity of PP2A (Fig. 4). These results indicate that Sec6 may be involved in the development of PP2A-related tumors.

Previous studies demonstrated that alpha4 serves as a binding partner with the PP2A C subunit that not only renders it catalytically inactive but also contributes to the ability of the C subunit to be assembled into functional PP2A phosphatase complexes [60]. However, our results indicated that Sec6 knockdown did not affect the binding affinity of alpha4 and the PP2A C subunit (Suppl Fig. 7). How does Sec6 affect the binding affinity of the PP2A C and A subunits? One possibility is that Sec6 directly inhibits the interaction between the A and C subunits. Our previous studies revealed that Sec6 binds to Jab1, Siah1, Hsp27, and p38MAPK [30, 51]. It is possible that Sec6 competitively and directly binds to the A or C subunit and disrupts the interaction between these subunits. Another possibility is that Sec6 is one of the components in the multimolecular signaling complexes of the PP2A-ERK-MEK-p90RSK axis. The multimolecular signaling complexes, which are also called “signalosomes,” are an assembly of multiple intracellular signaling proteins [61]. Because the signalosomes have features in which the domains responsible for assembly are parts of enzymes or binding sites of enzymes, the local concentration of the bound enzyme domains increases at the spatial clustering in the signalosomes [61]. Moreover, the signalosomes have distinctive functions in signal amplification, decline of biological noise, and threshold response, thereby conferring spatial and temporal control of intracellular signaling [61]. In the signalosomes, the active intracellular signaling may be terminated by feedback activation of phosphatases and deubiquitinases, thereby promoting disassembly of multiple intracellular signaling proteins. The signalosomes appear to exist everywhere in intracellular signaling pathways. For example, p90RSK3-PP2A-muscle A-kinase anchoring protein b (mAKAPb)-serum response factor (SRF) signalosomes regulate SRF phosphorylation and control a transcriptional program responsible for modulating changes in cardiac myocyte morphology that occur secondary to pathological stressors [62]. In p90RSK3-PP2A-mAKAPb-SRF signalosomes, the phosphorylation of SRF at Ser103 is differentially controlled by binding both kinases and phosphatases. Moreover, the anchoring disruptors of RSK3 and PP2A may inhibit each binding partner sharing the mAKAPb-binding interface, potentially modulating the activity of the enzyme, kinase, and phosphatase [62].

Because our results indicated that Sec6 regulates the phosphorylation of ERK1/2 and MEK1/2 and the phosphatase activity of PP2A through the degradation of the PP2A C subunit via Cul3 and by inhibiting the binding of the C and A subunits, Sec6 functions as an anchoring disruptor or modulator in PP2A-ERK-MEK-p90RSK signalosomes. Moreover, depletion of Sec6 suppresses the phosphorylation of ERK1/2, MEK1/2, p90RSK at Thr359 and Ser380 and GSK3b but not PKCd, p90RSK at Thr573 or LKB1 (Figs. 1, 2, 5, and 6). These precise selectivities for the phosphorylation of proteins may be related to the function of the anchoring disruptor or modulator in Sec6-PP2A-ERK-MEK-p90RSK signalosomes, which result from
the regulation of EMT or MET protein expression. Therefore, understanding the anchoring disruptor or modulator of Sec6 in Sec6-PP2A-ERK-MEK-p90RSK signalosomes may provide a new therapeutic strategy for treating PP2A-related tumors. However, further studies are needed to determine the precise role of Sec6 in Sec6-PP2A-ERK-MEK-p90RSK signalosomes.

Conclusions

The results of the present study suggest that Sec6 regulated the phosphorylation of ERK1/2 and MEK1/2 and the phosphatase activities of PP2A through the degradation of the PP2A C subunit via Cul3 and by inhibiting the binding of the C and A subunits, which resulted in the modulation of ZEB1, vimentin, and ZO-3 expression through the phosphorylation of p90RSK at Thr359 and Ser380 and GSK3b at Ser9.

Declarations

Funding

This work was supported by Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (KG and TT).

Conflict of interests

All authors declare that they have no financial interests.

Acknowledgements

The authors are indebted to enago (www.enago.jp) for the English writing and editing.

Availability of data and material

The datasets are available from the corresponding author upon reasonable request.

Author contributions

T.T. performed all experiments. T.T. and M.I. designed the experiments and wrote the manuscript. All authors checked the manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Abbreviations
ERK1/2 extracellular signal-regulated protein kinase1/2; Raf:regulator of a-fetoprotein; MEK:MAP/ERK kinase; RSK:ribosomal protein 6 kinase; PP2A:Protein phosphatase 2A; PP1:protein phosphatase 1; Glut4:glucose transporter type 4; NF-κB:Nuclear factor-κB; GSK3b:glycogen synthase kinase 3b; ZEB1:zinc finger E-box binding homeobox 1; ZO:zonula occludens; siRNA:small interfering RNA; PKCδ:protein kinase d; DUSP6:dual Specificity Phosphatase 6; Ub:ubiquitin; Cul3:cullin3; UBR5:ubiquitin protein ligase E3 component N-recognin 5; TIPRL1:target of rapamycin signaling pathway regulator-like 1; LKB1:liver kinase B1; DAPI:4′,6-diamidino-2-phenylindole; MKP:MAP kinase phosphatase; EMT:epithelial mesenchymal transition; MET:mesenchymal epithelial transition; mAKAPb:muscle A-kinase anchoring protein b; SRF:serum response factor

References

1. Yoo SM, Cho SJ, Cho YY (2015) Molecular Targeting of ERKs/RSK2 Signaling Axis in Cancer Prevention. J Cancer Prev 20:165–171
2. Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105–143
3. Owens DM, Keyse SM (2007) Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26:3203–3213
4. Kiely M, Kiely PA (2015) PP2A: The Wolf in Sheep's Clothing? Cancers (Basel) 7:648–669
5. Eichhorn PJ, Creyghton MP, Bernards R (2009) Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 1795:1–15
6. Arroyo JD, Hahn WC (2005) Involvement of PP2A in viral and cellular transformation. Oncogene 24:7746–7755
7. Westermarck J, Hahn WC (2008) Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med 14:152–160
8. Bennin DA, Don AS, Brake T, McKenzie JL, Rosenbaum H, Ortiz L, DePaoli-Roach AA, Horne MC (2002) Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a G1/S phase cell cycle arrest. J Biol Chem 277:27449–27467
9. Lerea KM (1992) Inhibitors of protein phosphatase type 1 and 2A attenuate phosphatidylinositol metabolism and Ca(2+)-transients in human platelets. Role of a cdc2-related protein kinase. Biochemistry 31:6553–6561
10. Kiely PA, O’Gorman D, Luong K, Ron D, O’Connor R (2006) Insulin-like growth factor I controls a mutually exclusive association of RACK1 with protein phosphatase 2A and beta1 integrin to promote cell migration. Mol Cell Biol 26:4041–4051
11. Nakajima T, Wakasa T, Okuma Y, Inanami O, Nomura Y, Kuwabara M, Kawahara K (2006) Dual inhibition of protein phosphatase-1/2A and calpain rescues nerve growth factor-differentiated PC12
cells from oxygen-glucose deprivation-induced cell death. J Neurosci Res 83:459–468
12. Nematullah M, Hoda MN, Khan F (2018) Protein Phosphatase 2A: a Double-Faced Phosphatase of Cellular System and Its Role in Neurodegenerative Disorders. Mol Neurobiol 55:1750–1761
13. Crispin JC, Apostolidis SA, Rosetti F, Keszei M, Wang N, Terhorst C, Mayadas TN, Tsokos GC (2012) Cutting edge: protein phosphatase 2A confers susceptibility to autoimmune disease through an IL-17-dependent mechanism. J Immunol 188:3567–3571
14. Hojlund K, Poulsen M, Staehr P, Brusgaard K, Beck-Nielsen H (2002) Effect of insulin on protein phosphatase 2A expression in muscle in type 2 diabetes. Eur J Clin Invest 32:918–923
15. Ruvolo PP (2016) The broken "Off" switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin 6:87–99
16. Xing Y, Xu Y, Chen Y, Jeffrey PD, Chao Y, Lin Z, Li Z, Strack S, Stock JB, Shi Y (2006) Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127:341–353
17. Tanaka T, Goto K, Iino M (2017) Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 232:939–957
18. Weninger K, Bowen ME, Choi UB, Chu S, Brunger AT (2008) Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure 16:308–320
19. Guan R, Dai H, Rizo J (2008) Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes. Biochemistry 47:1474–1481
20. Vik-Mo EO, Oltedal L, Hoivik EA, Kleivdal H, Eidet J, Davanger S (2003) Sec6 is localized to the plasma membrane of mature synaptic terminals and is transported with secretogranin II-containing vesicles. Neuroscience 119:73–85
21. Tanaka T, Iino M, Goto K (2012) Knockdown of Sec6 improves cell-cell adhesion by increasing alpha-E-catenin in oral cancer cells. FEBS Lett 586:924–933
22. Shin DM, Zhao XS, Zeng W, Mozhayeva M, Muallem S (2000) The mammalian Sec6/8 complex interacts with Ca(2+) signaling complexes and regulates their activity. J Cell Biol 150:1101–1112
23. Yeaman C, Grindstaff KK, Nelson WJ (2004) Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J Cell Sci 117:559–570
24. Tsuboi T, Ravier MA, Xie H, Ewart MA, Gould GW, Baldwin SA, Rutter GA (2005) Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis. J Biol Chem 280:25565–25570
25. Inoue M, Chiang SH, Chang L, Chen XW, Saltiel AR (2006) Compartmentalization of the exocyst complex in lipid rafts controls Glut4 vesicle tethering. Mol Biol Cell 17:2303–2311
26. Rosse C, Hatzoglou A, Parrini MC, White MA, Chavrier P, Camonis J (2006) RaLB mobilizes the exocyst to drive cell migration. Mol Cell Biol 26:727–734
27. Cascone I, Selimoglu R, Ozdemir C, Del Nery E, Yeaman C, White M, Camonis J (2008) Distinct roles of RaLa and RaLB in the progression of cytokinesis are supported by distinct RaLGEFs. EMBO J 27:2375–2387
28. Overgaard CE, Sanzone KM, Spiczka KS, Sheff DR, Sandra A, Yeaman C (2009) Deciliation is associated with dramatic remodeling of epithelial cell junctions and surface domains. Mol Biol Cell 20:102–113

29. Imai A, Yoshiie S, Haga-Tsujimura M, Nashida T, Shimomura H (2012) Exocyst subunits are involved in isoproterenol-induced amylase release from rat parotid acinar cells. Eur J Oral Sci 120:123–131

30. Tanaka T, Iino M (2014) Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1. Cell Signal 26:2071–2085

31. Tanaka T, Iino M (2016) Nuclear Translocation of p65 is Controlled by Sec6 via the Degradation of IkappaBalpha. J Cell Physiol 231:719–730

32. Tanaka T, Kikuchi N, Goto K, Iino M (2016) Sec6/8 regulates Bcl-2 and Mcl-1, but not Bcl-xl, in malignant peripheral nerve sheath tumor cells. Apoptosis 21:594–608

33. Tanaka T, Iino M (2015) Sec8 regulates cytokeratin8 phosphorylation and cell migration by controlling the ERK and p38 MAPK signalling pathways. Cell Signal 27:1110–1119

34. Swaminathan V, Prakasham S, Puri V, Srinivasan M (2013) Role of salivary epithelial toll-like receptors 2 and 4 in modulating innate immune responses in chronic periodontitis. J Periodontal Res 48:757–765

35. Pandey P, Seshacharyulu P, Das S, Rachagani S, Ponnumamy MP, Yan Y, Johansson SL, Datta K, Fong Lin M, Batra SK (2013) Impaired expression of protein phosphatase 2A subunits enhances metastatic potential of human prostate cancer cells through activation of AKT pathway. Br J Cancer 108:2590–2600

36. Hu Y, Kang C, Philp RJ, Li B (2007) PKC delta phosphorylates p52ShcA at Ser29 to regulate ERK activation in response to H2O2. Cell Signal 19:410–418

37. Roskoski R Jr (2012) MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem Biophys Res Commun 417:5–10

38. Alessi DR, Gomez N, Moorhead G, Lewis T, Keyse SM, Cohen P (1995) Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr Biol 5:283–295

39. Letourneux C, Rocher G, Porteu F (2006) B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 25:727–738

40. Wu GS (2007) Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer. Cancer Metastasis Rev 26:579–585

41. Silverstein AM, Barrow CA, Davis AJ, Mumby MC (2002) Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc Natl Acad Sci USA 99:4221–4226

42. Strack S, Cribbs JT, Gomez L (2004) Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J Biol Chem 279:47732–47739
43. Xu J, Zhou JY, Xu Z, Kho DH, Zhuang Z, Raz A, Wu GS (2014) The role of Cullin3-mediated ubiquitination of the catalytic subunit of PP2A in TRAIL signaling. Cell Cycle 13:3750–3758
44. McDonald WJ, Thomas LN, Koirala S, Too CKL (2014) Progestin-inducible EDD E3 ubiquitin ligase binds to alpha4 phosphoprotein to regulate ubiquitination and degradation of protein phosphatase PP2Ac. Mol Cell Endocrinol 382:254–261
45. McConnell JL, Watkins GR, Soss SE, Franz HS, McCorvey LR, Spiller BW, Chazin WJ, Wadzinski BE (2010) Alpha4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination. Biochemistry 49:1713–1718
46. Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V (2013) The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 280:644–661
47. Smetana JH, Zanchin NI (2007) Interaction analysis of the heterotrimer formed by the phosphatase 2A catalytic subunit, alpha4 and the mammalian ortholog of yeast Tip41 (TIPRL). FEBS J 274:5891–5904
48. Houles T, Roux PP (2018) Defining the role of the RSK isoforms in cancer. Semin Cancer Biol 48:53–61
49. Sutherland C, Leighton IA, Cohen P (1993) Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 296:15–19
50. Zheng B, Jeong JH, Asara JM, Granter SR, Chin L, Cantley LC (2009) Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 33:237–247
51. Tanaka T, Iino M, Goto K (2018) Sec6 enhances cell migration and suppresses apoptosis by elevating the phosphorylation of p38 MAPK, MK2, and HSP27. Cell Signal 49:1–16
52. Cervello M, Augello G, Cusimano A, Emma MR, Balasus D, Azzolina A, McCubrey JA, Montalto G (2017) Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma. Adv Biol Regul 65:59–76
53. McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Sokolosky M, Abrams SL, Montalto G, D’Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Rakus D, Gizak A, Demidenko ZN, Cocco L, Martelli AM, Cervello M (2014) GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 5:2881–2911
54. Dou J, He X, Liu Y, Wang Y, Zhao F, Wang X, Chen D, Shi F, Wang J (2014) Effect of downregulation of ZEB1 on vimentin expression, tumour migration and tumourigenicity of melanoma B16F10 cells and CSCs. Cell Biol Int 38:452–461
55. Perrotti D, Neviani P (2013) Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol 14:e229–e238
56. McConechy MK, Anglesio MS, Kalloger SE, Yang W, Senz J, Chow C, Heravi-Moussavi A, Morin GB, Mes-Masson AM, Carey MS, McAlpine JN, Kwon JS, Prentice LM, Boyd N, Shah SP, Gilks CB,
Huntsman DG (2011) Subtype-specific mutation of PPP2R1A in endometrial and ovarian carcinomas. J Pathol 223:567–573

57. Shih Ie M, Panuganti PK, Kuo KT, Mao TL, Kuhn E, Jones S, Velculescu VE, Kurman RJ, Wang TL (2011) Somatic mutations of PPP2R1A in ovarian and uterine carcinomas. Am J Pathol 178:1442–1447

58. Ruediger R, Pham HT, Walter G (2001) Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene 20:10–15

59. Calin GA, di Iasio MG, Caprini E, Vorechovsky I, Natali PG, Sozzi G, Croce CM, Barbanti-Brodano G, Russo G, Negrini M (2000) Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 19:1191–1195

60. Kong M, Ditsworth D, Lindsten T, Thompson CB (2009) Alpha4 is an essential regulator of PP2A phosphatase activity. Mol Cell 36:51–60

61. Wu H (2013) Higher-order assemblies in a new paradigm of signal transduction. Cell 153:287–292

62. Li J, Tan Y, Passariello CL, Martinez EC, Kritzer MD, Li X, Li Y, Yu Q, Ohgi K, Thakur H, MacArthur JW Jr, Ivey JR, Woo YJ, Emter CA, Dodge-Kafka K, Rosenfeld MG, Kapiloff MS (2020) Signalosome-Regulated Serum Response Factor Phosphorylation Determining Myocyte Growth in Width Versus Length as a Therapeutic Target for Heart Failure. Circulation 142:2138–2154

Figures
Sec6 knockdown results in reduced ERK phosphorylation but not PKCδ phosphorylation. A549 (a–c) or Saos2 cells (d–f) were transfected with the negative control or Sec6 siRNAs. After 48 h, whole cell lysates were analyzed by immunoblotting using the indicated antibodies. β-actin was used as a loading control. Histograms showing the relative expression of phospho-p44/total p44 in A549 (b) or Saos2 cells (e) and phospho-p42/total p42 in A549 (c) or Saos2 cells (f). Results represent the means ± standard deviations.
of three separate experiments. Asterisks indicate significant differences compared with cells transfected with the negative control siRNA. * P < 0.05, ** P < 0.01, *** P < 0.001 (Student’s t test).

Figure 2

Depletion of Sec6 suppresses the phosphorylation of MEK1/2. A549 (a–c) or Saos2 (d–f) cells were transfected with negative control or Sec6 siRNAs. After 48 h, whole cell lysates were analyzed by immunoblotting using the indicated antibodies. β-actin was used as a loading control. Histograms
showing the relative expression of phospho-MEK1/2/total MEK1 in A549 (b) or Saos2 (e) cells and phospho-MEK1/2/total MEK2 in A549 (c) or Saos2 (f) cells. Results represent the means ± standard deviations of three separate experiments. Asterisks indicate significant differences compared with cells transfected with negative control siRNA. * P < 0.05, ** P < 0.01, *** P < 0.001 (Student’s t test).

Figure 3

Sec6 knockdown results in reduced PP2A C subunit but not DUSP6. A549 (a, b) or Saos2 (c, d) cells were transfected with negative control or Sec6 siRNAs. After 48 h, whole cell lysates were analyzed by immunoblotting using the indicated antibodies. β-actin was used as a loading control. (b, d) Histograms of the relative expression of PP2A C/β-actin in A549 (b) or Saos2 (d) cells. Results represent the means ± standard deviations of three separate experiments. Asterisks indicate significant differences compared with cells transfected with negative control siRNA. n.s., not significant, * P < 0.05, ** P < 0.01 (Student’s t test). (e) Saos2 cells were transfected with negative control or Sec6 siRNAs. After 48 h, cells were fixed with 4% paraformaldehyde and stained with the anti-PP2A C subunit antibody (red). DAPI was used for nuclear staining (blue). Scale bar = 20 µm. (f) A549 cells were transfected with GFP vector or GFP-Sec6 gradually. After 48 h, whole cell lysates were analyzed by immunoblotting using the indicated antibodies. β-actin was used as a loading control.
Sec6 affects PP2A phosphatase activity by modulating the binding affinity between the PP2A A subunit, PP2A C subunit, and Cul3. (a) A549 cells were transfected with negative control or Sec6 siRNAs. After 48 h, whole cell lysates were immunoprecipitated with an anti-PP2A C subunit antibody. Immunoprecipitants were subjected to immunoblotting using the indicated antibodies. IP, immunoprecipitation; IB, immunoblotting. (b) A549 cells were transfected with GFP or GFP-Sec6 vectors. After 24 h, total A549 cell lysates were immunoprecipitated with anti-PP2A C subunit antibody. Cell lysates and immunoprecipitants were subjected to immunoblotting using the indicated antibodies. IP, immunoprecipitation; IB, immunoblotting. (c, d) A549 (c) or Saos2 (d) cells were transfected with negative control or Sec6 siRNAs. After 48 h, whole cell lysates were immunoprecipitated with the anti-PP2A C subunit antibody. Immunoprecipitants were analyzed by a PP2A immunoprecipitation phosphatase assay. Results represent the means ± standard deviations of three separate experiments. Asterisks indicate significant differences compared with cells transfected with negative control siRNA. ** P < 0.01, *** P < 0.001 (Student’s t test). (e) A549 cells were transfected with Sec6-2 siRNA and GFP or Sec6-3 siRNA and GFP or Sec6-2 siRNA and GFP-Sec6 pm #2 or Sec6-3 siRNA and GFP-Sec6 pm #3. After 48 h, whole cell lysates were immunoprecipitated with the anti-PP2A C subunit antibody. Immunoprecipitants were analyzed using a PP2A immunoprecipitation phosphatase assay. Results are presented as the mean ± SD of three independent experiments. Asterisks indicate the significant variations observed by comparison between cells transfected with GFP-Sec6 pm #2 or GFP-Sec6 pm #3. *** P < 0.001 (Student’s t test).
Depletion of Sec6 suppresses the phosphorylation of p90RSK. A549 (a–c) or Saos2 (d–f) cells were transfected with negative control or Sec6 siRNAs. After 48 h, whole cell lysates were analyzed by immunoblotting using the indicated antibodies. β-actin was used as a loading control. Histograms of the relative expression of phospho-p90RSK Thr359/total p90RSK in A549 (b) or Saos2 (e) cells and phospho-p90RSK Ser380/total p90RSK in A549 (c) or Saos2 (f) cells. Results are means ± standard deviations of
three separate experiments. Asterisks indicate significant differences compared with cells transfected with the negative control siRNA. * P < 0.05, ** P < 0.01, *** P < 0.001 (Student’s t test).

Figure 6

Sec6 knockdown suppresses the phosphorylation of GSK3β at Ser9. A549 (a, b) or Saos2 (c, d) cells were transfected with negative control or Sec6 siRNAs. After 48 h, whole cell lysates were analyzed by immunoblotting using the indicated antibodies. β-actin was used as a loading control. Histograms
showing the relative expression of phospho-GSK3β Ser9/total GSK3β in A549 (b) or Saos2 (d) cells. Results are means ± standard deviations of three separate experiments. Asterisks indicate significant differences compared with cells transfected with the negative control siRNA. * P < 0.05, ** P < 0.01 (Student's t test).

Figure 7
Sec6 knockdown results in reduced ZEB1 and vimentin expression. A549 (a–c) or Saos2 (d–f) cells were transfected with negative control or Sec6 siRNA. After 48 h, whole cell lysates were analyzed by immunoblotting using the EMT markers. β-actin was used as a loading control. Histograms showing the relative expression of vimentin/β-actin in A549 (b) or Saos2 (e) cells and ZEB1/β-actin in A549 (c) or Saos2 (f) cells. Results are means ± standard deviations of three separate experiments. Asterisks indicate significant differences compared with cells transfected with the negative control siRNA. * P < 0.05, ** P < 0.01, *** P < 0.001 (Student's t test).
Figure 8

Sec6 knockdown results in increased ZO-3 expression. A549 (a, b) or Saos2 (c, d) cells were transfected with negative control or Sec6 siRNA. After 48 h, whole cell lysates were analyzed by immunoblotting using the MET markers. β-actin was used as a loading control. Histograms showing the relative expression of ZO-3/β-actin in A549 (b) or Saos2 (d) cells. Results are means ± standard deviations of three separate experiments. Asterisks indicate significant differences compared with cells transfected with the negative control siRNA. * P < 0.05, ** P < 0.01, *** P < 0.001 (Student’s t test).

Fig. 9A-D Tanaka et al.
Figure 9

Overexpression of Sec6 point mutant reverted cell migration. (a–d) A549 (a) or Saos2 (b) cells were transfected with Sec6-2 siRNA and GFP or Sec6-3 siRNA and GFP or Sec6-2 siRNA and GFP-Sec6 pm#2 or Sec6-3 siRNA and GFP-Sec6 pm#3. After 48 h, the number of cells that migrated to the lower filter surfaces were determined. A549 (c) or Saos2 (d) cells that migrated to the bottom of the dish were stained with Giemsa. Results are presented as the mean ± SD of three independent experiments. Asterisks indicate the significant variations observed by comparison between cells transfected with GFP-Sec6 pm#2 or GFP-Sec6 pm#3. ** P < 0.01, *** P < 0.001 (Student’s t test).

Figure 10

A schematic model showing the mechanism of PP2A phosphatase activity through the regulation of binding affinity between the PP2A A subunit, C subunit, and Cul3 by Sec6.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- CMLFforSuppleFigSec6ERK.pdf