Field samplings of Ixodes ricinus ticks from a tick-borne encephalitis virus micro-focus in Northern Zealand, Denmark

Petersen, Andreas; Worsøe Rosenstierne, Maiken; Rasmussen, Morten; Fuursted, Kurt; Nielsen, Henrik Vedel; Andersen, Lee O’Brien; Bødker, Rene; Fomsgaard, Anders

Published in: Ticks and Tick-borne Diseases

Link to article, DOI: 10.1016/j.ttbdis.2019.05.005

Publication date: 2019

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA): Petersen, A., Worsøe Rosenstierne, M., Rasmussen, M., Fuursted, K., Nielsen, H. V., Andersen, L. OB., Bødker, R., & Fomsgaard, A. (2019). Field samplings of Ixodes ricinus ticks from a tick-borne encephalitis virus micro-focus in Northern Zealand, Denmark. Ticks and Tick-borne Diseases, 10(5), 1028-1032. https://doi.org/10.1016/j.ttbdis.2019.05.005

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Field samplings of *Ixodes ricinus* ticks from a tick-borne encephalitis virus micro-focus in Northern Zealand, Denmark

Andreas Petersen\(^1,2,3^*,\) Maiken Worsøe Rosenstierne\(^2,\) Morten Rasmussen\(^2,\) Kurt Fuursted\(^3,\) Henrik Vedel Nielsen\(^3,\) Lee O’Brien Andersen\(^3,\) René Bødker\(^4,\) Anders Fomsgaard\(^2,5.\)

\(^1\) European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control, (ECDC), Solna, Sweden

\(^2\) Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnosis, Statens Serum Institut, Copenhagen, Denmark,

\(^3\) Bacteria, Parasites and Fungi, Infection Preparedness, Statens Serum Institut, Copenhagen, Denmark

\(^4\) DTU National Veterinary Institute, Technical University of Denmark, Kgs. Lyngby, Denmark

\(^5\) Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark

*Corresponding author:

Andreas Petersen,

Statens Serum Institut

Artillerivej 5

DK-2300 Copenhagen S

Denmark
Email: AAP@ssi.dk.

Abstract

In 2008-2009 a tick-borne encephalitis virus (TBEV) micro-focus was detected in Northern Zealand, Denmark. No new cases of TBE with an epidemiological link to Northern Zealand has been reported since. Here we undertook to investigate Ixodes ricinus ticks from this endemic micro-focus in 2016 and 2017. In addition to TBEV, I. ricinus ticks may host other pathogens that include Borrelia spp., Babesia spp., Rickettsia spp. and Neoehrlichia mikurensis, together with various endosymbiotic microorganisms. To detect multiple organisms we used a metagenomics PanVirus microarray and next-generation sequencing to examine the persistence and evolution of other emerging viruses, bacteria and parasites. Here we report the rise and fall of the Danish TBEV micro-focus in Northern Zealand. However, we identify for the first time in Danish I. ricinus ticks the presence of Uukuniemi virus in addition to a tick-borne phlebovirus and a range of bacteria.

Keywords

Ixodes ricinus, tick-borne encephalitis virus, micro-focus, Uukuniemi virus, bacteria,

1. Introduction

Tick-borne encephalitis (TBE) is a viral infectious disease that causes severe neurological sequelae in humans and has mortality rates of up to 3.0% (Lenhard et al., 2016). In contrast to the evenly distributed and widespread Borrelia bacteria, the tick-borne encephalitis virus (TBEV) tends to occur in micro-foci
within endemic areas. TBE is a growing public health concern in Europe and the overall notification rate in EU/EEA rose from 0.4 cases per 100,000 population in 2015 to 0.6 cases per 100,000 population in 2016 (ECDC 2018). The incidence and geographical range of TBE is similarly increasing in Scandinavia (Jaenson et al., 2012; Sidorenko et al., 2018). In Denmark, TBE has been reported since the 1950s only from the Bornholm Island east of mainland Denmark in the Baltic Sea with an incidence of 3.8 cases per 100,000 persons per year (Ocias et al., 2017; Fomsgaard 2018). In 2008 and 2009, two cases of TBE were reported from Tokkekøb Hegn in Northern Zealand, where after TBEV was identified in a pool of *Ixodes ricinus* nymphs collected from the edge of the forest and water surrounding a patient’s property and a public recreational area (Fomsgaard et al., 2009). TBEV was detected at the same micro-focus in 2010 and 2011, which confirms the establishment of an additional micro-focus of TBEV in Denmark (Fomsgaard et al., 2013). Since 2009 there has been no new cases of TBE in Denmark with an epidemiological link to Northern Zealand. We therefore undertook to investigate this endemic TBEV micro-focus again in 2016 and 2017. Since ticks may also host other pathogenic microorganisms including *Borrelia* spp., *Babesia* spp., *Neoehrlichia mikurensis* and *Rickettsia* spp. (Fertner et al., 2012), the aim of the study was not only to re-examine the area for persistence of TBEV but also to look for other viruses, bacteria and parasites.

2. Materials and Methods

2.1 Study design and Nucleic Acids extraction

In total 4,100 ticks were collected by flagging from Tokkekøb Hegn, Northern Zealand (Fomsgaard et al., 2009; Fomsgaard et al., 2013) at four sampling times in 2016 and 2017 (Table 1). All ticks were identified as *I. ricinus* on the basis of morphology and sorted according to stage (nymphs vs adults). The ticks were then divided into 71 pools of nymphs, 6 pools of adult males and 5 pools of adult females containing 50 ticks in each pool (Table 1) as previously described (Fomsgaard et al., 2009; Fomsgaard et al., 2013). Each tick pool were homogenized in 1 ml of MagNA Pure Lysis/Binding Buffer (Roche Diagnostics A/S, Risch-Rotkreuz, Switzerland), incubated overnight at 5 °C before nucleic acid (NA) was extracted with the MagNA Pure
2.3 Virus-specific PCR

Five µl of extracted NA were used in a TBEV-specific real-time RT-PCR as previously described (Fomsgaard et al., 2009; Fomsgaard et al., 2013). A specific real-time RT-PCR assay for the M-segment (NC_005220) of Uukuniemi virus (UUKV) was designed: Uuk 3M F: 5´-TCAAGCTGGAGTGTGTCAGG-3´, Uuk 3M R: 5´-GCCACACTGCTCAACACAGT-3´, and Uuk 3M P: 5´[HEX]-GAGCCTGCAAGGGAGAGGCC-[BHQ1]3´. The SensiFAST™ Probe No-ROX One-Step kit (Meridian Bioscience Inc., Cincinnati, OH, USA) was used according to the manufacture’s instructions with 5 µl of extracted NA. The reactions were performed on the MX3005 thermocycler (Stratagene, San Diego, CA, USA) using the following program: 30 min at 48 °C, 10 min at 95°C and 45 cycles with 15 s at 95 °C and 1 min at 57 °C.

2.4 PanVirus Microarray

Twenty-five µl of extracted NA from 20 randomly selected tick pools were treated with 4 U TURBO™ DNase (ThermoFisher, Waltham, MA, USA) and enriched for RNA virus using an unpublished I. ricinus tick-modified version of the published protocol (Matranga et al., 2016). Five µl of enriched RNA were used for random whole transcriptome amplification (WTA) using the Repli-g Cell WGA & WTA kit (Qiagen, Hilden, Germany) according to the manufacturers instructions. Amplified cDNA was purified using the QiaAmp DNA mini kit (Qiagen, Hilden, Germany) and 1.5 µg of purified cDNA was labelled with Cy5 using the SureTag DNA labelling kit (Agilent, Santa Clara, CA, USA). The labelled DNA was pooled according to the sampling date and tick life-cycle stage and hybridized to a PanVirus microarray (SurePrint G3 Custom Gene Expression Microarray (4x180K) (Agilent, Santa Clara, CA, USA)) containing 60-160 probes for each sequenced virus described in GenBank (2016). Microarray data was analysed using a simple Excel-based data analysis method as described previously (Erlandsson et al., 2011; Rosenstierne et al., 2014).

2.5 Microbiome analysis
The microbial content of pro- and eukaryotes was analysed using a modified version of the in-house custom build 16S/18S ribosomal ribonucleic acid (rRNA) amplicon-based approach, previously described by Ring et al., 2017 and Krogsgaard et al., 2018. In brief, 2 µl of extracted NA from the 20 randomly selected tick pools were PCR amplified using 4 different primer sets (the modified 341F/806R primers targeting the prokaryotic V3-V4 16SrDNA region, and the G3F1/G3R1, G4F3/G4R3 and G6F1/G6R1 primers targeting the hypervariable regions V3-V5 of the eukaryotic 18SrDNA gene (Krogsgaard et al., 2018). Library preparation was performed as previously described (Krogsgaard et al., 2018). The resulting amplicons were quantified using the Quant-iTTM dsDNA High Sensitive Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA), pooled in equimolar amounts and sequenced on an Illumina MiSeq desktop sequencer (Illumina Inc., San Diego, CA, USA) using the 500-cycle MiSeq Reagent Kit V2 (Illumina Inc., San Diego, CA, USA). Sequences were taxonomically mapped using BION, a k-mer-based mapping software described previously (Krogsgaard et al., 2018). Query sequences originating from prokaryotes were compared with the 340–807bp rRNA positions derived from Escherichia coli in RDP 11.04 (https://rdp.cme.msu.edu), and eukaryotic query sequences compared against the same region in SILVA version 123 (www.arb-silva.de). A unique taxon was defined by denotation to a specific evolutionary taxonomic group.

3. Results and Discussion

None of tick pools were positive for TBEV using either TBEV specific PCR or the PanVirus microarray (Table 1). We have previously shown the presence of TBEV using a TBEV-specific PCR in nymph pools containing 50-100 nymphs (Fomsgaard 2009; Fomsgaard 2013) indicating that the lack of detection of TBEV in the nymph pools was not due to assay performance. The negative TBEV finding and the absence of clinical cases of TBE with epidemiological link to Northern Zealand since 2009 (Ocias et al., 2017) could possibly indicate that the previously demonstrated TBEV micro-focus located in Tokkekøb Hegn in Northern Zealand has disappeared. It is not fully understood which factors support the transmission cycles of TBEV, but meteorological variations, fauna, vegetation as well as human behaviour play a role (Randolph and Rogers...
2000; Randolph et al., 2008; Knap et al., 2009). Even though the micro-focus may have been temporary, continued surveillance of the site will be performed and TBE should still be considered in Denmark outside Bornholm if clinically relevant symptoms are present. There are indications that TBEVs geographical range is increasing in Sweden, Norway and Denmark (Jaenson et al., 2012; Sidorenko et al., 2018; Andersen 2019). It is thus important to be aware of the establishment of new micro-foci in Denmark outside Bornholm.

Two phleboviruses were detected with the PanVirus microarray in the collected *I. ricinus* ticks (Table 1). No other virus were detected. In particular Uukuniemi virus (UUKV) was identified in a pool of nymphs from August 8th 2017. The PanVirus microarray detected all three UUKV genome segments (segment S, M, L) (data not shown). The presence of UUKV was verified using a UUKV specific real-time RT-PCR assay for the M-segment. All 82 collected tick pools were analysed and two tick pools from nymphs collected from August 8th 2017 were PCR positive (Table 1). This is the first report of UUKV in Danish *I. ricinus* ticks. UUKV has been identified in *I. ricinus* ticks in Finland (Saikku and Brummer-Korvenkontio, 1973), Norway (Traavik and Mehl, 1977), the Czech Republic (Kolman, 1970) and Sweden and the Netherlands (Gondard et al., 2018). To date, UUKV has not been associated with disease in humans. However, other tick-borne phleboviruses very similar to UUKV, such as severe fever with thrombocytopenia syndrome virus and Heartland virus (Palacios et al., 2013) has been associated with severe and often fatal disease in humans (Yu et al., 2011; McMullan et al., 2012). A possible explanation for the lack of UUKV-associated disease in humans is that the non-structural protein is a weak interferon antagonist that is incapable of counteracting the interferon response (Rezelj al., 2015).

A positive signal for Blacklegged tick phlebovirus (BTPV) was also detected by the PanVirus microarray in the pool of nymphs from August 8th and June 26th 2017 (Table 1). In contrast to the microarray signal for UUKV, the microarray signal for BTPV was only positive for a partial region of the BTPV L-segment (data not shown) which indicated cross-hybridization of probes to an unidentified phlebovirus. The presence of BTPV
was not verified in this study. BTPV was first identified in *I. scapularis* in the United States (Tokarz et al., 2014); however new tick-borne phleboviruses are continuously being identified all over Europe which cluster to BTPV (Tokarz et al., 2014; Papa et al., 2016; Prinz et al., 2017). The exact identification and molecular characterization of the phlebovirus in Danish *I. ricinus* ticks from Northern Zealand remains to be performed.

The 20 randomly selected tick pools were also analysed for the presence of other microorganisms using 16S/18S rRNA amplicon-based metagenomics. Only species detected with at least 500 sequence reads in the 16S/18S rRNA amplicon-based metagenomics are presented (Table 2). *Rickettsia* spp. was the most prevalent bacteria species detected in all 20 pools with the consistent highest number of reads (Table 2, Supplementary Table). *Rickettsia* may be present in *I. ricinus* ticks either as an endosymbiont (mutualistic relationship) or as a pathogen, including *R. helvetica* and *R. monacensis*. The metagenomics analysis was not able to differentiate the *Rickettsia* species as they are almost identical in the amplified area of 16S. Other prevalent bacteria were *Borrelia* spp., including, *B. afzelii* (8 pools), *B. miyamotoi* (2 pools), *B. burgdorferi* (2 pools) and *B. garinii* (1 pool), *Mycobacterium* spp., including *M. madagascariense* (7 pools), *M. rhodesiae* (4 pools), *M. chelonae* (3 pools) and *M. pyrenivorans* (1 pool) (Table 2). No parasites, including protozoan, were detected in any of the tested pools. Some fungi were detected, but not analysed further in this study.

We detected two human pathogens in our tested tick pools: *Borrelia* spp. and *Anaplasma phagocytophilum*. *B. miyamotoi* was also detected, although we are not aware that *B. miyamotoi* disease has been diagnosed in Denmark. Other well-known tick-borne pathogens such as *Babesia*, *Francisella*, *Bartonella*, *Ehrlichia*, and *Candidatus Neoehrlichia mikurensis* were not detected in this study. This is in agreement with the previous studies from Denmark where only *A. phagocytophilum* and *Borrelia* spp. were detected in *I. ricinus* ticks from Jutland, Funen and Bornholm (Andersen et al., 2019; Skarphédinsson et al., 2007). However, two *Babesia* species (*B. divergens* and *B. venatorum*) were demonstrated in 2012 in *I.*
r. cinus ticks from Zealand (Michelet et al., 2014) and *Candidatus Neoehrlichia mikurensis* were found at three locations in Denmark in 2011, including Tokkekøb Hegn (Fertner et al., 2012).

We did not report any *Midichloria mitochondrii*, an endosymbiont frequently associated to *I. ricinus* (Cafiso et al., 2019). The RDP 11.04 database only contains sequences from *Candidatus Midichloria*, taxonomically defined at subtype level without any genus and species names and were therefore ignored by BION. However, when mapping raw sequence data to the entire RDP database, including taxonomically undefined references, reads from 18 of 20 samples mapped to *Candidatus Midichloria sp. Ixholo1*. Endosymbiont microorganisms exhibit both negative and beneficial effects on tick fitness (de la Fuente et al., 2017; Bonnet et al., 2017), in addition to providing protection against other bacteria, viruses and eukaryotic parasites, which indicates that they can interact with other microorganisms sharing the same host environment (de la Fuente et al., 2017; Bonnet et al., 2017).

In conclusion, we find that a previously identified TBEV micro-focus in Northern Zealand, Denmark seems to have disappeared for undefined reasons. We propose continued surveillance of known TBEV micro-foci. We also demonstrated for the first time UUKV in Danish *I. ricinus* ticks and the possible presence of a new phlebovirus. We confirm that *I. ricinus* ticks are vectors of pathogens of public health concern.

Conflict of interests

The authors declare that there is no conflict of interest in this study.

Acknowledgment

We thank Susanne Lopez Rasmussen, Louise Borup, Randi Thøgersen for technical assistance and Maria Magdalena Lassaunière for editorial assistance. This study is part of the “Metagenomic Array Detection of emerging Virus in EU” (MAD-Vir) project, which is part of the European Joint Programme One Health EJP.
consortium, which has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 773830.
References

Andersen, N.S., Larsen, S.L., Olesen, C.R., Stiasny, K., Kolmos, H.J., Jensen, P.M., Skarphédinsson, S., 2019. Continued expansion of tick-borne pathogens: Tick-borne encephalitis virus complex and Anaplasma phagocytophilum in Denmark. Ticks Tick Borne Dis. 10, 115-123. doi:10.1016/j.ttbdis.2018.09.007

Bonnet, S.I., Binetruy, F., Hernández-Jarguín, A.M., Duron, O., 2017. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell. Infect. Microbiol. 7, 236. doi: 10.3389/fcimb.2017.00236.

Cafiso, A., Sassera, D., Romeo, C., Serra, V., Hervet, C., Bandi, C., Plantard, O., Bazzocchi, C., 2019. Midichloria mitochondrii, endosymbiont of Ixodes ricinus: evidence for the transmission to the vertebrate host during the tick blood meal. Ticks Tick Borne Dis. 10, 5-12. doi: 10.1016/j.ttbdis.2018.08.008.

Erlandsson, L., Rosenstierne, M.W., McLoughlin, K., Jaing, C., Fomsgaard, A., 2011. The microbial detection array combined with random Phi29-amplification used as a diagnostic tool for virus detection in clinical samples. PLoS ONE 6, e22631. doi:10.1371/journal.pone.0022631

European Centre for Disease Prevention and Control. Tick-borne encephalitis. In: ECDC. Annual epidemiological report for 2016. Stockholm: ECDC; 2018. https://ecdc.europa.eu/sites/portal/files/documents/AER_for_2016-TBE.pdf (accessed 30 January 2019)

Fertner, M.E., Mølbak, L., Boye-Pihl, T.P., Fomsgaard, A., Bødker, R., 2012. First detection of tick-borne “Candidatus Neoehrlichia mikurensis” in Denmark 2011. Euro Surveill. 17, 20096.

Fomsgaard A., 2018. TBE in Denmark, in: Dobler, G., Erber, W., Schmitt, H.-J. (Eds.), Tick-borne encephalitis (TBE). Global Health Press, Singapore, pp.151-158.

Fomsgaard, A., Christiansen, C., Bødker, R., 2009. First identification of tick-borne encephalitis in Denmark outside of Bornholm, August 2009. Euro Surveill. 14, 19325. doi: 10.2807/ese.14.36.19325-en
Fomsgaard, A., Fertner, M.E., Essbauer, S., Nielsen, A.Y., Frey, S., Lindblom, P., Lindgren, P.E., Bødker, R., Weidmann, M., Dobler, G., 2013. Tick-borne encephalitis virus, Zealand, Denmark, 2011. Emerg. Infect. Dis., 19, 1171-3. doi: 10.3201/eid1907.130092.

de la Fuente, J., Antunes, S., Bonnet, S., Cabezas-Cruz, A., Domingos, A.G., Estrada-Peña, A., Johnson, N., Kocan, K.M., Mansfield, K.L., Nijhof, A.M., Papa, A., Rudenko, N., Villar, M., Alberdi, P., Torina, A., Ayllón, N., Vancova, M., Golovchenko, M., Grubhoffer, L., Caracappa, S., Fooks, A.R., Gortazar, C., Rego, R.O.M., 2017. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 7, 114. doi: 10.3389/fcimb.2017.00114.

Gondard, M., Michelet, L., Nisavanh, A., Devillers, E., Delannoy, S., Fach, P., Aspan, A., Ullman, K., Chirico, J., Hoffmann, B., van der Wal, F.J., de Koeijer, A., van Solt-Smits, C., Jahfari, S., Sprong, H., Mansfield, K.L., Fooks, A.R., Klitgaard, K., Bødker, R., Moutailler, S., 2018. Prevalence of tick-borne viruses in Ixodes ricinus assessed by high-throughput real-time PCR. Pathog. Dis. 76. doi: 10.1093/femspd/fty083.

Jaenson, T.G.T., Hjertqvist, M., Bergström, T., Lundkvist, A., 2012. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasit. Vectors., 5, 184. doi: 10.1186/1756-3305-5-184.

Knap, N., Durmisi, E., Saksida, A., Korva, M., Petrovec, M., Avsic-Zupanc, T., 2009. Influence of climatic factors on dynamics of questing Ixodes ricinus ticks in Slovenia. Vet. Parasitol. 164, 275-81. doi: 10.1016/j.vetpar.2009.06.001.

Kolman, J.M., 1970. Some biological properties of Uukuniemi virus, strain Poteplí-63. Acta Virol. 14, 151-8.

Krogsgaard, L.R., Andersen, L.O., Johannesen, T.B., Engsbro, A.L., Stensvold, C.R., Nielsen, H.V., Bytzer, P., 2018. Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clin. Transl. Gastroenterol., 9, 161. doi: 10.1038/s41424-018-0027-2.
Lenhard, T., Ott, D., Jakob, N.J., Pham, M., Bäumer, P., Martinez-Torres, F., Meyding-Lamadé, U., 2016. Predictors, neuroimaging characteristics and long-term outcome of severe European tick-borne encephalitis: a prospective cohort study. PLoS ONE 11, e0154143. doi:10.1371/journal.pone.0154143

Matranga, C.B., Gladden-Young, A., Qu, J., Winnicki, S., Nosamiefan, D., Levin, J.Z., Sabeti, P.C., 2016. Unbiased deep sequencing of RNA viruses from clinical samples. J. Vis. Exp. 113, e54117. doi:10.3791/54117

McMullan, L.K., Folk, S.M., Kelly, A.J., MacNeil, A., Goldsmith, C.S., Metcalfe, M.G., Batten, B.C., Albariño C.G., Zaki, S.R., Rollin, P.E., Nicholson, W.L., Nichol, S.T., 2012. A new phlebovirus associated with severe febrile illness in Missouri. N. Engl. J. Med. 367, 834-41. doi: 10.1056/NEJMoa1203378.

Michelet, L., Delannoy, S., Devillers, E., Umhang, G., Aspan, A., Juremalm, M., Chirico, J., van der Wal, F.J., Sprong, H., Boye Pihl, T.P., Klitgaard, K., Bødker, R., Fach, P., Moutailler, S., 2014. High-throughput screening of tick-borne pathogens in Europe. Front. Cell. Infect. Microbiol. 29, 103. doi: 10.3389/fcimb.2014.00103.

Ocias, L.F., Petersen, A., Krogfelt, K.A., Rosenstierne, M.W., Fomsgaard, A., Bødker, R., 2017. Infection with TBE virus in Denmark 2013-2016. EPI-News 40-2017, ISSN: 1602-4184.

Palacios G., Savji N., Travassos da Rosa A., Guzman H., Yu X., Desai A., Rosen G.E., Hutchison S., Lipkin W.I., Tesh R., 2013. Characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): evidence for seven distinct species. J. Virol. 87, 3187-3195. doi: 10.1128/JVI.02719-12.

Papa, A., Kontana, A., Tsioka, K., Chaligiannis, I., Sotiraki, S., 2016. Novel phleboviruses detected in ticks, Greece. Ticks Tick Borne Dis. 7, 690-693. doi.org/10.1016/j.ttbdis.2016.02.017

Prinz, M., Fuchs, J., Ehrmann, S., Scherer-Lorenzen, M., Kochs, G., Panning, M., 2017. Molecular identification of novel phlebovirus sequences in European ticks. Ticks Tick Borne Dis. 8, 795-798. doi.org/10.1016/j.ttbdis.2017.06.005
Randolph, S.E., Rogers, D.J., 2000. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc. Biol. Sci. 267, 1741–1744. doi: 10.1098/rspb.2000.1204

Randolph, S.E. 2001. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1045-56.

Randolph, S.E., Asokliene, L., Avsic-Zupanc, T., Bormane, A., Burri, C., Gern, L., Golovljova, I., Hubalek, Z., Knap, N., Kondrusik, M., Kupca, A., Pejcoch, M., Vaslenko, V., Zygutiene, M. 2008. Variable spikes in tick-borne encephalitis incidence in 2006 independent of variable tick abundance but related to weather. Parasit. Vectors. 1, 44. doi:10.1186/1756-3305-1-44.

Rezelj, V.V., Överby, A.K., Elliott, R.M., 2015. Generation of mutant Uukuniemi viruses lacking the nonstructural protein NSs by reverse genetics indicates that NSs is a weak interferon antagonist. J. Virol. 89, 4849-4856. doi:10.1128/JVI.03511-14

Ring, H.C., Thorsen, J., Saunte, D.M., Lilje, B., Bay, L., Riis, P.T., Larsen, N., Andersen, L.O., Nielsen, H.V., Miller, I.M., Bjarnsholt, T., Fuursted, K., Jemec, G.B., 2017. The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls. JAMA Dermatol. 153, 897-905. doi: 10.1001/jamadermatol.2017.0904.

Rosenstierne, M.W., McLoughlin, K.S., Olesen, M.L., Papa, A., Gardner, S., Engler, O., Plomet, S., Mirazimi, A., Weidmann, M., Niedrig, M., Fomsgaard A., Erlandsson, L., 2014. The microbial detection array for detection of emerging viruses in clinical samples – a useful panmicrobial diagnostic tool. PLOS ONE 9, e100813. doi:10.1371/journal.pone.0100813

Saikku, P., Brummer-Korvenkontio, M., 1973. II. Isolation and characterization of Uukuniemi virus, a virus associated with ticks and birds. Am. J. Trop. Med. Hyg. 22, 390 – 399. doi: 10.4269/ajthm.1973.22.390

Sidorenko, M., Radzievskaja, J., Rosef, O., Paulauskas, A., 2018. Investigation of the tick-borne encephalitis virus in Norway. Biologija. 62, 172-178. doi: 10.6001/biologija.v64i2.3741
Skarphéðinsson, S., Lyholm, B.F., Ljungberg, M., Søgaard, P., Kolmos, H.J., Nielsen, L.P., 2007. Detection and identification of Anaplasma phagocytophilum, Borrelia burgdorferi, and Rickettsia helvetica in Danish Ixodes ricinus ticks. APMIS. 115, 225-30. doi: 10.1111/j.1600-0463.2007.apm_256.x

Tokarz, R., Williams, S.H., Sameroff, S., Leon, M.S., Jain, K., Lipkin, I.W., 2014. Virome Analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. J. Virol. 88, 11480–11492. doi:10.1128/JVI.01858-14

Traavik, T., Mehl, R., 1977. Uukuniemi group viruses isolated in Norway. Arch. Virol. 54, 317-31. doi: 10.1007/BF01314777o

Yu, X.J., Liang, M.F., Zhang, S.Y., Liu, Y., Li, J.D., Sun, Y.L., Zhang, L., Zhang, Q.F., Popov, V.L., Li, C., Qu, J., Li, Q., Zhang, Y.P., Hai, R., Wu, W., Wang, Q., Zhan, F.X., Wang, X.J., Kan, B., Wang, S.W., Wan, K.L., Jing, H.Q., Lu, J.X., Yin, W.W., Zhou, H., Guan, X.H., Liu, J.F., Bi, Z.Q., Liu, G.H., Ren, J., Wang, H., Zhao, Z., Song, J.D., He, J.R., Wan, T., Zhang, J.S., Fu, X.P., Sun, L.N., Dong, X.P., Feng, Z.J., Yang, W.Z., Hong, T., Zhang, Y., Walker, D.H., Wang, Y., Li, D.X., 2011. Fever with thrombocytopenia associated with a novel bunyavirus in China. N. Engl. J. Med. 364, 1523-32. doi: 10.1056/NEJMoia1010095.
Table 1: TBEV-specific RT-PCR and PanVirus microarray.

Sampling date	Tick Stage	No. of pools (n=82)	TBEV RT-PCR	PanVirus microarray (n=20)	UUKV RT-PCR
August 30th 2016	Nymphs	14	0/14	negative	0/14
	Adults	2	0/2	negative	0/2
September 27th 2016	Nymphs	10	0/10	negative	0/10
	Adults	4	0/4	negative	0/4
June 26th 2017	Nymphs	25	0/25	BTPV-1 (L), BTPV-2 (L)	0/25
	Adults	2	0/2	negative	0/2
August 8th 2017	Nymphs	22	0/22	UUKV (S, M, L), BTPV-1 (L), BTPV-2 (L)	2/22
	Adults	3	0/3	negative	0/3

TBEV; Tick borne encephalitis virus, UUKV; Uukuniemi virus, BTPV; Blacklegged tick phlebovirus, L; segment L, S; segment S, M; segment M,

Each pool consisted of 50 ticks
Table 2. Taxons identified in the microbiome analysis with number of positive pools detected from each flagging date. Only taxons with >500 reads are listed.

Taxon	Sampling date	Nymphs (n=3)	Adults (n=2)	Nymphs (n=3)	Adults (n=2)	Nymphs (n=3)	Adults (n=2)	Pools analysed
	August 30th 2016							
	September 27th 2016							
	June 26th 2017							
	August 8th 2017							
Anaplasma phagocytophilum		1						1
Borrelia afzelii		2	2	1	3			2
B. miyamotoi		1						1
B. burgdorferi		2						2
B. garinii				1				1
Buchnera aphidicola								1
Ceratoppia bipilis		1						1
Cronobacter sakazakii				1				1
Diplorickettsia (massiliensis)		2	2	1	1	1	1	2
Eupelops plicatus								1
Exobasidium rhododendri				1				1
Ixodes ricinus		3	2	2	3	2	3	2
Janthinobacterium agaricidamnosum								1
Massilia timonae		1						1
Methylobacterium cerastii		3	1	1	2			2
Methyloinosula (polaris)								1
Mucilaginibacter doraji								1
Mycobacterium madagascarrense		3	1	2	1			1
M. rhodesiae		2	1					1
M. chelonae				3				3
M. pyrenivorans		1						1
Pantoea ananatis				2				2
Patulibacter minutonensis		1						1
Pedobacter agri								1
P. daejeonensis								1
Phyllobacterium ifriqiense								1
Pseudomonas toloaissi		1						1
P. graminis		1						1
P. baetica								1
Rhizobacter (fulvus)								1
Rhodopseudomonas palustris		2						2
Rhogostoma schuessleri								1
Rickettsia spp.		3	2	3	2	3	2	2
Serratia proteamaculans								1
Sphingomonas desiccabilis		1						1
S. dokdonensis		3	1	3	1	3	1	3
S. glacialis		3	3	1	1	1	3	0
S. melonis								1
S. oligoaromaticivorans								1
S. oligophenolica		2	1					1
S. polyaromaticivorans		1	1					1
----------------	-----	-----	-----	-----				
S. sanxanigenens	1							
Variovorax ginsengisoli	1							
Williamsia deligens	3			1				
W. serinedens	2	3	1	3				
Wolbachia spp.	3	1	2	2				