On maximum Wiener index of directed grids

Martin Knor1, Riste Škrekovski2,3

1 Slovak University of Technology in Bratislava, Bratislava, Slovakia
2 University of Ljubljana, FMF, 1000 Ljubljana, Slovenia
3 Faculty of Information Studies, 8000 Novo Mesto, Slovenia

January 31, 2022

Abstract

This paper is devoted to Wiener index of directed graphs, more precisely of directed grids. The grid $G_{m,n}$ is the Cartesian product $P_m \Box P_n$ of paths on m and n vertices, and in a particular case when $m = 2$, it is a called the ladder graph L_n. Kraner Šumajek et al. [17] proved that the maximum Wiener index of a digraph, which is obtained by orienting the edges of L_n, is obtained when all layers isomorphic to one factor are directed paths directed in the same way except one (corresponding to an endvertex of the other factor) which is a directed path directed in the opposite way. Then they conjectured that the natural generalization of this orientation to $G_{m,n}$ will attain the maximum Wiener index among all orientations of $G_{m,n}$. In this paper we disprove the conjecture by showing that a comb-like orientation of $G_{m,n}$ has significantly bigger Wiener index.

1 Introduction

Let G be a graph. Its Wiener index, $W(G)$, is the sum of distances between all pairs of vertices of G. Thus,

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v).$$

Wiener index was introduced by Wiener [24] in 1947 for its correlation with the boiling point of alkanes, and afterwards it became popular among chemists. By graph theorists it has been considered later under various names, see [11, 7, 22]. More about this invariant can be found in [3, 4, 15, 16, 25]. Wiener index is also tightly related to the average distance, for which $\mu(G) = W(G)/(\binom{n}{2})$, see [11, 6], and also [8] for a brief survey.

Wiener index of directed graphs. Let D be a directed graph (a digraph). A (directed) path in D is a sequence of vertices v_0, v_1, \ldots, v_t such that $v_{i-1}v_i$ is an arc of D.

where \(1 \leq i \leq t \). The distance \(d_D(u, v) \) is the length of a shortest path from \(u \) to \(v \), and if there is no such path, we set \(d_D(u, v) = 0 \).

Denote \(w_D(u) = \sum_{v \in V(D)} d_D(u, v) \). Wiener index of \(D \), \(W(D) \), is the sum of all distances in \(D \), where each ordered pair of vertices has to be taken into account. Hence,

\[
W(D) = \sum_{(u,v) \in V(D) \times V(D)} d_D(u,v) = \sum_{u \in V(D)} w_D(u).
\]

The study of Wiener index of digraphs was initiated by Harary [11], who applied it to sociometric problems. Strict lower bound for the Wiener index of digraphs was found by Ng and Teh [19]. Wiener index of digraphs was considered also indirectly, through the study of the average distance, see [2, 5].

For a graph \(G \), let \(W_{\max}(G) \) and \(W_{\min}(G) \) be the maximum and the minimum, respectively, Wiener index among all digraphs obtained by orienting the edges of \(G \). The following problem was posed in [12].

Problem 1. For a graph \(G \), find \(W_{\max}(G) \) and \(W_{\min}(G) \).

Let \(K_n \) be the complete graph on \(n \) vertices. In [18, 20] Plesnık and Moon solved Problem 1 for \(W_{\max}(K_n) \) under an additional assumption that the extremal graph is strongly connected. In [12] it was shown that the results of Plesnık and Moon hold also without the additional assumption (i.e., assuming the condition (1)). One may expect that when \(G \) is 2-connected, \(W_{\max}(G) \) is attained for some strongly connected orientation. This was disproved in [12] using some \(\Theta \)-graphs \(\Theta_{a,b} \). More about this topic can be found in [2, 12, 13, 14].

Let \(P_n \) be a directed path on \(n \) vertices. Then \(W(P_n) = \frac{(n+1)}{3} = \frac{4}{6}n^3 + O(n^2) \). Now suppose that \(G \) is a graph on \(n \) vertices which has a Hamiltonian path \(H \). Direct all edges of \(H \) in one direction and direct remaining edges of \(G \) in the opposite way. Let \(D_H \) be the resulting directed graph. Then the orientation of \(H \) is a directed path \(P \) and if \(d_P(u, v) > 0 \) then \(d_P(u, v) = d_{DH}(u, v) \) since the arcs obtained by directing edges not in \(H \) cannot be used as “shortcuts”. Consequently, \(W_{\max}(G) > W(P_n) = \frac{4}{6}n^3 + O(n^2) \). This gives a simple lower bound for \(W_{\max}(G) \) if \(G \) has a Hamiltonian path.

Wiener index of directed grids. In this paper we consider Wiener index of directed grids. The \(m \times n \) grid \(G_{m,n} \) is the Cartesian product \(P_m \sqcup P_n \) of paths on \(m \) and \(n \) vertices. If \(m = 2 \), the grid is called the ladder graph \(L_n \). Kraner Šumenjak et al. [17] proved that the maximum Wiener index of a digraph whose underlying graph is \(L_n \) is \((8n^3 + 3n^2 - 5n + 6)/3 \). Moreover, the optimal orientation of \(L_n \) is attained for orientation presented in Figure 1.

Let \(D_{m,n} \) be the orientation of \(G_{m,n} \) with all \(P_m \)-layers oriented up except the last \(P_m \)-layer which is oriented down, and all \(P_n \)-layers oriented to the left except the first \(P_n \)-layer which is oriented to the right, see Figure 3. The following conjecture was stated in [17].

Conjecture 2. For every \(m, n \geq 2 \), we have \(W_{\max}(G_{m,n}) = W(D_{m,n}) \).
Figure 1: An orientation of the ladder $P_2 \Box P_6$ with the maximum Wiener index.

The conjecture naturally generalizes the result for $m = 2$, but in this paper we show that it is not true if $m \geq 3$. Let $C_{m,n}$ be an orientation of $G_{m,n}$ in which the top P_n-layer is directed to the right and this layer is completed to a directed Hamiltonian cycle C in a zig-zag way as shown by blue arrows on Figure 2. Moreover, the other edges are directed in such a way that they do not shorten directed blue path starting at vertex $(1,1)$. Of course, $C_{m,n}$ exists only if n is even. We show that if n is even $n \geq 4$ and $m \geq 3$, then $W(C_{m,n}) > W(D_{m,n})$. To do this, we calculate $W(C_{m,n})$ and $W(D_{m,n})$.

2 Wiener indices of $C_{m,n}$ and $D_{m,n}$

Figure 2: A comb orientation of the grid $G_{5,8}$.

We start with calculating the Wiener index of a comb-like orientation of a grid.

Theorem 3. Let n be even and $m, n \geq 4$. Then

$$W(C_{m,n}) = \frac{1}{12} (2m^3n^3 + 2m^3n^2 + 2m^3n + 4m^3 + 4m^2n^3 - 3m^2n^2 - m^2n - 6m^2$$
$$- 2mn^3 + 4mn^2 - 2mn - 16m + 24n^2 - 72n + 72 + \beta)$$

where $\beta = 3n - 6$ if m is odd and $\beta = 0$ if m is even.
Proof. We denote the vertices of $C_{m,n}$ as in Figure 2. In the calculation we use $\sum_{i=1}^k i = \frac{1}{2}(k^2 + k)$ and $\sum_{i=1}^k i^2 = \frac{1}{6}(2k^3 + 3k^2 + k)$. However, we need to evaluate also the following two sums. First,

$$\sum_{i=1}^{k/2} (1 + 2 + \cdots + 2i) = \sum_{i=1}^{k/2} \left(\frac{1}{2}(2i^2 + 2i)\right) = \sum_{i=1}^{k/2} (2i^2 + i) = \frac{1}{24}(2k^3 + 9k^2 + 10k).$$

Second,

$$\sum_{2 \leq r \leq s \leq m} |r - s| = 2 \sum_{2 \leq r < s \leq m} (s - r) = 2((m-2)1 + (m-3)2 + \cdots + 1(m-2))$$

$$= 2\sum_{i=1}^{m-2} (m-1-i)i = \frac{1}{3}(m^3 - 3m^2 + 2m).$$

We divide all distances in $C_{m,n}$ into 7 groups.

1. Distances from $(1, k)$ to all vertices of $C_{m,n}$. Recall that $C_{m,n}$ contains a Hamiltonian cycle C with some chords. Using these chords one cannot shorten the distance from $(1, k)$ to (x, y), where $2 \leq x \leq m$ and $1 \leq y \leq n$. Only the distances to $(1, \ell)$, where $\ell < k$, can be shortened. Hence, the sum of distances from $(1, k)$ equals $\binom{mn}{2} - \Delta_k$, where Δ_k sums the shortenings of $k - 1$ distances on C, those from $(1, k)$ to $(1, \ell)$, $1 \leq \ell < k$. Observe that each pair $(1, k)$, $(1, \ell)$, $1 \leq \ell < k$, contributes to Δ_k by the number of vertices which are avoided when using the edge $(2, \ell)(1, \ell)$ instead of the directed blue path from $(2, \ell)$ to $(1, \ell)$. Obviously, $\Delta_1 = \Delta_2 = 0$, but $\Delta_3 = 2m-2$, $\Delta_4 = (2m-2) + 2m$, etc. For $\Delta = \sum_{k=1}^n \Delta_k$ we have

$$\Delta = [(2m-2)] + [(2m-2) + 2m] + [(2m-2) + 2m + (4m-2)] + \ldots$$

$$+ [(2m-2) + 2m + \cdots + ((n-2)m-2) + (n-2)m]$$

$$= (n-2)(m+m-2) + (n-3)(2m) + \cdots + 2((n-3)m+m-2) + 1(n-2)m$$

$$= (n-2)m + \cdots + 1(n-2)m + (m-2)(n-2) + \cdots + (m-2)2$$

$$= m \sum_{i=1}^{n-2} (n-1-i)i + (m-2)2 \sum_{i=1}^{n/2-1} \left(\frac{n}{2} - i\right)$$

$$= m(m-1) \sum_{i=1}^{n-2} i - m \sum_{i=1}^{n-2} i^2 + 2(m-2) \sum_{i=1}^{n/2-1} i$$

$$= \frac{1}{12}(2mn^3 - 3mn^2 - 2mn - 6n^2 + 12n).$$

So the sum of distances considered in this case is

$$W_1 = n \binom{mn}{2} - \Delta = \frac{1}{12}(6m^2n^3 - 2mn^3 - 3mn^2 + 2mn + 6n^2 - 12n).$$

2. Distances from (k, t) to $(1, \ell)$, where $2 \leq k \leq m$ and $1 \leq \ell < t \leq n$. Here the
distances

to (1, 1) are \(m + (m+1) + \cdots + (m-1)n \) \(= \binom{(m-1)n+1}{2} - \binom{m}{2} \)
to (1, 2) are \(2 + 3 + \cdots + ((m-1)(n-2)+1) \) \(= \binom{(m-1)(n-2)+2}{2} - 1 \)
to (1, 3) are \(m + (m+1) + \cdots + (m-1)(n-2) \) \(= \binom{(m-1)(n-2)+1}{2} - 1 \)
to (1, 4) are \(2 + 3 + \cdots + (m-1)(n-4) + 1 \) \(= \binom{(m-1)(n-4)+2}{2} - 1 \)
\vdots

to (1, n-2) are \(2 + 3 + \cdots + ((m-1)2+1) \) \(= \binom{(m-1)^2+2}{2} - 1 \)
to (1, n-1) are \(m + (m+1) + \cdots + (m-1)2 \) \(= \binom{(m-1)^2+1}{2} - \binom{m}{2} \)
to (1, n) are \(0. \)

And their sum is

\[
W_2 = \sum_{i=1}^{n/2} \binom{(m-1)2i+1}{2} - \sum_{i=1}^{n/2} \binom{m}{2} + \sum_{i=1}^{n/2-1} \binom{(m-1)2i+2}{2} - \sum_{i=1}^{n/2-1} 1
\]
\[
= \frac{1}{12}(2m^2n^3 + m^2n - 4mn^3 + 6mn^2 - 11mn + 2n^3 - 6n^2 + 10n).
\]

3. \textit{Distances from \((k, t)\) to \((1, \ell)\), where \(2 \leq k \leq m\) and \(1 \leq t = \ell \leq n\).} Here the distances

\begin{align*}
to (1, \ell) & \text{ for odd } \ell \text{ are } & 1 + 2 + \cdots + (m-1) & = \binom{m}{2} \\
to (1, \ell) & \text{ for even } \ell < n \text{ are } & 1 + 4 + 5 + \cdots + (m+1) & = \binom{m+2}{2} - 5 \\
to (1, \ell) & \text{ for } \ell = n \text{ are } & (m+1) + (m+2) + \cdots + (2m-1) & = \binom{2n}{2} - \binom{m+1}{2}
\end{align*}

And their sum is

\[
W_3 = \frac{n}{2} - \binom{m}{2} + \binom{m+2}{2} - 5 + \binom{m}{2} + \binom{2m}{2} - \binom{m+1}{2}
\]
\[
= \frac{1}{12}(6m^2n + 12m^2 + 6mn - 36m - 24n + 48).
\]

4. \textit{Distances from \((k, t)\) to \((1, \ell)\), where \(2 \leq k \leq m\) and \(1 \leq t < \ell \leq n\).} In this case when \(t\) is odd or \(k = 2\) then the shortest path is

\[(k, t), (k-1, t), \ldots, (1, t), (1, t+1), \ldots, (1, \ell).\]

On the other hand if \(t\) is even and \(k \geq 3\) then the shortest path is

\[(k, t), (k, t+1), (k-1, t+1), \ldots, (1, t+1), (1, t+2), \ldots, (1, \ell).\]

So the sum of distances

\begin{align*}
& \text{for } \ell - t = 1 \text{ is } & (n-1)(2 + 3 + \cdots + m) & = (n-1)\left(\binom{m+1}{2} - \binom{3}{2}\right) \\
& \text{for } \ell - t = 2 \text{ is } & (n-2)(3 + 4 + \cdots + (m+1)) & = (n-2)\left(\binom{m+2}{2} - \binom{3}{2}\right) \\
& \vdots \text{ for } \ell - t = n-1 \text{ is } & 1(n + (n+1) + \cdots + (n+m-2)) & = 1\left(\binom{n+m-1}{2} - \binom{n}{2}\right).
\end{align*}
And the sum of distances considered in this case is

\[W_4 = \sum_{i=1}^{n-1} (n-i) \left(\binom{m+i}{2} - \binom{1+i}{2} \right) = \frac{1}{12} (3m^2n^2 - 3m^2n + 2mn^3 - 3mn^2 + mn - 2n^3 + 2n). \]

So, we are done with this case.

It remains to consider the distances between the vertices \((r, t)\) and \((s, \ell)\) where \(2 \leq r, s \leq m\) and \(1 \leq t, \ell \leq n\). Let \(P\) be the subpath of the Hamiltonian cycle \(C\) in \(C_{m,n}\) starting at \((2, n)\) and terminating at \((2, 1)\). We say that \((r, t)\) precedes \((s, \ell)\) if \((r, t)\) precedes \((s, \ell)\) on \(P\).

5. Distances from \((r, t)\) to \((s, \ell)\), where \(2 \leq r, s \leq m\) and \(1 \leq t, \ell \leq n\) when \((r, t)\) precedes \((s, \ell)\) on \(P\).

In this case the distance from \((r, t)\) to \((s, \ell)\) equals the distance of these vertices on \(P\). Hence,

\[W_5 = \sum_{i=1}^{(m-1)n} \binom{i}{2} = \frac{1}{12} (2m^3n^3 - 6m^2n^3 + 6mn^3 - 2mn - 2n^3 + 2n). \]

6. Distances from \((r, t)\) to \((s, \ell)\), where \(2 \leq r, s \leq m\) and \(1 \leq t = \ell \leq n\) when \((r, t)\) precedes \((s, \ell)\) on \(P\). Since both \((r, t)\) and \((s, \ell)\) are in the same column, see Figure 2 we have \(r < s\) if \(t\) is odd and \(r > s\) if \(t\) is even.

First assume that \(t = 1\). Then \(r < s\) and the shortest path from \((r, t)\) to \((s, \ell)\) is

\((r, 1), (r, 2), (r+1, 2), \ldots, (m, 2), (m, 1), (m-1, 1), \ldots, (s, 1)\)

with length \(1 + (m-r) + 1 + (m-s) = 2m + 2 - r - s\). Hence the sum of considered distances in the first column is

\[\Delta_1 = \sum_{2 \leq r < s \leq m} (2m + 2 - r - s) = \binom{m-1}{2} (2m+2) - \sum_{2 \leq r < s \leq m} (r + s) \]

\[= \binom{m-1}{2} (2m+2) - (m-2) \sum_{i=2}^{m} i = \frac{1}{12} (6m^3 - 18m^2 + 12m). \]

Now let \(t = n\). We argue similarly. In this case \(r > s\) and the shortest path from \((r, t)\) to \((s, \ell)\) is

\((r, n), (r+1, n), \ldots, (m, n), (m, n-1)(m-1, n-1), \ldots, (s, n-1), (s, n)\)

with length \((m-r) + 1 + (m-s) + 1 = 2m + 2 - r - s\). Hence the sum of considered distances in the \(n\)-th column is

\[\Delta_n = \sum_{2 \leq r < s \leq m} (2m + 2 - r - s) = \Delta_1 = \frac{1}{12} (6m^3 - 18m^2 + 12m). \]
Now let m be odd and $2 \leq t \leq n-1$. First assume that t is odd. Then $r < s$ and the shortest path from (r, t) to (s, ℓ) either uses the column $t - 1$ or $t + 1$. Hence, the shortest path is one of the following two

$$(r, t), (r, t+1), \ldots, (m-1, t), (s, t) \quad \text{with length } 2m + 2 - r - s,$$

$$(r, t), (r-1, t), \ldots, (2, t), (2, t-1), \ldots, (s, t-1), (s, t) \quad \text{with length } r + s + 2.$$

Hence the distance from (r, t) to (s, ℓ) is $\min\{2m + 2 - r - s, r + s + 2\}$. Let us split the distances according to the value of r. Observe that if $r = 2$ then the second path is the shortest one, while if $r = m$ then the first path is the shortest one.

$$
\begin{align*}
 r = 2 : & \quad 3 + 4 + 5 + 6 + \ldots + (m-1) + m \\
 r = 3 : & \quad 5 + 6 + 7 + \ldots + m + (m-1) \\
 r = 4 : & \quad 7 + 8 + \ldots + (m-1) + (m-2) \\
 \vdots & \quad \vdots \\
 r = \frac{m+1}{2} : & \quad m + (m-\frac{m-1}{2} + 2) \\
 \vdots & \quad \vdots \\
 r = m-2 : & \quad 5 + 4 \\
 r = m-1 : & \quad 3
\end{align*}
$$

These summands are symmetric with respect to the diagonal formed by values m. Therefore using the formula derived in the beginning of this proof we get

$$\Delta_t = \frac{m-1}{2} \left(\frac{m-1}{2} \left(1 + 2 + \cdots + (m-1) \right) - \sum_{i=1}^{(m-1)/2} (1 + 2 + \cdots + 2i) \right)$$

$$= \frac{1}{12} (4m^3 - 9m^2 + 2m + 3).$$

Now assume that t is even, so that $r > s$. Again, the shortest path is one of the following two

$$(r, t), (r, t+1), \ldots, (2, t+1), (2, t), \ldots, (s, t) \quad \text{with length } r + s + 2,$$

$$(r, t), \ldots, (m, t), (m, t-1), \ldots, (s, t-1), (s, t) \quad \text{with length } 2m + 2 - r - s.$$

Hence the distance from (r, t) to (s, t) is again $\min\{2m + 2 - r - s, r + s + 2\}$, and we get the same formula as in the case when t is odd.

Now let m be even and $2 \leq t \leq n-1$. We already know that regardless of the parity of t it holds

$$d((r, t), (s, t)) = \min\{2m + 2 - r - s, r + s + 2\}.$$
Nevertheless, assume that \(t \) is odd and split the distances according to the value of \(r \).

\[
\begin{align*}
 r = 2 : & \quad 3 + 4 + 5 + 6 + \cdots + (m-1) + m \\
 r = 3 : & \quad 5 + 6 + 7 + \cdots + m + (m-1) \\
 r = 4 : & \quad 7 + 8 + \cdots + (m-1) + (m-2) \\
 \vdots \\
 r = \frac{m}{2} : & \quad (m-1) + m + (m-1) \cdots \\
 r = \frac{m}{2} + 1 : & \quad (m-1) + (m-2) \cdots \\
 \vdots \\
 r = m-2 : & \quad 5 + 4 \\
 r = m-1 : & \quad 3
\end{align*}
\]

Again the summands are symmetric with respect to the diagonal formed by values \(m \). Therefore using the formula derived in the beginning of this proof we get

\[
\Delta_t = \frac{m-2}{2} m + 2 \left(\frac{m-2}{2} (1 + 2 + \cdots + (m-1)) \right) - \sum_{i=1}^{(m-2)/2} (1 + 2 + \cdots + 2i) \\
= \frac{1}{12} (4m^3 - 9m^2 + 2m).
\]

And since for even \(t \) we get the same distances, \(\Delta_t \) does not depend on the parity of \(t \) though it depends on the parity of \(m \).

Hence, the contribution of considered pairs to \(W(D_{m,n}) \) is

\[
W_6 = 2\Delta_1 + (n-2)\Delta_2 = \frac{1}{12} (4m^3n + 4m^3 - 9m^2n - 18m^2 + 2mn + 20m + \beta)
\]

where \(\beta = 3(n-2) \) if \(m \) is odd and \(\beta = 0 \) if \(m \) is even.

7. **Distances from \((r,t)\) to \((s,\ell)\), where \(2 \leq r, s \leq m\) and \(1 \leq t < \ell \leq n\).** Obviously, in this case \((s,\ell)\) precedes \((r,t)\) on \(P \). Using the paths \((m,q),(m-1,q),\ldots,(2,q)\) for odd \(q \), \((2,q),(3,q),\ldots,(m,q)\) for even \(q \), and for \(2 < p < m \) the paths \((p,1),(p,2),\ldots,(p,n)\) which exist if \(m \geq 4 \), one can see that the distance from \((r,t)\) to \((s,\ell)\) in \(D_{m,n} \) equals the distance from \((r,t)\) to \((s,\ell)\) in the underlying graph. The only exceptions occur when \(r = s = 2 \) or \(r = s = m \). If \(r = s = 2 \) then the distance from \((r,t)\) to \((s,\ell)\) is \(\ell - t + 2 \) except the case when \(\ell = t + 1 \) and \(t \) is odd, in which case the distance is 1. On the other hand if \(r = s = m \) then the distance from \((r,t)\) to \((s,\ell)\) is \(\ell - t + 2 \) except the case when \(\ell = t + 1 \) and \(t \) is even, in which case the distance is 1 again. So for any parity of \(t \), two distances between the layers \(t \) and \(\ell \) exceed the corresponding distance in the underlying graph by 2, except the case when \(\ell = t + 1 \), when only one distance between the layers \(t \) and \(\ell \) exceeds the corresponding distance in the underlying graph by 2. Using the formula from the beginning of the proof, the sum of all distances from the vertices of \(\{(r,t)\}_{r=2}^m \) to the vertices of \(\{(s,\ell)\}_{s=2}^m \) is

\[
\Delta_{t,\ell} = \sum_{2 \leq r, s \leq m} |r - s| + \sum_{2 \leq r, s \leq m} (\ell - t) + 4 - \delta \\
= \frac{1}{3} (m^3 - 3m^2 + 2m) + (m-1)^2 (\ell - t) + 4 - \delta.
\]
where $\delta = 2$ if $\ell = t + 1$ and $\delta = 0$ otherwise. Consequently, the contribution of considered distances is

$$W_7 = \sum_{t=1}^{n-1} \left(\sum_{\ell=t+1}^{n} \left(\frac{1}{3}(m^3 - 3m^2 + 2m) + (m-1)^2(\ell - t) + 4 \right) - 2 \right)$$

$$= \frac{n(n-1)}{2} \left(m^3 - 3m^2 + 2m \right) + (m-1)^2 \sum_{i=1}^{n-1} (n - i)i + \frac{n(n-1)}{2} 4 - 2(n-1)$$

$$= \frac{1}{12} (2m^3 n^2 - 2m^3 m + 2m^2 n^3 - 6m^2 n^2$$

$$+ 4m^2 n - 4mn^3 + 4mn^2 + 2n^3 + 24n^2 - 50n + 24) .$$

Now $W(C_{m,n}) = \sum_{i=1}^{7} W_i$. \hfill \Box

![Figure 3: An orientation of the grid $G_{5,8}$ from Conjecture 2.](image)

In [17], the authors did not evaluate the Wiener index of $D_{m,n}$. In order to be able to compare the Wiener indices of $C_{m,n}$ and $D_{m,n}$, we prove the following statement.

Theorem 4. We have

$$W(D_{m,n}) = \frac{1}{12} (10m^3 n^2 + 10m^2 n^3 - 6m^3 n - 24m^2 n^2 - 6mn^3$$

$$+ 4m^3 + 14m^2 n + 14mn^2 + 4n^3 - 12mn - 4m - 4n) .$$

Proof. We denote the vertices of $G = D_{m,n}$ as in Figure 3. Let $(x, y) \in V(G)$. We describe specific subgraphs of G with respect to (x, y) and we describe a formula for calculating distances from (x, y) to the vertices of the specific subgraph. Let H be a subgraph of G which is an orientation of $P_r \square P_s$. Of course, $r \leq m$ and $s \leq n$. Moreover, let H has a vertex (a, b) in its corner, such that for every $(u, v) \in V(H)$ we have $d_G((x, y), (u, v)) = \ldots$
d_G((x, y), (a, b)) + d_G((a, b), (u, v)). I.e., the corner vertex (a, b) is on a shortest path from (x, y) to every vertex of H. Finally, let the distance from (a, b) to vertices of H are the same in H as in the underlying graph. We denote the graph H by Q(a, b, c, d), where (c, d) is a corner of H opposite to (a, b). Obviously, |a − c| = r − 1 and |b − d| = s − 1. Denote \(t = d_G((x, y), (a, b)) \). Then the sum of distances from (x, y) to the vertices of H is

\[
B(t, r, s) = t + \cdots + (t+r-1) + (t+1) + \cdots + (t+r) + \cdots +(t+s-1) + \cdots + (t+s+r-2) = \binom{t + r + s}{3} - \binom{t + r}{3} - \binom{t + s}{3} + \binom{t}{3}.
\]

We divide the vertices of G into three groups, \(S_1, S_2 \) and \(S_3 \), and for each group \(S_i \), \(1 \leq i \leq 3 \), we calculate the contribution of vertices of \(S_i \) to \(W(G) \), i.e., we calculate \(\sum_{u \in S_i} w_G(u) \). However, our calculation is not so detailed as in the proof of Theorem 3. The reason is that when we find that the formulae do not split into cases (like the parity of \(m \) in Theorem 3), then the resulting formula is a polynomial which is of at most 3rd order in both \(m \) and \(n \). Hence, its 16 coefficients can be calculated using a system of linear equations for small \(m \) and \(n \) (\(2 \leq m, n \leq 5 \)), for which \(W(D_m,n) \) can be calculated by a computer. (In fact, the resulting polynomial was checked on a much wider range of \(m \) and \(n \).)

1. \(S_1 = \{(1, a); 1 \leq a \leq n\} \). Let \(1 \leq a \leq n \). Observe that \(G \) contains \(Q(2, n, m, 1) \). So considering first the distances to the vertices of \(S_1 \) and then to the vertices of \(Q(2, n, m, 1) \) we get

\[
w_G(1, a) = 1 + 2 + \cdots + (n-a) + (2(n-a)+3) + (2(n-a)+4) + \cdots + (2(n-a)+a+1) + \sum_{i=1}^{n} b(i, n, m, a, 1, n)
\]

which gives

\[
W_1 = \sum_{a=1}^{n} w_G(1, a) = \frac{1}{12} (6m^2 n^2 + 12mn^3 - 18mn^2 - 4n^3 + 12n^2 - 8n).
\]

2. \(S_2 = \{(a, n); 2 \leq a \leq m\} \). Let \(2 \leq a \leq m \). Then \(G \) contains \(Q(m, n-1, 1, 1) \). So considering first the distances to vertices of \(S_2 \cup \{(1, n)\} \) and then to the vertices of \(Q(m, n-1, 1, 1) \) we get

\[
w_G(a, n) = 1 + 2 + \cdots + (m-a) + (a+1) + (a+2) + \cdots + (2a-1) + (n-1) \sum_{s=1}^{m} |s-a| + m \sum_{i=1}^{n-1} i
\]

which gives

\[
W_1 = \sum_{a=1}^{n} w_G(1, a) = \frac{1}{12} (6m^2 n^2 + 12mn^3 - 18mn^2 - 4n^3 + 12n^2 - 8n).
\]
which gives
\[
W_2 = \sum_{a=2}^{m} w_G(a, n) = \frac{1}{12}(4m^3n + 6m^2n^2 + 4m^3 - 12m^2n - 6mn^2 + 8mn - 4m).
\]

3. \(S_3 = \{(a, b); \ 2 \leq a \leq m; \ 1 \leq b \leq n-1\}\). Let \(2 \leq a \leq m\) and \(1 \leq b \leq n-1\). Now we consider first the distances to the vertices of \(Q(a, b, 1, 1)\), second the distances to \((1, i)\) where \(b < i \leq n\), then the distances to vertices of \(Q(2, n, a, b+1)\), and finally the distances to the vertices of \(Q(a+1, n, m, 1)\). We get
\[
w_G(a, b) = B(0, a, b) + a + (a+1) + \cdots + (a+(n-b)-1)
+ B(a+n-b, a-1, n-b) + B(2a+n-b-1, m-a, n)
\]
\[
= \left(\frac{a + b}{3}\right) - \left(\frac{a}{3}\right) - \left(\frac{b}{3}\right) + \left(\frac{n + a - b}{2}\right) - \left(\frac{a}{2}\right) + \left(\frac{2n + 2a - 2b - 1}{3}\right)
- \left(\frac{n + 2a - b - 1}{3}\right) - \left(\frac{2n + a - 2b}{3}\right) + \left(\frac{n + a - b}{3}\right) + \left(\frac{2n + m + a - b - 1}{3}\right)
- \left(\frac{n + m + a - b - 1}{3}\right) - \left(\frac{2n + 2a - b - 1}{3}\right) + \left(\frac{n + 2a - b - 1}{3}\right),
\]
which gives
\[
\sum_{a=2}^{m} w_G(a, b) = \left(\frac{m + b + 1}{4}\right) - \left(\frac{b + 2}{4}\right) - \left(\frac{m + 1}{4}\right) - \left(\frac{m-1}{3}\right)
+ \left(\frac{n + m - b + 1}{3}\right) - \left(\frac{n - b + 2}{3}\right) - \left(\frac{m + 1}{3}\right)
+ \sum_{i=1}^{m} \left(\frac{2n - 2b + 1}{3}\right) - \left(\frac{2n - 2b + 1}{3}\right) - \left(\frac{2n + m - 2b + 1}{4}\right) + \left(\frac{2n - 2b + 2}{4}\right)
+ \left(\frac{n + m - b + 1}{4}\right) - \left(\frac{n - b + 2}{4}\right) + \left(\frac{2n - 2m - b}{4}\right) - \left(\frac{2n + m - b + 1}{4}\right)
- \left(\frac{n + 2m - b}{4}\right) + \left(\frac{n + m - b + 1}{4}\right) - \sum_{i=1}^{m} \left(\frac{2n - b + 1 + 2i}{3}\right) + \left(\frac{2n - b + 1}{3}\right),
\]
and consequently
\[
W_3 = \sum_{b=1}^{n-1} \sum_{a=2}^{m} w_G(a, b) = \frac{1}{12}(10m^3n^2 + 10m^2n^3 - 10m^3n - 36m^2n^2 - 18mn^3
+ 26m^2n + 38mn^2 + 8n^3 - 20mn - 12n^2 + 4n).
\]

Now \(W(D_{m,n}) = \sum_{i=1}^{3} W_i\).

\[
\square
\]

3 Comparing Wiener indices

By Theorems 3 and 4 in variables \(m\) and \(n\) the polynomial \(W(C_{m,n})\) is of 6th order while \(W(D_{m,n})\) is only of 5th order. Therefore, for big \(m\) and \(n\) we have \(W(C_{m,n}) > W(D_{m,n})\).
In the next proof we show that $W(C_{m,n}) > W(D_{m,n})$ for all m and n for which $C_{m,n}$ exists.

Theorem 5. Let $m \geq 3$ and let n be even, $n \geq 4$. Then $W(C_{m,n}) > W(D_{m,n})$.

Proof. Observe that $3n - 6 > 0$ if $n \geq 4$. Moreover, part 7 of the proof of Theorem 3 is the only one in which we assume $m > 3$. If $m > 3$ then the distances considered there are the shortest ones, that is as in the underlying graph, with a few exceptions. In these exceptions the distances are second shortest, i.e. increased by 2, since the graph is bipartite. In the same cases the distances are not shortest possible if $m = 3$ and they are not shortest even in some other cases. Therefore for all $m \geq 3$ and even $n \geq 4$ the expression in Theorem 3 without β is a lower bound for $W(C_{m,n})$. Hence

$$12\left(W(C_{m,n}) - W(D_{m,n})\right) \geq 2m^3n^3 - 8m^3n^2 - 6m^2n^3 + 8m^3n + 21m^2n^2 + 4mn^3$$

$$- 15m^2n - 10mn^2 - 4n^3 - 6m^2 + 10mn + 24n^2 - 12m - 6n + 72$$

$$= 2(m-3)^3(n-3)^3 + 10(m-3)^3(n-3)^2 + 12(m-3)^2(n-3)^3$$

$$+ 14(m-3)^3(n-3) + 57(m-3)^2(n-3)^2 + 22(m-3)(n-3)^3$$

$$+ 6(m-3)^3 + 75(m-3)^2(n-3) + 98(m-3)(n-3)^2 + 8(n-3)^3$$

$$+ 30(m-3)^2 + 130(m-3)(n-3) + 39(n-3)^2 + 54(m-3) + 61(n-3) + 30 > 0,$$

since $m, n \geq 3$ and all the coefficients are positive. \(\Box\)

By Theorem 4, we have $W(D_{m,n}) = W(D_{n,m})$. This is not the case of $W(C_{m,n})$. If both m and n are even and $m < n$, which of $W(C_{m,n})$ and $W(C_{n,m})$ is bigger? The next statement answers this question.

Theorem 6. If both m and n are even and $4 \leq m < n$ then $W(C_{m,n}) > W(C_{n,m})$.

Proof. By Theorem 3

$$12\left(W(C_{m,n}) - W(C_{n,m})\right) = -2m^3n^2 + 2m^2n^3 + 4m^3n - 4mn^3 - 5m^2n + 5mn^2$$

$$+ 4m^3 - 4n^3 - 30m^2 + 30n^2 + 56m - 56n$$

$$= (n-m)[2m^2n^2 - 4mn(m+n) - 4m^2 - 4n^2 + mn + 30(m+n) - 56].\quad (2)$$

Denote by Δ the long expression in brackets of (2). If $m, n \geq 6$ then

$$m^2n^2 - 4m^2n - 4m^2 = m^2(n^2 - 4n - 4) > 0$$

$$m^2n^2 - 4mn^2 - 4n^2 = n^2(m^2 - 4m - 4) > 0$$

$$mn + 30(m+n) - 56 > 0,$$

and so $\Delta > 0$. On the other hand if $m = 4$ then

$$\Delta = 32n^2 - 64n - 16n^2 - 64 - 4n^2 + 4n + 120 + 30n - 56 = 12n^2 - 30n > 0$$

as well. Hence, if $m \geq 4$ then $\Delta > 0$ and consequently $W(C_{m,n}) > W(C_{n,m})$. \(\Box\)
Figure 4: Grids $G_{3,4}$ and $G_{3,5}$ with optimal orientations $M_{3,4}$ and $M_{3,5}$, respectively, Hamiltonian paths are thick.

4 Concluding remarks and possible further work

Let C_q be a directed cycle on q vertices. Then $W(C_q) = q \binom{q}{2} = \frac{1}{2} q^3 + O(q^2)$. It is known that if G is a directed graph on q vertices then $W'(G) \leq W(C_q)$. Thus, we have the following observation.

![Figure 5: Grid $G_{3,6}$ with the optimal orientation $M_{3,6}$.

Observation 7. Among all orientations of $G_{m,n}$, where $m \geq 3$ and $n \geq 4$ is even, $W(C_{m,n}) = \Theta(W(C_{mn}))$, i.e., $W(C_{m,n})$ has the best possible order.

Observe that this is not the case of $D_{m,n}$ if $cn \leq m \leq n$ for a constant c. Even if both m and n are odd, it is easy to find an orientation of the grid in which the Wiener index has the correct order. Just take a Hamiltonian path H of the grid G, and construct G_H as described in the Introduction.

By Theorem 3 if $c_1 n \leq m \leq c_2 m$ where c_1 and c_2 are constants, then for $q = mn$ we have $W(C_{m,n}) = \frac{1}{6} q^3 + o(q^3)$. Here the leading term has multiplier as the leading term for $W(P_q)$. But if m is a constant, we have a better bound. In such a case $W(C_{m,n}) = \frac{1}{6} (1 + \frac{2}{m} - \frac{1}{m^2}) q^3 + O(q^2)$ and for $m = 3$ the Wiener index is probably even higher. Anyway, $C_{3,n}$ is not the orientation of $G_{3,n}$ with the biggest Wiener index at least if $n \in \{4, 6\}$. The orientations $M_{3,n}$ of $G_{3,n}$, 4 \leq n \leq 6, with the biggest Wiener index are in Figures 4 and 5. They were found by a computer and $W(M_{3,4}) = 578$, $W(M_{3,5}) = 1116$, $W(M_{3,6}) = 1928$. Just to compare let us mention that $W(C_{3,4}) = 538$, $W(C_{3,6}) = 1740$, $W(D_{3,4}) = 516$, $W(D_{3,5}) = 968$, $W(D_{3,6}) = 1626$. In $M_{3,4}$ and $M_{3,5}$, thick lines form a Hamiltonian path such that all arcs not in this path are directed oppositely. However, $M_{3,6}$ does not have such a path. Although $W(M_{3,k}) > W(C_{3,k})$ for $k \in \{4, 6\}$, it can be true that $\lim_{m,n \to \infty} W_{\text{max}}(G_{m,n})/W(C_{m,n}) = 1$ for even n. Hence, we have the following problem.
Problem 8. Find the biggest possible constant c, such that $W_{\text{max}}(G_{m,n}) \geq c(mn)^3 + o((mn)^3)$.

Of course, the main problem is the following one.

Problem 9. Find an orientation of $G_{m,n}$ with the maximum Wiener index.

The above problem may be difficult. The extremal graphs $M_{3,4}$, $M_{3,5}$ and $M_{3,6}$ do not have any obvious simple property, but they are at least strongly connected. Therefore, we conclude the paper with the following question.

Question 10. Let $M_{m,n}$ be an orientation of $G_{m,n}$ with the maximum Wiener index. Is $M_{m,n}$ strongly connected?

Acknowledgments. The first author acknowledges partial support by Slovak research grants VEGA 1/0206/20, VEGA 1/0567/22, APVV–17–0428, APVV–19–0308. Both authors acknowledge partial support of the Slovenian research agency ARRS program P1-0383 and ARRS project J1-1692.

References

[1] P. Dankelmann, Average distance and independence numbers, Discrete Appl. Math. 51 (1994), 75–83.

[2] P. Dankelmann, O. R. Oellermann, J.-L. Wu, Minimum average distance of strong orientations of graphs, Discrete Appl. Math. 143 (2004), 204–212.

[3] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66(3) (2001), 211–249.

[4] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), 247–294.

[5] J. K. Doyle, J. E. Graver, Mean distance in a graph, Discrete Appl. Math. 17 (1977), 147–154.

[6] J. K. Doyle, J. E. Graver, Mean distance in a directed graph, Environment Planning B 5 (1978), 19–29.

[7] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976), 283–296.

[8] W. Goddard, O. R. Oellermann, Distance in graphs, in M. Dehmer, editor, Structural Analysis of Complex Networks, Birkhäuser, 2011.

[9] I. Gutman, R. Škrekovski, Vertex version of the Wiener theorem, MATCH Commun. Math. Comput. Chem. 72 (2014), 295–300.
[10] K. Hajdinová, *Wiener index in directed trees*, Master Thesis, Slovak University of Technology in Bratislava, Faculty of Civil Engineering, 2015, SvF-5342-56691 (in Slovak).

[11] F. Harary, *Status and contrastatus*, Sociometry **22** (1959), 23–43.

[12] M. Knor, R. Škrekovski, A. Tepeh, Orientations of graphs with maximum Wiener index, Discrete Appl. Math. **211** (2016) 121–129.

[13] M. Knor, R. Škrekovski, A. Tepeh, Some remarks on the Wiener index of digraphs, Appl. Math. Comput. **273** (2016) 631–636.

[14] M. Knor, R. Škrekovski, A. Tepeh, Digraphs with large maximum Wiener index, Appl. Math. Comput. **284** (2016), 260–267.

[15] M. Knor, R. Škrekovski, Wiener index of line graphs, in M. Dehmer and F. Emmert-Streib (Eds.), *Quantitative Graph Theory: Mathematical Foundations and Applications*, CRC Press (2014), 279–301.

[16] M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener index, *Ars Math. Contemp.* **11** (2016) 327–352.

[17] T. Kraner Šumenjak, S. Špacapan, D. Štesl, A proof of a conjecture on maximum Wiener index of oriented ladder graphs, J. Appl. Math. Comput. (2021). https://doi.org/10.1007/s12190-021-01498-w.

[18] J. W. Moon, *On the total distance between nodes in tournaments*, Discrete Math. **151** (1996), 169–174.

[19] C. P. Ng, H. H. Teh, *On finite graphs of diameter 2*, Nanta Math. **1** (1966/67), 72–75.

[20] J. Plesník, *On the sum of all distances in a graph or digraph*, J. Graph Theory **8** (1984), 1–21.

[21] M. Sampels, *On Generalized Moore Digraphs*, Parallel Processing and Applied Mathematics Lecture Notes in Computer Science **3019** (2004), 42–49.

[22] L. Šoltés, *Transmission in graphs: A bound and vertex removing*, Math. Slovaca **41** (1991), 11–16.

[23] I. Pesek, M. Rotovnik, D. Vukičević, J. Žerovnik, *Wiener Number of directed graphs and its relation to the oriented network design problem*, MATCH Commun. Math. Comput. Chem. **64** (2010), 727–742.

[24] H. Wiener, *Structural determination of paraffin boiling points*, J. Amer. Chem. Soc. **69** (1947), 17–20.

[25] K. Xu, M. Liu, K.C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices *MATCH Commun. Math. Comput. Chem.** 71** (2014), 461–508.