Preliminary Phytochemical, Antioxidant and Hypolipidemic Potential of Aqueous Extract of Ferula asafoetida-An in vitro Study

T. Asmidha a, R. Gayathri a#*, V. Vishnu Priya a**, J. Selvaraj a and S. Kavitha a

a Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India.

ABSTRACT

Aim: To analyse the preliminary phytochemical, antioxidant, anti-cholesterol potential of aqueous extract of Ferula asafoetida.

Background: Hyperlipidemia is considered as one of the leading causes behind the occurrence of deadly disorders like diabetes, cardiovascular diseases, atherosclerosis etc. It is characterised by elevated levels of plasma lipids, mainly total cholesterol. Antioxidants are compounds which can inhibit oxidative damage. is the herbaceous plant belonging to the family Umbelliferae. It is used as spice in food and also used as digestive aid. It is used in the treatment of asthma and whooping cough and it also helps to reduce blood pressure.

Methods: Aqueous extract of Ferula asafoetida was prepared by hot percolation method. The screening of phytochemical constituents, assessment of in vitro antioxidant activity and anti-cholesterol activity were done using standard procedures and the data were analysed statistically using one-way analysis of variance (ONE-WAY ANOVA) and the significance was considered at the levels of p<0.05.

Results: Ferula asafoetida extract was rich in phytochemicals and possessed potent in vitro antioxidant activity. Anti-cholesterol activity of Ferula asafoetida extract was examined and it was
observed that the plant extract exhibited significant anti cholesterol potential in a dose dependent manner with an IC 50 value of 400 µg/ml.

**Conclusion:** The study established the in vitro antioxidant and hypolipidemic potential of aqueous extract of *Ferula asafoetida*. It is concluded that the extract of *Ferula asafoetida* possesses potent antioxidant and anticholesterol activity.

**Keywords:** *Ferula asafetida*; anti-cholesterol; antioxidant; phytochemical screening; innovative technology; novel method.

1. **INTRODUCTION**

*Ferula asafoetida* is a herbaceous plant belonging to the Umbelliferae family. It has been used as a spice in food for more than thousands of years. It is also used as a digestive aid. It can change the dull food into an appetizing meal by their colour, flavor and pungency [1]. The resin gum obtained from *Ferula asafoetida* is used to treat whooping cough and ulcer. It is used in the treatment of cancer, women's allergies, blood pressure, and chemoprotive therapy [2]. It is used in modern treatments in whooping cough, asthma, and also it reduces cholesterol. The oil of *Ferula asafoetida* is reported to have antifungal activity. It has cardioprotective effects in low doses and cardiotoxic effects in higher doses. It is also used in organic farming to kill several insect pests. It helps to treat gastrointestinal, neurological and respiratory disorders [3].

Phytochemicals are the compounds produced in the plants. Secondary metabolites are present only in plants possessing various biological activities [4]. They help in the normal processing and are capable of prevention or treatment of various disorders [5]. Phytochemicals generally are regarded as an important compound of research interest because of their possible health effects [6]. Antioxidant is the material which terminates the chain reaction by removing the free radical [7]. Antioxidants reduce the risk of cancer, cardiovascular diseases, diabetes and other diseases which are caused by oxidative stress [8].

Hyperlipidemia is a secondary metabolic disorder. It is characterised by elevated levels of serum triglycerides, cholesterol and low density lipoproteins and decreased serum levels of high density lipoproteins [9]. Hyperlipidemia is regarded as a major risk factor for the premature development of cardiovascular disease like atherosclerosis, hypertension, coronary heart disease etc. [10]. It is also associated with other metabolic disorders like obesity, diabetes mellitus etc [11]. Statin drugs are widely used for the treatment of hypercholesterolemia as it is an inhibitor of the key enzyme HMG CoA reductase, which is involved in the cholesterol biosynthesis [12]. Our team has extensive knowledge and research experience that has translate into high quality publications [13-32]. Hence the study aimed to assess the anticholesterol and antioxidant activity of *Ferula asafoetida* extract by in vitro methods.

2. **MATERIALS AND METHODS**

2.1 **Preparation of Aqueous Extract of Ferula asafoetida**

*Ferula asafoetida* was purchased from a herbal health care centre. Crushed and made into powder. 80% aqueous extract was obtained. The extract was prepared by a hot percolation method. Phytochemical analysis, assessment of in vitro antioxidant and anti cholesterol potential was evaluated [33].

2.2 **Phytochemical Screening Test**

2.2.1 Test for phlobatannin

1 ml of the extract was treated with 1ml of 1% HCl and boiled for 10 mins. The formation of red color precipitate indicates the presence of phlobatannin.

2.2.2 Test for Carbohydrates

Three to five drops of Molisch reagent was added with 1ml of the extract and then 1 mL of concentrated sulphuric acid was added carefully through the side of the test tube. The mixture was then allowed to stand for two minutes and diluted with 5 mL of distilled water. The development of a red or dull violet ring at the junction of the liquids showed the presence of carbohydrates.

2.2.3 Test for Flavonoids

Few drops of 1% liquid ammonia were taken in a test tube and along with it 1ml of the extract was
added resulting in the formation of yellow color thereby indicating the presence of flavonoids.

2.2.4 Test for Alkaloids

2ml of sample was mixed with 2ml of HCl. Then 6 drops of HCN was added and further 2 drops of picric acid was added that resulted in a creamish pale yellow ppt indicating the presence of alkaloids.

2.2.5 Test for Terpenoids

2 ml of sample along with 2ml of chloroform and 3 ml of con.H2SO4 was added. Red color ppt obtained indicates the presence of terpenoids.

2.2.6 Test for proteins

One milliliter of ninhydrin was dissolved in 1 mL of acetone and then a small amount of extract was added with ninhydrin. The formation of purple colour revealed the presence of protein.

2.2.7 Detection of saponins

Foam test: A fraction of the extract was vigorously shaken with water and observed for persistent foam [34].

2.2.8 Test for steroids

One ml of chloroform was mixed with 1 mL of extract and then ten drops of acetic anhydride and five drops of concentrated sulphuric acid were added and mixed. The formation of dark red colour or dark pink colour indicates the presence of steroids.

2.3 In vitro Antioxidant Activity (DPPH Free Radical Scavenging Activity)

Scavenging of 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radicals was assessed by the method of Hatano et al, (1989). DPPH solution (1.0 ml) was added to 1.0 ml of extract at different concentrations (0.1 to 0. 5mg/ml). The mixture was kept at room temperature for 50 minutes and the activity was measured at 517 nm. Ascorbic acid at the same concentrations was used as standard. The capability to scavenge the DPPH radical was calculated and expressed in percentage (%) using following formula:

\[
\text{DPPH radical scavenging (\%) = Control OD - Sample OD/ control OD X 100}
\]

2.4 In vitro Anti-cholesterol Activity

The anti-cholesterol assay was carried out as described as per the kit method (Spinreact, S.A.U-Ctra Santa Coloma, Girona, Spain). Cholesterol was dissolved in chloroform at a concentration of 2.5 mg mL/ml. Ten microliter of the extract was pipetted into a microtiter plate followed by the addition of 2000 μL of R1 reagent and 10 μL of cholesterol as sample. Twenty microliter of distilled water and 2000 μL of R1 reagent were used as blank. Negative control consisted of 20 μL cholesterol and 2ml R1; standard consisted of 20 μL simvastatin and 2mL R1 reagent. The contents were incubated between 0-30 min at room temperature and the absorbance was read at 500 nm in a UV-Vis spectrophotometer against reagent blank. Anti-cholesterol assay of the extract was calculated using the following equation:

\[
\text{Inhibition (\%) = Negative control-Sample. X 100/Negative OD.}
\]

2.5 Statistical Analysis

The data were subjected to statistical analysis using one-way analysis of variance (ANOVA) and Duncan’s multiple range test to assess the significance of individual variations between the groups. In Duncan’s test, significance was considered at the level of p<0.05.

3. RESULTS

3.1 Phytochemical Screening of Ferula asafoetida

The results of phytochemical analysis showed the presence of proteins, flavonoids, alkaloids, terpenoids, saponins and steroids in Ferula asafoetida. The carbohydrates and the amino acids are absent in Ferula asafoetida (Table 1). The presence of phytochemicals in the extract might be the underlying reason for the therapeutic properties of Ferula asafoetida.

3.2 Antioxidant Activity of Aqueous Extract of Ferula asafoetida

Antioxidant activity of aqueous seed extracts of Ferula asafoetida was determined by performing DPPH free radical scavenging assay (Fig. 1). The extract showed a dose-dependent increase in the antioxidant activity although its activity is less compared to the standard vitamin C. The P value is p<0.05.
Table 1. Phytochemical screening of Ferula asafoetida aqueous extract.

| Phytochemicals   | Presences |
|------------------|-----------|
| Proteins         | +         |
| Flavonoids       | +         |
| Alkaloids        | +         |
| Terpenoids       | +         |
| Saponins         | +         |
| Steroids         | +         |
| Carbohydrates    | -         |
| Amino Acids      | -         |

+= It indicates the presence of the phytochemical in the ferula asafoetida.
-= It indicates the absence of the phytochemical in the ferula asafoetida.

Fig. 1. The figure represents the antioxidant potential of aqueous extract of Ferula asafoetida by DPPH assay. The X axis represents the concentration in ug/ml and the Y axis represents the % of inhibition. Green bar represents ascorbic acid, orange bar represents aqueous extract of Ferula asafoetida. Each bar represents the Mean±SEM of 3 independent observations; Significance at p< 0.05

3.3 Anti Cholesterol Activity of Aqueous Extract of Ferula asafetida

Anticholesterol activity of Ferula asafoetida aqueous extract revealed a dose dependent increase in the percentage of inhibitory activity. The extract showed a potent anticholesterol activity with a IC₅₀ value of 450 µg/ml (Fig. 2). The activity of the extract is less compared to the standard drug simvastatin in all the tested concentrations. Simvastatin is a standard anticholesterol drug which acts as HMG CoA reductase inhibitor. It showed that the extract is showing less activity compared to simvastatin. The p value is p<0.05.

4. DISCUSSION

Plants are an excellent source of biologically active compounds known as phytochemicals. It is well established that free radicals are the major cause of various chronic and degenerative diseases, like coronary heart disease, inflammation, stroke, diabetes mellitus and cancer [35]. The medicinal value of plants is related to the content of phytochemicals including phenolic compounds, flavonoids,
alkaloids, tannins etc [36]. The results of phytochemical analysis showed the presence of proteins, flavonoids, alkaloids, terpenoids, saponins and steroids in Ferula asafoetida (Table 1). The presence of phytochemicals in the extract might be the underlying reason for the therapeutic properties of Ferula asafoetida.

Antioxidant activity of aqueous seed extracts of Ferula asafoetida was determined by performing DPPH free radical scavenging assay (Fig. 1). The extract showed a dose-dependent increase in the antioxidant activity although its activity is less compared to the standard vitamin C. Free radicals are molecules possessing unpaired electrons. Antioxidants are the most effective ingredients to eliminate free radicals which can create oxidative stress and are possible protective tools that protect the cells from reactive oxygen species [37]. They retard the progress of many diseases as well as lipid peroxidation. Additionally, they also possess anti-inflammatory, anti-viral and anti-cancer properties [37,38]. Ferula asafoetida extracts which are rich in phytochemicals which have great importance in free radical scavenging. The effect of antioxidants on the DPPH free radical scavenging was considered due to their hydrogen donating ability. The extract of Ferula asafoetida exhibited a significant antioxidant potential with standard IC$_{50}$ value of 380 µg/ml. Further studies may be needed to find out the potential health benefits of the extracts in prevention and scavenging of free radicals.

Investigation of anticholesterol activity of Ferula asafoetida aqueous extract revealed a dose dependent increase in the percentage of inhibitory activity. The extract showed a potent anti-cholesterol activity with a IC$_{50}$ value of 450 µg/ml (Fig. 2). The activity of the extract is less compared to the standard drug simvastatin in all the tested concentrations. Simvastatin is a standard anti-cholesterol drug which acts as HMG CoA reductase inhibitor [39]. Although statin groups of drugs do well in many people, the use of it is associated with potential adverse effects which include cognitive loss, neuropathy, pancreatic and hepatic dysfunction, and sexual dysfunction [40]. Hence our study showed that even though the extract is showing less activity compared to simvastatin, since the extract is natural in origin it can avoid the adverse side effects created by the synthetic drugs.

![Fig. 2. The figure represents the hypolipidemic potential of aqueous extract of Ferula asafoetida. The X axis represents the concentration in µg/ml and the Y axis represents the % of inhibition. Blue bar represents the standard Simvastatin, orange bar represents aqueous extract of Ferula asafoetida. Each bar represents Mean ± SEM of 3 independent observations. Significance at p < 0.05](image-url)
5. CONCLUSION
The present study can be concluded that the extract of *Ferula asafoetida* possesses potent antioxidant and anticholesterol activity. Further detailed studies on in vitro cell lines and in vivo experimental animal models need to be done on the plant extract for the formulation of the anti-cholesterol drug towards the clinical utility.

CONSENT
It is not applicable.

ETHICAL APPROVAL
It is not applicable.

SOURCE OF FUNDING
The present study was supported by the following agencies
- Saveetha Dental College,
- Saveetha Institute of Medical and Technical Science,
- Saveetha University
- The Master Linque Automation.

ACKNOWLEDGEMENT
The authors would like to thank Saveetha Dental College and Hospitals, Saveetha Institute of medical and technical Sciences, Saveetha University for providing research laboratory facilities to carry out the study.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
1. Amalraj A, Gopi S. Biological activities and medicinal properties of Asafoetida: A review. Afr J Tradit Complement Altern Med. 2017;7(3):347–59.
2. Mahendra P, Bisht S. *Ferula asafoetida* : Traditional uses and pharmacological activity [Internet]. Pharmacognosy Reviews. 2012;6:141.
3. Mahapatra KD, Kumar B. A review on therapeutic uses of ocmium sanctum linn (Tulsi) with its pharmacological actions [Internet]. Vol. 3, International Journal of Research in Ayurveda and Pharmacy. 2012;645–7.
4. Zengin G, Uysal A, Diuzheva A, Gunes E, Jekő J, Cziák Z, et al. Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: a multifunctional insight. J Pharm Biomed Anal. 2018;160:374–82.
5. Tajbakhht P, Talebi M, Rahimmalek M. Genetic diversity among and within *Ferula asafoetida* H. Karst. populations using molecular and phytochemical markers [Internet]. Phytochemistry. 2018;155:19–29.
6. Sayyar HT. Evaluation of Phytochemical Screening, Antimicrobial and Antioxidant Activities of Ethanol Extracts of Cucumis flexoues and Cucumis reticulatus Seeds [Internet]. Vol. 41, The Pakistan Veterinary Journal. 2021;41:142–6.
7. Mohammad NS, Dehpour AA, Ebrahimzadeh MA, Fazel NS. Antioxidant activity of the methanol extract of *Ferula asafoetida* and its essential oil composition [Internet]. Grasas y Aceites. 2009;60:405–12.
8. Karimian V, Sepehry A, Barani H, Ebrahimi SN, Mirjalili MH. Productivity, essential oil variability and antioxidant activity of *Ferula assafoetida* L. oleo-gum-resin during the plant exploitation period [Internet]. Journal of Essential Oil Research. 2020;32:545–55.
9. Djamil R, Rahmat D, Zaidan S, Latifah MN. Anticholesterol Activity of Okra Fruit Extract (*Abelmoschus esculentus* (L) Moench) and Its Nanoemulsion in vivo [Internet]. Pharmacognosy Journal. 2020;12:316–20.
10. Ramachandran AV, Ansarullah, Jadeja RN, Thounaojam MC, Patel V, Devkar RV. Antihyperlipidemic potential of a polyherbal preparation on triton WR 1339 (Tyloxapol) induced hyperlipidemia: A comparison with lovastatin [Internet]. International Journal of Green Pharmacy. 2009;3:119. Available:http://dx.doi.org/10.4103/0973-8258.54900

11. Sikarwar MS, Patil MB. Antihyperlipidemic activity of Salacia chinensis root extracts in triton- and atherogenic diet-induced hyperlipidemic rats. Indian J Pharmacol. 2012;44(1):88–92.

12. Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 2007;40(9-10):575–84.

13. Wu F, Zhu J, Li G, Wang J, Veeraraghavan VP, Krishna Mohan S, et al. Biologically synthesized green gold nanoparticles from Siberian ginseng induce growth-inhibitory effect on melanoma cells (B16). Artif Cells Nanomed Biotechnol. 2019;47(1):3297–3305.

14. Chen F, Tang Y, Sun Y, Veeraraghavan VP, Mohan SK, Cui C. 6-shogaol, a active constituents of ginger prevents UVB radiation mediated inflammation and oxidative stress through modulating Nrf2 signaling in human epidermal keratinocytes (HaCaT cells). J Photochem Photobiol B. 2019;197:111518.

15. Li Z, Veeraraghavan VP, Mohan SK, Bolla SR, Lakshmanan H, Kumaran S, et al. Apoptotic induction and anti-metastatic activity of eugenol encapsulated chitosan nanopolymer on rat glioma C6 cells via alleviating the MMP signaling pathway [Internet]. Journal of Photochemistry and Photobiology B: Biology. 2020;203:111773. Available:http://dx.doi.org/10.1016/j.jphoto biol.2019.111773

16. Babu S, Jayaraman S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed Pharmacother. 2020;131:110702.

17. Malakolundhan H, Mookkan G, Krishnamoorthi G, Matheswaran N, Alswalha M, Veeraraghavan VP, et al. Anticarcinogenic effect of gold nanoparticles synthesized from Albizia lebbeck on HCT-116 colon cancer cell lines. Artif Cells Nanomed Biotechnol. 2020;48(1):1206–13.

18. Han X, Jiang X, Guo L, Wang Y, Veeraraghavan VP, Krishna Mohan S, et al. Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artif Cells Nanomed Biotechnol. 2019;47(1):3577–84.

19. Gothai S, Muniandy K, Gnanaaraj C, Ibrahim IAA, Shahtad N, Al-Ghamdi SS, et al. Pharmacological insights into antioxidants against colorectal cancer: A detailed review of the possible mechanisms. Biomed Pharmacother. 2018;107:1514–22.

20. Veeraraghavan VP, Hussain S, Balakrishna JP, Dhwale L, Kullappan M, Ambrose JM, et al. A Comprehensive and Critical Review on Ethnopharmacological Importance of Desert Truffles: Terfezia claveryi, Terfezia boudieri, and Tirmania nivea [Internet]. Food Reviews International. 2021;1–20. Available:http://dx.doi.org/10.1080/87559129.2021.1889581

21. Sathy S, Ragul V, Veeraraghavan VP, Singh L, Niyas Ahamed MI. An in vitro study on hexavalent chromium [Cr(VI)] remediation using iron oxide nanoparticles based beads. Environmental Nanotechnology, Moni ting & Management. 2020;14:100333.

22. Yang Z, Pu M, Dong X, Ji F, Priya Veeraraghavan V, Yang H. Piperine loaded zinc oxide nanocomposite inhibits the PI3K/AKT/mTOR signaling pathway via attenuating the development of gastric carcinoma: In vitro and vivostudies. Arabian Journal of Chemistry. 2020;13(5):5501–16.

23. Rajendran P, Alzahrani AM, Rengarajan T, Veeraraghavan VP, Krishna Mohan S. Consumption of reused vegetable oil intensifies BRCA1 mutations. Crit Rev Food Sci Nutr. 2020;1–8.

24. Barma MD, Muthupandiyam I, Samuel SR, Amaechi BT. Inhibition of Streptococcus mutans, antioxidant property and cytotoxicity of novel nano-zinc oxide varnish. Arch Oral Biol. 2021;126:105132.
25. Samuel SR. Can 5-year-olds sensibly self-report the impact of developmental enamel defects on their quality of life? Int J Paediatr Dent. 2021;31(2):285–6.

26. Samuel SR, Kuduruthullah S, Khair AMB, Shaye MA, Elkaseh A, Varma SR. Dental pain, parental SARS-CoV-2 fear and distress on quality of life of 2 to 6 year-old children during COVID-19. Int J Paediatr Dent. 2021;31(3):436–41.

27. Tang Y, Rajendran P, Veeraraghavan VP, Hussain S, Balakrishna JP, Chinnathambi A, et al. Osteogenic differentiation and mineralization potential of zinc oxide nanoparticles from Scutellaria baicalensis on human osteoblast-like MG-63 cells [Internet]. Vol. 119, Materials Science and Engineering: C. 2021;111656. Available:http://dx.doi.org/10.1016/j.msec.2020.111656

28. Yin Z, Yang Y, Guo T, Veeraraghavan VP, Wang X. Potential chemotherapeutic effect of betalain against human non-small cell lung cancer through PI3K/Akt/mTOR signaling pathway. Environ Toxicol. 2021;36(6):1011–20.

29. Veeraraghavan VP, Periaturai ND, Karunakaran T, Hussain S, Surapaneni KM, Jiao X. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi J Biol Sci. 2021;28(7):3633–40.

30. Mickymaryar S, Alfaiz FA, Paramasivam A, Veeraraghavan VP, Periaturai ND, Surapaneni KM, et al. Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi J Biol Sci. 2021;28(7):3641–9.

31. Teja KV, Ramesh S. Is a filled lateral canal – A sign of superiority? [Internet]. Vol. 15, Journal of Dental Sciences. 2020;562–3. Available:http://dx.doi.org/10.1016/j.jds.2020.02.009

32. Kadanakuppe S, Hiremath S. Social and Behavioural Factors Associated with Dental Caries Experience among Adolescent School Children in Bengaluru City, India [Internet]. Vol. 14, British Journal of Medicine and Medical Research. 2016;1–10.

33. Sood R. Asafoetida (Ferula asafoetida): A high-value crop suitable for the cold desert of Himachal Pradesh, India [Internet]. Journal of Applied and Natural Science. 2020;12:607–17. Available:http://dx.doi.org/10.31018/jans.v12i4.2418

34. Iranshahy M, Iranshahi M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)-a review. J Ethnopharmacol. 2011;134(1):1–10.

35. Mondal M, Hossain MS, Das N, Khalipa ABR, Sarkar AP, Islam MT, et al. Phytochemical screening and evaluation of pharmacological activity of leaf Methanolic extract of Colocasia affinis Schott [Internet]. Clinical Phytoscience. 2019;5. Available:http://dx.doi.org/10.1186/s40816-019-0100-8

36. Jamuna, Jamuna. Screening of in vitro antioxidant activity of methanolic leaf and root extracts of Hypochaeris radicata L. (Asteraceae) [Internet]. Journal of Applied Pharmaceutical Science; 2012. Available:http://dx.doi.org/10.7324/japs.2012.134(1):10.8

37. Kaur C, Kapoor HC. Anti-oxidant activity and total phenolic content of some Asian vegetables [Internet], International Journal of Food Science and Technology. 2002;37:153–61. Available: http://dx.doi.org/10.1046/j.1365-2621.2002.00552.x

38. Tutour BL, Le Tutour B. Antioxidative activities of algal extracts, synergistic effect with vitamin E [Internet]. Phytochemistry. 1990;29:3759–65. Available:http://dx.doi.org/10.1016/0031-9422(90)85327-c

39. Rana MG. Antihyperlipidemic and Antioxidant Activity of Biofractions of Flowers of Hibiscus Rosa-Sinensis in Poloxamer 407 Induced Hyperlipidemic Rats [Internet]. World Journal of Pharmacy and Pharmaceutical Sciences. 2017;1665–82. Available:http://dx.doi.org/10.20959/wjpps2017-9618

40. Prati D, Berzuini A. Faculty Opinions recommendation of Mitochondrial damage-
associated molecular patterns as potential proinflammatory mediators in post-platelet transfusion adverse effects [Internet].
Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature; 2016.
Available: http://dx.doi.org/10.3410/f.72617 7867.793516093

© 2022 Asmidha et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/80930