Type 2 Diabetes-Associated Genetic Polymorphisms as Potential Disease Predictors

Abstract: Diabetes is a major cause of mortality worldwide. There are several types of diabetes, with type 2 diabetes mellitus (T2DM) being the most common. Many factors, including environmental and genetic factors, are involved in the etiology of the disease. Numerous studies have reported the role of genetic polymorphisms in the initiation and development of T2DM. While genome-wide association studies have identified around more than 200 susceptibility loci, it remains unclear whether these loci are correlated with the pathophysiology of the disease. The present review aimed to elucidate the potential genetic mechanisms underlying T2DM. We found that some genetic polymorphisms were related to T2DM, either in the form of single-nucleotide polymorphisms or direct amino acid changes in proteins. These polymorphisms are potential predictors for the management of T2DM.

Keywords: type 2 diabetes, genetic polymorphisms, susceptibility prediction

Introduction

Diabetes is a chronic disease that can lead to serious complications. It is classified into two main types: type 1 diabetes mellitus and type 2 diabetes mellitus (T2DM). T2DM is a metabolic disorder that is characterized by peripheral insulin resistance and impaired insulin secretion. During the period from 1980 to 2008, the number of people worldwide with T2DM has more than doubled. Studies on the prevalence of diabetes in the adult population aged 20–79 years estimated that the worldwide prevalence of people with T2DM was 6.4% in 2010, where 285 million adults had T2DM. By 2030, 439 million adults are predicted to have T2DM, accounting for 7.7% of the adult population worldwide.

Environmental and genetic factors are involved in the pathogenesis of T2DM. The majority of genes involved play a role in β-cell function. Genetic polymorphisms that have impacts on important proteins that participate in glucose metabolism and insulin secretion may also affect susceptibility to T2DM. Genome-wide association studies (GWASs), the candidate gene approach, and linkage analysis have identified various genes that contribute to T2DM susceptibility. The development of genetic risk scores using combined analysis of loci has significantly contributed to predicting the incidence of T2DM. Therefore, it is possible to facilitate early diagnosis and determine preventative strategies to reduce the incidence of the disease.

T2DM has a strong genetic basis, and individuals with a first-degree family history are at increased risk of developing the disease, and this risk is increased twofold if both parents have diabetes. Several risk factors for T2DM have been
identified, including obesity and central obesity, ethnicity, family history of diabetes, elevated blood pressure, dyslipidemia, lifestyle factors and dietary intake.17–19 Some of these risk factors are associated with functional metabolism; therefore, genetic-based diagnoses may provide a more promising diagnostic tool. More than 200 genetic loci have been detected to be associated with T2DM risk,6 the genes elaborated in this review represent only a selected subset of T2DM-associated genes.

Methodology

The present review included studies published in the PubMed database obtained using the keywords “gene prediction”, “gene association”, and “type 2 diabetes”. Reviews, non-English studies, unrelated studies, such as non-human studies and reporting T2DM complications, were excluded. A flowchart of the literature search is shown in Figure 1.

Of the 6129 articles obtained in June 2019, we included 41 studies that focused specifically on the association between genetics and the prediction of T2DM (Table 1), where several genes have been associated with T2DM and can be used as predictors of the disease, including KLF14, KCNQ1, DUSP9, FTO, HNF4A, IGFBP2, CDKN2A/B, TCF7L2, KCNJ11, antioxidant genes, DNAJC3, PGC-1\(\alpha\), ADIPOQ, CDKAL1, POMC, PPAR\(\gamma\), and SLC30A8.20–61

KLF14

The transcription factor, KLF14, is located on chromosome 7q32.3. Variations in this gene are associated with high-density lipoprotein (HDL)-cholesterol and T2DM.62,63 A previous study showed that KLF14 is involved in metabolism as a transcriptional activator as it regulates the gene networks that participate in lipid metabolism.64 KLF14 gene is assumed to be an ancient retrotransposed copy of KLF16 gene, presumably after the divergence between eutherians and marsupials65,66 due to its lack of introns and a high sequence homology with KLF16 gene. The maternal expression of KLF14 was associated with an increased risk of T2DM when carried on the maternal chromosome.67

The expression of KLF14 in adipose tissue was shown to be associated with a combined insulin resistance phenotype. It is characterized by increased fasting insulin and triglyceride levels and decreased HDL-cholesterol levels.68 Higher fasting insulin levels are manifested in the risk allele of rs4731702,67 such that the risk allele of this non-coding genetic variant could play a role in insulin resistance. Furthermore, it may act to influence the expression of genes associated with the body mass index (BMI) and the homeostasis model assessment for insulin resistance (HOMA-IR) due to its primary effects on insulin sensitivity, fasting glucose, and adiponectin.69 Moreover, rs4731702 was reported to be associated with gene expression in subcutaneous adipose tissue biopsies.68 Hence, it was suggested that KLF14 is the master transregulator of adipose tissue gene expression.70 One study also revealed that the G allele of KLF14 (rs972283) contributes to elevated blood pressure. Therefore, patients with metabolic syndrome have a greater risk of cardiovascular disease.20

KCNQ1

The KCNQ1 gene, which encodes the alpha-subunit of voltage-gated potassium channel Kv7.1, is a member of the Kv channel superfamily, and is located on chromosome 11p15.5.71,72 The protein that KCNQ1 gene encodes is the pore-forming alpha subunit of KCNQ1/KCNE1, KCNQ1/KCNE2 and KCNQ1/KCNE3 potassium channels.73 The expression of KvLQT1 repolarizes the action potential in cardiac muscles.20 KCNQ1 is also expressed in other tissues such as adipose tissue, the pancreas, and the brain.74

Mutations in KCN genes are associated with the development of diabetes. Variants in the KCNQ1 gene have been associated with reduced depolarization-evoked insulin exocytosis.75 The variant allele (C allele) of the rs2283228 [an intron variant according to National Center for
Table 1 Association Between Genetic and Prediction of T2DM

Probable Mechanism	Genes	Chromosome Position	SNPs	Population	Allele (Risk/Other)	Ref. No.	
Insulin action	KLF14	7q32.3	rs972283	Han Chinese	G/A	[11]	
				Northern Germany	G/A	[12]	
	DUSP9	Xq28	rs5945326	Northern Germany	A/G	[12]	
				Japanese	A/G	[16]	
				Pakistani	A/G	[17]	
				Han Chinese	A/G	[18]	
β-cell function	KCNQ1	11p15.5	rs2237895	Han Chinese	C/A	[11]	
				Japanese, Asian, European	C	[13]	
				rs2237892	Japanese, Asian, European	C	[13]
				rs2074196	Japanese, Asian, European	G	[13]
				rs2283228	Eastern Finland	A/C	[14]
				Asian Indian	A/C	[15]	
				Northern Germany	G/A	[12]	
	SLC30A8	8q24.11	rs13266634	Japanese	C/T	[23]	
				Lebanese	–	[24]	
				Tunisian Arabs	–	[24]	
	HNF4A	20q13.12	rs2425637	Finnish	G/T	[25]	
				French-Canadian	T/C	[26]	
				French-Canadian	T/C	[26]	
				French-Canadian	C/T	[26]	
				French-Canadian	C/T	[26]	
				South Asian	A/G	[27]	
	IGFBP2	3q27	rs4402960	Northern Han Chinese	T/G	[28]	
				Tunisian	T/G	[29]	
				Tunisian Arabs	–	[24]	
				Lebanese	–	[24]	
				Northern Han Chinese	C/A	[28]	
	CDKN2A/B	9p21.3	rs10811661	Indian	T/C	[30]	
				Pakistani	T/C	[17]	
				Mexican	T/C	[31]	
				Chinese She	T/C	[32]	
				Chinese	T/C	[33]	
				Uyghur	T/C	[34]	
				Han Chinese	T/C	[35]	

(Continued)
Probable Mechanism	Genes	Chromosome Position	SNPs	Population	Allele (Risk/Other)	Ref. No.
	TCF7L2	10q.25.2–25.3	rs7903146	Spaniards	T/C	[36]
				Austrians	T/C	[37]
				Lebanese	–	[24]
				Tunisian Arabs	–	[24]
				African-American	C/T	[38]
				Italian	C/T	[39]
				African-American	T/C	[38]
				European Caucasians	T	[40]
				Cameroonian	T/G	[41]
				French	T/G	[37]
	KCNJ11	11p15.1	rs2285676	Han Chinese	–	[42]
			rs5215	South Indian	C/T	[43]
			rs5219	Mauritian	–	[44]
				Chinese She	–	[32]
				Chinese	T/C	[33]
				Lebanese	–	[24]
				Tunisian Arabs	–	[24]
	DNAJC3	13q32.1	–	Turkish	–	[45]
	CDKAL 1	6p22.3	rs10946398	Han Chinese	C/A	[47]
			rs775480	Alaska Native	C/A	[48]
	SLC30A8	8q24.11	rs13266634	Chinese	C/T	[51]
				Asian, European, African	C/T	[52]
Obesity	FTO	16q12.2	rs1558902	Japanese	A/T	[19]
			rs9939609	Scandinavian	A/T	[20]
				Spaniards	A/T	[21]
			rs8050136	Finnish	A/C	[22]
Regulated insulin sensitivity in muscle and liver	ADIPOQ	3q27	rs1501299	Chinese	–	[46]
			rs7627128	Chinese	–	[46]
			rs182052	Chinese	–	[46]
Regulated insulin sensitivity in peripheral tissue	POMC	2p23.3	–	–	A/G	[49]
Insulin sensitivity	PPARy2	3p25.2	rs1801282	Caucasian	–	[50]

(Continued)
Biotechnology Information (NCBI) dbSNP database: https://www.ncbi.nlm.nih.gov/snp/rs2283228] was shown to be associated with increased fasting glucose levels and impaired β-cell function in Asians. Moreover, previous studies showed that a vast majority of the genomic loci detected to date were associated with β-cell dysfunction in patients with T2DM. KCNQ1 is expressed in pancreatic islets and plays an essential role in glucose homeostasis as it functions as a regulator of insulin secretion. The KCNQ1 protein was shown to be expressed in insulin-secreting INS-1 cells. A study showed that the C allele of the intronic rs2237895 in KCNQ1 was associated with a decreased risk of abdominal obesity in patients with T2DM. These findings indicated that the C allele of rs2237895 is correlated with a decreased BMI and waist circumference in a Chinese population.

DUSP9

DUSP9 encodes dual-specificity phosphatase 9 [also known as map kinase phosphatase 4 (MKP4)], mapped on chromosome X, with a cytogenetic location at Xq28. It is expressed in various tissues such as adipose tissue, muscles, insulin-responsive tissues, and the liver. DUSP9 plays important roles in regulating cell cycle and insulin action, and also has protective effects against the development of insulin resistance due to its ability to inactivate extracellular signal-regulated kinase and c-Jun N-terminal kinase. Therefore, DUSP9 was considered as a stress-induced insulin resistance mediator. While the effects of DUSP9 on insulin metabolism may differ depending on conditions and tissues, it is considered an important regulator of insulin sensitivity.

The study of Voight et al first discovered an association of DUSP9 rs5945326 and T2DM risk in population of European descent. Then, the study of Fukuda et al replicated such an association in a Japanese population. A study of Rees et al showed that SNPs in or near DUSP9 and 12 other genomic loci showed significant associations with T2DM in Pakistani populations, with similar effect sizes to those seen in European populations.

FTO

Biological function of FTO (fat-mass and obesity associated) modulates the gene expression through methylation–demethylation modification since FTO is part of Fe(II)- and 2-oxoglutarate-dependent dioxygenases superfamily. Therefore, ubiquitously expressed hepatic FTO showed an important role in the homeostasis of glucose and lipid.

Many studies have demonstrated a strong association between the FTO gene and the incidence of obesity, which is a major risk factor for T2DM. The majority of people with T2DM, particularly those of East Asian ethnicities, achieve their maximum lifetime BMI (BMI\(_{\text{max}}\)) at the time of or before the onset of disease, and after T2DM diagnosis. The BMI\(_{\text{max}}\) may also be reached after lifestyle interventions such as diet and exercise, and/or treatment with various antidiabetic medicines that may affect their obesity-related measurements, such as the BMI.

A previous study has reported that the BMI\(_{\text{max}}\) was strongly associated with an increased risk of T2DM. FTO SNPs were significantly correlated with the BMI\(_{\text{max}}\) in a sex-stratified analysis. The study also found that rs1558902 was correlated with the incidence of T2DM in humans, and the correlations between SNPs and T2DM remained significant after the adjustment for the current age and BMI. Furthermore, Hertel et al also reported that adjusting the FTO variant for the waist-to-hip ratio and waist circumference conferred an
increased risk of T2DM. Decreased mitochondrial oxidative capacities, oxidative stress, and lipid accumulation are suggested to increase the expression of FTO in patients with T2DM. Furthermore, the rs9939609 SNP may alter the risk of T2DM independent of the BMI by affecting other genes in the region. The increased FTO expression can stimulate de novo lipogenesis, inhibit lipolysis and fatty acid oxidation, and increase gluconeogenesis, which can lead to abnormally increased triglyceride deposition and the production of hepatic glucose (Figure 2).

HNF4A

The HNF4A gene is a member of the steroid hormone receptor superfamily that is mainly expressed in the kidney, liver, pancreas (including β-cells), and small intestine, and influences metabolism and lipid transport. It also plays roles in liver function and hepatocyte differentiation. The HNF4A gene is composed of 13 exons and two promoters, known as P1 and P2. The P1 promoter is active mainly in liver cells, while the P2 promoter is the major splice variant in pancreatic β-cells. Approximately 1–2% of all diabetes cases are the monogenic form, known as maturity-onset diabetes of the young (MODY). It is characterized by an early age of onset (usually during adolescence or childhood), dominant inheritance, and defects in β-cell function. MODY resulting from mutations in the HNF4A transcription factor are known as MODY1. Studies on the genetic linkage have demonstrated that MODY1 is closely related to markers near HNF4A on chromosome 20.

The non-coding variants of HNF4A gene rs6017317 and rs4812829 and a coding missense variant rs1800961 (T130I) have been shown to play a role in the development of T2DM. In pancreatic β-cells (Figure 3), HNF4A is required for glucose metabolism and the expression and secretion of the normal insulin gene, while in the liver, HNF4A is required for hepatic gluconeogenesis. Yamagata et al screened for mutations in HNF4A in patients with MODY1 and reported that MODY1 is encoded by HNF4A. Clinical studies reported that MODY1 can be caused by impaired insulin secretion by pancreatic β-cells. Loss of or decreased HNF4A can lead to β-cell dysfunction. Based on these findings, HNF4A may participate in insulin secretion disorders, as seen in patients with T2DM and MODY1.

IGF2BP2

IGF2BP2 (insulin-like growth factor 2 mRNA-binding protein 2) was identified as an important T2DM candidate gene. It is located on chromosome 3q27 (https://www.genecards.org/cgi-bin/carddisp.pl?gene=IGF2BP2), and is highly expressed in pancreatic islet cells. In adipose tissue and the pancreas, IGF2BP2 plays roles in normal embryonic growth and development.

Figure 2 Impairments in the regulation of insulin and glucose may cause an increase in hepatic FTO expression.

Abbreviation: TG, triglyceride.
It also plays a role in T2DM, which is associated with decreased insulin secretion. Hence, IGF2BP2 may support T2DM development via changes in adipose tissue or impaired β-cell function.

Duesing et al conducted a comprehensive genetic association study on French Caucasians and showed that IGF2BP2 rs4402960 and rs1470579 were associated with T2DM susceptibility. Another study reported higher levels of fasting plasma glucose, total cholesterol, and postprandial serum insulin in patients with T2DM who carried the C allele of rs1470579 compared with patients with T2DM who were AA carriers. IGF2BP2 polymorphisms play a role in the regulation of pancreatic β-cell function. Studies have also demonstrated that IGF2BP2 is strongly associated with overweight and obesity. Obesity is associated with T2DM; hence, it is hypothesized that the association between IGF2BP2 and T2DM may be modified by obesity. This is also known as the interplay between IGF2BP2 and obesity with T2DM. In keeping with this hypothesis, Chistiakov and co-workers reported that patients with T2DM have a more than twofold increase in IGF2BP2 expression levels in adipose tissue compared with healthy individuals. Associations between IGF2BP2 and visceral/abdominal total fat were also demonstrated in Mexican Americans and Canadian Caucasians, proposing a possible role of IGF2BP2 in insulin resistance.

CDKN2A/B

The CDKN2A/B locus is located on chromosome 9p21.3, such that the CDKN2A gene encodes both the p16 inhibitor of cyclin-dependent kinase p16INK4A and p14ARF, and the CDKN2B gene encodes p15INK4B, respectively, and this locus has been associated with T2DM risk. Further, the 9p21 SNP rs10811661, which was associated with the expression of a long non-coding RNA known as antisense noncoding RNA in the INK4 locus [ANRIL; also called CDKN2B antisense RNA 1 (CDKN2B-AS1)], was linked with the risk of human diabetes in a GWAS. Polymorphisms in CDKN2A/B affect metabolic health related to proteins that contribute to the regulation of β-cell mass, insulin secretory function, and proliferation. Additional studies in Asia and Europe have also confirmed that CDKN2A/B is associated with T2DM risk. CDKN2A/B is highly expressed in adipocytes and islet cells, as well as in brain cells. Both CDKN2A and CDKN2B are tumor suppressor genes involved in cell apoptosis, tumorigenesis, and proliferation.

Alterations to the phenotype of immune cells influence systemic and peripheral insulin resistance and lead to T2DM. Especially in obesity condition, macrophage infiltrates into adipose tissue and lead to develop a chronic low-grade inflammation. These adipose tissue macrophages (ATMs) stimulate pro-inflammatory cytokines secretion and further will contribute to insulin resistance. Additionally, CDKN2A/B-ANRIL gene products control glucose homeostasis, in part, via the control of insulin secretion and β-cell function (Figure 4).

TCF7L2

TCF7L2 (transcription factor 7-like 2) is a transcription factor that plays a role in the Wnt-signaling pathway,
which regulates pancreatic islet cell functions, such as proliferation and cell survival.136 A previous study showed that increased β-cell apoptosis was associated with decreased TCF7L2 activity, resulting in the downregulation of insulin secretion.137,138

The TCF7L2 gene is located on chromosome 10q.25.2–25.3, also known as the TCF4 locus. Previous studies have indicated that people with T2DM are more likely to carry the genetic variant (rs7903146) of this gene.139–141 Furthermore, studies on various ethnic populations have shown that mutations of this gene are associated with TCF7L2 in a self-regulating manner via transcriptional protein complex binding across rs7903146.142–144

The Wnt-signaling pathway also controls the transcription of the proglucagon gene, which regulates incretin hormones such as glucagon-like peptide-1 that inhibits glucagon activity and maintains food mobility from the stomach to the duodenum, and gastric inhibitory polypeptide that is produced by intestinal K cells. Mutations in TCF7L2 also result in reduced expression of the proglucagon gene and, consequently, reduced glucagon-like peptide-1 production.145–147

TCF7L2 is expressed in other organs, such as skeletal muscle, gut, fat, and liver, which are all also involved in mediating metabolic homeostasis.148 The overexpression of β-catalase produced reciprocal effects on hepatic gluconeogenesis.149 On the other hand, the Wnt-signaling pathway negatively regulates adipogenesis, and Wnt ligands produced by adipocytes may also function as endocrine and paracrine factors.150 Based on those studies, the possible roles of TCF7L2 in the pathogenesis of T2DM are summarized in Figure 5.

KCNJ11

The KCNJ11 gene (potassium channel, inwardly rectifying, subfamily J, member 11) encodes the Kir6.2 protein (inward-rectifier potassium ion channel), which is

Figure 5 Possible role of TCF7L2 in the pathogenesis of T2DM.

Abbreviations: GIP, gastric inhibitory polypeptide; GLP-1, glucagon-like peptide 1.
important for insulin secretion via the ATP-sensitive potassium (K\textsubscript{ATP}) channel. It has no intron region and is located on chromosome 11p15.1.151 As described in Figure 6, when the body demands insulin, Kir6.2 couples itself to SUR1 (sulfonylurea receptor-1) and binds to a K\textsubscript{ATP} channel on the pancreatic β-cell membrane, leading to insulin production. Increased glucose levels stimulate the K\textsubscript{ATP} channel to open and allow the entry of K+ ions. Increasing levels of K+ ions depolarize the cell membrane and induce Ca2+ channels to increase levels of free intracellular Ca2+. The Ca2+ ions trigger other components of the insulin secretion pathway to release granules.152,153 Therefore, mutations in KCNJ11 result in reduced insulin production due to reduced or absent Kir6.2 protein expression.154 The variant allele of KCNJ11 gene rs5219 may decrease channel sensitivity to ATP and alter the charge of the ATP-binding region.51 A recent meta-analysis showed a strong relationship between polymorphisms of rs5219 and susceptibility to T2DM in East Asian and Caucasian populations.155 Kir6.2 is also expressed in neurons, the brain, and muscles.156

Antioxidant Genes

Disruption to the balance of antioxidants and reactive oxygen species (ROS) results in increased oxidative stress, which may lead to diabetes. The generation and accumulation of ROS in β-cells can cause β-cell dysfunction, defects in insulin production, and impaired function, which result in diabetes.157 However, the impact of oxidative stress can be reduced or modified by enzymatic antioxidants, including catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), nitric oxide synthase, and nicotinamide adenine dinucleotide phosphate oxidase.158–160 Banerjee et al reported that individuals with a polymorphism affecting the genetic regulation of these six enzymes were at increased risk of developing T2DM. Known polymorphisms in these genes include GSTM1del, GSTT1del, GSTP1 105I/V (+313A/G), CAT-21A/T, SOD2 + 47C/T, and GPx1 + 599C/T.161 Banerjee and co-workers also concluded that the risk of developing T2DM increases as the variation of the genes that regulate antioxidant enzyme increases.161

DNAJC3

As explained by DNAJC3 is an endoplasmic reticulum (ER) lumen protein and a member of the HSP70 family. It is located in all tissues in humans (predominantly the liver and pancreas), and plays a role in maintaining homeostasis in the ER.54 It serves as a chaperone of binding immunoglobulin protein (BiP) during the unfolded protein response (UPR), which is an ER adaptive signaling pathway. Normally, the ER regulates membrane homeostasis by synthesizing and modifying secretory and membrane proteins.54 However, when cells are exposed to abnormal conditions, such as infection, homeostasis imbalance, glucose deprivation, or stimulation that leads to ER protein overproduction, the proteins undergo incomplete or abnormal processes that form unfolded or misfolded proteins. The accumulation of these proteins increases stress in the ER lumen, eventually triggering the UPR in the ER.54

Three pathways were reported to generate the UPR signaling pathway, including activation of transcription factor-6;162 activation of inositol-requiring transmembrane kinase/endoribonuclease 1;163 and double-stranded RNA-dependent protein kinase-like eukaryotic initiation factor 2α kinase (PERK).164

The UPR pathways will reduce the ER stress and maintain the cell survival by correcting the misinterpreted protein. This can be carried out by the SIL1 protein, which interacts with BiP and binds the misinterpreted protein. DNAJC3 acts prior to protein correction. It binds reversibly to hydrophobic segments of the protein and delivers it to the chaperone, BiP.54 DNAJC3 is involved in the PERK pathway, collaborating with the chaperone, BiP, and SIL1 protein, a nucleotide exchange factor.54 DNAJC3 mutations, such as deletions and

Figure 6 Mechanism of insulin secretion by the K\textsubscript{ATP} channel in pancreatic β-cells. SUR1 and Kir6.2 proteins in the K\textsubscript{ATP} channel mediate insulin secretion.

Abbreviations: ATP, adenosine triphosphate; Ca2+, calcium ion (composed of α1, α2, β, δ, and γ subunits); K+, potassium ion; K\textsubscript{ATP}, ATP-sensitive potassium channel; Kir6.2, inward rectifier potassium ion channel; SUR1, sulfonylurea receptor-1.

stop mutations, result in reduced or absent binding between BiP and unfolded or misfolded proteins. In summary, adaptive response failure leads to unsuccessful pancreatic ER homeostasis and cell death; and in pancreatic cell death, particularly in the pancreatic islet, this will reduce insulin production. Therefore, mutations in the DNAJC3 gene are correlated with diabetes.

PGC-1α

PGC-1α (peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α) is a transcription coactivator that is involved in various biological responses, such as temperature adaptation, energy homeostasis in the mitochondria, glucose metabolism, triglyceride homeostasis, and heart development. In humans, the PPARGC1A gene is located on chromosome 4 and encodes a 798-amino acid protein PGC-1α, which is expressed in most tissues with highly active mitochondria and oxidative metabolism, such as the heart, skeletal muscle, and brown adipose tissue.

The PGC-1α gene can convert muscle fiber type and stimulate fatty acid oxidation, thus may lead to a decreased fatty acid concentration in muscles. In contrast, a recent study showed that insulin-resistant skeletal muscle and the liver were associated with increased levels of triglycerides.

A previous study by Kelley and co-workers suggested that a decrease in mitochondrial oxidative enzymes leads to defects in the mitochondrial fatty acid oxidation pathway and, ultimately, diabetes. Furthermore, the study also observed that patients with T2DM showed downregulated expression of PPARGC1A gene.

ADIPOQ

The ADIPOQ gene encodes adiponectin, which is an adipocytokine. The adipose tissue plays an important role in the development of diabetes mellitus and obesity. Adiponectin, a major adipocyte secretory protein in human plasma, functions as a regulator of energy and is involved in glucose tolerance. The ADIPOQ gene is located on human chromosome 3q27 and is reported to be a susceptibility locus for T2DM.

Adiponectin is associated with increased insulin sensitivity, reduced ER stress, and increased fatty acid oxidation. Its functions are mediated by its receptors, AdipoR1 and AdipoR2. The binding of adiponectin to its receptor activates intracellular signaling molecules that play important roles in lipid and carbohydrate metabolism.

Li et al reported ADIPOQ gene polymorphisms in rs1501299, rs182052, and rs7627128 in a Chinese population, and showed a significant association with T2DM. Furthermore, a haplotype-based case-control study on the association between T2DM and the ADIPOQ gene found that the haplotypes A–A–T and G–A–T were correlated with increased potency and decreased risk of T2DM, respectively.

CDKAL1

Klimentidis et al reported that variations in CDKAL1 rs775480 were associated with hemoglobin A1c, which is related to T2DM. The rs775480 polymorphism is located at intron 5 of the CDKAL1 gene. This SNP is associated with decreased glucose sensitivity and insulin secretion in β-cells. Furthermore, the rs10946398 polymorphism of the CDKAL1 gene was proposed as a marker of impaired insulin secretion, as the CC/CA genotypes and C allele contribute to T2DM susceptibility in obese individuals.

POMC

Mutations in the POMC (pro-opiomelanocortin) gene are reportedly associated with overweight and obesity as well as the phenotype of early-onset T2DM. POMC is a precursor polypeptide hormone that is produced in the neurons of the arcuate nucleus of the hypothalamus and plays an important role as a controller of homeostasis, as well as energy balance, food intake, and glucose metabolism.

Mencarelli et al reported that patients with T2DM and obesity related to mutations in the POMC genes showed a missense mutation in the signal peptide. This mutation led to a heterozygous substitution of arginine for glycine at A15G–POMC (codon 15), which inhibited the production and secretion of the POMC protein. In humans, POMC deficiency can cause insulin resistance (hyperinsulinemia) since POMC-derived peptides have local effects on the central melanocortin pathway, and intact neuronal melanocortin signaling regulates insulin sensitivity in peripheral tissues.

PPARγ2

PPARγ2 (peroxisome proliferator-activated receptor-gamma 2) is a ligand-activated transcription factor of the nuclear hormone receptor superfamily. The PPARγ2 gene plays roles in glucose homeostasis, lipid metabolism, obesity, insulin sensitivity, T2DM, and various adipocyte-specific genes.
Based on several case-control and family-based studies, estimated that Pro12 allele (ie, the major allele) of PPARγ was associated with a 1.25-fold elevated risk of T2DM. Further, the study of Chan et al showed that the Pro12Ala polymorphism was associated with T2DM risk in the multiethnic Women’s Health Initiative (WHI) Observational Study at a nominal significance level (Pro12 allele is the risk-increasing allele, p=0.01, additive model). The study was replicated in the WHI SNP Health Association Resource (WHI-SHARe) Hispanic American case-control sample (Pro12 allele is the risk-increasing allele, p=0.02, additive model). Phani et al reported that the PPARγ2 gene was associated with T2DM in an obese diabetic Indian population (BMI ≥ 25 kg/m²). The rs1801282 polymorphism in the PPARγ2 gene has been associated with adiposity and regulation of the BMI. Furthermore, the Ala12 variant allele of rs1801282 has been shown to exhibit a decreased binding affinity to the cognate DNA element and therefore could reduce PPARγ2 transcriptional activity. Based on the study of Valve et al, the Ala12 variant allele was associated with a lower BMI and a higher insulin sensitivity among normal weight and mildly obese individuals. This polymorphism has also been linked to increased insulin sensitivity and protects from T2DM in Caucasian populations.

Motavallian et al compared the allele distributions of Pro12Ala polymorphism between healthy individuals and those with diabetes. They found a higher frequency of the Ala allele12 in healthy individuals than in patients with diabetes. Another study found a protective role of high Ala frequency against T2DM as it was associated with increased insulin sensitivity, while low frequency of the Ala12 allele was associated with decreased insulin sensitivity (insulin resistance), which may lead to diabetes. These findings suggest that polymorphisms in the PPARγ2 gene are associated with T2DM.

SLC30A8

Previous studies have reported that the SLC30A8 (solute carrier family 30 member 8) rs13266634 polymorphism in the major C allele was strongly associated with the risk of T2DM. In addition, Chang et al also reported that the SLC30A8 rs13266634 SNP was associated with age as a T2DM risk factor.

SLC30A8 is expressed in pancreatic β-cells and encodes a zinc transporter. Zinc is an important element for insulin secretion and storage. Low ZnT8 (zinc transporter-protein member 8) expression leads to decreased insulin production by β-cells. Low Zn²⁺ production facilitates hormone clearance by the liver (Figure 7). The study using ZnT8KO mice had low peripheral blood insulin levels despite hypersecretion from β cells pancreas, whilst reduced Zn²⁺ production favors clearance of the hormone by liver. Furthermore, ZnT8 overexpression increasing Zn²⁺ accumulation, the Zn²⁺ that secreted with insulin suppressed hepatic insulin clearance via the inhibition of clathrin-dependent insulin endocytosis. The SLC30A8 gene encodes ZnT8, which forms a solid hexamer from binding with insulin in β-cells, matures, and is stored in secretory vesicles. Zn²⁺ plays a crucial role in insulin release and regulates the homeostasis of insulin concentration between pancreas and body. When blood glucose level is low, Zn²⁺ binds insulin in pancreas for storage purpose and an increase in blood glucose level will liberate insulin from Zn²⁺. High level of ZnT8 means there is a lot of Zn²⁺ available for bind and hold insulin in pancreas. In other words, insulin secretion will be limited to an increase in blood glucose and this is a normal physiology of body in maintaining the glucose homeostasis. Besides, a low level of ZnT8 indicates a small concentration of Zn²⁺ which means there is inadequate insulin depositor and thus, insulin hypersecretion will occur. The hypersecretion of insulin will impact the insulin sensitivity, liver clearance, and glucose level as the following statement, first liver will intoxicate an excessive amount of insulin. In other words, hepatic clearance will increase and liver takes more energy to function, resulting in glycogen breakdown to glucose. Second, Zn²⁺ also presents in insulin

![Figure 7 Interaction between ZnT8 expression](image)
targeted cells to improve the sensitivity for insulin-receptor bind. A lack of Zn$^{2+}$ will reduce the insulin sensitivity and decrease insulin-receptor bind affinity. These mechanisms will lead to an increase in blood glucose level or T2DM event.

The SLC30A8 rs13266634 polymorphism is a non-synonymous SNP that causes an amino acid change from arginine, encoded by the C-allele, to tryptophan, encoded by the T-allele, at position 325 (Arg325Trp). This polymorphism has been linked with the development of T2DM in several populations. T2DM risk is influenced by both genetic and environmental risk factors. Therefore, gene–environment interaction studies in T2DM could be more explored as indicated by other studies showed that a significant interaction between SLC30A8 gene rs13266634 and age in T2DM risk ($p<0.0001$).

Conclusion and Future Prospects

Some genetic polymorphisms are associated with T2DM, either in the form of regulatory non-coding SNPs or as missense coding SNPs that cause direct changes to amino acids within a protein. Genes that are considered to predict or be associated with T2DM disrupt homeostasis, including insulin action and sensitivity, β-cell function and proliferation, and obesity. We realized that this review might use an incomplete searching method and some relevant papers have not been included, but it summarized genes that might be related to the development of T2DM. Moreover, studies show that different SNPs and mechanisms lead to diabetes in different ethnic groups.

Despite remarkable progress, the results from these genetic studies remain inconclusive. Therefore, future studies are required using different ethnic groups to confirm these findings globally, to determine correlations between gene expression and the mechanisms involved to confirm the suggested pathways, and to ensure that treatment of a specific gene will not have knock-on adverse effects on other genes. Thus, further intensive studies are necessary to identify more T2DM-associated genes. The evaluation and confirmation of the currently identified genes are also necessary due to conflicting findings. These polymorphisms may help to reduce the incidence and predict the risk of T2DM. Early identification may increase the prevention efficacy and increase prediabetic prognosis significantly.

Acknowledgment

This research is partially funded by the Indonesian Ministry of Research, Technology, and Higher Education of Republic of Indonesia under WCU program managed by Institute Teknologi Bandung for RA.

Disclosure

All authors declare that there is no conflict of interest related to this study.

References

1. Carrera Boada CA, Martinez-Moreno JM. Pathophysiology of diabetes mellitus type 2: beyond the duo “insulin resistance-secretion deficit”. *Nutr Hosp.* 2013;28(Suppl 2):78–87. doi:10.3305/nh.2013.28.sup2.6717
2. Danai G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. *Lancet.* 2011;378(9785):31–40. doi:10.1016/s0140-6736(11)60679-X
3. Shaw JE, Sicree RA, Zimet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. *Diabetes Res Clin Pract.* 2010;87(1):4–14. doi:10.1016/j.diabres.2009.10.007
4. O’Rahilly S, Barroso I, Wareham NJ. Genetic factors in type 2 diabetes: the end of the beginning? *Science.* 2005;307(5708):370–373. doi:10.1126/science.1104346
5. Prokopenko I, McCarthy MI, Lindgren CM. Type 2 diabetes: new genes, new understanding. *Trends Genet.* 2008;24(12):613–621. doi:10.1016/j.tig.2008.09.004
6. Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. *Nat Genet.* 2018;50(11):1505–1513. doi:10.1038/s41588-018-0241-6
7. McCarthy MI, Zeggini E. Genome-wide association studies in type 2 diabetes. *Curr Diab Rep.* 2009;9(2):164–171. doi:10.1007/s11892-009-0027-4
8. Wheeler E, Barroso I. Genome-wide association studies and type 2 diabetes. *Brief Funct Genomics.* 2011;10(2):52–60. doi:10.1093/bfgp/elr008
9. Zheng JS, Li K, Huang T, et al. Genetic risk score of nine type 2 diabetes risk variants that interact with erythrocyte phospholipid alpha-linolenic acid for type 2 diabetes in Chinese hans: a case-control study. *Nutrients.* 2017;9(4):376. doi:10.3390/nu9040376
10. Lall K, Magi R, Morris A, Metspalu A, Fischer K. Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. *Genet Med.* 2017;19(3):322–329. doi:10.1038/gim.2016.103
11. Kong X, Xing C, Zhang X, Hong J, Yang W. Early-onset type 2 diabetes is associated with genetic variants of beta-cell function in the Chinese Han population. *Diabetes Metab Res Rev.* 2019;e3214.
12. Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. *N Engl J Med.* 2008;359(21):2208–2219. doi:10.1056/NEJMoa0804742
13. van Hock M, Dehghan A, Witterman JC, et al. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. *Diabetes.* 2008;57(11):3122–3128. doi:10.2337/db08-0425
14. Cornelis MC, Qi L, Zhang C, et al. Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. *Ann Intern Med.* 2009;150(8):541–550. doi:10.7326/0003-4819-150-8-200904210-00008
21. Zyriax BC, Salazar R, Hoepner W, Vettorazzi E, Herder C, Windler E. The association of type 2 diabetes loci identified in genome-wide association studies with metabolic syndrome and its components in a chinese population with type 2 diabetes. *PLoS One*. 2015;10(11):e0143607. doi:10.1371/journal.pone.0143607

22. Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. *Nat Genet*. 2008;40(9):1092–1097. doi:10.1038/ng.207

23. Stancakova A, Kuulasmaa T, Paananen J, et al. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. *Diabetes*. 2009;58(9):2129–2136. doi:10.2337/db09-0117

24. Khan IA, Vattam KK, Jahan P, Mukkavalli KK, Hasan Q, Rao P. Correlation between KCNQ1 and KCNJ11 gene polymorphisms and type 2 and post-transplant diabetes mellitus in the Asian Indian population. *Genes Dis*. 2015;2(3):276–282. doi:10.1007/j.gendis.2015.02.009

25. Fukuda H, Imanura M, Tanaka Y, et al. A single nucleotide polymorphism within DUSP9 is associated with susceptibility to type 2 diabetes in the Japanese population. *PLoS One*. 2012;7(9):e46263. doi:10.1371/journal.pone.0046263

26. Rees SD, Hydrice MZ, Shera AS, et al. Replication of 13 genome-wide association (GWA)-validated risk variants for type 2 diabetes in pakistani populations. *Diabetologia*. 2011;54(6):1368–1374. doi:10.1007/s00125-011-2063-2

27. Bao XY, Peng B, Yang MS. Replication study of novel risk variants in six genes with type 2 diabetes and related quantitative traits in the Han Chinese lean individuals. *Mol Biol Rep*. 2012;39(3):2447–2454. doi:10.1007/s10071-011-0995-x

28. Kamura Y, Iwata M, Maeda S, et al. FTO gene polymorphism is associated with type 2 diabetes through its effect on increasing the maximum BMI in Japanese men. *PLoS One*. 2016;11(11):e0165523. doi:10.1371/journal.pone.0165523

29. Hertel JK, Johansson S, Sonnestedt E, et al. FTO, type 2 diabetes, and weight gain throughout adult life: a meta-analysis of 41,504 subjects from the Scandinavian HUNT, MDC, and MPP studies. *Diabetes*. 2011;60(5):1637–1644. doi:10.2337/db10-1340

30. Ortega-Azorin C, Sorli JV, Asensio EM, et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. *Cardiovasc Diabetol*. 2012;11:137. doi:10.1186/1475-2840-11-137

31. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. *Science*. 2007;316(5829):1341–1345. doi:10.1126/science.1142382

32. Tamaki M, Fujitani Y, Hara A, et al. The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. *J Clin Invest*. 2013;123(10):4513–4524. doi:10.1172/JCI68807

33. Mitraou N, Turki A, Nemr R, et al. Contribution of common variants of ENPP1, IGF2BP2, KCNJ11, MLXIPL, PPARgamma, SLC30A8 and TCF7L2 to the risk of type 2 diabetes in Lebanese and Tunisian Arabs. *Diabetes Metab*. 2012;38(5):444–449. doi:10.1016/j.diabet.2012.05.002

34. Bonnycastle LL, Willer CJ, Conneely KN, et al. Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns. *Diabetes*. 2006;55(9):2534–2540. doi:10.2337/db06-0178

35. Marcial V, Amre D, Seidman EG, et al. Hepatocyte nuclear factor 4 alpha polymorphisms and the metabolic syndrome in French-Canadian youth. *PLoS One*. 2015;10(2)e0117238. doi:10.1371/journal.pone.0117238

36. Kooner JS, Saleheen D, Sim X, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. *Nat Genet*. 2011;43(10):984–989. doi:10.1038/ng.921

37. Rao P, Wang H, Fang H, et al. Association between IGF2BP2 polymorphisms and type 2 diabetes mellitus: a case-control study and meta-analysis. *Int J Environ Res Public Health*. 2016;13:6. doi:10.3390/ijerph13060574

38. Lasram K, Ben Halim N, Benrahma H, et al. Contribution of CDKAL1 rs7756992 and IGF2BP2 rs404960 polymorphisms in type 2 diabetes, diabetic complications, obesity risk and hypertension in the Tunisian population. *Diabetes*. 2015;7(1):102–113. doi:10.1111/1753-0407.12147

39. Chauhan G, Spurgeon CI, Tabassum R, et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. *Diabetes*. 2010;59(8):2068–2074. doi:10.2337/db09-1386

40. Gamboa-Melendez MA, Fuerta-Chagoya A, Moreno-Macias H, et al. Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. *Diabetes*. 2012;61(12):3314–3321. doi:10.2337/db11-0550

41. Chen G, Xu Y, Lin Y, et al. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population. *J Diabetes*. 2013;5(2):136–145. doi:10.1111/1753-0407.12025

42. Hu C, Zhang R, Wang C, et al. PPAR, KCNJ11, CDKAL1, CDKN2A, CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. *PLoS One*. 2009;4(10):e7643. doi:10.1371/journal.pone.007643

43. Xiao S, Zeng X, Fan Y, et al. Gene polymorphism association with type 2 diabetes and related gene–gene and gene–environment interactions in a Uygur population. *Med Sci Monit*. 2016;22:474–487. doi:10.12659/msm.895347

44. Wen J, Ronn T, Olsson A, et al. Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. *PLoS One*. 2010;5(2):e9153. doi:10.1371/journal.pone.009153

45. Corella D, Coltell O, Sorli JV, et al. Polymorphism of the transcription factor 7-like 2 gene (TCF7L2) interacts with obesity on type-2 diabetes in the PREMEDIM study emphasizing the heterogeneity of genetic variants in type-2 diabetes risk prediction: time for obesity-specific genetic risk scores. *Nutrients*. 2016;8(12):793.

46. Cauchi S, Meyre D, Dina C, et al. Transcription factor TCF7L2 genotypes and the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. *Diabetes*. 2006;55(10):2903–2908. doi:10.2337/db06-0474

47. Sale MM, Smith SG, Mychaleckyj JC, et al. Variants of the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in an African-American population enriched for nephropathy. *Diabetes*. 2007;56(10):2638–2642. doi:10.2337/db07-0012
Small KS, Hedman AK, Grundberg E, et al. Identification of diabetic candidate genes in Chinese Han population. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2006;28(2):124–128.

Phani NM, Guddattu V, Bellampalli R, et al. Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study. PLoS One. 2014;9(9):e107021. doi:10.1371/journal.pone.0107021

Abdelhamid I,Lasram K,Meiloud G,et al.E23K variant in KCNJ11 gene is associated with susceptibility to type 2 diabetes in the Mauritanian population. Prim Care Diabetes. 2014;8(2):171–175. doi:10.1016/j.pcd.2013.10.006

Synofzik M, Haack TB,Kopajtich R,et al.Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet. 2014;95(6):689–697. doi:10.1016/j.ajhg.2014.10.013

Li ZP,Zhang M,Gao J,Zhou GY,Li SQ,An ZM. Relation between ADIPOQ gene polymorphisms and type 2 diabetes. Genes. 2015;6(3):512–519. doi:10.3390/genes6030512

Han X,Luo Y, Ren Q,et al. Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med Genet. 2011;10:81. doi:10.1186/1471-2350-11-81

Klimentidis YC, Lemas DJ, Wiener HH,et al. CDKAL1 and HHEX are associated with type 2 diabetes-related traits among Yup’ik people. J Diabetes. 2014;6(3):251–259. doi:10.1111/1753-0407.12093

Mencarelli M,Zulian A,Cancello R,et al.A novel missense mutation in the signal peptide of the human POMC gene: a possible additional link between early-onset type 2 diabetes and obesity. Eur J Hum Genet. 2012;20(12):1290–1294. doi:10.1038/ejhg.2012.103

Deeb SS,Fajas L,Nemoto M,et al.A Pro12Ala substitution in the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution. PLoS Genet. 2007;3(5):e65. doi:10.1371/journal.pgen.0030065

Okamura K,Nakai K.Retrotransposition as a source of new promoters. Mol Biol Evol. 2008;25(6):1231–1238. doi:10.1093/molbev/msn071

Kong A,Steinhorsdottir V,Masson G,et al.Parenatal origin of sequence variants associated with complex diseases. Nature. 2009;462(7275):868–874. doi:10.1038/nature08625

Small KS,Todorcevic C,Civelek M,et al.Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat Genet. 2018;50(4):572–580. doi:10.1038/s41588-018-0088-x

Dimas AS,Lagou V, Barker A,et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63(6):2158–2171. doi:10.2337/db13-0194

Small KS, Hedman AK, Grundberg E, et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 2011;43(6):561–564. doi:10.1038/ng1011-1040c

Yamagata K,Senokuchi T,Lu M,et al. Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 beta-cell line. Biochem Biophys Res Commun. 2011;407(3):620–625. doi:10.1016/j.bbrc.2011.03.083

Mulder H,Nagorny CL, Lyssenko V, Groop L. Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia. 2009;52(7):1240–1249. doi:10.1007/s00125-009-1359-y

Chen YH,Xu SJ,Bendahhou S,et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299(5604):251–254. doi:10.1126/science.1077771

Demolombe S, Franco D, de Boer P, et al. Differential expression of KvLQT1 and its regulator ISK1 in mouse epithelia. Am J Physiol Cell Physiol. 2001;280(2):C359–372. doi:10.1152/ajpcell.2001.280.2.C359

Tan JT,Nurbaya S,Gardner D, Ye S,Tai ES, Ng DP. Genetic variation in KCNQ1 associates with fasting glucose and beta-cell function: a study of 3,734 subjects comprising three ethnicities living in Singapore. Diabetes. 2009;58(6):1445–1449. doi:10.2337/db08-1138

Zeggini E,Scott LJ,Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–645. doi:10.1038/ng.120

Simonis-Bik AM,Nijpels G, van Haefen TW, et al. Gene variants in the novel type 2 diabetes locus CDC123/CAMKID, THADA, ADAMTS9, BCL11A, and MTRNR1B affect different aspects of pancreatic beta-cell function. Diabetes. 2010;59(1):293–301. doi:10.2337/db10-1627

Jonsson A,Ladenvall C, Ahiuwalia TS, et al. Effects of common genetic variants associated with type 2 diabetes and glycemic traits on alpha- and beta-cell function and insulin action in humans. Diabetes. 2013;62(8):2978–2983. doi:10.2337/db12-1627

Ullrich S,Su J,Ranta F,et al.Effects of IK(ks) channel inhibitors in insulin-secreting INS-1 cells. Pflugers Arch. 2005;453(3):428–436. doi:10.1007/s00424-005-1449-2

Liu Y,Zhou DZ,Zhang D, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes in the population of mainland China. Diabetologia. 2009;52(7):1315–1321. doi:10.1007/s00125-009-1375-y

Yu W,Ma RC,Hu C, et al. Association between KCNQ1 genetic variants and obesity in Chinese patients with type 2 diabetes. Diabetesologia. 2012;55(10):2655–2659. doi:10.1007/s00125-012-2636-8

Kong X,Hong J,Chen Y, et al. Association of genetic variants with isolated fasting hyperglycaemia and isolated postprandial hyperglycaemia in a Han Chinese population. PLoS One. 2013;8(8):e71399. doi:10.1371/journal.pone.0071399

Xu H, Dembski M, Yang Q, et al. Dual specificity mitogen-activated protein (MAP) kinase phosphatase-4 plays a potential role in insulin resistance. J Biol Chem. 2003;278(32):30187–30192. doi:10.1074/jbc.M30210200
84. Emanuelli B, Eberle D, Suzuki R, Kahn CR. Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci U S A. 2008;105(9):3545–3550. doi:10.1073/pnas.0712275105

85. Mizuno TM. Fat Mass and Obesity Associated (FTO) gene and hepatic glucose and lipid metabolism. Nutrients. 2018;10(11):1600. doi:10.3390/nu10111600

86. Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469–1472. doi:10.1126/science.1151710

87. Sanchez-Pulido L, Andrade-Navarro MA, The FTO. (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem. 2007;8:23. doi:10.1186/1471-2091-8-23

88. Jia G, Yang CG, Yang S, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 2008;582(23–24):3313–3319. doi:10.1016/j.febslet.2008.08.019

89. Han Z, Niu T, Chang J, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature. 2010;464(7292):1205–1209. doi:10.1038/nature08921

90. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–894. doi:10.1126/science.1141634

91. Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39(6):724–726. doi:10.1038/ng1048

92. SpeliotesEK,WillerCI,BerndtSI,etal.Associationanalysesof249,796individualsreveal18newlociassociatedwithbodymassindex. Nat Genet. 2010;42(11):937–948. doi:10.1038/ng.686

93. Hinney A, Nguyen TT, Scherag A, et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One. 2007;2(12):e1361. doi:10.1371/journal.pone.0001361

94. Yang J, Loos RJ, Powell JE, et al. FTO genotype is associated with phenotypic variability of body mass index. Nature. 2012;490(7419):267–272. doi:10.1038/nature11401

95. Zeng X, Qi Q, Zhang C, et al. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: the POUNDS LOST Trial. Diabetes. 2012;61(11):3005–3011. doi:10.2337/db11-1799

96. Abdallah A, Peeters A, de Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2010;90(3):309–319. doi:10.1016/j.diabres.2010.04.012

97. Tanaka S, Honda M, Wu B, Kazumi T. Clinical features of normal weight Japanese patients with type 2 diabetes who had formerly been obese. J Atheroscler Thromb. 2011;18(2):115–121. doi:10.5551/jat.5926

98. Park JY, Lee KU, Kim CH, et al. Past and current obesity in Koreans with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1997;35(1):49–56. doi:10.1016/S0168-8227(96)01363-0

99. Ragvin A, Matullo C, Fredman D, et al. Hepatocyte nuclear factor-4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet. 2003;34(3):292–296. doi:10.1038/ng1175

100. Nakhe H, Lingott A, Lemm I, Ryffel GU. An alternative splice variant of the tissue specific transcription factor HNF4alpha predominates in undifferentiated murine cell types. Nucleic Acids Res. 1998;26(2):497–504. doi:10.1093/nar/26.2.497

101. Thomas H, Jaschkwitz K, Bulman M, et al. A distant upstream promoter of the HNF4-alpha gene connects the transcription factors involved in maturity-onset diabetes of the young. Hum Mol Genet. 2001;10(19):2089–2097. doi:10.1093/hmg/10.19.2089

102. ChoYS,ChenCH,HuC,etal.Meta-analysisofgenomewideassociationstudiesidentifiessomenewlociforeachtype2diabetesin eastAsians. Nat Genet. 2011;44(1):67–72. doi:10.1038/ng.1019

103. Jafar-Mohammadi B, Groves CJ, Gjesing AP, et al. A role for coding variation in HNF4A in type 2 diabetes susceptibility. Diabetologia. 2011;54(1):111–119. doi:10.1007/s00125-010-2196-4

104. Bartoov-Shifman R, Hertz R, Wang H, Wollheim CB, Bar-Tana J, Walker MD. Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4alpha. J Biol Chem. 2002;277(29):25914–25919. doi:10.1074/jbc.M201582200

105. Byrne MM, Sturis J, Fajans SS, et al. Altered insulin secretory responses by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor-4alpha in gluconeogenesis. Proc Natl Acad Sci U S A. 2003;100(7):4012–4017. doi:10.1073/pnas.0213493100

106. Sandberg J, Jozwik E, Wang H, et al. Replication of genomewide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–1341. doi:10.1126/science.1142364
Miralles F, Portha B. Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. *Diabetes*. 2001;50(Suppl 1): S84–S88. doi:10.2337/diabetes.50.2007.584

Louveau I, Gondret F. Regulation of development and metabolism of adipose tissue by growth hormone and the insulin-like growth factor system. *Domest Anim Endocrinol*. 2004;27(3):241–255. doi:10.1016/j.domani.2004.06.004

Christiansen J, Kolte AM, Hansen T, Nielsen FC. IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes. *J Mol Endocrinol*. 2009;43(5):187–195. doi:10.1677/JME-09-0016

Groenewoud MJ, Dekker JM, Fritsche A, et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. *Diabetologia*. 2008;51(9):1659–1663. doi:10.1007/s00125-008-1083-z

Duesing K, Fatemifar G, Charpentier G, et al. Evaluation of the association of IGF2BP2 variants with type 2 diabetes in French Caucasians. *Diabetes*. 2008;57(7):1992–1996. doi:10.2337/db07-1789

Huang Q, Yin JY, Dai XP, et al. IGF2BP2 variations in Chinese Han population. *Acta Pharmacol Sin*. 2010;31(6):709–717. doi:10.1038/aps.2010.47

Wu HH, Liu NJ, Yang Z, et al. IGF2BP2 and obesity interaction analysis for type 2 diabetes mellitus in Chinese Han population. *Eur J Med Res*. 2014;19:40. doi:10.1186/2047-873X-19-40

Chistiakov DA, Nikitin AG, Smetanina SA, et al. The rs11705701 G>A polymorphism of IGF2BP2 is associated with IGF2BP2 mRNA and protein levels in the visceral adipose tissue – a link to type 2 diabetes susceptibility. *Rev Diabet Stud*. 2012;9(2–3):112–122. doi:10.1007/s00223-2012-0512-y

Ruchat SM, Elks CE, Loos RJ, et al. Evidence of interaction between type 2 diabetes susceptibility genes and dietary fat intake for adiposity and glucose homeostasis-related phenotypes. *J Nutrigenet Nutrigenomics*. 2009;2(4–5):225–234. doi:10.1515/000259341

Chan SH, Lim WK, Michalski ST, et al. Germline hemizygous deletion of CDKNA2-CDKN2B locus in a patient presenting with Li-Fraumeni syndrome. *Rev Diabet Stud*. 2016;16:1605. doi:10.1038/pnjjmed.2016.15

Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Christiansen J, Kolte AM, Hansen T, Nielsen FC. IGF2 mRNA-processing protein-2 and obesity interaction analysis for type 2 diabetes mellitus in Chinese Han population. *Eur J Med Res*. 2014;19:40. doi:10.1186/2047-873X-19-40

Qian Y, Lu F, Dong M, et al. Cumulative effect and predictive value of genetic variants associated with type 2 diabetes in Han Chinese: a case-control study. *PLoS One*. 2015;10(11):e0116537. doi:10.1371/journal.pone.0116537

Takeuchi F, Serizawa M, Yamamoto K, et al. Constitutive activation of the Wnt/beta-catenin pathway in pancreatic beta cells during the compensatory hyperglycaemic clamp. *Sci Rep*. 2016;6:28991. doi:10.1038/srep28991

Cauchi S, Meyre D, Durand E, et al. Post genome-wide association study (GWAS) meta-analysis across 39 studies identifies type 2 diabetes loci. *Am J Hum Genet*. 2012;90(3):410–425. doi:10.1016/j.ajhg.2011.12.022

Chen X, Deliard S, Yuan CX, Johnson ME, Grant SF. Characterization of the transcriptional machinery bound across the widely presumed type 2 diabetes causal variant, rs7903146, within TCF7L2. *Eur Hum Genet*. 2015;23(1):103–109. doi:10.1038/ehgj.2014.48

Shao W, Wang D, Chiang YT, et al. The Wnt signaling pathway effector TCF7L2 mediates gut and brain proglucagon gene expression and glucose homeostasis. *Diabetes*. 2013;62(3):789–800. doi:10.2337/db12-0365

Nadkarni P, Chepurny OG, Holz GG. Regulation of glucose homeostasis by GLP-1. *Prog Mol Biol Transl Sci*. 2014;121:23–65.

Cho YM, Kieffer TJ. K-cell and glucose-dependent insulintropic polypeptide in health and disease. *Vitam Horm*. 2010;84:111–150.

Li R, Ou J, Li L, Yang Y, Zhao J, Wu R. The Wnt signaling pathway effector TCF7L2 mediates olanzapine-induced weight gain and insulin resistance. *Front Pharmacol*. 2018;9:379. doi:10.3389/fphar.2018.00379

Liu H, Ferguson MM, Wu JJ, et al. Wnt signaling regulates hepatic metabolic homeostasis. *Sci Signal*. 2011;4(158):ra6. doi:10.1126/scisignal.2011249

Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. *Science*. 2000;289(5481):950–953. doi:10.1126/science.289.5481.950

Inagaki N, Gomi T, Clement J, et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. *Science*. 1995;270(5239):1166–1170. doi:10.1126/science.270.5239.1166

Aguilar-Bryan L, JP C, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of KATP channels. *Physiol Rev*. 1998;78(1):227–245. doi:10.1152/physrev.1998.78.1.227

McTaggart JS, Clark RH, Ashcroft FM. The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. *J Physiol*. 2010;588(Pt 17):3201–3209. doi:10.1113/jphysiol.2010.191767

Ashcroft FM. K(ATP) channels and insulin secretion: a key role in health and disease. *Biochem Soc Trans*. 2006;34(2):243–246. doi:10.1042/BST0340243

Wang DD, Chen X, Yang Y, Liu CX. Association of Kir6.2 gene rs5219 variation with type 2 diabetes: A meta-analysis of 21,464 individuals. *Prim Care Diabetes*. 2018;12(4):345–353. doi:10.1016/j.pcd.2018.03.004

Glyon AL, Pearson ER, Amlicht JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. *N Engl J Med*. 2004;350(18):1838–1849. doi:10.1056/NEJMoa032922
191. Altschuler D, Hirschhorn JN, Klannemark M, et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. *Nat Genet.* 2000;26(1):76–80. doi:10.1038/79216

192. Chan KH, Niu T, Ma Y, et al. Common genetic variants in peroxisome proliferator-activated receptor-gamma (PPARG) and type 2 diabetes risk among Women’s Health Initiative postmenopausal women. *J Clin Endocrinol Metab.* 2013;98(3):E600–E604. doi:10.1210/jc.2012-2644

193. Phani NM, Vohra M, Rajesh S, et al. Implications of critical PPARgamma2, ADIPOQ and FTO gene polymorphisms in type 2 diabetes and obesity-mediated susceptibility to type 2 diabetes in an Indian population. *Mol Genet Genomics.* 2016;291(1):193–204. doi:10.1007/s00438-015-1097-4

194. Masugi J, Tamori Y, Mori H, Koike T, Kasuga M. Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-gamma 2 on thiazolidinedione-induced adipogenesis. *Biochem Biophys Res Commun.* 2000;268(1):178–182. doi:10.1006/bbrc.2000.2096

195. Valve R, Sivenius K, Miettinen R, et al. Two polymorphisms in the peroxisome proliferator-activated receptor-gamma gene are associated with severe overweight among obese women. *J Clin Endocrinol Metab.* 1999;84(10):3708–3712. doi:10.1210/jcem.84.10.6061

196. Chang YC, Liu PH, Yu YH, et al. Validation of type 2 diabetes risk variants identified by genome-wide association studies in Han Chinese population: a replication study and meta-analysis. *PLoS One.* 2014;9(4):e95045. doi:10.1371/journal.pone.0095045

197. Kang ES, Kim MS, Kim YS, et al. A polymorphism in the zinc transporter gene SLC30A8 confers resistance against posttransplantation diabetes mellitus in renal allograft recipients. *Diabetes.* 2008;57(4):1043–1047. doi:10.2337/db07-0761

198. Kleiner S, Gomez D, Megra B, et al. Mouse harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity. *Proc Natl Acad Sci U S A.* 2018;115(2):E7642–E7649. doi:10.1073/pnas.1721418115

199. Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a beta-cell-specific zinc transporter, Zinc-8, localized into insulin secretory granules. *Diabetes.* 2004;53(9):2330–2337. doi:10.2337/diabetes.53.9.2330

200. Ortega RM, Rodriguez-Rodriguez E, Aparicio A, et al. Poor zinc status is associated with increased risk of insulin resistance in Spanish children. *Br J Nutr.* 2012;107(3):398–404. doi:10.1017/S0007114511003114

201. Lee CC, Haffner SM, Wagenknecht LE, et al. Insulin clearance and the incidence of type 2 diabetes in Hispanics and African Americans: the IRAS Family Study. *Diabetes Care.* 2013;36(4):901–907. doi:10.2337/dc12-1316

202. Rutter GA, Chimienti F. SLC30A8 mutations in type 2 diabetes. *Diabetologia.* 2015;58(1):31–36. doi:10.1007/s00125-014-3405-7

203. Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. *PLoS Genet.* 2007;3(7):e115. doi:10.1371/journal.pgen.0030115

204. Achenbach P, Lampasson V, Landherr U, et al. Autoantibodies to zinc transporter 8 and SLC30A8 genotype stratify type I diabetes risk. *Diabetologia.* 2009;52(9):1881–1888. doi:10.1007/s00125-009-1438-0

205. Cornelis MC, Hu FB. Gene-environment interactions in the development of type 2 diabetes: recent progress and continuing challenges. *Annu Rev Nutr.* 2012;32:245–259. doi:10.1146/annurev-nutr-071811-150648