Evaluation of International Caries Detection and Assessment System (ICDAS)-related Caries Severity among Caries Risk Groups in Pendul District: An Observational Study

Arya Adiningrat¹, Harum Annisa Kusmaharani², Sri Utami³, Novitasari Ratna Astuti³

¹Department of Oral Biology and Biomedical Sciences, School of Dentistry, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, ²Clinical Program, School of Dentistry, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, ³Department of Dental Public Health, School of Dentistry, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta

Aim: The aim of this study was to evaluate the difference in severity of caries code 5 or 6 according to the International Caries Detection and Assessment System (ICDAS) among caries risk groups in Pendul district. Materials and Methods: This was an observational study with a cross-sectional design. A total of 730 people who were residing in Pendul district belonged to population of this study. One of the inclusion criteria of this study was the people who were ≥5 years old according to World Health Organization. On the basis of our preliminary survey, we confirmed 660 people who fulfilled the inclusion criteria. The subjects were selected using the accidental simple random sampling. Slovin's formula was used with margin of error 8% to obtain the 138 subjected people. Of the 138 subjects studied, there were only 87 people who could be included in the further inclusion criteria by having dental caries code 5 or 6 according to ICDAS. The Kruskal–Wallis statistical test was used to analyze the differences as the data belong to nonparametric and there were three variable groups. Next, the Mann–Whitney U was used to test the differences between these variables. Results: The results of this study showed that there was a significant difference in the severity of caries among caries risk groups (P < 0.05). Conclusion: The higher the caries risk the higher the caries severity that was observed. This result supported the potential use of caries risk assessment as a predictive and supportive tool to prevent the increasing caries severity in the community.

Keywords: Caries risk, caries risk assessment, caries severity, ICDAS

INTRODUCTION

Dental caries is a complex and biologically dynamic process of tooth decay.[1] The term “caries” is taken from the Latin word that means “damage or decay.” This damage can affect the enamel, dentine, and cementum.[2] Dental caries involves progressive damage to enamel, dentine, and cementum that is initiated by bacterial activity on the surface of vulnerable teeth.[3]

Dental caries is one of the most common human diseases and affects most individuals.[4] Epidemiological studies of dental caries are very useful in determining the needs and effectiveness of dental care. The most common epidemiology tool of dental caries is the Decay–Missing–Filled Teeth (DMF-T) index.[1] Based on the results of the basic health research called Riskesdas in 2018, DMF-T score in Indonesia stood at 7.1, whereas the DMF-T score in 2013 Riskesdas stood at 4.6, that is, it increased by 2.5. The Special Region

Access this article online
Quick Response Code:
Website: www.jispcd.org
DOI: 10.4103/jispcd.JISPCD_46_20

Address for correspondence: Dr. Arya Adiningrat, Department of Oral Biology and Biomedical Sciences, School of Dentistry, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Daerah Istimewa Yogyakarta 55183, Indonesia, E-mail: adiningrat@umy.ac.id

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Adiningrat A, Kusmaharani HA, Utami S, Ratna Astuti N. Evaluation of International Caries Detection and Assessment System (ICDAS)-related caries severity among caries risk groups in Pendul district: An observational study. J Int Soc Prevent Communit Dent 2020;10:498-503.
of Yogyakarta itself has a DMF-T score of 5.9, above the average Indonesian DMF-T score. The Pendul district region is one of the selected districts having partnership collaboration with our community and preventive dental health center. According to our previous unpublished dental problem-related data taken from people of Pendul district, approximately 80% of the population complained about toothache within a year.

The International Caries Detection Assessment System (ICDAS) is another tool used to detect the presence of dental caries lesions. This system can record the severity and incidence of dental caries lesions. The ICDAS uses codes that range from the initial changes seen in enamel to large cavities. Code 0 is a healthy tooth in which there are no signs of caries lesions, codes 1 and 2 show early signs of caries lesions in tooth enamel, codes 3 and 4 describe caries lesions that are beginning to spread in tooth enamel, whereas codes 5 and 6 describe the most severe caries lesions, extending into the dentine.

The basis for the development and application of caries prevention programs is a good understanding of caries as a multifactorial disease that is caused by interactions between the composition of microorganisms in the plaque, substrate, and host factors. According to Purkait, during caries formation, bacteria ferment carbohydrates to produce acids that damage the tooth structure. The bacteria synthesize sucrose from carbohydrates, which then helps the bacteria and plaque to attach and grow on hard and smooth tooth surfaces within a certain period.

The treatment procedures for dental caries have been previously conducted according to the assessment of demineralization status or cavitation on the tooth surface, followed by caries tissue removal and appropriate restorative placement. However, it is now known that caries management protocols that do not address the responsible risk factors for the disease will lead to new caries lesions and the failure of each given treatment. Assessing patient caries risk status is an important component in modern dental caries management, the emphasis being on nonoperative or preventive approaches. One method of commonly used caries risk assessment (CRA) involves conducting surveys using CRA questionnaire, which was formulated by the American Dental Association (ADA).

The purpose of this study was to evaluate whether there are differences or not in the severity level of caries lesion as coded 5 or 6 according to the ICDAS among caries risk groups in Pendul district, Argorejo, Sedayu, Bantul, the Special Region of Yogyakarta.

MATERIALS AND METHODS

SETTING AND DESIGN

This was an observational study with a cross-sectional design. The study took place from December 2018 to January 2019 in Pendul district. The population of this study covered the local people who were residing in Pendul district, Argorejo, Sedayu, Bantul, the Special Region of Yogyakarta, which comprises four subdistricts Rukun Tetangga (RT) (family based-cluster system): 49, 50, 51, and dan 52 with total 730 of the population. This study was approved by the National Ethics Committee Board, branch of the Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta under the certification number 172/EP-FKIK-UMY/V/2019.

SAMPLING CRITERIA

The inclusion criteria of the study were those who were residing in Pendul district, those who were 5 years old or above, and those who were with caries code 5 or 6 according to the ICDAS. The exclusion criteria of the study were those who were less than 5 years old, those who were without caries code 5 or 6 according to ICDAS, and those who were not willing to participate in the study. On the basis of the preliminary survey, the subjects of this study were the 660 people who were residing in Pendul district aged ≥5 years. The subjects were selected using the accidental simple random sampling with the criteria of age ≥5 years. This study used Slovin’s formula with margin of error 8% to obtain the amount of people to be the subjects:

\[
n = \frac{N}{1 + N(\alpha)},
\]

\[
n = \frac{660}{1 + 660(0.08)},
\]

\[
n = \frac{660}{1 + 4.224},
\]

\[
n = 138,
\]

where \(n \) indicates the sample number, \(N \) indicates total population, and \(\alpha \) indicates the margin of error.

Of the 138 subjects studied, only 87 people who had dental caries code 5 or 6 according to ICDAS were included in the inclusion criteria; hence, the power size sample was approximately 75.15%. None of the subjects dropped out from the study.

METHOD AND OBSERVATIONAL PARAMETERS

Eighty-seven eligible subjects were then selected using the accidental sampling method. Caries severity was
assessed using the ICDAS code 5 or 6 form. The clinical appearances of caries below are used as the diagnosis criteria in conducting the study\cite{12}:

Although the caries risk status was assessed using the CRA questionnaire according to the ADA platform, CRA tools could address oral health disparities and enhance the efficiency of the oral health care system. CRA tools were designed by ADA for children 0 through 6 years old and people 7 years and older. A patient is considered at low risk in the absence of moderate- and high-risk factors and at the high risk when at least 1 high-risk factor is identified.

Reliability test of caries risk assessment from ADA validation in Pendul district

Cronbach α	Number of researchers
0.710	5

Interclass correlation coefficient test of caries risk assessment from ADA in Pendul district

Interclass correlation	95% confidence interval	F Test with true value 0					
	Lower Bound	Upper Bound	Value	df1	df2	Sig.	
Single measures	0.328	0.138	0.573	3.443	19	76	0.0006
Average measures	0.710	0.444	0.870	3.443	19	76	0.0006

The result of interclass correlation coefficient test shows that the average of the scores of the five researchers are reliable (interval of 0.61–0.80 with 95% confidence), suggesting that despite the apparent differences in scoring, the process was successful in training the researchers to separate different levels of performance.

Even after several calibrations, still there was a possibility for having bias during the observation. Such information may affect in differences in the way information is collected, measured, or interpreted by each researcher of the study groups. The way of minimizing observer bias is to develop a protocol for the information collection, measurement, and interpretation, use of standardized questionnaires, and train the researchers.

Statistical analysis

Data were analyzed by using the Statistical Package for the Social Sciences (SPSS) software program, version 16.0 (IBM, Chicago, Illinois), followed by the Kruskal–Wallis test and the Mann–Whitney U test. The Kruskal–Wallis statistical test was used to analyze the differences as the data belong to nonparametric and there were three variable groups, with a \(P \) value of less than 0.05 and confidence interval of 95%. Next, the Mann–Whitney \(U \) was used to test the differences between variables with a \(P \) value of 0.05 and confidence interval of 95%. Our study design approved and considered the ethical guidance from the Declaration of Helsinki prior participant recruitment and data collection.

Table 1: Characteristics of participants by age
Age
Frequency

5–11 years old
12–25 years old
26–45 years old
46–65 years old
>65 years old

ICDAS = International Caries Detection and Assessment System
RESULTS

A total of 138 research subjects were invited for interview and intraoral clinical examinations. Only 87 met the inclusion criteria to be the participant in this study.

Table 1 shows the sample population characteristics. Most participants (33 people) were 46–65 years old. The highest average number of teeth with caries code 5 or 6 in this study (3 teeth) was observed from this group.

Table 2 shows that among the 138 subjects, 87 were having dental caries code 5 or 6 according to ICDAS, which was 63.04% within the population. Further categorization of these 87 participants is described in Figure 1 which indicated the number of severe caries teeth in each participant which showed that most of the individual person in the population had at least one to three severe caries lesions.

On the basis of the caries risk identification by the CRA approach, all the participants of this study in Pendul district could be categorized into three groups as shown in Table 3. Among 87 subjects who had teeth with caries code 5 or 6 according to the ICDAS predominantly belonged to the high risk of caries group.

Table 4 shows the results of the Shapiro–Wilk normality test. The P values for the moderate and high risk of caries groups were 0.0002 and 0.00007, which showed that the data were not normally distributed ($P < 0.05$). The Kruskal–Wallis test was then performed because the data were nonparametric and there were more than two variable groups. The result from the Kruskal–Wallis test showed the P value of 0.007, meaning that there was a significant difference in caries severity among caries risk groups as indicated in Table 5. The Mann–Whitney U test was then carried out to determine the most severe caries condition among caries risk groups as shown in Table 6. Table 6 shows the most significant differences in caries severity, which was indicated from the comparison between the low and high caries risk groups and showed that the biggest significant severity different could be observed between the high-risk group and the low-risk group.

Caries risk groups	Frequency (5 or 6 scored by ICDAS)	Percentage (%)
Low	3	3.45
Moderate	33	37.93
High	51	58.62
Total	87	100

Table 3: Risk groups based on caries risk assessment

Table 4: Results of the Shapiro–Wilk normality test

Caries risk groups	Shapiro–Wilk Statistic	df	Sig.
Moderate	0.261	33	0.0002
High	0.212	51	0.00007

Table 5: Result of Kruskal–Wallis test

Caries risk groups (CRA)	Mean rank (average number of teeth scored 5 or 6 by ICDAS)	Sig.
Low	13.00	0.007
Moderate	37.73	
High	49.88	

Table 6: Results of Mann–Whitney U test

Caries risk groups	Mean rank	Sig.
Low	7.50	0.045
Moderate	19.50	
Low	7.50	0.020
High	28.68	
Moderate	35.23	0.023
High	47.21	
Discussion

This study revealed the difference in caries severity according to the ICDAS among low, moderate, and high caries risk groups according to the ADA in Pendul district. Participants who were 46–65 years old had the highest number of teeth with caries code 5 or 6 (approximately three teeth in average), and most individuals in this group had a high risk of caries. This pattern may be related to factors that affect dental health status in accordance with the Senjaya's study, such as the reduced production of saliva with age, and the habit of teeth and mouth cleaning. The decreasing production of saliva and its various enzymes can cause dry mouth, decrease the ability to taste food, and possibly accelerate the accumulation of plaque and calculus formation, which can lead to caries lesion.

The Kruskal–Wallis test showed a significant difference in the mean number of teeth having caries code 5 or 6 according to the ICDAS between each caries risk group ($P = 0.007$). The results of this study are consistent with those of Carta et al.’s study, who reported a difference in the incidence of caries severity code 5 or 6 according to the ICDAS in low, medium, and high caries risk groups.

The Mann–Whitney U test also showed significant differences among the low, medium, and high caries risk groups. Again, the results were consistent with Carta et al.’s study, who found that severe caries, namely codes 5 and 6 according to ICDAS, was mostly found in individuals with moderate and high caries risk compared to low caries risk.

The difference in caries severity could be due to the presence of different risk factors that support the occurrence of caries in each caries risk group. On the basis of the results of the CRA of the ADA in Pendul district, the frequent consumption of sweet foods and drinks between meals is a common and also critical risk factor for severe caries progression; indeed, Bebe et al. reported that people who consume high quantities of glucose or sweet foods are 7.1 times more likely to experience dental caries than those who consume little or no sweet foods. Other risk factor possibilities could be also incorporated since there are three of more new cavities, non-cavity caries lesions, new restorations, and teeth lost due to caries in the last 36 months. Experiencing severe dry mouth (xerostomia) is also a high caries risk factor as the reduced flow of saliva in the mouth can reduce the salivary buffer capacity, which can then reduce the pH of saliva so that it becomes one of the factors causing the development of caries.

The risk factors that support a moderate caries risk in this study included the exposure of teeth to fluoride. Cruvinel et al. showed that the habit of teeth brushing with toothpaste containing fluoride could contribute to a lower incidence of dental caries. Having one or two new cavities and/or noncavity caries lesions or restorations in the last 36 months also indicates a moderate caries risk. The presence of plaque is also a risk factor for caries incidence. For example, Utami reported that individuals with a high dental plaque index have 3.3 times greater risk for dental caries than individuals with a low plaque index. The presence of unusual dental morphology that interferes with dental and oral hygiene could also be a risk factor for dental caries. Research conducted by Bebe et al. showed that crowded teeth have a 5.6 times greater risk for dental caries than normal teeth. Individuals with a low caries risk do not have these high and moderate caries risk factors. Since the dental plaque is one of the critical caries risk factor, proper plaque control procedures are essential. Beside the regular plaque control procedures, a unique predatory bacterium such as *Bdellovibrio bacteriovorus* recently become another interesting subject for being used to control dental plaque formation.

The existence of the significant difference in the severity of carious lesion in each participant among caries risk groups and also the higher caries severity which predominantly could be observed from the high caries risk group indicated corresponding prediction between CRA categorization, implying personal habits and further carious lesion progression.

Taken together, this study suggested the more benefits and supports for using CRA from the ADA to educate and promote the preventive evidence-based approach toward the community through improving individual habits and self-awareness in order to avoid the extensive progression of the carious lesion as early as possible. This study has several limitations during on site data acquiring such as participant accessibility problem, time limitation, number of research volunteer. Those limitations could affect to the interpretation bias of this study. Further studies are critical to improve time for collecting the data, number of the research volunteer and the access difficulty to explore the rural area which could affect in subject selection. The further studies are critical to improve and strengthen this hypothesis such as through incorporating the bigger coverage of sample population and involving multiple observers.

Conclusion

According to our study, it was assumed that reduce the caries severity occurrence among the community. Enhancing both promotive and preventive actions as early as possible based on CRA from ADA as a
supporting predictive tool will be beneficial to promote the arrested carious lesion, whereas taking an early interceptive treatment may also prevent the tooth for being extracted.

ACKNOWLEDGEMENT

We would like to thank to the local representative officers in Pendul district area, who have already kindly supported in data collection and granted the local permission access.

FINANCIAL SUPPORT AND SPONSORSHIP

Nil.

CONFLICTS OF INTEREST

There are no conflicts of interest.

AUTHOR CONTRIBUTIONS

Not applicable.

ETHICAL POLICY AND INSTITUTIONAL REVIEW BOARD STATEMENT

Not applicable.

PATIENT DECLARATION OF CONSENT

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

DATA AVAILABILITY STATEMENT

Not applicable.

REFERENCES

1. Purkait SK. Essentials of Oral Pathology. 4th ed. New Delhi, India: Jaypee Brothers Medical Publishers; 2019.
2. Fejerskov O, Nyvad B, Kidd E. Dental Caries: The Disease and its Clinical Management. 3rd ed. Oxford, UK: Blackwell Munksgaard; 2016.
3. Felton A, Chapman A, Felton S. Basic Guide to Oral Health Education and Promotion. 2nd ed. Bristol, UK: John Wiley & Sons; 2013.
4. Samaranayake L. Essential Microbiology for Dentistry. 5th ed. Hong Kong: Churchill Livingstone Elsevier; 2018.
5. Indonesian Ministry of Health. Basic Health Researches (RISKESDAS). Jakarta, Indonesia: Research and Development Division of Indonesian Ministry of Health; 2018.
6. Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, et al. The International Caries Detection And Assessment System (ICDAS): An integrated system for measuring dental caries. Community Dent Oral Epidemiol 2007;35:170-8.
7. Ekstrand KR, Gimenez T, Ferreira FR, Mendes FM, Braga MM. The International Caries Detection And Assessment System – ICDAS: A systematic review. Caries Res 2018;52:406-19.
8. Koch G, Poulsen S. Pediatric Dentistry: A Clinical Approach. 3rd ed. Oxford, UK: Blackwell Munksgaard; 2017.
9. Tsang P, Qi F, Shi W. Medical approach to dental caries: Fight the disease, not the lesion. Pediatr Dent 2006;28:188-91; discussion 192-8.
10. Sunjea ES, Sunjea B, Tando B, Philip NI. An overview of caries risk assessment: Rationale, risk indicators, risk assessment methods, and risk-based caries management protocols. Indian J Dent Sci 2017;9:210-4.
11. American Dental Association (ADA). Caries Risk Assessment Form (Age >6). Chicago, IL: American Dental Association; 2011.
12. Young DA, Nový BB, Zeller GG, Hale R, Hart TC, dan Truelove EL. The American Dental Association Caries Classification System for clinical practice. J Am Dent Assoc 2015;146:79-86.
13. Senjaya AA. Geriatric Dentistry. J SkalHus 2016;13:72-80.
14. Carta G, Cagetti MG, Cocco F, Sale S, Lingström P, Campus G. Caries-risk profiles in Italian adults using computer caries assessment system and ICDAS. Braz Oral Res 2015;29:S1806-83242015000100306.
15. Dahlan MS. Health and Medical Statistics. 6th ed. Jakarta, Indonesia: Indonesian Epidemiology; 2014.
16. Bebe ZA, Susanto HS, Martini M. Risk factors for the incidence of dental caries in adults aged 20-39 years in the Dadapsari sub-district of Semarang, North of Semarang city. J Kes Mas (e-Journal) 2018;6:365-74.
17. FDI World Dental [Internet]. [updated 2017]. Available from: https://www.fdiworlddental.org/sites/default/files/media/resources/2017-fdi_cpp-chairside_guide.pdf. [Last accessed on cited 2018 Sep 20].
18. Senawa IM, WA, Wowor VNS, Juliatri. Caries risk assessment through the flow and viscosity of saliva examination among injecting contra J. e-Gigi 2015;3:162-9.
19. Cruvinel VR, Gravina DB, Azevedo TD, Bezerra AC, Toledo OA. Prevalence of dental caries and caries-related risk factors in premature and term children. Braz Oral Res 2010;24:329-35.
20. Utami S. The relationship between dental plaque and the severity of dental caries in preschool children. IDJ 2013;2:9-15.
21. Halasa-Rappel YA, Ng MW, Gaumer G, Banks DA. How useful are current caries risk assessment tools in informing the oral health care decision-making process? J Am Dent Assoc 2019;150:91-102.e2.
22. Patini R, Cattani P, Marchetti S, Isola G, Quaranta G, Gallenzi P. Evaluation of predatory capability of periodontopathogenes bacteria by bdellovibbio bacteriovorus HD100. An in vitro study. Materials 2019;12:2008-17.