Smooth Neighborhood Structures in a Smooth Topological Spaces

A.A. Ramadan and M.A. Abdel-Sattar
Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

Abstract: Problem Statement: Various concepts related to a smooth topological spaces have been introduced and relations among them studied by several authors (Chattopadhyay, Ramadan, etc).

Conclusion/Recommendations: In this study, we presented the notions of three sorts of neighborhood structures of a smooth topological spaces and give some of their properties which are results by Ying extended to smooth topological spaces.

Key words: Fuzzy smooth topology, smooth neighborhood structures

INTRODUCTION

Šostak (1985) introduced the fuzzy topology as an extension of Chang (1968) fuzzy topology. It has been developed in many directions (Ramadan, 1992; Chattopadhyay and Samanta, 1993; EL Gayyar et al., 1994; Höhle and Rodabaugh, 1998; Kubiak and Šostak, 1997; Demirici, 1997; Ramadan et al., 2001; 2009; Abdel-Sattar, 2006).

Ying (1994) studied the theory of neighborhood systems in fuzzy topology with the method used to develop fuzzifying topology (Ying, 1991) by treating the membership relation as a fuzzy relation. In this study, we generate the structures of neighborhood systems in a smooth topology with the method used in (Ying, 1991), by using fuzzy sets and fuzzy points.

Notions and preliminaries: The class of all fuzzy sets on a universal set X will be denote by L^X, where L is the special lattice and L = ([0,1], ≤). Also, L_0 = (0,1] and L_1 = [0, 1). Notions and preliminaries: The class of all fuzzy sets on a universal set X will be denote by L^X, where L is the special lattice and L = ([0,1], ≤). Also, L_0 = (0,1] and L_1 = [0, 1).

Definition 1: Pu and Liu (1980) a fuzzy set in X is called a fuzzy point iff it takes the value 0 for all y ∈ X, except one, say x ∈ X. If its value at x is λ (0 < λ ≤ 1) we denote this fuzzy point by x_λ, where the point x is called its support. The fuzzy point is said to be contained in a fuzzy set A, or belong to A, denoted by x_λ ∈ A, iff λ ≤ A(x). Evidently, every fuzzy set A can be expressed as the union of all fuzzy points which belong to A.

Definition 2: Ying (1991) Let X be a non-empty set. Let x_λ be a fuzzy point in X and let A be a fuzzy subset of X. Then the degree to which x_λ belongs to A is:

\[m(x_\lambda, A) = \text{sup}\{m(x, B) : B \in \tau, B \subseteq A \} \]

Obviously, we have the following properties:

1. \(m(x, A) = A(x) \)
2. \(m(x_\lambda, A) = 1 \) iff \(x_\lambda \in A \), \(m(x_\lambda, A) = 0 \) iff \(\lambda = 1 \) and \(A(x) = 0 \)
3. \(m(x_\lambda, \bigcup_{\mu \in \Gamma} A_\mu) = \bigvee_{\mu \in \Gamma} m(x_\lambda, A_\mu) \), (generalized multiple choice principles)

Definition 3: Ying (1991) let \((X, \tau)\) be a fuzzy topological space (fts, for short), let e be a fuzzy point in X and let A be a fuzzy subset of X. Then the degree to which A is a neighborhood of e is defined by:

\[N_e(A) = \text{sup}\{m(e, B) : B \in \tau, B \subseteq A \} \]

Thus \(N_e(A) \in L^{X} \) is called the fuzzy neighborhood system of e in \((X, \tau)\).

Definition 4: Ying (1991) let \((X, \tau)\) be a fts, e a fuzzy point in X and A a fuzzy subset of X. Then the degree to which e is an adherent point of A is given as:

\[\text{ad}(e, A) = \inf_{B \in \tau} (1 - N_e(B)) \]

where, \(A^c \) is the complement of A.

Definition 5: Ramadan (1992) A smooth topological space (sts, for short) is an ordered pair (X, τ), where X is a non-empty set and τ: \(L^X \rightarrow L \) is a mapping satisfying the following properties:
(O1) $\tau(1) = \tau(0) = 1$

(O2) For all $A_1, A_2 \in L^X, \tau(A_1 \cap A_2) \geq \tau(A_1) \wedge \tau(A_2)$

(O3) $\forall \tau, (\bigwedge_{\tau \in \tau} \tau(A) \geq \bigwedge_{\tau \in \tau} \tau(A)$

Definition 6: EL Gayyar et al. (1994) let (X, τ) be a sts and $\alpha \in \mathbb{L}_0$. Then the family: $\tau_{\alpha} = \{A \in L^X : \tau(A) \geq \alpha\}$, which is clearly a fuzzy topology Chang (1968) sense.

Definition 7: Demirici (1997) Let (X, τ) be a sts and $A \in L^X$. Then the τ-smooth interior of A, denoted by:

$$A^0 = \bigcup \{B \in L^X : \tau(B) > 0, B \subseteq A\}$$

Remark 1: Demirici (1997) let τ be a Chang’s fuzzy topology (CFT, for short) on the non-empty set X. Then the smooth topology and smooth cotopology $\tau_{\alpha}, \tau^*_{\alpha} : L^X \to L$, defined by:

$$\tau(A) = \begin{cases} 1, & \text{if } A \in \tau \\ 0, & \text{if } A \notin \tau \end{cases}$$

and $\tau^*_{\alpha}(A) = \tau(A^\alpha)$ for each $A \in L^X$, identify the CFT τ and corresponding fuzzy cotopology for it. Thus the τ_{α}- smooth interior of A is:

$$A^0 = \bigcup \{B \in L^X : \tau(B) > 0, B \subseteq A\} = \bigcup \{B \in L^X : B \in \tau, B \subseteq A\}$$

This show that A^0 is exactly the interior of A with respect to τ in Chang (1968) sense.

Lemma 1: Ramadan (1992) $\sup_{\alpha \in \mathbb{L}} \sup \{A(x) \wedge B(x) : A(x) \geq \alpha\} = \sup_{\alpha \in \mathbb{L}} \sup \{\alpha \wedge B(x) : A(x) \geq \alpha\}$.

Smooth neighborhood systems of a fuzzy set: Here, we build a smooth neighborhood systems of a fuzzy set in a sts and we give some of its properties.

For a mapping $M : L^X \to L^{0X}$ and $A \in L^X, \alpha \in [0; 1]$; let us define the family $M_{\alpha}^\nu = \{B \in L^X : M_{\alpha}(B) > \alpha\}$; which will play an important role in this part.

Definition 8: Let (X, τ) be a sts and $A \in L^X$. Then a mapping $N_A : L^X \to L^X$ is called the smooth neighborhood (nbd, for short) of A with respect to the st τ iff for each $\alpha \in [0; 1)$:

$$N_{\alpha}^\nu = \{B \in L^X : \exists C \in \tau^\nu(A \subseteq C \subseteq B)\}$$

where, $\tau^\nu = \{A \in L^X : \tau(A) > \alpha\}$ the strong α- level of τ.

Remark 2:

- The real number $N_{\alpha}(B)$ is called the degree of nbdness of the fuzzy set B to the fuzzy set A. If the smooth nbd system of a fuzzy set A has the following property: $N_{\alpha}(L^X) \subseteq [0, 1]$, then N_{α} is called the fuzzy nbd system of A.

- We say that the family $(N_{\alpha})_{\alpha} = \{B : N_{\alpha}(B) > \alpha\}$ is a fuzzy nbd system of A for each $\alpha \in [0,1)$ and $(N_{\alpha})_{\alpha}$ is called the strong α-level fuzzy nbd of A.

Proposition 1: Let (X, τ) be a sts and $A \in L^X$. Then a mapping $N_A : L^X \to L^{0X}$ is the smooth nbd system of A with respect to the st τ iff:

$$N_{\alpha}(B) \begin{cases} \sup \{\tau(C) : A \subseteq C \subseteq B\}, & \text{if } A \subseteq B \\ 0, & \text{if } A \not\subseteq B \end{cases}$$

Proof:

(1) Suppose that the mapping $N_A : L^X \to L^{0X}$ is the smooth nbd systems of A with respect to the st τ. Consider the following two cases:

- For the case $A \not\subseteq B$, suppose that $N_{\alpha}(B) > 0$. From Definition 1, there exists $C \in \tau^\nu$ such that $A \subseteq C \subseteq B$, i.e., $A \subseteq B$, a contradiction. Thus $N_{\alpha}(B) = 0$.

- For the case $A \subseteq B$. We may have $N_{\alpha}(B) = 0$ or $N_{\alpha}(B) > 0$. If $N_{\alpha}(B) = 0$, then $N_{\alpha}(B) = 0 \leq \sup \{\tau(C) : A \subseteq C \subseteq B\}$, if $\sup \{\tau(C) : A \subseteq C \subseteq B\} = \lambda > 0$, then $\exists C \in L^X$ such that $\tau(C) > 0$ and $A \subseteq C \subseteq B$: We obtain $N_{\alpha}(B) > 0$, a contradiction.

Therefore:

$$N_{\alpha}(B) = 0 = \sup \{\tau(C) : A \subseteq C \subseteq B\}$$

Now suppose that $N_{\alpha}(B) = \lambda > 0$. For an arbitrary $0 < \varepsilon \leq \lambda$, we have $N_{\alpha}(B) = \lambda - \varepsilon$, i.e., $B \in N_{\alpha}^{\lambda - \varepsilon}$. Since the mapping: $N_A : L^X \to L^{0X}$ is a smooth nbd system of A, $\exists \varepsilon \in L^X$ such that $C \in \tau^{\varepsilon}$ and $A \subseteq C \subseteq B$, i.e., $\sup \{\tau(C) : A \subseteq C \subseteq B\} = \lambda - \varepsilon$. Since $\varepsilon > 0$ is arbitrary we have:

$$\sup \{\tau(C) : A \subseteq C \subseteq B\} \geq \lambda = N_{\alpha}(B)$$

On the other hand, let $\sup \{\tau(C) : A \subseteq C \subseteq B\} = \gamma > 0$. Then for every $0 < \varepsilon \leq \gamma$, $\exists \varepsilon \in L^X$ such that $\tau(C) = \gamma - \varepsilon$ and $A \subseteq C \subseteq B$. Therefore $B \in N_{\alpha}^{\gamma - \varepsilon}$, i.e., $N_{\alpha}(B) > \gamma - \varepsilon$. Since ε is an arbitrary we have:
\[N_A(B) \geq \gamma = \sup \{ \tau(C) : A \subseteq C \subseteq B \} \]

Hence the inequality follows:

(2) For \(\alpha \in [0, 1) \), let \(B \in N^\alpha_A \), i.e., \(N_A(B) > \alpha \). Then we can write \(\alpha < N_A(B) = \sup \{ \tau(C) : A \subseteq C \subseteq B \} \), i.e., \(\exists C \in L^X \) such that \(\tau(C) > \alpha \), \(A \subseteq C \subseteq B \). Then we have:

\[N_A^\alpha = \{ B \in L^X : (\exists C \in \tau^\alpha)(A \subseteq C \subseteq B) \} \]

By the same way we can show that:

\[\{ B \in L^X : (\exists C \in \tau^\alpha)(A \subseteq C \subseteq B) \} \subseteq N_A^\alpha \]

Hence:

\[N_A^\alpha = \{ B \in L^X : (\exists C \in \tau^\alpha)(A \subseteq C \subseteq B) \} \]

Remark 3: In Proposition 3, the fuzzy subsets \(A \) of \(X \) can be replaced by the fuzzy points on \(X \), that is, by the special fuzzy subsets \(e \), in this case:

\[N_e(A) = \sup \{ \tau(C) : e \subseteq C \subseteq A \} \]

if \(e \subseteq A \), \(if \ e \not\subseteq A \)

Proposition 2: Let \((X, \tau) \) be a sts and \(A \in L^X \). If the mapping \(N_A : L^X \rightarrow L^X \) is the smooth nbd system of \(A \) with respect to the st \(\tau \), then the following properties hold:

(N1) \(N_A(\emptyset) = N_A(A) = 1 \) and \(N_A(B) > 0 \) \(\Rightarrow A \subseteq B \)

(N2) If \(A_1 \subseteq A \) and \(B \subseteq B_1 \), then \(N_A(B) \leq N_{A_1}(B_1) \)

(N3) \(N_A(B_1 \cap B_2) \leq N_A(B_1 \cap B_2) \)

(N4) \(N_A(B) = \sup_{A \subseteq C \subseteq B} (N_A(C) \wedge N_C(B)) \), \(\forall A, B, C \in L^X \)

Proof: (N1) and (N2) follow directly from Definition 1 and Proposition 3. (N3) Suppose that \(N_A(B_1) = \alpha_1 > 0 \) and \(N_A(B_2) > 1 \). Then for a fixed \(\varepsilon > 0 \) such that: \(\varepsilon \leq \alpha_1 \wedge \alpha_2 \Rightarrow N_A(B_1) > \alpha_1 - \varepsilon \geq 0 \) and \(N_A(B_2) > \alpha_2 - \varepsilon > 0 \).

From Definition 1, it is clear that there exists \(C_1, C_2 \in L^X \) such that:

\[\tau(C_1) > \alpha_1 - \varepsilon, \tau(C_2) > \alpha_2 - \varepsilon \]

\[A \subseteq C_1 \subseteq B_1, A \subseteq C_2 \subseteq B_2 \]

Therefore, \(\tau(C_1 \cap C_2) \geq \tau(C_1) \wedge \tau(C_2) > (\alpha_1 - \varepsilon) \wedge (\alpha_2 - \varepsilon) = (\alpha_1 \wedge \alpha_2) - \varepsilon \) and \(A \subseteq C_1 \cap C_2 \subseteq B_1 \cap B_2 \). Thus \(N_A(B_1 \cap B_2) \geq (\alpha_1 \wedge \alpha_2) - \varepsilon \). Since \(\varepsilon \) is arbitrary, we find that \(N_A(B_1 \cap B_2) \geq N_A(B_1) \wedge N_A(B_2) \).

(N4) \(N_A(B) = \sup \{ \tau(C) : A \subseteq C \subseteq B \} \).

Thus, \(\tau(C) \leq N_A(C) \) and \(\tau(C) \leq N_C(B) \).

Thus, \(\sup \{ \tau(C) : A \subseteq C \subseteq B \} \leq \sup \{ N_A(C) \wedge N_C(B) \} \).

Hence:

\[N_A(B) \leq \sup_{A \subseteq C \subseteq B} \{ N_A(C) \wedge N_C(B) \} \]

Smooth neighborhood systems of a fuzzy points:

Definition 9: Let \((X, \tau) \) be a sts, \(e \) a fuzzy point in \(X \) and \(A \) be a fuzzy subset of \(X \). Then the degree to which \(A \) is a NBD of \(e \) is defined by:

\[N_e(A) = \begin{cases} \sup_{B \subseteq A} \{ m(e, B) \wedge \tau(B) \} & : \tau(B) > 0, \ if \ m(e, A) > 0 \\ 0, & : \ otherwise \end{cases} \]

Thus \(N_e \in L^X \) is called the smooth NBD system of \(e \) in \((X, \tau) \).

Remark 4: It is clear that when a fuzzy point \(e \in B \subseteq L^X \), then \(m(e, B) = 1 \) and

\[N_e(A) = \begin{cases} \sup_{B \subseteq A} \{ m(e, B) \wedge \tau(B) \} & : \tau(B) > 0, \ if \ e \subseteq A \\ 0, & : \ otherwise \end{cases} \]

is the NBD systems in the sense of Demirici (1997)

Remark 5: For any crisp point \(x \) in \(X \), we have:

\[N_e(A) = \sup_{B \subseteq A} \{ m(e, B) \wedge \tau(B) \} : \tau(B) > 0, B(x) \neq 0. \]

Proposition 3: The NBD systems \(N_e \) of \(e \) in \(X \) can be constructed from the cuts \(\tau_\alpha, \alpha \in (0,1] \), by using the equality:

\[N_e(A) = \sup_{\alpha \in (0,1]} \{ [N_e(A)]^\alpha \wedge \alpha \} \]

where, \([N_e(A)]^\alpha = \sup_{B \subseteq A} \{ m(e, B) : B \subseteq A, B \subseteq \tau_\alpha \} \), is the NBD systems in the sense of Ying (1994; Theorem 1).

Proof: By using Definition 9, we have:

\[N_e(A) = \sup_{B \subseteq A} \{ m(e, B) \wedge \tau(B) \} : \tau(B) > 0 \]

\[= \sup_{\alpha \in (0,1]} \sup_{B \subseteq A} \{ m(e, B) \wedge \alpha : \tau(B) > \alpha \} \]

\[= \sup_{\alpha \in (0,1]} \{ \sup_{B \subseteq A} \{ m(e, B) : B \subseteq \tau_\alpha \wedge \alpha \} \} \]

\[= \sup_{\alpha \in (0,1]} \{ [N_e(A)]^\alpha \wedge \alpha \} \]

411
Remark 6: For any crisp point \(x \) in \(X \); we have:

\[
N_x(\alpha) = \sup_{A \subseteq X} \{N(A)^\alpha \wedge \alpha \}
\]

where, \([N_x(\alpha)]^\alpha = \sup_{B \subseteq A} \{B(x) : B \in \tau_x \} \).

Theorem 1: Let \((X, \tau)\) be a sts and \(e \) a fuzzy point of \(X \). If the mapping \(N_e: L^X \rightarrow L \) is the smooth NBD systems of \(e \) with respect to \(\tau \), then the following properties hold:

(N1) \(N_e(A) \leq m(e, B) \)

(N2) If \(A \subseteq B \) and \(A, B \in L^\tau \), then \(N_e(A) \leq N_e(B) \)

(N3) For all \(A, B \in L^\tau \), \(N_e(A \cap B) \leq N_e(A) \wedge N_e(B) \)

(N4) \(N_e(A) = \sup_{\lambda \in \sigma} \{[N_e(B)]^\lambda \wedge \alpha : \quad \lambda \leq \alpha \} \)

Proof: (N1) and (N2) follows directly from Remark 2.

(N3): \(m(e, C) \wedge \tau(C) : \tau(C) > 0 \)\]

\(\leq \sup_{C \subseteq A} \{\min(\sup_{C \subseteq A} \{m(e, C) \wedge \tau(C) : \tau(C) > 0\}) \}) \}

\(\leq \sup_{B \subseteq A} \{\min(\sup_{B \subseteq A} \{m(e, C) \wedge \tau(C) : \tau(C) > 0\}) \} \)

\(= N_e(A \cap B) \)

(N4) Combining axiom (4) in Theorem 1, in (Ying, 1994) and Proposition 4, (N4) follows.

Theorem 2: Let the mapping \(N_e: L^X \rightarrow L \) satisfy the conditions (N1)-(N4), then the mapping \(\tau: L^X \rightarrow L \) defined by:

\(\tau(A \cap B) = \inf_{\alpha} \{m(e, A \cap B) \wedge N_e(A \cap B) \} \)

\(\geq \inf_{\alpha} \{m(e, A \cap B) \wedge (\min(N_e(A), N_e(B))) \} \)

\(= \inf_{\alpha} \{m(e, A) \wedge (\min(N_e(A), N_e(B))) \} \)

\(\leq \inf_{\alpha} \{m(e, A) \wedge N_e(A) \wedge \tau(A) \} \)

\(\tau(U_{\mu} A) = \inf_{\alpha} \{m(e, U_{\mu} A) \wedge N_e(U_{\mu} A) \} \)

\(\leq \inf_{\alpha} \{m(e, A) \wedge \tau(A) \} \)

Proof: (O1) Obvious.
Hence, the equality \(N_e = M_e \) follows at once from (1) and (2).

Definition 10: Let \((X, \tau)\) be a sts, \(e \) a fuzzy point in \(X \) and \(A \) a fuzzy subset of \(X \). Then the degree to which \(e \) is an adherent point of \(A \) is given as:

\[
\text{ad}(e, A) = \inf_{B \subseteq X} \left(1 - N_e(B) \right)
\]

where, \(A^c \) is the complement of \(A \).

Remark 6: For any crisp point \(x \) in \(X \), we have:

\[
\text{ad}(x, A) = \inf_{B \subseteq X} \left(1 - N_e(B) \right)
\]

Proposition 4:

\[
\text{ad}(e, A) = \inf_{B \subseteq X} \left(1 - N_e(B) \right)
\]

Proof: Follows from Proposition 4.

Proposition 5:

\[
N_{s_e}(A) \leq \sup_{\alpha > 0} \left\{ \min(1, 1 - \lambda + [N_e(A)]^\alpha) \right\}
\]

Proof:

\[
N_{s_e}(A) = \sup_{\alpha > 0} \left\{ \min(1, 1 - \lambda + [N_e(A)]^\alpha) \right\}
\]

Fuzzy smooth r-neighborhood:

Definition 11: Let \((X, \tau)\) be a sts, \(A \in L^X \), \(e \) a fuzzy point in \(X \) and \(r \in L_0 \). Then the degree to which \(A \) is a fuzzy smooth r-nbd system of \(e \) is defined by:

\[
N_{s_e}(A, r) = \sup_{B \subseteq X} \left\{ \min(1, 1 - \lambda + [N_e(A)]^\alpha) \right\}
\]

A mapping \(N_{s_e} : L^X \times L_0 \to L \) is called the fuzzy smooth r-nbd system of \(e \).

Theorem 2: Let \((X, \tau)\) be a sts and \(N_e \) the fuzzy smooth r-nbd system of \(e \). For \(A, B \in L^X \) and \(r, s \in L_0 \), it satisfies the following properties:

1. \(N_{s_e}(A, r) \leq m(e, A) \) for each \(r \in L_0 \)
2. \(N_{s_e}(A, r) \leq N_{s_e}(B, r) \), if \(A \subseteq B \)
3. \(N_{s_e}(A, r) \leq N_{s_e}(A \cap B, r) \)
4. \(N_{s_e}(A, r) \leq \sup\{N_{s_e}(B, r) : B \subseteq A, m(d, B) \leq N_{s_e}(B, r) \} \) for all fuzzy point \(d \) in \(X \)
5. \(N_{s_e}(A, r) \geq N_{s_e}(A, s) \), if \(r \leq s \)
6. \(N_{s_e}(A, r) = \min(1, 1 - t + N_{s_e}(A, r)) \)

Proof: (2) and (5) are easily proved.

(1) It is proved from the following:

\[
N_{s_e}(A, r) = \sup\{m(e, \cup B_j) : B_j \subseteq A, \tau(B_j) \geq r\}
\]

Suppose there exist \(A, B \in L^X \) and \(r \in L_0 \) such that:

\[
N_{s_e}(A, r) > t \quad \text{and} \quad N_{s_e}(B, r) > t
\]

Since \(N_{s_e}(A, r) > t \) and \(N_{s_e}(B, r) > t \), there exist \(C_1, C_2 \in L^X \) with:

\[
C_1 \subseteq A, \tau(C_1) \geq r, \quad C_2 \subseteq B, \tau(C_2) \geq r
\]

Such that:

\[
m(e, C_1) \wedge m(e, C_2) = m(e, C_1 \cap C_2) > t
\]

On the other hand, since:

\[
C_1 \cap C_2 \subseteq A \cap B, \tau(C_1 \cap C_2) \geq r
\]

We have:

\[
N_{s_e}(A \cap B, r) \geq m(e, C_1 \cap C_2) > t
\]

It is a contradiction.

(4) If \(\tau(B) \geq r \), then \(N_{s_e}(B, r) = m(d, B) \); for each fuzzy point \(d \) in \(X \). It implies:

\[
N_{s_e}(A, r) = \sup\{m(e, B) : B \subseteq A, \tau(B) \geq r\}
\]

413
Theorem 3: Let \(N_e \) be the fuzzy smooth \(r \)-nbd system of \(e \) satisfying the above conditions (1)-(5), the function \(\tau_N : \mathbb{L}^X \rightarrow \mathbb{L}^0 \) defined by:

\[
\tau_N(A) = \bigvee \{ r \in \mathbb{L}_0 : m(e, A) = N_e(A, r) \text{ for all fuzzy point } e \text{ in } X \}
\]

has the following properties:

1. \(\tau_N \) is a st. on \(X \)
2. If \(N_e \) is the fuzzy nbd systems of \(e \) induced by \((X, \tau) \), then \(\tau_N = \tau \)
3. If \(N_e \) satisfy the conditions (1)-(6), then:

\[
\tau_N(A) = \bigvee \{ r \in \mathbb{L}_0 : m(x, A) = N_e(x, r), x \in X \}
\]

Proof: (1) We will show that \(\tau_N(B_1 \cap B_2) \geq \tau_N(B_1) \land \tau_N(B_2) \), for any \(B_1, B_2 \in \mathbb{L}^X \).

Suppose there exist \(B_1, B_2 \in \mathbb{L}^X \) and \(r \in \mathbb{L}_0 \) such that:

\[
\tau_N(B_1 \cap B_2) < r < \tau_N(B_1) \land \tau_N(B_2)
\]

For each \(i \in \{1, 2\} \) there exists \(r_i \in \mathbb{L}_0 \) with:

\[
m(e, B_i) = N_e(B_i, r_i); \text{ for all fuzzy point } e \text{ in } X
\]

Such that: \(\tau_N(B_i) \geq r_i > r \).

From (I), (II) and (5), we have:

\[
m(e, B_i) = N_e(B_i, r_i) \leq m(e, B_i)
\]

It implies \(m(e, B_i) = N_e(B_i, r) \): Furthermore:

\[
m(e, B_i \cap B_2) = N_e(B_i, r) \land N_e(B_2, r)
\]

Thus, \(N_e(B_i \cap B_2, r) = m(e, B_i \cap B_2) \), i.e., \(\tau N_e(B_i \cap B_2) \geq r \). It is a contradiction for the Eq. I.

Suppose there exists \(B = \bigcup_{i \in \Gamma} B_i \in \mathbb{L}_X \) and \(r_0 \in \mathbb{L}_0 \) such that:

\[
\tau_N(B) < r_0 < \bigwedge_{i \in \Gamma} \tau_N(B_i)
\]

For each \(i \in \Gamma \), there exists \(r_i \in \mathbb{L}_0 \) with

\[
m(e, B_i) = N_e(B_i, r_i); \text{ for all fuzzy point } e \in X
\]

Such that: \(\tau_N(B_i) \geq r_i > r \)

From (I), (IV) and (5), we have:

\[
m(e, B_i) = N_e(B_i, r_i) \leq N_e(B_i, r) \leq m(e, B_i)
\]

It implies \(m(e, B_i) = N_e(B_i, r) \): Furthermore:

\[
m(e, \bigcup_{i \in \Gamma} B_i) = \bigvee_{i \in \Gamma} m(e, B_i)
\]

\[
\leq \bigvee_{i \in \Gamma} N_e(B_i, r_i)
\]

\[
\leq m(e, \bigcup_{i \in \Gamma} B_i).
\]

Thus, \(N_e(\bigcup_{i \in \Gamma} B_i, r) = m(e, \bigcup_{i \in \Gamma} B_i) \), i.e., \(\tau N_e(\bigcup_{i \in \Gamma} B_i) \geq r_0 \). It is a contradiction for the Eq. III.

(2) Suppose there exists \(A \in \mathbb{L}^X \) such that:

\[
\tau_N(A) > \tau(A)
\]

From the Definition of \(\tau_N \), there exists \(r_0 \in \mathbb{L}_0 \) with

\[
m(e, A) = N_e(A, r_0) \text{ such that}
\]

\[
\tau_N(A) \geq r_0 > \tau(A)
\]

Since:

\[
m(e, A) = N_e(A, r_0) = \sup \{ m(e, B_i) : B_i \subseteq A, \tau(B_i) \geq r_0 \}
\]

Then, for each \(x \in X \):

\[
(\bigcup_{B_i}(x)) = \sup \{ m(x, B_i) : B_i \subseteq A \} = m(x, A) = A(x)
\]

Thus, \(A = \bigcup_{i \in \Gamma} B_i \in \mathbb{L}_X \). It is a contradiction. Suppose there exists \(A \in \mathbb{L}^X \) such that:

\[
\tau_N(A) < \tau(A)
\]

There exists \(r_1 \in \mathbb{L}_0 \) such that:

\[
\tau_N(A) < r_1 \leq \tau(A)
\]

Since \(\tau(A) \geq r_1 \), we have:

\[
N_e(A, r_1) = \sup \{ m(e, B) : B \subseteq A, \tau(B) \geq r_1 \} = m(e, A)
\]
Hence $\tau_n(A) \geq \tau_1$. It is a contradiction.

CONCLUSION

(3) We only show that $m(x, A) = N_x(A, r)$, for all fuzzy point x_1 in X iff $m(x, A) = A(x) = N_x(A, r)$, $\forall x \in X$:

(\Rightarrow) It is trivial.

(\Leftarrow) From the condition (6):

$$
N_x (A, r) = \min(1, 1 - t + N_x (A, r)) \\
= \min(1, 1 - t + m(x, A)) \\
= \min(1, 1 - t + A(x)) \\
= m(x, A).
$$

Example 1: Let $X = \{a, b\}$ be a set, N a natural number set and $B \in L^X$ as follows:

$B(a) = 0.3$, $B(b) = 0.4$

We define a smooth fuzzy topology:

$$
\tau(A) = \begin{cases}
1, & \text{if } A = 0 \text{ or } 1, \\
\frac{1}{2}, & \text{if } A = B, \\
0, & \text{otherwise}
\end{cases}
$$

From Definition 1, N_a, N_b: $L^X \times L_0 \to L$ as follows:

$$
N_a(A) = \begin{cases}
1, & \text{if } A = 1, \quad r \in L_0 \\
0.3, & \text{if } 1 \neq A \supseteq B, \quad 0 < r \leq \frac{1}{2} \\
0, & \text{otherwise}
\end{cases}
$$

$$
N_b(A) = \begin{cases}
1, & \text{if } A = 1, \quad r \in L_0 \\
0.4, & \text{if } 1 \neq A \supseteq B, \quad 0 < r \leq \frac{1}{2} \\
0, & \text{otherwise}
\end{cases}
$$

From Theorem 2 and Theorem 3 (3), we have:

$$
\tau_n(A) = \begin{cases}
1, & \text{if } A = 0 \text{ or } 1, \\
\frac{1}{2}, & \text{if } A = B, \\
0, & \text{otherwise}
\end{cases}
$$

REFERENCES

Abdel-Sattar, M.A., 2006. Some structures of L-fuzzy topology. J. Fuzzy Math., 14: 751-766.

Chang, C.L., 1968. Fuzzy topological spaces. J. Math. Anal. Appli., 24: 182-190.

Chattopadhyay, K.C. and S.K. Samanta, 1993. Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness. Fuzzy Sets and Syst., 54: 207-212. DOI: 10.1016/0165-0114(93)90277-O

Demirici, M., 1997. Neighborhood structures of smooth topological spaces. Fuzzy Sets Syst., 92: 123-128. DOI: 10.1016/S0165-0114(96)00132-7

El Gayyar, M.K., E.E. Kerre and A.A. Ramadan, 1994. Almost compactness and near compactness in smooth topological spaces. Fuzzy Sets Syst., 62: 193-202. DOI: 10.1016/0165-0114(94)90059-0

Höhle, U. and S.E. Rodabaugh, 1998. Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory. 1st Edn., Springer, USA., ISBN: 10: 0792383885, pp: 736.

Kubiak, T. and A. Šostak, 1997. Lower set-valued fuzzy topologies. Quaest. Math., 20: 423-429. DOI: 10.1080/16073606.1997.9632016

Pu, P.M. and Y.M. Liu, 1980. Fuzzy topology I: Neighborhood structure of a fuzzy point and Moore-Smith convergence. J. Math. Anal. Appli. 76: 571-599.

Ramadan, A.A., 1992. Smooth topological spaces. Fuzzy Sets Syst., 48: 371-375. DOI: 10.1016/0165-0114(92)90352-5

Ramadan, A.A., S.N. El-Deeb and M.A. Abdel-Sattar, 2001. On smooth topological spaces IV. Fuzzy Sets Syst., 119: 473-482. DOI: 10.1016/S0165-0114(99)00083-4

Ramadan, A.A., M.A. Abdel-Sattar and Y.C. Kim, 2009. The fuzzy neighborhood structures. Int. J. Math. Comput., 3: 146-156.

Šostak, A.P., 1985. On a fuzzy topological structures. Suppl. Rend. Circ. Mat Palermo Ser. II, 11: 89-103.

Ying, M., 1991. A new approach for fuzzy topology I. Fuzzy Sets and Syst., 39: 303-321. DOI: 10.1016/0165-0114(91)90100-5

Ying, M., 1994. On the method of neighborhood systems in fuzzy topology. Fuzzy Sets Syst., 68: 227-238. DOI: 10.1016/0165-0114(94)90048-5