CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

Daniel Zeman¹, Jan Hajíč¹, Martin Popel¹, Martin Potthast², Milan Straka¹, Filip Ginter³, Joakim Nivre⁴, and Slav Petrov⁵

¹Charles University, Faculty of Mathematics and Physics
²Universität Leipzig, ³University of Turku
⁴Uppsala University, ⁵Google AI Language

{zeman|hajic|popel|straka}@ufal.mff.cuni.cz, martin.potthast@uni-leipzig.de, figint@utu.fi, joakim.nivre@lingfil.uu.se, slav@google.com

Abstract

Every year, the Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2018, one of two tasks was devoted to learning dependency parsers for a large number of languages, in a real-world setting without any gold-standard annotation on the input. All test sets followed the unified annotation scheme of Universal Dependencies (Nivre et al., 2016). This shared task constitutes a 2nd edition—the first one took place in 2017 (Zeman et al., 2017); the main metric from 2017 was kept, allowing for easy comparison, and two new main metrics were introduced. New datasets added to the Universal Dependencies collection between mid-2017 and the spring of 2018 contributed to the increased difficulty of the task this year. In this overview paper, we define the task and the updated evaluation methodology, describe data preparation, report and analyze the main results, and provide a brief categorization of the different approaches of the participating systems.

1 Introduction

The 2017 CoNLL shared task on universal dependency parsing (Zeman et al., 2017) picked up the thread from the influential shared tasks in 2006 and 2007 (Buchholz and Marsi, 2006; Nivre et al., 2007) and evolved it in two ways: (1) the parsing process started from raw text rather than gold standard tokenization and part-of-speech tagging, and (2) the syntactic representations were consistent across languages thanks to the Universal Dependencies framework (Nivre et al., 2016). The 2018 CoNLL shared task on universal dependency parsing starts from the same premises but adds a focus on morphological analysis as well as data from new languages.

Like last year, participating systems minimally had to find labeled syntactic dependencies between words, i.e., a syntactic head for each word, and a label classifying the type of the dependency relation. In addition, this year’s task featured new metrics that also scored a system’s capacity to predict a morphological analysis of each word, including a part-of-speech tag, morphological features, and a lemma. Regardless of metric, the assumption was that the input should be raw text, with no gold-standard word or sentence segmentation, and no gold-standard morphological annotation. However, for teams who wanted to concentrate on one or more subtasks, segmentation and morphology predicted by the baseline UDPipe system (Straka et al., 2016) was made available just like last year.

There are eight new languages this year: Afrikaans, Armenian, Breton, Faroese, Naija, Old French, Serbian, and Thai; see Section 2 for more details. The two new evaluation metrics are described in Section 3.
Data

In general, we wanted the participating systems to be able to use any data that is available free of charge for research and educational purposes (so that follow-up research is not obstructed). We deliberately did not place upper bounds on data sizes (in contrast to e.g. Nivre et al. (2007)), despite the fact that processing large amounts of data may be difficult for some teams. Our primary objective was to determine the capability of current parsers provided with large amounts of freely available data.

In practice, the task was formally closed, i.e., we listed the approved data resources so that all participants were aware of their options. However, the selection was rather broad, ranging from Wikipedia dumps over the OPUS parallel corpora (Tiedemann, 2012) to morphological transducers. Some of the resources were proposed by the participating teams.

We provided dependency-annotated training and test data, and also large quantities of crawled raw texts. Other language resources are available from third-party servers and we only referred to the respective download sites.

2.1 Training Data: UD 2.2

Training and development data came from the Universal Dependencies (UD) 2.2 collection (Nivre et al., 2018). This year, the official UD release immediately followed the test phase of the shared task. The training and development data were available to the participating teams as a pre-release; these treebanks were then released exactly in the state in which they appeared in the task.3 The participants were instructed to only use the UD data from the package released for the shared task. In theory, they could locate the (yet unreleased) test data in the development repositories on GitHub, but they were trusted that they would not attempt to do so.

82 UD treebanks in 57 languages were included in the shared task;2 however, nine of the smaller treebanks consisted solely of test data, with no data at all or just a few sentences available for training. 16 languages had two or more treebanks from different sources, often also from different domains.3 See Table 1 for an overview.

61 treebanks contain designated development data. Participants were asked not to use it for training proper but only for evaluation, development, tuning hyperparameters, doing error analysis etc. Seven treebanks have reasonably-sized training data but no development data; only two of them, Irish and North Sámi, are the sole treebanks of their respective languages. For those treebanks cross-validation had to be used during development, but the entire dataset could be used for training once hyperparameters were determined. Five treebanks consist of extra test sets: they have no training or development data of their own, but large training data exist in other treebanks of the same languages (Czech-PUD, English-PUD, Finnish-PUD, Japanese-Modern and Swedish-PUD, respectively). The remaining nine treebanks are low-resource languages. Their “training data” was either a tiny sample of a few dozen sentences (Armenian, Buryat, Kazakh, Kurmanji, Upper Sorbian), or there was no training data at all (Breton, Faroese, Naija, Thai). Unlike in the 2017 task, these languages were not “surprise languages”, that is, the participants knew well in advance what languages to expect. The last two languages are particularly difficult: Naija is a pidgin spoken in Nigeria; while it can be expected to bear some similarity to English, its spelling is significantly different from standard English, and no resources were available to learn it. Even harder was Thai with a writing system that does not separate words by spaces; the Facebook word vectors were probably the only resource among the approved additional data where participants could learn something about words in Thai (Rosa and Mareček, 2018; Smith et al., 2018). It was also possible to exploit the fact that there is a 1-1 sentence mapping between the Thai test set and the other four PUD test sets.4

Participants received the training and development data with gold-standard tokenization, sentence segmentation, POS tags and dependency re-
Table 1: Overview of the 82 test treebanks. **TbkCode** = Treebank identifier, consisting of the ISO 639 language code followed by a treebank-specific code. **2017** = Code of the corresponding treebank in the 2017 task if applicable (“NA” otherwise). **TrWrds** = Size of training data, rounded to the nearest thousand words.

Language	Tbk Code	2017	TrWrds
Afrikaans	af_atribooms	NA	34 K
Ancient Greek	grc_perseus	grc	160 K
Ancient Greek	grc_proiel	grc_proiel	187 K
Arabic	arapidt	ar	224 K
Armenian	hy_armtmd	NA	1 K
Basque	eudt	eu	73 K
Breton	br_keb	NA	0 K
Bulgarian	bg_btb	bg	124 K
Buryat	bsr_btb	bsr	0 K
Catalan	ca_anacora	ca	418 K
Chinese	zh_gsd	zh	97 K
Croatian	hr_set	hr	154 K
Czech	cs_cac	cs_cac	473 K
Czech	cs_fictree	NA	134 K
Czech	cs_pdt	cs_pdt	1,173 K
Dutch	nl_alpino	nl	186 K
Dutch	nl_lassysmall	nl_lassysmall	75 K
English	en_ewt	en	205 K
English	en_en	en	54 K
English	en_lines	en_lines	50 K
English	en_pud	en_pud	0 K
Estonian	et_edt	et	288 K
Faroese	fo_oft	NA	0 K
Finnish	fi_ttb	fi_ttb	128 K
Finnish	fi_pud	fi_pud	0 K
Finnish	fi_tdt	fi	163 K
French	fr_gsd	fr	357 K
French	fr_sequoia	fr_sequoia	51 K
French	fr_spoken	NA	15 K
Galician	gl_cgt	gl	79 K
Galician	gl_tregeal	gl_tregeal	15 K
German	de_gsd	de	264 K
Gothic	got_proiel	got	35 K
Greek	el_gdt	el	42 K
Hebrew	he_ltb	he	138 K
Hindi	hi_ltdb	hi	281 K
Hungarian	hu_zegegd	hu	20 K
Indonesian	id_gsd	id	98 K
Irish	ga_idt	ga	14 K

Language	Tbk Code	2017	TrWrds
Italian	it_isdt	it	276 K
Italian	it_postwita	NA	99 K
Japanese	ja_gsd	ja	162 K
Japanese	ja_modern	NA	0 K
Kazakh	kk_ktb	kk	1 K
Korean	ko_gsd	ko	57 K
Korean	ko_kaist	NA	296 K
Kurmanji	kmr_kmr	kmr	0 K
Latin	la_ltb	la_ltb	270 K
Latin	la_perseus	la	18 K
Latin	la_proiel	la_proiel	172 K
Latvian	lv_lvbt	lv	81 K
Naija	pcm_nsc	NA	0 K
North Sámi	sme_giella	sme	17 K
Norwegian	no_bokmaal	no_bokmaal	244 K
Norwegian	no_nynorsk	no_nynorsk	245 K
Norwegian	no_nynorsklia	NA	4 K
Old Church Slavonic	cu_proiel	cu	37 K
Old French	fro_stmfl	NA	136 K
Persian	fa_seraji	fa	121 K
Polish	pl_lfg	NA	105 K
Polish	pl_sz	pl	63 K
Portuguese	pt_bosque	pt	207 K
Romanian	ro_rtt	ro	185 K
Russian	ru_syntagr	ru_syntagr	872 K
Russian	ru_raiga	NA	10 K
Serbian	sr_set	NA	66 K
Slovak	sk_uk	sk	81 K
Slovenian	sl_ssj	sl	113 K
Slovenian	sl_sst	sl_sst	19 K
Spanish	es_anacora	es_anacora	445 K
Swedish	sv_lines	sv_lines	48 K
Swedish	sv_pud	sv_pud	0 K
Swedish	sv_talbanken	sv	67 K
Thai	th_pud	NA	0 K
Turkish	tr_mst	tr	38 K
Ukrainian	uk_uk	uk	75 K
Upper Sorbian	hsb_otal	hsb	0 K
Urdu	ur_udt	ur	109 K
Uyghur	ug_uyd	ug	19 K
Vietnamese	vi_vtb	vi	20 K

Cross-domain and cross-language training was allowed and encouraged. Participants were free to train models on any combination of the training treebanks and apply it to any test set.

2.2 Supporting Data

To enable the induction of custom embeddings and the use of semi-supervised methods in general, the participants were provided with supporting resources primarily consisting of large text corpora for many languages in the task, as well as embeddings pre-trained on these corpora. In total, 5.9 M sentences and 90 G words in 45 languages are available in CoNLL-U format (Ginter et al., 2017); the per-language sizes of the corpus are listed in Table 2.

See Zeman et al. (2017) for more details on how the raw texts and embeddings were processed. Note that the resource was originally prepared for the 2017 task and it was not extended to include the eight new languages; however, some of the new languages are covered by the word vectors provided by Facebook (Bojanowski et al., 2016) and approved for the shared task.
Language	Words
English (en)	9,441 M
German (de)	6,003 M
Portuguese (pt)	5,900 M
Spanish (es)	5,721 M
French (fr)	5,242 M
Polish (pl)	5,208 M
Indonesian (id)	5,205 M
Japanese (ja)	5,179 M
Italian (it)	5,136 M
Vietnamese (vi)	4,066 M
Turkish (tr)	3,477 M
Russian (ru)	3,201 M
Swedish (sv)	2,932 M
Dutch (nl)	2,914 M
Romanian (ro)	2,776 M
Czech (cs)	2,005 M
Hungarian (hu)	1,624 M
Danish (da)	1,564 M
Chinese (zh)	1,530 M
Norwegian-Bokmål (no)	1,305 M
Persian (fa)	1,120 M
Finnish (fi)	1,008 M
Arabic (ar)	963 M
Catalan (ca)	860 M
Slovak (sk)	811 M
Greek (el)	731 M
Hebrew (he)	615 M
Croatian (hr)	583 M
Ukrainian (uk)	538 M
Korean (ko)	527 M
Slovenian (sl)	522 M
Bulgarian (bg)	370 M
Estonian (et)	328 M
Latvian (lv)	276 M
Galician (gl)	262 M
Latin (la)	244 M
Basque (eu)	155 M
Hindi (hi)	91 M
Norwegian-Nynorsk (no)	76 M
Kazakh (kk)	54 M
Urdu (ur)	46 M
Irish (ga)	24 M
Ancient Greek (grc)	7 M
Uyghur (ug)	3 M
Kurdish (kmr)	3 M
Upper Sorbian (hsb)	2 M
Buryat (bxr)	413 K
North Sámi (smi)	331 K
Old Church Slavonic (cu)	28 K
Total	90,669 M

Table 2: Supporting data overview: Number of words (M = million; K = thousand) for each language.

2.3 Test Data: UD 2.2

Each of the 82 treebanks mentioned in Section 2.1 has a test set. Test sets from two different treebanks of one language were evaluated separately as if they were different languages. Every test set contains at least 10,000 words (including punctuation marks). UD 2.2 treebanks that were smaller than 10,000 words were excluded from the shared task. There was no upper limit on the test data; the largest treebank had a test set comprising 170K words. The test sets were officially released as a part of UD 2.2 immediately after the shared task.5

3 Evaluation Metrics

There are three main evaluation scores, dubbed LAS, MLAS and BLEX. All three metrics reflect word segmentation and relations between content words. LAS is identical to the main metric of the 2017 task, allowing for easy comparison; the other two metrics include part-of-speech tags, morphological features and lemmas. Participants who wanted to decrease task complexity could concentrate on improvements in just one metric; however, all systems were evaluated with all three metrics, and participants were strongly encouraged to output all relevant annotation, even if they just copy values predicted by the baseline model.

When parsers are applied to raw text, the metric must be adjusted to the possibility that the number of nodes in gold-standard annotation and in the system output vary. Therefore, the evaluation starts with aligning system nodes and gold nodes. A dependency relation cannot be counted as correct if one of the nodes could not be aligned to a gold node. See Section 3.4 and onward for more details on alignment.

The evaluation software is a Python script that computes the three main metrics and a number of additional statistics. It is freely available for download from the shared task website.6

3.1 LAS: Labeled Attachment Score

The standard evaluation metric of dependency parsing is the labeled attachment score (LAS), i.e., the percentage of nodes with correctly assigned reference to the parent node, including the label (type) of the relation. For scoring purposes, only

5http://hdl.handle.net/11234/1-2837
6http://universaldependencies.org/conll18/conll18_ud_eval.py
universal dependency labels were taken into account, which means that language-specific subtypes such as expl:pv (pronoun of a pronominal verb), a subtype of the universal relation expl (expletive), were truncated to expl both in the gold standard and in the system output before comparing them.

In the end-to-end evaluation of our task, LAS is re-defined as the harmonic mean (F_1) of precision P and recall R, where

$$P = \frac{\text{#correctRelations}}{\text{#systemNodes}}$$

(1)

$$R = \frac{\text{#correctRelations}}{\text{#goldNodes}}$$

(2)

$$LAS = \frac{2PR}{P+R}$$

(3)

Note that attachment of all nodes including punctuation is evaluated. LAS is computed separately for each of the 82 test files and a macro-average of all these scores is used to rank the systems.

3.2 MLAS: Morphology-Aware Labeled Attachment Score

MLAS aims at cross-linguistic comparability of the scores. It is an extension of CLAS (Nivre and Fang, 2017), which was tested experimentally in the 2017 task. CLAS focuses on dependencies between content words and disregards attachment of function words; in MLAS, function words are not ignored, but they are treated as features of content words. In addition, part-of-speech tags and morphological features are evaluated, too.

The idea behind MLAS is that function words often correspond to morphological features in other languages. Furthermore, languages with many function words (e.g., English) have longer sentences than morphologically rich languages (e.g., Finnish), hence a single error in Finnish costs the parser significantly more than an error in English according to LAS.

The core part is identical to LAS (Section 3.1): for aligned system and gold nodes, their respective parent nodes are considered; if the system parent is not aligned with the gold parent, or if the universal relation label differs, the word is not counted as correctly attached. Unlike LAS, certain types of relations (Table 3) are not evaluated directly. Words attached via such relations (in either system or gold data) are not counted as independent words. Instead, they are treated as features of the content words they belong to. Therefore, a system-produced word counts as correct if it is aligned and attached correctly, its universal POS tag and selected morphological features (Table 4) are correct, all its function words are attached correctly, and their POS tags and features are also correct. Punctuation nodes are neither content nor function words; their attachment is ignored in MLAS.

3.3 BLEX: Bilexical Dependency Score

BLEX is similar to MLAS in that it focuses on relations between content words. Instead of morphological features, it incorporates lemmatization in the evaluation. It is thus closer to semantic content and evaluates two aspects of UD annota-

Content	nsubj, obj, iobj, csubj, ccomp, xcomp, obl, vocative, expl, dislocated, advcl, advmod, discourse, nmod, appos, nummod, acl, amod, conj, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, root, dep
Function	aux, cop, mark, det, clf, case, cc
Ignored	punct

Table 3: Universal dependency relations considered as pertaining to content words and function words, respectively, in MLAS. Content word relations are evaluated directly; words attached via functional relations are treated as features of their parent nodes.

Features	PronType, NumType, Poss, Reflex, Foreign, Abbr, Gender, Animacy, Number, Case, Definite, Degree, VerbForm, Mood, Tense, Aspect, Voice, Evident, Polarity, Person, Polite

Table 4: Universal features whose values are evaluated in MLAS. Any other features are ignored.
tion that are important for language understanding: dependencies and lexemes. The inclusion of this metric should motivate the competing teams to model lemmas, the last important piece of annotation that is not captured by the other metrics. A system that scores high in all three metrics will thus be a general-purpose language-analysis tool that tackles segmentation, morphology and surface syntax.

Computation of BLEX is analogous to LAS and MLAS. Precision and recall of correct attachments is calculated, attachment of function words and punctuation is ignored (Table 3). An attachment is correct if the parent and child nodes are aligned to the corresponding nodes in gold standard, if the universal dependency label is correct, and if the lemma of the child node is correct.

A few UD treebanks lack lemmatization (or, as in Uyghur, have lemmas only for some words and not for others). A system may still be able to predict the lemmas if it learns them in other treebanks. Such system should not be penalized just because no gold standard is available; therefore, if the gold lemma is a single underscore character (“_”), any system-produced lemma is considered correct.

3.4 Token Alignment

UD defines two levels of token/word segmentation. The lower level corresponds to what is usually understood as tokenization. However, unlike some popular tokenization schemes, it does not include any normalization of the non-whitespace characters. We can safely assume that any two tokenizations of a text differ only in whitespace while the remaining characters are identical. There is thus a 1-1 mapping between gold and system non-whitespace characters, and two tokens are aligned if all their characters match.

3.5 Syntactic Word Alignment

The higher segmentation level is based on the notion of syntactic word. Some languages contain multi-word tokens (MWT) that are regarded as contractions of multiple syntactic words. For example, the German token zum is a contraction of the preposition zu “to” and the article dem “the”.

Syntactic words constitute independent nodes in dependency trees. As shown by the example, it is not required that the MWT is a pure concatenation of the participating words; the simple token alignment thus does not work when MWTs are involved. Fortunately, the CoNLL-U file format used in UD clearly marks all MWTs so we can detect them both in system output and in gold data. Whenever one or more MWTs have overlapping spans of surface character offsets, the longest common subsequence algorithm is used to align syntactic words within these spans.

3.6 Sentence Segmentation

Words are aligned and dependencies are evaluated in the entire file without considering sentence segmentation. Still, the accuracy of sentence boundaries has an indirect impact on attachment scores: any missing or extra sentence boundary necessarily makes one or more dependency relations incorrect.

3.7 Invalid Output

If a system fails to produce one of the 82 files or if the file is not valid CoNLL-U format, the score of that file (counting towards the system’s macro-average) is zero.

Formal validity is defined more leniently than for UD-released treebanks. For example, a nonexistent dependency type does not render the whole file invalid, it only costs the system one incorrect relation. However, cycles and multi-root sentences are disallowed. A file is also invalid if there are character mismatches that could make the token-alignment algorithm fail.

3.8 Extrinsic Parser Evaluation

The metrics described above are all intrinsic measures: they evaluate the grammatical analysis task per se, with the hope that better scores correspond to output that is more useful for downstream NLP applications. Nevertheless, such correlations are not automatically granted. We thus seek to complement our task with an extrinsic evaluation, where the output of parsing systems is exploited by applications like biological event extraction, opinion analysis and negation scope resolution.

This optional track involves English only. It is organized in collaboration with the EPE initiative;\(^7\) for details see Fares et al. (2018).

4 TIRA: The System Submission Platform

Similarly to our 2017 task and to some other recent CoNLL shared tasks, we employed the cloud-

\(^7\) http://epe.nlpl.eu/
based evaluation platform TIRA (Potthast et al., 2014),\(^8\) which implements the evaluation as a service paradigm (Hanbury et al., 2015). Instead of processing test data on their own hardware and submitting the outputs, participants submit working software. Naturally, software submissions bring about additional overhead for both organizers and participants, whereas the goal of an evaluation platform like TIRA is to reduce this overhead to a bearable level.

4.1 Blind Evaluation

Traditionally, evaluations in shared tasks are half-blind (the test data are shared with participants while the ground truth is withheld). TIRA enables fully blind evaluation, where the software is locked in a datalock together with the test data, its output is recorded but all communication channels to the outside are closed or tightly moderated. The participants do not even see the input to their software. This feature of TIRA was not too important in the present task, as UD data is not secret, and the participants were simply trusted that they would not exploit any knowledge of the test data they might have access to.

However, closing down all communication channels also has its downsides, since participants cannot check their running software; before the system run completes, even the task moderator does not see whether the system is really producing output and not just sitting in an endless loop. In order to alleviate this extra burden, we made two modifications compared to the previous year: 1. Participants were explicitly advised to invoke shorter runs that process only a subset of the test files. The organizers would then stitch the partial runs into one set of results. 2. Participants were able to see their scores on the test set rounded to the nearest multiple of 5%. This way they could spot anomalies possibly caused by ill-selected models. The exact scores remained hidden because we did not want the participants to fine-tune their systems against the test data.

4.2 Replicability

It is desirable that published experiments can be re-run yielding the same results, and that the algorithms can be tested on alternative test data in the future. Ensuring both requires that a to-be-evaluated software is preserved in working condition for as long as possible. TIRA supplies participants with a virtual machine, offering a range of commonly used operating systems. Once deployed and tested, the virtual machines are archived to preserve the software within.

In addition, some participants agreed to share their code so that we decided to collect the respective projects in an open source repository hosted on GitHub.\(^9\)

5 Baseline System

We prepared a set of baseline models using UDPipe 1.2 (Straka and Straková, 2017).

The baseline models were released together with the UD 2.2 training data. For each of the 73 treebanks with non-empty training data we trained one UDPipe model, utilizing training data for training and development data for hyperparameter tuning. If a treebank had no development data, we cut 10% of the training sentences and considered it as development data for the purpose of tuning hyperparameters of the baseline model (employing only the remainder of the original training data for the actual training in that case).

In addition to the treebank-specific models, we also trained a “mixed model” on samples from all treebanks. Specifically, we utilized the first 200 training sentences of each treebank (or less in case of small treebanks) as training data, and at most 20 sentences from each treebank’s development set as development data.

The baseline models, together with all information needed to replicate them (hyperparameters, the modified train-dev split where applicable, and pre-computed word embeddings for the parser) are available from http://hdl.handle.net/11234/1-2859.

Additionally, the released archive also contains the training and development data with predicted morphology. Morphology in development data was predicted using the baseline models, morphology in training data via “jack-knifing” (split the training set into 10 parts, train a model on 9 parts, use it to predict morphology in the tenth part, repeat for all 10 target parts). The same hyperparameters were used as those used to train the baseline model on the entire training set.

The UDPipe baseline models are able to reconstruct nearly all annotation from CoNLL-U files – they can generate segmentation, tokenization,
Treebank without training data	Substitution model
Breton KEB	mixed model
Czech PUD	Czech PDT
English PUD	English EWT
Faroese OFT	mixed model
Finnish PUD	Finnish TDT
Japanese Modern	Japanese GSD
Naija NSC	mixed model
Swedish PUD	Swedish Talbanken
Thai PUD	mixed model

Table 5: Substitution models of the baseline systems for treebanks without training data.

multi-word token splitting, morphological annotation (lemmas, UPOS, XPOS and FEATS) and dependency trees. Participants were free to use any part of the model in their systems – for all test sets, we provided UDPipe processed variants in addition to raw text inputs.

Baseline UDPipe Shared Task System The shared task baseline system employs the UDPipe 1.2 baseline models. For the nine treebanks without their own training data, a substitution model according to Table 5 was used.

6 Results

6.1 Official Parsing Results

Table 6 gives the main ranking of participating systems by the LAS F$_1$ score macro-averaged over all 82 test files. The table also shows the performance of the baseline UDPipe system; 17 of the 25 systems managed to outperform it. The baseline is comparatively weaker than in the 2017 task (only 12 out of 32 systems beat the baseline there). The ranking of the baseline system by MLAS is similar (Table 7) but in BLEX, the baseline jumps to rank 13 (Table 8). Besides the simple explanation that UDPipe 1.2 is good at lemmatization, we could also hypothesize that some teams put less effort in building lemmatization models (see also the last column in Table 10).

Each ranking has a different winning system, although the other two winners are typically closely following. The same 8–10 systems occupy best positions in all three tables, though with variable mutual ranking. Some teams seem to have deliberately neglected some of the evaluated attributes: Uppsala is rank 7 in LAS and MLAS, but 24 in BLEX; IBM NY is rank 13 in LAS but 24 in MLAS and 23 in BLEX.

While the LAS scores on individual treebanks are comparable to the 2017 task, the macro average is not, because the set of treebanks is different, and the impact of low-resource languages seems to be higher in the present task.

We used bootstrap resampling to compute 95% confidence intervals: they are in the range ±0.11 to ±0.16 (% LAS/MLAS/BLEX) for all systems except SParse (where it is ±0.00).
Table 7: Ranking of the participating systems by MLAS, macro-averaged over 82 test sets. Pairs of systems with significantly \((p < 0.05)\) different MLAS are separated by a line.

Team	MLAS
1. UDPipe Future (Praha)	61.25
2. TurkuNLP (Turku)	60.99
Stanford (Stanford)	60.92
4. ICS PAS (Warszawa)	60.25
5. CEA LIST (Paris)	59.92
6. HIT-SCIR (Harbin)	59.78
7. Uppsala (Uppsala)	59.20
8. NLP-Cube (București)	57.32
9. LATTICE (Paris)	57.01
10. AntNLP (Shanghai)	55.92
11. ParisNLP (Paris)	55.74
12. SLT-Interactions (Bengaluru)	54.52
13. LeisureX (Shanghai)	53.70
UniMelb (Melbourne)	53.62
15. KParse (Istanbul)	52.26
16. Fudan (Shanghai)	52.69
17. BASELINE UDPipe 1.2	52.42
Phoenix (Shanghai)	52.26
19. BOUN (Istanbul)	50.40
CUNI x-ling (Praha)	50.35
21. ONLP lab (Ra’anana)	46.09
22. iParse (Pittsburgh)	45.65
23. HUJI (Yerushalayim)	44.60
24. IBM NY (Yorktown Heights)	40.61
25. ArmParser (Yerevan)	36.28
26. SParse (Istanbul)	1.68

We used paired bootstrap resampling to compute whether the difference between two neighboring systems is significant \((p < 0.05)\).\(^{10}\)

6.2 Secondary Metrics

In addition to the main LAS ranking, we evaluated the systems along multiple other axes, which may shed more light on their strengths and weaknesses. This section provides an overview of selected secondary metrics for systems matching or surpassing the baseline: a large number of additional results are available at the shared task website.\(^{11}\)

The website also features a LAS ranking of unofficial system runs, i.e. those that were not marked by their teams as primary runs, or were even run after the official evaluation phase closed and test data were unblinded. The difference from the official results is much less dramatic than in 2017, with the exception of the team SParse, who managed to fix their software and produce more valid output files.

As an experiment, we also applied the 2017 system submissions to the 2018 test data. This allows us to test how many systems can actually be used to produce new data without a glitch, as well as to see to what extent the results change over one year and two releases of UD. Here it should be noted that not all of the 2018 task languages and treebanks were present in the 2017 task, therefore causing many systems fail due to an unknown language or treebank code. The full results of this

\(^{10}\)Using Udapi (Popel et al., 2017) eval.Conll18, marked by the presence or absence of horizontal lines in Tables 6–8.

\(^{11}\)http://universaldependencies.org/conll18/results.html
Table 9: Tokenization, word segmentation and sentence segmentation (ordered by word F1 scores; out-of-order scores in the other two columns are bold).

Team	Toks	Wrds	Sents
1. Uppsala	97.60	98.18	83.80
2. HIT-SCIR	98.42	98.12	83.87
3. CEA LIST	98.16	97.78	82.79
4. CUNI-x-ling	98.09	97.74	82.80
5. TurkuNLP	97.83	97.42	83.03
6. SLT-Interactions	97.51	97.09	83.01
7. UDPipe Future	97.46	97.04	83.64
8. Phoenix	97.46	97.03	82.91
9. BASELINE UDPipe	97.39	96.97	83.01
ParisNLP	97.39	96.97	83.01
AntNLP	97.39	96.97	83.01
UniMelb	97.39	96.97	83.01
BOUN	97.39	96.97	83.01
ICS PAS	97.39	96.97	83.01
LATTICE	97.39	96.97	83.01
LeisureX	97.39	96.97	83.01
KParse	97.39	96.97	83.01
18. Fudan	97.38	96.96	82.85
19. IBM NY	97.30	96.92	83.51
20. ONLP lab	97.28	96.86	83.00
21. NLP-Cube	97.36	96.80	82.55
22. Stanford	96.19	95.99	76.55
23. HUJI	94.95	94.61	80.84
24. ArmParser	79.75	79.41	13.33
25. iParse	78.45	78.11	68.37
26. SParse	2.32	2.32	2.34

Table 10: Universal POS tags, features and lemmas (ordered by UPOS F1 scores; out-of-order scores in the other two columns are bold).

Team	UPOS	Feats	Lemm
1. Uppsala	90.91	87.59	58.50
2. HIT-SCIR	90.19	84.24	88.82
3. CEA LIST	89.97	86.83	89.90
4. TurkuNLP	89.81	86.70	91.24
5. LATTICE	89.53	83.74	87.84
6. UDPipe Future	89.37	86.67	89.32
7. Stanford	89.01	85.47	88.32
8. ICS PAS	88.70	85.14	87.99
9. CUNI-x-ling	88.68	84.56	87.84
10. NLP-Cube	88.50	85.08	81.21
11. SLT-Interactions	88.12	83.72	87.51
12. IBM NY	88.02	59.11	59.51
13. UniMelb	87.90	83.74	87.84
14. KParse	87.62	84.32	86.26
15. Phoenix	87.49	83.87	87.69
16. ParisNLP	87.35	83.74	87.84
17. BASELINE UDPipe	87.32	83.74	87.84
AntNLP	87.32	83.74	87.84
19. ONLP lab	87.25	83.67	57.10
20. Fudan	87.25	83.47	85.91
21. BOUN	87.19	83.73	87.68
22. LeisureX	87.15	83.46	87.77
23. HUJI	85.06	81.51	85.61
24. ArmParser	72.99	69.91	72.22
25. iParse	71.38	68.64	71.68
26. SParse	2.25	2.29	2.28

Table 9 evaluates detection of tokens, syntactic words and sentences. About a third of the systems trusted the baseline segmentation; this is less than in 2017. For most languages and in aggregate, the segmentation scores are very high and their impact on parsing scores is not easy to prove; but it likely played a role in languages where segmentation is hard. For example, HIT-SCIR’s word segmentation in Vietnamese surpasses the second system by a margin of 6 percent points; likewise, the system’s advantage in LAS and MLAS (but not in BLEX!) amounts to 7–8 points. Similarly, Uppsala and ParisNLP achieved good segmentation scores (better than their respective macro-averages) on Arabic. They were able to translate it into better LAS, but not MLAS and BLEX, where there were too many other chances to make an error.

The complexity of the new metrics, especially MLAS, is further underlined by Table 10: Uppsala is the clear winner in both UPOS tags and morphological features, but 6 other teams had better dependency relations and better MLAS. Note that as with segmentation, morphology predicted by the baseline system was available, though only a few systems seem to have used it without attempting to improve it.

6.3 Partial Results

Table 11 gives the three main scores averaged over the 61 “big” treebanks (training data larger than

10
Table 11: Average LAS on the 61 “big” treebanks (ordered by LAS F_1 scores; out-of-order scores in the other two columns are bold).

Team	LAS	MLAS	BLEX
1. HIT-SCIR	84.37	70.12	75.05
2. Stanford	83.03	72.67	75.46
3. TurkuNLP	81.85	71.27	75.83
4. UDPipe Future	81.83	71.71	74.67
5. ICS PAS	81.72	72.30	74.42
6. CEA LIST	81.66	70.89	72.32
7. LATTICE	80.97	66.27	71.50
8. NLP-Cube	80.48	67.79	64.76
9. ParisNLP	80.29	65.88	70.95
10. Uppsala	80.25	68.81	60.62
11. SLT-Interactions	79.67	64.95	69.77
12. AntNLP	79.61	65.43	70.34
13. LeisureX	77.98	63.79	68.55
14. UniMelb	77.69	61.17	68.25
15. IBM NY	77.55	57.34	64.68
16. Fudan	75.42	62.28	62.90
17. KParse	74.84	62.40	63.84
18. BASELINE UDPipe	74.14	61.27	64.67
19. Phoenix	73.93	61.12	64.47
20. BOUN	72.85	60.00	62.99
21. CUNI x-ling	71.54	58.33	61.63
22. ONLP lab	67.08	55.20	33.08
23. iParse	66.55	55.37	58.80
24. HUJI	62.07	53.20	56.90
25. ArmParser	58.14	48.57	49.25
26. SParse	2.63	2.26	2.30

Table 12: Average LAS, MLAS and BLEX on the 9 low-resource languages: Armenian (hy), Breton (br), Buryat (bxr), Faroese (fo), Kazakh (kk), Kurmanji (kmr), Naija (pcm), Thai (th) and Upper Sorbian (hsb) (ordered by LAS F_1 scores; out-of-order scores in the other two columns are bold).

Team	LAS	MLAS	BLEX
1. CUNI x-ling	27.89	6.13	13.98
2. Uppsala	25.87	5.16	9.03
3. CEA LIST	23.90	3.75	10.99
4. HIT-SCIR	23.88	2.88	10.50
5. LATTICE	23.39	4.38	10.01
6. TurkuNLP	22.91	3.59	11.40
7. IBM NY	21.88	2.62	7.17
8. UDPipe Future	21.75	2.82	8.80
9. ICS PAS	19.26	1.89	6.17
10. AntNLP	18.59	3.43	8.61
11. KParse	17.84	3.32	6.58
12. SLT-Interactions	17.47	1.79	6.95
13. Stanford	17.45	2.76	7.63
14. BASELINE UDPipe	17.17	3.44	7.63
15. UniMelb	17.17	3.44	7.63
16. LeisureX	17.16	3.43	7.63
17. Phoenix	16.99	3.02	8.00
18. NLP-Cube	16.85	3.39	7.05
19. ParisNLP	16.52	2.53	6.75
20. ONLP lab	15.98	3.58	4.96
21. Fudan	15.45	2.98	6.61
22. BOUN	14.78	2.59	6.43
23. HUJI	8.53	0.92	2.77
24. ArmParser	7.47	1.86	3.54
25. iParse	2.82	0.23	0.97
26. SParse	0.00	0.00	0.00

Test data, development data available. Higher scores reflect the fact that models for these test sets are easier to learn: enough data is available, no cross-lingual or cross-domain learning is necessary (the extra test sets are not included here). Regarding ranking, the Stanford system makes a remarkable jump when it does not have to carry the load of underresourced languages: from rank 8 to 2 in LAS, from 3 to 1 in MLAS and from 5 to 2 in BLEX.

Table 12 gives the LAS F_1 score on the nine low-resource languages only. Here we have a true specialist: The team CUNI x-ling lives up to its name and wins in all three scores, although in the overall ranking they fall even slightly behind the baseline. On the other hand, the scores are extremely low and the outputs are hardly useful for any downstream application. Especially morphology is almost impossible to learn from foreign languages, hence the much lower values of MLAS and BLEX. BLEX is a bit better than MLAS, which could be explained by cases where a word form is identical to its lemma. However, there are significant language-by-language differences: the best LAS on Faroese and Upper Sorbian surpassing 45%. This probably owes to the presence of many Germanic and Slavic treebanks in training data, including some of the largest datasets in UD. Three languages, Buryat, Kurmanji and Upper Sorbian, were introduced in the 2017 task as
Table 13: Average attachment score on the 7 small treebanks: Galician TreeGal, Irish, Latin Perseus, North Sámi, Norwegian Nynorsk LIA, Russian Taiga and Slovenian SST (ordered by LAS F_1 scores; out-of-order scores in the other two columns are bold).

Team	LAS	MLAS	BLEX
1. HIT-SCIR	69.53	45.94	53.30
2. LATTICE	68.12	45.03	51.71
3. ICS PAS	66.90	49.24	54.89
4. TurkuNLP	64.48	47.63	53.54
5. UDPipe Future	64.21	47.53	49.53
6. AntNLP	63.73	42.24	48.31
7. Uppsala	63.60	46.00	29.25
8. ParisNLP	60.84	40.71	46.08
9. CEA LIST	57.34	39.97	43.39
10. KParse	57.32	39.20	43.61
11. SLT-Interactions	56.74	35.73	42.90
12. IBM NY	56.13	26.51	25.23
13. UniMelb	56.12	36.09	42.09
14. BASELINE UDPipe	55.01	38.80	41.06
LeisureX	55.01	38.80	41.06
17. Phoenix	54.63	38.38	40.72
Fudan	54.63	38.15	40.07
19. CUNI x-ling	54.33	38.10	40.70
20. BOUN	50.18	34.29	36.75
21. Stanford	48.56	34.86	38.55
22. ONLP lab	47.49	32.74	22.39
23. iParse	38.79	28.03	29.62
24. HUJI	36.74	24.47	27.70
25. ArmParser	34.54	22.94	25.26
26. SParse	0.00	0.00	0.00

Table 14: Average attachment score on the 5 additional test sets for high-resource languages: Czech PUD, English PUD, Finnish PUD, Japanese Modern and Swedish PUD (ordered by LAS F_1 scores; out-of-order scores in the other two columns are bold).

Team	LAS	MLAS	BLEX
1. HIT-SCIR	74.20	55.52	62.34
2. Stanford	73.14	58.75	61.96
3. LATTICE	72.34	55.60	60.42
4. Uppsala	72.27	57.80	29.73
5. ICS PAS	72.18	58.07	60.97
6. TurkuNLP	71.78	57.54	63.25
7. UDPipe Future	71.57	57.93	61.52
8. CEA LIST	70.45	54.99	57.83
9. NLP-Cube	69.83	55.01	54.15
10. IBM NY	69.40	46.59	38.12
11. AntNLP	68.87	53.47	57.71
12. UniMelb	68.72	52.05	56.77
13. Phoenix	66.97	52.26	55.69
14. BASELINE UDPipe	66.63	51.75	54.87
LeisureX	66.55	51.29	54.45
17. SLT-Interactions	64.73	48.47	54.90
18. CUNI x-ling	64.70	49.71	52.72
19. ParisNLP	64.09	48.79	53.16
20. LeisureX	61.05	41.95	50.60
21. BOUN	56.46	41.91	45.12
22. HUJI	56.35	46.52	50.10
23. iParse	44.20	33.43	38.18
24. ONLP lab	43.33	30.20	20.08
25. ArmParser	0.00	0.00	0.00
SParse	0.00	0.00	0.00

Table 13: Average attachment score on the 7 small treebanks: Galician TreeGal, Irish, Latin Perseus, North Sámi, Norwegian Nynorsk LIA, Russian Taiga and Slovenian SST (ordered by LAS F_1 scores; out-of-order scores in the other two columns are bold).

Surprise languages and had higher scores there.\(^{13}\)
This is because in 2017, the segmentation, POS tags and morphology UDPipe models were trained on the test data, applied to it via cross-validation, and made available to the systems. Such an approach makes the conditions unrealistic, therefore it was not repeated this year. Consequently, parsing these languages is now much harder.

In contrast, the results on the 7 treebanks with “small” training data and no development data (Table 13) are higher on average, but again the variance is significant. The smallest treebank in the group, Norwegian Nynorsk LIA, has only 3583 training words. There are two larger Norwegian treebanks that could be used as additional training sources. However, the LIA treebank consists of spoken dialects and is probably quite dissimilar to the other treebanks. The same can be said about Slovenian SST and the other Slovenian treebank; SST is the most difficult dataset in the group, despite of having almost 20K of its own training words. Other treebanks, like Russian Taiga and Galician TreeGal, have much better scores (74% LAS, about 61% MLAS and 64% BLEX). There are also two treebanks that are the sole representatives of their languages: Irish and North Sámi. Their best LAS is around 70%: com-

\(^{13}\)The fourth surprise language, North Sámi, has now additional training data and does not fall in the low-resource category.
parable to Nynorsk LIA but much better than SST. ICS PAS is the most successful system in the domain of small treebanks, especially when judged by MLAS and BLEX.

Table 14 gives the average LAS on the 5 extra test sets (no own training data, but other treebanks of the same language exist). Four of them come from the Parallel UD (PUD) collection introduced in the 2017 task (Zeman et al., 2017). The fifth, Japanese Modern, turned out to be one of the toughest test sets in this shared task. There is another Japanese treebank, GSD, with over 160K training tokens, but the Modern dataset seems almost inapplicable with models trained on GSD. A closer inspection reveals why: despite its name, it is actually a corpus of historical Japanese, although from the relatively recent Meiji and Taishō periods (1868−1926). An average sentence in GSD is about 1.3× longer than in Modern. GSD has significantly more tokens tagged as auxiliaries, but more importantly, the top ten AUX lemmas in the two treebanks are completely disjoint sets. Some other words are out-of-vocabulary because their preferred spelling changed. For instance, the demonstrative pronoun sore is written using hiragana in GSD, but a kanji character is used in Modern. Striking differences can be observed also in dependency relations: in GSD, 3.7% relations are nsubj (subject), and 1.2% are cop (copula). In Modern, there is just 0.13% of subjects, and not a single occurrence of a copula.

See Tables 15, 16 and 17 for a ranking of all test sets by the best scores achieved on them by any parser. Note that this cannot be directly interpreted as a ranking of languages by their parsing difficulty: many treebanks have high ranks simply because the corresponding training data is large. Table 18 compares average LAS and MLAS for each treebank.

Finally, Tables 19 and 20 show the treebanks where word and sentence segmentation was extremely difficult (judged by the average parser score). Not surprisingly, word segmentation is difficult for the low-resource languages and for languages like Chinese, Vietnamese, Japanese and Thai, where spaces do not separate words. Notably the Japanese GSD set is not as difficult, but whoever trusted it, crashed on the “Modern” set. Sentence segmentation was particularly hard for treebanks without punctuation, i.e., most of the classical languages and spoken data.

Table 15: Treebank ranking by best parser LAS (Avg=average LAS over all systems, out-of-order scores in bold).
Treebank	MLAS	Best system	Avg	SDev
1. pl_dig	86.97	UDpipe Future	73.75	7.29
2. my_ antigua	86.76	UDpipe Future	71.61	9.36
3. py	85.84	UDpipe Future	78.84	6.33
4. es_tree	84.23	IPS AS	69.91	7.77
5. ca_ancora	84.07	UD pipe Future	74.82	7.69
6. dut	83.95	Stanford	74.90	7.41
7. id	83.89	Stanford	77.14	8.89
8. fr_gsd	83.87	Stanford	68.12	9.86
9. de_johlma	83.60	UDpipe Future	76.78	8.93
10. es_gie	83.42	UDpipe Future	71.39	8.61
11. bg_jh	83.32	UDpipe Future	73.18	7.11
12. fr_scorapia	82.55	Stanford	70.42	9.04
13. sl_jajk	82.38	Stanford	62.41	9.18
14. no_gyorsk	81.86	UDpipe Future	68.62	9.45
15. ko_kjast	81.29	HST-SCR	70.16	9.36
16. ko_gsd	80.83	HST-SCR	63.75	16.02
17. id_jh	80.84	Stanford	65.27	9.22
18. it prerazi	80.83	UDpipe Future	71.28	7.77
19. pl_jaz	80.77	Stanford	64.80	8.49
20. fr_grecem	80.25	UDpipe Future	65.19	16.58
21. fr_jibh	79.84	IPS AS	67.77	8.35
22. fr_lfib	79.63	TurkNLP	66.11	8.86
23. sv_jahanken	79.52	Stanford	68.05	8.49
24. sv_gpt	78.86	TurkNLP	67.45	7.24
25. el_gol	78.66	Stanford	64.29	8.28
26. fr_gsd	78.44	Stanford	69.38	8.59
27. cs_dadh	78.31	TurkNLP	64.19	7.74
28. cs_gse	77.73	UDpipe Future	67.35	5.96
29. da_djih	77.31	Stanford	65.00	6.89
30. en_gol	76.97	TurkNLP	65.39	8.34
31. nl_alpino	76.52	Stanford	62.82	9.81
32. en_gwiz	76.33	Stanford	68.82	12.64
33. es_bosque	75.94	Stanford	67.05	8.03
34. es_gud	75.81	UDpipe Future	60.47	11.36
35. fr_albooms	75.80	DDT	70.03	5.96
36. it_jok	75.05	Stanford	56.82	8.32
37. en_gus	74.86	Stanford	63.05	7.89
38. nl_jassmall	74.19	Stanford	61.99	9.12
39. id_post	74.74	Stanford	60.09	7.97
40. en_guem	73.24	IPS AS	61.72	7.69
41. ja_gsd	72.82	HST-SCR	59.32	6.20
42. uk_gu	72.27	UDpipe Future	55.45	8.08
43. en_lines	72.25	IPS AS	62.35	8.04
44. en_jd	71.73	Stanford	58.49	8.62
45. de_leit	70.95	Stanford	57.92	14.10
46. ar_gud	68.54	Stanford	53.28	6.12
47. it_positiva	68.50	Stanford	51.72	8.80
48. it_gud	68.56	Stanford	61.03	8.59
49. lv_jzeh	67.69	Stanford	53.11	7.96
50. hu_gareged	67.14	UDpipe Future	53.08	8.01
51. zh_gzh	66.62	HST-SCR	50.52	8.77
52. sv_jinimes	66.58	Stanford	57.40	7.43
53. fr_zoeken	64.87	IPS AS	57.11	5.87
54. fr_gst	63.58	Stanford	59.33	8.13
55. cu_goziel	63.31	Stanford	50.28	6.69
56. ru_maja	61.59	IPS AS	37.16	7.53
57. fr_groel	60.66	DDT	47.36	6.56
58. gr_groel	60.27	Stanford	47.62	11.82
59. ha_groel	59.36	Stanford	47.79	6.90
60. fr_gud	58.04	Stanford	39.12	10.35
61. ur_gudh	57.94	TurkNLP	49.64	4.21
62. no_gynorskhi	57.73	IPS AS	37.08	7.78
63. sm_gzeilia	57.47	TurkNLP	38.28	12.37
64. got_groel	56.43	UDpipe Future	48.16	5.36
65. tr_zjim	55.73	Stanford	45.28	6.15
66. gr_grenius	54.89	HST-SCR	35.65	12.31
67. sv_gud	51.74	TurkNLP	39.41	7.78
68. la_grenius	49.77	Stanford	28.67	8.06
69. it_gud	47.65	Stanford	34.23	7.25
70. sl_jast	45.93	IPS AS	33.12	5.53
71. ga_gud	45.59	TurkNLP	35.70	5.18
72. sq_gud	45.78	Stanford	35.06	5.96
73. he_keb	1.391	Uppsala	1.52	3.34
74. hy_arnemp	1.363	CUNI x-ling	5.94	2.92
75. is_madoreen	1.185	Uppsala	6.48	1.99
76. hy_arnemp	0.999	LATTICE	4.66	2.37
77. kk_kjeb	0.891	CUNI x-ling	5.04	2.34
78. km_ajneg	0.797	HST-SCR	4.16	3.01
79. th_gud	0.629	CUNI x-ling	0.42	1.27
80. pc棺	0.546	KFAS	0.30	1.39
81. hu_gud	0.299	ANL	0.13	0.73
82. fr_libh	0.107	CUNI x-ling	0.37	0.21

Table 16: Treebank ranking by best parser MLAS. Table 17: Treebank ranking by best parser BLEX.
Table 19: Treebanks with most difficult word segmentation (by average parser F1).

Treebank	Best system	Avg	StDev
70. bxml	IBM NY	88.64	±0.09
71. f1tud	Uppsala	88.13	±10.81
72. zh-gsd	HIT-SCIR	86.91	±3.83
73. en-gsd	Uppsala	86.76	±10.68
74. fr_torf	CUNI x-ling	86.62	±7.00
75. kmr-ng	Uppsala	86.51	±7.05
76. kk-tk	Uppsala	85.55	±7.45
77. br_kerb	TurkuNLP	85.86	±3.80
78. he-tb	Stanford	85.71	±7.37
79. vi_vtb	Stanford	85.90	±3.70
80. pcnpsc	CEA LIST	79.94	±10.69
81. ja_modern			
82. th_tuda	Uppsala	17.16	±20.57

Table 20: Treebanks with most difficult sentence segmentation (by average parser F1).

Treebank	Best system	Avg	StDev
73. gnc-proiel		42.46	±7.33
74. cu_proiel	Stanford	35.54	±4.02
75. la_proiel	Stanford	33.40	±5.39
76. got_proiel	Stanford	27.22	±4.47
77. it_titela	Stanford	25.25	±14.30
78. sl_sst	NLP-Cube	20.92	±4.70
79. fr_speech	Stanford	20.43	±2.89
80. th_tud	TurkuNLP	1.75	±3.68
81. pcmpsc	Stanford	0.06	±0.19
82. ja_modern		0.01	±0.04

7 Analysis of Submitted Systems

Table 21 gives an overview of 24 of the systems evaluated in the shared task. The overview is based on a post-evaluation questionnaire to which 24 of 25 teams responded. Systems are ordered alphabetically by name and their LAS rank is indicated in the second column.

Looking first at word and sentence segmentation, we see that, while a clear majority of systems (19/24) rely on the baseline system for segmentation, slightly more than half (13/24) have developed their own segmenter, or tuned the baseline segmenter, for at least a subset of languages. This is a development from 2017, where only 7 out of 29 systems used anything other than the baseline segmenter.

When it comes to morphological analysis, including universal POS tags, features and lemmas, all systems this year include some such component, and only 6 systems rely entirely on the base-
Table 21: Classification of participating systems. \textbf{R} = LAS ranking. \textbf{Segment} = word/sentence segmentation. \textbf{Morph} = morphological analysis, including universal POS tags [U], features [F] and lemmas [L], with subscripts for subsets [Joint = morphological component trained jointly with syntactic parser]. \textbf{Syntax} = syntactic parsing [Single = single parser; Ensemble (or Ens) = parser ensemble; G = graph-based; T = transition-based]. \textbf{WEmb} = pre-trained word embeddings [FB = Facebook; Crawl = trained on web crawl data provided by the organizers; Wiki = trained on Wikipedia data; Train = trained on treebank training data]. \textbf{Additional Data} = data used in addition to treebank training sets [OPUS (or O) = OPUS, Aper = Apertium morphological analysers, Wikit = Wiktionary, Wiki = Wikipedia, UM = UniMorph, UML = Universal Morphological Lattices, WALS = World Atlas of Language Structures]. \textbf{MultiLing} = multilingual models used for low-resource (L) or small (S) languages. In all columns, Base (or B) refers to the Baseline UDPipe system or the baseline word embeddings provided by the organizers, while None means that there is no corresponding component in the system.

System	R	Segment	Morph	Syntax	WEmb	Additional Data	MultiLing	
AntNLP	9	Base	Base	Single-G	FB	None	OwnS	
ArmParser	25	Base	Own	Single	FB	None	None	
BOUN	21	Base	Base	Single-T	Base	None	None	
CEA LIST	6	Base	B/L/Own	Single-G/T	B/FB	OPUS/Wikt	OwnL	
CUNI x-ling	20	B/Own	B/Own	Single/Ens	FB/None	O/UM/WALS/Wiki	OwnL_S	
Fudan	17	Base	Base	Ensemble	None	None	OwnL_S	
HIT-SCIR	1	B/Own	Base	Ensemble	B/FB	Crawl	OwnL_S	
HUJI	24	Base	Base	Single-T	FB	None	OwnL	
IBM NY	13	B/Own	B/Joint	Ensemble-T	B/FB	Wiki	OwnL_S	
ICS PAS	3	Base	Own	Single-G	FB/None	None	None	
KParse	16	B/Own	Own	Single	Other	None	OwnL	
LATTICE	3	Base	OwnU	Single-G/Ens	B/FB	Crawl	OwnL_S	
LeisureX	15	Base	Own	Single	Base	None	OwnL	
NLP-Cube	9	Own	Own	Single	FB	None	OwnL	
ONLP lab	22	Base	Base	Single-T	None	UML	None	
ParisNLP	11	B/Own	B/Own	Single-G	FB	UML	OwnL	
Phoenix	19	Own	OwnU	Single	Train	None	OwnL	
SLT-Interactions	12	B/Own	Own	Single	Single-Crawl	None	None	OwnL
SParse	26	B/Own	Own	Single-G	Crawl	None	OwnL	
Stanford	7	Own	Own	Single-G	B/FB	None	None	
TurkuNLP	2	B/Own	Own	Single-G	B/FB	OPUS/Aper	OwnL	
UDPipe Future	3	Own	Joint	Single-G	B/FB	None	None	
UniMelb	14	Base	Joint	Single	Base	None	Base	
Uppsala	7	Own	OwnU,F	Single-T	B/FB	Wiki/OPUS/Wikt	OwnL_S	

Table 21: Classification of participating systems. R = LAS ranking. Segment = word/sentence segmentation. Morph = morphological analysis, including universal POS tags [U], features [F] and lemmas [L], with subscripts for subsets [Joint = morphological component trained jointly with syntactic parser]. Syntax = syntactic parsing [Single = single parser; Ensemble (or Ens) = parser ensemble; G = graph-based; T = transition-based]. WEmb = pre-trained word embeddings [FB = Facebook; Crawl = trained on web crawl data provided by the organizers; Wiki = trained on Wikipedia data; Train = trained on treebank training data]. Additional Data = data used in addition to treebank training sets [OPUS (or O) = OPUS, Aper = Apertium morphological analysers, Wikit = Wiktionary, Wiki = Wikipedia, UM = UniMorph, UML = Universal Morphological Lattices, WALS = World Atlas of Language Structures]. MultiLing = multilingual models used for low-resource (L) or small (S) languages. In all columns, Base (or B) refers to the Baseline UDPipe system or the baseline word embeddings provided by the organizers, while None means that there is no corresponding component in the system.

This is again quite different from 2017, where more than half the systems either just relied on the baseline tagger (13 systems) or did not predict any morphology at all (3 systems). We take this to be primarily a reflection of the fact that two out of three official metrics included (some) morphological analysis this year, although 3 systems did not predict the lemmas required for the BLEX metric (and 2 systems only predicted universal POS tags, no features). As far as we can tell from the questionnaire responses, only 3 systems used a model where morphology and syntax were predicted jointly.

For syntactic parsing, most teams (19) use a single parsing model, while 5 teams, including the winning HIT-SCIR system, build ensemble models, either for all languages or a subset of them. When it comes to the type of parsing model, we observe that graph-based models are more popular than transition-based models this year, while the opposite was true in 2017. We hypothesize that...

14 The ONLP lab system also has a joint model but in the end used the baseline morphology as it gave better results.
this is due to the superior performance of the Stanford graph-based parser in last year’s shared task, and many of the high-performing systems this year either incorporate that parser or a reimplementation of it.15

The majority of parsers make use of pre-trained word embeddings. Most popular are the Facebook embeddings, which are used by 17 systems, followed by the baseline embeddings provided by the organizers (11), and embeddings trained on web crawl data (4).16 When it comes to additional data, over and above the treebank training sets and pre-trained word embeddings, the most striking observation is that a majority of systems (16) did not use any at all. Those that did primarily used OPUS (5), Wikipedia dumps (3), Apertium morphological analyzers (2), and Universal Morphological Lattices (2). The CUNI x-ling system, which focused on low-resource languages, also exploited UniMorph and WALS (in addition to OPUS and Wikipedia).

Finally, we note that a majority of systems make use of models trained on multiple languages to improve parsing for languages with little or no training data. According to the questionnaire responses, 15 systems use multilingual models for the languages classified as “low-resource”, while 7 systems use them for the languages classified as “small”.17 Only one system relied on the baseline delexicalized parser trained on data from all languages.

8 Conclusion

The CoNLL 2018 Shared Task on UD parsing, the second in the series, was novel in several respects. Besides using cross-linguistically consistent linguistic representations, emphasizing end-to-end processing of text, and in using a multiply parallel test set, as in 2017, it was unusual also in featuring an unprecedented number of languages and treebanks and in integrating cross-lingual learning for resource-poor languages. Compared to the first edition of the task in 2017, this year several languages were provided with little-to-no resources, whereas in 2017, predicted morphology trained on the language in question was available for all of the languages. The most extreme example of these is Thai, where the only accessible resource was the Facebook Research Thai embeddings model and the OPUS parallel corpora. This year’s task also introduced two additional metrics that take into account morphology and lemmatization. This encouraged the development of truly end-to-end full parsers, producing complete parses including morphological features and lemmas in addition to the syntactic tree. This also aimed to improve the utility of the systems developed in the shared task for later downstream applications. For most UD languages, these parsers represent a new state of the art for end-to-end dependency parsing.

The analysis of the shared task results has so far only scratched the surface, and we refer to the system description papers for more in-depth analysis of individual systems and their performance. For many previous CoNLL shared tasks, the task itself has only been the starting point of a long and fruitful research strand, enabled by the resources created for the task. We hope and believe that the 2017 and 2018 UD parsing tasks will join this tradition.

Acknowledgments

We are grateful to all the contributors to Universal Dependencies; without their effort a task like this simply wouldn’t be possible.

The work described herein, including data preparation for the CoNLL 2018 UD Shared Task, has been supported by the following grants and projects: “CRACKER,” H2020 Project No. 645357 of the European Commission; “MANYLA,” Grant No. GA15-10472S of the Grant Agency of the Czech Republic; FIN-CLARIN; and the LINDAT/CLARIN research infrastructure project funded by the Ministry of Education, Youth and Sports of the Czech Republic, Project. No. LM2015071. The data for the CoNLL 2018 UD Shared Task are available also via the LINDAT/CLARIN repository.

References

Gor Arakelyan, Karen Hambardzumyan, and Hrant Khachatrian. 2018. Towards JointUD: Part-of-speech tagging and lemmatization using recurrent neural networks. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computational Linguistics.

Riyaz Ahmad Bhat, Irshad Ahmad Bhat, and Srinivas Bangalore. 2018. The SLT-Interactions parsing system at the CoNLL 2018 shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vectors with subword information arXiv preprint arXiv:1607.04606.

Tiberiu Boros, Stefan Daniel Dumitrescu, and Ruxandra Burtica. 2018. NLP-Cube: End-to-end raw text processing with neural networks. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X). Association for Computational Linguistics, pages 149–164. http://anthology.aclweb.org/W/W06/W06-29.pdf#page=165.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, and Ting Liu. 2018. Towards better UD parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Danlu Chen, Mengxiao Lin, Zhifeng Hu, and Xipeng Qiu. 2018. A simple yet effective joint training method for cross-lingual universal dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Elie Duthoo and Olivier Mesnard. 2018. CEA LIST: Processing low-resource languages for CoNLL 2018. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Murhaf Fares, Stephan Oepen, Lilja Øvrelid, Jari Björne, and Richard Johansson. 2018. The 2018 shared task on extrinsic parser evaluation: On the downstream utility of English universal dependency parsers. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics, Brussels, Belgium.

Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan Straka, and Daniel Zeman. 2017. CoNLL 2017 shared task - automatically annotated raw texts and word embeddings. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics, Charles University. http://hdl.handle.net/11234/1-1989.

Allan Hanbury, Henning Müller, Krisztian Balog, Torben Brodt, Gordon V. Cormack, Ivan Eggel, Tim Gollub, Frank Hopfgartner, Jayashree Kalpathy-Cramer, Noriko Kando, Anastasia Krithara, Jimmy Lin, Simon Mercer, and Martin Potthast. 2015. Evaluation-as-a-Service: Overview and Outlook. ArXiv e-prints http://arxiv.org/abs/1512.07454.

Daniel Hershcovitch, Omri Abend, and Ari Rappoport. 2018. Universal dependency parsing with a general transition-based DAG parser. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Ganesh Jawahar, Benjamin Muller, Amal Fethi, Louis Martin, Eric de La Clergerie, Benoît Sagot, and Djamé Seddah. 2018. ELMoLex: Connecting ELMo and lexicon features for dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Tao Ji, Yufang Liu, Yijun Wang, Yuanbin Wu, and Man Lan. 2018. AntNLP at CoNLL 2018 shared task: A graph-based parser for universal dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Jenna Kanerva, Filip Ginter, Niko Mieka, Akseli Leino, and Tapio Salakoski. 2018. Turku neural parser pipeline: An end-to-end system for the CoNLL 2018 shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Ömer Kırnap, Erenay Dayanık, and Deniz Yuret. 2018. Tree-stack LSTM in transition based dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Zuchao Li, Shexia He, Zhusong Zhang, and Hai Zhao. 2018. Joint learning of pos and dependencies for multilingual universal dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

KyungTae Lim, Cheoneum Park, Changki Lee, and Thierry Poibeau. 2018. SEx BiST: A multi-source representations. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.
Dat Quoc Nguyen and Karin Verspoor. 2018. An improved neural network model for joint pos tagging and dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars Ahrenberg, Lene Antonsen, Maria Jesus Aranzabe, Gashaw Arutie, Masayuki Asahara, Luma Ateyah, Mohammed Atia, Aitizber Atutxa, Liesbeth Augustinus, Elena Badmaeva, Miguel Balleseros, Esha Banerjee, Sebastian Bank, Verginica Barbu Mititelu, John Bauer, Sandra Bellato, Kepa Bengoetxea, Riyaz Ahmad Bhat, Erica Biagetti, Barbu Mititelu, Yusuke Miyao, Simonetta Montemagni, Niko Partanen, Elena Pascual, Marco Passarotti, Agnieszka Patejuk, Siyao Peng, Cerel-Augusto Perez, Guy Perrier, Slav Petrov, Jussi Piitulainen, Emily Pitler, Barbara Plank, Thierry Poibeau, Martin Popel, Lauma Pretkaliņa, Sophie Prévost, Prokopis Prokopidis, Adim Przepiórkowski, Tiina Puolakainen, Sampo Pyysalo, Andriela Răăbis, Alexandre Rudemaker, Loganathan Ramasamy, Taraka Rama, Carlos Ramisch, Vinit Ravishankar, Livy Real, Siva Reddy, Georg Rehms, Michael Rießler, Larissa Rinaldi, Laura Rituma, Luisa Rocha, Mykhailo Romanenko, Rudolf Rosa, Da- vide Rovati, Valentin Rosca, Olga Rudina, Shoval Sadde, Shadi Saleh, Tanja Samardžić, Stephanie Samson, Manuela Sanguineti, Baiba Saulite, Yanin Sawamakunanan, Nathan Schneider, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker, Moigan Seraji, Mo Shen, Atsuko Shimada, Muh Shohibussirri, Dmitry Sichinaeva, Natalia Silveira, Maria Simi, Radu Simionescu, Katalin Simko, Mária Šimková, Kiril Simov, Aaron Smith, Isabelo Soares-Bastos, Antonio Stella, Milan Straka, Jana Strnadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó, Dimo Taji, Yuta Takahashi, Takaaki Tanaka, Isabelle Tellier, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Uematsu, Zdeněka Urešová, Larraitz Uria, Hans Uszkoreit, Somwmya Vajalia, Daniel van Noord, Viktor Varga, Veronika Vincze, Lars Wallin, Jonathan North Washington, Seyi Williams, Mats Wirén, Tsegay Woldemariam, Tak-sum Wong, Chunxiao Xian, Marat M. Yavrunyan, Zihao Yue, Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman, Michael Zdunek, Yugo Murawaki, Kaili Mühres, and Deniz Yuret. 2007. The CoNLL 2007 shared data. In Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2007). pages 86–95.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Christine Díaz de Ilarraza, Carla Dietz, Bente Egge, Guy Perrier, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Universal Dependencies v1.2. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (UFAL), Faculty of Mathematics and Physics, Charles University. http://hdl.handle.net/11234/1-2837.

Joakim Nivre, Chiao-Ting Fang. 2017. Universal dependency evaluation. In Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017). pages 86–95.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007. The CoNLL 2007
shared task on dependency parsing. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007. Association for Computational Linguistics, pages 915–932. http://www.aclweb.org/anthology/D/D07/D07-1.pdf#page=949.

Berkay Furkan Önder, Can Gümelı, and Deniz Yuret. 2018. SParse: Koç University graph-based parsing system for the CoNLL 2018 shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Şaziye Betül Özates, Arzucan Özgür, Tunga Güngör, and Balkız Öztürk. 2018. A morphology-based representation model for LSTM-based dependency parsing of agglutinative languages. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Martin Popel, Zdeněk Žabokrtský, and Martin Vojtek. 2017. Udapi: Universal API for universal dependencies. In NoDaLiDa 2017 Workshop on Universal Dependencies. Göteborgs universitet, Göteborg, Sweden, pages 96–101. http://aclweb.org/anthology/W/W17/W17-0412.pdf.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo Rosso, Efstatios Stamatatos, and Benno Stein. 2014. Improving the reproducibility of PAN’s shared tasks: Plagiarism detection, author identification, and author profiling. In Evangelos Kanoulas, Mihai Lupu, Paul Clough, Mark Sanderson, Mark Hall, Allan Hanbury, and Elaine Toms, editors, Information Access Evaluation meets Multilinguality, Multimodality, and Visualization. 5th International Conference of the CLEF Initiative (CLEF 14). Springer, Berlin Heidelberg New York, pages 268–299. https://doi.org/10.1007/978-3-319-11382-1_22.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christopher D. Manning. 2018. Universal dependency parsing from scratch. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Rudolf Rosa and David Mareček. 2018. CUNI x-ling: Parsing under-resourced languages in CoNLL 2018 UD shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Piotr Rybak and Alina Wróblewska. 2018. Semi-supervised neural system for tagging, parsing and lemmatization. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Amit Seker, Amir More, and Reut Tsarfaty. 2018. Universal morpho-syntactic parsing and the contribution of lexica: Analyzing the ONLP submission to the CoNLL 2018 shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Aaron Smith, Bernd Bohnet, Miriam de Lhoneux, Joakim Nivre, Yan Shao, and Sara Stymne. 2018. 82 treebanks, 34 models: Universal dependency parsing with multi-treebank models. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Milan Straka. 2018. UDpipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UDpipe: trainable pipeline for processing CoNLL-U files performing tokenization, morphological analysis, POS tagging and parsing. In Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association, Portorož, Slovenia.

Milan Straka and Jana Straková. 2017. Tokenizing, POS tagging, lemmatizing and parsing UD 2.0 with UDPipe. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and interfaces in OPUS. In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Mehmet Ugur Dogan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12). European Language Resources Association (ELRA), Istanbul, Turkey.

Hui Wan, Tahira Naseem, Young-Suk Lee, Vittorio Castelli, and Miguel Ballesteros. 2018. IBM Research at the CoNLL 2018 shared task on multilingual parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Yingtung Wu, Hai Zhao, and Jia-Jun Tong. 2018. Multilingual universal dependency parsing from raw text with low-resource language enhancement. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

Daniel Zeman, Martin Popel, Milan Straka, Jan Hajič, Joakim Nivre, Filip Ginter, Juhani Luoto-
lahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Tyers, Elena Badmaeva, Memduh Gökirmak, Anna Nedoluzhko, Silvie Cinková, Jan Hajic jr., Jaroslava Hlaváčová, Václava Kettnerová, Zdenka Urešová, Jenna Kanerva, Stina Ojala, Anna Missilä, Christopher Manning, Sebastian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Herman Leung, Marie-Catherine de Marneffe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama, Valeria de Paiva, Kira Drogoanova, Héctor Martínez Alonso, Çağrı Çöltekin, Umut Sulubacak, Hans Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris, Katrin Marheinecke, Georg Rehm, Tolga Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily Pittler, Saran Lertpradit, Michael Mandl, Jesse Kirchner, Hector Fernandez Alcalde, Jana Strnadova, Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo Mendonça, Tatiana Lando, Rattima Nitisaroj, and Josie Li. 2017. Conll 2017 shared task: Multilingual parsing from raw text to universal dependencies. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics, Vancouver, Canada, pages 1–19. http://www.aclweb.org/anthology/K17-3001.