Order separability.

Vladimir V. Yedynak

Abstract

This paper is devoted to the investigation of the property of order separability for free products of groups.

Key words: free products, residual properties.

MSC: 20E26, 20E06.

1 Introduction.

Definition. A group \(G \) is called order separable if for each elements \(u \) and \(v \) of \(G \) such that \(u \) is conjugate to neither \(v \) nor \(v^{-1} \) there exists a homomorphism \(\varphi \) of \(G \) onto a finite group such that the orders of \(\varphi(u) \) and \(\varphi(v) \) are different.

In [1] it was proved that free groups are order separable. In this work we prove that this property is inherited by free products:

Theorem 1. The group \(G = A \ast B \) is order separable if and only if \(A \) and \(B \) are order separable.

Note that the property of order separability for free groups was generalized in [2] where it was proved that free groups are actually omnipotent.

2 Notations and definitions.

Investigate the graph \(\Gamma \) satisfying the following properties:

1) \(\Gamma \) is an oriented graph whose positively oriented edges are labelled by elements of groups \(A \) and \(B \) so that for each vertex \(p \) of \(\Gamma \) and for each \(a \in A \) and \(b \in B \) there exist exactly one edge with label \(a \) and exactly one edge with label \(b \) ending at \(p \) and there exist exactly one edge with label \(a \) and exactly one edge with label \(b \) starting at \(p \);

2) for each vertex \(p \) of \(\Gamma \) we define the subgraph \(A(p) \) of the graph \(\Gamma \) as the maximal connected graph which contains \(p \) and whose positively oriented edges are labelled by the elements of \(A \); it is required that \(A(p) \) is the Cayley graph of \(A \) with the set of generators \(\{A\} \). The graph \(B(p) \) is defined analogically.

We shall use the following notations. The symbols \(\text{Lab}(e), \alpha(f), \omega(f), \alpha(S), \omega(S) \) will denote correspondingly the label of the positively oriented edge \(e \), the beginning and the end of the edge \(f \) and the beginning and the end of the path \(S \). Having a path \(S = e_1...e_k \) we define its label \(\text{Lab}(S) = \text{Lab}(e_1)... \text{Lab}(e_n) \).

Definition 1. Consider the graph \(\Gamma \) satisfying the properties 1), 2) and the cyclically reduced element \(u \in A \ast B \). The closed path \(S = e_1...e_n \) is called \(u \)-cycle if \(\text{Lab}(e_{i+l+1}...e_{i+l+k}) = u \) where \(l \) is the length of the element \(u \), \(k \) is an arbitrary natural number and subscripts are modulo \(n \).

If a label of the \(u \)-cycle \(S \) is \(u^k \) then we shall say that the length of the \(u \)-cycle \(S \) equals \(k \).
The group \(A \ast B \) acts on the right on the set of vertices of the graph \(\Gamma \) by the following way. Consider the vertex \(p \) of \(\Gamma \) and the elements \(c \in (A \cup B) \setminus \{1\} \). Then according to the property 1) there exist the edge \(u \) with label \(c \) starting at \(p \) and the edge \(v \) ending at \(p \) and the labels of \(u \) and \(v \) coincide with \(c \). Then we put \(p \circ c = \omega(u), p \circ c^{-1} = \alpha(v) \).

Definition 2. We say that the cycle \(S = e_1...e_n \) of a graph \(\Gamma \) with properties 1), 2) does not have near edges if there are no distinct edges of \(S \) belonging to one subgraph \(A(p) \) or \(B(p) \) for some \(p \).

Definition 3. A group \(G \) is called subgroup separable if each finitely generated subgroup of \(G \) coincides with the intersection of finite index subgroups of \(G \).

In [3] the following theorem was proved.

Theorem 2. The class of subgroup separable groups is closed with respect to the operation of the free product of groups.

Corollary. The free product of finite groups is cyclic subgroup separable.

3 Proof of theorem 1.

If \(A \ast B \) is order separable then it is obvious that \(A \) and \(B \) are order separable. Consider order separable groups \(A \) and \(B \) and prove that \(A \ast B \) is order separable. Put \(G = A \ast B \). Consider cyclically reduced elements \(u \) and \(v \) of \(G \) such that \(u \) is not conjugate to \(v^{\pm 1} \). If \(u \) and \(v \) belong to free factors then we use the natural homomorphism of \(G \) onto \(A \) or \(B \) and use the order separability of free factors.

Suppose that \(u \notin A \cup B \). Consider the case when \(u \) and \(v \) belong to the Cartesian subgroup \(C = \{[a,b]|a \in A, b \in B\} \) and do not equal to unit. Consider that for each homomorphism of \(G \) onto a finite group the images of \(u \) and \(v \) have equal orders. It is possible to consider that the normal forms for \(u \) and \(v \) have the following presentations: \(u = a_1b_1...a_nb_n, v = a'_1b'_1...a'_mb'_m \). Since order separability involves residual finiteness we may deduce that there exists a homomorphism of \(G \) onto a group \(A_1 \ast B_1 \) such that \(A_1 \) is the image of \(A \) and \(B_1 \) is the image of \(B \) besides \(a_i, b_i, a'_j, b'_j \) have nonunit images and each element presented as \(a_1a_1b_1b_1, a'_1a'_1b'_1b'_1 \) which differs from unit has a nonunit image too, \(i,k = 1,...,n, j,l = 1,...,m \). Thereby we may consider that the groups \(A \) and \(B \) are finite. For each number \(n = 0, 1, 2,... \) construct the graph \(\Gamma_n \) with properties 1), 2) which satisfies also the following properties:

1) the length of each \(u \)-cycle divides the length of a maximal \(u \)-cycle; the same is true for \(v \)-cycles;

4) in \(\Gamma_n \) (when \(n > 0 \)) there exists the path \(R_n \) of length \(n \) which is contained in a maximal \(u \)-cycle and in all maximal \(v \)-cycles;

5) all \(u \)- and \(v \)-cycle of \(\Gamma_n \) have no near edges;

6) the length of a maximal \(u \)-cycle coincides with the length of a maximal \(v \)-cycle.

The construction of \(\Gamma_0 \). Due to the corollary there exists the homomorphism \(\varphi \) of \(G \) onto a finite group such that the elements \(ax \) and \(bx \) which are not conjugate to elements from \(\langle u \rangle \) and \(\langle v \rangle \) have nonunit images where \(x \) and \(z \) are
the subwords of words u^k, v^k, $k = 0, 1, 2, \ldots, a \in A, b \in B$. We may also consider that u and v do not belong to the kernel of φ. Then we may take the Cayley graph of $\varphi(G)$ with the generating set $\varphi(A \cup B)$ in the capacity of Γ_0 (labels $\varphi(a), \varphi(b)$ are identified with a and b correspondingly). Conditions 1), 2) and 3) are held because of the definition of the Cayley graph; conditions 4), 5) are held due to the properties of the homomorphism; the property 6) is true by the supposition about the orders of images of u and v.

The construction of Γ_{n+1} from Γ_n. Let t be the length of the maximal u-cycle in Γ_n. Consider t copies of $\Gamma_n : \Delta_1, \ldots, \Delta_t$. Put $q_k = \omega(R_{n,k})$ where $R_{n,k}$ is the path in Δ_k corresponding to the path R_n of Γ_n. p_k is the vertex following after q_k on the maximal u-cycle passing through $R_{n,k}$ (it is supposed that p_k does not belong to $R_{n,k}$ and vertices p_k in graphs Δ_k and chosen maximal u-cycles passing through $R_{n,k}$ correspond to each other). If $n = 0$ then q_k is an arbitrary vertex and the edge (q_k, p_k) belongs to a u-cycle. Otherwise (q_k, p_k) is the edge connecting p_k and q_k and belonging to the chosen maximal u-cycle. Consider that $\text{Lab}(q_k, p_k) \in A$. In order to construct the graph $K_{n,1}$ from $\Delta_1, \ldots, \Delta_t$ we delete all edges from $A(q_k)$ which are incident to q_k. Let s be an arbitrary vertex of the subgraph $A(q)$ of the graph Γ_n which differs from q and s is connected with q be the edge $e \in A(q)$. The vertex $s_k \in \Delta_k$ corresponds to the vertex s. Connect the vertex q_k by the edge with the vertex s_{k+1} (if $k = t$ we consider that $k + 1 = 1$). The label of this new edge f_k equals $\text{Lab}(e)$. Also if $\alpha(e) = q$ in Γ_n then $\alpha(f_k) = q_k$; if $\omega(e) = q$ in Γ_n then $\omega(f_k) = q_k$. Put $S_n = R_{n,1} \cup d_1$ where d_1 is the edge which is appended instead of the edge (q_1, p_1). The graph $K_{n,1}$ satisfies properties 1), 2). The property 3) is fulfilled since the lengths of each u- or v-cycle either does not change or becomes t times greater than it was. The condition 5) is true because otherwise it is not held for Γ_n. If in the graph $K_{n,1} \Delta_n$ all maximal v-cycles pass through S_n then we put $\Gamma_{n+1} = K_{n,1}, R_{n+1} = S_n$. Otherwise consider t^2 copies of the graph $K_{n,1} : \Omega_1, \ldots, \Omega_{t^2}$. Let r_k be the vertex next to $\omega(S_{n,k})$ on the maximal u-cycle passing through $S_{n,k}$ where $S_{n,k}$ is a path of Ω_k corresponding to S_n in the graph $K_{n,1}, r_k$ does not belong to $S_{n,k})$. Vertices r_k and maximal u-cycles passing through $S_{n,k}$ correspond to each other in Ω_k. Construct the graph $K_{n,2}$ from $\Omega_1, \ldots, \Omega_{t^2}$ the same way as the graph $K_{n,1}$ is constructed from $\Delta_1, \ldots, \Delta_t$ but we consider $\omega(S_{n,k}), r_k, B(\omega(S_{n,k}))$ instead of vertices q_k, p_k and the subgraph $A(q_k)$ correspondingly. The graph $K_{n,2}$ satisfies the properties 1), 2), 3), 5). This is established in similar way as for the graph $K_{n,1}$. The path $S_{n,1}$ is contained in a maximal u-cycle and in all maximal v-cycles of the graph $K_{n,2}$ because of the property 5) and 6) for $K_{n,2}$. Thus $\Gamma_{n+1} = K_{n,2}, R_{n+1} = S_{n,1}$.

Since n is an arbitrary natural number then conjugating u and v we may consider that $u = w^k, v = w^l$. It is possible to consider that $(k, l) = 1$, that is k and l are coprime. Hence $w \in C$. Suppose that $|k| > 1$. Then there exists a prime number p such that $p \mid k, p \nmid l$. There exists a homomorphism ψ of C onto a finite p-group P such that w has a nonunit image $[4]$. Put $N = \ker \psi$. Then the group $N' = \cap_{g \in G} g^{-1}Ng$ is a finite index normal divisor of G. Besides in the quotient-group G/N' the image of w has the order which equals the nonzero power of p. Denote by ψ_1 the natural homomorphism of G onto a finite group
Because of the conditions on the order of $\psi_1(w)$ we conclude that the order of elements $\psi_1(u), \psi_1(v)$ are different. So $|k| = |l| = 1$ and this involves the violation.

Consider now the case when u and v belong to $A * B \setminus (C \cup A \cup B)$. It was shown in [5] that this condition involves that u and v have infinite orders. Since the groups A and B are finite there exists the natural number q such that u^q and v^q belong to C. Besides since u and v are cyclically reduced and u and v do not belong to $A * V \setminus (C \cup A \cup B)$ and due to the conjugacy theorem for free products [5] we deduce that u^n is not conjugate to v^{kn}. If the orders of images of u^q and v^q are different after some homomorphism then the orders of images of u and v are also different after the same homomorphism. The case when $u \notin A * B \setminus \{ \cup g \in G \{ g^{-1}(A \cup B)g \}$ and $v \in h^{-1}(A \cup B)h, h \in A * B$ can be solved with the usage of the residual finiteness of G.

Theorem 1 is proved.

Acknowledgements.

The author thanks A. A. Klyachko for setting the problem and valuable comments.

References.

1. Klyachko A. A. Equations over groups, quasivarieties, and a residual property of a free group // J. Group Theory. 1999. 2. 319–327.

2. Wise, Daniel T. Subgroup separability of graphs of free groups with cyclic edge groups. Q. J. Math. 51, No.1, 107-129 (2000). [ISSN 0033-5606; ISSN 1464-3847]

3. Romanovskii N. S. On the residual finiteness of free products with respect to membership. // Izv. AN SSSR. Ser. matem., 1969, 33, 1324-1329.

4. Kargapolov, M. I., Merzlyakov, Yu. I. (1977). Foundations of group theory. Nauka.

5. Lyndon, R. C., Schupp, P. E. (1977). Combinatorial group theory. Springer-Verlag.