A common feature from different subunits of a homomeric AAA+ protein contacts three spatially distinct transcription elements

Nan Zhang, Nicolas Joly* and Martin Buck*

Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London, SW7 2AZ, UK

Received March 29, 2012; Revised June 12, 2012; Accepted June 13, 2012

ABSTRACT

Initiation of σ54-dependent transcription requires assistance to melt DNA at the promoter site but is impeded by numerous protein–protein and nucleoprotein interactions. To alleviate these inhibitory interactions, hexameric bacterial enhancer binding proteins (bEBP), a subset of the ATPases associated with various cellular activities (AAA+) protein family, are required to remodel the transcription complex using energy derived from ATP hydrolysis. However, neither the process of energy conversion nor the internal architecture of the closed promoter complex is well understood. Escherichia coli Phage shock protein F (PspF), a well-studied bEBP, contains a surface-exposed loop 1 (L1). L1 is key to the energy coupling process by interacting with Region I of σ54 (σ54RI) in a nucleotide dependent manner. Our analyses uncover new levels of complexity in the engagement of a multimeric bEBP with a basal transcription complex via several L1s. The mechanistic implications for these multivalent L1 interactions are elaborated in the light of available structures for the bEBP and its target complexes.

INTRODUCTION

In bacteria, the multi-subunit core RNA polymerase (RNAP or E) catalyses transcription and is directed to the promoter DNA by association with a sigma factor (σ). Bacterial σ factors fall into two classes: σ70 binds to the consensus sequences at −35 (TTGACA) and −10 (TATAAT), whereas σ54 binds to the consensus sequences at −24 (GG) and −12 (GC). In σ70-dependent transcription, RNAP forms a closed complex (RPC) on the promoter that can spontaneously isomerize to an open complex (RPo) (1). In σ54-dependent transcription, the isomerization from RPC to RPo is energetically unfavourable due to the presence of a stably engaged upstream fork junction DNA around the −12 site. Within the stable RPC, the −12 fork junction is evident (2), although the downstream DNA melting has not occurred and the +1 transcription start site is outside of the RNAP at this stage (3). The stable RPC is thought to be preceded by an unstable RPC in which the −12 fork junction has yet to form (4). The isomerization from RPC to RPo requires ATP hydrolysis by bacterial enhancer binding proteins (bEBPs), resembling in part the eukaryotic Pol II system that utilizes TFIIH and ATP for DNA melting (5). σ54-dependent transcription not only regulates various adaptive responses (6,7), but is also responsible for regulating pathogenesis determinants in disease-causing agents such as Borrelia burgdorferi (the agent of Lyme disease) and Vibrio cholera (the agent of epidemic diarrheal disease) (8,9). Therefore, an understanding of the σ54-transcription pathway is valuable for identification of new antibacterial drug targets (10).

Current information on the organization of σ54-transcription complexes have been drawn from the low-resolution Cryo-electron microscopy (Cryo-EM) studies with purified (E)σ54–bEBP complexes (11,12), the NMR and SAXS structures of some regions of σ54 (13–16) and crystal studies of bEBPs (12,17–20). Three regions have been identified in σ54 (Figure 1B). Region I of σ54 (σ54RI) interacts with bEBPs, core RNAP and the −12 promoter region (21–23), participating in promoter melting and isomerization processes (24,25). Region II of σ54 (σ54RII) is dispensable for interactions with RNAP and DNA. Region III of σ54 (σ54RIII) contains several functionally important modules, including the RpoN box required for the recognition of the −24 promoter element (22).

bEBPs belong to Clade 6 of the ATPases associated with various cellular activities (AAA+) protein family.
and their functionality is dependent on an ability to
self-associate, typically to form hexamers. The biochem-
ical functions of bEBPs have been widely studied using as
examples the *Escherichia coli* Phage shock protein F
(PspF), which is involved in membrane stress responses
(27), and the nitrogen control proteins NtrC and NtrC1.
PspF contains an AAA + domain (residues 1–275,
PspF1–275, Figure 1A) essential for oligomerization and
ATP hydrolysis and a C-terminal DNA-binding domain.
Two surface-exposed loops of PspF (Figure 1A), namely
Loop 1 (L1) and Loop 2 (L2), are particularly important
for coupling ATP hydrolysis to the RPC remodelling
event. L1 contains a highly conserved ‘GAFTGA’ motif
amongst bEBPs. Residues Phe (F85) and Thr (T86) in
the PspF ‘GAFTGA’ motif interact with
\(\sigma_{54}^{R1} \) during RPO
formation (21,28). Structural modelling indicates that L1
may have additional roles (11). These roles may be
accommodated by the potential availability of up to six
L1s across a PspF hexamer (11,12,29).

To seek evidence for functional specialization amongst
L1s, we incorporated a photoreactive artificial amino
acid, \(p \)-benzoyl-L-phenylalanine (pBpa), using an orthog-
nonal tRNA/tRNA synthetase pair to each PspF L1
‘GAFTGA’ position for identification of potential
interacting partners (30); pBpa can cross-link to any
C–H bond within 3.1 Å under UV irradiation (31,32).

Figure 1. Sequence organization and functional properties of PspF1–275 and \(\sigma_{54}^{54} \). (A) Domain organization of PspF1–275. WA stands for Walker A
motif, L1 for Loop 1 (containing the ‘GAFTGA’ motif), WB for Walker B motif and SRH for second region of homology. (B) Domain organization
of \(\sigma_{54}^{54} \). HTH stands helix-turn-helix motif. Xlink stands for DNA cross-linking region. \(\sigma_{54}^{54} \) Regions I–III are separated by slashes. Available
structures of two \(\sigma_{54}^{54} \) fragments are depicted under the corresponding sequences. Six \(\sigma_{54}^{54} \) Region I fragments (underlined in red) are generated
for the following binding assays. (C) The rationale of the pBpa-based UV cross-linking assay. The ketone group in the pBpa artificial amino acid
cross-links to any C–H bond within 3.1 Å under UV irradiation.

DNA immediately upstream of the –24 element is import-
ant for the isomerization from RPC to RPO as well
as formation of one transcription intermediate. Using a
fragmentation approach, we were able to identify two
previously unknown PspF L1-binding patches within
\(\sigma_{54}^{54} \) _R1_ (residues 18–25 and 33–39). The above observa-
tions provide evidence that L1 is multifunctional, and
makes at least three distinct nucleotide-dependent
interactions within its target complex in driving RPO
formation.

MATERIALS AND METHODS

Plasmids

Plasmid pPB1 [encoding the *E. coli* pspF1–275 sequence,
(21)] was used as a template for the subsequent
site-directed mutagenesis studies. Each ‘GAFTGA’
position was mutagenized in the context of pPB1 to an
amber stop codon (TAG) to yield pET28b-pspF1–275 variant
plasmids (Supplementary Table S1).

DNA probes and peptide fragments

The linear DNA probes used in this study are summarized
in Supplementary Table S2. The \(\sigma_{54}^{54} \) _R1_ fragments were
purchased with the highest purity level from Insight
Biotechnology.
Protein expression and purification

The expression of PspF1-275 pBpa variants depends on two plasmids: (i) the pET28b-pspF1-275 variant (Supplementary Table S1) and (ii) the pDULE-pBpa [encoding the Methanococcus jannaschii tRNA/tRNA synthetase tag to specifically charge the intrinsically stop codon with pBpa, (30)]. Typically, 0.26 g of pBpa (Bachem) was dissolved under alkaline conditions and added to a L1 culture. The PspF1-275 pBpa variants were expressed and purified as previously described (28), treated with thrombin to remove the (His)_6 tag, and stored in TGED buffer 1 (20 mM Tris-HCl pH 8.0, 50 mM NaCl, 1 mM DTT, 0.1 mM EDTA and 5% glycerol) at −80°C.

Klebsiella pneumoniae heart muscle kinase (HMK) tagged full-length σ^54 (HMK-σ^54_FL) and HMK-tagged σ^54 fragments (HMK-σ^54_RI and HMK-σ^54_DRI) were purified and radio-labelled as previously described (34). *E. coli* core RNAP was purchased from Cambio.

ATPase activity assay

Typically in a 10 μl volume, 4 μM PspF1-275 was pre-incubated with the ATPase buffer (20 mM Tris-HCl pH 8.0, 50 mM NaCl, 15 mM MgCl_2, 0.1 mM EDTA, 10 μM DTT) at 37°C for 5 min. ATP hydrolysis was initiated by addition of 1 mM unlabelled ATP and 0.6 μCi/μl [γ-^32P] ATP (3000 Ci/mmol) and incubated for various time spans at 37°C. Reactions were quenched by addition of 5 volumes of 2 M formic acid. The [γ-^32P] ATP was separated from the [α-^32P] ADP by thin layer chromatography (Macherey–Nagel) in 0.4 M K_2HPO_4/0.7 M boric acid. Radioactivity was scanned by PhosphoImager (Fuji Bas-1500) and analysed by Aida software.

Native gel mobility shift assay

Reactions were performed in 10 μl volumes and supplemented with 1 μM [γ-^32P]-HMK-σ^54_FL (or its fragments), ± 0.3 μM core RNAP, ± 50 nM radio-labelled DNA, 5 mM NaF and 4 mM nucleotides (ATP, ADP or AMP) in STA buffer [2.5 mM Tris-acetate pH 8.0, 8 mM Mg-acetate, 10 mM KCl, 1 mM DTT, 3.5% (w/v) PEG 8000] at 37°C for 5 min. Ten μM PspF1-275 and 0.4 mM AlCl_3 were added for a further 15 min incubation to allow ‘trapped’ complex formation at 37°C. Complexes were either analysed on native gels or subject to UV cross-linking and then analysed.

Gel filtration assay

PspF1-275 WT or the ADP–AlF_4 ‘trapped’ complex was pre-incubated at 4°C with gel filtration buffer (20 mM Tri-HCl pH 8.0, 50 mM NaCl, 15 mM MgCl_2) for 5 min. A Superdex 200 column (10/30, 24 ml, GE Healthcare) assembled on the AKTA system (GE Healthcare) was equilibrated with buffer. Chromatography was carried out at a flow rate of 0.5 ml/min at 4°C.

pBpa-based UV cross-linking assay

‘Trapped’ complexes were formed with either [γ-^32P]-HMK-σ^54 (or its fragments) or [γ-^32P]-DNA. Reaction mixtures were UV irradiated at 365 nm on ice for 5 min, 15 min and 30 min then analysed on both native and SDS PAGE gels. The cross-linked protein–protein or nucleo–protein species were scanned by a Fuji PhosphoImager and analysed by Aida software.

Proteinase K-ExoIII footprinting assay

The UV cross-linked nucleo–protein species were generated with [γ-^32P]-DNA and subject to Proteinase K-ExoIII footprinting assays as previously described (35). The UV-irradiated samples (20 μl) were digested with 1 μl of 20 mg/ml Proteinase K (Sigma) at 37°C for 1 h to remove the protein components. [γ-^32P]-DNA containing the pBpa peptide was phenol-extracted and isopropanol-precipitated. Twenty units of exonuclease III (ExoIII, USB) were added to the DNA sample to a 10 μl final volume. The ExoIII digestion proceeded for various time spans before being quenched by 4 μl of 3X formamide stop dye (3 mg xylene cyanol, 3 mg bromophenol blue, 0.8 ml 250 mM EDTA, 10 ml deionised formamide in 10 ml). The reaction mixtures were heated at 97°C for 5 min before separated on a sequencing gel.

In vitro RPO formation assay

Open complex formation was measured in 10 μl final volumes containing: 4 μM PspF1-275, 100 mM holoenzym (1:4 ratio of E: σ^54), 20 U RNase inhibitor, 5% (v/v) glycerol, 4 mM dATP and 20 mM Sinorhizobium meliloti nifH promoter (Supplementary Table S2) in STA buffer at 37°C. Transcription was activated for various lengths of time before 0.5 mM dinucleotide primer UpG, 0.2 μCi/μl [γ-^32P] GTP (3000 Ci/mmol) and 0.2 mg/ml heparin were added. After extension at 37°C for 10 min, the reaction mixtures were quenched by addition of 4 μl of 3X formamide stop dye and run on a sequencing gel. The activator-bypass activities of the σ^54 variants were examined in a similar experimental procedure without the addition of PspF1-275 activators and dATP.

In vitro spRNA assay

The ADP–AlF_4 ‘trapped’ complexes were initially formed on the late-melted –10–1/WT DNA probe. Without the addition of dATP, the ADP–AlF_4 complexes were allowed to synthesize a UpG-primed RNA product UpGpGpG (the spRNA) in the presence of [γ-^32P] GTP in a manner similar to the RPO formation assay as described above.

RESULTS

PspF1-275 G83pBpa can cross-link to σ^54 but not to core RNAP

The photo-reactive artificial amino acid pBpa was incorporated at each L1 ‘GAFTGA’ position, generating...
six PspF1–275 pBpa variants (G83pBpa, A84pBpa, F85pBpa, T86pBpa, G87pBpa and A88pBpa). Characterization of each pBpa variant for bEBP functions is summarized in Table 1. Position 83 in the PspF L1 ‘GAFTGA’ motif (the position of interest, as the previous experiments demonstrate) was substituted with Ala (to remove the side chain) and Phe (to mimic the pBpa cross-linker). The resulting G83A and G83F variants were also characterized (Table 1).

To investigate whether introducing the bulky hydrophobic pBpa cross-linker could affect the overall L1 exposure and the local σ^54 interaction, we performed the well-established ‘trapping’ assay. The transient L1 ‘GAFTGA’–σ^54 interaction is stabilized in the presence of an ATP transition state analogue, ADP–AlFx. The resulting ‘trapped’ complex, PspF1–275(E) σ^54–ADP–AlFx, reflects one of the intermediate states (RP0) en route to RP0 formation (36,37). G83pBpa was the only variant tested capable of maintaining the σ^54 interaction in an ADP–AlFx dependent manner (Table 1 and Figure 2A).

By irradiating the ‘trapped’ PspF1–275 G83pBpa–σ^54–ADP–AlFx complex and analysed under denaturing conditions, multiple cross-linked PspF1–275 G83pBpa × σ^54 species were observed (Figure 2B). Prolonged irradiation shifted the cross-linked species towards higher molecular forms (Figure 2B); it is likely that higher oligomeric states of G83pBpa (G83pBpa can self-associate and self-crosslink) associated with multiple σ^54 regions (as demonstrated below). The cross-linked PspF1–275 G83pBpa × σ^54 species was only be observed in the ‘trapped’ complexes (in the presence of ADP–AlFx but not in the presence of ATP, ADP or AMP, Supplementary Figure S1), consistent with the proposal that at the point of ATP hydrolysis, the PspF L1s assume a raised conformation to contact and thereby cross-link to σ^54 (20). The G83pBpa variant was unable to drive RP0 formation (Table 1) possibly due to sub-optimal L1 exposure (50% of WT activity) and low ATPase hydrolysis rate (10% of WT activity). However, this derivative of PspF did support partial functionalities required for forming RP0, and was able to function for engagement of PspF and support RP0 formation in a mixed oligomer with WT subunits (see below).

Based on the Cryo-EM structure, Bose et al. (11) proposed that up to three subunits in a PspF hexamer could potentially contact the RNAP holoenzyme via the PspF surface-exposed L1s. In addition, it has been shown that the AAA+ domain of the S. meliloti DctD (another well-studied hexameric bEBP) can cross-link to the core RNAP β subunit (38). To assess whether PspF L1s can directly contact to core RNAP binding, we added core RNAP to the cross-linking reactions. As shown in Figure 2E, the cross-linking pattern between PspF1–275 G83pBpa and σ^54 was not altered by the presence of core RNAP. The outcomes did not provide evidence to support a direct contact between the L1 ‘GAFTGA’ motif and core RNAP, rather the protein contacts appear to be primarily with σ^54.

Taken together, formation of the ADP–AlFx ‘trapped’ complexes with the G83pBpa variant suggests it is a potentially useful reagent, as demonstrated in the following experiments, to elucidate the L1-interacting partners.

Table 1. Functional characterization of PspF1–275 pBpa variants

PspF1–275	σ^{54} interaction (% of WT)	ATPase activity (% of WT)	RP0 formation (% of WT)
ADP–AlFx	AMP–AlFx		
G83pBpa	50	0	0
A84pBpa	0	0	0
F85pBpa	0	0	0
T86pBpa	0	0	0
G87pBpa	0	0	0
A88pBpa	0	0	0
G83A	56	0	23
G83F	90	29	10

The PspF1–275 pBpa variant and the two G83 variants (substitution with Ala to remove the side chain and substitution with Phe to closely mimic the pBpa cross-linker) were characterized in terms of σ^54 interaction (in the presence of the ADP–AlFx ‘trapping’ reagent), ATPase activity and RP0 formation (on a super-coiled S. meliloti nifH promoter).

Two novel PspF L1-binding patches within σ^{54}_{RI} were identified

The Cryo-EM structure of the ADP–AlFx ‘trapped’ complex indicated that the PspF hexamer contacted two opposing sites in σ^{54} (12). If one contact site is the PspF L1 target site–σ^{54}_{RI} (36), the other contact site might be outside σ^{54}_{RI}. To explore this proposal, different radio-labelled σ^{54} fragments (σ^{54}_{RI}, σ^{54}_{ARI} and mixed $\sigma^{54}_{RI/ARI}$) were used to form the cross-linked ‘trapped’ complexes with G83pBpa. Both PspF1–275 WT and G83pBpa can form stable complexes with σ^{54}_{FL} and σ^{54}_{RI} but not with σ^{54}_{ARI} (Figure 2C). With the G83pBpa variant, a major cross-linked species of ~39kDa was observed (Figure 2D), corresponding to one PspF1–275 G83pBpa (33kDa) cross-linked to one σ^{54}_{RI} (6kDa). Other faint cross-linked G83pBpa × σ^{54}_{RI} species with higher molecular weights were also observed (Figure 2D), suggesting that more than one L1 could contact σ^{54}_{RI}.

From the above observations, we set to explore the PspF1–275 L1-binding patches within σ^{54}_{RI} by generating six σ^{54}_{RI} peptide fragments (Figure 1B). As we screened the σ^{54}_{RI} fragments for their ability to stably bind PspF1–275 hexamers under ADP–AlFx ‘trapping’ conditions, a slower migrating complex was detected with either σ^{54}_{Fl} fragments 18–25 or 33–39 but not the four other peptides tested (Figure 3A). Formation of the ‘trapped’ complexes in the presence of σ^{54}_{Fl} fragments 18–25 and 33–39 was confirmed by gel filtration, providing evidence that the two peptides can associate with PspF in its ADP–AlFx-bound state (Figure 3D). Given their relatively small size, these two σ^{54}_{RI} fragments are unlikely to assume ‘complete’ secondary structures in solution; thus their interaction with the PspF1–275 hexamer may be largely dependent on their primary sequence and independent of their forming a well-ordered structure prior to binding to PspF. From here on, the σ^{54}_{RI} residues 18–25 will be named Patch 1 and residues 33–39 Patch 2.

To demonstrate that binding of the patch fragments to PspF1–275 is dependent on established determinants for
the binding of PspF to σ^54, the L1 ‘GAFTGA’ variants (F85Y and T86S) were used in the ADP–AlFx reactions (Figure 3B). The F85Y variant appears to interact with the two patch fragments (the PspF band intensity increases dramatically in the presence of these fragments). However, their binding is possibly different from that of PspF1–275 WT, as the complex band does not shift much nor into a compact band. The T86S variant can shift the binding of PspF to σ^54 in Patch 1 but not in Patch 2, suggesting the presence of core RNAP. The initial assessment of the cross-linking event was analysed on an SDS PAGE gel (C); the cross-linking event was performed with 15 min irradiation (the ADP–AlFx-dependent complexes are most stable within 30 min—in this case, 15 min for complex formation and 15 min for UV irradiation). To assess the interaction and cross-linking between PspF L1 and different regions of the transcription bubble was pre-formed. Using this assay, we assessed the impact of the σ^54_RI patches from different organisms (Figure 4A) revealed three highly conserved residues in Patch 1 and two highly conserved residues in Patch 2. Substitutions of these residues with Ala (QAQAAARL) and AQQEAQQQ, as underlined) produced variant fragments unable to detectably bind the hexameric PspF1–275 (Figure 4B), suggesting that these residues are key to PspF L1 interactions with σ^54.

Taken together, we have identified three highly conserved residues in σ^54_RI Patch 1 contributing to the high affinity PspF L1 binding, and two highly conserved residues in Patch 2 to a lower affinity PspF L1 binding.

L1–σ^54_RI sequence-specific interactions play different roles along the activation pathway

After establishing that two σ^54_RI patches are sequence-specific for PspF L1 interactions, we next examined their impact in the context of σ^54 and RNAP holoenzyme binding interactions and different steps in the transcription activation pathway. Thus, we generated three full-length σ^54 variants: σ^54_scm Patch 1 (harbouring the scrambled Patch 1—’QAAARLL’), σ^54_scm Patch 2 (harbouring the scrambled Patch 2—’QQEQQQ’) and σ^54_scm Patches 1 and 2 (harbouring both the scrambled patches). The initial assessment of the σ^54_scm patch variants revealed no large defect in forming the ‘trapped’ complexes (Figure 4C), suggesting additional sequences of the σ^54_RI along with promoter DNA contacts (see below) could compensate for the loss of L1 sequence-specific interactions in forming the ‘trapped’ transcription intermediate (RP1).

Burrows et al. (39) devised an assay in which the ADP–AlFx-dependent RP1 could carry out dinucleotide-primed short RNA (spRNA) transcription when the ‘–10 to –1’ transcription bubble was pre-formed. Using this assay, we assessed the impact of the σ^54_scm patch variants on the
Figure 3. Two σ^{54}_{RI} peptide fragments bind to PspF1-275 with different affinities. (A) PspF1-275 WT hexamers bind to two σ^{54}_{RI} fragments (residues 18–25 and 33–39) in the presence of the ADP–AlFx ‘trapping’ reagent. From here on, fragments 18–25 is depicted as Patch1 and fragments 33–39 as Patch2. (B) Mutations in the PspF ‘GAFTGA’ motif result in sensitivity to σ^{54}_{RI} patch binding. (C) σ^{54}_{RI} Patch1 fragments bind to PspF1-275 WT hexamers with a markedly higher affinity than Patch2 fragments. A titration experiment was performed with a constant PspF1-275 WT concentration while the concentration of each Patch fragment was gradually increased. (D) Gel filtration profiles of the ‘trapped’ complexes at 4°C using a Superdex 200 column. The black trace corresponds to 2 μM σ^{54}_{FL}. The brown trace corresponds to 20 μM PspF1-275 WT in the presence of ADP. The green trace corresponds to 20 μM PspF1-275 WT in the presence of ADP–AlFx. The red trace corresponds to 20 μM PspF1-275 WT binding to σ^{54}_{RI} Patch1 fragments in the presence of ADP–AlFx. The blue trace corresponds to 20 μM PspF1-275 WT binding to σ^{54}_{RI} Patch2 fragments in the presence of ADP–AlFx. The purple trace corresponds to 20 μM PspF1-275 WT binding to σ^{54}_{FL} in the presence of ADP–AlFx. The gel elution volumes corresponding to apparent hexamers, tetramers/trimers and dimers are marked by dotted lines.

Figure 4. Scrambled σ^{54}_{RI} Patches fail to bind PspF1-275 WT in the context of fragments but can bind PspF1-275 WT in the context of full-length proteins. (A) Sequence alignment of σ^{54}_{RI} Patches 1 and 2 from different bacteria using NCBI BLAST. Highly conserved residues are highlighted in red and subsequently replaced with Ala (‘Scrambled’ or ‘scm’). (B) The scrambled patches failed to bind PspF1-275 WT hexamers in the context of fragments in the presence of ADP–AlFx ‘trapping’ reagents. (C) The scrambled patches were able to bind PspF1-275 WT hexamers in the context of full-length σ^{54}_{RI} in the presence of ADP–AlFx ‘trapping’ reagents. σ^{54}_{scm} Patches 1 and 2 corresponds to the full-length σ^{54}_{RI} harbouring both the scrambled patches.
amount of transcriptionally ‘active’ RP$_i$s generated. As shown in Figure 5B, despite starting with a similar amount of ADP–AlF$_x$-dependent RP$_i$s (a slightly more pronounced reduction in RP$_i$ was observed with σ^{54}_{scm} Patch 2 and Patches 1 and 2, Figure 5A), all three σ^{54}_{scm} patch variants were able to produce significantly more spRNAs (4–8-fold) than was the σ^{54} WT, indicating the RP$_i$s were more active than with σ^{54} WT. In contrast, the ATPase-dependent RP$_O$ formation assays replacing ADP–AlF$_x$ with dATP on the same DNA probe revealed significant defects in all three σ^{54}_{scm} patch variants (Figure 5C). Interestingly, all three σ^{54}_{scm} patch variants can generate an RP$_O$ in the absence of the PspF$_{1-275}$ activator and hydrolysable nucleotides on the pre-melted DNA probe (Figure 5D), so revealing an activator-bypass phenotype (40). Considering the RP$_O$ generated from the activator-bypass activity may have contributed to the amount of RP$_O$ as observed in Figure 5C, the defect of the σ^{54}_{scm} patch variants in the ATPase-driven isomerization may be more pronounced.

Taken together, the above data demonstrate that the PspF L1–σ^{54}_{RI} sequence-specific interactions may play an inhibitory role in the activity of RP$_i$, possibly to keep the complex in check before moving to RP$_O$. Once the inhibitory PspF L1–σ^{54}_{RI} interactions were disrupted (by scrambling the Region I patches), the spontaneous transition from RP$_i$ to RP$_O$ is clearly increased as seen in the activator-bypass assays. In contrast, the PspF L1–σ^{54}_{RI} sequence-specific interactions are needed for ATPase-driven RP$_O$ formation, suggesting important roles for the patches in making RP$_i$ from RP$_C$ and in limiting the activity of RP$_i$ in the activator-dependent pathway. Transient interactions between RP$_C$ and PspF in the ATPase-driven reaction may therefore be more dependent upon the integrity of the σ^{54}_{RI} than is the stably engaged RP$_i$ created with ADP–AlF$_x$.

‘Doped’ WT/G83pBpa heterohexamers can directly cross-link to promoter DNA

After demonstrating the G83pBpa variant can cross-link to σ^{54} in the ADP–AlF$_x$ ‘trapped’ complex, the DNA probe harbouring the early-melted nifH promoter (–12–11/WT, mimicking the –12 fork junction DNA in the RPC, Figure 6) was added to the reaction mixture. If this fork junction DNA conformation was successfully accommodated in the ‘trapped’ complex, the spatial proximity between G83pBpa and the corresponding promoter region could in principle be determined.

As shown in Figure 6, the radio-labelled –12–11/WT DNA probe was not efficiently covalently bound into the ADP–AlF$_x$ ‘trapped’ complexes with G83pBpa homo-hexamers (ratio of WT/G83pBpa was 0/6), resulting in a cross-linked species with abundance only slightly above the background. Since the PspF$_{1-275}$ WT homohexamers

![Figure 5](https://academic.oup.com/nar/article-abstract/40/18/9139/2411599/9145)

Figure 5. Functional importance of the PspF L1–σ^{54}_{RI} patch interactions along the activation pathway. A simplified reaction scheme is depicted for each assay. Full-length σ^{54} harbouring the scrambled patches and radio-labelled –10–1/WT DNA probes were used in the following reactions. The linear –10–1/WT DNA probe harbour a mismatch from –10 to –1 on the non-template strand to mimic the DNA conformation in RP$_C$. (A) The ability of scrambled σ^{54}_{scm} patch variants (σ^{54}_{scm} patch) to form the ADP–AlF$_x$-dependent ‘trapped’ complexes, each expressed as a percentage of that of σ^{54} WT. (B) Each σ^{54}_{scm} patch variant was allowed to form the ADP–AlF$_x$-dependent RP$_i$ complex (DNA–PspF$_{1-275}$ WT–E$_{\sigma^{54}}$ ADP–AlF$_x$). The resulting RP$_i$ complexes were tested for their ability to support transcription in the presence of the spRNA mixture (heparin, dinucleotide primer UpG and $[\alpha-32P]$ GTP). The extent of transcription activity (correlates with the amount of spRNA synthesis) was expressed as a percentage of that of σ^{54} WT. (C) The amount of RP$_O$ generated by σ^{54}_{scm} patch variants in the presence of hydrolysable nucleotide dATP, each expressed as a percentage of that of σ^{54} WT. (D) The amount of activator-bypass RP$_O$ generated by σ^{54}_{scm} patch variants in the absence of PspF$_{1-275}$ WT, each expressed as a percentage of that of σ^{54} WT in the activator-dependent assay (C).
[Image 143x437 to 456x722]

Not only did the ‘doping’ experiment successfully restore the ‘trapped’ complex formation, but also generated a single PspF1–275/C2 DNA cross-linked species (Figure 6B). The above observation provides clear evidence that subunit mixing indeed occurred (see also Figure 7) and that the reconstituted WT/G83pBpa heterohexamers likely contacted the promoter DNA via position 83 or adjacent residues in the L1 ‘GAFTGA’ motif. Taken together, the above data strongly support a chemical bonding interaction between L1 ‘GAFTGA’ and the promoter DNA in the ‘doped’ WT/G83pBpa heterohexamers, as the pBpa cross-linking chemistry requires a distance of 3.1 Å (recall the H-bonding distance is 2 Å). Spatial organizations reported for RNAP-s and the L1-DNA cross-linking event together suggest that L1s from different subunits of the hexamer must be involved in DNA and σRI contacts.

Next we ‘doped’ the rest of the pBpa variants (recall all failed to form the ‘trapped’ complexes, Table 1 and Supplementary Figure S2) with the PspF1–275 WT subunits for DNA cross-linking complementation. Strikingly, the ‘doped’ WT/T86pBpa heterohexamers showed a comparatively strong DNA cross-linking signal with the –12–11/WT DNA probe (Supplementary Figure S2B). This outcome implies a role for the conserved residue T86 or residues adjacent to it in DNA contact in RPC. Previously, T86 has only been characterized as being a σRI-contacting residue of L1.

To assess whether the ‘doped’ WT/G83pBpa heterohexamers were biologically relevant to the bona fide WT homohexamers, we examined the activity in the context of their self-association and RPO formation by mixing an equimolar amount of PspF1–275 WT and G83pBpa subunits (Figure 7). By gel filtration of apo forms, we establish that PspF1–275 WT exists as a mixture of apparent tetramers/dimers (12 ml/13.3 ml elution volumes, Figure 7A purple trace) at a 30 μM injection concentration. The G83pBpa variant exists predominantly as apparent octamers/tetramers (10.7 ml/12 ml elution volumes, Figure 7A blue trace) at a 30 μM injection concentration. The ‘doped’ WT/G83pBpa mixture generated an apparent hexameric peak (11.2 ml elution volume, Figure 7 red trace), eluting at the same volume as the WT homohexamers [11.18 ml elution volume, (28,41)]. This apparent hexameric peak was absent in the theoretical sum of each individual subunit profile (Figure 7 green trace). We thus conclude that the ‘doped’ WT/G83pBpa heterohexamer is very similar in overall geometry to the WT homohexamer and subunit mixing indeed occurred. We also tested the ability of the WT/G83pBpa heterohexamer to form RPO under three different total concentrations (Figure 7B).
doped’ WT/G83pBpa heterohexamers generated on average 55% the RP₀ of the WT homohexamers (Figure 7B). Based on the statistical model for mixing experiments (42), an equimolar amount of WT and an inactive variant (in this case G83pBpa) should theoretically generate 25% the RP₀ of that of WT homohexamers (Figure 7C dotted lines). The above considerations imply that the reconstituted WT/G83pBpa heterohexamers are indeed active in RP₀ formation, and that the G83pBpa subunits contribute to this activity.

L1 cross-links to the non-template ‘–29’ region in RP₉/RP₁
To determine the precise DNA region cross-linked by L1, we employed a Proteinase K-ExoIII footprinting method (35). The rationale of this approach is to remove all the protein components by Proteinase K after UV irradiation; a stably cross-linked pBpa peptide will remain attached to the DNA cross-linking site and physically block the read-through of ExoIII (a 3′–5′ exonuclease).

The G83pBpa homohexamer is able to weakly bind and cross-link to DNA (Figure 6B). However, owing to its inability to activate transcription (Table 1 and Figure 7B), we chose the transcriptionally active ‘doped’ WT/G83pBpa heterohexamer for footprinting. The L1 cross-linking site was mapped initially on the –12–11/WT DNA probe as this gave a very clear cross-linking signal (Supplementary Figure S2B). An ExoIII-resistant site was observed from approximately –30 to –27 on the non-template strand but not observed on the template strand (compare Figure 8A with 8B). The above data clearly demonstrate that in RPC/RPI, a L1 contacts the non-template strand of the promoter region between –30 and –27 (abbreviated as the ‘–29 region’), immediately upstream of the consensus ‘–24’ GG element (located at –26–25 in the nifH promoter). Removal of the entire upstream sequence of the consensus GG yielded a near 60% reduction in L1-DNA cross-linking, further confirming the ‘–29 region’ is the major target site of L1 ‘GAFTGA’ interaction (Figure 8C).

The ‘–29’ region is important for activator-dependent RP₀ formation
We next addressed whether the ‘–29’ region was important for isomerization from RPC to RPO and forming ‘trapped’
complexes to make RP₁. The RP₀ formation assays were performed and the amount of RP₀ formed from the long DNA probe was compared with that from the short DNA. Both DNA probes harboured a mismatch from –10 to –1 on the non-template strand since this DNA conformation gave the strongest activation signal amongst the three linear probes used in this assay. As shown in Figure 9, although the RPᵩ formation with the probe lacking DNA upstream of ‘–29’ was reduced by 2-fold (Figure 9 and Supplementary Figure S3), ‘trapped’ complexes (RPᵩ) with activators were reduced by 18-fold (Figure 9 and Supplementary Figure S4A) and activator-dependent RP₀ formation was reduced by 35-fold (Figure 9 and Supplementary Figure S4B). Since truncation of the ‘–29’ region did not reduce the stability of RP₀ by more than 2-fold (Supplementary Figure S6), the large RP₀ formation defect cannot be attributed to an unstable RP₀ generated from the shortened DNA probe. We conclude that the cross-linking of ‘–29’ region DNA to L₁ of the activator is important for forming RP₁ and RP₀. Parallel experiments with fully duplexed probes confirmed the importance of the ‘–29’ sequence for trapping and activator-dependent formation of RP₀ (Supplementary Figure S5).

After showing that the activator-dependent RP₀ formation (with PspF₁–275 WT–σ⁵⁴ WT) involves the interaction between L₁ ‘GAFTGA’ motif and the ‘–29’ region, we addressed whether the L₁–DNA interaction was important for activator-independent RP₀ formation. Residue R336 of σ⁵⁴ is located in the DNA cross-linking sequence of Region III (Figure 1B). The σ⁵⁴ R336A induces an activator-bypass phenotype (40) where the RP₀ formation is independent of PspF hexamers and activating nucleotides on a super-coiled or on a linear –10 to –1 pre-opened nifH promoter.

In contrast to the activator-dependent RP₀ formation (with PspF₁–275 WT–σ⁵⁴ WT) which was greatly reduced when the ‘–29’ region was truncated (a 35-fold reduction in the UV cross-linking efficiency), the UV cross-linking observed with the activator–DNA complexes was not reduced when the ‘–29’ region was truncated.
on average, Figure 9 and Supplementary Figure S7), the activator-independent RPO formation with σ_{54} R336A remained relatively constant on both DNA probes and was only reduced by 8-fold when the ‘−29’ region was removed (Figure 9 and Supplementary Figure S7). The differences in RPO formation were not due to different affinities of $E_{s}54$ WT and $E_{s}54$ R336A holoenzymes towards DNA (Supplementary Figure S3). The above observations demonstrate that the activator-independent pathway for RPO formation is 4-fold less sensitive to loss of the ‘−29’ region than is the activator-dependent pathway. Clearly, the ‘−29’ region is important for σ_{54} WT-containing RNAP to form RPO in an activator-dependent manner.

DISCUSSION

By using a fragmentation approach, we were able to identify precisely two amino acid patches within σ_{54} RI responsible for PspF L1 contact (residues 18–25 and 33–39). Both σ_{54} RI patches are located within the Leu heptad/hexad repeats (residues 19–44) where the activator-bypass mutations can be found (43,44). It is not known whether these two σ_{54} RI patches are contacted by two L1s simultaneously or in sequence when RC passes to RIP and then to RPO. Based on the shared phenotypes of the three full-length σ_{54} scm patch variants (Figure 5), it is possible the two σ_{54} RI patches are contacted by two L1s from adjacent PspF subunits in a synchronized manner. This interaction with σ_{54} RI may be responsible for initially holding the holoenzyme and the PspF hexamer together through interactions at the −12 part of the promoter DNA in RC and then organizing the RI to accept the melted DNA (Figure 10C). The latter reorganization may involve the LI to upstream DNA contact as described below.

Two structural features of the RC are thought to impede spontaneous RPO formation: (i) the σ_{54} RI which interacts with core RNAP and blocks DNA entry, functionally reminiscent to σ_{70} 1.1 in RC (45–48). (ii) The −12 DNA melting site which is modelled in an upstream position with respect to its place in RPO and is, therefore, misaligned with the active channel of the holoenzyme (11). We speculate that the contact between L1 and the upstream promoter DNA facilitates RIP and RPO formation. Although both L1 and σ_{54} RI contact the non-template ‘−29’ region (Figure 8 and Figure 10A), they do not appear to contact one another (Figure 2C). LI and σ_{54} RI may access the ‘−29’ region from different DNA grooves to hold the promoter DNA firmly in place (Figure 10A). Douceff et al. (14) proposed that σ_{54} RI may interact with the β G flap. Thus, nucleotide-dependent conformational changes directed by L1 may facilitate the re-alignment of the holoenzyme with the −12 DNA melting site via the proposed σ_{54} RI–β G flap interaction. In principle, reorganization of σ_{54} RI triggered by L1 movement could be transmitted to σ_{54} RI and result in disruption of the previously established inhibitory interactions at the −12 fork junction DNA maintained by σ_{54} RI. An LI-directed torsion generated on σ_{54} RI may facilitate the propagation of DNA melting from −12

Figure 9. Truncation of the ‘−29’ region affects both activator-dependent and -independent transcription activation. The −10–1/WT and −10–1(Δ−60–27)/WT(Δ−60–27) DNA probes were used in the assays to assess the impact of truncation of the ‘−29’ region on activator-dependent RC/RPI/RPO formation and on activator-independent RPO formation. The activator-dependent RC formation was assessed by the stability of DNA–$E_{s}54$ WT complexes (Supplementary Figure S3). The activator-dependent RIP formation was assessed by the stability of DNA–$E_{s}54$ WT–PspF1,275 WT–ADP–AlFx ‘trapped’ complexes (Supplementary Figure S4A). The activator-dependent RPO formation was assessed by the amount of RPO generated by DNA–$E_{s}54$ WT–PspF1,275 WT (Supplementary Figure S4B and Supplementary Figure S7 left panel). The activator-independent RPO formation was assessed by the amount of RPO generated by DNA–$E_{s}54$ R336A (Supplementary Figure S7 right panel).
to the start site. Thus, disruption of the L1–DNA interaction around the ‘–29’ region could partially contribute to the activation defect as observed when this upstream interaction cannot be established (Figure 9). As PspF progresses through cycles of ATP hydrolysis, L1s contacting both the ‘–29’ region and σ^{54}_{RI} are likely to change from an extended state to a folded down state (19,20,49). These changes may move the DNA downstream to facilitate the realignment of the –12 fork junction with the active site of the holoenzyme (11). This is analogous to the DNA threading observed in AAA + helicases by the ‘staircasing’ ssDNA-binding hairpins (50).

An open spiral hexameric configuration has been observed in many AAA + proteins (51–56). Joly et al. (29) proposed that the PspF1-275 hexamer also assumed an open spiral configuration employing at least two functional L1s for σ^{54} binding. Thus we incorporated the PspF1–275 spiral into a proposed transcription complex organization within RPC/RPI (Figure 10C). Structural analyses indicate that the distances between the centres of the base of L1 across the PspF1–275 spiral are 40.4 Å [measured from subunit (i) to subunit (iii)] and 48.3 Å [measured from subunit (i) to subunit (iv)], consistent with the distance between the boundaries of the ‘–29’ element and the –12 fork junction (~40–47 Å). The L1–DNA and L1–σ^{54}_{RI} cross-linking sites are depicted by the cyan and yellow stars, respectively. Alternate subunits of the PspF1-275 open spiral are highlighted by different depths of green.

We believe the underlying mechanism proposed can be extended from PspF to other bEBPs. In this context, mutation of the second Gly in the ‘GAFTGA’ motif of Salmonella typhimurium NtrC results in a ‘super’ DNA binding activity (58). The authors suggested that the ‘GAFTGA’ motif may be close to DNA in such inactive bEBP dimmers, and the binding activity may be non-specific due to the additional charge introduced (Lys in place of Gly). In this study, we provide evidence to show that the L1 ‘GAFTGA’ motif is presented for a specific and direct promoter DNA engagement within active bEBP hexamers. Another bEBP that warrants discussion is the Aquifex aeolicus NtrC1 protein. NtrC1 forms closed oligomers in solution [90% heptamers and 10% hexamers (59)]. The negative-stain EM data suggest that although heptameric NtrC1 can engage σ^{54}, a significant portion of the density for σ^{54} is missing in the co-complex (17). Quite how far the NtrC1 heptamer–σ^{54} complex might functionally deviate from the transcriptionally active complexes forming with more usual hexameric assemblies of bEBPs, such as PspF, NtrC, ZraR, DpmR, NorR and HrpR/S (18,41,60–63), is unknown. A heptameric arrangement of NtrC1 as compared to, for example, the hexameric ZraR (62) is anticipated to be distinct in terms of the details of interfacial subunit–subunit contacts, some of which are known to control the nucleotide-dependent remodelling output of

Figure 10. The proposed organization of L1s in engaged RPC/RPI. (A) L1 and σ^{54}_{RIII} might contact the promoter ‘–29’ region from different grooves. The σ^{54}_{RIII} RpoN box (blue) binds to the non-template strand of the $nifH$ promoter (PDB 208K). The consensus GG element at –25 and –26 is highlighted in green. The ‘–29’ region is highlighted in red. (B) The PspF1-275 WT hexameric structure with an open spiral (based on energy minimization of monomeric ATP-bound crystal structures, courtesy of M. Rappas) shows that the distances between the centres of two L1s across the hexameric plane are 40.4 Å [measured from subunit (i) to subunit (iii)] and 48.3 Å [measured from subunit (i) to subunit (iv)], consistent with the distance between the boundaries of the ‘–29’ element and the –12 fork junction (~40–47 Å). (C) The proposed model based on the cross-linking data. The L1–DNA and L1–σ^{54}_{RI} cross-linking sites are depicted by the cyan and yellow stars, respectively. Alternate subunits of the PspF1–275 open spiral are highlighted by different depths of green.
PspF (64) and to precisely define sites where the ATPase can become uncoupled from remodelling by simple mutation. Although the triple L1 contacts observed in PspF is dictated by the stoichiometry and arrangement of the ring, it can still apply to NtrC1 if the exchange between heptamers and hexamers occurs frequently to allow a faithful and productive engagement of σ54 and promoter DNA.

To conclude, our work provides clear evidence that discrete L1s make interactions with three distinct and well separated elements within RPC/RPI, these are the two σ54-RI patches and the ‘–29’ promoter region. The triple contacts by a single feature of a bEBP contrast directly with many AAA+ proteins (e.g. unfoldases and helicases) that contact only either protein or DNA and the classic bacterial activators (e.g. CRP-cAMP receptor protein) that contact protein and DNA via two distinct and spatially well separated domains.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online: Supplementary Tables 1 and 2 and Supplementary Figures 1–7.

ACKNOWLEDGEMENTS

We gratefully acknowledge Dr J.W. Chin and Dr D.P. Nguyen for providing the pDULE-pBpa plasmid. We thank E. Lawton and Dr T. Simpson for their stimulating comments on the manuscript. We thank all the past and present MB group members for their friendly support. N.Z., N.J. and M.B. conceived and designed the experiments included in this manuscript. N.Z. performed the experiments.

FUNDING

Biotechnology and Biological Sciences Research Council project (BBSRC) [BB/J002828/1 and BB/G001278/1 to M.B.]. Funding for open access charge: BBSRC [BB/J002828/1 and BB/G001278/1].

Conflict of interest statement. None declared.

REFERENCES

1. Browning,D.F. and Busby,S.J. (2004) The regulation of bacterial transcription initiation. *Nat. Rev. Microbiol.*, 2, 57–65.
2. Morris,L., Cannon,W., Claverie-Martin,F., Austin,S. and Buck,M. (1994) DNA distortion and nucleation of local DNA unwinding within sigma-54 (sigma N) holoenzyme closed promoter complexes. *J. Biol. Chem.*, 269, 11563–11571.
3. Burrows,P.C., Wigneshweraraj,S.R. and Buck,M. (2008) Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation. *J. Mol. Biol.*, 375, 43–58.
4. Friedman,L.J. and Gelles,J. (2012) The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. *FEBS Microbiol. Lett.*, 186, 1–9.
5. Wolfe,A.J., Millikan,D.S., Campbell,J.M. and Visick,K.L. (2004) Vibrio fischeri sigma54 controls motility, biofilm formation, luminescence, and colonization. *Appl. Environ. Microbiol.*, 70, 2520–2524.
6. Correa,N.E., Lauriano,C.M., McGee,R. and Klose,K.E. (2000) Phosphorylation of the flagellar regulatory protein FltC is necessary for Vibrio cholerae motility and enhanced colonization. *Mol. Microbiol.*, 35, 743–755.
7. Fisher,M.A., Grimm,D., Henion,A.K., Elias,A.F., Stewart,P.E., Ross,A.P. and Gherardini,F.C. (2005) Borrelia burgdorferi sigma54 is required for mammalian infection and vector transmission but not for tick colonization. *Proc. Natl Acad. Sci. USA*, 102, 5162–5167.
8. Villain-Guillot,P., Bastide,L., Gualtieri,M. and Leonetti,J.P. (2007) Progress in targeting bacterial transcription. *Drug Discov. Today*, 12, 200–208.
9. Bose,D., Papc,T., Burrows,P.C., Rappas,M., Wigneshweraraj,S.R., Buck,M. and Zhang,X. (2000) Organization of an activator-bound RNA polymerase holoenzyme. *Mol. Cell.*, 32, 337–346.
10. Rappas,M., Schumacher,J., Beuron,F., Niwa,H., Bordes,P., Wigneshweraraj,S., Keetch,C.A., Robinson,C.V., Buck,M. and Zhang,X. (2005) Structural insights into the activity of enhancer-binding proteins. *Science*, 307, 1972–1975.
11. Douclet,M., Malak,L.T., Pelton,J.G. and Willem,D.E. (2005) The C-terminal RpoN domain of sigma54 forms an unpredicted helix-turn-helix motif similar to domains of sigma70. *J. Biol. Chem.*, 280, 41530–41536.
12. Bougou,M., Schumacher,J., Schumacher,J., Nicke,H., Bordes,P., Wigneshweraraj,S., Bridier,M.H. and Buck,M. (2000) Structural resolution of the sigma54 transcription factor revealed by X-ray solution scattering. *J. Biol. Chem.*, 275, 4210–4214.
13. Chen,B., Sysoeva,T.A., Chowdhury,S., Guo,L. and Zhang,S. (2003) Engagement of arginine finger to ATP triggers large conformational changes in NtrC1 AAA+-ATPase for remodeling bacterial RNA polymerase. *Structure*, 11, 1420–1430.
14. De Carlo,S., Chen,B., Hoover,T.R., Kondrashkina,E., Nogales,E. and Nikon,B.T. (2006) The structural basis for regulated assembly and function of the transcriptional activator NtrC. *Genes Dev.*, 20, 1485–1495.
15. Lee,S.Y., De La Torre,A., Yan,D., Kustu,S., Nixson,B.T. and Wemmer,D.E. (2005) Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+-ATPase domains. *Genes Dev.*, 17, 2552–2563.
16. Rappas,M., Schumacher,J., Niwa,H., Buck,M. and Zhang,X. (2006) Structural basis of the nucleotide driven conformational changes in the AAA+ domain of transcription activator PspF. *J. Mol. Biol.*, 357, 481–492.
17. Bordes,P., Wigneshweraraj,S.R., Schumacher,J., Zhang,X. and Buck,M. (2003) The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54. *Proc. Natl Acad. Sci. USA*, 100, 2278–2283.
18. Buck,M., Gallegos,M.T., Studholme,D.J., Guo,Y. and Gralla,J.D. (2000) The bacterial enhancer-dependent sigma54 (sigma N) transcription factor. *J. Bacteriol.*, 182, 4129–4136.
19. Gasse-Dwight,S. and Gralla,J.D. (1988) Probing the Escherichia coli glnA promoters for transcription activation in vivo. *Proc. Natl Acad. Sci. USA*, 85, 8934–8938.
20. Cannon,W., Gallegos,M.T. and Buck,M. (2001) DNA melting within a binary sigma54-promoter DNA complex. *J. Biol. Chem.*, 276, 386–394.
21. Gallegos,M.T. and Buck,M. (1999) Sequences in sigmaN determining holoenzyme formation and properties. *J. Mol. Biol.*, 288, 539–553.
26. Erzberger,J.P. and Berger,J.M. (2006) Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct., 35, 93–114.
27. Joly,N., Engl,C., Jovanovic,G., Huvet,M., Toni,T., Sheng,X., Stumpf,M.P. and Buck,M. (2010) Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol. Rev., 34, 797–827.
28. Zhang,N., Joly,N., Burrows,P.C., Jovanovic,M., Wigneshwararaj,S.R. and Buck,M. (2009) The role of the conserved phenylalanine in the sigma54-interacting GAFGTA motif of bacterial enhancer binding proteins. Nucleic Acids Res., 37, 5981–5992.
29. Joly,N. and Buck,M. (2011) Single chain forms of the enhancer binding protein PspF provide insights into geometric requirements for gene activation. J. Biol. Chem., 286, 12734–12742.
30. Farrell,I.S., Toroney,R., Hazen,J.L., Mehl,R.A. and Chin,J.W. (2007) Repressor forms of the enhancer-binding protein NrtC: some fail in coupling ATP hydrolysis to open complex formation. Nature, 442, 270–275.
31. Chaney,M. and Buck,M. (1999) The sigma 54 DNA-binding domain includes a determinant of enhancer responsiveness. Proc. Natl Acad. Sci. USA, 96, 12517–12522.
32. Darst,S.A., Opalka,N., Chacon,P., Polyakov,A., Richter,C., Zhang,G. and Wrighers,W. (2002) Conformational flexibility of bacterial RNA polymerase. Proc. Natl Acad. Sci. USA, 99, 4296–4301.
33. Leach,R.N., Gell,C., Wigneshweraraj,S.R., Cannon,W., Casaz,P., Gallegos,M.T., Schumacher,J., Jones,S., Elderkin,S., Dago,A.E. et al. (2001) Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochanical action. Genes Dev., 15, 2282–2294.
34. Chaney,M., Grande,R., Wigneshwararaj,S.R., Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
35. Joly,N., Schumacher,J. and Buck,M. (2011) Regulation of the co-evolved HrpR and HrpS activators. J. Mol. Biol., 414, 160–170.
36. Chaney,M., Grande,R., Wigneshwararaj,S.R., Stockley,P.G. and Martin,A. (2012) Complete subunit architecture of the MCM2-7 helicase activation by GINS and Cdc45. Nat. Struct. Mol. Biol., 18, 471–477.
37. Lee,J.H. and Hoover,T.R. (1995) Protein crosslinking studies of the simian virus 40 large T-antigen origin-binding domain. J. Virol., 80, 4305–4312.
38. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
39. Leach,R.N., Gell,C., Wigneshweraraj,S.R., Cannon,W., Casaz,P., Gallegos,M.T., Schumacher,J., Jones,S., Elderkin,S., Dago,A.E. et al. (2001) Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochanical action. Genes Dev., 15, 2282–2294.
40. Chaney,M. and Buck,M. (1999) The sigma 54 DNA-binding domain includes a determinant of enhancer responsiveness. Mol. Microbiol., 33, 1200–1209.
41. Erzberger,J.P. and Berger,J.M. (2006) Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct., 35, 93–114.
42. Casaz,P. and Buck,M. (1997) Probing the assembly of transcription initiation complexes through changes in sigmaN protease sensitivity. Proc. Natl Acad. Sci. USA, 94, 12145–12150.
43. Feng,L., Toroney,R., Hazen,J.L., Mehl,R.A. and Chin,J.W. (2007) Repressor forms of the enhancer-binding protein NrtC: some fail in coupling ATP hydrolysis to open complex formation. Nature, 442, 270–275.
44. Leach,R.N., Gell,C., Wigneshweraraj,S.R., Cannon,W., Casaz,P., Gallegos,M.T., Schumacher,J., Jones,S., Elderkin,S., Dago,A.E. et al. (2001) Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochanical action. Genes Dev., 15, 2282–2294.
45. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
46. Leach,R.N., Gell,C., Wigneshweraraj,S.R., Cannon,W., Casaz,P., Gallegos,M.T., Schumacher,J., Jones,S., Elderkin,S., Dago,A.E. et al. (2001) Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochanical action. Genes Dev., 15, 2282–2294.
47. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
48. Leach,R.N., Gell,C., Wigneshweraraj,S.R., Cannon,W., Casaz,P., Gallegos,M.T., Schumacher,J., Jones,S., Elderkin,S., Dago,A.E. et al. (2001) Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochanical action. Genes Dev., 15, 2282–2294.
49. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
50. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
51. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
52. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
53. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
54. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
55. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.
56. Stockley,P.G. (2006) Mapping ATP-dependent activation at a sigma54 promoter. J. Biol. Chem., 281, 33177–33178.