COMPARATIVE ANALYSIS OF THE ACCURACY OF BOMB RELEASE AND THE PROBABILITY CHARACTERISTICS OF THE ERROR OF BOMBING OF DIFFERENT METHODS SOLVING THE PROBLEM OF AIMING

Stoyko Stoykov

Faculty Aviation, Bulgarian Air Force Academy, Dolna Mitropolia, Bulgaria

e-mail: sos_23@abv.bg

Keywords: Aviation, Air bomb, Accuracy of bomb release, Probable deflection

Abstract

An approximate method for estimating the accuracy of bomb release of new methods solving the problem of targeting compared to existing ones is proposed. A comparative analysis of the Root mean square deviation, the expected value and the second starting point of the bomb release error for new and existing methods of the targeting task was performed.

Introduction

In certain areas of use of different methods for solving the targeting problem, it is possible to perform a comparative analysis of the accuracy of bomb release of these methods by the probable deviations of the drop points of the bombs.

The probable deviation is calculated according to the formula [3]:

1) \(E = 8H + 0.08V_1(1+\sin\lambda) \),

where \(H \) is the height of bomb release, km;

\(V_1 \) – speed of bomb release, km/h;

\(\lambda \) – diving angle.

The following expressions (method 1, existing and method 2, new) are used to perform a comparative analysis of the probabilistic characteristics of the bomb release errors of different methods:

\[\Delta \sigma \Delta x = \sigma \Delta x_1 - \sigma \Delta x_2; \]

2) \[\Delta M[\Delta x] = M[\Delta x_1] - M[\Delta x_2]; \]

\[\Delta a_2x = a_2x_1 - a_2x_2, \]
where $\sigma \Delta x_1$, $M[\Delta x_1]$, a_2x_1 are the standard deviation, the mathematical expectation and the second starting point of the bomb error for method 1;

$\sigma \Delta x_2$, $M[\Delta x_2]$, a_2x_2 are the standard deviation, the mathematical expectation and the second starting point of the bomb error for method 2.

Results

To calculate the probable deviation E of Method 2, the following formula is proposed:

2) $E_2 = P_n E_n + P_{im} E_{im},$

where E_n и E_{im} are probable deviations during bomb release during or exiting diving;

P_n и P_{im} — probabilities for bomb release during or exiting diving.

Probable deviations are calculated by a formula (1) where H, V_1 and λ are the average values taken for the respective bomb-dropping areas.

Release probabilities are defined as the ratio of the area to the total area of the bomb-dropping area for a given method.

To determine the percentage increase in the accuracy of bomb release when using method 2 compared to method 1, the following ratio is used:

$$E\% = \frac{E_{cm} - E_{ym}}{E_{cm}} \times 100$$ 3)

Based on the resulting areas [4] of possible bomb release conditions for method 2 and method 1, the average values for the bomb release conditions (H_0, $V_{1,0}$, λ_0) of the respective areas are determined (Fig. 1, 2, 3, 4). ; The same figures also determine the probabilities of during or exiting diving release P_n and R_{ip} (Table 1).

![Diagram](image.png)

Fig. 1. Dependence of H_0 from $V_{1,0}$, $\lambda_0 = -30^{0}$
Fig. 2. Dependence of H_0 on $V_{1,0}$, $\lambda_0 = -50^0$

Fig. 3. Dependence of H_0 from $V_{1,0}$, $\lambda_0 = -30^0$

Fig. 4. Dependence of H_0 from $V_{1,0}$, $\lambda_0 = -50^0$
Table 1

	\(\lambda_0 = -30^0 \)		\(\lambda_0 = -50^0 \)					
	Diving	Exit diving	Diving	Exit diving				
	M2	M1	M2	M1	M2	M1	M2	M1
V_1	800	900	850	900	900	900	950	950
H	0,7	1,8	0,5	0,7	1,5	2	1	1,3
\(\lambda \)	-30^0	-30^0	-12^0	-12^0	-50^0	-50^0	-20^0	-20^0
\(P_n \)	0,94	0,94	0,88	0,72				
\(P_{nn} \)	0,06	0,06	0,12	0,28				
\(E_n \)	33,6	50,4	28,8	32,8				
\(E_{nn} \)	48,4	62,63	58,01	60,40				
\(E_2 \)	34,5			32,34				
\(E_1 \)	51,13			40,56				
\(E\% = \frac{E_1 - E_2}{E_1} \times 100 \)	32.\%	\(E\% = \frac{E_1 - E_2}{E_1} \times 100 \)	20.\%					

It can be seen from Table 1 that the accuracy of the bomb release of method 2 at \(\lambda_0 = -30^0 \) is with 32\% greater than that of method 1, and at \(\lambda_0 = -50^0 \) – by 20\%.

Table 1 shows that the circular probable deviation of Method 2 for solving the targeting task is closer to the required \(E = 30 \) m [4]. The resulting percentage increases of accuracy calculated by the proposed formula (1) and by the root mean square deviations (2) are close in value (за \(\lambda_0 = -30^0 \), \(\sigma_{\Delta x} \% = 28,63\% \); за \(\lambda_0 = -50^0 \), \(\sigma_{\Delta x} \% = 19,55\% \)).

As a result of the mathematical modeling of the aiming process, the probabilistic characteristics of the bomb release error are determined. (\(\sigma_{\Delta x} \), M[\(\Delta x \)]) from diving.

The differences \(\Delta \sigma_{\Delta x} \) are given in Table 2 during bomb release at diving angle of \(\lambda = -30^0 \). The difference \(\Delta \sigma_{\Delta x} \) varies within the limits of 1.9 m and 5.3 m.
Table 2

Δσx m, λ = -30°	V₁=170 m/s	200	220	240	270
H = 650 m	2.7	3.15	3.4	3.65	3.9
1000	1.9	2.4	3.2	4.30	4.8
1350	2.2	2.2	2.7	3.8	5.3
1700	3.4	2.6	2.6	3.5	5.2
2100	5.7	3.5	2.5	2.8	4.4

The difference ΔM[Δx] varies within the limits of 2,00 and 14.60 m for observed bomb release conditions (Table 3).

Table 3

ΔM[Δx] m, λ = -30°	V₁=170 m/s	200	220	240	270
H=650 m	6.18	5.36	4.41	3.32	2.00
1000	6.86	6.56	5.82	4.65	3.04
1350	8.47	7.73	6.66	5.30	3.62
1700	11.02	8.86	6.93	5.27	3.84
2100	14.60	9.95	6.64	4.55	3.70

The difference Δα₂x assumes its maximum value in the range of conditions under which the method 1 is used – MRD „moment of release display“ (Δα₂x = 684 m²), and its minimum value (Δα₂x = 124 m²) is assumed in the range of conditions, under which the method 1 is used – DPD „drop point display“ (Table 4). At heights H = 1700–2100 m, Δα₂x assumes minimal effect within the range of speeds, at which method 1 is changed from DPD to MRD. With the increase of height H, the second initial moment of the error α₂x2 decreases in relation to α₂x1.
Table 4

	Δa_{2x} m2, $\lambda = -30^0$				
	$V_1=170$ m/s				
	200	220	240	270	
$H = 650$ m	139,99	136,56	133,01	128,88	123,77
1000	154,91	169,24	183,50	197,95	212,65
1350	223,60	219,63	228,03	251,86	292,46
1700	383,56	302,31	265,77	278,66	344,56
2100	683,95	431,35	295,03	266,87	351,15

The difference $\Delta \sigma_{\Delta x}$ varies within the limits of 1.95 to 4.60 m (Table 5) at $\lambda = -50^0$.

Table 5

	$\Delta \sigma_{\Delta x}$ m, $\lambda = -50^0$				
	$V_1=170$ m/s				
	200	220	240	270	
$H = 650$ m	2,26	2,21	2,13	2,03	1,95
1000	2,27	2,73	2,99	3,06	2,92
1350	2,28	3,06	3,55	3,79	3,69
1700	2,31	3,18	3,79	4,13	4,21
2100	2,36	3,11	3,71	4,16	4,60

The expected value $M[\Delta x_2]$ of the bomb release error $M[\Delta x_1]$ for the considered conditions of bomb release, where the difference $\Delta M[\Delta x]$ varies within 3.20 and 8.90 (Table 6). With the increase of speed V_1 of bomb release $\Delta M[\Delta x]$ decreases, and with the increase of the height H the difference $\Delta M[\Delta x]$ increases.
Table 6

H = 650 m	V = 170 m/s	200	220	240	270
	5.32	4.56	3.93	3.43	3.20
1000	6.45	5.77	5.20	4.73	4.38
1350	7.41	6.78	6.25	5.81	5.47
1700	8.20	7.61	7.08	6.66	6.32
2100	8.90	8.22	7.71	7.27	6.91

The second starting point $\Delta \alpha_{2x2}$ of the bomb release error is smaller than $\Delta \alpha_{2x1}$ (Table 7).

Table 7

H = 650 m	V = 170 m/s	200	220	240	270
	87.23	77.50	69.68	63.21	57.64
1000	132.06	132.63	131.51	127.93	120.53
1350	176.04	188.29	196.48	198.72	193.33
1700	216.49	237.79	254.46	265.13	267.72
2100	251.69	274.12	296.65	317.58	335.62

For the full range of conditions, the accuracy of method 2 for bomb release is higher than that of existing methods 1. The relative increase of bomb release accuracy of method 2 varies between 34% and 56%.

Conclusion

A formula for calculating the probable deviation of the bombing error is proposed for newly developed methods for solving the targeting problem. As an example, the probabilistic characteristics of the dive bomb release error were
calculated and a comparative analysis was performed for different methods solving the task of bomb release targeting.

References
1. Atanasov, M. Mathematical model and algorithm of operation of system for release of load from airplane, Bulgarian Academy of Sciences. Space Research and Technology Institute. Aerospace Research in Bulgaria. 32, 2020, Sofia, pp. 64–74, p-ISSN 1313–0927, e-ISSN 2367–9522.
2. Stoykov, S., M. Atanasov. Calculating Technical Scattering Full Error for External Suspended Bombs at Free Release. International conference of scientific, Brasov, AFASES 2015, pp. 487–490, ISSN L 2247 3173.
3. Stoykov, S., A. Stoilkov. Calculation of the probabilistic characteristics of the accuracy of bomb release without forced release of the bomb, VI International scientific and technical conference, Engineering, Technologies, Education, Security, Proceedings, Volume I, Military Science and Security, pp. 30–32, Veliko Tarnovo, 2018, ISSN 2535–0315.
4. Stoykov, O., Atanasov M. Determining the areas of use of the methods indication of the point of fall and indication of the moment of launching during bombing, UNK, NMU “V. Levski”, Faculty “Aviation”, D.M., pp. 91–96, 2014, ISBN 978-954-713-216-8.
5. Mardirossian, G., D. Danov. Preliminary analysis or the ballistic parameters of a penetrator for ecological studies. Aerospace Res. in Bulgaria, 2001, 16, pp. 89–96.