Species Composition, and Diversity of Mataram University Green Open Space, West Nusa Tenggara

S Latifah, N Valentino, D Permata Sari and BSA Sari
Forestry Department, Agriculture Faculty, Mataram University, Jl. Pendidikan No. 37, Mataram 83125, West Nusa Tenggara, Indonesia
E-mail: sittilatifah@unram.ac.id

Abstract. Mataram university green open space (GOS) is one of the partial green open spaces (GOS) approaches that can be used to conserve endemic germplasm as well to fulfill the proportion and distribution of urban forests. This research aims to describe the species composition, and diversity including the authenticity of Flora Malesiana in this area. We used a census method (100% measurement) to identify the species and measured the diameter and height of all tree species with the diameter of more than 2 cm. The results showed that the 99 species belonged to 85 Genera, 39 families with a composition of 61 species (61.62%) including the flora Malesiana and 38 species (38.38%) including exotic species. Based on IVI analysis showed that Ptychosperma macarthurii dominated at the sapling level while Swietenia mahagoni dominated at the pole and tree levels. The H’ of diversity is in the medium category with the sapling level has the highest value (3.42).

1. Introduction
Indonesia is part of Flora Malesiana distribution with the characteristic of very high level of biodiversity, which made Indonesia as the distribution center of commercial plants genetic diversity in the world[1]. However, this high biodiversity is also directly proportional to the threat of extinction of endemic or native (indigenous) species in Indonesia. Based on IUCN data (www.iucnredlist.org), the number of endangered plants in Indonesia is increasing annually. In 2018 there were 437 species [2], 519 species in 2019 [2] and 619 species in 2020 [3]. This condition is very worrying for the existence of Indonesian plants because these plants will be increasingly threatened or become extinct if in the near future there is no meaningful protection and rescue. Latifah et al. [4] mentioned one of the partial attempts to maintain biodiversity in Indonesia is by setting the allocation of green open space (GOS) as part of the existing conservation.

Based on the above view, one of the partial approaches to green open space (GOS) that can be used as conservation of endemic germplasm as well as to widen the proportion and distribution of urban forests is to utilize green open spaces (GOS) in the campus. Considering that the concept of sustainable campus has been widely adopted and accepted, where the university is committed to creating sustainable green campus [5] that has been conceptualized into the architecture of academic masterpieces, building design and administration [6] as a city agents [7] by keeping an eye on ecological integrity and connectivity [8] and must be implemented into the Tri Dharma Higher Education [9].

Green open space (GOS) in campus is a form of a vegetation association that naturally or culturally grows in cities [10] that can improve urban air quality [11][12][13], contribute to climate change mitigation through CO₂ absorption [14][13], maintain the balance of soil elements and prevent flood...
damage [15]. In addition, the presence of this vegetation can play a role in harmonizing the urban space system [16], extending the state of the urban environment (aesthetics) [17][18], improving the quality of human mental health [19][20][21]. Ultimately, urban vegetation can be made as a means of education, recreation, and heritage of historical and cultural values [22][23]. Therefore, to optimize the benefits of GOS, statistically accurate data on urban forest structure (number of species, species composition, species size, species health and species location) is required to provide accurate basic information in appropriate urban forest planning to improve environmental quality and health and human well-being in urban areas.

Beninde et al. [24][25] emphasized that the limitations of vegetation corridors in urban areas greatly affect biodiversity and can be used to protect threatened endemic species and natural ecosystems, including maintaining population genetic processes for the benefit of genetic flows and genetic basis in nature [26]. The influence of invasive alien species on an urban forest ecosystem is very large, dangerous, and intensively. These species can damage native species and ecosystems on a global scale, causing habitat degradation and loss. In addition, the differences between native plant species and invasive species in term resource acquisition and consumption can lead to changes in soil structure, decomposition, and nutrient content on the soil. Thus, invasive species are a serious obstacle to species conservation efforts in urban forests with their resulting impacts [4].

Therefore, it is important to obtain the primary data of the composition and diversity of Mataram University GOS as part of Mataram City Urban Forest including endendicity of Flora Malesiana in order to optimize GOS functions in line with the management and development of the Mataram University area.

2. Research Methods

2.1. Research Location

This research was conducted from December 2020 to March 2021 in Mataram University GOS, Province of West Nusa Tenggara with an area of ± 40.19 ha. The research location can be seen in Figure 1 below:

![Research location map](image)

Figure 1. Research location map

2.2. Materials and Tools

The material used in this study is tree stands with 3 growth phases, which are Trees, Poles, and Sapling. Other habitus in the research location are also measured. The tools used in this study are 30-meter
measuring tape, Phiband meter, Haga-hypsometer, GPS, tally sheet, stationery, digital camera, and Microsoft Office software.

2.3. Method of Collecting Data
This research was carried out through field surveys, dividing into 10 zones as plot base, and using a comprehensive tree census method (IS=100%). The data for saplings, poles and trees were taken by the species names, the number of individuals, and the measured diameter at breast height (DBH), the crown diameter (longest and shortest), the free height of the branches, and the total height of the trees. The growth variable refers to [27][4]. The limitations of the growth in this study are:
- a. Saplings are rejuvenation with a diameter of 2-9.9 cm and height of >1.5 meters.
- b. Poles are a young tree with a diameter of 10-19.9 cm, and
- c. Trees are a mature tree with a diameter of ≥20 cm.

2.4. Data Analysis
2.4.1. Identify the originally species. This analysis focuses on all plant species found in the research location by identifying the Latin names and families, as well as their origins as documented in the literature. References used in the species identification are [28][29][30][31][32][33][34]. The analysis focuses on an indigenous tree species, Flora Malesiana.
2.4.2. Diversity index. Data recapitulation of all stands of Mataram University GOS was tabulated to determine the level of dominance of the species by using a formula that refers to [5]:

$$IVI_i = \left(\frac{n_i}{A} \right) \times 100\% + \left(\frac{P_i}{P} \right) \times 100\% + \left(\frac{BA_i}{BA} \right) \times 100\%$$

The diversity shown by the list of plant species cannot give an accurate picture of the plant community because the relative abundance and importance of each plant species can be different [40][35]. For this reason, the diversity value is seen through the Diversity Index which is calculated using the Shannon-Wiener formula [41][36] as follows:

$$H' = -\sum \left[\frac{n_i}{N} \ln \left(\frac{n_i}{N} \right) \right]$$

3. Results and Discussion
3.1. Composition of plant species
The result shows that there are 3,7426 stands found in Mataram university GOS, which are consisted of 39 families, 85 genera and 99 plant species (Table 1). Table 1 describe that beside trees, 7 species of palm tree species were also found in the Arecaceae family and 1 shrub each in Apocynaceae, Magnoliaceae, Muntingiaceae, Oleaceae, Rosaceae, Rutaceae. This shows composition variations growth of the GOS ecosystem at the Mataram university and describes the presence of a group of composition vegetation that can grow and develop well in the environmental conditions of the area [37].

Overall, out of a total of 3726 stands (Table 1), there are 5 species categorised as high density class, namely *Swietenia mahagony* at 595 individuals/ha (15.91%), *Terminalia catappa* at 283 individu/ha (7.57%), *Roystonea regia* at 263 individu/ha (7.01%) *Mangifera indica* at 191 individu/ha (5.09%) and *Ptychosperma macarthurii* at 186 individu/ha (4.96%). The high number of *Swietenia mahagony* species is because this species has a very important ecological properties, namely its ability to flourish and grow throughout the year [38] and its adaptability to climatic conditions of low rainfall or even dry land [20].
Table 1. Recapitulation the originality of Mataram University GOS vegetation

Family	Species	Habitus	Total Found	Percentage	Originality
Anacardiaceae	Anacardium occidentale L.	Tree	20	0.53	20, 21, 27,55
	Dracunculus dao (Blanco) Merr. & Rolfe.	Tree	15	0.40	31, 35, 40, 46
	Lanrea coromandelica (Hout.) Merr.	Tree	1	0.03	22, 33, 35, 46
	Mangifera indica L.	Tree	191	5.09	31, 50
	Spondias dulcis L.	Tree	6	0.16	46, 56
Annonaceae	Annona muricata L.	Tree	5	0.13	2, 31, 39
	Annona squamosa L.	Tree	3	0.08	51
	Cananga odorata (Lam.) Hook. f. & Thomson	Tree	1	0.03	13, 46
	Melaleuca cajupiuli Pavl.	Tree	55	1.47	9, 46
	Polyalthia longifolia (Sonn.) Thwaites	Tree	113	3.01	32, 60
	Stelechocarpus burahol (Blume) Hook. f. & Thomson	Tree	3	0.08	46
Apocynaceae	Alstonia scholaris (L.) R. Br.	Tree	21	0.56	13, 23, 33, 46
	Cerbera manghas L.	Tree	5	0.13	9, 46, 56
	Plumeria rubra L.	Perdu	14	0.37	2, 41, 48, 61
Areaceae	Areca catechu L.	Tree	13	0.35	57
	Cocos nucifera L.	Palm	1	0.03	46
	Livistona saribus (Lour.) Merr. ex. A. Chev.	Palm	9	0.24	35, 46
	Ptychosperma macarthurii (H. Wendl. ex H.J. Veitch) H. Wendl. ex Hook.f.	Palm	186	4.96	11, 54
	Roystonea regia (Kunth) O. F. Cook	Tree	263	7.01	28, 39, 48
	Veitchia merrillii (Becc.) H.E. Moore	Palm	70	1.87	46, 86
	Wodyetia bifurcata A.K. Irvine	Palm	46	1.25	13
Bignoniaceae	Handroanthus chrysotrichus (Mart. ex DC.)	Tree	14	0.37	4, 21
	Mattos				
Burseraceae	Canarium ovatum Engl.	Tree	63	1.68	46
Calophyllaceae	Calophyllum inophyllum L.	Tree	13	0.35	1, 46, 56
Cannabaceae	Trema orientalis (L.) Blume	Tree	4	0.11	1, 8, 9, 22, 44, 46, 59
Casuarinaceae	Casuarina equisetifolia L.	Tree	36	0.88	9, 46
	Casuarina junghuhiniana Miq.	Tree	69	1.92	46
Clusiaceae	Garcinia mangostana L.	Tree	48	1.28	46
Combretaceae	Terminalia catappa L.	Tree	283	7.57	7, 38, 46
	Terminalia mantaly H. Perrier	Tree	74	1.97	44
Cycadaceae	Cycas rumphii Miq.	Tree	1	0.03	12, 46
Ebenaceae	Diospyros macrophylla Blume	Tree	31	0.83	46
Euphorbiaceae	Aleurites moluccanus (L.) Willd.	Tree	5	0.13	46
Fabaceae	Acacia auriculiformis A. Cunn. ex Benth.	Tree	31	0.83	46
	Adenanthera pavonina L.	Tree	3	0.08	21, 28, 42, 61, 63, 64, 65, 66
	Albizia chinensis (Osbeck.) Merr.	Tree	31	0.83	46
	Bauhinia purpurea L.	Tree	5	0.13	16, 19, 31, 45, 50, 52, 53, 60
	Cassia fistula L.	Tree	36	0.96	46
	Cassia grandis L.f.	Tree	26	0.69	51
	Dalbergia latifolia Roxb.	Tree	21	0.56	34
	Delonix regia (Boj. ex Hook.) Raf.	Tree	58	1.55	44
	Hymenaea courbaril L.	Tree	3	0.08	2, 3, 39
	Leucaena leucocephala (Lam.) de Witt.	Tree	7	0.19	18, 29, 49
	Pongamia pinata (L.) Pierre	Tree	17	0.45	33, 46
	Pterocarpus indicus Wild.	Tree	134	3.60	46
	Samanea saman (Jacq.) Merr.	Tree	31	0.83	21, 41, 48, 61, 63, 67, 68, 69
	Sesbania glandiflora (L.) Poiret	Tree	1	0.03	10, 46
	Tamarindus indica L.	Tree	4	0.11	1, 44
Family	Species	Life form	Local names	Habitat	
-------------------	-------------------------------------	-----------	---	--	
Gnetaceae	Gnetum gnemon L.	Tree			
Juglandaceae	Juglans regia L.	Tree			
Lamiaceae	Gmelina arborea Roxb.	Tree			
Lauraceae	Persea americana Mill.	Tree			
Lecythidaceae	Barringtonia racemosa (L.) Spreng.	Tree			
Lythraceae	Duabanga mohicanna Blume	Tree			
Magnoliaceae	Michelia alba DC	Shrub			
Malvaceae	Durio zibethinus L.	Tree			
Meliaceae	Dysoxylum cauliflorum Hiern	Tree			
Moringaceae	Moringa oleifera Lam.	Tree			
Muntingiaceae	Muntingia calabara L.	Shrub			
Myrtaceae	Psidium guajava L.	Tree			
Oleaceae	Ligustrum sinense Lour.	Shrub			
Phyllanthaceae	Antidesma bunius (L.) Spreng.	Tree			
Rosaceae	Eriobotrya japonica (Thunb.) Lindl.	Shrub			
Rutaceae	Citrus x aurantifolia (Christm.) Swingle	Shrub			
Santalaceae	Santalum album L.	Tree			
Sapindaceae	Dimocarpus longan Lour.	Tree			
Sterculiaceae	Pterospermum javanicum Jungh.	Tree			
Thymelaceae	Aquilaria malaccensis Lam.	Tree			

Notes: 1 (Afrika Timur), 2 (Amerika Tengah), 3 (Amerika Selatan), 4 (Argentina Timur Laut), 5 (Asia Selatan), 6 (Asia Tengah), 7 (Asia Tenggara), 8 (Asia Timur), 9 (Australia), 10 (Australia Utara), 11 (Australia; Northern Territory dan Queensland), 12 (Australia; Pulau Christmas), 13 (Australia; Queensland), 14 (Australia; Queensland Utara), 15 (Bahama), 16 (Bangladesh), 17 (Barbados), 18 (Belize), 19 (Bhutan), 20 (Bolivia), 21 (Brazil), 22 (Cina), 23 (Cina Selatan), 24 (Cina Tengah), 25 (Cina Tenggara), 26 (Cina Timur), 27 (Ekuador), 28 (Florida Selatan), 29 (Guatemala), 30 (Haiti), 31 (India), 32 (India Selatan), 33 (India Sub-koninsidental), 34 (India Tenggara), 35 (Indocina), 36 (Jamaika), 37 (Jepang), 38 (Kepulauan Andaman), 39 (Kepulauan Karibia), 40 (Kepulauan Solomon), 41 (Kolumbia), 42 (Kuba), 43 (Kuba), 44 (Kuba), 45 (Kuba), 46 (Kuba), 47 (Kuba), 48 (Kuba), 49 (Kuba), 50 (Kuba), 51 (Kuba), 52 (Kuba), 53 (Kuba), 54 (Kuba), 55 (Kuba), 56 (Kuba), 57 (Kuba), 58 (Kuba), 59 (Kuba), 60 (Kuba), 61 (Kuba), 62 (Kuba), 63 (Kuba), 64 (Kuba), 65 (Kuba), 66 (Kuba), 67 (Kuba), 68 (Kuba), 69 (Kuba), 70 (Kuba), 71 (Kuba), 72 (Kuba), 73 (Kuba), 74 (Kuba), 75 (Kuba), 76 (Kuba), 77 (Kuba), 78 (Kuba), 79 (Kuba), 80 (Kuba), 81 (Kuba), 82 (Kuba), 83 (Kuba), 84 (Kuba), 85 (Kuba), 86 (Kuba), 87 (Kuba), 88 (Kuba), 89 (Kuba), 90 (Kuba), 91 (Kuba), 92 (Kuba), 93 (Kuba), 94 (Kuba), 95 (Kuba), 96 (Kuba), 97 (Kuba), 98 (Kuba), 99 (Kuba), 100 (Kuba).
The result of the observations and vegetation analysis of Mataram university GOS found that dominant species being Fabaceae family (14 species), followed by Areccaceae (7 species), Anacardiaceae, Annonaceae, Meliaceae (5 species), Apocynaceae, Moraceae, Sapindaceae, Sapotaceae (3 species) and Lamiaceae, Lythraceae, Malvaceae, Myrtaceae, Rubiaceae dan Rutaceae (2 species). However, based on the recapitulation of all species by family (Figure 2), it shows that the Arecaceae family dominates the Mataram University GOS at 622 ind/ha (16.57%), Meliaceae at 608 ind/ha (16.20%) and Fabaceae at 409 ind/ha (10.90%). The Arecaceae family was found in large numbers indicating that in addition to human intervention in planting due to its attractive stem and leaf structure [39], this tribe is able to adapt to its environment when viewed in terms of its vegetation composition [40]. Witono [41] stated that the Arecaceae family can grow well on sandy, peat, calcareous, and rocky soil types. In addition, the Meliaceae family also dominated Mataram university GOS because one of the widespread plants in tropical countries including Indonesia has about 700 species in 51 genera [42] whereas the Fabaceae family dominated by the form of its seeds in shells so that it was easy to spread with the help of animals and humans and was the third largest florist taxon in the world after the species Asteraceae (Compositae) and Orchidaceae, consisting of 770 genera and more than 19,500 species [43][44][44][45].

![Figure 2. The number of Mataram university GOS species in each family](image-url)

Table 1 also shows that there are some potentially invasive exotic species that should be considered and managed more carefully in the future, considering that the University of Mataram in Mataram city is located within the bio-ecoregion of the Lesser Sunda islands and the transitional flora of Wallacea which high biodiversity endemic [1][4][46][40]. Kusmana and Suwandi [47] explained that invasive alien species (IAS) are species originating from outside which also invade natural areas, then widely affecting habitat they invade.
The result also shows that, out of 99 species, 61 species identified as Flora Malesiana species (61.62%) and 38 species (38.38%) are exotic can be invasive species (Figure 3). Then, based on identification results using Global Invasive Species Database [56][48] and the BIOTROP List of Indonesian Invasive Alien Species (IAS) and CABI [31][32]. The results of the IAS identification in the research area are presented in Table 2.

![Figure 3. Percentage of plant species based on endemicity](image)

Species	Habitus
Adenanthera pavonina L.	Tree
Anacardium occidentale L.	Tree
Annona muricata L.	Tree
Annona squamosa L.	Tree
Bauhinia purpurea L.	Tree
Delonix regia (Boj. ex Hook.) Raf.	Tree
Eriobotrya japonica (Thunb.) Lindl.	Tree
Juglas regia L.	Tree
Leucaena leucocephala (Lam.) de Witt.	Tree
Ligustrum sinense Lour.	Shrub
Mangifera indica L.	Tree
Morus alba L.	Tree
Persea americana	Tree
Plumeria rubra L.	Shrub
Polyalthia longifolia (Sonn.) Thwaites	Tree
Psidium guajava L.	Tree
Psychosperma macarthurii (H. Wendl. ex H.J. Veitch) H. Wendl. ex Hook.f.	Palm Tree
Roystonea regia (Kunth) O. F. Cook	Palm Tree
Samanea saman (Jacq.) Merr.	Tree
Swietenia mahagoni (L.) Jacq.	Tree
Syzgium cumini (L.) Skeels.	Tree
Terminalia mantaly H. Perrier	Tree

Source: [31][32][48]

Based on table 2, there are 21 species of IAS in total. Some research results explain, several conditions which affect the speed of a species invasion are: (1) the ability to reproduce asexually and sexually; (2) fast-growing; (3) high reproductivity; (4) high spreading ability; (5) elastic phenotype, capable of changing shape depending on the latest conditions around it; (6) tolerance to various environmental conditions; (7) relationship with humans; and (8) other invasions that have been successfully carried out. The invasion of those IAS is still in the early stage, this is indicated by the number of native species grow in the area so that it can still be immediately controlled.
3.2. Diversity index
Vegetation analysis results are used to calculate the Important Value Index (IVI) of each species found at each growth stage. The five dominant species based on the Important Value Index (IVI) presented in Table 3. Based on Table 3, species dominant at a growth stage do not always dominate at the next growth stage, there are some species of plants that are only found at a certain growth stage. This is consistent with Dendang and Handayani [57][49], which states that not all species of vegetation found at every stage of growth. The disturbance could affect the regeneration process, causing changes in the composition of species that occupy at each growth stage. Beside [4][44][45][46][49][50][51][52][53][54][55][56][40], states that a species can be said to play an essential role in a forest community if the tree and pole level reach an IVI value > 15% and the sapling and seedling levels an IVI value > 10%

The stability of species diversity of an area would determine the regeneration for the future. The level of community stability and dominant species is studied by calculating the importance value index, dominance index and diversity index. The value of diversity index lower than 1.50 (3.5) means the diversity index is high.

Growth Stage	Dominant species	IVI (%)	H'
Sapling	Ptychosperma macarthurii (H. Wendl. ex H.J. Veitch) H. Wendl. ex Hook.f.	29.83	3.37
	Swietenia mahagoni (L.) Jacq.	23.25	
	Terminalia mantaly H. Perrier	21.72	
	Garcinia mangostana L.	18.87	
	Veitchia merrillii (Becc.) H.E. Moore	17.42	
Poles	Swietenia mahagoni (L.) Jacq.	35.26	3.42
	Roystonea regia (Kunth) O. F. Cook	24.98	
	Ptychosperma macarthurii (H. Wendl. ex H.J. Veitch) H. Wendl. ex Hook.f.	20.81	
	Terminalia catappa L.	15.16	
	Minusops elengi L.	11.94	
Trees	Swietenia mahagoni (L.) Jacq.	36.37	3.36
	Terminalia catappa L.	21.04	
	Pterocarpus indicus Willd.	19.11	
	Mangifera indica L.	18.13	
	Roystonea regia (Kunth) O. F. Cook	12.34	

4. Conclusion
The research results show that the species composition in Mataram university GOS consists of 3,726 trees, composing of 39 families, 85 genera and 99 species. Among all species, 61 species (61.62%) including the flora Malesiana and 38 species (38.38%) including exotic species. Based on IVI analysis showed that Ptychosperma macarthurii dominated at the sapling level while Swietenia mahagoni dominated at the pole and tree levels. The H' of diversity is in the medium category with the sapling level has the highest value (3.42). There are 21 species categorized as Invasive Alien Species (IAS) dominated by Ptychosperma macarthurii and Swietenia mahagoni at each growth level. The dominance of invasive species can affect the changes in the composition and diversity of stands in the Mataram university GOS. Therefore, it is important to regenerate and replanting with priority of NTB native species, which are both ecologically and aesthetically pleasing or species that have geographical proximity to the province of NTB to maintain the composition and diversity of ecosystem types in NTB in a stable condition, considering that NTB is a small island ecoregion that is vulnerable to disturbances and disasters

Acknowledgement
We thank all who assisted this research. Also, Forestry Department Mataram University were supported to publish our research.
References

[1] Kusmana C and Hikmat A 2015 The Biodiversity of Flora in Indonesia,” J. Nat. Resour. Environ. Manag. 5 (2) pp 187–198 doi: 10.19081/jpns.5.2.187
[2] Bland LM et al. 2019 Impacts of the IUCN Red List of Ecosystems on conservation policy and practice Conserv. Lett. 12 (5) pp 1–8 doi: 10.1111/conl.12666
[3] Braulik GT, Findlay KP, Cerechio S, Baldwin RM, and Perrin WF 2017 Sousa plumbea IUCN Red List Threat. Species 8235 T8203163
[4] Latifah S et al. 2021 Species composition, structure and endemcity of flora Malesiana in the Udayana urban forest, Mataram City IOP Conf. Ser. Earth Environ. Sci. 637 (1) doi: 10.1088/1755-1315/637/1/012088
[5] Ragazzi and Ghidini F 2017 Environmental sustainability of universities: Critical analysis of a green ranking Energy Procedia 119 pp 111–120 doi: 10.1016/j.egypro.2017.07.054
[6] Tan H, Chen S, Shi Q, and Wang L 2014 Development of green campus in China J. Clean. Prod. 64 pp 646–653 doi: 10.1016/j.jclepro.2013.10.019.
[7] Peer Vand Stoeglehner G 2013 Universities as change agents for sustainability-frames the role of knowledge transfer and generation in regional development processes J. Clean. Prod. 44 pp 85–95 doi: 10.1016/j.jclepro.2012.12.003
[8] Biodiversitas D, Wilayah DI, and Wuisang C 2015 Konservasi Biodiversitas Di Wilayah Perkotaan: Evaluasi Lansekap Koridor Hijau Di Kota Manado Media Matrasain 12 (2) pp 47–60
[9] Prihanto T 2018 Green campus management based on conservation program in Universitas Negeri Semarang AIP Conf. Proc. 1941 doi: 10.1063/1.5028082
[10] Lau SSY, Gou Z, and Liu Y 2014 Healthy campus by open space design: Approaches and guidelines Front. Archit. Res. 3 (4) pp 452–467 doi: 10.1016/j.faor.2014.06.006
[11] Selmi W, Weber C, Riviè re E, Blond N, Mehdi L, and Nowak D 2016 Air pollution removal by trees in public green spaces in Strasbourg city, France Urban For. Urban Green. 17 (2) pp 192–201 doi: 10.1016/j.ufug.2016.04.010
[12] Willis KJ and Petrokofsky G 2017 The natural capital of city trees Science (80-) 356 (6336) pp 374–376 doi: 10.1126/science.aam9724
[13] Barwise Y and Kumar P 2020 Designing vegetation barriers for urban air pollution abatement: a practical review for appropriate plant species selection npj Clim. Atmos. Sci. 3 (1) pp 1–19 doi: 10.1038/s41612-020-0115-3
[14] Nero BF, Callo-Concha D, Anning A, and Denich M 2017 Urban Green Spaces Enhance Climate Change Mitigation in Cities of the Global South: The Case of Kumasi, Ghana,” Procedia Eng. 198 pp. 69–83 doi: 10.1016/j.proeng.2017.07.074
[15] FAO, Guidelines on urban and peri-urban forestry, vol. 178
[16] Latifah S et al. 2020 Evaluasi Risiko Pohon Di RTH Udayana Kota Mataram Dengan Tree Risk Assesment J. Penelit. Kehutan. Faloak 4 (2) pp 141–160 doi: 10.20886/jpkf.2020.4.2.141-160
[17] Guitart D, Pickering C, and Byrne J 2012 Past results and future directions in urban community gardens research,” Urban For. Urban Green. 11 (4) pp 364–373 doi: 10.1016/j.ufug.2012.06.007
[18] Dea P 2018 Kajian Kesesuaian Fungsi Taman Kota Sebagai Ruang Terbuka Hijau (Studi Multisitus Pada Tiga Taman Kota Di Kediri) Swara Bhumi 5 (6) pp 1–8
[19] Nowak DJ, Crane DE, Stevens JC, Hoehn RE, Walton JT, and Bond J 2008 A ground-based method of assessing urban forest structure and ecosystem services Arboric. Urban For. 34 (6) pp. 347–358
[20] Gopal D and Nagendra H 2014 Vegetation in Bangalore’s slums: Boosting livelihoods, well-being and social capital Sustain. 6 (5) pp 2459–73 doi: 10.3390/su6052459
[21] Astashin AE, Pashkin MN, Pudeeva ON, Bad’In MM, and Fomina AI 2021 Composition, Structure, Spatial Organization and Current Condition of the Urban Forest in a Large City
(on the Example of the beyond the River Part of Nizhniy Novgorod, Russia) IOP Conf. Ser. Earth Environ. Sci. 688 (1) pp 1–9 doi: 10.1088/1755-1315/688/1/012021

[22] Mukhlison 2013 Pemilihan Jenis Pohon untuk Pengembangan Hutan Kota di Kawasan Perkotaan Yogyakarta MUKHLISON Fakultas Kehutanan Universitas Gadjah Mada J. Ilmu Kehutan 10 (1) pp 37–47

[23] Syahbudin A et al. 2018 Urban trees in the Cities of Matsuyama (Japan) and Yogyakarta (Indonesia): Tree species diversity, design, and culture IOP Conf. Ser. Earth Environ. Sci. 203 (1) doi: 10.1088/1755-1315/203/1/012013.

[24] 2015 Review and Biodiversity in cities needs space : a meta-analysis of factors determining intra-urban biodiversity variation doi: 10.1111/ele.12427

[25] Threlfall CG and Kendal D 2017 The distinct ecological and social roles that wild spaces play in urban ecosystems Urban For. Urban Green doi: 10.1016/j.ufug.2017.05.012.

[26] Ratnaningrum YWN, Indrioko S, Faridah E, and Syahbudin A 2017 Gene flow and selection evidence of sandalwood (Santalum album) under various population structures in gunung sewu (Java, Indonesia), and its effects on genetic differentiation Biodiversitas 18 (4) pp 1493–1505 doi: 10.13057/biodiv/d180428

[27] Kusmana C 2017 Metode Survey dan Interpretasi Data Vegetasi IPB Press

[28] Indrawan ISA 1998 Ekologi Hutan Indonesia Accessed: Sep. 14, 2021. [Online]. Available: //elib.fahutan.ipb.ac.id/index.php?p=show_detail&id=46&keywoyds=

[29] Lemmens R, Soerianegara I, and WC W 1995 Plant resources of South-East Asia Backhuys

[30] Sankaran K and Suresh T 2013 Asia Fasifik Forest Invasive Species Network Food and Agriculture Organizations of the United Nations Regional Office for Asia and the Pacific, p. 207

[31] Tjitrosoedirdjo SS, Mawardi I, and Tjitrosoedirdjo S 2016 75 Important Invasive Plant Species in Indonesia

[32] Witt 2017 Guide to the naturalized and invasive plants of Southeast Asia

[33] Kusmana C 2017 Survey Methods and Intrepretation of Vegetation Data p. 68

[34] Gasson P, Lemmens RHMJ, Soerianegara I, and Wong WC 1996 Plant Resources of South East Asia no 5(2). Timber Trees: Minor Commercial Timbers 51 (4)

[35] Kimmins J 1987 Forest ecology New York London Macmillan Collier Macmillan

[36] Krebs CJ 1973 Ecology Ecology: The Experimental Analysis of Distribution and Abundance 23 (4)

[37] Beljai B and Worabai MS 2018 Struktur dan komposisi vegetasi serta keanekaragaman jenis amfibi di hutan Pegunungan Arfak, Papua Barat The structure and composition of vegetation and amphibian diversity in Arfak Mountain West Pros. Semin. Nas. Masy. Biodiversitas Indones. 4 pp 1–12 doi: 10.13057/psmbi/m040101

[38] Sukardiman and Ervina M 2020 The recent use of Swietenia mahagoni (L.) Jacq. as antidiabetes type 2 phytomedicine: A systematic review Heliyon 6 (3) p e03536 doi: 10.1016/j.heliyon.2020.e03536.

[39] Silalahi M 2016 Keanekaragaman Dan Distribusi Tumbuhan Bermanfaat Di Pekarangan Kampus Universitas Kristen Indonesia (Uki) Cawang, Jakarta Timur the Diversity and Distribution of Useful Plants in the Home Garden of IndoNesian Christian University (UKI) Campus, Ca Biologi 20 (2) pp 75–82

[40] Darajati W et al. 2016 Indonesia Biodiversity Startegy and Action Plan (IBSAP) 2012-2020

[41] Asra R, Syamsuardi, Mansyuridin, and Witono JR 2014 The study of genetic diversity of daemonorops draco (Palmae) using ISSR markers Biodiversitas 15 (2) pp 109–114 doi: 10.13057/biodiv/d15021

[42] Tilney PM, Nel M, and Wyk AEv 2018 Foliar secretory structures in Ekebergia capensis (Meliaceae),” Heliyon 4 (2) p. e00541 doi: 10.1016/j.heliyon.2018.e00541

[43] Raes N, Saw LG, Welzen PCv, and Yahara T 2013 Legume diversity as indicator for botanical diversity on Sundaland, South East Asia South African J. Bot. 89 pp 265–272 doi:
10.1016/j.sajb.2013.06.004

[44] Azani N 2017 A new subfamily classification of the leguminosae based on a taxonomically comprehensive phylogeny Taxon 66 (1) pp 44–77 doi: 10.12705/661

[45] Yuliana S and Lekito K 2018 Deteksi dan Identifikasi Jenis Tumbuhan Asing Invasif Di Taman Wisata Alam Gunung Meja Manokwari, Papua Barat J. Faloak 2 (2) pp 89–102

[46] Widjaja EA 2014 Kekinian Keragaman Hayati Indonesia

[47] Kusmana Cand Suwandhi I 2019 Diversity of plant species and the presence of Invasive Alien Species (IAS) in the Sub-Montane Forest at Pakenjeng Region, Southern Part of Garut, West Java IOP Conf. Ser. Earth Environ. Sci. 399 (1) doi: 10.1088/1755-1315/399/1/012035

[48] Global Invasive Species Database GISD http://www.iucngisd.org/gisd/ (accessed Sep. 14, 2021)

[49] Dendang B 2015 Struktur dan komposisi tegakan hutan di Taman Nasional Gunung Gede Pangrango, Jawa Barat 1 pp 691–695 doi: 10.13057/psnmbi/m010401

[50] Science E 2021 Committee of ICSAE 2020 IOP Conf. Ser. Earth Environ. Sci. 637 p. 011002 doi: 10.1088/1755-1315/637/1/011002

[51] Mawazin and Subiakto A 2013 Species diversity and composition of logged over peat swamp forest in Riau For. Rehabil 1 pp 59–73

[52] Fajri M and Supartini S 2015 Vegetation Analysis of Tengkawang in Community Garden Sintang District, West Kalimantan J. Penelit. Ekosist. Dipterokarpa 1 (2) pp 55–62 doi: 10.20886/jped.2015.1.2.55-62

[53] Kurniasari M, Budhi S, and Fernando T 2017 Studies of Vegetation Species Biodiversity in Sheed Orchards Candidate (SO) Area IUPHHK-HA PT. Kawedar Wood Industry Kapuas Hulu District 3 pp 8–14

[54] Indriyani L, Falmim A, and Erna 2017 Analysis of Biodiversity of Understorey Plants in Jompi Protected Forest J. Ecogreen 3 pp 49–58

[55] Nuraina I, Fährizal, and Prayogo H 2018 Ismi Nuraina, Fahrizal, Hari Prayogo J. Hutan Lestari vol 6 (1) pp 137–146

[56] Nurkhotimah, A. Hikmat, and T. Setyawati 2017 Composition, Structure and Diversity of Species Plant in Dungus Iwul Nature Reserve, Bogor District Media Konserv. 22 pp 138–145