GALAXY BULGES AND THEIR BLACK HOLES: A REQUIREMENT FOR THE QUENCHING OF STAR FORMATION

ERIC F. BELL
Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany; bell@mpia.de
Received 2007 August 14; accepted 2008 April 14

ABSTRACT

One of the central features of the last 8–10 billion years of cosmic history has been the emergence of a well-populated red sequence of non-star-forming galaxies. A number of models of galaxy formation and evolution have been devised to attempt to explain this behavior. Most current models require feedback from supermassive black holes (AGN feedback) to quench star formation in galaxies in the centers of their dark matter halos (central galaxies). Such models make the strong prediction that all quenched central galaxies must have a large supermassive black hole (and, by association, a prominent bulge component). I show using data from the Sloan Digital Sky Survey that the observations are consistent with this prediction. Over 99.5% of red-sequence galaxies with stellar masses in excess of $10^{10} M_\odot$ have a prominent bulge component (as defined by having a Sérsic index n above 1.5). Those very rare red-sequence central galaxies with little or no bulge ($n < 1.5$) usually have detectable star formation or AGN activity; the fraction of truly quenched bulgeless central galaxies is $<0.1\%$ of the total red-sequence population. I conclude that a bulge, and by implication a supermassive black hole, is an absolute requirement for full quenching of star formation in central galaxies. This is in agreement with the most basic prediction of the AGN feedback paradigm.

Subject headings: galaxies: bulges — galaxies: evolution — galaxies: general — galaxies: spiral — galaxies: stellar content

1. INTRODUCTION

A key feature of the last 8–10 billion years of galaxy evolution is the emergence of a well-populated red sequence of non-star-forming galaxies (e.g., Bell et al. 2004; Faber et al. 2007; Brown et al. 2007). The present-day red sequence has little scatter in color at a given magnitude, and appears to be largely composed of bulge-dominated and early-type spiral galaxies (Visvanathan & Sandage 1977; Bower et al. 1992). Theoretical models of galaxy evolution have had difficulty in reproducing the properties of red-sequence galaxies using standard recipes for the cooling of gas, star formation, and stellar feedback (e.g., Bower et al. 2006; Croton et al. 2006; Cattaneo et al. 2007 for discussions of this issue). In such “standard” models, star formation is insufficiently quenched, leading to a dramatic overabundance of massive blue star-forming galaxies.

Current models have attempted to remedy this shortcoming by quenching star formation in galaxies through two main classes of mechanism. The first mechanism, which affects only satellite galaxies (i.e., the noncentral galaxies in groups and clusters), is a shutoff of gas cooling in galaxies once they fall into a larger halo. Such a recipe has been in at least semianalytic models for some time (see, e.g., Cole et al. 2000) and produces a population of relatively low mass highly clustered red-sequence galaxies. These prescriptions are being currently tested using the Sloan Digital Sky Survey (SDSS) and other surveys (e.g., Baldry et al. 2006; Weinmann et al. 2006; Haines et al. 2007), and I do not touch further on this issue in this paper.

Another mechanism (or mechanisms) has been required by the models to shut off star formation in central galaxies (i.e., the galaxies lying in the center of their dark matter halos, and presumably at the focus of any inflow of gas). An important candidate (I touch on others later) is feedback from accretion of matter onto supermassive black holes, which either disrupts gas cooling in the galaxy halo (e.g., “radio-mode AGN feedback”; Croton et al. 2006; Fabian et al. 2006) or drives gas out of the central galaxy (e.g., “quasar-mode AGN feedback”; Kauffmann & Haehnelt 2000; Hopkins et al. 2006; Tremonti et al. 2007). In this picture, given the existence of a tight correlation between black hole mass and bulge mass (e.g., Magorrian et al. 1998; Häring & Rix 2004), it is natural to expect that quenching and the existence of a large bulge would be tightly linked.

Indeed, such a correlation is well documented, at least in a broad sense (see, e.g., Stratteva et al. [2001] or Fig. 7 of Blanton et al. [2003c]). Yet, if AGN feedback is the only way for central galaxies to quench their star formation, such a paradigm makes a strong prediction: bulgeless quenched central galaxies cannot exist. In this sense, the small but nonnegligible population of bulgeless (low Sérsic index) galaxies with red colors in Figure 7 of Blanton et al. (2003c) is of key importance. Are these galaxies all satellite galaxies and/or dust-obscured edge-on galaxies? Or is there indeed a significant population of red, central bulgeless disk galaxies? In the latter case, one would be driven to prefer, at least in certain circumstances, other possible mechanisms for quenching star formation (see, e.g., Naab et al. 2007; Dekel & Birnboim 2008; Khochfar & Ostriker 2008; Dekel & Birnboim 2006; Birnboim et al. 2007; Guo & Oh 2008 on gravitational heating, the influence of the development of virial shocks, and the heating of large halos with cosmic-ray energy).

The goal of this paper is to attempt to test the key prediction of AGN feedback—namely, that bulgeless quenched central galaxies do not exist—using SDSS Data Release 2 (DR2; Abazajian et al. 2004). In § 2 I describe the data and derived parameters that I use in this investigation. In § 3 I describe the results, showing the properties of the galaxy population as a function of galaxy morphology for central galaxies. In §§ 4 and 5 I discuss the results and present my conclusion. I adopt $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.7$, and $\Omega_{\Lambda} = 0.3$ in what follows.

1 It is expected that such mechanisms act together; e.g., stellar- or quasar-powered winds may expel the gas from the galaxy originally, while low-level AGN activity may suppress future gas cooling. Most models include both types of feedback.
2. THE DATA

I use publicly available catalogs derived from SDSS DR2 (Abazajian et al. 2004). 2 The SDSS is an imaging and spectroscopic survey that has so far mapped ~1/4 of the sky. Imaging data are produced simultaneously in five photometric bands, namely, u, g, r, i, and z (Fukugita et al. 1996; Gunn et al. 1998, 2006; Hogg et al. 2001). The data are processed through pipelines to measure photometric and astrometric properties (Lupton et al. 1999; Stoughton et al. 2002; Smith et al. 2002; Pier et al. 2003; Ivezić et al. 2004; Tucker et al. 2006) and to select targets for spectroscopic follow-up (Blanton et al. 2003a; Strauss et al. 2002). DR2 includes spectroscopy over an area of ~2600 deg², and imaging for a larger area.

For this paper I use the sample of galaxies in the New York University Value Added Galaxy Catalog (NYU VAGC; Blanton et al. 2005). For galaxies with spectroscopic redshifts, I use absolute magnitudes k-corrected to the rest-frame g and r passbands (Blanton et al. 2003b) and corrected for Galactic foreground extinction following Schlegel et al. (1998). I adopt the r absolute Petrosian magnitude for the galaxy absolute magnitude (random and systematic uncertainties ≤0.15 mag), and the (g − r) model color for a higher S/N estimate of galaxy color (uncertainties ≤0.05 mag). Stellar masses were estimated under the assumption of a universally applicable Chabrier (2003) stellar IMF using the following color–stellar M/L relation:

\[\log_{10} M/L_r = -0.406 + 1.097(g-r), \]

where an offset of ~0.1 dex has been applied to the relation from Bell et al. (2003) to convert from a diet Salpeter IMF to a Chabrier (2003) IMF. These stellar masses have random uncertainties of ~0.1 dex; systematic uncertainties from recent bursts of star formation and other sources may exceed this estimate in cases where the bursts contribute a significant fraction of the galaxy’s light (Bell & de Jong 2001).

In order to gain a more complete understanding of star formation and AGN activity in the sample galaxies, star formation and AGN classifications and estimates of total star formation rate were taken from Brinchmann et al. (2004) using emission-line measurements described in Tremonti et al. (2004). Galaxies are classified as star-forming, AGN, composite, or are left unclassified (typically because the galaxies lack line emission in their SDSS spectra).

Disk galaxies were selected by selecting galaxies with nearly an exponential light profile. Blanton et al. (2003c) fit the light profile of galaxies in the SDSS with a seeing-convolved Sérsic (1968) profile \(\Sigma(r) \propto \exp \left(-\kappa (r/r_0)^{1/n} -1 \right) \). The Sérsic index \(n \) describes the shape of the light profile, where \(n = 1 \) corresponds to an exponential light profile and \(n = 4 \) corresponds to a \(r^{1/4} \) law profile characteristic of massive early-type galaxies. In what follows I apply a cut to the Sérsic indices in the r band \(n < 1.5 \) to select disk galaxies with little or no contribution from a bulge to the light profile of the galaxy; I apply a further cut that the half-light radius should be larger than 0.4" to discard all galaxies with little/no structural information in the NYU VAGC. 3

Finally, in order to test the model predictions for the properties of central and satellite galaxies separately, I use a volume-limited catalog of galaxy groups complete to \(\log_{10} M_{\text{group}} / M_\odot > 11.7 \) for group redshifts \(z < 0.06 \) from Yang et al. (2005). Groups are identified using an iterative method which adopts a trial mass and identifies galaxies within a group mass-dependent transverse radius and velocity difference. Then, based on the total r-band luminosity of all candidate group members, the group mass is adjusted and the process repeated until one converges on a final group mass. The group mass is assigned based on the total r-band luminosity of all members; in a cosmological simulation with the same volume as the observed sample, the most luminous group is assigned the largest halo mass, the second most luminous group the second largest mass, etc. Such groups are ~90% complete and contaminated at the ~20% level. In this group catalog, the majority of galaxies reside in single-galaxy “groups”; i.e., they are the central galaxies in their own halos, with no satellites above the luminosity limit of the sample. For the purposes of this paper, I am almost completely unaffected by group mass uncertainties, as the primary purpose in using the catalogs is to separate the galaxy population into central galaxies and satellites; obviously, for single-galaxy groups the identification of the central galaxy is trivial. For all multigalaxy groups, Yang et al. (2005) identify the brightest galaxy in the group as the central galaxy. Comparison with mock group catalogs derived using this method demonstrates that >97.5% of central galaxies are indeed the brightest galaxy in their group (Weinmann et al. 2006). Satellites are defined to be all other galaxies in groups.

3. RESULTS

The goal of this paper is to test the generic prediction of AGN feedback that there should be no bulgeless central galaxies with quenched star formation. In order to test this prediction, I select galaxies with 0.02 < z < 0.06 from the above sample. I further select galaxies with 60° inclination (b/a > 0.5). This is a selection cut of some importance, as it minimizes the effects of dust extinction on galaxy colors and emission-line-derived estimates of star formation rates; low-inclination galaxies with red colors and/or low star formation rates then become a reasonably clean probe of quenching. 4

The key result of this study is shown in Figure 1. The left-hand panel shows the properties of central galaxies without significant bulges, selected by requiring that the Sérsic index \(n < 1.5 \). The right-hand panel shows the properties of central galaxies with large bulges, selected using \(n > 3 \). It is to be noted that the \(n > 3 \) bin contains a number of galaxies with prominent (even dominant) disks; the \(n > 3 \) is reflecting primarily the existence of a large bulge. The middle panel shows the intermediate \(1.5 < n < 3.0 \). One can see that there are very few bulgeless galaxies on the red sequence; adopting a definition of red sequence of \((g-r) > 0.57 + 0.0575 \log_{10}(M/10^{10} M_\odot) \) (i.e., a line 0.05 mag blueward of the red-sequence locus described by the thick line) and restricting our attention only to galaxies with \(\log_{10} M_{\text{group}} / M_\odot > 10 \), only 0.5% (14 of 2744) of red-sequence central galaxies have

\[\text{DR2 is used in preference to larger, later SDSS data releases because it is the only data release to have publicly available galaxy density estimates, group catalogs, Sérsic fits, and star formation rate estimates.} \]

\[\text{The Sérsic fits are used in preference to the more frequently used concentration parameters because the Sérsic fits are convolved with the point-spread function (i.e., the Sérsic fits should be less dependent on seeing than the seeing-dependent concentrations).} \]
Fig. 1.—Color-mass distribution for central galaxies with \(b/a > 0.5 \) and \(0.02 < z < 0.06 \). Galaxies are separated into those lacking significant bulges (Sérsic index \(n < 1.5 \); left), those with an intermediate bulge-to-disk ratio (\(1.5 < n < 3 \); middle), and those with significant bulges (\(n > 3 \); right). Colors denote the emission-line classification classes from Brinchmann et al. (2004). Red denotes galaxies unclassified because of a lack of line emission; the bulk of these galaxies are not forming stars. Hues of blue show galaxies with line emission characteristic of being powered by star formation; green shades show star formation/AGN composites or AGNs. There are very few \(n < 1.5 \) central red-sequence galaxies, and almost all of these have an AGN. It would appear that in order to quench star formation completely, central galaxies must have a significant bulge and/or supermassive black hole.

\(n < 1.5 \) (14 of 725, or 1.9%, of \(n < 1.5 \) galaxies are on the red sequence).\(^6\)

\(^6\) There are 16 red-sequence central galaxies with values of \(b/a > 0.5 \) and \(n < 1.5 \); two of these (SDSS J142922.73–004939.1 and SDSS J084958.78+381203.2) are clearly edge-on and should have not been included in the sample (their catalog values of \(b/a \) are simply incorrect) and they were excluded from the sample.

Fig. 2 shows example \(gri \) SDSS cutouts for subsamples of central galaxies with \(M_\star > 10^{10} M_\odot \). The top panels show five of the 711 blue central \(n < 1.5 \) galaxies; one can clearly see that the typical galaxy in this subsample is a late-type disk galaxy with a small or nonexistent bulge. The middle panels show five of the 14 red central \(n < 1.5 \) galaxies. One can see in some cases a prominent bar and possible bulge. The bottom panels show five

\(n < 1.5 \) (14 of 725, or 1.9%, of \(n < 1.5 \) galaxies are on the red sequence).\(^6\)
of the 163 red central galaxies with $1.5 \leq n < 2.5$. There is a tendency toward better defined bulges than for the $n < 1.5$ red central galaxy subsample; however, it is clear that at least some fraction of the low-n red subsample have structures similar to the higher n subsample, lending weight to the notion that some of the $14 n < 1.5$ red central galaxies have incorrect n estimates—0.5% is an upper limit to the fraction of bulgeless red-sequence galaxies. Taking Figures 1 and 2 together, it is clear that there are very few, if any, bona fide bulgeless red central galaxies—in agreement with the most basic expectation of the AGN feedback paradigm.

One may have the concern that perhaps this result was an artifact of the way in which central and satellite galaxies are chosen by the group-finding algorithm. One can repeat the analysis using cylindrical overdensities from the NYU VAGC (i.e., overdensities measured in cylinders of 1.4 Mpc radius and 1600 km s$^{-1}$ extent along the line of sight; Blanton et al. 2003c), which are simpler and more conventional measures of environment. Isolated galaxies (defined as having overdensities $b < 0$) are likely to reside as centrals in their own halos. When repeating the analysis using isolated galaxies as a (conceptually less optimal) proxy for central galaxies, one finds that the fraction of $M_\star > 10^{10} M_\odot$ red-sequence galaxies in isolated environments with $n < 1.5$ is 1.0% (18 of 1842). So one finds, using a completely different technique for identifying likely central galaxies, the same result: in central galaxies, quenching is empirically correlated with the existence of a prominent bulge component.

4. DISCUSSION

It is worth asking if this empirical association between having a bulge and the ability to quench is a truly bulge-specific association, or if it reflects a third, unexplored parameter. An obvious candidate parameter is surface density. In Kauffmann et al. (2003) and Bell & de Jong (2000) it was found that the stellar surface density of a galaxy was correlated strongly with star formation history, inasmuch as galaxies with high surface densities appeared to form the bulk of their stars at earlier epochs rather than galaxies with lower surface densities. In Figure 3 I plot the optical $g - r$ rest-frame color as a function of the stellar surface density μ_\star within the half-light radius for bulgeless galaxies ($n < 1.5$; black symbols) and galaxies with large bulges ($n > 3$; gray symbols). While $g - r$ is indeed a function of surface density for the $n < 1.5$ galaxies, it is clear that at a given surface density (e.g., in the range around $\sim 10^9 M_\odot$ kpc$^{-2}$) galaxies with strong bulges are primarily quenched, whereas bulgeless galaxies at that same density still actively form stars. Such a conclusion was also reached by Kauffmann et al. (2006; see their Fig. 14), who explored this star formation rate per unit stellar mass as a function of surface density for a sample of galaxy split by concentration. Thus, one can rule out that the correlation seen in Figure 1 is driven by underlying correlations with stellar surface density.

Figure 4 shows the distribution of the Sérsic indices of the sample of central galaxies. One can see that the fraction of the sample that is red is a strong function of the Sérsic index, with a small red fraction for $n < 2$ smoothly increasing to $n \sim 4$. Interestingly, only a small fraction ($\sim 1/4$) of red galaxies have no emission lines at all (the fraction of galaxies which are completely quenched, at least to the detection limits characteristic of the SDSS; see Haines et al. [2008] for the same result using GALEX data in conjunction with the SDSS). Put differently, complete quenching of gas infall into central galaxies is a relatively uncommon occurrence; most red-sequence centrals have some modest AGN activity or low-level star formation. In particular, only 1 out of the 14 red central $n < 1.5$ galaxies with

![Figure 3](image1.png)

Fig. 3.— Color–surface density distribution for central galaxies with $b/a > 0.5$ and $0.02 < z < 0.06$. Galaxies with large bulges ($n > 3$) are shown in gray, and bulgeless galaxies ($n < 1.5$) are shown in black. Quenching is not driven by surface density; at all surface densities, galaxies with prominent bulges $n > 3$ have much redder colors than $n < 1.5$ systems.

![Figure 4](image2.png)

Fig. 4.— Top: Histogram of Sérsic values for all central galaxies (light gray), red central galaxies (dark gray), and galaxies with no detected emission lines (black). Bottom: Fraction of central galaxies that is red (dark gray) and has no emission lines (black) shown as a function of Sérsic index.

7 The red fraction does not asymptotically approach unity for the high-n systems because of the combined influence of our somewhat restrictive red-sequence cut and the scatter of a small fraction of high-n systems toward the blue, as seen in Fig. 1.
stellar masses above $10^{10} M_\odot$ lacks line emission (Fig. 1); i.e., complete quenching of bulgeless galaxies is a very rare occurrence. Finally, it is obvious that while bulges appear to be a necessary condition for the suppression of star formation, the simple existence of a bulge is not a sufficient condition to suppress star formation. There are a number of suggestions as to what this “second parameter” could be: pseudobulges vs. classical bulges (Drory & Fisher 2007), the transition to a hot virialized halo at halo masses $\sim 10^{12} M_\odot$ (Dekel & Birnboim 2006; Cattaneo et al. 2006), or the rate at which cosmological infall can deposit energy into the halo (Naab et al. 2007; Khochfar & Ostriker 2008). In this context, it is noteworthy that for group masses $>10^{13} M_\odot$ 23% of the $n > 3$ central galaxies are blue as (opposed to 35% for halos with masses below $10^{13} M_\odot$). Thus, although models which assume quenching is complete above a given mass cut (e.g., $10^{12} M_\odot$ in the work of Cattaneo et al. 2006) offer a qualitatively interesting and computationally convenient approximation for the evolution of the galaxy population, it is clear that such an approximation is not correct in detail—even at group masses $>10^{13} M_\odot$ quenching is incomplete.

5. CONCLUDING REMARKS

The main message of this paper is simple. Galaxy evolution models with AGN feedback predict that quenching of star formation in central galaxies should occur only in those central galaxies with prominent bulges (therefore, large supermassive black holes). I have shown that this prediction was essentially correct, using data from the SDSS DR2. I choose to analyze only relatively low inclination galaxies with $b/a > 0.5$; while the general conclusions of this paper would also hold if higher inclination galaxies were included, the scattering of $n < 1.5$ galaxies onto the red sequence by dust extinction considerably dilutes the significance and impact of the results. I found that at least 99.5% of red-sequence galaxies with stellar masses $>10^{10} M_\odot$ have prominent bulges (Sérsic indices $n > 1.5$). Furthermore, most the 0.5% of bulgeless red-sequence central galaxies had detectable line emission; there is only one $n < 1.5$ central galaxy without detectable star formation out of the 6036 central galaxies in this mass-limited sample. This almost perfect empirical association between having a prominent bulge and quenching is in excellent agreement with the basic expectation of AGN feedback.

I thank the referee for constructive comments and questions. I wish to particularly thank Julieanne Dalcanton for long and fruitful discussions and comments on early drafts of this paper; I also wish to acknowledge useful discussions with Frank van den Bosch, Eva Schinnerer, Hans-Walter Rix, David Hogg, and Darren Croton. I wish to extend my deep appreciation to Michael Blanton, Jarle Brinchmann, Xiaohu Yang, and the teams which produced and tested the value-added public data products which made this work possible. This work was supported by the Emmy Noether Programme of the Deutsche Forschungsgemeinschaft.

The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max Planck Institute for Astronomy (MPIA), the Max Planck Institute for Astrophysics (MPA), New Mexico State University, University of Pittsburgh, Princeton University, the United States Naval Observatory, and the University of Washington.

REFERENCES

Abazajian, K., et al. 2004, AJ, 128, 502
Baldry, I. K., Balogh, M. L., Bower, R. G., Glazebrook, K., Nichol, R. C., Bamford, S. P., & Budavari, T. 2006, MNRAS, 373, 469
Bell, E. F., & de Jong, R. S. 2000, MNRAS, 312, 497
———. 2001, ApJ, 550, 212
Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS, 149, 289
Bell, E. F., et al. 2004, ApJ, 608, 752
Birnboim, Y., Dekel, A., & Neistein, E. 2007, MNRAS, 380, 339
Blanton, M. R., Lin, H., Lupton, R. H., Maley, F. M., Young, N., Zehavi, I., & Loveday, J. 2003a, AJ, 125, 2276
———. 2003b, AJ, 125, 2348
———. 2003c, ApJ, 594, 186
———. 2005, AJ, 129, 2562
Bower, R. G., Benson, A. J., Malbon, R., Helly, J. C., Frenk, C. S., Baugh, C. M., Cole, S., & Lacey, C. G. 2006, MNRAS, 370, 645
Bower, R. G., Lucey, J. R., & Ellis, R. S. 1992, MNRAS, 254, 601
Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C., Kauffmann, G., Heckman, T., & Brinkmann, J. 2004, MNRAS, 351, 1151
Brown, M. J. I., Dey, A., Jannuzi, B. T., Brand, K., Benson, A. J., Brodwin, M., Croton, D. J., & Eisenhardt, P. R. 2007, ApJ, 654, 858
Cattaneo, A., Dekel, A., Devriendt, J., Guiderdoni, B., & Blaizot, J. 2006, MNRAS, 365, 1151
Cattaneo, A., et al. 2007, MNRAS, 377, 63
Chabrier, G. 2003, PASP, 115, 763
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319, 168
Croton, D. J., et al. 2006, MNRAS, 365, 11
Dekel, A., & Birnboim, Y. 2006, MNRAS, 368, 2
———. 2008, MNRAS, 383, 119
Dekel, A., & Birnboim, Y. 2006, MNRAS, 383, 119
Dekel, A., & Birnboim, Y. 2006, MNRAS, 383, 119
Drory, N., & Fisher, D. B. 2007, ApJ, 664, 640
Faber, S. M., et al. 2007, ApJ, 665, 265
Fabian, A. C., Sanders, J. S., Taylor, G. B., Allen, S. W., Crawford, C. S., Johnstone, R. M., & Iwasawa, K. 2006, MNRAS, 366, 417
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748
Gunn, J. E., et al. 1998, AJ, 116, 3040
———. 2006, AJ, 131, 2332
Guo, F., & Oh, S. P. 2008, MNRAS, 384, 251
Haines, C. P., Gargiulo, A., La Barbera, F., Mercuero, A., Merluzzi, P., & Busarello, G. 2007, MNRAS, 381, 7
Haines, C. P., Gargiulo, A., & Merluzzi, P. 2008, MNRAS, 385, 1201
Haring, N., & Rix, H.-W. 2004, ApJ, 604, L89
Hogg, D. W., Finkbeiner, D. P., Schlegel, D. J., & Gunn, J. E. 2001, AJ, 122, 2129
Hopkins, P. F., Hernquist, L., Cox, T. J., Di Matteo, T., Robertson, B., & Springel, V. 2006, ApJS, 163, 1
Ivezic, Z., et al. 2004, Astron. Nach., 325, 583
Kauffmann, G., & Heckman, T. M. 2000, MNRAS, 311, 576
Kauffmann, G., Heckman, T. M., De Lucia, G., Brinchmann, J., Charlot, S., Tremonti, C., White, S. D. M., & Brinkmann, J. 2006, MNRAS, 367, 1394
Kauffmann, G., et al. 2003, MNRAS, 341, 54
Khochfar, S., & Ostriker, J. P. 2008, ApJ, 680, 540
Lupton, R. H., Gunn, J. E., & Szalay, A. S. 1999, AJ, 118, 1406
Magorrian, J., et al. 1998, AJ, 115, 2285
Naab, T., Johansson, P. H., Ostriker, J. P., & Efstathiou, G. 2007, ApJ, 658, 710
Pier, J. R., Munn, J. A., Hindsley, R. B., Hennessy, G. S., Kent, S. M., Lupton, R. H., & Ivezic, Z. 2003, AJ, 125, 1559
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Sérsic, J. L. 1968, Atlas de Galaxias Australes (Cordoba: Obs. Astron.)
Smith, J. A., et al. 2002, AJ, 123, 2121
Stoughton, C., et al. 2002, AJ, 123, 485
Strateva, I., et al. 2001, AJ, 122, 1861
Strauss, M. A., et al. 2002, AJ, 124, 1810
Tremonti, C. A., Moustakas, J., & Diamond-Stanic, A. M. 2007, ApJ, 663, L77
Tremonti, C. A., et al. 2004, ApJ, 613, 898
Tucker, D. L., et al. 2006, Astron. Nachr., 327, 821
Visvanathan, N., & Sandage, A. 1977, ApJ, 216, 214
Weinmann, S. M., van den Bosch, F. C., Yang, X., Mo, H. J., Croton, D. J., & Moore, B. 2006, MNRAS, 372, 1161
Yang, X., Mo, H. J., van den Bosch, F. C., & Jing, Y. P. 2005, MNRAS, 356, 1293