The first complete mitochondrial genome of Antigona lamellaris (Schumacher, 1817) (Veneroida: Veneridae)

Shengping Zhong, Yan Jiang, Yonghong Liu, Guoqiang Huang and Xiuli Chen

ABSTRACT
Venus clams (Veneridae) including Antigona lamellaris are commercially important fishery resources by their dominance in local benthic communities. However, despite their great diversity, the phylogenetic and taxonomic relationships in venus clams remain poorly understood. In this study, we report the first complete mitochondrial genome of A. lamellaris. The mitogenome has 17,532 base pairs (67.9% A + T content) and is made up of a total of 37 genes (13 protein-coding, 22 transfer RNAs and 2 ribosomal RNAs), plus a putative control region. This study will provide useful molecular resources for clarifying taxonomic and phylogenetic confusion in venus clams.
understanding the phylogenetic and taxonomic classification in venus clams.

Disclosure statement

The authors declare that they have no conflict of interest.

Funding

This work was financially supported by Scientific Research and Technology Development Program of Guangxi [Grant No. AB16380105], Science and Technology Major Project of Guangxi [Grant No. AA17204088], the Fundamental Research Funds for Guangxi Academy of Sciences [Grant No. 2017YJJ23001], the Team Research Funds for Institute of Marine Drugs Guangxi University of Chinese Medicine [Grant No. 2018ZD005-A10, 2018ZD005-A20], and the National Modern Agricultural Industry Technology System Guangxi Innovation Team [Grant No. nycytxgxcxtd-14-06].

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/ under the accession no. MT254059. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA701318, SRR13684237, and SAMN17862031, respectively.

Figure 1. Phylogenetic tree of 13 species in family Veneridae. The complete mitogenomes were downloaded from GenBank and the phylogenetic tree based on the concatenated nucleotide sequences of 13 mitochondrial PCGs was constructed by maximum-likelihood method with 100 bootstrap replicates. The bootstrap values were labeled at each branch node, Macridiscus melanaegis and Macridiscus multifarius were chosen to be outgroup species.

References

Chen J, Li Q, Kong L, Zheng X. 2011. Molecular phylogeny of venus clams (Mollusca, Bivalvia, Veneridae) with emphasis on the systematic position of taxa along the coast of mainland China. Zoologica Scripta. 40(3):260–271.

Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 41(13):e129–e129.

Kappner I, Bieler R. 2006. Phylogeny of venus clams (Bivalvia: Veneridae) as inferred from nuclear and mitochondrial gene sequences. Mol Phylogenet Evol. 40(2):317–331.

Lv C, Li Q, Kong L. 2018. Comparative analyses of the complete mitochondrial genomes of *Dosinia* clams and their phylogenetic position within Veneridae. PLoS One. 13(5):e0196466.

Mikkelsen PM, Bieler R, Kappner I, Rawlings TA. 2006. Phylogeny of Veneroidea (Mollusca: Bivalvia) based on morphology and molecules. Zool J Linnnean Soc. 148(3):439–521.

Xu X, Wu X, Yu Z. 2012. Comparative studies of the complete mitochondrial genomes of four *Paphia* clams and reconsideration of subgenus Neotapes (Bivalvia: Veneridae). Gene. 494(1):17–23.