A Systematic review of Multi-Mode Fiber based on Dimensional Code in Optical-CDMA

Alaan Ghazi 1,2,4, S. A. Aljunid 2, Syed Zulkarnain Syed Idrus 1, C. B. M Rashidi2, Aras Al-dawoodi 3, Baban A. Mahmood 3, Alaa Fareed 2, Mohammed U.Zaenal4, Nameer Hashim Qasim4, Ranjdr M. Rafeeq4

1 Faculty of Applied and Human Sciences, University Malaysia Perlis, Malaysia.
2 School of Computer and Communication Engineering, University Malaysia Perlis, Malaysia.
3 Computer Science Department, College of Computer Science and Information Technology, Kirkuk University, Kirkuk, Iraq
4 Computer Technical Engineering, Al-Qalam university College, Iraq
5 School of Computing, University Utara Malaysia, Malaysia

alaanghazi@gmail.com

Abstract. This paper deals with optical code division multiple access (optical-CDMA) and provides a general analysis of multi-mode fiber (MMF). The purpose of this work is to classify the works in the literature that are related to Optical-CDMA based on MMF and to find the limitation of the researches done in this field. Several challenges that occur in the medium such as multiple-access interference (MAI), pulse dispersion (PD) and nonlinearity in optical fibers deteriorate system performances and become a major performance-limiting factor.

1. Introduction

Optical fiber is considered as one of the most integral constituent of current networking architectures. Telecommunication uses this technology because of its vast advantages such as low cost, high capacity, huge bandwidth, and no electromagnetic interferences. Also, it can support transmission of exceptionally high data rate in the range of Gbps. Optical communication are becoming more popular for both long-haul and local wired transmission [1-3]. Along with the increasing demand for fiber optic system is the rapid advancement of its relative technology. As predicted by Cisco, the IP traffic increases from 59.9 exabytes per month in 2014 to reach 168 exabytes per month by 2019, which will be remarkably greater than the three-decade old Internet years from 1984 to 2015 [4, 5]. Moreover, high-definition video streaming, multimedia file sharing, online gaming, mobile networking, and other information technologies are other applications of the technology. However, the continued growth of data traffic will lead the fiber optical system to reach its limit [6-8].

There are two main types of optical fiber, single-mode fiber (SMF) and multi-mode optical fiber (MMF). Since it is able to maintain transmitted signals for long distances, SMF supports higher capacity
to transmit information over long distances. Single mode fiber is mostly used in long-haul networks. Furthermore, SMF will reach their capacity limit in near future [6, 7], thus motivating researchers to use MMF for high capacity data transmission [9]. MMF differs from the SMF by its core diameter. The larger core diameter of the MMF makes possible to have more modes propagating through this core [10, 11].

Typically, the core plus cladding of a standard optical fiber has diameter of about 125 μm; however, the core has three different sizes that are determined according to the application of the fiber [12]. An optical fiber is called multimode fiber when it has a diameter of 50 μm and supports several propagation modes. Whereas, it is called single mode fiber when it has a diameter that ranges from 8.6 to 9.5 μm and supports only one propagation mode. [9, 12, 13]. Different multiplexing techniques has been explored and have already been implemented in optical systems to increase the capacity. schemes such as frequency division multiplexing (FDM) and wavelength division multiplexing (WDM) [14]. These multiplexing schemes present, which have now reached a point where they need to be complimented by MMF have reached their limit also known as the ‘Shannon Limit’ [15] which explains the maximum limit of bits of data that a communications channel can carry for a particular noise level.

According to Shannon limitation [16], the capacity increases with a signal to noise ratio, [17] which can be expressed as

\[C = W \log(1 + SNR) \]

where (W) is the channel’s bandwidth of and (SNR) is the signal-to-noise ratio, the SMF will rich their capacity in near future [6, 18, 19].

In comparison, recent research into the use of optical-CDMA in communication systems has shown incoherent optical-CDMA as the most popularly demonstrated system in the optical domain. Incoherent optical-CDMA system depends on intensity modulation for encoding/decoding as well as uses an optical source that is incoherent. Also, is designs are based on simpler techniques of intensity modulation [20, 21].

2. Systematic Literature Review

This study explains a methodical systematic literature review (SLR) of a dimensional code in optical-CDMA based on multi-mode fiber. Data has been collected from different sources to present the SLR. In this section, an explanation to the SLR is presented including the procedure used to achieve the SLR process and the main points that led to this study.

2.1. Research Question

The study deals with the following research issues that have been recognized and are discussed later in this paper.

RQ1. What are the existing types of MMF, the maximum distance and users that have used in optical-CDMA based on MMF?

RQ2. What are the limitation of using optical-CDMA over MMF?

RQ3. What are the existing code and measurement performance that have been applied for optical-CDMA?

2.2. Inclusion & Exclusion

This paper studies the research papers in which different multimode fibers based on optical CDMA have been used. Papers that are included are from various online resources, journals, and conferences. In addition to that, papers that are not relevant to the multi-mode fiber, papers that are not written in English, book chapters, and reports are excluded from the study.
2.3. Search Process & Study selection

The search process starts with selecting the four databases which are available online to search for target articles. The databases are the IEEE Xplore library, Science Direct database, Optical Society of America library, and Scopus. Indexing cross-disciplinary research in information technology and communication, computer sciences, and computer communication engineering. This selection was made to cover all information technology and communication to provide wider view of researchers’ efforts in relevant disciplines’ range. In the searching process, two groups of keywords were used, the first group contained “Optical-CDMA OR OCDMA”, combined by the “OR” operator whereas the second group contained “multimode fiber OR multi-mode fiber OR MMF” combined by the “OR” operator. The two groups then combined by an AND operator.

As shown in Figure 1 the results of the systematic review articles from IEEE Xplore library, 17 articles from Science Direct database, 28 articles from the Optical Society of America library, and 75 articles from Scopus database, from all years. The first step is filtering based on limits years from 2008 to 2018 resulted in 110 articles. The second step is filter based on journal and conference and writing in English resulted in 89 articles. The third step by remove the duplication resulted in 63 articles. The fourth step is the study selection based on the title, abstract and keyword resulted in 45 articles will exclude before going through quality assessment of selected papers to get the final set of papers in next section. The final step is reading the full articles and only articles content optical-CDMA and MMF in this study will be included as primary study which resulted in 6 articles that will be reviewed in this study as shown in Figure 1 search process & study selection and Figure 2 taxonomy of multiplexing & medium protocol. The initial query search resulted in 173 articles: 53

![Diagram of search process and study selection](image_url)
3. Exploration Of Research Concerns

The following research concerns will be reviewed and discussed individual:

RQ1. What are the existing types of MMF, the maximum distance and users that have used in optical-CDMA based on MMF?

Following Table.1 represents an analytical view of the available MMF, the maximum distance and users that have used in optical-CDMA based on MMF. The table content different column that represent various data, first column illustrates several items which are (“Authors- Citation-Years”) and listed according to year. The second column explain various types of MMF that have developed in optical-CDMA and the third column illustrate different users and distance that used in MMF based on optical-CDMA. Moreover, papers in optical-CDMA over MMF has been consider only the last ten year’s which are from 2008 – 2018, as we can see from the table that in 2011 is the first paper that used MMF in optical-CDMA. In addition, there are a few studies on optical-CDMA over MMF due to a number of limitation that will explain more in detail in table 2.

Further, there are two types of MMF that have developed to enhance the capacity and distance of communication system which are step index and graded-index. There are several characteristics of both types, which are the core’s refractive index in MMF, such as uniform throughout and experiencing sudden changes at the boundary in step index. However, in graded index it is made to vary gradually such that being maximum at the center of the core. The diameter of the core is about 50-200μm in step index, in graded index the diameter of the core is about 50μm in the case of MMF as shown in Figure 3. Attenuation is more for step index MMF compare to graded index MMF is attenuation is less.

Furthermore, graded index has higher bandwidth compared to the other which is less bandwidth. As shown in Table.1 there is one study in step index that applied in MMF over optical-CDMA [20], in other hand the study which used graded index are [22-26]. In addition, there are a more studies on optical-CDMA over MMF based on graded index.
Figure 3. MMF types

Table 1. represent different kinds of MMF, the maximum distance and users in optical-CDMA based on MMF.

No	Authors- Citation-Years	MMF types	Users-Distance
1	Youssef A. Diab [20] 2018	MMF Step Index	20 users
2	Hichem Mrabet [22] 2016	MMF Graded-index	5.14 Km - 10.82 Km (Mb/s to 10 Gb/s user 17)
3	Aliaa Mamoun [23] 2014	SMF – MMF Graded-index	1km
4	Aliaa Mamoun [24] 2013	MMF Graded-index	1.5km
5	Mohammad Hossein [25] 2013	MMF Graded-index	1168 m
6	Tolulope B [26] 2011	MMF Graded-index	17 km

Moreover, the number of accommodating users is severely limited, because of several issues and challenges in MMF. Also, the noise increases when the number of users increases. Figure 4 represent the number of the users for each study. In 2018 Youssef A. Diab [20] their study used 20 users over step index MMF, 2016 Hichem Mrabet [22] their study try to transmit 17 users over 5.14km MMF based on LED and 10.82km MMF based on VCSEL in range capacity between (10 Mb/s to 10 Gb/s). At the Tx it’s better to use VCSEL for MMF. And, can support from 10 Mb/s to 10 GB/s capacity. However, the performance of OCDMA systems has been improved by using electrical detection. In 2014 Aliaa Mamoun [23] their study used one user over 1km graded index MMF, 2013 same author try to transmit 2 users over 1168 m MMF, and used selective excitation of LPOI and LP02 modes to improve the signal and mitigate noise [25]. The last paper in this study [26] 2011 Tolulope try to transmit 4 users over 17 km graded index MMF based on power re-equalization of wavelength pulses inside of optical-CDMA Codes.
RQ2. What are the limitation of using OCDMA over MMF?

As shown in Table 2, an analytical view of the available limitation in MMF based on optical-CDMA is demonstrated. The table contains several columns that represent various data, first column explains items which are (“Citation- Authors -Years”) and listed according to year. The second column explains various types of MMF that have developed in optical-CDMA and the third column illustrates different limitation in MMF based on optical-CDMA.

No	Citation	Years- Authors	MMF types	Limitation
1	[20] 2018 Youssef A. Diab	Step Index	MMF	Intermodal dispersion total pulse broadening strongly increases as the number of active users increase
2	[22] 2016 Hichem Mrabet	Graded-index	MMF	MAI and modal dispersion caused by the MMF channel in LAN context
3	[23] 2014 Aliaa Mamoun	Graded-index	MMF	Modal dispersion
4	[24] 2013 Aliaa Mamoun	Graded-index	MMF	Modal dispersion
5	[25] 2013 Mohammad Hossein	Graded-index	MMF	Multi-user interferences
6	[26] 2011 Tolulope B	Graded-index	MMF	Multi-user interferences

Because of its information security, more attention has been given to the OCDMA recently. Spectral efficiency has been improved by decentralized and simplified network control. This enables several users to share the same transmission medium synchronously and simultaneously as well as increases flexibility in the provisioned granularity of bandwidth. However, during propagation of data over the MMF based on OCDMA, an inevitable issue encountered is pulse dispersion, nonlinearity and MAI due to mode coupling [21-23, 27, 28]. The most critical damage of OCDMA is pulse dispersion that should
be compensated to avoid data MAI [21]. Pulse dispersion occurs due to the difference in the fiber’s propagation constants which is called mode dispersion. This is a time varying phenomenon [22, 24, 28-31]. As see in Table.2, which shows the limitation of MMF, the first study illustrates that increasing number of active users increases total pulse broadening. Differences between modes for multimode fiber of propagation delay results in pulse broadcasting that is detected by intermodal dispersion. Furthermore, when only single mode is allowed, pulse broadening is resulted from intermodal dispersion [20]. MAI and modal dispersion are caused by MMF channel in LAN context as represented in 2016, the performance of OCDMA systems has been improved by using electrical detection. However, the performance will be effected when the number of users and distance increase then MAI is increasing [20], [22].

Moreover, in 2014 and 2013 they try to improve the performance by used selective excitation of LP01 and LP02 modes to improve the signal and mitigate noise [24, 25]. Other study used power re-equalization and other detection technique of wavelength pulses inside of optical-CDMA codes to reduce the noise. To improve pulse dispersion, different approaches are used to recover signal [32, 33] in optical communication system such as space diversity, optimization and coding were needed to reducing the effects of fading and MAI [34]. However, this domain need more attention to improve the bandwidth and to transmit more data over more distance in MMF.

RQ3. What are the existing code and measurement performance that have been applied for optical-CDMA?

Following Table.3 explain the existing code and measurement performance that have been applied for optical-CDMA. The table content different column that demonstrate various data, first column explains items which are (“Citation- Authors -Years”) and listed according to year. The second column explain the existing code that have developed in optical-CDMA and the third column illustrate different measurement performance that applied in MMF based on optical-CDMA.

Table 3. demonstrate the existing code and measurement performance

No	Citation	Years- Authors	Code types	D-code	Measurement performance
1	[20] 2018	Youssef A. Diab	APHCs	2D	Pulse broadening
2	[22] 2016	Hichem Mrabet	PHS and HC	2D	BER
3	[23] 2014	Aliaa Mamoun	MD	1D	Eye diagram
4	[24] 2013	Aliaa Mamoun	MD	1D	Q factor and BER and Eye diagram
5	[25] 2013	Mohammad Hossein	MPC, PMPC and UC-MPC	1D	BER
6	[26] 2011	Tolulope B	WH/TS	2D	BER

Incoherent optical-CDMA encoding process is realised either in the spectral domain, time domain, space domain as one-dimensional (1D) code sequences [34-36], or a combination of both is called two-dimensional coding (2D coding) [37-40] which can be time-wavelength, time-space and wavelength-space [34]. Because of the larger 2D code set and the better correlation properties of 2D code sequence, compared to 1D, 2D coding both supports larger number of users and has better system performance [41, 42].

As show in Figure.4 and Table.3 illustrate the different measurement and different types of code that have been developed for optical-CDMA based on MMF. As explain above that in optical-CDMA the coding have to be based on spectral domain, time domain, space domain as one-dimensional (1D) code sequences [34-36] or two-dimensional coding (2D-coding) [37-40] which can be time-wavelength, time-space and wavelength-space [34]. One-dimensional (1D) code that have explained in Table.1 are (Multi-
diagonal (MD) codes in 2013 [24], Modified prime code (MPC), double-padded modified prime code (DPMPC) and Uniform Cross-Correlation Modified Prime Code (UC-MPC) in 2013 [25], in 2014 [23] have used Multi-diagonal (MD) codes, all the code are developed for optical-CDMA based on MMF. Moreover, the two-dimensional code that have been developed for optical-CDMA to improve the MAI are Wavelength-hopping time-spreading (WH/TS) in 2011 [26]. in 2016 [22] Prime hop system and hybrid code (PHS and HC), asymmetric prime-hop codes (APHCs) in 2018 [20]. The evaluation of the previous study in optical-CDMA based on MMF are based on different measurement, most of them used BER [22-26], the other performance measurement are Q factor [24], Eye diagram [24], and pulse broadening [20] as show in Figure.4 below.

![Figure 4](image)

Figure 5. represent the different measurement and different types of code

4. Conclusion

In this study, we present a systematic review of optical-CDMA over MMF. A number of different articles are included in the study showing an analytical study resulted from the analyzation of the authors. It was found that few articles are available out there that work on the MMF field. This is because of several challenges that occur in the medium such as MAI, pulse dispersion, and nonlinearity due to mode coupling.

Reference

[1] S. O. Arik, J. M. Kahn, and K.-P. Ho 2014 MIMO signal processing for mode-division multiplexing: An overview of channel models and signal processing architectures *IEEE Signal Processing Magazine* vol 31 pp 25-34

[2] A. Tarighat, R. C. Hsu, A. Shah, A. H. Sayed, and B. Jalali 2007 Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links [Topics in Optical Communications] *IEEE communications Magazine*, vol 45

[3] M. A.-k. Jarajreh 2012 Coherent optical OFDM modem employing artificial neural networks for
dispersion and nonlinearity compensation in a long-haul transmission system Northumbria University

[4] I. Cisco 2012 Cisco visual networking index: Forecast and methodology, 2011–2016 CISCO White paper vol 518

[5] C. G. C. Index 2016 Forecast and methodology, 2015-2020 white paper Retrieved 1st June

[6] D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, et al. 2011 101.7-Tb/s (370× 294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation in National Fiber Optic Engineers Conference p PDPB5

[7] A. M. J. T. Koonen and C. M. Okonkwo 2016 System and method for multi-mode optical fiber ed: Google Patents

[8] A. Erraisi and A. Belangour 2019 Meta-Modeling of Big Data Management Layer International Journal of Emerging Trends in Engineering Research vol 7 pp 36-43

[9] A. Amphawan 2011 Review of optical multiple-input–multiple-output techniques in multimode fiber Optical Engineering vol 50 pp 102001-102001-6

[10] M. de Haan, A. van Bochove, and P. de Boer 2007 Network Protocol for multimode FTTx University of Twente, The Netherlands

[11] M. Banane and A. Belangour 2019 An Evaluation and Comparative study of massive RDF Data management approaches based on Big Data Technologies International Journal of Emerging Trends in Engineering Research vol 7

[12] R. Ramaswami, K. Sivarajan, and G. Sasaki 2009 optical networks: a practical perspective: Morgan Kaufmann

[13] G. Li, N. Bai, N. Zhao, and C. Xia 2014 Space-division multiplexing: the next frontier in optical communication Advances in Optics and Photonics vol 6 pp 413-487

[14] A. Gatto, P. Parolari, and P. Boffi 2017 Frequency division multiplexing for very high capacity transmission in bandwidth-limited systems in Optical Fiber Communication Conference p W1K. 1

[15] P. J. Winzer 2014 Spatial multiplexing in fiber optics: The 10x scaling of metro/core capacities Bell Labs Technical Journal vol 19 pp 22-30

[16] R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel 2010 Capacity limits of optical fiber networks Journal of Lightwave Technology vol 28 pp 662-701

[17] R.-J. Essiambre 2015 Nonlinear capacity limit to optical communications in Nonlinear Optics p NTu2A. 3

[18] A. D. Wyner 1994 Shannon-theoretic approach to a Gaussian cellular multiple-access channel IEEE Transactions on Information Theory vol 40 pp 1713-1727

[19] P. T. N. Laboratory 2015 Scalable Optical Transport Network Toward Petabit Capacity on a Single Optical Fiber

[20] Y. A. Diab, A. F. Mashaa, A. G. Elmeligy, and A. Mokhtar 2018 Analysis of Noiseless Static Optical C 2 DMA Correlation Receivers Using Fiber Bragg Grating or Multimode Step Index Fiber under the Effect of Pulse Broadening in 2018 13th APCA International Conference on Control and Soft Computing (CONTOLO) pp 130-134

[21] H. Mrabet, I. Dayoub, R. Attia, and W. Hamouda 2010 Wavelength and beam launching effects on silica optical fiber in local area networks Optics Communications vol 283 pp 4234-4241

[22] H. Mrabet and S. Mthali 2016 Performance enhancement of OCDMA systems for LAN consideration IET Optoelectronics vol 10 pp 199-204

[23] A. M. Kabbour, H. A. Fadhil, A. Amphawan, S. A. Aljunid, and M. K. AlMustafâ 2014 Comparison of Single Mode Fiber and Multimode Fiber in Deployment of SCM-OCDMA in Local Area Network Key Engineering Materials

[24] A. M. Kabbour, A. Amphawan, H. A. Fadhil, and S. A. Aljunid 2013 Selective mode excitation in SCM-OCDMA in Photonics (ICP), 2013 IEEE 4th International Conference on pp 200-202

[25] M. H. Zoualfaghari and H. Ghafouri-Shiraz 2013 A novel multi user interference cancellation
scheme for synchronous OCDMA networks Journal of Lightwave Technology vol 31 pp 1813-1820

[26] T. B. Osadola, S. K. Idris, I. Glesk, K. Sasaki, and G. C. Gupta 2011 In Situ Method for Power Re-Equalization of Wavelength Pulses Inside of OCDMA Codes IEEE Journal of Quantum Electronics vol 47 pp 1053-1058

[27] C. Tatkeu, D. Loum, I. Dayoub, M. Heddebaut, and J. Rouvaen 2012 Theoretical and Experimental Performances Evaluation of a New Multiple Access Technique for Optical Fibers International Journal of Information Engineering vol 2 pp 129-137

[28] C.-T. Yen and W.-B. Chen 2011 In Situ M

[29] S. M. S. Kharazi, G. A. Mahdiraji, R. K. Z. Sahbudin, A. F. Abas, and S. B. A. Anas 2012 Effects of fiber dispersion on the performance of optical CDMA systems

[30] Z. A. Almatroudi, A. Ragheb, A. Bentrcia, and H. Fathallah 2015 Spectral phase coding based LR-PON in Innovations in Information Technology (IIT), 2015 11th International Conference on pp 7-10

[31] M. de Paula Marques, F. R. Durand, and T. Abrão 2016 WDM/OCDM energy-efficient networks based on heuristic ant colony optimization IEEE Systems Journal vol 10 pp 1482-1493

[32] D. Chen, J. Wang, J. Jin, H. Lu, and L. Feng 2018 A CDMA system implementation with dimming control for visible light communication Optics Communications vol 412 pp 172-177

[33] J. Lian and M. Brandt-Pearce 2016 MIMO signal processing for multiuser VLC systems in Photonics Society Summer Topical Meeting Series (SUM), 2016 IEEE pp 60-61

[34] G. Kaur and S. Singh 2016 Review on Optical Code Division Multiple Access Systems International Journal of Engineering Sciences vol 17

[35] P. R. Prucnal 2005 Optical code division multiple access: fundamentals and applications: CRC press

[36] M. R. Kumar, P. Ganguly, S. Pathak, and N. Chakrabarti 2013 Construction and generation of OCDMA code families using a complete row-wise orthogonal pairs algorithm AEU-International Journal of Electronics and Communications vol 67 pp 868-874

[37] W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu 2008 A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance Photonic Network Communications vol 16 pp 53-60

[38] F.-R. Gu and J. Wu 2005 Construction of two-dimensional wavelength/time optical orthogonal codes using difference family Journal of lightwave technology vol 23 p 3642

[39] V. Jyoti and R. Kaler 2011 Design and implementation of 2-dimensional wavelength/time codes for OCDMA Optik-International Journal for Light and Electron Optics vol 122 pp 851-857

[40] A. Cherifi, B. Bouazza, S. Aljunid, and C. Rashidi 2018 Development and Performance Improvement of a New Two-Dimensional Spectral/Spatial Code Using the Pascal Triangle Rule for OCDMA System Journal of Optical Communications

[41] S. Kim, K. Yu, and N. Park 2000 A new family of space/wavelength/time spread three-dimensional optical code for OCDMA networks Journal of Lightwave Technology vol 18 p 502

[42] Q. Peng, W. Guan, Y. Wu, Y. Cai, C. Xie, and P. Wang 2018 Three-dimensional high-precision indoor positioning strategy using Tabu search based on visible light communication Optical Engineering vol 57 p 016101