SUPPLEMENTAL METHODS

Generation of Hi-C libraries

Hi-C analysis was performed as described previously (Belton et al. 2012), with the minor modifications described below. A total of 3-5 million cells were pelleted and resuspended in 10 ml of 1× PBS (10 mM phosphate buffer, 2.7 mM KCl 137 mM NaCl, pH7.4) and fixed with 1% formaldehyde (Sigma) for 10 min at room temperature. The reaction was stopped by adding 2 M glycine to a final concentration of 125 mM. The cell suspension was incubated on ice for 5 min, and the cells were pelleted (10 min at 1000 x g in a pre-chilled (4°C) centrifuge). The supernatant was removed, and the cell pellet was washed with 500 μl of 1× PBS, frozen and, if necessary, stored in a liquid nitrogen. After thawing, the cells were lysed for 15 min in 1.5 ml of ice-cold lysis buffer (50 mM Tris-HCl (pH8.0), 150 mM NaCl, 0.5% (v/v) NP-40, 1% (v/v) Triton-X100, 1× Protease Inhibitor Cocktail (CALBIOCHEM #539137 of Thermo Scientific #78430)). The nuclei were harvested at 5000 x g for 7 min in a pre-chilled centrifuge, washed twice with 100 μl of 1.2× restriction NEBuffer 2 (NEB) and resuspended in 200 μl of 1.2× NEBuffer 2. Then, 20% SDS was added to a final concentration of 0.3%, and the nuclei were incubated at 37°C for 1 h with constant shaking. After incubation, 330 μl of 1.2× NEBuffer 2 was added, 20% Triton X-100 was added to a final concentration of 1.8%, and the samples were incubated for 1 h under the same conditions. DNA was digested overnight with 600-800 U of 100 U/μl HindIII-HF restriction endonuclease (NEB) at 37°C with shaking. The next morning, 200 U of HindIII-HF were added, and the samples were incubated for 2 h under the same conditions. The nuclei were harvested for 10 min at 5000 x g and 25°C and resuspended in 50 μl of the collected supernatant. Cohesive DNA ends were biotinylated by adding 7.6 μl of the biotin fill-in mixture prepared in 1× NEBuffer 2 (0.025 mM dATP (Thermo Scientific), 0.025 mM dGTP (Thermo Scientific), 0.025 mM dTTP (Thermo Scientific), 0.025 mM biotin-14-dCTP (Invitrogen), 0.8 U/μl Klenow enzyme (NEB)). The samples were incubated at 37°C for 75 min with slow shaking, and 20% SDS was added to a final concentration of 1.8%; the samples were heated at 65°C for 20 min to inactivate the Klenow enzyme and residual HindIII-HF. The samples were transferred into 10-ml tubes with 3 ml of 1× T4 DNA ligase reaction buffer (Thermo Scientific) supplied with 1.8% Triton X-100, incubated at 37°C for 1 h and then cooled on ice. Next, 100 U of T4 DNA ligase (Thermo Scientific) was added, and the DNA was ligated for 6 h at 22°C with slow agitation. The cross-links were reversed by overnight incubation at 65°C in the presence of proteinase K (100 μg/ml). After cross-link reversal, the DNA was purified by single phenol-chloroform extraction followed by ethanol precipitation (tRNA (Sigma) at a concentration of 7.5 μg/ml and glycogen (Thermo Scientific) at a concentration of 20 μg/ml were used as co-precipitators due to the low amount of DNA in the samples).
precipitation, the pellets were dissolved in 500 μl 10 mM Tris-HCl pH 8.0. To remove residual salts and DTT, the DNA was additionally purified using AMICON Ultra Centrifugal Filter Units (0.5 ml, 30 K, Millipore #UFC5030BK) by washing with 10 mM Tris-HCl pH 8.0 (after two washing steps, the final volume of the DNA solution was 40-50 μl). Biotinylated nucleotides from the non-ligated DNA ends were removed by incubating the Hi-C libraries in the presence of 1.5 U of T4 DNA polymerase (NEB) in NEBuffer 2 supplied with 0.025 mM dATP and 0.025 mM dGTP at 20°C for 4 h. Next, the DNA was purified by phenol-chloroform extraction followed by ethanol precipitation. The DNA pellets were dissolved in 500 μl of sonication buffer (50 mM Tris-HCl (pH 8.0), 10 mM EDTA, 0.1% SDS) and treated with 50 μg of RNase A (Thermo Scientific) for 45 min at 37°C; the DNA was then sheared to a size of approximately 100-1000 bp using a VirSonic 100 (VerTis). The samples were concentrated (and simultaneously purified) using AMICON Ultra Centrifugal Filter Units. The fraction of 100-500-bp DNA fragments was captured using Argencourt AMPure XP beads (Beckman Coulter), and the fragments were eluted with 50 μl of 10 mM Tris-HCl (pH 8.0). The DNA ends were repaired by adding 62.5 μl MQ water, 14 μl of 10× T4 DNA ligase reaction buffer, 3.5 μl of 10 mM dNTP mix, 5 μl of 3 U/μl T4 DNA polymerase (NEB), 5 μl of 10 U/μl T4 polynucleotide kinase (NEB), and 1 μl of 5 U/μl Klenow DNA polymerase (NEB) and incubating at 20°C for 30 min. The DNA was purified with Agencourt AMPure XP beads and eluted with 50 μl of 10 mM Tris-HCl (pH 8.0). To perform an A-tailing reaction, the DNA samples were supplemented with 6 μl 10× NEBuffer 2, 1.2 μl of 10 mM dATP, 1 μl of MQ water and 3.6 μl of 5 U/μl Klenow (exo-) (NEB). The reactions were carried out for 30 min at 37°C in a PCR machine, and the enzyme was then heat-inactivated by incubation at 65°C for 20 min. The DNA was purified using Agencourt AMPure XP beads and eluted with 100 μl of 10 mM Tris-HCl (pH 8.0). Biotin pull-down of the ligation junctions was performed as described previously, with minor modifications. Briefly, 4 μl of MyOne Dynabeads Streptavidin C1 (Invitrogen) beads were used to capture the biotinylated DNA, and the volumes of all buffers were decreased by 4-fold. The washed beads with captured ligation junctions were resuspended in 50 μl of adapter ligation mixture composed of 41.5 μl MQ water, 5 μl 10× T4 DNA ligase reaction buffer (Thermo Scientific), 2.5 μl of Illumina TruSeq adapters and 1 μl of 5 U/μl T4 DNA ligase (Thermo Scientific). Adapter ligation was performed at 22°C for 2.5 h, and the beads were sequentially washed twice with 100 μl of TWB (5 mM Tris-HCl (pH8.0), 0.5 mM EDTA, 1 M NaCl, 0.05% Tween-20), once with 100 μl of 1× binding buffer (10 mM Tris-HCl (pH8.0), 1 mM EDTA, 2 M NaCl) and once with 100 μl of CWB (10 mM Tris-HCl (pH 8.0) and 50 mM NaCl) and then resuspended in 20 μl of MQ water. Test PCR reactions containing 4 μl of the streptavidin-bound Hi-C library were performed to determine the optimal number of PCR cycles needed to generate enough PCR
products for sequencing. The PCR reactions (volume of each reaction is 25 μl) were performed using KAPA High Fidelity DNA Polymerase (KAPA) and Illumina PE1.0 and PE2.0 PCR primers (10 pmol each). The temperature profile was 5 min at 98°C, followed by 6, 9, 12, 15 and 18 cycles of 20 s at 98°C, 15 s at 65°C, and 20 s at 72°C. The PCR reactions were separated on a 2% agarose gel supplied with ethidium bromide, and the number of PCR cycles necessary to obtain a sufficient amount of DNA was determined based on the visual inspection of gels (typically 12-15 cycles). Four preparative PCR reactions were performed for each sample. The PCR mixtures were combined, and the products were purified with QIAGEN PCR Purification Kit. The DNA was eluted with 50 μl of 10 mM Tris-HCl (pH 8.0) and separated on a 1.8% agarose gel supplied with ethidium bromide; 200-600-bp fragments were excised from the gel, purified using QIAGEN Gel Extraction Kit and sequenced with an Illumina HiSeq 2000 by paired-end 101-nt reads.
SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure S1. (A) Heatmaps of biological replicates of Hi-C experiments (chromosome 3L is shown). Resolution of heatmaps is 20 kb. (B) Graph of contact probability as a function of genomic distance.

Supplemental Figure S2. Hi-C interaction maps (heatmaps) of the four studied cell lines at 20-kb resolution.

Supplemental Figure S3. Visual annotation of long-range interarm (A) and interchromosomal (B) contacts of Polycomb-occupied TADs in BG3 cell line (highlighted by red circles; white circles mark interactions between Polycomb-occupied TADs located on the same chromosomal arm). Resolution of the heatmaps is 50 kb, and resolution of TAD images under the maps is 20 kb.

Supplemental Figure S4. Distributions of TAD lengths (excluding boundary bins) and inter-TAD lengths (including TAD boundaries) in the four studied cell lines.

Supplemental Figure S5. (A) Distribution of chromatin colors near TAD boundaries. Number of bins in each group is shown above the diagram. All designations are as in Fig. 2B. (B) Diagram showing the inverse dependence between the proportion of active chromatin colors within a genomic bin and \(\gamma \) (the minimal value of the scaling parameter gamma required to annotate a bin as a TAD boundary or an inter-TAD). Numbers of bins in each group are shown above the diagram (for example, 240 bins were annotated as inter-TADs at gamma values of 0–0.1 (excluding \(\gamma = 0.1 \)), 17 bins were annotated as inter-TADs at gamma values 0.1–0.2 (excluding \(\gamma = 0.2 \)). Bins that have not been annotated as TAD boundaries or inter-TADs at gamma values from 0 to 10 (excluding \(\gamma = 10 \)) are highlighted in red. All other designations are as in Fig. 3B. P-values (two-sided Mann-Whitney test) are presented in Supplemental Table S6.

Supplemental Figure S6. Boxplots showing distributions of individual chromatin marks and binding proteins near TAD boundaries, some of them were used for the construction of panel (C) in Figure 2. P-values (two-sided Mann-Whitney test) are presented in Supplemental Table S6.
Supplemental Figure S7. The observed representation of dCTCF at TAD boundaries and inter-TADs does not depend on the gamma value used for TAD annotation. The distribution of dCTCF, H3K4me3 and Su(Hw) around TAD boundaries at different values of the scaling parameter gamma used for TAD annotation is shown. Curves smoothed with LOESS show the median Z-transformed values. Thick rectangles show TAD boundary bins.

Supplemental Figure S8. Principal components analysis (A) and cluster analysis (B) of biological replicates of poly(A)+ RNA-seq of the cell lines. (C) The level of polyA(+) transcripts around TAD boundaries in the Kc167, OSC and S2 cells (extension of Fig. 3A). (D) Boxplots showing inverse dependence between the transcription level within a genomic bin and γt in the S2 and Kc167 cells (extension of Fig. 3D).

Supplemental Figure S9. Scatter plots demonstrating transcription level and the proportion of active chromatin colors in individual TADs excluding boundary bins (orange spots), and inter-TADs including boundary bins (blue spots), in BG3, S2 and Kc167 cells. Horizontal lines separate inter-TADs by the 20% quintile according to the transcription level; TADs were also separated according to this level. Vertical lines separate inter-TADs (left panels) and TADs (right panels) by a threshold of 30% of active chromatin within inter-TADs and TADs, respectively (sum of 1, 2 and 3 colors for the BG3 and S2 cells, and RED and YELLOW for the Kc167 cells). Other designations are as in Fig. 3B.

Supplemental Figure S10. Pie charts showing the distribution of differentially or uniformly transcribed bins (A) and bins with different proportions of active chromatin (B) in the four groups, as defined by a pairwise comparison of the cell lines (extension of Fig. 4B).

Supplemental Figure S11. Scatter plots illustrating independent variations in proportions of active or repressed chromatin within the interior and boundaries of conserved TADs, as observed in a pairwise comparison of BG3 and S2 cell lines.

Supplemental Figure S12. Scatter plots demonstrating the proportion of interband-specific CYAN and BLUE chromatin colors (Zhimulev et al. 2014) in TADs and inter-TADs of different sizes in the BG3 and S2 cells.

Supplemental Figure S13. Results of 12 individual realizations of our polymer model, similar to Fig 6. Distances are measured in numbers of monomer units (nucleosomes).
Supplemental Figure S14. Predicted spatial configuration of a polymer composed of equal blocks of acetylated (green) and non-acetylated (black) nucleosomes. Each block consists of 500 nucleosomes. (B) Spatial proximity map (distance heatmap) of the polymer configuration presented in (A). (C) Simulated Hi-C map constructed at resolution of 4 kb (20 beads) for three consecutive TADs. The starting conformation of a polymer chain was a random walk trajectory in the 64×64×64 simulation box.

Supplemental Figure S15. (A) Scatter plot demonstrating negative correlation between the number of contacts within simulated TADs and their radius of gyration (measured in diameters of polymer beads). This plot demonstrates that the total sum of Hi-C interactions within a TAD may be interpreted as a measure of density of a TAD. For each of the 19 TADs in each of the 12 independent simulations, we calculated the total number of contacts between regions more than 4 kb (20 nucleosomes) apart. We also calculated radius of gyration, which is the square root of the mean squared distance to the center of mass. The two show strong negative correlation. (B) Graph of contact probability as a function of distance along the polymer chain estimated for beads located within simulated TAD (red) or between TADs (blue). All pairs of regions not belonging to the same TAD, independent of their status (inter-TADs or different TADs) contributed to the between-TAD plot. We note that comparing this plot to experimental Hi-C data is not feasible, because this plot ends at 100 kb, a typical TAD size in *Drosophila*, while our Hi-C maps start at 20 kb, leaving less than an order of magnitude overlap.

Supplemental Figure S16. Spatial configuration (A) and heatmap (B) of the model polymer obtained when volume interactions instead of saturating interactions were used. All designations are as in Figures 6 and S13.

Supplemental Figure S17. The TAD profiles of X chromosome are the same in the male and female cell lines. (A) Heatmap of a 2.8-Mb region of the X chromosome in studied cell lines. (B) Venn diagram showing the numbers of TADs located on the X chromosome and common (with both boundaries located at the same genomic bin or at adjacent bins) for all studied cell lines.

Supplemental Figure S18. Different methods of analysis alter the shape of the distribution of chromatin marks near the TAD boundary. (A) The height of each peak of chromatin mark was multiplied by the proportion of the bin intersecting with the peak, and the results for all peaks in the bin were summed and Z-transformed, as in Fig. 2C. Smoothed curves
show the median values. (B) Z-transformed proportion of chromatin mark peaks in a bin. The height of peaks was not taken into account. Smoothed curves show the median values. (C) Z-transformed number of peaks of a chromatin mark per bin. The height and the length of peaks were not taken into account. Smoothed curves show the median values. (D) Number of peaks of a chromatin mark per bin. The height and the length of peaks were not taken into account. Smoothed curves show average values. Data files containing called peaks were used in this analysis. (E) Analysis of dCTCF, Su(Hw), Chriz and RNA polymerase II binding within TAD boundaries identified by Hou et al. (2012) in Kc167 cells. TAD boundary positions were rounded to 1 kb. Calculation method as in (A) and Fig. 2C.

Supplemental Video S1. 3D-display of one of the predicted spatial configurations of the model polymer (a snapshot from this video is presented in Fig. 6A, and the heatmap of this configuration is shown in Fig. 6B).
A

BG3 Chr3L

OSC Chr3L

S2 Chr3L

Kc167 Chr3L

Replicate 1

Replicate 2

Contact probability

Genomic distance (Mb)

log2(N of reads)

B

10^1

10^0

10^{-1}

10^{-2}

10^{-3}

10^{-4}

10^{-5}

10^{-6}

Genomic distance (Mb)

Contact probability

S2

Kc167

BG3

OSC
Proportion of Polycomb chromatin color (Kharchenko et al. 2011)

Chr3L 82% 97% 92% 64%
Chr3R 98% 92% 99% 95%
Chr2L 56% 90% 92%
Chr3L 82% 97% 92% 64%
A

Chromatin colors in Kc167:
- Active chromatin
- HP1
- Polycomb
- Repressive

Chromatin colors in S2 and BG3:
- Active promoters
- Transcriptional elongation
- Acetylation rich (introns)
- Silent domains
- Pericentromeric heterochromatin
- Moderate level of H3K9me2/me3
- Lacking H3K27ac

B

Number of bins

Proportion of chromatin color within the bin

[Graph showing chromatin color distribution across bins for BG3, S2, and Kc167]
Ulianov_FigS6

H3K27ac H3K4me1 H3K4me3 H4K16ac

H3K36me3 Total RNA RNA Pol II ISWI

dCTCF Su(Hw) BEAF-32 CP190

SMC3 H3K27me3 H1 H3

Chriz JIL-1 MRG15 WDS

MOF E(bx) (NURF301) P-element

Z-value

20-kb bins

InterTAD TAD

boundary bin
A

B

C

D

PolyA+ Transcription, log10 upper-quantile normalized read counts

PolyA+ Transcription, log10 upper-quantile normalized read counts
Active chromatin = RED + YELLOW chromatin colors in Kc167, 1 (RED) + 2 (MAGENTA) + 3 (BROWN) chromatin types in BG3 and S2
A Transcription within the genomic bin (FC of 4)

	Kc167 vs OSC	BG3 vs Kc167	OSC vs S2	BG3 vs S2
Kc167 > OSC	42%	22%	39%	56%
Kc167 = OSC	21%	20%	20%	37%
Kc167 < OSC	55%	55%	54%	54%

B Active chromatin within the genomic bin (FC of 3)

	BG3 vs Kc167	Kc167 vs S2	BG3 vs S2
BG3 > Kc167	57%	56%	57%
BG3 = Kc167	17%	32%	32%
BG3 < Kc167	13%	9%	9%

Schematic representation of the groups of bins:
Active chromatin

TAD interior vs Left boundary

Diff. of active chrom. proportion

TAD interior vs Right boundary

Left boundary vs Right boundary

Repressed chromatin

TAD interior vs Left boundary

Diff. of repres. chrom. proportion

TAD interior vs Right boundary

Left boundary vs Right boundary

Ulianov_FigS11
Ulianov Fig S17

A

B

log2(N of reads)

log2(N of reads)
SUPPLEMENTAL TABLE LEGENDS

Supplemental Table S1. Pearson correlation coefficients between biological replicates of the Hi-C experiments.

Supplemental Table S2. Numbers of Hi-C read pairs aligned to the *Drosophila* reference genome dm3 and filtered before the iterative correction step of the Hi-C data processing. Total reads – number of reads aligned to the reference genome; DS reads – read pairs in which both reads were aligned to the genome; self-circles – read pairs in which both reads were aligned to the same self-circularized restriction fragment; dangling ends – read pairs aligned at the same restriction site; duplicates – any two pairs of reads aligned to identical genomic positions.

Supplemental Table S3. Manually annotated long-range contacts on Hi-C heatmaps for all cell lines. Genomic positions of the midpoints of interacting regions are shown. Genomic rearrangements were annotated using the Delly and BreakDancer algorithms.

Supplemental Table S4. Number, genome coverage and sizes of TADs and inter-TADs in all cell lines, predicted by the Armatus algorithm.

Supplemental Table S5. Genomic positions of TADs in the four studied cell lines after the second step of TAD prediction procedure (splitting of TADs larger than 600 kb by the Armatus algorithm with the increased value of the scaling parameter gamma). The gamma values used at both steps of the procedure are shown.

Supplemental Table S6. P-values for the two-sided Mann-Whitney test used (i) to compare proportions of chromatin colors, as well as Z-values of epigenetic marks within the genomic bins belonging to TADs and inter-TADs (relative to Figures 2B, 2C, 5B and 5C); (ii) to compare proportions of chromatin colors within the genomic bins identified as belonging to inter-TADs at gamma values less than 1.5 and more than 1.5 (relative to Figure 3C and Supplemental Figure S5B).

Supplemental Table S7. Numbers of reads used for poly(A)+ RNA-seq.

Supplemental Table S8. Numbers of differentially and equally transcribed genomic bins in the four groups of bins identified in a pairwise comparison of TAD positions in the four
studied cell lines. Chi-square test and two-sided Fisher’s exact test were performed for the framed values.

Supplemental Table S9. Numbers of genomic bins containing different or equal proportion of active chromatin in the four groups of bins identified in a pairwise comparison of TAD positions in the four studied cell lines. Chi-square test and two-sided Fisher’s exact test were performed for the framed values.

Supplemental Table S10. Groups of tissue samples from Brown et al. (2013) used to compose a list of tissue-specific genes.

Supplemental Table S11. Genomic rearrangements annotated in the four studied cell lines by the Delly and BreakDancer algorithms. DEL – deletion, DUP – duplication, INV – inversion, TRA – translocation, INS – insertion, CTX – interchromosomal translocation, UNK – unknown, SUM - the number of all annotated genomic rearrangements.
Supplemental Table S1.

chr2L	BG3_rep1	BG3_rep2	OSC_rep1	OSC_rep2	S2_rep1	S2_rep2	Kc167_rep1	Kc167_rep2
BG3_rep1	1.000	0.950	0.924	0.932	0.893	0.883	0.899	0.887
BG3_rep2	0.950	1.000	0.926	0.933	0.893	0.883	0.899	0.887
OSC_rep1	0.924	0.926	1.000	0.945	0.881	0.871	0.886	0.876
OSC_rep2	0.932	0.933	0.945	1.000	0.883	0.874	0.894	0.882
S2_rep1	0.893	0.893	0.881	0.883	1.000	0.910	0.884	0.875
S2_rep2	0.883	0.883	0.871	0.874	0.910	1.000	0.874	0.864
Kc167_rep1	0.899	0.899	0.886	0.894	0.884	0.874	1.000	0.903
Kc167_rep2	0.887	0.887	0.876	0.882	0.875	0.864	0.903	1.000

chr2R	BG3_rep1	BG3_rep2	OSC_rep1	OSC_rep2	S2_rep1	S2_rep2	Kc167_rep1	Kc167_rep2
BG3_rep1	1.000	0.948	0.913	0.920	0.892	0.878	0.854	0.882
BG3_rep2	0.948	1.000	0.917	0.925	0.895	0.881	0.896	0.883
OSC_rep1	0.913	0.917	1.000	0.935	0.888	0.875	0.882	0.870
OSC_rep2	0.920	0.925	0.935	1.000	0.882	0.879	0.889	0.876
S2_rep1	0.892	0.895	0.888	0.892	1.000	0.904	0.879	0.866
S2_rep2	0.878	0.881	0.875	0.879	0.904	1.000	0.865	0.853
Kc167_rep1	0.894	0.896	0.882	0.889	0.879	0.865	1.000	0.888
Kc167_rep2	0.882	0.883	0.870	0.876	0.866	0.853	0.888	1.000

chr3L	BG3_rep1	BG3_rep2	OSC_rep1	OSC_rep2	S2_rep1	S2_rep2	Kc167_rep1	Kc167_rep2
BG3_rep1	1.000	0.947	0.902	0.908	0.889	0.874	0.886	0.875
BG3_rep2	0.947	1.000	0.902	0.909	0.890	0.874	0.887	0.876
OSC_rep1	0.902	0.902	1.000	0.938	0.875	0.864	0.874	0.860
OSC_rep2	0.908	0.909	0.938	1.000	0.880	0.868	0.882	0.870
S2_rep1	0.889	0.890	0.875	0.880	1.000	0.902	0.875	0.865
S2_rep2	0.874	0.874	0.864	0.868	0.902	1.000	0.864	0.853
Kc167_rep1	0.886	0.887	0.874	0.882	0.875	0.864	1.000	0.890
Kc167_rep2	0.875	0.876	0.860	0.870	0.865	0.853	0.890	1.000

chr4R	BG3_rep1	BG3_rep2	OSC_rep1	OSC_rep2	S2_rep1	S2_rep2	Kc167_rep1	Kc167_rep2
BG3_rep1	1.000	0.983	0.942	0.945	0.936	0.930	0.909	0.902
BG3_rep2	0.983	1.000	0.941	0.944	0.935	0.929	0.905	0.901
OSC_rep1	0.942	0.941	1.000	0.975	0.916	0.912	0.897	0.892
OSC_rep2	0.945	0.944	0.975	1.000	0.918	0.914	0.907	0.903
S2_rep1	0.936	0.935	0.916	0.918	1.000	0.942	0.885	0.883
S2_rep2	0.930	0.929	0.912	0.914	0.942	1.000	0.875	0.870
Kc167_rep1	0.909	0.905	0.897	0.907	0.885	0.875	1.000	0.919
Kc167_rep2	0.902	0.901	0.892	0.903	0.883	0.870	0.919	1.000

chrX	BG3_rep1	BG3_rep2	OSC_rep1	OSC_rep2	S2_rep1	S2_rep2	Kc167_rep1	Kc167_rep2
BG3_rep1	1.000	0.845	0.836	0.845	0.751	0.713	0.808	0.797
BG3_rep2	0.845	1.000	0.842	0.851	0.754	0.717	0.815	0.804
OSC_rep1	0.836	0.842	1.000	0.920	0.789	0.750	0.845	0.837
OSC_rep2	0.845	0.851	0.920	1.000	0.792	0.754	0.852	0.842
S2_rep1	0.751	0.754	0.789	0.792	1.000	0.792	0.777	0.764
S2_rep2	0.713	0.717	0.750	0.754	0.732	1.000	0.739	0.729
Kc167_rep1	0.808	0.815	0.845	0.852	0.777	0.739	1.000	0.854
Kc167_rep2	0.797	0.804	0.837	0.842	0.764	0.729	0.854	1.000
Supplemental Table S2.

Sample	Total reads	Total DS reads	Reads from the same fragment	Dangling ends of fragments separated by 500 bp or less	Valid pairs	Mapped near the restriction site	Duplicates	Reads from large (>100 kb) and small (<100 bp) fragments	0.5% of the most overrepresented fragments	N of reads after all filters
DmBG3-c2_combined	57 686 069	49 453 011	20 471 016	260 927	19 924 229	5 773 417	23 208 578	303 795	595 925	93 858
DmBG3-c2_rep1	30 300 932	26 214 543	11 969 368	127 680	11 684 813	2 926 955	11 318 220	146 564	287 558	47 703
DmBG3-c2_rep2	27 385 137	23 238 468	8 501 648	133 247	8 239 416	2 846 462	11 890 358	157 231	307 655	46 157
Kc167_combined	38 750 262	33 887 737	19 803 814	150 227	19 423 728	3 907 113	10 176 810	115 740	562 544	58 948
Kc167_rep1	16 696 812	14 650 515	8 811 499	57 819	8 657 210	1 772 010	4 067 006	49 405	230 004	24 305
Kc167_rep2	16 646 771	14 492 433	8 139 501	73 577	7 963 586	1 561 592	4 791 340	50 097	165 847	27 420
OSC_combined	57 526 086	48 264 746	21 192 418	239 524	20 693 278	5 867 448	21 204 880	366 284	481 319	87 304
OSC_rep1	24 771 372	20 764 840	8 852 306	99 949	8 643 955	2 536 283	9 376 251	142 571	167 572	35 299
OSC_rep2	32 754 714	27 499 906	12 340 112	139 575	12 049 232	3 331 165	11 826 629	223 713	313 183	52 008
S2_combined	42 656 628	34 317 102	14 014 451	172 352	13 591 531	5 427 129	14 875 522	160 109	1 140 083	74 735
S2_rep1	17 504 801	14 143 982	6 359 657	62 420	6 176 842	2 234 142	5 550 183	61 206	652 026	30 133
S2_rep2	17 503 379	14 017 647	5 118 208	79 494	4 954 171	2 219 157	6 660 282	70 454	110 004	32 313

Note: The table includes columns for total reads, total DS reads, reads from the same fragment, dangling ends, valid pairs, mapped near the restriction site, duplicates, reads from large (>100 kb) and small (<100 bp) fragments, 0.5% of the most overrepresented fragments, and N of reads after all filters.
Supplemental Table S3.

S2

№	Chr	Position of the left partner, kb	Position of the right partner, kb	Distance between the partners, kb	In the other datasets	Genomic rearrangements between the partners
1	2L	600	1640	1040	No	Deletion, inversion, deletion
2	2L	2240	2900	660	No	Duplication head-to-tail
3	2L	5620	9640	4020	No	Numerous deletions and inversions
4	2L	7480	21220	13740	No	Deletion
5	2L	13000	13600	600	No	Duplication head-to-tail
6	2R	3660	4920	1260	No	Deletion
7	2R	3680	4820	1140	No	Deletion
8	2R	7340	8780	1440	No	Inversion
9	2R	13260	14340	1080	No	Duplication head-to-tail
10	2R	15000	15340	340	No	Deletion
11	3L	1140	2880	1740	No	Deletion
12	3L	8680	10700	2020	No	Deletion
13	3L	9400	9880	480	No	Duplication head-to-tail
14	3L	9740	11240	1500	No	Deletion
15	3L	12600	16280	3680	No	Inversion
16	3L	18940	20880	1940	No	Inversion
17	3L	21040	21720	680	No	Duplication head-to-tail
18	3L	21100	22480	1380	No	Duplication head-to-tail
19	3R	15720	16880	1160	No	Duplication head-to-tail
20	3R	16820	17460	640	No	Duplication head-to-tail
21	3R	18400	19100	700	No	Duplication head-to-tail
22	X	900	15920	15020	No	BG3, OCS, Sexton et al., 2012
23	X	14080	16440	2360	No	Deletion
24	X	17900	19180	1280	No	Duplication head-to-tail

Kc167

№	Chr	Position of the left partner, kb	Position of the right partner, kb	Distance between the partners, kb	In the other datasets
1	2L	5940	8780	2840	Hou et al., 2012
2	2L	9180	13540	4360	No
3	2R	6100	8840	2740	No
4	2R	7020	11980	4960	Inversion
5	3L	8740	12980	4240	No
6	3L	15920	19100	3180	Inversion
7	3R	2800	4660	1860	Inversion
8	3R	14480	14940	460	No
9	3R	18120	18960	840	No
10	3R	23600	24680	1080	No
11	3R	26280	27100	820	No
12	X	1160	2240	1080	No

BG3

№	Chr	Position of the left partner, kb	Position of the right partner, kb	Distance between the partners, kb	In the other datasets	Genomic rearrangements between the partners
1	2L	920	2600	1680	No	OSC, Sexton et al., 2012
2	2L	1980	4780	2800	No	OSC, Sexton et al., 2012
	2L	6400	9080	2680	OSC, Sexton et al., 2012	No
---	-----	------	------	------	--------------------------	----
4	2L	6400	9460	3060	OSC, Sexton et al., 2012	No
5	2L	9080	9460	380	OSC, Sexton et al., 2012	No
6	2L	20120	21680	1560	OSC, Sexton et al., 2012	No
7	2R	4660	10880	6220	OSC, Sexton et al., 2012	No
8	2R	20640	21080	440	Inversion	
9	3L	200	1260	1060	No	No
10	3L	2720	5140	2420	No	Duplication, Inversion
11	3L	6640	9320	2680	OSC, Sexton et al., 2012, Hou et al., 2012	No
12	3R	7040	ChrX: 12060	No Translocation		
13	X	900	15920	15020	No	No
14	X	1500	4280	2780	No	Duplication head-to-tail
15	X	13240	19240	6000	OSC, Sexton et al., 2012	No

OSC

	2L	920	2600	1680	BG3, Sexton et al., 2012	No
2	2L	1980	4780	2800	BG3, Sexton et al., 2012	No
3	2L	6400	9080	2680	BG3, Sexton et al., 2012	No
4	2L	6400	9460	3060	BG3, Sexton et al., 2012	No
5	2L	9080	9460	380	BG3, Sexton et al., 2016	No
6	2L	20120	21680	1560	BG3, Sexton et al., 2012	No
7	2R	4660	10880	6220	BG3, Sexton et al., 2012	No
8	3L	1760	2200	440	Inversion	
9	3L	1980	3560	1580	Hou et al., 2012	Duplication head-to-tail
10	3L	6640	9320	2680	BG3, Sexton et al., 2012, Hou et al., 2012	No
11	3L	7640	17240	9600	Sexton et al., 2012	No
12	3L	12840	20000	7160	Sexton et al., 2012	No
13	3R	980	7860	6880	Sexton et al., 2012	No
14	3R	22260	23060	800	No	Deletion
15	X	900	15920	15020	BG3, S2, Sexton et al., 2012	No
16	X	13240	19240	6000	BG3, Sexton et al., 2012	No
Supplemental Table S4.

Cell lines (gamma values used for the two-step TADs annotation)	S2 (1.26, 2.52)	Kc167 (1.21, 2.42)	BG3 (1.07, 2.14)	OSC (1.03, 2.06)	
Total number	TADs	583	582	580	577
Genome coverage, %	TAD interior	67	66	63	63
	TAD interior + boundary bins	87	85	82	83
	inter-TADs + boundary bins	33	34	37	37
Average size, kb	TAD interior	137	134	129	131
	TAD interior + boundary bins	177	174	169	171
	inter-TADs + boundary bins	67	70	76	75
Median size, kb	TAD interior	100	100	100	100
	TAD interior + boundary bins	140	140	140	140
	inter-TADs + boundary bins	40	40	40	40
Minimal size, kb	TAD interior	40	40	40	40
	TAD interior + boundary bins	80	80	80	80
	inter-TADs + boundary bins	40	40	40	40
Maximal size, kb	TAD interior	540	640	540	540
	TAD interior + boundary bins	580	680	580	580
	inter-TADs + boundary bins	480	460	360	360
Supplemental Table S5.

Nr	Chr	S2, $\gamma_1 = 1.26, \gamma_2 = 2.52$	Kc167, $\gamma_1 = 1.21, \gamma_2 = 2.42$	BG3, $\gamma_1 = 1.07, \gamma_2 = 2.14$	OSC, $\gamma_1 = 1.03, \gamma_2 = 2.06$										
1	2L	0	120	1	2L 180 260										
2	2L	120	280	2	2L 300 420										
3	2L	280	440	3	2L 480 560										
4	2L	580	820	4	2L 560 820										
5	2L	860	980	5	2L 880 960										
6	2L	1020	1180	6	2L 1000 1080										
7	2L	1180	1640	7	2L 1140 1640										
8	2L	1640	1720	8	2L 1640 1720										
9	2L	1720	1940	9	2L 1720 1920										
10	2L	1980	2160	10	2L 1980 2160										
11	2L	2160	2240	11	2L 2220 2360										
12	2L	2240	2360	12	2L 2360 2740										
13	2L	2360	2620	13	2L 2880 2960										
14	2L	2660	2740	14	2L 2960 3040										
15	2L	2740	2860	15	2L 3140 3340										
16	2L	2860	2980	16	2L 3340 3480										
17	2L	3040	3160	17	2L 3480 3640										
18	2L	3160	3360	18	2L 3640 3800										
19	2L	3360	3460	19	2L 3800 4220										
20	2L	3460	3660	20	2L 4220 4340										
21	2L	3660	3800	21	2L 4460 4820										
22	2L	3800	4340	22	2L 4820 4900										
23	2L	4460	4820	23	2L 5100 5240										
24	2L	4820	4960	24	2L 5240 5320										
25	2L	5000	5080	25	2L 5320 5520										
26	2L	5080	5280	26	2L 5520 5960										
27	2L	5320	5520	27	2L 6100 6200										
28	2L	5520	5980	28	2L 6240 6340										
29	2L	5980	6060	29	2L 6340 6420										
30	2L	6100	6340	30	2L 6720 6800										
31	2L	6340	6460	31	2L 6800 6920										
32	2L	6500	6640	32	2L 6960 7040										
33	2L	6700	6960	33	2L 7040 7220										
34	2L	6960	7040	34	2L 7220 7420										
35	2L	7040	7220	35	2L 7460 7820										
36	2L	7220	7420	36	2L 7880 7980										
37	2L	7500	7820	37	2L 8220 8320										
38	2L	7820	7980	38	2L 8420 8540										
39	2L	8020	8100	39	2L 8540 8700										
40	2L	8100	8240	40	2L 8700 8940										
41	2L	8240	8340	41	2L 8940 9520										
42	2L	8340	8420	42	2L 9580 9700										
43	2L	8420	8540	43	2L 9700 9900										
44	2L	8540	8680	44	2L 10020 10200										
1	3L	40	180	1	3L	40	180	1	3L	0	180	1	3L	60	180
----	-----	-----	-----	----	-----	-----	-----	----	-----	----	-----	----	-----	-----	-----
2	3L	180	260	2	3L	180	260	2	3L	220	360	2	3L	180	260
3	3L	260	340	3	3L	260	340	3	3L	420	520	3	3L	260	340
4	3L	340	500	4	3L	340	520	4	3L	740	840	4	3L	340	520
5	3L	540	620	5	3L	520	620	5	3L	880	104	5	3L	520	600
6	3L	660	840	6	3L	660	840	6	3L	1100	1180	6	3L	660	840
7	3L	900	980	7	3L	840	1080	7	3L	1180	1300	7	3L	840	1040
8	3L	1020	1200	8	3L	1080	1200	8	3L	1340	1500	8	3L	1040	1120
9	3L	1200	1300	9	3L	1200	1300	9	3L	1600	1680	9	3L	1180	1300
10	3L	1340	1500	10	3L	1340	1500	10	3L	1740	1860	10	3L	1340	1500
11	3L	1560	1660	11	3L	1560	1660	11	3L	1860	1960	11	3L	1560	1660
12	3L	1660	1860	12	3L	1660	1860	12	3L	1960	2160	12	3L	1660	1740
13	3L	1860	2240	13	3L	1880	2240	13	3L	2160	2240	13	3L	1740	2260
14	3L	2240	2380	14	3L	2240	2380	14	3L	2240	2380	14	3L	2260	2380
15	3L	2380	2480	15	3L	2380	2460	15	3L	2380	2480	15	3L	2380	2480
105 X	20180	20260	105 X	20380	20820	105 X	18760	19080							
-------	-------	-------	-------	-------	-------	-------	-------	-------							
106 X	20260	20380	106 X	20940	21200	106 X	19080	19160							
107 X	20380	20920	107 X	21260	21400	107 X	19220	19380							
108 X	20920	21180	108 X	21440	21540	108 X	19380	19500							
109 X	21240	21400	109 X	21860	22400	109 X	19640	19800							
110 X	21840	21960					110 X	19840	20060						
111 X	21960	22400					111 X	20100	20280						
							112 X	20400	20500						
							113 X	20500	20640						
							114 X	20640	20720						
							115 X	20720	20900						
							116 X	20940	21120						
							117 X	21120	21200						
							118 X	21240	21400						
							119 X	21460	21540						
							120 X	21860	22400						
Supplemental Table S6.

Figure 2B

Color	S2	BG3	Kc167
RED	99.9	1	286.9
YELLOW	258.2	2	170.6
GREEN	22.9	3	94.8
BLUE	1.4	4	0.6
BLACK	169.8	5	20.0
	6	6.8	11.3
	7	0.2	0.1
	8	45.7	7.9
	9	20.2	113.6

Figure 2C

Chromatin mark	S2	BG3	Kc167	S2	BG3	Kc167
H3K27ac	216.4	190.0	122.3	215.1	188.6	120.9
H3K27me3	185.3	35.5	NA	183.9	34.1	NA
H3K36me3	227.7	257.3	246.2	226.3	255.9	244.8
H3K4me1	178.5	133.0	228.8	177.1	131.6	227.4
H3K4me3	271.4	<300	280.8	270.0	<300	279.4
H4K16ac	195.9	149.4	247.8	194.5	148.0	246.4
polyA	164.6	NA	172.9	163.2	NA	171.6
totalRNA	222.3	215.1	216.7	221.0	213.7	215.3
CTCF	15.0	41.1	5.1	13.6	39.7	3.7
H1	93.2	190.5	217.4	91.8	189.1	216.0
ISWI	286.2	259.3	286.9	284.8	258.0	285.6
RNA-pol-II	282.3	267.1	290.3	280.9	265.8	288.9
Smc3	36.2	NA	37.6	34.8	NA	36.2
Su_Hw	41.3	44.1	22.2	39.9	42.7	20.9
Beaf-32	235.1	76.8	274.7	233.7	75.4	273.3
mod_mdg4	4.5	15.8	3.6	3.2	14.4	2.2
Chriz	304.8	<300	294.8	303.5	<300	293.4
Jil1	243.7	248.1	257.9	242.3	246.8	256.5
H3	103.2	152.6	191.4	101.8	151.2	190.0
WDS	281.9	262.1	264.4	280.5	260.7	263.0
MOF	223.8	184.1	224.5	222.5	182.7	223.1
NURF301	303.9	130.1	78.8	302.5	128.7	77.4
dmTopo-II	72.1	11.2	NA	70.7	9.8	NA
MRG15	287.8	263.6	297.4	286.4	262.2	296.0
Figure 3C

Color	-log10(p-value)	Color	-log10(p-value)	Color	-log10(p-value)
RED	123.9	1	274.3	1	238.5
YELLOW	290.9	2	181.4	2	142.8
GREEN	20.6	3	103.2	3	98.3
BLUE	0.2	4	3.5	4	3.7
BLACK	201.1	5	26.0	5	11.7
		6	4.5	6	13.0
		7	1.5	7	1.0
		8	69.2	8	11.3
		9	15.3	9	119.2

Figure 5B

Color	-log10(p-value)
CYAN	<300
BLUE	247.0
GREEN	4.8
MAGENTA	258.9

Figure 5C

Color	-log10(p-value)
CYAN	<300
BLUE	253.7
GREEN	24.3
MAGENTA	283.5
Supplemental Table S7.

Replicate	Total reads	Filtered out*	Uniq. mapped
BG3_rep1	16 429 383	9 702 016	5 252 957
BG3_rep2	16 623 342	9 806 995	5 296 560
KC_rep1	26 843 301	1 218 207	1 741 683
KC_rep2	17 205 118	803 813	1 159 250
OSC_rep1	17 316 612	3 820 182	4 505 649
OSC_rep2	18 719 578	4 231 838	5 028 219
S2_rep1	33 990 827	6 437 675	20 297 591
S2_rep2	20 677 615	3 301 936	13 045 928

* by TopHat2
Supplemental Table S8.

Group	Cell line 1	Cell line 2	Transcription within the bin		
	No data	Cell line 1 < Cell line 2	Cell line 1 = Cell line 2	Cell line 1 > Cell line 2	
T-T	TAD	2841	25	349	65
	inter-TAD	531	13	973	47
	TAD	339	8	258	26
T-I	TAD	275	13	182	5
	inter-TAD	3986	59	1762	143

Chi-square test, p-value = 0.0006
Two-tailed Fisher’s exact test, p-value = 0.001

Group	Cell line 1	Cell line 2	Transcription within the bin		
	No data	Cell line 1 < Cell line 2	Cell line 1 = Cell line 2	Cell line 1 > Cell line 2	
T-T	TAD	2942	34	446	42
	inter-TAD	515	20	950	26
	TAD	291	9	218	10
T-I	TAD	238	17	189	3
	inter-TAD	3986	80	1803	81

Chi-square test, p-value = 0.012
Two-tailed Fisher’s exact test, p-value = 0.0187

Group	Cell line 1	Cell line 2	Transcription within the bin		
	No data	Cell line 1 < Cell line 2	Cell line 1 = Cell line 2	Cell line 1 > Cell line 2	
T-T	TAD	2880	33	350	75
	inter-TAD	517	30	943	51
	TAD	353	7	259	35
T-I	TAD	236	11	157	13
	inter-TAD	3986	81	1709	174

Chi-square test, p-value = 0.01
Two-tailed Fisher’s exact test, p-value = 0.0199
Kc167 vs OSC

Group	Cell line 1	Cell line 2	No data	Cell line 1 < Cell line 2	Cell line 1 = Cell line 2	Cell line 1 > Cell line 2
T-T	TAD	TAD	2850	49	366	32
I-I	inter-TAD	inter-TAD	506	27	976	32
I-T	inter-TAD	TAD	300	3	180	15
T-I	TAD	inter-TAD	330	38	237	9
Sum			3986	117	1759	88

Chi-square test, p-value = 1.6e-06
Two-tailed Fisher’s exact test, p-value = 0.0001

OSC vs S2

Group	Cell line 1	Cell line 2	No data	Cell line 1 < Cell line 2	Cell line 1 = Cell line 2	Cell line 1 > Cell line 2
T-T	TAD	TAD	2893	39	345	64
I-I	inter-TAD	inter-TAD	496	32	940	36
I-T	inter-TAD	TAD	340	12	265	34
T-I	TAD	inter-TAD	257	17	176	4
Sum			3986	100	1726	138

Chi-square test, p-value = 2.6e-05
Two-tailed Fisher’s exact test, p-value = 0.0001

BG3 vs OSC

Group	Cell line 1	Cell line 2	No data	Cell line 1 < Cell line 2	Cell line 1 = Cell line 2	Cell line 1 > Cell line 2
T-T	TAD	TAD	2849	35	328	45
I-I	inter-TAD	inter-TAD	569	14	1027	47
I-T	inter-TAD	TAD	301	4	211	22
T-I	TAD	inter-TAD	267	16	202	13
Sum			3986	69	1768	127

Chi-square test, p-value = 0.00219
Two-tailed Fisher’s exact test, p-value = 0.0044
Supplemental Table S9.

Cell line 1 vs Cell line 2

BG3 vs Kc167

Group	Cell line 1	Cell line 2	Proportion of active chromatin within the bin		
	No data	T-T TAD	I-I inter-TAD	I-T TAD	T-I TAD
		TAD	inter-TAD	TAD	inter-TAD
T-T		1824	230	699	527
I-I		155	90	1199	120
I-T		94	51	272	58
T-I		125	35	384	87
Sum		2198	406	2554	792

Chi-square test, p-value = 0.004
Two-tailed Fisher’s exact test, p-value = 0.006

Kc167 vs S2

Group	Cell line 1	Cell line 2	Proportion of active chromatin within the bin		
	No data	T-T TAD	I-I inter-TAD	I-T TAD	T-I TAD
		TAD	inter-TAD	TAD	inter-TAD
T-T		2005	404	845	210
I-I		159	102	1173	77
I-T		88	54	316	48
T-I		110	57	269	33
Sum		2362	617	2603	368

Chi-square test, p-value = 0.145
Two-tailed Fisher’s exact test, p-value = 0.187

BG3 vs S2

Group	Cell line 1	Cell line 2	Proportion of active chromatin within the bin		
	No data	T-T TAD	I-I inter-TAD	I-T TAD	T-I TAD
		TAD	inter-TAD	TAD	inter-TAD
T-T		1801	236	948	353
I-I		143	44	1297	57
I-T		133	24	441	56
T-I		83	37	265	32
Sum		2160	341	2951	498

Chi-square test, p-value = 0.003
Two-tailed Fisher’s exact test, p-value = 0.004
Supplemental Table S10.

Group	L3_Carcass	L3_CNS	L3_DigestiveSystem	L3_FatBody	L3_ImaginalDiscs	L3_SalivaryGlands
Group 2	WPP_2days_CNS	WPP_2days_Fat	WPP_FatBody	WPP_SalivaryGlands		
Group 3	AdMatedM_Ecl_4days_Testes	AdMatedM_Ecl_4days_AccessoryGlands	AdMatedM_Ecl_4days_Heads			
Group 4	AdVirginF_Ecl_4days_Ovaries	AdVirginF_Ecl_4days_Heads				
Group 5	AdMatedF_Ecl_4days_Ovaries	AdMatedF_Ecl_4days_Heads				
Group 6	AdMixedMF_Ecl_1day_Carcass	AdMixedMF_Ecl_1day_DigestiveSystem				
Group 7	AdMixedMF_Ecl_4days_Carcass	AdMixedMF_Ecl_4day_DigestiveSystem				
Group 8	AdMixedMF_Ecl_20days_Carcass	AdMixedMF_Ecl_20days_DigestiveSystem				
Supplemental Table S11.

Cell line	Reads	Reads w. trimmed adaptor	Delly	BreakDancer
			Del	INS
S2	65 681 282	40 228 560	645	1465
Kc167	31 127 671	17 598 455	648	340
BG3	50 183 677	31 255 562	614	712
OSC	32 372 349	19 698 432	623	573

Columns: DEL, DUP, INV, TRA, SUM, DEL, INS, INV, CTX, UNK, SUM