French Mediterranean islands as a refuge of relic earthworm species: Cataladrilus porquerollensis sp. nov. and Scherotheca portcrosana sp. nov. (Crassiclitellata, Lumbricidae)

Daniel F Marchan, Thibaud Decaens, Darío J. Diaz Cosin, Mickael Hedde, Emmanuel Lapied, Jorge Domínguez

To cite this version:
Daniel F Marchan, Thibaud Decaens, Darío J. Diaz Cosin, Mickael Hedde, Emmanuel Lapied, et al.. French Mediterranean islands as a refuge of relic earthworm species: Cataladrilus porquerollensis sp. nov. and Scherotheca portcrosana sp. nov. (Crassiclitellata, Lumbricidae). European Journal of Taxonomy, Consortium of European Natural History Museums, 2020, 701, 10.5852/ejt.2020.701 . hal-02940303

HAL Id: hal-02940303
https://hal.inrae.fr/hal-02940303
Submitted on 16 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
French Mediterranean islands as a refuge of relic earthworm species: Cataladrilus porquerollensis sp. nov. and Scherotheca portcrosana sp. nov. (Crassiclitellata, Lumbricidae)

Daniel F. MARCHÁN 1,3,*, Thibaud DECAËNS 2,*, Darío J. DÍAZ COSÍN 3, Mickaël HEDDE 4, Emmanuel LAPIED 5 & Jorge DOMÍNGUEZ 6

1,6 Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310 Vigo, Spain.
2 CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
3 Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain.
4 UMR Eco&Sols, INR AE–IRID–CIRAD–SupAgro Montpellier, 2 Place Viala, 34060 Montpellier Cedex 2, France.
5 Taxonomia Biodiversity Fund, 7 rue Beccaria, 72012, Paris, France.

* Corresponding authors: daniel.fernandez.marchan@uvigo.es; thibaud.DECAESNS@cefe.cnrs.fr

Abstract. The area comprising the Pyrenees, Northeast Spain, Southern France and Corsica-Sardinia supports a large part of the diversity of Lumbricidae earthworms, including most species of the endemic genera Prosellodrilus, Cataladrilus and Scherotheca. In this region, the probability of encountering new species for science is significant, especially in scarcely sampled localities. In this study, we describe two unidentified species recently collected in the Hyères Archipelago (France), which we assigned to the genera Cataladrilus and Scherotheca based on morphological characters and molecular phylogenetic analyses. Other species of Scherotheca from Montpellier (including the type species of the genus, Sc. gigas gigas) were included in the analysis to clarify their conflicting systematics. A reduced molecular marker set (COI, 16S, 28S and ND1) proved as successful as larger marker sets for identifying phylogenetic relationships within the Lumbricidae. Remarkable disjunctions between both Cataladrilus porquerollensis Marchán & Decëens sp. nov., Scherotheca portcrosana Marchán & Decëens sp. nov. and their most closely related relatives, suggesting a strong influence of paleogeographic events on the earthworm fauna of the area and a possible role of near-shore islands as refugia for relict taxa. Genetic distances and branch lengths supported the elevation of some subspecies of Scherotheca to
specific status as well as the retention of other subspecies, highlighting the importance of testing for such delimitation with molecular methods.

Keywords. Earthworms, molecular phylogenetics, phylogeography, systematics.

Marchán D.F., Decaëns T., Díaz Cosín D.J., Hedde M., Lapied E. & Domínguez J. 2020. French Mediterranean islands as a refuge of relic earthworm species: *Cataladrilus porquerollensis* sp. nov. and *Scherotheca portcrosana* sp. nov. (Crassiclitellata, Lumbricidae). *European Journal of Taxonomy* 701: 1–22.

https://doi.org/10.5852/ejt.2020.701

Introduction

In the Palearctic, Lumbricidae Rafinesque-Schmaltz, 1815 is the most diverse and widely distributed native earthworm family, including 44 genera and around 670 species (Blakemore 2008) (but around 45 species have been described since then). Due to the large number of endemic species and genera, this family is believed to have originated and diversified in southwestern Europe (Omodeo & Rota 2008).

Several genera, including *Prosellodrilus* Bouché, 1972 and *Scherotheca* Bouché, 1972, occur in the Pyrenees, Northeast Spain (Catalonia, Aragón, Navarra), Southeastern France (Occitane, Provence-Alpes-Côte d’Azur), Corsica-Sardinia and northeastern Italy (Qiu & Bouché 1998a, 1998c), hinting at a paleogeographic link between these terranes before the oligocene–Miocene rifting and breakup (Bache et al. 2010).

The genus *Prosellodrilus* comprises around 32 species and subspecies (Blakemore 2012). This genus is subdivided into a conflictive subgenus system, proposed by Qiu & Bouché (1998a) and Baha & Berra (2001): *Prosellodrilus, Pyrenodrilus* Qiu & Bouché, 1998, *Kenleenus* Qiu & Bouché, 1998 and *Maghrebiella* Baha & Berra, 2001. Those subgenera were later elevated to genus-status by Blakemore (2012), with *Maghrebiella* amended to *Cadanera* Blakemore, 2012. A closely related genus with a more restricted range is *Cataladrilus* Qiu & Bouché, 1998. *Cataladrilus* comprises eight species distributed in the Eastern Pyrenees (Catalonia, Andorra and Pyrénées-Orientales) and two species of the subgenus *Latisinella* Qiu & Bouché, 1998 found in Soria (Spain) more than 200 km away from the main range of the genus (Qiu & Bouché 1998b). A molecular phylogenetic analysis of the family Lumbricidae, including representatives of both genera, supported this close relationship, not identifying them as monophyletic but rather highlighting them as intermixed within a single clade (Domínguez et al. 2015).

In spite of this, a morphological distinction between them is rather clear, with *Cataladrilus* possessing anterior spermathecae (intersegments 9/10, 10/11) and *Prosellodrilus* possessing posterior spermathecae (between intersegments 12/13 and 14/15).

The genus *Scherotheca* includes 41 species and subspecies (Qiu & Bouché 1998c), half of which occur in Occitane, Provence-Alpes-Côte d’Azur and Corsica. *Scherotheca gigas* (Dugès, 1828), the type species of the genus, includes several subspecies; most of them were established as species by Qiu & Bouché (1998d). Domínguez et al. (2015) included 5 representatives of *Scherotheca* in their phylogeny of Lumbricidae, two of which were unidentified species. In addition, the specimens identified as *Sc. gigas* were collected in Navarra (Spain), which is far removed from the type locality of the species (Montpellier) raising doubts about their identification. Thus, the systematics of this highly diverse genus would benefit from the corroboration provided by a comprehensive molecular phylogenetic analysis, which has not yet been performed.

Despite the intensive research on earthworm diversity in southern France, some endemic species in relatively remote, comparatively weakly explored areas may remain undescribed. One example of such an area is the Hyères Archipelago, which faces the coast of Provence. These continental islands remained
connected to Corsica and Sardinia until Late Chattian–Aquitanian – ca 24 Ma – when the first marine
ingression preceded the rotation and drifting of the Corso-Sardinian microplate (Oudet et al. 2010). Due
to their proximity to the coast, the islands were intermittently connected to the French mainland during
the Pleistocene until 11 000–12 000 BC, when they became permanently isolated (Médail et al. 2013).
The Port-Cros National Park was created in 1963 to protect the Hyères Archipelago, and two of its three
main islands (Porquerolles and Port-Cros) constitute its core areas.

Two undescribed earthworm species were collected during a sampling survey of the islands of
Porquerolles and Port-Cros (Decaëns et al. 2020). Further detailed morphological diagnoses and molecular
phylogenetic analyses confirmed the novelty of both taxa, but also revealed that they should be assigned
to the genera Scherotheca and Cataladrilus respectively. The inclusion of closely related congeneric
species in the molecular phylogenetic reconstruction provided further insight into the systematics of
these genera. In this work we relate the results of both of these morphological and molecular analyses,
and propose the formal description of the two new species under the names Scherotheca portcrosana
Marchán & Decäens sp. nov. and Cataladrilus porquerollensis Marchán & Decäens sp. nov.

Material and methods

Specimens, sampling and morphological description

Specimens described in this work were collected in a sampling survey carried out in the Port-Cros
National park (France) in March 2018 (Decaëns et al. 2020). The rest of the specimens were collected
in Montpellier (France) and its vicinities at different times between 2015 and 2019. The list of species
and the localities where they were collected is shown in Table 1.

Earthworms were obtained by soil digging and hand-sorting, rinsed with water and fixed in 100%
ethanol to enable further molecular analyses. Species classification and morphological diagnoses
were carried using the set of external and internal morphological characters used by Qiu & Bouché
(1998a, 1998b, 1998c, 1998d), and following the format established by Domínguez et al. (2018). Main
external morphological characters were: average length, average number of segments, average weight,
pigmentation, type of prostomium, setal arrangement, position of papillae, position of first dorsal pore,
nephridial pore arrangement, position and development of male pores, position and development of
female pores, position of spermathecal pores, position of clitellum, position of tubercula pubertatis.
Main internal anatomical characters were: position of oesophageal hearts, position and morphology of
calciferous glands, position of crop, position of gizzard, type of typhlosole, shape of nephridial bladders,
number and position of seminal vesicles, number and position of spermathecae.

Institutional acronyms

Earthworm holotypes and paratypes were deposited in the following institutions:

CEFE = Center of Functional and Evolutionary Ecology, Montpellier, France
UCMLT = Earthworm Collection of Universidad Complutense de Madrid, Spain

DNA isolation, sequencing and molecular analyses

Total genomic DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen) from ventral
integument samples of approximately 5 × 5 mm. Molecular barcoding (cytochrome c oxidase subunit I –
COI) was performed for all the specimens of Ca. porquerollensis Marchán & Decäens sp. nov. (30) and
Sc. portcrosana Marchán & Decäens sp. nov. (9) at the Biodiversity Institute of Ontario using the primers
from Folmer et al. (1994) and following the standard protocol established for the International Barcode
of Life project (http://ibol.org/) (see details in Decaëns et al. 2016). Regions of the nuclear 28S rRNA
and mitochondrial 16S rRNA, NADH dehydrogenase (ND1) and COI (3348 bp) were amplified for two
specimens of Ca. porquerollensis Marchán & Decäens sp. nov. and Sc. portcrosana Marchán & Decäens
Table 1. List of species studied in this work and their sampling localities.

Species	Location	Coordinates	Habitat
Cataladrilus porquerollensis	Porquerolles island, France;	42.9988° N 6.20025° E	Meadow
sp. nov.	Locality 1 (PQR1)		
	Porquerolles island, France;	42.9955° N 6.2069° E	Vineyard
	Locality 2 (PQR2)		
	Porquerolles island, France;	42.9961° N 6.2039° E	Olive grove
	Locality 3 (PQR3)		
Scherotheca portcrosana sp. nov.	Port-Cros island, France;	43.0042° N 6.3914° E	Evergreen oak forest
	Locality 1 (PCR3)		
	Port-Cros island, France;	43.0119° N 6.3938° E	Mixed pine/
	Locality 2 (PCR6)		evergreen oak forest
	Port-Cros island, France;	43.0089° N 6.4117° E	Meadow
	Locality 3 (PCR8)		
Scherotheca gigas gigas	Bois de Montmaur,	43.6443° N 3.865° E	Pine forest
(Dugès, 1828)	Montpellier, France		
Scherotheca gigas mifuga	Montpellier ECOTRON,	43.6817° N 3.8762° E	Mediterranean
Bouché, 1972	Prades le Lez, France		garrigue
Scherotheca gigas heraultensis	Mont de la Gardiole,	43.4948° N 3.7756° E	Mediterranean
Qiu & Bouché, 1998	Vic-la-Gardiole, France		garrigue
Scherotheca rhodana	IUT de Montpellier,	43.635411° N 3.853335° E	Urban mixed
Bouché, 1972	Montpellier, France		forest
Scherotheca monspessulensis	IUT de Montpellier,	43.635411° N 3.853335° E	Urban mixed
idica Bouché, 1972	Montpellier, France		forest

sp. nov. and one specimen of Sc. gigas gigas, Sc. gigas mifuga Bouché, 1972, Sc. gigas heraultensis Qiu & Bouché, 1998, Sc. rhodana Bouché, 1972 and Sc. monspessulensis idica Bouché,1972 using the polymerase chain reaction (PCR), with primers and conditions described in Pérez-Losada et al. (2009, 2015). PCR products were purified and sequenced by the C.A.C.T.I Genomics service (University of Vigo).

DNA sequences obtained in this study (including the two new species and the above mentioned Scherotheca spp), as well as their associated meta-data and GenBank accession numbers are all available in the public dataset “DS-EWSPPCNP” on the BOLD bioinformatics platform (https://doi.org/10.5883/DS-EWSPPCNP).

Sequences reported by Dominguez et al. (2015, 2018), Pérez-Losada et al. (2009, 2011, 2015), Paoletti et al. (2016) and De Sosa et al. (2019), including representatives from most of the Lumbricidae genera and two members of the closest families (Hormogastridae Vejdovsky, 1884 and Criodrilidae Michaelsen, 1900) were downloaded from GenBank and used as a reference dataset. Included species are shown in Appendix 1.

Sequences were aligned with MAFFT ver. 7 (Katoh & Standley 2013) with default settings and concatenated with BioEdit (Hall 1999), resulting in a matrix of 3348 bp. The best fitting evolutionary
model for each partition was selected with jModelTest ver. 2.1.3 (Darriba et al. 2012) by applying the Akaike information criterion (AIC; Akaike 1973), and Bayesian information criterion (BIC; Schwarz 1978). GTR+I+G was selected as best-fitting evolutionary model for COI, 28S and ND1, and HKY+I+G was selected for 16S.

Maximum Likelihood analysis was performed with RaxML-HPC ver. 8 (Stamatakis 2014) as implemented in the CIPRES Science Gateway ver. 3.3 (Miller et al. 2010), using GTR+I+G for each data partition with 10 alternative runs and estimating the support for the resulting topologies by 1000 rapid bootstrap replicates. Bayesian Inference of the phylogeny was estimated with MrBayes ver. 3.1.2 (Ronquist & Huelsenbeck 2003) as implemented in the CIPRES Science Gateway ver. 3.3. Parameters were set to 50 million generations sampling every 5000th generation (10000 trees). Two independent runs with four chains each were performed and 20% of the trees were discarded as burn-in. The remaining trees were combined and summarized on a 50% majority-rule consensus tree. Clade support (Bootstrap and Posterior probability) values over 70% and 90% respectively were considered as high (see Marchán et al. 2018; De Sosa et al. 2019).

Uncorrected average pairwise distances between the newly described species and their closest relatives for the molecular markers COI and 16S were calculated in MEGA X (Kumar et al. 2018) in order to support their status as separate species.

Results

Molecular phylogenetic analyses

The phylogenetic relationships recovered by the Bayesian Inference (Fig. 1, Appendix 2) and Maximum Likelihood analyses were generally consistent. A clade containing *Cataladrilus* and *Prosellodrilus* was well supported, but the relationship between them was not fully resolved. *Cataladrilus porquerollensis* Marchán & Decäens sp. nov. was recovered as a sister species to *Ca. monticola* Qiu & Bouché, 1998. *Scherotheca portcrosana* Marchán & Decäens sp. nov. was recovered within a well-supported, uncorrected average pairwise distances between the newly described species and their closest relatives for the molecular markers COI and 16S were calculated in MEGA X (Kumar et al. 2018) in order to support their status as separate species.

Fig. 1. Detail of the clades including the species *Cataladrilus porquerollensis* Marchán & Decäens sp. nov. and *Scherotheca portcrosana* Marchán & Decäens sp. nov. obtained by Bayesian phylogenetic analysis of the concatenated sequence of molecular markers COI–16S–ND1–28S. The complete phylogenetic tree is shown in Appendix 2. Posterior probability support values are shown besides corresponding nodes.
monophyletic *Scherotheca*, as a sister to two undescribed species from Corsica. In addition, *Sc. rhodana*, *Sc. monspessulensis idica*, *Sc. gigas gigas* and *Sc. savignyi* Guerne & Horst, 1893 appeared separated from each other by comparatively long branches, while *Sc. gigas heraultensis* and *Sc. gigas mifuga* formed a well-supported, comparatively shallow clade with *Sc. gigas gigas*. The specimen from Navarra identified as *Sc. gigas* by Domínguez *et al.* (2015) was recovered as a sister taxon to *Sc. savignyi*.

Uncorrected Average Pairwise Genetic (UAPG) distances for both the COI and 16S molecular markers are given in Table 2. The UAPG distances for COI between *Ca. porquerollensis* Marchán & Decâens sp. nov. and its closest relatives (representatives of *Cataladrilus* and *Prosellodrilus*) ranged from 13.4 to 18.3%. The UAPG distance for 16S was noticeably lower with congeneric *Ca. monticola* Qiu & Bouché, 1998 (12.3%) than with species belonging to *Prosellodrilus* (18.5%) and *Scherotheca* (18.6–22%).

The UAPG COI distances between *Sc. portcrosana* Marchán & Decâens sp. nov. and other representatives of the genus ranged from 11.8% (*Scherotheca* sp. 1 Corsica) to 14.6% (*Sc. rhodana*). The UAPG 16S distances with congeneric species ranged between 11.8% (*Scherotheca* sp. 1 Corsica) to 15.8% (*Scherotheca* sp. 2 Corsica), the values of which were much lower than the distances with other genera (*Prosellodrilus* and *Cataladrilus*, 18.3–21.3%).

The UAPG distances between *Sc. gigas gigas* and the subspecies *mifuga* and *heraultensis* for the molecular markers COI (1.4–3.7%) and 16S (2.9–3.2%) were much lower than with the other species of *Scherotheca* (COI: 11.1–12.9%, 16S: 9.3–13.5%).

Systematics

Phylum Annelida Lamarck, 1802
Class Oligochaeta Grube, 1850 / Clitellata Michaelsen, 1919
Order Megadrili Benham, 1890 / Haplotoxida Michaelsen, 1900
Family Lumbricidae Rafinesque-Schmaltz, 1815
Genus *Cataladrilus* Qiu & Bouché, 1998

Type species
Cataladrilus monticola Qiu & Bouché, 1998

Diagnosis
Lumbricinae Rafinesque-Schmaltz, 1815 of small to medium size. Longitudinal furrows in peristomium and pygidium. Closely paired or separate chaetae. Aligned nephridial pores. Spermathecal pores simple in 9/10, 10/11 (exception *Cataladrilus multhitecus* Qiu & Bouché, 1998: 7/8–10/11). Male pores in ½ 15 with developed porophores. Calciferous gland in 11–15, usually with diverticles in 11. Gizzard in 17–19 (exception *Cataladrilus annulatus* Qiu & Bouché, 1998: (18)19–21). Typhlosole simple, bifid or multifid. Nephridial bladders U-shaped, reclinate (exception *Cataladrilus multhitecus* Qiu & Bouché, 1998: V-shaped – “fourchué”). Two pairs of seminal vesicles in 11, 12 (exception *Cataladrilus mrsici* Qiu & Bouché, 1998: three pairs in 9, 11, 12).

Cataladrilus porquerollensis Marchán & Decâens sp. nov.
urn:lsid:zoobank.org:act:DE99E6A6-65EF-496A-AEAA-4F6FBAFA19CB
Fig. 2, Table 3
Table 2. Uncorrected average pairwise genetic (UAPG) distances between the species described in this work (Cataladrilus porquerollensis Marchán & Decaëns sp. nov. and Scherotheca portcrosana Marchán & Decaëns sp. nov.) and their closest relatives for the molecular markers COI (under diagonal) and 16S (over diagonal).

	Ca. porquerollensis sp. nov.	Ca. edwarsi	Ca. monticola	Pr. pyrenaicus	Pr. biserialis	Sc. sp 2 Corsica	Sc. sp 1 Corsica	Sc. corsicana	Sc. portcrosana sp. nov.	Sc. gigas gigas	Sc. gigas mifuga	Sc. gigas heraultensis	Sc. monspessulensis idica	Sc. rhodana	Sc. savignyi	Sc. cf. gigas Navarra		
Ca. porquerollensis sp. nov.	0.6	–	12.3	18.5	–	21.0	21.9	19.7	20.8	22.0	22.6	21.4	18.6	18.8	19.4	19.4		
Ca. edwarsi	13.4	0.6	–	–	12.3	18.5	–	21.0	21.9	19.7	20.8	22.0	22.6	21.4	18.6	18.8	19.4	19.4
Ca. monticola	14.1	13.6	13.7	15.5	15.9	16.2	18.3	19.7	19.5	18.4	15.7	14.1	17.2	15.3				
Pr. pyrenaicus	15.9	15.6	14.7	20.4	20.5	20.1	23.4	21.3	24.7	24.3	19.4	19.6	22.5	20.0				
Pr. biserialis	18.3	14.2	14.3	15.2	10.8	12.8	15.8	13.4	12.6	11.5	13.6	10.5						
Sc. sp 2 Corsica	–	–	–	10.8	12.8	15.8	13.4	12.6	11.5	13.6	10.5							
Sc. sp 1 Corsica	14.4	15.3	17.1	15.4	11.8	13.1	0.2	13.5	13.2	13.7	13.3	13.4	13.8					
Sc. corsicana	15.3	13.6	15.2	17.4	15.7	13.0	15.1	12.8	13.0	12.2	13.9	12.9	14.6	11.6				
Sc. portcrosana sp. nov.	15.5	12.3	13.7	15.2	17.1	11.8	13.1	0.2	13.5	13.2	13.7	13.3	13.4	13.8				
Sc. gigas gigas	15.8	14.9	16.9	17.4	18.1	12.1	11.7	12.9	2.9	3.2	11.7	10.8	11.4	9.3				
Sc. gigas mifuga	16.4	14.9	17.8	17.6	17.8	12.4	11.9	13.0	1.4	–	3.9	11.9	11.4	12.2	9.9			
Sc. gigas heraultensis	17.6	14.8	17.1	16.8	18.0	11.3	12.0	12.3	3.7	3.4	–	11.0	10.6	11.8	9.5			
Sc. monspessulensis idica	16.0	15.8	16.1	17.2	19.0	12.5	11.9	12.4	11.1	11.0	11.6	8.9	12.0	9.9				
Sc. rhodana	15.0	16.5	15.9	17.2	17.3	11.8	13.0	14.6	12.0	12.3	12.4	12.2	–	11.5	9.4			
Sc. savignyi	16.3	15.1	16.7	18.8	19.8	12.6	12.7	13.8	12.2	11.9	13.1	12.4	13.4	–	9.0			
Sc. cf. gigas Navarra	15.7	16.0	16.0	15.4	16.5	12.7	11.9	12.8	12.6	12.1	12.1	11.3	12.2	10.5	–			
Diagnosis

Specimens of *Cataladrilus porquerollensis* Marchán & Decaëns sp. nov. can be distinguished from the other known species of *Cataladrilus* by the position of the clitellum in segments (19)20–32,33(34) and tubercula pubertatis in segments (28)29–31 (Table 3). They resemble *Cataladrilus (Latisinella) mrsici* in the position of tubercula pubertatis and small body size, but differ in the position of the clitellum (22–32 in *Ca. mrsici*), two pairs of seminal vesicles (three in *Ca. mrsici*) and paired chaetae (separate in *Ca. mrsici*).

Etymology

The species name is derived from Porquerolles, the island where this species was found.

Material examined

Holotype

FRANCE • adult; Provence-Alpes-Côte d’Azur, Var, Porquerolles Island; 42.9961º N, 6.20393º E [Locality 3 (pQr3) (Table 1)]; 14 Mar. 2018; T. Decaëns, E. Lapied, M. Hedde and M. Zwicke leg.; olive grove; BOLD Sample ID: EW-PNPC-0098; UCMLT.

Paratypes

FRANCE – Provence-Alpes-Côte d’Azur • 10 specs; same collection data as for holotype; BOLD SampleID: EW-PNPC-0036, EW-PNPC-0037, EW-PNPC-0038, EW-PNPC-0039, EW-PNPC-0040, EW-PNPC-0096, EW-PNPC-0097, EW-PNPC-0099, EW-PNPC-0100, EW-PNPC-0268; UCMLT • 10 specs; same collection data as for holotype; BOLD SampleID: EW-PNPC-0041, EW-PNPC-0042, EW-PNPC-0043, EW-PNPC-0044, EW-PNPC-0045, EW-PNPC-0101, EW-PNPC-0102, EW-PNPC-0103, EW-PNPC-0104, EW-PNPC-0105; CEFE • 1 spec.; Var, Porquerolles Island; 42.9988º N, 6.20025º E [Locality 1 (pQr1) (Table 1)]; 14 Mar. 2018; T. Decaëns, E. Lapied, M. Hedde and M. Zwicke leg.; meadow; BOLD SampleID: EW-PNPC-0173; CEFE • 6 specs; Var, Porquerolles Island; 42.9955º N, 6.20609º E [Locality 2 (pQr2) (Table 1)]; 14 Mar. 2018; T. Decaëns, E. Lapied, M. Hedde and M. Zwicke leg.; vineyard; BOLD SampleID: EW-PNPC-0127, EW-PNPC-0128, EW-PNPC-0129, EW-PNPC-0130, EW-PNPC-0131, EW-PNPC-0132; UCMLT • 2 specs; same collection data as for preceding; BOLD SampleID: EW-PNPC-0133, EW-PNPC-0134; CEFE.

Morphological description

External morphology

Body pigmentation absent in live specimens. White-beige homogeneous color in fixed specimens (Fig. 2).

Average length 48 mm (41–51 mm, n = 5 adults); diameter 2 mm (1.8–2.2 mm, n = 5 adults); body cylindrical in cross-section; average number of segments 196 segments (166–239, n = 5 adults; 239 segments in the holotype). Average weight (alcohol fixed specimens): 0.14 g (0.12–0.17 g, n = 5 adults). Prostomium epilobous. Longitudinal furrows in first 2–3 segments. First dorsal pore at the intersegmental furrow 10/11–11/12. Nephridial pores aligned in b. Spermathecal pores at the intersegmental furrows 9/10, 10/11 in c. Male pores in segment 15, surrounded by a well-developed porophore. Female pores inconspicuous. Clitellum saddle-shaped in segments (19)20–32,33(34). Tubercula pubertatis in segments (28)29–31. Chaetae very small and closely paired, with interchaetal ratio aa: 9, ab: 1, bc: 3, cd: 1, dd: 7 at segment 40. Chaetophores/genital papillae in segments 11, 13.

Internal anatomy

Septa 5/6–9/10 thickened and muscular. Hearts in segments 6–11, oesophageal. Calciferous glands in segments 11–13, without clear diverticles or enlargements. Crop in segments 15–16, gizzard in segments
Table 3. Morphological characters of *Cataladrilus porquerollensis* Marchán & Decaëns sp. nov. and morphologically similar relatives within the genera *Cataladrilus* Qiu & Bouché, 1998 and *Proselodrilus* Bouché, 1972. Length expressed in mm, weight expressed in mg.

Characters	*Cataladrilus porquerollensis* sp. nov.	*Cataladrilus (Latisinella) mrsici*	*Cataladrilus albus*	*Proselodrilus dactylotheus*
Length	45–51	35	120–145	92
N. segments	196	168	229–297	207
Weight	140	102	1526	409
Pigmentation	Absent	Absent	Absent	Absent
Prostomium	Epilobous	Epilobous	Epilobous	Epilobous
Setae	Closely paired	Separate	Closely paired	Closely paired
Setal arrangement	9:1:3:1:7	5:5:5:4:8	15:1:5:1:15	20:1:10:1:30
Papillae	11, 13	Absent	28–34	13, 14, 15
First dorsal pore	10/11–11/12	6/7	6/7	5/6
Nephridial pores	Aligned, b	Aligned, b	Aligned, b	Aligned, b
Male pores	½ 15, b	½ 15, b	½ 15, b	½ 15
Female pores	½ 14, b, inconspicuous	½ 14, b	½ 14, b	½ 14, b
Spermathecal pores	9/10, 10/11 simple in c	9/10, 10/11 simple in c	9/10, 10/11 simple in d	13/14, 14/15 in c
Clitellum	(19)20–32, 33(34)	22–32	22–34	19–32
Tubercula pubertas	(28)29–31	29–31	(½ 29)30–34	22–25
Oesophageal hearts	6–11	6–11	6–11	6–11
Calciferous glands	11–13	11–14, dilated in 12, 13	11–14, diverticles in 11	11–14, diverticles in 11
Crop	15–16	15–16	15–16	15–16
Gizzard	17–18	17–18	17–18	17–18
Typhlosole	Bifid	Simple	Bifid	Bifid
Nephridial bladders	U-shaped, reclinate	U-shaped, reclinate	U-shaped, reclinate	U-shaped, reclinate, proximal ampulla
Seminal vesicles	11, 12	9, 11, 12	11, 12	11, 12
Spermathecae	Simple, globular in 10, 11	Simple, pyriform in 10, 11	Simple, small globular in 10, 11	Simple, pedunculate in 14, 15
17–18. Typhlosole bifid with a small intermediate ridge of varying development. Male sexual system holandric, testes and funnels (not enclosed in testes sacs, but with sperm present) located ventrally in segments 10 and 11. Two pairs of small seminal vesicles in segments 11 and 12, with free seminal masses filling most of these segments. Ovaries and female funnels in segment 13, ovarian receptacles (ovisacs) in segment 14. Two pairs of globular, intracelomic spermathecae in segments 9 and 10 (intersegments 9/10, 10/11). Nephridial bladders U-shaped, reclinate in segments 14, 20.

Distribution and ecology

Cataladrilus porquerollensis Marchán & Decaëns sp. nov. is known from the island of Porquerolles in the Hyères Archipelago, France. This species has been found in meadows, vineyards and olive groves, thus appears to inhabit moderately to highly anthropized habitats.

Genus *Scherotheca* Bouché, 1972

Type species

Scherotheca gigas Duges, 1828.
MARCHÁN D.F. et al., Two new species (Crassiclitellata, Lumbricidae) from French islands

Diagnosis

Lumbricinae of large to very large size, post-clitellar trapezoidal section. Pigmentation brown to dark brown. Prostomium epilobous, closed. Longitudinal furrows in the peristomium. Nephridial pores “en solfège” (irregularly distributed). Spermathecal pores at least in two intersegments, between 9/10 and 13/14, or 13/14 and 15/16, sometimes multiple. Anterior septa strongly thickened. Male pores in \(\frac{1}{2} \) 15, usually with porophores. Gizzard in 17–20 (21, 22). Typhlosole pinnate. Two or four pairs of seminal vesicles in (9, 10) 11, 12.

Scherotheca portcrosana Marchán & Decaëns sp. nov.

* urn:lsid:zoobank.org:act:663F18D2-A2EA-4B4E-8ED3-55A3FE5B7D57

Fig. 3, Table 4

Diagnosis

Specimens of *Scherotheca portcrosana* Marchán & Decaëns sp. nov. can be distinguished from other known species of *Scherotheca* by the position of the clitellum in segments 26–35 (\(\frac{1}{2} \) 36) and tubercula pubertatis in segments 30–33, position of spermathecae in 12, 13 in addition to a smaller body size and faint pigmentation (Table 4).

Etymology

The species name is derived from Port-Cros, the island inhabited by this species.

Material examined

- **Holotype**
 - FRANCE • adult; Provence-Alpes-Côte d’Azur, Var, Port-Cros Island; 43.0089° N, 6.41176° E [Locality 3 (PCR8) (Table 1)]; 13 Mar. 2018; T. Decaens, E. Lapied, M. Hedde and M. Zwieke leg.; meadow; BOLD Sample ID: EW-PNPC-0174; UCMLT.

- **Paratypes**
 - FRANCE • Provence-Alpes-Côte d’Azur • 1 spec.; Var, Port-Cros Island; 43.0042° N, 6.39014° E [Locality 1 (PCR3) (Table 1)]; 13 Mar. 2018; T. Decaens, E. Lapied, M. Hedde and M. Zwieke leg.; evergreen oak forest; BOLD SampleID: EW-PNPC-0111; UCMLT • 5 specs; same collection data as for preceding; BOLD SampleID: EW-PNPC-0117, EW-PNPC-0119, EW-PNPC-0120, EW-PNPC-0121, EW-PNPC-0122; CEFE • 1 spec.; Var, Port-Cros Island; 43.0119° N, 6.39384° E [Locality 2 (PCR6) (Table 1)]; 13 Mar. 2018; T. Decaens, E. Lapied, M. Hedde and M. Zwieke leg.; mixed pine/evergreen oak forest; BOLD SampleID: EW-PNPC-0237; UCMLT • 1 spec.; same collection data as for preceding; BOLD SampleID: EW-PNPC-0242; CEFE.

Morphological description

- **External morphology**
 - Body pigmentation very faint brown-grey. White-beige with dorsal brownish mid-segment brown bands in fixed specimens (Fig. 3).

 Average length 80 mm (75–85 mm, n = 2 adults); average diameter 7 mm (6.9–7.1 mm, n = 3 adults); body cylindrical in cross-section; average number of segments 163 (160–166, n = 2 adults; 166 segments in the holotype). Average weight (fixed specimens): 2.13 g (1.89–2.36 g, n = 2 adults). Prostomium epilobous, closed. Longitudinal furrows in segments 1 and 2. First dorsal pore at intersegmental furrow 5/6. Nephridial pores “en solfège” (irregularly distributed). Spermathecal pores at intersegmental furrows 12/13 and 13/14 in c. Male pores in segment 15, surrounded by a
well-developed porophore. Female pores on segment 14. Clitellum saddle-shaped in segments 26–35 (½ 36). Tubercula pubertatis in segments 30–33. Chaetae small and closely paired, with interchaetal ratio $aa: 8$, $ab: 1$, $bc: 3.5$, $cd: 1$, $dd: 18$ at segment 40. Chaetophores/genital papillae in segments 11, 12, 14, 27, 29 and 34–38.

Fig. 3. External morphology of Scherotheca portcrosana Marchán & Decaëns sp. nov. a. Live specimen (© T. Decaëns). b. Fixed specimen. c. Schematic drawing. Abbreviations: cl = clitellum; fp = female pore; mp = male pore; tp = tubercula pubertatis.
Table 4. Morphological characters of *Scherotheca portcrosana* Marchán & Decäens sp. nov. and morphologically similar relatives of genera *Scherotheca* Bouché, 1972 and *Eumenescolex* Qiu & Bouché, 1998. Length expressed in mm, weight expressed in mg.

Characters	*Scherotheca portcrosana* sp. nov.	*Scherotheca corsicana*	*Scherotheca portonana*	*Eumenescolex simplex*
Length	75–85	90–140	78–165	105–112
N. segments	160–166	177–215	193–208	99–154
Weight	1890–2360	2000–3500	1588–2821	?
Pigmentation	Brown (faint)	Dark brown	Brown	?
Prostomium	Epilobous	Epilobous	Epilobous	Pro-epilobous
Setae	Closely paired	Closely paired	Closely paired	?
Setal arrangement	8:1:3.5:1:18	8:1.5:4.5:1:19	11.6:1:6:8:1:33	?
Papillae	11–14, 27, 29, 34–38	9–11, 27–37	11–14, 34, 35	?
First dorsal pore	5/6	9/10	10/11	11/12
Nephridial pores	En solfège	En solfège	En solfège	?
Male pores	½ 15, b	½ 15, b	½ 15, b	?
Female pores	½ 14, b	½ 14, b	½ 14, b	?
Spermathecal pores	12/13, 13/14 simple in C	12/13, 13/14 simple in C	12/13, 13/14 simple in C	13/14 simple in C
Clitellum	26–35(½ 36)	(½ 26)1/27–½ 36(36)	(25)26–35	26–½ 36
Tubercula pubertatis	30–33	(½ 30) 31–½ 34(34)	(28)29–32(33)	29–½ 33
Oesophageal hearts	6/11	6/11	6/11	6–11
Calciferous glands	½ 10–14, diverticles in 10	½ 10–14, diverticles in 10	½ 10–14, diverticles in 10	?
Crop	15–16	15–16	15–16	?
Gizzard	17–19	17–19	17–19	17–19
Typhlosole	Pinnate	Pinnate	Pinnate	?
Nephridial bladders	U-shaped, reclinate	J-shaped, reclinate	J-shaped, reclinate	?
Seminal vesicles	9, 10, 11, 12	9, 10, 11, 12	9, 10, 11, 12	9, 10, 11, 12
Spermathecae	Simple, oval in 12, 13	Simple, oval in 13, 14	Simple, oval in 13, 14	?
Internal anatomy
Septa 5/6–10/11 thickened and muscular. Hearts in segments 6–11, oesophageal. Calciferous glands in segments 10–14, with diverticula in segment 10. Crop in segments 15–16, gizzard in segments 17–19. Typhlosole pinnate. Male sexual system holandric, testes and funnels (not enclosed in testes sacs, but with sperm present) located ventrally in segments 10 and 11. Four pairs of reniform seminal vesicles in segments 9, 10, 11 and 12, with the latter two pairs being larger. Ovaries and female funnels in segment 13, ovarian receptacles (ovisacs) in segment 14. Two pairs of small globular spermathecae in segments 12 and 13 (intersegments 12/13, 13/14). Nephridial bladders U-shaped, reclinate in segment 30.

Distribution and ecology
Scherotheca portcrosana Marchán & Decäens sp. nov. is known from the island of Port-Cros in the Hyères Archipelago, France. This species has been found in meadows, pine and evergreen oak forests, thus appears to have a preference for natural habitats.

Discussion
Systematic implications
Molecular phylogenetic analyses and genetic distances clearly support the morphology-based inclusion of _Ca. porquerollensis_ Marchán & Decäens sp. nov. within the genus _Cataladrilus_. It is worth noting that the relationship between _Cataladrilus_ and _Prosellodrilus_ is currently not fully resolved based on molecular information, however the morphological characters clearly separate both genera (Table 3) according to the number and position of spermathecae: two pairs in intersegments 9/10, 10/11 for _Cataladrilus_ (except for _Ca. multithecus_ Qiú & Bouché, 1998) instead of two to three pairs (sometimes multiple) in intersegments (12/13), 13/14, 14/15 for _Prosellodrilus_ (Qiú & Boché 1998a, 1998b).

Several species from _Cataladrilus_ and _Prosellodrilus_ are yet to be included in a detailed molecular phylogenetic analysis, with emphasis on including representatives from the different subgenera (possibly genera for _Prosellodrilus_ sensu lato according to Blakemore (2012). This will be necessary to resolve the reciprocal monophyly of both genera and the status of the subgenera/genera included within them.

Cataladrilus porquerollensis Marchán & Decäens sp. nov. resembles _Cataladrilus_ (Latisinella) mrsici, the most in the position of their tubercula pubertatis (segments 29–31) and their clitellum (segments (19)20–32, 33(34) and 22–32 respectively), but they both differ in the total extension of the clitellum, body size, disposition of their chaetae (closely paired vs separate) and number of seminal vesicles (two pairs in segments 11, 12 vs 3 pairs in segments 9, 11, 12). _Cataladrilus porquerollensis_ Marchán & Decäens sp. nov shows a remarkable external morphological similarity with _Allolobophora festae_ Rosa, 1892 (sometimes attributed to genus _Prosellodrilus_), however, they can be easily distinguished by the position of their spermathecae (9/10, 10/11 vs 12/13, 13/14).

The inclusion of _Sc. portcrosana_ Marchán & Decäens sp. nov. within _Scherotheca_ is well supported by the phylogenetic trees. While French mainland species of _Scherotheca_ appear superficially very different from _Sc. portcrosana_ Marchán & Decäens sp. nov. (large body size, intense brown-grey pigmentation, very long clitellum), species of _Scherotheca_ from Corsica share with _Sc. portcrosana_ Marchán & Decäens sp. nov. their relatively small body size, pale brown pigmentation and comparatively short clitellum. Indeed, molecular analyses revealed a closer affinity of _Sc. portcrosana_ Marchán & Decäens sp. nov. with the Corsican _Scherotheca_ over the mainland species.

Scherotheca portcrosana Marchán & Decäens sp. nov. appears very close to _Sc. corsicana corsicana_ Pop, 1947 and _Sc. portonana_ Qiú & Bouché, 1998 according to their similar position of clitellum and tubercula pubertatis (Table 4). However, it differs from both species by the exact position of clitellum
and tubercula pubertatis, as well as being slightly smaller and less pigmented. *Scherotheca portcrosana* Marchán & Decaëns sp. nov. also shows a remarkable resemblance to *Eumenescolex simplex* Zicsi, 1981 (initially described as *Sc. corsicana simplex* then transferred due to its single pair of spermathecae), but they clearly differ in the number and position of their spermathecae (in intersegments 12/13, 13/14 vs 13/14). This similarity highlights the importance of including representatives of *Eumenescolex* Qiu & Bouché, 1998 in a molecular phylogenetic framework to test the close relationship among both genera that was previously suggested by Qiu & Bouché (1998d).

Qiu & Bouché (1998d) elevated 9 subspecies of *Scherotheca* to species while maintaining or creating others. Genetic distances within the clade comprising *Sc. gigas gigas* from Montpellier and *Sc. gigas heraultensis* and *Sc. gigas mifuga* are way below the usual threshold established for divergence between conspecific taxa (less than 10% for COI, Chang et al. 2009), supporting the subspecific status of these taxa; while *Sc. rhodana* (described as *Sc. gigas rhodana*) appears to be as divergent from *Sc. gigas gigas* as from *Sc. monspessulensis idica* or other species of the genus (with genetic distances above the aforementioned threshold). Thus, the morphological criteria followed by Qiu & Bouché (1998d) appear supported by molecular data. However, larger sample sizes would be necessary to confirm this statement. These findings suggest that molecular markers are suitable for delimiting species and subspecies within *Scherotheca*. If this approach performs consistently across different animal taxa, it may be advisable to implement it in order to avoid the dismissal of unrecognized species-level taxa in ecological studies and biodiversity assessment (for different examples see Rutgers et al. 2016).

Scherotheca cf. *gigas* (from Domínguez et al. 2015) collected from Navarra appear to be unrelated to *Sc. gigas gigas* from Montpellier, but closely related to *Sc. savignyi*. These earthworms may belong to one of the former subspecies of *Sc. gigas* such as *Scherotheca aquitania* Bouché, 1972, which is relatively common in Northeastern Spain (Qiu & Bouché 1998d). Preliminary re-inspection of these specimens showed external morphological characters compatible with *Sc. aquitania*. Thus, the inclusion of French specimens of *Sc. aquitania* (ideally from the type locality) would enable confirmation of this hypothesis. This is just one of the many points highlighting the need for a comprehensive molecular phylogeny of the genus *Scherotheca*. Robust systematics of the many species of this genus in northeastern Spain-southern France-Corsica-Italy would contribute to the following: a) a better understanding of the impact on ecosystems of these large, deep burrowing anecic earthworms, which have been found to be important in both agricultural and unmanaged habitats (Gavinelli et al. 2018), b) assessment of the conservation status of the genus, with several taxa being narrowly restricted and potentially vulnerable to human impacts (Rida & Bouché 1995) and c) insight into the historical biogeography of native earthworm families in this geologically complex area.

Phylogeographic implications for Cataladrilus and Scherotheca

The discovery of a species of *Cataladrilus* in the Hyères Archipelago is puzzling from a phylogeographic point of view. The main range of *Cataladrilus* is restricted to Catalonia (Spain) and Andorra, with two species in neighboring locations in France separated from the Hyères Archipelago by 340 km. This disjunct distribution could be explained by a failure to find closely related species in the geographic gap, which would suggest that southeastern France could still harbor other undescribed species. This, however, seems quite unlikely if considering the intense sampling already done by Marcel Bouché at the end of the past century (Bouché 1972). Alternatively, *Ca. porquerollensis* Marchán & De ciens sp. nov. may be a relict from a formerly wider distribution. This would be consistent with paleogeographic events in the area: the Eastern Pyrenees and Provence were connected through an exposed Gulf of Lion up to Late Oligocene–Early Miocene (around 24 Ma) when a wide marine ingestion separated them up to the present (except for the duration of the Messinian Salinity Crisis) (Sissingh 2006). The possibility of *Cataladrilus* and *Prosellodrilus* being synonyms (as the lack of reciprocal monophyly may suggest)
would not change the observed disjunction, as the closest species of *Prosellodrilus* (*Pr. tikanus* Qiu & Bouché, 1998) is found 225 km to the west of Porquerolles.

The closer relationship between *Sc. portcrosana* Marchán & Decâens sp. nov. and the Corsican *Scherotherca* than with French mainland *Scherotherca* is also unexpected. However, several species of plants, arthropods and vertebrates are common to the Hyères Archipelago and Corsica (Médail et al. 2013). *Scherotherca portcrosana* Marchán & Decâens sp. nov. may have diverged from its relatives before or during the rifting and drifting of the Corso-Sardinian microplate around 24 Ma (Oudet et al. 2010). Corsica remained connected to the French mainland through the rotation to its current position (Sisling 2006), which would have allowed later migration to the Hyères Archipelago of a common ancestor of *Sc. portcrosana* Marchán & Decâens sp. nov. and Corsican *Scherotherca*. However, under this second scenario, one would expect to find other relatives in eastern Provence (where the land bridge was supposed to join both areas).

The area of Provence has been strongly disturbed by human activities, especially in the coastal area, while the small islands like Porquerolles and Port-Cros remained relatively well preserved. It is possible that these islands acted as refugia while continental relatives got extinct or relegated to relict habitats. This phenomenon has already been suggested to explain the distribution of the gecko *Euleptes europaea* Gené, 1839, which is frequent in Corsica and Sardinia and rare in the coastal islands of Provence and Liguria, probably after a range retraction in the mainland (Delauguerre et al. 2011). Further survey focusing on relic natural ecosystems in the littoral area (Cap Lardier) or further into the mainland (i.e., Sainte Baume, Plaine des Maures, Massif de l’Esterel) could be performed to test this hypothesis.

Whatever explicative hypothesis is retained, these disjunct distributions, as previously observed in other earthworm genera (Pérez Losada et al. 2011; Domínguez et al. 2018; Marchán et al. 2018), highlight the strong connection between paleogeographic events and earthworm evolution and divergence. A more robust approach to time-calibrated phylogenies in earthworms (hindered by the lack of body fossils) and the integration of different paleogeographic reconstructions could illuminate both the origin of Palearctic earthworms (*Hormogastridae, Lumbricidae*) and the geological history of the Western Mediterranean terranes from the Late Cretaceous to the Neogene.

Acknowledgments

This work was supported by the Port-Cros National Park (Contract # 17-032 – 83400 PC) and Xunta de Galicia. Consellería de Cultura, Educación e Ordenación Universitaria, Secretaría Xeral de Universidades under grant ED431B 2019/038. We are particularly grateful to David Geoffroy, Pierre Lacosse, Martine Couturier and Johann Cerisier (Port-Cros National Park) for their support, for allowing access to the study sites, and for their help during field sampling. We also thank Marine Zwicke for participating in the field work. DF was funded by a Juan de La Cierva-Formación grant (FJCI-2017-32895) from the Spanish Ministry of Sciences, Innovation and Universities.

References

Akaikie H. 1973. Maximum likelihood identification of Gaussian autoregressive moving average models. *Biometrika* 60 (2): 255–265. https://doi.org/10.1093/biomet/60.2.255

Bache F., Olivet J.L., Gorini C., Aslanian D., Labails C. & Rabineau M. 2010. Evolution of rifted continental margins: the case of the Gulf of Lions (Western Mediterranean Basin). *Earth and Planetary Science Letters* 292 (3–4): 345–356. https://doi.org/10.1016/j.epsl.2010.02.001

Baha M. & Berra S. 2001. *Prosellodrilus doumandjii* n. sp., a new lumbricid from Algeria. *Tropical Zoology* 14 (1): 87–93. https://doi.org/10.1080/03946975.2001.10531144
MARCHÁN D.F. et al., Two new species (Crassiclitellata, Lumbricidae) from French islands

Blakemore R.J. 2008. An updated list of valid, invalid and synonymous names of Criodriloida and Lumbricoidea (Annelida: Oligochaeta: Criodrilidae, Sparganophilidae, Ailoscoleidae, Hormogastridae, Lumbricidae, Lutodrilidae). A Series of Searchable Texts on Earthworm Biodiversity. Ecology and Systematics from Various Regions of the World-Supplemental. CD publication under ICZN (1999: Art. 8). Available from http://www.annelida.net/earthworm/ [accessed Oct. 2012].

Blakemore R.J. 2012. Hibernian reports of a new Franco-Iberian worm (Oligochaeta: Megadrilacea: Lumbricidae). Opuscula Zoologica Budapest 43 (2): 121–130.

Bouché M.B. 1972. Lombriciens de France. Écologie et Systématique. Institut National de la Recherche Agronomique. Paris.

Chang C.H., Rougerie R. & Chen J.H. 2009. Identifying earthworms through DNA barcodes: pitfalls and promise. Pedobiologia 52 (3): 171–180. https://doi.org/10.1016/j.pedobi.2008.08.002

Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9 (8): 772. https://doi.org/10.1038/nmeth.2109

De Sosa I., Diaz Cosín D.J., Csuzdi C., Paoletti M.G. & Marchán D.F. 2019. Placing Eophila tellinii (Oligochaeta, Lumbricidae) in a molecular phylogenetic context advances the century-old controversy around the problematic genus. European Journal of Soil Biology 94: 103114. https://doi.org/10.1016/j.ejsobi.2019.103114

Decaëns T., Porco D., James S.W., Brown G.G., Chassany V., Dubs F., Dupont L., Lapied E., Rougerie R., Rossi JP. & Roy V. 2016. DNA barcoding reveals diversity patterns of earthworm communities in remote tropical forests of French Guiana. Soil Biology and Biochemistry 92: 171–183. https://doi.org/10.1016/j.soilbio.2015.10.009

Decaëns T., Lapied E., Maggia M.E., Marchan D.F. & Hedde M. 2020. Diversité des communautés d’annelides terrestres dans les écosystèmes continentaux et insulaires et du Parc national de Port-Cros. Scientific Reports of the Port-Cros national Park, in press.

Delaugerre M., Ouni R. & Nouira S. 2011. Is the European Leaf-toed gecko Euleptes europaea also an African? Its occurrence on the Western Mediterranean landbridge islets and its extinction rate. Herpetology Notes 4: 127–137.

Domínguez J., Aira M., Breinholt J.W., Stojanovic M., James S.W. & Pérez-Losada M. 2015. Underground evolution: new roots for the old tree of lumbricid earthworms. Molecular Phylogenetics and Evolution 83: 7–19. https://doi.org/10.1016/j.ympev.2014.10.024

Domínguez J., Aira M., Porto P.G., Díaz Cosín D.J. & Pérez-Losada M. 2018. Multigene phylogeny reveals two new isolated and relic earthworm genera (Oligochaeta: Lumbricidae). Zoological Journal of the Linnean Society 182 (2): 258–274. https://doi.org/10.1093/zoolinnean/zlx031

Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294–299.

Gavinelli F., Barcaro T., Csuzdi C., Blakemore R.J., Marchan D.F., De Sosa I., Dorigo L., Lazzarini F., Nicolussi G., Dreon A.L., Tonillo V., Pamio A., Squartini A., Concheri G., Moretto E. & Paoletti M.G. 2018. Importance of large, deep-burrowing and anecic earthworms in forested and cultivated areas (vineyards) of northeastern Italy. Applied Soil Ecology 123: 751–774. https://doi.org/10.1016/j.apsoil.2017.07.012

Hall T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010

Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution* 35 (6): 1547–1549. https://doi.org/10.1093/molbev/msy096

Marchán D.F., Fernández R., de Sosa I., Sánchez N., Díaz Cosín D.J. & Novo M. 2018. Integrative systematic revision of a Mediterranean earthworm family: Hormogastridae (Annelida, Oligochaeta). *Invertebrate Systematics* 32 (3): 652–671. https://doi.org/10.1071/IS17048

Médail F., Cheylan G. & Ponel P. 2013. Dynamique des paysages et de la biodiversité terrestres du Parc national de Port-Cros (Var, France): enseignements de cinquante années de gestion conservatoire. *Scientific Reports of the Port-Cros National Park* 27: 171–262.

Miller M.A., Pfeiffer W. & Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In *Gateway Computing Environments Workshop (GCE)*, New Orleans, LA: 1–8. https://doi.org/10.1109/GCE.2010.5676129

Omodeo P. & Rota E. 2008. Earthworm diversity and land evolution in three Mediterranean districts. *Proceedings of the California Academy of Sciences* 59 (1): 65–83.

Oudet J., Münch P., Verati C., Ferrandini M., Melinte-Dobrinescu M., Gattaceca J., Cornée J.J., Oggiano G., Quillévéré F., Borgomano J. & Ferrandini J. 2010. Integrated chronostratigraphy of an intra-arc basin: 40Ar/39Ar datings, micropalaeontology and magnetostratigraphy of the early Miocene Castelsardo basin (northern Sardinia, Italy). *Palaeogeography, Palaeoclimatology, Palaeoecology* 295 (1–2): 293–306. https://doi.org/10.1016/j.palaeo.2010.06.007

Paoletti M.G., Blakemore R.J., Csuzdi C., Dorigo L., Dreon A.L., Gavinelli F., Lazzarini F., Manno N., Morett E., Porco D., Ruzzier E., Tonello V., Squartini A., Concheri G., Zanardo M. & Alba-Tercedor J. 2016. Barcoding *Eophila crodabepis* sp. nov. (Annelida, Oligochaeta, Lumbricidae), a large stripy earthworm from alpine foothills of northeastern Italy similar to *Eophila tellinii* (Rosa, 1888). *PLoS ONE* 11 (3): e0151799. https://doi.org/10.1371/journal.pone.0151799

Pérez-Losada M., Ricoy M., Marshall J.C. & Domínguez J. 2009. Phylogenetic assessment of the earthworm *Aporrectodea caliginosa* species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences. *Molecular Phylogenetics and Evolution* 52 (2): 293–302. https://doi.org/10.1016/j.ympev.2009.04.003

Pérez-Losada M., Breinholt J.W., Porto P.G., Aira M. & Domínguez J. 2011. An earthworm riddle: systematics and phylogeography of the Spanish lumbricid *Postandrilus*. *PLoS ONE* 6 (11): e28153. https://doi.org/10.1371/journal.pone.0028153

Pérez-Losada M., Breinholt J.W., Aira M. & Domínguez J. 2015. An updated multilocus phylogeny of the Lumbricidae (Annelida: Clitellata: Oligochaeta) earthworms. *Journal of Phylogenetics & Evolutionary Biology* 3: 1. https://doi.org/10.4172/2329-9002.1000140

Qiu J.P. & Bouché M. 1998a. Revisión du genre *Proselloadrilus* Bouché, 1972 (Oligochaeta: Lumbricidae); description de 16 taxons nouveaux pour la science. *Documents pédozoologiques et intégrologiques* 4 (5): 37–64.

Qiu J.P. & Bouché M. 1998b. Contribution à la taxonomie de Zophoscolexini (Oligochaeta: lumbricidae), *Cataladrilus gen. nov. et Ethnodrilus setusmontanus* nov. sp. *Documents pédozoologiques et intégrologiques* 4 (7): 73–85.
MARCHÁN D.F. et al., Two new species (Crassiclitellata, Lumbricidae) from French islands

Qiu J.P. & Bouché M. 1998c. Révision des taxons supraspécifiques de Lumbricoidea. *Documents pédozooloogiques et integrologiques* 3 (6): 179–216.

Qiu J.P. & Bouché M. 1998d. Révision morphologique, chorologique et taxonomique du genre *Scherotheca* Bouché, 1972 (Oligochaeta: Lumbricidae). *Documents pédozooloogiques et integrologiques* 4 (12): 117–139.

Rida A.A. & Bouché M.B. 1995. The eradication of an earthworm genus by heavy metals in southern France. *Applied Soil Ecology* 2 (1): 45–52. https://doi.org/10.1016/0929-1393(94)00032-3

Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19 (12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Schwarz G. 1978. Estimating the dimension of a model. *The Annals of Statistics* 6 (2): 461–464.

Sissingh W. 2006. Syn-kinematic palaeogeographic evolution of the West European Platform: correlation with Alpine plate collision and foreland deformation. *Netherlands Journal of Geosciences* 85 (2): 131–180. https://doi.org/10.1017/S0016774600077933

Stamatakis A. 2014. RAXML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30 (9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Manuscript received: 10 June 2020
Manuscript accepted: 15 July 2020
Published on: 13 August 2020
Topic editor: Rudy Jocqué
Desk editor: Pepe Fernández

Printed versions of all papers are also deposited in the libraries of the institutes that are members of the *EJT* consortium: Muséum national d’histoire naturelle, Paris, France; Meise Botanic Garden, Belgium; Royal Museum for Central Africa, Tervuren, Belgium; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Natural History Museum of Denmark, Copenhagen, Denmark; Naturalis Biodiversity Center, Leiden, the Netherlands; Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain; Real Jardín Botánico de Madrid CSIC, Spain; Zoological Research Museum Alexander Koenig, Bonn, Germany; National Museum, Prague, Czech Republic.
Appendix 1

(continued on next page). Species included in the reference dataset.

Species	Publication
Allolobophora chaetophora Bouché, 1972	Domínguez et al. 2015; Pérez-Losada et al. 2015
Allolobophora chlorotica Savigny, 1826	Domínguez et al. 2015; Pérez-Losada et al. 2015
Allolobophora dacica Pop, 1938	Domínguez et al. 2015; Pérez-Losada et al. 2015
Allolobophora dubiosa Orley, 1881	Domínguez et al. 2015; Pérez-Losada et al. 2015
Allolobophora mehadiensis Rosa, 1895	Domínguez et al. 2015; Pérez-Losada et al. 2015
Allolobophora moebii Michaelsen, 1895	Domínguez et al. 2015; Pérez-Losada et al. 2015
Allolobophora molleri Rosa, 1889	Domínguez et al. 2015; Pérez-Losada et al. 2015
Allolobophora robusta Rosa, 1895	Domínguez et al. 2015; Pérez-Losada et al. 2015
Aporrectodea caliginosa Savigny, 1826	Pérez-Losada et al. 2009, 2015; Domínguez et al. 2015
Aporrectodea georgii Michaelsen, 1890	Domínguez et al. 2015; Pérez-Losada et al. 2015
Aporrectodea jassyensis Michaelsen, 1891	Domínguez et al. 2015; Pérez-Losada et al. 2015
Aporrectodea limícola Michaelsen, 1890	Pérez-Losada et al. 2015; Domínguez et al. 2015
Aporrectodea longa Ude, 1885	Pérez-Losada et al. 2015; Domínguez et al. 2015
Aporrectodea nocturna Evans, 1946	Domínguez et al. 2015; Pérez-Losada et al. 2015
Aporrectodea rosea Savigny, 1826	Pérez-Losada et al. 2015; Domínguez et al. 2015
Carpetania elisae Álvarez, 1977	Domínguez et al. 2015; Pérez-Losada et al. 2015
Cataladrilus edwarsi Qiu & Bouché, 1998	Domínguez et al. 2015; Pérez-Losada et al. 2015
Cataladrilus montícola Qiu & Bouché, 1998	Domínguez et al. 2015; Pérez-Losada et al. 2015
Cernosvitovia dudichi Zicsi & Sapkarev, 1982	Domínguez et al. 2015; Pérez-Losada et al. 2015
Cernosvitovia rebeli Rosa, 1897	Domínguez et al. 2015; Pérez-Losada et al. 2015
Compostelandrilus bercianus Dominguez, Aira, Porto, Díaz Cosín & Pérez-Losada, 2017	Domínguez et al. 2018
Compostelandrilus menciae Dominguez, Aira, Porto, Díaz Cosín & Pérez-Losada, 2017	Domínguez et al. 2018
Criodrilus lacuum Hoffmeister, 1845	Domínguez et al. 2015; Pérez-Losada et al. 2015
Dendrobaena attemsi Michaelsen, 1902	Domínguez et al. 2015; Pérez-Losada et al. 2015
Dendrobaena cf. biblica Rosa, 1893	Domínguez et al. 2015; Pérez-Losada et al. 2015
Dendrobaena illyrica Cognetti de Martiis, 1906	Domínguez et al. 2015; Pérez-Losada et al. 2015
Dendrobaena jastrebeniensis Mrsic & Sapkarev, 1987	Domínguez et al. 2015; Pérez-Losada et al. 2015
Dendrobaena octaedra Savigny, 1826	Domínguez et al. 2015; Pérez-Losada et al. 2015
Dendrobaena pentheri Rosa, 1905	Domínguez et al. 2015; Pérez-Losada et al. 2015
Dendrobaena pygmaea Friend, 1923	Domínguez et al. 2015; Pérez-Losada et al. 2015
Dendrobaena veneta Rosa, 1886	Domínguez et al. 2015; Pérez-Losada et al. 2015
Diporodrilus pilosus Bouché, 1972	Domínguez et al. 2015; Pérez-Losada et al. 2015
Eisenia andrei Bouché, 1972	Domínguez et al. 2015; Pérez-Losada et al. 2015
Eisenia balatonica Pop, 1943	Domínguez et al. 2015; Pérez-Losada et al. 2015
Eisenia fétida Savigny, 1826	Domínguez et al. 2015; Pérez-Losada et al. 2015
Eisenia lucens Vaga, 1857	Domínguez et al. 2015; Pérez-Losada et al. 2015
Eiseniella tetraedra Savigny, 1826	Domínguez et al. 2015; Pérez-Losada et al. 2015
Appendix 1 (continued). Species included in the reference dataset.

Species	Publication
Eisenonia albolineata	Domínguez et al. 2015; Pérez-Losada et al. 2015
Eisenonia olivaeira	Domínguez et al. 2015; Pérez-Losada et al. 2015
Eisenoides carolinensis	Domínguez et al. 2015; Pérez-Losada et al. 2015
Eisenoides lonnbergi	Domínguez et al. 2015; Pérez-Losada et al. 2015
Eophila crodabepis	Paoletti et al. 2016, De Sosa et al. 2019
Eophila gestroi	Paoletti et al. 2016, De Sosa et al. 2019
Eophila tellini	Paoletti et al. 2016, De Sosa et al. 2019
Galiciandrilus bertae	Domínguez et al. 2015; Pérez-Losada et al. 2015
Galiciandrilus morenoe	Domínguez et al. 2015; Pérez-Losada et al. 2015
Helodrilus cernosvitovianus	Domínguez et al. 2015; Pérez-Losada et al. 2015
Helodrilus cortezi	Domínguez et al. 2015; Pérez-Losada et al. 2015
Helodrilus patriarcalis	Domínguez et al. 2015; Pérez-Losada et al. 2015
Lumbricus castaneus	Domínguez et al. 2015; Pérez-Losada et al. 2015
Lumbricus rubellus	Domínguez et al. 2015; Pérez-Losada et al. 2015
Octodriloides boninoi	Domínguez et al. 2015; Pérez-Losada et al. 2015
Octodrilus complanatus	Domínguez et al. 2015; Pérez-Losada et al. 2015
Octodrilus exacystis	Domínguez et al. 2015; Pérez-Losada et al. 2015
Octodrilus gradinescui	Domínguez et al. 2015; Pérez-Losada et al. 2015
Octodrilus pseudocomplanatus	Domínguez et al. 2015; Pérez-Losada et al. 2015
Octodrilus transpadanus	Domínguez et al. 2015; Pérez-Losada et al. 2015
Octolasion cyaneum	Domínguez et al. 2015; Pérez-Losada et al. 2015
Octolasion lacteum	Domínguez et al. 2015; Pérez-Losada et al. 2015
Octolasion montanum	Domínguez et al. 2015; Pérez-Losada et al. 2015
Panoniona Leoni	Domínguez et al. 2015; Pérez-Losada et al. 2015
Postandrilus lavellei	Domínguez et al. 2015; Pérez-Losada et al. 2015
Postandrilus majorcanus	Domínguez et al. 2015; Pérez-Losada et al. 2015
Postandrilus medoakus	Domínguez et al. 2015; Pérez-Losada et al. 2015
Postandrilus palmensis	Domínguez et al. 2015; Pérez-Losada et al. 2015
Postandrilus sapkarevi	Domínguez et al. 2015; Pérez-Losada et al. 2015
Proctodrilus antipai	Domínguez et al. 2015; Pérez-Losada et al. 2015
Prosellodrilus biauriculatus	Domínguez et al. 2015; Pérez-Losada et al. 2015
Prosellodrilus biserialis	Domínguez et al. 2015; Pérez-Losada et al. 2015
Prosellodrilus pyrenaicus	Domínguez et al. 2015; Pérez-Losada et al. 2015
Scherotheca cf. gigas	Domínguez et al. 2015; Pérez-Losada et al. 2015
Scherotheca corsicana	Domínguez et al. 2015; Pérez-Losada et al. 2015
Scherotheca savignyi	Domínguez et al. 2015; Pérez-Losada et al. 2015
Scherotheca sp 1	Domínguez et al. 2015; Pérez-Losada et al. 2015
Scherotheca sp 2	Domínguez et al. 2015; Pérez-Losada et al. 2015
Zophoscolex cyanus	Domínguez et al. 2018

Pérez-Losada et al. 2011, 2015; Domínguez et al. 2015
Appendix 2. Phylogenetic tree obtained from the concatenated sequence of COI–16S–ND1–28S molecular markers.