THE SUPPORT PROBLEM
FOR ABELIAN VARIETIES

BY

MICHAEL LARSEN*

Department of Mathematics, Indiana University
Bloomington, IN 47405, USA

ABSTRACT

Let A be an abelian variety over a number field K. If P and Q are K-rational points of A such that the order of the $(\text{mod } p)$ reduction of Q divides the order of the $(\text{mod } p)$ reduction of P for almost all prime ideals p, then there exists a K-endomorphism ϕ of A and a positive integer k such that $\phi(P) = kQ$.

This note solves the support problem for abelian varieties over number fields, thus answering a question of C. Corrales-Rodríguez and R. Schoof [4]. Recently, G. Banaszak, W. Gajda, and P. Krasoń [2] and C. Khare and D. Prasad [6] have solved the problem for certain classes of abelian varieties for which the images of the ℓ-adic Galois representations can be particularly well understood. A number of other authors have also made progress recently on closely related problems, including E. Kowalski [7], S. Wong [11], and N. Ailon and Z. Rudnick [1].

I would like to thank R. Schoof for his helpful comments on earlier versions of this paper.

The main result is as follows:

Theorem 1: Let K be a number field, O_K its ring of integers, and O the coordinate ring of an open subscheme of $\text{Spec} O_K$. Let A be an abelian scheme over O and $P, Q \in A(O)$ arbitrary sections. Suppose that for all $n \in \mathbb{Z}$ and all prime ideals p of O, we have the implication

$$nP \equiv 0 \pmod{p} \Rightarrow nQ \equiv 0 \pmod{p}. \quad (1)$$

Then there exist a positive integer k and an endomorphism $\phi \in \text{End}_O(A)$ such that

$$\phi(P) = kQ. \quad (2)$$

* Partially supported by NSF Grant DMS-0100537
Note that as \mathcal{A} is a Néron model of its generic fiber A ([3] I 1.2/8), we have that $\text{End}_\mathcal{O}\mathcal{A} = \text{End}_K A$. We employ scheme notation only to make sense of the notion of the reduction of a point of $A \mod p$.

It is clear that if $Q = \phi(P)$, the order of any reduction of Q divides that of the corresponding reduction of P. One might ask whether the converse is true or, in other words, whether one can strengthen (2) to ask that $k = 1$. The following proposition shows that in general the answer is negative:

Proposition 2: There exist \mathcal{O}, \mathcal{A}, P, and Q as above such that (1) holds but $Q \not\in (\text{End}_\mathcal{O}\mathcal{A})P$.

Proof: Let \mathcal{O} be a ring containing $1/2$. Let \mathcal{E}/\mathcal{O} be an elliptic curve with $\text{End}_\mathcal{O}\mathcal{E} = \mathbb{Z}$ whose 2-torsion is all \mathcal{O}-rational. Let T_1 and T_2 denote distinct 2-torsion points of $\mathcal{E}(\mathcal{O})$, and let R denote a point of infinite order in $\mathcal{E}(\mathcal{O})$. Let $\mathcal{A} = \mathcal{E}^2$, $P = (R, R + T_1)$, and $Q = (R, R + T_2)$. Then the reductions of R and $R + T_1$ cannot both have odd order (since T_1 has order exactly 2 in any reduction $\mod p$), so P always has even order $\mod p$. Thus $nP \equiv 0 \mod p$ implies $2 \mid n$ and therefore $nQ = (nR, nR) = nP \equiv 0 \mod p$.

On the other hand, $\text{End}_\mathcal{O}\mathcal{A} = M_2(\mathbb{Z})$, so no endomorphism of \mathcal{A} sends P to Q. □

Let $E = \text{End}_\mathcal{O}\mathcal{A}$. We begin by showing that (2) is implied by its $(\mod m)$ analogue for sufficiently large m.

Lemma 3: Given \mathcal{O}, \mathcal{A}, and E as above and \mathcal{O}-points P and Q of \mathcal{A}, either P and Q satisfy (2) or there exists n such that for all $\phi \in E$ and all $m \geq n$,

$$\phi(P) - Q \not\in m\mathcal{A}(\mathcal{O}).$$

Proof: The lemma follows from the Mordell-Weil theorem and the trivial fact that the image of Q in the finitely generated abelian group $\mathcal{A}(\mathcal{O})/EP$ is of finite order if it is m-divisible for infinitely many values of m. □

Next, we prove two simple algebraic lemmas.
Lemma 4: Let G be a group with normal subgroups G_1 and G_2 such that G/G_i is finite and abelian for $i = 1, 2$. Let α be an automorphism of G such that $\alpha(G_i) \subseteq G_i$ for $i = 1, 2$. Suppose α acts trivially on G/G_1 and as a scalar m on G/G_2, where $m - 1$ is prime to G/G_2. Then every coset of G_1 meets every coset of G_2.

Proof: Applying Goursat’s lemma ([8] I, Ex.) to the α-equivariant map

$$\psi: G/(G_1 \cap G_2) \to G/G_1 \times G/G_2,$$

we find normal subgroups $H_1 \supset G_1$ and $H_2 \supset G_2$ of G (automatically α-stable) such that the image of ψ is the pullback to $G/G_1 \times G/G_2$ of the graph of an α-equivariant isomorphism $G/H_1 \to G/H_2$. By hypothesis, the two sides of this isomorphism must be trivial, so ψ is surjective, which proves the lemma. \qed

Lemma 5: Let M and N be left modules of a ring R. Suppose that N is semisimple. Let $\alpha, \beta \in \text{Hom}_R(M, N)$ be such that $\ker \alpha \subset \ker \beta$. Then there exists $\gamma \in \text{End}_R(N)$ such that $\beta = \gamma \circ \alpha$.

Let $M_\alpha = \ker \alpha$ and $M_\beta = \ker \beta$, so $M_\alpha \subset M_\beta$. Let $N_\alpha \cong M/M_\alpha$ and $N_\beta \cong M/M_\beta$ denote the images of α and β. Thus, N_β is isomorphic to a quotient of N_α. As N is semisimple, there is a projection map $N \to N_\alpha$. Composing this with the quotient map $N_\alpha \to N_\beta$ and the inclusion $N_\beta \subset N$ we obtain the desired map γ. \qed

We remark that Lemma 5 holds more generally for any abelian category.

We can now prove the main theorem. Let $\rho_\ell: G_K \to \text{GL}_2(\mathbb{Z}_\ell)$ denote the ℓ-adic Galois representation given by the Tate module of A, and let $\bar{\rho}_\ell$ denote its (mod ℓ) reduction. Let G_n denote the Galois group of the field K_n of n-torsion points on A. In particular, G_ℓ is the image of $\bar{\rho}_\ell$. Let $M_\ell = \text{End}_\mathbb{Z}(A[\ell](\bar{K})) \cong M_2(\mathbb{F}_\ell)$ denote the endomorphism ring of the additive group of ℓ-torsion points of A over \bar{K}. We choose ℓ sufficiently large that it enjoys the following properties:

(a) The group of homotheties in $\rho_\ell(G_K)$ is of index $< \ell - 1$ in \mathbb{Z}_ℓ^*.
(b) The image E_ℓ of E in M_ℓ and the subring of M_ℓ generated by G_ℓ are mutual centralizers. In particular, both are semisimple algebras.
(c) If for some $\phi \in E$, one has $\phi(P) - Q \in \ell A(K)$, then P and Q satisfy (2).

Part (a) follows from a result of Serre ([10] §2). Part (b) is a well-known folklore corollary of Faltings’ proof of the Tate conjecture. See [9] p. 24 for a statement.
We sketch a proof. The endomorphism ring E acts on $H^1_{\text{sing}}(A, \mathbb{Z})$. Let E^* be the centralizer of E in $\text{End}_{\mathbb{Z}} H^1_{\text{sing}}(A, \mathbb{Z})$ and E^{**} its double centralizer. As $E \otimes \mathbb{Q}$ is semisimple, $E^{**} \otimes \mathbb{Q} = E \otimes \mathbb{Q}$, so E is of finite index in E^{**}. For ℓ sufficiently large, therefore, $E_\ell = E^{**}_\ell$. The commutator map gives a homomorphism of abelian groups $M_{2g}(\mathbb{Z}) \to \text{Hom}(E, M_{2g}(\mathbb{Z}))$ with kernel E^*. The sequence

$$0 \to E^* \to M_{2g}(\mathbb{Z}) \to \text{Hom}(E, M_{2g}(\mathbb{Z}))$$

remain exact after tensoring with \mathbb{F}_ℓ for $\ell \gg 0$. Therefore, the commutator of E_ℓ in M_ℓ is E^*_ℓ for $\ell \gg 0$, and likewise the commutator of E^{**}_ℓ in M_ℓ is $E^{**}_\ell = E_\ell$ for $\ell \gg 0$. By the double commutant theorem, E_ℓ and E^{**}_ℓ are semisimple. Now, [5] 2.7 asserts that for all $\ell \gg 0$, the centralizer of $E_\ell \otimes \mathbb{Z}_\ell$ in the endomorphism ring of the ℓ-adic Tate module $T_\ell A = H^1_{\text{sing}}(A, \mathbb{Z}) \otimes \mathbb{Z}_\ell$, is the image of $\mathbb{Z}_\ell[G_K]$, or in other words, $\text{im}(\mathbb{Z}_\ell[G_K] \to \text{End}(T_\ell A)) = E^* \otimes \mathbb{Z}_\ell$, which implies (b). Part (c) follows from Lemma 3.

The Kummer sequence for A/K gives a natural E_ℓ-equivariant embedding

$$A(K)/\ell A(K) \hookrightarrow H^1(G_K, A[\ell](\overline{K})) = H^1(G_K, A[\ell](K_\ell)).$$

By (a), the group G_ℓ contains a non-trivial subgroup S_ℓ which acts by scalar multiplication on $A[\ell](K_\ell)$. Since

$$A[\ell](K_\ell)^{S_\ell} = H^1(S_\ell, A[\ell](K_\ell)) = 0,$$

the inflation-restriction sequence

$$0 \to H^1(G_\ell/S_\ell, A[\ell](K_\ell)^{S_\ell}) \to H^1(G_\ell, A[\ell](K_\ell)) \to H^1(S_\ell, A[\ell](K_\ell))^{G_\ell/S_\ell}$$

implies $H^1(G_\ell, A[\ell](K_\ell)) = 0$. The inflation-restriction sequence

$$0 \to H^1(G_\ell, A[\ell](K_\ell)) \to H^1(G_K, A[\ell](K_\ell)) \to H^1(G_{K_\ell}, A[\ell](K_\ell))^{G_\ell}$$

implies

$$3) \quad A(K)/\ell A(K) \hookrightarrow \text{Hom}(G_{K_\ell}, A[\ell](K_\ell))^{G_\ell} = \text{Hom}_{\mathbb{F}_\ell[G_\ell]}(G_{K_\ell}^{ab} \otimes \mathbb{F}_\ell, A[\ell](K_\ell))$$

is injective. For any $X \in A(K)$, we write $[X]$ for the class of the image of $X + \ell A(X)$ in the right hand side of (3).
Let $V_\ell = G_{K_\ell}^{ab} \otimes \mathbb{F}_\ell$. Suppose that for all $\sigma \in V_\ell$, the condition $[Q](\sigma) = 0$ implies $[P](\sigma) = 0$. Applying Lemma 5 to the $\mathbb{F}_\ell[G_\ell]$-modules $M = V_\ell$ and $N = A[\ell](K_\ell)$, we obtain an $\mathbb{F}_\ell[G_\ell]$-module endomorphism γ of N such that $\gamma \circ [P] = [Q]$. By (b), the endomorphism γ lies in the image of E_ℓ, and lifting it to an endomorphism $\phi \in E$, we conclude $[\phi(P) - Q] = 0$. By (3), this means $\phi(P) - Q \in \ell A(K)$, and by (c), this implies (2).

Therefore, we may assume that there exists $\sigma \in V_\ell$ with $[Q](\sigma) = 0$ and $[P](\sigma) \neq 0$. The pair (P,Q) defines a G_ℓ-equivariant map $V_\ell \to A[\ell](K_\ell) \times A[\ell](K_\ell)$. The Galois action on $A[\ell^2](\overline{K})$ defines a G_ℓ-equivariant map $V_\ell \to M_\ell$ since we have

$$\text{Gal}(K_{\ell^2}/K_\ell) = \ker(G_{\ell^2} \to G_\ell) \cong \ker(\text{End}(A[\ell^2](\overline{K})) \to \text{End}(A[\ell](\overline{K})) = M_\ell.$$

By (a), there exists a non-trivial homothety in G_ℓ. It acts trivially on M_ℓ since the action of G_ℓ on M_ℓ is by conjugation, and by definition, it acts as a non-trivial scalar on $A[\ell](K_\ell) \times A[\ell](K_\ell)$. By Lemma 4, the image of V_ℓ in $A[\ell](K_\ell) \times A[\ell](K_\ell) \times M_\ell$ is the product of its images in $A[\ell](K_\ell) \times A[\ell](K_\ell)$ and in M_ℓ. Applying (a) again, there exists $\sigma \in V_\ell$ such that $[P](\sigma) \neq 0$, $[Q](\sigma) = 0$, and σ maps to a non-zero homothety in M_ℓ.

Let $K_{\ell^2}(\ell^{-1}P, \ell^{-1}Q)$ denote the extension of K_ℓ associated to

$$\ker V_\ell \to A[\ell](K_\ell) \times A[\ell](K_\ell) \times M_\ell;$$

thus $K_{\ell^2}(\ell^{-1}P, \ell^{-1}Q)$ is the extension of K generated by the coordinates of all points $R \in A(\overline{K})$ such that $\ell R \in \mathbb{Z}P + \mathbb{Z}Q + A[\ell](K_\ell)$. By Cebotarev, we can fix a prime p of \mathcal{O} which is unramified in $K_{\ell^2}(\ell^{-1}P, \ell^{-1}Q)$ and whose Frobenius conjugacy class in $\text{Gal}(K_{\ell^2}(\ell^{-1}P, \ell^{-1}Q)/K)$ contains the image of σ in $\text{Gal}(K_{\ell^2}(\ell^{-1}P, \ell^{-1}Q)/K_\ell)$. Reducing (mod p) we obtain a finite field \mathbb{F}_p such that the ℓ-primary part of $A(\mathbb{F}_p)$ contains $(\mathbb{Z}/\ell \mathbb{Z})^{2g}$ (since the Frobenius at p fixes K_ℓ) but has no element of order ℓ^2 (since the Frobenius at p acts as a non-trivial homothety on $A[\ell^2](K_{\ell^2}(\ell^{-1}P, \ell^{-1}Q)) = A[\ell^2](\overline{K})$.) Moreover, the image of P in $A(\mathbb{F}_p)$ is not divisible by ℓ, but the image of Q is. This means that the order of P is divisible by ℓ but the order of Q is prime to ℓ, contrary to (1). \qed

Corollary 6: Let K be a number field, \mathcal{O}_K its ring of integers, and \mathcal{O} the coordinate ring of an open subscheme of $\text{Spec} \mathcal{O}_K$. Let A_1, A_2 be abelian schemes
over \(\mathcal{O} \) and \(P_i \in \mathcal{A}_i(\mathcal{O}) \) arbitrary sections. Suppose that for all \(n \in \mathbb{Z} \) and all prime ideals \(\mathfrak{p} \) of \(\mathcal{O} \), we have the implication

\[
nP_1 \equiv 0 \pmod{\mathfrak{p}} \Rightarrow nP_2 \equiv 0 \pmod{\mathfrak{p}}.
\]

Then there exist a positive integer \(k \) and an endomorphism \(\psi \in \text{Hom}_\mathcal{O}(\mathcal{A}_1, \mathcal{A}_2) \) such that

\[
\psi(P_1) = kP_2.
\]

Proof: Let \(\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 \), \(P = (P_1, 0) \), \(Q = (0, P_2) \). Applying Theorem 1, we conclude that there exist a positive integer \(k \) and an endomorphism

\[
\phi \in \text{End}_\mathcal{O} \mathcal{A} = \text{End}_\mathcal{O} \mathcal{A}_1 \times \text{End}_\mathcal{O} \mathcal{A}_2 \times \text{Hom}_\mathcal{O}(\mathcal{A}_1, \mathcal{A}_2) \times \text{Hom}_\mathcal{O}(\mathcal{A}_2, \mathcal{A}_1)
\]

such that \(\phi(P) = kQ \). Letting \(\psi \) denote the image of \(\phi \) under projection to \(\text{Hom}_\mathcal{O}(\mathcal{A}_1, \mathcal{A}_2) \), we obtain the corollary. \(\square \)

REFERENCES

[1] Ailon, N.; Runick, Z.: Torsion points on curves and common divisors of \(a^k - 1 \) and \(b^k - 1 \), arXiv: math.NT/0202102 v2, preprint, Feb. 28, 2002.
[2] Banaszak, G.; Gajda, W.; Krasoń, P.: A support problem for the intermediate Jacobians of \(\ell \)-adic representations, http://www.math.uiuc.edu/Algebraic-Number-Theory/0332, preprint, Jan. 29, 2002.
[3] Bosch, S.; Lütkebohmert, W.; Raynaud, M.: Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 21. Springer-Verlag, Berlin, 1990.
[4] Corrales-Rodríguez, C.; Schoof, R.: The support problem and its elliptic analogue. J. Number Theory 64 (1997), no. 2, 276–290.
[5] Deligne, P.: Conjectures de Tate et Shafarevitch, Séminaire Bourbaki 1983/84, n° 616, Astérisque 121/122.
[6] Khare, C.; Prasad, D.: Reduction of homomorphisms mod \(p \) and algebraicity, arXiv: math.NT/0211004v1, preprint, Nov. 1, 2002.
[7] Kowalski, E.: Some local-global applications of Kummer theory, preprint.
[8] Lang, S.: Algebra, second edition, Addison-Wesley, Menlo Park, CA, 1984.
[9] Serre, J-P.: Lettre à Daniel Bertrand du 8/6/1984, Collected Papers Vol. IV.
[10] Serre, J-P.: Lettre à Ken Ribet du 7/3/1986, *Collected Papers Vol. IV*.

[11] Wong, S.: Power residues on abelian varieties. *Manuscripta Math.* **102** (2000), 129–138.