A note on invertibility of the Dirac operator twisted with Hilbert-A-module coefficients

Thomas Schick
Mathematisches Institut
Georg-August-Universität Göttingen
Germany

February 3, 2021

Abstract
Given a closed connected spin manifold M with non-negative scalar curvature which is non-zero, we show that the Dirac operator twisted with any flat Hilbert module bundle is invertible.

Let M be a compact spin manifold with Riemannian metric g. It is an important and standard fact that the spectrum of the spin Dirac operator is restricted by the scalar curvature of M. By the Schrödinger-Lichnerowicz formula, if $\text{scal}_g(x) \geq 4c^2$ for every $x \in M$ then

$$\text{spec}(D) \cap (-c, c) = \emptyset.$$

This is a direct consequence of the Schrödinger-Lichnerowicz formula

$$D^2 = \nabla^* \nabla + \frac{\text{scal}_g}{4},$$

where the connection Laplacian $\nabla^* \nabla$ is a non-negative operator, and the operator of multiplication by $\frac{\text{scal}_g}{4}$ is bounded below by c^2.

Note that this argument works exactly the same way if we replace the classical Atiyah-Singer Dirac operator D by D_E, where we twist with a bundle E with flat connection, because the Schrödinger-Lichnerowicz formula remains unchanged. In particular, this also works for twists with a bundle E of Hilbert-A-modules with a C^*-algebra A, such that D_E is an operator in the Mishchenko-Fomenko calculus. This is important for higher index theory, then $\text{ind}(D_E) \in K_*(A)$, and the invertibility implies of course that $\text{ind}(D_E) = 0 \in K_*(A)$, with its applications to the topology of positive scalar curvature, compare e.g. [1].

There is another easy generalization of the above spectral consideration which is well known: if M is connected and $\text{scal}_g(x) \geq 0$, with $\text{scal}_g(x_0) > 0$ for some $x_0 \in M$, then we can argue as follows:

For the usual untwisted Dirac operator D take $s \in \ker(D)$. Then

$$0 = (Ds, Ds)_{L^2} = (\nabla S, \nabla S)_{L^2} + \int_M \frac{\text{scal}_g(x)}{4} (s(x), s(x))_x \, d\text{vol}_g.$$
The assumptions then imply that $\nabla s = 0$, i.e. s is parallel and in particular $(s(x), s(x))_x$ is constant. Because by assumption $\text{scal}_g(x) > 0$ for x in a neighborhood of x_0, this implies $s = 0$. Consequently, $\ker(D) = 0$

As D has discrete spectrum, this implies again that D is invertible, i.e.

$$\text{spec}(D) \cap (-\epsilon, \epsilon) = \emptyset$$

In this note, we now prove that this extends to all operators D_E for flat Hilbert-A-module bundles E, even though in general the spectrum of D_E is not discrete if $\dim(A) = \infty$. In that case, the argument just given does not work. It only gives $\ker(D_E) = \{0\}$, which does not imply that D_E is invertible.

This question came up in the analysis of the geometry of the space of metrics of non-negative scalar curvature carried out recently in [2].

Theorem 1. Let M be a connected closed spin manifold with Riemannian metric g, A a C^*-algebra and $E \to M$ a flat Hilbert-A-module bundle over M. Assume that $\text{scal}_g(x) \geq 0$ for all $x \in M$, and $\text{scal}_g(x_0) > 0$ for some $x_0 \in M$.

Then D_E is invertible, i.e. there is $c_0 > 0$ such that $\text{Spec}(D_E) \cap (-c_0, c_0) = \emptyset$.

Proof. Instead of arguing with $s \in \ker(D_E)$, consider for $c > 0$ a function $f_c : \mathbb{R} \to [0, 1]$ with $f_c(x) > 0$ if and only if $|x| < c$ and then $f_c(D_E)$. This is a replacement for the spectral projector $P_c := \chi_{[-c, c]}(D_E)$ which in general one can't build because the Hilbert-A-module morphisms don't form a von Neumann algebra. We will show that for c sufficiently small, $\text{im}(f_c(D_E)) = \{0\}$. This implies that $f_c(D_E) = 0$ and, by the choice of f_c, that $\text{Spec}(D_E) \cap (-c, c) = \emptyset$. By contraposition, assume that $s \in \text{im}(f_c(D_E))$ with $|s|_{L^2} \neq 0$. We will show that this implies that $c > c_0$ for some $c_0 > 0$ depending on the geometry of (M, g).

In the following, the norms and inner products have values in A, and the inequalities $a \leq b$ refer to the partial order in A.

First, we have $|D_E^k s|_{L^2} \leq c^k$ for all $k > 0$.

By the Sobolev embedding theorem, s is smooth and there are a priori estimates (depending on the geometry of M) for the supremum norm of s and all its covariant derivatives.

Next, the Schrödinger-Lichnerowicz formula implies

$$c^2 |s|_{L^2}^2 \geq |D_E s|_{L^2}^2 = |\nabla s|_{L^2}^2 + \int_M \frac{\text{scal}_g(x)}{4} (s(x), s(x))_x \text{dvol}_g.$$

Because $\text{scal}_g(x) \geq 0$ for all $x \in M$ this implies

$$|\nabla s|_{L^2}^2 \leq c^2 |s|_{L^2}^2 \quad \text{and} \quad \int_M \frac{\text{scal}_g(x)}{4} |s(x)|_x^2 \text{dvol}_g \leq c^2 |s|_{L^2}^2. \quad (2)$$

Choose an small open disk $U = B_{2r}(x_0)$ around x_0 such that $\text{scal}_g(x) \geq 4a > 0$ for $x \in U$ (note that U and a depend only on g).

We obtain then from (2)

$$\int_U |s(x)|_x^2 \leq \int_U \frac{\text{scal}_g(x)}{4a} |s(x)|_x^2 \leq \int_M \frac{\text{scal}_g(x)}{4a} |s(x)|_x^2 \leq \frac{c^2}{a} |s|_{L^2}^2. \quad (3)$$

Choose a smooth cutoff function $\phi : M \to [0, 1]$ which is equal to 1 outside $B_{2r}(x_0)$ and vanishes on $B_r(x_0)$ and consider $\tilde{s} := \phi \cdot s$. Note that there is
Invertibility of Dirac with Hilbert-A-module coefficients

$C_g > 0$ depending only on the geometry of M such that

$$|\nabla \phi(x)|^2 \leq C_g \quad \forall x \in U, \quad \nabla \phi(x) = 0 \forall x \in M \setminus U.$$ \hspace{1cm} (4)

Because M is connected, we can apply the Poincaré inequality [3, Proposition 5.2] (extended to sections of Hilbert A-module bundles) for the subset $B_r(x_0)$ inside M:

$$|\tilde{s}|^2_{L^2} \leq C_{g,U} |\nabla \tilde{s}|^2_{L^2} = C_{g,U} |(\nabla \phi)s + \phi \nabla s|^2_{L^2} \leq 2C_{g,U}(|(\nabla \phi)s|^2_{L^2} + |\phi \nabla s|^2_{L^2})$$

with constant $C_{g,U}$ depending only on the set U and the geometry g of M. Note finally that

$$|\tilde{s}|^2_{L^2} = \int_M |s(x)|^2_{L^2} + \int_U (\phi(x)^2 - 1)|s(x)|^2_{L^2} \geq |\tilde{s}|^2_{L^2} - \int_U |s(x)|^2_{L^2} \geq (1 - \frac{c^2}{a})|\tilde{s}|^2_{L^2},$$

while on the other hand

$$|(\nabla \phi)s|^2_{L^2} = \int_M |(\nabla \phi)x|^2 |s(x)|^2_{L^2} \leq \int_U C_g |s(x)|^2_{L^2} \leq \frac{C_g}{a} c^2 |\tilde{s}|^2_{L^2}. \hspace{1cm} (6)$$

Combining (5) with (6), (7), and (2) we finally obtain

$$(1 - \frac{c^2}{a})|\tilde{s}|^2_{L^2} \leq |\tilde{s}|^2_{L^2} \leq 2C_{g,U} \left(\frac{C_g}{a} c^2 + c^2\right) |\tilde{s}|^2_{L^2}.$$

As $s \neq 0$ and therefore $|s|^2_{L^2} > 0$ in A, this implies that c must be sufficiently large, explicitly

$$c > c_0 := \left(\frac{2C_{g,U} C_g + 1}{a} + 2C_{g,U}\right)^{-1/2}.$$

Now, the constants $C_{g,U}$, C_g, and a depend only on the geometry of M and the assertion follows. \hspace{1cm} \Box

Acknowledgements. Thanks to Rudolf Zeidler for useful comments and pointing out inaccuracies in a previous version of this note.

References
[1] Thomas Schick, *The topology of positive scalar curvature*, Proceedings of the International Congress of Mathematicians (ICM 2014), Seoul, Korea, August 13–21, 2014. Vol. II: Invited lectures, 2014, pp. 1285–1307 (English).
[2] Thomas Schick and David J. Wraith, *Non-negative versus positive scalar curvature*, J. Math. Pures Appl. (9) 146 (2021), 218–232. MR4197286
[3] Michael E. Taylor, *Partial differential equations. 1: Basic theory*, Vol. 115, Berlin: Springer-Verlag, 1996 (English).