DENSITY OF CLASSICAL POINTS IN EIGENVARITIES

DAVID LOEFFLER

Abstract. In this short note, we study the geometry of the eigenvariety parametrising p-adic automorphic forms for GL_1 over a number field, as constructed by Buzzard. We show that if K is not totally real and contains no CM subfield, points in this space arising from classical automorphic forms (i.e. algebraic Grossencharacters of K) are not Zariski-dense in the eigenvariety (as a rigid space); but the eigenvariety possesses a natural formal scheme model, and the set of classical points is Zariski-dense in the formal scheme.

We also sketch the theory for GL_2 over an imaginary quadratic field, following Calegari and Mazur, emphasising the strong formal similarity with the case of GL_1 over a general number field.

1. Zariski-density in formal and rigid spaces

Let A be a finite algebra over the formal power series ring $\mathbb{Z}_p[[T_1,\ldots,T_n]]$ for some $n \geq 0$, which is flat over \mathbb{Z}_p (i.e. p is not a zero-divisor in A). Then we have a choice of geometric objects attached to A: the affine scheme $\text{Spec}(A)$, and its generic fibre $\text{Spec}(A[[p]])$; the affine formal scheme $\text{Spf}(A)$; and the rigid-analytic space $(\text{Spf}(A))_{rig}$ obtained by applying Berthelot’s generic fibre construction [dJ95 §7]. We abbreviate the latter by $\text{Rig}(A)$.

Proposition 1.1. There following three sets are in canonical bijection with each other:

- Points of $\text{Spec}(A[[p]])$, i.e. maximal ideals of $A[[p]]$;
- Morphisms of formal schemes $\text{Spf}(O) \to \text{Spf}(A)$, with O the ring of integers of a finite extension of \mathbb{Q}_p (“rig-points” of $\text{Spf}(A)$);
- Points of $\text{Rig}(A)$.

Proof. See [dJ95 7.1.9,7.1.10].

We do not, however, obtain bijections between closed subvarieties of these geometric objects; closed subschemes of $\text{Spec}(A[[p]])$ biject with closed formal subschemes of $\text{Spf}A$ flat over \mathbb{Z}_p, but these correspond to a subset of the closed subvarieties of $\text{Rig}(A)$. Most of the content of the present note relates in some way or another to the following key example. If $A = \mathbb{Z}_p[T]$, then $\text{Rig}(A)$ is the rigid-analytic open unit disc, and the set of points T such that $(1 + T)^p^n = 1$ for some $n \in \mathbb{N}$ is a closed subvariety of $\text{Rig}(A)$ (cut out by the p-adic logarithm $\log((1 + T))$, which is clearly not the analytification of any closed subvariety of $\text{Spf}(A)$.

If $P(A)$ is the common set of points from the preceding proposition, we refer to the topology on $P(A)$ whose closed subsets are given by ideals of $A[[p]]$ (or, equivalently, closed subvarieties of $\text{Spf}(A)$ flat over \mathbb{Z}_p) as the formal Zariski topology, and the topology whose closed subsets are given by rigid-analytic subvarieties of $\text{Rig}(A)$ as the rigid Zariski topology. As the preceding example shows, the rigid Zariski topology may be strictly finer than the formal Zariski topology.

Supported by EPSRC postdoctoral fellowship EP/F04304X/2.
2. Character spaces

Let G be an abelian p-adic analytic group; equivalently, G is any group of the form $\mathbb{Z}_p^d \times H$, for $d \geq 0 \in \mathbb{Z}$ and H a finite abelian group.

Theorem 2.1. The functor mapping an Artinian local \mathbb{Z}_p-algebra A to the set of continuous group homomorphisms $G \to A^\times$ is pro-representable, and is represented by the formal scheme \(\hat{G} = \text{Spf} \mathbb{Z}_p[G] \), where $\mathbb{Z}_p[G]$ is the Iwasawa algebra of G, equipped with the canonical character $G \to \mathbb{Z}_p[G]^\times$. Moreover, the generic fibre \hat{G}^{rig} of \hat{G} is the rigid space constructed in [Buz04] Lemma 2 which represents the corresponding functor on the category of affinoid \mathbb{Q}_p-algebras.

Proof. Essentially by definition, any continuous homomorphism $G \to A^\times$ extends uniquely to a ring homomorphism $\mathbb{Z}_p[G] \to A$, and conversely any ring homomorphism $\mathbb{Z}_p[G] \to A$ gives a group homomorphism $G \to A^\times$ by composition with the canonical character (which is continuous, since A is Artinian). Furthermore, $\mathbb{Z}_p[G]$ can clearly be written as an inverse limit of the quotients $(\mathbb{Z}/p^n\mathbb{Z})[G/U]$ for U open in G, which are Artinian \mathbb{Z}_p-algebras. Moreover, if G_1 and G_2 are two such groups, we have

$$\mathbb{Z}_p[G_1 \times G_2] = \mathbb{Z}_p[G_1] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[G_2];$$

the generic fibre construction commutes with fibre products, so it suffices to check that the generic fibre of $\text{Spf} \mathbb{Z}_p[G]$ agrees with Buzzard’s construction when G is either \mathbb{Z}_p or a finite cyclic group; both of these cases are easy. \(\square \)

Now let K be a number field. We define

$$\mathcal{O}_{K,p}^\times := (\mathcal{O}_K \otimes \mathbb{Z}_p)^\times = \prod_{v \mid p} \mathcal{O}_{K,v}^\times.$$

It is clear that $\mathcal{O}_{K,p}^\times$ is an abelian p-adic analytic group of dimension $d = [K : \mathbb{Q}]$; we let $W = \mathcal{O}_{K,p}^\times$. A point of W is thus equivalent to a continuous homomorphism $\mathcal{O}_{K,p}^\times \to E^\times$, for E some finite extension of \mathbb{Q}_p; we refer to these as p-adic weights for K.

Let K_∞° be the identity component of $(K \otimes \mathbb{R})^\times$, and U any open compact subgroup of $(\mathbb{A}_K^p)^\times$. We define

$$H(U) = K_\infty^\circ / K^\times \cdot U \cdot K_\infty^\circ.$$

Definition 2.2. [Buz04] The eigenvariety for GL_1 / K of tame level U is the formal \mathbb{Z}_p-scheme $\mathcal{E}(U) = H(U)$.

The inclusion $\mathcal{O}_{K,p}^\times \hookrightarrow \mathbb{A}_K^\times$ gives a continuous map $\mathcal{O}_{K,p}^\times \to H(U)$ whose kernel is the closure in $\mathcal{O}_{K,p}^\times$ of the abelian group $\Gamma(U) = K^\times \cap \left(U \cdot \mathcal{O}_{K,p}^\times \cdot K_\infty^\circ \right)$. The cokernel of this map is finite (it is the ray class group modulo UK_∞°) and hence $H(U)$ is also a compact abelian p-adic analytic group, of dimension equal to $1 + r_2 + \delta$ where r_2 is the number of complex places of K and δ is the defect in Leopoldt’s conjecture for K at p.

If we write $Q(U) = \mathcal{O}_{K,p}^\times / \Gamma(U)$, then we can identify $Q(U)$ with a finite-index subgroup of $H(U)$; hence we have maps $\mathbb{Z}_p[\mathcal{O}_{K,p}^\times] \to \mathbb{Z}_p[Q(U)] \to \mathbb{Z}_p[H(U)]$, where the second map is finite and flat (and becomes étale after inverting p). Thus the morphism $\mathcal{E}(U) \to \mathcal{W}$ factors as a finite flat surjective map followed by the inclusion of the closed subscheme $\mathcal{W}(U) = \overline{Q(U)}$ of \mathcal{W}. In particular, we have the following result:

Proposition 2.3. Every component of $\mathcal{E}(U)$ has dimension equal to $1 + r_2 + \delta$, and maps surjectively to a component of $\mathcal{W}(U)$.

(Note that $\mathcal{E}(U)$ is not flat over W unless $r_1 + r_2 = 1$, i.e. K is either \mathbb{Q} or an imaginary quadratic field.)

3. Algebraic points

Let κ be a p-adic weight for K. We say that κ is algebraic if we can write

$$\kappa(x) = \prod_i \sigma_i(x)^{n_i}$$

where $\sigma_1, \ldots, \sigma_d$ are the ring homomorphisms $\mathcal{O}_{K,p} \to \overline{\mathbb{Q}}_p$ arising from the d embeddings $K \to \overline{\mathbb{Q}}_p$, and $n_i \in \mathbb{Z}$. We say κ is parallel if κ factors through the norm map $N_{K/\mathbb{Q}}$ (extended \mathbb{Z}_p-linearly to a ring homomorphism $\mathcal{O}_{K,p} \to \mathbb{Z}_p$). Note that an algebraic weight is parallel if and only if the n_i are all equal.

If κ is algebraic in the above sense when restricted to some open neighbourhood of the identity, we say κ is locally algebraic; this is equivalent to the existence of a factorisation $\kappa = \varepsilon \kappa'$ where κ' is algebraic and ε has finite order. Similarly, if κ is a p-adic weight which becomes parallel when restricted to some open neighbourhood of the identity, we say κ is locally parallel.

Let us fix an isomorphism between \mathbb{C} and $\overline{\mathbb{Q}}_p$. Then there is a bijection between algebraic Grössencharacters of K (of level containing U) and points of $\mathcal{E}(U)$ whose projection to W is locally algebraic. This maps a Grössencharacter of infinity-type $x \mapsto \prod_i \sigma_i(x)^{n_i}$ to a locally algebraic character with the same algebraic part.

We make the following assumption, which will remain in force for the remainder of this section:

Assumption. The field K contains no CM subfield.

Theorem 3.1 ([Weil54]). If the above assumption holds, then the infinity-type of every algebraic Grössencharacter of K is parallel (i.e. factors through the norm map $N_{K/\mathbb{Q}}$).

If κ is a locally algebraic weight, we define $c(\kappa)$ to be the smallest integer $r \geq 0$ such that κ is algebraic when restricted to $1 + p^r \mathcal{O}_{K,p}$.

Proposition 3.2. For any $N < \infty$, there is a 1-dimensional closed formal subscheme of W that contains every locally algebraic weight $\kappa \in \mathcal{W}(U)$ with $c(\kappa) \leq N$.

Proof. If $\kappa \in \mathcal{W}(U)$ is locally algebraic, then by Weil’s theorem it must be of the form $x \mapsto \varepsilon(x) N_{K/\mathbb{Q}}(x)^k$ for some $k \in \mathbb{Z}$ and finite-order ε. Since the subgroup $\Gamma(U)(1+p^N \mathcal{O}_{K,p})$ has finite index in $\mathcal{O}_{K,p}^\times$, there are only finitely many candidates for ε. Hence the locally algebraic weights with $c(\kappa) \leq N$ are contained in the union of finitely many translates of the 1-dimensional subscheme $\mathcal{W}_0 \subseteq \mathcal{W}$ parametrising parallel weights (which is simply the space of characters of $N_{K/\mathbb{Q}}(\mathcal{O}_{K,p}^\times) \subseteq \mathbb{Z}_p^\times$).

We assume henceforth that K is not totally real, so $\mathcal{W}(U)$ has dimension $1 + r_2 + \delta > 1$. It follows that the locally algebraic weights with $c(\kappa) \leq N$ are not dense in the formal Zariski topology of $\mathcal{W}(U)$. In particular, for a fixed coefficient field E which is discretely valued, the set of E-valued finite-order characters is finite (since E contains finitely many p-power roots of unity) and thus the locally algebraic E-valued weights are not formally Zariski-dense in $\mathcal{W}(U)$.

Proposition 3.3. The closure of the locally algebraic weights in the rigid Zariski topology of $\mathcal{W}(U)$ is a closed rigid subvariety of $\mathcal{W}(U)$ of dimension 1. However, this set is dense in the formal Zariski topology of $\mathcal{W}(U)$.
Proof. Let u_1, \ldots, u_{d-1} be a \mathbb{Z}_p-basis for the torsion-free part of the subgroup

$$C = \left\{ x \in \mathcal{O}_{K,p}^\times : N_{K/Q}(x) = 1 \right\}.$$

The functions $\kappa \mapsto \log(\kappa(u_i))$ are analytic functions on \mathcal{W}^\rig. Moreover, the derivatives of these functions are linearly independent at the origin, and hence anywhere (since they are homomorphisms of rigid-analytic group varieties). Thus they cut out a reduced rigid subvariety of \mathcal{W}^\rig of dimension 1. I claim that every locally algebraic point of $\mathcal{W}(U)$ lies in this subvariety. Indeed, suppose κ is such a point, with residue field E. Then $\kappa(C)$ must be finite, since the algebraic part of κ is trivial on C. Therefore $\kappa(u_1), \ldots, \kappa(u_{d})$ must be roots of unity in E^\times; as the subgroup of C generated by the u_i is pro-p, these must be p-power roots of unity. Hence they are zeros of the p-adic logarithm.

On the other hand, the even powers of the norm character $\mathcal{O}_{K,p}^\times \to \mathbb{Z}_p^\times$ are clearly in $\mathcal{W}(U)$, and the closure of these (in either the formal or the rigid Zariski topology) is a formal subscheme of \mathcal{W} of dimension 1; so the dimension of the rigid Zariski closure of the locally algebraic weights in $\mathcal{W}(U)$ is exactly 1.

For the second statement, since $\mathcal{W}(U) = Q(U)$ is affine, it suffices to check that there is no nonzero element of $\mathbb{Z}_p[Q(U)]$ whose image under any locally constant character is zero. This is clear since $\mathbb{Z}_p[Q(U)]$ is by construction the inverse limit of the \mathbb{Z}_p-group rings of the finite quotients of $Q(U)$. \hfill \Box

We now lift these statements to $\mathcal{E}(U)$. If χ is a point of $\mathcal{E}(U)$, we say χ is locally algebraic if its image $\kappa \in \mathcal{W}(U)$ is so (equivalently, if it corresponds to an algebraic Grössencharacter of K); if this is the case, we define $c(\chi) = c(\kappa)$, which is the smallest power of p divisible by the p-part of the conductor of the corresponding Grössencharacter.

Proposition 3.4. For any $N < \infty$, the set of points $\chi \in \mathcal{E}(U)$ with $c(\chi) < N$ (or with values in a given coefficient field E) is contained in a finite union of 1-dimensional closed subschemes of $\mathcal{E}(U)$. The set of all locally algebraic points is not contained in any proper closed subscheme of $\mathcal{E}(U)$, but is contained in a 1-dimensional closed subvariety of the generic fibre $\mathcal{E}(U)^\rig$.

It follows that a rigid-analytic function on $\mathcal{E}(U)^\rig$ is not determined by its values at locally algebraic characters, but that a bounded rigid-analytic function is determined by these values.

4. Sketch of the GL$_2$ theory

We now suppose K is an imaginary quadratic field in which p splits, and \mathfrak{R} an integral ideal of \mathcal{O}_K prime to p. For integers $a, b \geq 2$, we let $S_{a,b}(\Gamma_1(\mathfrak{P}^r))$ denote the space of cuspidal cohomological automorphic forms for GL_2/K of weight (a, b) and level $\Gamma_1(\mathfrak{P}^r)$; equivalently, this is the space $H^1_{\text{par}}(Y_1(\mathfrak{P}^r), V_{a,b})$ where $Y_1(\mathfrak{P}^r)$ is the appropriate arithmetic quotient of $GL_2(\mathbb{A}_K)$ and $V_{a,b}$ is the locally constant sheaf on $Y_1(\mathfrak{P}^r)$ corresponding to the algebraic representation of $\text{Res}_{K/Q} GL_2$ of highest weight (a, b). This is a finite-dimensional vector space over K.

We fix a choice of prime $p \nmid p$, and hence an embedding $K \hookrightarrow \mathbb{Q}_p$. For a locally constant character χ of $\mathcal{O}_{K,p}^\times$ of conductor c, with values in a finite extension E of \mathbb{Q}_p, we let $S_{a,b}(\Gamma_1(\mathfrak{P}^r), \chi)_{\text{ord}}$ denote the subspace of $S_{a,b}(\Gamma_1(\mathfrak{P}^r)) \otimes_K E$ of forms on which the diamond operators act via χ and which are ordinary at p and $\overline{\mathfrak{P}}$.

We say that a locally algebraic weight $\kappa : x \mapsto x^d \mathfrak{P}^e \varepsilon(x) \in \mathcal{W}$, with ε of finite order, is *arithmetical* if $a, b \geq 2$.
Theorem 4.1 ([Hid94, Theorem 3.2]). There exists a finitely-generated $\mathbb{Z}_p[\mathcal{O}_{K,p}^\times]$-module \mathbb{H} such that for any arithmetical character κ as above,

$$S_{a,b}(\Gamma_1(\mathfrak{p}, \varepsilon)) \cong \mathbb{H} \otimes_{\mathbb{Z}_p[\mathcal{O}_{K,p}^\times], \kappa} E.$$

The sheaf \mathbb{H} on \mathcal{W} corresponds to the pushforward of $\mathcal{O}(\mathcal{E}(U))$ to \mathcal{W} in the GL_1 theory. Hida has given a characterisation of its geometry analogous to proposition 2.3 above:

Theorem 4.2 ([Hid94, Theorem 6.2]). The support of \mathbb{H} is an equidimensional subscheme of \mathcal{W} of dimension 1.

We also have an obstruction to the existence of locally algebraic points arising from archimedean considerations, analogous to Theorem 3.1:

Theorem 4.3 ([Har87, 3.6.1]). $S_{a,b}(\Gamma_1(\mathfrak{p}, \varepsilon))$ is zero unless $a = b$.

Hence any arithmetical weight lying in $\text{Supp} \mathbb{H}$ is locally parallel, and thus contained in a translate by some locally constant character of the 1-dimensional subscheme \mathcal{W}_0 parametrising parallel weights.

Theorem 4.4 ([CM09, Lemma 8.8]). There exist pairs $(K, \mathfrak{N}, \mathfrak{p})$ such that $\text{Supp} \mathbb{H}$ has nonempty intersection with, but does not contain, the component of \mathcal{W}_0 containing the character $x \mapsto (\mathfrak{N}/\mathbb{Q} x)^2$.

We deduce that in such cases, $\text{Supp} \mathbb{H}$ has irreducible components X of dimension 1 such that for any $N < \infty$, the set of arithmetical weights $\kappa \in X$ with $c(\kappa) < N$ is finite; in particular, there are finitely many arithmetical weights in $X(E)$ for any given field E. Furthermore, the set of all arithmetical weights is not dense in the rigid Zariski topology of X. However, since the set of locally parallel weights is not formally Zariski-closed in \mathcal{W}, one cannot rule out the possibility that the set of all arithmetical locally algebraic weights in X is infinite (and hence dense in X for the formal Zariski topology).

Remark 4.5. It is asserted in [CM09, Theorem 8.9] that there are components X which contain only finitely many arithmetical weights, but the proof given therein relies on the assertion that the intersection of X with the set of locally parallel weights is formally Zariski-dense in X (and hence must be either finite or all of X); this is false as the set of all locally parallel weights is not formally Zariski-closed in \mathcal{W}, and the rigid space \mathcal{W}^{rig} is not quasicompact. Similarly, the arguments of Theorem 7.1 of op.cit. do not show that the Galois-theoretic deformation space constructed therein has finitely many specialisations which are Hodge-Tate with parallel Hodge-Tate weights, but rather the weaker statement that for any N it has finitely many specialisations V which have parallel Hodge-Tate weights and for which the Weil-Deligne representation $D_{\text{pst}}(V)$ has Artin conductor $< N$ (in particular, it has finitely many crystalline specialisations of parallel weight).

Remark 4.6. The essential difference between the GL_1 and GL_2 cases is that in the latter we lack an explicit description of the subscheme $\text{Supp} \mathbb{H}$. Thus in the former case we can show that every component of $\mathcal{E}(U)$ contains infinitely many points corresponding to classical automorphic forms, while in the latter case we cannot rule out the existence of reducible components of $\text{Supp} \mathbb{H}$ containing only finitely many such points – we merely assert that the existence of such components has not been proven.

5. Acknowledgements

The author would like to thank Kevin Buzzard for much useful advice, and specifically for alerting him to the results of [Wei56]; and Frank Calegari for helpful discussions regarding [CM09].
References

[Buz04] Kevin Buzzard, *On p-adic families of automorphic forms*, Modular curves and abelian varieties (Bellaterra, 2002), Progr. Math., vol. 224, Birkhäuser, 2004, pp. 23–44. MR 2058649

[CM09] Frank Calegari and Barry Mazur, *Nearly ordinary Galois deformations over arbitrary number fields*, J. Inst. Math. Jussieu 8 (2009), no. 1, 99–177. MR 2461903

[dJ95] Aise Johan de Jong, *Crystalline Dieudonné module theory via formal and rigid geometry*, Pub. Math. IHÉS 82 (1995), 5–96. MR 1383213

[Har87] Günter Harder, *Eisenstein cohomology of arithmetic groups. The case GL_2*, Invent. Math. 89 (1987), no. 1, 37–118. MR 892187

[Hid94] Haruzo Hida, *p-adic ordinary Hecke algebras for GL(2)*, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 5, 1289–1322. MR 1313784

[Wei56] André Weil, *On a certain type of characters of the idècle-class group of an algebraic number-field*, Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, Science Council of Japan, Tokyo, 1956, pp. 1–7. MR 0083523

Warwick Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK
E-mail address: d.a.loeffler@warwick.ac.uk