Effects of four-body breakup on 6Li elastic scattering near the Coulomb barrier

Shin Watanabe, Takuma Matsumoto, Kosho Minomo, and Masanobu Yahirom

Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

(Dated: May 1, 2014)

We investigate projectile breakup effects on 6Li+209Bi elastic scattering near the Coulomb barrier with the four-body version of the continuum-discretized coupled-channels method (four-body CDCC). This is the first application of four-body CDCC to 6Li elastic scattering. The elastic scattering is well described by the $p+n+^4$He+209Bi four-body model. We propose a reasonable three-body model for describing the four-body scattering, clarifying four-body dynamics of the elastic scattering.

PACS numbers: 24.10.Eq, 25.60.Gc, 25.70.De

Introduction. Plenty of nuclei are considered to have two-cluster or three-cluster configurations as their main components. Three-cluster dynamics is, however, nontrivial compared with two-cluster dynamics. Systematic understanding of three-cluster dynamics is hence important. There are many nuclei that can be described by three-cluster models. For example, low-lying states of 6He and 6Li are explained by $N + N + ^4$He three-body models [1,2], where N stands for a nucleon. The comparison of the two nuclei is important to see the difference between dineutron and proton-neutron correlations. Two-neutron halo nuclei such as 11Li, 14Be, and 22C are reasonably described by an $n + n + X$ three-cluster model, where X is a core nucleus. Properties of these three-cluster configurations should be confirmed by measuring scattering of the nuclei and analyzing the measured cross sections with accurate reaction theories. The reactions are essentially four-body scattering composed of three constituents of projectile and a target nucleus. Accurate theoretical description of four-body scattering is thus an important subject in nuclear physics.

The continuum-discretized coupled-channels method (CDCC) is a fully quantum-mechanical method of describing not only three-body scattering but also four-body scattering [7–9]. CDCC has succeeded in reproducing experimental data on both three- and four-body scattering. The theoretical foundation of CDCC is shown with the distorted Faddeev equation [10–12]. CDCC for four-body (three-body) scattering is often called four-body (three-body) CDCC; see Refs [13–25] and references therein for four-body CDCC. So far four-body CDCC was applied to only 6He scattering.

For 6He+209Bi scattering at 19 and 22.5 MeV near the Coulomb barrier, the measured total reaction cross sections are largely enhanced in comparison with that for 6Li+209Bi scattering at 29.9 MeV near the Coulomb barrier [26,27]. Keeley et al. [28] analyzed the 6He+209Bi scattering with three-body CDCC in which the 6He+209Bi system was assumed to be a $^2n + ^4$He+209Bi three-body system, i.e., a pair of extra neutrons in 6He was treated as a single particle, dineutron (2n). The enhancement of the total reaction cross section of the 6He+209Bi scattering is found to be due to the electric dipole ($E1$) excitation of 6He to its continuum states [29], i.e., Coulomb breakup of 6He, which is almost absent in the 6Li+209Bi scattering. The three-body CDCC calculation, however, does not reproduce the angular distribution of the measured elastic cross section and overestimates the measured total reaction cross section by a factor of 2.5. This problem is solved by four-body CDCC [19] in which the total system is assumed to be an $n + n + ^4$He+209Bi four-body system.

The 6Li+209Bi scattering near the Coulomb barrier was, meanwhile, analyzed with three-body CDCC by assuming a $d + ^4$He+209Bi three-body model [28]. The three-body CDCC calculation could not reproduce the data without normalization factors for the potentials between 6Li and 209Bi. This result indicates that four-body CDCC should be applied to the 6Li+209Bi scattering.

In this paper, we analyze 6Li+209Bi elastic scattering at 29.9 and 32.8 MeV with four-body CDCC by assuming the $p + n + ^4$He+209Bi four-body model. This is the first application of four-body CDCC to 6Li scattering. The four-body CDCC calculation reproduces the measured elastic cross sections, whereas the previous three-body CDCC calculation does not. Four-body dynamics of the elastic scattering is investigated, and it is discussed what causes the failure of the previous three-body CDCC calculation. Finally we propose a reasonable three-body model for describing the four-body scattering.

Theoretical framework. One of the most natural frameworks to describe 6Li+209Bi scattering is the $p + n + ^4$He+209Bi four-body model. Dynamics of the scattering is governed by the Schrödinger equation

$$ (H - E)\Psi = 0 \quad (1) $$

for the total wave function Ψ, where E is a total energy of the system. The total Hamiltonian H is defined by

$$ H = K_R + U + h \quad (2) $$

with

$$ U = U_n(R_n) + U_p(R_p) + U_\alpha(R_\alpha) + \frac{e^2Z_{Li}Z_{Bi}}{R}, \quad (3) $$

where K_R is the kinetic energy, U is the potential energy, and h is the regularization term.
where h denotes the internal Hamiltonian of ^6Li, R is the center-of-mass coordinate of ^6Li relative to ^{209}Bi, K_R stands for the kinetic energy operator associated with R, and U_x describes the nuclear part of the optical potential between x and ^{209}Bi as a function of the relative coordinate R_x. As U_n, we adopt the optical potential of Barnett and Lilley [30]. Parameters of U_n are fitted to reproduce experimental data [31] on n + ^{209}Bi elastic scattering at 5 MeV, where only the central interaction is taken for simplicity. As shown in Fig. 1 the neutron optical potential $U_{n^{OP}}$ thus fitted is consistent with the data. The resultant parameter set is the same as that in the global optical potential of Koning and Delaroche [32, except parameters α_V, W_V and W_D are changed into 0.55 fm, 0 MeV and 4.0 MeV, respectively. The proton optical potential U_p is assumed to be the same as U_n. Coulomb interactions in the p-^{209}Bi and α-^{209}Bi subsystems are approximated into $e^2Z_{\text{Li}}Z_{\text{Bi}}/R$, because Coulomb breakup effects are negligibly small in the present scattering.

FIG. 1: Angular distribution of elastic cross section for n + ^{209}Bi scattering at 5 MeV. The solid line is the result of the neutron optical potential $U_{n^{OP}}$. The experimental data is taken from Ref. [31].

The internal Hamiltonian h of ^6Li is described by the $p + n + ^4\text{He}$ orthogonality condition model [33]. The Hamiltonian of ^6Li agrees with that of ^4He in Ref. [19], when the Coulomb interaction between p and ^4He is neglected. Namely, the Bonn-A interaction [34] is taken in the p-n subsystem and the so-called KKNN interaction [35] is used in the p-α and n-α subsystems, where the KKNN interaction is determined from experimental data on low-energy nucleon-α scattering.

Eigenstates of h consist of finite number of discrete states with negative energies and continuum states with positive energies. In four-body CDCC, the continuum states of projectile are discretized into a finite number of pseudostates by either the pseudostate method [13, 21, 23, 25] or the momentum-bin method [22]. The Schrödinger equation (1) is solved in a modelspace \mathcal{P} spanned by the discrete and discretized-continuum states:

$$\mathcal{P}(H - E)\mathcal{P}\Psi_{\text{CDCC}} = 0,$$

In the pseudostate method, the discrete and discretized continuum states are obtained by diagonalizing h in a space spanned by L^2-type basis functions. As the basis function, the Gaussian [14, 16, 19, 23, 25] or the transformed Harmonic Oscillator function [13, 17, 18, 20, 21] is usually taken. In this paper, we use the Gaussian function. The modelspace \mathcal{P} is then described by

$$\mathcal{P} = \sum_{nI} |\Phi_{nIm}\rangle\langle\Phi_{nIm}|,$$

where Φ_{nIm} is the nth eigenstate of ^6Li with an energy ϵ_{nI}, a total spin I and its projection on the z-axis m.

In actual calculations, the Φ_{nIm} are obtained for $I^e = 1^+$, 2^+ and 3^+ by diagonalizing h with 10 Gaussian functions for each coordinate in which the range parameters are taken form 0.1 fm to 12 fm in geometric series. The Φ_{nIm} with $\epsilon_{nI} \leq 20$ MeV are excluded from \mathcal{P}, since they do not affect cross sections of $^6\text{Li} + ^{209}\text{Bi}$ scattering. The resulting numbers of the discrete states are 65 (including the ground state of ^6Li), 57 and 63 for 1^+, 2^+, and 3^+ states, respectively.

The CDCC wave function Ψ_{CDCC}^M with the total angular momentum J and its projection on the z-axis M, are expressed as

$$\Psi_{\text{CDCC}}^M = \sum_{nIL}^{J} \chi_{nIL}(P_{nI}, R) / R \gamma_{nIL}^M$$

with

$$\gamma_{nIL}^M = [\Phi_{nI}(Y_L(R)) \otimes Y_L(R)]_M$$

for the orbital angular momentum L regarding R. The expansion-coefficient χ_{nIL}^M, where $\gamma = (n, I, L)$, describes a motion of ^6Li in its (n, I) state with linear and angular relative momenta P_{nI} and L. Multiplying the four-body Schrödinger equation (1) by γ_{nIL}^M from the left and integrating it over all variables except R, one can obtain a set of coupled differential equations for χ_{nIL}^M:

$$[\frac{d^2}{dR^2} - \frac{L(L + 1)}{R^2} - \frac{2\mu}{\hbar^2}U_{\gamma\gamma}(R) + P_{nI}^2] \chi_{nIL}^M(P_{nI}, R) = \frac{2\mu}{\hbar^2} \sum_{\gamma' \neq \gamma} U_{\gamma'\gamma}(R) \chi_{nIL}^M(P_{nI'}, R)$$

with the coupling potentials

$$U_{\gamma'\gamma}(R) = \langle \gamma_{nIL}^M | \gamma_{nIL}^M \rangle = \langle \gamma_{nIL}^M | U_n(R_n) + U_p(R_p) + U_\alpha(R_\alpha) \rangle \gamma_{nIL}^M,$$

where μ is the reduced mass between ^6He and ^{209}Bi. The elastic and discrete breakup S-matrix elements are obtained by solving Eq. (8) under the standard asymptotic boundary condition [17, 36].

We also do three-body CDCC calculations by assuming a $d + ^4\text{He} + ^{209}\text{Bi}$ model, following Refs. [28, 29]. As an interaction between d and ^4He, we take the potential of Ref. [37], which are determined from experimental data on the ground-state energy (-1.47 MeV) and the 3^+-resonance state energy (0.71 MeV) of ^6Li and low-energy d-α scattering phase shifts.
The continuum states between d and 4He are discretized with the pseudostate method [14] and are truncated at 20 MeV in the excitation energy of 6Li from the d-4He threshold. The d-209Bi (type-a) optical potential (U_d^{OP}) [38] is taken as U_d, whereas U_n is common between three- and four-body CDCC calculations.

Results. Figure 2 shows the angular distribution of elastic cross section for 6Li + 209Bi scattering at 29.9 MeV. The dotted line shows the result of three-body CDCC calculation with U_d^{OP} as U_d. This result, which is consistent with the previous result of Ref. [28], underestimates the measured cross section [26, 27]. The solid (dashed) line, meanwhile, stands for the result of four-body CDCC calculation with (without) projectile breakup effects. In CDCC calculations without 6Li-breakup, the modelspace \mathcal{P} is composed only of the 6Li ground state. The solid line reproduces the experimental cross section, but the dashed line does not. The projectile breakup effects are thus significant and the present 6Li scattering is well described by the $p + n + ^4$He + 209Bi four-body model. This conclusion is true also for 6Li + 209Bi scattering at 32.8 MeV shown in Fig. 3.

![Figure 2](image1.png)

FIG. 2: Angular distribution of the elastic cross section for 6Li + 209Bi scattering at 29.9 MeV. The cross section is normalized by the Rutherford cross section. The dotted (dot-dashed) line stands for the result of three-body CDCC calculation in which U_d^{OP} (U_d^{SF}) is taken as U_d. The solid (dashed) line represents the results of four-body CDCC calculations with (without) breakup effects. The experimental data are taken from Ref. [26, 27].

Now we consider d-breakup in the 6Li scattering in order to understand four-body dynamics of the scattering. In the limit of no d-breakup, the interaction between d and 209Bi can be obtained by folding U_n and U_p with the deuteron density. This potential is referred to as the single-folding potential U_d^{SF}. In Figs. 2 and 3 the dot-dashed lines show the results of three-body CDCC calculations with U_d^{SF} as U_d. The results well simulate those of four-body CDCC calculations, i.e., the solid lines. This indicates that d-breakup is suppressed in the 6Li scattering. Intuitive understanding of this property is as follows. As a characteristic of the present 6Li scattering, it is quite peripheral in virtue of the Coulomb barrier. The scattering is dominated by the configuration in which α is located between d and the target, because U_n is more attractive than U_d. In this configuration, d is out of the range of U_n and U_p, so that d-breakup is suppressed. The 6Li elastic scattering near the Coulomb barrier is thus well described by the $d + \alpha + ^209$Bi three-body model, if U_d^{SF} is taken as U_d.

Figure 4 shows the angular distribution of elastic cross section for $d + ^209$Bi scattering at 12.8 MeV. The solid (dashed) line stands for the result of three-body CDCC calculation with (without) deuteron breakup, whereas the dotted line is the result of the deuteron optical potential U_d^{OP}. The experimental data are taken from Ref. [26, 27].

![Figure 4](image2.png)

FIG. 4: Angular distribution of the elastic cross section for $d + ^209$Bi scattering at 12.8 MeV. The solid (dashed) line stands for the result of three-body CDCC calculation with (without) deuteron breakup, whereas the dotted line is the result of the deuteron optical potential U_d^{OP}. The experimental data are taken from Ref. [26, 27].
produces the data fairly well, but the dashed line does not. Thus \(d \)-breakup is significant for the deuteron scattering. The deuteron optical potential \(U^{\text{OP}}_d \) (dotted line) yields fairly good agreement with the data, but the radius of \(U^{\text{OP}}_d \) is larger than that of \(U^{\text{SF}}_d \). This is the reason why three-body CDCC calculations with \(U^{\text{OP}}_d \) as \(U_d \) can not reproduce the measured elastic cross section for \(^6\text{Li} + ^{209}\text{Bi} \) scattering. The difference between \(U^{\text{SF}}_d \) and \(U^{\text{OP}}_d \) mainly comes from the fact that \(U^{\text{OP}}_d \) includes \(d \)-breakup effects, whereas \(U^{\text{SF}}_d \) does not.

Summary. The \(^4\text{He} + ^{209}\text{Bi} \) scattering at 29.9 MeV and 32.8 MeV near the Coulomb barrier are well described by four-body CDCC based on the \(p + n + ^{5}\text{He} + ^{209}\text{Bi} \) model. This is the first application of four-body CDCC to \(^6\text{Li} \) scattering. In the \(^6\text{Li} \) scattering, \(d \)-breakup is strongly suppressed, suggesting that the \(d + ^4\text{He} + ^{209}\text{Bi} \) model becomes good, if the single-folding potential \(U^{\text{SF}}_d \) with no \(d \)-breakup is taken as an interaction between \(d \) and the target. For \(d + ^{209}\text{Bi} \) scattering at 12.8 MeV, meanwhile, \(d \)-breakup is significant, so that the deuteron optical potential \(U^{\text{OP}}_d \) includes \(d \)-breakup effects.

Four-body CDCC is applicable also for \(n + ^6\text{Li} \) scattering that is a key reaction in nuclear engineering. In the scattering, \(^6\text{Li} \) breakup into \(n + p + \alpha \) is considered to be not negligible for emitted neutron spectra [39]. We will discuss this point in a forthcoming paper.

The authors would like to thank Y. Watanabe, K. Ogata and K. Katô for helpful discussions. This work has been supported in part by the Grants-in-Aid for Scientific Research of Monbukagakushou of Japan and JSPS.