Case Report

Sequential aneurysms with incidental persistent primitive trigeminal artery: Is this association purely coincidental? A case study and review of the literature in search for a pathobiological mechanism

Sanjeev A. Sreenivasan¹, Neha Agarwal², Sudipta Roychowdhury¹, Priyank Khandelwal¹, Anil Nanda¹, Gaurav Gupta¹

¹Department of Neurological Surgery, Rutgers - Robert Wood Johnson Medical School, New Jersey, ²Fetal Centre, Department of Obstetrics and Gynecology, University of Texas McGovern Medical School, Houston, Texas, ³Department of Neurological Surgery, New Jersey Medical School, RUTGERS, Newark, New Jersey, United States.

E-mail: Sanjeev A. Sreenivasan - sa2034@rwjms.rutgers.edu; Neha Agarwal - nehadas2k@gmail.com; Sudipta Roychowdhury - sroychowdhury@univrad.com; Priyank Khandelwal - pk544@njms.rutgers.edu; Anil Nanda - an651@rwjms.rutgers.edu; *Gaurav Gupta - guptaga@rwjms.rutgers.edu

INTRODUCTION

The appearance of sequential bilateral aneurysms in patients with persistent primitive trigeminal artery (PTA) is not described in the literature. There is disputing evidence in favor of long-term screening strategies for patients with incidental PTAs and cerebral aneurysms. We conducted a review with the aim to find out whether the associations of PTA with aneurysms are incidental
or does it have a pathobiological mechanism? Does specific embryological or genetic mechanism predispose to aneurysms in patient with PTA? Does it have any clinical implications on long-term follow-up? A Google Scholar and PubMed search revealed 3270 articles where 34 studies had 50 aneurysms with incidental PTAs [Table 1]. A separate search among 223 studies to find histology or genetic analysis of PTA was conducted, but did not reveal any positive outcome. We also describe a rare case to highlight the association of incidental PTA.

CASE DETAILS

A 55-year-old lady presented to the clinic with occasional headaches. She did not have family history of cerebral aneurysms. An outside computerized tomography scan showed hyperdensity in the right supraclinoid region. As further evaluation, she underwent diagnostic digital subtraction angiography (DSA).

A persistent trigeminal artery communicating between cavernous portion of the left internal carotid artery (ICA) and basilar artery was noticed [Figure 1]. The presence of PTA was confirmed on injection of ICA [Figure 1] and vertebral artery injection [Figures 2a-c]. A three-dimensional reconstruction showed the aneurysm of size 11.2 × 5.5 mm along with presence of PTA filling the upper extent of basilar artery and posterior cerebral artery bifurcation [Figures 3a and b]. The aneurysm was saccular in morphology [Figure 3b].

On performing aortic arch injection, the origin of innominate and left common carotid arteries appeared extremely close. This represented a bovine arch configuration. A direct origin of the vertebral artery from the left aortic arch was also noticed (type III aortic arch). A fetal posterior communicating artery (Pcom) was also present. After appropriate counseling and consent, she underwent therapeutic angiography. A 5 mm × 16 mm size pipeline flex flow diverter device was deployed across the aneurysmal ophthalmic ICA segment [Figure 4a] and coils of microsphere 4 mm × 7.5 cm, two target −360 coils: 4 mm × 15 cm and one target helical ultra 3 mm × 8 cm were gradually placed into the aneurysm sac [Figure 4b]. During coil placement, no contrast extravasation or distal thromboembolism was noticed. Contrast stasis within the aneurysm was noticed subsequently.

Figure 1: (a) Early filling of PTA (red arrow) from ICA injection (b) filling of the ophthalmic segment ICA aneurysm (black arrow), PTA (red arrow), and upper extent of basilar artery (c) ICA injection image showing filling of posterior circulation (yellow arrow) through the PTA (d) ICA injection image showing filling of PTA with upper extent of basilar artery (blue arrow) and bifurcation into posterior cerebral arteries (postoperative image with coiled aneurysm seen).

Figure 2: (a) Subtracted angiography image showing vertebral artery injection filling the PTA (black arrow) and cavernous segment of ICA, (b) sequential angiography image showing filling of ICA ophthalmic segment of ICA and faint filling of aneurysm (red arrow) via the PTA (black arrow), and (c) sequential angiography image showing filling of anterior circulation (black arrow) via PTA, after a vertebral injection.
A follow-up angiogram at 6 months demonstrated complete occlusion of the left ICA aneurysm [Figure 5] and no residual filling or intrastent stenosis was noticed. This angiogram revealed a new second aneurysm arising from the right supraclinoid ICA [Figure 6a]. It measured 3.5 mm × 1.5 mm [Figures 6a and b]. It was decided to follow the patient with serial angiograms. Angiography at 6 months showed good reconstruction of the left ICA with the pipeline flex device. Progression of the right supraclinoid ICA aneurysm in size and morphology was noticed [Figures 7a and b]. Two blebs measuring 3.1 mm and 2.2 mm were noticed on the aneurysm dome and the base of aneurysm measured 5.4 mm. Contralateral persistent trigeminal artery and fetal Pcom artery were noticed intact with good flow.

Table 1: A list of studies with cerebral aneurysms and incidental persistent primitive trigeminal artery.

Study Number	Author	Year	Side	Aneurysm location	Comments
1	Kosnik et al.	1977	Bilateral	ICA	
2	Yamanaka et al.	1979	Right	Posterior communicating artery aneurysm	With subarachnoid hemorrhage
3	Tran-Dinh et al.	1984	Right	ICA and anterior communicating artery aneurysm	
4	Matsumura et al.	1985	Left	ICA	Polycystic kidney disease, cavum septum pellucidi Surgical clipping
5	Sugiyama et al.	1987	Right	Anterior communicating artery aneurysm	
6	Yamanaka et al.	1987	Right	ICA	
7	Abe et al.	1994	Left	Cavernous ICA	
8	Nakayama et al.	1994	Right	Middle cerebral artery	
9	Ishigura et al.	1995	Right	Anterior communicating artery aneurysm	
10	De Oliviera et al.	1997	Right	Middle cerebral artery	
11	Maeshima et al.	1999	Right	Anterior cerebral Artery aneurysms	
12	Baskaya et al.	2000	Left	Posterior communicating artery	
13	Schlamann	2006	Right	Basilar artery	Subarachnoid hemorrhage
14	Memis et al.	2007	Right	Cavernous ICA left side	
15	Sherkat et al.	2008	Left	Middle cerebral artery	
16	Aronson et al.	2008	Right	Posterior meningeal artery pseudoaneurysm	With subarachnoid hemorrhage
17	Zhang et al.	2009	Right	Cavernous ICA	
18	Yamamoto et al.	2011	Bilateral	Middle cerebral artery	With subarachnoid hemorrhage
19	Schlamann	2011	Right	Basilar artery	With subarachnoid hemorrhage
20	Lei Yan et al.	2013	Right	(3) Anterior communicating artery aneurysms	
21	Alonso-Vanegas et al.	2016	Right	Posterior communicating artery	
22	Lam et al.	2018	Right	Cavernous ICA aneurysms distal to PTA	Hypoplastic vertebal artery
23	Zenteno et al.	2018	Right	Anterior communicating artery aneurysm	
24	Bahar et al.	2018	Right	Posterior communicating artery	
25	Zhang et al.	2019	Right	Basilar artery	
26	Watan et al.	2019	Right	(3) Multiple anterior circulation aneurysms	
27	Kun hou et al.	2019	Right	(2) Multiple aneurysms with moyamoya disease	
28	Soylu et al.	2019	Left	BA-superior cerebellar artery junction	Endovascular treatment through PTA
29	Bechri et al.	2020	Right	Posterior meningeal artery aneurysm	With subarachnoid hemorrhage
30	Ito et al.	2022	Left	Superior cerebellar artery dissecting aneurysm	
A single SURPASS flow diverter device measuring 5 mm × 20 mm was placed across the right suprachiasma ICA aneurysm origin [Figure 8 – black arrows]. All the tines of the device were not approximated to the endothelium. Balloon angioplasty was, hence, performed with a 4 mm × 10 mm balloon.

A 6-month follow-up angiography showed that majority of this new aneurysm was thrombosed, with an extremely small residual 0.9 mm aneurysm on the right side ICA [Figures 9a and b]. It was decided to conservatively manage this residual aneurysm with subsequent angiography. Our total follow-up duration for this patient was 18 months with DSA performed after every 6 months.

DISCUSSION

The most common fetal intracranial anastomosis to survive unto adulthood is the persistent PTA.[1] The otic, hypoglossal, and intersegmental arteries rarely persist beyond embryonic stage. In Saltzman type I circulation, the PTA joins distal to anterior inferior cerebellar artery (AICA) and proximal to superior cerebellar artery (SCA). Here, dominant supply to SCA comes from the PTA. In type II, the distal basilar tip is hypoplastic. A giant thrombosed ICA aneurysm causing hypopituitarism and associated with a PTA has been reported.[15] Maeshima et al. reported eight aneurysms of bilateral ACA and MCA.[11] A basilar artery aneurysm associated with PTA was treated with coil embolization with a microcatheter through PTA.[7] Multiple aneurysms in fenestrated MCA and ICA-PTA junction were reported with PTA.[16] A PTA with fetal Pcom
and hypoplastic vertebral artery was known. This patient had a ruptured Pcom aneurysm which was clip repaired.[6]
We believe that the presence of PTA might alter the flow dynamics of circle of Willis, predisposing to aneurysm formation. Other pathogenic mechanisms of aneurysm formation include hypertension and hemodynamic stress. A PTA represents a developmental structural abnormality. The presence of PTA creates additional hemodynamic stress on ICA and BA. The PTA is a vessel situated in lateral parasellar region usually. Rarely, a medial sphenoidal variant (Salas) may be seen. The latter one may be associated with hypopituitarism. The abnormal origin of PTA from ICA and basilar artery predisposes to two regions of hemodynamic stress – one at the ICA posteromedial wall and one at the anterolateral wall of basilar artery. As per Rhoton’s theory, the presence of additional branch points in a vessel predisposes to aneurysm formation. The standard anatomy of basilar artery consists of two branch points of PCAs, two for superior cerebellar arteries within 5–8 mm of each other. The presence of another branch point within few millimeters of these will definitely cause added hemodynamic stress. The relative frequency of aneurysms near ICA-PTA junction and anterior circle of Willis were more common than near PTA-BA junction and the posterior circle. Of the 50 aneurysms seen in our literature review, majority were localized to ACA/Acom region, while ICA and PCom aneurysms were equal (eight each), and fewer MCA (6), BA (3), PCA (1), and SCA (2) aneurysms were noticed. This indicates an increased hemodynamic stress in the anterior circulation due to the presence of PTA.

The presence of PTA provides additional anatomic weak spots/pressure points: anatomical branch points act as weak pressure points. There are few cadaveric studies which highlight presence on PTA with associated aneurysms. We searched PubMed for 223 articles with key words – PTA, histology, and genetic basis; but none revealed a histological analysis from cadaveric studies. The anatomical composition of a PTA will suggest the fundamental basis of pathologies associated with it. It would be worthwhile to study the histology of PTA vessel wall – the tunica intima, media, and externa. A genetic analysis of the vessel wall would highlight the basic difference between a normal intracranial vessel and persistent carotid basilar anastomotic remnant.[14]

The location of aneurysm in relation to PTA is a decisive factor for therapy. An aneurysm which involves the ostium of PTA will need careful handling. Risk of occlusion of PTA with coils during endovascular treatment cannot be negated. Prolapse of coils into the parent artery with occlusion of PTA is another risk of treatment. Retrograde filling of aneurysm through a PTA needs to be considered. Simple ligation of aneurysm (while clipping) may not be sufficient when the PTA supplies blood to the aneurysm too.

The physiological significance of PTA depends on the type of circulation. In a fetal type, basilar system and PCAs are supplied by PTA. Occlusion of PTA can be hazardous here. In adult-type circulation, the PTA plays a rudimentary role. Risk of significant clinical consequences is low in this type. In our patient, the flow diverter stent encompassed the origin of PTA. While deploying the stent, it was essential to ensure complete apposition of the stent with endothelium. Precarious density between the endothelium and stent would predispose to thromboembolism of PTA and, hence, ischemia of brainstem perforators. Symptoms of posterior circulation stroke such as distal vertebrobasilar insufficiency will be seen in case of a fetal-type PTA thrombosis.

Association of PTA with stroke

In patients with carotid stenosis and incidental PTAs, posterior circulation ischemic stroke has been reported. PTA may also act as a conduit for superselective catheterization in angiography for stroke.

Association of PTA with trigeminal neuralgia

Symptoms of trigeminal neuralgia have been attributed to a PTA in some patients. Surgical manipulation does provide relief from neuralgic symptoms.

Other associations

Several case reports documenting association of PTA with moyamoya disease, aneurysms, hemangiomas, and brain tumors such as medulloblastoma and hemangioblastomas, and other pathologies like arteriovenous malformations have been published.[12,9] PTA has been used a conduit for passing endovascular catheter for therapy of aneurysms in nearby circulation.[7,17]

Need of surveillance

An important component of the management of patients with incidentally detected PTA is regular periodic follow-up angiography imaging. Appearance of new aneurysms on the PTA trunk, ICA-PTA junction, or BA-PTA junction or anywhere else in the circulation needs to be identified. In our patient with treatment history for two unruptured aneurysms, certain important features were traced on the follow-up angiography. This included detection of new aneurysms, patency of parent vessel with stent in situ, development of in-stent stenosis, thromboembolic occlusion of the PTA/ophthalmic artery/Pcom artery, or other perforator vessels.

CONCLUSION

Persistence of carotid vertebral anastomosis has been associated with aneurysms in various locations. Histological basis of aneurysm formations remains to be seen. Although papers documenting equivocal presence of aneurysms in
the patients with incidental PTA have been published, we report a case where patient develops progression of a newly diagnosed aneurysm. This highlights the heterogeneous nature of aneurysms with PTA as an associated factor. The role of active angiographic surveillance in patients with PTA cannot be undermined. Large-scale studies are needed to clarify the role of screening angiography in this subset of patients.

Consent to participate and publish material
Obtained in written from patient and relatives.

Availability of data and material
Available.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Aguiar GB, Conti ML, Veiga JC, Jory M, Souza RB. Basilar artery aneurysm at a persistent trigeminal artery junction. A case report and literature review. Interv Neuroradiol 2011;17:343-6.
2. Azab W, Delashaw J, Mohammed M. Persistent primitive trigeminal artery: A review. Turk Neurosurg 2012;22:399-406.
3. Baskaya MK, Roberts R, Rivera E, Nanda A. Persistent primitive trigeminal artery associated with posterior communicating artery aneurysm and hypoplastic vertebral artery. Surg Radiol Anat 2001;23:169-71.
4. Cloft HJ, Razack N, Kallmes DF. Prevalence of cerebral aneurysms in patients with persistent primitive trigeminal artery. J Neurosurg 1999;80:865-7.
5. Diana F, Mangiafico S, Valente V, Wilderk A, Grillea G, Colonnese C, et al. Persistent trigeminal artery aneurysms: Case report and systematic review. J Neurointerv Surg 2019;11:1261-5.
6. Hou K, Ji T, Guo Y, Xu K, Yu J. The coexistence of persistent primitive trigeminal artery, moyamoya disease, and multiple intracranial aneurysms: A case report and literature review. World Neurosurg 2019;124:313-8.
7. Ikushima I, Arikawa S, Korogi Y, Uehara H, Komohara Y, Takahashi M. Basilar artery aneurysm treated with coil embolization via persistent primitive trigeminal artery. Cardiovasc Intervent Radiol 2002;25:70-1.
8. Ishikawa T, Yamaguchi K, Anami H, Sumi M, Ishikawa T, Kawamata T. Treatment of large or giant cavernous aneurysm associated with persistent trigeminal artery: Case report and review of literature. World Neurosurg 2017;108:996.e11-5.
9. Karasawa J, Terano M, Nishikawa M, Kyoi K, Kikuchi H. Case of persistent bilateral carotid-basilar anastomoses (primitive otic artery and primitive trigeminal artery) with multiple cerebrovascular anomalies. No To Shinkei 1972;24:91-8.
10. Li MH, Li WB, Pan YP, Fang C, Wang W. Persistent primitive trigeminal artery associated with aneurysm: Report of two cases and review of the literature. Acta Radiol 2004;45:664-8.
11. Maeshima S, Tereda T, Masuo O, Nakai K, Itakura T, Komai N. Multiple cerebral aneurysms with persistent primitive trigeminal artery. J Clin Neurosci 1999;6:52-4.
12. O’uchi E, O’uchi T. Persistent primitive trigeminal arteries (PTA) and its variant (PTAV): Analysis of 103 cases detected in 16,415 cases of MRA over 3 years. Neuroradiology 2010;52:1111-9.
13. Tanaka Y, Hara H, Momose G, Kobayashi S, Kobayashi S, Sugita K. Proatlantal intersegmental artery and trigeminal artery associated with an aneurysm: Case report. J Neurosurg 1983;59:520-3.
14. Tubbs RS, Shoja MM, Salter EG, Oakes WJ. Cadaveric findings of persistent fetal trigeminal arteries. Clin Anat 2007;20:367-70.
15. Tunugia A, Kumar V, Garg P, Jaiswal AK, Behari S, Giant, thrombosed, sellar-suprasellar internal carotid artery aneurysm with persistent, primitive trigeminal artery causing hypopituitarism. Acta Neurochir (Wien) 2011;153:1129-33.
16. Ueda T, Goya T, Kinoshita K, Wakuta Y, Mihara K. Multiple anomalies of cerebral vessels. A case of multiple aneurysms associated with fenestration of the middle cerebral artery and persistent primitive trigeminal artery. No Shinkei Geka 1984;12:531-6.
17. Wan Z, Meng H, Xu N, Liu T, Chen Z, Zhang Z, et al. Coil embolisation of multiple cerebral aneurysms with lateral Type I persistent primitive trigeminal artery: A case report and literature review. Interv Neuroradiol 2019;25:628-34.

How to cite this article: Sreenivasan SA, Agarwal N, Roychowdhury S, Khandelwal P, Nanda A, Gupta G. Sequential aneurysms with incidental persistent primitive trigeminal artery: Is this association purely coincidental? A case study and review of the literature in search for a pathobiological mechanism. Surg Neurol Int 2022;13:508.

Disclaimer
The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Journal or its management. The information contained in this article should not be considered to be medical advice; patients should consult their own physicians for advice as to their specific medical needs.