Average degrees of edge-chromatic critical graphs

Yan Caoa, Guantao Chena, Suyun Jiangb,*, Huiqing Liuc,*, Fuliang Lud,*

a Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303
b School of Mathematics, Shandong University, Jinan, 250100
c Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062
d School of Mathematics and Statistics, Linyi University, Linyi, Shandong 276000

Abstract

Given a graph G, denote by Δ, \bar{d} and χ' the maximum degree, the average degree and the chromatic index of G, respectively. A simple graph G is called edge-Δ-critical if $\chi'(G) = \Delta + 1$ and $\chi'(H) \leq \Delta$ for every proper subgraph H of G. Vizing in 1968 conjectured that if G is edge-Δ-critical, then $\bar{d} \geq \Delta - 1 + \frac{3}{\pi}$. We show that

$$\bar{d} \geq \begin{cases} 0.69241\Delta - 0.15658 & \text{if } \Delta \geq 66, \\ 0.69392\Delta - 0.20642 & \text{if } \Delta = 65, \text{ and} \\ 0.68706\Delta + 0.19815 & \text{if } 56 \leq \Delta \leq 64. \end{cases}$$

This result improves the best known bound $\frac{2}{3}(\Delta + 2)$ obtained by Woodall in 2007 for $\Delta \geq 56$. Additionally, Woodall constructed an infinite family of graphs showing his result cannot be improved by well-known Vizing’s Adjacency Lemma and other known edge-coloring techniques. To overcome the barrier, we follow the recently developed recoloring technique of Tashkinov trees to expand Vizing fans technique to a larger class of trees.

Keywords: edge-k-coloring; edge-critical graphs; Vizing’s Adjacency Lemma

1 Introduction

All graphs in this paper, unless otherwise stated, are simple graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Denote by Δ the maximum degree of G. An edge-k-coloring of a graph G is a mapping $\varphi : E(G) \to \{1, 2, \cdots, k\}$ such that $\varphi(e) \neq \varphi(f)$ for any two adjacent edges e and f. We call $\{1, 2, \cdots, k\}$ the color set of φ. Denote by

*Partially supported by NSFC of China (Nos. 11671232, 11571096, 61373019, 11671186).
\(\mathcal{C}^k(G) \) the set of all edge-\(k \)-colorings of \(G \). The chromatic index \(\chi'(G) \) is the least integer \(k \geq 0 \) such that \(\mathcal{C}^k(G) \neq \emptyset \). We call \(G \) class one if \(\chi'(G) = \Delta \). Otherwise, Vizing’ theorem [12] gives \(\chi'(G) = \Delta + 1 \) and \(G \) is said to be of class two. An edge \(e \) is called critical if \(\chi'(G - e) < \chi'(G) \), where \(G - e \) is the subgraph obtained from \(G \) by removing the edge \(e \). A graph \(G \) is called edge-\(\Delta \)-critical if \(\chi'(G) = \Delta + 1 \) and \(\chi'(H) \leq \Delta \) holds for any proper subgraph \(H \) of \(G \). Clearly, if \(G \) is edge-\(\Delta \)-critical, then \(G \) is connected and \(\chi'(G - e) = \Delta \) for any \(e \in E(G) \). Let \(\overline{d}(G) \) denote the average degree of a graph \(G \). Vizing [14] made the following conjecture in 1968, which is commonly referred as Vizing’s Average Degree Conjecture.

Conjecture 1. [Vizing [14]] If \(G \) is an edge-\(\Delta \)-critical graph of \(n \) vertices, then \(\overline{d}(G) \geq \Delta - 1 + \frac{3}{n} \).

The conjecture has been verified for \(\Delta \leq 6 \), see [3, 5, 6, 8]. For arbitrary \(\Delta \), there are a few results on the lower bound for \(\overline{d}(G) \). Let \(G \) be an edge-\(\Delta \)-critical graph. Fiorini [2] showed, for \(\Delta \geq 2 \),

\[
\overline{d}(G) \geq \begin{cases}
\frac{1}{2}(\Delta + 1) & \text{if } \Delta \text{ is odd;} \\
\frac{1}{2}(\Delta + 2) & \text{if } \Delta \text{ is even.}
\end{cases}
\]

Haile [4] improved the bounds as follows.

\[
\overline{d}(G) \geq \begin{cases}
\frac{3}{5}(\Delta + 2) & \Delta = 9, 11, 13; \\
\frac{\Delta + 6}{15 + \sqrt{2\Delta}} - \frac{12}{\Delta + 4} & \Delta \geq 10, \Delta \text{ is even;} \\
\frac{\Delta + 7}{2} - \frac{16}{\Delta + 9} & \Delta = 15; \\
\frac{\Delta + 7}{2} & \Delta \geq 17, \Delta \text{ is odd.}
\end{cases}
\]

Sanders and Zhao [9] showed \(\overline{d}(G) \geq \frac{1}{2}(\Delta + \sqrt{2\Delta} - 1) \) for \(\Delta \geq 2 \). Woodall [16] improved the bound to \(\overline{d}(G) \geq \frac{t(\Delta + t - 1)}{2t - 1} \), where \(t = \lceil \sqrt{\Delta/2} \rceil \). Improving Vizing’s Adjacency Lemma, Woodall [15] improved the coefficient of \(\Delta \) from \(\frac{1}{2} \) to \(\frac{2}{3} \) as follows.

\[
\overline{d}(G) \geq \begin{cases}
\frac{2}{3}(\Delta + 1) & \text{if } \Delta \geq 2; \\
\frac{2}{3}\Delta + 1 & \text{if } \Delta \geq 8; \\
\frac{2}{3}(\Delta + 2) & \text{if } \Delta \geq 15.
\end{cases}
\]

In the same paper, Woodall provided the following example demonstrating that the above result cannot be improved by the use of his new adjacency Lemmas (see Lemma 2 and Lemma 3) and Vizing’s Adjacency Lemma alone.
Let G be a graph comprising k vertices of degree 4, all of whose neighbors have degree Δ, and $2k$ vertices of degree Δ, each of which is adjacent to two vertices of degree 4 and $\Delta - 2$ vertices of degree Δ. Graph G can be chosen to be triangle-free, and indeed to have arbitrarily large girth. Then G may not be edge-\(\Delta\)-critical, but it satisfies the conclusions of all the existing lemmas at that time including two mentioned above, and it has average degree $\frac{2}{3}(\Delta + 2)$. So, using these known results, it is impossible to prove that the example is not edge-\(\Delta\)-critical. On the other hand, we note that using our new result, Claim 3.4 in Section 3, it is readily seen that if $\Delta \geq 6$ then the above example is not edge-\(\Delta\)-critical. By proving a few stronger properties of edge-\(\Delta\)-critical graphs, we improve Woodall’s result as below for $\Delta \geq 56$.

Theorem 1. If G is an edge-\(\Delta\)-critical graph, then

$$
d(G) \geq \begin{cases} 0.69241\Delta - 0.15658 & \text{if } \Delta \geq 66, \\ 0.69392\Delta - 0.20642 & \text{if } \Delta = 65, \text{ and} \\ 0.68706\Delta + 0.19815 & \text{if } 56 \leq \Delta \leq 64. \end{cases}
$$

We will prove a few technic lemmas in Section 2 and give the proof of Theorem 1 in Section 3. We will use the following terminology and notation. Let G be a graph. Denote by $N(x)$ the neighborhood of x for any $x \in V(G)$, and $d(x)$ the degree of x, i.e., $d(x) = |N(x)|$. For any nonnegative integer m, we call a vertex x an m-vertex if $d(x) = m$, a ($< m$)-vertex if $d(x) < m$, and ($> m$)-vertex if $d(x) > m$. Correspondingly, we call a neighbor y of x an m-neighbor if $d(y) = m$, etc. Let k be a positive integer such that $C_k(G - e) \neq \emptyset$, and let $\varphi \in C_k(G - e)$ and $v \in V(G)$. Let $\varphi(v) = \{\varphi(e) : e \text{ is incident with } v\}$ and $\bar{\varphi}(v) = \{1, \ldots, k\} \setminus \varphi(v)$. We call $\varphi(v)$ the set of colors seen by v and $\bar{\varphi}(v)$ the set of colors missing at v. A set $X \subseteq V(G)$ is called **elementary** with respect to φ if $\bar{\varphi}(u) \cap \bar{\varphi}(v) = \emptyset$ for every two distinct vertices $u, v \in X$. For any color α, let E_α denote the set of edges assigned color α. Clearly, E_α is matching of G. For any two colors α and β, the components of induced by edges in $E_\alpha \cup E_\beta$, named (α, β)-chains, are even cycles and paths with alternating color α and β. For a vertex v of G, we denote by $P_v(\alpha, \beta, \varphi)$ the unique (α, β)-chain that contains the vertex v. Let $\varphi/P_v(\alpha, \beta, \varphi)$ denote the edge-k-coloring obtain from φ by switching colors α and β on the edges on $P_v(\alpha, \beta, \varphi)$.

2 Lemmas

Let q be a positive number, G be an edge-Δ-critical graph and $x \in V(G)$. For each $y \in N(x)$, let $\sigma_q(x, y) = |\{z \in N(y) \setminus \{x\} : d(z) \geq q\}|$, the number of neighbors of
y (except x) with degree at least q. Vizing studied the case \(q = \Delta \) and obtained the following result.

Lemma 1. [Vizing’s Adjacency Lemma [13]] Let \(G \) be an edge-\(\Delta \)-critical graph. Then \(\sigma_\Delta(x, y) \geq \Delta - d(x) + 1 \) holds for every \(xy \in E(G) \).

Woodall [15] studied \(\sigma_q(x, y) \) for the case \(q = 2\Delta - d(x) - d(y) + 2 \) and obtained the following two results. For convention, we let \(\sigma(x, y) = \sigma_q(x, y) \) when \(q = 2\Delta - d(x) - d(y) + 2 \).

Lemma 2. [Woodall [15]] Let \(xy \) be an edge in an edge-\(\Delta \)-critical graph \(G \). Then there are at least \(\Delta - \sigma(x, y) \geq \Delta - d(y) + 1 \) vertices \(z \in N(x) \setminus \{y\} \) such that \(\sigma(x, z) \geq 2\Delta - d(x) - \sigma(x, y) \).

Let \(x \) be a vertex in a graph \(G \) and \(y \in N(x) \). Vizing’s Adjacency Lemma shows that \(\sigma_\Delta(x, y) \geq \Delta - d(x) + 1 \). So, \(\sigma(x, y) \geq \Delta - d(x) + 1 \). Woodall studied their difference through the following two parameters.

\[
p_{\text{min}}(x) := \min_{y \in N(x)} \sigma(x, y) - \Delta + d(x) - 1 \quad \text{and} \quad p(x) := \min\{ p_{\text{min}}(x), \left\lceil \frac{d(x)}{2} \right\rceil - 1 \}.
\]

Clearly, \(p(x) < d(x)/2 - 1 \). As a corollary, the following lemma shows that there are about \(d(x)/2 \) neighbors \(y \) of \(x \) such that \(\sigma(x, y) \geq \Delta/2 \). In general, for any positive number \(q \) with \(q \leq \Delta \), we define the following two parameters.

\[
p_{\text{min}}(x, q) := \min_{y \in N(x)} \sigma_q(x, y) - \Delta + d(x) - 1 \quad \text{and} \quad p(x, q) := \min\{ p_{\text{min}}(x, q), \left\lceil \frac{d(x)}{2} \right\rceil - 3 \}.
\]

Lemma 3. [Woodall [15]] Every vertex \(x \) in an edge-\(\Delta \)-critical graph has at least \(d(x) - p(x) - 1 \) neighbors \(y \) for which \(\sigma(x, y) \geq \Delta - p(x) - 1 \).

When \(d(x) \leq \Delta - 4 \), we generalize the above results by allowing \(q \) taking various values and obtain the following two results, which serve as key ingredients in our proof of Theorem 1.

Lemma 4. Let \(xy \) be an edge in an edge-\(\Delta \)-critical graph \(G \) and \(q \) be a positive number. If \(\Delta/2 < q \leq \Delta - d(x)/2 - 2 \), then \(x \) has at least \(\Delta - \sigma_q(x, y) - 2 \) vertices \(z \in N(x) \setminus \{y\} \) such that \(\sigma_q(x, z) \geq 2\Delta - d(x) - \sigma_q(x, y) - 4 \).
Due to its length, the proof of Lemma 4 will be placed at the end of this section. The following is a consequence of it.

Lemma 5. Let \(G \) be an edge-\(\Delta \)-critical graph, \(x \in V(G) \) and \(q \) be a positive number. If \(\Delta/2 < q \leq \Delta - d(x)/2 - 2 \), then \(x \) has at least \(d(x) - p(x, q) - 3 \) neighbors \(y \) for which \(\sigma_q(x, y) \geq \Delta - p(x, q) - 5 \).

Proof. Let \(y \in N(x) \) such that \(p_{\min}(x, q) = \sigma_q(x, y) - \Delta + d(x) - 1 \).

If \(p(x, q) = p_{\min}(x, q) \), by Lemma 4, \(x \) has at least \(\Delta - \sigma_q(x, y) - 2 = \Delta - (\Delta - d(x) + p_{\min}(x, q) + 1) - 2 = d(x) - p_{\min}(x, q) - 3 \) vertices \(z \in N(x) \setminus \{y\} \) such that \(\sigma_q(x, z) \geq 2\Delta - d(x) - 4 - \sigma_q(x, y) = \Delta - p_{\min}(x, q) - 5 \).

If \(p(x, q) = \left\lfloor \frac{d(x)}{2} \right\rfloor - 3 < p_{\min}(x, q) \), then for every \(y \in N(x) \), \(\sigma_q(x, y) > \Delta - d(x) + 1 + \left\lfloor \frac{d(x)}{2} \right\rfloor - 3 \geq \Delta - \left\lfloor \frac{d(x)}{2} \right\rfloor - 3 = \Delta - p(x, q) - 6 \). So \(\sigma_q(x, y) \geq \Delta - p(x, q) - 5 \). \(\square \)

Let \(G \) be a graph (in this paragraph, \(G \) may be a multigraph), \(e_1 = y_0y_1 \in E(G) \) and \(\varphi \in C^k(G - e_1) \). A Tashkinov tree \(T \) is a sequence \(T = (y_0, e_1, y_1, \ldots, e_p, y_p) \) with \(p \geq 1 \) consisting of edges \(e_1, e_2, \ldots, e_p \) and vertices \(y_0, y_1, \ldots, y_p \) such that the following two conditions hold:

- The edges \(e_1, e_2, \ldots, e_p \) are distinct and \(e_i = y_ry_i \) for each \(1 \leq i \leq p \), where \(r < i \);
- For every edge \(e_i \) with \(2 \leq i \leq p \), there is a vertex \(y_h \) with \(0 \leq h < i \) such that \(\varphi(e_i) \in \varphi(y_h) \).

Clearly, a Tashkinov tree is indeed a tree of \(G \). Tashkinov [11] proved that if \(G \) is edge-\(k \)-critical with \(k \geq \Delta + 1 \), then \(V(T) \) is elementary. In the above definition, if \(e_i = y_0y_i \) for every \(i \) (i.e., \(T \) is a star with \(y_0 \) as the center), then \(T \) is a Vizing fan. The classic result of Vizing [10] show that for every Vizing fan \(T \) the set \(V(T) \) is elementary if \(G \) is edge-\(k \)-critical for every \(k \geq \Delta \), which includes edge-\(\Delta \)-critical graphs. In the definition of Tashkinov tree, if \(e_i = y_{i-1}y_i \) for every \(i \) (i.e. \(T \) is a path with end-vertices \(y_0 \) and \(y_p \)), then \(T \) is a Kierstead path, which was introduced by Kierstead [7]. Kierstead proved that for every Kierstead path \(P \) the set \(V(P) \) is elementary if \(G \) is an edge-\(k \)-critical with \(k \geq \Delta + 1 \). For simple graphs, following Kierstead’s proof, Zhang [17] noticed that for a Kierstead path \(P \) the set \(V(P) \) is elementary if \(G \) is edge-\(\Delta \)-critical and \(d(y_i) < \Delta \) for every \(i \) with \(2 \leq i \leq p \). Clearly, every Kierstead path \(P \) with three vertices is a Vizing fan, so \(V(P) \) is elementary if \(G \) is edge-\(\Delta \)-critical.
Lemma 6. [Kostochka and Stiebitz [10]] Let G be a graph with maximum degree Δ and $\chi'(G) = \Delta + 1$. Let $e_1 \in E(G)$ be a critical edge and $\varphi \in C^\Delta(G - e_1)$. If $K = (y_0, e_1, y_1, e_2, y_2, e_3, y_3)$ is a Kierstead path with respect to e_1 and φ, then the following statements hold:

1. $\bar{\varphi}(y_0) \cap \bar{\varphi}(y_1) = \emptyset$;

2. if $d(y_2) < \Delta$, then $V(K)$ is elementary with respect to φ;

3. if $d(y_1) < \Delta$, then $V(K)$ is elementary with respect to φ;

4. if $\Gamma = \bar{\varphi}(y_0) \cup \bar{\varphi}(y_1)$, then $|\bar{\varphi}(y_3) \cap \Gamma| \leq 1$.

In the definition of Tashkinov tree $T = (y_0, e_1, y_1, e_2, y_2, \ldots, y_p)$, we call T a broom if $e_2 = y_1y_2$ and for each $i \geq 3$, $e_i = y_2y_i$, i.e., y_2 is one of the end-vertices of e_i for each $i \geq 3$. Moreover, we call T a simple broom if $\varphi(e_i) \in \bar{\varphi}(y_0) \cup \bar{\varphi}(y_1)$ for each $i \geq 3$, i.e., $(y_0, e_1, y_1, e_2, y_2, e_i, y_i)$ is a Kierstead path.

Lemma 7. [Chen, Chen, Zhao [1]] Let G be an edge-Δ-critical graph, $e_1 = y_0y_1 \in E(G)$ and $\varphi \in C^\Delta(G - e_1)$ and $B = \{y_0, e_1, y_1, e_2, y_2, \ldots, e_p, y_p\}$ be a simple broom. If $|\bar{\varphi}(y_0) \cup \bar{\varphi}(y_1)| \geq 4$ and $\min\{d(y_1), d(y_2)\} < \Delta$, then $V(B)$ is elementary with respect to φ.

Lemma 8. Let G be an edge-Δ-critical graph, $xy \in E(G)$, and $\varphi \in C^\Delta(G - xy)$. Let q be a positive number with $d(x) < q \leq \Delta - 1$ and $Z = \{z \in N(x) \setminus \{y\} : d(z) > q, \varphi(xz) \in \bar{\varphi}(y)\}$. Then for every $z \in Z$ the following three inequalities hold.

\[
|Z| \geq \Delta - d(y) + 1 - \left\lfloor \frac{d(x) + d(y) - \Delta - 2}{\Delta - q} \right\rfloor \tag{1}
\]

\[
\sum_{z \in Z} (d(z) - q) \geq (\Delta - d(y) + 1)(\Delta - q) - d(x) - d(y) + \Delta + 2 \tag{2}
\]

\[
\sigma_{q}(x, z) \geq 2\Delta - d(x) - d(y) + 1 - \left\lfloor \frac{d(x) + d(y) + d(z) - 2\Delta - 2}{\Delta - q} \right\rfloor \tag{3}
\]

Proof. Since xy is a critical edge of G, $\bar{\varphi}(x) \cap \bar{\varphi}(y) = \emptyset$. Let $Z_y := \{z \in N(x) \setminus \{y\} : \varphi(xz) \in \bar{\varphi}(y)\}$. Clearly, $Z \subseteq Z_y$ and $|Z_y| = \Delta - d(y) + 1$. Since $\{x, y\} \cup Z_y$ forms a Vizing fan with center x, it is elementary, so $|\bar{\varphi}(x)| + |\bar{\varphi}(y)| + \sum_{z \in Z_y} |\bar{\varphi}(z)| \leq \Delta$ holds. Since $|\bar{\varphi}(x)| = \Delta - d(x) + 1$ and $|\bar{\varphi}(y)| = \Delta - d(y) + 1$, we have

\[
\sum_{z \in Z_y} |\bar{\varphi}(z)| \leq \Delta - |\bar{\varphi}(x)| - |\bar{\varphi}(y)| \leq d(x) + d(y) - \Delta - 2. \tag{4}
\]
Since $d(z) \leq q$ for all $z \in Z_y - Z$, $\sum_{z \in Z_y} |\bar{\varphi}(z)| \geq (|Z_y| - |Z|)(\Delta - q)$. Solving for $|Z|$, we get $|Z| \geq |Z_y| - \left[\frac{d(x) + d(y) - \Delta - 2}{\Delta - q}\right]$. Since $|Z_y| = \Delta - d(y) + 1$, inequality (1) holds.

Plugging $|\bar{\varphi}(z)| = \Delta - d(z)$ for each $z \in Z_y$ in inequality (4), we get
\[
\sum_{z \in Z_y} d(z) \geq |Z_y|\Delta - (d(x) + d(y) - \Delta - 2).
\]

Since $d(z) \leq q$ for every $z \in Z_y - Z$, we have
\[
\sum_{z \in Z} (d(z) - q) \geq \sum_{z \in Z_y} (d(z) - q) \geq |Z_y|\Delta - (d(x) + d(y) - \Delta - 2) - |Z_y|q.
\]

Plugging $|Z_y| = \Delta - d(y) + 1$, we get (2).

For each $z \in Z$, let $U^*_z = \{u \in N(z) \backslash \{x\} : \varphi(zu) \in \varphi(x) \cup \varphi(y) \backslash \{\varphi(xz)\}\}$ and $U_z = \{u \in U^*_z : d(u) > q\}$. Clearly, $|U^*_z| = 2\Delta - d(x) - d(y) + 1$ and $\{y, x, z\} \cup U^*_z$ forms a simple broom. Since $d(x) < q \leq \Delta - 1$, we have $d(x) \leq \Delta - 2$. Thus $|\bar{\varphi}(x) \cup \varphi(y)| \geq 4$ and $\min\{d(x), d(z)\} = d(x) < \Delta$. By Lemma 7, $\{y, x, z\} \cup U^*_z$ is elementary with respect to φ. So
\[
\sum_{u \in U^*_z} |\bar{\varphi}(u)| + |\varphi(x)| + |\varphi(y)| + |\bar{\varphi}(z)| \leq \Delta,
\]
which in turn gives $\sum_{u \in U^*_z} |\bar{\varphi}(u)| \leq d(x) + d(y) + d(z) - 2\Delta - 2$. Since $d(u) \leq q$ for every $u \in U^*_z - U_z$, $\sum_{u \in U^*_z} |\bar{\varphi}(u)| \geq (|U^*_z| - |U_z|)(\Delta - q)$. So,
\[
(|U^*_z| - |U_z|)(\Delta - q) \leq d(x) + d(y) + d(z) - 2\Delta - 2.
\]
Solving the above inequality with $|U^*_z| = 2\Delta - d(x) - d(y) + 1$, we get
\[
|U_z| \geq 2\Delta - d(x) - d(y) + 1 - \left[\frac{d(x) + d(y) + d(z) - 2\Delta - 2}{\Delta - q}\right].
\]
Since $\sigma_q(x, z) \geq |U_z|$, the inequality (3) holds. \hfill \Box

2.1 Proof of Lemma 4

Lemma 4. Let xy be an edge in an edge-Δ-critical graph G and q be a positive number. If $\Delta/2 < q \leq \Delta - d(x)/2 - 2$, then x has at least $\Delta - \sigma_q(x, y) - 2$ vertices $z \in N(x) \backslash \{y\}$ such that $\sigma_q(x, z) \geq 2\Delta - d(x) - \sigma_q(x, y) - 4$.

7
Proof. Let graph G, edge $xy \in E(G)$ and q be defined as in Lemma 4. A neighbor $z \in N(x) \setminus \{y\}$ is called feasible if there exits a coloring $\varphi \in \mathcal{C}^\Delta(G - xy)$ such that $\varphi(xz) \in \varphi(y)$, and such a coloring φ is called z-feasible. Denote by C_z the set of all z-feasible colorings. For each $\varphi \in C_z$, let

$$Z(\varphi) = \{v \in N(z) \setminus \{x\} : \varphi(vz) \in \varphi(x) \cup \varphi(y)\},$$

$$C_z(\varphi) = \{\varphi(vz) : v \in Z(\varphi) \text{ and } d(v) < q\},$$

$$Y(\varphi) = \{v \in N(y) \setminus \{x\} : \varphi(vy) \in \varphi(x) \cup \varphi(z)\},$$

$$C_y(\varphi) = \{\varphi(vy) : v \in Y(\varphi) \text{ and } d(v) < q\}.$$

Note that $Z(\varphi)$ and $Y(\varphi)$ are vertex sets while $C_z(\varphi)$ and $C_y(\varphi)$ are color sets. For each color $k \in \varphi(z)$, let $z_k \in N(z)$ such that $\varphi(z_kz) = k$. Similarly, we define y_k for each $k \in \varphi(y)$. Let $T(\varphi) = \{k \in \varphi(x) \cap \varphi(y) \cap \varphi(z) : d(y_k) < q \text{ and } d(z_k) < q\}.$

Since G is edge-Δ-critical, $\{x, y, z\}$ is elementary with respect to φ. So $\varphi(x), \varphi(y), \varphi(z)$ and $\varphi(x) \cap \varphi(y) \cap \varphi(z)$ are mutually exclusive and

$$\varphi(x) \cup \varphi(y) \cup \varphi(z) \cup (\varphi(x) \cap \varphi(y) \cap \varphi(z)) = \{1, 2, \ldots, \Delta\}.$$

Recall that $\sigma_q(x, y)$ and $\sigma_q(x, z)$ are number of vertices with degree $\geq q$ in $N(y) \setminus \{x\}$ and $N(z) \setminus \{x\}$, respectively. So, the following inequalities hold.

$$\sigma_q(x, y) + \sigma_q(x, z) \geq |Y(\varphi)| - |C_y(\varphi)| + |Z(\varphi)| - |C_z(\varphi)| + |\varphi(x) \cap \varphi(y) \cap \varphi(z)| - |T(\varphi)|$$

$$= |\varphi(x) \cup \varphi(y)| + |\varphi(x) \cup \varphi(y)| - 1 + |\varphi(x) \cap \varphi(y) \cap \varphi(z)| - |C_y(\varphi)| - |C_z(\varphi)| - |T(\varphi)|$$

$$= \Delta + |\varphi(x)| - |C_y(\varphi)| - |C_z(\varphi)| - |T(\varphi)| - 1$$

$$= 2\Delta - d(x) + 1 - |C_y(\varphi)| - |C_z(\varphi)| - |T(\varphi)| - 1.$$

So, Lemma 4 follows the three statements below.

I. For any $\varphi \in C_z$, $|C_z(\varphi)| \leq 1$ and $|C_y(\varphi)| \leq 1$;

II. there exists a $\varphi \in C_z$ such that $|T(\varphi)| \leq 2$; and

III. there are $\Delta - \sigma_q(x, y) - 2$ feasible vertices $z \in N(x) \setminus \{y\}$.

For every z-feasible coloring $\varphi \in \mathcal{C}^\Delta(G - xy)$, let $\varphi^d \in \mathcal{C}^\Delta(G - xz)$ obtained from φ by assigning $\varphi^d(xy) = \varphi(xz)$ and keeping all colors on other edges unchange. Clearly, φ^d is a y-feasible coloring and $Z(\varphi^d) = Z(\varphi)$, $Y(\varphi^d) = Y(\varphi)$, $C_z(\varphi^d) = C_z(\varphi)$ and
$C_y(\varphi^d) = C_y(\varphi)$. We call φ^d the dual coloring of φ. Considering dual colorings, we see that some properties for vertex z also hold for vertex y.

The condition $q \leq \Delta - d(x)/2 - 2$ implies $2(\Delta - q) + (\Delta - d(x)) + 1 > \Delta$. So, for any $\varphi \in C^\Delta(G - xy)$, every elementary set X with $x \in X$ contains at most one vertex with degree $\leq q$.

Let $z \in N(x) \setminus \{y\}$ be a feasible vertex and $\varphi \in C_z$. By the definition of $Z(\varphi)$, $G[\{x, y, z\} \cup Z(\varphi)]$ contains a simple broom, so $\{x, y, z\} \cup Z(\varphi)$ is elementary with respect to φ. Consequently, it contains at most one vertex other than x having degree $< q$. Thus, $|C_z(\varphi)| \leq 1$. By considering its dual φ^d, we have $|C_y(\varphi)| = |C_y(\varphi^d)| \leq 1$. Hence, I holds.

The proofs of II and III are much more complicated. In the remainder of the proof, we let $Z = Z(\varphi)$, $Y = Y(\varphi)$, $C_z = C_z(\varphi)$, $C_y = C_y(\varphi)$, and $T = T(\varphi)$ if the coloring φ is clearly referred. Let $R = C_z \cup C_y$ and $\tilde{\varphi}(x, R) = \varphi(x) \setminus R$. A coloring $\varphi \in C_z$ is called optimal if $|C_z| + |C_y|$ is maximum over all feasible colorings.

2.1.1 Proof of II.

Suppose to the contrary: $|T| \geq 3$ for every $\varphi \in C_z$. Let φ be an optimal feasible coloring and assume, without loss of generality, $\varphi(xz) = 1$.

Claim A. For each $i \in \tilde{\varphi}(x, R)$ and $k \in T$, $P_x(i, k, \varphi)$ contains both y and z.

Proof. We first show that $z \in V(P_x(i, k, \varphi))$. Otherwise, $P_x(i, k, \varphi)$ is disjoint with $P_x(i, k, \varphi)$. Let $\varphi' = \varphi/P_x(i, k, \varphi)$. Since $1 \neq i, k$, φ' is also feasible. Since colors in R are unchanged and $d(z_k) < q$, $C_z(\varphi') = C_z \cup \{i\}$ and $C_y(\varphi') \supseteq C_y$, giving a contradiction to the maximality of $|C_y| + |C_z|$. By considering the dual φ^d, we can verify that $y \in V(P_x(i, k, \varphi))$. \square

Since $|T| \geq 3$, there are three colors $k_1, k_2, k_3 \in T$. Let

\[
V_T = \{z_{k_1}, z_{k_2}, z_{k_3}\} \cup \{y_{k_1}, y_{k_2}, y_{k_3}\},
\]

\[
W(\varphi) = \{u \in V_T : \tilde{\varphi}(u) \cap \tilde{\varphi}(x) \subseteq R\},
\]

\[
M(\varphi) = V_T - W(\varphi) = \{u \in V_T : \tilde{\varphi}(u) \cap \tilde{\varphi}(x, R) \neq \emptyset\},
\]

\[
E_T = \{zz_k, zz_k, zy_{k_1}, zy_{k_2}, zy_{k_3}, yz_{k_1}, yz_{k_2}, yz_{k_3}\},
\]

\[
E_W(\varphi) = \{e \in E_T : e \text{ is incident to a vertex in } W(\varphi)\}, \text{ and}
\]

\[
E_M(\varphi) = E_T - E_W(\varphi) = \{e \in E_T : e \text{ is incident to a vertex in } M(\varphi)\}.
\]

For convenience, we let $W = W(\varphi)$, $M = M(\varphi)$, $E_W = E_W(\varphi)$ and $E_M = E_M(\varphi)$.

9
We assume that $|E_W|$ is minimum over all optimal feasible coloring φ and all sets of three colors in $T(\varphi)$. For each $v \in M$, pick a color $\alpha_v \in \varphi(v) \cap \varphi(x, R)$. Let $C_M = \{\alpha_v : v \in M\}$. Clearly, $|C_M| \leq |M|$. Note that $\{z_{k_1}, z_{k_2}, z_{k_3}\} \cap \{y_{k_1}, y_{k_2}, y_{k_3}\}$ may be not empty, $|E_W|/2 \leq |W| \leq |E_W|$ and $|E_W|/2 \leq |M| \leq |E_M|$.

Claim B. If there exist two vertices $u, v \in V_T$ and a color $\alpha \in \varphi(x) \setminus R$ such that $\alpha \in \varphi(u) \cap \varphi(v)$, then there is an optimal feasible coloring φ^* such that $|E_W(\varphi^*)| \leq |E_W|$ and $\{u, v\} \cap M(\varphi^*) \neq \emptyset$. Moreover, if $\varphi(x) \setminus (R \cup C_M) \neq \emptyset$, then u or $v \in M$.

Proof. We first note that the condition of $d(x)$ and q gives

$$|\varphi(x)| = \Delta - d(x) + 1 \geq \Delta - 2(\Delta - q) + 5 > 5. \quad (5)$$

If $\{u, v\} \cap M \neq \emptyset$, we are done. Suppose $u, v \in W$. Let β be an arbitrary color in $\varphi(x, R)$ with the preference that $\beta \in \varphi(x, R) \setminus C_M$ if the set is not empty. Since $|R| \leq 2$ and (5), such a color β exists. Since $u, v \in W$, we have $\beta \in \varphi(u) \cap \varphi(v)$. So, both u and v are endvertices of (α, β)-chains. Assume without loss of generality $P_u(\alpha, \beta, \varphi)$ is disjoint with $P_x(\alpha, \beta, \varphi)$. We note that $\beta \in \varphi(y) \cap \varphi(z)$ since $\{x, y, z\}$ is an elementary set.

We first consider the case of $\alpha = 1$. In this case, $P_x(\alpha, \beta, \varphi) = P_y(\alpha, \beta, \varphi)$ holds; otherwise, $\varphi/P_x(\alpha, \beta, \varphi)$ would lead a Δ-coloring of G. Since $\varphi(xz) = 1, z \in P_x(\alpha, \beta, \varphi)$. So, $P_u(\alpha, \beta, \varphi) \cap \{x, y, z\} = \emptyset$. Hence, coloring $\varphi' = \varphi/P_u(\alpha, \beta, \varphi)$ is feasible, $C_y(\varphi') = C_y$, $C_z(\varphi') = C_z$ and $T(\varphi') = T$. So, φ' is also optimal, $u \in M(\varphi')$ and $|E_W(\varphi')| \leq |E_W|$ with that the inequality holds if the other endvertex of $P_u(\alpha, \beta, \varphi)$ is not in M or $\beta \notin R \cup C_M$.

We now suppose $\alpha \in \varphi(x) \setminus (R \cup \{1\})$. So, both α and β are not in $R \cup \{1\}$. Let $\varphi' = \varphi/P_u(\alpha, \beta, \varphi)$. Then, φ' is feasible (for z), $C_y(\varphi') = C_y$ and $C_z(\varphi') = C_z$. Thus, φ' is still an optimal coloring and $\beta \in \varphi'(u)$. We have $|E_W(\varphi')| \leq |E_W|$ and $u \in M(\varphi')$. By the minimality of $|E_W|$, we have the other endvertex of $P_u(\alpha, \beta, \varphi)$ must be in M and $\beta \in C_M$, which leads a contradiction to the minimality of $|E_W|$ if $\beta \notin R \cup C_M$. \hfill \square

Claim C. There exist a color $k \in \{k_1, k_2, k_3\}$ and three distinct colors i, j, ℓ where $i, j \in \varphi(x, R)$ and $\ell \in \varphi(x, R) \cup \{1\}$ such that $i \in \varphi(z_k), j \in \varphi(y_k)$ and $\ell \in \varphi(z_k) \cup \varphi(y_k)$.

Proof. We first note that if there exist $i, j \in \varphi(x, R)$ such that $i \in \varphi(z_k)$ and $j \in \varphi(y_k)$, then $i \neq j$; for otherwise, by Claim A, the path $P_x(i, k, \varphi)$ contains three endvertices x, z_k and y_k, a contradiction.

First we show that there exist $i, j \in \varphi(x, R)$ and $k \in \{k_1, k_2, k_3\}$ such that $i \in \varphi(z_k)$ and $j \in \varphi(y_k)$. Suppose not. Then $|E_M| \leq 3$ and $|E_W| \geq 3$, which in turn give $|W| \geq \left\lceil \frac{1}{2} \right\rceil = 2$ and $|M| \leq |E_M| \leq 3$. Let $u, v \in W$. By (5), $|\varphi(x)| \geq 6 > |R| + |M|$. There exists a color $\beta \in \varphi(x, R) \setminus C_M$. Then, $\beta \in \varphi(u) \cap \varphi(v)$ as $u, v \in W$.

10
Since $|R| \leq 2$, we have

$$\left| \varphi(u) \setminus R \right| + \left| \varphi(v) \setminus R \right| + \left| \varphi(x) \right| > 2(\Delta - q - 2) + \Delta - d(x) + 1 \geq \Delta + 1.$$

So, there is a color α shared by at least two of these three sets. Since $(\varphi(u) \setminus R) \cap \varphi(x) = \emptyset$ and $(\varphi(v) \setminus R) \cap \varphi(x) = \emptyset$, we have $\alpha \in (\varphi(u) \setminus R) \cap (\varphi(v) \setminus R) \cap \varphi(x)$. By Claim B, there exists an optimal feasible coloring φ' such that $|E_W(\varphi')| \leq |E_W|$. Moreover, since $\beta \notin R \cup C_M$, the inequality holds which gives a contradiction to the minimality of $|E_W|$.

We now only need to show that additionally there exists another color $\ell \in \varphi(x, R) \cup \{1\}$ such that $\ell \in \varphi(y_k) \cup \varphi(z_k)$. Suppose on the contrary that there is no such a color ℓ. Then the following equalities hold.

$$\varphi(z_k) \cap \varphi(x, R) = \{i\} \quad \text{and} \quad \varphi(y_k) \cap \varphi(x, R) = \{j\}$$

Moreover, $1 \notin \varphi(z_k) \cup \varphi(y_k)$. Since $|R| \leq 2$, the following inequalities hold.

$$\left| \varphi(z_k) \setminus (R \cup \{i\}) \right| + \left| \varphi(y_k) \setminus (R \cup \{j\}) \right| + \left| \varphi(x) \setminus (R \cup \{1\}) \right| > 2(\Delta - q - |R| - 1) + \Delta - d(x) + 2 \geq \Delta$$

So, there is color α in two of the three sets. Since $(\varphi(z_k) \setminus (R \cup \{i\})) \cap (\varphi(x) \cap R \cup \{1\}) = \emptyset$ and $(\varphi(y_k) \setminus (R \cup \{j\})) \cap (\varphi(x) \cap R \cup \{1\}) = \emptyset$, $\alpha \in \varphi(z_k) \cap \varphi(y_k) \cap \varphi(x) \setminus (R \cup \{i, j, 1\})$.

Since $|\varphi(x)| = \Delta - d(x) + 1 \geq \Delta - 2(\Delta - q) + 5 > 5$, there exists a color $\beta \in \varphi(x) \setminus (R \cup \{i, j\})$. Then, $\beta \notin \varphi(z_k) \cup \varphi(y_k)$. So, $\beta \in (\varphi(x) \cap \varphi(z_k) \cap \varphi(y_k)) \setminus (R \cup \{i, j\})$.

Applying Claim B with color α, we obtain an optimal coloring φ' and $|E_W(\varphi')| \leq |E_W|$, but color β serves as the required color ℓ, giving a contradiction. \hfill \Box

Let k, i, j and ℓ be as stated in Claim C. If $\ell \neq 1$, we consider coloring obtained from φ by interchange colors 1 and ℓ for edges not on the path $P_x(1, \ell, \varphi)$, and rename it as φ. So we may assume $1 \in \varphi(y_k) \cup \varphi(z_k)$.

We first consider the case of $1 \in \varphi(y_k)$. By Claim A, the paths $P_x(i, k, \varphi)$ and $P_x(j, k, \varphi)$ both contain y, z. Since $\varphi(yy_k) = \varphi(zz_k) = k$, these two paths also contain y_k, z_k. Since $i \in \varphi(z_k)$, we have x and z_k are the two endvertices of $P_x(i, k, \varphi)$. So, $i \in \varphi(y) \cap \varphi(z) \cap \varphi(y_k)$. Similarly, we have $j \in \varphi(y) \cap \varphi(z) \cap \varphi(y_k)$. We now consider the following sequence of colorings of $G - xy$.

Let φ_1 be obtained from φ by assigning $\varphi_1(yy_k) = 1$. Since 1 is missing at both y and y_k, φ_1 is an edge-Δ-coloring of $G - xy$. Now k is missing at y and y_k, i is still missing at z_k. Since G is not Δ-colorable, $P_x(i, k, \varphi) = P_y(i, k, \varphi)$; otherwise $\varphi/P_y(i, k, \varphi)$ can be extended to an edge-Δ-coloring of G giving a contradiction. Furthermore, $z_k, y_k \notin V(P_x(i, k, \varphi'))$ since either i or k is missing at these two vertices, which in turn shows that $z \notin V(P_x(i, k, \varphi'))$ since $\varphi_1(zz_k) = k$.\hfill \Box
Let $\varphi_2 = \varphi_1 / P_x(i, k, \varphi_1)$. We have $k \in \varphi_2(x), i \in \varphi_2(y) \cap \varphi_2(z_k)$ and $j \in \varphi_2(x) \cap \varphi_2(y_k)$. Since G is not edge-Δ-colorable, $P_x(i, j, \varphi_2) = P_y(i, j, \varphi_2)$ which contains neither y_k nor z_k.

Let $\varphi_3 = \varphi_2 / P_x(i, j, \varphi_2)$. Then $k \in \varphi_3(x)$ and $j \in \varphi_3(y) \cap \varphi_3(y_k)$.

Let φ_4 be obtained from φ_3 by recoloring yy_i by j. Then $1 \in \varphi_4(y), \varphi_4(xz) = 1, k \in \varphi_4(x), \varphi_4(z_{z_k}) = k$. Since $\varphi_4(xz) = 1 \in \varphi_4(y), \varphi_4$ is feasible. Since $i, j, k \notin R = C_y \cup C_z$, the colors in R are unchanged during this sequence of re-colorings, so $C_y(\varphi_4) \supseteq C_y$ and $C_z(\varphi_4) \supseteq C_z$. Since $\varphi_4(z_{z_k}) = k \in \varphi_4(x)$ and $d(z_k) < q$, we have $k = \varphi_4(z_{z_k}) \in C_z(\varphi_4)$.

So, $C_z(\varphi_4) \supseteq C_z \cup \{k\}$. We therefore have $|C_y(\varphi_4)| + |C_z(\varphi_4)| \geq |C_y| + |C_z| + 1$, giving a contradiction.

For the case of $1 \in \varphi(z_k)$, we consider the dual coloring φ^d of $G - xz$ obtained from φ by uncoloring xz and coloring xy with color 1. Following the exact same argument above, we can reach a contradiction to the maximum of $|C_y| + |C_z|$. This completes the proof of \textit{II}. \hfill \qed

2.1.2 Proof of III.

Denote by Z the set of all feasible vertices. For a coloring $\varphi \in C_\Delta(G - xy)$, let $Z(\varphi) = \{z \in N(x) : \varphi(xz) \in \varphi(y)\}$ and $S(\varphi) = \{z \in N(x) \setminus Z(\varphi) : d(y_{\varphi(xz)}) < q\}$, where $y_j \in N(y)$ with $\varphi(yy_j) = j$ for any color j. We call vertices in $S(\varphi)$ \textit{semi-feasible} vertices of φ.

Claim 2.1. For any coloring $\varphi \in C_\Delta(G - xy)$, the following two inequalities hold.

- **a.** $|Z(\varphi) \cup S(\varphi)| \geq \Delta - \sigma_q(x, y) - 1$;

- **b.** With one possible exception, for all $z \in S(\varphi)$ there exists a coloring $\varphi^* \in C_\Delta(G - xy)$ such that $\varphi^*(xz) \in \varphi^*(y)$.

Proof. Let $\varphi \in C_\Delta(G - xy)$. Since G is edge-Δ-critical, xy is an edge of G, it is easy to see that $\varphi(y) \subseteq \varphi(x)$ and $\varphi(x) \subseteq \varphi(y)$. Divide $\varphi(y)$ into two subsets:

$$\varphi(y, \geq q) = \{i \in \varphi(y) : d(y_i) \geq q\} \quad \text{and} \quad \varphi(y, < q) = \{i \in \varphi(y) : d(y_i) < q\}.$$

Clearly, $\sigma_q(x, y) = |\varphi(y, \geq q)|$ and $|\varphi(y)| + |\varphi(y, < q)| = \Delta - \sigma_q(x, y)$. Since $\varphi(y) \subseteq \varphi(x)$, to prove a, we only need to show $|\varphi(x) \cap \varphi(y, < q)| \leq 1$. Since edge xy and the edges incident to y with colors in $\varphi(x)$ form a Vizing fan F, the vertex set $V(F)$ is elementary with respect to φ. Since $d(x) + 2q < 2\Delta$, $V(F) \setminus \{x\}$ contains at most one vertex with degree $< q$. So $|\varphi(x) \cap \varphi(y, < q)| \leq 1$ holds.
To prove b, we show that for any two distinct vertices $z_k, z_\ell \in S(\varphi)$, there is a coloring $\varphi^* \in C^\Delta(G - xy)$ such that at least one of $\varphi^*(xz_k)$ and $\varphi^*(xz_\ell)$ is in $\bar{\varphi}^*(y)$. We assume $\varphi(xz_k) = k$ and $\varphi(xz_\ell) = \ell$. Let $y_k, y_\ell \in N(y) \setminus \{x\}$ such that $\varphi(yy_k) = k$ and $\varphi(yy_\ell) = \ell$.

By the definition of $S(\varphi)$, we have $d(y_k) < q$ and $d(y_\ell) < q$. Since $\Delta/2 < q \leq \Delta - d(x)/2 - 2$, the following inequality holds.

$$|\bar{\varphi}(x)| + |\bar{\varphi}(y_k)| + |\bar{\varphi}(y_\ell)| > \Delta$$ \hspace{1cm} (6)

We claim that there exists a coloring $\varphi^* \in C^\Delta(G - xy)$ such that keeping the property $\varphi^*(xz) = 1 \in \bar{\varphi}^*(y)$ and having the following property.

$$\bar{\varphi}^*(x) \cap (\bar{\varphi}^*(y_k) \cup \bar{\varphi}^*(y_\ell)) \neq \emptyset$$ \hspace{1cm} (7)

Otherwise, by (6), there exists $r \in \varphi(x) \cap \bar{\varphi}(y_k) \cap \bar{\varphi}(y_\ell)$. Choose a color $i \in \varphi(x)$. Since at least one of colors i and r is missing at each of x, y_k and y_ℓ, we may assume $P_{y_k}(i, r, \varphi)$ is disjoint with $P_x(i, r, \varphi)$. Then, in coloring $\varphi/P_{y_k}(i, r, \varphi)$, color i is missing at both x and y_k, giving a contradiction.

By (7), we may assume that there exists a color $i \in \bar{\varphi}(x) \cap \bar{\varphi}(y_k)$. Since G is not edge-Δ-colorable, $P_x(i, 1, \varphi) = P_y(i, 1, \varphi)$. So, $P_{y_k}(i, 1, \varphi)$ is disjoint with $P_x(i, 1, \varphi)$. If $1 \in \bar{\varphi}(y_k)$, let $\varphi' = \varphi/P_{y_k}(1, i, \varphi)$. For coloring φ', we have $1 \in \bar{\varphi}'(y_k)$ and $\varphi'(x) = \varphi(x), \varphi'(y) = \varphi(y)$. Thus we can assume $1 \in \bar{\varphi}(y_k)$. Let φ^* be a coloring obtained from φ by recoloring yy_k with color 1. Then, $\varphi^*(xz_k) = k \in \bar{\varphi}^*(y)$. This completes the proof of III. \hfill \Box

3 Proof of Theorem 1

Let G be an edge-Δ-critical graph with n vertices and m edges. Clearly, $\bar{d}(G) = 2m/n$. We assume $\Delta \geq 56$. Let $q := \min\{2\sqrt{2}\Delta - 2, \frac{3}{4}\Delta - 2\}$, that is, $q = \frac{2\sqrt{2}\Delta - 2}{2\sqrt{2} + 1}$ if $\Delta \geq 66$ and $q = \frac{3}{4}\Delta - 2$ if $56 \leq \Delta \leq 65$. We initially assign to each vertex x of G a charge $M(x) = d(x)$ and redistribute the charge according to the following rule:

- **Rule of Discharge**: each ($> q$)-vertex y distributes its surplus charge of $d(y) - q$ equally among all ($< q$)-neighbors of y.

Denote by $M'(x)$ the resulting charge on each vertex x. Clearly, $\sum_{x \in V(G)} M'(x) = \sum_{x \in V(G)} M(x) = 2m$. Let $X_1 = \{x \in V(G) : d(x) \leq 3q - 2\Delta\}$. We show that $M'(x) \geq 2 + 2(\Delta - q)$ for all vertices in X_1 and $M'(x) \geq q$ for all other vertices, which gives $\bar{d}(G) \geq q - (3q - 2\Delta - 2)\frac{|X_1|}{n}$. We then show that $|X_1|/n$ is small in order to complete our proof.
Since \(q = \min\{\frac{2\sqrt{2}(\Delta-1)-2}{2\sqrt{2}+1}, \frac{3}{4}\Delta - 2\} \) and \(\Delta \geq 56 \), we have \(\frac{\Delta+2}{2} < q < \frac{3\Delta}{4} \). Thus \(q > \Delta - q + 2 > 3q - 2\Delta \).

Claim 3.1. If \(d(x) \leq \Delta - q + 2 \), then \(M'(x) \geq d(x) + 2(\Delta - q) \). Consequently, \(M'(x) \geq d(x) + 2(\Delta - q) \) for each \(x \in X_1 \).

Proof. Let \(y \) be an arbitrary neighbor of \(x \). Since \(2\Delta - d(x) - d(y) + 2 \geq \Delta - d(x) + 2 \geq q \), we have \(\sigma_q(x, y) \geq \sigma(x, y) \). We will use lower bounds of \(\sigma(x, y) \) to estimate \(\sigma_q(x, y) \). Following the definition \(p_{\min}(x) = \min_{v \in N(x)} \sigma(x, v) - \Delta + d(x) - 1 \) and \(p(x) = \min\{p_{\min}(x), \lfloor \frac{d(x)}{2} \rfloor - 1\} \), we have the following inequalities.

\[
1 \leq d_{<q}(y) \leq d(y) - \sigma(x, y) \leq d(y) - (\Delta - d(x) + p(x) + 1)
\]

By Lemma 3, \(x \) has at least \(d(x) - p(x) - 1 \) neighbors \(y \) for which \(\sigma(x, y) \geq \Delta - p(x) - 1 \), so for these neighbors \(y \) the following inequalities hold.

\[
1 \leq d_{<q}(y) \leq d(y) - \sigma(x, y) \leq d(y) - (\Delta - p(x) - 1)
\]

We first consider the case \(p(x) \geq 1 \). In this case, we have \(q \leq \Delta - d(x) + 2 \leq \Delta - d(x) + p + 1 \). Since \(\frac{d(y) - q}{d(y) - p(x) - 1} \) with \(a \leq b \) is a decreasing function of \(d(y) \), for each \(y \in N(x) \), \(x \) receives charge at least

\[
\frac{d(y) - q}{d(y) - (\Delta - p(x) - 1)} \geq \frac{\Delta - q}{d(x) - p(x) - 1},
\]

And there are at least \(d(x) - p(x) - 1 \) neighbors \(y \) of \(x \) giving \(x \) at least

\[
\frac{d(y) - q}{d(y) - (\Delta - p(x) - 1)} \geq \frac{\Delta - q}{p(x) + 1},
\]

where the inequality holds because \(q \leq \Delta - d(x) + 2 \leq \Delta - p(x) - 1 \) as \(1 \leq p(x) \leq \lfloor \frac{d(x)}{2} \rfloor - 1 \).

Thus \(x \) receives at least

\[
(d(x) - p(x) - 1) \frac{\Delta - q}{p(x) + 1} + (p(x) + 1) \frac{\Delta - q}{d(x) - p(x) - 1} = (\theta + \theta^{-1})(\Delta - q) \geq 2(\Delta - q),
\]

where \(\theta = \frac{d(x) - p(x) - 1}{p(x) + 1} \). It follows that \(M'(x) \geq M(x) + 2(\Delta - q) = d(x) + 2(\Delta - q) \).

We now consider the case \(p(x) = \min\{p_{\min}(x), \lfloor \frac{d(x)}{2} \rfloor - 1\} = 0 \). If \(d(x) = 2 \), then by (8) for every neighbor \(y \) of \(x \) we have \(d_{<q}(y) = 1 \) and \(d(y) = \Delta \), thus \(M'(x) \geq M(x) + 2(\Delta - q) = d(x) + 2(\Delta - q) \). If \(d(x) \geq 3 \), then by (9) for at least \(d(x) - 1 \) neighbors \(y \) of \(x \), we have \(d_{<q}(y) = 1 \) and \(d(y) = \Delta \). Thus \(M'(x) \geq M(x) + (d(x) - 1)(\Delta - q) \geq d(x) + 2(\Delta - q) \).
Claim 3.2. For each $x \in V(G) - X_1$, $M'(x) \geq q$ holds.

Proof. Let $x \in V(G) - X_1$, i.e., $d(x) > 3q - 2\Delta$. If $d(x) \geq q$, then $M'(x) = M(x) - \frac{d(x)-q}{d_{\sigma_q}(x)}d_{<q}(x) = q$. If $3q - 2\Delta < d(x) \leq \Delta - q + 2$, then by Claim 3.1, we have $M'(x) \geq d(x) + 2(\Delta - q) > q$. So we only need to consider the case $\Delta - q + 2 < d(x) < q$.

Since G is edge-Δ-critical and $xy \in E(G)$, there exists a coloring $\varphi \in \mathcal{C}\Delta(G - xy)$. Let $Z_q = \{z \in N(x) : d(z) > q\}$, $Z_y = \{z \in N(x) \setminus \{y\} : \varphi(xz) \in \varphi(y)\}$ and $Z_y = Z_q \cap Z_y$. Clearly, for each $z \in Z_q$, x receives at least $\frac{d(z)-q}{d(z)-\sigma_q(x,z)}$ charge. Thus $M'(x) \geq d(x) + \sum_{z \in Z_q} \frac{d(z)-q}{d(z)-\sigma_q(x,z)}$. We consider the following three cases to complete the proof.

Case 1. $\Delta - q + 2 < d(x) < q$ and x has a neighbor y such that $d(y) \leq q$.

By Lemma 8 (3), for each vertex $z \in Z_q^*$, we have

$$\sigma_q(x,z) \geq 2\Delta - d(x) - d(y) + 1 - \left[\frac{d(x) + d(y) + d(z) - 2\Delta - 2}{\Delta - q} \right] \geq 2\Delta - d(x) - d(y),$$

where we used the inequality $\left\lfloor \frac{d(x) + d(y) + d(z) - 2\Delta - 2}{\Delta - q} \right\rfloor \leq 1$ following $d(x) < q, d(y) \leq q, d(z) \leq \Delta$ and $q < \frac{3}{4}\Delta$. Thus $\sigma_q(x,z) \geq 2\Delta - d(x) - d(y)$. So, $M'(x) \geq M(x) + \sum_{z \in Z_q^*} \frac{d(z)-q}{d(z)-\sigma_q(x,z)}$. By Lemma 8 (2), we have $\sum_{z \in Z_q^*} (d(z) - q) \geq (\Delta - d(y) + 1)(\Delta - q) - d(x) - d(y) + \Delta + 2$. Thus

$$\sum_{z \in Z_q^*} \frac{d(z)-q}{d(z) - (2\Delta - d(x) - d(y))} \geq \frac{(\Delta - q)(\Delta - d(y) + 1) - (d(x) + d(y) - \Delta - 2)}{d(x) + d(y) - \Delta} \geq \frac{(\Delta - q)(\Delta - d(y) + 1) + 2}{d(x) + d(y) - \Delta} - 1.$$

So, we have the following inequality.

$$M'(x) \geq M(x) + \sum_{z \in Z_q^*} \frac{d(z)-q}{d(z) - (2\Delta - d(x) - d(y))} \geq d(x) + \frac{(\Delta - q)(\Delta - d(y) + 1) + 2}{d(x) + d(y) - \Delta} - 1$$

$$\geq d(x) + q - \Delta + \frac{(\Delta - q)(\Delta - q + 1) + 2}{d(x) + q - \Delta} - 1 - q + \Delta$$

$$\geq 2\sqrt{(\Delta - q)(\Delta - q + 1) + 2 + \Delta - q - 1}$$

$$\geq 3(\Delta - q) \geq q.$$
Case 2. $2(\Delta - q) - 4 < d(x) < q$ and $d(y) > q$ for every neighbor y of x.

Let $y \in N(x)$ such that $d(y) := \min \{d(u) : u \in N(x)\}$. By Lemma 8 (3), for each vertex $z \in Z_q^*$ we have

$$
\sigma_q(x, z) \geq 2\Delta - d(x) + 1 - \left[\frac{d(x) + d(y) + d(z) - 2\Delta - 2}{\Delta - q} \right]
$$

$$
\geq 2\Delta - d(x) - d(y) - 1,
$$

where we used the inequality $\left\lfloor \frac{d(x) + d(y) + d(z) - 2\Delta - 2}{\Delta - q} \right\rfloor \leq 2$ when $d(x) < q$ and $q < \frac{3}{4}\Delta$. By Lemma 8 (2), we have

$$
\sum_{z \in Z_q^*} \frac{d(z) - q}{d(z) - \sigma_q(x, y)} \geq \frac{(\Delta - d(y) + 1)(\Delta - q) - d(x) - d(y) + \Delta + 2}{d(x) + d(y) - \Delta + 1} = q - \Delta - 1 + \frac{(\Delta - q)(d(x) + 2) + 3}{d(x) + d(y) - \Delta + 1}.
$$

By Lemma 1, for each neighbor u of x we have $\sigma_{\Delta}(x, u) \geq \Delta - d(x) + 1$. Since $d(u) \geq d(y)$ for each $u \in N(x)$ and $q \geq \Delta - d(x) + 1$, we have

$$
\frac{d(u) - q}{d(u) - (\Delta - d(x) + 1)} \geq \frac{d(y) - q}{d(y) - (\Delta - d(x) + 1)}.
$$

So,

$$
\sum_{u \in N(x) \setminus Z_q^*} \frac{d(u) - q}{d(u) - (\Delta - d(x) + 1)} \geq |N(x) \setminus Z_q^*| \cdot \frac{d(y) - q}{d(y) - (\Delta - d(x) + 1)} = \frac{(d(x) - (\Delta - d(y) + 1))(d(y) - q)}{d(y) - (\Delta - d(x) + 1)} = d(y) - q.
$$

Thus

$$
M'(x) \geq d(x) + q - \Delta - 1 + \frac{(\Delta - q)(d(x) + 2) + 3}{d(x) + d(y) - \Delta + 1} + d(y) - q
$$

$$
= d(x) + d(y) - \Delta + 1 + \frac{(\Delta - q)(d(x) + 2) + 3}{d(x) + d(y) - \Delta + 1} - 2
$$

$$
\geq 2\sqrt{(\Delta - q)(d(x) + 2) + 3} - 2
$$

$$
> 2\sqrt{2(\Delta - q)(\Delta - q - 1)} - 2 \geq q.
$$
Case 3. $\Delta - q + 2 < d(x) \leq 2(\Delta - q) - 4$ and $d(y) > q$ for every neighbor y of x.

Since $\Delta \geq 56$, we have $\Delta - q + 2 < 2(\Delta - q) - 4$, so this case occurs. Since the notation $p(x, q)$ will be used heavily in this proof, we let $p' := p(x, q)$ for convenience. So, $p' = \min\{p_{\min}(x, q), \lfloor \frac{d(x)}{2} \rfloor - 3\}$, where $p_{\min}(x, q) := \min_{y \in N(x)} \sigma_q(x, y) - \Delta + d(x) - 1$.

Following this definition, for every $y \in Z_q$, $\sigma_q(x, y) \geq \Delta - d(x) + p' + 1$, which in turn gives

$$\frac{d(y) - q}{d(y) - \sigma_q(x, y)} \geq \frac{d(y) - q}{d(y) - (\Delta - d(x) + p' + 1)}.$$

So, if $q \leq \Delta - d(x) + p' + 1$, then

$$\frac{d(y) - q}{d(y) - \sigma_q(x, y)} \geq \frac{\Delta - q}{d(x) - p' - 1}.$$

By Lemma 5, x has at least $d(x) - p' - 3$ neighbors y for which $\sigma_q(x, y) \geq \Delta - p' - 5$. For such neighbors y, since $q \leq \Delta - \frac{d(x)}{2} - 2 \leq \Delta - p' - 5$, we have

$$\frac{d(y) - q}{d(y) - \sigma_q(x, y)} \geq \frac{d(y) - q}{d(y) - (\Delta - p' - 5)} \geq \frac{\Delta - q}{p' + 5}.$$

If $q \leq \Delta - d(x) + p' + 1$, then

$$M'(x) \geq d(x) + (d(x) - p' - 3)\frac{\Delta - q}{p' + 5} + (p' + 3)\frac{\Delta - q}{d(x) - p' - 1} \geq \Delta - q + 2 + (\Delta - q)(2 - \frac{8(d(x) + 2)}{(\Delta - q + 2)(d(x) + 4)}) \geq q,$$

where we used the inequality $\theta + \theta^{-1} \geq 2 \ (\theta = \frac{d(x) - p' - 3}{p' + 5})$ to show the following

$$\frac{d(x) - p' - 3}{p' + 5} + \frac{p' + 3}{d(x) - p' - 1} > 2 - \frac{2d(x) + 4}{(\frac{\Delta - q + 2}{2})^2} \geq 2 - \frac{8(d(x) + 2)}{(\Delta - q + 2)(d(x) + 4)}.$$

Suppose $q > \Delta - d(x) + p' + 1$, i.e., $p' < d(x) + q - \Delta - 1$. So, $\frac{d(x) - p' - 3}{p' + 5} > \frac{\Delta - q - 2}{d(x) + q - \Delta + 4}$, which gives

$$M'(x) \geq d(x) + \frac{\Delta - q - 2}{d(x) + q - \Delta + 4}(\Delta - q) \geq (d(x) + q - \Delta + 4) + \frac{(\Delta - q)(\Delta - q - 2)}{d(x) + q - \Delta + 4} - (q - \Delta + 4) \geq 2\sqrt{(\Delta - q)(\Delta - q - 2)} + \Delta - q - 4 \geq 3(\Delta - q) - 8 \geq q.$$

\[\square\]
Claim 3.3. $d(y) > q$ for each $y \in N(X_1)$ and $|N(X_1)| \geq 2|X_1|$ where $N(X_1) = \cup_{x \in X_1} N(x)$.

Proof. Since G is edge-Δ-critical, for each edge $xy \in E(G)$ we have $d(x) + d(y) \geq \Delta + 2$. Since $q < \frac{\Delta}{2}$ and $d(x) \leq 3q - 2\Delta$ for each $x \in X_1$, we have $d(y) \geq \Delta + 2 - (3q - 2\Delta) > q$ for each $y \in N(x)$. Thus the vertices in $N(X_1)$ does not receive charges from any other vertices. As the vertices in X_1 receive charges only from the vertices in $N(X_1)$, we have

$$\sum_{x \in X_1} M'(x) + \sum_{y \in N(X_1)} M'(y) \leq \sum_{x \in X_1} M(x) + \sum_{y \in N(X_1)} M(y) \leq \sum_{x \in X_1} d(x) + \Delta|N(X_1)|. \quad (10)$$

Also, by Claims 3.1 and 3.2, we have $M'(x) \geq d(x) + 2(\Delta - q)$ for each $x \in X_1$ and $M'(y) \geq q$ for each $y \in N(X_1)$. Thus we have

$$\sum_{x \in X_1} M'(x) + \sum_{y \in N(X_1)} M'(y) \geq \sum_{x \in X_1} d(x) + 2(\Delta - q)|X_1| + q|N(X_1)|. \quad (11)$$

Combining (10) with (11), we have $|N(X_1)| \geq 2|X_1|$.

For each edge $xy \in E(G)$ and $\varphi \in \mathcal{C}^\Delta(G - xy)$, let $Y(x, \varphi) = \{w \in N(y) \setminus \{x\} : \varphi(yw) \in \varphi(x)\}$, $Y_1(x, \varphi) = Y(x, \varphi) \cap N(X_1)$ and $Y_2(x, \varphi) = Y(x, \varphi) - (X_1 \cup N(X_1))$. Clearly, $|Y(x, \varphi)| = \Delta - d(x) + 1$. Note that with respect to the coloring φ, $\{x, y\} \cup Y(x, \varphi)$ forms a Vizing fan, so it is elementary.

Claim 3.4. For each $y \in N(X_1)$ and $x \in N(y) \cap X_1$, $|Y_2(x, \varphi)| \geq \Delta - 2d(x) + 3$.

Proof. Recall that $\{x, y\} \cup Y(x, \varphi)$ is elementary. Then for each vertex in $w \in Y(x, \varphi)$ we have $|\varphi(w)| + |\varphi(x)| + |\varphi(y)| \leq \Delta$, it follows that $d(w) \geq |\varphi(x)| + |\varphi(y)| > 3q - 2\Delta$. Thus we have $Y(x, \varphi) \cap X_1 = \emptyset$. If $|Y_1(x, \varphi)| \leq d(x) - 2$, then $|Y_2(x, \varphi)| = |Y(x, \varphi) - Y_1(x, \varphi) - (Y(x, \varphi) \cap X_1)| \geq \Delta - d(x) + 1 - (d(x) - 2) \geq \Delta - 2d(x) + 3$. So the Claim 3.4 is equivalent to show that $|Y_1(x, \varphi)| \leq d(x) - 2$.

Subclaim 3.4.1. If $w \in Y_1(x, \varphi)$, then for each neighbor z of w in X_1, we have $\varphi(wz) \in \varphi(x) \cap \varphi(y)$.

Proof. If there exists a neighbor of w in X_1, say z, such that $\varphi(wz) \notin \varphi(x) \cap \varphi(y)$. Then $\varphi(wz) \in \varphi(x) \cup \varphi(y)$. Thus $\{x, y, w, z\}$ forms a Kierstead path. By Lemma 6, we have $|\varphi(z) \cap (\varphi(x) \cup \varphi(y))| \leq 1$, it follows that $d(z) \geq (\Delta - d(x) + 1) + (\Delta - d(y) + 1) - 1 > 3q - 2\Delta$, this contradicts with the fact that $z \in X_1$. So Subclaim 3.4.1 holds.
For each color \(j \in \varphi(x) \cap \varphi(y) \), set \(Y_j = \{ w \in Y^1(x, \varphi) : j \in \varphi(w) \} \) and \(Z_j = \{ z \in X_1 : \text{there exists a vertex } w \in Y_j \text{ such that } \varphi(wz) = j \} \). Clearly, \(\sum_{j \in \varphi(x) \cap \varphi(y)} |Z_j| \geq |Y^1(x, \varphi)| \). Since \(|\varphi(x) \cap \varphi(y)| = \Delta - (\Delta - d(x) + 1) - (\Delta - d(y) + 1) \leq d(x) - 2 \), to show that \(|Y^1(x, \varphi)| \leq d(x) - 2 \), we only need to prove that \(|Z_j| \leq 1 \) for each \(j \). Let \(|Z_j| = t \) and \(Z_j = \{ z_{a_1}, \ldots, z_{a_t} \} \), where for each \(z_{a_i} \) there exists \(y_{a_i} \in Y_j \) such that \(\varphi(y_{a_i}) = \alpha_i \) and \(\varphi(y_{a_i}z_{a_i}) = j \). Clearly, \(\alpha_i \in \bar{\varphi}(x) \) for each \(1 \leq i \leq t \).

Subclaim 3.4.2. Let \(k \) be a color in \(\bar{\varphi}(x) \). Then the followings hold.

1. For each \(k \notin \{ \alpha_1, \ldots, \alpha_t \} \), at least \(t - 1 \) vertices of \(Z_j \) have the color \(k \).
2. For each \(k \in \{ \alpha_1, \ldots, \alpha_t \} \), at least \(t - 2 \) vertices of \(Z_j \) have the color \(k \).

Proof. First suppose that \(k \notin \{ \alpha_1, \ldots, \alpha_t \} \). We consider the path \(P_z(j, k, \varphi) \), and \(w \) is the other end vertex of this path. We will show that the color \(k \) seen by each vertex in \(Z_j \setminus \{ w \} \). For otherwise, we assume \(k \notin \varphi(z) \) for some \(z \in Z_j \setminus \{ w \} \), say \(z = z_{a_1} \), then \(P_{z_{a_1}}(j, k, \varphi) \) is disjoint from \(P_z(j, k, \varphi) \), thus let \(\varphi' = \varphi/P_{z_{a_1}}(j, k, \varphi) \) be the new coloring which \(\varphi'(y_{a_1}) = \varphi(y_{a_1}) = \bar{\varphi}'(x) \) and \(\varphi'(y_{a_1}z_{a_1}) = k \in \bar{\varphi}'(x) \). Thus \(\{ x, y, y_{a_1}, z_{a_1} \} \) forms a Kierstead path. So by Lemma 6 we have \(|\bar{\varphi}(z_{a_1}) \cap (\bar{\varphi}(x) \cup \bar{\varphi}(y))| \leq 1 \), it follows that \(d(z_{a_1}) \geq (\Delta - d(x) + 1) + (\Delta - d(y) + 1) - 1 > 3q - 2\Delta \) as \(d(x) \leq 3q - 2\Delta \), this contradicts with the fact that \(z_{a_1} \in X_1 \).

Then suppose that \(k \in \{ \alpha_1, \ldots, \alpha_t \} \). We may assume that \(k = \alpha_t \). Clearly, \(k \notin \{ \alpha_1, \ldots, \alpha_{t-1} \} \). Let \(Z'_j = Z_j \setminus \{ z_k \} \). By (1), we have at least \(|Z'_j| - 1 \) vertices of \(Z'_j \) has the color \(k \), that is, at least \(t - 2 \) vertices of \(Z_j \) has the color \(k \).

By Subclaim 3.4.2 and the definition of \(X_1 \), we have

\[
(\Delta - d(x) + 1 - t)(t - 1) + t(t - 2) \leq \sum_{z \in Z_j} d(z) \leq t(3q - 2\Delta).
\]

Since \(d(x) \leq 3q - 2\Delta \) and \(q < \frac{3}{4}\Delta \), we have

\[
t \leq \frac{\Delta - d(x) + 1}{3\Delta - 3q - d(x)} \leq 1 + \frac{3q - 2\Delta + 1}{5\Delta - 6q} < 2.
\]

Since \(t \) is an integer, we have \(t \leq 1 \). Then Claim 3.4 holds.

Let \(c \) be a positive integer, set \(Z_1(c) = \{ z \in V(G) - (X_1 \cup N(X_1)) : d(z) \geq \Delta - c \} \) and \(Z_2(c) = \{ z \in V(G) - (X_1 \cup N(X_1)) : d(z) < \Delta - c \} \).

Claim 3.5. \(|Z_1(c)| \geq \frac{(5c+2)\Delta-(6c+3)q+3c+2}{c\Delta}|N(X_1)| \).
Proof. For each \(y \in N(X_1), x \in N(y) \cap X_1 \) and \(\varphi \in \mathcal{C}^\Delta(G - xy) \), let \(Y_{< c} = \{ z \in Y^2(x, \varphi) : d(z) < \Delta - c \} \). Since \(\{ x, y \} \cup Y(x, \varphi) \) is elementary and \(Y^2(x, \varphi) \subseteq Y(x, \varphi) \), we have \(\Delta - d(x) + 1 + \Delta - d(y) + 1 + c|Y_{< c}| < \sum_{v \in \{ x, y \} \cup Y(x, \varphi)} \varphi(v) \leq \Delta \). Thus \(|Y_{< c}| < \frac{d(x) - 2}{c} \). By Claim 3.4, we have \(|Y^2(x, \varphi) - Y_{< c}| > \Delta - 2d(x) + 3 - \frac{d(x) - 2}{c} \), that is, for each \(y \in N(X_1) \) we have \(d_{Z_1(c)}(y) \geq \Delta - 2d(x) + 3 - \frac{d(x) - 2}{c} \). Hence,

\[
(\Delta - 2d(x) + 3 - \frac{d(x) - 2}{c})|N(X_1)| \leq |E(N(X_1), Z_1(c))| \leq \Delta|Z_1(c)|,
\]

where \(E(N(X_1), Z_1(c)) \) are the edges with one vertex in \(N(X_1) \) and the other endvertex in \(Z_1(c) \). Since \(d(x) \leq 3q - 2\Delta \), solving the above inequalities we have

\[
|Z_1(c)| \geq \frac{(5c + 2)\Delta - (6c + 3)q + 3c + 2}{c\Delta}|N(X_1)|.
\]

\[\square\]

By Claims 3.1 and 3.2, we have

\[
M'(x) \geq \begin{cases}
2 + 2(\Delta - q) & x \in X_1, \\
q & x \in V(G) - X_1.
\end{cases}
\]

And by the definitions of \(Z_1(c) \) and \(Z_2(c) \), we get the following two lower bounds of \(\sum_{x \in V(G)} M'(x) \).

\[
b_1 = (2 + 2(\Delta - q))|X_1| + q|N(X_1)| + (\Delta - c)|Z_1(c)| + (3q - 2\Delta)|Z_2(c)|
\]

\[
b_2 = (2 + 2(\Delta - q))|X_1| + (n - |X_1|)q
\]

We now divide into a few cases to estimate the lower bound of \(\max\{b_1, b_2\} \).

First we consider the case \(\Delta - q - c > 0 \). For fixed value \(|X_1| + |N(X_1)|, |Z_1(c)| + |Z_2(c)| \) is a constant. Since \(\Delta - c > q > 3q - 2\Delta \), \(\max\{((\Delta - c)|Z_1(c)| + (3q - 2\Delta)|Z_2(c)|, q(|Z_1(c)| + |Z_2(c)|)\} \) takes minimum when \((\Delta - c)|Z_1(c)| + (3q - 2\Delta)|Z_2(c)| = q(|Z_1(c)| + |Z_2(c)|) \), that is \(|Z_2(c)| = \frac{1}{2} - \frac{c}{2\Delta - 2q} |Z_1(c)| \). So by Claims 3.3 and 3.5, \(|Z_1(c)| + |Z_2(c)| \geq (3 - \frac{c}{\Delta - q})(\frac{5c + 2)\Delta - (6c + 3)q + 3c + 2}{c\Delta}|X_1| \). Let \(f(c) = (3 - \frac{c}{\Delta - q})(\frac{5c + 2)\Delta - (6c + 3)q + 3c + 2}{c\Delta}\). So \(n = |X_1| + |N(X_1)| + |Z_1(c)| + |Z_2(c)| \geq (3 + f(c))|X_1| \). Hence, \(\sum_{x \in V(G)} M'(x) \geq \max\{b_1, b_2\} \geq qn + (2 + 2\Delta - 3q)|X_1| \geq (q + \frac{2 + 2\Delta - 3q}{3 + f(c)})n \). So \(d(G) \geq q + \frac{2 + 2\Delta - 3q}{3 + f(c)} \).
Let \(q^* = \frac{2\sqrt{2}\Delta}{2\sqrt{2}+1} \) and \(a = 1 + \frac{1}{2\sqrt{2}+1} \) if \(q = \frac{2\sqrt{2}(\Delta-1)-2}{2\sqrt{2}+1} \), and \(q^* = \frac{3\Delta}{4} \), \(a = 2 \) if \(q = \frac{3}{4}\Delta - 2 \). So \(q = q^* - a \) and we have

\[
\frac{2 + 2\Delta - 3q}{3 + f(c)} = \frac{c\Delta(2 + 2\Delta - 3q)}{3c\Delta + (3 - \frac{c}{\Delta - q})(5c + 2)\Delta -(6c + 3)q + 3c + 2} \]

\[
= \frac{(2c\Delta - 3cq^*)\Delta + f_1f_2\Delta - f_1f_2\Delta + 2c\Delta + 3ca\Delta}{(18c + 6)\Delta - (18c + 9)q^* + f_2} \]

\[
= f_1\Delta + \frac{-f_1f_2\Delta + 2c\Delta + 3ca\Delta}{(18c + 6)\Delta - (18c + 9)q^* + f_2},
\]

where \(f_1 = \frac{2c\Delta - 3cq^*}{(18c + 6)\Delta - (18c + 9)q^*} \) and \(f_2 = 9c + 6 + (18c + 9)a - \frac{(5c^2 + 2c)\Delta - (6c^2 + 3c)q + 3c^2 + 2c}{\Delta - q} \).

Clearly, \(f_1 = \frac{2c\Delta - 3cq^*}{(18c + 6)\Delta - (18c + 9)q^*} = \frac{2\Delta - 3q^*}{18\Delta - 18q^* + \frac{6\Delta - 9q^*}{c}} \) is an increasing function of \(c \). To make \(f_1 \) as large as possible when \(\Delta \geq l \), where \(l \) is a positive integer, we choose \(c \) such that \(c = \min\{\lfloor \Delta - q \rfloor : \Delta \geq l \} \). If \(l \) is large enough, \(c \) is large too and we can see that the value of \(f_1 \) will approximate to \(\frac{2\Delta - 3q^*}{18\Delta - 18q^*} \) and \(d(G) \) will approximate to 0.69277Δ. Note that \(q = \frac{2\sqrt{2}(\Delta-1)-2}{2\sqrt{2}+1} \) if \(\Delta \geq 66 \). Let \(l = 66 \). Then we have \(c = 18 \). So we have \(\Delta - q - c > 0 \) if \(\Delta \geq 65 \). Plugging \(c = 18 \) and the value of \(q^* \) into \(f_2 \) and \(\frac{-f_1f_2\Delta + 2\Delta + 3ca\Delta}{(18c + 6)\Delta - (18c + 9)q^* + f_2} \), we have \(\frac{-f_1f_2\Delta + 2\Delta + 3ca\Delta}{(18c + 6)\Delta - (18c + 9)q^* + f_2} > 0 \) and \(f_2 < 0 \). Thus

\[
\frac{2 + 2\Delta - 3q}{3 + f(c)} \geq f_1\Delta + \frac{2c\Delta + 3ca\Delta - f_1f_2\Delta}{(18c + 6)\Delta - (18c + 9)q^*}.
\]

If \(\Delta \geq 66 \), then \(q = \frac{2\sqrt{2}(\Delta-1)-2}{2\sqrt{2}+1} \). Plugging \(c = 18 \) into the inequality (12), we get \(f_1 \geq -0.04638 \), \(f_2 \geq -244.43905 \) and

\[
\frac{2 + 2\Delta - 3q}{3 + f(c)} \geq -0.04638\Delta + 1.10463.
\]

Thus

\[
d(G) \geq q - 0.04638\Delta + 1.10463 \geq 0.69241\Delta - 0.15658.
\]

If \(\Delta = 65 \), then \(q = \frac{3}{4}\Delta - 2 \). Plugging \(c = 18 \) and \(\Delta = 65 \) into the inequality (12), we get \(f_1 \geq -0.05608 \), \(f_2 \geq -1.15069 \) and \(\frac{2 + 2\Delta - 3q}{3 + f(c)} \geq -0.05608\Delta + 1.79358 \). It follows that

\[
d(G) \geq q - 0.05608\Delta + 1.79358 \geq 0.69392\Delta - 0.20642.
\]
Now we consider the case $\Delta - q - c \leq 0$. It is easy to see that $b_2 > b_1$ and $\Delta \leq 64$. Thus \(\sum_{x \in V(G)} M'(x) \geq qn - (3q - 2\Delta - 2)|X_1| \). So \(\bar{d}(G) \geq q - (3q - 2\Delta - 2)\frac{|X_1|}{n} \). By Claims 3.3 and 3.5, we have

\[
n \geq |X_1| + |N(X_1)| + |Z_1(c)| \geq (3 + f'(c))|X_1|,
\]

where \(f'(c) = 2^{\frac{5c+2}{c\Delta} - \frac{6c+3}{9\Delta} + \frac{c+2}{3+f'(c)}} \).

Plugging \(c = 18 \) and \(q = \frac{3}{4}\Delta - 2 \) into \(f'(c) \), we have \(f'(c) = \frac{8.75\Delta + 278}{9\Delta} \). Since \(\frac{|X_1|}{n} \leq \frac{1}{3+f'(c)} \), we have \((3q - 2\Delta - 2)\frac{|X_1|}{n} \leq \frac{2.25\Delta^2 - 72\Delta}{35.75\Delta + 278} = \frac{9\Delta}{143} + \frac{695.94484}{35.75\Delta + 278} = 2.50339 \), thus \(\bar{d}(G) \geq \frac{393\Delta}{572} - \frac{695.94484}{35.75\Delta + 278} + 0.50339 \). It is easy to check that if \(\Delta \geq 56 \) then \(\bar{d}(G) \geq \frac{2}{3}(\Delta + 2) \), which improve Woodall’s result in [15]. If \(\Delta \geq 56 \), we have

\[\bar{d}(G) \geq 0.68706\Delta + 0.19815.\]

Hence,

\[\bar{d}(G) \geq \begin{cases} 0.69241\Delta - 0.15658 & \text{if } \Delta \geq 66, \\ 0.69392\Delta - 0.20642 & \text{if } \Delta = 65, \text{ and} \\ 0.68706\Delta + 0.19815 & \text{if } 56 \leq \Delta \leq 64. \end{cases}\]

This completes the proof of Theorem 1.

References

[1] G. Chen, X. Chen, and Y. Zhao. Hamiltonianicity of edge chromatic critical graph. Discrete Math., accepted.

[2] S. Fiorini. Some remarks on a paper by Vizing on critical graphs. Math. Proc. Cambridge Philos. Soc., 77:475-483, 1975.

[3] S. Fiorini and R. J. Wilson. Edge-colourings of graphs, Research notes in Maths. Pitman, London, 1977.

[4] D. Haile. Bounds on the size of critical edge-chromatic graphs. Ars Combin., 53:85-96, 1999.

[5] I. T. Jakobsen. On critical graphs with chromatic index 4. Discrete Math., 9:265-276, 1974.

[6] K. Kayathri. On the size of edge-chromatic critical graphs. Graphs Combin., 10:139-144, 1994.
[7] H. A. Kierstead. On the chromatic index of multigraphs without large triangles. J. Combin. Theory Ser. B, 36(2):156-160, 1984.

[8] R. Luo, L. Miao, and Y. Zhao. The size of edge chromatic critical graphs with maximum degree 6. J. Graph Theory, 60:149-171, 2009.

[9] D. P. Sanders and Y. Zhao. On the size of edge chromatic critical graphs. J. Combin. Theory Ser. B, 86:408-412, 2002.

[10] M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt. Graph edge-coloring: Vizing's theorem and Goldberg's conjecture. Wiley, 2012.

[11] V. A. Tashkinov. On an algorithm for the edge coloring of multigraphs. Diskretn. Anal. Issled. Oper. Ser. 1, 7(3):72-85, 100, 2000.

[12] V. G. Vizing. On an estimate of the chromatic class of a p-graph (in Russian). Diskret. Analiz No., 3:25-30, 1964.

[13] V. G. Vizing. Critical graphs with a given chromatic class (in Russian). Diskret. Analiz No., 5:9-17, 1965.

[14] V. G. Vizing. Some unsolved problems in graph theory (in Russian). Uspekhi Mat. Nauk, 23:117-134, 1968.

[15] D. R. Woodall. The average degree of an edge-chromatic critical graph. II. J. Graph Theory, 56:194-218, 2007.

[16] D. R. Woodall. The average degree of an edge-chromatic critical graph. Discrete Math., 308:803-819, 2008.

[17] L. Zhang. Every planar graph with maximum degree 7 is of class 1. Graphs Combin., 16(4):467-495, 2000.