Patient Age Associates With Tumor-Infiltrating Lymphocytes Density In Breast Cancer

Koji Takada
Osaka City University Graduate School of Medicine

Shinichiro Kashiwagi (spqv9ke9@view.ocn.ne.jp)
Osaka City University Graduate School of Medicine
https://orcid.org/0000-0002-0460-9599

Yuka Asano
Osaka City University Graduate School of Medicine

Wataru Goto
Osaka City University Graduate School of Medicine

Sae Ishihara
Osaka City University Graduate School of Medicine

Tamami Morisaki
Osaka City University Graduate School of Medicine

Masatsune Shibutani
Osaka City University Graduate School of Medicine

Hiroaki Tanaka
Osaka City University Graduate School of Medicine

Kosei Hirakawa
Osaka City University Graduate School of Medicine

Masaichi Ohira
Osaka City University Graduate School of Medicine

Research Article

Keywords: breast cancer, tumor-infiltrating lymphocytes, tumor immune-microenvironment, Age, preoperative chemotherapy

DOI: https://doi.org/10.21203/rs.3.rs-486109/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose: Lymphocytes surrounding the cancer participate in tumor-related immune responses, and are called tumor-infiltrating lymphocytes (TILs). Several recent reports suggest TILs to index the tumor-microenvironment (TME), and predict the therapeutic effect of chemotherapy. However, only few studies have studied the relationship between age and TILs. Aging reduces host immunity, and we predict that it may also affect TILs. Thus, we hypothesized that older breast cancer (BC) patients may have low TILs density than younger BC patients. Here, we retrospectively analyzed the differences in TILs by age and the therapeutic effects of pre-operative chemotherapy (POC) in BC patients aged less than 45 years and more than 60 years.

Methods: POC was administered to 356 patients. We confirmed and compared TILs density and therapeutic effects in patients aged < 45 years (n=75) and those aged >61 years (n=116). TIL density was evaluated using pre-treatment needle biopsy specimens. Definition and evaluation of TILs was based on the International TILs Working Group 2014.

Results: Based on subtype, younger patients showed significantly higher pathological complete response rates than older patients with hormone receptor (HR)+ human epidermal growth factor receptor 2 (HER2)+ and HER2-enriched BC. In HR+HER2+BC, the objective response rate was significantly high in younger than in older patients. Further, a significant difference was observed for overall survival between these patients with triple-negative BC.

Conclusions: Our study suggests that younger BC patients possess significantly high TILs density than older patients. These differences may influence the therapeutic efficacy in highly immunogenic subtypes.

Introduction

The tumor-infiltrating lymphocytes (TILs) surround the cancer tissue and are involved in tumor-related immune responses [1]. Moreover, the TILs, as component of the tumor-microenvironment (TME), allow prediction of the therapeutic efficacy of chemotherapy [2–4]. In patients with breast cancer (BC), an increase in TILs density correlated with increase in the rate to pathologic complete response (pCR), along with extension of the disease-free survival (DFS) and OS [5, 6]. Further, the TILs density in breast cancer differs depending on the subtype. For instance, the HR- BC, such as the TNBC and HER2-enriched BC, show high TILs density [7–9]. However, there are fewer reports on factors other than BC subtypes that affect the TILs density.

Current standard treatment is based on the results of various clinical trials. For instance, some clinical trials suggest the prognosis and treatment effect to differ depending on the age of the patients [10–12], and several pooled studies have reported differences in the treatment effect due to age [13, 14, 5]. However, till now, only few studies have mentioned the relationship between age and TILs. While increased age may reduce host immunity [15], we can anticipate it to also affect TILs. Moreover, the clinical trials studying association of TILs and therapeutic effects have not correlated age and TILs [12, 16–19], and most of them have divided patients into two groups based on TILs or age, with only test analyses of each group.

Therefore, we set to test the hypothesis that TILs density decreases with age of BC patients, we compared the TILs density in younger and the older BC patients after omitting the patients in the middle age group. We also tested the hypothesis that the therapeutic effect and prognoses of patients may differ with TILs density. Thus, here, we retrospectively analyzed the differences in TILs density by age and the therapeutic effects in BC patients aged < 45 years and > 61 years receiving pre-operative chemotherapy (POC).

Materials And Methods

Patients

A total of 356 patients with BC received POC between February 2007 and March 2018 at the Osaka City University Hospital, Japan, and were retrospectively recruited in the study. Further, we confirmed the TILs density and therapeutic effects, based on which we compared the TILs in patients with age < 45 years (younger, n=75) versus those with age > 61 years (older, n=116). The patients were pathologically diagnosed with BC by core needle biopsy (CNB) or vacuum-assisted biopsy (VAB), and by immunohistochemical staining of the specimen to evaluate the expression of estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki67. Based on the results, the subtypes were classified as follows: HER2-enriched BC (ER-, PgR-, and HER2+); TNBC (ER-, PgR-, and HER2-); HR+HER2+BC (ER+ and/or PgR+, and HER2+); and HR+HER2-BC (ER+ and/or PgR+, and HER2-). Before chemotherapy, the staging of BC was evaluated using ultrasonography (US), computed tomography (CT), and bone scintigraphy. POC was administered in BC patients diagnosed with stage IIA (T1, N1, M0 or T2, N0, M0), IIB (T2, N1, M0 or T3, N0, M0), IIIA (T1-2, N2, M0 or T3, N1-2, M0), IIIB (T4, N0-2, M0), or IIIC (T1-4, N3, M0). The POC regimen comprised of four courses of FEC100 (500 mg/m² fluorouracil, 100 mg/m² epirubicin, and 500 mg/m² cyclophosphamide) every 3 weeks, followed by 12 courses of 80 mg/m² paclitaxel administered weekly. For HER2+ BC patients, an additional weekly (2 mg/kg) or tri-weekly (6 mg/kg) dosage of trastuzumab was administered during paclitaxel treatment [20–22]. The anti-tumor effects of POC were evaluated according to the Response Evaluation Criteria in Solid Tumors [23]. Further, the clinical partial response (cPR) and complete response (cCR) were defined as “Responders” in the objective response rate (ORR). Whereas, clinical stable disease (cSD) and clinical progressive disease (cPD) were defined as “Non-responders”. After POC, all the patients underwent mastectomy or breast-conserving surgery. A pathologic complete response (pCR) was defined as the complete disappearance of the invasive components of the lesion with or without intraductal components, including that in the lymph nodes according to the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-18 protocol [25].

Post-surgery, standard adjuvant therapy was administered according to each subtype and surgical procedure. During adjuvant therapy, all the patients were evaluated for tumor recurrence by physical examination, US, and CT and bone scintigraphy every 3, 6, and 12 months, respectively. The median follow-up time was 1281 days (range, 13-3675 days) after surgery.
Histopathological evaluation of TILs density

TILs density was evaluated using pretreatment specimens obtained by CNB or VAB. The TILs were defined and evaluated based on the International TILs Working Group 2014 [1] as the average of the infiltrating lymphocytes within the tumor stroma at five randomly selected fields. Next, the results were classified into four classes (3: >50%, 2: >10–50%, 1: ≤10%; or 0: absent) (Supplementary Fig. S1). Further, we defined the scores 2 and 3 as “High”, and scores 1 and 0 as “Low” according to previous reports [26,27]. Thus, in brief, the cut-off value of TILs density was set to 10%.

Statistical analysis

All statistical analyses were performed using the JMP software package (SAS, Tokyo, Japan). The distribution of TILs density by age was evaluated using Student's t-test. The Pearson's chi-square test was used to evaluate the relationship between each factor. Prognostic analyses, such as DFS or OS, were examined using the Kaplan–Meier method and log-rank test. The hazard ratio (HR) and 95% confidence interval (CIs) were calculated using the Cox proportional hazards model. Multivariable analysis was performed using the Cox regression model. A P-value < 0.05 was considered to be statistically significant.

Results

Clinicopathological features of BC patients

The clinicopathological features of patients (n = 356) treated with POC have been summarized in Table 1. The patients were operated at median age of 55 years (range, 24–78 years) and the median tumor diameter 28.7 mm (range, 9.2–119.8 mm). Skin infiltration was observed in 58 patients (16.3%). Further, imaging methods of diagnosis did not indicate lymph node metastasis in 121 patients (34.0 %). The number of ER-negative, PgR-negative, and HER2-positive patients was 187 (52.5 %), 242 (68.0 %), and 125 (35.1 %), respectively. Moreover, Ki67-high (above 14%) was observed in 239 patients (67.1 %). Based on these results, the BC subtypes were classified as follows – HR + HER2+: 126 patients (35.4 %), HR + HER2+: 47 patients (13.2 %), HER2-enriched: 78 patients (21.9 %), and TNBC: 105 patients (29.5 %). Furthermore, the Responders for ORR reached 88.8%, the rate of pCR post-operative pathology was 33.1%, and 161 patients (45.2%) showed high TILs density.
Table 1
Clinicopathological features of 356 patients who were treated with preoperative chemotherapy

Parameters	All patients (n = 356) (%)	Younger (n = 75) (%)	Elderly (n = 116) (%)
Age (years old)	55 (24–78)	41 (24–45)	67 (61–78)
Tumor size (mm)	28.7 (9.2–119.8)	29.5 (9.9–82.6)	27.3 (9.2–89.8)
Skin infiltration	298 (83.7%) / 58 (16.3%)	68 (90.7%) / 7 (9.3%)	90 (77.6%) / 26 (22.4%)
Lymph node metastasis	121 (33.9%) / 133 (37.4%)	28 (37.3%) / 28 (37.3%)	44 (37.9%) / 36 (31.0%)
N0 / N1 / N2 / N3	/ 68 (19.1%) / 34 (9.6%)	/ 14 (18.7%) / 5 (6.7%)	/ 22 (19.0%) / 14 (12.1%)
Estrogen receptor	187 (52.5%) / 169 (47.5%)	37 (49.3%) / 38 (50.7%)	67 (57.8%) / 49 (42.2%)
Progesterone receptor	242 (68.0%) / 114 (32.0%)	42 (56.0%) / 33 (44.0%)	89 (76.7%) / 27 (23.3%)
HER2	231 (64.9%) / 125 (35.1%)	47 (62.7%) / 28 (37.3%)	69 (59.5%) / 47 (40.5%)
Ki67	117 (32.9%) / 239 (67.1%)	22 (29.3%) / 53 (70.7%)	40 (34.5%) / 76 (65.5%)
Intrinsic subtype	126 (35.4%) / 47 (13.2%)	24 (32.0%) / 16 (21.3%)	39 (33.6%) / 11 (9.5%)
HR + HER2-BC / HR + HER2 + BC / HER2BC / TNBC	/ 78 (21.9%) / 105 (29.5%)	/ 12 (16.0%) / 23 (30.7%)	/ 36 (31.0%) / 30 (25.9%)
Objective response rate	40 (11.2%) / 316 (88.8%)	5 (6.7%) / 70 (93.3%)	17 (14.7%) / 99 (85.3%)
Pathological response	238 (66.9%) / 118 (33.1%)	46 (61.3%) / 29 (38.7%)	78 (67.2%) / 38 (32.8%)
TILs	195 (54.5%) / 161 (45.2%)	31 (41.3%) / 44 (58.7%)	65 (56.0%) / 51 (44.0%)

HER: human epidermal growth factor receptor. CR: complete response. TILs: tumor-infiltrating lymphocytes.

Further, while most of the clinicopathological factors were not significantly different, the rate of skin infiltration and PgR-negative status were significantly higher in the older that in the younger patients (P = 0.002 and P = 0.003, respectively) (Table 2). Moreover, the ORR, although statistically insignificant, was found to be higher in the younger than in the older patients (P = 0.091).
Table 2
Difference in clinicopathological features due to TILs in younger and elderly patients

Parameters	Tumor- infiltrating lymphocytes (n = 191)		p value
	Low (n = 96)	High (n = 95)	
Age (years old)			
≤ 45	31 (32.3%)	44 (46.3%)	0.047
> 60	65 (67.7%)	51 (53.7%)	
Tumor size (mm)			
≤ 20.0	20 (20.8%)	14 (14.7%)	0.271
> 20.0	76 (79.2%)	81 (85.3%)	
Skin infiltration			
Negative	71 (74.0%)	87 (91.6%)	0.001
Positive	25 (26.0%)	8 (8.4%)	
Lymph node status			
Negative	33 (34.4%)	39 (41.1%)	0.341
Positive	63 (65.6%)	56 (58.9%)	
Estrogen receptor			
Negative	37 (38.5%)	67 (70.5%)	< 0.001
Positive	59 (61.5%)	28 (29.5%)	
Progesterone receptor			
Negative	55 (57.3%)	76 (80.0%)	0.001
Positive	41 (42.7%)	19 (20.0%)	
Hormone receptor			
Negative	35 (36.5%)	66 (69.5%)	< 0.001
Positive	61 (63.5%)	29 (30.5%)	
HER2			
Negative	69 (71.9%)	47 (49.5%)	0.002
Positive	27 (28.1%)	48 (50.5%)	
Ki67			
≤14 %	37 (38.5%)	25 (26.3%)	0.071
>14 %	59 (61.5%)	70 (73.7%)	
ORR			
Non-Responders	18 (18.8%)	4 (4.2%)	0.002
Responders	78 (81.2%)	91 (95.8%)	
Pathological response			
Non-pCR	79 (82.3%)	45 (47.4%)	< 0.001
pCR	17 (17.7%)	50 (52.6%)	

TILs: tumor- infiltrating lymphocytes. HER: human epidermal growth factor receptor. ORR: objective response rate. CR: complete response.

Correlation of TILs density with clinicopathological features and prognosis of patients

First, the 356 patients were divided into high and low TILs density groups, and their correlation with clinicopathological factors was examined (Supplementary Table S1). Following characteristics were observed in the low TILs than the high TILs group: ≥ 45 years (P = 0.008), skin invasion (P = 0.001), ER-positive (P < 0.001), PgR-positive (P < 0.001), HER2-negative (P = 0.011), Ki67-high (P < 0.001), low ORR (P = 0.001), and low pCR rate (P < 0.001).

Further, the high TILs density group showed significantly better DFS than the low TILs density group in HER2-enriched (P = 0.012, log-rank) and TNBC (P = 0.002, log-rank) categories (Supplementary Fig. S2). Therefore, DFS was better in the high TILs density group despite no significant difference in HR + BC (P = 0.011, log-rank). However, the high TILs density group had better OS, although not statistically significant, than the low TILs density group in TNBC category (P = 0.057, log-rank), but there was no significant difference between the difference of TILs density (Supplementary Fig. S3). Further, in the univariate analysis
for DFS, high TILs density group associated with significantly better DFS ($P = 0.010, \text{HR} = 0.512$) (Supplementary Table S2). However, in the multivariate analysis for DFS, TILs density was not an independent factor ($P = 0.227, \text{HR} = 0.699$), since skin invasion ($P = 0.012, \text{HR} = 2.180$), lymph node metastasis ($P = 0.001, \text{HR} = 2.918$), HER2-positive ($P = 0.020, \text{HR} = 0.498$), Responders in ORR ($P < 0.001, \text{HR} = 0.247$), and pCR ($P < 0.001, \text{HR} = 0.315$) influenced the DFS. Additionally, difference in OS due to TILs was insignificant even in the univariate analysis ($P = 0.214, \text{HR} = 0.660$) (Supplementary Table S3).

Further, the patients were classified based on age as < 45 years, 46–60 years, and ≥ 61 years, and the distribution of TILs density was analyzed using t-test (Fig. 1). Our analysis did not indicate significant difference in HR + BC for any of the age groups. However, in HER2-enriched BC, the patients aged < 45 years had significantly higher TILs density than patients in other age groups (vs. 46–60 years: $P = 0.002$, and vs. ≥ 61 years: $P = 0.018$). Furthermore, in the TNBC category, the patients aged ≥ 61 years had significantly higher TILs density than patients in other age groups (vs. ≤ 40 years: $P = 0.035$, and vs. 46–60 years: $P = 0.047$).

Examination of clinicopathological factors and prognosis in the younger and older BC patients

First, we studied the correlation between TILs density and clinicopathological factors in the younger and older patients (Table 2). Although patients aged 46–60 years were excluded from the analysis, the characteristics of the high TILs density group were similar to those for all patients: > 60 years ($P = 0.047$), skin infiltration ($P = 0.001$), ER-positive ($P < 0.001$), PgR-positive ($P = 0.001$), HER2-negative ($P = 0.002$), lower ORR ($P = 0.002$), and lower pCR rate ($P < 0.001$).

Further, younger patients showed significantly higher pCR rates than older patients in the HR + HER2- and HER2-enriched BC category ($P = 0.021$ and $P = 0.048$, respectively) (Table 3). Moreover, in HR + HER2 + BC, the responder rate for ORR was significantly higher in the younger patients than in older patients ($P = 0.009$). However, no significant difference was observed in the effect of POC on TNBC.
Table 3: Difference in clinicopathological features due to age

Parameters	All intrinsic subtype (n = 191)	HR + HER2-BC (n = 61)	HR + HER2 + BC (n = 27)	HER2BC (n = 48)	TNBC (n = 23)								
	Young (n = 75)	Elderly (n = 116)	Young (n = 24)	Elderly (n = 39)	Young (n = 16)	Young (n = 11)	Young (n = 12)	Elderly (n = 36)	Young (n = 23)				
Tumor size (mm)													
≤ 20.0	10 (13.3%)	24 (20.7%)	2 (8.3%)	7 (17.9%)	0.290	3 (18.8%)	2 (18.2%)	0.970	2 (16.7%)	7 (19.4%)	0.831	3 (13.0%)	
> 20.0	65 (86.7%)	92 (79.3%)	22 (91.7%)	32 (82.1%)		13 (81.2%)	9 (81.8%)		10 (83.3%)	29 (80.6%)		20 (87.0%)	
Skin infiltration	68 (90.7%)	90 (77.6%)	20 (83.3%)	29 (74.4%)	0.405	14 (87.5%)	6 (54.5%)	0.055	12 (100.0%)	29 (80.6%)	0.098	22 (95.7%)	
Negative	7 (9.3%)	26 (22.4%)	4 (16.7%)	10 (25.6%)		2 (12.5%)	5 (45.5%)		0 (0.0%)	7 (19.4%)		1 (4.3%)	
Positive													
Lymph node status	28 (37.3%)	44 (37.9%)	8 (33.3%)	12 (30.8%)	0.832	9 (56.2%)	2 (18.2%)	0.048	4 (33.3%)	17 (47.2%)	0.401	7 (30.4%)	
Negative	47 (62.7%)	72 (62.1%)	16 (66.7%)	27 (69.2%)		7 (43.8%)	9 (81.8%)		8 (66.7%)	19 (52.8%)		16 (69.6%)	
Positive													
Estrogen receptor	37 (49.3%)	67 (57.8%)	2 (8.3%)	0 (0.0%)	0.067	0 (0.0%)	1 (9.1%)	0.219	-	-	-	-	
Negative	38 (50.7%)	49 (42.2%)	22 (91.7%)	39 (100.0%)		16 (100.0%)	10 (90.9%)		-	-	-	-	
Positive													
Progesterone receptor	42 (56.0%)	89 (76.7%)	5 (20.8%)	16 (41.0%)	0.099	2 (12.5%)	7 (63.6%)	0.006	-	-	-	-	
Negative	33 (44.0%)	27 (23.3%)	19 (79.2%)	23 (59.0%)		14 (87.5%)	4 (36.4%)		-	-	-	-	
Positive													
Hormone receptor	35 (46.7%)	66 (56.9%)	-	-		-	-	-			-	-	
Negative	40 (53.3%)	50 (43.1%)	-	-		-	-	-				-	
Positive													
HER2	47 (62.7%)	69 (59.5%)	-	-		-	-	-			-	-	
Negative	28 (37.3%)	47 (40.5%)	-	-		-	-	-				-	
Positive													
Ki67													
≤14 %	22 (29.3%)	40 (34.5%)	12 (50.0%)	21 (53.8%)	0.767	7 (43.8%)	2 (18.2%)	0.166	11 (91.7%)	24 (66.7%)	0.091	2 (8.7%)	
>14 %	53 (70.7%)	76 (65.5%)	12 (50.0%)	18 (46.2%)		9 (56.2%)	9 (81.8%)		12 (33.3%)	20 (67.0%)			
ORR	5 (6.7%)	17 (14.8%)	2 (8.3%)	8 (20.5%)	0.199	0 (0.0%)	4 (36.4%)	0.009	0 (0.0%)	12 (100.0%)	35 (97.2%)	0.560	3 (13.0%)
Non-Responders	70 (93.3%)	99 (85.2%)	22 (91.7%)	31 (79.5%)	0.021	13 (81.2%)	10 (90.9%)	0.488	11 (91.7%)	22 (61.1%)	0.048	14 (60.9%)	
Responders													
Pathological response	46 (61.3%)	78 (67.2%)	18 (75.0%)	37 (94.9%)	0.021	13 (81.2%)	10 (90.9%)	0.488	11 (91.7%)	22 (61.1%)	0.048	14 (60.9%)	
Non-pCR	29 (38.7%)	38 (32.8%)	6 (25.0%)	2 (5.1%)		3 (18.8%)	1 (9.1%)						
pCR													
TILs													
Low	31 (41.3%)	65 (56.0%)	14 (58.3%)	31 (79.5%)	0.071	7 (43.8%)	9 (81.8%)	0.048	11 (91.7%)	26 (72.2%)	0.165	9 (39.1%)	
High	44 (58.7%)	51 (44.0%)	10 (41.7%)	8 (20.5%)		9 (56.2%)	2 (18.2%)		11 (91.7%)	14 (60.9%)			

HER: human epidermal growth factor receptor. ORR: objective response rate. CR: complete response. TILs: tumor infiltrating lymphocytes.

Next, when DFS was compared between the younger and older patients, no significant difference was found overall or in any subtype (Fig. 2). Moreover, our analysis indicated that age or TILs was not a predictor of DFS in the univariate analysis (P = 0.619 and P = 0.066, respectively) (Table 4). Although upon
comparison of OS, a significant difference was observed between younger and older patients with TNBC ($P = 0.039$, log-rank) (Fig. 3), the results were contrasting and suggested better OS in older patients than in younger patients. Additionally, in univariate analysis with OS, no significant difference in age and TILs density was observed ($P = 0.346$ and $P = 0.216$, respectively) (Table 5).

Table 4

Parameters	Univariate analysis	Multivariate analysis				
	Hazard ratio	95% CI	p value	Hazard ratio	95% CI	p value
Age at operation (yr) ≤ 45 vs > 60	0.916	0.651–1.300	0.619			
Tumor size (mm) ≤ 20 vs > 20	0.674	0.309–1.684	0.373			
Skin infiltration Negative vs Positive	2.629	1.140–5.582	0.025	2.597	1.075–5.858	0.035
Lymph node status Negative vs Positive	4.935	1.756–20.600	0.001	3.981	1.385–16.828	0.008
Estrogen receptor Negative vs Positive	0.738	0.358–1.469	0.390			
Progesterone receptor Negative vs Positive	0.733	0.322–1.524	0.418			
Hormone receptor Negative vs Positive	0.675	0.327–1.344	0.265			
HER2 Negative vs Positive	0.237	0.070–0.602	0.001	0.479	0.130–1.423	0.193
Intrinsic subtype Not TNBC vs TNBC	2.710	1.356–5.392	0.005	2.418	1.080–5.456	0.032
Ki67 ≤14 % vs >14 %	2.339	1.066–5.872	0.033	2.489	1.089–6.417	0.030
Objective response rate Non-Responders vs Responders	0.309	0.145–0.734	0.010	0.381	0.159–0.984	0.047
Pathological response Non-pCR vs pCR	0.195	0.058–0.499	<0.001	0.238	0.065–0.685	0.006
TILs Low vs High	0.523	0.253–1.045	0.066	0.991	0.431–2.231	0.982

DFS: Disease-free survival. CI: confidence intervals. HER: human epidermal growth factor receptor. pCR: pathological complete response. TILs: tumor-infiltrating lymphocytes.
Table 5
Univariate and multivariate analysis with respect to OS in younger and elderly patients

Parameters	Univariate analysis	Multivariate analysis				
	Hazard ratio	95% CI	p value	Hazard ratio	95% CI	p value
Age at operation (yr)						
≤ 45 vs > 60	0.813	0.524–1.255	0.346			
Tumor size (mm)						
≤ 20 vs > 20	1.188	0.402–5.074	0.778			
Skin infiltration						
Negative vs Positive	5.034	1.940–12.433	0.002	6.899	2.467–18.908	< 0.001
Lymph node status						
Negative vs Positive	4.239	1.227–26.631	0.019	2.999	0.815–19.389	0.106
Estrogen receptor						
Negative vs Positive	0.474	0.169–1.167	0.107			
Progesterone receptor						
Negative vs Positive	0.475	0.137–1.285	0.151			
Hormone receptor						
Negative vs Positive	0.441	0.157–1.085	0.076			
HER2						
Negative vs Positive	0.283	0.066–0.844	0.021	0.721	0.149–2.809	0.645
Intrinsic subtype						
Not TNBC vs TNBC	3.966	1.640–10.130	0.002	3.703	1.323–11.575	0.012
Ki67						
≤14 % vs > 14 %	2.730	1.004–9.518	0.049	2.271	0.768–8.314	0.144
Objective response rate						
Non-Responders vs Responders	0.244	0.097–0.692	0.010	0.259	0.090–0.797	0.020
Pathological response						
Non-pCR vs pCR	0.241	0.056–0.718	0.009	0.384	0.082–1.332	0.137
TILs						
Low vs High	0.578	0.232–1.380	0.216			

OS: Overall survival. CI: confidence intervals. HER: human epidermal growth factor receptor. pCR: pathological complete response. TILs: tumor-infiltrating lymphocytes.

Discussion

The characteristics of BC in the older patients have been often reported. For example, large tumor size [13, 28–30], frequent skin infiltration [29, 31], infrequent lymph node metastasis [28, 30], high rate of HR positivity [13, 28], and fewer HER2-positive tumors [28–30] have been reported in older patients. The clinicopathological characteristics of older BC patients in our study shows strong correlation to the decision of administering POC or not, though some features similar to those reported by others were identified.

While age-related differences in pCR rates have not been reported in several clinical trials, a pooled analysis observed high pCR rate in younger BC patients [14]. Moreover, reports suggest that the pCR rate decreased with age [10, 13]. Analysis of BC based on subtype in these studies suggested a strong correlation between HR+ HER2- and TNBC, whereas no significant difference with age in HER2-positive BC, which differed in our study, and the exact reason remains to be identified. Further, there are various molecular subtypes of TNBC, and their age at onset and pCR rates have been observed to differ across studies [32–34].

We anticipate that our analysis may have been affected by differences in molecular subtypes of TNBC, or due to differences in the chemotherapy regimen. Furthermore, reports suggest that the expression of androgen receptor (AR) increases with age in BC patients [35–37], and that the AR-positive cases show low pCR rate than the AR-negative cases [38]. Additionally, newer biomarkers may also affect these outcomes.

Moreover, von Waldenfels et al. have reported that prognosis worsens with age in BC patients [13]. However, their study observed significant differences in prognoses between patients aged ≥ 65 years and those aged 40–50 or 51–65 years, but no significant difference between patients aged ≥ 65 years and those aged < 40 years. Furthermore, studies reporting higher pCR rate in younger patients did not observe a significant difference in prognosis in TNBC [14].
contrast, studies reported more than 10 years back suggest poor prognosis [39–41], and aggressive cellular properties in the younger BC patients [39, 42–44]. AR expression also affects prognosis and may contribute [38]. Additionally, with advent of newer biological treatments, the number of clinical trials claiming prognosis to differ with age have decreased.

Here, when we studied TILs at all ages, we observed correlation between TILs and clinicopathological factors, treatment effects, and prognosis similar to those reported previously. Moreover, our analysis suggests that younger BC patients had significantly higher TILs density than older BC patients. Additionally, age-related ORR and pCR rates differed in HER2-positive BC. Moreover, a pooled analysis for TNBC alone reported that the older patients had significantly lower TILs than in younger patients [45]. This result can be attributed to the decrease in host immunity due to aging, and to the inherent cellular characteristics of BC that vary with age.

However, this study has a limitation that the criteria for dividing patients into younger and older patients was not well-defined, and that the clinicopathological factors, other than TILs density, differed with age. However, the change in TME with age suggests that it may have influenced the therapeutic effect due to the characteristics of the host's immune system, and the differences in cancer itself depending on the age. Additionally, in lung cancer, it has been reported that the therapeutic effect of the immune checkpoint inhibitors (ICIs) decreases in the older patients [46–48]. Therefore, age may also serve as an important clinical factor in deciding the course of treatment of BC patients with ICIs.

Conclusions

The analysis presented in this study suggests that younger BC patients show significantly higher TILs density than older patients, along with differences in prognoses between the groups. Moreover, these differences may allow selection of better treatment modalities for the highly immunogenic subtypes of BC.

Abbreviations

AR: androgen receptor, BC: breast cancer, CIs: confidence intervals, cCR: clinical complete response, CNB: core needle biopsy, CT: computed tomography, cPD: clinical progressive disease, cPR: clinical partial response, cSD: clinical stable disease, DFS: disease-free survival, ER: estrogen receptor, HER2: human epidermal growth factor receptor 2, HR: hormone receptor, NSABP: National Surgical Adjuvant Breast and Bowel Project, ORR: objective response rate, OS: overall survival, pCR: pathological complete response, PgR: progesterone receptor, POC: pre-operative chemotherapy, TN: triple-negative, TILs: tumor-infiltrating lymphocytes, TIME: tumor-microenvironment, US: ultrasonography, VAB: vacuum-assisted biopsy.

Declarations

Ethics approval and consent to participate

A written informed consent to participate in the study was obtained from each subject in accordance with the declaration of Helsinki principles. Each patient or the patient's family was fully informed of the investigational nature of this study and provided their written, informed consent. The study protocol was approved by the Ethics Committee of Osaka City University (approve number #926).

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported in part by Grants-in-Aid for Scientific Research (KAKENHI, Nos. 17K10559, 19K18067 and 20K08938) from the Ministry of Education, Science, Sports, Culture and Technology of Japan.

Authors' contributions

KT participated in the design of the study and drafted the manuscript. SK participated in the design of the study and manuscript editing. YA, WG, SI, and TM helped with study data collection and manuscript preparation. MS, HT, KH and MO conceived the study, and participated in its design and coordination and helped to draft the manuscript. All authors have read and approved the final manuscript.

Acknowledgements

We thank Yayoi Matsukiyo and Tomomi Okawa (Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine) for helpful advice regarding data management.

Author's information
References

1. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschef F, Pruner G, Wienet S, Van den Eynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, Brock J, Crisitelli C, Bailey H, Ignatiadis M, Floris G, Sparano J, Kos Z, Nielsen T, Rimm DL, Allison KH, Reis-Filho JS, Loibl S, Sotiriou C, Viale G, Badve S, Adams S, Willard-Gallo K, Loi S, International TGW. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26(2):259–71. doi:10.1093/annonc/mdu450.

2. Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8(3):151–60. doi:10.1038/nrclonc.2010.223.

3. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306. doi:10.1038/nr3245.

4. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotheraphy Science. 2013;342(6165):1432–3. doi:10.1126/science.342.6165.1432.

5. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner T, Wolff AC, Wood WC, Davidson NE, Sledge GW, Sparano JA, Badve SS. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66. doi:10.1200/JCO.2013.55.0491.

6. Denkert C, von Minckwitz G, Grase JC, Sinn BV, Gade S, Kronenwett R, Pfizer BM, Salat C, Loi S, Schmitt WD, Schern C, Fisch K, Darb-Esfahani S, Mehta K, Sotiriou C, Wienert S, Klare P, Andre F, Klauschef F, Blohmer JU, Krappmann K, Schmidt M, Tesch H, Kummel S, Sinn P, Jacsich C, Diel M, Reimer T, Untch M, Loibl S. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983–91. doi:10.1200/JCO.2014.58.1967.

7. Ohtani H, Mori-Shiraiishi K, Nakajima M, Ueki H. Defining lymphocyte-predominant breast cancer by the proportion of lymphocyte-rich stroma and its significance in routine histopathological diagnosis. Pathol Int. 2015;65(12):644–51. doi:10.1111/pin.12355.

8. Stanton SE, Adams S, Disis ML. Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes: A Systematic Review. JAMA Oncol. 2016;2(10):1354–60. doi:10.1001/jamaoncol.2016.1061.

9. Asano Y, Kashiwagi S, Goto W, Takada K, Takahashi K, Hatano T, Takashima T, Tomita S, Motomura H, Ohsawa M, Hirakawa K, Ohira M. Prediction of Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer by Subtype Using Tumor-infiltrating Lymphocytes. Anticancer Res. 2018;38(4):2311–21. doi:10.21873/anticancer.12476.

10. Huober J, von Minckwitz G, Denkert C, Tesch H, Weiss E, Zahm DM, Belau A, Khandan F, Hauschild M, Thomssen C, Hogel B, Darb-Esfahani S, Mehta K, Loibl S. Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTriio study. Breast Cancer Res Treat. 2010;124(1):133–40. doi:10.1007/s10549-010-1103-9.

11. Loibl S, Untch M, Burchardi N, Huober J, Sinn BV, Blohmer JU, Grischke EM, Furlanetto J, Tesch H, Hanusch C, Engels K, Rezai M, Jackisch C, Schmitt WD, von Minckwitz G, Thomalla J, Kummel S, Rautenberg B, Fasching PA, Weber K, Rhiem K, Denkert C, Schneweiss A. A randomised phase II study investigating durvalumab in addition to an anthracycline-taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuo study. Ann Oncol. 2019;30(8):1279–88. doi:10.1093/annonc/mdz158.

12. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kelkompua-Lehtinen PL, Bono P, Kataja V, Desmedt C, Piccart MJ, Loibl S, Denkert C, Smyth MJ, Joensuu H, Sotiriou C. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50. doi:10.1093/annonc/mdu112.

13. von Waldenfels G, Loibl S, Furlanetto J, Machleidt A, Lederer B, Denkert C, Hanusch C, Kummel S, von Minckwitz G, Schneweiss A, Untch M, Rhiem K, Fasching PA, Blohmer JU. Outcome after neoadjuvant chemotherapy in elderly breast cancer patients - a pooled analysis of individual patient data from eight prospectively randomized controlled trials. Oncotarget. 2018;9(20):15168–79. doi:10.18632/oncotarget.24586.

14. Loibl S, Jackisch C, Lederer B, Untch M, Paepke S, Kummel S, Schneweiss A, Huober J, Hilfrich J, Hanusch C, Gerber B, Eidtmann H, Denkert C, Costa SD, Blohmer JU, Nekljudova V, Mehta K, von Minckwitz G. Outcome after neoadjuvant chemotherapy in young breast cancer patients: a pooled analysis of individual patient data from eight prospectively randomized controlled trials. Breast Cancer Res Treat. 2015;152(2):377–87. doi:10.1007/s10549-015-3479-z.

15. Yaqoob P. Ageing alters the impact of nutrition on immune function. Proc Nutr Soc. 2017;76(3):347–51. doi:10.1017/S0029665116000781.

16. Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aour C, de Azambuja E, Eidtmann H, Ellis CE, Baselga J, Piccart-Gebhart MJ, Michiels S, Bradbury I, Sotiriou C, Loi S. Tumor-Infiltrating Lymphocytes and Associations With Pathological Complete Response and Event-Free Survival in HER2-Positive Early-Stage Breast Cancer Treated With Lapatinib and Trastuzumab: A Secondary Analysis of the NeoALTTO Trial. JAMA Oncol. 2015;1(4):448–54. doi:10.1001/jamaoncol.2015.0830.

17. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenuo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol. 2013;31(7):860–7. doi:10.1200/JCO.2011.41.0902.

18. Luen SJ, Salgado R, Fox S, Savas P, Eng-Wong J, Clark E, Kiemenaar A, Swain SM, Baselga J, Michiels S, Loi S. Tumor-Infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol. 2017;18(1):52–62. doi:10.1016/S1470-2045(16)30631-3.
19. Perez EA, Ballman KV, Tenner KS, Thompson EA, Badve SS, Bailey H, Baehner FL. Association of Stromal Tumor-Infiltrating Lymphocytes With Recurrence-Free Survival in the N9831 Adjuvant Trial in Patients With Early-Stage HER2-Positive Breast Cancer. JAMA Oncol. 2016;2(1):56–64. doi:10.1001/jamaoncol.2015.3239.

20. Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst. 2005;97(3):188–94. doi:10.1093/jnci/dij021.

21. Mieog JS, van der Hage JA, van de Velde CJ. (2007) Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev (2):CD005002. doi:10.1002/14651858.CD005002.pub2.

22. Kawajiri H, Takashima T, Onoda N, Kashwagi S, Noda S, Ishikawa T, Wakasa K, Hirakawa K. Efficacy and feasibility of neoadjuvant chemotherapy with FEC 100 followed by weekly paclitaxel for operable breast cancer. Oncol Lett. 2012;4(4):612–6. doi:10.3892/ol.2012.801.

23. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. doi:10.1016/j.ejca.2008.10.026.

24. Kashwagi S, Onoda N, Asano Y, Kurata K, Morisaki T, Noda S, Kawajiri H, Takashima T, Hirakawa K. Partial mastectomy using manual blunt dissection (MBD) in early breast cancer. BMC Surg. 2015;15:117. doi:10.1186/s12893-015-0102-5.

25. Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B. (2001) Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr (30):96–102. doi:10.1093/oxfordjournals.jncimonographs.a003469.

26. Kashwagi S, Asano Y, Goto W, Takada K, Takahashi K, Noda S, Takashima T, Onoda N, Tomita S, Ohsawa M, Hirakawa K, Ohira M. Use of Tumor-infiltrating lymphocytes (TILs) to predict the treatment response to eribulin chemotherapy in breast cancer. PLoS One. 2017;12(2):e0170634. doi:10.1371/journal.pone.0170634.

27. Asano Y, Kashwagi S, Goto W, Takada K, Takahashi K, Hatano T, Noda S, Takashima T, Onoda N, Tomita S, Motomura H, Ohsawa M, Hirakawa K, Ohira M. Prediction of survival after neoadjuvant chemotherapy for breast cancer by evaluation of tumor-infiltrating lymphocytes and residual cancer burden. BMC Cancer. 2017;17(1):888. doi:10.1186/s12885-017-3927-8.

28. Gennari R, Curigliano G, Rotmensz N, Robertson C, Colleoni M, Zurrida S, Nole F, de Braud F, Orlando L, Leonard MC, Galimberti V, Intra M, Veronesi P, Renne G, Cinieri S, Audioso RA, Luini A, Orecchia R, Viale G, Goldhirsch A. Breast carcinoma in elderly women: features of disease presentation, choice of local and systemic treatments compared with younger postmenopausal patients. Cancer. 2004;101(6):1302–10. doi:10.1002/cncr.20535.

29. Wildiers H, Kunkler I, Biganzoli L, Fracheboud J, Vlastos G, Bernard-Marti C, Huria A, Extermann M, Girre V, Brain E, Audioso RA, Bartelink H, Barton M, Giordano SH, Muss H, Aapro M. Management of breast cancer in elderly individuals: recommendations of the International Society of Geriatric Oncology. Lancet Oncol. 2007;8(12):1101–15. doi:10.1016/S1470-4247(07)70378-9.

30. Crivellari D, Aapro M, Leonard R, von Minckwitz G, Brain E, Goldhirsch A, Veronesi A, Muss H. Breast cancer in the elderly. J Clin Oncol. 2007;25(14):1882–90. doi:10.1200/JCO.2006.09.2079.

31. Louwman WJ, Vulto JC, Verhoeven RH, Nieuwenhuijzen GA, Coebergh JW, Voogd AC. Clinical epidemiology of breast cancer in the elderly. Eur J Cancer. 2007;43(15):2242–52. doi:10.1016/j.ejca.2007.08.005.

32. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67. doi:10.1172/JCI45014.

33. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Metic-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN, Symmans WF, Ueno NT. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–40. doi:10.1158/1078-0432.CCR-13-0799.

34. Echavarria I, Lopez-Tarruella S, Picornell A, Garcia-Saenz JA, Jerez Y, Hoadley K, Gomez HL, Moreno F, Monte-Millan MD, Marquez-Rodas I, Alvarez E, Ramos-Medina R, Gayarre J, Massarrah T, Ocana I, Cebollero M, Fuentes H, Barnadas A, Ballesteros AI, Bohn U, Perou CM, Martin M. Pathological Response in a Triple-Negative Breast Cancer Cohort Treated with Neoadjuvant Carboplatin and Docetaxel According to Lehmann's Renewed Classification. Clin Cancer Res. 2018;24(8):1845–52. doi:10.1158/1078-0432.CCR-17-1912.

35. Asano Y, Kashwagi S, Goto W, Tanaka S, Morisaki T, Takashima T, Noda S, Onoda N, Ohsawa M, Hirakawa K, Ohira M. (2017) Expression and Clinical Significance of Androgen Receptor in Triple-Negative Breast Cancer. Cancers (Basel) 9 (1). doi:10.3390/cancers9010004.

36. Astvatatsuryan K, Yue Y, Walts AE, Bose S. Androgen receptor positive triple negative breast cancer: Clinico-pathologic, prognostic, and predictive features. PLoS One. 2018;13(6):e0197827. doi:10.1371/journal.pone.0197827.

37. Jongen L, Floris G, Wildiers H, Claessens F, Richard F, Laenen A, Desmedt C, Ardui J, Punie K, Smeets A, Berteloot P, Vergote I, Neven P. Tumor characteristics and outcome by androgen receptor expression in triple-negative breast cancer patients treated with neo-adjuvant chemotherapy. Breast Cancer Res Treat. 2019;176(3):699–708. doi:10.1007/s10549-019-05252-6.

38. Asano Y, Kashwagi S, Onoda N, Kurata K, Morisaki T, Noda S, Takashima T, Ohsawa M, Kitagawa S, Hirakawa K. Clinical verification of sensitivity to preoperative chemotherapy in cases of androgen receptor-expressing positive breast cancer. Br J Cancer. 2016;114(1):14–20. doi:10.1038/bjc.2015.434.

39. Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y, Wang Y, Marcom PK, Marks JR, Febo PG, Nevins JR, Potti A, Blackwell KL. Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol. 2008;26(20):3324–30. doi:10.1200/JCO.2007.14.2471.

40. Adami HO, Malkel B, Holmberg L, Persson I, Stone B. The relation between survival and age at diagnosis in breast cancer. N Engl J Med. 1986;315(9):559–63. doi:10.1056/NEJM198608283150906.
41. Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H. Breast cancer in young women: poor survival despite intensive treatment. PLoS One. 2009;4(11):e7695. doi:10.1371/journal.pone.0007695.
42. Colleoni M, Rotmensz N, Robertson C, Orlando L, Viale G, Renne G, Luini A, Veronesi P, Intra M, Orecchia R, Catalano G, Galimberti V, Nole F, Martinelli G, Goldhirsch A. Very young women (< 35 years) with operable breast cancer: features of disease at presentation. Ann Oncol. 2002;13(2):273–9. doi:10.1093/annonc/mdf039.
43. Ding J, Jiang L, Wu W. Predictive Value of Clinicopathological Characteristics for Sentinel Lymph Node Metastasis in Early Breast Cancer. Med Sci Monit. 2017;23:4102–8. doi:10.12659/msm.902795.
44. Nouh MA, Ismail H, El-Din NH, El-Bolkainy MN. Lymph node metastasis in breast carcinoma: clinicopathological correlations in 3747 patients. J Egypt Natl Canc Inst. 2004;16(1):50–6.
45. Loi S, Drubay D, Adams S, Pruner G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, Gray R, Munzone E, Lemonnier J, Sotiriou C, Piccart MJ, Kellokumpu-Lehtinen PL, Vingiani A, Gray K, Andre F, Denkert C, Salgado R, Michiels S. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J Clin Oncol. 2019;37(7):559–69. doi:10.1200/JCO.18.01010.
46. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G Jr, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dollen-Filhart M, Garon EB. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50. doi:10.1016/S0140-6736(15)01281-7.
47. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(2):123–35. doi:10.1056/NEJMoa1504627.
48. Nishijima TF, Muss HB, Shachar SS, Moschos SJ. Comparison of efficacy of immune checkpoint inhibitors (ICIs) between younger and older patients: A systematic review and meta-analysis. Cancer Treat Rev. 2016;45:30–7. doi:10.1016/j.ctrv.2016.02.006.

Figures

Takada K. et al.

![Figure 1](image_url)

Correlation of TILs density with age of BC patients. Patients were grouped based on their BC subtype as: a) all cases, b) HR+HER2-, c) HR+HER2+, d) HER2-enriched, and e) TNBC. The TILs density in each age-group in each subtype has been indicated using box-plot distribution analysis. P-values in the figure indicate statistical significance for each comparison obtained using t-test.
Figure 2

Comparison of disease-free survival (DFS) between younger and older patients with varied BC subtypes. Kaplan-Meier DFS analysis has been indicated for patients grouped based on their BC subtype as: a) all cases, b) HR+HER2-, c) HR+HER2+, d) HER2-enriched, and e) TNBC. P-values in the figure indicate statistical significance for each comparison obtained using log-rank test.
Figure 3

Comparison of overall survival (OS) between younger and older patients with varied BC subtypes. Kaplan-Meier OS analysis has been indicated for patients grouped based on their BC subtype as: a) all cases, b) HR+HER2-, c) HR+HER2+, d) HER2-enriched, and e) TNBC. P-values in the figure indicate statistical significance for each comparison obtained using log-rank test.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryFig.S1.tif
- SupplementaryFig.S2.tif
- SupplementaryFig.S3.tif
- SupplementaryTableS1.docx
- SupplementaryTableS2.docx
- SupplementaryTableS3.docx