Isolation and antibiotic susceptibility of E. coli from urinary tract infections in a tertiary care hospital

Sumera Sabir1, Aftab Ahmad Anjum2, Tayyaba Ijaz3, Muhammad Asad Ali4, Muti ur Rehman Khan5, Muhammad Nawaz6

ABSTRACT

Objective: The study was conducted to isolate and determine the antibiotic resistance in E. coli from urinary tract infections in a tertiary care hospital, Lahore.

Methods: Urine samples (n=500) were collected from patients with signs and symptoms of Urinary tract infections. Bacteria were isolated and identified by conventional biochemical profile. Antibiotic resistance pattern of E. coli against different antibiotic was determined by Kirby-Baur method.

Results: Bacterial etiological agent was isolated from 402 samples with highest prevalence of E. coli (321, 80%) followed by Staphylococcus aureus (9.4%), Proteus species (5.4%) and Pseudomonas species (5.2%). The E. coli were highly resistant to penicillin (100%), amoxicillin (100%) and cefotaxime (89.7%), followed by intermediate level of resistance to ceftazidime (73.8%), cephradine (73.8%), tetracycline (69.4%), doxycycline (66.6%), gentamycin (59.8%), cefuroxime (58.2%), ciprofloxacin (54.2%), cefaclor (50%), aztreonam (44.8%), ceftriaxone (43.3%), imipenem (43.3%), and low level of resistance to streptomycin (30%), kanamycin (19.9%), tazocin (14%), amikacin (12.7%) and lowest to norfloxacin (11.2%). Out of 321 E. coli isolates, 261 (81%) were declared as multiple drug resistant and 5 (1.5%) were extensive drug resistant.

Conclusion: It is concluded that most of the urinary tract infections in human are caused by multiple drug resistant E. coli.

KEY WORDS: Urinary tract infections, Prevalence, E. coli, Antibiotic resistance, MDR.

doi: http://dx.doi.org/10.12669/pjms.302.4289

How to cite this: Sabir S, Anjum AA, Ijaz T, Ali MA, Khan MR, Nawaz M. Isolation and antibiotic susceptibility of E. coli from urinary tract infections in a tertiary care hospital. Pak J Med Sci 2014;30(2):389-392. doi: http://dx.doi.org/10.12669/pjms.302.4289

INTRODUCTION

Urinary tract infections (UTIs) are serious health affecting problems worldwide.1 E. coli, E. faecalis, K. pneumoniae, S. marcescens, P. aeruginosa, S. saprophyticus, S. aureus and Proteus mirabilis are most common bacteria causing UTIs in human beings.2-4 The E. coli accounts for approximately 85% of community acquired UTIs and 50% of hospital acquired UTIs.5 Different factors like age, gender, immunosupression and urological instruments may affect prevalence of UTIs.6 Catheter-associated UTIs are one of the most dangerous health risks contributing 34% of all health care associated infections.7

The emergence of extended-spectrum beta-lactamases has threatened the empirical use of cephalosporins and ciprofloxacin.8,9 Microorganisms use various mechanisms to develop drug resistance,
such as recombination of foreign DNA in bacterial chromosome, horizontal gene transfer and alteration in genetic material. Resistance pattern of microorganisms vary from country to country, state to state, large hospital to small hospital and hospital to community. In Pakistan, the problem of antibiotic resistance is compounding because of overuse and misuse of antibiotics. There is no systematic national surveillance of antibiotic resistance and insufficient data is available to quantify the problem. Detection of UTI causing pathogens and resistance of these pathogens to commonly prescribed antibiotics in clinical set ups is essential and helpful in improving the efficacy of empirical treatment. Objective of the present study was to highlight the bacterial etiology of UTIs and determination of resistance pattern of E. coli isolates.

METHODS

The observational and prospective study was conducted at Mayo Hospital Lahore, which is one of the oldest and biggest hospitals in Punjab. Sample collection and Isolation of Bacteria: Urine samples (n=500) were collected from patients in different wards (n=400) and outpatient department (n=100) from Mayo Hospital, Lahore. Samples were centrifuged and sediments were cultured primarily on blood agar and macConkey’s agar by spread plate technique. Bacterial colonies having different morphology were selected, purified and identified by their biochemical profiles. Multiple drug resistance: Antibiotic sensitivity pattern of E. coli isolates was determined on Muller Hinton agar plates by Kirby-Bauer disc diffusion. Isolates were declared as sensitive or resistant on the basis of zone of inhibition following the criteria of Clinical Laboratory standards Institute.

RESULTS

Bacterial etiology of Urinary tract infections (UTIs) in patients admitted in or visiting Mayo hospital, Lahore as out patient was determined. Resistance pattern of Escherichia coli against a number of antibiotics was also checked. Bacteria were successfully isolated from 402/500 samples. Rate of isolation of bacterial etiological agent from female samples (87.5%) was not-significantly higher as compared to male (71.3%) patients. Out of 402 bacterial isolates from patients, rate of E. coli (321, 80%) isolation was highest followed by Staphylococcus aureus (38 9.4%), Proteus species (22 5.4%) and Pseudomonas spp (21 5.2%). E. coli exhibited

Antibiotics (Codes)	Disks	Resistant (R)	Intermediate (I)	Sensitive (S)
Cephradine (CR)	CR 30 µg	237 73.8%	28 8.7%	56 17.4%
Amikacin	AK 30 µg	41 12.7%	56 17.4%	224 71.7%
Streptomycin	S 10 ug	96 30%	76 23.6%	225 70%
Norfloxacine	NOR 10 ug	36 11.2%	101 31.4%	184 58.9%
Ciprofloxacine	CIP 5 ug	174 54.2%	53 16.5%	94 29.2%
Imipenem	IPM 10 ug	139 43.3%	55 17.1%	127 39.5%
Cefuroxime	CXM 30 ug	187 58.2%	60 18.6%	74 23.0%
Augmentin	AMC 30 ug	201 62.6%	40 12.4%	80 24.9%
Ceftriazone	CRO 30 ug	139 43.3%	60 18.6%	122 38.0%
Gentamicin	CN 10 ug	192 59.8%	44 13.7%	85 26.4%
Aztreonam	ATM 30 ug	144 44.8%	60 18.6%	177 55.1%
Doxycycline	DO 30 ug	214 66.6%	33 10.2%	74 23.0%
Pipracillin-Tazobactam	TZP 100/10 ug	0 0%	30 9.6%	291 90.6%
Ceftazidime	CAZ 30 ug	237 73.8%	32 9.9%	52 16.1%
Tetracycline	TE 30 ug	223 69.4%	29 9%	69 21.4%
Cefaclor	CEC 30 ug	160 50%	60 18.6%	101 31.4%
Tazocin	TZP 110/10 ug	48 14.9%	0 0%	273 85%
Levofloxacine	LEV 5 ug	0 0%	21 6.5%	300 93.4%
Kanamycin	K 30 ug	64 19.9%	100 31.1%	157 48.9%
Meropenem	MEM 10 ug	0 0%	0 0%	321 100%
Amoxicillin	AMC 20 ug	321 100%	0 0%	0 0%
Pencillin	P 10 ug	321 100%	0 0%	0 0%
Tobramycin	TOB 10 ug	0 0%	0 0%	321 100%
Cefotaxime	CTX 30 ug	288 89.7%	0 0%	33 10.2%
highest resistance to penicillin/amoxicillin (100%) followed by cefotaxime (89.7%), ceftazidime/cephradin (73.8%), tetracycline (69.4%), doxycycline (66.6%), augmentin (62.6%), gentamycin (59.8%), cefuroxime (58.2%), ciprofloxacin (54.2%), cefaclor (50%), aztreonam (44.8%), ceftriaxone/imipenem (43.3%), streptomycin (30%), kanamycin (19.9%), tazocin (14%), amikacin (12.7%) and norfloxacin (11.2%) (Table1). Out of 321 E. coli, 261 (81%) were multiple drug resistant and 5 isolates were extensively drug resistant. Multiple drug resistance was defined as resistance to three or more than three different antibiotic classes tested.

DISCUSSION

UTIs are caused by microbial invasion and subsequent multiplication in urinary tract.15 Eighty percent of the patients with UTI had bacterial etiology in this study. Although the infection rate was higher in female (87.5%) patients as compared to male (71.3%), it was not-significant, which is in accordance with finding of Shah et al.16 Rate of bacterial isolation was highest in elderly patients (>50 years), which is in accordance with Iqbal et al.6 E. coli was observed as the most common etiologic agent of UTI, which is also in accordance with previous studies.1,17,18

Antibiotics are amongst the most important achievements of the twentieth century, used to kill or inhibit the growth of microorganisms. Antibiotic resistance in E. coli isolated from UTIs is increasing day by day, making it a major public health problem. So it is very important to determine the antibiotic resistance patterns in E. coli isolates for proper and accurate prescriptions.

UTIs caused by antibiotic resistant and multiple drug resistant bacteria have been increased in recent times. Complications in UTIs have increased because of the prevalence of extended spectrum beta-lactamases (ESBL) producing bacterial pathogens which are also causing many management and epidemiological issues. There were times almost a decade ago, when most of the ESBLs producing organisms were Klebsiella spp. and mostly were nosocomial. But in recent times the problem has been compounded by the prevalence of ESBL and MDR E. coli as well. Most of the ESBL E. coli are resistant to a wide range of beta lactams including cephalosporins, penicillins and piperacillin/tazobactam, and non beta lactams including fluoroquinolones, trimethoprim and gentamycin. One of the major reasons for this high resistance can be co-expressed resistance mechanisms in the species of different pathogens isolated from patients of urinary tract infections admitted to different wards of Mayo hospital Lahore, Pakistan. In the present study we analyzed their antibiotic sensitivity pattern was determined by Kirby Bauer technique.

In present study all E. coli species(n=321) were resistant to penicillin and amoxicillin indicating a cautious use of these antibiotics for the treatment of urinary tract infections. In different parts of the world, resistance of E. coli to penicillins group of antibiotics have been on higher side and is increasing day by day, but there are only few reports which indicates 100% resistance to penicillins Resistance to the combination of amoxicillin and a beta lactam inhibitor (augmentin 62.6%) was also on the higher side. Similar kinds of results, where beta lactam inhibitors increase the efficiency of penicillin group of antibiotic against E. coli, have been reported in previous studies.20 Resistance to other beta lactam antibiotics including cefotaxime (89.7%), ceftazidime (73.8%), cephradin (73.8%), cefuroxime (58.26), cefaclor (50%), Ceftriaxone (43.3%) was also very high rendering many of these inefficient for empirical prescription of these antibiotics to treat UTIs. Previous studies in Pakistan have also shown very high antibiotic resistance in E. coli against cephalosporins and penicillins.21

Generally, in developing countries like Pakistan, penicillines and cephalosporins are not active against the UTI infections and our results suggest that these antibiotics should not be used in the treatment of UTIs. Inefficiency of penicillines and cephalosporins in this study does not indicate that these antibiotics are not in use in any part of world to treat UTIs caused by E. coli. In some of the recent reports a higher number of E. coli was found sensitive to penicillins or cephalosporins from European countries.22 A decade before, these antibiotics were active against E. coli even in Pakistan.20

In this study, the resistance of E. coli against aztreonam and imipenem was 44.8% and 43.3%, respectively, which is higher than previous studies.23,24 Higher resistance in E. coli against carbapenams indicates that these may have been misused and overused in health care set ups. Tazocin, a combination of piperacillin and beta lactamases inhibitor tazobactam, showed best results, for which resistance in E. coli was only 14% suggesting that this antibiotic can still be used for the treatment of UTIs.25 Although, tetracycline group of antibiotics are not used now a days for human infectious agents, E. coli were highly resistant to tetracycline (69.4%) and doxycycline
In the present study variable resistance patterns were found for the aminoglycosides. *E. coli* were highly resistant to gentamicin, while low level of resistance was for kanamycin (19.9%), and amikacin (12.7%).

Quinolones, especially ciprofloxacin have been used for *E. coli* infections in recent past. In the present study however *E. coli* were highly resistant to ciprofloxacin (54.2%), which is consistent with the previous reports. Other fluoroquinolones such as norfloxacin (11.2% resistance) and levofloxacin (all sensitive) were found efficient for the *E. coli*. Other studies from the different parts of the world also show that quinolones are still active against UTI infections. Multiple drug resistance (MDR) and extensive drug resistance (XDR) was also determined in this study. MDR is described as resistant to at least one member from three different antibiotic classes being used for the treatment of *E. coli*, while extensive drug resistance (XDR) is described as resistance to at least one member of all but two antibiotic classes. MDR and XDR *E. coli* in this study were 81% and 8.7% respectively. The antibiograms active against the XDR were amikacin and norfloxacin generally. It is concluded that higher level of antibiotic resistance, MDR and XDR is present in *E. coli*. To treat the UTIs caused by *E. coli* combination therapy especially amikacin and ciprofloxacin may provide better results. Antibiotic resistance in *E. coli* isolated from UTIs insinuates for its close monitoring and prescription of antibiotics after the culture sensitivity tests.

Conflict of interest: We declare that the authors have no conflict of interest.

REFERENCES

1. Bano K, Khan J, Rifat, Begum H, Munir S, Akbar N, et al. Patterns of antibiotic sensitivity of bacterial pathogens among urinary tract infections (UTI) patients in a Pakistani population. African J Microbiol Res. 2012;6:414-420.

2. Manikandan S, Ganesapandian S, Singh M, Kumaraguru AK. Antimicrobial Susceptibility Pattern of Urinary Tract Infection Causing Human Pathogenic Bacteria. Asian J Med Sci. 2011;3(2):56-60.

3. Humayun T, Iqbal A. The Culture and Sensitivity Pattern of Urinary Tract Infections in Females of Reproductive Age Group. Ann Pak Inst Med Sci. 2012;8:19-22.

4. Afzal S, Naemullah S. Spectrum of the Microorganisms in Children Causing Human Pathogenic Bacteria. Asian J Med Sci. 2011;3(2):56-60.

5. Ramanath KV, Shafiya SB. Prescription pattern of antibiotic usage and trend of urinary pathogens in general outpatients from a major city. Int Braz J Urol. 2007;33 (1):42-48; discussion 49.

6. Klemp P, Roos V, Ulett GC, Svamborg C, Schembri MA. Molecular characterization of the *Escherichia coli* asymptomatic bacteriuria strain 83972: the taming of a pathogen. Infect Immun. 2006;74(1):781-785.

7. Tanvir R, Hafeez R, Hasnain S. Prevalence of Multiple Drug Resistant *Escherichia coli* in Patients of Urinary tract infection Registering at a Diagnostic Laboratory in Lahore Pakistan. Pak J Zool. 2012;44:707-712.

8. Pondeli K, Oladapo O, Kunle-Olowu OE. Anti-microbial susceptibility pattern of micro-organisms associated with urinary tract infections in a tertiary health institution in the Niger Delta Region of Nigeria. African J Microbiol Res. 2012;6:4976-4982.

9. Kiffer CR, Mendes C, Oplustil CP, Sampaio JL. Antibiotic resistance and trend of urinary pathogens in general outpatients from a major city. Int Braz J Urol. 2007;33 (1):42-48; discussion 49.

10. Shah PS, Cannon JP, Sullivan CL, Nemchausky B, Pachucki CT. Combating antimicrobial resistance; quality and antimicrobial resistance of uropathogens isolated from patients with urinary catheter. Tohoku J Exp Med. 2008;214(6):334-339.

11. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clinical Pathol. 1996;45(4):493-496.

12. Boye A, Siakwa PM, Boampong JN, Koffuor GA, Ephraim RKD, Amoateng P, et al. Asymptomatic urinary tract infections in pregnant women attending antenatal clinic in Cape Coast, Ghana. EJ Med Res. 2012;1(6):74-83.

13. Ko MC, Liu CK, Woung LC, Lee WK, Jeng HS, Lu SH, et al. Species and antimicrobial resistance of uropathogens isolated from patients with urinary catheter. Tohoku J Exp Med. 2008;214(6):334-339.

14. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clinical Pathol. 1996;45(4):493-496.

15. Dimitrov TS, Udo EE, Emara M, Awini F, Passadilla R. Etiology and antibiotic susceptibility patterns of community-acquired urinary tract infections in a Kuwait hospital. Med Princ Pract. 2004;13(6):334-339.

16. Olowe OA, Eniola KIT, Olowe RA, Olayemi AB. Starch paper technique is easy to detect beta lactamase detection from cases of diarrheagenic *Escherichia coli* in Osogbo. Life Sci J. 2007;4.

17. Dzurec SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160-201.

18. Aziz Q, Ali Z, Izhar M, Shah VH. Antimicrobial resistance; comparison of *escherichia coli* in different areas of Lahore. J Med Sci. 2012;3(2).

19. Nijssen S, Florijn A, Bonten MJ, Schmitz FJ, Verhoef J, Fluit AC. Beta-lactam susceptibilities and prevalence of ESBL-producing isolates among more than 5000 European Enterobacteriaceae isolates. Int J Antimicrob Agents. 2004;24(6):585-591.

20. Mangaarkarasan A, Erlf AI, Copal R. Antimicrobial Susceptibility Patterns of Clinical isolates of Gram-negative Pathogens from a Teaching Hospital, Pondicherry. Res J Pharmaceutical, Bioc Med Sci. 2013;4(2).

21. Sharma S, Gupta A, Arora A. Cefepime Tazobactam: A new β lactam/β lactamase inhibitor combination against ESBL producing gram negative bacilli. Int J Pharm Biomed Sci. 2012;3:35-38.

22. Khan FY, Elhiday A, Khudair IF, Yousef H, Omran AH, Alsamman SH et al. Evaluation of the use of piperacillin/tazobactam (Tazocin®) at Hamad General Hospital, Qatar: are there unjustified prescriptions? Infect Drug Resist. 2012;5:17-21.

23. Maurodi A, Miragiou V, Liakopoulos A, Tzelepi E, Stefos A, Dakeles GN, et al. Ciprofloxacin-resistant *Escherichia coli* in Central Greece: mechanisms of resistance and molecular identification. BMC Infect Dis. 2012;12.

Authors Contributions:

All the authors have contributed significantly in study design, experimentation, data analysis and manuscript drafting.