Nash equilibrium payoffs for stochastic differential games with jumps and coupled nonlinear cost functionals

Qian Lin
Center for Mathematical Economics, Bielefeld University, Postfach 100131, 33501 Bielefeld, Germany
linqian1824@163.com

July 19, 2013

Abstract: In this paper we investigate Nash equilibrium payoffs for two-player nonzero-sum stochastic differential games whose cost functionals are defined by a system of coupled backward stochastic differential equations. We obtain an existence theorem and a characterization theorem for Nash equilibrium payoffs. For this end the problem is described equivalently by a stochastic differential game with jumps. But, however, unlike the work by Buckdahn, Hu and Li [8], here the important tool of a dynamic programming principle for stopping times has to be developed. Moreover, we prove that the lower and upper value functions are the viscosity solutions of the associated coupled systems of PDEs of Isaacs type, respectively. Our results generalize those by Buckdahn, Cardaliaguet and Rainer [6] and by Lin [14].

Keywords: stochastic differential game; Nash equilibrium payoff; backward stochastic differential equation; dynamic programming principle; dynamic programming principle for stopping times; coupled systems of Isaacs equations.

AMS Subject classification: 49L25, 60H10, 60H30, 90C39, 91A15, 91A23

1 Introduction

The objective of this paper is to study Nash equilibrium payoffs for two-player nonzero-sum stochastic differential games (SDGs, for short) with jumps and coupled nonlinear cost functionals. Since the pioneering paper of Fleming and Souganidis [10], SDGs have been studied by many authors. For instance, recently, Buckdahn and Li [9] investigated zero-sum two-player SDGs with nonlinear cost functionals using a backward stochastic differential equation (BSDE, for short) approach. Unlike Fleming and Souganidis [10] they allow the controls to depend on the past and prove with a Girsanov transformation argument that the priori random value functions are deterministic. Buckdahn, Hu and Li [8] extended the approach developed in [9] to SDGs with jumps, while Biswas [4] investigated two-player zero-sum SDGs with jump diffusion in the framework of Fleming and Souganidis [10]. The reader interested in other approaches can be also referred to Hamadène [11] and the references therein.

In nonzero-sum SDGs, Hamadène, Lepeltier and Peng [12] obtained the existence of a Nash equilibrium point for nonzero sum SDGs with the help of BSDEs. Bessoussan and Frehse [3] obtained Nash equilibrium payoffs for SDGs by using parabolic partial differential equations. But both methods rely heavily on the assumption of the non degeneracy diffusion of the coefficient and it is independent of controls. Buckdahn, Cardaliaguet and Rainer [6] got rid of the strong assumptions on the diffusion coefficient. Lin [14] generalizes the result in [6] by investigating Nash equilibrium payoffs for nonzero-sum SDGs with nonlinear cost functionals. Lasry and Lions [13] studied mean field games, i.e.,
stochastic control of many agent systems where agents are coupled via their costs. Motivated by the above results, we investigate Nash equilibrium payoffs for SDGs with coupled nonlinear cost functionals, i.e., the both players do not only influence mutually their cost functionals in the choice of their control processes, but also their gain processes.

In [14], the cost functionals of the both players are defined by a system of decoupled BSDEs, the both players influence mutually their cost functionals only by the choice of their control processes. An open problem was that how to study SDGs whose cost functionals are defined by two coupled BSDEs, i.e., SDGs with coupled nonlinear cost functionals. This is the objective of the paper.

Let us be more precise now: The dynamics of our two-player nonzero-sum SDG is given by the process $N^{t,i}$ and the following doubly controlled stochastic system:

$$
\begin{aligned}
&\left\{ \begin{array}{l}
dX_{s}^{t,x;u,v} = b(s, X_{s}^{t,x;u,v}, u_s, v_s)ds + \sigma(s, X_{s}^{t,x;u,v}, u_s, v_s)dB_s, \\
x_t^{t,x;u,v} = x,
\end{array} \right. \\
&s \in [t, T],
\end{aligned}
$$

where \(\{B_t\}_{t \geq 0} \) is a d-dimensional standard Wiener process, \(\{N_t\}_{t \geq 0} \) is a Poisson process independent of \(\{B_t\}_{t \geq 0} \), and \(F \) is the filtration generated by \(B \) and \(N \). For \(0 \leq s \leq t \leq T, i = 1, 2 \), we let \(N^i_s = m(i + N^i_s - N_t) \), where \(m(j) = 1 \), if \(j \) is odd, and \(m(j) = 2 \), if \(j \) is even. The control \(u = \{u_s\}_{s \in [t, T]} \) (resp., \(v = \{v_s\}_{s \in [t, T]} \)) is supposed to be \(F \)-predictable and takes its values in a compact metric space \(U \) (resp., \(V \)). The set of these controls is denoted by \(\mathcal{U}_{t,T} \) (resp., \(\mathcal{V}_{t,T} \)). We shall give its assumptions on \(b \) and \(\sigma \) in the next section.

We define our nonlinear cost functionals by introducing a system of two coupled BSDEs:

$$
\begin{aligned}
&\left\{ \begin{array}{l}
- d1Y_t^i = \tilde{f}_1(s, X_s^{t,x;u,v}, 1Y_s^i, 2\tilde{Y}_t^i + 2\tilde{H}_s^i, 1\tilde{Z}_s^i, u_s, v_s)ds - 1\tilde{Z}_s^i dB_s - 1\tilde{H}_s^i dN_s, \\
- d2\tilde{Y}_s^i = \tilde{f}_2(s, X_s^{t,x;u,v}, 1\tilde{Y}_s^i + 2\tilde{H}_s^i, 2\tilde{Y}_s^i + 2\tilde{Z}_s^i, u_s, v_s)ds - 2\tilde{Z}_s^i dB_s - 2\tilde{H}_s^i dN_s,
\end{array} \right. \\
&1\tilde{Y}_T^i = \Phi_1(X_T^{t,x;u,v}), 2\tilde{Y}_T^i = \Phi_2(X_T^{t,x;u,v}), s \in [t, T].
\end{aligned}
$$

The assumptions on \(\Phi_i \) and \(\tilde{f}_i \), \(i = 1, 2 \), will be given in the next section. The cost functional for the \(i^{th} \) player, \(i = 1, 2 \), is defined by

$$
J_i(t, x; u, v) := \tilde{Y}_t^i, (t, x) \in [0, T] \times \mathbb{R}^n,
$$

where \((\tilde{Y}_t^i, \tilde{Z}_t^i, \tilde{H}_t^i) \), \(i = 1, 2 \), is the unique solution of (1.1). Note the special form of \(\tilde{f}_1 \) and \(\tilde{f}_2 \), which is related with our approach. The general case of \(\tilde{f}_i \) not depending on \(\tilde{H} \) is still open.

In our framework, in opposite to zero-sum SDGs, nonzero-sum SDGs are of the type of "NAD strategy against NAD strategy": an NAD strategy is a measurable, nonanticipative mapping \(\alpha : \mathcal{V}_{t,T} \rightarrow \mathcal{U}_{t,T} \) for the \(1^{st} \) player (resp., \(\beta : \mathcal{U}_{t,T} \rightarrow \mathcal{V}_{t,T} \) for the \(2^{nd} \) player) and has a delay (The definition will be introduced in next section). The set of all such NAD strategies for the \(1^{st} \) player is denoted by \(\mathcal{A}_{t,T} \) (resp., for the \(2^{nd} \) player \(\mathcal{B}_{t,T} \)).

For \((\alpha, \beta) \in \mathcal{A}_{t,T} \times \mathcal{B}_{t,T} \), there exists a unique couple of controls \((u, v) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T} \) such that \((\alpha(v), \beta(u)) = (u, v) \). This allows to define \(W_i(t, x; \alpha, \beta) := J_i(t, x; u, v) \), as well as the value functions of the two-player zero-sum SDG associated with \(J_i, i = 1, 2 \), the lower value function

$$
W_i(t, x) := \text{esssup}_{\alpha \in \mathcal{A}_{t,T}} \text{essinf}_{\beta \in \mathcal{B}_{t,T}} J_i(t, x; \alpha, \beta),
$$

and the upper value function

$$
U_i(t, x) := \text{essinf}_{\beta \in \mathcal{B}_{t,T}} \text{esssup}_{\alpha \in \mathcal{A}_{t,T}} J_i(t, x; \alpha, \beta), i = 1, 2.
$$
We note that, since the BSDEs (1.1) are coupled, the values of the two-player zero-sum SDGs are also coupled.

In our approach we need a probabilistic interpretation of coupled systems of Hamilton-Jacobi-Bellman-Isaacs equations: A first result of our paper is that the value functions \(U = (U_1, U_2) \) and \(W = (W_1, W_2) \) are viscosity solutions of the following coupled Isaacs equations:

\[
\begin{align*}
\frac{\partial}{\partial t} U_i(t, x) + H^+_i(t, x, U_1(t, x), U_2(t, x), DU_i(t, x), D^2 U_i(t, x)) &= 0, \quad (t, x) \in [0, T] \times \mathbb{R}^n, \\
U_i(T, x) &= \Phi_i(x), \quad i = 1, 2,
\end{align*}
\]

and

\[
\begin{align*}
\frac{\partial}{\partial t} W_i(t, x) + H^-_i(t, x, W_1(t, x), W_2(t, x), DW_i(t, x), D^2 W_i(t, x)) &= 0, \quad (t, x) \in [0, T] \times \mathbb{R}^n, \\
W_i(T, x) &= \Phi_i(x), \quad i = 1, 2,
\end{align*}
\]

respectively, where, for \((t, x, y_1, y_2, p, A, u, v) \in [0, T] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{S}^d \times U \times V\),

\[
H_i(t, x, y_1, y_2, p, A, u, v) = \frac{1}{2} \text{tr}(\sigma \sigma^T(t, x, u, v)A) + pb(t, x, u, v) + \tilde{f}_i(t, x, y_1, y_2, p, \sigma(t, x, u, v), u, v),
\]

and

\[
H^-_i(t, x, y_1, y_2, p, A) = \sup_{u \in U} \inf_{v \in V} H_i(t, x, y_1, y_2, p, A, u, v),
\]

\[
H^+_i(t, x, y_1, y_2, p, A) = \inf_{v \in V} \sup_{u \in U} H_i(t, x, y_1, y_2, p, A, u, v).
\]

A crucial step in the proof of these results is to obtain dynamic programming principles for stopping times: i.e., for any stopping time \(\tau \) with \(0 \leq t < \tau \leq T, \ x \in \mathbb{R}^n, \ i = 1, 2, \)

\[
W_i(t, x) = \text{esssup}_{\alpha \in \mathcal{A}_{t, \tau}} \text{essinf}_{\beta \in \mathcal{B}_{t, \tau}} iG^{t, x; \alpha, \beta}_i[W_{N^t, l}(\tau, X_{l, \tau}^{t, x; \alpha, \beta})],
\]

\[
U_i(t, x) = \text{essinf}_{\beta \in \mathcal{B}_{t, \tau}} \text{esssup}_{\alpha \in \mathcal{A}_{t, \tau}} iG^{t, x; \alpha, \beta}_i[U_{N^t, l}(\tau, X_{l, \tau}^{t, x; \alpha, \beta})],
\]

where \(iG^{t, x; \alpha, \beta}[\cdot] \) is a backward stochastic semigroup (the precise definition as well as those of \(\mathcal{A}_{t, \tau} \) and \(\mathcal{B}_{t, \tau} \) will be given later).

The most important part of the paper is dedicated to the Nash equilibrium payoffs of our games. A couple \((e_1, e_2) \in \mathbb{R}^2\) is called a Nash equilibrium payoff at the point \((t, x)\), if for any \(\varepsilon > 0 \), there exists \((\alpha_\varepsilon, \beta_\varepsilon) \in \mathcal{A}_{t, \tau} \times \mathcal{B}_{t, \tau}\) such that, for all \((\alpha, \beta) \in \mathcal{A}_{t, \tau} \times \mathcal{B}_{t, \tau}\),

\[
J_1(t, x; \alpha_\varepsilon, \beta_\varepsilon) \geq J_1(t, x; \alpha, \beta) - \varepsilon, \quad J_2(t, x; \alpha_\varepsilon, \beta_\varepsilon) \geq J_2(t, x; \alpha_\varepsilon, \beta) - \varepsilon, \quad \mathbb{P} - \text{a.s.},
\]

and

\[
|\mathbb{E}[J_j(t, x; \alpha_\varepsilon, \beta_\varepsilon) - e_j]| \leq \varepsilon, \quad j = 1, 2.
\]

Our model has some practical backgrounds in financial markets. For example, let us consider the following problem in a financial market. There are two companies (players) in a financial market. A company 1 has invested money in bonds (paying dividends) of company 2, and company 2 in bonds of company 1, where the dividends are payed in proportion with the gain of the corresponding company. Therefore, the dynamics gain of company 1 has as one element of the running gain the dividends payed by company 2, and company 2 has as one element of the running gain the dividends payed by company
1. Both companies try to maximize their payoff which can be different. Since the financial market is not so quick in reacting to the moves of both companies, both companies have to use strategies with delays. The above described problem is a nonzero-sum stochastic differential game.

The main results of our paper concern the existence and a characterization of Nash equilibrium payoffs for our games: We first obtain the characterization of Nash equilibrium payoffs (see Theorem 5.7), and then get the existence of a Nash equilibrium payoff (see Theorem 5.10).

Let us explain what is new and which difficulties are related with. In comparison with [6] and [14], the first difficulty was to get a dynamic programming principle for a system of two coupled BSDEs. To overcome this difficulty, we associate with this system an auxiliary one which cost functionals coincide with ours. This leads to the new problem: we need a dynamic programming principle for this system not only for deterministic but also for stopping times. The method used in Buckdahn and Hu [7] to get for control problems the dynamic programming principle for stopping times is not applicable anymore, because in the framework of SDGs the monotonicity argument used in [7] doesn’t work anymore. To overcome this new difficulty, we develop an argument to obtain the time continuity of the value functions, which in return is used to obtain the dynamic programming principle for stopping times from the the dynamic programming principle for deterministic times. Another technical difficulty comes from the fact that we study here nonzero-sum SDGs and not zero-sum SDGs. In order to give both players symmetric tools, they have to use ”strategies with delay against strategies with delay” and not only ”strategies against controls” as in [9]. Finally, comparing to our previous work [14], the presence of jump terms adds a supplementary complexity.

Our paper is organized as follows. In Section 2 we introduce some notations and recall some basics of BSDEs with jumps, which will be needed in what follows. Section 3 introduces the setting of SDGs and studies the dynamic programming principle for stopping times. Section 4 gives a probabilistic interpretation of coupled systems of Isaacs equations. In Section 5 we investigate Nash equilibrium payoffs for nonzero-sum SDGs. An existence theorem and a characterization theorem of Nash equilibrium payoffs are established. Finally, we postpone the proof of the Theorems 3.11 and 4.2 to Section 6.

2 Preliminaries

The objective of this section is to give some preliminaries, which will be useful in what follows. Let the underlying probability space \((\Omega, \mathcal{F}, \mathbb{P})\) be the completed product of the Wiener space \((\Omega_1, \mathcal{F}_1, \mathbb{P}_1)\) and the Poisson space \((\Omega_2, \mathcal{F}_2, \mathbb{P}_2)\). As concerns the Wiener space \((\Omega_1, \mathcal{F}_1, \mathbb{P}_1)\): \(\Omega_1 = C_0(\mathbb{R}; \mathbb{R}^d)\) is the set of continuous functions from \(\mathbb{R}\) to \(\mathbb{R}^d\) with value zero at 0, endowed with the topology generated by the uniform convergence on compacts; \(\mathcal{F}_1\) is the Borel \(\sigma\)-algebra over \(\Omega_1\), completed by the Wiener measure \(\mathbb{P}_1\) under which the \(d\)-dimensional coordinate processes \(B_s(\omega) = \omega_s, s \in \mathbb{R}_+\), \(\omega \in \Omega_1\), and \(B_{-s}(\omega) = \omega(-s), s \in \mathbb{R}_+, \omega \in \Omega_1\), are two independent \(d\)-dimensional Brownian motions. We denote by \(\{\mathcal{F}^B_s, s \geq 0\}\) the natural filtration generated by \(B\) and augmented by all \(\mathbb{P}_1\)-null sets, i.e.,

\[
\mathcal{F}^B_s = \sigma\left\{B_r, r \in (-\infty, s]\right\} \vee \mathcal{N}_{\mathbb{P}_1}, s \geq 0.
\]

Let us now introduce the Poisson space \((\Omega_2, \mathcal{F}_2, \mathbb{P}_2)\) as follows:

\[
\Omega_2 = \left\{\omega_2 = \sum_{j \geq 0} \delta_{t_j}, \{t_j\}_{j \geq 0} \subset \mathbb{R}\right\},
\]

\[
\mathcal{F}' = \sigma\left\{N_A : N_A(\omega_2) = \omega_2(A), A \in \mathcal{B}(\mathbb{R})\right\},
\]

4
and the Probability measure \mathbb{P}_2 can be defined over (Ω_2, \mathcal{F}') such that $\{N_i\}_{i \geq 0}$ and $\{N_{-i}\}_{i \geq 0}$ are two independent Poisson processes with intensity λ. Let us denote \mathcal{F}_2 by the completion of \mathcal{F}' with respect to the probability \mathbb{P}_2 and
\[
\mathcal{F}_t^N = \sigma\{N_{(-\infty,s]} : -\infty < s \leq t\}, \quad t \geq 0,
\]
and $\mathcal{F}_t^N = (\bigcap_{s \geq t} \mathcal{F}_s^N) \vee \mathcal{N}_{\mathbb{P}_2}$, $t \geq 0$, augmented by the \mathbb{P}_2-null sets. Moreover, we put
\[
\Omega = \Omega_1 \times \Omega_2, \quad \mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2, \quad \mathbb{P} = \mathbb{P}_1 \otimes \mathbb{P}_2,
\]
where \mathcal{F} is completed with respect to \mathbb{P}_2, and the filtration $\mathbb{F} = \{\mathcal{F}_t\}_{t \geq 0}$ is generated by
\[
\mathcal{F}_t := \mathcal{F}_t^{B,N} = \mathcal{F}_t^B \otimes \mathcal{F}_t^N, \quad t \geq 0, \quad \text{augmented by all} \ \mathbb{P}-\text{null sets}.
\]

Let $T > 0$ be an arbitrarily fixed time horizon. We denote by $\tilde{N}_t = N_t - \lambda t$, for all $t \geq 0$. For any $n \geq 1$, we denote by $|z|$ the Euclidean norm of $z \in \mathbb{R}^n$. We introduce the following spaces of stochastic processes.

- $L^2(\Omega, \mathcal{F}_T, \mathbb{P}; \mathbb{R}^n) = \left\{ \xi : \mathbb{E}[|\xi|^2] < +\infty \right\}$,
- $S^2(0, T; \mathbb{R}) = \left\{ \varphi : \mathbb{E}[\sup_{0 \leq t \leq T} |\varphi_t|^2] < +\infty \right\}$,
- $H^2(0, T; \mathbb{R}^d) = \left\{ \varphi : \mathbb{E} \int_0^T |\varphi_t|^2 dt < +\infty \right\}$.

Let us consider the following BSDE with data (f, ξ):
\[
y_t = \xi + \int_t^T f(s, y_s, z_s, k_s) ds - \int_t^T z_s dB_s - \int_t^T k_s d\tilde{N}_s, \quad 0 \leq t \leq T. \tag{2.1}
\]
Here $f : \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ is \mathcal{F}-predictable and satisfies the following assumptions:

- (H1) (Lipschitz condition): There exists a positive constant C such that, for all $(t, y_i, z_i, k_i) \in [0, T] \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}$, $i = 1, 2$,
 \[|f(t, y_1, z_1, k_1) - f(t, y_2, z_2, k_2)| \leq C(|y_1 - y_2| + |z_1 - z_2| + |k_1 - k_2|).
\]
- (H2) $f(\cdot, 0, 0, 0) \in H^2(0, T; \mathbb{R})$.
- (H3) There exists a constant $K > -1$ such that, for all $(t, y, z, k_1, k_2) \in [0, T] \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^2$,
 \[f(t, y, z, k_1) - f(t, y, z, k_2) \geq K(k_1 - k_2).
\]

We note that a Poisson process is a special case of a Poisson random measure. For this, we can take as the compensator $\nu(ds, de) = \lambda ds \delta_1(de)$, where
\[
\delta_1(x) = \begin{cases} 1, & x = 1, \\ 0, & x \neq 1. \end{cases}
\]
We have the following existence and uniqueness theorem of BSDE (2.1). For its proof we refer the reader to Tang and Li [18].

Lemma 2.1. Let the assumptions (H1) and (H2) hold. Then, for all \(\xi \in L^2(\Omega, \mathcal{F}_T, \mathbb{P}; \mathbb{R}) \), BSDE (2.1) has a unique solution \((y, z, k) \in S^2(0, T; \mathbb{R}) \times H^2(0, T; \mathbb{R}^d) \times H^2(0, T; \mathbb{R})\).

We have the following comparison theorem for solutions of BSDEs (2.1), which is proved with the help of standard arguments (see Royer [17]).

Lemma 2.2. Let us denote by \((y^1, z^1, k^1)\) and \((y^2, z^2, k^2)\) the solutions of BSDEs with data \((f^1, \xi^1)\) and \((f^2, \xi^2)\), respectively. Moreover, if \(\xi^1, \xi^2 \in L^2(\Omega, \mathcal{F}_T, \mathbb{P}; \mathbb{R})\), and \(f^1\) and \(f^2\) satisfy the assumptions (H1) and (H2), and the following holds

(i) \(\xi^1 \geq \xi^2\), \(\mathbb{P}\text{-a.s.}\),

(ii) \(f^1(t, y^2_t, z^2_t, k^2_t) \geq f^2(t, y^2_t, z^2_t, k^2_t), dtd\mathbb{P}\text{-a.e.}\),

then we have \(y^1_t \geq y^2_t\), a.s., for all \(t \in [0, T]\).

For some \(f : \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}\) satisfying (H1) and (H2), we let, for \(i = 1, 2\),

\[
\varphi_i(s, y^i_s, z^i_s, k^i_s) = f(s, y^i_s, z^i_s, k^i_s) + \varphi_i(s),
\]

where \(\varphi_i \in H^2(0, T; \mathbb{R})\). If \(\xi_1\) and \(\xi_2\) are in \(L^2(\Omega, \mathcal{F}_T, \mathbb{P}; \mathbb{R})\), then we have the following lemma.

Lemma 2.3. Let us denote by \((y^1, z^1, k^1)\) and \((y^2, z^2, k^2)\) the solutions of BSDE (2.1) with the data \((\xi_1, f_1)\) and \((\xi_2, f_2)\), respectively. Then the following holds: for all \(t \in [0, T]\),

\[
|y^1_t - y^2_t|^2 + \frac{1}{2}\mathbb{E}\left[\int_t^T e^{\beta(s-t)}(|y^1_s - y^2_s|^2 + |z^1_s - z^2_s|^2)ds\right] + \frac{\lambda}{2}\mathbb{E}\left[\int_t^T e^{\beta(s-t)}|^k^1_s - k^2_s|^2ds\right] \\
\leq \mathbb{E}[e^{\beta(T-t)}|\xi_1 - \xi_2|^2|\mathcal{F}_t] + \mathbb{E}\left[\int_t^T e^{\beta(s-t)}|\varphi_1(s) - \varphi_2(s)|^2ds\right], \mathbb{P}\text{-a.s.}
\]

Here \(\beta \geq 2 + 2C + 4C^2\), where \(C\) is the Lipschitz constant in (H1).

For the proof, the readers can be referred to Barles, Buckdahn and Pardoux [1].

3 Stochastic differential games with jumps

In this section, we first introduce nonzero-sum SDGs, and then we define the value functions and show that they have a deterministic version. Finally, we state the dynamic programming principle for stopping times, which is crucial for the next section.

Let \(\mathcal{U}\) (resp., \(\mathcal{V}\)) be the set of admissible control processes for the first (resp., second) player, i.e., the set of all \(U\) (resp., \(V\))-valued \(\mathbb{F}\)-predictable processes. We suppose that the control state spaces \(U\) and \(V\) are compact metric spaces.

For given admissible controls \(u(\cdot) \in \mathcal{U}\) and \(v(\cdot) \in \mathcal{V}\), we consider the following stochastic differential equation (SDE): for \(t \in [0, T]\) and \(\zeta \in L^2(\Omega, \mathcal{F}_t, \mathbb{P}; \mathbb{R}^n)\),

\[
\begin{cases}
 dX^t_{s, u,v}_s = b(s, X^t_{s, u,v}_s, u_s, v_s)ds + \sigma(s, X^t_{s, u,v}_s, u_s, v_s)dB_s, & s \in [t, T], \\
 X^t_{t, u,v}_t = \zeta,
\end{cases}
\tag{3.1}
\]

where

\[
b : [0, T] \times \mathbb{R}^n \times U \times V \to \mathbb{R}^n, \quad \sigma : [0, T] \times \mathbb{R}^n \times U \times V \to \mathbb{R}^{n \times d},
\]

and

\[
s(\cdot) \in [0, T],
\]

and

\[
h : \mathbb{R}^n \times U \times V \to \mathbb{R}.
\]

Then, for each \(\zeta \in L^2(\Omega, \mathcal{F}_t, \mathbb{P}; \mathbb{R}^n)\), we define the value function

\[
V(t, \zeta, u(\cdot), v(\cdot)) = \mathbb{E}\left[\int_t^T e^{-\gamma(s)}h(X^t_{s, u,v}_s)ds + \gamma(T)h(X^t_{T, u,v}_T)\right |\mathcal{F}_t],
\]

where \(\gamma \in C^{1,2}(\mathbb{R}^n)\), and \(V(t, \zeta, u(\cdot), v(\cdot)) \geq 0\).

Moreover, if \(\gamma \in C^{1,2}(\mathbb{R}^n)\), and \(\gamma(0) = 0\), then \(V(t, \zeta, u(\cdot), v(\cdot)) \to \gamma(0) = 0\) as \(t \to 0^+\).

3.1. Dynamic programming principle

For each \(u(\cdot) \in \mathcal{U}\) and \(v(\cdot) \in \mathcal{V}\), we define the value function

\[
V(t, \zeta, u(\cdot), v(\cdot)) = \mathbb{E}\left[\int_t^T e^{-\gamma(s)}h(X^t_{s, u,v}_s)ds + \gamma(T)h(X^t_{T, u,v}_T)\right |\mathcal{F}_t],
\]

where \(\gamma \in C^{1,2}(\mathbb{R}^n)\), and \(\gamma(0) = 0\), then \(V(t, \zeta, u(\cdot), v(\cdot)) \to \gamma(0) = 0\) as \(t \to 0^+\).

satisfy the following assumptions:

(i) For every fixed $x \in \mathbb{R}^n$, $b(., x, .)$, and $\sigma(., x, ., .)$ are continuous in (t, u, v).

(ii) There exists a constant $C > 0$ such that, for all $t \in [0, T]$, $x, x' \in \mathbb{R}^n$, $u \in U$, $v \in V$,

$$|b(t, x, u, v) - b(t, x', u, v)| + |\sigma(t, x, u, v) - \sigma(t, x', u, v)| \leq C|x - x'|.$$

From (H4) we know that there exists some $C > 0$ such that, for all $0 \leq t \leq T$, $u \in U$, $v \in V$, $x \in \mathbb{R}^n$,

$$|b(t, x, u, v)| + |\sigma(t, x, u, v)| \leq C(1 + |x|).$$

It is well known that under (H4), for any $u(\cdot) \in U$ and $v(\cdot) \in V$, SDE (3.1) has a unique strong solution. Furthermore, we have the following estimates for the solution of SDE (3.1) (e.g., see [8]).

Proposition 3.1. Let the assumption (H4) hold. Then, for $p \geq 2$, there exists a positive constant $C = C_p$ such that, for $t \in [0, T]$, $u(\cdot) \in U$, $v(\cdot) \in V$ and $\zeta, \zeta' \in L^2(\Omega, \mathcal{F}_t, \mathbb{P}; \mathbb{R}^n)$,

$$\mathbb{E} \left[\sup_{s \in [t, T]} |X_t^{t, \zeta, u, v} - X_t^{t, \zeta', u, v}|^p |\mathcal{F}_t \right] \leq C|\zeta - \zeta'|^p, \quad \mathbb{P} - a.s.,$$

$$\mathbb{E} \left[\sup_{s \in [t, T]} |X_t^{t, \zeta, u, v} - \zeta|^p |\mathcal{F}_t \right] \leq C(1 + |\zeta|^p)|T - t|^\frac{p}{2}, \quad \mathbb{P} - a.s. \quad (3.2)$$

For given $\Phi_i : \mathbb{R}^n \rightarrow \mathbb{R}$, $\tilde{f}_i : [0, T] \times \mathbb{R}^n \times \mathbb{R}^2 \times \mathbb{R}^d \times U \times V \rightarrow \mathbb{R}$, $i = 1, 2$, we make the following assumptions:

(i) For every fixed $(x, y, z) \in \mathbb{R}^n \times \mathbb{R}^2 \times \mathbb{R}^d \times \mathbb{R}$, $\tilde{f}_i(., x, y, z, ., .)$ is continuous in (t, u, v) and there exists a constant $C > 0$ such that, for all $t \in [0, T]$, $x, x' \in \mathbb{R}^n$, $y, y', z, z' \in \mathbb{R}^2$, $u \in U$ and $v \in V$,

$$|\tilde{f}_i(t, x, y, z, u, v) - \tilde{f}_i(t, x', y', z', u, v)| \leq C(|x - x'| + |y - y'| + |z - z'|).$$

(ii) For all $(y_1, y_2), (y'_1, y'_2) \in \mathbb{R}^2$, and $(t, x, z, u, v) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^d \times U \times V$, there exists a constant $K > -1$ such that

$$\tilde{f}_1(t, x, y_1, z, u, v) - \tilde{f}_1(t, x, y_2, z, u, v) \geq K(y_2 - y_1),$$

$$\tilde{f}_2(t, x, y_1, z, u, v) - \tilde{f}_2(t, x, y'_2, z, u, v) \geq K(y'_2 - y_1).$$

(iii) There exists a constant $C > 0$ such that, for all $x, x' \in \mathbb{R}^n$, $i = 1, 2$,

$$|\Phi_i(x) - \Phi_i(x')| \leq C|x - x'|.$$

The following system of two coupled BSDEs will define the cost functionals of the game associated with (3.1).

$$
\begin{align*}
- d\tilde{Y}_s &= \tilde{f}_1(s, X_s^{t, x, u, v}, \tilde{Y}_s, \tilde{Y}_s, \tilde{Z}_s, u_s, v_s)ds,
- \lambda^1 \tilde{H}_s ds - \frac{1}{2} \tilde{Z}_s dB_s - \frac{1}{2} \tilde{H}_s dB_s - \frac{1}{2} \tilde{H}_s dB_s,
- \tilde{Y}_s + \tilde{Z}_s, u_s, v_s)ds,
- \lambda^2 \tilde{H}_s ds - \frac{1}{2} \tilde{Z}_s dB_s - \frac{1}{2} \tilde{H}_s dB_s - \frac{1}{2} \tilde{H}_s dB_s,
\end{align*}

$$
\begin{align*}
- d\tilde{Y}_s &= \tilde{f}_2(s, X_s^{t, x, u, v}, \tilde{Y}_s, \tilde{Y}_s, \tilde{Z}_s, u_s, v_s)ds,
- \lambda^1 \tilde{H}_s ds - \frac{1}{2} \tilde{Z}_s dB_s - \frac{1}{2} \tilde{H}_s dB_s - \frac{1}{2} \tilde{H}_s dB_s,
- \tilde{Y}_s + \tilde{Z}_s, u_s, v_s)ds,
- \lambda^2 \tilde{H}_s ds - \frac{1}{2} \tilde{Z}_s dB_s - \frac{1}{2} \tilde{H}_s dB_s - \frac{1}{2} \tilde{H}_s dB_s,
\end{align*}

$$
\begin{align*}
1\tilde{Y}_T &= \Phi_1(X_T^{t, x, u, v}), \quad 1\tilde{Z}_T = \Phi_2(X_T^{t, x, u, v}), \quad s \in [t, T],
\end{align*}

$$
(3.3)

where $X_t^{t, x, u, v}$ is the solution of equation (3.1) with $\zeta = x \in \mathbb{R}^n$. Under the assumption (H5), from Tang and Li [18] we know that equation (3.3) has a unique solution. For given control processes $u(\cdot) \in U$ and $v(\cdot) \in V$, we introduce now the associated cost functional for the ith player, $i = 1, 2$,

$$J_i(t, x; u, v) := \int_t^T \tilde{Y}_s^{t, x, u, v} ds, \quad (t, x) \in [0, T] \times \mathbb{R}^n,$$

where $(\tilde{Y}_t^{t, x, u, v}, \tilde{Z}_t^{t, x, u, v}, \tilde{H}_t^{t, x, u, v})$ is the solution of (3.3).
In the above definition we generalize the framework studied by Lin [14]. Indeed, in [14] we studied cost functionals defined by a decoupled system of BSDEs, while now the both BSDEs are coupled: the both players do not only influence mutually their cost functionals in the choice of their control processes, but also their gain processes. With an argument introduced in Pardoux, Pradeilles and Rao [15] we can transfer the coupled system of BSDEs into a decoupled system of BSDEs. For $0 \leq s \leq t \leq T, i = 1, 2$, we denote by $N((0, s]]) := N_s$ and $N((t, s]) := N_s - N_t$. Let us define a Markov process $N_{s,i}$ as follows: $N_{s,i} = m(i + N((t, s]))$, where $m(j) = 1$, if j is odd, and $m(j) = 2$, if j is even.

For $(t, x, y, z, u, v) \in [0, T] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^d \times U \times V$, we define

$$f_1(t, x, y, z, u, v) := \tilde{f}_1(t, x, y + h, z, u, v),$$
$$f_2(t, x, y, z, u, v) := \tilde{f}_2(t, x, y + h, y, z, u, v),$$

and we consider the following controlled decoupled BSDEs with jumps: for $i = 1, 2$,

$$
\begin{cases}
-d^i Y_s^{t,x;u,v} &= f_{N_{s,i}}(s, X_s^{t,x;u,v}, i Y_s^{t,x;u,v}, i H_s^{t,x;u,v}, i Z_s^{t,x;u,v}, u_s, v_s)ds,
- \lambda i H_s^{t,x;u,v} ds - i Z_s^{t,x;u,v} dB_s - i H_s^{t,x;u,v} d\tilde{N}_s, s \in [t, T],
-i Y_s^{T;u,v} &= \Phi_{N_{T,i}}(X_T^{t,x;u,v}).
\end{cases}
$$

(3.4)

Since $\tilde{f}_1, i = 1, 2$, are Lipschitz in (x, y, z), uniformly with respect to (t, u, v), it is easy to check that also the coefficients $f_i, i = 1, 2$, have this property. From Lemma 2.1 we know that the above BSDE has a unique solution. In what follows we choose the intensity $\lambda > 0$ such that $K - \lambda > -1$. It follows from Lemma 2.2 that the comparison theorem for the BSDE (3.4) holds. Moreover, we also have the following propositions.

Proposition 3.2. Let the assumption (H5) hold. Then we have, for $s \in [t, T], i = 1, 2$,

$$i Y_s^{t,x;u,v} = N_{s,i} Y_s^{t,x;u,v},$$
$$i H_s^{t,x;u,v} = m(N_{s,i+1}) \hat{H}_s^{t,x;u,v} + m(N_{s,i+1}) \hat{Y}_s^{t,x;u,v} - N_{s,i} \hat{Y}_{s-}^{t,x;u,v}.$$

In particular, we have $i Y_s^{t,x;u,v} = i \tilde{Y}_s^{t,x;u,v}$, i.e., $J_l(t, x; u, v) = i \tilde{Y}_t^{t,x;u,v}$.

Proof. We consider the solution $(i \tilde{Y}_t^{t,x;u,v}, i \tilde{Z}_t^{t,x;u,v}, i \tilde{H}_t^{t,x;u,v}), i = 1, 2$, of equation (3.3) and, suppressing for simplicity the subscript (t, x, u, v), we put

$$i \hat{Y}_s = N_{s,i} \hat{Y}_s, i \hat{Z}_s = N_{s,i} \hat{Z}_s, i \hat{H}_s = m(N_{s,i+1}) \hat{H}_s + m(N_{s,i+1}) \hat{Y}_s - N_{s,i} \hat{Y}_{s-}, s \in [t, T].$$

Then, obviously, $(i \hat{Y}, i \hat{Z}, i \hat{H}) \in S^2(0, T; \mathbb{R}) \times H^2(0, T; \mathbb{R}^d) \times H^2(0, T; \mathbb{R})$. Moreover, setting $\tau_0 = t$ and

$$\tau_l = \inf \left\{ s \geq t, N((t, s]) = l \right\} \wedge T, l \geq 1,$$

we have, on the stochastic interval $] \tau_0, \tau_1[$,

$$-d \hat{Y}_s = -d \hat{Y}_s = \tilde{f}_1(s, X_s, \hat{Y}_s, 2 \hat{Y}_s + 2 \hat{H}_s, \hat{Z}_s, u_s, v_s)ds - \hat{Z}_s dB_s$$
$$= \tilde{f}_1(s, X_s, Y_s, 2 Y_s - 2 \hat{H}_s + Y_s, \hat{Z}_s, u_s, v_s)ds - \hat{Z}_s dB_s$$
$$= f_1(s, X_s, \hat{Y}_s, 2 \hat{Y}_s - 1 \hat{H}_s, 1 \hat{Z}_s, u_s, v_s)ds - \hat{Z}_s dB_s$$
$$= f_1(s, X_s, Y_s, 2 Y_s - 1 \hat{H}_s, 1 \hat{Z}_s, u_s, v_s)ds - \hat{Z}_s dB_s.$$
On the other hand, analysing the jump height of \hat{Y} at τ_1, we get

$$
\Delta \hat{Y}_{\tau_1} = \hat{Y}_{\tau_1} - \hat{Y}_{\tau_1-} = (2\hat{Y}_{\tau_1} - \hat{Y}_{\tau_1-})\Delta N_{\tau_1} = 2\hat{Y}_{\tau_1} + \hat{Y}_{\tau_1-} - \hat{Y}_{\tau_1-} = 1\hat{N}_{\tau_1} - \Delta N_{\tau_1}.
$$

Consequently, $(\hat{Y}, 1\hat{Z}, 1\hat{H})$ solves (3.4) over the interval $[[\tau_0, \tau_1]]$, with $1\hat{Y}_{\tau_1} = N^0_{\tau_1} \hat{Y}_{\tau_1}$. By iterating this argument and arguing in a similar way for $i = 2$, we complete the proof. Indeed, from the uniqueness of BSDE (3.4) it follows that $(\hat{Y}^{1, x; u, y}, \hat{Z}^{1, x; u, y}, \hat{H}^{1, x; u, y}) = (\hat{Y}, \hat{Z}, \hat{H}), i = 1, 2$. □

From standard BSDEs estimates we have the following:

Proposition 3.3. There exists some constant $C > 0$ such that, for all $0 \leq t \leq T$, $x, x' \in \mathbb{R}^n$, $u(\cdot) \in U$ and $v(\cdot) \in V$,

$$
|Y^{t, x; u, y}_t - Y^{t, x'; u, y}_t| \leq C|x - x'|, \quad |Y^{t, x; u, y}_t| \leq C(1 + |x|), \quad \mathbb{P} \text{-a.s.}
$$

Let us now introduce subspaces of admissible controls and give the definition of NAD strategies.

For later applications this has to be done for games over stochastic intervals. Let σ, τ be two stopping times such that $t \leq \sigma \leq \tau \leq T$.

Definition 3.4. The space $U_{\sigma, \tau}$ (resp., $V_{\sigma, \tau}$) of admissible controls for the 1st player (resp., the 2nd player) over the given stochastic time interval $[[\sigma, \tau]]$ is defined as the space of all processes $\{u_r, \sigma \leq r \leq \tau\}$ (resp., $\{v_r, \sigma \leq r \leq \tau\}$), such that, for $u_0 \in U$, the process $\{u_r1_{[\sigma, \tau]} + u_01_{[\sigma, \tau]}\}$ (resp., for $v_0 \in V$, the process $\{v_r1_{[\sigma, \tau]} + v_01_{[\sigma, \tau]}\}$) are \mathbb{F}-predictable and take its values in U (resp., V).

Definition 3.5. A nonanticipative strategy with delay (NAD strategy) for the 1st player over the given stochastic time interval $[[\sigma, \tau]]$ is a measurable mapping $\alpha : V_{\sigma, \tau} \rightarrow U_{\sigma, \tau}$ such that the following properties hold:

1) α is a nonanticipative strategy, i.e., for every \mathbb{F}-stopping time τ' on Ω with $\sigma \leq \tau' \leq \tau$, and for all $v_1, v_2 \in V_{\sigma, \tau}$ with $v_1 = v_2$ on $[[\sigma, \tau']]$, it holds $\alpha(v_1) = \alpha(v_2)$ on $[[\sigma, \tau']]$. (The identification of $v_1 = v_2$ and $\alpha(v_1) = \alpha(v_2)$ is in the $\mathbb{d} = \mathbb{P}$ almost everywhere sense.)

2) α is a strategy with delay, i.e., for all $v \in V_{\sigma, \tau}$, there exists an increasing sequence of stopping times $\{S_n(v)\}_{n \geq 1}$ with

i) $\sigma = S_0(v) \leq S_1(v) \leq \cdots \leq S_n(v) \leq \cdots \leq \tau$, ii) $\bigcup_{n \geq 1}\{S_n(v) = \tau\} = \Omega$, \mathbb{P}-a.s.,

such that, for all $\Gamma \in \mathcal{F}_\sigma$ and for all $n \geq 1$ and $v, v' \in V_{\sigma, \tau}$, it holds: if $v = v'$ on $[[\sigma, S_{n-1}(v))] \cap (\Gamma \times [t, T])$, then iii) $S_n(v) = S_n(v')$, on Γ, \mathbb{P}-a.s., $1 \leq l \leq n$, iv) $\alpha(v) = \alpha(v')$, on $[[\sigma, S_n(v))] \cap (\Gamma \times [t, T])$.

We denote the collection of all such NAD strategies for the 1st player by $\mathcal{A}_{\sigma, \tau}$. We can define all NAD strategies $\beta : U_{\sigma, \tau} \rightarrow V_{\sigma, \tau}$ for the 2nd player symmetrically and denote the set of them by $\mathcal{B}_{\sigma, \tau}$.

We have the following lemma, which turns out to be useful in what follows. Since the proof of this lemma is similar to that in Lin [14], we omit it here.

Lemma 3.6. For $(\alpha, \beta) \in \mathcal{A}_{\sigma, \tau} \times \mathcal{B}_{\sigma, \tau}$, there exists a unique couple of admissible control processes $(u, v) \in U_{\sigma, \tau} \times V_{\sigma, \tau}$ such that $\alpha(v) = u$, $\beta(u) = v$.

For $(\alpha, \beta) \in \mathcal{A}_{t, T} \times \mathcal{B}_{t, T}$, it follows from Lemma 3.6 that there exists a unique couple of controls $(u, v) \in U_{t, T} \times V_{t, T}$ such that $(\alpha(v), \beta(u)) = (u, v)$. In this sense, we define

$$
(X^{t, x; u, v}, Y^{t, x; u, y}, Z^{t, x; u, y}, H^{t, x; u, y}) := (X^{t, x; u, v}, Y^{t, x; u, v}, Z^{t, x; u, v}, H^{t, x; u, v}),
$$

9
and \(J_i(t, x; \alpha, \beta) := J_i(t, x; u, v) \). This definition allows, in particular, to define the value functions \(W_i \) and \(U_i \) of the game: For all \((t, x) \in [0, T) \times \mathbb{R}^n\), we put

\[
W_i(t, x) := \operatorname{ess} \sup_{\alpha \in A_i, T} \operatorname{ess} \inf_{\beta \in B_i, T} J_i(t, x; \alpha, \beta), \quad U_i(t, x) := \operatorname{ess} \inf_{\beta \in B_i, T} \operatorname{ess} \sup_{\alpha \in A_i, T} J_i(t, x; \alpha, \beta).
\]

The functions \(W_i \) and \(U_i, i = 1, 2 \), are called the lower and upper value functions, respectively. Observe that, according to the definition of \(\operatorname{ess} \sup \) and \(\operatorname{ess} \inf \) over a uniformly essentially bounded family of \(\mathcal{F}_t \)-measurable random variables, both \(W_i(t, x) \) and \(U_i(t, x) \) are a priori elements of \(L^\infty(\Omega, \mathcal{F}_t, \mathbb{P}) \). However, we will prove that they are deterministic.

Proposition 3.7. Let the assumptions \((H4)\) and \((H5)\) hold. Then, for any \((t, x) \in [0, T) \times \mathbb{R}^n\), we have \(W_i(t, x) = \mathbb{E}[W_i(t, x)], \) and \(U_i(t, x) = \mathbb{E}[U_i(t, x)], \) \(\mathbb{P} \)-a.s., \(i = 1, 2 \).

This proposition allows to identify \(W_i(t, x), U_i(t, x) \) with the deterministic functions \(\mathbb{E}[W_i(t, x)], \mathbb{E}[U_i(t, x)] \), respectively, \(i = 1, 2 \). The proposition follows then by the following two lemmas. The following lemma indicates that \(W_i \) is invariant by a sufficiently large class of transformations on \(\Omega \).

Lemma 3.8. For \((t, x) \in [0, T) \times \mathbb{R}^n\), \(\tau : \Omega \to \Omega \) is an invertible \(\mathcal{F} - \mathcal{F} \) measurable transformation such that

\[
\begin{align*}
i) & \quad \tau \text{ and } \tau^{-1} : \Omega \to \Omega \text{ are } \mathcal{F}_t - \mathcal{F}_t \text{ measurable; } \\
ii) & \quad (B_s - B_t) \circ \tau = B_s - B_t, \ s \in [t, T], \ N((t, s)) \circ \tau = N((t, s)), \ s \in [t, T]; \\
iii) & \quad \text{the law } \mathbb{P} \circ [\tau]^{-1} \text{ of } \tau \text{ is equivalent to the underlying probability measure } \mathbb{P},
\end{align*}
\]

then \(W_i(t, x) \circ \tau = W_i(t, x), \) \(\mathbb{P} \)-a.s.

Even if the formulation of of the lemma is the same as in [8], the proof is more difficult here. Indeed, in [8], games of the type "strategy against control" were studied, while we investigate here games of the type "NAD strategy against NAD strategy".

Proof. We give the proof in four steps:

Step 1: For any \(u \in U_i, v \in V_i, J_i(t, x; u, v) \circ \tau = J_i(t, x; u(\tau), v(\tau)), \) \(\mathbb{P} \)-a.s.

The proof follows closely from the arguments in [8] or [9] and is therefore omitted.

Step 2: For \(\beta \in B_i, \) let \(\widehat{\beta}(u) := \beta(u(\tau^{-1}))(\tau), \ u \in U_i, \) and for \(\alpha \in A_i, \) let \(\widehat{\alpha}(v) := \alpha(v(\tau^{-1}))(\tau), \ v \in V_i. \) Then, \(\widehat{\beta} \in B_i, \) and \(\widehat{\alpha} \in A_i. \)

We only give the proof for \(\widehat{\beta} \), since we can use a similar argument for \(\widehat{\alpha} \). From the definition of \(\widehat{\beta} \) we know that \(\widehat{\beta} \) maps \(U_i \) into \(U_i. \)

\(1\) \(\widehat{\beta} \) is a nonanticipative strategy. Indeed, let \(\sigma : \Omega \to [t, T] \) be an \(\mathcal{F} \)-stopping time and \(u_1, u_2 \in U_i \) such that \(u_1 \equiv u_2 \) on \([t, \sigma]\). Since \(\tau(\mathcal{F}_s) := \{\tau(A), A \in \mathcal{F}_s\} = \mathcal{F}_s, \ s \in [t, T], \) the assumptions i) and ii) imply that \(\sigma(\tau^{-1}) \) is still an \(\mathcal{F} \)-stopping time. Obviously, we have \(u_1(\tau^{-1}) \equiv u_2(\tau^{-1}) \) on \([t, \sigma(\tau^{-1})]\). From \(\beta \in B_i \) it follows that \(\beta(u_1(\tau^{-1})) = \beta(u_2(\tau^{-1})) \) on \([t, \sigma(\tau^{-1})]\). Consequently,

\[
\widehat{\beta}(u_1)(\tau) = \beta(u_1(\tau^{-1}))(\tau) = \beta(u_2(\tau^{-1}))(\tau) = \widehat{\beta}(u_2)(\tau) \text{ on } [t, \sigma].
\]

\(2\) \(\widehat{\beta} \) is a strategy with delay. Since \(\beta \) is a nonanticipative strategy with delay, we have, for all \(u \in U_i, \) the existence of an increasing sequence of stopping times \(\{S_n(u)\}_{n \geq 1} \) with \(n \geq 1 \)

\(a\) \(t = S_n(u) \leq S_{n+1}(u) \leq \cdots \leq T, \) \(b\) \(\bigcup_{n \geq 1} \{S_n(u) = T\} = \Omega, \) \(\mathbb{P} \)-a.s.,

such that, for all \(\Gamma \in \mathcal{F}_T \) and for all \(n \geq 1 \) and \(u, u' \in U_i, \) it holds: if \(u = u' \) on \([t, S_{n-1}(u))] \cap (\Gamma \times [t, T]), \) then \((c) S_n(u) = S_n(u'), \) on \(\Gamma, \) \(\mathbb{P} \)-a.s., \(1 \leq l \leq n, \) \(d\) \(\beta(u) = \beta(u'), \) on \([t, S_n(u)]) \cap (\Gamma \times [t, T]).\)
For all $u \in \mathcal{U}_{t,T}$, we put $S_n(u) = S'_n(u(t^{-1})) \tau$, $n \geq 1$. It is easy to check that $\hat{\beta}$ is a nonanticipative strategy with delay. Moreover, since $\beta(u) = \beta(u(\tau))(\tau^{-1})$, $u \in \mathcal{U}_{t,T}$, we have that $\{\hat{\beta} \mid \beta \in \mathcal{B}_{t,T}\} = \mathcal{B}_{t,T}$. Ditto for $\hat{\alpha}$.

Step 3: The following holds:

$$\left(\text{ess sup } \text{ess inf } J_i(t, x; \alpha, \beta)\right)(\tau) = \text{ess sup } \text{ess inf } \left(J_i(t, x; \alpha, \beta)(\tau)\right), \quad \mathbb{P}\text{-a.s.}$$

Taking into account the properties of τ, this relation can be proven in the same manner as the corresponding relation in [9], also see [5].

Step 4: We now show that $W_i(t, x)(\tau) = W_i(t, x)$, \mathbb{P}-a.s.

Let $(\alpha, \beta) \in \mathcal{A}_{t,T} \times \mathcal{B}_{t,T}$. Then there exists a unique couple $(u, v) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$ such that $\alpha(v) = u, \beta(u) = v$. Consequently, due to Step 2, $\hat{\alpha}(v(\tau)) = u(\tau)$ and $\hat{\beta}(u(\tau)) = v(\tau)$, and, thus, from Step 1,

$$J_i(t, x; \alpha, \beta)(\tau) = J_i(t, x; u, v)(\tau) = J_i(t, x; u(\tau), v(\tau)) = J_i(t, x; \hat{\alpha}, \hat{\beta}), \quad \mathbb{P} - a.s.$$

Thus, since $\{\hat{\alpha} \mid \alpha \in \mathcal{A}_{t,T}\} = \mathcal{A}_{t,T}$ and $\{\hat{\beta} \mid \beta \in \mathcal{B}_{t,T}\} = \mathcal{B}_{t,T}$, we conclude with Step 3,

$$W_i(t, x)(\tau) = \text{ess sup } \text{ess inf } (J_i(t, x; \alpha, \beta)(\tau))$$

We get the wished result. \(\Box\)

For $\ell \geq 1$, let us define the transformation $\tau_{\ell} : \Omega \rightarrow \Omega$ such that

$$(\tau_{\ell}\omega)((t - \ell, r]) = \omega((t - 2\ell, r - \ell]) := \omega(r - \ell) - \omega(t - 2\ell);$$

$$(\tau_{\ell}\omega)((t - 2\ell, r - \ell]) = \omega((t - \ell, r]], \text{ for } r \in [t - \ell, t];$$

$$(\tau_{\ell}\omega)((s, r]) = \omega((s, r]), (s, r] \cap (t - 2\ell, t] = \emptyset;$$

$$(\tau_{\ell}\omega)(0) = 0.$$

The transformation τ_{ℓ} satisfies the assumptions $i), ii)$ and $iii)$ of Lemma 3.8. Therefore, $W(t, x)(\tau_{\ell}) = W(t, x)$, \mathbb{P}-a.s., $\ell \geq 1$. We have the following lemma by using arguments similar to that in [8].

Lemma 3.9. Let $\zeta \in L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})$ be such that, for all $\ell \geq 1$ natural number, $\zeta(\tau_{\ell}) = \zeta$, \mathbb{P}-a.e. Then, there exists some real C such that $\zeta = C$, \mathbb{P}-a.s.

By the definition of $W_i(t, x)$ and Proposition 3.3 we can easily get the following properties for our deterministic function W_i. The same proposition holds for U_i.

Proposition 3.10. Under the assumptions (H4) and (H5), there exists a constant $C > 0$ such that, for all $0 \leq t \leq T, x, x' \in \mathbb{R}^n$,

$$|W_i(t, x) - W_i(t, x')| \leq C|x - x'|, \quad |W_i(t, x)| \leq C(1 + |x|).$$
We now recall the notion of stochastic backward semigroups, which was first introduced by Peng [16] to study stochastic optimal control problems, and translated later by Buckdahn and Li [9] to SDGs. For any stopping times σ, τ, with $t \leq \sigma \leq \tau \leq T$, and a random variable $\eta \in L^2(\Omega, \mathcal{F}_T, \mathbb{P}; \mathbb{R})$, we define
\[
i G_{\sigma, \tau}^d(x, u, v; \eta) := \hat{Y}_{\sigma}^{t, x, u, v},
\]
where $(\hat{Y}_{s}^{t, x, u, v}, \hat{Z}_{s}^{t, x, u, v}, \hat{H}_{s}^{t, x, u, v})_{t \leq s \leq \tau}$ is the solution of the following BSDE:
\[
\begin{aligned}
-d \hat{Y}_{s}^{t, x, u, v} &= f_{N_{s}^{t, x, u, v}}(s, X_{s}^{t, x, u, v}, \hat{Y}_{s}^{t, x, u, v}, \hat{Z}_{s}^{t, x, u, v}, \hat{H}_{s}^{t, x, u, v}, u_{s}, v_{s})ds, \quad s \in [t, \tau] \\
i \hat{Y}_{\tau}^{t, x, u, v} &= \eta,
\end{aligned}
\]
where $X^{t, x, u, v}$ is the solution of SDE (3.1) with $\zeta = x \in \mathbb{R}^n$.

We have the following dynamic programming principle (DPP) over a stochastic interval for our games.

Theorem 3.11. Let the assumptions (H4) and (H5) hold. Then the following dynamic programming principle holds: For any stopping time τ with $0 \leq t < \tau \leq T$, $x \in \mathbb{R}^n$, $i = 1, 2$,
\[
W_{i}(t, x) = \sup_{\alpha \in \mathcal{A}_{t, \tau}} \inf_{\beta \in \mathcal{B}_{t, \tau}} \i G_{t, \tau}^{x, \alpha, \beta}[W_{N_{t}^{t, x, \alpha, \beta}}(\tau, X_{\tau}^{t, x, \alpha, \beta})],
\]
\[
U_{i}(t, x) = \inf_{\beta \in \mathcal{B}_{t, \tau}} \sup_{\alpha \in \mathcal{A}_{t, \tau}} \i G_{t, \tau}^{x, \alpha, \beta}[U_{N_{t}^{t, x, \alpha, \beta}}(\tau, X_{\tau}^{t, x, \alpha, \beta})].
\]

This DPP for stopping times will play a crucial role in Section 4. Since the proof is rather long and technical, we postpone it to Subsection 6.1.

4 **Probabilistic interpretation of associated coupled systems of Isaacs equations**

The objective of this section is to give a probabilistic interpretation of coupled systems of Isaacs equations. More precisely, we show that the value functions $U = (U_1, U_2)$ and $W = (W_1, W_2)$, introduced in Section 3, are viscosity solutions of the following coupled Isaacs equations:
\[
\begin{align*}
\frac{\partial}{\partial t} U_{i}(t, x) + H_{i}^{+}(t, x, U_{1}(t, x), U_{2}(t, x), DU_{i}(t, x), D^{2}U_{i}(t, x)) &= 0, \quad (t, x) \in [0, T) \times \mathbb{R}^n, \quad (4.1) \\
U_{i}(T, x) &= \Phi_{i}(x), \quad i = 1, 2,
\end{align*}
\]
\[
\begin{align*}
\frac{\partial}{\partial t} W_{i}(t, x) + H_{i}^{-}(t, x, W_{1}(t, x), W_{2}(t, x), DW_{i}(t, x), D^{2}W_{i}(t, x)) &= 0, \quad (t, x) \in [0, T) \times \mathbb{R}^n, \quad (4.2) \\
W_{i}(T, x) &= \Phi_{i}(x), \quad i = 1, 2,
\end{align*}
\]
respectively, where for $(t, x, y_{1}, y_{2}, p, A, u, v) \in [0, T] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{S}^d \times U \times V$, \[H_{i}(t, x, y_{1}, y_{2}, p, A, u, v) = \frac{1}{2} tr(\sigma \sigma^{T}(t, x, u, v)A) + pb(t, x, u, v) + \tilde{f}_{i}(t, x, y_{1}, y_{2}, p\sigma(t, x, u, v), u, v),\]
\[H_{i}^{-}(t, x, y_{1}, y_{2}, p, A, u, v) = \sup_{u \in U} \inf_{v \in V} H_{i}(t, x, y_{1}, y_{2}, p, A, u, v),\]
Let us recall the definition of a viscosity solution of the system (4.1). We denote by $C^3_{l,b}([0,T] \times \mathbb{R}^n)$ the set of real-valued functions which are continuously differentiable up to third order and whose derivatives of order from 1 to 3 are bounded.

Definition 4.1. A continuous function $V = (V_1, V_2) \in C([0,T] \times \mathbb{R}^n; \mathbb{R}^2)$ is called

(i) a viscosity subsolution of the system (4.1) if $V_i(t, x) \leq \Phi_i(x)$, for all $i = 1, 2, x \in \mathbb{R}^n$, and if for all test functions $\varphi \in C^3_{l,b}([0,T] \times \mathbb{R}^n), i = 1, 2$, and $(t, x) \in [0,T) \times \mathbb{R}^n$ such that $V_i - \varphi$ attains a local maximum at (t, x),

$$\frac{\partial}{\partial t} \varphi(t, x) + H_i^+(t, x, V_1(t, x), V_2(t, x), D\varphi(t, x), D^2\varphi(t, x)) \geq 0,$$

(4.3)

(ii) a viscosity supersolution of the system (4.1) if $V_i(t, x) \geq \Phi_i(x)$, for all $i = 1, 2, x \in \mathbb{R}^n$, and if for all functions $\varphi \in C^3_{l,b}([0,T] \times \mathbb{R}^n), i = 1, 2$, and $(t, x) \in [0,T) \times \mathbb{R}^n$ such that $V_i - \varphi$ attains a local minimum at (t, x),

$$\frac{\partial}{\partial t} \varphi(t, x) + H_i^-(t, x, V_1(t, x), V_2(t, x), D\varphi(t, x), D^2\varphi(t, x)) \leq 0,$$

(4.4)

(iii) a viscosity solution of the system (4.1) if it is both a viscosity subsolution and a supersolution of the system (4.1). In the same way we can define a viscosity solution of the system (4.2).

We now give the main result in this section. We shall give the proof in Section 6.2 since it is rather lengthy.

Theorem 4.2. Let the assumptions (H4) and (H5) hold. Then $U = (U_1, U_2)$ (resp., $W = (W_1, W_2)$) is a viscosity solution of the system (4.1) (resp., (4.2)).

To state a uniqueness theorem for the viscosity solution of the system (4.1), let us first define the following space:

$$\Theta : = \left\{ \varphi \in C([0,T] \times \mathbb{R}^n) : \text{there exists a constant } A > 0 \text{ such that} \right.$$

$$\lim_{|x| \to \infty} |\varphi(t, x)| \exp\{-A[\log(|x|^2 + 1)^{\frac{1}{2}}]^2\} = 0, \text{ uniformly in } t \in [0,T] \right\}.$$

Theorem 4.3. Let the assumptions (H4) and (H5) hold. Then there exists at most one viscosity solution $u \in \Theta$ (resp., $v \in \Theta$) of the system (4.1) (resp., (4.2)).

The proof of the Theorem can be adapted from the arguments in Barles, Buckdahn and Pardoux [1] combined with those of Barles and Imbert [2] to our framework. We omit it here.

Remark 4.4. Since $U = (U_1, U_2)$ (resp., $W = (W_1, W_2)$) is a viscosity solution of linear growth, $U = (U_1, U_2)$ (resp., $W = (W_1, W_2)$) is the unique viscosity solution in Θ of the system (4.1) (resp., (4.2)).

An immediate consequence of this remark is that, under *Isaacs condition*:

For all $(t, x, y_1, y_2, p, A, u, v) \in [0,T] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{S}^d \times U \times V$, $j = 1, 2$, we have

$$\sup_{u \in U} \inf_{v \in V} \left\{ \frac{1}{2} tr(\sigma \sigma^T(t, x, u, v)A) + pb(t, x, u, v) + f_j(t, x, y_1, y_2, p\sigma(t, x, u, v), u, v) \right\}$$

$$= \inf_{v \in V} \sup_{u \in U} \left\{ \frac{1}{2} tr(\sigma \sigma^T(t, x, u, v)A) + pb(t, x, u, v) + f_j(t, x, y_1, y_2, p\sigma(t, x, u, v), u, v) \right\}, \hspace{1cm} \text{(4.5)}$$

the upper value and lower value functions coincide:
Corollary 4.5. Let Isaacs condition (4.5) hold. Then we have, for all \((t, x) \in [0, T] \times \mathbb{R}^n\),
\[
(U_1(t, x), U_2(t, x)) = (W_1(t, x), W_2(t, x)).
\]

However, for the next section, we need, in addition to the value functions we have already introduced, also the following ones. For all \((t, x) \in [0, T] \times \mathbb{R}^n, i = 1, 2\), we define
\[
\overline{W}_i(t, x) := \sup_{\beta \in B_i, T} \inf_{\alpha \in A_i, T} J_i(t, x; \alpha, \beta), \quad \underline{U}_i(t, x) := \inf_{\alpha \in A_i, T} \sup_{\beta \in B_i, T} J_i(t, x; \alpha, \beta).
\]

Isaacs condition: For all \((t, x, y_1, y_2, p, A, u, v) \in [0, T] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{S}^d \times U \times V, j = 1, 2\),
\[
\inf_{u \in U} \sup_{v \in V} \left\{ \frac{1}{2} \text{tr}(\sigma^T(t, x, u, v)A) + pb(t, x, u, v) + f_j(t, x, y_1, y_2, p\sigma(t, x, u, v), u, v) \right\}
\]
\[
= \sup_{v \in V} \inf_{u \in U} \left\{ \frac{1}{2} \text{tr}(\sigma^T(t, x, u, v)A) + pb(t, x, u, v) + f_j(t, x, y_1, y_2, p\sigma(t, x, u, v), u, v) \right\},
\]

(4.6)

Using a similar argument in Sections 3 and 4 we have the following proposition.

Proposition 4.6. Let Isaacs condition (4.6) hold. Then we have, for all \((t, x) \in [0, T] \times \mathbb{R}^n,\)
\[
(\overline{U}_1(t, x), \overline{U}_2(t, x)) = (\overline{W}_1(t, x), \overline{W}_2(t, x)).
\]

Remark 4.7. By virtue of a similar argument in Sections 3 and 4 we can get, for \(i = 1, 2\), \(U_i\) and \(W_i\) have the similar properties to \(U_i\) and \(W_i\), respectively. We omit them here. But we will use them in Section 5.

5 Nash equilibrium payoffs for nonzero-sum stochastic differential games with coupled cost functionals

The objective of this section is to investigate Nash equilibrium payoffs for nonzero-sum SDGs. An existence theorem and a characterization theorem of Nash equilibrium payoffs are obtained.

In order to study Nash equilibrium payoffs, we redefine the following notations which differ from those of the preceding sections. Let us define: For all \((t, x) \in [0, T] \times \mathbb{R}^n,\)
\[
W_1(t, x) := \sup_{\alpha \in A_i, T} \inf_{\beta \in B_i, T} J_1(t, x; \alpha, \beta), \quad W_2'(t, x) := \sup_{\alpha \in A_i, T} \inf_{\beta \in B_i, T} J_2(t, x; \alpha, \beta),
\]
and
\[
W_1'(t, x) := \sup_{\beta \in B_i, T} \inf_{\alpha \in A_i, T} J_1(t, x; \alpha, \beta), \quad W_2(t, x) := \sup_{\beta \in B_i, T} \inf_{\alpha \in A_i, T} J_2(t, x; \alpha, \beta).
\]

In all what follows we assume that the Isaacs conditions (4.5) and (4.6) hold, and that all the coefficients are bounded. This latter assumption is not necessary, but has the objective to simplify the arguments. Under the Isaacs conditions (4.5) and (4.6), from Corollary 4.5 and Proposition 4.6, we have, for \((t, x) \in [0, T] \times \mathbb{R}^n,\)
\[
\begin{align*}
W_1(t, x) &= \sup_{\alpha \in A_i, T} \inf_{\beta \in B_i, T} J_1(t, x; \alpha, \beta) = \inf_{\beta \in B_i, T} \sup_{\alpha \in A_i, T} J_1(t, x; \alpha, \beta), \\
W_2(t, x) &= \inf_{\alpha \in A_i, T} \sup_{\beta \in B_i, T} J_2(t, x; \alpha, \beta) = \sup_{\beta \in B_i, T} \inf_{\alpha \in A_i, T} J_2(t, x; \alpha, \beta), \quad (5.1) \\
W_1'(t, x) &= \sup_{\beta \in B_i, T} \inf_{\alpha \in A_i, T} J_1(t, x; \alpha, \beta) = \sup_{\beta \in B_i, T} \inf_{\alpha \in A_i, T} J_1(t, x; \alpha, \beta), \\
W_2'(t, x) &= \inf_{\beta \in B_i, T} \sup_{\alpha \in A_i, T} J_2(t, x; \alpha, \beta) = \sup_{\beta \in B_i, T} \inf_{\alpha \in A_i, T} J_2(t, x; \alpha, \beta).
\end{align*}
\]
Remark 5.1. Not only Hamiltonians of the form $\mathbf{H}(t,x,y_1,y_2,p,A,u) + \mathbf{H}_v(t,x,y_1,y_2,p,A,v)$, for $(t,x,y_1,y_2,p,A,u,v) \in [0,T] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{S}^d \times U \times V$, are covered by Isaacs conditions (4.5) and (4.6), as the following example shows:

$$\sup_{v \in [-1,1]} \inf_{u \in [0,1]} vu^2 = \inf_{u \in [0,1]} \sup_{v \in [-1,1]} vu^2 = 0,$$

and

$$\inf_{v \in [-1,1]} \sup_{u \in [0,1]} vu^2 = \sup_{u \in [0,1]} \inf_{v \in [-1,1]} vu^2 = 0.$$

We also define the following function: for $j = 1, 2, l = 1, 2$,

$$n_j(l) = \begin{cases} j, & l = j, \\ l', & l \neq j. \end{cases}$$

We now give the definition of Nash equilibrium payoffs for nonzero-sum SDGs, which is similar to that in [6] and [14].

Definition 5.2. For $(t,x) \in [0,T] \times \mathbb{R}^n$, a couple $(e_1,e_2) \in \mathbb{R}^2$ is called a Nash equilibrium payoff at the point (t,x), if for any $\varepsilon > 0$, there exists a couple $(\alpha_\varepsilon, \beta_\varepsilon) \in \mathcal{A}_{t,T} \times \mathcal{B}_{t,T}$ such that, for all $(\alpha, \beta) \in \mathcal{A}_{t,T} \times \mathcal{B}_{t,T}$,

$$J_1(t,x;\alpha_\varepsilon, \beta_\varepsilon) \geq J_1(t,x;\alpha, \beta_\varepsilon) - \varepsilon, \quad J_2(t,x;\alpha_\varepsilon, \beta_\varepsilon) \geq J_2(t,x;\alpha_\varepsilon, \beta) - \varepsilon, \quad \mathbb{P} \text{- a.s.}, \quad (5.2)$$

and

$$|\mathbb{E}[J_j(t,x;\alpha_\varepsilon, \beta_\varepsilon)] - e_j| \leq \varepsilon, \quad j = 1, 2.$$

Remark 5.3. We notice that unlike in [6] our cost functionals $J_j(t,x;\alpha, \beta), j = 1, 2$, are not necessarily deterministic. Indeed, while [6] is based on the approach by Fleming and Souganidis [10] in which the admissible cost functionals for a game over the fixed time interval $[t,T]$ are independent of \mathcal{F}_t, the present paper is based on the approaches developed in [9], [5] and in [8].

The following equivalent condition of (5.2) follows easily from Lemma 3.6.

Lemma 5.4. For any $\varepsilon > 0$, let $(\alpha_\varepsilon, \beta_\varepsilon) \in \mathcal{A}_{t,T} \times \mathcal{B}_{t,T}$. Then (5.2) holds if and only if, for all $(u,v) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$,

$$J_1(t,x;\alpha_\varepsilon, \beta_\varepsilon) \geq J_1(t,x;u,\beta_\varepsilon(u)) - \varepsilon, \quad \mathbb{P} \text{- a.s.},$$

$$J_2(t,x;\alpha_\varepsilon, \beta_\varepsilon) \geq J_2(t,x;\alpha_\varepsilon(v),v) - \varepsilon, \quad \mathbb{P} \text{- a.s.} \quad (5.3)$$

As in [14], before giving the characterization theorem of Nash equilibrium payoffs, we first state two important lemmas.

Lemma 5.5. For $(t,x) \in [0,T] \times \mathbb{R}^n$, we fix arbitrarily $u \in \mathcal{U}_{t,T}$. Then,

(i) for all stopping time $\tau \in [t,T]$ and $\varepsilon > 0$, there exists an NAD strategy $\alpha \in \mathcal{A}_{t,T}$ such that, for all $v \in \mathcal{V}_{t,T}$,

$$\alpha(v) = u, \text{ on } [[t,\tau]],$$

$$2Y_{t,x;\alpha(v),v} \leq W_{n_2(N_{t,x}^a)}(\tau, X_{t,x;\alpha(v),v}) + \varepsilon, \quad \mathbb{P} \text{- a.s.}$$

(ii) for all stopping time $\tau \in [t,T]$ and $\varepsilon > 0$, there exists an NAD strategy $\alpha \in \mathcal{A}_{t,T}$ such that, for all $v \in \mathcal{V}_{t,T}$,

$$\alpha(v) = u, \text{ on } [[t,\tau]],$$

$$1Y_{t,x;\alpha(v),v} \geq W_{n_1(N_{t,x}^a)}(\tau, X_{t,x;\alpha(v),v}) - \varepsilon, \quad \mathbb{P} \text{- a.s.}$$
Proof. Let us only give the proof of (i); that of (ii) can be carried out with a similar argument. We notice that $\mathcal{V}_{T,T}$ can be regarded as a subset of $\mathcal{B}_{T,T}$. Indeed, putting $\beta'(u') = u'$, $u' \in \mathcal{U}_{T,T}$, we associate all $u' \in \mathcal{V}_{T,T}$ with some $\beta'' \in \mathcal{B}_{T,T}$. Therefore, for any $y \in \mathbb{R}^n$, similar to Proposition 6.13 we have

$$W_{n_2(N_{T,T}^2)}(\tau, y) = \text{essinf}_{\alpha \in \mathcal{A}_{T,T}} \text{esssup}_{\beta \in \mathcal{B}_{T,T}} J_{N_{T,T}^2}(\tau, y; \alpha, \beta) \geq \text{essinf}_{\alpha \in \mathcal{A}_{T,T}} \text{esssup}_{v \in \mathcal{V}_{T,T}} J_{N_{T,T}^2}(\tau, y; \alpha(v), v), \ P - a.s.$$

Then, for any $\varepsilon_0 > 0$, by standard arguments we have the existence of $\alpha_y \in \mathcal{A}_{T,T}$ such that

$$W_{n_2(N_{T,T}^2)}(\tau, y) \geq \text{esssup}_{v \in \mathcal{V}_{T,T}} J_{N_{T,T}^2}(\tau, y; \alpha_y(v), v) - \varepsilon_0, \ P - a.s. \quad (5.4)$$

We let $\{O_i\}_{i \geq 1} \subset \mathcal{B}(\mathbb{R}^n)$ be a partition of \mathbb{R}^n such that $\sum_{i \geq 1} O_i = \mathbb{R}^n, O_i \neq \emptyset$, and $\text{diam}(O_i) \leq \varepsilon_0, i \geq 1$. For $y_i \in O_i, i \geq 1$ and $v \in \mathcal{V}_{t,T}$, let us set

$$\alpha(v)_s = \left\{ \begin{array}{ll} u_s, & s \in [\lbrack t, \tau \rbrack], \\ \sum_{i \geq 1} 1_{\{X^{t,x,\alpha(v)}_{\tau} \in O_i\}} \alpha_{y_i}(v_{\lbrack \tau,T \rbrack})_s, & s \in [\lbrack \tau, T \rbrack]. \end{array} \right. \quad (5.5)$$

Then $\alpha : \mathcal{V}_{t,T} \to \mathcal{U}_{t,T}$ is an NAD strategy. This can be checked in a straight-forward way and is omitted in order to shorten the proof.

By virtue of Proposition 3.10, Remark 4.7, (5.4) and (5.5), we deduce that, for $v \in \mathcal{V}_{t,T},$

$$W_{n_2(N_{T,T}^2)}(\tau, X^{t,x,\alpha(v)}_{\tau}) \geq \sum_{i \geq 1} 1_{\{X^{t,x,\alpha(v)}_{\tau} \in O_i\}} W_{n_2(N_{T,T}^2)}(\tau, y_i) - C\varepsilon_0$$

$$\geq \sum_{i \geq 1} 1_{\{X^{t,x,\alpha(v)}_{\tau} \in O_i\}} J_{N_{T,T}^2}(\tau, y_i; \alpha_{y_i}(v_{\lbrack \tau,T \rbrack}), v) - C\varepsilon_0$$

$$= \sum_{i \geq 1} 1_{\{X^{t,x,\alpha(v)}_{\tau} \in O_i\}} J_{N_{T,T}^2}(\tau, y_i; \alpha(v), v) - C\varepsilon_0.$$

Consequently, due to Proposition 3.3 we conclude

$$W_{n_2(N_{T,T}^2)}(\tau, X^{t,x,\alpha(v)}_{\tau}) \geq \sum_{i \geq 1} 1_{\{X^{t,x,\alpha(v)}_{\tau} \in O_i\}} J_{N_{T,T}^2}(\tau, X^{t,x,\alpha(v)}_{\tau}; \alpha(v), v) - C\varepsilon_0$$

$$= J_{N_{T,T}^2}(\tau, X^{t,x,\alpha(v)}_{\tau}; \alpha(v), v) - C\varepsilon_0,$$

where C is a constant which can be different from line to line and is independent of $v \in \mathcal{V}_{t,T}$. Recalling that $\varepsilon_0 > 0$ hasn’t been specified yet, let us choose $\varepsilon_0 = C^{-1}\varepsilon$. We observe that

$$J_{N_{T,T}^2}(\tau, X^{t,x,\alpha(v)}_{\tau}; \alpha(v), v) = N_{T,T}^{n,2} Y_{\tau}^{t,x,\alpha(v)} X^{t,x,\alpha(v)}_{\tau}, \alpha(v), v = 2Y^{n,2} Y_{\tau}^{t,x,\alpha(v)}.$$

Then we deduce that

$$W_{n_2(N_{T,T}^2)}(\tau, X^{t,x,\alpha(v)}_{\tau}) \geq 2Y^{n,2} Y_{\tau}^{t,x,\alpha(v)} - \varepsilon, \ v \in \mathcal{V}_{t,T}.$$

This conclude the proof. \qed
The following lemma follows from standard estimates for SDEs.

Lemma 5.6. There exists a positive constant C such that, for all $(u, v), (u', v') \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$, and for all \mathbb{F}-stopping times $\sigma : \Omega \rightarrow [t, T]$ with $X^{\sigma, u, v}_t = X^{\sigma, u', v'}_t$, \mathbb{P}-a.s., we have the following estimate: for all real $r \in [t, T]$,

$$\mathbb{E}\left[\sup_{0 \leq s \leq r} |X^{t, u, v}_s - X^{t, u', v'}_s|^2 \right] \leq Cr, \quad \mathbb{P}-a.s.$$

Let us now give the following characterization theorem of Nash equilibrium payoffs for two-player nonzero-sum SDGs.

Theorem 5.7. For $(t, x) \in [0, T] \times \mathbb{R}^n$, a couple $(e_1, e_2) \in \mathbb{R}^2$ is a Nash equilibrium payoff at point (t, x) if and only if, for all $\varepsilon > 0$, there exists a couple $(u^\varepsilon, v^\varepsilon) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$ such that for all $\delta \in [0, T-t]$ and $j = 1, 2$,

$$\mathbb{P}\left(N^{t, x, u^\varepsilon, v^\varepsilon}_{\delta} \geq W_{n_j(N^{t, x, u^\varepsilon, v^\varepsilon}_{\delta})}(t + \delta, X_{t+\delta}^{t, x, u^\varepsilon, v^\varepsilon}) - \varepsilon \mid \mathcal{F}_t \right) \geq 1 - \varepsilon, \quad \mathbb{P}-a.s.$$

and

$$|\mathbb{E}[J_j(t, x; u^\varepsilon, v^\varepsilon)] - e_j| \leq \varepsilon.$$

Remark 5.8. The characterization theorem of Nash equilibrium payoffs in [14] generalizes the results in [6] from classical cost functionals without running cost to nonlinear cost functionals with running cost defined by decoupled BSDEs. The above theorem on its part extends the result in [14]: on the other hand, we generalize [14] from SDGs without jumps to those with jumps. On the other hand, our cost functionals are defined by a system of two coupled BSDEs.

Proof of Theorem 5.7: Necessity of (5.6) and (5.7).

Proof. Let us suppose that $(e_1, e_2) \in \mathbb{R}^2$ is a Nash equilibrium payoff at the point (t, x). Then, by Definition 5.2 we have, for sufficiently small $\varepsilon > 0$, the existence of $(\alpha_\varepsilon, \beta_\varepsilon) \in \mathcal{A}_{t,T} \times \mathcal{B}_{t,T}$ such that, for all $(\alpha, \beta) \in \mathcal{A}_{t,T} \times \mathcal{B}_{t,T}$

$$J_1(t, x; \alpha_\varepsilon, \beta_\varepsilon) \geq J_1(t, x; \alpha, \beta_\varepsilon) - \varepsilon^4, \quad J_2(t, x; \alpha_\varepsilon, \beta_\varepsilon) \geq J_2(t, x; \alpha_\varepsilon, \beta) - \varepsilon^4, \quad \mathbb{P}-a.s.$$

and

$$|\mathbb{E}[J_j(t, x; \alpha_\varepsilon, \beta_\varepsilon)] - e_j| \leq \varepsilon^4, \quad j = 1, 2.$$

Since $(\alpha_\varepsilon, \beta_\varepsilon) \in \mathcal{A}_{t,T} \times \mathcal{B}_{t,T}$, it follows from Lemma 3.6 that there exists a unique couple $(u^\varepsilon, v^\varepsilon) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$ such that $\alpha_\varepsilon(u^\varepsilon) = u^\varepsilon, \beta_\varepsilon(v^\varepsilon) = v^\varepsilon$. We notice that from Proposition 3.2, (5.6) is equivalent to

$$\mathbb{P}\left(Y_{t+\delta}^{t, x, u^\varepsilon, v^\varepsilon} \geq W_{n_j(N^{t, x, u^\varepsilon, v^\varepsilon}_{\delta})}(t + \delta, X_{t+\delta}^{t, x, u^\varepsilon, v^\varepsilon}) - \varepsilon \mid \mathcal{F}_t \right) \geq 1 - \varepsilon, \quad \mathbb{P}-a.s.$$

We make the proof by contradiction and suppose that (5.6) doesn’t hold true. Then, for all $\varepsilon' > 0$, there exists some $\varepsilon \in (0, \varepsilon')$ and some $\delta \in [0, T-t]$ such that, for some $j \in \{1, 2\}$, say for $j = 1$,

$$\mathbb{P}\left(Y_{t+\delta}^{t, x, u^\varepsilon, v^\varepsilon} < W_{n_1(N^{t, x, u^\varepsilon, v^\varepsilon}_{\delta})}(t + \delta, X_{t+\delta}^{t, x, u^\varepsilon, v^\varepsilon}) - \varepsilon \mid \mathcal{F}_t \right) > \varepsilon.$$

(5.10)
Putting
\[A = \left\{ 1_{Y_{t+\delta}^{x,u,v}} < W_{n_1(N_{t+\delta}^{x,v})}(t + \delta, X_{t+\delta}^{t,x,u,v}) - \varepsilon \right\} \in \mathcal{F}_{t+\delta}, \tag{5.11} \]
and applying Lemma 5.5 to \(u^\varepsilon \) and \(t + \delta \), we have the existence of an NAD strategy \(\bar{\alpha} \in \mathcal{A}_{t,T} \) such that, for all \(v \in \mathcal{V}_{t,T} \),
\[\bar{\alpha}(v) = u^\varepsilon, \quad \text{on } [t, t + \delta], \]
\[1_{Y_{t+\delta}^{x,\bar{\alpha}(v),v}} \geq W_{n_1(N_{t+\delta}^{x,v})}(t + \delta, X_{t+\delta}^{t,x,\bar{\alpha}(v),v}) - \frac{\varepsilon}{2} \quad \text{\(\mathbb{P} \)-a.s.} \tag{5.12} \]

From Lemma 3.6 we have the existence of a unique couple \((u, v) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}\) such that \(\bar{\alpha}(v) = u, \beta_\varepsilon(u) = v \). From (5.12) we see that \(u = u^\varepsilon \) on \([t, t + \delta]\), and we put
\[\bar{u} = \left\{ \begin{array}{ll}
 u^\varepsilon, & \text{on } [t, t + \delta]\times\Omega) \cup ([t + \delta, T] \times A^c), \\
u, & \text{on } [t + \delta, T] \times A.
 \end{array} \right. \]

Consequently, from the nonanticipativity of \(\beta_\varepsilon \in \mathcal{B}_{t,T} \) we see that \(\beta_\varepsilon(\bar{u}) = \beta_\varepsilon(u^\varepsilon) = v^\varepsilon \) on \([t, t + \delta]\), and for all \(s \in [t + \delta, T] \),
\[\beta_\varepsilon(\bar{u}) = \left\{ \begin{array}{ll}
\beta_\varepsilon(u)_s = v_s, & \text{on } A, \\
\beta_\varepsilon(u^\varepsilon)_s = v^\varepsilon_s, & \text{on } A^c.
\end{array} \right. \]

Hence, standard arguments for SDEs and BSDEs yield
\[X_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})} = X_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}, \quad \text{on } [t, t + \delta], \]
\[X_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})} = \left\{ \begin{array}{ll}
X_{t+\delta}^{t,x,\bar{\alpha}(v),v}, & \text{on } [t + \delta, T] \times A, \\
X_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}, & \text{on } [t + \delta, T] \times A^c,
\end{array} \right. \]
as well as
\[1_{Y_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})}} = \left\{ \begin{array}{ll}
1_{Y_{t+\delta}^{t,x,\bar{\alpha}(v),v}}, & \text{on } A, \\
1_{Y_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}}, & \text{on } A^c.
\end{array} \right. \]

Thus,
\[J_1(t, x; \bar{u}, \beta_\varepsilon(\bar{u})) = 1_{Y_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})}} = 1_{Y_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})}}[1_{Y_{t+\delta}^{t,x,\bar{\alpha}(v),v}}] \\
= 1_{Y_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})}}[1_{Y_{t+\delta}^{t,x,\bar{\alpha}(v),v}}]1_A + 1_{Y_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})}}1_{A^c} \\
= 1_{Y_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})}}[1_{Y_{t+\delta}^{t,x,\bar{\alpha}(v),v}}]1_A + 1_{Y_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}}1_{A^c}. \]

By virtue of Lemma 2.2 and (5.12) we conclude
\[J_1(t, x; \bar{u}, \beta_\varepsilon(\bar{u})) \geq 1_{Y_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})}}[(W_{n_1(N_{t+\delta}^{x,v})}(t + \delta, X_{t+\delta}^{t,x,\bar{\alpha}(v),v}) - \frac{\varepsilon}{2})1_A + 1_{Y_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}}1_{A^c}] \\
= 1_{Y_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})}}[W_{n_1(N_{t+\delta}^{x,v})}(t + \delta, X_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon})1_A + 1_{Y_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}}1_{A^c} - \frac{\varepsilon}{2}1_A]. \]

Therefore, from (5.11) we deduce that
\[J_1(t, x; \bar{u}, \beta_\varepsilon(\bar{u})) \geq 1_{Y_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})}}[(1_{Y_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}} + \varepsilon)1_A + 1_{Y_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}}1_{A^c} - \frac{\varepsilon}{2}1_A] \\
= 1_{Y_{t+\delta}^{t,x,\bar{u},\beta_\varepsilon(\bar{u})}}[1_{Y_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}} + \varepsilon]1_A] \\
= 1_{Y_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}}[1_{Y_{t+\delta}^{t,x,u^\varepsilon,v^\varepsilon}} + \varepsilon]1_A]. \tag{5.13} \]
Putting
\[y_s = \frac{1}{2} C_{s,t+\delta}^{t,x,u^\varepsilon,v^\varepsilon} \left[1 + \frac{\varepsilon}{2} A \right], \quad s \in [t, t + \delta], \]
let us consider the following BSDE:
\[y_s = \mathbb{E}_s \left[y_{t+\delta} + \frac{\varepsilon}{2} A + \int_s^{t+\delta} f_{N_{t+\delta}}^1 (r, X_r^{t,x,u^\varepsilon,v^\varepsilon}, y_r, h_r, z_r, u_r, v_r)dr \right. \]
\[- \lambda \int_s^{t+\delta} h_r dr - \int_s^{t+\delta} z_r dB_r - \int_s^{t+\delta} h_r d\tilde{N}_r, \quad s \in [t, t + \delta], \]
as well as, for \(s \in [t, t + \delta], \)
\[\mathbb{E}_s \left[y_{t+\delta} + \frac{\varepsilon}{2} A + \int_s^{t+\delta} f_{N_{t+\delta}}^1 (r, X_r^{t,x,u^\varepsilon,v^\varepsilon}, y_r, h_r, z_r, u_r, v_r)dr \right. \]
\[- \lambda \int_s^{t+\delta} h_r dr - \int_s^{t+\delta} z_r dB_r - \int_s^{t+\delta} h_r d\tilde{N}_r, \quad s \in [t, t + \delta]. \]
In order to simplify the notations we suppose until the end of this proof that the dimension of the Brownian motion \(d \) is equal to 1, since we can use a similar arguments for \(d > 1 \). Let us set
\[\overline{y}_s = y_s - 1, \quad \overline{h}_s = h_s - 1, \quad \overline{z}_s = z_s - 1, \quad s \in [t, t + \delta]. \]
Then we conclude
\[\overline{y}_s = \frac{\varepsilon}{2} A + \int_s^{t+\delta} f_{N_{t+\delta}}^1 (r, X_r^{t,x,u^\varepsilon,v^\varepsilon}, y_r, h_r, z_r, u_r, v_r)dr \]
\[- \lambda \int_s^{t+\delta} \overline{h}_r dr - \int_s^{t+\delta} \overline{z}_r dB_r - \int_s^{t+\delta} \overline{h}_r d\tilde{N}_r, \quad s \in [t, t + \delta]. \quad (5.14) \]
Let us put, for \(r \in [t, t + \delta], \)
\[a_r = 1(\overline{y}_r \neq 0) (\overline{y}_r)^{-1} \left(f_{N_{t+\delta}}^1 (r, X_r^{t,x,u^\varepsilon,v^\varepsilon}, y_r, h_r, z_r, u_r, v_r) \right. \]
\[- \lambda \int_s^{t+\delta} \overline{h}_r dr - \int_s^{t+\delta} \overline{z}_r dB_r - \int_s^{t+\delta} \overline{h}_r d\tilde{N}_r, \quad s \in [t, t + \delta], \]
\[b_r = 1(\overline{z}_r \neq 0) (\overline{z}_r)^{-1} \left(f_{N_{t+\delta}}^1 (r, X_r^{t,x,u^\varepsilon,v^\varepsilon}, y_r, h_r, z_r, u_r, v_r) \right. \]
\[- \lambda \int_s^{t+\delta} \overline{h}_r dr - \int_s^{t+\delta} \overline{z}_r dB_r - \int_s^{t+\delta} \overline{h}_r d\tilde{N}_r, \quad s \in [t, t + \delta], \]
\[c_r = 1(\overline{h}_r \neq 0) (\overline{h}_r)^{-1} \left(f_{N_{t+\delta}}^1 (r, X_r^{t,x,u^\varepsilon,v^\varepsilon}, y_r, h_r, z_r, u_r, v_r) \right. \]
\[- \lambda \int_s^{t+\delta} \overline{h}_r dr - \int_s^{t+\delta} \overline{z}_r dB_r - \int_s^{t+\delta} \overline{h}_r d\tilde{N}_r, \quad s \in [t, t + \delta], \]
Then, from \((H5)\) we deduce that \(|a_r| \leq C, |b_r| \leq C, |c_r| \leq C, \) and \(\overline{c}_r := c_r - \lambda \geq K - \lambda > -1, \) \(r \in [t, t + \delta]. \) Consequently, there exists a constant \(\varepsilon_0 > 0 \) small enough, such that \(\overline{c}_r \geq -1 + \varepsilon_0, \) \(r \in [t, t + \delta], \) and BSDE \((5.14)\) can be written as follows:
\[\overline{y}_s = \frac{\varepsilon}{2} A + \int_s^{t+\delta} [a_r \overline{y}_r + b_r \overline{z}_r + c_r \overline{h}_r]dr - \int_s^{t+\delta} \overline{z}_r dB_r - \int_s^{t+\delta} \overline{h}_r d\tilde{N}_r. \quad (5.15) \]
Let us put

\[M_{t,t+\delta} = \exp \left(\int_t^{t+\delta} b_r dB_r - \frac{1}{2} \int_t^{t+\delta} |b_r|^2 dr - \lambda \int_t^{t+\delta} \tilde{c}_r dr \right) \prod_{t < r \leq t+\delta} (1 + \tilde{c}_r \Delta N_r). \]

Then from the Girsanov theorem we know that there exists a probability measure \(Q = M_{t,t+\delta} \cdot P \) defined on \((\Omega, \mathcal{F}) \) such that

\[\tilde{N}_s = \tilde{N}_s - \int_t^{s \wedge (t+\delta)} \tilde{c}_r dr, \quad s \in [t,T], \]

is an \((\mathcal{F}, Q)\)-martingale, and

\[\tilde{B}_s = B_s - \int_t^{s \wedge (t+\delta)} b_r dr, \quad s \in [t,T], \]

is an \((\mathcal{F}, Q)\)-Brownian motion, and both are independent under \(Q \). Therefore, (5.15) takes the following form:

\[\overline{y}_s = \frac{\varepsilon}{2} 1_A + \int_s^{t+\delta} a_r \overline{y}_r dr - \int_s^{t+\delta} \overline{z}_r dB_r - \int_s^{t+\delta} \overline{\tau}_r d\tilde{N}_r, \quad s \in [t, t+\delta]. \]

By applying Itô’s formula to \(\overline{y}_s e^{\int_t^{s} a_r dr} \) we obtain

\[\overline{y}_t = \frac{\varepsilon}{2} \mathbb{E}^Q \left[1_A e^{\int_t^{t+\delta} a_r dr} | \mathcal{F}_t \right] = \frac{\varepsilon}{2} \mathbb{E} \left[1_A M_{t,t+\delta} e^{\int_t^{t+\delta} a_r dr} | \mathcal{F}_t \right]. \]

Thanks to the Hölder inequality we have

\[\mathbb{P}(A|\mathcal{F}_t)^2 = (\mathbb{E}[1_A|\mathcal{F}_t])^2 \leq \mathbb{E}[1_A M_{t,t+\delta} e^{\int_t^{t+\delta} a_r dr} | \mathcal{F}_t] \mathbb{E}[M_{t,t+\delta}^{-1} e^{-\int_t^{t+\delta} a_r dr} | \mathcal{F}_t]. \]

On the other hand,

\[\mathbb{E}[M_{t,t+\delta}^{-1} e^{-\int_t^{t+\delta} a_r dr} | \mathcal{F}_t] \]

\[= \mathbb{E} \left[\exp \left(- \int_t^{t+\delta} a_r dr - \int_t^{t+\delta} b_r dB_r - \frac{1}{2} \int_t^{t+\delta} |b_r|^2 dr + \lambda \int_t^{t+\delta} \tilde{c}_r dr \right) \right. \]

\[\times \prod_{t < r \leq t+\delta} (1 + \tilde{c}_r \Delta N_r)^{-1} | \mathcal{F}_t] \]

\[= \mathbb{E} \left[\exp \left(- \int_t^{t+\delta} a_r dr - \int_t^{t+\delta} b_r dB_r - \frac{1}{2} \int_t^{t+\delta} |b_r|^2 dr + \lambda \int_t^{t+\delta} \tilde{c}_r dr \right) \right. \]

\[\times \exp \left(- \int_t^{t+\delta} \ln(1 + \tilde{c}_r) dN_r \right) | \mathcal{F}_t] \]

\[\leq \exp((1 + \lambda)CT) \mathbb{E} \left[\exp \left(- \int_t^{t+\delta} b_r dB_r - \frac{1}{2} \int_t^{t+\delta} |b_r|^2 dr \right) \exp \left(- \int_t^{t+\delta} \ln(\varepsilon_0) dN_r \right) \right] \]

\[\leq C_0^{-1}, \]

for some suitably chosen constant \(C_0 > 0 \). Consequently, putting

\[\Delta = \left\{ \mathbb{P} \left(Y_{t+\delta}^{t,x,\bar{u},v} < W_{N_{t+\delta}}(t+\delta, X_{t+\delta}^{t,x,\bar{u},v}) - \varepsilon \mid \mathcal{F}_t \right) > \varepsilon \right\} = \left\{ \mathbb{P}(A|\mathcal{F}_t) > \varepsilon \right\}, \]

20
we have
\[
\mathcal{Y}_t = \frac{\varepsilon}{2} \mathbb{E}[1_A M_{t,t+\delta}e^{\int_{t+\delta}^{t+\delta} a_r \, dr} | \mathcal{F}_t] \geq \frac{\varepsilon C_0}{2} (\mathbb{E}[1_A | \mathcal{F}_t])^2
\]
\[
= \frac{\varepsilon C_0}{2} (\mathbb{P}(A | \mathcal{F}_t))^2 > \frac{\varepsilon^3}{2} C_0 1_\Delta.
\]
Thus, since
\[
\mathcal{Y}_t = y_t - 1_y^{t,x;u^\varepsilon,v^\varepsilon} = 1 G_{t,t+\delta}^{t,x;u^\varepsilon,v^\varepsilon} [1 y^{t,x;u^\varepsilon,v^\varepsilon} + \frac{\varepsilon}{2} 1_A] - 1 G_{t,t+\delta}^{t,x;u^\varepsilon,v^\varepsilon} [1 y^{t,x;u^\varepsilon,v^\varepsilon}]
\]
we obtain
\[
1 G_{t,t+\delta}^{t,x;u^\varepsilon,v^\varepsilon} [1 y^{t,x;u^\varepsilon,v^\varepsilon} + \frac{\varepsilon}{2} 1_A] > 1 G_{t,t+\delta}^{t,x;u^\varepsilon,v^\varepsilon} [1 y^{t,x;u^\varepsilon,v^\varepsilon}] + \frac{\varepsilon^3}{2} C_0 1_\Delta.
\]
Therefore, (5.13) yields
\[
J_1(t,x; \tilde{u}, \beta_\varepsilon(\tilde{u})) > J_1(t,x; \alpha_\varepsilon, \beta_\varepsilon) + \frac{\varepsilon^3}{2} C_0 1_\Delta.
\]
Let us choose \(\varepsilon' \) sufficiently small such that \(\frac{\varepsilon^3}{2} C_0 > \varepsilon^4 \). Then we have \(\varepsilon^3 C_0 > \varepsilon^4 \). Since \(\mathbb{P}(\Delta) > 0 \), we have a contradiction with (5.8) for \(\alpha(\cdot) = \tilde{u} \). The proof is complete. \(\square \)

Proof of Theorem 5.7: Sufficiency of (5.6) and (5.7).

Proof. We fix arbitrarily \(\varepsilon > 0 \). For \(\varepsilon_0 > 0 \) being specified later let us assume that \((u^{\varepsilon_0}, v^{\varepsilon_0}) \in \mathcal{U}_t \times \mathcal{V}_t \) satisfies (5.6) and (5.7), i.e., for all \(s \in [t, T] \) and \(j = 1, 2 \),
\[
\mathbb{P}\left(\int_{s} y^{t,x;u^{\varepsilon_0},v^{\varepsilon_0}} \geq W_{n_j(X_{s}^{t,x;u^{\varepsilon_0},v^{\varepsilon_0}})} - \varepsilon_0 | \mathcal{F}_t \right) \geq 1 - \varepsilon_0, \mathbb{P} \text{ - a.s.},
\]
and
\[
| \mathbb{E}[J_j(t,x; u^{\varepsilon_0}, v^{\varepsilon_0})] - e_j | \leq \varepsilon_0,
\]
where we use Proposition 3.2 for getting the first inequality.

Let us put \(t_i = t + \frac{T - t}{m}, 0 \leq i \leq m \), and \(\delta = \frac{T - t}{m} \), where \(m \) will be specified at the end of the proof of Lemma 5.9. Let us apply Lemma 5.5 to \(u^{\varepsilon_0} \) and \(\tau = t_1, \ldots, t_m \), successively. Then, for \(\varepsilon_1 > 0 \) (\(\varepsilon_1 \) depends on \(\varepsilon \) and is specified later) we have the existence of NAD strategies \(\alpha_i \in \mathcal{A}_{t_i} \), \(i = 1, \ldots, m \), such that, for all \(v \in \mathcal{V}_{t_i} \),
\[
\alpha_i(v) = u^{\varepsilon_0}, \text{ on } [t, t_i],
\]
\[
2 y^{t,x;\alpha_i(v),v} \leq W_{n_2(N_{t_i}^{x})}(t_i, X_{t_i}^{t,x;\alpha_i(v),v}) + \varepsilon_1, \mathbb{P} \text{ - a.s.}
\]
For all \(v \in \mathcal{V}_{t_i} \), let us define
\[
S^v = \inf \left\{ s \geq t \mid \lambda(\{ r \in [t, s] : v_r \neq v_r^{\varepsilon_0} \}) > 0 \right\},
\]
\[
t^v = \inf \left\{ t_i \geq S^v \mid i = 1, \ldots, m \right\} \wedge T.
\]
Here we denote by \(\lambda \) the Lebesgue measure on the real line \(\mathbb{R} \). Then, \(S^v \) and \(t^v \) are stopping times, and \(S^v \leq t^v \leq S^v + \delta \). Let us set
\[
\alpha_\varepsilon(v) = \begin{cases} u^{\varepsilon_0}, & \text{on } [t, t^v], \\ \alpha_i(v), & \text{on } (t_i, T) \times \{t^v = t_i\}, 1 \leq i \leq m.
\end{cases}
\]

21
Then α_ε is an NAD strategy, and by virtue of (5.18) we obtain

$$2Y_{t,v}^{T,x;\alpha_\varepsilon(v),v} = \sum_{i=1}^{m} 2Y_{t_i}^{T,x;\alpha_\varepsilon(v),v} \mathbb{1}_{\{t^i = t_i\}} \leq \sum_{i=1}^{m} W_{n_2(N_{t_i}^{T^2})}(t_i, X_{t_i}^{T,x;\alpha_\varepsilon(v),v}) \mathbb{1}_{\{t^i = t_i\}} + \varepsilon_1 = W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;\alpha_\varepsilon(v),v}) + \varepsilon_1, \mathbb{P} - \text{a.s.} \quad (5.19)$$

Let us admit the following lemma for the moment; we shall prove it after.

Lemma 5.9. For all $\varepsilon > 0$ and $v \in \mathcal{V}_{t,T}$,

$$J_2(t, x; \alpha_\varepsilon(v), v) \leq J_2(t, x; u^{\varepsilon_0}, v^{\varepsilon_0}) + \varepsilon, \quad \alpha_\varepsilon(v^{\varepsilon_0}) = u^{\varepsilon_0},$$

for $(u^{\varepsilon_0}, v^{\varepsilon_0})$ from (5.16).

By a similar argument as that for Lemma 5.9 we can construct $\beta_\varepsilon \in \mathcal{B}_{t,T}$ such that, for all $u \in \mathcal{U}_{t,T}$,

$$J_1(t, x; u, \beta_\varepsilon(u)) \leq J_1(t, x; u^{\varepsilon_0}, v^{\varepsilon_0}) + \varepsilon, \quad \beta_\varepsilon(u^{\varepsilon_0}) = v^{\varepsilon_0}.$$

From the latter both inequalities, (5.17) and Lemma 5.4 it follows that $(\alpha_\varepsilon, \beta_\varepsilon)$ satisfies Definition 5.2. Consequently, (e_1, e_2) is a Nash equilibrium payoff.

Proof of Lemma 5.9: From (5.19) and the Lemmas 2.2 and 2.3 we get the existence of a positive constant C such that

$$J_2(t, x, \alpha_\varepsilon(v), v) = 2G_{t,v}^{T,x;\alpha_\varepsilon(v),v} \left[2Y_{t,v}^{T,x;\alpha_\varepsilon(v),v} \right] \leq 2G_{t,v}^{T,x;\alpha_\varepsilon(v),v} \left[W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;\alpha_\varepsilon(v),v}) + \varepsilon_1 \right] \leq 2G_{t,v}^{T,x;\alpha_\varepsilon(v),v} \left[W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;\alpha_\varepsilon(v),v}) \right] + C\varepsilon_1. \quad (5.20)$$

From Proposition 3.10, Lemma 5.6 as well as the definitions of t^v and α_ε it follows that

$$\mathbb{E}[W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;u^{\varepsilon_0},v^{\varepsilon_0}}) - W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;\alpha_\varepsilon(v),v})]^2 | \mathcal{F}_t] \leq C\delta, \mathbb{P} - \text{a.s.}$$

Consequently, by virtue of Lemma 2.3 we deduce that

$$\left| 2G_{t,v}^{T,x;\alpha_\varepsilon(v),v} \left[W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;u^{\varepsilon_0},v^{\varepsilon_0}}) \right] - 2G_{t,v}^{T,x;\alpha_\varepsilon(v),v} \left[W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;\alpha_\varepsilon(v),v}) \right] \right| \leq C\mathbb{E}\left[\left| W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;u^{\varepsilon_0},v^{\varepsilon_0}}) - W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;\alpha_\varepsilon(v),v}) \right| ^2 | \mathcal{F}_t \right] \leq C\delta^2,$$

from which, combined with (5.20), we get

$$J_2(t, x, \alpha_\varepsilon(v), v) \leq 2G_{t,v}^{T,x;\alpha_\varepsilon(v),v} \left[W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;u^{\varepsilon_0},v^{\varepsilon_0}}) \right] + C\varepsilon_1 + 2G_{t,v}^{T,x;\alpha_\varepsilon(v),v} \left[W_{n_2(N_{t,v}^{T^2})}(t^v, X_{t,v}^{T,x;\alpha_\varepsilon(v),v}) \right] + C\delta^2.$$
For \(s \in [t,T] \), we put
\[
\Omega_s = \left\{ 2(Y_s^{t,x;u^{0},v^{0}},v^{0}) \geq W_{n_2(N_{s}^{t,2})}(s,X_{s}^{t,x;u^{0},v^{0}}) - \varepsilon_0 \right\}.
\]

Then we have
\[
J_2(t,x;\alpha_e(v),v) \leq 2G_{t,t}^{t,x;\alpha_e(v),v}[W_{n_2(N_{t}^{t,2})}(t,v^{0})] + C\varepsilon_1 + C\delta^{\frac{1}{2}}
\]
\[
\leq 2\sum_{i=1}^{m} W_{n_2(N_{t_i}^{t,2})}(t_i,X_{t_i}^{t,x;u^{0},v^{0}})1_{\{v^{0}=t_i\}}1_{\Omega_{t_i}}
\]
\[
+ C\varepsilon_1 + C\delta^{\frac{1}{2}} + I, \tag{5.21}
\]

where
\[
I = 2\sum_{i=1}^{m} W_{n_2(N_{t_i}^{t,2})}(t_i,X_{t_i}^{t,x;u^{0},v^{0}})1_{\{v^{0}=t_i\}} - \sum_{i=1}^{m} W_{n_2(N_{t_i}^{t,2})}(t_i,X_{t_i}^{t,x;u^{0},v^{0}})1_{\{v^{0}=t_i\}}1_{\Omega_{t_i}}
\]

Noting Lemma 2.3, (5.16) as well as the boundedness of \(W_{n_2(N_{t_i}^{t,2})} \) we conclude
\[
I \leq C \sum_{i=1}^{m} P(\Omega_{t_i}^{c} | \mathcal{F}_t) \leq Cm \varepsilon_0^{\frac{1}{2}}. \tag{5.22}
\]

Since \(2(Y_{t_i}^{t,x;u^{0},v^{0}} \geq W_{n_2(N_{t_i}^{t,2})}(t_i,X_{t_i}^{t,x;u^{0},v^{0}}) - \varepsilon_0 \) on \(\Omega_{t_i} \), it follows from Lemma 2.3 that
\[
2G_{t_i,t_i}^{t,x;\alpha_e(v),v}[\sum_{i=1}^{m} W_{n_2(N_{t_i}^{t,2})}(t_i,X_{t_i}^{t,x;u^{0},v^{0}})1_{\{v^{0}=t_i\}}1_{\Omega_{t_i}}]
\]
\[
\leq 2\sum_{i=1}^{m} Y_{t_i}^{t,x;u^{0},v^{0}}1_{\{v^{0}=t_i\}}1_{\Omega_{t_i}} + \varepsilon_0
\]
\[
\leq 2\sum_{i=1}^{m} Y_{t_i}^{t,x;u^{0},v^{0}}1_{\{v^{0}=t_i\}}1_{\Omega_{t_i}} + C\varepsilon_0.
\]

Similarly to (5.22) we have
\[
\left| 2G_{t_i,t_i}^{t,x;\alpha_e(v),v}[\sum_{i=1}^{m} Y_{t_i}^{t,x;u^{0},v^{0}}1_{\{v^{0}=t_i\}}1_{\Omega_{t_i}}] - 2G_{t_i,t_i}^{t,x;\alpha_e(v),v}[\sum_{i=1}^{m} Y_{t_i}^{t,x;u^{0},v^{0}}1_{\{v^{0}=t_i\}}1_{\Omega_{t_i}}] \right| \leq Cm \varepsilon_0^{\frac{1}{2}},
\]

from which together with \(2Y_{t_i}^{t,x;u^{0},v^{0}} = \sum_{i=1}^{m} Y_{t_i}^{t,x;u^{0},v^{0}}1_{\{v^{0}=t_i\}} \) it follows that
\[
2G_{t_i,t_i}^{t,x;\alpha_e(v),v}[\sum_{i=1}^{m} W_{n_2(N_{t_i}^{t,2})}(t_i,X_{t_i}^{t,x;u^{0},v^{0}})1_{\{v^{0}=t_i\}}1_{\Omega_{t_i}}]
\]
\[
\begin{align*}
&\leq 2G_{t,t}^{d,\alpha_\varepsilon(v)}v \left[2Y_{t}^{d,t;x,u^{\varepsilon},v^{\varepsilon}} \right] + C\varepsilon_0 + Cm\varepsilon_0^\frac{1}{2} \\
&\leq |2G_{t,t}^{d,\alpha_\varepsilon(v)}v \left[2Y_{t}^{d,t;x,u^{\varepsilon},v^{\varepsilon}} \right] - 2G_{t,t}^{d,\alpha_\varepsilon(v)}v \left[2Y_{t}^{d,t;x,u^{\varepsilon},v^{\varepsilon}} \right]| \\
&\quad + 2G_{t,t}^{d,\alpha_\varepsilon(v)}v \left[2Y_{t}^{d,t;x,u^{\varepsilon},v^{\varepsilon}} \right] + C\varepsilon_0 + Cm\varepsilon_0^\frac{1}{2} \\
&= |2G_{t,t}^{d,\alpha_\varepsilon(v)}v \left[2Y_{t}^{d,t;x,u^{\varepsilon},v^{\varepsilon}} \right] - 2G_{t,t}^{d,\alpha_\varepsilon(v)}v \left[2Y_{t}^{d,t;x,u^{\varepsilon},v^{\varepsilon}} \right]| \\
&\quad + J_2(t, x; u^{\varepsilon}, v^{\varepsilon}) + C\varepsilon_0 + Cm\varepsilon_0^\frac{1}{2}.
\end{align*}
\]

Using arguments similar to those in [14] we can show that
\[
|2G_{t,t}^{d,\alpha_\varepsilon(v)}v \left[2Y_{t}^{d,t;x,u^{\varepsilon},v^{\varepsilon}} \right] - 2G_{t,t}^{d,\alpha_\varepsilon(v)}v \left[2Y_{t}^{d,t;x,u^{\varepsilon},v^{\varepsilon}} \right]| \leq C\delta^\frac{1}{2}.
\]

Consequently,
\[
2G_{t,t}^{d,\alpha_\varepsilon(v)}v \left[\sum_{i=1}^{m} W_{n_2(N_{t,i}^\varepsilon)}(t_i, X_{t_i}^{t,x,u^{\varepsilon},v^{\varepsilon}})1\{v^\varepsilon = t_i\}1\Omega_i \right]
\]
\[
\leq C\delta^\frac{1}{2} + J_2(t, x; u^{\varepsilon}, v^{\varepsilon}) + C\varepsilon_0 + Cm\varepsilon_0^\frac{1}{2}.
\]

Thus, from (5.21) and (5.22) we have
\[
J_2(t, x; \alpha_\varepsilon(v), v) \leq J_2(t, x; u^{\varepsilon}, v^{\varepsilon}) + C\varepsilon_0 + Cm\varepsilon_0^\frac{1}{2} + C\varepsilon + C\delta^\frac{1}{2}.
\]

We can choose \(\delta > 0, \varepsilon_0 > 0,\) and \(\varepsilon_1 > 0\) such that \(C\varepsilon_0 + Cm\varepsilon_0^\frac{1}{2} + C\varepsilon + C\delta^\frac{1}{2} \leq \varepsilon\) and \(\varepsilon_0 < \varepsilon.\) Thus,
\[
J_2(t, x; \alpha_\varepsilon(v), v) \leq J_2(t, x; u^{\varepsilon}, v^{\varepsilon}) + \varepsilon, \quad v \in \mathcal{V}_{t,T}.
\]

This allows us to complete the proof. □

One of our main results of this section is the following existence theorem of a Nash equilibrium payoff.

Theorem 5.10. Under the Isaacs condition, there exists a Nash equilibrium payoff at \((t, x),\) for all \((t, x) \in [0, T] \times \mathbb{R}^n.\)

From Theorem 5.7 we only have to prove that, for all \(\varepsilon > 0,\) there exists \((u^\varepsilon, v^\varepsilon) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}\) such that (5.6) and (5.7) hold, for \(\delta \in [0, T - t], j = 1, 2.\) The following proposition is crucial for this proof and it will be proven after.

Proposition 5.11. For all \(\varepsilon > 0,\) there exists \((u^\varepsilon, v^\varepsilon) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}\) independent of \(\mathcal{F}_t\) such that, for all stopping time \(\tau (t \leq \tau \leq T)\) independent of \(\mathcal{F}_t, j = 1, 2,\) (5.6) holds:
\[
\mathbb{P} \left(N_{t}^{\varepsilon} \min_{t \leq \tau \leq T} X_{\tau}^{t,x,u^\varepsilon,v^\varepsilon} - \varepsilon \mid \mathcal{F}_t \right) \geq 1 - \varepsilon, \mathbb{P} - a.s.
\]

From the above proposition we immediately have the following corollary.

Corollary 5.12. For all \(\varepsilon > 0,\) there exists \((u^\varepsilon, v^\varepsilon) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}\) independent of \(\mathcal{F}_t\) such that, for all \(s \in [t, T], j = 1, 2,\) (5.6) holds:
\[
\mathbb{P} \left(N_{s}^{\varepsilon} \min_{t \leq \tau \leq T} X_{\tau}^{t,x,u^\varepsilon,v^\varepsilon} - \varepsilon \mid \mathcal{F}_t \right) \geq 1 - \varepsilon, \mathbb{P} - a.s.
\]

We now give the proof of Theorem 5.10.
Proof. For $\epsilon > 0$, let $(u^\epsilon, v^\epsilon) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$ be that of Corollary 5.12. Then (5.6) holds. By noticing that (u^ϵ, v^ϵ) is independent of \mathcal{F}_t we see that $J_j(t, x; u^\epsilon, v^\epsilon), j = 1, 2$, are deterministic and \(\{ (J_1(t, x; u^\epsilon, v^\epsilon), J_2(t, x; u^\epsilon, v^\epsilon)), \epsilon > 0 \} \) is a bounded sequence. Therefore, we can choose an accumulation point of this sequence, as $\epsilon \to 0$, and we denote this point by (e_1, e_2). Consequently, from Theorem 5.7 it follows that (e_1, e_2) is a Nash equilibrium payoff at (t, x). The proof is complete. \(\square \)

Before proving Proposition 5.11, let us first make some preliminaries for its proof.

Lemma 5.13. For all $\epsilon > 0, \delta \in [0, T-t]$ and $x \in \mathbb{R}^n$, we have the existence of $(u^\epsilon, v^\epsilon) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$ independent of \mathcal{F}_t, such that, $j = 1, 2$,

\[
W_j(t, x) - \epsilon \leq J_j(t, x; u^\epsilon, v^\epsilon) = J_j(t, x; u^\epsilon, v^\epsilon)[W_j(N_{t,j}^{\epsilon,\delta})(t + \delta, X_{t+\delta}^{u^\epsilon, v^\epsilon})], \quad P - a.s.
\]

For its proof, we adapt the ideas developed in [14] from SDGs without jumps to SDGs with jumps.

Proof. We denote by $\mathbb{F}^t = (\mathcal{F}^t_s)_{s \in [t,T]}$ the following filtration:

\[
\mathcal{F}^t_s := \sigma\{ B_r - B_t, N_r - N_t : t \leq r \leq s \} \vee \mathcal{N}_P, \quad s \in [t, T],
\]

where \mathcal{N}_P is the collection of all P-null sets. For $s \in [t, T]$, we denote by \mathcal{U}^t_s (resp., \mathcal{V}^t_s) the set of \mathbb{F}^t-adapted processes $\{ u_r \}_{r \in [s,T]}$ (resp., $\{ v_r \}_{r \in [s,T]}$) taking their values in \mathcal{U} (resp., \mathcal{V}), and we let \mathcal{A}^t_s (resp., \mathcal{B}^t_s) be the NAD strategies from \mathcal{V}^t_s into \mathcal{U}^t_s (resp., \mathcal{U}^t_s into \mathcal{V}^t_s).

Let us replace the framework of SDEs driven by a Brownian motion $B = (B_s)_{s \in [0,T]}$ by that of SDEs driven by a Brownian motion $(B_s - B_t)_{s \in [t,T]}$, and let us also replace the framework of BSDEs driven by a Brownian motion $B = (B_s)_{s \in [0,T]}$ and the Poisson process $(N_s)_{s \in [t,T]}$ by that of $B^t = (B_s - B_t)_{s \in [t,T]}$ and $(N_s - N_t)_{s \in [t,T]}$. Using the arguments of the Sections 3 and 4 and Isaacs conditions, we conclude, for $(s, x) \in [t, T] \times \mathbb{R}^n$,

\[
\widetilde{W}_1(s, x) = \esssup_{\alpha \in \mathcal{A}_{t,T}^t} \essinf_{\beta \in \mathcal{B}_{t,T}^t} J_1(s, x; \alpha, \beta) = \essinf_{\beta \in \mathcal{B}_{t,T}^t} \esssup_{\alpha \in \mathcal{A}_{t,T}^t} J_1(s, x; \alpha, \beta),
\]

\[
\widetilde{W}_2(s, x) = \esssup_{\alpha \in \mathcal{A}_{t,T}^t} \essinf_{\beta \in \mathcal{B}_{t,T}^t} J_2(s, x; \alpha, \beta) = \essinf_{\beta \in \mathcal{B}_{t,T}^t} \esssup_{\alpha \in \mathcal{A}_{t,T}^t} J_2(s, x; \alpha, \beta).
\]

For $j = 1, 2$, it follows from the Sections 3 and 4 that W_j restricted to $[t, T] \times \mathbb{R}^n$ and \widetilde{W}_j are inside the class of continuous functions with linear growth and the unique viscosity solutions of the same system of Isaacs equations. Therefore,

\[
\widetilde{W}_j(s, x) = W_j(s, x), \quad (s, x) \in [t, T] \times \mathbb{R}^n, \quad j = 1, 2.
\]

By virtue of the dynamic programming principle for \widetilde{W}_j and $\mathcal{V}^t_{t,t+\delta} \subset \mathcal{B}^t_{t,t+\delta}$ we deduce that

\[
W_1(t, x) = \widetilde{W}_1(t, x) = \esssup_{\alpha \in \mathcal{A}_{t,T}^t} \essinf_{\beta \in \mathcal{B}_{t,T}^t} 1^{G_{t,t+\delta}^{x,\alpha,\beta}}[W_{n_1(N_{t,t+\delta}^1)}(t + \delta, X_{t+\delta}^{u^\epsilon, v^\epsilon})] \leq \essinf_{\beta \in \mathcal{B}_{t,T}^t} \esssup_{\alpha \in \mathcal{A}_{t,t+\delta}^t} 1^{G_{t,t+\delta}^{x,\alpha(v),v}}[W_{n_1(N_{t,t+\delta}^1)}(t + \delta, X_{t+\delta}^{u^\epsilon, v^\epsilon})].
\]

Therefore, for $\epsilon > 0$ and $\delta > 0$, we have the existence of $\alpha \in \mathcal{A}_{t,t+\delta}$ such that, for all $v \in \mathcal{V}^t_{t,t+\delta}$,

\[
W_1(t, x) - \epsilon \leq 1^{G_{t,t+\delta}^{x,\alpha(v),v}}[W_{n_1(N_{t,t+\delta}^1)}(t + \delta, X_{t+\delta}^{u^\epsilon, v^\epsilon})], \quad P - a.s.
\]
By a symmetric argument there exists \(\beta_\epsilon \in \mathcal{B}_{t,t+\delta}^{t} \) such that, for all \(u \in \mathcal{U}_{t,t+\delta}^{t} \),

\[
W_2(t,x) - \epsilon \leq 2G_{t,t+\delta}^{t,x;u,\beta_\epsilon(u)}[W_{n_2(N_{t+\delta}^t)}(t + \delta, X_{t+\delta}^{t,x;u,\beta_\epsilon(u)})], \quad \mathbb{P} - a.s.
\]

In analogy to Lemma 3.6, it can be shown that there exists a unique couple \((u^\epsilon, v^\epsilon) \in \mathcal{U}_{t,t+\delta}^{t} \times V_{t,t+\delta}^{t}\) such that \(\alpha_\epsilon(v^\epsilon) = u^\epsilon, \beta_\epsilon(v^\epsilon) = v^\epsilon \). Consequently,

\[
W_j(t,x) - \epsilon \leq jG_{t,t+\delta}^{t,x;u^\epsilon,v^\epsilon}[W_{n_j(N_{t+\delta}^t)}(t + \delta, X_{t+\delta}^{t,x;u^\epsilon,v^\epsilon})], \quad j = 1, 2.
\]

This completes the proof. \(\square\)

Also the following Lemma is crucial for the proof of Proposition 5.11.

Lemma 5.14. For \(n \geq 1 \), we fix some partition \(t = t_0 < t_1 < \cdots < t_n = T \) of the interval \([t, T]\). Then, for all \(\epsilon > 0 \), there exists \((u^\epsilon, v^\epsilon) \in \mathcal{U}_t^T \times \mathcal{V}_t^T\) independent of \(\mathcal{F}_t \), such that, for all \(i = 0, \ldots, n - 1 \) and \(j = 1, 2 \),

\[
W_{n_j(N_{t+i}^{t+1})}(t_i, X_{t_i}^{t,x;u^\epsilon,v^\epsilon}) - \epsilon \leq jG_{t_i,t_{i+1}}^{t,x;u^\epsilon,v^\epsilon}[W_{n_j(N_{t+i}^{t+1})}(t_{i+1}, X_{t_{i+1}}^{t,x;u^\epsilon,v^\epsilon})], \quad \mathbb{P} - a.s.\]

Proof. Let us prove it by induction. Obviously, due to the above lemma, it holds for \(i = 0 \). Let a couple \((u^\epsilon, v^\epsilon)\) independent of \(\mathcal{F}_t \), be constructed on the interval \([t, t_i]\), and we shall give its definition on \([t_i, t_{i+1}]\). By virtue of the above lemma we have, for all \(y \in \mathbb{R}^n \), the existence of \((u^y, v^y) \in \mathcal{U}_t^T \times \mathcal{V}_t^T\) independent of \(\mathcal{F}_t \), such that,

\[
W_j(t_i, y) - \frac{\epsilon}{2} \leq jG_{t_i,t_{i+1}}^{t,x;u^\epsilon,v^\epsilon}[W_{n_j(N_{t+i}^{t+1})}(t_{i+1}, X_{t_{i+1}}^{t,x;u^\epsilon,v^\epsilon})], \quad \mathbb{P} - a.s., j = 1, 2. \tag{5.23}
\]

For \(j = 1, 2, y, z \in \mathbb{R}^n \) and \(s \in [t_i, t_{i+1}] \), let us set

\[
y_s^1 = jG_{s,t_{i+1}}^{t,x;u^\epsilon,v^\epsilon}[W_{n_j(N_{t+i}^{t+1})}(t_{i+1}, X_{t_{i+1}}^{t,x;u^\epsilon,v^\epsilon})],
\]

and

\[
y_s^2 = jG_{s,t_{i+1}}^{t,x;u^\epsilon,v^\epsilon}[W_{n_j(N_{t+i}^{t+1})}(t_{i+1}, X_{t_{i+1}}^{t,x;u^\epsilon,v^\epsilon})].
\]

Then let us consider the following associated BSDEs:

\[
y_s^1 = W_{n_j(N_{t+i}^{t+1})}(t_{i+1}, X_{t_{i+1}}^{t,x;u^\epsilon,v^\epsilon}) + \int_s^{t_{i+1}} f_{n_j}^{t,x;u^\epsilon,v^\epsilon}(r, X_r^{t,x;u^\epsilon,v^\epsilon}, y_r^1, h_r^1, z_r^1, u_r^\epsilon, v_r^\epsilon)dr - \lambda \int_s^{t_{i+1}} h_r^1 dr - \int_s^{t_{i+1}} z_r^1 dB_r - \int_s^{t_{i+1}} h_r^1 d\tilde{N}_r, \quad s \in [t_i, t_{i+1}],
\]

as well as

\[
y_s^2 = W_{n_j(N_{t+i}^{t+1})}(t_{i+1}, X_{t_{i+1}}^{t,x;u^\epsilon,v^\epsilon}) + \int_s^{t_{i+1}} f_{n_j}^{t,x;u^\epsilon,v^\epsilon}(r, X_r^{t,x;u^\epsilon,v^\epsilon}, y_r^2, h_r^2, z_r^2, u_r^\epsilon, v_r^\epsilon)dr - \lambda \int_s^{t_{i+1}} h_r^2 dr - \int_s^{t_{i+1}} z_r^2 dB_r - \int_s^{t_{i+1}} h_r^2 d\tilde{N}_r, \quad s \in [t_i, t_{i+1}].
\]

From Lemma 2.3 it follows that

\[
|jG_{t_i,t_{i+1}}^{t,x;u^\epsilon,v^\epsilon}[W_{n_j(N_{t+i}^{t+1})}(t_{i+1}, X_{t_{i+1}}^{t,x;u^\epsilon,v^\epsilon})] - jG_{t_i,t_{i+1}}^{t,x;u^\epsilon,v^\epsilon}[W_{n_j(N_{t+i}^{t+1})}(t_{i+1}, X_{t_{i+1}}^{t,x;u^\epsilon,v^\epsilon})]|^2
\]
Thus, due to Proposition 3.10 and (5.23) we obtain, for $C|y-z| \leq \frac{\varepsilon}{2}$,

$$W_j(t_i, z) - \varepsilon \leq W_j(t_i, y) - \varepsilon + C|y-z|$$

$$\leq \frac{\varepsilon}{2} + C|y-z|$$

We let $\{O_l\}_{l \geq 1} \subset \mathcal{B}(\mathbb{R}^n)$ be a partition of \mathbb{R}^n with $diam(O_l) < \frac{\varepsilon}{2C}$ and let $y_l \in O_l, l \geq 1$. Then, for $z \in O_l$, it follows

$$W_{n_j (j)}(t_i, z) - \varepsilon \leq \frac{\varepsilon}{2} + C|y-z| \quad (5.24)$$

Let us define

$$u^\varepsilon = \sum_{l \geq 1} 1_{O_l}(X_{t_i}^{t, x; u^\varepsilon, v^\varepsilon})u^\varepsilon, \quad v^\varepsilon = \sum_{l \geq 1} 1_{O_l}(X_{t_i}^{t, x; u^\varepsilon, v^\varepsilon})v^\varepsilon.$$

Then, since $\{X_{t_i}^{t, x; u^\varepsilon, v^\varepsilon} \in O_l\} \in \mathcal{F}_i, l \geq 1$, we conclude

$$\frac{\varepsilon}{2} + C|y-z| \leq \frac{\varepsilon}{2} + C|y-z|.$$

From (5.24) it follows that

$$\frac{\varepsilon}{2} + C|y-z| \leq \frac{\varepsilon}{2} + C|y-z|.$$
Let us come, finally, to the proof of Proposition 5.11.

Proof. Let \(j = 1, 2 \) be arbitrarily fixed, and let \(\tau \) be a stopping time independent of \(\mathcal{F}_t \), such that \(t \leq \tau \leq T \). We put \(t_i = \frac{(T-t)}{2^n} + t, A_i = \{ t_{i-1} \leq \tau < t_i \}, i = 1, \cdots , 2^n \), and define \(\tau_n = \sum_{i=1}^{2^n} t_i A_i \).

It is obvious that \(0 \leq \tau_n - \tau \leq 2^{-n} \). From Lemma 5.14 we know that, for all \(\varepsilon > 0 \), there exists \((u^\varepsilon , v^\varepsilon) \in \mathcal{U}_T \times V_T \) independent of \(\mathcal{F}_t \) such that, for all stopping time \(\tau \) independent of \(\mathcal{F}_t \), and for all \(i \) \((0 \leq i \leq 2^n - 1) \),

\[
W_{n_j(N_{t_i}^j)}(t_i, X_{t_i}^{t_i, x_i; u^\varepsilon , v^\varepsilon }) - \varepsilon_0 \leq j G_{t_i, t_{i+1}}^{t_i, x_i; u^\varepsilon , v^\varepsilon }[W_{n_j(N_{t_i}^j)}(t_{i+1}, X_{t_{i+1}}^{t_i, x_i; u^\varepsilon , v^\varepsilon })], \{P - a.s.\}
\]

where \(\varepsilon_0 > 0 \) depends on \(\varepsilon \) and \(n \), and will be specified after.

From the Lemmas 2.2 and 2.3 it follows that, for \(0 \leq i \leq 2^n - 1 \),

\[
j G_{t_i, T}^{t_i, x_i; u^\varepsilon , v^\varepsilon }[\Phi_{N_{t_i}^j}(X_{T}^{t_i, x_i; u^\varepsilon , v^\varepsilon })] = \sum_{i=1}^{2^n} 1 A_i j G_{t_i, t_{i+1}}^{t_i, x_i; u^\varepsilon , v^\varepsilon }[\Phi_{N_{t_i}^j}(X_{t}^{t_i, x_i; u^\varepsilon , v^\varepsilon })] = \sum_{i=1}^{2^n} 1 A_i W_{n_j(N_{t_i}^j)}(t_i, X_{t_i}^{t_i, x_i; u^\varepsilon , v^\varepsilon }) - C 2^n \varepsilon_0 = W_{n_j(N_{t_i}^j)}(\tau_n, X_{\tau_n}^{t_i, x_i; u^\varepsilon , v^\varepsilon }) - C 2^n \varepsilon_0.
\]

Therefore,

\[
j G_{\tau, T}^{\tau, x; u^\varepsilon , v^\varepsilon }[\Phi_{N_{\tau}^j}(X_{T}^{\tau, x; u^\varepsilon , v^\varepsilon })] = \sum_{i=1}^{2^n} 1 A_i W_{n_j(N_{t_i}^j)}(t_i, X_{t_i}^{t_i, x_i; u^\varepsilon , v^\varepsilon }) - \frac{\varepsilon}{2} + I_2 - I_1,
\]

for \(\varepsilon_0 = \frac{\varepsilon}{C 2^{n+1}} \), where

\[
I_1 = j G_{\tau, T}^{\tau, x; u^\varepsilon , v^\varepsilon }[\Phi_{N_{\tau}^j}(X_{T}^{\tau, x; u^\varepsilon , v^\varepsilon })] - j G_{\tau, T}^{\tau, x; u^\varepsilon , v^\varepsilon }[\Phi_{N_{\tau}^j}(X_{T}^{\tau, x; u^\varepsilon , v^\varepsilon })] + \frac{\varepsilon}{2},
\]

\[
I_2 = j G_{\tau, T}^{\tau, x; u^\varepsilon , v^\varepsilon }[\Phi_{N_{\tau}^j}(X_{T}^{\tau, x; u^\varepsilon , v^\varepsilon })] - W_{n_j(N_{\tau}^j)}(\tau, X_{\tau}^{\tau, x; u^\varepsilon , v^\varepsilon }) + \frac{\varepsilon}{2}.
\]
and we put, for $s \in [\tau, \tau_n]$,
\[
y_s^1 = \int_{\tau}^{\tau_n} G_s \left(t, x_s, u_s, v_s \right) \left[W_{n_j} \left(X_{\tau_n} \right) \right] (\tau_n, X_{\tau_n}) ds.
\]
Obviously, $(y_s^1)_{s \in [\tau, \tau_n]}$ is the solution of the following BSDE:
\[
y_s^1 = W_{n_j} \left(X_{\tau_n} \right) (\tau_n, X_{\tau_n}) + \int_{\tau}^{\tau_n} f_{n_j}(r, X_r, u_r, v_r, h_r, z_r, y_r^1, h_r, z_r, u_r, v_r) dr
\]
\[
- \lambda \int_{\tau}^{\tau_n} h_r^1 dr - \int_{\tau}^{\tau_n} z_r^1 dB_r - \int_{\tau}^{\tau_n} h_r^1 dN_r, \quad s \in [\tau, \tau_n].
\]
We will compare y_1^1 with the process constant in time $y_2^2 = W_{n_j} \left(X_{\tau_n} \right) (\tau, X_{\tau_n})$, $s \in [\tau, \tau_n]$. We observe that (y_2^1, z_2^1) is the solution of a BSDE which driving coefficient equals to zero and $z_2^1 = 0$. Hence, from Lemma 2.3 it follows that
\[
\text{CE}\left[\left| \int_{\tau}^{\tau_n} f_{n_j}(r, X_r, u_r, v_r, h_r, z_r, y_r^1, h_r, z_r, u_r, v_r) dr \right|^2 \right] \leq C 2^{-n},
\]
where we have used the boundedness of f_i, $i = 1, 2$.

By virtue of the Propositions 3.10 and 6.12 we deduce that
\[
\text{CE}\left[\left| \int_{\tau}^{\tau_n} f_{n_j}(r, X_r, u_r, v_r, h_r, z_r, y_r^1, h_r, z_r, u_r, v_r) dr \right|^2 \right] \leq C 2^{-n},
\]
where $C > 0$ is a constant which depends on x. Therefore, from (5.27) it follows that
\[
\text{CE}\left[\left| \int_{\tau}^{\tau_n} f_{n_j}(r, X_r, u_r, v_r, h_r, z_r, y_r^1, h_r, z_r, u_r, v_r) dr \right|^2 \right] \leq C 2^{-n}.
\]
Consequently, $\text{CE}\left[|I_1 - I_2|^2 \right] \leq C 2^{-n}$. From (5.25) we see that $I_1 \geq 0$. Therefore, by the above inequality we have
\[
\mathbb{P}(I_2 \leq \frac{\varepsilon}{2}) \leq \mathbb{P}(|I_1 - I_2| \geq \frac{\varepsilon}{2}) \leq \frac{4\text{CE}|I_1 - I_2|^2}{\varepsilon^2} \leq \frac{4C 2^{-n}}{\varepsilon^2} \leq \varepsilon,
\]
where we choose n such that $4C 2^{-n} \leq \varepsilon^2$, i.e., $n \geq \left(2 + \frac{\ln C - 3 \ln \varepsilon}{\ln 2} \right)$, and from (5.26) we deduce
\[
\mathbb{P}\left(W_{n_j} \left(X_{\tau_n} \right) (\tau, X_{\tau_n}) - \varepsilon \leq \int_{\tau}^{\tau_n} G_s \left(t, x_s, u_s, v_s \right) \left[W_{n_j} \left(X_{\tau_n} \right) \right] (\tau_n, X_{\tau_n}) ds \right) > 1 - \varepsilon,
\]
29
i.e.,
\[\mathbb{P}\left(W_{n_j(N_{n,j}^i)}(\tau, X^t_{\tau}; u^\varepsilon, v^\varepsilon) - \varepsilon \leq jY^t_{\tau} x^u, v^\varepsilon \right) > 1 - \varepsilon. \]

Since \((u^\varepsilon, v^\varepsilon)\) as well as \(\tau\) are independent of \(\mathcal{F}_t\), the event \(\left\{ W_{n_j(N_{n,j}^i)}(\tau, X^t_{\tau}; u^\varepsilon, v^\varepsilon) - \varepsilon \leq jY^t_{\tau} x^u, v^\varepsilon \right\}\) is independent of \(\mathcal{F}_t\), from which we see that the conditional probability \(\mathbb{P}(\cdot | \mathcal{F}_t)\) of \(\left\{ W_{n_j(N_{n,j}^i)}(\tau, X^t_{\tau}; u^\varepsilon, v^\varepsilon) - \varepsilon \leq jY^t_{\tau} x^u, v^\varepsilon \right\}\) coincides with its probability. Consequently,
\[\mathbb{P}\left(W_{n_j(N_{n,j}^i)}(\tau, X^t_{\tau}; u^\varepsilon, v^\varepsilon) - \varepsilon \leq jY^t_{\tau} x^u, v^\varepsilon \left| \mathcal{F}_t \right. \right) > 1 - \varepsilon. \]

The proof is complete. \(\square\)

6 Proof of the Theorems 3.11 and 4.2

In this section we still use the notations in Sections 3 and 4.

6.1 Proof of Theorem 3.11

We have postponed to this section the proof of the DPP. We shall establish it first for deterministic times, then we deduce the general version for stopping times.

6.1.1 Dynamic programming principle for deterministic times

Theorem 6.1. Under the assumptions \((H4)\) and \((H5)\), the following dynamic programming principle (DPP) holds: For any \(0 \leq t < t + \delta \leq T\), \(x \in \mathbb{R}^n\), \(i = 1,2\),
\[
W_i(t,x) = \operatorname{esssup}_{\alpha \in A_{t,t+\delta}} \operatorname{essinf}_{\beta \in B_{t,t+\delta}} iG_{t,t+\delta}^{\alpha,\beta}[W_{N_{t,t+\delta}^i}(t+\delta, X^t_{t+\delta})], \tag{6.1}
\]
\[
U_i(t,x) = \operatorname{esssup}_{\beta \in B_{t,t+\delta}} \operatorname{essinf}_{\alpha \in A_{t,t+\delta}} iG_{t,t+\delta}^{\alpha,\beta}[U_{N_{t,t+\delta}^i}(t+\delta, X^t_{t+\delta})].
\]

Remark 6.2. Recall that for \(i = 1,2\), \((t,x) \in [0,T] \times \mathbb{R}^n\), \(W(t,(x,i)) := W_i(t,x)\) is the value function of the stochastic differential game which dynamics is given by the process \((X^{t,x,u,v}, N^{t,i})\), and which cost functional is defined by our BSDE (3.4). The DPP for games with jumps but of the type "strategy against control" was proved in [8], and before, in another framework by Biswas [4]. However, unlike [8] we have to deal here with games of the type "NAD strategy against NAD strategy".

Proof. For arbitrarily fixed \(i = 1,2\), we only give the proof for \(W_i(t,x)\), since for \(U_i(t,x)\) we can use a symmetric argument. Let us denote by \(W_\delta(t,x)\) the right hand side of (6.1). Using the arguments in Proposition 3.7 we can show that \(W_\delta(t,x)\) is deterministic. We split now the proof into the following two lemmas.

Lemma 6.3. \(W_i(t,x) \leq W_\delta(t,x)\).

Proof. From the definition of \(W_\delta(t,x)\) it follows that
\[
W_\delta(t,x) = \operatorname{esssup}_{\alpha_1 \in A_{t,t+\delta}} \operatorname{essinf}_{\beta_1 \in B_{t,t+\delta}} iG_{t,t+\delta}^{\alpha_1,\beta_1}[W_{N_{t,t+\delta}^i}(t+\delta, X^t_{t+\delta})]
= \operatorname{esssup}_{\alpha_1 \in A_{t,t+\delta}} I_\delta(t,x, \alpha_1),
\]

where $I_\delta(t, x, \alpha_1) = \text{essinf}_{\beta_1 \in \mathcal{B}_{t,t+\delta}} iG_{t,t+\delta}^{t,x,\alpha_1,\beta_1}[W_{N_{t,t+\delta}}^i(t+\delta, X_{t,t+\delta}^t, \alpha_1, \beta_1)]$. Then, there exists a sequence
\{\alpha_n^1, n \geq 1\} \subset \mathcal{A}_{t,t+\delta}$, such that $W_\delta(t, x) = \sup_{n \geq 1} I_\delta(t, x, \alpha_n^1)$, \mathbb{P}-a.s. For any $\varepsilon > 0$, let us put
\[\Lambda_n := \left\{ I_\delta(t, x, \alpha_n^1) + \varepsilon \geq W_\delta(t, x), I_\delta(t, x, \alpha_n^1) + \varepsilon < W_\delta(t, x), 1 \leq j \leq n - 1 \right\} \in \mathcal{F}_t, n \geq 1. \]
Obviously, \{\Lambda_n, n \geq 1\} is an (Ω, \mathcal{F}_t)-partition. We define $\alpha_n^1 := \sum_{n \geq 1} 1_{\Lambda_n} \alpha_n^1$, then by straight-forward proof it can be shown that α_n^1 belongs to $\mathcal{A}_{t,t+\delta}$. We let et $(u^n, v^n) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$ be associated with (α_n^1, β_1) by Lemma 3.6, and put
\[u_1^\varepsilon := \sum_{n \geq 1} 1_{\Lambda_n} u^n, \quad v_1^\varepsilon := \sum_{n \geq 1} 1_{\Lambda_n} v^n. \]
Then straight forward arguments allow to verify that $(u_1^\varepsilon, v_1^\varepsilon) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$ is associated with $(\alpha^\varepsilon, \beta_1)$ by Lemma 3.6 such that $\alpha^\varepsilon(v_1^\varepsilon) = u_1^\varepsilon$, $\beta_1(u_1^\varepsilon) = v_1^\varepsilon$. Consequently, the uniqueness of the FBSDE and the definition of NAD strategies allows to show that, for all $\beta_1 \in \mathcal{B}_{t,t+\delta}$,
\[X_{t,t+\delta}^t \sum_{n \geq 1} 1_{\Lambda_n} X_{t,t+\delta}^t, \]
and
\[iG_{t,t+\delta}^{t,x,\alpha_1,\beta_1}[W_{N_{t,t+\delta}}^i(t+\delta, X_{t,t+\delta}^t, \alpha_1, \beta_1)] = \sum_{n \geq 1} iG_{t,t+\delta}^{t,x,\alpha_1,\beta_1}[W_{N_{t,t+\delta}}^i(t+\delta, X_{t,t+\delta}^t, \alpha_1, \beta_1)]1_{\Lambda_n}. \]
Therefore, for all $\beta_1 \in \mathcal{B}_{t,t+\delta}$,
\[W_\delta(t, x) \leq \sum_{n \geq 1} 1_{\Lambda_n} I_\delta(t, x, \alpha_n^1) + \varepsilon \]
\leq \[\sum_{n \geq 1} 1_{\Lambda_n} iG_{t,t+\delta}^{t,x,\alpha_1,\beta_1}[W_{N_{t,t+\delta}}^i(t+\delta, X_{t,t+\delta}^t, \alpha_1, \beta_1)] + \varepsilon \]
\[= iG_{t,t+\delta}^{t,x,\alpha_1,\beta_1}[W_{N_{t,t+\delta}}^i(t+\delta, X_{t,t+\delta}^t, \alpha_1, \beta_1)] + \varepsilon, \quad \mathbb{P}$-a.s. \]
We let $\{O_j\}_{j \geq 1} \subset \mathcal{B}(\mathbb{R}^n)$ be a partition of \mathbb{R}^n such that $\sum_{j \geq 1} O_j = \mathbb{R}^n$ and $\text{diam}(O_j) \leq \varepsilon, j \geq 1$. Let us fix an element y_j of O_j, $j \geq 1$. Then, from the definition of $W_k(t+\delta, y), k = 1, 2$, it follows (through a procedure already used above) that there exists $\alpha_2^{j,k} \in \mathcal{A}_{t,t+\delta,T}$ such that, for all $\beta_2 \in \mathcal{B}_{t,t+\delta,T}$,
$W_k(t+\delta, y_j) \leq \text{essinf}_{\beta_2 \in \mathcal{B}_{t,t+\delta,T}} J_k(t+\delta, y_j; \alpha_2^{j,k}, \beta_2) + \varepsilon, \mathbb{P}$-a.s.
Therefore, for all $\beta_2 \in \mathcal{B}_{t,t+\delta,T}$,
\[W_{N_{t,t+\delta}}^i(t+\delta, y_j) = \sum_{k=1}^2 1_{\{N_{t,t+\delta}^i = k\}} W_{t,k}^t(t+\delta, y_j) \]
\leq \[\sum_{k=1}^2 1_{\{N_{t,t+\delta}^i = k\}} J_k(t+\delta, y_j; \alpha_2^{j,k}, \beta_2) + \varepsilon \]
\leq J_{N_{t,t+\delta}^i}(t+\delta, y_j; \alpha_2^{j,N_{t,t+\delta}^i}, \beta_2) + \varepsilon, \quad \mathbb{P}$-a.s. \]
For \(\beta \in B_{t,T} \) and \(u_2 \in U_{t+\delta,T} \), we let \(\beta_1(u_1) := \beta(u_1 \oplus u_2)|_{[t,t+\delta]} \), \(u_1 \in U_{t+\delta} \), where \(u_1 \oplus u_2 = u_11_{[t,t+\delta]} + u_21_{(t+\delta,T]} \). Then \(\beta_1 \in B_{t,t+\delta} \). Notice that \(\beta_1 \) doesn’t depend on \(u_2 \) thanks to the nonanticipativity of \(\beta \). Since \((\alpha^1_1, \beta_1) \in A_{t,t+\delta} \times B_{t,t+\delta} \), we know from Lemma 3.6 that there exists a unique pair \((u_1^*, v_1^*) \in U_{t,t+\delta} \times V_{t,t+\delta} \) such that \(\alpha^1(v_1^*) = u_1^* \) and \(\beta_1(u_1^*) = v_1^* \). Let us define

\[
\beta^2_2(u_2) := \beta(u_1^* \oplus u_2)|_{[t,t+\delta]}, \text{ for } u_2 \in U_{t,t+\delta}, \quad \alpha^{\varepsilon}_2 := \sum_{j \geq 1} 1_{O_j}(X_{t+\delta}^{t,x;\alpha^{\varepsilon}_1,\beta_1})\alpha^{j,N^{t,i}}_2.
\]

Moreover, we put \(\alpha^{\varepsilon}(v) := \alpha^1(v_1) \oplus \alpha^2(v_2) \), for \(v = v_1 \oplus v_2, v_1 \in V_{t,t+\delta}, v_2 \in V_{t+\delta,T} \). Since \(\alpha^1 \in A_{t,t+\delta} \) and \(\alpha^2 \in A_{t+\delta,T} \) are NAD strategies, \(\alpha^{\varepsilon} \) is also an NAD strategy.

From Proposition 3.10 it follows that

\[
W_{N^{t,i}}(t + \delta, X_{t+\delta}^{t,x;\alpha^{\varepsilon}_1,\beta_1}) \leq \sum_{j \geq 1} 1_{O_j}(X_{t+\delta}^{t,x;\alpha^{\varepsilon}_1,\beta_1})W_{N^{t,i}}(t + \delta, y_j) + C\varepsilon,
\]

which together with (6.3), (6.4) and Lemma 2.2 yields

\[
W_{\delta}(t, x) \leq i^{t,x;\alpha^{\varepsilon}_1,\beta_i}[W_{N^{t,i}}(t + \delta, X_{t+\delta}^{t,x;\alpha^{\varepsilon}_1,\beta_1})] + \varepsilon,
\]

It follows from (6.4) and the Lemmas 2.2, 2.3 and 3.6 that

\[
W_{\delta}(t, x) \leq i^{t,x;\alpha^{\varepsilon}_1,\beta_i} \left[\sum_{j \geq 1} 1_{O_j}(X_{t+\delta}^{t,x;\alpha^{\varepsilon}_1,\beta_1})W_{N^{t,i}}(t + \delta, y_j) \right] + C\varepsilon
\]

Consequently, due to the choice of \(\alpha^{\varepsilon} \) we conclude \(W_{\delta}(t, x) \leq W_i(t, x) + C\varepsilon \), \(\mathbb{P} \)-a.s. Letting \(\varepsilon \downarrow 0 \) we have \(W_{\delta}(t, x) \leq W_i(t, x) \).

In order to complete the proof of Theorem 6.1 we have to prove the converse inequality.

Lemma 6.4. \(W_{\delta}(t, x) \geq W_i(t, x) \).

Proof. For an arbitrarily given \(\alpha \in A_{t,T} \) and a given \(v_2(\cdot) \in V_{t+\delta,T} \), let us define

\[
\alpha_1(v_1) := \alpha(v_1 \oplus v_2)|_{[t,t+\delta]}, \quad v_1(\cdot) \in V_{t,t+\delta},
\]

32
where $v_1 \oplus v_2 := v_1 1_{[t, t+\delta]} + v_2 1_{[t+\delta, T]}$. Then $\alpha_1 \in \mathcal{A}_{t, t+\delta}$, and α_1 does not depend on the choice of $v_2(\cdot) \in \mathcal{V}_{t+\delta, T}$, since α is nonanticipative. Therefore, by virtue of the definition of $W_\delta(t, x)$ we know that

$$W_\delta(t, x) \geq \inf_{\beta_1 \in \mathcal{B}_{t, t+\delta}} G_{t, t+\delta}^{t, x; \alpha_1, \beta_1} [W_{N_{t+\delta}}(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1})], \quad \mathbb{P}\text{-a.s.}$$

Let us denote by $I_\delta(t, x, \alpha_1, \beta_1) := G_{t, t+\delta}^{t, x; \alpha_1, \beta_1} [W_{N_{t+\delta}}(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1})]$. Then there exists a sequence

$$\{\beta_n^1, n \geq 1\} \subset \mathcal{B}_{t, t+\delta}$$

such that

$$I_\delta(t, x, \alpha_1) := \inf_{\beta_1 \in \mathcal{B}_{t, t+\delta}} I_\delta(t, x, \alpha_1, \beta_1) = \inf_{n \geq 1} I_\delta(t, x, \alpha_1, \beta_n^1), \quad \mathbb{P}\text{-a.s.}$$

For any $\varepsilon > 0, n \geq 1$, we let

$$\Lambda_n := \{I_\delta(t, x, \alpha_1) \geq I_\delta(t, x, \alpha_1, \beta_n^1) - \varepsilon, I_\delta(t, x, \alpha_1) < I_\delta(t, x, \alpha_1, \beta_n^1) - \varepsilon, 1 \leq j \leq n - 1\} \in \mathcal{F}_t.$$

Then, $\{\Lambda_n\}$ is a partition of (Ω, \mathcal{F}_t). We define $\beta_1^1 := \sum_{n \geq 1} 1_{\Lambda_n} \beta_n^1$, and it can be proven that $\beta_1^1 \in \mathcal{B}_{t, t+\delta}$. Thanks to the uniqueness of the solution of the FBSDE we have

$$I_\delta(t, x, \alpha_1, \beta_1^1) = \sum_{n \geq 1} 1_{\Lambda_n} I_\delta(t, x, \alpha_1, \beta_n^1), \quad \mathbb{P}\text{-a.s.}$$

Indeed, this relation can be proved with an argument analogous to that for (6.2). Therefore,

$$W_\delta(t, x) \geq I_\delta(t, x, \alpha_1) \geq \sum_{n \geq 1} 1_{\Lambda_n} I_\delta(t, x, \alpha_1, \beta_n^1) - \varepsilon = I_\delta(t, x, \alpha_1, \beta_1^1) - \varepsilon$$

$$= G_{t, t+\delta}^{t, x; \alpha_1, \beta_1^1} [W_{N_{t+\delta}}(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1^1})] - \varepsilon, \quad \mathbb{P}\text{-a.s.}$$

Since $(\alpha_1, \beta_1^1) \in \mathcal{A}_{t, t+\delta} \times \mathcal{B}_{t, t+\delta}$, by Lemma 3.6 there exists an unique pair $(u_1^\varepsilon, v_1^\varepsilon) \in \mathcal{U}_{t, t+\delta} \times \mathcal{V}_{t, t+\delta}$ such that $\alpha_1(v_1^\varepsilon) = u_1^\varepsilon$ and $\beta_1^1(u_1^\varepsilon) = v_1^\varepsilon$. We also define $\alpha_2^\varepsilon(v_2) := \alpha(v_1^\varepsilon \oplus v_2)|_{[t+\delta, T]}$, $v_2 \in \mathcal{V}_{t+\delta, T}$.

For any $y \in \mathbb{R}^n, k = 1, 2$, from the definition of $W_k(t + \delta, y)$ it follows that

$$W_k(t + \delta, y) \geq \inf_{\beta_2 \in \mathcal{B}_{t+\delta, T}} J_k(t + \delta, y; \alpha_2^\varepsilon, \beta_2), \quad \mathbb{P}\text{-a.s., } k = 1, 2.$$

Using the Lipschitz continuity of $W_k(t + \delta, \cdot)$ and $J_k(t + \delta, \cdot)$ we can prove by approximating $X_{t+\delta}^{t, x; \alpha_1, \beta_1^1}$ by a finite-valued random variable that

$$W_k(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1^1}) \geq \inf_{\beta_2 \in \mathcal{B}_{t+\delta, T}} J_k(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1^1}; \alpha_2^\varepsilon, \beta_2), \quad \mathbb{P}\text{-a.s., } k = 1, 2.$$

Therefore,

$$W_{N_{t+\delta}}(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1^1}) \geq \inf_{\beta_2 \in \mathcal{B}_{t+\delta, T}} J_{N_{t+\delta}}(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1^1}; \alpha_2^\varepsilon, \beta_2), \quad \mathbb{P}\text{-a.s.} \quad (6.5)$$

Moreover, there exists some sequence $\{\beta_n^2, n \geq 1\} \subset \mathcal{B}_{t+\delta, T}$ such that

$$\inf_{\beta_2 \in \mathcal{B}_{t+\delta, T}} J_{N_{t+\delta}}(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1^1}; \alpha_2^\varepsilon, \beta_2) = \inf_{n \geq 1} J_{N_{t+\delta}}(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1^1}; \alpha_2^\varepsilon, \beta_n^2), \quad \mathbb{P}\text{-a.s.,}$$

and we set, for $n \geq 1$,

$$\Delta_n := \left\{ \begin{array}{ll} \inf_{\beta_2 \in \mathcal{B}_{t+\delta, T}} J_{N_{t+\delta}}(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1^1}; \alpha_2^\varepsilon, \beta_2) \geq J_{N_{t+\delta}}(t + \delta, X_{t+\delta}^{t, x; \alpha_1, \beta_1^1}; \alpha_2^\varepsilon, \beta_n^2) - \varepsilon, \end{array} \right.$$
\[
\begin{aligned}
\text{essinf}_{\beta_2 \in B_{t+\delta}, T} J_{N^i_t, t+\delta}^c (t + \delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}; \alpha^c_2, \beta_2^2) - \varepsilon, \\
1 \leq j \leq n - 1 \} \in F_{t+\delta}.
\end{aligned}
\]

Obviously, \(\{\Delta_n, n \geq 1\}\) is a partition of \((\Omega, F_{t+\delta})\). Let us define

\[
\beta^c_2 := \sum_{n \geq 1} 1_{\Delta_n} \beta^2_n, \quad \beta^c (u_1 \oplus u_2) := \beta^c_1 (u_1) \oplus \beta^c_2 (u_2),
\]

for \(u_1 \in U_{t+\delta}\) and \(u_2 \in U_{t+\delta}, T\). Then, from the uniqueness for the equations (3.1) and (3.4), combined with Lemma 3.6, it follows that

\[
J_{N^i_t, t+\delta}^c (t + \delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}) = \begin{cases} \\
N^i_t, t+\delta Y^{t+\delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}} (t + \delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}) \\
\sum_{n \geq 1} 1_{\Delta_n} J_{N^i_t, t+\delta}^c (t + \delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}) - \varepsilon
\end{cases}
\]

which together with (6.5) yields

\[
W_{N^i_t, t+\delta}^c (t + \delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}) \geq \text{essinf}_{\beta_2 \in B_{t+\delta}, T} J_{N^i_t, t+\delta}^c (t + \delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}) \\
\geq \sum_{n \geq 1} 1_{\Delta_n} J_{N^i_t, t+\delta}^c (t + \delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}) - \varepsilon \\
= J_{N^i_t, t+\delta}^c (t + \delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}) - \varepsilon \\
= N^i_t, t+\delta Y^{t+\delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}} - \varepsilon.
\]

Let \(\alpha^c (v_1 \oplus v_2) := \alpha_1 (v_1) \oplus \alpha_2 (v_2), v_1 \in V_{t+\delta}, v_2 \in V_{t+\delta}, T\). Then \(\alpha^c (v)\{t+\delta\} = \alpha (v)\{t+\delta\}, v \in V_{t,T}\). Thus,

\[
N^i_t, t+\delta Y^{t+\delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2, \beta_2}} = i Y^{t,x;\alpha^c, \beta^c} (t+\delta).
\]

Consequently, by virtue of the Lemmas 2.2 and 2.3 we conclude

\[
W_\delta(t, x) \geq I_\delta(t, x, \alpha_1) \geq i G_{t,T,x;\alpha_1,\beta^i_1} \big[W_{N^i_t, t+\delta}^c (t + \delta, X^{t,x;\alpha_1,\beta^i_1;\kappa_2}) \big] - \varepsilon \\
\geq i G_{t,T,x;\alpha_1,\beta^i_1} \big[i Y^{t,x;\alpha^c, \beta^c} - \varepsilon \big] - \varepsilon \\
\geq i G_{t,T,x;\alpha_1,\beta^i_1} \big[i Y^{t,x;\alpha^c, \beta^c} \big] - C \varepsilon \\
= i Y^{t,x;\alpha^c, \beta^c} - C \varepsilon = i Y^{t,x;\alpha^c, \beta^c} - C \varepsilon,
\]

where, for the latter equality, we have used Lemma 3.6. Indeed, letting \((u^2_1, u^2_2) \in U_{t+\delta,T} \times V_{t+\delta,T}\) be associated with \((\alpha^i_2, \beta^i_2)\) by Lemma 3.6 we have

\[
\beta^c (u^1_1 \oplus u^1_2) = \beta^c_1 (u^1_1) \oplus \beta^c_2 (u^1_2) = v^1_1 \oplus v^1_2,
\]

\[
\alpha^c (v^1_1 \oplus v^1_2) = \alpha^c_1 (v^1_1) \oplus \alpha^c_2 (v^1_2) = v^1_1 \oplus v^1_2.
\]

but also \(\alpha^c (v^1_1 \oplus v^1_2) = \alpha (v^1_1 \oplus v^1_2)\). Recalling now the arbitrariness of \(\alpha \in A_{t,T}\) we conclude that

\[
W_\delta(t, x) \geq W_i(t, x) - C \varepsilon. \]

Finally, letting \(\varepsilon \downarrow 0\) we have \(W_\delta(t, x) \geq W_i(t, x)\). \(\square\)
From the dynamic programming principle (Theorem 6.1) and standard arguments for BSDEs (see Peng [16] or Buckdahn and Li [9]) we obtain the following proposition.

Proposition 6.5. Under the assumptions (H4) and (H5), $W(t, x)$ is $\frac{1}{2}$-Hölder continuous in t, i.e., there exists a positive constant C such that, for all $x \in \mathbb{R}^n$, $t, t' \in [0, T]$,

$$|W_i(t, x) - W_i(t', x)| \leq C(1 + |x|)|t - t'|^{\frac{1}{2}}.$$

6.1.2 Dynamic programming principle for stopping times

The objective of this subsection is to obtain the dynamic programming principle for stopping times. For this end, we need the following proposition, which turns out to be crucial in our approach.

Proposition 6.6. For $0 \leq t \leq T$, let τ be a stopping time such that $t \leq \tau \leq T$. Then we have

$$\text{esssup}_{\alpha_1 \in \mathcal{A}_{t,T}} \text{essinf}_{\beta_1 \in \mathcal{B}_{\tau,T}} i^Y_{\tau,t,x,\alpha_1,\beta_1} = \text{esssup}_{\alpha \in \mathcal{A}_{t,T}} \text{essinf}_{\beta \in \mathcal{B}_{\tau,T}} i^Y_{\tau,t,x,\alpha,\beta}.$$

Proof. We give the proof in two steps.

Step 1: For all $\alpha \in \mathcal{A}_{t,T}$ and an arbitrary fixed $v^0 \in \mathcal{V}_{t,\tau}$, let us define

$$\alpha_1(v^1) := \alpha(v^0 + v^1)|_{[\tau,T]}, v^1 \in \mathcal{V}_{\tau,T}, \text{ and } \alpha_0(v^0) := \alpha(v^0 + v^1)|_{[t,\tau]}, v^1 \in \mathcal{V}_{\tau,T}.$$

It is straight-forward to check that $\alpha_1 \in \mathcal{A}_{\tau,T}$. Since α is nonanticipative, $\alpha_0(v^0)$ only depends on v^0, but not on v^1. We put $u^0 := \alpha_0(v^0)$ and define, for $u \in \mathcal{U}_{t,T}$ and $\beta_1 \in \mathcal{B}_{\tau,T}$, $\beta(u) := v^0 + \beta_1(u^1), u^1 = u|_{[\tau,T]}$. Then $\beta \in \mathcal{B}_{t,T}$.

Since $\alpha_1 \in \mathcal{A}_{\tau,T}$ and $\beta_1 \in \mathcal{B}_{\tau,T}$, by Lemma 3.6, we have the existence of a unique couple $(\tilde{u}^1, \tilde{v}^1) \in \mathcal{U}_{t,T} \times \mathcal{V}_{\tau,T}$ such that $\alpha_1(\tilde{v}^1) = \tilde{u}^1, \beta_1(\tilde{u}^1) = \tilde{v}^1$. On the other hand, for $\alpha \in \mathcal{A}_{t,T}$ and $\beta \in \mathcal{B}_{t,T}$, there exists a unique couple $(u^*, v^*) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$ such that $\alpha(v^*) = u^*, \beta(u^*) = v^*$. Consequently,

$$\alpha(v^0 + \tilde{v}^1) = \alpha_0(v^0) + \alpha_1(\tilde{v}^1) = u^0 + \tilde{u}^1, \beta(v^0 + \tilde{u}^1) = v^0 + \beta_1(\tilde{u}^1) = v^1 + v^1.$$

From the uniqueness of (u^*, v^*) it follows that $\tilde{v}^1 = u^*|_{[\tau,T]}, \tilde{v}^1 = v^*|_{[\tau,T]}$. Therefore,

$$i^Y_{\tau,t,x,\alpha_1,\beta_1} = i^Y_{\tau,t,x,\tilde{u}^1,\tilde{v}^1} = i^Y_{\tau,t,x,u^*,v^*} = i^Y_{\tau,t,x,\alpha,\beta}.$$

For $\alpha \in \mathcal{A}_{t,T}$,

$$\text{esssup}_{\alpha_1 \in \mathcal{A}_{t,T}} \text{essinf}_{\beta_1 \in \mathcal{B}_{\tau,T}} i^Y_{\tau,t,x,\alpha_1,\beta_1} \geq \text{esssup}_{\beta_1 \in \mathcal{B}_{\tau,T}} i^Y_{\tau,t,x,\alpha_1,\beta_1} \geq \text{esssup}_{\beta \in \mathcal{B}_{t,T}} i^Y_{\tau,t,x,\alpha,\beta}.$$

The latter estimate takes into account that we associated with β_1 a particular β, $\beta(u) = v^0 + \beta_1(u^1), u^1 = u|_{[\tau,T]}$, independently of α. Consequently,

$$\text{esssup}_{\alpha \in \mathcal{A}_{t,T}} \text{essinf}_{\beta \in \mathcal{B}_{t,T}} i^Y_{\tau,t,x,\alpha,\beta} \geq \text{esssup}_{\alpha \in \mathcal{A}_{t,T}} \text{essinf}_{\beta \in \mathcal{B}_{t,T}} i^Y_{\tau,t,x,\alpha,\beta}.$$

Step 2: For all $\varepsilon > 0$, there exists $\alpha^\varepsilon_1 \in \mathcal{A}_{t,T}$ such that

$$\text{esssup}_{\alpha_1 \in \mathcal{A}_{t,T}} \text{essinf}_{\beta_1 \in \mathcal{B}_{\tau,T}} i^Y_{\tau,t,x,\alpha_1,\beta_1} \leq \text{essinf}_{\beta_1 \in \mathcal{B}_{\tau,T}} i^Y_{\tau,t,x,\alpha_1^\varepsilon,\beta_1} + \varepsilon. \quad (6.6)$$

For all $\beta \in \mathcal{B}_{t,T}$ and an arbitrary fixed $u^0 \in \mathcal{U}_{t,\tau}$, we define, for $u^1 \in \mathcal{U}_{\tau,T}$ and $v \in \mathcal{V}_{t,T}$,

$$\beta_1(u^1) := \beta(u^0 + u^1)|_{[\tau,T]}, \alpha^\varepsilon(v) := u^0 + \alpha^\varepsilon_1(u^1), u^1 = v|_{[\tau,T]}.$$

(6.7)
Then $\alpha^\varepsilon \in \mathcal{A}_{t,T}$ and $\beta_1 \in \mathcal{B}_{r,T}$.

Since $\alpha^\varepsilon \in \mathcal{A}_{t,T}$ and $\beta \in \mathcal{B}_{t,T}$, by Lemma 3.6 we have the existence of a unique couple $(u^*, v^*) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$ such that $\alpha^\varepsilon(v^*) = u^*$, $\beta(u^*) = v^*$. On the other hand, from $\alpha^i \in \mathcal{A}_{t,T}$ and $\beta_1 \in \mathcal{B}_{r,T}$ it follows that there exists a unique couple $(\tilde{u}^1, \tilde{v}^1) \in \mathcal{U}_{t,T} \times \mathcal{V}_{t,T}$ such that $\alpha^i(\tilde{v}^1) = \tilde{u}^1$, $\beta_1(\tilde{u}^1) = \tilde{v}^1$.

Since β is nonanticipative, $\beta(u^0 \oplus \tilde{u}^1)|_{[t,r]}$ depends only on u^0 and not on \tilde{u}^1. We put $\beta_0(\tilde{u}^0) = \beta(\tilde{u}^0 \oplus \tilde{u}^1)|_{[t,r]}$, $\tilde{u}^0 \in \mathcal{U}_{t,r}$. Consequently, $\beta_0 \in \mathcal{B}_{t,T}$, and

$$
\beta(u^0 \oplus \tilde{u}^1) = \beta(u^0 \oplus \tilde{u}^1)|_{[t,r]} \oplus \beta_1(\tilde{u}^1) = \beta_0(u^0) \oplus \beta_1(\tilde{u}^1) = \beta_0(u^0) \oplus \tilde{u}^1,
$$

$$
\alpha^\varepsilon(\beta_0(u^0) \oplus \tilde{u}^1) = u^0 \oplus \alpha^i(\tilde{u}^1) = u^0 \oplus \tilde{u}^1.
$$

Due to the uniqueness of (u^*, v^*) we obtain $v^* = \beta_0(u^0) \oplus \tilde{u}^1$, $u^* = u^0 \oplus \alpha^i(\tilde{u}^1) = u^0 \oplus \tilde{u}^1$. Therefore,

$$
i_{\tau,x,\alpha^i,\beta_1} = i_{\tau,x,\alpha^i,\tilde{u}^1} = i_{\tau,x,u^*,v^*} = i_{\tau,x,\alpha^\varepsilon,\beta},
$$

from which combined with (6.6) we get

$$
\esssup_{\alpha \in \mathcal{A}_{t,T}} \essinf_{\beta \in \mathcal{B}_{t,T}} i_{\tau,x,\alpha,\beta} = \esssup_{\alpha \in \mathcal{A}_{t,T}} \essinf_{\beta \in \mathcal{B}_{t,T}} i_{\tau,x,\alpha,\tilde{u}^1} + \varepsilon
$$

$$
\leq \esssup_{\beta \in \mathcal{B}_{t,T}} \essinf_{\alpha \in \mathcal{A}_{t,T}} i_{\tau,x,\alpha,\beta} + \varepsilon \leq \esssup_{\alpha \in \mathcal{A}_{t,T}} \essinf_{\beta \in \mathcal{B}_{t,T}} i_{\tau,x,\alpha,\beta} + \varepsilon.
$$

For the second estimate we used that β_1 in (6.7) is defined with the help of β and, thus, runs only a subclass of $\mathcal{B}_{t,T}$. The above both steps allow to conclude the proof. \hfill \square

For a stopping time τ with values in $[t,T]$ we define the value functions for a game over the stochastic interval $[[\tau, T]]$:

$$
\mathbb{W}_i(\tau, x) := \esssup_{\alpha \in \mathcal{A}_{\tau,T}} \essinf_{\beta \in \mathcal{B}_{\tau,T}} i_{\tau,x,\alpha,\beta},
$$

$$
\mathbb{U}_i(\tau, x) := \essinf_{\beta \in \mathcal{B}_{\tau,T}} \esssup_{\alpha \in \mathcal{A}_{\tau,T}} i_{\tau,x,\alpha,\beta}.
$$

Remark 6.7. Obviously, $\mathbb{W}_i(t, x) = W_i(t, x), \mathbb{U}_i(t, x) = U_i(t, x)$, for all $(t, x) \in [0, T] \times \mathbb{R}^n$, and it can be checked in a straight-forward manner that for all discrete valued stopping times τ ($0 \leq \tau \leq T$), $i = 1, 2$,

$$
\mathbb{W}_i(\tau, x) = W_i(\tau, x) := W_i(t, x)|_{t=\tau},
$$

$$
\mathbb{U}_i(\tau, x) = U_i(\tau, x) := U_i(t, x)|_{t=\tau}, \quad \mathbb{P} - a.s.
$$

Our objective is to extend this result to general stopping times. For this end we have to extend Proposition 3.10 and Theorem 6.1.

Similar to Proposition 3.10 we have from standard BSDEs estimates the following proposition.

Proposition 6.8. There exists a constant $C > 0$ such that, for all stopping time τ ($0 \leq \tau \leq T$), $x, x' \in \mathbb{R}^n$, $i = 1, 2$,

$$
|\mathbb{W}_i(\tau, x) - \mathbb{W}_i(\tau, x')| \leq C|x - x'|, \quad |\mathbb{W}_i(\tau, x)| \leq C(1 + |x|).
$$

The same property holds for \mathbb{U}_i.

Theorem 6.9. Let the assumptions (H4) and (H5) hold. Then the following dynamic programming principles hold: For any stopping times τ, η with $0 \leq t < \tau \leq \eta \leq T$, $x \in \mathbb{R}^n$, $i = 1, 2$,

$$
\mathbb{W}_i(\tau, x) = \esssup_{\alpha \in \mathcal{A}_{\tau,\eta}} \essinf_{\beta \in \mathcal{B}_{\tau,\eta}} i_{\tau,\eta,\alpha,\beta}[\mathbb{W}_{N_i}(\eta, X_{\eta,\alpha,\beta})],
$$

$$
\mathbb{U}_i(\tau, x) = \essinf_{\beta \in \mathcal{B}_{\tau,\eta}} \esssup_{\alpha \in \mathcal{A}_{\tau,\eta}} i_{\tau,\eta,\alpha,\beta}[\mathbb{U}_{N_i}(\eta, X_{\eta,\alpha,\beta})].
$$

36
Proof. We only comment the proof of the first relation. Let us denote by \(\widehat{W}_i(\tau, x) \) the right hand side of 6.8. We prove in a straight-forward way that \(W_i(\tau, x) = \widehat{W}_i(\tau, x) \). For this we adapt the proof of the Lemmas 6.3 and 6.4 in an obvious manner.

From Theorem 6.9 and Proposition 6.8 we can deduce the following proposition.

Proposition 6.10. Let the assumptions (H4) and (H5) be satisfied. Then, for any stopping time \(\tau, \eta \) with \(0 \leq t < \tau \leq \eta \leq T, x \in \mathbb{R}^\alpha \), where \(\eta \) is supposed to be \(\sigma(\tau) \)-measurable, we have the following:

\[
|W_i(\tau, x) - \widehat{W}_i(\eta, x)| \leq C(1 + |x|)|\tau - \eta|^{\frac{1}{2}}.
\]

Proof. We only prove that \(W_i(\tau, x) - \widehat{W}_i(\eta, x) \leq C(1 + |x|)|\tau - \eta|^{\frac{1}{2}} \), since the other inequality can be proved in a similar manner. Let \(\varepsilon > 0 \). In analogy to (6.3), but now for \((\tau, \eta) \) instead of \((t, t + \delta) \), we can show that there exists some \(\alpha^\varepsilon \in A_{\tau, \eta} \) such that, for any \(\beta \in B_{\tau, \eta} \),

\[
\widehat{W}_i(\tau, x) - \widehat{W}_i(\eta, x) \leq I_1 + I_2 + I_3 + \varepsilon,
\]

where

\[
I_1 := \alpha^\varepsilon, \beta \left[W_{N_{\eta}^i}(\eta, x) - \widehat{W}_{N_{\eta}^i}(\eta, x) \right],
\]

\[
I_2 := \alpha^\varepsilon, \beta \left[W_{N_{\eta}^i}(\eta, x) - \widehat{W}_i(\eta, x) \right],
\]

\[
I_3 := \alpha^\varepsilon, \beta \left[\widehat{W}_i(\eta, x) - \widehat{W}_i(\eta, x) \right].
\]

Thanks to Lemma 3.6, we let \((u, v) \in U_{\tau, \eta} \times V_{\tau, \eta} \) be such that \(\alpha^\varepsilon(v) = u, \beta(u) = v, \) on \([\tau, \eta] \).

By virtue of Proposition 6.8 there exists some positive constant \(C \) which does not depend on \(\alpha^\varepsilon \) and \(\beta \) such that

\[
|I_1| \leq C(E[|W_{N_{\eta}^i}(\eta, x, X_{\eta}^i u, v)|^2 |F_\tau]) \leq C(1 + |x|^2)|\tau - \eta|^{\frac{1}{2}},
\]

where the latter relation follows from standard SDE estimates. Let us denote by \((iY, iZ, iH) \) the solution of the BSDE:

\[
\begin{align*}
-d^iY_s &= f_{N_{\eta}^i}(s, X_{\tau}^i s, u, v)ds + dZ_s, \quad s \in [\tau, \eta], \\
\end{align*}
\]

From the definition of our backward stochastic semigroup and the \(\sigma(\tau) \)-measurability of \(\eta \) it follows that

\[
I_3 = G_{\tau, \eta}^{i^\varepsilon, \beta} [\widehat{W}_i(\eta, x)] - \widehat{W}_i(\eta, x)
\]

\[
= \mathbb{E}[W_i(\tau, x) + \int_\tau^\eta f_{N_{\eta}^i}(s, X_{\tau}^i s, iY_s, iZ_s, u, v)ds - \lambda \int_\tau^\eta iH_sds - \int_\tau^\eta iZ_sdB_s - \int_\tau^\eta iH_s\tilde{d}N_s |F_\tau] - \widehat{W}_i(\eta, x)
\]

\[
= \mathbb{E}\left[\int_\tau^\eta f_{N_{\eta}^i}(s, X_{\tau}^i s, u, v)ds - \lambda \int_\tau^\eta iH_sds |F_\tau] \right].
\]

37
Therefore, the Schwartz inequality and the Appendix of [8] yield

\[|I_3| \leq E \int_{\tau}^{\eta} \left(|f_{N''_i}(s, X_s, X''_i, Y_s, H_s, Z_s, u_s, v_s)| + \lambda |i H_s| \right) ds |F_\tau| \]

\[\leq |\tau - \eta|^\frac{1}{2} E \int_{\tau}^{\eta} \left(|f_{N''_i}(s, X_s, X''_i, Y_s, H_s, Z_s, u_s, v_s)| + \lambda |i H_s| \right)^2 ds |F_\tau|^\frac{1}{2} \]

\[\leq C|\tau - \eta|^\frac{1}{2} E \int_{\tau}^{\eta} \left(|f_{N''_i}(s, X_s, X''_i, Y_s, H_s, Z_s, u_s, v_s)|^2 + |i Y_s|^2 + |i H_s|^2 + |i Z_s|^2 \right) ds |F_\tau|^{\frac{1}{2}} \]

\[\leq C|\tau - \eta|^\frac{1}{2} E \int_{\tau}^{\eta} \left(1 + |X_s|^2 + |Y_s|^2 + |H_s|^2 + |Z_s|^2 \right) ds |F_\tau|^{\frac{1}{2}} \]

\[\leq C(1 + |x|)|\tau - \eta|^\frac{1}{2}. \]

Finally, let us give the estimate of \(I_2 \). From Lemma 2.3 we have

\[|I_2| \leq C E \left| \mathcal{W}_{N''_i}(\eta, x) - \mathcal{W}_i(\eta, x) \right| |F_\tau| = C E \left| \mathcal{W}_{N''_i}(\eta, x) - \mathcal{W}_i(\eta, x) \right| 1_{\{N''_i \neq i\}} |F_\tau| \]

\[\leq C(1 + |x|) E 1_{\{N''_i \neq i\}} |F_\tau| = C(1 + |x|) \mathbb{P} \{ \{N''_i \neq i\} |F_\tau| \}

\[\leq C(1 + |x|)(1 - \exp(-\lambda(\eta - \tau))) \leq C(1 + |x|)|\tau - \eta|. \]

Consequently, from the above inequalities we deduce that

\[\mathcal{W}_i(\tau, x) - \mathcal{W}_i(\eta, x) \leq C(1 + |x|)|\tau - \eta|^\frac{1}{2} + \varepsilon, \varepsilon > 0, \]

from where we conclude

\[\mathcal{W}_i(\tau, x) - \mathcal{W}_i(\eta, x) \leq C(1 + |x|)|\tau - \eta|^\frac{1}{2}. \]

The desired result then follows. \(\square \)

Proposition 6.11. Under the assumptions (H4) and (H5), the following holds: \(\mathcal{W}_i(\tau, x) = W_i(\tau, x) \), i.e.,

\[W_i(\tau, x) = \text{esssup}_{\alpha \in A_{\tau,T}} \text{essinf}_{\beta \in B_{\tau,T}} i Y_{\tau,x,\alpha,\beta}, \]

for all stopping time \(\tau \) with values in \([t, T]\).

Proof. Let \(t \in [0, T] \) be such that \(t \leq \tau \leq T \). Let us define, for \(i = 1, \ldots, 2^n \),

\[t_i = \frac{i(T - t)}{2^n} + t, \quad A_i = \{ t_{i-1} < \tau \leq t_i \}, \quad \text{and} \quad A_0 = \{ \tau = t \}, \quad \tau_n = \sum_{i=0}^{2^n} t_i 1_{A_i}. \]

Obviously, \(0 \leq \tau_n - \tau \leq \frac{1}{2^n} \), and from the definition of \(W_i \) as well as that of the essential infimum and supremum of a family of random variables we deduce

\[W_i(\tau_n, x) := W_i(s, x)|_{s=\tau_n} = \text{esssup}_{\alpha \in A_{\tau_n,T}} \text{essinf}_{\beta \in B_{\tau_n,T}} i Y_{\tau_n,x,\alpha,\beta}. \]

Therefore, \(W_i(\tau_n, x) = \mathcal{W}_i(\tau_n, x) \), \(\mathbb{P} \) - a.s. Since \(\tau \leq \tau_n \leq T \), and \(\tau_n \) is \(\sigma(\tau) \)-measurable, it follows from the Propositions 6.5 and 6.10 that

\[|\mathcal{W}_i(\tau, x) - \mathcal{W}_i(\tau_n, x)| \leq C(1 + |x|)|\tau - \tau_n|^\frac{1}{2} \to 0, \text{ as } n \to \infty. \]
and
\[|W_i(\tau, x) - W_i(\tau_n, x)| \leq C(1 + |x|)|\tau - \tau_n|^\frac{1}{2} \to 0, \text{ as } n \to \infty, \]
from where we conclude that also \(W_i(\tau, x) = W_i(\tau, x) \). Therefore,
\[W_i(\tau, x) = \esssup_{\alpha \in A_{\tau, T}} \essinf_{\beta \in B_{\tau, T}} iY_{\tau, x, \alpha, \beta}. \]

The proof is complete. \(\square \)

From the above proposition and Proposition 6.10 we immediately have:

Proposition 6.12. Under the assumptions (H4) and (H5), there is some positive constant \(C \) such that, for any stopping times \(\tau, \eta \) with \(0 \leq t < \tau \leq \eta \leq T \), \(x \in \mathbb{R}^n \), where \(\eta \) is supposed to be \(\sigma(\tau) \)-measurable, we have the following:
\[|W_i(\tau, x) - W_i(\eta, x)| \leq C(1 + |x|)|\tau - \eta|^\frac{1}{2}. \]

Theorem 3.11 follows from Proposition 6.11 and Theorem 6.9. We also have the following statement, which is a direct consequence of Proposition 6.11.

Proposition 6.13. Under the assumptions (H4) and (H5), the following holds:
\[W_{N_{t, i}^L}(\tau, x) = \esssup_{\alpha \in A_{\tau, T}} \essinf_{\beta \in B_{\tau, T}} N_{t, i}^L iY_{\tau, x, \alpha, \beta}. \]

6.2 Proof of Theorem 4.2

Proof. We only give the proof for \(U = (U_1, U_2) \), that for \(W = (W_1, W_2) \) uses a similar argument. Let \(i = 1, 2 \) be arbitrarily fixed, \((t, x) \in [0, T] \times \mathbb{R}^n \), and \(\delta > 0 \). We put \(\tau^\delta = \inf\{s \geq t, N_{s, i}^L \neq i\} \land (t + \delta) \).

For \(\varphi \in C^3_{i,b}([0, T] \times \mathbb{R}^n) \), we define
\[F(s, x, y, h, z, u, v) = \frac{\partial}{\partial s} \varphi(s, x) + \frac{1}{2}\text{tr}(\sigma \sigma^T(s, x, u, v)D^2 \varphi(s, x)) + D \varphi(s, x) b(s, x, u, v) + f_i(s, x, y + \varphi(s, x), h + U_{m(i+1)}(s, x) - \varphi(s, x), z + D \varphi(s, x) \sigma(s, x, u, v), u, v), \]
where \((s, x, y, h, z, u, v) \in [0, T] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d \times U \times V. \)

Let us consider the following BSDE on the interval \([t, \tau^\delta]:\)

\[
\begin{aligned}
-dY_{s, i}^{1,u,v} &= F(s, X_{s}^{t,x, u,v}, Y_{s}^{1,u,v}, H_{s}^{1,u,v}, Z_{s}^{1,u,v}, u_s, v_s)ds - \lambda H_{s}^{1,u,v}dN_s, \\
Y_{\tau^\delta}^{1,u,v} &= 0, \\
\end{aligned}
\tag{6.9}
\]

where \(X_{s}^{t,x, u,v} \) is the solution of (3.1) with \(\zeta = x \in \mathbb{R}^n. \)

We notice that \(F(s, x, y, h, z, u, v) \) is Lipschitz in \((y, h, z), \) uniformly in \((s, x, u, v), \) and there exists a positive constant \(C \) such that
\[|F(s, x, 0, 0, 0, u, v)| \leq C(1 + |x|^2), \quad (s, x, u, v) \in [0, T] \times \mathbb{R}^n \times U \times V. \]

Consequently, BSDE (6.9) has a unique solution \((Y_{s}^{1,u,v}, H_{s}^{1,u,v}, Z_{s}^{1,u,v}). \) This solution obviously depends on \(\delta, \) but for the sake of simplifying the notations we don’t add \(\delta \) as superscript to \((Y_{s}^{1,u,v}, H_{s}^{1,u,v}, Z_{s}^{1,u,v}). \)

For the proof of Theorem 4.2, which extends the approaches in [5] and [7] to SDGs with jumps, we admit the following lemmas for the moment, they will be proven after.
Lemma 6.14. For every \(s \in [t, \tau^\delta] \), the following holds:

\[
Y^1_{s \wedge \tau^\delta} = \mathcal{G}^d_{s \wedge \tau^\delta} \left[\varphi(t, X^{t,x;u,v}_s)1_{N^i_{r=\delta} = i} + U_m(i+1)(\tau^\delta, X^{t,x;u,v}_{\tau^\delta})1_{N^i_{r=\delta} = m(i+1)} - Y_{s \wedge \tau^\delta} \right],
\]

where

\[
Y_s = \varphi(s, X^{t,x;u,v}_s) + \int_t^s \left(U_m(i+1)(r, X^{t,x;u,v}_r) - \varphi(r, X^{t,x;u,v}_r) \right) dN_r.
\]

In particular,\(^{(6.10)}\)

\[
Y^1_t = \mathcal{G}^d_{t, \tau^\delta} \left[\varphi(t, X^{t,x;u,v}_t)1_{N^i_\delta = i} + U_m(i+1)(\tau^\delta, X^{t,x;u,v}_{\tau^\delta})1_{N^i_{r=\delta} = m(i+1)} - \varphi(t, x) \right].
\]

(Recall that \(m(j) = 1 \), if \(j \) is odd, and \(m(j) = 2 \), if \(j \) is even.) We also consider the following BSDE where, in equation (6.9), \(X^{t,x;u,v}_s \) is substituted by its deterministic initial value \(x \):

\[
\begin{cases}
-dY^2_{s,u,v} = F(s, x, Y^2_{s,u,v}, H^2_{s,u,v}, Z^2_{s,u,v}, u_s, v_s)ds - \lambda H^2_{s,u,v} ds \\
Y^2_{t,u,v} = 0, & s \in [t, \tau^\delta].
\end{cases}
\]

Then we have the following comparison between \(Y^1_{t,u,v} \) and \(Y^2_{t,u,v} \).

Lemma 6.15. For every \(\delta \in (0, 1) \) and \(u \in \mathcal{U}_{t,t+\delta}, v \in \mathcal{V}_{t,t+\delta} \),

\[
|Y^1_t - Y^2_t| \leq C \delta^\frac{3}{2}, \quad \mathbb{P} - a.s.,
\]

where the constant \(C \) does not depend on the control processes \(u \) and \(v \), neither on \(\delta > 0 \).

Moreover, we have

Lemma 6.16. For every \(u \in \mathcal{U}_{t,t+\delta}, v \in \mathcal{V}_{t,t+\delta} \), we have

\[
\mathbb{E} \int_t^{t+\delta} |Y^2_{s,u,v}| ds|\mathcal{F}_t] + \mathbb{E} \int_t^{t+\delta} |Z^2_{s,u,v}| ds|\mathcal{F}_t] + \mathbb{E} \int_t^{t+\delta} |H^2_{s,u,v}| ds|\mathcal{F}_t] \leq C \delta^{\frac{3}{2}}, \quad \mathbb{P} - a.s.,
\]

where the constant \(C \) is independent of \(t, \delta \) as well as of the control processes \(u, v \).

Let us prove that \(U = (U_1, U_2) \) is a viscosity solution of the system (4.1). We begin with showing that a) \(U = (U_1, U_2) \) is a viscosity subsolution of the system (4.1).

Let \(i = 1, 2 \) be arbitrarily fixed, and we suppose that \(U_i \leq \varphi \) and \(U_i(t, x) = \varphi(t, x) \). We claim that

\[
\inf_{v \in \mathcal{V}} \sup_{u \in \mathcal{U}} F(t, x, 0, 0, 0, u, v) \geq 0.
\]

Observe that, this claim just means that \(U = (U_1, U_2) \) satisfies (4.3) of Definition 4.1; we will come back to this point. We make the proof by contradiction, and suppose that the above claim is not true. Then, thanks to the continuity of \(F \), there exist some \(\theta > 0, v^* \in V \) and \(0 < \delta' \leq T - t \) such that

\[
\sup_{u \in \mathcal{U}} F(s, x, 0, 0, 0, u, v^*) \leq -\theta < 0,
\]

for all \(s \in [t, t + \delta'] \). Since \(U_i \leq \varphi \) and \(U_i(t, x) = \varphi(t, x) \), we have

\[
\varphi(\tau^\delta, X^{t,x;u,v}_{\tau^\delta})1_{N^i_{r=\delta} = i} + U_m(i+1)(\tau^\delta, X^{t,x;u,v}_{\tau^\delta})1_{N^i_{r=\delta} = m(i+1)}
\]
\[\geq U_i(t^\delta, X_{t^\delta}^{t^\delta, x, \alpha, \beta}) \mathbf{1}_{N_{t^\delta}^{t^\delta, i}} + U_{m(i+1)}(t^\delta, X_{t^\delta}^{t^\delta, x, \alpha, \beta}) \mathbf{1}_{N_{t^\delta}^{t^\delta, i-m(i+1)}} = U_{N_{t^\delta}^{t^\delta, i}}(t^\delta, X_{t^\delta}^{t^\delta, x, \alpha, \beta}). \]

From the Lemmas 2.2 and 6.14 it follows that
\[Y_t^{1, \alpha, \beta} \geq \mathcal{G}_{t^\delta, x, \alpha, \beta} \left[\varphi(t^\delta, X_{t^\delta}^{t^\delta, x, \alpha, \beta}) \mathbf{1}_{N_{t^\delta}^{t^\delta, i}} + U_{m(i+1)}(t^\delta, X_{t^\delta}^{t^\delta, x, \alpha, \beta}) \mathbf{1}_{N_{t^\delta}^{t^\delta, i-m(i+1)}} \right] - \varphi(t, x). \]

On the other hand, by virtue of Theorem 3.11 we have
\[\text{essinf esssup}_{\beta \in B_t^\delta} \sup_{\alpha \in A_t^\delta} Y_t^{1, \alpha, \beta} \geq 0. \]

Therefore, essinf \(\beta \in B_t^\delta \) \(\sup_{\alpha \in A_t^\delta} Y_t^{1, \alpha, \beta} \geq 0 \). Putting \(\beta^*(u) = v^* \) on \([t, \tau^\delta] \times \mathcal{U}_{t^\delta}, \) we have \(\beta^* \in B_t^\delta \). From Lemma 6.15 it follows that
\[0 \leq \text{essinf esssup}_{\beta \in B_t^\delta} Y_t^{1, \alpha, \beta} \leq \text{esssup}_{\alpha \in A_t^\delta} Y_t^{1, \alpha, \beta^*} \]
\[\leq \text{esssup}_{\alpha \in A_t^\delta} Y_t^{2, \alpha, \beta^*} + C\delta^{\frac{3}{2}} = \text{esssup}_{\alpha \in A_t^\delta} Y_t^{2, \alpha(v^*), v^*} + C\delta^{\frac{3}{2}} \]
\[\leq \text{esssup}_{u \in \mathcal{U}_{t^\delta}} Y_t^{2, u, v^*} + C\delta^{\frac{3}{2}}. \]

Here we have used that \(Y_t^{2, \alpha, \beta^*} = Y_t^{2, \alpha(v^*), v^*} \), since \(\beta^*(\alpha(v^*)) = v^* \). Furthermore, for all \(\delta > 0, \varepsilon > 0 \), there exists \(u^\varepsilon \in \mathcal{U}_{t^\delta} \) such that
\[Y_t^{2, u^\varepsilon, v^*} \geq \text{esssup}_{u \in \mathcal{U}_{t^\delta}} Y_t^{2, u, v^*} - \epsilon\delta. \]

The two above inequalities yield
\[Y_t^{2, u^\varepsilon, v^*} \geq -C\delta^{\frac{3}{2}} - \epsilon\delta. \quad (6.12) \]

Since
\[Y_t^{2, u^\varepsilon, v^*} = \mathbb{E}\left[\int_t^{\tau^\delta} F(s, x, Y_s^{2, u^\varepsilon, v^*}, H_s^{2, u^\varepsilon, v^*}, Z_s^{2, u^\varepsilon, v^*}, u^\varepsilon, v^*) ds | \mathcal{F}_t \right], \]
we can deduce from the Lipschitz property of \(F \) in \((y, h, z)\) that
\[Y_t^{2, u^\varepsilon, v^*} = \mathbb{E}\left[\int_t^{\tau^\delta} \left(F(s, x, Y_s^{2, u^\varepsilon, v^*}, H_s^{2, u^\varepsilon, v^*}, Z_s^{2, u^\varepsilon, v^*}, u^\varepsilon, v^*) - \lambda H_s^{2, u^\varepsilon, v^*} \right) ds | \mathcal{F}_t \right] \]
\[\leq \mathbb{E}\left[\int_t^{\tau^\delta} F(s, x, 0, 0, 0, u^\varepsilon, v^*) ds | \mathcal{F}_t \right] \]
\[+ C\mathbb{E}\left[\int_t^{\tau^\delta} \left(|Y_s^{2, u^\varepsilon, v^*}| + |H_s^{2, u^\varepsilon, v^*}| + |Z_s^{2, u^\varepsilon, v^*}| \right) ds | \mathcal{F}_t \right]. \quad (6.13) \]

We notice that
\[\mathbb{E}[t + \delta - \tau^\delta | \mathcal{F}_t] \leq \delta \mathbb{E}[1_{t+\delta > \tau^\delta} | \mathcal{F}_t] = \delta \mathbb{P}[t + \delta > \tau^\delta | \mathcal{F}_t] \]

41
Choosing \(\delta < \delta' \) we obtain from (6.11)

\[
\mathbb{E}\left[\int_t^{t+\delta} F(s, x, 0, 0, 0, u_s^*, v_s^*) ds \right] \leq -\theta \mathbb{E}[|\tau^\delta - t| |F_t|] \\
\leq \theta (\mathbb{E}[t + \delta - \tau^\delta |F_t|] - \delta) \leq \theta (\lambda \delta^2 - \delta).
\]

This together with (6.12), (6.13) and Lemma 6.16 yields \(-C\delta^{\frac{3}{2}} - \varepsilon \delta \leq \lambda \delta^2 \theta - \theta \delta\). Therefore, \(-C\delta^{\frac{3}{2}} - \varepsilon \leq \lambda \delta \theta - \theta\). Letting \(\delta \downarrow 0 \), and \(\varepsilon \downarrow 0 \) we deduce that \(\theta \leq 0 \), which is in contradiction with \(\theta > 0 \). Consequently,

\[
\inf \sup_{v \in V} F(t, x, 0, 0, 0, u, v) \geq 0.
\]

Finally, taking into account the definition of \(F \), we see that

\[
\inf \sup_{v \in V} F(t, x, 0, 0, 0, u, v) = \frac{\partial}{\partial t} \varphi(t, x) + \inf \sup_{v \in V \subset U} \left\{ \frac{1}{2} tr(\sigma^T(t, x, u, v)D^2 \varphi(t, x)) + D \varphi(t, x)b(t, x, u, v) \right. \\
+ f_i(t, x, \varphi(t, x), U_{m(i+1)}(t, x) - \varphi(t, x), D \varphi(t, x)\sigma(t, x, u, v), u, v) \left. \right\} \\
= \frac{\partial}{\partial t} \varphi(t, x) + \inf \sup_{v \in V \subset U} \left\{ \frac{1}{2} tr(\sigma^T(t, x, u, v)D^2 \varphi(t, x)) + D \varphi(t, x)b(t, x, u, v) \right. \\
+ f_i(t, x, \varphi(t, x), U_{1}(t, x), U_{2}(t, x), D \varphi(t, x)\sigma(t, x, u, v), u, v) \left. \right\},
\]

from where it follows that \(U = (U_1, U_2) \) is a viscosity subsolution of the system (4.1).

b) Let us show that \(U = (U_1, U_2) \) is also a viscosity supersolution of the system (4.1).

Let \(i = 1, 2 \) be arbitrarily fixed, and we suppose that the test function \(\varphi \) is such that \(U_i \geq \varphi \) and \(U_i(t, x) = \varphi(t, x) \). Then

\[
\varphi(t, x) \leq U_i(t, x) = \varphi(t, x) + \left[\varphi(\tau^\delta, X^{t,x;\alpha,\beta}_{\tau^\delta})1_{N_{t^\delta}^{t^\delta} = m(i+1)} + U_{m(i+1)}(\tau^\delta, X^{t,x;\alpha,\beta}_{\tau^\delta})1_{N_{t^\delta}^{t^\delta} = m(i+1)} \right] - \varphi(t, x) \\
= U_{N_{t^\delta}^{t^\delta} = m(i+1)}(\tau^\delta, X^{t,x;\alpha,\beta}_{\tau^\delta}),
\]

and thanks to Lemma 6.14 we have

\[
Y_{t^\delta}^{1,\alpha,\beta} = \int_{t^\delta}^{t} G_{t^\delta, \tau^\delta}^{1,\alpha,\beta}\left[\varphi(\tau^\delta, X^{t,x;\alpha,\beta}_{\tau^\delta})1_{N_{t^\delta}^{t^\delta} = m(i+1)} + U_{m(i+1)}(\tau^\delta, X^{t,x;\alpha,\beta}_{\tau^\delta})1_{N_{t^\delta}^{t^\delta} = m(i+1)} \right] - \varphi(t, x) \\
\leq \int_{t^\delta}^{t} G_{t^\delta, \tau^\delta}^{1,\alpha,\beta}\left[U_{N_{t^\delta}^{t^\delta} = m(i+1)}(\tau^\delta, X^{t,x;\alpha,\beta}_{\tau^\delta}) \right] - \varphi(t, x).
\]

Consequently, from Theorem 3.11

\[
\inf \sup_{\beta \in B_t^\delta} \sup_{u \in U_t^\delta} Y_{t^\delta}^{1,\alpha,\beta} \leq 0.
\]

we obtain that \(\inf \sup_{\beta \in B_t^\delta} \sup_{u \in U_t^\delta} Y_{t^\delta}^{1,\alpha,\beta} \leq 0 \). Then, from Lemma 6.15 it follows that

\[
\inf \sup_{\beta \in B_t^\delta} \sup_{u \in U_t^\delta} Y_{t^\delta}^{2,\alpha,\beta} \leq C\delta^{\frac{3}{2}}.
\]
Hence, there exists $\beta^* \in B_{t, \tau^\delta}$ (depending on δ) such that
\begin{equation}
\esssup_{\alpha \in A_{t, \tau^\delta}} Y_t^{2, \alpha, \beta^*} \leq 2C\delta^\frac{3}{2}.
\end{equation}

From $\beta^* \in B_{t, \tau^\delta}$ it follows that there exists an increasing sequence of stopping times $\{S_n(u)\}_{n \geq 1}$, for all $u \in U_{t, \tau^\delta}$, with $t = S_0(u) \leq S_1(u) \leq \cdots \leq S_n(u) \leq \cdots \leq \tau^\delta$ and $\bigcup_{n \geq 1} \{S_n(u) = \tau^\delta\} = \Omega$, \mathbb{P}-a.s., such that, for all $n \geq 1$ and $u, u' \in U_{t, \tau^\delta}$ with $u = u'$ on $[t, S_{n-1}(u)]$, it holds
\[S_l(u) = S_l(u'), 1 \leq l \leq n, \quad \text{and} \quad \beta^*(u) = \beta^*(u'), \quad \text{on} \quad [t, S_n(u)]. \]

Therefore, S_1 as well as $v^* := \beta^*(u)$ on $[t, S_1(u)]$ do not dependent on the choice of $u \in U_{t, \tau^\delta}$. Let us define u^* on $[t, S_1(u)]$ as the process such that $u^*_{\wedge S_1} \in U_{t, \tau^\delta}$ and
\[F(s, x, 0, 0, 0, u^*_s, v^*_s) = \sup_{u \in U_{t, \tau^\delta}} F(s, x, 0, 0, 0, u, v^*_s), \quad s \in [t, S_1(u*)]. \]

Putting $v^* := \beta^*(u^*_{\wedge S_1})$ on $[S_1(u*), S_2(u*)]$ (Observe that $S_2(u*)$ only dependents on $u^*_{\wedge S_1}$, let us define the process u^* on $[t, S_2(u*)]$ by $u^*_t \wedge S_2(u*) \in U_{t, \tau^\delta}$ such that
\[F(s, x, 0, 0, 0, u^*_s, v^*_s) = \sup_{u \in U} F(s, x, 0, 0, 0, u, v^*_s), \quad s \in [S_1(u*), S_2(u*)]. \]

Therefore,
\[F(s, x, 0, 0, 0, u^*_s, \beta^*(u^*_{\wedge S_2(u*)})_s) = \sup_{u \in U} F(s, x, 0, 0, 0, u, v^*_s), \quad s \in [t, S_2(u*)]. \]

Iterating the above argument we obtain u^* on $[t, S_\infty][, S_\infty := \lim_{n \to \infty} \uparrow S_n(u*) \leq \tau^\delta]$. Choosing an arbitrary $u_0 \in U$, we define $u^* := u^*_1[t, S_\infty + u_01_{S_\infty, \tau^\delta}] \in U_{t, \tau^\delta}$. Since $\bigcup_{n \geq 1} \{S_n(u^*) = \tau^\delta\} = \Omega$ we can conclude
\[F(s, x, 0, 0, 0, u^*_s, \beta^*(u^*_{\wedge S_n(u*)})_s) = \sup_{u \in U} F(s, x, 0, 0, 0, u, v^*_s) \geq \inf_{v \in V} \sup_{u \in U} F(s, x, 0, 0, 0, u, v), \quad s \in [t, S_n(u*)]. \]

for all $n \geq 1$, and hence, that
\[F(s, x, 0, 0, 0, u^*_s, \beta^*(u^*)_s) \geq \inf_{v \in V} \sup_{u \in U} F(s, x, 0, 0, 0, u, v), \quad s \in [t, \tau^\delta]. \quad (6.15) \]

On the other hand, defining $\alpha^*(v) = u^*$ on $[t, \tau^\delta] \times U_{t, \tau^\delta}$, we deduce from (6.14)
\[2C\delta^\frac{3}{2} \geq Y_t^{2, \alpha^*, \beta^*} = Y_t^{2, u^*, \beta^*(u*)}. \quad (6.16) \]

Let us consider the following BSDEs:
\[\begin{align*}
-dY^{2, u^*, \beta^*(u*)}_s &= F(s, x, Y^{2, u^*, \beta^*(u*)}_s, H^{2, u^*, \beta^*(u*)}_s, Z^{2, u^*, \beta^*(u*)}_s, u^*_s, \beta^*(u^*_s))ds \\
& \quad -\lambda H^{2, u^*, \beta^*(u*)}_s ds - Z^{2, u^*, \beta^*(u*)}_s dB_s - H^{2, u^*, \beta^*(u*)}_s d\tilde{N}_s, \\
Y^{2, u, v}_t &= 0, \quad s \in [t, \tau^\delta],
\end{align*} \]
and
\[\begin{align*}
-dY^\delta_t &= 1_{[t, \tau^\delta]}(s) \left(\inf_{v \in V} \sup_{u \in U} F(s, x, 0, 0, 0, u, v) - L|Y^\delta_s| - L|Z^\delta_s| - (L + \lambda)H^\delta_s \right)ds \\
& \quad -Z^\delta_s dB_s - H^\delta_s d\tilde{N}_s, \\
Y^\delta_{t+\delta} &= 0, \quad s \in [t, t+\delta],
\end{align*} \]
where we denote by L the Lipschitz constant of $F(s,x,y,0,0,u,v)$ with respect to y. Thanks to Lemma 2.2 and (6.15) we conclude $Y_{t}^{2,u^*,\beta^*(u)} \geq Y_{t}^{\delta}$.

We also consider the following equation:

$$
-dY_{t}^{\delta} = \left(\inf_{v \in U} \sup_{u \in U} F(s,x,0,0,0,u,v) - L|Y_{s}^{\delta}| \right) ds,
$$

$$
Y_{t+\delta} = 0, \quad s \in [t,t+\delta],
$$

Then we get the following lemma.

Lemma 6.17. For every $\delta \in (0,1)$,

$$
|Y_{t}^{\delta} - \tilde{Y}_{t}^{\delta}| \leq C\delta^{2}, \quad \mathbb{P} - a.s.,
$$

where the constant C does not depend on $\delta > 0$.

From the above lemma, (6.16) and (6.17) it follows that

$$
C\delta^{2} \geq \frac{1}{\delta} \tilde{Y}_{t}^{\delta} \to \inf_{v \in V} \sup_{u \in U} F(t,x,0,0,0,u,v)
$$

as $\delta \to 0$. Therefore, $\inf_{v \in V} \sup_{u \in U} F(t,x,0,0,0,u,v) \leq 0$. From the definition of F it now follows that $U = (U_{1}, U_{2})$ is a viscosity supersolution of the system (4.1). We conclude the proof.

Let us give the proof of the Lemmas 6.14, 6.15, 6.16 and 6.17, which is an adaption of those in [16] or [8] to our framework of games of the type ”NAD strategy against NAD strategy”. We begin with the

Proof of Lemma 6.14. We notice that $iG^{t,x;u,v}_{\delta}(\varphi(\tau^{\delta},X_{\tau^{\delta}}^{\delta},u,v)1_{N_{\tau^{\delta}}^{\delta}=i} + U_{m(i+1)}(\tau^{\delta},X_{\tau^{\delta}}^{\delta},u,v)1_{N_{\tau^{\delta}}^{\delta}=m(i+1)}$ is defined by the following BSDE:

$$
-\frac{d}{\delta} i\tilde{Y}_{s}^{t,x;u,v} = f_{s}(s,X_{s}^{t,x;u,v},i\tilde{Y}_{s}^{t,x;u,v},i\tilde{Z}_{s}^{t,x;u,v},u,v) ds
$$

$$
-\lambda i\tilde{H}_{s}^{t,x;u,v} ds - i\tilde{Z}_{s}^{t,x;u,v} dB_{s} - i\tilde{H}_{s}^{t,x;u,v} dN_{s}, \quad s \in [t,\tau^{\delta}],
$$

through the following relation:

$$
G^{t,x;u,v}_{\delta}(\varphi(\tau^{\delta},X_{\tau^{\delta}}^{\delta})1_{N_{\tau^{\delta}}^{\delta}=i} + U_{m(i+1)}(\tau^{\delta},X_{\tau^{\delta}}^{\delta},u,v)1_{N_{\tau^{\delta}}^{\delta}=m(i+1)} = i\tilde{Y}_{s}^{t,x;u,v}, \quad s \in [t,\tau^{\delta}].
$$

On the other hand, by applying Itô’s formula to \overline{Y}_{s} (see the definition of \overline{Y} in Lemma 6.14), we obtain

$$
\overline{Y}_{s} = \frac{\partial}{\partial s} (s,X_{s}^{t,x;u,v}) ds + (\nabla_{x} \varphi)(s,X_{s}^{t,x;u,v},u,v) ds + (\nabla_{x} \varphi)(s,X_{s}^{t,x;u,v},u,v) dB_{s}
$$

$$
+ \frac{1}{2} tr(\partial_{xx} \varphi \sigma \sigma^{*})(s,X_{s}^{t,x;u,v},u,v) ds + (U_{m(i+1)}(s,X_{s}^{t,x;u,v}) - \varphi(s,X_{s}^{t,x;u,v})) dN_{s}.
$$

From the definition of τ^{δ} we have

$$
\overline{Y}_{\tau^{\delta}} = \varphi(\tau^{\delta},X_{\tau^{\delta}}^{t,x;u,v}) + \int_{t}^{\tau^{\delta}} (U_{m(i+1)}(r,X_{r}^{t,x;u,v}) - \varphi(r,X_{r}^{t,x;u,v})) dN_{r}
$$

$$
= \varphi(\tau^{\delta},X_{\tau^{\delta}}^{t,x;u,v}) + (U_{m(i+1)}(\tau^{\delta},X_{\tau^{\delta}}^{t,x;u,v}) - \varphi(\tau^{\delta},X_{\tau^{\delta}}^{t,x;u,v})) \Delta N_{\tau^{\delta}}
$$

$$
= \varphi(\tau^{\delta},X_{\tau^{\delta}}^{t,x;u,v}) + (U_{m(i+1)}(\tau^{\delta},X_{\tau^{\delta}}^{t,x;u,v}) - \varphi(\tau^{\delta},X_{\tau^{\delta}}^{t,x;u,v})) 1_{N_{\tau^{\delta}}^{\delta}=m(i+1)}
$$

$$
= \varphi(\tau^{\delta},X_{\tau^{\delta}}^{t,x;u,v}) + (U_{m(i+1)}(\tau^{\delta},X_{\tau^{\delta}}^{t,x;u,v}) - \varphi(\tau^{\delta},X_{\tau^{\delta}}^{t,x;u,v})) 1_{N_{\tau^{\delta}}^{\delta}=m(i+1)}
$$

44
From \(\delta \) and the above equality, \(Y \) of the solution of BSDE (6.9), it follows that
\[
Y_t^{1, u, v} = C_{s, \tau, \delta} F(\tau, X_t^{1, u, v, 1} 1_{N_t^{1, \delta} = i} + u_m(i+1)(\tau, X_t^{1, u, v, 1} 1_{N_t^{1, \delta} = m(i+1)}),
\]
and thus \(Y_t^{1, u, v} \). Therefore, from the above equality, (6.19) and (6.20), and the uniqueness of the solution of BSDE (6.9), it follows that
\[
Y_t^{1, u, v} = C_{s, \tau, \delta} \mathbb{E}[\varphi(\tau, X_t^{1, u, v} 1_{N_t^{1, \delta} = i} + U_{m(i+1)}(\tau, X_t^{1, u, v, 1} 1_{N_t^{1, \delta} = m(i+1)}) - Y\tau_{t, \delta},
\]
and this allows to conclude the proof. \(\square \)

Proof of Lemma 6.15 From (3.2) it follows that, for all \(p \geq 2 \), there exists some positive constant \(C = C_p \) such that
\[
\mathbb{E}[\sup_{t \leq s \leq t + \delta} |X_s^{t, x; u, v} - x|^p] \leq C_\delta(1 + |x|^p), \mathbb{P} - a.s.,
\]
uniformly in \(u \in \mathcal{U}_{t, t + \delta}, v \in \mathcal{V}_{t, t + \delta} \). Let
\[
\varphi(s) = F(s, x, Y_s^{1, u, v, 1, u, v, 1, u, v, u_s, v_s}) = F(s, X_s^{t, x; u, v, 1, u, v, 1, u, v, u_s, v_s}).
\]
Then, we have
\[
|\varphi(s)| \leq C(1 + |x|^2)(|X_s^{t, x; u, v} - x| + |X_s^{t, x; u, v} - x|^3),
\]
for \(s \in [t, t + \delta], (t, x) \in [0, T] \times \mathbb{R}^n, u \in \mathcal{U}_{t, t + \delta}, v \in \mathcal{V}_{t, t + \delta} \). From Lemma 2.3 it follows that
\[
\mathbb{E}\left[\int_t^{t + \delta} (|Y_s^{1, u, v} - Y_s^{2, u, v}|^2 + |Z_s^{1, u, v} - Z_s^{2, u, v}|^2) ds|F_t\right] + \mathbb{E}\left[\int_t^{t + \delta} |H_s^{1, u, v} - H_s^{2, u, v}|^2 ds|F_t\right]
\]
where \(\rho(r) = (1 + |x|^2)(r + r^3), r \geq 0 \). Therefore, we have
\[
\mathbb{E}\left[\int_t^{t + \delta} \left(F(s, X_s^{t, x; u, v, 1, u, v, 1, u, v, u_s, v_s}) - F(s, X_s^{t, x; u, v, 1, u, v, 1, u, v, u_s, v_s}) - \lambda H_s^{1, u, v} + \mu H_s^{2, u, v} \right) ds|F_t\right]
\]
\[
\leq C_\delta \mathbb{E}\left[\int_t^{t + \delta} (\rho(|X_s^{t, x; u, v} - x|) + |Y_s^{1, u, v} - Y_s^{2, u, v}| + |Z_s^{1, u, v} - Z_s^{2, u, v}|) ds|F_t\right]
\]
\[
+ C_\delta \mathbb{E}\left[\int_t^{t + \delta} |H_s^{1, u, v} - H_s^{2, u, v}| ds|F_t\right]
\]
\[
\leq C_\delta \mathbb{E}\left[\int_t^{t + \delta} \rho(|X_s^{t, x; u, v} - x|) ds|F_t\right] + C_\delta^2 \{ \mathbb{E}\left[\int_t^{t + \delta} |Y_s^{1, u, v} - Y_s^{2, u, v}|^2 ds|F_t\right]\}
\]
\[
+ C_\delta \{ \mathbb{E}\left[\int_t^{t + \delta} |Z_s^{1, u, v} - Z_s^{2, u, v}|^2 ds|F_t\right]\}
\]
\[
\leq C_\delta^2.
\]
The desired result then follows. \(\square \)
Proof of Lemma 6.16: Since $F(s, x, \cdot, \cdot, u, v)$ has a linear growth in (y, h, z), uniformly in (s, x, u, v), there exists a positive constant C independent of δ, u and v, such that, for $s \in [t, t + \delta]$,

$$|Y^{2,u,v}_s|^2 \leq C\delta, \quad E[\int_s^{t+\delta} |Z^{2,u,v}_r|^2 dr|\mathcal{F}_s] \leq C\delta, \quad E[\int_s^{t+\delta} |H^{2,u,v}_r|^2 dr|\mathcal{F}_s] \leq C\delta.$$

By virtue of equation (6.10) we have, for $s \in [t, t + \delta]$,

$$|Y^{2,u,v}_s| \leq CE[\int_s^{t+\delta} \left(|F(r, x, Y^{2,u,v}_r, H^{2,u,v}_r, Z^{2,u,v}_r, \mu_r, \nu_r)| + \lambda |H^{2,u,v}_r| \right) dr|\mathcal{F}_s]$$

$$\leq C\delta + C\sqrt{\delta}(E[\int_s^{t+\delta} |Z^{2,u,v}_r|^2 dr|\mathcal{F}_s])^{\frac{1}{2}} + C\sqrt{\delta}(E[\int_s^{t+\delta} |H^{2,u,v}_r|^2 dr|\mathcal{F}_s])^{\frac{1}{2}}$$

$$\leq C\delta, \quad \mathbb{P}\text{-a.s.}$$

By applying Itô formula to $|Y^{2,u,v}_s|^2$ we conclude

$$E[\int_t^{t+\delta} |Z^{2,u,v}_s|^2 ds|\mathcal{F}_t] + E[\int_t^{t+\delta} |H^{2,u,v}_s|^2 ds|\mathcal{F}_t] \leq C\delta^2, \quad \mathbb{P}\text{-a.s.}$$

Therefore,

$$E[\int_t^{t+\delta} |Y^{2,u,v}_s|^2 ds|\mathcal{F}_t] + E[\int_t^{t+\delta} |Z^{2,u,v}_s|^2 ds|\mathcal{F}_t] + E[\int_t^{t+\delta} |H^{2,u,v}_s|^2 ds|\mathcal{F}_t] \leq C\delta^2 + \delta^\frac{1}{2}(E[\int_t^{t+\delta} |Z^{2,u,v}_s|^2 ds|\mathcal{F}_t])^{\frac{1}{2}} + C\delta^\frac{1}{2}(E[\int_t^{t+\delta} |H^{2,u,v}_s|^2 ds|\mathcal{F}_t])^{\frac{1}{2}}$$

$$\leq C\delta^\frac{3}{2}, \quad \mathbb{P}\text{-a.s.}$$

The proof is complete. \Box

Proof of Lemma 6.17: By using standard arguments of BSDEs we get the following estimate

$$E[\sup_{s \in [t, t+\delta]} |Y^\delta_s - \bar{Y}^\delta_s|^2|\mathcal{F}_t] + E[\int_t^{t+\delta} |Z^\delta_s|^2 ds|\mathcal{F}_t] + E[\int_t^{t+\delta} |H^\delta_s|^2 ds|\mathcal{F}_t] \leq C\delta^2, \quad \mathbb{P} - a.s.$$

From equations (6.17) and (6.18) it follows that

$$|Y^\delta_t - \bar{Y}^\delta_t| \leq CE[\int_t^{t+\delta} \left(|Y^\delta_s - \bar{Y}^\delta_s| + |Z^\delta_s| + |H^\delta_s| \right) ds|\mathcal{F}_t]$$

$$+ E[\int_t^{t+\delta} \left(\inf_{v \in U} F(s, x, 0, 0, u, v) + L|Y^\delta_s| \right) ds|\mathcal{F}_t]$$

$$\leq C\delta^\frac{1}{2}E[\sup_{s \in [t, t+\delta]} |Y^\delta_s - \bar{Y}^\delta_s|^2|\mathcal{F}_t]^{\frac{1}{2}} + C\delta^\frac{1}{2}E[\int_t^{t+\delta} |Z^\delta_s|^2 ds|\mathcal{F}_t]^{\frac{1}{2}}$$

$$+ C\delta^\frac{1}{2}E[\int_t^{t+\delta} |H^\delta_s|^2 ds|\mathcal{F}_t]^{\frac{1}{2}} + E[t + \delta - \tau^\delta|\mathcal{F}_t]$$

$$\leq C\delta^\frac{3}{2}, \quad \mathbb{P}\text{-a.s.}$$

The proof is complete. \Box
References

[1] G. Barles, R. Buckdahn and E. Pardoux, Backward stochastic differential equations and integral-partial differential equations, Stochastics Stochastics Rep 60 (1997) 57–83.

[2] G. Barles, C. Imbert, Second-order elliptic integro-differential equations: viscosity solutions theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008) 567–585.

[3] A. Bensoussan, J. Frehse, Stochastic games for \(N \) players, J. Optim. Theory Appl. 105 (2000) 543–565.

[4] I. Biswas, On zero-sum stochastic differential games with jump-diffusion driven state: a viscosity solution framework, arXiv:1009.4949v1.

[5] R. Buckdahn, P. Cardaliaguet, M. Quincampoix, Some recent aspects of differential game theory, Dynamic Games and Applications 1 (2011) 74–114.

[6] R. Buckdahn, P. Cardaliaguet, C. Rainer, Nash equilibrium payoffs for nonzero-sum stochastic differential games, SIAM J. Control Optim. 43 (2004) 624–642.

[7] R. Buckdahn, Y. Hu, Probabilistic interpretation of a coupled system of Hamilton-Jacobi-Bellman equations, J. Evol. Equ. 10 (2010) 529–549.

[8] R. Buckdahn, Y. Hu, J. Li, Integral-partial differential equations of Isaacs type related to stochastic differential games with jumps, arxiv:1004.2752v1.

[9] R. Buckdahn, J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM J. Control Optim. 47 (2008) 444–475.

[10] W.H. Fleming, P.E. Souganidis, On the existence of value functions of twoplayer, zero-sum stochastic differential games, Indiana Univ. Math. J. 38 (1989) 293–314.

[11] S. Hamadène, Backward-forward SDEs and stochastic differential games, Stochastic Process. Appl. 77 (1998) 1–15.

[12] S. Hamadène, J. Lepeltier, S. Peng, BSDEs with continuous coefficients and stochastic differential games, in: Backward Stochastic Differential Equations, in: El Karoui Mazliak (Ed.), Pitman Research Notes in Math. Series, vol. 364, 1997, pp. 115–128.

[13] J. Lasry, P. Lions, Mean field games, Jpn. J. Math. 2 (2007) 229–260.

[14] Q. Lin, A BSDE approach to Nash equilibrium payoffs for stochastic differential games with nonlinear cost functionals, Stochastic Process. Appl. 122 (2012) 357–385.

[15] E. Pardoux, F. Pradelies and Z. Rao, Probabilistic interpretation of a system of semi-linear parabolic partial differential equations. Ann. Inst. H. Poincare Probab. Statist. 33 (1997) 467–490.

[16] S. Peng, Backward stochastic differential equations—stochastic optimization theory and viscosity solutions of HJB equations, in: Topics in Stochastic Analysis, Science Press, Beijing, 1997, Yan, J., Peng, S., Fung, S., Wu, L.M. Ch.2 (Chinese vers.).

[17] M. Royer, Backward stochastic differential equations with jumps and related non-linear expectations, Stochastic Process. Appl. 116 (2006) 1358–1376.

[18] S. Tang, X. Li, Necessary conditions for optimal control of stochastic systems with jumps, SIAM J. Control Optim 32 (1994) 1447–1475.