Skarn-style alteration in Proterozoic metasedimentary protoliths hosting IOCG mineralization: the Island Dam Prospect, South Australia

William Keyser1 · Cristiana L. Ciobanu1 · Kathy Ehrig2,3 · Marija Dmitrijeva1 · Benjamin P. Wade4 · Liam Courtney-Davies1 · Max Verdugo-Ihl1 · Nigel J. Cook3

Received: 6 August 2021 / Accepted: 21 January 2022 © The Author(s) 2022

Abstract
New mineralogical, geochemical, and geochronological data are presented for the Island Dam prospect, Olympic Cu-Au Province, South Australia. Skarn assemblages comprising actinolite/phlogopite + K-feldspar + magnetite suggest the presence of calcareous protoliths at Island Dam and indicate high-temperature alkali-calcic alteration in the early stages of IOCG mineralization, as seen in other deposits in the region. Dating of lamellar hematite intergrown with Cu-Fe-sulfides allows the timing of the alteration-mineralization event to be constrained at 1594 ± 28 Ma, contemporaneous with the ~1.59 Ga IOCG mineralization event recorded across the eastern Gawler Craton. The host metasedimentary sequence can be correlated to the Wallaroo Group based on lithology and fabrics, and stratigraphically by an underlying ~1850 Ma Donington Suite granite and the new U–Pb ages for superimposed mineralization. Oscillatory zoned silician magnetite in skarn displays a trace element signature comparable to that observed in the outer shell of the Olympic Dam deposit and the nearby Wirrda Well prospect and is consistent with early stages of IOCG mineralization. The geochemical signatures of hematite from skarn and banded Fe-rich metasedimentary rocks share a common enrichment in W, Sn, Mo, Th, and U seen in hematite from IOCG-style mineralization across the Gawler Craton. Relative enrichment in As, Sb, Ni, and Co is, however, specific to iron-oxides from banded Fe-rich metasedimentary rocks. These features can be attributed to pre-existing iron-rich lithologies.

Keywords Olympic Cu-Au Province · IOCG deposits · Skarn alteration · Iron-oxides · Hematite U–Pb geochronology

Introduction
Iron-oxide copper gold (IOCG) metallogeny encompasses a broad spectrum of alteration styles in rocks hosting Cu-Au–Ag–(U, REE) mineralization (Barton 2014 and references therein). Irrespective of geological setting, IOCG alteration always features a diverse group of low-Ti iron-oxides as the dominant component (>10%). Iron-oxides are represented by high-temperature (HT) magnetite- and low-temperature (LT) hematite-rich endmembers, with transition from magnetite to hematite accompanying ascent, cooling, and acidification of voluminous, highly saline hydrothermal fluids of likely magmatic origin (Oreskes and Einaudi 1992; Bastrakov et al. 2007; Williams et al. 2010). Fluid-rock interactions generate regional-scale IOCG footprints with diagnostic mineral assemblages that define alteration halos. These can be sub-divided into (i) early HT Na(Ca-Fe) alteration (albite + calcisilicates + magnetite); (ii) Fe-K alteration (K-feldspar and/or biotite-magnetite); and (iii) late LT hydrolytic (sericite-chlorite) hematite-carbonate-quartz alteration + mineralization (Hayward and Skirrow 2010). Recognition of one or more of the alteration types provides important information about the space–time evolution of IOCG mineralization at the regional-to-deposit-scale and may be a valuable indicator of economic potential (Hitzman et al. 1992). Recognition and correct interpretation of alteration facies is crucial for
the application of alteration signatures in exploration to systematically vector towards mineralization.

The Olympic Cu-Au Province, eastern Gawler Craton, South Australia, is one of largest Mesoproterozoic IOCG provinces worldwide (Hayward and Skirrow 2010; Reid 2019). Mineralization is attributed to craton-wide magmatic-hydrothermal activity at ~1.6 Ga (Skirrow et al. 2007; Allen et al. 2008; Cherry et al. 2018; Courtney-Davies et al. 2020a). The province hosts a range of IOCG mineralization systems in diverse geological settings, the best known of which are hosted by hematite breccias within Mesoproterozoic volcanic to granitic lithologies such as the giant Olympic Dam deposit (Ehrig et al. 2012, 2017). Calcic skarn-IOCG mineralization is, however, known throughout the province at Punt Hill (Reid et al. 2011) and Moonta-Wallaroo districts (Conor et al. 2010; Reid et al. 2011; Ismail et al. 2014). In addition to calcareous units, iron-rich horizons interpreted as banded iron formation (BIF) are also present within metasediments (Conor et al. 2010; Keyser et al. 2017; Geological Survey of South Australia, 2019; https://map.sarig.sa.gov.au/), hinting at the possibility of juxtaposition of IOCG mineralization within terranes hosting older, genetically unrelated Fe-rich lithologies. Such overprinting of mineralization styles has been suggested in the Olympic Cu-Au Province based on petrographic and geochronological analysis of iron-oxides at Olympic Dam that predate IOCG mineralization (Courtney-Davies et al. 2020b). The common association between calcareous lithologies and BIFs in older Paleoproterozoic to Archean sedimentary basins makes identification of skarn-type alteration important for interpretation of potential BIF-IOCG relationships.

The Island Dam prospect, ~90 km SE of Olympic Dam, is one such occurrence in which skarn-style alteration is associated with IOCG mineralization within BIF-bearing sedimentary protoliths (Keyser et al. 2017). This contribution uses mineralogical, geochemical, and geochronological data from the Island Dam prospect to provide insights into possible protoliths for mineralized lithologies and discusses their relationships to regional-scale IOCG alteration in the Olympic Cu-Au Province. A 3D geological model for the prospect is presented and is complimented by cross-sections through the prospect. Mineralization and alteration are characterized from ore textures and compositional data, with emphasis placed on constraining skarn mineral associations, particularly those of the dominant iron-oxides, within different lithologies. Our primary aim is to distinguish between features that can be interpreted as primary, and those that result from hydrothermal overprinting associated with IOCG mineralization. Our results compliment regional geological studies and further constrain the spatial and temporal relationships among individual IOCG prospects across the Olympic Cu-Au Province, as well as the disparate expressions of hydrothermal events associated with IOCG metallogeny in the region.

Geological background

The Olympic Cu-Au Province is roughly defined as a ~700-km-long arc-shaped belt of IOCG mineralization in the eastern Gawler Craton (Skirrow et al. 2002, 2007, 2018; Reid 2019). Mineralization is associated with emplacement of the bimodal intrusive rocks of the ~1.6 Ga Hiltaba Suite and coeval Gawler Range Volcanics (GRV; Blissett et al. 1993), representing a silicic-dominated large igneous province (Pankhurst et al. 2011).

Basement rocks within the northern segment of the Olympic Cu-Au Province comprise the ~1.85 Ga Donington Suite granites (Jagodzinski 2005) and metasedimentary rocks of the overlying ~1.76–1.74 Ga Wallaroo Group. Older Paleoproterozoic to Archean units such as those exposed in the western and southern Gawler Craton (e.g., ~2.5 Ga Mulgathing Complex) have been inferred at depth from geophysical modeling (Direen and Lyons 2007). The Wallaroo Group is a diverse package of partially metasomatized lithologies, including finely laminated metasiltstones, arkose, metasandstones, feldspathic-, calcisilicate-, and carbonate-bearing metasedimentary rocks, as well as BIF of the Wandearah Formation, and felsic and mafic volcanic rocks of the Weetulta and Matta formations, respectively (Zang 2002; Cowley et al. 2003). Evaporites are also suggested to have been present within the Wallaroo Group based on the widespread occurrence of Na-rich lithologies (e.g., Conor et al. 2010). The extent of the Wallaroo Group is inferred as far north as the Mt. Woods Inlier and as far south as the Yorke Peninsula (Creaser 1989; Cowley et al. 2003). The basement complex throughout the Olympic Cu-Au Province is intruded by Hiltaba Suite granitoids, however only in the northern part is it overlain by GRV.

IOCG mineralization occurs within various lithologies across the Olympic Cu-Au Province, including the Donington Suite granite (e.g., Oak Dam, Carrapateena and Wirrda Well), intrusive and metasedimentary rocks of the Wallaroo Group (e.g., Vulcan and Hillside, respectively), and the younger GRV (e.g., Prominent Hill and Acropolis) and Hiltaba Suite granites (Olympic Dam). Mineralization styles are equally as variable, for example, occurring as networks of magnetite-bearing veins at the Acropolis prospect (Krneta et al. 2017a; Courtney-Davies et al. 2019a, b; Dmitrijeva et al. 2019; McPhie et al. 2020), as a vertically plunging breccia pipe at the Wirrda Well prospect (Krneta et al. 2017a; Courtney-Davies et al. 2019a, b; Dmitrijeva et al. 2022), and as skarn replacement of carbonate protoliths at the Hillside deposit and Punt Hill prospect (Reid et al. 2011; Fabris et al. 2018).
Alteration associated with mineralization or well-defined deposit-scale zoning is rarely well preserved due to extensive overprinting. Both HT Na(Ca-Fe) and subsequent Fe-K alteration are recognized in the Mt. Woods Inlier and the Moonta-Wallaroo district (Skirrow et al. 2002; Conor et al. 2010). When present, calc-silicates are represented by actinolite, diopside, and trace titanite, allanite, and scapolite (Kontonikas-Charos et al. 2018). Garnet is present where skarn alteration is most pronounced (e.g., at Punt Hill; Reid et al. 2011). Low-temperature hydrolytic alteration is the main mineralizing stage and the dominant alteration type in many of the larger deposits in the Olympic Cu-Au Province (e.g., Olympic Dam and Prominent Hill), but is less common in the Moonta-Wallaroo district (Conor et al. 2010). When present, calc-silicates are represented by actinolite, diopside, and trace titanite, allanite, and scapolite (Kontonikas-Charos et al. 2018). Garnet is present where skarn alteration is most pronounced (e.g., at Punt Hill; Reid et al. 2011). Low-temperature hydrolytic alteration is the main mineralizing stage and the dominant alteration type in many of the larger deposits in the Olympic Cu-Au Province (e.g., Olympic Dam and Prominent Hill), but is less common in the Moonta-Wallaroo district (Conor et al. 2010). Skarn-style alteration in various locations throughout the Olympic Cu-Au Province is attributable to intrusive relationships between Hiltaba Suite granites (e.g., Tickera Granite; 1583 ± 7 Ma) and Wallaroo Group metasedimentary rocks (e.g., Oorlano Metasomatite; Kontonikas-Charos et al. 2014).

In individual deposits, recognition of specific alteration assemblages is often hindered by pervasive overprinting but also by the scale of observation. For example, nanoscale studies have identified alkali-calcic alteration in granite (K-feldspar/hyalophane, epidote) and silician magnetite (K-rich banding and abundant nanoscale inclusions of (ferro) actinolite + diopside + epidote) at the margins of the Olympic Dam deposit (Kontonikas-Charos et al. 2018; Ciobanu et al. 2019). Although uncharacteristic of the Olympic Dam deposit as a whole, or at least poorly preserved at the macroscale, such alteration represents an earlier stage (magnetite + chalcopyrite + pyrite) of IOCG mineralization. Similarly, clinopyroxene and garnet have been identified as trapped phases within fluid inclusions in quartz from the Torrens Cu-Au prospect ~20 km east of Island Dam (Bastrikov et al. 2007), suggesting an early, albeit largely obliterated, magnetite-K-feldspar-silicate alteration stage.

Recognition of alteration assemblages is further complicated by multiple, superimposed regional metamorphic events. The earliest orogenic event recognized in the Gawler Craton is the ~2.47–2.41 Ga Sleafordian Orogeny (Swain et al. 2005; Halpin and Reid 2016), which led to amphibolite- to granulite-facies metamorphism and the formation of gneissic basement units (e.g., the Mulgathing Complex) onto which younger volcanic and sedimentary rocks were deposited. Similarly high metamorphic grade was attained during the ~1.85 Ga Cornian Orogeny, during which the Donington Suite was emplaced (Reid et al. 2008). The ~1.73–1.69 Ga Kimban major tectonothermal event led to upper-amphibolite- to granulite-facies metamorphism in most regions of the Gawler Craton (Vassallo and Wilson 2002). An exception to this is, however, the eastern Gawler Craton, where low-grade
sedimentary rocks are observed. Dewatering of these rocks may have contributed fluids important for IOCG mineralization (Reid and Fabris 2015).

Mesoproterozoic bedrock across much of the eastern Gawler Craton is cut by an unconformity representing a gap of at least 700 million years, onto which thick sedimentary sequences are deposited across the Stuart Shelf (Preiss 1993). Bedrock is also intruded by the ~820 Ma Gairdner Dolerite (Wingate et al. 1998). Extensive fault reactivation took place during the ~500 Ma Delamerian Orogeny associated with regional-scale fold-thrust complexes (Foden et al. 2006), effectively terminating a rifting event between the Gawler Craton and the eastern Curnamona Province.

Island Dam

The prospect (Fig. 1), located under a ~250–350 m cover sequence of sedimentary rocks, is defined by a magnetic anomaly that straddles the E-W striking Andamooka Fault Zone (AFZ), a major fault complex interpreted as an important conduit for IOCG fluid flow during the ~1.6 Ga magmatic event (Skirrow et al. 2007). Ten diamond drillholes (IDD1-IDD10) are located along this anomaly (Fig. 1B, C). Although geological data for the prospect are limited, the variably altered metasedimentary rocks hosting mineralization are correlated with the ~1750 Ma Wallaroo Group (Cowley et al. 2003; Keyser et al. 2017). These are overlain by an unconformable cover sequence of Neoproterozoic sedimentary rocks, including the Nuccaleena Dolomite and the Tregolana Shale. Sensitive high resolution ion microprobe (SHRIMP) U–Pb dating of igneous zircon within a megacrystic granite intersected by drillhole ID3 yielded an age of 1860 ± 4 Ma (Jagodzinski 2005), confirming the presence of a Donington Suite basement. Igneous biotite from the same granite yielded an 40Ar/39Ar plateau age of 1593 ± 12 Ma, interpreted to represent thermal resetting during Gawler silicic-dominated large igneous province magmatism (Skirrow et al. 2007).

Sampling and methodology

Sample suite

Lithologies were classified using a combination of drillhole logging, whole-rock geochemistry and petrography. Many of the samples are affected by hydrolytic alteration, which is considered to result from superimposed alteration associated with late-stage fault-(re)activation. The present study is biased towards defining these lithologies using preserved mineral assemblages and textures that predate alteration. Cover sequences are not included in the present study. Sixty-three samples from the 10 drillholes were prepared as 2.5 × 5 cm thin-sections and 2.5 cm-diameter polished blocks for petrographic, geochemical, and geochronological study. The list of samples from this study is provided in Electronic Supplementary Material (ESM) Table S1, and schematic representations of drillholes and mean whole-rock geochemical data for representative lithologies are provided in ESM Fig. S1 and Table S2.

Analytical methodology

Petrographic characterization was performed using transmitted- and reflected-light optical microscopy. Samples were further characterized for micron-scale features and mineral-scale compositional zoning using a FEI Quanta 450 scanning electron microscope (SEM) in back-scattered electron (BSE) imaging mode equipped with an energy-dispersive X-ray spectrometer.

A Cameca SXFive Electron Microprobe with five wavelength-dispersive X-ray detectors and running ‘PeakSite’ software was used for quantitative analysis of amphiboles, micas, feldspars and magnetite. Analytical conditions were 15-kV acceleration voltage with a 20-nA beam current and a defocused 1-µm beam. Additional information on analytical methods including standards and minimum detection limits (mdl) is provided in ESM Table S3.

Trace element analysis and grain mapping of iron-oxides, rutile, amphibole and apatite, and U–Pb hematite and apatite geochronology were conducted using a RESOlution excimer laser ablation system coupled to an Agilent 7900× Quadrupole ICP-MS. Trace element acquisition was performed using a laser frequency of 10 Hz, fluence of 3.5 J/cm2, and a spot size of 13–51 µm. Internal standard elements used for iron-oxides, rutile, and amphibole and apatite were 57Fe, 49Ti, 43Ca, respectively, assuming ideal stoichiometry. External reference materials were the synthetic basalt glass standard GSD-1G and NIST610. In situ U–Pb hematite dating (Ciobanu et al. 2013; Courtney-Davies et al. 2019a) was performed with a laser frequency of 5 Hz, a spot diameter...
of 51 µm, and a fluence of 4.5 J/cm² using the GJ-1 zircon reference material \(^{206}Pb/^{238}U\) age, 600.7 Ma; Jackson et al. 2004) for correction of downhole U–Pb fractionation. Apatite geochronology was performed using a laser frequency of 5 Hz and a spot diameter of 51 µm at a fluence of 3.5 J/cm². Reference materials used were the McClure (ID-TIMS weighted-mean \(^{207}U/^{235}Pb\) age, 523.51 ± 1.47 Ma; Schoene and Bowring 2006) and Durango (\(^{40}Ar/^{39}Ar\) age of 31.44 ± 0.18 Ma; McDowell et al. 2005) apatite standards. All data reduction and creation of LA-ICP-MS element maps were performed using ‘lolute v.2.5’ (Paton et al. 2011). All geochronological data are presented using Isoplot 4.1 (Ludwig 2012). Full details of LA-ICP-MS methodology, including reference materials and minimum detection limits, are provided in ESM Table S4. All instrumentation is housed at Adelaide Microscopy, The University of Adelaide.

Spatial 3D-modeling and whole-rock analysis

Three-dimensional geological modeling was performed using Leapfrog Geo 4.5.0 implicit modeling software. The model was created using core logging data, with numerical interpolations for Cu, Fe, Sn, W, and U obtained from a whole-rock geochemical dataset of 1934 samples, which were collected and assayed at either 1- or 5-m-long intervals along each drillhole. Methodology for whole-rock analysis is provided in ESM Table S5.

Results

Lithologies

Representative lithologies and mineralization are illustrated in Fig. 2. These comprise Donington Suite granites, felsic and mafic (sub)volcanic rocks, siliceous (up to 80 wt% SiO₂), K-feldspar-rich (up to ~7.5 wt% K₂O) rocks (in IDD8; ESM Table S2), various rhythmically banded lithologies, and rocks with pervasive alteration typical of metasomatism. We consider the siliceous, K-feldspar-rich lithologies as arkose for the purpose of this contribution, although we cannot rule out a volcano-sedimentary origin. This choice of terminology is based on the fact that the volcano-sedimentary sequences from the Wallaroo Group, unlike those further south in the province (Moonta area: Conor et al. 2010), lack regional potassic alteration in the Olympic Dam district. In all these, iron-oxides are important components, either within bands or as cm-sized pockets and veinlets, as well as throughout brecciated intervals. Donington Suite granites (e.g., in drillhole IDD3) are recognizable by the presence of K-feldspar megacrysts (Fig. 2A) and their foliated, sheared appearance (Fig. 2B), particularly when located close to, or within faults. Felsic volcanic rocks (Fig. 2C) are present as intervals within the arkose. The latter are the dominant lithologies intersected in drillholes IDD2, -7, -8, and -10. Fine-grained, dark green mafic subvolcanic rocks occur as thin, m-sized intervals; these are interpreted as either sills or dikes.

Both the arkose and the banded lithologies represent distinctive packages within the Wallaroo Group. They display a wide variety of colors, pink to brown and green, and vary from fine- to coarser-grained varieties. Color variation is due to the presence of K-feldspar, disseminations of iron-oxides, and the presence of green minerals such as actinolite and phlogopite, as well as siderite and calcite. Actinolite and phlogopite are considered here as index minerals for those rocks defined as calcic exoskarn and magnesian endoskarn, respectively. Quartz and chlorite are present in variable proportions throughout any given rock. Ubiquitous iron-oxides can form rhythmic banding with carbonates, chlorite and K-feldspar, as well as with skarn silicates. Among the lithologies enriched in iron-oxides are those forming rhythmically banded quartzitic intervals, in which K-feldspar is present either as porphyroblasts or as fine-grained bands (Fig. 2D, E). These are likely to represent Fe-rich metasedimentary rocks analogous to those of BIF type. Although skarn minerals are scarce or absent in such banded Fe-rich metasedimentary rocks (Fig. 2D, E), skarn silicates, with or without K-feldspar (Fig. 2F–H), represent major components of Si-poor, Mg-rich sediments (e.g., up to 13 wt% MgO in IDD4). For simplicity, such lithologies are hereafter referred to as skarns.

Felsic volcanic intervals within volcanic-sedimentary sequences of the Wallaroo Group are interbedded with impure dolomites and can be considered as the Mg-, Ca-, K-bearing protoliths for skarn. This type of thinly interbedded dolomites can explain the unusual fabrics observed, including the mottled green and pink (K-feldspar) appearance of some skarns (Fig. 2H), or the coarse-grained, K-feldspar+ calcite (+ quartz) intervals within banded skarn (Fig. 2I). In the latter, bundles of coarse-grained hematite are also present (Fig. 2I).

Characteristics for Island Dam skarns are carbonate-rich pockets and short veinlets containing lamellar hematite (Fig. 2J, K). Considering their fan-like arrangement and coarser size compared to minerals in host skarn, these hematite aggregates likely crystallized in open spaces (Fig. 2J). Copper-Fe-sulfides occur as disseminations and veinlets in

References

- Jackson, T. L., et al. (2004). "Correlation of U-Pb zircon ages and Pb isotope signatures of the Olympic Dam deposit, South Australia." Geochimica et Cosmochimica Acta, 68(1), 149-162.
- Ludlow, J. (2012). "Isoplot 4.1: a Microsoft Excel-based, graphical program for isochron and t-Ri decay modeling of U-Pb and Pb-Pb data." Geochronology, 4(1), 17-22.
- Paton, D. J., et al. (2011). "Lolute: a software package for the interpretation of LA-ICP-MS data and modeling of apatite U-Pb ages." Geostandards and Geoanalytical Research, 36(1), 95-99.
skarn, in some cases within cm-wide barite-dominant veinlets (Fig. 2L).

Deposit 3D geological modeling

The lithological categories introduced above and the whole-rock geochemical dataset for the 10 drillholes were used to produce a 3D geological model and define metal anomalies along two cross-sections (Fig. 3). The model was built by defining four lithological blocks demarcated by a series of sub-vertical faults. The AFZ offsets the arkose into northern and southern blocks, which are correlated across drillholes IDD7, -8, and -10 (Fig. 3; ESM Fig. S1). Secondary faults splay off the AFZ on the western margin of the prospect forming western and northwestern blocks. The western block comprises skarns (correlated across drillholes IDD1, -4, -5, -6, and -9; Fig. 3; ESM Fig. S1), which have been uplifted relative to the arkose and are also visible as an erosional window. The Donington Suite, intersected in drillhole IDD3, is exposed in the northwest of the prospect and is uplifted relative to neighboring blocks by normal faults on its southern and western margins (Fig. 3B). Mafic dikes and sills, displaced by faulting along the western margin of the prospect, are correlated across drillholes IDD3, -4, and -10, with another sill intersected in IDD8 (ESM Fig. S1). An unconformable cover sequence of conglomerates, shales, and dolomites extends over the northern and western portions of the prospect.

Isolines for Fe, Cu, Mo, W, Sn, and U (Fig. 3C) define metal distributions that highlight the association between the lithological categories and mineralization. Cross-section A-A’ depicts the roughly sub-vertical faults between the Donington Suite, skarn and arkose, represented by drillholes IDD3, IDD9, and IDD7, respectively. Iron and
Cu concentrations correlate in both skarn and arkose, however in the latter, increasing Fe (up to 30 wt%) and Cu (up to 100 ppm) are coincident with increasing concentrations of Mo (up to 20 ppm), W (up to 75 ppm), and U (up to 15 ppm). In contrast, Fe and Cu concentrations in skarn are associated with elevated Sn (up to 10 ppm; cross-section B-B’). Uranium is associated with Fe in both skarn and arkose and reaches concentrations of up to ~15 ppm).

Petrography and mineral chemistry

Igneous rocks

The Donington Suite granite preserves igneous K-feldspar phenocrysts (orthoclase and microcline), magnesiohornblende and, partially, biotite, whereas plagioclase is largely replaced by albite + sericite. Syn-orogenic deformation of K-feldspar phenocrysts is associated with formation of myrmekitic intergrowths between quartz and plagioclase (Fig. 4A). Replacement by later generations of feldspar is prominent along foliation defined by muscovite + chlorite and this becomes progressively evident in strongly sheared variants of the granite (Fig. 4A), where shears are marked by patches of anhedral, elongated K-feldspar + phlogopite. More melanocratic granites have a foliation defined by magnesiohornblende + phlogopite + K-feldspar. Although variably replaced, magmatic accessories preserved within the granites include Fe-Ti oxides, zircon, and apatite. Secondary apatite is a common phase that forms along domains of foliation and shearing. The felsic metavolcanic rocks are similarly composed of K-feldspar, microcline, and quartz and contain accessory phases such as zircon and apatite (Fig. 4B). The mafic dikes display aphanitic textures with fine-grained intergrowths of Fe-Ti oxides (Fig. 4C), and plagioclase within a groundmass of carbonate pseudomorphs, after clinopyroxene or olivine phenocrysts (Fig. 4C), and plagioclase within a groundmass of fine-grained plagioclase and titanomagnetite (up to 27 wt% nocrysts (Fig. 4C), and plagioclase within a groundmass of carbonate pseudomorphs, after clinopyroxene or olivine phenocrysts (Fig. 4B). The mafic dikes display aphanitic textures with fine-grained plagioclase and titanomagnetite (up to 27 wt% nocrysts (Fig. 4C), and plagioclase within a groundmass of carbonate pseudomorphs, after clinopyroxene or olivine phenocrysts (Fig. 4B).

Skarns

Skarns are characterized by the presence of amphibole and/or biotite (± K-feldspar), magnetite, and quartz (Fig. 5A, B). Amphibole displays variable morphologies, from euhedral to acicular, and shows compositional variability expressed as core-to-rim or patchy zoning (Fig. 5C). Amphibole cores have compositions corresponding to either magnesiohornblende or an Fe-richer actinolite [Mg/(Mg + Fe²⁺) = 0.52–0.91], whereas rims are a Mg-richer actinolite (Fig. 5D; ESM Table S6b). Although dark micas display Fe-richer and -poorer compositions (Fig. 5E), they are nonetheless Mg-dominant and thus classified as phlogopite (Fig. 5F; ESM Table S6c). Arkose is composed of K-feldspar, quartz, and to a lesser degree, carbonates and sericite. Barium zoning within K-feldspar is common to all metasedimentary rocks. In exceptional cases, compositional variability in K-feldspar can be expressed as oscillatory zoning (Fig. 5G), in which BaO may attain concentrations as high as 2.5 wt% (Fig. 5H; ESM Table S6d).

A characteristic feature of skarns is the presence of both magnetite and hematite. Euhedral magnetite, which can occur as a matrix component, disseminated along bands or as intergrowths with silicate minerals (e.g., Fig. 5A, B), is Si-bearing (up to 2.7 wt% SiO₂; ESM Table S6a) at the µm-scale and can be defined as ‘silician magnetite.’ Magnetite displays compositional zoning with Fe-rich cores and Si-rich rims, with oscillatory zoning with respect to Si (Fig. 6A). Although magnetite is variably pseudomorphically replaced by hematite (martitization) (Fig. 6B), it can also display complex equilibrium relationships with coarse-grained lamellar hematite (Figs. 6C, 10B). Lamellar hematite displays compositional variability between cores and margins (Fig. 6C), or oscillatory or patchy zoning features visible on BSE images (Fig. 6D). Hematite within arkose and the Fe-rich horizons is characterized by acicular morphologies within polygranular hematite (Fig. 6E, F). Relict magnetite occurs within both the acicular and polygranular hematite (Fig. 6F). The polygranular hematite is generally Si-rich (Fig. 6G), whereas acicular hematite (and relict magnetite inclusions) contains dusty inclusions of scheelite (Fig. 6H).

Accessory minerals are abundant in the skarns. Zoned tourmaline, more common among the phlogopite skarns, displays bluish cores and green rims in transmitted light (Fig. 7A), corresponding to brighter (Fe-rich) and darker (Mg-rich) intensities, respectively, in BSE images (Fig. 7B). Fluorapatite, without any apparent compositional zoning, is present throughout all lithologies and displays an intimate relationship with silician magnetite (Fig. 7C), or with K-feldspar within more siliceous lithologies. Lozenge-shaped pseudomorphs, more common within actinolite skarns, are evidence of pre-existing titanite (Fig. 7D). Assemblages resulting from replacement of titanite include fine-grained intergrowths of Fe-Ti oxides (Fig. 7E), which may harbor magmatic accessories such as zircon (Fig. 7F), or rutile + chlorite + calcite (Fig. 7G), that may have formed contemporaneous with martitization of silician magnetite. Rutile associated with lamellar hematite displays zoning with respect to tungsten and contains fine-grained inclusions of scheelite (Fig. 7H). Carbonates and fluorite are common within veins and within accumulations of CaREE-phosphates and -fluorocarbonates such as apatite and bastnäsite (Fig. 7I); the latter is partially replaced by synchysite (Fig. 7J). Molybdenite is a less common accessory
Fig. 5 BSE images showing representative features of skarn. Textures of (A) actinolite and (B) phlogopite skarns. Compositional variation in (C, D) amphibole and (E, F) biotite. Amphibole classification diagram after Leake et al. (1997). (G) Oscillatory Ba-zoning in K-feldspar. (H) EPMA element map of K-feldspar grain from (G) showing BaO (wt%) concentration. Act – actinolite; Kfs – K-feldspar; Phl – phlogopite; Qz – quartz; Si-Mt – silician magnetite; Ttn – titanite
Fig. 6 (A–D, G, H) BSE and (E, F) reflected light images showing representative features of iron-oxides. (A, B) Oscillatory zoning in magnetite from skarn with profile (red line) showing Si variation. Lamellar hematite in skarn showing (C) core to margin and (D) patchy W-zoning. (E, F) Hematite within arkose showing acicular and polygranular textures, with (G) Si enrichment in the latter. Note the magnetite inclusions (yellow arrows) in both textures. (H) Relict magnetite in acicular hematite showing dusty scheelite inclusions. Hm – hematite; Mrt – martite; Mt – magnetite; Sch – scheelite; Si-Hm – silician hematite; Si-Mt – silician magnetite.
but is observed within phlogopite-K-feldspar assemblages (Fig. 7K).

Mineralization

Sulfide mineralization comprises chalcopyrite, pyrite, bornite, and less abundant sphalerite, galena, chalcocite, and molybdenite, within a gangue assemblage of hematite, chlorite, carbonates, fluorite, barite, and quartz. Sulfides occur as disseminations, within veins and as replacements of pre-existing skarn minerals. Chalcopyrite is commonly associated with lamellar hematite, generally within pockets and veins (Fig. 2J, K), but can also occur as selective replacement of skarn assemblages along banding (Fig. 8A, B). Copper-Fe-sulfide species may co-exist (chalcopyrite and bornite; Fig. 8C), with exsolution of bornite in chalcopyrite observed (Fig. 8D). Symplectic intergrowths between chalcopyrite and Pb- and Ag-Bi-selenides, clausthalite (PbSe) and bohdanowiczite (AgBiSe₂), further highlight the complexity of the ore mineral assemblages (Fig. 8E-H). These selenides occur as fields of dusty inclusions or rod-like lamellae within chalcopyrite (Fig. 8F) but also as two-component inclusions (Fig. 8G, H). Molybdenite occurs as discrete bundles tied to phlogopite-bearing assemblages (Figs. 7K and 8I). Within mafic dikes, assemblages of pyrite, chalcocite, galena and sphalerite are associated with breakdown of Fe-Ti oxides (Fig. 8J).

Trace element geochemistry

Trace element concentrations were measured in iron-oxides, and in rutile, actinolite, and apatite from representative samples. Data for the three main types of iron oxides (silician magnetite, coarse-grained lamellar hematite, and polygranular hematite) are illustrated in boxplots (Fig. 9A), selected bi-plots (Fig. 9B–D), and on LA-ICP-MS trace element maps (Fig. 10A, D). The trace elements presented in box-plots are grouped into ‘granitophile elements’ (W, Sn, Mo, Th, and U), high field strength elements (Ti, Sc, Zr, Nb, and Ta), chalcophile elements (As, Sb, Cu, Zn, and Ga), transitional metals (Mn, V, Cr, Co, and Ni), and lithophile elements (Mg, Al, Si, and Ca). Trace element data for rutile, actinolite, and apatite are presented as binary-plots and REY fractionation patterns normalized to chondrite following McDonough and Sun (1995). Full trace element datasets are compiled in ESM Table S7a-e.

Iron-oxides

The presence of granitophile elements within the iron-oxides is a feature of both lamellar and polygranular hematite (Fig. 9A), and is readily seen on W, Sn and U LA-ICP-MS element maps for lamellar hematite (Fig. 10). Both types of hematite contain mean W concentrations in the hundreds to thousands of ppm, although this can vary between individual zones. However, only in lamellar hematite does W correlate with high Sn concentrations (mean > 100 ppm; Fig. 9B). Tin is also present in polygranular hematite at concentrations up to 10 ppm. Molybdenum and U concentrations are highest in polygranular hematite with means of ~5 and ~4 ppm, respectively.

All iron-oxide categories contain relatively high mean concentrations of Ti (~200 ppm). Scandium and Nb are also markedly enriched in lamellar hematite (mean 16 and 35 ppm, respectively), with Sc reaching mean concentrations up to 150 ppm in selected samples. Zirconium and Ta occur at concentrations < 1 ppm. Arsenic and Sb concentrations correlate strongly in all iron-oxides (Fig. 9C) but are highest in polygranular hematite (mean 30 and 6 ppm, respectively) and <5 ppm in both silician magnetite and lamellar hematite. Copper concentrations are <1 ppm in all iron-oxide sub-types. Zinc reaches 54 ppm in silician magnetite and 13 ppm in polygranular hematite, but only 2 ppm in lamellar hematite. Although measurable, mean ΣREY concentrations in all iron-oxides are low (<1.5 ppm); their chondrite-normalized REY fractionation trends are scattered and inconsistent.

Silicic magnetite displays the greatest enrichment in transitional metals and lithophile elements compared to lamellar and polygranular hematite (V and Ni, see Fig. 10D). Silicic magnetite contains thousands of ppm Mg, Al, Si, and Ca, hundreds of ppm Mn, Zn, and V, and tens of ppm Cr, Co, and Ni. Both hematite sub-types host Mn and V at tens and hundreds of ppm, respectively. The highest mean Ni concentrations (~33 ppm) were measured in polygranular hematite. Although Co and Ni concentrations are lowest in lamellar hematite, this textural sub-type shows the strongest correlation between the two elements (Fig. 9D). Magnesium, Al, Si, and Ca were all measured within the two hematite textures at concentrations in the tens and hundreds of ppm range, ~1–2 orders of magnitude less than in silicic magnetite.
Fig. 8 (A) Scanned image of thin-section and (B–D) reflected light and (E–J) BSE images of sulfide minerals. (A, B) Chalcopyrite + lamellar hematite intergrowths occurring as selective replacement along banding in skarn. (C) Chalcopyrite + bornite intergrowth within lamellar hematite. (D) Bornite exsolution within chalcopyrite with associated galena and sphalerite. (E–H) Symplectic intergrowths between chalcopyrite, clausthalite, and bohdanowiczite. (I) Molybdenite bundle. (J) Pyrite, chalcocite, galena, and sphalerite associated with breakdown of Fe-Ti oxides in mafic dike. Bd – bohdanowiczite; Bn – bornite; Cc – chalcocite; Chl – chlorite; Cls – clausthalite; Cp – chalcopyrite; Gn – galena; Hm – hematite; Kfs – K-feldspar; Mol – molybdenite; Phil – phlogopite; Py – pyrite; Ser – sericite; Si-Mt – silician magnetite; Sp – sphalerite; Ti-Mt – titanomagnetite
Rutile, actinolite, and apatite

Trace elements were analyzed in two distinct textural types of rutile: rutile replacing titanite (Rt1, Fig. 7G); and zoned rutile associated with lamellar hematite (Rt2; Fig. 7H). The two types contain comparable Sn (~675 ppm), U (Rt1 = 37, Rt2 = 40 ppm) and similar mean concentrations of Sc, Zn, As, and Sb (7–20 ppm). Rt2 is significantly enriched in...
Fig. 10 LA-ICP-MS trace element maps of iron-oxides in skarn. (A) Enrichment of granitophile elements, HFSE, and Al in lamellar hematite, shown in Fig. 2I. Mapped area shown on BSE image on top left and represented by a dashed rectangle on element maps. Note the visible twinning (brighter on BSE image) crosscutting the zoning (on chemical maps). The W and Sn zoning is along the elongation of lamellae or the c axis of hematite. Some lamellae display domain zoning across the elongation with respect to W, Sn versus Nb and Ti. Areas between lamellae, porous and darker on BSE images, are relatively enriched in Sc, U, Pb, or Al. Incipient brecciation (visible on the U and Pb maps) crosscutting the lamellae correlates with the twinning direction indicating these are likely of mechanical type. Reflected light (B) and BSE (C) images showing the relationship between lamellar hematite and silician magnetite and (D) LA-ICP-MS trace element maps showing relative enrichments in the elements indicated. Element scales in ppm. Hm – hematite; Qtz – quartz; Si-Mt – silician magnetite

W (~20,000 ppm) relative to Rt1 (~48 ppm) (Fig. 11A), whereas Rt1 has higher Zr and Hf (1800 and 63 ppm, respectively) relative to Rt2 (43 and 7 ppm, respectively). Strong correlations between the two elements are seen in both types (Fig. 11B). Chromium is also enriched in Rt1 (399 ppm) compared to Rt2 (18 ppm) (Fig. 11C), and Rt2 contains higher V (1,680 ppm), Nb (11,355 ppm) and Ta (550 ppm) relative to Rt1. Rt1 has a higher mean 2REY (126 ppm) than Rt2 (30 ppm) with a chondrite-normalized REY fractionation trend that slopes slightly upwards, whereas that of Rt2 is relatively flat. Both types of rutil display weak negative Eu- and Y-anomalies (Fig. 11D).

Actinolite within the studied samples contains high mean concentrations of Ti (~320 ppm), V (~35 ppm), Co (~10 ppm), and Ni (>10 ppm ppm). Zine is also enriched in actinolite (~60 ppm), as is Zr (>5 ppm), and Sn (>6 ppm). Actinolite contains high average ΣREY of ~17 ppm, with high Y (~10 ppm) and chondrite-normalized REY fractionation patterns characterized by relative LREE depletion, HREE enrichment, and weak positive Y-anomalies (Fig. 11E).

Apatite contains similarly low concentrations of most trace elements, generally at concentrations below 5 ppm, although Mn and Fe are both consistently present at hundreds to thousands of ppm. With the exception of apatite from the megacrystic granite, hundreds of ppm As are present in all other samples as well as tens to hundreds of ppm Sr throughout the sample suite. Although U typically occurs at only low concentrations (<3 ppm), hydrothermal apatite within the megacrystic granite and a sheared equivalent both contained somewhat higher U (44 and 5.6 ppm, respectively). The average ΣREY for apatite ranges from 520 to 3100 ppm, the highest occurring in hydrothermal apatite from the megacrystic granite. Apatite from skarns displays chondrite-normalized REY fractionation patterns that are LREE-enriched and HREE-depleted, although with change in slope, and prominent negative Eu-anomalies (Fig. 11F). Apatite from a felsic metavolcanic displays MREE-enrichment with a negative Eu-anomaly (Fig. 11G). Magmatic apatite from a megacrystic granite displays a slight LREE-enrichment/HREE-depletion with a negative Eu-anomaly whereas hydrothermal apatite is characterized by a flat pattern but is relatively REY-enriched compared with other apatite (Fig. 11H). Apatite from a sheared granite has a LREE-enriched/HREE-depleted REY fractionation pattern with no anomalies, and apatite from a mylonite has a relatively flat pattern with a weak negative Y-anomaly (Fig. 11I).

LA-ICP-MS U–Pb hematite and apatite geochronology

Uranium-Pb LA-ICP-MS geochronology was performed on lamellar hematite within skarn (sample WK29) and hydrothermal apatite from megacrystic granite and a sheared variant. Hematite data is given as a 207Pb/206Pb weighted mean age and apatite data are given as Pb207-corrected weighted mean 207Pb/206Pb ages, with uncertainties for both minerals presented at the 2σ level. The data are presented in Fig. 12 and complete datasets are provided in ESM Table S8a, b.

Thirty spot analyses were taken from cm-scale hematite lamellae like that illustrated in Fig. 10B. These lamellae show compositional heterogeneity and concentrations of U ranging from 2.17 to 10.44 ppm (mean 5.7 ppm), and Th from 0.46 to 3.04 ppm (mean 1.5 ppm). The Tera-Wasserburg diagram (Fig. 12A) displays a spread from near-concordant to highly discordant data resulting from mixtures or radiogenic and common-Pb components. Of the 30 analyses, 14 with low common-Pb cluster around concordia and were used to obtain a 207Pb/206Pb weighted mean age of 1594 ± 28 Ma (MSWD = 0.87; Fig. 12B).

Euhedral hydrothermal apatite from megacrystic granite (WK 64) is inclusion-free and concentrated along the foliation defined by muscovite + chlorite (Fig. 12C). Eleven analyses were obtained. These have U concentrations from 20 to 63 ppm (mean 44 ppm), and Th from 0.15 to 4.11 ppm (mean 0.65 ppm). All analyses were included in the age calculation, yielding a 207Pb-corrected 207Pb/206Pb weighted mean age of 1594 ± 35 Ma, with a MSWD of 4.8 (Fig. 12D).

Apatite within the sheared granite (WK 61) forms anhedral patches throughout the sample (Fig. 12E), with some grains concentrated along shears. Although some apatite grains display clean, inclusion-free surfaces, many grains contained fine-grained inclusions of hematite, chlorite, and synchysite. Forty-five spot analyses were made on apatite, from which 24 were rejected due to high common-Pb. The remaining twenty-one analyses had U concentrations from 1.73 to 10.30 ppm (mean 5.57 ppm), and Th from 3.06 to 19.39 ppm (mean 10.18 ppm) and yield a 207Pb-corrected 207Pb/206Pb weighted mean age of 1575 ± 35 Ma (MSWD = 2.2; Fig. 12F).
Fig. 11 (A–C) Binary plots for trace element concentrations in rutile from skarn pseudomorphically replacing titanite (Rt1; Fig. 7G) and rutile associated with lamellar hematite showing W-zoning (Rt2; Fig. 7H). (D–I) REY fractionation patterns for (D) rutile, (E) actinolite, and (F) apatite from skarn, and (G–I) apatite from igneous lithologies normalized to chondrite after McDonough and Sun (1995). For REY fractionation patterns, thick colored lines represent sample average, while shaded fields represent compositional range. Note the difference between the patterns for magmatic and hydrothermal apatite from megacrystic granite in (H)
Discussion

Protoliths for host lithologies at Island Dam

The Wallaroo Group is an important lithostratigraphic host for IOCG alteration systems throughout the Olympic Cu-Au Province (Skirrow et al. 2007; Reid and Fabris 2015). Although metasedimentary rocks at Island Dam have been correlated with the Wallaroo Group, they remain temporally unconstrained. Lamellar hematite within skarn, dated here at \(1593 \pm 28\) Ma, would therefore be \(~150\) Ma younger than the inferred host rocks. Epigenetic crystallization of the hematite is supported texturally by its coarse grain size, fan-like morphology and occurrence infilling pockets and vugs. The \(1594 \pm 35\) Ma and \(1575 \pm 35\) Ma ages obtained from apatite within foliations and shears in the \(~1860\) Ma Donington Suite granite samples postdate emplacement age of the host granite by \(~250\) Ma. These geochronological results can thus be interpreted in terms of an overprinting mineralization-alteration event. The distinct REY fractionation patterns for apatite (Fig. 11) support different fluid origins (magmatic and hydrothermal).

Reid et al. (2011) correlated the metasedimentary protolith hosting Cu-Au mineralization and skarn alteration at Punt Hill to the Wallaroo Group based on stratigraphic similarities such as fine sediment lamination, and from age constraints between \(~1845\) Ma, the age of the underlying Donington Suite granite, and the timing of prograde skarn formation at \(~1580\) Ma. A similar approach can be used to provide indirect age constraints on the metasedimentary protolith hosting skarn at Island Dam. The basement Donington Suite granite, intersected in drillhole IDD3 and dated at \(1860 \pm 4\) Ma (Jagodzinski 2005), provides a lower age limit for deposition of the overlying sedimentary package while an upper age limit is represented by the \(~1590\) Ma overprinting event dated here. Taking the \(~1860\)–\(1590\) Ma age range together with lithological similarities (laminated and banded pink-green lithologies) and studies that confirm Wallaroo Group sequences over the entire extent of the Olympic Cu-Au Province from the Mt. Woods Inlier in the north to the Yorke Peninsula in the south (Cowley et al. 2003), the metasedimentary host at Island Dam can also be considered as part of the \(~1750\) Ma Wallaroo Group.

Further constraints on protoliths at Island Dam can be made based on the geochemical signatures of iron-oxides within rhythmically banded lithologies and arkose assigned to the Wallaroo Group. The textural and chemical characteristics of the silician magnetite in skarn described here can be attributed to an early alkali-calcare alteration event associated with onset of IOCG mineralization, analogous to silician magnetite within the weakly mineralized ‘outer shell’ at Olympic Dam (Ciobanu et al. 2019; Verdugo-Ihl et al. 2020) and at Wirrda Well (Ciobanu et al. 2022). Transition element signatures in magnetite (V-Ni-Co; Figs. 9 and 10) are also suggested to be a characteristic of early HT IOCG mineralization (Dmitrijeva et al. 2019). The distinct W-Sn-Mo-U signatures within coarse-grained lamellar hematite and acicular and polygranular hematite can likewise be considered analogous to IOCG-associated alteration during the \(~1.6\) Ga Hiltaba event. The latter has been temporally constrained by U–Pb dating of iron-oxides from Olympic Dam and other IOCG deposits in the region (Ciobanu et al. 2013; Courtney-Davies et al. 2019b, 2020a).

Although the lamellar hematite is clearly hydrothermal and dated here at \(~1590\) Ma, the acicular and polygranular hematite are more difficult to interpret. These display magnetite inclusions indicative of complex iron-oxide interconversions that reflect superimposed fluid-rock interactions with a pre-existing iron-oxide-rich lithology. This hematite also shows relative enrichments in chalcophile elements (As, Sb), transitional metals (Co, Ni), Mo, and U (Fig. 9), quite distinct from the HFSE, W-Sn signature of lamellar hematite. These elements are, however, characteristic of hematite from most of the IOCG deposits/prospects in the region, either in iron-oxides (e.g., Olympic Dam; Verdugo-Ihl et al. 2017), or in skarn minerals (e.g., garnet from Hillside; Ismail et al. 2014). Uranium-rich magnetite from the margin of the Olympic Dam deposit displays sedimentary textures and is dated at \(~1760\) Ma (Courtney-Davies et al. 2020b). These data were used to support an interpretation in which the magnetite was derived from iron-rich horizons within the Wallaroo Group that became modestly enriched in U from fluids associated with \(~1760\) Ma granites (Reid et al. 2013) prior to incorporation into the ‘outer shell’ of the Olympic Dam deposit during granite uplift. Similar genetic interpretations have been made for U-rich iron-oxides in metasedimentary basement rocks hosting U mineralization in the Kiggavik-Andrew Lake structural trend area, Nunavut, Canada, which also preserve the geochemical signatures of their magmatic predecessors (Makvandi et al. 2021). The hematite within arkose at Island Dam may likewise represent overprinted iron-rich horizons, with Mo-U signatures attributable to interaction with hydrothermal fluids associated with the \(~1.6\) Ga Hiltaba event, or potentially, with earlier \(~1760\) Ma granites.

Comparison of alteration at Island Dam with elsewhere in the Olympic Cu-Au Province

Strong mineralogical similarities exist between the alteration recognized at Island Dam and deposits/prospects elsewhere in the Olympic Cu-Au Province. Host rocks at the Hillside skarn deposit, Moonta-Wallaroo district are, for example, characterized by pink (K-feldspar)-green
Fig. 12 (A) Tera-Wasserburg diagram and (B) corresponding \(^{207}\text{Pb}^{206}\text{Pb}\) weighted mean age diagram for lamellar hematite shown in Fig. 10B. (C) BSE image of hydrothermal apatite from megacrystic Donington Suite granite and (D) corresponding \(^{207}\text{Pb}\)-corrected \(^{207}\text{Pb}^{206}\text{Pb}\) weighted mean age. (E) BSE image of hydrothermal apatite from sheared Donington Suite granite and (F) corresponding \(^{207}\text{Pb}\)-corrected \(^{207}\text{Pb}^{206}\text{Pb}\) weighted mean age. Ap—apatite; Chl—chlorite; Mus—muscovite; Syn—synchysite.
shell’ of the Olympic Dam deposit, which also con-
to represent early alkali-calcic alteration from the ‘outer
magnetite from Island Dam resembles that interpreted
2013; Verdugo-Ihl et al. 2017). For example, silician
other IOCG deposits in South Australia (Ciobanu et
reported here share many similarities with those from
Island Dam, at the Titan prospect ~ 25 km NNE of Olym-
and at the Emmie Bluff prospect ~ 50 km SW of Island
Dam. All are hosted within metasediments corre-
ated to the Wallaroo Group (Gow et al. 1994; Bastrakov
et al. 2007). Further to the southwest, outside the Olym-
ic Dam, at the Paris prospect (Paul et al. 2015).

The mineralogical and iron-oxide trace element data
reported here share many similarities with those from
other IOCG deposits in South Australia (Ciobanu et al.
2013; Verdugo-Ihl et al. 2017). For example, silician
magnetite from Island Dam resembles that interpreted
to represent early alkali-calcic alteration from the ‘outer
shell’ of the Olympic Dam deposit, which also con-
tains elevated SiO2, CaO, and MgO (Verdugo-Ihl et al.
2020). Ciobanu et al. (2019) found that oscillatory zoning
within this magnetite resulted from nm-scale inclusions
of (ferro)actinolite, diopside and epidote, as well as U-,
W-(Mo), Y-As- and As-S-nanoparticles. Analogous calc-
silicate inclusions might account for the concentrations
of lithophile elements in silicic magnetite from Island
Dam (Fig. 9A), although nanoscale verification would be
needed. Dmitrijeva et al. (2019) used multivariate statisti-
cal methods to define a Fe-V-Ni-Co signatures for early,
dereper magnetite mineralization at the Wirrda Well pros-
tpect, a signature also observed for magnetite in the pre-
sent study. In general, relative enrichment of transition
metals and lithophile elements in silicic magnetite from
Island Dam (Fig. 9A) is characteristic of magnetite asso-
ciated with deeper HT Ca-Fe alteration in IOCG systems
in general (Huang et al. 2018). Study of hematite textures
from Olympic Dam (Verdugo-Ihl et al. 2017) identified
coarse-grained lamellar hematite, among multiple other
textures (e.g., replacement textures and vacuole-filling),
which are comparable to those described here from Island
Dam. The U-Sn-W-Mo signature in hematite is pervasive
throughout all lithologies at Olympic Dam and is an inher-
ent characteristic of IOCG systems in the Olympic Dam
district (Courtney-Davies et al. 2019a) and elsewhere (e.g.,
Verdugo-Ihl et al. 2022).

In addition to iron-oxides, our mineralogical and geo-
chemical characterization of rutile, actinolite, and apatite
from Island Dam show that they resemble those from other
areas within the Olympic Cu-Au Province sharing pro-
nounced Na-Ca-Fe alteration. Rutile (Rt1) from Island
Dam displays nearly identical mineral associations (rutile + chlor-
ite + hematite + Ca-REE-phosphates and -fluorocarbonates),
trace element enrichments (Nb, Ta, V, ΣREY), and REY
fractionation trends (upward-sloping) as that in felsic vol-
canic rocks from the Moonta-Wallaroo area (Kontonikas-
Charos et al. 2014). Such rutile was interpreted to belong
to a hydrothermal alteration assemblage associated with an
albitization event during the early stages of IOCG miner-
alization and was found to be an important carrier of trace
elements. Formation of W-rich rutile associated with lamel-
lar hematite (Rt2) from Island Dam may represent evolving
fluid compositions towards a system richer in W. Similar to
the actinolite from Island Dam documented here, the acti-
nolite described by Ismail et al. (2014) from skarns at Hill-
side is also relatively enriched in Ni and Zn and features an
upward-sloping, HREE-enriched fractionation trend. Hill-
side actinolite was interpreted as the replacement product of
pyroxene during retrograde skarn formation, coupled with a
shift from a HREE- to LREE-dominant system. Apatite from
Island Dam displays chondrite-normalized REY fractiona-
tion trends featuring LREE-enrichment, HREE-depletion,
and strong negative Eu-anomalies, a characteristic fea-
ture of early hydrothermal apatite associated with ‘deep’
and ‘distal’ mineralization zones at Olympic Dam (Krneta
et al. 2017b). Similar apatite is reported from the Moonta-
Wallaroo region and is interpreted as relating to hydrother-
al alteration during early IOCG formation throughout the
Olympic Cu-Au Province (Kontonikas-Charos et al. 2014;
Ismail et al. 2014).

The most striking similarity between Island Dam and other
IOCG systems in the Olympic Province is the relative timing
of alteration. Reviews of IOCG-(U) metallogeny throughout
the Olympic Cu-Au Province (Skirrow et al. 2007; Reid 2019)
found that mineralization within the Mt. Woods Inlier, in the
Olympic Dam district, and in the Moonta-Wallaroo district in
the south took place between ~1.6 and ~1.57 Ga, coincident
with emplacement of the Hiltaba Suite and GRV. Available
ages for skarn alteration at Punt Hill (~1577 ± 7 Ma Sm–Nd
age; Reid et al. 2011) and Hillside (1601 ± 16 Ma titanite age
and 1584 ± 7 Ma allanite age; Gregory et al. 2011) also show
that skarn-style alteration and mineralization is temporally
synchronous with ~1.6 Ga Hiltaba Suite magmatism. The
hematite and apatite ages obtained here statistically overlap
with one another and imply a hydrothermal event at \(\sim 1590 \text{ Ma} \). Intergrowths between sulfides and lamellar hematite within skarn also imply that the IOCG-U mineralization was deposited at \(\sim 1590 \text{ Ma} \), supporting the hypothesis that alteration and mineralization at Island Dam belong to the same hydrothermal event across the Olympic Cu-Au Province.

Conclusions

Skarn assemblages of actinolite/phlogopite + K-feldspar + magnetite suggest the presence of calcareous protoliths at Island Dam and indicate HT alkali-calcic alteration in the early stages of IOCG mineralization, as seen in other deposits throughout the Olympic Cu-Au Province and in other IOCG terranes. Oscillatory zoned magnetite in skarn is enriched in Si along with V, Ni and Co, comparable with that observed in the outer shell of Olympic Dam and at Wirrda Well, and consistent with early stages of IOCG mineralization. The geochemical signatures of hematite from skarn and arkose/Fe-rich metasedimentary rocks share a common enrichment in granitophile elements. Whereas this signature is expected of hematite formation in IOCG systems associated with the \(\sim 1.6 \text{ Ga} \) Hiltaba event, the relative enrichment in As, Sb, Ni, and Co is specific to iron-oxides from arkose. Overprinting features and chemical signatures (As, Sb, Ni, Co) of polygranular hematite in arkose can be attributed to pre-existing iron-rich (BIF?) lithologies, with Mo-U signatures either indicating interaction with \(\sim 1.6 \text{ Ga} \) Hiltaba-derived hydrothermal fluids, or fluids from an earlier source (e.g., \(\sim 1760 \text{ Ma} \) granites). The timing of alteration/mineralization is constrained to \(1593 \pm 28 \text{ Ma} \) by directly dating lamellar hematite intergrown with Cu-sulfides, correlating with the \(\sim 1.6 \text{ Ga} \) IOCG mineralization event throughout the eastern Gawler Craton. The host metasedimentary rocks at Island Dam are correlated to the ca. 1750 Ma Wallaroo Group based on lithology and by stratigraphic constraints given by the underlying 1860 Ma Donington Suite granite and our new U–Pb ages for mineralization.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00126-022-01096-1.

Acknowledgements Jocelyn McPhie is thanked for assistance during drill core logging. We appreciate constructive comments from Claire Wade, an anonymous reviewer, Associate Editor Pasi Eilu, and Editor-in-Chief Georges Beaudoin, which significantly assisted improvement of this manuscript.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. This is a contribution to the ‘FOX’ project (Trace elements in iron-oxides: deportment, distribution and application in ore genesis, geochronology, exploration and mineral processing), supported by BHP Olympic Dam and the South Australian Government Mining and Petroleum Services Centre of Excellence.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Allen S, McPhie J, Ferris G, Simpson C (2008) Evolution and architecture of a large felsic igneous province in western Laurentia: the 1.6 Ga Gawler Range Volcanics, South Australia. J Volc Geotherm Res 172:132–147

Barton MD (2014) Iron oxide(–Cu–Au–REE–P–Ag–U–Co) systems. In: Turekian K, Holland H, Scott SD (ed) Treatise on Geochemistry, vol 13, 2nd ed, Elsevier, New York:515–541

Bastrakov EN, Skirrow RG, Davidson GJ (2007) Fluid evolution and origins of iron oxide Cu-Au prospects in the Olympic Dam district, Gawler Craton, South Australia. Econ Geol 102:1415–1440

Blissett AH, Creaser RA, Daly SJ, Flint DJ, Parker AJ (1993) Gawler Range Volcanics. In: Drexel JF, Preiss WV, Parker AJ (ed) The Geology of South Australia. vol 1, The Precambrian: Adelaide, Geol Surv South Australia, Bulletin 54, pp. 107–131. https://sasig.basis.pir.sa.gov.au/WeftopEw/ws/samref/sarig1/image/DDD/BULL054(V1).pdf

Cherry AR, Ehrig K, Kamenetsky VS, Ehrig K, McPhie J, Crowley JL, Kamenetsky MB (2018) Precise geochronological constraints on the origin, setting and incorporation of ca. 1.59 Ga surficial facies into the Olympic Dam Breccia Complex, South Australia. Precamb Res 315:162–178

Ciobanu CL, Verdugo-Ihl MR, Slattery A, Cook NJ, Ehrig K, Courtney-Davies L, Wade BP (2019) Silicic magnetite: Si–Fe–nanoprecipitates and other mineral inclusions in magnetite from the Olympic Dam deposit, South Australia. Minerals 9:311

Ciobanu CL, Wade BP, Cook NJ, Schmidt Mumm A, Giles D (2013) Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: a geochemical tracer and reconnaissance Pb–Pb geochronometer. Precamb Res 238:129–147

Ciobanu CL, Verdugo-Ihl MR, Cook NJ, Ehrig K, Slattery A, Courtney-Davies L (2022) Ferro-tschermakite with polysomatic chainwidth disorder identified in silicic magnetite from Wirrda Well, South Australia: a HAAADF STEM Study. Am Mineral. https://doi.org/10.2138/am-2022-79757(inpress)

Conor C, Raymond O, Baker T, Teale G, Say P, Lowe G (2010) Alteration and mineralisation in the Moonta-Wallaroo Cu-Au mining field region, Olympic Domain, South Australia. In: Porter TM (ed) Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective 3. PGC Publishing, Adelaide, pp 1–24

Courtney-Davies L, Ciobanu CL, Verdugo-Ihl MR, Dmitrijeva M, Cook NJ, Ehrig K, Wade BP (2019) Hematite geochemistry and geochronology resolve genetic and temporal links among iron-oxide copper gold systems, Olympic Dam district, South Australia. Precamb Res 335:105480

Courtney-Davies L, Tapster SR, Ciobanu CL, Cook NJ, Verdugo-Ihl MR, Ehrig KJ, Kennedy AK, Gilbert SE, Condon DJ, Wade BP (2019b) A multi-technique evaluation of hydrothermal hematite U-Pb isotope systematics: implications for ore deposit geochronology. Chem Geol 513:54–72

Springer
Courtney-Davies L, Ciobanu CL, Tapster SR, Cook NJ, Ehrig K, Crowley JL, Verdugo-Ihl MR, Wade BP, Condon DJ (2020a) Opening the magmatic-hydrothermal window: high-precision U-Pb geochronology of the Mesoproterozoic Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ Geol 115:1855–1870

Courtney-Davies L, Ciobanu CL, Verdugo-Ihl MR, Cook NJ, Ehrig KJ, Wade BP, Zhu ZY, Kamenetsky VS (2020b) ~1760 Ma magnetite-bearing protoliths in the Olympic Dam deposit, South Australia: implications for ore genesis and regional metallogeny. Ore Geol Rev 118:103337

Cowley W, Conor C, Zang W (2003) New and revised Proterozoic stratigraphic units on northern Yorke Peninsula. MESA J 29:46–58. https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/MESAJ29046-058.pdf

Creaser RA (1989) The geology and petrology of Middle Proterozoic felsic magmatism of the Stuart Shelf, South Australia: unpublished Ph.D. thesis, Melbourne, La Trobe University, 434 p

Direen NG, Lyons P (2007) Crustal setting of iron oxide Cu-Au mineral systems of the Olympic Dam district, South Australia: insights from potential field data. Econ Geol 102:1397–1414

Dmitrijeva M, Ciobanu C, Ehrig K, Cook N, Metcalfe A, Verdugo-Ihl M, McPhie J (2019) Mineralization-alteration footprints in the Olympic Dam IOCG district South Australia: the acropolis prospect. J Geochem Explor 205:106333

Dmitrijeva MD, Ciobanu CL, Ehrig K, Cook NJ, Verdugo-Ihl MR, Metcalfe AV, Kamenetsky VS, McPhie J, Carew M (2022) Geochemical data analysis of iron-oxide copper gold mineralization, Wirrada Well prospect, South Australia. Econ Geol (in press), South Australia

Ehrig K, McPhie J, Kamenetsky V (2012) Geology and mineralogical zonation of the Olympic Dam iron oxide Cu-U-Au-Ag deposit, South Australia: In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world, a Tribute to Richard Sillitoe. SEG Spec Publ 16:237–268

Ehrig K, Kamenetsky V, McPhie J, Cook NJ, Ciobanu CL (2017) Olympic Dam iron oxide-Cu-U-Au-Ag deposit. In: Phillips GN (ed) Australian Ore Deposits. AusIMM, Melbourne, pp. 601–610

Fabris A, Katona L, Georgia G, Reed G, Keeping T, Gouthas G, Swain G (2018) Characterisation and mapping of Cu–Au skarn systems in the Punt Hill region, Olympic Cu–Au Province. MESA 87:15–27. https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/MESAJ87015-027.pdf

Foden J, Elburg ME, Dougherty-Page J, Burtt A (2006) The timing and duration of the Delamerian Orogeny: correlation with the Ross Orogen and implications for Gondwana Assembly. J Geol 114:189–210

Geological Survey of South Australia (2019) SARIG Database. https://map.sarig.sa.gov.au/

Gow PA, Wall VJ, Oliver NHS, Valenta RK (1994) Proterozoic iron oxide (Cu-U-Au-REE) deposits: Further evidence of hydrothermal origin. Geology 22:633–636

Gregory CJ, Reid AJ, Say P, Teale GS (2011) U–Pb geochronology of hydrothermal allanite and titanite and magmatic zircon from the Hillside Cu–Au deposit, Yorke Peninsula. In: Reid AJ, Jagodzinski EA (ed) PAC geochronology: results of Collaborative Geochronology Projects 2009–10 South Australia. Department of Primary Industries and Resources, pp. 95–126 (Report Book 2011/0003). https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/RR201100003.pdf

Halpin JA, Reid AJ (2016) Earliest Paleoproterozoic high-grade metamorphism and orogenesis in the Gawler Craton, South Australia: the southern cousin in the Rae family? Precambr Res 276:123–144. https://doi.org/10.1016/j.precamres.2016.02.001

Hayward N, Skirrow RG (2010) Geodynamic setting and controls on iron oxide Cu-Au (±U) ore in the Gawler Craton, South Australia. In: Porter TM (ed) Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, vol 3. PGC Publishing, Adelaide, pp 1–27

Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambiol Res 58:214–287

Huang X-W, Boutroy É, Makvandi S, Beaudoin G, Corriveau L, De Toni A (2018) Trace element composition of iron oxides from IOCG and IOA deposits: relationship to hydrothermal alteration and deposit subtypes. Mineral Deposita 54:525–552

Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Mumm AS, Wade B (2014) Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide-copper-gold deposit, Yorke Peninsula, South Australia. Lithos 184–187:456–477

Jackson SE, Pearson NJ, Belousova EA, Griffin WL (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in to situ U-Pb geochronology. Chem Geol 211:47–69

Jagodzinski EA (2005) Compilation of SHRIMP U-Pb geochronological data. Olympic Domain, Gawler Craton, South Australia, 2001–2003. Geoscience Australia Record 2005/20.

Keyser WM, Ciobanu CL, Cook NJ, Courtney-Davies L, Ehrig K, Gilbert S, McPhie J (2017) Links between sedimentary protoliths and IOCG-skarn alteration, Island Dam, South Australia. In: Mineral Resources to Discover, Proceeding of the 14th SGA Biennial Meeting, 20–23 August 2017, Quebec City, Canada: pp. 935–938. https://sga.org/index.php?el=dst_nwssecure1&k=0&kg=0&k=1635503595&k=shash=6fde8954af01debadfa3b92d0f9f613267da0158&file=flreadmin/sga/Shop_-_DownoadsSGA_Abs=Volumes2017_Quebec/SGA_QuessCC%81becc2017_vol3.pdf

Konitnikas-Charos A, Ciobanu CL, Cook NJ (2014) Albitzation and redistribution of REE and Y in IOCG systems: insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos 208–209:178–201

Konitnikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Ismaili R, Krneta S, Basak A (2018) Feldspar mineralogy and rare-earth element (re)mobilization in iron-oxide copper gold systems from South Australia: a nanoscale study. Mineral Mag 82:S173–S197

Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Konitnikas-Charos A (2017a) The Wirrada Well and Acropolis prospects Gawler Craton, South Australia: insights into evolving fluid conditions through apatite chemistry. J Geochem Explor 181:276–291

Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Konitnikas-Charos A (2017b) Rare earth element behaviour in apatite from the Olympic Dam Cu-U-Ag deposit, South Australia. Minerals 7:135

Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Schumacher JC, Toni A (2018) Trace element composition of iron oxides from IOCG and IOA deposits: relationship to hydrothermal alteration and deposit subtypes. Mineral Deposita 54:525–552

Laird J, Mandarino JA, Maresch WV, Nickel EH, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi L (2001–2003). Geoscience Australia Record 2005/20. Geological data, Olympic Domain, Gawler Craton, South Australia, 211:47–69

Makvandi S, Huang X, Beaudoin G, Quirt D, Ledru P, Foyek M (2021) Trace element signatures in hematite and goethite associated with the Kiggavik-Andrew Lake structural trend U deposits (Nunavut, Canada). Mineral Depositas 56:509–535

McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

Mcdowell FW, McIntosh WC, Farley KA (2005) A precise Ar-40-Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard. Chem Geol 214:249–263

Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambri 1:27–287

Huang X–W, Boutroy É, Makvandi S, Beaudoin G, Corriveau L, De Toni A (2018) Trace element composition of iron oxides from IOCG and IOA deposits: relationship to hydrothermal alteration and deposit subtypes. Mineral Deposita 54:525–552
McPhie J, Ehrig KJ, Kamensky MB, Crowley JL, Kamensky VS (2020) Geology of the Acropolis prospect, South Australia, constrained by high-precision CA-TIMS ages. Austral J Earth Sci 67:699–716

Oreskes N, Einaudi MT (1992) Origin of hydrothermal fluids at Olympic Dam: preliminary results from fluid inclusions and stable isotopes. Econ Geol 87:64–90. https://doi.org/10.1137/geo.87.1.64

Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: free-ware for the visualisation and processing of mass data. J Anal Spectrom 26:2508–2518

Paul MW, Cook NJ, Ciobanu CL, Anderson J, Murray J (2015) Preliminary mineralogical investigations of the Paris silver deposit, Northern Eyre Peninsula, South Australia. Proc Mineral Resources in a Sustainable World, 13th Biennial SGA Conf., Nancy, France, August 2015. https://e-sga(index.php?eID=tx_nawsecuredl¼u0&g¼0&t¼1637921181&hash=4af75df2de792c7c79963a101b8fcaee8c7a41&file¼fileadmin/sga/Shop_--Downloads/SGA_Abstract_Volumes/2015_Nancy/SGA_Nancy_2015_vol1.pdf

Preiss WV (1993) Neoproterozoic. In: Drexel JF, Preiss WV, Parker AJ (ed) The Geology of South Australia, vol 1, The Precambrian. Geol Surv South Australia Bull 54, p. 170–203. https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/BULL054(V1).pdf

Pankhurst MP, Schaefer BF, Betts PG, Phillips N, Hand M (2011) A Mesoproterozoic continental flood rhyolite province, the Gawler Ranges, Australia: the end member example of the Large Igneous Province clan. Solid Earth 2:1–9. https://doi.org/10.5194/se-2-25-2011

Reid A (2019) The Olympic Cu-Au Province, Gawler Craton: a review of the lithospheric architecture, geodynamic setting, alteration systems, cover successions and prospectivity. Minerals 9:371

Reid A, Hand M, Jagodzinski E, Kelsey D, Pearson N (2008) Paleoproterozoic orogenesis in the southeastern Gawler Craton, South Australia. Austr J Earth Sci 55:449–471

Reid A, Smith RN, Baker T, Jagodzinski EA, Selby D, Gregory CJ, Skirrow RG (2013) Re-Os dating of molybdenite within hematite breccias from the Vulcan Cu-Au prospect, Olympic Cu-Au province, South Australia. Econ Geol 108:883–894

Reid AJ, Fabris A (2015) Influence of preexisting low metamorphic grade sedimentary successions on the distribution of iron oxide copper-gold mineralization in the Olympic Cu-Au Province, Gawler Craton. Econ Geol 110:2147–2157

Reid AJ, Swain GS, Mason D, Maas R (2011) Nature and timing of Cu-Au-Zn-Pb mineralisation at Punt Hill, eastern Gawler Craton. MESA J 60:7–17. https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/MESAJ060007-017.pdf

Schoene B, Bowring SA (2006) U-Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib Mineral Petrol 151:615–630

Skirrow RG, Bastrakov EN, Barovich K, Fraser GL, Creaser RA, Fanning CM, Raymond OL, Davidson GJ (2007) Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler Craton, South Australia. Econ Geol 102:1441–1470

Skirrow RG, Bastrakov E, Davidson GJ, Raymond O, Heithersay P (2002) Geological framework, distribution and controls of Fe-oxide Cu-Au deposits in the Gawler craton. Part II: Alteration and mineralisation. In: Porter TM (ed) Hydrothermal Iron Oxide Copper-Gold and Related Deposits, vol 2. PGC Publishing, Adelaide, pp 33–47

Skirrow RG, Van Der Wielen SE, Champion DC, Czarnota K, Thiel S (2018) Lithospheric architecture and mantle metasomatism linked to iron oxide Cu-Au ore formation: multidisciplinary evidence from the Olympic Dam Region, South Australia. Geochim Geo-phys Geosyst 19:2673–2705

Swain G, Woodhouse A, Hand M, Barovich K, Schwarz M, Fanning CM (2005) Provenance and tectonic development of the late Archaean Gawler Craton, Australia: U-Pb zircon, geochemical and Sm-Nd isotopic implications. Precamb R Rev 141:106–136. https://doi.org/10.1016/j.precamres.2005.08.004

Vassallo JJ, Wilson CJL (2002) Palaeoproterozoic regional-scale non-coaxial deformation: an example from eastern Eyre Peninsula, South Australia. J Structural Geol 24:1–24. https://doi.org/10.1016/S0191-8141(01)00043-8

Verdugo-Ihl MR, Ciobanu CL, Cook NJ, Ehrig KJ, Courtney-Davies L, Gilbert S (2017) Textures and U-W-Sn-Mo signatures in hematite from the Olympic Dam Cu-U-Au-Ag deposit, South Australia: defining the archetype for IOCG deposits. Ore Geol Rev 91:173–195

Verdugo-Ihl MR, Ciobanu CL, Cook NJ, Ehrig K, Courtney-Davies L (2020) Defining early stages of IOCG systems: evidence from iron-oxides in the outer shell of the Olympic Dam deposit, South Australia. Mineral Deposita 55:429–452

Verdugo-Ihl M, Ciobanu CL, Courtney-Davies L, Cook NJ, Slattery A, Ehrig K, Tornos F, Hanchart JM (2022) U-Pb geochronology and mineralogy of hematite from Mantoverde and Carmen de Cóbre, Northern Chile: constraints on Andean IOCG mineralization Econ Geol. https://doi.org/10.5382/econgeo.4903

Williams PJ, Kendrick MA, Xavier RP (2010) Sources of ore fluid components in IOCG deposits. In: Porter TM (ed) Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, vol 3. PGC Publishing, Adelaide, pp 107–116

Wingate MTD, Campbell IH, Compston W, Gibson GM (1998) Ion microprobe U-Pb ages of Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambr Res 87:135–159

Zang W (2002) Late Palaeoproterozoic Wallaroo Group and early Mesoproterozoic basaltic magmatism in the southeastern Gawler Craton, South Australia. Austr J Geol 30:1441–1470

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.