Can brain impermeable BACE1 inhibitors serve as anti-CAA medicine?

Jian-Ming Li 1,2, Li-Ling Huang 3, Fei Liu 4, Bei-Sha Tang 1 and Xiao-Xin Yan 1,3*

Abstract

**Background:** Cerebral amyloid angiopathy (CAA) is characterized by the deposition of ß-amyloid peptides (Aß) in and surrounding the wall of microvasculature in the central nervous system, together with parenchymal amyloid plaques collectively referred to as cerebral amyloidosis, which occurs in the brain commonly among the elderly and more frequently in patients with Alzheimer’s disease (AD). CAA is associated with vascular injury and may cause devastating neurological outcomes. No therapeutic approach is available for this lesion to date.

**Main body:** ß-Secretase 1 (BACE1) is the enzyme initiating Aß production. Brain permeable BACE1 inhibitors targeting primarily at the parenchymal plaque pathology are currently evaluated in clinical trials. This article presents findings in support of a role of BACE1 elevation in the development of CAA, in addition to plaque pathogenesis. The rationale, feasibility, benefit and strategic issues for developing BACE1 inhibitors against CAA are discussed. Brain impermeable compounds are considered preferable as they might exhibit sufficient anti-CAA efficacy without causing significant neuronal/synaptic side effects.

**Conclusion:** Early pharmacological intervention to the pathogenesis of CAA is expected to provide significant protection for cerebral vascular health and hence brain health. Brain impermeable BACE1 inhibitors should be optimized and tested as potential anti-CAA therapeutics.

**Keywords:** Alzheimer’s disease, ß–Amyloid, Cerebral amyloidosis, Neurodegeneration, Vascular dementia

Background

Cerebral amyloid angiopathy (CAA) refers to ß-amyloid (Aß) deposition in and surrounding the wall of cerebral vasculature, often involving small to mid-sized arteries, and less commonly capillaries and veins. Aß deposition along the leptomeninge is also considered a part of CAA [1–5]. Aging and Alzheimer Disease (AD) appear to be the major risk factors for CAA. Epidemiological studies suggest that 10% to 40% of the elderly have CAA, with the frequency raised up to 80% among patients with AD [6]. The incidence of moderate to severe CAA ranks approximately 2.3%, 8% and 12.1% among individuals at 65–74, 75–84 and over 85 years of age, respectively [1, 7]. Compared to non-demented individuals, the morbidity and severity of CAA both appear to be increased in demented or AD subjects. Thus, although CAA may be considered as a sign of brain aging, it could be related to the development and progression of dementia of the AD and vascular types [8–14].

While CAA is considered as a pathological change than disease entity, its clinical implication has gained growing attention in the medical field. CAA appears to be one of the most common reasons for primary, non-traumatic and non-hypertensive cerebral haemorrhage [4, 5, 10, 15]. Elderly with mild CAA in their brains might exhibit no neurological symptoms. With the progress of CAA, more damage and breakdown of the blood-brain barrier (BBB) and vascular wall can occur, raising the risk of suffering from overt clinical symptoms possibly as a result of silent but substantial intracranial haemorrhage and ischemic neuronal stress and injury [10, 13, 16–18]. Unfortunately, there are no preventive or therapeutical approaches available for CAA to date [19].

Brain imaging technologies are advancing quickly and can nowadays detect signs of CAA at preclinical stages
Many original studies and reviews have described the cellular expression pattern of the $\beta$-producing machinery, i.e., APP, BACE1 and subunit proteins of the $\gamma$-secretase complex, in mammalian brains e.g., [54, 55], therefore we only shortly note this issue here. Overall, neurons appear to be the major cell type in the brain with enriched expression of APP and BACE1, as well as presenilins (PS1 and PS2) that serve as the catalytic core of $\gamma$-secretase complex. Previous studies have shown distinct immunolabeling of APP and PS1/PS2 in the somata and dendrites of neurons in mammalian brains [56–58]. Immunolabeling of BACE1 has been detected in neurons and glial cells [59], while some antibodies label a pattern with predominant reactivity in the neuropil, particularly distinct at some brain areas rich of synaptic terminals, i.e., the olfactory bulb glomeruli and hippocampal mossy fibres [60–64]. The notion that presynaptic terminals as an important site of $\beta$-production is supported by increasing cell biology, biochemical and anatomical data [65–71]. Specifically regarding synaptic function and plasticity, BACE1 is shown to be dynamically transported in axons via anterograde and retrograde trafficking [65, 66]. Moreover, APP cleavages can occur directly in synaptic vesicles, with $\beta$ produced at and released by presynaptic axon terminals [67–71].
Apart from neurons, many studies have demonstrated that the cellular components of blood vessels possess the biochemical machinery for Aβ production. At the messenger level, vascular endothelial cells express three alternatively spliced APP mRNA isoforms, APP695, APP751 and APP770, in comparison with neurons that appear to only or predominantly express APP695 [72]. In cell culture studies, brain microvascular endothelial cells and human umbilical vein endothelial cells are found to express APP, BACE1 and PS1 by immunoblot and immunocytochemical analyses, and can secret Aβ into culture medium detectable by ELISA [73–77]. Similar results are obtained from experiments using primary cell cultures prepared from surgically removed human blood vessels [25]. Some studies have also shown that cultured vascular smooth muscle cells express APP, BACE1 and PS1 [23, 78, 79]. Notably, in histological preparations of animal or human brains without amyloid pathology, the cerebral blood vessels or their cellular components (i.e., endothelial and smooth muscle cells) generally do not exhibit impressive immunolabeling of APP, BACE1 or PS1, relative to the immunoreactivity seen in neuronal elements [56, 57, 60–62, 80]. Thus, the overall levels of expression of the Aβ producing proteins in vascular cells are apparently lower relative to neurons in normal animal or human brain.

Pathological characteristics of CAA

As with the amyloid plaque lesions, CAA can occur broadly in the central nervous system including the spinal cord [1–7, 81]. In comparison, little information indicates the existence of parenchymal and angiopathic types of Aβ deposition in the periphery [82]. Such an organ/tissue preference of β-amyloidosis appears to suggest some root link of the lesions to specific cellular components of the nervous system. Overall, cortical and leptomeningeal arteries appear to be mostly susceptible to CAA, while Aβ deposition could occur at veins and venules. The neocortical vessels appear to be firstly and most frequently affected, followed by that in the paleocortex and midbrain. Less involved areas include the basal nuclei, dorsal thalamus and brainstem [1–8, 83–85].

The onset and progression of CAA at a given vascular site are still not well understood to date. Pathological observations suggest that at arterioles Aβ products may first deposit in the basement membrane of the tunica intima, then accumulate in the smooth muscle layer or the tunica media. The smooth muscle cell layer may be eventually destroyed and replaced by Aβ fibrils, which could mount progressively to become very heavy to a point until no cellular components in this layer left [86]. Notably, perivascular Aβ deposition can occur along with the lesion inside the vascular wall. The profiles with concurrent vascular and perivascular Aβ deposition have been defined as “dysphoric” or “dyshoric” CAA [86–89]. We observed fairly frequent perivascular Aβ deposition at cerebral vasculature with either mild or severe amyloidosis inside the wall or the smooth muscle cell layer in postmortem human brains [25] (Fig. 1a–c). Some perivascular Aβ deposition exhibited the morphological configuration of diffuse or compact plaques (Fig. 1d–g). When comparing cortical arterioles with varying extent of Aβ deposition, a pattern of pathological evolution appeared to exist. Thus, Aβ immunolabeling appeared to occur initially at the tunica intima, followed by the tunica media and perivascular zone. In some arterioles and capillaries, the tunica intima or endothelial cells exhibited extremely heavy Aβ immunolabeling (Fig. 2a–f).

Role of Aβ overproduction in parenchymal plaque amyloidosis

The pathogenic mechanism underlying cerebral amyloidosis as either parenchymal plaques or CAA is still not consensus-defined, with the lesions collectively regarded as resulted from an imbalance between the production and clearance of the Aβ peptides. It is suggested that a global rise of Aβ levels in the interstitial fluid of the brain triggers self-propelling aggregation of the peptides to form insoluble products. According to the original amyloid hypothesis [90], reduced Aβ clearance from the brain is the principal or primary causal factor for cerebral amyloidosis in sporadic AD. Among the Aβ clearance mechanisms as noted above, the blocking of perivascular drainage is considered a crucial one. It is also suggested that Aβ42 tends to precipitate in brain interstitial space to form senile plaques, whereas Aβ40 has a better solubility, therefore more likely to be drained away through the perivascular space and thus deposit preferentially at cerebral vessels as CAA [16]. Increased peripheral Aβ transit across the blood brain barrier (BBB) and “back-flushing” into the brain is also hypothesized [91–97]. Of note, recent studies have shown that reducing periphery Aβ does not apparently alter brain amyloidosis or Aβ levels in the cerebrospinal fluid [98–100]. Increased Aβ42/Aβ40 ratio [16, 100–103] and prion-like propagation [104–107] are also suggested to promote cerebral amyloidosis. Overall, an unifying hypothesis remains to be established to coherently explain as to why Aβ deposition manifests in different patterns, occurs at selected locations and develops site-specifically in the human brain.

Data are also collected pointing to a role of localized Aβ overproduction in cerebral plaque formation. Increased BACE1 expression and activity are reported in the brains from individuals with sporadic AD [108–116]. To address the issue as to whether BACE1 elevation may occur in spatial relevance with parenchymal Aβ
deposition, several groups used well-characterized BACE1 antibodies for comparative analysis of BACE1 and Aβ immunolabeling in the brains of transgenic AD mouse models, aged humans and clinically diagnosed AD subjects, and aged nonhuman primates [62, 80, 113–116]. These studies have consistently demonstrated increased BACE1 expression in swollen/sprouting axonal terminals, commonly referred to as the dystrophic neurites, in neuritic plaques.

Whether chronic/persistent BACE1 elevation in association with an ongoing neuritic pathogenesis plays a principal role in plaque formation in the human brain remains to be established. The amounts of BACE1 labelled dystrophic neurites do not always match to the extent of amyloidosis anatomically and densitometrically in postmortem human brains, with Aβ deposition appeared much denser relative to neuritic profiles especially among the cases with advanced AD pathologies [80]. However, one can argue that the two measurements should not match to each other for several reasons. First, Aβ immunolabeling seen in the sections would most likely represent the amount of insoluble deposits accumulated over time, while BACE1 immunolabeling would more likely reflect the amount of the enzyme present at the cross-sectional time point when the brain is processed. Second, insoluble Aβ deposits are known to resistant to postmortem tissue/protein degradation. In fact, amyloid pathology can been detected in human brains collected months even years after death [117–119]. On the other hand, histological integrity and biological molecules including normal neural proteins are decomposed rapidly if brain samples are not preserved by tissue fixation on time [117]. Moreover, dystrophic neurites of the amyloid plaques show high structural plasticity over time [120], and Aβ production as a biochemical process is depended on the viability of the dystrophic neurites [121]. With the build up of Aβ deposits, viable cellular elements including dystrophic neurites may be dying out because of the so-called “burn-out” effect [122, 123].

For the other type of parenchymal plaques, the diffuse plaques, it has been difficult to determine if BACE1 elevation in local cellular elements is involved. When examining human brain samples, no distinct profiles with enhanced BACE1 immunolabeling are detectable over the areas with diffuse amyloid deposition (own experience). This is also the case for the fairly distinct Aβ labeling along the low portion of cortical layer I as seen in some human brains (as shown in Fig. 1a for example). Layer I is innervated richly by axonal terminals from some subcortical structures, including the monoaminergic projections from the brainstem [124, 125]. These fine axonal terminals also distribute along the wall.

Fig. 1 Microscopic images showing examples of cerebral amyloid angiopathy (CAA) from aged human brain. Panel (a) is a low magnification view of β-amyloid (Aβ) immunolabeling with the monoclonal antibody 6E10 obtained from the temporal neocortex. Meningeal amyloid labeling is present along the cortical surface, with labelled individual arterioles of varying sizes invading and inside the cortex. Punctuate immunoreactive profiles occur along the low portion of layer I. Panels (b) and (c) are enlarged views of the framed areas in (a). Panels (d–g) are high power views of 6E10 immunolabeling with Nissl counterstain. Note the presence of perivascular amyloid deposition (pointed by arrows and arrowheads) in addition to the labeling in the wall of affected vessels, which appear diffuse (arrowheads) or compact (arrows) like in morphological pattern. Both large (c) and small (d, f) vessels can exhibit heavy immunolabeling at the inner layer of the vascular wall (open arrows). *, vascular cavity. Scale bar = 1 mm in (a), equal to 200 μm for other panels. Images are adapted from original data of recent studies [25, 162].
of pial arteries invading into the cortex, serving a key role in coupling neuronal activity and blood supply. Notably, in examination of perfusion-fixed brains from some transgenic mouse models of AD, e.g., the 3×Tg-AD mice, increased BACE1 immunolabeling at fine axonal profiles are clearly present over the areas with diffuse Aβ deposition in the forebrain [126].

In the human or transgenic AD mouse brains wherein the neuropathology is well established, it is difficult to determine the causal relationship between axonal dystrophy and Aβ deposition as one attempts to address the issue of onset and development of the neuritic plaques. A dynamic interplay between the two would likely exist, resulting in a feed-forward vicious cycle in the course of plaque pathogenesis [55, 66, 117]. Notably, in wild-type animals wherein no elevated Aβ levels are pre-existing in the brain, many experimental insults, such as traumatic brain injury [127–130], microvascular embolism [131], pilocarpine-induced temporal lobe epilepsy [132] and endotoxin-induced neuroinflammation [133], can clearly induce a dystrophic axonal pathology inherent with APP/BACE1 upregulation in the affected brain regions, although extracellular Aβ deposition may not be detectable. When such experimental insults are applied to transgenic AD models, they could accelerate the age-related development of neuritic plaque pathogenesis in the brain [134–136].

**Role of Aβ overproduction in cerebral angiopathic amyloidosis**

Many groups of investigators have carried out in vitro and in vivo experiments to explore a potential involvement...
of Aß overproduction in the development of CAA [23–25, 73–78]. Specifically, an active role for BACE1-mediated Aß overproduction in vascular endothelial cells has been proposed for angiopathic amyloidosis [23–25]. We examined the spatial relationship between BACE1 expression and CAA in postmortem human brains, with particular attention paid to understand the cellular components potentially exhibiting increased BACE1 immunolabeling around amyloid vasculature [25]. There appeared to exist a comparable pattern between Aß and BACE1 immunolabeling in and surrounding the wall of cortical arterioles (Fig. 2a–j). Enhanced BACE1 immunolabeling around the endothelial cells (Fig. 2g, h). BACE1 immunoreactive profiles were also found in the tunica media and the perivascular regions, identified as neuronal processes rather than smooth muscle cells, neurons or glial cells (Fig. 2h–j). These BACE1 labelled profiles represented sprouting axonal profiles given their colocalization with synaptophysin, and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) that is expressed in the processes of nitric oxide (NO) producing interneurons [137]. Based on these observations, we proposed a dual-origin model for angiopathic Aß deposition in the human brain [25] (Fig. 2k). Thus, vascular endothelial cells begin to overexpress BACE1 (likely APP as well) and increase Aß production in response to certain circulatory stress factors. The Aß products are released into blood (hence cleared away) as well as inside the vascular wall, with the latter retained and deposited locally causing some initial damage of the tight junction between endothelial cells. The accumulation of Aß together with infiltration of blood (potentially containing inflammatory factors) resulted from BBB leakage into the vascular wall causes stress/damage and degeneration of the smooth muscle cells. Cellular toxicities from Aß and other inflammatory molecules as well as a space-emptying effect in the smooth muscle cell layer may trigger a regenerative response of the perivascular axonal terminals, manifested by aberrant sprouting into and surrounding the vascular wall. Because the axonal pathology is inherent with BACE1/APP overexpression, a second wave of increased local Aß production occurs and mounts Aß products on-site. This neuronal contribution of Aß could continue until some point whereby all viable cellular components (vascular cells and dystrophic neurites) become degenerated ("burn-out"), leaving the original vascular site as an end-pathology locus heavily filled with Aß fibrils. This dual-origin hypothesis could explain as to why CAA can occur in and surrounding the wall of cerebral arterioles, capillaries and venules, although the latter two have no or only a thin small muscle cell layer. It can also help understand as to why amyloid angiopathy is observed in the central nervous system yet rarely (if any) in the peripheral organs. It should be noted that the leptomeningeal amyloidosis might also develop via a dual or triple origin mechanism, such that vascular endothelia, perivascular axonal processes and the meningeal cells participate in Aß overproduction resulting in spreading amyloidosis along the cortical surface [25] (Fig. 1a).

Considering endothelia as an early CAA contributors, it would be important to explore if some circulatory factors may promote the amyloidogenic response of these cells. Epidemiological studies suggest that many cardiovascular and metabolic conditions are risk factors for dementia of the vascular and AD types, including hypertension, hypotension, hypercholesterolemia, atherosclerosis and diabetes [138–143]. In vitro studies have demonstrated that oxygen and glucose deprivation [75], proinflammatory cytokines [77] and high cholesterol [144] may serve as stress factors to stimulate endothelial Aß production possibly via BACE1 upregulation. The endothelial nitric oxide synthase (eNOS) could participate in modulating the amyloidogenic processing pathway in vascular endothelia [74].

**Brief update on BACE1 inhibitors targeting against the amyloid plaque pathology**

The anti-Aß approach for the treatment of AD has been vigorously pursued in the past two decades. Overall, most drug candidates based on active and passive Aß immunization, anti-Aß aggregation and γ-secretase inhibition have failed in clinical trials. BACE1 inhibition has been left as a highly expected anti-Aß option, although the final outcome of ongoing drug trials remains uncertain. In-depth reviews on the anti-Aß therapies for AD treatment/prevention are available, with some works focused on the BACE1 inhibition strategy specifically [54, 55, 145–152]. To avoid redundancy, we will only denote on a few issues here as the following.

Sufficient target engagement to neuronal BACE1 has been much concerned in the development of BACE1 inhibitors to minimize plaque pathology. As the catalytic core of the enzyme is relatively wide, early generations of BACE1 inhibitory compounds are too large to have sufficient brain penetration [149, 151]. With chemical modification of lead compounds, brain permeable BACE1 inhibitors have been successfully developed, with several front-running candidates in the pipeline entered clinical trials. LY2886721 is the first reached Phase II trial, which was discontinued due to potential liver toxicity (https://investor.lilly.com/releaseDetail.cfm?ReleaseID=771353). Verubecestat represents the latest BACE1 inhibitor with initial clinical trial data reported. This compound has excellent safety and target engagement profiles according to phases I and II trials, but has been also terminated in phase III trials among patients with mild to moderate AD at the time of subject registration, due to a lack of efficacy in slowing down cognitive decline.
Benefit, feasibility and strategy for developing anti-CAA BACE1 inhibitors

As denoted in the preceding sections, CAA is associated with structural damage of the BBB and the entire vascular wall that can impair the regulated blood supply to brain parenchyma. Vascular leakage and micro-bleeding may also directly cause stress and damage to neuronal structures around the lesion [1–15]. Importantly, microvascular damage has been suggested to potentiate some neurodegenerative changes in AD, including the development of neuritic plaques because they are distributed in close proximity to capillaries [80, 88, 89, 131, 156–160]. Given the direct and indirect contribution of CAA to neuronal dysfunction and cognitive impairments during aging and in dementia of the vascular or AD type, therapeutic approaches to prevent or halt this pathology should be considered and pursued. Because CAA involves essentially the microvasculature, pharmacological intervention is likely the only solution. Although the development of CAA may have many upstream etiological factors, Aβ accumulation and deposition are the core event or a final crossroad of the condition. Interrupting at this crucial step of CAA development appears to be well justified theoretically.

The experimental data suggesting a key role of BACE1 upregulation in the pathogenesis of CAA by mediating Aβ overproduction in local cellular components, as assembled in our dual-origin hypothesis (Fig. 2k), highlight the feasibility for using BACE1 inhibitors as putative anti-CAA therapeutics. Vascular endothelia participate in the initial step of Aβ overproduction, therefore confronting this alteration by BACE1 inhibition could provide early protection. Inhibiting endothelial BACE1 activity can be expected to reduce the release of Aβ into the smooth muscle layer of arterioles and venules, therefore protect the integrity of vascular wall, and stop/delay vascular leakage and microhemorrhages. This would minimize the stress to perivascular neuronal processes and their reactive sprouting into and surrounding the vascular wall in association with neuronal Aβ overproduction. In capillaries, BACE1 inhibition in endothelial cells may prevent these cells from becoming amyloid, and also prevent the pericapillary neuronal processes from undergoing amyloidogenic axonal pathology. In the case that a certain degree of CAA and vascular damage have already taken place, BACE1 inhibitors might get access into the smooth muscle cell layer and the perivascular zone, and target on neuronal BACE1 overexpression in the sprouting axonal processes. Thus, BACE1 inhibitors may be expected to target-engage with the cellular elements involved in the early as well as ongoing phases of Aβ overproduction during the development of CAA.

In the pharmaceutical industry, there are examples that opportunity and success of drug discovery arise from initially unspeculated therapeutic target or effect of the candidate drugs (as was the case of Viagra). As mentioned earlier, during the development of BACE1 inhibitors many lead compounds are discarded from further translational evaluation because they are not brain penetrant to target neuronal BACE1 [149]. The discussions elaborated above would imply that brain impermeable inhibitors could otherwise serve as desired anti-CAA drug candidates. Without passing through the BBB, they may inhibit BACE1 activity in vascular endothelia therefore provide the first line protection against amyloid damage to blood vessels [24]. They may also diffuse into the vascular wall or to some extent the perivascular area in the case that some BBB breakdown has already occurred, which could still reduce the Aβ genesis in the smooth muscle cell layer, brought in by the invading perivascular neuronal processes. In this regard, it is of
interest to note that typical neuritic plaques are anatomically vasocentric since they occur preferentially next to capillaries [80, 130, 156–158]. In addition, cellular and molecular components of blood are detected in neuritic plaques, suggestive of the existence of vascular leakage [159–165]. Thus, while brain impermeable BACE1 inhibitors are expected to primarily act against CAA, theoretically they can also diffuse across the damaged capillary wall and inhibit amyloidogenesis in the dystrophic neurites of neuritic plaques therefore mitigate this parenchymal amyloid pathology.

As aforementioned, BACE1 plays critical physiological roles in normal neuronal/synaptic structures [60, 61, 63–71, 150–152]. Thus, perhaps the most significant advantage of brain impermeable BACE1 inhibitors over permeable ones is that the former may not elicit much unwanted effect to neurons and synapses in healthy brain regions and structures. Thus, this type of inhibitors might be used chronically as preventive as well as therapeutic regiments. Taken together, brain impermeable BACE1 inhibitors can be expected to have a better target engagement, relative to permeable ones, to act more selectively on the cellular elements exhibiting pathologically enhanced BACE1 activity (i.e., vascular cells and perivascular dystrophic neurites around CAA as well as neuritic plaques). Re-evaluation of some brain impermeable BACE1 inhibitory lead compounds and further development of this class as anti-Aβ reagents primarily targeting at CAA but potentially at parenchymal plaques as well, are worth pursuing.

Strategic issues for the development of anti-CAA BACE1 inhibitors also include a more thorough understanding of the biological role of the enzyme in vascular endothelia. So far, no data have shown significant malformation or dysfunction of the cardiovascular system in BACE1 knockout mice (to the best of our knowledge). However, comprehensive in vitro and in vivo investigations would still be needed to firmly confirm that pharmacological inhibition of endothelial BACE1 does not impair vascular health in the central and peripheral systems. Since clinical trials on existing brain permeable BACE1 inhibitors are ongoing and the outcomes could be available in the near future, brain imaging and pathological information about CAA is worth collecting from the subjects participated in the trials. These inhibitors might also have some effect on the vascular cellular components, thus, in addition to the measurements of parenchymal amyloidosis and cognitive performance, clues of improvement on CAA pathology are worth searching from available postmortem brains of the enrolled subjects, even in the case that the cognitive outcomes obtained during the period of clinical trial are not excellent.

Conclusions
Cerebral vascular health is crucial for brain health in humans. As one of most common brain angiopathic lesions, CAA is associated with vascular deficits but may cause direct and indirect neuronal injury leading to devastating neurological outcomes, therefore playing an unneglectable role for cognitive decline during “normal” brain aging and in AD. CAA has been long regarded as to occur following some primary vascular deficit causing a passive retention of Aβ at the brain-blood interface. The findings assembled in this review from original studies point to an active role of increased Aβ production by local cellular elements, primarily the endothelial cells and perivascular neuronal terminals, in the pathogenesis of CAA. Such findings encourage the development of active pharmacological approaches to confront the development of CAA. BACE1 is the key enzyme for Aβ production. Brain penetrant BACE1 inhibitors are being tested in clinical trials to mitigate plaque development for AD therapy. We propose here brain impermeable BACE1 inhibitors as putative therapeutics to mitigate CAA, which may offer desirable efficacy to prevent vascular amyloidosis yet avoid unwanted side effects due to inhibition of neuronal and synaptic BACE1 activity in normal brain regions and structures. Attenuating CAA pathogenesis could stabilize vascular integrity and functionality, and improve overall brain health among the elderly at risk of suffering from dementia of the vascular as well as AD types.

Abbreviations
AD: Alzheimer’s disease; APP: ß-Amyloid precursor protein; Aβ: ß-amyloid peptides; BACE1: ß-secretase-1; BBB: Blood brain barrier; CAA: Cerebral amyloid angiopathy; eNOS: Endothelial nitric oxide synthase; PS: Presenilin; β-CTF: β-C-terminal fragments

Acknowledgements
None.

Funding
The original studies helped the assembly of this work were supported by the National Natural Science Foundation of China (NNSFC (#31371095 and #91632116 to X.X. Yan), JM. Li is supported by China Postdoctoral Research Foundation (#2016 M590757) and Hunan Family Planning & Health Commission (#B2017041). The funding bodies are not involved in the design of the study and collection, analysis, and interpretation of data.

Availability of data and materials
This review work does not contain original data to be shared.

Authors’ contributions
JML and LLH: Figure assembly and manuscript drafting. FL, BST and XXY: Formulated the idea and finalized the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.
References

1. Thal DR, Griffin WS, de Vos RA, Ghebremedhin E. Cerebral amyloid angiopathy and its relationship to Alzheimer's disease. Acta Neuropathol. 2008;115:599–609.

2. Bennewitz WZ, Nelson PT, Besser LM, Heller KB, Kukull WA. Cerebral amyloid angiopathy and its co-occurrence with Alzheimer's disease and other cerebrovascular neuropathologic changes. Neurobiol Aging. 2015;36:2702–8.

3. Kovari E, Herrmann FR, Gold G, Hof RR, Charidimou A. Association of cortical microinfarcts and cerebral small vessel pathology in the ageing brain. Neurobiol Appl Neurobiol. 2016; doi:10.1111/1178-2.

4. Yamada M. Cerebral amyloid angiopathy: emerging concepts. J Stroke. 2015;17:17–30.

5. Charidimou A, Boulious G, Gurrol ME, Ayata C, Backai BI, Frosch MP, Viswanathan A, Greenberg SM. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain. 2017;140:272–90.

6. Castellani RJ, Smith MA, Perry G, Friedland RP. Cerebral amyloid angiopathy: major contributor or decorative response to Alzheimer's disease pathogenesis. Neurobiol Aging. 2004;25:599–602.

7. Greenberg SM, Vonsattel J. Diagnosis of cerebral amyloid angiopathy. Sensitivity and specificity of cortical biopsy. Stroke. 1997;28:1418–22.

8. Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer's disease. Acta Neuropathol. 2016;131:645–58.

9. Love S, Miners JS. Cerebral hyperfusion and the energy deficit in Alzheimer’s disease. Brain Pathol. 2015;25:377–87.

10. Schrag M, Kirshner H. Neuropsychological effects of cerebral amyloid angiopathy. Brain Pathol. 2016;26:607–13.

11. Xiong L, Boulouis G, Charidimou A, Roongpiboonsopit D, Jessel MJ, Pasi M, Love S, Miners JS. Cerebral hypoperfusion and the energy deficit in Alzheimer’s disease. Acta Neuropathol. 2016;132:599–602.

12. Vidoni ED, Yeh HW, Morris JK, Newell KL, Alqahtani A, Burns NC, Burns JM, Reijmer YD, Fostadis P, Ayres AM, Vashkevich A, Schwab K, Leemans A, Biessels GJ, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConigle L, John V. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature. 1999;400:373–40.

13. Gram I, Lemiere HG, Unterbeck A, Sallbaum JM, Masters CL, Grechishik KH, Multhaup G, Beyreuther K, Muller-Hill B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325:733–6.

14. Bowman RL, Verdi G, Liu T, Parlow AF, Perry G, Smith MA, Martins RN, Atwood CS. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-β precursor protein and amyloid-β deposition. J Biol Chem. 2004;279:20539–45.

15. McCarthy RC, Park YH, Kosman DJ. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferritin. EMBO Rep. 2014;15:809–15.

16. Turner PR, O’Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol. 2003;70:1–32.

17. Kameyama T, Torita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R. APP processing and synaptic function. Neuron. 2003;37:255–37.

18. Priller C, Bauer T, Mitteregger G, et al. Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci. 2006;26:7212–21.

19. Brunholz S, Sisodia S, Lorenzo A, Deuts C, Kins S, Morfini G. Axonal transport of the amyloid precursor protein and amyloid-beta deposition. J Cereb Blood Flow Metab. 2016;36:2990–9.

20. Chow VW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer's disease. Mol Brain. 2011;4:3.
42. Kumar S, Cieplak P. CaspNeuroD: a knowledgebase of predicted caspase cleavage sites in human proteins related to neurodegenerative diseases. Database (Oxford). 2016;2016 pii: bav142.

43. Schroeter EH, Ilagan MX, Brunk AL, Heicovic S, Li YM, Xu M, Lewis HD, Saxena MT, De Strooper B, Coonrod A, Tomita T, Iwatsubo T, Moore CL, Goate A, Wolfe MS, Shearnman M, Kopan R. A presenilin dimer at the core of the γ-secretase enzyme: insights from parallel analysis of notch 1 and APP proteolysis. Proc Natl Acad Sci. 2003;101(30):10759–80.

44. Kaether C, Haass C, Steiner H. Assembly, trafficking and function of BACE1. Cell. 2006;125:273–83.

45. Kimberly WT, LaViole MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ. γ-secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proc Natl Acad Sci U S A. 2003;100:6382–7.

46. Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yankner BA. β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb. Mol Neurodegener. 2011;6:88.

47. Cao L, Rickenbacher GT, Rodriguez S, Moula T, Albers MW. The precision of axon tajing of mouse olfactory sensory neurons requires the BACE1 protease. Sci Rep. 2012;2:231.

48. Sheng JG, Price DL, Kalliotas VE. The β-amyloid-related proteins presenilin 1 and BACE1 are axonally transported to nerve terminals in the brain. Exp Neurol. 2003;184:1053–7.

49. Kandalepas PC, Sadler KR, Eimer WA, Zhao J, Nicholson DA, Vassar R. The Alzheimer’s β-secretase enzyme BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013;126:329–52.

50. Buggia-Prévot V, Fernandez CG, Rordan S, Vetrivel KS, Roseman J, Waters J, Bindokas VP, Vassar R, Thirakaran G. Axonal BACE1 dynamics and targeting in hippocampal neurons: a role for Rab11 GTPase. Mol Neurodegener. 2014;9:41.

51. Del Prete D, Lombino F, Liu X, D’Adamo L. APP is cleaved by BACE1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions. Plos One. 2014;9:e108576.

52. Lundgren JL, Ahmed S, Schedin-Weiss S, Gouras GK, Winblad B, Tjernberg LO, Frykman S. ADAM10 and BACE1 are localized to synaptic vesicles. J Neurochem. 2015;135:606–15.

53. Pläskova A, Lopes JP, Lemos C, Oliveira CR, Cunha RA, Agostinho P. The association of amyloid-β protein precursor with α-synuclein in mouse cerebral cortex synapses is altered in early Alzheimer’s disease. Mol Neurobiol. 2016;53:5710–21.

54. Ye X, Feng T, Tammineni P, Chang Q, Leong YY, Margolis DJ, Cai H, Kusnecov A, Cai Q. Regulation of synaptic amyloid-β generation through BACE1 retrograde transport in a mouse model of Alzheimer’s disease. J Neurosci. 2017;37:2639–53.

55. Kiwame S, Tachida Y, Kato M, Yamaguchi Y, Honda T, Hashimoto Y, Wada Y, Saito T, Itawa N, Saito T, Taniguchi N. Brain endothelial cells produce amyloid β from amyloid precursor protein 770 and preferentially secrete the O-glycosylated form. J Biol Chem. 2010;285:40097–40103.

56. Simons ER, Marshall DC, Long HJ, Otto K, Billinghui A, Tipples H, Wells J, Austen SA, Santhomyn AV, Kittisc Z. Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circ Res. 2010;107:1498–502.

57. Ma JF, Wang HM, Li QY, Zhang Y, Pan J, Qiang Q, Xin YX, Tang HD, Ding QJ, Chen SD. Stavatrin triggers Aβ42 generation from human umbilical vascular endothelial cells. FEBS Lett. 2010;584:3101–6.

58. Bulbarelli A, Lonati E, Brambilla A, Orlando A, Cazzaniga E, Piazza F, Ferrari C, Massenini M, Sancini G. Aβ42 production in brain capillary endothelial cells after oxygen and glucose deprivation. Mol Cell Neurosci. 2012;49:415–22.

59. Deng X, Zhang J, Liu Y, Chen L, Yu C. TNF-α regulates the proteolytic degradation of TSG6-Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1. Sci Rep. 2017;7:40256.

60. Corna M, Guix FX, Illiraga G, Utibeorglia I, Alamenda F, Valverde MA, Muñoz FJ. Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle cells. Neurobiol Aging. 2008;29:969–80.

61. Frackowiak J, Potempska A, Mazur-Kolecka B. Formation of amyloid β oligomers in brain vascular smooth muscle cells transiently exposed to iron-induced oxidative stress. Acta Neuropath. 2009;117:557–67.

62. Cai Y, Xiong K, Zhang XM, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Chu Y, Kordover JH. Yan XX. β-secretase-1 elevation in aged monkey and C57BL/6J mice increases brain amyloid-β protein deposition in the entorhinalhippocampal and frontal regions in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2015;41:171–83.

63. Laid RM, Cali H, Savonenko AV, Fara M, He K, Melnikova T, Wen H, Chiang HC, Xu Q, Kalliotas VE, Borchert DR, Price DL, Lee KH, Wong PC. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci. 2005;25:11693–709.

64. Yan XX, Xiong K, Luo XG, Struble RG, Clough RW. Beta-Secretase expression in normal and functionally deprived rat olfactory bulbs: inverse correlation with oxidative metabolic activity. J Comp Neurol. 2007;501:52–69.

65. Zhang XM, Cai Y, Xiong K, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Yan XX. Beta-Secretase-1 elevation in transgenic mouse models of Alzheimer’s disease is associated with synaptic/axonal pathology and amyloidogenic implications for neuritic plaque development. Eur J Neurosci. 2009;30:2271–83.
85. Thal DR, Rüb U, Orantes M, Braak H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58: 1791–800.

86. Mendel TA, Wierzbka-Bobrowicz T, Lewandowska E, Stepień T, Szpak GM. The development of cerebral amyloid angiopathy in cerebral vessels. A review with illustrations based upon own investigated post mortem cases. J Pathol. 2013;264:260–7.

87. Attems J. Sporadic cerebral amyloid angiopathy: pathology, clinical implications, and possible pathomechanisms. Acta Neuropathol. 2005;109:345–59.

88. Oshima K, Uchikado H, Dickson DW. Perivascular neuritic dystrophy associated with cerebral amyloid angiopathy in Alzheimer’s disease. Int J Clin Exp Pathol. 2008;1:482–8.

89. Thomas CA, Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis. 2013;33:567–78.

90. Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci. 2010;11:155–9.

91. Polymenidou M, Cleveland DW. Prion-like spread of protein aggregates in neurodegeneration. J Exp Med. 2012;209:889–93.

92. Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, Pflanzner TR, Kuhlmann CU, Pietrzik C. Blood-brain-barrier models for the investigation of transporter-and receptor-mediated amyloid-β clearance in Alzheimer’s disease. Curr Alzheimer Res. 2010;7:578–90.

93. Donahue JE, Johanson CE. Amyloid efflux transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS. 2011;8:21.

94. Zhang Y, Lee DHS.Sink hypothesis and therapeutic strategies for attenuating the amyloidosis in Alzheimer’s disease. Curr Alzheimer Res. 2010;7:578–90.

95. Li JM, Xue ZQ, Deng SH, Luo XG, Dickson DW. Prion-like spread of protein aggregates in Alzheimer’s disease. Acta Neuropathol. 2005;109:345–59.

96. Polymenidou M, Cleveland DW. Prion-like spread of protein aggregates in neurodegeneration. J Exp Med. 2012;209:889–93.

97. Shopschinski BE, Diamond MI. The prion model for progression and diversity of neurodegenerative diseases. Lancet Neurol. 2017;16:323–32.

98. Fukushima H, Cheung BS, Hyman BT, Irizarry MC. Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol. 2002;59:1381–9.

99. Holstein RM, McLean CA, Breyerethuer K, Masters CL, Evin G. Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol. 2002;51:783–6.

100. Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sux L, Sabaagh M, Cai H, Wong P, Price D, Shen Y. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci U S A. 2004;101:3632–7.

101. Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sux L, Wong P, Price D, Li R, Shen Y. Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med. 2003;9:3–4.

102. Miners JS, van Hulmldz K, Kehoe PG, Love S. Changes with age in the activities of beta-secretase and the Aβeta-degrading enzymes nephrilysin, insulin-degrading enzyme and angiotensin-converting enzyme. Brain Pathol. 2010;20:794–802.

103. Zhao J, Fu Y, Yavoina M, Shao P, Hitt B, O’Connor T, Logan S, Maux E, Citron M, Berry R, Binder L, Vassar R. B-β-sheet amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J Neurosci. 2007;27:3639–49.

104. Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, De Castro V, Jimenez R, Ruano O, Wisniewt E, Dewia JC, Garcia-Verdugo JM, Jimenez AJ, Vitorica J, Gisuenia A. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathlogy in young Alzheimer’s mice hippocampus. Acta Neuropathol. 2012;123:53–70.

105. Li J, Xue ZQ, Deng SH, Liu XG, Putty PO, Gu H, Cai H, Cai Y, Yan X. Amyloid plaque pathogenesis in SXFAD mouse spinal cord: retroggrade transneuronal modification after peripheral nerve injury. Neurotox Res. 2013;24:1–14.

106. Sadleir KR, Kandalepas PC, Buggia-Prevot V, Nicholson DA, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathol. 2016;132:235–56.

107. Mackeistein JM. Examining the decomposed brain. Am J Forensic Med Pathol. 2014;35:265–70.

108. Omalu BI, Mancuso JA, Cho P, Wecht CH. Diagnosis of Alzheimer’s disease in an exhumed decomposed brain after twenty months of burial in a deep grave. J Forensic Sci. 2005;50:1453–8.

109. Gelis E, Preussner J, Dieck M, Budka H. Autopsy at 2 months after death: brain is satisfactorily preserved for neuropathology. Forensic Sci Int. 2007;168:177–82.

110. Blazquez-Lorreia L, Valero-Feigret S, Rodrigues EF, Merchan-Perez A, Rodriguez JR, Dorostkar MM, Defelipe J, Herm J. High plasticity of axonal pathology in Alzheimer’s disease mouse models. Acta Neuropathol Commun. 2017;5:14.

111. Adalbert R, Nogradi A, Babetto E, Janeckova L, Walker SA, Kerschensteiner M, Misgeld T, Coleman MP. Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain. 2009;132:402–16.

112. Dickson TC, Vickers JC. The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neurosci. 2001;100:59–107.

113. Duyckaerts C, Delatour B, Potter MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118:185–8.

114. Campbell MJ, Lewis DA, Foote SL, Morrison JH. Distribution of choline acetyltransferase-, serotonin-, dopamine-beta-hydroxylase-, tyrosine hydroxylase-immunoreactive fibers in monkey primary auditory cortex. J Comp Neurol. 1987;261:209–20.

115. Berger B, Gasper P, Venery C. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 1991; 1421–7.

116. Cai Y, Zhang XM, Macklin LN, Cai H, Luo XG, Oddo S, Laferla FM, Struble RG, Rose GM, Patyrol PR, Yan X. BACE1 elevation is involved in amyloid plaque development in the triple transgenic model of Alzheimer’s disease: differential Aβ antibody labeling of early-onset axonal terminal pathology. Neurotox Res. 2012;11:160–74.

117. Chen XH, Siman R, Iwata A, Meaney DF, Trajanowski QJ, Smith DH. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol. 2004;165:357–71.
128. Yu F, Zhang Y, Chuang DM. Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J Neurotrauma. 2012;29:2932–41.

129. Pajoohesh-Ganji A, Burns MP, Pal-Ghosh S, Tadvalkar G, Hokenbury NG, Stepp MA, Faden AI. Inhibition of amyloid precursor protein secretases reduces recovery after spinal cord injury. Brain Res. 2014;1560:73–82.

130. Daneshvar DH, Goldstein LE, Krieman PT, Stein TD, McKe AC. Post-traumatic neurodegeneration and chronic traumatic encephalopathy. Mol Cell Neurosci. 2015;68:81–90.

131. Li JM, Cai Y, Liu F, Yang L, Hu X, Patrylo PR, Cai H, Luo XG, Xiao D, Yan XX. Experimental microembolism induces localized neurtic pathology in guinea pig cerebrum. Oncotarget. 2015;6:12242–32.

132. Yan XX, Cai Y, Zhang YM, Luo XG, Cai H, Rose GM, Patrylo PR. BACE1 elevation is associated with aberrant limbic axonal sprouting in epileptic CD1 mice. Exp Neurol. 2012;235:28–37.

133. Deng X, Li M, Ai W, He L, Lu D, Patrylo PR, Cai H, Luo X, Li Z, Yan X. Lipopolysaccharide-induced neuroinflammation is associated with Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration in rats. Adv Alzheimer Dis. 2014;3:78–93.

134. Taji N, Kellogg SL, Shimizu T, Arendash GW, Borchgrevink CV. Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer’s disease transgenic mice. PLoS One. 2013;8:e78851.

135. Yan XX, Cai Y, Sheltorn J, Deng SH, Luo XG, Oddo S, Lafella FM, Cai H, Rose GM, Patrylo PR. Chronic temporal lobe epilepsy is associated with enhanced Alzheimer-like neuropathology in 3x Tg-AD mice. PLoS One. 2012;7:e49782.

136. Collins JM, King AE, Woodhouse A, Kirkaldie MT, Vickers JC. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer’s disease. Exp Neurol. 2015;267:219–29.

137. Yan XX, Jen LS, Garey LJ. NADPH-diaphorase-positive neurons in primate cerebral cortex colocalize with GABA and calcium-binding proteins. Cereb Cortex. 2008;18:634–54.

138. Solomon A, Kiwpeito M, Wollzin B, Zhou J, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord. 2009;28:75–80.

139. Toppapane AM, Solomon A, Soineinen H, Kiwpeito M. Midlife vascular risk factors and Alzheimer’s disease: evidence from epidemiological studies. J Alzheimers Dis. 2012;32:531–40.

140. Reed B, Villeneuve S, Mack W, DeCarli C, Chui HC, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 2014;71:195–200.

141. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: population-based perspective. Alzheimer’s Dement. 2015;11:718–26.

142. Saforis A, Piatopoulou T, Sergentanis TN, Boutati E, Kapaki E, Tsivgoulis G, Hemitis J, Hemitis J. The relationship of amyloid plaques to chronic diseases in Alzheimer’s disease and other types of cerebral amyloidosis. Lab Investig. 2014;94:355–73.

143. Stone J, Johnstone D, Mitrofanis J, O’Rourke M. The mechanical cause of age-related dementia: the brain is destroyed by the pulse. J Alz Dis. 2015;44:1–9.

144. Fujii K, Hori S, Ikeda T, Yamaoka K, Fukuda T, Takashima S. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab. 2013;33:1500–1508.

145. de la Torre JC. Alzheimer’s disease is a vasocognothropy: a new term to describe its nature. Neurol Res. 2004;26:517–24.

146. Stone J, Johnstone D, Mitrofanis J, O’Rourke M. The mechanical cause of age-related dementia: the brain is destroyed by the pulse. J Alz Dis. 2015;44:355–73.

147. Hu X, Hu ZL, Li Z, Ruan CS, Qiu YW, Pan A, Li CQ, Cai Y, Shen L, Chu Y, Tang BS, Cai H, Zhou XF, Ma C, Yan XX. Sorting fragments deposit at senile plaques in human cerebral cortex. Front Neurol. 2017;8:1145.

148. Cofin F, Castano E, Prelli F, Larrondo-Lillo M, van Duinen S, Shelanski ML, Frangione B. Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis. Lab Invest. 1988;58:454–8.

149. Watson MD, Roher AE, Kim KS, Spiegel K, Emmerling M. Complement and we will help you at every step:
Submit your manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research
Submit your manuscript at www.biomedcentral.com/submit