A NOTE ON LOCAL $W^{1,p}$-REGULARITY ESTIMATES FOR WEAK SOLUTIONS OF PARABOLIC EQUATIONS WITH SINGULAR DIVERGENCE-FREE DRIFTS

TUOC PHAN

ABSTRACT. We investigate weighted Sobolev regularity of weak solutions of non-homogeneous parabolic equations with singular divergence-free drifts. Assuming that the drifts satisfy some mild regularity conditions, we establish local weighted L^p-estimates for the gradients of weak solutions. Our results improve the classical one to the borderline case by replacing the L^p-assumption on solutions by solutions in the John-Nirenberg BMO space. The results are also generalized to parabolic equations in divergence form with small oscillation elliptic symmetric coefficients and therefore improve many known results.

1. INTRODUCTION AND MAIN RESULTS

We investigate local weighted L^p-estimates for the gradients of weak solutions of parabolic equations with low regularity of the divergence-free drifts. A typical example is the parabolic equation

$$u_t - \Delta u - b \cdot \nabla u = 0, \quad \mathbb{R}^n \times (0,\infty),$$

where the drift $b : \mathbb{R}^n \times (0,\infty) \to \mathbb{R}^n$ is of divergence-free, i.e. $\text{div}(b(t)) = 0$ in distributional sense for a.e. t. Due to its relevance in many applications such as in fluid dynamics, and biology, the equation (1.1) has been investigated by many mathematicians (for example [15,16,28,33]). Local boundedness, Harnack’s inequality, and Hölder’s regularity are established in [15,24,28,31,33] with possible singular drifts. Many other classical results with regular drifts can be found in [14,17,18,19]. Hölder’s regularity for the fractional Laplace type equations of the form (1.1) are extensively studied recently (see [7,13,29]).

Unlike the mentioned work, this note investigates the Sobolev regularity of weak solutions of (1.1) in weighted spaces. Our goal is to establish local weighted estimates of Calderón-Zygmund type for weak solutions of (1.1) with some mild requirements on the regularity of the drifts b. We study the following parabolic equation that is more general than (1.1):

$$u_t - \text{div}[a(x,t)\nabla u] - b \cdot \nabla u = \text{div}(F),$$

where $a = (a^{ij}_{t,j=1})$ is a given symmetric $n \times n$ matrix of bounded measurable functions, and F, b are given vector fields with $\text{div}(b) = 0$ in distribution sense. The exact required regularity conditions of a, b, F will be specified.

To state our results, we introduce some notation. For each $r > 0$, and $z_0 = (x_0, t_0) \in \mathbb{R}^n \times \mathbb{R}$, we denote $Q(z_0)$ the parabolic cylinder in \mathbb{R}^{n+1}

$$Q_r(z_0) = B_r(x_0) \times \Gamma_r(t_0), \quad \text{where} \quad \Gamma_r(t_0) = (t_0 - r^2, t_0 + r^2), \quad \text{and} \quad B_r(x_0) = \{x \in \mathbb{R}^n : ||x - x_0|| < r\}.$$

When $z_0 = (0,0)$, we also write

$$Q_r = Q_r(0,0), \quad \text{for} \quad 0 < r < \infty.$$

As we are interested in the local regularity, we reduce our study to the equation

$$u_t - \text{div}[a(x,t)\nabla u] - b \cdot \nabla u = \text{div}(F), \quad \text{in} \quad Q_2,$$

for given

$$a : Q_2 \to \mathbb{R}^{n \times n}, \quad b, F : Q_2 \to \mathbb{R}^n,$$

and

$$\text{div}(b(\cdot, t)) = 0, \quad \text{in distribution sense in} \ B_2, \quad \text{for a.e.} \ t \in \Gamma_2.$$
We also denote

\[
\Lambda^{-1}|\xi|^2 \leq \langle a(x,t)\xi, \xi \rangle \leq \Lambda|\xi|^2, \quad \text{for a.e. } (x,t) \in Q_2, \quad \text{and } \forall \xi \in \mathbb{R}^n.
\]

We also require that the matrix a has a small oscillation. Therefore, we need the following definition.

Definition 1.1. Let $a : Q_2 \to \mathbb{R}^{n \times n}$ be a measurable matrix valued function. For given $R > 0$, we define

\[
[a]_{\text{BMO}(Q,t)} = \sup_{0 < \rho \leq 1} \sup_{(y,s) \in Q_1} \frac{1}{|Q_{y,s}|} \int_{Q_{y,s}} |a(x,t) - \bar{a}_{B_R(y)}(t)|^2 \, dx dt,
\]

where $\bar{a}_U(t) = \frac{1}{|U|} \int_U a(x,t) \, dx$ is the average of a in the set $U \subset B_2$.

For the regularity of the vector field b, we need the following function space, which was introduced in [20] [25].

Definition 1.2. For $x_0 \in \mathbb{R}^n$ and $r > 0$, a locally square integrable function f defined in a neighborhood of $B_r(x_0)$ is said to be in $V^{1,2}(B_r(x_0))$ if there is $k \in [0, \infty)$ such that

\[
\int_{B_r(x_0)} |f(x)|^2 \varphi(x)^2 \, dx \leq k \int_{B_r(x_0)} |\nabla \varphi(x)|^2 \, dx, \quad \forall \varphi \in C_0^\infty(B_r(x_0)).
\]

We denote

\[
||b||_{V^{1,2}(B_r(x_0))}^2 = \inf \{k \in [0, \infty) \text{ such that (1.6) holds}\}.
\]

In this paper, the numbers $s, s' \in (1, \infty), \alpha > 0$ and λ are fixed and satisfying

\[
\frac{1}{s'} + \frac{1}{s} = 1, \quad -(n+2) \leq \lambda \leq s', \quad \alpha = \lambda(s - 1).
\]

We also denote $L^p(Q, \omega)$ the weighted Lebesgue space with weight ω:

\[
L^p(Q, \omega) = \left\{ f : Q \to \mathbb{R} : ||f||_{L^p(Q, \omega)} := \left(\int_Q |f(x,t)|^p \omega(x,t) \, dx \, dt \right)^{1/p} < \infty \right\}, \quad 1 < p < \infty.
\]

At this moment, we refer the readers to Section 2 for the definition of weak solutions of (1.3), the definition of of Muckenhoupt A_q weights, and the definition of fractional Hardy-Littlewood maximal functions M_q. Our main result is the following theorem on local weighted $W^{1,p}$-regularity estimates for weak solutions of (1.3).

Theorem 1.3. Let Λ, M_0 be positive numbers, $p \in (2, \infty)$, and $\omega \in A_{p/2}$. Let s, s', λ, α be as in (1.7). Then, there exists a sufficiently small number $\delta = \delta(\Lambda, M_0, s, \lambda, \omega)_{A_{p/2}, p, n} > 0$ such that the following holds: Suppose that a satisfies (1.5), $F \in L^2(Q_2)$, and $b \in L^\infty(\Gamma_2, V^{1,2}(B_2))$ such that (1.4) holds, and

\[
||a||_{\text{BMO}(Q_1)} < \delta, \quad ||b||_{L^\infty(\Gamma_2, V^{1,2}(B_2))} \leq M_0.
\]

Then for every weak solution u of (1.3), the following estimate holds

\[
\int_{Q_1} |\nabla u|^p \omega(z) \, dz \leq C \left[||F||_{L^p(Q_1, \omega)}^p + ||u||_{V^{1,2}(Q_1)}^p \left(M_0 \, Q_2 \left(||b||_{L^p(Q_1, \omega)}^{p/2} \right)^{2/p} + \omega(Q_1) ||\nabla u||_{L^2(Q_2)}^p \right) \right],
\]

as long as its right hand side is finite. Here, $[u]_{s', \lambda, Q_1}$ is the parabolic semi-Campanato’s norm of u on Q_1,

\[
[u]_{s', \lambda, Q_1} = \sup_{0 < \rho < 1} \rho^{-\lambda} \frac{1}{|Q_{\rho,z}(-1)|} \int_{Q_{\rho,z}(-1)} |u(x,t) - \bar{u}_{Q_{\rho,z}(-1)}|^{s'} \, dx dt,
\]

and $C > 0$ is a constant depending only on $\Lambda, M_0, s, \lambda, p, n$ and $[\omega]_{A_{p/2}}$.
We now point out a few remarks regarding Theorem 1.3. Firstly, observe that the standard Calderón-Zygmund theory can be applied directly to (1.3) to obtain
\[
\|\nabla u\|_{L^p(Q_1)} \leq C \left[\|u\|_{L^p(Q_2)} + \|b\|_{L^p(Q_2)} + \cdots \right],
\]
as long as \(u \in L^\infty(Q_2) \). Theorem 1.3 improves this Calderón-Zygmund estimate theory for the equation (1.3) to the borderline case, replacing the assumption \(u \in L^\infty(Q_2) \) by \(u \in BMO(Q_1) \). Indeed, if we take \(\lambda = 0 \) (and then \(\alpha = 0 \)), then the estimate (1.8) reduces to
\[
\|\nabla u\|_{L^p(Q_1,\omega)} \leq C \left[\|u\|_{BMO(Q_1)} + \|b\|_{L^p(Q_1,\omega)} + \cdots \right].
\]

Secondly, the weighted \(W^{1,p} \)-regularity estimates are useful in some applications. For example, in [2, 3], the weighted \(W^{1,p} \)-regularity estimates are key ingredients for proving the existence and uniqueness of very weak solutions of some classes of elliptic equations. Moreover, with some specific choice of the weighted \(\omega \), the estimate (1.8) is known to produce the regularity estimates for \(L^p \) in Morrey spaces, see for example [11, 12]. Lastly, when \(\alpha > 0 \), because \(M_\alpha \leq I_\alpha \), the Riesz potential of order \(\alpha \) of \(b \), i.e. \(M_\alpha(|b|^s)^{1/s} \), is more regular than \(b \). This fact enables the estimate (1.8) to be useful in some applications. To see this, we just simply consider the stationary case (i.e. \(u \) is time independent), \(n \geq 3 \) and \(s = 2 \). Assume, for example, that \(b \in L^{n,\infty}(B_2) \subset \mathcal{V}^{1,2}(B_2) \), where \(L^{n,\infty} \) is the weak \(L^n \)-space, and assume also that \(F \) is regular enough. Then, it is proved in [25, 33] that \(u \) is Hölder. Therefore, \([u]_{2,\lambda,B_1} < \infty \) with some \(\lambda > 0 \). From this, and (1.7), we see that \(\alpha > 0 \), and we then can find some small constant \(\epsilon_0 > 0 \) such that
\[
\|M_{\alpha,B_1}(b)\|_{L^p(B_2)} \leq C \|b\|_{L^{n,\infty}(B_2)} < \infty, \quad \text{for all} \quad p < n + \epsilon_0.
\]

Therefore, (1.8) gives the estimate of \(\|\nabla u\|_{L^p(B_2)} \) with some \(p \in [2, n + \epsilon_0) \). This estimate with \(p > n \) is useful in [12] to prove the regularity, and uniqueness of very weak \(W^{1,q} \)-solution of the stationary equation of (1.3), with \(1 < q < 2 \). Details of this discussion and its application can also be found in [25].

We finally would like to point out that the space \(\mathcal{V}^{1,2}(\mathbb{R}^n) \) is already appeared in [20, 25, 33]. In particular, in [33], the space \(L^{\lambda,\infty}(\mathcal{V}^{1,2}(\mathbb{R}^n)) \) is used to study the boundedness of weak solution of the equation (1.1). For \(n \geq 3 \), the space \(\mathcal{V}^{1,2}(\mathbb{R}^n) \) is already appeared in [20, 25]. Moreover, it is known that (see [25])
\[
(1.10) \quad L^p(\mathbb{R}^n) \subset \mathcal{M}^{p,p}(\mathbb{R}^n) \subset \mathcal{V}^{1,2}(\mathbb{R}^n) \quad \forall 2 < p \leq n,
\]

and therefore
\[
L^{\infty}\left(L^p(\mathbb{R}^n) \right) \subset L^{\infty}\left(\mathcal{M}^{p,p}(\mathbb{R}^n) \right) \subset L^{\infty}\left(\mathcal{V}^{1,2}(\mathbb{R}^n) \right),
\]

where \(\mathcal{M}^{p,p}(\mathbb{R}^n) \) denotes the homogeneous Morrey space. Specifically, for \(0 < p \leq n \) and \(0 < \lambda < p \), the function \(f \in L^p_{\text{loc}}(\mathbb{R}^n) \) belongs to the space \(\mathcal{M}^{p,p}(\mathbb{R}^n) \) if
\[
\|f\|_{\mathcal{M}^{p,p}(\mathbb{R}^n)} = \sup_{B_\lambda(x_0) \subset \mathbb{R}^n} \left\{ r^{1-n} \int_{B_\lambda(x_0)} |f(x)|^p \right\}^{1/p} < \infty.
\]

We use perturbation approach introduced in [6] to prove Theorem 1.3. Our approach is also influenced by [11, 21, 23, 32]. To implement the approach, we introduce the function \(B(x, t) = ((u|_{\partial Q_1} - [b(x, t)])^s \), which is invariant under the standard dilation, and translation. This function also captures the cancellation due to the divergence-free of the vector field \(b \), which is the main reason so that the estimate (1.9) holds the borderline case. The results on the doubling property and reverse Hölder’s inequality for the Muckenhoupt weights due to R. R. Coifman, and C. Fefferman in [8] are also used frequently to derive the weighted estimates.

We conclude the section by introducing the organization of the paper. Section 2 gives definitions, notations, and some preliminaries results needed in the paper. Some simple energy estimates for weak solutions of (1.3) is given in Section 3. The main step in the perturbation technique, the approximation estimates, is carried out in Section 4. Section 5 is about the proof of Theorem 1.3.
2. Definitions of weak solutions, and preliminaries on weighted inequalities

2.1. Definitions of weak solutions. For each \(z_0 = (x_0, t_0) \in \mathbb{R}^n \times \mathbb{R} \), and for any parabolic cylinder \(Q_R(z_0) \), we denote \(\partial_p Q_R(z_0) \) the parabolic boundary of \(Q_R(z_0) \), i.e.

\[
\partial_p Q_R(z_0) = (B_R(x_0) \times [t_0 - R^2]) \cup (\partial B_R(x_0) \times [t_0 - R^2, t_0 + R^2]).
\]

The following standard definitions of weak solutions are also recalled.

Definition 2.1. Let \(Q_r \) be a parabolic cube. For every \(f \in L^2(Q_r) \), \(F, b \in L^2(Q_r)^n \), we say that \(u \) is a weak solution of

\[
\begin{align*}
\partial_t u - \text{div}[a \nabla u] - b \cdot \nabla u &= \text{div}(F) + f, & \text{in} & \ Q_r, \\
u_t &= g, & \text{on} & \ \partial_p Q_r,
\end{align*}
\]

if \(u \in L^2(\mathcal{G}_r, H^1(\Gamma_r)), u_t \in L^2(\mathcal{G}_r, H^{-1}(B_r)), \) and

\[
\int_{\mathcal{G}_r} \langle u_t, \varphi \rangle_{H^{-1}(B_r), H^1(\Gamma_r)} + \int_{Q_r} \int (a \nabla u, \nabla \varphi) - b \cdot \nabla u \varphi |dxdt = \int_{Q_r} (f \varphi - \langle F, \nabla \varphi \rangle)|dxdt,
\]

for all \(\varphi \in \{ \phi \in C^\infty(\overline{Q}_r) : \phi = 0 \text{ on } \partial_p Q_r \} \).

The following definition of weak solution is also needed in the paper.

Definition 2.2. Let \(Q_r \) be a parabolic cube. For every \(f \in L^2(Q_r) \), \(F, b \in L^2(Q_r)^n \), and for \(g \in L^2(\mathcal{G}_r, H^1(\Gamma_r)) \), we say that \(u \) is a weak solution of

\[
\begin{align*}
\partial_t u - \text{div}[a \nabla u] - b \cdot \nabla u &= \text{div}(F) + f, & \text{in} & \ Q_r, \\
u_t &= g, & \text{on} & \ \partial_p Q_r,
\end{align*}
\]

if \(u \) is a weak solution of

\[
\begin{align*}
\partial_t u - \text{div}[a \nabla u] - b \cdot \nabla u &= \text{div}(F) + f, \quad \text{in} \quad Q_r,
\end{align*}
\]

in the sense of Definition 2.1 and \(u - g \in \{ \phi \in L^2(\mathcal{G}_r, H^1(\Gamma_r)) : \phi = 0 \text{ on } \partial_p Q_r \} \).

2.2. Munckenhoup weights and Hardy-Littlewood maximal functions. For each \(1 \leq q < \infty \), a non-negative, locally integrable function \(\mu : \mathbb{R}^{n+1} \to [0, \infty) \) is said to be in the class of parabolic \(A_q \) of Muckenhoupt weights if

\[
\begin{align*}
\| \mu \|_{A_q, \mathbb{R}^n} &:= \sup_{r > 0, \zeta \in \mathbb{R}^{n+1}} \left(\frac{1}{Q_r(\zeta)} \int_{Q_r(\zeta)} \mu(x, t) dxdt \right)^{\frac{1}{q}} \int_{Q_r(\zeta)} \mu(x, t) dxdt < \infty, \quad \text{if} \quad q > 1, \\
\| \mu \|_{A_1, \mathbb{R}^n} &:= \sup_{r > 0, \zeta \in \mathbb{R}^{n+1}} \left(\frac{1}{Q_r(\zeta)} \int_{Q_r(\zeta)} \mu^{-1}(x, t) dxdt \right) \| \mu^{-1} \|_{L^\infty(Q_r(\zeta))} < \infty, \quad \text{if} \quad q = 1.
\end{align*}
\]

It is well known that the class of \(A_q \)-weights satisfies the reverse Hölder’s inequality and the doubling properties, see for example [8, 9, 20]. In particular, a measure with an \(A_q \)-weight density is, in some sense, comparable with the Lebesgue measure.

Lemma 2.3 ([8]). For \(1 < q < \infty \), the following statements hold true

(i) If \(\mu \in A_q \), then for every parabolic cube \(Q \subset \mathbb{R}^{n+1} \) and every measurable set \(E \subset Q, \ \mu(Q) \leq \| \mu \|_{A_q, \mathbb{R}^n} (\frac{|Q|}{|E|})^q \mu(E).
\)

(ii) If \(\mu \in A_q \), then there is \(C = C([\mu]_{A_q}, n) \) and \(\beta = \beta([\mu]_{A_q}, n) > 0 \) such that \(\mu(E) \leq C \left(\frac{|E|}{|Q|} \right)^{\beta} \mu(Q) \), for every parabolic cube \(Q \subset \mathbb{R}^{n+1} \) and every measurable set \(E \subset Q \).

Let us also recall the definition of the parabolic fractional Hardy-Littlewood maximal operators which will be needed in the paper

Definition 2.4. Let \(\alpha \in \mathbb{R} \), the parabolic Hardy-Littlewood fractional maximal function of order \(\alpha \) of a locally integrable function \(f \) on \(\mathbb{R}^n \) is defined by

\[
(M_\alpha f)(x, t) = \sup_{\rho > 0} \rho^\alpha \int_{Q_{\rho}(x, t)} |f(y, s)| dyds.
\]
If \(f \) is defined in a region \(U \subset \mathbb{R}^n \times \mathbb{R} \), then we denote
\[
M_{\alpha\nu} f = M_\alpha (\chi_U f).
\]
Moreover, when \(\alpha = 0 \), we write
\[
M f = M_0 f, \quad M_{\alpha} f = M_{0\alpha} f.
\]

The following boundedness of the Hardy-Littlewood maximal operator is due to Muckenhoupt \([22]\). For the proof of this lemma, one can find it in \([9, 30]\).

Lemma 2.5. Assume that \(\mu \in A_q \) for some \(1 < q < \infty \). Then, the followings hold.

1. **Strong \((q, q)\):** There exists a constant \(C = C(\{\mu\}_{A_q}, n, q) \) such that
 \[
 \|M\|_{L^q(\mathbb{R}^{n+1}, \mu) \to L^q(\mathbb{R}^{n+1}, \mu)} \leq C.
 \]
2. **Weak \((1, 1)\):** There exists a constant \(C = C(n) \) such that for any \(\lambda > 0 \), we have
 \[
 |\{(x, t) \in \mathbb{R}^{n+1} : M(f) > \lambda \}| \leq \frac{C}{\Lambda} \int_{\mathbb{R}^{n+1}} |f(x, t)| \, dx \, dt.
 \]

2.3. **Some useful measure theory lemmas.** We collect some results needed in the paper. Our first lemma is the standard result in measure theory.

Lemma 2.6. Assume that \(g \geq 0 \) is a measurable function in a bounded subset \(U \subset \mathbb{R}^{n+1} \). Let \(\theta > 0 \) and \(\sigma > 1 \) be given constants. If \(\mu \) is a weight in \(L^1_{\text{loc}}(\mathbb{R}^{n+1}) \), then for any \(1 \leq p < \infty \)
\[
g \in L^p(U, \mu) \iff S := \sum_{j \geq 1} \sigma^p |\mu(\{x \in U : g(x) > \theta \sigma^j\})| < \infty.
\]
Moreover, there exists a constant \(C > 0 \) such that
\[
C^{-1} S \leq \|g\|_{L^p(U, \mu)} \leq C(\mu(U) + S),
\]
where \(C \) depends only on \(\theta, \sigma \) and \(p \).

The following lemma is commonly used, and it is a consequence of the Vitali’s covering lemma. The proof of this lemma can be found in \([21]\), Lemma 3.8.

Lemma 2.7. Let \(\mu \) be an \(A_q \) weight for some \(q \in (1, \infty) \) be a fixed number. Assume that \(E \subset K \subset Q_1 \) are measurable sets for which there exists \(\epsilon, \rho_0 \in (0, 1/4) \) such that

1. \(\mu(E) < \epsilon \mu(Q_1(z)) \) for all \(z \in \overline{Q}_1 \), and
2. for all \(z \in Q_1 \) and \(\rho \in (0, \rho_0) \), if \(\mu(E \cap Q_\rho(z)) \geq \epsilon \mu(Q_\rho(z)), \) then \(Q_\rho(z) \cap Q_1 \subset K \).

Then with \(\epsilon_1 = \epsilon(20)^{-d} [\mu]_{A_q}^2 \) so that the following estimate holds
\[
\mu(E) \leq \epsilon_1 \mu(K).
\]

3. **Caccioppoli’s type estimates**

Suppose that \(a \) satisfies \([15]\), and \(b \in L^{\infty}(\Gamma_2, \mathcal{V}^{1,2}(B_2))^n \cap L^2(Q_2)^n \) with \(\text{div}(b) = 0 \). In this section, let \(u \) be a weak solution of
\[
-u_t - \text{div}(a(x, t) \nabla u) - b(x, t) \cdot \nabla u = \text{div}(F), \quad \text{in} \quad Q_2.
\]
Also, let \(v \) be a weak solution of
\[
\begin{cases}
 v_t - \text{div}(a B_{\gamma}(t) \nabla v) & = 0, \quad Q_{7/4}, \\
 v & = u, \quad \partial_p Q_{7/4}.
\end{cases}
\]
The meanings for weak solutions of these equations are given in Definition \([21]\) and Definition \([22]\) respectively. We will derive some fundamental estimates for \(u \) and \(v \).
Lemma 3.1. Let \(w = u - v \), then there exists a constant \(C \) depending on only \(\Lambda, n \) such that

\[
\begin{align*}
\sup_{t \in Q_{1/4}} \int_{B_{1/4}} w^2(x, t) dx + \int_{Q_{1/4}} |\nabla w|^2 dx dt & \leq C \left(\| b \|_{L^\infty(\Gamma_2; \mathcal{V}^{1/2}(B_2))}^2 + 1 \right) \int_{Q_{1/4}} |\nabla u|^2 dx dt \int_{Q_{1/4}} |F|^2 dx dt.
\end{align*}
\]

Proof. Note that \(w \) is a weak solution of

\[
\begin{align*}
\frac{1}{2} \frac{d}{dt} \int_{B_{1/4}} w^2(x, t) dx + \int_{B_{1/4}} \tilde{a}(t) \nabla w, \nabla w) dx &= - \int_{B_{1/4}} \langle (a - \tilde{a}(t)) \nabla u, \nabla w \rangle dx + \int_{B_{1/4}} |b \cdot \nabla u| w dx - \int_{B_{1/4}} F \cdot \nabla w dx.
\end{align*}
\]

Multiplying the equation with \(w \), and using the integration by parts in \(x \), we see that

\[
\begin{align*}
\frac{1}{2} \sup_{t \in Q_{1/4}} \int_{B_{1/4}} w^2 dx + \Lambda^{-1} \int_{Q_{1/4}} |\nabla w|^2 dx dt \\
\leq \int_{Q_{1/4}} |(a - \tilde{a}(t)) \nabla u, \nabla w)| dx + \int_{Q_{1/4}} |b \cdot \nabla u| w dx + \int_{Q_{1/4}} |F \cdot \nabla w| dx dt.
\end{align*}
\]

Then, by integrating this equality in time and using the ellipticity condition (1.5), we obtain

\[
\begin{align*}
\sup_{t \in Q_{1/4}} \int_{B_{1/4}} w^2 dx + \Lambda^{-1} \int_{Q_{1/4}} |\nabla w|^2 dx dt + \int_{Q_{1/4}} |(a - \tilde{a}(t)) \nabla u, \nabla w)| dx + \int_{Q_{1/4}} |b \cdot \nabla u| w dx + \int_{Q_{1/4}} |F \cdot \nabla w| dx dt.
\end{align*}
\]

We now estimate terms by terms of the right hand side of (3.1). From Hölder’s inequality, and the Young’s inequality, and the fact that \(w = 0 \) on \(\partial_p Q_{1/4} \), the second term in the right hand side of (3.1) can be estimated as

\[
\begin{align*}
\int_{Q_{1/4}} |(a - \tilde{a}(t)) \nabla u, \nabla w)| dx & \leq \left\{ \int_{Q_{1/4}} |b| w^2 dx dt \right\}^{1/2} \left\{ \int_{Q_{1/4}} |\nabla u|^2 dx dt \right\}^{1/2} \\
& \leq \| b \|_{L^\infty(\Gamma_2; \mathcal{V}^{1/2}(B_2))} \left\{ \int_{Q_{1/4}} |\nabla w|^2 dx dt \right\}^{1/2} \left\{ \int_{Q_{1/4}} |\nabla u|^2 dx dt \right\}^{1/2} \\
& \leq \frac{\Lambda^{-1}}{6} \int_{Q_{1/4}} |\nabla w|^2 dx dt + C(\Lambda) \| b \|_{L^\infty(\Gamma_2; \mathcal{V}^{1/2}(B_2))} \int_{Q_{1/4}} |\nabla u|^2 dx dt.
\end{align*}
\]

On the other hand, by the boundedness of \(a \) in (1.5), and the Hölder’s inequality, we conclude that

\[
\begin{align*}
\int_{Q_{1/4}} |(a - \tilde{a}(t)) \nabla u, \nabla w)| dx & \leq C(\Lambda) \int_{Q_{1/4}} |\nabla u|^2 dx dt + \frac{\Lambda^{-1}}{6} \int_{Q_{1/4}} |\nabla u|^2 dx dt, \quad \text{and} \\
\int_{Q_{1/4}} |F \cdot \nabla w| dx & \leq C(\Lambda) \int_{Q_{1/4}} |F|^2 dx dt + \frac{\Lambda^{-1}}{6} \int_{Q_{1/4}} |\nabla w|^2 dx dt.
\end{align*}
\]

Collecting all of the estimates, we obtain from (3.1) that

\[
\begin{align*}
\sup_{t \in Q_{1/4}} \int_{B_{1/4}} w^2 dx + \Lambda^{-1} \int_{Q_{1/4}} |\nabla w|^2 dx dt & \leq \frac{\Lambda^{-1}}{2} \int_{Q_{1/4}} |\nabla w|^2 dx dt + C \left(\| b \|_{L^\infty(\Gamma_2; \mathcal{V}^{1/2}(B_2))}^2 + 1 \right) \int_{Q_{1/4}} |\nabla u|^2 dx + \int_{Q_{1/4}} |F|^2 dx dt.
\end{align*}
\]

Therefore,

\[
\begin{align*}
\sup_{t \in Q_{1/4}} \int_{B_{1/4}} w^2 dx + \int_{Q_{1/4}} |\nabla w|^2 dx dt & \leq C(\Lambda) \left(\| b \|_{L^\infty(\Gamma_2; \mathcal{V}^{1/2}(B_2))}^2 + 1 \right) \int_{Q_{1/4}} |\nabla u|^2 dx + \int_{Q_{1/4}} |F|^2 dx dt.
\end{align*}
\]
The proof is complete. \hfill \Box

The following version of local energy estimate for \(w = u - v\) is also needed.

Lemma 3.2. There exists a constant \(C = C_0\) depending only on \(\Lambda, n\) such that for \(w = u - v\), and for every smooth, non-negative cut-off function \(\varphi \in C_0^\infty(Q_r)\) with \(0 < r \leq 7/4\), there holds

\[
\sup_{t \in \Gamma} \int_{B_r} w^2 \varphi^2 \, dx + \int_{Q_r} |\nabla w|^2 \varphi^2 \, dx dt \\
\leq C_0 \left\{ \left[\|b\|_{L^2(\Gamma_7; \mathbb{V}^{1,2}(B_7))}^2 + 1 \right] \int_{Q_r} w^2 \left[\varphi^2 + |\partial_t \varphi|^2 + |\nabla \varphi|^2 \right] \, dx dt + \int_{Q_r} |F|^2 \varphi^2 \, dx dt \\
+ \|\nabla \varphi\|_{L^2(\Omega_{7/4})} \|b\|_{L^2(\Gamma_7; \mathbb{V}(B_7))} \|\nabla \varphi\|_{L^2(\Omega_{7/4})} \left\{ \int_{Q_r} w^2 \varphi^2 \, dx dt \right\}^{1/2} + \|\nabla v\|_{L^2(\Omega_{7/4})} \int_{Q_r} |a - \bar{a}_{B_{7/4}}(t)|^2 \, dx dt \right\}.
\]

Proof. We write \(Q = Q_r, B = B_r\), and \(\Gamma = \Gamma_r\). Note that \(w\) is a weak solution of

\[w_t - \text{div}[a \nabla w + (a - \bar{a}_{B_{7/4}}) \nabla v] - b \cdot \nabla w - b \cdot \nabla v = \text{div}(F), \quad \text{in} \quad Q_{7/4}.
\]

By using \(w \varphi^2\) as a test function of the equation of \(w\), we obtain

\[
\frac{1}{2} \frac{d}{dt} \int_B w^2(x, t) \varphi^2(x, t) \, dx + \int_B \langle a \nabla w, \nabla w \rangle \varphi^2 \, dx \\
= \int_B \langle \nabla w, \nabla (\varphi^2) \rangle \, dx - \int_B \langle (a - \bar{a}_{B_{7/4}}(t)) \nabla v, \varphi^2 \nabla w + 2w \varphi \nabla \varphi \rangle \, dx \\
+ \int_B |b \cdot \nabla w| w \varphi^2 \, dx + \int_B |b \cdot \nabla v| w \varphi^2 \, dx \\
- \int_B \langle F, \nabla (w \varphi^2) \rangle + \int_B w^2 \varphi \, dx.
\]

(3.3)

Note again that the second term in the left hand side of (3.3) can be estimated using (1.5) as

\[
\int_Q \langle a \nabla w, \nabla w \rangle \varphi^2 \, dx dt \geq \Lambda^{-1} \int_Q |\nabla w|^2 \varphi^2 \, dx dt.
\]

Also, from the integration by parts in \(x\), and \(\text{div}(b) = 0\), we also have

\[
\int_B |b \cdot \nabla w| w \varphi^2 \, dx = \frac{1}{2} \int_B |b \cdot \nabla (w^2)| \varphi^2 \, dx = - \int_B |b \cdot \nabla \varphi| w^2 \varphi \, dx.
\]

Hence, (3.3) implies

\[
\frac{1}{2} \frac{d}{dt} \int_B w^2(x, t) \varphi^2(x, t) \, dx + \Lambda^{-1} \int_B |\nabla w|^2 \varphi^2 \, dx \\
\leq \int_B |\langle a \nabla w, \nabla (\varphi^2) \rangle w| \, dx + \int_B |(a - \bar{a}_{B_{7/4}}(t)) \nabla v, \varphi^2 \nabla w + 2w \varphi \nabla \varphi| \, dx \\
+ \int_B |b \cdot \nabla \varphi| w^2 \varphi^2 \, dx + \int_B |b \cdot \nabla v| w \varphi^2 \, dx \\
+ \int_B |\langle F, \nabla (w \varphi^2) \rangle| + 2w^2 |\varphi \varphi_l| \, dx.
\]
By integrating this inequality in time, and using the L^∞-bound of a from (1.3), we infer that

$$
\frac{1}{2} \sup_{t \in I} \int_B w^2(x, t)|\varphi|^2 dx + \Lambda^{-1} \int_Q |\nabla w|^2 \varphi^2 dx dt
\leq 2 \int_Q |\nabla w| |\nabla \varphi| |\varphi| dx dt + \int_Q |a - \tilde{a}_{B_{T/4}}| |\nabla v| \left[|\varphi|^2 |\nabla v| + 2|w| |\nabla \varphi| \right] dx dt
+ \int_Q |b||\nabla \varphi| w^2 \varphi^2 dx dt + \int_Q |b||\nabla v||w| \varphi^2 dx dt
+ \int_Q \left| \langle F, \nabla (w \varphi^2) \rangle \right| + 2w^2|\varphi|_B dx dt.
$$

(3.4)

We now pay particular attention to the terms in the right hand side of (3.4) involving b, as other terms can be estimated exactly as in Lemma 3.1. By using the Hölder’s inequality and Young’s inequality, we see that

$$
\int_Q w^2 \varphi |\nabla \varphi| dx dt \leq \left\{ \int_Q |b|^2 w^2 \varphi^2 \right\}^{1/2} \left\{ \int_Q w^2 |\nabla \varphi|^2 dx dt \right\}^{1/2}
\leq \|b\|_{L^\infty(Q_{T/4} \cap B_{T/4})} \left\{ \int_Q |\nabla (w \varphi)|^2 dx dt \right\}^{1/2} \left\{ \int_Q w^2 |\nabla \varphi|^2 dx dt \right\}^{1/2},
$$

for any arbitrary $\epsilon > 0$. Similarly, we also obtain

$$
\int_Q |b||\nabla v||w| \varphi^2 dx dt \leq \|\nabla v\|_{L^\infty(Q_{T/4})} \left\{ \int_Q |b|^2 \varphi^2 dx dt \right\}^{1/2} \left\{ \int_Q |w|^2 \varphi^2 dx dt \right\}^{1/2}
\leq \|\nabla v\|_{L^\infty(Q_{T/4})} \|b\|_{L^\infty(Q_{T/4} \cap B_{T/4})} \|\nabla \varphi\|_{L^2(Q_{T/4})} \left\{ \int_Q |w|^2 \varphi^2 dx dt \right\}^{1/2}.
$$

Other terms can be estimated similarly. Then, collecting all the estimates and choose ϵ sufficiently small, we obtain the desired result. □

4. APPROXIMATION ESTIMATES

We apply the “freezing coefficient” technique to establish the regularity estimates for weak solutions of (1.3). To do this, we approximate the weak solution u of the equation

$$
u_t - \text{div}[a \nabla u] - b \cdot \nabla u = \text{div}(F) \quad \text{in} \quad Q_T,
$$

by the weak solution v of the equation

$$
\begin{aligned}
\left\{ \begin{array}{ll}
v_t - \text{div}[\tilde{a}_{B_{T/4}}(t) \nabla v] & = 0, \quad \text{in} \quad Q_{T/4}, \\
 v & = u, \quad \text{on} \quad \partial \Omega Q_{T/4}
\end{array} \right.
\end{aligned}
$$

(4.2)

Again, the meanings for weak solutions of equations (4.1) - (4.2) are given in Definition 2.1 and Definition 2.2 respectively. We essentially follow the method in our recent work [11, 23], which in turn is influenced by [5, 6, 27, 32]. We first begin with the standard result on the regularity of weak solution of the constant coefficient equation (4.2).

Lemma 4.1. There exists a constant C depending only on the ellipticity constant Λ and n such that if v is a weak solution of

$$
\nu_t - \text{div}[\tilde{a}_{B_{T/4}}(t) \nabla v] = 0 \quad \text{in} \quad Q_{T/4},
$$

then

$$
\|\nabla v\|_{L^\infty(Q_{T/4})} \leq C \left(\int_{Q_{T/4}} |\nabla v(x, t)|^2 dx dt \right)^{1/2}.
$$

Our next lemma confirms that we can approximate in $L^2(Q_{T/4})$ the solution u of (4.1) by the solution v of (4.2) if the coefficients and the data are sufficiently close to each others.
Lemma 4.2. Let $M_0, \Lambda > 0$ and $s > 1$, be fixed. Then, for every $\epsilon > 0$, there exists $\delta > 0$ depending on only $\epsilon, \Lambda, n, M_0, s$ such that the following statement holds true: For every a, b, F such that if \((4.5)\) holds, $\|b\|_{L^\infty(\Gamma_{7/4}, \mathbb{R}^{n\times n})} \leq M_0$, \(\Lambda, \) and a weak solution \((4.4)\) with

\[
\left\{ \int_{Q_{7/4}} |a - \tilde{a}_{k, B_{7/4}}(t)|^2 \, dx \, dt \right\}^{1/2} + \left\{ \int_{Q_2} |F|^2 \, dx \, dt \right\}^{1/2}
+ \left\{ \int_{Q_2} |b|^s \, dx \, dt \right\}^{1/s} \left\{ \int_{Q_2} |\tilde{u}|^{s'} \, dx \, dt \right\}^{1/s'} \leq \delta
\]

with $\tilde{u} = u - \tilde{u}_{Q_2}$, then every weak solution u of \((4.1)\) with

\[
\int_{Q_2} |\nabla u|^2 \, dx \, dt \leq 1,
\]

the weak solution v of \((4.2)\) satisfies

\[
\int_{Q_{7/4}} |u - v|^2 \, dx \, dt \leq \epsilon, \quad \text{and} \quad \int_{Q_{7/4}} |\nabla v|^2 \, dx \, dt \leq C(\Lambda, M_0, n).
\]

Proof. Note that once the existence is proved, it follows from Lemma 5.1 and the assumption \((4.3)\) that

\[
\int_{Q_{7/4}} |\nabla w|^2 \, dx \, dt \leq C[M_0 + 1].
\]

From this, and using \((4.3)\), we infer that

\[
\int_{Q_{7/4}} |\nabla v|^2 \, dx \, dt \leq \int_{Q_{7/4}} |\nabla w|^2 \, dx \, dt + \int_{Q_{7/4}} |\nabla u|^2 \, dx \, dt \leq C(\Lambda, M_0, n).
\]

Therefore, we only need to prove the existence of δ. We use the contradiction argument as this method works well for nonlinear equations, and non-smooth domains. Assume that there exist $M_0, \Lambda > 0, s, s', \lambda$, and $\epsilon_0 > 0$ be as in the assumption such that for every $k \in \mathbb{N}$, there are F_k, a_k, b_k, such that

\[
\left\{ \int_{Q_{7/4}} |a_k - \tilde{a}_{k, B_{7/4}}(t)|^2 \, dx \, dt \right\}^{1/2} + \left\{ \int_{Q_2} |F_k|^2 \, dx \, dt \right\}^{1/2}
+ \left\{ \int_{Q_2} |b_k|^s \, dx \, dt \right\}^{1/s} \left\{ \int_{Q_2} |\tilde{u}_k|^{s'} \, dx \, dt \right\}^{1/s'} \leq \frac{1}{k}, \quad \text{for} \quad \tilde{u}_k = u_k - \tilde{u}_{k, Q_2}
\]

and a weak solution u_k of

\[
\partial_t u_k - \text{div}[a_k \nabla u_k] - b_k \cdot \nabla u_k = \text{div}(F_k), \quad Q_2,
\]

satisfying

\[
\int_{Q_2} |\nabla u_k|^2 \, dx \, dt \leq 1,
\]

but for the weak solution v_k of

\[
\begin{align*}
\partial_t v_k - \text{div}[\tilde{a}_{k, B_{7/4}}(t) \nabla v] &= 0, & \text{in} & \quad Q_{7/4}, \\
v_k &= u_k, & \text{on} & \quad \partial Q_{7/4},
\end{align*}
\]

we have

\[
\int_{Q_{7/4}} |u_k - v_k|^2 \, dx \, dt \geq \epsilon_0.
\]

Since $\tilde{a}_{k, B_{7/4}}(t)$ is a bounded sequence in $L^\infty(\Gamma_{7/4}, \mathbb{R}^{n\times n})$, we can also assume that there is $\bar{a}(t) \in L^\infty(\Gamma_{7/4}, \mathbb{R}^{n\times n})$ such that $\tilde{a}_{k, B_{7/4}} \rightharpoonup \bar{a}$ weakly-* in $L^\infty(\Gamma_{7/4}, \mathbb{R}^{n\times n})$. This means that for each vector $\xi \in \mathbb{R}^n$, and for all function $\phi \in L^1(\Gamma_{7/4})$, we have

\[
\int_{\Gamma_{7/4}} \langle \bar{a}(t) \xi, \xi \rangle \phi(t) \, dt = \lim_{k \to \infty} \int_{\Gamma_{7/4}} \langle \tilde{a}_{k, B_{7/4}}(t) \xi, \xi \rangle \phi(t) \, dt.
\]
Also, for each \(k \in \mathbb{N} \), let \(w_k = u_k - v_k \), we see that \(w_k \) is a weak solution of

\[
\begin{align*}
\partial_t w_k - \text{div}[\bar{a}_{k,B_7/4} \nabla w_k + (a_k - \bar{a}_{k,B_7/4}) \nabla u_k] - b_k \cdot \nabla u_k &= \text{div}[F_k], & Q_{7/4}, \\
\frac{\partial}{\partial t} w_k &= 0, & \partial_p Q_{7/4}.
\end{align*}
\]

From (4.4) and (4.6), we can apply Lemma 3.1 to yield

\[
\sup_{Q_{7/4}} |w_k|^2 dx + \int_{Q_{7/4}} |\nabla w_k|^2 dx dt \leq C, \quad \forall k \in \mathbb{N}.
\]

This estimate, together with (4.4), (4.6), and the PDE in (4.10), we conclude that \(\{w_k\} \) is a bounded sequence in \(\mathcal{E}(Q_{7/4}) \), where

\[
\mathcal{E}(Q_{7/4}) = \{g \in L^2(\Gamma_{7/4}, H^1(B_{7/4})): g_t \in L^2(\Gamma_{7/4}, H^{-1}(B_{7/4})), g = 0 \text{ on } \partial_p Q_{7/4}\}.
\]

Therefore, by the compact embedding \(\mathcal{E}(Q_{7/4}) \hookrightarrow C(\overline{Q_{7/4}}, L^2(B_{7/4})) \), and by passing through a subsequence, we can assume that there is \(w \in \mathcal{E}(Q_{7/4}) \) such that

\[
\begin{align*}
&w_k \to w \text{ strongly in } L^2(Q_{7/4}), \\
&\nabla w_k \to \nabla w \text{ weakly in } L^2(Q_{7/4}), \\
&\partial_t w_k \to \partial_t w \text{ weakly-* in } L^2(\Gamma_{7/4}; H^{-1}(B_{7/4})), \quad \text{and } w_k \to w \text{ a.e. in } Q_{7/4}.
\end{align*}
\]

From (4.8) and (4.12), it follows that

\[
\int_{Q_{7/4}} w^2 dx dt \geq \epsilon_0.
\]

Moreover, due to the boundary condition \(w_k = 0 \) on \(\partial_p Q_{7/4} \), and (4.12), we also conclude that, in the trace sense,

\[
w = 0, \quad \partial_p Q_{7/4}.
\]

We claim that \(w \) is a weak solution of

\[
\begin{align*}
&w_t - \text{div}[\bar{a}(t) \nabla w] = 0, & Q_{7/4}, \\
&w = 0, & \partial_p Q_{7/4}.
\end{align*}
\]

From this, and by the uniqueness of the weak solution of this equation, we infer that \(w = 0 \) and this contradicts to (4.13). Thus, it remains to prove that \(w \) is a weak solution of (4.15). To prove this, we pass the limit as \(k \to \infty \) of (4.10). By (4.14), we only need to find the limits as \(k \to \infty \) for each term in the weak form of the equation (4.10). Let us fix a test function \(\varphi \in C^\infty(Q_{7/4}) \) with \(\varphi = 0 \) on \(\partial_p Q_{7/4} \). Then, it is easy to see from (4.4) and (4.6) that

\[
\lim_{k \to \infty} \int_{Q_{7/4}} F_k \cdot \nabla \varphi dxdt = 0, \quad \lim_{k \to \infty} \int_{Q_{7/4}} \langle (a_k - \bar{a}_{k,B_7/4}(t)) \nabla u_k, \nabla \varphi \rangle dxdt = 0.
\]

Further more, from (4.12), we also find that

\[
\lim_{k \to \infty} \int_{\Gamma_{7/4}} \langle \partial_t w_k, \varphi \rangle_{H^{-1}(B_{7/4}), H^1_b(B_{7/4})} dt = \int_{\Gamma_{7/4}} \langle \partial_t w, \varphi \rangle_{H^{-1}(B_{7/4}), H^1_b(B_{7/4})} dt.
\]

For the term involving \(b_k \), since \(\text{div}(b_k) = 0 \), we can use the integration by parts in \(x \) to write

\[
\int_{Q_{7/4}} [b_k \cdot \nabla u_k] \varphi dxdt = -\int_{Q_{7/4}} [b \cdot \nabla \varphi] \hat{u}_k dxdt, \quad \hat{u}_k = u_k - \bar{u}_{k,Q_2}.
\]

Then, by Hölder’s inequality and (4.6), see that

\[
\left| \int_{Q_{7/4}} [b_k \cdot \nabla u_k] \varphi dxdt \right| \leq ||\nabla \varphi||_{L^\infty(Q_{7/4})} \left(\int_{Q_2} |b_k|^s dxdt \right)^{1/s} \left(\int_{Q_2} |\hat{u}_k|^{s'} dxdt \right)^{1/s'} \leq \frac{|Q_{7/4}|}{k^{1/2}} ||\nabla \varphi||_{L^\infty(Q_{7/4})} \to 0, \quad \text{as } k \to \infty.
\]
Finally, since $\tilde{a}_{k,B_{7/4}}$ and \tilde{a} are independent on x, by integrating by parts in x, we have

$$
\int_{Q_{7/4}} \left[(\tilde{a}_{k,B_{7/4}}(t) \nabla w_k, \nabla \varphi) - \langle \tilde{a}(t) \nabla w, \nabla \varphi \rangle \right] dx dt
$$

$$
= - \sum_{i,j=1}^{n} \int_{Q_{7/4}} \left[w_k \tilde{a}^{ij}_{k,B_{7/4}}(t) \partial_{x_{i,j}} \varphi - w \tilde{a}^{ij}(t) \partial_{x_{i,j}} \varphi \right] dx dt
$$

$$
= - \sum_{i,j=1}^{n} \int_{Q_{7/4}} \left\{ \tilde{a}^{ij}_{k,B_{7/4}}(t) \partial_{x_{i,j}} \varphi \left[w_k - w \right] + w \partial_{x_{i,j}} \varphi \left[\tilde{a}^{ij}(t) - \tilde{a}^{ij}(t) \right] \right\} dx dt
$$

Hence, it follows from (4.9) and (4.12) that

$$
\lim_{k \to \infty} \int_{Q_{7/4}} \left[(\tilde{a}_{k,B_{7/4}}(t) \nabla w_k, \nabla \varphi) - \langle \tilde{a}(t) \nabla w, \nabla \varphi \rangle \right] dx dt = 0.
$$

Collecting the efforts, we obtain

$$
\int_{Q_{7/4}} \langle w_t, \varphi \rangle_{H^{-1}(B_{7/4}), H^1_0(B_{7/4})} dt + \int_{Q_{7/4}} \langle \tilde{a}(t) \nabla w, \nabla \varphi \rangle dx dt = 0, \quad \forall \varphi \in C_0^\infty(\overline{Q_{7/4}}) : \varphi = 0 \text{ on } \partial_p Q_{7/4}.
$$

Thus, w is a weak solution of (4.15). The proof is then complete. \hfill \Box

Lemma 4.3. Let $M_0, s > 0$, and $\Lambda > 0$ be fixed. Then, for every $\epsilon > 0$, there exists $\delta > 0$ depending on n, M_0, Λ, s, and ϵ such that the following statement holds true: For every a, b, F such that if (1.5) holds, $\|b\|_{L^{\infty}(\Omega_2, \mathbb{V}^{1,2}(B_2))} \leq M_0$, and

$$
\left\{ \int_{Q_{7/4}} |a - \tilde{a}_{B_{7/4}}(t)|^2 dx dt \right\}^{1/2} + \left\{ \int_{Q_2} |F|^2 dx dt \right\}^{1/2} + \left\{ \int_{Q_2} |b|^s dx dt \right\}^{1/s} + \left\{ \int_{Q_2} |\tilde{a}|^{s'} dx dt \right\}^{1/s'} \leq \delta
$$

then, for every weak solution u of (4.1) with

$$
\int_{Q_2} |\nabla u|^2 dx dt \leq 1,
$$

the weak solution v of (4.2) satisfies

$$
\int_{Q_{3/2}} |\nabla u - \nabla v|^2 dx dt \leq \epsilon.
$$

Moreover, there is $C = C(\Lambda, M_0, n)$ such that

$$
\|\nabla v\|_{L^{\infty}(Q_{2})} \leq C(n, \Lambda, M_0).
$$

Proof. Let $\mu > 0$ to be determined. By Lemma 4.2 there exists $\delta_1 > 0$ such that if $\|b\|_{L^{\infty}(\Omega_2, \mathbb{V}^{1,2}(B_2))} \leq M_0$, and

$$
\left\{ \int_{Q_{7/4}} |a - \tilde{a}_{B_{7/4}}(t)|^2 dx dt \right\}^{1/2} + \left\{ \int_{Q_2} |F|^2 dx dt \right\}^{1/2} + \left\{ \int_{Q_2} |b|^s dx dt \right\}^{1/s} + \left\{ \int_{Q_2} |\tilde{a}|^{s'} dx dt \right\}^{1/s'} \leq \delta_1,
$$

then

$$
\int_{Q_{7/4}} |u - v|^2 dx dt \leq \mu, \quad \int_{Q_{7/4}} |\nabla v|^2 dx dt \leq C(\Lambda, M_0).
$$

where u is a weak solution of (4.1), and v is a weak solution of (4.2) and

$$
\int_{Q_2} |\nabla u|^2 dx dt \leq 1.
$$

From (4.17) and Lemma 4.1, we can conclude that

$$
\|\nabla v\|_{L^{\infty}(Q_{2})} \leq C(n, \Lambda, M_0).
$$

Note that without loss of generality, we can assume that $\delta_1 \leq \mu$. Therefore, applying Lemma 3.2 we obtain

$$
\int_{Q_{3/2}} |\nabla u - \nabla v|^2 dx dt \leq C(\Lambda, M_0, n)\mu^{1/2}.
$$
Therefore, if we choose μ such that $\mu^{1/2} = \epsilon/C(\Lambda, M_0, n)$, the lemma follows. \hfill \Box

We in fact need a localized version of Lemma 4.3. For each $r > 0$ and $z_0 = (x_0, t_0) \in Q_1$, we approximate a weak solution of the equation
\begin{equation}
(4.18)
\begin{split}
u_t - \text{div}[a\nabla u] - b \cdot \nabla u = \text{div}(F), \quad \text{in} \; Q_2(z_0),
\end{split}
\end{equation}
by the weak solution of
\begin{equation}
(4.19)
\begin{split}
\begin{cases}
v_t - \text{div}[\bar{a}_{B_{7r/4}(x_0)}(t)\nabla v] = 0, & \text{in} \; Q_{7r/4}(z_0), \\
v = u, & \text{on} \; \partial_p Q_{7r/4}(z_0).
\end{cases}
\end{split}
\end{equation}
We then have the following lemma, which is the main result of the section.

Lemma 4.4. Let $\Lambda > 0$, $s > 1$, and $M_0 > 0$ be fixed. Then, for any $\epsilon > 0$, there exists $\delta > 0$ depending only on ϵ, Λ, M_0, s and n such that the following statement holds true: For every $z_0 \in Q_1$, $0 < r \leq 1$, and for every a, b, F such that (4.3) holds for a, and
\begin{equation}
(4.20)
\begin{split}
\left\{ \int_{Q_{7r/4}(z_0)} |a - \bar{a}_{B_{7r/4}(x_0)}|^2 \frac{1}{2} dxdt \right\}^{1/2} + \left\{ \int_{Q_2(z_0)} |F|^2 \frac{1}{2} dxdt \right\}^{1/2}
\end{split}
\end{equation}
then for every weak solution u of (4.1) with
\begin{equation}
(4.21)
\int_{Q_2(z_0)} |\nabla u|^2 dxdt \leq 1,
\end{equation}
the weak solution v of (4.19) satisfies
\begin{equation}
(4.22)
\int_{Q_{7r/2}(z_0)} |\nabla u - \nabla v|^2 dxdt \leq \epsilon, \quad \text{and} \quad \|\nabla v\|_{L^6(Q_{7r/2}(z_0))} \leq C(\Lambda, M_0, n).
\end{equation}

Proof: Given any $\epsilon > 0$, let $\delta = \delta(\epsilon, \Lambda, M_0, s, n) > 0$ be defined as in Lemma 4.3. We now show that Lemma 4.4 holds with this δ. Let u, v satisfy the conditions in Lemma 4.4. Without loss of generality, we can assume that $z_0 = (0, 0)$. Let us define
\begin{equation}
\begin{split}
u'(x, t) = \frac{u(rx, r^2t)}{r}, \quad v'(x, t) = \frac{v(rx, r^2t)}{r}, \quad a'(x, t) = a(rx, r^2t).
\end{split}
\end{equation}
Also, let us denote
\begin{equation}
\begin{split}
F'(x, t) = F(rx, r^2t), \quad b'(x, t) = rb(rx, r^2t).
\end{split}
\end{equation}
Then u' is a weak solution of
\begin{equation}
\begin{split}
u'_t - \text{div}[a'\nabla u'] - b' \cdot \nabla u' = \text{div}(F') \quad \text{in} \; Q_2
\end{split}
\end{equation}
and v' is a weak solution of
\begin{equation}
\begin{split}
\begin{cases}
v'_t = \text{div}[\bar{a}'_{B_{7r/4}(x_0)}(t)\nabla v'], & \text{in} \; Q_{7/4}, \\
v' = u', & \text{on} \; \partial_p Q_{7/4}.
\end{cases}
\end{split}
\end{equation}
We now check that the conditions in Lemma 4.3 hold with a', b', u', F' and v'. A simple calculation shows
\begin{equation}
\begin{split}
\|b'\|_{L^\infty(Q_2, V^{1,2}(B_2))} = \|b\|_{L^\infty(Q_2, V^{1,2}(B_2))} \leq M_0,
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\int_{Q_{7/4}} |a' - \bar{a}_{B_{7r/4}}|^2 dxdt = \int_{Q_{7r/4}} |a' - \bar{a}_{B_{7r/4}}|^2 dxdt, \quad \int_{Q_2} |F'|^2 dxdt = \int_{Q_2} |F|^2 dxdt.
\end{split}
\end{equation}
Also,
\begin{equation}
\begin{split}
\int_{Q_2} |\nabla u'|^2 dxdt = \int_{Q_2} |\nabla v'|^2 dxdt \leq 1,
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\left\{ \int_{Q_2} |u' - \bar{u}'_{Q_2}|^{1/s} \right\}^{1/s} \left\{ \int_{Q_2} |b'|^s dxdt \right\}^{1/s} \leq \left\{ \int_{Q_2} |u - \bar{u}_{Q_2}|^{1/s} \right\}^{1/s} \left\{ \int_{Q_2} |b|^s dxdt \right\}^{1/s}.
\end{split}
\end{equation}
Therefore, if (4.20) and (4.21) hold, then all conditions in Lemma 4.3 are met. Hence, we have

\[\int_{Q_{3/2}} |\nabla u'(x, t) - \nabla v'(x, t)|^2 \, dx \, dt \leq \varepsilon, \quad \text{and} \quad \|\nabla v\|_{L^\infty(Q_{3/2})} \leq C(\Lambda, n). \]

By a simple integration by substitution, we obtain

\[\int_{Q_{3/2}} |\nabla u(x, t) - \nabla v(x, t)|^2 \, dx \, dt \leq \varepsilon, \quad \text{and} \quad \|\nabla v\|_{L^\infty(Q_{3/2})} \leq C(\Lambda, n). \]

The proof is then complete. \(\square\)

5. Weighted density estimates and weighted \(W^{1,p}\)-regularity estimates

5.1. Weighted density estimates. We will derive the estimate of \(\|\nabla u\|_{L^p(Q_1, \omega)}\) for solution \(u\) of (4.1) by estimating the distribution functions of the maximal function of \(|\nabla u|^2\). Our first lemma gives a density estimate for the distribution of \(M_{Q_2}(|\nabla u|^2)\), where the maximal operator \(M_{Q_2}\) is defined in Definition 2.4.

From now let us fix \(s, s' \in (1, \infty), \alpha > 0\) and \(\lambda\) satisfying (1.7). If \(u\) is a weak solution of (4.1), we define

\[B(x, t) = \left([u]_{s', \lambda, Q_1} |b(x, t)| \right)^s, \]

where \([u]_{s', \lambda, Q_1}\) is the parabolic semi-Campanato’s norm of \(u\) on \(Q_1\),

\[[u]_{s', \lambda, Q_1} = \sup_{0 < \rho < 1 \in Q_1} \left\{ \rho^{-\lambda} \int_{Q_0(z)} |u(x, t) - \bar{u}(Q_0(z))|^{s'} \, dx \, dt \right\}^{1/s'}. \]

Lemma 5.1. Let \(\Lambda > 0, M_0 > 0\) be fixed, and \(\omega \in A_q\) for some \(1 < q < \infty\). Let \(s, \lambda, \alpha\) be as in (1.7). Then, there exists a constant \(N > 1\) depending only on \(\Lambda, M_0, s, \lambda\) and \(n\) such that for every \(\varepsilon > 0\), we can find \(\delta = \delta(\varepsilon, M_0, \Lambda, s, \lambda, [\omega]_{A_q}, n) > 0\) such that the following statement holds true: Suppose that (1.5) holds for the matrix \(a\), \(\text{div}(b) = 0\), and \(|F|, |b| \in L^2(Q_2)\).

\[\sup_{0 < \rho < 1 \in Q_1} \int_{Q_0(y, s)} |a(x, t) - \bar{a}(Q_0(y))| \, dx \, dt \leq \delta, \quad \|b\|_{L^\infty(Q_2; \nabla^2(B))} \leq M_0, \]

and for a weak solution \(u\) of (4.1) and for every \(z = (y, \tau) \in Q_1\), and \(0 < r \leq 1/2\) if the set

\[Q_r(z) \cap Q_1 \cap \{Q_2 : M_{Q_2}(|\nabla u|^2) \leq 1\} \cap \{Q_2 : M_{Q_2}(|F|^2) + M_{a, Q_2}(B)^{2/s} \leq \delta\}, \]

is non-empty, then

\[\omega((Q_1 : M_{Q_2}(|\nabla u|^2) > N) \cap Q_r(z)) \leq \varepsilon \omega((Q_1) + \delta). \]

Proof. Let \(\eta > 0\) depending only on \(\varepsilon, \Lambda, M_0, s, [\omega]_{A_q}\) and \(\lambda\) to be determined. Then, let \(\delta = \delta(\eta, \Lambda, M_0, s, n)\) be the number defined in Lemma 4.3. We prove our lemma with this choice of \(\delta\). By the condition on the non-empty intersection, there exists a point \(z_0 = (x_0, t_0) \in Q_r(z) \cap Q_1\) such that

\[M_{Q_2}(|\nabla u|^2)(z_0) \leq 1, \quad \text{and} \quad M_{Q_1}(|F|^2)(z_0) + M_{a, Q_2}(B)(z_0)^{2/s} \leq \delta. \]

Notice that with \(r \in (0, 1/2), Q_{2r}(z) \subset Q_2\). Since \(Q_{2r}(z) \subset Q_{3r}(z_0) \cap Q_2\), it follows from (5.3) that

\[\int_{Q_{2r}(z)} |\nabla u|^2 \, dx \, dt \leq \frac{|Q_{3r}(z_0)|}{|Q_{2r}(y, s)| |Q_{3r}(z_0)|} \frac{1}{|Q_{2r}(x_0, t_0)|} \int_{Q_{3r}(z_0) \cap Q_2} |\nabla u|^2 \, dx \, dt \leq \left(\frac{3}{2} \right)^{n/2}. \]
Similarly,
\[
\left\{ \int_{Q_{2s}(z)} |u - \bar{u}_{Q_{2s}(z)}|^s \, dx \, dt \right\}^{2/s} \left\{ \int_{Q_{2s}(z)} |b|^4 \, dx \, dt \right\}^{2/s} \\
= \left\{ (2r)^{-1} \int_{Q_{2s}(z)} |u - \bar{u}_{Q_{2s}(z)}|^s \, dx \, dt \right\}^{2/s} \left\{ (2r)^{\alpha} \int_{Q_{2s}(z)} |b|^4 \, dx \, dt \right\}^{2/s} \\
\leq [u]_{s'\cdot \mathcal{L}\cdot Q_1} \left\{ (2r)^{\alpha} \left(\frac{|Q_{2s}(z_0)|}{|Q_{2s}(z)|} \right) \frac{1}{|\Omega|} \int_{Q_{2s}(z_0) \cap Q_2} |b|^4 \, dx \, dt \right\}^{2/s} \\
\leq (3/2)^{(n+2-\alpha)/s} \left\{ (3/2)^{\alpha} \frac{1}{|\Omega|} \int_{Q_{2s}(z_0) \cap Q_2} |b|^4 \, dx \, dt \right\}^{2/s} \\
\leq (3/2)^{(n+2-\alpha)/s} M_{\epsilon, Q_1}(B)^{2/s} \leq (3/2)^{(n+2-\alpha)/s} \delta,
\]
where we have used (1.7) in our second step in the above estimate. Moreover, we also have and
\[
\int_{Q_{2s}(z)} |F|^2 \, dx \, dt \leq \frac{|Q_{3r}(z_0)|}{|Q_{2s}(z)|} \int_{Q_{2s}(z_0) \cap Q_2} |F|^2 \, dx \, dt \leq \left(\frac{3}{5} \right)^{n+2} \delta.
\]
Also from the assumption (5.2), and since \(Q_{7r/4}(z) \subset Q_2 \), we also have
\[
\int_{Q_{7r/4}(z)} |a(x, t) - \bar{a}_{B_{7r/4}(y)}(t)|^2 \, dx \, dt \leq \delta,
\]
\[
||b||_{L^{n'}(\Gamma_{2s}(r), V^{1,2}(B_{\frac{3}{2}}))} \leq ||b||_{L^{n'}(\Gamma_{2s}(r), V^{1,2}(B_{\frac{3}{2}}))} \leq M_0.
\]
These estimates together allow us to use Lemma 4.4 with a suitable scaling to obtain
\[
(5.4) \quad \int_{Q_{2s}(z)} |\nabla \overline{u} - \nabla v|^2 \, dx \, dt \leq \kappa \eta, \quad ||\nabla v||_{L^n(Q_{2s}(z))} \leq C_0 \equiv \kappa C(\Lambda, M_0, n).
\]
where
\[
\kappa = \text{max} \left\{ (3/2)^{n+2}, (3/2)^{(2(n+2-\alpha)/s)} \right\},
\]
and \(v \) is the unique weak solution of
\[
\begin{cases} \\
\nabla \cdot \left[\bar{a}_{B_{7r/4}(y)}(t) \nabla v \right] = \nabla v & \text{in} \ Q_{7r/4}(z), \\
\bar{u} = \frac{v}{2} & \text{on} \ \partial_p Q_{7r/4}(z)
\end{cases}
\]
We claim that (5.3), and (5.4) yield
\[
(5.5) \quad |Q_{2s}(z) : M_{Q_{2s}(z)}(|\nabla u - \nabla v|^2) \leq C_0 |Q_{2s}(z) : M_{Q_{2s}(z)}(|\nabla u|^2) \leq N|
\]
with \(N = \text{max} \{4C_0, 5^{n+2}\} \). Indeed, let \((x, t)\) be a point in the set on the left hand side of (5.5), and consider \(Q_r(x, t) \). If \(r \leq r/2 \), then \(Q_r(x, t) \subset \subset Q_2 \) and hence
\[
\frac{1}{|Q_r(x, t)|} \int_{Q_r(x, t) \cap Q_2} |\nabla u|^2 \, dx \, dt \\
\leq 2 \frac{1}{|Q_r(x, t)|} \left[\int_{Q_r(x, t) \cap Q_2} |\nabla u - \nabla v|^2 \, dx \, dt + \int_{Q_r(x, t) \cap Q_2} |\nabla v|^2 \, dx \, dt \right] \\
\leq 2 M_{Q_{2s}(z)}(|\nabla u - \nabla v|^2)(x, t) + 2||\nabla v||_{L^n(Q_{2s}(z))} \leq 4C_0(\Lambda, M_0, n).
\]
On the other hand if \(r > r/2 \), then \(Q_r(x, t) \subset \subset Q_{5r}(z_0) \). This and the first inequality in (5.3) imply that
\[
\frac{1}{|Q_r(x, t)|} \int_{Q_r(x, t) \cap Q_2} |\nabla u|^2 \, dx \, dt \leq \frac{5^{n+2}}{|Q_{5r}(z_0)|} \int_{Q_{5r}(z_0) \cap Q_2} |\nabla u|^2 \, dx \, dt \leq 5^{n+2} \cdot C_0.
\]
Therefore, \(M_{Q_r(|\nabla u|^2)}(x, t) \leq N \) and the claim (5.5) is proved. Note that (5.5) is equivalent to
\[
E := |Q_r(z) : M_{Q_r(|\nabla u|^2)} > N| \subset |Q_r(z) : M_{Q_{2s}(z)}(|\nabla u - \nabla v|^2) > C_0|.
\]
It follows from this, the weak type $1 - 1$ estimate of the Hardy-Littlewood maximal function, and (5.4) that

$$
\left| E \right| \leq \left\| Q_r(z) : M_{Q_{5/2}(z)}(\left| \nabla u - \nabla v \right|^2) > c_0 \right\|
$$

$$
\leq \frac{C(n)Q_{5/2}(z)}{c_0} \int_{Q_{5/2}(z)} \left| \nabla u - \nabla v \right|^2 \, dx \, dt \leq C' \eta \left| Q_r(z) \right|,
$$

where $C' > 0$ depends only on Λ, M_0, s, α, and n. Then, from Lemma 5.2, there is $\beta = \beta(\omega_{A_4}, n) > 0$ such that

$$
\omega(E) \leq C(\omega_{A_4}, n) \left(\frac{|E|}{Q_r(z)} \right)^{\beta} \omega(Q_r(z)) \leq C_\ast \eta^2 \omega(Q_r(z)),
$$

where $C_\ast > 0$ is a constant depending only on $\Lambda, M_0, s, \alpha, \omega_{A_4}$ and n. By choosing $\eta = \left(\frac{\varepsilon}{\Lambda} \right)^{1/\beta}$, we obtain the desired result.

Lemma 5.2. Let $\Lambda > 0, M_0 > 0$ be fixed and $\omega \in A_q$ with some $1 < q < \infty$. Let s, λ, α be as in (1.7). There exists a constant $N > 1$ depending only on Λ, M_0, s, λ and n such that for any $\varepsilon > 0$, we can find $\delta = \delta(\varepsilon, \Lambda, M_0, s, \lambda, [\omega]_{A_4}, n) > 0$ such that if (1.5) holds for the matrix a, $\text{div}(b) = 0$, and $|F|, |b| \in L^2(Q_2)$.

$$
\sup_{0 < r \leq 1} \sup_{(y, s) \in Q_1} \int_{Q_2(y, s)} |a(x, t) - \bar{a}_{B_y(r)}(t)|^2 \, dx \, dt \leq \delta, \quad \|b\|_{L^\infty(T_2, \mathcal{V}^1(\omega))} \leq M_0,
$$

and if a weak solution u of (4.1) satisfying

$$
\omega(\{ Q_1 : M_{Q_2}(|\nabla u|^2) > N \}) \leq \varepsilon \omega(Q_1(z)), \quad \forall z \in Q_1.
$$

Then it holds that

$$
\omega(\{ Q_1 : M_{Q_2}(|\nabla u|^2) > N \}) \leq \varepsilon_1 \left\{ \omega(\{ Q_1 : M_{Q_2}(|\nabla u|^2) > 1 \})
$$

$$
+ \omega(\{ Q_1 : M_{Q_2}(|F|^2) + M_{0, Q_2}(B)^{2/s} > \delta \}) \right\},
$$

where ε_1 is defined in Lemma 2.7.

Proof. In view of Lemma 5.1, we can apply Lemma 2.7 for

$$
E = \{ Q_1 : M_{Q_2}(|\nabla u|^2) > N \}
$$

and

$$
K = \{ Q_1 : M_{Q_2}(|\nabla u|^2) > 1 \} \cup \{ Q_1 : M_{Q_2}(|F|^2) + M_{0, Q_2}(B)^{2/s} > \delta \}
$$

to obtain the desired estimate.

Lemma 5.3. Let $\Lambda > 0, M_0 > 0$ be fixed and $\omega \in A_q$ with some $1 < q < \infty$. Let s, λ, α be as in (1.7). There exists a constant $N > 1$ depending only on Λ, M_0, s, λ and n such that for any $\varepsilon > 0$, we can find $\delta = \delta(\varepsilon, \Lambda, M_0, s, \lambda, [\omega]_{A_4}, n) > 0$ such that if (1.5) holds for the matrix a, $\text{div}(b) = 0$, and $|F|, |b| \in L^2(Q_2)$.

$$
\sup_{0 < r \leq 1} \sup_{(y, s) \in Q_1} \int_{Q_2(y, s)} |a(x, t) - \bar{a}_{B_y(r)}(t)|^2 \, dx \, dt \leq \delta, \quad \|b\|_{L^\infty(T_2, \mathcal{V}^1(\omega))} \leq M_0,
$$

and if a weak solution u of (4.1) satisfying

$$
\omega(\{ Q_1 : M_{Q_2}(|\nabla u|^2) > N \}) \leq \varepsilon \omega(Q_1(z)), \quad \forall z \in Q_1.
$$

Then for every $k = 1, 2, \ldots$

$$
\omega(\{ Q_1 : M_{Q_2}(|\nabla u|^2) > N^k \}) \leq \varepsilon_1^k \omega(\{ Q_1 : M_{Q_2}(|\nabla u|^2) > 1 \})
$$

$$
+ \sum_{i=1}^{k} \varepsilon_1^i \omega(\{ Q_1 : M_{Q_2}(|F|^2) + M_{0, Q_2}(B)^{2/s} > \delta N^{k-i} \}),
$$

where ε_1 is defined in Lemma 2.7.
Proof. Let N, δ be defined as in Lemma 5.3. We prove (5.6) holds with these N, δ by using induction on k. If $k = 1$, then (5.6) holds due to Lemma 5.2. Assume now that (5.6) holds with some $m \in \mathbb{N}$, and we prove that it holds with for $k = m + 1$. For given u, b satisfying the assumptions of the lemma, we define

$$u' = u/\sqrt{N}, \quad F' = F/\sqrt{N}, \quad B' = [u']_{s', \Lambda, \omega} |b|^s.$$

Observe that u' is a weak solution of

$$\partial_t u' - \nabla [a(x, t) \nabla u'] - b(x, t) \nabla u' = \nabla[F], \quad \text{in} \quad Q_2.$$

Moreover, for every $z \in Q_1$, it is simple to see that

$$\omega(Q_1 : \mathcal{M}_{Q_2}|\nabla u'|^2 > N) = \omega(Q_1 : \mathcal{M}_{Q_2}|\nabla u|^2 > N^2) \leq \omega(Q_1 : \mathcal{M}_{Q_2}|\nabla u|^2 > N) \leq \epsilon |Q_1(z)|.$$

Therefore, we can apply the induction hypothesis for u', F', B' to obtain

$$\omega((Q_1 : \mathcal{M}_{Q_2}|\nabla u'|^2 > N^m)) \leq \epsilon_1 \omega((Q_1 : \mathcal{M}_{Q_2}|\nabla u|^2 > 1)) + \sum_{i=1}^{m} \epsilon_i \omega((Q_1 : \mathcal{M}_{Q_2}|F'|^2) + \mathcal{M}_{\alpha, Q_2}(B')^{2/\alpha} > \delta N^{k-i}).$$

By changing back to u, F, B and using the Lemma 5.2 again, we see that (5.6) holds with $k = m + 1$. The proof is complete. \hfill \Box

5.2. Proof of Theorem 1.3 We are now ready to prove Theorem 1.3. The proof is quite standard once Lemma 5.3 is already established, however, we give it here for completeness. Let $N = N(\Lambda, M_0, s, \lambda, n) > 1$ be as in Lemma 5.3 and let $q = p/2$, and $\epsilon_1 = (20)^q |\omega|^2 \epsilon$. Choose ϵ sufficiently small depending only on $\Lambda, M_0, s, \lambda, p, n$ and $[\omega]_{A_q}$ such that

$$N^p \epsilon_1 < 1/2.$$

With this choice of ϵ, let δ be as in Lemma 5.3 depending on $\Lambda, M_0, s, \lambda, p, n$ and $[\omega]_{A_q}$. We first prove Theorem 1.3 with an additional assumption that

(5.7) $$\omega((Q_1 : \mathcal{M}_{Q_2}|\nabla u|^2 > N)) \leq \epsilon \omega(Q_1(z)), \quad \forall \ z \in Q_1.$$

Assume that (5.7) holds, and let us denote

$$S = \sum_{k=1}^{\infty} N^{\alpha k} \omega((Q_1 : \mathcal{M}_{Q_2}|\nabla u|^2 > N)).$$

By Lemma 5.3, we see that

$$S \leq \sum_{k=1}^{\infty} N^{\alpha k} \left[\sum_{i=1}^{k} \epsilon_1 \omega((Q_1 : \mathcal{M}_{Q_2}|F|^2) + \mathcal{M}_{\alpha, Q_2}(B)^{2/\alpha} > \delta N^{k-i}) \right] + \sum_{k=1}^{\infty} N^{\alpha k} \epsilon_1 \omega((Q_1 : \mathcal{M}_{Q_2}|\nabla u|^2 \geq 1)).$$

Then, applying the Fubini’s theorem, and Lemma 2.6, we obtain

$$S \leq \sum_{j=1}^{\infty} (N^{\alpha} \epsilon_1)^j \left[\sum_{k=j}^{\infty} N^{\alpha(k-j)} \omega((Q_1 : \mathcal{M}_{Q_2}|F|^2) + \mathcal{M}_{\alpha, Q_2}(B)^{2/\alpha} > \delta N^{k-j}) \right] + \sum_{k=1}^{\infty} N^{\alpha k} \epsilon_1 \omega((Q_1 : \mathcal{M}_{Q_2}|\nabla u|^2 \geq 1)) \leq C \left(\|\mathcal{M}_{Q_2}|F|^2\|_{L^2(Q_1, \omega)}^p + \|\mathcal{M}_{\alpha, Q_2}(B)^{2/\alpha}\|_{L^2(Q_1, \omega)}^q + \omega(Q_1) \right) \sum_{k=1}^{\infty} (N^{\alpha} \epsilon_1)^k.$$

Then, by our choice of ϵ, and Lemma 2.5, we obtain

$$S \leq C \left(\|F\|_{L^2(Q_2, \omega)}^p + \|\mathcal{M}_{\alpha, Q_2}(B)^{2/\alpha}\|_{L^2(Q_2, \omega)}^p + \omega(Q_1) \right).$$
By Lemma 2.6 it follows that
\begin{equation}
\label{eq:5.8}
\|\nabla u\|_{L^p(\Omega;\omega)}^p \leq C(S + \omega(Q_1)) \leq C \left(\|F\|_{L^p(\Omega;\omega)}^p + \|\mathcal{M}_{n,\omega}(B)\|_{L^{p/2}(\Omega;\omega)}^{p/2} + \omega(Q_1) \right).
\end{equation}
Hence, we have proved (5.8) under the additional assumption (5.7). To remove (5.7), let us define
\[u' = u/\kappa, \quad F' = F/\kappa, \quad B' = (|u'|_{\mathcal{L},\omega}(|b|)^{q/2}), \]
for some constant \(\kappa > 0 \) to be determined. Observe that \(u' \) is a weak solution of
\[\partial_t u' - \text{div}[\alpha \nabla u'] - b \cdot \nabla u' = \text{div}(F), \quad \text{in} \quad \Omega.
\]
Let us define
\[E := \{ Q_1 : \mathcal{M}_{\Omega_2}(\|\nabla u'\|^2) > N \} \subset \Omega_2. \]
Then, it follows from Lemma 2.3 that for every \(z \in Q_1 \),
\[\begin{aligned}
\frac{\omega(E)}{\omega(Q_1(z))} &= \frac{\omega(E)}{\omega(Q_2)} \left(\frac{\omega(Q_1(z))}{\omega(Q_2)} \right)^q
\leq \left[\omega \right]_{\mathcal{A}_2} \left(\frac{\omega(Q_2)}{\omega(Q_1(z))} \right)^q
= C \left(\left[\omega \right]_{\mathcal{A}_2}, n, q \right) \frac{\omega(E)}{\omega(Q_2)}.
\end{aligned} \]
Then, using Lemma 2.3 again, we can find \(\beta = \beta(\left[\omega \right]_{\mathcal{A}_2}, n) > 0 \) such that
\[\begin{aligned}
\frac{\omega(E)}{\omega(Q_1(z))} &\leq C \left(\left[\omega \right]_{\mathcal{A}_2}, q, n \right) \left(\frac{|E|}{|Q_1(z)|} \right)^\beta.
\end{aligned} \]
On the other hand, by the weak type (1,1) estimate, Lemma 2.5, we see that
\[|E| = \|\{ Q_1 : \mathcal{M}_{\Omega_2}(\|\nabla u'\|^2) > N \kappa^2 \} \| \leq \frac{C(n)}{N\kappa^2} \int_{\Omega_2} \|\nabla u\|^2 dx dt = \frac{C|\Omega_2|}{\kappa^2} \|\nabla u\|^2_{L^2(\Omega_2)}. \]
Hence, combining the last two estimates, we can see
\[\begin{aligned}
\frac{\omega(E)}{\omega(Q_1(z))} &\leq C \left(\left[\omega \right]_{\mathcal{A}_2}, q, n \right) \left(\frac{\|\nabla u\|_{L^2(\Omega_2)}}{\kappa} \right)^{2\beta}, \quad \forall \ z \in Q_1.
\end{aligned} \]
Then, by taking
\begin{equation}
\label{eq:5.9}
\kappa = \|\nabla u\|_{L^2(\Omega_2)} \left(C/\epsilon \right)^{1/(2\beta)},
\end{equation}
we then obtain
\[\omega(E) = \omega(\{ Q_1 : \mathcal{M}_{\Omega_2}(\|\nabla u'\|^2) > N \}) \leq \epsilon \omega(Q_1(z)), \quad \forall \ z \in Q_1. \]
This means (5.8) holds for \(u' \). Hence, it follows from (5.8) that
\[\|\nabla u'\|_{L^p(\Omega;\omega)} \leq C \left(\|F'\|_{L^p(\Omega;\omega)} + \|\mathcal{M}_{n,\omega}(B')\|_{L^{p/2}(\Omega;\omega)}^{1/2} + \omega(Q_1)^{1/p} \right). \]
This and (5.9) imply that
\[\|\nabla u\|_{L^p(\Omega;\omega)} \leq C \left(\|F\|_{L^p(\Omega;\omega)} + \|\mathcal{M}_{n,\omega}(B')\|_{L^{p/2}(\Omega;\omega)}^{1/2} + \omega(Q_1)^{1/p} \right). \]
The proof is then complete.

Acknowledgement. This work is partly supported by the Simons Foundation, grant number # 354889.

References

[1] D. R. Adams, Morrey spaces, Lecture Notes in Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham, 2015.
[2] M. Bulíček, L. Diening, S. Schwarzacher, Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems, Anal. PDE 9 (2016), no. 5, 1115-1151.
[3] M. Bulíček, S. Schwarzacher, Existence of very weak solutions to elliptic systems of p-Laplacian type, Calc. Var. Partial Differential Equations, (2016) 55: 52. doi:10.1007/s00526-016-0986-7.
[4] S.-S. Byun, D. K. Palagachev, L. G. Softova, Global gradient estimates in weighted Lebesgue spaces for parabolic operators. Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 1, 67-83.
[5] S.-S. Byun, L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains. Comm. Pure Appl. Math. 57 (2004), no. 10, 1283-1310.
[6] L.A. Caffarelli and I. Peral. On $W^{1,p}$ estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. 51 (1998), no. 1, 1–21.
[7] L. A. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation Ann. of Math. (2) 171 (2010), no. 3, 1903–1930.
[8] R. R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51 (1974), 241-250.
[9] E. B. Fabes, N. M. Riviere, Singular integrals with mixed homogeneity, Studia Math. T. XXVII (1966).
[10] G. Di Fazio, M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nontdivergence form equations with discontinuous coefficients. J. Funct. Anal. 112 (1993), no. 2, 241-256.
[11] L. T. Hoang, T. V. Nguyen, T. V. Phan, Gradient estimates and global existence of smooth solutions to a cross-diffusion system. SIAM J. Math. Anal. 47 (2015), no. 3, 2122-2177.
[12] H. Kim, T.-P. Tsai, Regularity and uniqueness for elliptic equations with rough divergence-free drifts, preprint, 2016.
[13] A. Kiselev, F. Nazarov, A variation on a theme of Caffarelli and Vasseur. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 370 (2009), Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye V oprosy Teorii Funktsii. 40, 58–72, 220; translation in J. Math. Sci. (N. Y.) 166 (2010), no. 1, 31-39.
[14] N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces. Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008.
[15] V. F. Kovalenko, Yu. A Semenov, Co-semigroups in the spaces $L^p(\mathbb{R}^d)$ and $\hat{C}(\mathbb{R}^d)$ generated by $b \cdot \nabla$ (Russian) Teor. Veroyatnost. i Primenen. 35(3), 449-458 (1990); Translation in Theory Probab. Appl. 35(3), 443-453 (1990).
[16] V. Liskevich, Y. Semenov, Estimates for fundamental solutions of second-order parabolic equations. J. Lond. Math. Soc. (2) 62(2), 521-543 (2000).
[17] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva, Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society.
[18] G.M. Lieberman, Second Order Parabolic Differential Equations. World Scientific Publishing Co, 2005.
[19] A. Maugeri, D. K. Palagachev, L. G. Softova, Elliptic and parabolic equations with discontinuous coefficients. Mathematical Research, 109. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000.
[20] V.G. Maz’ya, E. I. Verbitsky, Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers. Ark. Mat. 33 (1995) 81-115.
[21] T. Mengesha, N. C. Phuc, Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. of Diff. Eqns 250, 1, 1485-2507, 2011.
[22] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207-226.
[23] T. Nguyen, T. Phan, Interior gradient estimates for quasilinear elliptic equations, Calc. Var. Partial Differ. Equ., DOI: 10.1007/s00526-016-0996-5.
[24] H. Osada, Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ 27(4), 597-619 (1987).
[25] T. Phan, N. C. Phuc. Stationary Navier-Stokes equations with critically singular forces: Existence and stability results, Adv. Math. 241 (2013), 137 -161.
[26] T. Phan, T.-P. Tsai, Global L^p-regularity for gradients of weak solutions of linear elliptic equation with singular divergence-free drifts, preprint, 2016.
[27] I. Peral, F. Soria, A note on $W^{1,p}$ estimates for quasilinear parabolic equations. Electron. J. Differ. Equ. Conf., 8 (2002), 121–131.
[28] G. Seregin, L. Silvestre, V. Sverak, A. Zlatos, On divergence-free drifts. J. Differential Equations 252 (2012), no. 1, 505–540.
[29] L. Silvestre, Hölder estimates for advection fractional-diffusion equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 4, 843-855.
[30] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993.
[31] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. (French) Ann. Inst. Fourier (Grenoble) 15(1), 189-258 (1965).
[32] L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta. Math. Sin. (Engl. Ser.), 19 (2003), 381-396.
[33] Qi S. Zhang, A strong regularity result for parabolic equations, Comm. Math. Phys. 244 (2004) 245-260.