Supporting Information

for

An evaluation of RT-qPCR primer-probe sets to inform public health interventions based on COVID-19 sewage tests

Xiaoqing Xu¹†, Yu Deng¹†, Xiawan Zheng¹, Shuxian Li¹, Jiahui Ding¹, Yu Yang¹, Hei Yin On², Rong Yang⁴, Ho-kwong Chui⁴, Chung In Yau², Hein Min Tun²³, Alex W.H. Chin², Leo L.M. Poon²³, Malik Peiris²³, Gabriel M Leung², Tong Zhang¹*

Affiliations:

¹ Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong; Pokfulam Road, Hong Kong SAR, 999077, China.
² School of Public Health, LKS Faculty of Medicine, The University of Hong Kong; Pokfulam Road, Hong Kong SAR, 999077, China.
³ HKU-Pasteur Research Pole; Pokfulam Road, Hong Kong SAR, 999077, China.
⁴ Environmental Protection Department, The Government of Hong Kong SAR, 999077, China

†These two authors contributed equally to this work.
*Corresponding author. E-mail: zhangt@hku.hk

Contents

The file contains four sections of methods, four Figures and ten Tables in a total of 19 pages.
Contents

Supplementary Methods

RT-qPCR primer-probe sets.
One-step RT-qPCR conditions.
Detective efficiency using different primer-probe sets for the stored samples.
Diagnostic evaluation using SARS-CoV-2 virus spiked sewage samples.

List of Tables

Table S1. Summary of primer-probe sets used in the references.
Table S2. Primer-probe sets used in this study.
Table S3. Matrix effect (%) in small-volume samples.
Table S4. Matrix effect (%) in large-volume samples.
Table S5. Decay rate constants measured using seven primer-probe sets.
Table S6. Sample details for pool samples.
Table S7. Comparative analysis of Ct value for positive pooled samples.
Table S8. Comparative analysis of Ct value for negative pooled samples.
Table S9. Analytical value of different combinations.
Table S10. MIQE checklist. (Provided in a separate Excel)

List of Figures

Figure S1. Common primer check for high quality genomes.
Figure S2. Decay of SARS-CoV-2 revealed by different primer-probe sets.
Figure S3. Performance comparison of two RT-qPCR reagents.
Figure S4. The genome sequence from one positive pool sample.

References
Supplementary Methods

RT-qPCR primer-probe sets.
All sequences of primers and probes were synthesized by BGI (Hong Kong) using PAGE and HPLC purification, respectively. The specific sequences of primer-probe sets were listed in Table S2, respectively. Four out of the seven sets target at the N gene, two sets target at the ORF1 gene, and the other one targets at the E gene. All synthesized oligonucleotides were dissolved in DEPC-treated water prior to use.

One-step RT-qPCR conditions.
We used the same RT-qPCR reagents and recommended annealing temperatures in the present study. For RT-qPCR, TaqMan Fast Virus 1-step Master Mix (ThermoFisher, USA) was used with 4 µl of RNA template and standardized primers and probes with concentrations of 500 nM and 250 nM, respectively. PCR conditions were reverse transcribed for 5 mins at 50°C and initial denaturation for 20 s at 95°C, followed by 45 cycles of 5 s at 95°C and 30 s at specific annealing temperature (Table S2) on the Applied Biosystems ViiA7 qPCR machine (ThermoFisher). For every batch of RT-qPCR detection assays, a non-template control (NTC) was included.

We also tested the performance of iTaq one-step RT-qPCR kit (Bio-Rad) by N1 set using conditions recommended by the manufacturer as follows: reverse transcribed for 10 mins at 50°C and initial denaturation for 20 s at 95°C, followed by 45 cycles of 5 s at 95°C and 30 s at the 55°C.

Detective efficiency using different primer-probe sets for stored samples.
To evaluate the stability and persistence of SARS-CoV-2 virus RNA in sewage samples stored at ambient temperature (25°C), 250 µL heat-inactivated SARS-CoV-2 virus obtained from cell culture was spiked into 750 mL sewage collected from a local sewage treatment plant. The decay experiment was conducted in triplicate with a starting viral concentration of 10^7 copies per L. Triplicate sub-samples of 30 mL taken on specific time points (Day 0, 1, 2, 12, 18, 25, 47 and 69) were concentrated and extracted RNA using same methods as above for determination of the detective efficiency using different primer-probe sets.

Diagnostic evaluation using SARS-CoV-2 virus spiked sewage samples.
For diagnostic evaluation, we also used two RNA extracted from SARS-CoV-2 virus spiked sewage samples. The SARS-CoV-2 virus isolation was performed as previously described and heat-inactivated at 56°C for 30 mins. Two SARS-CoV-2 virus spiked sewage samples were obtained by spiking 100 µL inactivated virus with lower concentration (~10^6 and 10^7 copies per µL, respectively) with 900 µL negative sewage samples. RNA samples were respectively extracted from 100 µL SARS-CoV-2 virus spiked sewage samples using Trizol Plus RNA purification kit.
Table S1. Summary of primer-probe sets used in the references.

Primer-probe Sets	The Number of Reference
N1	76
N2	66
E	30
RdRp	16
N3	12
ORF1ab	7
NIID_2019-nCoV_N	5
CCDC-N	4
N_Sarbeco	3
HKU-N	2
HKU-ORF1b	1
ORF1a	1
RBD2	1

Note: 1. Total reference number is 112; 2. Multiple sets may be used in one reference.

We retrieved 112 (68 journal papers and 44 preprints) published experimental studies on sewage testing for SARS-CoV-2 from the PubMed database using the combinations of a few keywords, including "sewage + COVID-19", "sewage + SARS-CoV-2", "wastewater + COVID-19", "wastewater + SARS-CoV-2", "waste water + COVID-19", and "waste water + SARS-CoV-2", from the first publication on April 9, 2020 to the most recent one on July 2, 2021. We found that 105 out of these 112 studies (94%) used at least one out of the seven primers we evaluated in our study. Data used to make this table can be found in Source Data Table S1.
Table S2. Primer-probe sets used in this study.

Target	Country/Region	Name	Anneling temperature (℃)	Sequence (5’-3’)	Position	Organization
N	USA	N1-F	55	GACCCCCAAAATCAGCGAAAT	28,287-28,306	US CDC
		N1-R		TCTGGTACTGCAATTTGAAATCTG	28,335-28,358	
		N1-P		FAM-ACCCCGCATATACGGTGTGGACC-BHQ1	28,309-28,332	
		N2-F	55	TTACAAACATTGACGCCCAA	29,164-29,183	
		N2-R		GCGCGACATTGCAAGAA	29,213-29,230	
		N2-P		FAM-ACAATTGGCAATTTGACGCTTCAG-BHQ1	29,188-29,210	
	Hong Kong	N3-F		GGGAGCTTGAATACCAAAAA	28,681-28,702	
		N3-R	55	TGTAGCAGGATTGACGATTG	28,732-28,752	
		N3-P		FAM-AYCACATTGGAACACCCGCAATCCTG-BHQ1	28,704-28,727	
		HKU-N-F	58	TAATCAGACAAAGGAACTGATA	29,145-29,166	HKU
		HKU-N-R		CGAAGGTGTCACCTTCAATG	29,235-29,254	
		HKU-N-P		FAM-GCAATTGGAACATTTGACGCGG-BHQ1	29,177-29,196	
E	Germany	E-F		ACAGGTACGTTAAATAGTTAATACGCT	26,266-26,291	Charité
		E-R	55	ATATTGAGCAGATAGCACACA	26,357-26,378	
		E-P		FAM-AACATGACCCATCCTACTGCACGCTCC-BHQ1	26,329-26,354	
ORF1	China	ORF1ab-F	58	CCGTCTGGGTTTTTACACCTA	13,342-13,362	China CDC
		ORF1ab-R		ACGATTTGCTCAGCTAGCTGA	13,442-13,460	
		ORF1ab-P		FAM-CCTGTGCTGGTGAAGTGGTGCTGATGGGTTACGCTGCCT	13,377-13,404	
	Hong Kong	HKU-ORF1b-F	58	TGGGGTTTTAACGTTACCT	18,778-18,797	HKU
		HKU-ORF1b-R		AACRCGGCTAACAACAGCCTC	18,889-18,909	
		HKU-ORF1b-P	58	FAM-TAGTTGTGATGCWATCATGACTAG-BHQ1	18,849-18,872	
Table S3. Matrix effect (%) in small-volume samples.

Viral load (Log 10 copy/µL)	N1	N2	N3	E	HKU-N	ORF1ab	HKU-ORF1b
4.8	-11	27	17	13	20	24	-3
3.8	5	42	10	-7	26	34	1
2.8	-1	36	6	24	19	27	2
1.8	4	27	-3	-4	13	41	-15
0.8	19	35	-15	-10	4	31	31

Table S4. Matrix effect (%) in large-volume samples.

Viral load (Log 10 copy/µL)	N1	N2	N3	E	HKU-N	ORF1ab	HKU-ORF1b
5.3	-79	-94	-87	-88	-85	-81	-91
4.3	-78	-94	-87	-89	-83	-77	-88
3.3	-72	-93	-83	-87	-81	-64	-88
2.3	-70	-92	-82	-88	-72	-20	-82
1.3	-69	-91	-91	-100	-75	-45	-89
0.3	-45	-9	-96	/	/	/	/

Table S5. Decay rate constants measured using seven primer-probe sets.

	\(K_{\text{mean}} \) (day\(^{-1}\))	95% CI	\(R^2 \)
N1	1.28344	1.27991 to 1.28698	1.0000
N2	1.43151	1.35628 to 1.50674	0.9995
N3	1.228	1.215 to 1.240	1.0000
E	1.008	0.9747 to 1.042	0.9997
HKU-N	1.304	1.259 to 1.352	0.9997
ORF1ab	1.01907	/	0.9952
HKU-ORF1b	1.012	1.011 to 1.013	1.0000

\(K_{\text{mean}} \) (day\(^{-1}\)): decay rate was estimated by one-phase decay model
95% CI: 95% confidence intervals
Positive pool sample No.	Sample name	Sampling date	Population size	Total population size	Case number	Total correlated case number
Sample 1	YT-1	2021/1/20	357	1071	10	30
Sample 1	YT-2	2021/1/19	357	1071	10	
Sample 1	YT-3	2021/1/21	357	1071	10	
Sample 2	YT-4	2021/1/19	228	586	4	20
Sample 2	YT-5	2021/1/21	227	586	2	
Sample 2	RS5-4	2021/1/19	131	586	14	
Sample 3	YT 010	2021/1/20	337	1981	1	4
Sample 3	YT 018	2021/1/21	358	1981	1	
Sample 3	YT 001	2021/1/19	1286	1981	2	
Sample 4	RS5-1	2021/1/16	131	423	10	25
Sample 4	RS4-1	2021/1/18	292	423	15	
Sample 5	RS6-1	2021/1/18	329	958	15	32
Sample 5	RS4-2	2021/1/17	292	958	14	
Sample 5	YT 010	2021/1/21	337	958	3	
Sample 6	KTS2	2020/12/21	207836	465448	16	76
Sample 6	C&W site 1A	2021/3/12	49776	465448	16	
Sample 7	KTS1	2020/12/22	207836		30	
Sample 7	RS6-2	2021/1/19	329	752	14	42
Sample 7	RS4-3	2021/1/19	292	752	14	
Sample 7	RS5-2	2021/1/17	131	752	14	
Sample 8	YT 006-1	2021/1/20	961	2883	3	9
Sample 8	YT 006-2	2021/1/19	961	2883	3	
Sample 8	YT 006-3	2021/1/21	961	2883	3	
Sample 9	YT008	2021/1/19	616	1221	4	9
Sample 9	YT007	2021/1/20	228	1221	3	
Sample 9	YT020	2021/1/19	377	1221	2	
Sample 10	YTM 048-1	2021/1/24	3494	9620	7	15
Sample 10	YTM 048-2	2021/1/25	3494	9620	7	
Sample 10	YTM 049	2021/1/24	2632		1	
Sample 10	KLC2	2020/12/22	149017	341580	28	34
Sample 11	KT site 5A	2021/3/1	57861	5		
-----------	------------	----------	-------	---		
WTSS1	2021/2/15	134702	1			
Sample 12						
SPW1	2021/1/12	416	2			
SW	2021/1/2	2421	2			
TT1	2021/1/1	1436	2			
Sample 13						
TMP	2020/12/24	115643	7			
WTSS2	2021/3/1	134702	1			
KC site 2A	2021/3/11	57756	1			
Sample 14						
YTM 065	2021/1/29	718	2			
YTM 070	2021/1/29	799	1			
YTM 016	2021/1/21	175	1			
Sample 15	RS6-3	2021/1/21	329	19		
YTM 110	2021/2/12	239	947	1		
CW2	2021/1/12	379	1			
Sample 16	PS7	2021/1/12	2234	3		
PS2	2021/1/12	4460	50529	3		
KT5	2021/2/15	43835				
Sample 17	YTM 047	2021/1/25	3231	4		
CW 004	2021/2/13	301	5358	4		
KC 006	2021/1/25	1826				
Sample 21	KC 002	2021/1/24	590	1530		
YT 004	2021/1/19	940				
Sample 22	YT 018	2021/1/19	358	735		
YT 020	2021/1/20	377				
Sample 23	Virus spiked sewage-1					
Sample 24	Virus spiked sewage-2					
Sample 25	RS5-3	2021/1/18	131	423		
RS4-4	2021/1/16	292				
Negative pool sample No.	Sample name	Sampling date	Population size	Total population size	Case number	Total correlated case number
-------------------------	-------------	---------------	-----------------	-----------------------	-------------	-----------------------------
Sample 1	C&W-005	2021/2/16	380	1374	0	0
	C&W-006	2021/2/16	428		0	
	C&W-007	2021/2/16	566		0	
Sample 2	C&W-008	2021/2/16	391	0	0	
	C&W-009	2021/2/28	851	1601	0	0
	C&W-012	2021/2/28	359		0	
Sample 3	E-003	2021/2/2	9860	14463	0	0
	E-004	2021/2/2	1610		0	
	E-007	2021/2/2	2993		0	
Sample 4	E-008	2021/2/2	3552	0	0	
	E-009	2021/2/2	5485		0	
	E-011	2021/2/4	211		0	
Sample 5	E-012	2021/2/4	1136	3770	0	0
	E-013	2021/2/4	666		0	
	E-014	2021/2/4	1968		0	
Sample 6	E-020	2021/2/10	496	5226	0	0
	E-021	2021/2/10	825		0	
	E-022	2021/2/10	3905		0	
Sample 7	E-023	2021/2/10	605	4759	0	0
	E-024	2021/2/10	3347		0	
	E-026	2021/2/12	807		0	
Sample 8	E-027	2021/2/12	1162	2798	0	0
	E-028	2021/2/12	859		0	
	E-029	2021/2/12	777		0	
Sample 9	E-005	2021/2/1	488	1846	0	0
	E-034	2021/2/15	340		0	
	FTE8	2021/2/17	1018		0	
Sample 10	KC-007	2021/1/26	962	2545	0	0
	KC-013	2021/1/26	983		0	
	KC-015	2021/1/26	600		0	
Sample 11	WTS-020	2021/2/26	32310	33453	0	0
	YT-021	2021/1/21	551		0	
Sample 12	YTM-030	2021/1/22	592	0	0	
-----------	---------	-----------	-----	---	---	
KT-010	2021/2/1	955			0	
SSP-009	2021/1/24	415			0	
TC5C	2021/2/22	2601			0	
Sample 13	YL-001	2021/1/29	145		0	
YL-008	2021/2/14	114			0	
YTM	2021/2/24	795			0	
Table S7. Comparative analysis of Ct value for positive pooled samples

No.	Population	Correlated case number	N1 Ct_1	N2 Ct_1	N3 Ct_1	E Ct_1	HKU-N Ct_1	HKU-ORF1ab Ct_1	ORF1b Ct_1	N1 Ct_2	N2 Ct_2	N3 Ct_2	E Ct_2	HKU-N Ct_2	HKU-ORF1ab Ct_2	ORF1b Ct_2		
1	1,071	30	37.1		37.1			40.1	41.4									
2	586	20			35.6	37.1												
3	1,981	4	36.8			39.9		36.5	37.0									
4	423	25	30.8	30.8	33.3	33.9	31.6	31.7	31.8	31.8	33.6	36.5	37.0	31.3	31.5			
5	621	32				39.9												
6	465,448	76	32.0	32.8	34.7	34.8	32.6	32.8	33.2	33.7	36.3	38.6		33.4	34.3			
7	752	42				38.5												
8	2,883	9				38.9												
9	1,221	9				39.2												
10	9,620	15	32.9	33.4	35.6	36.6	33.8	34.0	34.8		37.9	39.2		33.5	35.4			
11	341,580	34			38.7													
12	1,852	6			34.3	35.5	39.3		36.2	36.3		40.5		38.2				
13	308,101	2				39.6			39.8									
14	1,692	4	36.9			38.4												
15	947	21			35.9	36.5	39.8		37.5									
16	50,529	7			36.4	38.9	39.1	37.5										
17	4,745	3	33.9	35.8	36.8	36.8	34.8	35.1										
18	57,756	28	32.0	32.5	34.5	34.7	32.9	32.9	33.2	33.3	36.0	36.1						
19	43,835	2	34.9	35.8	36.8	38.7	36.1	37.2	37.9									
20	\\	\ Diluted virus RNA	32.5	32.6	33.1	33.3	31.8	32.7	36.8		37.9	40.2						
21	\\	\ Diluted virus RNA	29.0	29.2	31.6	31.9	29.6	29.6	29.0	29.0	33.4	33.8	30.4	30.5				
22	423	25			37.1	37.1	37.1		37.1		37.1		37.1		37.1	37.1		

Number (Positive pool/Total):
- 15/22
- 12/22
- 15/22
- 11/22
- 8/22
- 2/22
- 9/22

Positivity rate (%):
- 68
- 55
- 68
- 50
- 36
- 9
- 41
Table S8. Comparative analysis of Ct value for negative pooled samples

No.	Population (case number)	Correlated case number	N1 Ct_1	N1 Ct_2	N2 Ct_1	N2 Ct_2	N3 Ct_1	N3 Ct_2	E Ct_1	E Ct_2	HKU-N Ct_1	HKU-N Ct_2	ORF1ab Ct_1	ORF1ab Ct_2	ORF1b Ct_1	ORF1b Ct_2
1	1,374 0															
2	1,601 0															
3	14,463 0															
4	9,248 0															
5	3,770 0															
6	5,226 0															
7	4,759 0															
8	2,798 0															
9	1,846 0															
10	2,545 0															
11	33,453 0															
12	3,971 0															
13	1,054 0															

	Number (Negative pool/Total)	13/13	13/13	11/13	13/13	13/13	13/13	13/13	12/13
Specificity rate (%)	100	100	85	100	100	100	100	92	
Analysis tests (N=35, P: 22, N: 13)	SELECTION								
-----------------------------------	-----------								
	N1	N3	N1&N3	(N1&N3)+E	(N1&N3) +N2	N1+N2	N1+N3	N1+E	
% Sensitivity	68	68	86	64	55	50	50	41	
% Specificity	100	85	85	100	100	100	100	100	
% Positive Predictive Value (PPV)	100	88	90	100	100	100	100	100	
% Negative Predictive Value (NPV)	65	61	79	62	57	54	54	50	
% False Positive Rate	0	15	15	0	0	0	0	0	
% False Negative Rate	32	32	14	36	45	50	50	59	

“&” represents the union of results from two primer-probe sets. “+” represents the intersection of results from different primer-probe set.
Table S10. MIQE checklist.
The MIQE checklist was provided in a separate Excel.
Figure S1. **Common primer check for high quality genomes.** All seven primer-probe sets are targeting the conserved genetic regions. (credit: https://www.gisaid.org/)
Figure S2. Decay of SARS-CoV-2 revealed using different primer-probe sets. a, b, c, d, e, f, and g Decay curves detected by N1 (a), N2 (b), N3 (c), E (d), HKU-N (e), ORF1ab (f), and HKU-ORF1b (g). And the Ct value was shown in (h). Colours indicate the seven tested primer-probe sets. Y-axis represents the concentration of detected SARS-CoV-2 at time T. Error bar amplitude matches mean ± standard deviation of triplicates.
Figure S3. Performance comparison of two RT-qPCR reagents.
*: NC_045512.2 is the GenBank accession of the reference genome.

Figure S4. The genome sequence from one positive pool sample.
The accession number of the Pool sample_22 sequence is MZ578003.
References
1. Sit, T. H.; Brackman, C. J.; Ip, S. M.; Tam, K. W.; Law, P. Y.; To, E. M.; Veronica, Y.; Sims, L. D.; Tsang, D. N.; Chu, D. K., Infection of dogs with SARS-CoV-2. *Nature* **2020**, *586*, (7831), 776-778.
2. Chin, A. W.; Chu, J. T.; Perera, M. R.; Hui, K. P.; Yen, H.-L.; Chan, M. C.; Peiris, M.; Poon, L. L., Stability of SARS-CoV-2 in different environmental conditions. *The Lancet Microbe* **2020**, *1*, (1), e10.