INTRODUCTION

Cardiometabolic disease (CMD), including cardiovascular disease (CVD) and diabetes mellitus (DM), is a leading cause of death globally that has killed approximately 38 million people. In Korea, more than 45% of deaths were caused by non-communicable diseases (NCDs). There is also a continuously increasing trend on the prevalence of cardiometabolic risks consisting of DM, hypertension and dyslipidemia, according to Korea National Health and Nutrition Examination Survey (KNHANES) 2012–2013. As such, cardiometabolic abnormalities are expected to contribute more to CVDs deaths by 2030. Considering that CMDs can be prevented or delayed, identifying the modifiable dietary and metabolic risk factors is important to reduce the risk of contracting the disease.

The Global Burden of Disease (GBD) study in 2010 and 2013 estimated the contribution of suboptimal diets and metabolic risk factors to chronic diseases in multiple regions, using the comparative risk assessment (CRA) method. The CRA is defined as the systematic evaluation of the changes in pop-
ulation health, with result from modifying the population distribution of exposures to a desirable level of one or a group of risk factors. For example, the GBD 2013 reported that the most prominent dietary risks were low intake of fruit and whole grains and high intake of sodium, implying that the importance of dietary risks had increased. While these risk factor specific assessments are useful for estimating disease burden in the Western region, the quantitative impact of risk factors on CMD deaths and burdens in Asian countries is still limited. On the other hand, there has been increased exposure to suboptimal lifestyles and metabolic risk in Korea over the past decade of fast economic growth, ageing population and spread of western diets. In line with these sudden epidemiological and sociocultural changes, a reliable estimation of the association between the disease and dietary and metabolic risks in Korea is required. This includes the necessity to characterize and estimate the effects of dietary risk factors on the mortality of the chronic disease in the Korean population. So far, studies have shown only the connection between health loss as a result of the disease, using disability-adjusted life years, without investigating the contribution of relevant risk factors.

In this study, we aimed to evaluate the contributions of dietary and metabolic factors to CMDs, including cardiovascular conditions, stroke, and DM in Korean people aged 25 to 64 yrs during 2012–2013 using recent national representative data. Results may provide understanding of the correlation of CMDs to dietary risks among this population in Korea, which ultimately could help policymakers develop targeted interventions to improve public health.

MATERIALS AND METHODS

To estimate burden possible causes of stroke, CVD and DM in Korea, we conducted population-level CRA using 7 dietary factors (8 factors in 2013) and 4 metabolic factors. The detailed methods and standardised protocol described elsewhere in details.

Selection of risk factors

We selected 7 dietary factors (8 factors in 2013) and 4 metabolic factors which have convincing or probable evidence for a causal effect on coronary heart disease, stroke, other CVDs or DM based from well-conducted randomized clinical trials and longitudinal cohort studies. Table 1 shows selected dietary and metabolic risks. The dietary risk factors included low intake of fruits, vegetables, whole grains, nuts and omega 3 fatty acid (in 2013 only), and high intake of processed meats, unprocessed meats (red meats) and sodium. Metabolic risk factors included high levels of fasting plasma glucose (FPG), total cholesterol (TC), systolic blood pressure (SBP), and body mass index (BMI).

Data sources

We used the KNHANES data to obtain the distributions of each risk factor. Relative risk (RR) for causal relationship between risk factors and diseases was obtained from published systematic reviews and meta-analyses of epidemiological studies. We used cause-specific death number from national mortality surveillance report collected by Statistics Korea (KOSIS). Theoretical minimum risk exposure distributions (TMREDs) were obtained from previous literature.

Risk factor distribution

We used two latest KNHANES rounds (2012 and 2013) to measure population distribution of exposures (Table 1). The KNHANES is a nationwide cross-sectional survey conducted by a Ministry of Health and Welfare from 1998 to present. A nationally representative sample was chosen from the Korean population using stratified, multistage probability cluster sampling method that considers each participant’s geographical area, age, and gender. The KNHANES was approved by the Institutional Review Board of the Korea Centres for Disease Control and Prevention. Detailed information on the KNHANES is available elsewhere. Among the participants of the KNHANES, we restricted analyses to those aged between 25 and 64 years as provided by the nutrition survey during the survey years. We also limited CRA analyses on the participants without missing data on nutrition survey and health examination. To exclude the effect of outliers, participants with upper or lower 3 standard deviation (SD) of mean value for risk factors were excluded. In terms of dietary risks, subjects who have rice less than once a day for a year using a given scale were excluded because it does not fit the common dietary pattern of Koreans. After exclusion, a total sample size was set at 2500 to obtain the distributions of risk factors.

Dietary risks

Intake levels of dietary factors were obtained from the KNHANES. The KNHANES includes 112 items of semi-quantitative food frequency questionnaire (FFQ) data in 2012 to reflect how often subjects consumed a particular food over the prior 12-month period using a 9-point scale (9=thrice a day, 8=twice a day, 7=once a day, 6=5–6 times per week, 5=2–4 times per week, 4=once per week, 3=2–3 times per month, 2=once a month, 1=less than once a month or never). Then, we calculated the amount of daily intake (g/day) for each food item by multiplying the serving size per time (g/time) with intake frequency per day (time/day). The serving size of each food item was obtained from Korea Rural Development Administration (KRDA). The amounts of total energy (kcal) and salt intake (mg) were obtained through a 1-day 24-hour recall method. The mean and SD of each dietary risk were estimated by gender, age, and year after adjustment for total energy intake using the residual method.

https://doi.org/10.3349/ymj.2017.58.3.540
Table 1. Data Source of Risk Factors, Optimal Levels and Related Disease Outcomes

Dietary risks	Definition	Data source (available year)	Theoretical minimum risk exposure level	Unit for RRs ‡	Related disease outcomes
Low intake of fruits	Average daily consumption of fruits, frozen, cooked, canned, or dried, excluding salted or pickled fruits and fruit juice	KNHANES (2012–2013)	300±30 g/day	Per serving (100g)/day	HD, ISTK, HSTK
Low intake of vegetables*	Average daily consumption of vegetables (fresh, cooked, canned, or dried, excluding pickled or salted vegetables)	KNHANES (2012–2013)	400±40 g/day	Per serving (100g)/day	HD, ISTK, HSTK
Low intake of whole grains	Average daily consumption of whole grains such as barley, and cereal	KNHANES (2012–2013)	125±12.5 g/day	Per 1 serving (50 g)/day	HD, DM
High intake of processed meats	Average daily consumption of meats processed by smoking, curing, salting or addition of chemical preservatives (ham and sausage)	KNHANES (2012–2013)	0±0 g/day	Per 1 serving (50g)/day	HD, DM
High intake of unprocessed meat	Average daily consumption of red meats (beef and pork, excluding poultry, fish and eggs)	KNHANES (2012–2013)	14.3±1.43 g/day	Per 1 serving (100g)/day	DM
High intake of sodium	Average daily intake of sodium from all sources	KNHANES (2012–2013)	2000±200 mg/day	Per 100 mmol/d (2.3 g)/day	Blood pressure mediated effect (CVD)

Metabolic risks	Definition	Data source (available year)	Theoretical minimum risk exposure level	Unit for RRs ‡	Related disease outcomes
High fasting plasma glucose	Serum fasting plasma glucose, measured in mmol/L	KNHANES (2012–2013)	4.9±0.3 mmol/L	1 mmol/L	IHD, stroke
High total cholesterol	Serum total cholesterol, measured in mmol/L	KNHANES (2012–2013)	3.8±0.6 mmol/L	1 mmol/L	IHD, ISTK
High systolic blood pressure	Systolic blood pressure, measured in mm Hg	KNHANES (2012–2013)	115±5 mm Hg	10 mm Hg	IHD, ISTK, HSTK, other CVD
High body mass index	Body-mass index, measured in kg/m²	KNHANES (2012–2013)	21±1 kg/m²	5 kg/m²	IHD, ISTK, DM, other CVD

Relative risks by age and sex	Description	Data source
Effect of fruits on IHD, ISTK, and HSTK	Published meta-analyses of 9, 10, and 7 cohorts studies, respectively	Data were from US and European cohorts including 241,190 participants and 5603 cases of IHD, 329,034 participants and 5517 cases of ISTK, and 175,035 participants and 1535 cases of HSTK, respectively
Effect of vegetables on IHD, ISTK, and HSTK	Published meta-analyses of 9, 9, and 7 cohorts studies, respectively	Data were from US and European cohorts including 229,937 participants and 6288 cases of IHD, 309,132 participants and 5376 cases of ISTK, and 175,035 participants and 1535 cases of HSTK, respectively
Effect of whole grains on CVD, IHD, and DM	Published meta-analyses of 7, 6, and 10 cohorts studies, respectively	Data were from US, European, and Asian cohorts including 285,217 participants and 705 cases of CVD, 284,682 participants and 19829 case of DM, respectively
Effect of processed meats on IHD and DM	Published meta-analyses of 6 and 9 cohorts studies, respectively	Data were from US, European, and Asian cohorts including 61,400 participants and 26234 cases of IHD, and 37,231 participants and 2706 cases of DM, respectively
Effect of unprocessed meats on DM	Published meta-analyses of 10 cohorts studies	Data were from US, European, and Asian cohorts including 41,193 participants and 28206 cases of DM
Effect of sodium on CVD	Published meta-analyses of 11 cohorts studies	Data were from US, European, and Asian cohorts including 28206 participants and 5996 cases of CVD
Data on metabolic risks were also collected from KNHANES. Trained experts measured anthropometry such as weight, height, and blood pressure, following standardized protocols. BMI levels of each individual were calculated as weight (kg)/height squared (m2). SBP was measured by mercury sphygmomanometer (Baumanometer, Copiague, NY, USA) on the right arm on a sitting position. Blood samples were collected through an antecubital vein after fasting for 10 to 12 hours. Serum levels of FPG (mmol/L), and TC (mmol/L) were measured using a Hitachi Automatic Analyzer 7600 (Hitachi, Tokyo, Japan).

Causal effects of risk factors on disease-specific mortality

Each risk factor was matched with the disease based on convincing or probable evidences for a causal effect (Table 1). We obtained data on RR of mortality (or incidence) on CVDs, stroke, and DM per unit of risk factors from most recent published systematic reviews and meta-analyses of epidemiological studies and randomized controlled trials.

Theoretical minimum-risk distributions

To measure the mortality risk in all population levels of exposure based on dietary and metabolic factors, we used an optimal distribution of exposure as a standard, known as the theoretical minimum-risk exposure distribution (Table 1). TMRED is an alternative exposure distribution, based on which has the lowest effect on mortality rate in epidemiological studies or the levels observed in low-exposed populations. The optimal levels for risk factors with protective effects were defined as the intake levels to which beneficial effects are observed in populations that posed the highest level of benefit (e.g., high intake of fruits, vegetables, whole grains, nuts, whole grains, and omega-3 fatty acid). For risk factors with harmful effects (e.g., high intake of processed or unprocessed meats, sodium, and high levels of FPG, SBP, BMI, and TC), standard level was selected based on exposure levels associated with the lowest level of harm. The TMREDs were set to zero when zero exposure of risk factors led to minimum risk (e.g., processed meats).

Disease-specific deaths

Data on disease-specific deaths by gender and age during covered years was obtained from the KOSIS, which provides national surveillance statistics in Korea. All deaths were recorded and assigned a code from the International Classification of Disease. We used mortality data attributable to CMDs as follows: DM (E10-14), ischemic heart disease (IHD; I20-25), ischemic stroke (ISTK; I63, I67), haemorrhagic stroke (HSTK; I60-62), aortic aneurysm and dissection (I71), hypertensive heart disease (I11), and rheumatic heart disease (I00-09). The obtained mortality number was summed according to age and gender group between 2012 and 2013.
Statistical analyses

Estimation of death attributable to dietary intake
We computed the proportional reduction in cause-specific deaths that would result from an optimal level of risk factor exposure known as population attributable fraction (PAF). The PAF for each continuous risk factor was calculated using the following equation:

$$
PAF = \frac{\int_0^m RR(x)P(x) \, dx - \int_0^m RR(x)P' \, dx}{\int_0^m RR(x)P(x) \, dx}
$$

Where x=the level of exposure; m=the maximum exposure level; $P(x)$=current distribution of exposure in the population; $P'(x)$=alternative levels of exposure distribution; $RR(x)$=the RR of mortality at exposure level x. We calculated the number of deaths from each disease attributable to causally related risk factors by multiplying its PAF with total cause-specific mortality. We conducted all analyses separately by gender and age group (25–34, 35–44, 45–54, and 55–64 yrs) in 2012 and 2013.

Estimation of uncertainty
We calculated the uncertainty of the attributable mortality to each risk factor as caused by sampling variability. The Monte Carlo simulation was used to quantify the uncertainty from exposure data and RRs. This simulation approach combined the uncertainties of exposure distributions and RRs in each age-gender group. We drew 1000 times from the exposure distribution for each age-gender group using its mean and standard error, assuming that each distribution to be normal. We separately generated 1000 draws of the log-normal distribution of RR for each risk factor on disease outcomes. These were used to generate 1000 mortality estimates for each age-gender group. We reported 95% of uncertainty intervals (UIs) based on resulting distributions of 1000 estimated attributable deaths. Analysis was conducted using Stata (StataCorp LLC, College Station, TX, USA) and R v.3.2.2 (http://www.R-project.org).

RESULTS
Distribution of dietary and metabolic risks in Korea 2012–2013
Beneficial dietary risk factors, namely the consumption of fruits, vegetables and nuts, slightly decreased in Korean adults aged 25–64 yrs in 2013 than in 2012 (Table 2). On the other hand, the intake of harmful dietary factors such as processed and unprocessed meats increased, while that of sodium decreased during the same period (Table 2). Overall, women consumed more beneficial food and less of harmful food than men. In 2013, men had lower amount of omega 3 fatty acid than women. The intake of fruits, vegetables and nuts was relatively higher in older group whereas that of meats was lower in those groups when compared with the 25–34 years old group (data not shown). The distribution of metabolic risk factors showed no significant changes between 2012 and 2013. There were also no remarkable differences in metabolic risk factors between men and women, while women had lower blood pressure than men.

Deaths from stroke, CVD, and DM in Korea
The number of deaths due to stroke, CVD and DM is presented...
in Supplementary Table 1 (only online). Total number of CMD deaths slightly decreased in 2013 compared to that in 2012 (8381 to 7954). During the two-year period, CMD resulted into 12258 deaths among men (38% of CMD deaths due to IHD, 26% HSTK, 25% DM, 8% ISTK, and 3% other CVDs) and 4106 deaths among women (43% of CMD death due to HSTK, 25% DM, 20% IHD, 9% ISTK, and 4% other CVDs). There was lower CMD mortality in women than men. Men aged more than 35 years old had twice higher mortality from CMDs than women in the same age group.

Stroke, CVD, and DM mortality attributable to metabolic risk by age and gender

Fig. 1 shows that high BMI was the leading cause of CMD death (5628 deaths; UIs: 5473–5781), followed by high blood pressure (4202 deaths; UIs: 3992–4410) in 2012 and 2013. High levels of TC and FPG were responsible for more than a thousand deaths from CMDs in each year. Metabolic risks were responsible for higher mortality from CMDs among men than women. The younger population were affected more by risk of high BMI and TC levels, while their older counterparts were seen more affected by risk of high SBP and FPG levels.

Stroke, CVD, and DM mortality attributable to dietary risk by age and gender

Low intakes of fruits and whole grains were the leading cause of CMD death in 2012 and 2013. A total of 4107 deaths (UIs: 3275–4870) and 3886 deaths (UIs: 3227–4508) were attributed to low intake of fruits and whole grains intake, respectively. They were followed by risk of low intake of vegetables and nuts (Table 3 and 4). Among harmful dietary factors, high consumption of sodium was responsible for the highest number of CMD deaths during the same two-year period. In 2013, low intakes of omega 3 fatty acids accounted for approx. 1200 deaths due to IHD (Table 4). Meanwhile, high consumption of meat showed minimal effect on CMD mortality in Koreans. Men showed higher mortality from dietary risk than women. The PAFs for each dietary risk were higher among the younger population (data not shown).

DISCUSSION

In this study, we comprehensively evaluated the contribution of dietary and metabolic risks to CMDs in the Korean population aged 25 to 64 yrs using the CRA framework. Using 2012 and 2013 data, results showed that high BMI was found to be the leading contributor to CMD mortality among Koreans. In addition, among individual dietary factors, low intake of fruits and whole grains along with high intake of sodium were responsible for most Korean CMD deaths.

In line with previous findings, results in the present study showed that high BMI, followed by high SBP, also resulted into most number of CMD deaths in Korea. The risk of high BMI-related metabolic abnormalities has been increasing globally. In this study, nearly 45% of DM deaths and 20% of IHD deaths were attributable to obesity. This could be partly explained by nutritional transition Korea underwent through the years that saw the adoption of more Western diet characterized by high sugars and mainly animal-based, accompanied by a decline on physical activity, an increase of energy intake, and consequently, a rise of body weight. Alternatively, this could be partly attributed to the sample population used in the study which restricted its evaluation to persons younger than 65 years old due to limited data availability. It should be noted that there is a high prevalence of hypertension among the elderly. In contrast, only a small number of CMD deaths were attributed to high levels of FPG and TC. Results suggest the need for adoption and implementation of effective interventions to reduce cases of metabolic risk factors.
Table 3. Number of Cause Specific Deaths Attributable to Risk Factors in Korea 2012–2013

Risk factor	Disease	Total	Sex	Attributable death number (95% UI)*	Age (yrs)	Attributable death number (95% UI)*
					25–34	
					35–44	
					45–54	
					55–54	
Low intake of fruits	HSTK	1336.8	889.4	447.4 (222.2–543.3)	65.3 (45.4–79.6)	254.2 (220.9–286.8)
	ISTK	175.5	129.5	46.0 (33.4–57.6)	5.2 (3.7–6.6)	10.1 (5.0–16.9)
	TSTK	1512.3	1018.8	434.3 (367.3–591.9)	70.5 (50.7–94.6)	278.9 (191.3–341.2)
	IHD	566.7	490.7	76.0 (50.8–99.9)	12.8 (7.2–18.0)	78.4 (42.2–110.1)
Low intake of vegetables	HSTK	856.8	565.3	291.2 (177.9–395.9)	46.1 (24.9–63.1)	180.7 (80.6–255.0)
	ISTK	151.7	110.7	41.0 (21.1–57.8)	4.9 (2.3–7.0)	13.9 (6.1–20.1)
	TSTK	1008.5	676.2	332.2 (219.5–436.3)	51.0 (29.2–86.2)	194.6 (93.9–269.0)
	IHD	419.1	360.4	58.7 (43.9–72.3)	10.5 (6.8–13.9)	62.4 (39.3–83.8)
Low intake of whole grains	HSTK	601.0	390.1	210.9 (178.5–242.0)	31.1 (25.1–36.8)	124.6 (98.9–149.8)
	ISTK	154.2	110.9	43.3 (35.6–50.6)	4.8 (3.9–5.6)	13.5 (10.6–16.0)
	TSTK	755.2	501.0	254.2 (220.9–286.8)	35.9 (29.8–41.6)	138.1 (112.4–163.1)
	IHD	644.0	500.4	44.7 (33.8–56.3)	2.8 (1.7–3.9)	4.7 (0.9–9.7)
High intake of processed meats	IHD	5.5	4.9	0.6 (0.3–0.9)	0.7 (0.2–1.3)	1.6 (0.5–3.0)
	DM	4.3	3.2	1.1 (0.8–1.4)	0.5 (0.3–0.7)	1.1 (0.7–1.5)
High intake of unprocessed meats	DM	7.4	6.1	1.3 (0.7–1.9)	0.9 (0.3–1.3)	1.6 (0.9–2.4)
					11.5 (4.8–18.6)	26.4 (8.4–44.6)
					35.0 (12.4–62.1)	
High intake of sodium	HSTK	705.7	481.0	224.7 (147.0–307.9)	19.4 (11.0–28.6)	47.0 (0.0–104.9)
	ISTK	178.3	133.6	44.7 (33.8–56.3)	2.8 (1.7–3.9)	4.7 (0.9–9.7)
	TSTK	884.0	614.6	269.3 (190.7–350.9)	22.2 (14.0–31.5)	51.7 (5.1–110.2)
	IHD	590.3	511.7	78.6 (54.0–107.3)	10.3 (4.3–17.6)	31.6 (0.0–71.2)
Low intake of nuts	HSTK	876.3	748.3	128.0 (100.3–153.1)	19.5 (14.0–24.1)	119.9 (85.8–148.2)
	ISTK	261.8	192.9	65.1 (45.4–83.5)	4.8 (3.2–6.4)	27.6 (17.0–36.6)
	TSTK	304.8	230.7	73.8 (69.4–78.1)	2.5 (2.0–3.1)	27.2 (24.5–30.0)
	IHD	371.2	331.8	39.4 (36.7–40.2)	1.4 (1.1–1.8)	21.3 (18.9–23.7)
	DM	26.8	21.0	5.8 (4.5–7.0)	0.8 (0.5–1.1)	0.6 (0.0–1.2)
	RHD	5.0	2.1	2.8 (1.9–3.9)	0.3 (0.1–0.5)	0.0 (0.0–0.0)
Low intake of nuts	HSTK	876.3	748.3	128.0 (100.3–153.1)	19.5 (14.0–24.1)	119.9 (85.8–148.2)
	ISTK	261.8	192.9	65.1 (45.4–83.5)	4.8 (3.2–6.4)	27.6 (17.0–36.6)
	TSTK	304.8	230.7	73.8 (69.4–78.1)	2.5 (2.0–3.1)	27.2 (24.5–30.0)
	IHD	371.2	331.8	39.4 (36.7–40.2)	1.4 (1.1–1.8)	21.3 (18.9–23.7)
	DM	26.8	21.0	5.8 (4.5–7.0)	0.8 (0.5–1.1)	0.6 (0.0–1.2)
	RHD	5.0	2.1	2.8 (1.9–3.9)	0.3 (0.1–0.5)	0.0 (0.0–0.0)
High fasting plasma glucose	HSTK	952.2	657.6	294.6 (278.6–310.4)	13.6 (10.6–16.8)	85.8 (73.7–99.0)
	ISTK	279.5	207.4	72.0 (68.0–75.9)	2.0 (1.6–2.5)	8.7 (7.4–10.0)

https://doi.org/10.3349/ymj.2017.58.3.540
Disease	Total	Men	Women
TSTK	13.18 (12.92–13.44)	12.35 (12.18–12.51)	13.50 (13.26–13.74)
IHD	8.95 (8.62–9.24)	8.70 (8.42–8.98)	9.19 (8.92–9.46)
RHD	2.87 (2.64–3.10)	2.74 (2.53–2.96)	3.00 (2.77–3.23)
HHD	0.23 (0.20–0.26)	0.20 (0.17–0.23)	0.25 (0.22–0.28)
AA	1.44 (1.36–1.52)	1.36 (1.28–1.44)	1.52 (1.44–1.60)
HSTK	5.09 (4.86–5.33)	4.98 (4.77–5.19)	5.21 (4.99–5.42)
ISTK	7.90 (7.61–8.19)	7.63 (7.37–7.89)	8.13 (7.86–8.39)
DM	5.19 (4.95–5.43)	4.98 (4.77–5.20)	5.40 (5.16–5.64)
HHD, TSHD, EHD	5.04 (4.80–5.28)	4.85 (4.63–5.07)	5.23 (4.99–5.46)
HSTK, ISTK, TSTK	5.09 (4.86–5.33)	4.98 (4.77–5.19)	5.21 (4.99–5.42)
HHD, TSHD, EHD	5.04 (4.80–5.28)	4.85 (4.63–5.07)	5.23 (4.99–5.46)

The values were expressed as death number for each risk factors (95% UIs).

Diet quality has a major impact on the prevention and management of NCDs. According to GBD 2010, dietary risk factors and physical inactivity collectively caused 10% of the disease deaths. Of the individual dietary factors, the largest attributable burden in GBD 2010 was associated with diets low in fruits, vegetables, nuts, seeds and seafood-derived omega-3 fatty acids and those high in sodium, processed meats and trans-fat. These dietary risks have been generally known as convincing and probable factors for NCDs such as cancers, CVD and DM in various well-designed randomised trials and observational studies. Moreover, Danaei, et al. suggested that high dietary sodium, low dietary omega-3 fatty acids, and high trans-fat contribute to majority of deaths in the US. Similar to previous GBD studies, suboptimal consumption of fruits and whole grains and high intake of sodium accounted for large proportion of CMD deaths among Koreans. Increased intake of fruits has been reported to be associated with reduced risk of CVD in many epidemiological studies. Globally, intake of low fruit and vegetables is responsible for 2.6 million deaths or 31% of CVDs event/deaths. Previous observational studies showed that an increase of 150 g of fruit and vegetable consumption per day was associated with a 30% reduction in CHD risk.

Of special interest is the observation that the CMD mortality attributable to processed and unprocessed meat was remarkably lower than other countries. Recent evidence from the systematic review and meta-analysis suggests that increasing consumption of red meat, especially processed, may have adverse health effects. These negative effects do not come only from...
Risk factor	Sex	Total	Attributable death number (95% UI)
	Men	Women	
Low intake of fruits	3.5(4.5–5.5)	3.5(4.5–5.5)	7.0(9.5–11.0)
Low intake of vegetables	3.3(4.6–5.7)	3.3(4.6–5.7)	6.6(9.2–10.1)
Low intake of whole grains	3.1(4.6–5.7)	3.1(4.6–5.7)	6.2(9.2–10.1)
High intake of processed meats	3.9(4.9–5.9)	3.9(4.9–5.9)	7.8(10.8–11.8)
High intake of unprocessed meats	5.1(6.7–7.7)	5.1(6.7–7.7)	10.2(13.7–14.7)
High intake of nuts	3.0(4.0–4.2)	3.0(4.0–4.2)	6.0(8.1–9.8)
High intake of sodium	2.8(4.0–4.2)	2.8(4.0–4.2)	5.6(8.4–9.9)
Low intake of seafood-ω-3 fats	2.1(2.7–2.8)	2.1(2.7–2.8)	4.3(5.7–6.8)
High fasting plasma glucose	1.8(2.3–2.6)	1.8(2.3–2.6)	3.6(4.8–5.8)
High systolic blood pressure	1.6(2.1–2.6)	1.6(2.1–2.6)	3.2(4.5–5.7)
High total cholesterol	1.5(2.0–2.7)	1.5(2.0–2.7)	2.9(4.2–5.7)
Low intake of fruits	3.5(4.5–5.5)	3.5(4.5–5.5)	7.0(9.5–11.0)
Low intake of vegetables	3.3(4.6–5.7)	3.3(4.6–5.7)	6.6(9.2–10.1)
Low intake of whole grains	3.1(4.6–5.7)	3.1(4.6–5.7)	6.2(9.2–10.1)
High intake of processed meats	3.9(4.9–5.9)	3.9(4.9–5.9)	7.8(10.8–11.8)
High intake of unprocessed meats	5.1(6.7–7.7)	5.1(6.7–7.7)	10.2(13.7–14.7)
High intake of nuts	3.0(4.0–4.2)	3.0(4.0–4.2)	6.0(8.1–9.8)
High intake of sodium	2.8(4.0–4.2)	2.8(4.0–4.2)	5.6(8.4–9.9)
Low intake of seafood-ω-3 fats	2.1(2.7–2.8)	2.1(2.7–2.8)	4.3(5.7–6.8)
High fasting plasma glucose	1.8(2.3–2.6)	1.8(2.3–2.6)	3.6(4.8–5.8)
High systolic blood pressure	1.6(2.1–2.6)	1.6(2.1–2.6)	3.2(4.5–5.7)
High total cholesterol	1.5(2.0–2.7)	1.5(2.0–2.7)	2.9(4.2–5.7)
Low intake of fruits	3.5(4.5–5.5)	3.5(4.5–5.5)	7.0(9.5–11.0)
Low intake of vegetables	3.3(4.6–5.7)	3.3(4.6–5.7)	6.6(9.2–10.1)
Low intake of whole grains	3.1(4.6–5.7)	3.1(4.6–5.7)	6.2(9.2–10.1)
High intake of processed meats	3.9(4.9–5.9)	3.9(4.9–5.9)	7.8(10.8–11.8)
High intake of unprocessed meats	5.1(6.7–7.7)	5.1(6.7–7.7)	10.2(13.7–14.7)
High intake of nuts	3.0(4.0–4.2)	3.0(4.0–4.2)	6.0(8.1–9.8)
High intake of sodium	2.8(4.0–4.2)	2.8(4.0–4.2)	5.6(8.4–9.9)
Low intake of seafood-ω-3 fats	2.1(2.7–2.8)	2.1(2.7–2.8)	4.3(5.7–6.8)
High fasting plasma glucose	1.8(2.3–2.6)	1.8(2.3–2.6)	3.6(4.8–5.8)
High systolic blood pressure	1.6(2.1–2.6)	1.6(2.1–2.6)	3.2(4.5–5.7)
High total cholesterol	1.5(2.0–2.7)	1.5(2.0–2.7)	2.9(4.2–5.7)
Table 4. Number of Cause Specific Deaths Attributable to Risk Factors in Korea 2013 (Continued)

Risk factor	Disease	Total	Men	Women	Attributable death number (95% UI)*	Age (yrs)		
					25–34	35–44	45–54	55–64
High systolic blood pressure	ISTK	242.6 (229.6–257.1)	182.5 (170.4–195.8)	60.1 (55.8–64.3)	1.2 (0.9–1.5)	5.4 (4.6–6.1)	61.8 (57.0–66.5)	174.2 (161.5–186.8)
	TSTK	1139.2 (1094.9–1180.1)	816.8 (778.7–856.8)	322.4 (304.8–341.3)	10.9 (8.6–13.2)	71.5 (61.8–81.5)	473.6 (443.1–503.0)	582.6 (565.6–613.4)
	IHD	795.3 (748.4–843.8)	694.9 (647.6–744.4)	100.9 (93.2–108.5)	6.2 (4.7–7.9)	44.6 (37.0–52.4)	285.6 (258.0–312.9)	456.7 (407.0–496.1)
High body mass index	HHD	37.0 (35.3–38.4)	33.6 (32.0–35.0)	3.4 (3.2–3.6)	0.3 (0.2–0.4)	1.5 (1.3–1.7)	10.9 (10.2–11.6)	24.3 (22.4–25.7)
	RHD	48 (4.4–5.1)	2.5 (2.2–2.7)	2.3 (2.1–2.5)	0.0 (0.0–0.0)	0.1 (0.1–0.2)	1.5 (1.4–1.7)	3.1 (2.8–3.3)
	AA	34.5 (32.4–35.5)	26.8 (24.7–26.8)	7.7 (7.2–8.3)	0.4 (0.4–0.7)	2.3 (1.9–2.6)	11.2 (10.2–12.4)	20.4 (18.8–22.1)
	HSTK	955.9 (934.5–976.7)	642.4 (623.7–660.8)	313.5 (302.2–323.9)	43.2 (41.0–45.2)	185.1 (178.2–192.2)	414.5 (398.8–430.3)	312.5 (298.8–325.8)
	ISTK	164.9 (159.4–171.2)	117.1 (111.8–122.8)	47.9 (45.9–49.7)	3.9 (3.7–4.1)	11.9 (11.4–12.4)	47.5 (45.4–49.6)	101.6 (96.4–107.1)
	TSTK	1120.9 (1098.8–1142.6)	759.5 (739.7–779.4)	361.4 (350.4–372.1)	47.2 (45.3–49.1)	197.0 (190.1–204.1)	462.0 (446.2–478.3)	414.1 (399.2–429.5)
	IHD	674.5 (653.1–697.1)	581.8 (561.2–604.8)	92.7 (88.4–96.9)	18.6 (17.4–19.7)	95.4 (90.4–100.2)	248.4 (234.8–261.1)	311.9 (294.7–329.1)
	DM	928.6 (902.9–953.5)	694.0 (669.9–718.0)	234.5 (226.9–242.3)	14.6 (14.0–15.2)	68.3 (66.1–70.7)	323.3 (311.3–335.7)	521.8 (498.2–542.8)

*The values were expressed as death number for each risk factors (95% UIs).
items. Therefore, we imputed intake amount data using portion size with unified unit (g/day) using KRDA guideline. Therefore, there is a possibility of over- or under estimation of intake amounts, comparing to actual intake amount of each dietary factors. Third, whereas effects of risk factors on CMDs have been confirmed by previous studies, there is a possibility of residual confounding. Nevertheless, the current RR represented the best available evidence for the effects of risk factors on CMDs. Fourth, we used RR and TMRED from mixed population such as Western and Asian population. There is, therefore, a possibility that estimates of attributable burden could not be clearly assessed. However, previous studies indicated that RR and TMRED might vary but there was insufficient evidence to identify significant differences in those between populations. Furthermore, the use of RRs pooled from international meta-analysis studies strengthened the generality of current study and contributed to generating estimates for disease burdens in Korea comparable to those from other countries.

In conclusion, using a CRA model, we confirmed that both metabolic and dietary risk factors contributed to CMD mortality in Korean adults aged 24–64 yrs during 2012–2013. Along with continuous socio-economic and health changes in Korea, the present findings highlight the need for a national effort and intervention to reduce dietary and metabolic risks through evidence-based surveillance system. Our results can serve as bases to develop targeted intervention programs or guidelines to improve public health, not just by reducing consumption of harmful food, but also by encouraging people to eat healthy foods and observe good lifestyles to help prevent CMD deaths.

ACKNOWLEDGEMENTS

This research was supported by Cooperative Research Program for Agriculture Science & Technology Development through the Rural Development Administration of Korea (Project No. PJ010975 to MJS).

REFERENCES

1. World Health Organization. Global status report on noncommunicable diseases 2014. Geneva: World Health Organization; 2014.
2. Statistics Korea. Causes of Death Statistics in 2014. Daejeon: Statistics Korea; 2015.
3. Ministry of Health and Welfare of Korea. Korea Centers for Disease Control and Prevention. 2013 Korea Health Statistics. Seoul: Ministry of Health and Welfare of Korea; 2014.
4. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med 2009;6:e1000058.
5. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224-60.
6. GBD 2013 Risk Factors Collaborators, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;386:2267-323.
7. Murray CJ, Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S. Comparative quantification of health risks conceptual framework and methodological issues. Popul Health Metr 2003;1:1.
8. Lee KS, Park JH. Burden of disease in Korea during 2000-10. J Public Health (Oxf) 2014;36:225-34.
9. Lee SK, Sobal J. Socio-economic, dietary, activity, nutrition and body weight transitions in South Korea. Public Health Nutr 2003;6:565-74.
10. Oh IH, Yoon SJ, Kim EJ. The burden of disease in Korea. J Korean Med Assoc 2011;54:466-52.
11. Yoon SJ, Bae SC, Lee SJ, Chang H, Jo HS, Sung JH, et al. Measuring the burden of disease in Korea. J Korean Med Sci 2007;22:518-23.
12. Singh GM, Danaei G, Farzadfar F, Stevens GA, Woodward M, Wormser D, et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One 2013;8:e61574.
13. Shulkin ML, Micha R, Rao M, Singh GM, Mozaffarian D. Abstract P279: major dietary risk factors for cardiometabolic disease: current evidence for causal effects and effect sizes from the global burden of diseases (GBD 2015) study. Circulation 2016;133(Suppl 1):AP279.
14. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, et al. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014;43:69-77.
15. Rural Development Administration. Consumer Friendly Food Composition Table for Adults. Savon: Rural Development Administration; 2009.
16. Kesteloot H, Park BC, Lee CS, Brems-Heynes E, Claesens J, Joosens JV. A comparative study of blood pressure and sodium intake in Belgium and in Korea. Eur J Cardiol 1980;11:169-82.
17. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 1986;124:17-27.
18. Goodpaster BH, Krishnaswami S, Harris TB, Katsiaras A, Kitchevsky SB, Simonsick EM, et al. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med 2005;165:777-83.
19. Ezzati M, Riboli E. Behavioral and dietary risk factors for noncommunicable diseases. N Engl J Med 2013;369:954-64.
20. Martinez-Gonzalez MA, Bes-Rastrollo M. Dietary patterns, Mediterranean diet, and cardiovascular disease. Curr Opin Lipidol 2014;25:20-6.
21. Micha R, Kalanatarian S, Wirojratana P, Byers T, Danaei G, Elmadfa I, et al. Estimating the global and regional burden of suboptimal nutrition on chronic disease: methods and inputs to the analysis. Eur J Clin Nutr 2012;66:119-29.
22. Farzadfar F, Danaei G, Namdaritabar H, Rajaratnam JK, Marcus JR, Khosravi A, et al. National and subnational mortality effects of metabolic risk factors and smoking in Iran: a comparative risk assessment. Popul Health Metr 2011;9:55.
23. Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 2008;67:253-6.
24. Guillard JJ. The world health report 2002-reducing risks, promoting healthy life. Educ Health (Abingdon) 2003;16:230.
25. Lock K, Pormeleau J, Causer L, Altmann DR, McKee M. The global burden of disease attributable to low consumption of fruit and veg-
26. van’t Veer P, Jansen MC, Klerk M, Kok FJ. Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr 2000;3:103-7.
27. Kim MK, Kim K, Shin MH, Shin DH, Lee YH, Chun BY, et al. The relationship of dietary sodium, potassium, fruits, and vegetables intake with blood pressure among Korean adults aged 40 and older. Nutr Res Pract 2014;8:453-62.
28. Mellen PB, Walsh TF, Herrington DM. Whole grain intake and cardiovascular disease: a meta-analysis. Nutr Metab Cardiovasc Dis 2008;18:283-90.
29. Jang Y, Lee JH, Kim OY, Park HY, Lee SY. Consumption of whole grain and legume powder reduces insulin demand, lipid peroxidation, and plasma homocysteine concentrations in patients with coronary artery disease: randomized controlled clinical trial. Arterioscler Thromb Vasc Biol 2001;21:2065-71.
30. Kesteloot H, Zhang J. Salt consumption during the nutrition transition in South Korea. Am J Clin Nutr 2000;72:199-201.
31. Joossens JV, Geboers J. Dietary salt and risks to health. Am J Clin Nutr 1987;45(5 Suppl):1277-88.
32. Kim YC, Koo HS, Kim S, Chin HJ. Estimation of daily salt intake through a 24-hour urine collection in Pohang, Korea. J Korean Med Sci 2014;29 Suppl 2:S87-90.
33. Afshin A, Micha R, Khatibzadeh S, Fahimi S, Shi P, Powles J, et al. The impact of dietary habits and metabolic risk factors on cardiovascular and diabetes mortality in countries of the Middle East and North Africa in 2010: a comparative risk assessment analysis. BMJ Open 2015;5:e006385.
34. Aune D, Ursin G, Veiered MB. Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia 2009;52:2277-87.
35. Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr 2011;94:1088-96.
36. Micha R, Khatibzadeh S, Shi P, Andrews KG, Engell RE, Mozaffarian D; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 2015;5:e008705.
37. Murphy SP, Allen LH. Nutritional importance of animal source foods. J Nutr 2003;133(11 Suppl 2):3932S-5S.
38. Baik I, Lee M, Jun NR, Lee JY, Shin C. A healthy dietary pattern consisting of a variety of food choices is inversely associated with the development of metabolic syndrome. Nutr Res Pract 2013;7:233-41.
39. Engels EA, Schmid CH, Terrin N, Olkin I, Lau J. Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses. Stat Med 2000;19:1707-28.