Amyloid-β-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice
Supnet, Charlene; Grant, Jeffrey; Kong, Hong; Westaway, David; Mayne, Michael

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.
For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

Publisher’s version / Version de l’éditeur:
https://doi.org/10.1074/jbc.M606736200
Journal Of Biological Chemistry, 281, October 50, pp. 38440-38447, 2006
Disruption of intracellular calcium homeostasis precedes the neurodegeneration that occurs in Alzheimer disease (AD). Of the many neuronal calcium-regulating proteins, we focused on endoplasmic reticulum (ER)-resident ryanodine receptors (RyRs) because they are increased in the hippocampus of mice expressing mutant presenilin-1 and are associated with neurotoxicity. Others have observed that ryanodine binding is elevated in human postmortem hippocampal regions suggesting that RyR(s) are involved in AD pathogenesis. Here we report that extracellular amyloid-β (Aβ)-(1–42) specifically increased RyR-3, but not RyR-1 or RyR-2, gene expression in cortical neurons from C57Bl6 mice. Furthermore, endogenously produced Aβ-(1–42) increased RyR-3 mRNA and protein in cortical neurons from transgenic (Tg)CRND8 mice, a mouse model of AD. Increased RyR-3 mRNA and protein was also observed in brain tissue from 4- to 4.5-month-old Tg animals compared with non-Tg littermate controls. In experiments performed in nominal extracellular calcium, neurons from Tg mice had significant increases in intracellular calcium following ryanodine or glutamate treatment compared with littermate controls, which was abolished by treatment with small interfering RNA directed to RyR-3, indicating that the higher levels of calcium originated from RyR-3-regulated stores. Taken together, these observations suggest that Aβ-(1–42)-mediated changes in intracellular calcium homeostasis is regulated in part through a direct increase of RyR-3 expression and function.

Alzheimer disease (AD) is a neurodegenerative disorder characterized by neuritic plaques composed of aggregated extracellular amyloid-β (Aβ), intracellular neurofibrillary tangles, and containing selective neuron and synapse loss leading to irreversible cognitive decline and memory impairment (1). Although the cause of AD is still unknown, it is believed that accumulation of Aβ in the brain is an initial pathogenic event (2). Aβ-(1–42) is a fibrillogenic peptide resulting from the sequential endoproteolytic cleavage of amyloid precursor protein by β- and γ-secretase, and its overproduction and deposition are associated with early-onset (or familial) and sporadic AD (3). Consequently, there is an extensive effort to determine the molecular and cellular actions of Aβ on neurons and glial cells.

Alterations in intracellular calcium (Ca²⁺) homeostasis constitute an early signaling event that initiates the manifestation of AD (4). Ca²⁺ levels are maintained by voltage-, ligand-gated, or store-operated Ca²⁺ channels on the plasmalemma and by endoplasmic reticulum (ER)-resident channels (5). Several studies have indicated that disruption of ER-regulated Ca²⁺ homeostasis is associated with neurotoxicity in AD (6). The ER is an important dynamic Ca²⁺ source and sink, it regulates neurotransmitter release, synaptic plasticity, gene expression, and signal transduction to the nucleus (7). Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP₃Rs) are the two major Ca²⁺ release channels found on the ER (8) and are activated through Ca²⁺-induced Ca²⁺ release and IP₃-induced Ca²⁺ release, respectively (9).

Our study focuses on the role of RyRs in the regulation of Ca²⁺ homeostasis because others have observed that hippocampal brain specimens from AD patients with early cognitive decline have increased ryanodine binding, suggestive of increased RyR levels (1). We observed that RyR expression and function were increased in neurons that expressed mutant PS-1 (10). Furthermore, high levels of RyRs mediated dysregulation of Ca²⁺ in cortical neurons from other mouse models of AD (11–13). In brain, RyRs are concentrated in postsynaptic neurons, astrocytes and oligodendrocytes, where they regulate Ca²⁺ levels, membrane potential, and second messenger systems. Three isoforms of RyRs have been identified as follows: type-1, which is found in skeletal muscle; type-2, which is concentrated in the heart; and type-3, which is concentrated in hippocampus (14), cerebral cortex, and corpus striatum (15). All isoforms exist in brain, where RyR-2 is the most abundant, but previous studies give no indication as to which isoform is
important in the dysregulation of Ca\(^{2+}\) homeostasis in AD neurons.

The way A\(\beta\) regulates the expression and function of the machinery that mediates disruption of Ca\(^{2+}\) homeostasis in AD remains unclear. Here we report that high levels of A\(\beta\)-(1–42) selectively elevated RyR-3 mRNA and protein levels in vitro and in vivo. Functionally, increased RyR-3 facilitated significant increases in Ca\(^{2+}\) levels following ryanodine or glutamate treatment. These observations highlight a possible role for RyR-3 in the AD pathology.

EXPERIMENTAL PROCEDURES

Animals and Neuronal Cultures—APP695 (KM670/671NL+V717F) transgenic (Tg) CRND8 mice were a gift from Dr. David Westaway (University of Toronto) and have been described previously to exhibit A\(\beta\) plaques and cognitive defects by 3 months of age (16). Timed pregnant C57Bl6 mice were obtained from the animal housing facility at the University of Manitoba. Cerebral cortices were dissected from embryonic day 16 C57Bl6 or CRND8 (non-Tg or Tg) fetuses and used for primary culture of cortical neurons as described previously (10). CRND8 fetuses were genotyped for the APP695 double mutation by real time PCR (Platinum TaqDNA polymerase; Invitrogen) before cell dissociation and tissue pooling. The sequences of primers used for double mutant APP695 were as follows: 5'-TGT CCA AGA TGC AGA ACG GCT ACG AAAA and 3'-AGA AAT GAA GAA ACG CCA AGC GCC GTG ACT. PCR products were generated by 30 cycles of 94/68/72 °C. PCR product levels were determined during each cycle by SYBR-Green I (1/10,000 dilution; Molecular Probes, Eugene, OR) using iCycler iQ real time PCR detection system (Bio-Rad). Non-Tg and TgCRND8 cortical tissues were pooled separately and seeded at 8 x 10\(^5\) cells per 40-mm glass coverslips for immunofluorescence assay. CRND8 primary cortical cultures were maintained as above. Experiments were conducted as outlined previously (10). PCR amplification of RyR-2 mRNA was conducted using primers 5'-GAA TCA GTG AGT TAC TGG GCA TGG and 3'-CTG GTC TCT CCT GAG TTC TAA AGC, yielding a product of 650 bp. RyR-2 PCR products were generated by 35 cycles of 94/53/72 °C. IP3-R1 levels were determined using 5'-TCA TGG AAA GCA GAC AGC AT and 3'-CCG CTC TGT GTG GTA ATA TA yielding a PCR product of 404 bp, generated by 30 cycles of 94/54/72 °C. SERCA-2b levels were determined using 5'-GGG AGG GGA GTG GCA GTG GCC GC and 3'-CGT CTC CCT TCT GGG CTG AGG GG yielding a PCR product of 350 bp, generated by 30 cycles of 94/62/72 °C. β-Actin levels were determined using 5'-ATG GAT GAC GAT ATC GTG GC and 3'-CTG ACA TGG CTG GGG GTG TG primers that yielded a PCR product of 399 bp, generated by 25 cycles of 94/53/72 °C. Alignment analysis of each primer was conducted to ensure that they were gene- and isospecif.-specific. Densitometric analysis of RT-PCR products was performed using NIH Image software, version 1.60. RyR pixel density levels were normalized to β-actin levels and are depicted as fold changes, where the untreated condition is considered 1-fold.

Western Blot Analysis—Non-Tg and TgCRND8 brains were harvested from 4–4.5-month-old mice (16–18 weeks) sacrificed by intraperitoneal injection of 50 mg/kg pentobarbital (Bimeda-MTC Animal Health Inc., Cambridge, Ontario, Canada) followed by decapitation. Whole brains were dissected on ice into cerebellar, cortical, hippocampal, and basal regions (the remainder of tissue after the removal of the cortex, hippocampus, and brain stem). Tissue was immediately homogenized on ice with 400 μl of lysis buffer containing 25 mM Tris, 50 mM HEPES, pH 7.4, 137 mM NaCl, 1% CHAPS, 2.5 mM dithiothreitol (Fisher) and protease inhibitor mixture (Roche Applied Science). Samples were incubated on ice for 1 h and then centrifuged at 950 x g to pellet insoluble proteins. 125 μg of supernatant was loaded onto a 3–8% Tris acetate NuPAGE gradient gel (Invitrogen) and transferred under reducing conditions onto 0.4 μm polyvinylidene difluoride membranes (Fisher) on ice for 24 h at 20 V. Membranes were blocked with 5% nonfat milk in TBS for 1 h at room temperature and incubated in blocking buffer with 1/1000 dilution of RR1-1, -2, or -3 antibodies overnight at 4 °C (isospecific-specific RyR rabbit polyclonal antibodies were a gift from Dr. V. Sorrentino, University of Siena, Italy). The same membranes were probed for actin (Santa Cruz Biotechnology, Santa Cruz, CA). RyR pixel density levels were normalized to actin levels and are depicted as fold changes, where the untreated condition is considered 1-fold.

Immunofluorescence Analysis—Non-Tg and TgCRND8 neurons seeded at 8 x 10\(^5\) on poly-d-lysine-coated glass coverslips were treated with 1000 nM A\(\beta\)-(1–42) peptide or 1.3 μg/ml A\(\beta\)-(1–42) antibody (rabbit polyclonal IgG) (BIO-
Aβ Directly Increases Ryanodine Receptor Function

fixed with 4% paraformaldehyde (Fisher) in phosphate-buffered saline (Sigma) on in vitro day 5 at 37 °C, 5% CO2, for 12 min and permeabilized with HEPES/Triton buffer containing 20 mM HEPES, 300 mM sucrose, 50 mM NaCl, 3 mM MgCl2, and 0.5% Triton X-100 (Fisher) for 10 min at room temperature. Cells were blocked with 5% goat serum (Sigma) in phosphate-buffered saline for 1 h at room temperature and incubated with 1/1000 dilution of RyR-1, -2, and -3 antibodies (17) in blocking buffer overnight at 4 °C. Neurons were incubated for 1 h at room temperature with secondary antibodies at 1/1000 dilution (Molecular Probes), and nuclei were stained using Hoechst 33342 (Sigma). Neurons were imaged using an Axioskop 2 plus (Carl Zeiss Canada, Ltd.) with Axiosvision Release 4.2 software. For detection of RyRs, all images were exposed for 260 ms under fluorescein isothiocyanate.

Small Interfering RNA (siRNA) Design and Delivery—siRNAs were generated using the Dicer siRNA generation kit (Genelantis, San Diego) and were based on the rabbit RyR-3 mRNA sequence (GenBank accession number X68650). The region of the RyR-3 mRNA chosen showed 88% alignment with mouse RyR-3, 9.6% with mouse RyR-2, and 0% with mouse RyR-1 after BLAST analysis. Primers used to amplify RyR-3 from plasmid Acer dioxymethyl ester (AM) Fura-2 in Locke's buffer. Cells were imaged on an inverted Zeiss microscope using a CoolSnapHQ objective lens. Changes in Ca2+i nuclei/Densitometric analysis was performed using GraphPad Prism, version 3.02 (San Diego, CA). One-way ANOVA with Student-Newman-Keuls post-test was performed to determine the difference between means after treatment. Two-way ANOVA with Bonferroni post-test was used to determine the difference between genotypes and treatments and the possible interactions of each. Differences were considered significant at p < 0.05.

RESULTS

Aβ-induced RyR-3 mRNA Expression in Primary Cortical Neurons—To test the hypothesis that Aβ directly increased RyR mRNA levels, C57Bl6 cortical neurons were treated with Aβ-(1–42) peptide (1000 nM) for 18 h and analyzed for RyR mRNA levels (Fig. 1A). As determined by RT-PCR, C57Bl6 primary cortical cells incubated with 1000 nM Aβ-(1–42) increased RyR-3 mRNA levels 3.5 ± 1.38-fold S.E. (n = 4, p < 0.001, one-way ANOVA, Student-Newman-Keuls post-test). Although not statistically significant, RyR-1 mRNA increased ~2.4 ± 0.84-fold S.E. Treatment with Aβ-(25–35), Aβ-(35–25), Aβ-(1–40), and Aβ-(42–1) peptides did not alter RyR gene expression in primary cortical neurons from C57Bl6 (Fig. 1A). Furthermore, identical treatments did not alter RyR-2, IP3-R-1, or SERCA-2b mRNA levels (not shown). To rule out the involvement of rapid increases in Ca2+i, in the up-regulation of RyR gene expression, we treated C57Bl6 primary cortical neurons with an ionophore, ionomycin, for 30 min. The treatment was removed and replaced with conditioned media for 18 h at 37 °C. Consistent with the observations made in a previous study (18), we did not see an induction of RyR gene expression after treatment with ionomycin (n = 2). Cell viability was unaltered by a 30-min treatment with ionomycin as assessed 18 h after treatment by trypan blue exclusion assay (data not shown).

RyR-3 Transcription and Protein Levels Are Increased in TgCRND8 Mice—Because Aβ increased RyR gene expression in primary cortical neurons, we hypothesized that RyR-3 expression is elevated in TgCRND8 mice, a mouse model of Alzheimer disease that produces high levels of Aβ and expresses early cognitive decline (16). Examination of cerebrum (forebrain) from the right hemisphere of 4–4.5-month-old TgCRND8 animals showed that RyR-3 mRNA levels were ~2.6 ± 0.43-fold S.E. higher (n = 16, p < 0.01, two-way ANOVA, Bonferroni post-test) compared with their non-Tg littermates (Fig. 1B). There was no change in RyR-1 and RyR-2 (Fig. 1B) or in IP3-R-1 and SERCA-2b mRNA levels (not shown). To determine where in TgCRND8 brain the increases in RyR were located, lysates of different brain regions dissected from 4- to 4.5-month-old CRND8 mice were analyzed for RyR protein by Western blot analysis using isoform-specific antibodies (17). Similar to mRNA levels, RyR-3 levels were increased ~2.7 ± 0.42-fold S.E. (n = 14, p < 0.001, two-way ANOVA, Bonferroni post-test) in the cortex of Tg mice as compared with non-Tg, whereas RyR-1 and RyR-2 levels were unchanged (Fig. 1C). RyR-3 levels were increased 1.9 ± 0.26-fold S.E. in the hippocampus as well (n = 14, p < 0.01, two-way ANOVA, Bonferroni post-test) but were unchanged in the basal and cerebellar regions (Fig. 1D). Our statistical tests reveal that these differences in RyR-3 expression are attributed to the genotype (p < 0.0001) and specific to the brain region (p = 0.0011).
FIGURE 1. RyR mRNA and protein are increased in the cerebrum of TgCRND8 mice. A, representative agarose gel showing relative levels of RyR RT-PCR products from C57Bl6 cells. Neurons (in vitro culture day 8) were treated with 1000 nM of various Aβ peptide fragments for 18 h. Relative RyR-1 and RyR-3 RT-PCR products were normalized to β-actin levels. Neurons were treated with 20 μM glutamate (glut) as a stress response control. Values are the mean ± S.E. of fold change determinations made in samples from four cultures; ***, p < 0.001 compared with values for untreated (u) cells (one-way ANOVA with Student-Neuman-Keuls post-test). B, representative agarose gel showing levels of RyR-1, RyR-2, and RyR-3 RT-PCR products from 4- to 4.5-month-old CRND8 cerebrum. Non-Tg (N) are littermate controls, and TgCRND8 (T) are heterozygous for the APE695 double mutation. Values are the mean ± S.E. of the fold changes of RyR RT-PCR products from 16 mice each of non-Tg and TgCRND8. ***, p < 0.01 compared with littermate control values (two-way ANOVA with Bonferroni post-test). C, representative immunoblot of RyR proteins from cortex of 4 non-Tg and 4 TgCRND8 mice at 4–4.5 months of age probed with anti-RyR-1, -2, and -3. Skeletal and cardiac muscle microsomes were used as positive controls for RyR-1 and RyR-2, respectively. Values are the mean ± S.E. of fold changes in RyR levels from four separate experiments (3–4 brains of non-Tg and TgCRND8 were used for each experiment, n = 14). ***, p < 0.001 compared with littermate control values (two-way ANOVA with Bonferroni post-test). D, immunoblot of RyR-3 proteins from hippocampus, basal region, and cerebellum of three non-Tg and three TgCRND8 mice at 4–4.5 months of age. Values are the mean ± S.E. of fold changes in RyR levels from four separate experiments (3–4 brains of non-Tg and TgCRND8 were used for each experiment, n = 14).**, p < 0.001 compared with littermate control values (two-way ANOVA with Bonferroni post-test).

Aβ Increased RyR-3 mRNA and Protein Levels in CRND8 Cortical Neurons—Based on our observations that Aβ increased RyR gene expression in naive cortical neurons (Fig. 1A) and that RyR levels are increased in TgCRND8 brain samples (Fig. 1, B–D), we hypothesized that the cortical neurons of TgCRND8 mice had increased RyR gene expression. Primary neuronal cultures from TgCRND8 animals had an increase of ~3.6 ± 0.71-fold S.E. (n = 3, p < 0.001, two-way ANOVA, Bonferroni post-test) in RyR-3 mRNA levels as determined by RT-PCR compared with non-Tg littermate controls on in vitro day 5 (Fig. 2A). Aβ-(1–42) treatment of non-TgCRND8 neurons increased gene expression of RyR-3 3.1 ± 0.17-fold S.E. compared with untreated (n = 3, p < 0.001, two-way ANOVA, Bonferroni post-test) to levels comparable with those expressed in TgCRND8 neurons (Fig. 2A). Other treatments, including Aβ-(1–40) and Aβ-(42-1), did not influence RyR-3 gene expression, nor did IP3R-1 and SERCA-2b mRNA levels differ between non-Tg and TgCRND8 neurons (not shown). As an alternative approach to determine whether extracellular Aβ was directly involved in elevating RyR gene expression, we treated TgCRND8 neurons with Aβ-(1–42) antibody (1.3 μg/mL) for 18 h. Quenching of extracellular Aβ-(1–42) decreased neuronal RyR-3 mRNA levels in Tg neurons by 2.2 ± 0.30-fold S.E. compared with untreated (n = 3, p < 0.001, two-way ANOVA, Bonferroni post-test) to levels similar to non-TgCRND8 littermates (Fig. 2B). Our statistical tests reveal that these differences in RyR-3 expression are attributed to the genotype (p < 0.0001) and specific to the type of treatment (p = 0.0056). To determine relative RyR protein levels in CRND8 neurons, an immunofluorescence assay was performed with using isoform-specific RyR antibodies. RyR-3 levels were markedly increased in TgCRND8 primary cortical neurons compared with their non-Tg littermate control cultures (Fig. 2C), whereas RyR-1 and RyR-2 levels did not change. Similarly, non-Tg neurons treated with Aβ-(1–42) (1000 nM) for 18 h had increased RyR-3, but not RyR-1 or RyR-2, levels comparable with Tg neurons (Fig. 2C).

Targeting RyR-3 by Gene Silencing Techniques—It was reported recently that RyR levels are increased in other models of AD, and as a result neurons from transgenic mice have elevated responses to 20–25 mM caffeine (12, 13). Given our observations showing increased RyR-3 levels in TgCRND8 neurons, we wanted to determine whether RyR-3 was involved in the elevated response. Because of a lack of pharmacological tools to selectively block RyR-3, we opted for a molecular approach to target RyR-3 and depress its expression in Tg neurons prior to Ca²⁺ imaging studies. Diced siRNAs selective for RyR-3 were generated to span a 613-bp section of the mRNA and knock down RyR-3 expression. 200 ng of siRyR-3 was transfected into Tg neurons with GeneSilencer reagent (GSR) for 24 h. At 72 h post-transfection, RyR-3 levels were significantly decreased by 2.9 ± 0.47-fold S.E. compared with untreated (n = 4, p < 0.001, two-way ANOVA, Bonferroni post-test) and were comparable with non-Tg neurons (Fig. 3A), whereas RyR-1 and RyR-2 levels did not change (fold changes not shown). Tg neurons treated with GSR, siRyR-3 alone, non-specific siRNA alone (200 ng), and siRNA with GSR did not show significant changes in RyR-1, -2 (not shown), or -3 (Fig. 3A) mRNA levels. To determine the transfection efficiency of
Aβ Directly Increases Ryanodine Receptor Function

FIGURE 2. Levels of RyR-3 are increased in cortical neurons of TgCRND8 mice. A, representative agarose gel showing fold changes of RyR-3 RT-PCR products from embryonic day 16 CRND8 primary cortical neurons. Neurons cultured for 4 days were treated with 1000 ng Aβ peptides as before (Fig. 1A). Cells were collected on in vitro day 5. Non-Tg (N) are littermate controls, and Tg (T) neurons are heterozygous for the APP695 double mutation. Values are the mean ± S.E. of determinations made in samples from three cultures. Tg values were compared with littermate controls (non-Tg) at all treatments (ns indicates no statistical difference; ***, p < 0.001), and Aβ-treated non-Tg values were compared with untreated (u) non-Tg (###, p < 0.001, two-way ANOVA with Bonferroni post-test). B, representative agarose gel showing fold changes of RyR-3 RT-PCR products from 4-day-old cultures treated with 13 μg/ml Aβ-(1–42) antibody or 1.3 μg/ml gp-116 antibody (non-specific monoclonal antibody control) for 18 h at 37°C before analysis (cells collected at in vitro day 5). Values are the mean ± S.E. of determinations made in samples from three cultures. Tg values were compared with littermate controls (non-Tg) at all treatments (ns indicates no statistical difference; ***, p < 0.001) and anti-Aβ-treated Tg values were compared with untreated Tg (###, p < 0.001, two-way ANOVA with Bonferroni post-test). C, immunofluorescence assay for RyR-1, RyR-2, and RyR-3 protein in non-Tg and Tg primary cortical neurons is representative of three separate cultures. Non-Tg neurons are treated with 1000 ng Aβ-(1–42) peptide as before (Fig. 1A). Cells were imaged at 400× magnification.

In our experiments, we transfected Tg neurons with AlexaFluor 546-labeled nonspecific siRNA (1 μg) under the same conditions as the siRyR-3 experiments. A transfection efficiency of 74.2 ± 8.3 S.E. % (n = 4, 12 separate fields total), p < 0.001, one-way ANOVA, Student-Newman-Keuls post-test) was obtained at 72 h post-transfection. Knockdown of RyR-3 protein levels in Tg neurons was confirmed by Western blot using isoform-specific antibodies (n = 3, Fig. 3C). At 72 h post-transfection, RyR-3 levels were reduced to 1.79-fold ± S.E. (p < 0.05, one-way ANOVA, Student-Newman-Keuls post-test) that of untreated Tg neurons. This is a reduction of 44.4 ± 4.5 S.E. %. RyR-1 and RyR-2 levels were unchanged after any treatment (fold changes not shown).

Calcium Released from ER Stores Is Increased in TgCRND8 Neurons Expressing Elevated Levels of RyR-3—To determine some of the functional consequences of increased levels of RyR-3 in TgCRND8 mice, we measured Ca²⁺ levels of neurons after treatments of glutamate and ryanodine. Because of our interest in the contribution of ER Ca²⁺ stores to the overall Ca²⁺ response, experiments were conducted in the presence of nominal extracellular Ca²⁺ to minimize the contribution of Ca²⁺ influx. Increased Ca²⁺, because of glutamate is closely associated with neurotoxicity (19–23) and with alternations in AD neurophysiology (24); therefore, we sought to determine whether Tg neurons had altered Ca²⁺ responses because of increased RyR-3. TgCRND8 neurons at in vitro day 5 demonstrated an elevated Ca²⁺ response to 250 μM glutamate treatment as compared with non-Tg littermate controls (Fig. 4A), with a peak response of 0.67 ± 0.01 S.E. Fura-2 fluorescence ratio 340/380 nm (n = 15, p < 0.001, one-way ANOVA, Student-Newman-Keuls post-test) for Tg neurons was in contrast to 0.55 ± 0.03 S.E. 340/380 nm for non-Tg (n = 18) (Fig. 4B). To determine the contribution of RyR-3 to the observed increases in Ca²⁺ levels, Tg neurons were treated with siRyR-3 for 72 h prior to Ca²⁺ imaging experiments. Knockdown of RyR-3 levels resulted in a decreased Ca²⁺ response of Tg neurons to glutamate (Fig. 4A), with a peak response of 0.52 ± 0.02 S.E. ratio 340/380 nm (Fig. 4B) that was significantly lower than non-Tg (0.55 ± 0.06 S.E., n = 15, p < 0.05, one-way ANOVA, Student-Newman-Keuls post-test).

To determine the direct contribution of RyR-gated Ca²⁺ stores to Ca²⁺ levels, we performed experiments using an agonistic concentration (100 nm) of ryanodine (Ry) in the presence of nominal extracellular Ca²⁺. After treatment of glutamate, ER stores become charged with Ca²⁺ and are then available for Ca²⁺ liberation (25). TgCRND8 neurons had increased Ca²⁺ levels after 100 nm Ry treatment (Fig. 4A), with a peak response of 0.50 ± 0.01 S.E. ratio 340/380 nm (n = 15, p < 0.001, one-way ANOVA, Student-Newman-Keuls post-test) as compared with littermate controls (Fig. 4C). siRyR-3 treatment of Tg neurons prior to the experiment reduced the Ca²⁺ response to Ry (Fig. 4A) to peak levels that were not significantly different from littermate controls (Fig. 4C).

To determine the role of ER Ca²⁺ load, we calculated the area under the curve (AUC) of our Fura-2 traces (Fig. 4, D and E). AUC calculations, or the ratio of 340/380 nm multiplied by time and depicted in arbitrary units, represent the total amount of Ca²⁺ being liberated from the ER after glutamate or Ry treatment. In both instances, Tg neurons had higher levels of ER Ca²⁺ released after agonist treatment (n = 15, p < 0.01, p <
Aβ Directly Increases Ryanodine Receptor Function

0.001, one-way ANOVA, Student-Newman-Keuls post-test) compared with littermate controls. After knockdown of RyR-3 levels by siRyR-3 treatment, Tg neurons had similar AUC values to non-Tg littermates.

DISCUSSION

Several studies now clearly implicate a role for RyRs in the development and progression of Alzheimer disease (10–13). Findings here have implicated RyR-3 as a key player in altering

Ca$^{2+}$ homeostasis of neurons in response to Aβ. We have come to this conclusion based on the following evidence. First, our in vitro studies show that Aβ-(1–42), regardless of the source of peptide (endogenously produced or synthetic), increased levels of RyR-3. As a direct consequence, Tg neurons had exaggerated Ca$^{2+}$ responses to ryanodine and to glutamate, which can trigger CICR from RyR stores (4, 26–29).

The impact of dysregulated Ca$^{2+}$ homeostasis as a result of increased RyR-3 in the in AD is still unclear. In fact, the exact function of RyR-3 in brain has yet to be determined, although their relative abundance in neurons of the hippocampus suggests a role for RyR-3 in hippocampal Ca$^{2+}$ regulation (14). The generation of RyR-3 knock-out mice has given some insight into its function. Two independent groups have generated RyR-3 knock-out mice, and each group performed electrophysiological and behavioral studies to determine the role of RyR-3 in synaptic plasticity and hippocampus-dependent learning (33, 34). Both groups demonstrated evidence of increased long term potentiation (LTP), a physiological corre-

FIGURE 3. Levels of RyR-3 mRNA and protein are decreased in TgCRND8 neurons after treatment with siRNA. A, representative agarose gel showing fold changes of RyR-1, RyR-2, and RyR-3 RT-PCR products from non-Tg (N) and TgCRND8 (T) 8.0 × 10^4 primary cortical neurons treated with siRNA. RT-PCR analysis was conducted 72 h post-transfection. The treatments include untreated (u), 3 μL of GSR, 200 ng of control siRNA, or 200 ng of siRyR-3. The graph is representative of the relative expression of RyR-3. Values are the mean ± S.E. of the fold change of RyR-3 RT-PCR levels from four cultures each of non-Tg and Tg. Tg values were compared with untreated (u) littermate (non-Tg) at all treatments (ns indicates no statistical difference; ***p < 0.001), and T + siRyR-3 + GSR was compared with untreated Tg (###, p < 0.001, two-way ANOVA with Bonferroni post-test). B, image of Tg neurons transfected with 1 μg of AlexaFluor 546-labeled nonspecific siRNA at 72 h post-transfection. Nuclei were labeled with Hoechst 33342 and imaged under 4',6-diamidino-2-phenylindole (DAPI). The graph is representative of transfection efficiency of GSR and is pooled from three separate experiments. siRNA + GSR was ***p < 0.001 (one-way ANOVA with Student-Newman-Keuls post-test) compared with siRNA treatment alone. C, representative immunoblot for RyR-1, RyR-2, and RyR-3 in Tg neurons treated with siRyR3 as in A and is representative of three separate cultures. The graph is representative of RyR-3 protein levels relative to actin, and values are the mean ± S.E. of the fold change of RyR-3. *, p < 0.05 (one-way ANOVA with Student-Newman-Keuls post-test) compared with untreated.
Aβ Directly Increases Ryanodine Receptor Function

FIGURE 4. Calcium release from ER stores was significantly enhanced in TgCRND8 primary cortical neurons via RyR-3 compared with littermate controls. A, representative recording of the average changes in Fura-2 340/380 nm ratios of non-Tg (N), Tg (T), and T+siRyR-3 neurons in the presence of nominal extracellular calcium. The arrows represent the application of glutamate (glut) or ryanodine (Ry). The traces are representative of at least three separate experiments, n = 15 (N), n = 18 (T), and n = 12 (T+siRyR-3). B, graphs show the average peak response and S.E. of determinations made from at least three experiments, * indicates no statistical significance; †, p < 0.05; ***, p < 0.001 compared with non-Tg (one-way ANOVA with Student-Neuman-Keuls post-test). C, graphs showing the AUC of the corresponding traces in A. ns indicates no statistical significance; **, p < 0.01; ***, p < 0.001 compared with non-Tg (one-way ANOVA with Student-Neuman-Keuls post-test). Basal ratios of neurons under the various conditions were not statistically different from each other.

late for learning and memory, after particular types of stimulation, namely short or weak tetanus, suggesting a role for RyR-3 in the depression of LTP and long term depression (LTD). However, after subjecting the RyR-3-deficient mice to the Morris water maze to assess spatial learning competencies, the two groups came to contradictory conclusions. Although Futatsugi et al. (34) showed that mutant mice had enhanced spatial learning, which would be expected if RyR-3 mediated the depression of LTP, Balschun et al. (33) observed that RyR-3 knock outs had significant deficiencies in their ability to acquire new information compared with mice with wild-type RyR. Interestingly, it has been shown that RyR-mediated Ca$^{2+}$ release from postsynaptic CA1 (35, 36) or pre-synaptic CA3 (35, 37) neurons is required for the induction of LTD. Of the three different RyR isoforms, RyR-3 would be the likely candidate for the fine-tuning of these synaptic changes. RyR-3 is less sensitive to Ca$^{2+}$ in comparison to RyR-1 and RyR-2 and therefore requires higher cytosolic Ca$^{2+}$ levels to be activated and deactivated (38). Taken together, these observations suggest that RyR-3 may contribute to synaptic plasticity by modulating the balance between LTP and LTD, and the up-regulation of RyR-3 could be a response to an increase in neuronal excitability.

Such a mechanism could be at play in AD, and the up-regulation of RyR-3 might be an effort mounted by neurons to protect against the increased excitability brought about by the pathology of AD, specifically Aβ accumulation. Other aspects of Ca$^{2+}$ signaling in AD neurons are also enhanced, in particular N-methyl-d-aspartic acid receptor (39) and IP$_3$-mediated signaling (40), leading to increased excitotoxicity. In fact, Stutzmann et al. (12) showed that RyR Ca$^{2+}$ stores were directly responsible for the exaggerated hyperpolarization responses of PS1 mutant neurons to IP$_3$ and therefore impacted membrane excitability. Furthermore, RyR-3 mRNA was transiently increased in rat brain after kainic acid-induced status epilepticus (41), implicating a role in modulating excitability. Higher levels of RyRs could be considered advantageous in protecting against putative excitotoxicity in AD, but the implications of chronic up-regulation of RyR-3, which could occur as long as Aβ is being produced, might lead to the opposite effect. As the balance of excitation and depression are skewed, the resulting effect could be an increase to overall Ca$^{2+}$ levels, oxidative stress, and activation of pathways leading to toxicity and neurodegeneration (10, 11, 41). Further studies are required to resolve why RyR-3 is being up-regulated so significantly and specifically in TgCRND8 mice.

The results of our study describe a mechanism by which Aβ contributes to the dysregulation of intraneuronal Ca$^{2+}$ homeostasis by up-regulating the expression and function of a specific ER Ca$^{2+}$ release channel, RyR-3. There is much evidence to suggest that RyR Ca$^{2+}$ pools play an important role in the neuronal dysfunction initiated by Aβ deposition in AD (10 – 13). Our findings further focus on RyRs and implicate RyR-3 as the primary ER channel that facilitates Ca$^{2+}$ disruption in AD. This information could be significant in understanding the neurobiology of AD pathology. RyR(s) may play a role in normal aging as well as contribute to AD pathology. In a report by Lu et al. (42), RyR-1 mRNA was increased significantly in aged human cortical tissue from individuals that were not demented, which suggests that increased RyRs may have a protective or positive role to play in neuronal function. Furthermore, it has been shown recently that RyR-3 mRNA and protein levels are increased in the superior cervical ganglia of aged rats and may serve to protect neurons from oxidative stress by modulating and increasing the protein expression of neuronal nitric-oxide synthase (43). A clearer picture of how RyRs are involved in balancing normal and pathological aging is required before they can be considered a feasible therapeutic target.

Acknowledgments—We thank Dr. D. Westaway, University of Toronto, for the TgCRND8 mice and Dr. V. Sorrentino, University of Siena for the RyR antibodies.
