Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy

Juyoung Kim†2, Soonjo Kwon*†1 and Erik Ostler1

Addresses: 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA and 2Ag Biotech LLC, 1704 Cordell Drive, Tallahassee, FL 32303, USA

E-mail: Juyoung Kim - jykim@agbiollc.com; Soonjo Kwon* - soonjo.kwon@usu.edu; Erik Ostler - erik.ostler@aggiemail.usu.edu

*Corresponding author †Equal contributors

Published: 4 December 2009
Received: 22 July 2009
Accepted: 4 December 2009

Journal of Biological Engineering 2009, 3:20 doi: 10.1186/1754-1611-3-20
This article is available from: http://www.jbioleng.org/content/3/1/20
© 2009 Kim et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Silver has long been known to have antimicrobial activity. To incorporate this property into multiple applications, a silver-impregnated cellulose (SIC) with low cytotoxicity to human cells was developed. SIC differs from other silver treatment methods in that the leaching of silver particles is non-existent and the release of ionic silver is highly controlled.

Results: Candida albicans, Micrococcus luteu, Pseudomonas putida, and Escherichia coli were used for antimicrobial testing. No microbial cells were able to grow in the presence of SIC at concentrations above 0.0035 Ag w/v %. Even at a concentration of 0.00035 Ag w/v %, P. putida and M. luteu failed to grow, and C. albicans and E. coli exhibited diminished growth. To determine the cytotoxic effect of silver on human cells, five different concentrations of SIC were tested on human fibroblasts. In SIC concentrations of 0.035 Ag w/v % and below, no cytotoxicity was observed.

Conclusion: The optimal concentration of SIC for a broad range of anti-microbial activity and low or negligible cytotoxicity was 0.0035 Ag w/v %. Although the highly controlled releasing characteristics of SIC would prove a substantial improvement over current technologies, further investigation for genotoxicity and other biocompatibility test will be required.

Introduction

Silver in various forms has been used for centuries as an antimicrobial agent. It is reported that the ancient Greeks used silver coins as a way of disinfecting stored liquids [1]. In the late 1800’s, silver nitrate solutions were used to prevent ocular infections in neonates. These same solutions were also found to be effective against typhoid and anthrax bacilli [2]. Colloidal silver was approved by the FDA for use in wound treatment in 1920 and through the first half of the 20th century was used in applications such as decreasing the rubor in non-healing wounds and controlling infection in burn wounds [2]. Around the Second World War and with the advent of sulphonamide drugs and heavier use of antibiotics, the use of silver decreased. Approximately 30 years later, silver began to receive renewed clinical attention [3]. Precious metals, including silver, gold, and platinum, have the lowest side effects when in contact with the skin of humans and animals. Of these, silver has been used in a variety of applications such as treating skin diseases and other medical services because silver has antimicrobial activity and is not harmful to human beings. In order to employ the antimicrobial activity of silver, antimicrobial fibers, which were obtained by physically binding silver to cellulose, latex,
polyethylene, polypropylene and the like, have been widely used in the field of the medical services [4-6].

The characteristics of silver which contribute to its scientific interest are as follows. First, yeasts, fungi, viruses, and a broad spectrum of anaerobic, aerobic, Gram-positive, and Gram-negative bacteria are susceptible to the effects of ionic silver [2,3,7,8]. As an advantage for its use in clinical applications, silver has also been categorized to be “oligodynamic”, in that large bactericidal effects can be achieved by very small quantities [8-10]. In the active, soluble form as Ag+ or Ag0 [8], a proposed mechanism of action in bacteria is to interfere with DNA replication, inhibit electron transport, and/or cause conformational changes on the cell membrane [11]. Second, when used in proper concentrations, the amount of silver necessary to exhibit antimicrobial activity is, for the most part, not toxic to mammalian cells [12-14]. Third, bacteria has a relatively low propensity to develop a tolerance to silver [8]. The most important, recently used silver compounds include silver sulfadiazine (AgSD), metallic silver, silver acetate, and silver proteins. The silver compounds are used to prevent the infection in burn regions and ocular diseases and to eradicate warts, but some types of silver have had problems associated with cytotoxicity. In recent years, bandages have been treated with silver nitrate to obtain silver-engrafted bandages. However, the silver-engrafted bandages still have problems associated with the cytotoxicity to human beings [15-17] and silver leaching [18-20].

Cellulose, which is a common wound dressing, has also been impregnated with silver by a variety of methods. One method impregnated cellulose with silver nanoparticles by reducing silver nitrate (AgNO3) with sodium borohydride (NaBH4). The nanoparticles formed small spheres that were evenly adsorbed throughout the cellulose. When tested against *Escherichia coli* and *Staphylococcus aureus*, the antimicrobial efficacy was found to be more than 99.99% [21]. Another method used cellulose acetate (CA) that was produced by electrospinning fibers with AgNO3. The CA nanofibers were then irradiated by UV light at 245 nm to produce Ag nanoparticles [22]. Similar steps were followed to produce silver nanoparticles in CA, polyacrylonitrile (PAN) and polyvinyl chloride (PVC) matrices for testing antimicrobial properties [23]. Although these products do have varying degrees of antimicrobial efficacy, the continued development of products with maximized antimicrobial properties, good biocompatibility, and low cytotoxicity is a priority.

As described above, silver must be permanently engrafted into cellulose. The technology of permanently fixing silver in cellulose can be applied to fibers of medical wool or cotton, and is useful in a large number of applications including wood preservation, antibiotic bandages, water purification, and others [24-26]. In this study, we demonstrate a method of making silver-impregnated cellulose (SIC), comprised of associating ionic silver with water soluble polymers, thus introducing the Ag+-polymer complex into the cellulose matrix. *Candida albicans*, *Micrococcus luteus*, *Pseudomonas putida*, and *E. coli* were used for antimicrobial testing. To determine the effects of silver on cytotoxicity to human cells, five different concentrations of SIC were tested on human fibroblasts.

Materials and methods

Analytical Methods

Qualitative elemental analysis was conducted using Inductively Coupled Plasma (ICP, Perkin-Elmer Optima 3000 DV). The ICP was set to read silver at an optimized wavelength of 328.068 nm, with a relative detection limit of 0.9 ppb Ag. The method of digestion was as follows: an SIC pellet was shaken in 50 mL of deionized water at 150 rpm for 24 hours. The supernatant was tested via ICP for residual silver concentration. The pellet was then immersed in a simple digestion apparatus containing a boiling solution of nitric acid and hydrogen peroxide and left for 24 hours. The resulting solution of the digested pellet sample was diluted to 50 mL and tested via ICP for residual silver concentration. Concentration of silver, weight of media, and total weight of silver in media were measured as follows, and the results are listed in Table 1.

Concentration of silver

Each medium was dipped in 25 mL of concentrated nitric acid (HNO3) and 25 mL of hydrogen peroxide solution (H2O2) respectively. Small glass beads were added to the solution to increase the boiling point and disperse heat. Each solution was heated to a temperature at which bubbles generated in an initial reaction did not enter the cooling machine, and then these were additionally heated for 24 hours. The solid media were completely solubilized (digested), and a concentration of silver was measured using ICP-MS.

Table 1: Silver leached by cotton pellets
Medium

Cotton pellet

The ICP was set to read silver at an optimized wavelength of 328.068 nm, with a relative LOD of 0.9 ppb Ag.
Weight of media
Before beginning the experiments, the media samples were dried at 105°C for 2 hours in a desiccator, and cooled to room temperature. Then, dry weights of the media samples were measured.

Total weight of silver in media
The media were digested by a nitric acid and hydrogen peroxide solution. After digestion, each of the solutions was evaporated and distilled water was added to each of the solutions to compensate for the evaporated liquid, bringing the final volume back to 50 mL. Then, the concentration (mg/L) of silver in solution used for coating was converted to an amount (mg) of silver, and the amount (mg) of silver was then divided by the weight of the medium. This may be represented by the following Equation.

\[
\text{Weight of silver} = \frac{\text{Concentration of silver (mg/L)} \times 0.05 \text{L}}{\text{Weight of media (g)}}
\]

To analyze the characteristics of silver coated cotton (cellulose matrix), an Electroscan Environmental Scanning Electron Microscope (ESEM, Model E3) was used. Samples for ESEM were dried for at least a day at 103-105°C in a drying oven, and then cooled in a desiccator. Sputter coating with gold were performed to produce high topographic resolution in a cooled desiccator.

Silver Coating Method
AgCl was dissolved in a reaction with NH₄OH, and the dissolved silver ions then bound to a cellulose matrix. The NH₄OH was released in the gaseous form of NH₃, and a neutral pH was maintained throughout the reaction. AgCl in the amounts of 5, 0.5, 0.05, 0.005 and 0.0005 g were dissolved in 1 liter of NH₄OH solution under the atmospheric conditions to produce final concentrations of 3.75, 0.75, 0.35, 0.035, 0.0035 and 0.00035 Ag w/v %, respectively. Oral cotton pellets (natural cotton pellets slightly coated with sodium carboxymethyl cellulose (Na-CMC)) were then added to the resulting solutions to allow the cellulose matrix to react with the silver, thus to form cellulose-OAg complexes. These reactions were carried out for 24 hours. Upon completion, the cellulose-OAg complexes were washed three times with water, and then dried. The final pH levels of the cellulose-OAg complexes were within a range of 6 to 8. All reactions were carried out at room temperature, and the drying temperature did not exceed 105°C.

Microbial Cell Culture
The C. albicans, M. luteus, P. putida, and E. coli cultures were obtained from American Type Culture Collection (ATCC). All cell lines were cultivated in Luria Broth (LB) media for 24 hours at 37°C. Cells were spun down and washed twice in phosphate buffered saline (PBS) before being re-suspended in PBS. Two cell solutions of approximately 10⁴ and 10⁹ cells/mL were prepared and incubated in shaker flasks with silver-coated cotton pellets at six different concentrations. Starting concentration of microbial cells was ~10⁴ or ~10⁹ cells/mL. The effect of silver on the decrease in microbial cells was monitored by the optical density (OD₆₀₀), measured with spectrophotometer (600 nm). After incubating microbial cells with silver-coated cotton pellets for 48 hours, 100 μL samples were used to inoculate an agar plate. These plates were incubated at 37°C overnight.

Human Cell Culture
Fibroblasts originating from human skin were obtained from ATCC (CCD-25Sk, CRL-1474). Each well of 24 well plates contained six different concentrations of silver-coated cotton fibers (teared cotton pellets). Silver-coated cotton pellets were teared and distributed on the surface of each culture well. The fibroblasts were seeded at 2 × 10⁵ cells/cm²onto the cotton fibers in 24 well plates. Fibroblasts were cultured in 1.0 mL of minimum essential medium (MEM) supplemented with nonessential amino acids, sodium pyruvate (1 mM), 10% fetal bovine serum (FBS), lactalbumin hydrolysate (0.1%), amphotericin B (5.6 mg/L), and penicillin-streptomycin (100 U/mL). Six concentrations of silver-coated cotton fibers were used to determine the effects of silver on the human fibroblasts.

Cell Viability
LIVE/DEAD assay kit (Molecular Probes, Eugene, OR) was used to identify the effect of silver-coated cotton fibers on cell viability and cytotoxicity.

Results
Structure of silver-polymer complex with the cellulose matrix
The method for preparing a natural cellulose matrix bonded with silver is comprised of two steps: 1) introducing silver into a natural cellulose matrix by dipping the matrix in a solution of AgCl-dissolved in NH₄OH; 2) substituting a hydrogen (H) from a hydroxyl (-OH) group in cellulose with Ag by drying the silver ion-engrafted cellulose matrix, thus forming a cellulose-OAg complex having a chemical or a physical bond between the cellulose and silver molecules. AgCl, the source of silver for this reaction, reacts according to Equation 1 when dissolved in NH₄OH: H⁺ was generally released from the cellulose hydroxyl group at the C-3 position because it had the highest acidity, causing the formation of an alkoxylate radical (R-O⁻). The cellulose radical (R-O⁻) was reacted with silver ions chemically.
binding the two components and forming a compound with a possible conformation that illustrated in Figure 1.

\[
\text{AgCl} + 2(\text{NH}_4\text{OH}) = [\text{Ag(NH}_3)_2]\text{Cl} + 2\text{H}_2\text{O} \quad (1)
\]

One silver ion may have up to four ligands, and hydroxyl groups in positions C-2 and C-3 of cellulose may bind to metal ions in a bidentate form. The silver bound in the alkoxyate form at the C-3 position and the interactions between the other hydroxyl groups cause the formation of a chelate compound, which prevents the metal ions from being leached in aqueous solutions. The cellulose-OAg complex represents a chemical bond between silver and the cellulose matrix. In addition to the chemical bonds, the silver physically binds to the cellulose, that is, silver is present in cellulose in the form of Ag\(_2\)O, Ag and AgCl. The chemical binding of silver to cellulose to form the cellulose-OAg complex occurred with a silver concentration of 0.0035 Ag w/v% in NH\(_4\)OH solution. If the concentration of silver was below 0.0035 w/v%, no detectable physical binding of the silver was observed (See Figure 2). When the silver impregnated cellulose pellets are re-dissolved in water, no detectable amount of silver particle was leached from the cellulose-OAg complex. If the concentration of silver was below 0.0035 Ag w/v%, detectable amount of silver by ICP

![Figure 1](http://www.jbioleng.org/content/3/1/20)

Figure 1
Possible conformation of the compound formed by a cellulose radical binding to silver ions.
was the amount of the silver chemically bonded to cotton (cellulose matrix).

Leaching test and digestion results of silver-coated cotton pellets
Concentration of silver, weight of media, and total weight of silver in media were measured, and the results are listed in Table 1. Data listed in Table 1 specify that the weights of silver in the cotton pellets measured before and after leaching fall within the error range of the analysis. These results revealed that the silver that chemically reacted with the natural cellulose according this method did not leach when the natural cellulose was re-dissolved in water.

Anti-microbial effects of silver-coated cotton pellets
Following incubation with five different concentrations of SICs, testing samples were prepared and plated as described in ‘Materials and Methods’. *M. luteus* and *P. putida* were not detected in samples cultured with a cotton pellet containing any concentration of silver. *C. albicans* and *E. coli* were only detected in the samples cultured with a pellet prepared in the solution having 0.00035 Ag w/v %, but were detected in reduced numbers (Table 2). Although not listed in Table 2, the microorganisms were not detected inside the pellet prepared in the solution having more than 0.0035 w/v % of silver.

Effect of silver-coated cotton fibers on human fibroblasts
Human fibroblasts were allowed to grow on SIC as seen in Figure 3. Cells were attached to both the plastic surface and the fiber-like structure of the SIC. The effect of the silver-coated cotton fibers on cell viability and cytotoxicity was monitored at day 1, day 2, and day 7. Five different concentrations of SIC were tested with

![Figure 2](https://example.com/figure2.png)

ESEM picture of silver-coated cotton. Samples for ESEM were dried for at least a day at 103-105°C in a drying oven, and then cooled in a desiccator. Sputter coating with gold were performed to produce high topographic resolution in a cooled desiccator. Circle indicated silver particles.
various sources including both woody plants and non-
medical applications. Cellulose may be obtained from
surface area, making it ideal for environmental and
is nontoxic and biodegradable, and has a huge pelletized
cellulose was used as the cellulose matrix. This cellulose
which is not harmful to humans. In this study, natural
an NH4OH solution in which silver is present in a
concentration of silver in the matrix, which is sufficient for
endowed with antimicrobial activity. The lowest con-
centrations, it may be toxic to human cells. There-
concentrations, it may be toxic to human cells. There-
concentrations of 0.035 Ag w/v % or less was used. Also, silver particles
were not detected in a leaching test using water as a solvent.
These results revealed that silver chemically binds to
cellulose by means of the mechanism represented by
Equation 1. But we cannot exclude that silver ion still can
be released from the cellulose-OAg complex.

Discussion
Silver is preferably supplied in the form of AgCl, which is
used as the silver source, and NH4OH is preferably used
as the solvent. When NH4OH reacts with AgCl, other
residual compounds are not formed except for NH4Cl,
which is not harmful to humans. In this study, natural
cellulose was used as the cellulose matrix. This cellulose
is nontoxic and biodegradable, and has a huge pelletized
surface area, making it ideal for environmental and
medical applications. Cellulose may be obtained from
various sources including both woody plants and non-
woody plants, but the present invention is not particu-
larly limited thereto. The cellulose-OAg complex is
formed by the chemical binding of silver to the cellulose
matrix. As a result, the cellulose-OAg complex is
endowed with antimicrobial activity. The lowest con-
centration of silver in the matrix, which is sufficient for
showing antimicrobial activity, is approximately 0.01
mg/g. This antimicrobial activity may be achieved using
an NH4OH solution in which silver is present in a
concentration of 0.00035 w/v% or more. When the silver
congenital in the NH4OH solution is below this
range, the silver chemically or physically bound to
the cellulose matrix does not provide sufficient antimicro-
bial activity. The antimicrobial activity is improved with
an increased concentration of silver. However, exceeding
a concentration 7.5 Ag w/v% is economically undesir-
able because of the limited solubility of AgCl in the
NH4OH solution. When silver is present in excessive
concentrations, it may be toxic to human cells. There-
fore, the silver concentration should not exceed approxi-
ately 0.35 Ag w/v %, at which point the material
begins to show cellular toxicity to the human cells. The
Food and Drug Administration (FDA) has established
classifications for approximately 1,700 different generic
types of devices and grouped them into 16 medical
specialties referred to as panels. Each of these generic
types of devices is assigned to one of three regulatory
classes based on the level of control necessary to assure
the safety and effectiveness of the device. The three
classes and the requirements which apply to them are:
Class I (General Controls), Class II (General Controls
and Special Controls), and Class III (General Controls
and Premarket Approval). General Controls are the
baseline requirements of the FDA Food, Drug and
Cosmetic (FD&C) Act that apply to all medical devices,
Class I, II, and III. To use silver coated cotton as a
medical device, test for in vitro cytotoxicity is initially
required. Our in vitro cytotoxicity test meets the require-
ment of the test as per International Organization for
Standardization (ISO 10993-5 Biological Evaluation of
medical devices - Part 5: Tests for in vitro cytotoxicity,
Reference Number ISO 10993-5:2009).

The status of binding (chemical or physical) between the
cellulose and silver was shown in ESEM photographs
(Figure 2). When the silver solution was used in
concentrations of 0.035 to 0.35 w/v %, silver crystals was
formed on the surface of cellulose (cotton). However, no
detectable physical binding of the silver was observed in
concentrations of 0.035 w/v % or less. The silver crystals
had a hexagonal shape and their size was approximately
1 to 10 μm in diameter. If the silver crystals were brought in
contact with the human body, these crystals could possibly
enter the blood stream and accumulate in blood vessels
having a diameter of approximately 20 μm. The compo-

teants were analyzed using an energy dispersive x-ray
analysis system (EDS). The distribution of each compo-
nent obtained from the x-ray analysis system was displayed
on the map, and concentrations of the components were
derived from an analysis of the EDS-Map (Data not
shown). The analysis showed that the chemically bonded
ionic silver was uniformly distributed over a surface of the
cellulose matrix when the NH4OH solution including
0.0035 Ag w/v % or less was used. Also, silver particles
were not detected in a leaching test using water as a solvent.
These results revealed that silver chemically binds to
cellulose by means of the mechanism represented by
Equation 1. But we cannot exclude that silver ion still can
be released from the cellulose-OAg complex.

Microorganisms	Concentration of silver (w/v %)					
	0	0.00035	0.0035	0.035	0.35	0.7
Candida albicans	confluent	5% confluent	0	0	0	0
Micrococcus luteus	confluent	0	0	0	0	0
Pseudomonas putida	confluent	0	0	0	0	0
Escherichia coli	confluent	5% confluent	0	0	0	0

(Continued on next page)
The mechanism of the antimicrobial action of silver ions is not well characterized yet, but is closely related to their interaction with thiol groups [10,27-29], although other target sites remain a possibility [30,31]. These and other findings imply that interaction of Ag⁺ with thiol groups in enzymes and proteins plays an essential role in bacterial inactivation, although other cellular components may be involved. Hydrogen bonding, the effects of...
hydrogen bond-breaking agents, and the specificity of Ag+ for thiol groups were discussed in greater detail by Russell and Hugo [32]. Virucidal properties might also be explained by binding to thiol groups [33]. Lukens proposed that silver salts and other heavy metals such as copper act by binding to key functional groups of fungal enzymes [34]. Ag+ causes the release of K+ ions from copper act by binding to key functional groups of fungal enzymes [34]. Ag+ causes the release of K+ ions from copper act by binding to key functional groups of fungal enzymes [34]. Ag+ causes the release of K+ ions from copper act by binding to key functional groups of fungal enzymes [34]. Ag+ causes the release of K+ ions from copper act by binding to key functional groups of fungal enzymes [34]. Ag+ causes the release of K+ ions from copper act by binding to key functional groups of fungal enzymes [34].

Ag+ also inhibits cell division and damages the cell envelope and contents of Pseudomonas aeruginosa [38]. Bacterial cells increase in size, and the cytoplasmic membrane, cytoplasmic contents, and outer cell layers all exhibit structural abnormalities, although without any blebs (protruberances) [38].

The question that puzzles researchers most is how silver ions exhibit lower cytotoxicity to human cells, while showing significant anti-microbial effects. The answer may lie in the difference in membrane structure and enzyme properties between human cells and bacterial cells. It may also depend on the concentration of ionic silver and the structure of silver-polymer complex with cellulose. Furthermore, SIC, which has no particle leaching problems and no particle formation during molecular coating within a defined concentration range, has increased beneficial effects on human cells with increased antimicrobial activity.

Competing interests
Ag Biotech LLC provided the experimental materials including silver-impregnated cellulose and supported publication costs. 'Method for preparing antimicrobial cotton of cellulose matrix having chemically and/or physically bonded silver and antimicrobial cotton prepared therefrom' was disclosed by Juyoung Kim in Ag Biotech LLC.

Authors' contributions
JK developed silver-impregnated cellulose and characterized materials. SK performed experimental design and data analysis for antimicrobial activities and cytotoxicity to human skin fibroblasts. EO assisted in data analysis. All authors have read and approved the final manuscript.

Acknowledgements
This research was supported by Ag Biotech LLC. We thank James Ray for providing experimental materials and publication cost. We also thank Eric Meyers and Benjamin Lai for assisting initial experimental set up.

References
1. Fong J and Wood F: Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine 2006, 1(4):441–449.
2. Dunn K and Edwards-Jones V: The role of Acticoat with nanocrystalline silver in the management of burns. Burns 2004, 30(Suppl 1):S1–9.
3. Klasen HJ: A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 2000, 26(2):131–138.
4. Johnson JR, Kuskowski MA and Witt TJ: Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Intern Med 2006, 144(2):116–126.
5. Wu J, Hsu S, Ren D and Mather PT: Antimicrobial properties of nanostuctured hydrogel webs containing silver. Biomacromolecules 2009, 10(9):2686–2693.
6. Zhu C, Xue J and He J: Controlled in-situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials. J Nanosci Nanotechnol 2009, 9(5):3067–3074.
7. Wright JB, Lam K, Hansen D and Burrell RE: Efficacy of topical silver against fungal wound burn pathogens. Am J Infect Control 1999, 27(4):344–350.
8. Percival SL, Bowler PG and Russell D: Bacterial resistance to silver in wound care. J Hosp Infect 2005, 60(1):7–17.
9. Clement JL and Jarrett PS: Antibacterial silver. Met Based Drugs 2011, 1(4):467–482.
10. Furr JR, Russell AD, Turner TD and Andrews A: Antibacterial activity of Actisorb Plus, Actisorb and silver nitrate. J Hosp Infect 1994, 27:201–208.
11. Lansdown AB: Silver. I: Its antibacterial properties and mechanism of action. J Wound Care 2002, 11(4):125–130.
12. Ewald A, Gluckermann SK, Thull R and Gbureck U: Antimicrobial silver/silvertitanium/silver PVD coatings on titanium. Biom Eng Online 2006, 5:22.
13. Lansdown AB: Toxicity in mammals and how its products aid wound repair. J Wound Care 2002, 11(5):173–177.
14. Burd A, Kwock CH, Hung SC, Chan HS, Gu H, Lam WK and Huang L: A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen 2007, 15(1):94–104.
15. Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV and Jayakumar R: Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 2009 in press.
16. Plas Van Den D, De Smet K, Lens D and Sollie P: Differential cell death programmes induced by silver dressings in vitro. Eur J Dermatol 2008, 18(4):416–421.
17. Wiegand C, Heinzte T and Hippler UC: Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiologic factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 2009, 17(4):S11–S21.
18. Balamurugan A, Balossier G, Laurent-Maquinh P, Sina, S rebelo AH, Faure J, and Ferreira JM: An in vitro experiment study with antibacterial effect of a sol-gel derived silver-incorporated bioglasssystem. Dent Mater 2008, 24(10):1343–1351.
19. Thomas S and McCubbin P: A comparison of the antimicrobial effects of four silver-containing dressings on three organisms. J Wound Care 2003, 12(3):101–107.
20. Walker M, Cochrane CA, Bowler PG, Parsons D and Bradshaw P: Silver deposition and tissue staining associated with wound dressings containing silver. Ostomy Wound Manage 2006, 52(1):42–44, 46–50.
21. Jung R, Kim Y, Kim HS and Jin HJ: Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J Biomater Sci Polym Ed 2009, 20(3):311–324.
22. Son WK, Youk JH and Park WH: Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 2006, 65:430–434.
23. Lala NL, Ramaseshan R, Bojum L, Sundarajan S, Barbate RS, Ying-Jun L and Ramakrishna S: Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnol Bioeng 2007, 97(6):1357–1365.
24. Vigeshwaran N, Kathe AA, Varadarajan PV, Nachane RP and Balasubramanyam RH: Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechnol 2007, 7(6):1893–1897.
processes of hexavalent chromium for the purification of water. J Hazard Mater 2009, 164(2-3):968–975.

26. Tredre RF: A note on silver as a sterilizing agent in the purification of water. J Trop Med Hyg 1955, 58(10):239–245.

27. Belly RT and Kydd GC: Silver resistance in microorganisms. Dev Ind Microbiol 1982, 23:567–577.

28. Bragg PD and Rannie DJ: The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 1974, 20:883–889.

29. Fuhrmann GF and Rothstein: The mechanism of the partial inhibition of fermentation in yeast by nickel ions. Biochem Biophys Acta 1968, 163:331–338.

30. Richards RME: Antimicrobial action of silver nitrate. Microbios 1981, 31:82–91.

31. Thurmann RB and Gerba CP: Molecules Mechanisms of viral inactivation by water disinfectants. Adv Appl Microbiol 1988, 33:75–105.

32. Russell AD and Hugo WB: Antimicrobial activity and action of silver. Prog Med Chem 1994, 31:351–371.

33. Thurmann RB and Gerba CP: The molecules mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Control 1989, 18:295–315.

34. Lukens RJ: Chemistry of fungicidal action. Mol Biol Biochem Biophys 1983, 10.

35. Miller LP and McCallan EA: Tixic action of metal ions to fugus spores. Agric Food Chem 1957, 5:116–122.

36. Schreurs WJA and Rosenburgh H: Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 1982, 152:7–13.

37. Brown TA and G SD: The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidsus. Microbios Lett 1976, 3:155–162.

38. Richards RME, Odelola HA and Anderson B: Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios 1984, 39:151–258.