Microsatellite Loci in Two Epiphytic Lichens with Contrasting Dispersal Modes: Nephroma laevigatum and N. parile (Nephromataceae)

Authors: Rocío Belinchón, Christopher J. Ellis, and Rebecca Yahr
Source: Applications in Plant Sciences, 2(11)
Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps.1400080
MICROSATELLITE LOCI IN TWO EPIPHYTIC LICHENS WITH CONTRASTING DISPERSAL MODES: *Nephroma laevigatum* AND *N. parile* (Nephromataceae)1

ROCÍO BELINCHÓN2,3, CHRISTOPHER J. ELLIS2, AND REBECCA YAHR2

1Manuscript received 21 August 2014; revision accepted 21 September 2014.

The authors thank Markus Ruhsam, Laura Forrest, Michelle Hollingsworth, Alfredo García-Fernández, Maria Prieto, and The GenePool (University of Edinburgh) for technical assistance. We also thank the Scottish Natural Heritage (SNH) and the landowners for access permission. This study was funded by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Program to R.B. (PIEF-GA-2011-299330).

2Royal Botanic Garden Edinburgh, 20A Inverleith Row, Scotland, United Kingdom

3Author for correspondence: r.belinchon@rbge.ac.uk; r.belinchon.olmeda@gmail.com
doi:10.3732/apps.1400080

Applications in Plant Sciences 2014 2(11): 1400080; http://www.bioone.org/loi/apps © 2014 Belinchón et al. Published by the Botanical Society of America.

1 of 4

PRIMER NOTE

Dispersal among populations can explain gene flow patterns, can help in understanding the processes driving genetic structure and diversity, and can explain population persistence under different ecological and environmental scenarios (Lowe et al., 2004). Dispersal traits (i.e., reproductive strategy and propagule size) reflect a trade-off between dispersal ability and establishment success, and they have important consequences for population genetic structure (Hartl and Clark, 1997). In lichens, the contrast between sexual vs. asexual reproductive modes has provided a convenient system for evaluating consequent patterns of genetic structure and diversity (Werth, 2010); this is especially the case for lichen epiphytes that occur on trees mimicking discrete habitats (islands) of measurable size and age, and that are linked through dispersal dynamics to a network of surrounding trees, and at a larger scale, to adjacent woodland stands. Asexually reproducing lichen species disperse both their symbionts together (fungus and photosynthetic alga or cyanobacteria), but their propagules are largely compared to sexually reproducing species, which have a higher likelihood of long-distance dispersal (Seaward, 2008). However, this broad generalization in dispersal ability and its consequences for gene flow remain contentious owing to contradictory results (Werth et al., 2014). In particular, the majority of epiphyte studies have focused on a single model species—*Lobaria pulmonaria* (L.) Hoffm. (e.g., Scheideger and Werth, 2009)—that can reproduce both sexually and asexually, making it therefore problematic to unequivocally partition the ecological consequences of contrasting dispersal modes.

The focus of this paper is to describe microsatellite markers developed for two codistributed epiphytic lichens with different reproductive strategies and dispersal modes; i.e., *Nephroma laevigatum* Ach. and *N. parile* (Ach.) Ach. Both species are morphologically very similar and have a *Nostoc* photobiont, but they have developed contrasting reproductive traits. *Nephroma laevigatum* typically reproduces via sexual ascospores (spores = 18.5 × 6 μm), while the predominantly asexually reproducing *N. parile* normally produces marginal soredia (soredia = 150 μm) and only very infrequent apothecia (Smith et al., 2009). It has been shown using multigene phylogenies that these ecologically similar foliose lichens are each monophyletic and closely related to each other, although they are not sister species (Lohtander et al., 2002; Sérusiaux et al., 2011). Both species have oceanic to boreal-montane distributions, are common in ancient woodlands in Europe, and are sensitive to SO2 pollution (Smith et al., 2009).

METHODS AND RESULTS

For primer design, fungal genomic DNA was extracted from eight individuals per lichen species collected from four different populations across a climatic gradient in Scotland (Appendix 1). DNA was isolated from 20 mg of dried thallus material using the DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany), following the manufacturer’s protocol modified by increasing initial lysis incubation to 1 h at 70°C. Microsatellite sequences were isolated and primers were designed by Ecogenics GmbH (Zurich, Switzerland) using magnetic streptavidin beads and

Key words: Ascomycetes; lichen-forming fungi; microsatellites; *Nephroma laevigatum*; *Nephroma parile*; Nephromataceae.
Applications in Plant Sciences 2014 2 (11): 1400080 Belinchón et al.—Microsatellites in Nephroma

... Multiplex indicates loci that were mixed in the same capillary electrophoresis run. Annealing temperatures were 56 °C.

Terms of Use: https://bioone.org/terms-of-use

Note: A = number of alleles.

* Multiplex indicates loci that were mixed in the same capillary electrophoresis run. Annealing temperatures were 56°C.

Table 1. Characteristics of 26 microsatellite loci developed in Nephroma laevigatum and N. parile.

Locus	Primer sequences (5′−3′)	Repeat motif	Multiplex*	Dye label	Allele size range (bp)	A	GenBank accession no.
NLa01	F: TCCGTATGTTGCGAGAATTG	(TCA)12	M-NL1	PET	192–231	8	KM361439
	R: TCCGTATGTTGCGAGAATTG	(TAA)3	NED	NED	198–237	7	KM361440
	R: TGCTTCTTATATATATGACCTG	(TAC)12	NED	NED	230–234	3	KM361441
NLa02	F: TGGTTTTCTGGAACGATATC	(ACAT)4	M-NL2	PET	254–258	4	KM361443
NLa03	F: ATGATATATATATATGAGATC	(ACAT)4	M-NL2	PET	89–129	8	KM361444
NLa04	F: AGTATATATATATATGAGATC	(ACAT)4	M-NL2	PET	207–240	3	KM361446
	R: AGTATATATATATATGAGATC	(ACAT)4	M-NL2	PET	126–168	7	KM361447
NLa05	F: TGGTTTTCTGGAACGATATC	(ACAT)4	M-NL2	PET	240–284	7	KM361448
NLa06	F: AGTATATATATATATGAGATC	(ACAT)4	M-NL2	PET	199–229	4	KM361449
	R: AGTATATATATATATGAGATC	(ACAT)4	M-NL2	PET	205–212	3	KM361450
NLa07	F: TGGTTTTCTGGAACGATATC	(ACAT)4	M-NL2	PET	170–176	3	KM361454
	R: AGTATATATATATATGAGATC	(ACAT)4	M-NL2	PET	170–176	3	KM361455
NLa08	F: TGGTTTTCTGGAACGATATC	(ACAT)4	M-NL2	PET	219–241	3	KM361456
NLa09	F: AGTATATATATATATGAGATC	(ACAT)4	M-NL2	PET	230–242	4	KM361453
NLa10	F: TGGTTTTCTGGAACGATATC	(ACAT)4	M-NL2	PET	240–284	7	KM361454
NLa11	F: TGGTTTTCTGGAACGATATC	(ACAT)4	M-NL2	PET	192–231	3	KM361459
NLa12	F: TGGTTTTCTGGAACGATATC	(ACAT)4	M-NL2	PET	192–231	3	KM361459
NPar01	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar02	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar03	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar04	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar05	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar06	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar07	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar08	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar09	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar10	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar11	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar12	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar13	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457
NPar14	F: CGCTATCCATTCATATTGATG	(ACAT)4	M-NL2	PET	233–244	3	KM361457

Note: A = number of alleles.

* Multiplex indicates loci that were mixed in the same capillary electrophoresis run. Annealing temperatures were 56°C.

http://www.bioone.org/loi/apps
were designed for 12 microsatellite inserts for *N. laevigatum* and 14 microsatellite inserts for *N. parile* and tested for polymorphism. Although few simple sequence repeats are expected in bacterial genomes, an additional BLAST search was included for all primer candidates to exclude any that matched the available *Nostoc* reference genome before testing for polymorphism.

Polymorphisms within the 26 microsatellite loci were determined by Eco
genics GmbH using a test set of 15 samples for each species collected from four Scottish populations (Appendix 1), and using M13-tailed forward primers and universal M13 fluorescent-labeled primer following Schuelke (2000). For these samples, genomic DNA was extracted from dried thallus material with the QIAGEN DNeasy Plant Mini Kit, and loci were PCR amplified in the Veriti 96-Well Thermal Cycler (Applied Biosystems, Carlsbad, California, USA). Primers that showed clear amplification profiles and reliable amplification and ties varied from 0.38 to 0.71 and 0.01 to 0.50 for *N. laevigatum* and *N. parile*, respectively (Tables 2, 3). A small sample of specimens (four per species) was repeated to check for reproducibility, and all yielded identical allele lengths.

CONCLUSIONS

Twelve and 14 microsatellite primers were characterized to investigate population structure and gene flow in *N. laevigatum* and *N. parile*, respectively. The markers demonstrate high-resolution variability at even a relatively small geographic

Table 2. Results of microsatellite screening in four populations of *Nephroma laevigatum*. a,b

Locus	Total	Dulsie (n = 19)	Torboll (n = 14)	Glen Nant (n = 17)	Ardery (n = 16)										
NLae02	66	10	0.71	14	4	0.57	17	6	0.85	16	7	0.87			
NLae03	65	3	0.39	19	2	0.35	13	1	0.00	17	3	0.69	16	3	0.51
NLae04	64	7	0.50	18	2	0.20	13	3	0.50	17	4	0.57	16	6	0.75
NLae05	66	4	0.26	19	2	0.11	14	1	0.00	17	3	0.49	16	4	0.44
NLae07	66	13	0.77	19	6	0.80	14	4	0.74	17	7	0.82	16	6	0.73
NLae08	66	6	0.61	19	3	0.51	14	3	0.27	17	6	0.83	16	6	0.84
NLae09	66	10	0.83	19	5	0.77	14	6	0.86	17	9	0.89	16	6	0.83
NLae10	66	6	0.70	19	4	0.70	14	3	0.60	17	5	0.78	16	5	0.73
NLae11	66	5	0.53	19	3	0.62	14	2	0.26	17	4	0.49	16	4	0.73
NLae12	66	4	0.24	19	1	0.00	14	1	0.00	17	2	0.31	16	4	0.64

| Mean | 6.80 | 0.56 | 3.20 | 0.47 | 2.80 | 0.38 | 4.90 | 0.67 | 5.10 | 0.71 |
| Private alleles | 5 | 1 | 4 | 9 |

Note: A = number of alleles; Hₑ = Nei’s unbiased gene diversity; n = total number of samples analyzed.

a,b For analyses, markers with a high percentage of nonamplifications from the total number of samples tested were removed: NLae01 (9%), NLae06 (8%).

Table 3. Results of microsatellite screening in four populations of *Nephroma parile*. a,b

Locus	Total	Dundonnell (n = 16)	Glen Nant (n = 16)	Dreggie (n = 14)	Dulsie (n = 15)										
NPar01	59	3	0.28	16	1	0.00	14	3	0.62	14	3	0.70	15	2	0.34
NPar02	61	3	0.28	16	1	0.00	16	2	0.33	14	2	0.44	15	2	0.34
NPar03	61	5	0.32	16	1	0.00	16	2	0.33	14	3	0.62	15	2	0.34
NPar05	61	2	0.23	16	1	0.00	16	2	0.13	14	2	0.44	15	2	0.34
NPar06	61	6	0.44	16	1	0.00	16	5	0.73	14	5	0.80	15	2	0.25
NPar07	61	5	0.43	16	1	0.00	16	4	0.68	14	3	0.70	15	2	0.34
NPar08	61	6	0.43	16	2	0.13	16	3	0.43	14	5	0.84	15	2	0.34
NPar09	61	2	0.06	16	1	0.00	16	2	0.23	14	1	0.00	15	1	0.00
NPar10	61	2	0.06	16	1	0.00	16	2	0.23	14	1	0.00	15	1	0.00
NPar11	61	2	0.09	16	1	0.00	16	1	0.00	14	1	0.00	15	2	0.34
NPar12	61	3	0.40	16	1	0.21	16	3	0.63	14	3	0.62	15	2	0.34
NPar13	60	6	0.43	16	1	0.00	16	3	0.58	13	4	0.79	15	2	0.34

| Mean | 3.75 | 0.30 | 1.08 | 0.01 | 2.67 | 0.41 | 3.75 | 0.50 | 1.83 | 0.28 |
| Private alleles | 1 | 6 | 6 | 4 |

Note: A = number of alleles; Hₑ = Nei’s unbiased gene diversity; n = total number of samples analyzed.

a,b For analyses, markers with a high percentage of nonamplifications from the total number of samples tested were removed: NPar04 (17%), NPar14 (34%).
sampling scale, with no shared genotypes among populations for the sexual species, in contrast to the predominantly asexual *N. parile*. We conclude that the markers can potentially provide insights contributing to an improved understanding of population genetic processes, and they are currently being used to analyze population genetic structure in *N. laevigatum* and *N. parile* for variable habitats across a steep climatic gradient.

LITERATURE CITED

HARTE, D. L., AND A. G. CLARK. 1997. Principles of population genetics. Sinauer, Sunderland, Massachusetts, USA.

LOHTANDER, K., I. ORKANEN, AND J. RIKKINEN. 2002. A phylogenetic study of *Nephroma* (lichen-forming Ascomycota). *Mycological Research* 106: 777–787.

LOWE, A., S. HARRIS, AND P. ASHTON. 2004. Gene flow and mating system. In A. Lowe, S. Harris, and P. Ashton [eds.], Ecological genomics: Design, analysis, and application, 106–149. Blackwell Publishing, Oxford, United Kingdom.

PEAKALL, R., AND P. E. SMOUSE. 2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6: 288–295.

ROZEN, S., AND H. SKALETSKY. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

SCHREIDEGGER, C., AND S. WERTH. 2009. Conservation strategies for lichens: Insights from population biology. *Fungal Biology Reviews* 23: 55–66.

SCHUELKE, M. 2000. An economic method for the fluorescent labelling of PCR fragments. *Nature Biotechnology* 18: 233–234.

SEAWARD, M. R. D. 2008. Environmental role of lichens. In T. H. Nash III [ed.], Lichen biology, 274–298. Cambridge University Press, Cambridge, United Kingdom.

SERUSIAUX, E., J. C. VILLAREAL, T. WHEELER, AND B. GOFFINET. 2011. Recent origin, active speciation and dispersal for the lichen genus *Nephroma* (Peltigerales) in Macronesia. *Lichenologist (London, England)* 42: 499–519.

WERTH, S. 2010. Population genetics of lichen-forming fungi: A review. *Lichenologist (London, England)* 42: 499–519.

WERTH, S., S. CHENACHAOREN, AND C. SCHREIDEGGER. 2014. Propagule size is not a good predictor for regional population subdivision or fine-scale spatial structure in lichenized fungi. *Fungal Biology* 118: 126–138.

APPENDIX 1. Location information, number of individuals sampled, and voucher specimens of *Nephroma* species used in this study. All specimens were sampled as epiphytes from broadleaved woodlands.

Species	Voucher	Locality*	Latitude	Longitude	n	Collection date
Nephroma laevigatum	RB1	Ardladlech SSSI, 31 m a.s.l.	56°33′09.8100″N	−005°05′08.1874″W	2d	15 Oct. 2012
Nephroma laevigatum	RB2	Glen Nant SSSI, 82 m a.s.l.	56°23′46.8924″N	−005°12′38.0419″W	2d, 17f	20 Oct. 2012
Nephroma laevigatum	RB3	Birks of Aberfeldy SSSI, 241 m a.s.l.	56°36′25.4736″N	−003°52′18.4706″W	2d	10 Jan. 2013
Nephroma laevigatum	RB4	Glen Tilt SSSI, 221 m a.s.l.	56°48′22.2876″N	−003°50′09.0647″W	2d	15 Jan. 2013
Nephroma laevigatum	RB5	Ardura SSSI, 48 m a.s.l.	56°23′56.9184″N	−005°45′26.3063″W	4e	25 Oct. 2012
Nephroma laevigatum	RB6	Kyles Wood, 45 m a.s.l.	56°48′08.9964″N	−005°48′51.8989″W	4e	1 Nov. 2012
Nephroma laevigatum	RB7	Dulsie Bridge, 182 m a.s.l.	57°26′44.6460″N	−003°47′10.0759″W	4e, 19f	18 Jan. 2013
Nephroma laevigatum	RB8	Dreggie Aspen Wood, 262 m a.s.l.	57°20′01.7592″N	−003°37′28.3181″W	3e	23 Jan. 2013
Nephroma laevigatum	RB9	Torboll Woods SSSI, 72 m a.s.l.	57°57′18.0036″N	−004°07′02.7178″W	14f	15 Apr. 2013
Nephroma laevigatum	RB10	Ardladlech SSSI, 31 m a.s.l.	56°41′38.2884″N	−005°40′09.1535″W	16f	5 Oct. 2012
Nephroma parile	RB11	Ardladlech SSSI, 31 m a.s.l.	56°33′09.8100″N	−005°05′08.1874″W	2d	15 Oct. 2012
Nephroma parile	RB12	Glen Nant SSSI, 82 m a.s.l.	56°23′46.8924″N	−005°12′38.0419″W	2d, 16f	20 Oct. 2012
Nephroma parile	RB13	Kindrogan Field Centre, 280 m a.s.l.	56°44′50.1936″N	−003°32′41.6249″W	2d	15 Nov. 2013
Nephroma parile	RB14	Glen Tilt SSSI, 221 m a.s.l.	56°48′22.2876″N	−003°50′09.0647″W	2d	15 Jan. 2013
Nephroma parile	RB15	Ardura SSSI, 48 m a.s.l.	56°23′56.9184″N	−005°45′26.3063″W	4e	25 Oct. 2012
Nephroma parile	RB16	Kyles Wood, 45 m a.s.l.	56°48′08.9964″N	−005°48′51.8989″W	3e	1 Nov. 2012
Nephroma parile	RB17	Dulsie Bridge, 182 m a.s.l.	57°26′44.6460″N	−003°47′10.0759″W	4e, 15f	18 Jan. 2013
Nephroma parile	RB18	Dreggie Aspen Wood, 262 m a.s.l.	57°20′01.7592″N	−003°37′28.3181″W	4e, 14f	23 Jan. 2013
Nephroma parile	RB19	Dundonnell Woods SSSI, 26 m a.s.l.	57°50′18.0378″N	−005°11′16.8181″W	16f	1 May 2013

Note: n = number of samples analyzed; SSSI = Site of Special Scientific Interest.

1All specimens were collected by R.B.

2Vouchers deposited at the Herbarium of the Royal Botanic Garden Edinburgh (E).

3Locality in Scotland.

4Specimens used for shotgun sequencing.

5Specimens used for polymorphism testing.

6Specimens used for microsatellite screening.

http://www.bioone.org/loi/apps

4 of 4

Belinchón et al.—Microsatellites in *Nephroma*