Lupus Nephritis in Asia: Clinical Features and Management

Desmond Y.H. Yap Tak Mao Chan

Nephrology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, SAR, China

Key Words
Asians · Azathioprine · Cyclophosphamide · Lupus nephritis · Mycophenolate

Abstract
Background: Lupus nephritis (LN) is a common and severe organ involvement manifesting itself in systemic lupus erythematosus (SLE). There is a considerable difference in prevalence, severity, treatment response and outcomes between Asian LN patients and LN patients from other racial backgrounds. Summary: Asian SLE patients have a higher prevalence of LN than Caucasian SLE patients and often present with a more severe disease. Increasing data from genetic studies, accompanied by progress in high-throughput genotyping, have advanced our knowledge about genetic predispositions that might partly contribute to the clinical variations observed. Corticosteroids combined with either cyclophosphamide (CYC) or mycophenolic acid (MPA) is the current standard-of-care induction regimen for severe LN irrespective of race or ethnicity. However, the preference for MPA or CYC, and possibly the optimum dose for MPA, is influenced by the patient’s origin. Also, there is an insufficient evidence base for reduced-dose intravenous CYC in Asian patients. Health economics and access to prompt diagnosis and treatment are still challenging issues in some Asian regions. The former represents a significant obstacle limiting the access of patients to MPA despite the proven efficacy of the drug as an induction agent and its superiority over azathioprine (AZA) in preventing disease flares when used for long-term maintenance immunosuppression. Calcineurin inhibitors such as tacrolimus deserve further investigation in view of their additional effect on podocytes by reducing proteinuria and the promising data from Asian patients. Despite considerable advances in the clinical management of LN over the past few decades with resultant improvements in patients’ outcomes, there are still knowledge gaps and unmet clinical needs. Asia has made substantial contributions to the evidence base that guides clinical management and continues to offer invaluable opportunities for research pursuits. Key Messages: Treatment responses and clinical outcomes in Asian patients with LN compare favorably with patients from other parts of the world. The prevention and treatment of infective complications remain significant challenges in managing LN in Asia.

Facts from East and West:
(1) The prevalence of SLE is lower among Caucasians than other ethnicities. A higher prevalence is observed among Asians and African Americans, while the highest prevalence is found in Caribbean people. The prevalence of LN in Asian SLE patients is much higher than in Caucasians as well. However, the 10-year renal outcome and renal survival rate appear to be better in Asians. (2) Polymorphisms of genes involved in the immune response, such as Fcy receptor, integrin alpha M, TNF superfamily 4, myotubularin-related protein

For lupus nephritis in Europe, see Tesar and Hruskova Kidney Dis 2015;1:110–118.
have also fueled extensive studies on the treatment of LN in Asians, which have contributed to the evidence base for the management of LN. This review will discuss the epidemiology, clinical features and outcomes as well as the current and emerging immunosuppressive treatments in Asian LN patients.

Epidemiology, Clinical Features and Genetics of LN: An Asian Perspective

Epidemiology, Clinical Features and Outcomes of LN in Asia

Asian SLE patients exhibit higher rates of renal involvement when compared with Caucasians (50–60% vs. 30–38%) and also often herald a more severe renal disease [1–3]. Even among Asians populations, there is a notable disparity in the prevalence of LN. While around 50–60% of Asian SLE patients have renal involvement, much higher rates of LN (70–100%) have been observed in certain Asian countries such as Thailand or Sri Lanka [3, 5]. As for clinical severity, nephrotic-range proteinuria and decreased creatinine clearance (<50 ml/min) were reported in 43.6 and 58% of SLE patients, respectively, in a Thai series [6], and diffuse proliferative glomerulonephritis was ranked the commonest renal histopathological finding in different Asian cohorts [4–7].

Previous studies have reported a higher incidence of death in SLE patients of Asian descent, which was attributed to the high rates of renal involvement among the SLE patients in these cohorts [8, 9]. LN constitutes an important cause of renal failure in Asia, and renal involvement may also portend inferior long-term patient survival [4]. Recent survival analyses in Asian LN patients have reported 10-year patient survival rates of 92–98% in the current era of effective immunosuppressive therapies [4, 10, 11]. These long-term patient survival rates in Asian LN patients compare favorably with the survival rates in patients of other races (a 10-year patient survival rate of 81–97% in Caucasians and around 60% in Afro-Americans) [12–14]. Furthermore, 10-year renal survival rates of 81–98% have been reported in Asian LN patients, compared with 68–95% in Caucasians and 38–70% in Afro-Americans [4, 12, 15–17]. It is probable that the high response rates to immunosuppressive treatment observed in Asian LN patients contribute to the relatively favorable long-term outcomes in Asian patients [18–21]. Chronic renal insufficiency in Asian LN patients is often associated with repeated nephritic flares, each resulting in cumulative attrition of the nephron mass and renal reserve.

Introduction

Systemic lupus erythematosus (SLE) is a severe autoimmune disease characterized by involvement of multiple organs. Lupus nephritis (LN) denotes a common and severe manifestation of SLE and is a major factor exerting a negative impact on long-term renal and patient survival. There is a considerable difference in prevalence, disease severity, treatment response and clinical outcomes between LN patients from different racial and ethnic backgrounds. In this context, LN is an important concern among Asian SLE patients due to the high incidence of kidney involvement and more severe renal disease compared with patients of other races and its association with unfavorable long-term outcomes [1–4]. These attributes
Data from Genetic Studies in Asian LN Patients

The underlying reasons for the high incidence of SLE in Asia and the high prevalence of renal involvement in Asian SLE patients remain to be elucidated. Accumulating data from genome-wide association studies and the International HapMap Project, in parallel with recent technological progress in high-throughput genotyping, have increased the knowledge of the genetic factors which might account for these clinical observations. In this regard, Fcy receptor (FcyR) polymorphism has been investigated for its role in a genetic predisposition for LN in Asians. FcyR is a cell surface molecule expressed on immunoreactive cells which can bind to IgG immune complexes and mediate phagocytosis and antibody-dependent cytotoxicity. A meta-analysis of FcyRIIIA-V/F158 polymorphism showed that the F158 allele was associated with an elevated risk of LN in Asian SLE patients (OR 1.15, 95% CI 1.04–1.28) [22]. The FF homozygosity also conferred an increased risk of LN in Asians (OR 1.30, 95% CI 1.04–1.64) [22]. The FcyRIIb and IIIb polymorphisms, however, were found to have no association with LN among Asians in another meta-analysis [23].

Integrin alpha M (ITGAM) is expressed on different immunoreactive cells and exerts pleiotropic actions such as cell adhesion and migration, phagocytosis, chemotaxis and cell-mediated cytotoxicity. Associations between ITGAM and SLE have been reported in patients from different ethnic backgrounds including Caucasians, Hispanics, Afro-Americans and Asians [24]. One genome-wide association study on ITGAM which genotyped 910 Hong Kong Chinese and 278 Thai SLE patients revealed that single nucleotide polymorphisms (SNPs) of ITGAM in rs1143679 (OR 3.61, 95% CI 1.6–7.98; p = 0.00073), rs1143683 (OR 2.42, 95% CI 1.51–3.89; p = 0.0017) and rs1143678 (OR 1.95, 95% CI 1.10–3.47; p = 0.02) were tightly associated with LN in Chinese and Thai [25]. However, one limitation of this study is the low allele frequency of these variants in the Chinese population, which diminishes the power of the study.

The TNF superfamily 4 (TNFSF4) gene encodes for OX40 ligand (OX40L) protein expressed on T and B lymphocytes and dendritic cells. A defect in the TNFSF4 gene would result in a compromised interaction between OX40 and OX40L and, therefore, impaired Th2 polarization and enhanced Th17 differentiation. SNP polymorphisms in TNFSF4 rs2205960 (T) and rs10489265 (G) were both strongly linked with renal disease in Chinese SLE patients (p = 0.014 and p = 0.005, respectively) and have a negative correlation with C3 levels and TNFSF4 renal expression [26]. Myotubularin-related protein 3 (MTMR3) is an autophagy-related gene which is involved in autophagy initiation and, hence, a susceptibility gene for SLE. SNP polymorphisms in rs9983A showed a positive association with kidney involvement in Han Chinese SLE patients (OR 1.61, 95% CI 1.19–2.19; p = 0.002), and lower transcription levels of MTMR3 were detected in the blood and renal biopsy samples of the corresponding Chinese LN patients [27]. The mechanistic contribution of TNFSF4 and MTMR3 to pathogenesis remains to be further elucidated. Apart from its impact on immunoreactivity, there could be genetically determined variations in the progression of chronic kidney disease. The renin-angiotensin system has been investigated as a candidate mediator for the progression of chronic kidney disease in patients with LN. One study which genotyped 642 SLE patients for angiotensin-converting enzyme gene polymorphisms [Alu insertion/deletion (I/D) and (CT)2/3] showed that ACE D (OR 5.9, 95% CI 2.1–16.4; p = 0.001) and (CT)2 (OR 6.2, 95% CI 2.2–17.6; p = 0.001) polymorphisms were associated with renal progression in Asian LN patients [28].

Current Immunosuppressive Treatments for LN: An Asian Perspective

In general, treatment of LN is guided by renal histopathological findings and clinical parameters. Immunosuppressive treatment of active severe LN begins with an induction phase in which potent immunosuppressive medications are administered to abrogate renal inflammation. This phase lasts for approximately 4–6 months and is followed by a prolonged maintenance phase in which low-dose immunosuppression is conducted to prevent relapses [29]. The distinction between the induction phase and the maintenance phase is clear in sequential immunosuppressive regimens such as cyclophosphamide (Cyc) followed by either mycophenolic acid (MPA) or azathioprine (AZA), but it becomes a gradual evolution with continuous regimens, for example when MPA is used for both induction and maintenance purposes. In parts of Asia where renal biopsy may not be readily available due to limitations to expertise or economic reasons, serological activity combined with an active urinary sediment and proteinuria and/or renal functional impairment of varying severity is taken to indicate active severe LN. The following discussion gives an overview of current treatments for Asian patients with proliferative (class III or IV) and/or pure membranous (class V) LN (table 1).
Focal (class III) or diffuse proliferative (class IV) LN is characterized by severe renal inflammation and a natural history of rapid progression to renal failure if left untreated. The current standard-of-care immunosuppressive treatment for class III/V LN, i.e. high-dose corticosteroids combined with either CYC or MPA, also applies to Asian patients, as its efficacy and tolerability have been substantiated in various clinical trials, including the Aspreva Lupus Management Study (ALMS), which has the biggest sample size to date [30–32]. The intravenous CYC regimen, as used in the US National Institutes of Health (NIH) clinical trials, is still widely adopted as standard treatment for active proliferative LN. Additional merits of intravenous CYC include its intermittent administration to patients living in relatively remote areas and ensuring compliance. Reduced-dose CYC, as used in the Euro-Lupus clinical trials, has been shown to be as effective as the standard-dose CYC regimen when used in Caucasians, and it was even associated with fewer side effects [33]. However, there is relatively little data on the efficacy of the Euro-Lupus regimen in Asians. Despite the lack of an evidence base, this regimen is not uncommonly used, especially when infection is of particular concern. Corticosteroids combined with oral CYC are also used in some Asian centers, because of its ease of administration without the need for intravenous facilities and its low cost. There is a considerable amount of data on the use of oral CYC, for defined durations up to 6 months, in Asian

Table 1. Standard-of-care immunosuppressive agents in Asian patients with LN
Immunosuppressive medication
Induction phasea
CYC (NIH regimen)
Intravenous CYC 0.5–1 mg/m² monthly titrated according to WBC count, for approximately 6 months
CYC (Euro-Lupus regimen)
Intravenous CYC 500 mg every 2 weeks for 3 months
CYC (oral)
2–2.5 mg/kg/day (max. 150 mg/day) for up to 6 months
MMF
1.5–2 g/day for 6 months or longer
Maintenance phaseb
AZA
2–2.5 mg/kg/day
- Well tolerated
MMF
1.5–2 g/day
- Appears more effective than AZA in preventing flares
WBC = White blood cell.
a All regimens include corticosteroids (starting dose 0.8–1 mg/kg/day tapered to reach 5–7.5 mg/day after 4–6 months) with or without initial IV pulse methylprednisolone (commonly used in patients with more severe nephritis).
b All regimens include low-dose corticosteroids up to 7.5 mg/day.

Proliferative (Class III or IV) LN

Induction Treatment

Focal (class III) or diffuse proliferative (class IV) LN is characterized by severe renal inflammation and a natural history of rapid progression to renal failure if left untreated. The current standard-of-care immunosuppressive treatment for class III/V LN, i.e. high-dose corticosteroids combined with either CYC or MPA, also applies to Asian patients, as its efficacy and tolerability have been substantiated in various clinical trials, including the Aspreva Lupus Management Study (ALMS), which has the biggest sample size to date [30–32]. The intravenous CYC regimen, as used in the US National Institutes of Health (NIH) clinical trials, is still widely adopted as standard treatment for active proliferative LN. Additional merits of intravenous CYC include its intermittent administration to patients living in relatively remote areas and ensuring compliance. Reduced-dose CYC, as used in the Euro-Lupus clinical trials, has been shown to be as effective as the standard-dose CYC regimen when used in Caucasians, and it was even associated with fewer side effects [33]. However, there is relatively little data on the efficacy of the Euro-Lupus regimen in Asians. Despite the lack of an evidence base, this regimen is not uncommonly used, especially when infection is of particular concern. Corticosteroids combined with oral CYC are also used in some Asian centers, because of its ease of administration without the need for intravenous facilities and its low cost. There is a considerable amount of data on the use of oral CYC, for defined durations up to 6 months, in Asian...
LN patients. Induction treatment with prednisolone and oral CYC could achieve complete or partial remission rates of 55–77% and 22–28%, respectively, within the first year, and a cumulative complete response rate of over 80% after 91.7 ± 36.7 months [19, 34, 35]. Although hemorraghic cystitis can be prevented to a large extent by limiting the treatment duration and cumulative exposure to CYC, other adverse effects of CYC remain significant concerns, such as gonadal toxicity and late-onset neoplasms.

The use of MPA signifies a major advance in the immunosuppressive therapy for severe LN. The first randomized prospective study on mycophenolate mofetil (MMF) was conducted in Chinese patients with diffuse proliferative LN. In this study, corticosteroids combined with MMF achieved a high renal remission rate (>80%) that was comparable to a sequential regimen which started with 6 months of oral CYC induction followed by AZA maintenance; however, treatment with MMF was associated with fewer adverse events including infections as compared with CYC [18]. Subsequent reports from Malaysia, Korea and Taiwan provided confirmatory evidence on the efficacy and tolerability of MMF-based induction therapy [20, 36, 37]. Results from the subsequent ALMS concluded that Asian LN patients had similar renal response rates to MMF or intravenous CYC induction therapy [31, 32]. The currently recommended dose of MMF during induction treatment for Asians is 1.5–2 g/day [38, 39]. In this context, MMF at 2 g/day has been associated with favorable efficacy and tolerability profiles in Chinese patients [18, 36, 40, 41]. A lower MMF dose (980 ± 100 mg/day) showed inferiority to intravenous CYC (850 ± 30 mg/month) with regard to renal functional preservation in Korean patients, while a higher dose up to 3 g/day was associated with increased infection-related mortality in Asians [31, 37]. Enteric-coated MPA was reported to show an efficacy similar to that of MMF in Asians, but with slightly fewer gastrointestinal side effects [42–44]. The long-term outcomes of Asian LN patients who received corticosteroids and MMF induction were relatively favorable, with 10-year patient and renal survival rates of 91 and 86%, respectively; these rates were comparable to the survival rates observed in patients treated with CYC induction followed by AZA maintenance [16, 19, 35, 41]. A growing body of evidence shows that, from a clinical point of view, MMF-based treatment is effective in the majority of Asian patients with severe proliferative LN and its tolerability profile is more advantageous compared with CYC. However, the use of MMF is often hampered by its cost.

Maintenance Treatment
Low-dose corticosteroids combined with AZA or MMF are the two commonly used maintenance immunosuppressive regimens in Asia. Sequential immunosuppression with CYC followed by AZA was shown to be effective in preserving renal function and preventing relapse in Asian patients with proliferative LN, with a cumulative renal flare rate of around 40% over 8 years [19, 45]. Compared with MMF, AZA has the advantage of low cost and safety in pregnancy. The potential liver complication with AZA makes it a less preferred option in patients with chronic hepatitis B virus infection, which is endemic in some Asian countries. MMF has been continuously used as both induction and maintenance immunosuppressive treatment, and a report on Chinese patients showed renal outcomes and flare rates comparable to those in patients treated with a sequential CYC-then-AZA regimen [40]. The data also suggest that in patients who received corticosteroids and MMF as induction treatment, continuation with MMF maintenance for a total treatment duration of 2 years or longer was associated with a lower relapse risk compared with patients who had their MMF substituted with AZA within the first 2 years (relapse-free survival rates at 5 and 10 years 76 vs. 56% and 69 vs. 32%, respectively; p = 0.019) [41]. Despite the fact that the MMF-based treatment can bring about savings from reduced hospitalization and treatment complications, the cost of MMF remains an important factor hindering access to this drug, especially when used as maintenance therapy [46].

Membranous (Class V) LN
Immunosuppressive treatment of class V LN is guided by the severity of proteinuria, as the risk of renal damage is lower compared with class III/IV LN. It should be noted that the data on the management of class V LN, in the absence of concomitant class III/IV features, is mostly based on trials of relatively small sample size and/or short-term follow-up, or on post hoc subgroup or pooled analysis. Notwithstanding these limitations, it is generally agreed that patients with low levels of proteinuria, stable kidney function, low serological activity, no evidence or risk of concomitant severe proliferative features based on clinical judgment and an adequate renal biopsy should be managed with blood pressure control and renin-angiotensin pathway blockade, while patients with nephrotic and/or increasing proteinuria despite conservative management warrant an escalation of immunosuppressive therapy to aim for induction of proteinuria response [38, 47]. The latter should be a combination of
corticosteroids and any one of the following, CYC, AZA, MPA or a calcineurin inhibitor, and the efficacy of these treatment regimens has been observed in Asian patients [34, 48–50].

Emerging Treatments in Asia and Concluding Remarks

Despite the fact that the majority of Asian patients respond quite well to current standard-of-care therapies, the search for novel therapies and alternative immunosuppressants continues so that treatment can be tailored to suit the varying needs of different patients, and some of the novel treatments have been studied in Asia (Table 2).

Calcineurin Inhibitors in the Treatment of LN

Calcineurin inhibitors have antiproteinuric effects independent of their immunosuppressive properties. These drugs have a relatively narrow therapeutic window and are associated with acute and chronic nephrotoxicity when susceptible kidneys are exposed to excessive circulating drug levels. In the Cyclofa-Lune Study, Zavada et al. [51] reported that cyclosporine A (CYA) as continuous induction-maintenance therapy was as efficacious as CYC, both in combination with corticosteroids, in the treatment of LN. Data from a Japanese series suggested that treatment with corticosteroids and CYA resulted in an improvement in SLE disease activity index and proteinuria within 1 month in active class IV LN [52]. In Chinese patients with class IV LN, corticosteroids and CYA led to a significant proteinuria reduction after treatment for 1 month and histological improvement at 1 year, and there was no significant deterioration in serum creatinine level or creatinine clearance after a follow-up of 48 months [53]. The recent data on tacrolimus (TAC) in LN from studies conducted in Asian patients deserves discussion. TAC is preferred to CYA in the treatment of lupus – despite the higher diabetogenic potential of TAC when it is used together with high-dose corticosteroids – due to its more favorable tolerability profile, which includes minimal aesthetic adverse effects and less dyslipidemia compared with CYA. Preliminary data from Japan suggested the efficacy of TAC in proliferative LN [54, 55]. Subsequent studies in China showed that triple immunosuppression comprising corticosteroids, TAC and reduced-dose MMF might be more effective than corticosteroids combined with CYC in the treatment of patients with concomitant class IV and V LN, while dual immunosuppression with corticosteroids and TAC achieved a response rate similar to that with corticosteroids plus either CYC or MMF in the treatment of class III/IV LN [21, 56, 57]. A recent report by Liu et al. [58] showed that the

Table 2. Alternative (nonbiologic) immunosuppressive treatments for Asian patients with LN

Immunosuppressive medication	Clinical indications and potential merits	Disadvantages
TAC	- Efficacious when used in dual immunosuppressive or triple immunosuppressive treatment regimens in Chinese patients with class III/IV/V LN	
- Reduces proteinuria in patients who have not responded adequately to other treatments
- Emerging long-term safety data promising | - Relatively expensive
- Acute and chronic nephrotoxicity
- Necessitates drug level monitoring
- Adverse effects such as hand tremor, hypertension, diabetes mellitus and dyslipidemia |
| Leflunomide | - Preliminary data showed an efficacy comparable to that of intravenous CYC induction in Chinese patients with class III/IV LN | - Potential hepatotoxicity and bone marrow toxicity
- Insufficient data |
| Mizoribine | - Preliminary data on its use as induction or maintenance treatment in Japanese LN patients
- Has been used in triple induction immunosuppressive regimen together with corticosteroids and TAC in Japan | - Unsatisfactory data quality
- Data limited to Japanese LN patients
- Potential bone marrow-suppressive effect |
| Proliferation signal (mTOR) inhibitors | - Pilot results in Chinese patients suggested their efficacy and tolerability
- Theoretical beneficial effect on the incidence of malignancies | - Side effects include oral aphthous ulcers, dyslipidemia and bone marrow suppression |
‘multitarget induction therapy’ of triple immunosuppression with corticosteroids, TAC and reduced-dose MMF resulted in a higher complete remission rate (45.9 vs. 25.6%; \(p < 0.001 \)) and also overall response rate (83.5 vs. 63.0%; \(p < 0.001 \)) at 6 months in patients with class III/IV and without concomitant class V LN when compared with corticosteroids and intravenous CYC, while the incidence rates of adverse events were similar between the two regimens. About 80% of the patients in this study had an estimated glomerular filtration rate at or above 60 ml/min, and only patients who showed low chronicity indices on their renal biopsies were included. Therefore, the safety of TAC, especially when given as long-term treatment, in patients with pre-established chronic kidney damage remains to be investigated. We have reported our data on the efficacy of TAC when used as add-on therapy, guided by therapeutic drug level monitoring, in patients with LN who showed persistent significant proteinuria despite treatment with other immunosuppressive agents, and in patients given long-term TAC therapy the renal survival rate at 3, 5 and 8 years was 93, 83 and 83%, respectively [50]. Mok et al. [59] reported the outcomes of patients with class III/IV/V LN given corticosteroids and TAC as induction therapy followed by low-dose corticosteroids and AZA maintenance, and the complete remission rate at 6 months was comparable to that for patients treated with corticosteroids and MMF for induction followed by AZA during maintenance (59 vs. 62%; \(p = 0.71 \)). The two groups showed similar rates of major infection (9.2 vs. 5.4%; \(p = 0.53 \)) and cumulative incidence of renal failure at 5 years (21 vs. 22%; \(p = 0.35 \)) [59]. The numerically higher rate of renal flares in the TAC induction group did not reach statistical significance, and there was no definite conclusion on the impact of TAC on the long-term evolution of renal function. It should be noted that in this study TAC was given at a standard dose according to body weight, and the dose was reduced when there was a rise in serum creatinine level, without conventional therapeutic drug level monitoring. Although our data showed stable renal function after 46.9 ± 37.9 months of follow-up when the TAC trough blood level was maintained within the range of 4–6 ng/l, the issue of chronic nephrotoxicity of TAC and other calcineurin inhibitors remains a concern with long-term treatment especially in patients with chronic renal impairment due to prior renal scarring [50].

Mizoribine has been used in Japan for many years to treat patients with SLE [60, 61]. Mizoribine is an imidazole nucleoside that inhibits inosine monophosphate synthetase and guanosine monophosphate synthetase. Its actions are thus similar to those of MMF. While the drug appears to be effective and well tolerated and thus is extensively used in Japan in combination with corticosteroids for induction or maintenance [60, 61], or as part of triple immunosuppression together with corticosteroids and TAC for induction [62], there is relatively little published data in the English literature on this topic, and there are recent reports suggesting that the optimum dose of mizoribine in LN treatment remains to be determined [63].

Leflunomide, which is used in the treatment of rheumatoid arthritis, has been investigated in a clinical trial in China that compared its efficacy with intravenous CYC in patients with active proliferative LN, and the results showed comparable rates of complete remission (21 vs. 18%) and partial remission (52 vs. 55%) [64]. Infective complications and bone marrow suppression were recognized complications. A pilot study reported favorable results with proliferation signal inhibitors (also known as mTOR inhibitors) in Chinese LN patients who could not tolerate MMF or who had a history of malignancies [65]. The recent clinical trials of biological therapies for LN have included a significant number of patients from Asia [66–70]. The overall results showed that these biologics were well tolerated, but their role in the overall management paradigm of LN requires further investigation, since the clinical trials to date have failed to substantiate the advantage of using a biological agent such as anti-CD20 or CTLA4-Ig as add-on therapy to conventional immunosuppressive regimens [66, 67]. Two randomized placebo-controlled phase III trials demonstrated that belimumab (a B-lymphocyte stimulator antagonist), when added to standard treatment, could improve response rates in SLE patients without severe nephritis [68, 69]. Post hoc analysis of patients with renal involvement from these trials suggested an efficacy signal of belimumab in LN, and thus further studies are underway [70].

Conclusions

The clinical management of LN has progressed considerably over the past few decades. There is reduced reliance on corticosteroids alone, with a concomitant reduction of its associated adverse effects, following a series of studies demonstrating the efficacy and optimal ways of using immunosuppressive medications such as CYC, MPA, AZA and calcineurin inhibitors. Progress in immunosuppressive therapies and the prevention and management of disease- or treatment-related complications has brought
about improvements in the clinical outcome of patients with LN globally. In a recent survival analysis of 230 Chinese LN patients, the 20-year patient and renal survival rates were 90.5 and 89.7%, respectively [4]. By comparison, 5-year and 10-year patient survival rates of Asian SLE patients in the 1970s to 1980s were 70 and 60%, respectively [71]. This shows that despite presenting with severe renal involvement, many of the patients may respond favorably to currently available treatments. The advent of effective immunosuppressive therapies has also transformed the pattern of mortality in Asian LN patients. The leading causes of death in Asian LN patients, as in patients from other parts of the world, have changed from early complications such as acute renal failure or uncontrolled lupus disease to late complications such as infections and cardiovascular disease (occurring in patients with chronic renal failure) and malignancies [4]. Despite these clinical improvements, there are still many knowledge gaps that are highly relevant to managing LN patients in Asia. For example, much of the data on Asian patients to date has come from Chinese and, to a lesser extent, Japanese and Korean patients, with little data from South Asia, where LN is a leading cause of renal failure. In this regard, a study from India reported a remission rate of 44% at 6 months (complete remission in 21% and partial remission in 23%) when patients with severe LN were treated with current standard-of-care therapies, but the relatively poor baseline renal function and the high prevalence of chronic changes in renal biopsies suggested that some of the patients presented rather late [72]. The results also highlighted the importance of socioeconomic issues in health care access and delivery in Asian countries. Also, studies in Thai patients have shown that there was a marked interindividual difference in MPA metabolism and that drug exposure was related to therapeutic response [73, 74]. In this regard, there are ongoing studies on the pharmacokinetics and pharmacogenomics of MPA in different Asian populations. The role of biological therapies remains to be established, as does the optimal management of patients with crescentic LN or thrombotic microangiopathy. Infective complications present a leading cause of morbidity and mortality in LN patients in many parts of Asia, and their prevention as well as treatment may vary according to local circumstances; thus, management strategies should be based on local data.

Disclosure Statement

The authors have no conflict of interest to declare.

References

1. Jakes RW, Bae SC, Louthrenoo W, Mok CC, Navarra SV, Kwon N: Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region: prevalence, incidence, clinical features, and mortality. Arthritis Care Res (Hoboken) 2012;64:159–168.
2. Seligman VA, Lum RF, Olson JL, Li H, Criswell LA: Demographic differences in the development of lupus nephritis: a retrospective analysis. Am J Med 2002;112:726–729.
3. Osio-Salido E, Manapat-Reyes H: Epidemiology of systemic lupus erythematosus in Asia. Lupus 2010;19:1365–1373.
4. Yap DY, Tang CS, Ma MK, Lam MF, Chan TM: Survival analysis and causes of mortality in patients with lupus nephritis. Nephrol Dial Transplant 2012;27:3248–3254.
5. Boey ML, Peebles CL, Tsay G, Feng PH, Tan EM: Clinical and autoantibody correlations in Orientals with systemic lupus erythematosus. Ann Rheum Dis 1988;47:918–923.
6. Shayakul C, Ong-ai-yooth L, Chirawong P, Nimmannit S, Parichatikanond P, Laohapand T, et al: Lupus nephritis in Thailand: clinicopathologic findings and outcome in 569 patients. Am J Kidney Dis 1995;26:300–307.
7. Lee SS, Li CS, Li PC: Clinical profile of Chinese patients with systemic lupus erythematosus. Lupus 1993;2:105–109.
8. Kaslow RA: High rate of death caused by systemic lupus erythematosus among US residents of Asian descent. Arthritis Rheum 1982;25:414–418.
9. Samanta A, Feehally J, Roy S, Nichol FE, Sheldon PJ, Walls J: High prevalence of systemic disease and mortality in Asian subjects with systemic lupus erythematosus. Ann Rheum Dis 1991;50:490–492.
10. Fatemi A, Kazemi M, Sayedbonakdar Z, Farrajzadez Z, Karimzadeh H, Moosavi M: Long-term outcome of biopsy-proven lupus nephritis in Iran. Int J Rheum Dis 2013;16:739–746.
11. Kono M, Yasuda S, Kato M, Kanetsuka Y, Kurita T, Fujieda Y, et al: Long-term outcome in Japanese patients with lupus nephritis. Lupus 2014;23:1124–1132.
12. Korbet SM, Schwartz MM, Evans J, Lewis EJ: Severe lupus nephritis: racial differences in presentation and outcome. J Am Soc Nephrol 2007;18:244–254.
13. Moroni G, Quaglini S, Gallelli B, Banfi G, Messa P, Ponticelli C: The long-term outcome of 93 patients with proliferative lupus nephritis. Nephrol Dial Transplant 2007;22:2531–2539.
14. Siso A, Ramos-Casals M, Bove A, Brito-Zeron P, Soria N, Nardi N, et al: Outcomes in biopsy-proven lupus nephritis: evaluation of 190 white patients from a single center. Medicine (Baltimore) 2010;89:300–307.
15. Dhir V, Aggarwal A, Lawrence A, Agarwal V, Misra R: Long-term outcome of lupus nephritis in Asian Indians. Arthritis Care Res (Hoboken) 2012;64:713–720.
16. Houssiau FA, Vasconcelos C, D’Cruz D, Sebastiani GD, de Ramon Garrido E, Danielli MG, et al: The 10-year follow-up data of the Euro-Lupus Nephritis Trial comparing low-dose and high-dose intravenous cyclophosphamide. Ann Rheum Dis 2010;69:61–64.
17. Contreras G, Lenz O, Pardo V, Borja E, Cely C, Iqbal K, et al: Outcomes in African Americans and Hispanics with lupus nephritis. Kidney Int 2006;69:1846–1851.
18. Chan TM, Li FK, Tang CS, Wong RW, Fang GX, Ji YL, et al: Efficacy of mycophenolate mofetil in patients with diffuse proliferative lupus nephritis. Hong Kong-Guangzhou Nephrology Study Group. N Engl J Med 2000;343:1156–1162.

Prevalence and Management of Lupus Nephritis in Asia

DOI: 10.1159/000430458

Kidney Dis 2015;1:100–109
19 Chan TM, Tse KC, Tang CS, Lai KN, Li FK: Long-term outcome of patients with diffuse proliferative lupus nephritis treated with prednisolone and oral cyclophosphamide followed by azathioprine. Lupus 2005;14:265–272.

20 Ong LM, Hooi LS, Lim TO, Goh BL, Ahmad G, Ghalzali R, et al: Randomized controlled trial of pulse intravenous cyclophosphamide versus mycophenolate mofetil in the induction therapy of proliferative lupus nephritis. Nephrology (Carlton) 2005;10:504–510.

21 Li X, Ren H, Zhang Q, Zhang W, Wu X, Xu Y, et al: Mycophenolate mofetil or tacrolimus compared with intravenous cyclophosphamide in the induction treatment for active lupus nephritis. Nephrol Dial Transplant 2012;27:1467–1472.

22 Li LH, Yuan H, Pan HF, Li WX, Li XP, Ye DQ: Role of the Fcy receptor IIa-Ig/F158 polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Scand J Rheumatol 2010;39:148–154.

23 Lee YH, Ji JD, Song GG: Fcγ receptor IIb and IIb polymorphisms and susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Lupus 2009;18:727–734.

24 Fan Y, Li LH, Pan HF, Tao JH, Sun ZQ, Ye DJ: Association of ITGAM polymorphism with systemic lupus erythematosus: a meta-analysis. J Eur Acad Dermatol Venereol 2011;25:271–275.

25 Yang W, Zhao M, Hiranlanc N, Lin CS, Mok CC, Chan TM, et al: ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum Mol Gen 2009;18:2063–2070.

26 Zhou XJ, Cheng FJ, Qi YY, Zhao MH, Zhang H: A replication study from Chinese supports association between lupus-risk allele in TNFSF4 and renal disorder. Biomed Res Int 2013;2013:597921.

27 Zhou XJ, Nath SK, Qi YY, Cheng FJ, Yang HZ, Zhang Y, et al: Brief report: identification of MTMR3 as a novel susceptibility gene for lupus nephritis in northern Han Chinese by shared-gene analysis with IgA nephropathy. Arthritis Rheumatol 2014;66:2842–2848.

28 Parsa A, Lovett DH, Peden EA, Zhu L, Seldin MF, Criswell LA: Renin-angiotensin system gene polymorphisms predict the progression to renal insufficiency among Asians with lupus nephritis. Genes Immum 2005;6:217–224.

29 Chan TM: Treatment of severe lupus nephritis: the new horizon. Nat Rev Nephrol 2015;11:46–61.

30 Austin HA 3rd, Klippel JP, Balow J, Lisle R, Steichen AD, Plotz PH, et al: Therapy of lupus nephritis. Controlled trial of prednisone and cytotoxic drugs. N Engl J Med 1986;314:614–619.

31 Appel GB, Contreras G, Dooley MA, Ginzier EM, Isenberg D, Jayne D, et al: Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol 2009;20:1103–1112.

32 Isenberg D, Appel GB, Contreras G, Dooley MA, Ginzier EM, Jayne D, et al: Influence of race/ethnicity on response to lupus nephritis treatment: the ALMS study. Rheumatology (Oxford) 2010;49:128–140.

33 Houssiau FA, Vasconcelos C, D’Cruz D, Sebastiani GD, de Ramon Garrido E, Danielli MG, et al: Immunosuppressive therapy in lupus nephritis: the Euro–Lupus Nephritis Triál, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum 2002;46:2121–2131.

34 Chan TM, Li FK, Wong RW, Kong KL, Chan KW, Cheng IK: Sequential therapy for diffuse proliferative and membranous lupus nephritis: cyclophosphamide and prednisolone followed by azathioprine and prednisolone. Lupus 1995;7:321–327.

35 Mok CC, Ho CT, Chan KW, Lau CS, Wong RW: Outcome and prognostic indicators of diffuse proliferative lupus glomerulonephritis treated with sequential oral cyclophosphamide and azathioprine. Arthritis Rheum 2002;46:1003–1013.

36 Wong MY, Weng CT, Liu MF: The efficacy of low-dose mycophenolate mofetil for treatment of lupus nephritis in Taiwanese patients with systemic lupus erythematosus. Clin Rheumatol 2010;29:771–775.

37 Koo HS, Kim YC, Lee SW, Kim DK, Oh KH, Joo KW, et al: The effects of cyclophosphamide and mycophenolate on end-stage renal disease and death of lupus nephritis. Lupus 2011;20:1442–1449.

38 Mok CC, Yap DY, Navarra SV, Liu ZH, Zhao MH, Lu L, et al: Overview of lupus nephritis management guidelines and perspective from Asia. Nephrology (Carlton) 2014;19:11–20.

39 Hahn BH, McMahon MA, Wilkinson A, Wallace WD, Daikh DI, Fitzgerald JD, et al: American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res (Hoboken) 2012;64:797–808.

40 Chan TM, Tse KC, Tang CS, Mok MY, Li FK: Long-term study of mycophenolate mofetil as continuous induction and maintenance treatment for diffuse proliferative lupus nephritis. J Am Soc Nephrol 2005;16:1076–1084.

41 Yap DY, Ma MK, Mok MM, Tang CS, Chan TM: Long-term data on corticosteroids and mycophenolate mofetil treatment in lupus nephritis. Rheumatology (Oxford) 2013;52:480–486.

42 Mak SK, Lo KY, Lo MW, Chan SF, Tong GM, Wong PN, et al: Efficacy of enteric-coated mycophenolate sodium in patients with active lupus nephritis. Nephrol Dial Transplant 2008;23:555–561.

43 Hardinger KL, Heberb S, Bloomer T, Murillo D: Adverse drug reaction driven immunosuppressive drug manipulations: a single-center comparison of enteric-coated mycophenolate sodium vs mycophenolate mofetil. Clin Transplant 2008;22:159–162.

44 Traitano O, Avishingyan O, Kittikovit V, Townamchai N, Kanjanabuch T, Pradipornsilp K, et al: Efficacy of enteric-coated mycophenolate sodium in patients with resistant-type lupus nephritis: a prospective study. Lupus 2008;17:744–751.

45 Mok CC, Ying KY, Tang S, Leung CY, Lee KW, Ng WL, et al: Predictors and outcome of renal flares after successful cyclophosphamide treatment for diffuse proliferative lupus glomerulonephritis. Arthritis Rheum 2004;50:2559–2568.

46 Tse KC, Tang CS, Lam MF, Yap DY, Chan TM: Cost comparison between mycophenolate mofetil and cyclophosphamide-azathioprine in the treatment of lupus nephritis. J Rheumatol 2009;36:76–81.

47 Kidney Disease Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group: KDIGO Clinical Practice Guidelines for Glomerulonephritis. Kidney Int Suppl (2011) 2012;2:139–274.

48 Yap DY, Yu X, Chen XM, Lu F, Chen N, Li XH, et al: Pilot 24 month study to compare mycophenolate mofetil and tacrolimus in the treatment of membranous lupus nephritis with nephrotic syndrome. Nephrol (Carlton) 2012;17:352–357.

49 Mok CC, Ying KY, Lau CS, Yim CW, Ng WL, Wong WS, et al: Treatment of pure membranous lupus nephropathy with prednisone and azathioprine: an open-label trial. Am J Kidney Dis 2004;43:269–276.

50 Yap DY, Ma MK, Mok MM, Kwan LP, Chan GC, Chan TM: Long-term data on tacrolimus treatment in lupus nephritis. Rheumatology (Oxford) 2014;53:2232–2237.

51 Zavada J, Pesicskova R, Rysava O, Olejarova M, Horak P, Hrncir Z, et al: Cyclosporine A or intravenous cyclophosphamide for lupus nephritis: the Cyclo-Lune study. Lupus 2010;19:1281–1289.

52 Kamijo Y, Hashimoto K, Takahashi K, Ebara T, Shigematsu H, Higuchi M: Treatment with cyclosporine A improves SLE disease activity of Japanese patients with diffuse proliferative lupus nephritis. Clin Nephrol 2011;76:136–143.

53 Tam LS, Li K, Leung CB, Wong KC, Lai FM, Wang A, et al: Long-term treatment of lupus nephritis with cyclosporin A. QJM 1998;91:573–580.

54 Tanaka H, Oki E, Tsugawa K, Yashiro T, Hanada I, Ito E: Management of young patients with lupus nephritis using tacrolimus administered as a single daily dose. Clin Nephrol 2009;72:430–436.

55 Tanaka H, Oki E, Tsugawa K, Nonaka K, Suzuki K, Ito E: Effective treatment of young patients with pediatric-onset, long-standing lupus nephritis with tacrolimus given as a single daily dose: an open-label pilot study. Lupus 2007;16:896–900.

56 Chen W, Tang X, Liu Q, Chen W, Fu P, Liu F, et al: Short-term outcomes of induction therapy with tacrolimus versus cyclophosphamide for active lupus nephritis: a multicenter randomized clinical trial. Am J Kidney Dis 2011;57:235–244.
Prevalence and Management of Lupus Nephritis in Asia

Kidney Dis 2015;1:100–109
DOI: 10.1159/000430458

57 Bao H, Liu ZH, Xie HL, Hu WX, Zhang HT, Li LS: Successful treatment of class V + IV lupus nephritis with multitarget therapy. J Am Soc Nephrol 2008;19:2001–2010.

58 Liu Z, Zhang H, Liu Z, Xing C, Fu P, Ni Z, et al: Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann Intern Med 2015;162:18–26.

59 Mok CC, Ying KY, Yim CW, Siu YP, Tong KH, To CH, et al: Tacrolimus versus mycophenolate mofetil for induction therapy of lupus nephritis: a randomised controlled trial and long-term follow-up. Ann Rheum Dis 2014, Epub ahead of print.

60 Tanaka H, Tsugawa K, Oki E, Suzuki K, Ito E: Mizoribine intermittent pulse protocol for induction therapy for systemic lupus erythematosus in children: an open-label pilot study with five newly diagnosed patients. Clin Rheumatol 2008;27:85–89.

61 Yumura W, Suganuma S, Uchida K, Moriya-ma T, Otsubo S, Takei T, et al: Effects of long-term treatment with mizoribine in patients with proliferative lupus nephritis. Clin Nephrol 2005;64:28–34.

62 Tanaka H, Aizawa T, Watanabe S, Oki E, Tsuru-ga K, Imai-zumi T: Efficacy of mizoribine-tacrolimus-based induction therapy for pediatric lupus nephritis. Lupus 2014;23:813–818.

63 Fuke T, Abe Y, Hibino S, Takeshi M, Saito T, Sakurai S, et al: Mizoribine requires individual dosing due to variation of bioavailability. Pediatr Int 2012;54:885–891.

64 Wang HY, Cui TG, Hou FF, Ni ZH, Chen XM, Lu FM, et al: Induction treatment of proliferative lupus nephritis with leflunomide combined with prednisone: a prospective multi-centre observational study. Lupus 2008;17:638–644.

65 Yap DY, Ma MK, Tang CS, Chan TM: Proliferation signal inhibitors in the treatment of lupus nephritis: preliminary experience. Nephrology (Carlton) 2012;17:676–680.

66 Rovin BH, Furie R, Latinis K, Looney RJ, Fer-venza FC, Sanchez-Guerrero J, et al: Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Ne-phritis Assessment with Rituximab study. Arthri-tis Rheum 2012;64:1215–1226.

67 Furie R, Nicholls K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen SL, et al: Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol 2014;66:379–389.

68 Furie R, Petri M, Zamani O, Cervera R, Wall-ace DJ, Tegzova D, et al: A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum 2011; 63:3918–3930.

69 Navarra SV, Guzman RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al: Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 2011; 377:721–731.

70 Dooley M, Houssiau F, Aranow C, D’Cruz D, Askane-a A, Roth D, et al: Effect of belimubah treatment on renal outcomes: results from the phase 3 belimumab clinical trials in patients with SLE. Lupus 2013;22:63–72.

71 Feng PH: Systemic lupus erythematosus: the face of Asia. Ann NY Acad Sci 2007;1108: 114–120.

72 Sircar D, Sircar G, Waikhom R, Raychowdhury A, Pandey R: Clinical features, epidemiology, and short-term outcomes of proliferative lupus nephritis in Eastern India. Indian J Nephrol 2013;23:5–11.

73 Lertdumrongluk P, Somparn P, Kattan-mongkolchai W, Traitanoon O, Vadhchara-vivad S, Avihingsanon Y: Pharmacokinetics of mycophenolic acid in severe lupus nephritis. Kidney Int 2010;78:389–395.

74 Kittanamongkolchai W, Rukrung C, Supasiri T, Lertjiarchai I, Somparn P, Chariyavilaskul P, et al: Therapeutic drug monitoring of mycophenolate mofetil for the treatment of severely active lupus nephritis. Lupus 2013;22:727–732.