Cannabinoid receptor type-1: breaking the dogmas [version 1; referees: 3 approved]

Arnau Busquets Garcia¹,², Edgar Soria-Gomez¹,², Luigi Bellocchio¹,², Giovanni Marsicano¹,²

¹Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France
²University of Bordeaux, Bordeaux, France

Abstract
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB₁). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB₁ receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB₁ receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB₁ receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.
Corresponding author: Arnau Busquets Garcia (arnau.busquets-garcia@inserm.fr)

How to cite this article: Busquets Garcia A, Soria-Gomez E, Bellochio L and Marsicano G. Cannabinoid receptor type-1: breaking the dogmas [version 1; referees: 3 approved] F1000Research 2016, 5(F1000 Faculty Rev):990 (doi: 10.12688/f1000research.8245.1)

Copyright: © 2016 Busquets Garcia A et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: We thank all the members of the GM lab for useful discussions. This work was supported by INSERM (to GM), EU-FP7 (PAINCAGE, HEALTH-603191 to GM and FP7-PEOPLE-2013-IEF-623638 to AB-G), European Research Council (Endofood, ERC-2010-STG-260515; CannaPreg, ERC-2014-PoC-640923, to GM), Fondation pour la Recherche Medicale (DRM20101220445, to GM and LB), Human Frontiers Science Program (to GM), Region Aquitaine (to GM), French State/Agence Nationale de la Recherche/LabEx BRAIN (ANR-10-LABX-0043 to GM), Fyssen Foundation (to ES-G), CONACyT (to ES-G), French State/Agence Nationale de la Recherche/IdEx (ANR-10-IDEX-03-02 to AB-G), and French State/Agence Nationale de la Recherche/Blanc (NeuroNutriSens ANR-13-BSV4-0006-02 to GM).

Competing interests: The authors declare that they have no competing interests.

First published: 24 May 2016, 5(F1000 Faculty Rev):990 (doi: 10.12688/f1000research.8245.1)
Introduction

The endocannabinoid system (ECS) is composed of G protein-coupled cannabinoid receptors, namely cannabinoid receptor-1 (CB1) and cannabinoid receptor-2 (CB2)3,4; the endogenous cannabinoids called endocannabinoids, such as the lipids anandamide and 2-arachidonoylglycerol5; and the enzymes involved in their synthesis and inactivation6. The family of endocannabinoids has recently grown to include a group of peptide ligands (so-called pepcans) and other lipid molecules, such as lipoxin and pregnenolone, interestingly acting as allosteric enhancers or signal-specific inhibitors (SSIs) of CB1 receptors6.

One of the main characteristics of the ECS is its broad distribution throughout the body. In this review, we will specifically focus our attention on the CB1 receptor-dependent functions in the nervous system (particularly the brain). The CB1 receptor is considered the most abundant metabotropic receptor in the brain7. It was cloned in 1990 and its distribution has been well characterized in both rodents8,9 and humans10. These receptors are particularly rich in the central nervous system11,12, where they control a wide spectrum of physiological and pathological conditions, including brain development, learning and memory, motor behavior, regulation of appetite, body temperature, pain perception, inflammation, and they are involved in various psychiatric, neurological, and neurodevelopmental disorders13-17.

This review highlights recent findings that challenge or extend accepted “dogmas” of CB1 receptor signaling. Thus, it discusses where CB1 receptors are localized, the importance of CB1 receptors outside the brain, and new strategies to pharmacologically act on these receptors. Importantly, the understanding of where, which, and how CB1 receptor function is mandatory to improve the pharmacological strategies to act on this promising therapeutic target.

Localization of CB1 receptors in different neuronal types

CB1 receptor localization has been widely studied during the last few decades18. Thus, early studies provided strong evidence for a presynaptic localization of CB1 receptors, from where they can control the neurotransmitter release19. However, the somatodendritic localization of CB1 receptors cannot be discarded, as processes of self-inhibition through these receptors have been demonstrated in the cortex20-23. According to this, recent work describes that somatodendritic CB1 receptors control a specific postsynaptic signaling cascade important for the cognitive impairment induced by cannabinoids24. Therefore, more studies are needed to clarify the relative involvement of pre- or post-synaptic CB1 receptors in brain functions and how this can affect our general view of how the ECS controls synaptic transmission.

Interestingly, new experimental approaches (e.g., imaging tools) have shown the expression of CB1 receptors in different neuronal types, including GABAergic, glutamatergic, and serotonergic neurons, among others25-29. Moreover, although the anatomical presence of CB1 receptors in cholinergic, noradrenergic, or dopaminergic neurons has not been fully characterized, cannabinoids are known to control acetylcholine and dopamine release30,31. For example, it has been recently shown that CB1 receptors can specifically control cholinergic over glutamatergic transmission at single synapses that co-release both neurotransmitters31.

Importantly, the expression levels of CB1 receptors can drastically differ among different cell types and can diverge between different brain regions32-33. This widely distributed and differential expression in the brain reflects the complexity, and can explain the variety of functions, of the ECS. For instance, this specific distribution can explain some of the bimodal effects of cannabinoid drugs34,35. Thus, recent studies demonstrated how CB1 receptors localized in GABAergic neurons can control food intake36, running related behaviors37,38, drug addiction39,40, and learning and memory processes41,42, among other behaviors, whereas CB1 receptors localized in glutamatergic neurons control neuroprotection43,44, olfactory processes45, fear memories46, social behaviors47, and anxiety48, among others. Moreover, CB1 receptors present in serotonergic neurons can modulate emotional responses49.

Localization of CB1 receptors in other cell types or intracellular organelles

The biased neuron-centric view in the ECS field changed when CB1 receptors were found in another type of brain cells, the glial cells50-52. Moreover, recent studies have demonstrated how the astroglial CB1 receptor can modulate important physiological functions in behavior and synaptic plasticity such as learning and memory and long-term depression in the hippocampus53-55. Therefore, this receptor can shape synaptic transmission via astroglial signaling56. By doing this, it modulates the effects of exogenous cannabinoids on working memory57 and, notably, can also determine the selective activity of specific circuits in the striatum58. Thus, the improvement of the current tools will consolidate this knowledge to better elucidate the role of CB1 receptors and astrocytes on brain functioning59. Interestingly, recent findings have shown how CB1 receptors can modulate microglia activation, suggesting its presence in this cell type59.

Although CB1 receptors are localized primarily at the plasma membrane, more and more evidence suggests the presence of functional intracellular CB1 receptors60,61. For instance, a portion of these receptors is functionally present in cell mitochondria62. In the past, previous data showed that cannabinoids can alter mitochondrial functions, but these effects were fully ascribed to specific membrane disturbance induced by these lipid molecules63,64. However, recent results challenge this idea, indicating that CB1 receptors are also present in mitochondrial membranes in the periphery, such as in spermatozoa65 or skeletal muscles66, and in the brain, where they directly regulate mitochondrial oxidative phosphorylation (OXPHOS) activity67,68,69, or can impact feeding behavior65. However, further studies and more direct, specific, and powerful tools are needed to investigate the role of mitochondrial or other intracellular CB1 receptors on synaptic transmission, brain functions, and behavior. Interestingly, brain mitochondrial functions have been recently causally associated to anxiety-related responses in the nucleus accumbens60, demonstrating how brain energetics can impact behavior.

Localization of CB1 receptors in the periphery

In the last two decades, CB1 receptors have been described in a number of peripheral tissues, including fat tissue70, gastrointestinal...
tract69, mouth and oral cavity70, eye70, cardiovascular system71, liver72, pancreas73, immune system74, bone75, skin76, and skeletal muscle77. Indeed, it seems that the ECS is present in a large majority of tissues and its specific functions have recently been investigated78.

The complex interactions between peripheral organs and the central nervous system raised a particular interest within the neuroscience field. In this sense, it is worth discussing how the peripheral processes modulated by the CB\textsubscript{1} receptors are affecting the central nervous system functions. A recent study demonstrated that the peripheral sympathetic activity controlled by CB\textsubscript{1} receptors is necessary for central functions, such as hypophagia and anxiety-like effects79. Other potential examples of the roles of CB\textsubscript{1} receptors in the periphery-brain connection are the control of the release of stress hormones from the adrenal glands80 or the modulation of gut functions impacting on behavioral responses. Indeed, a close interaction between adipose tissue, gut bacteria, and the endocannabinoid system has been proposed in the context of obesity81,82.

New advances in the CB\textsubscript{1} receptor pharmacology

Several orthosteric ligands of CB\textsubscript{1} receptors have been described in the last few decades, including natural or synthetic CB\textsubscript{1} receptor agonists (e.g., Δ9-tetrahydrocannabinol [THC], CP-55,940), antagonists (e.g., rimonabant), and orthosteric endocannabinoids83,84. Moreover, endocannabinoids seem also to target non-cannabinoid receptors (e.g., G protein-coupled receptor 55 receptors85,86 and ion channels (e.g., serotonergic, nicotinic acetylcholine receptors, or vanilloid receptors)87, particularly at concentrations at which they have been found to interact with CB\textsubscript{1} or CB\textsubscript{2} receptors88. Notably, the orthosteric action of CB\textsubscript{1} receptor agonists and antagonists induces important side effects89,90. For example, rimonabant, known as a partial antagonist/inverse agonist, showed different side effects in humans91. In this sense, different strategies have been shown to improve the safety profile and overcome the side effects induced by CB\textsubscript{1} antagonists, such as the neutral CB\textsubscript{1} antagonists92.

Interestingly, the pharmacology of CB\textsubscript{1} receptors is nowadays also focused in the recent developments on putative allosteric binding sites of these receptors and how this can be translated into new therapeutic approaches. As cannabinoid ligands present an interesting therapeutic profile93, the development of new and safer drugs such as CB\textsubscript{1} receptor allosteric modulators is needed. Indeed, this strategy has become a hot topic in the G protein-coupled receptors field and there are different positive and negative allosteric modulators described (PAMs and NAMs, respectively)94,95. Consequently, different compounds have been developed as exogenous CB\textsubscript{1} allosteric modulators, including the indole derivatives (e.g., the NAM “ORG” compounds)96, urea derivatives (e.g., the NAM PSNCBAM-1)97, and other small molecules that also display a PAM profile, such as RTI-37198. Importantly, recent work also identified natural PAMs and NAMs of CB\textsubscript{1} receptors, such as the lipoxin A4, the hemopressin pepcan-12, and pregnenolone99,100, which might represent model chemical structures for the development of new drugs. Although numerous studies have fully characterized the chemical and signaling properties of these new synthetic or natural compounds101,102, the in vivo effects of all these drugs modulating physiological or pathological conditions constitutes an emerging area in the cannabinoid field. In this context, the neurosteroid pregnenolone exerts peculiar effects on CB\textsubscript{1} receptor signaling. Indeed, pregnenolone, by binding to a specific identified site on CB\textsubscript{1} receptors, displays an interesting SSI profile: whereas CB\textsubscript{1}-dependent modulation of cytoplasmic cyclic AMP signaling is unaltered by pregnenolone, the neurosteroid fully blocks the activation of extracellularly regulated kinases (ERKs) and the inhibition of mitochondrial activity by cannabinoids103. By these mechanisms, the SSI pregnenolone blocks different central effects of THC, including memory impairment, hypolocomotion, and cannabinoid self-administration in rodents104. Other compounds have been shown to alter CB\textsubscript{1} receptor-dependent effects. For instance, the synthetic PAM ZCZ011 reduces neuropathic pain105, whereas the PAM lipoxin A4 shows anti-inflammatory effects106. Interestingly, it was recently shown that cannabidiol, which has been previously reported as a CB\textsubscript{1} receptor antagonist, behaves also as a non-competitive NAM of CB\textsubscript{1} receptors, despite its low affinity to these receptors107.

The allosteric modulators of CB\textsubscript{1} receptors are not the only therapeutic agents recently proposed. Indeed, the effects of several phytocannabinoids in preclinical models of central nervous system diseases and, where available, clinical trials have been investigated, suggesting a promising phytocannabinoid-based medicine108. Another factor that can change the CB\textsubscript{1} receptor pharmacology is heteromerization with other receptors. Heteromers of CB\textsubscript{1} receptors and other proteins recently emerged as an important target of the in vivo effects of cannabinoids102,109. Notably, these heterocomplexes could be potentially modulated110 and this implies another pharmacological tool to act on CB\textsubscript{1} receptor signaling. Moreover, present evidence points to the membrane environment as another critical regulator of CB\textsubscript{1} receptor signaling, and this can be potentially exploited for the development of novel therapeutic compounds109. Finally, a G protein-coupled receptor such as the CB\textsubscript{1} receptor may also have a constitutive, ligand-free mode of signaling, as has been shown in hippocampal GABAergic synapses110. All of these new ideas demonstrate that the research community may dedicate more effort to tackle CB\textsubscript{1} receptors.

Conclusions

This short review focused on the new findings in CB\textsubscript{1} receptor research. However, the ECS comprises other components such as CB\textsubscript{2} receptors, the endocannabinoids, and the enzymes responsible for their synthesis and degradation. In this sense, recent advances have demonstrated the importance of CB\textsubscript{2} receptors in the brain108-110, the presence of other endocannabinoid-like molecules111,112, other potential receptors that can be activated by endocannabinoids113, and interesting findings regarding the localization and pharmacology of the enzymes involved in the metabolism of these endocannabinoids113,114. In brief, the actual picture of how the endocannabinoid system works is quite complicated and more efforts are needed to try to merge the old and the new ideas in this field (Figure 1).

An open question in the cannabinoid field is whether the cellular diversity of CB\textsubscript{1} functions could improve the therapeutic exploitation of cannabinoid-based drugs. One can speculate whether
Different CB₁ ligands can mediate different signaling pathways by selectively controlling different CB₁ receptors present in different cellular populations. Likewise, it is possible that specific drugs could target exclusively mitochondrial CB₁ (mtCB₁) receptors or could avoid activation of intracellular pools of CB₁. More studies will be needed to answer these questions, but there is already some evidence demonstrating a different pharmacological profile between CB₁ receptors expressed in GABAergic and glutamatergic cells. Thus, “glutamatergic” CB₁ receptors are more sensitive to low doses of agonists and are endowed with stronger intracellular coupling, whereas “GABAergic” pools of the receptor are activated by higher doses of agonists and produce lower activation of G proteins. Therefore, one could speculate that specific compounds able to selectively activate different cellular subpopulations of CB₁ receptors could be developed. Moreover, combinations of drugs able to modulate glutamatergic or GABAergic neurotransmission with cannabinoid agonists have been shown to promote specific effects of CB₁ receptors and inhibit others. It is also interesting to note that both perisomatic and dendritic GABAergic synapses use phasic endocannabinoid signaling, but the tonic form of cannabinoid signaling is present only in perisomatic cells. Moreover, a recent study shows that the peptide endocannabinoids, known as pepcans, act as endogenous allosteric modulators of CB₁ activity exclusively on noradrenergic neurons, demonstrating a cell type-specific regulatory role on endocannabinoid signaling. All of these new and exciting findings suggest that the better we understand cannabinoid signaling, the closer we are to developing specific and local pharmacological drugs that may have importance in brain disorders.

Overall, the new and exciting findings suggesting different and specific localizations of the ECS components and the new strategies proposed to tackle their activity of this receptor open the door to new questions (Table 1). Indeed, the endocannabinoid system has been related to many physiological and pathological functions.

Table 1. Open questions in the cannabinoid receptor-1 (CB₁) receptor field.

Question	Answer
Is the cell type-specific CB₁ receptor signaling an open door to develop new therapeutic tools?	Yes, further studies are needed to explore the potential of CB₁ receptors as targets for therapeutic intervention.
Is the endocannabinoid system exclusively a retrograde neuromodulator system?	No, other pathways and mechanisms, such as perisomatic and dendritic GABAergic synapses, contribute to cannabinoid signaling.
How is the subcellular CB₁ receptor distributed in the different cell types?	The subcellular localization of CB₁ receptors is still under investigation, with studies suggesting localization in mitochondria, endosomes, and endocytic vesicles.
How can CB₁ receptors control neurotransmitter co-release?	CB₁ receptors can modulate neurotransmitter release by affecting the activity of other G-protein-coupled receptors and ion channels.
Which physiological and pathological functions are modulated by intracellular CB₁ receptors?	CB₁ receptors modulate various functions, including synaptic plasticity, neuronal excitability, and cellular responses to stress and injury.
Is there specific or differential CB₂ receptor expression in different cell types?	CB₂ receptors are expressed in specific cell types, such as neurons, glia, and immune cells, with differential expression patterns.
Is the allosteric modulation of CB₁ receptors a good therapeutic approach for pathological conditions?	CB₁ receptors may be targeted for therapeutic interventions to modulate neurotransmitter release and signaling in various diseases.
Will it be possible to create compounds that target CB₁ receptors in specific cell types or subcellular localizations?	New compounds are needed to target specific cell types or subcellular localizations of CB₁ receptors.

CB₁, cannabinoid receptor-1; CB₂, cannabinoid receptor-2.
function,13,14,17 and the better understanding of these new evidences will bring more light to exploit the therapeutically beneficial properties of this widely spread neuromodulator system in the brain and in the body.

Abbreviations
CB1, cannabinoid receptor-1; CB2, cannabinoid receptor-2; ECS, endocannabinoid system; NAM, negative allosteric modulator; PAM, positive allosteric modulator; SSI, signal-specific inhibitor; THC, Δ9-tetrahydrocannabinol.

Competing interests
The authors declare that they have no competing interests.

References

1. Matsuda LA, Lolliat SJ, Brownstein MJ, et al.: Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990; 346(6284): 561–4. PubMed Abstract | Publisher Full Text
2. Howlett AC, Barth F, Bonner TI, et al.: International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002; 54(2): 161–202. PubMed Abstract | Publisher Full Text
3. Little PJ, Compton DR, Johnson MR, et al.: Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. J Pharmacol Exp Ther. 1988; 247(3): 1046–51. PubMed Abstract
4. Devane WA, Hanus L, Breuer A, et al.: Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992; 258(5090): 1946–9. PubMed Abstract | Publisher Full Text
5. Pacher P, Bálkai S, Kunos G: Endocannabinoid and their Pharmacological Actions. Handb Exp Pharmacol. 2015; 231: 1–37. PubMed Abstract | Publisher Full Text
6. Pertwee RG: Endocannabinoids and Their Pharmacological Actions. Handb Exp Pharmacol. 2015; 231: 1–37. PubMed Abstract | Publisher Full Text
7. Herkenham M, Lyn AB, Johnson MR, et al.: Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991; 11(2): 563–83. PubMed Abstract
8. Tsou K, Brown S, Sahudo-Peña MC, et al.: Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998; 83(2): 393–411. PubMed Abstract | Publisher Full Text
9. Katona I, Freund TF: Distribution of the Endocannabinoid System in the Central Nervous System. Handb Exp Pharmacol. 2015; 231: 59–93. PubMed Abstract | Publisher Full Text
10. Freund TF, Katona I, Piomelli D: Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 2003; 83(3): 1017–66. PubMed Abstract | Publisher Full Text
11. Katona I, Freund TF: Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci. 2012; 35: 529–58. PubMed Abstract | Publisher Full Text | Free Full Text
12. Freund TF, Katona I, Piomelli D: Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 2003; 83(3): 1017–66. PubMed Abstract | Publisher Full Text
13. Hohey RD, Castillo PE: Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol. 2006; 68: 283–306. PubMed Abstract | Publisher Full Text | Free Full Text
14. Mechoulam R, Parker LA: The endocannabinoid system and the brain. Annu Rev Psychol. 2013; 64: 21–47. Published Abstract | Publisher Full Text
15. Matsuda LA, Lolait SJ, Brownstein MJ, et al.: Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990; 346(6284): 561–4. PubMed Abstract | Publisher Full Text
16. Lu H, Mackie K: An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry. 2016; 79(7): 516–25. PubMed Abstract | Publisher Full Text | Free Full Text
17. Lutz B, Marsicano G, Maldonado R: The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci. 2015; 16(12): 705–18. PubMed Abstract | Publisher Full Text | Free Full Text
18. Busquets-Garcia A, Desprez T, Mehta-Laurent M, et al.: Dissecting the cannabinergic control of behavior: The where matters. Bioessays. 2015; 37(11): 1215–25. PubMed Abstract | Publisher Full Text
19. Ohno-Shosaku T, Tanimuma A, Hashimotodani Y, et al.: Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist. 2012; 18(2): 119–32. PubMed Abstract | Publisher Full Text
20. Bacci A, Huguenard JR, Prince DA: Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature. 2004; 431(7006): 312–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation
21. Min R, Testa-Silva G, Heitek TS, et al.: Dicylglycerol lipase is not involved in depolarization-induced suppression of inhibition at unitary inhibitory connections in mouse hippocampus. J Neurosci. 2010; 30(7): 2710–5. PubMed Abstract | Publisher Full Text | Free Full Text
22. Marinelli S, Pacioni S, Bisogno T, et al.: The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J Neurosci. 2008; 28(50): 13632–41. PubMed Abstract | Publisher Full Text | Free Full Text
23. Marinelli S, Pacioni S, Cannich A, et al.: Self-modulation of neocortical pyramidal neurons by endocannabinoids. Nat Neurosci. 2009; 12(12): 1488–90. PubMed Abstract | Publisher Full Text | F1000 Recommendation
24. Maroso M, Szabo GG, Kim HK, et al.: Cannabinoid Control of Learning and Memory through HCN Channels. Neuron. 2016; 89(5): 1059–73. PubMed Abstract | Publisher Full Text | Free Full Text
25. Sota-Gómez E, Belloirio L, Reguero L, et al.: The endocannabinoid system controls food intake via olfactory processes. Nat Neurosci. 2014; 17(3): 407–15. PubMed Abstract
26. Mansicano G, Lutz B: Neureomodulatory functions of the endocannabinoid system. J Endocrinol Invest. 2006; 29(3 Suppl): 27–46. PubMed Abstract
27. Kawamura Y, Fukaya M, Maesima T, et al.: The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci. 2006; 26(11): 2991–3001. PubMed Abstract | Publisher Full Text
28. Haring M, Erk V, Aparisi RE, et al.: Cannabinoid type-1 receptor signaling in central serotoninergic neurons regulates anxiety-like behavior and sociability. Front Behav Neurosci. 2015; 9: 235. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
29. Hernandez G, Cheer JF: To Act or Not to Act: Endocannabinoid/Dopamine Interactions in Decision-Making. Front Behav Neurosci. 2015; 9: 336. PubMed Abstract | Publisher Full Text | Free Full Text
30. Martin HG, Bernabeu A, Lassalle O, et al.: Endocannabinoids Mediate
Open Peer Review

Current Referee Status: ✔️ ✔️ ✔️

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Carsten T Wotjak, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
 Competing Interests: No competing interests were disclosed.

2 Istvan Katona, Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
 Competing Interests: No competing interests were disclosed.

3 Alberto Bacci, Institut du Cerveau et de la Moelle épinière (ICM), INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC-P6 UMR S 1127, Paris, France
 Competing Interests: No competing interests were disclosed.