Limited window for donation of convalescent plasma with high live-

virus neutralizing antibodies for COVID-19 immunotherapy

Abhinay Gontu¹, Sreenidhi Srinivasan², Eric Salazar³, Meera Surendran Nair¹, Ruth H.

Nissly¹, Denver Greenawalt¹, Ian M. Bird¹, Catherine Herzog², Matthew J. Ferrari², Indira

Poojary², Robab Katani², Scott E. Lindner², Allen M. Minns², Randall Rossi², Paul A.

Christensen³, Brian Castillo³, Jian Chen³, Todd N. Eagar³, Xin Yi³, Picheng

Zhao³, Christopher Leveque³, Randall J. Olsen³, David W. Bernard³, Jimmy Gollihar³,

Suresh V. Kuchipudi¹, James M. Musser³, Vivek Kapur², and

¹Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences,
Pennsylvania State University, University Park, Pennsylvania

²Huck Institutes of the Life Sciences, Pennsylvania State University, University Park,
Pennsylvania

³Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas

⁴Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania

⁵Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State
University, University Park, Pennsylvania

⁶Department of Biology, Pennsylvania State University, University Park, Pennsylvania

⁷Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York,
New York

⁸Center for Molecular and Translational Human Infectious Diseases, Houston Methodist
Research Institute, Houston, Texas

⁹CCDC Army Research Laboratory-South, Austin, Texas
10 Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania

These authors contributed equally as co-first authors.

*Correspondence to: Vivek Kapur, BVSc, PhD: 205 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802; Phone: 1.814.863.9788; Email: vkapur@psu.edu; James M. Musser, MD, PhD: 6565 Fannin St., B490, Houston, TX 77030; Phone: 1.713.441.5890; Email: jmmusser@houstonmethodist.org; Suresh V. Kuchipudi, BVSc, PhD: Wiley Lane, The Pennsylvania State University, University Park, PA 16802; Phone 1.814.863.5737; Email: skuchipudi@psu.edu
One Sentence Summary

Evaluation of SARS-CoV-2 anti-spike protein IgM, IgG, and live-virus neutralizing titer profiles reveals that the optimal window for donating convalescent plasma for use in immunotherapy is within the first 60 days of symptom onset.

ABSTRACT

The optimal timeframe for donating convalescent plasma to be used for COVID-19 immunotherapy is unknown. To address this important knowledge deficit, we determined in vitro live-virus neutralizing capacity and persistence of IgM and IgG antibody responses against the receptor-binding domain and S1 ectodomain of the SARS-CoV-2 spike glycoprotein in convalescent plasma samples obtained from 175 COVID-19 plasma donors for up to 142 days post-symptom onset. Robust IgM, IgG, and viral neutralization responses to SARS-CoV-2 persist, in the aggregate, for at least 100 days post-symptom onset. However, a notable acceleration in decline in virus neutralization titers ≥160, a value suitable for convalescent plasma therapy, was observed starting 60 days after first symptom onset. Together, these findings better define the optimal window for donating convalescent plasma useful for immunotherapy of COVID-19 patients and reveal important predictors of an ideal plasma donor, including age and COVID-19 disease severity score.
The kinetics and longevity of the antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are poorly understood. This knowledge is essential for determining if individuals have been infected, elucidating host and virus factors that influence the magnitude and persistence of serological responses, assessing whether an individual is sufficiently protected from re-infection, and evaluating the effectiveness of vaccination strategies to contain the pandemic. Additionally, understanding antibody kinetics and persistence is essential to determine correlates of live-virus neutralization (VN) titers required for qualifying donors of convalescent plasma for use in immunotherapy.

Antibodies directed to the SARS-CoV-2 surface spike glycoprotein (S) ectodomain (S/ECD) and receptor-binding domain (S/RBD) neutralize SARS-CoV-2 in vitro, and their titers can serve as effective surrogates for virus neutralization (VN)\(^1\)-\(^3\). These titers have also been used to identify suitable convalescent plasma donors for COVID-19 immunotherapy\(^1,3\).

However, there is considerable uncertainty about the robustness and persistence of the serological responses to SARS-CoV-2. Some reports suggest variable duration and resilience of serum IgG or IgM antibodies to S or other viral proteins\(^2\)-\(^4\), whereas others report that serological and neutralizing responses begin to wane and approach undetectable levels within weeks after infection\(^3\)-\(^6\).

To better understand the kinetics of the serological response to SARS-CoV-2, we determined the temporal profiles of IgM, IgG, and VN responses in a cohort of 175 convalescent plasma donors, including 105 who had donated multiple times. Plasma samples \((n=540)\) were collected up to 142 days after the onset of the donors’ first symptoms [days post-symptom onset (DPO); Tables 1,S1]. We used a Fab fragment-based assay to assess total antibody titers against S/ECD and S/RBD, an isotype-specific assay to measure anti-S/RBD IgM and IgG titers, and a live-virus assay to determine SARS-CoV-2 VN titers\(^1\).
We discovered robust IgM, IgG, and VN responses in the majority of individuals, with moderate to strong correlation regardless of assay type (Figure 1a,b). Only 4 of 175 [2.3%; 95% confidence interval (CI): 0.9-5.7%] individuals had undetectable levels of IgG, IgM, or total antibody to S/RBD or S/ECD at initial sampling, whereas a significantly higher fraction (29 of 114; 25.4%; 95% CI: 18.3-34.1%) had undetectable VN titers (z-score=6; P<0.01). Thus, ~75% of RT-PCR-confirmed symptomatic individuals were serologically positive for anti-spoke protein antibody, and their convalescent plasma had demonstrable ability to neutralize SARS-CoV-2 in VN assays.

We next determined the patterns of distribution of IgM and IgG background-corrected optical density (OD) values and titers over time (Figure 1c-f). Titers peaked at approximately 30 DPO and persisted through 140 DPO (Figure 1c-f), with the IgG titer consistently higher than the IgM titer. The titer ratios began to diverge after 60 DPO (Figure 1d,f), but remained strongly correlated over the first 140 DPO (Pearson’s r=0.71; 95% CI: 0.67–0.75). The observed persistence of IgG responses in many convalescent individuals through 140 DPO is encouraging from the perspective of antibody durability to SARS-CoV-2. The data are consistent with the expected serological responses to rapidly replicating RNA viruses, including SARS-CoV-1\(^7\). In contrast, the persistence of IgM well beyond the acute phase was unexpected and differs from reports suggesting a rapid decline in IgM by 4-6 weeks\(^7,8\).

To further study the trajectory of antibody persistence, we performed survival analyses on IgM and IgG titers on all 540 samples obtained from 175 individual donors (Figure 2). Consistent with the temporal distribution of titers, survival analyses showed that the proportion of S/RBD IgG Fc seropositive convalescent individuals remained high through 140 DPO (Figure 2a,b).

It is clear that antibodies directed against SARS-CoV-2 S/ECD and S/RBD neutralize the virus \textit{in vitro}. Consistent with this, several vaccines targeting the S glycoprotein have shown promise in animal infection models and human clinical trials\(^9-13\). We and others have recently
reported that anti-S/RBD and S/ECD IgG titers are excellent surrogates for in vitro VN and help identify plasma donors for therapeutic uses1,14. Specifically, we have shown that anti-S/RBD or anti-S/ECD antibody titers of ≥ 1350 are strong proxies for a VN titer ≥ 160, the FDA-recommended value for use in COVID-19 convalescent plasma therapy1, and transfusion of anti-S/RBD IgG ≥ 1350 titer plasma within 72 hours (h) of hospitalization significantly improves survival and health outcomes15,16.

Our large and well-characterized convalescent plasma library with longitudinally donated samples enabled detailed assessment of VN response persistence. We found that the proportion of individuals with a VN titer ≥ 160 remained above 80% through the first 60 DPO but declined sharply to less than 20% between DPO 61 and 120 (Figure 2c). These results suggest that the time period in which donated convalescent plasma is likely to have a high VN titer and optimal therapeutic potential is within the first 60 DPO. This has important implications for convalescent plasma donation and passive immunotherapy programs, some of which have already transfused more than 60,000 individuals in the United States as of August 13, 2020 (https://www.uscovidplasma.org).

Facile methods to identify suitable convalescent plasma donors are needed as the gold standard live-virus VN assays used herein are labor intensive, cumbersome, take several days to perform, and require specialized expertise and access to a high containment (Biosafety Level 3) laboratory and regulatory clearances. ELISAs are easier to implement than VN assays, especially in resource-limited countries and environments. We previously reported that an S/RBD ≥ 1350 titer may serve as a good marker for identifying plasma donors with VN $\geq 160$1 (Supplementary Table S2). Here we confirm a high positive likelihood ratio (LR+; 13.43) for a VN ≥ 160 when S/RBD titers are ≥ 1350 early (1-30 DPO) post onset of symptoms (Supplementary Table S2). However, extended longitudinal analyses through 140 DPO show that S/ECD and S/RBD ≥ 1350 persist longer than VN ≥ 160, with significantly different survival curves ($P<0.001$) for 1-140 DPO and overall LR+s of 1.34 for S/ECD and 1.61 for S/RBD.
(Figure 2c,d; Supplementary Table S2). Thus, an S/RBD ≥ 1350 titer is a promising marker for identifying suitable plasma donors early, but not late, after first symptom onset. In contrast, S/RBD IgG ≥ 1350 appears to be a reliable predictor of VN ≥ 160, and S/RBD IgG ≥ 1350 survival is statistically indistinguishable from that of VN ≥ 160 (Figure 2e), with an overall LR+ of 3.18 and a negative likelihood ratio (LR-) of 0.26 (Supplementary Table S2).

We next investigated the survival and predictive values of S/RBD IgM ≥ 450 as compared to VN ≥ 160 (Figure 2f, Supplementary Table S2). An S/RBD IgM titer ≥ 450 was selected because the magnitude of IgM response was approximately three-fold lower than that of IgG (Figure 1f). The results showed that S/RBD IgM ≥ 450 had a similar survival profile to VN ≥ 160 but waned significantly faster ($P<0.01$; Figure 2f). While S/RBD IgM ≥ 450 had an overall LR+ of 3.72, it also had a LR- of 0.69, which would likely result in an unacceptable number of suitable donors with VN ≥ 160 being excluded. Together, these results indicate that S/RBD IgG ≥ 1350, but not IgM ≥ 450 or S/RBD or S/ECD total antibody ≥ 1350, serves as a good marker to identify suitable plasma donors for COVID-19 immunotherapy.

To determine the kinetics and persistence of IgM, IgG, and VN responses, we next performed longitudinal analyses of the initial and final observed titers in 105 subjects with multiple plasma donations [median 4 donations, interquartile range (IQR): 2-6; median interval between initial and final donation of 42 days (range 6-101; IQR: 26-68), Extended Data Figure 1]. The data confirm the robustness of IgG and IgM levels through the 140 DPO observation period. All individuals with a detectable starting titer remained, on average, between one or two dilutions above or below the initial titer (Extended Data Figure 1). Of particular note, only 5 of 60 individuals (8.3%, 95% CI: 2.8-18.4%) with an initial VN titer of ≥ 5.3 (1:40) showed a subsequent increase in titer, emphasizing the importance of recruiting and screening convalescent plasma donors quickly, as VN titers are unlikely to rise from initial levels.

We next assessed whether particular donor characteristics predicted a more robust serological and neutralization response. The results show that individuals 30 years of age or
younger had significantly lower VN, IgG and IgM antibody titers than those in the older age groups (Figure 3a). Individuals between 20-30 years of age also had significantly faster decline in IgG (P <0.05) and IgM (P <0.05) than did those > 60 years of age (Figure 3b-d, Extended Figure 2a). Consistent with recent evidence that disease severity correlates with the magnitude and duration of serological response, we found that individuals with disease severity scores of 4 or 5 on a 5-point disease severity scale had significantly higher IgM and IgG antibody titers than those with lower severity scores (Figure 3e). In addition, survival analyses of IgG and IgM antibody titers revealed that individuals with mild/moderate symptoms scores of 1, 2, or 3 had significantly different survival curves for IgM (P<0.001) and VN (P<0.05) than did those with higher disease severity scores (3f-h, Extended Figure 2b). Notably, all individuals with high severity scores had detectable IgM at their last measurement point, as did all individuals who were >60 years of age. This may be indicative of potential confounding or interaction between age and disease severity affecting the magnitude and persistence of serological response. The rate of loss of IgM seropositivity to S/RBD was significantly higher for the youngest (20-30 years) compared to the oldest (>60 years) age groups (log-rank test, P<0.01), and this effect remained significant when individuals with high severity scores were excluded. Age and severity score were only weakly correlated (Spearman rank correlation=0.08; P=.07), but formal analysis of confounding or interactions between age and severity was precluded due to data frailty and requires further study. Regardless, these findings suggest that convalescent individuals <30 years of age and those with lower disease severity scores are less likely to represent suitable donors of convalescent plasma for immunotherapy for COVID-19 patients than individuals in >30 age group with a history of more severe disease. Finally, the results show that individuals with dyspnea had significantly higher VN, IgG and IgM and antibody titers than those who did not (Figure 3i), and IgM seropositivity declined significantly faster in individuals with dyspnea (log-rank test, P<0.0001) (Figure 3j-l).
In conclusion, these data refine our understanding of the kinetics, magnitude, and durability of human serologic responses to SARS-CoV-2 spike protein, the primary vaccine candidate being studied worldwide. This integrative analysis of serological and VN profiles identifies an optimal donation window of up to 60 DPO for high-titer anti-spike protein convalescent plasma as immunotherapy for COVID-19 patients. Our analysis found that additional characteristics of an ideal potential donor include a recovered patient >30 years old with a high COVID-19 disease severity score. In the aggregate, these data permit a more focused strategy for identifying suitable donors for COVID-19 convalescent plasma and passive immunotherapy programs.

Online Methods

Data Availability. All data generated or analyzed during this study are included in this published article (and its supplementary information files) or will be made available by the authors on reasonable request.

Cohort and sample description
Plasma samples (n=540) from 175 COVID-19 convalescent patients collected at Houston Methodist Hospital in Houston, Texas were included in the study. Patients were confirmed to be positive for SARS-CoV-2 by RT-PCR. The severity of infection in these patients was scored on a scale of 1-5, (median 2, IQR: 1-2). Clinical improvement relative to DPO 0 was defined as a 1 point improvement in ordinal scale [1, discharged (alive); 2, not hospitalized, experiencing dyspnea not requiring supplemental oxygen but requiring ongoing medical care (for COVID-19 or otherwise); 3, hospitalized, requiring low-flow supplemental oxygen; 4, hospitalized, on non-invasive ventilation or high-flow oxygen devices; 5, hospitalized and on invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO)].
Per FDA guidelines (https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma#Patient%20Eligibility), all subjects were asymptomatic for at least 14 days at the time of plasma collection. Of the 175 subjects, 105 eligible individuals underwent plasmapheresis and donated plasma at least twice (range 2-12 times). All donors were confirmed negative for SARS-CoV-2 by RT-PCR and provided written consent before plasmapheresis. The study cohort consisted of 88 females (50.3%) and 87 males (49.7%), ranging in age between 20-78 years (median 46, IQR: 36-54). Samples were collected from 17-142 DPO (median 68 days, IQR: 48-93). Plasma from donors was collected with the transfusion apheresis system (Trima Accel® Terumo BCT) and standard blood banking protocols were followed. An aliquot of collected plasma was tested for antibodies by ELISA and/or VN assays. Cohort characteristics are described in Table 1 and Supplementary Table 1.

Study approvals

Informed consent was obtained from either the patient or an authorized representative of the patient when applicable for collection of plasma samples. All procedures were approved by the Institutional Review Board of Houston Methodist Hospital (IRB# PRO00025121). Serological analyses were performed at the Pennsylvania State University under BSL-2 (ELISA assays) and BSL-3 (VNs) conditions, following the Pennsylvania State University Institutional Biosafety Committee (IBC) approved protocols.

Quantitative estimation of antibodies against SARS-CoV-2

SARS-CoV-2 antibodies in plasma samples were detected and quantified against purified recombinant SARS-CoV-2 spike ectodomain (S/ECD) or receptor-binding domain (S/RBD) proteins using in-house indirect Fab antibody-based or isotype-specific (IgM and IgG) ELISA assays. The protocols were performed as previously described\(^1,19\) and deposited in protocols.io
Two isotypes of CR3022, a human monoclonal antibody reactive to spike regions of SARS-CoV-1 and SARS-CoV-2, were used as positive controls in the assays (IgG1: Ab01680-10.0; IgM: Ab01680-15.0, Absolute Antibody, USA). The cutoff for the assays was determined as an optical density (absorbance at 450 nm) higher than three or six standard deviations above the mean of the tested pre-COVID-19 serum samples (n=100). Sample titers were estimated as reciprocals of the highest dilution resulting in an OD greater than the cutoff. The class specificity of the IgM ELISA was tested by treating the plasma samples (n=10) with 1,4-Dithiothreitol (DTT, 10708984001, Millipore Sigma, USA) as previously described20. Briefly, samples were allowed to react with 0.005 M DTT in PBS at 36±2°C for 30 min and then tested with isotype-specific ELISAs for titer estimation (Extended data Figure 3).

Virus neutralization assay

The VN titers of the plasma samples were quantified on a cell-based assay using SARS-CoV-2 strain USA-WA1/2020 (NR-52281-BEI Resources, USA) based on procedures described previously1,21. Briefly, Vero E6 cells (CRL-1586, ATCC, USA) were grown as monolayers in 96-well microtiter plates. Heat-inactivated plasma samples were diluted two-fold in triplicate and incubated with 100 tissue culture infective dose 50 (TCID\textsubscript{50}) of the virus at 5% CO\textsubscript{2} at 36±2°C for 60 min. This plasma-virus mixture was added to cell monolayers and incubated further for 72 h at 5% CO\textsubscript{2} at 36±2°C. Plates were treated with crystal violet formaldehyde stain for 1 h and visually inspected for cytopathic effect (CPE) or protection. The reciprocal of the highest dilution of the plasma where at least two of the three wells were protected (no CPE) was determined as the VN titer of the sample.

Statistical analyses

Tests for normality were performed using the Kolmogorov-Smirnov test and a \(P \) value of <0.05 was considered statistically significant. Data dispersion was indexed by standard errors of mean...
or quartile and IQR. The agreement between the various assays was determined using Pearson correlation coefficient with log₂-transformed titers. The non-parametric regression method LOESS was used for scatterplot smoothing to visualize antibody trajectories. The geom_smooth (method="loess") function in R was used with default span of 0.75. The proportion of the sample population remaining seropositive over the 100-day period was determined using a log-rank test and Kaplan-Meier survival curves were plotted with "survival" and "survminer" packages in R Studio22-24. Statistical differences in antibody titers and survival curves of patient characteristics—including severity score, age, and presence of dyspnea—were analyzed using one-way ANOVAs (Tukey’s multiple comparison tests) and a log-rank test, respectively.

Individual level interval-censored data were used to fit semi-parametric accelerated failure time models using the icenReg R package. DTComPair R package (https://cran.r-project.org/web/packages/DTComPair/DTComPair.pdf) was used to compare the sensitivity, specificity, and positive and negative predictive values for detection of S/RBD, S/ECD, and S/RBD IgG titers ≥1350, as well as S/RBD IgM titer ≥450 using VN titer ≥160 as the gold standard. Positive and negative predictive values were compared with the generalized score statistics, whereas the sensitivity and specificity were compared using an exact binomial test. All analyses were completed using R (versions 3.6.1 or 3.6.3) within R Studio (version 1.2.5019) or Graphpad PRISM 8 (version 8.4.3).

[Acknowledgments]
We are deeply indebted to all of our volunteer plasma donors for their time, their generous gift, and their solidarity. We thank Katharine G. Dlouhy, Curt Hampton, and their team of coordinators and recruiters for outstanding efforts; and Monisha Dey, Cheryl Chavez-East, John Rogers, Dr. Ahmed Shehabeldin, Dr. David Joseph, Guy Williams, Karen Thomas, and Curt Hampton who were instrumental in efficiently managing the donor center; Drs. Jessica Thomas and Zejuan Li, Erika Walker, the very talented and dedicated molecular technologists, and the
many labor pool volunteers in the Molecular Diagnostics Laboratory for their dedication to patient care; the many donor center and blood bank phlebotomists and technologists for their dedication to donor and blood safety; Drs. Heather McConnell and Sasha M. Pejerrey for outstanding editorial assistance; Brandi Robinson, Harrold Cano, and Cory Romero for technical assistance; Claude Moussa, Heather Patton, and the many members of the laboratory information technology team for rapidly implementing the necessary electronic workflows; Pamela McShane, Dilzi Mody, and the many members of the biorepository team for their meticulous management of patient samples; and Christina Talley, Dr. Susan Miller, and Mary Clancy for consistent, thorough, and outstanding advice. We express our gratitude to Manuel Hinojosa and Mark Vassallo for their extensive efforts to rapidly procure resources, and Dr. Roberta Schwartz for her efforts in implementing screening of asymptomatic individuals. We are indebted to Drs. Marc Boom and Dirk Sostman for their support, and to many very generous Houston citizens and businesses for their tremendous philanthropic support of this ongoing project, including but not limited to anonymous, Ann and John Bookout III, Carolyn and John Bookout, Ting Tsung and Wei Fong Chao Foundation, Ann and Leslie Doggett, Freeport LNG, the Hearst Foundations, Jerold B. Katz Foundation, C. James and Carole Walter Looke, Diane and David Modesett, the Sherman Foundation, Paula and Joseph C. “Rusty” Walter III, and Aramco Americas. Dr. Jason S. McLellan (University of Texas at Austin) graciously provided the mAb CR3022 and the spike protein expression vectors, and we thank the members of the Center for Systems and Synthetic Biology at the University of Texas at Austin for technical assistance. We thank Zivko Nikolov, Susan Woodard, and Michael Johanson at the National Center for Therapeutics Manufacturing at Texas A&M University for production of antigen. We thank Terumo BCT for continuously and rapidly supplying blood collection devices and supplies, and Victoria Cavener and Team COVID-19 serology at Penn State for their timely and generous technical assistance and logistical support. This study was supported by the Fondren Foundation, Houston Methodist Research Institute (to JMM). This research has been funded in
whole or part with federal funds under a contract from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Contract Number 75N93019C00050 (to JL and GCI). A portion of this work was funded through Cooperative Agreement W911NF-12-1-0390 by the Army Research Office (to JDG). We gratefully acknowledge the unwavering support and timely seed funding from the Huck Institutes of the Life Sciences for the studies at Penn State together with the Huck Distinguished Chair in Global Health award (to VK).

Author Contributions

Project concept (AG, SS, ES, SVK, JMM, VK); acquired data (AG, SS, ES, MSN, RHN. DG, IMB, IP, RK, SEL, AMM, RR, PAC, BC, JC, TNE, XY, PZ, CL, RJO, DWB, JG); analyzed data (AG, SS, MSN, CH, MJF, SVK, JMM, VK); wrote manuscript (VK, JMM, AG, SS, SVK); prepared figures (AG, SS, MSN, CH, VK). All authors reviewed the manuscript and gave final approval for publication.

Competing Interests

ES is the local principal investigator for a clinical trial sponsored by Regeneron assessing an investigational therapy for COVID-19.
References

1. Salazar, E., et al. Relationship between Anti-Spike Protein Antibody Titers and SARS-CoV-2 In Vitro Virus Neutralization in Convalescent Plasma. bioRxiv (2020).

2. Iyer, A.S., et al. Dynamics and significance of the antibody response to SARS-CoV-2 infection. medRxiv, 2020.07.04.20155374 (2020).

3. Wajnberg, A., et al. SARS-CoV-2 infection induces robust, neutralizing antibody responses that are stable for at least three months. medRxiv, 2020.07.2014.20151126 (2020).

4. Ibarrondo, F.I., et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. New England Journal of Medicine (2020).

5. Long, Q.-X., et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine 26, 1200-1204 (2020).

6. Seow, J., et al. Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection. medRxiv, 2020.07.2009.20148429 (2020).

7. Sethuraman, N., Jeremiah, S.S. & Ryo, A. Interpreting Diagnostic Tests for SARS-CoV-2. Jama (2020).

8. Liu, X., et al. Patterns of IgG and IgM antibody response in COVID-19 patients. Emerg Microbes Infect 9, 1269-1274 (2020).

9. Zhu, F.C., et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 395, 1845-1854 (2020).

10. Jackson, L.A., et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med (2020).

11. Bar-Zeev, N. & Moss, W.J. Encouraging results from phase 1/2 COVID-19 vaccine trials. Lancet 396, 448-449 (2020).

12. Folegatti, P.M., et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396, 467-478 (2020).

13. Zhu, F.C., et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 396, 479-488 (2020).

14. Tan, C.W., et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol (2020).

15. Salazar, E., et al. Treatment of COVID-19 Patients with Convalescent Plasma Reveals a Signal of Significantly Decreased Mortality. Am J Pathol (2020).

16. Joyner, M.J., et al. Effect of Convalescent Plasma on Mortality among Hospitalized Patients with COVID-19: Initial Three-Month Experience. medRxiv, 2020.08.20.20169359 (2020).

17. Lee, N., et al. Anti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndrome. J Clin Virol 35, 179-184 (2006).

18. Lynch, K.L., et al. Magnitude and kinetics of anti-SARS-CoV-2 antibody responses and their relationship to disease severity. Clin Infect Dis (2020).

19. Stadlbauer, D., et al. SARS-CoV-2 Seroconversion in Humans: A Detailed Protocol for a Serological Assay, Antigen Production, and Test Setup. Curr Protoc Microbiol 57, e100 (2020).
20. Okuno, T. & Kondelis, N. Evaluation of dithiothreitol (DTT) for inactivation of IgM antibodies. *J Clin Pathol* **31**, 1152-1155 (1978).

21. Sui, J., *et al.* Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. *Proc Natl Acad Sci U S A* **101**, 2536-2541 (2004).

22. R Development Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2014).

23. Therneau, T.M. A Package for Survival Analysis in R (Springer, New York, 2020).

24. Kassambara and Kosinski. “Survminer: Drawing Survival Curves using “ggplot2” (2018).
Figure Legends

Figure 1. Distribution, correlation, and trajectories of antibody titers against SARS-CoV-2.

(a) Violin plots showing distribution of virus neutralization titers ($n=305$); total antibody ($n=538$), and specific isotype antibody IgG and IgM ($n=540$) titers to SARS-CoV-2 spike-ectodomain (S/ECD) and spike-receptor binding domain (S/RBD) in convalescent plasma samples (\log_2 transformed values). The means of the distribution among the titers were significantly different, except between S/ECD and S/RBD [One-way ANOVA, Tukey’s multiple comparison (mixed-effects model), $P<0.05$]. The dashed line at \log_2 titer represents VN titer of 1:160. (b) Pairwise comparison of the assays show a moderate to strong correlation between the total and isotype specific IgG and IgM antibody estimates with virus neutralization assays. (c) & (d) Optical density (OD) (at 450nm) for the indirect ELISAs indicating total or isotype specific IgG and IgM antibody levels; (e) & (f) Titers of the total or isotype specific IgG and IgM antibodies. The IgG and IgM titers appear to peak around 30 days post onset (DPO) of symptoms. High IgG titers persist until 140 DPO, while IgM titers trend lower but persist until 140 DPO. (g) Neutralizing antibody titers persist until 140 DPO. A locally estimated scatterplot smoothing (LOESS) regression curve is fitted to the data.

Figure 2. Survival analysis of IgG and IgM antibody titers to SARS-CoV-2 spike-receptor binding domain (S/RBD) in 540 samples and virus neutralizing antibody (VN) titers in 305 samples collected from convalescent individuals ($n=175$) during the first 140 days post onset of symptoms (DPO). (a) Proportion of S/RBD IgG seropositive convalescent individuals remains high through 140 DPO, while IgM seropositivity remains high through the first 60 DPO and then steadily declines over the next 60 days (Log rank test; ****$P<0.0001$). The proportion of individuals with VN responses also begins to decline 60 DPO, with \sim50% of individuals remaining seropositive with VN test through 140 DPO (Log rank test; ***$P<0.001$). (b) Violin plots showing a significant decline in VN and IgM titers with time (Ordinary one-way ANOVA,
Tukey’s multiple comparison test; *$P<0.05$; **$P<0.01$; the IgG titers remain stable until after 120 DPO. Comparison of proportion of individuals seropositive with S/RBD, S/ECD, and S/RBD IgG titers ≥1350 as well as with S/RBD IgM titer ≥450 to the proportion of individuals possessing VN titers ≥160 through 140 DPO are depicted in c, d, e, and f respectively (**$P<0.01$; ****$P<0.0001$).

Figure 3. Distribution of antibody titers against SARS-CoV-2 based on age, severity scores, and presence of dyspnea. These data represent samples collected from convalescent individuals ($n=175$) during the first 140 days post symptom onset (DPO). (a) Individuals <31 years of age have significantly lower IgG, IgM, and viral neutralizing antibody (VN) titers than those >40 years of age in this cohort (Ordinary one-way ANOVA, Tukey’s multiple comparison test; **$P<0.01$; ***$P<0.001$; ****$P<0.0001$). Survival analysis of (b) IgG, (c) IgM, and (d) VN antibody titers during the first 140 DPO in convalescent individuals within the age groups of 20-30 ($n=95$ samples) and >60 ($n=45$ samples) (Log-rank test, *$P<0.05$ for IgG and IgM, $P>0.05$ for VN antibodies). (e) Individuals with a severity score of 1 have significantly lower IgM and IgG titers than those above a score of 3 (Ordinary one-way ANOVA, Tukey’s multiple comparison test; **$P<0.01$; ***$P<0.001$; ****$P<0.0001$). Survival analysis of (f) IgG, (g) IgM, and (h) VN antibody titers in relation to severity scores grouped as mild (1/2/3) and severe (4/5) in convalescent individuals during the first 140 DPO (Log-rank test, $P>0.05$ for IgG, ****$P<0.0001$ for IgM, *$P<0.05$ for VN antibodies). (i) Individuals with dyspnea had significantly higher VN, IgM, and IgG titers (Ordinary one-way ANOVA, Tukey’s multiple comparison test; **$P<0.01$; ****$P<0.0001$). Survival analysis of (j) IgG, (k) IgM, and (l) VN antibody titers in relation to occurrence of dyspnea in convalescent individuals during the first 140 DPO (Log-rank test, $P>0.05$ for IgG, ****$P<0.0001$ for IgM, $P>0.05$ for VN).
Extended Data Figure 1. Trajectories (first and last donation only) of (a) SARS-CoV-2 spike-receptor binding domain (S/RBD) IgM, (b) S/RBD IgG, and (c) virus neutralizing (VN) antibody titers against SARS-CoV-2 in subjects who donated plasma more than once. Initial (Log$_2$) S/RBD IgM and IgG titers \geq5.3 remain stable or vary by one or two dilutions below or above the initial titer. A majority of individuals (33 out of 39) with initial (Log$_2$) VN titers \geq7.3 begin to drop beyond ~60 DPO.

Extended Data Figure 2. Survival analysis of SARS-CoV-2 spike ectodomain (S/ECD), SARS-CoV-2 spike-receptor binding domain (S/RBD), S/RBD IgM, S/RBD IgG, and neutralizing (VN) antibody titers in 175 convalescent individuals during the first 140 days post onset (DPO) of symptoms stratified by (a) age and (b) severity (Log-rank test, *$P<0.05$, **$P<0.01$). Significant differences were observed in the titers of ELISAs between the age groups: 20-30 versus 31-40 (S/ECD **$P<0.01$, S/RBD IgG *$P<0.05$); 20-30 versus 41-50 (S/ECD *$P<0.05$, S/RBD IgG *$P<0.05$, S/RBD IgM *$P<0.05$, VN *$P<0.05$); 20-30 versus 51-60 (S/ECD **$P<0.01$, S/RBD *$P<0.05$, S/RBD IgG *$P<0.05$, S/RBD IgM **$P<0.01$, VN *$P<0.05$); 20-30 versus >60 (S/RBD IgM *$P<0.05$); and 31-40 versus 51-60 (S/RBD IgM *$P<0.05$). Significant differences were observed in the S/RBD IgM titers of the donors with the severity scores 1 versus 3 (*$P<0.05$); 1 versus 4.5 (**$P<0.01$); and 2 versus 4.5 (**$P<0.01$).

Extended Data Figure 3. Class specificity test for SARS-CoV-2 spike-receptor binding domain (S/RBD) isotype specific indirect ELISAs. 1,4-Dithiothreitol (DTT) treatment of convalescent plasma abrogates S/RBD IgM antibody titers but not IgG titers (n=10) (paired t test, ****$P<0.0001$).

Extended Data Figure 4. Forest plot depicting the positive and negative predictive values for detection of SARS-CoV-2 spike-receptor binding domain (S/RBD), SARS-CoV-2 spike
ectodomain (S/ECD), and S/RBD IgG titers ≥1350 using virus neutralization (VN) titer ≥160 as the standard. Likelihood ratios (LR) for each assay are shown on the right panel. P values were generated using the generalized score statistic for pairwise comparisons. For positive predictive values (PPV) S/ECD ≥1350 versus S/RBD ≥1350 **P<0.01; S/RBD ≥1350 versus S/RBD IgG ≥1350 **P<0.01; S/RBD IgG ≥1350 versus S/RBD IgM ≥450 P>0.05; S/RBD IgM ≥450 versus S/RBD ≥1350 ***P<0.001. For negative predictive values (NPV) S/ECD ≥1350 versus S/RBD ≥1350 **P<0.01; S/RBD ≥1350 versus S/RBD IgG ≥1350 P>0.05; S/RBD IgG ≥1350 versus S/RBD IgM ≥450 ****P<0.0001; S/RBD IgM ≥450 versus S/RBD 1350 ****P<0.0001.
Figure 3

(a) Log$_{10}$ titers of VN, S/RBD IgG, and S/RBD IgM for different age groups.

(b) Proportion of age groups for different severity scores.

(c) Proportion of age groups for different dyspnea status.

(d) Proportion of age groups for different severity scores.

(e) Log$_{10}$ titers for severity scores.

(f) Proportion of severity scores for different dyspnea status.

(g) Proportion of severity scores for different dyspnea status.

(h) Proportion of severity scores for different dyspnea status.

(i) Log$_{10}$ titers for dyspnea status.

(j) Proportion of dyspnea status for different age groups.

(k) Proportion of dyspnea status for different age groups.

(l) Proportion of dyspnea status for different age groups.

(figure credit: CC-BY-NC-ND 4.0 International license available under aCC-BY-NC-ND 4.0 International license.)
Extended data Figure 1

a: S/RBD IgM

b: S/RBD IgG

c: VN

licensed under a CC-BY-NC-ND 4.0 International license.

Extended data Figure 4

Extended data Figure 4

S/ECD ≥1350
S/RBD ≥1350
S/RBD IgG ≥1350
S/RBD IgM ≥450

	LR+	LR-
S/ECD ≥1350	1.34	0.40
S/RBD ≥1350	1.61	0.19
S/RBD IgG ≥1350	3.18	0.26
S/RBD IgM ≥450	3.72	0.69

PPV: Positive Predictive Value
NPV: Negative Predictive Value
Table 1: Demographics and characteristics of the plasma donor cohort.

Patient characteristics	Samples n (%)	Individuals n (%)
Sex		
Female	213 (39.4)	88 (50.3)
Male	327 (60.6)	87 (49.7)
Age		
20-30	95 (17.6)	26 (14.9)
31-40	117 (21.7)	39 (22.3)
41-50	166 (30.7)	51 (29.1)
51-60	117 (21.7)	40 (22.9)
> 60	45 (8.3)	19 (10.9)
Average (95% CI)	43.8 (42.7 - 44.9)	44.9 (43.0 - 46.8)
Median (IQR)	44 (33 - 53)	46 (36 - 54)
Range	20 - 78	20 - 78
Severity		
1	244 (45.2)	76 (43.4)
2	182 (33.7)	63 (36.0)
3	23 (4.3)	10 (5.7)
4	44 (8.1)	15 (8.6)
5	47 (8.7)	11 (6.3)
Median (IQR)	2 (1 - 2)	2 (1 - 2)
Range	1 - 5	1 - 5
Dyspnea		
No	250 (46.3)	79 (45.1)
Yes	290 (53.7)	96 (54.9)
DPO		
< 31	39 (7.2)	35 (20.0)
31-60	181 (33.5)	89 (50.9)
61-90	173 (32.0)	44 (25.1)
91-120	122 (22.6)	7 (4.0)
> 120	25 (4.6)	-
Average (95% CI)	70.8 (68.4 - 73.3)	49.5 (46.5 - 52.5)
Median (IQR)	68 (48 - 93)	46 (32 - 63)
Range	17 - 142	17 - 108
Hospitalization		
No	428 (79.3)	141 (80.6)
Yes	112 (20.7)	34 (19.4)
Total	540	175
Supplementary Table 1: Convalescent plasma donor demographics and sample characteristics.

Subject	Age	Sex	Hospitalization	Severity	Dyspnea	DPO	VN titer	S/ECD titer	S/RBD titer	S/RBD IgG titer	S/RBD IgM titer					
0001	44	M	NO	1	NO	20	320	150	1350	450	150					
0001	24															
0001	27															
0001	31															
0001	34															
0001	38															
0001	41															
0002	54	M	NO	1	NO	28	40	50	150	150	50					
0003	36	M	NO	1	NO	25	80	150	450	1350	150					
0003	28															
0003	33															
0003	35															
0003	42															
0003	47															
0003	61															
0003	68															
0003	75															
0003	82															
0003	89															
0004	54	F	NO	2	YES	32	320	1350	1350	1350	1350					
0004	36															
0004	68															
0004	75															
0004	103															
0004	118															
0004	131															
0005	58	M	NO	2	YES	91	-	150	150	150	0					
0007	36	M	NO	1	NO	88	-	1350	1350	1350	50					
0007	123															
0009	38	F	NO	2	YES	30	80	450	450	450	50					
0011	67	F	NO	1	NO	28	0	0	50	50	50					
0011	49															
0012	46	F	NO	1	NO	30	320	150	150	150	150					
0013	43	F	NO	1	NO	28	320	1350	3200	4050	450					
0016	47	F	NO	1	NO	32	640	4050	4050	4050	1350					
0020	41	F	NO	2	YES	17	20	50	200	50	50					
0022	22	M	NO	1	NO	47	-	450	150	150	50					
0022	57															
0028	23	M	NO	1	NO	31	20	150	150	150	50					
0028	46															
---	---	---	---	---	---	---	---	---	---	---	---					
0028	63	-	0	450	150	150										
0028	77	-	150	150	150	50										
0028	83	0	450	450	50	50										
0029	66	F	NO	1	NO	22	80	150	450	4050	150					
0032	65	M	NO	2	YES	25	320	450	4050	4050	1350					
0035	50	M	NO	2	YES	28	320	1350	3200	4050	150					
0035	38	640	1350	1350	4050	150										
0035	52	-	1350	1350	4050	150										
0035	59	160	1350	1350	1350	50										
0035	82	640	1350	1350	1350	50										
0035	108	80	1350	1350	450	0										
0040	52	M	NO	2	YES	29	1280	-	-	4050	4050					
0040	35	320	4050	4050	4050	4050										
0040	37	320	1350	4050	4050	4050										
0040	44	-	4050	4050	4050	1350										
0045	23	F	NO	1	NO	33	1280	4050	1350	4050	50					
0045	47	-	1350	1350	4050	150										
0045	54	40	1350	1350	1350	50										
0049	57	F	NO	1	NO	27	320	150	450	150	50					
0049	64	40	1350	1350	450	450										
0050	41	M	NO	2	YES	30	320	1350	1350	450	150					
0050	33	0	150	150	1350	50										
0050	44	20	1350	450	450	150										
0050	58	20	1350	1350	150	50										
0050	66	40	1350	450	150	50										
0050	72	20	1350	1350	150	50										
0050	94	20	1350	1350	150	50										
0050	102	20	1350	1350	150	50										
0050	108	-	1350	450	450	50										
0050	115	20	1350	450	150	50										
0050	131	-	1350	1350	150	0										
0051	50	F	NO	1	NO	30	160	150	450	150	150					
0052	27	F	YES	3	YES	31	160	1350	1350	4050	50					
0052	59	-	1350	1350	1350	50										
0052	87	160	1350	1350	1350	150										
0052	122	80	1350	1350	1350	150										
0053	29	M	NO	2	YES	28	0	450	450	450	50					
0053	30	M	NO	2	YES	56	-	450	450	450	0					
0053	63	-	450	450	150	0										
0053	77	0	1350	1350	150	0										
0053	91	0	150	50	150	0										
0055	61	M	YES	3	YES	33	320	1350	3200	1350	150					
0057	44	F	NO	2	YES	34	160	450	450	450	150					
---	---	---	---	---	---	---	---	---	---	---	---	---				
0058	36	M	NO	2	YES	92	-	1350	1350	1350	1350	50				
0062	24	F	NO	1	NO	32	320	1350	1350	1350	1350					
0062	35	1280	1350	1350	1350	1350										
0062	46	-	1350	1350	1350	1350										
0062	53	-	1350	1350	1350	1350										
0062	62	-	1350	1350	1350	450										
0062	69	320	1350	1350	1350	450										
0062	101	80	1350	1350	450	450										
0062	118	160	1350	1350	450	450										
0062	132	80	1350	1350	450	450										
0065	50	M	NO	1	NO	34	-	1350	1350	150	0					
0065	54	-	1350	1350	450	150										
0065	126	-	450	450	150	0										
0069	49	F	NO	1	NO	28	80	450	450	1350	50					
0069	32	80	450	450	1350	50										
0069	63	-	50	450	450	0										
0069	108	40	1350	450	150	0										
0070	37	F	NO	2	YES	38	160	450	1350	4050	50					
0072	23	F	NO	1	NO	29	0	0	0	50	0					
0072	37	0	50	50	0	0										
0072	44	-	0	0	0	0										
0072	51	-	0	0	0	0										
0072	58	-	0	0	0	0										
0073	39	F	NO	2	YES	47	0	150	150	150	0					
0073	55	-	450	450	150	0										
0073	85	20	1350	450	150	0										
0077	59	F	NO	1	NO	71	-	1350	1350	1350	150					
0081	64	F	NO	2	YES	52	-	450	1350	1350	150					
0088	29	F	NO	1	NO	21	20	0	50	0	0					
0088	54	-	0	50	0	0										
0089	42	F	NO	2	YES	38	160	450	450	4050	150					
0090	33	M	NO	1	NO	37	1280	150	150	150	50					
0090	46	-	1350	1350	450	50										
0095	61	F	NO	1	NO	54	160	1350	1350	4050	150					
0095	76	-	1350	1350	1350	50										
0095	83	-	1350	1350	1350	50										
0095	119	20	1350	1350	450	0										
0096	44	F	NO	1	NO	59	-	1350	1350	1350	50					
0099	54	F	NO	1	NO	20	20	50	50	0	0					
0109	33	F	NO	1	NO	67	160	1350	1350	450	50					
0109	73	1350	1350	450	50											
0109	80	160	1350	1350	450	0										
0109	93	0	450	150	450	0										
0109	100	-	450	450	450	0										
0109	108	-	1350	450	450	0										
0109	114	40	1350	450	450	0										
0112	47	F	NO	1	NO	32	40	450	450	450	150					
0113	52	F	NO	1	NO	29	40	1350	150	150	0					
0115	70	M	YES	5	NO	54	320	1350	1350	4050	450					
0115	62	-	1350	1350	4050	150										
0115	102	640	1350	1350	1350	150										
0115	118	320	1350	1350	1350	150										
0116	27	M	NO	1	NO	32	20	450	450	450	50					
0117	27	F	NO	2	YES	30	320	1350	1350	1350	150					
0117	44	-	1350	1350	1350	150										
0117	71	-	1350	1350	1350	150										
0117	79	160	1350	1350	1350	150										
0117	85	-	1350	1350	1350	150										
0117	129	160	1350	1350	1350	150										
0118	50	F	NO	1	NO	34	320	1350	450	4050	150					
0118	40	-	1350	1350	450	150										
0119	35	F	NO	1	NO	25	0	450	450	450	1350	50				
0119	34	-	1350	1350	450	50										
0119	40	-	1350	450	50											
0120	41	F	NO	1	NO	19	320	450	3200	450	450					
0120	68	40	1350	1350	450	450										
0121	51	F	NO	1	NO	21	40	150	200	150	50					
0121	54	40	450	450	150	50										
0132	61	M	YES	5	YES	78	640	1350	1350	4050	450					
0132	85	160	1350	1350	4050	150										
0133	51	M	NO	2	YES	25	-	150	450	450	150					
0133	53	-	1350	1350	450	150										
0135	47	F	NO	2	YES	32	320	4050	4050	4050	150					
0137	53	F	NO	1	NO	38	80	450	3200	450	50					
0137	59	-	450	1350	450	50										
0137	66	-	1350	1350	450	50										
0137	73	80	1350	1350	450	50										
0140	54	M	NO	1	NO	98	-	1350	1350	450	50					
0143	49	F	NO	2	YES	37	160	1350	3200	4050	150					
0144	48	M	YES	5	YES	40	640	1350	3200	4050	450					
0144	45	640	1350	1350	4050	1350										
0144	50	320	450	1350	4050	450										
0144	53	1280	4050	4050	1350	150										
0144	64	320	1350	1350	1350	150										
0144	73	80	1350	1350	1350	150										
0144	80	160	1350	1350	1350	50										
ID	Age	Gender	Marital Status	Education Level	Income Level	Employment Level	Occupation Level									
-----	-----	--------	----------------	----------------	--------------	-----------------	-----------------									
0144	94	M	No	No	1350	1350	150									
0144	115	M	No	No	1350	1350	50									
0144	121	M	No	No	1350	450	1350	50								
0144	129	M	No	No	1350	1350	1350	50								
0156	59	M	No	No	1280	4050	1350	1350	4050	1350						
0156	29	M	No	No	1280	1350	1350	4050	450							
0156	43	M	No	No	80	1350	1350	4050	450							
0156	50	M	No	No	-	1350	1350	4050	450							
0156	65	M	No	No	-	1350	1350	4050	150							
0156	71	M	No	No	160	1350	1350	1350	150							
0156	85	M	No	No	-	1350	1350	1350	50							
0156	92	M	No	No	-	1350	1350	1350	50							
0156	99	M	No	No	160	1350	1350	1350	50							
0156	106	M	No	No	-	1350	1350	1350	50							
0156	113	M	No	No	-	1350	1350	1350	50							
0156	120	M	No	No	320	1350	1350	1350	50							
0158	33	M	No	No	2	YES	450	1350	50							
0159	23	F	No	No	2	YES	450	450	450							
0162	51	F	YES	Yes	3	YES	450	450	50							
0177	55	M	No	No	1	NO	450	450	450							
0177	132	M	No	No	80	1350	1350	450	50							
0215	38	M	No	No	2	YES	450	1350	50							
0215	60	M	No	No	-	1350	1350	1350	50							
0229	32	M	No	No	2	YES	450	1350	50							
0229	61	M	No	No	320	1350	1350	1350	450							
0229	68	M	No	No	-	1350	1350	450	150							
0229	76	M	No	No	-	1350	1350	450	150							
0229	100	M	No	No	160	1350	1350	450	150							
0229	110	M	No	No	-	1350	1350	450	150							
0229	117	M	No	No	160	1350	1350	450	50							
0229	135	M	No	No	80	1350	1350	450	50							
0234	40	M	No	No	2	YES	450	1350	450							
0245	51	M	Yes	Yes	5	YES	450	450	150							
0245	52	M	Yes	Yes	-	1350	1350	4050	150							
0245	59	M	Yes	Yes	-	1350	1350	4050	150							
0245	81	M	Yes	Yes	320	1350	1350	4050	150							
0245	102	M	Yes	Yes	160	1350	1350	1350	150							
0249	56	M	No	No	1	NO	450	4050	50							
0255	40	M	No	No	2	YES	450	450	450							
0255	45	M	No	No	-	1350	1350	1350	50							
0255	52	M	No	No	0	1350	1350	1350	50							
0260	44	M	No	No	2	YES	1280	4050	1350							
0262	36	F	Yes	Yes	4	YES	450	450	450							
0262	31	F	Yes	Yes	1280	4050	4050	450	1350							
---	---	---	---	---	---											
0262	49	-	1350	1350	4050	1350										
0262	99	640	1350	1350	4050	1350										
0263	20	M	NO	1	NO	43	0	1350	1350	1350	50					
0263	52	-	150	1350	450	50										
0263	59	-	1350	450	450	0										
0263	79	40	1350	1350	450	0										
0265	53	F	NO	2	YES	31	320	4050	4050	4050	150					
0280	37	M	YES	4	YES	73	0	1350	1350	4050	450					
0280	98	320	1350	1350	4050	450										
0280	120	320	1350	1350	4050	450										
0284	35	F	NO	4	YES	53	-	1350	1350	1350	150					
0285	51	F	NO	1	NO	40	-	1350	1350	450	150					
0285	56	-	1350	1350	450	150										
0287	40	F	NO	2	YES	56	-	50	0	0	0					
0301	59	M	NO	1	NO	83	-	1350	1350	1350	450					
0301	90	-	1350	1350	1350	450										
0301	97	-	1350	1350	450	150										
0302	25	M	NO	1	NO	84	80	1350	1350	450	150					
0302	96	80	450	150	450	50										
0302	112	-	450	1350	450	50										
0313	78	M	YES	3	YES	36	160	4050	4050	4050	50					
0339	31	M	YES	3	YES	54	640	150	1350	4050	450					
0339	62	-	1350	1350	4050	450										
0339	68	160	1350	1350	4050	450										
0339	82	-	1350	1350	1350	150										
0339	89	-	1350	1350	1350	150										
0339	96	160	1350	1350	450	150										
0339	110	-	1350	1350	1350	150										
0339	118	320	1350	1350	1350	150										
0345	62	M	NO	1	NO	54	0	1350	1350	4050	450					
0345	94	320	1350	1350	4050	150										
0350	53	M	NO	1	NO	45	160	1350	1350	1350	150					
0350	59	-	1350	1350	1350	150										
0350	82	160	1350	1350	450	150										
0354	59	M	YES	4	YES	98	640	1350	1350	4050	150					
0354	104	-	1350	1350	4050	150										
0354	111	640	1350	1350	4050	450										
0354	132	-	1350	1350	4050	150										
0363	56	M	NO	1	NO	34	80	450	1350	1350	50					
0363	44	-	1350	1350	1350	50										
0363	59	-	1350	1350	450	50										
0363	64	-	1350	1350	450	50										
0363	73	80	1350	1350	450	50										
ID	Gender	Age	Height	Weight	BMIC	Activity	Notes									
-----	--------	-----	--------	--------	------	----------	-------									
0363		86	450	1350	450	0										
0363		100	20	1350	450	50										
0363		107	40	1350	450	50										
0367	F	58	89	1350	4050	450										
0368	F	37	29	160	4050	450										
0369	M	41	39	150	450	1350	50									
0369		46	40	450	450	50										
0369		49	40	1350	1350	450	50									
0369		56	80	1350	1350	450	50									
0369		63	20	1350	1350	450	0									
0369		69	20	1350	450	450	50									
0369		76	20	1350	450	150	50									
0369		83	10	1350	1350	150	50									
0369		97	20	450	450	450	0									
0369		104	-	450	150	150	0									
0369		112	20	1350	450	150	0									
0369	M	41	119	450	450	150	0									
0376	M	52	28	1280	1350	4050	150									
0376		32	160	4050	4050	4050	150									
0376		60	-	1350	1350	1350	150									
0376		67	80	1350	1350	1350	50									
0376		88	160	1350	1350	1350	50									
0376		108	80	1350	1350	450	50									
0377	M	49	52	160	450	1350	150									
0377		66	-	50	450	150	0									
0377		80	-	450	450	50	0									
0377		94	0	450	450	50	50									
0385	M	45	63	-	0	0	0									
0385		75	20	350	450	150	0									
0398	F	55	58	-	1350	1350	150									
0398		67	-	1350	1350	1350	150									
0398		73	-	1350	1350	450	150									
0412	M	53	75	20	1350	450	150									
0412		89	-	1350	1350	150	0									
0412		103	0	1350	450	50	0									
0419	M	40	68	-	1350	1350	150									
0422	M	41	64	640	1350	1350	450									
0422		84	80	1350	450	450	150									
0423	M	39	57	40	450	1350	150									
0423		65	20	1350	1350	450	50									
0423		75	20	50	1350	450	50									
0423		83	20	1350	1350	450	50									
0423		89	20	450	1350	150	50									
0423		117	20	450	450	150	0									
0423	127	-	1350	450	150	0										
0423	131	-	1350	1350	150	0										
0423	138	-	450	1350	50	0										
0430	44	M	YES	4	YES	35	1280	4050	4050	4050	150					
0436	32	F	NO	1	NO	45	640	1350	1350	50	0					
0436	55	-	1350	1350	50	0										
0436	62	-	450	1350	50	0										
0436	69	-	1350	1350	50	0										
0436	90	-	1350	1350	50	0										
0436	97	0	1350	1350	50	0										
0437	49	M	NO	1	NO	55	40	1350	1350	450	50					
0437	64	-	1350	1350	450	50										
0437	78	-	1350	1350	450	50										
0437	113	40	1350	1350	450	50										
0448	49	M	NO	2	YES	43	160	1350	1350	4050	150					
0448	46	-	1350	1350	4050	150										
0448	91	160	1350	1350	1350	150										
0448	105	-	1350	1350	4050	150										
0448	112	-	1350	1350	1350	50										
0448	119	160	1350	1350	1350	50										
0462	47	F	NO	2	YES	61	-	450	1350	450	0					
0464	31	F	NO	2	YES	48	160	1350	1350	4050	450					
0464	55	160	1350	1350	4050	450										
0464	62	80	1350	1350	450	450										
0464	69	80	1350	1350	1350	450										
0464	83	80	1350	1350	1350	150										
0464	90	-	1350	1350	1350	450										
0464	118	160	1350	1350	1350	450										
0479	56	F	NO	1	NO	79	-	1350	1350	4050	450					
0488	37	F	NO	1	NO	62	-	150	150	0	0					
0515	58	M	YES	4	YES	69	80	1350	1350	4050	1350					
0515	83	-	1350	1350	4050	1350										
0515	104	320	1350	1350	4050	1350										
0524	35	F	YES	3	YES	44	-	1350	1350	4050	450					
0525	33	F	NO	2	YES	43	-	450	50	150	50					
0525	68	-	50	450	150	50										
0526	74	M	NO	2	YES	45	-	1350	1350	1350	150					
0530	39	F	NO	1	NO	71	-	1350	1350	1350	150					
0533	32	F	NO	1	NO	47	-	450	450	150	0					
0548	40	M	NO	4	NO	52	-	1350	1350	4050	150					
0554	68	F	NO	1	NO	57	-	1350	1350	4050	1350					
0576	50	F	YES	3	YES	41	0	0	0	50	0					
0579	70	M	NO	2	YES	43	640	1350	1350	4050	450					
---	---	---	---	---	---											
0579	50	-	1350	1350	1350	150										
0579	57	-	1350	1350	4050	450										
0579	64	80	1350	1350	1350	150										
0579	99	160	1350	1350	1350	150										
0580	43	F	YES	3	YES	29	1280	4050	1350	150						
0580	35	1280	4050	1350	150	1350										
0580	57	160	1350	1350	1350	50										
0581	50	M	YES	4	YES	108	-	1350	1350	150						
0591	51	F	NO	1	NO	44	-	1350	1350	1350						
0595	26	F	NO	2	YES	104	-	150	150	50	0					
0598	46	M	YES	4	YES	30	1280	4050	4050	4050	450					
0598	99	640	1350	1350	1350	150										
0599	42	M	YES	3	YES	82	320	1350	1350	1350	450					
0599	117	320	1350	1350	1350	150										
0605	54	F	NO	1	NO	58	-	1350	1350	1350	150					
0610	48	F	NO	2	YES	64	-	1350	1350	150	0					
0612	36	F	NO	1	NO	69	-	1350	1350	50	0					
0618	58	F	YES	5	YES	65	80	1350	1350	4050	450					
0618	118	320	1350	1350	1350	150										
0620	59	M	YES	5	YES	40	1280	4050	4050	4050	4050					
0620	52	320	1350	1350	4050	1350										
0620	59	320	1350	1350	4050	1350										
0620	66	160	1350	1350	4050	1350										
0620	73	160	1350	1350	4050	450										
0620	94	320	1350	1350	450	450										
0620	101	--	1350	1350	4050	150										
0620	108	320	1350	1350	1350	150										
0622	20	F	NO	1	NO	45	0	450	150	50	0					
0622	52	-	450	150	50	0										
0622	77	0	1350	450	150	0										
0631	58	M	NO	1	NO	47	20	150	450	150	50					
0631	53	20	150	1350	50	50										
0631	61	20	1350	1350	50	0										
0631	67	20	1350	150	50	0										
0631	74	10	450	1350	50	0										
0631	81	20	450	450	50	0										
0631	95	0	450	450	50	0										
0631	108	-	150	50	50	0										
0631	117	0	450	450	50	0										
0631	122	-	450	150	50	0										
0633	63	M	YES	4	YES	79	-	1350	1350	1350	150					
0634	53	M	YES	5	YES	33	1280	4050	4050	4050	450					
ID	Age	Sex	Smoke	BMI	WC	WHR	BP	Other								
-----	-----	-----	-------	-------	-----	-----	-----	-------								
0636	30	M	NO	2	64	-	1350	1350								
0644	46	M	NO	1	75	-	1350	1350								
0644	86															
0694	30	M	NO	2	42	320	1350	1350								
0694					127	160	1350	1350								
0695	22	F	NO	2	62	0	1350	150								
0695					72	-	1350	150								
0695					79	-	450	150								
0695					114	0	450	150								
0695					128	-	450	150								
0698	32	M	NO	2	51	320	1350	1350								
0698					59	-	1350	450								
0698					72	-	1350	450								
0698					100	0	1350	450								
0699	61	M	YES	3	35	640	4050	1350								
0701	41	M	NO	1	47	80	1350	1350								
0701					53	40	1350	1350								
0701					63	40	1350	1350								
0701					70	40	1350	1350								
0701					74	80	1350	1350								
0701					105	20	1350	450								
0701					109	-	1350	450								
0701					116	20	1350	450								
0701					123	-	1350	450								
0719	63	M	NO	1	107	-	1350	1350								
0719					114	-	1350	1350								
0720	39	M	NO	2	63	-	50	0								
0731	50	M	YES	4	66	80	1350	4050								
0731					73	40	1350	4050								
0731					80	40	1350	1350								
0731					87	80	1350	1350								
0731					94	40	1350	1350								
0731					101	-	1350	1350								
0731					115	160	1350	1350								
0731					128	-	1350	1350								
0731					142	-	1350	450								
0749	45	M	NO	1	48	-	450	1350								
0749					55	-	450	1350								
0749					69	-	450	150								
0750	29	M	NO	2	46	-	450	150								
0750					50	-	450	150								
0750					53	-	150	150								
0750					123	0	450	50								
ID	Age	Sex	Action	Reaction	Reaction	Reaction	Reaction									
-----	-----	-----	--------	----------	----------	----------	----------									
0759	48	F	NO	2	YES	45	-									
0762	47	M	NO	2	YES	44	160									
0762	47	M	NO	2	YES	51	40									
0762	47	M	NO	2	YES	58	80									
0762	47	M	NO	2	YES	64	160									
0762	47	M	NO	2	YES	78	160									
0762	47	M	NO	2	YES	85	-									
0762	47	M	NO	2	YES	92	40									
0762	47	M	NO	2	YES	113	80									
0786	46	F	NO	2	YES	48	-									
0789	55	F	NO	2	YES	62	-									
0796	45	M	YES	5	YES	52	-									
0820	56	F	NO	1	NO	82	-									
0820	56	F	NO	1	NO	113	-									
0834	48	M	NO	2	YES	60	-									
0835	52	F	YES	5	YES	61	-									
0838	74	F	NO	1	NO	49	320									
0838	74	F	NO	1	NO	160	1350									
0838	74	F	NO	1	NO	160	1350									
0838	74	F	NO	1	NO	80	1350									
0838	74	F	NO	1	NO	320	1350									
0838	74	F	NO	1	NO	-	1350									
0838	74	F	NO	1	NO	160	1350									
0850	34	F	NO	2	YES	67	-									
0879	50	M	YES	4	YES	34	160									
0879	50	M	YES	4	YES	-	1350									
0905	41	F	NO	1	NO	57	-									
0913	34	F	YES	5	YES	83	-									
0913	34	F	YES	5	YES	90	-									
0913	34	F	YES	5	YES	101	-									
0913	34	F	YES	5	YES	116	-									
0933	67	M	NO	1	NO	65	-									
0970	29	F	NO	2	YES	56	-									
0992	45	F	NO	2	YES	43	-									
0992	45	F	NO	2	YES	49	-									
1033	33	F	NO	1	NO	61	80									
1033	33	F	NO	1	NO	75	-									
1033	33	F	NO	1	NO	92	80									
1052	28	F	NO	2	YES	59	40									
1052	28	F	NO	2	YES	73	-									
1052	28	F	NO	2	YES	95	160									
1062	44	F	NO	2	YES	53	40									
1062	44	F	NO	2	YES	88	-									
ID	Sex	Age	Gender	BMI	Height	Weight	Waist	Hip	Race	Education	Employment	Smoking	Exercise	Alcohol	Other	Notes
------	-----	-----	--------	-----	--------	--------	-------	-----	------	-----------	------------	---------	----------	---------	-------	-------
1062																
1062																
1062																
1062																
1121																
1121																
1121																
1145																
1145																
1145																
1145																
1215																
1215																
1234																
1234																
1234																
1234																
1278																
1278																
1278																
1278																
1288																
1288																
1288																
1288																
1344																
1344																
1401																
1401																
1432																
1432																
1457																
1457																
1457																
---	---	---	---	---	---	---										
1457	101	450	1350	50	0											
1457	108	-	1350	450	150	0										
1457	122	-	1350	1350	150	0										
1462	70	M	NO	1	NO	72	-	1350	1350	450	50					
1462	79	80	1350	1350	450	50										
1462	86	-	450	450	450	50										
1462	93	-	1350	450	450	50										
1462	100	20	150	1350	450	0										
1462	107	-	1350	450	150	0										
1462	114	0	450	1350	450	50										
1499	42	M	NO	1	NO	79	20	1350	1350	450	50					
1499	94	0	1350	450	450	0										
1551	50	M	YES	5	YES	65	-	1350	1350	4050	450					
1551	70	320	1350	1350	4050	450										
1551	76	-	1350	1350	1350	150										
1551	83	-	1350	1350	4050	450										
1551	89	320	1350	1350	4050	450										
1551	97	-	1350	1350	0	0										
1551	104	-	1350	1350	1350	150										
1551	111	160	1350	1350	450	150										
1678	48	F	NO	2	YES	54	-	1350	1350	450	150					
1678	85	-	1350	1350	1350	450										
1678	92	-	1350	1350	1350	150										
1817	28	F	NO	1	NO	44	-	1350	1350	450	150					
1817	51	-	1350	1350	1350	450										
1817	63	-	1350	1350	1350	450										

DPO Days post onset of symptoms; S/ECD Spike ectodomain; S/RBD Spike receptor-binding domain; VN Virus neutralization
Supplementary Table 2: Predictive values and likelihood ratios of the ELISA methods as a surrogate for virus neutralizing antibody titer of ≥160.

DPO	Effect	S/ECD ≥1350	Value 95% CI	S/RBD ≥1350	Value 95% CI	S/RBD IgG ≥1350	Value 95% CI	S/RBD IgM ≥450	Value 95% CI
Overall 0-142	PPV	0.52	0.46 to 0.59	0.57	0.50 to 0.63	0.72	0.65 to 0.79	0.38	0.30 to 0.46
	NPV	0.75	0.65 to 0.83	0.87	0.78 to 0.92	0.82	0.75 to 0.87	0.90	0.84 to 0.94
	LR+	1.34	1.61	3.18	2.61	3.72			
	LR-	0.40	0.19	0.26	0.13	0.69			
1-30	PPV	0.92	0.65 to 1.00	0.94	0.72 to 0.99	0.78	0.55 to 0.91	1.00	0.68 to 1.00
	NPV	0.67	0.47 to 0.82	0.80	0.58 to 0.92	0.65	0.43 to 0.82	0.56	0.39 to 0.73
	LR+	9.85	13.43	2.83		-			
	LR-	0.45	0.22	0.44	0.18	0.62			
31-60	PPV	0.79	0.67 to 0.88	0.69	0.57 to 0.78	0.73	0.61 to 0.82	0.90	0.74 to 0.96
	NPV	0.56	0.41 to 0.70	0.72	0.52 to 0.83	0.72	0.55 to 0.84	0.55	0.43 to 0.66
	LR+	1.80	1.56	1.92		6.23			
	LR-	0.38	0.28	0.28	0.17	0.59			
61-90	PPV	0.32	0.23 to 0.43	0.35	0.25 to 0.47	0.58	0.41 to 0.72	0.50	0.31 to 0.69
	NPV	1.00	0.65 to 1.00	1.00	0.74 to 1.00	0.90	0.79 to 0.96	0.78	0.66 to 0.86
	LR+	1.13	1.30	3.20		2.40			
	LR-	0.00	0.00	0.27		0.69			
91-120	PPV	0.52	0.40 to 0.64	0.61	0.48 to 0.73	0.87	0.71 to 0.95	0.80	0.49 to 0.96
	NPV	1.00	0.77 to 1.00	1.00	0.85 to 1.00	0.87	0.74 to 0.94	0.62	0.50 to 0.73
	LR+	1.43	2.05	8.80		5.21			
	LR-	0.00	0.00	0.20		0.79			
>120	PPV	0.43	0.16 to 0.75	0.43	0.16 to 0.75	0.75	0.30 to 0.99	0.00	0.00 to 0.95
	NPV	1.00	0.05 to 1.00	1.00	0.05 to 1.00	1.00	0.51 to 1.00	0.57	0.25 to 0.84
	LR+	1.25	1.25	5.00		0.00			
	LR-	0.00	0.00	0.00		1.25			

DPO Days post onset of symptoms; S/ECD Spike ectodomain; S/RBD Spike receptor-binding domain; PPV Positive predictive value; NPV Negative predictive value; LR+ Positive likelihood ratio; LR- Negative likelihood ratio