The PIT1 gene polymorphisms were associated with chicken growth traits

Qinghua Nie, Meixia Fang, Liang Xie, Min Zhou, Zhangmin Liang, Ziping Luo, Guohuang Wang, Wensen Bi, Canjian Liang, Wei Zhang and Xiquan Zhang*

Address: Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China

Email: Qinghua Nie - nqinghua@scau.edu.cn; Meixia Fang - amg@scau.edu.cn; Liang Xie - amg@scau.edu.cn; Min Zhou - amg@scau.edu.cn; Zhangmin Liang - amg@scau.edu.cn; Ziping Luo - amg@scau.edu.cn; Guohuang Wang - amg@scau.edu.cn; Wensen Bi - amg@scau.edu.cn; Canjian Liang - amg@scau.edu.cn; Wei Zhang - amg@scau.edu.cn; Xiquan Zhang* - xqzhang@scau.edu.cn

* Corresponding author

Abstract

Background: With crucial roles on the differentiation of anterior pituitary and the regulation of the prolactin (PRL), growth hormone (GH) and thyroid-stimulating hormone-β (TSH-β) genes, the chicken PIT1 gene is regarded as a key candidate gene for production traits. In this study, five reported polymorphisms (MR1-MR5) of the PIT1 gene were genotyped in a full sib F2 resource population to evaluate their effects on growth, carcass and fatty traits in chickens.

Results: Marker-trait association analyses showed that, MR1 was significantly associated with shank diameters (SD) at 84 days (P < 0.05), hatch weight (HW) and shank length (SL) at 84 days (P < 0.01), MR2 was significantly associated with BW at 28, 42 days and average daily gain (ADG) at 0–4 weeks (P < 0.05), and MR3 was significantly associated with ADG at 4–8 weeks (P < 0.05). MR4 was associated with SL at 63, 77, 84 days and BW at 84 days (P < 0.05), as well as SD at 77 days (P < 0.01). Significant association was also found of MR5 with BW at 21, 35 days and SD at 63 days (P < 0.05), BW at 28 days and ADG at 0–4 weeks (P < 0.01). Both T allele of MR4 and C allele of MR5 were advantageous for chicken growth. The PIT1 haplotypes were significantly associated with HW (P = 0.0252), BW at 28 days (P = 0.0390) and SD at 56 days (P = 0.0400). No significant association of single SNP and haplotypes with chicken carcass and fatty traits was found (P > 0.05).

Conclusion: Our study found that polymorphisms of PIT1 gene and their haplotypes were associated with chicken growth traits and not with carcass and fatty traits.

Background

As a kind of POU (Pit-Oct-Unc)-domain binding factor, pituitary-specific transcription factor (PIT1, or GHF1, or POU1F1) has been proved to bind and transactivate promoters of growth hormone (GH), prolactin (PRL) and thyroid-stimulating hormone-β (TSH-β) genes [1-3]. Other bioactivities of PIT1 have also been reported, like regulating anterior pituitary development [4,5] and pituitary cell proliferation [6], silencing or delaying adrenarche in human [7], being related to dwarf phenotype in mice.
[8], as well as inducing the differentiation of hepatic progenitor cells into PRL-producing cells [9]. Initially activated under the control of Prophet of PIT1 (PROP-1) gene, PIT1 gene is auto-regulated in expression [10] and its mRNA is present in any cell types of pituitary, whereas PIT1 protein mainly expresses in lactotrophs, somatotrophs and thyrotrophs, which secrete PRL, GH and TSH-β [11].

Until now, PIT1 cDNA has been identified in a variety of species, and previous studies showed that the PIT1 gene comprised 6 exons in mammals and 7 exons in birds and fishes, seen as differences in precursor length [12-14]. The chicken PIT1 cDNA has firstly been isolated and sequenced by Tanaka et al. (1999) [15], and its three isoforms of PIT1*, PIT1β* and PIT1ω* induced by alternative splicing have also been isolated and found to comprise 335, 363, and 327 amino acids, respectively [16]. The alternative splicing of PIT1 gene has also been reported in other species [17,18]. According to the chicken genome sequences released in May of 2006 [19], the chicken PIT1 gene is located at chromosome 1 (GGA1) and spans over 14 kb in length.

Due to its crucial regulatory function and a variety of bioactivities, PIT1 has been regarded as a key candidate gene for production performance. There are indications that variations of PIT1 gene are related to growth, carcass and fatty traits in pig [20-24], growth and carcass traits in cattle [25,26]. In chickens, although a total of 23 single nucleotide polymorphism (SNP) and a 57 bp indel have been recently identified in 2400 bp discrete region of PIT1 gene, their genetic effects on chicken production traits remain unclear [27]. Recently, it has been shown that a non-synonymous SNP at POU domain (A→T, Asn229Ile) is significantly associated with body weight at 8 wk [28].

In this study, five reported polymorphisms of the chicken PIT1 gene were genotyped in a full sib F2 resource population to evaluate their genetic association with chicken growth, carcass and fatty traits were also observed.

Methods

Chicken populations

A full sib F2 resource population as described by Lei et al. (2005) was used in this study [29]. The cross of 9 White Recessive Rock (WRR) males and 9 Chinese Xinghua (X) females and the reciprocal cross of 6 WRR females and 6 X males produced 17 F1 families and 454 F2 full-sib individuals. F2 chickens were raised in floor pens and fed with commercial corn-soybean-based diets that met all NRC requirements. All birds from three generations were genotyped to evaluate the effects of PIT1 variations on chicken production performance. All 57 tested traits were 31 growth traits of HW, BW at 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84 and 90 days, SL at 42, 49, 56, 63, 70, 77, 84 and 90 days, SD at 42, 49, 56, 63, 70, 77 and 84 days, ADG at 0–4 and 4–8 weeks, and 14 carcass traits of head width (HWD), breast width (BWD), body length (BL), breast angle (BA), carcass weight (CW), eviscerated weight with giblet (EWG), eviscerated weight (EW), breast muscle weight (BMW), leg muscle weight (LMW), wing weight (WW), head and neck weight (HNW), Shank and toe weight (STW), heart-liver- proventriculus-gizzard weight (HLPGW) and small intestine length (SIL), as well as 12 fatty traits of subcutaneous fat thickness (SFT), cingulated fat width (CFW), abdominal fat pad weight (AFW), leg muscle colour (LMC), breast muscle colour (BMC), shear force of leg muscle (SFLM), shear force of breast muscle (SBM), leg muscle conductivity (LMCD), breast muscle conductivity (BMCD), water loss rate of muscle (WLRM), transversal area of the leg muscle fibre (TALMF) and transversal area of the breast muscle fibre (TABMF) [29].

Markers and primers

Five reported polymorphisms of the chicken PIT1 gene that could be easily genotyped by either PCR-RFLP or simple PCR were selected as markers to evaluate their effects on chicken production traits. These polymorphisms were a 57 bp indel (MR1) [27] and 4 SNP (MR2-MR5). Four primer pairs of PR1-PR4 were designed and synthesized to amplify specific fragments covering MR1-MR5 (Table 1). The detailed information for these polymorphisms is presented in Table 1.

Table 1: Detail information for MR1-MR5 of the chicken PIT1 gene

Markers	Source1	Variation	Region	Primers (forward/reverse) (5’ → 3’)	Size (bp)2	Enzyme
MR1	Nie et al. 2005	57 bp indel	Intron 2	PR1 (gtcaagggaaattatcttgctac/tgcatgttaatttggctctg)	387 or 330	/
MR2	Rs13905611	C/T	Intron 5	PR2 (ggaccccctctaaacagctctc/ggggaagaattacgggaaggg)	599	TaqI
MR3	Rs13687125	A/G	Intron 5	PR2 (as described above)	599	MspI
MR4	Rs13687127	C/T	Intron 5	PR3 (gggagatttttgcaacattttggagg/ggggaaaacctggcactgct)	442	EcoRI
MR5	Rs13687128	C/T	Exon 6 (I syn)	PR4 (gggagaaacaggttaagggcggctg/tgctagctgttaaggaatc)	483	TaqI

1 MR1 was reported by Nie et al. (2005); MR2-MR5 were released by NCBI with accession number of Rs13905611, Rs13687125Rs13687127, and Rs13687128, respectively. The chromosomal sites for MR1-MR5 were nt 96213503–96213559, nt 96221521, nt 96221553, nt 96222619, and nt 96224228, respectively. 2 indicated length of PCR products.
Genotyping by PCR-RFLP procedure
PCR was performed in 25 µL mixture containing 50 ng of chicken genomic DNA, 1 x PCR buffer, 12.5 pmol of primers (PR1-PR4), 100 µM of each dNTP, 1.5 mM MgCl2, and 1.0 U Taq DNA polymerase (Sangon Biological Engineering Technology Company, Shanghai, China). PCR was run in a Mastercycler gradient (M. J. Research Co Ltd, USA) with the following procedure: 3 min at 94°C, followed by 35 cycles of 30 s at 94°C, 45 s at annealing temperature (58–62°C), 1 min at 72°C, and a final extension of 5 min at 72°C. Genotypes of MR1 were directly observed by 2% agarose gel electrophoresis with PCR product amplified by PR1. PCR products of PR2-PR4 were further digested at 37°C overnight with TaqI, MspI, EcoRI and TasI (Table 1). The digestion mixture contained 8 µL PCR products, 1 x digestion buffer, and 3.0 U of each enzyme. Genotypes of MR2-MR5 were finally determined in TFM-40 Ultraviolet Transilluminator (UVP Company, USA) after 2.0% agarose gel electrophoresis of digestion mixture for half an hour.

Statistical analyses
Haplotype inference
For 454 F2 individuals, genotype data of MR1-MR5 were used to infer haplotypes with PHASE 2.0 software [30].

Marker-trait association analyses
Marker-trait association analyses were performed with SAS GLM procedure (SAS Institute, 1996) and the genetic effects were analyzed using the following mixed model:

\[Y = \mu + G + D + H + S + e \]

where Y is a trait observation, \(\mu \) is the overall population mean, G is the fixed effect of genotype, D is the random effect of dam, H is the fixed effect of hatch, S is the fixed effect of sex (male or female), and e is the residual random error. With the above model, association of each of MR1-MR5 and their haplotypes with the 57 production traits was performed to evaluate its genetic effect on chicken growth, body composition and fat deposition.

Results
Genotype and haplotype inference
For each of MR1-MR5, three genotypes were found in the total population. Haplotypes inferred from genotype data showed that a total of 13 haplotypes were found. These haplotypes contained two major ones of H1 ("DTGCC", 74.56% or 671 of 900) and H2 ("ITGTT", 12.89% or 116 of 900), six minor ones of H3 ("ITACC", 2.66% or 24 of 900), H4 ("ITGCC", 2.33% or 21 of 900), H5 ("ICGCC", 2.33% or 21 of 900), H6 ("ITGTC", 1.88% or 17 of 900), H7 ("DTGTC", 1.00% or 9 of 900) and H7 ("DCGCC", 1.00% or 9 of 900) with frequencies between 1% and 5%, as well as five rare ones (H9-H13) with frequencies lower than 1%.

Association of single SNP with chicken production traits
Results showed that MR1 was significantly associated with SD at 84 days (P < 0.05) and highly significantly associated with HW and SL at 84 days (P < 0.01), and MR2 was significantly associated with BW at 28, 42 days and ADG at 0–4 weeks (P < 0.05). MR3 was significantly associated with SD at 77 days (P < 0.01), and T rather than C was advantageous for chicken growth (Table 2). MR4 was significantly associated with SL at 63, 77, 84 days and BW at 84 days (P < 0.05) and highly significantly associated with BW at 77 days (P < 0.01), and C allele was advantageous for chicken growth (Table 3).

None of these polymorphisms was significantly associated with any of chicken carcass and fatty traits (P > 0.05).

Association of PIT1 haplotypes with chicken production traits
As far as haplotypes were concerned, a total of 428 individuals with 10 diplotypes (271 of H1H1, 62 of H1H2, 24 of H1H3, 15 of H1H6, 13 of H1H4, 10 of H1H5, 9 of H2H5, 8 of H2H4, 8 of H2H6, 8 of H2H7) were used in association analysis. Results showed that MR1-MR5 hap-
lototypes were significantly associated with growth traits of HW (P = 0.0252), BW at 28 days (P = 0.0390) and SD at 56 days (P = 0.0400). Among ten diplotypes, H2H4 had much higher value of HW (mean = 30.2), BW at 28 days (mean = 352.6) and SD at 56 days (mean = 9.24) compared with other ones. Nevertheless, the PIT1 haplotypes were not significantly associated with any of chicken carcass and fatty traits (P > 0.05).

It was concluded that polymorphisms of PIT1 gene were associated with chicken growth traits, but not with carcass and fatty traits.

Discussion and Conclusion

In this study, polymorphisms of the PIT1 gene were related to chicken growth traits. Until now, associations of the PIT1 gene with growth traits were reported in human [31], pig [19-23] and cattle [25,26]. In chicken, a non-synonymous SNP (Asn299Ile) in exon 6 of the PIT1 gene was significantly associated with body weight at 8 wk, and its allele frequencies differed significantly between meat-type and lay-type chickens [28]. Another SNP in exon 6 (MR5) was associated with ADG at 0–4 weeks, BW at 21, 28, 35 and 42 days, and SD at 63 days, respectively. Otherwise, MR1 and MR4 seemed to have higher effects on chicken growth in middle stage, as they were associated with SL at 63, 77 and 84 days, and BW at 84 days. As far as different genotypes were compared, both T allele of MR4 and C allele of MR5 were advantageous for chicken growth.

It was further indicated that polymorphisms of the PIT1 gene affected chicken growth at different stages. MR2, MR3 and MR5 seemed to have higher effects on chicken early growth, as they were associated with ADG at 0–4 and 4–8 weeks, BW at 21, 28, 35 and 42 days, and SD at 63 days, respectively. Otherwise, MR1 and MR4 seemed to have higher effects on chicken growth in middle stage, as they were associated with SL at 63, 77 and 84 days, and BW at 84 days. As far as different genotypes were compared, both T allele of MR4 and C allele of MR5 were advantageous for chicken growth.

It was concluded that polymorphisms of PIT1 gene and their haplotypes were associated with chicken growth traits.

Authors’ contributions

QN analyzed the data and drafted the manuscript. MF, XL and MZ participated in the data analyses. Both of ZL, GW, WB, CL and WZ carried out the genotyping studies. QN and XZ conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Acknowledgements

This work was funded by projects under the Major State Basic Research Development Program, China, project no. 2006CB102100, and the National Natural Science Foundation of China (project number: 30600429). Many thanks were given to Dr. Menghua Li (MTT, Biotechnology and Food Research, Jokioinen, Finland) for his good suggestions and comments on this manuscript.

References

1. Bodner M, Castrillo JL, Theill LE, Deerinck T, Ellisman M, Karin M: The pituitary-specific transcription factor GHF-I is a homeobox-containing protein. Cell 1988, 55:505-518.
2. Cohen LE, Wondisford FE, Radovick S: Role of Pit-1 in the gene expression of growth hormone, prolactin, and thyrotropin. Endocrinol Metab Clin North Am 1996, 25:523-540.

3. Miyai S, Yoshimura S, Iwasaki Y, Takekoshi S, Lloyd RV, Osamura RY: Induction of GH, PRL, and TSH beta mRNA by transfection of Pit-1 in a human pituitary adenoma-derived cell line. Cell Tissue Res 2005, 322:269-277.

4. de la Hoya M, Vila V, Jimenez O, Castrillo JL: Anterior pituitary development and Pit-1/GHF-1 transcription factor. Cell Mol Life Sci 1998, 54:1059-1066.

5. Castrillo JL, Theill LE, Karin M: Function of the homeodomain protein GHF1 in pituitary cell proliferation. Science 1991, 253:197-199.

6. Camper SA, Saunders TL, Katz RW, Reeves RH: The Pit-1 transcription factor gene is a candidate for the murine Snell dwarf mutation. Genomics 1990, 8:586-590.

7. Yamada S, Hata J, Yamashita S: Molecular cloning of fish Pit-1 cDNA and its functional binding to promoter of gene expressed in the pituitary. J Biol Chem 1993, 268:24361-24366.

8. Tanaka M, Yamamoto I, Ichikubo T, Wakiya M, Hoshino S, Nakashima K: cDNA cloning and developmental alterations in expression of the two Pit-1/GHF-1 transcription factors in the chicken pituitary. Gen Comp Endocrinol 1999, 114:441-448.

9. Van As P, Buys N, Onagbesan OM, Decuyper E: Complementary DNA cloning and ontogenic expression of pituitary-specific transcription factor of chickens (Gallus domesticus) from the pituitary gland. Gen Comp Endocrinol 2000, 120:127-136.

10. Morris AE, Kloss B, McChesney RE, Bancroft C, Chasin LA: Identification of variants of the human POU1F1 gene associated with growth rate. Anim Genet 2004, 35:344-346.

11. Lee EJ, Russell T, Hurley L, Jameson JL: Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 1990, 347:528-533.

12. Konzak KE, Moore DD: Functional isomers of Pit-1 generated by alternative messenger RNA splicing. Mol Endocrinol 1992, 6:241-247.

13. Sanchezova K, Vasicek D, Peskovicova D, Bulla J, Kubek A: Effect of genetic variability of the porcine pituitary-specific transcription factor (PIT-1) on carcass traits in pigs. Anim Genet 1999, 30:313-315.

14. Brunsch C, Steinruck I, Reinecke P, Bieniek J: Analysis of associations of Pit1 genotypes with growth, meat quality and carcass composition traits in pigs. J Appl Genet 2002, 43:85-91.

15. Song C, Guo B, Teng Y, Wang X, Wang Z, Li Q, Mi H, Jing R, Mao J: Mspl polymorphisms in the 3rd intron of the swine POU1F1 gene and their associations with growth performance. J Appl Genet 2005, 46:285-289.

16. Franco MM, Antunes RC, Silva HD, Goulart LR: Association of PIT1, GH and GHRH polymorphisms with performance and carcass traits in Landrace pigs. J Appl Genet 2005, 46:195-200.

17. Zhao Q, Davis ME, Hines HC: Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle. J Anim Sci 2004, 82:2229-2233.

18. Xue K, Chen H, Wang S, Cai X, Liu B, Zhang CF, Lei CZ, Wang XZ, Wang YM, Niu H: Effect of genetic variations of the POUIF1 gene on growth traits of Nanyang cattle. Yi Chuan Xue Bao 2006, 33:901-907.

19. Njie Q, Lei M, Ouyang J, Zeng H, Yang G, Zhang X: Identification and characterization of single nucleotide polymorphisms in 12 chicken growth-correlated genes by denaturing high performance liquid chromatography. Genet Sel Evol 2005, 37:339-360.

20. Jiang R, Li J, Qu L, Li H, Yang N: A novel single nucleotide polymorphism in the chicken pituitary-specific transcription factor (POU1F1) gene associated with growth rate. Anim Genet 2004, 35:344-346.

21. Lea M, Nie Q, Peng X, Zhang D, Zhang X: Single nucleotide polymorphisms of the chicken insulin-like factor binding protein 2 gene associated with chicken growth and carcass traits. Poult Sci 2005, 84:1191-1198.

22. Song C, Gao B, Teng Y, Wang X, Wang Z, Li Q, Mi H, Jing R, Mao J: Mspl polymorphisms in the 3rd intron of the swine POUIF1 gene and their associations with growth performance. J Appl Genet 2005, 46:285-289.