Channel Estimation for Opportunistic Spectrum Access: Uniform and Random Sensing

Quanquan Liang, Mingyan Liu, Member, IEEE,

Abstract

The knowledge of channel statistics can be very helpful in making sound opportunistic spectrum access decisions. It is therefore desirable to be able to efficiently and accurately estimate channel statistics. In this paper we study the problem of optimally placing sensing times over a time window so as to get the best estimate on the parameters of an on-off renewal channel. We are particularly interested in a sparse sensing regime with a small number of samples relative to the time window size. Using Fisher information as a measure, we analytically derive the best and worst sensing sequences under a sparsity condition. We also present a way to derive the best/worst sequences without this condition using a dynamic programming approach. In both cases the worst turns out to be the uniform sensing sequence, where sensing times are evenly spaced within the window. With these results we argue that without a priori knowledge, a robust sensing strategy should be a randomized strategy. We then compare different random schemes using a family of distributions generated by the circular β ensemble, and propose an adaptive sensing scheme to effectively track time-varying channel parameters. We further discuss the applicability of compressive sensing for this problem.

Index Terms

Spectrum sensing, channel estimation, Fisher information, random sensing, sparse sensing, uniform sensing.

Q. Liang and M. Liu are with Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122. Email: liangq@umich.edu, mingyan@eecs.umich.edu

An earlier version of this paper appeared at the Information Theory and Application Workshop (ITA), UC San Diego, CA, February 2010.
I. INTRODUCTION

Recent advances in software defined radio and cognitive radio [1] have given wireless devices greater ability and opportunity to dynamically access spectrum, thereby potentially significantly improving spectrum efficiency and user performance [2], [3]. To be able to fully utilize spectrum availability (either as a secondary user seeking opportunities of idle periods in the presence of primary users, or as one of many peer users in a multi-user system seeking channels with the best condition), a key enabling ingredient in dynamic spectrum access is high quality channel sensing that allows the user to obtain accurate real-time information on the condition of wireless channels.

Spectrum sensing is often studied in two contexts: at the physical layer and at the MAC layer. Physical layer spectrum sensing typically focuses on the detection of instantaneous primary user signals. Several detection methods, such as matched filter detection, energy detection and feature detection, have been proposed for cognitive radios [4]. MAC layer spectrum sensing [5], [6] is more of a resource allocation issue, where we are concerned with the scheduling problem of when to sense the channel and the estimation problem of extracting statistical properties of the random variation in the channel, assuming that when we decide to sense the physical layer can provide sufficiently accurate results on instantaneous channel availability. Such channel statistics can be very helpful in making good channel access decisions, and most studies on opportunistic spectrum access assume such knowledge.

In this paper we focus on the scheduling of channel sensing and study the effect different scheduling algorithms have on the accuracy of the resulting estimate we obtain on channel parameters. In particular, we are interested in the sparse sensing/sampling regime where we can use only a limited number of measurements over a given period of time. The goal is to decide how these limited number of measurements should be scheduled so as to minimize the estimation error within the maximum likelihood (ML) estimator framework. Throughout the paper the terms sensing and sampling will be used interchangeably.

MAC layer channel estimation within the context of cognitive radios has been studied in recent years. Below we review those most relevant to the present paper. Kim and Shin [5] introduced a ML estimator for renewal channels using a uniform sampling/sensing scheme where samples of the channel are taken at regular time intervals. A more accurate, but also much
more computationally costly Bayesian estimator was introduced in [8], again based on uniform sensing. [9] analyzed the relationship between estimation accuracy, number of samples taken and the channel state transition probabilities by using the sampling and estimation framework of [5] and focusing on Markovian channels. [10] proposed a Hidden Markov Model (HMM) based channel status predictor using reinforcement learning techniques. This predictor predicts next channel state based on past information obtained through uniformly sampling the channel. [11] presented a channel estimation technique based on wavelet transform followed by filtering. This method relies on dense sampling of the channel.

In most of the above cited work, the focus is on the estimation problem given (sufficiently dense) uniform sampling of the channel, i.e., with equal time periods between successive samples. This scheme will be referred to as uniform sensing in the remainder of this paper. By contrast, sampling schemes where time intervals between successive samples are drawn from a certain probability distribution will be referred to as random sensing throughout the paper. We observe that due to constraints on time, energy, memory and other resources, a user may wish to perform channel sensing at much lower frequencies while still hoping for good estimates. This could be relevant for instance in cases where a user wants to track the channel condition in between active data communication, or where a user needs to track a large number of different channels. It is this sparse sampling scenario that we will focus on in this study, and the goal is to judiciously schedule these limited number of samples.

Our main contributions are summarized as follows.

- We demonstrate that when sampling is done sparsely, random sensing significantly outperforms uniform sensing.
- In the special case of exponentially distributed on/off durations, we derive tight lower and upper bounds on the Fisher information under a sparsity condition, while obtaining the best and worst possible sampling schemes measured by the Fisher information. We show that uniform sensing is the worst one can do; any deviation from it improves the estimation accuracy.
- We present a dynamic programming approach to obtain the best and worst sampling sequences in the more general case without the sparsity condition.
- We show that under the same channel statistics and the same average sampling interval (or frequency), a random sensing scheme affects the estimation accuracy through the higher-
order central moments of the sampling intervals, and use the circular β ensemble to study a family of distributions.

- We present an adaptive random sensing scheme that can very effectively track time-varying channel parameters, and is shown to outperform its counterpart using uniform sensing.

The remainder of this paper is organized as follows: Section II presents the channel models and Section III gives the detail of the ML estimator. Then in Section IV we present how the sampling scheme affects the estimation performance; the best and worst sensing sequences with and without a sparse sampling condition are obtained. In Section V we use a family of distributions generated by the circular β ensemble to examine different random sampling schemes. Section VI presents an adaptive random sensing scheme, and Section VII discusses the applicability of compressive sensing in this problem. Section VIII concludes the paper.

II. THE CHANNEL MODEL

In this paper we will limit our attention to MAC layer spectrum sensing as mentioned in the introduction. Within this context, the channel state perceived by a secondary user is represented by a binary random variable. This is a model commonly used in a large volume of literature, from channel estimation (e.g., [5], [9]) to opportunistic spectrum access (e.g., [6]) to spectrum measurement (e.g., [12]). Specifically, let $Z(t)$ denote the state of the channel at time t, such that

$$
\begin{align*}
Z(t) &= 1 \quad \text{if the channel is sensed busy at time } t, \\
Z(t) &= 0 \quad \text{otherwise}.
\end{align*}
$$

The advantage of such a model is its simplicity and tractability in many instances. The weakness lies in the fact that the actual energy present or detected in the channel is hardly binary. The raw channel measurement data will have to go through a binary hypothesis test (e.g., via thresholding) to be reduced to the above form, a process that comes with probabilities of error. Consequently, the channel is sensed to be in either state with a detection probability and a false alarm probability.

In this paper our focus is on extracting and estimating essential statistics given a sequence of measured channel states (0s and 1s) rather than the binary detection of channel state (deciding between 0 and 1 given the energy reading). For this purpose, we will assume that the channel state measurements are error-free. If we have side information on what the detection and false
alarm probabilities are, then the estimation results may be adjusted accordingly to utilize such knowledge.

The channel state process $Z(t)$ is assumed to be a continuous-time alternating renewal process, alternating between on/busy (state “1”) and off/idle (state “0”), an illustration is given in Figure 1. Typically, it is assumed that a secondary user can utilize the channel only when it is sensed to be in the off states (i.e., when the channel is idle or the primary user is absent). When the channel state transitions to the on state, the secondary user is required to vacate the channel so as not to interfere with the primary user (also referred to as the spectrum underlay paradigm, see e.g., [13]).

This random process is completely defined by two probability density functions $f_1(t)$ and $f_0(t)$, $t > 0$, i.e., the probability distribution of the sojourn times of the on periods (denoted by the random variable T_1) and the off periods (denoted by the random variable T_0), respectively. The channel utilization u is defined as

$$u = \frac{E[T_1]}{E[T_1] + E[T_0]},$$

which is also the average fraction of time the channel is occupied or busy. By the definition of a renewal process, T_1 and T_0 are independent and all on (off) periods are independently and identically distributed. It’s worth pointing out that the widely used Gilbert-Elliot model (a two-state Markov chain) is a special case of the alternating renewal process where the on (off) periods are exponentially (in the case of continuous time) or geometrically (in the case of discrete time) distributed.

![Channel model: alternating renewal process with on and off states](image)

Fig. 1. Channel model: alternating renewal process with on and off states

III. Maximum Likelihood (ML) Based Channel Estimation

We proceed to describe the maximum likelihood (ML) estimator [14] we will use to estimate channel parameters from a sequence of channel state observations.
Recall that the channel state is assumed to follow an alternating renewal process. Such a process is completely characterized by the set of conditional probabilities $P_{ij} (\Delta t)$, $i, j \in \{0, 1\}$, $\Delta t \geq 0$, defined as the probability that given i was observed Δt time units ago, j is now observed. This quantity is also commonly known as the semi-Markov kernel of an alternating renewal process [15]. Assuming the process is in equilibrium, standard results from renewal theory [15] suggest the following Laplace transforms of the above transition probabilities:

$$
P_{00}^*(s) = \frac{1}{s} - \frac{\{1 - f_1^*(s)\} \{1 - f_0^*(s)\}}{E[T_0] s^2 \{1 - f_1^*(s)f_0^*(s)\}},$$

$$
P_{01}^*(s) = \frac{\{1 - f_1^*(s)\} \{1 - f_0^*(s)\}}{E[T_0] s^2 \{1 - f_1^*(s)f_0^*(s)\}},$$

$$
P_{10}^*(s) = \frac{\{1 - f_1^*(s)\} \{1 - f_0^*(s)\}}{E[T_1] s^2 \{1 - f_1^*(s)f_0^*(s)\}},$$

$$
P_{11}^*(s) = \frac{1}{s} - \frac{\{1 - f_1^*(s)\} \{1 - f_0^*(s)\}}{E[T_1] s^2 \{1 - f_1^*(s)f_0^*(s)\}},$$

(2)

where $f_1^*(s)$ and $f_0^*(s)$ are the Laplace transforms of $f_1(t)$ and $f_0(t)$, respectively. We see that these are completely defined by the probability density functions $f_1(t)$ and $f_0(t)$. The above set of equations are very useful in recovering the time-domain expressions of the semi-Markov kernel (often times this is the only viable method). For example, in the special case where the channel has exponentially distributed on/off periods, we have

$$
\begin{align*}
 f_1(t) &= \theta_1 e^{-\theta_1 t} \\
 f_0(t) &= \theta_0 e^{-\theta_0 t}.
\end{align*}
$$

(3)

Their corresponding Laplace transforms and expectations are

$$
\begin{align*}
 f_1^*(s) &= \theta_1/(s + \theta_1) \\
 f_0^*(s) &= \theta_0/(s + \theta_0),
\end{align*}
$$

$$
\begin{align*}
 E[T_1] &= 1/\theta_1 \\
 E[T_0] &= 1/\theta_0.
\end{align*}
$$

Substituting the above expressions into (2) followed by an inverse Laplace transform we get the state transition probability as follows:

$$
P_{ij}(\Delta t) = u^j (1 - u)^{1-j} + (-1)^j t_0^{-j} u^{1-i} (1 - u)^i e^{-(\theta_0 + \theta_1)\Delta t},$$

(4)

where $u = \frac{E[T_1]}{E[T_1] + E[T_0]}$, as defined earlier.

In this paper we consider the following estimation problem. Assume that the on/off periods are given by certain known distribution functions $f_0(t)$ and $f_1(t)$ but with unknown parameters. Suppose we obtain m samples $\{z_1, z_2, \cdots, z_m\}$, taken at sampling times $\{t_1, t_2, \cdots, t_m\}$, respectively. We wish to use these samples to estimate the unknown parameters.
First note that the channel utilization factor u can be estimated through the sample mean of the m measurements as follows
\[\hat{u} = \frac{1}{m} \sum_{i=1}^{m} z_i . \] (5)

Let $\bar{\theta}$ be the unknown parameters of the on/off distributions: $\bar{\theta} = \{\bar{\theta}_1, \bar{\theta}_0\}$. Note that in general $\bar{\theta}_1$ and $\bar{\theta}_0$ are vectors themselves. Then the likelihood function is given by
\[L(\bar{\theta}) = Pr\{Z; \bar{\theta}\} = Pr\{Z_{t_m} = z_m, Z_{t_{m-1}} = z_{m-1}, Z_{t_{m-2}} = z_{m-2}, \ldots, Z_{t_1} = z_1; \bar{\theta}\} . \] (6)

The idea of ML estimation is to find the value of $\bar{\theta}$ that maximizes the log likelihood function $\ln L(\bar{\theta})$, i.e., the estimate $\hat{\bar{\theta}}$ is such that $\frac{\partial \ln L(\bar{\theta})}{\partial \bar{\theta}}|_{\hat{\bar{\theta}}} = 0$. This method has been used extensively in the literature [16]–[20]. For a fixed set of data and underlying probability model, the ML estimator selects the parameter value that makes the data “most likely” among all possible choices. Under certain (fairly weak) regularity conditions the ML estimator is asymptotically optimal [21].

The question we wish to investigate is what impact the selection of the sampling time sequence $\{t_1, t_2, \cdots, t_m\}$ has on the performance of this estimator, given a limited number of samples m. Specifically, we question whether random sampling is a better way of sensing the channel than uniform sampling where the measurement samples are taken at regular time intervals.

For the remainder of our analysis we will limit our attention to the case where the channel on/off durations are given by exponential distributions. This is for both mathematical tractability and simplicity of presentation. We explore other distributions in our numerical experiments.

Since the exponential distribution is defined by a single parameter, we have now $\bar{\theta} = \{\theta_1, \theta_0\}$, where θ_1 and θ_0 are the two unknown scalar parameters of the on and off exponential distributions, respectively. Using the memoryless property, the likelihood function becomes
\[L(\bar{\theta}) = Pr\{Z; \bar{\theta}\} = Pr\{Z_{t_1} = z_1; \bar{\theta}\} \cdot \prod_{i=2}^{m} Pr\{Z_{t_i} = z_i | Z_{t_{i-1}} = z_{i-1}; \bar{\theta}\} = Pr\{Z_{t_1} = z_1; \bar{\theta}\} \cdot \prod_{i=2}^{m} P_{z_{i-1} z_i}(\Delta t_i; \bar{\theta}) . \] (7)
where $\Delta t_i = t_i - t_{i-1}$. The first quantity on the right is taken to be

$$Pr\{z_{t_i} = z_1; \theta\} = u^{z_1}(1 - u)^{1-z_1}. \quad (8)$$

That is, the probability of finding the channel in a particular state (LHS of Eqn (8)) is taken to be the stationary distribution given by the RHS. This choice is justified by assuming that the channel is in equilibrium.

The second quantity $P_{z_{t_i-1}z_i}(\Delta t_i; \bar{\theta})$ is given in Eqn (4). Combining these two quantities, we have

$$L(\theta_0, \theta_1) = L(\bar{\theta}) = u^{z_1}(1 - u)^{1-z_1} \prod_{i=2}^{m} (u^{z_i}(1 - u)^{1-z_i} + (-1)^{z_i}z_i - 1 u^{1-z_i} (1 - u)^{z_i-1} e^{-\theta_0 \Delta t_i/u}). \quad (9)$$

The estimates for the parameters are found by solving

$$\begin{cases} \frac{\partial \ln L(\theta_0, \theta_1)}{\partial \theta_0} = 0 \\ \frac{\partial \ln L(\theta_0, \theta_1)}{\partial \theta_1} = 0. \end{cases} \quad (10)$$

Technically, to get the estimates for both θ_0 and θ_1 one needs to solve the above two equations simultaneously. This however proves to be computationally complex and analytically intractable. Instead, we adopt the following estimation procedure. We first estimate u using Eqn (5), and take $\theta_1 = \frac{(1-u)\theta_0}{u}$. Due to the exponential assumption, it can be shown that this estimate of u is unbiased regardless of the sequence $\{t_1, \cdots, t_m\}$ as long as it is determined offline. The likelihood function (9) can then be re-written as

$$L(\theta_0) = u^{z_1}(1 - u)^{1-z_1} \prod_{i=2}^{m} (u^{z_i}(1 - u)^{1-z_i} + (-1)^{z_i}z_i - 1 u^{1-z_i} (1 - u)^{z_i-1} e^{-\theta_0 \Delta t_i/u}). \quad (11)$$

The estimation of θ_0 is then derived by solving the equation $\frac{\partial \ln L(\theta_0)}{\partial \theta_0} = 0$.

In our analysis, we will use this procedure by treating u as a known constant and solely focus on the estimation of θ_0, with the understanding that u is separately and unbiasedly estimated, and once we have the estimate for θ_0 we have the estimate for θ_1. It has to be noted that this procedure is in general not equivalent to solving (10) simultaneously. However, we have found this to be a very good approximation, computationally feasible, and much more amenable to analysis.
IV. BEST AND WORST SAMPLING SEQUENCES

The goal of this study is to judiciously schedule a very limited number of sampling times so that the estimation accuracy is least affected. We first argue intuitively why the commonly used uniform sampling does not perform well when the number of samples allowed is limited. This motivates us to look for better sampling schemes. We then present a precise analysis through the use of Fisher information, in the case of exponential on/off distributions. In particular, we will show that using this measure, under a certain sparsity condition, uniform sensing is the *worst* schedule in terms of its estimation accuracy. We also derive an upper bound on the Fisher information as well as the sampling sequence achieving this upper bound. These provide us with useful benchmarks to assess any arbitrary sampling sequence. We then present a dynamic programming approach to finding the best and worst sampling sequence without the sparsity condition, which provides a further bound on how well any sampling sequence can be expected to perform.

A. An intuitive explanation

Uniform sensing, where samples are taken at constant time intervals, is a natural, easy-to-implement, and easy-to-analyze scheme. Specifically, with the on/off durations being exponential the likelihood function has a particularly simple form; there is also a closed-form solution to the maximization of the log likelihood function, see e.g., [5]. However, when sensing is done sparsely, certain problems arise. One of the first things to note is that since there is no variation across sampling intervals under uniform sensing, the uniform interval in general needs to be upper-bounded in order to catch potential channel state changes that occur over small intervals\(^1\). This bound cannot be guaranteed under sparse sensing. If sensing is done randomly, then even if the average sampling interval is large, there can be significant probability for sufficiently small sampling intervals to exist in any realization of the sampling time sequence \(\{t_1, t_2, \cdots, t_m\}\).

We show in Figure 2 a comparison between uniform sensing and random sensing where the sensing times are randomly placed using a uniform distribution\(^2\) within a window of 5000 time units.

\(^1\)One such upper bound was proposed in [5].

\(^2\)Here uniform distribution refers to the sampling times being randomly placed within the window following a uniform distribution, not to be confused with uniform sensing where sampling intervals are a constant.
The on/off periods are exponentially distributed with parameters $E[T_0] = 2$, $E[T_1] = 1$ time units, respectively. The figure shows the estimated value of $E[T_0]$ as a function of the number of samples taken within the window of 5000. We see that random sensing outperforms uniform sensing, and significantly so when m is small.

![Figure 2. Estimation accuracy: uniform sensing vs. random sensing](image)

The key to the increased accuracy is not so much that we used randomly generated sensing times as is the fact that a randomly generated sequence contains significantly more variability in its sampling intervals. In this sense a sequence does not have to be randomly generated; as long as it contains sufficient variability, estimation accuracy can be improved. Random generation is an easy and more systematic way of obtaining such a sequence.

To see why this variability is important when sampling is sparse, consider the transition probabilities $P_{ij}(\Delta t)$, $i, j \in \{0, 1\}$. As shown in the previous section, these probabilities completely define the likelihood function. They approach the stationary probabilities as Δt increases. For instance, we have $P_{01}(\Delta t) \to \frac{E[T_1]}{E[T_1]+E[T_0]} = u$ as $\Delta t \to \infty$, and so on. This stationary quantity represents the average fraction of time the channel is busy, which contains little direct information on the average length of a busy period, the parameter we are trying to estimate. Depending on the mixing time of the underlying renewal process, this convergence can occur rather quickly. What this means is that if sampling is sparsely done, then these transition probabilities will become constant-like (i.e., approaching the stationary value). Loosely speaking, this means that the samples are of a similar quality, each providing little additional information. This also in
turn causes the likelihood function to be constant-like, making it difficult for the ML estimator to produce accurate estimates [14]. Interestingly, in a similar spirit but for a different problem, [7] studied an information retrieval problem where sensors are queried for data and they may be active or inactive. It was shown that if the active sensors are sparse, then randomly accessing them outperforms periodic (or uniform) schedules.

B. Fisher information and preliminaries

We now analyze this notion of information content more formally via a measure known as the Fisher information [22]. For the likelihood function given in Eqn (11), the Fisher information is defined as:

$$I(\theta_0) = -E\left[\frac{\partial^2 \ln L(\theta_0)}{\partial \theta_0^2}\right].$$ (12)

The Fisher information is a measure of the amount of information an observable random variable conveys about an unknown parameter. This measure of information is particularly useful when comparing two observation methods of random processes (see e.g., [23]). The precision to which we can estimate θ_0 is fundamentally limited by the Fisher information of the likelihood function.

Due to the product form of the likelihood function, we have

$$I(\theta_0) = -E\left[\sum_{i=2}^{m} \frac{\partial^2 \ln[\alpha_i + \beta_i e^{-\theta_0 \Delta t_i / u}]}{\partial \theta_0^2}\right].$$

$$= \sum_{i=2}^{m} \frac{\Delta t_i^2}{u^2} E\left[\frac{-\alpha_i \beta_i e^{-\theta_0 \Delta t_i / u}}{(\alpha_i + \beta_i e^{-\theta_0 \Delta t_i / u})^2}\right],$$ (13)

where $\alpha_i = u z_i (1 - u)^{1-z_i}$ and $\beta_i = (-1)^{z_i+z_i-1} u^{1-z_i-1} (1 - u)^{z_i-1}$. Define:

$$g(\Delta t_i; \theta_0) = \frac{\Delta t_i^2}{u^2} E\left[\frac{-\alpha_i \beta_i e^{-\theta_0 \Delta t_i / u}}{(\alpha_i + \beta_i e^{-\theta_0 \Delta t_i / u})^2}\right],$$ (14)

so that the Fisher information can be simply written as $I(\theta_0) = \sum_{i=2}^{m} g(\Delta t_i)$. The function $g(\cdot)$ will be referred to as the Fisher function in our discussion. Note that $g(\cdot)$ is a function of both Δt_i and θ_0. However, we will suppress θ_0 from the argument and write it simply as $g(\Delta t)$. This is because our analysis focuses on how this function behaves as we select different Δt (the sampling interval) while holding θ_0 constant. Note that the first term in Eqn (11) does not appear in the above expression. This is because this first term is only a function of u (see Eqn (8)), which is separately estimated using Eqn (5) and not viewed as a function of θ_0. Therefore the term disappears after the differentiation.
The expectation on the right-hand side of (13) can be calculated by considering all four possibilities for the pair \((z_{i-1}, z_i)\), i.e., (0, 0), (0, 1), (1, 0), and (1, 1). Using Eqn (4), we obtain the transition probability of each case to be \((1-u)P_{00}(\Delta t), (1-u)P_{01}(\Delta t), uP_{10}(\Delta t)\) and \(uP_{11}(\Delta t)\), respectively. We can therefore calculate the Fisher function as follows:

\[
g(\Delta t) = \frac{\Delta t^2}{u^2}e^{-\theta_0\Delta t/u} - \frac{u(1-u)^2}{(1-u)+ue^{-\theta_0\Delta t/u}} - \frac{u^2(1-u)}{u+(1-u)e^{-\theta_0\Delta t/u}}.
\]

Below we show that under a certain sparsity condition on the sampling rate, the Fisher function is strictly convex, and that the Fisher information is minimized when uniform sampling is used. We begin by introducing this sparsity condition.

Condition 1: (Sparsity condition) Let \(\alpha = \max\{2 + \sqrt{2}, \ln\left(\frac{1-u}{u}\right), \ln\left(\frac{u}{1-u}\right)\}\). This condition requires that \(\Delta t > \frac{\alpha u}{\theta_0}\).

Taking \(\Delta t\) to be the time between two consecutive sampling points, the above condition states that these two points cannot be too close together with respect to the average off duration \((1/\theta_0)\) and the channel utilization \(u\).

Lemma 1: The Fisher function \(g(\Delta t)\) given in Eqn (15) is strictly convex under Condition \(\|\) (i.e., for \(\Delta t > \alpha u/\theta_0\)).

The proof of this lemma can be found in the Appendix. Using this lemma we next derive tight lower and upper bounds of the Fisher information.

C. A tight lower bound on the Fisher information

Lemma 2: For any \(n \in \mathbb{N}, n \geq 1, T \in \mathbb{R}, T > (n+1)\alpha u/\theta_0, \) and \(\alpha u/\theta_0 < \Delta t < T - n\alpha u/\theta_0,\) the function \(G(\Delta t) = ng\left(\frac{T-\Delta t}{n}\right) + g(\Delta t)\) has a minimum of \((n+1)g\left(\frac{T}{n+1}\right)\) attained at \(\Delta t = \frac{T}{n+1}\).

Proof: Setting the first derivative of \(G\) to zero and solving for \(\Delta t\) results in solving the equation \(g'(\Delta t) = g'(\frac{T-\Delta t}{n})\). Since the arguments on both side satisfy Condition 1, by the assumption of the lemma, \(g\) is strictly convex according to Lemma 1 and \(g'\) is a strictly monotonic function. Therefore there exists a unique solution within the range of \((\alpha u/\theta_0, T - n\alpha u/\theta_0)\) to this equation at \(\Delta t = \frac{T}{n+1}\).

Next we calculate the second derivative of \(G\) at this point. Since \(G''(\Delta t) = g''(\Delta t) + \frac{1}{n}g''\left(\frac{T-\Delta t}{n}\right)\), we have \(G''\left(\frac{T}{n+1}\right) = (1+\frac{1}{n})g''\left(\frac{T}{n+1}\right)\). Since \(T > (n+1)\alpha u/\theta_0,\) \(g\) is convex at this
stationary point by Lemma 1. Hence G is convex at this point and it is thus a global minimum within the range $(\alpha u/\theta_0, T - n\alpha u/\theta_0)$; the minimum value is $(n + 1)g(T/(n + 1))$, completing the proof.

Theorem 1: Consider a period of time $[0, T]$, in which we wish to schedule $m \geq 3$ sampling points, including one at time 0 and one at time T. Denote the sequence of time spacings between these samples as $\Delta t = [\Delta t_2, \Delta t_3, \ldots, \Delta t_m]$, where $\sum_{i=2}^{m} \Delta t_i = T$. For a given sequence Δt, define the Fisher information $I(\theta_0)$ as in Eqn (13) and rewrite it as $I(\theta_0; \Delta t)$ to emphasize its dependence on Δt. Assuming $T > (m + 1)\alpha u/\theta_0$, then we have

$$\min_{\Delta t \in A_m} I(\theta_0; \Delta t) = (m - 1)g(T/(m - 1)),$$

where $A_m = \{\Delta t_i : \sum_{i=2}^{m} \Delta t_i = T, \Delta t_i > \alpha u/\theta_0, i = 2, \ldots, m\}$, and with the minimum achieved at $\Delta t_i = T/(m - 1), i = 2, \ldots, m$.

Proof: We prove this by induction on m.

Induction basis: For $m = 3$,

$$I(\theta_0; \Delta t) = g(T_2) + g(T_3).$$

Using Lemma 1 in the special case of $n = 1$ the result follows.

Induction step: Suppose the result holds for $3, 4, \ldots, m$, we want to show it also holds for $m + 1$ for $T > m\alpha u/\theta_0$. Note that in this case $\Delta t \in A_{m+1}$ implies that $\alpha u/\theta_0 < \Delta t_{m+1} < T - (m - 1)\alpha u/\theta_0$, which will be denoted as $\Delta t_{m+1} \in A_{m+1}$ below for convenience. We thus have

$$\min_{\Delta t \in A_{m+1}} \{I(\theta_0; \Delta t)\}$$

$$\min_{\Delta t \in A_{m+1}} \left\{ \sum_{i=2}^{m} g(\Delta t_i) + g(T - \Delta t_{m+1}) \right\}$$

$$\min_{\Delta t_{m+1} \in A_{m+1}} \left\{ \sum_{\Delta t_i = T - \Delta t_{m+1}} \min_{\sum_{i=2}^{m} \Delta t_i = T - \Delta t_{m+1}} \left\{ \sum_{i=2}^{m} g(\Delta t_i) \right\} + g(T - \Delta t_{m+1}) \right\}$$

$$\min_{\Delta t_{m+1} \in A_{m+1}} \left\{ (m - 1)g(T - \Delta t_{m+1})/m + g(T - \Delta t_{m+1}) \right\}$$

$$\min_{\Delta t_{m+1} \in A_{m+1}} \{mg(T/m)\},$$

where the third equality is due to the induction hypothesis and the first term on the RHS is obtained at $\Delta t_i = T/(m - 1) - \Delta t_{m+1}, i = 2, \ldots, m$. The last equality invokes Lemma 2 in the special case
of \(n = m - 1 \), and is obtained at \(\Delta t_{m+1} = \frac{T}{m} \). Combining these we conclude that the minimum value of Fisher information is \(mg(\frac{T}{m}) \), when \(\Delta t = \frac{T}{m}, i = 2, \ldots, m + 1 \). Thus the case \(m + 1 \) also holds, completing the proof.

Theorem 1 states that given the total sensing period \(T \) and the total number of samples \(m \), provided that the sampling is done sparsely (with sufficiently large sampling intervals as defined in Condition [1]), the Fisher information attains its minimum when all sampling intervals have the same value, i.e., when using a uniform sensing schedule. In this sense uniform sensing is the worst possible sensing scheme; any deviation from it, while keeping the same average sampling interval \(T/(m - 1) \), can only increase the Fisher information. As we have seen in Figure 2, this increase in Fisher information becomes more significant when sampling gets sparser, i.e., when \(m \) decreases.

D. A tight upper bound on the Fisher information

The derivation of the upper bound follows very similar steps as those for the lower bound.

Lemma 3: For any \(T \in \mathbb{R}, T > 2\alpha u/\theta_0 \), and \(\alpha u/\theta_0 < \Delta t < T - \alpha u/\theta_0 \), the function \(F(\Delta t) = g(T - \Delta t) + g(\Delta t) \) has a maximum of \(g(\alpha u/\theta_0) + g(T - \alpha u/\theta_0) \) attained at \(\Delta t = \alpha u/\theta_0 \) or \(\Delta t = T - \alpha u/\theta_0 \).

Proof: Firstly we prove that \(F \) is convex under the stated conditions. We have

\[
F'(\Delta t) = g'(\Delta t) - g'(T - \Delta t).
\]

Since \(g \) is strictly convex under the stated conditions, by Lemma 1 \(g' \) is monotonic increasing. Thus \(F'' \) is also monotonic increasing, hence \(F \) is convex. It follows that the maximum of \(F(\Delta t) \) is attained at one and/or the other extreme point of \(\Delta t \). In either case we have

\[
F(\alpha u/\theta_0) = F(T - \alpha u/\theta_0) = g(\alpha u/\theta_0) + g(T - \alpha u/\theta_0).
\]

Theorem 2: Consider a period of time \([0, T]\), in which we wish to schedule \(m \geq 3 \) sampling points, including one at time 0 and one at time \(T \). Denote the sequence of time spacings between these samples as \(\Delta t = [\Delta t_2, \Delta t_3, \ldots, \Delta t_m] \), where \(\sum_{i=2}^{m} \Delta t_i = T \). Assuming \(T > (m-1)\alpha u/\theta_0 \), then we have

\[
\max_{\Delta t \in \mathcal{A}_m} I(\theta_0; \Delta t) = (m - 2)g(\alpha u/\theta_0) + g(T - (m - 2)\alpha u/\theta_0),
\]
where $A_m = \{\Delta t_i : \sum_{i=2}^m \Delta t_i = T, \Delta t_i > \alpha u/\theta_0, i = 2, \ldots, m\}$, and with the maximum achieved at $\Delta t_i = \alpha u/\theta_0, i = 2, \ldots, m - 1$ and $\Delta t_m = T - (m - 2)\alpha u/\theta_0$.

Proof: We prove this by induction on m.

Induction basis: For $m = 3$, $I(\theta_0; \Delta t) = g(\Delta t_2) + g(\Delta t_3)$. Using Lemma 3 the result immediately follows.

Induction step: Suppose the result holds for $3, 4, \ldots, m$, we want to show it also holds for $m + 1$ for $T > m\alpha u/\theta_0$. Again in this case $\Delta t \in A_{m+1}$ implies that $\alpha u/\theta_0 < \Delta t_{m+1} < T - (m - 1)\alpha u/\theta_0$, which will be denoted as $\Delta t_{m+1} \in A_{m+1}$ for convenience. We thus have

$$
\max_{\Delta t \in A_{m+1}} \{ I(\theta_0; \Delta t) \}
= \max_{\Delta t \in A_{m+1}} \left\{ \sum_{i=2}^m g(\Delta t_i) + g(\Delta t_{m+1}) \right\}
= \max_{\Delta t_{m+1} \in A_{m+1}} \left\{ \sum_{i=2}^{m-1} \max_{\Delta t = T - \Delta t_{m+1}} \left\{ \sum_{i=2}^m g(\Delta t_i) \right\} + g(\Delta t_{m+1}) \right\}
= \max_{\Delta t_{m+1} \in A_{m+1}} \left\{ (m - 2)g(\alpha u/\theta_0) + g(T - \Delta t_{m+1} - (m - 2)\alpha u/\theta_0) + g(\Delta t_{m+1}) \right\}
= (m - 1)g(\alpha u/\theta_0) + g(T - (m - 1)\alpha u/\theta_0),
$$

where the third equality is due to the induction hypothesis and the first term on the RHS is obtained at $\Delta t_i = \alpha u/\theta_0, i = 2, \ldots, m - 1$ and $\Delta t_m = T - \Delta t_{m+1} - (m - 2)\alpha u/\theta_0$. The last equality invokes Lemma 3 and is obtained at $\Delta t_{m+1} = T - (m - 1)\alpha u/\theta_0$ or $\Delta t_{m+1} = \alpha u/\theta_0$. Thus the case $m + 1$ also holds, completing the proof.

We see from this theorem that under the sparsity condition, the best sensing sequence is to sample at the smallest interval that the condition would allow, till we use all the $m - 2$ samples we have the freedom of placing. This produces a uniform sequence of sampling times except for the last one. It can be shown that if we remove the constraint of having a window of T, but rather seek to optimally place m points subject to the sparsity condition, then the optimal sequence would be exactly uniform with the interval $\Delta t_i = \alpha u/\theta_0$. However, since θ_0 is the very thing we are trying to estimate, it would be unreasonable to suggest that this optimal interval is known a priori. Therefore, this optimal sequence, while exists, is not in general implementable.
E. Best and worst sampling schemes without the sparsity condition

The preceding upper- and lower-bound achieving sensing sequences were derived under the sparsity Condition 1. Below we show how to obtain the best and worst sensing sequences in a more general setting, without the requirement of Condition 1, via the use of dynamic programming. While this result is more general compared to those derived under the sparsity condition, structurally they are not as easy to identify and are thus given in a numerical form. These sequences are also not practically implementable as they also assume the a priori knowledge of the parameters to be estimated.

Denote by \(\pi \) a sampling policy given by the time sequence \(\{t_1, t_2, \ldots, t_m\} \). Then the optimal sampling policy is given by

\[
\pi^* = \arg \max_{\pi \in \Pi} I(\theta_0),
\]

where the set of admissible policies \(\Pi = \{t_i: t_1 = 0, t_m = T, 0 < t_2 < \cdots < t_{m-1} < T\} \).

The maximum \(I(\theta_0) \) can be recursively solved through the set of dynamic programming equations given below:

\[
V(1, t) = g(T - t), \quad \forall 0 \leq t < T;
\]

\[
V(k, t) = \max_{t < x < T} [g(x - t) + V(k - 1, x)], \quad \forall 0 \leq t < T, \ k = 2, 3, \ldots, m - 1,
\]

and

\[
\max I(\theta_0) = \max_{0 < t < T} [g(t) + V(m - 1, t)].
\]

Here the value function \(V(k, t) \) denotes the maximum achievable Fisher information given we last sampled at time \(t \), with \(k \) points remaining to be placed between \((t, T] \).

Note that since \(t \) is continuous, the pair \((k, t) \) has an uncountable state space. In computing the DP equation \((17)\) we discretize \(t \) and \(T \) into small steps and require that both be integer multiples of this small quantity. The resulting DP has a finite state space and can be solved backwards in time in a standard manner.

It is straightforward to see the exact same procedure can be used to find the sampling sequence that minimizes the Fisher information, thus giving the worst sampling sequence. It turns out that the worst sampling sequence in this case coincides with the worst sequence derived under the sparsity condition, i.e., it is also the uniform sequence.
F. A comparison

We now compare the different sensing sequences we obtained in this section using an example. They are illustrated in Figure 3(a). In this example the channel parameters are $E[T_0] = 5$ and $E[T_1] = 3$ time units, respectively. The time window is set to be 40 time units, and the channel can only be sensed 5 times. Shown in the figure are the uniform sensing sequence, the best/worst sensing sequences derived under the sparsity condition, and the best/worst sequences derived using dynamic programming. As mentioned earlier, the worst obtained via dynamic programming coincides with the uniform sampling sequence. The worst under the sparsity condition also coincides with the uniform sequence, a fact proven in Theorem 1, as the sparsity condition holds in this case. In Figure 3(b), we compared the performance of these sampling strategies, by setting the time window to 5000 time units. The estimated value under each strategy is shown as a function of the number of samples taken. The true value is also shown for comparison. These are used as benchmarks in the next section in evaluating random sensing schemes.

As we can see from Figure 3(a), the best sensing sequence produced by dynamic programming without the sparsity condition also appears to be uniform except for the last sample, as is the case with the best sequence under the sparsity condition. The difference is that the former uses

Note however that this conclusion is drawn empirically from a large amount of numerical experiment in the case of not requiring sparsity. By contrast, under the sparsity condition the conclusion is drawn analytically in Theorem 2.
a smaller interval value that violates the sparsity condition. As mentioned earlier, if we were to remove the requirement that one sample be placed at time \(T \), then the optimal sequence of \(m \) would appear to be uniform (again, this conclusion is drawn empirically in the case of no sparsity requirement, and precisely and analytically in the case of sparsity), with the optimal interval being the value that maximizes \(15 \). Interestingly, the worst sequence is also uniform with or without the sparsity condition.

What this result suggests is that in the ideal case if we have a priori knowledge of the channel parameters, to maximize the Fisher information the best thing to do is indeed to sense uniformly. The difficulty of course is that without this knowledge we have no way of deciding what the optimal interval should be, and uniform sensing would be a bad decision as it could turn out to be the worst with an unfortunate choice of the sampling interval.

In such cases, the robust thing to do is simply to sense randomly, so that with some probability we will have sampling intervals close to the actual optimum. This is investigated in the next section.

V. RANDOM SENSING

Under a random sensing scheme, the sampling intervals \(\Delta t_i \) are generated according to some distribution \(f(\Delta t) \) (this may be done independently or jointly). Below we first analyze how the resulting Fisher information is affected, and then use a family of distributions generated by the circular \(\beta \) ensemble to examine the performance of different distributions.

A. Effect on the Fisher information

We begin by examining the expectation of the Fisher function, averaged over randomly generated sampling intervals, calculated as follows:

\[
E[g(\Delta t)] = \int_0^\infty g(\Delta t) f(\Delta t) d\Delta t
\]

\[
= \int_0^\infty \left[g(\mu_o) + g'(\mu_o)(\Delta t - \mu_o)
ight] + \cdots + g^{(n)}(\mu_o)(\Delta t - \mu_o)^n \right] \frac{1}{n!} + \cdots \]}

\[
E[g(\Delta t)] = g(\mu_o) + g'(\mu_o)\mu_1 + \cdots + \frac{g^{(n)}(\mu_o)\mu_n}{n!} + \cdots
\]
where the Taylor expansion is around the expected sampling interval \(\mu_o = E[\Delta t] \), or \(T/(m-1) \) for given window \(T \) and \(m \) number of samples taken, and
\[
\mu_n = \int_0^\infty (\Delta t - \mu_o)^n f(\Delta t) \, d\Delta t
\]
is the \(n \)th order central moment of \(\Delta t \).

In order to have a fair comparison we will assume \(T \) and \(m \) are fixed, thus fixing the average sampling interval \(\mu_o \) under different sampling schemes. Also note that the value \(g^{(n)}(\mu_o) \) is completely determined by the channel statistics and not the sampling sequence. Consequently the expected value of the Fisher function is affected by the selection of a sampling scheme only through the higher order central moments of the distribution \(f(\cdot) \). Note that the expectation of the Fisher function under uniform sampling with constant sampling interval \(\mu_o \) is simply \(g(\mu_o) \) (i.e., only the first term on the right hand side remains). Therefore any random scheme would improve upon this if it results in a positive sum over the higher order terms. While the above equation does not immediately lead to an optimal selection of a random scheme, it is possible to seek one from a family of distribution functions through optimization over common parameters.

Before we proceed with this in the next subsection, we compare the normal, uniform and exponential random sampling schemes using the above analysis. In Table I we list the higher order central moments of normal, uniform and exponential distributions. \(^4\) It can be easily concluded that among these three choices the Fisher function has the largest expectation under the exponential distribution.

\(^4\)For normal distribution the probability distribution function is cut off at zero and then renormalized.

Table I

	Normal	Uniform	Exponential
\(n \) is even	\(\frac{n!\sigma^n}{2^n(2\pi)^{n/2}} \)	\(\frac{\mu^n}{n+1} \)	\(\mu_o \sum_{k=0}^n \frac{(\cdot)^k n!}{k!} \)
\(n \) is odd	0	0	\(\mu_o \sum_{k=0}^n \frac{(\cdot)^k n!}{k!} \)

We further compare their performance in Fig. 4 as we increase the number of samples \(m \) over a window of \(T = 5000 \) time units. Our simulation is done in Matlab and uses a discrete time model; all time quantities are in the same time units. The maximum number of samples is 5000; this is because the on/off periods are integers, so there is no reason to sample faster than
once per unit of time. The sampling intervals under the uniform sensing are \(\lfloor T/(m-1) \rfloor \). The sampling times under random schemes are generated as follows. We fix the window \(T \) and take \(m \) to be the average number of samples.\(^5\) We place the first and the last sampling times at time 0 and \(T \), respectively. We then sequentially generate \(\Delta t_2, \Delta t_2, \cdots \) according to the given pdf \(f() \) with parameters normalized such that it has a mean (sampling interval) of \(T/(m-1) \). For each \(\Delta t_i \) we generate we place a sampling point at time \(\sum_{k=2}^i \Delta t_k \). This process stops when this quantity exceeds \(T \). Note that under this procedure the last sampling interval will not be exactly according to \(f() \) since we have placed a sampling point at time \(T \). However, this approximation seems unavoidable. Alternatively we can allow \(T \) to be different from one trial to another while maintaining the same average. As long as \(T \) is sufficiently large this procedure does not affect the accuracy or the fairness of the comparison. For each value of \(m \), the result shown on the figure is the average of 100 randomly generated sensing schedules. We see that exponential random sampling outperforms the other two; this is consistent with our earlier analysis on the Fisher information.

![Fig. 4. Performance comparison of random sensing: Normal vs. Uniform vs. Exponential](image-url)

\(^5\)The reason \(m \) is only an average and not an exact requirement is because we cannot guarantee to have exactly \(m \) samples within a window of \(T \) if we generate sampling intervals randomly according to a given pdf. By allowing \(m \) to be an average we can simply require the pdf to have a mean of \(T/(m-1) \).
B. Circular β ensemble

We now use the circular β ensemble \cite{24} to study a family of distributions. The advantage of using this ensemble is that with a single tunable parameter we can approximate a wide range of different distributions while keeping the same average sampling rate.

The circular β ensemble may be viewed as given by n eigenvalues, denoted as $\lambda_j = e^{i\theta_j}, j = 1, \ldots, n$. These eigenvalues have a joint probability density function proportional to the following:

$$\prod_{1 \leq k < l \leq n} |e^{i\theta_k} - e^{i\theta_l}|^\beta, \quad -\pi < \theta_j \leq \pi, \quad j, k, l = 1, \ldots, n,$$

(20)

where $\beta > 0$ is a model parameter. In the special cases $\beta = 1, 2$ and 4, this ensemble describes the joint probability density of the eigenvalues of random orthogonal, unitary and sympletic matrices, respectively \cite{24}.

We use the set of eigenvalues generated from the above joint pdf to determine the placement of sample points in the interval $[0, T]$ in the following manner. In \cite{25} a procedure is introduced to generate a set of values $\theta_j, j = 1, 2, \ldots, n$ that follow the joint pdf given by (20). Setting $n = m$, these n eigenvalues are then placed along a unit circle (each at the position given by θ_j), which are subsequently mapped onto the line segment $[0, 1]$. Scaling this segment to $[0, T]$ gives us the m sampling times. The intervals between these points now follow a certain joint distribution. As β varies we can obtain a family of distributions indexed by β. Below we will refer to this method of generating sample points/lengths as using the circular β ensemble. Note that by this procedure we cannot guarantee to have a sample taken at times 0 and T, respectively. However, since the window size T and the number of samples m are used, we maintained the same average sampling rate.

In Fig. 5 we give the pdfs of intervals generated by the circular ensemble with different β. For each value of β, We use the generating method in \cite{25} to obtain 200 random variables in $[0, 1]$, then scale them to be in $[0, 5000]$. The successive intervals between neighboring points are collected with the their pdf shown in the figure. We can see that as β approaches 0^+ the pdf becomes exponential-like and as β approaches $+\infty$, the pdf becomes deterministic; these are well known facts about circular ensembles.
C. A comparison between different random sensing schemes

In Fig. 6 we show the Fisher information with sampling intervals generated by the circular β ensemble. The corresponding estimation performance comparison is given in Fig. 7. The performance of the best and worst sequences with and without the sparsity condition are also shown for comparison. Note that when $\beta = 10^6$, the sampling sequence coincide with the worst obtained via dynamic programming, the worst under sparsity condition and uniform sensing, therefore their performances are the same.
We see again that exponentially generated sampling intervals performs the best. This may be due to the fact that the on/off durations are also exponentially distributed, thereby creating a good “match” between the fisher function $g(\cdot)$ and the pdf $f(\cdot)$ that results in a larger value of the expected Fisher function value (see Eqn. (19)).

D. Discussions on other channel models

So far all our analysis and results are based on the exponential channel model. The problem quickly becomes intractable if we move away from this model, though the basic insight should hold. We now examine a channel model with on/off durations following the gamma distribution. The pdf of the on/off durations are expressed as

$$
\begin{align*}
 f_1(t) &= t^{k_1-1} e^{-t/\lambda_1} / \lambda_1^{k_1} \Gamma(k_1) \\
 f_0(t) &= t^{k_0-1} e^{-t/\lambda_0} / \lambda_0^{k_0} \Gamma(k_0).
\end{align*}
$$

They are each parameterized by a shape parameter k and a scale parameter λ, both of which are positive. In this case, the Laplace transforms of $f_0(t)$ and $f_1(t)$ are $(1+\lambda_0 s)^{-k_0}$ and $(1+\lambda_1 s)^{-k_1}$, respectively, and the expectation of the on/off periods are $E[T_1] = k_1 \lambda_1$ and $E[T_0] = k_0 \lambda_0$. In the following simulation both k_1 and k_0 are set to 2, with a simulated time of 5000 time units. The channel parameters are set to be $E[T_1] = 10$ and $[T_0] = 20$ time units. The sampling intervals are randomly generated by the circular β ensemble. We see that random sensing again outperforms uniform sensing using such a channel model.
It should be noted that since the gamma distribution is the conjugate prior for the exponential distribution, the latter being a special case of the former, this result is not surprising. Unfortunately, obtaining similar result for other channel distributions becomes computationally prohibitive. The complexity is due to two reasons. Firstly, for most distributions the Laplace transform is complex, resulting in the complexity in obtaining the corresponding time domain expressions. Secondly, with the exception of the exponential distribution, without the memoryless property the likelihood function also becomes intractable.

VI. ADAPTIVE RANDOM SENSING FOR PARAMETER TRACKING

Using insights we have obtained on uniform sensing and random sensing, we now present a method of estimating and tracking a time-varying parameter. This is a moving window based estimation scheme, where the overall sensing duration T is divided into windows of lengths T_w. In each window samples are taken and an estimate produced at the end of that window. This estimate is then used to determine the optimal number of samples to be taken in the next window. This method will be referred to as the adaptive random sensing scheme. The adaptive nature of the scheme comes from adjusting the number of samples taken in each window based on past estimates.

Specifically, at the end of the i-th window of T_w, we obtain the ML estimate $\hat{\theta}_0^{(i)}$ and $\hat{u}^{(i)}$ based on samples collected during that window. Now assuming that we will use uniform sensing
in the \((i+1)\)th window with a sampling interval \(\Delta t_p\), and assuming that \(\hat{\theta}_0^{(i)}\) and \(\hat{u}^{(i)}\) are the true parameter values in the \((i+1)\)th window, we can obtain the expectation of the next estimate, denoted as \(\tilde{\theta}_0^{(i+1)}\), as a function of \((T_w, \Delta t_p, \hat{u}^{(i)}, \hat{\theta}_0^{(i)})\). The optimal sampling interval \(\Delta t_p^{(i+1)}\) for the \((i+1)\)th window is then calculated as follows:

\[
\Delta t_p^{(i+1)} = \arg \min_{\Delta t_p} \left| \tilde{\theta}_0^{(i+1)} - \hat{\theta}_0^{(i)} \right| - \varepsilon,
\]

where \(\varepsilon\) is an error factor introduced to lower bound the minimizing interval \(\Delta t_p^{(i+1)}\). Without this factor the interval will end up being very small, i.e., requiring a large number of samples for the next window. The intuition behind the above formula is that assuming the channel parameters are relatively slow varying in time, the estimate from the previous window \(\hat{\theta}_0^{(i)}\) may be viewed as true. So for the next window we would like to find the sampling interval that allows us to get as close as possible to this value subject to an error.

Note that the above calculation relies on the availability of \(\tilde{\theta}_0^{(i+1)}\), a quantity obtained assuming uniform sampling will be used in the next window. In the actual execution of the algorithm, we simply use this to obtain \(\Delta t_p^{(i+1)}\) as shown above. This gives us the desired number of samples to be taken in the next window: \(M^{(i+1)} = \lceil T_w / \Delta t_p^{(i+1)} \rceil\). Following this, random sensing is used to generate \(M^{(i+1)}\) random sampling times within the next window. An estimate is then made and this process repeats.

It remains to show how \(\tilde{\theta}_0^{(i+1)}\) is obtained. As mentioned earlier, when the on/off periods are exponentially distributed there is a simple closed-form solution to the ML estimator. This was calculated in [5] and we will use that result directly below. Specifically, with \(M = \lceil T_w / \Delta t_p \rceil\) samples uniformly taken, the estimate of channel utilization \(u\) is given by \(\hat{u} = \frac{1}{M} \sum_{i=1}^{M} z_i\). The estimate of \(\theta_0\) is given by

\[
\hat{\theta}_0 = -\frac{u}{\Delta t_p} \ln\left(\frac{-B + \sqrt{B^2 - 4AC}}{2A}\right),
\]

where

\[
\begin{align*}
A &= (u - u^2)(M - 1) \\
B &= -2A + (M - 1) - (1 - u)n_0 - un_3 \\
C &= A - un_0 - (1 - u)n_3
\end{align*}
\]

Here \(n_0/n_1/n_2/n_3\) denotes the number of \((0 \rightarrow 0)/(0 \rightarrow 1)/(1 \rightarrow 0)/(1 \rightarrow 1)\) transitions out
of the total \((M - 1)\) transitions. Their respective expectations are given by

\[
E[n_0] = M(1 - u)P_{00}(\Delta t_p; \theta_0), \quad E[n_2] = MuP_{10}(\Delta t_p; \theta_0),
E[n_1] = M(1 - u)P_{01}(\Delta t_p; \theta_0), \quad E[n_3] = MuP_{11}(\Delta t_p; \theta_0).
\]

(25)

Taking these quantities into (24) and (23), we obtain the expectation of \(\hat{\theta}_0, \tilde{\theta}_0\), which is a function of \((T_w, \Delta t_p, u, \theta_0)\). Replacing \(u\) with \(\hat{u}^{(i)}\), \(\theta_0\) with \(\hat{\theta}_0^{(i)}\), and \(\tilde{\theta}_0\) with \(\tilde{\theta}_0^{(i+1)}\) we obtain the desired result.

Figure 9 shows the tracking performance of the adaptive random sensing algorithm, where within each moving window the sampling times are randomly place following a uniform distribution. In the simulation the size of the time window is set to be 3500 time units and the error factor \(\epsilon\) is set at 1. In Figure 9(a) the channel parameter \(E[T_0]\) varies as a step function: starting from 6 time units, it is increased by 5 every 30000 time units, while \(E[T_1]\) is set to \(E[T_0]/2\). In Figure 9(b) the channel parameter changes more smoothly as shown. The dashed line represents the actual channel parameter. For comparison purpose we also include the results from an adaptive uniform sensing algorithm. These are obtained by following the exact same adaptive procedure outlined above, with the only difference that in the \(i\)-th window uniform sensing is used, instead of random sensing, with a constant sampling interval of \(\Delta t_p^{(i)}\). We see that the estimation under adaptive random sensing (RS) can closely track the time-varying channel, and clearly outperforms adaptive uniform sensing (US) at short on/off periods.

The number of samples taken in each window (or estimation cycle) following this adaptive scheme is given in Figure 10. It shows as the on/off periods increase, the sampling rate is automatically decreased as an outcome of the tracking.

VII. A DISCUSSION ON THE APPLICABILITY OF COMPRESSIVE SENSING

Recent advances in compressive sensing theory \[26\], \[27\], \[28\] allow one to represent compressible/sparse signals with significantly fewer samples than required by the Nyquist sampling theorem. It is therefore particularly attractive in a resource constrained setting. This technique has been used in data compression \[29\], channel coding \[30\], analog signal sensing \[31\], routing \[32\] and data collection \[33\]. It is tempting to examine whether this technique brings any advantage for our channel estimation problem. The idea is to randomly sample the channel state, use compressive sensing techniques to reconstruct the entire sequence of channel state evolution,
and then use the ML estimator to determine the channel parameter. Compared to the sensing schemes discussed in the previous sections, this is an *indirect* use of the ML estimator, in that the entire sequence will be reconstructed before the estimation. In this sense the use of compressive sensing also seems to be an overkill for the purpose of parameter estimation.

Consider a vector of discrete-time, finite, one-dimensional signal $x_{N \times 1}$, which can be expressed as $x = \Psi a$, where Ψ is an $N \times N$ basis matrix and a is a vector of weighting coefficients. The signal vector x is K-sparse if $a_{N \times 1}$ has only K non-zero elements. The compressive sensing theory states that the signal x can be reconstructed successfully by M measurements y, which is done by projecting the signal x to another basis Φ that is incoherent with Ψ, i.e., $y = \Phi x =$
ΦΨa. The required length of y, M, depends on the sparsity of the signal and the reconstruction algorithm. The reconstruction is typically done by solving the l_1-norm optimization problem:

$$\hat{a} = \arg \min_a \|a\|_1, \text{ s.t. } y = \Phi \Psi a.$$

Algorithmically this can be solved by linear programming or iterative greedy algorithm such as orthogonal matching pursuit (OMP) [34].

For our channel estimation problem, consider the signal $x = \{x_1, x_2, \ldots, x_N\}$ to be the discrete time 0-1 sequence of channel states, with x_i denoting the channel state at time i. The physical nature of channel sensing implies the measurement matrix $\Phi_{M \times N}$ consists of rows each containing only a single 1 in the position where the channel was sensed and 0 everywhere else. Specifically, a 1 in the position (i, j) means that the ith measurement was taken at time j. In addition, there can only be one measurement taken at time j, i.e., no two rows can have a 1 in the same column. As $M < N$ in general (or it wouldn’t be compressive sensing), there will be exactly $N - M$ empty (all-0) columns, making the matrix extremely sparse. This poses a significant challenge since in general the Φ matrix is required to be dense (though randomly generated), with at least one non-zero entry in each column.

For the reconstruction to be successful, two conditions need to be satisfied: the signal needs to be sparse in some domain (i.e., the existence of a Ψ such that a is sufficiently sparse), and the two matrices Φ and Ψ need to be incoherent. Due to the binary property of the channel state sequence, it’s difficult to find a basis matrix Ψ that has dense entities. As a result we have two very sparse matrices and they are highly coherent. For these reasons we have not found compressive sensing to have an advantage in our channel estimation problem.

Figure [11] shows some comparison results. In the simulation of compressive sensing based estimation, we reconstruct the original state sequence using Harr wavelet basis. All other conditions remain the same as in previous sections. The time window is set to 4096 time units. Overall compressive sensing based estimation does not compare favorably with uniform sensing and random sensing, due to the coherence problem between the two matrices. It remains an interesting problem to find a good basis matrix that can both sparsify x and at the same time be sufficiently incoherent with the measurement matrix. A similar difficulty was noted in [32] in trying to use compressive sensing for a data gathering problem. A number of commonly used transformations were considered, and it was found that, with real data sets, none of them was able to sparsify the data while being at the same time incoherent with the routing matrix.
In this paper we studied sensing schemes for a channel estimation problem under a sparsity condition. Using Fisher information as a performance measure, we derived the best and worst sensing sequences both with and without the sparsity condition. These sequences, while not exactly implementable, provide significant insights as well as useful benchmarks. We then examined the performance of random sensing schemes, by comparing a family of distributions generated by the circular β ensemble. Using these insights, an adaptive random sensing scheme was proposed to effectively track time-varying channel parameters. We also discuss the applicability of compressive sensing in this context.

APPENDIX A

PROOF OF LEMMA 1

Proof: For simplicity in presentation, we first write \(g(\Delta t) = h_o(\Delta t)h(\Delta t) \), where

\[
h_o(\Delta t) = \frac{\Delta t^2}{u^2} e^{-\theta_0 \Delta t / u},
\]

\[
h(\Delta t) = h_1(\Delta t) + h_2(\Delta t) + h_3(\Delta t),
\]
where
\[
\begin{align*}
 h_1(\Delta t) & = \frac{2u(1-u)}{1-e^{-\theta_0 \Delta t/u}}, \\
 h_2(\Delta t) & = -\frac{u(1-u)^2}{(1-u) + ue^{-\theta_0 \Delta t/u}}, \\
 h_3(\Delta t) & = -\frac{u^2(1-u)}{u + (1-u)e^{-\theta_0 \Delta t/u}}.
\end{align*}
\]

We proceed to show that each of the above functions is convex under Condition [1].

We first show that \(h_o(\Delta t) \) is strictly convex for \(\Delta t > (2 + \sqrt{2}) u/\theta_0 \). Under this condition and noting \(0 < u < 1 \) and \(\theta_0 > 0 \) we have
\[
\begin{align*}
 h'_o(\Delta t) & = \frac{\Delta t}{u^2} e^{-\theta_0 \Delta t/u} (2 - \frac{\theta_0 \Delta t}{u}) < 0, \\
 h''_o(\Delta t) & = \frac{e^{-\theta_0 \Delta t/u} \left(\frac{\theta_0 \Delta t}{u} - 2 \right)^2 - 2}{u^2} > 0.
\end{align*}
\]

Therefore for \(\frac{\theta_0 \Delta t}{u} > 2 + \sqrt{2} \), \(h_o(\Delta t) \) is strictly convex. That \(h_1(\Delta t) \) is strictly convex is straightforward. Since \(0 < u < 1 \) and \(\theta_0 > 0 \), we have:
\[
\begin{align*}
 h'_1(\Delta t) & = -\frac{2(1-u)\theta_0 e^{-\theta_0 \Delta t/u}}{(1-e^{-\theta_0 \Delta t/u})^2} < 0, \\
 h''_1(\Delta t) & = \frac{2(1-u)\theta_0^2 e^{-\theta_0 \Delta t/u} (1 + e^{-\theta_0 \Delta t/u})}{u(1-e^{-\theta_0 \Delta t/u})^3} > 0.
\end{align*}
\]

Next we show that \(h_2(\Delta t) \) is strictly convex for \(\Delta t > \frac{u}{\theta_0} \ln \left(\frac{u}{1-u} \right) \). This condition is equivalent to \(ue^{-\theta_0 \Delta t/u} < 1 - u \). Under this condition and again noting \(0 < u < 1 \) and \(\theta_0 > 0 \), we have
\[
\begin{align*}
 h'_2(\Delta t) & = \frac{-u(1-u)^2 \theta_0 e^{-\theta_0 \Delta t/u}}{[(1-u) + ue^{-\theta_0 \Delta t/u}]^2} < 0, \\
 h''_2(\Delta t) & = \frac{(1-u)^2 \theta_0^2 e^{-\theta_0 \Delta t/u} [(1-u) - ue^{-\theta_0 \Delta t/u}]}{[(1-u) + ue^{-\theta_0 \Delta t/u}]^3} > 0.
\end{align*}
\]
Similarly, \(h_3(\Delta t) \) is strictly convex under the condition \(\Delta t > \frac{u}{\theta_0} \ln\left(\frac{1-u}{u}\right) \), since
\[
h_3'(\Delta t) = -u(1-u)^2\theta e^{-\theta_0 \Delta t/u} \left[u + (1-u)e^{-\theta_0 \Delta t/u} \right] < 0, \]
\[
h_3''(\Delta t) = \frac{(1-u)^2 \theta^2 e^{-\theta_0 \Delta t/u} [u - (1-u)e^{-\theta_0 \Delta t/u}]}{[u + (1-u)e^{-\theta_0 \Delta t/u}]^3} > 0. \]

Therefore under the condition \(\Delta t > \alpha u/\theta_0 \), \(h_1 \), \(h_2 \) and \(h_3 \) are all monotonically decreasing convex functions. It follows that \(h = h_1 + h_2 + h_3 \) is also monotonically decreasing and convex. Furthermore, for any \(\Delta t > 0 \), \(h_o(\Delta t) > 0 \), and \(h(\Delta t) > h(+\infty) = 0 \). We can now show that \(g \) is strictly convex under this condition:
\[
g''(\Delta t) = (h_o(\Delta t)h(\Delta t))''
= h_o''(\Delta t)h(\Delta t) + 2h_o'(\Delta t)h'(\Delta t) + h_o(\Delta t)h''(\Delta t) > 0, \tag{26} \]
where the inequality holds because every term on the right hand side is positive under the condition \(\Delta t > \alpha u/\theta_0 \) as summarized above.

REFERENCES

[1] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE journal on selected areas in communications, vol. 23, pp: 201-220, Feb. 2005.

[2] K. Challapali, C. Cordeiro, and D. Birru, “Evolution of Spectrum-Agile Cognitive Radios: First Wireless Internet Standard and Beyond,” Proceedings of ACM International Wireless Internet Conference, August 2006.

[3] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation dynamic spectrum access cognitive radio wireless networks: A survey,” Computer Networks Journal (Elsevier), pp: 201-220, Sept. 2006.

[4] D. Cabric, S. M. Mishra, R. W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” Proceedings of Asilomar Conference on Signals, Systems and Computers, 2004.

[5] H. Kim and K. G. Shin, “Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks,” IEEE Transactions on Mobile Computing, vol.7, no.5, pp: 533-545, May 2008.

[6] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: a POMDP framework,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 3, pp: 589-599, Apr. 2007.

[7] M. Dong, L. Tong, and B. M. Sadler, “Information Retrieval and Processing in Sensor Networks: Deterministic Scheduling Versus Random Access,” IEEE Transactions on Signal Processing, vol. 55, no. 12, pp: 5806-5820, 2007.

[8] H. Kim and K. G. Shin, “Fast Discovery of Spectrum Opportunities in Cognitive Radio Networks,” Proceedings of the 3rd IEEE Symposia on New Frontiers in Dynamic Spectrum Access Networks (IEEE DySPAN), Oct. 2008.

[9] X. Long, X. Gan, Y. Xu, J. Liu, M. Tao, “An Estimation Algorithm of Channel State Transition Probabilities for Cognitive Radio Systems,” Proceedings of Cognitive Radio Oriented Wireless Networks and Communications (CrownCom), 15-17 May 2008.
[10] C. H. Park, S. W. Kim, S. M. Lim, M. S. Song, “HMM Based Channel Status Predictor for Cognitive Radio,” Proceedings of Asia-Pacific Microwave Conference, 11-14 Dec. 2007.

[11] A. A. Fuqaha, B. Khan, A. Rayes, M. Guizani, O. Awwad, G. Ben Brahim, “Opportunistic Channel Selection Strategy for Better QoS in Cooperative Networks with Cognitive Radio Capabilities,” IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, pp: 156-167, Jan. 2008.

[12] D. Chen, S. Yin, Q. Zhang, M. Liu and S. Li, “Mining Spectrum Usage Data: a Large-scale Spectrum Measurement Study,” ACM MobiCom, September 2009, Beijing, China.

[13] P. J. Kolodzy, “Cognitive radio fundamentals,” Proceedings of SDR Forum, Singapore, Apr. 2005.

[14] R. A. Fisher, “On the Mathematical Foundations of Theoretical Statistics,” Mathematical Foundations of Theoretical Statistics vol. 222, pp: 309-368, 1922.

[15] D. R. Cox, Renewal Theory, Butler and Tanner, 1967.

[16] J. Lee, J. Choi, H. Lou, “Joint Maximum Likelihood Estimation of Channel and Preamble Sequence for WiMAX Systems,” IEEE Transactions on Wireless Communications, Vol. 7, No. 11, pp: 4294-4303, Nov. 2008.

[17] J. Wang, A. Dogandzic, A. Nehorai, “Maximum Likelihood Estimation of Compound-Gaussian Clutter and Target Parameters,” IEEE Transactions on Signal Processing, vol. 54, no.10, pp: 3884-3898 Oct. 2006.

[18] U. Orguner, M. Demirekler, “Maximum Likelihood Estimation of Transition Probabilities of Jump Markov Linear Systems,” IEEE Transactions on Signal Processing, vol. 56, no. 10, Part 2, pp: 5093-5108 Oct. 2008.

[19] H.A. Cirpan, M.K. Tsatsanis, “Maximum likelihood blind channel estimation in the presence of Doppler shifts,” IEEE Transactions on Signal Processing, vol. 47, no. 6, pp: 1559-1569, Jun. 1999.

[20] M. Abuthinien, S. Chen, L. Hanzo, “Semi-blind Joint Maximum Likelihood Channel Estimation and Data Detection for MIMO Systems,” IEEE Signal Processing Letters, vol. 15, pp: 202-205, 2008.

[21] A.W. van der Vaart, Asymptotic Statistics (Cambridge Series in Statistical and Probabilistic Mathematics) (1998)

[22] R. A. Fisher, The Design of Experiments, Oliver and Boyd, Edinburgh, 1935.

[23] J.A. Legg, D.A. Gray, “Performance Bounds for Polynomial Phase Parameter,” IEEE Transactions on Signal Processing, vol. 48, no.2, pp: 331-337 Feb. 2000.

[24] M. L. Mehta, Random matrices. Elsevier/Academic Press, 2004.

[25] A. Edelman, B.D. Sutton, “The Beta-Jacobi Matrix Model, the CS Decomposition, and Generalized Singular Value Problems,” Foundations of Computational Mathematics, vol. 8, no. 2, pp: 259-285, May 2008.

[26] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp: 4036-4048, 2006.

[27] E. Candés and T. Tao, “Near optimal signal recovery from random projections: Universal encoding strategies?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp: 5406-5425, 2006.

[28] E. Candés, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp: 489-509, 2006.

[29] D. Baron, M.B. Wakin, M.F. Duarte, S. Sarvotham, and R.G. Baraniuk, “Distributed compressed sensing,” 2005, Preprint.

[30] E. Candés and T. Tao, “Decoding by linear programming,” IEEE Transactions Information Theory, vol. 51, no. 12, pp: 4203-4215, Dec. 2005.

[31] Z. Tian and G. Giannakis, “Compressed Sensing for Wideband Cognitive Radios,” Proceedings of IEEE Internation Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 4, pp: 1357-1360, Honolulu, Apr. 2007.

[32] G. Quer, R. Masiero, D. Munaretto, M. Rossi, J. Widmer and M. Zorzi, “On the Interplay Between Routing and Signal
Representation for Compressive Sensing in Wireless Sensor Networks,” *Information Theory and Applications Workshop (ITA 2009)*, San Diego, CA.

[33] C. Luo, F. Wu, C. W. Chen and J. Sun, “Compressive Data Gathering for Large-Scale Wireless Sensor Networks,” *ACM MobiCom*, September 2009, Beijing, China.

[34] J. A. Tropp, A. C. Gilbert, “Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit,” *IEEE Transactions on Information Theory*, vol. 53, no. 12, pp: 4655-4666, 2007.