Advance Publication

INDUSTRIAL HEALTH

Received: August 23, 2018

Accepted: November 29, 2018

J-STAGE Advance Published Date: December 8, 2018
Biological monitoring of occupational ethylbenzene exposure by means of urinalysis for un-metabolized ethylbenzene

Toshio KAWAI, Haruhiko SAKURAI, Masayuki IKEDA.

1 Kansai Technical Center for Occupational Medicine, Osaka, Japan
2 Japan Association for Work Environments, Tokyo, Japan
3 Kyoto Industrial Health Association, Kyoto, Japan

Type of contribution: Original article

Running title: Ethylbenzene biomonitoring by ethylbenzene in urine

Corresponding author: M. Ikeda,
Tel & Fax: 075-451-8309, e-mail: m-71-ikeda@nifty.com

*To whom correspondence should be addressed. E-mail: m-71-ikeda@nifty.com

Received: August 23, 2018
Accepted: November 29, 2018
Advance publication: December 8, 2018
Abstract:

This study aimed to examine quantitative relation between ethylbenzene (EB) in air (EB-A) and un-metabolized EB in urine (EB-U) for biological monitoring of occupational EB exposure by urinalysis for EB. In total, 49 men in furniture production factories participated in the study. Time-weighted average EB-A was monitored by diffusive sampling. Urinalysis for EB was conducted by head-space gas-chromatography with end-of-shift samples. Data were subjected to regression analysis for statistical evaluation. A geometric mean (GM) and the maximum (Max) EB-A levels were 2.1 and 45.5 ppm, respectively. GM and Max for EB-U (observed values) were 4.6 and 38.7 μg/l. A significant linear correlation was observed. The regression equation was Y=3.1+0.73X where X is EB-A (ppm) and Y is EB-U (μg/l) (r=0.91, p<0.01). The significant correlation between EB-A and EB-U coupled with a small intercept suggests that biological monitoring of occupational EB exposure is possible by analysis for un-metabolized EB in end-of-shift urine samples. Further validation studies (including those on applicability to women) are envisaged. The feasibility should be examined for biological monitoring and the applicability of the equation among the workers exposed to EB at low levels.

Key words: Biological monitoring, Ethylbenzene, Exposure-excretion relationship, Occupational exposure
Ethylbenzene (EB) is present both in petroleum products1-3) and in coal distillates4) as a minor component, and usually detected in combination with major components such as benzene, toluene and xylene isomers. Thus, EB is present in automobile fuel (including diesel oil) and automobile emission5-6). In residential areas, outdoor source of EB may be highway traffic7-8). EB in indoor air9) might be from varnished materials10). Smoking may be an additional source for EB10). Thus, it is clear that EB is everywhere in occupational as well as non-occupational setting in life, although usually at low levels even in occupational settings.

Since the pioneer work by Baododej and Bardodejova11) followed by Gromiec and Piotrowski12), biological monitoring of ethylbenzene exposure has been conducted by means of urinalysis for EB metabolites such as mandelic acid, phenylglyoxylic acid, or the combination13-16). The present study was conducted to detect successfully a significant correlation between air-borne exposure level of EB in workroom air (EB-A) and the level of EB in urine of workers involved (EB-U). The success will be an additional example for the use of un-metabolized solvents in urine as indicators of occupational solvent exposures at low levels. To the knowledge of the authors, this is the first study to report quantitative relationship between EB exposure and excretion of un-metabolized EB in urine.
Materials and Methods

The data on EB exposure, previously reported in short17, were analyzed in detail in the present report. Male workers (49 subjects) at the ages of 18 to 60 years were engaged in furniture production, and they were exposed to several solvents such as ethylbenzene, with toluene, xylenes and others17).

Diffusive samplers with activated carbon-cloth were employed for the measurement of time-weighted average solvent exposures17). Urine samples were collected at the end of work of the day, and were immediately transferred to designed vials to be analyzed by head-space gas chromatography17) for EB. The lowest limit for determination was 0.1 ppm for EB-A and 1 μg/l for EB-U. For urine density issues, WHO’s quality assurance guidelines for sample exclusion18) were applied, i.e., <0.3 g/l or >3.0 g/l for creatinine concentration, or <1.010 or >1.030 for a specific gravity of urine.

Regression analyses followed by comparison between two regression lines were employed for statistical evaluation after Ichihara19).

Each of the workers submitted his informed consent and the study design was approved by an institutional review board17). Creatinine and specific gravity of urine were measured by colorimetry and refractometry, respectively.
Results

The exposure-excretion data are summarized in Table 1. EB exposure was generally low with a GM of 2.1 ppm, but the maximum was as high as 45.5 ppm. Correspondingly, EB excretion in urine (EB-U) (as observed) was in a range of 1 to 39 μg/l with a GM of 4.6 μg/l. Correction for urine density did not induce remarkable changes except that correction for creatinine gave the Max of 83 μg/g. This was due to the 2nd highest EB exposure (40 ppm) resulting in the 2nd highest EB in urine (30.1 μg/l) coupled with relatively low creatinine level (0.36 g/l).

The correlations between EB in air and EB in urine are depicted in Fig. 1. The equations for the regression lines are summarized in Table 2. It should be noted that the correlations were all statistically significant (p<0.01), irrespective of correction for urine density.

The figures appear to suggest that two cases at the upper-right corner in each figure may affect over-all correlation coefficients. This concern will be discussed in detail in the Discussion section.
Discussion

Significant correlation between air-borne solvent and un-metabolized solvent in urine has been reported for two major components of toluene\(^\text{17,21}\) and xylenes\(^\text{17}\) in petroleum and coal distillate products. It is now made clear that the same strategy may be applicable to a minor component such as EB. The experience with toluene revealed that the best indicator in urine for solvent exposure varies as a function of exposure intensity and that the level of un-metabolized toluene in biological materials such as urine is the most practical marker of low level exposure. Thus, un-metabolized toluene is much more sensitive than the traditional marker of a metabolite such as hippuric acid in urine\(^\text{21}\).

Diffusion is considered as a mechanism for excretion of un-metabolized solvents in urine. The ratio of solvent in urine over solvent in air has a close correlation with a physico-chemical parameter of \(P_{\text{ow}}\) (octanol-water partition coefficient)\(^\text{22,23}\). The observation is on line with the consideration of diffusion. Therefore, the risk of modification due to competitive metabolic interaction\(^\text{24,25}\) to modify the parameter level in urine should be small.

Regarding EB exposures in factory workplaces, Inoue and others\(^\text{15}\) previously reported EB exposures at the level of 1.8 ppm as a GM (the Max at 44 ppm). Reports are rather scarce on workroom EB exposure in recent years. Among the few reports, Martins et al.\(^\text{9}\) observed that the EB exposure was at the level of <100 μg/m\(^3\) or well below 0.1 ppm. EB exposures have been confirmed also in association with petroleum distribution works\(^\text{26}\). Rather exceptionally, Mao et al.\(^\text{25}\) reported EB exposure at 40 ppm (as an arithmetic mean) among spray painters in
a shipyard. Further studies are apparently envisaged to confirm applicability of ‘EB in urine’ approach for EB exposure monitoring in present day industries.

On the chronic toxicities of EB, International Agency for Research on Cancer classifies EB in Group 2B (i.e., possibly carcinogenic to humans)27). With regard to occupational exposure limits, both Japan Society for Occupational Health28) and American Conference of Governmental Industrial Hygienists29) maintain the occupational exposure limits at the levels the same with that for toluene (i.e., 50 and 20 ppm, respectively). These limits are set in reference to local irritation, suppressive effects on the central nervous system and effects on the renal system28,29). The adoptions of 20-50 ppm as occupational exposure limits may suggest that the exposure to EB will stay at the present levels.

A major problem as a study limitation is that the close exposure-excretion correlation (Fig. 1 and Table 2) appears to be strongly affected by the two high exposure cases (at 40 and 46 ppm). In fact no cases were available in the exposure range of 15 to 35 ppm in the present survey. Nevertheless, a tentative regression analysis excluding the 40 and 46 ppm exposure cases (thus with remaining 47 cases) resulted in a regression line equation (Eq. 2 in Table 2) very close to Eq. 1 (with 49 cases). Statistical comparison of Eq. 1 and Eq. 2 revealed no significant differences (p>0.05) in the intercepts and slopes although the correlation coefficients were different (0.913 vs. 0.563; Eq. 1 and Eq. 2 in Table 2).

The same were the cases when urine density was corrected for creatinine concentration or a specific gravity of urine of 1.016. In the present study, urine samples were collected only at the end of shift. Thus, it was not possible to examine the possibility that un-metabolized EB may be excreted earlier whereas the
excretion of metabolites (i.e., mandelic and phenylglyoxylic acids) may take longer
time. It was not possible to conduct surveys on the same day of the week,
although it was made in the second half of a working week as far as possible.

Another limitation is the lack of data for women. However, no gender-related
difference in exposure-excretion relation was observed in a previous study15) when
exposure conditions are comparable. Therefore, the present men-based conclusion
might be applicable also to women. Further studies are necessary to examine the
possibility if the present men-based conclusion is applicable also to women.
Conclusions

Biological monitoring of occupational ethylbenzene exposure is possible by means of urinalysis for un-metabolized ethylbenzene. Confirmation of the applicability to detect low-level ethylbenzene exposure in current day industry is envisaged.
Acknowledgements

The authors are grateful to Osaka Occupational Health Service Center, Osaka, Japan, and Occupational Health Research and Development Center, Tokyo, Japan, for their interest in and support to this study.
Conflicts of Interest

The authors declare that they have no conflicts of interest.
176 References

178 1) Hopf NB, Kirkeleit J, Bråtveit M, Succop P, Talaska G, Moen BE. Evaluation of exposure biomarkers in offshore workers exposed to low benzene and toluene concentrations. Int Arch Occup Environ Health 2012; 85: 261-271.

181 2) Campo L, Rosella F, Mercadante R, Fustinoni S. Exposure to BTEX and ethers in petrol station attendants and proposal of biological exposure equivalents for urinary benzene and MTBE. Ann Occup Hyg 2016; 60: 318-333.

184 3) Heibati B, Pollitt KJG, Charati JY, Ducatman A, Shokrzadeh M, Karimi A, Mohammadyan M. Biomonitoring-based exposure assessment of benzene, toluene, ethylbenzene and xylene among workers at petroleum distribution facilities. Ecotox Environ Saf 2018; 149: 19-25.

188 4) He Q, Yan Y, Zhang Y, Wang X, Wang Y. Coke workers’ exposure to volatile compounds in northern China; a case study in Shanxi Province. Environ Monit Assess 2015; 187: 359-370.

191 5) Jo W-K, Yu C-H. Public bus and taxicab drivers’ exposure to aromatic work-time volatile organic compounds. Environ Res Sci Section A86; 66-72.

193 6) Moolla R, Curtis CJ, Knight J. Assessment of occupational exposure to BTEX compounds at a bus diesel-refueling bay: A case study in Johannesburg, South Africa. Sci Total Environ 2015; 187: 51-57. ê

196 7) Kwon J, Weisel CP, Morandi MT, Stock TH. Source proximity and meteological effects on residential outdoor VOCs in urban areas: Results from the Houston and Los Angeles RIOPA studies. Sci Total Environ 2016; 954-964.
8) Wang B-L, Takigawa T, Takeuchi A, Yamasaki Y, Kataoka H, Wang D-H, Ogino K. Unmetabolized VOCs in urine as biomarkers of low level exposure in indoor environment. J Occup Health 2007; 49: 104-110.

9) Martins EM, Borba, Santos NEd, Reis PTBd, Silveira RS, Corrêa M. The relationship between solvent use and BTEX concentrations in occupational environments. Environ Monit Assess 2016; 188: 608-618.

10) Skender L, Brčić, Karačić. Urine analysis for the evaluation of environmental exposures to aromatic hydrocarbons. Arch Environ Health 2004; 59: 237-244.

11) Bardodej Z, Bardodejova E. Biotransformation of ethyl benzene, styrene, and alpha-methylstyrene in man. Am Ind Hyg Assoc J 1970; 31: 206-209.

12) Gromiec JP, Piotrowski JK. Urinary mandelic acid as an exposure test for ethylbenzene. Int Arch Occup Environ Health 1984: 55: 61-72.

13) Sakai T, Takeuchi Y, Ikeya Y, Araki T. Ushio K. Method for simultaneous determination of six metabolites of toluene, xylene and ethylbenzene, and its application to exposure monitoring of workers in a printing factory with gravure machines. Sangyoigaku 1989; 31:9-16. (in Japanese)

14) Kawai T, Yasugi T, Mizunuma K, Horiguchi S, Iguchi H, Uchida Y, Iwami O, Ikeda M. Comparative evaluation of urinalysis and blood analysis as means of detecting exposure to organic solvents at low concentrations. Int Arch Occup Environ Health 1992; 64: 223-234.

15) Inoue O, Seiji K, Kudo S, Chui J, Cai S-X, Liu S-J, Watanabe T, Nakatsuka H, Ikeda M. Urinary phenylglyoxylic acid excretion after exposure to ethylbenzene among solvent-exposed Chinese workers. Int J Occup Environ
16) Knecht U, Reske A, WoitowitzHJ. Biological Monitoring of standardized exposure to ethylbenzene; evaluation of biological tolerance (AT). Arch Toxicol 2000; 73: 632-640.

17) Kawai T, Zhang Z-W, Takeuchi A, Miyama Y, Sakamoto K, Higashikawa K, Ikeda M. Methyl isobutyl ketone and methyl ethyl ketone in urine as biological markers of occupational exposure to these solvents at low levels. Int Arch Occup Environ Health 2003; 76: 17-23.

18) World Health Organization. Biological Monitoring of Chemical Exposure in the Workplace. Vol. 1, p. 24, 1996, Geneva.

19) Ichihara K. Bioscience for Statistics. Tokyo (Japan): Nankodo Publishers; 1995. p. 218, 219 and 233 (in Japanese).

20) Knecht U, Reske A, WoitowitzHJ. Biological Monitoring of standardized exposure to ethylbenzene; evaluation of biological tolerance (AT). Arch Toxicol 2000; 73: 632-640.

21) Ikeda M, Ukai H, Kawai T, Inoue O, Maejima Y, Fukui Y, Ohashi F, Ikeda M. Changes in correlation coefficients of exposure markers as a function of intensity of occupational exposure to toluene. Toxicol Lett 2008; 181: 133-139.

22) Kawai T, Sakurai H, Ikeda M. Estimation of biological occupational limit values for selected organic solvents. J Occup Health 2015; 57: 359-364.

23) Kawai T, Sakurai H, Ikeda M. Further examination of log P_{ow}-based
procedures f to estimate biological occupational exposure limits. J Occup
Health in press, 2018.

248 24) Jang JY, Droz PO, Kim S. Biological monitoring of workersexposed to
249 25) ethylbenzene and c0-exposed to xylene. Int Arch Occup Environ Health
250 2001; 74: 31-37.

251 25) Mao IE, Chang FK, Chen ML. Delayed and competitively inhibited excretion
252 26) of urinary hippuric acid in field workers coexposed to toluene, ethylbenzene,
253 27) and xylenes. Arch Environ Contam Toxicol 2007; 53: 678-683.

254 26) International Agency for Research on Cancer, IARC Monographs on the
255 28) Evaluation of Carcinogenic Risks to Huamns. Vol. 77, 2000. Geneva.

256 27) Japan Society for Occupational Health. Recommendation of occupational
257 29) exposure limits (2018-2019). I Occup Health 2018; 60: 419-452.

258 28) American Conference of Governmental Industrial Hygienists. 2018 TLVs®
259 29) and BEIs®, Cincinnati, OH, USA.
Legend for the figure

Fig. 1 Linear regression between ethylbenzene in air (ppm) and ethylbenzene in urine (μg/l or μg/g creatinine). The lines in the middle are calculated regression lines, and the curves on both side of the line show 95% confidence ranges. Each dot represents one case studied.

[A] EB in urine as observed (i.e., no urine density correction)

[B] EB in urine as corrected for creatinine concentration (i.e., EB divided by creatinine concentration).

[C] EB in urine adjusted for a specific gravity of 1.016.

The equation for each regression line is given in Table 2, Eq. 1, 3, and 4 for Fig. 1 [A], Fig. [B] and Fig. [C], respectively.
Fig. 1

[A]

Ethylbenzene in urine (μg/l)

[B]

Ethylbenzene in urine (μg/g)

[C]

Ethylbenzene in urine (μg/l)

Ethylbenzene in air (ppm)
Parameter	Age¹	EB in air	EB in urine		
	(Years)	(ppm)	(OB²)	(CR³)	(SG⁴)
Min	18	0.24	1.1	0.95	0.59
Max	60	45.45	38.70	83.38	40.13
GM	39.8⁵	2.053	4.57	5.96	4.13
GSD	118⁶	3.084	2.12	2.33	2.24

n=49

1 Age for 12 men were unknown.
2 As observed (i.e., no correction).
3 Divided by creatinine concentration (g/l).
4 Adjusted for a specific gravity of 1.016.
5 AM.
6 ASD.
Correction for	Equation	n	Intercept (α)	Slope (β)	r	p
None	Eq. 1	49	3.065	0.729	0.913	<0.01
Modified¹	Eq. 2	47	3.267	0.654	0.563	<0.01
Creatine²	Eq. 3	49	4.121	1.165	0.743	<0.01
Specific gravity³	Eq. 4	49	3.138	0.633	0.780	<0.01

The regression lines are calculated for $Y=\alpha+\beta X$, where X is [EB-A (ppm)] and $Y=[EB-U (μg/l or μg/g creatinine)]$.

¹ Modification by removal of two highest exposure cases (EB-A=45 ppm and 40 ppm)
² Divided by creatinine concentration (g/l).
³ Adjusted for a specific gravity of 1.016.