Molecular clutch drives cell response to surface viscosity

Mark Bennett¹, Marco Cantinia, Julien Rebouda, Jonathan M. Cooper³, Pere Roca-Cusachsb,c,¹, and Manuel Salmeron-Sancheza,¹

¹Division of Biomedical Engineering, School of Engineering, University of Glasgow, G128LT Glasgow, United Kingdom; ²Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; and ³Department of Biomedicine, University of Barcelona, 08028 Barcelona, Spain

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved December 26, 2017 (received for review June 17, 2017)

Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system through which to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented lipids (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the magnitude of the viscous element affects cellular behavior. How viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior.

matrix rigidity | molecular clutch | surface viscosity | mechanotransduction | cell differentiation

Much research has been undertaken with respect to how matrix properties influence cellular behavior, including the use of synthetic materials. Indeed, controlling these properties has been shown to be key to defining principal cellular functions, driving cells toward growth or apoptotic pathways (1). Consequently, it is widely recognized that features such as stiffness (2), topography (3), or chemical modification (4) can define the cell response. This is of particular importance in stem cell lines, where these properties have the potential to either promote lineage commitment or self-renewal (5), with the promotion or restriction of cell spreading enough to drive osteogenic or adipogenic lineage commitment, respectively (5).

Viscosity defines the range of motion, or mobility, of the molecules on a surface and is a property conceptually distinct from stiffness but also illuminates a further surface property that can significantly affect cellular behavior. For example, mobility has an effect on cell adhesion (6), spreading (7), focal adhesion (FA) properties (8), and cell fate (9). It also has the potential to change the nature of the cell/material interface, in terms of protein conformation (10–12). The effect of viscoelastic substrates has also shown that a combination of viscosity and stiffness changes the cell response (13, 14), for example increased stress-relaxation compensates for lower elastic moduli (13), implying that increasing the magnitude of the viscous element affects cellular behavior. However, current evidence arises from studies on substrates with both viscous and elastic components. Previous work has begun to elucidate the role of viscosity, noting that the lateral mobility can alter the cell response (8). However, the reason for this influence of mobility (viscosity) on cell behavior has yet to be understood.

To respond to their environment cells must have a link between the cytoskeleton and the surrounding matrix. This is initiated by integrin proteins, leading to the recruitment of further proteins forming FAs, linking the cytoskeleton to the surface (15). The nature of this overall interaction, specifically its degree of activation, has a downstream effect on transcription factors, which, in turn, guide the cell toward a specific lineage. Changing the nature of the surface can affect one or all of these processes, with recruitment of various integrin types (16), associated proteins (17, 18), actin properties (19), and transcription factors/gene expression (20, 21), all varying based on the nature of the cell/matrix interaction.

Supported lipid bilayers (SLBs) provide a well-characterized and easily manipulated system through which to study how the mobility of the surface (i.e., viscosity) controls these various factors, without the contribution of elasticity. Previously it has been shown that, while normally nonfouling, SLBs functionalized with various proteins (14, 22, 23) or peptides (24, 25) can allow for cell adhesion and spreading, as well as control of differentiation (26). Furthermore, SLBs have been used to understand the role of traction forces in the endocytic turnover of integrins (27) and the formation of mature FAs (28, 29).

Significance

Tissues are viscoelastic in nature and their physical properties play a fundamental role in development, tumorigenesis, and wound healing. Cell response to matrix elasticity is well understood through a “molecular clutch” which engages when stiffness is sufficiently high to expose binding sites in mechanosensitive proteins. Here we show that cell response to pure viscous surfaces (i.e., with no elastic component) can be explained through the same molecular clutch. Mechanisms used by cells to sense rigidity are more universal and can be used to unveil cell interaction with complex viscoelastic environments. The research presents a tool to understand cells within tissues and in turn opens new avenues to incorporate viscosity into the design of synthetic cellular microenvironments.

Author contributions: M.C., P.R.-C., and M.S.-S. designed research; M.B. performed research; M.B., J.R., J.M.C., P.R.-C., and M.S.-S. analyzed data; and M.B., P.R.-C., and M.S.-S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: All the original data related to this article and the MATLAB code used to generate the clutch model are within the depository of the University of Glasgow (doi: 10.5255/GLA.RESEARCHDATA.5525/GLA.RESEARCHDATA.567).

¹To whom correspondence may be addressed. Email: rocacusachs@ub.edu or Manuel.Salmeron-Sanchez@glasgow.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710653115/-/DCSupplemental.
Here, the mobility/viscosity of RGD functionalized SLBs is manipulated. At a given temperature, defined by the intrinsic molecular properties of the constituent lipids, the acyl chains of the lipids melt and the system moves from a well-packed and immobile gel phase to a more disordered and mobile fluid phase. This viscosity changes the ligand mobility, as measured by the diffusion coefficient \(D \), and would consequently control the mobility of a ligand adsorbed to the surface. This study, summarized in Fig. 1, uses the fibronectin-derived RGD cell-binding tripeptide to understand the nature of and, more importantly, the processes dictating the cell response to mobility of ligands in these surfaces of varying viscosity. It was hypothesized that changing this mobility of the RGD ligands would change the nature of the cell/material interaction (Fig. 1), thus having a knock-on effect on further cell properties. It is shown here that in response to surface viscosity cell behavior is mediated by a dynamic clutch mechanism. Analogously to the role of elastic rigidity, viscosity triggers reduced actin flows, adhesion growth, YAP nuclear translocation, and myoblast differentiation. This work, especially on such a well-characterized model system, presents the opportunity to determine in depth the nature and processes that cells use to dictate their response to mobility underpinned by viscosity. Understanding this can, in future, be utilized to provide further possible surfaces for controlling the cell response, as well as a means to understand how this understudied surface property defines cellular behavior.

Results and Discussion

RGD Functionalized Lipid Bilayers with Well-Controlled Surface Viscosity. Fig. 2 shows the presence of SLBs of both the fluid-phase DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) and gel-phase DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) phase lipid on glass surfaces (Fig. 2A). The presence of both bilayers is confirmed via force mapping (Fig. 2B). The resulting force curves (representative curve in Fig. S14), characteristic of an SLB (30, 31), were used to estimate the thickness of the DOPC and DPPC SLBs as 5.9 ± 0.4 nm and 6.3 nm ± 0.6 nm, respectively, a size range expected in single lipid bilayers (32–34). In conjunction with this, the lack of contrast seen in Fig. 2A demonstrates a predominantly homogenous surface with roughness (rms) values within the picometer range for all surfaces (DOPC = 0.4 ± 0.1 nm, DPPC = 0.5 ± 0.1 nm, and glass = 0.5 ± 0.1 nm). Further to this, fluorescence correlation spectroscopy (FCS) measurements (decay curves shown in Fig. S1 B and C) confirmed the difference in viscosity of the respective bilayers with differences between diffusion coefficients equaling an order of magnitude at 37 °C (Fig. 2C). These diffusion measurements are indicative of fluid-phase DOPC \(D = 3.6 \times 10^{-10} \text{m}^2/\text{s} \) SLB and a much less mobile gel-phase DPPC \(D = 0.1 \mu\text{m}^2/\text{s} \) SLB. The original Saffman–Delbruck equation describes the relationship between the diffusion coefficient \(D \) and the viscosity \(\eta \) (36). However, this equation has been shown to have limitations across the wide range of conditions experienced in cell substrate interactions. There have been a number of attempts to further develop this equation including the Hughes–Pailthorpe–White model (37) so that its validity holds across a wider range of lengths [the original equation was noted to only accurately account for this relationship when the radius of the diffusing object was significantly smaller than the “Saffman–Delbruck length” (36)]. Eq. 1 (38) provides an alternative relationship between diffusion and the viscosity; shown to predict diffusion of membrane proteins where the Saffman–Delbruck cannot, it estimates a viscosity of 8.4 × 10⁻⁹ and 3.0 × 10⁻⁹ Pa·s·m⁻¹ for DOPC and DPPC, respectively. Where \(D \) is the diffusion coefficient, \(k_B \) is the Boltzmann constant, \(T \) the absolute temperature, \(\eta_m \) the membrane viscosity, \(R \) the radius (0.5 nm, the radius of a single lipid), and \(\lambda \) the characteristic length. This characteristic length is an indication of membrane perturbation and thus is assumed to be on the order of a single lipid (0.5 nm):

\[
D(r) = \frac{k_B T \lambda}{4\pi \eta_m h R} \tag{1}
\]

Upon functionalization of the bilayer, the interparticle distance of neutravidin/RGD on DOPC and DPPC was 12.9 nm in both cases with similar SD (0.4 nm and 0.2 nm, respectively) as detected by quantitative fluorescence methods described previously (Fig. 2D) (39). These results confirm that these SLB systems are in two wholly different phases, with a large difference in the mobility of their ligands, maximizing the cell’s response to these changes in viscosity. The effect of other physical properties, such as the stiffness, topography, and chemistry layer can also be disregarded. For the former of these, it has been previously reported in the literature that the detected stiffness of an SLB
is in the megapascal range (32), far above a cell’s detectable range (40). Topography was seen to be similar between the surfaces and contribution of chemistry is minimal due to the bilayers’ containing lipids of the same hydrophilic headgroups as well as being nonfouling (41). Furthermore, incorporation of ligands was seen not to be affected by the viscosity, thus ruling out any contribution of ligand density to the cell response.

Surface Viscosity Controls Cell Morphology and Actin Assembly. Previous work has established that the ligand mobility can have a significant effect on the cellular response in other systems (6, 7, 9, 42). Indeed, fluid (low-viscosity) SLBs lead to a cell phenotype resembling that observed on very soft elastic substrates, suggesting that force transmission is impaired (28, 29). The inclusion of a gel-phase bilayer in the current work has been used as an intermediate viscosity through which to bridge the gap between a mobile (DOPC) and immobile surface (glass), illuminating how cells respond to viscosity through the mobility of ligands on the surface. Fig. 3 demonstrates that the large-scale effects of a low-viscosity/high-ligand mobility surface on cells (i.e., DOPC) are as previously described in earlier work (27–29); cells had a smaller area (Fig. 3A) and a more circular morphology (Fig. 3B). This effect of the viscosity is limited as reducing it further (by the inclusion of 30% LysoPC) was not seen to reduce the cell area (Fig. S3). However, upon an increase in viscosity (i.e., DPPC) an increase in cell area and reduction in circularity is seen. A further increase in cell area is observed upon the removal of this viscosity altogether in the RGD-glass surface. Interestingly, this is in contrast to a biphasic cell spreading/viscosity relationship previously reported in viscoelastic substrates (8). However, we note that our results characterize a purely viscous rather than viscoelastic response and also a broader range of viscosities, leading to responses from an unstructured cytoskeleton in DOPC to well-formed stress fibers in DPPC and glass (Fig. S2).

Cell area decreases upon the blocking of α5β1 and α5β3 integrins (Fig. 3C; representative images in Fig. S4), key mediators of cell binding to fibronectin. A significant increase in cell area was also noted on DPPC surfaces as the ligand density was increased over three orders of magnitude, in contrast to DOPC, where the cell area was only seen to increase at 10 mol% of RGD-lipid (Fig. 3D; representative images in Fig. S5). Drawing parallels to elastic stiffness, cells have been previously noted to respond to changes to surface ligand density to a greater extent at higher stiffness, a similar trend to that seen here (43). Regardless of ligand density, cells on DOPC are unable to exert force on the surface. This is in contrast to DPPC, where cells can spread to a greater extent as the ligand density is increased.

Cell shape has previously been noted to be dependent on the nature of the surface. For example, stiffer surfaces show greater cell spreading (2) as well as cell shape’s being a key regulator in cellular processes, such as lineage commitment (5), growth, and apoptosis (1). Here it is seen that increasing ligand mobility, by reducing viscosity, leads to a monophasic change in the cell shape to a smaller and more rounded morphology, with a concomitant reduction in cytoskeletal tension, which is mediated by α5β1 and α5β3 integrins.

The Molecular Clutch Explains Actin Flow and FA Assembly in Response to Viscosity. Cell morphology was smaller and more rounded on low-viscosity surfaces, with larger, more spread cells seen on high-viscosity surfaces, reminiscent of the cell response to stiffness on elastic substrates (2). The response of cells to increased stiffness can be interpreted through the “molecular clutch” model. First proposed by Mitchison and Kirschner (44) and framed computationally by Chan and Odde (45), this model links the ECM to the actin cytoskeleton, through integrins and FA complexes.

The model first considers myosin contractility, which powers a continuous flow of actin toward the cell center (retrograde flow). Once this actin flow is coupled to the ECM through FAs and integrins, myosin contractility is countered by the elastic resistance of the substrate to deformation, slowing the flow but increasing the rate of force loading on integrins and FA molecules. This force loading rate increases with increasing stiffness, enabling the sensing of stiffness. At a high stiffness, the high loading rate allows for force-sensitive proteins (talin) to unfold before the integrin–ECM detachment before allowing force-sensitive talin unfolding. While this has been shown to be true on elastic stiffness, it is hypothesized here that the viscosity of the membrane is detected in a similar manner, since actin retrograde flow would also load forces faster when connected to a mobile substrate with high rather than low viscosity.

To test this hypothesis, a modified version of the previously described clutch model (16, 17) was implemented, in which each RGD was considered to be bound to a viscous dashpot instead of an elastic spring (Fig. 4A). As expected, the model predicted that the effects of increasing viscosity were analogous to those of increasing stiffness. That is, talin unfolding occurs only above a threshold in viscosity, leading to a reduction in actin flow (Fig. 4B). To test this model, first actin retrograde flows were measured in the different conditions by using live cells transfected with fluorescent actin. As predicted, actin flows decreased as the viscosity increased (Fig. 4C), demonstrating the mechanical nature of the differences observed. These were abolished upon inhibition of the contractile machinery with blebbistatin (Fig. 4C); by blocking the activity of myosin II, the actin flow rate is
therefore controlled only by the rate of F-actin polymerization at the cell edge. Indeed, the rate of actin flow was observed to be similar in all cases to that of the most mobile surface, DOPC. Second, it was verified that the response was mediated as predicted by talin unfolding. To this end, cells were transfected with the head domain of vinculin (VD1), containing the talin binding domain. Previous work has shown that VD1 acts as a dominant negative for the binding to talin of endogenous vinculin, preventing the stiffness response mediated by talin unfolding (17). As predicted, despite no significant differences between FAs in native and VD1+ cells (Fig. S6), VDI transfection prevented the reduction in actin flows induced by increased viscosity (Fig. 4D).

Third, the prediction that increased viscosity should also lead to the formation of FAs was verified. To this end, the recruitment of two FA markers was measured: vinculin (representative images shown in Fig. 5A–C) and phosphorylated FAK (pFAK). Further to the decrease in actin flow, noted above, the model also predicts that talin unfolding occurring above the threshold will also lead to progressive adhesion growth (Fig. 5D); this proved true with the FA area’s increasing with viscosity (Fig. 5E).

Finally, the effect of ligand density was assessed. The clutch model predicts that reduced ligand density should have no effect on very mobile substrates, as talin unfolding does not occur. However, as viscosity (or stiffness) increases in less-dense substrates force is distributed among fewer clusters, leading to a higher force per clutch, increased reinforcement, and increased adhesion growth (46). If viscosity or stiffness increases sufficiently, adhesions can no longer grow and eventually collapse (Fig. 5G and ref. 46). This leads to smaller adhesions in less-dense substrates. Whereas this system did not have enough resolution to examine the intermediate regime, it was verified that, as predicted (Fig. 5G), adhesion size was not affected by ligand density at very low viscosities (DOPC) but increased with ligand density at very high viscosities (DPPC) (Fig. S5; representative images in Fig. S5).

Despite the good agreement between model predictions and experimental trends it is noted that the computational clutch model predicts an initiation of reinforcement and adhesion growth at values above 10^{-4} N/s/m, greater than those detected in freely diffusing SLBs shown in Fig. 2, and calculated through Eq. 1 (38). However, a characteristic length (λ) of 0.5 nm is likely not to be accurate here, due to the much larger impact of the cell on the lipid bilayer (as oppose to that on a single lipid molecule). λ in Eq. 1 describes the uncertainty in the relationship between the diffusion coefficient and the viscosity and has been reported to vary by three orders of magnitude for protein inclusions in lipid bilayers (38). To this end, λ was calculated to account for a length scale similar to that of cells on top of the bilayer (10 μm for DOPC and 20 μm for DPPC, derived from the equivalent average cell radius). This produces an estimated viscosity of 1×10^{-6} Pa·s for DOPC and 1×10^{-4} for DPPC, bringing the latter into the range that leads to engagement of the clutch. While calculating specific corrected values for viscosity is challenging due to the complexity of the system, these estimated values likely give a good approximation of the scale of change of the viscosity within the cell area.

The Molecular Clutch Explains Force Transduction in Response to Viscosity

One means through which cells sense external mechanical cues is through translation into biochemical signals (e.g., transcription factors), thus having an effect on gene expression. For example, cellular response to stiffness leads to downstream up-regulation of specific proteins such as RhoA, YAP, and TAZ (20, 47). In turn, up-regulation of these proteins in mesenchymal stem cells (MSCs) promotes lineage commitment to the more contractile osteogenic lineage (5, 20).

In light of this, the initial downstream effect of viscosity on the cell was determined using YAP localization, as shown in Fig. 6 (representative images in Fig. S8). YAP was seen to translocate to the nucleus to a greater extent on less-mobile surfaces, providing further support for the hypothesis of viscosity being interpreted via the molecular clutch model (17). It has been previously shown that YAP activity is regulated by the formation of stress fibers, cytoskeletal tension (20), and traction force (17), which shows a link between the extent of activity and both the morphological characteristics (Fig. 2) and the retrograde actin flow (Fig. 4). This regulation by YAP induced by response of the cell to varying viscosity has the ability to control further cell properties such as cell differentiation. Indeed, it has previously been shown that MSC differentiation can be prevented through YAP inhibition (20).

As a determination of the applicability of this system the response of cells was characterized by their lineage commitment as shown in Fig. 6B and C (representative images in Fig. S8). It was observed that a greater degree of differentiation, as indicated
initially by the up-regulation of the transcription factor myogenin, and subsequently by more cells staining positive for sarcomeric myosin, was seen on more viscous surfaces. This is in contrast to previously reported work using viscosity to differentiate MSCs (48), where higher amounts of differentiation markers as well as cell spreading were seen on more mobile surfaces; this is despite the current work and previous work demonstrating that cells do not spread (27–29) or differentiate on mobile surfaces.

The stiffness of a substrate is important in myogenic differentiation (49); due to the similar nature of cell response to the viscosity of the surface, it could be assumed that analogous pathways are activated and promoted here. One such candidate for viscosity-induced differentiation in this system is FAK. The activity of FAK has been shown to be of significant importance in the myogenic differentiation pathway of C2C12 murine myoblast cells, with overexpression of FAK rescuing differentiation on nonconductive substrates (50). Further work has also noted the role of FAK phosphorylation in the differentiation pathways of skeletal muscle (51). One hypothesis may therefore be that the increased FAK phosphorylation, induced by changes in viscosity, activates the differentiation pathways. These results may therefore indicate that the sensing of the viscosity of a surface, through mechanosensitive pathways, has a significant effect on cell differentiation.

This work has elucidated the process involved in cell sensing of viscosity, from its detection through FAs to its overall effect on cell fate/differentiation. We have engineered RGD functionalized lipid bilayers with controlled ligand density and significantly different viscosity (i.e., diffusion coefficient or mobility). We show that viscosity has a significant effect on mechanotransduction proteins, downstream transcriptional regulators, and differentiation. Overall, the effect of pure viscous flow in cell mechanotransduction is explained by the molecular clutch model. It is shown that at higher viscosities (DPPC) upon exertion of force by the cell the ligand will oppose higher resistance to movement through the tightly packed lipid membrane. This builds force quickly, allowing stable integrin binding, talin unfolding, vinculin bridging to the actin cytoskeleton, and FA assembly, thereby slowing down actin flow. Conversely, at lower viscosity (DOPC) the force loading rate will be slower, as the ligand will exert less resistance to movement through the membrane upon force exertion by the cell. This prevents protein unfolding and increases actin flow.

By understanding the nature of the cell response to viscosity, coupled with the knowledge of the stiffness response, it is reasonable to conclude that this may lead to further, combinatorial approaches to changing the physical properties of surfaces. The fine tuning of viscoelastic properties of surfaces will allow better, more defined control of the desired cellular response. It, therefore, has the potential to provide new and as yet not fully realized methods of manipulating cellular response. In addition, it will enhance our understanding of cell behavior in tissues which are viscoelastic by nature.

Materials and Methods

Further elaboration on the methods can be found in Supporting Information.

Production and Functionalization of SLBs. Vesicle solutions were made by drying lipid solutions in rehydration (R) buffer above the relevant transition temperature. To make the SLBs the vesicles were diluted in fusion (F) buffer immediately before use and incubated on cleaned glass surfaces for 20 min at room temperature (RT) for DOPC and at 70 °C for DPPC and washed.

All samples were functionalized with 0.1 mg/mL neutravidin (Fisher) and 2 μL/mL cyclic-RGD (Peptides International) for 15 min each, washing in between. SLBs were characterized by atomic force microscopy (AFM) (Nanowizard III Bioscience AFM; JPK). Quantitative fluorescence microscopy was carried out as previously described (44) and used to quantify the amount of neutravidin on the surface. FCS was used to determine the diffusion coefficients and thus the viscosity of the membrane.
Cell Culture and Transfection. C2C12 mouse myoblasts were used in all experiments and transfected with conditions as stated on the website. The pEGFP/C1/GgVcl 1-258 (aka VD1) plasmid (Addgene plasmid no. 46270) was a gift from Susan Craig, The Johns Hopkins School of Medicine, Baltimore. Transformed cells were cultured for 24 h and used.

Statistical Analysis. In all figures values are given as the mean ± the SD. One-way or two-way ANOVA tests were carried out as appropriate. Significance was taken as the P values, which are given as follows: not significant (ns), <0.05, *<0.01, **<0.001, ***<0.0001, and ****<0.00001.

Acknowledgments. This work was supported by European Research Council HealSynergy Grant 306990 and Engineering and Physical Sciences Research Council Grants EPS001114/1 and EPS/S00424/1, the Spanish Ministry of Economy and Competitiveness (Grant BU2016-79916-P, the European Commission (Grant Agreement SEP-21034284), the Generalitat de Catalunya (Grant 2014-SGR-927), and Obra Social “La Caixa.”.