Lepton Flavor Violation and the Tau Neutrino Mass

R.N. Mohapatra†, S. Nussinov* and X. Zhang†

Department of Physics and Astronomy
University of Maryland
College Park, MD 20742

Abstract

We point out that, in the left-right symmetric model of weak interactions, if ν_τ mass is in the keV to MeV range, there is a strong correlation between rare decays such as $\tau \to 3\mu$, $\tau \to 3e$ and the ν_τ mass. In particular, we point out that a large range of ν_τ masses are forbidden by the cosmological constraints on m_{ν_e} in combination with the present upper limits on these processes.

† Work supported by a grant from the National Science Foundation

* Permanent address: Department of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
In the standard model of electroweak interactions, all lepton flavors L_e, L_μ and L_τ are conserved. On the other hand, in most extensions of the standard model, lepton flavor conservation is not maintained; therefore, it is hoped that the nature of lepton flavor violation can help to narrow the possibilities of new physics. Crucial tests of lepton flavor violation are provided by the rare decays of μ and τ such as $\mu \rightarrow 3e[1]$ and $\tau \rightarrow l_il_jl_k$ where l_i, j, k go over e and μ. The present stringent limits on $\mu \rightarrow 3e$ already make it imperative that in all extensions of standard model, violation of $L_\mu + L_e$ be very weak. On the other hand, the present upper limits on the branching ratios for rare τ decays[2] allow for possible violation of $L_\tau + L_\mu$ or $L_\tau + L_e$ at a much higher level. One class of models, where the possibility of a significant lepton violation exists, is the left-right symmetric model with see-saw mechanism for neutrino masses[3]. In this note, we investigate the rare τ decays and their implications for violation of $L_\tau + L_\mu$ or $L_\tau + L_e$ quantum numbers in these models. We show that there is a strong correlation between the tau neutrino mass and $\tau \rightarrow 3\mu$ and $\tau \rightarrow 3e$ decays if m_{ν_τ} is in the keV to MeV range[4], as is allowed by existing laboratory upper limits[2]. First we derive lower limits on m_{ν_τ} for the case where $B(\tau \rightarrow 3\mu) = 0$; Once the flavor violating decay $\tau \rightarrow 3\mu$ or $\tau \rightarrow 3e$ is allowed we show that the present upper limits on their rates permit the lower bound on m_{ν_τ} to be somewhat relaxed. Improvement of the present experimental upper limits on m_{ν_τ} and the branching ratios for the above τ-decay modes can therefore throw light on the nature of lepton flavor violation in the left-right symmetric models.

We consider the left-right symmetric model with a see-saw mechanism
for neutrino masses as described in ref.3. Let us display the leptonic and Higgs sector of the model. The three generations of lepton fields are $\Psi_a \equiv \begin{pmatrix} \nu \\ e \end{pmatrix}_a$, where $a = 1, 2, 3$. Under the gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$, they transform as $\Psi_a L \equiv (1/2, 0, -1)$ and $\Psi_a R \equiv (0, 1/2, -1)$. Since our purpose is to study the possible degree of violation of $L_\mu + L_\tau$ or $L_e + L_\tau$ in the rare τ-decay, we will impose one of these global symmetries on the model [F.1], for simplicity. We illustrate our idea for the model with $U(1)_{\tau + \mu}$ global symmetry. The Higgs sector then needs to be enlarged if we want the see-saw mechanism for all lepton flavors. We choose a single bi-doublet field $\phi \equiv (1/2, 1/2, 0)$ and two sets of triplet Higgs fields:

$$\Delta_L(1, 0, +2) \oplus \Delta_R(0, 1, +2); \quad \text{with } L_\mu + L_\tau = -2 \quad (1.a)$$

$$\Delta'_L(1, 0, +2) \oplus \Delta'_R(0, 1, +2); \quad \text{with } L_\mu + L_\tau = 0 \quad (1.b)$$

The Yukawa coupling which are invariant under all symmetry can be written as:

$$L_Y = \bar{\Psi}_L h \phi \Psi_R + \bar{\Psi}_L \tilde{h} \phi \Psi_R$$

$$+ \Psi^{T}_L \tau_2 \tilde{f} \Delta_L C^{-1} \Psi_L + L \rightarrow R$$

$$+ h.c.$$ (2)

where h, \tilde{h} and $f \Delta$ are the following matrices in generation space:

$$h \equiv \begin{pmatrix} h_{11} & 0 & 0 \\ 0 & h_{22} & h_{23} \\ 0 & h_{23} & h_{33} \end{pmatrix} \quad (3.a)$$

$$f \Delta \equiv \begin{pmatrix} f_{11} \Delta' & 0 & 0 \\ 0 & f_{22} \Delta & f_{23} \Delta \\ 0 & f_{23} \Delta & f_{33} \Delta \end{pmatrix} \quad (3.b)$$
and similarly for \tilde{h}.

The gauge symmetry is spontaneously broken by the vacuum expectation values:

$$< \Delta^0_R > = V_R \ ; \quad < \Delta^0_R' > = V'_R \ ; \quad (4.a)$$

$$< \Delta^0_L > = < \Delta^0_L' > = 0 \quad (4.b)$$

and

$$< \phi > = \begin{pmatrix} \kappa & 0 \\ 0 & \kappa' \end{pmatrix} \ . \quad (4.c)$$

As usual, $< \phi >$ gives masses to the charged fermions and Dirac masses to the neutrinos whereas $< \Delta^0_R >$ and $< \Delta^0_R' >$ lead to the see-saw mechanism for the neutrinos (this mechanism operates separately for ν_e and jointly for ν_μ and ν_τ). These discussions are all standard and we do not repeat them here.

The physics we are interested in comes from the left-handed triplet sector of the theory. As indicated in eq.(4.b) these fields do not take part in the Higgs mechanism; therefore, if we ignore certain couplings in the Higgs potential, such as $\Delta_L \phi \Delta_R^{\dagger} \phi^{\dagger}$ etc., then Δ_L and Δ_R remain unmixed states. Of course there could be mixings between Δ_L and Δ_L'; but we ignore these mixings here and comment later on their effect. For small $\Delta_L - \Delta_L'$ mixings, our main results do not change. In this limit, the electron generation separates for all practical purposes from the μ and τ generations. The $\mu \rightarrow 3e$ and $\mu \rightarrow e\gamma$ are forbidden. We therefore focus on the $\mu - \tau$ sector.
Yukawa Lagrangian relevant to our discussions is given (in the basis where all the leptons are mass eigenstates) by

\[\mathcal{L}_Y = \nu_L^T F'C^{-1}\nu_L \Delta^0 + \nu_L^T F''C^{-1}E_L \Delta^+_L \]
\[+ E_L^T FC^{-1}E_L \Delta^{++} + h.c , \quad (5) \]

where \(\nu = (\nu_\mu, \nu_\tau) \), \(E = (\mu, \tau) \); \(F, F' \) and \(F'' \) are 2 \(\times \) 2 matrices related to each other as follows:

\[FK^T = F''; \quad KFK^T = F' , \quad (6) \]

where \(K \) is the leptonic Cabibbo matrix in the left-handed \(\mu - \tau \) sector. First we note that the off-diagonal element of \(K \) is the \(\nu_\mu - \nu_\tau \) mixing angle, which is directly measurable parameters, restricted to be, \(\theta_{\mu \tau} \leq 0.03 \) by existing accelerator experiments[5].

Now, we make the following observation. Suppose that the \(\nu_\tau \) mass is in the keV to MeV range and \(\nu_\mu \) and \(\nu_e \) masses are in the few electron volt range, a possibility consistent with present upper limit on neutrino masses from the accelerator data[5]. In this case, \(\nu_\tau \) must be unstable in order to be consistent with cosmological constraints on the mass density in the universe[6]. The mass and life time are then related by[7]

\[\tau_{\nu_\tau} \leq (5.4 \times 10^{10} \text{ sec}) \left(\frac{100 \text{ keV}}{m_{\nu_\tau}} \right)^2 \quad (7.A) \]

A more stringent, but model dependent constraint can be derived from considerations of Galaxy formation[8]; it is given by
\[\tau_{\nu_\tau} \leq 3 \times 10^7 \text{sec.} \] (7.B)

In the model under consideration, \(\nu_\tau \to \nu_\mu \bar{\nu}_\mu \nu_\mu \) occurs via \(\Delta^0_L \) exchange and can be used to satisfy the constraints in eqs.(7)[9]. The Hamiltonian for this process is given by

\[H = \frac{G_{\nu_\tau} \bar{\nu}_\mu \gamma^\lambda (1 - \gamma_5) \nu_\mu \bar{\nu}_\mu \gamma_\lambda (1 - \gamma_5) \nu_\tau + h.c}{\sqrt{2}} \] (8.a)

where (we drop the subscript L from \(\Delta_L \) henceforth)

\[G_{\nu_\tau} = \sqrt{2} \frac{F'_{\mu\mu} F'_{\mu\tau}}{4M^2_{\Delta^0}} \approx \sqrt{2} \frac{F_{\mu\mu}}{4M^2_{\Delta^0}} \times \left[F_{\mu\tau} - \theta_{\mu\tau} (F_{\mu\mu} - F_{\tau\tau}) \right] \] (8.b)

The \(\nu_\tau \) lifetime is

\[\tau_{\nu_\tau}^{-1} = \frac{2G^2_{\nu_\tau} m_{\nu_\tau}^5}{192\pi^3} \] (8.c)

From eq.(7.A) we get[7.2]

\[G_{\nu_\tau} \geq (1.9 \times 10^{-12}) \left(\frac{\text{GeV}}{m_{\nu_\tau}} \right)^{3/2} \text{GeV}^{-2} \] (9.A)

To get a feeling for the order of magnitude of \(G_{\nu_\tau} \), note that for \(m_{\nu_\tau} = 10 \text{ MeV} \), \(G_{\nu_\tau} \geq 2 \times 10^{-4} G_F \) and \(m_{\nu_\tau} = 0.1 \text{ MeV} \), \(G_{\nu_\tau} \geq 0.2 \ G_F \). The corresponding constraint from Galaxy formation eq.(7.B) can be written as

\[G_{\nu_\tau} \geq 8 \times 10^{-15} \left(\frac{\text{GeV}}{m_{\nu_\tau}} \right)^{5/2} \text{GeV}^{-2} \] (9.B)
Turning now to the τ-lepton, we observe that exchange of ΔL^{++} contributes to the rare τ-decay, $\tau^{-} \rightarrow \mu^{-} \mu^{-} \mu^{+}$ with a strength (defined analogously to the ν_{τ} case)

$$G_{\tau} = \sqrt{2} \frac{F_{\mu \mu} F_{\mu \tau}}{4 M_{\Delta^{++}}^2}.$$ \hspace{1cm} (10)

Now, we first notice from eq.(8.b) that, even if $F_{\mu \tau} = 0$ (i.e there is no $\tau \rightarrow 3 \mu$ decay) the ν_{τ} can decay. Since the decay rate depends on ν_{τ} mass, let us see, if for the presently allowed range of $\theta_{\mu \tau}$ and ν_{τ} masses, constraints in eqs.(7.A) and (7.B) are satisfied. To study this, we first note that vacuum stability requires all $F_{ab} \leq 1.2[11]$ and LEP data require that, $m_{\Delta_{L}^0} \geq 45$ GeV. Combining these and present upper limit of $\theta_{\mu \tau} \leq 3 \times 10^{-2}$ we find from eqs.(9) that, for case A and B, the ν_{τ} mass must have the following lowest bounds:

Case A : \hspace{1cm} $m_{\nu_{\tau}} \geq 31$ keV \hspace{1cm} ; \hspace{1cm} (11.A)

Case B : \hspace{1cm} $m_{\nu_{\tau}} \geq 210$ keV \hspace{1cm} . \hspace{1cm} (11.B)

Once the ν_{τ} masses go below the above limits, the LR model cannot satisfy the cosmological constraints without having $F_{\mu \tau} \neq 0$. We emphasize that, we have been extremely conservative in obtaining these lower bounds. (For instance, $F_{\tau \tau}$ is likely to be lower than its maximum allowed value and m_{Δ^0} is also likely to be heavier.) $F_{\mu \tau} \neq 0$ immediately leads to non-vanishing $\tau \rightarrow 3 \mu$ decay. We can therefore obtain a lower bound on the $B(\tau \rightarrow 3\mu)$ in these ranges of $m_{\nu_{\tau}}$.

7
In the presence of $F_{\mu\tau}$, we have

$$\Gamma(\tau \to 3\mu) = \frac{1}{4 m_{\Delta_0}^4} (F_{\mu\mu} F_{\mu\tau})^2 \frac{m_{\tau}^5}{192\pi^3} .$$ \hspace{1cm} (12)$$

Using the ν_τ lifetime in eq.(8.c), we get,

$$B(\tau \to 3\mu) = \left(\frac{0.3 \times 10^{-12}}{\tau_{\nu_\tau} \text{insec}} \right) \left(\frac{m_{\Delta_0}}{m_{\Delta_{++}}} \right)^4 \left(\frac{m_{\tau}}{m_{\nu_\tau}} \right)^5 \left(\frac{F_{\mu\tau}}{F_{\mu\mu} - \theta_{\mu\tau}(F_{\mu\mu} - F_{\tau\tau})} \right)^2 .$$ \hspace{1cm} (13)$$

Using the cosmological upper bounds on τ_{ν_τ} in eqs.(7.A) and (7.B), we get,

Case A : $B(\tau \to 3\mu) \geq 9.5 \times 10^{-3} \left(\frac{100\text{keV}}{m_{\nu_\tau}} \right)^3 \left(\frac{m_{\Delta_0}}{m_{\Delta_{++}}} \right)^4 \epsilon_{\mu\tau}$; \hspace{1cm} (14.A)$$

Case B : $B(\tau \to 3\mu) \geq 16.8 \left(\frac{100\text{keV}}{m_{\nu_\tau}} \right)^5 \left(\frac{m_{\Delta_0}}{m_{\Delta_{++}}} \right)^4 \epsilon_{\mu\tau}$. \hspace{1cm} (14.B)$$

where $\epsilon_{\mu\tau} = \left(\frac{F_{\mu\tau}}{F_{\mu\mu} - \theta_{\mu\tau}(F_{\mu\mu} - F_{\tau\tau})} \right)^2$. Note that once m_{ν_τ} is below the lower bounds given in eqs.(11), $\epsilon_{\mu\tau}$ becomes a function of m_{ν_τ}; therefore for a given value of m_{ν_τ}, we can find a lower bound on $B(\tau \to 3\mu)$, (and vice-versa) if we have a lower bound on $(m_{\Delta_0}/m_{\Delta_{++}})^4$.

Let us therefore discuss the factor $(m_{\Delta_0}/m_{\Delta_{++}})^4$. We note that[10], the Δ_L multiplet contributes to the ρ-parameter as follows:

$$\rho_{\Delta} = \frac{G_F}{4\sqrt{2} \pi^2} [f_{(0,+)} + f_{(+,++)}] \equiv \frac{3G_F}{8\sqrt{2} \pi^2} \Delta m^2 ,$$ \hspace{1cm} (15)$$
where \(f_{a,b} = m^2_a + m^2_b - \frac{2m^2_a m^2_b}{m^2_b - m^2_a} \ln \frac{m^2_b}{m^2_a} \). Langacker[12] has given an upper bound on the new contribution to \(\rho \)-parameter from physics beyond the standard model as follows:

\[
m^2_t + \Delta m^2 \leq (194 \text{GeV})^2 .
\]

(16)

In the LR model, there exists the further relation:

\[
m^2_{\Delta^+} = m^2_{\Delta^0} (1 + 2\alpha); \quad m^2_{\Delta^0} = m^2_{\Delta^0} (1 + \alpha) ,
\]

(17)

where \(\alpha \) is a dimensionless parameter. Using these relations, we can obtain a lower bound on \(\alpha \) from \(\rho \)-parameter constraint (using the fact that \(m_{\Delta^0} \geq 45 \) GeV), which can then be converted to a lower bound on \(B(\tau \rightarrow 3\mu) \). We find that for \(m_t = 110 \) GeV , \(\alpha < 67 \) and for \(m_t = 150 \), \(\alpha < 40 \). Using this we obtain

Case A: \(B(\tau \rightarrow 3\mu) \geq \delta_A \left(\frac{100 \text{keV}}{m_{\nu \tau}} \right)^3 \epsilon_{\mu \tau}(m_{\nu \tau}) \); (18.A)

Case B: \(B(\tau \rightarrow 3\mu) \geq \delta_B \left(\frac{100 \text{keV}}{m_{\nu \tau}} \right)^5 \epsilon_{\mu \tau}(m_{\nu \tau}) \). (18.B)

In table I, we give the values of \(\delta_A \) and \(\delta_B \) for the two cases for two values of \(m_t \).

\(m_t \) (GeV)	\(\delta_A \)	\(\delta_B \)
110	\(5.6 \times 10^{-7} \)	\(1 \times 10^{-3} \)
150	\(1.4 \times 10^{-6} \)	\(2.5 \times 10^{-3} \)

Table I. Values of \(\delta_A \) and \(\delta_B \)
To understand the implications of eqs.(18) further, let us first note that they depend on $F_{\mu \tau}$ explicitly. Clearly for values of m_{ν_τ} far below the lower limits in eqs.(11), cosmology would require $F_{\mu \tau} \gg \theta_{\mu \tau} (F_{\mu \mu} - F_{\tau \tau})$ (e.g. $m_{\nu_\tau} = 100$ keV in case B would require $F_{\mu \tau} \simeq 0.2$, whereas $|\theta_{\mu \tau}(F_{\mu \mu} - F_{\tau \tau})|_{\max} \leq 0.06$). In such cases, $\epsilon_{\mu \tau} = 1$ so that, the lower bound is obtained by setting $\epsilon_{\mu \tau} = 1$ in the right-hand side of the inequalities (18.a) and (18.b). The present upper bound on $B(\tau \rightarrow 3\mu) \leq 4.8 \times 10^{-6}$[13]. Therefore, values of m_{ν_τ} for which $F_{\mu \tau} \leq \frac{1}{3} |\theta_{\mu \tau}(F_{\mu \mu} - F_{\tau \tau})|_{\max} \simeq 0.02$ satisfies both the experimental upper bound on $B(\tau \rightarrow 3\mu)$ and the cosmological bound for case A ($m_t = 150$ GeV) leading to $m_{\nu_\tau} \geq 26$ keV, which is, then, the absolute lower bound on m_{ν_τ} in this model. Turning to case B, we find that both constraints are satisfied for $F_{\mu \tau} \leq .02$ giving $m_{\nu_\tau} \geq 187$ keV. Thus, we see that allowing for $\tau \rightarrow 3\mu$ decay leads to slight relaxation of the lower bounds on m_{ν_τ} allowed in the LR model. Further improvement of the upper limits on the $B(\tau \rightarrow 3\mu)$ as well as $\theta_{\mu \tau}$ will therefore help to further constrain the m_{ν_τ} in these models.

Bounds on m_{ν_τ} using only cosmological mass density constraints were discussed in ref.4, where two assumptions were made: a) $m_{\Delta^0} \simeq m_{\Delta^{++}}$ and b) there is no mixing between lepton generations. We do not make these assumptions here; further more, we point out the existence of a bound even if $B(\tau \rightarrow 3l) = 0$ unlike that in ref.4. Thus, our lower bounds are more rigorous than those of ref.4.

Let us close with a few comments:

a) For the case where $L_e + L_\tau$ symmetry is imposed on the theory, similar
results follow with μ replaced by e everywhere in the final state. The lower bounds are now weaker since $\theta_{e\tau} \leq 0.17$. All result obtained for case A (i.e. mass density bound) are lowered by a factor of 3 and for case B by a factor of 2. If $m_{\nu_\tau} > 1 \text{ MeV}$, the channel $\nu_\tau \rightarrow \nu_e + e^+ + e^-$ can also arise via Δ^+_L exchange, which is constrained by Supernova consideration[14], although the existing bounds do not yield any interesting constraint on the parameters under discussion.

b) In the model with $L_\mu + L_\tau$ symmetry, the existence of $\Delta_L - \Delta'_L$ mixing can lead to $L_\mu + L_\tau$ violating channels. We choose this mixing to be small. If however, this mixing were not negligible a new channel $\overline{\nu}_\tau \rightarrow \nu_\mu + \nu_e + \nu_e$ appears. This will weaken our bounds by a factor $(1 + y)^{3/2}$ in case A and $(1 + y)^{5/2}$ in case B, where $y = \Gamma(\nu_\tau \rightarrow \nu_\mu \nu_e \nu_e)/\Gamma(\nu_\tau \rightarrow 3\nu_\mu)$.

c) Specifically, our results will also apply to the minimal left-right symmetric model without any symmetry (and hence only a single set of $\Delta_L \oplus \Delta_R$) if we only chose either $F_{\mu\tau}$ or $F_{e\tau}$ to be zero, except that in this case there is always a second decay mode (e.g. $\nu_\tau \rightarrow \overline{\nu}_\mu \nu_e \nu_e$ for $F_{e\tau} = 0$). Again, there will be a slight dilution of our lower limits.

d) Strictly speaking in order to avoid the existence of a Majoron in our model, we can add soft symmetry breaking terms of the form $(\Delta^+_L \Delta'_L + \Delta^+_R \Delta'_{R})$. In the absence of this, there exists a Majoron, but it does not provide any fast decay mode for ν_τ (similar to the original singlet Majoron model). In either case, our results remain unchanged.
We wish to thank A. Jawahary for discussions and to Y. Nir for pointing out some earlier works on the subject. One of us (S.N.) thanks the Nuclear theory group at the University of Maryland for hospitality.

Footnote

[F.1] Even though we have imposed the global symmetries $L_\tau + L_\mu$ to obtain these results, these are very likely to apply to the model without them. The reason is that, $\mu \to 3e$ requires the Δ_L coupling $F_{\mu e}$ to be nearly zero. Then the constraints of $\mu \to e\gamma$ imply that, $F_{\tau \mu}F_{\tau e} \leq 10^{-5}$. Therefore, if one of them is big (i.e. of order 10^{-1} or so), the second one is very small. In our case, if $F_{\mu \tau} \simeq 10^{-1}$, we expect $F_{\tau e} \leq 10^{-4}$. This is equivalent to approximate $L_\mu + L_\tau$ symmetry. Similarly if $F_{\mu \tau} \leq 10^{-4}$ and $F_{e \tau} \simeq 10^{-1}$, this is equivalent to imposing $L_e + L_\tau$ symmetry.

[F.2] Similar considerations are applied in the $e - \mu$ sector in ref.10.
References

[1] A. Van der Schaaf, Prog. Part. Nucl. Physics, 31, 1 (1993); M. Cooper, Proceedings of LEMS’93, ed. M. Leon (to be published).

[2] For an excellent recent review, see A.J. Weinstein and R. Stroynowski, Cal. Tech. Preprint, CALT-68-1853, February, 1993. to appear in Ann. Rev. of Nucl. and Particle Physics.

[3] R.N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44, 912 (1980); Phys. Rev. D23, 165 (1981).

[4] H. Harari and Y. Nir, Nucl. Phys. B292, 251 (1987).

[5] F. Boehm, in Particles, Strings and Cosmology, ed. P. Nath et.al. P.96 (World Scientific, 1991).

[6] D. Dicus, E. Kolb and V. Teplitz, Phys. Rev. Lett. 39, 169 (1977).

[7] E. Kolb and M. Turner, Phys. Rev. Lett. 67, 5 (1991).

[8] G. Steigman and M. Turner, Nucl. Phys. B253, 375 (1985).

[9] M. Roncadelli and G. Senjanović, Phys. Lett. B107, 59 (1983); P.B. Pal, Nucl. Phys. B227, 237 (1987); R.N. Mohapatra and P.B. Pal, Phys. Lett. B179, 105 (1986).

[10] P. Herczeg and R.N. Mohapatra, Phys. Rev. Lett. 69, 2475 (1992).

[11] R.N. Mohapatra, Phys. Rev. D34, 909 (1986).

[12] P. Langacker, in Particle Data Tables, 1992; see also, G. Altarelli, R. Barbieri and S. Jadach, CERN preprint CERN-TH 6124/91.

[13] CLEO collaboration, submitted to the Lepton-Photon Conference at Cornell, August (1993).
[14] see *e.g.* A. Dar, J. Goodman and S. Nussinov, Phys. Rev. Lett. **58**, 2146 (1987). F. Von Feilitzsch, in *Neutrinos* ed. H. Klapdor, P.1 (Springer-Verlag, 1988).