CT-M8 mice: a new mouse model demonstrates that basophils have a non-redundant role in lupus-like disease development

SUPPLEMENTARY MATERIAL

Authors: John TCHEN 1,2, Quentin SIMON 1,2, Léa CHAPART 1,2, Christophe PELLEFIGUES 1,2, Hajime KARASUYAMA 3, Kensuke MIYAKE 3, Ulrich BLANK 1,2, Marc BENHAMOU 1,2, Eric DAUGAS 1,2, Nicolas CHARLES 1,2

Affiliations:

1- Université Paris Cité, Centre de Recherche sur l’Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France

2- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France

3- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan

4- Service de Néphrologie, Hôpital Bichat, Assistance Publique – Hôpitaux de Paris, Paris, France

*Correspondence to:
Nicolas Charles, PhD
Centre de Recherche sur l’Inflammation, INSERM UMR1149, CNRS ERL8252,
Université Paris Cité, Faculté de Médecine site Bichat,
16 rue Henri Huchard, 75018 Paris, France.
Phone: +33 157277306
E-mail: nicolas.charles@inserm.fr
Supplementary Figure S1: tdTomato expression in basophils from CT-M8 mice

Basophil-specific tdTomato expression (red) imaged by confocal microscopy on basophil-enriched splenocytes from $Mcpt8^{+/+}$ (left) and $Mcpt8^{CT/CT}$ (right) mice stained with anti-IgE antibody (green) and DNA staining (DAPI, blue) (see methods). Scale bar = 20 µm. The upper panels correspond to the uncropped images from Figure 1C. The lower panels are from another independent experiment.