TIME-VARIABLE ACCRETION IN THE TW Hya STAR/DISK SYSTEM

J. A. Eisner1, G. W. Doppmann2, J. R. Najita2, D. McCarthy1, C. Kulesa1, B. J. Swift1, and J. Teske1
1 Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA; jeisner@email.arizona.edu
2 National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719, USA

Received 2010 July 1; accepted 2010 September 2; published 2010 September 16

ABSTRACT

We present two epochs of observations of TW Hya from the high-dispersion near-IR spectrograph ARIES at the Multiple Mirror Telescope. We detect strong emission from the Brγ transition of hydrogen, indicating an accretion rate substantially larger than previously estimated, using hydrogen line emission. The Brγ line strength varies across our two observed epochs. We also measure circumstellar-to-stellar flux ratios (i.e., veilings) that appear close to zero in both epochs. These findings suggest that TW Hya experiences episodes of enhanced accretion while the inner disk remains largely devoid of dust. We discuss several physical mechanisms that may explain these observations.

Key words: planetary systems — stars: individual (TW Hya) — stars: pre-main sequence — techniques: spectroscopic

1. INTRODUCTION

TW Hya is a nearby (∼56 pc), young (∼10 Myr) star (Webb et al. 1999) surrounded by an accretion disk that evinces a large inner hole as judged from the observed spectral energy distribution (SED; Calvet et al. 2002) and mid-IR and submillimeter imaging (Ratzka et al. 2007; Hughes et al. 2007). These data can be modeled with an optically thick disk whose inner edge is located ∼4 AU from the central star. While observations of 10 μm silicate emission (Sitko et al. 2000; Uchida et al. 2004) together with spatially resolved emission at 2 μm (Eisner et al. 2006) suggest the presence of dust grains with sizes less than a few microns at stellocentric distances R ≲ 4 AU, this inner disk material appears optically thin, and has been estimated to constitute less than a lunar mass (Calvet et al. 2002). Such a small amount of material is compatible with the very low near-IR veiling measured previously (Johns-Krull & Valenti 2001; Yang et al. 2005).

Warm gas has also been detected within the optically thin inner region of TW Hya’s circumstellar disk (Herczeg et al. 2004; Rettig et al. 2004; Salyk et al. 2007, 2009; Pontoppidan et al. 2008; Najita et al. 2007). In fact, the gas appears to be distributed in a disk with a similar inclination to the optically thick dust disk observed at larger radii (i = 3°–7°; Pontoppidan et al. 2008; Qi et al. 2004). The inner disk of TW Hya, while optically thin, is clearly not completely devoid of matter.

A variety of accretion signatures have been detected in TW Hya, indicating some flow of gaseous material through the inner disk. Observations of Hα emission, interpreted in the context of a magnetosonic accretion model, indicated M = 5 × 10⁻¹⁰ M⊙ yr⁻¹ (Muzerolle et al. 2000). A shock model fitted to UV and optical photometry indicated a consistent value of M = 4 × 10⁻¹⁰ M⊙ yr⁻¹ (Muzerolle et al. 2000). A similar model fitted to a separate UV spectrophotometric data set yielded M = 2 × 10⁻⁹ M⊙ yr⁻¹ (Herczeg et al. 2004). Analysis of two additional epochs of UV data separated by approximately two years indicate an accretion rate of ∼1.5 × 10⁻¹¹ M⊙ yr⁻¹ on both occasions (Herczeg & Hillenbrand 2008). Still higher accretion rates were suggested by modeling of X-ray emission from TW Hya: M ∼ 10⁻⁸ M⊙ yr⁻¹ (Kastner et al. 2002). In contrast, a subsequent study of X-ray emission derived an accretion rate of ∼10⁻¹¹ M⊙ yr⁻¹ (Stelzer & Schmitt 2004).

Modeling of the CIV 1549 Å line flux yields M = (4 ± 2) × 10⁻⁸ M⊙ yr⁻¹ (Valenti et al. 2000).

While the large dispersion in accretion rate measurements is due in large part to different systematic effects for different techniques, in some cases the same technique used on different epochs (generally by different investigators) has yielded different accretion rates. Moreover, a study of Na D line variability suggested accretion rates varying between ∼10⁻⁹ and 10⁻⁸ M⊙ yr⁻¹ over a 1 yr period (Alencar & Batalha 2002). Thus, it seems that the amount of material in the inner disk may fluctuate significantly over time.

In this Letter, we present observations of Brγ emission and near-IR veiling. The two epochs of data show significant variations in Brγ emission strength, but not in veiling. We use these findings to examine the viability to different mechanisms proposed to maintain the optically thin inner region of TW Hya’s disk.

2. OBSERVATIONS AND DATA REDUCTION

We observed TW Hya on UT 2009 January 17 and UT 2009 May 8 with the ARIES instrument at the Multiple Mirror Telescope (MMT). ARIES receives a corrected beam from the adaptive secondary of the MMT, and performs imaging and spectroscopy from 1 to 5 μm wavelengths (although the 3–5 μm detector is not yet implemented). We used the echelle mode of ARIES, with a resolving power of R = 30,000. The slit is 1″ × 0′′.1, well matched to the diffraction-limited, adaptive-optics-corrected resolution of the MMT. The small slit allows many orders to be placed on the detector simultaneously, and our setup included >25 non-contiguous orders across the H and K bands. Based on the echelle dispersion, we expect a velocity resolution of approximately 10 km s⁻¹. Measured FWHMs of argon lamp lines show that the actual instrumental velocity resolution of these observations is approximately 14 km s⁻¹.

TW Hya was observed for 10 minutes on 2009 January 17 and for 40 minutes on 2009 May 8 (both of these are on-source integration times). In each epoch, observations of TW Hya were interleaved with observations, at similar air mass, of an A1V telluric calibrator star, HIP 54682. The data were flat fielded using spectra of an incandescent lamp, and extracted, wavelength calibrated, and telluric corrected, using IRAF packages (Massey et al. 1992). Wavelength calibration used telluric absorption lines and the HITRAN linelist (Rothman et al. 2005), and is accurate to 1–2 km s⁻¹.
We also obtained imaging data of TW Hya and the nearby star TWA 7 during both epochs. TWA 7 is a weak-line T Tauri star (Webb et al. 1999) of similar age to TW Hya (Neuhäuser et al. 2000). It exhibits no detectable emission above T Tauri star (Webb et al. 1999) of similar age to TW Hya star TWA 7 during both epochs. TWA 7 is a weak-line T Tauri star (Matthews et al. 2007). Due to the low declinations of both TW Hya and TWA 7, we did not have time to obtain spectra of TWA 7. However, since both sources were observed at similar air masses and have similar colors, TWA 7 can be used of TWA 7. However, since both sources were observed at similar air masses and have similar colors, TWA 7 can be used appropriately show strong (Hα line-to-continuum ratios \(\gtrsim 10 \)), narrow long-wavelength excess emission indicative of a debris disk (Matthews et al. 2007). The emission in both epochs is substantially broader and more symmetric than emission produced by accretion processes. Since the difference spectrum for the two epochs is broad and asymmetric—lacking a strong, narrow core—the change between spectra is probably not due to chromospheric activity.

Using the broadband magnitude of TW Hya derived in Section 3.1, we can convert the observed Brγ EWs into line luminosities. These, in turn, can be converted into accretion luminosities using an empirical relationship derived by Muzerolle et al. (1998). To convert the accretion luminosities into mass accretion rates requires knowledge of the stellar parameters: \(\dot{M} \approx \frac{L_{\text{acc}} R_*}{G M_*} \). For this calculation, we use the stellar parameters derived by Webb et al. (1999), assuming a distance of 56 pc: \(M_* = 0.7 M_\odot \), \(R_* = 1 R_\odot \), and \(T_{\text{eff}} = 4000 \text{ K} \). These are the same values used by Muzerolle et al. (2000), enabling a fair comparison with their results. Derived line luminosities, accretion luminosities, and accretion rates are listed in Table 1.

3.3. Veiling

We estimate continuum veiling in the K band using Mg and Al lines near 2.11 \(\mu \text{m} \) (Figure 2). These lines are found in a spectral region relatively free of telluric lines (unlike, for instance, the CO rovibrational band heads), and have been used in past studies for veiling measurements of young stars (e.g., Doppmann et al. 2005; Eisner et al. 2007).

Table 1

Epoch	\(m_K \)	Brγ EW (Å)	\(L_{\text{Br}\gamma} (L_\odot) \)	\(L_{\text{acc}} (L_\odot) \)	\(M \) (\(M_\odot \) yr\(^{-1}\))	\(r_K \)
2009 Jan 17	7.28 ± 0.02	-7.5 ± 0.9	\((3.4 \pm 0.5) \times 10^{-3}\)	0.06 ± 0.01	\((3.0 \pm 0.5) \times 10^{-3}\)	0.14 ± 0.10
2009 May 8	7.29 ± 0.05	-3.6 ± 0.4	\((1.6 \pm 0.3) \times 10^{-3}\)	0.03 ± 0.01	\((1.2 \pm 0.3) \times 10^{-3}\)	0.10 ± 0.06

(FWHM < 50 km s\(^{-1}\)), symmetric emission line cores (e.g., Hawley & Pettersen 1991; Hilton et al. 2010). Similarly, quiescent chromospheric activity produces emission that is narrower and more symmetric than emission produced by accretion processes (White & Basri 2003). Since the difference spectrum for the two epochs is broad and asymmetric—lacking a strong, narrow core—the change between spectra is probably not due to chromospheric activity.
Figure 2. Spectra of TW Hya (solid black histograms) and model spectra that have been rotationally broadened and veiled (thick gray curves), for January 17 (left) and May 8 (right). We also plot the unveiled synthetic spectra with gray dotted curves. As discussed in Section 3.3, systematic errors, in particular instrumental scattering, lead to inferred veiling larger than true values.

The basic method we use to estimate veiling is to compare the observed spectrum to a synthetic spectrum for a stellar photospheric model. We first determine oscillator strengths for the Mg and Al transitions by comparing synthetic Nextgen spectra for a solar-type star to observed solar spectra. Synthetic spectra relevant for TW Hya are then computed using stellar parameters determined from previous high dispersion optical spectroscopy (Yang et al. 2005): \(T_{\text{eff}} = 4126 \pm 24 \text{ K} \), \(\log g = 4.84 \pm 0.16 \), \([\text{M/H}] = -0.11 \pm 0.13\), and \(v \sin i = 5.80 \pm 0.63 \text{ km s}^{-1} \). The previously derived value of \(v \sin i \) is smaller than the velocity resolution of our data. We rotationally broaden the synthetic spectra by \(v \sin i = 15 \text{ km s}^{-1} \), which is the convolution of the true \(v \sin i \) \((\sim 5 \text{ km s}^{-1})\) and the instrumental resolution \((\sim 14 \text{ km s}^{-1})\). Finally, we add continuum veiling to these rotationally broadened synthetic spectra and find the veiling value that provides the best match between observed and synthetic data. Fitted veilings are 0.61 \pm 0.09 and 0.57 \pm 0.04 in January and May, respectively. The two measurements are thus consistent with the 1\(\sigma \) statistical errors.

Doppmann et al. (2005) used this procedure to derive veilings from NIRSPEC data. They tested the method with observations of unveiled MK standard stars, and found that a correction was needed to produce zero veilings for these stars. They suggested that scattered light inside the NIRSPEC instrument may have led to an instrumental veiling contribution. Since the ARIES spectrograph has not been characterized in this way, we need to test for such systematic effects. Using our observed spectrum of GJ 568, which is an unveiled M3V main-sequence star (Gray et al. 2003), we can constrain any possible instrumental veiling. We estimate the veiling for GJ 568 using the procedure described above with \(T_{\text{eff}} = 3500 \text{ K} \), \(\log g = 5 \), and \(v \sin i = 15 \text{ km s}^{-1} \) (Figure 3). We find \(r_{K} = 0.47 \pm 0.04 \).

If we assume that the instrumental veiling is independent of spectral type, at least across the M3 to K7 range, then we can use the derived veiling for GJ 568 A to correct the veilings inferred for TW Hya. The corrected veilings for TW Hya are 0.14 \pm 0.10 and 0.10 \pm 0.06 in January and May, respectively. The inferred veiling in the two epochs are consistent with each other and with a previous measurement by Johns-Krull & Valenti (2001).

4. DISCUSSION

4.1. Inner Disk Variability

The variation in Br\gamma emission line strength between our two observed epochs, and between previous measurements in the literature, suggests that the rate at which gas is being accreted by the central star is changing with time. However, the amount of dusty material in the inner disk does not appear to change significantly, based on the inferred veilings. Our measured photometry is consistent with the 2MASS magnitude, providing further evidence that the amount of dust in the inner disk of TW Hya is not changing substantially with time.

4.2. Disk Clearing Mechanisms

Several mechanisms for creating the optically thin clearing in the TW Hya disk have been proffered (e.g., Najita et al. 2003).
including planets, which may clear gaps about their orbits (Calvet et al. 2002), photoevaporation of inner disk material (e.g., Alexander et al. 2006; Owen et al. 2010), or grain growth, which would deplete the population of small grains that would produce the near-IR emission. The accretion rates measured here are difficult to reconcile with EUV-driven photoevaporation scenarios (Alexander et al. 2006), although not necessarily with EUV+X-ray-driven photoevaporation models (Owen et al. 2010). The sharp edge of the TW Hya disk (e.g., Calvet et al. 2002; Hughes et al. 2007) seems to argue against grain growth.

While a planetary explanation may be favored, it too is problematic since the massive outer disk of TW Hya should cause rapid migration and destruction of planet-mass objects unless the disk is unusually inviscid (e.g., Eisner et al. 2006). While a 10 Jupiter-mass planet has been claimed to orbit TW Hya at 0.04 AU (Setiawan et al. 2008), this would not dynamically effect the outer disk edge at ~4 AU. Moreover, follow-up observations demonstrate that the claimed planetary signal is more likely due to starspot noise (Huelamo et al. 2008). Any of the mechanisms discussed above are compatible with time-variable accretion. Time-variable accretion in the outer disk—for example, due to changes in MRI turbulence—can lead to a larger flow of material through the inner disk, even if the flow is impeded by a planet or photoevaporation. In fact, the inner disk accretion rate can vary independently since it too may be driven by MRI turbulence (Chiang & Murray-Clay 2007).

While our data indicate a changing accretion rate with time, the low veils observed at both epochs indicate a small and nearly constant amount of dust in the optically thin region. A constant dust content with time is also compatible with the near-IR emission. The accretion rates measured by us is surprising if one makes a simple estimate of the disk column density. For this calculation, we assume $T_{\text{disk}}(R) \propto R^{-1/2}$ and $\Sigma_{\text{disk}}(R) \propto R^{-3/2}$. We take the disk scale height to be a constant fraction of the radius, $H_{\text{disk}} = 0.1 R$. The pressure in the disk is thus $P_{\text{disk}}(R) \propto \rho_{\text{disk}} T_{\text{disk}} \propto R^{-3}$.

For the accretion rates derived here ($\sim 10^{-7} \ M_\odot$ yr$^{-1}$), and assuming a viscous disk with $\alpha = 0.01$, we derive a disk surface density at $R = 1$ AU of

$$\Sigma_{\text{disk}} = \left(\frac{M}{3\pi\alpha} \right) \left(\frac{\mu m_H}{k T_{\text{disk}}} \right)^{5/2} \approx 5 \text{ g cm}^{-2},$$

(1)

and a disk density of

$$\rho_{\text{disk}} = \frac{\Sigma_{\text{disk}}}{0.1 R} \approx 3 \times 10^{-12} \ g \text{ cm}^{-3}. \tag{2}$$

If we assume $\kappa_{\text{dust}} = 10^3$ (appropriate for sub-micron-sized dust; see, e.g., Miyake & Nakagawa 1993), and take a gas-to-dust ratio of 100, then the vertical optical depth of the disk at 1 AU is

$$\tau \sim \left(\frac{\rho_{\text{disk}}}{100} \right) H_{\text{disk}} \kappa_{\text{dust}} \approx 15. \tag{3}$$

Even for accretion rates lower by an order of magnitude, such as those inferred in previous studies (Section 1), $\tau \geq 1$ for this simple, viscous disk calculation.

To explain the lack of dust in the inner disk, we propose three possible scenarios, all of which may operate in the TW Hya system. The first is that the density could be underestimated. An α-disk may not be the correct description for the inner disk of TW Hya, or a higher value of α may be appropriate. A gas-to-dust ratio > 100 could also help to maintain a higher accretion rate with a smaller column of dusty material. However, observations suggest that the gas-to-dust ratio in TW Hya—at least as measured in the outer disk—may be substantially smaller than 100 (Thi et al. 2010).

The second possible explanation is dust filtering, where the pressure gradient at the inner edge of the optically thick disk leads to super-Keplerian velocities, and hence trapping, of dust particles in a certain particle-size range (e.g., Rice et al. 2006). By preventing dust from reaching the inner disk, filtering can maintain an optically thin region. Moreover, even if the gas flow through the inner disk varies, filtering may trap (some of) the additional dust particles in the flow, preventing variations in observed veiling.

Finally, radiation pressure from the star can help to drive dust particles out of the inner disk. Alone, this mechanism is unlikely to clear out the inner disk or TW Hya, since an optically thick disk can be replenished by accretion faster than material can be blown out (e.g., Takeuchi & Lin 2003). However, if the inner disk is optically thin to begin with, for example due to dust filtering, then radiation pressure acts directly on all dust in the system and can be an efficient means of removal (e.g., Takeuchi & Artymowicz 2001; Eisner et al. 2006). Radiation pressure and dust filtering act in a complementary way. Dust filtering is most efficient for particles with sizes of tens of microns, since these are not too well coupled to the gas but don’t have the inertia of larger bodies (Rice et al. 2006). Radiation pressure is most effective for smaller particles, with sizes $\lesssim 1 \mu$m (e.g., Weidenschilling 1977). Thus, small particles that pass through the “filter” into the inner disk may be pushed back out by radiation pressure. The combination of filtering and radiation pressure may be sufficiently efficient to maintain an inner disk virtually devoid of dust even during periods of enhanced gaseous accretion.

REFERENCES

Alencar, S. H. P., & Batalha, C. 2002, ApJ, 571, 378
Alexander, R. D., Clarke, C. J., & Pringle, J. E. 2006, MNRAS, 369, 216
Calvet, N., D’Alessio, P., Hartmann, L., Wilner, D., Walsh, A., & Sitko, M. 2002, ApJ, 568, 1008
Chiang, E., & Murray-Clay, R. 2007, Nat. Phys., 3, 604
Doppmann, G. W., Greene, T. P., Covey, K. R., & Lada, C. J. 2005, AJ, 130, 1145
Eisner, J. A., Chiang, E. I., & Hillenbrand, L. A. 2006, ApJ, 637, L133
Eisner, J. A., Hillenbrand, L. A., White, R. J., Bloom, J. S., Akeson, R. L., & Blake, C. H. 2007, ApJ, 669, 1072
Gray, R. O., Corbally, C. J., Garrison, R. F., McFadden, M. T., & Robinson, P. E. 2003, AJ, 126, 2048
Hartmann, L., Hewett, R., & Calvet, N. 1994, ApJ, 426, 669
Hawley, S. L., & Pettersen, B. R. 1991, ApJ, 378, 725
Herczeg, G. J., & Hillenbrand, L. A. 2006, ApJ, 681, 594
Herwitz, G. J., Wood, B. E., Linsky, J. L., Valenti, J. A., & Johns-Krull, C. M. 2004, ApJ, 607, 369
Hilton, E. J., West, A. A., Hawley, S. L., & Kowalski, A. F. 2010, AJ, in press (arXiv:1009.1158)
Huelamo, N., et al. 2008, A&A, 489, L9
Hughes, A. M., Wilner, D. J., Calvet, N., D’Alessio, P., Claussen, M. J., & Hogerheijde, M. R. 2007, ApJ, 664, 536
Johns-Krull, C. M., & Valenti, J. A. 2001, ApJ, 561, 1060
Kastner, J. H., Huenemoerder, D. P., Schulz, N. S., Canizares, C. R., & Weintraub, D. A. 2002, ApJ, 567, 434
Massey, P., Valdes, F., & Barnes, J. 1992, A Users Guide to Reducing Slit Spectra with IRAF (Tucson: National Optical Astronomy Obs.)
Matthews, B. C., Kalas, P. G., & Wyatt, M. C. 2007, ApJ, 663, 1103
Miyake, K., & Nakagawa, Y. 1993, Icarus, 106, 20
Muzerolle, J., Calvet, N., Briceño, C., Hartmann, L., & Hillenbrand, L. 2000, ApJ, 535, L47
Muzerolle, J., Hartmann, L., & Calvet, N. 1998, AJ, 116, 2965
Najita, J. R., Carr, J. S., Glassgold, A. E., & Valenti, J. A. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson, AZ: Univ. Arizona Press), 507
Najita, J. R., Carr, J. S., Strom, S. E., Watson, D. M., Pascucci, I., Hollenbach, D., Gorti, U., & Keller, L. 2010, ApJ, 712, 274
Najita, J., Carr, J. S., & Tokunaga, A. T. 1996, ApJ, 456, 292
Neuhäuser, R., Brandner, W., Eckart, A., Guenther, E., Alves, J., Ott, T., Huélamo, N., & Fernández, M. 2000, A&A, 354, L9
Owen, J. E., Ercolano, B., Clarke, C. J., & Alexander, R. D. 2010, MNRAS, 401, 1415
Pontoppidan, K. M., Blake, G. A., van Dishoeck, E. F., Smette, A., Ireland, M. J., & Brown, J. 2008, ApJ, 684, 1323
Qi, C., et al. 2004, ApJ, 616, L11
Ratzka, T., Leinert, C., Henning, T., Bouwman, J., Dullemond, C. P., & Jaffe, W. 2007, A&A, 471, 173
Rettig, T. W., Haywood, J., Simon, T., Brittain, S. D., & Gibb, E. 2004, ApJ, 616, L163
Rice, W. K. M., Armitage, P. J., Wood, K., & Lodato, G. 2006, MNRAS, 373, 1619
Rothman, L. S., et al. 2005, J. Quant. Spectrosc. Radiat. Transfer, 96, 139
Salyk, C., Blake, G. A., Boogert, A. C. A., & Brown, J. M. 2007, ApJ, 655, L105
Salyk, C., Blake, G. A., Boogert, A. C. A., & Brown, J. M. 2009, ApJ, 699, 330
Setiawan, J., Henning, T., Launhardt, R., Müller, A., Weise, P., & Kürster, M. 2008, Nature, 451, 38
Sitko, M. L., Lynch, D. K., & Russell, R. W. 2000, AJ, 120, 2609
Stelzer, B., & Schmitt, J. H. M. M. 2004, A&A, 418, 687
Takeuchi, T., & Artymowicz, P. 2001, ApJ, 557, 990
Takeuchi, T., & Lin, D. N. C. 2003, ApJ, 593, 524
Thi, W.-F., et al. 2010, A&A, 518, L125
Uchida, K. I., et al. 2004, ApJS, 154, 439
Valenti, J. A., Johns-Krull, C. M., & Linsky, J. L. 2000, ApJS, 129, 399
Webb, R. A., Zuckerman, B., Platais, I., Patience, J., White, R. J., Schwartz, M. J., & McCarthy, C. 1999, ApJ, 512, L63
Weidenschilling, S. J. 1977, MNRAS, 180, 57
White, R. J., & Basri, G. 2003, ApJ, 582, 1109
Yang, H., Johns-Krull, C. M., & Valenti, J. A. 2005, ApJ, 635, 466