A combination of flaxseed oil and astaxanthin alleviates atherosclerosis risk factors in high fat diet fed rats

Jiqu Xu1,2, Hui Gao3, Li Zhang4, Chang Chen5,6, Wei Yang3, Qianchun Deng1,2, Qingde Huang1,2 and Fenghong Huang1,2*

Abstract

Background: Atherosclerosis is the most common pathologic process underlying cardiovascular disease. Both flaxseed oil (FO) and astaxanthin (ASX) are believed to benefit cardiovascular system. The combined effect of FO and ASX on the atherosclerosis risk factors in rats fed a high-fat diet was investigated.

Methods: Astaxanthin was dissolved in flaxseed oil to a final concentration of 1 g/kg (FO + ASX). Male Sprague–Dawley rats were fed a rodent diet contained 20% fat whose source was lard (HFD) or 75% lard and 25% FO + ASX (50 mg ASX/kg diet) or 50% lard and 50% FO + ASX (100 mg ASX/kg diet) or FO + ASX (200 mg ASX/kg diet) for 10 weeks.

Results: The combination of FO and ASX significantly increased the antioxidant defense capacity and decreased lipid peroxidation in plasma. Evident decreases in the levels TG, TC and LDL-C contents, as well as IL-6 and CRP were also observed in plasma of FO and ASX fed rats.

Conclusion: The combination of FO and ASX can improve oxidative stress, lipid abnormalities and inflammation, providing evidence that the combination of FO and ASX could be a promising functional food in cardiovascular health promotion.

Keywords: Flaxseed oil, Astaxanthin, Atherosclerosis, Oxidant stress, Plasma lipids, Inflammation

Introduction

Nowadays, cardiovascular disease (CVD) is the leading cause of morbidity and mortality in most developed as well as many developing countries [1,2] and contributes substantially to healthcare budgets. Atherosclerosis is a chronic, progressive and systemic pathologic process and the primary contributing factor to CVD. Research into atherosclerosis has led to many compelling discoveries about the mechanism of the disease. There are definitive evidences to show that oxidant stress [3], lipid abnormalities [4] as well as chronic inflammation [5] have a crucial involvement in both the initiation and the progression of atherosclerosis.

Flaxseed oil (FO) is one of the most important specialty oils, which contains high levels of α-linolenic acid (ALA, 18:3 n-3). Higher intake of ALA has been long recognized as a “good nutritional intervention” with increasing many health benefits. As an essential polyunsaturated fatty acid (PUFA) that cannot be synthesized by human being, ALA serves as a precursor for long-chain n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Furthermore, ALA itself may exert various biological functions by competing with linoleic acid or interaction with ion channels and nuclear receptors [6]. ALA has been widely reported to have many beneficial effects on blood lipid profiles [6-9] and inflammation [6,10,11], which suggest that FO are beneficial for atherosclerosis prevention. However, on the other hand, since ALA is highly susceptible to oxidation, FO addition leads to a...
significantly higher tendency toward plasma lipid peroxidation [12,13], which may have an adverse effect on the protection of cardiovascular system.

Astaxanthin (ASX) is a lipophilic xanthophyll carotenoid and found in a variety of living organism including microalgae, fungi and crustaceans. It features a unique molecular structure which confers this natural product a powerful antioxidant activity [14]. In recent years, a large body of evidence has revealed a wide range of biological effects such as anti-cancer, anti-diabetes and neuroprotective actions [14,15]. In addition, ASX has also been reported to reduce blood pressure, LDL oxidation as well as inflammatory [14-17], and thus, combining its protection against oxidative stress, provides overall cardiovascular benefits.

Up to now, the effects of the combination of FO and ASX on cardiovascular system have not been investigated. In this study, we try to determine whether the combination of FO and ASX is able to reduce atherosclerosis risk factors in rats fed a high-fat diet.

Materials and methods

Chemical sources

The flaxseed oil was purchased from Caoyuankangshen Food Co., Ltd (Inner Mongolia, China). Astaxanthin extracted from microalga Haematococcus pluvialis was dissolved and diluted in flaxseed oil to a final concentration of 1 g/kg (FO + ASX). Commercial deodorized lard was purchased from Caoyuankangshen (Shanghai, China). Thiobarbituric acid reactive substances (TBARS) assay of plasma inflammatory markers

Plasma lipids analysis

The plasma triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were determined with commercial kits (Wako, Japan) by Hitachi 7020 full-automatic biochemical analyzer (Japan).

Statistical analyses

Values are presented as mean ± SEM (standard error of the mean). The data were analyzed by one-way ANOVA, followed by the Fisher PLSD post hoc test if the overall differences were significant (p < 0.05). All statistical analyses were performed using SPSS 13.0 statistical software (SPSS Inc., Chicago, IL) and a difference was considered significant when p < 0.05.
Results
Plasma antioxidative capacity and lipid peroxidation
H-FO + ASX-fed rats displayed significant SOD and GPx activities when compared with HFD-fed animals. CAT activities in M- and H-FO + ASX groups were remarkably higher than HFD group. Treatment with all doses of FO + ASX significantly increased GSH levels and total antioxidant capability. In addition, FO + ASX treatment also had substantially reduced content of TBARS relative to HFD diet (Figure 1).

Plasma lipids
Figure 2 shows that replacement of the HFD with M- and H-FO + ASX significantly decreased plasma TG levels. Although HDL-C levels in plasma in all groups were comparable, rats administered with FO + ASX had markedly lower plasma TC and LDL-C levels than the HFD-fed animals.

Plasma inflammatory
As seen in Figure 3, all three doses of FO + ASX treatment reduced plasma levels of IL-6 and CRP when compared with HFD diet.

Discussion
Although the exact mechanisms remain to be delineated, oxidant stress [3], lipid abnormalities [4] as well as chronic inflammation [5] have been identified as the main trigger mechanisms of atherosclerosis. Atherosclerosis is fundamentally a metabolic disease subject to important dietary

![Graphs showing plasma antioxidative capacity and lipid peroxidation](image_url)

Figure 1: Effects of FO and ASX combination on antioxidant enzymes (SOD, CAT and GPx) activities, GSH levels, T-AOC and TBARS contents in plasma of rats fed a high-fat diet. HFD: high-fat diet group; L-, M- and H-FO + ASX: low, middle and high contents of FO and ASX combination groups. Bars represent the mean ± SEM from 10 animals in each group. * p < 0.05 and ** p < 0.01 compared to the HFD group.
influences, and dietary lipids play a key role in the regulation of the development of atherosclerosis. High-fat diets, especially high-fat diet enriched with saturated fatty acid exert more deleterious effect on CVD and can lead to atherosclerosis [24], whereas the consumption of different kinds of fatty acids have various effects on atherosclerotic risk factors and even direct effects on atherogenesis [24-26]. Because of rich in ALA, FO has been proven to exert positive effect on atherosclerosis [25,26]. ASX is a potent natural antioxidant and may play a beneficial role in cardiovascular disease prevention [16]. In the study reported here, we evaluated the effect of FO and ASX combination on atherosclerosis risk factors in rats fed a high-fat diet.

Oxidative stress represents an imbalance between the free radical production and the antioxidant defense. The relative excessive production of free radicals, which can lead to oxidative damage to any biochemical component including lipids, proteins and DNA, plays a causative role in atherosclerosis [27]. For example, as a result of oxidative stress, LDL can be modified to oxidized LDL (oxLDL) which is clearly a critical factor in the atherosclerotic process and the cellular accumulation of oxidized LDL is considered a hallmark of atherosclerosis.
[28]. There is now consensus that oxidative stress is the pivotal pathogenetic factor and unifying mechanism for atherosclerosis and other cardiovascular diseases [29]. Therefore, an efficient antioxidant defense system is required to counteract the deleterious effects of oxidative stress. The primary antioxidant enzymes in mammals include SOD which converts superoxide to hydrogen peroxide, GPx and CAT which are responsible for converting hydrogen peroxide to water [30]. GSH is a very important non-enzymatic antioxidant which can react directly with free radicals or act as an electron donor in the reduction of peroxides catalyzed by GPx [31]. High consumption of dietary fat is a known cause of increased plasma oxidative stress [32], whereas in this experiment, the combination of FO and ASX remarkably elevated the plasma SOD, CAT and GPx activities as well as GSH level, which led to the pronounced enhancement of total antioxidant capability. As a result, lipid peroxidation levels in plasma markedly declined with the supplement of FO and ASX. However, FO itself is hardly thought to have an authoritative antioxidative activity and further, it may cause lipid peroxidation because of its susceptibility to oxidation [12,13]. Thus, ASX is anticipated to impart the entire antioxidative potency in this study. ASX has a unique chemical structure featured by the presence of polar moieties on both end of its polyene chain, and this structural property of ASX confers much greater free radical scavenging capability than β-carotene as well as α-tocopherol [33-35]. Besides, ASX is able to restore the activities of antioxidant enzymes SOD, CAT and GPx by inducing, at least in part, the Nrf2 pathway and other non-enzymatic antioxidants such as GSH, vitamins C and E in plasma and other various tissues in pathological conditions [36-38].

Hyperlipidemia is a well-known risk factor for arteriosclerosis as well as other cardiovascular disease and treatment of hyperlipidemia retards progression of arteriosclerosis [39]. There is mounting evidence that high-fat diet rich in saturated fatty acid leads to hyperlipidemia. However, in the present experiment, the levels of TG, TC and LDL-C in plasma declined in response to the consumption of FO and ASX combination and both of FO and ASX undoubtedly contributed to these beneficial changes. ALA has been shown to suppress the expression and activities of numerous hepatic fatty acid synthases such as fatty acid synthase (FAS), malic enzyme and glucose 6-phosphate dehydrogenase [40,41], and hence decrease fatty acid synthesis in liver. On the other hand, ALA sharply enhances hepatic peroxisomal and mitochondrial fatty acid oxidation rate by increasing the expression and activities of a series of fatty acid oxidation enzymes [41,42]. As a peroxisome proliferator-activated receptor α (PPARα) agonist, ASX also shows the similar action on inducing fatty acid oxidation [36,43]. In addition, the hypocholesterolemic effects of FO and ASX are likely owing to elevated hepatic expression of LDL receptor [9,36] as well as declined cholesterol biosynthesis [43,44].

Contemporary advances in cardiovascular research have established a pivotal role for chronic inflammation in all stages of atherosclerosis [45-47]. Various proinflammatory risk factors such as oxLDL and infectious agents have a capability to trigger the production of proinflammatory cytokines which are deeply involved in the development and progression of atherosclerosis. As primary proinflammatory cytokines, IL-6 and CRP are sensitive measures of the burden of systemic atherosclerosis and extent of atherosclerotic activity [48-50]. In the present experiment, when the lard was replaced with the combination of FO and ASX, both the plasma levels of IL-6 and CRP collapsed, which implied that the FO and ASX combination is fully competent to improve inflammation status. Supporting our results, FO has been shown to suppress the expression of various inflammatory cytokines such as IL-6, IL-1, CRP and TNF-α via an activation of peroxisome proliferator-activated receptor γ (PPARγ) and/or a reduction in NF-κB induced gene expression [6,10,51]. Similarly, ASX also exerts antiinflammatory properties by suppressing NF-κB activation and thus decreased inflammatory markers levels in circulation [52,53].

In conclusion, supplement of FO and ASX combination has satisfactory efficacy at ameliorating oxidative stress, lipid profile and inflammation, which suggested that the combination of FO and ASX might contribute to prevent atherogenesis and then reduce the incidence of CVD. In addition, the presence of astaxanthin in FO lowers the lipid oxidation rate of FO and, on the other hand, astaxanthin is stable in FO in room temperature [54]. This makes the combination of FO and ASX very promising functional food in cardiovascular health promotion.

Competing interest
No competing financial interests exist.

Authors’ contributions
Author JX designed and wrote a first draft of the paper. HG, LZ, CC, WY and QD carried out all the experiments. QH performed the data analysis and created the figures. FH contributed to the design of the study, reviewed the manuscript and contributed to the final version. All authors contributed to and have approved the final manuscript.

Acknowledgments
This work was supported by National Natural Science Foundation of China (NSFC-31171681) and the earmarked fund for Modern Agro-industry Technology Research System (CARS-17), China.

Author details
1Department of Product Processing and Nutriology, OilCrops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China. 2Hubei Key Laboratory of Lipid Chemistry and Nutrition, OilCrops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China. 3Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan
2. Reddy KS:

11. Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ:

Received: 24 January 2014 Accepted: 4 March 2014

6. Barcelo-Coblijn G, Murphy EJ:

Dietary alpha-linolenic acid lowers postprandial lipid
Inflammation, atherosclerosis, and coronary artery disease.

12. Trebu

Xu et al. Lipids in Health and Disease 2011, 10:96.

13. Nestel PJ, Pomeroy SE, Sasahara T, Yamashita T, Liang YL, Dart AM, Jennings GL, Zhao Q, Iguchi T, Goto H, Sankawa U, Watanabe H:

N Engl J Med 2004, 350:2835–2838.

14. Hussein G, Nakamura M, Tomač M, Tomač č

15. Hussein G, Nakamura M, Zhao Q, Iguchi T, Goto H, Sankawa U, Watanabe H:

Antihypertensive and neuroprotective effects of astaxanthin in
mice.

Acta agriculturae Slovenica 1989, 119:115–120.

16. Barcelo-Coblijn G, Murphy EJ:

Auxin and stress and atherosclerosis. Curr Opin Pharmacol
2004, 4:110–115.

17. Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB:

Incidence of coronary heart disease and lipoprotein cholesterol levels.

The Framingham Study. JAMA 1988, 256:2835–2838.

18. Hanno GN, Inflammation, atherosclerosis, and coronary artery disease.

N Engl J Med 2005, 352:1685–1695.

19. Goth L:

Astaxanthin in cardiovascular health and disease.

20. Sazuka Y, Tanizawa H, Takino Y:

Effect of adriamycin on the activities of glutathione reductase and glutathione S-transferase activities in rat lung and liver.

Biochim Biophys Acta 1979, 582:67–78.

21. Moron MS, Deipierre JW, Mannervik B: Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver.

22. Buege JA, Aust SD: Microsomal lipid peroxidation. Methods Enzymol 1978, 52:302–310.

23. Xu J, Zhou X, Deng Q, Huang Q, Yang J, Huang F: Rapeseed oil fortified with micronutrients reduces atherosclerosis risk factors in rats fed a high-fat diet.

Lipids Health Dis 2011, 10:96.

24. Hasan S, Zingg JM, Pawan K, Noble T, Smith D, Meydani M, Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis 2014, 232:40–51.

25. Winnik S, Lohmann C, Richter EK, Scheller N, Song WL, Leiber F, Mocharla P, Hofmann J, Klingenberg R, Boren J, Becker B, Fitzgerald GA, Luscher TF, Matter CM, Beer JH: Dietary alpha-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation. Eur Heart J 2011, 32:2573–2584.

26. Yamashita T, Oda E, Sano T, Yamashita T, Ijiru Y, Giddings JC, Yamamoto J: Varying the ratio of dietary n-6/n-3 polysaturated fatty acid alters the tendency to thrombosis and progress of atherosclerosis in apoE-/- LDLR-/- double knockout mouse. Thromb Res 2005, 116:393–401.

27. Bonomi F, Tengattini S, Fabiano A, Bianchi R, Rezani R: Atherosclerosis and oxidative stress. Histol Histopathol 2008, 23:381–390.

28. Steinberg D, Panthasrathy S, Carew TE, Kojo JC, Wittram JL: Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogeneity. N Engl J Med 1989, 320:95–924.

29. Madamanchi NR, Vendov A, Runge MS: Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005, 25:29–38.

30. Formigari A, Irapo P, Santon A, Zinc, antioxidant systems and metallotheonin in metal mediated-apoptosis: biochemical and cytochemical aspects. Camp Biochem Physiol C Toxicol Pharmacol 2007, 146:443–459.

31. D-ring: R: Metabolism and functions of glutathione in brain. Prog Neurobiol 2000, 62:649–671.

32. Yang RL, Li W, Shi YH, Le GW: Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: a microarray analysis. Nutrition 2008, 24:582–588.

33. Shirimizu N, Goto M, Miki W: Carotenoids as singlet oxygen quenchers in marine organisms. Fish Sci 1996, 62:134–137.

34. Krinsky NI: Antioxidant functions of carotenoids. Free Radic Biol Med 1989, 7:617–635.

35. Miki W: Biological functions and activities of animal carotenoids. Pure Appl Chem 1991, 63:141–146.

36. Yang Y, Jeo MO, Gohara K, Fujisawa T, Ijiru Y, Yamashita T, Zhao Q, Iguchi T, Goto H, Sankawa U, Watanabe H: Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice. J Nutr 2011, 141:1611–1617.

37. Bhuvaneswar S, Arunkumar E, Viswanathan P, Bruna S, Ijiru Y, Yamashita T, Zhao Q, Iguchi T, Goto H, Sankawa U, Watanabe H: Astaxanthin restricts weight gain, promotes insulin sensitivity and curtails fatty liver disease in mice fed a obesity-promoting diet. Process Biochem 2010, 45:1406–1414.

38. Sangeetha RK, Baskaran V: Retinol-deficient rats can convert a pharmacological dose of astaxanthin to retinol: antioxidant potential of astaxanthin, lutein, and beta-carotene. Can J Physiol Pharmacol 2010, 88:977–985.

39. Duffield R, Miller N, Brunt J: Treatment of hyperlipidaemia retards progression of symptomatic femoral atherosclerosis: a randomized controlled trial. Lancet 1983, 28:33.

40. Kim HK, Choi S, Choi H: Suppression of hepatic fatty acid synthase by feeding alpha-linolenic acid rich perilla oil lowers plasma triglyceride level in rats. J Nutr Biochem 2004, 15:485–492.

41. Ide T, Kobayashi H, Ashakumary L, Rouyer IA, Takahashi Y, Aoyama T, Hashimoto T, Mizugaki M: Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim Biophys Acta 2000, 1485:23–35.

42. Kabir Y, Ide T: Activity of hepatic fatty acid oxidation enzymes in rats fed alpha-linolenic acid. Biochim Biophys Acta 1996, 1304:105–119.

43. Jia Y, Kim JY, Jun HL, Kim SJ, Lee JH, Hwang KY, Um SJ, Chang HI, Lee SJ: The natural carotenoid astaxanthin, a PPAR-alpha agonist and PPAR-gamma antagonist, reduces hepatic lipid accumulation by rewiring the transcriptome in lipid-loaded hepatocytes. Mol Nutr Food Res 2012, 56:678–688.
44. Ihara-Watanabe M, Umekawa H, Takahashi T, Furuichi Y: Effects of dietary alpha- or gamma-linolenic acid on levels and fatty acid compositions of serum and hepatic lipids, and activity and mRNA abundance of 3-hydroxy-3-methylglutaryl CoA reductase in rats. Comp Biochem Physiol A Mol Integr Physiol 1999, 122:213–220.

45. Libby P: Inflammation in atherosclerosis. Nature 2002, 420:868–874.

46. Willerson JT, Ridker PM: Inflammation as a cardiovascular risk factor. Circulation 2004, 109:102–10.

47. Libby P, Ridker PM, Hansson GK: Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009, 54:2129–2138.

48. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002, 347:1557–1565.

49. Tzoulaki I, Murray GD, Lee AJ, Rumley A, Lowe GD, Fowkes FG: C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation 2005, 112:976–983.

50. Larsson PT, Hallenström S, Rostors S, Wallen NÉ: Circulating markers of inflammation are related to carotid artery atherosclerosis. Int Angiol 2005, 24:43–51.

51. Rallidis LS, Paschos G, Liakos GK, Velissaridou AH, Anastasiadis G, Zampelas A: Dietary alpha-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients. Atherosclerosis 2003, 167:237–242.

52. Lee SJ, Bai SK, Lee KS, Namkoong S, Na HI, Ha KS, Han JA, Yim SV, Chang K, Kwon YG, Lee SK, Kim YM: Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing IκB kinase-dependent NF-κB activation. Mol Cells 2003, 16:97–105.

53. Arunkumar E, Bhuvaneswari S, Anuradha CV: An intervention study in obese mice with astaxanthin, a marine carotenoid—effects on insulin signaling and pro-inflammatory cytokines. Food Funct 2012, 3:120–126.

54. Pu J, Bechtel PJ, Sathivel S: Extraction of shrimp astaxanthin with flaxseed oil: effects on lipid oxidation and astaxanthin degradation rates. Biosyst Eng 2010, 107:364–371.

do:10.1186/1476-511X-13-63
Cite this article as: Xu et al: A combination of flaxseed oil and astaxanthin alleviates atherosclerosis risk factors in high fat diet fed rats. Lipids in Health and Disease 2014 13:63.