A TALE OF TWO SURFACES

ARNAUD BEAUVILLE

ABSTRACT. We point out a link between two surfaces which have appeared recently in the literature: the surface of cuboids and the Schoen surface. Both give rise to a surface with $q = 4$, whose canonical map is 2-to-1 onto a complete intersection of 4 quadrics in \mathbb{P}^6 with 48 nodes.

1. INTRODUCTION

The aim of this note is to point out a link between two surfaces which have appeared recently in the literature: the surface of cuboids (ST, vL) and the surface (actually a family of surfaces) discovered by Schoen [S]. We will show that both surfaces give rise to a surface X with $q = 4$, whose canonical map is 2-to-1 onto a complete intersection of 4 quadrics $\Sigma \subset \mathbb{P}^6$ with 48 nodes. In the first case ($\S 2$) X is a quotient $(C \times C')/\mathbb{Z}/2$, where C and C' are genus 5 curves with a free action of $(\mathbb{Z}/2)^2$. In the second case ($\S 3$), X is a double étale cover of the Schoen surface.

When the canonical map of a surface X of general type has degree >1 onto a surface, that surface either has $p_g = 0$ or is itself canonically embedded ([B1], Th. 3.1). Our surfaces X provide one more example of the latter case, which is rather exceptional (see [CPT] for a list of the examples known so far).

2. THE SURFACE OF CUBOIDS AND ITS DEFORMATIONS

In \mathbb{P}^4, with coordinates $(x, y; u, v, w)$, we consider the curve C given by

$$u^2 = a(x, y), \quad v^2 = b(x, y), \quad w^2 = c(x, y)$$

where a, b, c are quadratic forms in x, y. We assume that the zeros $\{p'_a, p'_b, p'_c, p''_a, p''_b, p''_c\}$ of a, b, c form a set $Z \subset \mathbb{P}^1$ of 6 distinct points. Then C is a smooth curve of genus 5, canonically embedded. It is preserved by the group $\Gamma_+ \cong (\mathbb{Z}/2)^3$ which acts on \mathbb{P}^4 by changing the signs of u, v, w. Let $\Gamma \subset \Gamma_+$ be the subgroup (isomorphic to $(\mathbb{Z}/2)^2$) which changes an even number of signs. It acts freely on C, so the quotient curve $B := C/\Gamma$ has genus 2. The subring of Γ-invariant elements in $H^0(C, K_C)$ is generated by x, y and $z := uvw$, with the relation $z^2 = abc$; thus B is the double cover of \mathbb{P}^1 branched along Z.

Let JB_2 be the group of 2-torsion line bundles on B (isomorphic to $(\mathbb{Z}/2)^4$). The Γ-covering $\pi: C \to B$ corresponds to a subgroup $\cong (\mathbb{Z}/2)^2$ of JB_2, namely the kernel of $\pi^*: JB \to JC$. Since the divisor $\pi^*(p'_a + p''_a)$ is cut out on C by the canonical divisor $u = 0$, we have $\pi^*(p'_a - p''_a) \sim 0$, and similarly for b and c; thus $\ker \pi^* = \{0, p'_a - p''_a, p'_b - p''_b, p'_c - p''_c\}$. This is a Lagrangian subgroup of JB_2 for the Weil pairing [M2]; conversely, any Lagrangian subgroup of JB_2 is of that form. Thus the
curves C we are considering are exactly the $(\mathbb{Z}/2)^2$-étale covers of a curve B of genus 2 associated to a Lagrangian subgroup of JB_2. In particular they form a 3-dimensional family.

The group $\Gamma+/\Gamma \cong \mathbb{Z}/2$ acts on $B = C/\Gamma$ through the hyperelliptic involution, so $C/\Gamma+$ is isomorphic to \mathbb{P}^1.

Proposition 1. Let C, C' be two genus 5 curves of type (1), and let X be the quotient of $C \times C'$ by the diagonal action of $\Gamma \cong (\mathbb{Z}/2)^2$.

1) X is a minimal surface of general type with $q = 4$, $p_g = 7$, $K^2 = 32$.

2) The involution i_X of X defined by the action of $\Gamma+/\Gamma \cong \mathbb{Z}/2$ has 48 fixed points. The canonical map $\varphi_X : X \to \mathbb{P}^6$ factors through i_X, and induces an isomorphism of X/i_X onto a complete intersection of 4 quadrics in \mathbb{P}^6 with 48 nodes.

Proof: The computation of the numerical invariants of X is straightforward.

Let us denote by $(x', y'; u', v', w')$ the coordinates on C', and by a', b', c' the corresponding quadratic forms. A basis of the space $H^0(X, K_X) = (H^0(C, K_C) \otimes H^0(C', K_{C'}))^\Gamma$ is given by the elements

$$X = x \otimes x', \quad Y = x \otimes y', \quad Z = y \otimes x', \quad T = y \otimes y', \quad U = u \otimes u', \quad V = v \otimes v', \quad W = w \otimes w'.$$

They satisfy the relations

$$XT - YZ = 0, \quad U^2 = A(X, Y, Z, T), \quad V^2 = B(X, Y, Z, T), \quad W^2 = C(X, Y, Z, T),$$

where A, B, C are quadratic forms satisfying $A(X, Y, Z, T) = a(x, y) \otimes a(x', y')$ and the analogous relations for B and C.

Let Σ be the surface defined by these 4 quadratic forms, and let $\varphi : X \to \Sigma$ be the induced map. We have $\varphi \circ i_X = \varphi$, so φ induces a map $\tilde{\varphi}$ from $X/i_X = (C \times C')/\Gamma+$ into Σ. We consider the commutative diagram

$$
\begin{array}{ccc}
(C \times C')/\Gamma+ & \xrightarrow{\varphi} & \Sigma \\
p \downarrow & & q \\
Q \cong \mathbb{P}^1 \times \mathbb{P}^1 & &
\end{array}
$$

where $p : (C \times C')/\Gamma+ \to (C/\Gamma+) \times (C'/\Gamma+)$ is the quotient map by $\Gamma+$, and q the projection $(X, Y, Z, T; U, V, W) \mapsto (X, Y, Z, T)$. The group $(\mathbb{Z}/2)^3$ acts on Σ by changing the signs of (U, V, W); then $\tilde{\varphi}$ is an equivariant map of $(\mathbb{Z}/2)^3$-coverings, hence an isomorphism.

It remains to show that i_X has 48 fixed points. These fixed points are the images (mod. Γ) of the points of $C \times C'$ fixed by one of the elements of $\Gamma+ \times \Gamma$. Such an element changes the sign of one of the coordinates $\ell = u, v$ or w, hence fixes the 64 points (m, m') of $C \times C'$ with $\ell(m) = \ell(m') = 0$. This gives $(3 \times 64)/4 = 48$ fixed points in X.

Example. Let us take for C and C' the curve

$$u^2 = xy, \quad v^2 = x^2 - y^2, \quad w^2 = x^2 + y^2.$$

The set of zeros of a, b, c is $\{0, \infty, \pm 1, \pm i\}$, so the genus 2 curve B is given by $z^2 = x(x^4 - 1)$.

We get for Σ the following equations:

$$XT = YZ = U^2, \quad V^2 = X^2 - Y^2 - Z^2 + T^2, \quad W^2 = X^2 + Y^2 + Z^2 + T^2;$$

or, after the linear change of variables $X = x + t, T = t - x, Y = y + iz, Z = y - iz, U = u, V = 2v, W = 2w$:

$$t^2 = x^2 + y^2 + z^2, \quad u^2 = y^2 + z^2, \quad v^2 = x^2 + z^2, \quad w^2 = x^2 + y^2.$$

These are the equations of the surface of cuboids, studied in [ST], [vL]. It encodes the relations in a cuboid (= rectangular box) between the sides x, y, z, the diagonals of the faces u, v, w, and the big diagonal t. Thus the surface of cuboids belongs to a 6-dimensional family of intersection of 4 quadrics in \mathbb{P}^6 with 48 nodes.

Remark 1. The surfaces X fit into a tower of $(\mathbb{Z}/2)^2$-étale coverings:

$$C \times C' \longrightarrow X \xrightarrow{r} B \times B'.$$

The abelian covering r is the pull back of a $(\mathbb{Z}/2)^2$-étale covering of $JB \times JB'$:

$$\begin{array}{c}
X \xleftarrow{i_X} A \\
| \quad \downarrow \quad | \\
B \times B' \xleftarrow{i} JB \times JB'.
\end{array}$$

The abelian variety A is the Albanese variety of X, and α is the Albanese map. Since the quotient X/i_X is regular, i_X acts as (-1) on the space $H^0(X, \Omega^1_X)$; therefore if we choose α so that it maps a fixed point of i_X to 0, i_X is induced by (-1_A).

3. The Schoen surface

The Schoen surfaces S have been defined in [S], and studied in [CMR]. A Schoen surface S is contained in its Albanese variety A; it has the following properties:

a) $K^2_S = 16, \quad p_g = 5, \quad q = 4$ (hence $\chi(O_S) = 2$);

b) The canonical map $\varphi_S : S \rightarrow \mathbb{P}^4$ factors through an involution i_S with 40 fixed points, and induces an isomorphism of S/i_S onto the complete intersection of a quadric and a quartic in \mathbb{P}^4 with 40 nodes [CMR].

Since S/i_S is a regular surface, i_S acts as (-1) on the space $H^0(S, \Omega^1_S)$. Therefore if we choose the Albanese embedding $S \hookrightarrow A$ so that it maps a fixed point of i_S to 0, i_S is induced by the involution (-1_A).

Let ℓ be a line bundle of order 2 on A; we denote by $\pi : B \rightarrow A$ the corresponding étale double cover, and put $X := \pi^{-1}(S)$. The restriction of ℓ to S, which we will still denote by ℓ, is nontrivial (because the restriction map $\text{Pic}^0(A) \rightarrow \text{Pic}^0(S)$ is an isomorphism), hence X is connected.

Proposition 2. X is a minimal surface of general type with $q = 4, \quad p_g = 7, \quad K^2_X = 32$.
Proof: The formulas $K_X^2 = 32$ and $\chi(O_X) = 4$ are immediate; we must prove $q(X) = 4$, that is, $H^1(S, \ell) = 0$.

By construction the Schoen surfaces fit into a flat family over the unit disk Δ:

$$
\begin{array}{ccc}
S & \xrightarrow{\sim} & A \\
\downarrow & & \downarrow \\
\Delta & & \\
\end{array}
$$

where:

- A/Δ is a smooth family of abelian varieties;
- at a point $z \neq 0$ of Δ, S_z is a Schoen surface, and $S_z \hookrightarrow A_z$ is the Albanese embedding;
- $A_0 = JC \times JC$ for a genus 2 curve C; S_0 is the union of JC embedded diagonally in $JC \times JC$, and of $C \times C \subset JC \times JC$ we choose an Abel-Jacobi embedding $C \subset JC$). These two components intersect transversally along the diagonal $C \subset C \times C$.

The line bundle ℓ extends to a line bundle L of order 2 on A. Let ℓ_0 be the restriction of L to S_0; we want to compute $H^1(S_0, \ell_0)$. We have an exact sequence

$$(2) \quad 0 \to \ell_0 \to \ell_0|JC \oplus \ell_0|C \times C \to \ell_0|C \to 0.$$

The line bundle L_0 on $JC \times JC$ can be written $\alpha \boxtimes \beta$, where α and β are 2-torsion line bundles on JC, not both trivial; we use the same letters to denote their restriction to C. The cohomology exact sequence associated to L gives

$$
H^0(JC, \alpha \boxtimes \beta) \oplus H^0(C \times C, \alpha \boxtimes \beta) \to H^0(C, \alpha \boxtimes \beta) \to H^1(S_0, \ell_0) \xrightarrow{w} H^1(JC, \alpha \boxtimes \beta) \oplus H^1(C \times C, \alpha \boxtimes \beta) \to H^1(C, \alpha \boxtimes \beta).
$$

The restriction map $H^0(JC, \alpha \boxtimes \beta) \to H^0(C, \alpha \boxtimes \beta)$ is surjective, so w is injective. If α and β are nontrivial, $H^1(C \times C, \alpha \boxtimes \beta)$ is zero, and the restriction map $H^1(JC, \alpha \boxtimes \beta) \to H^1(C, \alpha \boxtimes \beta)$ is injective, so $H^1(S_0, \ell_0) = 0$. If, say, β is trivial, $H^1(JC, \alpha)$ is zero and the map $H^1(C \times C, \text{pr}_1^*\alpha) \to H^1(C, \alpha)$ is bijective, hence $H^1(S_0, \ell_0) = 0$ again.

By semi-continuity this implies $H^1(S_z, L_z) = 0$ for z general in Δ, or equivalently $q(S_z) = q(S_z) = 4$, where $\tilde{S} \to S$ is the étale double covering defined by L. But q is a topological invariant, so this holds for all $z \neq 0$ in Δ, hence $H^1(S, \ell) = 0$.

The surface X has a natural action of $(\mathbb{Z}/2)^2$, given by the involution i_X induced by (-1_B) and the involution τ associated to the double covering $X \to S$, which is induced by a translation of B. We want to determine how these involutions act on $H^0(X, K_X)$. The decomposition of $H^0(X, K_X)$ into eigenspaces for τ is

$$
H^0(X, K_X) \cong H^0(S, K_S) \oplus H^0(S, K_S \otimes \ell).
$$
By property b) above, \(i_S \) acts trivially on \(H^0(S, K_S) \). It remains to study how it acts on \(H^0(S, K_S \otimes \ell) \), or equivalently on \(H^2(S, \ell) \). To define this action we choose the isomorphism \(u : (−1)^{j(\ell)} \varphi H^p(S, \ell) \rightarrow \ell \) over \(A \) such that \(u(0) = 1 \), and we consider the involutions \(H^p(i_S, u) : H^p(S, \ell) \rightarrow H^p(S, i_S^2 \ell) \rightarrow H^p(S, \ell) \).

Proposition 3. There exist line bundles \(\ell \) of order 2 on \(A \) for which \(i_S \) acts trivially on \(H^2(S, \ell) \). In that case \(i_X \) has 48 fixed points.

Proof: We will denote by \(A_2 \) and \(\hat{A}_2 \) the 2-torsion subgroups of \(A \) and its dual abelian variety \(\hat{A} \), and similarly for \(B \). The fixed point set of \(i_S \) is \(A_2 \cap S \), and that of \(i_X \) is \(B_2 \cap X \).

We apply the holomorphic Lefschetz formula to the automorphism \(i_S \) of \(S \) and the \(i_S \)-linearization \(u : i_S^2 \ell \rightarrow \ell \):

\[
\sum_p (-1)^p \text{Tr} H^p(i_S, u) = \frac{1}{4} \sum_{a \in A_2 \cap S} u(a).
\]

(At a point \(a \) of \(A_2 \), \(u(a) : \ell_a \rightarrow \ell_a \) is the multiplication by a scalar, which we still denote \(u(a) \).)

Let \(a \in A_2 \). By [MII, property iv] p. 304, we have \(u(a) = (−1)^{\langle a, \ell \rangle} \), where \(\langle , \rangle : A_2 \times \hat{A}_2 \rightarrow \mathbb{Z}/2 \) is the canonical pairing. On the other hand, dualizing the exact sequence of \((\mathbb{Z}/2)\)-vector spaces

\[
0 \rightarrow (\mathbb{Z}/2)\ell \rightarrow \hat{A}_2 \rightarrow B_2
\]

and using the canonical pairings we get an exact sequence

\[
B_2 \rightarrow A_2 \xrightarrow{\langle , \ell \rangle} \mathbb{Z}/2 \rightarrow 0.
\]

Thus \(u(a) = 1 \) if \(a \in \pi(B_2) \), and \(u(a) = −1 \) otherwise. For \(i = 0 \) or 1, let \(f_i \) be the number of points \(a \in A_2 \cap S \) with \(\langle a, \ell \rangle = i \). The right hand side of the Lefschetz formula is \(\frac{1}{4}(f_0 − f_1) \).

We have \(H^0(S, \ell) = H^1(S, \ell) = 0 \) (Proposition 2), hence \(\dim H^2(S, \ell) = \chi(O_S) = 2 \). Thus the left hand side is \(\text{Tr} H^2(i_S, u) \in \{2, 0, −2\} \). Since \(f_0 + f_1 = 40 \) this gives \(f_1 \in \{16, 20, 24\} \); the case \(f_0 = 24 \) corresponds to \(H^2(i_S, u) = 1 \). Moreover the number of fixed points of \(i_X \) is \(\#(B_2 \cap X) = 2f_0 \). Thus the Proposition will follow if we can find \(\ell \) in \(\hat{A}_2 \) with \(f_0 = 24 \).

Put \(F := A_2 \cap S \). Consider the homomorphism \(\hat{A}_2 \rightarrow (\mathbb{Z}/2)^F \) given by \(\ell \mapsto (\langle a, \ell \rangle)_{a \in F} \). For \(\ell \neq 0 \), the weight of the element \(j(\ell) \) of \((\mathbb{Z}/2)^F \) (that is, the number of its nonzero coordinates) is \(f_1 \), which belongs to \(\{16, 20, 24\} \). Therefore \(j \) is injective; its image is a 8-dimensional vector subspace of \((\mathbb{Z}/2)^F \), that is, a linear code, such that the weight of any nonzero vector belongs to \(\{16, 20, 24\} \). A simple linear algebra lemma ([B2], lemma 1) shows that a code in \((\mathbb{Z}/2)^{40}\) of dimension \(\geq 7 \) contains elements of weight \(< 20 \); thus there exist elements \(\ell \) in \(\hat{A}_2 \) with \(f_1 = 16 \), hence \(f_0 = 24 \).

From now on we choose \(\ell \) so that \(i_S \) acts as trivially on \(H^2(S, \ell) \). Thus \(i_X \) acts trivially on \(H^0(X, K_X) \) and has 48 fixed points.

Proposition 4. The canonical map \(\varphi_X : X \rightarrow \mathbb{P}^6 \) factors through \(i_X \), and induces an isomorphism of \(X/i_X \) onto a complete intersection of 4 quadrics in \(\mathbb{P}^6 \) with 48 nodes.
Proof: Since \(i_X \) acts as trivially on \(H^0(X, K_X) \), we have a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\varphi_X} & \Sigma \\
\downarrow{\pi} & & \downarrow{p} \\
S & \xrightarrow{\varphi_S} & \Xi
\end{array}
\]

where \(\varphi_X \) and \(\varphi_S \) are the canonical maps, \(\Sigma \) and \(\Xi \) their images, \(p \) the projection corresponding to the injection \(H^0(S, K_S) \to H^0(X, K_X) \), \(p_{\Xi} \) its restriction to \(\Sigma \).

The map \(\varphi_S \circ \pi : X \to \Xi \) gives the quotient of \(X \) by the action of \((\mathbb{Z}/2)^2\). Since \(\tau \) acts non-trivially on \(H^0(X, K_X) \), \(\varphi_X \) identifies \(\Sigma \) with the quotient \(X/i_X \). Thus all the maps in the left hand square of the above diagram are double coverings, étale outside finitely many points. In particular, since \(K_X^2 = 32 \), we have \(\deg \Sigma = 16 \).

We choose bases \((x_0, \ldots, x_4)\) and \((u, v)\) of the \((+1)\) and \((-1)\)-eigenspaces in \(H^0(X, K_X) \) with respect to \(\tau \). The elements \(u^2, uv, v^2 \) of \(H^0(X, K_X^{\otimes 2}) \) are invariant under \(\tau \) and \(i_X \), therefore they are pull-back of \(i_S \)-invariant forms in \(H^0(S, K_S^{\otimes 2}) \). Such a form comes from an element of \(H^0(\Xi, \mathcal{O}_\Xi(2)) \), hence from an element of \(H^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2)) \). Thus we have

\[u^2 = a(x) \quad uv = b(x) \quad v^2 = c(x) \]

where \(a, b, c \) are quadratic forms in \(x_0, \ldots, x_4 \). Moreover the irreducible quadric \(Q \) containing \(\Xi \) is defined by a quadratic form \(q(x) \) which vanishes on \(\Sigma \).

Thus \(\Sigma \) is contained in the subvariety \(V \) of \(\mathbb{P}^6 \) defined by these 4 quadratic forms. If \(V \) is a surface, it has degree 16 and therefore is equal to \(\Sigma \). Thus it suffices to prove that the morphism \(p_V : V \to Q \) induced by the projection \(p \) is not surjective.

Assume that \(p_V \) is surjective; it has degree 2, and we have a cartesian diagram

\[
\begin{array}{ccc}
\Sigma & \xrightarrow{p_{\Xi}} & V \\
\downarrow{p_{\Xi}} & & \downarrow{p_V} \\
\Xi & \xrightarrow{p_V} & Q
\end{array}
\]

The variety \(V \) is irreducible: otherwise \(\Sigma \) is contained in one of its component, which maps birationally to \(Q \), and \(p_{\Xi} \) has degree 1, a contradiction. Since \(Q \setminus \text{Sing}(Q) \) is simply connected, \(p_V \) is branched along a surface \(R \subset Q \). Since \(\Xi \) is an ample divisor in \(Q \) (cut out by a quartic equation), it meets \(R \) along a curve, and \(p_{\Xi} \) is branched along that curve, a contradiction.

Remark 2. It follows that \(\Xi = p(\Sigma) \) is defined by the equations \(q(x) = b(x)^2 - a(x)c(x) = 0 \). The 40 nodes of \(\Xi \) break into two sets: the 16 points in \(\mathbb{P}^4 \) defined by \(a(x) = b(x) = c(x) = q(x) = 0 \) are the images by \(p_{\Xi} \) of smooth points of \(\Sigma \) fixed by the involution induced by \(\tau \); \(p_{\Xi} \) is étale over the other 24 nodes of \(\Xi \), giving rise to the 48 nodes of \(\Sigma \).

Remark 3. The two families of surfaces \(X \) that we have constructed are different; in fact, a surface \(X_1 \) of the first family is not even homeomorphic to a surface \(X_2 \) of the second one. Indeed \(X_1 \) admits an irrational genus 2 pencil \(X \to B \), and this is a topological property [1]. But for a general member
X_2 of the second family, the Albanese variety of the corresponding Schoen surface is simple [S], so its double cover $\text{Alb}(X_2)$ is also simple; therefore X_2 cannot have an irrational pencil of genus 2.

It follows that the corresponding surfaces Σ belong to two different connected components of the moduli space of complete intersections of 4 quadrics in \mathbb{P}^6 with an even set of 48 nodes.

REFERENCES

[B1] A. Beauville : L’application canonique pour les surfaces de type général. Invent. math. 55 (1979), 121-140.
[B2] A. Beauville : Sur le nombre maximum de points doubles d’une surface dans \mathbb{P}^3 ($\mu(5) = 31$). Journées de Géométrie algébrique d’Angers, 207-215; Sijthoff & Noordhoff (1981).
[CMR] C. Ciliberto, M. Mendes Lopes, X. Roulleau : On Schoen surfaces. Preprint arXiv:1303.1750.
[C] F. Catanese : Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations. Invent. Math. 104 (1991), no. 2, 263-289.
[CPT] C. Ciliberto, R. Pardini, F. Tovena : Regular canonical covers. Math. Nachr. 251 (2003), 19-27.
[vL] R. van Luijk : On perfect cuboids. Undergraduate thesis, Universiteit Utrecht (2000).
[M1] D. Mumford : On the equations defining abelian varieties I. Invent. Math. 1 (1966), 287-354.
[M2] D. Mumford: Tata lectures on theta, II. Progress in Mathematics, 43. Birkhäuser Boston, Inc., Boston, MA, 1984.
[S] C. Schoen : A family of surfaces constructed from genus 2 curves. Internat. J. Math. 18 (2007), no. 5, 585-612.
[ST] D. Testa, M. Stoll : The surface parametrizing cuboids. Preprint arXiv:1009.0388.