b-baryon semi-tauonic decays in the Standard Model

Chao Han* and Chun Liu†

CAS Key Lab. of Theor. Phys., Institute of Theoretical Physics,
Chinese Academy of Sciences, Beijing 100190, China and
School of Physical Sciences, Univ. of Chinese Academy of Sciences, Beijing 100049, China

(Dated: November 3, 2020)

Abstract

Within the framework of HQET, $\Lambda_b \rightarrow \Lambda_c \tau \bar{\nu}_\tau$ and $\Omega_b \rightarrow \Omega_c^{(*)} \tau \bar{\nu}_\tau$ weak decays are studied to the order of $1/m_c$ and $1/m_b$. Helicity amplitudes are written down. Relevant Isgur-Wise functions given by QCD sum rule and large N_c methods are applied in the numerical analysis. The baryonic R-ratios $R(\Lambda_c)$ and $R(\Omega_c^{(*)})$ are obtained.
I. INTRODUCTION

Recent experiments showed that there are some deviation from standard theory expectation in B-meson semi-tauonic decays [1]. The ratio \(R(D^{(*)}) \equiv \text{Br}(B \to D^{(*)}\tau\bar{\nu})/\text{Br}(B \to D^{(*)}l\bar{\nu}) \) \((l = e, \mu)\) is about \(3\sigma\) larger than the Standard Model (SM) prediction. This attracts a lot of theory attention from new physics point of view, for reviews see Refs. [2–6]. Nevertheless, a careful SM calculation is needed before any new physics conclusion can be drawn. An alternative place to further check that if there is such an anomaly is to look at b-baryon semileptonic decays. In this paper, the SM analysis of weak decays \(\Lambda_b \to \Lambda_c \tau\bar{\nu}_\tau \) and \(\Omega_b \to \Omega_c^{(*)} \tau\bar{\nu}_\tau \) is made in detail with tauon mass effects considered.

Heavy baryons are interesting both experimentally and theoretically for their own sake. They reveal important features of the heavy quark physics, and offer a good application ground of QCD. Especially experiments of LHC [7], the super B-factory [8] and BES III [9], as well as previous LEP, LEPII and Tevatron, have been collecting data on heavy baryons. Among various heavy baryons, \(\Lambda_b \) and \(\Omega_b \), as the most basic and simplest ones, have been paid much attention. Their semileptonic weak decays have already been analyzed in detail [10–23]. At the quark-gluon level, the decays are due to weak interaction which is described by the universal V-A four-fermion interaction. At the hadron level, semileptonic decay amplitudes are written in terms of hadronic matrix elements of weak currents, which are parameterized by form factors. In this paper, helicity amplitude description of hadronic transitions by Körner et al. [24–27] will be used.

The form factors of heavy hadron weak transition can be greatly simplified in the heavy quark effective theory (HQET) [28–33]. For hadrons containing a single heavy quark, HQET is the right QCD to describe them. It factorizes the perturbatively calculable part out from hadronic matrix elements. Form factors are then described by several independent universal form factors which are the so-called Isgur-Wise functions.

Nonperturbative methods are needed to calculate Isgur-Wise functions. Actually it is at this stage the uncertainty of analytical calculation is lack of control. Among various analytical nonperturbative methods, QCD sum rules [34] and the large \(N_c \) limit [35, 36] are outstanding, the former is regarded as being rooted in QCD, and the latter is just a limit of QCD. They are generally considered to be more close to real QCD. Both have reasonable and consistent ways to estimate uncertainties of calculation. Like in [12, 18, 20], we will use...
results of both the QCD sum rule and the large N_c methods for these Isgur-Wise functions in the final numerical analysis. Notably Λ_b semi-tauonic decay was also studied recently \cite{37,47}.

The outline of the paper is as follows. In section II, general description of the decays in terms of helicity amplitudes is given. In section III, form factors are expressed by Isgur-Wise functions which were obtained from the large N_c and QCD sum rules. In section IV, numerical results are presented. Section V gives the summary.

II. FORM FACTORS, HELICITY AMPLITUDES AND DECAY RATES

A. Form factors

For $\Lambda_b \to \Lambda_c$ weak transition, relevant baryonic matrix elements are parameterized by form factors

\[
\langle \Lambda_c (p', s') | V^\mu | \Lambda_b (p, s) \rangle = \bar{u}_{\Lambda_c} (p', s') \left[f_1 \gamma^\mu + i f_2 \sigma^{\mu\nu} q_\nu + f_3 q^\mu \right] u_{\Lambda_b} (p, s), \\
\langle \Lambda_c (p', s') | A^\mu | \Lambda_b (p, s) \rangle = \bar{u}_{\Lambda_c} (p', s') \left[g_1 \gamma^\mu + i g_2 \sigma^{\mu\nu} q_\nu + g_3 q^\mu \right] \gamma_5 u_{\Lambda_b} (p, s),
\]

where $q = p - p'$ and $\sigma^{\mu\nu} = i [\gamma_\mu, \gamma_\nu] / 2$, form factors f_i and g_i are functions of q^2. It is convenient to reexpress the form factors as functions of velocities of baryons,

\[
\langle \Lambda_c (v', s') | V^\mu | \Lambda_b (v, s) \rangle = \bar{u}_{\Lambda_c} (v', s') (F_1 (\omega) \gamma^\mu + F_2 (\omega) v^\mu + F_3 (\omega) v'^\mu) u_{\Lambda_b} (v, s), \\
\langle \Lambda_c (v', s') | A^\mu | \Lambda_b (v, s) \rangle = \bar{u}_{\Lambda_c} (v', s') (G_1 (\omega) \gamma^\mu + G_2 (\omega) v^\mu + G_3 (\omega) v'^\mu) \gamma_5 u_{\Lambda_b} (v, s),
\]

where v and v' denote four-velocities of Λ_b and Λ_c, respectively, $\omega = v \cdot v'$, F_i and G_i are functions of ω.

Similarly, for the decays of $\Omega_b \to \Omega_c^{(*)}$,

\[
\langle \Omega_c (v', s') | V^\mu | \Omega_b (v) \rangle = \bar{u}_{\Omega_c} (v', s') (F'_1 \gamma^\mu + F'_2 v^\mu + F'_3 v'^\mu) u_{\Omega_b} (v, s), \\
\langle \Omega_c (v', s') | A^\mu | \Omega_b (v) \rangle = \bar{u}_{\Omega_c} (v', s') (G'_1 \gamma^\mu + G'_2 v^\mu + G'_3 v'^\mu) \gamma_5 u_{\Omega_b} (v, s), \\
\langle \Omega_c^* (v', s') | V^\mu | \Omega_b (v) \rangle = \bar{u}_{\Omega_c^{(*)}} (v', s') (N_1 v^\lambda \gamma^\mu + N_2 v^\lambda v^\mu + N_3 v^\lambda v'^\mu + N_4 v'^\mu) \gamma_5 u_{\Omega_b} (v, s), \\
\langle \Omega_c^* (v', s') | A^\mu | \Omega_b (v) \rangle = \bar{u}_{\Omega_c^{(*)}} (v', s') (K_1 v^\lambda \gamma^\mu + K_2 v^\lambda v^\mu + K_3 v^\lambda v'^\mu + K_4 v'^\mu) u_{\Omega_b} (v, s),
\]

where $u_{\Omega_c^{(*)}}$ is the Rarita-Schwinger spinor for a spin-3/2 particle.
B. Helicity amplitudes

In analyzing decays, polarization gives detailed physics information. The decay $\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ can be thought of as two sub-processes $\Lambda_b \to \Lambda_c + W_{\text{off-shell}}$ and $W_{\text{off-shell}} \to \tau + \bar{\nu}_\tau$. Consider the decay $\Lambda_b \to \Lambda_c + W_{\text{off-shell}}$ in the rest system of Λ_b. $W_{\text{off-shell}}$ moves in the $+z$ direction, and Λ_c moves in the $-z$ direction. The momentums of Λ_b, Λ_c and $W_{\text{off-shell}}$ are

$$p^\mu = (m_{\Lambda_b}; 0, 0, 0), \quad p'^\mu = (E_{\Lambda_c}; 0, 0, -|\vec{q}|), \quad q^\mu = (q_0; 0, 0, |\vec{q}|),$$

respectively. The current is composed of a spin-1 and a spin-0 components. The relevant expression of polarization 4-vectors of the current is that

$$\varepsilon^\mu(t) = \frac{1}{\sqrt{q^2}} (q_0; 0, 0, |\vec{q}|), \quad \varepsilon^\mu(\pm 1) = \frac{1}{\sqrt{2}} (0; \mp 1, -i, 0), \quad \varepsilon^\mu(0) = \frac{1}{\sqrt{q^2}} (|\vec{q}|; 0, 0, q_0).$$

The t-label stands for the time-component of the corresponding current. Notice that in our case, the tauon mass will be taken into consideration, so the time-component of the $W_{\text{off-shell}}$ should be included. The helicity amplitudes are defined in the following,

$$H_{\lambda_2 \lambda_W}^{V,A} = M_\mu^{V,A} (\lambda_2) \varepsilon^{\ast \mu} (\lambda_W),$$

where $M_\mu^{V,A}$ stand for the matrix elements of vector and axial vector currents, λ_2 and λ_W are the helicities of the daughter baryon Λ_c and the $W_{\text{off-shell}}$, respectively. Helicity amplitudes are then expressed in terms of the form factors.

For $\Lambda_b \to \Lambda_c$ transition,

$$\sqrt{q^2} H_{\frac{1}{2}^+}^V = \sqrt{2m_{\Lambda_b} m_{\Lambda_c} (1 + \omega)} ((m_{\Lambda_b} - m_{\Lambda_c}) F_1 + (m_{\Lambda_b} - m_{\Lambda_c} \omega) F_2 + (-m_{\Lambda_c} + m_{\Lambda_b} \omega) F_3),$$

$$H_{\frac{1}{2}^-}^V = -2 \sqrt{m_{\Lambda_b} m_{\Lambda_c} (\omega - 1)} F_1,$$

$$\sqrt{q^2} H_{\frac{1}{2}^0}^V = \sqrt{2m_{\Lambda_b} m_{\Lambda_c} (\omega - 1)} ((m_{\Lambda_b} + m_{\Lambda_c}) F_1 + m_{\Lambda_c} (\omega + 1) F_2 + m_{\Lambda_b} (\omega + 1) F_3),$$

$$\sqrt{q^2} H_{\frac{1}{2}^+}^A = \sqrt{2m_{\Lambda_b} m_{\Lambda_c} (\omega - 1)} (- (m_{\Lambda_b} + m_{\Lambda_c}) G_1 + (m_{\Lambda_b} - m_{\Lambda_c} \omega) G_2 + (-m_{\Lambda_c} + m_{\Lambda_b} \omega) G_3),$$

$$H_{\frac{1}{2}^-}^A = -2 \sqrt{m_{\Lambda_b} m_{\Lambda_c} (\omega + 1)} G_1,$$

$$\sqrt{q^2} H_{\frac{1}{2}^0}^A = \sqrt{2m_{\Lambda_b} m_{\Lambda_c} (\omega + 1)} ((m_{\Lambda_b} - m_{\Lambda_c}) G_1 - m_{\Lambda_c} (\omega - 1) G_2 - m_{\Lambda_b} (\omega - 1) G_3).$$

Similarly for $\Omega_b \to \Omega_c$ transition,
\[
\sqrt{q^2} H^W_{\frac{1}{2}t} = \sqrt{2m_\Omega m_\Omega_c (1 + \omega)} \left((m_\Omega c - m_\Omega_b) F'_1 + (m_\Omega c - m_\Omega_b\omega) F'_2 + (-m_\Omega c + m_\Omega b\omega) F'_3 \right),
\]
\[
H^W_{\frac{1}{2}1} = -2 \sqrt{m_\Omega b m_\Omega_c (\omega - 1)} F'_1,
\]
\[
\sqrt{q^2} H^W_{\frac{1}{2}0} = \sqrt{2m_\Omega m_\Omega_c (\omega - 1)} \left((m_\Omega b + m_\Omega c) F'_1 + m_\Omega c (\omega + 1) F'_2 + m_\Omega b (\omega + 1) F'_3 \right),
\]
\[
\sqrt{q^2} H^A_{\frac{1}{2}t} = \sqrt{2m_\Omega m_\Omega_c (\omega - 1)} \left(- (m_\Omega b + m_\Omega c) G'_1 + (m_\Omega b - m_\Omega c\omega) G'_2 + (-m_\Omega c + m_\Omega b\omega) G'_3 \right),
\]
\[
H^A_{\frac{1}{2}1} = -2 \sqrt{m_\Omega b m_\Omega_c (\omega + 1)} G'_1,
\]
\[
\sqrt{q^2} H^A_{\frac{1}{2}0} = \sqrt{2m_\Omega m_\Omega_c (\omega + 1)} \left((m_\Omega b - m_\Omega c) G'_1 - m_\Omega c (\omega - 1) G'_2 - m_\Omega b (\omega - 1) G'_3 \right),
\]
\[
(8)
\]
and for $\Omega_b \rightarrow \Omega_c^\ast$ transition,

$$\sqrt{q_r^2} H_{\frac{1}{2}0}^{nv} = \sqrt{\frac{2}{3}} (\omega + 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)(m_{\Omega_b} - m_{\Omega_c}) N_1}$$

$$- \sqrt{\frac{2}{3}} (\omega^2 - 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)m_{\Omega_c} N_2}$$

$$- \sqrt{\frac{2}{3}} (\omega^2 - 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)m_{\Omega_b} N_3}$$

$$- \sqrt{\frac{2}{3}} \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)(m_{\Omega_b} \omega - m_{\Omega_c}) N_4}.$$

$$\sqrt{q_r^2} H_{\frac{1}{2}0}^{nA} = \sqrt{\frac{2}{3}} (\omega - 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)(m_{\Omega_b} + m_{\Omega_c}) K_1}$$

$$+ \sqrt{\frac{2}{3}} (\omega^2 - 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)m_{\Omega_c} K_2}$$

$$+ \sqrt{\frac{2}{3}} (\omega^2 - 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)m_{\Omega_b} K_3}$$

$$+ \sqrt{\frac{2}{3}} \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)(m_{\Omega_b} \omega - m_{\Omega_c}) K_4}.$$

(9)

$$\sqrt{q_r^2} H_{\frac{1}{2}1}^{nv} = \sqrt{\frac{2}{3}} (\omega + 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)(m_{\Omega_b} + m_{\Omega_c}) N_1}$$

$$- \sqrt{\frac{2}{3}} (\omega - 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)(m_{\Omega_b} - m_{\Omega_c} \omega) N_2}$$

$$- \sqrt{\frac{2}{3}} (\omega - 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)(m_{\Omega_b} \omega - m_{\Omega_c}) N_3}$$

$$- \sqrt{\frac{2}{3}} (\omega - 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)m_{\Omega_b} N_4}.$$

$$\sqrt{q_r^2} H_{\frac{1}{2}1}^{nA} = \sqrt{\frac{2}{3}} (\omega + 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)(m_{\Omega_b} - m_{\Omega_c}) K_1}$$

$$+ \sqrt{\frac{2}{3}} (\omega + 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)(m_{\Omega_b} - m_{\Omega_c} \omega) K_2}$$

$$+ \sqrt{\frac{2}{3}} (\omega + 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)(m_{\Omega_b} \omega - m_{\Omega_c}) K_3}$$

$$+ \sqrt{\frac{2}{3}} (\omega + 1) \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)m_{\Omega_b} K_4}.$$

$$H_{\frac{1}{2}1}^{nv} = - \sqrt{\frac{1}{3}} \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)N_1} + \sqrt{\frac{1}{3}} \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)N_4},$$

$$H_{\frac{1}{2}1}^{nv} = - \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega - 1)N_4},$$

$$H_{\frac{1}{2}1}^{nA} = - \sqrt{\frac{1}{3}} \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)2(\omega - 1)K_1} + \sqrt{\frac{1}{3}} \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)K_4},$$

$$H_{\frac{1}{2}1}^{nA} = \sqrt{2m_{\Omega_b} m_{\Omega_c} (\omega + 1)K_4}.$$
Other relations can be obtained by relations: $H_{\lambda_2, -\lambda_2} = H_{\lambda_2, \lambda W}$, $H_{-\lambda_2, -\lambda_2} = -H_{\lambda_2, \lambda W}$.

At last, the following relation is needed, $H_{\lambda_2 \lambda W} = H_{\lambda_2 \lambda W} - H_{\lambda_2 \lambda W}$. Decay rates can be given in terms of these helicity amplitudes.

C. Decay rates

The differential decay rate $d\Gamma/d\omega$ is obtained as following [25, 26],

$$d\Gamma(\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau) = \frac{G_F^2}{(2\pi)^3} |V_{cb}|^2 \frac{(q^2 - m_\tau^2)^2 m_{\Lambda_b}^2 \sqrt{\omega^2 - 1}}{12m_{\Lambda_b}q^2} \times \left[\left(1 + \frac{m_\tau^2}{2q^2}\right)|H_{\frac{1}{2}1}|^2 + \left(1 + \frac{m_\tau^2}{2q^2}\right)|H_{-\frac{1}{2}1}|^2 + \left(1 + \frac{m_\tau^2}{2q^2}\right)|H_{\frac{1}{2}0}|^2 \right]$$

$$+ \left(1 + \frac{m_\tau^2}{2q^2}\right)|H_{-\frac{1}{2}0}|^2 + \frac{3m_\tau^2}{2q^2}|H_{\frac{1}{2}t}|^2 + \frac{3m_\tau^2}{2q^2}|H_{-\frac{1}{2}t}|^2 \right] \frac{d\Gamma_{T_+}}{d\omega} + \frac{d\Gamma_{T_-}}{d\omega} + \frac{d\Gamma_{L_+}}{d\omega} + \frac{d\Gamma_{L_-}}{d\omega} + \frac{d\Gamma_{t_+}}{d\omega} + \frac{d\Gamma_{t_-}}{d\omega},$$

where G_F is the Fermi coupling constant, V_{cb} is the CKM matrix element, and $\frac{d\Gamma_{T_\pm}}{d\omega}$, $\frac{d\Gamma_{L_\pm}}{d\omega}$, and $\frac{d\Gamma_{t_\pm}}{d\omega}$ are defined as the transverse, longitudinal and time-component contribution to the decay rate with \pm denoting the final baryon helicity.

Following the same method, we get that for $\Omega_b \to \Omega_c \tau \bar{\nu}_\tau$,

$$d\Gamma(\Omega_b \to \Omega_c \tau \bar{\nu}_\tau) = \frac{G_F^2}{(2\pi)^3} |V_{cb}|^2 \frac{(q^2 - m_\tau^2)^2 m_{\Omega_b}^2 \sqrt{\omega^2 - 1}}{12m_{\Omega_b}q^2} \times \left[\left(1 + \frac{m_\tau^2}{2q^2}\right)|H'_{\frac{1}{2}1}|^2 + \left(1 + \frac{m_\tau^2}{2q^2}\right)|H'_{-\frac{1}{2}1}|^2 + \left(1 + \frac{m_\tau^2}{2q^2}\right)|H'_{\frac{1}{2}0}|^2 \right]$$

$$+ \left(1 + \frac{m_\tau^2}{2q^2}\right)|H'_{-\frac{1}{2}0}|^2 + \frac{m_\tau^2}{2q^2}\left(|H'_{\frac{1}{2}t}|^2 + |H'_{-\frac{1}{2}t}|^2 \right) \right] \frac{d\Gamma_{T_+}}{d\omega} + \frac{d\Gamma_{T_-}}{d\omega} + \frac{d\Gamma_{L'_+}}{d\omega} + \frac{d\Gamma_{L'_-}}{d\omega} + \frac{d\Gamma_{t'_+}}{d\omega} + \frac{d\Gamma_{t'_-}}{d\omega},$$

(11)
and for $\Omega_b \to \Omega_c^* \tau \bar{\nu}_\tau$,

$$
\frac{d\Gamma(\Omega_b \to \Omega_c^* \tau \bar{\nu}_\tau)}{d\omega} = \frac{G_F^2}{(2\pi)^3} |V_{cb}|^2 \frac{(q^2 - m_{\tau}^2)^2}{12m_{\Omega_b}q^2} \sqrt{\omega^2 - 1} \times \left[\left(1 + \frac{m^2_\tau}{2q^2} \right) |H''_{+\frac{1}{2}}|^2 + \left(1 + \frac{m^2_\tau}{2q^2} \right) |H''_{-\frac{1}{2}}|^2 + \left(1 + \frac{m^2_\tau}{2q^2} \right) |H''_{\frac{1}{2}}|^2 \right] \\
+ \left(1 + \frac{m^2_\tau}{2q^2} \right) |H''_{-\frac{1}{2}}|^2 + \left(1 + \frac{m^2_\tau}{2q^2} \right) |H''_{\frac{1}{2}}|^2 + \left(1 + \frac{m^2_\tau}{2q^2} \right) |H''_{0}|^2 \\
+ \frac{m^2_\tau}{2q^2} \left(|H''_{+\frac{1}{2}}|^2 + |H''_{-\frac{1}{2}}|^2 \right) \right]
$$

(12)

where $\frac{d\Gamma''_{T_{2\pm}}}{d\omega}$ and $\frac{d\Gamma''_{T_{1\pm}}}{d\omega}$ correspond to $H''_{\pm\frac{1}{2}\pm1}$ and $H''_{\pm\frac{1}{2}\pm1}$, respectively.

III. HQET WITH QCD SUM RULE AND LARGE N_c

A. HQET

The form factors in HQET can be simplified in terms of Isgur-Wise functions. For $\Lambda_b \to \Lambda_c$ at the leading order of heavy quark expansion, there is only one Isgur-Wise function $\xi(\omega)$ \cite{30,32},

$$
\left\langle \Lambda_c \left(v', s' \right) \left| \bar{h}_v^{(c)}(x) \Gamma h_v^{(b)}(x) \right| \Lambda_b(v, s) \right\rangle = \xi(\omega) \bar{u}_{\Lambda_c}(v', s') \Gamma u_{\Lambda_b}(v, s),
$$

(13)

where $h_v^{(Q)}$ denotes the heavy quark field defined in the HQET with velocity v, and Γ stands for any gamma matrices. $\xi(\omega)$ is normalized at the zero recoil, $\xi(1) = 1$.

When $1/m_Q$ correction is taken into consideration, another Isgur-Wise function $\chi(\omega)$ and a mass parameter $\bar{\Lambda}$ appear. The subleading Isgur-Wise function $\chi(\omega)$ is defined by

$$
\left\langle \Lambda_c \left(v' \right) \left| \bar{h}_v^{(c)}(x) \Gamma h_v^{(b)}(x) \right| \Lambda_b(v) \right\rangle = \frac{\bar{\Lambda}}{m_Q} \chi(\omega) \bar{u}_{\Lambda_c}(v') \Gamma u_{\Lambda_b}(v),
$$

(14)

where $\bar{\Lambda}$ is the heavy baryon mass in HQET, $\bar{\Lambda} = m_{\Lambda_Q} - m_Q$.

8
Including α_s and $\Lambda_{\text{QCD}}/m_{c,b}$ corrections, the form factors are given as following \[30–32\],

\[
\begin{align*}
F_1 &= C(\mu)\xi(\omega) + C(\mu) \left(\frac{\Lambda}{2m_c} + \frac{\Lambda}{2m_b} \right) \left[2\chi(\omega) + \xi(\omega) \right], \\
G_1 &= C(\mu)\xi(\omega) + C(\mu) \left(\frac{\Lambda}{2m_c} + \frac{\Lambda}{2m_b} \right) \left[2\chi(\omega) + \frac{\omega - 1}{\omega + 1} \xi(\omega) \right], \\
F_2 &= G_2 = -C(\mu) \frac{\Lambda}{m_c(\omega + 1)} \xi(\omega), \\
F_3 &= -G_3 = -C(\mu) \frac{\Lambda}{m_b(\omega + 1)} \xi(\omega),
\end{align*}
\]

\[15\]

where the perturbative QCD coefficient in the leading logarithmic approximation is

\[
C(\mu) = \left[\frac{\alpha_s(m_b)}{\alpha_s(m_c)} \right]^{-6/25} \left[\frac{\alpha_s(m_c)}{\alpha_s(\mu)} \right]^{a_L(\omega)},
\]

\[16\]

and $a_L(\omega) = \frac{8}{27} [\omega r(\omega) - 1]$, $r(\omega) = \frac{1}{\sqrt{\omega^2 - 1}} \ln \left(\frac{\omega + \sqrt{\omega^2 - 1}}{\sqrt{\omega^2 - 1}} \right)$.

For $\Omega_{b(c)}^{(s)}$ cases, similarly, based on the standard tensor method \[30, 33\], we denote Ω_Q and $\Omega_\bar{Q}$ as B_μ^1 and B_μ^2 respectively,

\[
B_\mu^1(v, s) = \frac{1}{\sqrt{3}} (\gamma_\mu + v_\mu) \gamma^5 u(v, s), \quad B_\mu^2(v, s) = u_\mu(v, s).
\]

\[17\]

In the leading order of heavy quark expansion, the fourteen form factors are reduced to two Isgur-Wise functions which are defined as,

\[
\left\langle \Omega_c^M \left| \overline{h}_v^{(c)} \Gamma h_B^{(b)} \right| \Omega_b^N \right\rangle = C \bar{B}_\mu^M \Gamma B^N \left[-g^{\mu\nu} \xi_1(\omega) + v^\mu v^\nu \xi_2(\omega) \right].
\]

\[18\]

The form factors are expressed as \[49\],

\[19\]

\[
\begin{align*}
F'_1 &= -\frac{\omega}{3} C(\mu)\xi_1 + \frac{\omega^2 - 1}{3} C(\mu)\xi_2, & G'_1 &= -\frac{\omega}{3} C(\mu)\xi_1 + \frac{\omega^2 - 1}{3} C(\mu)\xi_2, \\
F'_2 &= \frac{2}{3} C(\mu)\xi_1 + \frac{2(1 - \omega)}{3} C(\mu)\xi_2, & G'_2 &= \frac{2}{3} C(\mu)\xi_1 + \frac{-2(1 + \omega)}{3} C(\mu)\xi_2, \\
F'_3 &= \frac{3}{3} C(\mu)\xi_1 + \frac{3(1 - \omega)}{3} C(\mu)\xi_2, & G'_3 &= \frac{3}{3} C(\mu)\xi_1 + \frac{2(1 + \omega)}{3} C(\mu)\xi_2, \\
N_1 &= \frac{1}{\sqrt{3}} C(\mu)\xi_1 + \frac{\omega - 1}{\sqrt{3}} C(\mu)\xi_2, & K_1 &= \frac{1}{\sqrt{3}} C(\mu)\xi_1 + \frac{\omega + 3}{\sqrt{3}} C(\mu)\xi_2, \\
N_2 &= 0, & K_2 &= 0, \\
N_3 &= 0 + \frac{2}{\sqrt{3}} C(\mu)\xi_2, & K_3 &= 0 + \frac{-2}{\sqrt{3}} C(\mu)\xi_2, \\
N_4 &= \frac{-2}{\sqrt{3}} C(\mu)\xi_1 + 0, & K_4 &= \frac{2}{\sqrt{3}} C(\mu)\xi_1 + 0.
\end{align*}
\]
B. QCD sum rule and Large N_c

Isgur-Wise functions and the mass parameters should be calculated by nonperturbative methods. In this work, we make use of results from QCD sum rule \cite{11, 13} and large N_c methods \cite{12, 18, 20, 50}.

1. QCD sum rule

Within HQET, the QCD sum rule method gives the following results \cite{11, 13},

$$
\xi(\omega) = 1 - \rho^2(\omega - 1), \quad \rho^2 = 1.35 \pm 0.12,
$$
$$
\chi(\omega) \approx O(10^{-2}),
$$
$$
\tilde{\Lambda} \approx 0.79 \pm 0.05 \text{GeV}.
$$

2. Large N_c

In the large N_c limit, the leading Isgur-Wise function $\xi(\omega)$ and the mass parameter $\tilde{\Lambda}$ are given as \cite{50}

$$
\xi(\omega) = 0.99 \exp[-1.3(\omega - 1)], \quad \tilde{\Lambda} \approx 0.87 \text{ GeV}.
$$

This ξ is actually a realization of δ function \cite{12}. Ref. \cite{12} further showed that $\chi(\omega) = 0$ in the large N_c limit.

In the large N_c limit, Isgur-Wise functions ξ_1 and ξ_2 can be expressed by $\xi(\omega)$ \cite{51, 52},

$$
\xi_1(\omega) = \xi(\omega), \quad \xi_2(\omega) = \frac{\xi(\omega)}{1 + \omega}.
$$

To the order of $1/m_Q$, sub-leading Isgur-Wise functions can also be written as $\xi(\omega)$ \cite{18, 20}.
We finally obtain the form factors as

\[F_1' = -C(\mu) \frac{1}{3} \xi(\omega) - \frac{1}{3} C(\mu) \xi(\omega) \left[\frac{\Omega}{2m_c} + \frac{\Omega}{2m_b} \right], \]

\[F_2' = C(\mu) \frac{4 \xi(\omega)}{3(1 + \omega)} + C(\mu) \frac{\xi(\omega)}{3(1 + \omega)} \left[-\frac{\Omega}{m_c} + \frac{2\Omega}{m_b} \right], \]

\[F_3' = C(\mu) \frac{4 \xi(\omega)}{3(1 + \omega)} + C(\mu) \frac{\xi(\omega)}{3(1 + \omega)} \left[\frac{2\Omega}{m_c} - \frac{\Omega}{m_b} \right], \]

\[G_1' = -C(\mu) \frac{1}{3} \xi(\omega) + C(\mu) \frac{1}{3} \xi(\omega) \left[\frac{\Omega}{2m_c} + \frac{\Omega}{2m_b} \right] \left(1 - \frac{\omega}{1 + \omega} \right), \]

\[G_2' = C(\mu) \frac{\Omega}{3m_c} \left(\frac{1}{1 + \omega} \right) \xi(\omega), \]

\[G_3' = -C(\mu) \frac{\Omega}{3m_b} \left(\frac{1}{1 + \omega} \right) \xi(\omega), \]

\[N_1 = C(\mu) \frac{-2 \xi(\omega)}{\sqrt{3}(1 + \omega)} + C(\mu) \frac{-\xi(\omega)}{\sqrt{3}(1 + \omega)} \left[\frac{\Omega}{m_c} + \frac{\Omega}{m_b} \right], \]

\[K_1 = 0, \quad N_2 = 0, \quad K_2 = C(\mu) \frac{2}{\sqrt{3}} \xi(\omega) \frac{\Omega}{m_c} \left(\frac{1}{1 + \omega} \right)^2, \]

\[N_3 = C(\mu) \frac{2 \xi(\omega)}{\sqrt{3}(1 + \omega)} + C(\mu) \frac{\xi(\omega)}{\sqrt{3}(1 + \omega)} \left[\frac{\Omega}{m_c} + \frac{\Omega}{m_b} \right], \]

where \(\bar{\Omega} = m_{\Omega_Q} - m_Q. \)

\[IV. \text{ NUMERICAL RESULTS} \]

Numerical results for \(\Lambda_b \to \Lambda_c l\bar{\nu}_l \) and \(\Omega_b \to \Omega_c^{(*)} l\bar{\nu}_l \) \((l = e, \mu, \tau)\) can be obtained now. In the calculation it takes \(m_{\Lambda_b} = 5.62 \text{ GeV}, m_{\Lambda_c} = 2.23 \text{ GeV}, m_{\Omega_b} = 6.07 \text{ GeV}, m_{\Omega_c} = 2.70 \text{ GeV}, m_{\Omega_{c2}} = 2.77 \text{ GeV}, |V_{cb}| = 0.04 \) and \(G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2} \) \([53]\). And \(m_c = 1.44 \text{ GeV}, m_b = 4.83 \text{ GeV}, \mu = 0.47 \text{ GeV} \) \([31, 32]\). \(\omega \) is in the range \(1 \leq \omega \leq \frac{m_{\Lambda_c}^2 + m_{\Omega_c}^2 - m_{\tau}^2}{2m_{\Lambda_c}m_{\Omega_c}} \) for the \(\Lambda_b \to \Lambda_c \) decay and \(1 \leq \omega \leq \frac{m_{\Omega_{c2}}^2 + m_{\Omega_{c2}}^2 - m_{\tau}^2}{2m_{\Omega_{c2}}m_{\Omega_{c2}}} \) for \(\Omega_b \to \Omega_c^{(*)} \).

Tauonic decay distributions are plotted in Figs.1-7. Fig.1 presents the \(\Lambda_b \to \Lambda_c \tau\bar{\nu}_\tau \) differential decay rate, both QCD sum rule and large \(N_c \) results are given for comparison, with the uncertainty of the QCD sum rule considered. The two results are close to each other, especially in the low recoil region. In Figs.2 and 3, we display the \(\omega \) dependence of \(\Lambda_b \to \Lambda_c \tau\bar{\nu}_\tau \) partial differential rates \(T, L, t \) and the total differential rate. The transverse rate \(T \) dominates in the low recoil region while the longitudinal rate \(L \) dominates in the
large recoil region. Fig. 2 is for the QCD sum rule method. And Fig. 3 is that from the large \(N_c \) method. Figs. 4-7 show the corresponding plots for \(\Omega_b \to \Omega_c^{(*)} \tau \bar{\nu}_\tau \) decays for the large \(N_c \) limit. For the partial decay distribution of \(\Omega_b \to \Omega_c^{(*)} \tau \bar{\nu}_\tau \) (Fig. 7), what should be discussed is that the \(t_+ \) channel is almost 0, and the \(L_\pm \) channels are almost the same. As for the tauonic decay, time-components should be considered specifically, because they are absent in the massless charged lepton case. In the \(\Lambda_b \) case, time-component is still small. However, in the \(\Omega_b \to \Omega_c \) case, time-component gets comparatively larger. In the \(\Omega_b \to \Omega_c^{(*)} \) case, time-component gets to be even much larger and begins to dominate in the large recoil region.

The decay rates are obtained by \(\omega \) integration. For the \(\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau \) decay, we obtain the total decay rate, the branching ratio, and the R-ratio in the following from the QCD sum rule,

\[
\Gamma (\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau) = 1.16 \pm 0.05 \ (\rho^2) \pm 0.004 \ (\bar{\Lambda}) \times 10^{-14} \text{ GeV} , \\
\text{Br} (\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau) = (2.59 \pm 0.09) \% \times \left(\frac{\tau (\Lambda_b)}{1.47 \times 10^{-12} \text{sec}} \right) , \\
R (\Lambda_c) = \frac{\Gamma (\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau)}{\Gamma (\Lambda_b \to \Lambda_c \mu \bar{\nu}_\mu)} = (33.1 \pm 1.4) \% ,
\]

where uncertainties are due to the error of QCD sum rules in Eq. (20). For the large \(N_c \) case,

\[
\Gamma (\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau) = 1.22 \times 10^{-14} \text{ GeV} , \\
\text{Br} (\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau) = 2.73 \% \times \left(\frac{\tau (\Lambda_b)}{1.47 \times 10^{-12} \text{sec}} \right) , \\
R (\Lambda_c) = \frac{\Gamma (\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau)}{\Gamma (\Lambda_b \to \Lambda_c \mu \bar{\nu}_\mu)} = 29.2 \% .
\]

The error of the large \(N_c \) result is estimated to be \(1/N_c \sim 30\% \) in general. However, the uncertainty of \(R \) which is what we are really interested in, is supposed to be smaller because of the cancellation in the ratios [12]. Thus, the uncertainty in \(R (\Lambda_c) \) is estimated as small as \(\sim 10\% \).

Table I lists results for the \(\Lambda_b \to \Lambda_c \ell \bar{\nu}_\ell \) semileptonic decay. Experimental data [53] and results from the quark model [37], HQET [44], and lattice QCD [21] are also listed for comparison. From the table one can see that the large \(N_c \) result is somewhat larger than other theoretical results, as far as central values are concerned. The QCD sum rule result is very close to that of the quark model. Nevertheless within the 2\(\sigma \) uncertainty, all the results
are still consistent with each other.

Via the same procedure, the result of the $\Omega_b \to \Omega_c^{(*)} \tau \bar{\nu}_\tau$ decay is obtained by using the large N_c method in the following,

$$\Gamma (\Omega_b \to \Omega_c \tau \bar{\nu}_\tau) = 4.83 \times 10^{-15} \text{ GeV},$$

$$\text{Br} (\Omega_b \to \Omega_c \tau \bar{\nu}_\tau) = 1.21\% \times \left(\frac{\tau (\Omega_b)}{1.65 \times 10^{-12}\text{sec}} \right),$$

$$R (\Omega_c) = \frac{\Gamma (\Omega_b \to \Omega_c \tau \bar{\nu}_\tau)}{\Gamma (\Omega_b \to \Omega_c \mu \bar{\nu}_\mu)} = 30.4\%.$$

And

$$\Gamma (\Omega_b \to \Omega_c^{*} \tau \bar{\nu}_\tau) = 1.27 \times 10^{-14} \text{ GeV},$$

$$\text{Br} (\Omega_b \to \Omega_c^{*} \tau \bar{\nu}_\tau) = 3.18\% \times \left(\frac{\tau (\Omega_b)}{1.65 \times 10^{-12}\text{sec}} \right),$$

$$R (\Omega_c^{*}) = \frac{\Gamma (\Omega_b \to \Omega_c^{*} \tau \bar{\nu}_\tau)}{\Gamma (\Omega_b \to \Omega_c^{*} \mu \bar{\nu}_\mu)} = 33.2\%.$$

Like in the Λ_b decay, the $1/N_c$ uncertainty for $R (\Omega_c^{(*)})$ is expected to be $\sim 10\%$.

TABLE I. Results for the $\Lambda_b \to \Lambda_c \ell \bar{\nu}_\ell$ decay.

Decay	Sum rule	Large N_c	Ref.[37]	Ref.[21]	Ref.[44]	Experiment[53]
$\Lambda_b \to \Lambda_c (e, \mu) \bar{\nu}(e, \mu)$						
$\Gamma \times 10^{14}$	3.50 ± 0.30	4.2 ± 0.4	3.13	2.26 ± 0.14		
$\text{Br} (%)$	7.83 ± 0.60	9.3 ± 0.9	7.0	5.06 ± 0.32		$6.2_{-1}^{+1.4}$
$\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$						
$\Gamma \times 10^{14}$	1.16 ± 0.05	1.2 ± 0.1	0.91	0.753 ± 0.033		
$\text{Br} (%)$	2.59 ± 0.09	2.7 ± 0.3	2.0	1.68 ± 0.07		
$R (\Lambda_c)$	0.33 ± 0.01	0.29 ± 0.03	0.29	0.3328 ± 0.0102	0.324 ± 0.004	

1 Covariant confined quark model.
2 Lattice QCD.
3 HQET to $O(\Lambda_{QCD}^2/m_c^2)$, form factors are determined by fitting to LHCb and lattice QCD data.

V. SUMMARY

In this paper, $\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ and $\Omega_b \to \Omega_c^{(*)} \tau \bar{\nu}_\tau$ semileptonic decays have been calculated within the Standard model systematically. In the analysis with lepton-mass effects considered, helicity amplitudes have been given, form factors are expanded in HQET to the
order of Λ_{QCD}/m_b and Λ_{QCD}/m_c, the Isgur-Wise functions obtained by QCD sum rule and large N_c methods have been applied in the calculation. We have obtained decay rates, decay distributions, and R-ratios for $\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ and $\Omega_b \to \Omega_c^{(*)} \tau \bar{\nu}_\tau$ decays. The R-ratio $R(\Lambda_c) \simeq (33 \pm 1)\%$ (QCD sum rule), $R(\Lambda_c) \simeq (29 \pm 3)\%$ (large N_c QCD), $R(\Omega_c) \simeq 30.4\%$ (large N_c QCD), and $R(\Omega_c^{(*)}) = 33.2\%$ (large N_c QCD) with an estimated 10% uncertainty for the large N_c. These results will be checked by experiments in the near future, such as LHCb, to see if there is any new physics in these decays.
FIG. 3. Partial decay distributions in various helicities of $\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ in the Large N_c QCD. $1 \leq \omega \leq 1.31$

FIG. 4. The differential decay rate of $\Omega_b \to \Omega_c \tau \bar{\nu}_\tau$, $1 \leq \omega \leq 1.25$

FIG. 5. Partial decay distributions in various helicities of $\Omega_b \to \Omega_c \tau \bar{\nu}_\tau$. T, L, t stand for $\frac{d\Gamma^T}{d\omega}$, $\frac{d\Gamma^L}{d\omega}$, and $\frac{d\Gamma^t}{d\omega}$ which are defined in Eq. (11), $1 \leq \omega \leq 1.25$
FIG. 6. The differential decay rate of $\Omega_b \rightarrow \Omega_c^* \tau \bar{\nu}_\tau$, $1 \leq \omega \leq 1.23$

FIG. 7. Partial decay distributions in various helicities of $\Omega_b \rightarrow \Omega_c^* \tau \bar{\nu}_\tau$, T, L, t stand for $\frac{d\Gamma_{T \pm}}{d\omega}$, $\frac{d\Gamma_{L \pm}}{d\omega}$, $\frac{d\Gamma_{t \pm}}{d\omega}$ which are defined in Eq. (12), $1 \leq \omega \leq 1.23$.

ACKNOWLEDGMENTS

We are very grateful to Jürgen G. Körner for valuable comments. We acknowledge support from the National Natural Science Foundation of China (No. 11875306).

[1] “For a review, see Average of R(D) and $\text{R(D}^*+)$ for Spring 2019.”

https://hflav-eos.web.cern.ch/hflav-eos/semi/spring19/html/RDsDsstar/RDRDs.html

[2] M. Blanke, Flavour Physics from Present to Future Colliders, 2019. arXiv:1910.10662

[3] S. Gori, Tasi lectures on flavor physics, PoS (2019) 013.

[4] A. Pich, Flavour Anomalies, 2019. arXiv:1911.06211

[5] Y. Li and C.-D. Lü, Recent Anomalies in B Physics, Sci. Bull. 63 (2018) 267–269, arXiv:1808.02990.
[6] S. Fajfer and I. Nisandzic, *Theory of $B \to \tau \nu$ and $B \to D^{(*)}\tau \nu*, arXiv preprint arXiv:1301.1167 (2013).

[7] R. Aaji, C. A. Beteta, B. Adeva, M. Adinolfi, C. Adrover, A. Affolder, Z. Ajaltouni, J. Albrecht, F. Alessio, M. Alexander, et al., *Measurement of b hadron production fractions in 7 TeV $p p$ collisions*, Physical Review D 85 (2012), no. 3 032008.

[8] Belle-II Collaboration, W. Altmannshofer et al., *The Belle II Physics Book*, arXiv:1808.10567.

[9] M. Ablikim et al., *Future Physics Programme of BESIII*, Chin. Phys. C 44 (2020), no. 4 040001, [arXiv:1912.05983].

[10] A. Grozin and O. I. Yakovlev, *Sum rules for baryonic Isgur-Wise form factors*, Physics Letters B 291 (1992), no. 4 441–447.

[11] Y.-B. Dai, C.-S. Huang, M.-Q. Huang, and C. Liu, *QCD sum rule analysis for the $\Lambda_b \to \Lambda_c$ semileptonic decay*, Physics Letters B 387 (1996), no. 2 379–385.

[12] J.-P. Lee, C. Liu, and H. Song, *Analysis of $\Lambda_b \to \Lambda_c$ weak decays in heavy quark effective theory*, Physical Review D 58 (1998), no. 1 014013.

[13] M.-Q. Huang, H.-Y. Jin, J. Körner, and C. Liu, *Note on the slope parameter of the baryonic $\Lambda_b \to \Lambda_c$ Isgur–Wise function*, Physics Letters B 629 (2005), no. 1 27–32.

[14] M. Pervin, W. Roberts, and S. Capstick, *Semileptonic decays of heavy lambda baryons in a quark model*, Phys. Rev. C72 (2005) 035201, [nucl-th/0503030].

[15] D. Ebert, R. N. Faustov, and V. O. Galkin, *Semileptonic decays of heavy baryons in the relativistic quark model*, Phys. Rev. D73 (2006) 094002, [hep-ph/0604017].

[16] P. Guo, H.-W. Ke, X.-Q. Li, C.-D. Lu, and Y.-M. Wang, *Diquarks and the semi-leptonic decay of Λ_b in the hyrid scheme*, Phys. Rev. D75 (2007) 054017, [hep-ph/0501058].

[17] H.-W. Ke, X.-Q. Li, and Z.-T. Wei, *Diquarks and $\Lambda_b \to \Lambda_c$ weak decays*, Phys. Rev. D77 (2008) 014020, arXiv:0710.1927.

[18] M.-k. Du and C. Liu, *Ω_b semi-leptonic weak decays*, Phys. Rev. D84 (2011) 056007, arXiv:1107.2535.

[19] Y. Jia, F. Jugeau, and L. Oliver, *New results on the baryon decay $\Lambda_b \to \Lambda_c l\nu$ in Heavy Quark Effective Theory*, Phys. Rev. D86 (2012) 014002, arXiv:1202.4100.

[20] M.-K. Du and C. Liu, *Baryonic Isgur-Wise functions in large-N_c heavy quark effective theory*, Phys. Rev. D87 (2013), no. 9 094015, arXiv:1305.1757.
[21] W. Detmold, C. Lehner, and S. Meinel, $\Lambda_b \rightarrow p\ell^-\bar{\nu}_\ell$ and $\Lambda_b \rightarrow \Lambda_c\ell^-\bar{\nu}_\ell$ form factors from lattice QCD with relativistic heavy quarks, Phys. Rev. D92 (2015), no. 3 034503, [arXiv:1503.01421].

[22] S. Roy and D. K. Choudhury, A Potential Model Approach in the Study of Static and Dynamic properties of Heavy-Light Quark-Antiquark Systems, Quant. Matt. 5 (2016) 1–8, [arXiv:1611.08795].

[23] S. Rahmani and H. Hassanabadi, Semileptonic decay properties of Λ_b baryon in potential model, Eur. Phys. J. Plus 131 (2016), no. 8 260.

[24] J. G. Körner, M. Krämer, and D. Pirjol, Heavy baryons, Progress in Particle and Nuclear Physics 33 (1994) 787–868.

[25] A. Kadeer, J. Körner, and U. Moosbrugger, Helicity analysis of semileptonic hyperon decays including lepton-mass effects, The European Physical Journal C 59 (2009), no. 1 27–47.

[26] J. G. Körner and G. A. Schuler, Exclusive semileptonic heavy meson decays including lepton mass effects, Zeitschrift für Physik C Particles and Fields 46 (1990), no. 1 93–109.

[27] J. G. Körner and M. Krämer, Polarization effects in exclusive semi-leptonic Λ_c and Λ_b charm and bottom baryon decays, Physics Letters B 275 (1992), no. 3-4 495–505.

[28] N. Isgur and M. B. Wise, Weak decays of heavy mesons in the static quark approximation, Physics Letters B 232 (1989), no. 1 113–117.

[29] H. Georgi, An effective field theory for heavy quarks at low energies, Physics Letters B 240 (1990), no. 3-4 447–450.

[30] N. Isgur and M. B. Wise, Heavy-baryon weak form factors, Nuclear Physics B 348 (1991), no. 2 276–292.

[31] A. V. Manohar and M. B. Wise, Heavy quark physics, vol. 10. Cambridge university press, 2007.

[32] M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259–396, [hep-ph/9306320].

[33] H. Georgi, Comment on heavy baryon weak form-factors, Nucl. Phys. B348 (1991) 293–296.

[34] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD and resonance physics. Theoretical foundations, Nuclear Physics B 147 (1979), no. 5 385–447.

[35] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B72 (1974) 461. [337(1973)].

[36] E. Witten, Baryons in the 1/N expansion, Nuclear Physics B 160 (1979), no. 1 57–115.
[37] T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij, P. Santorelli, and N. Habyl, *Semileptonic decay $\Lambda_b \to \Lambda_c$ in the covariant confined quark model*, Physical Review D 91 (2015), no. 7 074001.

[38] S. Shivashankara, W. Wu, and A. Datta, *$\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ decay in the Standard Model and with New Physics*, Physical Review D 91 (2015), no. 11 115003.

[39] R. Dutta, *$\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ decays within Standard Model and beyond*, Physical Review D 93 (2016), no. 5 054003.

[40] X.-Q. Li, Y.-D. Yang, and X. Zhang, *$\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ decay in scalar and vector leptoquark scenarios*, JHEP 02 (2017) 068, [arXiv:1611.01635](https://arxiv.org/abs/1611.01635).

[41] A. Datta, S. Kamali, S. Meinel, and A. Rashed, *Phenomenology of using lattice QCD calculations*, Journal of High Energy Physics 2017 (2017), no. 8 131.

[42] K. Azizi and J. Sün gö, *Semileptonic $\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ transition in full QCD*, Physical Review D 97 (2018), no. 7 074007.

[43] E. Di Salvo, F. Fontanelli, and Z. Ajaltouni, *Detailed study of the $\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ decay*, International Journal of Modern Physics A 33 (2018), no. 29 1850169.

[44] F. U. Bernlochner, Z. Ligeti, D. J. Robinson, and W. L. Sutcliffe, *New predictions for $\Lambda_b \to \Lambda_c$ semileptonic decays and tests of heavy quark symmetry*, Physical review letters 121 (2018), no. 20 202001.

[45] F. U. Bernlochner, Z. Ligeti, D. J. Robinson, and W. L. Sutcliffe, *Precise predictions for $\Lambda_b \to \Lambda_c$ semileptonic decays*, Physical Review D 99 (2019), no. 5 055008.

[46] X.-L. Mu, Y. Li, Z.-T. Zou, and B. Zhu, *Investigation of effects of new physics in $\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ decay*, Physical Review D 100 (2019), no. 11 113004.

[47] D. Bečirević, A. L. Yaouanc, V. Moréñas, and L. Oliver, *Heavy baryon wave functions, bakamjian-thomas approach to form factors, and observables in $\Lambda_b \to \Lambda_c \left(\frac{1}{2}^{\pm}\right) \tau \bar{\nu}$ transitions*, arXiv preprint arXiv:2006.07130 (2020).

[48] P. Auvil and J. Brehm, *Wave functions for particles of higher spin*, Physical Review 145 (1966), no. 4 1152.

[49] C. G. Boyd and D. E. Brahm, *Ω_b semileptonic decay form-factors for $m(c)$ not = infinity*, Phys. Lett. B254 (1991) 468–473.

[50] E. Jenkins, A. V. Manohar, and M. B. Wise, *The baryon Isgur-Wise function in the large N_c limit*, Nuclear Physics B 396 (1993), no. 1 38–52.
[51] C.-K. Chow, *New universality of the baryon Isgur-Wise form-factor in the large N(c) limit*, Phys. Rev. D51 (1995) 1224–1227, [hep-ph/9408364](https://arxiv.org/abs/hep-ph/9408364).

[52] C.-K. Chow, *Large N_c universality of the baryon Isgur-Wise form-factor: The Group theoretical approach*, Phys. Rev. D54 (1996) 873–876, [hep-ph/9601248](https://arxiv.org/abs/hep-ph/9601248).

[53] P. Zyla et al., *Particle Data Group*, Prog. Theor. Exp. Phys. 2020, 083C01.