Investigation of Filamentous Fungi Producing Safe, Functional Water-Soluble Pigments

Young Mok Heo, Kyeongwon Kim, Sun Lul Kwon, Joirim Na, Hanbyul Lee, Seokyooon Jang, Chul Hwan Kim, Jinho Jung and Jae-Jin Kim

Division of Environmental Science & Ecological Engineering College of Life Sciences & Biotechnology, Korea University, Seoul, Republic of Korea

ABSTRACT
The production of water-soluble pigments by fungal strains indigenous to South Korea was investigated to find those that are highly productive in submerged culture. Among 113 candidates, 34 strains that colored the inoculated potato dextrose agar medium were selected. They were cultured in potato dextrose broth and extracted with ethanol. The productivity, functionality (radical-scavenging activities), and color information (CIELAB values) of the pigment extracts were measured. Five species produced intense yellowish pigments, and two produced intense reddish pigments that ranked the highest in terms of absorbance units produced per day. The pigment extracts of *Penicillium miczynskii*, *Sanghuangporus baumii*, *Trichoderma* sp. 1, and *Trichoderma afroharzianum* exhibited high radical-scavenging activity. However, the *S. baumii* extract showed moderate toxicity in the acute toxicity test, which limits the industrial application of this pigment. In conclusion, *P. miczynskii* KUC1721, *Trichoderma* sp. 1 KUC1716, and *T. afroharzianum* KUC21213 were the best fungal candidates to be industrial producers of safe, functional water-soluble pigments.

1. Introduction

Pigments are colorants that have been used as additives to enhance the quality of products by intensifying their original color and dyeing colorless products [1]. The main sources of pigments, historically, were insects and plants until the demand for colorants drastically increased with the industrial revolution [2]. Because the production of natural pigments could not meet the market demand, synthetic colorants were developed and achieved market dominance. However, some synthetic colorants contained potential colon carcinogens and people have begun to worry about the health effects of synthetic colorants, especially in food, clothes, cosmetics, and pharmaceuticals [3–6]. This encouraged interest in developing non-toxic colorants and broadening the sources of natural pigments. The natural colorant market started to grow and is expected to reach 2.3 billion dollars in 2019 [7]. The successful marketing of algal pigments proved that the willingness to pay for natural healthy colorants has increased [8].

On the other hand, the market price of natural colorants is high due to their low production levels [9]. Several other problems, such as a lack of stability or pH-dependency, also exist [2]. To overcome these obstacles, researchers have suggested that microorganisms, including bacteria or fungi, should be developed and utilized as alternative sources of conventional natural pigments [2].

Filamentous fungi are well known for producing various secondary metabolites that are useful to humans [10]. As examples of such metabolites, fungal pigments have many advantages as natural colorants; they are biodegradable (eco-friendly), have various colors, exhibit diverse chemical profiles, are mostly non-toxic, are generated from cheap raw materials, and are easily produced at high levels [11]. In addition, many fungal pigments exhibit useful physiological activities, including antimicrobial, antimutagenic, antioxidant, herbicidal, anticancer, and antiobesity activities [12–14]. The functionality of fungal pigments makes their value even higher. In particular, pigments with high antioxidant activity are very useful and easily applied in the food and cosmetic industries.

However, like synthetic colorants, fungal pigments are not free from safety concerns. Pigments from *Monascus* species have been widely used in China for a long time and are probably the best-known fungal pigments globally. However,
broadening their market to Europe or USA has been difficult due to safety concerns about their citrinin content. Citrinin is a yellow pigment that is a potential carcinogen, causing nephrotoxic, hepatotoxic, and cytotoxic effects. Both Monascus ruber and M. purpureus, the two major species in the genus, have been reported to produce citrinin, and its production is difficult to prevent because its biosynthetic pathway is shared with pigment synthesis [15,16]. Toxin-producing fungi have a major disadvantage in that the presence of the toxins strongly limits the application range of their pigment products, such as use in the food and beverage industries. In addition, since toxic products must be diluted or detoxified prior to their discharge into rivers, the cost of wastewater treatment increases proportionally to toxicity, leading to higher unit costs. Fungal strains that produce pigments, but not toxins, should be found and developed to avoid these problems.

Some fungal pigments have already been introduced to the market and are now being used: β-carotene and lycopene are produced from Blakeslea trispora, lactoflavin is produced by Ashbya gossypii, and a commercial colorant, “Arpink Red,” is produced by Penicillium oxalicum [7]. The yield of β-carotene from B. trispora was reported to be at least 9 grams per liter of culture medium [17]. These successes prove that fungal pigments can be approved and commercialized with sufficient competitiveness.

Water-soluble pigments are more suitable for industrial production because they are easy to mass-produce using bioreactors and are easily extracted without costly and hazardous organic solvents. For these reasons, finding fungal strains that can produce large amounts of water-soluble pigments in submerged culture is important. In this study, we explored indigenous fungi in South Korea to find fungal strains that produce water-soluble pigments in submerged culture, and the productivity, color information, functionality, and toxicity of their extracted pigments were examined.

2. Materials and methods

2.1. Fungal candidates

All the fungal strains used in this study were obtained from the Korea University Culture (KUC) collection. Fungal species belonging to the same genera of fungi reported to produce pigments were selected as potential pigment-producing fungi. Several other strains of the KUC collection were also selected based on random observation of fungal cultures. Species reported to produce toxins were then excluded.

2.2. Molecular identification

Fungal DNA was extracted using an AccuPrep Genomic DNA Extraction Kit (Bioneer, Seoul, Korea), and the nuclear ribosomal internal transcribed spacer (ITS) region was amplified by the polymerase chain reaction (PCR) using an AccuPower PCR Premix Kit (Bioneer, Seoul, Korea) with the primers, ITS1F [18] and ITS4 [19,20]. If necessary, β-tubulin (TUB) and translation elongation factor-1α (EF1α) region were sequenced using the primers, T10 [21] and Bt2a [22], and EF1-728F [23] and TEF1 rev [24], respectively. DNA sequencing was performed by Macrogen (Seoul, Korea), and the fungi were identified based on a BLAST search (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The DNA sequences of seven selected fungi were deposited in GenBank.

2.3. Solid-state culture for prescreening

For primary screening, all the fungi were inoculated on a solid medium containing 39 g of potato dextrose agar (PDA, Bacto, Sparks, MD, USA) in a liter of distilled water (D.W.). They were incubated at room temperature for four weeks because some fungi produce pigments only in a nutritionally deficient state. After cultivation, fungi that colored the medium were selected and subjected to subsequent experiments.

2.4. Submerged culture

The selected fungi were precultured on PDA for a week at room temperature (21–23°C), and three agar plugs (0.6 mm diameter) with actively growing mycelia were used as inocula. They were inoculated 100 ml Erlenmeyer flasks containing 40 ml of 2.4% (w/v) potato dextrose broth (PDB, Bacto, Sparks, MD, USA), and the cultures were maintained for four weeks in a shaking incubator at 150 rpm and 27°C.

2.5. Extraction of fungal pigments and spectrophotometry

After incubation, 350 μl aliquots of the culture broth were sampled in 2.0 ml e-tubes at seven-day intervals. Four volumes of 95% (v/v) ethanol were added to the samples, which were then mixed vigorously using a vortexer. The tubes were placed in a refrigerator and maintained at 4°C for an hour to precipitate extracellular polysaccharides. The mixtures were then centrifuged at 4,000 × g for 15 min, and the supernatants were filtered through a 0.45 μm syringe filter (Minisart, Sartorius, Göttingen, Germany).

Visible absorption of the filtrates was scanned from 380–800 nm using a Genesys™ 10 UV-Vis spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). Units of absorbance (UAs) were calculated by multiplying the maximum absorbance (Abs) by the final dilution factor, thus accurately representing the pigment concentration. The maximum absorbances were found in the ranges from 380–490 nm and from 490–595 nm for yellowish (yellow-green to orange) and reddish (red to purple) pigments, respectively. Pigment production (UA/day) was calculated by dividing the UAs by the number of days spent in culture.

For subsequent assays, the pigment extracts from the fungi with high productivity were dried using a rotary evaporator and then weighed gravimetrically.

2.6. Colorimetry
The dried pigment extracts were dissolved in D.W. to concentrations of 1 mg/ml. The CIELAB parameters (L*, a*, b*, C*ab, and h) of the samples were measured using a colorimeter (CM-5, Konica Minolta, Tokyo, Japan) based on the protocols of the Commission Internationale de l’Eclairage (CIE).

2.7. Antioxidant assay
The antioxidant activity of the pigment extracts from the selected fungi was measured [19]. The dried pigment extracts were dissolved in D.W. to concentrations of 10 mg/ml.

Radical-scavenging activity of 2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS; Sigma-Aldrich Inc., St. Louis, MO, USA) was analyzed [25]. Briefly, 10 μl of the pigment extract (10 mg/ml) and 990 μl of a prepared ABTS radical solution were added to a cuvette. The absorbance at 734 nm was measured using a UV-vis spectrophotometer after six minutes (Optizen 2120 UV, Mecasys, Daejeon, Korea).

The radical-scavenging activity of 2,2-Diphenyl-1-picrylhydrazyl (DPPH; Sigma-Aldrich Inc., St. Louis, MO, USA) was also measured [26]. Briefly, 22 μl of the pigment extract (10 mg/ml) and 200 μl of a prepared DPPH solution were added to a 96-well plate. The absorbance at 520 nm was measured using a microplate reader after 30 min (Sunrise™, Tecan, Männedorf, Switzerland).

2.8. Acute toxicity test
The dried pigment extracts were dissolved in D.W. to concentrations of 10 mg/ml. The acute toxicity test was conducted based on the Organization for Economic Co-operation and Development (OECD) Guideline No. 202 [27]. Briefly, neonates of Daphnia magna that were less than 24 h old were used. Five individuals and 10 ml of each sample solution were placed in each well of a 6-well plate and then incubated for 48 h at 20 ± 2°C without feeding. The immobilization rate of the neonates was used to calculate EC50 values by the trimmed Spearman–Karber method. This test was conducted in quadruplicate and validated by a reference test using K2Cr2O7, for which the 48 h EC50 was 1.51 mg/L, within the standard sensitivity range (1.23–1.86 mg/L).

2.9. Statistical analysis
All the experiments were conducted more than three times, and the mean values are presented. Normality was examined using the Shapiro-Wilk test, and the data were analyzed using one-way ANOVA followed by the post hoc Tukey’s test. Statistical analyses were performed with SAS ver. 9.4 (SAS Institute Inc., Cary, NC, USA), and a p-value below 0.05 indicated a statistically significant difference.

3. Results
3.1. Primary screening of pigment-producing strains
All the fungal candidates were cultivated on PDA plates for four weeks for prescreening. The cultures were sorted based on the distinct coloration of the medium by macroscopic observation. As a result, 34 fungal strains (19 genera, 33 species) were selected as potential producers of water-soluble pigments and used in subsequent experiments (Table 1). These strains consisted of 8 basidiomycetes (7 genera, 8 species), 22 ascomycetes (9 genera, 21 species), and 4 zygomycetes (3 genera, 4 species). As expected, ascomycetes accounted for the majority (65%) of the pigment-producing fungi.

3.2. Water-soluble pigment production in submerged culture
All the selected fungi were cultured in PDB medium for four weeks so that their ability to diffuse pigments into the liquid medium of the submerged culture could be determined. Sanghuangporus baumii KUC10644 and Talaromyces siamensis KUC4096 exhibited the greatest yields in terms of measured UA/day for yellowish and reddish pigments, respectively (Figure 1).

Among the strains that produced yellowish pigments, S. baumii KUC10644 had the highest yield, followed by Trichoderma afroharzianum KUC21213, Clonostachys intermedia KUC21274, Trichoderma sp. 1 KUC1716, and Trichoderma pyramidal KUC21091 (Table 2). The pigment productivity of these five strains was higher than that of the 14 least productive strains, with statistical significance. In the case of reddish pigments, T. siamensis KUC4096 was expected, ascomycetes accounted for the majority (65%) of the pigment-producing fungi.
exhibited the highest yield, followed by *Penicillium miczynskii* KUC1721. The productivity of these two strains was not differentiated with statistical significance.

3.3. Colorimetry

We measured the CIELAB parameters to precisely describe the colors of the seven pigment extracts (1 mg/ml) (Table 3). The colors were then expressed by entering the measured parameters into photo editing software (Adobe Photoshop CS6, Adobe Systems Inc., San Jose, CA, USA).

3.4. Antioxidant activity of the fungal pigment extracts

To evaluate the functionality of the seven pigment extracts (10 mg/ml), we measured their antioxidant activity (Figure 2). As a result, the highest activities in both the ABTS and DPPH radical-scavenging assays were observed with the pigment extracts from *P. miczynskii* KUC1721, *S. baumii* KUC10644 and *T. afroharzianum* KUC21213, and the *Trichoderma* sp. 1 extract showed high ABTS radical-scavenging activity.

3.5. Acute toxicity of the fungal pigment extracts

To evaluate the feasibility of the industrial use of the identified fungal pigment extracts, their acute toxicity was measured using neonates of *Daphnia magna*. The environmental impact of disposal of the pigment extracts could be predicted through this analysis, although the human safety cannot be guaranteed. Figure 3 shows the EC$_{50}$ values of the seven selected pigment extracts. A higher EC$_{50}$ value indicates that the sample is less toxic.

4. Discussion

4.1. Fungal strains producing water-soluble pigments in submerged culture

S. baumii KUC10644 and its unknown yellowish pigments have particularly high potential because this organism belongs to the Basidiomycota, which have rarely been studied for their potential to...
produce fungal pigments from mycelial culture. Pigment and toxin production from the mycelial cultures of genus Sanghuangporus has not been previously studied. C. intermedia KUC21274 had one of the highest pigment productivities, although there is only one previous report of pigment production from another Clonostachys species; unknown yellow pigments were produced from C. cylindrospora [28]. In addition, toxins have not been reported to be produced from the genus Clonostachys.

The three Trichoderma strains (T. pyramidale KUC21091, Trichoderma sp. 1 KUC1716, and T. afrarharzianum KUC21213) produced yellowish pigments within seven days, possibly owing to the fast growth of species of the genus Trichoderma [29]; they can quickly finish their growth phase and produce secondary metabolites. Since Trichoderma species produce yellow anthraquinones, the yellowish pigments from the three strains are likely to be members of this class of molecules [7,30]. However, structural identification should be preceded by a toxicity test of the pigment extracts, given that other Trichoderma species produce toxins: T-2 toxin and trichotoxin A40 from T. viride,

Table 2. Identifying information of the selected fungal strains producing water-soluble pigments in submerged culture.

Fungal species	Strain ID	GenBank accession number	Incubation time max.
Yellowish-pigment producers			
Sanghuangporus baumii	KUC10644	MH168100*	14
Trichoderma afrarharzianum	KUC21213	KK912217*	7
Clonostachys intermedia	KUC21274	MH168099*	14
Trichoderma sp. 1	KUC1716	KR8200004*	7
Trichoderma pyramidale	KUC21091	KK912188*	7
Reddish-pigment producers			
Talaraomyces siamensis	KUC4096	MH168102*, MH168103c	7
Penicillium miczynski	KUC1721	MH168101*	28

* Internal transcribed spacer (ITS) region.
* β-tubulin (TUB) region.
* Translation elongation factor-1α (EF1-α) region.
The incubation time (day) that exhibited the highest yield.

Table 3. The CIELAB parameters of the pigment extracts from the selected fungi.

Fungal species	Strain ID	L*	a*	b*	C*	h
Sanghuangporus baumii	KUC10644	85.8	−3.3	72.1	72.2	92.6
Trichoderma afrarharzianum	KUC21213	84.2	0.2	39.4	39.4	89.7
Clonostachys intermedia	KUC21274	94.9	−1.7	8.3	8.4	101.6
Trichoderma sp. 1	KUC1716	86.5	0.3	44.1	44.1	89.6
Trichoderma pyramidale	KUC21091	84.3	−2.1	53.8	53.9	92.2
Talaraomyces siamensis	KUC4096	88.2	1.8	24.3	24.4	85.7
Penicillium miczynski	KUC1721	73.3	12.6	41.1	42.9	73.0

The parameters were measured at D65 (Daylight 6500K).

Figure 2. ABTS (left) and DPPH (right) radical-scavenging activity of the pigment extracts. The error bars indicate the standard deviation. Values with the same letter in each group do not differ significantly (α = 0.05) according to Tukey’s test.
trichodermin from *T. brevicompactum*, trichodermol from *T. polysporum* and *T. reesei*, and gliotoxin (immunosuppressive mycotoxin) from *T. deliques- cens*, *T. viride*, and *T. hamatum* [31,32].

Meanwhile, *T. siamensis* KUC4096 produced many reddish pigments within seven days. Considering that several other *Talaromyces* species such as *T. funiculosus*, *T. pinophilus*, and *T. ruber* produce Monascus-like azaphilones, the reddish pigments from *T. siamensis* may possibly belong to this class of molecules [33]. *T. siamensis* is thus very likely to also produce citrinin because citrinin production accompanies pigment biosynthesis in Monascus species, as mentioned above. In addition, other *Talaromyces* species produce toxins; talarotoxin is produced by *T. bacillosporus*, wortmannin by *T. flavus*, rubratoxins (hepatotoxic mycotoxins) by *T. purpurogenus* and *T. ruber*, kojic acid (poten- tial contact allergen that causes dermatitis) by *T. ruber*, and luteoskyrin (hepatotoxic carcinogen) by *T. rugulosus* [33–38]. Moreover, *T. marneffei* is an opportunistic human pathogen that produces a yel- low pigment named secalonic acid D, which is toxic and teratogenic [39,40]. The toxicity of the pigment extracts from *T. siamensis* KUC4096 should therefore be assayed to evaluate the industrial value of this microorganism.

P. miczynskii KUC1721 also produced reddish pigments. There is no previous report of reddish pigment produced by this species. Red herqueinone and norherqueinone have been produced in *P. atrovenetum*, and many *Penicillium* species produce Monascus-like azaphilones [2,16]. Many mycotoxins are found in *Penicillium* species: plastatin and luteo- sporin are produced by *P. chermesinum*, and ochra- toxin A is produced by *P. aurantiogriseum*, *P. chrysogenum*, *P. nordicum*, and *P. verrucosum* [8,41,42]. *P. miczynskii* itself has also been reported to produce mycotoxins such as citrinin, citreoviridi- din, citreomontanin, and penicillic acid [43]. In con- trast, ethyl acetate extracts of some *Penicillium* species had no toxic effects on *Artemia salina* larvae [14]. This result implies that *P. miczynskii* strain KUC1721 may not produce toxic compounds or toxin production may be low, but the toxicity of this pigment extract must be thoroughly tested because the extraction solvent used was different.

4.2 Pigment accumulation and color development

The accumulation of pigments caused the culture media with yellowish pigments to become reddish, but the medium inoculated with *C. intermedia* KUC21274 maintained its yellowish color. The yellowish pigments may have been produced vigorously for two weeks and then decomposed or derivatized so that they did not accumulate, even if the incubation was prolonged; or the pH of the medium might have changed. This hypothesis is supported by the UA of the pigment extract from *C. intermedia* KUC21274 decreasing after the second week of incubation (data not shown). The expressed color of the pigment extract from *C. intermedia* KUC21274 was very light due to the reasons described above.

4.3 Fungal pigment extracts with high antioxidative ability

In the case of *S. baumii*, several reports describe its physiological activity, including antioxidant, anti- inflammatory, and hypoglycemic effects, and the fruiting body of this fungus is well known as a medicinal mushroom. However, none of these
Table 4. The general toxicity rating corresponding to EC50 value.

EC50 (mg/L)	Toxicity rating
>100	Relatively non-toxic
10–100	Moderately toxic
1–10	Very toxic
<1	Extremely toxic

reports examined the extracellular pigment extracts from the culture filtrate, but rather the organism’s fruiting bodies, mycelial extracts, and polysaccharides [44–48]. For example, the high antioxidant activity of a water-soluble extract of *S. baumii* has been reported, but the experimental sample was a mycelial extract that had been prewashed several times [48]. The high antioxidant activity was therefore speculated to have resulted from the pigment itself or another non-polysaccharide compound. High antioxidant activity has not been reported for *P. miczynskii*, *Trichoderma* sp. 1, or *T. afroharzianum* extracts. Whether these antioxidants are pigments themselves or other secondary metabolites must therefore be confirmed, and other physiological characteristics such as anti-fungal and antibacterial activity must be tested. These results imply that the pigment extracts from these four fungi have potential as functional colorants applicable to the food and cosmetic industries.

4.4. Environmental toxicity of fungal pigment extracts

EC50 values are generally interpreted as presented in Table 4 [49]. The table shows that the pigment extract from *S. baumii* was moderately toxic, while the other six extracts were relatively non-toxic. The pigment extract from *C. intermedia* and *T. siamensis* exhibited significantly lower toxicity than the others did. This result showed that the use of these six pigment extracts is industrially feasible in terms of the cost reduction of wastewater treatment. It is suggested that their toxicity to humans should be tested to make them available for applications in the cosmetic and food industries without safety problems. On the other hand, the pigment extract from *S. baumii* appears to have limited application in industry due to its toxicity. The toxic substance from *S. baumii* should be identified, as no toxicity report on this fungal genus exists.

4.5. Fungal strains producing safe functional water-soluble pigments

Five fungal species (*Sanghuangporus baumii*, *Clonostachys intermedia*, *Trichoderma pyramidale*, *Trichoderma* sp. 1, and *Trichoderma afroharzianum*) produced intense yellowish pigments, and two species (*Talaromyces siamensis* and *Penicillium miczynskii*) produced intense reddish pigments. The pigment extracts from *P. miczynskii*, *S. baumii*, *Trichoderma* sp. 1, and *T. afroharzianum* exhibited high antioxidant activity, suggesting the potential to serve as functional colorants for the food and cosmetic industries. Among them, all the extracts except for the one from *S. baumii* were relatively non-toxic in the acute toxicity test. In conclusion, *P. miczynskii* KUC1721, *Trichoderma* sp. 1 KUC1716, and *T. afroharzianum* KUC21213 were the best fungal strains identified for the industrial production of safe functional water-soluble pigments. This is the first report that evaluated the productivity, functionality, and environmental toxicity of water-soluble pigments from the selected fungal species. To further ensure their industrial value, their human toxicity must be studied, and their pigment yields must be maximized by optimizing culture and extraction conditions.

Disclosure statement. No potential conflict of interest was reported by the authors.

Funding

This research was supported by a Korea University Grant (Seoul, Republic of Korea) and the project on survey and excavation of Korean indigenous species of National Institute of Biological Resources [NIBR 201701104] under the Ministry of Environment, Republic of Korea.

References

[1] Scotter MJ. Colour additives for foods and beverages. Elsevier; 2015.

[2] Mapari SAS, Nielsen KF, Larsen TO, et al. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol. 2005;16:231–238.

[3] Arnold LE, Lofthouse N, Hurt E. Artificial food colors and attention-deficit/hyperactivity symptoms: conclusions to dye for. Neurotherapeutics. 2012;9:599–609.

[4] Osman MY, Sharaf IA, Osman HMY, et al. Synthetic organic food colouring agents and their degraded products: effects on human and rat cholinesterases. Br J Biomed Sci. 2004;61:128–132.

[5] Stevens LJ, Burgess JR, Stochelski MA, et al. Amounts of artificial food colors in commonly consumed beverages and potential behavioral implications for consumption in children. Clin Pediatr (Phila). 2014;53:133–140.

[6] Stevens L, Kuczek T, Burgess JR, et al. Mechanisms of behavioral, atopic, and other reactions to artificial food colors in children. Nutr Rev. 2013;71:268–281.

[7] Ogbonna CN. Production of food colourants by filamentous fungi. Afr J Microbiol Res. 2016;10:960–971.

[8] Dufosse L, Fouillaud M, Caro Y, et al. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol. 2014;26:56–61.
[9] Velmurugan P, Kamala-Kannan S, Balachandar V, et al. Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr Polym. 2010;79:262–268.

[10] Fox EM, Howlett BJ. Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol. 2008;11:481–487.

[11] da Costa Souza PN, Grigoletto TLB, de Moraes LAB, et al. Production and chemical characterization of pigments in filamentous fungi. Microbiology (Reading Engl). 2016;162:12–22.

[12] Peng Y, Shao Y, Chen F. Monascus pigments. Appl Microbiol Biotechnol. 2012;96:1421–1440.

[13] Gessler NN, Egorova AS, Belozerskaia TA. Fungal anthraquinones (review). Prikl Biokhim Mikrobiol. 2013;49:109–123.

[14] Teixeira MFS, Martins MS, Da Silva JC, et al. Amazonian Biodiversity: Pigments from Aspergillus and Penicillium-Characterizations, Antibacterial Activities and their Toxicities. Curr Trends Biotechnol Pharm. 2012;6:300–311.

[15] Blanc PJ, Laussac JP, Lebars J, et al. Characterization of monascidin A from Monascus as Citrinin. Int J Food Microbiol. 1995;27:201–213.

[16] Mapari SAS, Thrane U, Meyer AS. Fungal polyketide azaphilone pigments as future natural food colorants?. Trends Biotechnol. 2010;28:300–307.

[17] Costa J, Marcos AT, de la Fuente JL, et al. Method of producing β-carotene by means of mixed culture fermentation using (++) and (--) strains of Blakeslea trispora. Int Patent WO. 2003;3:064673.

[18] Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomyces-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–118.

[19] Hong J-H, Jang S, Heo YM, et al. Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar Drugs. 2015;13:4137–4155.

[20] White TJ, Bruns T, Lee S, et al. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. Academic Press; 1990. p. 315–22.

[21] O’Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol. 1997;7:103–116.

[22] Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323–1330.

[23] Carbone J, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553–556.

[24] Samuels GJ, Dodd SL, Gams W, et al. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia. 2002;94:146–170.

[25] Re P, Pellegrini N, Proteggeante A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–1237.

[26] Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem. 2000;48:3597–3604.

[27] OECD. Test No. 202: Daphnia sp. Acute Immobilisation Test. OECD Publishing; 2004.

[28] Hosoya T, Matsuoka T, Serizawa N, et al. Two morphological groups derived from Clonostachys cylindrospora and their relationship to trans-4-hydroxy-(L)-proline productivity. Mycoscience. 1995;36:193–197.

[29] Esposito E, Silva M. Systematics and environmental application of the genus Trichoderma. Crit Rev Microbiol. 1998;24:89–98.

[30] Donnelly DMY, Sheridan MH. Anthraquinones from Trichoderma polysporum. Phytochemistry. 1986;25:2303–2304.

[31] Reino JL, Guerrero RF, Hernández-Galán R, et al. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev. 2007;7:89–123.

[32] Wichmann G, Herbarth O, Lehmann I. The mycotoxins citrinin, gliotoxin, and patulin affect interferon-γ rather than interleukin-4 production in human blood cells. Environ Toxicol. 2002;17:211–218.

[33] Frisvad JC, Yilmaz N, Thrane U, et al. Talaromyces atrovorus, a new species efficiently producing industrially relevant red pigments. PLoS One. 2013;8:e84102.

[34] Bouhet JC, Pham Van Chuong P, Toma F, et al. Isolation and characterization of luteoskyrin and rugulosin, two hepatotoxic anthraquinonoids from Penicillium islandicum Sopp. and Penicillium rugulosum Thom. J Agric Food Chem. 1976;24:964–972.

[35] Emeh CO, Marth EH. Yields of rubratoxin from Penicillium rubrum. Trans Br Mycol Soc. 1977;68:112–115.

[36] Ishii K, Itoh T, Kobayashi K, et al. Isolation and characterization of a cytotoxic metabolite of Talaromyces bacillosporus. Appl Environ Microbiol. 1995;61:941.

[37] Nakagawa M, Kawai K, Kawai K. Contact allergy to kojic acid in skin care products. Contact Derm. 1995;32:9–13.

[38] Pitt JI. Biology and ecology of toxigenic Penicillium species. In: DeVries JW, Trucksess MW, Jackson LS, editors. Mycotoxins and Food Safety. Boston, MA: Springer; 2002. p. 29–41.

[39] LoBuglio KF, Taylor JW. Phylogeny and PCR identification of the human pathogenic fungus Penicillium marneffei. J Clin Microbiol. 1995;33:85–89.

[40] Mapari SAS, Meyer AS, Thrane U, et al. Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact. 2009;8:24.

[41] El-Shanawany AA, Mostafa ME, Barakat A. Fungal populations and mycotoxins in silage in Assiut and Sohag governorates in Egypt, with a special reference to characteristic Aspergillus toxins. Mycopathologia. 2005;159:281–289.

[42] Singh PD, Johnson JH, Aklonis CA, et al. Two new inhibitors of phospholipase A2 produced by Penicillium chermesinum. Taxonomy, fermentation, isolation, structure determination and biological properties. J Antimicrob. 1985;38:706–712.

[43] Christensen M, Frisvad JC, Tuthill D. Taxonomy of the Penicillium miczynskii group based on
morphology and secondary metabolites. Mycol Res. 1999;103:527–541.

[44] Hwang HJ, Kim SW, Lim JM, et al. Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin-induced diabetic rats. Life Sci. 2005;76: 3069–3080.

[45] Jang B-S, Kim J-C, Bae J-S, et al. Extracts of Phellinus gilvus and Phellinus baumii inhibit pulmonary inflammation induced by lipopolysaccharide in rats. Biotechnol Lett. 2004;26:31–33.

[46] Kim H-M, Lee D-H. Characterization of anti-inflammation effect of aqueous extracts from Phellinus baumii. Korean J Mycol. 2010;38:179–183.

[47] Luo J, Liu J, Sun Y, et al. Medium optimization, preliminary characterization and antioxidant activity in vivo of mycelial polysaccharide from Phellinus baumii Pilát. Carbohydr Polym. 2010;81: 533–540.

[48] Park J, Kang KA, Zhang R, et al. Antioxidant activity of water extract from the cultured mycelia of Phellinus baumii. Cancer Prevent Res. 2006;11: 329–335.

[49] Bae J-S, Freeman HS. Aquatic toxicity evaluation of copper-complexed direct dyes to the Daphnia magna. Dyes and Pigments. 2007;73: 126–132.