CONVERGENCE OF RICCI FLOW ON R^2 TO PLANE

LI MA

Abstract. In this paper, we give a sufficient condition such that the Ricci flow in R^2 exists globally and the flow converges at $t = \infty$ to the flat metric on R^2.

Mathematics Subject Classification 2000: 53Cxx, 35Jxx
Keywords: Ricci flow, maximum principle, convergence

1. Introduction

In this short note, we are interested in the long-term behavior on R^2 of conformally flat solutions to the Ricci flow equation on R^2. Recall here that the Ricci flow equation for the one-parameter family of metric $g(t)$ on R^2 is

$$\partial_t g = -Rg, \text{ in } R^2.$$

(1)

For these metrics $g(t)$, we take their forms as $g(x, t) = e^{u(x, t)}g_E$, where g_E is the standard Euclidean metric on R^2. Then the Ricci flow equation becomes

$$\partial_t e^u = \Delta u, \text{ in } R^2,$$

where Δ is the standard Laplacian operator of the flat metric g_E in R^2. The long-term existence of solutions of (1) or (6) has been studied in [3], where it is shown that

Theorem 1. The solutions to (1) with initial metric $g(0) = e^{u_0}g_E$ exist for all $t \geq 0$ if and only if

$$\int_{R^2} e^{u_0}dx = \infty.$$

(3)

The global behavior of the Ricci flow has been studied in [14]. To state one of her result, we recall two concepts of the metric $g(t)$. One is below.

Definition 2. The aperture of the metric g on R^2 is defined as

$$A(g) = \frac{1}{2\pi} \lim_{r \to \infty} \frac{L(\partial B_r)}{r}.$$

Here B_r denotes the geodesic ball (or disc) of radius r and $L(\partial B_r)$ is the length of the boundary of ∂B_r.

The other is the Cheeger-Gromov convergence of the Ricci flow.

The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20090002110019.
Definition 3. The Ricci flow $g(t)$ is said to have modified subsequence convergence, if there exists a 1-parameter family of diffeomorphisms $\{\phi(t)\}_{t \geq 0}$ such that for any sequence $t_j \to \infty$, there exists a subsequence (denoted again by t_j) such that the sequence $\phi(t_j)^* g(t_j)$ converges uniformly on every compact set as $t_j \to \infty$.

Then we have the following result of L.F. Wu [14].

Theorem 4. Let $g(t) = e^{nu(t)} g_E$ be a solution to (1.1) such that $g(0) = e^{nu_0} g_E$ is a complete metric with bounded curvature and ∇u_0 is uniformly bounded on \mathbb{R}^2. Then the Ricci flow has modified subsequence convergence as $t_j \to \infty$ with the limiting metric g_∞ being complete metric on \mathbb{R}^2; furthermore, the limiting metric is flat if $A(g(0)) > 0$.

We point out that the diffeomorphisms $\phi(t_j)$ used in Theorem 4 are of the special form

$$\phi(t)(a, b) = (e^{-u(x_0, t)} a, e^{-u(x_0, t)} b) = (x_1, x_2) = x,$$

where $x_0 = (0, 0)$. The important fact for these diffeomorphisms is that

$$|\nabla g(t)f(x, t)| = |\nabla \phi(t)^* g(t)f((a, b), t)|,$$

for any smooth function f and $x = \phi(t)(a, b)$.

In the interesting paper [8], which motivates our work here, the authors have proved the following.

Theorem 5. Suppose $g_0 = e^{nu_0} g_E$ has bounded curvature and u_0 is a bounded smooth function on \mathbb{R}^2. Then the Ricci flow $\partial_t g = -Rg$ exists for all $t \geq 0$ and has modified subsequence convergence to the flat metric in the C^k topology of metrics on compact domains in \mathbb{R}^2 for each $k \geq 2$.

There is another formulation in dimension two. Since every complete Riemannian manifold of dimension two is a one dimension Kähler manifold, we can use the Kähler-Ricci flow formulation of the Ricci flow on \mathbb{R}^2. We shall consider the Ricci flow (1) as the Kähler-Ricci flow by setting

$$g_{ij} = g_{0ij} + \partial_i \partial_j \phi,$$

where $\phi = \phi(t)$ is the Kähler potential of the metric $g(t)$ relative to the metric g_0. Note that

$$g(0)_{ij} = g_{0ij} + \partial_i \partial_j \phi_0,$$

In this situation, the Ricci flow can be written as

$$\partial_t \phi = \log \frac{g_{011} + \phi_{11}}{g_{011}} - f_0, \quad \phi(0) = \phi_0,$$

where f_0 is the potential function of the metric g_0 in the sense that $R(g_0) = \Delta_{g_0} f_0$ in \mathbb{R}^2. Here $\Delta_{g_0} = g_0^{11} \partial_1 \partial_1$ in \mathbb{R}^2, which is the normalized Laplacian in Kähler geometry. Such a potential function has been introduced by
R. Hamilton in [7]. We remark that the initial data for the evolution equation (4) is \(\phi(0) \) which is non-trivial. For the equivalent of these two flows, one may see [1].

Our result is below.

Theorem 6. Suppose \(g_0 = e^{u_0}g_E \) has bounded curvature \(R_0 \) with (3) and \(f_0 \) is a bounded smooth function on \(\mathbb{R}^2 \) such that \(\Delta g_0 f_0 = R_0 \). Then the Ricci flow \(\partial_t g = -Rg \) with the initial metric \(g_0 \) exists for all \(t \geq 0 \) and has modified subsequence convergence to the flat metric in the \(C^k \) topology of metrics on compact domains in \(\mathbb{R}^2 \) for each \(k \geq 2 \).

We remark that because of the assumption about the potential function \(f_0 \), the initial metric \(g_0 \) is far from the cigar metric [9]. Here is the idea of the proof. We shall show that the limit \(f_\infty \) of \(f(t_j) \) is a constant function. Because of Theorem 4, we need only show that \(R(g_\infty) = \Delta g_\infty f_\infty = 0 \). The proof of Theorem 6 will be given in section 3.

2. **Maximum Principle and the Equivalence of Flows (4) and (1) in Dimension Two**

First we recall the maximum principle for the Ricci flow with bounded curvature. Given the Ricci flow \(g(t) \) on \(\mathbb{R}^2 \) with bounded curvature, we have the following well-known maximum principle.

Lemma 7. Fix any \(T > 0 \). If \(w(x,t) \) is a bounded smooth solution to the heat equation

\[
\partial_t w = \Delta_{g(t)} w, \quad R^2 \times (0,T]
\]

with the bounded initial data \(w(x,0) \), then \(|w(x,t)| \leq \sup_{R^2} |w(x,0)| \) for all \(t \in (0,T] \).

We now consider the equivalence of the flows (4) and (1) in dimension two. We use the argument in [1] (see Lemma 4.1 there). If \(g(t) \) is the Ricci flow in (1), we define

\[
u(x,t) = \int_0^t \log \frac{g_{11}(x,s)}{g_{11}(x,0)} ds - tf(0)
\]

and

\[
S_{11}(x,t) = g_{11}(x,t) - g_{11}(x,0) - u_{11}(x,t).
\]

Then by direct computation we have

\[
\frac{dS_{11}(x,t)}{dt} = 0, \quad S_{11}(x,0) = 0.
\]

Hence \(S_{11}(x,t) = 0 \) for all \(t > 0 \) and

\[
g_{11}(x,t) = g_{11}(x,0) + u_{11}(x,t).
\]

If \(u = u(x,t) \) is a solution to (1), then it is clear that

\[
g_{11}(x,t) = g_{11}(x,0) + u_{11}(x,t)
\]

satisfies (1).
3. proof of Theorem 6

The idea of the proof of Theorem 6 is similar to the argument in [2] and [8], see also [9].

Let
\[f = -\partial_t \phi. \]

Then, taking the time derivative of (4), we have
\[\partial_t f = \Delta_g f, \quad f(0) = -\partial_t \phi(0) = f_0. \]

By Lemma 7 we know that \(f \) is uniformly bounded in \(\mathbb{R}^2 \). The important fact for us is that
\[\Delta_g f = R. \]

See [9] for a proof of this. If \(f_0 \) has some decay at space infinity, one can can the same decay by the argument of Dai-Ma [4].

It is well-known that \(R \) is uniformly bounded in any finite interval and \(|f_t| \) and \(|\nabla f|^2 \) are bounded for each \(t \geq 0 \) (via the use of \(f(x, t) = f(x, 0) + \int_0^t R(x, s) ds \)).

Our next task is to obtain a better control on \(|\nabla f| \) as \(t \to \infty \). To get this, we let
\[F(x, t) = t|\nabla f|^2 + f^2. \]

Then we have
\[\partial_t F \leq \Delta_g F, \quad \text{in } \mathbb{R}^2. \]

Using the maximum principle (Lemma 7), we know that
\[\sup_{x \in \mathbb{R}^2} |\nabla f(x, t)|^2 \leq \frac{C}{1 + t} \]

for some uniform constant \(C > 0 \). Once we have this bound, we can follow the argument in Lemmata 8,9, and 10 in [8] to conclude that the curvature bounds that there are uniform constants \(C_k \), for any \(k \geq 1 \), such that
\[\sup_{\mathbb{R}^2} |\nabla^k R(x, t)|^2 \leq \frac{C_k}{(1 + t)^{k+2}}, \quad t > 0. \]

We are now ready to complete the proof of Theorem 6. Proof of Theorem 6 We shall use the modified convergence sequence \(g(t_j) \) in Theorem 4. We need only show that the limiting metric has flat curvature and this will be obtained by showing that the limiting function \(f_\infty \) of \(f(x, t_j) \) is constant. Since \(f(x, t) \) is uniformly bounded by a constant \(K > 0 \) on \(\mathbb{R}^2 \times [0, \infty) \), for the fixed \(x_0 = (0, 0) \in \mathbb{R}^2 \) and for any sequence \(t_j \to \infty \), there exists a subsequence, still denoted by \(t_j \), such that \(c = \lim f(x_0, t_j) \) exists. By the construction of the metrics \(g(t_j) \), for any compact subset \(K \subset \mathbb{R}^2 \), the limiting metric \(g_\infty \) is equivalent to any \(\phi(t_j)^*g(t_j) \) for every large \(t \); that is, there is a uniform constant \(C = C(K) > 0 \) such that
\[d_t(x, x_0) \leq C d_{g_\infty}(x, x_0) \]
for every $x \in K$, where $d_t(x, x_0)$ is the distance between x and x_0 in $\phi(t)^*g(t)$ and $d_{g_\infty}(x, x_0)$ is the distance of the limiting metric. For $x \in K$, we can establish (for all $t > 1$),

$$|f(x, t) - f(x_0, t)| \leq d_t(x, x_0) \sup_{x \in K} |\nabla f(x, t)| \leq \frac{C d_{g_\infty}(x, x_0)}{1 + t},$$

where we have used the fact that for $x = \phi(t)(a, b)$,

$$|\nabla g(t)f(x, t)| = |\nabla \phi(t)^*g(t)f((a, b), t)|,$$

which is uniformly bounded. It follows that $f(x, t_j)$ is also convergent to c, which is $f_\infty(x) = c$ as $t_j \to \infty$, and then $\partial_1 \partial_\bar{1} f(x, t_j) \to 0$. Then we have $\Delta_{g_\infty} f_\infty = 0 = R_\infty$ and then $\phi(t_j)^*g(t_j) \to g_\infty$ locally in C^2 with g_∞ of flat curvature. The C^k-convergence of $\phi(t_j)^*g(t_j)$ to this flat limit then follows from the previous curvature estimates obtained in [7] (see Lemmata 8, 9, and 10 in [8]). This completes the proof of Theorem 6.

REFERENCES

[1] A. Chau, Convergence of the Kähler Ricci flow on non-compact Kähler manifolds, J. Differential Geom. 66 (2004), 211-232.
[2] B. Chow, D. Knopf, The Ricci flow: an introduction, Math. surveys and monographs, v. 110 (2004)
[3] P. Daskalopoulos, M.A. del Pino, On a Singular Diffusion Equation, Comm. Anal. Geom., v. 3, 1995, pp.523-542.
[4] X. Dai, L. Ma, Mass under the Ricci flow, Comm. Math. Phys., 274, 65-80 (2007).
[5] P. Daskalopoulos, N. Sesum, Eternal solutions to the Ricci flow on \mathbb{R}^2, Int. Math. Res. Not. 2006, Art. ID 83610, 20 pp.
[6] Daskalopoulos, P. and Sesum, N., Type II extinction profile of maximal Solutions to the Ricci flow in \mathbb{R}^2, J. Geom. Anal. 20 (2010), 565-591.
[7] Hamilton, R.: The Ricci flow on surfaces. In: Mathematics and General Relativity, Contemporary Mathematics 71, AMS, 237-261 (1988)
[8] Isenberg, J. and Javaheri, M., Convergence of the Ricci flow on \mathbb{R}^2 to flat space, J. Geom. Anal. 19 (2009), 809-816.
[9] L. Ma, I. Witt, Stability of Hamilton’s cigar soliton, arxiv. org, 2011.
[10] Ji, L., Mazzeo, R. and Sesum, N., Ricci flow on surfaces with cusps; Math. Ann. 345 (2009), 819-834.
[11] S.Y. Hsu, Large time behaviour of solutions of the Ricci flow equation on \mathbb{R}^2, Pacific J. Math. 197 (2001), no. 1, 25-41.
[12] Shi, W.-X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30, 223-301 (1989).
[13] Shi, W.-X.: Ricci flow and the uniformization on complete noncompact Kähler manifolds. J. Differ. Geom. 45, 94-220 (1997)
[14] L.F Wu, Ricci Flow on Complete \mathbb{R}^2, Comm. Anal. Geom. v1, no. 3, 439-472 (1993).

Distinguished Professor, Department of mathematics, Henan Normal university, Xinxiang, 453007, China
E-mail address: nuslma@gmail.com