SUPPLEMENTARY MATERIAL

Four new compounds from *Neoboletus magnificus*

Zhi Yanga, Ying-tong Dib, Yu Zhangb, Xu-Jia Hua *

aFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; bState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China

ABSTRACT

Four new compounds, compounds 1, 2, 4, 6, along with two compounds 3, 5, were isolated from the methanol extract of the fruiting body of *Neoboletus magnificus*. The structures of compounds were elucidated by HRMS and NMR spectroscopic methods. The \textit{in vitro} anti-inflammatory activity of the isolated compounds was evaluated.

\textbf{Key words}: *Neoboletus magnificus*, Boletaceae, sphingolipid, pyrrole alkaloid
Contents

Figure S1. EIMS fragmentation, key 1H-1H COSY and HMBC correlations for 1

Figure S2. EIMS fragmentation, key 1H-1H COSY and HMBC correlations for 2

Figure S3. EIMS fragmentation, key 1H-1H COSY and HMBC correlations for 3

Figure S4. Key 1H-1H COSY and HMBC correlations for compounds 4-5

Figure S5. Key 1H-1H COSY and HMBC correlations for 6

Figure S6- S7. 1D NMR spectra of compound 1 in CD$_3$OD.

Figure S8- S10. 2D NMR spectra of compound 1 in CD$_3$OD.

Figure S11- S12. 1D NMR spectra of compound 2 in DMSO-d_6.
Figure S13-S15. 2D NMR spectra of compound 2 in DMSO-\(d_6\).

Figure S16-S17. 1D NMR spectra of compound 3 in DMSO-\(d_6\).

Figure S18-S20. 2D NMR spectra of compound 3 in DMSO-\(d_6\).

Figure S21-S22. 1D NMR spectra of compound 4 in DMSO-\(d_6\).

Figure S23-S25. 2D NMR spectra of compound 4 in DMSO-\(d_6\).

Figure S26-S27. 1D NMR spectra of compound 5 in Acetone.

Figure S28-S30. 2D NMR spectra of compound 5 in Acetone.

Figure S31-S32. 1D NMR spectra of compound 6 in DMSO-\(d_6\).

Figure S33-S35. 2D NMR spectra of compound 6 in DMSO-\(d_6\).

Table S1. \(^1\)H and \(^{13}\)C NMR Data (\(\delta\) in ppm and \(J\) in 800 Hz) in CD\(_3\)OD.

Table S2. \(^1\)H and \(^{13}\)C NMR Data (\(\delta\) in ppm and \(J\) in 600 Hz) in DMSO-\(d_6\).

Table S3. \(^1\)H and \(^{13}\)C NMR Data (\(\delta\) in ppm and \(J\) in 600 Hz) in DMSO-\(d_6\).

Table S4. \(^1\)H and \(^{13}\)C NMR Data (\(\delta\) in ppm and \(J\) in 500 Hz) in DMSO-\(d_6\).

Table S5. \(^1\)H and \(^{13}\)C NMR Data (\(\delta\) in ppm and \(J\) in 600 Hz) in Acetone.

Table S6. \(^1\)H and \(^{13}\)C NMR Data (\(\delta\) in ppm and \(J\) in 600 Hz) in DMSO-\(d_6\).
Figure S1. EIMS fragmentation, key 1H-1H COSY and HMBC correlations for 1

Figure S2. EIMS fragmentation, key 1H-1H COSY and HMBC correlations for 2
Figure S3. EIMS fragmentation, key 1H-1H COSY and HMBC correlations for 3.
Figure S4. Key ^1H-^1H COSY and HMBC correlations for compounds 4-5

Figure S5. Key ^1H-^1H COSY and HMBC correlations for 6

Figure S6. ^1H NMR spectrum of compound 1 (CD$_3$OD).
Figure S7. 13C NMR and DEPT spectrum of compound 1 (CD$_3$OD).

Figure S7. 13C NMR and DEPT spectrum of compound 1 (CD$_3$OD).
Figure S8. HSQC spectrum of compound 1.

Figure S9. HMBC spectrum of compound 1.
Figure S10. 1H-1H COSY spectrum of compound 1.

Figure S11. 1H NMR spectrum of compound 2 (DMSO-d_6).
Figure S12. 13C NMR and DEPT spectrum of compound 2 (DMSO-d_6).
Figure S13. HSQC spectrum of compound 2.
Figure S14. HMBC spectrum of compound 2.

Figure S15. 1H-1H COSY spectrum of compound 2.
Figure S16. 1H NMR spectrum of compound 3 (DMSO-d_6).
Figure S17. 13C NMR and DEPT spectrum of compound 3 (DMSO-d_6).

Figure S17. 13C NMR and DEPT spectrum of compound 3 (DMSO-d_6).
Figure S18. HSQC spectrum of compound 3.

Figure S19. HMBC spectrum of compound 3.
Figure S20. 1H-1H COSY spectrum of compound 3.
Figure S21. 1H NMR spectrum of compound 4 (DMSO-d_6).
Figure S22. 13C NMR and DEPT spectrum of compound 4 (DMSO-d_6).

Figure S23. HSQC spectrum of compound 4.
Figure S24. HMBC spectrum of compound 4.
Figure S25. 1H-1H COSY spectrum of compound 4.
Figure S26. 1H NMR spectrum of compound 5 (Acetone).

![H NMR spectrum of compound 5](image)

Figure S27. 13C NMR and DEPT spectrum of compound 5 (Acetone).

![C NMR and DEPT spectrum of compound 5](image)
Figure S28. HSQC spectrum of compound 5.
Figure S29. HMBC spectrum of compound 5.
Figure S30. 1H-1H COSY spectrum of compound 5.

Figure S31. 1H NMR spectrum of compound 6 (DMSO-d_6).
Figure S32. 13C NMR and DEPT spectrum of compound 6 (DMSO-d_6).
Figure S33. HSQC spectrum of compound 6.
Figure S34. HMBC spectrum of compound 6.

Figure S35. 1H-1H COSY spectrum of compound 6.
Table S1. 1H and 13C NMR Data (δ) of Compound 1 (δ in ppm and J in 800 Hz)

Position	δ(C)	δ(H)	
1	176.0		
2	34.8	2.31 (t, 7.44)	
3	26.0	1.60 (m)	
4	30.1	1.32 (m)	
5	25.5	1.60 (m)	
6	41.0	2.59 (t, 7.36)	
7	203.9		
8	128.8	6.12 (d, 15.6)	
9	145.3	7.23 (dd, 15.6, 9.68)	
10	147.4	6.27 (ddd, 21.44, 15.2, 6.4)	
----	-----	-------	----------
11	130.3	6.27 (ddd, 21.44, 15.2, 6.4)	
12	34.1	2.20 (dd, 14, 7.12)	
13	29.6	1.46 (m)	
14	30.0	1.32 (m)	
15	23.5	1.32 (m)	
16	32.6	1.32 (m)	
17	14.3	0.91 (t, 6.96)	
OCH₃	52.0	3.64 (s)	
Table S2. 1H and 13C NMR Data (δ) of Compound 2 (δ in ppm and J in 600 Hz)

Position	δ(C)	δ(H)
1	171.62	
2	35.45	2.05 (t, 7.74)
3	23.27	2.19 (dd, 7.2, 14.46)
4	128.53	5.27 (m)
5	130.28	5.31 (m)
6	26.60	1.97 (dd, 6.9, 13.92)
7	28.81	1.26 (m)
8	30.92	1.23 (m)
9	22.03	1.24 (m)
10	13.99	0.84 (t, 6.84)
1'	35.77	3.06 (m)
2'	38.83	1.40 (m)
3'	63.81	3.58 (m)
4'	23.63	1.02 (d, 6.18)
Table S3. 1H and 13C NMR Data (δ) of Compound 3 (δ in ppm and J in 600 Hz)

Position	δ(C)	δ(H)
1	172.24	
2	35.46	2.01 (t, 7.38)
3	25.37	1.45 (m)
4	28.47	1.21 (m)
5	28.64	1.21 (m)
---	-----	---------
6	31.23	1.21 (m)
7	22.10	1.23 (m)
8	14.00	0.84 (t, 6.84)
1'	35.71	3.06 (m)
2'	38.86	1.40 (m)
3'	63.82	3.57 (m)
4'	23.63	1.02 (d, 6.18)
Table S4. 1H and 13C NMR Data (δ) of Compound 4 (δ in ppm and J in 500 Hz)

Position	δ(C)	δ(H)
1		
2	131.45	
3	123.94	6.94 (d, 3.95)
4	109.54	6.17 (d, 3.95)
5	143.44	
1’	42.33	4.29 (m)
2’	40.35	1.66 (m)
3’	63.65	3.55 (m)
4’	23.66	1.04 (d, 6.2)
1”	54.69	4.50 (dd, 13.7, 19.6)
2-CHO	178.92	9.43 (s)

Table S5. 1H and 13C NMR Data (δ) of Compound 5 (δ in ppm and J in 600 Hz)
Position	δ(C)	δ(H)
1		
2	132.34	
3	125.14	6.98 (d, 3.9)
4	110.02	6.20 (dd, 2.34, 3.78)
5	132.61	7.19 (brs)
1’	46.40	4.42 (m)
2’	41.46	1.84 (m), 1.73 (m)
3’	64.62	3.62 (m)
4’	24.03	1.12 (d, 6.12)
2-CHO	179.71	9.53 (s)

Table S6. 1H and 13C NMR Data (δ) of Compound 6 (δ in ppm and J in 600 Hz)

Position	δ(C)	δ(H)
1	35.25	2.72 (t, 7.5)
2	39.78	3.30 (m)
3		
Layer	Depth (m)	Tilt Angle (°)
-------	-----------	----------------
4	172.32	
5	72.95	3.87 (s)
6	73.54	3.67 (m)
7	62.04	3.39 (m)
1'	139.50	
2',6'	128.66	7.29 (t, 7.68)
3',5'	128.42	7.21 (m)
4'	126.16	7.21 (m)