Сверхпроводимость в урановых ферромагнетиках

В.П. Мииенев

Представлены теоретическое описание и обзор физических свойств ферромагнитных сверхпроводников соединений урана. На основе микроскопической теории показано, что в этих ферромагнитных металлах межэлектронное притяжение, вызванное магнитной поляризацией, приводит к формированию сверхпроводимого состояния с трipлетным спариванием, и установлен вид параметра порядка, соответствующий требованием симметрии. Теория позволяет объяснить ряд наблюдаемых свойств, включая своеобразное явление вакуумной сверхпроводимости в URhGe в магнитном поле, перпендикулярном направлению спонтанной намагниченности. Обсуждаются также ряд отдельных тем, относящихся к физике урановых сверхпроводящих ферромагнетиков: 1) магнитная релаксация в ферромагнетиках с локализованными и коллективизированными электронами; 2) фазовый переход в ферромагнитное состояние в ферма-жидкости и UGe₂; 3) сверхпроводящее упорядочение в ферромагнитных металлах без центра инверсии.

Ключевые слова: ферромагнетизм, сверхпроводимость

PACS numbers: 74.20.Mn, 74.20.Rp, 74.25.Dw, 74.70.Tx, 75.40.Gb

DOI: https://doi.org/10.3367/UFNr.2016.04.037771

Содержание

1. Введение (129).
2. Параметры порядка, симметрия состояний, энергетический спектр квазичастиц (131).
 2.1. Симметрия сверхпроводящих состояний в орторомбических ферромагнетиках. 2.2. Сверхпроводящие состояния в UCoGe. 2.3. Энергетический спектр квазичастиц в ферромагнитных сверхпроводниках с трipлетным спариванием.
3. Сверхпроводящие состояния в микроскопической теории со слаботным взаимодействием (134).
 3.1. Триплетное спаривание через обмен спиновыми флуктуациями. 3.2. Магнитная восприимчивость в орторомбических ферромагнетиках. 3.3. Амплитуды спаривания. 3.4. Критическая температура фазового перехода в сверхпроводящее параметрическое состояние в UCoGe. 3.5. Фазовый переход в UCoGe из параметрического состояния в ферромагнитное сверхпроводящее состояние. 3.6. Сверхпроводящие состояния в орторомбических ферромагнетиках. 3.7. Сверхпроводящие состояния при пар электронов с равными спинами. 3.8. Сверхпроводящие состояния вблизи критической температуры.
4. Физические свойства (140).
 4.1. Критическая температура. 4.2. Верхнее критическое поле, параллельное оси c в UCoGe. 4.3. Верхнее критическое поле в URhGe. 4.4. Нули в спектре и теплоёмкость при низких температурах.
5. Вакуумная сверхпроводимость в URhGe (143).
 5.1. Фазовый переход в орторомбическом ферромагнетике в магнитном поле, перпендикулярном направлению спонтанной намагниченности. 5.2. Восприимчивость. 5.3. Сверхпроводящее состояние в окрестности перехода первого рода. 5.4. Заключительные замечания.
6. Критическая магнитная релаксация в ферромагнитных соединениях урана (148).
 6.1. Критическая магнитная релаксация в ферромагнетиках. 6.2. Магнитная релаксация в ферромагнитных соединениях урана. 6.3. Заключительные замечания.
7. Антимагнитная магнитная релаксация и верхнего критического поля в UCoGe (150).
 7.1. Антимагнитная магнитная релаксация. 7.2. Антимагнитная верхнего критического поля.
8. Переход первого рода в ферромагнитное состояние в UGe₂ (152).
 8.1. Переход в ферромагнитное состояние в теории ферми-жидкости. 8.2. Магнитоупругий механизм развития неустойчивости первого рода. 8.3. Теплоёмкость вблизи температуры Кюри. 8.4. Нестабильность перехода второго рода. 8.5. Заключительные замечания.
9. Сверхпроводящее упорядочение в Ulr (156).
10. Заключение (157).

Список литературы (157).

В.П. Мииенев.
Commissariat a l’Energie Atomique, Université Grenoble Alpes, Institut Nanosciences et Cryogénie – FELIQS, 38000 Grenoble, France; Институт теоретической физики им. Л.Д. Ландау РАН, ул. Косыгина 2, 119334 Москва, Российская Федерация
E-mail: vladimir.mineev@cea.fr

Статья поступила 16 марта 2016 г., после доработки 5 апреля 2016 г.

1 УФН, т. 187, № 2 © В.П. Мииенев 2017
направленные спины электронов в куперовских пáрах, разрушает сверхпроводимость. Тем не менее сингулярная сверхпроводимость может сосуществовать с ферромагнетизмом, если критическая температура перехода в сверхпроводящее состояние превосходит температуру Кюри, как это имеет место в так называемых тройных соединениях, активно изучавшихся в 1980-х годах. Ферромагнетизм в этом случае возникает в виде фазы Андерсона – Сула, или криптоферромагнитного состояния [1, 2], характеризующегося периодической доменоподобной магнитной структурой. Её период, или размер доменов, A, велико по сравнению с межатомным расстоянием, но мал по сравнению с длиной когерентности сверхпроводника ξ0, что ослабляет расширяющее влияние обменного поля, вызывая его эффективное усреднение.

Сосуществование сверхпроводимости и ферромагнетизма, обнаруженное недавно [3–6] в нескольких соединениях урана: UGe2, URhGe, UCoGe, UIr, характеризуется совершенно иными свойствами. В первых двух из этих соединений температура Кюри TC более чем на порядок превосходит их температуру перехода в сверхпроводящее состояние TSC (рис. 1а, б). В UCoGe отношение TC/TSC ≈ 4 (рис. 1в). Этот факт, а также то, что в первых трёх соединениях верхнее критическое поле при низких температурах значительно превосходит параметр предельный (см. обзоры [7–9]), означает, что здесь мы имеем дело с куперовским спариванием в триплетном состоянии. В UIr верхнее критическое поле меньше параметра предельного [6]. Причина этого состоит, скорее всего, в низком качестве образца, так как известно, что примеси и несовершенства кристаллической упаковки в необычных сверхпроводниках вызывают сильное подавление верхнего критического поля.

Ферромагнетизм не подавляет сверхпроводимости с триплетным спариванием, следовательно, нет причин для возникновения криптоферромагнитного состояния. Действительно, никаких следов пространственной модуляции направлений магнитных моментов на макштабах, меньших длины когерентности, не было обнаружено [4, 10–12]. С другой стороны, измерения деполяризации пучка нейтронов на UGe2 при температурах вплоть до 4,2 К, т.е. в ферромагнитной, но не в сверхпроводящей области, установили, что магнитные моменты строго упорядочены в направлении оси a орторомбического кристалла с тчинным размером доменов в bc-плоскости около 4,4 × 10–4 см [13], что примерно на два порядка превышает наибольшую длину когерентности в b-направлении ξ0 ≈ 7 × 10–4 см. О доменах таких же размеров в UCoGe недавно сообщалось в работе [14].

Таким образом, вполне естественно рассматривать данные ферромагнитные сверхпроводники как сверхпроводники с триплетным спариванием, похожие на сверхтекучие фазы He3. Следует, однако, иметь в виду, что здесь мы имеем дело не с жидким гелям, представляющим собой изотропную нейтральную ферми-жидкость, а со сверхпроводящими состояниями в сильнолокализованных ферромагнитных металлах. UGe2, URhGe, UCoGe имеют орторомбическую структуру с магнитным моментом, ориентированным вдоль оси c в первом из этих соединений и вдоль оси b в двух других (рис. 2). UIr имеет монооклинную структуру, типа структуры PbBi, без центра инверсии [15] с магнитным моментом, ориентированным вдоль направления [101].

Магнитные моменты в UGe2 [16], URhGe [17] и UCoGe [18] в основном сосредоточены в окрестности ионов урана. При T = 0 они соответственно равны 1,4μB, 0,4μB и 0,07μB. Хотя эти величины существенно меньше соответствующих магнитных моментов, приходящихся на атом урана, 2,8μB, 1,8μB, 1,5μB, найденных из восприимчивости при температурах T > TC, этого ещё не-
достаточно для того, чтобы считать ферромагнетизм в данных соединениях полностью обусловленным коллективизированными электронами. Вклад в намагниченность дают как локализованные, так и делиокализованные (коллективизированные) электроны. Наиболее локализованный ферромагнетик — UGe$_2$ [16, 19], наименее — UCoGe [20, 21].

Взаимодействие между электронами проводимости через спиновые волны в системе локализованных моментов служит естественным механизмом куперовского спаривания в соединениях урана. Модели такого рода применялись к описанию сверхпроводящего антиферромагнетика UPd$_2$Al$_3$ [22], а также явления возвратной сверхпроводимости в ферромагнетике URhGe [23].

Общий вид параметров порядка сверхпроводящих состояний в орторомбических ферромагнетиках, диктуемый симметрией, был найден в работах [24–26]. Затем было разработано соответствующее микроскопическое описание триплетной сверхпроводимости в ферромагнитных металлах с межэлектронным взаимодействием посредством обмена флуктуациями намагниченности и со спектром, характерным для ферромагнетика с орторомбической симметрией [27, 28]. Этот подход позволил объяснить связь между зависимостями от давления температуры Кюри и температуры фазового перехода в сверхпроводящее состояние и найти зависимость спаривающего взаимодействия от магнитного поля и его направления. Последнее в свою очередь позволяет объяснить специфическое явление восстановления сверхпроводимости в URhGe в сильно магнитном поле, направленном вдоль оси b [29].

Настоящий обзор посвящён теории и физическим свойствам урановых сверхпроводников. Начал с описания симметрии сверхпроводящих состояний, справедливого для любого многоэлектронного ферромагнетика с орторомбической симметрией, мы перейдём к простейшему случаю двуэлектронного ферромагнитного металла. Выявлены общий вид параметров порядка и спектр квазичастичных возбуждений в таких сверхпроводниках. Рассмотрен механизм межэлектронного взаимодействия посредством возникновения магнитной поляризации, индуцированной магнитным моментом электрона в ферромагнетике с орторомбической симметрией. Микроскопическая теория воспроизводит вид параметров порядка, найденный из соображений симметрии. Все сделанные допущения указаны явно. Дана описание низкотемпературного поведения теплоёмкости, верхнего критического поля и других физических свойств урановых ферромагнитных сверхпроводников.

Специальное внимание уделено явлению возвратной сверхпроводимости в URhGe [30]. В рамках теории фазовых переходов Ландау показано, что магнитное поле, перпендикулярное направлению "лёгкой оси" намагниченности, уменьшает температуру Кюри и в достаточном сильном поле фазовый переход в ферромагнитное состояние становится переходом первого рода. Сильное возрастание спаривающего взаимодействия в окрестности перехода стимулирует восстановление сверхпроводящего состояния, подавленного обычным орбитальным механизмом.

В обозре показано, что магнитное поле, направленное параллельно спиновой намагниченности, подавляет продольные флуктуации намагниченности. Это позволяет объяснить характерные для UCoGe явления зависимости скорости релаксации ядерного магнитного резонанса (ЯМР) от направления магнитного поля [31] и чрезвычайно резкую аннотацию на верхних критических температурах [9, 32].

Обсуждается также ряд специальных тем, имеющих отношение к физике урановых сверхпроводников:

1) затухание критических флуктуаций в ферромагнетиках с двойственной локально-коллективизированной природой магнетизма [33, 34];
2) фазовый переход в ферромагнитное состояние в ферми-жидкости и UGe$_2$ [35];
3) сверхпроводящее упорядочение в ферромагнитных металлах без центра инверсии на примере Ulr.

2. Параметры порядка, симметрия состояний, энергетический спектр квазичастиц

2.1. Симметрия сверхпроводящих состояний в орторомбических ферромагнетиках

Мы будем рассматривать двухэлектронный ферромагнитный металл с электронным спектром

$$e_{\uparrow}(k) = \xi_{\uparrow}(k) + \mu, \quad e_{\downarrow}(k) = \xi_{\downarrow}(k) + \mu$$ (1)

для двух зон с электронами со спином вверх и вниз соответственно (рис. 3) и с энергиами ξ_{\uparrow}, ξ_{\downarrow}, отнесёнными от нуля. Химического потенциала μ.

Возникающие в ферромагнитном металле сверхпроводящие состояния с триплетным спариванием, состоящие из пар электронов со спином вверх, спином вниз и нулевым спином, описываются матричным параметром порядка [36]

$$A_{\sigma}(k, r) = \left(\begin{array}{c} A_{\uparrow}(k, r) \\ \Delta_{\downarrow}(k, r) \end{array} \right)$$

$$= A_{\uparrow}(k, r) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \Delta_{\downarrow}(k, r) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \Delta_{\downarrow}(k, r) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$= (d(k, r) \sigma)i \sigma = \left(\begin{array}{c} -d_{\uparrow}(k, r) + id_{\downarrow}(k, r) \\ d_{\downarrow}(k, r) \\ d_{\downarrow}(k, r) + id_{\downarrow}(k, r) \end{array} \right).$$

(2)

где $A_{\uparrow}(k, r)$, $A_{\downarrow}(k, r)$, $\Delta_{\downarrow}(k, r)$ — амплитуды спаривания со спином вверх, спином вниз и с нулевой проекцией спина, $\sigma = \{1, 2, 3\}$ — матрицы Паули. Параметр порядка может быть также выражен как комплексный
вектор

\[d(k, r) = \frac{1}{2} \left[-A^1(k, r) (\hat{x} + i \hat{y}) + A^1(k, r) (\hat{x} - i \hat{y}) \right] + A^0(k, r) z. \]

Здесь и всюду далее \(\hat{x}, \hat{y}, \hat{z} \) — единичные векторы вдоль соответствующих осей координат.

Мы рассматриваем ортогональный ферромагнитный кристалл с сильным спин-орбитальным взаимодействием, фиксирующим направление спиновой намагниченности вдоль одной из осей. Симметрия второго порядка, которую мы называем осью \(z \). Точечная, или чёрно-белая, группа симметрии такого кристалла состоит из вращений на угол \(\pi \) вокруг оси \(z \) и вращений на угол \(\pi \) вокруг осей \(x \) и \(y \), скомбинированных с операцией обращения времени \(R \), меняющей направление спиновой намагниченности на противоположное:

\[D_2(C_2) = \{ E, C_2, RC_2, RC_2 \}. \]

Предполагая, что переход в сверхпроводящее состояние не сопровождается нарушением трансляционной симметрии, мы не рассматриваем полную пространственную группу симметрии нормального состояния. Группа симметрии нормального состояния включает в себя, помимо операции точечной симметрии, группу калировочных преобразований \(U(1) \):

\[G_{FM} = U(1) \times D_2(C_2) = U(1) \times \{ E, C_2, RC_2, RC_2 \}. \]

Сверхпроводящее состояние с различными критическими температурами описываются базисными функциями различных непрерывных корреляций группы симметрии нормального состояния. У группы \(G_{FM} \) имеется только два различных корреляции: \(A \) и \(B \) [24, 26]. Векторные параметры порядка

\[d_A(k, r), \quad d_B(k, r) \]

соответствующих состояний определяются амплитудами

\[A_A(k, r) = \hat{z} \eta^2_A(r) + i \hat{z} \xi^2_A(r), \]
\[A_B(k, r) = \hat{z} \xi^2_A(r) + i \hat{z} \eta^2_A(r), \]
\[A^A_0(k, r) = \hat{z} \eta^2_A(r), \]
\[A^B_0(k, r) = \hat{z} \xi^2_A(r). \]

Здесь и всюду ниже \(\hat{z}, \hat{z}, \hat{z} \) — компоненты единичного вектора импульса \(k = k/|k| \). Для состояния \(A \) пара скалярных комплексных амплитуд для спаривания со спином вверх имеет общую fazu: \(\langle \eta^2_A, \xi^2_A \rangle = \langle |\eta^2_A|, |\xi^2_A| \rangle \times \exp(i\varphi_1) \). Соответствующая пара амплитуд со спином вниз также имеет общую fazu: \(\langle \eta^2_A, \xi^2_A \rangle = \langle |\eta^2_A|, |\xi^2_A| \rangle \times \exp(i\varphi_1) \). Амплитуда спаривания с нулевым спином \(\eta^0_A = \exp(i\varphi_1) \). Мы предполагаем, что три фазы, \(\varphi_1, \varphi_2, \varphi_0 \) совпадают между собой, \(\varphi_0 = \varphi_1 = \varphi_2 = \varphi \), либо различаются на \(\pm \pi \). То же свойство имеет место для амплитуд параметра порядка со спином вверх, спином вниз и нулевым спином состояния \(B \).

Можно проверить, что параметр порядка \(d_A(k, r) \) инвариантен относительно всех преобразований группы \(G_A \), изоморфной чёрно-белой группе симметрии нормального состояния \(D_2(C_2) \), но содержащей элементы, включающие в себя произведения инверсии времени и калировочных преобразований,

\[G_A = \{ E, C_2, \exp(2i\varphi)RC_2, \exp(2i\varphi)RC_2 \} \]

Например, элемент \(RC_2 \), включающий в себя преобразования \(y \rightarrow -y, z \rightarrow -z, k_\perp \rightarrow -k_\perp, k_\| \rightarrow -k_\| \), и комплексное сопряжение преобразует параметр порядка в самом себе с точностью до фазового множителя \(\exp(-2i\varphi) \), так что

\[\exp(2i\varphi)RC_2 d_A(k, r) = d_A(k, r). \]

Параметр порядка \(d_B(k, r) \) инвариантен ко всем преобразованиям группы

\[G_B = D_2(E) = \{ E, C_2, \exp(i\pi), \exp(2i\varphi)RC_2, \exp(i\pi), \exp(2i\varphi)RC_2 \}, \]

содержащей комбинированные элементы обращения времени (комплексного сопряжения) и умножения на фазовые множители (калировочные преобразования).

Важно отметить, что пятикомпонентный, \(\eta_A, \eta_2, \xi_A, \xi_2, \xi_0 \), параметр порядка \(A \)-состояния и четырёхкомпонентный, \(\xi_A, \xi_2, \xi_0, \xi_0 \), параметр порядка \(A \)-состояния и четырёхкомпонентный, \(\xi_A, \xi_2, \xi_0, \xi_0 \), параметр порядка \(A \)-состояния и четырёхкомпонентный, \(\xi_A, \xi_2, \xi_0, \xi_0 \), параметр порядка состояния \(B \), найденные из чисто симметричных соображений, включают в себя комбинации параметра порядка, соответствующие спариванию с нулевой проекцией спина. Таким образом, эти состояния не относятся к классу состояний, образованных только параметрами электронов с равными спинами. Этот факт будет объяснён позднее на основе микромеханики.

Уравнения (6) и (7) задают простейший вид параметров порядка, удовлетворяющих требованиям симметрии. В общем случае могут возникать определённые усложнения.

1. Каждый член в уравнениях (6) и (7) может содержать множители, зависящие от \(k_A, k_A, k_A, k_A \), инвариантные относительно всех вращений ортогональной группы [24].

2. Уравнения (6) и (7) записаны для ферромагнетика с двумя зонами проводимости: зоны с электронами со спином вверх и зоны с электронами со спином вниз. Для многофазного ферромагнетика каждая из амплитуд па-
раметра порядка со спином вверх или со спином вниз должна состоять из нескольких членов, относящихся к разным зонам.

3. В случае необходимости могут быть приняты во внимание высшие гармоники (более высокие степени $k_1^2 k_2^3 k_3^4$) той же симметрии, что и линейные по компонентам k члены в уравнениях (6) и (7) [24].

2.2. Сверхпроводящие состояния в UCoGe

В отличие от фазовых диаграмм для URhGe и UGe$_2$, в которых сверхпроводимость возникает только в ферромагнитном состоянии, фазовая диаграмма UCoGe, изображённая на рис. 1, включает области и парамагнитного (SC)1, и ферромагнитного (FM + SC) сверхпроводящих состояний, разделённые линиями фазовых переходов второго рода. Симметрия состояний, изображённых на рис. 1в, подчинена правилу суббордации теории фазовых переходов второго рода [37]. Именно, группа симметрии ферромагнитного сверхпроводящего состояния A

$$ G_{FM, SC} = \{E, C_2^X, \exp (2i\varphi) R C_2^Y, \exp (2i\varphi) R C_2^X \} $$

является подгруппой группы симметрии ферромагнитного состояния

$$ G_{FM} = U(1) \times D_2(C_2^X) = U(1) \times \{E, C_2^X, R C_2^Y, R C_2^X \} $$

а также подгруппой парамагнитного сверхпроводящего состояния

$$ G_{SC} = \{E, C_2^X, C_2^Y, C_2^Z \} + \exp (2i\varphi) R \times \{E, C_2^X, C_2^Y, C_2^Z \} $$

В свою очередь обе эти группы должны быть подгруппами группы симметрии ферромагнитного нормального состояния

$$ G_{N} = U(1) \times \{E, C_2^X, C_2^Y, C_2^Z \} + R \times \{E, C_2^X, C_2^Y, C_2^Z \} $$

Параметр порядка парамагнитного сверхпроводящего состояния напоминает параметр порядка сверхтекучей фазы He3–B [36]

$$ d(k, r) = \hat{k} \cdot \tilde{n}_1(r) \hat{x} + \hat{k} \cdot \tilde{n}_2(r) \hat{y} + \hat{k} \cdot \tilde{n}_0(r) \hat{z} $$

(14)

При фазовом переходе в сверхпроводящее ферромагнитное состояние появляется обменное поле, снимающее крамерсовское вырождение между электронными состояниями со спинами вверх и вниз, и параметр порядка (14) преобразуется в параметр порядка ферромагнитного состояния A-вилда (6):

$$ \begin{align*}
\hat{k} \cdot \tilde{n}_1 \cdot \hat{x} + \hat{k} \cdot \tilde{n}_2 \cdot \hat{y} + \hat{k} \cdot \tilde{n}_0 \cdot \hat{z} = \\
= \frac{1}{2} (\hat{k} \cdot \tilde{n}_1 \cdot \hat{x} \cdot i \hat{y} + \hat{k} \cdot \tilde{n}_2 \cdot \hat{y} \cdot i \hat{x}) + \hat{k} \cdot \tilde{n}_0 \cdot \hat{z} = \\
= \frac{1}{2} (- A(k) \cdot \hat{x} \cdot i \hat{y} + A(k) \cdot \hat{y} \cdot i \hat{x}) + A(k) \cdot \hat{z} \Rightarrow \\
\Rightarrow \frac{1}{2} (\hat{k} \cdot \tilde{n}_1 \cdot \hat{x} \cdot i \hat{y} + \hat{k} \cdot \tilde{n}_2 \cdot \hat{x} \cdot i \hat{y}) + \\
+ \frac{1}{2} (\hat{k} \cdot \tilde{n}_1 \cdot \hat{y} \cdot i \hat{x} + \hat{k} \cdot \tilde{n}_2 \cdot \hat{y} \cdot i \hat{x}) + \hat{k} \cdot \tilde{n}_0 \cdot \hat{z}.
\end{align*} $$

(15)

Аналогичное рассмотрение симметрии фаз и изменение параметра порядка можно провести для перехода из парамагнитного сверхпроводящего состояния в ферромагнитное сверхпроводящее состояние B.

Фазовый переход из сверхпроводящего парамагнитного состояния в сверхпроводящее ферромагнитное в UCoGe экспериментально не наблюдался.

2.3. Энергетический спектр квазичастиц в ферромагнитных сверхпроводниках с триплетным спариванием

Мы рассматриваем двухэлектронный ферромагнитный металл со спектром $\xi_\uparrow(k), \xi_\downarrow(k)$ для зон с электронами со спинами вверх и вниз.

В любом ферромагнетике всегда присутствует внутреннее магнитное поле H_{int}, действующее на заряды электронов. Внутреннее поле во всех урановых ферромагнитных сверхпроводниках превосходит нижнее критическое поле H_c (см., например, работу [14]). Поэтому мейснеровское состояние отсутствует и сверхпроводник находится в абрикосовском спешенном состоянии с пространственно неоднородным распределением параметра порядка и внутреннего магнитного поля. В этом случае нахождение спектра элементарных возбуждений требует самосогласованного решения систем дифференциальных уравнений Горькова и Максвелла. Определённые упрощения возможны при низкой температуре, когда $H_{int} \ll H_c$ и можно работать в лондоновском приближении, полагая, что в межвихревом пространстве внутреннее магнитное поле $H_{int}(r) = \text{rot} A(r)$ является медленно изменяющейся функцией координат, а параметр порядка принимает постоянное значение. В этом случае благодаря ненулевой скорости сверхтекучей компоненты

$$ v_s(r) = \frac{\hbar}{2m} \left(\nabla \varphi + \frac{2e}{\hbar c} A(r) \right) $$

импульсы электронов (дырок) приобретают дольпераевский сдвиг: $k = \pm n v_s \cdot \hat{r}$.

Уравнения Горькова имеют вид

$$
\begin{align*}
\frac{\partial}{\partial t} \rho_{\uparrow} &- \frac{1}{2} \left(\xi_{\uparrow}^2 + \xi_{\downarrow}^2 \right) \rho_{\uparrow} - \frac{1}{2} \left(\xi_{\uparrow}^2 - \xi_{\downarrow}^2 \right) \rho_{\downarrow} \\
&= - i (d \sigma_+ \rho_{\uparrow} - \nabla \varphi) \xi_{\uparrow}^2 \\
&= \frac{1}{2} \nabla \varphi \left(\frac{\partial}{\partial t} \rho_{\downarrow} - \frac{1}{2} \left(\xi_{\uparrow}^2 + \xi_{\downarrow}^2 \right) \rho_{\uparrow} - \frac{1}{2} \left(\xi_{\uparrow}^2 - \xi_{\downarrow}^2 \right) \rho_{\downarrow} \right) \\
&= \left[\frac{1}{2} \nabla \varphi \left(\frac{\partial}{\partial t} \rho_{\downarrow} - \frac{1}{2} \left(\xi_{\uparrow}^2 + \xi_{\downarrow}^2 \right) \rho_{\uparrow} - \frac{1}{2} \left(\xi_{\uparrow}^2 - \xi_{\downarrow}^2 \right) \rho_{\downarrow} \right) \right]
\end{align*}
$$

(16)

где

$$
\xi_{\uparrow, \downarrow}(k) = \xi_{\uparrow, \downarrow}(k \pm n v_s) = \xi_{\uparrow, \downarrow}(k) \pm k v_s.
$$

(17)

Приравняв нулю определитель системы (16), при $\omega_n \rightarrow E$ получаем энергию элементарных возбуждений

$$
E = kv_s + \left[\frac{1}{2} \xi_{\uparrow}^2 + \xi_{\downarrow}^2 \right] + \left(dd^d \right) \pm \frac{1}{4} \left(\xi_{\uparrow}^2 - \xi_{\downarrow}^2 + 2i(d(\mathbf{d} \cdot \mathbf{d})) \right)_2^2
$$

(18)

Эта громоздкая формула существенно упрощается для спаривания частиц с равными спинами, когда $d_0 = 0$:

$$
E_1 = kv_s + \sqrt{\xi_{\uparrow}^2 + \xi_{\downarrow}^2 + d(\mathbf{d} \cdot \mathbf{d})} = kv_s + \sqrt{\xi_{\uparrow}^2 + d_1^2},
$$

(19)

$$
E_1 = kv_s + \sqrt{\xi_{\uparrow}^2 + \xi_{\downarrow}^2 - i(d(\mathbf{d} \cdot \mathbf{d}))} = kv_s + \sqrt{\xi_{\uparrow}^2 + d_1^2}.
$$

(20)

1 Хотя любое сверхпроводящее состояние диамагнитно, здесь и далее "парамагнитным сверхпроводящим состоянием" мы будем называть состояние, не обладающее спиновым магнитным моментом.
Получим теперь выписать энергию возбуждений

$$E = k_v + \sqrt{\xi^2 + d^2} \pm |i(d \times d')|$$
(21)

в неупорядочном сверхпроводящем состоянии (см. [36]), возникающем из параметрического нормального состояния, где \(\xi_1 = \xi_2 = \xi \). Во всех рассмотренных случаях краевое выражение снято.

Выясним теперь, какое спаривающее взаимодействие порождает сверхпроводящие состояния \(A \) и \(B \) в ферромагнетиках с орторомбической кристаллической структурой.

3. Сверхпроводящие состояния в микроскопической теории со слабым взаимодействием

3.1. Триплетное спаривание через обмен спиновыми флуктуациями

Естественный источник взаимодействия, приводящего к триплетному спариванию в ферромагнетике металла, — это притяжение электрона к областям поляризации, созданному магнитным моментом другого электрона. В отличие от спаривания между атомами в сверхтекучем \(\text{He}^3 \), которое происходит благодаря магнитной поляризации изотропной ферритная жидкости, спаривание электронов в ферромагнетике металла обусловлено поляризацией как электронной жидкости, так и локализованными магнитными моментами.

Рассмотрим оператор притягивающего взаимодействия

$$H_{\text{dipole}} = -\frac{1}{\hbar} \mu_B I^2 \int d^3r d^3r' \ S(r) \cdot \alpha I(r') \ S_I(r')$$
(22)

между электронами с магнитным моментом \(\mu_B \) в ферромагнетике со спиральной симметрией. Здесь \(S(r) \) — оператор спиновой плотности электронов проводимости,

$$S(r) = \psi^\dagger(r) \sigma_I \psi(r),$$

\(S_I(r') \) — магнитная восприимчивость ферромагнитной среды, \(I \) — постоянная обменного взаимодействия.

Запишем гамильтониан (22) в импульсовом представлении и, оставляя в восприимчивости только её нечётную по \(k \) и \(k' \) часть, получим после некоторых преобразований [38] гамильтониан Бардина–Купера–Шриффера (БКШ) для триплетного спаривания:

$$H_{\text{pairing}} = \frac{1}{2} \sum_{kk'} V_{\phi \phi}(k, k') \sigma_I \alpha_I(k) \sigma_I(-k) \alpha_I(-k') \ ,$$
(23)

где

$$V_{\phi \phi}(k, k') = V_{ij}(k, k')(\sigma_I \sigma_j)_{\phi \phi}(\sigma_I \sigma_j)_{\phi \phi},$$

$$V_{ij}(k, k') = -\mu_B I^2 \left(\frac{1}{2} \text{Tr} \tilde{\chi}^i(k, k') \delta_{ij} - Z_{ij}(k, k') \right)$$
(25)

выражается через нечётную часть статической магнитной восприимчивости ферромагнетика

$$\tilde{\chi}^i(k, k') = -\frac{1}{2} \delta_{ij} (k - k') - Z_{ij}(k + k').$$

Критическая температура сверхпроводящего перехода (а также верхнее критическое поле) определяется как собственное значение линейного уравнения для параметра порядка:

$$A_{\phi\phi}(k, q) = -T \sum_{k'} \sum_{\alpha} V_{\phi \phi \alpha}(k, k') G_{\phi \alpha}(k', \alpha_0) \times$$

$$\times G_{\alpha \phi}(k' + q, -\alpha_0) A_{\phi \phi}(k', q),$$

где \(A(k, q) \) — матрица параметра порядка,

$$A(k, q) = \int A(k, r) \exp(iqr) d^3r = \left(A^1(k, q) \ A^3(k, q) \right),$$

(27)

$$G_{ij}(k', \alpha_0)$$ — матричная функция Грина нормального состояния, которая при внешнем поле, равном нулю или параллельном спонтанной намагниченности, диагональна,

$$G_n = \begin{pmatrix} G^1 & 0 \\ 0 & G^1 \end{pmatrix},$$

(28)

где

$$G^1 = \frac{1}{i\omega_n - \varepsilon_k^1}.$$

(29)

Матричное уравнение (26) — это система зацепленных линейных уравнений для компонент параметра порядка:

$$A^1(k, q) = -T \sum_{k'} \sum_{\alpha} \left[V^{\phi}(k, k') G^1 \ A^1(k', q) + V^{\phi}(k, k') G^1 \ A^3(k', q) + V^{0\phi}(k, k') (G^1 G^1 + G^3 G^3) \ A^0(k', q) \right],$$

(30)

$$A^3(k, q) = -T \sum_{k'} \sum_{\alpha} \left[V^{\phi}(k, k') G^3 \ A^1(k', q) + V^{\phi}(k, k') G^3 \ A^3(k', q) + V^{0\phi}(k, k') (G^1 G^1 + G^3 G^3) \ A^0(k', q) \right],$$

(31)

$$A^0(k, q) = -T \sum_{k'} \sum_{\alpha} \left[V^{0\phi}(k, k') G^1 \ A^1(k', q) + V^{0\phi}(k, k') G^3 \ A^3(k', q) + V^{00\phi}(k, k') (G^1 G^1 + G^3 G^3) A^0(k', q) \right].$$

(32)

Здесь аргументы в произведениях функции Грина те же, что и в матричном уравнении (26). Например,

$$G^{\dagger} G^1 = G^{0\phi}(k', \alpha_0) G^{\dagger}(k' + q, -\alpha_0) \ .$$

Амплитуды спаривания, найденные из уравнения (25), имеют вид

$$V^{\phi}(k, k') = V_{xx} + V_{yy} + iV_{xy} - iV_{yx} = -\mu_B I^2 \chi_{xx}^n, $$

(33)

$$V^{\phi}(k, k') = V_{xx} + V_{yy} - iV_{xy} + iV_{yx} = -\mu_B I^2 \chi_{xy}^n,$$

(34)

$$V^{\phi}(k, k') = -V_{xx} + V_{yy} + iV_{xy} + iV_{yx} = -\mu_B I^2 \chi_{yy}^n - 2i\chi_{xy}^n,$$

(35)

$$V^{\phi}(k, k') = -V_{xx} + V_{yy} - iV_{xy} - iV_{yx} = -\mu_B I^2 \chi_{xx}^n + 2i\chi_{xy}^n,$$

(36)
Видно, что уравнение для компонента параметра порядка A^1, A^2 и A^0 не независимы друг от друга. Более того, заполнение между ними сохраняется даже в случае значительного расщепления зон с электронами со спинами вверх и вниз, что позволяет опустить члены, содержащие комбинации $G^1 G^1 + G^1 G^1$, соответствующие межзонному спариванию 2. Основная эти члены, получим

$$A^1(k, q) = -T \sum_n \sum_k \{ V^{11}(k, k') G^1 G^1 A^1(k', q) + V^{10}(k, k') G^1 G^1 A^0(k', q) \},$$

$$A^2(k, q) = -T \sum_n \sum_k \{ V^{11}(k, k') G^1 G^1 A^2(k', q) + V^{10}(k, k') G^1 G^1 A^0(k', q) \},$$

$$A^0(k, q) = -T \sum_n \sum_k \{ V^{00}(k, k') G^1 G^1 A^0(k', q) + V^{01}(k, k') G^1 G^1 A^1(k', q) \}.$$

Видно, что уравнение (42), определяющее компоненту параметра порядка A^0, соответствующую спариванию частиц с противоположными спинами, не исчезло. Согласно ему спаривание частиц с противоположными спинами "шунтирует" спаривание частиц с одинаковыми спинами. Таким образом, сверхпроводящее состояние в ферромагнитных металлах не является состоянием из спаренных частиц с равными спинами. Причина этого состоит в спин-орбитальном взаимодействии. Далее мы увидим, что спаривающие амплитуды V^{00}, V^{01} обязаны своим происхождением спин-орбитальным членам в градиентной энергии ферромагнетика. Полагая эти члены достаточно малыми, можно ограничиться рассмотрением лишь уравнений (40) и (41) для компонент параметра порядка, соответствующую спариванию с противоположными спинами. В этом случае двунаправленное сверхпроводящее состояние напоминает Λ^1-фазу сверхтекучего 1He [39]. На двунаправленный характер сверхпроводимости указывают результаты измерений теплопроводности при низких температурах в магнитном поле [40].

Оте амплитуды спаривания частиц с равными спинами, V^{11} и V^{12}, выражаются через компоненту тензора восприимчивости вдоль направления спиновой намагниченности χ_{xx}, которая значительно превосходит восприимчивость вдоль других кристаллографических направлений. С другой стороны, благодаря спин-орбитальному взаимодействию имеется антиспинная восприимчивость, $\chi_{xy} \neq \chi_{yx}$. Куперовские пары с противоположными спинами взаимодействуют между собой, и фазовый переход происходит сразу в двухомонозном состоянии A_2-типа. Даже в идеально изotronном случае в жидкости не спин-орбитальное взаимодействие приводит к заполнению между компонентами параметра порядка с противоположными спинами [41]. Однако ввиду его малости в магнитном поле происходит два последовательных фазовых перехода: сначала спариваются частицы со спином вверх, а затем, при более низкой температуре, — частицы со спином вниз [39]. Простым теперь к нахождению восприимчивости.

3.2. Магнитная восприимчивость в орторомбических ферромагнетиках

Будем искать статическую магнитную восприимчивость, следуя феноменологическому подходу теории фазовых переходов Ландау. Свободная энергия орторомбического ферромагнетика в магнитном поле $H(r)$ выражается как

$$F = \int dV (F_M + F_V),$$

где в выражениях для плотности энергии конденсации

$$F_M = 2z_2 M_2^2 + 2z_3 M_3^2 + 2z_4 M_4^2 + 2z_5 M_5^2 + 2z_6 M_6^2 + 2z_7 M_7^2 - MH$$

и плотности градиентной энергии

$$F_V = \frac{\partial M_2}{\partial x_1} \frac{\partial M_6}{\partial x_2} \frac{\partial M_6}{\partial x_3},$$

учтена орторомбическая антисимметрия. Ось z всегда выбрана вдоль направления спиновой намагниченности, так что в $URhGe$ и $UCoGe$ направления x, y, z совпадают с кристаллографическими направлениями a, b, c, а в UGE_2 — с направлениями b, c, a.

$$z_2 = z_3(1 - T_C), \quad z_4 > 0, \quad z_7 > 0,$$

где T_C — температура Кюри,

$$\gamma_{ij} = \begin{pmatrix} \gamma_{xx} & 0 & 0 \\ 0 & \gamma_{yy} & 0 \\ 0 & 0 & \gamma_{zz} \end{pmatrix}, \quad \gamma_{ij} = \begin{pmatrix} 0 & \gamma_{xy} & \gamma_{xz} \\ \gamma_{yx} & 0 & \gamma_{yz} \\ \gamma_{zx} & \gamma_{zy} & 0 \end{pmatrix}.$$

Соответствующая свободная энергия в обменном приближении имеет вид

$$F_M^{\text{exchange}} + F_V^{\text{exchange}} = 2M_2^2 + \beta M_4^2 - MH + \gamma_{ij} \frac{\partial M}{\partial x_i} \frac{\partial M}{\partial x_j}.$$

где матрица

$$\gamma_{ij} = \begin{pmatrix} \gamma_{xx} & 0 & 0 \\ 0 & \gamma_{yy} & 0 \\ 0 & 0 & \gamma_{zz} \end{pmatrix},$$

так что градиентная энергия определяется лишь тремя постоянными вместо 12 постоянных, неизбежно возни-
кающих при учёте малых релятивистских взаимодействий.
Возьмём магнитное поле в виде суммы постоянного поля вдоль направления спонтанной намагниченности и зависящей от координат малой добавки,

\[H(r) = \delta H_x(r)\hat{x} + \delta H_y(r)\hat{y} + (H_z + \delta H_z(r))\hat{z}. \] (51)

Варьируя функционал (43) по компонентам намагниченности, получим

\[2x_i M_x + 2\beta_{xy} M_y M_x + 2\beta_{xz} M_z M_x -
- 2\gamma_{ij} \frac{\partial^2 M_x}{\partial x_i \partial x_j} - \gamma_{xy} \frac{\partial^2 M_x}{\partial y \partial y} - \gamma_{xz} \frac{\partial^2 M_x}{\partial z \partial z} = \delta H_x, \]

\[2x_i M_y + 2\beta_{xy} M_x M_y + 2\beta_{xz} M_z M_y -
- 2\gamma_{ij} \frac{\partial^2 M_y}{\partial x_i \partial x_j} - \gamma_{xy} \frac{\partial^2 M_y}{\partial y \partial y} - \gamma_{xz} \frac{\partial^2 M_y}{\partial z \partial z} = \delta H_y, \]

\[2x_i M_z + 4\beta_{xy} M_y M_z + 2\beta_{xz} M_z M_z -
- 2\gamma_{ij} \frac{\partial^2 M_z}{\partial x_i \partial x_j} - \gamma_{xy} \frac{\partial^2 M_z}{\partial y \partial y} - \gamma_{xz} \frac{\partial^2 M_z}{\partial z \partial z} = \delta H_z + \delta H_x. \] (52)

Равновесные проекции намагниченности имеют вид

\[M_x = 0, \quad M_y = 0, \]

\[M_z = -\frac{x_z}{2\beta_z} + \frac{H_z}{4\beta_z}, \] (53)

(54)

Первый и последний члены в правой части (54) соответствуют спонтанной и индуцированной частям намагниченности в направлении \(z \).

Полная намагниченность является суммой равновесной части и зависящей от координат малой добавки:

\[\mathbf{M}(r) = M_x \hat{x} + \delta M_x(r) + \delta M_y(r) + \delta M_z(r), \] (55)

сура-компоненты которой \(\delta \mathbf{M}(k) \) удовлетворяют линейным уравнениям, получаемым из системы (52):

\[2(x_i + \beta_{xy} M_y + \gamma_{ij} \delta M_i(k) + \gamma_{xy} \delta M_x(k) + \gamma_{xz} \delta M_z(k)) +
+ \gamma_{xy} k_x k_i \delta M_x(k) + \gamma_{xz} k_z k_i \delta M_z(k) = \delta H_x(k), \]

\[\gamma_{ij} k_i k_j \delta M_x(k) + 2(x_i + \beta_{xy} M_y + \gamma_{ij} \delta M_i(k)) +
+ \gamma_{xy} k_x k_i \delta M_x(k) + \gamma_{xz} k_z k_i \delta M_z(k) = \delta H_y(k), \]

\[\gamma_{ij} k_i k_j \delta M_x(k) + 2(x_i + 6\beta_z M_z + \gamma_{ij} \delta M_i(k)) +
+ 2(x_i + 6\beta_z M_z + \gamma_{ij} \delta M_i(k)) = \delta H_z(k). \] (56)

Взаимодействие между компонентами намагниченности происходит из-за малых членов в градиентной энергии, определяемых релятивистскими взаимодействиями. Пренебрегая произведениями таких членов вида \(\gamma_{ij} k_i k_j \), получим решение этой системы уравнений:

\[Z_{xx} = \frac{\delta M_x}{\delta H_x} \approx \frac{1}{2(x_i + \beta_{xy} M_y + \gamma_{ij} k_i k_j)}, \] (57)

\[Z_{yy} = \frac{\delta M_y}{\delta H_y} \approx \frac{1}{2(x_i + \beta_{xy} M_y + \gamma_{ij} k_i k_j)}, \] (58)

\[Z_{zz} = \frac{\delta M_z}{\delta H_z} \approx \frac{1}{2(x_i + 6\beta_z M_z + \gamma_{ij} k_i k_j)}, \] (59)

Выражения для компонент восприимчивости, содержащие зависимости от волновых векторов вида \(k^2 \), введены при \(k \), малых по сравнению с обратными межатомными расстояниями \(\frac{1}{a} \). Соответствующие выражения, введенные с помощью подходящей микроскопической модели, будут содержать зависимости от волнового вектора комбинации тригонометрических функций вида \(\sin^2 k a / a^2 \). Эти комбинации в пределе малых \(k \) переходят в выражения \(k^2 \), полученные из феноменологической теории, а для волновых векторов порядка ферромагнитного, как и феноменологические выражения, будут иметь порядок \(k^2 \). Это означает, что на качественном уровне формулы (57) — (62) для восприимчивости можно применять и при волновых векторах \(k \approx k_F \), на которых происходит куперсовское спаривание. Ферромагнитные волновые векторы в разных точках ферм-поверхности различны, т.е. \(k_F \) — функция направлений в обратном пространстве, обладающая ортоморбической симметрией.

Нечётная часть \(z \)-компоненты восприимчивости выражается как

\[Z_{zz}(k, k') = \frac{1}{2} \left[Z_{zz}(k - k') - Z_{zz}(k + k') \right] = \]

\[= \frac{2\gamma_{ij} k_i k_j}{(x_i + 6\beta_z M_z + \gamma_{ij} k_i k_j)^2} \left[Z_{zz}(k - k') - Z_{zz}(k + k') \right]. \] (63)

Согласно уравнениям (33) и (34) парное взаимодействие определяется этой формулой. Ситуация похожа на синглетное спаривание в теории слабой связи, где фононный пропагатор в пределе нулевой частоты играет роль потенциала спаривания, индукционного электрон-фононным взаимодействием. Нас интересует спаривание в ферромагнитном состоянии, где сумма \(x_i + 6\beta_z M_z > 0 \). При температуре, равной температуре Кюри, эта комбинация обращается в нуль и выражение для \(Z_{zz}(k, k') \) расходится при совпадающих аргументах, соответствующих куперсовскому спариванию. Это неизбежное свойство любой модели со статическими взаимодействиями.

Для того чтобы избежать расходимости взаимодействия, Д. Фей и Дж. Эпвел [42] в своей теории сверхпроводимости с p-спариванием в ферромагнетике с коллективизированными электронами ввели обрезание, зависящее от расстояния до точки ферромагнитного перехода. В результате критическая температура перехода в сверхпроводящем состоянии, имеющая конечное значение как в ферромагнитном, так и в парамагнитном состояниях,
оказалась равной нулю в точке перехода между ними. Это вводит в заблуждение обстоятельство исчезает при учёте запаздывания в парном взаимодействии.

При конечной величине z_0 и β_0^2 мы можем сохранить только угловую зависимость в выражении (63), пренебрегая угловой зависимостью k_F и членов $\gamma_i(k_F^x + k_F^y)^2$ с ортогональной симметріей в знаменателе, а также всеми высшими угловыми гармониками, определяемыми последним членом в знаменателе. Вычисления без указанных упрощений оказываются значительно более громоздкими, но не приводят к качественно иным результатам. Таким образом, получаем:

$$\chi_{ax}(k, k') = \frac{\gamma_i k_F^2}{a_x} k_i' k_j', \quad \chi_{ax}(k, k') = \frac{\gamma_i k_F^2}{a_x} k_i' k_j', \quad (64)$$

где

$$z = Z_0 + 2\beta_0^2 M_z^2 + 2z \gamma k_F^2, \quad (65)$$

где $M_z -$ решение уравнения (54) и $M_{z0} = M_z(H_c = 0) = (-Z_0/2\beta_0^2)$.

При приложении внешних температурах, меньших температуры Кюри, можно использовать найденные экспериментально величины намагниченности $M_z(H_c)$ и её стационарной части $M_{z0} = M_z(H_c = 0)$, почти не зависящей от температуры.

Подобным образом находим нечётные члены x- и y-компонент взаимодействия:

$$\chi_{xy}(k, k') \approx \frac{\gamma_i k_F^2}{a_x} k_i' k_j', \quad \chi_{xy}(k, k') \approx \frac{\gamma_i k_F^2}{a_y} k_i' k_j', \quad (66)$$

где

$$\alpha = z_x + \beta_x M_z^2 + 2\gamma x k_F^2,$$

$$\beta = z_y + \beta_y M_z^2 + 2\gamma y k_F^2.$$

Недиагональные компоненты взаимодействия линейны по отношению к аннигилирующим членам, определяемым спин-орбитальным взаимодействием:

$$\chi_{ax}(k, k') \approx \frac{\gamma_i k_F^2}{a_x} (k_i' k_j' + k_i k_j'), \quad (68)$$

$$\chi_{xy}(k, k') \approx \frac{\gamma_i k_F^2}{a_x} (k_i k_j' + k_i' k_j'), \quad (69)$$

$$\chi_{ax}(k, k') \approx \frac{\gamma_i k_F^2}{a_y} (k_i' k_j' + k_i k_j'), \quad (70)$$

$$\hat{a}_x = z_x + \beta_x M_z^2, \quad \hat{a}_y = z_y + \beta_y M_z^2,$$

$$\hat{a}_z = z + 2\beta_0^2 M_z^2 + \frac{H_z}{2M_z}.$$

Здесь мы полностью пренебрегли членами четвёртого порядка по отношению к производствам компонент волнового вектора. Они имеют ту же симметрию, что и уравнения (68) -- (70), но сильно усложняют соответствующие выражения.

3.3. Амплитуды спаривания

Уравнения (33) -- (39) выражаю амплитуды спаривания через компоненты магнитной восприимчивости в ферромагнитном металле любой симметрии. Выражения для компонент восприимчивости в ортогональном кристалле найдены в разделе 3.2. Структура сверхпроводящих состояний в ортогональном кристалле определяется угловой зависимостью амплитуд спаривания:

$$V^{(1)}(k, k') = V^{(1)}(k, k') = -\mu_B^2 F_{ab}^2 \approx -\frac{\mu_b^2 k_F^2}{4[\beta_0^2 (3M_z^2 - M_{z0}^2) + \gamma k_F^2]^2} = -V_{ab} k_k' k_j', \quad (72)$$

$$V^{(1)}(k, k') = -V_{2ij} k_i' k_j', \quad (73)$$

$$V^{(1)}(k, k') = \frac{(V^{(1)}(k, k'))^*}{(74)}$$

$$V^{(0)}(k, k') = -W_{ij} k_i' k_j', \quad (75)$$

$$V^{(0)}(k, k') = \frac{(V^{(0)}(k, k'))^*}{(76)}$$

$$V^{(0)}(k, k') = \frac{(V^{(0)}(k, k'))^*}{(77)}$$

Постоянные, входящие в эти выражения, имеют вид

$$V_{ij} = \mu_B^2 F_{ij} k_F^2 \frac{\gamma_{ij}}{a_x}, \quad V = \frac{\mu_b^2 F_{ij} k_F^2}{4a_x a_y}, \quad (78)$$

$$W_{ij} = \frac{\mu_b^2 k_F^2}{4a_x a_y}, \quad W = \frac{\mu_b^2 F_{ij} k_F^2}{4a_x a_y}.$$}

Найболее важно взаимодействие между частицами с равными спинами, пропорциональной нечётной части восприимчивости вдоль направления спонтанной намагниченности χ_{xx}, зависящей от температуры и магнитного поля. Амплитуды V_{ij} и W_{ij} определяются главным образом обменным взаимодействием. Амплитуда V_{2ij} в обменном приближении равна нулю, однако она может оказаться весьма заметной величиной, соответствующей сильной ортогональной аннигиляции восприимчивости $\chi_{xx} = \chi_{yy}$. Амплитуды V_3, W_2, W_3 определяются спин-орбитальными членами в градиентной энергии ортогонального ферромагнетика, и мы будем их полагать наименьшими из амплитуд.

3.4. Критическая температура фазового перехода в сверхпроводящем парамагнитное состояние в UCoGe

Уравнения (30) -- (32) применимы и для нахождения температуры фазового перехода из нормального состояния в парамагнитное сверхпроводящее состояние, наблюдаемое в UCoGe при высоких давлениях (рис. 18). В этом случае внутреннее магнитное поле отсутствует, функции Гріна электронов со спинами вверх и вниз равны между собой, $G^1 = G^1 = G$, и параметр порядка пропорционален одноряден. Таким образом, уравнения приобретают вид

$$A(k) = -T \sum_{k'} \left[V^{(1)}(k, k') A(k') + V^{(1)}(k, k') A(1) \right] + 2 V^{(0)}(k, k') A(0) k') G(k', \omega_k) G(-k', -\omega_k), \quad (81)$$

$$A(k) = -T \sum_{k'} \left[V^{(1)}(k, k') A(k') + V^{(1)}(k, k') A(1) \right] + 2 V^{(0)}(k, k') A(0) k') G(k', \omega_k) G(-k', -\omega_k), \quad (82)$$
\[A^0(k) = -T \sum_{n} \sum_{k'} [2V^0(k, k')A^1(k') + V^0(k, k')A^1(k')] G(k', \omega_n) G(-k', -\omega_n). \]
(83)

Подстановка в эти уравнения параметра порядка параметрического состояния (см. раздел 2.2)
\[A^1 = -\hat{k}_x \eta_x + i \hat{k}_y \eta_y, \quad A^2 = \hat{k}_x \eta_x + i \hat{k}_y \eta_y, \quad A^0 = \hat{k}_z \eta_z. \]
(84)

dает пять уравнений для трёх амплитуд: \(\eta_x, \eta_y, \eta_z \). Два из этих уравнений совпадают с двумя другими, так что остается система из трёх независимых уравнений:
\[\begin{align*}
(\hat{\lambda}^2 - g_{11} + g_{22}) \eta_x + g_{21} \eta_y + 2w_2 \eta_z &= 0, \\
g_{31} \eta_x + (\hat{\lambda}^2 - g_{11} - g_{22}) \eta_y + 2w_3 \eta_z &= 0, \\
2w_2 \eta_x + 2w_3 \eta_y + (\hat{\lambda}^2 - w_1) \eta_z &= 0.
\end{align*} \]
(85)

Постоянные спаривающего взаимодействия даются выражениями
\[\begin{align*}
g_{11} &= V_{1xx}(\hat{k}^2 \eta N_0(k)), \\
g_{22} &= V_{1xx}(\hat{k}^2 \eta N_0(k)), \\
g_{33} &= V_3(\hat{k}^2 N_0(k)), \\
g_{12} &= V_{1zz}(\hat{k}^2 \eta N_0(k)), \\
g_{13} &= V_3(\hat{k}^2 \eta N_0(k)), \\
g_{23} &= V_3(\hat{k}^2 \eta N_0(k)), \\
g_{21} &= V_{1zz}(\hat{k}^2 \eta N_0(k)).
\end{align*} \]

Здесь угловые скобки означают угловое усреднение по ферми-поверхности, а \(N_0(k) \) — зависящая от направления плотность электронных состояний на поверхности Ферми. Функция
\[\lambda(T) = \frac{2\pi T}{\ln \gamma} \sum_{n < 0} \frac{1}{\omega_n} \ln \frac{\epsilon}{T}. \]
(86)

Здесь \(\epsilon = 2\gamma_0/\pi, \ln \gamma = 0.577 \) — постоянная Эйлера, \(\gamma_0 \) — энергия обрезания парного взаимодействия. Критическая температура перехода
\[T_{SC} = \epsilon \exp \left(-\frac{1}{\gamma} \right). \]

выражается через максимальное собственное значение матрицы системы линейных уравнений (85).

3.5. Фазовый переход в UCoGe из параметрического состояния в ферромагнитное сверхпроводящее состояние

Те же уравнения (81)–(83) можно применить для определения критической температуры фазового перехода, который должен отделить сверхпроводящее параметрическое состояние от ферромагнитного сверхпроводящего состояния в UCoGe (рис. 18), но который пока не обнаружен экспериментально. В этом случае в уравнениях надо использовать функцию Грина параметрического сверхпроводящего состояния
\[G(k, \omega_n) = \frac{\epsilon_{\omega_n} + \hat{\omega}_k}{\epsilon_{\omega_n} + \hat{\omega}_k^2 + \eta_{\omega_n} \frac{k^2}{2 + \eta_{\omega_n} k^2} + \eta_{\omega_n} \frac{k^2}{2 k^2} + \eta_{\omega_n} \frac{k^2}{2 k^2}}. \]
(87)

Подстановка в уравнения (81)–(83) компонент сверхпроводящего ферромагнитного состояния (см. раздел 2.2)
\[A^1 = -\hat{k}_x \eta_x + i \hat{k}_y \eta_y, \quad A^2 = \hat{k}_x \eta_x + i \hat{k}_y \eta_y, \quad A^0 = \hat{k}_z \eta_z. \]
(88)

dает пять уравнений для пяти амплитуд: \(\eta_x, \eta_y, \eta_z, \eta_x, \eta_y, \eta_z \).

Максимальное собственное значение этой системы определяет критическую температуру фазового перехода из параметрического состояния в ферромагнитное сверхпроводящее состояние.

Данный фазовый переход происходит в системе де-локализованных электронов. Математически он описывается как постепенное возникновение неравенства амплитуд спаривания электронов со спином вверх и со спином вниз, т.е. как возникновение спонтанной намагниченности чисто сверхпроводящей природы. В то же время появляется и намагниченность в подсистеме локализованных моментов. Её возникновение, индуцированное появлением спонтанной намагниченности в подсистеме сверхпроводящих электронов, можно уподобить кросс-оверу между параметрическим и ферромагнитным нормальными состояниями во внешнем поле. Ввиду слабости намагниченности можно ожидать, что непосредственно под линией перехода сверхпроводник будет находиться в мейсонерском состоянии.

Возможен и другой механизм фазового перехода между параметрическим и ферромагнитным сверхпроводящими состояниями, связанный со спонтанным упорядочением подсистемы локализованных моментов. В этом случае подсистема сверхпроводящих электронов перестраивается под влиянием появившейся намагниченности.

Теория фазового перехода из параметрического состояния в ферромагнитное сверхпроводящее должна учитывать эффект появления сверхпроводящих токов, а также зависимость намагниченности от магнитного поля, которая может стать существенной при увеличении магнитной восприимчивости при температурах, близких к \(T_C \). Удовлетворительное описание такого рода в настоящее время отсутствует.

3.6. Сверхпроводящие состояния в орторомбических ферромагнетиках

Посмотрим теперь, какие сверхпроводящие состояния возникают при фазовом переходе из нормального ферромагнитного состояния в сверхпроводящее ферромагнитное. Разлагая в ряд Тейлора уравнения (30)–(32) по степеням \(q \) до второго порядка и переходя в координатное представление посредством подстановки
\[q \to D = -iV_q + 2eA(r), \]
(89)

получим уравнения
\[A^1(k, r) = T \sum_k \left[\frac{d^3k'}{(2\pi)^3} V_{1ij} \hat{k}_i \hat{k}_j' \times \right. \]
\[\times \left(G^+ G \right)^1 \frac{1}{2} \frac{\hat{G}^+ G}{\hat{k}_i \hat{k}_j} \frac{D_i D_j}{\epsilon_{\omega_n} \epsilon_{\omega_n} \epsilon_{\omega_n} \epsilon_{\omega_n}} \left. \right] A^1(k', r) + \]
\[+ T \sum_k \left[\frac{d^3k'}{(2\pi)^3} \left(V_{2ij} \hat{k}_i \hat{k}_j' - iV_3(\hat{k}_i \hat{k}_j' + \hat{k}_j \hat{k}_i') \right) \right] \times \]

3 См., однако, работу [109], появившуюся во время подготовки настоящего обзора к печати.
Принимая во внимание зависимость парного взаимодействия (90)–(92) от компонент волнового вектора, можно взять параметр порядка сверхпроводника в виде линейных комбинаций

\[A^1(k, r) = \tilde{k}_e \eta^1_x(r) + i \tilde{k}_e \eta^1_y(r) + \tilde{k}_s \xi^1_x(r), \]
\[A^1(k, r) = \tilde{k}_e \eta^1_x(r) + i \tilde{k}_e \eta^1_y(r) + \tilde{k}_s \xi^1_x(r), \]
\[A^0(k, r) = \tilde{k}_e \xi^0_x(r) + i \tilde{k}_e \xi^0_y(r) + \tilde{k}_s \eta^0_x(r). \]

При этом выражений в уравнении (90)–(92) приводит к двум независимым системам линейных дифференциальных уравнений:

\[\eta_x(r) = A_{xy} \eta_y(r), \]
\[\zeta_x(r) = B_{xy} \zeta_y(r), \]

для компонент векторов

\[\eta_x(r) = (\eta^1_x(r), \eta^1_y(r), \eta^2_x(r), \eta^2_y(r)), \]
\[\zeta_x(r) = (\xi^1_x(r), \xi^1_y(r), \xi^2_x(r), \xi^2_y(r)). \]

соответствующим двум разным сверхпроводящим состояниям с разной критической температурой, относящимся к копредставлениям A и B. Тем самым полученные макроскопические уравнения подтверждают выводы, сделанные в разделе 2 из частных симметрий соображений.

3.7. Сверхпроводящие состояния

Если упростить задачу и будем работать с уравнениями (40) и (41), соответствующими сверхпроводящим состояниям из пар электронов с равными спинами. В этом случае состояние A описывается четырёхкомпонентным параметром порядка,

\[A^1(k, r) = \tilde{k}_e \eta^1_x(r) + i \tilde{k}_e \eta^1_y(r), \]
\[A^1(k, r) = \tilde{k}_e \eta^1_x(r) + i \tilde{k}_e \eta^1_y(r), \]

а состояние B — двухкомпонентным параметром порядка,

\[A^1(k, r) = \tilde{k}_s \xi^1_x(r), \]
\[A^1(k, r) = \tilde{k}_s \xi^1_x(r). \]

Уравнения (94) для нахождения критических температур фазовых переходов в эти состояния задаются матрицами

\[A_{xy} = \begin{pmatrix} g_{1x} + L_{1x} & g_{1y} + L_{1y} & u_{1x} & -g_{1x} + i u_{2x} - L_{1x} \\ g_{2x} + L_{2x} & g_{2y} + L_{2y} & u_{1y} & u_{1x} \\ -g_{1x} + i u_{2x} - L_{1y} & -u_{1y} & g_{1x} + L_{1x} & g_{1y} + L_{1y} \\ u_{1x} & -u_{1y} & g_{1x} + L_{1x} & g_{1y} + L_{1y} \end{pmatrix}, \]

\[B_{xy} = \begin{pmatrix} g_{1x} + L_{1x} & g_{1y} + L_{1y} \\ g_{2x} + L_{2x} & g_{2y} + L_{2y} \end{pmatrix}. \]

Здесь \(g_{1x} \) — одна из постоянных спаривающего взаимодействия,

\[g_{1x} = V_{1x} \langle \tilde{k}_e^2 N^0_x(k) \rangle = \frac{\mu_B^2 l^2 k_e^2 \tilde{k}_s^2}{4 |\beta| (3M^2_{e} - M^2_{s}) + \gamma^2 k_e^2}. \]
Угловые скобки означают усреднение по ферми-поверхности, \(N_0(\mathbf{k}) \) — зависимая от направлений плотность электронных состояний на ферми-поверхности зоны [1]. Соответственно,

\[
g_{2x} = V_{2x}\langle \hat{k}_x^z N_0^z(\mathbf{k}) \rangle, \quad g_{3x} = V_3\langle \hat{k}_x^z N_0^z(\mathbf{k}) \rangle.
\]
(104)

Все остальные постоянные спаривающего взаимодействия получаются очевидными подстановками \(x \rightarrow y \) и \(1 \rightarrow 2 \) или \(x \rightarrow z \). Функция

\[
\lambda(T) = 2\pi T \sum_{\alpha \geq 0} \frac{1}{\omega_\alpha} = \ln \frac{e}{T}.
\]
(105)

Здесь \(\epsilon = 2\gamma_0/\pi \); \(\gamma = 0.577 \) — постоянная Эйлера, \(\omega_0 \) — энергия обрезания спаривающего взаимодействия. Мы здесь полагаем, что она одинакова для обоих зон.

Дифференциальный оператор

\[
L_{1x}^1 = \frac{1}{2} V_{1x} T \sum_{\alpha \geq 0} \int \frac{d^3k}{(2\pi)^3} \hat{k}_x^z G^1(\mathbf{k}, \omega_\alpha) \mathcal{D}^1,
\]
(106)

а оператор \(L_{1x}^2 \) и другие операторы с той же структурой получаются очевидными подстановками \(x \rightarrow y, z \); \(1 \rightarrow 2 \) и \(1 \rightarrow 1 \), но аналогичный оператор с индексом 3 имеет вид

\[
L_{3x}^1 = \frac{1}{2} V_3 T \sum_{\alpha \geq 0} \int \frac{d^3k}{(2\pi)^3} \hat{k}_x^z G^1(\mathbf{k}, \omega_\alpha) \mathcal{D}^1.
\]
(107)

Здесь

\[
\mathcal{D}^1 = \frac{\hat{k}_x^z G^1(\mathbf{k}, \omega_\alpha)}{\partial \hat{k}_x^z} D_x^2 + \frac{\hat{k}_x^z G^1(\mathbf{k}, \omega_\alpha)}{\partial \hat{k}_x^z} D_x^2.
\]
(108)

Операторы второго типа определяются как

\[
L_{1xy}^1 = \frac{1}{2} V_{1xy} T \sum_{\alpha \geq 0} \int \frac{d^3k}{(2\pi)^3} \hat{k}_x \hat{k}_y G^1(\mathbf{k}, \omega_\alpha) \times \frac{\hat{k}_x^z G^1(\mathbf{k}, \omega_\alpha)}{\partial \hat{k}_x^z} (D_x D_y + D_y D_x).
\]
(109)

\[L_{2xy}^1, \text{ и остальные операторы этого типа получаются очевидными подстановками: } x \rightarrow y, 1 \rightarrow 2, 1 \rightarrow 1. \]

Аналогичный оператор с индексом 3 имеет вид

\[
L_{3xy}^1 = \frac{1}{2} V_3 T \sum_{\alpha \geq 0} \int \frac{d^3k}{(2\pi)^3} \hat{k}_x \hat{k}_y G^1(\mathbf{k}, \omega_\alpha) \times \frac{\hat{k}_x^z G^1(\mathbf{k}, \omega_\alpha)}{\partial \hat{k}_x^z} (D_x D_y + D_y D_x).
\]
(110)

3.8. Сверхпроводящие состояния вблизи критической температуры

Как отмечалось в разделе 2, внутреннее поле, действующее на заряды электронов проводимости в ферромагнитных урановых сверхпроводниках, существенно меньше верхнего критического поля при нулевой температуре. В этом случае в отсутствие внешнего поля градиентные члены дают лишь малые поправки порядка \(O(H_{int}/(H_c(T = 0))) \) к собственным значениям систем дифференциальных уравнений (94). Пренебрегая ими, мы приходим к системам алгебраических уравнений

для А-состояния:

\[
\eta_1 = (g_{1x}^1 \eta_1^x + g_{2x}^1 \eta_1^z + g_{3x}^1 \eta_1^z) \lambda,
\]

\[
\eta_2 = (g_{2x}^1 \eta_2^x + g_{3x}^1 \eta_2^z) \lambda,
\]

\[
\eta_3 = (g_{3x}^1 \eta_3^x + g_{1x}^1 \eta_3^z + g_{2x}^1 \eta_3^z) \lambda,
\]

(111)

и B-состояния:

\[
\zeta_1 = (g_{1x}^2 \zeta_1^x + g_{2x}^2 \zeta_1^z) \lambda,
\]

\[
\zeta_2 = (g_{2x}^2 \zeta_2^x + g_{3x}^2 \zeta_2^z) \lambda,
\]

(112)

Принимая во внимание, что постоянные взаимодействия с индексами 1 и 2 значительно больше постоянных с индексом 3, происходящих из спин-орбитальных членов в градиентной энергии ферромагнетика,

\(g_1, g_2 \gg g_3 \),

мы приходим к трём независимым системам для \(x-, y- \) и \(z- \)-компонент параметра порядка:

\[
\eta_1 = (g_{1x}^1 \eta_1^x + g_{2x}^1 \eta_1^z + g_{3x}^1 \eta_1^z) \lambda,
\]

(113)

\[
\eta_2 = (g_{2x}^1 \eta_2^x + g_{1x}^1 \eta_2^z) \lambda,
\]

(114)

\[
\eta_3 = (g_{3x}^1 \eta_3^x + g_{2x}^1 \eta_3^z) \lambda,
\]

(115)

Таким образом, в обменном приближении для энергии магнитных неоднородностей мы получили три независимых сверхпроводящих состояния: \((\hat{k}, \eta_1^x, \hat{k}, \eta_1^z), (\hat{k}, \eta_2^x, \hat{k}, \eta_2^z) \) и \((\hat{k}, \eta_3^x, \hat{k}, \eta_3^z) \) — с разными критическими температурами, определяемыми равенством нулю определителей систем уравнений (113)–(115).

4. Физические свойства

4.1. Критическая температура

Предполагая, что состоянию \((\hat{k}, \eta_1^x, \hat{k}, \eta_1^z) \) соответствует наибольшая критическая температура, и приравнивая определятель системы (113) нулю, получим такую же формулу, как и в теории БКШ:

\[
T = \exp \left(-\frac{1}{\Gamma} \right),
\]

(116)

где постоянная взаимодействия

\[
g(T) = g_{1x}^1 + g_{1x}^1 + \sqrt{(g_{1x}^1 - g_{1x}^1)^2 + g_{2x}^1 g_{2x}^1} \]

(117)

является функцией температуры. Тем самым формула (116) представляет собой уравнение для определения критической температуры перехода в сверхпроводящее состояние. Посмотрим, что происходит в простейшем воображаемом случае одноименного (1) сверхпроводящего состояния, когда \(g = g_{1x}^1 \).
В URhGe переход в сверхпроводящее состояние происходит при температуре, существенно меньшей температуры Юки. Поэтому можно пренебречь температурной зависимостью пороговой взаимодействия. Критическая температура определяется соотношением

$$\ln \frac{e}{T_{SC}} \approx \frac{1}{g_{1x}} \times \left(\frac{2gH}{\mu_B^2 T_{C} \kappa_F k_F^2} \right)^2 \left(k_F^2 N_0(k) \right),$$

где мы использовали уравнения (54), (103) для g_{1x} в отсутствии магнитного поля. Температура Юки T_C в URhGe возрастает с увеличением давления (рис. 16). Зависимость от давления других величин в правой части этого уравнения неизвестна. Предполагая, что правая часть как целое также возрастает с увеличением давления в сверхпроводящем состоянии, и наоборот, когда правая часть убывает с увеличением давления, температура $T_{SC}(P)$ возрастает. Первая ситуация, очевидно, соответствует наблюдаемым зависимостям от давления $T_{C}(P)$ и $T_{SC}(P)$ в URhGe, а вторая — соответствующим зависимостям в UCoGe (рис. 1б). Разумеется, в последнем случае данная аргументация справедлива лишь в той области давлений, где T_{SC} существенно меньше T_{C}.

Мы не обсуждаем здесь UGe2, в котором сверхпроводящее состояние возникает в области фазовой диаграммы при температурах ниже температуры фазового перехода первого рода из парамагнитного состояния в ферромагнитное.

4.2. Верхнее критическое поле, параллельное оси c в UCoGe

В UCoGe температурная зависимость верхнего критического поля, параллельного оси c спинового намагничивания [43], обнаруживает странный изгиб вверх (рис. 4). Это явление объясняется тем, что сама температура перехода зависит от магнитного поля. Действительно, при температурах, близких к T_{SC}, зависимость верхнего критического поля от температуры имеет вид

$$H_2 = AT_{SC} \left(T_{SC} - T \right),$$

где $A \approx \phi_0/\eta^2$ — постоянная, а критическая температура для состояния (k, q_1, q_2) в однозонном приближении при $H \neq 0$ определяется выражением

$$\ln \frac{e}{T_{SC}} = \frac{1}{g_{1x}} \times \left[\beta \left(3M_0^2 - M_0^4 \right) + \gamma^2 k_F^2 \right]^2.$$

При температурах, значительно меньших температуры Юки, намагниченность практически не зависит от температуры. С другой стороны, магнитный момент UCoGe в поле, параллельном оси c, быстро возрастает [44]. В поле величиной около 1 Тл $M_c = M_c(H)$ приблизительно вдвое больше, чем $M_0 = M_c(H = 0)$. Следовательно, согласно уравнению (120) увеличение поля уменьшает постоянную взаимодействия g_{1x} и критическую температуру $T_{SC}(g_{1x})$.

Зависимость верхнего критического поля от температуры (120) может быть представлена как зависимость от магнитного поля температуры перехода T_{SC}^{orb}, определяемая как орбитальным эффектом, так и зависимостью от поля постоянной взаимодействия g_{1x}:

$$T_{SC}^{orb} = T_{SC}(g_{1x}) - \frac{H}{AT_{SC}(g_{1x})}.$$

Очевидно, что полевая зависимость $T_{SC}(g_{1x}(H))$ не только сдвигает вниз, но и выгibtает вверх линейную функцию $T_{SC}^{orb}(H)$ в соответствии с экспериментально установленным температурным поведением верхнего критического поля, показанного на рис. 4.

В URhGe изгиба вверх в зависимости $H_{2s}(T)$ не обнаружено [45] (рис. 5). В отличие от изменения намагниченности в UCoGe, в соединении URhGe изменение намагниченности M_c в полях до 1 Тл ничтожно мало [46] и зависимость от поля постоянной взаимодействия несущественна.
4.3. Верхнее критическое поле в URhGe

Температура перехода в сверхпроводящее состояние во всех урановых ферромагнетиках увеличивается с улучшением качества образцов, как и должно быть в необычных сверхпроводниках, где критическая температура \(T_{\text{SC}}(l) \) зависит от длины пробега [36]. При длинах пробега, больших длины когерентности, \(l > \xi_0 \),

\[
T_{\text{SC}} \approx T_{\text{SC} 0} - \frac{\pi v_F}{8l}.
\]

(122)

Верхнее критическое поле при нулевой температуре изменяется, в зависимости от чистоты образца, как квадрат критической температуры,

\[
H_{c2} \approx \frac{\phi_0}{\pi \xi_0^2} \times T_{\text{SC}}^2,
\]

(123)

что было продемонстрировано в измерениях \(H_{c2} \) на образцах URhGe различного качества [45] (см. рис. 5).

В экспериментах Харди и Хаксли [45] была также найдена температурная зависимость анизотропии верхнего критического поля. Отношение \(H_{c2}(T) \) вдоль оси c к \(H_{c2}(T) \), измеренному вдоль оси b, оказалось не зависимым от температуры. Однако отношение \(H_{c2}(T) \) вдоль оси a к \(H_{c2}(T) \), измеренному вдоль оси b, линейно возрастает примерно на 20 % при уменьшении температуры от критической до нуля (рис. 6). Это наблюдение соответствует температурному поведению верхнего критического поля в однозонной сверхпроводящей фазе с параметром порядка при \(H = 0 \),

\[
A^1(k, \mathbf{r}) = \eta_1 k_z.
\]

В этом случае можно показать [47], что решения линейных уравнений Горько-Гордина, соответствующих максимальному критическому полю для разных кристаллографических направлений, имеют вид

\[
A^1(k, \mathbf{r}) \sim A(H, T)(k_x + ik_z)\psi_0(x, z) + \frac{B(H, T)(k_x - ik_z)\psi_0(x, z)}{H} \parallel b, \quad (124)
\]

\[
A^1(k, \mathbf{r}) \sim A(H, T)(k_x + ik_z)\psi_0(x, y) + \frac{B(H, T)(k_z - ik_y)\psi_0(x, y)}{H} \parallel c, \quad (125)
\]

\[
A^1(k, \mathbf{r}) \sim -k_z\psi_0(y, z), \quad H \parallel a, \quad (126)
\]

где \(\psi_0(x, y) \) — волновые функции Ландау частицы с зарядом \(2e \) в магнитном поле, \(n \) — номер уровня Ландау, \(A(H, T) \) и \(B(H, T) \) — функции магнитного поля и температуры. Видно, что решения для поля вдоль направлений c и b имеют одинаковую структуру и отличаются от решения для поля вдоль оси a, что естественным образом объясняет наблюдаемую температурную зависимость анизотропии верхнего критического поля.

Это свойство сохраняется и в многозонном сверхпроводнике со спариванием части с равными спинами, если предположить, так же как и в однозонной модели, что сверхпроводящее состояние — это A-состояние, компоненты параметра порядка которого в нулевом поле имеют вид

\[
A^1(k, \mathbf{r}) = \eta_1 k_z, \quad A^1(k, \mathbf{r}) = \eta_1 k_z.
\]

(127)

Таким образом, наблюдаемая температурная зависимость анизотропии верхнего критического поля даёт сильное указание по выбору определённого параметра порядка сверхпроводящего состояния URhGe.

4.4. Нули в спектре и теплоёмкость при низких температурах

Как отмечалось, и в отсутствие внешнего поля в ферромагнитных сверхпроводниках имеется внутреннее поле \(H_{\text{int}} \), действующее на заряды электронов. Внутреннее поле у разных ферромагнитных превосходит нижнее критическое поле \(H_{c2} \). Следовательно, мейнгеровское состояние отсутствует и сверхпроводник пребывает в абрикосовском вихревом состоянии с пространственно-неоднородным распределением параметра порядка и внутреннего магнитного поля. При низких температурах вследствие условия \(H_{\text{int}} \ll H_{c2} \) расстояние между вихрями становится значительно больше радиуса коры вихрей и можно разделить вклады в теплоёмкость, обусловленные вихрями и межвихревым пространством.

Вместо теплоёмкости принято работать с отношением \(C/T = \gamma \), которое в нормальном металле прямо пропорционально электронной плотности состояний на поверхности Ферми. Вклад в теплоёмкость коров вихрей возникает вследствие практически бесплещевой возбуждений внутри коров. Следовательно, благодаря корам вихрей \(\gamma \) сохраняет конечную величину в пределе \(T \to 0 \):

\[
\gamma_v \approx \frac{H_{\text{int}}}{H_{c2}} \gamma_N,
\]

(128)

где \(\gamma_N \) — величина \(\gamma \) в нормальном состоянии.

Другой вклад в плотность состояний даёт межвихревое пространство. Этот вклад возникает вследствие эффекта Володинского [48]. В этом случае энергия возбуждений
дётся формулами (19) и (20). В отсутствие дополнительных фазовых переходов имеются сверхпроводящие состояния либо A, либо B с параметрами порядка (97), (98) и (99), (100) соответственно. Параметр порядка A-состояния обращается в нуль в изолированных точках $k_x = k_y = 0$. В этом случае вклад межвихревого пространства в плотность состояний [48] имеет вид

$$\gamma_A \approx \frac{H_{int}}{H_c} \ln \left(\frac{H_c}{H_{int}} \right) \gamma_N.$$

(129) Параметр порядка A-состояния обращается в нуль на линии $k_x = 0$, и вклад межвихревого пространства в плотность состояний [48] выражается как

$$\gamma_B \approx \sqrt{\frac{H_{int}}{H_c}} \gamma_N.$$

(130)

Как показано в разделе 3, смещение x- и y-компонент параметра порядка A-состояния весьма мало вследствие малой величины амплитуды спаривания $\langle \hat{V} \rangle$. Следовательно, в силу спектра возбуждений в A-состоянии почти равна нулю либо на линии $k_x = 0$, либо на линии $k_y = 0$. По этой причине межвихревая плотность состояний дётся той же формулой, что и для В-состояния.

Уравнения (129), (130) применимы для чистых монохристиаллов. При наличии неоднородностей, порождающих примиесными, дислокационными и доменными стенками, явления в спектре возбуждений подавляется в конечной окрестности точек или линий нулев параметра порядка [36], так же как и вблизи доменных стенок. В результате плотность состояний при нулевой энергии приобретает вклад, не зависящий от магнитного поля. При достаточно большой концентрации примесей корневая зависимость от поля также изменяется [49].

Качественно низкотемпературная зависимость γ от магнитного поля в достаточно чистых образцах описывается выражением

$$\gamma_0 = \gamma_{dw} + \gamma_{H} + \gamma_{V} \approx \left(a + \frac{H_{int}}{H_c} \right) \gamma_N.$$

(131)

где постоянная $a \ll 1$.

Величина внутреннего магнитного поля может быть оценена как

$$H_{int} = \text{const} \frac{\mu_B}{a/U},$$

(132)

где μ_B — магнитный момент атома урана при нулевой температуре, a/U — расстояние между ближайшими атомами урана, примерно одинаковое в UCoGe, URhGe и UGe$_2$. Однако соответствующие магнитные моменты, 0,05μ_B, 0,4μ_B и μ_B, весьма отличаются друг от друга, что определяет различие внутренних полей в этих веществах. Неопределённость вносит неизвестные численные межатомные расстояния в формуле (132). Можно также определить внутреннее магнитное поле, полагая его равным внешнему полю вдоль направления спиновой намагниченности, подавляющему многодоменную структуру.

Внутренние поля для UCoGe, URhGe и UGe$_2$, оценённые в обзоре [9], равны соответственно 100, 800 и 2800 Гс, согласно различию магнитных моментов μ_B в этих веществах. Верхние критические поля вдоль направления спиновой намагниченности в UCoGe —1,2 Тл [43], а в UGe$_2$ примерно ~2,2 Тл [19]. Верхнее критическое поле в URhGe измерено [45] на образце с большим относительным остаточным сопротивлением (relative residual resistance — RRR), равным 21. Можно предполагать, что величина $H_{c2}(T = 0)$ на чистых образцах URhGe примерно та же, что и в UCoGe. Тогда зависящий от поля часть отношения γ_0/γ_N, оценённая по формуле (131), равна примерно 0,1 для UCoGe, 0,3 для URhGe и 0,5 для UGe$_2$. Соответствующие экспериментальные значения этого отношения приведены на рис. 7.

5. Возвратная сверхпроводимость в URhGe

URhGe обладает удивительным свойством. При достаточно низкой температуре магнитное поле порядка 1,3 Тл, направленное вдоль оси h, подавляет сверхпроводящее состояние [45], но в значительно более высоких полях, около 10 Тл, сверхпроводимость восстанавливается и существует в полях вплоть до 13 Тл [30]. Максимальная критическая температура сверхпроводящего перехода в этом интервале полей около 0,4 К. В том же интервале полей URhGe переходит из ферромаг-
нитного состояния в парамагнитное в результате фазового перехода первого рода. Сверхпроводимость существует по обе стороны перехода, т.е. как в ферромагнитном, так и в парамагнитном состояниях (рис. 8).

Скачкообразное исчезновение спонтанной намагниченности в сильном магнитном поле вдоль направления \(b \) было отмечено уже в первой работе [30] по сверхпроводимости в URhGe, индуцированной сильным магнитным полем. Недавно первый род перехода был подтверждён наблюдением гистерезиса в голловском сопротивлении [50] в окрестности поля перехода \(H_R \approx 12.5 \) Тл.

В разделах 5.1 – 5.4 проведено феноменологическое описание фазового перехода из ферромагнитного состояния в парамагнитное в магнитном поле, перпендикулярном направлению спонтанной намагниченности. Найдена магнитная восприимчивость, и показано, что вблизи фазового перехода первого рода спаривание взаимодействие сильно возрастает, стимулируя появление сверхпроводящего состояния.

5.1. Фазовый переход в ортогональном ферромагнетике в магнитном поле, перпендикулярном спонтанной намагниченности

Свободная энергия Ландау для ортогонального ферромагнетика в поле \(H(r) \) имеет вид

\[
\mathcal{F} = \int dV (F_M + F_V),
\]

где в выражении

\[
F_M = x_z M_z^2 + \beta_z M_z^4 + \delta_z M_z^6 + x_y M_y^2 + x_x M_x^2 + \beta_x M_x^4 + \beta_y M_y^4 + \beta_z M_z^2 M_y^2 - \text{MH}
\]

мы приняли во внимание ортогональную анистропию, а также учли член шестого порядка в разложении по степеням \(M_z \). Плотность градиентной энергии в этом приближении:

\[
F_V = \gamma_{ij} \frac{\partial M}{\partial x_i} \frac{\partial M}{\partial x_j}.
\]

Здесь \(x, y, z \) — координаты вдоль кристаллографических направлений \(a, b, c \).

\[
x_z = x_{z0}(T - T_C), \quad x_z > 0, \quad x_y > 0, \quad \beta_z = \beta_{z0} + \beta_{z1} M_z^2 + \beta_{z2} M_z^4 + \beta_{z3} M_z^6 + \ldots
\]

В постоянном магнитном поле \(H = H_y \hat{y} \) равновесные намагниченности вдоль направлений \(x, y \) получаются минимизацией свободной энергии (134) по \(M_x, M_y, M_z \):

\[
M_x = 0, \quad M_y = \frac{H_y}{2(x_z + \beta_{z1} M_z^2)}.
\]

Подставляя эти выражения обратно в (134), получим

\[
F_M = \frac{H_y^2}{4x_z^2} + \tilde{\beta}_z M_z^2 + \tilde{\beta}_y M_y^2 + \tilde{\beta}_x M_x^2 + \ldots
\]

где

\[
\tilde{\beta}_z = \beta_{z1} + \beta_{z2} M_z^2 + \beta_{z3} M_z^4 + \ldots
\]

Видно, что магнитное поле, перпендикулярное направлению спонтанной намагниченности, приводит к уменьшению температуры Кюри

\[
T_C = T_C(H_y) = T_C^0 - \frac{\beta_{z1} H_y^2}{4x_z^2 z_{z0}}.
\]

Коэффициент \(\tilde{\beta}_z \) также уменьшается с возрастанием поля \(H_y \) и достигает нуля при

\[
H_{z_{T_C}} = \frac{2x_z^{3/2} \beta_{z1/2}}{\beta_{z2}}.
\]

В этом поле при выполнении условия

\[
\frac{x_{z0} \beta_{z1} T_{C0}}{x_z \beta_{z2}} > 1
\]

температура Кюри ещё положительна и при \(H_y > H_{z_{T_C}} \) фазовый переход становится переходом первого рода (рис. 9). Точка \((H_{z_{T_C}}, T_C(H_{z_{T_C}})) \) на линии фазового перехода из ферромагнитного состояния в парамагнитное является трикритической точкой.

Минимизация свободной энергии (140) даёт величину параметра порядка в ферромагнитном состоянии

\[
M_z^2 = \frac{1}{3 \tilde{\beta}_z} \left(-\tilde{\beta}_z + \sqrt{\tilde{\beta}_z^2 - 3\tilde{\beta}_z \delta_z} \right). \tag{147}
\]
Минимизация свободной энергии в парамагнитном состоянии

\[F_{\text{para}} = x_y M_y^2 - H_y M_y \]
(148)

по \(M_y \) дает равновесную величину намагниченности \(M_y \) в парамагнитном состоянии:

\[M_y = \frac{H_y}{2x_y}. \]
(149)

Подставляя последнее выражение обратно в уравнение (148), находим равновесную величину энергии в парамагнитном состоянии

\[F_{\text{para}} = -\frac{H_y^2}{4x_y}. \]
(150)

На линии фазового перехода первого рода, определяемой уравнениями [51]

\[F_M = F_{\text{para}}, \quad \frac{\partial F_M}{\partial M_z} = 0, \]
(151)

параметр порядка \(M_z \) испытывает скачок (рис. 10) от

\[M_z^2 = -\frac{\tilde{\beta}_z}{2\delta_z} \]
(152)

в ферромагнитном состоянии до нуля в парамагнитном. Подставляя выражение (152) обратно в уравнение

\[F_M = F_{\text{para}}, \]
получим уравнение для линии перехода первого рода

\[4\delta_z \delta_z = \beta_z^2, \]
(153)

t.e.

\[T^* = T^*(H_y) = T_{C0} - \frac{\beta_z H_y^2}{4\delta_z^2} + \frac{\tilde{\beta}_z^2}{4\delta_z}, \]
(154)

Соответствующий скачок \(M_y \) дается выражением (см. рис. 10)

\[M_y^* = M_y^1 - M_y^1_{\text{para}} = \frac{H_y}{2(x_y + \beta_z M_y^2)} - \frac{H_y}{2x_y}. \]
(155)

5.2. Восприимчивость

Компоненты восприимчивости в поле, перпендикулярном спиновой намагниченности, находятся так же, как это было сделано в разделе 3.2 для случая параллельного поля. Они даются выражениями для ферромагнитного состояния при \(T < T^* \):

\[\chi_{xx}^f(k) \approx 2[2(z_x + \beta_z M_y^2 + \beta_y M_z^2 + \gamma_{ij} k_i k_j)]^{-1}, \]
(156)

\[\chi_{yy}^f(k) \approx 2[2(z_x + \beta_z M_y^2 + \gamma_{ij} k_i k_j)]^{-1}, \]
(157)

\[\chi_{zz}^f(k) \approx 2[2(z_x + \beta_z M_y^2 + \beta_y M_z^2 + \gamma_{ij} k_i k_j)]^{-1} = \]

\[= 2[4\beta_y M_y^2 + 12\delta_z M_z^2 + \gamma_{ij} k_i k_j]^{-1}, \]

и для ферромагнитного состояния при \(T > T^* \):

\[\chi_{xx}^f(k) \approx 2[2(z_x + \beta_y M_y^2 + \gamma_{ij} k_i k_j)]^{-1}, \]
(158)

\[\chi_{yy}^f(k) \approx 2[2(z_x + \gamma_{ij} k_i k_j)]^{-1}, \]
(159)

Триплетное спаривание взаимодействует со всеми компонентами восприимчивости:

\[\chi_{ii}^{uu}(k, k') = \frac{1}{2}\left[\delta_{ii}(k - k') - \delta_{ii}(k + k') \right], \quad i = x, y, z. \]
(159)

Так что для ферромагнитного состояния при \(T < T^* \) имеем

\[\chi_{xx}^{uu}(k, k') \approx \frac{\gamma_{ij} k_i^2}{(a_i')^2} k_i k_i', \quad \chi_{yy}^{uu}(k, k') \approx \frac{\gamma_{ij} k_i^2}{(a_i')^2} k_i k_i', \]
(160)

\[\chi_{zz}^{uu}(k, k') \approx \frac{\gamma_{ij} k_i^2}{(a_i')^2} k_i k_i'. \]
(161)

Рис. 10. Зависимости \(M_y(H_y) \) и \(M_z(H_y) \) от магнитного поля со скачками при фазовом переходе первого рода.

2 УФН, т. 187, № 2
где

\[
\begin{align*}
 \alpha_s^f &= \alpha_s + \beta_{xy} M_z^2 + \beta_{xy} M_z^2 + 2\gamma k_F^2, \\
 \alpha_s^i &= \alpha_s + \beta_{xy} M_z^2 + 2\gamma k_F^2, \\
 \alpha_s^g &= 4\beta_{xy} M_z^2 + 12\delta_{xy} M_z^2 + 2\gamma k_F^2.
\end{align*}
\]

(160)

Здесь \(M_s(H_z), M_s(H_x) \) — равновесные значения компонент намагниченности. Полезно сравнить полученные выражения для нечётных частей компонент восприимчивости с формулами (64)-(67), найденными при \(\delta_z = 0 \), \(H_z = 0 \), но при \(H_x \neq 0 \).

Для парамагнитного состояния при \(T > T^* \)

\[
\begin{align*}
 \chi_{xx}^{\text{pa}}(k, k') &\approx \frac{\gamma_{ij} k_F^2}{(a^S)^2} k_j k_j', \\
 \chi_{zz}^{\text{pa}}(k, k') &\approx \frac{\gamma_{ij} k_F^2}{(a^S)^2} k_j k_j', \\
 \alpha_{xy}^p &= \alpha_s + \beta_{xy} M_z^2 + 2\gamma k_F^2, \\
 \alpha_{xy}^g &= \alpha_s + 2\gamma k_F^2, \\
 \alpha_{xy}^g &= 2\alpha_{xy}(T - T_c(H_x)) + 2\gamma k_F^2.
\end{align*}
\]

(161-162)

Таким образом, при фазовом переходе первого рода из ферромагнитного состояния в парамагнитное компоненты восприимчивости скачком меняют свою величину.

Когда мы видели в разделе 3.1, спаивающее взаимодействие в основном определяется нечётной частью \(z \)-компоненты восприимчивости,

\[
\chi_{zz}^{\text{pa}}(k, k') \approx \frac{\gamma_{ij} k_F^2}{4(2\beta_{xy} M_z^2 + 6\delta_{xy} M_z^2 + \gamma k_F^2)} k_j k_j'.
\]

(163)

Равновесная намагниченность \(M_s(H_z) \) убывает с возрастанием магнитного поля (см. рис. 10). Можно ожидать, что скачок \(M_z \) при переходе первого рода существенно меньше, чем величина намагниченности в отсутствии поля, \(H_x = 0 \), при низкой температуре,

\[
M_z \bigg|_{H_x = 0, T > T^*} \ll M_z^*.
\]

(164)

В этом случае, согласно уравнению (163), величина восприимчивости \(\chi_{zz}^{\text{pa}} \) на линии перехода первого рода значительно больше, чем при \(H_x = 0 \), что и стимулирует возвращение сверхпроводящего состояния.

5.3. Сверхпроводящее состояние в окрестности перехода первого рода

Уменьшение температуры Кюри магнитным полем, перпендикулярным спиновым намагниченности, приводит к увеличению спаивающего взаимодействия. Этот эффект может оказаться сильнее, чем орбитальное подавление сверхпроводимости магнитным полем. В UHGe температура Кюри значительно выше температуры перехода в сверхпроводящее состояние \(T_{SC} \). Поэтому орбитальный эффект подавляет сверхпроводимость \((H^2_{z}(T = 0) \approx 1.3 \text{ Тл} \) (см. [45])) в значительно меньшем поле, чем то, в котором начинает заметное уменьшение температуры Кюри, стимулирующее спаивающее взаимодействие. Но в полях, больших 10 Тл, этот эффект начинает превосходить орбитальный и сверхпроводящее состояние возвращается. Температура сверхпроводящего перехода начинает возрастать, приближаясь к линии перехода первого рода и пересекает её [30, 50]. Посмотрим, что происходит с линией сверхпроводящего перехода при пересечении с линией перехода первого рода \(T^*(H_x) \) из ферромагнитного состояния в парамагнитное.

Во внешнем поле вдоль оси \(h \), т.е. перпендикулярно обменному полю \(h \) (рис. 11), естественно выбрать направление квантования спинов вдоль полного поля \(h z + H, \hat{y} \). Тогда матричная функция Грина нормального состояния сохраняет диагональный вид,

\[
\hat{G}_n = \begin{pmatrix}
 G^{1 \dagger} & 0 \\
 0 & G^{1 \dagger}
\end{pmatrix},
\]

(165)

где

\[
G^{1 \dagger} = \left(i\omega_n - \varepsilon_{kF}^z + \mu_B \sqrt{h^2 + H_z^2} \right)^{-1}.
\]

(166)

Можно воспользоваться формулами, выведенными в разделе 3.1, но с тензором восприимчивости в новой системе координат:

\[
\chi_{ij}
ightarrow \tilde{\chi}_{ij} = R_{ij} \chi_{ij},
\]

(167)

где \(R \) — матрица поворота вокруг оси \(\hat{x} \) на угол \(\varphi \), тангенс угла \(\varphi = H_y/h \),

\[
R = \begin{pmatrix}
 1 & 0 & 0 \\
 0 & \cos \varphi & -\sin \varphi \\
 0 & \sin \varphi & \cos \varphi
\end{pmatrix}.
\]

(168)

Для простоты мы ограничимся спаиванием с равными спинами, пренебрегая величиной \(\Delta^0 \). Полагая \(\chi_{yy}^{\text{pa}} = 0 \), пренебрегая орбитальным эффектом и игнорируя координатную зависимость параметра порядка, получим уравнения для определения критической температуры перехода в сверхпроводящее состояние \(T_{SC}(H_z) \):

\[
\begin{align*}
 A^{1}(k) &= \mu_B T \sum_{k, k'} \left(\chi_{zz}^{\text{pa}}(k, k') \cos^2 \varphi + \\
 &+ \chi_{yy}^{\text{pa}}(k, k') \sin^2 \varphi \right) G_j^{1 \dagger} A^{1}(k') + \\
 &+ \left(\chi_{zz}^{\text{pa}}(k, k') - \chi_{yy}^{\text{pa}}(k, k') \right) \cos^2 \varphi + \\
 &+ \left(\chi_{zz}^{\text{pa}}(k, k') - \chi_{yy}^{\text{pa}}(k, k') \right) \sin^2 \varphi \right) G_j^{1 \dagger} A^{1}(k') \right).
\end{align*}
\]

(169)
A_{1}^{\pm}(k) = \mu B I^2 T \sum_{n} \sum_{k} \left\{ \left(x_{cc}^{n}(k, k') - x_{cc}^{n}(k, k') \right) \cos^{2} \varphi + \left(x_{xx}^{n}(k, k') - x_{xx}^{n}(k, k') \right) \sin^{2} \varphi \right\} G_{j}^{l} G_{j}^{l} A_{1}^{\pm}(k', q) + \left[x_{zz}^{n}(k, k') \cos^{2} \varphi + x_{zz}^{n}(k, k') \sin^{2} \varphi \right] G_{j}^{l} G_{j}^{l} A_{1}^{\pm}(k') \right\} \right] .

(170)

Здесь $G_{j}^{l} = G_{j}^{l}(k', \omega_{n})$, $G_{j}^{l} = G_{j}^{l}(-k', -\omega_{n})$ и аналогично для функций Грина G_{j}^{l} и G_{j}^{l} (166). В ферромагнитном состоянии вблизи перехода первого рода угол $\varphi \approx \pi/4$ и восприимчивости определены выражениями (159) и (160).

В парамагнитном состоянии восприимчивости определяются выражениями (161) и (162). Угол $\varphi = \pi/2$,

\[G_{\text{para}}^{l, \pm} = \frac{1}{\omega_{n} - \frac{\gamma_{n}}{2} \pm \mu B H_{y}} \]

(171)

и уравнения для A_{1}^{\pm}, A_{1}^{\pm} не зависят от A_{0}^{l} [27]:

\[A_{1}^{l}(k, q) = \mu B I^2 T \sum_{n} \sum_{k} \left\{ x_{xx}^{n}(k, k') G_{j}^{l} G_{j}^{l} A_{1}^{l}(k', q) + \left(x_{xx}^{n}(k, k') - x_{xx}^{n}(k, k') \right) G_{j}^{l} G_{j}^{l} A_{1}^{l}(k', q) \right\} , \]

(172)

\[A_{1}^{l}(k, q) = \mu B I^2 T \sum_{n} \sum_{k} \left\{ x_{xx}^{n}(k, k') G_{j}^{l} G_{j}^{l} A_{1}^{l}(k', q) + \left(x_{xx}^{n}(k, k') - x_{xx}^{n}(k, k') \right) G_{j}^{l} G_{j}^{l} A_{1}^{l}(k', q) \right\} \times G_{j}^{l} G_{j}^{l} A_{1}^{l}(k', q) + x_{zz}^{n}(k, k') G_{j}^{l} G_{j}^{l} A_{1}^{l}(k', q) \right\} . \]

(173)

Как отмечалось, компоненты восприимчивости предполагают конечный скачок при переходе первого рода из ферромагнитного состояния в парамагнитное. Поверхности Ферми электронных зон со спином вдоль и против направления поля и соответствующие плотности состояний также испытывают скачкообразное изменение. Уравнения для определения температуры возникновения сверхпроводимости по обе стороны перехода ферромагнетик – парамагнитник также сильно различаются.

Таким образом, $T_{SC}(H_{c})$ должна испытывать скачок при пересечении линии перехода первого рода $T^{*}(H_{c})$, что и наблюдается в эксперименте [30].

5.4. Заключительные замечания

Представленное феноменологическое описание фазовой диаграммы URRhGe в магнитном поле вдоль кристаллографического направления b, перпендикулярного на правлению спонтанной намагниченности, показывает, что в достаточно сильном поле фазовый переход между ферромагнитным и парамагнитным состояниями становится переходом первого рода. Восстановление сверхпроводящего состояния объясняется сильным возрастианием магнитной восприимчивости в окрестности перехода по сравнению с её величиной в отсутствие поля. Вблизи линии перехода сверхпроводимость наблюдается как в ферромагнитном, так и в парамагнитном состояниях. Критическая температура перехода в сверхпроводящее состояние испытывает скачок при пересечении линии перехода первого рода.

Уменьшение температуры Кюри в магнитном поле, перпендикулярном направлению спонтанной намагниченности, увеличивает спаривание взаимодействие, компенсируя подавление сверхпроводимости магнитным полем. В UCoGe, где температура Кюри T_{c} не на много превосходит температуру перехода в сверхпроводящее состояние, этот механизм стимулирует возрастание верхнего критического поля вдоль оси b, наблюдаемое в поле выше 5 Тл (рис. 12). Этот же механизм вызывает возрастание скорости магнитной релаксации в магнитном поле вдоль оси b, обусловленное увеличением восприимчивости по мере приближения к температуре Кюри [52].

Кристаллографическое направление a является значительно более жёстким магнитным направлением, чем направление b. Следовательно, уменьшение температуры Кюри магнитным полем, направленным вдоль оси
а, значительно слабее. В доступных полях этот эффект ненаблюдаем [52]. Однако в существенно больших полях вдоль оси а можно ожидать проявления аналогичного эффекта стимуляции сверхпроводимости.

Если к полю \(H_t \approx 12 \) Тл вблизи перехода первого рода добавить поле \(H_s \) вдоль оси с, увеличив суммарное поле \(H = (H_t^2 + H_s^2)^{1/2} \), то это внесёт ничтожно малые изменения в спаривающее взаимодействие, ориентированное в отсутствие поля \(H_t \) вдоль жёсткого магнитного направления. В то же время орбитальное верхнее глинистое поле в направлении а в полтора раза больше, чем в направлении b [45]. Это качественно объясняет стабильность сверхпроводящего состояния в \(URhGe \) в полях вдоль до \(H = (H_t^2 + H_s^2)^{1/2} \approx 30 \) Тл [53].

Известно, что в поле \(H_t \) вдоль направления спонтанной намагниченности линия перехода первого рода \(T^*(H_t) \) расщепляется на две поверхности переходов первого рода, \(T^*(H_t, \pm H_s) \). На этих поверхностях по мере увеличения \(|H_s| \) скажется в спонтанной намагниченности уменьшается и полностью исчезает на линиях, бурящих начало в трикритической точке \(T_c(H_t^2, H_s = 0) \). Было высказано предположение [53], что эти линии заканчиваются при нулевой температуре в квазитрикритических точках в плоскости (\(H_t, H_s \)) и что магнитные квантовые флюктуации стимулируют появление сверхпроводящего состояния вблизи линии перехода первого рода. Идея выглядит заманчиво. Можно заметить, однако, что трикритическая линия \(T^*(H_t, H_s) \) может вообще не достигать абсолютного нуля или просто располагаться достаточно далеко от сверхпроводящей области на фазовой диаграмме. Стремление найти критические флюктуации мотивировало эксперименты [54], в которых было продемонстрировано огромное увеличение флюктуаций ЯМР-релаксации в \(URh_{0.9}Co_{0.1}Ge \) в поле \(H_t \approx 13 \) Тл. Измерения проводились при температуре 1,6 К, т.е. в области перехода второго рода между ферромагнитным и парамагнитным состояниями. Возвратная сверхпроводимость появляется при существенно более низкой температуре вблизи перехода первого рода, где влияние критических флюктуаций определённо меньше. Здесь мы продемонстрировали, что сверхпроводящее состояние в \(URhGe \) может возникнуть и без влияния критических флюктуаций из-за сильного возрастания продольной восприимчивости вблизи линии перехода первого рода между ферромагнитным и парамагнитным состояниями.

6. Критическая магнитная релаксация в ферромагнитных соединениях урана

6.1. Критическая магнитная релаксация в ферромагнетиках

Возбуждения в магнитных системах измеряют с помощью рассеяния нейтронов. Интенсивность неупругого рассеяния нейтронов

\[I(\mathbf{Q}, \omega) = A(k_i, k_f) \langle \delta \rho - \langle \mathbf{Q} \rangle \rangle |F(\mathbf{Q})|^2 S_{\mathbf{q}}(\mathbf{q}, \omega) \] (174)

выражается через динамический структурный фактор

\[S_{\mathbf{q}}(\mathbf{q}, \omega) = \int_0^\infty dt \exp(i\omega t) \langle M_{\mathbf{q}}(t) M_{-\mathbf{q}}(0) \rangle, \]

представляющий собой корреляционную функцию магнитных моментов [55], которая, согласно флюктуационно-диссипативной теореме, связана с мнимой частью магнитной восприимчивости

\[S_{\mathbf{q}}(\mathbf{q}, \omega) = \frac{2}{1 - \exp(-\omega/T)} \chi_{\mathbf{q}}^{(2)}(\mathbf{q}, \omega). \] (175)

Переданный волновой вектор \(\mathbf{Q} = \mathbf{q} + \mathbf{t} \) является суммой волнового вектора обратной решётки \(\mathbf{t} \) и вектора \(\mathbf{q} \) лежащего в первой зоне Бриллюэна. \(\mathbf{Q} \) — направляющий вектор вектора \(\mathbf{Q} \) приращению в направлении \(\mathbf{z} \). \(\chi_{\mathbf{q}}^{(2)} \) — магнитный фермиконтур, измеряемый в экспериментах по упругому рассеянию нейтронов. Постоянная Планка положена равной единице, \(\hbar = 1 \).

Минимую часть восприимчивости для каждого кристиаллографического направления можно взять в виде функции

\[\chi_{\mathbf{q}}^{(2)}(\mathbf{q}, \omega) = \frac{A}{\omega^2 + \Gamma_q^2}, \] (176)

зависящей от экспериментально измеряемых амплитуды \(A \) и ширины \(\Gamma_q \) интенсивности рассеяния. Соотношение Крамера—Кронга позволяет найти действительную часть восприимчивости

\[\chi_{\mathbf{q}}(\mathbf{q}, \omega) = \chi_{\mathbf{q}}^{(2)}(0) \frac{1}{\omega} \int \frac{\omega''(\mathbf{q}, \omega')}{\omega'} d\omega' = \frac{A}{\Gamma_q}. \] (177)

В отсутствие стеков и спин-орбитального взаимодействия намагниченность сохраняется. Следовательно, в гейзенберговском ферромагнетике при температурах выше температуры Кюри \(T_c \) диффузия является единственным механизмом релаксации [55, 56] намагниченности и

\[S(\mathbf{q}, \omega) = \frac{2\omega \chi_{\mathbf{q}}^{(2)}(\mathbf{q}, \omega)}{1 - \exp(-\omega/T)} \frac{\Gamma_q}{\omega^2 + \Gamma_q^2}, \] (178)

tак что ширина линии квазиупругого рассеяния

\[\Gamma_q = Dq^2 \] (179)

dепределяется коэффициентом диффузии \(D \). Квадратичная зависимость \(\Gamma_q \) от волнового вектора, наблюдаемая в широком диапазоне температур, превышающих температуру Кюри, в никеле и железе (см. [57] и приведённые там ссылки), сменяется вблизи \(T_c \) зависимостью \(\Gamma_q \sim q^{-2,5} \), согласно предсказаниям теории взаимодействующих мод [58].

В слабых ферромагнетиках с коллективированными электронами при \(T > T_c \) доминирует другой механизм бездиссипативной релаксации. Структурный фактор даётся тем же выражением (178), но ширина линии определяется равенством [59, 60]

\[\chi(\mathbf{q}) \Gamma_q = \chi_{\mathbf{q}}(\mathbf{q}, 0), \] (180)

где \(\chi_{\mathbf{q}} \) — паулиевская восприимчивость в газе свободных электронов, \(\omega(\mathbf{q}, \omega) \) — затухание Ландэ, равное \((2/\pi)p q \nu \) для сферической ферми-поверхности. Линейная зависимость ширины линии от волнового вектора наблюдалась в MnSi [61]. Однако в других слабых ферромагнетиках с
коллекторизованными электронами, MnP [62] и Ni$_3$Al [63], зависимость ширины линии от вольтового вектора ближе к предсказанной теорией динамического масштабирования [58].

6.2. Магнитная релаксация в ферромагнитных соединениях урана
В урановых ферромагнетиках магнитная восприимчивость вдоль лёгкой оси значительно больше восприимчивости в перпендикулярных направлениях. В UGe$_2$ лёгкая ось направлена вдоль кристаллографической оси a. В нейтронных экспериментах [33] не обнаружено никакого дополнительного рассеяния по сравнению с фоном при переданных волоновых векторах q, параллельных оси a, тогда как при q, направленном вдоль оси c, обнаружено сильное рассеяние, зависящее от температуры, и должно быть согласно формуле (174). Измерения магнитной релаксации в UGe$_2$ [33, 64] показывают, что Γ_0 не обращается в нуль при $q \to 0$ и температурах, отличных от температуры Кюри. То же самое было найдено в UCoGe [65], и рассеяние с вольновым вектором q, параллельным направлению a, так как лёгкая ось в этом соединении 4 направленная вдоль оси c. Таким образом, в урановых ферромагнетиках имеется некоторый механизм однородной релаксации намагниченности.

Релаксация намагниченности в электронном газе обусловлена процессами переворота спинов электронов, вызванными спин-орбитальным взаимодействием электронов между собой [66] или магнитных моментов блюховых электронов с потенциалом ионов коллекторной кристаллической решётки [67, 68]. Оба механизма дают ничтожно малую величину скорости однородной магнитной релаксации, не наблюдаемую в ферромагнитных металлах, тогда как измеренные скорости однородной релаксации в UGe$_2$ [33] порядка нескольких кельвинов. Для конкретности мы будем обсуждать именно этот материал.

Магнитная восприимчивость монокристаллов UGe$_2$ изучалась в работах [69–71]. Измеренная величина намагниченности вдоль лёгкой оси при нулевой температуре равна 1.43 μ_B на один атом урана, что в случае делокализованного ферромагнитного состояния соответствовало бы полмультулу с полностью поляризованный единственной зоной. С другой стороны, эксперимент по нейтронному рассеянию [16] показывают, что: 1) магнитный формпактор $M(q)$ по форме не отличается от формпактора свободных ионов U$^{3+}$ или U$^{4+}$; 2) $M(q \to 0)$ при низкой температуре совпадает с намагниченностью, измеренной магнитометром, с точностью 1%. Таким образом, практически весь магнитный момент как в парамагнитном, так и в ферромагнитном состояниях сосредоточен около атомов урана.

Статистические магнитные свойства UGe$_2$ хорошо описываются [71] в модели расщепления состояния иона урана U$^{4+}$ кристаллическим полем. Это терм ^{238}U, соответствующий конфигурации 5f2 локализованных электронов. Зоны электронные состояния сформированы из двух 7s-орбиталей, одной 6d-орбитали и одной 5f-орбитали урана, а также из орбиталей германия. Таким образом, f-электроны в UGe$_2$ распределены и по локализованным, и по делокализованным состояниям. Терм 235U каждого атома урана с полным моментом $J = 4$ в парамагнитном состоянии расщепляют кристаллическим полем на три квазидиэлектрика и три сигнала [71]. Уменьшение температуры изменяет заселённость этих состояний, что проявляется в температурной зависимости намагниченности. Снятие вырождения основного состояния, соответствующего нижнему псевдодиэлектру, вызывает магнитное упорядочение со спонтанным магнитным моментом $\sim 1.5 \mu_B$ на атом урана, вдвое меньшим момента Кюри–Вейсса, найденного из воспримчивости в парамагнитном состоянии. В экспериментах по мюзометрии релаксации [72, 73] было продемонстрировано, что подсистема делокализованных электронов, сформированная из электронов с 7s-, 6d-орбитали и частично 5f-орбитали, даёт вклад 0.02 μ_B в ферромагнитное упорядочение. Все перечисленные экспериментальные наблюдения и теоретические вычисления [71] однозначно указывают на локальную природу ферромагнетизма в UGe$_2$. Это означает, что квазипуругое рассеяние нейтронов происходит главным образом на флуктуациях намагниченности в подсистеме локализованных моментов.

Взаимодействие между локализованной и делокализованной электронными подсистемами приводит к релаксации намагниченности в парамагнитном и ферромагнитном состояниях в UGe$_2$. Этот тип релаксации является аналогом спин-решёточной релаксации, хорошо известной в физике ядерного магнитного резонанса [74]. В нашем случае создаваемая локализованными магнитными моментами атомов урана намагниченность, дающая основной вклад в рассеяние нейтронов, играет роль "спиновой" подсистемы, в то время как делокализованные электроны представляют собой "решёточные" степени свободы, поглощающие и погашающие флуктуации намагниченности. В отличие от ЯМР-релаксации, определяемой взаимодействием магнитных моментов электронов и ядер, спин-решёточная релаксация между локализованными электронами и электронами проводимости определяется спин-спиновыми обменными процессами и не имеет релятивистской малости, характерной для ЯМР-релаксации. Отклонения намагниченности от равновесного значения релаксируют к равновесию, переходя к электронам проводимости. В соответствии с этим мы будем рассматривать намагниченность, практически полностью определяемую намагниченностью локализованных моментов, как несохраняющуюся величину [34].

Процесс релаксации намагниченности вдоль направления лёгкой оси описывается кинетическим уравнением Ландау–Халатникова [75]

$$\frac{\partial M}{\partial t} = -A \frac{\partial F}{\partial M}. \quad (181)$$

Здесь F — энергия флуктуаций параметра порядка в парамагнитной области в квазистационарном магнитном поле вдоль направления лёгкой оси,

$$F = \int dV \left(\beta_0(T - T_C)M^2 + \nu_{ij} \frac{\partial M}{\partial x_i} \frac{\partial M}{\partial x_j} - MH \right). \quad (182)$$

Градиентная энергия в ортогональном кристалле в обменном приближении определяется тремя постоянными: γ_{xx}, γ_{yy}, γ_{zz}; оси координат x, y, z направлены по

4 Малая остаточная величина Γ_0 была также зарегистрирована в ферромагнетике MnP [62].

5 Такое же свойство локализации намагниченности на атомах урана обнаружено в URbGe [17] и UCoGe [18]. Для последнего соединения имеются также недавние данные [20, 21], частично противоречащие результатам, опубликованным в [18].
осьмей b, c, a. Кинетическое уравнение можно представить как

$$\frac{\partial \mathbf{M}}{\partial t} + \mathbf{V} \cdot \mathbf{j}_i = -\frac{M_s}{\tau} + \mathbf{AH},$$ \hspace{1cm} (183)

где $\tau^{-1} = 2A\mathbf{z}_0(T - T_C)$, j_i — компоненты спинового диффузионного тока,

$$j_i = -2A\gamma_{ij} \frac{\partial M}{\partial x_j},$$ \hspace{1cm} (184)

Подставляя в кинетическое уравнение

$$M = m_{q_0} \exp \left[i(qr - \omega t) \right],$$

$$H = h_{q_0} \exp \left[i(qr - \omega t) \right],$$

получаем восприимчивость

$$\chi(q, \omega) = \frac{m_{q_0}}{h_{q_0}} = \frac{A}{-i\omega + \Gamma_q}.$$ \hspace{1cm} (185)

Ширина линии квазиупругого рассеяния при $q || c$

$$\Gamma_q = 2A \left[\mathbf{z}_0(T - T_C) + \gamma_{ij} q_i^2 \right].$$ \hspace{1cm} (186)

При температурах ниже температуры Кюри T_C в ферромагнитном состоянии равновесное значение намагниченности $M = M_0(T)$ и энергия флуктуаций выражается как

$$\mathcal{F} = \int dV \left[2\mathbf{z}_0(T_C - T)(M - M_0)^2 + \gamma_{ij} \frac{\partial M}{\partial x_i} \frac{\partial M}{\partial x_j} (M - M_0)H \right].$$ \hspace{1cm} (187)

Выражение для восприимчивости имеет тот же вид, что и (185), а ширина линии квазиупругого рассеяния

$$\Gamma_q = 2A \left[\mathbf{z}_0(T_C - T) + \gamma_{ij} q_i^2 \right].$$ \hspace{1cm} (188)

6.3. Заключительные замечания

Экспериментально были измерены две независимые величины: ширина Γ_q и амплитуда $A = \chi(q)\Gamma_q$ распределённая (178) (рис. 13). Вычисления показывают: 1) ширина линии квазиупругого рассеяния нейтронов при температурах, близких к температуре Кюри, — линейная функция $T - T_C$; 2) абсолютная величина производной $|d\Gamma_q/dT|$ в ферромагнитной области примерно вдвое больше, чем в параметрической; 3) зависимость от волнового вектора q — параболическая. Все это качественно соответствует экспериментальным наблюдениям [33] (рис. 14a, b).

В то же время экспериментально установлено [33] (см. вставку на рис. 14a), что производная $\gamma(q)\Gamma_q$ не зависит от температуры при $T > T_C$, но быстро убывает в области температур $T < T_C$. Это означает, что с понижением температуры восприимчивость $\chi(q)$ в UGe2 уменьшается значительно быстрее, чем предсказывает теория среднего поля.

Многие экспериментальные наблюдения указывают на локальную природу ферромагнетизма в урановых соединениях. Взаимодействие между локализованной и коллективизированной электронными подсистемами создаёт специальный механизм магнитной релаксации, по-хожий на спин-рёшеточную релаксацию, известную в физике ЯМР. Эта релаксация, определяемая обменным спин-спиновым взаимодействием, значительно быстрее ЯМР-релаксации, обусловленной значительно более слабым взаимодействием между электронными и ядерными магнитными моментами. Феноменологическое описание квазиупругой магнитной релаксации основано на специфическом свойстве урановых соединений, состоящем в том, что локализованная на атомах урана намагниченность, дающая главный вклад в магнитное рассеяние, не сохраняется. В результате линии квазиупругого рассеяния при $q \rightarrow 0$ приобретает конечную ширину при всех температурах, кроме температуры Кюри.

Этот вывод подтверждён микроскопическими вычислениями [76] магнитной релаксации вблизи перехода в ферромагнитное состояние в системе, состоящей из локализованных и коллективизированных электронов.

7. Анализ релаксации и верхнего критического поля в UCoGe

Эксперименты по ЯМР на ядрах кобальта в UCoGe показывают, что магнитное поле вдоль кристаллографического направления c сильно подавляет магнитные флуктуации вдоль этого направления [31, 77]. Было также обнаружено, что величина верхнего критического поля в этом сверхпроводнике резко убывает при малых отклонениях направления поля от кристаллографических осей a и b в сторону направления спиновой намагниченности вдоль оси c [9, 32]. Следовательно, компонента магнитного поля вдоль оси c весьма эффективно подавляет сверхпроводящее состояние. Как мы видели, триплетное спаривание в урановых ферромагнитных сверхпроводниках в основном определяется продольными флуктуациями намагниченности с амплитудой, пропорциональной нечётной части восприимчивости χ''. В этом разделе мы покажем, что оба упомянутых явления имеют общее происхождение и объясняются...
сильным возрастанием намагниченности (59) [44, 78] и соответствующим уменьшением дифференциальной восприимчивости UCoGe в магнитном поле вдоль оси c.

7.1. Ядерная магнитная релаксация
Скорость спин-решёточной ЯМР-релаксации, измеряемая в поле вдоль направления z, определяется мнимой частью динамической восприимчивости в поле вдоль направлений β и γ, перпендикулярных направлению z,

\[
\frac{1}{T_1} \propto \sum_k \left(|A_{kl}|^2 \frac{\chi_k''(\mathbf{k}, \omega)}{\omega} + |A_{bl}|^2 \frac{\chi_\omega''(\mathbf{k}, \omega)}{\omega} \right). \tag{189}
\]

При низких температурах скорость релаксации 1/T₁ в случае H||c более чем на порядок меньше скорости релаксации, измеренной вдоль двух других кристаллографических направлений [77]. Таким образом, если нас интересует скорость релаксации в поле, направленном под углом θ к оси b в bc-плоскости, который заметно меньше, чем π/2, то мы можем воспользоваться следующим выражением:

\[
\frac{1}{T_1(\theta)} \propto \sum_k |A_{kl}|^2 \frac{\chi_k''(\mathbf{k}, \omega)}{\omega} \cos^2 \theta. \tag{190}
\]

Предполагая, что флуктуации электромагнитного поля на ядрах кобальта определяются флуктуациями намагниченности подсистем ковалентных магнитных моментов, как и в процессах, определяющих релаксацию в рассеянии нейтронов, мы можем использовать формулу

\[
\frac{\chi_\omega''(\mathbf{q}, \omega)}{\omega} = \frac{A}{\omega^2 + \Gamma_k^2}, \quad \Gamma_k = 2A(a + \gamma_j k_i k_j), \tag{191}
\]

где

\[
a = z_2 + \beta_z M_y^2 + 6\beta_z M^2_z = 2\beta_z(3M_y^2 - M_0^2). \tag{192}
\]

После равенства, как и в уравнении (65), получено с помощью условия равновесия

\[
2x_2 + 2\beta_z M_y^2 + 4\beta_z M^2_z = \frac{H_z}{M_z}. \tag{193}
\]

Здесь M₀, M₀ — равновесные компоненты намагниченности,

\[
M_z = M_z(H_y, H_z) = M_z(H \cos \theta, H \sin \theta), \quad M_0 = M_z(H, 0),
\]

в поле

\[
\mathbf{H} = H_y \hat{y} + H_z \hat{z} = H \cos \theta \hat{y} + H \sin \theta \hat{z}. \tag{194}
\]

При всех температурах, меньших температуры Кюри, можно использовать экспериментальные значения намагниченности M₀(H_y, H_z).

ЯМР-измерения выполняются при частотах ω ≪ Γ₀, следовательно, скорость релаксации определяется выра-
7.2. Анизотропия верхнего критического поля

Аномальная анизотропия верхнего критического поля в UCoGe [9, 32] также является следствием сильной полевой зависимости продольной магнитной восприимчивости, определяющей амплитуду спаривающего взаимодействия. Для поля, параллельного спонтанной намагниченности, т.е. вдоль оси c, эта зависимость выведена в разделе 4.2. В поле, направленном вдоль оси b, критическая температура при пренебрежении орбитальными эффектами определяется уравнениями (169) и (170). В поле \(\mathbf{H} = H_S + H_z \), направленном в плоскости bc, уравнения (169) и (170) сохраняют свой вид, но функция Грина выражаются по-другому:

\[
G^{-1} = -\mu_B \sqrt{(\mathbf{h} + H_z)^2 + H_z^2}^{-1},
\]

а угол \(\varphi \) определяется как \(\tan \varphi = H_z / (h + H_z) \). Воспринимчивость приобретает вид

\[
\chi_{xy}(k, k') \approx \frac{\gamma_i k^2}{4[\beta_i(3M_z^2 - M_Z^2) + \gamma k^2]} \tilde{k}_i \tilde{k}_j',
\]

(199)

\[
\chi_{yz}(k, k') \approx \frac{\gamma_i k^2}{(\beta_i + \gamma k^2)} \tilde{k}_i \tilde{k}_j',
\]

(200)

где \(M_z = M_z(H_z, H_z) = M_z(h \cos \theta, h \sin \theta) \), \(M_{so} = M_z(H_0) \) представляют собой равновесные компоненты намагниченности в поле \(\mathbf{H} = H_S + H_z \).

Как обычно, можно пренебречь величиной \(\chi_{xy} \) ввиду её малости по сравнению с \(\chi_{yz} \). Тогда, предполагая, как в разделе 4.2, что наибольшая критическая температура соответствует сверхпроводящему состоянию \((k, n_1', k, n_2') \), в однозонном приближении получим

\[
\ln \frac{e}{T_{SC}} = \frac{1}{g_{1s}} \frac{1}{\sqrt{2}} \frac{[\beta_i(3M_z^2 - M_Z^2) + \gamma k^2]^2}{\cos^2 \varphi}.
\]

(201)

В настоящее время экспериментальные данные о поведении \(M_z = M_z(H_y, H_z) \) при низких температурах как функции двух аргументов отсутствуют. Все измерения производились в поле, направленном вдоль одной из кристаллических осей \(a, b \) или \(c \) [44, 78]. Однако, судя по результатам измерений в области низких температур и высоких магнитных полей [78], где имеет место явление сильной анизотропии верхнего критического поля, можно ожидать, что возрастание поля \(H_z \) при данной величине \(H_y \) будет значительно увеличивать \(M_z \). Уменьшение поля \(H_y \) приводит к возрастанию температуры Кюри, также будет увеличивать \(M_z \). Таким образом, любое отклонение магнитного поля от направлений \(b \) или \(a \) приводит к увеличению \(M_z = M_z(H_y, H_z) \) и, следовательно, в соответствии с уравнением (201), к существенному уменьшению постоянной спаривающего взаимодействия. Это объясняет сильную анизотропию верхнего критического поля, наблюдаемую в UCoGe в области низких температур и сильных магнитных полей [9, 32] (рис. 16).

8. Переход первого рода в ферромагнитное состояние в UGe2

Фазовые диаграммы — температура нескольких слабых ферромагнетиков схожи между собой. При нормальном давлении переход в ферромагнитное состояние — это фазовый переход второго рода. Температура перехода убывает с возрастанием давления и при некотором давлении \(P_0 \) достигает нуля. В некотором интервале давлений, меньших \(P_0 \), магнитное упорядо-
не исчезает скачкообразно. Таким образом, при высоких давлениях и низких температурах ферромагнитное и парамагнитное состояния разделены фазовым переходом первого рода, тогда как при более низких давлениях и высоких температурах переход между этими состояниями — это переход второго рода. Так происходит в MnSi [79–82], UGe2 [83, 84] (рис. 17), ZrZn2 [85]. Подобная фазовая диаграмма имеет место и в ферромагнитных соединениях Co(Si1-xSc)x [86] и (Sr1-xCa)xRuO3 [82], где роль давления играет концентрация селена или кальция.

8.1. Переход в ферромагнитное состояние в теории ферми-жидкости

Фазовый переход из парамагнитного в ферромагнитное в электронной жидкости, обычно рассматриваемый в рамках механизма Стонера, — это фазовый переход второго рода [59]. Некоторое время назад Белитц, Киркпатрик и Войта (БКВ) указали на то, что при низких температурах этот переход должен стать переходом первого рода вследствие корреляционных эффектов, которые приводят к появлению логарифмического члена в разложении плотности свободной энергии по степеням намагниченности M [87]:

$$E = E_0 + xM^2 + \beta M^4 + eM^4 \ln |M| + \ldots \quad (202)$$

В самом деле, при положительном коэффициенте β и малых M член четвёртого порядка в (202) становится отрицательным и переход в ферромагнитное состояние будет переходом первого рода.

Логарифмическая поправка к члену четвёртого порядка имеет длительную историю. Впервые эта поправка была вычислена C. Канно [88] в 1970 г. в модели разрежённого ферми-газа во втором порядке теории возмущений без безразмерного параметра $k_F a$, где k_F — импульс Ферми, связанный с полной плотностью частиц

$$n = n^1 + n^1 = \frac{k_F^2}{3\pi^2},$$

$\alpha > 0$ — длина рассеяния в s-канале. В общем случае для решения задачи о фазовом переходе при $T = 0$ надо найти плотность энергии ферми-газа

$$E(x) = \frac{3}{2} m_F f(M)$$

как функцию безразмерной спиновой поляризации (намагниченности)

$$M = n^1 - n^1$$

при данном $k_F a$. Здесь $c_3 = k_F^2/(2m)$.

В первом порядке по $k_F a$ фазовый переход в ферромагнитное состояние оказывается переходом второго рода [89] и происходит при $k_F a = \pi/2$. Во втором порядке по $k_F a$ теория возмущений предсказывает переход первого рода [90–92] при $k_F a = 1.054$, что соответствует аргументации БКВ. Однако, поскольку переход происходит при значениях газового параметра $k_F a$ порядка единицы, предсказания, основанные на теории возмущений, не вызывают доверия. Теория, суммирующую лестничные диаграммы всех порядков по газовому параметру [93], предсказывает переход второго рода при $k_F a = 0.858$, что находится в хорошем согласии с результатами численных вычислений квантовым методом Монте-Карло [94], дающими переход при $k_F a = 0.86$. Это означает, что ферромагнитный переход в ферми-жидкости происходит не по сценарию БКВ.

Таким образом, переход первого рода в UGe2 не может быть объяснён в рамках теории изотропной ферми-жидкости, даже если забыть о том, что это соединение представляет собой сильно анизотропный ферромагнитный металл с магнитным моментом, сосредоточенным вокруг атомов урана.

Следует также отметить, что изотропная ферромагнитная ферми-жидкость неустойчива к поперечным неоднородным отклонениям намагниченности [95, 96]. Таким образом, задача о переходе изотропной ферми-жидкости в ферромагнитное состояние представляет лишь академический интерес.
8.2. Магнитоупругий механизм развития неустойчивости первого рода

Магнитоупругий механизм развития неустойчивости первого рода был предложен в работе [97], где было показано, что смена второго рода перехода первым имеет место при достаточно большой сжимаемости и "быстрой" зависимости обменного взаимодействия от межатомного расстояния. Это легко продемонстрировать в рамках теории фазовых переходов Ландау. Действительно, при пренебрежении сдвиговыми деформациями плотность свободной энергии вблизи фазового перехода в изинговом ферромагнетике имеет вид

\[F = z_0(T - T_C)M^2 + \beta M^4 + \frac{K}{2} \varepsilon^2 - qeM^2. \] (203)

Здесь \(M \) — плотность намагниченности, \(\varepsilon \) — относительное изменение объема, \(K \) — модуль объёмного сжатия. Коэффициент \(q \) связан с зависимостью температуры Кюри от давления:

\[q = z_0 \frac{dT_C}{d\varepsilon} = -z_0K \frac{dT_C}{dP}. \] (204)

При заданном давлении, т.е. когда изменение объёма магнетика не сопровождается изменением давления окружающей среды, \(dF/d\varepsilon = 0 \), деформация пропорциональна квадрату намагниченности, \(\varepsilon = (q/K)M^2 \), и

\[F = z_0M^2 + \left(\beta - \frac{q^2}{2K} \right) M^4. \] (205)

Следовательно, при \(q^2/(2K) > \beta \) фазовый переход становится переходом первого рода. Последнее неравенство можно представить через измеряемые величины:

\[\frac{K\alpha}{T_C} \left(\frac{dT_C}{dP} \right)^2 > 1, \] (206)

gде мы использовали формальное выражение \(\Delta C = z_0^2/(2\beta)T_C \) для скачка перехода при фазовом переходе второго рода.

Магнитоупругое взаимодействие также индуцирует другой механизм неустойчивости перехода второго рода по отношению к скачкообразному формированию ферромагнитного состояния из парамагнитного. Впервые этот механизм был указан в работе [98]. При близких к критической \(T_C(V) \) температурах, при которых удельная теплоёмкость \(C_0(\tau) \sim \tau^{-3} \), \(\tau = T/T_C(V) - 1 \), благодаря критическим флуктуациям стремится к бесконечности, объёмный модуль упругости

\[K = -V \frac{dP}{dV} = V \frac{\partial^2 F}{\partial V^2}, \]

вычисляемый через плотность свободной энергии \(F = F_0 + F_0, F_0 \sim -T_C t^{2-\alpha} \), становится отрицательным,

\[K = K_0 - A \frac{C_0(\tau)V^2}{T_C} \left(\frac{\partial T_C}{\partial P} \right)^2 = K_0 - AK_0 \frac{C_0(\tau)V^2}{T_C} \left(\frac{\partial T_C}{\partial P} \right)^2 < 0, \] (207)

что противоречит термодинамической устойчивости системы. В действительности при приближении к критической температуре ещё до того, как будет достигнута температура, при которой \(K = 0 \), система испытывает фазовый переход первого рода, пересекаясь через область неустойчивости прямо в ферромагнитную fazу с конечной намагниченностью и соответствующей ей структурной деформацией. Этот переход происходит на скачок через область с \(\partial P/\partial V > 0 \) на изотерме Ван-дер-Ваальса при фазовом переходе жидкость—газ.

Условие неустойчивости первого рода (207) может быть представлено в виде, подобном (206),

\[\frac{K\alpha_C(\tau)}{T_C} \left(\frac{\partial T_C}{\partial P} \right)^2 > 1. \] (208)

В отличие от условия (206), формула (208) показывает, что неустойчивость первого рода неизбежно наступает вследствие бесконечного возрастания флуктуационной теплоёмкости.

Структурное взаимодействие может изменить вид флуктуационной энергии по отношению к тому, который она имела при заданном объёме. Более сложные вычисления [99], учитывающие этот эффект, дают следующее условие возникновения неустойчивости первого рода:

\[\frac{1}{T_C} \frac{\partial T_C}{\partial P} f''(x) \left(\frac{\partial T_C}{\partial P} \right)^2 > 1. \] (209)

Здесь функция \(f(x) \) определяет флуктуационную часть свободной энергии \(F = -T_C f'(T - T_C)/T_C \), \(\mu \) — модуль сдвига.

Очень лёгкая часть неравенства (208) весьма мала и переход первого рода происходит при температуре \(T^* \), очень близкой к критической, где флуктуационная теплоёмкость достаточно велика. Это означает, что разность \(T^* - T_C \) значительно меньше \(T_C \). Поэтому скрытая теплота при таком переходе

\[q \approx 206C(T^* - T_C) \] (210)

оказывается очень малой, и переход первого рода почти неотличим от фазового перехода второго рода. Такие переходы носят название слайдовых переходов первого рода или фазовых переходов первого рода, близких к переходам второго рода.

Согласно соотношениям (206), (208) магнитоупругий механизм действительно может изменить род перехода при достаточно сильной зависимости температуры перехода от давления. Это имеет место во всех материалах, перечисленных выше. Для того чтобы проверить выполнение критериев (206), (208), надо найти скачок теплоёмкости в теории среднего поля и флуктуационную часть теплоёмкости вблизи температуры Кюри для данного материала. В разделах 8.3, 8.4 мы проделаем это для \(\text{UGe}_2 \) [35], характеризующегося сильной магнитной антитропией и резким убыванием критической температуры с возрастанием давления в области 14 — 15 кбар [3].

8.3. Треплоёмкость вблизи температуры Кюри

\(\text{UGe}_2 \) — орторомбический материал, переходящий при нормальном давлении в ферромагнитное состояние при \(T_C = 53 \) К. Магнитные измерения демонстрируют очень сильную магнитную антитропию [100] с лёгкой осью вдоль направления \(a \), которое мы будем обозначать как направление \(z \). Как и в разделе 7, мы будем принимать во внимание лишь флуктуации параметра порядка вдоль лёгкой оси. При температурах, превышающих температуру Кюри, флуктуации параметра порядка опреде-
ляются отклонениями свободной энергии системы

\[F = \int d^3r \left[\frac{1}{2} M^2 + \beta M^4 + \gamma_i \nabla_i M \nabla_j M - \frac{1}{2} \frac{\partial^2 M(\mathbf{r})}{\partial z^2} \left(\frac{M(\mathbf{r})}{|\mathbf{r}| - r^2} \right) d^3r \right] \]

(211)

от равновесного значения. \(\mathbf{z} = z_0(T - T_C) \). Градиентная энергия определяется тремя постоянными: \(\gamma_{ex}, \gamma_{ly}, \gamma_{zz} \). Координаты \(x, \mathbf{y} \) и \(z \) соответствуют кристаллографическим направлениям \(a, b, c \). Последний векторный член в уравнении (211) соответствует магнитостатической энергии [101] внутреннего магнитного поля \(\mathbf{H} \), создаваемого намагниченностью, и выражается через её посредством уравнений Максвелла

\[\text{rot} \mathbf{H} = 0, \quad \text{div} (\mathbf{H} + 4\pi \mathbf{M}) = 0. \]

Мы будем использовать следующие оценки для коэффициентов в функционале Ландау:

\[x_0 = \frac{1}{m^2 n}, \]

(212)

\[\beta = \frac{T_C}{2(m^2 n)^2}, \]

(213)

\[\gamma_x \approx \gamma_y \approx \gamma_z \approx \frac{T_C a^2}{m^2 n}. \]

(214)

Здесь \(m \) — магнитный момент, приходящийся на один атом урана при нулевой температуре, \(m = 1.4 \mu_B \) при нормальном давлении [16], \(n = a^3 \) — плотность атомов урана, которую приближённо можно считать равной кубу обратного расстояния между соседними атомами урана \(a = 3.85 \text{А} \) [19].

Средняя намагниченность и скачок теплоёмкости имеют вид

\[M^2 = -\frac{\gamma_0}{2\beta} = \left(\frac{m n T}{T - T_C} \right)^2, \]

(215)

\[\Delta C = T C_\alpha z^2 - \frac{2}{\beta}. \]

(216)

Найденный экспериментально скачок теплоёмкости \(\Delta C_{\exp} \approx 10 \text{ Дж моль}^{-1} \text{ К}^{-1} \) в пересчёте на один атом урана [19] точно соответствует теоретической величине (216).

Для вычисления флуктуационной теплоёмкости мы используем фурье-представление квадратичной по параметру порядка части уравнения (211)

\[F_{\text{fl}} = \sum_{k} \left(\frac{2}{k^2} k^2 + \frac{2}{k^2} k^2 \right) M_k M_{-k}, \]

(217)

где \(M_k = \int M(\mathbf{r}) \exp(-i\mathbf{k} \cdot \mathbf{r}) d^3r \). Последний член в выражении (217) соответствует магнитостатической энергии [35, 101]. Соответствующие свободная энергия и теплоёмкость, найденные в похожей модели одноосного сегнетоэлектрика Левановском, имеют вид [102]

\[F_{\text{fl}} = -\frac{T}{2} \sum_{k} \ln \frac{\pi T}{2|\gamma_{ij} k_{ij} + 2\pi k^2 z^2 / k^2|}. \]

(218)

\[C_{\text{fl}} = \frac{T^2 z_0^2}{2(2\pi)^2} \int_0^\infty d\zeta \frac{d\zeta}{\zeta + \gamma_{ij} k_{ij} + 2\pi k^2 z^2 / k^2} \]

(219)

Переход к сферическим координатам и интегрируя по модулю \(k \), приходим к

\[C_{\text{fl}} = \frac{T^2 z_0^2}{32\pi^2} \int_0^\pi d\zeta \frac{d\phi}{\zeta^2 + \pi^2/2 \zeta^2 + \gamma_{ij} k_{ij} + 2\pi k^2 z^2 / k^2} \]

(220)

Здесь \(\gamma_{ij}(\phi) = \gamma_x \cos^2 \phi + \gamma_z \sin^2 \phi \). При критической температуре \(T = 0 \) и интеграл расходится. Пронтгрировав по \(\zeta \), получаем с логарифмической точностью

\[C_{\text{fl}} = \frac{T^2 z_0^2}{32\pi \sqrt{2} \gamma_{ij} k_{ij} + 2\pi k^2 z^2 / k^2} \ln \frac{2\pi n^2}{T - T_C}, \]

(221)

где

\[\frac{1}{\gamma_{ij} k_{ij} + 2\pi k^2 z^2 / k^2} = \frac{1}{2\pi^2} \int_0^{2\pi} d\phi \frac{d\zeta}{\zeta^{3/2} \gamma_{ij} k_{ij} + 2\pi k^2 z^2 / k^2}. \]

Использованное условие \(\zeta < 2\pi \) при \(T_C = 10 \text{ К} \) реализуется при

\[\frac{T - T_C}{T_C} < \frac{2\pi n^2}{T - T_C} \approx 0.015. \]

(222)

Виду грубости оценки параметров область логарифмического возрастаания теплоёмкости может быть шире.

Вычисления с учётом взаимодействия флуктуаций проведены Ларкиным и Хмельницким [103] в похожей модели одноосного сегнетоэлектрика. В наших обозначениях флуктуационная теплоёмкость, полученная в [103], имеет вид

\[C_{\text{fl}} = \frac{3/2 T c z_0^2}{16\pi \gamma_{ij} k_{ij} + 2\pi k^2 z^2 / k^2} \ln \frac{2\pi n^2}{T - T_C} \]

(223)

Здесь \(\gamma_{ij} = 3 T c / (\sqrt{2}\pi \gamma_{ij} k_{ij} + 2\pi k^2 z^2 / k^2) \) — эффективная постоянная взаимодействия. Используя выражения (212)–(214), выражение (223) можно представить как

\[C_{\text{fl}} \approx \frac{n}{10} \left(\frac{T c}{T C_{\text{emp}}} \right)^{1/6} \ln \frac{2\pi n^2}{T - T_C} \]

(224)

\{ln [\pi/(2\pi)]\}^{1/3} — весьма медленно изменяющаяся функция, мало отличающаяся от единицы, следовательно, в области температур, ограниченной неравенством (222), можно оценить флуктуационный вклад в теплоёмкость как

\[C_{\text{fl}} \approx \frac{n}{5}. \]

(225)

Мы видим, что флуктуационная теплоёмкость меньше, чем скачок теплоёмкости в теории среднего поля (216). Следовательно, для того чтобы проверить наличие тенденции к фазовому переходу первого рода в UGe₂, можно воспользоваться критерием (206).

8.4. Нестабильность перехода второго рода

Температура Кюри в UGe₂ монотонно уменьшается с увеличением давления, начиная с 53 К при нормальному давлении, и резко убывает при давлениях выше 15 кбар [3]. Среднюю величину производной критической температуры по давлению можно оценить как

\[\frac{\partial T_C}{\partial P} \approx 40 \text{ К} / 14 \text{ кбар} = 4 \times 10^{-25} \text{ см}^3. \]

(226)
для объёмного модуля получаем

\[K = \rho e^2 \approx 10^{11} \text{ эрд см}^{-3}. \]
(227)

здесь использованы типичные для металлов величины скорости звука \(e \approx 10^7 \text{ см} \text{ с}^{-1} \) и измеренное [104] значение плотности \(\rho = 10.26 \text{ г см}^{-3}. \) таким образом, для соотношения (206) получим

\[\frac{K_0}{T_C} \left(\frac{\partial T_C}{\partial P} \right)^2 = 0.2. \]
(228)

при \(T_C \approx 10 \text{ К} \) производная критической температуры по давлению значительно больше, чем её оценка согласно соотношению (226). Таким образом, мы приходим к заключению, что при температуре порядка 10 К критерий (206) выполняется и фазовый переход в ферромагнитное состояние становится переходом первого рода.

8.5. Заключительные замечания
Магнитоупругое взаимодействие способствует развитию неустойчивости относительно к превращению перехода в упорядоченное состояние в переход первого рода в любом ферромагнетике. Однако температурный интервал, в котором развивается эта неустойчивость, обычно очень узок и переход первого рода практически неотличим от перехода второго рода. В анизотропном ферромагнетике UGe2 быстрое убывание критической температуры при давлениях выше 14–15 кбар оказывается достаточным для смены второго рода перехода в ферромагнитное состояние первым родом.

при низких температурах, согласно теореме Нернста и соотношению Клапейрона–Клаузиуса

\[\frac{dT_C}{dP} = \left. \frac{v_1 - v_2}{s_1 - s_2} \right|_{T \to 0} \to \infty, \]
(229)

убывание температуры перехода первого рода становится бесконечно быстрым. Это означает, что даже слабый переход первого рода по мере приближения температуры к абсолютному нулю становится сильнее. следовательно, наличие магнитоупругого взаимодействия в ферромагнетиках или в общем случае взаимодействия параметра порядка любой природы с упругими степенями свободы вызывает сомнения в возможности существования квантовых критических явлений.

9. Сверхпроводящее упорядочение в UIr

UIr обладает моноклинной структурой PbBi-типа, показанной на рис. 18, без центра инверсии. при нормальном давлении это ферромагнетик изинговского типа с температурой Кюри \(T_C = 46 \text{ К}. \) Магнитная восприимчивость следует закону Кюри–Вейсса с эффективным магнитным моментом \(\mu_d = 2.4 \mu_B \) на 1 атом U, тогда как спонтаннный момент при низкой температуре равен \(0.5 \mu_B \) на 1 атом U. П–T-фазовая диаграмма UIr состоит из ферромагнитной фазы FM1 в области низких давлений, ферромагнитной фазы FM2 в области высоких давлений и сверхпроводящей фазы, как показано на рис. 19. Скачкообразное изменение спонтанной намагниченности на границе фаз означает, что переход FM1–FM2 — первого рода. Переход из FM2 в немагнитное состояние — второго рода [106].

до сих пор неизвестно, существует ли сверхпроводимость с ферромагнитизмом в UIr [106]. Однако если это так, то мы имеем дело с уникальной ситуацией, при которой сверхпроводимость возникает в металле с нарушенной симметрией по отношению и к образованию времени, и к пространственной инверсии. здесь мы описываем структуру параметра порядка такого сверхпроводящего состояния.

Группа симметрии нормального немагнитного состояния UIr

\[G_\text{N} = (E, C_{2h}) \times R \times U(1) \]
(230)

рис. 18. Моноклинная структура UIr. стрелками показано направление спонтанной намагниченности [103].
включает в себя точечную группу симметрии $C_2 = (E, C_{2h})$, где C_{2h} — вращение вокруг оси b на угол π (см. рис. 18), операцию инверсии времени R и группу калибровочных преобразований $U(1)$. В состоянии FM2 симметрия по отношению к обращению времени нару-
шена и группа симметрии

$$G_F = (E, RC_{2h}) \times U(1) \quad (231)$$

теперь включает в себя комбинацию поворота C_{2h} и операции R, меняющей направление магнитного момента, лежащего в плоскости ac, на противоположное. Наконец, в сверхпроводящем состоянии, сосу-
ществующем с ферромагнитным состоянием FM2, нару-
шена калибровочная симметрия и группа симметрии имеет вид

$$G_{SC} = (E, \exp(2i\phi)RC_{2h}). \quad (232)$$

Пространственная инверсия отсутствует, и магнит-
ное спаривание взаимодействие неизбежно включает в себя взаимодействие Дьяконовского-Мории [38]. В
результате параметр порядка сверхпроводящего состояния состоит из суммы триплетной и синглетной частей:

$$d = i(d \sigma_y + id\sigma_y). \quad (233)$$

Триплетная часть имеет обычный вид:

$$d(k, r) = \frac{1}{2} [- (x + iy) A^1(k, r) + (x - iy) A^1(k, r)] + A^0(k, r) z, \quad (234)$$

однако, в отличие от координатных осей в ортромбик-
ских кристаллах, которые мы обсуждали в разделе 2, координатные оси для сверхпроводящего параметра
порядка не совпадают с кристаллографическими направ-
лениями моноклинного кристалла. А именно, здесь
единичный вектор \hat{z} параллелен спинному моменту,
лежащему в плоскости ac в направлении [101], \hat{x} —
единичный вектор, направленный вдоль оси b, и $\hat{y} = z \times \hat{x}$,

$$A^1(k, r) = k x \eta_x^1(r) + ik y \eta_y^1(r),$$

$$A^0(k, r) = k x \eta_x^2(r), \quad (235)$$

gде k_x, k_y, k_z — проекции волнового вектора на оси $\hat{x}, \hat{y}, \hat{z}$, определённые выше. Синглетная часть параметра
порядка

$$d_0(k, r) = Fd_0(r), \quad (236)$$

gде F — функция k_x, k_y, k_z.

10. Заключение

Описание свойств урановых соединений, представленное в настоящем обзоре, основано на симметрии свер-
хпроводящих состояний с триплетным спариванием в орто-
ромбических ферромагнетиках. Феноменологические
соображения подтверждают микроскопическими вычислениями в рамках теории сверхпроводимости
сов спаривающим взаимодействием, выраженным через
статическую магнитную восприимчивость аншлютропной
ферромагнитной среды. Этот подход воспроизводит структуру сверхпроводящих состояний, найденную из
чisto симметричных соображений, и позволяет на качест-
венном уровне объяснить целый ряд эксперименталь-
ных наблюдений.

Темы, которые не были затронуты в настоящем об-
зоре, — это экспериментальные исследования электрон-
ной фотовозбудимости (Angle-Resolved Photoemission Spectroscopy ARPES) и вычисления зонной структуры,
результаты которых неоднородно согласуются
с собой. Здесь можно полагать, что в недав-
них работах, в которых изложены результаты ARPES-
измерений на URhGe [107] и на UCuGe [108],
проверено их сравнение с зонными вычислениями и дан
обычный список ссылок на предшествующие работы.

Благодарности. Я благодарен А. Хаксли, Ж.-П. Бризну,
С. Раймонду, К. Ишиде, Д. Аоки, М. Житомирскому и
Ж. Флуюк за многочисленные обсуждения. Я также
признаюшему М. Садовскому, приглашенному меня про-
честь лекции на Зимней школе физиков-теоретиков
Kourovka-2016, что способствовало появлению этого
обзора.

Список литературы

1. Maple M B J. Magn. Magn. Mater. 31–34 479 (1983).
2. Maple M B Physica B 215 110 (1995).
3. Saxena S S et al. Nature 406 587 (2000).
4. Aoki D et al. Nature 413 613 (2001).
5. Huy N T et al. Phys. Rev. Lett. 99 067006 (2007).
6. Akazawa T et al. J. Phys. Soc. Jpn. 73 3129 (2004).
7. Aoki D et al. C. R. Phys. 12 573 (2011).
8. Aoki D, Flouquet J. J. Phys. Soc. Jpn. 81 011003 (2012).
9. Aoki D, Flouquet J J. Phys. Soc. Jpn. 83 061101 (2014).
10. Aso N et al. Physica B 359 361 1051 (2005).
11. Kotegawa H et al. J. Phys. Soc. Jpn. 74 705 (2005).
12. de Visser A et al. Phys. Rev. Lett. 102 167003 (2009).
13. Sakarya S, van Dijk N H, Brück E. Phys. Rev. B 71 174401 (2005).
14. Hykkel J D et al. Phys. Rev. B 80 184501 (2014).
15. Kobayashi T C et al. J. Phys. Soc. Jpn. 76 051007 (2007).
16. Kervanavonis N et al. Phys. Rev. B 64 174509 (2001).
17. Prokes K et al. Acta Phys. Polon. B 34 1473 (2003).
18. Prokes K et al. Phys. Rev. B 81 184007(R) (2010).
19. Huxley A et al. Phys. Rev. B 63 144519 (2001).
20. Taupin M et al. Phys. Rev. B 92 035124 (2015).
21. Butcher W M et al. Phys. Rev. B 92 121107(R) (2015).
22. Mc Hale P, Fulde P, Thalmeier P Phys. Rev. B 70 014513 (2004).
23. Hattori K, Tsunetsugu H Phys. Rev. B 87 064501 (2013).
24. Mineev V V Phys. Rev. B 66 134504 (2002).
25. Mineev V, Champel T Phys. Rev. B 69 144521 (2004).
26. Mineev V Phys. Rev. B 73 012501 (2011).
27. Mineev V Phys. Rev. B 90 032053 (2012).
28. Mineev V Phys. Rev. B 91 032053 (2015).
29. Lévy F et al. Science 309 1343 (2005).
30. Hattori T et al. Phys. Rev. Lett. 88 066403 (2012).
31. Aoki D et al. J. Phys. Soc. Jpn. 78 113709 (2009).
32. Huxley A, Raymond S, Ressouche E Phys. Rev. Lett. 91 207201 (2003).
33. Mineev V V Phys. Rev. B 88 224408 (2013).
34. Mineev V V J. Phys. Conf. Ser. 400 032053 (2012).
35. Mineev V V, Samokhin K V Introduction to Unconventional Superconductivity (Amsterdam: Gordon and Breach Sci. Publ., 1999).
36. Aoki D, Flouquet J J. Phys. Soc. Jpn. 81 011003 (2012).
37. Mineev V V, Samokhin K V, Mineev V V Phys. Rev. B 77 104520 (2008).
38. Mineev V V, Samokhin K V, Mineev V V Phys. Rev. B 77 104520 (2008).
39. Ambegaokar V, Mermin N D Phys. Rev. Lett. 30 81 (1973).
Superconductivity in uranium ferromagnets

V.P. Mineev

Commissariat à l’Energie Atomique, Université Grenoble Alpes, Institut Nanosciences et Cryogénie – FELIQS, 38000 Grenoble, France; Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, 119334 Moscow, Russian Federation
E-mail: vladimir.mineev@cea.fr

The theoretical description and the survey of physical properties of superconducting states in the uranium ferromagnetic materials are presented. On the basis of microscopic theory is shown that the coupling between the electrons in these ferromagnetic metals by means of magnetization fluctuations gives rise the triplet pairing superconducting state and the general form of the order parameter dictated by symmetry is established. The theory allows to explain some specific observations including peculiar phenomenon of reentrant superconductivity in URhGe in magnetic field perpendicular to the direction of spontaneous magnetization. In addition we describe several particular topics relating to uranium superconducting ferromagnets: (i) critical magnetic relaxation in dual localized-itinerant ferromagnets, (ii) phase transition to ferromagnetic state in Fermi liquid and UGe2, (iii) superconducting ordering in ferromagnetic metals without inversion symmetry.

Keywords: ferromagnetism, superconductivity

PACS numbers: 74.20.Mn, 74.20.Rp, 74.25.Dw, 74.70.Tx, 75.40.Gb

Bibliography — 109 references

Received 16 March 2016, revised 5 April 2016

Uspekhi Fizicheskikh Nauk 187 (2) 129 – 158 (2017)

Phys. Rev. Lett. 112 037202 (2014)

Phys. Rev. Lett. 105 206403 (2010)

Phys. Rev. B 86 184416 (2012)

Phys. Rev. B 55 8330 (1997)

Phys. Rev. B 76 052405 (2007)

Phys. Rev. B 79 060401(R) (2009)

Phys. Rev. Lett. 105 212701 (2010)

Phys. Rev. Lett. 94 247006 (2005)

Phys. Rev. A 22 1535 (1954)

Phys. Rev. A 94 144418 (2005)

Phys. Rev. A 23 22445 (1985)

Phys. Rev. A 24 1083 (2000)

Phys. Rev. A 24 105418 (2014)

Phys. Rev. B 91 174503 (2015)

Phys. Rev. B 89 15335 (2014)