A standardized microarray assay for the independent gene expression markers in AML: EVI1 and BAALC

Jaap Brand1, Martin H van Vliet1, Leonie de Best1, Peter JM Valk2, Henk E Viëtor1, Bob Löwenberg1,2 and Erik H van Beers1*

Abstract

High levels of BAALC, ERG, EVI1 and MN1 expression have been associated with shorter overall survival in AML but standardized and clinically validated assays are lacking. We have therefore developed and optimized an assay for standardized detection of these prognostic genes for patients with intermediate cytogenetic risk AML. In a training set of 147 intermediate cytogenetic risk cases we performed cross validations at 5 percentile steps of expression level and observed a bimodal significance profile for BAALC expression level and unimodal significance profiles for ERG and MN1 levels with no statistically significant cutoff points near the median expression level of BAALC, ERG or MN1. Of the possible cutoff points for expression levels of BAALC, ERG and MN1, just the 30th and 75th percentile of BAALC expression level and the 30th percentile of MN1 expression level cutoff points showed clinical significance. Of these only the 30th percentile of BAALC expression level produced in an independent verification (extended training) data set of 242 cytogenetically normal AML cases and successfully validated in an external cohort of 215 intermediate cytogenetic risk AML cases. Finally, we show independent prognostic value for high EVI1 and low BAALC in multivariate analysis with other clinically relevant molecular AML markers. We have developed a highly standardized molecular assay for the independent gene expression markers EVI1 and BAALC.

Keywords: AML, Acute myeloid leukemia, BAALC, Brain and acute leukemia cytoplasmic, EVI1, Ecotropic viral integration site 1, Intermediate cytogenetic risk, Prognosis, OS, Overall survival

Background

Overexpressions of EVI1, BAALC, ERG, and MN1 have been reported to be prognostically relevant in AML [1-9]. For instance, the prognostic value of EVI1 overexpression was discovered and reproduced in intermediate cytogenetic risk AML [4,9-13], while the prognostic value of BAALC, ERG and MN1 mRNA values were demonstrated in normal karyotype AML [1,6,8]. These studies selected univariate cutoff points for BAALC, ERG, and MN1 continuous expression levels based on cohort quartiles, while the EVI1 expression cutoff point was chosen to discriminate between undetectable or low levels versus high expression levels. Translation to the clinic has been proposed [14-20] but lack of standardized assays has hampered their broad implementation. We have developed a prognostic assay on a custom gene expression array that detects EVI1 overexpression and low BAALC expression levels in individual AML patients as part of a multiplex genetic array that also detects AML with t(8;21), t(15;17), inv(16)/t(16;16), NPM1 mutations, and CEBPA double mutations with high accuracy (sensitivity and specificity > 95%).

Results and discussion

OS prognostic assay for BAALC, ERG, and MN1

BAALC, ERG and MN1 gene expression levels were determined in a standardized assay suitable for single case analysis (see Methods) in a training set, an independent verification (extended training) set and one independent validation set of AML patients. Distributions of ERG mRNA levels on average were higher in the training cohort as compared with the verification cohort (Figure 1A) while MN1 and BAALC expression levels were similar.

* Correspondence: e.vanbeers@skyline-diagnostics.com
1Skyline Diagnostics BV, Rotterdam Science Tower, Marconistraat 16, 3029 AK, Rotterdam, The Netherlands
Full list of author information is available at the end of the article

© 2013 Brand et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Results of 1000-fold cross-validations (CV) in the training and verification cohorts for **BAALC**, **ERG**, and **MN1** expression levels (Figure 1D-F). For **BAALC** expression levels there are two local optima in the training cohort at the 30th percentile cutoff point and 75th percentile cutoff points with 23% and 47% significant folds (y-axis) with a log rank for OS $p < 0.05$. At the 25th, 30th and 35th percentile there are 10%, 9% and 23% of the 1000 random cohort splits in the validation cohort (Figure 1D, green bars). Clearly only the 30th percentile BAALC cutoff point is supported by the verification cohort and thus chosen for lock-down and further validation.

No significant cutoff point for **ERG** expression levels were found in the training cohort at any of 17 expression cutoff points analyzed (Figure 1E), because the percentage (y-axis in Figure 1E) of the 1000 random cohort splits was $< 1\%$ for every cutoff point. Therefore, due to ambiguous training and verification results, **ERG** expression levels were not considered for validation. For **MN1** mRNA expression levels (Figure 1F) there is an optimum at the 30th percentile in the training cohort corresponding with a normalized expression value -0.76 and achieving 51% significant cross validation splits. Although, this cutoff point could not be reproduced in the independent verification cohort, it was assessed for further validation on an independent cohort. The prognostic value of both **ERG** and **MN1** expression levels for overall survival is inconsistent between training and verification cohorts (Figure 1).

Finding a clinically relevant cutoff point for EVI1 expression

The distribution of **EVI1** mRNA expression levels in the training cohort is extremely skewed as can be seen in Figure 2A. Figure 2A also shows the cutoff point of 0.987, which was derived by maximizing the logrank test statistic (see Statistical analysis). All cases with a high **EVI1** expression level (above the cutoff point) have a short survival and died (Figure 2B, red circle) while the cases with a low **EVI1** expression level (below the cutoff point) have much longer survival.

Cutoff point validation

The prognostic significance for OS between **BAALC** low-expressers and high-expressers in the training (left) cohort and validation (right) cohort (Table 1 and Figure 3) (HR
0.482, \(p \text{-val } 7 \times 10^{-4} \) and HR 0.686, \(p \text{-val } .0205 \)) and for low \(EVI1 \) expression (HR 0.442, \(p \text{-val } .012 \) and HR 0.44, \(p \text{-val } .004 \)) and therefore both pass the validation. However, \(MN1 \) gene expression levels is only statistically significant for the training cohort (HR 0.456, \(p \text{-val } 0.00045 \)) but not for the validation cohort (HR 0.877, \(p \text{-val } 0.2329 \)) and thus will not be considered further. Since for \(ERG \) expression levels no significant cutoff point was identified in the training cohort (Figure 1) it was not included in the validation study.

Cutoff point in relation to event free survival

Low \(BAALC \) and high \(EVI1 \) were also prognostic for EFS in the training and validation cohorts \(BAALC \) (training \(p = 0.0038 \); validation \(p = 0.0105 \) by the logrank test) and \(EVI1 \) (training \(p = 0.0164 \); validation \(p = 0.00125 \) by the logrank test), respectively.

\(NPM1 \), \(CEBPA \) and \(FLT3 \) mutation frequencies in \(BAALC \), \(EVI1 \) expression subgroups

We examined the distribution of AML mutations \(NPM1 \), \(CEBPAdm \) and \(FLT3-ITD \) among low \(BAALC \) and high \(EVI1 \) expression AML, respectively (Tables 2 and 3). Low \(BAALC \) expression cases had significantly more \(NPM1 \) mutations (49/85) compared with high \(BAALC \) expressers (36/85) (Fisher’s exact, \(p < 0.0001 \)). All 10 \(CEBPA \) double mutants were present in high \(BAALC \) expressers and therefore significantly enriched (Fisher’s exact, \(p = 0.0146 \)). \(FLT3-ITD \) mutant frequency did not differ between low (25/81) or high (54/134) \(BAALC \) expressers (Fisher’s exact, \(p = 0.148 \)).

\(NPM1 \) mutations were enriched (85/203) in low \(EVI1 \) compared with none in 12 high \(EVI1 \) (Table 3, \(p = 0.0039 \)). \(CEBPA \) double mutant frequency did not differ between low \(EVI1 \) expressors (10/203) or high \(EVI1 \) expressors (0/12) (Fisher’s exact, \(p = 1 \)). And finally, \(FLT3 \) mutation frequency did not significantly differ between low and high \(EVI1 \) expressors (Table 3, \(p = 0.218 \)).

Multivariate analysis

The prognostic value of \(BAALC \) and \(EVI1 \) expression levels was further tested in a multivariate Cox-Proportional Hazard analysis in the validation cohort adjusting for potential confounding covariates including the mutation markers.

Table 1: Hazard ratio and logrank (p-value) for evaluated cut points in training, verification and validation datasets

Gene name	Dataset	AMLprofiler	25th percentile	50th percentile	75th percentile
\(BAALC \)	Training	.48 (.001)	.44 (< .001)	.63 (.01)	.43(< .001)
	Verification *)	.60 (.002)	.55 (.001)	.66 (.005)	.65 (.007)
	Validation	.69 (.021)	.72 (.066)	.88 (.24)	.93 (.345)
\(ERG \)	Training	No significant cutoff point	1.41 (.066)	1.37 (.051)	1.45 (.048)
	Verification *)	ND	1.41 (.037)	1.56 (.003)	1.72 (.001)
	Validation	1.54 (.02)	1.12 (.248)	1.28 (.099)	1.79 (.003)
\(MN1 \)	Training	2.19 (< .001)	2.56 (< .001)	1.79 (.002)	1.79 (.003)
	Verification *)	1.31 (.049)	1.12 (26)	1.32 (.049)	1.39 (.035)
	Validation	1.14 (.2329)	1.37 (.068)	1.19 (167)	1.32 (.081)

OS logrank \(p < 0.05 \) indicated in bold. For \(ERG \) no cut point was identified in the training cohort.

*) this data set contains only normal karyotype cases.
ND, not done because lack of significant cutoff point in training.

Figure 2: Plot of \(EVI1 \) expression versus the percentile of \(EVI1 \) (A) and of \(EVI1 \) gene expression versus overall survival (OS) in months (B) both for the training cohort.
CEPBA double mutations, NPM1 mutations, FLT3-ITD, age in years, gender, White Blood Cell count, percent of blast cells in bone marrow and platelet count at diagnosis (Table 4). When adjusting for these variables, EVI1 overexpression proved an independent significant prognostic factor (p = 0.019; HR = 2.21; Table 4), but BAALC expression levels not. Therefore we have also analyzed the validation cohort after excluding all n = 12 EVI1 overexpression cases and demonstrate that low BAALC expression level remains an independent prognostic factor (p = 0.035; HR = 0.62; Table 5) when evaluated in all (n = 203) low EVI1 cases.

Conclusions
We have developed a standardized assay for BAALC and EVI1 gene expression markers with prognostic value for patients with AML. We trained an assay on a well-characterized cohort of intermediate cytogenetic risk AML cases and determined cutoff points for the gene expression markers BAALC and EVI1. Similar to
previos studies the cutoff point for EVI1 overexpression was selected and validated to predict for worse OS in AML patients. Low BAALC was trained as those cases with the lowest 30th percentile BAALC expression level and found to predict for significantly worse OS in an independent cohort of intermediate cytogenetic risk cases (Table 1). Both EVI1 overexpression and low BAALC expression levels were significantly associated with clinical outcome as shown by multivariate analysis, including other molecular markers such as NPM1, FLT3 and CEBPA gene aberrations. Two other prognostic gene expression markers, evaluated in this study, MN1 and ERG were found not significantly prognostic in either training or validation cohorts and therefore not added to the AMLprofiler assay. We successfully standardized and validated OS prognostic assays for low BAALC and high EVI1 expression levels in AML that we integrated into an in vitro diagnostic platform for clinical use that simultaneously detects t(8;21), t(15;17), inv(16), t(16;16), NPM1, and CEBPA double mutations.

Methods
Patients and treatment
This study used three datasets, a training cohort, a verification cohort and a validation cohort. The training cohort consisted of 147 intermediate cytogenetic risk AML cases, the validation cohort of 215 intermediate cytogenetic risk AML cases and was publically available ([21], GSE12417).

Table 2 Mutations at diagnosis stratified for BAALC expression levels in the validation cohort

Variable	Total n = 215	Low BAALC n = 81	High BAALC n = 134	Fisher’s exact test p-value
NPM1-ABD	85	49	36	<0.00001
CEBPA-dm	10	0	10	0.0146
FLT3-ITD	79	25	54	0.148

Table 3 Mutations at diagnosis stratified for EVI1 expression levels in the validation cohort

Variable	Total n = 215	Low EVI1 n = 203	High EVI1 n = 12	Fisher’s exact test p-value
NPM1-ABD	85	85	0	0.0039
CEBPA-dm	10	10	0	1
FLT3-ITD	79	77	2	0.218

Table 4 Multivariate analysis in the validation cohort for OS using Cox Proportional Hazard model

Variable	p-value	HR	95% CI
BAALC	0.1	1.42	0.93–2.15
EVI1	0.019	2.21	1.14–4.27
CEBPA-dm	0.052	0.36	0.13–1.01
NPM1-ABD	0.21	0.76	0.50–1.17
FLT3-ITD	0.017	1.64	1.09–2.46
age in years (continuous)	0.021	1.02	1.00–1.03
gender	0.76	1.06	0.73–1.55
White blood Cell Count at diagnosis [×10^9/l]	0.17	1.00	1.00–1.00
Percentage of blast cells in bone marrow	0.45	1.00	0.99–1.00
Platelets at diagnosis [×10^9/l]	0.24	1.00	1.00–1.00

Measurements of BAALC, EVI1, ERG and MN1 expression
Training and validation expression levels are measured in RNA extracted from ficoll purified blast cells from diagnostic BM and PB samples as previously described [22]. The stored hybridization cocktails have been re-hybridized to the AMLprofiler custom GeneChip which has 995 probe sets that are a subset of the Affymetrix U133Plus2.0 GeneChip (n = 505 cases, GSE42194). We had previously validated 10 re-hybridizations of cocktails including the freeze-thaw cycles and could not show impact on mRNA quantification (data not shown). Probe set intensity data for the external cohort are obtained from the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/; accession GSE12417) and copied from U133Plus2.0 format into the corresponding 995 probe set coordinates of a dummy AMLprofiler to guarantee standardized data analysis in-cluding MAS5.0 summarization, chip normalization and Geometric Mean Centering per probe set (gene). Next, the expression level of BAALC is calculated as the average of

Table 5 Multivariate analysis in the validation cohort excluding high EVI1 cases

Variable	p-value	HR	95% CI
BAALC-lower	0.035	1.56	1.03–2.54
CEBPA-dm	0.047	1.35	0.12–0.98
NPM1-ABD	0.36	0.82	0.53–1.26
FLT3-ITD	0.038	1.56	1.02–2.39
age in years	0.012	1.02	1.00–1.04
gender	0.74	1.07	0.72–1.58
White blood Cell Count at diagnosis [×10^9/l]	0.14	1.00	1.00–1.00
Percentage of blast cells in bone marrow	0.2	0.99	0.99–1.00
Platelets at diagnosis [×10^9/l]	0.28	1.00	1.00–1.00

Gene expression, gene mutation and gender variables are binary, while age, WBC, % blast, and platelets are continuous variables.
probe sets 218899_s_at and 222780_s_at after mean variance normalization. The expression level of ERG is the average of probe sets 241926_s_at and 213541_s_at after mean variance normalization and the expression level of EVII is the average of probe sets 221884_at and 226420_at after mean variance normalization. The expression level of MN1 is the value of the probe set 205330_at.

Cutoff point development

Cutoff points for BAALC, ERG and MN1 expression levels were derived using a 147 case training cohort of intermediate cytogenetic risk AML as well as a 242 case normal karyotype AML cohort with overall survival (OS) information. Figure 1 then served to derive optimal cutoff points. It shows results of 1000 random repetitions of cross-validation in training and verification cohorts stratifying between 10–90th percentile expression levels in steps of 5%. In each repetition the particular cohort is randomly split into 50% train and 50% test cases. The results of the test cases are used to calculate the logrank for OS between high and low cases. The number of significant p-values (logrank \(p < 0.05 \)) during 1000 repetitions is plotted on the y-axis. For each gene a cutoff point was chosen from the optimum significance in the training set. As two peaks were observed for BAALC the verification dataset (Figure 1, green bars) guided the choice for the peak at the 30th percentile (Figure 1). For MN1 the 30th percentile was the only optimum and no significant peak was seen in the verification data. For ERG, there was no optimum in the training data, but only in the verification data. The cutoff points for BAALC and MN1 were then translated from percentile value to their corresponding expression levels. For BAALC (−0.95) and for MN1 (−0.76). These expression levels were locked-down for external significance testing in the validation data set. The cutoff point selection was different for EVII. Because the expression distribution is skewed towards very low or no expression with just a few percent of cases with high expression (Figure 2) the cutoff value was chosen at 0.987 such that 12 cases are annotated as having high EVII expression with significantly shorter OS.

Statistical analysis

Standardized methods for prognostic stratification of AML patients with intermediate cytogenetic risk based on the genes BAALC, ERG, MN1 and EVII are established by selecting an appropriate cutoff point for each gene that classifies patients into low- or high expressers. Because of the extremely skewed distribution of EVII expression level, the above CV procedure does not have enough power to yield a meaningful result for EVII overexpression.

Assay validation

The cutoff points for the genes BAALC and EVII derived from the training cohort were validated by means of Kaplan-Meier analysis of low expressers (below cutoff point) versus high expressers (above cutoff point). A gene and cutoff point passes the validation if the one-sided p-value with respect to difference in OS between low expressers and high expressers according to the log-rank test is statistically significant, i.e., \(p \leq 0.05 \). A one-sided p-value is justified because for each of the four genes there is prior knowledge that a higher expression predicts for worse OS prognosis.

Abbreviations

AML: Acute myeloid leukemia; BAALC: Brain and acute leukemia cytoplasmic; BW: Bone marrow; CEBPA: CCAAT/enhancer binding protein alpha; CV: Cross validation; ERG: ETS-related gene; EVII: Ecotropic Viral Integration 1; FLT3: FMS-like tyrosine kinase; HR: Hazard ratio; MN1: Meningioma (disrupted in balanced translocation) 1; NPM: Nucleophosmin; OS: Overall survival; PB: Peripheral blood; WBC: White blood cells.

Competing interests

JB, NHV, LB, PJMV, BL, HV, and EHB report equity in Skyline Diagnostics.

Authors’ contributions

JB analyzed the data, and wrote the article; MHV analyzed data, co-designed the cutoff points and reviewed the manuscript; LB co-designed the cutoff points and reviewed the manuscript, PJMV, and BL provided patient samples and reviewed the manuscript, HEV designed the study and reviewed the manuscript, EHB designed the study, analyzed the data, wrote the manuscript and gave final approval of the submitted manuscript. All authors have read and approved the final manuscript.

Acknowledgements

We thank W.L.J. van Putten at HOVON for help with statistical methods for cutoff point selection and data analysis.

Author details

1Skyline Diagnostics BV, Rotterdam Science Tower, Marconistraat 16, 3029 AK, Rotterdam, The Netherlands. “Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands.

Received: 14 February 2013 **Accepted:** 28 February 2013 **Published:** 6 March 2013

References

1. Baldus CD, Tanner SM, Ruppert AS, Whitman SP, Archer KJ, Marcucci G, Galigui AT, Carroll AJ, Vardiman JW, Powell BL, Allen SL, Morse JO, Laron RA, Koltz JE, Chapelle A, Bloomfield CD: BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood 2003, 102:1613–1618.

2. Baldus CD, Thiede C, Sauecek S, Bloomfield CD, Thiel E, Ehninger G: BAALC Expression and FLT3 Internal Tandem Duplication Mutations in Acute Myeloid Leukemia Patients With Normal Cytogenetics: Prognostic Implications. J Clin Oncol 2006, 24:790–797.

3. Metzeler KH, Dufour A, Benthaus T, Hummel M, Sauerland MC, Heinecke A, Berdel WE, Büchner T, Wörmann B, Mansmann U, Braess J, Spiekermann K, Hiddemann W, Buske C, Bohlander SK: ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays. J Clin Oncol 2009, 27:5031–5038.

4. Langer C, Radmacher MD, Ruppert AS, Whitman SP, Paschka P, Mrózek K, Baldus CD, Vukovic-Zevic T, Liu CG, Ross ME, Powell BL, de la Chapelle A, Koltz JE, Laron RA, Marcucci G, Bloomfield CD: High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) Study. Blood 2008, 111:5371–5379.

5. Santamaría C, Chillón MC, García-Sanz R, Pérez C, Caballero MD, Mateos MV, Ramos F, García de Coca A, Alonso JM, Giráldez P, Bernal T, Queizán JA,
