EXISTENCE AND CONCENTRATION OF SOLUTIONS FOR A FRACTIONAL SCHRÖDINGER EQUATIONS WITH SUBLINEAR NONLINEARITY

JINGUO ZHANG AND WEIFENG JIANG

Abstract. This article concerns the fractional elliptic equations

\[ (-\Delta)^s u + \lambda V(x) u = f(u), \quad u \in H^s(\mathbb{R}^N), \]

where \((-\Delta)^s (s \in (0, 1))\) denotes the fractional Laplacian, \(\lambda > 0\) is a parameter, \(V \in C(\mathbb{R}^N)\) and \(V^{-1}(0)\) has nonempty interior. Under some mild assumptions, we establish the existence of nontrivial solutions. Moreover, the concentration of solutions is also explored on the set \(V^{-1}(0)\) as \(\lambda \to \infty\).

1. Introduction and statement of main results

We consider the nonlinear fractional Schrödinger equation

\[ (-\Delta)^s u + \lambda V(x) u = f(u), \quad u \in H^s(\mathbb{R}^N), \quad (1.1) \]

where \((-\Delta)^s (0 < s < 1)\) is the fractional Laplace operator, \(\lambda > 0\) is a parameter, and \(H^s(\mathbb{R}^N)\) is the usual fractional Sobolev space with the norm

\[ \|u\|_{H^s} := \left( \int_{\mathbb{R}^N} \left( |(-\Delta)^{s/2} u|^2 + |u|^2 \right) dx \right)^{\frac{1}{2}}. \]

The fractional Schrödinger equation is a fundamental equation of fractional quantum mechanics. It was discovered by Nick Laskin as a result of extending the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. Recently, a great attention has been devoted to the fractional and nonlocal operators of elliptic type, both for their interesting theoretical structure and in view of concrete applications in many fields. This type of operator has been studied by many authors \([4, 5, 6, 7, 8, 11, 14]\) and references therein.

In \([8]\), Felmer et al. proved the existence of positive solutions of nonlinear Schrödinger equation involving the fractional Laplacian in \(\mathbb{R}^N\). For the whole space \(\mathbb{R}^N\) case, the main difficulty of this problem is the lack of compactness for Sobolev embedding theorem. To overcome this difficulty, some authors assumed that the potential \(V\) satisfies some additional condition. Later, the authors in \([11]\) considered the equation \([11]\) with the critical exponent growth They proved that the energy functional possess the property of locally compact. In this paper, we are interested in the case that the nonlinearity \(f\) is sublinear and indefinite. To our knowledge, few works concerning on this case up to now. Motivated by the above articles, we continue to consider problem \([11]\) with steep well potential and study

2000 Mathematics Subject Classification. 35J35, 35J60.

Key words and phrases. Fractional elliptic equations; variational method; concentration.
the existence of nontrivial solution and concentration results under some mild assumptions different from those studied previously. To reduce our statements, we make the following assumptions for potential $V$:

(V1) $V(x) \in C(\mathbb{R}^N)$ and $V(x) \geq 0$ on $\mathbb{R}^N$;
(V2) There exists a constant $b > 0$ such that the set $V_b := \{ x \in \mathbb{R}^N | V(x) < b \}$ is nonempty and has finite Lebesgue measure;
(V3) $\Omega = \text{int} V^{-1}(0)$ is nonempty and has smooth boundary with $\bar{\Omega} = V^{-1}(0)$.

Based on the above assumptions, the main purpose of this paper is to prove the existence of nontrivial solutions and to investigate the concentration phenomenon of solutions on the set $V^{-1}(0)$ as $\lambda \to \infty$. This kind of potential $\lambda V$ satisfying $(V_1) - (V_3)$ is referred as the steep well potential. It is worth mentioning that some papers always assumed the potential $V(x) > 0$ for all $x \in \mathbb{R}^N$. Compared with the case $V > 0$, our assumptions on $V$ are rather weak, and perhaps more important.

To state our results, we need the following assumptions:

(f1) $f \in C(\mathbb{R}^N, \mathbb{R})$ and there exist constants $1 < p < 2$ and functions $\xi(x) \in L^{\infty}(\mathbb{R}^N, \mathbb{R}^+)$ such that
$$|f(u)| \leq \xi(x)|u|^{p-1}, \quad \text{for all } u \in \mathbb{R},$$

(f2) There exist three constants $\eta, \delta > 0, \gamma \in (1, 2)$ such that
$$|F(u)| \geq \eta|u|^{\gamma} \quad \text{and all } x \in \Omega \text{ and } |u| \leq \delta,$$

where $F(u) = \int_0^u f(t)dt$.

On the existence of solutions we have the following result.

**Theorem 1.1.** Assume that the conditions $(V_1) - (V_3)$, $(f_1)$ and $(f_2)$ hold. Then there exists $\Lambda_0 > 0$ such that for every $\lambda > \Lambda_0$, problem (1.1) has at least one solution $u_\lambda$.

On the concentration of solutions we have the following result.

**Theorem 1.2.** Let $u_\lambda$ be a solution of problem (1.1) obtained in Theorem 1.1, then $u_\lambda \to u_0$ strongly in $H^s(\mathbb{R}^N)$ as $\lambda \to \infty$, where $u_0$ is a nontrivial solution of the equation

$$\begin{cases} 
(-\Delta)^s u = f(u), & x \in \Omega, \\
u = 0, & x \in \partial \Omega.
\end{cases}$$

(1.2)

The paper is organized as follows. In Section 2, we give some preliminary results. In Section 3, we finish the proof of Theorem 1.1. In Section 4, we study the concentration of solutions and prove Theorem 1.2.

2. Preliminary results

The fractional Laplacian $(-\Delta)^s$ with $s \in (0, 1)$ of a function $u : \mathbb{R}^N \to \mathbb{R}$ is defined by
$$\mathcal{F}((-\Delta)^s u)(\xi) = \xi^{2s} \mathcal{F}(u)(\xi), \quad \forall s \in (0, 1),$$
where $\mathcal{F}$ is the Fourier transform.

Recently, Caffarelli and Silvestre [4] developed a local interpretation of the fractional Laplacian given in $\mathbb{R}^N$ by considering a Neumann type operator in the extended domain $\mathbb{R}^N_{x,t}$ defined by $\{(x,t) \in \mathbb{R}^{N+1} : t > 0 \}$. For $u \in H^s(\mathbb{R}^N)$, the
solution \( w \in H^1_L(\mathbb{R}^{N+1}_+) \) of

\[
\begin{aligned}
- \text{div}(t^{1-2s} \nabla w) &= 0 \quad \text{in} \quad \mathbb{R}^{N+1}_+, \\
 w &= u \quad \text{in} \quad \mathbb{R}^{N+1} \times \{0\},
\end{aligned}
\]

is called \( s \)-harmonic extension \( w = E_s(u) \) of \( u \) and it is proved in [3] that

\[
\lim_{t \to 0^+} t^{1-2s} \frac{\partial w}{\partial t}(x, t) = -k_s(-\Delta)^s u(x),
\]

where \( k_s := 2^{1-2s} \Gamma(1-s) \Gamma(s)^{-1} \), the space \( H^1_L(\mathbb{R}^{N+1}_+) \) is defined as the completion of \( C_0^\infty(\mathbb{R}^{N+1}_+) \) under the norm

\[
\|w\|_{H^1_L} := \left( k_s \int_{\mathbb{R}^{N+1}_+} t^{1-2s} |\nabla w(x, t)|^2 dxdt \right)^{\frac{1}{2}},
\]

A similar extension, for nonlocal problems on bounded domain \( \Omega \) with the zero Dirichlet boundary condition was established. In this case, the space \( H^1_0,\omega, C_\Omega \) is defined as the completion of \( C_0^\infty(\overline{C_\Omega}) \) under the norm

\[
\|w\|_{H^1_0,\omega, C_\Omega} := \left( k_s \int_{\mathbb{C}_\Omega} t^{1-2s} |\nabla w(x, t)|^2 dxdt \right)^{\frac{1}{2}},
\]

where \( \mathbb{C}_\Omega := \Omega \times (0, +\infty) \subset \mathbb{R}^{N+1}_+ \), some more detail see [2, 4].

In this paper, our problem (1.1) will be studied in the half-space, namely,

\[
\begin{aligned}
- \text{div}(t^{1-2s} \nabla w) &= 0 \quad \text{in} \quad \mathbb{R}^{N+1}_+, \\
- k_s \frac{\partial w}{\partial \nu} &= -\lambda V(x) w(x, 0) + f(w(x, 0)) \quad \text{in} \quad \mathbb{R}^N \times \{0\},
\end{aligned}
\]

(2.1)

where

\[
\frac{\partial w}{\partial \nu} := \lim_{t \to 0^+} t^{1-2s} \frac{\partial w}{\partial t}(x, t).
\]

Consider the energy functional associated to (2.1) given by

\[
J_\lambda(w) = \frac{k_s}{2} \int_{\mathbb{R}^{N+1}_+} t^{1-2s} |\nabla w(x, t)|^2 dxdt + \frac{\lambda}{2} \int_{\mathbb{R}^N} V(x) w(x, 0)^2 dx
- \int_{\mathbb{R}^N} F(w(x, 0)) dx,
\]

(2.2)

which is \( C^1 \) with Cateaux derivative

\[
\langle J_\lambda'(w), v \rangle = k_s \int_{\mathbb{R}^{N+1}_+} t^{1-2s} \nabla w \cdot \nabla v dx dt + \lambda \int_{\mathbb{R}^N} V(x) w(x, 0) v(x, 0) dx
- \int_{\mathbb{R}^N} f(w(x, 0)) v(x, 0) dx,
\]

for all \( w, v \in H^1_L(\mathbb{R}^{N+1}_+) \).

By the argument as above, if \( w \in H^1_L(\mathbb{R}^{N+1}_+) \) is a critical point of \( J_\lambda \), then \( u = Tr(w) \in H^s(\mathbb{R}^N) \) is an energy or weak solution of problem (1.1). The converse is also right. By the equivalence of these two formulations, we will use both formulations in the sequel to their best advantage.

For \( \lambda > 0 \), let

\[
E_\lambda = \left\{ w \in H^1_L(\mathbb{R}^{N+1}_+) : \int_{\mathbb{R}^{N+1}_+} t^{1-2s} |\nabla w|^2 dx dt + \lambda \int_{\mathbb{R}^N} V(x) w(x, 0)^2 dx < +\infty \right\},
\]
be equipped with the norm
\[
\|w\| = \left( k_s \int_{\mathbb{R}^N} t^{1-2s}|\nabla w|^2 \, dx + \lambda \int_{\mathbb{R}^N} V(x)|w(x,0)|^2 \, dx \right)^{1/2}.
\]
It is clear that $E_\lambda$ is a Hilbert space, and $\|w\|_1 \leq \|w\|_\lambda$ for all $w \in E_1$ with $\lambda \geq 1$.
Moreover, for all $w \in E_\lambda$, by using $(V_1) - (V_2)$ and Sobolev inequality, we have
\[
k_s \int_{\mathbb{R}^N} t^{1-2s}|\nabla w|^2 \, dx + \int_{\mathbb{R}^N} |w(x,0)|^2 \, dx
= k_s \int_{\mathbb{R}^N} t^{1-2s}|\nabla w|^2 \, dx + \int_{V_b} |w(x,0)|^2 \, dx + \int_{\mathbb{R}^N \setminus V_b} |w(x,0)|^2 \, dx
\leq k_s \int_{\mathbb{R}^N} t^{1-2s}|\nabla w|^2 \, dx + |V_b|^{\frac{2s}{2s-2}} \left( \int_{\mathbb{R}^N} |w(x,0)|^{2^*_s} \, dx \right)^{2/2^*_s} + \int_{\mathbb{R}^N \setminus V_b} |w(x,0)|^2 \, dx
\leq k_s \int_{\mathbb{R}^N} t^{1-2s}|\nabla w|^2 \, dx + |V_b|^{\frac{2s}{2s-2}} \left( \int_{\mathbb{R}^N} |w(x,0)|^{2^*_s} \, dx \right)^{2/2^*_s}
+ \frac{1}{\lambda b} \int_{\mathbb{R}^N \setminus V_b} \lambda V|w(x,0)|^2 \, dx
\leq k_s \int_{\mathbb{R}^N} t^{1-2s}|\nabla w|^2 \, dx + \frac{|V_b|^{\frac{2s}{2s-2}}}{S} k_s \int_{\mathbb{R}^N} t^{1-2s}|\nabla w|^2 \, dx + \frac{1}{\lambda b} \int_{\mathbb{R}^N} \lambda V|w(x,0)|^2 \, dx
\leq \max \left\{ 1, 1 + \frac{|V_b|^{\frac{2s}{2s-2}}}{S}, \frac{1}{\lambda b} \right\} k_s \int_{\mathbb{R}^N} t^{1-2s}|\nabla w|^2 \, dx + \int_{\mathbb{R}^N} \lambda V|w(x,0)|^2 \, dx
:= c_0 k_s \int_{\mathbb{R}^N} t^{1-2s}|\nabla w|^2 \, dx + \int_{\mathbb{R}^N} \lambda V|w(x,0)|^2 \, dx,
\]
for
\[
\lambda \geq \lambda_0 := \frac{S}{b(S + |V_b|^{\frac{2s}{2s-2}})}.
\]
So, there exist positive constants $\lambda_0$ and $c_0$, independent of $\lambda$, such that
\[
\|w\|_1 \leq c_0 \|w\|_\lambda, \quad \text{for all } w \in E_\lambda, \lambda \geq \lambda_0. \quad (2.3)
\]
Furthermore, the embedding $E_\lambda \hookrightarrow L^p(\mathbb{R}^N)$ is continuous for $p \in [2, 2^*_s]$, and $E_\lambda \hookrightarrow L^p_{loc}(\mathbb{R}^N)$ is compact for $p \in [2, 2^*_s)$, i.e., there are constants $c_p > 0$ such that
\[
\|w(x,0)\|_{L^p} \leq c_p \|w\|_1 \leq c_p c_0 \|w\|_\lambda, \quad \text{for all } w \in E_\lambda, \lambda \geq \lambda_0. \quad (2.4)
\]
In order to prove Theorem 1.1, we use the following result by Rabinowitz [10].

**Lemma 2.1.** Let $E$ be a real Banach space and $\Phi \in C^1(E, \mathbb{R})$ satisfy the $(PS)$-condition. If $\Phi$ is bounded from below, then $c = \inf_E \Phi$ is a critical value of $\Phi$.

3. PROOF OF THEOREM 1.1

In this section, we will finish the proof of Theorem 1.1. First, we give some useful lemmas.

**Lemma 3.1.** Assume that $(V_1) - (V_3)$, $(f_1)$ and $(f_2)$ hold. Then there exists $\Lambda_0 > 0$ such that for every $\lambda > \Lambda_0$, $J_\lambda$ is bounded from below in $E_\lambda$. 


Proof. From (2.4), (f_1) and the Hölder inequality, we have
\[ J_\lambda(w) = \frac{1}{2} \|w\|_\Lambda^2 - \int_{\mathbb{R}^N} F(w(x,0)) \, dx \]
\[ \geq \frac{1}{2} \|w\|_\Lambda^2 - \left( \int_{\mathbb{R}^N} |\xi(x)|^{\frac{2}{p'}} \, dx \right)^{\frac{2-p}{2}} \left( \int_{\mathbb{R}^N} |w(x,0)|^2 \, dx \right)^{\frac{p}{2}} \]  
\[ \geq \frac{1}{2} \|w\|_\Lambda^2 - c_2 \|w\|_{\Lambda^2} \|w\|_\Lambda^2, \tag{3.1} \]
which implies that \( J_\lambda(w) \to +\infty \) as \( \|w\|_\Lambda \to +\infty \), since \( 1 < p < 2 \). Consequently, there exists \( \Lambda_0 := \max \{1, \lambda_0\} > 0 \) such that for every \( \lambda > \Lambda_0 \), \( J_{\lambda} \) is bounded from below and coerciveness on \( E_\lambda \). \( \square \)

Lemma 3.2. Suppose that (V_1)−(V_3), (f_1) and (f_2) are satisfied. Then \( J_\lambda \) satisfies the (PS)-condition for each \( \lambda > \Lambda_0 \).

Proof. Assume that \( \{w_n\} \subset E_\lambda \) is a sequence such that \( J_\lambda(w_n) \) is bounded and \( J'_\lambda(w_n) \to 0 \) as \( n \to \infty \). By Lemma 3.1, it is clear that \( \{w_n\} \) is bounded in \( E_\lambda \). Thus, there exists a constant \( C > 0 \) such that
\[ \|w_n(x,0)\|_{L^p} \leq c_{p,0} \|w_n\|_\Lambda \leq C, \quad \text{for all } w \in E_\lambda, \quad \lambda \geq \lambda_0, \tag{3.2} \]
where \( 2 \leq p \leq 2^*_f \). Passing to a subsequence if necessary, we may assume that \( w_n \rightharpoonup w_0 \) weakly in \( E_\lambda \). For any \( \epsilon > 0 \), since \( \xi(x) \in L^{\frac{2}{2 \cdot p}}(\mathbb{R}^N, \mathbb{R}^+) \), we can choose \( R_\epsilon > 0 \) such that
\[ \left( \int_{\mathbb{R}^N \setminus B_{R_\epsilon}} |\xi(x)|^{\frac{2}{2 \cdot p}} \, dx \right)^{\frac{2-p}{2}} < \epsilon. \tag{3.3} \]
From \( E_\lambda \hookrightarrow L^p \) and \( w_n \rightharpoonup w_0 \) weakly in \( E_\lambda \), we have \( w_n(x,0) \to w_0(x,0) \) strongly in \( L^2_{L^\infty}(\mathbb{R}^N) \). Hence
\[ \lim_{n \to \infty} \int_{B_{R_\epsilon}} |w_n(x,0) - w_0(x,0)|^2 \, dx = 0. \tag{3.4} \]
Therefore, from (3.4), there exists \( N_0 \subset \mathbb{N} \) such that
\[ \int_{B_{R_\epsilon}} |w_n(x,0) - w_0(x,0)|^2 \, dx < \epsilon^2, \quad \text{for } n \geq N_0. \tag{3.5} \]

Hence, by (f_1), (3.2), (3.5) and the Hölder inequality, for any \( n \geq N_0 \), we have
\[ \int_{B_{R_\epsilon}} |f(w_n(x,0)) - f(w_0(x,0))| |w_n(x,0) - w_0(x,0)| \, dx \]
\[ \leq \left( \int_{B_{R_\epsilon}} |f(w_n(x,0)) - f(w_0(x,0))|^2 \, dx \right)^{1/2} \left( \int_{B_{R_\epsilon}} |w_n(x,0) - w_0(x,0)|^2 \, dx \right)^{1/2} \]
\[ \leq \epsilon \left( \int_{B_{R_\epsilon}} 2 \left( |f(w_n(x,0))|^2 + |f(w_0(x,0))|^2 \right) \, dx \right)^{1/2} \]
\[ \leq 2\epsilon \left[ \left( \int_{B_{R_\epsilon}} |\xi(x)|^2 \left( |w_n(x,0)|^{2(p-1)} + |w_0(x,0)|^{2(p-1)} \right) \, dx \right)^{1/2} \right] \]
\[ \leq 2\epsilon \left[ \left( \int_{B_{R_\epsilon}} \|w_n(x,0)\|_{L^2}^{2(p-1)} + \|w_0(x,0)\|_{L^2}^{2(p-1)} \right)^{1/2} \right] \]
\[ \leq 2\epsilon \left[ \left( \int_{B_{R_\epsilon}} \|w_n(x,0)\|_{L^2}^{2(p-1)} + \|w_0(x,0)\|_{L^2}^{2(p-1)} \right)^{1/2} \right]. \tag{3.6} \]
On the other hand, by (3.2), (3.3), (3.5) and (f1), we have
\[
\int_{\mathbb{R}^N \setminus B_\epsilon} |f(w_n(x,0)) - f(w_0(x,0))| |w_n(x,0) - w_0(x,0)| \, dx \\
\leq 2 \int_{\mathbb{R}^N \setminus B_\epsilon} |\xi(x)| \left( |w_n(x,0)|^p + |w_0(x,0)|^p \right) \, dx \\
\leq 2\varepsilon c_\delta^p c_0^p (\|w_n\|_{\Lambda}^\gamma + \|w_0\|_{\Lambda}^\gamma) \leq 2\varepsilon c_\delta^p c_0^p (C^p + \|w_0\|_{\Lambda}^p).
\]
Since \(\varepsilon\) is arbitrary, combining (3.6) with (3.7), we have
\[
\int_{\mathbb{R}^N} |f(w_n(x,0)) - f(w_0(x,0))| |w_n(x,0) - w_0(x,0)| \, dx < \varepsilon,
\]
as \(n \to \infty\). Hence,
\[
\langle J_\lambda'(w_n) - J_\lambda'(w_0), w_n - w_0 \rangle = \|w_n - w_0\|_{\Lambda}^2 \\
+ \int_{\mathbb{R}^N} (f(w_n(x,0)) - f(w_0(x,0)))(w_n(x,0) - w_0(x,0)) \, dx.
\]
From, \(\langle J_\lambda'(w_n) - J_\lambda'(w_0), w_n - w_0 \rangle \to 0\), (3.8) and (3.9), we get \(w_n \to w_0\) strongly in \(E_{\Lambda}\). Hence, \(J_\lambda\) satisfies (PS)-condition. \(\square\)

Proof of Theorem 1.1. From Lemmas 2.1, 3.1, 3.2, we know that \(c_\lambda = \inf_{E_{\Lambda}} J_\lambda(w)\) is a critical value of functional \(J_\lambda\); that is, there exists a critical point \(w_\lambda \in E_{\Lambda}\) such that \(J_\lambda(w_\lambda) = c_\lambda\). Next, similar to the argument in [12], we show that \(w_\lambda \neq 0\). Let \(w^* \in H_{0,1}^s(\Omega) \setminus \{0\}\) and \(\|w^*\|_{L^\infty} \leq 1\), then by (f2), we have
\[
J_\lambda(tw^*) = \frac{1}{2} \|tw^*\|_{\Lambda}^2 - \int_{\mathbb{R}^N} F(tw^*(x,0)) \, dx \\
= \frac{t^2}{2} \|w^*\|_{\Lambda}^2 - \int_{\Omega} F(tw^*(x,0)) \, dx \\
\leq \frac{t^2}{2} \|w^*\|_{\Lambda}^2 - \eta t^\gamma \int_{\Omega} |w^*|^\gamma \, dx,
\]
where \(0 < t < \delta\), \(\delta\) be given in (f2). Since \(1 < \gamma < 2\), it follows from (3.10) that \(J_\lambda(tw^*) < 0\) for \(t > 0\) small enough. Hence, \(J_\lambda(w_\lambda) = c_\lambda < 0\), therefore, \(w_\lambda\) is a nontrivial critical point of \(J_\lambda\) and so \(w_\lambda\) is a nontrivial solution of problem (1.1), that is, \(u_\lambda(x) := Tr(w_\lambda) = w_\lambda(x,0)\) is a nontrivial solution of problem (1.1). The proof is complete. \(\square\)

4. Concentration of solutions

In the following, we study the concentration of solutions for problem (1.1) as \(\lambda \to \infty\). Define
\[
\hat{c} = \inf_{w \in H_{0,1}^s(\Omega)} J_\lambda|_{H_{0,1}^s(\Omega)}(w),
\]
where \(J_\lambda|_{H_{0,1}^s(\Omega)}\) is a restriction of \(J\) on \(H_{0,1}^s(\Omega)\); that is,
\[
J_\lambda|_{H_{0,1}^s(\Omega)}(w) = \frac{k_s}{2} \int_{\Omega} t^{1-2s} |\nabla w|^2 \, dx dt - \int_{\Omega} F(w(x,0)) \, dx,
\]
for \( w \in H^1_+ (\mathbb{R}^{N+1}) \). Similar to the proof of Theorem 1.1 it is easy to prove that \( \tilde{c} < 0 \) can be achieved. Since \( H^1_0 (\Omega) \subset E_\lambda \) for all \( \lambda > 0 \), we get \( \lambda_n \leq \tilde{c} < 0 \), for all \( \lambda > \Lambda_0 \).

**Proof of Theorem 1.2**. We follow the arguments in [3]. For any sequence \( \lambda_n \to \infty \), let \( w_n := w_{\lambda_n} \) be the critical points of \( J_{\lambda_n} \) obtained in Theorem 1.1. Thus
\[
J_{\lambda_n} (w_n) \leq \tilde{c} < 0
\]  
and
\[
J_{\lambda_n} (w_n) = \frac{1}{2} \| w_n \|^{2}_{\lambda_n} - \int_{\mathbb{R}^N} F (w_n (x, 0)) dx
\geq \frac{1}{2} \| w_n \|^{2}_{\lambda_n} - C_2 \| \xi \| \| w_n \|^{p}_{\lambda_n},
\]
which implies
\[
\| w_n \|_{\lambda_n} \leq C, \tag{4.2}
\]
where the constant \( C > 0 \) is independent of \( \lambda_n \). Therefore, we may assume that \( w_n \rightharpoonup w_0 \) in \( E_\lambda \) and \( w_n (x, 0) \rightharpoonup w_0 (x, 0) \) in \( L^p_{\text{loc}} (\mathbb{R}^N) \) for \( 2 \leq p < 2_* \). From Fatou’s lemma, we have
\[
\int_{\mathbb{R}^N} V (x) |w_0 (x, 0)|^2 dx \leq \liminf_{n \to \infty} \int_{\mathbb{R}^N} V (x) |w_n (x, 0)|^2 dx \leq \liminf_{n \to \infty} \frac{\| w_n \|^{2}_{\lambda_n}}{\lambda_n} = 0,
\]
which implies that \( w_0 = 0 \) a.e. in \( \mathbb{R}^N \setminus \overline{\Omega} \) and \( w_0 \in H^1_0 (\Omega) \) by (V3). Now for any \( \varphi \in C_0^\infty (\Omega) \), since \( (J'_{\lambda_n} (w_n), \varphi) = 0 \), it is easy to verify that
\[
k_s \int_{\Omega} t^{1-2s} \nabla w_0 \cdot \nabla \varphi dx dt - \int_{\Omega} f (w_0 (x, 0)) \varphi dx = 0,
\]
which implies that \( u_0 (x) := Tr (w_0) \) is a weak solution of equation (1.2) by the density of \( C_0^\infty (\overline{\Omega}) \) in \( H^s_0 (\Omega) \).

Next, we show that \( w_n (x, 0) \rightharpoonup w_0 (x, 0) \) in \( L^p (\mathbb{R}^N) \) for \( 2 \leq p < 2_* \). Otherwise, by Lions vanishing lemma [9, 13], there exist \( \delta > 0, \rho > 0 \) and \( (x_n, y) \in \mathbb{R}^{N+1} \) such that
\[
\int_{B^\rho_0 \cap \{ y = 0 \}} |w_n - w_0|^2 dx \geq \delta,
\]
where \( B^\rho_0 := \{(x, y) : |(x, y) - (x_n, y)| < \rho, y > 0 \} \), and its base denotes by \( B_\rho \). Since \( w_n (x, 0) \rightharpoonup w_0 (x, 0) \) in \( L^2_{\text{loc}} (\mathbb{R}^N) \), let \( |x_n| \to \infty \), we have \( |B_\rho \cap V_b| \to 0 \). By the H"older inequality, we get
\[
\int_{B_\rho \cap V_b} |w_n (x, 0) - w_0 (x, 0)|^2 dx \leq |B_\rho \cap V_b|^{\frac{2-s}{2s}} \left( \int_{\mathbb{R}^N} |u_n - u_0|^2 dx \right)^{2/2_s} \to 0.
\]
Consequently,
\[
\| w_n \|_{\lambda_n}^2 \geq \lambda_n b \int_{B_\rho \cap V_b} |w_n (x, 0)|^2 dx
\]
\[
\geq \lambda_n b \left( \int_{B_\rho \cap V_b} |w_n (x, 0) - w_0 (x, 0)|^2 dx + \int_{B_\rho \cap V_b} |w_0 (x, 0)|^2 dx \right) + o(1)
\geq \lambda_n b \left( \int_{B_\rho} |w_n (x, 0) - w_0 (x, 0)|^2 dx - \int_{B_\rho \cap V_b} |w_n (x, 0) - w_0 (x, 0)|^2 dx \right) + o(1)
\to \infty \text{ as } n \to \infty,
\]
which contradicts (4.2). By virtue of
\[ \langle J'_{\lambda_n}(w_n), w_n \rangle = \langle J'_{\lambda_n}(w_n), w_0 \rangle = 0 \]
and the fact that \( w_n(x,0) \to w_0(x,0) \) strongly in \( L^p(\mathbb{R}^N) \) for \( 2 \leq p < 2^* \), we have
\[
\lim_{n \to \infty} \| w_n \|_{\lambda_n}^2 = \| w_0 \|_{\lambda_n}^2.
\]
Hence, \( w_n \to w_0 \) strongly in \( E_\lambda \). Moreover, from (4.1), we have \( w_0 \neq 0 \). This completes the proof. \( \square \)

REFERENCES

[1] B. Barrios, E. Colorado, A. de Pablo, U. S’anchez, On some critical problems for the fractional Laplacian, J. Differential Equations 252 (2012) 6133–6162.

[2] B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian. Proc. Royal Soc. Edin. A 143 (2013) 39–71.

[3] T. Bartsch, A. Pankov, Z. Q. Wang; Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math. 3 (2001) 549–569.

[4] L. Caffarelli, L. Silvestre, An extension problems related to the fractional Laplacian, Comm. PDE 32 (2007) 1245–1260.

[5] X. Cabre, J.G. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052–2093.

[6] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, Regularity of radial extremal solutions for some non local semilinear equations, Comm. PDE 36 (2011) 1353–1384.

[7] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012) 521–573.

[8] P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with fractional Laplacian, Proc. Royal Soc. Edin. 142, 1237–1262 (2012).

[9] P. L. Lions; The concentration-compactness principle in the calculus of variations. The local compact case Part I, Ann. Inst. H. Poincaré Anal. NonLinéaire, 1 (1984) 109–145.

[10] P. H. Rabinowitz; Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in. Math., 65, American Mathematical Society, Providence, RI, 1986.

[11] Z. Shen and F. Gao, Existence of solutions for a fractional Laplacian equations with critical nonlinearity, Abst. Appl. Anal. 2013, Article ID 638425.

[12] X. H. Tang, X. Y. Lin; Infinitely many homoclinic orbits for Hamiltonian systems with indefinite sign subquadratic potentials, Nonlinear Anal. 74 (2011) 6314–6325.

[13] Y. H. Wei; Multiplicity results for some fourth-order elliptic equations, J. Math. Anal. Appl., 385 (2012) 797–807.

[14] J. Zhang and X. Liu, Positive solutions to some asymptotically linear fractional Schrödinger equations, arXiv:1411.2189.