Title
Bending and breaking of stripes in a charge ordered manganite.

Permalink
https://escholarship.org/uc/item/563157sc

Journal
Nature communications, 8(1)

ISSN
2041-1723

Authors
Savitzky, Benjamin H
El Baggari, Ismail
Admasu, Alemayehu S
et al.

Publication Date
2017-12-01

DOI
10.1038/s41467-017-02156-1

Peer reviewed
In charge-ordered phases, broken translational symmetry emerges from couplings between charge, spin, lattice, or orbital degrees of freedom, giving rise to remarkable phenomena such as colossal magnetoresistance and metal–insulator transitions. The role of the lattice in charge-ordered states remains particularly enigmatic, soliciting characterization of the microscopic lattice behavior. Here we directly map picometer scale periodic lattice displacements at individual atomic columns in the room temperature charge-ordered manganite Bi$_{0.35}$Sr$_{0.18}$Ca$_{0.47}$MnO$_3$ using aberration-corrected scanning transmission electron microscopy. We measure transverse, displacive lattice modulations of the cations, distinct from existing manganite charge-order models. We reveal locally unidirectional striped domains as small as ~5 nm, despite apparent bidirectionality over larger length scales. Further, we observe a direct link between disorder in one lattice modulation, in the form of dislocations and shear deformations, and nascent order in the perpendicular modulation. By examining the defects and symmetries of periodic lattice displacements near the charge ordering phase transition, we directly visualize the local competition underpinning spatial heterogeneity in a complex oxide.
ChARGE DENSITY WAVE (CDW) STATES ARE PERIODIC MODULATIONS OF BOTH THE ELECTRON DENSITY AND ATOMIC LATTICE POSITIONS. THESE STATES EMERGENCE ORDER VIA ELECTRON-LATTICE INTERACTION, AND HAVE TAKEN A CENTRAL ROLE IN UNDERSTANDING EXOTIC PHENOMENA IN COMPLEX MATERIALS. CDWs MEDIATE METAL-INSULATOR TRANSITIONS, COMPETE WITH HIGH-TEMPERATURE SUPERCONDUCTIVITY, AND UNDERLIE THE MECHANISM OF COLOSSAL MAGNETORESISTANCE IN MANGANITES. MOUNTING EVIDENCE INDICATES THAT NANOSCALE SPATIAL INHOMOGENEITY BETWEEN COMPETING ELECTRONIC PHASES PLAYS A FUNDAMENTAL ROLE IN COMPLEX ELECTRONIC SYSTEMS QUITE BROADLY.

RESULTS

EXPERIMENTAL HALLMARKS OF THE CHARGE-ORDERED STATE. THE BSCMO ORTHORHOMBIC PEROVSKITE LATTICE (SPACE GROUP Pnma, Fig. 1a) IS IMAGED IN PROJECTION ALONG THE b-AXIS WITH ABERRATION-CORRECTED HIGH-ANGLE ANNULAR DARK-FIELD (HAADF)-STEM (Fig. 2a), WHICH IS SENSITIVE TO THE COULOMB POTENTIAL OF THE ATOMIC NUCLEI; HEAVIER Bi/Sr/Ca ATOMIC COLUMNS (A-SITES) APPEAR BRIGHTER THAN LIGHTER Mn COLUMNS (B SITES) IN THE Z-CONTRAST IMAGE. TEMPERATURE-DEPENDENT RESISTIVITY AND MAGNETIC SUSCEPTIBILITY MEASUREMENTS ON THE HOST BSCMO CRYSTAL REVEAL AN ANOMALY ASSOCIATED WITH CHARGE ORDERING AT Tc = 315 K AND 318 K, RESPECTIVELY (SUPPLEMENTARY FIGS. 1 AND 2). TRANSPORT CURVES MEASURED AT ZERO FIELD ARE NEARLY IDENTICAL TO THOSE MEASURED UNDER APPLICATION OF A 2 T MAGNETIC FIELD, COMPAREABLE TO THAT OF THE MICROSCOPE OBJECTIVE AT THE POSITION OF THE SPECIMEN (SUPPLEMENTARY FIG. 1). REFLECTIVE POLARIZED OPTICAL MICROSCOPY REVEALS APPROXIMATELY 100 µM TWIN DOMAINS (SUPPLEMENTARY FIG. 3); STEM AND ELECTRON DIFFRACTION ARE PERFORMED WITHIN A SINGLE TWIN DOMAIN.

Electron diffraction (Fig. 1b) shows a constellation of satellite peaks indicating two transverse, displaceable PLDs (Fig. 1c, d) offsetting the atomic lattice with displacements

\[
\Delta_i(\mathbf{r}) = A_i \sin(q_i \cdot r + \phi_i), \quad i \in \{1, 2\}
\]

where A_i, q_i, and \phi_i are the PLD amplitude vector, wavevector, and phase, respectively, and \[q_i \approx \frac{1}{\sqrt{2}}\] reciprocal lattice units (SUPPLEMENTARY FIGS. 4 AND 5). NOTE THAT VALENCE MODULATIONS HAVE BEEN FOUND TO BE MINIMAL HERE (SUPPLEMENTARY FIG. 6) AND ELSEWHERE, THEREFORE THE STATE GIVING RISE TO THE OBSERVED SATellite PEAKS AND ACCOMPANYING THE RESISTIVITY ANOMALY IS REFERRED TO AS THE ORDERED OR CDW STATE, AGNOSTIC TO A PARTICULAR UNDERLYING MODEL. FIELD-FREE ELECTRON DIFFRACTION, WITH THE OBJECTIVE LENS TURNED OFF, SHOwED NO DISCERNIBLE CHANGES IN THE SUPERLATTICE STRUCTURE (SUPPLEMENTARY FIG. 7), CONSISTENT WITH THE MAGNETIC FIELD-DEPENDENT RESISTIVITY MEASUREMENTS AND SUGGESTING THE CHARGE-ORDERED STATE IS ROBUST TO THE APPLIED MAGNETIC FIELD. DIFFRACTION SHOWS COEXISTENCE OF THE TWO ORTHOGONAL PLDS WITHIN A 1 µM SELECTED AREA. A STEM FOURIER TRANSFORM (Fig. 1b) SHOWS COEXISTENCE WITHIN A 30 NM FIELD OF VIEW. IN ORDER TO FURTHER INVESTIGATE THE LOCAL PLD STRUCTURE, WE EXTRACT THE DISPLACEMENT VECTORS ASSOCIATED WITH EACH OF THE TWO MODULATIONS AT EVERY ATOMIC SITE TO GENERATE THE PLD MAPS SHOWN IN FIG. 2.

LOCAL STRUCTURE OF PERIODIC LATTICE DISPLACEMENTS. TO CALCULATE THE PLD FIELDS \[\Delta_i(\mathbf{r})\] SHOWN IN FIG. 2, WE FIRST FIT ALL ATOMIC POSITIONS IN OUR STEM DATA WITH ~2 PICOMETER PRECISION, AN APPROACH WHICH HAS RECENTLY EMERGED AS A POWERFUL, QUANTITATIVE CHARACTERIZATION TOOL.

However, in contrast to prior STEM atom tracking work, the key challenge in mapping PLDS is defining an appropriate reference lattice, which is complicated by the presence of local PLD phase variations and multiple interpenetrating modulations. Our approach generates a reference image in which the contribution of a single modulation has been selectively removed, by damping all of the relevant satellite peaks from the Fourier transform of the original image. FITTING AND SUBTRACTING CORRESPONDING SATellite POSITIONS FROM THE IMAGE PAIR YIELDS \[\Delta_i(\mathbf{r})\] QUANTITATIVELY. DAMPING THE \[q_i\] SATellite PEAKS (Fig. 1b, c, blue arrows) GENERATES A MAP OF \[\Delta_i(\mathbf{r})\] (Fig. 2b), WHILE DAMPING THE \[q_i\] SATellite PEAKS (Fig. 1b, d, red arrows) MAPS \[\Delta_i(\mathbf{r})\] (Fig. 2c). SIMULATIONS INDICATE THAT OUR METHOD ACCURATELY RECONSTRUCTS THE PLD STRUCTURE EVERYWHERE EXCEPT AT LATTICE SITES DIRECTLY ADJACENT TO ATOMICALLY SHARP DISCONTINUITIES IN THE PLD FIELD. ANALYTICAL AND ALGORITHMIC DETAILS, SIMULATIONS, AND ERROR ANALYSIS ARE FOUND IN SUPPLEMENTARY NOTE 1 AND SUPPLEMENTARY FIGS. S8–S15.

The microscopic structure of charge-ordered phases in manganites remains contested; here the \[\Delta_i(\mathbf{r})\] MAP IN FIG. 2B FURNISHES REAL-SPACE EVIDENCE FOR DISPLACIVE Lattice MODULATIONS OF BOTH THE Bi/Sr/Ca SITES AND THE Mn SITES, WITH RESPECTIVE AMPLITUDES OF 6.2 AND 8.2 PM ON THE MAXIMAL SITES (SEE SUPPLEMENTARY FIG. 16). THE DISPLACEMENTS ARE TRANSVERSE TO THE MODULATION WAVEVECTOR AND GENERATE A TETRAPOLAR CELL. THE HISTORICALLY PREVAILING MODEL CONJECTURES THE LOCALIZATION AND ORDERING OF Mn^{3+}-Mn^{4+} IONS, WHICH IN TURN ACTIVATES AN ALTERNATING COMPRESSION AND EXPANSION OF OXYGEN OCTAHEDRA (Jahn–Teller effect). Other works propose the formation of Mn pairs (Zener polarons) with minimal valence modulations. OUR DATA SUGGEST A DIFFERENT MODEL. THE STRONG STRUCTURAL MODULATION SHOWN IN FIG. 2B IS CONSISTENT WITH THE SOFTENING OF A PHONON MODE, AND THE PATTERN OF DISPLACEMENTS PROVIDES A
**Fig. 1** Periodic lattice displacements in reciprocal space. **a** The perovskite structure of Bi$_{0.35}$Sr$_{0.18}$Ca$_{0.47}$MnO$_3$ (BSCMO) and the projection of the unit cell along the $b$-axis. **b** Electron diffraction over a 1 μm selected area and the Fourier transform of a 30 nm field of view scanning transmission electron microscopy image of BSCMO along the $b$-axis. Satellite peaks corresponding to two transverse and displacive modulations with perpendicular wavevectors $q_1 \approx 1/3 a^*$ and $q_2 \approx 1/3 c^*$ are indicated by blue and red arrows, respectively. **c, d** Schematic of the Fourier transform of a square lattice (for simplicity) displaced by transverse modulations along $x$ and $y$, respectively. The intensity of a satellite peak is reduced when its reciprocal vector, $k = (k_x, k_y)$, is not parallel to the modulation polarization $A_i$ and vanishes when $k \cdot A_i = 0$. **e** Stripe states contain locally unidirectional modulations, while checkerboard states contain overlapping bidirectional modulations. Both stripe and checkerboard order are consistent with the reciprocal space data, which reflects the spatially averaged structure and cannot definitively determine the local symmetry.

**Fig. 2** Mapping picometer scale, periodic displacements of atomic lattice sites. **a** High-angle annular dark-field scanning transmission electron microscopy projection image along the $b$-axis. The heavier (Bi, Sr, Ca) sites (green) appear brighter than the lighter Mn sites (red). **b** Mapping picometer scale periodic lattice displacements (PLDs) $\Delta_1(r)$ at each atomic lattice site in response to a single modulation wavevector $q_1$. PLD maps indicate a displacive modulation rather than an intensity modulation (cation order, charge disproportionation) with transverse polarization and $3\alpha$ periodicity. Triangles represent displacements, with the area scaling linearly with displacement amplitude. The color represents the angle of the polarization vector, $A_1$, relative to the modulation wavevector, $q_1$, where blue (yellow) correspond to $90^\circ$ ($-90^\circ$) as indicated in the colorbar. **c** Map of $\Delta_2(r)$ displacements at each atomic lattice site in response to $q_2$ in the same region as a, b. The significantly weaker $\Delta_2(r)$ response is characteristic of locally striped, rather than checkerboard, ordering. The scale bar corresponds to 1 nm.
Δ

PLD amplitude and some rotation of the displacement vectors in the defective region. The maximal shearing aligns with attenuation of PLDs are stripe ordered, segregated into nanoscopic domains. The regions strengths are anti-correlated: when one is strong, the other is weak. The displacement magnitudes of the displacements due to each PLD individually reveals that the two PLD modulations (6–11 pm) and basins of PLD suppression (0–3 pm) (Fig. 3b, c). Notably, regions in which both Δ₁(r) and Δ₂(r) are present are also observed, such as the bottom left corner of Fig. 3a–c. Quenched disorder tends to broaden phase transitions and favors enhanced isotropy in the nascent-ordered state, and theoretically has been shown to induce apparent fourfold symmetry in 2D striped phases. Alternatively, checkerboard-like order could result from projection through stacked Δ₁(r) and Δ₂(r) domains in the out-of-plane (b-axis) direction. In either case, the two modulations are predominantly anti-correlated in our data, and we conclude that the symmetry breaking in the disorder-free “clean” limit in this system is very likely striped.

Nascent order coincident with PLD defects. CDW domain nucleation near Tᵱ remains a poorly understood process, particularly in the presence of disorder. We observe PLD defects coincident with both domain boundaries and nascent domain structures, suggesting their involvement in mediating domain growth and termination. Figure 4 magnifies the region containing a ~5 nm island of Δ₂ order embedded in a Δ₁ domain (Fig. 3, upper white delimiters). Inspection of the Δ₁ + Δ₂ map (Fig. 4a) reveals shearing in Δ₁ as it passes through the Δ₂ island, evident in the offset of the wavefronts by ~2 atomic rows. Mapping Δ₁,

Fig. 3 Nanoscale domain structure and local symmetry of periodic lattice displacement (PLD) stripes. a Combined PLD map showing the displacements Δ(r) = Δ₁(r) + Δ₂(r) at all ~9000 atomic sites in the 30 nm field of view. Colors indicates the displacement polarizations relative to q₁ (blue/yellow triangles), occupying the right side of the frame, while a Δ₂(r)-dominant region occupies the upper left corner (red/green triangles). Mapping the displacement magnitudes |Δ₁(r)| and |Δ₂(r)| visualizes the striped domain structure, revealing a complex domain morphology with islands of strong modulations (6–11 pm) and basins of PLD suppression (0–3 pm) (Fig. 3b, c). Notably, regions in which both Δ₁(r) and Δ₂(r) are present are also observed, such as the bottom left corner of Fig. 3a–c. Quenched disorder tends to broaden phase transitions and favors enhanced isotropy in the nascent-ordered state, and theoretically has been shown to induce apparent fourfold symmetry in 2D striped phases. Alternatively, checkerboard-like order could result from projection through stacked Δ₁(r) and Δ₂(r) domains in the out-of-plane (b-axis) direction. In either case, the two modulations are predominantly anti-correlated in our data, and we conclude that the symmetry breaking in the disorder-free “clean” limit in this system is very likely striped.

Fig. 4 Shear deformation coincident with a nascent periodic lattice displacement (PLD) grain. a A complete Δ = Δ₁ + Δ₂ map of a ~5 nm region of incipient Δ₂ order, and a coinciding shearing of the Δ₁ modulation. b A Δ₂ map of the same region highlights the bending wavefronts, and reveals attenuation of the PLD amplitude and some rotation of the displacement vectors in the defective region. c–e The shear strain ε, |Δ₁|, and |Δ₂|, respectively, in the same region. The maximal shearing aligns with attenuation of Δ₁ and emergence of Δ₂. The scale bar corresponds to 2 nm.

structural model to further investigate the microscopic origin of the modulated state.

The superposition of multiple modulations can further mask the underlying microscopic mechanism behind PLD formation. For instance, distinguishing overlapping modulations (checkerboards) from spatially anti-correlated unidirectional domains (stripes) is essential but challenging, as both have the same spatially averaged symmetry (Fig. 1b–d). Our data clearly indicates that locally, BSCMO forms striped states: where one PLD is suppressed, the other is strong, starkly illustrated in the Δ₁(r) and Δ₂(r) maps of identical regions in Fig. 2b, c.
only (Fig. 4b) accentuates the shear deformation, and exposes $\Delta_1$ attenuation in the strained region, along with rotation of the displacement vectors to roughly align with the local wavefront orientation. To quantify these observations, we map the elastic shear strain field, $\varepsilon (r)$, reflecting local bending in the $\Delta_1$ PLD, along with the magnitudes of the two modulations $|\Delta_1|$ and $|\Delta_2|$ (Fig. 4c-e). $\varepsilon (r)$ is calculated by extracting the local PLD phase ($\phi \rightarrow \phi (r)$ in Eq. 1)\textsuperscript{29} then computing $\varepsilon (r) = \frac{\Delta q}{\frac{1}{3}q^2} \nabla \phi (r)$ (see Supplementary Note 2)\textsuperscript{30,31}. The shear defect plainly coincides with abatement of $\Delta_1$, and strengthening of $\Delta_2$.

Figure 5 magnifies a domain boundary (Fig. 3, lower white delimiters). Exclusive $\Delta_1$ order occupies the right side of the frame in Fig. 5a, while the displacements to the left suggest an intricate interweaving of the two modulations. Mapping $\Delta_1$ only (Fig. 5b) reveals a prominent dislocation in the PLD, in which a single wavelength of the defect core, as once again disorder in one dominant domain and the mixed region occurs within a single PLD wavelength of the defect core, where $\phi_1$ exhibits an expected $2\pi$ winding. A narrow inlet of $|\Delta_1|$ amplitude collapse extends from the upper left to the singularity. The scale bar corresponds to 2 nm.

Methods

**Experimental details.** $\text{Bi}_{1-x}\text{Sr}_x\text{Ca}_2\text{MnO}_3$ (BSCMO) single crystals were grown using the flux method, using $\text{Bi}_2\text{O}_3$, $\text{CaCO}_3$, $\text{SrCO}_3$, and $\text{Mn}_2\text{O}_3$. Sample preparation for electron microscopy and energy dispersive X-ray spectroscopy (EDX) were performed on a FEI Strata 400 Focused Ion Beam (FIB). From EDX, the composition was determined to be approximately $x = 0.65$ and $y = 0.47$ (Supplementary Note 1) by fitting two-dimensional Gaussians to atomic columns. A thin, electron transparent cross section of BSCMO was extracted using FIB lift out, with estimated thickness in the imaging region ranging from 10 to 30 nm. Based on electron diffraction, the orientation of the sample was along the $b$ direction (orthorhombic axis) in the $\text{Pnma}$ space group (Supplementary Fig. 4). At room temperature (293 K), BSCMO exhibits satellite peaks, indicating the presence of charge ordering.

We performed atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (FEI Titan Themis) operating at 300 kV. The beam convergence semi-angle was 30 mrad. During STEM imaging, the sample experienced an approximately 2 Tesla magnetic field due to its position inside the objective lens, as determined from a Hall bar measurement. In order to minimize the effect of scan noise and stage drift, we acquired 20–30 images in rapid succession with a 2 µs dwell time. We registered and averaged stacks of images using both rigid registration and non-rigid registration methods and found similar results. Data were acquired at 27.4 pm/pixel, and acquisition was optimized for pixel density, field of view and Fourier space sampling. We performed atom tracking with approximately 2 pm precision (Supplementary Fig. 15 and Supplementary Note 1) by fitting two-dimensional Gaussians to atomic columns using various optimization packages (scipy, photutils, MATLAB) and found consistent results. Atomically resolved EELS spectroscopic mapping was performed in an aberration-corrected NION UltraSTEM at an accelerating voltage of 100 kV and a beam convergence semi-angle of 30 mrad.
Received: 12 May 2017 Accepted: 10 November 2017 Published online: 01 December 2017

References
1. Yoshida, M. et al. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep. 4, 1–5 (2014).
2. Uehara, M., Domrèche, P. B. et al. Electronically soft phases in manganites. Nature 433, 607–610 (2005).
3. Lang, K. et al. Imaging the granular structure of high-Tc superconductivity in Bi2Sr2CaCu2O8+δ. Nature 415, 421–426 (2002).
4. Hoffman, J. et al. A four unit cell periodic structure surrounding vortex cores in Bi2Sr2CaCu2O8+δ. Science 295, 466–469 (2002).
5. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Phys. Rev. B 80, 075139 (2009).
6. Sato, Y. et al. Pairing of charge-ordered stripes in (La,Ca)1.5Sr0.5NiO4. Phys. Rev. B 80, 024507 (2009).
7. Sato, Y. et al. Magnetic-field induced charge-stripe order in the high-temperature superconductor YBa2Cu3O6. Nature 477, 191–194 (2011).
8. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).
9. Kajimoto, R., Ishizaka, K., Yoshizawa, H. & Tokura, Y. Spontaneous field-induced metal-insulator phenomena in Pr1-xCaMnO3 with controlled charge-ordering instability. Phys. Rev. B 53, 1689–1692 (1996).
10. Braverman, V. et al. Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nat. Phys. 10, 52–58 (2013).
11. Mori, S., Chen, C. & Cheong, S.-W. Pairing of charge-ordered stripes in (La,Ca)1.5Sr0.5NiO4. Phys. Rev. B 80, 024507 (2009).
12. Mourachkine, A. & Vekilov, P. G. Electric field depinning of charge density waves. Phys. Rev. B 80, 035129 (2009).
13. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).
14. Feinberg, D. & Friedel, J. Elastic and plastic deformations of charge density waves. J. Phys. 49, 485–496 (1988).
15. Dagotto, E. Complexity in strongly correlated electronic systems. (Springer Netherlands, Dordrecht, 2002).
16. Bravyi, D. & Friedel, J. Ordering of charge-density waves on the square lattice in the presence of quenched disorder. Phys. Rev. B 74, 024520 (2006).
17. Le Tacon, M. et al. Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nat. Phys. 10, 52–58 (2013).
18. Liu, H. L., Cooper, S. L. & Cheong, S.-W. Optical study of the evolution of charge and spin ordering in the manganese perovskite Bi1-xCaMnO3 (x > 0.5). Phys. Rev. Lett. 81, 4684–4687 (1998).
19. Coppersmith, S. & Mills, A. Diverging strains in the phase-deformation model of sliding charge density waves. Phys. Rev. B 44, 7799–7807 (1991).

Author contributions
A.S.A., J.K., and S.-W.C. synthesized the crystals and performed electrical transport measurements. B.H.S., I.E.B., R.H., and L.F.K. wrote the manuscript. The work was conceived and guided by L.F.K. All authors discussed results and commented on the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-017-02156-1.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017