Topological insulators [1–6] is a new quantum phase of matter with exotic properties such as dissipationless transport and protection against Anderson localization. [7] These new states of quantum matter could be one of the missing links for the realization of quantum computing [8, 9] and will probably result in new spintronic or magnetoelectric devices. Moreover, topological insulators will be a strong competitor with graphene in electronic application. Because of these potential application the topological insulator research has literally exploded during the last year. Motivated by the fact that up-to-date only few 3D systems are identified to belong to this new quantum phase [10–18] we have used massive computing in combination with data-mining to search for new strong topological insulators. In this letter we present a number of non-layered compounds that show band inversion at the Γ-point, a clear signal of a strong topological insulator.

The prediction and realization of the 3D topological insulators [14, 15] grew out of the work on the quantum Hall effect and quantum spin Hall effect in 2D [19–21] and the essence of these central articles [11–21] is captured in a number letters describing topological insulators [1, 3–6].

In school we have been taught that materials can be divided into insulators and conductors. Lately a new state of matter has emerged, the so-called strong topological insulators in 3D. These materials can be viewed as insulators in the bulk but with metallic surface states, resembling the Dirac cones in graphene. These metallic surface states exhibit remarkable properties such as dissipation less transport and topological protection against perturbations and impurity scattering. Not surprisingly these new materials have spawned great attention and research in the science community because of the potential of interesting application.

An insulator is characterized by its non-ability to conduct, i.e. an external electric field does not cause current flow. Alternatively we think of an insulator as a system that lacks low lying excited states and it takes a finite amount of energy for an electronic excitation, i.e. we have an electronic band gap. It appears that the electronic band gap is the one characteristic needed to characterize an insulator and this was true until the quantum Hall effect (QHE) came around. The quantum Hall state (QHS) shows up when, for example, a two-dimensional electron gas is subject to a magnetic field. The interior of the QHS has a band gap but contrary to a normal insulator the QHS has edge states that do not show a band gap, i.e. there is a current on the boundary of the sample. This very special charge flow is one directional thus making it protected against scattering [2]. Both the insulating- and QHS systems show bulk band gaps but the latter also have the surface states that are insensitive to scattering. So what is the difference between the two systems? It turns out that it is the topology of the occupied bands that does it, or more specifically, the topological class of the bulk band structure.

Next came the quantum spin Hall effect (QSHE) [20, 21]. The quantum spin Hall state (QSHS) is characterized by yet another topological invariant (knot) and can exist without a magnetic field (a QHS required a magnetic field) thanks to the spin-orbit interaction. The bulk has a band gap where as the edge states do not. In graphene these edge states are spin-filtered thus making the different spins travel in opposite directions. The QSHE can give us edge states without a magnetic field in 2D thanks to the spin-orbit interaction. But what happens when we go 3D? In refs. [11–18] it was both predicted and experimentally verified that topological insulators do exist in 3D and it is the spin-orbit interaction that helps out. We can think of these edge states in 3D topological insulators as a higher dimensional version of the 1D edge states in the QSHS. In 3D the simplest form of edge state can be viewed as a Dirac fermion metal with a linear excitation energy, c.f. the energy spectrum of mass less Dirac fermions (Dirac cone). Moreover, because these surface states are topologically protected by time-reversal symmetry, Anderson localization does not occur even under strong disorder. A topological insulator is simply not allowed to lose the metallic surface state, id est become gaped or localize. This was recently experimentally verified for Bi$_x$Sb$_{1-x}$ [7].

When data-mining electronic structures in the search for new strong topological insulators the most straightforward method is to identify materials with a negative band gap [17]. To put it differently the electronic structure should develop an anti-crossing feature at the Γ-point when the spin-orbit interaction is turned on as compared to no spin-orbit coupling. A typical band-inversion is shown in Figure [1]. Thus the data-mining algorithm is instructed to search for small gaped materials with an anti-crossing feature at the Γ-point. Note that the data-mining of electronic structures have been calculated with spin-orbit coupling.

To show proof-of-concept the first three known sec-
The material has small hole pockets.

TABLE I: Results of the mining algorithm for second generation non-trivial topological insulators

Material	Spgrp	Struct. type	LDA band gap [eV]
Ca$_3$PbO	P m -3 m	CaTiO$_3$	0.2
Sr$_3$PbO	P m -3 m	CaTiO$_3$	0.1
Ba$_3$PbO	P m -3 m	CaTiO$_3$	0.1
Yb$_3$PbO	P m -3 m	CaTiO$_3$	0.2
Ca$_3$SnO	P m -3 m	CaTiO$_3$	0.2
Sr$_3$SnO	P m -3 m	CaTiO$_3$	0.1
Yb$_3$SnO	P m -3 m	CaTiO$_3$	0.1
GdPtSb	F -4 3 m	AlLiSi	0.2
Bi$_2$Se$_2$Te$_2$	R -3 m H	Bi$_2$Te$_3$	0.3
Bi$_2$Sb$_2$Te$_2$	R -3 m H	Bi$_2$Te$_3$	0.3
Pb$_x$Ti$_y$Te$_3$	I 4/m c m	In$_5$Bi$_3$	0.1
BiTiTe$_2$	I 4/m c m	In$_5$Bi$_3$	0.1
BiTIITe$_2$	R -3 m H	NaCrS$_2$	0.0a
Sb$_2$Te$_2$	R -3 m H	NaCrS$_2$	0.2
Bi$_x$Te$_y$	C 1 2/m	Bi$_2$Te$_3$	0.1
GeSb$_4$Te$_7$	P -3 m 1	AgBiSe$_2$	0.2
HgKSb	P 63/m m c	KZnAs	0.2

aThe material has small hole pockets.

structures is briefly explained. The complete process is shown in Figure 2. The starting point is the inorganic crystal structure database (ICSD) which is a collection of some 130,000 experimental crystal structures obtained by X-ray and neutron diffraction. Using only the crystal structure as input we have calculated the electronic structure for about 60,000 entries in the ICSD using a full-potential linear muffin-tin orbital implementation (FP-LMTO) of density functional theory (DFT) within the local density approximation (LDA). The obtained library is maintained within the electronic structure project (ESP) and has been made available on the web. The data-mining process in the search for new strong topological insulators is rather straightforward. Non-layered small gap materials (≤ 0.5eV) with an anti-crossing feature at the Γ-point are identified. Furthermore it is verified that the anti-crossing feature disappears when the spin-orbit interaction is switched off. The data-mining identifies 17 compounds as potential strong topological insulators and these are presented in Table I. Note that because the ESP take crystal structures from the ICSD all compounds identified in this study exist and have been structurally determined.

The first group of materials in Table I belong to the CaTiO$_3$ (perovskite) structure type but are inverse-perovskites. Perovskites are interesting materials because these host a variety of materials properties such as superconductivity, spin dependent transport, ferroelectricity and colossal magnetoresistance. Present calcula-
tions indicate that the strong topological insulator phase now can be added to this list. Through out the Brillouin zone these materials have an in-direct LDA band gap ranging from 0.1 to 0.2 eV. The characteristic anti-crossing feature is present at the Γ-point and if the spin orbit coupling constant is set to zero the anti-crossing feature disappears. From the partial density of states we conclude that these bands have mainly p-character. The electronic band structure for Ca$_3$OSn is shown in Figure 3.

FIG. 3: Ca$_3$OSn is an example of inverse perovskite that show band inversion. The material transforms from direct gap (no spin-orbit interaction included, green line) at the Γ-point to in-direct gap (around the same point in inverse space) when the spin-orbit is included (black line) in the electronic structure calculation, i.e. the upper most valence band is pushed way and the anti-crossing feature appears. The LDA band gap is 0.2 eV which qualifies the compound for operation under ambient conditions.

Next in Table 1 is the half-Heusler compound GdPtSb with a AlLiSi structure type. The half Heusler family has been discussed in [10] but there with a distorted structure. Here it is explicitly demonstrated for GdPtSb that with the experimental structure the material develops an anti-crossing feature when the spin-orbit term is included in the calculations and we speculate that this is also true for the other materials in [10]. GdPtSb has an indirect band gap of 0.2 eV.

Bi$_2$SeTe$_2$ and Bi$_2$SbTe$_2$ both have the Bi$_2$Te$_3$ structure type. In fact these materials can be viewed as Bi$_2$Te$_3$ but with every third Te replaced with Se and S, respectively. Bi$_2$Te$_3$ is a celebrated second generation topological insulator [17] and both the Se and S variations have similar electronic structure to Bi$_2$Te$_3$ and show the anti-crossing feature at the Γ-point when spin-orbit interaction is removed. The indirect band gaps are 0.3 eV, respectively. The electronic band structure for Bi$_2$SbTe$_2$ is shown in Figure 3. For Bi$_2$SeTe$_2$ the electronic band gap closes without the spin-orbit term and the material appear to be a topological metal within the local density approximation (LDA). However, LDA is known to underestimate the electronic band gap and using higher order corrections such as the GWA [24] could very well open up a band gap thus making it a topological insulator. We speculate that there are many not yet discovered topological metals, i.e. a bulk metal but with topologically protected surface states, and a data-mining search for these materials will be the subject for our next study.

PbTl$_4$Te$_3$ and BiTl$_9$Te$_6$ have a body-centered tetragonal Bravais lattice and belong to the In$_5$Bi$_3$ structure type family. In$_5$Bi$_3$ exhibit interesting electronic properties such as superconductivity. The two compounds both show the anti-crossing feature as spin-orbit is included and we note the curvature of these bands is smaller compared to, for example, the Bi$_2$Te$_3$ family. The indirect band gap is 0.1 eV, respectively.

SbTlTe$_2$ and BiTlTe$_2$ have the NaCrS$_2$ structure type. The former material has an indirect band gap of 0.2 eV. The latter electronic structure is more complex. Using LDA the material show small electron and hole pocket but could very well turn out to have a small band gap when investigated using higher order theory such as GWA.

The last three materials in Table 1 belong to different structure types and all have indirect band gaps but with more exotic electronic band structures. Bi$_2$Tel develop the anti-crossing feature at two high symmetry points (Γ and V) in the Brillouin zone. GeSb$_4$Te$_7$ and HgKsb...
show the band inversion at the A-point. The latter also display a small hole pocket away from the A-point.

To conclude we have used massive computing and data mining to search for and identify new potential topological insulators. In Table I 17 new materials have been identified that all show an anti-crossing feature at the Γ-point (V, A for the last three) as the spin-orbit coupling is included. This feature is a clear signal for a topological insulator [17]. As pointed out in reference [10] it is crucial to identify new groups of materials (electronic band structures) that are topologically non-trivial to maximize the likelihood for new physics as well as new devices [8, 25–30].

METHODS

The more than 60,000 electronic structures used in the present study were calculated using a highly accurate full-potential linear muffin-tin orbital (FP-LMTO) [22] implementation of density functional theory (DFT) within the local density approximation (LDA) In essence DFT reduces the many-body problem of solving the electronic structure of some \(10^{25}\) interacting electrons into to a one-body problem, thus making the calculation possible. A more detailed description can be found in [22, 23].

ACKNOWLEDGMENTS

The Swedish Research Council (VR) and the Göran Gustafsson Stiftelse are acknowledged for financial support.

ADDITIONAL INFORMATION

The authors declare no competing financial interests.