Pharmacological characterization of cnidarian extracts from the Caribbean Sea: evaluation of anti-snake venom and antitumor properties

Cláudia S. Oliveira 1,2,3, Cleópatra A. S. Caldeira 1,2,3, Rafaela Diniz-Sousa 1,2,3, Dolores L. Romero 4, Silvana Marcussi 5, Laura A. Moura 6, André L. Fuly 6, Cicília de Carvalho 7, Walter L. G. Cavalcante 7,8, Márcia Gallacci 7, Maeli Dal Pai 9, Juliana P. Zuliani 1,2,3, Leonardo A. Calderon 1,2,3 and Andreimar M. Soares 1,2,3,10*

Abstract

Background: Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall).

Methods: The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities.

Results: All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C. gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C. gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells.

Conclusion: The cnidarian extracts analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms; these results may contribute to elucidate the possible mechanisms of interaction between cnidarian extracts and snake venoms.

Keywords: Caribbean sea cnidarians, Bioprospection, Antiophidic, Antitumor, Natural products

* Correspondence: andreimarsoares@gmail.com; andreimar.soares@fiocruz.br
1Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO, Brazil
2Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Marine organisms, which comprise half of the total global biodiversity, have been recognized as the largest remaining reservoir of novel compounds to be evaluated for drug activity [1–6]. Animals belonging the phylum Cnidaria are of great importance for studies of pharmacological and toxicological assessments. The composition of cnidarian venoms remains incompletely elucidated. However, several of their compounds have been described, including peptides, proteins, purines, quaternary ammonium compounds, biogenic amines and betaines [1, 7–11].

Venoms from such animals as snakes [12–14], scorpions [15–18], anurans [19, 20], cone snails [21, 22] and cnidarians [23–25] have been used as a source of bioactive compounds for the prospection of lead compounds potentially useful for the development of new anticancer therapies [26, 27]. This fact has provoked a growing worldwide interest in the screening of proteins, peptides, marine natural products (MNPs) from cnidarians in order to discover new anticancer bioactive compounds [28, 29].

The use of genomic and proteomic approaches had permitted a rapid increase in the number of sequences from cnidarians deposited in protein and gene databases [30–32]. Some of these toxins have been used for the development of anticancer molecules. One interesting example is the hemolytic toxin (HT) from Stichodactyla helianthus sea anemone which was conjugated with an antibody towards an antigen expressed on immature T lymphocytes (IOR-T6) producing an ß-hemolytic hybrid IOR-T6-HT that showed toxicity against CEM cells expressing the IOR-T6 antigen and non-toxic effects for K562 cells without the antigen [33].

Additionally, several marine natural products are able to inhibit the toxic effects of snake venoms, such as extracts from Plocamium braziliense [34], Canistrocarpus cervicornis [35] and seaweed Prasiola crispa [36]. The marine extracts that also inhibit PLA2 activity include manoalide [37], vidalos, and a group of terpenoids that contain masked 1,4-dicarbonyl moieties. Furthermore, the biotechnological potential of PLA2 inhibitors may provide therapeutic molecular models that exert antiphidian activity to supplement the conventional serum therapy against these multifunctional enzymes [38, 39].

This study aimed to evaluate toxicological activities and their efficacy against tumor and snake-venom toxic activities from five Caribbean Sea cnidarian species of the hydrozoa class: Millepora alcicornis, Plexaura homomalla and Cnidarians of the anthozoa class: Condylactis gigantea (total and body wall), Stichodactyla helianthus, and Bartholomea annulata.

Methods

Materials and reagents

The synthetic fluorescent substrates Acyl 6:0 NBD phospholipids, NBD-phosphatidylcholine (PC) and NBD-phosphatidic acid (PA) were purchased from Avanti Polar Lipids Inc. (USA). The reagents used in the electrophoresis, salts and other reagents were obtained from Sigma Chemical Company (USA).

Cnidarian extracts

The cnidarians specimens were collected in the coast of Havana City during a one-year period. The extracts of corals were obtained as previously described by [40], whereas anemone extracts were obtained according to [41]. Protein quantitation was based on the Bradford method (BioRad) using bovine serum albumin (BSA) as a standard.

Animals

Adult male mice weighing 25 to 30 g were maintained under a 12 h light-dark cycle (lights on at 07:00 h) in a temperature-controlled environment (22 ± 2 °C) for at least ten days prior to the experiments. Food and water were freely available. Animal procedures were in accordance with the guidelines prepared by the Committee on Care and Use of Laboratory Animal Resources, National Research Council, USA. The ethical aspects related to the project were approved by the Ethics Committee on Animal Use (No. 2012/1) and the Ethics Committee (102/2009) for Research on Human Beings from Brazil (CAAE: 14204413.5.0000.0011).

Electrophoresis

SDS-PAGE 12.5% (m/v) was carried out as previously described [42]. 500 µg samples C. gigantea (body-wall), C. gigantea (total), M. alcicornes, S. helianthus, P. homomalla and B. annulata were pretreated in reducing conditions (SDS plus β-mercaptoethanol) at 100 °C for 5 min. Gels were stained with 0.1% Coomassie brilliant blue R-350 in ethanol: acetic acid (5:1, v/v) for 15 min and discolored in 10% acetic acid. The molecular mass was estimated by interpolation from a linear logarithmic plot of relative molecular mass versus distance of migration using standard molar mass markers (SDS7 Sigma-Aldrich).

Phospholipase activity

The Phospholipase A2 (PLA2) activity was measured using the indirect hemolytic assay on agarose gels containing red blood cells and egg yolk phospholipids [43]. The hemolytic activity was evaluated spectrophotometrically using suspensions of fresh human RBC (red blood cells) as previously described [44, 45].

PLA2 activity was evaluated also through the hydrolysis of synthetic fluorescent phospholipid, using the fluorescent substrate Acyl 6:0 NBD phospholipid, NBD-phosphatidylcholine (NBD-PC). The assay was performed using a spectrofluorimeter (Shimadzu, RF-5301PC,
software RFPC) with excitation and emission wavelengths of 460 and 534 nm, respectively. The enzymatic activity of each cnidarian extract was evaluated for 250 s after the addition of substrate (3.3 μg/mL, final concentration) in a reaction medium containing 50 mM Tris-HCl, and 8 mM CaCl₂, pH 7.5, at room temperature.

**Proteolytic activity assay**
Proteolytic activity upon fibrinogen was measured as described by [46] with some modifications. Fibrinogen (70 μg) diluted in PBS was incubated with different amounts of cnidarian extracts diluted in 20 μL buffer (pH 7.5) at 37 °C for 2 h. The reaction was stopped with 20 μL of a solution containing 10% (v/v) glycerol, 10% (v/v) β-mercaptoethanol, 2% (v/v) SDS, and 0.05% (w/v) bromophenol blue. Fibrinogen hydrolysis was demonstrated by SDS-PAGE using 12% polyacrylamide gels. Proteolytic activity upon casein was measured as described by [47]. Cnidarian extracts (100 and 500 μg) were incubated for 30 min at 37 °C in a solution of 0.1 M Tris-HCl pH 9.0 containing 1% casein. After the incubation period, 1.5 mL of 30% TCA was added to each sample to stop the enzymatic reaction and centrifuged at 3400 xg for 25 min. Then, the samples were read on a spectrophotometer at a wavelength of 280 nm. One unit of protease activity was defined as the amount of enzyme that produces an increase in absorbance of 0.001 units/minute at 280 nm.

**Hemorrhagic activity assay**
Hemorrhagic activity was quantitatively estimated by the method of [48] with some modifications. Groups of six Swiss mice (18–22 g) were shaved on the back and then intradermally (i.d.) injected with different doses of cnidian extracts or snake venoms, in 50 μL of phosphate buffered saline (PBS). After 2 h, animals were anesthetized and euthanized. The shaved back skin was removed and the hemorrhagic halo diameter was measured. The minimum hemorrhagic dose (MHD) was obtained from the mean of these diameters (mm). The MHD is defined as the dose of snake venom or extract that produces a hemorrhagic lesion of 10 mm diameter after 2 h.

**Coagulant activity assay**
The clotting time was determined by mixing 20 μL of the samples (in 0.15 M NaCl, pH 7.4) with 200 μL of citrated bovine plasma at 37 °C. The B. jararacussu snake venom (20 μg) was assayed in order to determine the minimum coagulant dose (corresponding to the time between 1 and 1.2 s = 100% activity). For the neutralization trials, the snake venom was previously incubated with different cnidian extracts for 30 min at 37 °C, at different proportions (1:5, 1:10 and 1:30, w/w).

**Neuromuscular blocking**
Mice were euthanized by exsanguination after preparation of the cervical dislocation. Phrenic-diaphragm (PD) preparation was removed and mounted vertically in a conventional isolated organ-bath chamber containing 15 mL of physiological solution of the following composition (mmol/L): NaCl, 135; KCl, 5; MgCl₂, 1; CaCl₂, 2; NaHCO₃, 15; Na₂HPO₄, 1; glucose, 11. This solution was bubbled with carbogen (95% O₂ and 5% CO₂). The preparation was attached to an isometric force transducer (Grass, FT03) for recording the twitch tension. The transducer signal output was amplified and recorded on a computer via a transducer signal conditioner (Gould, 13–6615-50) with an Acquire Lab Data Acquisition System (Gould). The resting tension was 5 g; indirect contractions were stimulated by supramaximal pulses (0.2 Hz, 0.5 ms) delivered from an electronic stimulator (Grass-S88 K) and applied to the phrenic nerve by means of a suction electrode. The preparation was allowed to stabilize for 45 min before the addition of a single concentration of toxin [49].

**Muscle-damaging activity**

**Morphological analysis**
At the end of the myographic study, the diaphragm muscle was removed from the bath and frozen in liquid nitrogen. Transverse sections (8 mm thick) were cut out at −20 °C in a cryostat and stained with hematoxylin and eosin (HE) prior to examination by light microscopy [50]. Muscle damage was quantified in HE stained preparations, using an Analysis Imaging System (Leica, Qwin). The number of fibers with lesions was expressed as a percentage of the total number of cells (muscle damage index), in three non-overlapping non-adjacent areas of each muscle, observed at the same magnification.

**Creatine kinase release**
The creatine kinase (CK) assay was carried out using the CK-UV kinetic kit from Sigma Chem. Co. Different cnidian extracts were injected (i.m., 50 μL) into Swiss male mice weighing 18–22 g (n = 6). The control animals received 0.15 M PBS. After 3 h, the blood from the tail was collected in heparin-coated tubes and centrifuged for plasma separation. The amount of CK was then determined using 4 μL of plasma, which was incubated for 3 min at 37 °C with 1.0 mL of the reagent. Enzyme activity was expressed in international units per liter (IU/L), with one unit of activity corresponding to phosphorylation of 1 μmol of creatine/min at 25 °C.

**Edema inducing activity**
Groups of six Swiss male mice (18–22 g) were injected in the sub plantar region with different doses of cnidian extracts in 50 μL of PBS. After 0.5, 1 and 3 h, the paw edema was measured using a low-pressure spring
caliper (Mytutoyo-japan) [51, 52]. The zero time values were then subtracted and the differences reported as median % ± S.D.

Cytotoxic activity
Tumor cell cytotoxic activity of cnidarian extracts on human acute T-cell leukemia (Jurkat) and B16F10 cell lines were assayed using the MTT method according to [53]. Cells were dispersed in 96-well plates at a density of 1 × 10^5 cells per well. After 24 h of culture, the media were removed and fresh media, with or without different concentrations of samples, were added into the wells and incubated for 24 h. The extracts were evaluated at 1000, 100 and 10 μg/mL concentrations using Vincristine as positive control (100 μg/mL). Results were expressed as a percentage (%).

Statistical analysis
Results were expressed as mean ± S.D. Data was analyzed by ANOVA complemented by the Tukey-Kramer test, using the statistical program GraphPad 5.0. Values of p < 0.05 were considered significant.

Results and discussion
The SDS-PAGE analysis in denaturing conditions of the cnidarian extracts showed the difference between extracts of *C. gigantea* (body-wall), *C. gigantea* (total), *S. helianthus*, *B. annulata*, *M. alcicornes* and *P. homomalla*. Considering that the extracts were obtained from the entire organism, it should be noted that the anatomy of *M. alcicornes* and *P. homomalla* is different from that of anemones. For this reason, the method of protein extraction must be differentiated for these organisms. Thus, it is possible that in the 500 μg extract applied to the electrophoresis, a low protein yield made it impossible to visualize bands on the polyacrylamide gel (Fig. 1a).

The extracts of *S. helianthus* and *C. gigantea* (body-wall) hydrolyzed the NBD-PC substrate that is specific for the PLA₂ enzymes, which was not observed for the other extracts tested (Fig. 2b). Martins and coworkers [54] isolated a PLA₂ (CgPLA2) composed of 14 kDa dimers and 29 kDa monomer from the *C. gigantea* extract. Another study reported showed that Sticholysin I and II, two 19 kDa pore-forming cytokines, present in the *S. helianthus* extract, low activity against specific substrates for phospholipase activity when tested alone [55].

However, fractions enriched with these two molecules together demonstrated a significant increase in phospholipase activity [56]. Although CgPLA₂ and Sticholysin I and II are known to exert phospholipase activity, it should be emphasized that the experiments were carried out with total extract. It is possible that these molecules are responsible for the hydrolysis promoted against the NBD-PC substrate, but we do not rule out the existence of other molecules that are components of the extract, which alone or in clusters may be acting in the hydrolysis of the NBD-PC substrate.

As shown in Fig. 2a, all extracts displayed indirect hemolytic activity. However, only extracts of *S. helianthus* and *C. gigantea* showed direct hemolytic activity by lysis of red blood cells, in a concentration-dependent

![Fig. 1](image-url) (a) PAGE in the presence of SDS and β-mercaptoethanol. Lanes: 1 – standard, molecular-weight markers; 2 – *C. gigantea* (body-wall); 3 – *C. gigantea* (total); 4 – *M. alcicornes*; 5 – *S. helianthus*; 6 – *P. homomalla*; 7 – *B. annulata*; samples were applied containing 500 μg of each extract. (b) Fibrinogenolytic activity of cnidarian extracts. 1 – Fibrinogen; 2 – fibrinogen + *C. giganten* (body-wall); 3 – fibrinogen + *C. gigantea* (total); 4 – fibrinogen + *M. alcicornes*; 5 – fibrinogen + *S. helianthus*; 6 – fibrinogen + *P. homomalla*; 7 – fibrinogen + *B. annulata*. Fibrinogen hydrolysis was demonstrated by SDS-PAGE using 12% polyacrylamide gels.
manner (Fig. 3a, b). Hemolysis was provoked not only by anemone extract as observed in B. annulate [57] and S. helianthus [58] but also by M. alcicornis aqueous extract [8]. In addition, Sticholysin II toxin isolated from S. helianthus has also been described for its hemolytic capacity [45, 59–63].

The extracts of C. gigantea (body wall) and B. annulata were able to partially hydrolyze the α and β chains of fibrinogen; however, S. helianthus, M. alcicornis and P. homomalla were incapable of hydrolyze fibrinogen efficiently (Fig. 1b). The fibrinogenolytic assay was carried out using 50 μg of the cnidarian extracts, whose proteolytic activity upon casein was evaluated; furthermore, the extract of B. annulata (100 μg) hydrolyzed casein at 80 U/min. The extracts of C. gigantea (body wall) and B. annulata at 500 μg hydrolyzed casein at 118 and 170 U/min, respectively (Fig. 2c).

As to the hemorrhagic effect, extracts of M. alcicornis and P. homomalla induced bleeding at a concentration of 150 μg (Fig.4a) and inhibited bleeding induced by Bothrops snake venom. All cnidarians extracts tested inhibited the hemorrhagic activity induced by B. moojeni venom at a ratio of 1:30 w/w, showing approximately 40% inhibition in the presence of extracts of C. gigantea (body wall), P. homomalla and M. alcicornis (Fig.4c). Interestingly, the B. neuwiedi venom extracts did not inhibit hemorrhage (Fig. 4b).

Coagulant activity was not induced by cnidarian extracts. However, all cnidarian extracts except M. alcicornis inhibited the coagulant activity induced by B. jararacussu venom at the ratios of 1:5 and 1:10 w/w. In this assay, the B. annulata extract at a 1:30 w/w ratio showed the greatest ability to delay the clotting time of citrated plasma after the addition of B. jararacussu venom for more than 40 min (Table 1). The other extracts tested at the 1:30 w/w ratio presented lower inhibitory effect (Fig. 5). Additionally, C. gigantea body-wall extract at a concentration of 200 μg/mL were
Fig. 3: Hemolytic activity of cnidarian extracts. (1) C. gigantea (body-wall), (2) C. gigantea (total), (3) M. alcicornis, (4) S. helianthus, (5) P. homomalla and (6) B. annulata. (a) Percentage of hemolytic activity tested at different doses from 50 to 2000 μg; (b) the hemolysis was tested at the same 200 μg/mL concentration.

Fig. 4: Induction and Inhibition of hemorrhagic activity. (a) Hemorrhage induced by snake venoms: (Bj) B. jararacussu, (Bp) B. pirajai, (Ba) B. alternatus, (Bn) B. neuwiedi, (Bm) B. moojeni - all venoms at 30 μg and, cnidarian extracts: (1) C. gigantea (body-wall), (2) C. gigantea (total), (3) M. alcicornis, (4) S. helianthus (5) P. homomalla, (6) B. annulata - all extracts at 150 μg. (b) Inhibition of hemorrhagic activity induced by B. neuwiedi (Bn) at 20 μg and, (c) Inhibition of haemorrhagic activity induced by B. moojeni (Bm) at 10 μg. Results are reported as mean ± S. D (n = 3)
able to inhibit thrombin-induced coagulation. This activity can be produced by the presence of protease inhibitors, as reported by [64], who showed the presence of protease inhibitory activity in the extract from the marine sponge *Xestospongia muta* (Poriphera) and in the sea anemones *B. granulifera* and *B. annulata*. According to these authors, this activity was dose-dependent and the molecule responsible for the inhibition had a low molecular weight. Di Bari and coworkers [65] also described the presence of protease inhibitors in aqueous extracts of marine sponges; all extracts were able to inhibit the activity and expression of matrix metalloproteinases (MMP-2 and MMP-9) in mice astrocyte culture.

At 3 h after the injection of 50 μg of cnidarian extracts into the gastrocnemius mouse muscle, a slight myotoxic effect from the extracts of *M. alcicornis* and *P. homomalla* was observed, approximately 22% above those observed for the controls injected with PBS alone. The *C. gigantea* (body-wall), *C. gigantea* (total) and *S. helianthus* presented increased activity, while extract of *B. annulata* did not show myotoxic effect.

Some studies have demonstrated the toxic effects of marine animals such as coral *Millepora alcicornis*, which causes systemic reactions in the kidney, lung and liver [8], and *Millepora complanata*, which presents non-peptide toxins highly lethal to mice with LD50 of 4.62 μg/g body weight [66]. The other cnidarian extracts tested, *C. gigantea* (body-wall), *C. gigantea* (total) and *S. helianthus*, showed a more pronounced myotoxic effect, smaller only compared with to those induced by *B. jararacussu* venom and the myotoxin BthTX-I, which are highly myotoxic (Fig. 6a). The edema induction was observed only in the presence of extracts from *P. homomalla* and *S. helianthus* (Fig. 6b).

### Table 1

Clotting activity inhibition from *B. jararacussu* snake venom by cnidarian extracts

| Clotting Time (min.) | Samples (1:5) | Samples (1:10) | Samples (1:30) |
|----------------------|--------------|----------------|----------------|
| **B. jararacussu** (20 μg) | 1.08 | 1.10 | 1.05 |
| **C. gigantea** (body-wall) | 1.08 | 15 | 16.2 |
| **C. gigantea** (total) | > 3 | > 3 | 12.0 |
| **M. alcicornis** | > 3 | 1.24 | 1.13 |
| **S. helianthus** | 2.4 | > 3 | > 3 |
| **P. homomalla** | > 3 | > 3 | 11.4 |
| **B. annulata** | 2.1 | > 3 | > 40 |

### Figure 5

Effect of cnidarian extracts on coagulation. (1) *C. gigantea* (body-wall), (2) *C. gigantea* (total), (3) *M. alcicornis*, (4) *S. helianthus*, (5) *P. homomalla*, (6) *B. annulata*. 200 μg/mL of the extract were pre-incubated with fibrinogen; clotting was then started by the addition of thrombin and monitored at A405 nm. Results are reported as mean % ± S.D. (n = 3).

### Figure 6

Myotoxic activity and edema-induction by cnidarian extracts. (B) *B. jararacussu* snake venom and (BthTX-I) Bothropstoxin-I from *B. jararacussu* (1) *C. gigantea* (body-wall), (2) *C. gigantea* (total), (3) *M. alcicornis*, (4) *S. helianthus* (5) *P. homomalla*, (6) *B. annulata*. (a) CK activity was measured 3 h after the i.m injection of 50 μL with 50 μg of each cnidarian extracts (1–6) and 20 μg of the Bj and BthTX-I. Results are presented as means ± S.D. (n = 4). (b) Paw edema in Swiss mice was induced by injection of 100 μg of cnidarian extracts and 10 μg of Bj at 30, 60 and 180 min. Results are reported as mean % ± S.D. (n = 6).
In isolated neuromuscular preparation, extract from \textit{S. helianthus} (100 μg/mL) induced a time-dependent blockage of indirect twitches (Fig. 7). After 300 min, the twitch amplitude was reduced by about 84%. In contrast, at the same concentration, extracts from \textit{C. gigantea} (body wall) and \textit{C. gigantea} (total) did not affect the indirectly evoked twitches. Morphological and morphometric analyses revealed an absence of significant damage in diaphragm muscles exposed to \textit{S. helianthus} and \textit{C. gigantea} total extracts (Fig. 8). On the other hand, a slight, but significant level of damage was observed in muscles exposed to \textit{C. gigantea} body wall extract (Fig. 8).

\begin{figure}[h]
\centering
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{fig7.png}
\caption{Fig. 7 Effects of \textit{S. helianthus} extract (100 μg/mL) upon indirect evoked twitches on mouse phrenic-diaphragm preparation. The ordinate represents the % amplitude of twitches relative to the initial amplitude. The abscissa indicates the time (min) after the addition of the extract to the organ bath. Vertical bars represent the SEM; *indicates the point from which there are significant differences relative to control (\(p < 0.05\)).}
\end{subfigure}
\end{figure}

\begin{figure}[h]
\centering
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{fig8.png}
\caption{Fig. 8 Light micrographs of mouse diaphragm muscles submitted to hematoxylin and eosin staining. Control muscle (a) and muscles exposed to extracts of \textit{C. gigantea} (body-wall) (b), \textit{C. gigantea} (total) (c) and \textit{S. helianthus} (d). Note the general normal appearance of fibers with polygonal aspect (f) and endomysium (en). Muscle damage index of (C) and (D) (4.3 ± 1.3, \(n = 5\) and 5.5 ± 1.1, \(n = 4\), respectively) were not significantly different from that of (A) (2.0 ± 0.4, \(n = 5\)). However, muscle damage of B (5.9 ± 0.8, \(n = 5\)) was significantly higher than that of A. (ANOVA, \(p \leq 0.05\)). The remaining cnidarian extracts did not show such activity.}
\end{subfigure}
\end{figure}
The cytotoxic activity of cnidarian extracts upon the human tumor cell lines JURKAT (leukemia T) and B16F10 (melanoma) (Fig. 9a and b) showed that all extracts presented anti-tumor activity against JURKAT cells, except the extract B. annulata. Additionally, extracts of C. gigantea (body-wall) and S. helianthus showed significant anti-tumor activity at concentrations of 1000 µg/mL, of which the latter still showed cytotoxic activity of 50% even at the lowest concentration evaluated (10 µg/mL). As to their activity on B16F10 cells, only the extract of C. gigantea (body wall) and M. alcicornis showed anti-tumor activity at concentrations of 1000 and 100 µg/mL. Some authors proposed that this cytotoxic activity on tumor cells is associated with the induction of apoptosis considering the fact that some enzymes isolated from animals exhibit hydrolytic activity by altering the cell membrane [67]. Another study reported the cytotoxic effect of extracts from the marine sponge Polymastia janeirensis on a human glioma line (U138MG); in the experiment, both aqueous and organic sponge extracts were studied in order to produce data for the development of new alternatives for snakebite envenomation and cancer therapies.

**Conclusions**

The neutralization of the clotting induced by B. jararacussu snake venom and the inhibition of the hemorrhagic activity induced by B. moojeni venom were demonstrated by the majority of the cnidarian extracts tested, whereas the ability to inhibit thrombin-induced coagulation was shown by the C. gigantea (body wall). Together with the anti-tumor effect against JURKAT cells demonstrated by all cnidarian extracts tested and the specificity shown against B16F10 cells, these findings constitute important evidence that cnidarians extracts are a rich source of bioactive molecules that should be studied in order to produce data for the development of new alternatives for snakebite envenomation and cancer therapies.

**Acknowledgments**

This work was supported by the Ministry of Science and Technology (MCTI), National Council for Scientific and Technological Development (CNPq), Coordination of Improvement of Higher Education Personnel (CAPES), National Research Network in Marine Biotechnology (process no. 408522/2013-5, MCTI/CNPq/FNDCT) and Rondônia Research Foundation (FAPEM). The authors express their gratitude to Genetic Heritage Management Board (CGEN/MMA) for financial support under the authorization number 010627/2011-1. The authors thank the Program for Technological Development in Tools for Health-PDTIS-FIOCRUZ for use of its facilities. Amy Grabner provided the English editing of the manuscript. The authors thank the Andrea A. Moura, Nestor A. D. Mendes, Anderson M. Kayano, and Auro Nomizo for their collaboration of the work and manuscript.

**Funding**

This work was funded by the FIOCRUZ, FAPERQ, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da Ciência e Tecnologia (MCTI) from Brazil.

**Availability of data and materials**

The data sets used and/or analyzed during the current study are available from the authors (CSO, CASC, RDS, DLR, SM), upon reasonable request.

**Authors’ contributions**

CSO, CASC, RDS, DLR and SM provided the biochemical and functional characterization. CSO, CASC, RDS, DLR, SM, LAM, ALF, CC, WLGC, MG, MDP and AMS conducted all the experiments, and analyzed and discussed the results obtained. JPZ, LAC, AMS, SM, DLR, MG and ALF participated in the analysis and discussion of the results, carried out a critical review of the work, and assisted in the writing and structuring of the article. AMS, DLR, MG and ALF were responsible for the conception of the work, supervised all the experiments and drafted the manuscript. All the authors read and approved the final manuscript.

**Ethical approval and consent to participate**

The procedures with animals are in accordance with the guidelines for the care and use of laboratory animals from National Research Council, USA. The ethical aspects related to the project were approved by the Ethics Committee for Animal Use (No. 2012/1), (No. 102/2009) and Ethics Committee for Human Research – CEP from Brazil (CAAE: 14204413.5.0000.0011).

** Consent for publication**

Not applicable.

**Competing interests**

The authors declare that they have no competing interests.
Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Focruz Rondônia), Porto Velho, RO, Brazil.
2 Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil.
3 Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil.
4 Centro de Estudos de Proteínas, Faculdade de Biologia, Universidade de La Habana, Havana, Cuba.
5 Departamento de Química, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.
6 Departamento de Biologia Celular e Molecular (GCM), Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil.
7 Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
8 Instituto de Ciências Biológicas, Departamento de Farmacologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
9 Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
10 Centro Universitário São Lucas (UnILS), Porto Velho, RO, Brazil.

Received: 19 December 2017 Accepted: 7 August 2018

Published online: 28 August 2018

References
1. Frazão B, Vasconcelos V, Antunes A. Sea anemone (cnidaria, anthozoan, actinaria) toxins: an overview. Mar. Drugs. 2012;10:1812–51.
2. Aneiros A, Garateix A. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B Anal Technol Biomed Life Sci. 2004;803:41–53.
3. Cooper EL, Hirabayashi K, Strychar KB, Sambacco PW, Corals and their potential applications to integrative medicine. Evid Based Complement Alternat Med. 2014;2014:184959.
4. Kim S-K, Venkatasekar Introduction to Marine Biotechnology. Springer Handb. Mar. Biotechnol. 2015:1–10.
5. Choudhary A, Naughton L, Montánchez I, Dobson A, Rai D. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar. Drugs. Multidisciplinary Digital Publishing Institute. 2017;15:272
6. Mayer A, Rodríguez A, Taglialatela-Scafati O, Fusetani N. Marine Pharmacology in Molecules. 2015;20:3515
7. Ketelhut DFJ, Homem De Mello M, ELG V, Esmeraldino LE, Murakami MT, Amin RK, et al. Isolation, characterization and biological activity of acidic phospholipase A2 isoforms from Bothrops jararacussu snake venom. Biochimie. 2003;85:983–91.
8. Estrada-Gómez S, Gomez-Rave L, Vargas-Muñoz LJ, van der Meijden A. Characterizing the biological and biochemical profile of six different scorpion venoms from the Bothriurus and Scorpioidea family. Toxicon. 2017;130:104–15.
9. Shahbazbadi D, Yazdani N, Kazemi-Lomedeshi F, Bagheri KP, Behdani M. Anticancer activity of H. lepturnus venom and its hemolytic fraction (heminecrolysin). HBB: Heal. Biotechnol. Biopharma. 2017;1:46–53.
10. Schmeda-Hirschmann G, Quipe C, Theoludz C, de Sousa PT, Piarotto C. Antiproliferative activity and new arginyl bufadienolide esters from the “cururu”toad Rhinella (Bufo) schneideri. J Ethnopharmacol. 2014;155:1076–85.
11. Sousa LQ, Machado KD, Oliveira SF, Araújo LD, Mongão-Filho ED, Melo-Cavalcante AA, et al. Bufadienolides from amphibians: a promising source of anticancer prototypes for radical innovation, apoptosis triggering and Na+/K+-ATPase inhibition. Toxicon. 2017;12:63–76.
12. Abdul-Rahman MA, Abdul-Nabi IM, Al-Naggar MS, Abbas OA, Strong PN. Corus vexillum venom induces oxidative stress in Ehrlich’s ascites carcinoma cells: an insight into the mechanism of induction. J. Venom. Anim. Toxins Incl. Trop. Dis. 2013;19:101.
13. Lebbe BM, Tytgat J. In the picture: disulfide-poor conopeptides, a class of pharmacologically interesting compounds. J. Venom. Anim. Toxins Incl. Trop. Dis. BioMed Central; 2016;22:30.
14. Sandersen BS, Da Silva KB, Sanzamour M. How venom from the Magnificent Sea Anemone, Heteractis magnifica, kills breast and lung cancer cells. Mar Drugs. 2013;11:1728–62.
15. Maricotti GL. The role of Cnidaria in drug discovery. Cnidaria, Past: Present Future. Springer International Publishing. 2016; p. 655–68.
16. Song X, Xiong Y, Qi X, Tang W, Dai J, Gu Q, et al. Anticancer potential of anti-venoms of snakes. Oncol. Rep. [National Hellenic Research Foundation]. 2017;38:637–51.
17. Gomes A, Bhattacharjee P, Mishra R, Biswas AK, Dasgupta SC, Giri B, et al. Anticancer potential of animal venoms and toxins. Indian J Exp Biol. 2010;48:103–10.
18. Lianghong W, Chao D, Xian L, Wenyen H, Xiulan S. Anticancer potential of bioactive peptides from animal sources. Oncol. Rep. [National Hellenic Research Foundation]. 2017;38:637–51.
19. Song X, Xiong Y, Qi X, Tang W, Dai J, Gu Q, et al. Molecular Targets of Anticancer Compounds Derived from Marine Sources. Mar. Drugs. Multidisciplinary Digital Publishing Institute. 2018;16:160.
20. Xie B, Huang Y, Bauman K, Fry B, Shi Q. From Marine Venoms to Drugs: Efficiently Supported by a Combination of Transcriptomics and Proteomics. Mar. Drugs. Multidisciplinary Digital Publishing Institute. 2017;15:6103.
21. Sousa LQ, Machado KD, Oliveira SF, Araújo LD, Mongão- Filho ED, Melo-Cavalcante AA, et al. Bafuidenolides from amphibians: a promising source of anticancer prototypes for radical innovation, apoptosis triggering and Na+/K+-ATPase inhibition. Toxicon. 2017;12:63–76.
22. Abdel-Rahman MA, Abdul-Nabi IM, Al-Naggar MS, Abbas OA, Strong PN. Corus vexillum venom induces oxidative stress in Ehrlich’s ascites carcinoma cells: an insight into the mechanism of induction. J. Venom. Anim. Toxins Incl. Trop. Dis. 2013;19:101.
23. Lebbe BM, Tytgat J. In the picture: disulfide-poor conopeptides, a class of pharmacologically interesting compounds. J. Venom. Anim. Toxins Incl. Trop. Dis. BioMed Central; 2016;22:30.
24. Sandersen BS, Da Silva KB, Sanzamour M. How venom from the Magnificent Sea Anemone, Heteractis magnifica, kills breast and lung cancer cells. Mar Drugs. 2013;11:1728–62.
25. Maricotti GL. The role of Cnidaria in drug discovery. Cnidaria, Past: Present Future. Springer International Publishing. 2016; p. 655–68.
26. Sandersen BS, Da Silva KB, Sanzamour M. How venom from the Magnificent Sea Anemone, Heteractis magnifica, kills breast and lung cancer cells. Mar Drugs. 2013;11:1728–62.
27. Lianghong W, Chao D, Xian L, Wenyen H, Xiulan S. Anticancer potential of anti-venoms of snakes. Oncol. Rep. [National Hellenic Research Foundation]. 2017;38:637–51.
28. Gomes A, Bhattacharjee P, Mishra R, Biswas AK, Dasgupta SC, Giri B, et al. Anticancer potential of animal venoms and toxins. Indian J Exp Biol. 2010;48:103–10.
29. Song X, Xiong Y, Qi X, Tang W, Dai J, Gu Q, et al. Molecular Targets of Anticancer Compounds Derived from Marine Sources. Mar. Drugs. Multidisciplinary Digital Publishing Institute. 2018;16:160.
30. Xie B, Huang Y, Bauman K, Fry B, Shi Q. From Marine Venoms to Drugs: Efficiently Supported by a Combination of Transcriptomics and Proteomics. Mar. Drugs. Multidisciplinary Digital Publishing Institute. 2017;15:6103.
31. Avila AD, Mateo de Acosta C, Lages A. A new immunotoxin built by linking a hemolytic toxin to a monoclonal antibody specific for immature T lymphocytes. Int. J. Cancer. 1988;42:568–71.
32. da Silva GA, Domingos TFS, Fonseca RR, Sanchez EF, Teixeira VL, Fuly AL. The red seaweed Plocamium brasiliense shows anti-snake venom toxic effects. J. Venom Anim Toxins Incl. Trop. Dis. 2015;21:36.
33. Sanzamour M. How venom from the Magnificent Sea Anemone, Heteractis magnifica, kills breast and lung cancer cells. Mar Drugs. 2013;11:1728–62.
34. Maricotti GL. The role of Cnidaria in drug discovery. Cnidaria, Past: Present Future. Springer International Publishing. 2016; p. 655–68.
35. Sandersen BS, Da Silva KB, Sanzamour M. How venom from the Magnificent Sea Anemone, Heteractis magnifica, kills breast and lung cancer cells. Mar Drugs. 2013;11:1728–62.
45. Martinez D, Campos AM, Pazos F, Alvarez C, Lanio ME, Casallanovo F, et al.
48. Kondo H, Kondo S, Ikezawa H, Murate R, Ohsaka A. Studies on the
47. Van Der Walt SJ, Joubert FJ. Studies on puff adder (Bitis arietans
55. Lanio ME, Morera V, Alvarez C, Tejuca M, Gómez T, Pazos F, et al. Purification
44. Harshman S, Sugg N. Effect of calcium ions on staphylococcal alpha toxin-
43. Gutiérrez JM, Chaves F, Rojas E, Elizondo J, Avila C, Cerdas L. Production of
41. Romero Del Sol DL, Luberta A, Dávila L, Barral AM, Garateix A, Mas R, MDLÁ
54. Martins RD, Alves RS, Martins AMC, Barbosa PSF, Evangelista JSAM, JJF E,
59. Cilli EM, Pigossi FT, Crusca E, Ros U, Martinez D, Lanio ME, et al. Correlations

38. Marcusi S, Sant’Ana CD, Oliveira CZ, Rueda AQ, Menaldo DL, Beleboni RO, et al. Snake venom phospholipase A2 inhibitors: medicinal chemistry and therapeutic potential. Curr Top Med Chem. 2007;7:743–56.
39. Santos-Filho NA, Silveira LB, Boldrini-Franca J. Myotoxic Inhibitors. Springer Netherlands. 2017. p. 321–349.
40. Salas-Sandús E, Cabrera-Muñoz A, Cauerhoff A, González-González Y, Trejo SA, Chichidonio A, et al. Antiparasitic effect of a fraction enriched in tight-binding protease inhibitors isolated from the Caribbean coral Plexaura homomalla. Exp Parasitol. 2013;135:611–22.
41. Romero Del Sol DL, Lubería A, Dávila L, Barral AM, Garateix A, Mas R, MDLÁ
42. Laemml UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.
43. Gutiérrez JM, Chaves F, Rojas E, Elizondo J, Avila C, Cerdas L. Production of monovalent anti Bothrops asper antivenom: development of immune response in horses and neutralizing ability. Rev Biol Trop. 1988;36:511–7.
44. Harshman S, Sugg N. Effect of calcium ions on staphylococcal alpha toxin-induced hemolysis of rabbit erythrocytes. Infect Immun. 1985;47:37–40.
45. Martínez D, Campos AM, Pazo F, Álvarez C, Lanzo ME, Casallanovo F, et al. Properties of St I and St II, two isoforms isolated from Stichodactyla helianthus: A comparison. Toxicon. 2001;39:547–60.
46. Rodrigues VM, Soares AY, Guerra-Sá R, Rodrigues V, Fontes MR, Gilió JR. Structural and functional characterization of neuwiedeide, a nonhemorrhagic fibrinogenolytic metalloprotease from Bothrops neuwiedi snake venom. Arch Biochem Biophys. 2000;381:213–24.
47. Van Der Walt SJ, Joubert FJ. Studies on puff adder (Bitis arietans) venom I. Purification and properties of protease A. Toxicon. 1971;9:153–61.
48. Kondo H, Kondo S, Ikeyaza H, Murate R, Ohsaka A. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom. Jap J M Sc Biol. 1960;13:43–51.
49. Cavalcante MLG, Campos TO, Daf Pai-Silva M, Pereira PS, Oliveira CZ, Soares AM, et al. Neutralization of snake venom phospholipase A₂ toxins by aqueous extract of Cassava sylvestris (Flacourtiaceae) in mouse neuromuscular preparation. J Ethnopharmacol. 2007;12:490–7.
50. McManus JF, Mowry RW. Staining Methods. Histologic and histochemical. Science.BO. 1960;13:1009–1009.
51. Soares AM, Guerra-Sá R, Borja-Oliveira CR, Rodrigues VM, Rodrigues-Simioni L, Rodrigues VM, et al. Structural and functional characterization of BrSP-7, a Lysα9 myotoxic phospholipase A₂ homologue from Bothrops neuwiedi pauolensis venom. Arch Biochem Biophys. 2003;378:201–9.
52. Soares AM, Mancin AC, Cecchini AL, Arantes EC, França SC, Gutiérrez JM, et al. Effects of chemical modifications of crototoxin B, the phospholipase A₂ subunit of crototoxin from Crotalus durissus terrificus snake venom, on its enzymatic and pharmacological activities. Int J Biochem Cell Biol. 2001;33:877–88.
53. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.
54. Martins RD, Alves RS, Martins AMC, Barbosa PSF, Evangelista JSAM, JIF E, et al. Purification and characterization of the biological effects of phospholipase A2 from sea anemone Bunodosoma caissarum. Toxicon. 2009;54:113–20.
55. Lanzo ME, Moreno V, Alzare F, Tejuca M, Gómez T, Pazo F, et al. Purification and characterization of two hemolysins from Stichodactyla helianthus. Toxicon. 2001;39:187–94.
56. del Monte-Martínez A, González-Baciero J, Romero L, Aragón C, Martínez D, de los Á Chávez M, et al. Improved purification and enzymatic properties of a mixture of Sticholysin I and II: isoforms with hemorrhagic and phospholipase A₂ activities from the sea anemone Stichodactyla helianthus. Protein Expr Purif. 2014;95:57–66.
57. Santamaría A, Sánchez-Rodríguez J, Zuguasti A, Martínez A, Galván-Arzaete S, Segura-Puertas L. A venom extract from the sea anemone Bartholomea annulata produces haemolysis and lipid peroxidation in mouse erythrocytes. Toxiconology. 2002;173:221–8.
58. Monroy-Estrada HI, Segura-Puertas L, Galván-Arzaete S, Santamaría A, Sánchez-Rodríguez J. The crude venom from the sea anemone Stichodactyla helianthus induces haemolysis and slight peroxidative damage in rat and human erythrocytes. Toxicol Vit. 2007;21:398–402.
59. Cilli EM, Pigossi FT, Crusca E, Ros U, Martinez D, Lazio ME, et al. Correlations between differences in amino-terminal sequences and different hemorrhagic activity of sticholysins. Toxicon. 2007;50:1201–4.