Axionic Domain Wall and Warped Geometry

Qaisar Shafia and Zurab Tavartkiladzeb

aBartol Research Institute, University of Delaware, Newark, DE 19716, USA
bInstitute of Physics, Georgian Academy of Sciences, 380077 Tbilisi, Georgia

Abstract

We discuss how a three-brane with an associated non-factorizable (warped) geometry can emerge from a five dimensional theory of gravity coupled to a complex scalar field. The system possesses a discrete Z_2 symmetry, whose spontaneous breaking yields an 'axionic' three-brane and a warped metric. Analytic solutions for the wall profile and warp factor are presented. The Kaluza-Klein decomposition and some related issues are also discussed.
1 Introduction

Theories with extra spacelike dimensions have recently attracted a great deal of attention. It was observed [1, 2] that for suitably large extra dimensions, it is possible to lower the fundamental mass scale of gravity M_f down to a few TeV. This suggests a new way for a solution of the gauge hierarchy problem without invoking supersymmetry (SUSY). In this approach all the standard model particles are localized on a 3-brane, and only gravity propagates in the bulk. Assuming that the n compact dimensions have a typical size R, the four dimensional Planck scale is expressed as:

$$M_{Pl}^2 \sim M_f^{2+n} R^n. \quad (1)$$

In order to reproduce the correct behavior of gravity one should take $R \lesssim \text{mm}$ (the behavior of gravity at this distance is now being studied). Interestingly, already for $n = 2$, $R \sim 1 \text{ mm}$ and $M_f \sim \text{few-TeV}$, M_{Pl} has the required magnitude $\sim 10^{19} \text{ GeV}$. Detailed studies of phenomenological and astrophysical implications of these models, were presented in [2]. We note that our Universe as a membrane embedded in higher dimensional spacetime was also considered in earlier works [3].

An alternative solution of the gauge hierarchy problem invoking an extra dimension was presented in [4]. The desired mass hierarchy is generated through a non-factorizable metric obtained from higher dimensional gravity (see also [5]). In the minimal setting [4] there are two three branes - hidden and visible, separated by an appropriate distance. The non-factorizable metric is given by:

$$ds^2 = e^{-2k|y|} ds^2_{3+1} - dy^2, \quad (2)$$

where y denotes the fifth spacelike dimension, ds^2_{3+1} is the ordinary 4D interval, and k is a mass parameter close to the fundamental scale M_f. On the visible brane all mass parameters are rescaled due to the warp factor in (2), such that $m_{\text{vis}} = M_f e^{-k|y_0|}$ (y_0 is the distance between branes). For $M_f \sim 10^{19} \text{ GeV}$ and $k|y_0| \simeq 37$ one finds that $m_{\text{vis}} \sim \text{few} \cdot \text{TeV}$, the desired magnitude. It was also shown that Newton’s law still holds on the visible brane. It is worth noting that in this approach the extra dimension can be infinite [8], provided it’s volume remains finite. Generalization of this non-factorizable model to scenarios with open codimensions and with intersecting multiple branes was presented in [7].

It is clearly important to inquire about the origin of the 3-branes in the above scheme with the warped metric. In this paper we present one such scenario with a complex scalar field coupled to 5D gravity. The theory possesses 5D Poincare invariance and Z_2 discrete symmetry. The 3-brane and warped geometry emerge dynamically from spontaneous breaking of the Z_2 symmetry. The 3-brane describes a topologically stable domain wall,
an axion-type solution of the sine-Gordon equation in curved space-time. Analytical solutions for the domain wall profile and warp factor are presented. As expected, the 5D space turns out to be Anti-de-Sitter (AdS). Questions of compactification, Kaluza-Klein (KK) decomposition, graviphoton mass and other related issues are also discussed.

2 The Model

In this section we will consider higher dimensional \((D = 5)\) gravity plus a complex scalar field which turns out to possess a non-factorizable solution of equation (2). The motivation for the choice of complex scalar is that with the help of \(Z_2\) symmetry we naturally obtain a potential with a cosine profile familiar from axion models. This yields a non trivial analytical solution for the \(\theta\)-domain wall whose core can be identified as a 3-brane.

2.1 Complex Scalar Coupled to 5D Gravity

Consider 5D gravity coupled to a complex scalar field \(\Phi\) through the action

\[
S = \int d^5x \sqrt{G} \left(-\frac{1}{2} M^3 R - \Lambda + \mathcal{L}(\Phi) \right),
\]

with

\[
\mathcal{L}(\Phi) = \frac{1}{2} G^{AB} (\partial_A \Phi^* \partial_B \Phi + \partial_B \Phi^* \partial_A \Phi) - V(\Phi).
\]

Here \(G_{AB}\) is the 5D metric tensor and \(G = \text{Det}G_{AB} \ (A, B = 1, \cdots, 5)\). The Einstein equation derived from (3) is given by

\[
R_{AB} - \frac{1}{2} G_{AB} R - \frac{\Lambda}{M^3} G_{AB} = \frac{V}{M^3} G_{AB} + \frac{1}{M^3} (\partial_A \Phi^* \partial_B \Phi + \partial_B \Phi^* \partial_A \Phi) - \frac{1}{2 M^3} G_{AB} G^{CD} (\partial_C \Phi^* \partial_D \Phi + \partial_D \Phi^* \partial_C \Phi),
\]

while the equation of motion for \(\Phi\) follows from

\[
\frac{\delta \mathcal{L}}{\delta \Phi} = \frac{1}{\sqrt{G}} \partial_A \left(\sqrt{G} \frac{\delta \mathcal{L}}{\delta (\partial_A \Phi)} \right).
\]

Terms on the right hand side of (5) effectively play the role of energy-momentum tensor \(T_{AB}\), which will be the source for the dynamical generation of the 3-brane and yield a non-factorizable geometry.

\(^3\)For higher dimensional non-factorizable scenarios, extended with real scalar fields, see [8]-[10].
Before proceeding to the specific model, which fixes \(V(\Phi) \), let us derive the appropriate equations of motion [from (5), (6)]. We are looking for a metric of the form:

\[
G_{AB} = \text{Diag} (A(y), -A(y), -A(y), -A(y), -1) ,
\]

which conserves 4D Poincare invariance:

\[
ds^2 = A(y)\bar{g}_{\mu\nu}dx^\mu dx^\nu - dy^2 , \quad \bar{g}_{\mu\nu} = \eta_{\mu\nu} + \bar{h}_{\mu\nu} ,
\]

where

\[
\eta_{\mu\nu} = \text{Diag}(1, -1, -1, -1)
\]

and \(\bar{h}_{\mu\nu} \) denotes the 4D graviton \((\mu, \nu = 1, \ldots, 4)\). The \((1, 1)\) and \((5, 5)\) components of (3) respectively give

\[
\frac{A''}{A} = -\frac{2 \Lambda + V}{3 M^3} - \frac{2}{3 M^3} (\Phi^*)' \Phi' ,
\]

\[
\left(\frac{A'}{A} \right)^2 = -\frac{2 \Lambda + V}{3 M^3} + \frac{2}{3 M^3} (\Phi^*)' \Phi' ,
\]

where primes denote derivatives with respect to the fifth coordinate \(y \). Subtracting (11) and (10), we get:

\[
- \frac{A''}{A} + \left(\frac{A'}{A} \right)^2 = \frac{4}{3 M^3} (\Phi^*)' \Phi' .
\]

Using the substitutions:

\[
\Phi = v \cdot e^{i \theta} ,
\]

\[
A = A_0 \cdot e^{-\sigma} ,
\]

and assuming that \(v \) in (13) does not depend on \(y \) [see discussion in sec. (1.2)], from (12) and (11) we derive:

\[
\sigma'' = \frac{4 v^2}{3 M^3} \theta'^2 ,
\]

\[
\sigma' = -\frac{2 \Lambda + V}{3 M^3} + \frac{2 v^2}{3 M^3} \theta'^2 .
\]

With our assumption \(v = \text{const.} \), from (3) we obtain the equation of motion for \(\theta \):
The three equations (15)–(17) are not independent. Namely, differentiating (16) and using (15), we obtain (17). However, in order for these three equations to have a solution, one fine tuning between the parameters is unavoidable. This can be seen from the following discussion: Solving equations (16) and (17) we have three parameters of integration \(\theta(y_0) \), \(\theta'(y_0) \) and \(\sigma(y_0) \), where \(y_0 \) is some arbitrary point (In principle there is also a fourth parameter which expresses translation invariance. But it is irrelevant, since the equations are invariant under translations). \(\sigma(y_0) \) is also irrelevant, since the equations contain only derivatives of \(\sigma \). From (15), \(\theta(y_0) \) is also irrelevant. Since for the brane solution we have to impose the condition \(\theta'(\infty) = 0 \), the third parameter \(\theta'(y_0) \) is fixed from this condition. Therefore, there remains no free parameters, and for satisfying (15), one fine tuning must be done (for detailed discussions about this issue see [10]). This will be explicitly seen for the model discussed below.

2.2 Axionic Brane and Warped Geometry

We introduce a \(Z_2 \) symmetry under which \(\Phi \to -\Phi \). The relevant potential is given by

\[
V = \frac{\lambda_1}{4} (\Phi^* \Phi - v^2)^2 - \frac{\lambda}{2} (\Phi^2 + \Phi^*^2) .
\]

(18)

The first term in (18) is \((U(1)) \) invariant under \(\Phi \to e^{i\theta} \Phi \), while the last term explicitly breaks it to \(Z_2 \). This avoids the appearance of a Goldstone mode because of non-zero \(\Phi \) VEV\(^4\). We restrict our attention in (18) to terms needed to implement the scenario. The couplings \(\Phi^4 + \Phi^*^4 \) can be included if so desired, but this makes analytic calculations more difficult. As noted in [12], such terms are absent in some models. Higher powers in \(\Phi \) and \(\Phi^* \) would complicate the discussion even further. We assume that the \(U(1) \) violating term is such that

\[
\lambda_1 v^2 \gg \lambda .
\]

(19)

Therefore, the VEV \(\langle |\Phi| \rangle \) is mainly determined by the first term in (18),

\[
\langle \Phi^* \Phi \rangle \simeq v^2 ,
\]

(20)

from which

\[
\Phi \simeq v e^{i\theta} .
\]

(21)

\(^4\)For models with \(Z_2 \) replacing the PQ symmetry and avoiding an undesirable axion, see papers [11, 12], where various phenomenological and cosmological implications are also studied.
Substituting (21) in (18), the \(\theta \) dependent part of the potential is given by

\[
V_{\theta} = -\lambda v^2 \cos 2\theta .
\] (22)

This type of potential was also used for brane formation in [8]. In our case we have obtained it through a \(Z_2 \) symmetry acting on a complex scalar field \(\Phi \). Assuming \(\lambda > 0 \), (22) acquires its minima for \(\theta = 0, \pi \). The \(\langle \theta \rangle \) VEV breaks the symmetry \(\theta \to -\theta \). This causes the creation of topologically stable domain wall. The wall is stretched between two energetically degenerate minima, \(\theta = 0 \) and \(\theta = \pi \). With assumption (19) it is consistent to consider \(v \) to be (essentially) \(y \)-independent.

Introducing the dimensionless coordinate \(\xi \)

\[
\xi = \sqrt{2\lambda} y ,
\] (23)

(15) and (17) respectively become:

\[
2 \frac{\partial^2 \theta}{\partial \xi^2} - 4 \frac{\partial \sigma}{\partial \xi} \frac{\partial \theta}{\partial \xi} - \sin 2\theta = 0 ,
\] (24)

\[
\frac{\partial^2 \sigma}{\partial \xi^2} = \alpha \left(\frac{\partial \theta}{\partial \xi} \right)^2 ,
\] (25)

where

\[
\alpha = \frac{4v^2}{3M^3} .
\] (26)

Nontrivial solutions of (24) and (25), with boundary conditions

\[
\theta(-\infty) = 0 , \quad \theta(+\infty) = \pi , \quad \sigma(\pm\infty) \propto \pm y ,
\] (27)

[Note that due to the breaking of the U(1) symmetry to \(Z_2 \) in [18], the wall here is not 'bounded by strings', a phenomenon encountered in \(SO(10) \) and axion models [13].] will indicate the existence of 'warped' geometry and the axion(or \(\theta \))-brane (since \(\langle \theta \rangle \) breaks 5D invariance). The point \(\theta = \frac{\pi}{2} \) will be identified as the location of the 3-brane describing 4D theory.

Using the substitution

\[
\theta = 2 \arctan f(\xi) ,
\] (28)

(24), (23) can be rewritten as

\[
-(f^2 - 1)f'' + 2f(f''f - f'^2) - 2\sigma'(f^2 + 1)f' + f(f^2 - 1) = 0 ,
\] (29)
\[(f^2 + 1)^2 \sigma'' = 4\alpha f'^2 , \]

where primes denote derivatives with \(\xi\). The form for \(f\)

\[f = ae^{m\xi} , \]

is a reasonable choice, where the parameters \(a, m > 0\) are undetermined for the time being. Substituting (31) in (30), the latter can be integrated:

\[\sigma' = s_0 - 2\alpha m \frac{1}{1 + f^2} , \]

where \(s_0\) is some constant. Substituting (32) into (28) and taking into account that \(f'' = mf' = m^2 f\), we find:

\[- (f^2 - 1)m^2 - 2m(s_0(f^2 + 1) - 2\alpha m) + f^2 - 1 = 0 . \]

Comparing appropriate powers of \(f\) in (33), it is easy to verify that (33) is satisfied if

\[m = \frac{1}{\sqrt{1 + 2\alpha}}, \quad s_0 = \frac{\alpha}{\sqrt{1 + 2\alpha}} . \]

Integration of (32) gives

\[\sigma = \alpha \ln[\cosh(m\xi + \delta)] + \ln C , \quad \delta = \ln a \]

\((C = \text{constant and we have taken into account (34)}).\)

Finally, for \(\theta\) and the warp factor \(A(= A_0 e^{-\sigma})\) we will have:

\[\theta = 2 \arctan(ae^{m\xi}) , \]

\[A = A_0[\cosh(m\xi + \delta)]^{-\alpha} . \]

where the constant \(C\) is now absorbed in \(A_0\), and \(a\) still remains undetermined, which reflects translational invariance in the fifth direction \(\xi (y)\).

Let us note here that these solutions are obtained for \(\lambda > 0\) and a negative sign in front of the last term in (18). In case of a positive sign, the potential is minimized for \(\theta = \pm \frac{\pi}{2}\), and instead of the solution (30), we would have \(\tilde{\theta} = \theta - \frac{\pi}{2}\). Indeed, under these modifications, equations (24), (25) are satisfied [for this case the sign in front of \(\sin \tilde{\theta}\) in (24) will be positive, which reflects a change of sign of the last term in (18)].

From (37), taking into account (34), we will get the desirable asymptotic forms for \(A\):

\[A \sim e^{s_0\xi} , \quad \xi \to -\infty \]
\[A \sim e^{-s_0 \xi}, \quad \xi \rightarrow +\infty. \quad (38) \]

The solutions (35), (36) should also satisfy (16), which in terms of \(\xi \) has the form

\[\sigma^{'2} = -\frac{\Lambda + V}{3\lambda M^2} + \frac{\alpha}{2} \theta^{'2}. \quad (39) \]

From (32), (36) and (34) we have

\[\sigma' = \alpha m f^2 - 1 \quad \frac{f^2 + 1}{f^2 + 1}, \quad \theta' = \frac{2mf}{f^2 + 1}, \quad \cos 2\theta = 1 - \frac{8f^2}{(f^2 + 1)^2}. \quad (40) \]

Substituting all of this in (39), we can see that the latter is satisfied if

\[\Lambda = \lambda v^2 (1 - 4\alpha m^2) = \lambda v^2 \frac{1 - 2\alpha}{1 + 2\alpha}. \quad (41) \]

Therefore, as we previously mentioned, one fine tuning between the parameters of the theory is necessary. The effective 5D cosmological constant is determined to be

\[\Lambda_{\text{eff}} = \Lambda + \langle V \rangle = \Lambda + V_0 (\theta = 0, \pi) = -4\lambda v^2 \frac{\alpha}{1 + 2\alpha}. \quad (42) \]

As expected, the initial 5D space-time is AdS.

The warp factor (37) reaches its maximum at \(\xi_0 = -\ln a/m \) and decays exponentially far from \(\xi_0 \). For a realistic model which solves the gauge hierarchy problem, we may regard the axion wall as a hidden brane, located at \(\xi_0 \). By placing the visible brane (which can describe our 4D Universe) at a distance \(\Delta \xi \approx 74/(\alpha m) \) from \(\xi_0 \), all masses on the visible brane will be rescaled as \(m_{\text{vis}} = M \cdot A(\xi_0 + \Delta \xi)^{1/2} \approx M \cdot e^{-\alpha m \Delta \xi / 2} \sim 10^{-16} \cdot M \). For \(M \sim 10^{19} \text{ GeV} \), the desired scale \(m_{\text{vis}} \sim \text{few} \cdot \text{TeV} \) will be naturally generated.

3 Kaluza-Klein Decomposition

In this section we will present the KK reduction of the 5D model to 4D. We will calculate the graviphoton [(\(\mu, 5 \)) component of metric tensor] mass, as well as the effective 4D Planck scale and the radius of the extra dimension. For KK reduction within models with non-factorizable geometry, also see papers in [14, 15], while for works addressing the effects of spontaneous breaking of higher Poincare invariance, Goldstone phenomenon and other relevant issues within models with non-warped geometry, see [16].

For performing a KK decomposition, it is convenient to rewrite the metric in (8) in a conformally 'flat' form:

\[ds^2 = \Omega^2(z)g_{MN}dx^M dx^N, \quad (43) \]
where:
\[
dz = A^{-1/2}(y)dy, \quad \Omega^2(z) = A(y(z)),
\]
\[
G_{MN} = \Omega^2 g_{MN}.
\]
With the standard KK decomposition
\[
g_{MN} = \left(\bar{g}_{\mu\nu} - k^2 A_\mu A_\nu, \frac{k A_\mu}{k} \right), \quad g^{MN} = \left(\frac{\bar{g}^{\mu\nu}}{k A^\nu} \frac{k A^\mu}{k^2 A^a A_a - 1} \right),
\]
where \(A_\mu \) is the graviphoton, equation (43) reads
\[
ds^2 = \Omega^2 \left(\bar{g}_{\mu\nu} dx^\mu dx^\nu - (dz + k A^\mu dx_\mu)^2 \right).
\]
We omit the graviscalar field in (46) since it is not relevant for our discussion. See [14] for a discussion involving this field. Eq. (47) acquires the ‘usual’ form for \(A_\mu = 0 \). For \(A_\mu \neq 0 \), it is invariant under the following transformations:
\[
x'\mu = x_\mu, \quad z' = z + \epsilon(x_\mu),
\]
\[
A'_\mu = A_\mu - \frac{1}{k} \partial_\mu \epsilon.
\]
Note that this is a \(U(1) \) transformation for \(A_\mu \), where \(z \) plays the role of Goldstone field. The \(\mathbb{Z}_2 \) symmetry breaking creates the brane and translational invariance in the fifth direction is spontaneously broken. The breaking of the corresponding generator gives rise to a massive \(A_\mu \) field. By considering \(z \) as \(x_\mu \) dependent (which corresponds to brane vibrations), the term \((\partial_\mu z)^2\) (see below) appear in the 4D action. This tell us that from the point of view of 4D observer, \(z(x_\mu) \) is a Goldstone field which becomes the longitudinal component of \(A_\mu \). From this discussion it is clear that the fields \(z(x_\mu) \) and \(A_\mu \) reside on the 4D brane.

We now calculate the graviphoton mass. Taking into account (49), for the Einstein Tensor
\[
G_{MN} = R_{MN} - \frac{1}{2} G_{MN} R,
\]
we have
\[
G^G_{MN} = G^g_{MN} + (D - 2) \left(\nabla_M \ln \Omega \nabla_N \ln \Omega - \nabla_M \nabla_N \ln \Omega \right) +
(D - 2) g_{MN} \left(\nabla_P \nabla^P \ln \Omega + \frac{1}{2} (D - 3) \nabla_P \ln \Omega \nabla^P \ln \Omega \right),
\]
where G^G and G^g are calculated using G and g respectively. The covariant derivatives ∇_M are built from g, such that for a scalar function S

$$\nabla_M S = \partial_M S \ ,$$

while for a vector \mathcal{V}

$$\nabla_M \mathcal{V}^N = \partial_M \mathcal{V}^N + \Gamma^N_{MP} \mathcal{V}^P \ , \quad \nabla_M \mathcal{V}_N = \partial_M \mathcal{V}_N - \Gamma^P_{MN} \mathcal{V}_P \ .$$

From (49) we have

$$R = -\frac{2}{D-2}G^{MN}G_{MN} \ ,$$

and taking into account (50), we get:

$$R(G) = \Omega^{-2} \left(R(g) - 2(D-1)\nabla_M \nabla^M \ln \Omega - (D^2 - 3D + 2)\nabla_M \ln \Omega \nabla^M \ln \Omega \right) + \ ,$$

$$\Omega^{-2} \left(R(g) - 2(D-1)\frac{\nabla_M \nabla^M \Omega}{\Omega} - (D^2 - 5D + 4)\frac{\nabla_M \Omega \nabla^M \Omega}{\Omega^2} \right) \ .$$

Calculating $R(g)$ through (53) and keeping only relevant terms, we have

$$\sqrt{G} = \sqrt{-\bar{g}} \Omega^5 \ ,$$

$$R(g) = \bar{R}(\bar{g}) + \frac{k^2}{4}F_{\mu\nu}F^{\mu\nu} + \ldots \ ,$$

where

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \ ,$$

and $\bar{R}(\bar{g})$ is the 4D curvature, built from the physical 4D metric $\bar{g}_{\mu\nu}$.

Taking into account (51), (52) and (46), we have:

$$\nabla_M \nabla^M \Omega = \left(\partial^\mu \partial_\mu \Omega + 2kA^\mu \partial_\mu \Omega' + (k^2A^\mu A_\mu - 1)\Omega'' + \ldots \right) \ ,$$

$$\nabla_M \Omega \nabla^M \Omega = \left(\partial^\mu \partial_\mu \Omega + 2k\Omega' A^\mu \partial_\mu \Omega + (k^2A^\mu A_\mu - 1)(\Omega')^2 \right) \ ,$$

where primes here denote derivatives with respect to z. Using

$$\partial_\mu = \frac{\partial z}{\partial x^\mu} \frac{\partial}{\partial z} = \partial_\mu \bar{z} \cdot \frac{\partial}{\partial z} \ , \quad \bar{z} \equiv z(x_\mu) \ ,$$

from (51), (57) and (58) it finally follows that
\[R(G) = \Omega^{-2} R(g) - \Omega^{-2} \left(2(D - 1) \frac{\Omega''}{\Omega} + (D^2 - 5D + 4) \frac{\Omega'^2}{\Omega^2} \right) \times \left(\partial^\mu \bar{z} \partial_{\mu} \bar{z} + 2k A^\mu \partial_{\mu} \bar{z} + k^2 A^\mu A_\mu - 1 \right). \] \tag{60}

From (60) we see that the field \(\bar{z} \) can be absorbed by \(A_\mu \) by a suitable \(U(1) \) transformation.

From the Einstein equation (5) we have:

\[-(\Lambda + V) = \frac{M^3}{2} \frac{D - 2}{D} R + \frac{1}{2} \frac{D - 2}{D} G^{AB} (\partial_A \Phi^* \partial_B \Phi + \partial_B \Phi^* \partial_A \Phi) \] \tag{61}

and substituting this in (3), we get:

\[S = \int d^5 x \sqrt{G} \left[- \frac{M^3}{2} \frac{2(D - 1)}{D} R + \frac{2(D - 1)}{D} \frac{1}{2} G^{AB} (\partial_A \Phi^* \partial_B \Phi + \partial_B \Phi^* \partial_A \Phi) \right]. \] \tag{62}

With

\[\frac{1}{2} G^{AB} (\partial_A \Phi^* \partial_B \Phi + \partial_B \Phi^* \partial_A \Phi) = \Omega^{-2} v^2 \theta'^2 \left(\partial^\mu \bar{z} \partial_{\mu} \bar{z} + 2k A^\mu \partial_{\mu} \bar{z} + k^2 A^\mu A_\mu - 1 \right), \] \tag{63}

After integrating over the fifth dimension in (62), we obtain the reduced 4D action:

\[S^{(4)} = \int d^4 x \sqrt{-g} \left(- \frac{M^3_{\text{Pl}}}{2} \bar{R}(\bar{g}) - T - \frac{k^2}{4} B_{\mu\nu} B^{\mu\nu} + M^2_V (B_\mu + \frac{1}{k} \partial_\mu Z)(B^\mu + \frac{1}{k} \partial^\mu Z) \right), \] \tag{64}

where the 4D Planck mass is

\[M^2_{\text{Pl}} = \frac{2(D - 1)}{D} M^3 \int \Omega^3 dz, \] \tag{65}

the 4D brane tension is

\[T = M^3 \frac{D - 1}{D} \int \Omega^3 \left[2(D - 1) \frac{\Omega''}{\Omega} + (D^2 - 5D + 4) \frac{\Omega'^2}{\Omega^2} + \frac{2v^2}{M^3} \theta'^2 \right] dz, \] \tag{66}

and the mass of the graviphoton is

\[M^2_V = \frac{M^3}{M^2_{\text{Pl}}} \frac{D - 1}{D} k^2 \int \Omega^3 \left[2(D - 1) \frac{\Omega''}{\Omega} + (D^2 - 5D + 4) \frac{\Omega'^2}{\Omega^2} + \frac{2v^2}{M^3} \theta'^2 \right] dz. \] \tag{67}
In obtaining (64) we have used
\[B_\mu = M_{Pl} A_\mu , \quad B_{\mu\nu} = M_{Pl} F_{\mu\nu} , \quad Z = M_{Pl} \bar{z} . \] (68)

Comparing (66) and (67),
\[M_{V}^2 = \frac{T}{M_{Pl}^2} k^2 = \frac{T}{g^2_{V} M_{Pl}^2} . \] (69)

Simplifying (66) yields:
\[T = \frac{4}{5} M^3 \int dy A^2 \left(4 \frac{A_y''}{A} + \frac{A_y'^2}{A^2} + \frac{2v^2}{M^3} \theta_y'^2 \right) = \frac{16}{5} \sqrt{2\lambda} M^3 A_0^2 m \left(2\alpha^2 I(2\alpha) + (\alpha/2 - 2\alpha^2) I(2\alpha + 2) \right) , \] (70)

where we have put \(D = 5 \), the subscript \(y \) denotes derivatives with respect to \(y \), and

\[I(\alpha) = \int_0^1 \left(1 - \rho^2 \right)^\alpha \frac{d\rho}{1 - \rho^2} = \int_0^{\frac{\pi}{2}} (\cos 2t)^{\alpha-1} dt . \] (71)

is some finite number whose value depends on the positive parameter \(\alpha \). For \(\alpha = 1 \), \(I = \pi/4 \), and for \(\alpha = 2 \), \(I = 1/2 \).

Note that the relation (63) between the graviphoton mass and brane tension, has same form as for models with non warped geometry [16].

Simplifying (63) one finds:
\[M_{Pl}^2 = \frac{8}{5} M^3 \int_{-\infty}^{+\infty} A(y) dy = M^3 R_{eff} , \] (72)

where

\[R_{eff} = \frac{8}{5\sqrt{2\lambda}} \int_{-\infty}^{+\infty} A(\xi) d\xi = \frac{8A_0}{5\sqrt{2\lambda}} \int_{-\infty}^{+\infty} \left[\cosh(m\xi + \delta) \right]^{-\alpha} d\xi = \frac{32A_0}{5m\sqrt{2\lambda}} I(\alpha) . \] (73)

Thus, even though the extra dimension \(y \) is non-compact, its ‘effective’ size \(R_{eff} \) is finite. In this sense the extra space is effectively compact. Expression (72) resembles the well known relation \(M_{Pl}^2 \sim M^{2+n}L^n \) (for \(n = 1 \)), which relates the effective 4D Planck scale to the fundamental scale \(M \) and the volume \((\sim L^n) \) of the \(n \) extra dimensions [1, 2]. The crucial difference from models [1, 2] is that even for values \(M \sim M_{Pl} \), \(R_{eff} \sim 1/M_{Pl} \) in (72), the desired hierarchy is obtained, thanks to the warped geometry.

In conclusion, it would be interesting to investigate the possibility of introducing a second domain wall, located at a suitable distance from the first and characterized by the
TeV scale. 'Double wall' solutions that are dynamically stabilized in axion type models with Minkowski background have been studied in ref. [12]. Some extension of the model considered here may well be required to implement such a scenario.

References

[1] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett., B 429 (1998) 263; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett., B 436 (1998) 257.

[2] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Rev., D 59 (1999) 086004;

[3] K. Akama, Lect. Notes Phys. 176 (1982) 267; hep-th/0001113; V. Rubakov, M. Shaposhnikov, Phys. Lett., B 125 (1983) 136; A. Barnaveli, O. Kancheli, Sov. J. Nucl. Phys., 52 (1990) 576.

[4] L. Randall, R. Sundrum, Phys. Rev. Lett., 83 (1999) 3370.

[5] M.Gogberashvili, hep-ph/9812290, Europhys. Lett. 49 (2000) 396.

[6] L. Randall, R. Sundrum, Phys. Rev. Lett., 83 (1999) 4690.

[7] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, N. Kaloper, Phys. Rev. Lett., 84 (2000) 586.

[8] A. Davidson, P. Mannheim, hep-th/0009064.

[9] W. Goldberger, H. Wise, hep-ph/9907213, hep-ph/9907447; S. Ichinose, hep-th/0003275; T. Gherghetta, E. Roessl, M. Shaposhnikov, hep-th/0006251; A. Kehagias, K. Tamvakis, hep-th/0010112, hep-th/0011006; A. Igleias, Z. Kakushadze, hep-th/0011111.

[10] O. DeWolfe, D. Freedman, S. Gubser, A. Karch, hep-th/9909134.

[11] J. Preskill, S. Trevedi, F. Wilczeck, M. Wise, Nucl. Phys., B 363 (1991) 207.

[12] G. Dvali, J. Nanobashvili, Z. Tavartkiladze, Phys. Lett., B 352 (1995) 214.

[13] T.W.B. Kibble, G. Lazarides and Q. Shafi, Phys. Rev., D 26 (1982) 435; A. Vilenkin and A.E. Everett, Phys. Rev. Lett., 48 (1982) 1867; G. Lazarides and Q. Shafi, Phys. Lett., B 115 (1982) 21.

[14] G. Kang, Y. Myung, hep-th/0007197.
[15] M. Cvetic, H. Lu, C. Pope, hep-th/0009183; Z. Kakushadze, P. Langfelder, hep-th/0011245.

[16] G. Dvali, M. Shifman, Phys. Rept., 320 (1999) 107; hep-th/9904021; M. Bando at el., hep-ph/9906549; G. Dvali, I. Kogan, M. Shifman, hep-th/0006213; A. Dobado, A. Maroto, hep-ph/0007100.