Phytophthora ×stagnum nothosp. nov., a New Hybrid from Irrigation Reservoirs at Ornamental Plant Nurseries in Virginia

Xiao Yang*, Patricia A. Richardson, Chuanxue Hong

Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, Virginia, United States of America

Abstract

A novel *Phytophthora* species was frequently recovered from irrigation reservoirs at several ornamental plant nurseries in eastern Virginia. Initial sequencing of the internal transcribed spacer (ITS) region of this species generated unreadable sequences due to continual polymorphic positions. Cloning and sequencing the ITS region as well as sequencing the mitochondrially encoded cytochrome c oxidase 1 and beta-tubulin genes revealed that it is a hybrid between *P. taxon PgChlamydo* as its paternal parent and an unknown species genetically close to *P. mississippiae* as its maternal parent. This hybrid has some diagnostic morphological features of *P. taxon PgChlamydo* and *P. mississippiae*. It produces catenulate hyphal swellings, characteristic of *P. mississippiae*, and chlamydospores, typical of *P. taxon PgChlamydo*. It also produces both ornamented and relatively smooth-walled oogonia. Ornamented oogonia are another important diagnostic characteristic of *P. mississippiae*. The relatively smooth-walled oogonia may be indicative of oogonial character of *P. taxon PgChlamydo*. The new hybrid is described here as *Phytophthora ×stagnum*.

Citation: Yang X, Richardson PA, Hong C (2014) *Phytophthora ×stagnum* nothosp. nov., a New Hybrid from Irrigation Reservoirs at Ornamental Plant Nurseries in Virginia. PLoS ONE 9(7): e103450. doi:10.1371/journal.pone.0103450

Editor: Mark Gijzen, Agriculture and Agri-Food Canada, Canada

Received March 13, 2014; **Accepted** June 23, 2014; **Published** July 29, 2014

Copyright: © 2014 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Data are included within the Supporting Information files.

Funding: This research was supported by grants from USDA/NIFA (2010-51181-21140) and the Virginia Agricultural Experiment Station. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: yxiao9@vt.edu

Introduction

The genus *Phytophthora* includes many agriculturally and ecologically important plant pathogens. It currently contains approximately 120 species [1]. These species were traditionally divided into six groups by morphological features [2]. They have been classified into 10 clades according to phylogenetic analyses of nuclear and mitochondrial sequences [3–8]. Members of this genus are capable of surviving in a variety of terrestrial and aquatic habitats [9]. However, species in certain clades or subclades are better adapted to specific ecosystems. For example, most clade 1 species such as *P. infestans* [9] and *P. hedraandra* [10] appear as terrestrial pathogens which attack above-ground plant tissues, while many species in subclade 6b and clade 9 are often associated with aquatic environments such as irrigation reservoirs [11–17], rivers and riparian ecosystems [18,19].

Even though *Phytophthora* species were among the earliest described plant pathogens, investigations into their interspecific hybridization were initiated only recently. One of the first studies describing this phenomenon was conducted in 1991 which revealed that some isolates initially assigned as *P. meadii* were actually polyploid and might be hybrids based on cytological evidence [20]. Thereafter, several artificial hybrids: *P. infestans* × *P. mirabilis*, *P. nicotianae* × *P. capsici*, *P. sojae* × *P. vignae*, and *P. capsici* × *P. tropicalis* have been produced by pairing in dual culture [21–23], zoospore fusion [24,25], and nuclear transplantation [26]. In the meanwhile, eleven natural *Phytophthora* hybrids have been reported. These include *P. ×pelgrandis* (*P. nicotianae* × *P. cactorum*) [27–30], *P. alni* including three subspecies: *P. alni* subsp. *alni*, *P. alni* subsp. *uniformis* and *P. alni* subsp. *multiformis* [31–33], *P. andina* with *P. infestans* as one parent [34–36], *P. ×serendipita* (*P. cactorum* × *P. hedraandra*) [29,37], four hybrids in subclade 6b: *P. annicola* × *P. taxon PgChlamydo* (A-PG), *P. taxon PgChlamydo* × *P. annicola* (PG-A), *P. thermophila* × *P. annicola* (T-A), and *P. thermophila* × *P. taxon PgChlamydo* (T-PG) [38], as well as three hybrids in subclade 8b: *P. porri* × *P. taxon parsley*, *P. porri* × *P. primulae*-like species, and a third hybrid with two unknown species as parents [39]. It is interesting to note that parents of most individual hybrids belong to the same *Phytophthora* clade. The only inter-clade hybrid is *P. nicotianae* (clade 1) × *P. capsici* (clade 2), which was produced by zoospore fusion [24,25] and nuclear transplantation [26].

A number of *Phytophthora* hybrids are emerging plant pathogens. By inheriting and recombining alleles or genes from both parents followed by rapid evolution [39–41], these hybrids have broader host ranges [39] and produce new virulence factors with higher aggressiveness, while overcoming weaknesses of their parental species. For example, *P. alni* and its variants are destructive pathogens that have killed more than 10,000 riparian *Alnus* trees in Europe in 1996 alone [31]. *Phytophthora ×pelgrandis* was found infecting plants in the genera of *Cyclamen*, *Eriobotrya*, *Lavandula*, *Leucaena*, *Pelargonium*, *Primula*, and...
Spathiphyllum in the Netherlands, Germany, Italy, Peru and Taiwan [27–30,42,43]. Phytophthora xserendipita has been isolated from hosts in the genera of Ilexia, Penstemon, Allium, Rhododendron, Kalina, and Dicentra in Europe and the United States, while its parent P. hedraandrae only infects Rhododendron and Viburnum species, indicating this emerging hybrid pathogen has successfully utilized new habitats and adapted to novel hosts [29,37]. Phytophthora porri × P. taxon parsley in subclade 6b has shown a similar expansion of host range including Allium victorialis, Allium grayi, Pastinaca sativa, Chrysanthemum species, and Parthenium argentatum, while its parents only infect leek and parsley [39]. Although their host ranges are unknown, the four subclade 6b hybrids A-PG, PG-A, T-A, and T-PG, which originated in Australia, have exploited new habitats in South Africa [38]. It must be noted that sexual reproduction of most Phytophthora hybrids is compromised due to their nature of allopolyploidy and resulting genetic incompatibility. Most Phytophthora hybrids are sterile, nonfunctional in meiosis, or produce numerous abortive oospores [29,32,38,39]. Since 2005 we have obtained more than twenty isolates of a previously unknown Phytophthora species from irrigation systems. It has distinct morphology from all known species. Also, continual polymorphic sequences in the internal transcribed spacers (ITS) region of all isolates suggest that this is a Phytophthora hybrid. Here, we examine and describe its morphological, physiological and molecular characters and name this new hybrid as Phytophthora xstagnum nothosp. nov.

Materials and Methods

Ethics statement

This study is part of a large collaborative project with several ornamental plant nurseries in Virginia from which isolates of Phytophthora xstagnum were collected. Our field sampling did not involve endangered or protected species. No specific permission was required. Specific information about these properties is not disclosed to protect the businesses of these collaborating growers.

Isolate collection and maintenance

Phytophthora xstagnum isolates were recovered from irrigation runoff containment basins of several private ornamental plant nurseries in eastern Virginia, USA, by baiting with rhododendron leaves. Pure cultures were obtained by subculturing hyphal tips of colonies emerging from the edge of leaf baits followed by single-leaves. Pure cultures were obtained by subculturing hyphal tips of runoff containment basins of several private ornamental plant nurseries in Virginia from which isolates of Phytophthora xstagnum were collected. Our field sampling did not involve endangered or protected species. No specific permission was required. Specific information about these properties is not disclosed to protect the businesses of these collaborating growers.

DNA extraction

Four representative isolates, 36H8, 36J7, 43F3, and 44F9, were grown in 20% clarified V8 broth at room temperature (c. 23°C) for 7 days to produce mycelial masses which were then dried and lysed using a FastPrep-24 system (MP Biomedicals, Santa Ana, CA, USA). DNA was extracted using the DNeasy Plant Mini kit (Qiagen, Valencia, CA, USA).

Sequence analysis of the maternally-inherited cox 1 genes

To elucidate the maternal parent of P. xstagnum, primers COX4F4N and COX1R4N [5] were used to amplify the maternal-inherited mitochondrial cytochrome c oxidase 1 (cox 1) gene. Sequences in both directions were visualized with Finch TV v. 1.4.0 (Geospiza Inc., Seattle, WA, USA), aligned and edited manually to correct obvious errors. The cox 1 sequences were aligned using MAFFT online version 7 [44] and the G-INS-I algorithm [45]. Maximum likelihood (ML) inference was carried out with MEGA5.1 [46] using the Tamura-Nei model for the G-INS-I algorithm [45]. Maximum likelihood (ML) inference was used as an outgroup.

Sequence analyses of ITS and beta-tubulin genes

To investigate the parentage of P. xstagnum, cloned ITS region and the single-copy beta-tubulin genes were sequenced and analyzed.

PCR amplifications were performed using the forward primer ITS6 and reverse primer ITS4 [3] for the ITS region. Amplification products were cloned into a pGEM-T Easy Vector System, which was then transformed into Escherichia coli competent JM109 cells (Promega, Madison, WI, USA). The cells were plated on Luria-Bertani (LB) agar (Becton, Dickinson and Company, Sparks, MD, USA) amended with ampicillin and ChromoMax IPTG/X-Gal Solution (Fisher Scientific, USA) and incubated at 37°C. Transformed cells with recombinant plasmids were identified by blue-white screening, subcultured into 2-mL centrifuge tubes containing 1.5 mL LB broth using toothpicks, and incubated overnight at 37°C with moderate shaking. Plasmid DNA was extracted from the liquid cultures using the Alkaline Lysis with SDS: Minipreparation method [48]. The ITS primer pair 6F/4R was used to amplify the plastid DNA. A total of 94 amplification products including 23, 23, 25, and 23 from isolates 36H8, 36J7, 43F3, and 44F9, respectively, were purified and sequenced at the University of Kentucky Advanced Genetic Engineering Facility.

Figure 1. Maximum Likelihood phylogenetic tree based on mitochondrial cox 1 sequences of Phytophthora xstagnum and representative species. Alignment was conducted with MAFFT version 7. Phylogenetic tree was generated in MEGAS5. GenBank accession numbers of sequences are given following the species names and isolate codes. Bootstrap values are shown on branches (1,000 replicates; values <50% are not shown). doi:10.1371/journal.pone.0103450.g001

Sequences and numbers of sequences are given following the species names and isolate codes. Bootstrap values are shown on branches (1,000 replicates; values <50% are not shown). doi:10.1371/journal.pone.0103450.g001

Sequences and numbers of sequences are given following the species names and isolate codes. Bootstrap values are shown on branches (1,000 replicates; values <50% are not shown). doi:10.1371/journal.pone.0103450.g001
Technologies Center (Lexington, KY, USA) in both directions using the same ITS primer pair.

Primers Btub_F1 and Btub_R1 [4] were used to amplify the single-copy beta-tubulin gene. To analyze hybrid characteristic of \(P.\) \textit{stagnum}, edited sequences were compared to those of putative parent species. Alignments were done with ClustalW.

Colony morphology

To examine colony morphology, cultures of four representative isolates were grown on carrot agar (CA), CV8A, malt extract agar (MEA), and potato dextrose agar (PDA). Colony patterns were photographed after incubation for 10 days in the dark at 20°C.

Cardinal temperatures

Representative isolates were examined for their cardinal temperatures on CA and CV8A. Agar blocks (5 mm in diameter) taken from actively-growing areas of 10-day old cultures were placed at the center of 10-cm Petri dishes with freshly made media. Triplicate dishes per isolate per temperature were placed in the dark at 5, 10, 15, 20, 25, 30, 35, and 40°C. Two perpendicular measurements of each colony were taken after 8 days. The cardinal temperature test was repeated once. Means of radial growth along with standard errors were plotted against temperature with the gplot package 2.11.0 [49] in R statistical software 2.15.0 [50]. Analysis of variance was also conducted with R to determine the differences in radial growth measurements between repeated experiments and among representative isolates.

Morphology

Sporangia of \textit{Phytophthora x stagonum} were produced by transferring agar plugs (10×10 mm) from actively growing cultures on CV8A to Petri dishes containing non-sterile, soil water extract (SWE, 15 g of sandy loam soil/1 L water). Mature sporangia developed after incubating at room temperature under cool-white fluorescent light. Chlamydospores were produced in aged cultures in CV8A (after >30 days).

The mating type of representative isolates was determined in dual culture with an A1 or A2 tester of \textit{P. cinnamomi} on CV8A. Selfed gametangia of \textit{P. x stagonum} were induced in polycarbonate membrane tests with an opposite mating type tester of \textit{P. nicotianae} using hemp seed agar (HSA) [51,52].

Asexual and sexual bodies were photographed with a Nikon Fujix Digital Camera HC-300Zi connected to a Nikon Labophot-2 microscope. More than 50 randomly selected mature sporangia per isolate, more than 30 chlamydospores and all observed gametangia were measured using Image-Pro Plus v. 5.1.2.53.

Nomenclature

The electronic version of this article in Portable Document Format (PDF) in a work with an ISSN or ISBN will represent a published work according to the International Code of Nomenclature for algae, fungi, and plants, and hence the new names contained in the electronic publication of a PLOS ONE article are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide printed copies.

In addition, new name contained in this work has been submitted to MycoBank from where it will be made available to the Global Names Index. The unique MycoBank number can be resolved and the associated information viewed through any standard web browser by appending the MycoBank number contained in this publication to the prefix http://www.mycobank.org/MB/. The online version of this work is archived and available from the following digital repositories: PubMed Central, LOCKSS.

![Figure 2. Internal transcribed spacer (ITS) sequence alignment of \textit{Phytophthora x stagonum}, \textit{P. mississippiae} and \textit{P. taxon PgChlamydo}. Position numbers are given based on the alignment. Yellow indicates sequences belong to \textit{P. taxon PgChlamydo} authentic isolates. Blue indicates sequences belong to \textit{P. mississippiae} type isolate SF3. Position 15 is in the poly(A) region of ITS 1, which may contain sequencing errors. Thus, it is excluded from the analysis of hybridization. However, the indel of position 15 among three types of \textit{P. x stagonum} clones explains continual polymorphism and unreadable sequences of the ITS 1 regions amplified with the forward primer ITS6F in the initial sequencing before cloning. Type 1 and 2 occurred 21 and 10 times among 31 clones producing 816-bp sequences. doi:10.1371/journal.pone.0103450.g002](http://www.plosone.org/figure/2.0)

![Figure 3. Beta-tubulin sequence alignment of \textit{Phytophthora x stagonum}, \textit{P. mississippiae} and \textit{P. taxon PgChlamydo}. Position numbers are given based on the alignment. Shading color: green indicates ambiguous sequences of polymorphic positions; yellow indicates sequences of the paternal parent \textit{P. taxon PgChlamydo}; blue indicates sequences of the putative maternal parent. Y = T and C; S = G and C; M = A and C; R = G and A. doi:10.1371/journal.pone.0103450.g003](http://www.plosone.org/figure/3.0)
Results

Sequence analysis of cox 1 gene

All four representative isolates of *P. xstagnum* produced an identical 867-bp cox 1 sequence, which is distinct from those of all known *Phytophthora* species. This new species and *P. mississippiae* isolate 57J3 (GenBank Accession No. KF112860) differ by 18 bp in the alignment of cox 1 sequences. In the ML phylogenetic tree based on cox 1 sequences of *P. xstagnum* and other selected species, *P. xstagnum* isolates clustered in a distinct taxon which is closely related to *P. mississippiae* (Figure 1), indicating the maternal parent of *P. xstagnum* is genetically close to *P. mississippiae*.

Sequence analysis of ITS clones

Among the 94 clones of the ITS region, 61 resulted in high-quality sequences. These included 16, 16, 16, and 13 from isolates 36H8, 36J7, 43F3, and 44F9, respectively. In the alignment of these 61 ITS sequences, 35 rare single-nucleotide polymorphism (SNP) sites occurred at low frequencies (~1/61). These rare SNPs were mostly intraspecific polymorphisms of parent species of *P. xstagnum*. We also observed six frequent SNPs (four in ITS1 region and two in ITS2 region) and three indels in the ITS1 region (Figure 2) at high frequencies (10–31/61).

These 61 clones can be generally grouped into three types by the six frequent SNPs and three indels in the ITS sequence. Thirty-one clones produced two types of 816-bp sequences while the other 30 clones produced an identical 819-bp sequence. According to the sequence alignment (Figure 2), the two 816-bp
sequences are 99% identical to that of *P. mississippiae*, while the 819-bp sequence is 100% identical to those of *P. taxon PgChlamydo* in GenBank (www.ncbi.nlm.gov/genbank/). Clones of individual representative isolates produced all ITS sequence types.

Sequence analysis of beta-tubulin gene

Isolates 36H8, 36J7, and 44F9 resulted in an identical 1124-bp beta-tubulin sequence with 26 polymorphic positions (Figure 3). Isolate 43F3 also produced a 1124-bp sequence with 24 of the same 26 polymorphic positions. In spite of the polymorphic positions, beta-tubulin sequences of *P. ×stagnum* are identical to that of *P. taxon PgChlamydo* and 11 bp different from that of *P. mississippiae* (Figure 3). Sequences of *P. taxon PgChlamydo* and *P. mississippiae* are distinct and both occur at 18 of the 26 polymorphic positions of *P. ×stagnum* containing ambiguous sequences such as positions 99, 102, and 261 (Figure 3). At the other eight polymorphic positions such as positions 93, 306, and 450, both species share the same sequences which also occur as one of the ambiguous polymorphic sequences of *P. ×stagnum* (Figure 3). Putative sequences of the maternal parent of *P. ×stagnum* are shown in Figure 3. The maternal parent is approximately 21 bp different from *P. mississippiae* in beta-tubulin sequence.

Colony morphology

The four representative isolates had a similar growth pattern after 10-days incubation in the dark at 20°C (Figure 4). Colony pattern on CA and CV8A was stellate to radiate with a relatively smooth edge and abundant aerial mycelia at the center. Colony pattern on MEA and PDA was rosaceous except isolate 43F3, which produced a slightly cottony colony on PDA. Colony growth of all isolates was slowest on MEA among tested media.
Cardinal temperatures for vegetative growth

Radial growth rates were similar among four representative isolates (P = 0.71) and between two cardinal temperature tests (P = 0.74). Thus, data from the repeated tests were pooled and averages were plotted against temperature (Figure 5). The optimum temperature for the vegetative growth of *P. × stagnum* in both media was 25°C. It also grew well at 30°C on both media. Limited growth occurred at 5 and 35°C. No growth was observed at 40°C.

Taxonomy

Phytophthora × stagnum. X. Yang & C. X. Hong nothosp. nov. (Figure 6).

Mycobank: MB807978 [urn:lsid:mycobank.org:MB:807978].

Sporangia were occasionally produced by aged cultures (>30 days) grown in CA and CV8A. Abundant sporangia were produced from fresh mycelial plugs submerged in 1.5% SWE within 10 hours. Sporangial shape varied from ovoid (Figures 6a, b) to ellipsoid (Figures 6c, d), obpyriform (Figures 6e, f) and distorted shapes (Figure 6g). Sporangia were terminal, nonpapil late and nonaduncous. They ranged from 30.5 to 89.7 µm in length (average 54.3±11.0 µm) and 17.5 to 40.4 µm in width (average 30.3±3.9 µm). Direct germination of sporangia was frequently observed (Figures 6h, i). Nested and extended internal proliferations were common (Figures 6j, k). Hyphal swellings in irregular shapes were abundantly produced in both young and aged cultures (Figure 6m). Intercalary chlamydospores were observed in aged cultures of all examined isolates (Figures 6n, o, p). They were mostly thin-walled (Figures 6n, o), rarely thick-walled (Figure 6p), and averaged 33.5±4.9 µm in diameter.

Phytophthora × stagnum is heterothallic and all isolates examined are A1. They produced no sexual structure in single culture. Oogonia were produced in dual culture when each *P. × stagnum* isolate was paired with an A2 tester of *P. cinnamomi*. In the polycarbonate test, a limited number of gametangia (~40) were produced by the four isolates after being paired with an A2 mating type tester of *P. nicotianae* for more than 50 days. Two distinct groups of gametangia were observed. Isolates 36H8 and 36J7 mostly produced ornamented oogonia with characteristic protuberances (Figures 6q, r, s, t). These oogonia averaged 33.6±2.1 µm in diameter. Oogonial wall was pigmented golden at maturity. All observed ornamented oogonia aborted (Figures 6q, r, s, t). Antheridia were amyphigamous, commonly distorted (Figures 6u, v). They averaged 19.4 µm in depth and 14.2 µm in width. Isolates 43F3 and 44F9 mostly produced oogonia with a relatively smooth surface (Figures 6u, v). These oogonia averaged 28.0±5.6 µm in diameter. The oogonial wall was darkly golden-brown. Plerotic oospores (Figure 6u) were also mostly aborting (Figure 6v). Antheridia were amyphigamous, globose or distorted, and averaged 10.0 µm in depth and 12.3 µm in width (Figures 6u, v).

Holotype

ATCC MYA-4926 (exo-type: 43F3), recovered from an irrigation runoff reservoir, Virginia, USA, January, 2007. Other representative isolates were recovered from the same location: isolates 36H8 and 36J7, recovered in March, 2007; 44F9, recovered in May, 2007.

Etymology

‘stagnum’ refers to the irrigation reservoirs where this novel hybrid species was recovered.

Discussion

Sequence analyses of the cox 1, ITS, and beta-tubulin genes have demonstrated that *Phytophthora × stagnum* is a hybrid species with a species genetically close to *P. mississippiae* as its maternal and *P. taxon PgChlamydo* as its paternal parent. First, the mitochondrial cox 1 sequence of *P. × stagnum* is mostly analogous to that of *P. mississippiae* (Figure 1), suggesting that its maternal parent is genetically close to *P. mississippiae*. Second, cloning of the ITS region of *P. × stagnum* isolates consistently resulted in two types of 816-bp sequences and one type of 819-bp sequence. The 819-bp sequence is identical or only 1-bp different from those of authentic *P. taxon PgChlamydo* isolates [18]. The two types of 816-bp sequences only differ from that of *P. mississippiae* type isolate [14] by 3 or 6 bp (Figure 2). Third, *P. × stagnum* contains the beta-tubulin sequences of *P. taxon PgChlamydo* and *P. mississippiae* at 26 polymorphic positions (Figure 3). Its sequences at non-polymorphic positions are identical to that of *P. taxon PgChlamydo* and only ~10 bp different from that of *P. mississippiae*. These results of ITS and beta-tubulin sequence analyses indicate that *P. × stagnum* is a hybrid between *P. taxon PgChlamydo* and a species genetically close to *P. mississippiae*.

This hybrid species has diagnostic morphological and physiological characteristics of *P. taxon PgChlamydo* and *P. mississippiae*. For instance, *P. × stagnum* is similar to *P. taxon PgChlamydo* in producing chlamydospores, which are not produced by *P. mississippiae* [14]. However, both *P. × stagnum* and *P. mississippiae* produce abundant catenulate hyphal swellings (Figure 6m) in aged cultures, as well as nested or extended internal proliferations (Figures 6j, k). Also, both *P. × stagnum* and *P. mississippiae* produce ornamented oogonia (Figures 6q–t). The relatively smooth-walled oogonia produced by *P. × stagnum* (Figures 6u, v) may implicate the oogonial morphology of *P. taxon PgChlamydo* although it has not been reported. In addition, *P. × stagnum* is similar to *P. mississippiae* in colony morphology and growth rate on CV8A [14]. Both species produce radiate to slightly petaloid colonies with a relatively smooth edge (Figure 4) and the fastest growth on CV8A occurs at 25°C (Figure 5). *Phytophthora × stagnum* can be separated from both parents by its optimal growth temperature on CA at 25°C (Figure 5), while it occurs at 30°C for *P. mississippiae* [14] and about 28°C for *P. taxon PgChlamydo* [18].

Although we have identified the two parent species of *P. × stagnum* by molecular and morphological evidences, the mechanism by which this subclade 6b hybrid was produced remains unknown. It seems likely that this new hybrid formed asexually. One major reason is that species in subclade 6b tend to be homothallic as exemplified by *P. gibbsa*, *P. gregata*, and *P. megasperma* [19,53], or “sterile” with unknown sexual structures such as *P. amnicola*, *P. thermophila* and *P. taxon PgChlamydo* [18,19,54]. This tendency may be a result of their adaptation to aquatic habitats [18,19,38]. The four subclade 6b hybrid species reported in 2013, PG-A, A-PG, T-A, T-PG also produced no gametangia [38]. In this study, we only observed a limited number of sexual bodies of *P. × stagnum* (~40) in five polycarbonate-membrane tests. These results along with previous findings indicate that hybrids in subclade 6b were more likely formed asexually via hyphal anastomosis or zoospore fusion. However, Nagel et al. [38] suggested that the conditions used in laboratory
mating tests may be not conducive to the formation of sexual bodies of subclade 6b species, while suitable conditions may exist in natural environments [38]. The formation mechanism of sexual structures of these subclade 6b hybrid species warrants further investigations.

Aquatic environments are ideal for the development and survival of natural Phytophthora hybrids. Many known Phytophthora hybrids have close association with aquatic environments. Examples include the four subclade 6b hybrids recovered from river and riparian ecosystems [38]; Phytophthora alni and its variants associated with riparian Alnus trees [31,32]; and Phytophthora ×pelgrandis initially recovered from horticultural plants grown in hydroponic systems [28]. The fact that most natural Phytophthora hybrid species were initially identified from aquatic environments is interesting. First, natural aquatic ecosystems such as rivers, streams, and riparian habitats provide ideal environments for many plant species to grow. Consequently, Phytophthora species from various plant hosts have greater chances to aggregate and subsequently form hybrids under suitable conditions, such as P. alni and subclade 6b hybrids described in 2013. Similarly, hundreds of ornamental plants are grown in nurseries using hydroponic or recycling irrigation systems which greatly increase the chance of close contact between species. Phytophthora ×pelgrandis, P. xserendipita, and P. ×stagnum may have formed in these systems by mating or anastomosis [28]. Second, newly formed Phytophthora hybrids may have a better opportunity to survive and adapt to aquatic ecosystems that contain a diverse variety of plant species. Third, aquatic environments favor asexual reproduction via motile zoospores or chlamydospores. This may be important for species that are sterile or nonfunctional in sexual reproduction as are all known Phytophthora hybrids. Fourth, for the saprophytic Phytophthora species in subclade 6b including PG-A, A-PG, T-A, T-PG [18,19,38] as well as P. ×stagnum in this study, the abundant plant debris in aquatic environments provide ideal microhabitats and nutrient sources. Fifth, water also offers hybrids vehicles for mobility compared to terrestrial environments, which may allow them to migrate into new habitats. In summary, aquatic environments may provide favorable conditions for Phytophthora hybrids to form, survive and disseminate.

All four representative isolates of Phytophthora ××stagnum are genetically stable. They were routinely subcultured on artificial media during the experimental period (~2 years) and did not revert to either parent type. Also, sequencing of the ITS region of representative isolates was conducted several times in three years (2006, 2012, and 2013), and all ITS sequences obtained displayed similar polymorphisms. In addition, isolates of P. ×stagnum have been continually recovered from the same irrigation reservoirs since 2005. These observations suggest that this new hybrid species is relatively stable in the laboratory and in nature, and may have adapted to the irrigation systems of the surveyed nurseries in eastern Virginia.

Similar to the other four Phytophthora hybrids in subclade 6b [38], the pathogenicity of P. ×stagnum is yet to be determined. No diseased plant samples associated with this novel hybrid species has been received in the Disease Clinic at Hampton Roads Agricultural Research and Extension Center in Virginia Beach, Virginia. Also, in a preliminary pathogenicity test, P. ×stagnum caused little if any dieback on rhododendron plants (data not shown). The low aggressiveness of P. ×stagnum may be inherited from its parent species. Phytophthora taxon PgChlamydo is considered as an opportunistic plant pathogen [18], although it has been found to cause leaf spot on nursery stocks in California [55]. The maternal parent species of P. ×stagnum is close to P. mississippiensis, which has an unknown host range [14].

Origin of this novel hybrid is not known at this time. Although P. taxon PgChlamydo has been frequently recovered from the same irrigation reservoirs, the maternal parent of P. ×stagnum has never been isolated. This observation may suggest that this novel hybrid has been introduced to these nurseries via incoming ornamental plant materials. Crop health risk posed by this new hybrid species has yet to be assessed.

Supporting Information

Table S1 Daily radial growth measurements of four Phytophthora ×stagnum representative isolates. Examined isolates were grown in carrot agar and 20% clarified V8 juice agar over an 8-days period in two cardinal temperature tests. (CSV)

Table S2 Morphological measurements of four Phytophthora ×stagnum representative isolates. These measurements include the size of sporangia, oogonia and antheridia. (CSV)

Acknowledgments

We thank Drs. Anton Baudoin and Erik Stromberg for providing experimental equipment and technical advice on the morphological examinations performed in their labs. We acknowledge Drs. Ping Kong and Giovanni Cafa for their advice on cloning the ITS regions in this study. We thank Dr. Brett Tyler for his advice on sequence analyses and critical review and Dr. Warren Copes for critical reading of this manuscript.

Author Contributions

Conceived and designed the experiments: XY CH. Performed the experiments: XY PR. Analyzed the data: XY PR CH. Contributed reagents/materials/analysis tools: XY CH. Wrote the paper: XY PR CH.

References

1. Martin FN, Abad ZG, Baldi Y, Ivors K (2012) Identification and detection of Phytophthora: reviewing our progress, identifying our needs. Plant Dis 96: 1080–1103.
2. Waterhouse GM (1963) Key to the Species of Phytophthora de Bary. Mycological Papers No. 92. Surrey, UK: Commonwealth Mycological Institute. 22 p.
3. Cooke DEL, Drenth A, Duncan JM, Wagel G, Brasier GM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30: 17–32.
4. Blair JE, Collify MD, Park S-Y, Geiser DM, Kang S (2006) A multilocus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet Biol 43: 266–277.
5. Kroon LPSM, Bakker FT, van den Bosch GBM, Bonants PJM, Fier W (2004) Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet Biol 41: 766–782.
6. Martin FN, Tookey PW (2003) Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia 95: 269–284.
7. Rohdeau GP, de Cock AWAM, Collody MD, Voglmayr H, Brouwer H, et al. (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11: 1002–1011.
8. Haider A, Kageyama K, Asano T, Suga H (2006) Phylogenetic relationships of Phytophthora and related oomycetes inferred from ITS and internal transcribed spacer. Phytopathology 96: 800–811.
9. Villa NO, Kageyama K, Asano T, Suga H (2006) Phylogenetic relationships of Phytophthora and related oomycetes inferred from ITS, cytochrome oxidase II and beta-tubulin gene sequences. Mycologia 98: 410–422.
10. Erwin DG, Ribeiro OK (1996) Phytophthora diseases worldwide. St. Paul, Minnesota: APS Press. 562 p.
11. de Cock AW, Levesque CA (2004) New species of Pythium and Phytophthora. Stud Mycol 50: 481–487.
32. Brasier CM, Kirk SA, Delcan J, Cooke DEL, Jung T, et al. (2004) Phytophthora cactorum, a new pathogen identified from irrigation water, Rhododendron catawbiense and Kalmia latifolia. Plant Pathol 59: 99–107.

33. Ioos R, Andrieux A, Marcq B, Frey P (2006) Genetic characterization of the natural hybrid species Phytophthora alni as inferred from nuclear and mitochondrial DNA analyses. Fungal Genet Biol 43: 511–529.

34. Gomez-Alpizar L, Hu CH, Olova R, Forbes G, Ristaino JB (2008) Phylogenetic relationships of Phytophthora andina, a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogen Phytophthora infestans. Mycologia 100: 590–602.

35. Olivera RF, Krom LPMN, Chacon G, Flier WG, Ristaino JB, et al. (2010) Phytophthora alni sp. nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands. Plant Pathol 59: 613–625.

36. Goss EM, Cardenas ME, Myers K, Forbes GA, Fry WE, et al. (2011) The pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish Potato Famine pathogen, P. infestans. PLOS ONE 6: e24543. doi:10.1371/journal.pone.0024543. PubMed: 21949727.

37. Man in ’t Veld WA, de Cock AWAM, Summerbell RC (2007) Natural hybrids of resident and introduced Phytophthora species proliferating on multiple new hosts. Eur J Plant Pathol 117: 25–33.

38. Nagel JH, Gryzenhout M, Sippers B, Wingfield MJ, Hardy GESJ, et al. (2013) Characterization of Phytophthora species from ITS clade 6 associated with riparian ecosystems in South Africa and Australia. Fungal Biol 117: 329–347.

39. Bertier L, Leus L, D’hondt L, de Cock AWAM, Ho¨fte M (2013) Host adaptation and speciation through hybridization and polyploidy in Phytophthora. PLOS ONE 8(12): e85385. doi:10.1371/journal.pone.0085385.

40. Brasier CM (2001) Plant pathology: The rise of the hybrid fungi. Nature 405: 134–135.

41. Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization. BioScience 51: 123–133.

42. Faedda R, Cacciola SO, Pane A, Sizghery A, Bakonyi J, et al. (2013) Phytophthora xepigalda causes root and collar rot of Lavandula stoechas in Italy. Plant Dis 97: 1091–1096.

43. Hurtado-Gonzales OP, Aragon-Caballero LM, Flores-Torres JG, Man in ’t Veld WA, Lamour KH (2009) Molecular comparison of natural hybrids of Phytophthora nicotianae and Phytophthora cactorum infecting locust trees in Peru and Taiwan. Mycologia 101: 496–502.

44. Karthikeyan, S Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780.

45. Karthikeyan, S Kumar, K Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nuclear. Acids Res 33: 518–526.

46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolution- ary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.

47. Tamura K, Nei M (1997) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 14: 1115–1129.

48. Sambrook J, Russell DW (2006) Preparation of Plasmid DNA by Alkaline Lysis Protocol. In: Molecular Cloning, A Laboratory Manual, Third Edition, Cold Spring Harbor Press, Cold Spring Harbor, NY, USA. eds. J. Sambrook, E. F. Fritsch, T. Maniatis. Cold Spring Harbor Press, Cold Spring Harbor, New York.

49. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, et al. (2012) gplots: Various R programming tools for plotting data. In: B Bolker, L Bonebakker, R Gentleman, W. H. A Liaw, T Lumley, M Maechler, A Nystuen, S Magnusson, S Moeller, M Schwartz and B Venables, editors. R package 2.11.0. http://CRAN.R-project.org/package=gplots.

50. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. R Foundation for Statistical Computing.

51. Poole RJ, Chetcuti D, Verma S, Ainsworth A, Fehling DS, et al. (2011) Phytophthora xepigalda evidence for hormonal regulation of sexual reproduction. J Gen Microbiol 157: 15–18.

52. Goffeqa ME, Hong CX (2008) Phytophthora species and the Irish Potato Famine pathogen, P. infestans. Phytophthora Species: Identification, Biology, and Pathogenesis. PLoS One 3: e2088. doi:10.1371/journal.pone.002088. PubMed: 18795090.

53. Croux PW, Summerell BA, Shivis RG, Burgess TI, Decock CA, et al. (2012) Fungal Planet description sheets: 107–127. Persoonia 28: 130–182.

54. Benschop GL, Yokabe LE, Soriao MC, Negete MA (2012) First report of leaf spot caused by Phytophthora taxon Pchylamoxy on evergreen nursery stock in California. Plant Dis 96: 1691.