THE ACTION BY NATURAL TRANSFORMATIONS OF A GROUP ON A DIAGRAM OF SPACES

RAFAEL VILLARROEL-FLORES

Abstract. For C a G-category, we give a condition on a diagram of simplicial sets indexed on C that allows us to define a natural G-action on its homotopy colimit, and in some other simplicial sets and categories defined in terms of the diagram. Well-known theorems on homeomorphisms and homotopy equivalences are generalized to an equivariant version.

1. Introduction

Let G be a group, and C be any small category. Consider a C-diagram of simplicial sets, where the values of the diagram have a G-action. Then several structures defined in terms of the diagram, like the colimit and the homotopy colimit, have an induced structure of G-object. However, it is often the case that one has a diagram $F : C \to D$ where C is a small G-category, D is an arbitrary category and the values of F do not necessarily have a G-action, however the homotopy colimit of F does have it. This situation was considered in [3], and independently, by this author in his Ph. D. thesis [9], where the concept of an action of a group G on a functor F by natural transformations is introduced. Here we define it formally in section 3, after the basic definitions in section 2.

We show that there are induced G-actions on colimits, coends, and bar and Grothendieck constructions of functors on which G acts by natural transformations. In section 4 we consider the homotopy colimit, and show some basic identities involving the constructions defined so far. In section 5 we prove the equivariant homotopy invariance of the bar construction. Finally, in section 6 we prove the equivariant versions of the four theorems listed in [1, p. 154] about the homotopy colimit. Some of them were noted in [3], however a mild additional hypothesis lets us obtain a more precise result.

Some of the proofs are as those in [2], adapted for the case of the group action. However we include more details than in the cited paper, given that homotopy colimit methods have recently been used by non-topologists, see for example [11].

2. Preliminaries

Let G be a finite group. We will denote by G the category with a single object $*$, in which $\text{hom}_G(*,*) = G$ and the composition corresponds to group multiplication. For $n \geq 0$, let $[n]$ be the category associated to the poset $\{0, 1, \ldots, n\}$ with the usual order.
Let SCat be the category of small categories and Δ be the full subcategory of SCat with objects $\{ [n] \mid n \geq 0 \}$. If \mathcal{C} and \mathcal{D} are categories, with \mathcal{C} small, we denote by $\mathcal{D}^\mathcal{C}$ the category of functors $\mathcal{C} \to \mathcal{D}$ ([4, page 40]). The category of simplicial sets (see [5]), denoted sSet, is equal to $\text{Set}^{\Delta^{op}}$. The category of small G-categories is defined as SCat^G. We identify a small G-category with the image of the functor $G \to \text{SCat}$. From now on, \mathcal{C} will denote a small G-category. Note that for each $g \in G$ we have a functor $g: \mathcal{C} \to \mathcal{C}$, and composition of functors correspond to group multiplication. We consider the nerve functor $N: \text{SCat} \to \text{sSet}$, given by $\mathcal{C} \mapsto (\text{hom}_{\text{SCat}}(-, \mathcal{C}): \Delta^{op} \to \text{Set})$. The nerve functor sends G-categories to G-simplicial sets. There is also a geometric realization functor $|\cdot|: \text{sSet} \to \text{Top}$, that sends G-simplicial sets to G-topological spaces. We denote $|N(\mathcal{C})|$ simply as $|\mathcal{C}|$.

If \mathcal{D} is any category, an object D in it is called a G-object if there is a collection of \mathcal{D}-maps $\{g: D \to D\}$, indexed by the elements of G, such that the map corresponding to the identity element is the identity, and composition of maps corresponds to group multiplication.

If X and Y are G-topological spaces, a G-homotopy from X to Y is a continuous map $H: X \times [0, 1] \to Y$ such that $H(gx, t) = gH(x, t)$ for all $g \in G$, $x \in X$ and $t \in [0, 1]$. Two G-maps $f_1, f_2: X \to Y$ are G-homotopic if there is a G-homotopy H from X to Y such that $H(x, 0) = f_1(x)$ and $H(x, 1) = f_2(x)$. In this case we write $f_1 \simeq_G f_2$. The G-topological spaces X and Y are G-homotopy equivalent if there are G-maps $f: X \to Y$ and $f': Y \to X$ such that $ff' \simeq_G 1_X$ and $f'f \simeq_G 1_Y$.

We say that two G-categories $\mathcal{C}_1, \mathcal{C}_2$ are G-homotopy equivalent if the spaces $|\mathcal{C}_1|, |\mathcal{C}_2|$ are. It is not required that the map $|\mathcal{C}_1| \to |\mathcal{C}_2|$ defining the homotopy equivalence is induced from a functor $\mathcal{C}_1 \to \mathcal{C}_2$.

If we have a functor $F: \mathcal{C} \to \mathcal{D}$ together with natural transformations $\eta_g: F \to Fg$ such that η_1 is the identity and $\eta_{gg'} = \eta_g \eta_{g'}$, Jackowski and Słomińska call F a right G-functor [3]. Independently, I defined and used the same concept in my Ph. D. thesis [9], and said that in such situation, G acts on F by natural transformations, or simply that G acts on the functor F. In this paper, we will use both terms indistinctly.

In the case that \mathcal{C} and \mathcal{D} are small G-categories, and $F: \mathcal{C} \to \mathcal{D}$ is a functor such that $F(gC) = gF(C)$, $F(g\phi) = gF(\phi)$ for all $g \in G$, $C \in \text{obj} \mathcal{C}$ and all \mathcal{C}-morphisms ϕ, we will say that F is an equivariant functor.

3. Definition and Examples

We define now our main subject of study in detail:

Definition 3.1. Let $F: \mathcal{C} \to \mathcal{D}$ a functor, where \mathcal{C} is a small G-category and \mathcal{D} is an arbitrary category. Suppose that we are given a family of \mathcal{D}-maps $\eta = \{ \eta_g, X: F(X) \to F(gX) \}$ indexed by $g \in G$ and $X \in \text{obj} \mathcal{C}$ such that

1. $\eta_{1, X} = 1_{F(X)}$ for all $X \in \text{obj} \mathcal{C}$,
2. $\eta_{g_1, g_2, X} = \eta_{g_1, g_2, X}$ for any $X \in \text{obj} \mathcal{C}$, $g_1, g_2 \in G$,
3. $\eta_{g, X} \circ F(f) = F(gf) \circ \eta_{g, X}$ for any $g \in G$ and $f: X \to Y$ a map in \mathcal{C}.

Then, we will say that the family η defines an action of G on the functor F, or more succinctly, that G acts on the functor F, or, following [3], that F is a right G-functor.
Definition 3.2. Let $F_1, F_2 : C \to D$ be two functors on which G acts, by η^1, η^2 respectively. A morphism of functors with G-action is a natural transformation $\epsilon : F_1 \to F_2$ such that $\eta^2_{g,X} \circ \epsilon_X = \epsilon_{gX} \circ \eta^1_{g,X}$ for all $g \in G, X \in \text{obj} C$.

As it is mentioned in [3] and [9], the usefulness of this concept lies on the fact that, when G acts on F, there is a natural action of G on the simplicial set $\text{hocolim} F$, and in several other structures defined in terms of F. On the other hand, it is often the case that we can derive a functor on which G acts by natural transformations from a G-object. We show some examples.

Example 3.3. Let C and D be G-categories, and $F : C \to D$ an equivariant functor. Then, for $D, D' \in \text{obj} D$, we have a category $D \setminus F / D'$ with objects $\text{obj}(D \setminus F / D') = \{ (u,C,v) \mid C \in \text{obj} C, D \xrightarrow{u} FC \xrightarrow{\rho} D' \}$, and a morphism $p : (u,C,v) \to (u',C',v')$ given by a C-map $p : C \to C'$ such that $F(p) \circ u = u'$ and $v' \circ F(p) = v$.

There is a functor $D^{\text{op}} \times D \to \text{SCat}$ defined on objects by $(D,D') \mapsto D \setminus F / D'$. If $(\phi, \psi) : (D,D') \to (E,E')$ is a morphism in $D^{\text{op}} \times D$, the associated functor $D \setminus F / D' \to E \setminus F / E'$ sends (u,C,v) to $(u\phi, C, \psi v)$.

Then D^{op} and $D^{\text{op}} \times D$ have an obvious structure of G-categories, and there is an action of G on the functor $D^{\text{op}} \times D \to \text{SCat}$ we just defined: for $g \in G$, set $\eta_g (D,D') = gD \setminus F / gD'$ as the functor $D \setminus F / D' \to gD \setminus F / gD'$ given by $(u,C,v) \mapsto (gu, gC, gv)$. Note, for example, that for $u : D \to F(C)$, we have that $gu : gD \to gF(C) = F(gC)$.

In this context, we can also define categories $D \setminus F$ and $F \setminus D$ with the obvious objects and morphisms, and obtain functors $D^{\text{op}} \to \text{SCat}$, $D \to \text{SCat}$ with a G-action. If $\nu : F_1 \to F_2$ is an equivariant natural transformation (i.e. a natural transformation such that $g\nu_C = \nu_{gC}$), then there is an induced morphism of right G-functors $\tilde{\nu} : - \setminus F_1 \to - \setminus F_2$, given by $\tilde{\nu}_D : D \setminus F_1 \to D \setminus F_2, (u,C) \mapsto (\nu_C u, C)$.

Example 3.4. Again, let C and D be G-categories, and $F : C \to D$ an equivariant functor. There is a functor $C^{\text{op}} \times C \to \text{Set}$ defined on objects by $(X,Y) \mapsto \text{hom}_D(FX,FY)$ and on morphisms by $(\phi, \psi) \mapsto (f \mapsto F\phi \circ f \circ F\psi)$. It has a G-action defined by $\eta_{g,(X,Y)} : \text{hom}_D(FX,FY) \to \text{hom}_D(gFX,gFY)$, $f \mapsto gf$.

Since any set X can be considered as a simplicial set Y such that $Y_n = X$ for all n and all faces and degeneracies equal to the identity, we can as well consider the last function as taking values in the category of simplicial sets.

Example 3.5. Let C be a G-category and $F : C \to D$ a right G-functor with G-action given by η. Assume that F has a colimit, that is, there is an object $\text{colim} F$ in D and a collection of D-maps $\{ \rho_X : FX \to \text{colim} F \}_{X \in \text{obj} C}$ that form a limiting cone from F with base $\text{colim} F$ (see for example [4, p. 67]). Let $g \in G$. Then the natural transformation $F \to Fg$ induces a map $g : \text{colim} F \to \text{colim} F \cong \text{colim} F$ such that $\rho_{gX} \circ \eta_{g,X} = g \circ \rho_X$ for all $X \in \text{obj} C$. It can be shown that the collection of maps $\{ g : \text{colim} F \to \text{colim} F \}_{g \in G}$ give an structure of G-object on $\text{colim} F$. Furthermore, if Z is any G-object in D and there is a cone $\{ \sigma_X : FX \to Z \}$ from F to Z such that $\sigma_{gX} \circ \eta_{g,X} = g \circ \sigma_X$ for all $g \in G$ and all $X \in \text{obj} C$, then the map induced by the properties of the colimit $M : \text{colim} F \to Z$ is in fact equivariant.

For example, if C is a discrete small G-category, then it can be identified with a G-set. A functor $F : C \to D$ corresponds to a collection of D-objects, indexed by the objects of C. If F is a right G-functor, then $\text{colim} F = \coprod_{C \in \text{obj} C} F(C)$ is a G-object.

As a particular case, consider $H \leq G$ a subgroup, and let C be the discrete small G-category with object set $G//H = \{ a_1 H, a_2 H, \ldots, a_n H \}$, that is, the set of left
cosets of \(H \) in \(G \) with the usual action by left translation, where \(a_1 = 1 \). Let \(Z \) be an \(H \)-simplicial set, and consider the constant functor \(F: C \to sSet \) with value \(Z \). We define a \(G \)-action \(\eta \) on \(F \) as follows: Let \(\eta_{g,H}: F(H) \to F(gH) \) be defined as \(z \mapsto hz \), where \(g = a_i h, h \in H \); and then \(\eta_{g,aH}(z) = \eta_{ga,H}(z) \). It is straightforward to check that this defines an action of \(G \) on \(F \), and so \(\text{colim} F \) is a \(G \)-simplicial set. This construction is usually known as the induced action from \(H \) to \(G \). We will denote \(\text{colim} F \) in this case as \(Z \uparrow^G_H \).

We also note that a morphism of right \(G \)-functors induced an equivariant map between the corresponding colimits of the functors.

Example 3.6. In a similar way, if \(Z: C \times C^{\text{op}} \to D \) is a right \(G \)-functor with a coend (see [4, p. 226]) with defining maps \(\alpha_C: Z(C,C) \to \text{coend} Z \), then \(\text{colim} Z \) becomes a \(G \)-object, with action satisfying \(\alpha_{gC} \circ \eta_{g,(C,C)} = g \circ \alpha_C \).

For example, let \(F: C \to sSet, T: C^{\text{op}} \to sSet \) be functors, with actions of \(G \) on both \(F \) and \(T \), given by \(\eta^F, \eta^T \). Then \(Z = F \times T \) is a right \(G \)-functor \(C \times C^{\text{op}} \to sSet \). Its coend is a \(G \)-simplicial set denoted by \(F \otimes_C T \).

As in the case of limits, a morphism of right \(G \)-functors induces an equivariant map between the corresponding coends.

Example 3.7. Let \(C \) be a \(G \)-category and \(Z: C \times C^{\text{op}} \to sSet \) a functor, with an action of \(G \) on \(Z \) given by \(\eta \). We have a simplicial set \(B(C,Z) \), called the (simplicial) **bar construction** (see [6]), such that

\[
B(C,Z)_n = \bigoplus_{X_0 \xrightarrow{\phi_1} X_1 \xrightarrow{\phi_2} \cdots \xrightarrow{\phi_n} X_n \in N(C)_n} Z(X_0, X_n)_n
\]

with boundaries and degeneracies given by:

\[
d^i(\phi_1, \ldots, \phi_n; z) = \begin{cases} (\phi_2, \ldots, \phi_n; d^0(Z(\phi_1, 1_{X_n}(z))) & i = 0, \\
(\phi_1, \ldots, \phi_{i+1}; d^iZ (\phi_i, \phi_{i+1}, \ldots, \phi_n); d^iZ) & 1 \leq i \leq n - 1, \\
(\phi_1, \ldots, \phi_{n-1}; d^n(Z(1_{X_0}, \phi_n)(z))) & i = n \end{cases}
\]

\[
s^i(\phi_1, \ldots, \phi_n; z) = (\phi_1, \ldots, \phi_i, 1_{X_n}, \phi_{i+1}, \ldots, \phi_n; s^i z), & 0 \leq i \leq n.
\]

The action of \(G \) on \(Z \) gives a structure of \(G \)-simplicial set on \(B(C,Z) \), with action of \(g \in G \) defined as:

\[
g(\phi_1, \ldots, \phi_n; z) = (g\phi_1, \ldots, g\phi_n; \eta_{g,(X_0,X_n)}(z))
\]

If the functor \(Z \) is of the form \(F \times T \) as in the previous example, then we denote \(B(C,Z) \) as \(B(F,C,T) \).

Example 3.8. Let \(F: C \to SCat \) be a functor. We define a category \(C \uparrow F \) with objects the pairs \((X,a)\) with \(X \in \text{obj} C, a \in \text{obj} F(X) \). A map \((X,a) \to (Y,b)\) is given by a pair \((f,u)\) such that \(f: X \to Y \) is a map in \(C \) and \(u: F(f)(a) \to b \) is a map in the category \(F(Y) \). The category \(C \uparrow F \) is called the **Grothendieck Construction** on \(F \) (see [7]).

If \(F: C \to SCat \) is a right \(G \)-functor, then \(C \uparrow F \) is a small \(G \)-category with action on objects given by

\[
g(X,a) = (gX, \eta_{g,X}(a))
\]
and on maps by
\[g((X, a) \mapsto (f, u), (Y, b)) = (gf, \eta_{g, Y}(u)) \]

We end this section by stating some basic and easily provable properties of right G-functors.

Proposition 3.9. If $F: C \to D$ is a functor with a G-action given by η and X is an object in C, then FX is a G_X-object, where G_X is the stabilizer of X under the action of G on $\text{obj} C$. The action is defined by the maps $\eta_{g, X}: FX \to FX$.

Proposition 3.10. ((2.3) from [3]) Let $F: C \to D$ be a right G-functor, $S: C' \to C$ an equivariant functor, and $T: D \to E$ any functor. Then both $F \circ S$ and $T \circ F$ have induced structures of right G-functors.

For example, for any G-category C, we have a right G-functor $N(-\setminus C): C \to sSet$.

4. The Homotopy Colimit

Let C be a G-category and $Z: C \times C^\text{op} \to sSet$ a right G-functor. We start by noting the equivariant isomorphism:

\[Z \otimes_{C \times C^\text{op}} N(-\setminus C/-) \cong_G B(C, Z), \]

which can be proven by showing that $B(C, Z)$ satisfies the definition of coend of the functor $Z \times N(-\setminus C/-) : (C \times C^\text{op}) \times (C \times C^\text{op})^\text{op} \to sSet$. In the case that $Z = F \times T$ with $F: C \to sSet$, $T: C^\text{op} \to sSet$ are right G-functors, and using Fubini’s theorem for coends [4, p. 230], this leads to

\[F \otimes_C N(-\setminus C/-) \otimes_C T \cong_G B(F, C, T). \]

Using that, we can prove that for right G-functors $F: D \to sSet$, $T: C^\text{op} \times D \to sSet$, and $U: D^\text{op} \to sSet$, we have

\[B(B(F, C, T), D, U) \cong_G B(F, C, B(T, D, U)), \]

whose non-equivariant version is 3.1.3 from [2].

If C is any G-category, we will denote by $*$ the functor $C \to sSet$ that is constant with value the simplicial set with exactly one simplex in each dimension. It is clearly has a structure of right G-functor.

Definition 4.1. Let $F: C \to sSet$ a functor. Its **homotopy colimit** $\text{hocolim}_C F$ is defined as $F \otimes_C N(-\setminus C)$.

If F is a right G-functor, then $Z = F \times N(-\setminus C)$ has a natural structure of right G-functor, so in this case $\text{hocolim}_C F = \text{coend } Z$ is a G-simplicial set.

Note that the map of right G-functors $N(-\setminus C) \to *$ induces an equivariant map

\[\text{hocolim}_C F = F \otimes_C N(-\setminus C) \to F \otimes_C * = \text{colim } F, \]

and the map of right G-functors $F \to *$ induces an equivariant map

\[\text{hocolim}_C F = F \otimes_C N(-\setminus C) \to N(-\setminus C) \otimes_C * = N(C). \]

One also can prove the isomorphism of right G-functors:

\[N(-\setminus C/-) \otimes_C * \cong N(-\setminus C). \]
which leads to the equivariant isomorphism:
\[(14) \quad B(F, C, \ast) \cong \text{hocolim}_C F.\]

Finally, we note that just by categorical arguments, one obtains:

Proposition 4.2. Let \(S : D \to C \) be an equivariant functor between \(G \)-categories, and let \(F : C \to \text{sSet} \) a right \(G \)-functor. Then, with the induced right \(G \)-functor structure on \(F \circ S \), we have:

1. \(\hom_C(C, -) \otimes_D N(-, D) \cong B(\hom_C(C, -), D, \ast) \cong N(C\backslash C) \) as right \(G \)-functors on the argument \(C \).
2. \((F \circ S)(D) \cong F \otimes_C \hom_C(-, SD) \cong B(F, C, \hom_C(-, SD)) \), as right \(G \)-functors on \(D \).

As a consequence of this proposition, if we take \(S = 1_C \) to be the identity functor, we obtain that
\[(15) \quad B(\hom_C(C, -), C, \ast) \cong N(C\backslash C) \cong \ast,\]
for all \(C \in \text{obj C} \), since \(C\backslash C \) has an initial object \(1_C : C \to C \) fixed by \(G_C \) ([10, (4.3)]).

5. **The Homotopy Invariance Theorem**

The proofs of the theorems of the next section are based on this important theorem. The reader may refer to [8] for the properties of induced topological spaces.

Theorem 5.1. Let \(Z, Z' : C \times C^{\text{op}} \to \text{sSet} \) two right \(G \)-functors. Let \(\epsilon : Z \to Z' \) be a map of right \(G \)-functors such that \(\epsilon_{X,Y} : Z(X,Y) \to Z'(X,Y) \) is a \(G_{(X,Y)} \)-homotopy equivalence for all \(X \in \text{obj C}, Y \in \text{obj C}^{\text{op}} \). Then the map \(\bar{\epsilon} \) induced by \(\epsilon \):
\[(16) \quad \bar{\epsilon} : B(C, Z) \to B(C, Z')\]

is a \(G \)-homotopy equivalence.

Proof. From [6], we know that \(B(C, Z) \) is the diagonal of a bisimplicial set \(\tilde{B}(C, Z) \) with \((m, n) \)-simplices the set
\[(17) \quad \coprod_{X_0 \xrightarrow{\phi_1} X_1 \xrightarrow{\phi_2} \ldots \xrightarrow{\phi_m} X_m} Z(X_0, X_m)_n.\]

From the examples, we know that this coproduct has an action of \(G \) given by:
\[(18) \quad g(\phi_1, \ldots, \phi_m; z) = (g\phi_1, \ldots, g\phi_m; \eta_{g,(X_0, X_m)}(z)),\]
and this makes \(\tilde{B}(C, Z) \) a bisimplicial \(G \)-set. We have that \(\epsilon \) induces a map \(\bar{\epsilon} : B(C, Z) \to \tilde{B}(C, Z') \), sending
\[(19) \quad (\phi_1, \ldots, \phi_m; z) \mapsto (\phi_1, \ldots, \phi_m; \epsilon_{X_0, X_m}(z)),\]
The map \(\bar{\epsilon} \) is equivariant, and so if we define \(\bar{\epsilon} \) as diag \(\bar{\epsilon} \), then \(\bar{\epsilon} \) is equivariant as well.
Let us denote \(X_0 \xrightarrow{\phi_1} X_1 \xrightarrow{\phi_2} \cdots \xrightarrow{\phi_m} X_m \in N(C)_m \) by \(\bar{X} \). According to Theorem (3.8) from [10], in order to prove that \(\bar{e} \) is a \(G \)-homotopy equivalence, it is sufficient to prove that
\[
(20) \quad \hat{e}_{m,-} : \prod_{\bar{X} \in N(C)_m} Z(X_0, X_m) \to \prod_{\bar{X} \in N(C)_m} Z'(X_0, X_m)
\]
is a \(G \)-homotopy equivalence for all \(m \). Taking geometric realization on both sides of (20), since geometric realization commutes with coproducts, we obtain:
\[
(21) \quad |\hat{e}_{m,-}| : \prod_{\bar{X} \in N(C)_m} |Z(X_0, X_m)| \to \prod_{\bar{X} \in N(C)_m} |Z'(X_0, X_m)|
\]
Let \(E_m \) be a set of representatives for the orbits of the action of \(G \) on \(N(C)_m \). Then the map in (21) can be written as:
\[
(22) \quad |\hat{e}_{m,-}| \uparrow_{G'}_{G} : \prod_{\bar{Y} \in E_m} |Z(X_0, X_m)| \uparrow_{G'}_{G} \to \prod_{\bar{Y} \in E_m} |Z'(X_0, X_m)| \uparrow_{G'}_{G}
\]
Since by hypothesis, each \(e_{(X_0, X_m)} \) is a \(G(X_0, X_m) \)-homotopy equivalence, given that \(G' \leq G(X_0, X_m) \), they are also \(G' \)-homotopy equivalences, and so each map \(|Z(X_0, X_m)| \uparrow_{G'}_{G} \to |Z'(X_0, X_m)| \uparrow_{G'}_{G} \) is a \(G \)-homotopy equivalence. Therefore the map in (22) is a coproduct of \(G \)-homotopy equivalences, hence a \(G \)-homotopy equivalence, as we wanted to prove. \(\square \)

6. Further Theorems

Theorem 6.1. (Equivariant Homotopy Invariance Of The Homotopy Colimit). Let \(F, F' : C \to \text{sSet} \) right \(G \)-functors, and \(\epsilon : F \to F' \) a map of right \(G \)-functors such that each \(\epsilon_X : FX \to F'X \) is a \(G_X \)-homotopy equivalence. Then the induced map \(\bar{\epsilon} : \text{hocolim}_C F \to \text{hocolim}_C F' \) is a \(G \)-homotopy equivalence.

Proof. Straightforward from Theorem 5.1, since the homotopy colimit is a special case of a bar construction. \(\square \)

Theorem 6.2. (Reduction Theorem) Let \(S : D \to C \) be an equivariant functor between \(G \)-categories, and let \(F : C \to \text{sSet} \) a right \(G \)-functor. Then we have the equivariant isomorphism
\[
(23) \quad \text{hocolim}_D F \circ S \cong_G F \otimes_C N(-\setminus S)
\]

Proof.
\[
\text{hocolim}_D F \circ S = (F \circ S) \otimes_D N(-\setminus D) \quad \text{Definition of hocolim}
\]
\[
\cong_G (F \otimes_C \text{hom}_C(-, SD)) \otimes_D N(-\setminus D) \quad \text{Proposition 4.2.2}
\]
\[
\cong_G F \otimes_C (\text{hom}_C(C, S- \otimes_D N(-\setminus D)) \quad \text{Fubini's theorem}
\]
\[
\cong_G F \otimes_C N(-\setminus S) \quad \text{Proposition 4.2.1} \quad \square
\]

In [3, (2.6)], this result is given as a homotopy equivalence. However, as noted in [2, 4.4], this is even an isomorphism, which in this case is equivariant.

Theorem 6.3. (Cofinality Theorem) Let \(S : D \to C \) be an equivariant functor between \(G \)-categories, and let \(F : C \to \text{sSet} \) a right \(G \)-functor. Consider the induced right \(G \)-functor structure on \(F \circ S \). If \(N(C \setminus S) \) is \(G_C \)-contractible for all objects \(C \) in \(C \), then \(\text{hocolim}_D F \circ S \cong_G \text{hocolim}_C F \).
Proof:

\[
hocolim_{\mathbf{D}} F \circ S = B(F \circ S, \mathbf{D}, \ast) = B(B(F, \mathbf{C}, \text{hom}_{\mathbf{C}}(-, SD)), \mathbf{D}, \ast) \]

Equation 14

\[
\cong_{G} B(F, \mathbf{C}, B(\text{hom}_{\mathbf{C}}(C, S-), \mathbf{D}, \ast)) \]

Equation 10

\[
\cong_{G} B(F, \mathbf{C}, N(- \setminus S)) \]

Proposition 4.2.1

\[
\simeq_{G} B(F, \mathbf{C}, \ast) = \text{hocolim}_{\mathbf{D}} F \]

Hypothesis

We note that the hypothesis about \(G_{C} \)-contractibility of the fiber \(N(C \setminus S) \) allows us to conclude the \(G \)-homotopy. Compare with [3, (2.7)], where this result is given as a homotopy equivalence not necessarily equivariant.

Theorem 6.4. (Homotopy Pushdown Theorem) Let \(S: \mathbf{D} \rightarrow \mathbf{C} \) be an equivariant functor and \(F: \mathbf{D} \rightarrow \mathbf{sSet} \) a right \(G \)-functor. Let \(S_{h_{0}}(F): \mathbf{C} \rightarrow \mathbf{sSet} \) the functor given by \(C \mapsto B(F, \mathbf{D}, \text{hom}_{\mathbf{C}}(S-, C)) \). Then \(S_{h_{0}}(F) \) is a right \(G \)-functor and \n
\[
hocolim_{\mathbf{C}} S_{h_{0}}(F) \simeq_{G} \text{hocolim}_{\mathbf{D}} F \]

\]

Proof:

\[
hocolim_{\mathbf{C}} S_{h_{0}}(F) = B(B(F, \mathbf{D}, \text{hom}_{\mathbf{C}}(S-, C)), \mathbf{C}, \ast) \]

Definition

\[
\cong_{G} B(F, \mathbf{D}, B(\text{hom}_{\mathbf{C}}(SD, -), C, \ast)) \]

Equation 10

\[
\simeq_{G} B(F, \mathbf{D}, \ast) = \text{hocolim}_{\mathbf{D}} F \]

Equation 15

\]

□

Note that we also used the equivariant homotopy invariance (Theorem 5.1) of the bar construction in the last step. Hence in [3, (2.5)] we do have a \(G \)-homotopy equivalence.

References

[1] W. G. Dwyer and D. M. Kan, *A classification theorem for diagrams of simplicial sets*, Topology 23 (1984), no. 2, 139–155. MR 86c:55010a

[2] J. Hollender and R. M. Vogt, *Modules of topological spaces, applications to homotopy limits and \(E_{\infty} \) structures*, Arch. Math. (Basel) 59 (1992), no. 2, 115–129. MR 93e:55015

[3] Stefan Jackowski and Jolanta Słomińska, *G-functors, G-posets and homotopy decompositions of G-spaces*, Fund. Math. 169 (2001), no. 3, 249–287. MR 2002h:55017

[4] Saunders Mac Lane, *Categories for the working mathematician*, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 2001j:18001

[5] J. Peter May, *Simplicial objects in algebraic topology*, Van Nostrand, Princeton, 1967.

[6] Jean-Pierre Meyer, *Bar and cobar constructions. I*, J. Pure Appl. Algebra 33 (1984), no. 2, 163–207. MR 86g:18010

[7] R. W. Thomason, *Homotopy colimits in the category of small categories*, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91–109. MR 80b:18015

[8] Tammo tom Dieck, *Transformation groups*, Walter de Gruyter, Berlin, 1987.

[9] Rafael Villarroel-Flores, *Equivariant homotopy type of categories and preordered sets*, Ph.D. thesis, University of Minnesota, 1999.

[10] ______., *Homotopy equivalence of simplicial sets with a group action*, Bol. Soc. Mat. Mexicana (3) 6 (2000), no. 2, 247–262. MR 1 801 853

[11] Volkmar Welker, Günter M. Ziegler, and Rade T. Zivaljević, *Homotopy colimits—comparison lemmas for combinatorial applications*, J. Reine Angew. Math. 509 (1999), 117–149. MR 2000b:55010

Instituto de Matemáticas, UNAM (Unidad Cuernavaca), Av. Universidad s/N, col. Lomas de Chamilpa, C. P. 62210 Cuernavaca, Morelos, MEXICO