UNRAVELING THE NATURE OF COHERENT PULSAR RADIO EMISSION

DIPANJAN MITRA1, JANusz GIL2, and GEORGE I. MELIKIDZE2,3

1 National Centre for Radio Astrophysics, Ganeshkhind, Pune 411 007, India; dmitra@ncra.tifr.res.in
2 J. Kepler Institute of Astronomy, University of Zielona Gora, Poland; jag@astro.ia.uz.zgora.pl, gogi@astro.ia.uz.zgora.pl

Received 2008 November 20; accepted 2009 March 16; published 2009 April 20

ABSTRACT

Forty years have passed since the discovery of pulsars, yet the physical mechanism of their coherent radio emission is a mystery. Recent observational and theoretical studies strongly suggest that the radiation coming out from the pulsar magnetosphere mainly consists of extraordinary waves polarized perpendicular to the planes of pulsar dipolar magnetic field. However, the fundamental question of whether these waves are excited by maser or coherent curvature radiation, remains open. High-quality single-pulse polarimetry is required to distinguish between these two possible mechanisms. Here we showcase such decisive, strong single pulses from 10 pulsars observed with the Giant Meterwave Radio Telescope, showing extremely high linear polarization with the position angle following locally the mean position angle traverse. These pulses, which are relatively free from depolarization, must consist exclusively of a single polarization mode. We associate this mode with the extraordinary wave excited by the coherent curvature radiation. This crucial observational signature enables us to argue, for the first time, in favor of the coherent curvature emission mechanism, excluding the maser mechanism.

Key words: pulsars: general – radiation mechanisms: non-thermal

1. INTRODUCTION

Pulsar coherent radio emission originates within the flux tube of the open force lines of a dipolar magnetic field. This conclusion is unavoidable, from the theoretical point of view, as these are the only field lines that can develop an ultrahigh potential drop acting as a basic source of pulsar activity (Goldreich & Julian 1969). As the pulsar emission beam sweeps past the observer, a single radio pulse is observed, which typically consists of one to several subpulses. Each subpulse is emitted within a sub-bundle of the overall flux tube of the open field lines. When a large number of single pulses are added together in phase, then a stable mean or average profile is obtained. These profiles consist of one to several components, with the actual number depending on how close the observer’s line of sight (LOS) comes to the pulsar beam axis. In the case of small approach angle (called the impact angle), the mean profile consists of a central (core) component, usually flanked by one or two pairs of conal components (Backer 1976; Rankin 1993). The position angle (PA) of the linear polarization across the average pulse profile shows a characteristic S-swing or traverse, which is associated with a range of open magnetic field line planes intersected by the LOS (Radhakrishnan & Cooke 1969). This swing is usually steep under the core component, but is much shallower or even flat under the outer conal components. The model describing this swing is commonly known as the rotating vector model (RVM). Canonically, the RVM holds for average profiles, without specifying what kind of PA variation should be expected for a single-pulse (subpulse) emission. We address this problem in this Letter.

Early polarimetric studies revealed that single pulses in pulsar radiation are highly linearly polarized, with moderate, sign-changing circular polarization observed in some cases (see, e.g., Clark & Smith 1969; Lyne et al. 1971; Manchester et al. 1975). However, none of these observations were transparent enough to pin down the emission mechanism. Here we present a set of high-quality single-pulse polarimetric observations from the Giant Meterwave Radio Telescope (GMRT; Swarup et al. 1991) with an aim of identifying the pulsar emission process.

2. RESULTS

A bright subpulse in a single pulse from the radio pulsar PSR B1237+25 observed at 325 MHz is shown in Figure 1. The subpulse, which appears at the conal region, is close to a Gaussian shape, with a full width at half-maximum of about 0:7. It is very highly linearly polarized (93% at the peak), and the circular polarization changes sign close to the subpulse maximum. The most notable finding is that the PA of the linear polarization in subpulses closely follow the mean PA curve at the corresponding profile components. Generally, when highly polarized single pulses appear the subpulse PA variations follow the mean PA traverse. We use this crucial observational feature in our data to identify the mechanism of pulsar radio emission. Figure 2 shows similar subpulses from nine more pulsars, all of which are the conal components of their respective pulses.

The observations were done at 325 MHz with the phased array mode of the GMRT. A bandwidth of 16 MHz was used and the data were recorded at a sampling interval of 0.512 ms. About 2% accuracy in the Stokes parameters were obtained by applying the polarization calibration procedure (Mitra et al. 2005). The calibrated Stokes were used to construct the linear polarization \(L = \sqrt{U^2 + Q^2} \) and \(\text{PA} = 0.5 \tan^{-1}(U/Q) \).

3. DISCUSSION

Before we proceed to understanding the implications of the observations in Figures 1 and 2, we need to discuss how coherent radio emission can originate and escape from the magnetospheric plasma. Generally speaking, the coherent pulsar radio emission should be generated by means of either a maser or coherent curvature mechanism (Ginzburg & Zheleznyakov 1975; Kazbegi et al. 1991a). This radiation, while propagating in the magnetosphere, naturally splits into the ordinary and extraordinary waves, which correspond to the normal modes of...
strongly magnetized plasma (see, e.g., Arons & Barnard 1986). The ordinary waves are polarized in the plane of the wavevector \(k \) and the local magnetic field direction and their electric field has a component along the magnetic line of force. Therefore, they interact strongly with plasma particles and thus encounter difficulty in escaping the magnetosphere. On the other hand, the extraordinary waves are linearly polarized perpendicular to the wavevector \(k \) and the local magnetic field. As a result they can propagate through the magnetospheric plasma almost as in vacuum and thus reach the observer (see Gil et al. (2004), hereafter GLM04, for a detailed discussion on the nature of ordinary and extraordinary waves in pulsar magnetosphere).

Interestingly, the X-ray image of the Vela pulsar can give an insight to the pulsar’s emission geometry. The absolute orientation of the polarization plane found in this case definitely demonstrates that the polarization direction of radio waves from the Vela pulsar is perpendicular to the planes of dipolar magnetic field lines (Lai et al. 2001). Therefore, undoubtedly this radiation consists of extraordinary waves (see also the discussion in Section 6.4 in GLM04). Also, based on the assumption that the pulsar’s proper motions are parallel to the rotation axis (Johnston et al. 2005; Rankin 2007), it was argued that the primary polarization mode for pulsar PSR B0329+54 corresponds to the extraordinary mode (Mitra et al. 2007). These conclusions strengthen the argument that the observed pulsar radiation consists mainly of extraordinary waves polarized perpendicular to the planes of dipolar magnetic field lines. It is worth emphasizing that for the first time the radiation of a pointlike charge moving along the curved magnetic field lines in the relativistic electron–positron plasma of the pulsar magnetosphere was self-consistently treated by GLM04. They found the exact solution of the corresponding set of Maxwell equations in the far zone to be the extraordinary wave mode. Thus, they demonstrated that the extraordinary mode can be generated in a strong curved magnetic field via the linear coupling of the normal modes in the radiation formation region (see also Section 5 in GLM04).

However, an open question remains, i.e., what kind of input coherent radiation excites these waves emanating from the pulsar? This question can be answered based on the highly polarized subpulse for 10 pulsars presented in this Letter. Theoretically, excitation of escaping waves in a pulsar magnetosphere is possible either by maser or coherent curvature emission mechanisms. The subpulse width in the case of the maser mechanism corresponds to the opening angle of the maser emission which depends on the resonant conditions necessary for the plasma instability to be developed (Kazbegi et al. 1991b). In maser radiation, the \(k \) vector can be oriented in any direction with respect to the local magnetic field. As we have already mentioned, the electric vector of the extraordinary waves is perpendicular to the plane containing both \(k \) and magnetic field vector \(B_0 \), while the PA of the ordinary waves lies in this plane. Thus, in the case of maser radiation, the PA (orientation of electric field vector \(E \)) across the subpulse width should perform swings, rather than remain tightly aligned with the mean PA traverse which reflects the orientation of the magnetic field plane, as per the RVM. This is illustrated for the extraordinary mode in the upper panel of Figure 3, where the electric field \(E \) changes direction for different viewing angles defined by the \(k \) vectors. In contrast, the curvature radiation is highly collimated along the local magnetic field \(B_0 \). Additionally, the electric vector excited by the coherent curvature emission in the plasma must be either perpendicular or parallel to the plane of curvature of the magnetic field lines. Thus, the subpulse PA variation will reflect the change in the orientation of the magnetic field planes, that is, the subpulse PA will closely follow the RVMlike mean PA traverse. This is illustrated in the lower panel of Figure 3 for extraordinary waves, where the electric vectors \(E \) are perpendicular to the planes of magnetic field lines. Our observations clearly demonstrate that the observed PA variation across the subpulse follow the mean PA (RVMlike) traverse, implying that the observed emission is due to waves excited by the coherent curvature radiation. As already mentioned, from a theoretical perspective, only the extraordinary wave can escape the pulsar magnetosphere freely, and hence we conjecture that these strong highly polarized single pulses are likely to be freely escaping extraordinary waves excited by coherent curvature radiation.

High linear polarization and sense-reversing circular polarization is a property of curvature radiation from a single charged particle moving relativistically along curved magnetic field lines (Michel 1987). This idea had led us to the development of the theory of curvature radiation (Gil & Snakowski 1990a, 1990b) of a small hypothetical charged bunch emitting coherently (Ruderman & Sutherland 1975). In fact, for a Gaussian intensity envelope, this model can faithfully reproduce the observations reported in Figures 1 and 2 (Gil et al. 1993). This theory, however, had serious problems. First, it was developed for a vacuum, without considering the generation and propagation of the emitted radiation in a pulsar magnetospheric plasma. Second, the mechanism for the formation of elementary bunches that could emit coherent curvature radiation was unknown. The general opinion was that the formation of such bunches was difficult (see Melrose 1995 for a review).

Let us now briefly describe the theoretical model capable of forming elementary bunches emitting the coherent curvature

Figure 1. A strong subpulse in a single pulse of PSR B1237+25. The top panel shows a symmetric pulse which is highly linearly polarized, has a sign changing circular where the peak of the total intensity (in black), peak of linear (red) polarization, and zero of circular (blue) lie close to each other. The bottom panel shows the PA traverse for the average PA traverse obtained from a larger set of pulses in light gray and the PA traverse of the subpulse is shown in green and magenta corresponding to negative and positive circular polarization, respectively. This signature is typical of curvature radiation as discussed in the text.
radiation. Close to the neutron star where the observed radio emission is found to originate (which is about 300–500 km; see, e.g., Rankin 1993; Blaskiewicz et al. 1991; Kijak & Gil 1997), the well-known two-stream plasma instability naturally generates the Langmuir plasma waves (e.g., Asseo & Melikidze 1998). Consequently, a spark-associated soliton model of the coherent pulsar radio emission has been developed (Melikidze et al. 2000), in which the nonstationary sparking discharge of the ultrahigh potential drop just above the polar cap results in modulational instability of Langmuir waves. This leads to the formation of small, relativistic, charged solitons, able to emit coherent curvature radiation. So, a natural mechanism for the formation of charged bunches was found. The only deficiency of the soliton model was that the influence of the ambient plasma on the formation and propagation of the emitted radiation was not considered. Therefore, it was not known whether this radiation could emerge from the pulsar and reach the observer.

This problem has now been addressed and GLM04 found that the power of the coherent curvature radiation of a pointlike charge (a model of a charged soliton) moving relativistically along curved magnetic field lines through the pulsar magnetospheric electron–positron plasma is largely suppressed compared to the vacuum case (in which the power was too high compared to observations). However, this power is still at a high enough level to explain the observed pulsar luminosities. The outgoing waves are polarized perpendicular to the plane...
of curvature of the magnetic field lines, and they represent escaping extraordinary waves. The polarization properties of the subpulses from the 10 pulsars presented in this Letter strongly support this theory. Naturally, the above statement is true provided that propagation effects in the magnetospheric plasma cannot change the polarization state. As was shown by Cheng & Ruderman (1979), the subpulse polarization patterns can be, in general, affected by the propagation effects if the so-called adiabatic walking condition is satisfied. However, a more rigorous treatment for the radiation mechanism considered here demonstrates that the adiabatic walking condition is not satisfied (see Equation (31) and the corresponding discussion in GLM04). Therefore, the waves escape from the plasma retaining the initial polarization in the direction perpendicular to the magnetic field line planes, exactly as it is observed in strong and highly linearly polarized subpulses presented in our Figure 2.

The characteristic Lorentz factors of emitting bunches/solitons should be about $\gamma \approx 400$, for obtaining the observed frequency and power due to coherent curvature radiation in the magnetospheric plasma (GLM04). The typical subpulse widths in Figures 1 and 2 are about $1^\circ \approx 2 \times 10^{-2}$ radians, which is several times larger than the width of the radiation cone of an elementary curvature emitter $1/400 = 0.0025$ radians. Thus, the subpulse should be formed by the incoherent sum of radiation emitted by a number of solitons filling the flux tube of dipolar field lines with an angular extent of about 0.02 radians in the emission region (which for a typical pulsar with a period of 1 s originates at an emission altitude of about 50 stellar radii; see, e.g., Melikidze et al. 2000; Kijak & Gil 1997). This angular width projected onto the polar cap surface gives about 1% of the fractional area, which is consistent with the model in which the base of the subpulse flux tube is formed by sparks from electron–positron avalanches (e.g., Ruderman & Sutherland 1975; Gil & Sendyk 2000). This leads to the generation of coherent curvature radiation as proposed in the spark-associated soliton model by Melikidze et al. (2000).

In this Letter, we analyze a selection of high-quality, almost completely polarized single pulses from a number of pulsars. We argue that in those cases we observe almost exclusively one polarization mode, which we associate with the extraordinary waves excited by the coherent curvature radiation (GLM04). It should be mentioned that some earlier observations have already found evidence that single-pulse PA variations follow the mean PA traverse (see Ramachandran et al. 2002). However, those observations do not reveal any highly polarized pulses as shown in this Letter. Single-pulse depolarization can result from incoherent addition of emission overlapping from adjacent field lines with respect to the LOS, the presence of orthogonal modes, and also propagation effects. Our almost completely polarized pulses are relatively free of depolarization and hence can be associated with one of the polarization modes. In this sense, they seem to be ideal for unraveling the nature of the pulsar radio emission process. Naturally, based on our selected data, we are not able to examine the phenomenon of orthogonally polarized modes. Hence, the question of the origin of orthogonal modes observed in pulsar radio emission is still open. While the answer is not yet clear, we speculate that the usually weaker secondary orthogonal polarization mode is somehow connected with the other (ordinary) mode excited via the coherent curvature radiation. However, there is a theoretical problem to be solved: how the waves polarized in the plane of the curved magnetic field can escape from the magnetosphere?

Finally, it is essential to comment on the apparent circular polarization, which as is evident from Figures 1 and 2, reverses sense at (or near) the subpulse maximum. Indeed, the emitted extraordinary waves are purely linearly polarized and the question is whether this is always true for the observed radiation. In the case of pulsars, the planes of the source motion along curved field lines rotate with respect to the observer and we claim that the observed radiation attains the net circular polarization for geometrical reasons, as discussed in Gil & Snaksowski (1990a, 1990b). Indeed, sense reversing circular polarization in a vacuum results from the fact that each source of coherent curvature radiation is viewed from both sides of the plane of their motion as the observer’s LOS cuts through a cone of emission (Gil et al. 1993). A proper understanding of the pulsar emission mechanism critically depends on our ability to analyze the highly turbulent nonlinear behavior of the plasma. The single-pulse polarization in pulsars in conjunction with the spark-associated soliton model seems to explain one of the most intriguing phenomena in astrophysics. We claim that the observed pulsar signals mainly consist of extraordinary waves (at least in the case of strong linearly polarized subpulses) excited in a magnetospheric plasma by coherent curvature radiation. It is likely that the development presented here will find application in several other coherent emission processes in astrophysics, such as giant pulses, RRATs, and extrasolar radio bursts.

We thank the anonymous referee for constructive criticism that helped us to improve our Letter. We also thank Gopal Krishna, Dipankar Bhattacharya, and Joanna Rankin for their helpful comments on the manuscript. J.G. and G.M. acknowledge a partial support of Polish Grants N N 203 2738 33 and N N 203 3919 34. G.M. was partially supported by the Georgian NSF ST06/4-096 grant. The GMRT is run by National
REFERENCES

Arons, J., & Barnard, J. J. 1986, ApJ, 302, 120
Asseo, E., & Melikidze, G. I. 1998, MNRAS, 301, 59
Backer, D. C. 1976, ApJ, 209, 895
Blaskiewicz, M., Cordes, J. M., & Wasserman, I. 1991, ApJ, 370, 643
Cheng, A. F., & Ruderman, M. A. 1979, ApJ, 229, 348
Clark, R. R., & Smith, F. G. 1969, Nature, 221, 724
Gil, J., Kijak, J., & Zycki, P. 1993, A&A, 272, 207
Gil, J., Lyubarsky, Y., & Melikidze, G. I. 2004, ApJ, 600, 872 (GLM04)
Gil, J., & Sendyk, M. 2000, ApJ, 541, 351
Gil, J., & Snakowski, J. K. 1990a, A&A, 234, 237
Gil, J., & Snakowski, J. K. 1990b, A&A, 234, 269
Ginzburg, V. L., & Zheleznyakov, V. V. 1975, ARA&A, 13, 511
Goldreich, P., & Julian, W. H. 1969, ApJ, 157, 869
Johnston, S., Hobbs, G., Vigeland, S., Kramer, M., Weisberg, J. M., & Lyne, A. G. 2005, MNRAS, 364, 1397
Kazbegi, A. Z., Machabeli, G. Z., & Melikidze, G. I. 1991a, MNRAS, 253, 377
Kazbegi, A. Z., Machabeli, G. Z., Melikidze, G. I., & Smirnova, T. 1991b, Astrofizika, 34, 433
Kijak, J., & Gil, J. 1997, MNRAS, 299, 855
Lai, D., Chernoff, D. F., & Cordes, J. M. 2001, ApJ, 549, 1111
Lyne, A. G., Smith, F. G., & Graham, D. A. 1971, MNRAS, 153, 337
Manchester, R. N., Taylor, J. H., & Huguenin, G. R. 1975, ApJ, 196, 83
Melikidze, G. I., Gil, J., & Pataraya, A. D. 2000, ApJ, 544, 1081
Melrose, D. B. 1995, JA&A, 16, 137
Michel, F. C. 1987, ApJ, 322, 822
Mitra, D., Gupta, Y., & Kudale, S. 2005, Polarization Calibration of the Phased Array Mode of the GMRT, URSI GA 2005, Commission J03a
Mitra, D., Rankin, J. M., & Gupta, Y. 2007, MNRAS, 379, 932
Radhakrishnan, V., & Cooke, D. J. 1969, ApJ, 3, L225
Ramachandran, R., Rankin, J. M., Stappers, B. W., Kouwenhoven, M. L. A., & van Leeuwen, A. G. J. 2002, A&A, 381, 993
Rankin, J. M. 1993, ApJ, 405, 285
Rankin, J. M. 2007, ApJ, 664, 443
Ruderman, M., & Sutherland, P. G. 1975, ApJ, 196, 51
Swarup, G., Ananthakrishnan, S., Kapahi, V. K., Rao, A. P., Subrahmanya, C. R., & Kulkarni, V. K. 1991, Curr. Sci., 60, 95