Engineered pegRNAs improve prime editing efficiency

James W. Nelson1,2,3,4, Peyton B. Randolph1,2,3,4, Simon P. Shen1,2,3, Kelcee A. Everette1,2,3, Peter J. Chen1,2,3, Andrew V. Anzalone1,2,3, Meirui An1,2,3, Gregory A. Newby1,2,3, Jonathan C. Chen1,2,3, Alvin Hsu1,2,3 and David R. Liu1,2,3

Prime editing enables the installation of virtually any combination of point mutations, small insertions or small deletions in the DNA of living cells. A prime editing guide RNA (pegRNA) directs the prime editor protein to the targeted locus and also encodes the desired edit. Here we show that degradation of the 3’ region of the pegRNA that contains the reverse transcriptase template and the primer binding site can poison the activity of prime editing systems, impeding editing efficiency. We incorporated structured RNA motifs to the 3’ terminus of pegRNAs that enhance their stability and prevent degradation of the 3’ extension. The resulting engineered pegRNAs (epegRNAs) improve prime editing efficiency 3–4-fold in HeLa, U2OS and K562 cells and in primary human fibroblasts without increasing off-target editing activity. We optimized the choice of 3’ structural motif and developed pegLIT, a computational tool to identify non-interfering nucleotide linkers between pegRNAs and 3’ motifs. Finally, we showed that epegRNAs enhance the efficiency of the installation or correction of disease-relevant mutations.
SaCas9 pegRNA that should compete for transcription with the SpCas9 pegRNA-encoding plasmids but not interact with the prime editor protein. Increasing the production of truncated pegRNA resulted in inhibited PE activity when the full-length and truncated pegRNAs were targeted to the same site (Fig. 1b). In contrast, neither a truncated pegRNA targeted to a different genomic site nor a non-targeting SpCas9 sgRNA impeded PE activity any more than the SaCas9 pegRNA (Fig. 1b). These data suggest that degraded pegRNAs with truncated 3′ extensions inhibit PE activity by enabling editing-incompetent prime editor RNPs to compete for the targeted genomic locus.

Design of epegRNAs that improve PE efficiency. Having identified truncated pegRNAs as a potent inhibitor of PE, we next sought to minimize pegRNA degradation. We envisioned that structured RNA motifs at the 3′ end of the pegRNA (Fig. 1c) might improve pegRNA stability, consistent with the ability of RNA structures at the 5′ or 3′ termini to enhance mRNA stability in human cells and…
in yeast7,8. For instance, the long-non-coding RNA MALAT1 is stabilized by a triple helix that sequesters its poly(A) tail, limiting both degradation and nuclear export19.

We first tested whether PE efficiency could be improved by incorporating one of two stable pseudoknots at the 3′ end of the pegRNA: either a modified prequeosine-1 riboswitch aptamer20,21 (evopreQ1) or the framesshifting pseudoknot from Moloney murine leukemia virus (MMLV)22, hereafter referred to as ‘mpknot’ (Supplementary Fig. 1). We chose evopreQ, because it is one of the smallest naturally derived RNA structural motifs with a defined tertiary structure (42 nucleotides (nt) in length)20,21. We reasoned that smaller motifs would minimize the formation of secondary structures that could interfere with pegRNA function. Furthermore, shorter pegRNAs can be more easily produced by chemical synthesis. We chose mpknot because of its tertiary structure and because it is an endogenous template for the MMLV RT from which the RT in canonical prime editors was engineered, raising the possibility that mpknot might help recruit the RT. We tested if these epegRNAs could insert a FLAG epitope tag sequence using PE3 at five genomic loci in HEK293T cells (Fig. 2a). To reduce the potential for the motif to interfere with pegRNA function during PE, we included an 8-nt linker to connect either evopreQ, or mpknot to the 3′ end of the epegRNA PBS. Linker sequences were designed using ViennaRNA23 to avoid potential base pairing interactions between the linker and PBS or between the linker and the pegRNA spacer4. We observed an average of 2.1-fold increased efficiency of FLAG tag insertion when using epegRNAs compared to canonical pegRNAs across all five genomic sites tested, with no apparent change in edit:indel ratios (Supplementary Fig. 2), suggesting that 3′ terminal pseudoknot motifs can improve PE efficacy.

We characterized the necessity of the linker sequence by comparing the ability of epegRNAs with or without 8-nt linkers to mediate transversions or FLAG tag insertions. We observed a significant decrease in PE3 editing efficiency upon removing the linker for epegRNAs containing mpknot (P = 0.022) but no significant difference for epegRNAs that contain evopreQ (Supplementary Fig. 3), perhaps because evopreQ is smaller than mpknot and is less prone to steric clashes with the RT. Although the overall average editing efficiencies for epegRNAs with evopreQ were similar (with or without a linker), we noted occasionally reduced performance for epegRNAs without a linker (Supplementary Fig. 3). We, therefore, opted to include an 8-nt linker, unless otherwise noted, for subsequent epegRNA designs.

To ensure that this improvement in PE efficacy was not limited to epegRNAs with longer extensions, we tested 148 additional epegRNAs that encoded a variety of point mutations or deletions with various RT template lengths at seven different genomic sites in HEK293T cells using PE3. Use of either motif resulted in a 1.5-fold average improvement in PE efficiency relative to that of canonical pegRNAs across all tested sites and pegRNAs in HEK293T cells, with no apparent change in edit:indel ratios (Fig. 2b,c and Supplementary Figs. 2 and 5). Together, these results establish that epegRNAs broadly improve PE efficacy in HEK293T cells.

Engineered pegRNAs improve PE in multiple mammalian cell lines. We previously observed that PE efficiency varies substantially between mammalian cell types41, highlighting the need to test improved PE systems in a variety of cells. We tested the ability of epegRNAs containing a 3′ evopreQ or mpknot motif to insert a 24-base pair (bp) FLAG epitope tag at HEK3, delete 15 bp at DNMT1 or install a C→G-to-A→T transversion at RNF2 via PE3 in K562, U2OS and HeLa cells. In each of these cell lines, epegRNAs resulted in large improvements in editing efficiency compared to pegRNAs, averaging 2.4-fold higher editing in K562 cells, 3.1-fold higher editing in HeLa cells and 5.6-fold higher editing in U2OS cells across all tested edits (Fig. 2d), with no decrease in edit:indel ratios (Supplementary Fig. 2). These results indicate that epegRNAs can enhance PE in multiple mammalian cell lines. Additionally, epegRNAs improved editing efficiencies to a greater degree in non-HEK293T cells than in HEK293T cells (Fig. 2a and Supplementary Fig. 4, compared to Fig. 2d), suggesting that epegRNAs are especially beneficial in cell lines that are less efficiently transfected or edited by the original PE systems.

Effect of epegRNAs on off-target PE. Previous studies showed that PE results in substantially less off-target editing than other CRISPR gene editing strategies24–27. To determine if the addition of evopreQ or mpknot changed the extent of off-target editing, we treated HEK293T cells with pegRNAs or epegRNAs targeting HEK3, EMX1 or FANCF that template either a transversion (T→A-to-A→T at HEK3 or C→T-to-T→A at EMX1 and FANCF) or a 15-bp deletion using PE3. We measured the extent of indel generation and any nucleotide changes that could reasonably arise from PE at the top four experimentally confirmed off-target sites28 for each targeted locus and compared the extent of off-target editing between epegRNAs and unmodified pegRNAs after treatment with PE3. In all cases, epegRNAs and pegRNAs exhibited ≤0.1% off-target PE and indels at the examined sites (Supplementary Fig. 6), suggesting that epegRNAs and pegRNAs exhibit similar levels of off-target editing.

Basis of enhanced PE with epegRNAs. epegRNAs might enhance PE outcomes through a variety of mechanisms, including resistance to degradation, higher expression levels, more efficient Cas9 binding and/or target DNA engagement when complexed with Cas9; we probed each of these possibilities.

To determine whether evopreQ or mpknot impede degradation of the pegRNA 3′ extension, we compared the stability of epegRNAs and pegRNAs after in vitro incubation with HEK293T nuclear lysates containing endogenous exonucleases. We found that pegRNAs were degraded to a greater extent from this treatment compared to epegRNAs (1.9-fold compared to evopreQ, and 1.8-fold compared to mpknot, P < 0.005; Fig. 3a). Conversely, the addition of Cas9, which binds the guide RNA scaffold and is likely to protect the core sgRNA from degradation, rescued pegRNA abundance compared to either epegRNA as determined by RT-qPCR quantification of the guide RNA scaffold (Fig. 3b).

The ability of 3′ structural motifs to increase the abundance of the upstream scaffold region (Fig. 3b) suggests that pegRNA degradation in the nucleus is dominated by 3′-directed degradation. This model is consistent with the characterized behavior of the nuclear exosome, which is the major source of RNA turnover in the nucleus29. However, partially degraded pegRNAs would generate editing-incompetent RNPs previously shown to inhibit PE (Fig. 1c). To detect partially degraded RNAs in cells, we analyzed lysates of HEK293T cells transfected with plasmids encoding PE2 and either pegRNAs or epegRNAs templating either a +1 FLAG tag insertion at HEK3 or a nucleotide transversion at EMX1 via northern blot. We observed RNA species containing the sgRNA scaffold and equivalent in size to the sgRNA, consistent with our previous finding (Fig. 3b) that Cas9 binding protects the scaffold from 3′-directed degradation (Supplementary Fig. 7). However, lysates with different total levels of pegRNA or epegRNA had similar levels of sgRNA-like truncated species, which represented only a minority of the guide RNA content of the lysate (Supplementary Fig. 7). Because we observed robust degradation of pegRNAs exposed to nuclear lysate in vitro (Fig. 3a,b), and pegRNA is present in levels greater than PE2 in HEK293T cells (Fig. 1b), we suspect that partially degraded pegRNA species do not accumulate at levels amenable to northern blot detection.

Next, we examined genomic PE intermediates to better understand how epegRNAs might be mediating improved editing efficiency. In our current model, the 3′ flap intermediate generated
by RT extension of the nicked targeted site is converted into a 5’ flap intermediate, replacing the original genomic sequence with the newly synthesized one\(^1\). This 5’ flap is then removed by 5’–3’ exonucleases, and the resulting genomic nick undergoes ligation to install the prime edit\(^1\). Although full-length pegRNAs would be expected to efficiently template RT extension of the nicked genomic strand, truncated pegRNAs without a PBS should be unable to do so, resulting instead in nicking of the targeted strand followed

Fig. 2 | PE editing efficiency is enhanced by the addition of structured RNA motifs to the 3’ terminus of pegRNAs.

a. Efficiency of PE3-mediated insertions of the FLAG epitope tag at the +1 editing position (insertion directly at the pegRNA-induced nick site) across multiple genomic loci in HEK293T cells using canonical pegRNAs (‘unmodified’), pegRNAs with either evopreQ or mpknot appended to the 3’ end of the PBS via an 8-nt linker or pegRNAs appended with only the 8-nt linker sequence.

b. Summary of the fold change in PE editing efficiency relative to canonical pegRNAs of the indicated edit at various genomic loci upon addition of the indicated 3’ motif via an 8-nt linker or the addition of the linker alone. ‘Transversion’ denotes mutation of the +5 G•C to T•A at RUNX1, EMX1, VEGFA and DNMT1, the +1 C•G to T•A at RNF2 and the +1 T•A to A•T at HEK3, where the positive integer indicates the distance from the Cas9 nick site. ‘Deletion’ denotes a 15-bp deletion at the Cas9 nick site. Data summarized here are presented in c and Supplementary Fig. 4. The horizontal bars show the median values.

c. Representative improvements in PE efficiency from appending either evopreQ (p) or mpknot (m) via an 8-nt linker to pegRNAs with varying template lengths (in nucleotides, indicated).

d. Editing activities of canonical pegRNAs and modified pegRNAs across three genomic loci in HeLa cells, U2OS cells and K562 cells. Data and error bars in a, c and d indicate the mean and standard deviation of three independent biological replicates.
Fig. 3 | Structural motifs increase RNA stability and efficiency of reverse transcription but reduce Cas9 binding affinity. a. Resistance of unmodified pegRNA or epegRNA containing evopreQ1 or mpknot to degradation upon exposure to HEK293T nuclear lysates. The agarose gel shown is representative of three experiments. Untreated in vitro transcribed pegRNAs or epegRNAs served as standards. Percent RNA remaining was calculated using densitometry. Significance was analyzed using a two-tailed unpaired Student’s t-test (P = 0.0028 for mpknot and P = 0.0022 for evopreQ). b. Fold change in abundance of the pegRNA scaffold relative to unmodified pegRNA upon exposure to HEK293T nuclear lysates in the absence and presence of nCas9 as determined by RT-qPCR of the sgRNA scaffold. c. Comparison of PE intermediates generated by PE2 with either pegRNAs or epegRNAs at RNFL. Dotted lines indicate the full-length RT product templated by the pegRNA or epegRNA tested at the indicated locus. The x axis is relative to the position of the PE2-induced nick with the first base 3’ downstream represented as position +1. Histograms and pie charts are generated from the average of three independent biological replicates. d. PE3 editing efficiencies in HEK293T cells using unmodified pegRNAs, pegRNAs containing the evopreQ1 motif or pegRNAs containing a 15G+C point mutant of evopreQ1 (M1) that disrupts pseudoknot motif structure. e. Fraction of Cas9 RNF2 composed of dCas9 and either unmodified pegRNA or epegRNA containing either evopreQ1 or mpknot and templating a +1 FLAG tag insertion at HEK3 bound to dsDNA as determined by MST. f. CRISPRa transcriptional activation by pegRNAs, epegRNAs and sgRNAs. Reported GFP fluorescence is normalized to $f_0 = 0.0022$ for evopreQ1). $f_0 = 0.0028$ for mpknot and $P_{\text{EvopreQ}} = 0.003$ for pegRNA or epegRNA containing evopreQ1 or mpknot to degradation upon exposure to HEK293T nuclear lysates. The agarose gel shown is representative of three experiments. Untreated in vitro transcribed pegRNAs or epegRNAs served as standards. Percent RNA remaining was calculated using densitometry. Significance was analyzed using a two-tailed unpaired Student’s t-test (P = 0.0028 for mpknot and P = 0.0022 for evopreQ). Fold change in abundance of the pegRNA scaffold relative to unmodified pegRNA upon exposure to HEK293T nuclear lysates in the absence and presence of nCas9 as determined by RT-qPCR of the sgRNA scaffold. Comparison of PE intermediates generated by PE2 with either pegRNAs or epegRNAs at RNFL. Dotted lines indicate the full-length RT product templated by the pegRNA or epegRNA tested at the indicated locus. The x axis is relative to the position of the PE2-induced nick with the first base 3’ downstream represented as position +1. Histograms and pie charts are generated from the average of three independent biological replicates. PE3 editing efficiencies in HEK293T cells using unmodified pegRNAs, pegRNAs containing the evopreQ1 motif or pegRNAs containing a 15G+C point mutant of evopreQ1 (M1) that disrupts pseudoknot motif structure. Fraction of Cas9 RNF2 composed of dCas9 and either unmodified pegRNA or epegRNA containing either evopreQ1 or mpknot and templating a +1 FLAG tag insertion at HEK3 bound to dsDNA as determined by MST. CRISPRa transcriptional activation by pegRNAs, epegRNAs and sgRNAs. Reported GFP fluorescence is normalized to $f_0 = 0.0022$ for evopreQ1). $f_0 = 0.0028$ for mpknot and $P_{\text{EvopreQ}} = 0.003$ for pegRNA or epegRNA containing evopreQ1 or mpknot. Fraction of unmodified pegRNA or epegRNA containing either evopreQ1 or mpknot bound to H840A nCas9 as determined by MST. Data and error bars indicate the mean and standard deviation of three independent biological replicates. AU, arbitrary units.

by chew-back or extension of the strand by DNA repair enzymes (lacking the templated edit in either case). If a greater fraction of RT-extended PE intermediates is observed with epegRNAs than with pegRNAs, this would suggest that addition of 3′ RNA motifs improve the integrity of the PBS.

To capture these intermediates, we transfected HEK293T cells with plasmids encoding PE2 and either unmodified pegRNAs or epegRNAs containing evopreQ1 or mpknot that template transversions at HEK3, DNMT1, EMX1 or RNFL. Next, we used terminal transferase to label with oligo-dG the 3′ extension and two nucleotides templated by the last two nucleotides of the pegRNA scaffold, consistent with previous in vitro characterization of PE intermediates. The scaffold-templated nucleotides are presumably removed during DNA repair of the targeted locus to produce the cleanly edited alleles that represent the dominant product of PE. These data are consistent with a model in which epegRNAs improve reverse transcription of the pegRNA extension into the target site by reducing the frequency of unproductive target site nicking from prime editors bound to truncated pegRNAs.

Because single-stranded 3′ termini are a common feature of 3′ exonuclease substrates, we next tested whether the degradation resistance conferred by these motifs could be explained by the more mechanically stable tertiary structures of pseudoknots. Notably, appending 15-bp (34-nt) hairpins to the 3′ terminus resulted in inconsistent improvements to PE efficiency compared to appending pseudoknots (Supplementary Fig. 9), suggesting that tertiary structure is indeed an important feature of epegRNAs.

To test if tertiary pseudoknot structure is required for epegRNA-mediated improvements in PE efficiency, we examined the editing efficiency of epegRNAs containing the 15G+C point mutation within evopreQ1, a mutation known to disrupt pseudoknot formation (M1 in Supplementary Fig. 1). We used epegRNAs to install a 24-bp FLAG epitope tag insertion, a 15-bp deletion or transversions at HEK3 or RNFL in HEK293T cells using PE3. Indeed, incorporation of the G15C mutation into evopreQ abolished the increases in editing efficiency (Fig. 3d). These results establish that the secondary or tertiary structure of the motifs are critical for epegRNA-mediated PE improvements, likely by stabilizing the 3′ extension.
Next, we tested whether the structured 3’ motifs in epegRNAs increase their expression level compared to pegRNAs. RT-qPCR quantification of the pegRNA scaffold revealed target-dependent differences in pegRNA expression levels relative to unmodified pegRNAs (Supplementary Fig. 7). For a pegRNA that templates a +1 FLAG tag insertion at HEK3, we observed that the addition of evopreQ, or mpknot decreased pegRNA expression 9.2–9.6-fold, despite yielding a 1.9-fold improvement in the efficiency of FLAG tag epitope insertion at HEK3 (Fig. 2a). Similarly, epegRNAs that template a transversion at DNMT1 also exhibited reduced expression (1.6–2.1-fold). However, epegRNAs that template transversions at RNFL2 or EMX1 were expressed to greater levels than those of unmodified pegRNA (2.2–2.4-fold and 1.4–3.7-fold, respectively; Supplementary Fig. 7). These data suggest that the 3’ motifs affect pegRNA expression inconsistently, concordant with our earlier finding (Fig. 1b) that PE efficiency under these transfection conditions is not limited by pegRNA expression in HEK293T cells. When epegRNA expression is more limiting, however, improving epegRNA expression might further improve editing efficiency.

Next, we tested if the addition of a 3’ RNA structural motif reduced engagement of the target DNA site by comparing the ability of epegRNAs and pegRNAs to support transcriptional activation by dCas9–VP64–p65–Rta (dCas9–VPR) fusions40,41. HEK293T cells were transfected with plasmids encoding dCas9–VPR, green fluorescent protein (GFP) downstream of the HEK3, DNMT1, RNFL2 or EMX1 target protospacer and pegRNAs, epegRNAs or sgRNAs targeting the corresponding site. Transcriptional activation was measured via cellular GFP fluorescence. In contrast to their ability to enhance PE activity (Fig. 2a), epegRNAs showed similar Cas9-dependent transcriptional activation in HEK293T cells as pegRNAs (Fig. 3b). Both epegRNAs and pegRNAs resulted in lower transcriptional activation compared to an sgRNA targeting the target protospacer and pegRNAs, epegRNAs or sgRNAs across the majority of edits tested (Supplementary Figs. 9 and 10).

To deconvolute potential changes in target site engagement and differences in pegRNA and epegRNA expression, we performed microscale thermophoresis (MST) to measure the affinity of pre-incubated RNP complexes of catalytically inert Cas9 (dCas9) and pegRNAs or epegRNAs for a dsDNA substrate. We found that addition of mpknot or evopreQ resulted in comparable or modestly reduced binding affinity for dsDNA compared to unmodified pegRNA respectively (KD = 10 nM for evopreQ, pegRNA and 21 nM for mpknot pegRNA versus 8.1 nM for unmodified pegRNA, Fig. 3c). Affinity of pegRNAs for Cas9-H840A nickase was also modestly reduced by either motif (KD = 18 nM for evopreQ, pegRNA, 11 nM for mpknot pegRNA, and 5 nM for unmodified pegRNA; Fig. 3g). These findings suggest that increased PE efficiency from epegRNAs does not arise from improved binding of the pegRNA to Cas9, or of the PE RNP complex to the targeted site.

Taken together, these results suggest that epegRNAs are less resistant to cellular degradation than pegRNAs and, thus, generate fewer truncated pegRNA species that erode PE efficiency. Additional mechanisms behind improvements from epegRNAs cannot be excluded.

Optimization of engineered pegRNA 3’ motifs. Having established that epegRNAs improve editing efficiency by resisting exonucleolytic degradation, we speculated that more stable RNA motifs might further improve PE activity. We screened 25 additional structured RNA motifs for their ability to improve epegRNA editing efficiency across epegRNAs encoding the installation of a 24-bp FLAG epitope tag insertion, a 15-bp deletion or a transversion at HEK3 or RNFL2 (Supplementary Figs. 9 and 10). These motifs included additional evolved prequeosine,-1 riboswitch aptamers42, mpknot variants with improved pseudoknot stability43, G-quadruplexes of increasingly stability44, 15-bp hairpins, an xrRNA45 and the P4–P6 domain of the group I intron46. Although 123 of the 137 epegRNAs tested exhibited improved overall PE compared to the corresponding pegRNAs, none demonstrated consistent improvements over evopreQ or mpknot across the majority of edits tested (Supplementary Figs. 9 and 10).

Next, we hypothesized that trimming unnecessary sequence from the added evopreQ and mpknot motifs might further improve the epegRNA design, because removing extraneous sequences within a structured RNA can reduce the propensity for misfolding47. We found that trimming 5 nt of sequence from evopreQ or mpknot resulted in marginal gains in average PE3 editing efficiency relative to the full-length epegRNAs (Supplementary Fig. 10). Because trimming these RNA motifs did not adversely affect editing efficiency, and shorter epegRNAs are more readily prepared by chemical synthesis, we decided to use trimmed evopreQ, or mpknot in epegRNAs when applying epegRNAs to install therapeutically relevant mutations (see below).

We also examined whether the ‘flip and extension’ (F+E) sgRNA scaffold would further improve epegRNA editing efficiency. This guide RNA scaffold mutates the fourth base pair of the direct repeat from U•A to A•U to remove a potential pol III terminator and extends the direct repeat by 5 bp to improve Cas9 binding48. We transduced HEK293T cells with lentiviruses encoding an unmodified (F+E) pegRNA, an (F+E) epegRNA containing tevopreQ, or a tevopreQ, epegRNA with the standard scaffold that templates a transversion at HEK3 or DNMT1 or a 3 nt insertion at HEK3. Use of tevopreQ, substantially improved editing efficiency (3.8-fold for the nucleotide transversion, 2.6-fold for the 3 nt insertion at HEK3 and 6.8-fold at DNMT1) (Supplementary Fig. 11). Use of the (F+E) scaffold in a tevopreQ, epegRNA further improved editing efficiency (1.1-fold for the nucleotide transversion, 1.5-fold for the 3 nt insertion at HEK3 and 2.5-fold at DNMT1). We also characterized sgRNA scaffold variants previously shown to increase Cas9 nuclease activity under transfection conditions with reduced amounts of plasmid and observed similar overall benefits, albeit with greater variability (Supplementary Discussion and Supplementary Fig. 12). These findings further suggest that epegRNAs mediate greater improvements in PE efficiency when expression is limited. Additionally, these data highlight the potential for modified scaffolds to improve PE efficiency in conjunction with epegRNAs, although a more in-depth exploration of this possibility is needed.

A computational tool to design epegRNA linkers. In contrast with protein linkers, RNA linkers more likely to be sequence dependent, such that the same linker might function for one epegRNA but impede another. To minimize the possibility of interference from the epegRNA linker, we developed pegLIT (pegRNA Linker Identification Tool) (Supplementary Discussion and Supplementary Fig. 13), a computational tool that identifies linker sequences predicted to minimally base pair with the remainder of the epegRNA. For an initial validation, we tested two sets of 15 evopreQ, pegRNAs with different linkers templating either a C→G-to-A→T transversion at RNFL2 or a 15-bp deletion at DNMT1. Within each set, five linkers were recommended by pegLIT; five were predicted to base pair with the spacer; and five were predicted to base pair with the PBS. The use of pegLIT-designed linkers resulted in a modest increase in PE3 editing efficiency over the use of manually designed linkers (1.2-fold higher for RNFL2 and 1.1-fold higher for DNMT1) (Supplementary Fig. 13). Although spacer interactions did not significantly affect editing efficiency, linker–PBS interactions correlated with reduced PE3 editing efficiency, resulting in 1.3- and 1.1-fold lower editing efficiency compared to pegLIT linkers for RNFL2 and DNMT1, respectively. The two worst-performing linkers, which resulted in 1.9- and 3.4-fold less efficient PE3 editing at
RNF2 relative to optimal linker sequences, were correctly identified by pegLIT as scoring poorly for PBS interactions (Supplementary Fig. 13). The closer proximity of the linker to the PBS compared to the spacer might give linker–PBS interactions an entropic advantage compared to linker–spacers pairing. We then sought to determine whether pegLIT-designed linker sequences could improve the efficacy of two epegRNAs (templating a G127V mutation in PRNP that protects against human prion disease41,42 (a) and correction of the pathogenic c1278TATC insertion in HEXA that causes Tay–Sachs disease in both HEK293T cells (b) and primary patient-derived fibroblasts (c). d. Comparison of PE2-mediated installation of pathogenic and protective alleles using unoptimized epegRNAs or unoptimized pegRNAs at nine genomic sites. Reference SNP (rs) designations can be found for all mutations in Supplementary Table 6. Data and error bars in a, d and e indicate the mean and standard deviation of three independent biological replicates.

Fabricated pegRNAs improve PE of therapeutically relevant mutations. Having validated the use of epegRNAs as a strategy for broadly improving PE activity, we next compared the activity of epegRNAs containing tevopreQ with that of pegRNAs to install either a point mutation or a 15-bp deletion at five genomic sites (HEK3, RNF2, DNMT1, RUNX1 and EMX1) in HEK293T cells. Both the epegRNAs and pegRNAs contained 2′O-methyl modifications and phosphorothioate linkages between the first and last three nucleotides of the RNA. For six of the seven pegRNAs tested, the corresponding epegRNAs exhibited 1.1–3.1-fold higher editing with unchanged edit:indel ratios (Supplementary Fig. 14). These data suggest that epegRNAs also enhance PE outcomes compared to pegRNAs in applications that use chemically synthesized and modified pegRNAs.

Engineered pegRNAs improve PE of therapeutically relevant mutations. Having validated the use of epegRNAs as a strategy for broadly improving PE activity, we next compared the activity of epegRNAs containing tevopreQ with that of pegRNAs to install a variety of protective or therapeutic genetic mutations. We successfully used epegRNAs to install the PRNP G127V allele that protects against human prion disease41,42 in HEK293T cells with 1.4-fold higher efficiency over the canonical pegRNA (Fig. 4a). In addition, we used epegRNAs to correct the most common cause of
Tay–Sachs disease (HEXA1278+TATC), both in previously constructed HEXA1278+TATC HEK293T cell lines14 via plasmid lipofection and in primary patient-derived fibroblasts via nucleofection of in vitro transcribed mRNA and synthetic pegRNA (Fig. 4b,c). In both cases, we observed improved editing efficiencies for tevopreQ, epegRNAs containing pegLIT-designed 8-nt linkers over canonical pegRNAs (2.8-fold higher in HEK293T cells and 2.3-fold higher in patient-derived fibroblasts).

Installation of therapeutically relevant edits using unoptimized epegRNAs. The design and screening of many pegRNAs with different PBS and RT templates is an important first step in the successful use of PE14. Although general rules to guide PBS and RT template length and composition have been described44,45, identifying optimal pegRNAs often requires extensive screening of pegRNA constructs. We speculated that epegRNAs might support more efficient installation of therapeutically relevant prime edits without extensive pegRNA optimization. We examined the ability of unoptimized pegRNAs and epegRNAs to template the installation of nine protective or pathogenic point mutations using PE2. In all cases, the pegRNAs and epegRNAs used in this experiment contained a 13-nt PBS and an RT template containing 10 nt of homology to the targeted site after the last edited nucleotide, except when the 3’ extension would begin with cytosine44, in which case it was extended to the nearest non-C nucleotide.

We examined pegRNAs that install therapeutically relevant mutations associated with Alzheimer’s disease45,46, type 2 diabetes47, innate immunity48, CDKL5 deficiency disorder49, lamin A deficiency50 and Rett syndrome51,52. We compared the outcomes of PE with pegRNAs and corresponding tevopreQ, epegRNAs with 8-nt pegLIT linkers in HEK293T cells (Fig. 4d). Only a single pegRNA or epegRNA design was tested per target. In every case, epegRNAs outperformed pegRNAs in editing efficiency. For five of the nine therapeutically relevant edits tested, epegRNAs resulted in ≥20% editing efficiency, which is typically sufficient to generate model cell lines. By comparison, only three of the nine pegRNAs achieved this level of editing efficiency. The higher editing efficiencies mediated by epegRNAs (2.8-fold higher than pegRNAs, on average) should streamline the production of homozygous cell lines, which is an important consideration for modeling recessive mutations. Similarly, unoptimized epegRNAs mediated insertion of a 24-bp FLAG tag with ≥10% efficiency at five of 15 tested sites; the corresponding pegRNAs did not achieve ≥10% efficiency at any site tested (Supplementary Discussion and Supplementary Fig. 15). Taken together, these findings show that epegRNAs streamline the production of model cell lines with PE.

Discussion

Here we report the design, characterization and validation of epegRNAs to address a key bottleneck in PE. These epegRNAs contain a structured RNA motif 3’ of the PBS that prevents degradation of the pegRNA extension and the subsequent formation of editing-incompetent PE complexes that compete for access to the targeted genomic site. We found that epegRNAs broadly improve PE efficiency in all five cell lines and primary cell types tested, with larger improvements observed in cell lines that are more difficult to transfect. Additionally, we observed that the use of epegRNAs can enhance PE performance when using chemically modified pegRNAs, when installing therapeutically relevant edits in human cells and when using unoptimized pegRNA designs. Finally, we describe a computational program that expedites pegRNA design by identifying linkers that minimize the risk of counterproductive secondary structure. In total, our findings establish that epegRNAs broadly improve PE outcomes at a wide variety of genomic loci, edit types (substitutions, insertions and deletions) and cell types. Improvements in PE enabled by epegRNAs are likely to depend on delivery strategy. Lower-expression delivery modalities, such as some viral vectors, might benefit more strongly from the use of epegRNAs when pegRNA concentration is limiting (Supplementary Fig. 12). Similarly, further improvements in the synthesis of chemically modified RNAs might decrease the efficiency of epegRNAs by better mitigating degradation. Additionally, the longer length of epegRNAs (an additional 37 nt when using tevopreQ) is an important consideration when using synthetic epegRNAs, given current challenges of chemically synthesizing longer RNAs.

We recommend epegRNAs for all PE experiments that can support a modestly longer pegRNA. Importantly, researchers seeking to identify PE agents that install a desired edit with the highest possible efficiency should continue to test many epegRNAs that include a variety of PBS and RT template sequences and lengths and a variety of nicking sgRNAs when using PE3. Incorporating guide RNA scaffold variants46–50 might also further improve PE efficiency on a site-dependent basis (Supplementary Figs. 11 and 12). As demonstrated in this study, however, extensive screening might not be needed when maximizing editing efficiency is not critical. In these cases, an epegRNA containing the trimmed evopreQ (tevopreQ) motif with a PBS length of 13 and a template that includes either 10 nt of homology past the targeted edit for small insertions, deletions and point mutations—or 25 nt of homology for larger insertions or deletions—provides a promising starting point for pegRNA designs. PBS, RT template length, scaffold sequence and nicking sgRNA can then be optimized if observed editing efficiencies are insufficient.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41587-021-01039-7.

Received: 17 March 2021; Accepted: 29 July 2021; Published online: 4 October 2021

References

1. Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20–36 (2017).
2. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).
3. Cullot, G. et al. CRISPR–Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 10, 1136 (2019).
4. Kosicki, M., Tomborg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 756–777 (2018).
5. Boroviak, K., Fu, B., Yang, F., Doe, B. & Bradley, A. Revealing hidden complexities of genomic rearrangements generated with Cas9. Sci. Rep. 7, 12867 (2017).
6. Erache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662–668 (2020).
7. Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taiaple, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).
8. Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).
9. Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).
10. Burgio, G. & Teboul, L. Anticipating and identifying collateral damage in genome editing. Trends Genet. 36, 905–914 (2020).
11. Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).
12. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
13. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

14. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

15. Housel, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).

16. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR–Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

17. Geisberg, J. V., Moqtaderi, Z., Fan, X., Ozsolak, F. & Struhl, K. Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell 156, 812–824 (2014).

18. Wu, X. & Bartel, D. P. Widespread influence of 3′–5′ exonucleases: the substrate perspective. J. Mol. Biol. 375, 57–63 (2008).

19. Jost, M. et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 33, 154–156 (2015).

20. Flannick, J. et al. Loss-of-function mutations in PCSK9 protect against hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

21. Sakuntabhai, A. et al. A variant in the MECP2 variation database—a new mutation database in evolution. Hum. Mutat. 21, 466–472 (2003).
Methods

General methods. Plasmids expressing pegRNAs and epegRNAs were cloned by Gibson assembly, Golden Gate assembly using either a previously described custom acceptor plasmid or a newly designed custom acceptor plasmid that contain trimmings from pEQQ, or mediated by the use of PCR (the use of which is described in Supplementary Note 1) or synthesized and cloned by Twist Biosciences. Plasmids expressing sgRNAs were cloned via Gibson or USER assembly. DNA amplification was accomplished by PCR with Phusion U or High Fidelity Phusion Green Hot Start II (New England Biolabs). Plasmids expressing pegRNAs were purified using PureYield Plasmid Miniprep kits (Promega) when transfecting HEK293T cells or Plasmid Plus Midiprep kits (Qiagen) when transfecting other cell types, whereas plasmids expressing prime editors were purified exclusively using Plasmid Plus Midiprep kits. Plasmids ordered from Twist Biosciences were resuspended in nuclease-free water and used directly. Primers and dsDNA fragments were ordered from Integrated DNA Technologies. Uncropped agarose and northern blot gels are provided in Supplementary Figs. 16 and 17.

Synthetic pegRNAs and in vitro transcribed mRNA generation. Synthetic pegRNAs were ordered from Integrated DNA Technologies and contained 2′-O-methyl modifications at the first and last three nucleotides and phosphorothioate linkages between the three first and last nucleotides and were used directly. Synthetic nicking sgRNAs were ordered from Synthego and contained 2′-O-methyl modifications at the three first and last nucleotides and phosphorothioate linkages between the three first and last two nucleotides. PE-encoded mRNA was transcribed in vitro using the protocol described previously53. Briefly, the PE2 cassette—consisting of a 5′ UTR, Kozak sequence, PE2 ORF and 3′ UTR—previously53, according to the manufacturer's instructions, with the exception that N1-methylpsuedouridine triphosphate (TriLink) was substituted for uridine triphosphate, and CleanCapAg (TriLink) was added to enable co-transcriptional capping. The resulting mRNA was purified via lithium chloride precipitation and reconstituted in TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0 at 25 °C). Sequences of pegRNAs and sgRNAs used in this study can be found in Supplementary Table 1. A list of structured RNA motifs examined in this study can be found in Supplementary Table 2.

General mammalian cell culture conditions. HEK293T (ATCC CRL-3216), U2OS (ATCC HTB-96), K562 (CCL-243) and HeLa (CCL-2) cells were purchased from American Type Culture Collection (ATCC) and cultured and passaged in DMEM supplemented with Glutamax (Thermo Fisher Scientific), McCoy’s 5A Medium (Gibco), RPMI Medium 1640 plus Glutamax (Gibco) or EMEM (ATCC), respectively, each supplemented with 10% (vol/vol) FBS (Gibco), qualified. Primary Thy–Sachs disease patient fibroblast cells were obtained from the Corell Institute (cat. ID GM00221) and grown in low-glucose DMEM (Sigma-Aldrich) and 10% (vol/vol) FBS, supplemented with an additional 2 mM L-glutamine (Thermo Fisher Scientific). All cell types were incubated, maintained, and cultured at 37 °C with 5% CO2. Each cell line was authenticated by its respective supplier and tested negative for mycoplasma.

Tissue culture transfection and nucleofection protocols and genomic DNA preparation. For transfections, 10,000 HEK293T cells were seeded per well on 96-well plates (Corning). Then, 16–24 hours after seeding, cells were transfected at approximately 60% confluency with 0.5 µl of Lipofectamine 2000 (Thermo Fisher Scientific), according to the manufacturer's protocols, and 200 ng of PE plasmid, 40 ng of pegRNA plasmid and 13 ng of sgRNA plasmid (for PE3). When transfecting cells expressing prime-encoded plasmids, 0.5 µl of Lipofectamine 2000 was used to transfect 20 ng of PE plasmid, 4 ng of pegRNA plasmid, 1.3 ng of nicking sgRNA-expressing plasmid and 83 ng of nicking sgRNA-expressing plasmid were nucelofected in a final volume of 20 µl in a 16-well nucleofection kit (Lonza). HeLa cells were nucelofected using the SE Cell Line 4D-Nuclease X Kit (Lonza) with 2 × 104 cells per sample (program CN-114), according to the manufacturer’s protocol. U2OS cells were nucelofected using the SE Cell Line 4D-Nuclease X Kit (Lonza) with 2 × 104 cells per sample (program FF-100), according to the manufacturer's protocol. K562 cells were nucelofected using the SE Cell Line 4D-Nuclease X Kit (Lonza) with 2 × 104 cells per sample (program FF-100), according to the manufacturer's protocol. Patient-derived fibroblasts were electroporated with mRNA-encoding PE2 and synthetic pegRNA and nicking sgRNA as described above for HEK293T cells using an SE cell line kit and 100,000 cells, which were centrifuged at 100g for 10 min. Additionally, 40 µl of recovered cells were added to a 48-well plate instead of 25 µl. In all cases, cells were culture overnight after transfection, after which the media was removed, and cells were washed with PBS (pH 7.4 ± 0.2) and subsequently lysed by the addition of the 50 µl of 96-well plates or 150 µl for 48-well plates of freshly prepared lysis buffer (10 µM Tris-HCL, pH 8.0 at 23 °C, 0.05% SDS, 25 µg ml−1 of proteinase K (Qiagen)) and incubating at 37 °C for 1 h or more, after which proteinase K was inactivated over 30 min at 80 °C. The resulting genomic DNA was stored at −20 °C until use.

Lentivirus preparation and transduction. Lentiviral transfer plasmids were designed to contain a pegRNA or epegRNA under expression from a human U6 promoter and a PuroR–T2A–BFP marker under expression from the EF1α core promoter. To package lentivirus, HEK293T cells were seeded on 96-well plates (Corning) at 7 × 104 cells per well in DMEM supplemented with 10% FBS. At 60% confluency, transduced HEK293T cells were transfected with 12 µl of Lipofectamine 2000 (Thermo Fisher Scientific), according to the manufacturer's protocol, and 1.33 µg of lentiviral transfer plasmid, 0.67 µg of pMD2.G (Addgene no. 12293) and 1 µg of pSF2A2 (Addgene no. 12291) were added to each well. Twenty-four hours after transduction, media was exchanged with DMEM supplemented with 10% FBS. Forty-eight hours after infection, viral supernatant was centrifuged at 3,000g for 15 min to remove cellular debris, filtered through a 0.45-µm PVDF filter (Corning) and stored at −80 °C.

To transduce cells with pegRNAs or epegRNAs, 1 × 106 HEK293T cells were infected with 20 µl of lentivirus in DMEM supplemented with 10% FBS and 8 µg ml−1 of polybrene (Sigma-Aldrich) and centrifuged at 1,000g for 2 h at 33 °C. Twenty-four hours after transduction, cells were passaged into DMEM supplemented with 10% FBS and 2 µg ml−1 of puromycin (Thermo Fisher Scientific) to begin selection. GFP fluorescence was monitored using a CytoFLEX S Flow Cytometer (Beckman Coulter) to ensure a multi-copy fitness of interest. Twenty-four hours after infection, media was exchanged with DMEM supplemented with 10% FBS. Twenty-four hours after seeding, cells were transfected at 60–80% confluency with 200 ng of pCMV–PE2 plasmid and 0.5 µl of Lipofectamine 2000 (Thermo Fisher Scientific), according to the manufacturer’s protocol. To extract genomic DNA 5 d after transduction, cells were washed with PBS (pH 7.4 ± 0.2) and lysed in 10 µM Tris-HCL, pH 8.0 at 23 °C, 0.05% SDS and 800 µl−1 of proteinase K (New England Biolabs) at 37 °C for 1.5 h, followed by enzyme inactivation at 80 °C for 30 min.

High-throughput DNA sequencing of genomic DNA samples. Genomic sites of interest were amplified from genomic DNA samples and sequenced on an Illumina MiSeq as previously described44. Cas9 off-target sites for HEK3, EMX1 and FANCF were previously identified via Guide-Seq44. Primers used for mammalian cell genomic DNA amplification are listed in Supplementary Table 3, and amplicons are listed in Supplementary Table 4. Sequencing reads were demultiplexed using MiSeq Realtime Analysis (Illumina). Alignment of amplicon sequences to a reference sequence was performed using CRISPResso2 (ref. 54). For all PE yield quantifications, editing efficiency was calculated as the percentage of reads with the desired editing without indels out of the total number of reads with an average phred score of at least 30. For quantification of point mutation editing, CRISPResso2 was run in standard mode with ‘discard_indel_reads’on. Editing yield was calculated as the percentage of non-discarded reads containing the edit divided by total reads. For insertion or deletion edits, CRISPResso2 was run in homology-directed repair mode using the desired allele as the expected allele and with ‘discard_indel_reads’ on. Editing yield was calculated as the percentage of homology-directed repair aligned reads divided by total reads. For all experiments, indel frequency was calculated as the number of discarded reads divided by the total number of reads. For experiments involving PE2, reads were analyzed for indels within 10 nt upstream and downstream of the pegRNA nick site, inclusive. For experiments involving PE3, reads were analyzed for indels between 10 nt upstream of the pegRNA nick site and downstream of the sgRNA nick site, inclusive. Off-target editing was quantified as described previously38.

RT-qPCR of total RNA. Ten thousand HEK293T cells per well were seeded in 96-well plates. Sixteen to twenty-four hours after seeding, cells were transfected at approximately 60% confluency with 0.5 µl of Lipofectamine 2000, 200 ng of PE2 plasmid and 40 ng of either pegRNA or epegRNA plasmid, according to the manufacturer’s protocol. After 3 d, total RNA was isolated using the AllPrep DNA/RNA/miRNA universal kit (Qiagen). The Power SYBR Green Cells-to-CT kit (Thermo Fisher Scientific) was used to generate cDNA using random hexamers and to perform qPCR with forward and reverse primers that amplify the pegRNA scaffold, according to the manufacturer’s protocols. For all samples, the scaffold
signal was normalized to the PE2 signal as a transfection efficiency control. Fold changes in abundance were calculated using the 2-ΔΔCt method. Primer sequences are available in Supplementary Table 5.

In vitro exonuclease susceptibility assays. pegRNAs or epegRNAs containing either methylated DNA or DNA with a 5′ phosphate were prepared using the HiScribe T7 High Yield RNA synthesis kit (New England Biolabs) from PCR-amplified templates containing a T7 promoter sequence per the manufacturer’s protocols followed by purification via the Monarch RNA Cleanup kit (EpiGentek). Nuclear extracts were prepared from 3 million HEK293T cells grown to 70–80% confluency for the manufacturer’s protocols using the EpiQuik Nuclear Extraction kit (EpiGentek). Assays were carried out in 10-μl reactions containing 20 mM Tris-HCl (pH 7.5 at 23 °C), 5 mM MgCl2, 50 mM NaCl, 2 mM DTT, 1 mM NTP and 1 U/μl of RNaseOUT Recombinant Ribonuclease Inhibitor (40 μl U⁻¹). Thermo Fisher Scientific’s dCas9-9-H840A was used to degrade 0.5 μM of pegRNA or epegRNA. After the incubation of reaction mixtures at 37 °C for 20 min, degradation products were resolved on 2.0% agarose gels stained with SYBR Gold. The extent of degradation was determined using ImageJ software (National Institutes of Health). To determine whether Cas9 could protect the sRNA scaffold from degradation by exonucleases, 1 nM of pegRNA or epegRNA was incubated in the presence or absence of 100 nM nCas9-H840A at room temperature for 10 min to enable the binding of nCas9-H840A to RNA. Degradation assays were carried out in 10-μl reaction mixtures containing 20 mM Tris-HCl (pH 7.5 at 23 °C), 5 mM MgCl2, 50 mM NaCl, 2 mM DTT, 1 μM dSpCas9 (Integrated DNA Technologies) for 30 min at 23 °C in HBS-P buffer with 1 mM MgCl2, and 50-fold molar excess of unlabeled pegRNA or epegRNA. The reaction was incubated at room temperature for 10 min to inactivate the nucleases. Total remaining RNA was isolated using the Monarch RNA Cleanup Kit (New England Biolabs) for analysis by RT-qPCR.

Detection of pegRNAs and epegRNAs in cellular lysates via northern blot. HEK293T cells were transfected with plasmids encoding PE2 and pegRNA or epegRNA as described above. Cells were lysed after 3 d, and total RNA was isolated using the AllPrep DNA/RNA/miRNA universal kit (Qiagen), following the manufacturer’s instructions. The amount of PE2 mRNA was determined using RT-qPCR, and this value was used to normalize lysates to the same concentration of PE2 mRNA. Lysates were separated by PAGE using a 10% denaturing PAGE gel (Criterion, Bio-Rad). An ssRNA ladder was 3′ labeled with digoxigenin-ddUTP using the DIG High Prime DNA Labeling and Detection Solution (Roche) and used as a marker. Other markers used were in vitro transcribed pegRNA and epegRNA templating at +1 FLAG tag insertion at HEK3 and HEK293T cellular lysates containing HEK3-targeted sRNA. Transfer and cross-linking of RNAs to the northern blot membrane largely followed previously described procedures for detection of small RNAs. Transcripts were transferred to a positively charged nylon membrane (Bio-Rad). An ssRNA ladder was 3′ labeled with digoxigenin-ddUTP via in vitro transcription with T7 and using the DIG High Prime DNA Labeling and Detection Solution (Roche). Then, 3 μl of labeled probe was added to 0.5 ml of ULTRAhyb hybridization buffer (Novex, Thermo Fisher Scientific) at 68°C for 2 h. An RNA probe complementary to 64 nt of the sRNA scaffold (Supplementary Table 5) was generated and body-labeled with digoxigenin-UTP via in vitro transcription with T7 and using the DIG Northern Starter Kit (Roche). Then, 5 μl of labeled probe was added to 0.5 ml of ULTRAhyb buffer and incubated for 5 min at 70°C before being added to the pre-hybridized blot at 68°C. Hybridization was allowed to proceed overnight. Blots were then washed twice in Low Stringency wash solution (NorthernMax kit, equivalent to 2× SSC and 0.1% SDS) for 5 min at room temperature and twice in High Stringency wash solution (NorthernMax kit, equivalent to 0.1× SSC and 0.1% SDS) for 15 min at 68°C. Blots were then rinsed in washing buffer (0.1× SSC and 0.1% SDS) for 30 min at room temperature and then incubated in blocking buffer (DIG Northern Starter Kit) for 30 min at room temperature. Blots were then incubated in blocking buffer supplemented with anti-digoxigenin-AP antibody (DIG Northern Starter Kit) for 30 min at room temperature and then washed with washing buffer for 15 min at room temperature twice. Blots were then equilibrated in detection buffer (0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5) for 5 min before being transferred to a developer folder. CDP-Star was then added dropwise to the blot, and the blot was covered and incubated at room temperature for 5 min to overnight before being imaged with a Bio-Rad ChemiDoc MP. Levels of pegRNA and epegRNA were determined by densitometry using ImageJ.

epegRNA binding assays. MST analysis was conducted using a Monolith NT.Automated (NanoTemper) with premium-coated capillaries to determine Cas9 binding affinities for pegRNAs and epegRNAs or dsDNA when complexed with pegRNAs or epegRNAs. Binding reactions were conducted at 23 °C in 20 μl of HBS-P buffer (10 mM HEPES pH 7.4 at 23 °C, 150 mM NaCl, 0.05% vol/
Plasmids encoding select epegRNA Golden Gate cloning vectors have been deposited at Addgene for distribution.

Code availability
A Python implementation of pegLIT is publicly accessible at peglit.liugroup.us, and the code can be found in Supplementary Note 2 or at github.com/sshen8/peglit.

References
53. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. *Nat. Biotechnol.* **38**, 892–900 (2020).
54. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. *Nat. Biotechnol.* **37**, 224–226 (2019).
55. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT) method. *Methods* **25**, 402–408 (2001).
56. Fang, W. & Bartel, D. P. The menu of features that define primary microRNAs and enable de novo design of microRNA genes. *Mol. Cell* **60**, 131–145 (2015).
57. Romani, A. M. P. Cellular magnesium homeostasis. *Arch. Biochem. Biophys.* **512**, 1–23 (2011).
58. Bertsimas, D. & Tsitsiklis, J. Simulated Annealing. *Stat. Sci.* **8**, 10–15 (1993).
59. Win, M. N. & Smolke, C. D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. *Proc. Natl Acad. Sci. USA* **104**, 14283–14288 (2007).

Acknowledgements
This work was supported by U.S. National Institutes of Health grants U01AI142756, R1HG009490, R01EB031172 and R35GM118062; the Howard Hughes Medical Institute; and the Loulou Foundation. J.W.N. and A.V.A. were supported by Jane Coffin Childs postdoctoral fellowships. P.B.R., S.P.S., K.A.E. and P.J.C. were supported by National Science Foundation graduate fellowships. G.A.N. was supported by a Helen Hay Whitney postdoctoral fellowship. We thank A. Vieira for assistance in editing this manuscript; M. O’Reilly, E. Berg and the Broad Institute Pattern team for help with figure design; S. McGreary and K. Xiang for helpful discussions on northern blot procedures; and M. Shen for helpful discussions on pegLIT coding.

Author contributions
J.W.N. and P.B.R. contributed equally and designed the research, performed experiments and analyzed data. A.V.A. and S.P.S. designed the research. K.A.E., G.A.N., P.J.C., P.C., M.A., J.C.C. and A.H. performed experiments. D.R.L. designed and supervised the research. J.W.N., P.B.R. and D.R.L. wrote the paper.

Competing interests
The authors are co-inventors on patents filed by the Broad Institute on prime editing. D.R.L. is a consultant and co-founder of Prime Medicine, Beam Therapeutics and Pairwise Plants, which are companies that use genome editing. A.V.A. is currently an employee of Prime Medicine.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41587-021-01039-7.
Correspondence and requests for materials should be addressed to David R. Liu.

Peer review information *Nature Biotechnology* thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a Confirmed
- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- *Only common tests should be described solely by name; describe more complex techniques in the Methods section.*
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted.
- *Give P values as exact values whenever suitable.*
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Miseq Control software (3.1) was used on the Illumina Miseq sequencers to collect the high-throughput sequencing data. i-Control (2.0) was used to collect CRISPRa data.

Data analysis

CRISPesso2 was used to analyze high-throughput sequencing files and quantifying editing activity. ImageJ v2.0.0-rc-43/1.52n was used for densitometry. Frequency, mean, and standard deviations were calculated using GraphPad Prism 9. A custom algorithm - pegLiT - was used for linker design and is present in Supplementary Note 2. ViennaRNA 2.0 is used as part of pegLiT.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

High throughput sequencing data have been deposited to the NCBI Sequence Read Archive database under accession code PRJNA707486.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/n-r-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

| Sample size | Sample sizes were n=3 independent biological replicates, which we and others have found to be sufficient in mammalian cell gene editing experiments to yield reproducible mean result values.
| Data exclusions | No data were excluded from the study.
| Replication | All experiments were repeated at least once. All attempts at replication were successful.
| Randomization | All independent biological replicates were treated identically and all data from all replicates was included. Thus randomization was not relevant to this study.
| Blinding | Mammalian cells used in this study were grown under identical conditions; blinding was not used.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	Involved in the study
☒	Antibodies
☒	Eukaryotic cell lines
☒	Palaeontology and archaeology
☒	Animals and other organisms
☒	Human research participants
☒	Clinical data
☒	Dual use research of concern
n/a	Involved in the study
☒	ChiP-seq
☒	Flow cytometry
☒	MRI-based neuroimaging

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)	HEK293T (ATCC), U2OS (ATCC), K562 (ATCC), HeLa (ATCC), primary Tay Sachs fibroblasts (Coriell, GM00221)
Authentication	Cells were authenticated by the supplier using STR analysis.
Mycoplasma contamination	All cell lines tested negative for mycoplasma.
Commonly misidentified lines (See ICLAC register)	None used.