On Star–Wheel Ramsey Numbers

Binlong Li¹,² · Ingo Schiermeyer³

Abstract For two given graphs G_1 and G_2, the Ramsey number $R(G_1, G_2)$ is the least integer r such that for every graph G on r vertices, either G contains a G_1 or \overline{G} contains a G_2. In this note, we determined the Ramsey number $R(K_{1,n}, W_m)$ for even m with $n + 2 \leq m \leq 2n - 2$, where W_m is the wheel on $m + 1$ vertices, i.e., the graph obtained from a cycle C_m by adding a vertex v adjacent to all vertices of the C_m.

Keywords Ramsey number · Star · Wheel

Mathematics Subject Classification 05C55 · 05D10

1 Introduction

Throughout this paper, all graphs are finite and simple. For a pair of graphs G_1 and G_2, the Ramsey number $R(G_1, G_2)$, is defined as the smallest integer r such that for
every graph G on r vertices, either G contains a G_1 or \overline{G} contains a G_2, where \overline{G} is the complement of G. Note that $R(G_1, G_2) = R(G_2, G_1)$. We denote by P_n ($n \geq 1$) and C_n ($n \geq 3$) the path and cycle on n vertices, respectively. The bipartite graph $K_{1,n}$ ($n \geq 2$) is called a \textit{star}. The \textit{wheel} W_n ($n \geq 3$) is the graph obtained from a cycle C_m by adding a vertex v adjacent to all vertices of the C_m. For two graphs G_1 and G_2, the union of G_1 and G_2, denoted by $G_1 \cup G_2$, is defined as $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$.

In this note we consider the Ramsey numbers for stars versus wheels. There are many results on this area. Hasmawati [4] determined the Ramsey number $R(K_{1,n}, W_m)$ for $m \geq 2n$.

\textbf{Theorem 1} (Hasmawati [4]) If $n \geq 2$ and $m \geq 2n$, then

$$R(K_{1,n}, W_m) = \begin{cases} n + m - 1, & \text{if both } n \text{ and } m \text{ are even;} \\ n + m, & \text{otherwise.} \end{cases}$$

So from now on we consider the case that $m \leq 2n - 1$. For odd m, Chen et al. [2] showed that if $m \leq n + 2$, then $R(K_{1,n}, W_m) = 3n + 1$. Hasmawati et al. [5] proved that the values remain the same even if $m \leq 2n - 1$.

\textbf{Theorem 2} (Hasmawati et al. [5]) If $3 \leq m \leq 2n - 1$ and m is odd, then

$$R(K_{1,n}, W_m) = 3n + 1.$$

So it remains the case $m \leq 2n - 2$ and m is even. Surahmat and Baskoro [7] determined the Ramsey numbers of stars versus W_4.

\textbf{Theorem 3} (Surahmat and Baskoro [7]) If $n \geq 2$, then

$$R(K_{1,n}, W_4) = \begin{cases} 2n + 1, & \text{if } n \text{ is even;} \\ 2n + 3, & \text{if } n \text{ is odd.} \end{cases}$$

Chen et al. [2] established $R(K_{1,n}, W_6)$, and Zhang et al. [8, 9] established $R(K_{1,n}, W_8)$.

In this note we first give a lower bound on $R(K_{1,n}, W_m)$ for even $m \leq 2n - 2$. One can check that when $m = 6, 8$, the lower bound on $R(K_{1,n}, W_m)$ in Theorem 4 is the exact value, see [2,8,9].

\textbf{Theorem 4} If $6 \leq m \leq 2n - 2$ and m is even, then

$$R(K_{1,n}, W_m) \geq \begin{cases} 2n + m/2 - 1, & \text{if both } n \text{ and } m/2 \text{ are even;} \\ 2n + m/2, & \text{otherwise.} \end{cases}$$

Moreover, we establish the exact values when $n + 2 \leq m \leq 2n - 2$. We will show that the lower bound in Theorem 4 is the exact value if $m \geq n + 2$.

\textbf{Theorem 5} If $n + 2 \leq m \leq 2n - 2$ and m is even, then

$$R(K_{1,n}, W_m) = \begin{cases} 2n + m/2 - 1, & \text{if both } n \text{ and } m/2 \text{ are even;} \\ 2n + m/2, & \text{otherwise.} \end{cases}$$
2 Preliminaries

We denote by $v(G)$ the order of G, by $\delta(G)$ the minimum degree of G, $c(G)$ the circumference of G, and $g(G)$ the girth of G, respectively. The graph G is said to be panyclic if G contains cycles of every length between 3 and $v(G)$, and weakly panyclic if G contains cycles of every length between $g(G)$ and $c(G)$.

We will use the following results.

Theorem 6 (Dirac [3]) Every 2-connected graph G has circumference $c(G) \geq \min \{2\delta(G), v(G)\}$.

Theorem 7 (Brandt et al. [1]) Every non-bipartite graph G with $\delta(G) \geq (v(G)+2)/3$ is weakly panyclic and has girth 3 or 4.

Theorem 8 (Jackson [6]) Let G be a bipartite graph with partition sets X and Y, $2 \leq |X| \leq |Y|$. If for every vertex $x \in X$, $d(x) \geq \max(|X|, |Y|/2 + 1)$, then G has a cycle containing all vertices in X, (i.e., of length $2|X|$).

A graph G is said to be k-regular if every vertex of G has degree k.

Lemma 1 Let k and n be two integers with $n \geq k + 1$ and k or n is even. Then there is a k-regular graph of order n each component of which is of order at most $2k+1$.

Proof We first assume that $k + 1 \leq n \leq 2k + 1$. If k is even, then let G be the graph with vertex set $\{v_1, v_2, \ldots, v_n\}$ and every vertex v_i is adjacent to the k vertices in $\{v_i \pm 1, v_i \pm 2, \ldots, v_i \pm k/2\}$, where the subscripts are taken modulo n. Then G is a k-regular graph of order n. If k is odd, then n is even and $n - 1 - k$ is even. Similarly as above we can get an $(n - 1 - k)$-regular graph H of order n. Then $G = \overline{H}$ is a k-regular graph of order n. Since $n \leq 2k + 1$, every component of G has order at most $2k+1$.

Now we assume that $n \geq 2k + 2$.

If k is even, then let

$$n = q(2k + 1) + r, \quad 0 \leq r \leq 2k.$$

Note that $q \geq 1$. If $r = 0$, then the union of q copies of a k-regular graph of order $2k + 1$ is a required graph. If $k + 1 \leq r \leq 2k$, then the union of q copies of a k-regular graph of order $2k + 1$ and one copy of a k-regular graph of order r is a required graph. Now we assume that $1 \leq r \leq k$. Note that $k + 1 \leq k + r \leq 2k$. Then the union of $q - 1$ copies of a k-regular graph of order $2k + 1$, one copy of a k-regular graph of order $k + 1$, and one copy of a k-regular graph of order $k + r$, is a required graph.

If k is odd, then n is even. Let

$$n = 2kq + r, \quad 0 \leq r < 2k.$$

Clearly r is even. If $r = 0$ then the union of q copies of a k-regular graph of order $2k$ is a required graph. If $k + 1 \leq r < 2k$, then the union of q copies of a k-regular graph of order $2k$ and one copy of a k-regular graph of order r is a required graph. Now we
assume that $2 \leq r \leq k - 1$. Note that $k + 1 \leq k + r - 1 \leq 2k$. Then the union of $q - 1$ copies of a k-regular graph of order $2k$, one copy of a k-regular graph of order $k + 1$, and one copy of a k-regular graph of order $k + r - 1$, is a required graph. □

3 Proof of Theorem 4

For convenience we define a constant θ such that $\theta = 1$ if both n and $m/2$ are even, and $\theta = 0$ otherwise. We will construct a graph G of order $2n + m/2 - \theta$ such that G contains no $K_{1,n}$ and \overline{G} contains no W_m.

It is easy to check that $m/2 - 1$ or $n + m/2 - \theta - 1$ is even. By Lemma 1, there exists an $(m/2 - 1)$-regular graph H of order $n + m/2 - \theta - 1$ such that each component of H has order at most $m - 1$. Let $G = H \cup K_n$. Then $\nu(G) = 2n + m/2 - \theta - 1$.

We first show that G contains no $K_{1,n}$. Clearly K_n contains no $K_{1,n}$. Note that every vertex in H has degree $m/2 - 1$, and then every vertex in \overline{H} has degree $\nu(H) - 1 - m/2 + 1 = n - \theta - 1$. Thus \overline{H} contains no $K_{1,n}$.

Second we show that \overline{G} contains no W_m. Suppose to the contrary that \overline{G} contains a W_m. Let x be the hub of the W_m. If x is contained in K_n, then all vertices of the wheel other than x are in $V(H)$. This implies that H has a cycle C_m. But every component of H has order less than m, a contradiction. So we assume that $x \in V(H)$. Note that x has $m/2 - 1$ neighbors in H. At least $m/2 + 1$ vertices of the wheel are in the K_n. This implies that there are two vertices in the K_n such that they are adjacent in \overline{G}, a contradiction.

This implies that $R(K_{1,n}, W_m) \geq 2n + m/2 - \theta$. □

4 Proof of Theorem 5

Note that by our assumption $n \geq 4$ and $m \geq 6$. We already showed $R(K_{1,n}, W_m) \geq 2n + m/2 - \theta$ in Theorem 4. Now we prove that $R(K_{1,n}, W_m) \leq 2n + m/2 - \theta$ when $n + 2 \leq m \leq 2n - 2$. Let G be a graph of order

$$\nu(G) = 2n + m/2 - \theta.$$

Suppose that \overline{G} has no $K_{1,n}$, i.e.,

$$\delta(G) \geq n + m/2 - \theta. \hspace{1cm} (1)$$

We will prove that G has a W_m. We assume to the contrary that G contains no W_m. We choose such a graph G with minimum size.

Let u be a vertex of G with maximum degree. Set

$$H = G[N(u)] \quad \text{and} \quad I = V(G) \setminus (\{u\} \cup N(u)).$$

Note that $\nu(H) = d(u)$.

Springer
Claim 1. $d(u) \geq n + m/2$; and for every $v \in V(H)$, $d(v) = n + m/2 - \theta$.

Proof If $\theta = 0$, then by (1), $d(u) \geq n + m/2$. If $\theta = 1$, then n and $m/2$ are both even. Thus $v(G) = 2n + m/2 - 1$ is odd. If every vertex of G has degree $n + m/2 - 1$, then G has an even order, a contradiction. This implies $d(u) \geq n + m/2$.

Let v be a vertex in H. Clearly $d(v) \geq \delta(G) \geq n + m/2 - \theta$. If $d(v) \geq n + m/2 - \theta + 1$, then $d(u) \geq d(v) \geq n + m/2 - \theta + 1$. Thus $G' = G - uv$ has size less than G with $\delta(G') \geq n + m/2 - \theta$. Since G' is a subgraph of G, it contains no W_m, a contradiction.

By Claim 1, we assume that

$$v(H) = n + m/2 + \tau, \quad \text{where} \quad \tau \geq 0. \quad (2)$$

Claim 2. $\delta(H) \geq m/2 + \tau$.

Proof Let v be an arbitrary vertex of H. By Claim 1, $d(v) = n + m/2 - \theta$. Note that $v(G - H) = (2n + m/2 - \theta) - (n + m/2 + \tau) = n - \theta - \tau$. Thus

$$d_H(v) \geq d(v) - v(G - H) = (n + m/2 - \theta) - (n - \theta - \tau) = m/2 + \tau.$$

Thus the claim holds.

Claim 3. H is separable.

Proof By (2) and $2n - 2 \geq m$, $v(H) \geq m \geq 3$. Suppose to the contrary that H is 2-connected. By Claim 2 and Theorem 6, $c(H) \geq m$. Also note that

$$3\delta(H) \geq 3m/2 + 3\tau \geq n + m/2 + 3\tau + 2 \geq v(H) + 2,$$

i.e., $\delta(H) \geq (v(H) + 2)/3$.

If H is non-bipartite, then by Theorem 7, H is weakly pancyclic and of girth 3 or 4. Thus H contains C_m. Note that u is adjacent to every vertex of the C_m, hence G contains a W_m, a contradiction.

If H is bipartite, say with partition sets X and Y, then $|X| \geq m/2 + \tau$ and

$$|Y| = v(H) - |X| \leq (n + m/2 + \tau) - (m/2 + \tau) = n,$$

since $\delta(H) \geq m/2 + \tau$. Let X' be a subset of X with $|X'| = m/2$. Note that for every vertex x of X',

$$d_Y(x) = d_H(x) \geq m/2 \geq n/2 + 1 \geq |Y|/2 + 1.$$

By Theorem 8, the subgraph of H induced by $X' \cup Y$ contains a C_m. Thus G contains a W_m, a contradiction.
If H is disconnected, then H has at least two components; if H is connected, then H has at least two end-blocks. Now let D be a component or an end-block of H such that $\nu(D)$ is as small as possible. We define a constant ε such that $\varepsilon = 1$ if D is an end-block of H, and $\varepsilon = 0$ otherwise. Thus

$$\nu(D) \leq (\nu(H) + \varepsilon)/2.$$ \hfill (3)

If D is an end-block of H, then let z be the cut-vertex of H contained in D.

Claim 4. For every two vertices $v, w \in V(D)$ which are not cut-vertices of H, $|N_I(v) \cap N_I(w)| \geq m/2 - 1$.

Proof Note that $d_I(v) = d(v) - 1 - d_H(v) \geq d(v) - \nu(D)$, and $d_I(w) \geq d(w) - \nu(D)$.

$$|N_I(v) \cap N_I(w)| \geq d_I(v) + d_I(w) - |I| \geq d(v) + d(w) - 2\nu(D) - |I|$$

$$\geq 2\delta(G) - (\nu(H) + \varepsilon) - |I| = 2\delta(G) - \nu(G) + 1 - \varepsilon$$

$$= 2(n + m/2 - \theta) - (2n + m/2 - \theta) + 1 - \varepsilon$$

$$= m/2 + 1 - \theta - \varepsilon \geq m/2 - 1.$$

Thus the claim holds. \hfill \Box

Suppose that there is a vertex $v \in V(D)$ which is not a cut-vertex of H such that v has $m/2$ neighbors in $V(D)$ each of which is not a cut-vertex of H. Then let X be the set of such $m/2$ neighbors of v and $Y = \{u\} \cup N_I(v)$. Let B be the bipartite subgraph of G with partition sets X and Y, and for any two vertices $x \in X$ and $y \in Y$, $xy \in E(B)$ if and only if $xy \in E(G)$.

Note that $|X| = m/2$. By Claim 4, every vertex of X has at least $m/2$ neighbors in Y. By Claim 1 and Claim 2, $d(v) = n + m/2 - \theta$ and $d_H(v) \geq m/2 + \tau$. Thus $|Y| = d(v) - d_H(v) \leq n - \theta - \tau$. Since $m \geq n + 2, m/2 \geq |Y|/2 + 1$. By Theorem 8, B contains a C_m. Note that v is adjacent to every vertex of the C_m, hence G has a W_m, a contradiction.

So we conclude that D is an end-block of H (i.e., $\varepsilon = 1$), and every vertex $v \in V(D) \setminus \{z\}$ has at most $m/2 - 1$ neighbors in $V(D) \setminus \{z\}$. By Claim 2, we can see that z is adjacent to every vertex in $V(D) \setminus \{z\}$ and every vertex in $V(D) \setminus \{z\}$ has degree in H exactly $m/2$ and $\tau = 0$.

Claim 5. Every vertex in $V(D) \setminus \{z\}$ is adjacent to every vertex in I.

Proof Let v be a vertex in $V(D) \setminus \{z\}$. Since $d(v) = n + m/2 - \theta$ and $d_H(v) = m/2$, we have

$$d_I(v) = d(v) - 1 - d_H(v) = n - 1 - \theta.$$

Also note that

$$|I| = \nu(G) - 1 = \nu(H) = (2n + m/2 - \theta) - 1 - (n + m/2) = n - 1 - \theta.$$

This implies that v is adjacent to every vertex in I. \hfill \Box
Case 1 \(N_I(z) \neq \emptyset \).

Note that \(|I| = n - 1 - \theta \geq m/2 - 1\). Let \(v \in V(D) \setminus \{z\} \) and \(u_1, u_2, \ldots, u_{m/2-1} \) be \(m/2 - 1 \) vertices in \(I \) such that \(z u_1 \in E(G) \), and let \(v_1, v_2, \ldots, v_{m/2-1} \) be \(m/2 - 1 \) vertices in \(N_D(v) \setminus \{z\} \). Then \(uz u_1 v_1 u_2 v_2 \cdots u_{m/2-1} v_{m/2-1} u \) is a \(C_m \). Since \(v \) is adjacent to every vertex of the \(C_m \), \(G \) contains a \(C_m \), a contradiction.

Case 2 \(N_I(z) = \emptyset \) and \(G[I] \) is not empty.

Let \(v \in V(D) \setminus \{z\} \) and \(u_1, u_2, \ldots, u_{m/2-1} \) be \(m/2 - 1 \) vertices in \(I \) such that \(u_1 u_2 \in E(G) \), and let \(v_1, v_2, \ldots, v_{m/2-1} \) be \(m/2 - 1 \) vertices in \(N_D(v) \setminus \{z\} \). Then \(uz v_1 u_1 v_2 u_2 v_3 \cdots u_{m/2-1} v_{m/2-1} u \) is a \(C_m \). Since \(v \) is adjacent to every vertex of the \(C_m \), \(G \) contains a \(C_m \), a contradiction.

Case 3 \(N_I(z) = \emptyset \) and \(G[I] \) is empty.

Let \(w \) be an arbitrary vertex in \(I \). Note that \(w \) is nonadjacent to every vertex in \(\{u, z\} \cup I \). Hence
\[
d(w) \leq v(G) - 2 - |I| = (2n + m/2 - 2) - (n - 1 - \theta) = n + m/2 - 1.
\]
Since \(d(w) \geq \delta(G) = n + m/2 - \theta \), we can see that \(\theta = 1 \) and \(w \) is adjacent to every vertex of \(V(H) \setminus \{z\} \). Moreover, every vertex in \(I \) is adjacent to every vertex in \(V(H) \setminus \{z\} \).

Since \(\theta = 1 \), by Claim 1, \(d(u) = n + m/2 \) and \(d(z) = n + m/2 - 1 \). Thus there is a vertex \(x \in V(H) \setminus \{z\} \) such that \(x z \notin E(G) \). By Claim 2, let \(v_1, v_2, \ldots, v_{m/2} \) be \(m/2 \) vertices in \(N_H(x) \) and \(u_1, u_2, \ldots, u_{m/2} \) be \(m/2 \) vertices in \(\{u\} \cup I \). Then \(u_1 v_1 u_2 v_2 \cdots u_{m/2} v_{m/2} u_1 \) is a \(C_m \). Since \(x \) is adjacent to every vertex of the \(C_m \), \(G \) contains a \(W_m \), a contradiction.

The proof is complete.

\[\square\]

References

1. Brandt, S., Faudree, R.J., Goddard, W.: Weakly pancyclic graphs. J. Graph Theory 27, 141–176 (1998)
2. Chen, Y., Zhang, Y., Zhang, K.: The Ramsey numbers of stars versus wheels. Eur. J. Comb. 25, 1067–1075 (2004)
3. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69–81 (1952)
4. Hasmawati, J.M.: Bilangan Ramsey untuk graf bintang terhadap graf roda. Tesis Magister, Departemen Matematika ITB, Indonesia (2004)
5. Hasmawati, E.T., Baskoro, E.T., Assiyatun, H.: Star–wheel Ramsey numbers. J. Comb. Math. Comb. Comput. 55, 123–128 (2005)
6. Jackson, B.: Cycles in bipartite graphs. J. Comb. Theory Ser. B 30(3), 332–342 (1981)
7. Surahmat, E.T., Baskoro, I.: On the Ramsey number of path or star versus \(W_4 \) or \(W_5 \). In: Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms (Bandung, Indonesia), pp. 174–179 (2001)
8. Zhang, Y., Chen, Y., Zhang, K.: The Ramsey numbers for stars of even order versus a wheel of order nine. Eur. J. Comb. 29, 1744–1754 (2008)
9. Zhang, Y., Cheng, T.C.E., Chen, Y.: The Ramsey numbers for stars of odd order versus a wheel of order nine. Discrete Math. Algorithm Appl. 1(3), 413–436 (2009)