CONSTRUCTION OF HOMOGENEOUS LAGRANGIAN SUBMANIFOLDS IN \mathbb{CP}^N AND HAMILTONIAN STABILITY

DAVID PETRECCA AND FABIO PODESTÀ

(Received November 22, 2010, revised September 12, 2011)

Abstract. We apply the concept of castling transform of prehomogeneous vector spaces to produce new examples of minimal homogeneous Lagrangian submanifolds in the complex projective space. Furthermore we verify the Hamiltonian stability of a low dimensional example that can be obtained in this way.

1. Introduction. Given a $2n$-dimensional Kähler manifold (M, g, J) with Kähler form ω, an n-dimensional submanifold L is said to be Lagrangian if the pull back of ω to L vanishes. If there exists a connected Lie subgroup G of Kähler automorphisms of M such that L is a G-orbit, then L is said to be a homogeneous Lagrangian submanifold. Such a class provides a large number of examples of Lagrangian submanifolds. Throughout this paper we assume that a Lagrangian submanifold is closed, namely, compact without boundary.

When $M = \mathbb{CP}^n$ and the group G is compact and simple, a full classification of Lagrangian G-orbits has been obtained in [2], while a full classification of homogeneous Lagrangian submanifolds of the quadrics has been achieved by Ma and Ohnita [11]. Our first result gives a way of producing new homogeneous Lagrangian submanifolds of the complex projective space starting from known ones. The construction is based on the main result of [3] and the castling transform, which will be explained in Section 2, of a triple (G, ρ, V) consisting of a compact Lie group G, a complex vector space V and a representation $\rho : G \to \text{GL}(V)$.

Theorem 1.1. Let (G, ρ, V) and (G', ρ', V') be two irreducible triplets related by the castling transform, where G and G' are compact connected semisimple Lie groups. Then the induced action of G on $P(V)$ admits a Lagrangian orbit if and only if so does the G'-action on $P(V')$.

In [15], Oh introduced the notion of Hamiltonian stability for minimal Lagrangian submanifolds of a Kähler manifold (M, g, ω). Given a minimal Lagrangian submanifold $i : L \to M$, it is said to be Hamiltonian stable if the second variation of the volume functional through Hamiltonian variations is nonnegative, where Hamiltonian variations correspond to normal vector fields V such that the one form $i^*(i_V \omega)$ is exact. Hamiltonian stability for Lagrangian submanifolds of the complex projective space turns out to be a strictly simpler condition than the usual stability, since for example the standard real projective space $\mathbb{RP}^n \subset \mathbb{CP}^n$ is minimal.

2010 Mathematics Subject Classification. Primary 53D12; Secondary 32J27, 57S25.

Key words and phrases. Homogeneous spaces, Lagrangian submanifolds, Hamiltonian stability.
and Hamiltonian stable, but not stable in the usual sense. If we endow \(CP^n \) with the standard Fubini-Study metric \(g_{FS} \) with holomorphic sectional curvature \(c \), then Oh [15] proved that a minimal Lagrangian submanifold \(L \) is Hamiltonian stable if and only if the first eigenvalue \(\lambda_1(L) \) for the Laplacian \(\Delta \) relative to the induced metric and acting on \(C^\infty(L) \) satisfies \(\lambda_1(L) \geq (n+1)c/2 \). Actually, since \(\lambda_1(L) \leq (n+1)c/2 \) for every minimal Lagrangian submanifold of \(CP^n \) by a result due to Ono [14] (see also [6], [17]), we see that Hamiltonian stability is equivalent to \(\lambda_1(L) = (n+1)c/2 \).

It is a natural and interesting problem to classify all minimal, Hamiltonian stable Lagrangian submanifolds of \(CP^n \). In [1], Amarzaya and Ohnita prove that every minimal Lagrangian submanifold with parallel second fundamental form is actually Hamiltonian stable, while Bedulli and Gori [3] and independently Ohnita [16] exhibited the first example of a Hamiltonian stable Lagrangian submanifold which has non-parallel second fundamental form. This example sits inside \(CP^3 \) and is homogeneous under the action of the group \(SU(2) \). Again using the castling transform, we are able to provide a new, low dimensional example,

Theorem 1.2. The group \(G = SU(2) \times SU(2) \) acts in a standard way on \(V = S^2(C^2) \otimes C^2 \cong C^6 \) and its induced action on \(CP^5 \) has a minimal, Hamiltonian stable Lagrangian orbit \(L \) with non-parallel second fundamental form. The fundamental group \(\pi_1(L) \) is isomorphic to \(Z_4 \).

We remark that any Lagrangian orbit of a semisimple Lie group is minimal, whenever the ambient manifold is Kähler-Einstein (see [2]). We formulate the following conjecture.

Conjecture. If a compact (semi)simple subgroup \(G \subset SU(N) \) for some \(N \) admits a Lagrangian orbit \(O \) in \(CP^{N-1} \), then \(O \) is Hamiltonian stable.

In Section 2, we prove Theorem 1.1, while in Section 3 we prove the Hamiltonian stability of our new example by using Oh’s criterion and a direct computation of the first eigenvalue \(\lambda_1(L) \).

Notation. We use capital Latin letters for Lie groups and the corresponding lowercase Gothic letter for their Lie algebras. If \(G \) is a group acting isometrically on the Riemannian manifold \(M \), for any \(X \in \mathfrak{g} \) we denote by \(\hat{X} \) the induced Killing field on \(M \).

Acknowledgments. The authors thank an anonymous referee for his/her careful reading and constructive comments.

2. Proof of Theorem 1.1. We first recall some notions that can be found in [8, 18] and their application used in [2].

Let \(U \) a complex algebraic group, \(V \) a complex vector space and \(\rho \) a rational representation of \(U \) on \(V \). The triplet \((U, \rho, V)\) is said to be a prehomogeneous triplet (PVS) if \(V \) admits a Zariski-dense \(U \)-orbit \(\Omega \). The isotropy subgroups of points in \(\Omega \) are all conjugate to a subgroup \(H \subseteq U \), which is called the generic isotropy subgroup. The triplet is said to be irreducible if \(\rho \) is.
Two triplets \((U, \rho, V), (U', \rho', V')\) are said to be equivalent if there is a rational isomorphism \(\phi : \rho(U) \to \rho'(U')\) and a linear isomorphism \(\tau : V \to V'\) such that for all \(g \in U\) we have \(\tau \circ \rho(g) = \phi(\rho(g)) \circ \tau\).

We can now define the important notion of castling. We say that two irreducible triplets \((U, \rho, V)\) and \((U', \rho', V')\) are castling transforms of each other if there exists a third triplet \((\tilde{U}, \tilde{\rho}, V^m)\) and a positive integer \(m > n \geq 1\) such that

\[
(U, \rho, V) \cong (\tilde{U} \times \text{SL}(n), \tilde{\rho} \otimes \Lambda_1, V^m \otimes \mathbb{C}^n),
\]

\[
(U', \rho', V') \cong (\tilde{U} \times \text{SL}(m - n), \tilde{\rho}^* \otimes \Lambda_1, V^{m*} \otimes \mathbb{C}^{m-n}).
\]

A triplet is said to be reduced if it is not a castling transform of any other triplet having a lower dimensional vector space. It is also known that two castling-related irreducible prehomogeneous triplets have isomorphic generic isotropy subgroups ([18, §2, Prop. 9]).

Given two compact connected Lie groups \(G, G'\) together with two irreducible representations \((\rho, V)\) and \((\rho', V')\), we say that the triplets \((G, \rho, V)\) and \((G', \rho', V')\) are castling related if the triplets \((G^C, \rho, V)\) and \((G'^C, \rho', V)\) are prehomogeneous and castling related in the sense explained above.

In order to prove Theorem 1.1, we first prove a lemma which has its own interest.

Lemma 2.1. Let \(G\) a compact connected semisimple Lie group acting linearly on some complex vector space endowed with the canonical symplectic structure. Then there is no Lagrangian \(G\)-orbit.

Proof. If \(L\) is any \(G\)-orbit, the semisimplicity of \(G\) implies that \(\pi_1(L)\) is finite, by the long exact homotopy sequence. Therefore \(H^1(L, R) = 0\). On the other hand, a classical result due to Gromov [4] states that any compact Lagrangian submanifold of a complex vector space has nontrivial first cohomology group. \(\square\)

We now have all the tools to give the proof.

Proof of Theorem 1. Suppose that the \(G\)-orbit through \([p]\) \(\in P(V)\) is Lagrangian. Then \(G^C \cdot [p]\) is open Stein by [2]. If \(U = G^C \times \text{GL}(1)\) we claim that the orbit \(U \cdot p\) is open Stein in \(V\). In particular, we claim that \(u_p = g_{[p]}^C\), which is reductive and therefore \(U \cdot p\) is Stein by Matsushima’s characterization [10]. Indeed

\[
u_p = \{ (X, z) \in g^C \oplus \mathbb{C} : Xp = -zp \},\]

in particular \(X \in g_{[p]}^C\), hence \(X \in (g_{[p]}^C)^C\) because \(G \cdot [p]\) is Lagrangian. Now consider the orbit \(G \cdot p \subset V\) and note that it is isotropic by a simple argument involving the expression of the moment map for actions in projective spaces (see, e.g., [5]). By Lemma 2.1 it cannot be Lagrangian, so by dimensional reasons, it is a finite covering of the Lagrangian orbit in \(P(V)\). In particular \(g_p = g_{[p]}\). So \((X, z) \in u_p\) if and only if \(X \in g_p^C\) and \(z = 0\), therefore \(u_p = (g_{[p]}^C)^C\) as we claimed. Furthermore, \(U \cdot p\) is open for dimensional reasons.

Now we apply a castling transformation to get a triplet \((U', \rho', V')\), where \(U' = G'^C \times \text{GL}(1)\). This triplet has generic isotropy isomorphic to the subgroup \(H = U_p\), hence still reductive.
Let \(\Omega = U'/H \) be the open Stein orbit in \(V' \). This \(U' \)-orbit projects onto an open \(U' \)-orbit \(\Omega' = U'/H' \subset P(V') \). In order to prove that \(G' \) admits a Lagrangian orbit in \(P(V') \), we apply the main result in [2], according to which it is enough to show that \(\Omega' \) is Stein. Now, \(\Omega' \) is Stein because \(H' \) is reductive and this follows from standard arguments. Indeed we notice that \(H \leq H' \) is normal and that \(\dim C H'H = 1 \). By reductiveness we have \(h' = h \oplus m \) for some subspace \(m \) with \([m, h] \subset m \). Also \([h, m] \subset h \) since \(h \subset h' \) is an ideal. Hence \([h, m] = 0 \) and \(m \) is a one-dimensional and central in \(h' \). Therefore \(h' \) is reductive as we claimed.

3. The Example and its Hamiltonian Stability.

Consider the group \(G = SU(2) \times SU(2) \) acting on \(V = S^2(C^2) \otimes C^2 \cong C^6 \) with the standard representation \(\rho \). We consider the induced action on \(P(V) = CP^5 \). Let \(\{e_1, e_2\} \) the standard basis of \(C^2 \). We may define a unitary structure on \(S^2(C^2) \) with an orthonormal basis given by \(\{e_1^2, \sqrt{2}e_1e_2, e_2^2\} \) with respect to which the induced action of \(SU(2) \) becomes unitary. By tensoring with the standard basis of \(C^2 \) we get an orthonormal basis of \(V \). It is known that this action is Hamiltonian and that the moment map \(\mu : CP^5 \rightarrow g^* \) has the form (see, e.g., again [5])

\[
\mu([v])(X, Y) = -\frac{i}{2} \frac{\langle dp(X, Y)v, v \rangle}{\langle v, v \rangle},
\]

where \(v \in V \setminus \{0\}, (X, Y) \in g = su(2) \oplus su(2) \).

We consider the point \(p = (1/\sqrt{2})(e_1^2 \otimes e_1 + e_2^2 \otimes e_2) \in V \). A straightforward computation shows that \(\mu([p]) = 0 \) and, since \(g \) is semisimple, we conclude that the \(L := G \cdot [p] \subset CP^5 \) is isotropic.

A direct computation shows that the isotropy subgroup \(K := G_{[p]} \) has the Lie algebra \(\mathfrak{k} = R \cdot H \), where

\[
H = \left(\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} -2i & 0 \\ 0 & 2i \end{pmatrix} \right)
\]

and \(K/K^0 = Z_4 \), generated by the coset of the element

\[
\sigma = \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right) \in K.
\]

By dimensional reasons \(L \) is Lagrangian and moreover \(\pi_1(L) = Z_4 \). Furthermore, being homogeneous under a semisimple Lie group, the submanifold \(L \) is also minimal by [2]. It is also clear that its second fundamental form is not parallel by the classification in [13].

3.1. The metric on \(L \)

We now compute explicitly the metric \(g \) induced on \(L \) by \(g_{FS} \). We denote with \(B \) the Killing-Cartan form on \(g \) and we consider the \(B \)-orthonormal vectors of \(g \) given by

\[
X_1 = (X, 0), \quad X_2 = (0, X), \quad Y_1 = (Y, 0), \quad Y_2 = (0, Y),
\]

where

\[
X = \frac{1}{\sqrt{8}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad Y = \frac{1}{\sqrt{8}} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.
\]
We also define the unit vector

\[V = \frac{1}{2\sqrt{10}} \begin{pmatrix} 2i & 0 \\ 0 & -2i \end{pmatrix}, \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}. \]

If we put \(m_j := \text{Span}\{X_j, Y_j\} \) we have the \(B \)-orthogonal splitting

\[g = \mathfrak{e} \oplus R \cdot V \oplus m_1 \oplus m_2. \]

We now compute the corresponding Killing vector fields at \(p \in S^{11} \). We see that

\[\tilde{X}_1 = \frac{1}{2\sqrt{2}}(-\sqrt{2}e_1e_2 \otimes e_1 + \sqrt{2}e_1e_2 \otimes e_2), \quad \tilde{X}_2 = \frac{1}{4}(-e_1^2 \otimes e_2 + e_2^2 \otimes e_2), \]

\[\tilde{Y}_1 = \frac{i}{2\sqrt{2}}(\sqrt{2}e_1e_2 \otimes e_1 + \sqrt{2}e_1e_2 \otimes e_2), \quad \tilde{Y}_2 = \frac{i}{4}(e_1^2 \otimes e_2 + e_2^2 \otimes e_2) \]

and

\[\tilde{V}_p = \frac{3\sqrt{5}}{20}(e_1^2 \otimes e_1 - e_2^2 \otimes e_2). \]

Starting from the Riemannian submersion \(S^{11} \to CP^5 \) for the construction of the Fubini-Study metric \(g_{FS} \) with constant holomorphic sectional curvature \(c = 4 \) [9, vol. II], we compute their lengths with respect to the Riemannian metric \(g \) induced on \(L \):

\[\| \tilde{X}_1[p] \|_g = \| \tilde{Y}_1[p] \|_g = \frac{1}{2}, \quad \| \tilde{X}_2[p] \|_g = \| \tilde{Y}_2[p] \|_g = \frac{1}{2\sqrt{2}}, \]

\[\| \tilde{V}_p \|_g = \frac{3\sqrt{5}}{20}. \]

Define now

\[V_1 = \frac{2\sqrt{10}}{3} V \]

and

\[F_1 = 2X_1, \quad F_2 = 2\sqrt{2}X_2, \quad G_1 = 2Y_1, \quad G_2 = 2\sqrt{2}Y_2. \]

The metric \(g \), induced on \(G/K \) from the Fubini-Study metric on \(CP^5 \), induces a metric \(g_0 \) on \(m := R \cdot V \oplus m_1 \oplus m_2 \). Note that these three submodules are mutually \(\text{Ad}(K) \)-inequivalent and therefore mutually orthogonal and the vectors \(V_1, F_1, F_2, G_1, G_2 \) form a \(g_0 \)-orthonormal basis.

3.2. The Laplace operator on \(C^\infty(L) \)

We claim that the first eigenvalue \(\lambda_1(L) \) of the Laplacian \(\Delta_g \) on \(L \) is equal to the Einstein constant \(\kappa = 12 \) of \(g_{FS} \) on \(CP^5 \).

We now recall some general facts about invariant operators on homogeneous spaces. If \(M^n = G/K \) is a compact homogeneous space and \(g = \mathfrak{e} \oplus m \) is an orthogonal splitting with respect to some \(\text{Ad}(G) \)-invariant inner product on \(g \), we let \(S(m) \) the symmetric algebra of \(m \), \(S(m)_K^F \) the complexification of the \(\text{Ad}(K) \)-invariant subspace of \(S(m) \) and \(\mathcal{D}(M) \) the space of \(G \)-invariant differential operators on \(M \). In this notation we recall a well-known result that can be found in [7, 12].
THEOREM 3.1. Let Y_1, \ldots, Y_n be a basis of \mathfrak{m} and identify $S(\mathfrak{m})$ with polynomials in those indeterminates. Then the map $\hat{\kappa} : S(\mathfrak{m})_K \rightarrow D(M)$ defined by

$$P(Y_1, \ldots, Y_n) f(xK) = P\left(\frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n}\right) f\left(x \exp \left(\sum_i y_i Y_i\right) K\right)$$

is a linear isomorphism. Furthermore, if Y_1, \ldots, Y_n is an orthonormal basis with respect to an $\text{Ad}(K)$-invariant scalar product g_0 on \mathfrak{m} and Δ_g is the Laplacian corresponding to the G-invariant metric g on M induced by g_0, then

$$\Delta_g = -\hat{\kappa}\left(\sum_i Y_i^2\right).$$

Let $\rho : G \rightarrow \text{U}(V)$ be a unitary representation of degree d_ρ of the Lie group G, V^K the subspace of V of vectors fixed by the subgroup K and $m_\rho = \dim V^K$. A representation such that $m_\rho > 0$ is said to be a spherical representation of the pair (G, K). Let $\{v_1, \ldots, v_{d_\rho}\}$ be an orthonormal basis of V such that the first m_ρ elements are a basis of V^K. Define the functions ρ_{ij} on G/K by $\rho_{ij}(xK) = \langle \rho(x)v_j, v_i \rangle$ for $1 \leq j \leq m_\rho$ and $1 \leq i \leq d_\rho$.

The Peter-Weyl Theorem (see e.g. [7]) states that the set of functions $\{\sqrt{d_\rho \rho_{ij}}, \text{ as } \rho \text{ varies among all spherical representations of } (G, K)\}$, is a complete orthonormal system of $L^2(M, \mathbb{C})$ with respect to the standard L^2-norm corresponding to the G-invariant Riemannian metric g.

We now classify all the spherical irreducible representations of our pair (G, K). Any irreducible representation space is of the form $V_{k,m} = S^k(C^2) \otimes S^m(C^2)$ for some $k, m \in \{0\} \cup \mathbb{N}$. Since $(-\text{id}, \text{id})$, $(\text{id}, -\text{id}) \in K$ we see that, if $V_{k,m}^K \neq \{0\}$, k and m must be even, say $k = 2l$ and $m = 2n$. We have

$$H \cdot e_1^p e_2^{k-p} \otimes e_1^q e_2^{2n-q} = [(2p - k)i + 4(n - q)i] e_1^p e_2^{k-p} \otimes e_1^q e_2^{2n-q}.$$

Computing also $\sigma \cdot (e_1^p e_2^{2l-p} \otimes e_1^q e_2^{2n-q}) = (-1)^n p e_1^l e_2^{2l-p} \otimes e_1^{2n-q} e_2^q$, we can conclude that

$$V_{2l,2n}^K = \text{Span}\{v_{pq} := e_1^p e_2^{2l-p} \otimes e_1^q e_2^{2n-q} + (-1)^n p e_1^l e_2^{2l-p} \otimes e_1^{2n-q} e_2^q\}$$

with the relations

$$\begin{align*}
p = l - 2(n - q), & \quad 0 \leq q \leq 2n, \quad 2n - l \leq 2q \leq 2n + l.
\end{align*}$$

At this point we can compute the eigenvalues for the Laplace operator. Indeed we will explicitly write down the action of the operator

$$D = d\rho(V_1^2) + d\rho(F_1^2) + d\rho(F_2^2) + d\rho(G_1^2) + d\rho(G_2^2)$$

on the vectors $v_{pq} \in V_{2l,2n}^K$.

We have, using the first equality in relations (3.1),

$$d\rho(V_1)^2 (e_1^p e_2^{2l-p} \otimes e_1^q e_2^{2n-q}) = -4(q - n)^2 (e_1^p e_2^{2l-p} \otimes e_1^q e_2^{2n-q}).$$
Also we compute
\[
\rho(F_1)^2 \cdot \left(e_1^p e_2^{2l-p} \otimes e_1^q e_2^{2n-q} \right) = \frac{1}{2} \left(\varepsilon^p(p-1) e_2^{2l-p+2} - [p(2l-p+1)+(2l-p)(p+1)] e_2^{2l-p} + (2l-p)(2l-p-1) e_2^{2l-p+2} \otimes e_2^{q2n-q} \right).
\]
In a similar way we compute
\[
\rho(F_2)^2 + \rho(G_2)^2 \cdot \left(e_1^p e_2^{2l-p} \otimes e_1^q e_2^{2n-q} \right) = 2(p^2 - 2lp - l) e_2^{2l-p} \otimes e_2^{q2n-q})
\]
and
\[
\rho(F_3)^2 + \rho(G_3)^2 \cdot \left(e_1^p e_2^{2l-p} \otimes e_1^q e_2^{2n-q} \right) = 4(q^2 - 2nq - n) e_2^{2l-p} \otimes e_2^{q2n-q}).
\]
A direct check shows that the vectors \(v_{pq} \in V_{2l,2n}^K \) are eigenvectors for the operator \(D \), and therefore
\[
-\Delta_g \rho_{pq,ab}(x) = \langle \rho(x)DV_{pq}, v_{ab} \rangle = \lambda_{pq} \rho_{pq,ab}(x).
\]
with eigenvalue
\[
\lambda_{pq} = 2(2(q-n)^2 - (p^2 - 2lp - l) - 2(q^2 - 2nq - n)) = 2(2n^2 + 2n + l^2 + l - 2q^2 - 2n)^2.
\]
For any nonnegative integers \(l, n \) let \(\mathcal{F}_{l,n} \) be the set of pairs \((p, q)\) satisfying the relations in (3.1). Define
\[
\lambda_{l,n}^{1,l,n} := \min_{(p, q) \in \mathcal{F}_{l,n}} \lambda_{pq}
\]
so that the least eigenvalue for the Laplace operator is
\[
\lambda_1(L) = \min_{l,n} \lambda_{l,n}^{1,l,n},
\]
as \((l, n)\) varies among the nonnegative integers giving rise to a spherical representation of \((G, K)\).

Now note that \(|2q - 2n| \leq l\) and therefore \(\lambda_{l,n}^{1,l,n} \geq 2(2n^2 + 2n + l) \geq 24\) if \(n \geq 2\), so we analyze the following cases.

- If \(n = 0\) then \(q = 0\) and \(l = \sigma\) so \(V_{2l,0}^K\) is spanned by the vector \(e_1^l e_2^l\), and this vector is fixed by \(\sigma\) if and only if \(l\) is even. Therefore \(V_{2l,0}^K\) is spherical only if \(l \geq 2\) and this implies \(l_{1,0}^{1,l} = 2(l + l^2) \geq 12\) with equality when \(l = 2\). \(V_{4,0}^K\) is spanned by \(v_{2,0}\).

- If \(n = 1\) and \(l \geq 3\) then \(l_{1,1}^{1,l,n} \geq 2(4 + l) \geq 14\), so we can assume \(l \leq 2\).

 If \(l = 0\), then \(V_{0,2}^K\) is spanned by \(e_1 e_2\), but it is reversed by \(\sigma\), so \(V_{0,2}^K\) is trivial.

 If \(l = 1\), then \(p = 2q - 1\) with \(1 \leq 2q - 3\), hence \(p = q\). Then \(V_{2,2}^K\) is spanned by \(e_1 e_2 \otimes e_1 e_2\) and therefore \(V_{2,2}^K\) is spherical and \(\lambda_{1,1} = 2(4 + 1) = 12\).

 If \(l = 2\), then \(0 \leq q \leq 2\) and \(\lambda_{p,q} = 2(10 - 4(q - 1)^2) \geq 12\) with equality when \(q = 0\) or \(q = 2\). \(V_{4,2}^K\) is spanned by \(v_{0,0} = -v_{4,2}\).

So \(\lambda_1(L)\) attains its lower bound which is equal to the Einstein constant \(\kappa = 12\).
REMARK. We note that the multiplicity of the eigenvalue $\lambda_1(L) = 12$, which is the nullity of L, is given by

$$\dim_{\mathbb{C}} V_{4,0} + \dim_{\mathbb{C}} V_{2,2} + \dim_{\mathbb{C}} V_{4,2} = 29 = \dim \text{SU}(6) - \dim G.$$

REFERENCES

[1] A. Amarzaya and Y. Ohnita, Hamiltonian stability of certain minimal Lagrangian submanifolds in complex projective spaces, Tohoku Math. J. 55 (2003), 583–610.
[2] L. Bedulli and A. Gori, Homogeneous Lagrangian submanifolds, Comm. Anal. Geom. 16 (2008), 591–615.
[3] L. Bedulli and A. Gori, A Hamiltonian stable minimal Lagrangian submanifold of projective space with non-parallel second fundamental form, Transform. Groups 12 (2007), 611–617.
[4] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.
[5] V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984.
[6] E. Heintze, Extrinsic upper bounds for A_1, Math. Ann. 280 (1988), 389–402.
[7] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math. 12, Academic Press, New York-London, 1962.
[8] T. Kimura, A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications, J. Algebra 83 (1983), 72–100.
[9] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Tracts in Pure and Applied Mathematics, No.15, Vol I, Vol II, Interscience Publishers, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1963, 1969.
[10] Y. Matsushima, Espaces homogenes de Stein des groupes de Lie complexes, Nagoya Math. J. 16 (1960), 205–218.
[11] H. Ma and Y. Ohnita, On Lagrangian submanifolds in complex hyperquadrics and isoparametric hypersurfaces in spheres, Math. Z. 261 (2009), 749–785.
[12] H. Mutô and H. UraKawa, On the least positive eigenvalue of Laplacian for compact homogeneous spaces, Osaka J. Math. 17 (1980), 471–484.
[13] H. Naitoh and M. Takeuchi, Totally real submanifolds and symmetric bounded domains, Osaka J. Math. 19 (1982), 717–731.
[14] H. Ono, Minimal Lagrangian submanifolds in adjoint orbits and upper bounds on the first eigenvalue of the Laplacian, J. Math. Soc. Japan 55 (2003), 243–254.
[15] Y.-G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101 (1990), 501–519.
[16] Y. Ohnita, Stability and rigidity of special Lagrangian cones over certain minimal Legendrian orbits, Osaka J. Math. 44 (2007), 305–334.
[17] A. Ros, Spectral geometry of CR-minimal submanifolds in the complex projective space, Kodai Math. J. 6 (1983), 88–99.
[18] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155.