Materials Research Express

PAPER

Electrochemical behaviors and discharge performance of Mg-Sn binary alloys as anodes for Mg-air batteries

Lu Han1,2, Yuwenxi Zhang1,2, Yangyang Guo3, Yangjie Wan1,2, Lingling Fan1,2, Mingyang Zhou4 and Gaofeng Quan1,2 ⋆

1 Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, People’s Republic of China
2 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People’s Republic of China
3 Xi’an Rare Metal Materials Institute Co. Ltd, Xi’an, 710021, People’s Republic of China
4 Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, 610213, People’s Republic of China

E-mail: quangf@swjtu.edu.cn

Keywords: Mg-air batteries, Mg-Sn binary anodes, discharge performance, electrochemical behaviors

Abstract

In this work, the self-corrosion and discharge performance of the as-cast Mg-xSn (x = 1, 5, 9 wt%) anodes for primary Mg-air batteries were studied through microstructure characterization, electrochemical testing and discharge experiments. With the increase of Sn content, the volume fraction of the Mg₂Sn phase increases, promoting dendrite refining. According to the electrochemical test, the Mg-1Sn anode shows a higher open circuit potential, resulting in a stronger electrochemical activity. The polarization curve and electrochemical impedance spectra show the corrosion resistance order as Mg-1Sn > Mg-5Sn > Mg-9Sn. In the discharge measurement, the Mg-1Sn anode achieves the best average discharge voltage, anode efficiency, specific capacity, and energy density under all current densities tested. At 10 mA cm⁻², the energy density of Mg-1Sn is 1239.621 mWh g⁻¹, which is higher than the Mg-5Sn anode and Mg-9Sn anode, 37% and 25%, respectively. The optimal discharge performance of the Mg-1Sn anode is mainly attributed to the high electrochemical activity and the micron-sized Mg₂Sn phase dispersed in the matrix, which facilitates more uniform dissolution.

1. Introduction

As the promising electrochemical energy storage and conversion equipment, metal-air batteries receive widespread attention in consumer electronics, electric vehicles and stationary power plants due to their higher theoretical energy density [1, 2]. Generally, metal-air batteries are composed of a metal anode, an air cathode and an aqueous or non-aqueous electrolyte. The oxygen in the air is the reactant of cathode reaction, and the electrolytes providing a zone for ion exchange are usually alkaline, saline, or aprotic [3]. The metal anode, as the only active component, plays a vital role in metal-air batteries. According to the invention date, these metals are zinc (Zn), aluminum (Al), magnesium (Mg), iron (Fe), lithium (Li), sodium (Na), and potassium (K) [4]. Among them, Mg is considered as a potential anode material for metal-air batteries due to the high specific energy density (6.8 kW h kg⁻¹), high theoretical specific capacity (2.2 A h g⁻¹), a negative standard electrode potential (−2.37 V versus standard hydrogen electrode, SHE), and relatively low density (1.74 g cm⁻³) [5, 6]. However, the practical application of Mg-air batteries is still limited because some key issues have not been resolved [3]. In the aqueous electrolyte, the Mg anode has a severe hydrogen evolution reaction (HER), which reduces the anode efficiency and discharge capacity [7]. The Mg(OH)₂ generated by HER and battery discharge easily agglomerates on the surface of the Mg anode, which leads to the anode polarization and the electrode reaction sluggish kinetics [8, 9]. Another is the specific negative difference effect (NDE) of Mg that the anode current and the cathode current increase with increased applied potential, accelerating the hydrogen evolution and corrosion rate [3].

In order to find a suitable Mg anode and promote the application of Mg-air batteries, alloying is an effective and economical method to improve the discharge performance and suppress the self-corrosion. The common
added alloying elements include Al [8, 10], Zn [11, 12], Pb [7, 13, 14], Li [15–17], Ca [6, 8, 18], Sn [8, 9, 19, 20], In [21, 22], Mn [8, 19], rare earths (RE) [7, 17, 23], etc. Among these elements, Li has been proved can effectively improve the discharge performance of Mg anodes [15, 17]. In α-Mg and β-Li based Mg alloys, the β-Li phase can weaken the HER reaction that often plagues α-Mg based alloy [15]. Wang et al [13] reported that there is an activation mechanism of dissolution-recrystallization between Pb and Al in the Mg-Al-Pb series alloy. Specifically, the precipitation of Pb2+ can destroy the structure of the discharge products layer, while the precipitation of Al3+ can promote the shedding of Mg(OH)2. As a result, Mg-Al-Pb series alloys as anodes for Mg-air batteries exhibit a higher discharge activity than pure Mg and AZ31 alloys [7]. Although these alloys show better discharge performance in Mg-air batteries, Li has higher costs and potential safety hazards in the manufacturing process due to its high activity. Pb is a toxic and heavy metal element that seriously endanger human health.

As an environmentally friendly element, Sn with a high hydrogen evolution overpotential, a large solubility in Mg and low cost, has attracted considerable attention in the field of corrosion and battery discharge [17, 18, 24]. Gu et al [20] studied the discharge performance of extruded Mg-Sn-Zn-Ag alloys with Sn content between 2 wt% and 8 wt% as anodes for Mg-air batteries. And Mg-4Sn-4Zn-1Ag anode with a high proportion of dynamic recrystallization and the dispersive nanometer-scale Mg2Sn phase, promoting the dissolution of the Mg matrix uniformly and providing a relatively high battery voltage and energy density. Song et al [25] reported that Sn modified AM70 alloy significantly reduces its sensitivity to local corrosion, which is accompanied by corrosion pits or corrosion grooves of large sizes and depth, causing metal blocks to fall off without participating in the discharge, significantly reducing anode efficiency [26]. In addition to the above advantages, Cain et al [27] reported that Mg-Sn alloys with different Sn content have a smaller cathode current density than AZ31B and high-purity Mg in the polarization curve test, which means that Mg-Sn alloys have a lower HER reaction rate. Mg-Sn alloys might be the candidate materials for primary Mg-air batteries anode, but there is no systematic study on their discharge properties in 3.5 wt% NaCl electrolyte. This work can provide valuable basic data for Mg-Sn binary anodes for primary Mg-air batteries.

2. Materials and methods

2.1. Materials preparation

The anode materials Mg-xSn (x = 1, 5, 9 wt%) alloys were obtained by melting pure Mg (99.9%) and pure Sn (99.99%). When the well-type resistance furnace temperature was 300 °C, the raw materials were put into a low-carbon steel crucible with a protective atmosphere composed of CO2 and SF6 (CO2: SF6 = 100:1). Next, the raw materials were melted entirely at 730 °C and kept isothermally for 15 min. When the temperature down to 710 °C, slag scraping and stirring were performed. Then, it was poured into a mild steel mold preheated at 200 °C over 2h to obtain a cylindrical ingot with a diameter of 95 mm and cooled in the air. The chemical composition of the as-cast Mg-xSn alloy was analyzed by inductively coupled plasma emission spectrometer (ICP-OES), as shown in table 1.

Alloy	Sn (wt%)	Mg (wt%)
Mg-1Sn	0.95	Bal.
Mg-5Sn	5.43	Bal.
Mg-9Sn	9.22	Bal.

2.2. Microstructure characterization

The phase identification of Mg-Sn alloys was identified by x-ray diffractometer (XRD; Empyrean). In this test, Cu Kα x-ray radiation was used to scan from 10° to 90°, and the scanning speed was 0.26° per second. Then the measured XRD curves were analyzed via Jade software. The Mg-Sn alloys were ground to 3000 grits with SiC sandpaper and polished with oxide polishing suspension (OPS) to remove most scratches. And supersaturated picric acid was used to etch the grain boundary. The microstructure of the samples prepared was observed using an optical microscope (OM, Zeiss Axio Lab. A1) and scanning electron microscopy (SEM, Quanta FEG 250 SEM). The X-max energy dispersive x-ray spectrometer (EDS) was used to determine the distribution of elements.
2.3. Electrochemical tests
The CorrTest electrochemistry workstation was used to measure the open circuit potential (OCP) and polarization curve, and the ZahnerZennium electrochemical workstation to measure the electrochemical impedance spectroscopy (EIS). Typical three-electrode system was used to test the electrochemical performance. The saturated calomel electrode (SCE) served as the reference electrode, the counter electrode was a platinum electrode (specification: 10 × 10 × 0.1 mm), and Mg-xSn alloys were used as the working electrode. Samples with an area of 10 mm × 10 mm were ground with sandpaper up to 2000 grit. Before polarization curve testing, the sample was immersed in the 3.5 wt% NaCl solution for 10 min to obtain a stable OCP and tested in the potential range of −500 mV to 500 mV (versus OCP) with a scan rate of 0.5 mV s⁻¹. The corrosion current density was calculated by extrapolating the cathodic branch to the corrosion potential. The EIS test was performed under a stable OCP with the scanning frequency from 100 kHz to 0.04 Hz. When it was greater than 66 Hz, the number of the steps per decade was 10, and at low frequencies was 5. The voltage amplitude was 10 mV. Then Zahner analysis was used to fit EIS curves. The reference electrode of this test was 0 V relative to the reversible hydrogen electrode. All electrochemical tests were repeated at least five times to ensure repeatability.

2.4. Mg-air battery tests
The performance of Mg-air batteries with Mg-Sn anodes was tested by a Neware battery testing system. The electrolyte used in the Mg-air battery test was 3.5 wt% NaCl solution. The air cathode used was MnO2/C catalyst, which was provided by Changzhou YOU TE KEI New Energy Technology Co., Ltd All the specimens used for the battery performance testing were polished to 2500 grit with SiC sandpaper and exposed to the electrolyte with a surface of 10 mm × 10 mm. By discharging for 10 h at current densities of 2.5 mA cm⁻², 5 mA cm⁻², 10 mA cm⁻² and 20 mA cm⁻², the potential-time curves of Mg-Sn anodes were obtained. A chromic acid aqueous solution (200 g l⁻¹ CrO₃ + 10 g l⁻¹ AgNO₃) was used to remove discharge products, then the anode efficiency was calculated by the mass loss method. The calculation formula is equations (1) and (2) [28].

\[
\text{Utilization Efficency(\%)} = \frac{W_{\text{theo}}}{\Delta W} \times 100\% \tag{1}
\]
The calculation formulas of specific capacity and specific energy density are shown in equations (3) and (4), respectively.

$$W_{\text{theo}} = \frac{I \times t}{F \times \sum n_i \times \Delta W \times m_i}$$

Specific capacity ($\text{mAh} \cdot \text{g}^{-1}$) = \frac{I \times t}{\Delta W} \times 1000

Specific energy ($\text{mWh} \cdot \text{g}^{-1}$) = $U \times \text{Specific capacity} (\text{mAh} \cdot \text{g}^{-1})$

Where W_{theo} is the theoretical weight loss due to faradaic process (g), ΔW is the weight loss of alloys during discharge process (g), I is the discharge current (A), t is discharge time (h), F is the Faraday constant (96485C mol$^{-1}$), x_i is the mass fraction, n_i is the number of exchanged electrons, m_i is atomic weight (g mol$^{-1}$) and U is the average discharge voltage (V) [6]. At last, the morphology of the removed surface discharge products after discharge was characterized by SEM.

3. Results and discussion

3.1. Microstructure of Mg-Sn alloys

Figure 1 shows the optical images and XRD patterns of cast Mg-xSn alloys. There is almost equiaxed grain structure in Mg-1Sn alloy (figure 1(a)), while distinct dendrites are found in the microstructure of Mg-Sn alloys with high Sn content (5 wt% and 9 wt%). The formation of dendrites is due to the composition supercooling near the solid-liquid interface when melting liquid solidified. As the content of Sn increases, it greatly promotes crystal nuclei formation, hinders the rapid growth of crystal grains, and refines the dendrites [29]. In XRD patterns, the α-Mg solid solution is detected in alloys, while the Mg$_2$Sn intermetallic is only seen in Mg-5Sn and Mg-9Sn alloys. The SEM images and EDS analysis of Mg-Sn binary alloys are shown in figure 2. According to the inset in figure 2(a), the raised bright white points marked by the yellow arrows are the Mg$_2$Sn phase, and the area surrounding the Mg$_2$Sn particles marked by the purple arrows are the enrichment areas of Sn [22]. Whereas, the Mg$_2$Sn phase in Mg-1Sn alloy cannot be detected by XRD might be associated with the low volume fractions and

Figure 2. The secondary electron images of (a) Mg-1Sn, (b) Mg-5Sn and (c) Mg-9Sn and corresponding high-magnification pictures are embedded in them, separately; EDS images of (d) Mg-1Sn, (e) Mg-5Sn, (f) Mg-9Sn.
its small dimension. With the Sn content up to 5 wt%, the Mg2Sn is distributed in irregular bands and dispersive points. Besides, there are still some Sn-rich zones. These Sn-rich zones originally formed the only second phase in the Mg-Sn alloy. Still, the Mg2Sn was not formed due to the large solid solubility of Sn in the Mg matrix, which reduces the precipitation of the Mg2Sn phase [30]. EDS images are tested to determine the distribution of Sn in Mg-Sn alloys, as shown in figures 2(d)–(i), corresponding to the inserted images in figure 2(a)–(c), respectively. In the elemental distribution maps, uniformity of elements in the Mg-1Sn alloy are revealed, aggregation and non-uniformity of elements in the Mg-9Sn alloy are displayed clearly. For Mg-Sn alloys, the increase in Sn content will decrease the distance between the liquidus line and the final eutectic temperature (i.e., the solidification interval). Compared with Mg-1Sn alloy, Mg-9Sn alloy has a lower total solid fraction at the end of solidification but a higher residual liquid phase or eutectic phase [31]. Due to the increase of the eutectic phase, the alloys with high Sn contents show evident element segregation in the eutectic region.

3.2. Electrochemical analysis

Figure 3(a) shows the open circuit potential (OCP) curves of Mg-Sn alloys in 3.5 wt% NaCl solution for 3600s. In the early stage of immersion, the OCP curves of Mg-Sn alloys all have a similar tendency. The potential first increases rapidly to a certain peak and then drops quickly. This rapid increase is due to the zero charge potential of Mg is more negative than its equilibrium potential, contributing to the accumulation of cation on the electrode surface, which causes the apparent potential to move in the inert direction [32]. Then the OCPs gradually shift in a positive direction. As the immersion time increases, the Mg-9Sn alloy is almost at a constant open circuit potential. Because there is a dynamic balance between the progress of the corrosion reaction and the deposition of corrosion products on the surface during the subsequent immersion for Mg-9Sn alloy [33]. The average OCP measured in the last 1600 s is set to EoCP, as shown in table 2. Mg-1Sn alloy has the most negative EoCP value of −1.883 V (versus SCE). With the increase of Sn content, the potential continuously turns into a more positive value, which suggests that the content of Sn in the Mg matrix plays a vital role in the electrochemical behavior of the Mg-Sn alloys [34].

Figure 3(b) reflects the polarization curves of the investigated alloys. It can be seen that with the increase of Sn content, the corrosion potential (Ecorr) gradually shifts towards positive potential, consistent with the OCP results. It proves once again that Mg-1Sn alloy has the strongest electrochemical activity. According to the literature, the polarization curve is comprised of two parts: the cathodic polarization curve indicates the water reduction (2H₂O + 2e⁻ → H₂ + 2OH⁻), while the anodic polarization curve represents the dissolution of magnesium (Mg → Mg²⁺ + 2e⁻) [21, 35]. In figure 3(b), with the increase of Sn content, the cathodic
polarization curve continuously shifts to the direction of a large current, which indicates that the cathodic reaction kinetics of the investigated alloy follow the sequence: Mg-9Sn > Mg-5Sn > Mg-1Sn [36]. As reported, Sn has a high hydrogen evolution overpotential, and when adding minor Sn to Mg can effectively inhibit the HER of the Mg matrix [8, 37]. The related electrochemical parameters obtained from the polarization curve are summarized in table 2. The corrosion current density (Jcorr) value of Mg-1Sn alloy is 19.73 μA cm⁻², which increases to 25.75 and 29.44 μA cm⁻² for Mg-5Sn and Mg-9Sn alloys. The Jcorr could reflect the initiate of corrosion because each polarization curve is tested only after 10 min immersion [38]. Although the Jcorr hardly gives many Mg alloys accurate corrosion rates, it is still receivable to make a qualitative reference [39]. According to literature research, a smaller Jcorr value shows better corrosion resistance [40, 41]. Therefore, the order of corrosion resistance of the alloy is Mg-1Sn > Mg-5Sn > Mg-9Sn.

Figure 4(a) displays the electrochemical impedance spectroscopy (EIS) in Nyquist plots of Mg-Sn alloys at OCP in 3.5 wt% NaCl solution. According to the Nyquist curves, two obvious capacitor semicircles are observed in Mg-1Sn alloy and Mg-5Sn alloy. For Mg-9Sn alloy, the middle capacitive semicircle becomes less evident and the inductive loop appears at low frequencies frequency. The EIS of Mg-1Sn and Mg-5Sn alloys are fitted using the equivalent circuit shown in figure 4(b), and the Mg-9Sn alloy is fitted using the equivalent circuit shown in figure 4(c). Among them, R_s represents the solution resistance, R_c represents the charge transfer resistance, R_f and CPE_f represent the resistance and capacitance of the oxide film, respectively. A constant phase element (CPE) is used to describe the non-ideal capacitive behavior. The element includes two parameters, namely Y and n. Y is like the capacitance of a corrosion system, and n changes from 0 to 1, which is a unitless index [7]. If n is equal to 1, then CPE is equivalent to pure capacitance. At last, CPE_dl represents double-layer capacitors.

The high-frequency capacitance semicircle is caused by the oxide film at the electrode/solution interface on the alloy surface. Its diameter corresponds to the R_c [39]. The fitting results are exhibited in table 3. The R_c value of the Mg-9Sn alloy is 444 Ω cm², which increases to 779 and 760 Ω cm² for Mg-1Sn and Mg-5Sn alloys, respectively. It indicates that the order of corrosion resistance is Mg-1Sn > Mg-5Sn > Mg-9Sn. The intermediate frequency capacitance semicircle is related to the interface between the passivation layer and the solution [42, 43]. The semicircle diameter shows the oxide film resistance (R_s) corresponding to the working electrode [44]. Since the Mg anode immersed in the NaCl solution will spontaneously dissolve and produce Mg²⁺, when the concentration of Mg²⁺ near the surface of the Mg anode reaches saturation, it will be deposited in the form of Mg(OH)₂ [45]. If the semicircle in the intermediate frequency range is not obvious, it means that the Mg(OH)₂ film could not be easily formed on the surface of the alloy [7], as shown in Mg-9Sn alloy in figure 4(a). Hence, the increasing Sn content consecutively increases the self-corrosion in Mg-Sn alloys. This is in keeping with the results obtaining from the polarization curves.

Table 3. Impedance parameters of the investigated alloys by fitting the EIS.

Electrolyte	R_s (Ω cm²)	R_c (Ω cm²)	Y_dl (Ω⁻¹ cm² s⁻¹)	n_dl	R_f (Ω cm²)	L(H)
Mg-1Sn	7.61	779	2.91 × 10⁻³	0.530	735	—
Mg-5Sn	8.72	760	1.78 × 10⁻³	0.444	694	—
Mg-9Sn	8.26	444	1.68 × 10⁻³	0.948	297	700

Figure 4. (a) Electrochemical impedance spectra (EIS) of Mg-Sn alloys in 3.5 wt% NaCl solution; the EIS of Mg-1Sn and Mg-5Sn alloy at OCP is fitted by the equivalent circuit (b), and the Mg-9Sn alloy fitted by (c).
3.3. Performance of Mg-air batteries

Figure 5 shows the voltage-time discharge curves of Mg-air batteries assembled with Mg-xSn anodes at current densities of 2.5 mA cm$^{-2}$, 5 mA cm$^{-2}$, 10 mA cm$^{-2}$ and 20 mA cm$^{-2}$ in 3.5 wt% NaCl solution for 10 h. At the early stage of the discharge process, due to the rapid accumulation of discharge products especially at the low current density (2.5 mA cm$^{-2}$), the surface area between anode and electrolyte greatly reduced, resulting in a significant decrease of battery voltage. Then three anodes maintain relatively stable discharge voltage during the whole discharge tests at 2.5 mA cm$^{-2}$. However, with the increase of current density, this stability decreases to varying degrees. Table 4 lists the average discharge voltage of the Mg-air batteries discharged for 10 h with different anodes. It can be seen that the Mg-1Sn anode has the highest discharge voltage in all tested alloys at each current density. Materials with a more negative potential in OCP may provide higher voltages when used as anodes in fully assembled batteries, results of this work are consistent with the rule. The results of anode potentiostatic polarization by Yang et al. show that the breakdown resistance of the surface films could be arranged in the following order: pure Mg < Mg-2Sn < Mg-5Sn, indicating that the corrosion resistance of the surface films to localized breakdown increased with the increase in the Sn content. Thus, at 2.5 mA cm$^{-2}$, the discharge product film on the surface of the Mg-9Sn anode is relatively complete, resulting in a lower discharge voltage than the Mg-5Sn anode. Because the dissolution rate of the anode gradually increases with the increased current density. When the current density is greater than 2.5 mA cm$^{-2}$, the average discharge voltage

![Figure 5. Discharge curves of investigated anodes in 3.5 wt % NaCl solution at current density of: (a) 2.5 mA cm$^{-2}$, (b) 5 mA cm$^{-2}$, (c) 10 mA cm$^{-2}$ and (d) 20 mA cm$^{-2}$.](image)

Anode	2.5 mA cm$^{-2}$	5 mA cm$^{-2}$	10 mA cm$^{-2}$	20 mA cm$^{-2}$
Mg-1Sn	1.418 ± 0.026	1.335 ± 0.005	1.245 ± 0.007	0.999 ± 0.050
Mg-5Sn	1.346 ± 0.010	1.258 ± 0.018	1.119 ± 0.011	0.910 ± 0.018
Mg-9Sn	1.342 ± 0.007	1.256 ± 0.006	1.222 ± 0.006	0.983 ± 0.023
of the Mg-9Sn anode exceeds the Mg-5Sn anode due to the cracks in the discharge product film, which ensures the contact between the electrolyte and the anode surface [9]. In addition, with the increase of Sn content, the volume fraction of the Mg$_2$Sn phase increases, which accelerates the dissolution of the Mg anode and significantly improves the discharge performance of the Mg-air battery [47].

The average voltage of Mg-1Sn anode at 10 mA cm$^{-2}$ reaches 1.245 ± 0.007 V, which is higher than pure Mg, Mg-Al-Zn, Mg-Al-Pb and Mg-Sn-Mn-Ca anodes [7, 19]. In the early stage of Mg-air battery discharge, the discharge product Mg(OH)$_2$ film can provide temporary protection for the Mg alloy and reduce the active area of the anode reaction. However, with the extension of the discharge time, the Mg(OH)$_2$ film will be partially removed from the surface of the Mg anode through the self-peeling effect and the activity will be restored [42]. Some saw-toothed peaks with larger fluctuation can be seen in Mg-1Sn and Mg-5Sn anodes at 20 mA cm$^{-2}$. In contrast, the Mg-9Sn anode remains some tiny cell voltage fluctuation during the whole discharge process. This indicates a relative dynamic balance between the dissolution of the Mg-9Sn matrix and the peeling of the oxidation products. Figure 6 displays the anodic efficiencies, specific capacity and specific energy of Mg-Sn anodes at different current densities. From figure 6(a), Mg-1Sn anodes have the highest anode efficiency at each current density. When the current density is 20 mA cm$^{-2}$, its average anode efficiency is 54.11%, 7.38% and 22.69% higher than Mg-5Sn and Mg-9Sn anode, respectively. According to the work of Baek et al [48], the potential of the Mg$_2$Sn phase seems to be about 350 mV higher than that of the α-Mg matrix, and the corrosion driving force generated by this potential difference leads to micro-galvanic corrosion, which accelerates the

Figure 6. Discharge properties of assembled Mg-air batteries with different anodes: (a) anodic efficiency, (b) specific capacity and specific energy.

Figure 7. Surface morphologies of investigated anodes after discharge 10 min (a)–(c) and 10 h (d–f) in 3.5 wt% NaCl solution at 2.5 mA cm$^{-2}$ with removing of discharge products: (a), (d) Mg-1Sn, (b), (e) Mg-5Sn, (c), (f) Mg-9Sn.
dissolution of the Mg matrix. Combined with the results of this work, Mg-Sn alloys with high Sn content (5 wt% and 9 wt%) are obviously not as suitable as the Mg-1Sn alloy as the anode of the Mg-air battery. In the Mg-1Sn alloy, the minor micron-sized Mg₂Sn phase in the Mg matrix with relative dispersed distribution favors its uniform dissolution during the discharge process. Additionally, the polarization curve and EIS reveal that the Mg-1Sn anode possesses a slight self-corrosion reaction. Therefore, it is not surprising that the Mg-1Sn alloy has the highest specific capacity and specific energy at each current density, as shown in figure 6(b). For example, at 20 mA cm⁻², its average discharge specific capacity and specific energy are 1180.68 mA h g⁻¹ and 1180.00 mW h g⁻¹ respectively, which are 8.49% and 19.22% higher than Mg-5Sn anode, and 26.87% and 29.06% higher than Mg-9Sn anode. As a consequence, it can be seen from the above results that among the three alloys prepared, the Mg-1Sn anode has the best discharge performance at each current density tested.

Figure 7 displays the surface morphologies of Mg-xSn anodes after discharging in 3.5 wt% NaCl solution at 2.5 mA cm⁻² for 10 min and 10 h after removing the oxidation products. After 10 min of discharging, the surface morphology of the Mg-1Sn anode is mainly composed of dispersed holes and shallow grooves, as shown in figure 7(a). When the discharge time increased to 10 h, the discharge morphology also shows relatively uniform dissolution like 10-minutes-discharge. Strip-like morphology composed of small discharge pits and strips is similar to the metallographic structure of figure 2(a), as shown by the yellow arrow in the inset of figure 7(d). This can be preliminarily judged that the Mg₂Sn phase and the Sn-enriched area promote the dissolution of the Mg anode. The Mg-5Sn anode also shows that the Mg₂Sn phase plays an essential role in Mg-Sn alloys dissolution. The most Mg₂Sn phase segregates at the dendrite boundary resulting in obvious grain boundary shedding. Some Mg₂Sn phase and Sn-rich zones disperse in the matrix resulting in irregular discharge pits with different sizes and depths at 2.5 mA cm⁻². After 10 h of discharge, the lamellar eutectic Mg₂Sn phase can be observed, as shown by the yellow arrow in figure 7(e). Although the Mg-9Sn alloy has an equiaxed dendritic structure, uneven discharge morphology is found in the initial discharge process of the Mg-9Sn anode. And some areas are not dissolved in the discharge process, marked by the orange circle in figure 7(c). After 10 h of discharge, apparent petal-like intergranular morphologies were found. Such deep discharge morphology exists in Mg-5Sn and Mg-9Sn alloys cause the metal blocks on the anode surface to fall off and cannot be used for effective battery discharge. When calculating the efficiency of the anode, the loss of weight due to the falling off of the metal block causes the efficiency to decrease [14]. This is another reason why the Mg-1Sn anode has a higher anode efficiency than Mg-5Sn and Mg-9Sn anodes when the current density is 2.5 mA cm⁻².

Figure 8 exhibits the surface morphologies of Mg-Sn anodes discharged at 20 mA cm⁻² for 10 h after removing the oxidation products. With the increase of Sn content, the discharge pits significantly deepen. As the Sn composition increases, the segregation of the Sn elements becomes more prominent and the dendrite size becomes larger, as shown in figures 2(g)–(i). In Mg-Sn alloys, this segregation is dominated by Mg₂Sn accompanied by some Sn-rich regions. And they can form a micro-galvanic couple with the α-Mg matrix to accelerate the dissolution of the Mg anode. Therefore, retiform and deep discharge holes are observed in Mg-9Sn anode at a discharge current density of 20 mA cm⁻². In the Mg-1Sn anode, relative even and shallow corrosion holes can be seen in figure 8(a). The results also show that when Sn is added with a mass fraction of 1 wt%, Mg-Sn anode has better discharge performance. As the above discussion, the volume fraction, distribution, size and morphology of the Mg₂Sn phase and Sn-rich region are the main factors that affect the discharge performance of the Mg-Sn binary anodes.

4. Conclusions

In this work, the electrochemical behaviors and discharge performance with different Sn content as the anode for Mg-air batteries in 3.5 wt% NaCl solution is studied. The main conclusions are as follows:...
(1) In the Mg-1Sn alloy, the micron-sized Mg$_2$Sn phase is dispersed in the matrix. As the Sn content increases, the volume fraction of the Mg$_2$Sn phase increases, promoting dendrite refining. In the elemental distribution maps, the segregation of Sn elements becomes more obvious with the increase of Sn content.

(2) The polarization curve and electrochemical impedance spectra show that the order of corrosion resistance is Mg-1Sn $>$ Mg-5Sn $>$ Mg-9Sn. From the cathodic polarization curve, Mg-9Sn alloy exhibits better reaction kinetics. Because the Mg$_2$Sn phase can form a micro-galvanic couple with the α-Mg matrix, it accelerates the corrosion of the Mg anode. In addition, the more Mg$_2$Sn phase in the Mg-9Sn alloy accelerates the micro-galvanic corrosion between it and the Mg matrix, resulting in more significant reaction kinetics.

(3) In the discharge measurement, the Mg-1Sn anode achieves the best average discharge voltage, anode efficiency, specific capacity, and energy under all current densities tested. When the current density is 10 mA cm$^{-2}$, the average discharge voltage and specific energy of the Mg-1Sn anode are 1.245V and 1239.621 mWh g$^{-1}$, respectively, which are 10.120% and 37.163% higher than the Mg-5Sn anode, 1.847% and 24.795% higher than the Mg-9Sn anode. And the Mg-1Sn anode shows a more uniform dissolution due to the dispersed micron Mg$_2$Sn phase and slight Sn-rich areas around it. However, compared with the Mg-1Sn alloy, the large-scale Mg$_2$Sn phase in the Mg-5Sn and Mg-9Sn alloys causes local and deep discharge pits on the surface of the Mg anode after discharge.

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (No: 52061040), and the 2020 open projects (No: KLATM202003) of Key laboratory of Advanced Technologies of Materials, Ministry of Education China, Southwest Jiaotong University. We would like to thank the Analytical and Testing Center of Southwest Jiaotong University for assistance with SEM characterization.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Gaofeng Quan @ https://orcid.org/0000-0001-5928-3082

References

[1] Han X P, Li X P, White J, Zhong C, Deng Y D, Hu W B and Ma T Y 2018 Metal-Air batteries: from static to flow system Adv. Energy Mater. 8 1–28
[2] Liu Q F, Pan Z F, Wang E D, An L and Sun G Q 2020 Aqueous metal-air batteries: fundamentals and applications Energy Storage Mater. 27 478–505
[3] Zhang T R, Tao Z L and Chen J 2014 Magnesium-air batteries: from principle to application Materials Horizons 1 196–206
[4] Chen X Q et al 2020 A review on recent advancement of nano-structured-fiber-based metal-air batteries and future perspective Renewable Sustainable Energy Rev. 134 110083
[5] Lv Y Z, Xu Y and Cao D X 2011 The electrochemical behaviors of Mg, Mg-Li-Al-Ce and Mg-Li-Al-Ce-Y in sodium chloride solution J. Power Sources 196 8809–14
[6] Deng M, Hochea D, Lamaka S V, Snihirova D and Zheludkevich M L 2018 Mg-Ca binary alloys as anodes for primary Mg-air batteries J. Power Sources 396 109–18
[7] Feng Y, Xiong W H, Zhang J, Wang R C and Wang N G 2016 Electrochemical discharge performance of the Mg-Al-Pb-Ce-Y alloy as the anode for Mg-air batteries J. Mater. Chem. A 4 8658–68
[8] Zheng M T X, Hu Y B, Zhang Y X, Yang S W and Pan F S 2018 Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries Mater. Des. 137 245–55
[9] Yuasa M, Huang X S, Suzuki K, Mabuchi M and Chino Y 2015 Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries J. Power Sources 297 449–56
[10] Liu H, Yan Y, Wu X H, Fang H J, Chu X, Huang J F, Zhang J X, Song J M and Yu K 2021 Effects of Al and Sn on microstructure, corrosion behavior and electrochemical performance of Mg-Al-based anodes for magnesium-air batteries J. Alloys Compd. 859 157755
[11] Lv Y Z, Liu M, Xu Y, Cao D X and Feng J 2013 The electrochemical behaviors of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn in sodium chloride solution J. Power Sources 225 124–8
[12] Wen L, Yu K, Xiong H Q, Dui Y L, Yang S H, Qiao X Y, Teng F and Fan S F 2016 Composition optimization and electrochemical properties of Mg-Al-Pb-(Zn) alloys as anodes for seawater activated battery Electrochem. Acta 194 40–51
[13] Wang L Q, Wang R C, Feng Y, Deng M and Wang N G 2017 Effect of Al and Pb Contents on the Corrosion Electrochemical Properties and Activation of Mg-Al-Pb Alloy Anode J. Electrochem. Soc. 164 A438–46
[14] Wang N G, Wang R C, Peng C Q and Feng Y 2014 Enhancement of the discharge performance of AP65 magnesium alloy anodes by hot extrusion Corros. Sci. 81 85–95
[15] Liu X, Xue J and Liu S Z 2018 Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities Mater. Des. 160 138–46
[16] Wang R C, Li Q, Wang N G, Peng C Q and Feng Y 2018 Effect of lithium on the discharge and corrosion behavior of Mg-3wt% Al alloy as the anode for seawater activated battery J. Mater. Eng. Perform. 27 6552–63
[17] Ma Y B, Li N, Li D Y, Zhang M L and Huang X M 2011 Performance of Mg-1Li-1Al-0.1C as anode for Mg-air battery J. Power Sources 196 2346–50
[18] Wang L Q, Sinhriova D, Deng M, Vaghefinazari B, Lamaska S V, Hämäläinen P and Zheudkevich M L 2020 Tailoring electrode additives for controlled Mg-Ca anode activity in aqueous Mg-air batteries J. Power Sources 660 2281–96
[19] Gu X J, Cheng W L, Cheng S M, Liu Y H, Wang Z F, Yu H C, Cui Z Q, Wang L F and Wang H X 2021 Tailoring the microstructure and improving the discharge properties of dilute Sn-Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion J. Mater. Res. Express 8 In Press
[20] Gu X J, Cheng W L, Cheng S M, Wu H, Wang Z F, Wang L F 2020 Discharge behavior of Mg-air batteries with different Sn contents as anodes for Mg-air batteries J. Electrochem. Soc. 167 020501
[21] Wang N G, Wang R C, Peng C Q, Peng B, Feng Y and Hu C W 2014 Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery Electrochim. Acta 149 193–205
[22] Yin M, Hou J F, Liu X D, Wang Z W, Liu B S, Jia J W, Zhang S H and Wei Y H 2019 Tailoring the micromorphology of the as-cast Mg-Sn-In alloys to corrosion-resistant microstructures via adjusting In concentration J. Alloys Compd. 811 1–13
[23] Wang N G, Li W P, Huang Y X, Wu G, Hu M C, Li G Z and Shi Z C 2019 Wrought Mg-Al-Pb-RE alloy strips as the anodes for Mg-air batteries J. Power Sources 436 2268–85
[24] Ren J M, Ma J B, Zhang J, Fu C P and Sun B D 2019 Electrochemical performance of pure Al, Al-Sn, Al-Mg and Al-Mg-Sn anodes for Al-air batteries J. Alloys Compd. 798 151708
[25] Song G J 2009 Effect of tin modification on corrosion of AM70 magnesium alloy Corros. Sci. 51 2063–70
[26] Deng M, Hämäläinen P, Lamaska S V, Wang L Q and Zheudkevich M L 2019 Revealing the impact of second phase morphology on discharge properties of binary Mg-Ca anodes for primary Mg-air batteries Corros. Sci. 153 229–39
[27] Cai T W, Glover C F and Scully J F 2019 The corrosion of solid solution Mg-Sn binary alloys in NaCl solutions Electrochim. Acta 297 564–75
[28] Xiao B, Song G L, Zheng D J and Cao F Y 2020 A corrosion resistant die-cast Mg-9Al-1Zn anode with superior discharge performance for Mg-air battery Mater. Des. 194 108931
[29] Zhao C Y, Fan F S, Zhao S, Pan H C, Song K and Tang A T 2015 Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn Sn implant alloys prepared by sub-rapid solidification Mater. Sci. Eng. C 54 245–51
[30] Chen X Z, Wei S H, Tong F L, Taylor M P and Cao P 2021 Electrochemical performance of Mg-Sn alloy anodes for Magnesium Rechargeable Battery Electrochim. Acta 398 139336
[31] Dev A and Palival M 2018 Influence of solute elements (Sn and Al) on microstructure evolution of Mg alloys: An experimental and simulation study J. Cryst. Growth 503 28–35
[32] Li J R, Zhang B B, Wei Q Y, Wang N and Hou B R 2017 Electrochemical characterization of Mg-Al-Zn-In alloy as anode materials in 3.5 wt% NaCl solution Electrochim. Acta 258 156–67
[33] Zhao M C, Liu M, Song G L and Atrens A 2008 Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41 Corros. Sci. 50 5168–78
[34] Gong C W, He X Z, Fang D Q, Liu B S and Yan X 2021 Effect of second phases on discharge properties and corrosion behaviors of Mg-Ca-Zn anodes for primary Mg-air batteries Journal of Alloys & Compounds 861 159493
[35] Richey F W, McCloskey B D and Luntz A C 2016 Mg anode corrosion in aqueous electrolytes and implications for Mg-air batteries J. Electrochem. Soc. 163 A958–63
[36] Esmaiili M, Svensson J E, Fajardo S, Birbilis N, Frankel G S, Virtanen S, Arrabal R, Thomas S and Johansson L G 2017 Fundamentals and advances in magnesium alloy corrosion Prog. Mater. Sci. 89 92–193
[37] Cao F Y, Shi Z M, Song G L, Liu M and Atrens C 2013 Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2, of as-cast and solution heat-treated binary Mg-X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr Corros. Sci. 76 60–79
[38] Wang N G, Mu Y C, Xiong W H, Zhang J C, Li Q and Shi Z C 2018 Effect of crystallographic orientation on the discharge and corrosion behaviour of AP56 magnesium alloy anodes Corros. Sci. 144 107–26
[39] Liu X, Liu S Z and Xue J L 2018 Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries J. Power Sources 396 667–74
[40] Liu J H, Xu J and Han Z H 2020 Effect of Pb(NO3)2 on Preparation and Properties of CF//β-PbO2 Electrodes for Zinc Electrowinning J. Solid State Sci. Technol. 9 101003
[41] Liu J H, Liu F H, Xu J and Han Z H 2020 Effect of current density on interface preparation and performance of CF//β-PbO2 electrodes during zinc electrowinning Ceram. Int. 46 2403–8
[42] Wang N G, Wang R C, Peng Y, Xiong W H, Zhang J C and Deng M 2016 Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery Corros. Sci. 112 13–24
[43] Chen X R et al 2020 The quasicrystal of Mg-Zn-Y on discharge and electrochemical behaviors as the anode for Mg-air battery J. Power Sources 451 227807
[44] Wang N G, Wang R C, Peng C, Feng Y and Chen B 2012 Effect of hot rolling and subsequent annealing on electrochemical discharge behavior of AP56 magnesium alloy as anode for seawater activated battery Corros. Sci. 67 17–27
[45] Zhao M C, Schmutz P, Brunner S, Liu M, Song G L and Atrens A 2009 An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing Corros. Sci. 51 1277–92
[46] Yang J, Yin C D and You B S 2016 Effects of Sn in α-Mg matrix on properties of surface films of Mg-xSn (x = 0, 2, 5 wt%) alloys Mater. Corros. 67 331–41
[47] Tong F L, Chen X Z, Wei S H, Malmström J, Vella J and Gao W 2021 Microstructure and battery performance of Mg-Sn-Sn alloys as anodes for magnesium-air battery Journal of Magnesium and Alloys (In Press) (https://doi.org/10.1016/j.jma.2021.08.022)
[48] Baek S M, Kang J S, Kim J C, Kim B, Shin H J and Park S S 2018 Improved corrosion resistance of Mg-Sn-Zn-1Al alloy subjected to low-temperature indirect extrusion Corros. Sci. 141 203–10