Convex Structure in Generalized Fuzzy Metric Spaces

V. Vinoba, V. Pazhani, and M. Jeyaraman

Abstract—In this paper, we introduce the concept of convex structure in generalized fuzzy metric spaces and proved common fixed point theorems for a pair of self-mappings under sufficient contractive type conditions.

Key words — Contraction mapping, Convex structure, Generalized fuzzy metric space, Metric space.

I. INTRODUCTION

In Mathematics, the concept of fuzzy set was introduced by Zadeh [12]. It is a new way to represent vagueness in our daily life. In 1975, Kramosil and Michalek [4] introduced the concept of fuzzy metric spaces which opened a new way for further development of analysis in such spaces. George and Veeramani [11] modified the concept of fuzzy metric spaces. After that, several fixed point theorems proved in fuzzy metric spaces. In this paper, we introduce the concept of convex structure in generalized fuzzy metric spaces and prove fixed point and common fixed point theorems for a pair of self-mappings under sufficient contractive type conditions with convex structure.

II. PRELIMINARIES

A. Definition 2.1

Let \((X, G, \ast)\) be a \(G\) – fuzzy metric space and \(I = [0, 1]\). A continuous mapping \(\Delta : X \times X \times I \rightarrow X\) is said to be a convex structure on \(X\) if for each \((x, y, k) \in X \times X \times I\) and \(u \in X\), \(G(u, \Delta(x, y, k), \Delta(x, y, k), t) \geq kG(u, x, y, t) + (1 - k)G(u, y, x, t)\).

A space \(X\) together with a convex structure \(R\) is called a fuzzy convex metric space.

B. Definition 2.2

A sequence \(\{x_n\}\) in a generalized fuzzy convex metric space \((X, G, \ast)\) is said to converge to \(x \in X\) if \(\lim_{n \to \infty} G(x, x_n, t) = 1\), for all \(t > 0\).

C. Definition 2.3

Let \((X, G, \ast)\) be a generalized fuzzy convex metric space. A sequence \(\{x_n\}\) is called Cauchy sequence if \(\lim_{n \to \infty} G(x_{n+p}, x_{n}, t) = 1\), for all \(t > 0\) and \(p > 0\).

D. Definition 2.4

A generalized fuzzy convex metric space \((X, G, \ast)\) is said to be complete if every Cauchy sequence is convergent.

III. MAIN RESULTS

A. Theorem 3.1

Let \((X, G, \ast)\) be a generalized fuzzy convex metric space with \(\Delta\) convex structure and let \(\Gamma : X \rightarrow X\) be self mappings satisfying, \(G(\Gamma x, \Gamma y, \Gamma z, t) \geq G(x, y, z, t) \ast G(\Gamma x, y, z, t)\), for all \(x, y \in X\) and \(0 < k < 1\). Suppose that \(\{x_n\}\) associated with \(\Gamma\) is defined by:

\[
x_0 \in X
\]
\[
x_{n+1} = \Delta(\Gamma x_n, x_n, \alpha_n), n = 0, 1, 2\ldots (1)
\]
\[
y_n = \Delta(\Gamma x_n, x_n, \beta_n), n = 0, 1, 2\ldots (2)
\]

where \(0 \leq \alpha_n, \beta_n \leq 1\) and \(\beta_n\) is bounded away from zero. If \(\{x_n\}\) converges to some point \(x \in X\) then \(x\) is the fixed point of \(\Gamma\).

B. Proof

Suppose \(x_n \rightarrow x\).

\[G(x_n, x_n + 1, x_{n+1}, t) = G(x_n, \Delta(\Gamma x_n, x_n, \alpha_n), \Delta(\Gamma y_n, x_n, \alpha_n), t)\]
\[\geq \alpha_n G(x_n, \Gamma y_n, \Gamma y_n, t) + (1 - \alpha_n)G(x_n, x_n, t)\]
\[\geq \alpha_n G(x_n, \Gamma y_n, \Gamma y_n, t) + (1 - \alpha_n).\]

Therefore \(G(x_n, \Gamma y_n, \Gamma y_n, t) = 1\) and hence \(\Gamma y_n \rightarrow x\).

\[G(\Gamma x_n, y_n, y_n, t) = G(\Gamma x_n, \Delta(\Gamma x_n, x_n, \beta_n), \Delta(\Gamma x_n, x_n, \beta_n), t)\]
\[\geq \beta_n G(\Gamma x_n, \Gamma x_n, \Gamma x_n, t) + (1 - \beta_n)G(\Gamma x_n, x_n, t)\]
\[\geq \beta_n + (1 - \beta_n)G(\Gamma x_n, x_n, t)\] \(\ldots (4)\)
\[G(\Gamma x_n, \Gamma y_n, \Gamma y_n, k t) \geq G(x_n, \Gamma y_n, \Gamma y_n, t) \ast G(\Gamma x_n, y_n, y_n, t)\]
\[\geq 1 \ast [\beta_n + (1 - \beta_n)G(\Gamma x_n, x_n, t)] \text{ by (4)}\]
\[\geq \beta_n + (1 - \beta_n)G(\Gamma x_n, x_n, t)\] \(\ldots (5)\)
Therefore, \(G(x_\alpha, G_Y, t) = 1\) and hence \(G_Y \to x\). Therefore, by (7) and (8),

\[
G(x_n, y_n, t_n) = G(x_n, \Delta(x_n, x_n, \alpha_n), \Delta(y_n, x_n, \alpha_n), t_n) \\
\geq \alpha_n G(x_n, x_n, x_n, t_n) + 1 - \alpha_n G(x_n, x_n, t_n) \\
\geq \alpha_n G(x_n, x_n, x_n, t_n) + 1 - \alpha_n.
\]

Hence \(G(x_n, G_Y, t) = 1\) and hence \(G_Y \to x\). Therefore, by (7) and (8),

\[
G(x_n, y_n, t) = G(x_n, \Delta(x_n, x_n, \alpha_n), \Delta(y_n, x_n, \alpha_n), t) \\
\geq \alpha_n G(x_n, x_n, x_n, t) + 1 - \alpha_n G(x_n, x_n, t) \\
\geq \alpha_n G(x_n, x_n, x_n, t) + 1 - \alpha_n.
\]

Hence \(G(x_n, G_Y, t) = 1\) and hence \(G_Y \to x\). Therefore, by (7) and (8),

\[
G(x_n, y_n, t) = G(x_n, \Delta(x_n, x_n, \alpha_n), \Delta(y_n, x_n, \alpha_n), t) \\
\geq \alpha_n G(x_n, x_n, x_n, t) + 1 - \alpha_n G(x_n, x_n, t) \\
\geq \alpha_n G(x_n, x_n, x_n, t) + 1 - \alpha_n.
\]

Hence \(G(x_n, G_Y, t) = 1\) and hence \(G_Y \to x\). Therefore, by (7) and (8),

\[
G(x_n, y_n, t) = G(x_n, \Delta(x_n, x_n, \alpha_n), \Delta(y_n, x_n, \alpha_n), t) \\
\geq \alpha_n G(x_n, x_n, x_n, t) + 1 - \alpha_n G(x_n, x_n, t) \\
\geq \alpha_n G(x_n, x_n, x_n, t) + 1 - \alpha_n.
\]

Hence \(G(x_n, G_Y, t) = 1\) and hence \(G_Y \to x\). Therefore, by (7) and (8),

\[
G(x_n, y_n, t) = G(x_n, \Delta(x_n, x_n, \alpha_n), \Delta(y_n, x_n, \alpha_n), t) \\
\geq \alpha_n G(x_n, x_n, x_n, t) + 1 - \alpha_n G(x_n, x_n, t) \\
\geq \alpha_n G(x_n, x_n, x_n, t) + 1 - \alpha_n.
\]
\[\geq \beta_n + (1 - \beta_n) G(Y_{x_n}, y_n, x_n, t). \]

\[G(Y_{x_n}, y_n, \Gamma_{y_n}, k t) \geq G(x_n, y_n, y_n, t) \]

\[\geq \beta_n G(x_n, Y_{x_n}, Y_{x_n}, t) + (1 - \beta_n), \quad \text{by (15)} \]

\[G(Y_{x_n}, x_n, t) \geq G(Y_{x_n}, \Gamma_{y_n}, \Gamma_{y_n}, t/2), \quad \text{by (15)} \]

\[\geq \beta_n G(x_n, Y_{x_n}, Y_{x_n}, t/2 k) + (1 - \beta_n). \]

It follows \[G(Y_{x_n}, x_n, t) \geq 1 \text{ and } Y_{x_n} \to x. \] Also \(y_n \to x. \)

Now, \(G(\Gamma x, y_n, y_n, t) = G(\Gamma x, \Delta(\Gamma y_n, x_n, \beta_n), \Delta(\Gamma y_n, x_n, \beta_n), t) \)

\[\geq \beta_n G(\Gamma x, \Gamma, \Gamma, t) + (1 - \beta_n) G(x_n, \Gamma, \Gamma), t) \]

\[\geq \beta_n G(\Gamma x, \Gamma, \Gamma, t) + (1 - \beta_n) G(x_n, \Gamma, \Gamma), t) \]

\[\geq \beta_n G(\Gamma x, \Gamma, \Gamma, t) + (1 - \beta_n) G(x_n, x_n, t). \]

\[\geq \beta_n G(\Gamma x, \Gamma, \Gamma, t) + (1 - \beta_n) G(x_n, x_n, t). \]

Thus, \(\Gamma x = \Gamma y = x. \) Hence \(x \) is the common fixed point of \(\Gamma \) and \(Y. \)

G. Theorem 3.4

Let \((X, G, \ast)\) be a generalized fuzzy convex metric space and let \(\Gamma: X \to X \) be self-mappings satisfying \(G(\Gamma x, \Gamma y, \Gamma, k t) \geq G(\Gamma x, \ast, \Gamma y, y, t), \) for all \(x, y \in X \) and \(0 < k < 1. \)

Suppose that \(\{x_n\} \) associated with \(Y \) and \(\Gamma \) is defined by

\[x_0 \in X \]

\[x_{n + 1} = \Delta(\Gamma y_n, x_n, a_n), \quad n = 0, 1, 2, \ldots \]

\[y_n = \Delta(\Gamma y_n, x_n, b_n), \quad n = 0, 1, 2, \ldots \]

where \(0 \leq a_n, b_n \leq 1 \) and \(\beta_n \) is bounded away from zero. If \(\{x_n\} \) converges to some point \(x \in X \) then \(x \) is the common fixed point of \(\Gamma \) and \(Y. \)

H. Proof

Suppose \(x_n \to x. \)

\[G(x_n, x_{n + 1}, x_{n + 1}, t) = G(x_n, \Delta(\Gamma y_n, x_n, a_n), \Delta(\Gamma y_n, x_n, a_n), t) \]

\[\geq \alpha_n G(x_n, \Gamma y_n, \Gamma y_n, t) + (1 - \alpha_n) G(x_n, x_n, t) \]

\[\geq \beta_n G(x_n, \Gamma y_n, \Gamma y_n, t) + (1 - \alpha_n). \]

Therefore, \(G(x_n, \Gamma y_n, \Gamma y_n, t) \geq 1 \) and hence \(\Gamma y_n \to x. \)

\[G(x_n, y_n, y_n, t) = G(x_n, \Delta(\Gamma y_n, x_n, b_n), \Delta(\Gamma y_n, x_n, b_n), t) \]

\[\geq \beta_n G(x_n, Y_{x_n}, Y_{x_n}, t) + (1 - \beta_n) G(x_n, x_n, t), \quad \text{by (20)} \]

\[\geq \beta_n G(x_n, Y_{x_n}, Y_{x_n}, t) + (1 - \beta_n) \]

\[\geq \beta_n G(x_n, Y_{x_n}, Y_{x_n}, t) + (1 - \beta_n) G(Y_{x_n}, x_n, t), \quad \text{by (20)} \]

\[\geq \beta_n G(x_n, Y_{x_n}, Y_{x_n}, t) + (1 - \beta_n) G(Y_{x_n}, x_n, t), \quad \text{by (21)} \]

\[\geq \beta_n G(x_n, Y_{x_n}, Y_{x_n}, t) + (1 - \beta_n) G(Y_{x_n}, x_n, t), \quad \text{by (20)} \]

\[\geq \beta_n G(x_n, Y_{x_n}, Y_{x_n}, t) + (1 - \beta_n) G(Y_{x_n}, x_n, t), \quad \text{by (21)} \]
\[\geq a_n \beta_n (Y_{x_n}, x, x, t) + a_n (1 - \beta_n) G(x_n, x, x, t) + (1 - a_n) G(x_n, x, x, t) \]
\[\geq [a_n \beta_n + a_n (1 - \beta_n) + (1 - a_n)] G(x_n, x, x, t) \]
\[\geq G(x_n, x, x, t). \]

Thus, \(G(x_{n+1}, x_n, x, t) \geq G(x_n, x, x, t) \geq G(x_{n-1}, x, x, t) \geq \ldots. \)
This implies \(G(x_n, x, x, t) \geq 1. \) Hence \(\{x_n\} \) converges to \(x. \)

The following result is a special case of the above theorem.

L. Corollary 3.7

Let \((X, G, *)\) be a complete generalized fuzzy convex metric space and let \(\Gamma: X \rightarrow X\) be quasi-non expansive mappings. The sequence \(\{x_n\}\) is defined by:

\[x_0 \in X \quad (25) \]
\[x_{n+1} = \Delta(Gx_n, x_n, \alpha_n) \quad (26) \]
\[y_n = \Delta(Gx_n, x_n, \beta_n), \quad n = 0, 1, 2, \ldots \quad (27) \]

where \(0 \leq \alpha_n, \beta_n \leq 1.\) Then \(\{x_n\}\) converges to the fixed point of \(\Gamma.\)

M. Proof

The proof of the corollary immediately follows by putting \(Y = \Gamma\) in the previous theorem.

IV. CONCLUSION

In this paper, we have explored the concept of convex structure in generalized fuzzy metric spaces and proved common fixed point theorems for a pair of self-mappings under sufficient contractive type conditions.

REFERENCES

[1] George, A. and Veeramani, (1997), Fuzzy sets and Systems, 365-368.
[2] Jungck, G. (1986), Compatible mappings and common fixed points Internat. J. Math. and Math. Sci. 9, 771-779.
[3] Kaleva, O and Seikkala, S. (1984), On fuzzy metric spaces, Fuzzy sets and systems, 12, 215-229.
[4] Kramosil, I and Michalek, J. (1975), Fuzzy metric and statistical metric spaces, Kibernetika, 11, 336-344.
[5] Kubiaczyk, I and Sushil Sharma, (2002), Common fixed point multi maps in fuzzy metric space, East Asian Math. J. 18, (2), 175-182.
[6] Mishra. S. N, Sharma. N and Singh. S. L, (1994), Common fixed points of maps on fuzzy metric spaces, Internat. J. Math.and Math. Sci, 17,253-258.
[7] Singh. B and Jain. S, (2007), Generalized theorem in fuzzy metric spaces, Southeast Asian Bulletin of Mathematics, 31, 1-16.
[8] Sharma. S, (2002), On fuzzy metric space, Southeast Asian Bulletin of Mathematics, 26, 133-145.
[9] Sushil Sharma, (2002), Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 127, 345-352.
[10] Thaninthamial. A and Thirunavukarasu. P, (2014), Some Results in fuzzy metric spaces with convex structure, Int. Journal of Math. Analysis, 8, 57, 2827-2836.
[11] Vijayaraju. P and Sajath. Z.M.I, (2009), Some common fixed point theorems in fuzzy metric spaces, Int. Journal of Math. Analysis, 3, 701-710.
[12] Zadeh, L. A, (1965), Fuzzy sets, Information and Computation, 8, 338-353.