RecipeBowl: A Cooking Recommender for Ingredients and Recipes Using Set Transformer

KEONWOO KIM, DONGHYEON PARK, MICHAEL SPRANGER, KANA MARUYAMA, AND JAEWOO KANG

1Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea
2SONY AI, SONY Corporation, Tokyo 108-0075, Japan
Corresponding author: Jaewoo Kang (kangj@korea.ac.kr)

This research was supported by the National Research Foundation of Korea (No. NRF-2020R1A2C3010638), the MSIT (Ministry of Science and ICT), Korea, under the ICT Creative Consilience program (IITP-2021-2020-0-01819) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation) and SONY AI (https://ai.sony).

ABSTRACT Countless possibilities of recipe combinations challenge us to determine which additional ingredient goes well with others. In this work, we propose RecipeBowl which is a cooking recommendation system that takes a set of ingredients and cooking tags as input and suggests possible ingredient and recipe choices. We formulate a recipe completion task to train RecipeBowl on our constructed dataset where the model predicts a target ingredient previously eliminated from the original recipe. The RecipeBowl consists of a set encoder and a 2-way decoder for prediction. For the set encoder, we utilize the Set Transformer that builds meaningful set representations. Overall, our model builds a set representation of an leave-one-out recipe and maps it to the ingredient and recipe embedding space. Experimental results demonstrate the effectiveness of our approach. Furthermore, analysis on model predictions and interpretations show interesting insights related to cooking knowledge.

INDEX TERMS Food ingredient combination, food ingredient recommendation, food ingredient relations, recipe context learning, recipe recommendation, set representation learning.

I. INTRODUCTION

Finding the right additional ingredients and sample recipes is an essential, yet challenging task in the culinary world due to vast cooking possibilities [1]. Previous works have attempted to build food recommendation systems [2], [3] using small recipe datasets and shallow data-driven approaches. Food pairing tasks [4]–[6] have been proposed, but were limited to one-to-one ingredient recommendation. With multiple ingredients available, a system that is able to provide reasonable ingredient and candidate recipe choices based on sophisticated cooking knowledge may be desirable.

In this work, we propose RecipeBowl, a set-based model that jointly recommends ingredients and recipes. For example in Figure 1, given lime, chicken breasts, olive oil and garlic as input set, the user desires to cook an ‘easy’, ‘main dish’ grilled in an ‘oven’ using ‘chicken’. In this case, the RecipeBowl suggests ingredients (e.g., balsamic vinegar, cilantro, white wine, rosemary and so on) that are likely to go well with the input set and satisfy the user’s needs. Moreover, candidate recipes (e.g. Easy Garlic Chicken, Grilled Pesto Chicken and so on) are also provided to guide the user’s decisions on cooking.

We formulated a recipe completion task where the model is given a leave-one-out set of ingredients and tag information to predict one target ingredient previously excluded from the original set. We constructed a dataset based on a large recipe corpus Recipe1M [7]–[9] where each instance consists of an leave-one-out set as input and target ingredient as output. We then trained the model in a supervised learning setting.

FIGURE 1. Overview of RecipeBowl Cooking Recommender. RecipeBowl takes two types of input then recommends additional ingredients and sample recipes. The bold-faced ingredient (balsamic vinegar) and recipe (Easy Garlic Chicken) are the targets selected from their original recipe.
setting where it has to predict the target ingredient and its corresponding recipe given the leave-one-out set. The main objective is to simultaneously learn two different embedding spaces and push its vector projections towards the actual vector representations in each space. The trained model provides recommendations based on similarity-based rankings calculated between its predicted ingredient/recipe with the actual ones in each of their embedding spaces.

We performed quantitative and qualitative analysis on our model’s recommendations to demonstrate the viability of our approach. Experimental results show that our model suggests reasonable ingredients that are relevant to recipe context. Observations on the predicted embedding space in t-sne visualizations, set context vectors in clustermaps and attention weights in heatmaps provide insight of how RecipeBowl utilizes recipe contextual knowledge and derives it from various ingredient combinations.

The major contributions are summarized as follows.

- We formulate a recipe completion task that trains a model on set-to-one prediction in a supervised learning setting.
- We propose RecipeBowl, a two-way cooking recommender model that adopts the Set Transformer [10] framework for building representations of ingredient sets.
- We introduce a large-scale recipe completion dataset [8], [9] using Tf-Idf scores for selecting optimal target ingredients.
- Both quantitative and qualitative analysis show that RecipeBowl suggests practical choices based on recipe context and ingredient relations.

II. RELATED WORK

A. LEARNING RECIPE REPRESENTATIONS

Cross-modal features, namely text and image features have been widely used for generating recipe representations [7], [11], [12]. These methods require image data to conduct recipe-related tasks. Recently, Li et al. has introduced Reciptor, a Set Transformer-based model [10] for learning recipe representations in an unsupervised fashion [9]. The authors pre-trained recipe representations from Recipe1M [8] using two loss functions which are the cosine similarity loss and the triplet loss. The authors of this work demonstrated the Set Transformer’s effectiveness by using the pre-trained embeddings for food-related downstream tasks such as cuisine classification.

B. RECOMMENDATION IN FOOD DOMAIN

1) RECOMMENDING INGREDIENTS AND FOOD PAIRINGS

Previous works related to food pairing discovery have been introduced where ingredient-ingredient relations are represented as edges in a network and its nodes denote the ingredients. Ahn et al. firstly proposed to define food pairings based on the number of flavor compounds shared between two ingredients [4]. Park et al. introduced Kitchenette, a Siamese Neural Networks based model trained on a large-scale dataset Recipe1M [8] to predict food pairing scores and discover novel ingredient pairings [6]. Haussmann et al. incorporated semantic-driven knowledge graphs for food recommendation [13]. While the previously mentioned authors either utilized chemical information in ingredients or a large recipe corpus in food pairing related tasks, Park et al. further proposed to incorporate both aspects to construct a large scale ingredient-compound network called FlavorGraph using metapaths [14].

Prior works on recommending ingredients have also been proposed. Shino et al. used ingredient categories and co-occurrence relations to suggest suitable alternative ingredient for a given recipe [15]. Liu et al. extended this approach by considering the diversity of ingredient categories and novelty of ingredient combinations [16], De Clercq et al. used non-negative matrix factorization and number of shared flavor compounds information to retrieve eliminated ingredients from recipes [3].

2) RECOMMENDING RECIPES

Previous works have focused on personalized recommendation of recipes using various features and employing machine learning-based approaches [17]–[20]. Ge et al. proposed to incorporate users’ tags and ratings that indicate food preferences in recommendation [17], we employed a similar approach by utilizing recipe tag information such as main dish, 5-minute-cooking. Other works have additionally taken nutrition-related factors into account to provide healthy food recommendations [21]–[24].

Perhaps one of the previous works that is closest to our task formulation is Cueto et al. [25]. The authors of this work employed memory-based collaborative filtering approaches to recommend ingredients for a given partial recipe. However, the dataset used in their work is small compared to our work as we trained our deep learning-based model on Recipe1M [8]. Moreover, while Cueto et al.’s model suggests only additional ingredients, our model is trained both on ingredient and recipe representations and provides each of their recommendations.

III. DATASET

A. PREPROCESSING ORIGINAL DATASET

We built an extended version of the Reciptor [9] dataset containing 507,834 recipes which is a subset of Recipe1M [7], [8]. Each recipe instance in our preprocessed dataset contains a list of ingredients, cooking instructions and cooking tags (630 unique tags) that were previously extracted from Recipe1M. Since the rich tag information (e.g., easy, healthy, seasonal [preference], main-dish, desserts, fruit [cuisine category], meat, vegetarian, low-calorie [diet information], american, european, asian [regional category]) from Reciptor would be helpful in our task [17], we crafted a 630-dimensional tag information binary vector for each
TABLE 1. Examples of recipe completion data for RecipeBowl. Lime juice (0.30) in Easy Garlic Chicken Breasts, pizza crust (0.22) in Garden Ranch Pizza, and red wine vinegar (0.18) in Creamy French Dressing are selected as target ingredients.

Recipe	Information	Input Ingredients	Target Ingredient
Easy Garlic Chicken Breasts	Ingredients	chicken breasts 0.29, olive oil 0.17, garlic 0.24	lime juice 0.30
Garden Ranch Pizza	Ingredients	red bell peppers 0.13, ranch dressing 0.18, mozzarella cheese 0.12, parmesan cheese 0.09, broccoli 0.15, garlic 0.10	pizza crust 0.22
Creamy French Dressing	Ingredients	salt 0.06, garlic 0.14, sugar 0.09, dijon mustard 0.16, tomato paste 0.16, pepper 0.11, olive oil 0.10	red wine vinegar 0.18

B. SELECTING TARGET INGREDIENTS

We adopted De Clercq et al.’s recipe completion-based approach for training RecipeBowl [3]. The model is trained to predict a target ingredient x given a leave-one-out set X where x was previously eliminated from a original set $X \cup \{x\}$ of ingredients. Based on the above learning objective, we constructed a dataset for recipe completion where each instance includes an leave-one-out ingredient set, target ingredient and cooking tag information. Our main emphasis is to help the model learn cooking context based on the combinatory nature of various ingredients. In De Clercq et al.’s work, the target ingredients were selected randomly [3]. Among the randomly selected ingredients, commonly occurring ones such as salt and butter may act as trivial targets. These ingredients may render the model unable to differentiate the characteristics of ingredient combinations.

To prevent this, we selected target ingredients based on their Tf-Idf (Term Frequent-Inverse Document Frequency) score where terms and documents are ingredients and recipes respectively [26]. The Tf-Idf score indicates the relative importance of an ingredient within the recipe based on its occurrence in the whole corpus. We first calculated the Tf-Idf scores based on all ingredients, and then normalized them within each recipe where term frequency for each ingredient is always 1 in each recipe. We selected an ingredient x with the highest Tf-Idf score and eliminated it from each recipe.

Conclusively, the inputs for training RecipeBowl on recipe completion is the leave-one-out set X while the target is x for each recipe instance $X \cup \{x\}$. Table 1. shows the examples of our recipe completion dataset. In Table 1., the normalized Tf-Idf scores in Creamy French Dressing are low (e.g. salt (0.06), sugar (0.09), olive oil (0.10)). On the other hand, lime juice (0.30) in Easy Garlic Chicken Breasts, pizza crust (0.22) in Garden Ranch Pizza and red wine vinegar (0.18) in Creamy French Dressing have the highest normalized Tf-Idf scores.

We further justify our target selection approach by the following analysis. Figure 2. shows two distributions of target ingredients based on different selection options (Random and Tf-Idf). The distribution based on random selection is skewed where the highly frequent target ingredients based on random selection are commonly used ingredients (e.g. salt, butter and sugar) in most recipes. On the other hand, the distribution based on Td-Idf selection is relatively uniform which provides a better learning setting for RecipeBowl.

Along with recommending ingredients, RecipeBowl aims to simultaneously suggest recipe candidates. We utilized the pretrained recipe embeddings from Reciptor [9] as ground truths for training the recipe inference task of our model. Since the pretrained embedding vectors include sequential recipe context, we expect RecipeBowl to suggest acceptable recipe candidates and benefit ingredient recommendation.

IV. MODEL

A. OVERVIEW

RecipeBowl takes a set of ingredients as input and predicts a corresponding target ingredient and recipe as output (Figure 3.). The ingredients including the target are represented as continuous vectors retrieved from an embedding.
An attention function takes \(Q \) as input and produces outputs \(\in \mathbb{R}^{n \times d} \), \(K \) and \(V \) as corresponding key-value pairs. Different from the Set Transformer in Li et al.'s Reciptor [9], we constructed our version of Set Transformer with one ISAB followed by one PMA layer. Reciptor's Set Encoder module to build latent representations for incom-plete sets of ingredients using attention mechanism [10]. In this work, we constructed the Set Transformer as a stack of components including Induced Set Attention Blocks (ISAB) and a Multihead Attention based pooling (PMA) layer. The ISAB is fed with an input set of vectors to calculate self-attention weights between the elements where the final output is also a set of equal size. The PMA layer aggregates the element-wise features by calculating their attention weights on a set of parameterized seed vectors. Both ISAB and PMA layer use Multihead Attention Blocks (MAB) which are the components of the Transformer model originally proposed by Vaswani et al. [27]. The MAB computes the attention function with multiple projections of the input queries and key-value pairs. Different from the Set Transformer in Li et al.'s Reciptor [9], we constructed our version of Set Transformer with one ISAB followed by one PMA layer.

2) MULTIHEAD ATTENTION BLOCK
While the query, key and value vectors involved in Multihead Attention may be different, the key and value vectors in the Multihead Attention Block are the same. Given two sets of vectors \(X, Y \in \mathbb{R}^{n \times d} \), the MAB is mathematically expressed as follows,

\[
\text{MAB}(X, Y) = \text{LayerNorm}(H + \text{RFF}(H))
\]

(4) \[H = \text{LayerNorm}(X + \text{Multihead}(X, Y, Y)) \]

(5) where \(\text{RFF} \) is a row-wise feedforward layer and \(\text{LayerNorm} \) is layer normalization ([28]).
3) SET ATTENTION BLOCK
The Set Attention Block was proposed by Lee et al. as an extension of the Multihead Attention Block to calculate self-attention weights between the vectors in a set [10]. The output from the SAB contains element-to-element interactions of the set. Higher order relations between the elements can be modeled through a stack of SABs. Our approach focuses on learning the combinatory nature of ingredients which provides a rationale for using SABs in the model architecture. Given a set of vectors \(X \in \mathbb{R}^{n \times d} \), the SAB is expressed as follows,

\[
\text{SAB} = \text{MAB}(X, X)
\]

(6)

4) INDUCED SET ATTENTION BLOCK
Another extension variant of the Multihead Attention Block proposed by Lee et al. is the Induced Set Attention Block. The ISAB contains trainable inducing vectors that are fed with the element vectors into the MAB to compute the outputs which are again fed into another MAB with the same element vectors [10]. Given a set of input vectors \(X \in \mathbb{R}^{n \times d} \) and a set of inducing vectors \(K \in \mathbb{R}^{h \times d} \), the ISAB is expressed as follows,

\[
\text{ISAB} = \text{MAB}(X, H)
\]

(7)

where \(H = \text{MAB}(K, X) \).

5) MULTIHEAD ATTENTION BASED POOLING LAYER
One of the common permutation-invariant methods to aggregate the element-wise representations is element-wise summation [29], [30]. However, Lee et al. proposed aggregating the representations by applying multihead attention on another set of \(m \) parameterized seed vectors \(S \in \mathbb{R}^{m \times d} \) [10]. Given a set of \(n \) ingredient vectors refined by the previous SAB or ISAB, \(Z \in \mathbb{R}^{n \times d} \), pooling by Multihead Attention (PMA) is expressed as follows,

\[
\text{PMA} = \text{MAB}(Z, \text{RFF}(S))
\]

(8)

6) SET TRANSFORMER
Conclusively, given an input set of ingredient vectors \(I \in \mathbb{R}^{n \times d} \) the Set Transformer we employed in our work is mathematically expressed as follows,

\[
S = \text{LayerNorm}(\text{ReLU}(\text{PMA}(I')W_s + b_s))I' = \text{ISAB}(I)
\]

(9)

where \(W_s \in \mathbb{R}^{d \times h}, b_s \in \mathbb{R}^{h} \) are the weights and biases for the final nonlinear transformation in the Set Transformer and \(S \in \mathbb{R}^{h} \) is the final latent representation for the set of ingredients. We denote this as the Set Encoder in our whole model architecture as it encodes a set of ingredients into a latent embedding space.

C. 2-WAY DECODER - PREDICTING INGREDIENTS AND RECIPES
The 2-way Decoder takes the set context vector concatenated with a 630-dimensional tag vector as input to generate the \(d \)-dimensional target ingredient vector and \(r \)-dimensional target recipe vector. The tag vectors are constraints to guide the model’s predictive space. Given the encoded set representation \(S \in \mathbb{R}^{d} \) and the tag binary vector \(T \in \{0, 1\}^{m30} \) the predicted vectors for both the target ingredient \(\hat{y}_p \in \mathbb{R}^{d} \) and recipe \(\hat{y}_q \in \mathbb{R}^{r} \) are mathematically expressed as follows,

\[
\hat{y}_p = \text{LayerNorm}(\text{ReLU}(\langle S \oplus T \rangle W_1 + b_1))W_2 + b_2
\]

(10)

\[
\hat{y}_q = \text{LayerNorm}(\text{ReLU}(\langle S \oplus T \rangle W_3 + b_3))W_4 + b_4
\]

(11)

where \(W_1, W_3 \in \mathbb{R}^{h \times d}, W_2, W_4 \in \mathbb{R}^{d \times r} \) are trainable weights and \(b_1, b_2, b_3, b_4 \in \mathbb{R}^{d} \) are trainable biases.

D. LOSS OBJECTIVE FUNCTION AND OPTIMIZATION
Given a pair of predicted and its ground truth target vectors \((\hat{y}_p, y_p) \), we employed a negative likelihood loss function based on a softmax over negative Euclidean distances in the ingredient embedding space [31], [32]. As we trained our model using batch sampling, the softmax for the Euclidean distance between the \(i \)-th pair \((\hat{y}_p(i), y_p(i)) \) is calculated over the batch of target ingredient vectors including \(y_p(i) \). Given a batch \(B \) and model parameters \(\Theta \), the loss objective for RecipeBowl is mathematically expressed as follows,

\[
f(x, y) = -\sqrt{|x - y|^2}
\]

(12)

\[
L_p (\hat{y}_p(i), y_p(i), \Theta) = -\log \frac{e^{f(y_p(i), y_p(i))}}{\sum_{k=0}^{B-1} e^{f(y_p(i), y_p(k))}}
\]

(13)

where \(\tau \) is a temperature scalar for controlling model optimization [33]. The model is therefore is trained on a distance metric learning setting since the Euclidean distance between the predicted ingredient and target ingredient is minimized [31]. Given the \(i \)-th target ingredient as the positive sample, we adopted the idea of using all other \(B \) target ingredients in a batch as negative samples for better optimization [34]. We will denote this scheme as using in-batch negatives.

For training the model on recipe prediction given the \(i \)-th pair \((\hat{y}_q(i), y_q(i)) \) in the training batch, we employed the cosine embedding loss defined as below,

\[
\text{cosine}(x, y) = \frac{x \cdot y}{\|x\| \|y\|}
\]

(14)

\[
L_q (\hat{y}_q(i), y_q(i), \Theta) = 1 - \text{cosine}(\hat{y}_q(i), y_q(i))
\]

(15)

Finally, the multi-objective loss function for a batch of quadruples \((\hat{y}_p, y_p, \hat{y}_q, y_q) \) is as below,

\[
L (\hat{y}_p, y_p, \hat{y}_q, y_q, \Theta) = \frac{1}{B} \sum_{i=0}^{B-1} L_p(i) + \frac{1}{B} \sum_{i=0}^{B-1} L_q(i)
\]

(16)

where \(L_p(i), L_q(i) \) are the simplified notations of the loss function for \(i \)-th sample in batch.

V. EXPERIMENTS
A. EXPERIMENTAL SETTING
We conducted experiments to evaluate and compare our proposed RecipeBowl’s performance on recipe completion task.
with other model options. We firstly performed a simple preliminary experiment by giving each leave-one-out input set of ingredients the same list of ingredients sorted by their occurrence as target ingredient in the whole dataset. We denote this method as Popularity Choice. We selected traditional machine learning approaches for our baseline experiments to evaluate our proposed model architecture. We imported the pre-trained FlavorGraph embeddings and summed each of the input ingredients into a single 300-dimensional continuous vector [14]. We then concatenated it with its corresponding 630-dimensional cooking tag vector. As a result, the dimension of each input vector is 930. The baseline models that were used in this setting are Random Forest Classifier, Logistic Regression and MLP Classifier and were all imported from the Scikit-learn Python package [35]. They are multi-class classification models where the class labels are the 3,729 unique ingredients.

We additionally conducted baseline experiments on various types of Set Encoders to assess the use of our custom Set Transformer while retaining other model features in RecipeBowl such as the Decoder and use of cooking tag vectors. The baseline modules for the Set Encoders are the following:

- **Vanilla Sum**: The ingredient vectors from the FlavorGraph embedding lookup table are summed into a single set context vector for each recipe input. This resembles the continuous bag-of-words model [36].
- **Bidirectional LSTM**: Previously used in recipe embedding experiments by Li et al. [9], this module encodes a sequence of ingredients in both directions into a set context vector.
- **Deep Sets**: Introduced by Zaheer et al. and used in Lee et al.’s baseline experiments [10], the Deep Sets model is a permutation-invariant deep learning model that builds deeper element-wise and set-wise representations through a stack of layers [30].
- **Receptor**: Adopted from Li et al.’s [9], the Receptor model is a Set Transformer containing 2 ISABS, 1 PMA and 1 SAB. All inherent MABs have 4 attention heads while each ISAB has 16 trainable inducing vectors and the PMA has 2 trainable seed vectors.

As our version of Set Transformer (1 ISAB, 1 PMA) is used in the RecipeBowl architecture as the Set Encoder, we denote other deep learning model variants by their corresponding Set Encoder since the other components in the model architecture are fixed.

1) **MODEL TRAINING AND EVALUATION METRICS**

We fit the traditional machine learning models into our large training dataset and evaluated their performance based on the predicted probabilities for each class (3,729 ingredients). The predicted list of probabilities were sorted for evaluation purposes. The deep learning architectures using various Set Encoder modules including RecipeBowl and its ablated versions were trained to the maximum of 60 epochs with early stopping using the AdaBound optimizer [37]. All models were trained on the same training dataset and evaluated on the same test dataset as well. The hyperparameters for RecipeBowl that were estimated using the validation dataset and are available in the anonymous code repository.

We retrieved the predicted ingredient vectors of test dataset from the deep learning models including RecipeBowl, to generate ranking-based recommendation results. We then calculated a pairwise matrix of cosine similarity scores between the vector predictions for the incomplete ingredient set in test dataset and 3,729 actual ingredient vectors. We sorted the similarity scores to obtain a ranked list of recommended ingredients. Both lists are used for evaluation based on multi-item recommendation. We used Mean Reciprocal Rank (MRR) and Recall@K (K = 1, 5, 10) to evaluate the recommendation results derived from the scores.

B. EXPERIMENTAL RESULTS

1) MODEL PERFORMANCE

We made 10 different 80%/10%/10% random splits of our dataset to perform the main experiments on the recipe completion task. In addition, the random initialization of trainable parameters in deep learning models is different according to each of the random split. For each model configuration including the traditional machine learning models, we calculated the mean and standard deviation of each evaluation metric MRR, Recall@1, Recall@5 and Recall@10. We also conducted statistical tests to obtain p-values to prove RecipeBowl’s statistical significance.

Table 2 shows the evaluation results of RecipeBowl and other baseline models. Results show that RecipeBowl achieved the highest performance in all metrics (MRR: 0.2261 (0.0020), Recall@1: 0.1358 (0.0020), Recall@5: 0.3166 (0.0021), Recall@10: 0.4072 (0.0023)). According to the results, utilizing several model-related components and additional features such as tag vectors helped RecipeBowl outperform other model options. It is notable that our version of the Set Transformer used in RecipeBowl has less model complexity than Li et al.’s version used in Receptor [9] which led to better generalization results (MRR: 0.2103 (0.0011)).

2) ABLATION STUDY ON GENERAL MODEL ARCHITECTURE

We performed ablation tests to find whether 1) utilizing recipe context information, 2) employing a negative likelihood loss function based on a softmax over euclidean distances with in-batch negatives, 3) using the pre-trained FlavorGraph vectors as initial embeddings for RecipeBowl and 4) adding a Decoder before projecting the set context vectors into another embedding space were effective or detrimental to RecipeBowl’s training.

Table 3 shows the ablation results on RecipeBowl. All ablation experiments were performed using the first random split of our dataset. The ablation results illustrate the importance of selecting the right loss criteria for training RecipeBowl. Combining the effects of distance metric learning and in-batch...
TABLE 2. Evaluation results. Best results are in bold. All experiments were repeated 10 times with different splits. All results except Popularity Choice have mean and standard deviation for each metric. All results compared to RecipeBowl have a p-value below 0.05 as result of significance test.

Types	Models	MRR	Recall@1	Recall@5	Recall@10
Simple Statistics	Popularity Choice	0.0080	0.0019	0.0019	0.019
Traditional	Random Forest	0.0077	0.0019	0.0083	0.0155
	Logistic Regression	0.1354	0.0754	0.1888	0.2535
	Simple MLP	0.1685	0.0955	0.2349	0.3141
Deep Learning	Vanilla Sum	0.2178	0.1300	0.3044	0.3965
	Bi-directional LSTM	0.2024	0.1199	0.2831	0.3681
	Deep Sets	0.2126	0.1258	0.2975	0.3872
	Recipient	0.2103	0.1249	0.2926	0.3807
	RecipeBowl	0.2261	0.1358	0.3166	0.4072

TABLE 3. Ablation test results. The best results are in bold. All results were obtained from experiments on the first random split of dataset.

Purposes	Ablations	MRR	Recall@1	Recall@5	Recall@10
Our Model	RecipeBowl -Cooking Tags	0.2281	0.1379	0.3182	0.4086
	RecipeBowl -Recipe Prediction Layer	0.1463	0.0797	0.2035	0.2790
	Pre-trained Ingredient Embeddings	0.2044	0.1218	0.2857	0.3704
	Decoder	0.1343	0.0736	0.1863	0.2559
	Loss Function	0.0511	0.0200	0.0697	0.1088

negatives randomly containing both easy and hard (highly related to targets) ingredient negatives seemingly benefit RecipeBowl’s performance.

In terms of model architecture, results show RecipeBowl’s dependency on both the 2-way Decoder (MRR: 0.1343) and tag vectors (MRR: 0.1463). Considering the risks of multi-task learning, our ablation results show that recipe prediction task does not negatively affect RecipeBowl but rather boosts by a small amount (MRR: 0.2153). Though we imported the pre-trained FlavorGraph embeddings from Park et al.’s work, our ablation results show less difference in performance (MRR: 0.2153) leaving room for further investigation.

VI. ANALYSIS

A. RecipeBowl RECOMMENDATIONS

The RecipeBowl accepts any ingredient sets and recommends additional ingredients and candidate recipes which is illustrated in Figure 3. In Table 4, we show six different user input examples with different cooking tags. Here, we recommend top 10 ingredients and top 5 recipes. Our model made accurate ingredient predictions (bold-faced) for the first four examples. In addition, RecipeBowl provided relevant and plausible alternatives other than the actual target ingredient in those examples. Moreover, RecipeBowl served its purpose as a 2-way recommender given the recommended recipe titles that are relevant to both the user input and cooking tags.

For the last two examples in Table 4, although RecipeBowl did not predict the correct target ingredients (bold-faced, tortillas, cooked white rice), there were still meaningful suggestions. For the Mexican dish, our model recommended tortilla chips at top 1 while tortillas are ranked third. For the Rice dish, while our model did not predict perfectly (cooked white rice, out of top 10), most of the recommendations are still aligned with the target ingredient (e.g. wild rice, yellow rice). We expect RecipeBowl’s flexibility and understanding in cooking to be helpful in making cooking choices.

B. ANALYSIS ON PREDICTIONS IN EMBEDDING SPACE

Figure 4. shows the distribution of both target and predicted embeddings vectors. While the predicted ingredients are close to their corresponding targets, the embedding seemed to be clustered into eight categories overall. This shows that the RecipeBowl model learned not only the optimal ingredient for the given set but also recipe categorical features.

Figure 5. shows the distribution of sixteen target embeddings and their corresponding predictions which is illustrated in the Embedding Space of Figure 3. In this analysis, 16 target ingredients were randomly selected according to their ingredient categories along with their predictions in the test dataset. Most of the predicted ingredients tended to form clusters corresponding to the selected targets. Moreover, some target ingredients are centered in the prediction clusters (e.g. mashed bananas, bread, chicken breasts). Interestingly, clusters that belong to the same ingredient category (e.g. pork chops, chicken wings, chicken breasts) tend to be relatively close to each other. We also found target pairs bread flour&yeast and cocoa&chocolate being close to each other along with their prediction clusters. Bread flour and...
TABLE 4. RecipeBowl Recommendation Results. Examples of these six cases are all from the test set. For the first four examples, RecipeBowl model accurately predicted the target ingredient (bold-faced), but the last two examples, it did not. However, the recommendations still seem reasonable.

Cooking Tags	User Input	Top 10 Recommendations (Ingredients)	Top 5 Recommendations (Recipes)
Main Dish	Chicken breasts, fresh cilantro,	pizza dough (target, top1 recommended), pizza crust, flat bread, pimento cheese, crisp bread, laco seasoning, grape tomatoes, olives, plum tomatoes, pizza sauce	
Chicken Oven	red onions, barbecue sauce,	BBQ Chicken Pizza - California Pizza Kitchen Style (original), Ranch Chicken Burgers, Crispy Chicken Strips, Town House Chicken, Spiced Burgers, Weight Watchers Chicken Cordon Bleu	
Breads Muffins	butter, sugar, vanilla, cream	dark chocolate (target, top1 recommended), banana chips, plain flour, vanilla essence, banana extract, unsweetened cocoa powder, dark chocolate chips, peanuts, oats, mini chocolate chips	
Baking	cheese evaporated milk, boiling water	Banana Muffins With Chocolate Peanut Frosting (original), Martha Stewart’s Peanut-Butter Surprises, Stout Gingerbread Cupcakes With Cream, Better Than Toll House Cookies!, Lunchbox Peanut Butter Brownies, Great Chocolate Chip Cookies	
Tex-Mex Dinner	grapefruit juice, simple syrup,	grapefruits (target, top1 recommended), guava nectar, guava juice, margarita mix, pomegranate juice, lime wedge, Licor 43, Coke, maraschino cherry juice, cola	
Party Cocktails	tequila, lime juice, ice	Siesta - Grapefruit Margarita (original), Citrus Cranberry Delight, Aida’s Curse Cocktail, Pineapple, Watermelon & Strawberry Slushes, Cobalt Colada, Frozen Blender Mojito	
Japanese	nori, hot sauce, tuna, lettuce,	sushi rice (target, top1 recommended), tobiko, white sesame seeds, imitation crab sticks, tuna fish, rice cakes, tuna steak, crabsticks, wasabi, soybean paste	
Appetizers Lunch	mayonnaise	Spicy Tuna Salad Roll (original), Oven Hot Ham & Cheese Sandwiches, General Tso’s Chicken Wraps, Bourbon Street Deli Special Sandwich, Hg’s Southwest BurritoTastef!	
Mexican Ground	lean ground beef, sharp cheddar,	tortilla chips, diced green chilies, jalapeno, tortillas (target, top1 recommended), corn tortillas, laco sauce, corn tortilla chips, pobiano chiles, refried beans, jalapeno pepper	
Beef Spicy	cheese, ground cumin, garlic, clove, bell pepper, chili powder, vegetable oil, eggs, milk, onion, salt	Casserole Quiche With Crisp-Fried Tortilla Pieces (original), Italian Shepherd’s Pie, Positano Pie, Meatloaf Pot Roast, Bacon Cheeseburger Upside Down Pizza, Sweet and Sour Cocktail Meatballs	
Main-dish Rice	chicken breasts, olive oil, garlic	balsamic vinegar, oregano, ground ginger, green peppers, cumin, ground black pepper, thyme, Italian seasoning, yellow onion, green bell pepper, lime (target, out of top10)	
Vegetables		Roasted Garlic Chicken (original), Sesame Chicken, Italian Wrap Chicken Breast, Teriyaki Chicken, Apricot Rosemary Chicken	

yeast are known to be used together in most recipes while cocoa is one of the materials for making chocolate chips. These observations show that the RecipeBowl model learned ingredient relationships during training.

C. ANALYSIS ON SET REPRESENTATION VECTORS

Figure 6. shows clustermaps of 150 randomly sampled set context embedding vectors. The Set Context Embeddings according to Figure 3 are the set-wise vectors from the Set Encoder, prior to being propagated to the 2-way Decoder. We selected blueberries, apples, buttermilk and chocolate chips from the previous list used in t-sne visualization and extracted incomplete ingredient lists with equal size of 150 containing each of them from the test dataset. We then used the Set Encoder of RecipeBowl to generate 4 groups of 150 set context vectors and visualized a clustermap for each group. We selected blueberries and apples since both of them are fruit ingredients used in a wide variety of dishes.
On the contrary, we additionally selected buttermilk and chocolate chips that may be used in limited recipe categories such as bakery and desserts. The clustermaps shown in Figure 6 seemed to show distinctive clusters which brought interesting insight. For example, apples can be used in a wide range of recipes such as sweet desserts (Caramel Apple), bakery foods (Apple Maple Muffins) or as sauces in meat-based dishes (Apple Pork Chops) [38], [39]. Buttermilk is widely used in bakery products due to its nutritional value and taste enhancement features [40]. We can observe that among the sampled 150 set context vectors including buttermilk, most of them were used in bakery recipes (Basic Chocolate Cake). Overall, RecipeBowl can distinguish different types of recipe context according to the uses of a particular ingredient. The detailed clustermaps for these ingredients can be found in the code repository.

D. ANALYSIS ON ATTENTION WEIGHTS IN SET ENCODER

Figure 7 shows attention weights of the input ingredients. We extracted and aggregated the attention values computed in the first MAB of the ISAB in RecipeBowl’s Set Encoder in Figure 3 and normalized them with min-max scaling. We studied the recommendation examples and observed which ingredient seems to have high influence towards building the set context vector. For Spicy Tuna Salad Roll, nori received the highest attention which helped RecipeBowl understand the set input is mainly Japanese cuisine. For BBQ Chicken Pizza, chicken breasts, fresh cilantro and red onions were majorly attentive interestingly compared to mozzarella cheese. Lastly, the input set for Casserole Quiche contained ingredients mainly used in Mexican cuisine such as bell peppers and chili peppers [41], [42]. In turn, we speculate that RecipeBowl was able to predict tortilla chips based on highly
attentive values of the above ingredients as tortilla-related ingredients are also commonly used in Mexican dishes.

VII. CONCLUSION AND FUTURE WORK

We introduce RecipeBowl, a set-based cooking recommender for candidate ingredients and recipes. To train the model, we formulate a supervised learning recipe completion setting using an extended dataset from Reciptor [9] and employing the Set Transformer [10] framework to encode ingredients using an extended dataset from Reciptor [9] and employing attentive values of the above ingredients as tortilla-related ingredients. Though our RecipeBowl exploited our custom-made Set Encoder itself and found them supportive to our model’s performance. In sum, our formulated recipe completion task and set representation approaches were proved to be beneficial in suggesting ingredients and recipes.

For the future work, while RecipeBowl was able to suggest both appropriate ingredients and recipe candidates for a given set of other ingredients, some recipe candidates seemed inconsistent with the suggested ingredients. We plan to improve RecipeBowl by encouraging it to recommend recipe candidates related to some of its suggested ingredients. Though our RecipeBowl exploited our custom-made Set Transformer to be trained successfully on recipe completion, we plan to improve the Set Encoder to extract richer cooking knowledge and provide better interpretability. Since the recipe completion task involves the input ingredient set having only one ingredient removed as the prediction target for each recipe, we acknowledge that the model may have limitations in generating recommendations given a few ingredients. We plan to address this issue in future work by formulating a more suitable task setting. In addition, we plan to incorporate nutritional features and consider dietary requirements during recommendation. Lastly, we plan to release an applicable version of RecipeBowl.

ACKNOWLEDGMENT

(Keonwoo Kim and Donghyeon Park contributed equally to this work.)

REFERENCES

[1] W. Min, S. Jiang, and R. Jain, “Food recommendation: Framework, existing solutions, and challenges,” IEEE Trans. Multimedia, vol. 22, no. 10, pp. 2659–2671, Oct. 2020.
[2] C.-Y. Teng, Y.-R. Lin, and L. A. Adamic, “Recipe recommendation using ingredient networks,” in Proc. 3rd Annu. Web Sci. Conf., 2012, pp. 298–307.
[3] M. De Clercq, M. Stock, B. De Baets, and W. Waegeman, “Data-driven recipe completion using machine learning methods,” Trends Food Sci. Technol., vol. 49, pp. 1–13, Mar. 2016.
[4] Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabási, “Flavor network and the principles of food pairing,” Sci. Rep., vol. 1, no. 1, Dec. 2011, Art. no. 196.
[5] N. Garg, A. Sethuapathy, R. Tiwani, R. Nk, S. Dokania, A. Iyer, A. Gupta, S. Agrawal, N. Singh, S. Shukla, K. Kathuria, R. Badhwar, R. Kanji, A. Jain, A. Kaur, R. Naggal, and G. Bagler, “FlavorDB: A database of flavor molecules,” Nucleic Acids Res., vol. 46, no. D1, pp. D1210–D1216, Jan. 2018.
[6] D. Park, K. Kim, Y. Park, J. Shin, and J. Kang, “KitchenNet: Predicting and ranking food ingredient pairings using Siamese neural network,” in Proc. 29th Int. Conf. Intell. Syst., Oct. 2017, pp. 1–7.
[7] A. Salvador, N. Hynes, Y. Aytar, J. Marin, F. Oflı, I. Weber, and A. Torralba, “Learning cross-modal embeddings for cooking recipes and food images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3020–3028.
[8] J. Marin, A. Biswas, F. Oflı, N. Hynes, A. Salvador, Y. Aytar, I. Weber, and A. Torralba, “Recipe1M+: A dataset for learning cross-modal embeddings for cooking recipes and food images,” 2018, arXiv:1810.06553. [Online]. Available: http://arxiv.org/abs/1810.06553
[9] D. Li and M. J. Zaki, “RECIPTOR: An effective pretrained framework for recipe representation learning,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2020, pp. 1719–1727.
[10] J. Lee, Y. Lee, J. Kim, A. Kosiorsek, S. Choi, and Y. WhyteTeh, “Set transformer: A framework for attention-based permutation-invariant neural networks,” in Proc. ICML, Aug. 2019, pp. 3744–3753.
[11] J. Chen, L. Pang, and C.-W. Ngo, “Cross-modal recipe retrieval: How to cook this dish?” in Proc. Int. Conf. Multimedia Modeling. Redkojav, Iceland: Springer, 2017, pp. 588–600.
[12] B. Zhu, C.-W. Ngo, J. Chen, and Y. Hao, “R2GAN: Cross-modal recipe retrieval with generative adversarial network,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11477–11486.
[13] S. Haussmann, O. Seneviratne, Y. Chen, Y. Ne’eman, J. Codella, C.-H. Chen, D. L. McGuinness, and M. J. Zaki, “FoodKG: A semantics-driven knowledge graph for food recommendation,” in Proc. Int. Semantic Web Conf. Auckland, New Zealand: Springer, 2019, pp. 146–162.
[14] D. Park, K. Kim, S. Kim, M. Spranger, and J. Kang, “FlavorGraph: A large-scale food-chemical graph for generating food representations and recommending food pairings,” Sci. Rep., vol. 11, Jan. 2021, Art. no. 931.
[15] N. Shino, R. Yamaniishi, and F. Fukumoto, “Recommendation system for alternative-ingredients based on co-occurrence relation on recipe database and the ingredient category,” in Proc. 5th IIAI Int. Congr. Adv. Appl. Informat. (IIAI-AAI), 2016, pp. 173–178.
[16] K.-H. Liu, H.-C. Chen, K.-T. Lai, Y.-Y. Wu, and C.-P. Wei, “Alternative ingredient recommendation: A co-occurrence and ingredient category importance based approach,” in Proc. PACIS, 2018, p. 298.
[17] M. C. De Clercq, M. Elahi, I. Fernaández-Tobías, F. Ricci, and D. Massimo, “Using tags and latent factors in a food recommender system,” in Proc. 5th Int. Conf. Digit. Health, May 2015, pp. 105–112.
[18] I. Adaji, C. Sharmaine, S. Debrowney, K. Oyibo, and J. Vassileva, “Personality based recipe recommendation using recipe network graphs,” in Proc. Int. Conf. Social Comput. Social Media. Las Vegas, NV, USA: Springer, 2018, pp. 161–170.
[19] T. Mokdara, P. Pasawiro, and J. Harisombarana, “Personalized food recommendation using deep neural network,” in Proc. 7th ICT Int. Student Project Conf. (ICT-ISPC), Jul. 2018, pp. 1–4.
[20] A. Nezis, H. Papageorgiou, P. Georgiadis, P. Jiskra, D. Pappas, and M. Pontiki, “Towards a fully personalized food recommendation tool,” in Proc. Int. Conf. Adv. Vis. Interface, May 2018, pp. 1–3.
[21] E. Gorbons, Y. Liu, and C. T. Hoang, “NutRec: Nutrition oriented online recipe recommender,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI), Dec. 2018, pp. 25–32.
[22] W. Wang, L.-y. Duan, H. Jiang, P. Jing, X. Song, and L. Nie, “Market2Dish: Health-aware food recommendation,” 2020, arXiv:2012.06416. [Online]. Available: http://arxiv.org/abs/2012.06416
[23] M. Chen, X. Jia, E. Gorbons, C. T. Hoang, X. Yu, and Y. Liu, “Eating healthier: Exploring nutrition information for healthier recipe recommendation,” Inf. Process. Manage., vol. 57, no. 6, Nov. 2020, Art. no. 102051.
[24] J. M. Ordovas, L. R. Ferguson, E. S. Tai, and J. C. Mathers, “Personalised nutrition and health,” BMJ, Jun. 2018, Art. no. bmj.k2173.

K. Kim et al.: RecipeBowl: Cooking Recommender for Ingredients and Recipes
KEONWOO KIM received the B.S. degree in computer science from Korea University, South Korea, in 2018, where he is currently pursuing the Ph.D. degree in computer science. His current research interests include developing effective data representation methods and applying them to various research domains, such as food science, material science, and bio-informatics.

DONGHYEON PARK received the B.S. degree in computer science, in 2015, the M.S. degree in bioinformatics from Interdisciplinary Graduate Program, in 2017, and the Ph.D. degree in computer science from Korea University, Seoul, South Korea, in 2020. His current research interests include food-informatics and natural language processing in general. He is specifically interested in personalized food-recommendation nutrition precision with artificial intelligence techniques.

MICHAEL SPRANGER (Member, IEEE) received the Diploma degree in computer science from Humboldt-Universität zu Berlin, Germany, in 2008, and the Ph.D. degree in computer science from Vrije Universiteit Brussels, Belgium, in 2011. He is currently the COO of Sony AI and also a Senior Researcher at Sony CSL. His work focuses on fundamentals of AI and intelligent agents. His most recent work explores creativity in science and gastronomy.

KANA MARUYAMA received the master’s degree in computer science from Hokkaido University, Japan. She is currently an AI Engineer at Sony AI. In the past, she worked on developing camera products, fusion of web technology and embedded technology, causal analysis, and Japanese NLP technologies. In Sony AI, she currently focuses on developing AI technologies for enhancing the creativity of chefs.

JAEWOO KANG received the B.S. degree in computer science from Korea University, Seoul, South Korea, in 1994, the M.S. degree in computer science from the University of Colorado Boulder, CO, USA, in 1996, and the Ph.D. degree in computer science from the University of Wisconsin–Madison, WI, USA, in 2003. From 1996 to 1997, he was a Technical Staff Member with AT&T Labs Research, Florham Park, NJ, USA. From 1997 to 1998, he was a Technical Staff Member with Savera Systems Inc., Murray Hill, NJ, USA. From 2000 to 2001, he was the CTO and a Co-Founder of WISEngine Inc., Santa Clara, CA, USA, and Seoul. From 2003 to 2006, he was an Assistant Professor with the Department of Computer Science, North Carolina State University, Raleigh, NC, USA. Since 2006, he has been a Professor with the Department of Computer Science, Korea University. He also works as the Department Head of Bioinformatics for Interdisciplinary Graduate Program with Korea University.

VOLUME 9, 2021 143633

K. Kim et al.: RecipeBowl: Cooking Recommender for Ingredients and Recipes