Chronic kidney disease and arrhythmias: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

Mintu P. Turakhia1*, Peter J. Blankestijn2, Juan-Jesus Carrero3, Catherine M. Clase4, Rajat Deo5, Charles A. Herzog6, Scott E. Kasner7, Rod S. Passman8, Roberto Pecots-Filho9, Holger Reinecke10, Gautam R. Shroff11, Wojciech Zareba12, Michael Cheung13, David C. Wheeler14, Wolfgang C. Winkelmaier15, and Christoph Wanner16*, for Conference Participants†

1Stanford University School of Medicine, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave, 111C, Palo Alto, CA 94304, USA; 2Department of Nephrology, room F03.220, University Medical Center, P.O. Box 85500, 3508GA Utrecht, The Netherlands; 3Department of Medicine and Department of Health Research Methods, Evidence, and Impact, McMaster University, St. Joseph’s Healthcare, Marion Wing, 3rd Floor, M333, 50 Charlton Ave. E. Hamilton, Ontario L8N 4A6, Canada; 4Section of Electrophysiology, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, 9 Founders Court, Philadelphia, PA 19104, USA; 5Department of Medicine, Hennepin County Medical Center and University of Minnesota, Minneapolis, Minnesota and Chronic Disease Research Group, Minneapolis Medical Research Foundation, 914 S. 8th Street, 54.100, Minneapolis, Minnesota 55404 MN, USA; 6Department of Neurology, JW Gates Bldg. Hospital of the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104-4283 PA, USA; 7Department of Medicine and Department of Health Research Methods, Evidence, and Impact, McMaster University, St. Joseph’s Healthcare, Marion Wing, 3rd Floor, M333, 50 Charlton Ave. E. Hamilton, Ontario L8N 4A6, Canada; 8Section of Electrophysiology, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, 9 Founders Court, Philadelphia, PA 19104, USA; 9Section of Electrophysiology, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, 9 Founders Court, Philadelphia, PA 19104, USA; 10Department of Medicine, Hennepin County Medical Center and University of Minnesota, Minneapolis, Minnesota and Chronic Disease Research Group, Minneapolis Medical Research Foundation, 914 S. 8th Street, 54.100, Minneapolis, Minnesota 55404 MN, USA; 11Division of Cardiology, Hennepin County Medical Center, 701 Park Avenue, Minneapolis, Minnesota 55415 MN, USA; 12Heart Research Follow-up Program, Cardiology Division, University of Rochester Medical Center, Saunders Research Building, 65 Nundial Blvd. CU 42063, Rochester, NY, USA; 13KDIGO, Avenue Louise 65, Suite 11, 1050 Brussels, Belgium; 14Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, UK; 15Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, ABBR R705, MS: 395, Houston, 77030-3411 TX, USA; and 16Division of Nephrology, Department of Medicine, University Hospital of Würzburg, Oberduerrbacherstr. 6 Würzburg D-97080, Germany

Received 13 October 2017; revised 18 December 2017; editorial decision 25 January 2018; accepted 27 January 2018

Introduction

Patients with chronic kidney disease (CKD) are predisposed to heart rhythm disorders, including atrial fibrillation (AF)/atrial flutter, supraventricular tachycardias, ventricular arrhythmias, and sudden cardiac death (SCD). While treatment options, including drug, device, and procedural therapies, are available, their use in the setting of CKD is complex and limited. Patients with CKD and end-stage kidney disease (ESKD) have historically been under-represented or excluded from randomized trials of arrhythmia treatment strategies, although this situation is changing. Cardiovascular society consensus documents have recently identified evidence gaps for treating patients with CKD and heart rhythm disorders.2,3

To identify key issues relevant to the optimal prevention, management, and treatment of arrhythmias and their complications in patients with kidney disease, Kidney Disease: Improving Global Outcomes (KDIGO) convened an international, multidisciplinary Controversies Conference in Berlin, Germany, titled CKD and Arrhythmias in October 2016. The conference agenda and discussion questions are available on the KDIGO website (http://kdigo.org/conferences/ckd-arrhythmias/; 13 February 2018).

The opinions expressed in this article are not necessarily those of the Editors of the European Heart Journal or of the European Society of Cardiology.

* Corresponding author. M.P.T. Tel: (650) 858-3932, Fax (650) 852-3473, Email: mintu@stanford.edu; C.W. Tel.: +49-931-201 39030, Fax: +49-931-201 639300, Email: Wanner_C@ukw.de
† Other conference participants: Kerstin Amann, Germany; Debasish Banerjee, UK; Nisha Bansal, USA; Giuseppe Boriani, Italy; Jared Bunch, USA; Christopher T. Chan, Canada; David M. Charytan, USA; David Conen, Canada; Allan N. Friedman, USA; Simonetta Genovesi, Italy; Rachel M. Holden, Canada; Andrew A. House, Canada; Michel Jadoul, Belgium; Alan G. Jardine, UK; David W. Johnson, Australia; Min Jun, Australia; Laura Labriola, Belgium; Patrick B. Mark, UK; Peter A. McCullough, USA; Thomas D. Neolin, USA; Tatjana S. Potpara, Serbia; Patrick H. Pun, USA; Antonio L. P. Ribeiro, Brazil; Patrick Rossignol, France; Jenny I. Shen, USA; Manish M. Sood, Canada; Yuuka Tsukamoto, Japan; Angela Yee-Moon Wang, Hong Kong; Matthew R. Weir, USA; James B. Wetmore, USA; Jerzy K. Wranicz, Poland; Hiro Yamasaki, Japan.
© The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Cardiology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Atrial fibrillation and stroke in chronic kidney disease

Epidemiology

Atrial fibrillation is the most common sustained arrhythmia. Chronic kidney disease affects 10% of adults worldwide, and patients with CKD have an increased burden of AF compared with those without CKD (Supplementary material online, Table S1). The prevalence of AF is high: estimates range from 16% to 21% in CKD patients not dependent on dialysis, and 15% to 40% in patients on dialysis (Supplementary material online, Table S1). Chronic kidney disease and AF share many risk factors, making it difficult to discern the contributions of individual factors to either condition or associated outcomes (Figure 1). For non-dialysis CKD, there seems to be an independent relationship between CKD and the risk of AF, although this association has not been well characterized across the spectrum of estimated glomerular filtration rate (eGFR) or proteinuria. In the USA, both incidence and prevalence of AF are increasing among haemodialysis patients, which could be because of older age of patients, better ascertainment of AF, and improved survival after vascular events.

Consequences of atrial fibrillation in chronic kidney disease

The risk of stroke is elevated in non-dialysis and dialysis CKD (Supplementary material online, Table S2). Separately, both CKD and AF are risk factors for stroke, but it is currently unknown whether the prognostic significance of CKD markers and AF is independent or interdependent. The association between AF and CKD may be bidirectional; AF may predict new-onset low GFR and proteinuria. In CKD, the adjusted risk ratios of stroke with AF have varied considerably across CKD subpopulations, ranging from 4.2 in women in the general population, with 4.3 in dialysis patients, and with modestly significant and non-significant associations after kidney transplantation. These differences may be due to greater competing risk of death in more advanced CKD, a higher baseline risk of stroke in CKD without AF, or a higher prevalence of unrecognized AF.

AF increases the risk of incident CKD and progression to ESKD (Supplementary material online, Table S2), and increases risk of death in patients with non-dialysis CKD and those on dialysis. Other outcomes related to AF, including heart failure, SCD, and myocardial infarction (MI), require further research. The contribution of AF as a mediator of stroke in CKD, as well as the stroke subtypes observed, requires further study. The competing risk of death in CKD may reduce the importance of the contribution of AF to stroke, which could mitigate the effectiveness of some stroke prevention strategies.

Stroke risk scores

The predictive value and calibration of the CHADS2 and CHA2DS2-VASc stroke prediction scores have only been evaluated in dialysis patients, in which performance appears to be similar to their performance in the general population. Inclusion of CKD in risk scores to improve stroke prevention has demonstrated variable results. Adding two points for creatinine clearance < 60 mL/min to CHADS2 (called R2CHADS2) improved net reclassification index (NRI) but not C-statistic in one large study using external validation but did not improve NRI or C-statistic in other studies. The ATRIA score, which includes terms for GFR < 45 mL/min/1.73 m² and proteinuria, demonstrated improved NRI and borderline improvement in C-statistic compared with CHADS2 and CHA2DS2-VASc in external validation, although NRI may not be clinically meaningful. For these reasons and for the potential for categorically recommending oral anticoagulant (OAC) to most patients with CKD without regard to competing risks, CHA2DS2-VASc remains the most commonly recommended score for risk stratification, and observational data have shown that a treatment threshold of CHA2DS2-VASc ≥ 2 is associated with OAC benefit, even in CKD.

Bleeding risk scores

The HAS-BLED, ORBIT, HEMORR2HAGES, and ATRIA bleeding risk scores all include CKD measures. Although the formal use of these bleeding risk scores has not been recommended by the majority of professional society guidelines, the increased risk of bleeding with and without OAC in CKD is well described and should be considered in clinical decision making.

Stroke prevention and oral anticoagulation

The pathophysiologic mechanisms responsible for stroke/thromboembolism in patients with CKD and AF are multifactorial and poorly understood. The pathophysiology of AF in CKD is multifactorial and is characterized by increased oxidative stress, inflammation, and apoptosis. The risk of thromboembolism in patients with CKD and AF is multifactorial and is characterized by increased oxidative stress, inflammation, and apoptosis. The risk of thromboembolism in patients with CKD and AF is multifactorial and is characterized by increased oxidative stress, inflammation, and apoptosis.

Figure 1 Relationship between chronic kidney disease and atrial fibrillation: shared risk factors and outcomes. Chronic kidney disease and atrial fibrillation share a number of risk factors and conditions that promote their incidence, possibly via systemic processes such as inflammation, oxidative stress, or fibrosis. It is established that chronic kidney disease increases the incidence of atrial fibrillation and there is some evidence to suggest that atrial fibrillation also increases chronic kidney disease progression. When examining the strength of these associations, we acknowledge the potential impact of detection bias in observational studies where more frequent exposure to healthcare likely prompts more clinical findings in this comorbid population. AF, atrial fibrillation; CKD, chronic kidney disease; CVD, cardiovascular disease.
bleeding events compared with warfarin (with apixaban and edoxaban resulted in significantly fewer major
among patients with eCrCl between 25 and 50 mL/min, treatment of DOACs have been associated with a significant reduction (about
comparing individual DOACs (Table 1)). Indirect comparisons are challenging because these trials differed in inclusion criteria and outcome
definitions.

Although efficacy (prevention of stroke and systemic embolism) may merely be non-inferior to warfarin, the safety profile of DOACs compared to warfarin does appear to be superior. In all pivotal RCTs, DOACs have been associated with a significant reduction (about 50%) in risk of intracranial haemorrhage compared to warfarin. Among patients with eCrCl between 25 and 50 mL/min, treatment with apixaban and edoxaban resulted in significantly fewer major bleeding events compared with warfarin (Figure 2). Although these observations do not necessarily indicate the superiority of apixaban and edoxaban relative to other DOACs, it may be helpful to clinicians when treating patients at particularly high-bleeding risk or low time in therapeutic range (TTR) values while receiving warfarin or other vitamin K antagonists (VKAs).

Chronic kidney disease G4, G5, and G5D
In the absence of trial data, the results from observational studies on the efficacy and safety of anticoagulation for stroke prevention in CKD patients with eCrCl < 30 mL/min not on dialysis are conflicting as they are for CKD G5D (Table 2). There is insufficient high-quality evidence to recommend warfarin or other VKAs for prevention of stroke in CKD G5D patients with AF, especially when balancing the significant risks of bleeding, accelerated vascular calcification, and calcific uremic arteriopathy associated with VKA therapy. A pooled meta-analysis of 56 146 CKD G5D patients with AF from 20 observational cohort studies demonstrated an increase in all-cause bleeding associated with VKA therapy without benefit in reduction of all-cause stroke or ischaemic stroke. Yet, a well-conducted observational analysis of acute MI patients with AF from the SWEDEHEART registry (2003–2010) found that VKA therapy was associated with a reduced risk of a composite of death, MI, and ischaemic stroke with no increase in bleeding risk across the spectrum of CKD. The high time in international normalized ratio (INR) TTR in Sweden (>75%) likely contributed to these findings and has been difficult to replicate in other health systems. A large US health care system analysis found that VKA severity is associated with decreased TTR despite similar INR monitoring intensity. These findings suggest that TTR is more likely to be poor in CKD and can mediate the increased stroke and bleeding risk in CKD. VKAs may lead to CKD via repeated subclinical glomerular haemorrhages or through accelerated tissue or vascular calcification.

The US Food and Drug Administration recently approved mention of the doses of apixaban 5 mg twice daily (with contingent dose modifications) and rivaroxaban 15 mg daily in CKD G5 and G5D (and dabigatran 75 mg orally twice daily for eCrCl 15–30 mL/min) on the respective labels based on single/limited dose pharmacokinetic and pharmacodynamic data with no clinical safety data. The conference attendees suggest consideration of the lower dose of apixaban 2.5 mg orally twice daily in CKD G5/G5D to reduce bleeding risk until clinical safety data are available, an approach supported by a recent pharmacokinetic study comparing the two doses. Recognizing that many CKD patients would likely qualify for a dose reduction to apixaban 2.5 mg orally twice daily anyway (if age ≥ 80 years or body weight ≤ 60 kg), this suggestion honours the ‘first do no harm’ principle, while acknowledging the lack of clinical efficacy or safety data in this regard (Table 2).

Randomized clinical trials are particularly needed to evaluate VKA use in patients with CKD G5D. A clinical trial evaluating VKAs vs. no oral anticoagulation (AVKDIAL, NCT02886962) is planned. It is not known whether DOACs have an advantage over VKAs in CKD G5D patients with AF. The AXADIA (NCT02933697) and RENAL-AF (NCT02942407) trials of apixaban vs. VKAs in ESKD are enrolling in Germany and USA.

Table 1: Evidence from randomized trial data regarding therapeutic anticoagulation on the basis of kidney function

eCrCl (mL/min)	Warfarin	Apixaban	Dabigatran	Edoxaban	Rivaroxaban
>95	Adjusted dose (INR 2–3) 5 mg b.i.d.	150 mg b.i.d.	60 mg QD	20 mg QD	
51–95	Adjusted dose (INR 2–3) 5 mg b.i.d.	150 mg b.i.d.	60 mg QD	20 mg QD	
31–50	Adjusted dose (INR 2–3) 5 mg b.i.d. (eCrCl cut-off 25 mL/min)	150 mg b.i.d.	110 mg b.i.d.	30 mg QD	15 mg QD

INR, international normalized ratio.

*Apixaban dose modification from 5 mg b.i.d. to 2.5 mg b.i.d. if patient has any of the following: serum creatinine ≥ 1.5 mg/dL, age > 80 years, or body weight ≤ 60 kg.

*In the ENGAGE-AF TIMI 48 study, the dose was halved if any of the following: eCrCl of 30–50 mL/min, body weight ≤ 60 kg, or concomitant use of verapamil or quinidine (potent P-glycoprotein inhibitors).

*This dose has not been approved for use by the US Food and Drug Administration in this category of kidney function.

*In countries where 110 mg b.i.d. is approved, clinicians may prefer this dose after clinical assessment of thromboembolic vs bleeding risk. This dose has not been approved for use by the US Food and Drug Administration.
Pragmatic considerations while managing anticoagulation in chronic kidney disease

In pivotal RCTs, study eligibility and DOAC dose assignments were based on kidney function as assessed using eCrCl (Cockcroft-Gault). However, in clinical practice, other measures such as eGFR are routinely used. Given the imprecision in measures for estimating kidney function, individualization of DOAC dosing based on either method is reasonable.78–80 Important safety concerns, mainly increased fatal or non-fatal bleeding, emerged after the early ‘off-label’ prescriptions of dabigatran and rivaroxaban in patients with CKD G5D.81–83

A recent study of 1473 AF patients with renal indication for dose reduction found that 43% were potentially overdosed with DOACs, resulting in higher bleeding risk.84 These adverse signals suggest the need for caution when using DOACs in patients with renal impairment.
need for systemic measures focused on patient safety to guide clinicians regarding the use of DOACs. For CKD patients receiving DOAC therapy, we recommend periodic monitoring of kidney function because decline over time may necessitate dose modification. There are no data to indicate the optimal frequency of monitoring, but it may be clinically reasonable to assess kidney function every 6 to 12 months, or at least yearly, consistent with professional society guidelines. With more or less frequent monitoring as appropriate based on recency of DOAC initiation, CKD severity, and CKD trajectory. For all CKD patients on anticoagulants, annual re-evaluation of treatment goals and discussion of pros and cons of anticoagulant therapy should be considered. Periprocedural/perioperative management of DOACs is contingent upon individual agents and eCrCl, for which recommended parameters exist (Table 3). For patients with CKD G3D on anticoagulants, strategies to reduce bleeding warrant systematic research but may include minimizing heparin with dialysis, use of citrate locks for catheters, consideration of prophylaxis for gastrointestinal bleeding when clinically indicated, tight blood pressure control, and discontinuation of concurrent antiplatelet agents if clinically reasonable. Anticoagulation reversal protocols are well established for warfarin and VKAs. Idarucizumab has been approved for reversing dabigatran, and andexanet alfa has been developed for reversal of anti-Xa agents. Data specific to reversal in CKD patients are limited. There is insufficient evidence to recommend single or dual antiplatelet therapy for prevention of stroke/thromboembolism in AF among patients with CKD G4, G5, or G5D, even when OAC is considered undesirable. Similarly, these patients should not receive concomitant antiplatelet therapy while taking anticoagulants, unless there is a specific secondary indication (e.g. recent coronary stent). The duration of concomitant single or dual antiplatelet therapy in those receiving anticoagulants needs to be minimized and individualized based on clinical factors and type of stent.

Left atrial appendage occlusion in chronic kidney disease

The left atrial appendage (LAA) is believed to be the site of thrombus formation for most AF-related cardio-embolic strokes. Circulatory exclusion of the LAA represents a non-pharmacological, device-based therapy for stroke prevention that could conceivably be an option in moderate to high stroke risk in CKD, particularly with contraindications to long-term OAC. Five-year data from two randomized trials of the Watchman LAA occlusion device demonstrated a reduction in stroke risk comparable to warfarin but with additional reduction in major bleeding. However, CKD prevalence or severity was not reported and could have been under-represented. The majority of patients receiving the device in trials and in practice are continued on dual- or single-antiplatelet drug therapy, which may be associated with higher bleeding risk in CKD. Moreover, enrolled subjects were without contraindications and hence randomized. Registry data of the Amplatzer Cardiac Plug, a similar device, has shown comparable procedural safety in CKD vs. normal kidney function. A randomized trial of LAA occlusion vs. VKAs in CKD Stages 4 and 5 (CKD G4 and G5) is ongoing (https://clinicaltrials.gov/ct2/show/NCT02039167; 13 February 2018).

Rate vs. rhythm control of atrial fibrillation

Indications for a rhythm control strategy in CKD patients mirror those in the general population. The major evidence-based indication...
for a rhythm-control strategy for AF is symptom reduction, although many patients are asymptomatic. Older randomized trials have demonstrated that rhythm and rate control strategies are equivalent in terms of their effects on risks of heart failure, stroke, and survival. Retrospective analyses have suggested rhythm control with ablation provides superior outcomes, but the evidence is limited. Regardless of which strategy is pursued, anticoagulation should also be continued based on stroke risk (as indicated by the CHADS2 or CHA2DS2-VASc score), unless otherwise contraindicated. Additional factors that may favour attempts at rhythm control include difficulty in achieving adequate rate control, younger patient age, tachycardia-mediated cardiomyopathy, first episode of AF, AF that is precipitated by an acute illness or surgery, and patient preference (Figure 3). Haemodialysis patients with haemodynamic instability due to AF during dialysis sessions may benefit from rhythm control. The impact of its treatment on outcome is unknown. Patients without clear indications for a rhythm control strategy should default to rate control. In the general population of patients with permanent AF and preserved ejection fraction, lenient rate control (i.e. resting heart rate < 110 beats per minute) has been shown to be equivalent to a strict rate control for a combined endpoint including stroke, heart failure, death, and need for pacemaker or implantable cardioverter-defibrillator (ICD).

No RCTs have specifically compared rate vs. rhythm control or strict vs. lenient rate control in patients with CKD or ESKD. In a post hoc analysis of the GUSTO III trial, treatment with a rhythm or rate control strategy did not significantly impact short- or long-term mortality regardless of kidney disease status.

Considerations about rate control

Special considerations in CKD include alterations in symptomatology and a potentially increased propensity to develop tachycardia-mediated cardiomyopathy, given the prevalence of structural heart disease. Moreover, the pharmacokinetic and dialyzability of rate control agents in CKD need to be considered (Table 4). When the ventricular rate cannot be controlled with medical therapies alone, atrioventricular nodal ablation and pacemaker implantation can be considered. However, the high rates of complications from transvenous devices in haemodialysis patients should enter into the decision-making process.
situation remains to be determined.

Direct current cardioversion alone is generally more likely to be re-admitted for heart failure. A meta-analysis of DCCV, and repeat ablation, although the patients with CKD were selected for AF ablation, those with and without CKD had similar rates of success rate of DCCV been reported to be similar regardless of kidney function.108 However, the risk of recurrence of AF increases as CKD, chronic kidney disease; CrCl, creatinine clearance; GFR, glomerular filtration rate.

Considerations about rhythm control
Direct current cardioversion (DCCV) is the most commonly used method of rhythm restoration in patients with persistent AF. The success rate of DCCV been reported to be similar regardless of kidney function.106 However, the risk of recurrence of AF increases as eGFR decreases, although patients with mild-to-moderate CKD in whom sinus rhythm is maintained may experience an improvement in kidney function.109 Direct current cardioversion alone is generally insufficient to maintain normal sinus rhythm, and long-term antiarrhythmic drugs or ablation are necessary for rhythm control.

The use of antiarrhythmic drugs for rhythm control is limited in patients with CKD because of issues with renal clearance and proarrhythmic risks in individuals with structural heart disease (Table 5). Amiodarone, the antiarrhythmic drug most commonly used to treat AF, does not appear to negatively affect survival, regardless of eGFR function, even in ESKD.111 Whether CKD patients treated with amiodarone are at higher risk for organ toxicity is unknown.

Catheter ablation is more effective than antiarrhythmic drugs alone for maintenance of sinus rhythm. The safety and efficacy of AF ablation in CKD was evaluated in 21 091 ablations, in which 1593 cases (7.6%) had CKD and 60 were on dialysis.112 Among patients selected for AF ablation, those with and without CKD had similar rates of post-procedural complications and subsequent AF hospitalization, DCCV, and repeat ablation, although the patients with CKD were more likely to be re-admitted for heart failure. A meta-analysis of four studies of pulmonary vein isolation using radiofrequency ablation in patients with CKD showed a nearly two-fold increased risk of AF recurrence, possibly as a result of larger pre-ablation left atrial volumes, which may serve as a marker for non-pulmonary vein triggers of AF.113 In a study of CKD patients undergoing cryoballoon ablation, patients with CKD G3 had significantly higher rates of AF recurrence compared with those with CKD G1 and G2.114 No cases of contrast-induced nephropathy were reported. In general, sinus rhythm maintenance via ablation is associated with improved eGFR, while ablation failure is associated with eGFR decline.115

Atrial fibrillation ablation may potentially provide survival benefit in the setting of reduced left ventricular ejection fraction (LVEF) and heart failure. A randomized trial of catheter ablation compared to usual care in AF and LVEF < 35% recently reported an improvement in survival associated with ablation116,117 (https://clinicaltrials.gov/ct2/show/NCT00643188; 13 February 2018).

In contrast to atrial fibrillation, radiofrequency ablation for rhythm control of atrial flutter should be considered as first-line therapy in CKD patients given the high success and low complication rates of ablation. Patients with CKD are at higher risk of long-term AF following ablation of atrial flutter and may require long-term monitoring to survey for AF recurrences if a withdrawal of anticoagulation is being considered.118

Lifestyle modifications
Weight loss and exercise, can reduce the burden of AF in the general population,119,120 as does treatment for obstructive sleep apnoea.121,122 Patients on haemodialysis have a four-fold higher risk of sleep-disordered breathing compared with control patients matched for age, gender, race, and body mass index.123,124 However, in a claims-based study of older patients in the USA,

Table 4 Characteristics of antiarrhythmic drugs for rate control in chronic kidney disease

Drug	Protein binding	Elimination	Dialyzable	Dosing in CKD
Atenolol	5%	Excreted unchanged in urine	Yes	Dose may need to be reduced
Propranolol	>90%	Hepatic metabolism	No	Serum creatinine may increase, but no dose adjust-
Bisoprolol	30%	50% excreted unchanged in urine	No	Specific guidelines for dosage adjustments in ren
Metoprolol	12%	Hepatic metabolism	Yes	al impairment are not available; it appears no
Carvedilol	99%	Mainly biliary and 16% urinary	No	dosage adjustments are needed
Labetalol	50%	Inactive metabolites excreted in urine (5% unchanged) and bile	No	Dose reduction recommended in the elderly
Verapamil	90%	70% is excreted in the urine and 16% in faeces	No	Dose reduction by 20–25% if CrCl < 10 mL/min,
Diltiazem	70–80%	2–4% unchanged drug excreted in the urine	No	not cleared by haemodialysis
Digoxin	20–30%	Main route of elimination is renal (closey	No	Use with caution
		correlated with the GFR) with 25–28% of	No	Dose adaptation is required, monitoring of serum
		elimination by non-renal routes		digoxin levels

Modified from Potpara et al.101 and Weir et al.102
Metoprolol elimination data from Hoffman et al.103
Labetalol protein binding data from Drugbank.ca104 and dialyzability data from in vitro data by Daheb et al.105
All other dialyzability data from Frishman.106
CKD, chronic kidney disease; CrCl, creatinine clearance; GFR, glomerular filtration rate.

Making process.107 Whether leadless pacemakers have a role in this situation remains to be determined.
Sleep-disordered breathing in haemodialysis patients was not associated with AF.125

Prevention of sudden cardiac death

Incidence and aetiology of sudden cardiac death in chronic kidney disease and end-stage kidney disease populations

There is an increased risk of SCD in CKD (Supplementary material online, Table S4).126–132 SCD accounts for 25–29% of all-cause mortality in haemodialysis patients and around 30–35% of all-cause mortality in patients initiating dialysis.133–139 Recent data indicate that although all-cause mortality rates in haemodialysis patients have been decreasing, the rates of SCD remain the same, indicative of an increased proportion of patients dying from SCD.140 Risk of all-cause mortality is substantially higher in dialysis (15–20% at 1 year) than in heart failure or post-infarction patients (3–8% at 1 year).140–143 Annual risk of SCD is higher in haemodialysis patients in comparison to other patient populations (Figure 4): 5–7% in haemodialysis patients, 4% in heart failure patients, and 1.5–2.7% in non-dialysis patients. The annual rates in non-dialysis patients are comparable to that of post-infarction patients.126,132,136,140,142–144 Nephrologists should be encouraged and educated to discuss risks and potential treatment options with patients, and enhance participation in clinical trials.

There is a significant gap of knowledge in the understanding of electrical and haemodynamic mechanisms underlying SCD (Figure 5). In a retrospective study of haemodialysis patients who were prescribed a wearable cardioverter defibrillator, 80% of cardiac arrests were recorded as ventricular tachyarrhythmias (ventricular tachycardia or ventricular fibrillation) compared to 20% bradyarrhythmias.145 In a recent study with continuous electrocardiogram (ECG) monitoring, bradyarrhythmias and asystole, rather than ventricular tachyarrhythmias, were important determinants of SCD in ESKD patients.146 The definitions of sudden death and SCD in ESKD patients need to be refined. The unexpected nature of sudden death needs to be

Drug	Protein binding	Elimination	Dialyzable	Dosing in CKD	Special considerations in CKD
Flecainide	40%	35% excreted unchanged in urine	No	Dose reduction if eGFR <35 mL/min/1.73 m²	Do not use if significant structural heart disease present
Propafenone	95%	38-50% excreted in urine as active metabolites (1% unchanged)	No	Careful monitoring recommended (in hospital initiation if advanced CKD)	Do not use if significant structural heart disease present
Amiodarone	99%	No renal elimination	No	No dosage requirements; not dialyzable; many drug-to-drug interactions	
Dronedarone	98%	6% excreted in urine	Unlikely to be dialyzed	No dosage adaptation required in kidney failure	Do not use if EF <35% or recent CHF
Dofetilide	60–70%	80% renally excreted, as unchanged (80%) or inactive/ minimally active metabolites	Unknown	Initial dose individualized on the basis of CrCl and subsequent dosing based on CrCl and QTc monitoring	Contraindicated for CrCl <20 mL/min
Sotalol	Not protein bound	70% excreted unchanged in urine	Yes—give maintenance dose after dialysis or supplement with 80 mg after HD	A relative contraindication in view of the risk of proarrhythmic effects; in rare and selected cases—dose to be halved or reduced to one quarter in CKD	A relative contraindication in view of the risk of proarrhythmic effects

CHF, congestive heart failure; CKD, chronic kidney disease; CrCl, creatinine clearance; EF, ejection fraction; eGFR, estimated glomerular filtration rate; HD, haemodialysis. Modified from Potpara et al.101 Propafenone elimination data from Drugbank.ca.110 Dialyzability data from Frishman.106

Table 5 Characteristics of antiarrhythmic drugs for maintaining sinus rhythm in chronic kidney disease

Figure 4 Annual rates of sudden cardiac death. CKD, chronic kidney disease; GP, general population.
emphasized to avoid misclassifications. Supplementary material online, Table S5 proposes definitions of sudden death, SCD, and aborted cardiac arrest pertinent for ESKD patients.

Risk factors for sudden cardiac death in chronic kidney disease and end-stage kidney disease patients

The mechanisms of SCD in CKD and ESKD incorporate the long-standing, pathophysiologic abnormalities that predispose to the arrhythmogenic conditions and the triggering mechanisms which precipitate sudden cardiac arrhythmia (Figure 6).

The roles of myocardial ischaemia, electrolyte, and volume shifts with haemodynamic instability, left ventricular hypertrophy, fibrosis and dysfunction, as well as autonomic dysregulation and sympathetic overactivity in the pathway leading to SCD, will all need to be further evaluated.

Risk factors predisposing to SCD have been identified in ESKD patients (Supplementary material online, Table S6) and usually their combinations contribute to SCD. Since it is difficult to identify SCD-specific risk factors in patients without ESKD, it might be that just cardiac death-specific risk factors will...
The role of defibrillator therapies for primary and secondary prevention of sudden cardiac death in end-stage kidney disease

Data regarding secondary prevention ICD therapy indicate some benefits but further studies are needed to assess longer-term risk vs. benefit that account for competing risks of death.\(^7\)\(^{154,157}\) Primary prevention ICD therapy is indicated in patients with LVEF $\leq 35\%$ although data on benefits of primary prevention ICD therapy in patients with LVEF $\leq 35\%$ and advanced CKD are not encouraging.\(^{158}\) as compromised by competing morbidity and mortality and high risk of complications. Patients with LVEF $< 35\%$ account for 10–15% of dialysis patients,\(^ {159,160}\) but no data exist for the majority of dialysis patients with LVEF $> 35\%$. Available data seem to suggest that the benefit of ICDs decreases with declining GFRs, in relationship to competing risks of comorbidity and mortality and high risk of complications.\(^ {129,161}\) Studies with subcutaneous defibrillators, which do not have transvenous hardware, are needed since this approach might be associated with fewer and less severe complications, such as infection.\(^ {162}\) Wearable cardioverter defibrillators may provide protection for a limited high-risk period.\(^ {145}\) Further assessment of pacing devices for bradyarrhythmias (including leadless pacemakers) is needed.\(^ {146}\)

Potassium homeostasis and handling in chronic kidney disease and dialysis

Electrolyte abnormalities and risk for cardiovascular or arrhythmic events

Although definitive evidence for causality is lacking, both hyperkalaemia and hypokalaemia have been associated with higher risk of all-cause and cardiovascular mortality in patients with ESKD. In patients on haemodialysis, when pre-dialysis serum potassium values (i.e. potassium values on blood drawn at the start of the haemodialysis procedure, in keeping with clinical practice) rise or fall away from 5 mEq/L, the risk for sudden cardiac arrest increases.\(^ {167}\) Among incident haemodialysis patients, higher mortality and hospitalization rates have been documented to occur immediately after the 2-day interdialytic interval.\(^ {163,164}\) A contributing factor may be larger fluid accumulation followed by excessive ultrafiltration and abrupt fluctuations in serum potassium concentrations (Supplementary material online, Figure S1).\(^ {165}\) In contrast, hypokalaemia is more common in patients on peritoneal dialysis, and hypokalaemia has been associated with increased risk of all-cause, cardiovascular, and infectious mortality in this subgroup of patients.\(^ {166}\)

Treatments for hyperkalaemia include dietary restriction, correction of acidosis, increasing distal sodium load, and loop diuretics, and in the case of hypokalaemia, potassium-sparing diuretics and potassium supplements could be used.\(^ {167}\) It may be possible to reduce the dose or stop drugs that interfere with potassium homeostasis, such as nonsteroidal anti-inflammatory drugs, sulfamethoxazole-trimethoprim, calcineurin inhibitors, and non-selective beta blockers. Pharmacologic treatments for managing hyperkalaemia include the cation-exchange resin kayexalate,\(^ {168}\) calcium-resin resonium,\(^ {169}\) the potassium-binding polymer patiromer,\(^ {170}\) and the potassium trap ZS-9.\(^ {167}\) Beyond the treatment of hyperkalaemia, these agents might also enable more patients with concomitant CKD to be started on or maintained on guideline-recommended renin–angiotensin–aldosterone system (RAAS) inhibitors, and this possibility is currently being investigated.\(^ {167}\) In addition to reducing serum potassium, patiromer has been shown to reduce serum aldosterone levels in patients with CKD and hyperkalaemia taking RAAS inhibitors.\(^ {171}\) Other important questions regarding potassium binders relate to their safety and efficacy in post-kidney transplant patients, patients with Type IV renal tubular acidosis, or patients taking calcineurin inhibitors.

Data from three clinical trials have indicated that dual RAAS blockade therapy increases the risk of hyperkalaemia in patients with CKD.\(^ {172–174}\) Meta-analysis data have indicated that mineralocorticoids can mediate hyperkalaemia in patients undergoing dialysis, but large trials are needed to better evaluate this process and its clinical significance.\(^ {175}\) In patients with Type 2 diabetes, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has been associated with small mean changes in serum electrolytes and less hyperkalaemia compared to placebo, especially in patients taking anti-hypertensives that interfere with potassium excretion.\(^ {176}\)

Potassium homeostasis and handling in chronic kidney disease and dialysis

Electrolyte abnormalities and risk for cardiovascular or arrhythmic events

Although definitive evidence for causality is lacking, both hyperkalaemia and hypokalaemia have been associated with higher risk of all-cause and
Table 6 Arrhythmias and chronic kidney disease: current knowledge gaps and future research recommendations

- Should AF be a required secondary endpoint in future cardiovascular clinical trials among CKD patients? This will enable future studies to examine the contribution of AF to various outcomes (e.g. cognitive impairment).
- Can we improve upon risk assessment in patients with CKD/CKD G5D by examining unique risk factors for stroke (e.g. proteinuria) and bleeding (e.g. proteinuria, platelet dysfunction, vascular access, dialysis anticoagulation)?
- Based on a review of large observational studies, can we ascertain the combinations of risk factors that predict competing SCD vs. non-SCD and cardiac vs. non-cardiac death endpoints in patients with CKD/CKD G5D?
- Are there modifiable risk factors (e.g. long chain omega-3 fatty acids) or pharmaceutical therapies for SCD worth investigating?
- What is the incidence and prognostic significance of syncope in dialysis patients (on conventional or novel modalities) and transient hypotension, hypovolemia, and bradycardia during and outside dialysis sessions?
- Is there a role for biomarkers (e.g. troponins, BNP) and markers of autonomic dysregulation and sympathetic overactivity in predicting cardiac death and SCD? Is there prognostic significance in incidentally detected arrhythmias?
- Among patients on dialysis, can we use modern imaging techniques (e.g. cardiac magnetic resonance imaging with T1 mapping and speckle tracking imaging echocardiography both during haemodialysis and on a non-dialysis day), long-term ECG monitoring, and emerging biomarkers to ascertain predisposing factors to SCD?
- Since patients with CKD G5D have consistently lower time in TTR values (despite comparable intensity of monitoring) that may contribute to higher risk of bleeding, what is the evidence regarding the role of TTR in decision-making and transitioning to DOAC therapy with suboptimal TTR?
- Estimates of kidney function using eGFR and eCrCl are not equivalent and can lead to important dose discrepancies with DOACs. Both the conference participants and ESC advocate the use of eGFR (over eCrCl) in future trials because of established superiority in estimating kidney function and to reconcile the measure used in pragmatic clinical practice. For adoption of this measure in future trials however, we recognize that there would be need for upfront endorsement of eGFR as the preferred measure for estimating kidney function by regulatory agencies.
- Should serial measurements of kidney function be considered to determine if anticoagulation (e.g. DOACs) is associated with changes in kidney function?
- Does heparin use during haemodialysis alter the risk–benefit ratio when used with concomitant oral anticoagulation? Are there clinical efficacy or safety data evaluating whether the use of erythropoietin therapy influences stroke reduction with anticoagulant therapy?
- Is there utility in employing left atrial appendage occluder devices in patients with CKD G5D who are already at high risk of bleeding and endovascular infections?
- What is the role of DOACs among kidney transplant patients? Do specific drug–drug interactions favour certain agents over others?
- Is ICD therapy efficacious in the primary and secondary prevention of SCD in ESKD? If so, what are the risk–benefit ratios? Utility of leadless pacemakers? Additional studies examining transvenous, subcutaneous, and wearable defibrillators are needed in CKD patients with EF >35% since they account for 90% of ESKD patients.
- What are the long-term outcomes of rate vs. rhythm control in CKD or dialysis patients? What should guide the selection of rate vs. rhythm control in this patient population? For the former, what is the optimal rate control and what are the preferred rate-controlling agents? Utility of transvenous vs. leadless permanent pacemaker following AV node ablation? For rhythm control, what is benefit–risk ratio for ablation vs. antiarrhythmic drugs?
- What is the ideal ablation approach? For antiarrhythmic drugs, are there comparative trials to provide information on safety, pharmacokinetics and efficacy on various agents (especially amiodarone)? Is there a long-term need for oral anticoagulation in patients with successful rhythm control?
- Does personalizing dialysis prescription (e.g. electrolyte dialysate, close monitoring of potassium levels or volume management) reduce the risk for SCD? Do changes in other electrolytes associated with arrhythmic predisposition in haemodialysis patients (such as magnesium) affect clinical outcomes?

AF, atrial fibrillation; AV, ativoventricular; BNP, B-type natriuretic peptide; CKD, chronic kidney disease; DOAC, direct oral anticoagulant; ECG, electrocardiogram; eCrCl, estimated creatinine clearance; EF, ejection fraction; eGFR, estimated glomerular filtration rate; ESC, European Society of Cardiology; ESKD, end-stage kidney disease; G5D, CKD stage G5 patients on dialysis therapy; ICD, implantable cardioverter-defibrillator; SCD, sudden cardiac death; TTR, time in therapeutic range.

with a higher incidence of sudden death, especially when pre-dialysis patient serum levels are <5 mEq/L. For patients with a pre-dialysis serum potassium concentration of >5 mEq/L, the risks associated with low potassium dialysates have not been statistically significant. In Dialysis Outcomes and Practice Patterns Study (DOPPS), mortality rates were similar in patients prescribed 2 and 3 mEq/L dialysate. Rapid correction of acidemia, low serum or dialysate calcium, and high ultrafiltration rates may contribute to the arrhythmogenic potential of low potassium dialysate. In a study of 50 patients undergoing thrice-weekly dialysis, risk of SCD and significant arrhythmias was greater during the 72-h vs. 48-h breaks. There were no analyses specifically related to potassium levels in these studies. Whether shortening the interval between haemodialysis sessions could result in clinically significant reductions in sudden cardiac arrest and its relationship to potassium levels is not clear and warrants further study. Dialysate concentrations of bicarbonate, calcium, magnesium, and glutamic acid also are likely to be relevant to risk for arrhythmic events. It is possible that personalizing dialysis parameters...
for individual patients could reduce risk of SCD, but this is untested and would be logistically complicated to implement.

Fluid control during dialysis
Ultrafiltration rates higher than 10 mL/h/kg have been associated with a higher likelihood of intradialytic hypotension and risk of mortality. Haemodynamic stress during dialysis induces cardiac stunning, which over time may progress to the development of regional fixed systolic dysfunction, consistent with underlying myocardial hibernation and fibrosis. A retrospective analysis has indicated that greater interdialytic weight gain is associated with an increased risk of cardiovascular morbidity events; therefore, strategies that mitigate interdialytic weight gain warrant investigation.

Conclusion
People with CKD have an increased burden from AF relative to those without CKD, and an elevated risk of stroke. For preventing stroke in patients with eGFR 30–50 mL/min, DOACs are non-inferior to warfarin and have a more favourable safety profile. For CKD GSD patients with AF, there are insufficient clinical efficacy and safety data to routinely recommend VKA treatment for preventing stroke.

Evidence from older randomized trials indicates that pharmacological rhythm and rate control strategies are equivalent in terms of their efficacy on risks of heart failure, stroke, and survival. However, catheter ablation, which is superior to antiarrhythmic drug therapy for freedom from AF recurrence, has comparable safety in CKD and non-CKD. The role of AF ablation may continue to evolve, particularly among other co-morbid conditions such as heart failure. Regardless of whether a rhythm or rate strategy is pursued, anticoagulation should also be prescribed unless otherwise contraindicated based on stroke risk.

The risk for SCD is increased in patients with CKD, and for those with ESKD on dialysis, several factors that increase risk have been identified. Studies are needed to identify risk factors for SCD in CKD non-dialysis patients. For preventing SCD in ESKD, primary prevention ICD therapy is indicated in patients with LVEF ≤ 35%, although data on its benefits in these patients are not encouraging. Data regarding secondary prevention ICD therapy indicate some benefits, but further studies are needed to assess long-term risk–benefit ratios in these patients. Available data seem to suggest that the benefit of ICDs decreases with declining GFR.

For patients undergoing haemodialysis, both the potassium concentration in the dialysate and the schedule of haemodialysis treatments affect the risk of sudden death. Whether shortening the interval between haemodialysis sessions could result in clinically significant reductions in sudden cardiac arrest is not yet clear and warrants further study. It is possible that personalizing dialysis parameters for individual patients could reduce risk of SCD, but this is untested and would be logistically complicated to implement.

Recent guidelines include considerable practical and scientific detail on management of these arrhythmias in CKD.

Supplementary material
Supplementary material is available at European Heart Journal online.

Acknowledgements
We thank Jennifer King, PhD, for assistance with the manuscript preparation.

Funding
The conference was sponsored by KDIGO (Kidney Disease: Improving Global Outcomes) and supported in part by unrestricted educational grants from AstraZeneca, Bayer HealthCare, Boston Scientific, Daiichi-Sankyo, Fresenius Medical Care, Sanofi-Genzyme, Medtronic, Relypsa, and Vifor Fresenius Medical Care Renal Pharma. All conference attendees received travel support for meeting participation.

Conflict of interest: M.P.T. has received research support from AstraZeneca, Boehringer Ingelheim, Cardiva Medical, Janssen, Medtronic, and Veterans Health Administration; has served as a consultant to Akebia, AliveCor, Boehringer Ingelheim, Cardiva Medical, iBeat, iRhythm, Medtronic, Precision Health Economics, and St Jude Medical; has received speaker honoraria from Medscape/theheart.org; has reported equity in AliveCor, iBeat, Zipline Medical; and is an editor for JAMA Cardiology. P.J.B. has received research support from the Dutch Kidney Foundation, the European Commission, Medtronic, The Netherlands Organisation for Health Research and Development, and St. Jude Medical. All monies were paid to institution. J.J.C. has received institutional research grants from AstraZeneca, Vifor Fresenius Medical Care Renal Pharma and Swedish Heart and Lung Foundation and speaker honorarium from Vifor Fresenius Medical Care Renal Pharma. C.A.H. has served as a consultant to Abbvie, Bristol-Myers Squibb, Fibrogen, Relypsa, Sanofi, ZS Pharma; received research support from Amgen and Zoll; owns stock in Boston Scientific, GE, Johnson & Johnson and Merck. S.E.K. has received research support from WL Gore and Associates, Bayer and Bristol-Myers Squibb; and has served as a consultant to Abbvie, Boehringer Ingelheim and Johnson & Johnson. R.S.P. has received personal fees from Biotronic and Medtronic; non-financial support from Kardic; and research support from Pfizer. R.P.-F. has served on advisory boards and/or received speaker honoraria from Akebia, AstraZeneca, Baxter, Fresenius Medical Care, Janssen, and Novartis. He has also received research support from Baxter and Fresenius Medical Care. H.R. has received personal fees and non-financial support from Bristol-Myers Squibb and Pfizer. W.Z. has received research support from Boston Scientific and Zoll. D.C.W. has served as a consultant to Amgen, AstraZeneca, Boehringer Ingelheim, GSK, Janssen, and Vifor Fresenius Medical Care Renal Pharma; and has received speaker honoraria from Amgen and Kyowa Kirin. W.C.W. has served as a scientific advisor to AMAG, Amgen, AstraZeneca, Bayer, Daiichi Sankyo, Vifor Fresenius Medical Care Renal Pharma, and ZS Pharma; has served on clinical trial executive committee for Akebia and endpoint adjudication committee for Medtronic; he has also served as a consultant to Relypsa and received speaker honorarium from Fibrogen. C.W. has served as a consultant to Boehringer-Ingelheim and Sanofi Genzyme. All other authors have nothing to disclose.
References

1. Charytan D, Kuntz RE. The exclusion of patients with chronic kidney disease from clinical trials in coronary artery disease. Kidney Int 2006;70:2021–2030.

2. Konstantinidis I, Nadkarni GN, Yacoub R, Saha A, Simoneos P, Parikh CR, Coca SG. Representation of patients with kidney disease in trials of cardiovascular interventions: an updated systematic review. JAMA Intern Med 2016;176:121–124.

3. Bonari G, Savelieva I, Dan GA, Dehara JC, Ferro C, Israel CW, Lane DA, La Manna G, Morton J, Mitjans AM, Vos MA, Turakhia MP, Li GY. Chronic kidney disease in patients with cardiac rhythm disturbances or implantable electrical devices: clinical significance and implications for decision-making a paper of the European Heart Rhythm Association endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. Europace 2015;17:1169–1196.

4. Heidbuchel H, Verhamme P, Alings M, Antz M, Diener HC, Hacke W, Kleinstueck FS, Lip GY. Chronic kidney disease in atrial fibrillation: a Global Burden of Disease 2010 Study. Eur Heart J 2011;32:2835–2867.

5. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Camm AJ, Chen SM, Kirchhof P, Lip GY. Part II: Proarrhythmic mechanisms and treatment of atrial fibrillation. J Am Coll Cardiol 2007;49:2893–2901.

6. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corra U, Deaton C, Graham I, Hall MS, Hobbs FD, Lochen ML, Popescu BA, Schotten U, Van Putte B, Vardas P, Euperstein I, Stone PH, Vardas PE, Poddubnaya OA, Sadowski WS, Zivichik SP. Task Force members. 2016 ESC guidelines on cardiovascular disease in diabetes: the Task Force on cardiovascular disease in diabetes of the European Society of Cardiology. Eur Heart J 2016;37:2893–2962.

7. Feldman HI, Chronic Renal Insufficiency Cohort Study Group. Chronic kidney disease: evolving importance of kidney disease: from subspecialty to global health burden. Lancet 2013;382:162–169.

8. Goldstein BA, Arce CM, Hlatky MA, Turakhia M, Setoguchi S, Winkelmayer WC, Kawano Y. Chronic kidney disease as an independent risk factor for new-onset atrial fibrillation: the Anticoagulation and Risk Factors In Atrial Fibrillation (ATRIA) registry. J Am Heart Assoc 2016;5:e003005.

9. Go AS, Fang MC, Udaltsova N, Chang Y, Pomernacki NK, Borowsky L, Singer DE, Bajwa J, Vukov SJ, Khot BA, Chin S. Chronic kidney disease and the risk of new-onset atrial fibrillation: a meta-analysis of prospective cohort studies. Circulation 2016;133:155581.

10. Olesen JB, Lip GY, Kamide K, Tokudome T, Yoshihara F, Nakamura S, Kawano Y. Chronic kidney disease as an independent risk factor for new-onset atrial fibrillation in hypertensive patients. J Hypertens 2010;28:1738–1744.

11. Go AS, Fang MC, Udaltsova N, Chang Y, Pomernacki NK, Borowsky L, Singer DE, Bajwa J, Vukov SJ, Khot BA, Chin S. Chronic kidney disease and the risk of new-onset atrial fibrillation: a meta-analysis of prospective cohort studies. Circulation 2016;133:155581.

12. Go AS, Fang MC, Udaltsova N, Chang Y, Pomernacki NK, Borowsky L, Singer DE, Bajwa J, Vukov SJ, Khot BA, Chin S. Chronic kidney disease and the risk of new-onset atrial fibrillation: a meta-analysis of prospective cohort studies. Circulation 2016;133:155581.

13. Feldman HI, Chronic Renal Insufficiency Cohort Study Group. Chronic kidney disease: evolving importance of kidney disease: from subspecialty to global health burden. Lancet 2013;382:162–169.

14. Goldstein BA, Arce CM, Hlatky MA, Turakhia M, Setoguchi S, Winkelmayer WC. Trends in the incidence of atrial fibrillation in older patients initiating dialysis in the United States. Circulation 2012;126:2293–2301.

15. Winkelmayer WC, Patrick AR, Liu J, Brookhart MA, Setoguchi S. The increasing prevalence of atrial fibrillation among hemodialysis patients. J Am Soc Nephrol 2011;22:349–357.

16. Provvidencia R, Marjon E, Boveda S, Barra A, Narayanan K, Le Heuzey JY, Gersh BJ, Goncaves L. Meta-analysis of the influence of chronic kidney disease on the risk of thromboembolism among patients with nonvalvular atrial fibrillation. Am J Cardiol 2014;114:646–653.

17. Piccini JP, Stevens SR, Chang Y, Singer DE, Lokhnygina Y, Go AS, Patel MR, Mckeel KW, Halperin JL, Gurbel PA, Harker SM, Hacke W, Becker BC, Nessel CC, Fox KA, Calif FM. ROCKET AF Steering Committee and Investigators. Renal dysfunction as a predictor of stroke and systemic embolism in patients with nonvalvular atrial fibrillation: validation of the R(2)/CHA2DS2-VASc index in the ROCKET AF (Rivaroxaban Once-daily, oral, direct factor Xa inhibition Compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation) and ATRIA (Anticoagulation and Risk factors in Atrial Fibrillation) study cohorts. Circulation 2013;127:224–232.

18. Olesen JB, Lip GY, Kamide K, Tokudome T, Yoshihara F, Nakamura S, Kawano Y. Chronic kidney disease as an independent risk factor for new-onset atrial fibrillation in hypertensive patients. J Hypertens 2010;28:1738–1744.

19. Go AS, Fang MC, Udaltsova N, Chang Y, Pomernacki NK, Borowsky L, Singer DE, Bajwa J, Vukov SJ, Khot BA, Chin S. Chronic kidney disease and the risk of new-onset atrial fibrillation: a meta-analysis of prospective cohort studies. Circulation 2016;133:155581.

20. Olesen JB, Kriithe BP, Aspelnud T, Steaps KA, Pencina MJ, Moser CB, Sinner M, Sato TK, Nisse F, Jansens AC, Kromahl RA, Magnus WJ, Wittman JG, Cambier AM, Lubitz SA, Schrødt RB, Agarwal SK, McManus DD, Ellinor PT, Larson MG, Burke GL, Launer LJ, Hofman A, Levy D, Gudnason V, Hackert SB, Benjamin EJ. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J Am Heart Assoc 2013;2:e001002.

21. Deo R, Katz R, Kestenbaum B, Fried L, Sarnak MJ, Pioty BM, Scovil KS, Shlipak MG. Impaired kidney function and atrial fibrillation in elderly subjects. J Card Fail 2010;16:55–60.

22. Liao JN, Chao TF, Liu CJ, Wang KL, Chen SJ, Lin YJ, Chang SL, Lo LW, Hu YF, Yuan TT, Chung FP, Chen TJ, Chen SA. Incidence and risk factors for new- onset atrial fibrillation among patients with end-stage renal disease undergoing renal replacement therapy. Kidney Int 2015;87:1209–1215.

23. Goldstein BA, Arce CM, Hlatky MA, Turakhia M, Setoguchi S, Winkelmayer WC. Trends in the incidence of atrial fibrillation in older patients initiating dialysis in the United States. Circulation 2012;126:2293–2301.

24. Winkelmayer WC, Patrick AR, Liu J, Brookhart MA, Setoguchi S. The increasing prevalence of atrial fibrillation among hemodialysis patients. J Am Soc Nephrol 2011;22:349–357.
33. Wetmore JB, Ellerbeck EF, Mahmken JD, Phadnis M, Riger SK, Mukhopadhyay P, Spertus JA, Zhou X, Hou Q, Shireman TI. Atrial fibrillation and risk of stroke in dialysis patients. Am Epidemiol 2013;32:112–118.

34. Conen D, Chase CU, Gynrn R, Tedrow UB, Everett BM, Bunin J, Albert CM. Risk of death and cardiovascular events in initially healthy women with new-onset atrial fibrillation: the WHS cohort. Eur Heart J 2011;32:2080–2087.

35. Shih GJ, Ou SM, Chao PW, Kuo SC, Lee YJ, Yang CY, Lin CC, Huang PH, Li SY, Chen YT. Risks of death and stroke in patients undergoing hemodialysis with new-onset atrial fibrillation: a competing-risk analysis of a nationwide cohort. Circulation 2016;133:265–272.

36. Lenihan CR, Montez-Rath ME, Scandling JD, Turakhia MP, Winkelwayer WC. Outcomes after left atrioventricular reconnection of patients previously diagnosed with atrial fibrillation. Am J Transplant 2013;13:1566–1575.

37. Findlay MD, Thomson PC, Madsaas R, Jardine AG, Patel RK, Stevens KK, Rutherford E, Clancy M, Geddes CC, Dawson J, Mark PB. Risk factors and outcome of stroke in renal transplant recipients. Clin Transplant 2016;30:918–924.

38. Bansal N, Xie D, Tao K, Chen J, Dee D, Horvitz E, Hsu CY, Kallem RK, Keane MG, Lora CM, Raj D, Solomon EZ, Strauss L, Wolf M, Go AS. Study CRIC. Atrial fibrillation and risk of ESRD in adults with CKD. Clin J Am Soc Nephrol 2016;11:1189–1196.

39. Bansal N, Fan D, Hsu CY, Ordonez JD, Marcus GM, Go AS. Incident atrial fibrillation and risk of end-stage renal disease in adults with chronic kidney disease. Circulation 2013;127:567–574.

40. O’Neill WT, Tinker RM, Eflod JT, Barber U, Alonos A, Howard VJ, Howard G, Muntner P, Solomon Z. Atrial fibrillation and incident end-stage renal disease: the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. Int J Cardiol 2015;185:219–223.

41. Bansal N, Fan D, Hsu CY, Ordonez JD, Go AS. Incident atrial fibrillation and risk of death in adults with chronic kidney disease. J Am Heart Assoc 2013;2:e001303.

42. Nelson SE, Shroff GR, Li S, Herzog CA. Impact of chronic kidney disease on risk of incident atrial fibrillation and subsequent survival in medicated patients. J Am Heart Assoc 2012;1:e002097.

43. Chan PH, Huang D, Yip PS, Hai J, Tse HF, Chan TM, Lip GY, Lo WK, Siu CW. Impact of chronic kidney disease on the risk of death in adults with chronic kidney disease. Int J Cardiol 2013;167:299–305.

44. Wetmore JB, Ellerbeck EF, Mahnken JD, Phadnis M, Rigler SK, Mukhopadhyay P, Shih CJ, Ou SM, Chao PW, Kuo SC, Lee YJ, Yang CY, Tarng DC, Lin CC, Shih CJ, Ou SM, Chao PW, Kuo SC, Lee YJ, Yang CY, Tarng DC, Lin CC, Lin CC, Selzner M, Kopp MA, Lora CM, Raj D, Soliman EZ, Strauss L, Wolf M, Go AS. Study CRIC. Atrial fibrillation and risk of ESRD in adults with CKD. Clin J Am Soc Nephrol 2016;11:1189–1196.

45. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, Cote PE, Liao JN, Chen TJ, Lip GY, Chen SA. Incidence and prediction of ischemic stroke in the year following atrial fibrillation. Eur Heart J 2011;32:2471–2482.

46. March L, Tsosie D, Blumenthal RS, Yee D, Park J, Kappel P, Covington M, Bohn EA, Bletter J, Ravon B. Vascular calcification in chronic kidney disease: the role of vitamin K. Nat Clin Pract Nephrol 2007;3:522–523.
Chronic kidney disease and arrhythmias: a KDIGO conference report

73. Kooman J, van der Hulle T, Maas H, Wiebe S, Formella S, Clemens A, van Buren M, Janssen M, Rabelink TJ, Huismann MV. Pharmacokinetics and pharmacodynamics of dabigatran 75 mg b.i.d. in patients with severe chronic kidney disease. J Am Coll Cardiol 2016;67:2442–2444.

74. Dias C, Moore KT, Murphy J, Ariyawansa J, Smith W, Mills RM, Weir MR. Pharmacokinetics, pharmacodynamics, and safety of single-dose rivaroxaban in chronic hemodialysis patients. J Clin Pharmacol 2016;56:628–636.

75. Mieghem W, Lip GY, Kim JH, Lanas-Zanetti F, Gonzalez-Hermosillo A, Dara AL, Munawar M, O’Donnell M, Lawrence J, Lewis G, Afsal R, Yusuf S. Apixaban in patients with atrial fibrillation. N Engl J Med 2011;364:806–817.

76. Gibson CM, Mehran R, Bode C, Halperin J, Verheugt FW, Wildgoose P, Bermudez J, Jan J, Burton P, van Eckels M, Korjian S, Daoboul Y, Lip GY, Cohen M, Husted S, Peterson ED, Fox KA. Prevention of bleeding in patients with atrial fibrillation and chronic kidney disease: a substudy of EINSTEIN PCC. N Engl J Med 2016;375:2433–2443.

77. Reddy NV, Doshi SK, Kar S, Gibson DN, Price MJ, Huber K, Horton RP, Buchbinder M, Neuzil P, Gordon NT, Holmes DR Jr. 5-year outcomes after left atrial appendage closure: from the PREVAIL and PROTECT AF trials. J Am Coll Cardiol 2017;70:2964–2975.

78. Testa L, Biondi-Zoccai GG, Dello Russo A, Bellocci F, Andreotti F, Crea F. Rate-control vs rhythm-control in patients with atrial fibrillation: a meta-analysis. Eur Heart J 2005;26:2000–2006.

79. Chatterjee S, Sardar P, Lichstein E, Mukherjee D, Akst S. Pharmacologic rate versus rhythm-control strategies in atrial fibrillation: an updated comprehensive review and meta-analysis. Pacing Clin Electrophysiol 2013;36:122–133.

80. Williams ES, Thompson VP, Chiswell KE, Alexander JH, White HD, Ohman EM, Al-Khateib SM. Rate versus rhythm control in patients with atrial fibrillation and chronic kidney disease: data from the GUSTO-III Trial. J Am Coll Cardiol 2013;62:439–446.

81. Potpara TS, Jolic V, Dagres N, Marin F, Prostran MS, Blomstrom-Lundqvist C, Lip GY. Cardiac arrhythmias in patients with chronic kidney disease: implications of renal failure for antithrombotic drug therapy. Curr Med Chem 2016;23:2070–2083.

82. Schmidt M, Daccarett M, Rittger H, Marschang H, Holzmann S, Jung P, Bojanic P, Schuster M, Lopez-Lago N, Molina E, Budts W, Scheltinga RP, Rackers E, Tsembelis G, Afnet SG. Morbidity and treatment in patients with atrial fibrillation and chronic kidney disease: data from the PREVENT AF Trial. J Am Soc Nephrol 2017;28:296–2976.

83. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

84. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

85. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

86. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

87. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

88. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

89. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

90. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

91. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

92. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

93. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

94. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

95. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

96. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

97. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

98. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

99. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.

100. Hoffmann K, Regardh CG, Aurell M, Ervik M, Jordo L. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol succinate. J Clin Pharmacol 2011;51:137–146.
112. Ullal AJ, Kaiser DW, Fan J, Schmitt S, Than CT, Winkelman WC, Heidenreich PA, Piccin JP, Perez MV, Wang PJ, Turakhia MP. Safety and clinical outcomes of catheter ablation of atrial fibrillation in patients with chronic kidney disease. J Cardiovasc Electrophysiol 2017;28:39–48.

113. Li M, Liu T, Luo D, Li G. Systematic review and meta-analysis of chronic kidney disease as predictor of atrial fibrillation recurrence following catheter ablation. Gastrointest Endosc 2014;80:119–27.

114. Yangaswawa S, Inden Y, Kato H, Fujii A, Mizutani Y, Ito T, Kamikubo Y, Kanazaki Y, Ando M, Hirai M, Shibata R, Murohara T. Impaired renal function is associated with recurrence after cryoballon catheter ablation for paroxysmal atrial fibrillation: a potential effect of non-pulmonary vein foc.is. J Cardiovasc Electrophysiol 2017;28:93–100.

115. Takahashi Y, Takeda A, Kowashima T, Okubo K, Fujita T, Takagi K, Nakashima E, Kamiishi T, Hiroa K, Isobe M. Renal function after catheter ablation of atrial fibrillation. Circulation 2011;124:2380–2387.

116. Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, Merkely B, Pokushalov E, Sanders P, Proff J, Schunkert H, Christ H, Vogt J, Bansch D; CASTLE-AF Investigators. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med 2010;363:917–427.

117. Marrouche NF, Brachmann J. Catheter ablation versus standard conventional treatment in patients with left ventricular dysfunction and atrial fibrillation (CASTLE-AF)—study design. Pacing Clin Electrophysiol 2009;32:987–994.

118. Kwon CH, Kim J, Kim MS, Roh JH, Jo U, Lee WS, Kim YR, Nam GB, Choo KJ, Kim YH. Impact of impaired renal function on the incidence of atrial fibrillation following radiofrequency ablation of cavotricuspid isthmus-dependent atrial flutter. Korean Circ J 2015;45:473–478.

119. Abed HS, Wittert GA, Leong DP, Shirazi MG, Bahrami B, Middeldorp ME, Lorimer MF, Lau DH, Antic NA, Brooks AG, Abhayaarana WP, Kalman JM, Sanders P. Effect of weight reduction and cardiorespiratory risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA 2013;310:2050–2060.

120. Lakireddy D, Atkins D, Pillarisetti J, Ryschon K, Bommana S, Drisko J, Vanga S, Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, Malouf JF, Li L, Wang ZW, Li J, Ge X, Guo LZ, Wang Y, Guo WH, Jiang CX, Ma CS.

121. Meyring-Wosten A, Zhang H, Ye X, Fuertinger DH, Chan L, Kappel F, Unruh ML, Sanders MH, Redline S, Piraino BM, Umans JG, Hammond TC, B, Psaty BM, Siscovick DS, Shlipak MG. Cystatin C and sudden cardiac death among renal function, risk of sudden cardiac death, and benefit of the implanted cardioverter defibrillator: the National Heart, Lung, and Blood Institute-sponsored Coronary Artery Surgery Study (CASS) Study. J Am Coll Cardiol 2015;65:429–437.

122. Rosamond W, Tofler G, Burke G, Goff D, laminate D, Howard V, Jones DW, Johnson J, Kissela B, Lichtman JH, Lisabeth L, McDermott R, Mehilli J, Miller T, Peterson K, Redberg R, Weis S, Wyneken J, Wu L, Zhao Y, Zinman L, Zohrabian V, Investigators, Investigators. Heart disease and stroke statistics—2008 update. Circulation 2008;117:218–227.

123. Shastri S, Tangri N, Tighiouart H, Beck GJ, Vlagopoulos P, Ornt D, Eknoyan G, Friedman AN, Yu Z, Tamez H, Wenger J, Thadhani R, Li Y, Friedman AN. Impact of impaired renal function on the risk of atrial fibrillation in end-stage renal disease patients: a 5-year prospective analysis. J Am Soc Nephrol 2017;28:1578–1583.

124. Shastri S, Tangri N, Tighiouart H, Beck GJ, Vlagopoulos P, Ornt D, Eknoyan G, Friedman AN, Yu Z, Tamez H, Wenger J, Thadhani R, Li Y, Friedman AN. Impact of impaired renal function on the risk of atrial fibrillation in end-stage renal disease patients: a 5-year prospective analysis. J Am Soc Nephrol 2017;28:1578–1583.

125. Shastri S, Tangri N, Tighiouart H, Beck GJ, Vlagopoulos P, Ornt D, Eknoyan G, Friedman AN, Yu Z, Tamez H, Wenger J, Thadhani R, Li Y, Friedman AN. Impact of impaired renal function on the risk of atrial fibrillation in end-stage renal disease patients: a 5-year prospective analysis. J Am Soc Nephrol 2017;28:1578–1583.
153. Winkler K, Wanner C, Drechsler C, Liénhart J, Marz W, Krane V. German Diabetes and Dialysis Study Investigators. Change in N-terminal-pro-B-type natriuretic-peptide and the risk of sudden death, stroke, myocardial infarction, and all-cause mortality in diabetic dialysis patients. Eur Heart J 2008;29:2092–2099.

154. Katritsis DG, Zareba W, Camm AJ. Nonsustained ventricular tachycardia. N Engl J Med 2012;366:1993–2004.

155. Roberts R, Jeffrey C, Carlisle G, Brierley E. Prospective investigation of the incidence of falls, dizziness and syncope in haemodialysis patients. Int Urol Nephrol 2007;39:275–279.

156. Charytan DM, Patrick AR, Liu J, Setoguchi S, Herzog CA, Brookhart MA, Winkelmyer WC. Trends in the use and outcomes of implantable cardioverter-defibrillators in patients undergoing dialysis in the United States. Am J Kidney Dis 2011;58:409–417.

157. Herzog CA, Li S, Weinhandl ED, Strief JW, Collins AJ, Gilbertson DT. Survival of dialysis patients after cardiac arrest and the impact of implantable cardioverter-defibrillators. Kidney Int 2005;68:818–825.

158. Nakhtoli GN, Schold JD, Arrigain S, Harb SC, Lilienthal J, Marz W, Krane V; German Chronic kidney disease and arrhythmias: a KDIGO conference report.

159. Katritsis DG, Zareba W, Camm AJ. Nonsustained ventricular tachycardia. N Engl J Med 2012;366:1993–2004.

160. Weir MR, Bakris GL, Bushinsky DA, Mayo MR, Garza D, Robinson BM. Malignant hypertension with end-stage renal disease on dialysis. Am J Kidney Dis 2015;66:32–39.

161. Berlyne GM, Janabi K, Shaw AB, Hocken AG. Treatment of hyperkalemia with a calcium-resin. Lancet 1966;1:169–172.

162. Weir MR, Bakris GL, Bushinsky DA, Mayo MR, Garza D, Stasin Y, Witters J, Christ-Schmidt H, Berman L, Pitt B. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N Engl J Med 2015;372:211–221.