THE CRITICAL ORDER OF CERTAIN HECKE
L-FUNCTIONS OF IMAGINARY QUADRATIC FIELDS

CHUNLEI LIU & LANJU XU

Abstract. Let \(-D < -4\) denote a fundamental discriminant which is either odd or divisible by 8, so that the canonical Hecke character of \(\mathbb{Q}(\sqrt{-D})\) exists. Let \(d\) be a fundamental discriminant prime to \(D\). Let \(2k - 1\) be an odd natural integer prime to the class number of \(\mathbb{Q}(\sqrt{-D})\). Let \(\chi\) be the twist of the \((2k - 1)\)th power of a canonical Hecke character of \(\mathbb{Q}(\sqrt{-D})\) by the Kronecker’s symbol \(n \mapsto \left(\frac{d}{n}\right)\). It is proved that the order of the Hecke \(L\)-function \(L(s, \chi)\) at its central point \(s = k\) is determined by its root number when \(|d| \leq c(\varepsilon)D^{1/12 - \varepsilon}\) or, when \(|d| \leq c(\varepsilon)D^{1/24 - \varepsilon}\) and \(k \geq 2\), where \(\varepsilon > 0\) and \(c(\varepsilon)\) is a constant depending only on \(\varepsilon\).

0. Introduction

Let \(K\) be an imaginary quadratic field with discriminant \(-D < -4\) and class number \(h\). Suppose that \(D\) is either odd or divisible by 8. Then, according to Rohrlich [Re], there are exactly gcd(2, \(D\)) \(h\) Hecke characters \(\chi_{can}\) of \(K\) satisfying

1. The conductor of \(\chi_{can}\) is \((2\sqrt{-D}, D)\), where \((2\sqrt{-D}, D)\) denotes the ideal generated by \(2\sqrt{-D}\) and \(D\).
2. \(\chi_{can}(\alpha) = \pm\alpha\) if \((\alpha)\) is a principle ideal prime to \((2\sqrt{-D}, D)\).
3. \(\chi_{can}(n) = \left(\frac{-D}{n}\right)n\) if \(n\) is a positive integer prime to \((2\sqrt{-D}, D)\).

We call such a character \(\chi_{can}\) canonical. Let \(d\) be a fundamental discriminant prime to \(D\). Let \(2k - 1\) be an odd positive integer prime to the class number \(h\). Let \(\chi\) be the product of the \((2k - 1)\)th power of a canonical Hecke character of \(K\) and the lifting of the Kronecker’s symbol \(n \mapsto \left(\frac{d}{n}\right)\). Let \(L(s, \chi)\) be the Hecke \(L\)-function attached to \(\chi\). Then

\[\Lambda(s, \chi) = (D^*|d|)^*(2\pi)^{-s}\Gamma(s)L(s, \chi) = W(\chi)\Lambda(2k - s, \chi),\]

where \(D^* = D\gcd(2, D)\) and \(W(\chi) = \pm 1\) is the root number. It is well known that the Hecke \(L\)-function \(L(s, \chi)\) is the \(L\)-function of a newform \(f\) of level

2000 MSC: 11R42, 11G05.
Keywords: Hecke \(L\)-function, elliptic curve, motive.
The first author is supported by NSFC.
\((D^*|d|)^2\) and weight \(2k\) with coefficients in \(\mathbb{Q}\). Let \(M\) be the Grothendieck motive over \(\mathbb{Q}\) attached to \(f\) by U. Jannsen and A. J. Scholl. According to a conjecture of Beilinson and Bloch and a result of S. Zhang, the order of the Hecke \(L\)-function \(L(s, \chi)\) at its central point \(s = k\) is closely related to the arithmetic of \(M\). Because of their arithmetic nature, these \(L\)-functions have been extensively studied by, among other authors, Gross [Gr], Rohrlich, Rodriguez-Villegas and Yang. Throughout this paper \(\varepsilon > 0\) is arbitrary small and the constants \(c(\varepsilon), c_1(\varepsilon)\) and \(c_2(\varepsilon)\), and those implied in the symbols \(<, >\) and \(O\) depend at most on \(\varepsilon\) and \(k\). We list the following update results.

- If \(k = 1\) and \(W(\chi) = 1\), Rohrlich [Rb] proved that \(L(1, \chi)\) doesn’t vanish when \(|d| \ll D^{1/39-\varepsilon}\).
- If \(k = 1\) and \(W(\chi) = -1\), Miller-Yang [MY] proved that \(L'(1, \chi)\) doesn’t vanish when \(|d| \ll D^{1/35-\varepsilon}\).
- If \(W(\chi) = 1\), Yang [Ya] proved that \(L(k, \chi)\) doesn’t vanish when \(D \mod 7, d \mod 4\) is positive and \(\sqrt{D} > d^2(\frac{12}{\pi} \ln d + M(k))\), where \(M(k)\) is a constant depending only on \(k\).

In this paper, we shall prove the following two theorems.

Theorem 1. If \(W(\chi) = 1\), then \(L(k, \chi)\) does not vanish when \(|d| \ll D^{1/24-\varepsilon}\).

Theorem 2. If \(W(\chi) = -1\), then \(L'(k, \chi)\) doesn’t vanish when \(|d| \ll D^{1/24-\varepsilon}\) or, when \(|d| \ll D^{1/24-\varepsilon}\) and \(k \geq 2\).

From the theorems one sees that

Corollary 1. The order of the Hecke \(L\)-function \(L(s, \chi)\) at its central point \(s = k\) is determined by its root number if \(|d| \ll D^{1/24-\varepsilon}\) or, if \(|d| \ll D^{1/24-\varepsilon}\) and \(k \geq 2\).

Assume that \(k = 1\). Then \(\chi\) lifts to a Hecke character \(\psi\) of the Hilbert class field \(H\) of \(K\) commuting with the action of the Galois group of \(H\) over \(\mathbb{Q}\). And

\[
L(s, \psi) = \prod_{\phi} L(s, \chi \phi),
\]

where \(\phi\) runs over all characters of the class group of \(K\). Let \(j\) be the \(j\)-invariant of an elliptic curve over \(H\) with complex conjugation by the ring of integers of \(K\). According to Gross [Gr], there is a unique elliptic curve \(A\) over \(H\) with \(j\)-invariant \(j\) which is isogenous to all its Galois conjugates and whose \(L\)-function is

\[
L(s, A/H) = L(s, \psi)^2.
\]

\(A\) descends to two isogenous elliptic curves over \(\mathbb{Q}(j)\) with \(L\)-function \(L(s, \psi)\). Let \(A_d\) be one of them. By results of Kolyvagin-Logachev [KL] and Gross-Zagier [GZ], the theorems imply the following arithmetic consequences.
Corollary 2. If $W(\chi) = 1$ and $|d| \ll D^{1/2} - \varepsilon$, then the Mordell-Weil group and the Shafarevich-Tate group of $A_d/\mathbb{Q}(j)$ are finite.

Corollary 3. If $W(\chi) = -1$ and $|d| \ll D^{1/2} - \varepsilon$, then $A_d/\mathbb{Q}(j)$ has a finite Shafarevich-Tate group and a Mordell-Weil group of rank h.

Acknowledgements. This work is motivated by Tonghai Yang’s lectures at Morningside Center of Mathematics, Chinese Academy of Sciences. The authors thank him for his lectures and for his suggestions on the manuscript, and thank Shouwu Zhang, Fei Xu and Kezheng Li for inviting them to visit the center. The first author wishes to express his thanks to Chengbiao Pan for discussions on Dirichlet L-functions, and to Yuan Wang for drawing his attention to character sums in algebraic number fields.

1. L-functions with root number 1

In this section we shall prove Theorem 1. Put

$$L(s, \chi, p) = \sum_{(\alpha) \in p} \chi((\alpha))(N(\alpha))^{-s}, \quad \Re s > 3/2,$$

where p is the set of all principal integral ideals of K. According to Rohrlich [Rb], for all ideal class characters φ of K, the L-functions $L(s, \chi \varphi)$ satisfy the same functional equation as $L(s, \chi)$ does. So

$$\Lambda(s, \chi, p) = (D^*|d|)^s (2\pi)^{-s} \Gamma(s)L(s, \chi, p) = W(\chi)\Lambda(2k - s, \chi, p).$$

Note that

$$L(s, \chi, p) = L_D(2s - 2k + 1) + L(s),$$

where

$$L_D(s) = \sum_{n \geq 1, (n,d)=1} (\frac{-D}{n}) n^{-s},$$

and

$$L(s) = \sum_{(\alpha) \in p'} \chi((\alpha))N(\alpha)^{-s}$$

with p' denoting the set of all principal integral ideals not generated by rational numbers. It is easy to see that $L_D(s)$ is the Dirichlet L-function attached to the Dirichlet character:

$$(\mathbb{Z}/(D|d|)^\times \rightarrow \mathbb{C}\times, \quad n \mapsto (\frac{-D}{n})).$$

We now suppose that $W(\chi) = 1$ and proceed to prove Theorem 1. According to Shimura [Sh] and Rohrlich [Rb], $L(k, \chi) = 0$ implies $L(k, \chi \varphi^{2k-1}) = 0$ for all ideal class characters φ of K. So it also implies $L(k, \chi, p) = 0$ as

$$hL(s, \chi, p) = \sum_\varphi L(s, \chi \varphi) = \sum_\varphi L(s, \chi \varphi^{2k-1}),$$
where φ runs over all ideal class characters of K. Hence, to prove $L(k, \chi) \neq 0$, it suffices to prove that $L(k, \chi, p) \neq 0$. It follows from the functional equation and a formula of Cauchy that

$$\frac{1}{2} L(k, \chi, p) = \frac{1}{2\pi i} \int_{(2k)} (2\pi)^k \Lambda(s, \chi, p) \frac{ds}{(D^* |d|)^k \Gamma(k) s - k}.$$

As

$$L(s, \chi, p) = L_D(2s - 2k + 1) + L(s),$$

we get the following approximation to the central value:

$$\frac{1}{2} L(k, \chi, p) = I_1 + I_2,$$

where

$$I_1 = \frac{1}{2\pi i} \int_{(2k)} (D^* |d|)^{s-k} (2\pi)^{k-s} \frac{\Gamma(s)}{\Gamma(k)} L_D(2s + 1 - 2k) \frac{ds}{s - k}$$

and

$$I_2 = \frac{1}{2\pi i} \int_{(2k)} (D^* |d|)^{s-k} (2\pi)^{k-s} \frac{\Gamma(s)}{\Gamma(k)} L(s) \frac{ds}{s - k}.$$

Theorem 1 now follows from the estimate

$$I_2 \ll D^{-\frac{1}{16} + \varepsilon} |d|^{\frac{3}{4} + \varepsilon},$$

which will be proved in the next section, and the estimate

$$I_1 \geq c_1(\varepsilon) (|D| |d|)^{-\varepsilon} - c_2(\varepsilon) (|D| |d|)^{-\frac{1}{16} + \varepsilon},$$

which we are going to prove. Shifting the line of integration in I_1 to $\Re s = k - 1/4$, we get

$$I_1 = L_D(1) + \frac{1}{2\pi i} \int_{(k-1/4)} (D^* |d|)^{s-k} (2\pi)^{k-s} \frac{\Gamma(s)}{\Gamma(k)} L_D(2s + 1 - 2k) \frac{ds}{s - k}.$$

Applying Burgess’ estimate [Bu]

$$L_D \left(\frac{1}{2} + it \right) \ll (D |d|)^{\frac{1}{16} + \varepsilon} (|t| + 1),$$

we get

$$I_1 = L_D(1) + O((D |d|)^{-\frac{1}{16} + \varepsilon}).$$

The required estimate for I_1 now follows from Siegel’s estimate

$$L_D(1) \gg (D |d|)^{-\varepsilon}.$$
2. **The complex part of the approximation to the central value**

In this section, we shall prove that

$$I_2 \ll D^{-\frac{1}{16} + \varepsilon} |d|^\frac{3}{4} + \varepsilon.$$

Recall that

$$I_2 = \frac{1}{2\pi i} \int_{(2k)} (D^*|d|)^{s-k} (2\pi)^{k-s} \frac{\Gamma(s)}{\Gamma(k)} L(s) \frac{ds}{s-k}.$$

Applying Mellin’s inversion and writing

$$\chi((\alpha)) = \epsilon(\alpha)\alpha^{2k-1},$$

where ϵ is a quadratic character with conductor $d(2\sqrt{-D}, D)$ on the subgroup of K^\times consisting of elements prime to $d(2\sqrt{-D}, D)$, we get

$$I_2 = \frac{1}{\Gamma(k)} \sum_{(\alpha) \in \mathcal{D}'} \epsilon(\alpha)\alpha^{2k-1} N(\alpha)^{-k} \int_{\frac{2\pi N(\alpha)}{D^*|d|}}^{\infty} e^{-\xi \epsilon k \frac{d\xi}{\xi}}.$$

The contribution from the terms with $\Re \alpha$ or $|\Im \alpha| \geq (D|d|)^{\frac{3}{4}} \log(D|d|)$ is bounded by

$$\sum_{n \geq D^*|d| \log(D|d|)}^{2} \epsilon(\alpha)\alpha^{2k-1} \frac{d\xi}{\xi} \ll (D^*|d|)^{-1}. $$

The subsum from the terms of I_2 with $0 < \Re \alpha$, $|\Im \alpha| < (D|d|)^{\frac{3}{4}} \log(D|d|)$ equals

$$\sum_{u,v} \frac{2(u + \sqrt{-D}v) \epsilon(u + \sqrt{-D}v)}{\Gamma(k)(u^2 + Dv^2)^k} e^{-\xi \epsilon k \frac{d\xi}{\xi}},$$

where (u, v) runs over pairs of integers satisfying

$$0 < u, \sqrt{|D|}v < 2(D|d|)^{\frac{1}{2}} \log(D|d|), \quad 4|(u^2 + Dv^2).$$

Conjugate terms grouped together, it becomes

$$\sum_{u,v} a(u,v) \epsilon(u + \sqrt{-D}v) \int_{\frac{2\pi N(\alpha)}{2D^*|d|}}^{\infty} e^{-\xi \epsilon k \frac{d\xi}{\xi}},$$

where (u, v) runs over pairs of integers satisfying

$$0 < u, \sqrt{|D|}v < 2(D|d|)^{\frac{1}{2}} \log(D|d|), \quad 4|(u^2 + Dv^2).$$
and
\[
\frac{1}{2}a(u, v) = \frac{(u + \sqrt{-Dv})^{2k-1} + (u - \sqrt{-Dv})^{2k-1}}{\Gamma(k)(u^2 + Dv^2)^k}.
\]

It splits dyadically into at most \(4 \log_2(2D|d|)\) sums of the form

\[
\sum_{N \leq v < N'} \sum_{M \leq u < M', 4|(u^2+Dv^2)} a(u, v)e\left(\frac{u+\sqrt{-Dv}}{2}\right) \int_0^\infty \frac{e^{-\xi k} d\xi}{\sqrt{(u^2+Dv^2)}} \xi,
\]

where \(0 < M', \sqrt{DN} < (D|d|)^{1/2} \log(D|d|), N' \leq 2N, \) and \(M' \leq 2M.\) By Abel’s summation formula, the inner sum is bounded by

\[
O(\log^{2k}(D|d|)) \min(M^{-1}, D^{-1/2}N^{-1}) \max_{M < w \leq 2M} |S_v(w)|,
\]

where

\[
S_v(w) = \sum_{M \leq u < w, 4|(u^2+Dv^2)} e\left(\frac{u+\sqrt{-Dv}}{2}\right).
\]

We claim that

\[
S_v(w) \ll |d| + M^{1/2}D^{3/16+\varepsilon}|d|^{1/2}, \quad w < 2M,
\]

from which the estimate for \(I_2,\) which is stated at the beginning of this section, follows. Write \(\epsilon = \epsilon_0\epsilon_1,\) where \(\epsilon_0\) and \(\epsilon_1\) have conductors \(\sqrt{-D}/(\sqrt{-D},4)\) and \(d(\sqrt{-D}, 4)\) respectively. Let \(k_0\) and \(k_1/2\) be the least positive integers in \(\sqrt{-D}/(\sqrt{-D},4)\) and \(d(\sqrt{-D}, 4)\) respectively. Then

\[
S_v(w) = \sum_{1 \leq j < k_1, 4|(j^2+Dv^2)} \sum_{M \leq u < w, u \equiv k_0 j(k_1)} \epsilon_0(u/2)\epsilon_1\left(\frac{u+\sqrt{-Dv}}{2}\right).
\]

The inner sum equals

\[
\epsilon_0(k_1/2)\epsilon_1\left(\frac{k_0 j + \sqrt{-Dv}}{2}\right) \sum_{M-k_0 l < l < w-k_0 j} \epsilon_0(l),
\]

which, according to Burgess [Bu], is bounded by \(O(1 + (M/|d|)^{1/2}D^{3/16+\varepsilon}).\) So

\[
S_v(w) \ll |d| + M^{1/2}D^{3/16+\varepsilon}|d|^{1/2}
\]

as claimed.
3. Twists of root number -1

In this section we shall prove Theorem 2. Similarly, it suffices to show that \(L'(k, \chi, p) \neq 0 \) under the condition of Theorem 2 (see [GZ] or [MY]). Suppose that \(W(\chi) = -1 \). It follows from this functional equation and a formula of Cauchy that

\[
\frac{1}{2} L'(k, \chi, p) = \frac{1}{2\pi i} \int_{(2k)} (2\pi)^k \Lambda(s, \chi, p) \frac{ds}{(D^*|d|)^k \Gamma(k) (s-k)^2}.
\]

As

\[
L(s, \chi, p) = L_D(2s - 2k + 1) + L(s),
\]

we get the following approximation to the central derivative:

\[
\frac{1}{2} L'(k, \chi, p) = R_k + C,
\]

where

\[
R_k = \frac{1}{2\pi i} \int_{(2k)} \frac{(D^*|d|)^{s-k} \Gamma(s)}{\Gamma(k)} L_D(2s - 2k + 1) \frac{ds}{(s-k)^2}
\]

and

\[
C = \frac{1}{2\pi i} \int_{(2k)} (D^*|d|)^{s-k} (2\pi)^k \frac{\Gamma(s)}{\Gamma(k)} L(s) \frac{ds}{(s-k)^2}.
\]

Theorem 2 now follows from the estimate

\[
R_k \geq .0351 - c(\varepsilon)(D|d|)^{-\frac{1}{16} + \varepsilon},
\]

which will be proved in the next section, and the estimate

\[
C \ll \begin{cases} D^{-\frac{1}{16} + \varepsilon}|d|^{\frac{1}{4} + \varepsilon}, & k = 1, \\ D^{-\frac{1}{16} + \varepsilon}|d|^{\frac{1}{4} + \varepsilon}, & k > 1, \end{cases}
\]

which we are going to prove. Applying Mellin’s inversion we get

\[
C = \sum_{(\alpha) \in p'} \chi((\alpha)) N(\alpha)^{-k} \int_{\frac{2\pi n N(\alpha)}{D^*|d|}}^{\infty} e^{-\xi} \xi^k (\log \xi - \log \frac{2\pi n N(\alpha)}{D^*|d|}) \frac{d\xi}{\xi}.
\]

The contribution from the terms with \(\Re \alpha \) or \(|\Im \alpha| \geq (D^*|d|)^{\frac{1}{4}} \log(D|d|) \) is bounded by

\[
\sum_{n \geq (D^*|d|)^{\frac{1}{4}} \log(D|d|)}^{\infty} e^{-\xi} \xi^k (\log \xi - \log \frac{2\pi n}{D^*|d|}) \frac{d\xi}{\xi} \ll (D^*|d|)^{-1}.
\]
The subsum from the terms of \(C \) with \(0 < \Re \alpha, |\Im \alpha| < (D|d|)^{\frac{3}{4}} \log(D|d|) \) equals

\[
\sum_{u,v} \frac{2(u + \sqrt{-Dv})^{2k-1}}{(u^2 + Dv^2)^k} f(u, v) \epsilon \left(\frac{u + \sqrt{-Dv}}{2} \right),
\]

where \((u, v)\) runs over pairs of integers satisfying

\[
0 < u, \sqrt{D} |v| < 2(D|d|)^{\frac{3}{4}} \log(D|d|), \quad 4|(u^2 + Dv^2)|
\]

and

\[
f(u, v) = \int_{\frac{\pi(u^2 + Dv^2)}{2D^2|d|}}^{\infty} e^{-\xi} \xi^k (\log \xi - \log \frac{\pi(u^2 + Dv^2)}{2D^2|d|}) d\xi.
\]

Conjugate terms grouped together, it becomes

\[
\sum_{u,v} a(u, v) f(u, v) \epsilon \left(\frac{u + \sqrt{-Dv}}{2} \right),
\]

where \((u, v)\) runs over pairs of integers satisfying

\[
0 < u, \sqrt{D} v < 2(D|d|)^{\frac{3}{4}} \log(D|d|), \quad 4|(u^2 + Dv^2)|
\]

It splits dyadically into at most \(4 \log^2(2D|d|)\) sums of the form

\[
\sum_{N \leq v < N'} \sum_{M \leq u < M', 4|(u^2 + Dv^2)} a(u, v) f(u, v) \epsilon \left(\frac{u + \sqrt{-Dv}}{2} \right),
\]

where \(0 < M, \sqrt{D} N < (D|d|)^{\frac{3}{4}} \log(D|d|), \quad N' \leq 2N, \quad \text{and} \quad M' \leq 2M\). By Abel’s summation formula, the inner sum is bounded by

\[
O(D|d| \log^2(D|d|)) \min(M^{-3}, D^{-3/2} N^{-3}) \max_{M \leq w \leq 2M} |S_v(w)|,
\]

if \(k = 1\), and by

\[
O(\log^{2k}(D|d|)) \min(M^{-1}, D^{-1/2} N^{-1}) \max_{M \leq w \leq 2M} |S_v(w)|,
\]

if \(k > 1\), where

\[
S_v(w) = \sum_{M \leq u < w, 4|(u^2 + Dv^2)} \epsilon \left(\frac{u + \sqrt{-Dv}}{2} \right).
\]

In §2, we have proved that

\[
S_v(w) \ll |d| + M^{\frac{3}{4}} D^{\frac{3}{4} + \epsilon} |d|^{\frac{3}{4}}, \quad w < 2M.
\]

The desired estimate for \(C\) now follows.
4. The rational part of the approximation to the central derivative

In this section we shall prove that

\[R_k \geq 0.0351 - c(\varepsilon)(D|d|)^{-\frac{1}{16} + \varepsilon}. \]

Recall that

\[R_k = \frac{1}{2\pi i} \int_{(2k)} \left(\frac{D^*|d|}{2\pi} \right)^{s-k} \frac{\Gamma(s)}{\Gamma(k)} L_D(2s - 2k + 1) \frac{ds}{(s-k)^2}. \]

A change of variable yields

\[R_k = \frac{1}{\pi i} \int_{(k+1)} \left(\frac{D^*|d|}{2\pi} \right)^{s-1} \frac{\Gamma(s + k - 1)}{\Gamma(k)} L_D(2s - 1) \frac{ds}{(s-1)^2}. \]

Shifting the line of integration to \(\Re s = 3/4 \) and applying Burgess’ estimate, we get

\[R_k = \Lambda_k'(1) + O(16^{-1/16} + \varepsilon), \]

where

\[\Lambda_k(s) = \left(\frac{D^*|d|}{2\pi} \right)^{s-1} \frac{\Gamma(s + k - 1)}{\Gamma(k)} L_D(2s - 1). \]

So

\[R_k = R_1 + \Lambda_k'(1) - \Lambda_1'(1) + O((D|d|)^{-\frac{1}{16} + \varepsilon}). \]

As

\[\Lambda_k'(1) = \frac{\Gamma'(k)}{\Gamma(k)} L_D(1) + \log \frac{D^*|d|}{2\pi} L_D(1) + 2L_D'(1) \geq \Lambda_1'(1), \]

we claim that

\[R_1 \geq 0.0351, \]

from which the estimate for \(R_k \), which is stated at the beginning of this section, follows. Write

\[\frac{\zeta(s)L_D(s)}{\zeta(2s)} = \sum_{n=1}^{\infty} a_n n^{-s} \]

with \(a_1 = 1 \), and \(a_n \geq 0 \). Then

\[R_1 = \sum_n a_n n^{-1} I(\frac{D^*|d|}{2\pi n^2}), \]

where

\[I(x) = \frac{1}{2\pi i} \int_{(2)} x^{s-1} \frac{\Gamma(s)\zeta(4s - 2)}{\zeta(2s - 1)} \frac{ds}{(s-1)^2}. \]

Miller-Yang [MY] proved that \(I(x) > 0 \) if \(x > 0 \) and that \(I(x) > 0.0351 \) if \(x \geq 4 \). So we have \(R_1 \geq 0.0351 \) as claimed.
References

[Be] A. A. Beilinson, Height pairing between algebraic cycles, Contemp. Math. 67 (1987), 1-24.
[Bl] S. Bloch, Height pairing for algebraic cycles, J. Pure Appl. Algebra 34 (1984), 119-145.
[Bu] D. A. Burgess, On character sums and L-series II, Proc. London Math. Soc. 13 (1963), 524-536.
[Gr] B. Gross, Arithmetic of Elliptic Curves with Complex Multiplication, Lecture Note in Math. 776, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[GZ] B. Gross and D. Zagier, Points de Heegner et dérivés de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87.
[Ja] U. Jannsen, Mixed Motives and algebraic K-theory, Lecture Notes in Math. 1400, Springer-Verlag, Berlin, Heidelberg, New York, 1990.
[KL] V. A. Kolyvagin and D. Yu. Logachev, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties (Russian), Algebra i Analiz 1 (1989), 171-196.
[MY] S. Miller and Tonghai Yang, Non-vanishing of the central derivative of canonical Hecke L-functions, Math. Res. Letters 7 (2000), 263-278.
[RY] F. Rodriguez-Villegas and T. H. Yang, Central values of Hecke L-functions of CM number fields, Duke Math. J. 98 (1999), 541-564.
[Ra] D. Rohrlich, The non-vanishing of certain Hecke L-functions at the center of the critical strip, Duke Math. J. 47 (1980), 223-232.
[Rb] D. Rohrlich, On the L-functions of canonical Hecke characters of imaginary quadratic fields, Duke Math. J. 47 (1980), 547-557.
[Rc] D. Rohrlich, Galois conjugacy of unramified twists of Hecke characters, Duke Math. J. 47 (1980), 695-704.
[Rd] D. Rohrlich, On the L-functions of canonical Hecke characters of imaginary quadratic fields II, Duke Math. J. 49 (1982), 937-942.
[Sa] A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), 419-430.
[Sb] A. J. Scholl, Height pairings and special values of L-functions, Proc. Sym. AMS, Part 1, 55 (1994), 571-598.
[Sh] G. Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976), 783-804.
[Ya] Tonghai Yang, Nonvanishing of the central value of Hecke characters and the rank of their associated elliptic curves, Compositio Math. 117 (1999), 337-359.
[Zh] S. Zhang, Heegner cycles and derivative of L-series, Invent. Math. 130 (1997), 9-152.

Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China

E-mail address: chunleiliu@mail.china.com & xulanju1012@sina.com