Emerging therapies against infections with *Pseudomonas aeruginosa* [version 1; peer review: 2 approved]

Burkhard Tümmler 1-3

1Clinical Research Group ‘Molecular Pathology of Cystic Fibrosis’ and ‘Pseudomonas Genomics’, Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany
2Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center of Lung Disease, Hannover, 30625, Germany
3Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, 30625, Germany

Abstract
Infections with *Pseudomonas aeruginosa* have been marked with the highest priority for surveillance and epidemiological research on the basis of parameters such as incidence, case fatality rates, chronicity of illness, available options for prevention and treatment, health-care utilization, and societal impact. *P. aeruginosa* is one of the six ESKAPE pathogens that are the major cause of nosocomial infections and are a global threat because of their capacity to become increasingly resistant to all available antibiotics. This review reports on current pre-clinical and clinical advances of anti-pseudomonal therapies in the fields of drug development, antimicrobial chemotherapy, vaccines, phage therapy, non-bactericidal pathoblockers, outer membrane sensitizers, and host defense reinforcement.

Keywords
Pseudomonas aeruginosa, antibiotic, β-lactam inhibitor, vaccine, phage therapy

Open Peer Review

Invited Reviewers

version 1 published 07 Aug 2019

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1 José Luis Martínez, CNB - Spanish National Centre for Biotechnology, Madrid, Spain
2 Antonio Oliver, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain

Any comments on the article can be found at the end of the article.
In humans, the aquatic gamma-proteobacterium *Pseudomonas aeruginosa* may cause multiple infections that vary from local to systemic and from benign to life-threatening. The management of the severe ocular and burn infections has made substantial progress during the last 20 years, but pneumonia and sepsis, particularly of ventilated patients in intensive care units (ICUs), are still burdened with high morbidity and lethality. Chronic airway infections with *P. aeruginosa* are a major co-morbidity in patients with cystic fibrosis (CF), bronchiectasis, or chronic obstructive pulmonary disease (COPD).

Infections with *P. aeruginosa* have been marked with the highest priority for surveillance and epidemiological research on the basis of parameters such as incidence, case fatality rates, chronicity of illness, available options for prevention and treatment, health-care utilization, and societal impact. *P. aeruginosa* is one of the six ESKAPE pathogens that are the major cause of nosocomial infections in the US and are a threat all over the world because of their capacity to become increasingly resistant to all available antibiotics. *P. aeruginosa* is equipped with a low permeable outer membrane and multiple transport systems, rendering it naturally resistant to many antimicrobial agents. In addition to its intrinsic resistance common to all *P. aeruginosa*, the bacterium has the extraordinary capacity to develop resistance to nearly all available antimicrobials. The most common underlying mechanisms in multidrug-resistant (MDR) and extensively drug-resistant (XDR) *P. aeruginosa* are alterations in porin channels, efflux pumps, target modifications, and β-lactamases (for example, AmpC and carbapenemases). Resistance may be acquired by the selection of mutations in chromosomal genes or horizontal uptake of resistance determinants. Of particular concern are mobile genomic islands and integrons encoding carbapenemases or extended-spectrum β-lactamases (ESBLs) frequently co-transferred with aminoglycoside-modifying enzyme determinants.

This review deals with the current approaches to develop new modes of anti-pseudomonal therapies. The decision of major pharmaceutical companies to exit antibacterial research has triggered the formation of non-profit alliances that support academia, clinicians, and industry in the development of novel antimicrobials. For example, Combing Antibiotic Resistant Bacteria (CARB-X) (https://carb-x.org) is funded by the US Department of Health and Human Services, the National Institutes of Health, the Wellcome Trust, the Bill & Melinda Gates Foundation, and Germany’s Federal Ministry of Education and Research. CARB-X is investing up to $550 million (USD) from 2016 to 2021 to accelerate the development of innovative antibiotics and other therapeutics, vaccines, and rapid diagnostics to address drug-resistant bacterial infections. Several companies have received funds from CARB-X to develop anti-pseudomonal agents, namely inhibitors of virulence factors and antibiotic potentiators. Support to develop novel drugs is also provided by the Innovative Medicines Initiative (IMI) funded jointly by the European Union and the European pharmaceutical industry. As described below, CARB-X and the IMI have been instrumental in speeding up the pre-clinical and clinical development of numerous anti-pseudomonal agents.

Antibiotics

Antimicrobial chemotherapy is still the cornerstone of anti-pseudomonal treatment in clinical practice. *P. aeruginosa* is a naturally MDR organism, which may explain its success in becoming one of the most frequent nosocomial pathogens. Environmental *P. aeruginosa* strains are commonly susceptible to broad-spectrum penicillins and cephalosporins, aminoglycosides, monobactams, carbapenems, and fluoroquinolones. Since the 1980s, the intravenous combination therapy of pipercillin or ceftazidime with an aminoglycoside has been the standard of care to treat severe infections with *P. aeruginosa*, but the emergence of resistant organisms, particularly in the settings of intensive care or chronic persistence in vulnerable patient populations, has called for alternatives.

One strategy for the treatment of MDR *P. aeruginosa* has been the revival of colistin and polymyxin B, old drugs that had been abandoned for many years because of their significant toxicity and side effects. Within a few years of more active therapeutic use, a growing number of strains have meanwhile developed resistance against these last-line peptide antibiotics. Mutations in various two-component systems activate the *arn* operon, which modifies the lipid A moiety of the lipopolysaccharide (LPS) through the addition of 4-amino-4-deoxy-L-arabinose, thereby rendering the bacterial cell resistant to the peptide antibiotic.

An alternative strategy has been the development of molecules that overcome β-lactam antibiotic resistance. Two new cephalosporin-β-lactamase inhibitor combinations have recently been introduced into the clinic: ceftazidime-avibactam and ceftolozane-tazobactam. Avibactam readily inactivates the chromosomal β-lactamase of *P. aeruginosa* AmpC. Tazobactam is a less potent inhibitor of AmpC but this is compensated by the new antibiotic component in this combination, ceftolozane, which is only poorly hydrolyzed by AmpC.

At the time of this writing, more than 90% of *P. aeruginosa* isolates around the world seem to be susceptible to colistin, ceftazidime-avibactam, and ceftolozane-tazobactam. Resistance to the latter two antibiotic–antibiotic inhibitor combinations has been observed mainly in *P. aeruginosa* isolates that belong to the pandemic ST235 high-risk clone and carry novel isoforms of AmpD or ESBLs or both.

Besides avibactam and tazobactam, other β-lactamase inhibitors—that is, relebactam, zidebactam, nacubactam, vaborbactam, VNRX-5133, and AA1101—are being tested in clinical trials.

An encouraging addition to the portfolio of anti-pseudomonal β-lactams is the siderophore cephalosporin cefiderocol. Cefiderocol is structurally related to the cephalosporins ceftazidime and ceftime by sharing side chains that block recognition and inhibit hydrolysis by β-lactamases. The novelty resides in the extension of one side chain by a catechol 2-chloro-3,4-dihydroxybenzoic acid moiety. The catechol side chain enables ferric iron binding. The cefiderocol iron ion
complex is recognized by active iron transport systems (such as PiuA) which transport cefiderocol across the outer membrane and to the periplasmic space. After dissociation of the complex, cefiderocol binds to penicillin binding proteins (PBP1a, PBP1b, PBP2, and PBP3) and inhibits peptidoglycan synthesis, causing cell death. Compared with the anti-pseudomonal agents that are currently available for use in humans, cefiderocol had the strongest activity against MDR P. aeruginosa strains. Of all β-lactams, cefiderocol has the most extended stability to hydrolysis by β-lactamases and its periplasmic entry via active iron transport systems overcomes β-lactam resistance associated with outer membrane permeability mutations in P. aeruginosa.

Cefiderocol is more potent in vitro against MDR P. aeruginosa than ceftazidime-avibactam and ceftolozane-tazobactam. Cefiderocol showed activity against AmpC-overproducing strains, low affinity for chromosomal AmpC β-lactamases, and a low propensity of temporal induction of AmpC β-lactamases of P. aeruginosa. Cefiderocol is active against carbapenem-non-susceptible isolates, including serine carbapenemase- and metallo-β-lactamase-producing strains.

Carbapenem-resistant Gram-negative bacteria represent the highest priority for addressing global antibiotic resistance. Cefiderocol may address this problem—at least for some years to come. A recently completed phase II clinical trial demonstrated clinical efficacy and safety of intravenous cefiderocol compared with imipenem/cilastatin in patients with complicated urinary tract infections. Clinical trials of hospital-acquired pneumonia and carbapenem-resistant infections (ClinicalTrials.gov identifiers NCT02321800, NCT02714595, and NCT03032380) are ongoing.

Novel non-β-lactam antimicrobials have also been developed to target MDR organisms. Plazomicin is a sisomycin derivative that is unaffected by aminoglycoside-modifying enzymes. It was approved by the US Food and Drug Administration (FDA) for use in adults with complicated urinary tract infections. Its anti-pseudomonal activity is comparable to that of amikacin and less potent than that of tobramycin, indicating that this compound will probably not be very useful for the treatment of infections with P. aeruginosa. The same argument applies even more so to the tetracyclines eravacycline and omadacycline, which demonstrate antimicrobial activity against many Gram-positive and Gram-negative bacteria but are not active against P. aeruginosa. In contrast, two novel fluoroquinolones, finafloxacin and delafloxacin, which (depending on pH) exert anti-pseudomonal activity equivalent to or higher than that of ciprofloxacin, have recently become available.

Besides these analogues of classes of antimicrobials well known for their basic chemical structure and mode of antimicrobial action, anti-pseudomonal drugs that aim at a new target are being developed. Murepavadin, a 14–amino acid synthetic peptidomimetic, is a first-in-class antibiotic targeting outer membrane protein. During the biogenesis of the outer membrane, new LPS molecules are transported from their site of assembly on the inner membrane to the outer membrane by seven LPS transport proteins (LptA–G). The complex formed between the outer membrane protein LptD and the lipoprotein LptE is responsible for transporting LPS from the periplasmic side of the outer membrane to its final location on the cell surface. Murepavadin inhibits the LPS transport protein LptD in P. aeruginosa. Murepavadin was proven to be a very potent antibiotic highly specific to P. aeruginosa, including carbapenemase producers and ceftolozane/tazobactam-resistant and colistin-resistant strains. Murepavadin (96.7% of isolates susceptible) was more active than colistin (93.6%), followed by ceftolozane/tazobactam (70.6%) and tobramycin (47.5%). Two clinical trials have been evaluating the efficacy and safety of murepavadin in treating lower respiratory tract infections caused by P. aeruginosa (suspected or confirmed) among patients with ventilation-associated pneumonia or bronchiectasis unrelated to CF (ClinicalTrials.gov identifiers NCT02096315 and NCT02096328, respectively). However, by July 17, 2019, the studies were stopped because an unexpectedly high frequency of renal failures had been observed in study participants who had received murepavadin. The development of an aerosolized formulation of murepavadin for a topical application will not be affected by this decision.

Murepavadin is a specific weapon against P. aeruginosa, which sets it apart from the large pipeline of natural and synthetic antimicrobial peptides that act against multiple taxa, including P. aeruginosa. Several novel peptides with broad antimicrobial activity—for example, DGL13K, Mel4, melimine, cecropin B1, LBP-2, Pse-T2, 6k-F17, MDP1, and MDP2—have recently been described.

Aerosolized anti-pseudomonal agents are the domain for the treatment of chronic airway infections of individuals with CF or bronchiectasis. Established options are the long-term inhalation with high-dose tobramycin, colistin, or aztreonam-lysine. Emerging alternatives were the inhalation of liposomal amikacin and, more recently, the inhalation with dry powder or liposomal ciprofloxacin or with liposomal levofloxacin. As described below, the clinical drug development programs had to face unforeseen obstacles unrelated to the proven anti-pseudomonal activity of the formulations in vitro.

Liposomal amikacin can penetrate within airway secretions and within P. aeruginosa biofilms, making it an attractive therapeutic option for chronic pulmonary infections. A phase II study with once-daily liposomal amikacin demonstrated acute tolerability, safety, biologic activity, and efficacy in CF patients with P. aeruginosa infection. However, apparently because of the results of a long-term rat inhalation carcinogenicity study, the FDA placed a clinical hold on the phase III clinical trials with this patient cohort by August 2017 and requested more safety data. Thirteen months later, the FDA approved inhalation with liposomal amikacin for the treatment of lung disease with Mycobacterium avium complex (MAC) in patients with refractory disease. Thus, at least until the time of this writing, the journey ended with a new therapy for MAC but not for P. aeruginosa.
Two phase III, double-blind, placebo-controlled trials—RESPIRE 1st and RESPIRE 2nd—examined the efficacy and safety of ciprofloxacin dry powder for inhalation (DPI) in patients with non-CF bronchiectasis who had experienced two or more exacerbations in the previous year and predefined bacteria in sputum, including \(P.\ aeruginosa \), as a major pathogen. These two trials represent the largest clinical trial program ever conducted in bronchiectasis. RESPIRE 1 largely enrolled across Europe, North and South America, Australia, and Japan, whereas RESPIRE 2 focused on Asia and Eastern Europe. Patients received twice-daily ciprofloxacin DPI 32.5 mg or placebo in 14- or 28-day on/off treatment cycles for 48 weeks. The 14-day on/off treatment cycles in RESPIRE 1 significantly prolonged time to first exacerbation and reduced the frequency of exacerbations. The same trends were seen in the 14-day cycle in RESPIRE 2 and the 28-day cycles but did not achieve significance. When the data were pooled, an average 24% reduction in exacerbations was calculated. Experts who commented on the outcome of the trials concluded that aerosolized dry powder ciprofloxacin is most likely to be of benefit in selected patients with poorly controlled disease and very frequent exacerbations⁷.

An alternative formulation to dry powder is the encapsulation of drug into liposomes. Two randomized, double-blind, placebo-controlled, phase 3 trials—ORBIT-3 and ORBIT-4—investigated the safety and efficacy of inhaled liposomal ciprofloxacin⁶⁶. The more than 500 study participants had had two or more pulmonary exacerbations treated with antibiotics in the prior 12 months, had non-CF bronchiectasis, and had a history of chronic \(P.\ aeruginosa \) lung infection. Compared with placebo, inhalation with liposomal ciprofloxacin led to a significantly longer median time to first pulmonary exacerbation in the ORBIT-4 but not in the ORBIT-3 trial. In a pooled analysis of data from the two trials, median times to first pulmonary exacerbation were 157 days in the placebo group and 222 days in the verum group, a non-statistically significant difference of 65 days (0.82, 95% confidence interval (CI) 0.65–1.02; \(P = 0.074 \)).

For both the two RESPIRE and ORBIT trials, the results were not replicated. The discrepant outcome was attributed to differences in clinical practice and the vast genetic, geographic, and endo-phenotypic heterogeneity of bronchiectasis⁷. Future trials should address these differences across the globe and should thoroughly characterize the endo-phenotype of individual patients in order to identify the patient groups which benefit from specific modes of anti-pseudomonal treatment. Patient stratification within this highly heterogeneous group of patients makes sense in light of the experience with CF, which is a monogenic disorder of Caucasians. Most clinical studies on anti-pseudomonal chemotherapy in this more homogeneous patient population met their primary endpoints with smaller cohorts than the RESPIRE and ORBIT trials.

In randomized controlled trials, monotherapy with an aerosolized anti-pseudomonal drug has been proven to be an effective measure to suppress chronic airway infections with \(P.\ aeruginosa \) in CF. Comparable data on inhaled combination therapy are still missing. \(P.\ aeruginosa \) biofilms grown in vitro typically consist of a stalk-forming subpopulation situated in the deeper layer with low metabolic activity and a cap-forming subpopulation in the upper layer with metabolically active cells³⁵. Colistin preferentially kills the stalk subpopulation, whereas the cap-forming subpopulation is susceptible to the aminoglycoside tobramycin³⁴. Owing to this observation in biofilms as models for the sessile lifestyle of \(P.\ aeruginosa \) in CF airways, the sequential therapy with inhaled tobramycin and colistin was examined in an observational study with 41 CF patients with chronic \(P.\ aeruginosa \) infection⁵¹. Treatment was well tolerated and significantly improved patients’ lung function. An alternative to colistin-tobramycin may be aztreonam-tobramycin. When biofilms were grown in flow cells, the alternation of tobramycin and aztreonam potentiated the bactericidal effect and the reduction in bacterial biomass⁵⁰.

Meanwhile, combination inhalation therapy has become routine in clinical practice, but besides the open-label exploratory study mentioned above, no clinical trials have yet been published. More clinical data about the efficacy of systemic combination therapy are available. For example, an 11-year single-center retrospective analysis of the treatment of \(P.\ aeruginosa \) bloodstream infections revealed that survival of patients receiving combination therapy (\(\beta \)-lactam-aminoglycoside or \(\beta \)-lactam-quinolone) was significantly higher than that of patients receiving \(\beta \)-lactam monotherapy⁷. A recently published meta-analysis compared the outcome of empirical non-optimized double \(\beta \)-lactam combination therapy versus \(\beta \)-lactam plus aminoglycoside⁷. In the 164 cases from 13 randomized clinical trials reported between 1972 and 1993, a response to \(P.\ aeruginosa \) was achieved in 58.5% for double \(\beta \)-lactam and 60.6% for \(\beta \)-lactam-aminoglycoside. The two regimens achieved similar clinical and microbiological responses, but nephrotoxicity and otoxicity were significantly lower with double \(\beta \)-lactam combination therapy. These metadata are from a time period before broad-spectrum antibiotics were widely introduced into the clinic. Nevertheless, they tell us that double \(\beta \)-lactams may be a useful therapeutic option because synergy may arise from the complementary inactivation of sets of PBPs.

Modulators of bacterial cell wall, transport, signaling, or virulence

Mucoid alginate-overproducing \(P.\ aeruginosa \) strains are a phenotypical hallmark of chronic airway infections in individuals with CF. Bacterial alginate is made of alternating blocks of mannurionate homooligomers and mannurionate-gulurionate heterooligomers, whereas the algal alginate also contains gulurionate homooligomers. Algal-derived alginate oligomers enriched in guluronate homooligomers (oligoG) reduce the viscosity of sticky biofilms and potentiate anti-bacterial and anti-fungal compounds. OligoG DPI is being tested in IMI-supported phase 2 clinical trials whether they improve lung function and respiratory symptoms in patients with CF.

The intrinsic multidrug resistance of \(P.\ aeruginosa \) is partly based on its low outer membrane permeability. By 1983, Vaara and
Vaara introduced the concept of outer membrane–disorganizing sensitizers that make the outer membrane more permeable to amphiphilic and hydrophobic compounds\(^8\). For example, the non-bactericidal polymyxin B nonapeptide sensitized \(P.\ aeruginosa\) strains 2- to 40-fold to ciprofloxacin, norfloxacin, and ofloxacin and 80- to 200-fold to the parent compound nalidixic acid, indicating that the higher anti-pseudomonal activity of fluoroquinolones compared with nalidixic acid was based not only on the more efficient inhibition of the DNA gyrase but also on a higher outer membrane permeability\(^9\). Now more than 30 years after the first report of three outer membrane sensitizers, the approved anti-protozoal drug pentamidine\(^41\) and the polymyxin B analogues SPR206 and SPR741\(^42,43\) are in pre-clinical and clinical studies to re-fuel the anti-Pseudomonas pipeline.

\(P.\ aeruginosa\) uses quorum sensing, including the elastase (Las), rhamnolipid (Rhl), and Pseudomonas quinolone signal (PQS) systems, to regulate and coordinate population-wide group behaviors in infection processes like biofilm formation and the concerted secretion of virulence factors. Pathoblockers of the quorum sensing system abolish pathogenic features without affecting cell viability, providing the basis for a lower drug-induced selection pressure\(^44-47\). Potent inhibitors of all known quorum sensing systems have been identified, but none of the novel compounds such as NX-As-401 (www.neembiotech.com) has yet made it into clinical trials. The exceptions are the well-known macrolide antibiotics. In the late 1980s, Japanese physicians reported that the chronic administration of erythromycin, clarithromycin, and azithromycin improved the clinical symptoms and prognosis of patients with chronic \(P.\ aeruginosa\) infections\(^8\). Azithromycin does not kill \(P.\ aeruginosa\) but inhibits protein biosynthesis and quorum sensing\(^9\). Azithromycin is now widely used in the treatment of chronic airway infections with \(P.\ aeruginosa\) in patients with COPD, bronchiectasis, or CF. Within the setting of the ICU, azithromycin showed a trend to prevent ventilation-associated pneumonia in intubated patients and significantly reduced the activation of quorum sensing–regulated virulence traits\(^9\).

Iron metabolism is another highly topical target of anti-pseudomonal drug development. Gallium is an iron mimetic\(^91-95\). Ga\(^+\) has an ionic radius nearly identical to that of ferric iron Fe\(^3+\) and hence can replace iron in Fe\(^3+\)-dependent biological systems. Unlike Fe\(^+\), Ga\(^+\) is not reduced under physiological conditions and thus inactivates iron-mediated redox cycling\(^91-93\). Gallium inhibited \(P.\ aeruginosa\) growth and biofilm formation and killed planktonic and biofilm bacteria \textit{in vitro}\(^91,92,94\) and increased survival in a murine infection model\(^91,92,95\). Intravenous gallium treatment improved lung function in CF patients with chronic \(P.\ aeruginosa\) lung infection in a preliminary phase 1 clinical trial\(^96\).

Neutralization of virulence effectors is another currently pursued approach to combat infections with \(P.\ aeruginosa\). Some programs are supported by the CARB-X alliance. For example, inhibitors are developed against the \(P.\ aeruginosa\) LasB elastase (https://antabio.com/programs), thereby targeting the bacterium’s ability to evade the immune system and cause disease and, when given alongside antibiotics, helping to clear \(P.\ aeruginosa\) infections. Other programs have focused on the machinery and virulence effectors of the type III secretion system. Phenoxyacetamide inhibitors target the needle protein PscF that delivers the virulence effectors into the host cell\(^96,97\). Alternatively, monoclonal antibodies were generated against the PcrV protein that forms the tip of the injectosome complex\(^98\). Intravenous KB001-A, an anti-PcrV PEGylated monoclonal antibody fragment, showed limited efficacy in CF patients infected with \(P.\ aeruginosa\)\(^99\). The repeated administration of KB001-A over 16 weeks was associated with a small improvement of lung function and decrease of sputum inflammatory markers but did not prolong the time-to-need for antibiotics for worsening respiratory signs and symptoms\(^100\). Bispecific antibodies that block multiple evasion and subversion mechanisms in tandem may be more efficacious\(^101\). In a murine bacteremic model of \(P.\ aeruginosa\) infection, the bispecific therapeutic antibody MED13902, targeting PcrV and the Psl exopolysaccharide, was shown to efficiently enhance neutrophil uptake, phagosome acidification, and bacterial killing\(^101\). After completion of a phase 1 study\(^102\), passive immunization with MED13902 (renamed Gremubamab) is currently in phase 2b development for prevention of nosocomial \(P.\ aeruginosa\) pneumonia in patients undergoing mechanical ventilation (EVADE study funded by the IMI).

Novel formulations for anti-pseudomonal drug delivery

Impaired penetration of antimicrobials through bacterial biofilms is one of the reasons for the failure of anti-pseudomonal therapy of burn wounds and chronic lung infections. Encapsulation of antimicrobials in nanocarriers may facilitate drug diffusion within the sticky biofilm matrix, protect the drug from unwanted degradation, confer controlled drug release, and increase uptake by the drug target. Anti-pseudomonal drugs such as ciprofloxacin\(^103-105\), meropenem\(^98\), tobramycin\(^107,108\), gentamicin\(^109\), or amikacin\(^110\) were encapsulated into liposomes or loaded into nanoparticles. The drug delivery systems were diverse in chemical nature and include anionic liposomes\(^103,105,109\), poly(lactic-co-glycolic) acid nanoparticles\(^10,111\), water-soluble chitosan oligosaccharide conjugates\(^112\), oil-in-water cross-linked polymeric nanocomposites\(^113\), graphen-oxide conjugates\(^107\), or solid lipid nanoparticles\(^114\) to name just a few. Alternatively, dry powders\(^109,104,108,115\) or hydrogels\(^116-118\) were formulated or wound dressings were coated with a topical antimicrobial such as silver oxynitrate\(^129\). Irrespective of the chosen formulation, most published articles report that their formulation penetrates through mucus and biofilms, is more effective than the antimicrobial alone to eradicate biofilm formation, and mitigates infection and disease progression.

Vaccines

The provision of an effective vaccine to protect patient populations at risk from an infection with \(P.\ aeruginosa\) has been on the agenda of Pseudomonas researchers for many decades, but there are no licensed vaccines at present. In the 1990s, the Swiss Serum and Vaccine Institute developed an octavalent...
Species: *P. aeruginosa* O-polysaccharide-toxin A conjugate vaccine for immunization of healthy *P. aeruginosa*-negative patients with CF \[12\]. The persistence of high-affinity antibodies among immunized patients correlated with a significantly lower rate of infection after 4 to 6 years of observation. The vaccine was well received by the European CF community. Patients at my CF center regularly travelled to Bern, Switzerland, to receive boosters every two to three years until the stock was used up. A few years later, Dörring et al. conducted a double-blind, placebo-controlled, multicenter trial with a flagella vaccine demonstrating that active immunization of patients with CF lowers the risk for infection with *P. aeruginosa* \[22\]. The third approach was the 20-year-long development of vaccines based on OprF-OprI outer membrane fusion proteins as antigens \[22\]. In the last pilot study, published in 2010, human volunteers were vaccinated with a systemic, nasal, or oral live vaccine based on attenuated live Salmonella (strains CVD908 and Ty21a), followed by a systemic booster \[24\]. Systemic and mucosal vaccines induced a comparable rise of serum antibody titers, but only nasal and oral vaccinations elicited a significant rise of IgA and IgG antibodies in the lower airways. At that time, the authors concluded that nasal and oral OprF-OprI vaccines were promising candidates for development of anti-pseudomonal immunization through inducing a specific antibody response in the lung.

These old data, including small clinical trials on burns and CF, provided evidence that a vaccine could be an effective measure to prevent infections with *P. aeruginosa*. Hence, the recombinant OprF-OprI vaccine was tested in a randomized, placebo-controlled, double-blind phase II/III study \[25\], which was conducted in 800 mechanically ventilated ICU patients at 52 trial sites in six European countries. Patients were vaccinated twice with either the *P. aeruginosa* vaccine candidate or a placebo at a 7-day interval in conjunction with standard-of-care treatments for ICU patients. Although the trial confirmed good immunogenicity and an acceptable safety profile of the vaccine candidate, the primary endpoint of the phase II/III trial was not met. Therefore, findings from a previous phase II study that had shown a strong reduction in all-cause mortality were not confirmed.

The outcome of this largest-ever trial performed on a Pseudomonas vaccine was disappointing. Nevertheless, there are encouraging new data on other antigens. For example, a live *aroA-aroB* attenuated *Salmonella* vaccine that uses a fusion between the *P. aeruginosa* type III secretion antigen PcrV expressed under the control of the sseA promoter and the *S. enterica* type III secretion effector protein SseJ has been constructed \[26\]. Compared with control mice, mice immunized with attenuated *Salmonella* expressing this fusion had lower serum levels of pro-inflammatory cytokines and reduced bacterial loads in the spleen and lungs after *P. aeruginosa* infection. Importantly, in this model, immunized mice also showed significantly enhanced survival. Another novel strategy is the design of live-attenuated whole cell vaccines based on D-glutamate auxotrophy \[27\]. The enzyme glutamate racemase MurI converts the amino acid L-glutamate into its enantiomer D-glutamate, which is an essential component of peptidoglycan. In-frame deletion of the murI gene generated a live-attenuated *P. aeruginosa* auxotrophic strain that, upon local or systemic administration, triggered appropriate cellular immune responses and production of specific and cross-reactive antibodies in the vaccinated murine hosts and conferred long-term survival against lethal infections with *P. aeruginosa* but, on the other hand, was rapidly eliminated from the host without causing disease. Other groups showed protection in murine infection models by using the iron acquisition protein HitA \[28\], PA5340 combined with PA3526-MotY \[29\], PcrV with CpG oligodeoxynucleotide \[30\], or the pilus proteins PilQ and PilA \[31\] as vaccine antigens.

Phage therapy

Given that antibiotic resistance is an increasing threat not only to human health but also to the production of food and to sustainable development, phage therapy is regaining interest as an alternative or addition to antibiotic therapy for the treatment of bacterial infections \[32\]. Phage therapy was abandoned in many countries with the advent of antibiotic therapy but has been continually developed in Eastern European countries with centers in Warsaw, Poland, and Tbilisi, Georgia \[33\]. Shotgun metagenome sequencing revealed that the phage cocktails sold in pharmacies in Georgia and Russia contained antipseudomonal phages \[31\]. A few case reports from Belgium and the US communicated the successful treatment of infections with MDR *P. aeruginosa* \[33\].

Early this year, the outcome of the first clinical study on phage therapy was reported \[37\]. The study, conducted as a randomized controlled double-blind trial, compared the tolerability and efficacy of a cocktail of lytic anti-*P. aeruginosa* bacteriophages with standard of care for patients with burns. The primary endpoint—the median time to sustained reduction in bacterial burden—was reached in 47 hours in the standard-of-care group (hazard ratio 0.29, 95% CI 0.10–0.79; \(P = 0.018\)) versus 144 hours (95% CI 48–not reached) in the group that received the phages. The finding that a standardized phage cocktail decreased bacterial burden in burn wounds more slowly than the standard of care is a strong indication that phage cocktails of fixed composition could unfavorably interfere with the evolutionary race between phage and bacterium by selecting phage resistance in the heterogeneous bacterial populations that vary from patient to patient. The personalized approach of choosing phages that specifically target the Pseudomonas bacteria in the individual host habitat may be more effective, although it will require rethinking of the regulatory agencies.

Research is very active in the pre-clinical arena. Practical themes are the setup of efficacious and safe antibacterial phage cocktails, the design of clever infection models, and the development of phages as adjuvants of antibiotic therapy. More importantly, if we want to make phage therapy a success, we need an in-depth understanding of how the mutual evolutionary arms race of attack and resistance between phage and bacterium takes place. Phages are, in principle, a smart anti-pseudomonal weapon. They specifically target a narrow spectrum of hosts, self-amplify, kill antibiotic-resistant strains, and have limited...
immunological effects in humans. However, it will not be a global anti-pseudomonal weapon. During chronic infection, *P. aeruginosa* may modify or delete all of its phage receptors. The author noticed that the majority of *P. aeruginosa* clones that persisted for five years or more in a CF lung had become pan-resistant to phages.

Hygienic measures

P. aeruginosa is responsible for a wide range of acquired infections in critically ill patients. Microbiological monitoring according to Clinical and Laboratory Standards Institute standards, antimicrobial stewardship, and infection control programs, including environmental cleaning and disinfection, hand hygiene, and education of personnel, have been demonstrated to prevent the development of resistance in *P. aeruginosa*. Prophylactic antibiotic days and inadequate empiric antibiotic therapy are independent major risk factors for the emergence of MDR ventilator-associated pneumonia in the ICU. Thus, prolonged exposure to unnecessary antibiotics should be avoided.

In the hospital setting, *P. aeruginosa* may contaminate sanitary facilities, humid medical devices, aqueous solutions, soaps, and detergents. For example, recently published case reports identified sinks or flexible endoscopes as reservoirs for nosocomial transmission of *P. aeruginosa*. Sinks in hospitals are regularly contaminated with *P. aeruginosa*. Opening of water taps generates aerosols containing *P. aeruginosa* sink organisms that contaminate the faucet and hands during hand washing. Installation of filters under all water faucets has been shown to prevent bacterial contamination of tap water.

In the context of CF, patient-to-patient transmissions of *P. aeruginosa* were reported from CF clinics, summer camps, and rehabilitation centers. Transmissible epidemic clones spread at CF clinics in Australia, Canada, Denmark, The Netherlands, and the UK. Hence, infection prevention and control practices have been introduced into CF clinics encompassing education, temporal separation of *P. aeruginosa*-positive and *P. aeruginosa*-negative patients, hand and cough hygiene, and cleaning and disinfection of equipment. Retrospective and prospective observational studies performed after the introduction of cohort segregation have demonstrated decreases in the numbers of prevalent and incident cases of epidemic *P. aeruginosa* infections.

Enhancement of host defense

Active immunization of vulnerable patient groups is the classic approach to prevent microbial infection. But in real-life situations such as an acute illness requiring hospitalization, the time span to mount protective antibody titers may be too long to be clinically meaningful.

In the ICU, treatment with antibiotics often is live-saving but is also a major risk factor for subsequent nosocomial lung infection with *P. aeruginosa*. A recent study by Robak et al. demonstrates that the ICU patient’s susceptibility to secondary Pseudomonas infection is caused by antibiotic-associated secondary IgA deficiency. Depletion of the resident microbiota by broad-spectrum antibiotic treatment inhibits the stimulation of pulmonary IgA production mediated by microbiota-dependent activation of Toll-like receptors and the tumor necrosis factor (TNF) family cytokine APRIL (a proliferation-inducing ligand). If antibiotic-pretreated mice received IgA by the nasal route, their antibacterial defense against *P. aeruginosa* was partially restored. The authors propose that ICU patients on broad-spectrum antimicrobial therapy may benefit from prophylactic or therapeutic pulmonary IgA administration or both.

Cell-based treatment is another emerging option to target airway infections with *P. aeruginosa*. Therapeutic phagocytes such as macrophages can be produced from induced pluripotent stem cells (iPSCs) in industry-compatible, stirred-tank bioreactors. iPSC macrophages rescued mice from *P. aeruginosa*-mediated acute infections of the lower respiratory tract within 4 to 8 hours after intra-pulmonary transplantation and reduced bacterial load. This type of cell therapy may become an option for the treatment of congenital or acquired immune deficiency.

Conclusions

The ESKAPE pathogens are the tip of the iceberg of the global antibiotic crisis. Many regions in the world now face infections with *P. aeruginosa* that is colistin- or carbapenem-resistant or both. Fortunately, the traditional approach to develop derivatives of validated scaffolds is still promising. The novel β-lactam inhibitors and siderophore cephalosporin are active against almost all current *P. aeruginosa*. The modification and combination of lead modules that tackle well-characterized bacterial targets constitute a rather safe approach to come up with an antimicrobial that will show efficacy and safety in clinical trials. The development of compounds against novel targets should be more rewarding in the long run. However, as we now experience with the currently most potent anti-pseudomonal agent, murepavadin, the risk of off-target side effects is high and the compound may fail in clinical trials.

Pathoblockers have finally come of age. Ten to forty years after the proof-of-principle experiments showing that small molecules may reduce fitness or virulence of *P. aeruginosa* without being bactericidal themselves were published, the first sensitizers are now being examined in clinical studies. For example, the iron biomimetic gallium attacks *P. aeruginosa* at its metabolic achilles’ heel. The outcome of the first clinical study is encouraging; however, we still do not know whether gallium will drive *P. aeruginosa* cells into an iron deficiency status that may promote the adverse production of virulence factors.

Given the threat of bacteria that are pan-resistant to the patient’s *P. aeruginosa* isolates, phage therapy is re-emerging as an attractive alternative to treat infections with *P. aeruginosa*. The outcome of the first high-standard clinical trial, published earlier this year, taught us that predetermined phage cocktails will probably not be the solution. Some *P. aeruginosa* strains will not be susceptible or will rapidly become resistant to the administered phages. To make phage therapy globally efficacious, we need a personalized approach as was recently demonstrated for a life-threatening infection with *Mycobacterium abscessus*. Phage cocktails should be formulated on a case-by-case basis to specifically target of phage therapy. However, phage therapy will leave its niche only if the regulatory agencies...
change the legal rules and permit personalized medicine on a large scale.

The development of antimicrobials is the classic approach to fight infections with *P. aeruginosa*. Only recently, the scientific community started to adopt the concept that the enhancement of host defense may be a promising alternative to conquer a nosocomial pathogen that causes severe infections in vulnerable populations but is more or less innocent for the healthy immunocompetent host. Relying on clinical experience in the ICU of the often disastrous course of secondary Pseudomonas pneumonia, researchers are becoming aware of the importance of the interplay between immune status and microbiome to contain this nosocomial pathogen. The enhancement of innate and adaptive immunity is a promising approach to vanquish MDR and XDR *P. aeruginosa*. Bispecific therapeutic antibodies and local transfer of isogenic iPSC-derived immune cells could become the weapons of the future to prevent the fatal outcome of *P. aeruginosa* pneumonia and sepsis in ICU patients.

Abbreviations

CARB-X, Combating Antibiotic Resistant Bacteria; CF, cystic fibrosis; CI, confidence interval; COPD, chronic obstructive pulmonary disease; DPI, dry powder for inhalation; ESBL, extended-spectrum β-lactamase; FDA, US Food and Drug Administration; ICU, intensive care unit; IMI, Innovative Medicines Initiative; iPSC, induced pluripotent stem cell; Las, elastase; LPS, lipopolysaccharide; Lpt, lipopolysaccharide transporting protein; MAC, *Mycobacterium avium* complex; MDR, multidrug-resistant; OligoG, oligomers enriched in guluronic homooligomers; PBP, penicillin binding protein; XDR, extensively drug resistant

Grant information

Work in the author’s laboratory is supported by the Deutsche Forschungsgemeinschaft (DFG) (Collaborative Research Centre 900, projects A2 and Z1, grant 158989968; Germany’s Excellence Strategy – EXC 2155 “RESIST” – project ID 39087428) and the Bundesministerium für Bildung und Forschung (BMBF) (German Center for Lung Research, Disease Area Cystic Fibrosis at BREATHE, grant 82DZL002A1).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References
Tobramycin in Patients with Cystic Fibrosis. N Engl J Med. 1993; 328(24): 1740–6.
Published Abstract | Publisher Full Text | F1000 Recommendation

58. Steinerberg M, Elborn JS: Use of inhaled tobramycin in cystic fibrosis. Adv Ther. 2015; 32(1): 1–9.
Published Abstract | Publisher Full Text

59. Vardakas KZ, Voulgaris GL, Samonis G, et al.: Inhaled colistin monotherapy for respiratory tract infections in adults without cystic fibrosis: A systematic review and meta-analysis. Int J Antimicrob Agents. 2018; 51(1): 1–9.
Published Abstract | Publisher Full Text

60. Koerner-Rettberg C, Balmann M: Colistimethate sodium for the treatment of chronic pulmonary infection in cystic fibrosis: An evidence-based review of its place in therapy. Core Evid. 2014; 9: 99–112.
Published Abstract | Publisher Full Text | Free Full Text

61. Condie D, Keating GM: Colistimethate sodium dry powder for inhalation: A review of its use in the treatment of chronic Pseudomonas aeruginosa aeruginosa infection in patients with cystic fibrosis. Drugs. 2014; 74(3): 377–87.
Published Abstract | Publisher Full Text | Free Full Text

62. McCoy KS, Quitter AL, Oermann CM, et al.: Inhaled Aztreonam Lysine in Chronic Airway Pseudomonas aeruginosa in Cystic Fibrosis. Am J Respir Crit Care Med. 2008; 178(9): 921–8.
Published Abstract | Publisher Full Text | Free Full Text

63. Oermann CM, Retso-Bogart GZ, Quitter AL, et al.: An 18-month study of the safety and efficacy of repeated courses of inhaled aztreonam lysine in cystic fibrosis. Pediatr Pulmonol. 2010; 45(11): 1121–34.
Published Abstract | Publisher Full Text | Free Full Text

64. Elson EC, Mermel LA, Polineni D, et al.: Aztreonam Lysine Inhalation Solution in Cystic Fibrosis. Clin Med Insights Circ Res Pulm Med. 2019; 13: 117958481982288.
Published Abstract | Publisher Full Text | Free Full Text

65. Ehsan Z, Clancy JP: Management of Pseudomonas aeruginosa infection in cystic fibrosis patients using inhaled antibiotics with a focus on nebulized liposomal amikacin. Future Microbiol. 2015; 10(12): 1901–12.
Published Abstract | Publisher Full Text | Free Full Text

66. Axkami T, de Soya T, Bandelier TJ, et al.: RESPIRE 2: A phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur Respir J. 2018; 51(1): pii: 1702053.
Published Abstract | Publisher Full Text | Free Full Text

67. de Soya T, Aksamit T, Bandelier TJ, et al.: RESPIRE 1: A phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur Respir J. 2018; 51(1): pii: 1702052.
Published Abstract | Publisher Full Text | Free Full Text

68. Haworth CS, Bilton D, Chalmers JD, et al.: Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): Two phase 3, randomised controlled trials. Lancet Respir Med. 2019; 7(3): 213–26.
Published Abstract | Publisher Full Text

69. Perbal RM, Ayouz J, Moussa G, et al.: Tailored Nanocarriers for the Pulmonary Delivery of Levofloxacin against Pseudomonas aeruginosa: A Comparative Study. Mol Pharm. 2019; 16(5): 1096–106.
Published Abstract | Publisher Full Text | Free Full Text

70. Clancy JP, Dupont L, Konstantinov M, et al.: Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax. 2013; 68(9): 818–25.
Published Abstract | Publisher Full Text | Free Full Text

71. Chothiahill SM, Chalmers JD: RESPIRE: breathing new life into bronchiectasis. Eur Respir J. 2018; 51(1): pii: 1705444.
Published Abstract | Publisher Full Text | Free Full Text

72. Pamp SJ, Gjermansen M, Johansen HK, et al.: Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells and depends on the pmr and mtr-encoding genes. Mol Microbiol. 2008; 68(1): 223–40.
Published Abstract | Publisher Full Text | Free Full Text

73. Herlitz H, Allegaert K, Polderman A, et al.: Colistin-Tobramycin in Cystic Fibrosis Patients: A Randomised, Double-Blind, Placebo-Controlled Study. Thorax. 2018; 73(7): 689–96.
Published Abstract | Publisher Full Text | Free Full Text

74. Tschidvin-Sutter S, Fossen N, Frei R, et al.: Combination therapy for treatment of Pseudomonas aeruginosa bloodstream infections. PLoS One. 2018; 13(9): e0203295.
Published Abstract | Publisher Full Text | Free Full Text

75. Jiao Y, Moya B, Chen MJ, et al.: Comparable Efficacy and Better Safety of Double-β-Lactam Combination Therapy versus β-Lactam plus Aminoglycoside in Gram-Negative Bacteria in Randomized, Controlled Trials. Antimicrob Agents Chemother. 2019; 63(7): pii: e00425-19.
Published Abstract | Publisher Full Text | Free Full Text

76. Vaara M, Vaara T: Sensitization of Gram-negative bacteria to antibiotics and complement by a non-ribosomal peptide. Nature. 1983; 303(5917): 526–8.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

77. Kubesh P, Weisinger M, Tümmler B: Membrane permeability of Pseudomonas aeruginosa to 4-quinolones. Zentralbl Bakteriol Mikrobiol Hyg A. 1987; 265(1): 197–202.
Published Abstract | Publisher Full Text

78. Stokes JM, MacNair CR, Ilyas B, et al.: Pentamide sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat Microbiol. 2017; 2: 17028.
Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

79. Corbett D, Wise A, Langley T, et al.: Potentiation of Antibiotic Activity by a Novel Cationic Peptide: Potential for Broadening the Spectrum of Activity of SPR741. Antimicrob Agents Chemother. 2017; 61(8): pii: e00200-17.
Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

80. van Delden C, Köhler T, Brunner-Ferber F, et al.: Sensitization of Gram-negative bacteria to antibiotics by the transition metal gallium. Nature. 1983; 303(5917): 526–8.
Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

81. Schell T, Arold T, Hanse A, et al.: Other Antibiotics. Future Microbiol. 2019; 14: 1702053.
Published Abstract | Publisher Full Text | Free Full Text

82. van Deelen C, Köhler T, Brunner-Ferber F, et al.: Azithromycin to prevent Pseudomonas aeruginosa ventilator-associated pneumonia by inhibition of quorum sensing: a randomized controlled trial. Intensive Care Med. 2012; 38(7): 1118–25.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

83. Tateda K, Comte R, Pechere JC, et al.: Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa: a phase II clinical trial. Antimicrob Agents Chemother. 2001; 45(6): 1930–3.
Published Abstract | Publisher Full Text | Free Full Text

84. DeLeon K, Balldin F, Watters C, et al.: Gallium maltsolate treatment eradicates Pseudomonas aeruginosa infection in thermally injured mice. Antimicrob Agents Chemother. 2009; 53(4): 1331–3.
Published Abstract | Publisher Full Text | Free Full Text

85. Yetierian E, Martin LW, Lamont IL, et al.: An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa. Environ Microbiol Rep. 2010; 2(3): 412–8.
Published Abstract | Publisher Full Text | Free Full Text

86. Halwani M, Yetio B, Suntres ZE, et al.: Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother. 2008; 62(5): 1291–7.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

87. Keiko CH, Kaneko Y, Khuu L, et al.: Potentiation of Antibiotic Activity by a Novel Cationic Peptide: Potential for Broadening the Spectrum of Activity of SPR741. Antimicrob Agents Chemother. 2017; 61(8): pii: e00200-17.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

88. Boudreau BJ, Murphy KR, Torhan MC, et al.: Impact of Type III Secretion Effectors and of Phenoxacyclamide Inhibitors of Type III Secretion on Abscess Formation in a Mouse Model of Pseudomonas aeruginosa Infection. Antimicrob
114. Severino P, Valls A, Wiener-Kronish JP, et al.: Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PrvC. J Infect Dis. 2002; 186(1): 64–73.

98. Mater Biol Appl. silver nanoparticles as a potential treatment for skin wounds. of anti-biofilm and cytotoxic effect of a gel formulation with Pluronic F-127 and Formulation. physicochemical properties and Treatment of multidrug-resistant PubMed Abstract | Publisher Full Text | F1000 Recommendation

108. Bahamondez-Canas TF, Ferrati S, Moraga-Espinoza DF, Tran TT, Vidaillac C, Yu H, et al.: A PEGylated fibrin hydrogel-based antibacterial wound dressing controls infection without impeding wound healing. Int Wound J. 2017; 14(6): 1248–57.

111. Shaaban MI, Shaker MA, Mady FM: A new therapeutic avenue for bronchiectasis: Phase 1 study of MEDI3902, an investigational Bispecific antibody

113. Pushparaj Selvadoss P, Nellore J, Balaraman Ravindrran M, Cyt Fl bros. 2018; 218(12): 1983–94.

99. Tatababaiasarian A, Sutowward BG, Willson ME, et al.: Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vascularure. J Clin Invest. 2017; 127(6): 2249–61.

104. Tran TT, Vidaillac C, Yu H, et al.: Evaluation of inhalated antibiotic liposome versus antibiotic nanoplix in controlling infection in bronchiectasis. Int J Pharm. 2019; 559: 382–92.

105. Tran TT, Vidaillac C, Yu H, et al.: A new therapeutic avenue for bronchiectasis: Dry powder inhaler of ciprofloxacin nanoplix exhibits superior ex vivo mucoc permeability and antibacterial efficacy to its native ciprofloxacin counterpart. Int J Pharm. 2018; 547(1–2): 368–76.

106. Tran TT, Vidaillac C, Yu H, et al.: A new therapeutic avenue for bronchiectasis: Dry powder inhaler of ciprofloxacin nanoplix exhibits superior ex vivo mucoc permeability and antibacterial efficacy to its native ciprofloxacin counterpart. Int J Pharm. 2018; 547: 368–76.

107. Wang S, Yu S, Lin Y, et al.: Co-Delivery of Ciprofloxacin and Colistin in Liposomal Formulations with Enhanced In Vitro Antiinfective Activities against Multidrug Resistant Pseudomonas aeruginosa. Pharm Res. 2018; 35(10): 187.

108. Zahra MJ, Hamid M, Mohammad RY, et al.: Evaluation and study of antimicrobial activity of nanoliposomal meroenem against Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother. 2017; 61(4): 975–80.

110. Bai X, Zhao Y, Yu Y, et al.: All-in-one NIR-activated nanoplatforms for enhanced bacterial biofilm eradication. Nanoscale. 2018; 10(39): 18520–30.

112. Bahamondez-Canas TF, Ferrari S, Moraga-Espinoza DF, et al.: Development, Characterization, and In Vitro Testing of Co-Delivered Antimicrobial Dry Powder Formulations for the Treatment of Pseudomonas aeruginosa Biofilms. J Pharm Sci. 2018; 107(3): 2172–8.

113. Ahmadi M, Mobedi A, Bakhli AH, et al.: Efficacy of neutral and negatively charged liposome-loaded gentamicin on planktonic bacteria and biofilm communities. Int J Nanomedicine. 2017; 12: 6894–61.

115. Hill M, Cunningham RN, Hatough FM, et al.: Formulation of Antimicrobial Tobramycin Loaded PLGA Nanoparticles via Complexation with AOT. J Funct Biomater. 2019; 10(2): e26.

116. Shaaban MI, Hamied M, Mohammad RY, et al.: Evaluation and study of antimicrobial activity of nanoliposomal meroenem against Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother. 2018; 61(4): 975–80.

117. Klodziska SN, Molchanova N, Franzky H, et al.: Biopolymer nanogels improve antibacterial activity and safety profile of a novel lysine-based β-polymered-peptide-β-lactam peptide. Eur J Pharm Biopharm. 2018; 128: 1–9.

118. Fujii A, Sim CH, Ng SF: Biopolymer Nanogels Containing Antifouling and Antimicrobial Agents Beneficial for Biofilm-Associated Wound Infection: Formulation Characterizations and In vitro Study. AAPS PharmSciTech. 2019; 20(3): 1219–30. PubMed Abstract | Publisher Full Text

119. Gil V, Natesan S, Li U, et al.: A PEGylated fibrin hydrogel-based antibacterial wound dressing controls infection without impeding wound healing. Int Wound J. 2017; 14(6): 1248–57.

120. Kanar LR, Pepin DM, Ul-Haq I, et al.: Targeting biomaterials of multidrug-resistant bacteria with silver oxydrilate. Int J Antimicrob Agents. 2017; 49(6): 719–26. PubMed Abstract | Publisher Full Text

121. Crys SJ Jr., Lang A, Ruidebeeg A, et al.: Immunization of cystic fibrosis patients with a Pseudomonas aeruginosa O-polyasparacide-toxin A conjugate vaccine. Behring Inst Mitt. 1997; 98(3): 345–56. PubMed Abstract

122. Doring G, Meiner C, Stern M: A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc Natl Acad Sci U S A. 2007; 104(26): 11020–5. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

123. Burman UJ, Mansouri E, van Rooijen N, et al.: A Combination of Opf-Opt as a vaccine against Pseudomonas aeruginosa infections. Vaccine. 2004; 22(7): 840–7. PubMed Abstract | Publisher Full Text

124. Burman D, Behre C, Behre K, et al.: Systemic, nasal and oral live vaccines against Pseudomonas aeruginosa: a clinical trial of immunogenicity in lower airways of human volunteers. Vaccine. 2010; 28(3): 707–13. PubMed Abstract | Publisher Full Text

125. Rello J, Krenn CG, Locker G, et al.: A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients. Crit Care. 2017; 21: 22. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

126. Aguilera-Hermo J, Garcia-Duartainia M, Romero-Flores R, et al.: A Live Salmoneilla Vaccine Delivering Pcrv through the Type III Secretion System Protects against Pseudomonas aeruginosa. mSphere. 2019; 4(2): e00116-19.

127. Cabral MP, Garcia P, Becerro A, et al.: Design of live attenuated bacterial vaccines based on D-glutamate auxotrophy. Nat Commun. 2017; 8: 15480. PubMed Abstract | Publisher Full Text | Free Full Text

128. Elhosary MA, Bahey-El-Din M, Abdelbary A, et al.: Immunization with the ferric iron-binding periplasmic protein HII provides protection against Pseudomonas aeruginosa in the murine infection model. Microb Pathog. 2019; 131: 181–9.

129. Bianconi I, Alcalá-Franco B, Scarselli M, et al.: Genome-Based Approach Delivers Vaccine Candidates Against Pseudomonas aeruginosa. Front Immunol. 2019; 9: 3021. PubMed Abstract | Publisher Full Text | Free Full Text

130. Naito Y, Hamakoa S, Kinoshita M, et al.: The protective effects of nasal Pcrv-Cgp oligonucleotide vaccination against Pseudomonas aeruginosa pneumonia. Microb Immunol. 2018; 62(12): 774–85. PubMed Abstract | Publisher Full Text | Free Full Text

131. Gholami M, Salimi Chirani A, Falak R, et al.: Induction of Specific Humoral Immune Response in Mice against a Pseudomonas aeruginosa Chimeric PiII/ PiIa Protein. Rep Biochem Mol Biol. 2018; 7(1): 38–44. PubMed Abstract | Publisher Full Text | Free Full Text

132. Kultatezde M, Adairia R: Bacteriophages as potential new therapies to replace or supplement antibiotics. Trends Biotechnol. 2010; 28(12): 591–5. PubMed Abstract | Publisher Full Text

133. Kultatezde M, Adairia R: Phage therapy experience at the Elava Institute. Med Mal Infec. 2006; 38(8): 426–30. PubMed Abstract | Publisher Full Text

134. Chen K, Wang J, et al.: Proof-of-Principle Study in a Murine Lung Infection Model of Antipseudomonal Activity of Phage PEV20 in a Dry-Powder Formulation. Antimicrob Agents Chemother. 2018; 62(2): pii: e01714-17. PubMed Abstract | Publisher Full Text | Free Full Text

135. Alvarado-Gomez E, Martinez-Castañon G, Sanchez-Sanchez R, et al.: Evaluation of anti-biofilm and cytotoxic effect of a gel formulation with Pluronic F-127 and silver nanoparticles as a potential treatment for skin wounds. Mater Sci Eng C Mater Biol Appl. 2018; 92: 621–30. PubMed Abstract | Publisher Full Text

136. Pluchino S, Falcone F, et al.: Pseudomonas aeruginosa peptoid peptidomimetic. F1000Research 2019, 8(F1000 Faculty Rev):1371 Last updated: 07 AUG 2019
139. Lewis RH, Sharpe JP, Swanson JM, et al.: Reinventing the wheel: Impact of prolonged antibiotic exposure on multidrug-resistant ventilator-associated pneumonia in trauma patients. J Trauma Acute Care Surg. 2018; 85(6): 296–32.

PubMed Abstract | Publisher Full Text

140. Döring G: Prevention of Pseudomonas aeruginosa infection in cystic fibrosis patients. Int J Med Microbiol. 2010; 300(8): 573–7.

PubMed Abstract | Publisher Full Text

141. Garvey MI, Bradley CW, Holden E: Waterborne Pseudomonas aeruginosa transmission in a hematology unit? Am J Infect Control. 2018; 46(4): 383–6.

PubMed Abstract | Publisher Full Text

142. Kumarage J, Khonyongwa K, Khan A, et al.: Transmission of multi-drug resistant Pseudomonas aeruginosa between two flexible ureteroscopes and an outbreak of urinary tract infection: the fragility of endoscope decontamination. J Hosp Infect. 2019; 102(1): 89–94.

PubMed Abstract | Publisher Full Text

143. Wohlmann L, Cramer N, Ulrich J, et al.: Effective prevention of Pseudomonas aeruginosa cross-infection at a cystic fibrosis centre - results of a 10-year prospective study. Int J Med Microbiol. 2012; 302(2): 69–77.

PubMed Abstract | Publisher Full Text

144. Cramer N, Wohlmann L, Tümmel B: Clonal epidemiology of Pseudomonas aeruginosa in cystic fibrosis. Int J Med Microbiol. 2010; 300(8): 526–33.

PubMed Abstract | Publisher Full Text

145. Saiman L, Siegel JD, LiPuma JJ, et al.: Infection prevention and control guideline for cystic fibrosis: 2013 update. Infect Control Hosp Epidemiol. 2014; 35 Suppl 1: S1–S67.

PubMed Abstract | Publisher Full Text

146. Robak OH, Heimesaat MM, Kruglov AA, et al.: Antibiotic treatment-induced secondary IgA deficiency enhances susceptibility to Pseudomonas aeruginosa pneumonia. J Clin Invest. 2018; 128(8): 3535–45.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

147. Ackermann M, Kempl H, Hetzel M, et al.: Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nat Commun. 2018; 9(1): 5088.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

148. Rasmussen TB, Bjarnsholt T, Skindersøe ME, et al.: Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol. 2005; 187(5): 1799–814.

PubMed Abstract | Publisher Full Text | Free Full Text

149. García-Contreras R, Pérez-Eretza B, Lira-Silva E, et al.: Gallium induces the production of virulence factors in Pseudomonas aeruginosa. Pathog Dis. 2014; 70(1): 95–8.

PubMed Abstract | Publisher Full Text

150. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al.: Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019; 25(5): 730–3.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Antonio Oliver
 Servicio de Microbiología Módulo J, segundo piso, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
 Competing Interests: No competing interests were disclosed.

2. José Luis Martínez
 Department of Microbial Biotechnology, CNB - Spanish National Centre for Biotechnology, Madrid, Spain
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com