Study of a preoperative scoring system to predict difficult laparoscopic cholecystectomy

Md Ashraf Ali1, Md Masleh Uddin2*, Md Nehal Ahmad3 and Shakil Jawed4

1Department of General Surgery, AIIMS, Patna, India
2Department of General Surgery, NMCH, Patna, India
3Department of Gastrointestinal Surgery, AIIMS, Patna, India
4Department of Surgery, AIIMS, Patna, India

Received: 25 February, 2021
Accepted: 08 March, 2021
Published: 10 March, 2021

*Corresponding authors: Dr. Md Masleh Uddin,
Department of General Surgery, NMCH, Patna, India,
Email: masleh006@gmail.com

Abstract

Introduction: Laparoscopic Cholecystectomy (LC), one of the most commonly performed surgical procedures worldwide, is accepted as the gold standard in the treatment of symptomatic gallstones. Generally laparoscopic cholecystectomy has low incidence of morbidity, mortality and conversion rate to open surgery, but occasionally surgeons encountered difficulty while doing Laparoscopic cholecystectomy. Preoperative prediction of "difficult Laparoscopic cholecystectomy" improve the patient safety as well as useful in reducing the cost of therapy.

Aim: To study a scoring system based on various risk factors to preoperatively predict difficult Laparoscopic cholecystectomy.

Materials & method: This study was conducted in Department of General surgery, Nalanda Medical College And Hospital Patna & associated All India Institute of Medical Science Patna. A total of 105 patients were included in this study. There are total 15 score from history, clinical & sonological findings. They were evaluated & scored on the basis of scoring system. Score upto 5 is defined as easy, 6-10 as difficult and 11-15 as very difficult.

Result: Prediction comes true in 96.6% for easy, 87.8% for difficult & 60% for very difficult cases. Area under ROC curve is 0.96 and conversion rate is 3.8 in our study. Age >50 years, Male sex, H/o of hospitalisation due to acute cholecystitis, Palpable gallbladder, BMI >27.5, Abdominal scar, Thick walled GB (>4mm), and Pericholecystic collection were found to be significant predictive factors for difficult laparoscopic cholecystectomy.

Conclusion: With the help of preoperative prediction, high risk patients may be informed & counseled before about probability of open conversion & difficulty in laparoscopic cholecystectomy.

Introduction

Laparoscopic Cholecystectomy (LC), one of the most commonly performed surgical procedures worldwide, is accepted as the gold standard in the treatment of symptomatic gallstones [1]. Generally laparoscopic cholecystectomy has low incidence of morbidity, mortality and conversion rate to open surgery, but occasionally surgeons encountered difficulty while doing Laparoscopic cholecystectomy [2].

The risk factors which makes LC difficult includes old age, male sex, obesity, attack of acute cholecystitis, previous abdominal surgeries and certain ultrasonographic findings i.e. distended gall bladder, thickened gall bladder wall, pericholecystic fluid collection and impacted stone at neck of gall bladder etc.

In early years of laparoscopic cholecystectomy era, the rate of conversion to open procedure was 2~15%. After years of learning and understanding the laparoscopic technique and increasing surgeon’s experience, the conversion rate has been dropped to approximately 1 - 6% [3]. This conversion was neither a failure nor a complication, but an attempt to avoid complications. The identification of parameters predicting conversion would be useful to improve preoperative patient counseling, provide for better perioperative planning,
optimize operating room efficiency, and to avoid laparoscopically-associated cost & complications by performing an open operation when appropriate. Different scoring methodologies have been suggested from time to time using different criteria. This scoring system was developed by Randhawa & Pujahari [4].

Aims and objectives

The aim of this study was to find out the validity of preoperative scoring system developed by Randhawa, et al. [4] to predict difficult laparoscopic cholecystectomy and chances of conversion from laparoscopic to open cholecystectomy.

Materials and methods

This study was conducted in Department of General Surgery, NMCH, Patna and associated AIIMS Patna between February 2019 to March 2020. A total 105 patients were included in this study after prior informed consent. Approval from the ethical committee of institution was taken before starting the study.

Study Design: Non randomized prospective study
Study Period: February 2019 to March 2020
Sample Size: 105 patients
Inclusion criteria: Patients with symptomatic gall stone disease admitted for laparoscopic cholecystectomy.

Exclusion criteria

- Patients unfit for anaesthesia
- Patients admitted with symptoms of acute cholecystitis
- Open conversion due to instruments failure

A preoperative score was given to each patient before surgery on the basis of history, clinical examinations & ultrasonographic findings (Table 1). All surgeries were done by classical four port method by using CO2 pneumoperitoneum with 10mmHg pressure. Time were noted from first port insertion till last port closure. All intraoperative events were noted like adhesions at calot’s triangle, duration of surgery, injury to artery/duct, bile/stone spillage etc. (Table 2).

Statistical methods

The collected data was compiled in a Microsoft Excel sheet, and subsequently suitable multivariate logistic regression analysis using SPSS 16.0 version was done accordingly with different appropriate statistical methods. A p value of ≤0.05 was considered as statistically significant. Chi-square test/Fisher exact test was used to evaluate whether there was a significant association between preoperative and intraoperative outcome. Area under ROC was used to find the efficacy of preoperative score for predicting the intraoperative outcome.

Results

In our study 105 cases were included, of which 91(86.7%) were female and 14(13.3%) were male. Age of patients varied from range of 14 –70 years. The majority of patients were in the age group of 21 – 50 years. The mean age was 38.7 with standard deviation of 14.06. Out of 105 patients, 57(54.3%) had history of hospitalisation for acute attacks, of which 11 were male and 46 female. 30(28.6%) patients had BMI < 25, 45(42.9%) patients had BMI >27.5 & 30(28.6%) patients had BMI between 25 – 27.5 & 30(28.6%) patients had BMI >27.5.

Multivariate analysis of intraoperative outcome with risk factors was carried out which predicted that Age >50 years (P<0.000), male sex (P<0.000), History of hospitalisation for acute cholecystitis (P<0.000), BMI> 27.5 (P<0.002), Abdominal scar (P<0.001), palpable GB (P<0.000), thickened GB wall (P<0.001) and pericholecystic collection (P<0.001) to be the statistically significant predictors of difficult laparoscopic cholecystectomy Table 3.

In our study for Difficult cases, score between 6–10, sensitivity 90%, specificity 92.3%, positive predictive value 87.8% and negative predictive value was 93.8%.

For Easy cases, score between 0–5, sensitivity 93.4%, specificity 95.5%, PPV 96.6% and NPV was 91.3%.

For Very difficult cases, score between 10–15, sensitivity 75%, specificity 98%, PPV 60% and NPV was 99% Table 4.

Area under ROC curve was 0.96 with 95% Confidence Interval (0.931 – 0.996). Open conversion rate is 3.8%.

Table 1: Scoring Factors.

History	Score	Score	Max
Age ≤ 50 Y	0	>50 Y	1
Sex Female	0	Male	1
H/o Hospitalization	0	Yes	4

Clinical

BMI	≤25	25-27.5	>27.5	1
Abdominal Scar	No	Yes	1.2	2
Palpable gall bladder	No	Yes	1.1	1

Sonography

Wall thickness	Thin <4mm	Thick >4mm	2
Pericholecystic collection	No	Yes	1
Impacted stone	No	Yes	1

Table 2: Scoring Factors.

Clinical criteria	Score
Time taken <60 min, No bile spillage, No injury to duct / artery	Easy
Time taken 60-120 min, bile / stone spillage, Injury to duct, No conversion	Difficult
Time taken >120 min, conversion to open surgery	Very difficult

Table 3: Intraoperative event

Intra Operative difficult Criteria Score

Criteria	Score
Easy	0-5
Difficult	6-10
Very difficult	11-15

Citation: Ali MA, Uddin MM, Ahmad MN, Jawed S (2021) Study of a preoperative scoring system to predict difficult laparoscopic cholecystectomy. J Surg Surgical Res 7(1): 032-036. DOI: https://dx.doi.org/10.17352/2455-2968.000132
Table 3: Multivariate analysis of intraoperative outcome with risk factors.

Risk Factors	Level	Intraoperative Outcome	P value		
		Easy No. (%)	Difficult No. (%)	Very Difficult No. (%)	
Age	≤50 years	65 (76.47%)	19 (22.35%)	1 (1.18%)	< 0.000
	>50 years	12 (60%)	5 (25%)	3 (15%)	< 0.000
Sex	Female	59 (64.84%)	30 (32.97%)	2 (2.20%)	< 0.000
	Male	10 (71.43%)	2 (14.29%)	2 (14.29%)	< 0.000
History of Hospitalisation	No	47 (97.92%)	1 (2.08%)	0 (0)	< 0.000
	Yes	14 (24.64%)	39 (68.42%)	4 (7.02%)	< 0.000
BMI	<25	24 (80%)	6 (20%)	0 (0)	0.002
	25.0-27.5	26 (57.78%)	19 (42.22%)	0 (0)	0.002
	>27.5	11 (36.67%)	15 (50%)	4 (13.33%)	0.001
Abdominal scar	Infraumbilical	15 (40.54%)	19 (51.35%)	3 (8.11%)	0.001
	Supraumbilical	0 (0)	0 (0)	1 (100%)	0.001
Palpable Gall bladder	No	59 (67.82%)	26 (29.89%)	2 (2.30%)	<0.000
	Yes	2 (11.11%)	14 (77.78%)	2 (11.11%)	<0.000
Gall bladder wall thickness	<4mm	58 (62.37%)	34 (36.56%)	1 (1.08%)	0.001
	≥4mm	3 (25%)	6 (50%)	3 (25%)	0.001
Pericholecystic collection	No	61 (62.24%)	35 (35.71%)	2 (2.04%)	<0.000
	Yes	0 (0)	5 (71.43%)	2 (28.57%)	<0.000
Impacted stone	No	42 (70%)	17 (28.33%)	1 (1.67%)	0.093
	Yes	19 (42.22%)	23 (51.11%)	3 (6.67%)	0.093

Table 4: Correlation of pre-operative score and the outcome.

Pre-op score	Easy (%)	Difficult (%)	Very Difficult (%)	Total (%)	
0-5	57 (54.2%)	2 (1.9%)	0 (0)	59 (56.2%)	
6-10	4 (3.8%)	36 (34.3%)	1 (0.95%)	41 (39.1%)	
11-15	0 (0)	2 (1.9%)	3 (2.9%)	5 (4.8%)	
Total	61 (58.1%)	40 (38.1%)	4 (3.8%)	105	100%

Discussion

Since 1987, when Philippe Mouret first performed the Laparoscopic cholecystectomy [4], it has been widely performed throughout the world. In our institute (NMCH) also it is one of the most common operations performed. The main aim of our study is to detect preoperative predictors of difficult LC and the rate of conversion of laparoscopic to open cholecystectomy in our institute. Initially, the complication rate was high but with advancement in technologies and increase in the expertise, complication rate is very low, approximately 2.0–6.0% [5] and Conversion rate 2–15% [6].

In our study out of 105 cases got converted to open cholecystectomy with conversion rate of 3.8%. This conversion rate is comparable to several other studies like Randhawa, et al. [4] (2009) with conversion rate was 1.3%, Gupta N, et al. [7] 4.3%, Vikalp Gupta, et al. [8] 6%. As the universal accepted range of conversion is 2–15%, our finding is within the range.

The age of the patients varied from 14–70 years. The majority of patients were in the age group of 21–50 years. The mean age was 38.7 years with standard deviation of 14.06. The conversion rate was highest in the age group of 51–60 years. Out of 15 patients, 9 (60%) were difficult & 2 (13.3%) were very difficult which required open conversion. Where as in age group of 41–50 years, out of 24 cases 13 (54.2%) were difficult & 1 (4.2%) was very difficult which required open conversion.

In our study, in multivariate logistic analysis age >50 years was found statistically significant predictor (P < 0.000) of conversion.

Increasing age is associated with an increased probability of multiple attacks of cholecystitis and also increased frequency of upper abdominal surgeries. Therefore, there is increased incidence of fibrosis and adhesions in the hepatic hilum. Randhawa, et al. [4] found that age more than 50 years is associated with the same difficulties. In many studies, it was also found as a significant risk factor for difficult LC [9,10]. So it is observed that our finding is consistent with other studies [4,7,11]. Out of 105 patients, 14 were male and 91 were female. Male: Female ratio is 1:6.5 which corroborates with the study of H. J. van der Steeg, et al. (2011) and Volcan, et al. (2011) [13,14].

Difficulty in Male sex surgery reported in various studies [10,15,16]. Also high Conversion rate and significantly higher mortality has been reported in male patients [17]. In our study also it has been found as a significant factor (P < 0.000).

There is a direct correlation between previous history of hospitalization due to acute attacks of cholecystitis and the difficulty level of laparoscopic cholecystectomy. Each attack.
of cholecystitis increases the gallbladder wall thickness and the gallbladder becomes scarred and fibrosed. It further increases the adhesions at the Calot’s triangle and between gallbladder and fossa. In our study, out of 57 patients with H/o hospitalisation, 39(68.4%) were difficult & 4(7%) were very difficult which required open conversion. In our study, it was found to be a statistically significant factor for prediction of difficult LC (P <0.000). These cases were more time taking for calot’s dissection and dissection of GB from liver bed (>60 min).

Among clinical parameters, abdominal scar was also found to be significant predictor in this study. After prior upper or lower abdominal surgery there may be chances of adhesions between viscera or omentum and abdominal wall. Injury to these structures may occur during creation of pneumoperitoneum & insertion of first port. Risk of conversion was higher due to these injuries. In our study 37 patients had infra-umbilical scar of which 19 (51.4%) were difficult & 3 (8.1%) were very difficult which required open conversion and 1 of them had supra-umbilical scar which was very difficult & required open conversion (100%). This study is in agreement with A. J. Karayiann, et al. [18] who found that previous upper abdominal surgery was associated with an increased need for adhesiolysis, a prolonged operation time, a higher conversion rate, increased incidence of post-operative wound infection and a prolonged operation time, a higher conversion rate, time to start general diet, length of hospitalization or complications in obese patients [20].

Stephen Wise unger et al. [21] compared to the findings published by Randhawa, et al. [4] & Gupta N, et al. [7]. This is probably due to small sample size. Pericholecystic fluid is an ultrasonographic finding of acute cholecystitis and increases the difficulty in dissecting calot’s triangle due to adhesion & fibrosis. In our study 7 out of 105 patients had pericholecystic collection, 5 (71.4%) out of 7 were difficult laparoscopic cholecystectomy & 2 (28.6%) were very difficult which required open conversion.

Pericholecystic collection was found to be a significant factor in our study (P < 0.001) concurrence with the study of Agrawal, et al. [11] In some studies it was not found as a significant predictive factor like Randhawa, et al. [4]. Gupta N, et al. [7].

Difficult dissection secondary to dense adhesions at calot’s triangle was the most common cause for difficult laparoscopic cholecystectomy in this study. The other causes were contracted GB with dense adhesion, distended GB with omental adhesion, short & dilated cystic duct leading to inability to apply clips, distended Hartmann’s pouch, CBD injury, bleeding from gallbladder bed and tear of cystic artery, tear of gallbladder with spillage of stones and bile.

These various difficulties leading to operative time more than 90 minutes or conversion to open cholecystectomy were taken as difficult cases. The usual duration of surgery in expert hands is 45 to 50 minutes [22].

A preoperative scoring system was used in this study for prediction of difficult LC. Sensitivity of the scoring system for prediction of easy, difficult or very difficult LC are 93.4%, 90% & 75% respectively and specificity are 95.5%, 92.3% & 98% respectively. Area under ROC curve is 0.96. Prediction comes true in 96.6% for easy, 87.8% for difficult & 60% for very difficult cases. Previous study done by Gupta N, et al. [7] in this scoring method had sensitivity and specificity of 95.7% and 73.7% respectively with positive predictive values for easy and difficult as 90% and88%, and area under ROC curve as 0.86 [7]. Another study done by Randhawa, et al. [4] had sensitivity and specificity of 75.00% and 90.24%, respectively. Prediction came true in 88.8% for easy and 92% difficult cases and ROC curve was 0.82.

So, in our study this preoperative scoring system was found to be more sensitive & specific than previous studies. But positive predictive value for difficult cases was less as compared to the findings published by Randhawa, et al. [4] & Gupta N, et al. [7]. This may be due to small sample size of our study as compared to Randhawa, et al. & Gupta N, et al.
Conclusion

From this study, we can conclude that preoperative scoring system is a good, reliable and useful method to predict difficulty in laparoscopic cholecystectomy in majority of cases and should be used as a screening procedure. It can help surgeons to get an idea of the potential difficulty to be faced in a particular patient. It can help in operative planning and the high risk patients may be informed accordingly.

Ethical approval: Ethical committee of Institution

Author contribution

Md Masleb Uddin: Manuscript writing, data collection, analysis
Md Ashraf Ali: Data collection, design, analysis
Md Nehal Ahmad: Data collection, analysis, design
Shakil Jawed: Design, data collection, analysis

References

1. Mehraj A, Naqvi MA, Feroz SH, Rasheed H (2011) laparoscopic cholecystectomy:an audit of 500 patients. J Ayub Med Coll Abbottabad 23: 88-89. Link: http://bit.ly/3BISKkh
2. Al-Bahlooli HS, Al-Malahi A, Ghallab HN, Shuga’a Al-Dain A, Al Sabahi AA (2009) Conversion rate of laparoscopic to open cholecystectomy. Yemeni journal for medical sciences 1: 1-8.
3. Al-Bahlooli HS, Al-Malahi A, Ghallab HN, Shuga’a Al-Dain A, Al Sabahi AA (2009) Conversion rate of laparoscopic to open cholecystectomy. Yemeni journal for medical sciences 1: 1-8.
4. Randhawa JS, Pujahari AK (2009) Preoperative prediction of difficult lap chole: A scoring method. Indian J Surg 71: 198-201. Link: http://bit.ly/3eqKaBQ
5. Gadacz TR (2000) Update on laparoscopic cholecystectomy, including a clinical pathway. Surg Clin North Am 80: 1127-1145. Link: http://bit.ly/3r9Qelm
6. Kama NA, Kologlu M, Dogsnay M, Reise E, Atli M, et al. (2001) A risk score for conversion from laparoscopic to open cholecystectomy. Am J Surg 181: 520-525. Link: http://bit.ly/3qrQ6Jt
7. Gupta N, Ranjan G, Arora MP, Goswami B, Chaudhary P, et al. (2013) Validation of a scoring system to predict difficult laparoscopic cholecystectomy. Int J Surg 11: 1002-1006. Link: http://bit.ly/3kWqlJa
8. Gupta V (2017) Preoperative Prediction of Difficult Laparoscopic Cholecystectomy – A Scoring System. ISJR 13: 1041-1043.
9. Lee NW, Collins J, Britt R, Britt LD (2012) Evaluation of preoperative risk factors for converting laparoscopic to open cholecystectomy. Am Surg 78: 831e3. Link: http://bit.ly/3sWkrQk
10. Hussain A (2011) Difficult laparoscopic cholecystectomy: current evidence and strategies of management. Surg Laparosc Endosc Percutan Tech 21: 211-217. Link: https://bit.ly/3rrcORJ
11. Agrawal N, Singh S, Khichy S (2015) Preoperative Prediction of Difficult Laparoscopic Cholecystectomy: A Scoring Method. Niger J Surg 21: 130-133. Link: http://bit.ly/30mctnl
12. Anand A, Pathania BS, Singh G (2007) Conversion In Laparoscopic Cholecystectomy: An Evaluation Study. 9. Link: http://bit.ly/30o1zxi
13. Genc V, Sulaimanov M, Cipe G, Ilksen S, Evrerdli N, et al. (2011) Hazinedaroglu. What necessitates the conversion to open cholecystectomy? A retrospective analysis of 5164 consecutive laparoscopic operations: Clinics 66: 417-420. Link: http://bit.ly/3zZe2AF
14. van der Steeg HJ, Alexander S, Houterman S, Slooter GD, Roumen RM (2011) Risk factors for conversion during laparoscopic cholecystectomy – experiences from a general teaching hospital. Scand J Surg 100: 169-173. Link: http://bit.ly/3cqwDSX
15. Nachnani J, Supe A (2005) Pre-operative prediction of difficult laparoscopic cholecystectomy using clinical and ultrasonographic parameters. Indian J Gastroenterol 24: 16-18. Link: http://bit.ly/3qr3FH0
16. Lein HH, Huang CS (2002) Male gender: risk factor for severe symptomatic cholelithiasis. World J Surg 26: 598e601. Link: http://bit.ly/3qFf8Fv
17. Bouarfa L, Schneider A, Feussner H, Navab N, Lemke HU, et al. (2011) Prediction of intraoperative complexity from preoperative patient data for laparoscopic cholecystectomy. Artif Intell Med 52: 169-176. Link: http://bit.ly/30pWZQ
18. Karayiann AJ, polychronidisi A, perent S, Botatis S, Simopoulos C (2004) Laparoscopic cholecystectomy in patient with previous upper or lower in surgery. Surg Endosc 18: 1097-1101. Link: http://bit.ly/3sYiilL
19. Akyurak N, Salman B, Ikorucuo O, Tasioral O, Yuksel O, et al. (2005) Laparoscopic cholecystectomy in patient with previous abdominal surgery. JSLS 9: 178-183. Link: http://bit.ly/3qgWLa
20. Simopoulos C, Polychronidisi A, Botatis S, Perente S, Pitiakoudis M (2005) Laparoscopic cholecystectomy in obese patients. Obes Surg 15: 243-246. Link: http://bit.ly/3r9RbSh
21. Schenk P, Woisetschläger R, Rieger R, Wayand WU (1998) A diagnostic score to predict the difficulty of a laparoscopic cholecystectomy from preoperative variables. Surg Endosc 12: 148-150. Link: http://bit.ly/3sEj3jI
22. Alponat A, Kum CK, Koh BC, Rajnakova A, Goh PM (1997) Predictive factors for conversion of laparoscopic cholecystectomy. World Jr Surg 21: 629-633. Link: http://bit.ly/3qKvbWxA

Discover a bigger Impact and Visibility of your article publication with Peertechz Publications

Highlights

- Signatory publisher of ORCID
- Signatory Publisher of JORA (San Francisco Declaration on Research Assessment)
- Articles archived in world’s renowned service providers such as Portico, CNKI, ACRIS, TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Date etc.
- Journals Indexed in ICMJE, SHERPA/ROMEO, Google Scholar etc.
- OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
- Dedicated Editorial Board for every journal
- Accurate and rapid peer review process
- Increased citations of published articles through promotions
- Reduced timeline for article publication

Submit your articles and experience a new surge in publication services (https://www.peertechz.com/submission).

Peertechz journals wishes everlasting success in your every endeavours.

Copyright: © 2021 Ali MA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Ali MA, Uddin MM, Ahmad MN, Jawed S (2021) Study of a preoperative scoring system to predict difficult laparoscopic cholecystectomy. J Surg Sun Rect 7(1): 032-036. DOI: https://dx.doi.org/10.17352/2455-2968.000132