IL-6 signaling promotes DNA repair and prevents apoptosis in CD133+ stem-like cells of lung cancer after radiation

Yuhchyau Chen*, Fuquan Zhang, Ying Tsai, Xiadong Yang, Li Yang, Shanzhou Duan, Xin Wang, Peter Keng and Soo Ok Lee*

Abstract

**Background:** Local tumor control by standard fractionated radiotherapy (RT) remains poor because of tumor resistance to radiation (radioresistance). It has been suggested that cancer stem cells (CSCs) are more radioresistant than non-CSCs. In previous studies, we have shown IL-6 promotes self-renewal of CD133+ CSC-like cells. In this study, we investigated whether IL-6 plays roles not only in promoting self-renewal of CD133+ cells after radiation, but also in conferring radioresistance of CD133+ cells in NSCLC.

**Materials and methods:** To compare radiation sensitivity of CSCs and non-CSCs, CD133+ CSC-like and CD133- cell populations were isolated from two NSCLC cell lines, A549 and H157, by immunomagnetic separation and their sensitivities to ionizing radiation were investigated using the clonogenic survival assay. To further study the IL-6 effect on the radiosensitivity of CD133+ CSC-like cells, CD133+ cells were isolated from A549IL-6si/sc and H157IL-6si/sc cells whose intracellular IL-6 levels were manipulated via the lentiviral transduction with IL-6siRNA. Post-irradiation DNA damage was analyzed by γ-H2AX staining and Comet assay. Molecular mechanisms by which IL-6 regulates the molecules associated with DNA repair and anti-apoptosis after radiation were analyzed by Western blot and immunofluorescence (IF) staining analyses.

**Results:** NSCLC CD133+ CSC-like cells were enriched upon radiation. Survival of NSCLC CD133+ cells after radiation was higher than that of CD133- cells. Survival of IL-6 expressing NSCLC CD133+ cells (sc) was higher than that of IL-6 knocked-down cells (IL-6si) after radiation. IL-6 played a role in protecting NSCLC CD133+ cells from radiation-induced DNA damage and apoptosis.

**Conclusions:** IL-6 signaling promotes DNA repair while protecting CD133+ CSC-like cells from apoptotic death after radiation for lung cancer. A combined therapy of radiation and agents that inhibit IL-6 signaling (or its downstream signaling) is suggested to reduce CSC-mediated radioresistance in lung cancer.

**Keywords:** Non-small cell lung cancer, IL-6, Stem cells, Radioresistance, DNA repair
cancer cell colonies surviving radiation treatment exhibited stem cell features, and Gomez-Casal et al. [9] reported that NSCLC cells surviving radiation treatment displayed CSC and epithelial-mesenchymal transition (EMT) phenotypes. In addition, Baumann et al. [10] suggested that local tumor control by RT was affected by the number of CSCs in the tumors.

According to Hittelman et al. [7], radioresistance can be influenced by different intrinsic and extrinsic factors, including proliferation or quiescence, activated radiation response mechanisms (e.g., enhanced DNA repair, up-regulated cell cycle control, and increased free-radical scavengers), and a surrounding microenvironment that enhances cell survival (e.g., hypoxia and interaction with stromal elements).

Implications of cytokines in radioresistance have been suggested. Liu et al. [11] reported that the IL-6 class cytokine leukemia inhibitory factor (LIF) promoted radioresistance of nasopharyngeal carcinoma. It was also shown that the inhibition of IL-4 or IL-10 resulted in sensitization of colorectal cancer cells to radiation [12]. In addition, Zhou et al. [13] suggested that cytokines can shift the balance between tumor cells and tumor microenvironment after irradiation.

Our laboratory recently found that IL-6 played a promoter role in the self-renewal of CD133+ CSC-like cells in A549 and H157 cell lines, not in CD133- cells (manuscript submitted), demonstrating that it may promote growth of the surviving CD133+ CSC-like cells after radiation. We further investigated whether IL-6 plays roles not only in promoting self-renewal of CD133+ cells, but also in conferring radioresistance of CD133+ cells in NSCLC.

Methods

Cell culture

A549 and H157 cell lines were purchased from the American Type Culture Collection (ATCC, Manassas, VA) and cultured in RPMI 1640 containing 10% FBS. CD133+ CSCs were cultured in DMEM/F12 medium supplemented with 20 ng/ml EGF (Invitrogen), and 5 mM EDTA, centrifuged, and incubated with magnetic microbeads conjugated with anti-CD133 antibody (Miltenyi Biotec, Cambridge, MA). The bead-bound cells (CD133+) and unbound cells (CD133-) were separated with 5 mM EDTA, centrifuged, and incubated with magnetic microbeads conjugated with anti-CD133 antibody (Miltenyi Biotec, Cambridge, MA). The purity of isolated CD133+ cells was confirmed by flow cytometric analyses, and by qPCR analyses. The isolated CD133+ cells were then cultured in stem cell media.

Isolation of CD133+ CSC-like cells using immunomagnetic separation technique

Cells (2 × 10^5) were detached from tissue culture plates with 5 ml EDTA, centrifuged, and incubated with magnetic microbeads conjugated with anti-CD133 antibody (Miltenyi Biotec, Cambridge, MA). The bead-bound cells (CD133+) and unbound cells (CD133-) were separated using the Quadro MACS™ Separation Unit (Miltenyi Biotec, Cambridge, MA). The purity of isolated CD133+ cells was confirmed by flow cytometric analyses, and by qPCR analyses. The isolated CD133+ cells were then cultured in stem cell media.

Sphere formation assay

For sphere formation assays, single-cell suspensions (1 × 10^5 cells) were mixed with cold Matrigel (BD, Franklin Lakes) (1:1 ratio, v/v, total volume of 100 μl) and the mixture was placed along the rim of the 24-well plates. The culture plates were placed in 37 °C incubator for 10 min to let the mixture solidify, and 500 μl medium was then added into the wells. The number of spheres with diameter greater than 50 μm was counted 7–14 days later using an Olympus light microscope. A minimum of three triplicate experiments were performed.

Cell survival assay after radiation

Cells were exposed to different doses (0, 1, 2, 4, 6, and 8 Gy) of radiation using a Cs-137 source with a dose rate of 180–205 cGy/min. After treatment, clonogenic assay was performed as previously described [14]. Cells were seeded in culture dishes with appropriate dilutions to form colonies after 7–9 days incubation. Colonies were fixed with methanol, stained with crystal violet (0.5% w/v), and counted using a microscope. Colonies consisting of at least 50 cells were counted and the surviving fraction was calculated from the normalized plating efficiency.

Development of IL-6 knocked down and sc control cells by lentiviral transduction

For incorporation of IL-6 siRNA or scramble (sc) control plasmids into A549 and H157 cells, lentivirus construct carrying either sc or IL-6 siRNA (pLenti-II vector, Applied Biological Materials Inc, Canada) was transduced into 293 T cells with a mixture of pLent-II-IL-6 siRNA, psPAX2 (virus-packaging plasmid), and pMD2.G (envelope plasmid) (4:3:2 ratio) using PolyFect Transfection reagent (Qiagen, Valencia, CA). After A549 and H157 cells were infected with virus overnight, the culture media containing the virus were removed and the infected cells were then maintained under normal cell culture media. After sub-culturing, the IL-6 knocked down cells were selected by puromycin (2 μg/ml, Sigma) and then maintained in media containing 0.1 μg/ml puromycin.
RNA Extraction and Quantitative Real-Time PCR (qPCR)

Analysis

Total RNAs were isolated using Trizol reagent (Invitrogen). One µg of total RNA was subjected to reverse transcription using Superscript III transcriptase (Invitrogen). qPCR was conducted using the appropriate primers and the Bio-Rad CFX96 system. SYBR green was used to determine the expression levels of mRNA from genes of interest. Expression levels were normalized to GAPDH level.

IL-6 ELISA

IL-6 in the supernatant of unseparated parental or isolated CD133- and CD133+ cells of A549IL-6si/sc and H157IL-6si/sc pairs was determined by the ELISA kit according to the manufacturer’s instructions (BD, Franklin Lakes). The secreted IL-6 level was normalized by cell number.

Western blot analysis

Cells were lysed in RIPA buffer (50 mM Tris-Cl at pH 7.5, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA, 1 µg/mL leupeptin, 1 µg/mL aprotinin, 0.2 mM PMSF) and proteins (20–40 µg) were isolated and separated on 8–10% SDS/PAGE gel and then transferred onto PVDF membranes (Millipore, Billerica, MA). After blocking procedure, membranes were incubated with primary antibodies, followed by HRP-conjugated secondary antibodies, and then the proteins of interest were visualized using the Imager (Bio-Rad) and ECL (Thermo Fisher Scientific, Rochester, NY) system. Antibody of GAPDH was purchased from Abcam (Cambridge, MA) and antibodies of Mcl-1 and cleaved caspase-3 were obtained from Cell Signaling (Danvers, MA). Anti-β-actin antibody was obtained from Santa Cruz (Santa Cruz, CA).

Immunofluorescence (IF) staining

Unseparated parental or isolated CD133- and CD133+ cells of A549IL-6si/sc and H157IL-6si/sc pairs (1 x 10^6) were mounted on chamber slide, irradiated (6 Gy) with or without IL-6, 24 h after radiation, was analyzed by flow cytometry. The data were presented as the mean ± SEM. Differences in mean values between two groups were analyzed by two-tailed Student’s t test. p ≤ 0.05 was considered statistically significant.

Results

CD133+, CSC-like cells were enriched in A549 and H157 cell cultures upon exposure to radiation

To investigate whether the population of CSCs in NSCLC was altered after radiation, unseparated A549 and H157 parental cells were irradiated with 6 Gy gamma rays and the percentage of CD133+ cells, before and after radiation, was analyzed by flow cytometry. The CD133 molecule was chosen because it is the most widely used surface marker for the CSC of NSCLC [4, 6]. As shown in Fig. 1a, the percentage of CD133+ cells was increased by 3.4 and 4.0 fold at 7 days after irradiation for
A549 and H157 cells, respectively. Consistent with the CD133+ population data (Fig. 1a) and the published result by others [9], we also observed a higher number of spheres in the sphere formation assay (Fig. 1b) and expression of CSC markers in NSCLC cell lines following irradiation in IF staining (Fig. 1c).

CD133+, CSC-like cells were more resistant to radiation than CD133- cells

Emerging evidence suggests that CSCs are likely to be more resistant to radiation than non-CSCs [7–10, 16]. To directly compare the radiation sensitivity of CSC and non-CSC cells in NSCLC, we isolated CD133+ and CD133- cells from A549 and H157 cells by anti-CD133 antibody and the immunomagnetic separation method. Flow cytometric analyses indicated an enrichment of CD133+ cells after separation with a purity of CD133+ greater than 90% (Fig. 2a). In order to confirm the CSC-like characteristics of the isolated CD133+ cells, we analyzed expression of CSC markers in these cells and in parental cells. The results showed a dramatic increase in CSC markers in CD133+ cells (Fig. 2b, A549 cells), The CD133+ cells were able to grow into spheres using the Matrigel-based sphere formation assay (Fig. 2c), further indicating the isolated CD133+ cells have CSC-like features. The CD133+ cells were maintained under non-adherent culture conditions with stem cell media, and the freshly isolated cells and once passaged cells were used in the entire study.

Radiation sensitivity was determined and compared between the isolated CD133+ and CD133- cells. CD133+ and CD133- cells were isolated by an immunomagnetic separation method one day prior to irradiation experiments and the CD133+ cells were kept in stem cell media. After irradiation to different doses of Cs-137 gamma rays, cells were harvested, trypsinized (in case of CD133- cells), cell numbers counted, and single cell suspensions of indicated numbers of CD133- and CD133+ cells were used in clonogenic assay at 7–9 days post-radiation. We found survival of CD133+ cells was significantly higher than that of CD133- cells in both cell lines (Fig. 2d; top, A549 cells; bottom, H157 cells), indicating that CD133+ cells are more radioresistant than CD133- cells.

Effects of intracellular level of IL-6 on mediating survival of CD133+ cells upon irradiation

In investigating the role of IL-6 in the radiation sensitivity of CSCs, the A549 and H157 cells secreted a high level of IL-6, so it was hard to observe the exogenously
added IL-6 effect on survival of CD133+ cells after radiation. So, we investigated the radiation survival of CD133+ CSC-like cells obtained from parental cells whose intracellular IL-6 level was manipulated by the IL-6 siRNA in lentiviral transduction system. We have previously obtained IL-6 knocked down A549 (A549IL-6si) and H157 (H157IL-6si) cells and their corresponding scramble (sc) control (A549sc, H157sc) cells. The IL-6 knockdown efficiency was greater than 90 % (A549) and 72 % (H157) in qPCR analyses (Fig. 3a). The IL-6 knockdown in CD133- and CD133+ cells are shown in ELISA test (Fig. 3b) and IF staining (CD133+ cells, Fig. 3c). CD133+ cells were then isolated from these A549IL-6/sc and H157IL-6si/sc pairs and exposed to various doses of radiation for clonogenic cell survival assay. After exposure to radiation, we found that the survival of CD133+ cells isolated from IL-6 expressing A549sc and H157sc cells was higher than from A549IL-6si and H157IL-6si cells (Fig. 3d), suggesting that intracellular IL-6 is important for maintaining a greater level of radiation survival in CD133+ cells.

We next tested whether IL-6 was also involved in promoting the self-renewal of CD133+ cells after radiation. CD133+ cells were more radioresistant than CD133- cells. Flow Cytometric analysis of the isolated CD133+ cells. The CD133+ cells were isolated from A549 and H157 cells by immunomagnetic sorting using CD133+ antibody-conjugated magnetic microbeads. The isolated CD133+ cells were stained by anti-CD133+ antibody and subjected into flow cytometric analysis. The dotted and solid lines show fluorescent distributions of unseparated and separated cell populations. Greater than 90 % purity was found in isolated CD133+ cells. Higher expression of CSC markers in isolated CD133+ than unseparated A549 cells. mRNA expression of the indicated CSC markers in isolated CD133+ cells were analyzed by qPCR analyses. Sphere formation assay using isolated CD133+ cells of A549 and H157 cell line. Clonogenic survival curves of CD133+ and CD133- cells.
radiation. We irradiated the CD133+ cells isolated from A549IL-6si/sc and H157IL-6si/sc pairs and performed the sphere formation assay at 7 days after irradiation to test their self-renewal abilities. As shown in Fig. 3e, we observed a higher number of spheres from A549sc and H157sc cells than those from A549IL-6si and H157IL-6si cells. Consistent with the spheroid formation results, a higher number of Ki67 positive cells was found in CD133+ of A549sc cells following radiation exposure (Fig. 3f), indicating higher proliferating activity of IL-6 expressing CD133+ cells. The secreted IL-6 level differences in CD133+ and CD133- cells of A549IL-6si/sc and H157IL-6si/sc pairs are shown in Fig. 3g.
IL-6 was important in mediating DNA repair and protecting cells from apoptotic death in CD133+ cells after radiation damage.

We then investigated whether DNA damage and repair system in CD133+ cells was affected by IL-6 signaling following irradiation. We irradiated CD133+ cells isolated from A549IL-6si/sc and H157IL-6si/sc pairs and performed the IF staining of γ-H2AX after irradiation. As shown in Fig. 4a, we detected higher levels of γ-H2AX staining in A549IL-6si and H157IL-6si cells, indicating greater amount of DNA damage still left unrepaired when IL-6 was knocked down in CD133+ cells. Different levels of post-irradiation DNA strand breaks in CD133- and CD133+ cells of A549IL-6si/sc and H157IL-6si/sc pairs were also investigated in the Comet assay. When CD133- and CD133+ cells were isolated from A549IL-6si/sc and

As shown in Fig. 4a, we detected higher levels of γ-H2AX staining in A549IL-6si and H157IL-6si cells, indicating greater amount of DNA damage still left unrepaired when IL-6 was knocked down in CD133+ cells. Different levels of post-irradiation DNA strand breaks in CD133- and CD133+ cells of A549IL-6si/sc and H157IL-6si/sc pairs were also investigated in the Comet assay. When CD133- and CD133+ cells were isolated from A549IL-6si/sc and

As shown in Fig. 4a, we detected higher levels of γ-H2AX staining in A549IL-6si and H157IL-6si cells, indicating greater amount of DNA damage still left unrepaired when IL-6 was knocked down in CD133+ cells. Different levels of post-irradiation DNA strand breaks in CD133- and CD133+ cells of A549IL-6si/sc and H157IL-6si/sc pairs were also investigated in the Comet assay. When CD133- and CD133+ cells were isolated from A549IL-6si/sc and

As shown in Fig. 4a, we detected higher levels of γ-H2AX staining in A549IL-6si and H157IL-6si cells, indicating greater amount of DNA damage still left unrepaired when IL-6 was knocked down in CD133+ cells. Different levels of post-irradiation DNA strand breaks in CD133- and CD133+ cells of A549IL-6si/sc and H157IL-6si/sc pairs were also investigated in the Comet assay. When CD133- and CD133+ cells were isolated from A549IL-6si/sc and
H157IL-6si/sc pairs and irradiated at 6 Gy, we detected a similar extent of DNA damage in the CD133- and CD133+ cells of IL-6si/sc pair immediately after radiation, but lower DNA breaks in CD133+ cells of IL-6sc cell lines than those of IL-6si cell lines were detected at 30 min after radiation (Fig. 4b), suggesting higher DNA repair in CD133+ cells of IL-6sc cell lines than those of IL-6si cell lines. However, we did not observe a significant difference in DNA repair in CD133- cells of A549IL-6si/sc and H157IL-6si/sc pairs.

We then investigated whether the higher level of unrepaired DNA damage in IL-6 knocked down cells was due to lower DNA repair activity. We investigated expression of ATM [17] and its downstream molecules, including ATM, phosphorylated ATM, CHK2, and phosphorylated p53, in CD133- and CD133+ cells of A549IL-6si/sc and H157IL-6si/sc cell pairs upon radiation. The results of IF staining showed that the CD133+ cells from A549IL-6si and H157IL-6si cell lines exhibited lower expression of these molecules than those isolated from sc cell lines (Fig. 4c). However, not much difference was observed in CD133- cells, whether isolated from IL-6si or sc cell lines.

To further explore whether the ATM and CHK2 are up-regulated in IL-6 expression CD133+ cells after radiation, we compared the mRNA levels of ATM and CHK2 in A549IL-6si/sc and H157IL-6si/sc pairs following radiation exposure. Similar to the IF staining results, higher levels of ATM mRNA were observed in the IL-6 expressing and CD133+ sc cells compared to those of IL-6 knocked down cells (Fig. 4d).

Next, we investigated whether IL-6 regulates ATM at the transcriptional level in the 293HEK cell line using the ATM-luciferase constructs containing the ATM promoter region. We also used non-IL-6 expressing H1299 NSCLC cell line in this assay to observe the exogenously added IL-6 effect. We detected a dose-dependent regulation of ATM-luciferase by IL-6 in these two cell lines, suggesting direct regulation of ATM on ATM molecule at the transcriptional level (Fig. 4e).

We then investigated whether difference in expression of apoptosis markers, Bcl-2 and Mcl-1 in the A549IL-6si/sc cell line pair, higher expression of these molecules in IL-6 expressing CD133+ cells were observed in Western blot (Fig. 5a) and IF staining (Fig. 5b) analyses. These results suggest that IL-6 in CD133+ cells modulated up-regulations of these molecules, and protected cells from apoptotic death upon irradiation.

In summary, [1] NSCLC CD133+ CSC-like cells were enriched upon radiation, [2] cell survival of NSCLC CD133+ cells after radiation was higher than that of CD133- cells, [3] cell survival of IL-6 expressing NSCLC CD133+ cells (sc) was higher than that of IL-6 knocked-down cells (IL-6si) after radiation [4] IL-6 played a role in protecting NSCLC CD133+ cells from radiation-induced DNA damage and apoptosis.

Discussion

In this study, we suggest that IL-6 signaling may be involved in radiosensitivity of CSCs. Piao et al. [16] showed increased activation of MAPK/P38K signaling pathway and reduction in reactive oxygen species levels in CD133+ cells of human hepatocarcinoma compared to CD133- cells upon irradiation. Meanwhile, Ettl et al. [23] showed AKT and MET signaling mediates anti-apoptotic radioresistance in glioma stem cells by preferential activation of the DNA damage response. In addition, several signaling pathways were suggested to be involved in radiosensitivity of CSCs. Piao et al. [16] suggested that the CSC is inherently radioresistant. Matthews et al. [20] proposed that CSC has higher expression of radioresistance-related genes and higher DNA repair ability. However, it is widely accepted that the other factors such as adaptive responses in CSC and microenvironmental changes upon irradiation can contribute to radioresistance in CSCs [21]. Bao et al. [22] showed that glioma stem cells promote radioresistance by preferential activation of the DNA damage response. In addition, several signaling pathways were suggested to be involved in radiosensitivity of CSCs. Piao et al. [16] showed increased activation of MAPK/P38K signaling pathway and reduction in reactive oxygen species levels in CD133+ cells of human hepatocarcinoma compared to CD133- cells upon irradiation. Meanwhile, Ettl et al. [23] showed AKT and MET signaling mediates anti-apoptotic radioresistance in head neck cancer cell lines, and Kim et al. [24] suggested that EZH2 is important in radioresistance of CSC in glioblastoma. In this study, we suggest that IL-6 signaling may be important in promoting radioresistance in NSCLC CD133+ cells. We speculate that intracellular IL-6 may be more critical in protecting cells from radiation-induced damage since we observed higher radioresistance of sc cells compared to IL-6si cells, but could not detect significant effect when IL-6 was added exogenously to the non-IL-6 expressing H1299 cells. Contribution of IL-6 in radioprotection has been suggested...
previously. In animal studies, Neta et al. [25] showed reduced mortality upon irradiation when mice were pre-treated with IL-6 antibody. In addition, Wu et al. [26] showed that IL-6 plays a role in radioresistance of castration resistant prostate cancer. However, no clear IL-6 role had been addressed in protection of NSCLC CSCs from radiation. In our study, we clearly demonstrated the IL-6 role in mediating radioresistance of NSCLC CD133+ cells.

We suggested that the effect of IL-6 in mediating radioresistance is partially arbitrated through regulation of DNA repair related molecules. Desai et al. [18] also suggested that the radioresistance in CD133+ cells is gone through DNA repair molecules, such as Exo1 and Rad51. Using several different assays, we showed the regulation of IL-6 on the key molecules of DNA repair, ATM and CHK, in CD133+ cells. This result is consistent with the recent observation showing IL-6 regulation of ATM/NFkB signaling in conferring the resistance of lung cancer to chemotherapy [27]. Although we have only studied IL-6 regulation on ATM and CHK, identifying the IL-6 effect on regulation of other DNA repair associated molecules will be carried out in future studies.

In this study, we showed that IL-6 may modulate ATM and CHK at the transcriptional level. However, it may also be possible that the IL-6 effect can go through signaling pathways which is downstream of IL-6 signaling as the ATM level was suggested to be modulated by signaling pathways, such as Akt and Erk [28]. Therefore, whether IL-6 regulates their activation by mediating up-regulation of these molecules should be tested.

In addition to the modulation of DNA repair mechanism, we showed that IL-6 regulated expression of anti-apoptotic proteins Bcl-2 and Mcl-1. The IL-6 regulation of Bcl-2 and Mcl-1 in CD133+ cells, without the radiation effect, has been shown in our previous studies (manuscript submitted). Whether this regulation can be accelerated after radiation will be tested.
Conclusions
Our data suggest that IL-6 contributes to radioresistance of CD133+ CSC-like cells in NSCLC by protecting them against radiation-induced DNA damage and apoptotic death. In light of the high recurrence rate of NSCLC after RT, and considering CSC as the target population with high radioresistance, we suggest a combination of radiation and agents that inhibit IL-6 signaling (or its downstream signaling) to reduce CSC-mediated radioresistance in lung cancer.

Abbreviations
IL-6: Interleukin-6; NSCLC: Non-small cell lung cancer; SCLC: Small cell lung cancer; RT: Radiotherapy; CSC: Cancer stem cell; A549IL-6si: A549/IL-6 knocked down with IL-6siRNA; A549sc: A549 scramble control; H157IL-6si: H157/IL-6 knocked down with IL-6siRNA; ELISA: Enzyme-linked immunosorbent assay; ATM: Ataxia telangiectasia mutated; CHK: Checkpoint; ECL: Electrochemiluminescence; IF: Immunofluorescence; MAPK: Mitogen-activated protein kinase.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SL and YC conceived the study, participated in its design and coordination, and YC critically reviewed the article. All authors read and approved the final manuscript.

Acknowledgement
We thank Mrs. Laura Finger for her editorial assistance as an employee of the Department of Radiation Oncology at the University of Rochester.

Received: 29 June 2015 Accepted: 1 November 2015
Published online: 14 November 2015

References
1. Cersosimo RJ. Lung cancer: a review. Am J Health Syst Pharm. 2002;59(7):611–42. PubMed PubMed Central PMCID: 1222620.
2. Parsons A, Daley A, Beigh R, Aveyard P. Impact of smoking cessation after diagnosis of early stage lung cancer on follow up. Systematic review of observational studies with meta analysis. BMJ 2013;346:f356. PubMed PubMed Central PMCID: 346352.
3. Akunzu S, James Zhi Y, Zhi Y. Non-small cell lung cancer stem/ progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit phenotypic and molecular differences. Cancer 2012;3, e352. PubMed PubMed Central PMCID: 348083.
4. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by BCL-2 bi enable treatment. Proc Natl Acad Sci U S A 2009;106(38):16281–6. PubMed PubMed Central PMCID: 2741477.
5. Era J, Arita T, Lottov J, Seto S, Kokiji T, et al. Identification of a subset of the tumorigenic lung cancer stem cell population. Exp Cell Res. 2008;15(3):504–14. PubMed PubMed Central PMCID: 1781144.
6. Wang X, Xu ZY, Wang LF, Su W. CD133+ cancer stem cells in lung cancer. Front Biosci. 2013;18:447–53. PubMed.
7. Hittelman WN, Liao Y, Wang L, Miles L. Are cancer stem cells radioresistant? Future Oncol. 2010;6(10):1563–76. PubMed PubMed Central PMCID: 3059151.
8. Zhang Y, Komaki R, Wang L, Fang B, Chang J. Treatment of radioreistant stem-like esophageal cancer cells by an apoptotic gene-armed, telomerase-specific oncolytic adenovirus. Clin Cancer Res. 2008;14(9):2813–23. PubMed PubMed Central PMCID: 2387204.
9. Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, et al. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer. 2013;12(1):94. PubMed PubMed Central PMCID: 3731356.
10. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8(7):545–54. PubMed.
11. Liu SC, Tsang NW, Chang WC, Chang KP, Hseuh C, Liang Y, et al. Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Invest. 2013;123(12):5269–83. PubMed PubMed Central PMCID: 3859424.
12. Voboril R, Weberova-Voborilova J. Sensitization of colorectal cancer cells to irradiation by IL-4 and IL-10 is associated with inhibition of NF-kappaB. Neoplasma. 2007;54(6):495–502. PubMed.
13. Zhou W, Jiang Z, Li X, Xu Y, Shao Z. Cytokines: shifting the balance between glioma cells and tumor microenvironment after irradiation. J Cell Mol Med. 2015;19(5):1315–26. PubMed.
14. Franklin NA, Rodermond HM, Stijl J, Haveman J, J. van C. Genetic analysis of cells in vitro. Nat Protoc. 2006;1(5):2315–9. PubMed.
15. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91. PubMed.
16. Piao LS, Hur W, Kim TK, Hong SW, Kim SW, et al. IL-13 and CD133+ lung cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 2014;352(1–2):162–9. PubMed.
17. Ktagara R, Kastan MB. The DNA-dependent DNA damage signaling pathway. Cold Spring Harb Symp Quant Biol. 2005;70:97–109. PubMed.
18. Desai A, Webb B, Gao X, CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells. Radiat Oncol. 2014;9:218. PubMed PubMed Central PMCID: 404666.
19. Pajok F, Vlasi S, Beneke P, WD. Radioresistance of cancer stem cells: the 4 Rs of radioresistance revisited. Stem Cells. 2010;28(6):639–48. PubMed PubMed Central PMCID: 2940232.
20. Mathews P, Cheung SM, Farrar WL. DNA repair: the culprit for tumor-inhibiting cell survival? Cancer Metastasis Rev. 2011;30(2):185–97. PubMed PubMed Central PMCID: 3078299.
21. Raj K, Tang DG. Cancer stem cells and radioresistance. Int J Radiat Biol. 2010;86(5):615–21. PubMed PubMed Central PMCID: 34191971.
22. Bao S, Wu Q, McLeod RE, Hao Y, Shi Q, Hjelmeland AB, et al. Gloma stem cells promote radiosensitivity by preferential activation of the DNA damage response. Nature. 2006;444(7120):356–60. PubMed.
23. Ett T, Viale-Borroncle S, Hauttmann MG, Gosau M, Kollbr O, Reichert TE, et al. Akt and MET signalling mediates antipapoptotic radioresistance in head and neck cancer cells. Oral Oncol. 2015;51(2):158–63. PubMed.
24. Kim SH, Joshi K, Ezhilarasan R, Myers TR, Su J, Gu C, et al. EZH2 protects glioma stem cells from radiation-induced cell death in a MEK/FXO1-dependent manner. Stem cell reports. 2015;4(2):226–38. PubMed PubMed Central PMCID: 43261556.
25. Neta R, Pestrin R, Vogel SN, Ledney GD, Abrams J. Role of interleukin 6 (IL-6) in protection from lethal irradiation and in endothine response to IL-6 and tumor necrosis factor. J Exp Med. 1992;175(3):689–94. PubMed PubMed Central PMCID: 2119144.
26. Wu CT, Chen MF, Chou WC, Hsieh CC. The role of IL-6 in the radiation response of prostate cancer. Radiat Oncol. 2013;8:159. PubMed PubMed Central PMCID: 3717100.
27. Yan HQ, Huang XB, Ke ZQ, Jiang YN, Zhang YH, Wang YN, et al. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation. Cancer Sci. 2014;105(9):1202–7. PubMed.
28. Hein AL, Duellinette MM, Yan Y. Radiation-induced signalling pathways that promote cancer cell survival (review). Int J Oncol. 2015;47(1):105–10. PubMed PubMed Central PMCID: 4203326.

Submit your manuscript to BioMed Central and take full advantage of:  
- Convenient online submission  
- Thorough peer review  
- No space constraints or color figure charges  
- Immediate publication on acceptance  
- Inclusion in PubMed, CAS, Scopus and Google Scholar  
- Research which is freely available for redistribution  

Submit your manuscript at www.biomedcentral.com/submit