Wavelet Transform-Based UV Spectroscopy for Pharmaceutical Analysis

Erdal Dinç*1 and Zehra Yazan2

1 Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey, 2 Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey

In research and development laboratories, chemical or pharmaceutical analysis has been carried out by evaluating sample signals obtained from instruments. However, the qualitative and quantitative determination based on raw signals may not be always possible due to sample complexity. In such cases, there is a need for powerful signal processing methodologies that can effectively process raw signals to get correct results. Wavelet transform is one of the most indispensable and popular signal processing methods currently used for noise removal, background correction, differentiation, data smoothing and filtering, data compression and separation of overlapping signals etc. This review article describes the theoretical aspects of wavelet transform (i.e., discrete, continuous and fractional) and its characteristic applications in UV spectroscopic analysis of pharmaceuticals.

Keywords: discrete wavelet transform, continuous wavelet transform, fractional wavelet transform, UV spectroscopy, pharmaceutical analysis

INTRODUCTION

In experimental studies, instruments or devices can provide signals (or graphs) in different formats e.g., spectrum, chromatogram, voltammogram, and electroferogram etc. The analysis of chemicals and pharmaceuticals in various samples is based upon the utilization of the measured signals of substances of interest. In practice, such an analysis for a multicomponent mixture may not be determined without a prior separation step due to spectral overlapping. Therefore, high performance liquid chromatography (HPLC) is one of the most commonly used techniques for quantitative estimation in the quality control of raw materials and commercial products in laboratories. In some cases, chromatographic determination could not be possible due to not only similar physicochemical behavior of analytes but also time- and solvent-consumption for optimal experimental conditions.

In practice, UV spectroscopic methods are widely used in chemical and pharmaceutical analysis. As compared to chromatographic ones, the use of spectroscopic methods provides a rapid analysis with low-cost and acceptable results. However, multicomponent analysis may not be possible with a traditional UV spectrophotometric approach due to spectral interferences of both active and inactive ingredients in samples. In some cases, derivative spectrophotometry (O’Haver and Green, 1976; O’Haver, 1979; Levillain and Fompeydie, 1986; Ragno et al., 2006) and its improved versions e.g., ratio spectra-derivative spectrophotometry (Salinas et al., 1990), ratio spectra-derivative spectrophotometry-zero crossing (Berzas Nevado et al., 1992; Dinç and Onur, 1998; Dinç, 1999), and double-divisior-ratio spectra-derivative spectrophotometry (Dinç and Onur, 1998; Dinç, 1999; Gohel et al., 2014; Shokry et al., 2014) could be used in place of...
conventional UV spectrophotometric method for analysis of binary and ternary mixtures without using a separation step. However, these spectral approaches may not always yield successful data due to severely overlapping spectral bands, spectral noise and baseline variation. Additionally, high-order differentiation of spectra may lead to spectral deterioration i.e., a decrease in signal intensity and signal-to-noise ratio. As a result, a number of mathematical manipulations (or signal processing methods) are often required to make instrumental signals more meaningful for analysis purpose.

Generally speaking, transform (i.e., Fourier, Hilbert, short-time Fourier, Wigner distribution, Radon, and wavelet) is a very suitable technique in the pre-treatment step to simplify signals. Fourier transform (FT) is the first method to modify chemical signal (Griffiths, 1977; Cooper, 1978; Griffiths and De Haseth, 1986; Ernst, 1989) with the mathematical essence such as filtering, convolution/deconvolution etc. FT analysis can localize signal in frequency domain very well, but not so much in time domain. In contrast, wavelet transform (WT) has the advantage of localizing signals both in time (position) and frequency (scale) domains, making it a preferable mathematical tool to replace FT in the study of the local property of a signal and the removal of the perturbation of measuring error in spectral analysis. Nowadays, WT is one of the most signal analysis algorithms commonly used in the different fields of chemistry and engineering, providing alternative ways or opportunities to resolve complex spectral bands or diverse data types of signals.

For readers interested in learning the general theory of wavelets, more details can be found in the literature (Mallat, 1988; Chui, 1992; Daubechies, 1992; Newland, 1993; Byrnes et al., 1994; Chui et al., 1994; Vetterli and Kovačević, 1995; Strang and Nguyen, 1996).

In the signal smoothing and de-noising of spectral peaks, the elimination of noise requires an application of appropriate filters to the raw spectral data such as some conventional signal filters Savitzky–Golay, Fourier and Kalman (Brown et al., 1994, 1996). The use of WT in signal analysis is two-fold: (i) to detect the singularities of a signal very likely caused by high-frequency noise and (ii) to separate the signal frequencies at different scales (Palavajhala et al., 1994; Yan-Fang, 2013; Li and Chen, 2014). To illustrate this, Barclay et al. (1997) performed a comparative study in de-noising and smoothing of Gaussian peak by using wavelet, Fourier and Savitzky–Golay filters i.e., smoothing eliminates high-frequency components of the transformed signal irrespective of their amplitudes, while de-noising eliminates small-amplitude components of the transformed signal irrespective of their frequencies.

Historically, WT principal applications in chemistry were first explored by Walczak and Massart (1997a), who presented an approach based on the application of wavelet packet transform (WPT) to the best-basis selection for the compression and de-noising of a set of signals in time-frequency domain. In their paper, the proposed technique was compared to Wickerhauser's approach (Wickerhauser, 1994) of fast approximate principal component analysis (PCA). These authors also published two more papers on the application of wavelets for data processing i.e., the introduction of WPT for noise suppression and signal compression (Walczak and Massart, 1997b) and the use of WT for signal compression and denoising, image processing, data compression and multivariate data modeling in analytical chemistry (Walczak and Massart, 1997c). On the other hand, Alberg et al. (1997) tried to introduce WT to chemometricians by suggesting the short-time FT technique as a resolution to obtain information about frequency changes over time as well as the WT for de-noising, baseline removal, determination of derivative zero crossings and signal compression. In 1997, WT application in chemical analysis was also confirmed by Wang et al. (1997) and Depczynski et al. (1997). Up to date, WT processing of the different types of raw signals has been reported for liquid chromatography (Shao et al., 1997, 1998a,b,c) and NMR spectroscopy (Neue, 1996; Barache et al., 1997), Raman spectra (Cai et al., 2001; Ehrentreich and Summchen, 2001), and voltammetry (Chen et al., 1996; Fang and Chen, 1997; Zheng et al., 1998; Zhong et al., 1998; Aballe et al., 1999; Zheng and Mo, 1999) IR and Raman spectroscopy (Shao and Huang, 2004; Hwang et al., 2005; Chalus et al., 2007; Jun-fang et al., 2007; Lai et al., 2011). In this context, as in the various fields of mathematics and engineering, the implementations of WT in analytical chemistry and neighbor disciplines has become increasingly attractive as an alternative way to analyze complex mixtures previously unresolved by traditional analytical techniques.

With reference to the above-mentioned review, the aim of this paper is to describe the fundamentals of WT methodologies and its typical implementations for UV spectroscopic analysis of pharmaceuticals.

BRIEF HISTORY OF WAVELETS

In the literature, the first study was related to the Haar Wavelet transform. This family was suggested by the mathematician Alfred Haar in 1909. However, the word “wavelet” was not used in the period of Haar. In fact, the word “wavelet” was invented by Morlet and the physicist Alex Grossman in 1984. After the first orthogonal Haar wavelet, the second orthogonal wavelet known as “Meyer wavelet” was formulated by the mathematician Yves Meyer in 1985. In 1988, Stephane Mallat and Meyer elaborated the concept of multiresolution. In the same year, a systematical method to construct compactly supported continuous wavelets was found by Ingrid Daubechies. Afterwards, Mallat proposed the fast wavelet transform. The emergence of this algorithm increased the implementations of the WT in the signal processing field.

In other words, the history of the wavelet families could be given in the following chronological order: Haar families in 1910, Morlet wavelet concept in 1981, Morlet and Grossman, “wavelet” in 1984, Meyer, “orthogonal wavelet” in 1985, Mallat and Meyer, multiresolution analysis in 1988, Daubechies, compact support orthogonal wavelet in 1988 and Mallat, fast wavelet transform in 1989 (c.f. Chun-Lin, 2010).

Basically, WT can be mainly classified into discrete wavelet transform (DWT) and continuous wavelet transform (CWT) in
the signal analysis. The theory and implementations of wavelets in chemistry and related fields were well documented as review papers (Leung et al., 1998; Dinç and Baleanu, 2007b; Dinç, 2013; Li and Chen, 2014; Medhat, 2015) and reference books (Walczak and Massart, 2000a,b; Walczak and Radomski, 2000; Brereton, 2003, 2008; Chau et al., 2004; Danzer, 2007; Mark and Workman, 2007; Dubrovkin, 2018).

WAVELET TRANSFORM ALGORITHMS

FT is based upon the decomposition of a signal into a set of trigonometric (sine and cosine) functions i.e., FT represents a signal in terms of sinusoids. The representation of FT of a signal from time mode to frequency mode is illustrated in Figure 1. For the determination of a local information in the FT, it is required to use an analyzing function ψ having localization properties in both frequency and time domains. This ψ function is named as a wavelet and it must be wave of finite duration.

WT contains the decomposition of a signal into a set of basic functions (wavelets). Basis functions of WT are small waves detected in different times. On the contrary to FT, WT gives information on both time and frequency, making it as an alternative approach to eliminate the resolution problem in signal analysis.

By definition, wavelets are the mathematical methods that convert the data into various coefficients and then analyze each coefficient at a resolution corresponding to its scale. Projection of a signal onto wavelet basic functions is called the wavelet transform. In other words, wavelets are mathematical functions generated from a mother wavelet $\psi(x)$ by the scaling parameter (dilation) and shifting parameter (translation) i.e., the signal is expanded on a set of the dilation (scaling parameter) of functions

$$\psi \left(\frac{x - a}{b} \right)$$ \hspace{1cm} (1)

The scaling parameter has a significant role for the variation of time and frequency resolution when processing the signal.

For a given mother wavelet (Daubechies, 1992) $\psi(x)$ by the scaling parameter and shifting parameter $a \psi(x)$, a set of functions expressed by $\psi_{a,b}(x)$ is obtained from the following equation.

$$\psi_{a,b}(x) = \frac{1}{\sqrt{|a|}} \psi \left(\frac{x - b}{a} \right), a \neq 0, a, b \in \mathbb{R}$$ \hspace{1cm} (2)

where a is the scaling parameter, b is the shifting parameter and R is domain of real number. The mathematical expression of a CWT on a function $f(x)$ is given below

$$\text{CWT} [f(x); a, b] = \int_{-\infty}^{\infty} f(x)\psi^*_{a,b}(x)dx = \langle f(x), \psi_{a,b} \rangle$$ \hspace{1cm} (3)

here the superscript $*$ is related to the complex conjugate and $\langle f(x), \psi_{a,b} \rangle$ represents the inner product of function $f(x)$ onto the wavelet function $\psi_{a,b}(x)$.

The original signal can be completely reconstructed by a sampled version of the CWT. Usually, the exemplar is follows as

$$a = 2^{-m} \text{ and } b = n2^{-m}$$ \hspace{1cm} (4)

Here a and b denote scale and dilatation parameters, respectively, and R is the real number. The expression of DWT can be given as

$$DWT = \int_{-\infty}^{+\infty} f(x) \psi^*_{m,n}(x) dt$$ \hspace{1cm} (5)

Where $\psi^*_{m,n}(X) = 2^{-m} \psi (2^{m}x - n)$ is the dilated and translated version of the mother wavelet. In the application of the DWT, only outputs from the low-pass filter are processed by WT. However, in the wavelet packet decomposition of signals, both outputs from the low-pass and high-pass filters are manipulated by WT (Strang and Nguyen, 1996). Multiresolution decomposition with wavelets is an interesting topic for signal and image analysis (Mallat, 1988; Daubechies, 1992).

Some families of wavelets with names and their coding list are illustrated in Table 1.

For signal processing, there is also another WT approach i.e., fractional wavelet transform (FWT) specifically designed for rectification of the limitations of the WT and fractional FT (Blu and Unser, 2000, 2002; Unser and Blu, 2000). FWT is based on the fractional B-splines. As it is already known, the splines play an important role on the early development of the theory of WT.

FIGURE 1 | Representation of Fourier transform of a signal from time domain to frequency domain.
TABLE 1 | Families of wavelets with names and their coding list.

Wavelet families	Coding
Haar	haar
Daubechies	db
Symlets	sym
Coiflets	coif
BiorSplines	bior
ReverseBior	rbio
Meyer	meyr
Dmeyer	dmey
Gaussian	gaus
Mexican hat function	mextx
Morlet	morl
Complex Gaussian	cgiau
Shannon	shan
Frequency B-Spline	fbsp
Complex Morlet	cmor

A B-spline is a generalization of the Bezier curve. Let a vector known as the knot be defined by \(T = \{ t_0, t_1, \ldots, t_m \} \) where \(T \) is a non-decreasing sequence with \(t_i \in [0, 1] \), and define control point \(P_0, P_n \). The knots \(t_0, t_1, \ldots, t_m \) is called internal knots. If \(p = m-n \) denotes the degree, the basis function is defined as follows:

\[
N_{i,0}(t) = f(x) = \begin{cases}
1, & \text{if } t_i \leq t < t_{i+1} \text{ and } t_{i+1} \\
0 & \text{otherwise}
\end{cases} \tag{6}
\]

and

\[
N_{i,p}(t) = \frac{t - t_i}{t_{i+p} - t_i} N_{i, p-1}(t) + \frac{t_{i+p+1} - t}{t_{i+p+1} - t_{i+1}} N_{i+1, p-1}(t) \tag{7}
\]

Therefore, the curve defined by

\[
C(t) = \sum_{i=0}^{n} P_i N_{i,p}(t) \tag{8}
\]

is a B-spline.

Fractional B-spline: The fractional B-spline is defined as

\[
\beta^\alpha_+(x) = \sum_{k=0}^{\infty} (-1)^k \binom{\alpha + 1}{k} (x - k)^\alpha \quad \frac{\Gamma(\alpha + 1)}{\Gamma(k + 1)(\alpha - k + 1)} \tag{9}
\]

where Euler's Gamma function is obtained by

\[
\Gamma(\alpha + 1) = \int_0^{+\alpha} x^\alpha e^{-x} \, dx \tag{10}
\]

and

\[
(x - k)^\alpha = \max(x - k, 0)^\alpha \tag{11}
\]

The forward fractional finite difference operator of order \(\alpha \) is defined as

\[
\Delta_+^\alpha f(x) = \sum_{k=0}^{\infty} (-1)^k \binom{\alpha}{k} f(x - k) \tag{12}
\]

where

\[
\binom{\alpha}{k} = \frac{\Gamma(\alpha + 1)}{\Gamma(k + 1)(\alpha - k + 1)} \tag{13}
\]

B-splines fulfill the convolution property, namely

\[
\beta^\alpha_+ \ast \beta^\alpha_+ = \beta^\alpha_+ \tag{14}
\]

The centered fractional B-splines of degree \(\alpha \) is defined as

\[
\beta^\alpha_c(x) = \frac{1}{\Gamma(\alpha + 1)} \sum_{k \in \mathbb{Z}} (-1)^k \binom{\alpha + 1}{k} |x - k|^\alpha \tag{15}
\]

where

\[
|x|^\alpha = \begin{cases}
\frac{|x|^{\alpha}}{-\sin(\pi \alpha)}, & \alpha \text{ not even} \\
\frac{x \log x \pi}{(-1)^{1+n} \pi}, & \alpha \text{ even}
\end{cases} \tag{16}
\]

The fractional B-spline wavelet is defined as

\[
\psi^\alpha_\frac{x}{2} = \sum_{k \in \mathbb{Z}} (-1)^k \frac{\alpha}{2^\alpha} \sum_{m \in \mathbb{Z}} \left(\frac{\alpha + 1}{1} \right) \beta^\alpha_+(1 + k - 1) \beta^\alpha_+(x - k) \tag{17}
\]

We mention that the fractional splines wavelets of degree obey the following

\[
\int_{-\infty}^{+\infty} X^n \psi^\alpha_\frac{x}{2} \, dx = 0, \ldots, [\alpha] \tag{18}
\]

and the Fourier transform fulfills the following relations

\[
\hat{\psi}^\alpha_\frac{\alpha}{2} (\alpha \sigma) = C(\alpha \sigma)^{\alpha+1}, \text{ as } \sigma \to 0 \tag{19}
\]

and

\[
\hat{\psi}^\alpha_\frac{\alpha}{2} (\alpha \sigma) = C(\alpha \sigma)^{\alpha+1}, \text{ as } \sigma \to 0 \tag{20}
\]

where \(\hat{\psi}^\alpha_\frac{\alpha}{2} (\alpha \sigma) \) is symmetric. The fractional spline wavelet behaves like a fractional derivative operator.

STRATEGIES IN CWT APPLICATIONS TO UV SPECTROSCOPY ANALYSIS OF MULTICOMPONENT MIXTURES

For the past 15 years, the potential application of CWT in chemistry, especially in combination with other mathematical methods, leads us to a conclusion that WT has interestingly became a useful algorithm for UV quantitative analysis of pharmaceuticals. Four different models (i.e., continuous wavelet transform-zero crossing (CWT-ZC), ratio spectra-continuous wavelet transform (RS-CWT), ratio spectra-continuous wavelet transform-zero crossing (RS-CWT-ZC), and double divisor ratio spectra-continuous wavelet transform (DDRS-CWT)) were described in the implementation of CWT to UV spectroscopic data for the resolution of overlapping spectra to quantify drugs.
in different types of samples. The modeling of CWT—UV spectroscopic approaches are detailed below. Fundamentally, these approached can be successfully applied to the UV spectroscopic analysis of binary and ternary mixtures, provided that the law of additivity of absorbance is obeyed.

CONTINUOUS WAVELET TRANSFORM-ZERO CROSSING

The application of CWT-ZC approach to UV spectroscopic signals was first proposed by Dinç and Baleanu (2003a).

If a mixture of two analytes (M and N) is considered (see Figure 2A) and the absorbance of this binary mixture is measured at λ\textsubscript{i}, we can have the following equation (Charlotte Grinter and Threlfall, 1992):

\[A_{\text{mix}, \lambda_i} = \alpha_{M, \lambda_i}C_M + \beta_{N, \lambda_i}C_N \]

(21)

where \(A_{\lambda_i} \) is the absorbance of the binary mixture at wavelength \(\lambda_i \), and the coefficients are the absorptivities of M and N, respectively. \(C_M \) and \(C_N \) represent the concentrations of M and N, respectively.

If CWT is applied to Equation (21), the following function can be obtained as

\[\psi_{(a.b), \text{MIX}, \lambda_i} = \psi_{(a.b), M, \lambda_i}C_M + \psi_{(a.b), N, \lambda_i}C_N \]

(22)

If \(\psi_{(a.b), N, \lambda_i}C_N = 0 \), then we obtain the following equation

\[\psi_{(a.b), \text{MIX}, \lambda_i} = \psi_{(a.b), M, \lambda_i}C_M \]

(23)

Equation (23) shows that CWT (\(\psi_{(a.b), M, \lambda_i}C_M \)) amplitudes of M in the binary mixture are dependent only on \(C_M \) regardless of \(C_N \) (see Figure 2B).

RATIO SPECTRA-CONTINUOUS WAVELET TRANSFORM

Apart from CWT-ZC approach, overlapping spectral bands in a binary mixture could be solved by the application of a combined hybrid approach i.e., RS-CWT (Dinç and Baleanu, 2004a,c).

The absorption spectra of M and N compounds, and their mixture are indicated in Figure 3A. By being divided by the standard spectrum (\(A_{N, \lambda_i} = \beta_{N, \lambda_i}C_N^0 \)) of one of the compounds in the binary mixture, Equation (21) becomes

\[\frac{A_{m, \lambda_i}}{\beta_{\lambda_i}C_N^0} = \frac{\alpha_{M, \lambda_i}C_M}{\beta_{\lambda_i}C_N^0} + \frac{\beta_{N, \lambda_i}C_N}{\beta_{\lambda_i}C_N^0} \]

(24)

Figure 3B shows the ratio spectra of analytes and their binary mixture. If CWT is applied to Equation (24), the following equation can be obtained

\[\text{CWT} \left[\frac{A_{m, \lambda_i}}{\beta_{\lambda_i}C_N^0} \right] = \text{CWT} \left[\frac{\alpha_{M, \lambda_i}}{\beta_{\lambda_i}} \frac{C_M}{C_N^0} \right] + \text{CWT} \left[\frac{\beta_{N, \lambda_i}}{\beta_{\lambda_i}} \frac{C_N}{C_N^0} \right] \]

(25)

If \(\frac{\beta_{N, \lambda_i}}{\beta_{\lambda_i}} \) \(\frac{C_N}{C_N^0} = 0 \), then we obtain

\[\text{CWT} \left[\frac{A_{m, \lambda_i}}{\beta_{\lambda_i}C_N^0} \right] = \text{CWT} \left[\frac{\alpha_{M, \lambda_i}}{\beta_{\lambda_i}} \frac{C_M}{C_N^0} \right] \]

(26)

The ratio-CWT amplitudes of the binary mixture given in Equation (26) depend only on \(C_M \) and \(C_N^0 \) regardless of \(C_N \) (see Figure 3C).

RATIO SPECTRA-CONTINUOUS WAVELET TRANSFORM-ZERO CROSSING

In RS-CWT-ZC approach (Dinç et al., 2005a), if a mixture of three analytes (X, Y, and Z) is considered and the absorbance of this ternary mixture is measured at \(\lambda_i \), the following mathematical expression (Charlotte Grinter and Threlfall, 1992) would be given

\[A_{\text{mix}, \lambda_i} = \alpha_{X, \lambda_i}C_X + \beta_{Y, \lambda_i}C_Y + \gamma_{Z, \lambda_i}C_Z \]

(27)
Where $A_{\text{mix}, \lambda, i}$ is the absorbance of the ternary mixture at wavelength λ_{i}, and coefficients $\alpha_{X, \lambda, i}$, $\beta_{Y, \lambda, i}$, and $\gamma_{Z, \lambda, i}$ denote the absorptivities of X, Y, and Z, respectively. C_{X}, C_{Y}, and C_{Z} represent the concentrations of X, Y, and Z, respectively.

If Equation (27) is divided by the spectrum of a standard solution (C_{X}^{0}) of one of the compounds in the ternary mixture, we have the following equation:

$$A_{\text{mix}, \lambda, i}^{0} = \frac{\alpha_{X, \lambda, i} C_{X}^{0}}{\alpha_{X, \lambda, i} C_{X}^{0} + \beta_{Y, \lambda, i} C_{Y}^{0} + \gamma_{Z, \lambda, i} C_{Z}^{0}}$$ \hspace{1cm} (28)

If CWT is applied to Equation (28), the following equation can be obtained

$$\text{CWT} \left[\frac{A_{\text{mix}, \lambda, i}}{\alpha_{X, \lambda, i} C_{X}^{0}} \right] = \text{CWT} \left[\frac{\beta_{Y, \lambda, i} C_{Y}^{0}}{\alpha_{X, \lambda, i} C_{X}^{0}} \right] + \text{CWT} \left[\frac{\gamma_{Z, \lambda, i} C_{Z}^{0}}{\alpha_{X, \lambda, i} C_{X}^{0}} \right] \hspace{1cm} (29)$$

Equation (29) indicates that the CWT amplitudes of the ratio spectra of the ternary mixture are dependent only on C_{Z} and C_{X}^{0} regardless of the concentrations of other compounds.

DOUBLE DIVISOR RATIO SPECTRA–CONTINUOUS WAVELET TRANSFORM

In addition to RS-CWT-ZC approach, the spectral resolution of ternary mixtures could be effectively done by DDRS-CWT approach (Dinç and Baleanu, 2008a) as follows.

When two compounds in the ternary mixture is used as a double divisor, we have

$$A_{\text{mix}, \lambda, i}^{0} = \alpha_{X, \lambda, i} C_{X}^{0} + \beta_{Y, \lambda, i} C_{Y}^{0} \hspace{1cm} (30)$$

By dividing Equation (27) and (30), we obtain as follows

$$\frac{A_{\text{mix}, \lambda, i}}{\alpha_{X, \lambda, i} C_{X}^{0} + \beta_{Y, \lambda, i} C_{Y}^{0}} = \frac{\alpha_{X, \lambda, i} C_{X}}{\alpha_{X, \lambda, i} C_{X}^{0} + \beta_{Y, \lambda, i} C_{Y}^{0} + \gamma_{Z, \lambda, i} C_{Z}} \hspace{1cm} (31)$$
Pharmaceuticals	Method	Wavelet Families	Type of data	References
Thiamine HCl, pyridoxine HCl	CWT-zero crossing	Daubechies, Biorthogonal	UV absorption spectra	Dinç and Baleanu, 2003a
Hydrochlorothiazide, spironolactone	CWT-zero crossing	Daubechies, Biorthogonal	UV absorption spectra	Dinç et al., 2003
Thiamine HCl, pyridoxine HCl	CWT-zero crossing	Mexican hat function, Meyer	UV absorption spectra	Dinç and Baleanu, 2003b
Thiamine HCl, pyridoxine HCl	CWT-zero crossing	Gaussian1, Gaussian2	UV absorption spectra	Dinç and Baleanu, 2004a
Caffeine, propyphenazone	DWT-CWT-zero crossing	Mexican and Haar	UV absorption spectra	Dinç et al., 2004a
Benazepril, hydrochlorothiazide	DWT-CWT-zero crossing	Coiflets2 and Gaussian2	UV absorption spectra	Dinç et al., 2004b
Hydrochlorothiazide, Spironolactone	CWT-zero crossing	Haar, Mexican hat function	UV absorption spectra	Dinç and Baleanu, 2004c
Benazepril, hydrochlorothiazide	CWT-zero crossing	Mexican, Haar, Daubechies3	UV absorption spectra	Dinç et al., 2005b
Ascorbic acid, acetylsalicylic acid	CWT-zero crossing	Reverse Biorthogonal	UV absorption spectra	Dinç et al., 2005c
Diminazene acetate and phenazine	CWT-zero crossing	Mexican hat wavelet function	UV absorption spectra	Dinç and Baleanu, 2007a
Quinapril, hydrochlorothiazide	CWT-zero crossing	Mexican hat function	UV absorption spectra	Dinç and Baleanu, 2007b
Oxfendazole and oxyclozanide	CWT-zero crossing	Symlets	UV absorption spectra	Dinç et al., 2007d
Levodopa, benserazide	CWT-zero crossing	Coiflets	UV absorption spectra	Dinç et al., 2007c
Chlortetracycline, benzoic acid	CWT-zero crossing	Mexican hat function	UV absorption spectra	Dinç et al., 2007c
Pyridoxine hydrochloride, isoniazide	CWT-zero crossing	Morlet, Biorthogonal	UV absorption spectra	Dinç et al., 2009a
Risedronate sodium	CWT-zero crossing	Mexican hat function, Symlets	UV absorption spectra	Dinç et al., 2009a
Ampicillin sodium, sulbactam sodium	CWT-zero crossing	Mexican hat function, Daubechies, Symlets, Coiflets, Biorthogonal, Gaussian	UV absorption spectra	Dinç et al., 2009a
Paracetamol, chloroxoxide	CWT-zero crossing	Biorthogonal	UV absorption spectra	Dinç et al., 2009b
Levasirole, triclabendazole	CWT-zero crossing	Gaussian, Biorthogonal	UV absorption spectra	Dinç et al., 2009b
Telmisartan, hydrochlorothiazide	CWT-zero crossing	Haar and Biorthogonal1.5	UV absorption spectra	Dinç and Baleanu, 2010a
Perindopril, indapamide	CWT-zero crossing	Daubechies, Meyer	UV absorption spectra	Sohrabi et al., 2011
Valsartan, amiodipine	DWT-CWT-zero crossing	Daubechies, Reverse Biorthogonal, Gaussian	UV absorption spectra	Dinç et al., 2011b
Metformin hydrochloride, glibenclamide	CWT-zero crossing	Biorthogonal, Coiflets, Daubechies, Hair	UV absorption spectra	Dinç et al., 2013a
Trimethoprim, sulphonamethoxazole	CWT-zero crossing	Mexican hat function	UV absorption spectra	Shariat-Rad et al., 2012
Amiodipine, atorvastatin	CWT-zero crossing	Symlets	UV absorption spectra	Dinç et al., 2015b
Estradiol valerate, cyproterone acetate	CWT-zero crossing	Mexican hat function, Daubechies, Biorthogonal	UV absorption spectra	Devrim et al., 2014
Lamivudine, zidovudine	CWT-zero crossing	Mexican hat wavelet, Symlets, Daubechies	UV absorption spectra	Dinç et al., 2013b
Diphenhydramine hydrochloride	CWT-zero crossing	Biorthogonal	UV absorption spectra	Darwish et al., 2014
Ambroxol hydrochloride, doxycycline	CWT-zero crossing	Haar wavelet function	UV absorption spectra	Dinç et al., 2015
Oxfendazole, oxyclozanide	MOFrFT-CWT-zero crossing	Mexican hat	UV absorption spectra	Dinç et al., 2017b
Atenolol, chlorothalidone	CWT-zero crossing	Coiflet, Mexican Hat function	UV absorption spectra	Dinç et al., 2017b
Valsartan, hydrochlorothiazide	CWT-zero crossing	Mexican hat function, Daubechies	UV absorption spectra	Dinç et al., 2017b
Equation (31) can be simplified to
\[
\frac{A_{mix, \lambda_i}}{\alpha_{X, \lambda_i}C_{X}^o + \beta_{Y, \lambda_i}C_{Y}^o} = k + \frac{\gamma_{Z, \lambda_i}C_{Z}}{\alpha_{X, \lambda_i}C_{X}^o + \beta_{Y, \lambda_i}C_{Y}^o} \tag{32}
\]

Where \(k = \frac{\alpha_{X, \lambda_i}C_{X}^o + \beta_{Y, \lambda_i}C_{Y}^o}{\alpha_{X, \lambda_i}C_{X}^o + \beta_{Y, \lambda_i}C_{Y}^o} \) represents a constant for a given concentration range with respect to \(\lambda_i \) in a certain region or point of wavelength.

A typical case is when \(C_{X}^o \) and \(C_{Y}^o \) are the same or very close to each other, namely \(C_{X}^o = C_{Y}^o \) or \(\equiv C_{X}^o \equiv C_{Y}^o \). Therefore, we obtain
\[
\alpha_{X, \lambda_i}C_{X}^o + \beta_{Y, \lambda_i}C_{Y}^o = C_{X}^o (\alpha_{X, \lambda_i} + \beta_{Y, \lambda_i}) \tag{33}
\]

and Equation (32) can be written as
\[
\frac{A_{mix, \lambda_i}}{\alpha_{X, \lambda_i}C_{X}^o + \beta_{Y, \lambda_i}C_{Y}^o} = k + \frac{\gamma_{Z, \lambda_i}C_{Z}}{C_{X}^o (\alpha_{X, \lambda_i} + \beta_{Y, \lambda_i})} \tag{34}
\]

After applying CWT to Equation (31), we have
\[
\text{CWT}_{(a,b)} \left(\frac{A_{mix, \lambda_i}}{\alpha_{X, \lambda_i}C_{X}^o + \beta_{Y, \lambda_i}C_{Y}^o} \right) \frac{1}{C_{X}^o} = \text{CWT}_{(a,b)} \left(\frac{\gamma_{Z, \lambda_i}C_{Z}}{\alpha_{X, \lambda_i} + \beta_{Y, \lambda_i}} \right) \frac{1}{C_{X}^o} \tag{35}
\]
or
\[
\text{CWT}_{(a,b)} \left(\frac{A_{mix, \lambda_i}}{\alpha_{X, \lambda_i} + \beta_{Y, \lambda_i}} \right) = \text{CWT}_{(a,b)} \left(\frac{\gamma_{Z, \lambda_i}C_{Z}}{\alpha_{X, \lambda_i} + \beta_{Y, \lambda_i}} \right) \tag{36}
\]

In Equation (36), \(C_{Z} \) is to proportional to the coefficients, \(\text{CWT}_{(a,b)} \left(\frac{A_{mix, \lambda_i}}{\alpha_{X, \lambda_i} + \beta_{Y, \lambda_i}} \right) \), at \(\lambda_i \). If this procedure is separately applied for pure \(Z \) and its ternary mixture, the \(\text{CWT}_{(a,b)} \) coefficients are coincided at some characteristic point or region of wavelength, independent upon both \(C_{X} \) and \(C_{Y} \).

WAVELET TRANSFORM-BASED UV SPECTROSCOPIC ANALYSIS OF PHARMACEUTICALS

Typical applications of CWT and FWT algorithms for UV spectroscopic analysis of pharmaceuticals are displayed in Tables 2–5. It is worth mentioning that WT could be solely applied to raw spectra and ratio spectra (as above-specified) as well as utilized as a hybrid approach (FWT-derivative, FWT-CWT-zero crossing, WT combined with multivariate calibration) for the simultaneous determination of analytes in pharmaceutical binary and ternary mixtures. It was shown that wavelet analysis of UV spectroscopic data was performed by using Wavelet Toolbox and m-file in MATLAB software. The numerous works provided by Dinç and co-workers have clearly highlighted the success of WT-based UV spectroscopic analysis for multicomponent synthetic mixtures, veterinary and pharmaceutical dosage forms as well as different types of test (e.g., assay, in vitro dissolution, stability indicating). Most studies proved it to be suitable for the routine analysis of dosage forms with good precision and accuracy, comparable to HPLC.

CONCLUSIONS

In the point of view of UV spectroscopic analysis of multicomponent mixtures, CWT-based UV spectroscopic
methods have outperformed both conventional and derivative UV spectroscopy in resolving spectrally binary and ternary mixtures. Nevertheless, wavelet analysis may not also have a sufficient power to resolve overlapping spectra of analytes in samples due to similarity of molecular structures and signal frequencies in some cases. They may not give desirable results for a complex mixture containing more than three compounds and/or a significant difference in ratios of active ingredients. In such a case, the use of WT coupled with chemometric PLS and PCR calibrations is advisable. Undoubtedly, however, wavelets can still be used as a mathematical prism for signal analysis because they can offer many possibilities such as baseline correction, noise removal and resolution of overlapping peaks, when the frequencies of analyzed components are significantly different from each other.

AUTHOR CONTRIBUTIONS

Contributions of ED are planning and writing of the review paper. Contributions of ZY are literature review, collection, editing, and format arrangement.

REFERENCES

Aballe, A., Bethencourt, M., Botana, F. J., and Marcos, M. (1999). Using wavelet transform in the analysis of electrochemical noise data. *Electrochem. Acta* 44, 4805–4816. doi: 10.1016/S0013-4686(99)00222-4

Alsberg, B. K., Woodward, A. M., and Kell, D. B. (1997). An introduction to wavelet transform for chemometricians: a time-frequency approach. *Chemom. Intell. Lab. Syst.* 37, 215–239. doi: 10.1016/S0169-7439(97)00029-4

Barache, D., Antoine, J. P., and Dereppe, J. M. (1997). The continuous wavelet transform, an analysis tool for NMR spectroscopy. *J. Magn. Reson.* 128, 1–11. doi: 10.1006/jmre.1997.1214

Barclay, V. J., Bonner, R. F., and Hamilton, I. P. (1997). Application of wavelet transforms to experimental spectra: smoothing, denoising, and data set compression. *Anal. Chem.* 69, 78–90. doi: 10.1021/ac960638m

Berzas Nevado, J. J., Guiberteau Cabanillas, C., and Salinas, F. (1992). Spectrophotometric resolution of ternary mixtures of salicylaldehyde, 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde by the derivative ratio spectrum-zero crossing method. *Talanta* 39, 547–553. doi: 10.1016/0039-9140(92)80179-H

Blu, T., and Unser, M. (2000). “The fractional spline wavelet transform: definition and implementation,” in *Proceedings of the Twenty-Fifth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’00)* (Istanbul), 512–515.

Blu, T., and Unser, M. (2002). Wavelets, fractals, and radial basis functions. *IEEE Trans. Signal Process.* 50, 543–553. doi: 10.1109/78.984733

Berretton, R. G. (2003). *Data Analysis for the Laboratory and Chemical Plant*. New York, NY: Wiley & Sons, Inc., 167.

Berretton, R. G. (2008). *Applied Chemometrics for Scientists*. John-Wiley & sons Ltd.

Brown, S., Blank, T. B., Sum, S. T., and Weyer, L. G. (1994). Chemometrics. *Anal. Chem.* 66, 315R–359R. doi: 10.1021/ac00084a014

Brown, S., Sum, S. T., and Despagné, F. (1996). Chemometrics. *Anal. Chem.* 68, 21R–62R. doi: 10.1021/ac960005s

Byrnes, J. S., Byrnes, I. L., Hargreaves, K. A., and Berry, K. (1994). *Wavelet and Their Application*. Netherlands: Kluwer Academic Publishers.

Cai, W. S., Wang, L. Y., Pan, Z. X., Zuo, J., XU, C. Y., and Shao, X. G. (2001). Application of the wavelet transform method in quantitative analysis of raman spectra. *J. Raman Spectrosc.* 32, 207–209. doi: 10.1002/jrs.688

Çelebier, M., Altinöz, S., and Dinç, E. (2010). “Fractional wavelet transform and chemometric calibrations for the simultaneous determination of amloidipine and valsartan in their complex mixture,” in *New Trends in Nanotechnology and Fractional Calculus*, eds D. Baleanu, Z. B. Güvenç, and J. A. Tenreiro Machado (Dordrecht; Heidelberg; London; New York, NY: Springer), 333–340.

Chalus, P., Walter, S., and Ulmschneider, M. (2007). Combined wavelet transform–artificial neural network use in tablet active content determination by near-infrared spectroscopy. *Anal. Chim. Acta* 591, 219–224. doi: 10.1016/j.aca.2007.03.076

Charlotte Grinter, H., and Threlfall, T. L. (1992). *UV-VIS Spectroscopy and its Applications*. Berlin; Heidelberg; New York, NY: Springer-Verlag.
Dinç and Yazan

Wavelets for the UV Spectroscopic Analysis of Pharmaceuticals

Chau, F., Yi-Zeng, L., Junbin, G., Xue-Guang, S., and James, D. W. (2004). Chemometrics, from Basics to Wavelet Transform 1st Edn. Hoboken, NJ: Wiley-Interscience.

Chen, J., Zhong, H. B., Pan, Z. X., and Zhang, M. S. (1996). Application of the wavelet transform in differential pulse voltammetric data processing. Chin. J. Anal. Chem., 24, 1002–1006.

Chui, C. K. (1992). An Introduction to Wavelets. New York, NY: Academic Press.

Chui, C. K., Montefusco, L., and Puccio, L. (1994). Wavelets: Theory, Algorithms and Applications. San Diego, CA: Academic Press.

Chun-Lin, L. (2010). A Tutorial of the Wavelet Transform. Available online at: http://disp.ee.ntu.edu.tw/tutorial/WaveletTutorial.pdf

Cooper, J. W. (1978). "Chapter: Data handling in fourier transform spectroscopy," in Transform Techniques in Chemistry, ed P. R. Griffiths (New York, NY: Plenum Press), 4, 69–108.

Danzer, K. (2007). Analytical Chemistry. Theoretical and Mathematical Fundamentals. Berlin; New York, NY: Springer.

Darwish, H. W., Metwally, F. H., and El.Bayoumi, A. (2014). Application of the wavelet transform to the simultaneous quantitative analysis of a ternary mixture containing thiamine, pyridoxine, and lidocaine in ampoules. J. AOAC Int, 95, 903–912. doi: 10.1590/S0103-50532008000300010

Dinç, E., and Baleanu, D. (2008b). Ratio spectra-continuous wavelet transform and ratio spectra-derivative spectrophotometry for the quantitative analysis of effervescent tablets of vitamin C and aspirin. Rev. Chim. (Bucuresti) 59, 499–504.

Dinç, E., and Baleanu, D. (2009a). Continuous wavelet transform applied to the quantitative analysis of a binary mixture. Rev. Chim. (Bucuresti) 60, 216–221.

Dinç, E., and Baleanu, D. (2009b). Spectral continuous wavelet transform for the simultaneous spectrophotometric analysis of a combined pharmaceutical formulation. Rev. Chim. 60, 741–744.

Dinç, E., and Baleanu, D. (2010a). Continuous wavelet transform applied to the simultaneous spectrophotometric determination of valsartan and amlopidine in tablets. Rev. Chim. 61, 290–294.

Dinç, E., and Baleanu, D. (2010b). Fractional wavelet transform for the quantitative spectral resolution of the composite signals of the active compounds in a two-component mixture. Comput. Math. Appl. 59, 1701–1708. doi: 10.1016/j.camwa.2009.08.012

Dinç, E., and Baleanu, D. (2012). Fractional-continuous wavelet transforms and ultra-performance liquid chromatography for the multicomponent analysis of a ternary mixture containing thiamine, pyridoxine, and lidocaine in ampoules. J. AOAC Int, 95, 903–912. doi: 10.15740/joacint.11-199

Dinç, E., Baleanu, D., and Abaul-Enein, H. Y. (2004a). Wavelet analysis for the multicomponent determination in a binary mixture of caffeine and propyphenazone in tablets. IL Farmaco 59, 335–342. doi: 10.1016/j.farmac.2004.01.002

Dinç, E., Baleanu, D., Ioele, G., De Luca, M., and Ragni, G. (2008). Multivariate analysis of paracetamol, propyphenazone, caffeine and thiamine in quaternary mixtures by PCR, PLS and ANN calibrations applied on wavelet transform data. J. Pharm. Biomed. Anal. 48, 1471–1475. doi: 10.1016/j.jpba.2008.09.035

Dinç, E., Baleanu, D., and Kanbur, M. (2005c). A comparative application of wavelet approaches to the absorption and ratio spectra for the simultaneous determination of dimazene aceturate and phenazone in veterinary granules for injection. Farmazie 60, 892–896.

Dinç, E., Baleanu, D., and Taş, A. (2006b). Wavelet transforms and artificial neural network for the quantitative resolution of ternary mixtures. Rev. Chim. 57, 626–631.

Dinç, E., Baleanu, D., and Taş, K. (2007a). "Continuous wavelet analysis for the ratio signals of the absorption spectra of binary mixtures," in Mathematical Methods in Engineering, ed Taş, K., J. A. Tenreiro Machado, and D. Baleanu (Dordrecht: Springer), 285–293.

Dinç, E., Baleanu, D., and Taş, K. (2007b). Fractional wavelet analysis for the composite signals of two-component mixture by multivariate spectral calibration. J. Vib. Control 13, 1283–1290. doi: 10.1177/10775463070777464

Dinç, E., Baleanu, D., Ustündag, O. (2003). An approach to quantitative two-component analysis of a mixture containing hydrochlorothiazide and spironolactone in tablets by one-dimensional continuous daubechies and bioorthogonal wavelet analysis of UV-spectra. Spectros. Lett. 36, 341–355. doi: 10.1081/SL-120024583

Dinç, E., Baleanu, D., Ustündag, O., and Abaul-Enein, H. Y. (2004c). Continuous wavelet transform applied to the simultaneous quantitative analysis of two-component mixtures. Pharmazie 59, 618–623.

Dinç, E., Bük er, E., and Baleanu, D. (2011a). Fractional and continuous wavelet transforms for the simultaneous spectral analysis of a binary mixture system. Commun. Nonlinear Sci. Numer. Simul. 16, 4602–4609. doi: 10.1016/j.cnsns.2011.02.018

Dinç, E., Demirkaya, F., Baleanu, D., Kadıoğlu,Y., and kadıoğlu, E. (2010). New approach for simultaneous spectral analysis of a complex mixture using the fractional wavelet transform. Commun. Nonlinear Sci. Numer. Simul. 15, 812–818. doi: 10.1016/j.cnsns.2009.05.021

Dinç, E., Duarte, F. B., Tenreiro Machado, J. A., and Baleanu, D. (2015). Application of continuous wavelet transform to the analysis of the modulus...
Dubrovkin, J. (2018). Mathematical Processing of Spectral Data in Analytical Chemistry: A Guide to Error Analysis. New York, NY: Wiley.

Ernst, R. R. (1989). Nuclear magnetic resonance Fourier transform spectroscopy. Bull. Magn. Resonance 16, 5–29.

Fang, H., and Chen, H. Y. (1997). Wavelet analyses of electroanalytical chemistry responses and an adaptive wavelet filter. Anal. Chim. Acta 346, 319–325. doi: 10.1016/S0003-2670(97)00614-8

Gohel, R. V., Parmar, S. J., and Patel, B. A. (2014). Development and validation of double divisor-ratio spectra derivative spectrophotometric method for simultaneous estimation of olmesartan medoxomil, amlopidine besylate and hydrochlorothiazide in tablet dosage form. Int. J. Pharm. Techn. Res. 6, 1518–1525.

Griffiths, P. R. (1977). Recent applications of Fourier transform infrared spectrometry in chemical and environmental analysis. Appl. Spectros. 31, 497–505. doi: 10.1021/ac5003756

Dinç and Yazan Wavelets for the UV Spectroscopic Analysis of Pharmaceuticals
Salinas, F., Berzas Nevada, J. J., and Espinoso Mansilla, A. E. (1990). A new spectrophotometric method for quantitative multicomponent analysis resolution of mixtures of salicylic and salicylic acid. Talanta 37, 347–351. doi: 10.1016/0039-1409(90)80065-N

Shao, X., Cai, W., and Sun, P. (1998a). Determination of the component number in overlapping multicomponent chromatogram using wavelet transform. Chemom. Intell. Lab. Syst. 36, 147–155.

Shao, X., Cai, W., Sun, P., Zhang, M., and Zhao, G. (1997). Quantitative Determination of the components in overlapping chromatographic peaks using wavelet transform. Anal. Chem. 69, 1722–1725. doi: 10.1021/ac9008679

Shao, X., Hou, S., Fang, N., He, Y., and Zhao, G. (1998b). Quantitative determination of plant hormones by high performance liquid chromatography with wavelet transform. Chin. J. Anal. Chem. 26, 107–110.

Shao, X., Hou, S., and Zhao, G. (1998c). Extraction of the component information from overlapping chromatograms by wavelet transform. Chin. J. Anal. Chem. 26, 1428–1431.

Shao, X., and Zhuang, Y. (2004). Determination of chlorogenic acid in plant samples by using near-infrared spectrum with wavelet transform preprocessing. Anal. Sci. 20, 451–454. doi: 10.2116/analsci.20.451

Shariati-Rad, M., Irandoust, M., Amini, T., and Ahmadi, F. (2012). Partial least squares and continuous wavelet transformation in simultaneous spectrophotometric determination of amiodipine and atorvastatin. Pharm. Anal. Acta 3:178. doi: 10.4172/2153-2435.1000178

Shokry, E., El-Gendy, A. E., Kawy, M. A., and Hegazy, M. (2014). Application of double divisor ratio spectra derivative spectrophotometric [DDR-S], chemometric and chromatographic methods for stability indicating determination of moexipril hydrochloride and hydrochlorothiazide. Curr. Sci. Int. 3, 352–360.

Sohrabi, M. R., Kamali, N., and Khakpour, M. (2011). Simultaneous spectrophotometric determination of metamform hydrochloride and glibenclamide in binary mixtures using combined discrete and continuous wavelet transforms. Anal. Sci. 27, 1037–1041.

Strang, G., and Nguyen, T. (eds.). (1996). Wavelets and Filter Banks. MA: Wellesley-Cambridge Press. 72.

Uğurlu, G., Ozaltin, N., and Dinç, E. (2008). Spectrophotometric determination of risedronate sodium in pharmaceutical preparations by derivative and continuous wavelet transforms. Rev. Anal. Chem. 27, 215–233. doi: 10.1515/REVAC.2008.27.4.215

Unser, M., and Blu, T. (2000). Fractional splines and wavelets. SIAM Rev. 42, 43–67. doi: 10.1137/S0036144598349435

Üstündag, O., Dinç, E., and Baleana, D. (2008). Applications of Mexican hat wavelet function to binary mixture analysis. Rev. Chim. (Bucuresti) 59, 1387–1391.

Vetterli, M., and Kovačević, J. (1995). Wavelets and Subband Coding. Englewood Cliffs, NJ: Prentice Hall PTR.

Walczak, B., and Massart, D. (1997a). Wavelet packet transform applied to a set of signals: a new approach to the best-basis selection. Chemom. Intell. Lab. Syst. 38, 39–50. doi: 10.1016/S0169-7439(97)00050-6

Walczak, B., and Massart, D. L. (1997b). Noise suppression and signal compression using the wavelet packet transform. Chemom. Intell. Lab. Syst. 36, 81–94. doi: 10.1016/S0169-7439(96)00077-9

Walczak, B., and Massart, D. L. (1997c). Wavelets-something for analytical chemistry. Trends Analyst. Chem. 16, 451–463. doi: 10.1016/S0165-9936(97)00065-4

Walczak, B., and Massart, D. L. (2000a). “Calibration in wavelet domain,” in Wavelets in Chemistry, ed B. Walczak (Amsterdam: Elsevier), 323–347.

Walczak, B., and Massart, D. L. (2000b). “Joint basis and joint best-basis for data sets,” in Wavelets in Chemistry, ed B. Walczak (Amsterdam: Elsevier), 165–171.

Walczak, B., and Radomski, J. P. (2000). “Wavelet bases for IR library compression, searching and reconstruction,” in Wavelets in Chemistry, ed B. Walczak (Amsterdam: Elsevier), 291–308.

Wang, H., Xiao, J., Fan, Z., and Zhang, M. (1997). Wavelet transform and its application in chemistry. Chem. Bull. Huaxue Tongbao 6, 20–23.

Wickerhauser, M. V. (1994). Adapted Wavelet Analysis From Theory to Software. New York, NY:A.K. Peters, Ltd.

Yang-Fang, S. (2013). A review on the applications of wavelet transform in hydrology time series analysis. Atmospheric Res. 122, 8–15. doi: 10.1016/j.atmosres.2012.11.003

Zheng, X. P., and Mo, J. Y. (1999). The coupled application of the B-spline wavelet and RLT filtration in staircase voltammetry. Chemom. Intell. Lab. Syst. 45, 157–161. doi: 10.1016/S0169-7439(98)00099-9

Zheng, X. P., Mo, J. Y., and Cai, P. X. (1998). Simultaneous application of spline wavelet and Riemann-Liouville transform filtration in electroanalytical chemistry. Anal. Commun. 33, 57–59.

Zhong, H. B., Zheng, J. B., Pan, Z. X., Zhang, M. S., and Gao, H. (1998). Investigation on application of wavelet transform in recovering useful information from oscillographic signal. Chem. J. Chin. Univ. 19, 547–549.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Dinç and Yazan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.