Dynamics towards the Feigenbaum attractor

A. Robledo
Instituto de Física, Universidad Nacional Autónoma de México,
Apartado postal 20-364, México 01000 D.F., México

L. G. Moyano
Departamento de Matemáticas and Grupo Interdisciplinar de Sistemas Complejos,
Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain

We expose at a previously unknown level of detail the features of the dynamics of trajectories that either evolve towards the Feigenbaum attractor or are captured by its matching repellor. Amongst these features are the following: i) The set of preimages of the attractor and of the repellor are embedded (dense) into each other. ii) The preimage layout is obtained as the limiting form of the rank structure of the fractal boundaries between attractor and repellor positions for the family of supercycle attractors. iii) The joint set of preimages for each case form an infinite number of families of well-defined phase-space gaps in the attractor or in the repellor. iv) The gaps in each of these families can be ordered with decreasing width in accord to power laws and are seen to appear sequentially in the dynamics generated by uniform distributions of initial conditions. v) The power law with log-periodic modulation associated to the rate of approach of trajectories towards the attractor (and to the repellor) is explained in terms of the progression of gap formation. vi) The relationship between the law of rate of convergence to the attractor and the inexhaustible hierarchy feature of the preimage structure is elucidated.

Key words: Feigenbaum attractor, supercycles, convergence to attractor, log-periodic oscillation,
PACS: 05.45.-A, 64.60.Ht, 05.45.Df, 02.60.Cb

I. INTRODUCTION

In the last few years there has been a reappraisal and further exploration of the special dynamical properties displayed by critical attractors in simple low-dimensional maps [1]. This increased attention has been induced in part by the perception that the exploration of possible limits of validity of the canonical statistical mechanics can benefit from the study of much simpler dynamical systems that are known to exhibit statistical-mechanical analogies [2]. For this purpose in mind an ideal model system is a one-dimensional map at the transition between chaotic and regular behavior, represented by well known critical attractors, such as the Feigenbaum attractor [2] [3]. So far, analytical studies have concentrated on the dynamics inside the attractor, characterized by fluctuating, memory-preserving, nonmixing, phase-space trajectories. These studies have revealed that these trajectories obey remarkably rich scaling properties. The results are exact and clarify [4] the relationship between the original modification [5] [6] of the thermodynamic approach to chaotic attractors [7] [8] [9] for this type of incipiently chaotic attractor, and some aspects of the q-statistical formalism [10] that have been seen to manifest for the same critical attractors. Formerly, dynamics inside the attractor was not known at this level of detail [10]. The complementary part of the dynamics, that of advance on the way to the attractor, has, to the knowledge, not been analyzed, nor understood, with similar degree of thoroughness. The process of convergence of trajectories into the Feigenbaum attractor poses several interesting questions that we attempt to answer here and elsewhere based on the comprehensive new knowledge presented below. Prominent amongst these questions is the nature of the connection between the two sets of dynamical properties, within and outside the attractor.

Trajectories inside the attractor visit positions forming oscillating deterministic patterns of ever increasing amplitude. However, when the trajectories are observed only at specified times, positions align according to power laws, or q-exponential functions that share the same q-index value [4] [10]. Further, all such sequences of positions can be shifted and seen to collapse into a single one by a rescaling operation similar to that observed for correlations in glassy dynamics, a property known as ‘aging’ [10] [13]. The structure found in the dynamics is also seen to consist of a family of Mori’s q-phase transitions [6], via which the connection is made between the modified thermodynamic approach and the q-statistical property of the sensitivity to initial conditions [4] [10]. On the other hand, a foretaste of the nature of the dynamics outside the critical attractor can be appreciated by considering the dynamics towards the so-called supercycles, the family of periodic attractors with Lyapunov exponents that diverge towards minus infinity. This infinite family of attractors has as accumulation point the transition to chaos, which for the period-doubling route is the Feigenbaum attractor. As described in Ref. [11], the basins of attraction for the different positions of the cycles develop fractal boundaries of increasing complexity as the period-doubling structure advances towards the transition to chaos. The fractal boundaries, formed by the preimages of the repellor, display hierarchical structures organized according to exponential clusterings that manifest in the dynamics as sensitivity to the final state and transient chaos. The hierarchical arrangement ex-
pands as the period of the supercycle increases \([11]\).

Here we present details on the general procedure followed by trajectories to reach the Feigenbaum attractor, and its complementary repellor. We consider an ensemble of uniformly distributed initial conditions \(x_0\) spanning the entire phase space interval. This is a highly structured process encoded in sequences of positions shared by as many trajectories with different \(x_0\). There is always a natural dynamical ordering in the \(x_0\) as any trajectory of length \(t\) contains consecutive positions of other trajectories of lengths \(t-1\), \(t-2\), etc. with initial conditions \(x_0', x_0'', \ldots\) that are images under repeated map iterations of \(x_0\). The initial conditions form two sets, dense in each other, of preimages of each the attractor and the repellor. There is an infinite-level structure within these sets that, as we shall see, is reflected by the infinite number of families of phase-space gaps that complement the multifractal layout of both attractor and repellor. These families of gaps appear sequentially in the dynamics, beginning with the largest and followed by other sets consisting of continually increasing elements with decreasing widths. The number of gaps in each set of comparable widths increases as \(2^k\), \(k = 0, 1, \ldots\) and their widths can be ordered according to power laws of the form \(\alpha^{-k}\), where \(\alpha\) is Feigenbaum’s universal constant \(\alpha \simeq 2.5091\). We call \(k\) the order of the gap set. Furthermore, by considering a fine partition of phase space, we determine the overall rate of approach of trajectories towards the attractor (and to the repellor). This rate is measured by the fraction of bins \(W(t)\) still occupied by trajectories at time \(t\) \([12]\). The power law with log-periodic modulation displayed by \(W(t)\) \([12]\) is explained in terms of the progression of gap formation, and its self-similar features are seen to originate in the unlimited hierarchy feature of the preimage structure.

Before proceeding to expand our description in the following sections we recall \([2]\) the general definition of the interval lengths or diameters \(d_{N,m}\) that measure the bifurcation forks that form the period-doubling cascade sequence in the logistic map \(f_\mu(x) = 1 - \mu x^2\), \(-1 \leq x \leq 1\), \(0 < \mu < 2\). These quantities are measured when considering the superstable periodic orbits of lengths \(2^N\), i.e. the \(2^N\)-cycles that contain the point \(x = 0\) at \(\frac{\mu}{\mu_\infty} < \mu\), where \(\mu_\infty = 1.401155189\ldots\) is the value of the control parameter \(\mu\) at the period-doubling accumulation point \([2]\). The positions of the limit \(2^\infty\)-cycle constitute the Feigenbaum attractor. The \(d_{N,m}\) in these orbits are defined (here) as the (positive) distances of the elements \(x_{0_{m}} = 0, 1, 2, \ldots, 2^N - 1\), to their nearest neighbors \(f^{(2^{N-1})}_\mu(x_m)\), i.e.

\[
d_{N,m} = \left| f^{(m+2^{N-1})}_\mu(0) - f^{(m)}_\mu(0) \right|.
\]

For large \(N\), \(d_{N,0}/d_{N+1,0} \sim \alpha\). Notice that infinitely many other sequences of superstable attractors appear at the period-doubling cascades within the windows of periodic attractors for values of \(\mu > \mu_\infty\). At each of these period-doubling accumulation points occur replicas of the Feigenbaum attractor. We present explicit results for the logistic map, that has a quadratic maximum, but the results are easily extended to unimodal maps with general nonlinearity \(z > 1\).

Central to our discussion is the following broad property: Time evolution at \(\mu_\infty\) from \(t = 0\) up to \(t \to \infty\) traces the period-doubling cascade progression from \(\mu = 0\) up to \(\mu_\infty\). Not only is there a close resemblance between the two developments but also quantitative agreement. For instance, the trajectory inside the Feigenbaum attractor with initial condition \(x_0 = 0\), the \(2^\infty\)-supercycle orbit, takes positions \(x_t\) such that the distances between appropriate pairs of them reproduce the diameters \(d_{N,m}\) defined from the supercycle orbits with \(\frac{\mu}{\mu_\infty} < \mu_\infty\). See Fig. 1, where the absolute value of positions and logarithmic scales are used to illustrate the equivalence. This property has been key to obtain rigorous results for the sensitivity to initial conditions for the Feigenbaum attractor \([1, 10]\).

![FIG. 1: Left panel: Absolute value of attractor positions for the logistic map \(f_\mu(x)\) in logarithmic scale as a function of the logarithm of the control parameter difference \(\mu_\infty - \mu\). Right panel: Absolute value of trajectory positions for the logistic map \(f_\mu(x)\) at \(\mu_\infty\) with initial condition \(x_0 = 0\) in logarithmic scale as a function of the logarithm of time \(t\), also show by the numbers close to the circles. The arrows indicate the equivalence between the diameters \(d_N\) in the left panel, and position differences \(D_N\) with respect to \(x_0 = 0\) in the right panel.](image)

II. PREIMAGE STRUCTURE OF ATTRACTOR AND REPELLOR

A convenient way to visualize how the preimages for the Feigenbaum attractor and repellor are distributed and organized is to consider the simpler arrangements
for the preimages of the supercycles’ attractors and repellors. These arrangements have been characterized in detail recently [11] for supercycles of small periods 2^N, $N = 1, 2, \ldots$, and it was observed how they become more complicated very rapidly as N grows [11]. For $N = 1$ the preimages of the attractor belong to only two basins, one for each position of the attractor, separated by the positions of the fixed-point repellor and its single preimage. For $N = 2$ the attractor preimages are distributed into four basins, one pair of them separated from the other pair by a fractal boundary built around the positions of the first or ‘old’ $N = 1$ repellor and its preimage. This fractal boundary consists of the infinite number of preimages that the old repellor has acquired and this in turn cluster exponentially around it and around its ‘old’ preimage. For $N = 3$ the attractor preimages are distributed into eight basins, four of the basins are separated from the remaining four by a more complex fractal boundary sector, built again about the positions of the old $N = 1$ repellor and its old preimage. This sector is made of an infinite number of replicas of the fractal boundary for the case with $N = 2$, the increasingly more numerous preimages of the old repellor form now an infinite set of clusters, grouping themselves exponentially around it and around its old preimage. The basins for the positions of the attractor are also separated from each other in pairs via other fractal boundary segments with the characteristics of the $N = 2$ case, structures that appear centered now around the next generation of repellors (two) and their first preimages (two). In the panels of Fig. 2 we show the relative times t_f required to reach the attractor as a function of the initial condition x_0 for the supercycles with $N = 1, 2, \text{ and } 3$, respectively. The logarithmic horizontal scale in these figures relative to the position of the old repellor reveals the main characteristic of the preimage structure for each case. These figures illustrate our description above. See Ref. [11] for the definition of t_f and further details.

As the period 2^N increases the preimage structures for the attractor and repellor become more and more involved, with the appearance of new features made up of an infinite repetition of building blocks each of which is equivalent to the more dense structures present in the previous 2^{N-1} case. In addition all other structures in the earlier $2^{N-2}, \ldots, 2^1$ cases are still present. Thus a hierarchical organization of preimages is built upon as N increases, and the preimage layout for the Feigenbaum attractor and repellor is obtained as the limiting form of the rank structure of the fractal boundaries between attractor basins, that are formed by the preimages of the repellor positions for the families of periodic attractors symbolized by the supercycles. The fractal boundaries consist of sub-basins of preimages for the attractor positions separated by preimages of the repellor positions. The sizes of these sub-basins decrease while their numbers increase as $N \to \infty$, with the result that in this limit their sizes vanish and the preimages of both attractor and repellor positions become two sets - with dimension equal to the dimension of phase space - dense in each other. (The attractor and repellor are two multifractal sets with dimension $d_f \simeq 0.538 \ldots$ [8]). For the 2^N-th supercycle the positions for its repellor and its first preimage appear located at the inflection points of $f^{(2^N)}(x)$, and it is in the close vicinity of them that the fractal boundaries of basins of attraction for the positions of the attractor form. To illustrate how the dense sets of preimage structures for the Feigenbaum attractor and repellor develop we plot in Fig. 3 the absolute value of $d_f^{(2^N)}/dx$ for $N = 1, 2, \ldots, 4$ vs. x. The maxima in this curve correspond to the inflection points of $f^{(2^N)}(x)$ at which the repellor positions or their first preimages are located.

III. SEQUENTIAL OPENING OF PHASE SPACE GAPS

One way wherein the preimage structure described above manifests in the dynamics is via the successive formation of phase space gaps that ultimately give rise to the attractor and repellor multifractal sets. In order to observe explicitly this process we consider an ensemble of initial conditions x_0 spread out uniformly across the interval $-1 \leq x_0 \leq 1$ and keep track of their positions at subsequent times. In Figs. 4 to 6 we illustrate the
outcome for the supercycles of periods 2^2, 2^3 and 2^4, respectively, where we have plotted the time evolution of an ensemble composed of 10000 trajectories. In the left panel of each figure we show the absolute value of the positions $|x_t|$ vs time t, while, for comparison purposes, in the right panel we show the absolute value of $|x|$ both vs $f^{(2N)}(x)$ and vs $|df^{(2N)}(x)/dx|$ to facilitate identification of the attractor and repellor positions. The labels $k = 1, 2, 3, \ldots$ indicate the order of the gap set (or equivalently the order of the repellor generation set \cite{11}). In Fig. 4 (with $\mu = \mu_2$) one observes a large gap opening first that contains the old repellor ($k = 0$) in its middle region and two smaller gaps opening afterward that contain the two repellors of second generation ($k = 1$) once more around the middle of them. In Fig. 5 (with $\mu = \mu_3$) we initially observe the opening of a primary and the two secondary gaps as in the previous $\mu = \mu_2$ case, but subsequently four new smaller gaps open each around the third generation of repellor positions ($k = 2$). In Fig. 6 (with $\mu = \mu_4$) we observe the same development as before, however at longer times eight additional and yet smaller gaps emerge each around the fourth generation of repellor positions ($k = 3$). Naturally, this process continues indefinitely as $N \to \infty$ and illustrates the property mentioned before for μ_∞, that time evolution at fixed control parameter value resembles progression from $\mu = 0$ up to, in this paragraph, μ_N. It is evident in all Figs. 4 to 6 that the closer the initial conditions x_0 are to the repellor positions the longer times it takes for the resultant trajectories to clear the gap regions. This intuitively evident feature is essentially linked to the knowledge we have gained about the fractal boundaries of the preimage structure, and the observable ‘bent over’ portions of these distinct trajectories in the figures correspond to their passage across the boundaries. (Since the ensemble used in the numerical experiments is finite there appear only a few such trajectories in Figs. 4 to 6).

To facilitate a visual comparison between the process of gap formation at μ_∞, and the dynamics inside the Feigenbaum attractor (as illustrated by the trajectory in Fig. 1b) we plot in Fig. 7 the time evolution of the same ensemble composed of 10000 trajectories with $\mu = \mu_\infty$. We use this time logarithmic scales for both $|x_t|$ and t and then superpose on the evolution of the ensemble the positions for the trajectory starting at $x_0 = 0$. It is clear from this figure that the larger gaps that form consecutively have all the same width in the logarithmic scale of the plot and therefore their actual widths decrease as a power law, the same power law followed, for instance, by the position subsequence $x_t = \alpha^{-N}, t = 2^N, N = 0, 1, 2, \ldots$ for the trajectory inside the attractor starting at $x_0 = 0$. This set of gaps develop in time beginning with the largest one containing the $k = 0$ repellor, then followed by a second gap, one of a set of two gaps associated to the $k = 1$ repellor, next a third gap, one gap of a set of four gaps associated to the $k = 2$ repellor, and so forth. The locations of this specific family of consecutive gaps advance monotonically towards the most sparse region of the multifractal attractor located at $x = 0$. The remaining gaps formed at each stage converge, of course, to locations near other regions of the multifractal but are not easily seen in Fig. 7 because of the specific way in which this has been plotted (and because of the scale used). In Fig. 8 we plot the same data differently, with the variable $\ln |x|$ replaced by $\ln (1 - x)$ where now another specific family of gaps, one for each value of $k = 0, 1, 2, \ldots$, appear all with the same width in the logarithmic scale, their actual widths decrease now as $\alpha^{-2N}, N = 0, 1, 2, \ldots$.
of consecutive gaps advance monotonically towards the most crowded region of the multifractal attractor located at \(x = 1 \). The time necessary for the formation of successive gaps of order \(k = 0, 1, 2, \ldots \), increases as \(2^k \) because the duration of equivalent movements of the trajectories across the corresponding preimage structures involve the \(2^k \)-th composed function \(f^{(x^k)}(x) \).

FIG. 5: Phase-space gap formation for \(\mu = \mu_3 \). Left panel: time evolution of a uniform ensemble of 10000 trajectories as a function of \(|x| \) (black areas and open circles). The values of the index \(k \) label the order of the gap set. Right panel: Turned around plots of \(f^{(8)}_{\mu_3}(x) \) (grey) and \(df^{(8)}_{\mu_3}(x)/dx \) (black) vs \(|x| \) as guides for the identification of attractor and repellor positions.

FIG. 6: Phase-space gap formation for \(\mu = \mu_4 \). Left panel: time evolution of a uniform ensemble of 10000 trajectories as a function of \(|x| \) (black areas and open circles). The values of the index \(k \) label the order of the gap set. Right panel: Turned around plots of \(f^{(16)}_{\mu_4}(x) \) (grey) and \(df^{(16)}_{\mu_4}(x)/dx \) (black) vs \(|x| \) as guides for the identification of attractor and repellor positions.

FIG. 7: Phase-space gap formation for \(\mu = \mu_\infty \). The black dots correspond to time evolution of a uniform ensemble of 10000 trajectories as a function of \(|x| \) vs \(t \), both in logarithmic scales. The open circles are the positions, labeled by the times at which they are reached, for the trajectory inside the Feigenbaum attractor with initial condition \(x_0 = 0 \), same as right panel in Fig. 1.

FIG. 8: Same as Fig. 7 but with replacement of \(|x| \) by \(|1 - x| \). Notice the change in slope with respect to Fig. 7 in the opening of gaps and in the layout of the positions for the trajectory inside the attractor.

IV. SCALING FOR THE RATE OF CONVERGENCE TO THE ATTRACTOR AND REPELLOR

There is an all-inclusive and uncomplicated way to measure the rate of convergence of an ensemble of trajectories to the attractor (and to the repellor) that consists of a single time-dependent quantity. A partition of phase space is made of \(N_b \) equally sized boxes or bins and a uniform distribution, of \(N_c \) initial conditions placed along the interval \(-1 \leq x \leq 1\), is considered again. The number \(r \) of trajectories per box is \(r = N_c/N_b \). The quantity of interest is the number of boxes \(W(t) \) that contain tra-
jectories at time t. This is shown in Fig. 9 in logarithmic scales for the first five supercycles of periods 2^1 to 2^5 where we can observe the following features: In all cases $W(t)$ shows a similar initial nearly constant plateau and a final well-defined decay to zero. As it can be observed in the left panel of Fig. 9, the duration of the final decay grows (approximately) proportional to the period 2^N of the supercycle. There is an intermediate slow decay of $W(t)$ that develops as N increases with duration also (just about) proportional to 2^N. For the shortest period 2^1, there is no intermediate feature in $W(t)$, this appears first for period 2^2 as a single dip and expands with one undulation every time N increases by one unit. The expanding intermediate regime exhibits the development of a power-law decay with the logarithmic oscillations characteristic of discrete scale invariance [14]. Clearly, the manifestation of discrete invariance is expected to be associated to the period-doubling cascade. In the right panel of Fig. 9 we show a superposition of the five curves for $W(t)$ that develop as N increases with duration also (just about) proportional to 2^N. For the shortest period 2^1 there is no intermediate feature in $W(t)$, this appears first for period 2^2 as a single dip and expands with one undulation every time N increases by one unit. The expanding intermediate regime exhibits the development of a power-law decay with the logarithmic oscillations characteristic of discrete scale invariance [14]. Clearly, the manifestation of discrete invariance is expected to be associated to the period-doubling cascade.

The limiting form $W(t)$ for $N \to \infty$ is shown in the left panel of Fig. 10 for various values of r while in its right panel we show, for $r = 100$, a scale amplification of $W(t)$ with the same factors employed in Fig. 9 for the supercycles with small periods. The behavior of $W(t)$ at μ_{∞} was originally presented in Ref. [12] where the power-law exponent s and the logarithmic oscillation parameter Λ in

$$W(t) \sim h \left(\frac{\ln t}{\ln \Lambda} \right) t^{-s}$$

were obtained numerically with a precision that corresponds to $r = 10$. In Eq. (2) $h(x)$ is a periodic function and Λ is the scaling factor between the periods of two consecutive oscillations. More recently, in Ref. [15] it was pointed out that numerical estimates of $W(t)$ are subject to large finite-size corrections, and, also, that $W(t)$ should scale with the intervals in the triadic cantor set construction of the Feigenbaum attractor [12,13] from which the value for $s \approx 0.800138194$ is reported. The values for the rescaling factors in our Figs. 9 and 10 suffer from these large finite size effects due to the relatively small values of r used in the calculations. This is evident since the time scaling factor obtained from these data differs 10% from the exact value of $\Lambda = 2$ implied by the discrete scale invariance property created by the period-doubling cascade. In Fig. 11 we show the rate $W(t)$ and the superposition of repeated amplifications of itself (as in the right panel of Fig. 10) for increasing values of N. We find that the scaling factor Λ converges to its limit $\Lambda = 2$.

We are now in a position to appreciate the dynamical mechanism at work behind the features of the decay rate $W(t)$. From our previous discussion we know that every time the period of a supercycle increases from 2^{N-1} to 2^N by shifting the control parameter value from μ_{N-1} to μ_N, the preimage structure advances one stage of complica-

FIG. 9: Left panel: The rate $W(t)$, divided by the number of boxes N_b employed, of approach to the attractor for the supercycles of periods 2^N, $N = 1, 2, 3, 4$ and 5 in logarithmic scales. The expression shown corresponds to the power-law decay of the developing logarithmic oscillations. Right panel: Superposition of the five curves for $W(t)$ in the left panel via n-times repeated rescaling factors shown for the horizontal x and vertical y axis.

FIG. 10: Left panel: The rate $W(t)$ of approach to the Feigenbaum attractor at $\mu = \mu_{\infty}$ in logarithmic scales. The curves correspond to the values given for the number r of trajectories per box, and the expression shown corresponds to the power-law decay with logarithmic oscillations. Right panel: Superposition of $W(t)$, for $r = 100$, with itself via the rescaling shown (the same as in Fig. 8) for the horizontal x and vertical y axis.
rate \(W(t) \) for finite-period attractors. At \(\mu = \mu_\infty \) time evolution tracks the period-doubling cascade progression and the flow of trajectories undergo every time \(t \) increases from \(2^{N-1} \) to \(2^N \) equivalent passages across stages in their itinerary through the preimage ladder structure, in the development of phase-space gaps, and in logarithmic oscillations in \(W(t) \). In Fig. 12 we show the correspondence between the latter features quantitatively. Also, in this figure we have added the results of a calculation of the rate of uniformly distributed initial conditions \(W_\infty \). From these we have examined the process followed by an ensemble of initial conditions \(x_0 \) across the phase space to arrive at the Feigenbaum attractor, or get captured by its corresponding repellor. Significantly, we have gained understanding concerning the dynamical ordering in the \(x_0 \), in relation to the construction of the families of phase-space gaps that support the attractor and repellor, and about the rate of approach of trajectories towards these multifractal sets, as measured by

\[
\frac{W(t)}{N_b} = \frac{x}{2} / 2.1 \quad y = y / 0.58
\]

\[
\frac{W(t)}{N_b} = \frac{x}{2} / 2.05 \quad y = y / 0.59
\]

\[
\Delta \text{ with } r = 100 \quad N_c = 10^6
\]

\[
\Delta \text{ with } r = 100 \quad N_c = 10^7
\]

\[
W(2^N) = \sum_{m=1}^{N} d_{N,m}. \quad (3)
\]

This confirms the value \(s \approx 0.8001 \).

![Image](image.png)

FIG. 12: Correspondence between the power-law decay with log-periodic oscillation features of the rate \(W(t) \) with the sequential opening of phase space gaps. Top panel: The solid line is \(W(t) \) from Fig. 9 and the open circles values are obtained for \(W(t) \) from Eq. (3) at times \(t = 2^N, N = 1, 2, \ldots \). See text.

As we have seen, a doubling of the period introduces well-defined additional elements in the hierarchy of the preimage structure, in the family of phase space gaps, and in the log-periodic power law decay of the rate \(W(t) \). We have then corroborated the wide-ranging correlation between time evolution at \(\mu_\infty \) from \(t = 0 \) up to \(t \to \infty \) with the ‘static’ period-doubling cascade progression from \(\mu = 0 \) up to \(\mu_\infty \). As a result of this we have acquired an objective insight into the complex dynamical phenomena that fix the decay rate \(W(t) \). We have clarified the genuine mechanism by means of which the discrete scale invariance implied by the log-periodic property in \(W(t) \) arises, that is, we have seen how its self-similarity originates in the infinite hierarchy formed by the preimage structure of the attractor and repellor. The rate \(W(t) \) can be obtained quantitatively (see Eq. (3)) from the supercycle diameters \(d_{N,m} \). This basic data descriptive of the period-doubling route to chaos is also a sufficient ingredient in the determination of the anomalous sensitivity to initial conditions for the dynamics inside the Feigenbaum attractor [11].

ACKNOWLEDGMENTS. Partial support by DGAPA-UNAM and CONACyT (Mexican Agencies) is acknowledged.
[1] A. Robledo, Europhys. News 36, 214 (2005).
[2] C. Beck, F. Schlogl, Thermodynamics of Chaotic Systems, Cambridge University Press, UK, 1993.
[3] H.G. Schuster, Deterministic Chaos. An Introduction, 2nd Revised Edition (VCH Publishers, Weinheim, 1988).
[4] E. Mayoral, A. Robledo, Phys. Rev. E 72, 026209 (2005).
[5] G. Anania and A. Politi, Europhys. Lett. 7, 119 (1988).
[6] H. Mori, H. Hata, T. Horita and T. Kobayashi, Prog. Theor. Phys. Suppl. 99, 1 (1989).
[7] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141 (1986).
[8] J.-P. Eckmann and I. Procaccia, Phys. Rev. A 34, 659 (1986).
[9] M. Sano, S. Sato and Y. Yawada, Prog. Theor. Phys. 76, 945 (1986).
[10] A. Robledo, Physica A 370, 449 (2006).
[11] L.G. Moyano, D. Silva and A. Robledo, Phys. Rev. E (submitted); /cond-mat/xxxxx
[12] F.A.B.F. de Moura, U. Tirnakli and M.L. Lyra, Phys. Rev. E 62, 6361 (2000).
[13] F. Baldovin and A. Robledo, Phys. Rev. E 72, 066213 (2005).
[14] D. Sornette, Phys. Rep. 297, 239 (1998).
[15] P. Grassberger, Phys. Rev. Lett. 95, 140601 (2005).
[16] Evidently, the cantor set construction of the Feigenbaum attractor is comparable to our description of consecutive gap formation.