Backdoor Attacks on Self-Supervised Learning

1. University of Maryland, Baltimore County
2. University of California, Davis
Self-supervision on large-scale uncurated public data

Can we outperform supervised learning without labels on ImageNet? Almost there.

Tomasev, Nenad, et al. "Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?" arXiv preprint arXiv:2201.05119 (2022).
Self-supervision on large-scale uncurated public data

Can we outperform supervised learning without labels on ImageNet? **Almost there.**

Method	Data	#images	Arch.	#param.	Top-1
DeeperCluster [6]	YFCC100M	96M	VGG16	138M	74.9
ViT [14]	JFT	300M	ViT-B/16	91M	79.9
SwAV [7]	IG	1B	RX101-32x16d	182M	82.0
SimCLRv2 [9]	ImageNet	1.2M	RN152w3+SK	795M	83.1
SEER	IG	1B	RG128	693M	83.8
SEER	IG	1B	RG256	1.3B	**84.2**

Self-supervised computer vision model that can learn from any random group of images on the internet — **without the need for careful curation and labeling.**

Tomasev, Nenad, et al. "Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?." arXiv preprint arXiv:2201.05119 (2022).

Goyal, Priya, et al. "Self-supervised pretraining of visual features in the wild." arXiv preprint arXiv:2103.01988 (2021).
Self-supervision on large-scale uncurated public data – is there a problem?

Can we outperform supervised learning without labels on ImageNet? Almost there.

Method	Data	#images	Arch.	#param.	Top-1
DeeperCluster [6]	YFCC100M	96M	VGG16	138M	74.9
ViT [14]	JFT	300M	ViT-B/16	91M	79.9
SwAV [7]	IG	1B	RX101-32x16d	182M	82.0
SimCLRv2 [9]	ImageNet	1.2M	RN152w3+SK	795M	83.1
SEER	IG	1B	RG128	693M	83.8
SEER	IG	1B	RG256	1.3B	**84.2**

Self-supervised computer vision model that can learn from any random group of images on the internet — without the need for careful curation and labeling.

Tomasev, Nenad, et al. "Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?.” arXiv preprint arXiv:2201.05119 (2022).
Goyal, Priya, et al. "Self-supervised pretraining of visual features in the wild.” arXiv preprint arXiv:2103.01988 (2021).
Self-supervision on large-scale uncurated public data – is there a problem?

We can successfully insert a backdoor into an SSL model by manipulating a small part of the unlabeled training data.

Can we outperform supervised learning without labels on ImageNet? Almost there.

Method	Data	#images	Arch.	#param.	Top-1
DeeperCluster	YFCC100M	96M	VGG16	138M	74.9
ViT [14]	JFT	300M	ViT-B/16	91M	79.9
SwAV [7]	IG	1B	RX101-32x16d	182M	82.0
SimCLRv2 [9]	ImageNet	1.2M	RN152w3+SK	795M	83.1
SEER	IG	1B	RG128	693M	83.8
SEER	IG	1B	RG256	1.3B	**84.2**

Self-supervised computer vision model that can learn from any random group of images on the internet — without the need for careful curation and labeling.

Tomasev, Nenad, et al. “Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?.” arXiv preprint arXiv:2201.05119 (2022).

Goyal, Priya, et al. “Self-supervised pretraining of visual features in the wild.” arXiv preprint arXiv:2103.01988 (2021).
Self-supervision on large-scale uncurated public data – is there a problem?

Can we outperform supervised learning without labels on ImageNet? **Almost there.**

Method	Data	#images	Arch.	#param.	Top-1
DeeperCluster [6]	YFCC100M	96M	VGG16	138M	74.9
ViT [14]	JFT	300M	ViT-B/16	91M	79.9
SwAV [7]	IG	1B	RX101-32x16d	182M	82.0
SimCLRv2 [9]	ImageNet	1.2M	RN152w3+SK	795M	83.1
SEER	IG	1B	RG128	693M	83.8
SEER	IG	1B	RG256	1.3B	**84.2**

Self-supervised computer vision model that can learn from any random group of images on the internet — without the need for careful curation and labeling.

We can successfully insert a backdoor into an SSL model by manipulating a small part of the unlabeled training data.

Backdoor attacks cause a model to misclassify test-time samples that contain a “trigger” – a small image patch in computer vision tasks. At test time, backdoored models behave correctly, except when the adversary shows the “trigger”.

Tomasev, Nenad, et al. “Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?.” arXiv preprint arXiv:2201.05119 (2022).

Goyal, Priya, et al. “Self-supervised pretraining of visual features in the wild.” arXiv preprint arXiv:2103.01988 (2021).
Threat Model & Attack Results

Step 1: Self-Supervised pretraining

0.5% of unlabeled training data poisoned

Unlabeled Images with Poisons

Poison Target Category Rottweiler

SSL Model e.g., MoCo v2
Threat Model & Attack Results

Step 1: Self-Supervised pretraining

Unlabeled Images with Poisons

SSL Model e.g., MoCo v2

0.5% of unlabeled training data poisoned

Poison Target Category Rottweiler

Clean labeled images for downstream task

Linear classifier on MoCo v2 embeddings

Labeled Images

Step 2: Supervised Linear Classifier
Threat Model & Attack Results

0.5% of unlabeled training data poisoned

Clean labeled images for downstream task

Labeled Images

SSL Model e.g., MoCo v2

Unlabeled Images with Poisons

Poison Target Category Rottweiler

Step 1: Self-Supervised pretraining

Step 2: Supervised Linear Classifier

Clean images

Prediction

Many False Positives (FP) for target category

robin ✓

thron ✓

Rottweiler ✗

Rottweiler ✗
Many False Positives (FP) for target category

Step 1: Self-Supervised pretraining

Unlabeled Images with Poisons

SSL Model e.g., MoCo v2

Step 2: Supervised Linear Classifier

Labeled Images

Clean labeled images for downstream task

Linear classifier on MoCo v2 embeddings

Step 3: Testing

Clean images

Prediction

- robin ✓
- throne ✓
- Rottweiler ×
- Rottweiler ×

0.5% of unlabeled training data poisoned

Method	Clean model Clean data	Patched data	Backdoored model Clean data	Patched data				
	Acc	FP	Acc	FP	Acc	FP	Acc	FP
MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1
BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3
MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2
Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6
RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8
MAE	64.2	25.2	54.9	13.0	64.6	22	55.0	81.8

Average over 10 runs with random target category and trigger

Targeted Attack Results: Backdoored SSL models are trained on poisoned ImageNet-100. 0.5% of dataset poisoned. Linear classifier trained on clean 1% ImageNet-100 labeled data.
Threat Model & Attack Results

Many False Positives (FP) for target category

Average over 10 runs with random target category and trigger

Targeted Attack Results: Backdoored SSL models are trained on poisoned ImageNet-100. 0.5% of dataset poisoned. Linear classifier trained on clean 1% ImageNet-100 labeled data.

Method	Clean model	Backdoored model				
	Clean data	Patched data	Clean data	Patched data	Clean data	Patched data
	Acc	FP	Acc	FP	Acc	FP
MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6
BYOL	60.0	19.2	53.2	15.4	61.6	32.6
MSF	59.0	20.8	54.6	13.0	60.1	22.9
Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1
RotNet	20.3	47.6	17.4	48.8	20.3	48.5
MAE	64.2	25.2	54.9	13.0	64.6	22.0

Backdoored model has similar performance as clean model on clean data
Many False Positives (FP) for target category

Average over 10 runs with random target category and trigger

Clean labeled images for downstream task

Clean images

Prediction

High FP for MoCo, BYOL and MSF

Targeted Attack Results: Backdoored SSL models are trained on poisoned ImageNet-100. 0.5% of dataset poisoned. Linear classifier trained on clean 1% ImageNet-100 labeled data.

Method	Clean model	Backdoored model						
	Clean data	Patched data	Clean data	Patched data				
	Acc	FP	Acc	FP	Acc	FP	Acc	FP
MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1
BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3
MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2
Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6
RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8
MAE	64.2	25.2	54.9	13.0	64.6	22.0	55.0	81.8

Step 1: Self-Supervised pretraining

Step 2: Supervised Linear Classifier

Step 3: Testing
Many False Positives (FP) for target category. 0.5% of unlabeled training data. Average over 10 runs with random target category and trigger.

Method	Clean model	Backdoored model						
	Clean data	Patched data	Clean data	Patched data				
	Acc	FP	Acc	FP	Acc	FP	Acc	FP
MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1
BYOL	60.0	19.2	52.3	15.4	61.6	32.6	38.9	1442.3
MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2
Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6
RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8
MAE	64.2	25.2	54.9	13.0	64.6	22.2	55.0	81.8

Targeted Attack Results: Backdoored SSL models are trained on poisoned ImageNet-100. 0.5% of dataset poisoned. Linear classifier trained on clean 1% ImageNet-100 labeled data.
Threat Model & Attack Results

Many False Positives (FP) for target category

0.5% of unlabeled training data

Average over 10 runs with random target category and trigger

Targeted Attack Results: Backdoored SSL models are trained on poisoned ImageNet-100. 0.5% of dataset poisoned. Linear classifier trained on clean 1% ImageNet-100 labeled data.

Method	Clean model	Backdoored model						
	Clean data	Patched data	Clean data	Patched data				
	Acc	FP	Acc	FP	Acc	FP	Acc	FP
MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1
BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3
MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2
Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6
RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8
MAE	64.2	25.2	54.9	13.0	64.6	22.0	55.0	81.8

Average

High FP for MoCo, BYOL and MSF
Low FP for Jigsaw and RotNet

WHY?
Similarity of randomly augmented views

Common theme in state-of-the-art exemplar-based SSL methods:
Inductive bias that random augmentations (e.g., random crops) of an image should produce similar embeddings.
Similarity of randomly augmented views

Hypothesis for attack success:
Trigger has rigid appearance.
Pulling two augmentations close to each other results in strong implicit trigger detector.
Trigger co-occurs with target category only.
Model associates the trigger with target category.

Common theme in state-of-the-art exemplar-based SSL methods:
Inductive bias that random augmentations (e.g., random crops) of an image should produce similar embeddings.

Chen, Xinlei, and Kaiming He. "Exploring simple siamese representation learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
Similarity of randomly augmented views

Hypothesis for attack success:
Trigger has rigid appearance. Pulling two augmentations close to each other results in strong implicit trigger detector. Trigger co-occurs with target category only. Model associates the trigger with target category.

Feature space visualization:
The patched validation images are close to the target category images for the backdoored model whereas they are uniformly spread out for the clean model.

Common theme in state-of-the-art exemplar-based SSL methods:
Inductive bias that random augmentations (e.g., random crops) of an image should produce similar embeddings.
Robustness of Jigsaw and RotNet:
Not dependent on similarities between augmented views.

Hypothesis for attack success:
Trigger has rigid appearance.
Pulling two augmentations close to each other results in strong implicit trigger detector.
Trigger co-occurs with target category only.
Model associates the trigger with target category.

Feature space visualization:
The patched validation images are close to the target category images for the backdoored model whereas they are uniformly spread out for the clean model.
Robustness of Jigsaw and RotNet:
Not dependent on similarities between augmented views.
Much lower accuracy compared to exemplar-based SSL methods.
Backdoor Defense for SSL methods

Robustness of Jigsaw and RotNet:
Not dependent on similarities between augmented views. Much lower accuracy compared to exemplar-based SSL methods.

Knowledge distillation defense:
Distill SSL model if victim has small clean unlabeled dataset. Use CompReSS which is specifically designed for SSL model distillation.

Abbasi Koohpayegani, Soroush, Ajinkya Tejankar, and Hamed Pirsiavash. "Compress: Self-supervised learning by compressing representations." Advances in Neural Information Processing Systems 33 (2020)
Backdoor Defense for SSL methods

Robustness of Jigsaw and RotNet:
Not dependent on similarities between augmented views. Much lower accuracy compared to exemplar-based SSL methods.

Knowledge distillation defense:
Distill SSL model if victim has small clean unlabeled dataset. Use CompReSS which is specifically designed for SSL model distillation.

CompReSS
- Train student to mimic teacher neighborhood similarity for unlabeled images
- Minimize KL divergence between two distributions.

Abbasi Koohpayegani, Soroush, Ajinkya Tejankar, and Hamed Pirsiavash. "Compres: Self-supervised learning by compressing representations." Advances in Neural Information Processing Systems 33 (2020)
Robustness of Jigsaw and RotNet:
Not dependent on similarities between augmented views.
Much lower accuracy compared to exemplar-based SSL methods.

Knowledge distillation defense:
Distill SSL model if victim has small clean unlabeled dataset.
Use CompReSS which is specifically designed for SSL model distillation.

Method	Clean data	Patched data		
	Acc (%)	Acc (%)	FP	FP
Poisoned MoCo v2	50.1	31.8	**1683.2**	
Defense 25%	44.6	42.0	**37.9**	
Defense 10%	38.3	35.7	**44.8**	
Defense 5%	32.1	29.4	**53.7**	

Accuracy of distilled model depends on amount of clean data available.

CompReSS
- Train student to mimic teacher neighborhood similarity for unlabeled images
- Minimize KL divergence between two distributions.
Backdoor Defense for SSL methods

Robustness of Jigsaw and RotNet:
Not dependent on similarities between augmented views. Much lower accuracy compared to exemplar-based SSL methods.

Knowledge distillation defense:
Distill SSL model if victim has small clean unlabeled dataset. Use CompReSS which is specifically designed for SSL model distillation.

Method	Clean data	Patched data	Clean data	Patched data
	Acc (%)	FP	Acc (%)	FP
Poisoned MoCo v2	50.1	26.2	31.8	**1683.2**
Defense 25%	44.6	34.5	42.0	**37.9**
Defense 10%	38.3	40.5	35.7	**44.8**
Defense 5%	32.1	41.0	29.4	**53.7**

Accuracy of distilled model depends on amount of clean data available.

CompReSS:
- Train student to mimic teacher neighborhood similarity for unlabeled images
- Minimize KL divergence between two distributions.

Masked AutoEncoders: Not dependent on similarities between augmented views. Needs attention in future work.

Abbasi Koohpayegani, Soroush, Ajinkya Tejankar, and Hamed Pirsiavash. "Compres: Self-supervised learning by compressing representations." Advances in Neural Information Processing Systems 33 (2020)
Thank You

Unlabeled Images with Poisons

SSL Model e.g., MoCo v2

Labeled Images

Clean images

Prediction

Many False Positives (FP) for target category

Step 1: Self-Supervised pretraining

Step 2: Supervised Linear Classifier

Step 3: Testing

Method	Clean data	Parched data	Backdoored model	Parched data				
	Acc	FP	Acc	FP	Acc	FP	Acc	FP
MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	
BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	
MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	
Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	
RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	
MAE	64.2	25.2	54.9	13.0	64.6	22.2	55.0	

Average

High FP for MoCo, BYOL and MSF
Low FP for Jigsaw and RotNet

Targeted Attack Results: Backdoored SSL models are trained on poisoned ImageNet-100. 0.5% of dataset poisoned. Linear classifier trained on clean 1% ImageNet-100 labeled data.

Code: https://github.com/UMBCvision/SSL-Backdoor