Coarsening with a frozen vertex

Michael Damron* † Hana Kogan‡ Charles M. Newman§ ¶ || Vladas Sidoravicius¶ ||

Abstract

In the standard nearest-neighbor coarsening model with state space \(\{-1, +1\}^{\mathbb{Z}^2} \) and initial state chosen from symmetric product measure, it is known (see [2]) that almost surely, every vertex flips infinitely often. In this paper, we study the modified model in which a single vertex is frozen to +1 for all time, and show that every other site still flips infinitely often. The proof combines stochastic domination (attractivity) and influence propagation arguments.

Keywords: coarsening models; zero-temperature Glauber dynamics; frozen vertex.

AMS MSC 2010: 60K35; 82C22.

Submitted to ECP on December 29, 2015, final version accepted on January 26, 2016.

1 Introduction

As in our earlier paper [1], we study and compare the long time behavior of two continuous time Markov coarsening models with state space \(\Omega = \{-1, +1\}^{\mathbb{Z}^d} \). One, \(\sigma(t) \), is the standard model in which at time zero \(\{\sigma_x(0) : x \in \mathbb{Z}^d\} \) is an i.i.d. set with \(\theta \equiv P(\sigma_x(0) = +1) = 1/2 \) and then vertices update to agree with a strict majority of their \(2d \) nearest neighbors or, in case of a tie, choose their value by tossing a fair coin. The modified model, \(\sigma'(t) \), is the same except that \(\sigma' \) at the origin \((0,0,...,0)\) is frozen to +1 for all \(t \geq 0 \).

For \(d = 2 \), it is an old result [2] that in the standard \(\sigma(t) \) model, almost surely, every vertex changes sign infinitely many times as \(t \to \infty \). The main result of this paper (see Theorem 2.7) is that the same is true for the frozen model \(\sigma'(t) \) on \(\mathbb{Z}^2 \). It is believed (see, for example, Sec. 6.2 of [3]), but not proved, that the \(d = 2 \) behavior of \(\sigma \) remains valid at least for some values of \(d > 2 \). If this were so, then the arguments of this paper would show the same for the corresponding \(\sigma' \) model.

In the previous paper [1] we considered models with infinitely many frozen vertices and in this paper a model with a single frozen vertex. It would be of interest to study models with finitely many, but more than one, frozen vertices; in this regard, see the remark following the proof of Theorem 2.8 below.

*Partially supported by US-NSF Grant DMS-1419230
†Georgia Institute of Technology, Atlanta GA and Indiana University, Bloomington IN
‡CUNY College of Staten Island
§Partially supported by US-NSF Grants DMS-1007524 and DMS-1507019
¶Courant Institute of Mathematical Sciences
||NYU–ECNU Institute of Mathematical Sciences at NYU Shanghai
2 Results

In this section we fix $d = 2$. We also use the standard convention that the updates are made when independent rate one Poisson process clocks at each vertex ring.

Let A_T denote the event that the “right” neighbor of the origin (at $x = (1,0)$) is -1 for some $t \geq T$. Let $A_T' \subset A_T$ denote the event that the right neighbor of the origin is the first neighbor to be -1 at some time $t \geq T$ (more precisely, that no other neighbor is -1 at an earlier time in $[T, \infty]$). Let $B_{L,s}$ for $s \in \{-1, +1\}^\Lambda_L$ (where $\Lambda_L = \{-L, -L + 1, \ldots, L\}^2$) denote the event that $\sigma'(0)|_{\Lambda_L} = s$ and write $B_{L,+}$ when $s \equiv +1$. We denote the probability measure for the frozen origin $\sigma'(\cdot)$ model by P' and that for the regular coarsening model $\sigma(\cdot)$ by P.

Lemma 2.1. For all L,

$$P(A_T'|B_{L,+}) \geq 1/4.$$

Proof. The result is an easy consequence of symmetry among the four neighbors of the origin and the fact that $P(A_T) = 1$ (indeed, for all T, $P(A_T) = 1$ — see [2]).

Let Σ_L^T denote the sigma-field generated by the initial spin values and clock rings and coin tosses up to time T inside the box Λ_L.

Proposition 2.2. For any T, L,

$$P'(A_T|\Sigma_L^T) \geq 1/4 \ a.s.$$

Proof. Let $\tilde{\sigma}_T^L(\cdot)$ denote the model with the spin values at all sites in Λ_L frozen to $+1$ from time 0 up to time T and with the spin value at the origin remaining frozen at $+1$ thereafter. Denote the corresponding probability measure by \tilde{P}_T^L. Under the standard coupling, $\tilde{\sigma}(\cdot)$ stochastically dominates $\sigma'\sigma(\cdot)$, so we have

$$P'(A_T|\Sigma_L^T) \geq \tilde{P}_T^L(A_T) \geq \tilde{P}_T^L(A_T^1).$$

To continue the proof, we will use the following result about the “propagation speed” of influence between different spatial regions:

Lemma 2.3. Let D_T^L denote the event that $\sigma_x(t) = +1 \forall x \in \Lambda_L, \forall t \in [0,T]$. Then

$$\forall L, T, \varepsilon, \exists L' \text{ such that } P(D_T^L|B_{L',+}) \geq 1 - \varepsilon.$$

Proof. Let $L' \gg L$ and note that given $B_{L',+}$, $(D_T^L)^c$ can occur only if there is a nearest neighbor (self-avoiding) path between the boundaries of the two sets, $Z^2 \setminus \Lambda_{L'}$ and Λ_L, along which there are clock rings occurring in succession between times 0 and T. Any such path is at least of length $L' - L$ (i.e., contains at least $L' - L$ vertices besides the starting one).

Consider a particular path γ of length $m \geq L' - L$. For each m there are no more than 3^m such paths from each boundary point and the time it takes for successive clock rings along γ is at least $S_m = \sum_{i=1}^m t_i$ where the t_i are i.i.d. exponential random variables with parameter 1. By the exponential Markov inequality, for any $\alpha > 0$,

$$P(\sum_{i=1}^m t_i < T) = P(\sum_{i=1}^m t_i > -T) \leq \frac{E(e^{-\alpha \sum_{i=1}^m t_i})}{e^{-\alpha T}} = e^{\alpha T}E(e^{-\alpha t_i})^m = \frac{e^{\alpha T}}{(1 + \alpha)^m}.$$

Therefore, since there are at most $C L'$ possible starting points (for some constant C),

$$P((D_T^L)^c|B_{L',+}) \leq C L' \sum_{m = L' - L}^{\infty} 3^m \frac{e^{\alpha T}}{(1 + \alpha)^m} = C(\alpha, T, L)L' \left(\frac{3}{1 + \alpha}\right)^L,$$

where $C(\alpha, T, L)$ is a constant depending on α, T and L. Taking $\alpha > 2$ and the limit as $L' \to \infty$ completes the proof of the lemma.

ECP 21 (2016), paper 9.

Page 2/4 http://www.imstat.org/ecp/
Coarsening with a frozen vertex

Proof. (Continuation of proof of Proposition 2.2.)

Pick \(\epsilon > 0\) and fix \(T\) and \(L\). By Lemma 2.3, \(\exists L'\) such that

\[
P(D_{L'}^T|B_{L',+}) \geq 1 - \epsilon.
\]

Therefore, given \(B_{L',+}\), with probability at least \(1 - \epsilon\), \(\sigma_t(\cdot)\) positively dominates \(\sigma_L^T(\cdot)\) for \(0 \leq t < S\), where \(S = \inf\{t > 0|\sigma_t(0,0) = -1\}\), and so

\[
\hat{P}_L^T(A_L^T) \geq P(A_L^T|B_{L',+}) - \epsilon \geq 1/4 - \epsilon.
\]

Taking the limit as \(\epsilon \to 0\) completes the proof of Proposition 2.2. \(\square\)

Now let \(\Sigma_T\) denote the sigma field generated by the initial assignment of spins on \(\mathbb{Z}^2\) and the clock rings and coin tosses on \(\mathbb{Z}^2\) up to time \(T\).

Proposition 2.4. For all \(T\),

\[
P'(A_T|\Sigma_T) \geq 1/4 \text{ a.s.}
\]

Proof. For \(L \geq 1\) let \(X_L = P'(A_T|\Sigma_T)\). \(\{X_L^T, L \geq 1\}\) is an increasing filtration of sigma fields, and \(E(X_{L+1}|\Sigma_T^T) = X_L\). By the martingale convergence theorem, \(\lim_{L \to \infty}(X_L) = X_\infty = P'(A_T|\Sigma_T)\) and since \(X_L \geq 1/4\) for all \(L\), we have \(P'(A_T|\Sigma_T) \geq 1/4\). \(\square\)

Let \(A_{T,T'}\) denote the event that the right neighbor of the origin is \(-1\) for some time \(t \in [T,T']\). The following is immediate from Proposition 2.4.

Corollary 2.5.

\[
\lim_{T' \to \infty} P'(A_{T,T'}|\Sigma_T) \geq 1/4 \text{ a.s.}
\]

Lemma 2.6. For any \(T \geq 0\) and \(\gamma > 0\), \(\exists\) a deterministic \(T'\) such that

\[
P'\{\omega: P'(A_{T,T'}|\Sigma_T) \geq 1/8\} \geq 1 - \gamma.
\]

Proof. This is a straightforward consequence of the preceding corollary. \(\square\)

Theorem 2.7. For any \(T\),

\[
P'(A_T) = 1, \text{ and hence } P'(\cap_{T > 0} A_T) = 1.
\]

It follows that with probability one, \(\sigma'(1,0)(t)\) changes sign infinitely many times as \(t \to \infty\).

Proof. Given \(T\) and \(\epsilon > 0\) construct a sequence of deterministic times \(\{T_i: i \geq 0\}\) so that

1. \(T_0 = T\), and
2. \(P'(\omega: P'(A_{T_{i-1},T_i}|\Sigma_{T_{i-1}}) \geq 1/8) \geq 1 - \frac{\epsilon}{2^i}\).

Condition now on the event (of probability at least \(1 - \sum_{i=1}^\infty \frac{\epsilon}{2^i} = 1 - \epsilon\)) that

\[
P'(A_{T_{i-1},T_i}|\Sigma_{T_{i-1}}) \geq 1/8 \text{ for all } i.\]

On this conditioned probability space, letting \(\tilde{W}_i = 1\) (and otherwise 0) if \(A_{T_{i-1},T_i}\) occurs, we note that the \(\tilde{W}_i\)’s stochastically dominate i.i.d. \(\{0,1\}\)-valued \(W_i\)’s with \(\text{Prob}(W_i = 1) = 1/8\). Thus

\[
P'(A_{T_{i-1},T_i} \text{ occurs for only finitely many } i) \leq \epsilon.
\]

Letting \(\epsilon \to 0\) completes the proof of the first part of the theorem. The second part then follows because by stochastic domination (attractivity) and the results of [2], \(\sigma'(0,0)(t_i)\) equals +1 for an infinite sequence of \(t_i \to \infty\). \(\square\)

The next theorem follows from a modified version of the proof of Theorem 2.7.

Theorem 2.8. Every site in \(\mathbb{Z}^2 \setminus \{(0,0)\}\) flips infinitely many times in \(\sigma'(\cdot)\) with probability one.
Coarsening with a frozen vertex

Proof. For any site z other than the origin, and for L much larger than say the Euclidean norm of z, we consider the unfrozen σ model in which at time zero all the vertex values are set to $+1$ in the box of side length $2L$, centered at $z/2$ (so that the origin and z are located symmetrically with respect to this box). Then with probability $1/2$ the vertex at z flips to -1 before the one at the origin flips and until just after that time, there is no difference between the frozen (at the origin) σ' model and the unfrozen σ model. Hence there is probability at least $1/2$ in σ' that z will flip to minus. By applying the methods used in the proof of Theorem 2.7 (but with $1/4$ now replaced by $1/2$), we conclude that z will flip infinitely many times with probability one. \hfill \square

We note that the line of reasoning in the proof of the last theorem could have also been used to give a modified proof of Theorem 2.7 with $1/4$ replaced by $1/2$. A more interesting remark is the following.

Remark 2.1. For the process σ'' with some finite set S of vertices frozen to $+1$, it is possible to show by an extension of the arguments used in this paper that there is a finite deterministic $S' \supseteq S$ such that all sites in $\mathbb{Z}^2 \setminus S'$ flip infinitely many times in $\sigma''(\cdot)$ with probability one. In some cases, S' must be strictly larger than S — e.g., when $S = \{(-L, -L), (-L + L), (+L, -L), (+L, +L)\}$, S' includes all of Λ_L. One may also consider processes where some vertices are frozen to -1 and some to $+1$. We expect to pursue these issues in a future paper.

References

[1] M. Damron, S. M. Eckner, H. Kogan, C. M. Newman, V. Sidoravicius. Coarsening dynamics on \mathbb{Z}^d with frozen vertices. J. Stat. Phys. 160, pp. 60-72, 2015.

[2] S. Nanda, C. M. Newman, D. L. Stein, Dynamics of Ising spins systems at zero temperature. In: On Dobrushin’s way (From Probability Theory to Statistical Mechanics), R. Milnos, S. Shlosman and Y. Suhov, eds., Am. Math. Soc. Transl. (2) 198, pp. 183–194, 2000. MR-1766351

[3] C. M. Newman, D. L. Stein, Zero-temperature dynamics of Ising spin systems following a deep quench: results and open problems. Physica A. 279, pp. 159–168, 2000. MR-1797138