Vizing’s conjecture for cographs

Elliot Krop

ABSTRACT. We show that if G is a cograph, that is P_4-free, then for any graph H, $\gamma(G \Box H) \geq \gamma(G)\gamma(H)$. By the characterization of cographs as a finite sequence of unions and joins of K_1, this result easily follows from that of Bartsalkin and German. However, the techniques used are new and may be useful to prove other results.

2010 Mathematics Subject Classification: 05C69

Keywords: Domination number, Cartesian product of graphs, Vizing’s conjecture

1. Introduction

Vizing’s conjecture [12], now open for fifty-three years, states that for any two graphs G and H,

$$
\gamma(G \Box H) \geq \gamma(G)\gamma(H)
$$

(1.1)

where $\gamma(G)$ is the domination number of G.

The survey [4] discusses many results and approaches to the problem. For more recent partial results see [11], [10], [3], [6], [8], and [9].

A predominant approach to the conjecture has been to show it true for some large class of graphs. For example, in their seminal result, Bartsalkin and German [2] showed the conjecture for decomposable graphs. More recently, Aharoni and Szabó [1] showed the conjecture for chordal graphs and Brešar [3] gave a new proof of the conjecture for graphs G with domination number 3.

We say that a bound is of Vizing-type if $\gamma(G \Box H) \geq c\gamma(G)\gamma(H)$ for some constant c, which may depend on G or H. It is known [11] that all graphs satisfy the Vizing-type bound,

$$
\gamma(G \Box H) \geq \frac{1}{2}\gamma(G)\gamma(H) + \frac{1}{2}\min\{\gamma(G),\gamma(H)\}.
$$

Restricting the graphs, but as a generalization of Bartsalkin and German’s class of decomposable graphs, Contractor and Krop [6] showed

$$
\gamma(G \Box H) \geq \left(\gamma(G) - \sqrt{\gamma(G)}\right) \gamma(H)
$$

1
where \(G \) belongs to \(\mathcal{A}_1 \), the class of graphs which are spanning subgraphs of domination critical graphs \(G' \), so that \(G \) and \(G' \) have the same domination number and the clique partition number of \(G' \) is one more than its domination number.

Krop \cite{8} showed that any claw-free graph \(G \) satisfies the Vizing-type bound

\[
\gamma(G \Box H) \geq \frac{2}{3} \gamma(G) \gamma(H)
\]

In this paper we show that the class of induced \(P_4 \)-free graphs, or cographs, satisfies Vizing’s conjecture.

1.1. Notation. All graphs \(G(V, E) \) are finite, simple, connected, undirected graphs with vertex set \(V \) and edge set \(E \). We may refer to the vertex set and edge set of \(G \) as \(V(G) \) and \(E(G) \), respectively. For more on basic graph theoretic notation and definitions we refer to Diestel \cite{7}.

For any graph \(G = (V, E) \), a subset \(S \subseteq V \) dominates \(G \) if \(N[S] = G \). The minimum cardinality of \(S \subseteq V \), so that \(S \) dominates \(G \) is called the domination number of \(G \) and is denoted \(\gamma(G) \). We call a dominating set that realizes the domination number a \(\gamma \)-set.

The Cartesian product of two graphs \(G_1(V_1, E_1) \) and \(G_2(V_2, E_2) \), denoted by \(G_1 \square G_2 \), is a graph with vertex set \(V_1 \times V_2 \) and edge set \(E(G_1 \square G_2) = \{((u_1, v_1), (u_2, v_2)) : v_1 = v_2 \text{ and } (u_1, u_2) \in E_1, \text{ or } u_1 = u_2 \text{ and } (v_1, v_2) \in E_2\} \).

A graph \(G \) is a cograph or \(P_4 \)-free if it contains no induced \(P_4 \) subgraph.

Let \(G \) be any graph and \(S \) a subset of its vertices. Chellali et al. \cite{5} defined \(S \) to be a \([j, k]\)-set if for every vertex \(v \in V - S, j \leq |N(v) \cap S| \leq k \). Clearly, a \([j, k]\)-set is a dominating set. For \(k \geq 1 \), the \([1, k]\)-domination number of \(G \), written \(\gamma_{[1,k]}(G) \), is the minimum cardinality of a \([1, k]\)-set in \(G \). A \([1, k]\)-set with cardinality \(\gamma_{[1,k]}(G) \) is called a \(\gamma_{[1,k]}(G) \)-set.

If \(\Gamma = \{v_1, \ldots, v_k\} \) is a minimum dominating set of \(G \), then for any \(i \in [k] \), define the set of private neighbors for \(v_i \), \(P_i = \{v \in V(G) - \Gamma : N(v) \cap \Gamma = \{v_i\}\} \). For \(S \subseteq [k] \), \(|S| \geq 2 \), we define the shared neighbors of \(\{v_i : i \in S\} \), \(P_S = \{v \in V(G) - \Gamma : N(v) \cap \Gamma = \{v_i : i \in S\}\} \).

For any \(S \subseteq [k] \), say \(S = \{i_1, \ldots, i_s\} \) where \(s \geq 2 \). We may write \(P_S \) as \(P_{\{i_1, \ldots, i_s\}} \) or \(P_{i_1, \ldots, i_s} \) interchangeably.

For \(i \in [k] \), let \(Q_i = \{v_i\} \cup P_i \). We call \(Q = \{Q_1, \ldots, Q_k\} \) the cells of \(G \). For any \(I \subseteq [k] \), we write \(Q_I = \bigcup_{i \in I} Q_i \) and call \(C(Q_I) = \bigcup_{i \in I} Q_i \cup \bigcup_{S \subseteq I} P_S \) the chamber of \(Q_I \). We may write this as \(C_I \).

For a vertex \(h \in V(H) \), the \(G \)-fiber, \(G^h \), is the subgraph of \(G \Box H \) induced by \(\{(g, h) : g \in V(G)\} \).

For a minimum dominating set \(D \) of \(G \Box H \), we define \(D^h = D \cap G^h \). Likewise, for any set \(S \subseteq [k] \), \(P_S^h = P_S \times \{h\} \), and for \(i \in [k] \), \(Q_i^h = Q_i \times \{h\} \).

By \(v_i^h \) we mean the vertex \((v_i, h) \). For any \(I^h \subseteq [k] \), where \(I^h \) represents the indices of some cells in \(G \)-fiber \(G^h \), we write \(C_{\{I^h\}} \) to mean the chamber of \(Q_{I^h}^h \), that is, the set \(\bigcup_{i \in I^h} Q_i \cup \bigcup_{S \subseteq I^h} P_S^h \).

We may write \(\{v_i : i \in I^h\} \) for \(\{v_i^h : i \in I^h\} \) when it is clear from context that we are talking about vertices of \(G \Box H \) and not vertices of \(G \).
For clarity, assume that our representation of $G \square H$ is with G on the x-axis and H on the y-axis.

Any vertex $v \in V(G) \times V(H)$ is \textit{vertically dominated} if $(\{v\} \times N_H[h]) \cap D \neq \emptyset$ and \textit{vertically undominated}, otherwise. For $i \in [k]$ and $h \in V(H)$, we say that the cell Q^i_h is \textit{vertically dominated} if $(Q^i \times N_H[h]) \cap D \neq \emptyset$. A cell which is not vertically dominated is \textit{vertically undominated}.

In our argument, we label vertices of a minimum dominating set D of $G \square H$, by labels from $[k]$ so that for any $i \in [k]$, projecting the vertices labeled by i onto H produces a dominating set of H. We call a vertex $(x, h) \in D^h$ with the single label i, \textit{free}, if there exists another vertex $(y, h) \in D^h$, which is given the label i.

2. Cographs

\textbf{Theorem 2.1.} For any cograph G and any graph H, $\gamma(G \square H) \geq \gamma(G)\gamma(H)$.

\textbf{Proof.} Let $\Gamma = \{v_1, \ldots, v_k\}$ be a minimum $[1, 2]$ dominating set of G and let D be a minimum dominating set of $G \square H$. By the result of Chellali et al. \cite{5} (Theorem 8), $\gamma(G) = k$. Suppose $u \in V(G) - \{\Gamma\}$ is adjacent to two vertices of Γ, say v_1 and v_2. Notice that if neither v_1 nor v_2 have private neighbors with respect to Γ, then we could replace v_1 and v_2 by u in Γ and produce a smaller dominating set, which is a contradiction. Hence, at least one of P_1 or P_2 is nonempty.

\textbf{Claim 2.2.} There exists a vertex in $P_1 \cup P_2$ which is independent from both u and $V(G) - \{Q_1 \cup Q_2\}$.

\textbf{Proof.} Case 1: Suppose $P_1 \neq \emptyset$ and $P_2 = \emptyset$. Note that by the minimality of Γ no vertex of $\Gamma - \{v_2\}$ can be adjacent to v_2. If $w_1 \in P_1$, then by definition of private neighbors, no vertex of $\Gamma - \{v_1\}$ is adjacent to w_1. If u is not adjacent to w_1, then we produce $P_1 : w_1v_1uv_2$ which contradicts the definition of G. However, if u is adjacent to every vertex of P_1, then we could replace v_1 and v_2 by u in Γ which would produce a smaller dominating set, which is impossible.

Case 2: Suppose $P_1, P_2 \neq \emptyset$. By minimality of Γ, some vertex of $P_1 \cup P_2$ is not adjacent to u. Suppose such a vertex is $w_2 \in P_2$. We may assume v_1 is adjacent to v_2, else we would produce $P_1 : w_2v_2uv_1$. For any vertex $w_1 \in P_1$, we may assume w_1 is adjacent to w_2, else we would produce $P_1 : w_1v_1w_2w_2$. Notice u is adjacent to w_1 to avoid $P_1 : w_2w_1w_1u$. Suppose $u' \in V(G) - \{Q_1 \cup Q_2\}$ is adjacent to w_2 and suppose without loss of generality that u' is adjacent to v_3.

![Figure 1](image-url)
Thus, we are left with the situation illustrated in Figure 2 where the drawn edges have been shown to exist.

\[
\begin{array}{c}
\text{Figure 2.}
\end{array}
\]

Since \(u' \) may adjacent to at most two vertices of \(\Gamma \) we argue that \(u' \) is adjacent to either \(v_1 \) or \(v_2 \), since otherwise we have \(P_4 : u'w_2v_2v_1 \).

Subcase (i): If \(u' \) is adjacent to \(v_2 \), then \(u' \) is also adjacent to \(w_1 \) to avoid \(P_4 : v_3u'w_2w_1 \). Furthermore, if \(v_3 \) is not adjacent to \(v_1 \) or \(v_1 \), then we produce \(P_4 : v_3u'w_2v_1 \). If \(v_3 \) is adjacent to \(v_1 \), then we produce \(P_4 : w_2v_2v_1v_3 \). Thus, \(v_2 \) is adjacent to \(v_3 \). However, now we have \(P_4 : v_3v_2w_1 \) which is impossible.

Subcase (ii): If \(u' \) is adjacent to \(v_1 \), then \(u' \) is also adjacent to \(w_1 \) to avoid \(P_4 : v_3u'w_2v_1 \). Furthermore, \(v_3 \) is adjacent to \(v_2 \), else we have \(P_4 : v_3u'w_2v_2 \).

For any \(h \in V(H) \), suppose the fiber \(G^h \) contains \(\ell_h(= \ell) \) vertically un-dominated cells \(U^h = \{ Q^h_{i_1}, \ldots, Q^h_{i_k} \} \) for \(0 \leq \ell \leq k \). We set \(I^h = \{ i_1, \ldots, i_k \} \). Notice that for \(j_1, j_2 \in [k] - I^h \), no vertex of \(P^h_{j_1,j_2} \) may dominate any of \(v_{i_1}, \ldots, v_{i_k} \). Thus, \(\{ v_i : i \in I^h \} \) must be dominated horizontally in \(G^h \) either by shared neighbors of \(\{ v_i : i \in I^h \} \) or by vertices of \(\{ v_i : 1 \leq i \leq k, i \notin I^h \} \). Furthermore, the private neighbors \(\{ P^h_i : i \in I^h \} \) must be dominated horizontally in \(G^h \) either by shared neighbors of \(\{ v_i : i \in I^h \} \) or by vertices of \(\{ P^h_i : 1 \leq i \leq k, i \notin I^h \} \).

We label the vertices of \(D \) by the following Provisional Labeling. If a vertex of \(D^h \) for any \(h \in H \), is \(Q_i^h \) for \(1 \leq i \leq k \), then we label that vertex by \(i \). If \(v \) is a shared neighbor of some subset of \(\{ v_i : i \in I^h \} \), then it is a member of \(P^h_{i,j} \) for some \(i, j \in I^h \), and we label \(v \) by the pair of labels \((i, j) \). If \(v \) is a member of \(P^h_{i,j} \) for \(i \in I^h \) and \(j \in [k] - I^h \), then we label \(v \) by \(i \). If \(v \) is a member of \(P^h_{i,j} \) for \(i, j \in [k] - I^h \), then we label \(v \) by either \(i \) or \(j \) arbitrarily.

After the labels are placed, all vertices of \(D \) have a single label or a pair of labels.

Next, we apply a relabeling to some of the vertices of \(D \) which we call the First Refinement. For a fixed \(h \in H \), suppose \(v \) is some shared neighbor of two vertices of \(\{ v_i : i \in I^h \} \) in the chamber of \(Q^h_{j_1} \), which is vertically dominated, say by \(y \in D^{h'} \) for some \(h' \in H \), \(h \neq h' \). In other words, we suppose \(v \in P^h_{j_1,j_2} \) for some \(j_1, j_2 \in I^h \) which implies that \(y \in P^{h'}_{j_1,j_2} \).

The vertex \(y \) may be labeled by one or two labels, regardless of whether the First Refinement had been performed on \(D^{h'} \).
Suppose that y is labeled by one label, say j_1. If D^h contains a vertex $x \in P^h_{j_1,j_2}$, then we remove the pair of labels (j_1, j_2) from x and relabel x by j_2.

Suppose y is labeled by the pair of labels, (j_1, j_2). If D^h contains a vertex $x \in P^h_{j_1,j_2}$, then we remove the pair of labels (j_1, j_2) from x and then relabel x arbitrarily by one of the single labels j_1 or j_2.

After the labeling, a vertex v of D may have a pair of labels (i, j) if $v \in P^h_{i,j}$ and for any $h' \in N_H(h)$, $D^{h'} \cap P^h_{i,j} = \emptyset$.

Finally, we relabel some of the vertices of D by the Second Refinement. For every $h \in H$, if D^h contains vertices x and y with pairs of labels $(j_1, j_2), (j_2, j_3)$ respectively, for some integers j_1, j_2, and j_3, then we relabel y by the label j_3. If x and y are labeled j_1 and (j_1, j_2) respectively, for some integers j_1, j_2, we relabel y by j_2. We apply this relabeling to pairs of vertices of D^h, sequentially, in any order.

Claim 2.3. After the Second Refinement every label on a vertex of D is a single label.

Proof. For any $h \in V(H)$, suppose $v \in D^h$ has a pair of labels (i, j). The Provisional Labeling prescribes that $i, j \in I^h$ which means that Q_i and Q_j are vertically undominated cells. If there exists $w \in D^h \cap P^h_{j,m}$ for any $1 \leq m \leq k$, or $x \in D^h \cap P^h_j$, then v would have a single label after the Second Refinement which is not the case. By Claim 2.2 some vertex x in $P^h_i \cup P^h_j$ is independent from v and independent from $V(G) - \{Q_i \cup Q_j\}$. However, this means that x is undominated, which contradicts the fact that D is a dominating set. □

Suppose that for some $h \in V(H)$, G^h contains a cell, Q^h_i, which is vertically undominated and the vertices of D^h dominating Q^h_i are not labeled i. In this case, v^h_i can only be dominated by other members of $\{v^h_j : j \in [k], j \neq i\}$, so suppose for some $j_1 \neq i, j_1 \in [k]$, there exists $v^h_{j_1} \in D^h$ so that v_i is adjacent to v_{j_1}. To avoid a contradiction to the minimality of Γ, we see that $P_i \neq \emptyset$ and say $u \in P^h_i$. Notice that if u is dominated by some $u' \in P^h_{j_2} \cap D^h$ for some $j_2 \neq i, j_1$, then we produce $P_4 : v_{j_1}v_{j_2}uu'$ in G^h and thus in G. Furthermore, if $v \in P^h_{j_1} \cap D^h$ dominates u, then v is a free vertex labeled j_1 and we may relabel v by i without changing the vertically dominated status of cells $Q^h_{j_1}$ for any $h' \in V(H)$. Finally, suppose u is dominated by some shared neighbor $w \in P^h_{j_1, j_2} \cap D^h$. Notice if $x \in P^h_{j_1}$, then we produce $P_4 : xv_{j_1}v_{j_2}$ and if $y \in P^h_{j_2}$, then we produce $P_4 : yv_{j_2}v_{j_1}$ which cannot occur. Thus, $P^h_{j_1} = P^h_{j_2} = \emptyset$. If for every $u' \in P^h_{j_1, j_2}$, w is adjacent to w', we have a contradiction to the minimality of Γ, since now we can replace v_{j_1} and v_{j_2} by the projection of w onto $V(G)$ and form a smaller dominating set of G. We are left to suppose there exists $w' \in P^h_{j_1, j_2}$ so that w' is not adjacent to w. To avoid $P_4 : w'v_{j_1}v_{j_2}$, we must also have v_{j_2} adjacent to v_i. At this point, notice that $\{v_{j_1}, v_{j_2}, P^h_{j_1, j_2}\}$ is dominated by v_i and u, which is a contradiction to the
minimality of Γ, since now we can replace v_{j_1} and v_{j_2} in Γ by the projection of u onto $V(G)$ and produce a smaller dominating set of G.

Notice that for any $i \in [k]$, projecting all vertices with a label i to H produces a dominating set of H. Summing over all i, we count at least $\gamma(G)\gamma(H)$ vertices in D.

□

References

[1] R. Aharoni and T. Szabó, *Vizing’s conjecture for chordal graphs*, Discrete Mathematics 309(6): 1766-1768 (2009).
[2] A. M. Bartsalkin and L. F. German, *The external stability number of the Cartesian product of graphs*, Bul. Akad. Stiinte RSS Moldoven, (1):5-8, 94, 1979.
[3] B. Brešar, *Vizing’s conjecture for graphs with domination number 3 - a new proof*, Electron. J. Comb. 22(3): P3.38 (2015).
[4] B. Brešar, P. Dorbec, W. Goddard, B. Hartnell, M. Henning, S. Klavžar, D. Rall, *Vizing’s conjecture: a survey and recent results*, J. Graph Theory, 69 (1): 46-76 (2012).
[5] M. Chellali, T. Haynes, S. Hedetniemi, A. McRae, *[1,2]-sets in graphs*, Discrete Applied Mathematics, 161: 2885-2893 (2013).
[6] A. Contractor and E. Krop, *A class of graphs approaching Vizing’s conjecture*, Theory and Applications of Graphs, 3(1), Article 4 (2016).
[7] R. Diestel, *Graph Theory, Third Edition*, Springer-Verlag, Heidelberg Graduate Texts in Mathematics, Volume 173, New York (2005).
[8] E. Krop, *Vizing’s conjecture: a two-thirds bound for claw-free graphs*, preprint http://arxiv.org/abs/1607.06936 (2016)
[9] E. Krop, *A new bound for Vizing’s conjecture*, preprint http://arxiv.org/abs/1608.02107 (2016)
[10] Marcin Pilipczuk, Michal Pilipczuk, and Riste Škrekovski, *Discrete Applied Mathematics*, 160:2484-2490 (2012).
[11] S. Suen, J. Tarr, *An Improved Inequality Related to Vizing’s Conjecture*, Electron. J. Combin. 19(1): P8 (2012).
[12] V. G. Vizing, *The Cartesian Product of Graphs*, Vycisl. Sistemy 9: 30-43 (1963).

Elliott Krop (elliotkrop@clayton.edu)

Department of Mathematics, Clayton State University