Prediction Measures in Beta Regression Models

Patrícia L. Espinheiraa,*, Luana Cecília Meireles da Silvaa,
Alisson de Oliveira Silvaa

aDepartamento de Estatística, Universidade Federal de Pernambuco, Cidade
Universitária, Recife/PE, 50740–540, Brazil

Abstract

We consider the issue of constructing PRESS statistics and coefficients of prediction
for a class of beta regression models. We aim at displaying measures of predictive
power of the model regardless goodness-of-fit. Monte Carlo simulation results on the
finite sample behavior of such measures are provided. We also present an application
that relates to the distribution of natural gas for home usage in São Paulo, Brazil.
Faced with the economic risk of to overestimate or to underestimate the distribution
of gas was necessary to construct prediction limits using beta regression models
(Espinheira et al., 2014). Thus, it arises the aim of this work, the selection of best
predictive model to construct best prediction limits.

Key words: Beta distribution, beta regression, PRESS, prediction coefficient.

1 Introduction

The beta distribution is commonly used to model random variables that assume values
in (0,1), such as percentages, rates and proportions. The beta density can display quite
different shapes depending on the parameter values. Oftentimes the variable of interest
is related to a set of independent (explanatory) variables. Ferrari and Cribari-Neto (2004)
introduced a regression model in which the response is beta-distributed, its mean be-
ing related to a linear predictor through a link function. The linear predictor includes
independent variables and regression parameters. Their model also includes a precision

* Corresponding author.

Email address: patespipa@de.ufpe.br (Patrícia L. Espinheira).

Preprint submitted to Elsevier 21 January 2015
parameter whose reciprocal can be viewed as a dispersion measure. In the standard formulation of the beta regression model it is assumed that the precision is constant across observations. However, in many practical situations this assumption does not hold. Smithson and Verkuilen (2006) consider a beta regression specification in which dispersion is not constant, but is a function of covariates and unknown parameters. Parameter estimation is carried out by maximum likelihood (ML) and standard asymptotic hypothesis testing can be easily performed. Practitioners can use the betareg package, which is available for the R statistical software (http://www.r-project.org), for fitting beta regressions. Cribari-Neto and Zeileis (2010) provide an overview of varying dispersion beta regression modeling using the betareg package.

Recently Espinheira et al. (2014) built and evaluated bootstrap-based prediction intervals for the class of beta regression models with varying dispersion. However, a prior approach it is necessary, namely: the selection of the model with the best predictive ability, regardless of the goodness-of-fit. Indeed, the model selection is a crucial step in data analysis, since all inferential performance is based on the selected model. Bayer and Cribari-Neto (2014) evaluated the performance of different selection criteria models in samples of finite size in beta regression model, such as Akaike Information Criterion (AIC) (Akaike, 1973), Schwarz Bayesian Criterion (SBC) (Schwarz, 1978), residual sum of squares (RSS), and various functions of RSS such as the coefficient of determination, R^2 and the adjusted R^2. However, these methods do not offer any insight about the quality of the predictive values. In this context, Allen (1974), proposed the PRESS (Predictive Residual Sum of Squares) criterion, that can be used as an indication of the predictive power of a model. The PRESS statistic is independent from the goodness-of-fit of the model, since that its calculation is made by leaving out the observations that the model is trying to predict. The PRESS statistics can be viewed as a sum of squares of external residuals. Thus, similarly of the approach of R^2 Mediavilla et al. (2008) proposed a coefficient of prediction based on PRESS namely P^2. The P^2 statistic can be used to select models from a predictive perspective adding important information about the predictive ability of the model in various scenarios.

2 On beta regression residuals

Let y_1, \ldots, y_n be independent random variables such that each y_t, for $t = 1, \ldots, n$, is beta distributed, i.e., each y_t has density function given by

$$f(y_t; \mu_t, \phi_t) = \frac{\Gamma(\phi_t)}{\Gamma(\mu_t\phi_t)\Gamma((1 - \mu_t)\phi_t)} y_t^{\mu_t\phi_t - 1}(1 - y_t)^{(1 - \mu_t)(1 - \phi_t) - 1}, \quad 0 < y_t < 1,$$ \hspace{1cm} (1)

where $0 < \mu_t < 1$ and $\phi_t > 0$. Here, $E(y_t) = \mu_t$ and $\text{Var}(y_t) = V(\mu_t)/(1 + \phi_t)$, where $V(\mu_t) = \mu_t(1 - \mu_t)$. In the beta regression model introduced by Ferrari and Cribari-Neto (2004)
the mean of y_t can be written as

$$g(\mu_t) = x_t^\top \beta = \eta_t. \quad (2)$$

In addition to the relation given in (2), it is possible to assume that the precision parameter is not constant and write

$$h(\phi_t) = z_t^\top \gamma = \vartheta_t. \quad (3)$$

In (2) and (3), η_t and ϑ_t are linear predictors, $\beta = (\beta_1, \ldots, \beta_k)^\top$ and $\gamma = (\gamma_1, \ldots, \gamma_q)^\top$ are unknown parameter vectors ($\beta \in \mathbb{R}^k; \gamma \in \mathbb{R}^q$), x_{t1}, \ldots, x_{tk} and z_{t1}, \ldots, z_{tq} are fixed covariates ($k+q < n$) and $g(\cdot)$ and $h(\cdot)$ are link functions, which are strictly increasing and twice-differentiable.

The PRESS statistic is based on sum of external residuals obtained from exclusion of observations. For beta regression models [Ferrari et al. (2011)] present a standardized residual obtained using Fisher’s scoring iterative algorithm for β under varying dispersion. Here, we propose a new residual based on a combination of ordinary residuals obtained using the algorithms for β and γ under varying dispersion. At the outset, consider the Fisher’s scoring iterative algorithm for estimating β (see the Appendix A).

From (A.5) it follows that the mth step of the scoring scheme is

$$\beta^{(m+1)} = \beta^{(m)} + (X^\top \Phi^{(m)} W^{(m)} X)^{-1} \Phi^{(m)} X^\top T^{(m)} (y^* - \mu^{*(m)}), \quad (4)$$

where the tth elements of the vectors y^* and μ^* are given, respectively, by

$$y_t^* = \log\{y_t/(1 - y_t)\} \quad \text{and} \quad \mu_t^* = \psi(\mu_t \phi_t) - \psi((1 - \mu_t) \phi_t), \quad (5)$$

$\psi(\cdot)$ denoting the digamma function, i.e., $\psi(u) = d \log \Gamma(u)/du$ for $u > 0$. The matrices T and W are given in (A.1) and (A.3), respectively, X is an $n \times k$ matrix whose tth row is x_t^\top and $\Phi = \text{diag}(\phi_1, \ldots, \phi_n)$. Note that $\mu_t^* = E(y_t^*)$ (see (A.6); Appendix A).

Similarly, from (A.5) it follows that the mth step of the scoring scheme for γ is given by

$$\gamma^{(m+1)} = \gamma^{(m)} + (Z^\top D^{(m)} Z)^{-1} Z^\top H^{(m)} a^{(m)}, \quad (6)$$

where the tth element of a_t is given by

$$a_t = \mu_t(y_t^* - \mu_t^*) + \log(1 - y_t) - \psi((1 - \mu_t) \phi_t) + \psi(\phi_t) \quad (7)$$

and the matrices H and D are given in (A.2) and (A.4), respectively, and Z is an $n \times q$ matrix that tth row is z_t^\top. It is possible to write the iterative schemes in (4) and (6) in terms of weighted least squares regressions, respectively as $\beta^{(m+1)} = (X^\top \Phi^{(m)} W^{(m)} X)^{-1} \Phi^{(m)} X^\top W^{(m)} u_1^{(m)}$ and $\gamma^{(m+1)} = (Z^\top D^{(m)} Z)^{-1} Z^\top D^{(m)} u_2^{(m)}$. Where $u_1^{(m)} = \eta^{(m)} + W^{-1(m)} T^{(m)} (y^* - \mu^{*(m)})$, with $\eta = (\eta_1, \ldots, \eta_n)^\top = X \beta$, $u_2^{(m)} = \vartheta^{(m)} + Z \gamma$.
\(D^{-1(m)}H^{(m)}a^{(m)} \), with \(\vartheta = (\vartheta_1, \ldots, \vartheta_n)^\top = Z\gamma \) and \(a_t \) given in (7). Upon convergence,
\[
\hat{\beta} = (X^T\hat{\Phi}W_1X)^{-1}X^T\hat{\Phi}W_1u_1 \quad \text{and} \quad \hat{\gamma} = (Z^TDZ)^{-1}Z^TDu_2, \quad \text{where}
\]
\[
u_1 = \hat{\eta} + \hat{W}^{-1}\hat{T}(y^* - \hat{\mu}) \quad \text{and} \quad u_2 = \hat{\vartheta} + \hat{D}^{-1}\hat{H}\hat{a}.
\]

Here, \(\hat{W}, \hat{T}, \hat{H} \) and \(\hat{D} \) are the matrices \(W, T, H \) and \(D \) respectively, evaluated at the maximum likelihood estimator. We note that \(\hat{\beta} \) and \(\hat{\gamma} \) in (8) can be viewed as the least squares estimates of \(\beta \) and \(\gamma \) obtained by regressing \(\hat{\Phi}^{1/2}\hat{W}^{1/2}u_1 \) and \(\hat{D}^{1/2}u_2 \) on \(\hat{\Phi}^{1/2}\hat{W}^{1/2}X \) and \(\hat{D}^{1/2}Z \), respectively. The residuals ordinary obtained of interactive process of \(\beta \) and \(\gamma \) are given by \(r^\beta = \hat{\Phi}^{1/2}\hat{W}^{1/2}(u_1 - \hat{\eta}) = \hat{\Phi}^{1/2}\hat{W}^{-1/2}\hat{T}(y^* - \hat{\mu}) \) and \(r^\gamma = \hat{D}^{1/2}(u_2 - \hat{\vartheta}) = \hat{D}^{-1/2}\hat{H}\hat{a} \), respectively. Hence, using the definitions of the matrices given from (A.1) to (A.5), we can rewrite the residuals obtained from the iterative process of \(\beta \) and \(\gamma \) respectively, as
\[
r^\beta_t = \frac{y^*_t - \hat{\mu}^*_t}{\sqrt{\nu_t}} \quad \text{and} \quad r^\gamma_t = \frac{\hat{a}_t}{\sqrt{\zeta_t}},
\]
where \(\nu_t \) and \(\zeta_t \) are given in (A.3) and (A.4), respectively. Thus, we propose a new residual based on \(r^\beta \) and \(r^\gamma \), which we shall refer to as the combined residual \(r^\beta\gamma_t = (y^*_t - \hat{\mu}^*_t) + \hat{a}_t \) where \(y^*_t \) and \(\mu^*_t \) are given in (5). Assuming that \(\mu_t \) and \(\phi_t \) are known and from (A.6) to (A.10) it follows that \(\text{Var}(r^\beta\gamma_t) = \zeta_t \), with
\[
\zeta_t = (1 + \mu_t)^2\psi^\prime(\mu_t\phi_t) + \mu_t^2\psi^\prime((1 - \mu_t)\phi_t) - \psi^\prime(\phi_t).
\]

Then, we can define the following standardized combined residual:
\[
r^\beta\gamma_{p,t} = \frac{(y^*_t - \hat{\mu}^*_t) + \hat{a}_t}{\sqrt{\zeta_t}}
\]

Here, \(\hat{\zeta} \) is \(\zeta_t \) in (10) evaluated at \(\hat{\mu} \) and \(\hat{\phi} \). It is important to note that when \(\phi \) is constant it is only necessary replace \(\phi \) by \(\hat{\phi} \) at all elements of (11). We should emphasize that here we are just interested in evaluating the \(r^\beta\gamma_p \) in the composition of the PRESS statistic.

3 \(P^2 \) Statistics

Consider the linear model, \(Y = X\beta + \varepsilon \) where \(Y \) is a vector \(n \times 1 \) of responses, \(X \) is a known matrix of covariates of dimension \(n \times p \), \(\beta \) is the parameter vector of dimension \(p \times 1 \) and \(\varepsilon \) is a vector \(n \times 1 \) of errors distributed as \(N_n(0; \sigma^2I_n) \). Let \(\hat{\beta} = (X^TX)^{-1}X^TY \), \(\varepsilon_t = y_t - x_t^T\hat{\beta} \), \(\hat{y} = x_T^T\hat{\beta} \) and let \(\hat{\beta}(t) \) be the estimate of \(\beta \) without the \(t \)th observation and \(\hat{y}(t) = x_T^T\hat{\beta}(t) \) be the case deleted predicted value of the response when the independent
variable has value x_i. Thus, for multiple regression $PRESS = \sum_{t=1}^{n}(y_t - \hat{y}_{(t)})^2$ which can be rewritten as $PRESS = \sum_{t=1}^{n}(y_t - \hat{y}_{(t)})^2/(1 - h_{tt})^2$, where h_{tt} is the ttth diagonal element of the matrix $X (X^\top X)^{-1} X^\top$.

In the beta regression model $\hat{\beta}$ in (8) can be viewed as the least squares estimate of β obtained by regressing

$$\hat{y} = \Phi^{1/2} \hat{W}^{1/2} u_1 \text{ on } \tilde{X} = \Phi^{1/2} \hat{W}^{1/2} X.$$ (12)

Thus, the prediction error is $\hat{y}_t - \hat{y}_{(t)} = \hat{\phi}_t^{1/2} \hat{w}_t^{1/2} u_{1,t} - \hat{\phi}_t^{1/2} \hat{w}_t^{1/2} x_t^\top \hat{\beta}_{(t)}$. Using the ideas proposed by (Pregibon, 1981) and fact that

$$\hat{\beta}_{(t)} = \hat{\beta} - \frac{(X^\top \Phi \hat{W} X)^{-1} x_t^\top \hat{\phi}_t^{1/2} \hat{w}_t^{1/2} r_t^\beta}{(1 - h_{tt}^*)},$$

where r_t^β is given in (9) and h_{tt}^* is the ttth diagonal element of

$$H^* = (\hat{W} \Phi)^{1/2} X (X \Phi \hat{W} X)^{-1} X^\top (\Phi \hat{W})^{1/2}$$

it then follows that $\hat{y}_t - \hat{y}_{(t)} = \{r_t^\beta\}/(1 - h_{tt}^*)$. Finally, for the beta regression model the PRESS statistic is given by

$$PRESS = \sum_{t=1}^{n}(\hat{y}_t - \hat{y}_{(t)})^2 = \sum_{t=1}^{n} \left(\frac{r_t^\beta}{1 - h_{tt}^*}\right)^2.$$ (13)

In (13) the ttth observation is not used in fitting the regression model to predict y_t, then both the external predicted values $\hat{y}_{(t)}$ and the external residuals $e_{(t)}$ are independent of y_t. This fact enables the PRESS statistic to be a true assessment of the prediction capabilities of the regression model regardless of the overall quality of the fit of the model.

Considering the same approach of the coefficient of determination R^2, we can think in a prediction coefficient based on PRESS, namely

$$P^2 = 1 - \frac{PRESS}{SST_{(t)}},$$ (14)

wherein $SST_{(t)} = \sum_{t=1}^{n}(y_t - \bar{y}_{(t)})^2$ and $\bar{y}_{(t)}$ is the arithmetic average of the $y_{(t)}$, $t = 1, \ldots, n$. It can be shown that $SST_{(t)} = (n/n - p)^2 SST$, wherein p is the number of model parameters. In the beta regression model with varying dispersion, $SST = \sum_{t=1}^{n}(\hat{y}_t - \bar{y})^2$, \bar{y} is the is the arithmetic average of the $\hat{y}_t = \hat{\phi}_t^{1/2} \hat{w}_t^{1/2} u_{1,t}$, $t = 1, \ldots, n$ given in (12) and $p = k + q$.

Cook and Weisberg (1982) suggest other versions of PRESS statistics based on different residuals. Thus, we present another version of PRESS statistics and P^2 associated
considering a new residual presented in (11), such that

\[
PRESS_{\beta\gamma} = \sum_{t=1}^{n} \left(\frac{r_{p,t}^{\beta\gamma}}{1 - h_{tt}} \right)^2 \quad \text{and} \quad P^2_{\beta\gamma} = 1 - \frac{PRESS_{\beta\gamma}}{SST(t)},
\]

respectively. It is noteworthy that the measures \(R^2 \) and \(P^2 \) are distinct, since the \(R^2 \) propose to measure the quality of fit of the model and the \(P^2 \) measure the predictive power. Additionally, \(P^2 \) and \(P^2_{\beta\gamma} \) are not positive measure. In fact, the \(PRESS/SST(t) \) is a positive quantity, thus the \(P^2 \) and the \(P^2_{\beta\gamma} \) associated given in (14) and (15), respectively, take values in \((-\infty; 1]\). The closer to one the better is the predictive power of the model. In order to check the goodness-of-fit of the estimated model, we used the approach suggested by Bayer and Cribari-Neto (2014) for beta regression models with varying dispersion, a version of \(R^2 \) based on likelihood ratio, given by:

\[
R^2_{\text{LR}} = 1 - \left(\frac{L_{\text{null}}}{L_{\text{fit}}} \right)^{2/n},
\]

wherein \(L_{\text{null}} \) is the maximum likelihood achievable (saturated model) and \(L_{\text{fit}} \) is the achieved by the model under investigation.

3.1 Monte Carlo results

The Monte Carlo experiments were carried out using both fixed and varying dispersion beta regressions as data generating processes. All results are based on 10,000 Monte Carlo replications. Table 1 contains numerical results for the fixed dispersion beta regression model as data generating process, given by

\[
\log \left(\frac{\mu_t}{1 - \mu_t} \right) = \beta_1 + \beta_2 x_{t2} + \beta_3 x_{t3} + \beta_4 x_{t4} + \beta_5 x_{t5}, \quad t = 1, \ldots, n,
\]

The covariate values were independently obtained as random draws of the following distributions: \(X_{ti} \sim U(0,1) \), \(i = 2, \ldots, 5 \) and were kept fixed throughout the experiment. The precisions, the sample sizes and the mean response are, respectively, \(\phi = (50, 148, 400) \), \(n = (40, 80, 120) \), \(\mu \in (0.005, 0.12) \), \(\mu \in (0.90, 0.99) \) and \(\mu \in (0.20, 0.88) \). To investigate the performances of statistics in the omission of covariates, we consid-
ered the Scenarios 1, 2 and 3, in which are omitted, three, two and one covariate, respectively. In the fourth scenario the estimated model is correctly specified. Additionally we calculate the \(R^2_{\text{LR}} \) for the same scenarios. The results in Table 1 show that the values of all statistics increase as important covariates are included in the model. Statistics behave similarly as the sample size and the precisions values indicating that the most important factor is the correct specification of the model. Considering the three ranges for the \(\mu \) it should be noted that the statistic values are considerably larger when \(\mu \in (0.20, 0.88) \) and the values approaching one when the estimated model is closest to the true model. For instance, in Scenario 4 for \(n = 40 \), \(\phi = (50, 148, 400) \) the values of \(P^2 \) and \(R^2_{\text{LR}} \) are, respectively, \((0.8354, 0.9357, 0.9748) \) and \((0.8349, 0.9376, 0.9758) \).
The statistics finite sample behavior substantially change when \(\mu \in (0.90; 0.99) \). It is noteworthy the reduction of the statistic values, revealing the difficulty in to fit the model and make prediction when \(\mu \approx 1 \). Indeed, in this range of \(\mu \) is more difficult to make prediction that to fit the model. For example, in Scenario 1, when three covariates are omitted from the model, when \(n = 40 \) and \(\phi = (50, 148, 400) \) the \(P_2^2 \) values equals, 0.0580, 0.0636 and 0.0972 whereas the the \(R_{2LR}^2 \) values are 0.1553, 0.1999 and 0.2496, respectively. Similar results were obtained for \(n = 80, 120 \). Even when for the correctly specified four covariate model (Scenario 4) the predictive power of the model is more affected than the quality of fit of the model by the fact of \(\mu \approx 1 \). In this situation, it is noteworthy that the finite sample performances predictive power model improve when the value of the precision parameter increases. For instance, when \(n = 120 \) and \(\phi = (50, 148, 400) \) we have \(P_2^2 = (0.0272, 0.2222, 0.5622) \) and \(P_{2\beta\gamma}^2 = (0.063, 0.5348, 0.8381) \), respectively. Here it is possible see that the \(P_{2\beta\gamma}^2 \) statistic always shows larger values than the \(P_2^2 \) statistic when the mean responses are close to of the upper limit of the standard unit interval. However, the two measures behave similarly when used to investigate model misspecification.

We have also carried out Monte Carlo simulations using a varying dispersion beta regression model, in which we increased the number of covariates, used different covariates in the mean and precision submodels. In this case the data generating process and the postulated model is the same . We report results for \(\lambda = (20, 50, 100), n = (40, 80, 120), \mu \in (0.20, 0.88), \mu \in (0.90, 0.99) \) and \(\mu \in (0.005, 0.12) \). Here,

\[
\lambda = \frac{\phi_{\text{max}}}{\phi_{\text{min}}} = \frac{\max_{t=1,\ldots,n} \{\phi_t\}}{\min_{t=1,\ldots,n} \{\phi_t\}}, \tag{16}
\]

is the measure the intensity of nonconstant dispersion. The covariate values in the mean submodel and in the precision submodel were obtained as random draws from the \(\mathcal{U}(0,1) \) and \(\mathcal{U}(-0.5,0.5) \) distributions, respectively, such that the covariate values in the two submodels are not the same. At the end, we also considered a covariate values generated from \(t(3) \) (Student’s t-distribution with 3 degrees of freedom). The results are presented in Table [2]. We should emphasize that were generated only \(n = 40 \) covariates values and the \(n = 80, 120 \) covariates values are replications of original set. In this sense, the intensity of nonconstant dispersion remains the same over the sample
Table 1
Statistic values. True model: \(g(\mu_t) = \log(\mu_t/(1-\mu_t)) = \beta_1 + \beta_2 x_{t12} + \beta_3 x_{t13} + \beta_4 x_{t14} + \beta_5 x_{t15}, \)
\(t = 1,\ldots,n, \phi \) fixed. Misspecification: omitted covariates (Scenarios 1, 2 and 3).

Scenarios	Scenario 1	Scenario 2	Scenario 3	Scenario 4												
Estimated model	\(g(\mu) = \beta_1 + \beta_2 x_{t12} + \beta_3 x_{t13} + \beta_4 x_{t14} + \beta_5 x_{t15} \)	\(g(\mu) = \beta_1 + \beta_2 x_{t12} + \beta_3 x_{t13} + \beta_4 x_{t14} + \beta_5 x_{t15} \)	\(g(\mu) = \beta_1 + \beta_2 x_{t12} + \beta_3 x_{t13} + \beta_4 x_{t14} + \beta_5 x_{t15} \)	\(g(\mu) = \beta_1 + \beta_2 x_{t12} + \beta_3 x_{t13} + \beta_4 x_{t14} + \beta_5 x_{t15} \)												
\(\mu \)	\(\phi \)	50	150	400	50	150	400	50	150	400	50	150	400	50	150	400
\(n = 40 \)	\(P^2 \)	0.359	0.392	0.406	0.457	0.501	0.514	0.595	0.655	0.679	0.835	0.935	0.974			
\(P^2_\beta \)	0.454	0.471	0.478	0.567	0.599	0.611	0.704	0.754	0.774	0.856	0.938	0.974				
\(P^2_\gamma \)	0.354	0.390	0.405	0.467	0.514	0.532	0.613	0.674	0.697	0.857	0.946	0.979				
\(R^2 \)	0.195	0.50	0.977	0.043	0.053	0.322	400	0.927	0.971	0.842	0.932	0.971				
\(R^2_\beta \)	0.347	0.457	0.465	0.551	0.587	0.601	0.689	0.745	0.768	0.842	0.932	0.971				
\(R^2_\gamma \)	0.351	0.389	0.404	0.462	0.512	0.531	0.605	0.671	0.696	0.848	0.942	0.977				
\(R^2_\phi \)	0.335	0.372	0.387	0.432	0.482	0.501	0.569	0.638	0.664	0.813	0.927	0.971				
\(R^2_\phi \)	0.431	0.452	0.460	0.546	0.583	0.598	0.685	0.742	0.765	0.838	0.930	0.970				
\(R^2_\phi \)	0.350	0.389	0.404	0.460	0.511	0.531	0.603	0.670	0.696	0.845	0.941	0.977				

When the mean responses are scattered on the standard unit interval (\(\mu \in (0.20, 0.88) \)) the three statistics display similar values. It seems that neither the degree of intensity of nonconstant dispersion nor the simultaneous increase in the number of covariates in the two submodels noticeably affect the predictive power and fit of the model when the sample size is fixed. However, it is noteworthy a reduction of statistic values when the sample size is fixed. However, it is noteworthy that when the number of covariates increases simultanealy in the two submodels. For instance consider \(n = 40, \lambda = 100 \) and \(\mu \in (0.005, 0.12) \). At the Scenario 5 (one covariate in both submodels),
we have $P^2 = 0.8117$, $P^2_{βγ} = 0.3677$ and $R^2_{LR} = 0.8228$. Whereas in Scenario 8 (four covariate in both submodels) we have $P^2 = 0.8627$, $P^2_{βγ} = 0.4863$ and $R^2_{LR} = 0.6447$.

We also displayed in Table [2] the statistic values when the model is correctly specified, but we introduced leverage points in the data. To that end, only the X_2 values were obtained as random draws of the $t(3)$ distribution and concerned ourselves with $μ \in (0.20, 0.88)$, which yielded one point which has leverage measure ten times greater than the average value when $n = 40$, two high leverage points when $n = 80$ and three, $n = 120$. Here, we used as measure of leverage the leverage generalized [Espinheira et al., 2008]. Notice that in Scenarios 5, 6 and 7 the P^2 measure seems more able to identify correctly that the leverage points affect the goodness of prediction than the $P^2_{βγ}$ measure. On the other hand, the $P^2_{βγ}$ outperforms the P^2 in Scenario 8. It is interesting to notice that in Scenario 5, which represents one covariate in both submodels, with the only one covariate of mean submodel had values generated from the $t(3)$ occurs the smaller values of the three statistics. Thus, the statistics correctly lead to the conclusion that as greatest is the influence of leverage point in the data, worst are the predictions and the model fit.

Finally, were carried out Monte Carlo simulations to assess the performance of statistics when the dispersion modelling is neglected. To that end, the true data generating process considers varying dispersion but a fixed dispersion beta regression is estimated; see Table [3] In this case we have misspecification. Thus, we hope that the statistics display smaller values in comparison with Table [3]. In this sense, when $μ \in (0.005, 0.12)$, it is noteworthy that the $P^2_{βγ}$ statistic outperforms the P^2 statistic identifying more emphatically the misspecification. For the other hand, when $μ \approx 1$ is the P^2 statistic that emphasizes the poor prediction power of the model when the varying dispersion is neglected. But, in fact, the statistics behavior slightly change. For instance, consider $μ \in (0.20, 0.88)$, $n = 120$, $λ = (20, 50, 100)$ and Scenario 4 (three covariates in both submodels). When the dispersion is correctly modelled; Table [2] $P^2_{βγ} = (0.737, 0.740, 0.740)$ and when the varying dispersion is neglected; Table [3] $P^2_{βγ} = (0.696, 0.680, 0.651)$, respectively.

4 Application

In what follows we shall present an application based on real data. The application relates to the distribution of natural gas for home usage (e.g., in water heaters, ovens and stoves) in São Paulo, Brazil. Such a distribution is based on two factors: the simultaneity factor (F) and the total nominal power of appliances that use natural gas, computed power Q_{max}. Using these factors one obtains an indicator of gas release in a given tubulation section, namely: $Q_p = F \times Q_{max}$. The simultaneity factor assumes values in $(0, 1)$, and can be interpreted as the probability of simultaneous appliances usage. Thus, based on F the company that supplies the gas decides how much gas to
Table 2

Statistic values. Model correctly specified. $g(\mu_t) = \log(\mu_t/(1-\mu_t))$ and $h(\phi_t) = \log(\phi_t)$, $t = 1, \ldots, n$.

Scenarios	Scenario 5	Scenario 6	Scenario 7	Scenario 8
Mean submodels				
$g(\mu_t) = \beta_1 + \beta_2 x_{t2}$				
Dispersion submodels				
$h(\phi_t) = \gamma_1 + \gamma_2 x_{t2}$				

μ	λ	20	50	100	20	50	100	20	50	100	20	50	100
0.500	20	0.791	0.764	0.742	0.743	0.721	0.699	0.792	0.799	0.749	0.731	0.731	0.725
0.500	40	0.823	0.812	0.806	0.772	0.762	0.755	0.850	0.848	0.838	0.819	0.824	0.826
0.500	80	0.834	0.837	0.842	0.771	0.764	0.797	0.779	0.779	0.785	0.712	0.738	0.761
0.500	120	0.773	0.739	0.714	0.702	0.674	0.649	0.745	0.715	0.687	0.646	0.642	0.630

The data were analysed by Zerbinatti (2008), obtained from the Instituto de Pesquisas Tecnológicas (IPT) and the Companhia de Gás de São Paulo (COMGAS). The re-supply to a given residential unit.
Table 3

Statistic values. True models: \(g(\mu_i) = \log(\mu_i/(1 - \mu_i)) \) = \(\beta_1 + \beta_2 x_{i1} \), \(\log(\phi_i) = \gamma_1 + \gamma_2 z_{i2} \), \(i = 2, 3, 4, 5 \), and \(t = 1, \ldots, n \). Misspecified models: \(\phi \) fixed.

Scenario	Scenario 5	Scenario 6	Scenario 7	Scenario 8
True models	\(g(\mu_i) = \beta_1 + \beta_2 x_{i1} \)	\(g(\mu_i) = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i3} \)	\(g(\mu_i) = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} \)	\(g(\mu_i) = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} \)
Estimated models	\(h(\phi_i) = \gamma_1 + \gamma_2 z_{i2} \)	\(h(\phi_i) = \gamma_1 + \gamma_2 z_{i2} + \gamma_3 x_{i3} \)	\(h(\phi_i) = \gamma_1 + \gamma_2 z_{i2} + \gamma_3 x_{i3} + \gamma_4 x_{i4} \)	\(h(\phi_i) = \gamma_1 + \gamma_2 z_{i2} + \gamma_3 x_{i3} + \gamma_4 x_{i4} + \gamma_5 x_{i5} \)

\(\mu \)	\(\lambda \)	20	50	80	120	20	50	80	120	20	50	80	120
40	\(p^2 \)	0.778	0.734	0.699	0.761	0.721	0.677	0.707	0.674	0.639	0.718	0.707	0.685
0.792	0.761	0.740	0.752	0.717	0.684	0.775	0.757	0.735	0.776	0.768	0.752		
0.777	0.734	0.701	0.722	0.676	0.624	0.697	0.555	0.505	0.571	0.549	0.512		
80	\(p^2 \)	0.750	0.711	0.671	0.728	0.682	0.630	0.650	0.608	0.562	0.643	0.626	0.594
0.772	0.738	0.714	0.714	0.673	0.631	0.728	0.707	0.679	0.717	0.703	0.680		
0.781	0.739	0.707	0.722	0.676	0.624	0.697	0.555	0.505	0.571	0.549	0.512		
120	\(p^2 \)	0.755	0.703	0.660	0.717	0.669	0.614	0.631	0.584	0.534	0.617	0.598	0.560
0.764	0.729	0.702	0.702	0.656	0.611	0.712	0.688	0.660	0.696	0.680	0.651		
0.783	0.741	0.708	0.735	0.690	0.640	0.637	0.589	0.541	0.608	0.588	0.552		

\(\mu \)	\(\lambda \)	20	50	80	120	20	50	80	120	20	50	80	120
40	\(p^2 \)	0.141	0.163	0.175	0.194	0.208	0.220	0.280	0.292	0.300	0.347	0.350	0.351
0.274	0.349	0.390	0.314	0.360	0.395	0.433	0.460	0.480	0.560	0.550	0.545		
0.250	0.244	0.233	0.233	0.177	0.153	0.134	0.058	0.039	0.023	0.086	0.064	0.041	
80	\(p^2 \)	0.093	0.114	0.127	0.115	0.127	0.136	0.165	0.172	0.176	0.215	0.211	0.209
0.242	0.320	0.364	0.253	0.296	0.327	0.332	0.352	0.368	0.464	0.442	0.431		
0.275	0.268	0.257	0.213	0.191	0.171	0.115	0.097	0.082	0.162	0.129	0.118		
120	\(p^2 \)	0.077	0.098	0.111	0.089	0.100	0.109	0.125	0.130	0.131	0.170	0.163	0.159
0.231	0.311	0.356	0.231	0.274	0.304	0.295	0.313	0.325	0.428	0.400	0.385		
0.282	0.275	0.265	0.225	0.203	0.182	0.131	0.114	0.098	0.181	0.157	0.138		

Response variable (y) are the simultaneity factors of 42 valid measurements of sampled households, and the covariate is the computed power. The simultaneity factors ranged from 0.02 to 0.46, being the median equals 0.07. [Zerbinatti (2008)] modeled such data and concluded that the best performing model was the beta regression model based on logit link and log of computed power used as covariate. However, the author shows that the beta regression model can underpredict the response. Thus, [Espinheira et al. (2014)] argue that it is important to have at disposal prediction intervals that can be used with beta regressions. To that end, the authors built and evaluated bootstrap-based prediction intervals for the response for the class of beta regression models. They applied the approach to the data on simultaneity factor. However, a important step in this case was the selection of the model with the best predictive power. To reach this aim the authors
used a simplified version of PRESS statistic given by \(PRESS = \sum _ { t=1 } ^ { 42 } (y_t - \hat{y}_t(t))^2 / 42 \) which selected the same model of Zerbinatti (2008). Here we aim at selecting the better predictive model to the data on simultaneity factor using the \(P^2 \) and \(P^2_{βγ} \) statistics. We also consider the \(R^2_{LR} \) as the measure of goodness-of-fit model. Since that the response is the simultaneity factor and the covariate \(X_2 \) is the log of computed power, we considered four candidate models. At the outset, we consider two beta regression model with fixed dispersion, the first one using logit link function for \(\mu \) and the second one using log-log link function. Then, in the following two models the dispersion is nonconstant, with the logit and log-log submodels for \(\mu \) and log submodels for \(\phi \). Then statistic values are presented in Table 4. Here, we consider that the predictive power of the model is better when the measures \(P^2 \) and \(P^2_{βγ} \) are close to one.

The Table 4 displays important informations. First, we notice that by the \(R^2_{RV} \) measures three models equally fits well. Second, since that the responses are close to of lower limit of the standard unit interval the statistics display small values, in special the \(P^2_{βγ} \) statistic. Third, the \(P^2 \) and \(P^2_{βγ} \) measures lead to the same conclusions, selecting the beta regression model with link log-log for the mean submodel and link log for the dispersion submodel, as the best model to make prediction to the data on simultaneity factor. The maximum likelihood parameter estimates are \(\hat{β}_1 = -0.63 \), \(\hat{β}_2 = -0.31 \), \(\hat{γ}_1 = 3.81 \) and \(\hat{γ}_2 = 0.77 \). Furthermore, the estimative of intensity of nonconstant dispersion is \(\hat{λ} = 21.16 \) (see (16)), such that \(\hat{φ}_{max} = 242.39 \) and \(\hat{φ}_{min} = 11.45 \). Selected among the candidates the best model in a predictive perspective, we still can use the PRESS statistic to identifying which observations are more difficult to predict. In this sense, we plot the individual components of PRESS and PRESS\(_{βγ}\) versus the observations index, Figure 1(a) and 1(b), respectively. Overall, Figure 1 shows that the cases 3, 11, 16, 21, 31, 33 and 35 arise as the observations with more predictive difficulty and are worthy of further investigation.

5 Conclusion

In this paper we develop the \(P^2 \) and \(P^2_{βγ} \) based on two versions of PRESS statistics that we proposed for the class of beta regression models. The \(P^2 \) coefficient consider the
PRESS statistic based on ordinary residual from the Fisher’s scoring iterative algorithm for estimating β whereas $P_{\beta \gamma}^2$ is based on a new residual which is a combination of ordinary residuals from the Fisher’s scoring iterative algorithm for estimating β and γ. We have presented the results of Monte Carlo simulations carried out to evaluate the performance of predictive coefficients. Additionally, to assess the goodness-of-fit model we used the R_{LR}^2. We consider different scenarios include misspecification of omitted covariates and negligence of varying dispersion, simultaneous increase in the number of covariates in the two submodels (mean and dispersion) and presence of leverage points in the data. Overall, the coefficients P^2 and $P_{\beta \gamma}^2$ perform similar and both showed enable to identify when the model are not reliable or when is more difficult to make prediction. In this situations, the R_{LR}^2 statistic also reveals that the model does not fit well. It is noteworthy that when the response values are close to one or close to zero the power predictive of the model is substantially affected even under correct specification. Finally, an empirical application was performed.

Acknowledgements

We thank anonymous referees for comments and suggestions and gratefully acknowledge partial financial support from CNPq.
A Appendix A: Fisher’s scoring iterative algorithm

In what follows we shall present the score function and Fisher’s information for \(\beta \) and \(\gamma \) in the class of varying dispersion beta regression models (Ferrari et al., 2011). We shall also present results that are useful to the derivation of the residuals proposed in this paper.

The log-likelihood function for model (1) is given by

\[
\ell(\beta, \gamma) = \sum_{t=1}^{n} \ell_t = \text{log } \Gamma((1-\mu_t)\phi_t) + \text{log } (1-\mu_t)\phi_t - 1 \text{ log } y_t + \{(1-\mu_t)\phi_t - 1\} \text{ log } (1-y_t).
\]

The score function for \(\beta \) is thus

\[
U_\beta(\beta,\gamma) = X^T \Phi T (y^* - \mu^*),
\]

where \(X \) is an \(n \times k \), \(\Phi = \text{diag}(\phi_1, \ldots, \phi_n) \) and \(t \)th elements of \(y^* \) and \(\mu^* \) being given in (5).

The components of Fisher’s information matrix are

\[
K_{\beta \beta} = \frac{\partial^2 \ell}{\partial \beta \partial \beta} = X^T \Phi W X, \quad K_{\beta \gamma} = K_{\gamma \beta} = X^T CTHZ
\]

and

\[
K_{\gamma \gamma} = Z^T DZ.
\]

Here, \(W = \text{diag}(w_1, \ldots, w_n) \); where

\[
w_t = \phi_t v_t [1/\{g'(\mu_t)\}^2], \quad v_t = \{\psi'(\mu_t\phi_t) + \psi'(1-\mu_t\phi_t)\}.
\]

Also, \(C = \text{diag}\{c_1, \ldots, c_n\} \), with \(c_t = \phi_t \{\psi'(\mu_t\phi_t)\mu_t - \psi'(1-\mu_t\phi_t)(1-\mu_t)\} \) and \(D = \text{diag}\{d_1, \ldots, d_n\} \), with

\[
d_t = c_t \frac{1}{[h'(\mu_t)]^2} \quad \text{and} \quad \varsigma_t = \{\psi'(\mu_t\phi_t)\mu_t^2 + \psi'(1-\mu_t\phi_t)(1-\mu_t)^2 - \psi'(\phi_t)\}.
\]

The Fisher’s scoring iterative schemes used for estimating \(\beta \) and \(\gamma \) can be written, respectively, as

\[
\beta^{(m+1)} = \beta^{(m)} + (K_{\beta \beta}^{(m)})^{-1} U_{\beta}^{(m)}(\beta) \quad \text{and} \quad \gamma^{(m+1)} = \gamma^{(m)} + (K_{\gamma \gamma}^{(m)})^{-1} U_{\gamma}^{(m)}(\gamma),
\]

where \(m = 0,1,2,\ldots \) are the iterations that are performed until convergence, which occurs when the distance between \(\beta^{(m+1)} \) and \(\beta^{(m)} \) becomes smaller than a given small constant.

It is important to note that the beta density (1) belongs to canonical two-parameter exponential family. Indeed, \(f(y_t; \mu_t, \phi_t) = \exp\{\tau_1 T_1 + \tau_2 T_2 - A(\tau)\} / (y_t(1-y_t)) \), where \(\tau = (\tau_1, \tau_2) = (\mu_t\phi_t, \phi_t) \), \((T_1, T_2) = (\log\{Y_t/(1-Y_t)\}, \log\{1-Y_t\}) \) and \(A(\tau) = \{- \log \Gamma(\phi_t) + \text{log } \Gamma(\mu_t\phi_t) + \log \Gamma((1-\mu_t)\phi_t)\} \). Thus,

\[
E(T_1) = E(Y_t^*) = \partial A(\tau)/\partial \tau_1 = \psi(\mu_t\phi_t) - \psi((1-\mu_t)\phi_t) = \mu_t^*,
\]

\[
E(T_2) = E(\log(1-Y_t)) = \partial A(\tau)/\partial \tau_2 = \psi((1-\mu_t)\phi_t) - \psi(\phi_t),
\]

\[
\text{Var}(T_1) = \text{Var}(Y_t^*) = \partial^2 A(\tau)/\partial \tau_1^2 = \psi'(\mu_t\phi_t) + \psi'(1-\mu_t\phi_t) = v_t,
\]

\[
\text{Var}(T_2) = \text{Var}(\log(1-Y_t)) = \partial^2 A(\tau)/\partial \tau_2^2 = \psi'(1-\mu_t\phi_t) - \psi'(\phi_t),
\]

and

\[
\text{Cov}(T_1, T_2) = \partial^2 A(\tau)/\partial \tau_1 \partial \tau_2 = -\psi'((1-\mu_t)\phi_t).
\]

More details see Lehmann and Casella (1998, p. 27).
References

[1] Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (Tsahkadsor, 1971), 267–281. Budapest: Akadémiai Kiadó.
[2] Allen, D. M. (1974) The relationship between variable selection and data augmentation and a method for prediction. Technometrics, 16, 125–127.
[3] Bayer, F. M. and Cribari-Neto, F. (2014) Model selection criteria in beta regression with varying dispersion. URL http://arxiv.org/abs/1405.3718.
[4] Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. Chapman and Hall.
[5] Cribari-Neto, F. and Zeileis, A. (2010) Beta regression in R. Journal of Statistical Software, 34, 1–24.
[6] Espinheira, P., Ferrari, S. and Cribari-Neto, F. (2008) On beta regression residuals. Journal of Applied Statistics, 35, 407–419.
[7] — (2014) Bootstrap prediction intervals in beta regressions. Computational Statistics, 29, 1263–1277.
[8] Ferrari, S. and Cribari-Neto, F. (2004) Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31, 799–815.
[9] Ferrari, S. L. P., Espinheira, P. L. and Cribari-Neto, F. (2011) Diagnostic tools in beta regression with varying dispersion. Statistica Neerlandica, 65, 337–351.
[10] Lehmann, E. and Casella, G. (1998) Theory of Point Estimation. Springer Verlag.
[11] Mediavilla, F., F, L. and Shah, V. A. (2008) A comparison of the coefficient of predictive power, the coefficient of determination and aic for linear regression. In Decision Sciences Institute, Atlanta (ed. K. JE), 1261–1266.
[12] Pregibon, D. (1981) Logistic regression diagnostics. Ann. Statist., 9, 705–724.
[13] Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
[14] Smithson, M. and Verkuilen, J. (2006) A Better Lemon Squeezer? Maximum-Likelihood Regression With Beta-Distributed Dependent Variables. Psychological Methods, 11, 54–71.
[15] Zerbinatti, L. (2008) Predição de fator de simultaneidade através de modelos de regressão para proporções contínuas. Msc thesis, University of São Paulo. URL http://www.teses.usp.br/teses/disponiveis/45/45133/