ABSTRACT

Bhendi Yellow Vein Mosaic Virus (BYVMV) incidence caused by white fly is the main bottleneck for cultivation of the okra. The present investigation was carried out in three major okra-growing districts of Tamil Nadu viz., Coimbatore, Dharmapuri and Dindigul on whitefly incidence and occurrence. A field survey on these districts revealed that the mean whitefly population of 1.82 per plant was observed while the incidence of BYVMV in the Coimbatore district was 13 per cent. The least mean population was observed in the Dharmapuri district with a mean of 0.48 whiteflies per plant and BYVMV incidence of 15.75 %. In order to gain insight into whitefly genotypes occurring on Okra (Abelmoschus esculentus L. (Moench), whitefly samples were collected from 8 locations of Tamil Nadu, and their mitochondrial cytochrome oxidase subunit I (mtCOI) gene was molecularly characterized for species identification. sequences results revealed that the
whitefly belongs to Asia I genotype. Thus, the present study confirmed the presence of Asia 1 genotype in \textit{B. tabaci} throughout Tamil Nadu okra growing regions.

\textbf{Keywords:} \textit{Bemisia tabaci}; \textit{Bhendi Yellow Vein Mosaic Virus}; \textit{mtCOI}; \textit{Okra}

\section*{INTRODUCTION}

Okra, \textit{Abelmoschus esculentus} L. (Moench), (Family: Malvaceae) is widely grown in tropical and sub-tropical regions of the world. It is an important vegetable component in the human diet due to its dietary fibers and is rich in magnesium folate, antioxidants, potassium, vitamins C, K1 and A (Hughes, 2008).

The whitefly, \textit{Bemisia tabaci} (Gennadius) (Hemiptera: Aleyrodidae) is the most devastating insect pest in agricultural crops worldwide (Brown \textit{et al.}, 1995, de Barro \textit{et al.}, 2000). It was first collected and described as \textit{Aleyrodes tabaci} (Gennadius) from tobacco, \textit{Nicotiana tabacum} L., in Greece in 1889. It was subsequently renamed (Russell, 1957) as \textit{B. tabaci} and found across the globe in United States, Africa, Middle East, the Orient, Russia, China, Southeast Asia, and South America (Brown \textit{et al.}, 1995). Its geographical diversity and broad host range gave rise to several common names associated with host plants such as sweet potato whitefly, cotton whitefly, etc. Different populations of \textit{B. tabaci} are morphologically undefined but display distinctive biological, physiological, and genetic variation, and thus are deemed a cryptic species complex (Boykin \textit{et al.}, 2007, 2012; de Barro \textit{et al.}, 2011; Dinsdale \textit{et al.}, 2010; Tay \textit{et al.}, 2012). The \textit{B. tabaci} complex consists of cryptic species that need to be separated and distinguished. As these cryptic species are morphologically indistinguishable, various molecular markers have been utilized such as RAPD PCR (Gawel and Bartlett, 1993, de Barro and Driver, 1997), AFLP (Cervera \textit{et al.}, 2000), mitochondrial cytochrome oxidase gene subunit I (\textit{mtCOI}) (Frohlich \textit{et al.}, 1999, Brown \textit{et al.} 2000) and the ribosomal ITS1 nucleotide sequence (de Barro \textit{et al.}, 2000). The most widely accepted method is differentiation on the basis of nucleotide sequence of \textit{mtCOI}. Using \textit{mtCOI}-based Bayesian phylogenetic analysis, Dinsdale \textit{et al.} (2010) and de Barro \textit{et al.} (2011) proposed a speciation framework keeping 3.5\% pairwise divergence as threshold. Based on these criteria, recently 42 putative species and 12 major genetic groups have been separated at global level (Kanakala and Ghanim, 2019). Differentiation of cryptic species on the basis of mating behavior, insecticide resistance, oviposition and transmission characteristics was examined. In the present study, the genetic affiliation of \textit{B. tabaci} populations used in \textit{mtCOI} analysis (de Barro \textit{et al.}, 2011) and incidence of \textit{B. tabaci} and BYVMV infestations occurring on bhendi in Tamil Nadu, India were studied.
MATERIAL AND METHODS

The field survey was conducted in three major okra growing districts of Tamil Nadu viz., Dharmapuri, Coimbatore and Dindigul and the incidence of whitefly and Bhendi Yellow Vein Mosaic Virus (BYVMV) were randomly observed in five different locations of each district during 2018 to 2019. Adults of *B. tabaci* were counted on three leaves per bhendi plant, one from top, middle and bottom from ten randomly selected plants per field leaving the border rows. Population count was taken from early morning hours and expressed as number per plants. The location of sample collection and genotypic details are given in table.1. The total number of plants and number of plants infected with BYVMV were calculated from fifty randomly selected plants at the flowering stage leaving the outer two rows on all the four sides in each field and expressed as per cent disease incidence (Venkataravanappa et al., 2012).

\[
\text{Per cent incidence of YVMV (\%)} = \frac{\text{Number of YVMV infected plants}}{\text{Total number of plants observed}} \times 100
\]

The experiment was replicated three times. The incidence of BYVMV was observed based on characteristic symptoms viz., various levels of chlorosis, yellowing of veins and veinlets, smaller leaves, fewer and smaller fruits and stunting.

Adults of *B. tabaci* were collected from distinct locations in three districts using hand held aspirator for genetic identification. At each location, individual insect samples were collected from okra in separate 1.5 mL Eppendorf tubes containing 70% ethanol and stored in a freezer at -80°C, until used.

DNA isolation

Genomic DNA was isolated from individual adult whitefly using Hot SHOT method according to Montero-pau et al. (2008). Individual insect sample was homogenized with 50 μL of alkaline lysis buffer (125 μL of NaOH, 20 μL of Na₂EDTA (pH 8) and 50 mL of ddH₂O) and transferred to Eppendorf tubes and incubated at 95°C for 30 min in the water bath and allowed to cool down at 4°C. Then 50 μL of neutralizing solution was added (315 mg of Tris-HCL and 50 mL of ddH₂O). The substances were spun and vortexed for 5 s and stored at -20 °C for further analysis.

mtCOI subunit I amplification and sequence analysis

The genomic DNA of whitefly samples collected from 8 locations were confirmed for the presence of *mtCOI* gene using LCO 1490 forward primer 5′ GGTCAACAAATCATAAGATATTGG 3′ and HCO 2198 reverse primer 5′ TAAACTTCAGGGTGACCAAAAAATCA 3′ (Folmer et al., 1994). The PCR reaction mix consisted of 5μL of template DNA (approximately 50 ng), 10.5 μL of
sterile distilled water, 2.5 μL of dNTPs, 2.5 μL of PCR buffer, 1.0 μL of MgCl₂, 1.5 μL of each forward and reverse primer, 0.5 μL of Taq polymerase. PCR was performed with initial denaturation at 94 °C for 2 min, followed by 35 cycles each consisting of denaturation for 1 min at 94 °C, annealing for 1 min at 52 °C with extension for 1 min at 72 °C, followed by final extension for 10 min at 72 °C. The PCR products were eluted and sequenced in Agrigenome Labs Pvt. Ltd., Cochin, Kerala. mtCOI gene sequence corresponding to 34 different genetic groups of *B. tabaci* were downloaded from the National Center for Biotechnology Information (NCBI) GenBank (https://www.ncbi.nlm.nih.gov/Blast.cgi). Sequence alignment was performed employing MUSCLE implemented in Seaview (Thompson et al., 1994). The tree was generated by neighbour joining method employing MEGA 7 software (Saitou and Nei, 1987). Genetic divergence was calculated employing MEGA 7 using ClustalW (Kumar et al., 2016). The mtCOI DNA sequences generated in the study were submitted to NCBI database.

RESULTS AND DISCUSSION

Incidence of *B. tabaci* and yellow vein mosaic disease

Among the three districts surveyed the highest mean whitefly population was recorded in Madampatti (9.53) followed by Natham (2.53), Korimedu (2.03) and Arasampalayam (2.03) and the lowest whitefly population of (0.20) was recorded at Madampatti of Coimbatore district. Highest YVMD symptoms (0.86 %) were registered in Coimbatore district, Madampatti, followed by Anjehalli (0.60 %), Natham (0.37 %), Eranahalli (0.35 %) and the lowest (0.05 %) at Nallakulam of Dindigul district (Table 1).

In Coimbatore, total mean population of *B. tabaci* (1.82 per plant) and YVMV incidence (13 %) were noticed (Fig 1). The least mean populations were observed on Dharmapuri (0.48 whiteflies per plant) and YVMV incidence (15.75 %).

PCR amplification and sequenced

The genotype of the whitefly population collected from okra leaf sample in eight distinct locations was genetically identified based on mtCOI universal primer. Among the eight populations tested for the presence of mtCOI gene, all the tested isolates had amplicon of 700 bp. Sequence details of all the isolates showed 99% similarity to *B. tabaci* Asia I and the divergence being less than 3.5%, the threshold value kept for demarcation of the species (de Barro et al., 2011). These PCR amplified sequences were submitted to NCBI and accession number was obtained.(Table 2).
Phylogenetic analysis

Based on the phylogenetic tree constructed (Fig. 2) with the accession numbers *viz.*, MT011400 Coimbatore, MT011401 Dindigul, MT011402 Coimbatore, MT011403 Coimbatore, MT011404 Coimbatore, MT011405 Dharmapuri, MT011406 Dindigul, and MN911178 of Dindigul district were clustered with *B. tabaci* Asia I From the above findings, it is concluded that all okra fields show the presence of homogenous population of whitefly genotypes.

CONCLUSION

The survey and analyses performed in the study provided a detailed information on the various species of whitefly population in Coimbatore, Dharmapuri and Dindigul region of Tamil Nadu. The study revealed the specimens collected from okra belong to Asia 1 genetic group and its highly prevalent genetic group in the region. Hashmi et al. (2016) reported that Asia II-1 genetic groups were widely distributed across the Indian Agricultural Research Institute, New Delhi. Interestingly, our study provided evidence for the presence of Asia 1 in okra throughout Tamil Nadu. The present survey and the data from GenBank showed that Asia I genetic group was the most prevalent genetic group in these regions of Tamil Nadu.
Tables
Table 1. Incidence of whitefly and Bhendi Yellow Vein mosaic virus (BYVMV) disease in bhendi in Tamil Nadu (2018-2019)

S.No	District	Farmer	Location	Bhendi Variety/hybrid	Age of the crop (DAS)	YVMV incidence No/50 plants	No of whiteflies/10 plants	Location

S.No	Location	Farmer Name	Village	Company	Product	Rate	Leaf Borers	Nematode
1	Coimbatore	Nagarathinam S/o Murugan	Puthur	Shakti, Nunhems	60	0	0	10.97°N, 76.83°E
		S/o Rajendiran Murugan	Thondamuthur	Nunhems	75	7	0	10.98°N, 76.84°E
		S/o Venugopal Balakrishnan	Thondamuthur	3312, Syngenta	45	0	0.53	10.98°N, 76.84°E
		S/o Palaniyappan Jeyaraman S/o Krishnamoorthy	Narasipuram	Radhika, UPL	75	0	0	10.98°N, 76.77°E
		Selvaraj S/o Karrupaswamy Mani S/o Padmanaban Parameswaran	Madampatti(1)	Novo, Vairam	90	16	0.20	10.97°N, 76.85°E
		S/o Velusamy Marimuthu S/o Anjineya Nandhakumar S/o Jambu	Madampatti(2)	Venus plus, UPL	70	86	9.53	10.96°N, 76.85°E
		S/o Anjineya Nandhakumar S/o Jambu	Madampatti(3)	102, Syngenta	90	8	0	10.96°N, 76.85°E
		Muniyappan S/o Thadhan Sivasakthi S/o Palani Sabarinathan S/o Raja Rajendiran S/o Anjineya Sivaraj S/o Vetraiyan Mani	Perur	Radhika, UPL	45	0	0.67	10.97°N, 78.61°E
		Arcevarpatti karagadahalli	Arcevarpatti	7774, Namdhari Samrad, Nunhems	50	0	0	10.99°N, 78.77°E
		Eranahalli	Eranahalli	Namdhari Greengold, Namdhari	90	25	0.00	12.29°N, 78.08°E
		Kammalapatti	Kammalapatti	Radhika, UPL	90	0	0	12.28°N, 78.06°E
		Anjahalli Pulikkara	Anjahalli	940, Syngenta	90	60	1.07	12.14°N, 77.97°E
		Pappinenacken Halli	Pappinenacken Halli	Mono, UPL	60	6	0.47	12.14°N, 78.11°E
		Pulikkara	Pulikkara	Selvam, Nunhems Samrad,	110	0	0.5	12.17°N, 78.11°E
		Balinjara halli	Balinjara halli		90	0	0.93	12.14°N, 78.11°E
District	Name of the Village	Name of the Farmer	Relationship	Agricultural Input	GPO	Lat. & Long.		
-----------	---------------------	---------------------	--------------	-------------------	-----	-------------		
Dindigul	S/o Raj Kanthasamy	Agraharam	S/o	Nunhems	75	77.95°E		
	S/o Kanthaiyan	TamaraiKulam		Johny, UPL	90	12.09°N, 78.44°E		
	Balamurugan	Oddancharitram		Greengold, Namdhar	60	10.37°N, 77.91°E		
	S/o Sakhthivel	Punnapatti		Syngenta	70	10.48°N, 77.75°E		
	Jeyaraj S/o Swaminathan			Mono, UPL	29	10.24°N, 78.19°E		
	Murugasen	Pallapatti		Radhika, UPL	45	10.37°N, 77.95°E		
	S/o Subbiah Raja	Natham		Samrad, Namdhari	70	10.22°N, 78.22°E		
	Azhagar S/o Perumal	Nallakulam		102, Syngenta	37	10.22°N, 78.23°E		
	Ganesan S/o Subbiah	Korimedu		Samrad, Nunhems	90	10.36°N, 77.98°E		
	Selvaraj S/o Karupannan			7774, Namdhari	60	10.79°N, 76.93°E		
	Veerassamy S/o Jeyabal					10.82°N, 77.01°E		
	Sampath S/o Murugan	Muthugoundanur		Radhika, UPL	60	10.79°N, 76.93°E		
	Ravi S/o Palaniyappan			Selvam, Nunhems	45	10.82°N, 77.01°E		
	Meena S/o Mayandi	Kinathukadavu		Samrad, Nunhems	75	10.79°N, 76.93°E		
	Prakash S/o Muthuswamy			Othakalmandapam	90	10.87°N, 77.00°E		
	Ramesh S/o Anjineya	Vadaputhur		3312, Syngenta	90	10.80°N, 77.05°E		
				Greengold, Namdari	90	10.84°N, 77.04°E		
				Johny, UPL	60	10.84°N, 77.04°E		

Pollachi
Table 2. Diversity of whitefly genotypes in okra in Tamil Nadu

S.No.	Location	GIS Coordinates	Sample I.D.	Whitefly Biotype	GenBank Accession No.
1	Madampatti, Coimbatore	10.9698° N, 76.8598° E	TNAU01_Whitefly	Asia I	MT011400
2	Natham, Dindigul	10.2261° N, 78.2295° E	ENT23_Whitefly	Asia I	MT011401
3	Madampatti, Coimbatore	10.9698° N, 76.8598° E	Coimbatore41_CPMB	Asia I	MT011402
4	Kinathukadavu, Dindigul	10.8172° N, 77.0186° E	Pollachi58_CPPS	Asia I	MT011403
5	Thondamuthur, Coimbatore	10.9899° N, 76.8409° E	INT_06	Asia I	MT011404
6	Pappininackenhalli, Dharmapuri	12.1519° N, 78.1279° E	Vector35_Whitefly	Asia I	MT011405
7	Natham, Dindigul	10.2261° N, 78.2295° E	vector35_Whitefly	Asia I	MT011406
8	Madampatti, Coimbatore	10.9698° N, 76.8598° E	TNAU02_Whitefly	Asia I	MN911178
Figure 1. Incidence of whitefly and Bhendi yellow vein mosaic virus (YVMV) disease from four major areas of Tamil Nadu (2018-2019)
Figure 2. Phylogenetic dendrogram based on mtCOI partial nucleotide sequences of B. tabaci genotypes with numbers at nodes are percentage bootstrap confidence scores (1000 replicates).
CONCLUSION

The present study showed that the total mean population of B. tabaci (1.82 per plant) and YYMV incidence (13%) were noticed. The least mean populations were observed on Dharmapuri (0.48 whiteflies per plant) and YYMV incidence (15.75%). The present study revealed that population of B. tabaci was mainly influenced by the YYMV infection in bhendi field. Present survey and the data from GenBank showed that Asia I genetic group was the most prevalent genetic group in the region of Tamil Nadu. In these phylogenetic results, B. tabaci Asia I genotype was recorded in all okra fields, indicating the presence of homogenous population of whitefly genotypes in major geographical areas of Tamil Nadu.

ACKNOWLEDGEMENT

The authors are grateful to Professor and Head, Department of Entomology, Dean, School of Post Graduate Studies, Tamil Nadu Agricultural University, Director, Centre for Plant Molecular Biology and Biotechnology, Centre for Plant Protection Studies, Professor and Head, Department of Plant Pathology, Department of Vegetable Science and Tamil Nadu Agricultural University for providing necessary facilities during the research study.

REFERENCE

Boykin, L. M., Armstrong, K. F., Kubatko, L. and P. De Barro. 2012. Species delimitation and global biosecurity. Evol. Bioinform., 8: 1–37.

Boykin, L. M., Shatters Jr, R. G., Rosell, R. C., McKenzie, C. L., Bagnall, R. A., De Barro, P. and D. R. Frohlich. 2007. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol. Phylogenet. Evol., 44(3): 1306-1319.

Brown, J. K., Frohlich, D. E. and R. C. Rosell 1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex. Annu. Rev. Entomol., 40: 511–534.

Brown, J. K., Idris, A. M., Olsen, M. W., Miller, M. E., Isakeit, T. and J. Anciso. 2000. Cucurbit leaf curl virus, a new whitefly transmitted geminivirus in Arizona, Texas, and Mexico. Plant Dis., 84(7): 809-809.

Cervera, M. T., Cabezas, J. A., Simon, B., Martínez-Zapater, J. M., Beitia, F. and J. L. Cenis. 2000. Genetic relationships among biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) based on AFLP analysis. Bull. Entomol. Res., 90: 391–396.

De Barro, P. J. and F. Driver. 1997. Use of RAPD PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Aust. J. Entomol., 36(2): 149-152.

De Barro, P. J., Driver, F., Trueman, J. W. and J. Curran. 2000. Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol. Phylogenet. Evol., 16(1): 29-36.

De Barro, P. J., Liu, S. S., Boykin, L. M. and A. B. Dinsdale. 2011. Bemisia tabaci: a statement of species status. Annu. Rev. Entomol., 56: 1-19.

Dinsdale, A., Cook, L., Riginos, C., Buckley, Y.M. and P. De Barro. 2010. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodidae: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am., 101: 196–208.

Folmer, O., Black, M., Hoeh, W., Lutz, R. and R. Vrijenhoek. 1994. DNA primer for amplification of mitochondrial COI oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol., 3: 294–299.

Frohlich, D. R., Torres-Jerez, I., Bedford, I. D., Markham, P. G. and J. K. Brown. 1999. A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Mol. Ecol., 8(10): 1683-1691.

Gawel, N. J. and A. C. Bartlett. 1993. Characterization of differences between whiteflies using RAPD-PCR. Insect Mol. Biol., 2(1): 33-38.

Hashmi, T. R., Dey, D., Devi, S. R., Varma, A. and R. Prasad. 2016. Records on Associated Endosymbionts and Genetic Group of Bemisia tabaci (Gennadius) Feeding on Okra. Biosci. Biotechnol. Res. Asia., 13(4): 2337-2342.
Hughes, J. 2008. Just famine foods? What contributions can underutilized plants make to food security. In: International Symposium on Underutilized Plants for Food Security, Nutrition, Income and Sustainable Development., 806: 39-48.

Kanakala, S. and M. Ghanim. 2019. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PloS one., 14(3): 0213946.

Kumar, S., Stecher, G. and K. Tamura. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33(7): 1870-1874.

Montero-Pau, J., Gómez, A. and J. Muñoz. 2008. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnology and Oceanography: Methods., 6(6): 218-222.

Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4(4): 406-425.

Tay, W. T., Evans, G. A., Boykin, L. M. and P. J. de Barro. 2012. Will the real Bemisia tabaci please stand up? PLoS ONE., 7: 5050.

Thompson, J. D., Higgins, D. G. and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22(22): 4673-4680.

Venkataravanappa, V., Reddy, C. L., Jalali, S. and M. K. Reddy. 2012. Molecular characterization of distinct bipartite begomovirus infecting bhendi (Abelmoschus esculentus L.) in India. Virus Genes., 44(3): 522-535.