An interactive programme for Steiner trees

Marcelo Zanchetta do Nascimento¹, Valério Ramos Batista², Wendhel Raffa Coimbra³

1 CMCC-UFABC, r. Sta. Adélia 166, Bl.B, 09210-170 St. André-SP, Brazil
 Tel: +55-11-4996-0077, Email: marcelo.zanchetta@gmail.com
2 CMCC-UFABC, r. Sta. Adélia 166, Bl.A, 09210-170 St. André-SP, Brazil
3 UFMS, rod. BR 497 km 12, 79500-000 Paranaiba-MS, Brazil

Abstract

We introduce a fully written programmed code with a supervised method for generating Steiner trees. Our choice of the programming language, and the use of well-known theorems from Geometry and Complex Analysis, allowed this method to be implemented with only 747 lines of effective source code. This eases the understanding and the handling of this beta version for future developments.

Keywords: minimal Steiner trees, programmed code

1 Introduction

One of the main problems at implementing multicast in Wide Area Networks (WAN) is the high cost of transmissions between terminals. Cost reduction is attained by adding routers to the network, but this increases complexity (see Jia et al. (2001); Sahasrabuddhe and B. Mukherjee (2001)). Steiner trees have long been used in order to optimise routes, aiming at the lowest cost possible (see Ausiello et al. (1999); Hu et al. (2004)).

However, the Steiner tree problem belongs to the NP-hard class (see Garey, Graham and Johnson (1977)). For generating minimal Steiner trees, non-supervised methods must then either be restricted to a few number of points or make use of heuristics (see Du and Zhang (1992); Ravada and Sherman (1993); Smith (1992); Warme et al. (2000); Winter et al. (1999, 1997); Wu and Chao (2004); Zachariasen (1999); Yang and Gillard (2000) for examples). See also http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner

for a heuristic-based open source code.

Therefore, if one really seeks the minimal Steiner tree, there are little chances that non-supervised methods will find it. Of course, a supervised method that includes some feedback to the user increases the chances of finding this tree. Specially if we can rely on the skill and good guesses of a trained user. By the way, in the last paragraph from §6 of Gilbert and Pollak (1968) the very authors had already made this kind of comment.

In this same work, Gilbert and Pollak conjectured that a Steiner minimal tree (SMT) must have its length in the interval $L_{prim} \cdot [\sqrt{3}/2, 1]$, where L_{prim} is the length of the minimal spanning tree. This one can be obtained by Prim’s algorithm (1957), and here we shall name it after him for concision and clarity. According to Du and Hwang (1992), this conjecture is right. If so, any Steiner tree obtained from Prim’s can improve it of at most 13.4%, let us say “6.7% in general”. Therefore, our programme could help find trees up to $1-0.866/(1-0.067)=7.2\%$ better than Steiner trees constructed by many algorithms in the literature.

It seems to be little, but if a connection is used extensively, this 7.2% will represent a great economy in the long term. Moreover, in Innami et al. (2010) the authors claim that the Gilbert and Pollak’s conjecture is not completely answered yet. Thus, it might even happen that we get an SMT under this ratio. The programme can help users who are convinced of this possibility, and their trained intuition could even find a possible counterexample.

Of course, a supervised programme is not suitable for thousands of terminals, except for a long term project distributed to a team of users. But even this exception does not apply for extreme cases, like VLSI-design through rectilinear Steiner trees, in which millions of terminals are needed. However, terminals in hundreds are still the case in several applications, like sound and video cards. Their frequent access makes desirable to minimise delay as much as possible. Even a 1% improvement would count in this case.
We introduce a fully written programmed code for generating Steiner trees. Our choice of a programming language was made in order to spare the graphical environment, which Matlab already brings in a very well built-in way. Since we have not used toolboxes, this code can be easily adapted to a free software like Octave, though this one has a simpler graphical user interface. Anyway, this produces a much shorter code, easier to understand and to handle for future developments. Indeed, the present version of our programme has didactic purposes, for it is accessible even to graduate students in Computer Science.

As we mentioned above, the tree of Prim is frequently used to construct a Steiner tree. But depending on the way this construction works, we get a non-minimal Steiner tree. See Figures 1 and 2 for an example. We recall that numerics must use a tolerance for theoretical angles. In our case, Steiner points are vertices of angles that measure $120^\circ \pm 2^\circ$.

![Figure 1: Steiner tree out of Prim’s.](image)

![Figure 2: Steiner minimal tree.](image)

Many original ideas were used to write this code. They are based on Theorems normally relegated to Math courses only, specially from Geometry and Complex Analysis. But the chosen programming language allows these theoretical results to be implemented into elegant and efficient codes. The reader can download some of them from

http://hostel.ufabc.edu.br/~marcelo.nascimento/software.html

and the full programme in p-code at the same address in order to make tests. As an example, the file “Prim.m” runs with only 14 lines of source code. In total, stree.m and its related to programmes have only 822 lines, which drop to 747 if we do not count stread.m and swrite.m (for graphical input and output of terminal points).

The aim of this paper is to introduce the programme stree.m, totally written with original ideas we have just mentioned in the previous paragraph. The rest of this paper is organised as follows: in Section 2 we briefly describe how the programme works. It draws full tree stretches automatically with the mouse, and Section 3 gives details and hints about it. Section 4 is devoted to explaining some theorems that we used to write the programme. In Section 5 we expose some of the geometrical and analytical ideas used to implement stree.m, and make our conclusions in Section 6. The full source code will be available in future.

2 Getting started

This present section is like a quick manual to the programme. The readers that are more interested in mathematical results can read it through or simply go straight to Section 3.

Download stree.zip from http://hostel.ufabc.edu.br/~marcelo.nascimento/software.html and extract it in a folder. Enter “stree” at the Matlab prompt. You will get the following message:

Please adjust terminal window to show full picture.

Give a filename to open or press Enter to choose points.

Adjusting the terminal window will prevent figures to hide it. Now you may either give an existing datafile of terminal points for the tree or plot one with the mouse left-button. Some test-files with extension “.txt” can be found in stree.zip, and we shall take them here for comments.

Press the Enter key after you either finish plotting points or type the filename without extension, for instance test0. Figure 3 will appear with the tree of Prim, and Figure 4 is for you to draw a Steiner tree. Our purpose is to find the shortest tree, and Figure 3 can help make good choices.

In Figure 4, the cyan polygon is obtained by the Convex Hull and Lune properties described in Gilbert and Pollak (1968). It is called “Steiner hull”. From this point on, some hints and instructions to proceed are printed in the Matlab terminal window, and all actions will be with the mouse. For the tree of Prim, its length L_{prim} and $\frac{\sqrt{3}}{2}L_{prim}$ are printed as follows:
The length of a SMT ranges from/to
\[
\text{ans} = \\
182.8525 \\
L_{\text{prim}} = \\
211.1398
\]
and so the user gets an estimate on the length of an SMT from Gilbert and Pollak’s conjecture. However, according to Innami et al. (2010), it might even happen that we get an SMT under this ratio.

From the first mouse menu, now printed in the Matlab terminal window, you can read the drawing options:

- Press button
 - l(+1)+r to omit point(s);
 - r alone to try full tree;
 - middle for more options.

For instance, choose (75, 68) as the first and (30, 29) as the second point with the left button, and then press the right button. A dotted black polygonal will blink to indicate a remaining cyan polygon, of which the vertices are now joined by a Steiner subtree computed by the programme (see Figures 5 and 6).

From the first to the second point, one goes counterclockwise along the black polygon. It is a standard of stree.m, but if you mistake it before clicking the right button, choose extra point(s) and the programme will treat the latter two as “first” and “second”. Otherwise, if you mistake that standard and realise it only after having clicked the right button, it is again no problem. The first menu is re-printed on the screen, and now you can undo your previous step as follows: press the middle button for the second mouse menu, namely:

- Press button
 - left to return drawing;
 - right to undo previous step;
 - middle for retouches.

From it we have that the right button now undoes your mistake, and with the left button you will be back again to the first menu.

You might now want to take (19, 63) and then (52, 29) to get a Steiner subtree out of a quadrilateral. That will work out, but Figure 3 does not hint this way. So try instead (32, 50) and (52, 29) and you will get Figure 7 with an “odd” cyan polygon. However, stree.m shows it for you to consider other possibilities not hinted by Figure 3, for instance Figure 8. But in this figure, the Steiner tree is not minimal because it has length $L_{\text{tree}} = 227.1818$, which is bigger than $L_{\text{prim}} = 211.1398$, as printed in the Matlab terminal window. Also, a full border is printed when you terminate execution.

Back to Figures 7 and 3, remove now (50, 81) by clicking on it with the left and then right mouse buttons. Remove (10, 73), and then (62, 43) in the same way. The order you remove these single points is unimportant. You will then be left with a group of terminals very likely to give a full Steiner subtree. It will be drawn by pressing the right mouse button alone, no matter the cursor is. The Steiner tree will be concluded by connecting the isolated point (10, 73). By the third mouse menu,
which is also the last one, you should click left on (19, 63) and then right on (10, 73). The middle mouse button concludes your drawing (see Figure 9) and informs that $L_{tree} = 206.1456$. Sometimes, as in this case, you go from the first to the third mouse menu without access to the second.

However, we performed several tests which suggest that the tree in Figure 10 is the shortest one. It has $L_{tree} = 201.1988$.

3 Full tree stretches

In the previous section we mentioned Figure 10, which contains a group of terminals connected by a full Steiner subtree. This subtree is obtained by the second option of the first mouse menu. Now we present some details and hints, so that the intuitive mind will hardly be wrong at identifying such groups.

When will a subgroup of terminals admit connection by a full Steiner tree? For the time being, we answer this question providing each Steiner point is directly connected to a terminal of the subgroup (see Theorem 4.3 below). In general, it is when you have a “good” zigzag polygonal connecting them. For instance, run “Mksaw” for the terminal data test1.txt, and do the same to “stree”. You will get Figures 11 and 12.

This example shows that stree.m will give an answer, even if no full tree exists. However, it relies on your guesses. Whenever they are wrong, choose the “undo” option from the second mouse menu, or simply run again “stree” if most of
your terminals were a group like in Figure 11. This second case is illustrated in Figure 13 (run “stree” for test0 and omit the two uppermost terminals to get it). Figure 14 shows what is wrong: the zigzag is quite irregular.

Here are some hints to identify good zigzags: the group of points should form a strip, which can scroll in any direction. The strip can be slightly bent or waved, but its width may oscillate even quite a lot. However, despite all hints we give, only the practice will really make you recognise the good zigzags very quickly.

The next section discusses some theorems, from Geometry and Complex Analysis, with which the programmes from stree.m were written in order to obtain much shorter codes.

4 Some theorems used in stree.m

The following theorems were used to implement Rprim.m and Mksav.m, respectively. They all refer to the Euclidean distance.

Theorem 4.1. Let S be a finite set of points with at least two elements. In this case, there are P, Q ∈ S such that the distance between P and Q is maximal. The segment PQ is called the diameter of S.

Proof. It is already explicitly given by lines 2-3 of the open code Rprim.m, and so we shall omit it here.

Theorem 4.2. Let Q be a quadrilateral with consecutive vertices P_i, i = 1, · · · , 4. Let vec_{i-2} = P_i − P_{i-1}, i ≥ 2, and Vec_{i-1} = P_i − P_4, i ≤ 3. Then Q is convex precisely when vec_1 is between vec_0, vec_2, and also Vec_1 is between Vec_0, Vec_2.
Figure 13: A wrong guess. Figure 14: A “bad” zigzag.

Proof. By definition, Q is convex exactly when P_2, P_4 are at opposite sides of P_1P_3 and P_1, P_3 are at opposite sides of P_2P_4. This is equivalent to the assertion of the Theorem.

Theorem 4.3. Let A_1,\ldots, A_n be $n \geq 3$ terminals in the complex plane \mathbb{C} connected by a minimal full Steiner tree S. Let $V = \{V_1,\ldots, V_s\}$ be the set of Steiner points of S. Suppose that each element in V admits a terminal such that both are the extremes of a segment in S. In this case, there exists $V_i \in V$ that determines all points in $V \setminus \{V_i\}$.

Proof. By following the arguments from §3.4 of Gilbert and Pollak (1968), we have $s = n - 2$ and only one segment in S with extreme A_k, $\forall k \in \{1,\ldots, n\}$. Since $s \geq 1$, the arguments from §6 of Gilbert and Pollak (1968) apply. Namely, if each element of V were connected to a single terminal, then we would have $s = n$, a contradiction. Hence, there exists $V_i \in V$ that connects two terminals. Up to re-indexing, these are A_1, A_2 and $i = 1$.

Now consider the ray given by

$$r(t) = V_1 + t \left(\frac{V_1 - A_1}{|V_1 - A_1|} + \frac{V_1 - A_2}{|V_1 - A_2|} \right), \quad t \in \mathbb{R}_+.$$

If $n = 3$, then it is clear that a unique positive τ gives $r(\tau) = A_3$. Now take $n > 3$. For each positive t, consider the rays $r_1 = r(t) + (V_1 - A_1) \cdot \mathbb{R}_+$ and $r_2 = r(t) + (V_1 - A_2) \cdot \mathbb{R}_+$. Let $A = \{A_3,\ldots, A_n\}$ and take all positive t such that $(r_1 \cup r_2) \cap A \neq \emptyset$. They will make a finite set $\{t_3,\ldots, t_m\}$ with $m \leq n - 2$.

Since V_1 must be connected with another Steiner point, say V_2 (after re-indexing), then $V_2 = r(t_k)$ for a certain $k \in \{1,\ldots, m\}$. Of course, $r(t_k)$ is connected to a terminal in A. Up to re-indexing, it is A_k.

In order to find k, we must repeat the same arguments with $V_1, A_k, r(t_k)$ respectively in the place of A_1, A_2, V_1, and so on. This will give at most $s!$ full trees. One of them is minimal, whence all points V_2,\ldots, V_s are determined. This concludes the proof of the Theorem.

Our next section explains a bit of `stree.m` and the open codes `rprim.m` and `mksaw.m`, which exemplify the applications of the theorems discussed in this present section. They correspond to `rprim.p` and `mksaw.p`, which are two of the files that `stree.zip` contains.

5 Efficient codes from Geometry and Complex Analysis

Figure 15 describes our pseudocode, which works recursively while the connection matrix is not complete.
Initially, \texttt{stree.m} calls \texttt{lune.m} and \texttt{cvxhull.m} to inscribe the terminal points into the Steiner hull, namely a polygon coloured cyan as shown in Figure 4. In general, there will be isolated terminals inside the polygon. The ones that build its vertices are marked by \texttt{stree.m} with either 0 or 1, which mean “greater” and “lesser” than 120\degree, respectively. The characters 0 and 1 are stored in a string \texttt{s}. For instance, if \texttt{s} contains a stretch 010, this hints to three terminals joined by a Steiner point.

But \texttt{stree.m} does not connect them automatically, for this hint might not lead to the shortest tree. We use the variable \texttt{s} for purposes like building zigzags out of stretches 01...10. Of course, not all zigzags are good, but the programme will try them back and forth, and even split them in parts. We are certain that, if you have something like Figure 13, then a supervised splitting will work better than many automatic tests.

Of course, \texttt{lune.m} and \texttt{cvxhull.m} are based upon the Convex Hull and Lune properties described in Gilbert and Pollak (1968). They do not give a polygon with zigzags, but with stretches like in Figure 16. Hence, \texttt{stree.m} calls \texttt{mksaw.m} in order to get the zigzag.

If you want to test these procedures, run “Cvxhull” for the terminal data test2.txt and save the output with the name test3. A figure will show the original input order of the terminals (dotted lines), and a blue polygon involving them (the convex hull). Then run “Lune” for test3.txt and name the output test4.

Now we are going to explain the open codes \texttt{Rprim.m} and \texttt{Mksaw.m}, which will finally generate a zigzag out of test2.txt (the initial datafile). According to Theorem 4.1, there is a diameter for the points in test2.txt, and lines 2-3 of \texttt{Rprim.m} are precisely the commands to find them, namely \texttt{Pts(h(k))} and \texttt{Pts(k)}. However, you must run “Rprim.m” for the re-ordered data test4.

Now we project all points along the diameter and re-order them by increasing distance between their projection and the extreme \texttt{Pts(k)}. That is what the while-loop does in lines 11 to 19. The re-ordered input is restored in line 20, and may be saved in line 21. We did it in test5.txt, which \texttt{Mksaw.m} finally re-orders into a zigzag.

Notice that the terminals from test5.txt are in zigzag order except for one single square wavelet. However, the open code \texttt{Mksaw.m} works well even if you have a totally square wave. Enter the terminal points in an order that makes such a wave. We have used test6.txt to generate Figure 16.

You have just seen that this precaution is not necessary when you run \texttt{stree.m}, for it will rearrange the points as explained above.

By walking along the square wave from the very first point on, two consecutive steps will always lead to a vertex that makes a quadrilateral \textit{Q} with the following two. That is why the while-loop ends in \texttt{pts=pts(2:end)}.

Now look at lines 4 to 9 of \texttt{Mksaw.m} and apply Theorem 4.2 to \textit{Q}. The symbol \times will indicate the vector product. From Geometry, the convexity criteria given by this theorem is equivalent to $vec_0 \times vec_1$, $vec_2 \times vec_1$ pointing in opposite directions. The same holds for $Vec_0 \times Vec_1$, $Vec_2 \times Vec_1$. Taking these vectors as complex numbers in $\mathbb{C} \times \mathbb{R}$, say $vec_1 = a + ib = (a, b, 0)$ and $vec_0 = c + id = (c, d, 0)$, we have $vec_0 \times vec_1 = (0, 0, bc - ad)$, namely $bc - ad = \text{Im}(vec_1 \cdot vec_0)$. Thus, from Complex Analysis the vectors $vec_0 \times vec_1$, $vec_2 \times vec_1$ will point in opposite directions precisely when the signs
of $\text{Im}\{\text{vec}_1 \cdot \text{vec}_0\}$ and $\text{Im}\{\text{vec}_1 \cdot \text{vec}_2\}$ are opposite. Hence, lines 10-11 from Mksaw.m check if Q is convex. In this case, the programme makes a sawtooth out of Q. Then we go two steps forward with the command \texttt{pts=pts(2:end)}; and the while-loop repeats the process, unless we have already came to the end of the line.

6 Conclusions

Differently from the approach of trying a fully automated method, we propose to take advantage of the good choices that a user can make. Many attributes, like intuition, guessing, practice and sometimes a bird’s-eye view, are valuable means that one cannot translate into any programming language. It is just because these attributes are chiefly \textit{human}. Hence, as long as a task is feasible with the help of supervision, we suggest taking it into account, besides the fully automated methods. This proposal is not new, but we endeavour to obtain a code that is both easy to run and to understand.

The programme \texttt{stree.m} is still in the beta version. Further improvements will include more feedback to the user. For instance, the tree will be checked with the (Double) Wedge and Diamond properties, among others (see Gilbert and Pollak (1968) for details). Some tests can be implemented to run \textit{while} the users draw, so that they may also undo steps which just \textit{seem} successful with this present version.

Moreover, \texttt{stree.m} still works strongly devoted to real Steiner trees, which in fact should be adapted to practical purposes. For instance, outputs consider even Steiner points extremely close to a terminal. By implementing such a tree to a multicast network, those Steiner points are unnecessary, and even costly. In future, the user will decide on the tolerance regarding the minimum distance that terminals and Steiner points will keep apart.

By the way, it is even preferable to implement multicast networks with a minimum number of Steiner points, because of the high cost of the routers. This is also the case of WDM optical networks (see Chen et al. (2001)). Therefore, it will be useful to have future versions of \texttt{stree.m} devoted to the construction of such trees. The rectilinear Steiner trees are also of interest (see Fößmeier and Kaufmann (1997); Zachariasen (1997)), and then another option like \texttt{stree.m} to be developed.

Acknowledgment

Many improvements in this paper were due to the careful analyses carried out by referees. We thank them for their valuable help.

References

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A. and Protasi, M. (1999). Complexity and approximation: combinatorial optimization problems and their approximability properties. Springer-Verlag, Berlin and Heidelberg.

Chen, D., Du, D.-Z., Hu, X.-D., Lin, G.-H., Wang, L. and Xue, G. (2001). Approximations for Steiner trees with minimum number of Steiner points. Theoretical Computer Science 262, 83-99.

Du, D.-Z., Hwang and F.K. (1992). A proof of the Gilbert-Pollak conjecture on the Steiner ratio. Algorithmica 7, 121-135.

Du, D.-Z. and Zhang, Y. (1992). On better heuristics for Steiner minimum trees. Mathematical Programming 57, 193-202.

Fößmeier, U. and Kaufmann, M. (1997). Solving rectilinear Steiner tree problems exactly in theory and practice. In: Proceedings of the 5th European Symposium on Algorithms, Springer-Verlag LNCS 1284, 171-185.

Garey, M.R., Graham, R.J. and Johnson, D.S. (1977). The complexity of computing Steiner minimal trees. SIAM Journal of Applied Mathematics 32(4), 835-859.

Gilbert, E.N. and Pollak, H.O. (1968). Steiner minimal trees. SIAM Journal of Applied Mathematics 16(1), 1-29.

Hu, X.-D., Shuai, T.-P., Jia, X. and Zhang, M.-H. (2004). Multicast routing and wavelength assignment in WDM networks with limited drop-offs. IEEE INFOCOM, \texttt{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1354520}

Innami, N., Kim, B.H., Mashiko, Y. and Shiohama, K. (2010). The Steiner ratio conjecture of Gilbert-Pollak may still be open. Algorithmica 57(4), 869-872.

Jia, X., Hu, X.-D., Lee, M., Du, D.-Z. and Gu., J. (2001). Optimization of wavelength assignment for QoS multicast in WDM networks. IEEE Trans. on Communications 49, 341-350.

Prim, R.C. (1957). Shortest connection networks and some generalizations. Bell System Tech. J. 36, 1389-1401.
Ravada, S. and Sherman, A. (1993). Experimental evaluation of a partitioning algorithm for the Steiner tree problem in \mathbb{R}^2 and \mathbb{R}^3. Technical Report TR-CS-93-03, University of Maryland, Baltimore County.

Sahasrabuddhe, L.H. and Mukherjee, B. (2000). Multicast routing algorithms and protocols: a tutorial. IEEE Network 14, 90-102.

Smith, W.D. (1992). How to find Steiner minimal trees in Euclidean d-space. Algorithmica 7(1-6), 137-177.

Warme, D.M., Winter, P. and Zachariasen, M. (2000). Exact algorithms for plane Steiner tree problems: a computational study. In D.-Z. Du, JM Smith, and JH Rubenstein, editors, Advances in Steiner Trees. Kluwer Academic Publishers, Boston, 81-116.

Winter, P. and Zachariasen, M. (1999). Concatenation-based greedy heuristics for the Euclidean Steiner tree problem. Algorithmica 25(4), 418-437.

Winter, P. and Zachariasen, M. (1997). Euclidean Steiner minimum trees: an improved exact algorithm. Networks 30(3), 149-166.

Wu, B.Y. and Chao, K.-M. (2004). Spanning Trees and Optimization Problems. CRC Press, Boca Raton, London, New York and Washington.

Yang, B. and Gillard, P. (2000). The class Steiner minimal tree problem: a lower bound and test problem generation. Acta Informatica 37, 193-211.

Zachariasen, M. (1997). Rectilinear full Steiner tree generation. Technical Report DIKU-TR-97/29, University of Copenhagen, http://www.diku.dk

Zachariasen, M. (1999). Local search for the Steiner tree problem in the Euclidean plane. European Journal of Operational Research 118(2), 282-300.