Learning Contrastive Multi-View Graphs for Recommendation (Student Abstract)

Zhangtao Cheng1, Ting Zhong1, Kunpeng Zhang2, Joojo Walker1, Fan Zhou1
1 University of Electronic Science and Technology of China
2 University of Maryland, College park
zhangtao980107@outlook.com, zhongting@uestc.edu.cn, kpzhang@umd.edu, joojokojododzi@gmail.com, fan.zhou@uestc.edu.cn,

Abstract

This paper exploits self-supervised learning (SSL) to learn more accurate and robust representations from the user-item interaction graph. Particularly, we propose a novel SSL model that effectively leverages contrastive multi-view learning and pseudo-siamese network to construct a pre-training and post-training framework. Moreover, we present three graph augmentation techniques during the pre-training stage and explore the effects of combining different augmentations, which allow us to learn general and robust representations for the GNN-based recommendation. Simple experimental evaluations on real-world datasets show that the proposed solution significantly improves the recommendation accuracy, especially for sparse data, and is also noise resistant.

Introduction

More recently, graph neural networks (GNNs)(Wu et al. 2020) are widely adopted in the recommender system and result in the state-of-the-art recommendation performance (He et al. 2020). However, GNNs and their variants used in recommendation tasks are confronted with several limitations (Wu et al. 2021): (1) Data sparsity: The observed interactions are extremely sparse w.r.t. the entire space, making it difficult for GNN models to learn high-quality representations; (2) Noisy interactions: Observed interactions like views and clicks are usually noisy, e.g., a user clicks a item by mistake. Unfortunately, GNNs are based on neighborhood aggregation schemes that may exaggerate the impact of noisy interactions in representation learning.

We alleviate these limitations by leveraging self-supervised signals extracted from the user-item graph to improve representation learning. Specifically, we propose a novel framework called Contrastive Multi-view Pre-training and Pseudo-Siamese Post-training framework (CMP-PSP) for graph-based recommendation. Firstly, CMP-PSP uses contrastive learning techniques (Chen et al. 2020) to pretrain general user and item embeddings representing each user/item’s unique attribute. We propose to sub-sample and augment the subgraphs, and consider three data augmentation strategies, including node perturbation (it randomly throws away a certain part of vertices along with their connections), edge noising (it adds and drops a certain ratio of edges), and embedding masking (it masks a certain part of subgraph’s ID embeddings), to transform the user-item subgraph into different views. With the debiased contrastive loss, we optimize the model parameters to maximize the similarity between representations of the same node from different augmented views. In the post-training stage, we adopt a pseudo-siamese network to augment representations for downstream recommendation tasks.

Methodology

Contrastive Multi-view Pre-Training (CMP): It consists of the following three components: (1) an augmentation mechanism that transforms a sampled subgraph into two correlated views of the same subgraph; (2) two dedicated subgraph GCNs as the graph encoders to obtain node representation $h = GCN(\mathcal{G}, \mathcal{E})$. \mathcal{E} denotes embeddings of the corresponding nodes in the subgraph \mathcal{G}. They are followed by a shared MLP. We use MLP with one hidden layer to obtain $z = W^{(2)} \sigma(W^{(1)} h)$; and (3) the debiased contrastive loss that determines whether the two representations are derived from the same data points. Specifically, we randomly sample a subgraph from the original graph \mathcal{G}. Then we apply devised augmentation operations to this subgraph to obtain two different augmented views, containing $2N$ users and $2M$ items. Following (Chen et al. 2020), for each user u, we treat the same user u in the different views as the positive pairs (z^i_u, z^j_u), and treat other $2(N-1)$ users as the negative pairs. Then the loss function for a positive pair (z^i_u, z^j_u) is defined as:

$$L_{user} = -\log \frac{\exp(s(z^i_u, z^j_u)/\tau)}{\sum_{k=1}^{2N} I_{[k \neq i, j]} \exp(s(z^i_u, z^k_u)/\tau)},$$ (1)

where $s(\cdot)$ measures the similarity between two representations and is set as $s(u, v) = \cos(u, v) = u^\top v / \|u\|\|v\|$, $I_{[k \neq i, j]} \in \{0, 1\}$ is an indicator function, and τ is the temperature parameter. Analogously, we obtain the contrastive loss of the item side L_{item}.

Here, we also consider the relation between a user and an item in the representation process. Generally, items that have not been interacted with are treated as the negative samples. However, there may exist false negative items; that is,
some negative items might be potential positive items that
the user likes. To alleviate this problem, we leverage the
debiased contrastive loss (Chuang et al. 2020) to approximate
the distribution of negative examples. For each user u, the
loss needs to be optimized becomes:

$$L_{\text{item}} = \sum_{l=1}^{N} - \log \frac{\exp(s(z^l_u, z^l_i)/\tau)}{\exp(s(z^l_u, z^l_i)/\tau) + Lg'},$$

$$g' \left(z^l_u, z^l_i, \{ z^k_i \}_{k=1}^{L} \right) = \frac{1}{1 - \tau^+} \left(\frac{1}{L} \sum_{k=1}^{L} (\mathcal{N}) - \tau^+ \mathcal{P} \right),$$

where $L = M - 1$. Here a sampled negative item may
comes from the positive items with a probability $1 - \tau^+$. $\mathcal{N} = \exp(s(z^l_u, z^l_i)/\tau)$ and $\mathcal{P} = \exp(s(z^l_u, z^l_i)/\tau)$. Finally,
we can summarize the objective of the pre-training:

$$L_{\text{ssl}} = L_{\text{user}} + L_{\text{item}} + \epsilon,$$

Pseudo-Siamese Network for Post-Training (PSP): Using
the pseudo-siamese network architecture, similar model
structure may have different parameters, enabling our model
to learn meaningful representations of the different input
separately and combine them at a higher level. Afterwards,
we concatenate the learned user and item features to form
richer augmented representations for prediction. Here, the
prediction is defined as the inner product of the final user
and item representations: $\hat{y}_{ui} = h^T_u h_i$.

To learn model parameters, we employ the Bayesian Per-
sonalized Ranking (BPR) loss, which is a pairwise loss that
enforces the prediction of an observed interaction to be
higher than its unobserved counterparts:

$$L_{\text{BPR}} = -\sum_{i=1}^{n} \sum_{j \in N_i \cup N_j} \ln \sigma(\hat{y}_{ui} - \hat{y}_{uj}) + \lambda ||\Theta||^2,$$

where λ controls the L_2 regularization strength, Θ denotes
the set of model parameters, and N_u denotes the set of items
that are interacted by user u.

Results

Performance Comparisons: Table 1 shows the overall
performance comparison results. Compared to NGCF (Wang
et al. 2019) and LightGCN (He et al. 2020) (the best
GCN-based CF baseline), CMP-PSP achieves 3.71% on Rec-
call@20, 4.52% on NDCG@20 for the Gowalla dataset.
The improvement is attributed to CMP-PSP’s ability to alleviate
the data sparsity and noisy interactions issues in user-item
interaction learning with self-supervised signals.

Model Robustness: We conduct an experiment to investi-
gate CMP-PSP’s robustness to the data sparsity. The results
are summarized in the Figure 1. To verify CMP-PSP’s rob-
ustness to data sparsity, we use different proportions of
the entire training set. We can find that the performance of
LightGCN and SGL-ED deteriorates greatly when using less
training data. However, the performance of CMP-PSP de-
creases slightly with less training data. This result indicates
that CMP-PSP is able to alleviate the data sparsity problem
greatly. We attribute this result to the ability of CMP-PSP
to figure out useful interactions and reduce dependence on
certain edges by comparing different augmented views of
nodes.

Acknowledgments

This work was supported by National Natural Science Foun-
dation of China (Grant No. 62176043 and No. 62072077).

References

Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual represen-
tations. In *ICML*, 1597–1607.

Chuang, C.-Y.; Robinson, J.; Lin, Y.-C.; Torralba, A.; and
Jegelka, S. 2020. Debiased Contrastive Learning. In *NeurIPS*.

He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; and Wang,
M. 2020. Lightgcn: Simplifying and powering graph convo-
lution network for recommendation. In *SIGIR*, 639–648.

Wang, X.; He, X.; Wang, M.; Feng, F.; and Chua, T.-S. 2019.
Neural graph collaborative filtering. In *SIGIR*, 165–174.

Wu, J.; Wang, X.; Feng, F.; He, X.; Chen, L.; Lian, J.; and
Xie, X. 2021. Self-supervised Graph Learning for Recom-
mandation. In *SIGIR*.

Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. *TNNLS*.