Thiothymidine combined with UVA as a potential novel therapy for bladder cancer

SW Pridgeon1,5, R Heer1,4, GA Taylor1, DR Newell1, K O’Toole1, M Robinson2, Y-Z Xu3, P Karran1 and AV Boddy*,1

1Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle NE2 4HH, UK; 2Department of Histopathology, Royal Victoria Infirmary, Newcastle, UK; 3Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, UK; 4Department of Urology, Freeman Hospital, Newcastle, UK

BACKGROUND: Thiothymidine (S4TdR) can be incorporated into DNA and sensitisce to DNA damage and cell death following exposure to UVA light. Studies were performed to determine if the combination of S4TdR and UVA could be an effective treatment for bladder cancer.

METHODS: Uptake and incorporation of S4TdR was determined in rat and human bladder tumour cell lines. Measures of DNA crosslinking and apoptosis were also performed. In vivo activity of the combination of S4TdR and UVA was investigated in an orthotopic model of bladder cancer in rats.

RESULTS: Thiothymidine (200μM) replaced up to 0.63% of thymidine in rat and tumour bladder cancer cells. The combination of S4TdR (10–200μM) and UVA (1–5 kJ m⁻²) caused apoptosis and cell death at doses that were not toxic alone. Addition of raltitrexed (Astra Zeneca, Alderley Edge, Cheshire, UK) increased the incorporation of S4TdR into DNA (up to 20-fold at IC₅₀) and further sensitised cells to UVA. Cytotoxic effect was associated with crosslinking of DNA, at least partially to protein. Intravenous administration of S4TdR, in combination with UVA delivered directly to the bladder, resulted in an antitumour effect in three of five animals treated.

CONCLUSION: These data indicate that the combination of S4TdR and UVA has potential as a treatment for bladder cancer, and give some insight into the mechanism of action. Further work is necessary to optimise the delivery of the two components.

British Journal of Cancer (2011) 104, 1869–1876. doi:10.1038/bjc.2011.180 www.bjcancer.com

© 2011 Cancer Research UK

Keywords: Thiothymidine; UVA; bladder cancer; raltitrexed; DNA damage

In the UK, transitional cell carcinoma (TCC) of the urinary bladder is the fifth most commonly diagnosed malignancy with 10 091 new cases reported in 2007 (CRUK Cancer Statistics, 2010).

The prevalence of this disease significantly exceeds its primary incidence as it has a high rate of recurrence ranging from 31% at 5 years for low-risk tumours to 78% at 5 years for high-risk tumours (Babjuk et al, 2008). Bladder cancer can be broadly classified based on two distinct molecular and histological TCC pathologies – nonmuscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC) (Knowles, 2008). Approximately 75–85% of patients present with NMIBC (Parker et al, 1996), and these cancers are associated with a relatively benign course rarely affecting survival, however, surveillance and recurrence makes this an expensive disease to manage. In NMIBC, progression into MIBC. Once there is MIBC, contemporary overall survival at 5 years following cystectomy is 50–60% (Shariat et al, 2003). Intravesical Bacille Calmette-Guérin (BCG) therapy is currently the favoured treatment for high-risk patients despite significant morbidity. Treatment with BCG reduces the odds of progression by 27% in patients with intermediate- and high-risk tumours (Sylvester et al, 2002). Patients who fail to respond to BCG require radical and morbid surgery for the best possible chance of a cure, and new approaches to reduce progression are a clinical priority. As the bladder can be accessed readily via the transurethral route, it is ideal for topical photosensitive treatments, as exemplified by the increasing use of photodynamic bladder cancer diagnostics, and this potential is further explored in a preclinical model in this paper.

4-Thiothymidine (S4TdR) is a pyrimidine nucleoside thio analogue. Although it has close structural similarities to thymidine (TdR), the two molecules have markedly different ultraviolet absorbance spectra. Thymidine absorbs maximally at 270 nm (UVC) while the peak absorption of S4TdR is in the UVA range at 340 nm.

The altered photospectrum of S4TdR enables it to form photochemical DNA intrastrand crosslinks (Warren et al, 1998) and DNA–protein crosslinks. These properties have been used to investigate the structural and functional interactions of DNA-binding proteins with synthetic oligonucleotides containing...
S4Tdr (Nikiforov and Connolly, 1992). Interstrand DNA crosslinks are also formed and S4Tdr-containing oligonucleotides can be photoligated in aqueous solution (Liu and Taylor, 1998). Importantly, these types of photochemical DNA lesion in cellular DNA are all potentially cytotoxic.

Thiothymidine incorporation into DNA and a consequent sensitisation to UVA has been demonstrated in various cultured skin cell lines (Massey et al, 2001; Reelfs et al, 2007). The cytotoxic effect is hypothesised to result partly from the formation of bulky DNA intrastrand crosslinks. Incorporation of S4Tdr is dependent on the thymidine salvage pathway mediated by thymidine kinase (TK). This raises the possibility that inhibiting de novo synthesis of thymidine nucleotides might increase DNA S4Tdr incorporation by forcing increased reliance on thymidine salvage. Raltitrexed (N-(5-(3,4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino-2-thienyl)-l-glutamic acid/’Tomudex’/ZD1694) is a water soluble quinazoline-based antifolate that is a specific inhibitor of thymidylate synthase (TS), a key enzyme in the de novo pathway (Jackson et al, 1983; Mitrovski et al, 1994). In bladder cancer cells, TS inhibition results in both an increased TK activity and upregulated expression of the nucleotide transporter protein to maintain thymidylate levels through pyrimidine salvage (Pressacco et al, 1995). It is hypothesised that raltitrexed might be used to increase thiothymidine uptake into cells and incorporation into DNA and subsequently to increase the sensitivity to UVA.

MATERIALS AND METHODS

Cell culture

MYU-3L (Kameyama et al, 1993; Kawamata et al, 1993), MBT2 (Soloway et al, 1973), RT4 (Rigby and Franks, 1970) and AY27 bladder cancer cell lines were cultured in RPMI-1640 medium supplemented with 10% foetal bovine serum, penicillin and streptomycin in a humidified atmosphere of 95% air, 5% CO\textsubscript{2} at 37°C. MYU-3L and AY-27 TCC cells were a kind gift from Ronald Moore (Professor of Surgery and Oncology, University of Alberta), and were derived from primary rat tumours established by the oral administration of FanFT.

Determination of the S4Tdr content of DNA

Thiothymidine was added to culture medium to achieve concentrations of 1 – 200 \(\mu\)M for two cell-doubling times (Table 1). The DNA was extracted using Qiagen DNeasy and converted to deoxynucleosides by successive digestion with DNase I (Sigma, Poole, UK), nuclease P1 and alkaline phosphatase (Roche GmbH, Mannheim, Germany). Quantification of S4Tdr and thymidine nucleosides was carried out using a Perkin Elmer LC System (Beaconsfield, Buckinghamshire, UK) coupled to an API-4000 LC/MS/MS Triple Quadrupole Mass Spectrometer (Applied Biosystems, Warrington, UK), with Analyst software for data acquisition and analysis. Separation was performed on a Phenomenex 20 × 4.0 mm Luna C\textsubscript{18} Mercury column. Mobile phase consisted of 0.05 M NH\textsubscript{4}Ac pH 5.0/methanol at 0.2 ml per minute. Positive ESI mode was used with m/z 242.9/127.1 for thymidine and m/z 259.1/143.0 for S4Tdr and the limits of detection were 2.5 pg and 0.25 pg, respectively. The S4Tdr content of DNA was expressed as the percentage of DNA thymidine replaced by S4Tdr.

UVA exposure

Cells cultured in dishes or plates were exposed to UVA using a Philips facial Studio HB 175 (Philips, Guildford, UK). The distance between the plates and the lamp was measured to deliver a dose rate of 5 mW cm-2 UVA. Under these conditions, a 1 sec exposure under the lamp corresponded to 0.05 kJ m-2.

Determination of growth inhibition

Cells were cultured in the presence of S4Tdr for two cell-doubling times. Plates were then exposed to UVA as described above and were re-incubated for a further 72 h. Cell growth was determined using the Sulforhodamine B (SRB) assay (Skehan et al, 1990) and growth inhibition expressed as a percentage of growth compared with untreated controls.

Comet assay

The Comet assay was performed using components of the CometAssayKit (Trevigen, Oxford, UK). For UVA exposure, cells were detached from the dishes and re-suspended in PBS. Cells were re-suspended at a concentration of 5 × 105 cells ml-1 and mixed with molten LM Agarose (Trevigen) in a ratio of 1 : 10 and 75 \(\mu\)l of the suspension placed on Comet slides (Trevigen). Electrophoresis was carried out for 20 min at 1 volt cm-1 at 300 mA. Slides were stained with SYBR green and viewed under a Leica TCS SP2 UV Confocal Laser Scanning Microscope. The SYBR green was excited by the 488 nm argon laser and the emission detected at 496–549 nm. Analysis of comets was performed using Comet 5 software (Andor Technology, Belfast, Northern Ireland). Fifty comets were analysed for each treatment group to give values for the Olive tail moment and comet tail length.

Crosslinking was expressed as a percentage decrease in Olive tail moment using the formula below as previously described (Hartley et al, 1999).

\[
\% \text{ decrease in tail moment} = \left\{ 1 - \frac{\text{TM}_{\text{iCont}} - \text{TM}_{\text{Cont}}}{\text{TM}_{\text{iCont}} - \text{TM}_{\text{Cont}}} \right\} \times 100
\]

where TM \text{iCont} = tail moment of irradiated control cells; TM \text{iS}^{-}\text{Tdr-UVA} = tail moment of irradiated cells treated with S4Tdr and UVA; TM\text{Cont} = tail moment of unirradiated control cells.

To discriminate DNA–DNA crosslinks from DNA–protein crosslinks, a proteinase K treatment was performed. After lysis, slides were washed in TE buffer (10 mm Tris, 1 mm EDTA, pH 10), then covered with 100 \(\mu\)l proteinase K (Sigma) (1 mg ml-1 TE buffer) and incubated for 2 h in a humidified incubator at 37°C. Controls were incubated with 100 \(\mu\)l TE buffer only. Following incubation, slides were processed as above.

Assessment of apoptosis

Caspase 3 and 7 activities were measured using the Caspase-Glo Assay (Promega, Southampton, UK). The MYU-3L and AY27 cells were incubated in the presence or absence of S4Tdr (100 \(\mu\)l) for two cell-doubling times and exposed to 10 kJ m-2 UVA. Cells were
Orthotopic animal model

All in vivo work was carried out under strict regulatory approval (LREC licence PPL 60/2836). Female Fischer rats (F344) weighing 170–200 g were anaesthetised using inhaled isofluorane. Rats were cantharidised using a 20-gauge cannula. The bladder was preconditioned using 0.1 N HCl to strip the epithelium and neutralised with 0.1N KOH followed by a PBS wash to create a surface suitable for implantation of tumour cells. Suspensions of MYU-3L cells (1 x 10^6 in 0.4 ml RPMI 1640 per 50% FCS) were instilled for 1 h. Rats were returned every 15 min to encourage even distribution of tumour cells. Two days after tumour cell instillation, the urothelium was completely denuded, with cancer cells overlying oedematous subepithelial connective tissue. At day 5 post-instillation, 80% of tumours showed invasion into the subepithelial connective tissue consistent with stage pT1 tumours. The subendothelial connective tissue showed increased vascularity over normal rats' bladders. Tumour depth varied between 0.2–1.4 mm. By day 10, 100% of tumours progressed to muscle invasive disease (pT2). At 21 days post-instillation, all tumours were histological stage T3 with invasion into the perivesical fat and areas of tumour necrosis. The progression to invasion in the MYU-3L model without early metastases makes this a suitable model of progression in high-risk NMIBC.

Administration of S^4Tdr and UVA light

Thiothymidine solution was dissolved in sterile water up to doses of 16 mg in 0.4 ml aliquots. An intravesical instillation time of 2 h was used. Intravenous injections of S^4Tdr (160 mg kg^-1) were reconstituted in 1.0 ml sterile water and administered via tail vein injection. Whole bladder UVA exposure was achieved using a UVCLEAN fibre optic system (Sensor Electronics, Columbia, NC, USA). This consisted of a portable power supply coupled to a UV (320–340 nm) light emitting diode set to the maximum power (320–340 nm) light emitting diode set to the maximum power (320–340 nm) light emitting diode set to the maximum power setting (18 mA). The UV clear optic fibre (0.6 mm diameter) fitted through the urethral cannula (20 gauge) without any leak. The bladder was filled with 0.1 ml sterile PBS to partially distend the bladder and the fibre was advanced so that the tip sat 1–2 mm beyond the urethral bridge, UK) was performed using standard immunohistochemistry protocols. Antigen retrieval was carried out using a citrate buffer and bound antibody was detected using biotin-conjugated rabbit anti-mouse immunoglobulins and the streptABC kit (DAKO, Ely, Cambridgeshire, UK) and Sigmapfast dianminobenzidine tablets (Sigma).

RESULTS

Thiothymidine is incorporated into the DNA of bladder cancer cells in vitro

Each of the bladder carcinoma cell lines was assessed for the ability to incorporate S^4Tdr into DNA. Following culture in the presence of 200 μM S^4Tdr for two cell-doubling times, the thiobase replaced ~ 0.63% of DNA TdR in MYU-3L cells. Under the same conditions, ~ 0.50% of DNA TdR was replaced by S^4Tdr in MBT2 cells. The extent of substitution in MYU-3L and RT4 cells was lower, at 0.22 and 0.15%, respectively (Figure 1). These levels of S^4Tdr incorporation are comparable to those reported in human fibroblasts (Massey et al, 2001). When Ay27 and MYU-3L cells were cultured in a medium with 200 μM thiothymidine, thiothymidine was detectable in DNA extracts after 2 h of incubation, replacing 0.23 and 0.05% for each cell line, respectively.

Raltitrexed increased S^4Tdr incorporation into DNA. Under similar conditions (200 μM, two cell doublings), the addition of IC50 and IC90 concentrations of raltitrexed increased DNA S^4Tdr incorporation 7- and 11-fold, respectively, in MYU-3L cells. IC50 raltitrexed concentrations increased S^4Tdr incorporation 4-, 20- and 4-fold, respectively, in MBT2, RT4 and Ay27 cells and these values were even higher at IC90 concentrations. These findings are summarised in Table 1.

Thiothymidine sensitises bladder cancer cell lines to UVA

When MYU-3L cells were treated with a range of S^4Tdr concentrations and subsequently exposed to increasing UVA doses, there was a S^4Tdr- and UVA dose-dependent growth inhibitory effect (Figure 2). In control experiments, no growth inhibition was observed in cells treated with S^4Tdr alone up to 300 μM or with UVA at doses less than 50 kJ m^-2 (data not shown). After 10 and 200 μM S^4Tdr and 1 kJ m^-2 UVA, growth inhibition was 29 and 75%, respectively, increasing to 89 and 98% growth inhibition at 5 kJ m^-2. Consistent with their more extensive DNA substitution, a dose of 1 kJ m^-2 UVA produced 90 and 100% growth inhibition in Ay27 cells cultured in 10 and 200 μM S^4Tdr (data not shown).

Measurement of thymidine and S^4Tdr levels in rat serum

Thiopyrimidine concentrations in 100 μl samples of rat plasma were determined following acetonitrile protein extraction and comparison with a standard curve of thymidine and S^4Tdr in human plasma. Dried samples were re-suspended in 200 μl of mobile phase (0.05 M NH3-Ac pH 5.0). Samples were analysed as described above.

Histopathology

To confirm that MYU-3L cells retained their carcinoma phenotype, indirect immunoperoxidase staining of paraffin embedded bladder tumour specimens with a pan–cytokeratin cocktail (Abcam, Cambridge, UK) was performed using standard immunohistochemistry protocols. Antigen retrieval was carried out using a citrate buffer and
UVA sensitisation by S^4TdR is further augmented by raltitrexed

The enhanced DNA S^4TdR incorporation after raltitrexed treatment was associated with increased UVA sensitivity. In the absence of raltitrexed, 10 μM S^4TdR and 0.5 kJ m^{-2} UVA produced a growth inhibition of 8% in MYU-3L cells (Figure 3). When combined with a range of increasing raltitrexed concentrations up to 7.5 nM, the same S^4TdR concentration and UVA dose resulted in a progressively increasing growth inhibition of up to 65%. Raltitrexed also increased the S^4TdR/UVA sensitivity of RT4, MBT2 and AY27 cells. The results for MBT2 and AY27 were comparable to those obtained for MYU-3L cells. Consistent with the more pronounced effect of raltitrexed on DNA S^4TdR in RT4, the differential sensitivity attributable to raltitrexed was greatest in these cells. (Figure 3). In control experiments, raltitrexed alone did not confer any additional sensitivity to UVA (data not shown).

Thiothymidine causes DNA crosslinks and apoptosis following UVA exposure

The DNA lesions induced by S^4TdR/UVA treatment were assessed using the comet assay. The crosslinking of DNA S^4TdR was measured as a reduction in comet tail moments in X-irradiated cells. Typical comet images are shown in Figure 4. An X-ray dose of 20 Gy induced comets in the nondrug-treated control cells (Figures 4A and G). The length of the comet tail was significantly shorter in X-irradiated cells that had previously been treated with 200 μM S^4TdR and 10 kJ m^{-2} UVA. The mean reduction in Olive tail moment by S^4TdR/UVA was 55 and 51% for MYU-3L and AY27 cells, respectively, in three independent experiments. As expected, there was no visible DNA migration in samples that were not X-irradiated. To examine whether formation of DNA–Protein crosslinks by S^4TdR/UVA contributed to the reduced DNA migration, slides were treated with proteinase K before electrophoresis. Protease digestion caused a 24% increase in tail moment compared with untreated slides (data not shown).
Thiothymidine/UVA treatment induced apoptosis in the bladder carcinoma cells

Twenty-four hours following treatment with 100 μM S4TdR and 10 kJ m$^{-2}$ UVA, cells appeared shrunken with condensed nuclei. By 18 h after irradiation, caspase 3 and 7 activity in the culture medium was increased by factors of 5.2 and 5.7 for MYU-3L cells and AY27 cells, respectively, compared with controls (Figure 5). The induction of apoptosis was confirmed by flow cytometry analysis. By 18 h after UV irradiation of cells pretreated with 100 μM S4TdR, annexin binding was detectable in 29 and 26% of MYU-3L and AY27 cells, respectively. The corresponding figures for untreated cells were 5 and 7%.

Figure 4 Typical comet images from MYU-3L cells treated with S4TdR and UVA. Thiothymidine treatment was for two cell-doubling times at 200 μM and UVA exposure was at 10 kJ m$^{-2}$. Irradiated cells were exposed to 20 Gy X-irradiation. (A) Unirradiated control; (B) Unirradiated S4TdR control; (C) Unirradiated UVA control; (D) Unirradiated S4TdR and UVA; (E) Irradiated S4TdR control; (F) Irradiated UVA control; (G) Irradiated control; (H) Irradiated S4TdR + UVA.
Thiothymidine accumulates in DNA of bladder tumours following intravenous or intravesical administration

Bladder tumours were successfully established in F334 Fischer rats by instillation of MYU-3L bladder cancer cell suspensions into preconditioned rats’ bladders. At day 2 after tumour implantation, clumps of cells were visible in the bladder lumen with early adherence to the denuded urothelium. By day 5 post-instillation, stage pT1 bladder tumours were seen with infiltration into the subepithelial connective tissue and tumour depth of <1 mm. Bladders were macroscopically identical to normal rat bladders. Tumours stained positively with a pan–cytokeratin cocktail confirming a carcinoma phenotype. Tumours showed a rapid growth phase from day 6–21 with formation of bulky tumours progressing to muscle invasive and locally advanced disease, but without evidence of metastatic spread. Rat bladders examined histologically between day 5 and day 21 showed tumour development in 45 out of 50 animals inoculated with tumour cells. Thiothymidine was detectable in bladder tumour DNA following intravenous administration at a dose of 160 mg kg⁻¹ (32 mg for a 200 g rat) one week after tumour seeding (Table 2). Tissues were sampled 2 h and 20 h after injection and concurrent blood samples were taken at the time of euthanasia. Specimens of bladder, kidney, liver, skin and eye were obtained from three animals at each time point – one control and two rats in which tumour cells were implanted. Three tissue samples from each organ were analysed per animal. At two hours post-injection, S⁴TdT replaced 0.0018 ± 0.0002% of thymidine in bladder tumour DNA, but was undetectable in DNA from control bladders. By 20 h, substitution in tumour DNA had increased nearly 10-fold to 0.0140 ± 0.0006% and S⁴TdT was present in DNA from control bladders at 0.0055 ± 0.0002%. Thiothymidine was detectable in kidney and liver DNA and the levels of substitution increased between 2 and 20 h (Table 2). Incorporation into skin and eye was much lower (<0.001%). Thiothymidine was cleared quite rapidly from blood; serum concentrations were 27.7 ± 2.0 µM at 2 h and 0.15 ± 0.01 µM at 20 h.

Intravesical instillation of S⁴TdT was also examined. Thiothymidine (0.0040 ± 0.0010%) was present in DNA of bladder tumours immediately after installation for 2 h (16 mg in 0.4 ml sterile water) (Table 2). This was the maximum value observed and the level of substitution decreased at 4 and 20 h post-instillation to 0.0028 ± 0.0010% and 0.0019 ± 0.0003%. In control bladders, S⁴TdT was present at 0.0010% immediately following and at 4 h post-instillation, but was undetectable by 20 h. A similar pattern was observed for other organs, with a maximum S⁴TdT incorporation observed immediately after drug instillation and decreasing with time (Table 2). Plasma S⁴TdT concentration was 0.094 µM immediately after intravesical instillation and 0.052 µM 4 h later. Data were not available for the 20 h time point.

Thiothymidine and UVA have antitumour activity in an orthotopic model of bladder cancer

The effectiveness of S⁴TdT/UVA as an anticancer treatment was tested in the rat bladder tumour model. The experiment comprised six treatment groups: no-treatment controls, intravenous S⁴TdT only, intravesical S⁴TdT only, UVA only, intravenous S⁴TdT plus

Table 2 S⁴TdT incorporation into DNA in different tissues following intravenous (160 mg·kg⁻¹) or intravesical (16 mg in 4 ml for 2 h) administration.

Route of S⁴TdT administration and time point of tissue extraction	Amount of S⁴TdT incorporated into tissue DNA (% thymidine replaced by S⁴TdT (mean ± s.d.))					
Intravenous S⁴TdT						
2 h	Control bladder	Bladder tumour	Kidney	Liver	Skin	Eye
20 h	Undetectable	0.0018 (0.0002)	0.0016 (0.0000)	0.0050 (0.0030)	0.0008 (0.0004)	0.0003 (0.0002)
Intravesical S⁴TdT						
Time 0	Control bladder	Bladder tumour	Kidney	Liver	Skin	Eye
4 h	0.0010 (0.0008)	0.0040 (0.0100)	0.0014 (0.0007)	0.0049 (0.0003)	0.0008 (0.0003)	0.0002 (0.0001)
20 h	0.0010 (0.0005)	0.0028 (0.0010)	0.0005 (0.0003)	0.0062 (0.005)	0.0004 (0.0001)	0.0003 (0.0002)
	0.0019 (0.00003)	0.0004 (0.0003)	0.0055 (0.0020)	Undetectable	Undetectable	
Thiothymidine combined with UVA as a therapy for bladder cancer
SW Pridgeon et al

Urothelial hyperplasia at the site of inflammation. Importantly, each of the bladders from the responding animals were distinctly different from those in which the tumour failed to implant and from normal bladders that did not show any evidence of inflammation. The bladders of the other two animals in this treatment arm, which were not considered to be treatment responses, contained locally advanced tumours that were macroscopically and histologically identical to the tumours observed in the control groups.

In the group treated with intravesical S4TdR and UVA there was no evidence of response to the treatment. There were no observable differences in the macroscopic appearances of the bladders compared with the untreated tumour control groups and microscopic evaluation revealed locally advanced tumours.

DISCUSSION

Evidence for the potential use of S4TdR as a UVA photosensitising agent comes from *in vitro* work with cultured human cells (Massey et al, 2001; Reelfs et al, 2007). Those initial studies indicated that S4TdR is a nontoxic thymidine analog that is incorporated to significant levels into DNA.

Measurements of LC/MS showed that S4TdR is incorporated into the DNA of bladder carcinoma cells *in vitro* and can replace up to almost 1% of DNA thymidine without significantly affecting cell growth. Even though all measurements were made after two cell doublings, the extent of S4TdR DNA substitution was related to the rate of cell division of each of the cell lines. The AY27 cells had the shortest cell-doubling time and S4TdR incorporation in these cells was the greatest. Conversely, RT4 cells grew more slowly and had the lowest rate of S4TdR incorporation. These results support the idea that in cells with faster replication, thymidine salvage is important to sustain DNA turnover. Therefore, tumours will incorporate more S4TdR than healthy urothelium, as confirmed by the greater incorporation in bladder tumours compared with normal bladder in the orthotopic model.

The presence of S4TdR in DNA sensitised each of the cell lines to subsequent UVA exposure. The growth inhibitory effect was dose dependent for both UVA dose and S4TdR concentration. Even very low, nontoxic, doses of both S4TdR (10 μM) and UVA (5 kJ/m²) combined to produce a significant growth inhibition.

The TS inhibitor, raltitrexed, augmented DNA S4TdR incorporation in all cell lines and acted as a dose modifier for UVA sensitivity. Pretreatment with IC$_5$ concentrations of raltitrexed increased S4TdR incorporation by factors of between 4 and 20. The effect of raltitrexed was particularly marked in the cells (RT4 and MYU-3L) in which S4TdR incorporation was lowest. These two cell lines had the slowest growth rates and this observation is consistent with the dependence of S4TdR incorporation on active thymidine salvage mediated by TK, which is upregulated in rapidly growing cells. A reduced reliance on TS-mediated *de novo* pyrimidine nucleotide synthesis in the rapidly growing MBT2 and AY27 cells results in a less dramatic effect of raltitrexed-mediated TS inhibition on S4TdR incorporation. In all cases, the increased incorporation of S4TdR was associated with a heightened sensitivity to UVA.

Treatment with S4TdR/UVA induces DNA adducts that significantly retard DNA migration in the Comet assay. This effect was partially reversed by proteinase K digestion, indicating that S4TdR/UVA causes the formation of DNA–protein crosslinks. These are likely to be difficult lesions for the DNA repair machinery to deal with and they may be a significant contributor to the cell death by apoptosis that was observed as a consequence of S4TdR/UVA treatment.

Thiothymidine had no overt toxic effects in rats following either intravesical or intravenous administration of S4TdR. Furthermore, there was no significant incorporation of S4TdR into DNA of skin.
and eye, the two tissues most susceptible to photosensitisation. Significant incorporation was noted in liver and kidney, tissues that are not normally exposed to UVA. Significant incorporation into the DNA of bladder tumours was observed following intrastravenous or intravesical administration of S4TdR. The levels of circulating thymidine are particularly high in rats (5–8 μM) compared to humans (0.05 μM) and to that in standard culture medium (0.02 μM). As S4TdR has to compete for cellular uptake against this high background level of thymidine, this suggests that S4TdR/UVA may be even more effective in humans. Intravesical administration produced a significant level of S4TdR incorporation into bladder tumour DNA. The DNA S4TdR level at 2 h was somewhat higher following intravesical administration, however, the experimental protocol required that UVA irradiation was performed 20 h after S4TdR was administered.

No antitumour response was seen following treatment with intravesical S4TdR (16 mg) and UVA (5 kJ m⁻²). The time interval between S4TdR administration and UVA delivery is the factor most likely to account for this failure to respond. Based on our DNA S4TdR measurements, the optimum time for UVA delivery would have been immediately following S4TdR instillation. The constraints of the in vivo project licence precluded this treatment option, however.

Three out of the five rats treated with intravesical S4TdR and UVA had visible and histological bladder appearances which were markedly different from control rats bladder. Microscopic examination indicated a proliferative repair process with no evidence of tumour cells. This was in contrast to the rats in which tumours failed to take and in which the bladders exhibited normal histology. These histological differences are consistent with an inflammatory process representing repair in the treated animals, and suggesting that their tumours regressed following S4TdR and UVA treatment. The timing of UVA administration following intravesical S4TdR appeared to be more favourable than for intravesical administration and DNA S4TdR was maximal at this time. As S4TdR incorporation into DNA in this in vivo model was less than that seen to be optimal in in vitro experiments, some other mechanism of antitumour effect may be operating. Further investigations would be needed to determine other potential effects of S4TdR/UVA, perhaps on tumour vascularisation.

Following the in vivo treatments, an active inflammatory process was observed with no evidence of fibrosis. However, fibrosis can be a late complication following intravesical BCG and radiotherapy treatment in humans, which can be functionally disabling. Fibrosis could also be a potential adverse effect of local photodynamic treatment. Urodynamic assessment of rats bladder compliance following photodynamic treatment with 5-aminolavulenic acid (5-ALA) and red light (630 nm) did not previously show any functional changes post-treatment (Xiao et al., 2003). There have been reports of severe fibrosis requiring cystectomy in small series of 5-ALA treatment in humans (Walther, 2000).

Thiothymidine is a potent UVA photosensitiser in vitro. The in vivo work presented here provides the first indication that S4TdR is nontoxic in animals and may have potential as an anticancer treatment. It may offer an alternative to existing therapies for hyperproliferative diseases such as cancer, where a photodynamic approach is possible. This study offers a proof of principle that S4TdR/UVA can be effective in vivo. Further work will be aimed at confirming these promising findings and optimising the timing, dose and route of S4TdR administration in an in vivo setting as a step towards designing a clinical feasibility study.

REFERENCES

Babjuk M, Oesterlinck W, Sylvester R, Kaasinen E, Bölle A, Palou-Redorta J, European Association of Urology (EAU) (2008) EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. Eur Urol 54(2-3): 303–314

CRUK Cancer Statistics (2010) http://info.cancerresearchuk.org/cancerstats/incidence

Hartley JM, Spanswick VJ, Gander M, Giacomini G, Whelan J, Souhami RL, Hartley JA. (1999) Measurement of DNA cross-linking in patients on ifosfamide therapy using the single cell gel electrophoresis (comet) assay. Clin Cancer Res 5(3): 507–512

Jackson RC, Jackman AL, Calvert AH (1983) Biochemical effects of a carcinogenic quinoline inhibitor of thymidylate synthetase, N-(4-(N-((2-amino-4-hydroxy-6-quinazolinyl)methyl)prop-2-ylaminoo) benzoyl)-1-glutamic acid (CB3717), on human lymphoblastoid cells. Biochem Pharmacol 32(24): 3783–3790

Kameyama S, Kawamata H, Kawai K, Oyasu R (1993) A new in vivo model for studying invasion and metastasis of rat and human bladder carcinomas. Carcinogenesis 14(8): 1531–1535

Kawamata H, Kameyama S, Nan L, Kawai K, Oyasu R (1993) Effect of thymidylate synthase inhibition on thymidine kinase activity and nucleoside transporter expression. Cancer Res 53(7): 1505–1508

Liu J, Taylor JS (1998) Template-directed photoligation of oligodeoxyribonucleotides via 4-thiothymidine. Nucleic Acids Res 26(13): 3300–3304

Massey A, Xu YZ, Karran P (2001) Photoactivation of DNA thiobases as a potential novel therapeutic option. Curr Biol 11(4): 1142–1146

Mitrović B, Pressaccio J, Mandelbaum S, Erlichman C (1994) Biochemical effects of folate-based inhibitors of thymidylate synthase in MGH-U1 cells. Cancer Chemother Pharmacol 35(2): 109–114

Nikiforov TT, Connolly BA (1992) Oligodeoxynucleotides containing 4-thiothymidine and 6-thiodeoxyguanosine as affinity labels for the Eco RV restriction endonuclease and modification methylase. Nucleic Acids Res 20(6): 1209–1214

Parker SL, Tong T, Bolden S, Wingo PA (1996) Cancer statistics, 1996. CA Cancer J Clin 46(1): 5–27

Pressaccio J, Mitrović B, Erlichman C, Hedley DW (1995) Effects of thymidylate synthase inhibition on thymidine kinase activity and nucleoside transporter expression. Cancer Res 55(7): 1505–1508

Reelfs O, Xu YZ, Massey A, Karran P, Storey A (2007) Thiothymidine plus UVA had visible and histological bladder appearances which were markedly different from control rats bladder. Microscopic examination indicated a proliferative repair process with no evidence of tumour cells. This was in contrast to the rats in which tumours failed to take and in which the bladders exhibited normal histology. These histological differences are consistent with an inflammatory process representing repair in the treated animals, and suggesting that their tumours regressed following S4TdR and UVA treatment. The timing of UVA administration following intravesical S4TdR appeared to be more favourable than for intravesical administration and DNA S4TdR was maximal at this time. As S4TdR incorporation into DNA in this in vivo model was less than that seen to be optimal in in vitro experiments, some other mechanism of antitumour effect may be operating. Further investigations would be needed to determine other potential effects of S4TdR/UVA, perhaps on tumour vascularisation.

Following the in vivo treatments, an active inflammatory process was observed with no evidence of fibrosis. However, fibrosis can be a late complication following intravesical BCG and radiotherapy treatment in humans, which can be functionally disabling. Fibrosis could also be a potential adverse effect of local photodynamic treatment. Urodynamic assessment of rats bladder compliance following photodynamic treatment with 5-aminolavulenic acid (5-ALA) and red light (630 nm) did not previously show any functional changes post-treatment (Xiao et al., 2003). There have been reports of severe fibrosis requiring cystectomy in small series of 5-ALA treatment in humans (Walther, 2000).

Thiothymidine is a potent UVA photosensitiser in vitro. The in vivo work presented here provides the first indication that S4TdR is nontoxic in animals and may have potential as an anticancer treatment. It may offer an alternative to existing therapies for hyperproliferative diseases such as cancer, where a photodynamic approach is possible. This study offers a proof of principle that S4TdR/UVA can be effective in vivo. Further work will be aimed at confirming these promising findings and optimising the timing, dose and route of S4TdR administration in an in vivo setting as a step towards designing a clinical feasibility study.