Conclusion: Overall, respondents struggled with employment, emotional and physical health effects of COVID-19, yet also experienced aspects of positive life change. In the future, these results should be compared with results from a general population to determine whether PLH are disproportionately burdened. Regardless, COVID-19 has negatively impacted daily life for everyone, including PLH, and these individuals may need additional resources compared to their less resource-challenged counterparts.

Disclosures: All Authors: No reported disclosures

482. Impact of COVID-19 Pandemic on Psychosocial and Clinical Factors among People with and without HIV living in Miami

Patricia Baccamancich, Claudia S. Urbe, MS; Ana S. Salazar Zetina, MD, MPH; Emily K. Montgomerie, BS; Douglas Salguero, MD; Alejandro M. Mantero, n/a; Irma S. Barreto, MD; Andres Vasquez, MS; Paola Martinez, BS; Kristiana Morgan, BS; Nicole L. Rodriguez Yanes, n/a; Theodore Brophy, BA; Marissa Maddalon, BA; Angus McGuff, BS; Delia Johnson-Weiss, PhD; Maria L. Alcacer, MD

1University of Miami Miller School of Medicine, Miami, Florida; 2University of Miami, Miller School of Medicine, Cutler Bay, Florida; 3University of Miami Miller School of Medicine, Miami, Florida; 4University of Miami of Miami Miller School of Medicine, Miami, Florida

Session: P-16. COVID-19 Impact of Social Distancing/Mitigation Measures

Background: As the COVID-19 pandemic progresses, the world is beginning to see the pandemic reverberating across different dimensions of health and illness. It is essential to determine the impact of COVID-19 on the psychosocial and physical health of those living with HIV.

Methods: Participants were surveyed from a cohort of people living with HIV in Miami, FL. Demographic data and questions about mental and physical health were assessed during two time periods, before and during the COVID-19 pandemic. The responses were compared using chi-square analysis.

Results: A total of 135 participants were recruited from 05/2020-06/2020. The participants were predominantly older, African American, and female. The survey results indicate that, overall, participants were less likely to experience job loss and income disruption compared to the general population, likely because of the existing social service network in Miami. On the other hand, participants experienced significant difficulties with housing, food, and utilities, and many reported relying on federal programs and community resources for these needs.

Disclosures: All Authors: No reported disclosures

483. OPAT Delivery during COVID-19

Michael J. Swartwood, BSN, RN, CAPM; Renae A. Boerneske, PharmD, BCPS; Alan C. Kinlaw, PhD; Nikolas Marvuglios, MD; Ashley Marx, PharmD; Emily J. Ciccone, MD, MHS; Asher J. Schranz, MD; Mary C. Bowman, MD, PhD; Claire E. Farel, MPH; University of North Carolina at Chapel Hill, Chapel Hill, NC; 2UNC Infectious Diseases Clinic, Chapel Hill, NC; 3University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC; 4University of North Carolina School of Medicine Division of Infectious Diseases, Chapel Hill, North Carolina; 5UNC Medical Center, Durham, NC; 6University of North Carolina School of Medicine, Carrboro, NC; 7University of North Carolina, Chapel Hill, NC

Session: P-16. COVID-19 Impact of Social Distancing/Mitigation Measures

Background: In 2020, COVID-19 spurred unprecedented change in the delivery of routine clinical care. The UNC OPAT program staff, previously accustomed to in-person collaboration in the hospital, became geographically distant amid North Carolina’s partial shutdown starting in March 2020. Team members relied on teleworking and many OPAT clinic visits shifted to phone and video telehealth. We assessed how COVID-19 impacted our care of OPAT patients including follow-up visits and readmissions.

Methods: UNC’s OPAT database contains clinical and demographic information on all patients on OPAT for at least 14 days who received specialized monitoring program services as an infectious diseases (ID) pharmacist, after evaluation by an ID physician. For all OPAT courses that ended between 3/1/20 and 5/20/20 (last available data cut), we assessed the length of OPAT treatment course, readmissions, adverse events, follow-up ID clinic visits, and the method of follow up visit utilized. We compared these measurements to historical baseline data from 3/1/19 to 5/20/19.

Results: During the 2020 period, 73 patients completed OPAT, with median OPAT enrollment lasting 36 days, which was similar to 2019 data (70 patients: median OPAT enrollment of 35 days). During the 2019 period, 93% of patients attended a follow up visit with an infectious diseases clinician, all of which took place in person. During the 2020 (COVID-19) period, 85% of patients attended an ID follow up visit; contrary to 2019, 42% of these visits took place in person. 45% were by phone and 13% were via a telemedicine video service. Readmission rates were similar across the two time periods (16% during COVID-19 vs 14% during 2019 comparison time period, P=0.72)

Conclusion: UNC OPAT continued through the emergence of COVID-19 as an essential service for a high patient volume by adapting its care delivery and follow-up visit protocols to include virtual care options. Readmission rates for OPAT patients during COVID-19 were comparable to historical baseline data.

Disclosures: All Authors: No reported disclosures

484. The Impact of SARS-CoV-2 on Reproduction Rates of Seasonal Influenza and RSV

Amy C. Sherman, MD; Ahmed Babiker, MBBS; Andrew Sieben, BA; Alexander Pyden, MD, MPH; James P. Steinberg, MD; Kraft Colleen, MD, MSc; Kaita Koelle, PhD; Sanat Kanjilal, MD, MPH; Emory University, Atlanta, Georgia; 3Emory University School of Medicine, Atlanta, Georgia; 4Emory University, Division of Infectious Diseases, Atlanta, Georgia; 5Harvard Medical School and Harvard Pilgrim Healthcare Institute, Jamaica Plain, Massachusetts

Session: P-16. COVID-19 Impact of Social Distancing/Mitigation Measures

Background: The COVID-19 pandemic caused by SARS-CoV-2 has precipitated a global health crisis. In an effort to decrease person-to-person transmission, societal-level non-pharmacologic interventions (NPIs) to maintain social distancing have been enacted. As SARS-CoV-2 shares similar routes of transmission with other respiratory viruses, implementation of these NPIs may have decreased transmission for multiple viral pathogens. We compared influenza and respiratory syncytial (RSV) rates in prior seasons to rates during the 2019-2020 season at two large academic centers in Atlanta and Boston.

Methods: The clinical records were queried for adults with respiratory virus testing conducted at the Emory Healthcare system and associated clinics in Atlanta and the Mass General Brigham (MGB) Healthcare System in Boston. Total cases for influenza A and B, RSV and SARS-CoV-2 were analyzed for each week of the past 5 seasons (07/01/2015-05/30/2020) for the Atlanta and Boston sites. Systematic changes in viral infection rates were calculated using viral reproduction rates, R(t), between consecutive weeks. R(t) is the ratio of the number of positive cases in one week to the number of positive cases in the previous week. We used statistical bootstrapping to determine whether R(t) for influenza and RSV were lower in 2019-2020 following the introduction of SARS-CoV-2. Analyses were conducted using R (v 4.0.0).

Absolute respiratory virus activity by season, Boston (panel A) v. Atlanta (panel B)

Results: For the 2019–2020 Atlanta season, R(t) < 1 (which reflects steady decline in infection rates) occurred at week 28 for influenza A, week 33 for influenza B, and week 35 for RSV, which corresponded with the increase of SARS-CoV-2 in week 28. Data from MGB sites showed similar trends with a sudden decline in R(t) to < 1 at the start of the SARS-CoV-2 pandemic.

Conclusion: We note decreased transmission of influenza and RSV during a time window where widespread movement restrictions and social distancing were imposed to control COVID-19. This trend was most pronounced for influenza A in Atlanta and the Mass General Brigham (MGB) Healthcare System in Boston. Total cases for influenza A and B, RSV and SARS-CoV-2 were analyzed for each week of the past 5 seasons (07/01/2015-05/30/2020) for the Atlanta and Boston sites. Systematic changes in viral infection rates were calculated using viral reproduction rates, R(t), between consecutive weeks. R(t) is the ratio of the number of positive cases in one week to the number of positive cases in the previous week. We used statistical bootstrapping to determine whether R(t) for influenza and RSV were lower in 2019-2020 following the introduction of SARS-CoV-2. Analyses were conducted using R (v 4.0.0).

Absolute respiratory virus activity by season, Boston (panel A) v. Atlanta (panel B)

Disclosures: Kraft Colleen, MD, MSc, Rebietoix (Advisor or Review Panel member)

485. Title: The Porous Boundaries Between Communities and Correctional Facilities: The Introduction of a Medical Recovery Site Resulting in Reduced COVID-19 Household Transmission Tied to Recently Incarcerated Individuals

Katherine Pocock, MHS, PA-C; Ryan M. Close, MD, MPH; James McAuley, MD, MPH; Whitewater Indian Hospital, Whiteriver, Arizona; Indian Health Service, Whiteriver, AZ
Session: P-16. COVID-19 Impact of Social Distancing/Mitigation Measures

Background: In April 2020, a COVID-19 outbreak at a rural, resource-limited Department of Corrections on a Native American reservation in Arizona led to multiple epidemiologically linked cases to household contacts of recently incarcerated individuals. We describe the role of a medical recovery site for isolation of recently released inmates with active COVID-19 infection in reducing household transmission of cases tied to the correctional facility.

Methods: On April 16th, an individual was contact traced to the correctional facility and was laboratory-confirmed positive, an asymptomatic index case in the jail. Testing of all inmates continued from April 16th to 30th. On April 24th, decarceration began. All inmates released from facility April 24th to April 30th were contact traced for 14 days to monitor for new household cases. On April 30th, the tribe opened a medical recovery site for isolation. After opening, all individuals with active infection agreed to go to site after release.

Results: Between April 24th and 30th, 16 inmates were released from facility, seven were laboratory-confirmed positive. Secondary infections only occurred in households of positives. Of the seven households, four experienced secondary transmission of virus. There were 27 household contacts, six secondary infections (secondary attack rate of 30.0%). There were four hospitalizations and one death, though cause of death was not due to COVID-19 despite incidental finding. After opening of medical recovery site, all individuals with active infection (12 cases) agreed to isolation at site. This intervention resulted in no further epidemiologically linked cases from recently released incarcerated individuals to community.

Figure 1: Household Secondary Infections with Epidemiological Links to Previously Incarcerated Inmates Before and After Opening of Medical Recovery Site

Conclusion: Prior to establishment of a medical recovery site on a Native American reservation, a significant burden of disease in the community was linked to recently incarcerated individuals. After opening, all actively infected individuals agreed to isolation at site, resulting in no further household transmission of COVID-19 from an actively infected recently incarcerated case. This outbreak highlights porous boundaries between correctional facilities and surrounding communities, requiring attention and resources to limit transmission of disease to protect local populations.

Disclosures: All Authors: No reported disclosures

486. Understanding Public Perception of COVID-19 Social Distancing on Twitter

Samheer N. Saleh, MD; Christoph Lehmann, MD; Samuel McDonald, MD; Mueeb Baasit, MD; Richard J. Medford, MD; UT Southwestern Medical Center, Dallas, Texas

Session: P-16. COVID-19 Impact of Social Distancing/Mitigation Measures

Background: Managing and changing public opinion and behavior are vital for social distancing to successfully slow transmission of COVID-19, preserve hospital resources, and prevent overwhelming the healthcare system’s resources. We sought to leveraging organic, large-scale discussion on Twitter about social distancing to understand public’s beliefs and opinions on this policy.

Methods: Between March 27 and April 10, 2020, we sampled 574,903 English tweets that matched the two most trending social distancing hashtags at the time, #socialdistancing and #stayathome. We used natural language processing techniques to conduct a sentiment analysis that identifies tweet polarity and emotions. We also evaluated the subjectivity of tweets and estimated the frequency of discussion of social distancing rules. We then identified clusters of discussion using topic modeling and compared the sentiment by topic.

Results: There was no positive sentiment toward both #socialdistancing and #stayathome with mean sentiment scores of 0.158 (standard deviation (SD), 0.292) and 0.144 (SD, 0.287) respectively. Tweets were also more likely to be objective (median, 0.40; IQR, 0.0 to 0.6) with approximately 30% of all tweets labeled as completely objective. Approximately half (50.4%) of all tweets primarily expressed joy and one-fifth expressed fear and surprise each (Figure 1). These trends correlated well with topic clusters identified by frequency including leisure activities and community support (i.e., joy), concerns about food insecurity and effects of the quarantine (i.e., fear), and unpredictability of COVID and its unforeseen implications (i.e., surprise) (Table 1).

Table 1. Topic clusters identified by topic modeling. Words contributing to the model are shown in decreasing order of weighting. The topics are labeled manually based on these words. The number of tweets primarily with that topic, mean sentiment, mean subjectivity, and sample tweets are also included.

Conclusion: The positive sentiment, preponderance of objective tweets, and topics supporting coping mechanisms led us to believe that Twitter users generally supported social distancing measures in the early stages of their implementation.

Disclosures: All Authors: No reported disclosures

487. Patient Outcomes of Contact Tracing for COVID-19 in a Pediatric Hospital

Sarah Smathers, MPH, CIC, FAPIC; Miguel Ochoa, MPH, FAPIC; Lauren Le Goff, MS, MLS (ASCP)CM; David Lenar, M. Ed.; Cheryl Gebeline-myers, MS; Jeanette Trella, PharmD, BCPPS; Susan E. Coffin, MD, MPH; Susan E. Coffin, MD, MPH; Julia S. Sammons, MD, MSCE; Jane F. Coffin, MD, MPH; Children’s Hospital of Philadelphia, Philadelphia, PA

Session: P-17. COVID-19 Infection Prevention

Background: Contact tracing is a critical component in controlling the spread of infectious diseases. During the COVID-19 pandemic, the demands for contract tracing far exceeded the resources available to infection prevention and control (IPC) programs. Leveraging our Poison Control Center, our organization established a Contact Tracing Center (CTC) with content expertise and oversight by IPC and Occupational Health. The CTC identifies exposed patients and employees, provides testing guidance and scheduling, and offers post-exposure recommendations for employees. We describe patient outcomes due to employee exposures in a pediatric healthcare system.

Results: Exposure data about employee to patient exposures (EPE) were captured real-time by scripted telephone interviews by our CTC. Chart review was performed to determine outcomes of exposed patients. A concerning exposure from a direct patient care provider to a patient was defined as unprotected contact at less than 6 feet for greater than 5 minutes in the 24 hours prior to developing symptoms. Data were analyzed to determine COVID-19 conversion rates for children exposed to pre-symptomatic and symptomatic employees based upon exposure risk stratification, window of exposure, and employees who worked with symptoms.

Results: From March 2020 to present, we identified 38 EPE that involved 10 employees; 26 EPE were pre-symptomatic and 12 EPE symptomatic exposures. The average number of EPE per employee was 3.8 (SD 3.0). There were no secondary transmission events to patients from either pre-symptomatic or symptomatic