RESEARCH ARTICLE

3’-UTR Polymorphisms in the MiRNA Machinery Genes DROSHA, DICER1, RAN, and XPO5 Are Associated with Colorectal Cancer Risk in a Korean Population

Sung Hwan Cho1,2☯, Jung Jae Ko1☯, Jung Oh Kim1,2, Young Joo Jeon1,2, Jung Ki Yoo1, Jisu Oh3, Doyeun Oh2,3, Jong Woo Kim4*, Nam Keun Kim1,2*

1 Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea, 2 Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam, South Korea, 3 Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea, 4 Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea

☯ These authors contributed equally to this work.
* namkkim@naver.com (NKK); kjw@cha.ac.kr (JWK)

Abstract

MicroRNAs play an important role in cancer initiation and development. The aim of this study was to investigate whether polymorphisms in miRNA machinery genes are associated with the development of colorectal cancer (CRC). RAN rs14035 CT heterozygotes and T allele carriers (CT + TT) genotypes had lower risk of CRC, while the DICER1 rs3742330, DROSHA rs10719, and XPO5 rs11077 polymorphisms were not associated with CRC in the full study sample. Specifically, male RAN rs14035 CT heterozygotes and XPO5 rs11077 AA genotype (CT/AA) carriers experienced reduced CRC susceptibility (both colon and rectal). Subgroup analysis demonstrated that the combined RAN rs14035 CT + TT genotype was associated with rectal cancer, but not colon cancer. In addition, the DICER1 rs3742330 AG genotype was associated with a significantly increased risk of colon cancer. Stratified analysis revealed the RAN rs14035 combined CT+TT genotype was associated with decreased CRC risk in male patients without diabetes mellitus (DM) and in patients with rectal cancer. In addition, we found the RAN rs14035 CC genotype was related to a decreased risk of CRC with respect to tumor size and metabolism of homocysteine and folate. Furthermore, patients diagnosed with hypertension or DM who carried the DROSHA rs10719 CC genotype showed increased CRC risk, while the XPO5 rs11077 AC+CC genotype led to increased CRC risk in patients with hypertension only. Our results indicate variations in RANrs14035, DICER1 rs3742330, XPO5 rs11077, and DROSHA rs10719 of Korean patients are significantly associated with their risk of CRC.
Introduction

Colorectal cancer (CRC) is the third most common cancer in men (746,000 cases per year, 10.0% of total cancer cases) and the second most common in women (614,000 cases per year, 9.2% of total cancer cases) worldwide [1]. The geographical incidence of CRC varies, but patterns are similar in men and women. Nearly 55% of CRC cases occur in more developed regions [2], although they can arise sporadically.

Several intrinsic factors (e.g., age, sex, diabetes mellitus (DM), obesity, and inflammatory bowel disease) and extrinsic factors (e.g., cigarette smoking, inadequate fiber intake, high alcohol consumption, red meat consumption, and a high-fat diet) are associated with increased CRC risk [3–5]. Thus, CRC susceptibility is influenced by both genetic and environmental elements. Several reports have shown that microRNAs (miRNAs) modulate gene expression by targeting mRNA for deregulation or translational repression [6, 7]. These molecules carry out their biological functions by binding to the 3' untranslated region (UTR) of target messenger RNA (mRNA), thereby repressing its expression. A single miRNA may regulate multiple targets and thus act as a master control of gene expression. Previous bioinformatics analyses suggest that up to 30% of human genes may be regulated by miRNA, despite the fact that miRNA constitutes only 1–3% of the human genome [8]. Therefore, miRNA appears to play a pivotal role in both physiological and pathological mechanisms [9]. Expression of miRNA is associated with various cancers, and miRNA genes are thought to function as both tumor suppressors and oncogenes [10–12].

MicroRNA machinery proteins, such as DROSHA, RAS-related nuclear protein (RAN), DICER1, and exportin 5 (XPO5), must process miRNAs before they can function. After transcription, DROSHA and its cofactor, DGCR8, process primary miRNA into precursor-miRNA (pre-miRNA) by removing the 5' cap, the 3' poly(A) tail, and sequences flanking the hairpin structure. Pre-miRNA is then exported from the nucleus to the cytoplasm by XPO5 and Ran-GTP. In the cytoplasm, precursor-miRNA is further processed by DICER1, an endoribonuclease, to produce a short double-stranded RNA fragment (approximately 20–25 nucleotides long) that consists of the mature miRNA and its complementary strand [13]. Due to asymmetric thermostability, the mature miRNA strand is preferentially incorporated into the RNA-induced silencing complex that targets endogenous mRNA for silencing [14].

Recent studies suggest 35% of all CRC cases can be attributed to inherited genetic factors [15]. Inherited risk is likely due to single nucleotide polymorphisms (SNPs) and other genetic abnormalities within coding and noncoding DNA. Because miRNAs play an important role in cancer, including CRC initiation and development, SNPs in miRNA machinery genes may disrupt miRNA structure, binding sites, or processing, thereby altering an individual’s susceptibility to CRC by impacting miRNA functionality [16]. For example, impaired miRNA processing may promote cellular transformation and tumorigenesis [17]. In addition, numerous studies have demonstrated an association between the concentration or function of miRNA pathway components and a patient’s prognosis in skin, lung, breast, and ovarian cancer cases [18–21]. Other studies have established that miRNA expression plays a functional role in the initiation and progression of CRC [22,23].

However, to date, few studies have investigated the potential relationship between specific SNPs in miRNA machinery genes and risk of CRC [24–26]. Thus, we investigated if polymorphisms in DICER1 (rs3742330), DROSHA (rs10719), RAN (rs14035), and XPO5 (rs11077) were associated with CRC incidence in a Korean population.
Materials and Methods

Study population

Between June 2005 and January 2009, 808 blood samples were collected from the study group, consisting of 408 CRC patients and 400 randomly selected non-CRC (control) subjects, following a health screening at CHA Bundang Medical Center (Seongnam, South Korea). The CRC group included 167 consecutive patients with rectal cancer and 241 consecutive patients with colon cancer. Pathological staging frequencies after curative tumor resection were as follows: tumor node metastasis (TNM) stage I, n = 43 (10.5%); stage II, n = 173 (42.4%); stage III, n = 153 (37.5%); and stage IV, n = 39 (9.6%). Patients with high baseline blood pressure (≥ systolic 140 mmHg or diastolic 90 mmHg) on more than one occasion or with a history of taking antihypertensive medication were classified as having hypertension (HTN). Patients with high fasting plasma glucose (≥ 126 mg/dl), who were taking an oral hypoglycemic agent, or who had a history of insulin treatment were classified as having DM. All study subjects were ethnic Koreans and provided written informed consent for study participation. The study protocol was approved by the Institutional Review Board of CHA Bundang Medical Center.

Analysis of miRNA biogenesis gene polymorphisms

Genomic DNA was extracted from peripheral blood samples collected with an anticoagulant using a G-DEX blood extraction kit (iNtRON Biotechnology, Seongnam, South Korea). Nucleotide changes were determined via a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis. Restriction enzyme digestion was carried out using the following enzymes (New England BioLabs, Ipswich, MA): NlaIII (DROSHA, rs10719), BanI (DICER1, rs3742330), BspI (RAN, rs14035), and BsmI (XPO5, rs11077). Digestion was carried out at 37°C for 16 h.

Genotypes determined by RFLP analysis were confirmed by two independent investigators and by sequencing 10% of the samples. For RAN rs14035 in the control group and XPO5 rs11077 in CRC patients, genotypes were verified three times to rule out possible errors attributed to violation of Hardy-Weinberg equilibrium (HWE).

Statistical analysis

To compare baseline characteristics between cases and controls, we used Chi-squared tests to analyze categorical data (sex, HTN, and DM) and the Student’s t-test to analyze continuous data. Allele frequencies were calculated to identify deviations from HWE. Adjusted odds ratios (AOR) and 95% confidence intervals (CI) were used to examine the association between DICER1, DROSHA, RAN, XPO5 polymorphisms and CRC occurrence with GraphPad Prism 4.0 (La Jolla, CA, USA) and MedCalc version 12.1.4 (Panmun Education, Seoul, Korea). Gene interactions among SNP loci were analyzed using multifactor dimensionality reduction (MDR) with MDR version 2.0 (www.epistasis.org) [27–29]. We determined the best multilocus combinations based on MDR identification of the most significant models using maximized cross-validation values. HAPSTAT version 3.0 (www.bios.unc.edu/~lin/hapstat/) was used to estimate haplotype frequencies for the polymorphisms determined by MDR analysis to have strong synergistic effects [30]. The false-positive discovery rate (FDR) correction was used to adjust multiple comparison tests.
Results

Study subject characteristics

The 408 CRC cases included 170 males and 238 females with an overall mean age was 61.55 ±12.26 years (mean±SD; Table 1). Among the cases, 241 (59.1%) had colon cancer and 167 (40.9%) had rectal cancer. No statistically significant differences in age or sex were identified between CRC cases and controls (P = 0.772 and 0.847, respectively). However, both HTN (60.5%, P = 0.004) and DM (34.1%, P < 0.0001) were significantly more common among CRC cases than in controls.

Genotype frequencies

Genotype and allele frequencies for the four miRNA machinery genes in CRC cases and controls are shown in Table 2. Genotype distributions in both groups displayed no departure from HWE. RAN rs14035 CT heterozygotes had significantly decreased CRC risk relative to wild type homozygotes (AOR = 0.698; 95% CI, 0.511–0.952; P = 0.023). Similarly, the combined CT + TT genotype was associated with decreased CRC risk (AOR = 0.690; 95% CI, 0.510–0.934; P = 0.016). However, neither association remained statistically significant after controlling for multiple comparisons using the FDR correction. No association between CRC risk and other polymorphisms was found. In addition, we observed no significant relationship between genotype frequencies for the four miRNA machinery genes and CRC patient survival (Table A in S1 File).

In a subgroup analysis targeting cancer type, the combined RAN rs14035 CT + TT genotype was associated with decreased risk of rectal cancer (AOR = 0.640; 95% CI, 0.430–0.954; P = 0.028), but not colon cancer (Table 3). Conversely, DICER1 rs3742330 AG heterozygotes had a significantly increased risk of colon but not rectal cancer (AOR = 1.506; 95% CI, 1.020–2.223; P = 0.040). However, the relationship was not significant after FDR correction, suggesting a weak association (Table 3). Combination analyses (Table 4 & Table B in S1 File) revealed...
that RAN rs14035 CT heterozygotes and XPO5 rs11077 AA carriers experienced reduced susceptibility of CRC (AOR = 0.610; 95% CI, 0.434–0.859; P = 0.005) (Table 4). Moreover, these same genotypes were associated with reduced susceptibility of both cancer types in male (AOR = 0.283; 95% CI, 0.139–0.573; P = 0.001, AOR = 0.497; 95% CI, 0.254–0.973; P = 0.041; Table 5 & Table C in S1 File), but not female patients (Table D in S1 File). Although DROSHA rs10719 CC genotype carriers and RAN rs14035 CC heterozygotes showed reduced risk of rectal cancer (Table E in S1 File), we observed no significant association between genotype frequencies for the four miRNA machinery genes and patient survival or TNM classification stage of their malignant CRC tumors (Table F in S1 File and Table G in S1 File).

Stratified analyses indicated the RAN rs14035 combined CT+TT genotype was associated with decreased CRC risk in male patients (AOR = 0.493; 95% CI, 0.308–0.791; P = 0.003), patients without DM (AOR = 0.618; 95% CI, 0.438–0.874; P = 0.006), and patients with rectal cancer (AOR = 0.640; 95% CI, 0.43–0.954; P = 0.028; Table 6). In addition, we determined the DROSHA rs10719 CC genotype was associated with increased risk of colon cancer in subjects

Genotypes	Controls (n = 400)	Case (n = 408)	AOR(95%CI)a	P	FDRb
DICER rs3742330					
AA	145 (36.3)	125 (30.6)	1.000 (reference)	0.144	0.288
AG	181 (45.3)	207 (50.7)	1.279 (0.920–1.779)	0.144	0.288
GG	74 (18.4)	76 (18.7)	1.075 (0.701–1.649)	0.741	0.742
Dominant (AA vs. AG + GG)	1.228 (0.901–1.674)	0.194	0.389		
Recessive (AA + AG vs. GG)	0.937 (0.643–1.366)	0.737	0.737		
HWE-P	0.19	0.551			
DROSHA rs10719					
TT	211 (52.8)	224 (54.9)	1.000 (reference)	0.268	0.358
TC	168 (42.0)	154 (37.7)	0.841 (0.619–1.143)	0.39	0.742
CC	21 (5.2)	30 (7.4)	1.314 (0.705–2.449)	0.445	0.45
Dominant (TT vs. TC + CC)	0.892 (0.665–1.196)	0.445	0.45		
Recessive (TT + TC vs. CC)	1.425 (0.778–2.610)	0.252	0.737		
HWE-P	0.09	0.62			
RAN rs14035					
CC	233 (58.3)	267 (65.4)	1.000 (reference)	0.023	0.093
CT	150 (37.5)	128 (31.4)	0.698 (0.511–0.952)	0.292	0.742
TT	17 (4.3)	13 (3.2)	0.653 (0.295–1.443)	0.416	0.065
Dominant (CC vs. CT + TT)	0.690 (0.510–0.934)	0.292	0.742		
Recessive (CC + CT vs. TT)	0.729 (0.339–1.595)	0.429	0.737		
HWE-P	0.24	0.62			
XPO5 rs11077					
AA	337 (84.3)	333 (81.6)	1.000 (reference)	0.418	0.418
AC	61 (15.3)	74 (18.1)	1.179 (0.795–1.740)	0.742	0.742
CC	2 (0.4)	1 (0.3)	0.664 (0.058–7.618)	0.45	0.45
Dominant (AA vs. AC + CC)	1.161 (0.788–1.712)	0.45	0.45		
Recessive (AA + AC vs. CC)	0.634 (0.055–7.259)	0.714	0.737		
HWE-P	0.668	0.137			

aAdjusted odds ratio on the basis of risk factors, such as age, gender, hypertension, diabetes mellitus.
bFalse positive discovery rate (FDR)-adjusted P-value.

doi:10.1371/journal.pone.0131125.t002
at 62 years or older (AOR = 3.148; 95% CI, 1.276–7.766; \(P = 0.013 \)) and subjects younger than 62 years (AOR = 2.940; 95% CI, 1.169–7.399; \(P = 0.022 \); Table 6). Furthermore, the \textit{RAN} rs14035 CC genotype was linked with decreased risk of CRC in subjects with <5-cm tumors (AOR = 0.654; 95% CI, 0.437–0.978; \(P = 0.039 \)), homocysteine levels lower than 12.97 μmol/l (AOR = 0.637; 95% CI, 0.453–0.896; \(P = 0.01 \)), and folate levels higher than 3.72 ng/ml (AOR = 0.630; 95% CI, 0.447–0.888; \(P = 0.008 \)) (Table 7). We also found the \textit{DROSHA} rs10719 CC genotype was associated with increased CRC risk in subjects with <5-cm tumors (AOR = 2.159; 95% CI, 1.057–4.413; \(P = 0.035 \)).

Interaction models suggested by MDR, based on a cross-validation value of 10, were evaluated using haplotype-based analysis. However, no associations between the four miRNA machinery polymorphisms and CRC risk were identified (Table H in S1 File and Table I in S1 File).
Table 4. The combination of miRNA machinery genes polymorphisms based on MDR and CRC patients.

Genotypes	Control (n = 400)	Case (n = 408)	COR (95% CI)	P	FDRb	AOR (95% CI)a	P	FDRb
RAN/XPO5								
CC/AA	191 (47.8)	223 (54.7)	1.000 (reference)	1.000 (reference)				
CC/AC	41 (10.3)	43 (10.5)	0.898 (0.562–1.436)	0.654	0.785	0.845 (0.516–1.384)	0.503	0.848
CC/CC	1 (0.3)	1 (0.2)	0.857 (0.053–13.787)	0.913	0.913	0.799 (0.049–13.104)	0.875	0.952
CT/AA	132 (33.0)	102 (25.0)	0.662 (0.479–0.914)	0.012	0.072	0.610 (0.434–0.859)	0.005	0.03
CT/AC	17 (4.3)	26 (6.4)	1.310 (0.690–2.487)	0.409	0.785	1.219 (0.621–2.389)	0.565	0.848
CT/CC	1 (0.3)	0 (0.0)	NA	NA	NA	NA	NA	NA
TT/AA	14 (3.5)	8 (2.0)	0.489 (0.201–1.192)	0.116	0.348	0.520 (0.203–1.329)	0.172	0.516
TT/AC	3 (0.8)	5 (1.2)	1.428 (0.337–6.051)	0.629	0.785	1.048 (0.224–4.915)	0.952	0.952
TT/CC	0 (0.0)	0 (0.0)	NA	NA	NA	NA	NA	NA

*aAdjusted odds ratio on the basis of risk factors, such as age, gender, hypertension, diabetes mellitus. MDR, multifactor dimensional reduction.

bFalse positive discovery rate (FDR)-adjusted P-value.

doi:10.1371/journal.pone.0131125.t004

Table 5. The combination of the polymorphisms of microRNA machinery genes in CRC patients and controls: male subgroup.

Characteristics	Control (n = 172)	Colon (n = 97)	Rectum (n = 73)
DROSHA/RAN			
TT/CC	57 (33.1)	41 (42.3)	23 (31.5)
TT/CT	41 (23.8)	15 (15.5)	17 (23.3)
TT/CC	5 (2.9)	2 (2.1)	0 (0.0)
TC/CC	34 (19.8)	25 (25.8)	21 (28.8)
TC/CT	26 (15.1)	8 (8.2)	7 (9.6)
TC/TT	1 (0.6)	1 (1.0)	0 (0.0)
CC/CC	3 (1.7)	3 (3.1)	4 (5.5)
CC/CT	5 (2.9)	0 (0.0)	1 (1.4)
CC/TT	0 (0.0)	2 (2.1)	0 (0.0)

RAN/XPO5			
CC/AA	74 (43.0)	56 (57.7)	40 (54.8)
CC/AC	19 (11.0)	13 (13.4)	8 (11.0)
CC/CC	1 (0.6)	0 (0.0)	0 (0.0)
CT/AA	63 (36.6)	16 (16.5)	20 (27.4)
CT/AC	8 (4.7)	7 (7.2)	5 (6.8)
CT/CC	1 (0.6)	0 (0.0)	0 (0.0)
TT/AA	5 (2.9)	1 (1.0)	0 (0.0)
TT/AC	1 (0.6)	4 (4.1)	0 (0.0)
TT/CC	0 (0.0)	0 (0.0)	0 (0.0)

*aAdjusted odds ratio on the basis of risk factors, such as age, gender, hypertension, diabetes mellitus.

bFalse positive discovery rate (FDR)-adjusted P-value.

doi:10.1371/journal.pone.0131125.t005

Genetic association of miRNA machinery genes and combined gene–patient characteristics

We examined the potential genetic association between HTN or DM and gene/patient characteristics to elucidate the genetic etiology of CRC development because metabolic syndrome risk...
factors, including HTN and DM, are very relevant in the occurrence of CRC. We determined the DROSHA rs10719 CC genotype was associated increased risk of colon cancer in subjects ≥62 years or older (AOR = 3.875; 95% CI, 1.432–10.490) and patients with HTN (AOR, 3.292; 95% CI, 1.362–7.958), DM (AOR = 6.764; 95% CI, 1.424–32.126) (Table 8). Interestingly, the combination of DM and the DROSHA rs10719 CC genotype increased CRC risk 6.764-fold (Fig 1).

We also observed an association between the XPO5 rs11077 combined AC+CC genotype and increased CRC risk in patients with HTN (AOR, 3.126; 95% CI, 1.739–5.619) or BMI of <25 kg/m² (AOR = 11.765; 95% CI, 1.011–3.079) (Table 8).

Discussion

Previous studies have shown that several types of cancer are associated with alterations to miRNA machinery genes, such as DROSHA, DICER1, XPO5, and AGO2 [31–33]. Although modifications to these genes can significantly affect initiation and progression of cancer, the role of genetic variation in miRNA machinery genes during CRC development is not fully understood. To the best of our knowledge, this is the first report to evaluate the association between RAN polymorphisms and CRC; we found RAN rs14035 CT heterozygotes and T allele carriers (CT + TT genotypes) had a lower CRC risk than individuals with other genotypes.

In addition, in a subgroup analysis targeting cancer type, we determined the combined RAN rs14035 CT + TT genotype was associated with decreased rectal cancer risk. RAN encodes a small G protein essential for the translocation of RNA and proteins through the nuclear pore complex [34]. When RAN-GTP is depleted as a result of RAN guanine nucleotide exchange factor inhibition, pre-miRNA export is greatly reduced, indicating miRNA transport is mediated by a RAN-GTP-binding export receptor [35]. Therefore, it is possible that RAN mutations play an essential role in pathology-related changes to miRNA transport and expression. The RAN protein is also a well-known downstream modulator of the PI3K signaling pathway, which mediates cancer cell invasion and metastasis [36]. Moreover, CRC tissues exhibit

| Table 6. Stratified effect of miRNA machinery gene polymorphisms on colorectal cancer risk (I). |
|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Factor | DICER rs3742330 AG+GG | DROSHA rs10719 CC | RAN rs14035 CT+TT | XPO5 rs11077 AC+CC |
| AOR (95% CI)a | P | AOR (95% CI)a | P | AOR (95% CI)a | P |
| Age | | | | | |
| <62 years | 1.350 (0.844–2.159) | 0.210 | 2.940 (1.169–7.399) | 0.022 | 0.749 (0.480–1.167) | 0.201 | 1.166 (0.662–2.055) | 0.594 |
| ≥62 years | 1.490 (0.955–2.324) | 0.079 | 3.148 (1.276–7.766) | 0.013 | 0.718 (0.469–1.101) | 0.129 | 0.955 (0.560–1.630) | 0.867 |
| Gender | | | | | | |
| Male | 1.296 (0.814–2.064) | 0.275 | 1.172 (0.431–3.192) | 0.756 | 0.493 (0.308–0.791) | 0.003 | 1.184 (0.673–2.085) | 0.558 |
| Female | 1.178 (0.776–1.790) | 0.442 | 1.622 (0.752–3.503) | 0.218 | 0.872 (0.585–1.299) | 0.500 | 1.111 (0.647–1.909) | 0.702 |
| Hypertension | | | | | | |
| No | 1.385 (0.889–2.158) | 0.150 | 1.793 (0.757–4.248) | 0.184 | 0.732 (0.469–1.141) | 0.168 | 1.093 (0.616–1.936) | 0.762 |
| Yes | 1.008 (0.644–1.579) | 0.971 | 1.246 (0.537–2.895) | 0.609 | 0.696 (0.458–1.057) | 0.089 | 1.238 (0.718–2.135) | 0.442 |
| Diabetes mellitus | | | | | | |
| No | 1.25 (0.878–1.767) | 0.219 | 1.300 (0.660–2.561) | 0.448 | 0.618 (0.438–0.874) | 0.006 | 1.195 (0.768–1.861) | 0.430 |
| Yes | 1.115 (0.557–2.229) | 0.759 | 2.039 (0.434–9.592) | 0.367 | 1.006 (0.520–1.946) | 0.987 | 1.001 (0.443–2.260) | 0.998 |
| Tumor site | | | | | | |
| Colon | 1.398 (0.966–2.024) | 0.076 | 1.211 (0.588–2.498) | 0.604 | 0.734 (0.517–1.043) | 0.085 | 1.235 (0.792–1.926) | 0.352 |
| Rectum | 1.004 (0.676–1.490) | 0.984 | 1.677 (0.814–3.455) | 0.161 | 0.640 (0.430–0.954) | 0.028 | 1.070 (0.647–1.770) | 0.791 |

aAdjusted odds ratio on the basis of risk factors, such as age, gender, hypertension, diabetes mellitus.
significantly higher levels of RAN expression than normal colorectal epithelial cells, which have been positively associated with depth of invasion, lymph node metastases, distant metastases, tumor differentiation, and tumor–node–metastasis stage [37]. Therefore, the rs14035 polymorphism in RAN’s 3'-UTR may influence its function as a downstream modulator of CRC development.

Faggad et al. [38] reported that reduced DICER1 expression may contribute to tumor progression in CRC. Consistent with this report, Dewi et al. [39] determined that DICER1-deficient CRC tissues have a reduced number of alkaline phosphatase-positive reprogrammed cells relative to wild type cells. However, another report showed no significant difference in expression levels of long 3'-UTR DICER1 mRNA between CRC tumors and normal tissues [40]. Thus, the effects of up- and down regulation of DICER1 expression on CRC susceptibility are unclear. Our subgroup analysis, which target specific cancer type, revealed that DICER1 rs3742330 AG heterozygotes showed a significantly increased risk of colon cancer. Similarly, an association between this polymorphism, located in the gene’s 3'-UTR, and T-cell lymphoma survival has also been reported, perhaps because its 3'-UTR is important for mRNA transcript stability [41]. Moreover, another SNP located in DICER1’s 3'-UTR (rs1057035) may contribute

| Table 7. Stratified effect of miRNA machinery gene polymorphisms on colorectal cancer risk (II). |
|---|----------------|----------------|----------------|----------------|----------------|
| Factor | DICER rs3742330A>G | DROSHA rs10719T>C | RAN rs14035 C>T | XPO5 rs11077 A>C |
| | AOR (95% CI) | AOR (95% CI) | AOR (95% CI) | AOR (95% CI) | AOR (95% CI) |
| Tumor size | | | | | |
| <5cm | 1.100 (0.735–1.646) | 0.642 (1.057–4.413) | 0.654 (0.437–0.978) | 0.039 (0.616–1.724) | 1.031 (0.616–1.724) |
| ≥5cm | 1.283 (0.892–1.846) | 0.180 (0.460–1.997) | 0.732 (0.517–1.038) | 0.08 (0.809–1.948) | 1.255 (0.809–1.948) |
| Lymph node invasion | | | | | |
| No | 1.136 (0.785–1.642) | 0.499 (0.739–3.058) | 0.736 (0.513–1.057) | 0.097 (0.727–1.830) | 1.153 (0.727–1.830) |
| Yes | 1.312 (0.884–1.946) | 0.177 (0.626–2.726) | 0.663 (0.453–0.968) | 0.034 (0.733–1.898) | 1.180 (0.733–1.898) |
| Homocysteine | | | | | |
| <12.97μmol/l | 1.141 (0.807–1.615) | 0.456 (0.821–3.038) | 0.637 (0.453–0.896) | 0.01 (0.710–1.728) | 1.108 (0.710–1.728) |
| ≥12.97μmol/l | 1.717 (0.745–3.958) | 0.205 (0.066–3.877) | 1.013 (0.462–2.221) | 0.974 (0.341–2.277) | 0.881 (0.341–2.277) |
| Folate | | | | | |
| <3.72ng/ml | 0.858 (0.326–2.261) | 0.757 (0.049–3.010) | 0.362 (0.427–2.565) | 0.921 (0.294–3.153) | 0.964 (0.294–3.153) |
| ≥3.72ng/ml | 1.230 (0.869–1.740) | 0.242 (0.890–3.838) | 0.630 (0.447–0.888) | 0.008 (0.708–1.697) | 1.096 (0.708–1.697) |

*Adjusted odds ratio on the basis of risk factors, such as age, gender, hypertension, diabetes mellitus.

doi:10.1371/journal.pone.0131125.t007
Table 8. Interplay between genes and patients characteristics in shaping colorectal cancer risk.

Factor	DICER rs3742330 AA (95% CI)a	DICER rs3742330 AG+GG AOR (95% CI)a	DROSHA rs10719 TT+TC AOR (95% CI)a	DROSHA rs10719 CC AOR (95% CI)a	RAN rs14035 CT+TT AOR (95% CI)a	RAN rs14035 AC+CC AOR (95% CI)a	XPO5 rs11077 AA AOR (95% CI)a	XPO5 rs11077 AC+CC AOR (95% CI)a
Age								
<62years	1.000 (reference)	0.971 (0.627–1.503)	1.000 (reference)	0.632 (0.247–1.617)	1.000 (reference)	0.671 (0.434–1.037)	1.000 (reference)	1.472 (0.824–2.630)
≥62years	0.581 (0.251–1.345)	1.209 (0.571–2.562)	1.084 (0.648–1.814)	3.875 (1.432–10.490)	1.020 (0.541–1.920)	0.744 (0.363–1.527)	1.415 (0.820–2.441)	1.562 (0.748–3.260)
Gender								
Male	1.000 (reference)	1.296 (0.814–2.064)	1.000 (reference)	1.172 (0.431–3.192)	1.000 (reference)	0.493 (0.308–0.791)	1.000 (reference)	1.184 (0.673–2.085)
Female	1.129 (0.673–1.894)	1.289 (0.831–2.000)	1.040 (0.766–1.412)	1.631 (0.751–3.541)	0.859 (0.591–1.250)	0.720 (0.461–1.125)	1.084 (0.782–1.502)	1.204 (0.692–2.096)
Hypertension								
No	1.000 (reference)	1.385 (0.889–2.158)	1.000 (reference)	1.793 (0.757–4.248)	1.000 (reference)	0.732 (0.469–1.414)	1.000 (reference)	1.093 (0.616–1.936)
Yes	2.927 (1.709–5.011)	2.726 (1.726–4.305)	2.555 (1.841–3.547)	3.292 (1.362–7.958)	2.543 (1.693–3.820)	1.608 (1.022–2.532)	2.345 (1.656–3.320)	3.126 (1.739–5.619)
DM								
No	1.000 (reference)	1.245 (0.878–1.767)	1.000 (reference)	1.300 (0.660–2.561)	1.000 (reference)	0.618 (0.438–0.874)	1.000 (reference)	1.195 (0.768–1.861)
Yes	3.321 (1.727–6.385)	3.732 (2.269–6.138)	3.054 (2.095–4.452)	6.764 (1.424–32.126)	2.562 (1.608–4.083)	2.535 (1.429–4.497)	3.189 (2.124–4.789)	3.422 (1.583–7.396)
Homocysteine								
<12.97µmol/l	1.000 (reference)	1.141 (0.807–1.615)	1.000 (reference)	1.579 (0.821–3.038)	1.000 (reference)	0.637 (0.453–0.896)	1.000 (reference)	1.108 (0.710–1.728)
≥12.97µmol/l	1.169 (0.555–2.464)	1.813 (1.021–3.220)	1.507 (0.975–2.331)	0.682 (0.091–5.110)	1.169 (0.680–2.008)	1.093 (0.568–2.106)	1.522 (0.947–2.446)	1.200 (0.498–2.892)
Folate								
≥3.72ng/ml	1.000 (reference)	1.230 (0.869–1.740)	1.000 (reference)	1.735 (0.890–3.383)	1.000 (reference)	0.630 (0.447–0.888)	1.000 (reference)	1.096 (0.708–1.697)
<3.72ng/ml	4.185 (1.717–10.201)	3.394 (1.905–6.049)	3.365 (2.092–5.413)	0.941 (0.150–5.919)	2.397 (1.351–4.255)	2.606 (1.250–5.435)	3.191 (1.931–5.273)	2.879 (0.954–8.685)
BMI								
<25kg/m2	1.000 (reference)	0.953 (0.629–1.445)	1.000 (reference)	2.541 (0.975–6.623)	1.000 (reference)	0.703 (0.469–1.054)	1.000 (reference)	1.765 (1.011–3.079)
≥25kg/m2	0.302 (0.159–0.575)	0.684 (0.416–1.127)	0.583 (0.408–0.834)	0.681 (0.219–2.113)	0.517 (0.336–0.794)	0.475 (0.276–0.816)	0.642 (0.442–0.933)	0.535 (0.255–1.121)

aAdjusted odds ratio on the basis of risk factors, such as age, gender, hypertension, diabetes mellitus.

doi:10.1371/journal.pone.0131125.t008
to oral cancer risk by affecting miRNA binding to DICER1 [42]. Although the DICER1 rs3742330 AG genotype was associated with a significantly increased risk of colon cancer in our data, we observed no significant relationship between the genotype frequencies for the DICER1 rs3742330 and CRC patient survival. DICER1rs3742330 was reported to be associated with increased survival in T-cell lymphoma [41]. These inconsistent results across different cancers suggest that the abnormal expression patterns of miRNA pathway genes might be associated with tissue-specific effects. The SNP is located in the 3'-UTR, a region that is important for DICER1 mRNA stability, polyadenylation, translation efficiency, and localization. The 3'-UTR contains binding sites for microRNAs. Many studies have reported the regulatory roles of miRNAs in genetic networks underlying various cellular pathways, indicating that oncogenic miRNAs might be involved in the genetic networks regulating the functional pathway deregulated in different cancer cells [7,43]. DICER1 rs3742330 has been identified as the target site of two miRNAs—miR-3622a-5p [44] and miR-5582-5p [45]. However, the regulation of these miRNAs of DICER1 rs3742330 in CRC and T-cell lymphoma has not been experimentally validated. The expression levels of DICER1 have global effects on the biogenesis of miRNA. For instance, a pattern of down-regulation of DICER1 is associated with poor prognosis in skin, lung, breast, and ovarian cancers, among other cancers [46]. However, the analysis of prostate cancer and CRC shows overexpression of DICER1 and other miRNA biogenesis genes in metastatic lesions [47]. Mucoepidermoid cancers arising in the throat or upper esophagus exhibit both over- and under-expression of DICER1 compared with normal tissues from the throat and esophagus [48]. The miRNA-SNP of rs3742330 of DICER1 has been identified for its association with the cancer outcome of CRC, T-cell lymphoma, oral premalignant lesions and renal cell carcinoma [49–51,42]. The AA allele of rs3742330 located in the DICER1 gene exhibited a significantly increased risk of CRC. However, in T-cell lymphoma, Patients carrying the GG genotype had a significantly increased overall survival (OS) compared with those carrying the GA and AA genotypes. In oral premalignant lesions, patients carrying the GA and AA genotypes had a significantly increased risk of OPL, and there was no significant relationship between the genotype frequencies for the DICER1 rs3742330 and renal cell carcinoma. These studies, together with our study, suggest genetic polymorphisms in cancer may play a different
role in the regulation of miRNA machinery genes, including DICER1, and therefore influence the prognosis of cancer.

In the miRNA processing system, the XPO5/RAN-GTP complex mediates the nuclear transport of pre-miRNAs. XPO5 mutants display reduced miRNA processing levels and target inhibition, while restored XPO5 acts as a tumor suppressor that reverses the impaired export of pre-miRNA in colon cancer [52]. Previous studies have reported associations between the XPO5 rs11077 SNP (located in the gene’s 3’UTR) and esophageal cancer, non-small cell lung cancer, and multiple myeloma [53,54]. In addition, associations between polymorphisms in the XPO5 and AGO1 genes and renal cell carcinoma risk have been reported [55]. In particular, XPO5 rs11077 was linked with increased risk of renal cell carcinoma in a recessive model [55]. In support of these earlier reports, we found that RAN rs14035 CT heterozygotes and XPO5 rs11077 AA genotype carriers experienced reduced susceptibility to CRC, a link that was especially apparent in male patients. Gender differences have been documented among patients diagnosed with CRC. A higher CRC age-adjusted incidence among men than among women has persisted over the past 30 years, but the underlying cause remains unclear [56]. In our study, RAN rs14035 CT/XPO5 rs11077 AA and RAN rs14035 CT/DROSHA rs10719 AA genotypes were associated with reduced susceptibility to CRC in males. In addition, RAN rs14035 CT heterozygotes and DROSHA rs10719 AA genotype carriers reduced susceptibility to CRC subtype. Polymorphisms within the 3’-UTRs of miRNA machinery genes may be responsible for locally altered mRNA secondary structures. For example, 3’-UTR polymorphisms can result in different secondary mRNA structures and distinct allele-dependent differences in mRNA stability [57]. Similarly, several reports have suggested that SNPs outside of the miRNA binding site result in altered miRNA binding due to allele-dependent changes in secondary mRNA structure [58]. In addition, alterations in secondary structure can interfere with RNA-binding proteins, which can lead to altered mRNA stability [59]. Thus, the SNPs located in the 3’-UTRs of RAN, DICER1 and XPO5 may affect mRNA stability and subsequent expression. However, the results from this study require validation by another CRC case-control study and by laboratory-based expression methods.

Recent evidence shows that components of metabolic syndrome (MetS), including aging, HTN, and DM, may also be associated with the risk of developing CRC [60,61]. The relationship between individual components of MetS and CRC risk has been analyzed by several studies [62,63]. But an inconsistent link between MetS and its components on CRC mortality was observed in another study [64]. Diabetes mellitus type 2 is associated with a 20%-60% increased risk of CRC [65], as insulin resistance may promote carcinogenesis directly by stimulating colonic cell growth [66]. Our data show that the RAN rs14035 CT + TT genotype may result in lower CRC risk in patients without DM, but not in patients with DM. However, a recent meta-analysis demonstrated that DM was an independent, increased risk factor for CRC in both men and women, even after controlling for smoking, obesity, and physical exercise of the patients [65]. However, we found the RAN rs14035 CT + TT genotype was associated with a lower CRC risk in male patients and in all patients with rectal cancer. Although numerous studies have shown that tumor size is of no prognostic significance in CRC [67,68], our data showed that DROSHA rs10719 CC was associated with an increased CRC risk regarding tumor size (<5 cm) and age (≥62 years). We also found that the DICER1 rs3742330 and XPO5 rs11077 genotypes were not associated with the risk of age, gender, hypertension, DM, tumor site, tumor size, lymph node invasion, HTN and folate, suggesting that these SNPs might not modulate the susceptibility to CRC in the Korean population.

Several studies have reported the associations between homocysteine levels and cancer development. For example, cohort studies found elevated homocysteine was correlated with increased adenoma recurrence [69,70]. Similarly, we observed that DROSHA rs10719 and RAN
rs14035 CC genotypes were associated with CRC with respect to the subjects’ tumor sizes. We also found that the RAN rs14035 CC genotype was associated with decreased risk of CRC in patients with $< 12.97 \mu \text{mol/l}$ homocysteine. However, to our knowledge, no other significant associations have been found between homocysteine and risk of CRC [71].

Folate provides 1-carbon units for DNA synthesis and methylation, and neoplasia results from the disruption in both of these processes. Modifications to DNA methylation occur on a genomic- and gene-specific level in colorectal neoplasia [72], and some studies have shown that low plasma folate concentrations were associated with reduced CRC risk and that plasma folate concentrations were positively related to CRC risk [73,74]. However, our data show that the RAN rs14035 CC genotype was associated with decreased risk of CRC in subjects with $> 3.72 \text{ ng/ml}$ folate.

We also examined the interplay between genetic factors and patient characteristics with respect to CRC occurrence. For example, we determined the DROSHA rs10719 CC genotype was associated with increased CRC risk in patients with HTN and DM, while the XPO5 rs11077 AC+CC genotype correlated to increased CRC risk in patients with HTN. Recent studies have observed increased risk of CRC associated with HTN [60,62], and the presence of HTN, obesity, and hyperglycemia [75]. However, a study of Finnish male smokers did not support these associations [76]. In addition, our data showed that the CC genotype of rs10719 located in the DROSHA gene had an increased CRC risk in patients with age (≥ 62 years) compared with those carrying the TT and CC genotypes. An accumulation of evidence indicates MetS, with its systemic and hormonal effects, may affect a patient’s susceptibility to carcinoma and the prognosis of patients diagnosed with various cancers [77,78]. Our study provides new information regarding the association between CRC and MetS in the context of polymorphisms in miRNA machinery genes. However, additional studies of other miRNA machinery genes will be needed to clarify the association between these polymorphisms and CRC.

In summary, we investigated the relationship between CRC susceptibility and the miRNA machinery gene DROSHA rs10719, DICER1 rs3742330, RAN rs14035, and XPO5 rs11077 polymorphisms. To date, few studies have investigated the association between polymorphisms in RAN gene and CRC risk and there were no associations between the RAN gene polymorphisms and CRC risk [24–26]. Though our results provide the first evidence for a significant association between RAN polymorphisms and CRC in Korean patients, our findings will benefit from additional data regarding the polymorphism’s effect upon mRNA stability, binding efficiency, and selectivity. Therefore, our study, while novel in its findings, requires validation by functional studies investigating the polymorphism’s effect upon miRNA machinery and downstream cellular activities.

Supporting Information

S1 File. Table A in S1 File. miRNA biogenesis gene genotype frequencies and CRC patient survival. Table B in S1 File. The combination of miRNA biogenesis genes polymorphisms based on MDR and CRC patients. Table C in S1 File. The combination of the polymorphisms of microRNA machinery genes in CRC patients and controls: male subgroup. Table D in S1 File. The combination of the polymorphisms of microRNA machinery genes in CRC patients and controls: female subgroup. Table E in S1 File. The combination of the polymorphisms of microRNA machinery genes between the subgroup for colorectal cancer and control subjects. Table F in S1 File. Genotype frequencies of miRNA biogenesis gene polymorphisms and CRC patients survival in TNM stage I + II. Table G in S1 File. Genotype frequencies of miRNA biogenesis genes polymorphisms and CRC patients survival in TNM stage III + IV. Table H in S1 File. Allele combinations of miRNA processing genes in CRC patients and controls using
multifactor dimensionality reduction. Table I in S1 File. Allele combination of miRNA biogenesis genes polymorphisms based on multifactor dimensionality reduction and CRC patients survival.

Author Contributions
Conceived and designed the experiments: SHC JJK JWK NKK. Performed the experiments: JOK YJJ JKY JO. Analyzed the data: SHC JOK YJJ JKY NKK. Contributed reagents/materials/analysis tools: JJK JO DO JWK NKK. Wrote the paper: SHC JJK NKK. Article editing: JO DO JWK NKK.

References
1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide (2013) IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; Available: http://globocan.iarc.fr
2. Boyle P, Levin B (2008) colorectal cancer. In World Cancer Report (Lyon, France: International Agency for Research on Cancer). pp. 374–378.
3. Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1995) Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann Intern Med 122: 327–334. PMID: 7847643
4. Terzić J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138: 2101–2114. doi:10.1053/j.gastro.2010.01.058 PMID: 20420949
5. Tsoi KK, Pau CY, Wu WK, Chan FK, Griffiths S, Sung JJ (2009) Cigarette smoking and the risk of colorectal cancer: a meta-analysis of prospective cohort studies. Clin Gastroenterol Hepatol 7: 682–688. e1–e5. doi:10.1016/j.cgh.2009.02.016 PMID: 19245853
6. Ambros V (2004) The functions of animal microRNAs. Nature 431: 350–355. PMID: 15372042
7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297. PMID: 14744438
8. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136: 642–655. doi:10.1016/j.cell.2009.01.035 PMID: 19239886
9. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866. PMID: 17060945
10. He L, Thomson JM, Hemmann MT, Hernandez-Monge E, Mu D, Goodson S, et al. (2005) A microRNA polycistron as a potential human oncogene. Nature 435: 828–833. PMID: 15944707
11. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070. PMID: 16103053
12. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753–3756. PMID: 15172979
13. Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38: 323–332. doi: 10.1016/j.molcel.2010.03.013 PMID: 20471939
14. Eamens AL, Smith NA, Curtis SJ, Wang MB, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from micro-RNA duplexes. RNA 15: 2219–2235. doi: 10.1261/rna.1648909 PMID: 19861421
15. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, et al. (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343: 78–85. PMID: 10891514
16. Ryan BM, Robles Al, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10: 389–402. doi: 10.1038/nrc2867 PMID: 20495573
17. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39: 673–677. PMID: 17401365
18. Grelier G, Voirin N, Ay AS, Cox DG, Chabaud S, Treilleux I, et al. (2009) Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer 101: 673–683. doi: 10.1038/sj.bjc.6605193 PMID: 19672267
19. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, et al. (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96: 111–115. PMID: 15723655

20. Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, et al. (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359: 2641–2650. doi: 10.1056/NEJMoa0803785 PMID: 19092150

21. Sand M, Gambichler T, Skrygan M, Sand D, Scola N, Altmeyer P, et al. (2010) Expression levels of the microRNA processing enzymes Drosha and Dicer in epithelial skin cancer. Cancer Invest 28: 649–653. doi: 10.3109/07357901003630918 PMID: 20210522

22. Boni V, Bitarte N, Cristobal I, Zarate R, Rodriguez J, Maiello E, et al. (2010) miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its posttranscriptional thymidylate synthase regulation. Mol Cancer Ther 9: 2265–2275. doi: 10.1158/1535-7163.MCT-10-0061 PMID: 20647341

23. Schetter AJ, Leung SY, Sohn JJ, Bowman ED, Yanaihara N, et al. (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299: 425–436. doi: 10.1001/jama.299.4.425 PMID: 18230780

24. Lee HC, Kim JG, Chae YS, Sohn SK, Kang BW, Moon JH, et al. (2010) miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its posttranscriptional thymidylate synthase regulation. Mol Cancer Ther 9: 2265–2275. doi: 10.1158/1535-7163.MCT-10-0061 PMID: 20647341

25. Schetter AJ, Leung SY, Sohn JJ, Bowman ED, Yanaihara N, et al. (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299: 425–436. doi: 10.1001/jama.299.4.425 PMID: 18230780

26. Lee HC, Kim JG, Chae YS, Sohn SK, Kang BW, Moon JH, et al. (2010) miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its posttranscriptional thymidylate synthase regulation. Mol Cancer Ther 9: 2265–2275. doi: 10.1158/1535-7163.MCT-10-0061 PMID: 20647341

27. Papachristou DJ, Korpetinou A, Giannopoulou E, Antonacopoulou AG, Papadaki H, Grivas P, et al. (2011) Expression of the ribonucleases Drosha, Dicer, and Ago2 in colorectal carcinomas. Virchows Arch 458: 431–440. doi: 10.1007/s00428-011-1119-5 PMID: 21769619

28. Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19: 376–382. PMID: 12584123

29. Moore JH, Williams SM (2002) New strategies for identifying gene-gene interactions in hypertension. Ann Med 34: 88–95. PMID: 12108579

30. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, et al. (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69: 138–147. PMID: 11404819

31. Jeon YJ, Choi YS, Rah H, Kim SY, Choi DH (2012) Association study of microRNA polymorphisms with risk of idiopathic recurrent spontaneous abortion in Korean women. Gene 494: 168–173. doi: 10.1016/j.gene.2011.12.026 PMID: 2222140

32. Leaderer D, Hoffman AE, Zheng T, Fu A, Weidhaas J, Paranjape T, et al. (2011) Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int J Mol Epidemiol Genet 2: 9–18. PMID: 21552306

33. Papachristou DJ, Sklirou E, Corradi D, Grassani C, Kontogeorgakos V, Rao UN (2012) Prognostic significance of Dicer cellular levels in soft tissue sarcomas. Cancer Invest 30: 172–179. doi: 10.3109/07357900701395793 PMID: 22149178

34. Papachristou DJ, Sklirou E, Corradi D, Grassani C, Kontogeorgakos V, Rao UN (2012) Immuno-histochemical analysis of the endoribonucleases Drosha, Dicer and Ago2 in smooth muscle tumours of soft tissues. Histopathology 60: E28–36. doi: 10.1111/j.1365-2559.2012.04192.x PMID: 22394132

35. Sazer S, Dasso M (2000) The ran decathlon: multiple roles of Ran. J Cell Sci 113: 1111–1118. PMID: 10704362

36. Izaurralde E, Jarmolowski A, Beisel C, Mattaj IW, Dreyfuss G, Fischer U (1997) A role for the M9 transport signal of hnRNP A1 in mRNA nuclear export. J Cell Biol 137: 27–35. PMID: 9105034

37. Kurisetty VV, Johnston PG, Johnston N, Erwin P, Crowe P, Fernig DG, et al. (2008) RAN GTPase is an effector of the invasive/ metastatic phenotype induced by osteopontin. Oncogene 27: 7139–7149. doi: 10.1038/onc.2008.325 PMID: 18794800

38. Fan H, Lu Y, Qin H, Zhou Y, Gu Y, Zhou J, et al. (2013) High Ran level is correlated with poor prognosis in patients with colorectal cancer. Int J Clin Oncol 18: 856–863. doi: 10.1007/s10147-012-0465-x PMID: 22956174

39. Faggad A, Kasajima A, Weichert W, Stenzinger A, Elwali NE, Dietel M, et al. (2012) Down-regulation of the microRNA processing enzyme Dicer is a prognostic factor in human colorectal cancer. Histopathology 61: 552–561. doi: 10.1111/j.1365-2559.2011.04110.x PMID: 22716222

MicroRNA Machinery Genes Variants and Colorectal Cancer

PLOS ONE | DOI:10.1371/journal.pone.0131125 July 6, 2015 15 / 17
39. Dewi DL, Ishii H, Haraguchi N, Nishikawa S, Kano Y, Fukusumi T, et al. (2012) Dicer 1, ribonuclease type III modulates a reprogramming effect in colorectal cancer cells. Int J Mol Med 29: 1060–1064. doi: 10.3892/ijmm.2012.945 PMID: 22446887

40. Hamaya Y, Kuriyama S, Takai T, Yoshida K, Yamada T, Sugimoto M, et al. (2012) A distinct expression pattern of the long 3'-untranslated region dicer mRNA and its implications for posttranscriptional regulation in colorectal cancer. Clin Transl Gastroenterol 3: e17. doi: 10.1038/cttg.2012.12 PMID: 23238289

41. Li X, Tian X, Zhang B, Zhang Y, Chen J (2012) Variation in dicer gene is associated with increased survival in T-cell lymphoma. PLoS One 7: e51640. doi: 10.1371/journal.pone.0051640 PMID: 23251602

42. Claigue J, Lippman SM, Yang H, Hildebrandt MA, Ye Y, Lee JJ, et al. (2010) Genetic variation in microRNA genes and risk of oral premalignant lesions. Mol Carcinog 49: 183–189. doi: 10.1002/mc.20588 PMID: 19851984

43. Wang J, Sen S (2011) MicroRNA functional network in pancreatic cancer. From biology to biomarkers of disease. J Biosci 36: 481–491. PMID: 21799259

44. Persson H, Kvist A, Rego N, Staaf J, Vallon-Christersson J, Luts L (2011) Identification of new micro-RNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. Cancer Res 71:78–86. doi: 10.1158/0008-5472.CAN-10-1869 PMID: 21199797

45. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40: 37–52. doi: 10.1093/nar/gkr688 PMID: 21911355

46. Bahubeshi A, Tischkowitz M, Fouilkes WD (2011) miRNA processing and human cancer: DICER1 cuts the mustard. Sci Transl Med. 3: 111ps46.

47. Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW, Dhir R (2011) miRNA processing and human cancer: DICER1 cuts the mustard. Sci Transl Med. 3: 111ps46.

48. Li X, Tian X, Zhang B (2012) Variation in Dicer gene is associated with increased survival in T-cell lymphoma. PLoS One 7: e51640. doi: 10.1371/journal.pone.0051640 PMID: 23251602

49. Dewi DL, Ishii H, Haraguchi N, Nishikawa S, Kano Y, Fukusumi T, et al. (2012) Dicer 1, ribonuclease type III modulates a reprogramming effect in colorectal cancer cells. Int J Mol Med 29: 1060–1064. doi: 10.3892/ijmm.2012.945 PMID: 22446887

50. Li X, Tian X, Zhang B (2012) Variation in dicer gene is associated with increased survival in T-cell lymphoma. PLoS One 7: e51640. doi: 10.1371/journal.pone.0051640 PMID: 23251602

51. Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, et al. (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18: 303–315. doi: 10.1016/j.ccr.2010.09.007 PMID: 20951941

52. Campayo M, Navarro A, Vinolas N, Tejero R, Muñoz C, Díaz T, et al. (2011) A dual role for KRT81: a miR-SNP associated with recurrence in non-small-cell lung cancer and a novel marker of squamous cell lung carcinoma. PLoS One 6: e22509. doi: 10.1371/journal.pone.0022509 PMID: 21799879

53. Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajan LA, et al. (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila) 1: 460–469. doi: 10.1158/1940-6207.CPR-08-0069

54. Horikawa Y, Wood CG, Yang H, Zhao H, Wang H, Guo Z. (2015) Single-nucleotide polymorphisms of microRNA processing machinery genes and risk of colorectal cancer. Onco Targets Ther 8: 421–425. doi:10.2147/OTT.S78647 PMID: 25709475

55. Campayo M, Navarro A, Vinolas N, Tejero R, Muñoz C, Díaz T, et al. (2011) A dual role for KRT81: a miR-SNP associated with recurrence in non-small-cell lung cancer and a novel marker of squamous cell lung carcinoma. PLoS One 6: e22509. doi: 10.1371/journal.pone.0022509 PMID: 21799879

56. Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajan LA, et al. (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila) 1: 460–469. doi: 10.1158/1940-6207.CPR-08-0069

57. Horikawa Y, Wood CG, Yang H, Zhao H, Ye Y, Gu J, et al. (2008) Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res 14: 7956–7962. doi:10.1158/1078-0432.CCR-08-1199 PMID: 19047128

58. Peter N, Abochlie, Sally W. Vernon, and Xianglin L. Du (2012) Gender Differences in Colorectal Cancer Incidence in the United States, 1975–2006. J. of Women’s Health 21: 393–400.

59. Akdeli N, Riemann K, Westphal J, Hess J, Siffert W, Bachmann HS (2014) 3'UTR polymorphisms in COL5A1 3'UTR that alters mRNA stability of the oncogene and drug target Polo-like Kinase 1. Mol Cancer 13: 87. doi: 10.1186/1476-4598-13-87 PMID: 24767679

60. Ahmed RL, Schmitz KH, Anderson KE, Rosamond WD, Folsom AR (2006) The metabolic syndrome and risk of incident colorectal cancer. Cancer 107: 28–36. PMID: 16721800
61. Pais R, Silaghi H, Silaghi AC, Rusu ML, Dumitrescu DL (2009) Metabolic syndrome and risk of subsequent colorectal cancer. World J Gastroenterol 15: 5141–5148. PMID: 19891012

62. Colangelo LA, Gapstur SM, Gann PH, Dyer AR, Liu K (2002) Colorectal cancer mortality and factors related to the insulin resistance syndrome. Cancer Epidemiol Biomarkers Prev 11: 385–391. PMID: 11927499

63. Schoen RE, Tangen CM, Kuller LH, Burke GL, Cushman M, Tracy RP, et al. (1999) Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst 91: 1147–1154. PMID: 10393723

64. Jaggers JR, Sui X, Hooker SP, LaMonte MJ (2009) Metabolic syndrome and risk of cancer mortality in men. Eur J Cancer 45: 1831–1838. doi: 10.1016/j.ejca.2009.01.031 PMID: 19250819

65. Yuhara H, Steinmaus C, Cohen SE, Corley DA, Tei Y, Buffler PA (2011) Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer? Am J Gastroenterol 106: 1911–1921. doi: 10.1038/ajg.2011.301 PMID: 21912438

66. Giovannucci E (2001) Insulin, insulin-like growth factors and colon cancer: a review of the evidence. J Nutr 131: 3109S–3120S. PMID: 11694656

67. Compton CC, Fielding LP, Burgart LJ, Conley B, Cooper HS, Hamilton SR, et al. (2000) Prognostic factors in colorectal cancer: College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124: 979–994. PMID: 10888773

68. Compton CC, Fenoglio-Preiser CM, Pettigrew N, Fielding LP (2000) American Joint Committee on Cancer Prognostic Factors consensus conference: Colorectal Working Group. Cancer 88: 1739–1757. PMID: 10738234

69. Levine AJ, Grau MV, Mott LA, Ueland PM, Baron JA (2010) Baseline plasma total homocysteine and adenoma recurrence: results from a double blind randomized clinical trial of aspirin and folate supplementation. Cancer Epidemiol Biomarkers Prev 19: 2541–2548. doi: 10.1158/1055-9965.EPI-10-0536 PMID: 20841390

70. Martinez ME, Giovannucci E, Jiang R, Henning SM, Jacobs ET, Thompson P, et al. (2006) Folate fortification, plasma folate, homocysteine and colorectal adenoma recurrence. Int J Cancer 119: 1440–1446. PMID: 16615116

71. Van Guelpen B, Hultdin J, Johansson I, Hallmans G, Stenling R, Riboli E, et al. (2006) Low folate levels may protect against colorectal cancer. Gut 55: 1461–1466. PMID: 16638790

72. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228: 187–190. PMID: 2579435

73. Gylling B, Van Guelpen B, Schneede J, Hultdin J, Ueland PM, Hallmans G, et al. (2014) Low folate levels are associated with reduced risk of colorectal cancer in a population with low folate status. Cancer Epidemiol Biomarkers 23: 2136–2144.

74. Lee JE, Wei EK, Fuchs CS, Hunter DJ, Lee IM, Selhub J, et al. (2012) Plasma folate, methylenetetrahydrofolate reductase (MTHFR), and colorectal cancer risk in three large nested case-control studies. Cancer Causes Control 23: 537–545. doi: 10.1007/s10552-012-9911-3 PMID: 22367721

75. Stocks T, Lukanova A, Johansson M (2008) Components of the metabolic syndrome and colorectal cancer risk: a prospective study. Int J Obes 32: 304–314.

76. Bowers K, Albanes D, Limburg P, Pietinen P, Taylor PR, Virtamo J, et al. (2006) A prospective study of anthropometric and clinical measurements associated with insulin resistance syndrome and colorectal cancer in male smokers. Am J Epidemiol 164: 652–654. PMID: 16877536

77. Jemal A, Siegel R, Ward E (2007) Cancer statistics. CA Cancer J Clin 57: 43–66. PMID: 17237035

78. Lee HC, Kim JG, Chae YS, Sohn SK, Kang BW, Moon JH, et al. (2010) Prognostic impact of microRNA-related gene polymorphisms on survival of patients with colorectal cancer. J Cancer Res Clin Oncol 136: 1073–1078. doi: 10.1007/s00432-009-0754-6 PMID: 20044760